Review for Exam 1

Review Problem 1a

```
##
## Call:
## lm(formula = body mass q \sim species, data = penguins)
##
## Residuals:
##
       Min
                1Q Median
                                 30
                                         Max
## -1126.02 -333.09 -33.09 316.91 1223.98
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   3700.66 37.62 98.37 <2e-16 ***
## speciesChinstrap 32.43 67.51 0.48 0.631
## speciesGentoo 1375.35
                               56.15 24.50 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 462.3 on 339 degrees of freedom
    (2 observations deleted due to missingness)
## Multiple R-squared: 0.6697, Adjusted R-squared: 0.6677
## F-statistic: 343.6 on 2 and 339 DF, p-value: < 2.2e-16
```

- Write the corresponding equation
- Interpret all coefficients as well as interpret any NHST procedures
- Interpret the overall model. Is it a good model? Why/why not?

What is the mean bady mass for each managin type?

Review Problem 1b

What are the similarities and differences between this output and the output on the previous page?

Review Problem 2a

```
##
## Call:
## lm(formula = body mass q \sim bill length mm, data = penguins)
##
## Residuals:
                 10 Median
##
       Min
                                  30
                                          Max
## -1762.08 -446.98 32.59 462.31
                                      1636.86
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 362.307
                            283.345 1.279
                                              0.202
## bill_length_mm 87.415 6.402 13.654 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 645.4 on 340 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.3542, Adjusted R-squared: 0.3523
## F-statistic: 186.4 on 1 and 340 DF, p-value: < 2.2e-16
```

- Write the corresponding equation
- Interpret all coefficients as well as interpret any NHST procedures
- Interpret the overall model. Is it a good model? Why/why not?

Review Problem 2b

```
##
## Call:
## lm(formula = body mass g ~ bill length mm + flipper length mm,
      data = penguins)
##
##
## Residuals:
      Min
              10 Median
                             30
##
                                    Max
## -1090.5 -285.7 -32.1
                          244.2 1287.5
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5736.897 307.959 -18.629 <2e-16 ***
                                 5.180 1.168 0.244
## bill length mm
                   6.047
## flipper length mm
                      48.145
                                 2.011 23.939 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 394.1 on 339 degrees of freedom
    (2 observations deleted due to missingness)
## Multiple R-squared: 0.76, Adjusted R-squared: 0.7585
## F-statistic: 536.6 on 2 and 339 DF, p-value: < 2.2e-16
```

- Interpret all coefficients
- What are the similarities and differences between the previous model (2a) and the current model (2b)? Which is better?

Review Problem 2c

```
##
## Call:
## lm(formula = body mass g ~ bill length mm + flipper length mm,
      data = zPenquins)
##
##
## Residuals:
       Min
                 10 Median
##
                                  30
                                          Max
## -1.35986 -0.35624 -0.04002 0.30448 1.60552
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.003e-15 2.657e-02 0.000
                                                  1.000
## bill_length_mm 4.117e-02 3.526e-02 1.168
                                                  0.244
## flipper length mm 8.442e-01 3.526e-02 23.939 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4914 on 339 degrees of freedom
    (2 observations deleted due to missingness)
## Multiple R-squared: 0.76, Adjusted R-squared: 0.7585
## F-statistic: 536.6 on 2 and 339 DF, p-value: < 2.2e-16
```

- What are the similarities and differences between the previous model (2a) and the current model (2b)? Which is better?
- Interpret all coefficients

Review Problem 3

- What is multiple R correlation?
- What is R^2 ?
- What is Adjusted R^2 ?
- What is tolerance?
- What does a semi-partial correlation tell you? What about a partial correlation? Why do we care about either of these?

Review Problem 4

Identify and explain the following equations:

$$\bullet \quad \frac{r_{XY}}{\sqrt{r_{XX}r_{YY}}}$$

$$\bullet \quad \frac{b_X}{SE_b}$$

$$\bullet \quad \frac{\hat{\sigma}}{s_X} \sqrt{\frac{1}{1 - R_{i.jkl...p}^2}}$$

Review Problem 5a

I collected measures of depression and fatalism from 82 participants. Both measures were z-scored. Afterwards, I ran a linear regression, using fatalism to predict depression. The resulting model had a \mathbb{R}^2 of .432.

- What is the total sum of squares?
- What is the residual sum of squares?
- What is the regression coefficient for fatalism?

Review Problem 5b

I collected measures of depression and fatalism from 82 participants. Both measures were z-scored. Afterwards, I ran a linear regression, using fatalism to predict depression. The resulting model had a R^2 of .432.

- Let's say I want to examine the fit of this regression model. What is a test I could perform?
- What are the degrees of freedom for this test?
- The critical value of the test statistic with the appropriate degrees of freedom and a=.05 is 3.96. Calculate the test statistic and interpret the results.