1) 16 rows, 5 columns (4 atoms \rightarrow 2 rows) $(\neg q, \neg s, PV \neg q, (PV \neg q) \rightarrow r, ((PV \neg q) \rightarrow r) \land$ 2) P | q_{1} | q_{2} | q_{3} | q_{4} | q_{5} |

P	9	8) -8) - p	1(0,1-1))/ ¬8 → (9/ A -
0	0	0			0	0
0	0		0	1	0	1
0	}. 1	0	\ 1	1.	1	
0	1	1	0	. 1	1	1
1	0	0	1	0.) · O	0
1	O	1	0	0	0)
1	1	0	1	0	0	\bigcirc
1	1	1	0	0	0	. 1

It is a contingency because it can be both true and false, depending on the truth values of the atoms

P	l ov	-p	7-9	(P1-9/)	((PM-9/)V-P)	((PA-91)V-P)
, ,	0	1	. 1	0	I	
0	1	1	. 0	0	1	
1	0	0	1	· 1	1	\bigcirc
1	1	0	0	0	0	. 1
1)	,			

It is a contingency because it can be both true and folse depending on the truth value, of the atoms.

3)

Given,
$$P \rightarrow T$$
, (1)
 $Q \rightarrow T$, (1)
 $Q \rightarrow F$, (0)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (3)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (5)
 $Q \rightarrow F$, (6)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (8)
 $Q \rightarrow F$, (9)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (3)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (5)
 $Q \rightarrow F$, (6)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (8)
 $Q \rightarrow F$, (9)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (3)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (5)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$, (8)
 $Q \rightarrow F$, (9)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (1)
 $Q \rightarrow F$, (2)
 $Q \rightarrow F$, (3)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (4)
 $Q \rightarrow F$, (5)
 $Q \rightarrow F$, (7)
 $Q \rightarrow F$,

.. The truth ralue is False.

5)	a	b	$\left(c \right)$	7a	(na vb)	((avb) AC)	((Tavb)AC) (>b)) (((navb)Ac) -> a
	0	0	0	1.	1	0	1	
	0	0		1	1. 1	1	0	
	0	1	0	1	1	0	0	
	0	11			1	1	1	\bigcirc
	. 1	0	0	0	0	0	1	1
	1	0	1	0	0	0	1	*
	1	1	0	0	. 1	0	0	1
	,	1		0	1	1	1	1

. . .

6)	a	b) - a](¬a→T	1 (1) (1)	[(¬a→T) ↔ (1 Vb)
	0	0			(200)	(7Q-31) (1Vb)
	0	1	1			
	1	0	0		1	1
	, (, (\cap		0	O
		' {		1 (1	. 1

It is a contingency, because it can be both true and false depending on the truth values of the atoms.

7)	01	b	d	(a ↔ 1)	(T ←> ¬b)	(a ex 1) 1 (Tex -b)
	0	0	1		1	
	0	1	0	1	Ö	0
		0		0		0
	1	(0	0	· 0	0

It is a contingency because it can be both true and false depending on the truth values of the atoms

8)	P	g	79	(p->q)	$\neg (P \rightarrow q)$	(PA=94)	$\neg (P \rightarrow q) \rightarrow (P \land \neg q)$
	0	0	1	1	0	0	1
	0	1	0	1	O	0	. 1
	1	. 0	1		1	1	•
	1	1	0	1	0	0	

It is a tautology.

(PV9) ((-P-9) (> (PV9)) - (-P-9) (> PV9)

radiction