Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point p = (0,0) to q = (2,4) on the parabola $y = x^2$. Calculate $\int_C (x^2 - y^2) dx$.

Solution: First, write C into its parametric form: r(t) = [x(t), y(t)] where x(t) = t, and $y(t) = t^2$. Points p and q are given by t = 0 and 2, respectively. Thus:

$$\int_{C} (x^{2} - y^{2}) dx = \int_{0}^{2} (t^{2} - t^{4}) \frac{dx}{dt} dt$$
$$= \int_{0}^{2} (t^{2} - t^{4}) dt$$
$$= 8/3 - 32/5.$$

Problem 2. Let $\mathbf{r}(t) = [t, t^2, t^3]$ and $\mathbf{f}(\mathbf{r}) = [x - y, y - z, z - x]$. Let C be the curve from the point of t = 0 to the point of t = 1. Calculate $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$.

Solution:

$$\int_{C} \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{f}(\mathbf{r}) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{1} [t - t^{2}, t^{2} - t^{3}, t^{3} - t] \cdot [1, 2t, 3t^{2}] dt$$

$$= \int_{0}^{1} t - t^{2} + 2t^{3} - 2t^{4} + 3t^{5} - 3t^{3} dt$$

$$= \int_{0}^{1} t - t^{2} - t^{3} - 2t^{4} + 3t^{5} dt$$

$$= 1/60. \tag{1}$$

Problem 3. Let r(t) = [x(t), y(t)] where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Let p be the point given by $t = \pi/4$. Calculate $\frac{dx}{ds}$ at p.

Solution:

$$\frac{dx}{ds} = \frac{dx/dt}{ds/dt}$$

$$= \frac{dx/dt}{\sqrt{(dx/dt)^2 + (dy/dt)^2}}$$

$$= \frac{x'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}}$$

$$= \frac{-\sin(t)}{\sqrt{(-\sin(t))^2 + (\cos(t))^2}}$$

$$= -\sin(t).$$

Hence, the value of $\frac{dx}{ds}$ at p is $-\sin(\pi/4) = -1/\sqrt{2}$.

Problem 4. Let r(t) = [x(t), y(t), z(t)]. Let p be the point given by $t = t_0$. Prove that $\left[\frac{dx}{ds}(t_0), \frac{dy}{ds}(t_0), \frac{dz}{ds}(t_0)\right]$ is a unit tangent vector at p.

Proof:

$$\frac{dx}{ds} = \frac{dx/dt}{ds/dt} = \frac{dx/dt}{\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}}$$

Similarly:

$$\frac{dy}{ds} = \frac{dy/dt}{ds/dt} = \frac{dy/dt}{\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}}$$

$$\frac{dz}{ds} = \frac{dz/dt}{ds/dt} = \frac{dz/dt}{\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}}$$

Therefore:

$$\left[\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right] = \frac{[x'(t), y'(t), z'(t)]}{\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}}$$

which proves that $\left[\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right]$ is a tangent vector. Furthermore:

$$\left| \left[\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds} \right] \right|^2 = \frac{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} = 1$$

which means that $\left[\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right]$ is a unit vector.

Problem 5. This problem allows you to see the equivalence of line integral by length and line integral by coordinate. Let $\mathbf{r}(t) = [x(t), y(t)]$ where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Convert $\int_C x \, dx + \int_C y^2 \, dy$ to line integral by length.

Solution:

$$\int_C x \, dx + \int_C y^2 \, dy = \int_C x \, \frac{dx}{ds} ds + \int_C y^2 \, \frac{dy}{ds} ds$$

$$= \int_C x \, \frac{dx}{ds} + y^2 \, \frac{dy}{ds} \, ds$$
(2)

In Problem 4, we have shown that $\frac{dx}{ds} = -\sin(t) = -y(t)$. Similarly:

$$\frac{dy}{ds} = \frac{dy/dt}{ds/dt}
= \frac{dy/dt}{\sqrt{(dx/dt)^2 + (dy/dt)^2}}
= \frac{y'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2}}
= \frac{\cos(t)}{\sqrt{(-\sin(t))^2 + (\cos(t))^2}}
= x(t).$$

Hence:

$$(2) = \int_C -xy + y^2 x \, ds.$$