<u>Note</u>: Throughout this exam, unless specifically stated otherwise, all notations/symbols and abbreviations used have their usual standard meanings, as used/defined in the lecture notes.

## Read the following information to answer Questions 1–4:

Forest scientists were interested in determining the impact of soil acidity on the retardation of tree growth. Data from n=20 tree stands were collected. The measured variables were x= soil pH and y= index of growth retardation, and a simple linear regression model for y versus x was used. A scatterplot of the data and some summary statistics are given below.



$$\sum_{i=1}^{20} x_i = 80.5, \qquad \sum_{i=1}^{20} y_i = 316.84, \qquad \sum_{i=1}^{20} (x_i - \bar{x})(y_i - \bar{y}) = -49.022,$$

$$\sum_{i=1}^{20} (x_i - \bar{x})^2 = 6.2375, \qquad \sum_{i=1}^{20} (y_i - \bar{y})^2 = 518.6051, \qquad \sum_{i=1}^{20} (y_i - \hat{y}_i)^2 = 133.3295.$$

Use the information above to answer the next four questions (Questions 1-4).

1. The least-squares estimates of the intercept and slope parameters, respectively, are:

(a) 
$$\hat{\beta}_0 = -7.86$$
 and  $\hat{\beta}_1 = 47.48$ .

(b) 
$$\hat{\beta}_0 = 47.48$$
 and  $\hat{\beta}_1 = -7.86$ .

(c) 
$$\hat{\beta}_0 = 15.84$$
 and  $\hat{\beta}_1 = -7.86$ .

(d) 
$$\hat{\beta}_0 = -15.79$$
 and  $\hat{\beta}_1 = 7.86$ .

(e) 
$$\hat{\beta}_0 = 213.16$$
 and  $\hat{\beta}_1 = -49.022$ .

| <b>2.</b> A 99% confidence interval for $\beta_1$ is given by: |
|----------------------------------------------------------------|
| (a) $\hat{\beta}_1 \pm 2.879(2.72)$ .                          |
| (b) $\hat{\beta}_1 \pm 2.552(2.72)$ .                          |



(d) 
$$\hat{\beta}_1 \pm 2.552(1.09)$$
.

(e) 
$$\hat{\beta}_1 \pm 2.101(2.72)$$
.

3. The proportion of variance in growth retardation that is explained by soil acidity is:

**4.** An estimate of  $\sigma$ , the error standard deviation, is given by:

(c) 
$$\sqrt{133.3295/18}$$
.

(d) 
$$\sqrt{518.6051/19}$$
.

(e) Cannot be determined from the information given.

**5.** Having fitted a simple linear regression model to a set of n observations of  $(x_i, y_i)$  pairs, a good way to check if there is evidence of a nonlinear relationship between y and x is to:

- (a) Determine the sum of squared of the residuals.
- (b) Examine a plot of the residuals versus  $x_i$ .
- (c) Examine a histogram of the residuals.
- (d) Do both (b) and (c).
- (e) Call Dr. Chakrabortty late at night for his opinion.

**6.** The lifetime Y (in thousands of holes drilled) for drill bits is related to the speed (x) of the drill through a simple linear regression model as follows:

$$Y = 6.0 - 0.017x + \epsilon$$
 with  $60 \le x \le 100$ , where

 $\epsilon$  has a Normal distribution with mean 0 and variance  $\sigma^2 = 0.40$ . Which of the following is the *highest* drill speed x such that at least 50% of drill bits used at that speed have lifetimes greater than 4.5? (**Hint:** for Normal distributions, the 50th percentile also equals the mean.)

- (a) 60.
- (b) 75.9.
- (c) 88.2.
- (d) 112.5.
- (e) 136.1.

**7.** In the setting of Question **6**, what proportion of drill bits used at a speed x = 75 have lifetimes larger than 4?

- (a) 0.0351.
- (b) 0.1251.
- (c) 0.5000.
- (d) 0.8749.
- (e) 0.9649.

**8.** Which of the following statements about simple linear regression is **not** correct?

- (a) A 90% prediction interval for the response Y at a given  $x = x_0$  is wider than a 90% confidence interval for the mean of Y at the same  $x = x_0$ .
- (b) The coefficient of determination,  $\mathbb{R}^2$ , always lies between 0 and 1.
- (c) A 95% confidence interval for the mean of Y at a given value  $x = x_0$  far from  $\bar{x}$  will be narrower than a 95% confidence interval for the mean of Y at  $x = \bar{x}$ .
- (d) The average increase in Y for a 1-unit increase in x is  $\beta_1$  (i.e. the slope parameter).
- (e) The parameter  $\beta_0$  equals the y-intercept of the true regression line.

## Read the following information to answer Questions 9–12:

In a study of the reproductive success of grasshoppers, an entomologist collected a sample of n = 30 female grasshoppers. He recorded y = the number of mature eggs produced and x = the body weight (in grams) for each grasshopper. A scatterplot of the data is given below.



Polynomial models of degree 1 to 5 were fitted to these data. Information obtained from R is given below. Use this information to answer the **next four questions (Questions 9–12)**.

| Polynomial                 |       |       | Estimated                                                    |
|----------------------------|-------|-------|--------------------------------------------------------------|
| $\overline{\text{degree}}$ | $R^2$ | BIC   | $\operatorname{model}$                                       |
| 1                          | 0.367 | 240.9 | 27.80 + 11.24x                                               |
| 2                          | 0.942 | 172.5 | $-155.71 + 116.01x - 14.30x^2$                               |
| 3                          | 0.942 | 175.8 | $-171.48 + 130.32x - 18.43x^2 + 0.38x^3$                     |
| 4                          | 0.945 | 177.7 | $112.68 - 210.76x + 130.48x^2 - 27.74x^3 + 1.94x^4$          |
| 5                          | 0.945 | 181.1 | $77.18 - 156.83x + 98.47x^2 - 18.46x^3 + 0.63x^4 + 0.073x^5$ |
|                            |       |       |                                                              |

SST = 6066.17, 
$$\bar{y} = 68.83$$
,  $\bar{x} = 3.65$ .

- **9.** Based on the information given, the best choice for the polynomial degree is:
- (a) Degree 1, because it has the highest value of BIC.
- (b) Degree 2, because it has the lowest value of BIC.
- (c) Degree 3, because of Occam's razor.
- (d) Either degree 4 or degree 5, because they have the largest  $\mathbb{R}^2$  values.
- (e) Cannot be determined from the information given.

- 10. Using the third degree model, an estimate of the *average* number of mature eggs produced by female grasshoppers weighing 3 grams is:
- (a) 61.52.
- (b) 62.76.
- (c) 60.15.
- (d) 63.87.
- (e) 68.83.
- 11. The entomologist wants to predict the number of mature eggs that will be produced by a particular grasshopper (affectionately known as Jumpy) that weighs  $x_0 = 4.5$  grams. Let  $\hat{\mu}(x)$  denote the kth degree polynomial that was finally chosen by the entomologist (according to some criteria of his liking). The following information was determined using R:
  - $\hat{\mu}(4.5) = 76.78, \quad \hat{\sigma} = 3.605, \quad \text{estimated standard error of } \hat{\mu}(4.5) : SE_{\hat{\mu}(4.5)} = 0.988.$

Then, we can be 95% sure that the number of eggs Jumpy produces will lie in the interval:

- (a)  $76.78 \pm t_{29-k;0.025}(0.988)$ .
- (b)  $76.78 \pm t_{29-k;0.025} \sqrt{(3.605)^2 + (0.988)^2}$ .
- (c)  $76.78 \pm 1.96(3.605)$ .
- (d)  $76.78 \pm 3.605$ .
- (e)  $3.605 \pm 1.96(76.78)$ .
- 12. The estimate of the error variance,  $\sigma^2$ , based on the fourth degree model is given by:
- (a) 0.945.
- (b) 6066.17(0.945)/25.
- (c) 6066.17/30.
- (d) 6066.17(1 0.945)/25.
- (e) Cannot be calculated from the information given.

13. A researcher has data  $(x_1, y_1), \ldots, (x_n, y_n)$  and wants to fit the following linear model:

$$y_i = \beta_0 + \beta_1(1/x_i) + \epsilon_i$$
,  $i = 1, ..., n$ , where  $x_i \neq 0$  and

 $\epsilon_i \sim N(0, \sigma^2)$  and  $\epsilon_1, \ldots, \epsilon_n$  are independent. (You saw this model for the 'wind speed' data in class and in the homeworks.) Define  $\bar{y} = \sum_{i=1}^n y_i/n$ ,  $\bar{x} = \sum_{i=1}^n x_i/n$  and  $\bar{x}_{inv} = \sum_{i=1}^n (1/x_i)/n$ . Then, the correct expression for the least-squares estimate  $\hat{\beta}_1$  of  $\beta_1$  in this model is given by:

(a) 
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}$$
.

(b) 
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \{(1/x_i) - (1/\bar{x})\}(y_i - \bar{y})}{\sum_{i=1}^n \{(1/x_i) - (1/\bar{x})\}^2}.$$

(c) 
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \{(1/x_i) - \bar{x}_{inv}\}(y_i - \bar{y})}{\sum_{i=1}^n \{(1/x_i) - \bar{x}_{inv}\}^2}.$$

(d) 
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \{(1/x_i) - \bar{x}_{inv}\}\{(1/y_i) - (1/\bar{y})\}}{\sum_{i=1}^n \{(1/x_i) - \bar{x}_{inv}\}^2}.$$

(e) 
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \{(1/x_i) - (1/\bar{x})\}\{(1/y_i) - (1/\bar{y})\}}{\sum_{i=1}^n \{(1/x_i) - (1/\bar{x})\}^2}.$$

- 14. In polynomial regression, the least squares estimates of the regression coefficients are the solution of a system of equations, the so-called 'normal equations'. These equations:
- (a) Are non-linear and have an explicit solution.
- (b) Are linear and do not have an explicit solution.
- (c) Are non-linear and do not have an explicit solution.
- (d) Are linear and have an explicit solution.
- (e) Have befuddled budding statisticians for a good 150 years.

**15.** Suppose that a response variable Y > 0 is such that  $\log Y = \alpha + \beta x + \varepsilon$ , where  $\varepsilon$  is a random variable, and  $\alpha$ ,  $\beta$ , x are constants (i.e. non-random), and the logarithm is taken to the base e. Then, the correct expressions for E(Y) and Var(Y) are:

(a) 
$$E(Y) = \alpha + \beta x + E(\varepsilon)$$
 and  $Var(Y) = Var(\varepsilon)$ .

(b) 
$$E(Y) = e^{\alpha} e^{\beta x} e^{E(\varepsilon)}$$
 and  $Var(Y) = e^{Var(\varepsilon)}$ .

(c) 
$$E(Y) = e^{\alpha} e^{\beta x} E(e^{\varepsilon})$$
 and  $Var(Y) = e^{2\alpha} e^{2\beta x} Var(e^{\varepsilon})$ .

(d) 
$$E(Y) = e^{\alpha} e^{\beta x} e^{E(\varepsilon)}$$
 and  $Var(Y) = e^{2\alpha} e^{2\beta x} e^{Var(\varepsilon)}$ .

(e) 
$$E(Y) = e^{\alpha} + e^{\beta x} + E(e^{\varepsilon})$$
 and  $Var(Y) = Var(e^{\varepsilon})$ .

**16.** Consider the following scatterplot of a regression data  $(x_1, y_1), \ldots, (x_{100}, y_{100})$ .



Which of the following is the best answer? (Remember: there is **no** partial credit!)

- (a) It appears that the variance of the response variable Y is increasing with x.
- (b) It appears that the variance of the response variable Y is decreasing with x.
- (c) The variance of the response variable Y is approximately constant over all x.
- (d) Using a log transformation of the response Y is a good idea in this case.
- (e) Both (a) and (d) are correct.

| Tabl | <b>Table A.3</b> The Cumulative Distribution Function for the Standard Normal Distribution: Values of $\Phi(z)$ for Nonnegative $z$ |        |        |        |        |        |        |        |        |        |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Z    | 0.00                                                                                                                                | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.0  | 0.5000                                                                                                                              | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1  | 0.5398                                                                                                                              | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2  | 0.5793                                                                                                                              | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3  | 0.6179                                                                                                                              | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4  | 0.6554                                                                                                                              | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5  | 0.6915                                                                                                                              | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6  | 0.7257                                                                                                                              | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7  | 0.7580                                                                                                                              | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8  | 0.7881                                                                                                                              | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9  | 0.8159                                                                                                                              | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0  | 0.8413                                                                                                                              | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1  | 0.8643                                                                                                                              | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2  | 0.8849                                                                                                                              | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3  | 0.9032                                                                                                                              | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4  | 0.9192                                                                                                                              | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5  | 0.9332                                                                                                                              | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6  | 0.9452                                                                                                                              | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7  | 0.9554                                                                                                                              | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8  | 0.9641                                                                                                                              | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9  | 0.9713                                                                                                                              | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0  | 0.9772                                                                                                                              | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1  | 0.9821                                                                                                                              | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2  | 0.9861                                                                                                                              | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3  | 0.9893                                                                                                                              | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4  | 0.9918                                                                                                                              | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5  | 0.9938                                                                                                                              | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6  | 0.9953                                                                                                                              | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7  | 0.9965                                                                                                                              | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8  | 0.9974                                                                                                                              | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9  | 0.9981                                                                                                                              | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0  | 0.9987                                                                                                                              | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |

| Table A.4 Percentiles of the T Distribution |       |       |        |        |        |         |  |  |
|---------------------------------------------|-------|-------|--------|--------|--------|---------|--|--|
| df                                          | 90%   | 95%   | 97.5%  | 99%    | 99.5%  | 99.9%   |  |  |
| 1                                           | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.309 |  |  |
| 2                                           | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 22.327  |  |  |
| 3                                           | 1.638 | 2.353 | 3.183  | 4.541  | 5.841  | 10.215  |  |  |
| 4                                           | 1.533 | 2.132 | 2.777  | 3.747  | 4.604  | 7.173   |  |  |
| 5                                           | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 5.893   |  |  |
| 6                                           | 1.440 | 1.943 | 2.447  | 3.143  | 3.708  | 5.208   |  |  |
| 7                                           | 1.415 | 1.895 | 2.365  | 2.998  | 3.500  | 4.785   |  |  |
| 8                                           | 1.397 | 1.860 | 2.306  | 2.897  | 3.355  | 4.501   |  |  |
| 9                                           | 1.383 | 1.833 | 2.262  | 2.822  | 3.250  | 4.297   |  |  |
| 10                                          | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  | 4.144   |  |  |
| 11                                          | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  | 4.025   |  |  |
| 12                                          | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  | 3.930   |  |  |
| 13                                          | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  | 3.852   |  |  |
| 14                                          | 1.345 | 1.761 | 2.145  | 2.625  | 2.977  | 3.787   |  |  |
| 15                                          | 1.341 | 1.753 | 2.132  | 2.603  | 2.947  | 3.733   |  |  |
| 16                                          | 1.337 | 1.746 | 2.120  | 2.584  | 2.921  | 3.686   |  |  |
| 17                                          | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  | 3.646   |  |  |
| 18                                          | 1.330 | 1.734 | 2.101  | 2.552  | 2.879  | 3.611   |  |  |
| 19                                          | 1.328 | 1.729 | 2.093  | 2.540  | 2.861  | 3.580   |  |  |
| 20                                          | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  | 3.552   |  |  |
| 21                                          | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  | 3.527   |  |  |
| 22                                          | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  | 3.505   |  |  |
| 23                                          | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  | 3.485   |  |  |
| 24                                          | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  | 3.467   |  |  |
| 25                                          | 1.316 | 1.708 | 2.060  | 2.485  | 2.788  | 3.450   |  |  |
| 26                                          | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  | 3.435   |  |  |
| 27                                          | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  | 3.421   |  |  |
| 28                                          | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  | 3.408   |  |  |
| 29                                          | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  | 3.396   |  |  |
| 30                                          | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  | 3.385   |  |  |
| 40                                          | 1.303 | 1.684 | 2.021  | 2.423  | 2.705  | 3.307   |  |  |
| 80                                          | 1.292 | 1.664 | 1.990  | 2.374  | 2.639  | 3.195   |  |  |
| $\infty$                                    | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  | 3.090   |  |  |