SÉRIE DE EXERCÍCIOS

1. As seguintes características são dadas para um determinado diodo Zener: V_z = 29 V, V_R = 16,8 V, I_{ZT} = 10 mA, I_R = 20 μ A e I_{ZM} = 40 mA. Esboce a curva característica do diodo solicitado usando como exemplo a curva na Figura 3.

Figura 3. Curva caraterística

2. Em que temperatura o diodo Zener de 10 V da Figura 3 apresentará uma tensão nominal de 10,75V?

Tabela 1. Características elétricas (temperatura ambiente de 25 °C).

Tensão Zener nominal V ₄ (V)	Corrente de teste I _{zr} (mA)	Máxima impedância dinâmica Z_{zr} no I_{zr} (Ω)	de j	mpedância oelho o I _{zr} (mA)	Máxima corrente reversa I _R no V _R (μΑ)	Tensão de teste V_R (V)	Corrente máxima do regulador I_{ZM} (mA)	Coeficiente de temperatura típico (%/*C)
10	12,5	8,5	700	0,25	10	7,2	32	+0,072

- 3. Determine o coeficiente de temperatura de um diodo Zener de 5V (estimado em 25° C), se a tensão nominal cair para 4,8 V a uma temperatura de 100° C.
- 4. Utilizando a curva característica da Figura 4 determine I_D e V_D e V_R para o circuito da Figura 5
- 5. Repita o exercício 4 utilizando o modelo simplificado do diodo e compare os resultados.
- 6. Repita o exercício 4 utilizando o modelo ideal do diodo e compare os resultados.

Figura 4. Curva característica

Figura 5. Circuito

7. Determine a corrente I usando o modelo equivalente simplificado do diodo.

Figura 6. Circuito

8. Determine a V_0 e I_D usando o modelo equivalente aproximado do diodo.

Figura 7. Circuito

9. Determine o nível de V_o para o circuito da Figura 8.

10. Determine o nível de V_{o1} e V_{o2} para o circuito da Figura 9.

11. Determine o nível de $V_{\rm o}$ e $I_{\rm D}$ para o circuito da Figura 10.

Figura 10. Circuito

Respostas

$$V_{\rm D} = 12 \, \rm V$$

$$V_R = 12 V$$

5.
$$I_D = 15,1 \text{ mA}$$

$$V_{\rm D} = 0.7 \, \rm V$$

$$V_{R} = 11,3 V$$

6.
$$I_D = 16mA$$

$$V_D = 12 V$$

$$V_R = 12 V$$

$$7.1 = 0$$

8.
$$I_D = -2 \text{ mA}$$

 $V_D = -4 \text{ V}$

9.
$$I = 0.9167 \text{ mA}$$

 $V_o = 9.16 \text{ V}$