Diferença de Conjuntos

José Antônio O. Freitas

MAT-UnB

Dados dois conjuntos A e B,

Dados dois conjuntos A e B, definimos a diferença

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou $A \setminus B$ como sendo o conjunto

$$A - B =$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
,

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$,

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então $A - B =$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A=\{1,2,3,5,4\}$$
, $B=\{2,3,6,8\}$, então
$$A-B=\{1,4,5\}$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se A =
$$\{1,2,3,5,4\}$$
, B = $\{2,3,6,8\}$, então
$$A-B=\{1,4,5\}$$

$$B-A=$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A=\{1,2,3,5,4\}$$
, $B=\{2,3,6,8\}$, então
$$A-B=\{1,4,5\}$$

$$B-A=\{6,8\}.$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então $A - B = \{1, 4, 5\}$ $B - A = \{6, 8\}$.

2) Se
$$A = \{2, 4, 6, 8, 10, ...\}$$
,

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então

$$A - B = \{1, 4, 5\}$$

 $B - A = \{6, 8\}.$

2) Se
$$A = \{2, 4, 6, 8, 10, ...\}, B = \{3, 6, 9, 12, 15, ...\}$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

Exemplos

1) Se $A = \{1, 2, 3, 5, 4\}$, $B = \{2, 3, 6, 8\}$, então $A - B = \{1, 4, 5\}$

$$B - A = \{6, 8\}.$$

2) Se $A = \{2, 4, 6, 8, 10, ...\}, B = \{3, 6, 9, 12, 15, ...\}$, então

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

$$A - B = \{1, 4, 5\}$$

$$B - A = \{6, 8\}.$$

$$A - B =$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então

$$A - B = \{1, 4, 5\}$$

$$B - A = \{6, 8\}.$$

$$A - B = \{2, 4, 8, 10, 14, 16, ...\}$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então

$$A - B = \{1, 4, 5\}$$

$$B - A = \{6, 8\}.$$

2) Se
$$A = \{2, 4, 6, 8, 10, ...\}$$
, $B = \{3, 6, 9, 12, 15, ...\}$, então

$$A - B = \{2, 4, 8, 10, 14, 16, ...\}$$

$$B - A =$$

Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A — B ou $A \setminus B$ como sendo o conjunto

$$A - B = \{x \mid x \in A \ e \ x \notin B\}.$$

1) Se
$$A = \{1, 2, 3, 5, 4\}$$
, $B = \{2, 3, 6, 8\}$, então

$$A - B = \{1, 4, 5\}$$

$$B - A = \{6, 8\}.$$

2) Se
$$A = \{2, 4, 6, 8, 10, ...\}, B = \{3, 6, 9, 12, 15, ...\}$$
, então

$$A - B = \{2, 4, 8, 10, 14, 16, ...\}$$

$$B - A = \{3, 9, 15, 21, ...\}$$

Proposição Sejam A, B e C

Sejam A, B e C conjuntos não vazios. Então

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova:

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

$$2) (A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

$$2) \ (A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

$$2) (A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

$$2) (A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- $2) \ (A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição, $x \in A \cup B$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- $2) (A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição, $x \in A \cup B$ e $x \notin C$.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- $2) (A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição, $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$,

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- $2) \ (A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição, $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- 2) $(A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição, $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$. Se $x \in A$,

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- $2) \ (A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

 $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se $x \in A$, como $x \notin C$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- 2) $(A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

 $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se $x \in A$, como $x \notin C$ segue então que $x \in A - C$.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

- 1) $(A \cup B) C \subseteq (A C) \cup (B C)$
- 2) $(A-C) \cup (B-C) \subseteq (A \cup B) C$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

 $x \in A \cup B$ e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se $x \in A$, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A - C) \cup (B - C)$$
.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

2)
$$(A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

$$x \in A \cup B$$
 e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se $x \in A$, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A-C) \cup (B-C)$$
.

Se
$$x \in B$$
,

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

$$2) (A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

$$x \in A \cup B$$
 e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se $x \in A$, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A-C) \cup (B-C).$$

Se
$$x \in B$$
, como $x \notin C$

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

2)
$$(A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

$$x \in A \cup B$$
 e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se
$$x \in A$$
, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A-C) \cup (B-C)$$
.

Se
$$x \in B$$
, como $x \notin C$ segue então que $x \in B - C$.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

2)
$$(A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

$$x \in A \cup B$$
 e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se
$$x \in A$$
, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A-C) \cup (B-C)$$
.

Se
$$x \in B$$
, como $x \notin C$ segue então que $x \in B - C$. Logo

$$x \in (A - C) \cup (B - C)$$
.

Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Precisamos mostrar que

1)
$$(A \cup B) - C \subseteq (A - C) \cup (B - C)$$

2)
$$(A-C) \cup (B-C) \subseteq (A \cup B) - C$$

Para a primeira inclusão seja $x \in (A \cup B) - C$. Assim por definição,

$$x \in A \cup B$$
 e $x \notin C$. De $x \in A \cup B$, então $x \in A$ ou $x \in B$.

Se
$$x \in A$$
, como $x \notin C$ segue então que $x \in A - C$. Logo

$$x \in (A-C) \cup (B-C)$$
.

Se
$$x \in B$$
, como $x \notin C$ segue então que $x \in B - C$. Logo

$$x \in (A - C) \cup (B - C)$$
.

Assim $(A \cup B) - C \subseteq (A - C) \cup (B - C)$. Agora, para a segunda inclusão,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição,

Assim $(A \cup B) - C \subseteq (A - C) \cup (B - C)$. Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Assim $(A \cup B) - C \subseteq (A - C) \cup (B - C)$. Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$. Se $y \in A - C$,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$. Mas $y \notin C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$. Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$. Mas $y \notin C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Assim $(A - C) \cup (B - C) \subseteq (A \cup B) - C$.

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Assim $(A - C) \cup (B - C) \subseteq (A \cup B) - C$.

Portanto,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Assim $(A - C) \cup (B - C) \subseteq (A \cup B) - C$.

Portanto, $(A \cup B) - C = (A - C) \cup (B - C)$,

Agora, para a segunda inclusão, seja $y \in (A - C) \cup (B - C)$. Por definição, $y \in A - C$ ou $y \in B - C$.

Se $y \in A - C$, então $y \in A$ e $y \notin C$. Como $y \in A$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Se $y \in B - C$, então $y \in B$ e $y \notin C$. Como $y \in B$, segue que $y \in A \cup B$.

Mas $y \notin C$, com isso, $y \in (A \cup B) - C$.

Assim $(A - C) \cup (B - C) \subseteq (A \cup B) - C$.

Portanto, $(A \cup B) - C = (A - C) \cup (B - C)$, como queríamos.