《线性代数》期末考试试题

一、选择题(每小题 3 分,共 15 分)

1. 设A, B为n阶方阵,则下列选项成立的是__

(A)
$$|AB| = |BA|$$
 (B) $AB = BA$

(B)
$$AB = BA$$

(C)
$$|A+B| = |A|+|B|$$

(C)
$$|A+B| = |A| + |B|$$
 (D) $(A+B)^{-1} = A^{-1} + B^{-1}$

2. 设
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

2.
$$abla A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, B = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{11} + a_{31} & a_{12} + a_{32} & a_{13} + a_{33} \end{bmatrix},$$

$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, 见有_____$$

(A)
$$AP_1P_2 = B$$
 (B) $AP_2P_1 = B$

(B)
$$AP_{2}P_{1} = B$$

(C)
$$P_1P_2A = B$$
 (D) $P_2P_1A = B$

$$(D) P_2 P_1 A = B$$

3. 设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵.若 $A^3 = O$,则 下列说法正确的是

(A) E-A 不可逆, E+A 不可逆

(B)
$$E-A$$
不可逆, $E+A$ 可逆

(C)
$$E-A$$
可逆, $E+A$ 可逆

(D)
$$E-A$$
 可逆, $E+A$ 不可逆

4. 设矩阵
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{bmatrix}$$
相似于矩阵 $B = \begin{bmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{bmatrix}$,

则

(A)
$$a = 3, b = 4$$

(B)
$$a = 4, b = 5$$

(D) $a = 0, b = 1$

(C)
$$a=1, b=2$$

(D)
$$a = 0, b = 1$$

5. 设 α_0 是非齐次线性方程组AX = b的一个解, $\alpha_1, \alpha_2, \dots, \alpha_n$

是其导出组 AX = 0 的基础解系,则下列说法正确的是

- (A) $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关
- (B) $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_r$ 线性相关
- (C) $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_r$ 的任意线性组合都是 $AX = \delta$ 的解^{克要数学}

(D) $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_r$ 的任意线性组合都是 AX = 0 的解

二、填空题(每小题 3 分,共 30 分)

1. 已知 $|\vec{a}| = 1$, $|\vec{b}| = 1$, $|\vec{a} + \vec{b}| = 1$, 则 $\vec{a} \cdot \vec{b} =$ __

2. 设四阶行列式
$$D = \begin{bmatrix} a & b & c & d \\ d & b & a & c \\ c & b & d & a \\ d & b & c & a \end{bmatrix}$$
, 则

$$A_{13} + A_{23} + A_{33} + A_{43} = \underline{\hspace{1cm}}$$

3. 曲线 $L:\begin{cases} y=0\\ z=3x \end{cases}$ 绕z 轴旋转所成的旋转曲面方程为_

4. 设矩阵
$$B = \begin{bmatrix} 1 & a_1 & a_1^2 & a_1^3 \\ 1 & a_2 & a_2^2 & a_2^3 \\ 1 & a_3 & a_3^2 & a_3^3 \end{bmatrix}$$
, 其中 a_1, a_2, a_3 互不相等,则

r(B)为_

5. 已知三条直线 $a_1x + b_1y = c_1$, $a_2x + b_2y = c_2$, $a_3x + b_3y = c_3$

- 6. 设A = (1, 2, 3), $B = (3, 2, 1)^T$, 则 $(BA)^n =$ ____
- 7. 设三阶方阵 A 的行列式为 2 ,则 $|5A^{-1}-3A^*|=$
- 8. 设 A 为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 为 A 的三个列向量. 已知 α_1, α_2 线性无关, $\alpha_1, \alpha_2, \alpha_3$ 线性相关, A^* 为 A 的伴随矩阵, 则方程组 $A^*X = O$ 的通解为
- 9. 设三阶方阵 A 满足|A+E|=|A+2E|=|A+3E|=0,则

$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2ax_1x_2 + 2x_2x_3$$

正定,则常数a的取值范围为 $_{-}$

三、计算题 (每小题 7分, 共 35分)

2. 求过点
$$A(1,4,2)$$
 且和直线 $L: \begin{cases} x-2y+z+1=0 \\ 2x+3y-z-2=0 \end{cases}$ 垂直的

平面方程.

3. 讨论当参数 a,b 取何值时,下面的方程组无解?有唯一解?有无穷多个解?并在有无穷多个解时,写出方程组的通解。

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \end{cases}$$
$$3x_1 + 2x_2 + x_3 + ax_4 = -1$$

- 4. 求向量组 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (1,2,1,1)^T$, $\alpha_3 = (2,-1,3,4)^T$, $\alpha_4 = (5,3,6,7)^T$ 的秩和一个极大无关组,并将其余向量用此极大无关组线性表示.
- 5. 设三阶矩阵 A 满足 $A\alpha_1 = \alpha_1$, $A\alpha_2 = 2\alpha_2$, $A\alpha_3 = 3\alpha_3$, 其中 $\alpha_1 = (3,2,2)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,2,0)^T$, 求矩阵 A.

四、应用题 (12分)

已知二次型 $f(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3$,

- (1) 求正交变换 x = Py,将二次型 f 化为标准型;
- (2) 说明方程 f = 1 代表三维几何空间中的何种曲面.

五、证明题(每小题4分,共8分)

1. 设 α_1 , α_2 , α_3 是齐次线性方程组AX = 0的一个基础解系,令 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_1 + \alpha_2 + \alpha_3$. 证明: β_1 , β_2 , β_3 也是AX = 0的一个基础解系.

2. 已知
$$a^2 + b^2 + c^2 = 1$$
,求证: 矩阵 $A = \begin{bmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{bmatrix}$

的秩为 2.

《线性代数》期末考试试题(一)参考答案

一、单项选择题(每小题 3 分,共 15 分)

ACCBA

二、填空题 (每小题 2 分, 共 20 分)

1.
$$-\frac{1}{2}$$
;

1.
$$-\frac{1}{2}$$
; 2. 0; 3. $z^2 = 9(x^2 + y^2)$ $\Re z = \pm 3\sqrt{x^2 + y^2}$;

4. 3; 5. 0; 6.
$$10^{n-1}\begin{bmatrix} 3 & 6 & 9 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$
; $7. -\frac{1}{2}$;

8.
$$k_1 \alpha_1 + k_2 \alpha_2$$
;

8.
$$k_1\alpha_1 + k_2\alpha_2$$
; 9. 6; 10. $-\frac{\sqrt{14}}{2} < a < \frac{\sqrt{14}}{2}$ 或 $a^2 < \frac{7}{2}$.

三、计算题 I (每小题 7分, 共 35分)

1. 解答:
$$D = \begin{vmatrix} 1 & 3 & 1 & 2 \\ 1 & 5 & 3 & -4 \\ 0 & 4 & 1 & -1 \\ -5 & 1 & 3 & -6 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 1 & 2 \\ 0 & 2 & 2 & -6 \\ 0 & 4 & 1 & -1 \\ 0 & 16 & 8 & 4 \end{vmatrix}$$

$$= 8 \begin{vmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & 1 & -3 \\ 0 & 4 & 1 & -1 \\ 0 & 4 & 2 & 1 \end{vmatrix}$$

$$= 8 \begin{vmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & -3 & 11 \\ 0 & 0 & 1 & 2 \end{vmatrix} = -8 \begin{vmatrix} 1 & 3 & 1 & 2 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 17 \end{vmatrix} = -136$$

2. 解答:设所求平面的法向量为n,由该平面与直线L垂直,有

$$\vec{n} = (1, -2, 1) \times (2, 3, -1) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 2 & 3 & -1 \end{vmatrix} = (-1, 3, 7)$$

因此, 平面方程为 -(x-1)+3(y-4)+7(z-2)=0

整理得: x - 3y - 7z + 25 = 0

3. 解答:对方程组增广矩阵进行初等行变换得

$$\overline{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & -1 & -2 & a - 3 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & a-1 & 0 & b+1 \\
0 & 0 & 0 & a-1 & 0
\end{bmatrix}$$

当 $a=1, b\neq -1$ 时, $r(A)\neq r(\overline{A})$, 方程组无解;

当 $a \neq 1$, b任意时, r(A)=r(A)=4, 方程组有唯一解;

当a=1,b=-1时, $r(A)=r(\overline{A})=2$, 方程组有无穷多个解.

此时

则通解为:
$$X = egin{bmatrix} -1 & 1 & 1 & 1 \ 1 & -2 & -2 \ 0 & 1 & 0 \end{bmatrix} + c_1 & 1 \ 0 & 1 & 1 \end{bmatrix} + c_2 & 1 \ 0 & 1 & 1 \end{bmatrix}$$
 (c_1, c_2 为任意常数).

4. 解答: 由题意可知

考研竞赛数学

$$A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 2 & 5 \\ 1 & 2 & -1 & 3 \\ 1 & 1 & 3 & 6 \\ 1 & 1 & 4 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 5 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以 $r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=3$, $\alpha_1,\alpha_2,\alpha_3$ 是一个极大无关组,且 $\alpha_4=2\alpha_1+\alpha_2+\alpha_3$

5. 解答:由题意知 A 有特征值 1,2,3,其对应的特征向量为

$$lpha_1,lpha_2,lpha_3$$
,有 $A[lpha_1 \quad lpha_2 \quad lpha_3]=[lpha_1 \quad lpha_2 \quad lpha_3] egin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

因此
$$A = [\alpha_1 \quad \alpha_2 \quad \alpha_3] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} [\alpha_1 \quad \alpha_2 \quad \alpha_3]^{-1}$$

$$= \begin{bmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ 2 & -1 & -2 \\ -1 & 1 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ -2 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

四、计算题 II (12分)

解答: (1) 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

令特征多项式

$$\begin{vmatrix} \lambda - 3 & -1 & -1 \\ |\lambda E - A| = \begin{vmatrix} \lambda - 3 & -1 & -1 \\ -1 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 1)(\lambda - 2)(\lambda - 4) = 0$$

得特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 4$; $f = y_1^2 + 2y_2^2$ 考研竞级学

当特征值 $\lambda_{\Gamma} = 1$,可得对应的特征向量 $p_{\Gamma} = (-1,1,1)^{\mathrm{T}}$; 当特征值 $\lambda_2 = 2$,可得对应的特征向量 $p_2 = (0,1,-1)^{\mathrm{T}}$; 当特征值 $\lambda_3=4$,可得对应的特征向量 $p_3=(2,1,1)^{\mathrm{T}}$.

曲单位化,则正交阵
$$P = \begin{bmatrix} -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$
.

(2) 方程 $f = y_1^2 + 2y_2^2 + 4y_3^2 = 1$ 表示椭球面.

五、证明题 (每小题 4分, 共 8分)

1.证明: α_1 , α_2 , α_3 是齐次线性方程组 AX = 0的一个基础解系, 则 α_1 , α_2 , α_3 线性无关. 要证 β_1 , β_2 , β_3 也是 AX = 0 的一个 基础解系,只需证明 β_1,β_2,β_3 线性无关.

方法一: 若有 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$,即 $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + k_3(\alpha_1 + \alpha_2 + \alpha_3) = 0$,

则 $(k_1+k_2+k_3)\alpha_1+(k_2+k_3)\alpha_2+k_3\alpha_3=0$.由 α_1 , α_2 , α_3 线性无 关,则 $k_1+k_2+k_3=0$, $k_2+k_3=0$, $k_3=0$,解得 $k_1=k_2=k_3=0$.

由线性无关定义知 $\beta_1, \beta_2, \beta_3$ 线性无关,从而 $\beta_1, \beta_2, \beta_3$ 也是 AX = 0 的一个基础解系.

方法二: $\begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} = [\alpha_1 & \alpha_1 + \alpha_2 & \alpha_1 + \alpha_2 + \alpha_3]$

$$= [\alpha_1 \ \alpha_2 \ \alpha_3] \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

显然 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 可逆,因此 $r[\beta_1 \ \beta_2 \ \beta_3] = r[\alpha_1 \ \alpha_2 \ \alpha_3] = 3$, 所以 $\beta_1, \beta_2, \beta_3$ 线性无关,从而 $\beta_1, \beta_2, \beta_3$ 也是 AX = 0 的一个基

础解系.

2. 证明: 方法一: 已知 $a^2 + b^2 + c^2 = 1 \neq 0$, 不放设研竞级学

由性质 $r(B) = r(\alpha \alpha^T) \le r(\alpha) = 1$,因 $B \ne O$,所以r(B) = 1.

由 $3=r(E_3)=r(A+B) \le r(A)+r(B)=r(A)+1$, 则 $r(A) \ge 2$.

已知 $a^2 + b^2 + c^2 = 1 \neq 0$, 不放设 $a \neq 0$,

$$|A| = \begin{vmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{vmatrix} = \begin{vmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{vmatrix}$$

$$= \frac{1}{a} \begin{vmatrix} a(b^{2} + c^{2}) & -a^{2}b & -a^{2}c \\ -ab & a^{2} + c^{2} & -bc \\ -ac & -bc & a^{2} + b^{2} \end{vmatrix}$$

将第二行的b倍加到第一行,将第三行的c倍加到第一行。

则
$$|A| = \frac{1}{a} \begin{vmatrix} 0 & 0 & 0 \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{vmatrix} = 0$$
,因此 $r(A) = 2$.

方法二: 由于

$$B\alpha = (\alpha\alpha^T)\alpha = \alpha(\alpha^T\alpha) = (a^2 + b^2 + c^2)\alpha = \alpha$$

所以 $B\alpha = \alpha$, $\alpha \neq 0$, 即B有特征值 $\lambda_1 = 1$,

由r(B) = 1,知|B| = 0,则B有特征值 $\lambda_2 = 0$,

当 λ_2 =0时,对应特征向量个数为 3-r(A) = 2 个.所以, 特征值 0 为二重根.

即 $\lambda_3 = \lambda_4 = 0$,同时得到矩阵 B 有 3 个线性无关的特征向量, B

可对角化即
$$B \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,则 $E - B \sim \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.所以