6/28/25, 3:37 PM notes

Midterm

```
Question 1 (A)
Given:
(P \lor Q) \rightarrow R and (P \rightarrow R) \land (Q \rightarrow R)
Claim: They are logically equivalent.
Proof:
(⇒ direction):
Assume (P \lor Q) \rightarrow R.
If P is true, then P \lor Q is true \to R is true \to P \to R holds.
If Q is true, then P \vee Q is true \rightarrow R is true \rightarrow Q \rightarrow R holds.
So, (P \rightarrow R) \land (Q \rightarrow R).
(⇐ direction):
Assume (P \rightarrow R) \land (Q \rightarrow R).
If P v Q is true, then either Q is true.
If P, then R (since P \rightarrow R)
if Q, then R
So,
(P \lor Q) \rightarrow R holds.
 Ouestion 1 (B)
A, C, and D are tautologies.
Question 1 (C)
P \rightarrow (Q \rightarrow R) \equiv P \rightarrow (\neg Q \lor R) \equiv \neg P \lor \neg Q \lor R \equiv \neg (P \land Q) \lor R \equiv (P \land Q) \rightarrow R
So both expressions are logically equivalent.
 Question 1 (D)
```

Let:

• C(x): "x owns a cat"

• L(x): "x loves animals"

Then:

• Premise 1: ∀ x (C(x) → L(x))

• Premise 2: ∃ x C (x)

Conclusion: ∃ x L (x)

Valid by universal instantiation and modus ponens.

Question 2 (A)

If $\frac{1}{f(x)}$ is not continuous, then f(x) = 0 at some point

Because if $f(x) \neq 0$ everywhere and is continuous, then $\frac{1}{f(x)}$ is continuous.

It's Proved via contrapositive.

Question 2 (B)

Proof of contradiction:

Assume $\sqrt{2} * \sqrt{3} = r$, where r is rational and $\sqrt{2}$ is irrational

Then:

$$\sqrt{3} = \frac{r}{\sqrt{2}}$$

Since r is rational and $\sqrt{2}$ is irrational, $\frac{r}{\sqrt{2}}$ is irrational,

-> contradiction: $\frac{r}{\sqrt{3}}$ can't be both rational and irrational

So, the product must be irrational

Question 2 (C)

Using inclusion-exclusion:

Total solutions without constraints:

$$\frac{(12+3-1)}{2} = \frac{(14)}{2} = 91$$

Subtract:

•
$$x > 5 - > \frac{8}{9} = 28$$

•
$$x > 5 -> \frac{8}{2} = 28$$

• $y > 6 -> \frac{7}{2} = 21$

•
$$z > 7 - > \frac{6}{2} = 15$$

91 - (28 + 21 + 15) = 27

Question 2 (D)

6/28/25, 3:37 PM notes

Total circular arrangements of 6 peole: (6 - 1)! = 120

bad cases (two specific peopel together)

$$(5-1)!*2=48$$

$$120 - 48 = 72$$

Question 3 (A)

365 possible birthdays

Need at least 366 people to ensure a shared birthday

The answer is 366

Qestion 3 (B)

- Total 8-letter passwords with no repeated letters
 Total (no restriction)=P(26,8)=26×25×24×23×22×21×20×19
- We must choose and arrange 8 distinct consonants from the 21 available.
 All consonants (no vowels)=P(21,8)=21×20×19×18×17×16×15×14
- Subtract to get number of valid passwords (at least one vowel)
 Valid passwords=P(26,8)-P(21,8)

$$26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20 \times 19 - 21 \times 20 \times 19 \times 18 \times 17 \times 16 \times 15 \times 14$$

Which is

Question 3 (C)

Given:
$$x_1 + x_2 + x_3 + x_4 = 20$$

Each $x_i > 1$ and $x_i \neq 2, 3$

Let $x_i >= 4$: so define $y_i = x_i - 4 \rightarrow y_i >= 0$

$$y_1 + y_2 + y_3 + y_4 \Rightarrow \frac{4+4-1}{3} = \frac{7}{3} = 35$$

Question 4 (A) i

DFA for accepting binary strings containing "101":

- States: q0 (start), q1, q2, q3 (accepting)
- Alphabet: {0, 1}
- Transitions:

$$\circ$$
 a0 $-1 \rightarrow$ a1, a0 $-0 \rightarrow$ a0

$$\circ$$
 q1 $-0 \rightarrow$ q2, q1 $-1 \rightarrow$ q1

$$\circ$$
 q2 $-1 \rightarrow$ q3, q2 $-0 \rightarrow$ q0

 \circ q3 $-0/1 \rightarrow$ q3 (stay in accepting)

- Accepting State: q3
- · Accepts strings containing "101" as a substring.

Question 4 (A) ii

String: "1101"

- Loops on q_1 with extra 1s
- Exits to accept via "01"

Question 4 (A) iii

Modify DFA to accept even number of 1s.

Track parity: even \leftrightarrow odd \leftrightarrow even.

New string accepted: "1100"

Not accepted under old DFA (no "101").

Question 4 (B)

Regex for: no "11", ends in "0":

(0+10)*0

All binary strings that do not contain "11" and end with

Question 5 (A)

- abc123
- A1b2C3
- z9

Question 5 (B)

Regex: (0 + 1) * 101 (0 + 1) *

Then filter out strings containgin "111"

Question 5 (C)

Use Pumping Lemma to show:

 $L = \{a^p \mid p \text{ is prime}\}\$ is not regualar.

Assume regular -> pumping length p

Pick $\{a^p \mid p \text{ is prime}\}\$ is not regular

Assume regual -> pumping length p

6/28/25, 3:37 PM notes

Pick a^q , where q > p,q prime

Split a^q = xyz, pump y: get length non-prime \rightarrow contradiction.

Not regular

Question 5 (D)

Let:

- $G^1: S \rightarrow aSb \mid \varepsilon$
- $G^2: S \rightarrow aS \mid b$

String "aabb" $\in G_1$ (balanced recursion)

Not $\in G_2$ (unbalanced structure)

"aabb" $\in L(G_1)$, but not $\in L(G_2)$