Math 521: Assignment 5 (due 5 PM, April 4)

1. A real-valued function f on an interval I is said to be *Lipschitz continuous* if there exists an L > 0 such that for all $x, y \in I$,

$$|f(x) - f(y)| \le L|x - y|. \tag{1}$$

- (a) Show that if a function is Lipschitz continuous, then it is uniformly continuous.
- (b) Find an example of a function *g* defined on an interval *I* that is uniformly continuous but not Lipschitz continuous.
- 2. (a) Let *S* be a subset of , and let $f: S \to \text{and } g: \to \text{be uniformly continuous}$ functions. Prove that the composition $g \circ f: S \to \text{is uniformly continuous}$.
 - (b) Let f and g be two uniformly continuous functions from S to . Prove that f+g is uniformly continuous.
 - (c) Show that there exist uniformly continuous functions f and g from S to such that the multiplication $f \cdot g$ is not uniformly continuous.
- 3. Let f be a uniformly continuous real-valued function on . Prove that there are constants A and B such that $|f(x)| \le A + B|x|$ for all $x \in A$.
- 4. (a) Sketch the function $f(x) = (x+1)^{-2}(x-2)^{-1}$.
 - (b) Determine $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$, $\lim_{x\to -1^+} f(x)$, and $\lim_{x\to -1^-} f(x)$.
 - (c) Determine $\lim_{x\to 2} f(x)$ and $\lim_{x\to -1} f(x)$ if they exist.
- 5. Suppose that the limits $L_1 = \lim_{x \to a^+} f_1(x)$ and $L_2 = \lim_{x \to a^+} f_2(x)$ exist.
 - (a) Prove that if $f_1(x) \le f_2(x)$ for some interval (a, b), then $L_1 \le L_2$.
 - (b) Suppose that $f_1(x) < f_2(x)$ for some interval (a, b). Is it always true that $L_1 < L_2$?
- 6. For each of the following power series, find the radius of convergence and determine the exact interval of convergence:
 - (a) $\sum_{n} n^2 x^n$
 - (b) $\sum_{n} \left(\frac{x}{n}\right)^{n}$
 - (c) $\sum_{n} x^{n!}$
 - (d) $\sum_{n} 5^{n} x^{2n+1}$
- 7. For $x \in [0, \infty)$, define $f_n(x) = \frac{x}{n}$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Determine whether $f_n \to f$ uniformly on [0,1].

- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
- 8. (a) Define a sequence of functions on as

$$f_n(x) = \begin{cases} 1 & \text{if } x = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \\ 0 & \text{otherwise,} \end{cases}$$
 (2)

and let f be the pointwise limit of f_n . Is each f_n continuous at 0? Does $f_n \to f$ uniformly on ? Is f continuous at 0?

(b) Repeat part (a) for the sequence of functions

$$g_n(x) = \begin{cases} x & \text{if } x = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$
 (3)