Foundations of Type theory for HoTT

Siddhartha Gadgil

Department of Mathematics Indian Institute of Science

February 12, 2015

Foundations overview

 We review the foundations of the type theory underlying homotopy type theory.

Foundations overview

- We review the foundations of the type theory underlying homotopy type theory.
- This is a literate agda document.

Foundations overview

- We review the foundations of the type theory underlying homotopy type theory.
- This is a literate agda document.
- We must include a module statement, matching the file name.

open import Base

module Foundations where

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \leq \delta \implies |f(y) - f(x)| < \epsilon).$$

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \leq \delta \implies |f(y) - f(x)|)$$

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \leq \delta \implies |f(y) - f(x)|)$$

makes no sense.

We thus do not give rules for

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \leq \delta \implies |f(y) - f(x)|)$$

- We thus do not give rules for
 - What is a valid expression.

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \le \delta \implies |f(y) - f(x)|)$$

- We thus do not give rules for
 - What is a valid expression.
 - What it represents: term (real number, set etc) or formula (in definitions, theorems).

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \leq \delta \implies |f(y) - f(x)|)$$

- We thus do not give rules for
 - What is a valid expression.
 - What it represents: term (real number, set etc) or formula (in definitions, theorems).
 - Rules for deduction.

• Usual *rigorous* mathematics is based on definitions and aioms, for example a function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at x if

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R}(|y - x| \le \delta \implies |f(y) - f(x)| < \epsilon).$$

• We however do not explicitly give rules saying why a function $f: \mathbb{R} \to \mathbb{R}$ is said to be brown at x if

$$\forall \exists \delta \forall z \in \mathbb{R}(|y - f(x)| \leq \delta \implies |f(y) - f(x)|)$$

- We thus do not give rules for
 - What is a valid expression.
 - What it represents: term (real number, set etc) or formula (in definitions, theorems).
 - Rules for deduction.
- We will instead give rules for what are valid expressions, and what are their types. We will need very few axioms.

A context consists of a collection of terms.

- A context consists of a collection of terms.
- Each term has a type, mostly unique (denoted, for example, a: A).

- A context consists of a collection of terms.
- Each term has a type, mostly unique (denoted, for example, a: A).
- The rules concerning a term are determined by its type.

- A context consists of a collection of terms.
- Each term has a type, mostly unique (denoted, for example, a: A).
- The rules concerning a term are determined by its type.
- Types are also terms.

- A context consists of a collection of terms.
- Each term has a type, mostly unique (denoted, for example, a: A).
- The rules concerning a term are determined by its type.
- Types are also terms.
- A *Universe* is a type $\mathcal U$ so that all terms with type $\mathcal U$ are themselves types.

We have rules that:

let us form terms from other terms.

- let us form terms from other terms.
- let us create a new context from a given context, by introducing new terms which can depend on the given context.

- let us form terms from other terms.
- let us create a new context from a given context, by introducing new terms which can depend on the given context.
- give the result of substituting one term for another (with the same type) in a given term.

- let us form terms from other terms.
- let us create a new context from a given context, by introducing new terms which can depend on the given context.
- give the result of substituting one term for another (with the same type) in a given term.
- allow us to make say that a term a has a specified type A.

- let us form terms from other terms.
- let us create a new context from a given context, by introducing new terms which can depend on the given context.
- give the result of substituting one term for another (with the same type) in a given term.
- allow us to make say that a term a has a specified type A.
- allow us to conclude that a pair of terms are equal (by definition).

- let us form terms from other terms.
- let us create a new context from a given context, by introducing new terms which can depend on the given context.
- give the result of substituting one term for another (with the same type) in a given term.
- allow us to make say that a term a has a specified type A.
- allow us to conclude that a pair of terms are equal (by definition).
- give a collection of universes, which are present in all contexts.

 \bullet There is a sequence of universes, $\mathcal{U}_0,\ \mathcal{U}_1,\ \dots$

- There is a sequence of universes, U_0 , U_1 , ...
- The universe U_i has type U_{i+1} .

- There is a sequence of universes, U_0 , U_1 , ...
- The universe U_i has type U_{i+1} .
- These are cumulative, with $U_i \subset U_{i+1}$.

- There is a sequence of universes, U_0 , U_1 , ...
- The universe U_i has type U_{i+1} .
- These are cumulative, with $U_i \subset U_{i+1}$.
- If a type T has type U_i , it also has type U_{i+1} .

• If A and B are types, then we can form the function type $A \rightarrow B$.

- If A and B are types, then we can form the function type $A \rightarrow B$.
- If $f: A \to B$ is a term of a function type, and a: A is a term, then f(a) is a term that has type B.

- If A and B are types, then we can form the function type $A \rightarrow B$.
- If $f: A \to B$ is a term of a function type, and a: A is a term, then f(a) is a term that has type B.
- We can form terms of a type $A \rightarrow B$ by using a lambda-expression $a \mapsto b$.

- If A and B are types, then we can form the function type $A \rightarrow B$.
- If $f: A \to B$ is a term of a function type, and a: A is a term, then f(a) is a term that has type B.
- We can form terms of a type $A \rightarrow B$ by using a lambda-expression $a \mapsto b$.
- Here b is a term of type B formed from the terms in the context together with a term a we introduce and declare to have type A, using the usual rules for forming terms.

- If A and B are types, then we can form the function type $A \rightarrow B$.
- If $f: A \to B$ is a term of a function type, and a: A is a term, then f(a) is a term that has type B.
- We can form terms of a type $A \rightarrow B$ by using a lambda-expression $a \mapsto b$.
- Here b is a term of type B formed from the terms in the context together with a term a we introduce and declare to have type A, using the usual rules for forming terms.
- If f = a → b : A → B, then for a' : A, f(a') equals, by definition, the result of substituting a by a' in b.

• A *type family* is a function $B: A \rightarrow \mathcal{U}$, where A is a type and \mathcal{U} is a universe.

Π-types

- A *type family* is a function $B: A \rightarrow \mathcal{U}$, where A is a type and \mathcal{U} is a universe.
- Given a type family $B: A \to \mathcal{U}$, we can form the type $\Pi_{a:A}B(a)$ of dependent functions.

- A type family is a function B: A → U, where A is a type and U is a universe.
- Given a type family B: A → U, we can form the type Π_{a:A}B(a) of dependent functions.
- Given a dependent function $f: \Pi_{a:A}B(a)$ and a term a: A, we can form the term f(a) with type B(a).

- A type family is a function B : A → U, where A is a type and U is a universe.
- Given a type family B: A → U, we can form the type Π_{a:A}B(a) of dependent functions.
- Given a dependent function $f: \Pi_{a:A}B(a)$ and a term a: A, we can form the term f(a) with type B(a).
- We can form terms of a type Π_{a:A}B(a) by using a λ-expression a → b, with b a term of type B(a) formed from the terms in the context together with a term a we introduce and declare to be of type A.

- A type family is a function B : A → U, where A is a type and U is a universe.
- Given a type family B: A → U, we can form the type Π_{a:A}B(a) of dependent functions.
- Given a dependent function $f: \Pi_{a:A}B(a)$ and a term a: A, we can form the term f(a) with type B(a).
- We can form terms of a type Π_{a:A}B(a) by using a λ-expression a → b, with b a term of type B(a) formed from the terms in the context together with a term a we introduce and declare to be of type A.
- If $f = a \mapsto b : \Pi_{a:A}B(a)$, then for a' : A, f(a') equals, by definition, the result of substituting a by a' in b.

 We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.

- We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.
- The constructors for W are terms with specified types, which may depend on W.

- We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.
- The constructors for W are terms with specified types, which may depend on W.
- \bullet For example, the type $\mathbb N$ is inductively generated by the constructors

- We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.
- The constructors for W are terms with specified types, which may depend on W.
- \bullet For example, the type $\mathbb N$ is inductively generated by the constructors
 - 0 : N.

- We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.
- The constructors for W are terms with specified types, which may depend on W.
- \bullet For example, the type $\mathbb N$ is inductively generated by the constructors
 - 0 : N.
 - $succ : \mathbb{N} \to \mathbb{N}$.

- We can introduce into a context, simultaneously, a type W inductively generated by given constructors, and its constructors.
- The constructors for W are terms with specified types, which may depend on W.
- \bullet For example, the type $\mathbb N$ is inductively generated by the constructors
 - 0 : N.
 succ : N → N.
- In Agda, this is

data \mathbb{N} : Type where zero: \mathbb{N}

succ : $\mathbb{N} \to \mathbb{N}$

 For each type A: U, List(A) is a type inductively defined by its constructors.

- For each type A: U, List(A) is a type inductively defined by its constructors.
 - [] : *List*(*A*).

- For each type $A: \mathcal{U}$, List(A) is a type inductively defined by its constructors.
 - [] : *List*(*A*).
 - $cons: A \rightarrow List(A) \rightarrow List(A)$.

- For each type A: U, List(A) is a type inductively defined by its constructors.
 - [] : *List(A)*.
 - $cons: A \rightarrow List(A) \rightarrow List(A)$.
- In Agda, this is

```
data List(A : Type) : Type where
[] : List A
_::_ : List A \rightarrow List A \rightarrow List A
```


 For each type A: U, List(A) is a type inductively defined by its constructors.

```
    [] : List(A).
    cons : A → List(A) → List(A).
```

In Agda, this is

```
data List(A : Type) : Type where
[] : List A
_::_ : List A \rightarrow List A \rightarrow List A
```

We can view this as a *lambda*-expression with variable A: U, with the right hand side given by the rules for constructing inductive types.

• We can define a function on an inductive type *W* by defining it on each constructor.

- We can define a function on an inductive type W by defining it on each constructor.
- To define it on a constructor, we give an expression like the right hand side of a λ -expression, except that if some argument w to the constructor is of type W (or a more general situation we shall see later), then we can use f(w) in forming the right hand side.

- We can define a function on an inductive type W by defining it on each constructor.
- To define it on a constructor, we give an expression like the right hand side of a λ -expression, except that if some argument w to the constructor is of type W (or a more general situation we shall see later), then we can use f(w) in forming the right hand side.
- For instance, for $f: \mathbb{N} \to X$, we can define f(succn) = m, with m a term formed using all the terms in the context, the term $n: \mathbb{N}$ and the term f(n): X. Thus the data giving $f(succ_{-})$ is a term of type $\mathbb{N} \to X \to X$, which we apply to n and then f(n).

- We can define a function on an inductive type W by defining it on each constructor.
- To define it on a constructor, we give an expression like the right hand side of a λ -expression, except that if some argument w to the constructor is of type W (or a more general situation we shall see later), then we can use f(w) in forming the right hand side.
- For instance, for $f: \mathbb{N} \to X$, we can define f(succn) = m, with m a term formed using all the terms in the context, the term $n: \mathbb{N}$ and the term f(n): X. Thus the data giving $f(succ_{-})$ is a term of type $\mathbb{N} \to X \to X$, which we apply to n and then f(n).
- Similarly, for a type A, when defining f: List(A) → X, we can define f(cons(a)(I)) in terms of a, I and f(I). Thus the data giving f(cons(a)(I)) is a term of type A → List(A) → X → X, which we apply to a, then I and finally f(I).

- We can define a function on an inductive type W by defining it on each constructor.
- To define it on a constructor, we give an expression like the right hand side of a λ-expression, except that if some argument w to the constructor is of type W (or a more general situation we shall see later), then we can use f(w) in forming the right hand side.
- For instance, for $f: \mathbb{N} \to X$, we can define f(succn) = m, with m a term formed using all the terms in the context, the term $n: \mathbb{N}$ and the term f(n): X. Thus the data giving $f(succ_{-})$ is a term of type $\mathbb{N} \to X \to X$, which we apply to n and then f(n).
- Similarly, for a type A, when defining f: List(A) → X, we can define f(cons(a)(I)) in terms of a, I and f(I). Thus the data giving f(cons(a)(I)) is a term of type A → List(A) → X → X, which we apply to a, then I and finally f(I).
- The analogue of recursive definitions for defining dependent functions are called inductive definitions.

 In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.

- In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.
- We also have identities saying that function built from $rec_{W,X}$, when applied to the data for a constructor, has the appropriate value.

- In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.
- We also have identities saying that function built from rec_{W,X}, when applied to the data for a constructor, has the appropriate value.
- For instance, for $W = \mathbb{N}$ and a type X, the data for the constructor 0 is f(0) : X, while the data for the constructor *succ* is $\mathbb{N} \to X \to X$ (as we have seen).

- In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.
- We also have identities saying that function built from rec_{W,X}, when applied to the data for a constructor, has the appropriate value.
- For instance, for $W = \mathbb{N}$ and a type X, the data for the constructor 0 is f(0) : X, while the data for the constructor *succ* is $\mathbb{N} \to X \to X$ (as we have seen).
- Thus, $rec_{\mathbb{N},X}$ has type $X \to (\mathbb{N} \to X \to X) \to (\mathbb{N} \to X)$.

- In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.
- We also have identities saying that function built from rec_{W,X}, when applied to the data for a constructor, has the appropriate value.
- For instance, for $W = \mathbb{N}$ and a type X, the data for the constructor 0 is f(0) : X, while the data for the constructor *succ* is $\mathbb{N} \to X \to X$ (as we have seen).
- $\bullet \ \ \text{Thus, } \textit{rec}_{\mathbb{N},X} \ \text{has type} \ X \to (\mathbb{N} \to X \to X) \to (\mathbb{N} \to X).$
- For the constructor applied to 0, we get the identity $rec_{\mathbb{N},X}(z)(g)(0) \equiv z$.

- In Homotopy Type Theory, recursive definitions are formalized by giving rules for forming a function rec_{W,X} for an inductive type W and a type X, which when applied to the data for recursive definition for each constructor gives a function W → X.
- We also have identities saying that function built from rec_{W,X}, when applied to the data for a constructor, has the appropriate value.
- For instance, for $W = \mathbb{N}$ and a type X, the data for the constructor 0 is f(0) : X, while the data for the constructor *succ* is $\mathbb{N} \to X \to X$ (as we have seen).
- $\bullet \ \, \text{Thus, } \textit{rec}_{\mathbb{N},X} \text{ has type } X \to (\mathbb{N} \to X \to X) \to (\mathbb{N} \to X).$
- For the constructor applied to 0, we get the identity $rec_{\mathbb{N},X}(z)(g)(0) \equiv z$.
- For a term $n : \mathbb{N}$, the constructor applied to succ(n) gives the identity $rec_{\mathbb{N},X}(z)(g)(succ(n)) \equiv g(n)(rec_{\mathbb{N},X}(z)(g)(n))$.

• For a type W, a family of terms of W is one of:

- For a type W, a family of terms of W is one of:
 - a term w : W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function $\varphi: A \to W'$ where, for each $a: A, \varphi(a): W'$ is a family of terms of W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ: A → W' where, for each a: A, φ(a): W' is a family
 of terms of W.
 - a dependent function $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, $\varphi(a):W'(a)$ is a family of terms of W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ : A → W' where, for each a : A, φ(a) : W' is a family
 of terms of W.
 - a dependent function $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, $\varphi(a):W'(a)$ is a family of terms of W.
- We shall call the type of a family of W a family-type for W. Family types are types of the form:

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ : A → W' where, for each a : A, φ(a) : W' is a family
 of terms of W.
 - a dependent function φ: Π_{a:A}W'(a) where, for each a: A, φ(a): W'(a) is a family of terms of W.
- We shall call the type of a family of W a family-type for W. Family types are types of the form:
 - W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ : A → W' where, for each a : A, φ(a) : W' is a family
 of terms of W.
 - a dependent function $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, $\varphi(a):W'(a)$ is a family of terms of W.
- We shall call the type of a family of W a family-type for W. Family types are types of the form:
 - W.
 - $A \rightarrow W'$ where W' is a family-type W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ : A → W' where, for each a : A, φ(a) : W' is a family
 of terms of W.
 - a dependent function $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, $\varphi(a):W'(a)$ is a family of terms of W.
- We shall call the type of a family of W a family-type for W. Family types are types of the form:
 - W.
 - $A \rightarrow W'$ where W' is a family-type W.
 - $\Pi_{a:A}W'(a)$ where, for each a:A,W'(a) is a family-type for W.

- For a type W, a family of terms of W is one of:
 - a term w : W.
 - a function φ : A → W' where, for each a : A, φ(a) : W' is a family
 of terms of W.
 - a dependent function $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, $\varphi(a):W'(a)$ is a family of terms of W.
- We shall call the type of a family of W a family-type for W. Family types are types of the form:
 - W.
 - $A \rightarrow W'$ where W' is a family-type W.
 - $\Pi_{a:A}W'(a)$ where, for each a:A, W'(a) is a family-type for W.
- We can recursively define a member of a family, which is a term of type W.

• Suppose $f: W \to X$ is a function, and φ is a family of terms of W, then we can define $f_*(\varphi)$ as follows.

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.
 - for $\varphi: A \to W'$ where W' is a family of terms of W, define $f_*(\varphi) = (a:A) \mapsto f_*(\varphi(a))$.

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.
 - for $\varphi: A \to W'$ where W' is a family of terms of W, define $f_*(\varphi) = (a: A) \mapsto f_*(\varphi(a))$.
 - for $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, W'(a) is a family of terms of W, define $f_*(\varphi)=(a:A)\mapsto f_*(\varphi(a))$.

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.
 - for $\varphi: A \to W'$ where W' is a family of terms of W, define $f_*(\varphi) = (a:A) \mapsto f_*(\varphi(a))$.
 - for $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, W'(a) is a family of terms of W, define $f_*(\varphi)=(a:A)\mapsto f_*(\varphi(a))$.
- This gives functions, or dependent functions, on any given family-types.

Induced functions on families

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.
 - for $\varphi: A \to W'$ where W' is a family of terms of W, define $f_*(\varphi) = (a:A) \mapsto f_*(\varphi(a))$.
 - for $\varphi:\Pi_{a:A}W'(a)$ where, for each $a:A,\ W'(a)$ is a family of terms of W, define $f_*(\varphi)=(a:A)\mapsto f_*(\varphi(a))$.
- This gives functions, or dependent functions, on any given family-types.
- We can use the same definition for dependent functions f.

Induced functions on families

- Suppose f: W → X is a function, and φ is a family of terms of W, then we can define f_{*}(φ) as follows.
 - for $\varphi = w$ with w : W, $f_*(\varphi) = f(w)$.
 - for $\varphi: A \to W'$ where W' is a family of terms of W, define $f_*(\varphi) = (a:A) \mapsto f_*(\varphi(a))$.
 - for $\varphi: \Pi_{a:A}W'(a)$ where, for each a:A, W'(a) is a family of terms of W, define $f_*(\varphi)=(a:A)\mapsto f_*(\varphi(a))$.
- This gives functions, or dependent functions, on any given family-types.
- We can use the same definition for dependent functions f.
- In all cases, the type of the induced function on a family-type W'
 depends only on the type F of f. We denote this Ind_FW'

 The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T = W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T = W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.
 - $T = \prod_{a:A} T'(a)$, each T'(a) a constructor type for W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.
 - $T = \prod_{a:A} T'(a)$, each T'(a) a constructor type for W.
 - $T = \prod_{w:W} T'(w)$, each T'(w) a constructor type for W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.
 - $T = \prod_{a:A} T'(a)$, each T'(a) a constructor type for W.
 - $T = \prod_{w:W} T'(w)$, each T'(w) a constructor type for W.
 - $T = W' \rightarrow T'$, W' a family-type for W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.
 - $T = \prod_{a:A} T'(a)$, each T'(a) a constructor type for W.
 - $T = \prod_{w:W} T'(w)$, each T'(w) a constructor type for W.
 - $T = W' \rightarrow T'$, W' a family-type for W.
 - $T = \prod_{w:W'} T'(w)$, W' family-type for W.

- The constructors of an inductive type W must (and can) be terms with type T a so-called Constructor type for W, which is one of the following:
 - \bullet T=W.
 - $T = A \rightarrow T'$, where T' is a constructor-type for W and A is a type can be formed from the terms in the context not including W.
 - $T = W \rightarrow T'$, T' as above.
 - $T = \prod_{a:A} T'(a)$, each T'(a) a constructor type for W.
 - $T = \prod_{w:W} T'(w)$, each T'(w) a constructor type for W.
 - $T = W' \rightarrow T'$, W' a family-type for W.
 - $T = \Pi_{w:W'} T'(w)$, W' family-type for W.
- We call a term of a constructor type for W a quasi-constructor for W.

• We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{a:A}R_{W,X}(\varphi(a))$.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{a:A}R_{W,X}(\varphi(a))$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{w:W}(X \to R_{W,X}(\varphi(a)))$.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{a:A}R_{W,X}(\varphi(a))$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{w:W}(X \to R_{W,X}(\varphi(a)))$.
 - If $\varphi: \Pi_{a:A}W'$, with W' a family-type for W, then $R_{W} \times (\varphi) = \prod_{w:w'} (Ind_{W \to X}(W') \to R_{W} \times (\varphi(a)))$.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{a:A}R_{W,X}(\varphi(a))$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{w:W}(X \to R_{W,X}(\varphi(a)))$.
 - If $\varphi: \Pi_{a:A}W'$, with W' a family-type for W, then $R_{W,X}(\varphi) = \Pi_{W:W'}(Ind_{W\to X}(W') \to R_{W,X}(\varphi(a)))$.
- Domains of Induction are similar.

- We shall associate to any quasi-constructor φ for W a type $R_{W,X}(\varphi)$ which we call the domain of recursion.
- This can be defined in all cases for the type of φ . We give only the dependent function cases below.
 - If $\varphi : W$, then $R_{W,X}(\varphi) = X$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{a:A}R_{W,X}(\varphi(a))$.
 - If $\varphi : \Pi_{a:A}W$, then $R_{W,X}(\varphi) = \Pi_{w:W}(X \to R_{W,X}(\varphi(a)))$.
 - If $\varphi: \Pi_{a:A}W'$, with W' a family-type for W, then $R_{W,X}(\varphi) = \Pi_{W:W'}(Ind_{W\to X}(W') \to R_{W,X}(\varphi(a)))$.
- Domains of Induction are similar.
- We now see examples.

Recursion functions

 The types and identities of recursion functions can be built from the domains of recursion of the constructors.

Recursion functions

- The types and identities of recursion functions can be built from the domains of recursion of the constructors.
- Namely, if an inductive type has constructors g_1, g_2, \ldots, g_k , then $rec_{W,X}$ has type

$$R_{W,X}(g_1) o R_{W,X}(g_2) o \cdots o R_{W,X}(g_n) o (W o X).$$

Recursion functions

- The types and identities of recursion functions can be built from the domains of recursion of the constructors.
- Namely, if an inductive type has constructors g_1, g_2, \ldots, g_k , then $rec_{W,X}$ has type

$$R_{W,X}(g_1) \to R_{W,X}(g_2) \to \cdots \to R_{W,X}(g_n) \to (W \to X).$$

We get identities for each constructor recursively.

Inductive type families

 \bullet A type family \tilde{W} is a family of terms of a universe $\mathcal{U}.$

Inductive type families

- A type family \tilde{W} is a family of terms of a universe \mathcal{U} .
- We can define constructor types for \tilde{W} analogous to those for a type W, except that we replace all instances of W by members of the family \tilde{W} .

Inductive type families

- A type family \tilde{W} is a family of terms of a universe \mathcal{U} .
- We can define constructor types for \tilde{W} analogous to those for a type W, except that we replace all instances of W by members of the family \tilde{W} .
- Recursion, induction etc. are similar.

We now can list all the rules for forming terms.

Universes: given in advance.

- Universes: given in advance.
- Can form function types and Π-types

- Universes: given in advance.
- Can form function types and Π-types
- Can apply (dependent) functions to arguments of the right type.

- Universes: given in advance.
- Can form function types and Π-types
- Can apply (dependent) functions to arguments of the right type.
- Can define (dependent) functions using λ -expressions.

- Universes: given in advance.
- Can form function types and Π-types
- Can apply (dependent) functions to arguments of the right type.
- Can define (dependent) functions using λ -expressions.
- Can define inductive types and inductive type families by listing constructors, which must be of the appropriate constructor type.

- Universes: given in advance.
- Can form function types and Π-types
- Can apply (dependent) functions to arguments of the right type.
- Can define (dependent) functions using λ -expressions.
- Can define inductive types and inductive type families by listing constructors, which must be of the appropriate constructor type.
- For an inductive type W and a type X (or type family on W), we have recursion/induction functions.

- Universes: given in advance.
- Can form function types and Π-types
- Can apply (dependent) functions to arguments of the right type.
- Can define (dependent) functions using λ -expressions.
- Can define inductive types and inductive type families by listing constructors, which must be of the appropriate constructor type.
- For an inductive type W and a type X (or type family on W), we have recursion/induction functions.
- Finally, we can simply introduce a term with a given type as an axiom.

