Oxford: Open-ended learning in symmetric zero-sum games

David Balduzzi w/ Marta Garnelo, Yoram Bachrach, Wojtek Czarnecki, Julien Perolat, Max Jaderberg, Thore Graepel

Peak deep learning

"If you have a large big dataset, and you train a very big neural network, then success is guaranteed!" Ilya Sutskever (NIPS 2014)

Peak deep learning

"If you have a large big dataset, and you train a very big neural network, then success is guaranteed!"

Ilya Sutskever (NIPS 2014)

Peak deep learning

"If you have a large big dataset, and you train a very big neural network, then success is guaranteed!"

Ilya Sutskever (NIPS 2014)

"If you formulate the right objective, and have enough capacity and compute, then success is guaranteed!"

Ilya's law

Long ago, not so far away (mid-1800s, Cambridge):

First tutor: "I'm teaching the most brilliant boy in Britain"
Second tutor: "Well, I'm teaching the best test-taker"

Depending on the version of the story, the first boy was either **Lord Kelvin** or **James Clerk Maxwell**. The second boy indeed <u>scored highest</u> on the Mathematical Tripos, but is otherwise long forgotten.

Long ago, not so far away (mid-1800s, Cambridge):

First tutor: "I'm teaching the most brilliant boy in Britain"
Second tutor: "Well, I'm teaching the best test-taker"

Depending on the version of the story, the first boy was either **Lord Kelvin** or **James Clerk Maxwell**. The second boy indeed <u>scored highest</u> on the Mathematical Tripos, but is otherwise long forgotten.

Modern learning algorithms are outstanding test-takers

Intelligence is about more than taking tests It's also about formulating useful problems

The problem problem*

Where do problems objectives come from?

*Tim Lillicrap

Where do problems come from?

Answer #1:

Someone packages a dataset into a loss function

e.g. ImageNet, CIFAR, MNIST

Where do problems come from?

Answer #1:

Someone packages a dataset into a loss function e.g. ImageNet, CIFAR, MNIST

Answer #2:

Someone builds a task (that is, an environment sprinkled with rewards)
e.g. Arcade Learning Environment, DM-Lab, Open AI gym

Where do problems come from?

Answer #3:

Self-play in symmetric zero-sum games

The agent *is* the task -- create an outer loop that applies deep RL to itself

(Naive) self-play is an open-ended learning algorithm

It's pretty amazing

Algorithm 2 Self-play

```
input: agent \mathbf{v}_1 for t=1,\ldots,T do \mathbf{v}_{t+1} \leftarrow \operatorname{oracle}\left(\mathbf{v}_t,\phi_{\mathbf{v}_t}(ullet)\right) end for output: \mathbf{v}_{T+1}
```


(Naive) self-play is an open-ended learning algorithm

but ...

there are really simple examples where it completely breaks down

It's **not** a general purpose learning algorithm, *not even* for zero-sum games

Open questions

1. When does self-play work, and why?

- o If self-play is the answer then what is the question?
- "works for some games but not others" isn't good enough

2. What is the goal in (general) zero-sum games?

- Yes, to win, but against whom? The opponent matters
 - "Beating a pro" isn't a formal specification
- o Is there a general algorithm?

What does success look like?

- **#1:** Supervised learning (e.g. ImageNet)
- #2: Reinforcement learning on fixed environment (e.g. DM-Lab)
- #3: Self-play (e.g. on Chess, Go, Shogi, ...; but not on everything)

What underlies machine learning's big wins?

1. A transitive performance measure

e.g. a loss function or discounted rewards

2. An incremental improvement operator

e.g. gradient descent, RL, evolutionary algorithms

What underlies machine learning's big wins?

1. A transitive performance measure

e.g. a loss function or discounted rewards

2. An incremental improvement operator

e.g. gradient descent, RL, evolutionary algorithms

What drives **self-play**'s success?

- 1. Improvement (local): $(A_{t+1} > A_t)$ and $(A_t > A_{t-1})$ and ...
- 2. Transitivity (global): A_{final} beats all previous agents

On the varieties of zero-sum games

transitive: "relative skill determines who wins"

cyclic: "every strategy has a counter-strategy"

Convex → Nonconvex → Transitive → Nontransitive

Convex objectives (ML in early 2000s): Converge to unique global optimum, for any initial condition and for any reasonable algorithm.

2016...): Optimize and generate a sequence of objectives of the same type and increasing difficulty. Best agent at hardest objective is best overall.

Transitive games (e.g. self-play in Go,

Nonconvex objectives (deep learning, ~2010...): Converge to a local optimum that depends on choice of initial condition and choice of algorithm.

Nontransitive games (e.g. AlphaStar league, 2019...): Optimum depends on who you compete with. Rather than finding a single best agent, should invest in training a diverse "ecology" of agents.

Functional-form game: a two-player symmetric zero-sum game, with differentiable parametrization:

 $\phi(v, w)$

Note: function approximator is "folded into" the game's definition.

Theorem: Any symmetric zero-sum game decomposes into

[transitive] + [cyclic] components

transitive: skill determines outcome

cyclic: every strategy has a counter-strategy

Transitive and cyclic games

	Good	Better	Best	Avg
Good	0	-1	-2	-1.5
Better	1	0	-1	0.0
Best	2	1	0	1.5

	Rock	Paper	Scissors	Avg
Rock	0	-1	1	0.0
Paper	1	0	-1	0.0
Scissors	-1	1	0	0.0

Transitive games: where the opponent doesn't matter

$$\phi(v, w) = f(v) - f(w)$$

- f assigns rating to players
- outcome is difference in ratings

→ algorithm: **optimize against a fixed opponent**

 $argmax_{v} \phi(v, w)$

for any, fixed, w

Monotonic games: what self-play is "meant for"

$$\phi(v, w) = \sigma(f(v) - f(w))$$

- σ is a monotonic function (e.g. **Elo's rating model**)
- no learning signal if you train against a weak opponent (gradients vanish)
 - optimizing against a fixed opponent doesn't work

→ algorithm: **self-play**

Algorithm 2 Self-play

```
input: agent \mathbf{v}_1 for t=1,\ldots,T do \mathbf{v}_{t+1} \leftarrow \operatorname{oracle}\left(\mathbf{v}_t,\phi_{\mathbf{v}_t}(ullet)\right) end for output: \mathbf{v}_{T+1}
```

Cyclic games: where naive self-play breaks down

A game is cyclic if
$$\int_W \phi(\mathbf{v},\mathbf{w}) \cdot d\mathbf{w} = 0$$

i.e wins, against some opponents, are balanced by losses, against others.

Implications:

- There is no best agent
- Measuring performance of individuals is nonsensical
 - o which is better, paper or rock?

NEED: a transitive objective, in non-transitive games!

How to convert **Agents** → **Objectives**

Definition: Gamescape is the convex hull of all objectives in a game

A game is a function that evaluates pairs of agents:

$$\Phi: W \times W \rightarrow R$$

$$\Phi(\mathbf{v}, \mathbf{w})$$

(e.g. probability that **v** beats **w**)

Fixing an opponent converts an Agent → Objective function

$$\mathbf{w} \rightarrow \Phi_{\mathbf{w}}(-) := \Phi(-, \mathbf{w})$$

Gamescapes

Functional Gamescape: convex hull of all objective functions $\Phi_{w}(-)$

- lives in function space **F**(W, R)
- intractable

Empirical Gamescape: convex mixture of all rows of evaluation matrix

- proxy for functional gamescape
- tractable

Fitness landscapes are a special case that arise when the game is transitive or monotone.

Landscape

Transitive: there's **one objective** ("improve skill") ...

... so gamescape degenerates to one dimensional fitness landscape

Gamescape

Nontransitive: different opponents are different objectives that pull in different directions

Gamescape is multi-dimensional

Gamescapes

mElo / Schur decomposition (roughly, in rank-2 case)

$$\mathsf{A}_{\mathsf{n} \times \mathsf{n}} = \mathsf{W}_{\mathsf{n} \times 2} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \mathsf{W}_{\mathsf{2} \times \mathsf{n}}^{\mathsf{T}}$$

{ agents } \rightarrow { rows of W }

Entries of each row are the agent's **multi-dimensional Elo** scores (let's forget about sigmoids)

Looooooong cycles

Is transitive geometry always 1-dim? **Yes** Is cyclic geometry always 2-dim? **No**

 $\textbf{Rock} \rightarrow \textbf{Paper} \rightarrow \textbf{Scissors} \rightarrow \textbf{Fire} \rightarrow \textbf{Water} \rightarrow \textbf{Air} \rightarrow \textbf{Ether} \rightarrow \textbf{Milk} \rightarrow ... \rightarrow \textbf{Rock}$

length(cycle) = $\{2n \text{ or } 2n+1\} \rightarrow \text{rank}(A) = \{2n-2 \text{ or } 2n\}, \text{ respectively.}$

What is the dimension of SC2's gamescape? No idea.

Ceci n'est pas une pipe

So what's the transitive objective in nontransitive games?

Individual performance is **meaningless** in nontransitive games.

"Which is better, rock or paper?"

Idea: population-level objectives!

Grow the gamescape, to get "diverse, effective agents"

- → find strategic dimensions of game
- → and best ways of executing them

Population-level performance

Definition:

Given (m x n) evaluation matrix A for populations P and Q.

Let (p, q) be any Nash Equilibrium on zero-sum meta-game on A.

Relative performance of populations:

$$v(P, Q) := p^T.A.q$$

(doesn't depend on choice of Nash).

Intuition:

- I pick my mixture of champions
- You pick yours (simultaneously)
- We play them out and
- See who wins, how much, in expectation

Population-level performance

Lemma (transitivity for populations):

If agents in P are convex combinations of agents in Q then

$$v(P, Q) <= 0$$

Implication:

Algorithms that "grow polytope" are guaranteed to improve the population-level performance.

Two algorithms: one old and one new

Two ways to track growth ...

- 1. Population performance
- 2. Effective diversity

... and two algorithms

- 1. Response to Nash (double oracle)
 - train against Nash
- 2. Response to **rectified** Nash
 - train against agents in Nash that you beat
 - game-theoretic niches

Algorithm 3 Response to Nash (PSRO_N)

```
input: population \mathfrak{P}_1 of agents for t=1,\ldots,T do \mathbf{p}_t\leftarrow \mathrm{Nash} on \mathbf{A}_{\mathfrak{P}_t} \mathbf{v}_{t+1}\leftarrow \mathrm{oracle}\left(\mathbf{v}_t,\sum_{\mathbf{w}_i\in\mathfrak{P}_t}\mathbf{p}_t[i]\cdot\phi_{\mathbf{w}_i}(\bullet)\right) \mathfrak{P}_{t+1}\leftarrow\mathfrak{P}_t\cup\{\mathbf{v}_{t+1}\} end for output: \mathfrak{P}_{T+1}
```

Algorithm 4 Response to rectified Nash (PSRO_{rN})

```
input: population \mathfrak{P}_1 for t=1,\ldots,T do \mathbf{p}_t\leftarrow \mathrm{Nash} on \mathbf{A}_{\mathfrak{P}_t} for agent \mathbf{v}_t with positive mass in \mathbf{p}_t do \mathbf{v}_{t+1}\leftarrow \mathrm{oracle}\left(\mathbf{v}_t,\sum_{\mathbf{w}_i\in\mathfrak{P}_t}\mathbf{p}_t[i]\cdot\lfloor\phi_{\mathbf{w}_i}(ullet)\rfloor_+\right) end for \mathfrak{P}_{t+1}\leftarrow\mathfrak{P}_t\cup\{\mathbf{v}_{t+1}: \mathrm{updated\ above}\} end for output: \mathfrak{P}_{T+1}
```


Response to Rectified Nash

Performance on Blotto and differentiable Lotto

Growth of gamescapes in differentiable Lotto

Back to the problem problem

Back to the problem problem

- 1. How can algorithms formulate problems?
- 2. Which problems are useful?

Back to the problem problem

- 1. How can algorithms formulate problems?
- 2. Which problems are useful?

in a zero-sum game, "my behavior is your problem"

Usefulness is **semantically grounded** in **winning** in ZSGs

 so Nash formulates useful problems via, say, response-to-Nash, response-to-rectified-Nash

Comment on human problem posing

- The model describes posing-and-solving problems as a population-level activity
- This is how it works for humans
 - At least, population aspects are under-rated;
 - individuals get credit for work of populations
- Even humans like Einstein didn't pose <u>new</u> problems
 - "Everyone" knew Maxwell's equations aren't invariant under Galilean transforms
 - Einstein "just" took the problem seriously

Summary

Success of modern machine boils down to

- applying <u>many</u> incremental improvements
- to transitive objectives, so improvements add up

This talk:

- tools for formulating objectives in a nontransitive setting
- and algorithms for optimizing them

details: https://arxiv.org/abs/1901.08106