Funktionalanalysis - Übungsblatt 2

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 3. November 2023, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 2.1 4 Punkte

Sei (X, d) ein metrischer Raum. Beweisen Sie die folgenden Aussagen.

(a) A ist präkompakt $\Rightarrow A$ ist **beschränkt**, d.h.

$$\operatorname{diam}(A) := \sup\{d(x, y) \mid x, y \in A\} < \infty.$$

- (b) A ist präkompakt $\Leftrightarrow \overline{A}$ ist präkompakt.
- (c) A ist kompakt $\Rightarrow A$ ist beschränkt und abgeschlossen.

Sei nun (X, d) ein vollständiger metrischer Raum.

(d) Zeigen Sie die Äquivalenz

A ist präkompakt \Leftrightarrow A ist relativ kompakt, d.h. \overline{A} ist kompakt.

Aufgabe 2.2 4 Punkte

(a) Es sei (V, d) ein metrischer Raum, sowie $x \in V$ ein Punkt und $A \subseteq V$ eine Menge. Die **Distanz** von x zu A ist definiert durch

$$dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Zeigen Sie die folgende Äquivalenz

$$dist(x, A) = 0 \quad \Leftrightarrow \quad x \in \overline{A}.$$

(b) Sei nun $A \subsetneq X$ ein abgeschlossener, echter Untervektorraum eines normierten \mathbb{K} -Vektorraums $(X, \|\cdot\|)$. Zeigen Sie, dass für jedes $\theta \in (0, 1)$ ein $x_{\theta} \in X$ existiert mit $\|x_{\theta}\| = 1$ und

$$||x_{\theta} - a|| \ge 1 - \theta \quad \forall a \in A.$$

Aufgabe 2.3 4 Punkte

Seien (X, d_X) und (Y, d_Y) metrische Räume, (Y, d_Y) vollständig und $S \subset X$ eine dichte Teilmenge.

(a) Eine Funktion $\tau: X \to Y$ heißt **gleichmäßig stetig**, falls für jedes $\varepsilon > 0$ ein $\delta > 0$ existiert mit

$$d_Y(\tau(x), \tau(y)) < \varepsilon \qquad \forall x, y \in A \text{ mit } d_X(x, y) < \delta.$$

Zeigen Sie, dass sich eine gleichmäßig stetige Funktion $\tau: S \to Y$ eindeutig zu einer gleichmäßig stetigen Funktion $\tilde{\tau}: X \to Y$ fortsetzen lässt, d.h. dass $\tilde{\tau}_{|S} = \tau$ und $\tilde{\tau}$ ist gleichmäßig setig auf ganz X.

Bitte wenden!

(b) Eine Funktion $\tau: X \to Y$ heißt (metrische) **Isometrie**, wenn für alle $x, y \in X$ gilt

$$d_Y(\tau(x), \tau(y)) = d_X(x, y).$$

Zeigen Sie, dass sich auch eine Isometrie $\tau: S \to Y$ eindeutig zu einer Isometrie $\tilde{\tau}: X \to Y$ fortsetzen lässt, d.h. dass $\tilde{\tau}_{|S} = \tau$ und

$$d_Y(\tilde{\tau}(x), \tilde{\tau}(y)) = d_X(x, y) \quad \forall x, y \in X.$$

Hinweis: Verwenden Sie Teil a).

Aufgabe 2.4 4 Punkte

Sei X der Raum der reellen Folgen, d.h. $X=\mathbb{R}^{\mathbb{N}}=\{x=(x_k)_{k\in\mathbb{N}}\mid x_k\in\mathbb{R}\}$ und $d:X\times X\to\mathbb{R}$ definiert durch

$$d(x,y) := \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}.$$

- (a) Zeigen Sie, dass (X, d) ein metrischer Raum ist. Hinweis: Betrachten Sie die Funktion $f: [0, \infty) \to [0, 1), t \mapsto \frac{t}{1+t}$.
- (b) Sei $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge in X. Zeigen Sie, dass $d(x^{(n)},0)\to 0$ äquivalent ist zu $x_j^{(n)}\to 0$ für alle $j\in\mathbb{N}$.
- (c) Beweisen Sie, dass es keine Norm $\|\cdot\|$ auf X gibt, so dass es c, C > 0 gibt mit

$$c \|x\| \le d(x,0) \le C \|x\| \qquad \forall x \in X$$

Hinweis. Betrachte $e^{(n)}: \mathbb{N} \to X$ mit $e_j^{(n)} = \delta_{jn}$ (Kroneckersymbol).