

Conv-SINet

Identify Speaker using a convolutional solution

Use case

In meeting room:

Théo, Alban, Florian,

Timothé, Michèle, Liza

Under personal phone

Bart and Simon

Data set: VoxCeleb1

A wide range of different ethnicities, accents, professions and ages.

Cross validation and data set

The David data-set split.

Uniform background sound for some speakers.

General architecture

Trained one time for all

machine learning part

Trained by company

Data set: time vs STFT

16 kHz raw sample

STFT

The encoding

Frequency encoding

Time encoding

Convolution block

These blocks could stacked to adjust complexity of neural network. If NN is deep we should activate the inception mechanism.

Conv-D block comes from VGG-net architcture.

Inception use:

The first convolution have a kernel size equal to 1.

These features are simpler than features generated by a larger kernel size.

This inception stabilize the block.

Encoding results

Frequency encoder

Full time encoder

The enrollment

Deeper in election

When stat is close to minimum, the ref vector is in a safe place.

It is not possible to exceed the minimum.

If the ratio is big, the best vector is really good, he moved further away from the red zone.

In red zone the ref vector is removed and replaced by the vector under analysis.

We only remove ref vector if the ratio is more than 2. Don't remove vector if ratio is too small.

One more thing, don't add vector under analysis is they are too close.

When mean label is wrong, we need to more explore. When mean label is right, we need to stabilize.

The recognition

Reference pool: impact of election

Pool size vs accuracy

Pool size	start acc	max acc
1	0.5037	0.5037
2	0.5454	0.5543
5	0.6785	0.6968
10	0.7179	0.7896
20	0.7596	0.8603

Base line == No election

+0.0089

+0.0183

+0.0717

Max impact of election + 0.1007

The strategy: mean vs top 4 vs best

best: OK only best matching is used.

top 4: OK we have enough matching vector.

mean: vectors without matching pattern weighed down the results.

Identification results

Error bar for one sample under analysis

mean acc	topk acc	min acc
0.784	0.853	0.871

min	mean
0.973	0.988

Error bar for 3 samples under analysis

The localization

Encoder accuracy

vector length	accuracy	
16	96.80%	
32	97.75%	
64	97.74%	
128	98.27%	

Localization II

Room Imputional Response

Octopus with 3 mics

Room simulation

Result: encoder genericity

Sample size	train acc	test acc	
3	0.958	0.886	
2	0.941	0.874	
1	0.922	0.866	

Encoding accuracy

short sample => more genericity

Accuracy for a speaker

sample sz	3	2	1
topk acc	0.825	0.813	0.853

Learning speed of encoding

Slow learning => Deep learning

Sample size	best test acc	best epoch	0.86 epoch
3	0.886	25	5
2	0.877	21	8
1	0.863	32	32

Results: confusion matrix

20 speakers vs 40 speakers

Confusion matrix: After 3 samples of 3 seconds

For 20 speakers: best accuracy = 0.988 For 40 speakers: best accuracy = 0.951

Conclusion

specific encoder point of interest selection concatenation of results

Deep network are lazy

Mixing deep learning and ML works

N'oubliez pas de vous abonner a ma chaine.

OR

OR