Zalando Product Return Prediction

1. Abstract

This project focuses on predicting whether a product purchased from Zalando will be returned, using supervised machine learning. A Random Forest Classifier model was trained on features like product price, delivery duration, coupon usage, and size issues to predict the likelihood of a return. The project aims to reduce return costs and optimize logistics.

2. Introduction

Product returns in e-commerce, especially in fashion retail, create substantial costs in terms of logistics, inventory management, and customer dissatisfaction. Zalando, a leading European fashion retailer, experiences high return rates, and understanding the drivers behind returns is critical. This project builds a predictive model to estimate the probability of a return using customer and order-related features.

3. Business Objective

The objective is to create a classification model that can predict product returns accurately. Such predictions can help Zalando:

- Optimize warehouse operations
- Personalize recommendations
- Adjust marketing strategies
- Improve size guidance tools

4. Dataset Description

The dataset includes the following columns:

- product price: Price of the product
- delivery_days: Days taken for delivery
- used_coupon: Whether a coupon was used (1 = Yes, 0 = No)
- size_issue : Whether the return reason was a size issue (1 = Yes, 0 = No)
- returned : Target variable (1 = Returned, 0 = Not Returned)

5. Data Exploration & Visualization

The initial analysis showed the distribution of returned vs. non-returned items:

```
import matplotlib.pyplot as plt
df['returned'].value_counts().plot(kind='bar', title='Return Status Distribution')
plt.xlabel('Returned')
plt.ylabel('Count')
plt.show()
```

Key findings:

- The dataset is moderately imbalanced.
- Return rates are higher for products with size issues.

6. Data Preprocessing

No missing values were present in the dataset. All features were numerical or binary and did not require encoding. Normalization was not applied as Random Forests are scale-invariant.

7. Feature Selection

The following features were selected based on domain knowledge:

- product_price
- delivery_days
- used_coupon
- size_issue

These were used as input variables (X), and returned as the target (y).

8. Model Building

A Random Forest Classifier was trained with default parameters:

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
```

9. Model Evaluation

Predictions were made on the test set, and evaluation was performed using classification report and confusion matrix:

```
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(y_test, y_pred))
```

The confusion matrix was visualized using:

```
import seaborn as sns
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d')
```

10. Results & Insights

- The model showed good accuracy in identifying returns.
- size_issue and delivery_days were significant predictors.
- Coupon usage slightly increased the probability of returns.

11. Error Analysis

False positives (predicting a return when not returned) were more frequent than false negatives. This implies the model errs on the side of caution, which could be beneficial in logistic planning.

12. Next Steps

- Try other models like Logistic Regression or XGBoost.
- Perform hyperparameter tuning.
- Include additional features such as customer demographics, product category, and order history.

13. Deployment Options

The model can be deployed as a REST API using Flask or integrated into a web dashboard using Streamlit. It could be embedded in Zalando's internal order processing system.

14. Public Usage

A public version of the model could be hosted on a Streamlit or Flask app where users input features and see predictions in real time.

15. Tools & Technologies Used

- Language: Python 3
- Libraries: Pandas, Seaborn, Matplotlib, Scikit-learn
- **IDE**: Google Colab
- Model: Random Forest Classifier

16. Conclusion & Future Work

This project demonstrates that predicting product returns using machine learning is both feasible and valuable for e-commerce businesses. With more data and refined features, the model's accuracy can be improved further. Future work could include time-based predictions, product clustering, and integration into CRM systems.