CS201: Data Structures and Discrete Mathematics I

Basic Set Theory

Sets

- A set is a collection of distinct objects.
- For example (let A denote a set):

```
A = {apple, pear, grape}

A = {1, 2, 3, 4, 5}

A = {1, b, c, d, e, f}

A = {(1, 2), (3, 4), (9, 10)}

A = {<1, 2, 3>, <3, 4, 5>, <6, 7, 8>}

A = a collection of anything that is meaningful.
```

Members and Equality of Sets

- The objects that make up a set are called members or elements of the set.
- Two sets are equal iff they have the same members.
 - That is, a set is completely determined by its members.
 - Order and repetition do not matter in a set.

Set notations

- The notation of {...} describes a set. Each member or element is separated by a comma.
 - E.g., S = {apple, pear, grape}
 - S is a set
 - The members of S are: apple, pear, grape
- Order and repetition do not matter in a set.
- The following expressions are equivalent:
 - $-\{1, 3, 9\}$
 - {9, 1, 3}
 - $-\{1, 1, 3, 3, 9\}$

The membership symbol \in and the empty set \varnothing

- The fact that x is a member of a set S can be expressed as
 - $-x \in S$
 - Reads:
 - x is in S, or
 - x is a member of S, or
 - X belongs to S
- An example, $S = \{1, 2, 3\}, 1 \in S, 2 \in S, 3 \in S$
- The negation of ∈ is written as ∉ (is not in).
- The empty set is a set without any element
 - Denoted by {} or ∅
 - For any object x, x \notin Ø

Defining a Set by membership properties

Notation

- $S = \{x \in T \mid P(x)\} \text{ (or } S = \{x \mid x \in T \text{ and } P(x)\})$
- The members of S are members of an already known set T that satisfy property P.

An example:

- Let Z be the set of integers
- Let Z₊ be the set of positive integers.

$$- Z_{+} = \{x \in Z \mid x > 0\}$$

Sets of numbers

Z = The set of all integers

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$

Z₊ = The set of positive integers

$$Z_{+} = \{1, 2, 3...\} = \{x \mid x \in Z \text{ and } x > 0\} = \{x \in Z \mid x > 0\}$$

Z₁ = The set of negative integers

$$Z_{-} = \{..., -3, -2, -1\} = \{-1, -2, -3...\} = \{x \in Z \mid x < 0\}$$

- R = The set of all real numbers
- Q = the set of all rational numbers

$$Q = \{x \in R \mid x = p/q \text{ and } p, q \in Z \text{ and } q \neq 0\}$$

We can use ";" to replace "and"

11/13/05 CS 201

Subsets

- A is a subset (⊆) of B, or B is a superset of A iff every member of A is a member of B.
 - $-A \subseteq B$ iff forall x if $x \in A$, then $x \in B$
- An example:
 - (-2, 0, 6) \subseteq {-3, -2, -1, 0, 1, 3, 6}
- Negation: A is not a subset of B or B is not a superset of A iff there is a member of A that is not a member of B
 - $A \subseteq B$ iff there exist x, x ∈ A, x ∉ B

Obvious subsets

- $-S\subseteq S$
 - $\emptyset \subseteq S$
 - By contradiction:
 - if $\varnothing \subseteq S$ then there exist $x, x \in \varnothing$ and $x \notin S$.

Proper subsets

- A is a proper subset (

) of B, or B is a proper superset of A iff A is a subset of B and A is not equal to B.
 - $-A \subset B \text{ iff } A \subseteq B \text{ and } A \neq B$
- Examples:
 - $-\{1, 2, 3\} \subset \{1, 2, 3, 4, 5\}$
 - $-Z_{\downarrow} \subset Z \subset Q \subset R$
 - If $S \neq \emptyset$ then $\emptyset \subset S$

Power sets

- The set of all subsets of a set is called the power set of the set
- The power set of S is denoted by P(S).
- Example:
 - $P(\emptyset) = \{\emptyset\}$
 - $P(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
 - $P(S) = {\emptyset, ..., S}$
 - What is $P(\{1, 2, 3\})$?
- How many elements does the power set of S have?
 Assume S has n elements.

\in and \subseteq are different

Examples:

```
1 \in \{1\} is true

1 \subseteq \{1\} is false

\{1\} \subseteq \{1\} is true
```

Which of the following statement is true?

```
S \subseteq P(S)
S \in P(S)
```

Mutual inclusion and set equality

- Sets A and B have the same members iff they mutually include
 - $-A \subseteq B$ and $B \subseteq A$
- That is, A = B iff $A \subseteq B$ and $B \subseteq A$
- Mutual inclusion is very useful for proving the equality of sets
- To prove an equality, we prove two subset relationships.

An example: equality of sets

- Recall that Z = the set of (all) integers
- Let $A = \{x \in Z \mid x = 2m \text{ for } m \in Z \}$
- Let B = $\{x \in Z \mid x = 2n-2 \text{ for } n \in Z \}$
- To show $A \subseteq B$, note that 2m = 2(m+1) 2 = 2n-2
- To show that $B \subseteq A$, note that 2n-2=2(n-1)=2m
- That is, A = B. (A, B both denote the set of all even integers.

Universal sets

- Depending on the context of discussion
 - Define a set of U such that all sets of interest are subsets of U.
 - The set U is known as a universal set
- Examples:
 - When dealing with integers, U may be Z.
 - When dealing with plane geometry, U may be the set of points in the plane

Venn diagram

- Venn diagram is used to visualize relationships of some sets.
- Each subset (of U, the rectangle) is represented by a circle inside the rectangle.

Set operations

- Let A, B be subsets of some universal set U.
- The following set operations create new sets from A and B.
- Union:

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

Intersection:

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

• Difference:

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

Complement

$$A' = U - A = \{x \in U \mid x \notin A\}$$

Set union

An example

$$\{1, 2, 3\} \cup \{1, 2, 4, 5\} = \{1, 2, 3, 4, 5\}$$

Set intersection

An example

$$\{1, 2, 3\} \cap \{1, 2, 4, 5\} = \{1, 2\}$$

Set difference

An example

$$\{1, 2, 3\} - \{1, 2, 4, 5\} = \{3\}$$

Set complement

Some questions

- Let $A \subset B$.
 - What is A B?
 - What is B A?
 - If A, B \subseteq C, what can you say about A \cup B and C?
 - If $C \subseteq A$, B, what can you say about C and $A \cap B$?

Basic set identities (equalities)

Commutative laws

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Associative laws

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Basic set identities (cont ...)

Identity laws

$$\emptyset \cup A = A \cup \emptyset = A$$

 $A \cap U = U \cap A = A$

Double complement law

$$(A')' = A$$

Idempotent laws

$$A \cup A = A$$

$$A \cap A = A$$

De Morgan's laws

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

Proof methods

- There are many ways to prove set identities
- The methods include
 - Applying existing identities
 - Using mutual inclusion
- Prove $(A \cap B) \cap C = A \cap (B \cap C)$ using mutual inclusion
 - First show: $(A \cap B) \cap C \subseteq A \cap (B \cap C)$
 - Let $x \in (A \cap B)$ and $x \in C$
 - $(x \in A \text{ and } x \in B) \text{ and } x \in C$
 - $x \in A$ and $x \in (B \cap C)$
 - $x \in A \cap (B \cap C)$
 - Then show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$

More proof examples

Let B = {x | x is a multiple of 4}
 A = {x | x is a multiple of 8}

Then we have $A \subseteq B$

- Proof: let $x \in A$. We must show that x is a multiple of 4. We can write x = 8m for some integer m. We have
 - x = 8m = 2*4m = 4 k, where k = 2m,
 - so k is a integer.
 - Thus, x is a multiple of 4, and
 - therefore $x \in B$

More proof examples

```
• Prove \{x \mid x \in Z \text{ and } x \ge 0 \text{ and } x^2 < 15\}
= \{x \mid x \in Z \text{ and } x \ge 0 \text{ and } 2x < 7\}
```

Proof:

```
Let A = \{x \mid x \in Z \text{ and } x \ge 0 \text{ and } x^2 < 15\}

B = \{x \mid x \in Z \text{ and } x \ge 0 \text{ and } 2x < 7\}

Let x \in A. x can only be 0, 1, 2, 3

2x \text{ for } 0, 1, 2, 3 \text{ are all less then } 7.

Thus, A \subseteq B.
```

Likewise, we can also show that $B \subseteq A$

More proof examples

• Prove: $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$ Proof: $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)')$ $= ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)'$ $= ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)'$

 $= [(B \cap C) \cup (A \cap A')] \cap (B \cap C)'$

 $= [(\mathsf{B} \cap \mathsf{C}) \cup \varnothing] \cap (\mathsf{B} \cap \mathsf{C})'$

 $= (\mathsf{B} \cap \mathsf{C}) \cap (\mathsf{B} \cap \mathsf{C})'$

 $=\emptyset$

Pigeonhole principle

- If more than k pigeons fly into k pigeonholes, then at least one hole will have more than one pigeon.
- **Pigeonhole principle**: if more than k items are placed into k bins, then at least one bin contains more than one item.
- Simple, and obvious!!
- To apply it, may not be easy sometimes. Need to be clever in identifying pigeons and pigeonholes.

Example

 How many people must be in a room to guarantee that two people have last names that begin with the same initial?

27 since we have 26 letters

 How many times must a single die be rolled in order to guarantee getting the same value twice?

7

Another example

Prove that if four numbers are chosen from the set {1, 2, 3, 4, 5, 6}, at least one pair must add up to 7.

Proof: There are 3 pairs of numbers from the set that add up to 7, i.e.,

Apply pigeonhole principle: bins are the pairs, and the numbers are the items.

Infinite sets

• In a finite set, we can always designate one element as the first member, s₁, another element as the second member, s₂ and so on. If there are k elements in the set we can list them as

$$- S_1, S_2, ..., S_k$$

- A set that is not finite is called a infinite set.
- If a set is infinite, we may still be able to select a first element s1, a second element s2 and so on:
 - $S_1, S_2, ...$
 - Such an infinite set is said to be denumerable.
- Both finite and denumerable sets are countable.
- Countable does not mean we can give a total number, but means that we can say, "here is the first one" and "here is the second one" and so on.

Countable sets: examples

- The set of positive integer numbers are countable.
- To prove it, we need to give a counting scheme, in this case,

```
1, 2, 3, 4, ....
```

The set of positive rational numbers are countable

```
1/1 1/2 1/3 1/4 ...
2/1 2/2 2/3 2/4...
3/1 3/2 3/3 3/4 ...
```

Uncountable sets

- There are also some sets that are uncountable.
 - The set is so large, and there is no way to count out the elements.
- One example: The set of real numbers between 0 and 1 is uncountable.

A computer can only manage finite sets.

Summary

- Sets are extremely important for Computer Science.
- A set is simply an unordered list of objects.
- Set operations: union, intersection, difference.
- To prove set equalities
 - Applying existing identities
 - Using mutual inclusion
- Pigeonhole principle