Minimum Spanning Tree Algorithm (MST)

Rafael G. Nagel

2018-06-22

Outline

Introduction

Algorithm explanation (Kruskal)

Applications ¹ and Problem

- Usually relates to optimizations in network design
 - telephone
 - electrical
 - hydraulic
 - ► TV cable
 - road
- Also indirect applications
 - learning salient features for real-time face verification
 - max bottleneck paths

¹https:

Conditions

- graph G with positive edge weights
- undirected edges
- ▶ find a min weight set of edges that connects all of the vertices
- number of edges we want:

```
edges = number of vertices - 1
```

Few algorithms that implement MST ²

- 1. Kruskal's algorithm
- 2. Prim's algorithm
- 3. Boruvka's algorithm

- ► Why did Kruskal?
 - easier to code and understand

Overview

- 1. order edges by weight (ascendant)
- 2. pick edge and check if it forms a cycle with the spanning tree
 - ▶ if cycle formed then discard edge
 - ► else include edge
- 3. repeat 2) until e = v 1

How to check if graph has cycle?

- ▶ Union-find³ algorithm
 - temporary vector to save parent of vertices being inserted

 $^{^3}$ https://www.geeksforgeeks.org/union-find/ $_{-}$ $_{+}$ $_{-}$ $_{+}$ $_{-}$ $_{+}$ $_{-}$ $_{+}$ $_{-}$ $_{+}$ $_{-}$ $_{-}$ $_{-}$ $_{-}$

Step by step with example⁴

greedy-algorithms-set-2-kruskals-minimum-spanning+tree-mst/>

⁴https://www.geeksforgeeks.org/

Graph sorted by edges

weight	src	dst
1	7	6
2	8	2
2 2 4 4	6	5
4	0	1
4	2	5
6	2 8	6
7		3
7	2 7	8
8	0	7
8	1	2
9	3	4
10	5	4
11		7
14	1 3	7 5

pick edges from sorted and try to include each one

... including 8-6 produces a cycle. Do not include it.

repeat until: edges = vertices - 1

Complexity

summing up:

- 1. sort graph ascendant (qsort \rightarrow O(nlogn))
- 2. apply MST (Kruskal) algorithm
 - 2.1 for each edge in sorted list:
 - 2.1.1 include it in MST graph
 - 2.1.2 check if *formed cycle*; if so remove it (find-union algorithm)

Kruskal complexity

- ▶ The find-union is O(n) in the present work
 - ▶ we could improve it to O(logn) using union by Rank or Height⁵

Complexity

Consider the worst case

Everytime we add a new vertice in a graph, we can have:

Thus, number of edges in the worst case is:

edges
$$= v^2$$
 when edges $\to \infty$

This implementation:

$$O(e \times \log e) + O(e \times O(v))$$

 $O(e \times \log e + v^2 \times v)$
 $O(e \times \log v + v^3)$

Complexity

Implementation with: union-find = O(logn)

$$O(e \times \log e) + O(e \times \log v)$$

$$e = v^{2} \rightarrow \log e = \log v^{2} = 2 \times \log v \approx \log v$$

$$\vdots$$

$$O(e \times (\log v + \log v)) = O(e \times 2 \times \log v)$$

$$\vdots$$

$$O(e \times \log v)$$

Code

Structs

- ► grafo
- vertice
- ► lista
- ▶ nó

New functions

- ▶ hasCycle()
- ► union()
- ► find()

Conclusion

▶ Instead of creating new *structs* or *modules*, I add *members* to structs and add new *functions* to modules.

How to avoid checking double vertice addition without O(n)?

- This issue arise when adding edges to graph to check if has cycle
- ightharpoonup With this issue, the complexity has one more ν factor:

$$O(e \times \log v + v^4)$$

Kruskal algorithm is much easier to implement than other

Tradeoffs: Complexity vs. Time of coding

