POMDP'S: Exact and Approximate Solutions

Bharaneedharan R

University of Illinois at Chicago

Road-map

- Openition of POMDP
- 6 Belief as a sufficient statistic
- General solutions to a POMDP
- Monahan's enumeration algorithm
- Incremental pruning
- 6 Approximations
- MDP based approximations
- 6 Grid based approximation

Definition of POMDP

A POMDP is defined by the tuple $\langle S, A, T, \theta, O, R \rangle$

- S is a finite set of world states.
- 6 A is a finite set of actions that can be performed by the agent.
- 5 T: S \times A \times S \rightarrow [0,1], the likelihood of an action changing the system state from one to another.
- θ is the finite set of observations that the agent can make (sensory inputs available for the agent).
- 6 O: $S \times \theta \times A \rightarrow [0,1]$, the likelihood of making a certain observation at a state after performing a particular action.
- 6 R: $S \times A \times S \rightarrow \Re$, defines payoff's for the agent in a given system state after performing an action.

Belief's and Information States

- 6 Let the information state process(ISP) be $I_0, I_1, \ldots I_t$
- $I_t = [o_t, a_{t-1}, I_{t-1}]$
- Belief or the probability distribution over states at any time t is given as $Be_j(t) = P(S(t) = j \mid I_{t-1})$
- I_0 is the information state before agents start performing actions.
- If observations result only after performing actions $I_0 = Be(0)$, the prior at time t=0
- 6 Redefining ISP $I_0 = Be(0), I_1 = [o_1, a_0, I_0], \dots$

Belief is a sufficient statistic

- 6 $Be_j(t) = P(S(t) = j \mid o_t, a_{t-1}, I_{t-1})$
- 6 At t=0, Be(0) is just a prior
- 6 At t=1, $Be_j(1) = P(S(t) = j \mid o_1, a_0, Be_j(0))$
- We see that at any time t, Be(t) will be dependent on current observation, previous action and previous belief state.
- 6 Also current observation and state is dependent on only previous action and information state
- 6 Consequently Be(t) is a compact representation of I_t

General solution to a POMDP

Let $b_i \in \Delta(S)$ for all i

$$V_t(b_i) = Max_{a \in A} R(b_i \mid a) + \gamma \sum_{o \in \theta} P(o|b_i, a) \times V_{t-1}(\tau(b_i, o, a))$$

 α_{t-1}' is an alpha vector from the previous epoch for a given observation o.

Continued ...

- 6 Each choice of α_{t-1}' for a given o is a choice of a future plan given o.
- α_t is constructed using the best of such choices of plans for all possible observations.

Piecewise linearity and consequences

- 6 We know that the value function is piecewise linear i.e. $V_t(b_i) = Max_{\alpha_t^k} \alpha_t^k \cdot b_i$
- 6 Computing the value function involves just projecting the alpha vectors.
- 6 But alpha vectors are linear over the belief space and hence only the values simplex corners represented in alpha vectors need to be computed.

Enumeration algorithm [Monahan 82]

- At a given epoch, project all the alpha vectors describing the value function at previous epoch.
- If we have Γ_t is the set of alpha vectors at epoch t, $|\Gamma_t| = |A| |\Gamma_{t-1}|^{|\Theta|}$
- 6 Find the useful set of alpha vectors that forms the value function

Testing for redundancy

- Test each alpha vector if it maximizes the value function at least at one point in the belief space
- 6 Let $\pi_i \in \pi = Be(s=i)$ and α_k be the vector to be tested
- α_k is an useful vector iff for all vectors $j \neq k$, $\sum_i \pi_i \alpha_j \leq \sum_i \pi_i \alpha_k$ is satisfied at some π
- 6 i.e. $\sum_i \pi_i(\alpha_j \alpha_k) \leq 0$
- To find the point where the vector maximizes the most we rewrite the above as an LP

maximize : δ

$$\sum_i \pi_i (\alpha_j - \alpha_k) + \delta \le 0$$
 for each alpha vector $j \ne k$
 $\sum_i \pi_i = 1$
 $\pi_i \ge 0$

This leads to an LP with $(|\Gamma|-1)+1+|S|$ constraints and |S|+1 variables

Problems with simple enumeration

- 6 Brute force generate and test
- For a problem with 30 states, 4 actions and 8 observations, we would need about 60MB of memory to store the new vectors in epoch 2.
- With 12 observations thats a whopping 15GB.
- Useful only for solving very small problems

Incremental pruning [zhang, Liu 96]

- Extension to the enumeration algorithm, using interleaved generation and redundancy testing.
- The key is in breaking up the dynamic programming update of the value function.

$$V^a(b) = \sum_{o \in \theta} V_o^a(b)$$

$$V_o^a(b) = \frac{\sum_s R(a,s)b(s)}{|\theta|} + \gamma P(o \mid b, a)V(b_o^a)$$

- The maximizing set of alpha vectors is determined from bottom to top.
- 6 Leading to iterative purging of smaller set of alpha vectors

Partial projection and pruning

Let W^\prime, W^a, W^a_o be the set of vectors describing V^\prime, V^a, V^a_o

6
$$W' = purge\left(\bigcup_{a \in A} W^a\right)$$

$$W_o^a = purge\left(\left\{\tau(\alpha, a, o) \mid \alpha \in W\right\}\right)$$

$$W' = projection(W)$$

o purge(.) returns the maximizing set of vectors in the belief space ($\mid S \mid$ dimensional space)

Example

Approximations

- MDP based approximation
- 6 Grid based approximation

MDP based approximation

- 6 Is a crude approximation assuming complete observability
- ${\color{red} {f 6}}$ Solve the underlying MDP and computer value function V_{MDP}^*
- 6 Value of a belief state is computed as $V(b) = \sum_{s} b(s) V_{MDP}^{*}(s)$
- We can also redefine our update rule as $V_{i+1}(b) = \sum_{s'} b(s') max_{a \in A} [R(s,a) + \gamma \sum_{s} P(s \mid s',a) V_i^{MDP}(s)]$
- 6 Note V_i will always be described by a single vector
- The MDP based update above provides an upper bound to the general update using observations.

Upper bound property

- Let H be our regular POMDP update function involving observations.
- \bullet H_{MDP} is the MDP based update function.
- 6 We have to show that $HV_i \leq H_{MDP} V_i$

$$HV_i(b) = \max_{a \in A} \sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in \theta} \sum_{s' \in S} \sum_{s \in S} P(s', o \mid s, a)b(s)\alpha_i^{MDP}(s')$$

$$= \max_{a \in A} \sum_{s \in S} b(s) [R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V_i^{MDP}(s')]$$

$$\leq \sum_{s \in S} b(s) \max_{a \in A} [R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V_i^{MDP}(s')] = H_{MDP} V_i(b)$$

Grid based approximation [Lovejoy 91]

- General value iteration in all exact algorithms compute the value function over the complete belief space.
- 6 Compute the value function at finite number of points in the belief space.
- Compute the value of other belief states with values of our chosen set of belief states using interpolation.

Grid based value function updates

- 6 Let G be the set of grid points
- 6 $V(b) = E(b, V_G) = \sum_{j=1}^{|G|} \lambda_j V_G(b_j)$
- $0 \le \lambda_j \le 1$
- $V_{i+1}(b_j^G) = \max_{a \in A} R(b_j^G, a) + \gamma \sum_{o \in \theta} P(o \mid \tau(b_j^G, a), a) V_i(\tau(b_j^G, a, o))$
- ${f 6}$ Let us call this update function based on grid points as H_G

Lower bounds

- The grid based update function H_G provides a lower bound to the regular update function H.
- $_{G}$ $H_{G}V_{i} \leq HV_{i}$
- 6 Proof: Let V_i be a set of vectors describing the value function

 ${\cal H}_G$ will always use only a partial set of vectors from V_i for updating the value of the grid points.

Since H_G only considers maximal vectors at grid points it ignores the maximal vectors at other belief points.

In the best case scenario $H_GV_i = HV_i$

Upper bounds

The value function based on the grid points and point interpolation together provides us with an upper bound on the value function.

$$HV(b) = HV\left(\sum_{i=1}^{|G|} \lambda_i b_i^G\right)$$

$$\leq \sum_{i=1}^{|G|} [HV(b_i^G)] = H_GV(b)$$

