Question 1

(i)

SARS-CoV2 is similar to SARS-CoV1 rather than MERS-COV. This can be observed from the plots below.

(ii)

It is easier to identify the similarity using protein sequences rather than DNA sequences. DNA only consists of 4 components, so the chance of accidentally being similar is much higher. On the other hand, there are 20 amino acids. Thus, only similar proteins will have similar protein sequences.

(iii)

Dottup Parameters

• Word Size (k-tuple) = 10

Dotmatcher Parameters

- Window Size = 15
- Threshold Value = 50

Plots

Figure 1: Dottup SARSCoV-SARSCoV2 DNA

Figure 2: Dotmatcher SARSCoV-SARSCoV2 DNA

Figure 3: Dottup MERSCoV-SARSCoV2 DNA

Figure 5: Dottup SARSCoV-SARSCoV2 Protein

Figure 6: Dotmatcher SARSCoV-SARSCoV2 Protein

Figure 8: Dotmatcher MERSCoV-SARSCoV2 Protein

Question 2

(a) SARS-CoV vs SARS-CoV2

(i)

Needle:

	Identity	Similarity
DNA	72.8%	72.8%
Protein	76.4%	87%

Water:

	Identity	Similarity
DNA	73.3%	73.3%
Protein	76.4%	87%

The identity and similarity percentages of DNA are the same because the nucleotides either match, or they don't. Due to this, identity and similarity mean the same in this case.

BLOSUM62 assigns positive scores to conservative substitutions. Therefore the score for similarity is higher than the score for identity in case of proteins. It includes both substituions and exact matches.

(ii)

Identity refers to the exact matches between subsequences at a particular position, while similarity refers considers for exact matches as well as substitutions. Similarity accounts for conservative

substitutions, i.e, substitutions that don't significantly alter the functioning and structure of the protein, while identity does not account for it.

(iii)

Global alignment attempts to align the entire length of the sequence without any gaps at the ends, but local alignment attempts to identify subsequences of high similarity while allowing gaps at the ends.

In context of SARS-CoV and SARS-CoV2, for the case of DNA sequence, the global and local alignments are slightly different. In case of protein sequence, the global and local alignments are the same.

(iv)

Parameters:

Matrix: BLOSUM62Gap Open: 10Gap Extend: 0.5

TO DO HOW TO SUBMIT ALIGNMENT

(b) MERS-COV vs SARS-CoV2

Needle:

	Identity	Similarity
DNA	48.2%	48.2%
Protein	30%	45.6%

Water:

	Identity	Similarity
DNA	48.4%	48.4%
Protein	30.6%	46.4%

(i)

No, the two proteins are not homologs. This is because MERS-COV and SARS-CoV2 have a relatively low percentage of identity and similarity, as compared to that between SARS-CoV and SARS-CoV2, which are homologs.

(ii)

As discussed in question 1 part (ii), protein sequences present a better measure of similarity rather than DNA sequences, although ideally both the sequences should be considered. Thus, majorly on the basis of protein sequences, I have made the inference that MERS-COV and SARS-CoV2 are not homologs.

Question 3

Question 4

Question 5