

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

AQA GCSE Maths: Higher

Algebraic Roots & Indices

Contents

* Algebraic Roots & Indices

Algebraic Roots & Indices

Your notes

Algebraic Roots & Indices

What are the laws of indices?

- Index laws are rules you can use when doing operations with powers
 - They work with both **numbers** and **algebra**

Law	Description	How it works
$a^1 = a$	Anything to the power of 1 is itself	$x^1 = x$
$a^0 = 1$	Anything to the power of 0 is 1	$b^0 = 1$
$a^m \times a^n = a^{m+n}$	To multiply indices with the same base, add their powers	$c^{3} \times c^{2}$ $= (c \times c \times c) \times (c \times c)$ $= c^{5}$
$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$	To divide indices with the same base, subtract their powers	$= \frac{d^5 \div d^2}{d \times d \times d \times d \times d}$ $= d^3$
$(a^m)^n = a^{mn}$	To raise indices to a new power, multiply their powers	$(e^3)^2$ $= (e \times e \times e) \times (e \times e \times e)$ $= e^6$
$(ab)^n = a^n b^n$	To raise a product to a power, apply the power to both numbers, and multiply	$(f \times g)^2$ $= f^2 \times g^2$ $= f^2 g^2$

To raise a fraction to a power, apply the power to both the numerator and denominator	$\left(\frac{h}{i}\right)^2 = \frac{h^2}{i^2}$
A negative power is the reciprocal	$j^{-1} = \frac{1}{j}$ $k^{-3} = \frac{1}{k^3}$
	$k^{-3} = \frac{1}{k^3}$
A fraction to a negative power, is the reciprocal of the fraction, to the positive power	$\left(\frac{1}{m}\right)^{-3} = \left(\frac{m}{l}\right)^3 = \frac{m^3}{l^3}$
The fractional power $\frac{1}{n}$ is the n^{th} root (
V /	$p^{\frac{1}{3}} = \sqrt[3]{p}$
A negative, fractional power is one over a root	$q^{-\frac{1}{2}} = \frac{1}{\sqrt[2]{q}}$
	$r^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{r}}$
The fractional power $\frac{m}{n}$ is the n^{th} root	$s^{\frac{2}{3}} = \left(s^{\frac{1}{3}}\right)^2 = \left(\sqrt[3]{s}\right)^2$
all to the power m , $\binom{n}{\sqrt{}}^m$, or the n^{th} root of the power m , $\sqrt[n]{}$ (both are the same)	$s^{\frac{2}{3}} = (s^2)^{\frac{1}{3}} = \sqrt[3]{s^2}$
	power to both the numerator and denominator A negative power is the reciprocal A fraction to a negative power, is the reciprocal of the fraction, to the positive power The fractional power $\frac{1}{n}$ is the n^{th} root ($\sqrt[n]{}$) A negative, fractional power is one over a root The fractional power $\frac{m}{n}$ is the n^{th} root all to the power m , $\binom{n}{}$, or the n^{th} root of the power m , $\binom{n}{}$ (both are

- These can be used to **simplify** expressions
 - Work out the **number** and **algebra** parts **separately**

$$\frac{6x^7}{3x^4} = \frac{6}{3} \times \frac{x^7}{x^4} = 2x^{7-4} = 2x^3$$

$$(3x^7)^2 = (3)^2 \times (x^7)^2 = 9x^{14}$$

How do I find an unknown inside a power?

- A term may have a power involving an unknown
 - \blacksquare E.g. 7^{4x}
- If both sides of an equation have the same base number, then the powers must be equal
 - E.g. If $4^{3x} = 4^9$ then 3x = 9
 - And x = 3
- You may have to do some simplifying first to reach this point
 - E.g. $3^{2x} \times 3^4 = 3^{18}$ simplifies to $3^{2x+4} = 3^{18}$
 - Therefore 2x + 4 = 18
 - And x = 7

Worked Example

(a) Simplify $(u^5)^5$

Use $(a^m)^n = a^{mn}$

$$(u^5)^5 = u^{5 \times 5}$$

1125

(b) If
$$q^x = \frac{q^2 \times q^5}{q^{10}}$$
 find x .

Use $a^m \times a^n = a^{m+n}$ to simplify the numerator

$$q^2 \times q^5 = q^{2+5} = q^7$$

Page 4 of 7

Use
$$\frac{a^m}{a^n} = a^{m-n}$$
 to simplify the fraction

Your notes

$$\frac{q^7}{q^{10}} = q^{7-10} = q^{-3}$$

Write out both sides of the equation

$$q^{x} = q^{-3}$$

Both sides are now over the same base of $oldsymbol{q}$

So X must equal the power on the right-hand side

$$x = -3$$

Worked Example

(a) Rewrite $\frac{1}{\sqrt[3]{X^4}}$ in the form X^n where n is a negative fraction.

Use $a^{\frac{1}{n}} = \sqrt[n]{a}$ to rewrite the cube-root as a power of $\frac{1}{3}$

$$\frac{1}{\left(x^4\right)^{\frac{1}{3}}}$$

Use $(a^m)^n = a^{mn}$ to simplify the denominator

$$\frac{1}{x^{\frac{4}{3}}}$$

Use $a^{-n} = \frac{1}{a^n}$ to rewrite as a term with a negative fraction as the power

$$x^{-\frac{4}{3}}$$

(b) Find the value of the constants m and a given that $\left(ax^6\right)^{\frac{1}{m}}=8x^3$.

Use $(ab)^n = a^n b^n$ to rewrite the left hand side

Remember to apply the power to both a and x^6

$$a^{\frac{1}{m}} \times x^{\frac{6}{m}} = 8x^3$$

Both sides of the equation have a constant part, $a^{\frac{1}{m}}$ and 8

And both sides of the equation have a part in terms of X

The two sides of the equation are equal, so set the respective parts equal to one another

First.

$$x^{\frac{6}{m}} = x^3$$

The bases are the same, therefore the powers are equal

$$\frac{6}{m} = 3$$

Solve to find m

$$m = 2$$

Then set the constant parts of both sides equal to one another

$$a^{\frac{1}{m}} = 8$$

We now know that m=2, so substitute this in

$$a^{\frac{1}{2}} = 8$$

Use $a^{\frac{1}{n}} = \sqrt[n]{a}$ to rewrite as a square root

$$\sqrt[2]{a} = 8$$

Find a by squaring both sides

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

