1. 교과목 수강인원

	!	l	1	1
수업년도	수업학기	계열구분	수강인원	이수인원
2013	2	공학	21	20
2014	2	공학	12	12
2017	2	공학	14	14
2018	2	공학	6	6

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	14	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36		

3. 성적부여현황(평점)

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2013	2	Α+	8	40
2013	2	Α0	12	60
2014	2	Α+	6	50
2014	2	A0	6	50
2017	2	Α+	6	42.86
2017	2	Α0	7	50
2017	2	B+	1	7.14
2018	2	Α+	6	100

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	89.55	90.19	89.44		
2018	2	89.75	90.05	89.7	100	
2017	2	90.46	90.27	90.49	93	
2017	1	89.91	90.14	89.87		
2016	2	91.55	91.97	91.49		

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	HOLTH			점수별 인원분포				
번호	평가문항 호		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다	
		5점	학과	대학	- 1점	2점	2 24	124	디	
	교강사:	미만	ULUF	차이 평균	12	22	3점	4점	5점	

No data have been found.

7. 개설학과 현황

학과	2018/2	2017/2	2014/2	2013/2	
유기나노공학과	1강좌(1학점)	1강좌(1학점)	1강좌(1학점)	2강좌(2학점)	0강좌(0학점)

8. 강좌유형별 현황

강좌유형		2013/2	2014/2	2017/2	2018/2
일반	0강좌(0)	2강좌(21)	1강좌(12)	1강좌(14)	1강좌(6)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
		고분자화학 및 고분자합성에 관한 기초적인 실험을 통하여 고분자물질에 대한 이해를 증진시키며, 실험실 안전, 단량체 및 용매 정제의 중요성이 재차 강조된다. 고유점도에 의한 분자량측정을 통하여 저분자량물질과의 차이를 알아보며, 단계중합 및 연쇄중합을 통한 고분자 합성법에 대하여서도 알아본다. 용액중합 및 유화중합과같은 여러 가지 중합방법의 차이에 따른 장단점에 대하여 공부한다. 화학적 가교 시스템의 하나로 에폭시 가교시스템에 대하여 연구하며 고분자 분자구조가 어떻게 구성이 될 것인가에 대하여 알아본다. 원하는 고분자물질을 합성하거나분석하기 위하여 필요한 반응장치, 반응조건, 및 분석기기 구성이 어떻게 이루어져야 하는가에 대한 종합적인 설계분석 능력을 증진시킨다.	Polymers will be prepared by radical polymerization, emulsion polymerization, bulk polymerization, interfacial polymerization and ionic polymerization. Molecular weight measurements, viscosity measurements, characterization and the properties of polymers will be conducted.	
	서울 공과대학 유기나노공학 과	고분자화학 및 고분자합성에 관한 기초적인 실 험을 통하여 고분자물질에 대한 이해를 증진시 키며, 실험실 안전, 단량체 및 용매 정제의 중요	Polymers will be prepared by radical polymerization, emulsion polymerization, bulk polymerization, interfacial	

교육과정	관장학과	국문개요	영문개요	수업목표
		성이 재차 강조된다. 고유점도에 의한 분자량측 정을 통하여 저분자량물질과의 차이를 알아보며, 단계중합 및 연쇄중합을 통한 고분자 합성법에 대하여서도 알아본다. 용액중합 및 유화중합과 같은 여러 가지 중합방법의 차이에 따른 장단점에 대하여 공부한다. 화학적 가교 시스템의 하나로 에폭시 가교시스템에 대하여 연구하며 고분자 분자구조가 어떻게 구성이 될 것인가에 대하여 알아본다. 원하는 고분자물질을 합성하거나분석하기 위하여 필요한 반응장치, 반응조건, 및 분석기기 구성이 어떻게 이루어져야 하는가에 대한 종합적인 설계분석 능력을 증진시킨다.	polymerization and ionic polymerization. Molecular weight measurements, viscosity measurements, characterization and the properties of polymers will be conducted.	
	서울 공과대학 유기나노공학 과	라디칼 중합, 에멀전 중합, 괴상 중합, 계면 중합 , 이온 중합법을 이용해 고분자를 합성하고 분자 량 측정, 점도 측정, 구조와 물성 등의 실험을 행 한다.	Polymers will be prepared by radical polymerization, emulsion polymerization, bulk polymerization, interfacial polymerization and ionic polymerization. Molecular weight measurements, viscosity measurements, characterization and the properties of polymers will be conducted.	
	서울 공과대학 유기나노공학 과	라디칼 중합, 에멀전 중합, 괴상 중합, 계면 중합, 이온 중합법을 이용해 고분자를 합성하고 분자량 측정, 점도 측정, 구조와 물성 등의 실험을 행한다.	Polymers will be prepared by radical polymerization, emulsion polymerization, bulk polymerization, interfacial polymerization and ionic polymerization. Molecular weight measurements, viscosity measurements, characterization and the properties of polymers will be conducted.	

10. CQI 등록내역

No data have been found.