(03-0000. Exclusare de lubbognama pg.28.

Conecterra contrastul slab. Humar de priveli dun frecere muenda
derine 'aproxition' identic.
\$(B) 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
intexidate $I(x_1y) \rightarrow J(x_1y)$ $h(nalue) = \frac{cdf(nalue) - cdf, min}{M \times N - 1} (L-1)$
Hund
Undernoitate in ung. instituta
cdf-functie de donsitate cumulativa
M5N- malbrime, labinne unopine
L-256 [0,255]
pal-function de domnitate de probabilitate:
frechenda unkonsitati paf(52)=1.
Michaelama intermitation 16 (3) = 3
P(xcroboare cy) = pky n cdf.
Cat.
cde palf Gauss

edf(y) = edf(y-1)+pdf(y)

$$f(52)=1$$
. $(df(52)=1)$.
 $f(55)=2$. $(df(55)=4df(52)+2=3)$.
 $f(15h)=4$. $(df(56)=4df(55)+3)$.
 $f(15h)=4$. $(df(56)=4df(55)+3)$.
 $f(15h)=4$. $(df(52)=4)$

Indunte de antiernaiser unui solom tri se recomando egalizares de lustograma.

lata peremboni (marte: 16-20 (13 stud. 3+3+3+4) Termen de trimutere în tesignment terme joi. 26 set sia Concerts gorma fcx = xx

Complutio / Operatio de con volutio

condition of
$$f(x) \cdot g(x-2) dz$$
 continued $f(x) * g(x) = \int_{x=-\infty}^{\infty} f(x) \cdot g(x-2) dz$ continued $f(x) = \int_{x=-\infty}^{\infty} f(x) \cdot g(x-2) dz$ continued $f(x) = \int_{x=-\infty}^{\infty} g(x) = \int_{x=-\infty}^{\infty} f(x) \cdot g(x-2) dz$ discretal $f(x) = \int_{x=-\infty}^{\infty} g(x) \cdot g(x-2) dz$ of alfel $f(x) = \int_{x=-\infty}^{\infty} g(x) \cdot g(x-2) dz$ of alfel $f(x) = \int_{x=-\infty}^{\infty} g(x) \cdot g(x-2) dz$ of alfel $f(x) = \int_{x=-\infty}^{\infty} g(x) \cdot g(x-2) dz$ of alfel $f(x) = \int_{x=-\infty}^{\infty} g(x) \cdot g(x-2) dz$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \\$$

$$g(x) = \begin{cases} 0, & \text{offsel} \end{cases}$$
 $f(x) = f(-x) \implies f(?-x)$
 $f(x) = f(-x) \implies f(?-x)$
 $f(x) = f(-x) \implies f(?-x)$
 $f(x) = f(-x) \implies f(?-x)$

lungimen bommalului final U+12-1=LR

456

$$f(-1) = 0.$$
 $f(0) = g(0) \cdot f(0) = 0.0 = 0.$
 $f(1) = g(0) \cdot f(1-k) + g(1) \cdot f(1-k)$

contrat (3,3, "full") + acopenire postible
contrat (3,3); -> acopenire totale a feltiului cu ing.
contrat (3,3, "some") -> acopenire totale
La se cample. eu o