

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA CANALES

FORMATO 4. DISTRIBUCIÓN DE VELOCIDAD Y COEFICIENTES DE VELOCIDAD

Grupo:			Integrantes			Matricula			
Equipo #:									
Fecha:									
Maestro:									
Calificación:									
Méta	odo de aforo:		_						
Marca del	instrumento:		Fecha	de aforo:					
Coef	iciente " m ":		Lugar	de aforo:					
Coe	ficiente " b ":		Hora a	le aforo:					
Sección	Gasto	Tirante		RPM (N)		N. nond	Área	Velocidad	Gasto er
	Parshall	(hi)	0.2	0.6	0.8	N pond	(Ai)	(Vi)	Lps

Sección	Gasto Parshall		RPM (N)			N nand	Área	Velocidad	Gasto en
			0.2	0.6	0.8	N pond	(Ai)	(Vi)	Lps

Área total sección (A) :	m²
Velocidad media (V _{med} :)	m/s
Gasto total sección (Q):	LPS
Gasto Parshall (Qp):	LPS
Velocidad máxima (V _{máx)} :	m/s
Variante de velocidad (ε):	-
Coeficiente de energía (α):	-
Coeficiente de momentum (6):	-

Formulas $V_i = \frac{(V_{0.8} \ + \ V_{0.2}\)}{2} \qquad \qquad \epsilon = \frac{V_{m\acute{a}x}}{V_{media}} - 1$ $V = mN + B \qquad \qquad \alpha = 1 + 3\epsilon^2 - 2\epsilon^3$ $Q = \sum_{i=1}^n v_1 d_1 \Delta w_1 \qquad \qquad \beta = 1 + \epsilon^2$

Sección	de aforo
---------	----------

Conclusión:			