Math 470 Assignment 33

Arnold Jiadong Yu

May 5, 2018

10.5.8 A set E in metric space is called *clopen* if it is both open and closed.

- a)Prove that every metric space has at least two clopen sets.
- b)Prove that a metric space is connected if and only if it contains exactly two clopen sets.

proof: a) Let (X, d) be a metric space, then $\emptyset, X \subseteq X$. By 10.11 Remark, \emptyset, X is both open and closed. Hence every metric space has at least two clopen sets.

- b)(\Rightarrow). Prove by contrapositive. Suppose a metric space (X, d) contains more than two clopen sets, WTS (X, d) is disconnected. Let $A \neq \emptyset$ and $A \subset X$ be a clopen set. That is A and A^c are open and non-empty. $A \cap A^c = \emptyset$ and $A \cup A^c = X$ by definition. Hence (X, d) is disconnected. That is if a metric space is connected, it contains no more than two clopen sets. Also by part a), if a metric space is connected, it contains exactly two clopen sets.
- (⇐). Also by contrapositive. Suppose a metric space is disconnected, WTS it contains more than two clopen sets. Proof is trivial.

10.5.11 Suppose that $\{E_{\alpha}\}_{{\alpha}\in A}$ is a collection of connected sets in a metric space X such that $\bigcap_{{\alpha}\in A} E_{\alpha} \neq \emptyset$. Prove that

$$E = \bigcup_{\alpha \in A} E_{\alpha}$$

is connected.

proof: Prove by contrapositive. Suppose $\{E_{\alpha}\}_{{\alpha}\in A}$ is a collection of connected sets in a metric space X and $E=\bigcup_{{\alpha}\in A}E_{\alpha}$ is disconnected, WTS $\cap_{{\alpha}\in A}E_{\alpha}=\emptyset$.

Since E is disconnected, then there exsits nonempty open subsets S and T of E, such that $S \cap T = \emptyset$ and $S \cup T = E$. Moreover, $\{E_{\alpha}\}_{{\alpha} \in A}$ is a collection of connected sets, then there $\not\equiv S_{\alpha}, T_{\alpha}$, s.t. $S_{\alpha} \cap T_{\alpha} = \emptyset$ and $S_{\alpha} \cup T_{\alpha} = E_{\alpha}$. i.e. $S = \bigcup_{\beta \in A} E_{\beta}, T = \bigcup_{\gamma \in A} E_{\gamma}$ and $\beta \cap \gamma = \emptyset$, $\beta \cup \gamma = A$. Therefore, by Demorgan's Law

$$S \cup T = E \Rightarrow (S \cup T)^c = E^c = \emptyset \Rightarrow (S^c \cap T^c) = \emptyset$$
$$\Rightarrow (\cap_{\beta \in A} E_\beta) \cap (\cap_{\gamma \in A} E_\gamma) = \cap_{\alpha \in A} E_\alpha = \emptyset$$

Hence $E = \bigcup_{\alpha \in A} E_{\alpha}$ is disconnected implies $\bigcap_{\alpha \in A} E_{\alpha} = \emptyset$. That is suppose that $\{E_{\alpha}\}_{\alpha \in A}$ is a collection of connected sets in a metric space X such that $\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset$, then $E = \bigcup_{\alpha \in A} E_{\alpha}$ is connected.