WIPO PCT

日本国特許庁 JAPAN PATENT OFFICE

25.06.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 7月12日

11

出

特願2002-204009

Application Number: [ST. 10/C]:

[JP2002-204009]

出 願 人

Applicant(s):

トヨタ自動車株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月 1日

BEST AVAILABLE COPY

出証番号 出証特2003-3061427

【書類名】

特許願

【整理番号】

TY1-5210

【提出日】

平成14年 7月12日

【あて先】

特許庁長官殿

【国際特許分類】

H01H 10/48

H02J 7/00

B60L 3/00

G01R 31/36

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社

内

【氏名】

三井 正彦

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社

内

【氏名】

中山 佳行

【特許出願人】

【識別番号】

000003207

【氏名又は名称】 トヨタ自動車株式会社

【代理人】

【識別番号】

100075258

【弁理士】

【氏名又は名称】

吉田 研二

【電話番号】

0422-21-2340

【選任した代理人】

【識別番号】

100096976

【弁理士】

【氏名又は名称】 石田

純

【電話番号】 0422-21-2340

【手数料の表示】

【予納台帳番号】 008268

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【発明の名称】 バッテリ充電状態推定装置

【特許請求の範囲】

【請求項1】 バッテリの電圧を検出する電圧検出手段と、

バッテリの内部抵抗を推定する内部抵抗推定手段と、

前記内部抵抗推定手段により求められたバッテリの内部抵抗と前記バッテリの 電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する 推定充放電電流演算手段と、

前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充電状態(以下SOCという)を推定するSOC推定手段と、

前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、

を有することを特徴とするバッテリ充電状態推定装置。

【請求項2】 バッテリの電圧を検出する電圧検出手段と、

バッテリの状態からバッテリの内部抵抗を推定する内部抵抗推定手段と、

前記内部抵抗推定手段により求められたバッテリの内部抵抗と前記バッテリの 電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する 推定充放電電流演算手段と、

前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充電状態を推定する第1SOC推定手段と、

前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、

を有することを特徴とするバッテリ充電状態推定装置。

【請求項3】 請求項2に記載のバッテリ充電状態推定装置において、

更に、バッテリの温度を検出する温度検出手段を有し、

前記内部抵抗推定手段は、バッテリの温度から内部抵抗を推定することを特徴 とするバッテリ充電状態推定装置。

更に、バッテリの充放電電流を検出する電流検出手段と、

前記電流検出手段により検出されたバッテリの実測充放電電流と前記電圧検出 手段により検出されたバッテリの電圧とに基づき、バッテリの内部抵抗を演算す る内部抵抗演算手段と、

前記内部抵抗推定手段により推定される推定内部抵抗を、間欠的に前記内部抵抗演算手段により求められた内部抵抗に基づき補正する内部抵抗補正手段と、

を有することを特徴とするバッテリ充電状態推定装置。

【請求項5】 請求項3又は請求項4に記載のバッテリ充電状態推定装置において、

前記内部抵抗補正手段は、前記内部抵抗演算手段により求められた内部抵抗と 実測バッテリ温度とから、推定内部抵抗とバッテリの温度との関係を補正することを特徴とするバッテリ充電状態推定装置。

【請求項6】 バッテリの充放電電流を検出する電流検出手段と、

バッテリの電圧を検出する電圧検出手段と、

前記電流検出手段により検出されたバッテリの実測充放電電流と前記電圧検出 手段により検出されたバッテリの電圧とに基づき、バッテリの内部抵抗を演算す る内部抵抗演算手段と、

前記内部抵抗演算手段により求められたバッテリの内部抵抗と、前記バッテリの電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する推定充放電電流演算手段と、

前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充電状態を推定する第2SOC推定手段と、

前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、

を有することを特徴とするバッテリ充電状態推定装置。

【請求項7】 バッテリの充放電電流を検出する電流検出手段と、

バッテリの電圧を検出する電圧検出手段と、

バッテリの状態からバッテリの内部抵抗を推定する内部抵抗推定手段と、

前記内部抵抗推定手段により求められたバッテリの内部抵抗と前記バッテリの 電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する 第1の推定充放電電流演算手段と、

前記第1の推定充放電電流演算手段により求められた推定充放電電流に基づき 、バッテリの充放電状態を推定する第1SOC推定手段と、

前記電流検出手段により検出されたバッテリの実測充放電電流と前記電圧検出 手段により検出されたバッテリの電圧とに基づき、バッテリの内部抵抗を演算す る内部抵抗演算手段と、

前記内部抵抗演算手段により求められたバッテリの内部抵抗と前記バッテリの 電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する 第2の推定充放電電流演算手段と、

前記第2の推定充放電電流演算手段により求められた推定充放電電流に基づき 、バッテリの充電状態を推定する第2SOC推定手段と、

前記バッテリの状態に基づいて前記第1SOC推定手段からのSOCと前記第2SOC推定手段からのSOCとを切り換える切換手段と、

前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、

を有することを特徴とするバッテリ充電状態推定装置。

【請求項8】 請求項7に記載のバッテリ充電状態推定装置において、

更に、前記電流検出手段により検出された実測充放電電流値と前記推定充放電電流演算手段により演算された推定充放電電流値とを比較し、両充放電電流値の差が所定差より大きい場合には前記電流検出手段が異常であると判定し、前記差が所定差以下の場合には前記電流検出手段は正常であると判定する異常検出手段を有し、

前記切換手段は、前記異常検出手段において前記電流検出手段が異常であると 判定された場合には第1SOC推定手段からのSOCに切り換え、前記異常検出

【請求項9】 請求項3または請求項5に記載のバッテリ充電状態推定装置において、

前記温度検出手段は、バッテリの内部あるいはバッテリ表面又は表面近傍に設置されていることを特徴とするバッテリ充電状態推定装置。

【請求項10】 請求項1から請求項9のいずれか1項に記載のバッテリ充電状態推定装置において、

前記第1SOC推定手段、第2SOC推定手段又はSOC推定手段の少なくとも一つの手段は、所定時間毎にSOCを推定することを特徴とするバッテリ充電 状態推定装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、車載バッテリの充電状態を推定するバッテリ充電状態推定装置に関する。

[0002]

【従来の技術】

従来より、エンジンによる駆動や回生により発電を行う発電機と、バッテリからの電力により作動し駆動輪を駆動するモータとを有するハイブリッド電気自動車やこのハイブリッド自動車を含む電気自動車には、ニッケル水素電池やリチウムイオン電池などのモータ駆動用二次電池(すなわち、バッテリ)が用いられている。

[0003]

上述のバッテリの充電状態を表す量の一つとしてSOC(state of charge)があり、満充電状態をSOCが100%と表し、一方SOCが0%の場合は充電量がゼロの状態であることを表す。また、バッテリは、開放電圧VocvとSOCとは一対一の対応関係が成り立っている。そこで、バッテリの開放電圧Vocvを計測または推定して、Vocv-SOC相関から開放電圧Vocv対応するSOCを求

めることができる。

[0004]

また、上述のバッテリの充電状態(SOC)は、車両の走行状態(例えば、発進、通常走行、加速、減速など)や車両用負荷(ストップランプ、ヘッドランプ、ワイパ、電動ファンなど)によって変動するため、バッテリの使用中にSOCを推定する必要がある。従来のバッテリについてのSOC推定装置としては、バッテリの電流(充放電電流)値を積算し、SOCを推定するSOC推定装置が広く利用されている。

[0005]

例えば、特開2000-166105号公報の「バッテリ充電状態制御装置」には、図8,9に示されるように、バッテリ10の充放電電流を検出する電流センサ16が正常な場合には(S400,S402)、電池ECU34にて検出された充放電電流値を積算してSOCを求め(S404)、一方電流センサ16が異常な場合、充放電電流の積算ではSOCの検出が不可能なため、電圧検出器12が検出したバッテリ電圧に基づき電池ECU34にてバッテリの充電状態を求める(S406,S407)装置が提案されている。

[0006]

【発明が解決しようとする課題】

しかしながら、上記特開2000-166105号公報に記載のバッテリ充電 状態制御装置では、電流センサが異常の場合には、そのときの電圧センサからの バッテリ電圧に基づいてバッテリ充電状態を求めているため、求められたSOC 推定が、実際のSOCの許容誤差範囲外となる可能性もあった。かかる場合、精 度の高いSOC推定は難しいという問題があった。

[0007]

また、電流センサの測定値の積算方法によるSOC推定手段において、電流測 定値が誤差を含んだ値となった場合や異常な値になった場合には、SOCの推定 精度が悪くなるという問題があった。

[0008]

本発明は、上記課題に鑑みなされたものであり、バッテリの電流値が誤差を含

[0009]

【課題を解決するための手段】

本発明のバッテリ充電状態推定装置は、以下に示す特徴を有する。

[0010]

(1) バッテリの電圧を検出する電圧検出手段と、バッテリの内部抵抗を推定する内部抵抗推定手段と、前記内部抵抗推定手段により求められたバッテリの内部抵抗と前記バッテリの電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する推定充放電電流演算手段と、前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充放電状態(以下SOCという)を推定するSOC推定手段と、前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、を有する。

[0011]

上記バッテリ充電状態推定装置は、電流検出手段により検出される測定電流値を積算してSOCを推定するのではなく、バッテリの内部抵抗を推定し、このバッテリの推定内部抵抗と、バッテリ電圧と、前回推定のSOCに基づき算出されたバッテリの開放電圧とを用いて、バッテリの推定充放電電流を求め、この推定充放電電流に基づきバッテリの充電状態を推定するため、電流検出手段により検出された測定電流値が誤差を含んだ値になったり異常な値になった場合でも、精度の高いバッテリの充電状態を推定することができる。

[0012]

(2) バッテリの電圧を検出する電圧検出手段と、バッテリの状態からバッテリの内部抵抗を推定する内部抵抗推定手段と、前記内部抵抗推定手段により求められたバッテリの内部抵抗と前記バッテリの電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する推定充放電電流演算手段と、前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充

電状態を推定する第1SOC推定手段と、前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、を有する。

[0013]

上記バッテリ充電状態推定装置は、電流検出手段により検出される測定電流値を用いることなく、バッテリの状態からバッテリの内部抵抗を推定し、このバッテリの推定内部抵抗と、バッテリ電圧と、前回推定のSOCに基づき算出されたバッテリの開放電圧とを用いて、バッテリの推定充放電電流を求め、この推定充放電電流に基づきバッテリの充電状態を推定するため、電流検出手段により検出された測定電流値が誤差を含んだ値になったり異常値になった場合でもこの測定電流値に左右されることなく、精度の高いバッテリの充電状態を推定することができる。また、高価な電流検出手段を有しない構成とすることにより、バッテリ充電状態推定装置のコストを削減することができる。

[0014]

(3)上記(2)に記載のバッテリ充電状態推定装置において、更に、バッテリの温度を検出する温度検出手段を有し、前記内部抵抗推定手段は、バッテリの温度から内部抵抗を推定する。

[0015]

バッテリの温度とバッテリの内部抵抗とは相関関係があることから、例えば予めバッテリの温度をそのときのバッテリの内部抵抗とを測定し、相関マップを記憶させておけば、バッテリの温度からバッテリの内部抵抗を簡便に求めることができる。

[0016]

(4)上記(2)または(3)に記載のバッテリ充電状態推定装置において、 更に、バッテリの充放電電流を検出する電流検出手段と、前記電流検出手段により検出されたバッテリの実測充放電電流と前記電圧検出手段により検出されたバッテリの電圧とに基づき、バッテリの内部抵抗を演算する内部抵抗演算手段と、 前記内部抵抗推定手段により推定される推定内部抵抗を、間欠的に前記内部抵抗

[0017]

例えば、経時によりバッテリの内部抵抗が変化するバッテリにおいてSOCを 推定する場合には、バッテリの充放電電流とバッテリの電圧とからバッテリの内 部抵抗を演算し、例えば定期的に、演算された内部抵抗に基づいて推定内部抵抗 を補正することにより、バッテリの経時劣化による推定SOCの誤差増大を抑制 することができ、精度よくSOCを推定することができる。

[0018]

(5)上記(3)または(4)に記載のバッテリ充電状態推定装置において、 前記内部抵抗補正手段は、前記内部抵抗演算手段により求められた内部抵抗と実 測バッテリ温度とから、推定内部抵抗とバッテリの温度との関係を補正する。

[0019]

これにより、経時において、バッテリの温度に対する内部抵抗が変化したとしても、例えば定期的にバッテリ温度とバッテリの内部抵抗との相関関係を修正更新し、バッテリのSOC推定の経時精度を向上させることができる。

[0020]

(6) バッテリの充放電電流を検出する電流検出手段と、バッテリの電圧を検出する電圧検出手段と、前記電流検出手段により検出されたバッテリの実測充放電電流と前記電圧検出手段により検出されたバッテリの電圧とに基づき、バッテリ内部抵抗を演算する内部抵抗演算手段と、前記内部抵抗演算手段により求められたバッテリの内部抵抗と前記バッテリの電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電電流を演算する推定充放電電流演算手段と、前記推定充放電電流演算手段により求められた推定充放電電流に基づき、バッテリの充電状態を推定する第2SOC推定手段と、前記充放電電流の演算初回時にはバッテリの実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOCに基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、を有する

[0021]

[0022]

(7) バッテリの充放電電流を検出する電流検出手段と、バッテリの電圧を検 出する電圧検出手段と、バッテリの状態からバッテリの内部抵抗を推定する内部 抵抗推定手段と、前記内部抵抗推定手段により求められたバッテリの内部抵抗と 前記バッテリの電圧とバッテリの開放電圧とに基づいて、バッテリの推定充放電 電流を演算する第1の推定充放電電流演算手段と、前記第1の推定充放電電流演 算手段により求められた推定充放電電流に基づき、バッテリの充電状態を推定す る第1SOC推定手段と、前記電流検出手段により検出されたバッテリの実測充 放電電流と前記電圧検出手段により検出されたバッテリの電圧とに基づき、バッ テリの内部抵抗を演算する内部抵抗演算手段と、前記内部抵抗演算手段により求 められたバッテリの内部抵抗と前記バッテリの電圧とバッテリの開放電圧とに基 づいて、バッテリの推定充放電電流を演算する第2の推定充放電電流演算手段と 、前記第2の推定充放電電流演算手段により求められた推定充放電電流に基づき 、バッテリの充電状態を推定する第のSOC推定手段と、前記バッテリの状態に 基づいて前記第1SOC推定手段からのSOCと前記第2SOC推定手段からの SOCとを切り換える切換手段と、前記充放電電流の演算初回時にはバッテリの 実測電圧を前記バッテリの開放電圧とし、前記演算初回以降は前回推定のSOC に基づき前記バッテリの開放電圧を演算する開放電圧演算手段と、を有する。

このように、第1SOC推定手段と第2SOC推定手段とを切り換えるため、 電流検出手段により検出される実測充放電電流に誤差が含まれたり異常な値になった場合であっても、より精度よくSOCを推定することができる。

[0024]

(8)上記(7)に記載のバッテリ充電状態推定装置において、更に、前記電流検出手段により検出された実測充放電電流値と前記推定充放電電流演算手段により演算された推定充放電電流値とを比較し、両充放電電流値の差が所定差より大きい場合には前記電流検出手段が異常であると判定し、前記差が所定差以下の場合には前記電流検出手段は正常であると判定する異常検出手段を有し、前記切換手段は、前記異常検出手段において前記電流検出手段が異常であると判定された場合には第1SOC推定手段からのSOCに切り換え、前記異常検出手段において前記電流検出手段が正常であると判定された場合には第2SOC推定手段からのSOCに切り換える。

[0025]

上記異常検出手段において電流検出手段が異常であるか否か判定することによって、推定充放電電流の演算時に実測充放電電流値を用いるか否かを判断し、第 1, 第2SOC推定手段のいずれかを選択するため、より精度の高いSOCを推定することができる。

[0026]

(9)上記(3)又は(5)に記載のバッテリ充電状態推定装置において、前記温度検出手段は、バッテリの内部あるいはバッテリ表面又は表面近傍に設置されている。

[0027]

一般に、バッテリの内部抵抗の変化によりバッテリの温度が変化する。従って、バッテリの表面近傍又はその表面もしくはバッテリの内部に温度検出手段を設置することにより、バッテリの内部抵抗と相関性の高いバッテリ温度を検出することができる。その結果、推定SOCの精度も向上する。

(10)上記(1)から(9)のいずれかに記載のバッテリ充電状態推定装置において、前記第1のSOC推定手段、第2のSOC推定手段又はSOC推定手段の少なくとも一つの手段は、所定時間毎にSOCを推定する。

[0029]

所定時間毎にSOC推定を行うことにより、より直近のバッテリの充電状態を 把握することができる。

[0030]

【発明の実施の形態】

以下、本発明の実施の形態について、図面に基づいて説明する。

[0031]

実施の形態1.

<電流検出手段を有する第1の装置例>

「バッテリ充電状態推定装置の構成】

図1は、本実施の形態のバッテリ充電状態推定装置をハイブリッド電気自動車 に適用したシステムの構成を示すブロック図である。バッテリ10は、多数のバッテリセルからなり、例えば、ニッケル水素 (Ni-MH) バッテリ、リチウム イオン電池などである。

[0032]

バッテリ10の電圧は、電圧検出手段である電圧検出器12で計測され、電池ECU14に供給される。また、この電池ECU14には、バッテリ電流を検出する電流検出手段である電流センサ16も接続されており、検出されたバッテリ電流値が電池ECU14に供給される。また、バッテリ10には、バッテリ温度を検出する温度計26が設けられ、検出されたバッテリ温度の値も電池ECU14に供給される。ここで、温度計26は、バッテリ10の内部あるいはバッテリ10の表面又は表面近傍に配置される。なお、本実施の形態では、電圧検出手段、電流検出手段、温度計がそれぞれ1つづつ配置された構成について説明したが、これに限るものではなく、検出精度を上げるために、電圧検出手段、電流検出手段、温度計はそれぞれ複数個複数個所に配置されていても良い。

そして、この電池ECU14は、供給されるバッテリ電圧及びバッテリ電流の両方に基づいて、後述する2種類の第1,第2SOC検出手段を有している。そして、電池ECU14は、いずれかのSOC検出手段で検出されたSOCをHVECU18に供給する。

[0034]

このHVECU18は、アクセル開度、ブレーキ踏み込み量、車速などの情報に基づいてトルク指令を決定し、モータジェネレータ22の出力がトルク指令に合致するように制御する。すなわち、HVECU18は、インバータ20におけるスイッチングを制御すると共に、エンジン24の出力を制御する。これによって、モータジェネレータ22への入力が決定され、モータジェネレータ22の出力がトルク指令に合致したものに制御される。

[0035]

また、バッテリ10は、例えば、車両の走行状態(例えば、発進、通常走行、加速、減速など)や車両用負荷(ストップランプ、ヘッドランプ、ワイパ、電動ファンなど)とバッテリ充電状態とによって充電または放電される。

[0036]

「バッテリ充電状態の推定】

次に、図2を用いて、本発明における第2SOC推定手段の一例の動作について説明する。本実施の形態では、電流センサ16により実測の充放電電流値が誤差を含む場合における誤差積算による問題を解決するものである。

[0037]

すなわち、I GがONされると、電圧検出器12 において、初回バッテリ電圧 V_0 が測定される(S100)。次に、この初回バッテリ電圧 V_0 を開放電圧 V_0 C V_1 とする(S102)。次いで、電圧検出器12 において現状のバッテリ電圧 V_1 にない。以下同様)が、また電流センサ16 において現状のバッテリで放電電流 V_1 において現状のバッテリで放電電流 V_1 に表づき、バッテリ内部抵抗 V_1 を求める(V_1 と実測のバッテリ電流 V_1 に基づき、バッテリ内部抵抗 V_1 を求める(V_1 と、前回推定の充電状態(V_1 と、 V_1 と、 V_1 と、 V_1 と、 V_1 を を V_1 と、 V_1 と、 V_1 と、 V_1 を V_1 と、 V_1 と、 V_1 を V_1 と、 V_1 を V_1 と、 V_1 と、 V_1 を V_1 と、 V_1 と、 V_1 を V_1 と、 V_1 と、 V_1 と、 V_1 を V_1 と、 V_1 と V_1

づき求められたバッテリの開放電圧 V_{0CVn-1} と、演算により求められたバッテリ内部抵抗 R_n と、を用いて推定充放電電流 I_n を求める(S 1 0 8)。但し、このS 1 0 8 において、推定充放電電流 I_n の演算の初回時には、上記バッテリの開放電圧 V_{0CVn-1} としてバッテリの実測電圧 V_0 を用いる。次いで、推定充放電電流 I_n を積算してSOC $_n$ を推定する(S 1 1 0)。なお、予め記憶されているSOC と開放電圧 V_{0cv} との相関関係のマップを用いて、求められたSOC $_n$ に基づき V_{0CVn-1} を求め(S 1 1 2)、この V_{0CVn-1} を基に次回のSOCを推定する。

[0038]

上述した実施の形態1に示す第2SOC推定手段は、図3に示すように、推定 充放電電流値の積算によって推定される推定SOCが実際のSOCに収束するた め、バッテリ充電状態(SOC)の推定精度が向上する。すなわち、実測電圧V m、内部抵抗R、開放電圧Vocvとすると以下の式(1)が成り立つ。

[0039]

【数1】

電流 I = (Vm-Vocv) / R ··· (1)

ここで、真の電流値を I realとすると、以下の式(2)が成り立つ。

[0040]

【数2】

真の電流値 I real = (Vm - Vocv-real) / R … (2)

推定 Vocvが Vocv-real より大きい場合、すなわち Vocv-real < Vocv1のときは、以下の式(3)が成り立つ。

[0041]

【数3】

 $(V_m - V_{ocvl}) / R = I 1 < I_{real} \cdots (3)$

一方、推定VocvがVocv-realより小さい場合、すなわちVocv-real>Vocv2のときは、以下の式(4)が成り立つ。

[0042]

【数4】

 $(Vm-Vocv2) / R = I 2 > I real \cdots (4)$

以上より、推定SOCが実際のSOCより大きいときには、図3に示すように、常に充放電電流値I₁は実際の電流値Irealより小さく見積もられ、一方推定SOCが実際のSOCより小さいときは、図3に示すように、常に電流値I₂は実際の電流値Irealより大きく見積もられるので、時間の経過とともに、推定SOCは実際のSOCに自己収束する。従って、本発明のSOC推定装置の推定SOC精度は向上する。

[0043]

従って、電流センサ16の測定充放電電流値が誤差を含んでしまった場合でも、推定SOCの精度が悪化されることは抑制される。

[0044]

実施の形態2.

<電流検出手段を有する第2の装置例>

[バッテリ充電状態推定装置の構成]

本実施の形態のバッテリ充電状態推定装置は、上記実施の形態1と同一の構成 を有するため、実施の形態1と同一の構成には同一の符号を付し、その説明を省 略する。

[0045]

[バッテリ充電状態の推定]

図1の電池ECU14において、本発明における第1SOC推定手段の一例は 図4に示すような動作をする。

[0046]

すなわち、I GがONされると、電圧検出器 1 2 において、初回バッテリ電圧 V_0 が測定される(S 2 0 0)。次に、この初回バッテリ電圧 V_0 を開放電圧 V_0 C V_1 とする(S 2 0 2)。次いで、電圧検出器 1 2 において現状のバッテリ電圧 V_0 V_1 とする(V_0 $V_$

定されたバッテリ温度 T_n からバッテリ内部抵抗 R_n を推定する(S 2 1 0)。次いで、実測のバッテリ電圧 V_n と、前回推定の充電状態(S O C)に基づき求められたバッテリの開放電圧 V_{0CVn-1} と、推定されたバッテリ内部抵抗 R_n と、を用いて推定充放電電流 I_n を求める(S 2 1 2)。但し、このS 2 1 2 において、推定充放電電流 I_n の演算の初回時には、上記バッテリの開放電圧 V_{0CVn-1} としてバッテリの実測電圧 V_0 を用いる。次いで、推定充放電電流 I_n を積算してS O C_n を推定する(S 2 1 4)。なお、予め記憶されているS O C と開放電圧 V_0 cv との相関関係のマップを用いて、求められたS O C_n に基づき V_{0CVn-1} を求め(S 2 1 6)、この V_{0CVn-1} を基に次回のS O C を推定する。

[0047]

一方、 SOC_n の推定動作mが10回に達した場合には(S206)、推定動作mを0にリセットし(S220)、電流センサ16により充放電電流 i_n を測定する(S222)。次いで、バッテリ電圧 V_n と実測の充放電電流 i_n とからバッテリ内部抵抗 R_n を演算し(S224)、更にこのときのバッテリ温度 T_n も測定して、例えば電池の劣化による内部抵抗Rと電離温度Tとの関係のズレを補正するため、上述した予め記憶されているバッテリ温度Tとバッテリの内部抵抗Rとの相関関係のマップを補正する(S226)。この補正に基づいて修正更新されたT-R相関関係のマップを基にS210以降の動作を行う。通常、電流センサ16の瞬間時に測定される充放電電流 i_n は正しく、したがってこの実測充放電電流 i_n を用いて修正することにより後述するように推定SOCの精度を維持することができる。

[0048]

ここで、図4のS204からS216の一連の動作は、通常8ミリ秒で行われるが、この一連の動作が1秒程度の長いものであってもよい。

[0049]

上述の第1のSOC推定手段によれば、基本的に、電流センサ16からの充放電電流を用いることなくバッテリの内部抵抗を推定するため、電流センサ16により測定された実測充放電電流値が誤差を含んだ値になった場合や異常な値になった場合でもこの実測の充放電電流値値に左右されることなく、精度の高いバッ

[0050]

実施の形態3.

<電流検出手段を用いない第3の装置例>

[バッテリ充電状態推定装置の構成]

本実施の形態のバッテリ充電状態推定装置は、上記実施の形態1,2とは電流 センサ16を有しない点を除き、同一の構成を有するため、実施の形態1,2と 同一の構成には同一の符号を付し、その説明を省略する。

[0051]

[バッテリ充電状態の推定]

図5の電池ECU14において、本発明の第1SOC推定手段の他の例の動作 を図6を用いて説明する。

[0052]

[0053]

なお、上記第1SOC推定手段は、電流センサ16を用いることなくSOCを推定するため、電流センサ16が誤差を含む実測充放電電流値を出力してもまた異常値を出力したとしても、電流センサ16の出力に関係なく、精度よくSOCを推定することができる。更に、高価な電流センサを有しない点で、バッテリの経時におけるバッテリ内部抵抗とバッテリ温度とはほとんど変化しない場合には装置のコストを削減できるため好ましいが、例えばバッテリの内部抵抗とバッテリ温度との相関関係の経時変化によるマップを複数予め記憶している場合にも有効である。一方、上記実施の形態2において説明したように、随時、実測充放電電流inを用いてバッテリ内部抵抗を演算し、更にそのときのバッテリ温度を測定し、この演算バッテリ内部抵抗を演算し、更にそのときのバッテリ温度を測定し、この演算バッテリ内部抵抗を演算し、更にそのときのバッテリ温度を測定し、この演算バッテリ内部抵抗と実測バッテリ温度とを用いて、上記バッテリ内部抵抗ー温度との相関関係マップを補正してもよい(すなわち、図4のS206~S210、S220~S226の工程)。

[0054]

実施の形態4.

<電流検出手段を有する第4の装置例>

また、別の態様として、図1に示す電池ECU14内に、電流センサ16により検出された実測の充放電電流 i_n と後述する推定充放電電流 I_n とを比較し、両充放電電流 i_n , I_n の差が所定差より大きい場合には、電流センサ16が異常であると判定し、一方差が所定差以下の場合には電流センサ16が正常であると判定する電流センサ異常判定装置が設けられていても良い。かかる態様では、図7に示すような第1SOC推定手段および第2のSOC推定手段が切換動作する。

[0055]

すなわち、I GがONされると、電圧検出器 12 において、初回バッテリ電圧 V_0 が測定される(S 100)。次に、この初回バッテリ電圧 V_0 を開放電圧 V_0 C V_1 とする(S 102)。次いで、電圧検出器 12 において現状のバッテリ電圧 V_0 V_1 において現状のバッテリ電圧 V_0 V_1 において現状のバッテリ充放電電流 V_0 V_0

Vnと実測のバッテリ電流 i_n に基づき、バッテリ内部抵抗 R_n を求める(S10 6)。次いで、実測のバッテリ電圧 V_n と、前回推定の充電状態(SOC)に基 づき求められたバッテリの開放電圧 VOCVn-1と、演算により求められたバッテリ 内部抵抗R_nと、を用いて推定充放電電流I_nを求める(S108)。次いで、実 測のバッテリ充放電電流inと推定充放電電流値Inとを比較し、両電流値の差が 所定差より大きい場合には電流センサ16が異常であると判定されると(S10 9)、第150C推定手段に切換、電圧検出器12において現状のバッテリ電圧 V_n (nは $1\sim n$ で0を含まない。以下同様)が、また温度計26において現状 のバッテリ温度 T_n が測定される(S304)。そして、予め記憶されているバ ッテリ温度Tとバッテリの内部抵抗Rとの相関関係のマップを用いて、測定され たバッテリ温度T_nからバッテリ内部抵抗R_nを推定する(S306)。次いで、 実測のバッテリ電圧 V_n と、前回推定の充電状態(SOC)に基づき求められた バッテリの開放電圧VOCVn-1と、推定されたバッテリ内部抵抗Rnと、を用いて 推定充放電電流 I_n を求める(S308)。但し、このS308において、推定 充放電電流 I_n の演算の初回時には、上記バッテリの開放電圧 V_{0CVn-1} としてバ ッテリの実測電圧V07用いる。次いで、推定充放電電流Inを積算してSOCn7 推定する(S310)。一方、両電流値の差が所定差以下の場合には、電流セン サ16は正常であると判定して(S109)、第2SOC推定手段により、推定 充放電電流 I_n を積算して SOC_n を推定する(SIIO)。但し、このSIOSにおいて、推定充放電電流 I_n の演算の初回時には、上記バッテリの開放電圧 V_0 CV_{n-1} としてバッテリの実測電圧 V_0 を用いる。なお、予め記憶されているSOCと開放電圧Vocyとの相関関係のマップを用いて、求められたSOCnに基づきV $0CV_{n-1}$ を求め(S 1 1 2)、この $V_{0CV_{n-1}}$ を基に次回のSOCを推定する。また 、上述の第1,第2SOC推定手段を切り換えて用いる装置であれば、電流セン サ16が一時的な異常の場合であっても、電流センサ16が異常であると判定さ れたあと(S109)、上記S304~S310からS112を介して、精度よ くSOCが推定される。

[0056]

更に、上述の実施の形態では、実測のバッテリ充放電電流 inと推定充放電電

[0057]

なお、上述の第1SOC推定手段において、例えばバッテリの内部抵抗とバッテリ温度との相関関係の経時変化によるマップを複数予め記憶していることが好適である。また、第1SOC推定手段において、上記実施の形態2において説明したように、随時、実測充放電電流inを用いてバッテリ内部抵抗を演算し、更にそのときのバッテリ温度を測定し、この演算バッテリ内部抵抗と実測バッテリ温度とを用いて、上記バッテリ内部抵抗ー温度との相関関係マップを補正してもよい(すなわち、図4のS206~S210、S220~S226の工程)。

[0058]

また、他の態様として、電流センサ16により測定された実測バッテリ充放電電流を積算してSOCを推定する第3SOC推定手段を有し、基本的には第3SOC推定手段を用いてSOCを推定し、電流センサ16が異常の場合や測定電流値に誤差を含むようになった場合には(上述の実施の形態4のS109の場合やバッテリ充放電電流の変動が大きい場合を含む)、上述した実施の形態1から実施の形態3に記載した第1,第2SOC推定手段に切換えてSOCを推定してもよい。

[0059]

【発明の効果】

以上説明したように、本発明によれば、SOC推定精度がよく検出できる。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態1,2のバッテリ充電状態推定装置をハイブリッド電気自動車に適用したシステムの構成を示すブロック図である。
- 【図2】 本発明の実施の形態1の第2のSOC推定手段の動作を説明するフローチャートである。
 - 【図3】 本発明の実施の形態1の第250C推定手段により推定されたバ

- 【図4】 本発明の実施の形態2の第1SOC推定手段の一例の動作を説明 するフローチャートである。
- 【図5】 本発明の実施の形態3のバッテリ充電状態推定装置をハイブリッド電気自動車に適用したシステムの構成を示すブロック図である。
- 【図6】 本発明の実施の形態3の第1SOC推定手段の他の例の動作を説明するフローチャートである。
- 【図7】 本発明の実施の形態4の第1,第2のSOC推定手段の切換動作を説明するフローチャートである。
- 【図8】 従来のバッテリ充電状態制御装置をハイブリッド電気自動車に適用したシステムの構成を示すブロック図である。
- 【図9】 従来のバッテリ充電状態制御装置のSOC推定手段の動作を説明 するフローチャートである。

【符号の説明】

10 バッテリ、12 電圧検出器、14 電池ECU、16 電流センサ、 18 HVECU、20 インバータ、22 モータジェネレータ、24 エン ジン、26 温度計。

【書類名】

図面

【図1】

【図3】

【図4】

【図6】

[図8]

【図9】

要約書

【要約】

【課題】 バッテリの精度のよいSOC推定を行う。

【解決手段】 電池ECUは、電流センサにより検出したバッテリ電流を積算してSOCを推定し、充放電電流の変動が大きい場合、電圧検出器でバッテリ電圧 V_n が、温度計でバッテリ温度 T_n が測定され(S204)、SOС $_n$ の推定動作 m<10の場合、mをインクリメントし(S208)、予め記憶されたバッテリ温度 T_c 温度 T_c とがッテリ内部抵抗 T_c の相関マップを用い、測定されたバッテリ温度 T_c からバッテリ内部抵抗 T_c を推定する(S210)。次に実測のバッテリ電圧 T_c と前回推定の充電状態に基づき求められたバッテリの開放電圧 T_c と指定されたバッテリ内部抵抗 T_c とを用い推定充放電電流 T_c を求め(S212)、推定充放電電流 T_c を積算し T_c とを用い推定する(S214)。SOС T_c の推定動作 T_c を放電電流 T_c を積算し T_c を加定し(S220)、電流センサにより充放電電流 T_c を測定し(S222)、バッテリ電圧 T_c と充放電電流 T_c が、テリ内部抵抗 T_c を演算し(S224)、バッテリ温度 T_c も測定し、上記 T_c と相関マップを補正する(S226)。

【選択図】

図 4

特願2002-204009

出願人履歴情報

識別番号

[000003207]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月27日 新規登録 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.