Teoremi Informatica Teorica

Zbirciog Ionut Georgian

May 23, 2024

Indice

1	Teo	emi Dispensa 2	2		
	1.1	Teorema a pag. 5	. 2		
2	Teo	Teoremi Dispensa 3			
	2.1	Teorema a pag. 3	. 3		
	2.2	Teorema a pag. 4			
	2.3	Teorema a pag. 5			
	2.4	Teorema a pag. 5	. 4		
	2.5	Teorema a pag. 7	. 4		
	2.6	Teorema a pag. 9	. 4		
3	Teo	emi Dispensa 5	5		
	3.1	Teorema a pag. 2			
	3.2	Teorema a pag. 4 (Halting Problem)			
	3.3	Teorema a pag. 4 (Halting Problem)			
	3.4	Teorema a pag. 6			
	3.5	Teorema a pag. 6			
4	Teo	emi Dispensa 6	7		
_	4.1	Teorema a pag. 3	. 7		
	4.2	Teorema a pag. 4			
	4.3	Teorema a pag. 10			
	4.4	Teorema a pag. 10			
	4.5	Teorema a pag. 11			
	4.6	Teorema a pag. 11			
	4.7	Teorema a pag. 14			
	4.8	Teorema a pag. 14			
	4.9	Teorema a pag. 20			
	4.10	Teorema a pag. 21			
		Teorema a pag. 21			
		Corollario a pag. 21			
		Teorema a pag. 23			
		Teorema a pag. 23			
		Teorema a pag. 23			
		Teorema a pag. 24			
5	Teo	emi Dispensa 9	14		
-	5.1	Teorema a pag. 8			
	5.2	Teorema a pag 14			

1.1 Teorema a pag. 5

Per ogni macchina di Turing non deterministica NT esiste una macchina di Turing detreministica T tale che, per ogni possibile input x di NT, l'esito della computazione NT(x) coincide con l'esito della computazione di T(x).

Dimostrazione: Eseguiamo una simulazione della macchina non deterministica NT mediante una macchina deterministica T. La simulazione consiste in una visita in ampiezza¹ dell'albero delle computazioni di NT basata sulla tecnica coda di rondine con ripetizioni. Partiamo dallo stato globale SG(T, x, 0) e simuliamo tutte le computazione di lunghezza 1. Se tutte le computazioni terminano in q_R allora T rigetta, se almeno una computazione termina in q_A allora T accetta, altrimenti ricominciamo da capo eseguendo tutte le computazioni di lunghezza 2 e così via.

¹Perché non in profondità? Non possiamo fare una visità in profondità perché non sappiamo la lunghezza di ciascuna computazione, in quanto potrebbero anche non finire.

2.1 Teorema a pag. 3

Un linguaggio $L \subseteq \Sigma^*$ è decidibile se e soltanto se L e L^c sono accettabili.

Dimostrazione:

(\Rightarrow Se L è decidibile allora esiste una macchina di Turing T deterministica tale che $\forall x \in \Sigma^*$, $T(x) = q_A \Leftrightarrow x \in L \land T(x) = q_R \Leftrightarrow x \in L^c$. Osserviamo dunque che T accetta L. Da T, deriviamo ora T aggiungendo le seguenti quintuple:

$$\langle q_A, x, x, q_R^{'}, stop \rangle \land \langle q_R, x, x, q_A^{'}, stop \rangle \ \forall x \in \Sigma \cup \square$$

L'esecuzione di T' è simile a quella di T, solo che gli stati di accettazione e rigetto sono stati invertiti, in questo modo se T accetta x allora T' rigetta x, mentre se T rigetta x, T' accetta x, dunque T' accetta L^c .

- \Leftarrow) Se L e L^c sono accettabili allora esistono due macchine di Turing T_1 e T_2 tali che, $\forall x \in \Sigma^* T_1(x) = q_A \Leftrightarrow x \in L \wedge T_2(x) = q_A \Leftrightarrow x \in L^c$. Non esendo specificato l'esito della computazione nel caso in cui $x \notin L$ e $x \notin L^c$ definiamo la macchina T che, simulando T_1 e T_2 decide L nel seguento modo²:
 - 1. Esegui una singola istruzione di T_1 sul nastro 1: se $T_1(x) = q_A$ allora $T(x) = q_A$, altrimenti esegui il passo (2).
 - 2. Esegui una singola istruzione di T_2 sul nastro 2: se $T_2(x) = q_A$ allora $T(x) = q_R$, altrimenti esegui il passo (1).

Se $x \in L$, allora prima o poi, al passo (1), T_1 entrerà nello stato di accettazione, portando T ad accettare. Se $x \in L^c$, allora prima o poi, al passo (1), T_1 entrerà nello stato di accettazione, portando T a rigettare.

2.2 Teorema a pag. 4

Un linguaggio L è decidibile se e soltanto se la funzione χ_L è calcolabile.

Dimostrazione:

- (\Rightarrow Se L è decidibile allora esiste una macchina di Turing T deterministica di tipo **riconoscitore** tale che $\forall x \in \Sigma^*$, $T(x) = q_A \Leftrightarrow x \in L \land T(x) = q_R \Leftrightarrow x \in L^c$. A partire da T definiamo una macchina di Turing T di tipo trasduttore a 2 natri, con input $x \in \Sigma^*$ che opera nel seguente modo:
 - 1. Sul primo nastro simula T(x).
 - 2. Se T(x) termina nello stato q_A allora T'(x) scrive sul nastro di output il valore 1, altrimenti scrive il valore 0 e poi termina.

Osserviamo che poiché L è decidibile il passo (1) termina sempre per ogni input x. Se $x \in L$ allora $T(x) = q_A$ e T'(x) scrive 1 sul nastro di output. Se $x \notin L$ allora $T(x) = q_R$ e T'(x) scrive 0 sul nastro di output. Questo dimostra che χ_L è calcolabile.

- \Leftarrow) Se χ_L è calcolabile e per costruzione anche totale allora esiste una macchina di Turing T di tipo **trasduttore**, che per ogni $x \in \Sigma^*$, calcola $\chi_L(x)$. A partire da T definiamo T' di tipo riconoscitore a 2 natri, con input $x \in \Sigma^*$ che opera nel seguente modo:
 - 1. Sul primo nastro simula T(x) scrivendo il risultato sul secondo nastro.
 - 2. Se sul secondo nastro c'é scritto 1 allora $T'(x) = q_A$, altrimenti nello stato q_R .

Osserviamo che poiché χ_L è calcolabile il passo (1) termina sempre per ogni input x. Se $\chi_L(x) = 1$ allora (1) termina scrivendo 1 sul secondo nastro e $T'(x) = q_A$. Se $\chi_L(x) = 0$ allora (1) termina scrivendo 0 sul secondo nastro e $T'(x) = q_R$. Questo dimostra che L è decidibile.

 $^{^2}$ Osserviamo che non possiamo simulare T_1 e T_2 "blackbox", in quanto non sappiamo se la loro computazione termina o meno.

2.3 Teorema a pag. 5

Se la funzione $f: \Sigma^{\star} \to \Sigma_1^{\star}$ è totale e calcolabile allora il linguaggio $L_f \subseteq \Sigma^{\star} \times \Sigma_1^{\star}$ è decidibile.

Dimostrazione: Poiché f è calcolabile e totale allora esiste una macchina di Turing trasduttore che calcola $f(x) \forall x \in \Sigma^*$. A partire da T definiamo una macchina di Turing T riconoscitore a due nastri con input $\langle x, y \rangle$ dove $x \in \Sigma^*$ e $y \in \Sigma_1^*$, che opera nel seguente modo:

- 1. Sul nastro 1 è scritto l'input $\langle x, y \rangle$.
- 2. Sul nastro 2 simula T(x), scrivendovi il risultato z.
- 3. Se z = y allora $T'(x) = q_A$ altrimenti va in q_R .

Osserviamo che, poiché f è totale e calcolabile il passo (2) termina per ogni input $x \in \Sigma \star$. Se f(x) = z = y allora T'(x) termina in q_A . Se $f(x) = z \neq y$ allora T'(x) termina in q_A . Questo dimostra che L_f è decidibile.

2.4 Teorema a pag. 5

Sia $f: \Sigma^{\star} \to \Sigma_1^{\star}$ una funzione. Se il linguaggio $L_f \subseteq \Sigma^{\star} \times \Sigma_1^{\star}$ è decidibile allora f è calcolabile³.

Dimostrazione: Poiché $L_f \subseteq \Sigma^* \times \Sigma_1^*$ è decidibile, esiste una macchina di Turing riconoscitore T, tale che $\forall x \in \Sigma^*$ e $\forall y \in \Sigma_1^*$, $T(x) = q_A$ se y = f(x) e $T(x) = q_A$ se $y \neq f(x)$. A partire da T definiamo una macchina di Turing trasduttore T con input $x \in \Sigma^*$ che opera nel seguente modo:

- 1. Scrive i = 0 sul nastro 1.
- 2. Enumera tutte le stringhe $y \in \Sigma_1^*$ di lunghezza pari al valore scritto sul primo nastro, simulando per ciascuna stringa T(x,y).
 - (a) Sia y la prima stringa di lunghezza i non ancora enumerata, allora scrive y sul secondo nastro.
 - (b) Sul terzo nastro, esegue la computazione T(x, y).
 - (c) Se $T(x,y) = q_A$ allora scrive y sul nastro di output eventualmente incrementando i se y era l'ultima stringa, torna al passo (2).

Poiché L_f è decidibile il passo (b) termina per ogni input (x, y). Se x appartiene al dominio di f, allora $\exists y \in \Sigma_1^*$ tale che y = f(x), e quindi $(x, y) \in L_f$. Allora prima o poi la strigna y verrà scritta sul secondo nastro e $T(x, y) = q_A$. Questo dimostra che f è calcolabile.

2.5 Teorema a pag. 7

Per ogni programma scritto in accordo con il linguaggio di programmazione **PascalMinimo**, esiste un macchina di Turing T di tipo trasduttore che scrive sul nastro di output lo stesso valore fornito in output dal programma.

Dimostrazione omessa

2.6 Teorema a pag. 9

Per ogni macchina di Turing deterministica T di tipo riconoscitore ad un nastro esiste un programma P scritto in accordo alle regole del linguaggio **PascalMinimo** tale che, per ogni stringa x, se T(x) termina nello stato fiale $q_F \in \{q_A, q_R\}$ allora P con input x restituisce q_F in output.

Dimostrazione omessa

 $^{^3}$ Osserviamo che non possiamo invertire del tutto il teorema precendente, dalla decidibilità di L_f possiamo dedurre solo la calcolabilità di f

3.1 Teorema a pag. 2

L'insieme T delle macchine di Turing definite sull'alfabeto $\{0,1\}$ e dotate di un singolo nastro (più l'eventuale nastro di output) è numerabile

Dimostrazione: Per dimostrare tale teorema, dobbiamo trovare una biezione tra l'insieme T e l'insieme \mathbb{N} . Tale biezione non è altro che una etichettatura degli elementi dell'insieme con etichette appartenenti ad \mathbb{N} , ossia, una numerazione degli elementi dell'insieme. Sia T una macchina di Turing e β_T la sua codifica. Dunque, rappresentiamo T con la parola $\beta_T \in \Sigma^*$, con $\Sigma = \{0, 1, \oplus, \otimes, -, f, s, d\}$ come segue:

$$\beta_T = b(q_0) - b(q_1) \otimes b(q_{11}) - b_{11} - b_{12} - b(q_{12}) - m_1 \oplus \cdots \oplus b(q_{h1}) - b_{h1} - b_{h2} - b(q_{h2}) - m_h$$

Ora, effettuando le seguenti sostituzione in β_T , otteniamo una stringa in N

- "s" con "5"
- "f" con "6"
- "d" con "7"
- "-" con "4"
- "⊗" con "3"
- "⊕" con "2"

Inoltre, dato che la stringa può iniziare con un "0", allora premettiamo il carattere "8" alla stringa ottenuta. La parola in $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}^*$ così ottenuta, può, ovviamente, essere considerata come un numero espresso in notazione decimale, ovvero il numero $v(T) \in \mathbb{N}$ associato univocamente a T.

3.2 Teorema a pag. 4 (Halting Problem)

Definiamo il seguente linguaggio L_H in questo modo:

$$L_H = \{(i, x) : i \in la \ codifica \ di \ una \ TM \land T_i(x) \ termina\}$$

Il linguaggio L_H è accettabile.

Dimostrazione: Dobbiamo dimostrare che esiste una macchina di Turing T tale che, per ogni input $(i,x) \in \mathbb{N} \times \mathbb{N}, T(i,x) = q_A$ se e soltanto se $(i,x) \in L_H$.

Definiamo U' una macchina di Turing universale modificata con input (i, x). Tale macchina opera nel seguente modo:

- 1. Verifica se i è la codifica di una macchina di Turing. Se non lo è allora $U'(i,x)=q_R$.
- 2. Simula U(i,x), se termina in q_A o in q_R allora $U'(x) = q_A$.

 $U^{'}$ non sa decidere L_{H}^{c} , perciò lo accetta solo.

3.3 Teorema a pag. 4 (Halting Problem)

Il linguaggio L_H non è decidibile

Dimostrazione: Supponiamo che L_H sia decidibile. Allora, deve esistere una macchina di Turing T tale che, $T(i,x) = q_A \Leftrightarrow (i,x) \in L_H$ e $T(i,x) = q_R \Leftrightarrow (i,x) \notin L_H$.

- + Da T deriviamo $T^{'}$ che terminando su ogni input, accetta tutte e sole le coppie $(i, x) \in \mathbb{N} \times \mathbb{N} \setminus L_H$, ossia L_H^c . $T^{'}(i, x) = q_R \Leftrightarrow (i, x) \in L_H$ e $T(i, x) = q_A \Leftrightarrow (i, x) \notin L_H$. Quindi $T^{'}(i, x)$ decide L_H^c .
- + Da T' deriviamo T'' in questo modo: $T''(i,x) = non \ termina \ se \ T'(i,x) = q_R \ e \ T''(i,x) = q_A se \ T'(i,x) = q_A.$ Quindi $T''(i,x) = non \ termina \ se \ (i,x) = \in L_H \ e \ T''(i,x) = q_A \ se \ (i,x) \notin L_H.$

+ Da $T^{''}$ deriviamo T^* in questo modo: $T^*(i) = T^{''} = non \ termina \ se \ (i,i) \in L_H \ e \ T^*(i) = T^{''}(i,i) = q_A \ se \ (i,i) \notin L_H.$

Se T esiste $\Rightarrow T^*$ esiste, allora $\exists k \in \mathbb{N}$ tale che $T^* = T_k$. Se $T_k(k) = T^*(k)$ accettasse, allora T'(k,k) dovrebbe accettare ach'essa. Ma se T'(k,k) accetta, allora $(k,k) \notin L_H$, ossia, $T_k(k)$ non termina. Allora $T^*(k)$ non può accettare e, dunque, necessariamente non termina. Ma, se $T^*(k)$ non termina, allora T'(k,k) rigetta e, quindi, $(k,k) \in L_H$. Dunque, per definizione, $T_k(k)$ termina. Quindi, in entrambi le ipotesi, $T_k(k)$ termina o non termina, portando ad una contraddizione. Allora T^* non può esistere, ma allora neanche T' può esistere, e neanche T' e di conseguenza T. Quindi se T non esiste, L_H non è decidibile.

3.4 Teorema a pag. 6

Se L_1eL_2 sono due linguaggi accettabili, allora $L_1 \cup L_2$ è un linguaggio accettabile. Se L_1eL_2 sono due linguaggi decidibili, allora $L_1 \cup L_2$ è un linguaggio decidibile.

Dimostrazione:

3.5 Teorema a pag. 6

Se L_1eL_2 sono due linguaggi accettabili, allora $L_1 \cap L_2$ è un linguaggio accettabile. Se L_1eL_2 sono due linguaggi decidibili, allora $L_1 \cap L_2$ è un linguaggio decidibile.

Dimostrazione:

4.1 Teorema a pag. 3

Sia T una macchina di Turing deterministica, definita su un alfabeto $\Sigma \setminus \square$ e un insieme di stati Q, e sia $x \in \Sigma^*$ tale che T(x) termina, allora:

$$dspace(T, x) \le dtime(T, x) \le dspace(T, x)|Q|(|\Sigma| + 1)^{dspace(T, x)}$$

Dimostrazione:

- 1. $dspace(T, x) \leq dtime(T, x)$ Banalmente, una computazione deterministica che termina in k passi non può utilizzare più di k celle del nastro.
- 2. $dtime(T, x) \leq dspace(T, x)|Q|(|\Sigma| + 1)^{dspace(T, x)}$
 - (a) $dspace(T,x)|Q|(|\Sigma|+1)^{dspace(T,x)}$: è il numero di stati globali possibili di T nel caso in cui non più di dspace(T,x) celle del nastro vengano utilizzate dalla computazione T(x).
 - (b) $(|\Sigma|+1)^{dspace(T,x)}$: sono tutte le possibili parole di dspace(T,x) simboli di $\Sigma \cup \{\Box\}$, ossia tutte le possibili configurazioni delle dspace(T,x) celle utilizzate.

Siano, dunque, T una macchina deterministica e $x \in \Sigma^*$ tali che T(x) termina in k passi utilizzando dspace(T,x) celle del nastro. Poiché T(x) termina in k passi, essa è una successione di stati globali

$$SG_0(x), SG_2(x), \dots, SG_k(x)$$

tali che $SG_0(x)$ è lo stato globale iniziale e per ogni $0 \le i \le k-1$ esiste una transizione $SG_i(x) \to SG_{i+1}(x)$, e $SG_k(x)$ è lo stato globale finale.

Sia $k(T,x) = dspace(T,x)|Q|(|\Sigma|+1)^{dspace(T,x)}$. Se T(x) durasse più di k(T,x) passi (senza mai uscire dalle dspace(T,x) celle), allora sarebbe una successione di stati globali contenente almeno due volte uno stesso stato globale, SG_h .

Ma T è deterministica, allora, a partire da SG_h è possibile eseguire un'unica quintupla (verso SG_{h+1}) ed essa viene eseguita tutte le volte in cui T(x) si trova in SG_h . Quindi, entrambe le volte, avviene una transizione verso lo stesso stao globale SG_{h+1} , in questo modo T(x) va in loop e non termina che è contro l'ipotesi che termina.

4.2 Teorema a pag. 4

Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione totale e calcolabile.

Se $L \subseteq \Sigma^*$ è accettato da una macchina di Turing non deterministica NT tale che, per ogni $x \in L$, $ntime(NT, x) \le f(|x|)$ allora L è decidibile.

Se $L \subseteq \Sigma^*$ è accettato da una macchina di Turing non deterministica NT tale che, per ogni $x \in L$, $nspace(NT, x) \le f(|x|)$ allora L è decidibile.

Dimostrazione: Poiché f è totale e calcolabile, esiste una macchina di Turing T_f trasduttore tale che, per ogni $n \in \mathbb{N}$, $T_f(n)$ termina con il valore f(n) scritto sul nastro di output. Assumiamo che l'input e l'output siano codificati in unario. Sia $L \subseteq \Sigma^*$ un linguaggio accettato da una macchina di Turing NT tale che $\forall x \in L$, $ntime(NT, x) \leq f(|x|)$. Deriviamo ora da NT e T_f una nuova macchina non deterministica NT' a tre nastri.

 N_1 : viene scritto in unario l'input $x \in \Sigma^*$.

 N_2 : viene scritta la lunghezza di x in unario.

 N_3 : viene utitlizzato come clock, ovvero viene scritto f(|x|).

La computazione $NT^{'}$ consiste di 3 fasi:

- FASE 1: NT'(x) scrive |x| su N_2 in unario. Una volta letto \square su N_1 , le testine di N_1 e N_2 vengono riposizionate sul carattere più a sinistra.
- FASE 2: Simula $T_f(|x|)$, usando N_2 come nastro di input e N_3 come nastro di output. Essa termina scrivendo il valore di f(|x|) su N_3 e riavvolge la testina.
- FASE 3: Simula i primi f(|x|) passi della computazione, utilizzando N_1 come input e nastro di lavoro e N_3 come clock, ovvero come contatore del numero di istruzioni eseguite. Fino a quando viene letto 1 su N_3 viene eseguita un'istruzione di NT(x) e la testina di N_3 viene spostata a destra. Se NT(x) raggiunge q_A o q_R , NT'(x) termina nel medesimo stato. Se viene letto \square su N_3 , NT'(x) termina in q_R .

Poiché f è calcolabile e totale e poiché la simulazione della computazione NT(x) nella terza fase viene forzatamente terminata, se non ha terminato entro f(|x|) passi, tutte le computazioni di NT' terminano.

- Se $x \in L$ allora poiché NT accetta x in f(|x|) passi, nella terza fase termina in q_A prima che venga letto \Box .
- Se $x \notin L$ allora o NT(x) termina in q_R durante la terza fase e di conseguenza anche NT'(x) termina in q_R , oppure viene letto \square , ovvero NT(x) non ha accettato x in f(|x|) passi e dunque NT'(x) rigetta.

Questo dimostra che $NT^{'}$ decide L e dunque che L è decidibile.

4.3 Teorema a pag. 10

Per ogni funzione totale calcolabile $f: \mathbb{N} \to \mathbb{N}$

$$DTIME[f(n)] \subseteq NTIME[f(n)] \subseteq \land DSPACE[f(n)] \subseteq NSPACE[f(n)]$$

Dimostrazione: Una macchina di Turing deterministica è una particolare macchina di Turing non deterministica avente grado di non determinismo pari a 1, inoltre ogni parola decisa in k passi e anche accettata in k passi (ogni parola decisa in k celle e anche accettata in k celle).

4.4 Teorema a pag. 10

Per ogni funzione totale calcolabile $f: \mathbb{N} \to \mathbb{N}$

$$DTIME[f(n)] \subseteq DSPACE[f(n)] \subseteq \land NTIME[f(n)] \subseteq NSPACE[f(n)]$$

Dimostrazione: Segue dal teorema:

$$dspace(T, x) \leq dtime(T, x) \dots$$

Sia $L \subseteq \Sigma^*$ tale che $L \in DTIME[f(n)]$. Allora esiste T che decide L e tale che $\forall x \in \Sigma^*$, $dtime(T,x) \in O(f(|x|))$. Poiché $dspace(T,x) \leq dtime(T,x)$ e $dspace(T,x) \leq dtime(T,x) \in O(f(|x|))$, allora $dspace(T,x) \in O(f(|x|))$ e dunque $L \in DSPACE(f(|x|))$. Analogamente per $NTIME[f(n)] \subseteq NSPACE[f(n)]$.

4.5 Teorema a pag. 11

Per ogni funzione totale calcolabile $f: \mathbb{N} \to \mathbb{N}$

$$DSPACE[f(n)] \subseteq DTIME[2^{O(f(n))}] \subseteq \\ \land NSPACE[f(n)] \subseteq NTIME[2^{O(f(n))}]$$

Dimostrazione: Segue dal teorema:

$$\cdots \leq dspace(T,x)|Q|(|\Sigma|+1)^{dspace(T,x)}$$

Sia $L \subseteq \Sigma^*$ tale che $L \in DTIME[f(n)]$. Allora, esiste una machina di Turing T deterministica T che decide L e tale che, per ogni $x \in Sigma^*$, $dspace(T,x) \in O(f(|x|))$. Poiché: Supponiamo che $\Sigma = \{0,1\}$

$$\begin{split} dtime(T,x) &\leq dspace(T,x)|Q|(|\Sigma|+1)^{dspace(T,x)}\\ &= dspace(T,x)|Q|3^{dspace(T,x)}\\ &= 2^{\log(dspace(T,x))} \;|Q|\; 2^{\log(3)dspace(T,x)}\\ &= |Q|2^{\log(dspace(T,x))} + \log(3)dspace(T,x)\\ &\leq |Q|2^{(1+\log(3))dspace(T,x)} \end{split}$$

Allora $dtime(T, x) \in O(2^{O(f(|x|))})$ e dunque $L \in DTIME[2^{O(f(|x|))}]$

4.6 Teorema a pag. 11

Per ogni funzione totale calcolabile $f: \mathbb{N} \to \mathbb{N}$

$$DTIME[f(n)] = coDTIME[f(n)] \land DSPACE[f(n)] = coDSPACE[f(n)]$$

Dimostrazione: $\forall L \in DTIME[f(n)]$, esiste T che decide L e $dtime(T, x) \in O(f(|x|))$. Da T deriviamo T^c con input $x \in \Sigma^*$ e $Q_f = \{q_A^c, q_R^c\}$ che decide L^c nel seguente modo:

FASE 1: Simula T(x)

FASE 2: • Se $T(x) = q_A$, allora $T^c(x) = q_R$

• Se $T(x) = q_R$, allora $T^c(x) = q_A$

Dunque $L^c \in DTIME[f(n)]$.

Analogamente possiamo dimostrare che un qualsiasi linguaggio $L \in coDTIME[f(n)]$. Di conseguenza che DTIME[f(n)] = coDTIME[f(n)]. Dimostrazione analoga per DSPACE[f(n)] = coDSPACE[f(n)].

4.7 Teorema a pag. 14

Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione time-constructible (space-constructible.).

Allora, per ogni $L \in NTIME[f(n)]$, si ha che L è decidibile in tempo non deterministico in O(f(n)).

Allora, per ogni $L \in NTIME[f(n)]$, si ha che L è decidibile in spazio non deterministico in O(f(n)).

Dimostrazione: Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione time-constructible. Allora esiste una macchina di Turing di tipo trasduttore T_f che, avendo scritto sul nastro di input/lavoro $n \in \mathbb{N}$ in unario, in O(f(n)) passi scrive sul nastro di output il valore di f(n) in unario. Sia $L \in NTIME[f(n)]$. Allora esiste una NT che accetta L e tale che, per ogni $x \in L$, $ntime(NT, x) \in O(f(|x|))$. Definiamo ora da T_f e NT, la macchina NT' con input $x \in L$ che opera nel seguente modo:

- FASE 1: Scrive su N_2 , |x| in unario.
- FASE 2: Simula $T_f(x)$ e scrive il risulato in unari su N_3 .
- FASE 3: Finché legge 1 su N_3 esegue una istruzione di NT(x) su N_1 .
 - Se termina in q_A , allora $NT'(x) = q_A$.
 - Altrimenti sposta la testina a destra su N_3

FASE 4: Se legge \square su N_3 allora rigetta.

- La fase 1 termina in O(|x|) passi.
- la fase 2 termina in O(f(|x|)) passi, in quanto f è time-constructible.
- La fase 3 termina in O(f(|x|)) passi, in quanto $\forall x \in \Sigma^*$, $ntime(NT', x) \in O(f(|x|))$.

Dunque, NT'(x) decide $L, \forall x \in \Sigma^*, e \ ntime(NT', x) \in O(f(|x|)).$

4.8 Teorema a pag. 14

Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ time-constructible,

$$NTIME[f(n)] \subseteq DTIME[2^{O(f(n))}]$$

Dimostrazione: Sia $L \in \Sigma^*$ tale che $L \in NTIME[f(n)]$, allora esistono una macchina di Turing NT che accetta L e una costante h tali che $\forall x \in L$, $ntime(NT, x) \leq hf(|x|)$. Poiché f è time-constructible, esiste una macchina di Turing deterministica T_f con inpun la rappresentazione in unario di $n \in \mathbb{N}$, che calcola il valore di f(n) in unario in tempo O(f(n)). Indichiamo con k il grado di non determinismo di NT e definiamo T deterministica che simuli NT con input $x \in \Sigma^*$ che opera nel seguente modo:

- FASE 1: Scrive su N_2 , |x| in unario.
- FASE 2: Simula $T_f(|x|)$ e scrive su N_3 l'output hf(|x|) in unario.
- FASE 3: Per ogni computazione deterministica $\alpha(x)$ in NT(x):
 - Finché legge 1 su N_3 esegue un'istruzione lungo $\alpha(x)$.
 - Se $\alpha(x) = q_A$ allora $T(x) = q_A$.
 - Altrimenti sposta la testina a destra su N_3 .
 - Se legge \square si sposta sul primo 1 a sinistra e passa alla prossima computazione deterministica $\alpha(x)$ se esiste.

FASE 4: Rigetta

- La fase 1 termina in O(f(|x|)) passi.
- La fase 2 termina in O(hf(|x|)) = O(f(|x|)) passi.
- La fase 3 termina in $O(f(|x|)k^{hf(x)})$ poiché esegue ogni computazione deterministica di NT(x)

Dunque,

$$dtime(T,x) \in O(f(|x|)k^{hf(x)}) \subseteq O(2^{O(f(|x|))})$$

4.9 Teorema a pag. 20

Siano C e C' due classi di complessità tali che $C' \subseteq C$. Se C' è chiusa rispetto ad una π -riduzione allora, per ogni linguaggio L che sia C-completo rispetto a tale π -riduzione, $L \in C'$ se e solo se C = C'.

Dimostrazione:

- \Leftarrow) Se C = C' allora $L \in C'$.
- (\Rightarrow Sia $L \in C'$. Poiché L è C-completo rispetto alla π -riducibilità, allora per ogni $L_0 \in C$, $L_0 \leq_{\pi} L$. Poiché C' è chiusa rispetto alla π -riducione, ovvero per ogni altro linguaggio L', $L' \leq_{\pi} L$, allora $L' \in C'$, dunque per ogni linguaggio $L_0 \in C$, $L_0 \leq_{\pi} L$, allora $L_0 \in C'$. Quindi C = C'.

4.10 Teorema a pag. 21

La classe \mathbf{P} è chiusa rispetto alla riducibilità polinomiale.

Dimostrazione: Sia $L \in \mathbf{P}$, allora esistono una macchina di Turing T deterministica e $k \in \mathbb{N}$ tale che T decide L e per ogni $x \in \Sigma^*$, $dtime(T, x) \in O(|x|^k)$.

Sia $L': L' \leq_p L$, allora esiste una funzione $f: \Sigma_1^{\star} \to \Sigma_2^{\star}$ in \mathbf{FP} che riduce L' a L, con T_f trasduttore tale che per ogni $x \in \Sigma_1^{\star}, T_f(x) \in L \Leftrightarrow x \in L' \wedge dtime(T_f, x) \in O(|x|^c)$.

Da $T \in T_f$ definiamo T' con input x che opera nel seguente modo:

FASE 1: Simula $T_f(x)$ e scrive l'output y su N_2 .

FASE 2: Simula T(y):

- Se termina in q_A allora T' accetta.
- Se termina in q_R allora T' rigetta.

Dato che f è una riduzione da $L^{'}$ a L, quindi $f(x) \in L \Leftrightarrow x \in L^{'}$, quindi $T^{'}$ termina per ogni input $x \in \Sigma^{\star}$ e accetta $\Leftrightarrow T(f(x))$ accetta, ossia $\Leftrightarrow f(x) \in L$.

Resta da mostrare che T'(x) opera in tempo polinomiale in |x|. La simulazione di $T_f(x)$ richiede $dtime(T_f, x) \leq |x|^c$ e la simulazione di T(f(x)) richiede $dtime(T_f, x) \leq |f(x)|^k$.

$$dtime(T^{'}, x) \leq |x|^{c} + f(|x|)^{k4}$$
$$\leq |x|^{c} + |x|^{ck}$$
$$\Rightarrow dtime(T^{'}, x) \in O(|x|^{ck})$$

Poiché $c \in k$ sono costanti, allora risulta che \mathbf{P} è chiusa rispetto la riducibilità polinomiale dato che $L' \in \mathbf{P}$.

4.11 Teorema a pag. 21

Le classi NP, PSPACE, EXPTIME, NEXPTIME, sono chiuse rispetto alla riducibilità polinomiale.

Dimostrazione:

NP

PSPACE

EXPTIME

NEXPTIME

4.12 Corollario a pag. 21

Se $P \neq NP$ allora, per ogni linguaggio NP-completo $L, L \notin P$.

Dimostrazione: Supponiamo che L sia un linguaggio \mathbf{NP} -completo e che $L \in \mathbf{P}$. Poiché L è \mathbf{NP} -completo, per ogni linguaggio $L' \in \mathbf{NP}, \ L' \leq L$, ma se $L \in \mathbf{P}$, poiché \mathbf{P} è chiusa rispetto alla riduzione \leq , questo implica che, per ogni $L' \in \mathbf{NP}, \ L' \in \mathbf{P}$. Ossia $\mathbf{P} = \mathbf{NP}$, contraddicendo l'ipotesi.

4.13 Teorema a pag. 23

Se $NP \neq coNP$, allora $P \neq NP$.

Dimostrazione ($A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$): Se P = NP, allora NP = coP poiché P = coP. Ma se P = NP $\land P = coP$, allora coP = coNP. Dunque:

$$\underline{NP} = P = \underline{coP} = \underline{coNP}$$

4.14 Teorema a pag. 23

La classe **coNP** è chiusa rispetto alla riducibilità polinomiale.

Dimostrazione: Poiché NP è chiusa rispetto alla riducibilità polinomiale

Per ogni $L_2 \in \mathbf{NP}$ e per ogni L_1 , se $L_1 \leq L_2$, allora $L_1 \in \mathbf{NP}$.

 \Rightarrow Per ogni $L^c_2 \in \mathbf{coNP}$ e per ogni $L^c_1,$ se $L^c_1 \leq L^c_2,$ allora $L^c_1 \in \mathbf{coNP}$

4.15 Teorema a pag. 23

Un linguaggio L è **NP**-completo se e soltanto se L^c è **coNP**-completo.

Dimostrazione:

- $(\Rightarrow$ Sia L un linguaggio **NP**-completo, allora per definizione di completezza
 - 1. $L \in \mathbf{NP}$ allora $L^c \in \mathbf{coNP}$.
 - 2. $\forall L_0 \in \mathbf{NP}, \ L_0 \leq L$.

Sia L_1 un qualsiasi linguaggio in **coNP**, allora $L_1^c \in \mathbf{NP}$. Poiché $L \in \mathbf{NP}$ -completo, $L_1^c \leq L$.

$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \in L_1^c \Leftrightarrow f(x) \in L]$$
$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \notin L_1^c \Leftrightarrow f(x) \notin L]$$
$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \in L_1 \Leftrightarrow f(x) \in L^c]$$

In conclusione, $\forall L_1 \in \mathbf{coNP} : L_1 \leq L^c$, e quindi L^c è \mathbf{coNPC} .

- \Leftarrow) Sia L^c un linguaggio **coNP**-completo, allora per definizione di completezza
 - 1. $L^c \in \mathbf{coNP}$ allora $L \in \mathbf{NP}$.
 - 2. $\forall L_0^c \in \mathbf{coNP}, \ L_0^c \leq L^c$.

Sia L_1 un qualsiasi linguaggio in **NP**, allora $L_1^c \in \mathbf{coNP}$. Poiché $L^c \in \mathbf{coNP}$ -completo, $L_1^c \leq L^c$.

$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \in L_1^c \Leftrightarrow f(x) \in L^c]$$
$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \notin L_1^c \Leftrightarrow f(x) \notin L^c]$$
$$\Rightarrow Esiste \ f \in \mathbf{FP} : \forall x \in \Sigma^*[x \in L_1 \Leftrightarrow f(x) \in L]$$

In conclusione, $\forall L_1 \in \mathbf{NP}: L_1 \leq L$, e quindi L è \mathbf{NPC} .

4.16 Teorema a pag. 24

Se esiste un linguaggio L NP-completo tale che $L \in \mathbf{coNP}$, allora NP = \mathbf{coNP} .

Dimostrazione: L è NP-completo, allora per definizione di completezza

- 1. $L \in \mathbf{NP}$.
- 2. $\forall L_1 \in \mathbf{NP}, \ L_1 \leq L$.
- \subseteq Se $L \in \mathbf{coNP}$ allora $\forall L_1 \in \mathbf{NP}, \ L_1 \leq L$, ma \mathbf{coNP} è chiusa ripsetto alla riducibilità polinomiale ovvero $[L_2 \in \mathbf{coNP}, \ L_1 \leq L_2, \ \Rightarrow \ L_1 \in \mathbf{coNP}]$, allora, per ogni $L_1 \in \mathbf{NP}$ si ha che $L_1 \leq L$, e $L \in \mathbf{coNP}$. Dunque, per la chisura di $\mathbf{coNP}, \ L_1 \in \mathbf{coNP}$, quindi $\mathbf{NP} \subseteq \mathbf{coNP}$.
- \supseteq Poiché $L \in \mathbf{coNP}$, allora $L^c \in \mathbf{NP}$, ma poiché L è \mathbf{NP} -completo, allora L^c è \mathbf{coNP} -completo, quindi $\forall L' \in \mathbf{coNP}, \ L' \leq L^c$. Ma \mathbf{NP} è chiusa rispetto alla riducibilità polinomiale, ovvero $[L_2 \in \mathbf{NP}, \ L_1 \leq L_2, \ \Rightarrow \ L_1 \in \mathbf{NP}]$, allora, per ogni $L' \in \mathbf{coNP}, \ L' \leq L^c$ e $L^c \in \mathbf{NP}$. Dunque, per la chiusura di $\mathbf{NP}, \ L' \in \mathbf{NP}$, quindi $\mathbf{coNP} \subseteq \mathbf{NP}$.

In conclusione, se L è **NP**-completo $\wedge L \in \mathbf{coNP}$, allora **NP** = \mathbf{coNP} .

5.1 Teorema a pag. 8

Un linguaggio $L \subseteq \Sigma^*$ è in **NP** se è soltanto se se soltanto se se soltanto una macchina di Turing deterministica T che opera in tempo polinomiale e due costanti $k, h \in \mathbb{N}$ tali che, per ogni

$$x \in \Sigma^\star, \ x \in L \Leftrightarrow \exists y_x \in \{0,1\}^\star: \ |y_x| \leq |x|^k \wedge T(x,y_x) = q_A \wedge dtime(T,x,y_x) \leq |x|^h$$

Dimostrazione:

(⇒ Sia $L \subseteq \Sigma^*$ un linguaggio in **NP**, allora esistono una macchina di Turing non deterministica NT e un intero $h \in \mathbb{N}$ tale che NT accetta L e, per ogni, $x \in L$, $ntime(NT, x) \leq |x|^h$.

Questo significa che $\forall x \in L$ esiste una sequenza di quintuple che eseguite a partire dallo stato globale inziale SG_0 porta ad uno stato globale di accettazione.

Allora, $p_i = \langle q_{i1}, s_{i1}, s_{i2}, q_{i2}, m_i \rangle$ è la i - esima quintupla della sequenza y(x), definita come segue:

$$y(x) = q_{11}, \ s_{11}, \ s_{12}, \ q_{12}, \ m_1 \ - \ q_{21}, \ s_{21}, \ s_{22}, \ q_{22}, \ m_2 \ - \ \dots \ q_{(n^k)1}, \ s_{(n^k)1}, \ s_{(n^k)2}, \ q_{(n^k)2}, \ m_{(n^k)2}$$

è la sequenza di quintuple che rappresentano una computazione deterministica accettante.⁶

Definiamo ora una macchina deterministica \overline{T} che ha il ruolo di verificare la sequenza di quintuple y_x scelta dal genio. Dunque \overline{T} è detto **verificatore** ed opera nel seguente modo:

- 1. \overline{T} verifica che y sia nella forma descritta sopra, se non è così, rigetta.
- 2. \overline{T} verifica che, per ogni $1 \le i \le n^k$, $\langle q_{i1}, s_{i1}, s_{i2}, q_{i2}, m_i \rangle \in P$, se non è così, allora rigetta.
- 3. \overline{T} verifica che $q_{11}=q_0$ e $q_{(n^k)2}=q_A$, se così non è, rigetta.
- 4. \overline{T} verifica che, per ogni $2 \le i \le n^k$, $q_{i1} = q_{(i-1)2}$, se così non è, rigetta.
- 5. \overline{T} simula la computazione di NT(x) descritta da y. Verifica se ogni quintupla può eseguita, se sì la esegue, altrimenti rigetta.
- 6. \overline{T} accetta.

Dunque, se $x \in L$, allora y(x) è la codifica di NT(x) accettante che è costituita da al più $|x|^k$ passi. Dunque, se $x \in L$, allora $|y(x) \in O(|x|^k)|$ e quindi \overline{T} opera in tempo polinomiale in |x|.

Se $x \in L$, y_x prende il nome di **certificato** per x. Dunque $x \in L \Leftrightarrow \exists y(x) \in [\Sigma \cup Q \cup \{-, s, f, d\}^*]$ tale che $\overline{T}(x, y_x)$ accetta.

 \Leftarrow) Sia $L \subseteq \Sigma^*$ un linguaggio per il quale esistono una macchina di Turing deterministica T che opera in tempo polinomiale e una costante $k \in \mathbb{N}$ tali che, $\forall x \in \Sigma^*, \ x \in L \Leftrightarrow \exists y_x \in \{0,1\}^*$, tale che $|y_x| \leq |x|^k \wedge T(x,y_x)$ accetta.

Dobbiamo dimostrare che $\exists NT$ e $a \in \mathbb{N}$ tale che, $\forall x \in L$, NT(x) accetta e $ntime(NT, x) \in O(|x|^a)$. NT opera come segue:

FASE 1: NT sceglie non determisticamente una parola binaria y di lunghezza $|y| \leq |x|^k$.

FASE 2: NT invoca T(x,y) e, se T(x,y) accetta entro $O(|x|^h)$ passi allora accetta.

NOTA: $|x|^k$ è time-constructible, ovvero essite una macchina T_f trasduttore che calcola $|x|^k$ e $dtime(T_f, x) \leq |x|^k$.

- Se $x \in L$ allora $\exists y_x \in \{0,1\}^*$: $|y_x| \leq |x|^k \wedge T(x,y_x) = q_A$, allora esiste una sequenza di scelte che genera y_x , allora nella FASE 2, $T(x,y_x)$ accetta entro $|x|^h$ passi, allora NT(x) corrisponde alla sequenza di scelte che ha generato y_x e accetta. Questo dimostra che se $x \in L$, allora NT(x) accetta.
- Se $x \notin L$ allora non esiste alcuna $y_x \in \{0,1\}$, non esiste alcuna y(x) tale che $|y(x)| \le |x|^k \wedge T(x,y_x) = q_A$. Dunque, qualunque sia la sequenza di scelte per generare y, T(x,y) non accetta. Quindi se $x \notin L$, allora NT(x) non accetta.

Questo dimostra che $L \in \mathbf{NP}$

 $^{^5\}mathrm{Questo}$ è da dimostrare

⁶Adesso il Genio non ci da più una quintupla per volta, ma una sequenza di quintuple che però, devono essere verificate.

```
1: procedure NT-FASE-1( x \in \Sigma^* )
         B \leftarrow T_f(|x|)
 2:
         i \leftarrow 1
 3:
         while i \leq B do begin
 4:
              scegli y[i] nell'insieme \{0,1\}
 5:
 6:
                \leftarrow i + 1
         y \leftarrow y[1] \oplus y[2] \oplus \cdots \oplus y[B]
 7:
 8:
         return y
 9: procedure NT-FASE-2(x \in \Sigma^*)
                                                                                                                                             \triangleright O(|x|^k)
         y_x \leftarrow NT - FASE - 1(x)
10:
                                                                                                                                             \triangleright O(|x|^h)
         q \leftarrow T(x, y_x)
11:
12:
         return q
```

5.2 Teorema a pag. 14

Sia $\Gamma_1 \in \mathbf{NP} \land \exists \ \Gamma_2 \in \mathbf{NPC} \land \Gamma_2 \leq \Gamma_1$, allora $\Gamma_1 \ \grave{\mathbf{e}} \ \mathbf{NPC}$.

Dimostrazione:

Sia Γ_2 un problema **NPC** tale che $\Gamma_2 \leq \Gamma_1$, allora $\exists f_{21}: I_{\Gamma_2} \to I_{\Gamma_1}$ tale che $f_{21} \in \mathbf{FP}$ e per ogni $x \in I_{\Gamma_2}, [x \in \Gamma_1 \Leftrightarrow f_{21}(x) \in \Gamma_1]$, ovvero

$$\exists T_{21}, k: \forall x \in I_{\Gamma_2}, [x \in \Gamma_1 \Leftrightarrow T_{21}(x) \in \Gamma_1 \land dtime(T_{21}, x) \leq |x|^k]$$

Poiché Γ_2 è **NPC**, per ogni problema $\Gamma_3 \in \mathbf{NP}$ si ha che $\Gamma_3 \leq \Gamma_2$, e dunque esiste una funzione $f_{32}: \Gamma_3 \Rightarrow \Gamma_2$ tale che $f_{32} \in \mathbf{FP}$ e per ogni $z \in I_{\Gamma_3}, [z \in \Gamma_3 \Leftrightarrow f_{32}(z) \in \Gamma_2]$, ovvero

$$\exists T_{32}, h : \forall z \in I_{\Gamma_3}, \ [z \in \Gamma_2 \Leftrightarrow T_{32}(z) \in \Gamma_2 \land \ dtime(T_{32}, z) \le |x|^h]$$

Da T_{21} e T_{32} definiamo T_{31} con input $z \in I_{\Gamma_3}$ che opera nel seguente modo:

FASE 1: Simula $T_{32}(z) = x$

FASE 2: Simula $T_{21}(x) = y$

FASE 3: Scrivi sul nastro di output y

Sia $z \in I_{\Gamma_3}$, allora $z \in \Gamma_3 \Leftrightarrow f_{32}(z) \in \Gamma_2$ e inoltre, $f_{32}(z) \in \Gamma_2 \Leftrightarrow f_{21}(f_{32}(z)) \in \Gamma_1$. Se indichiamo con f_{31} la composizione delle funzionie f_{32} e f_{21} , questo dimostra che f_{31} è una riduzione da Γ_3 a Γ_1 . Resta da dimostrare che la macchina T_{32} opera in tempo polinomiale.

$$\forall z \in I_{\Gamma_3}: [dtime(T_{31}, z) = dtime(T_{32}, z) + dtime(T_{21}, x) \le |z|^h + |x|^k \le |z|^{hk}]$$

Questo dimostra che Γ_1 è **NPC**.