Statistics-III – Assignment 8

$\overline{X_1}$	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	\overline{Y}
1	17.75	60.2	5.83	69.0	1.49	77.9	2.42	74.4	34.0
2	14.76	57.5	3.83	75.0	2.72	77.2	3.30	72.6	32.0
3	27.99	62.3	5.17	72.0	3.12	75.8	7.10	72.2	43.0
4	16.76	60.5	1.64	77.8	3.45	76.1	3.01	70.5	40.0
5	11.36	69.5	3.49	77.2	3.85	79.7	2.84	73.4	23.0
6	22.71	55.0	7.00	65.9	3.35	79.4	2.42	73.6	38.4
7	17.91	66.2	2.85	70.1	0.51	83.4	3.48	79.2	20.0
8	23.31	61.8	3.80	69.0	2.63	75.9	3.99	77.8	44.6
9	18.53	59.5	4.67	69.2	4.24	76.5	3.82	75.7	46.3
10	18.56	66.4	5.32	71.4	3.15	76.2	4.72	70.7	52.2
11	12.45	58.4	3.56	71.3	4.57	76.7	6.44	70.7	52.3
12	16.05	66.0	6.20	70.0	2.24	75.1	1.94	75.1	51.0
13	27.10	59.3	5.93	69.7	4.89	74.3	3.17	72.2	59.9
14	19.05	57.5	6.16	71.6	4.56	75.4	5.07	74.0	54.7
15	20.79	64.6	5.88	71.7	3.73	72.6	5.88	71.8	52.0
16	21.88	55.1	4.70	64.1	2.96	72.1	3.43	72.5	43.5
17	20.02	56.5	6.41	69.8	2.45	73.8	3.56	68.9	56.7
18	23.17	55.6	10.39	66.3	1.72	72.8	1.49	80.6	30.5
19	19.15	59.2	3.42	68.6	4.14	75.0	2.54	73.9	60.5
20	18.28	63.5	5.51	72.4	3.47	76.2	2.34	73.0	46.1
21	18.45	59.8	5.70	68.4	4.65	69.7	2.39	67.7	48.2
22	22.00	62.2	6.11	65.2	4.45	72.1	6.21	70.5	43.1
23	19.05	59.6	5.40	74.2	3.84	74.7	4.78	70.0	62.2
24	15.67	60.0	5.31	73.2	3.28	74.6	2.33	73.2	52.9
25	15.92	55.6	6.36	72.9	1.79	77.4	7.10	72.1	53.9
26	16.75	63.6	3.07	67.2	3.29	79.8	1.79	77.2	48.4
27	12.34	62.4	2.56	74.7	4.51	72.7	4.42	73.0	52.8
28	15.82	59.0	4.84	68.9	3.54	77.9	3.76	72.9	62.1
29	15.24	62.5	3.80	66.4	7.55	70.5	2.55	73.0	66.0
30	21.72	62.8	4.11	71.5	2.29	72.3	4.92	76.3	64.2
31	25.08	59.7	4.43	67.4	2.76	72.6	5.36	73.2	63.2
32	17.79	57.4	3.36	69.4	5.51	72.6	3.04	72.4	75.4
_33	26.61	66.6	3.12	69.1	6.27	71.6	4.31	72.5	76.0

1. The above data set provides information on the variables $X_1 = \text{Year}$, 1 denoting 1930, $X_2 = \text{Pre-season}$ precipitation, $X_3 = \text{May}$ temperature, $X_4 = \text{June rain}$, $X_5 = \text{June temperature}$, $X_6 = \text{July rain}$, $X_7 = \text{July temperature}$, $X_8 = \text{August rain}$, $X_9 = \text{August temperature}$, and $Y = X_{10} = \text{Corn Yield}$, for the state of Iowa.

Using the forward selection method of stepwise regression, construct a multiple regression model for Corn Yield based on the predictors available such that the model has at most 4 predictors and these predictors explain at least 70% of the variability in Corn Yield.

2. An experiment was run to determine whether four specific temperatures affect the density of a certain type of brick. The experiment led to the following data.

Temperature	Density						
100	21.8	21.9	21.7	21.6			
125	21.7	21.4	21.5	21.4			
150	21.9	21.8	21.8	21.6			
175	21.9	21.7	21.8	21.4			

Does the firing temperature affect the density of the bricks?