= - LTGoc, g(ig/k-p) = -iLTGop

We can still apply
$$\left[\frac{\partial^{2}k}{(2\pi)^{3}} k^{2} = 0 \right]^{23} \text{ and } \left[\frac{\partial^{3}k}{(2\pi)^{3}} \frac{k^{2}}{\sqrt{k^{2}+k^{2}}} = \frac{\Gamma(-D/2)\Gamma(1/2)}{(D/2)\Gamma(1/2)} \frac{(N^{2})^{3/2}}{(N^{2})^{3/2}} \right]^{(N^{2})^{3/2}}$$
We use the λ trick once again:

We use the & trick once again:

dropping 18 1 -0 in DR. by (23),

To find ENLO, we need to minimize [[Oc] with respect to October Se, but This is towal since Two is independent of Then [ENLO] = - [NLO[Oco] | Db) Oc for the uniform system! Or for the uniform

ionsider

$$T_{o}(q) = -ig \begin{cases} d^{2}\rho & G_{o}(p+q)G_{o}(p) \\ = -ig \begin{cases} d\rho & G(p+q)-k_{\phi} \\ 2\pi f \end{cases} & G(k_{\phi}-k_{\phi}) \end{cases} \qquad G(p-k_{\phi}) \begin{cases} G(k_{\phi}-k_{\phi}) & G(k_{\phi}-k_{\phi}) \\ \rho_{o}+k_{\phi}-k_{\phi}-k_{\phi}} \end{cases} = -ig \begin{cases} d\rho & G(k_{\phi}-k_{\phi}) \\ g_{o}+k_{\phi}-k_{\phi}} & G(k_{\phi}-k_{\phi}) \end{cases} \qquad G(p-k_{\phi}) G(k_{\phi}-k_{\phi}) \end{cases} \qquad G(k_{\phi}-k_{\phi}) \qquad$$

	Note that the 6 functions are the same in each term.
``	We can evalvake Tolq, q) by considering to real and imaginery parts separately and using
	imaginery parts separately are using
	$x \pm i \varepsilon = P \pm \mp i \pi S(x) $ (28)
	and some geometry. This translates to 1-D Re discussion in Fetter and Walecka, sect. 12.
	Let $E_{pq} = E_{p+q} - E_p = \frac{1}{2m} [(p+q)^2 - p^2] = \frac{1}{m} (pq + \frac{1}{2}q^2) [39]$
	f(z) = 1 - 6(-z)
	$Re To (q_0, q) = g P \int_{2\pi}^{dp} O(k_F - p) (1 - O(k_F - p q)) \frac{2E_{PQ}}{q_0^2 - E_{PQ}^2} $ (30)
	$= g \mathcal{P} \int_{3\pi}^{\infty} d\rho G(k_F \rho) \frac{2E}{g^2 - E\rho} $ (30)
	since Egg is odd under per ptg while the product of a functions is even
	KF ckc
-	=> Re To(q0,1) = gP(de 2Epr. = gP) of (1/40-Eq 1/40-Eq.)
	material = am (Tanh [mo+ = 2] - Tanh [mo - = 2] (3)
	= 9m [n 2+ m + s = 1 - ln 2+ m + s = 1]
+	

	135-6
•	For the imaginary part, we have
	In $T_{o}(q_{o},q) = -9 \int_{8\pi}^{4\rho} \Theta(k_{f}-1\rho) \Theta(p+q+k_{f}) \left[S(q_{o}-\epsilon_{pq}) + S(q_{o}+\epsilon_{pq}) \right]$
Q	This is proportional to the absorption probability for trunsferring (90,9) to a free Fermi gas. We need only consider 900 (symmetric or even in 90) Which means only the first 8-function is relevant,
	$\left[S(q_{0}-\varepsilon_{pq})=S(\frac{q}{m}(p+\frac{1}{2}q_{0}-\frac{q_{0}m}{q_{0}}))=\frac{m}{q}S(p-(q_{0}\frac{m}{q_{0}}-\frac{1}{2}q_{0}))\right]$
	So we can just do the integral using the 8 function. $= \sqrt{\text{Im } TT_d(q_0, q)} = \sqrt{\frac{gm}{2\pi q}} \frac{ g_0m }{ q } \frac{1}{3q} \leq k_f} \frac{ g_0m }{ q } \frac{1}{3q} \frac{ g_0m }{ q } \frac{1}{3q} \frac{1}{3$
	To the Bose limit, good, kgoo, and good for is fixed, To the Bose limit, good, kgoo, and good for is fixed,
	The kiretic energy variables, since in this limit we have.

a Bose condensate => rero momentum fermiens,

We can simplify To from (27) 170 (90,9) = 9 Sate 6(k+-p) [9-69+18 - 10+69-18] =

		\mathcal{Z}^{T}
	So	
.	Bose - PNLO - & Co	7
	$\begin{bmatrix} \mathcal{E}_{ose} &= -\frac{\Gamma_{NLO}}{LT} &= \frac{9}{9} \int_{0}^{1} dt \mathcal{E}_{p} = \frac{9}{9} \int_{0}^{1} dt \int_{0}^{1} \frac{dp}{P \int_{p}^{2} + H_{p}p dt} dt \end{bmatrix} \frac{p^{2}}{p \int_{p}^{2} + H_{p}p dt}$	[B7)
	with $\int \mathcal{E}_{p} = \int \mathcal{E}_{p}^{2} + \lambda \mathcal{E}_{p} \mathcal{E}_{p} \lambda / (36)$	
	Applying the DR formula	
	(-1/2) C(1)	
	= = = = = = = = = = = = = = = = = = =	١)
	= -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	$\frac{\partial u}{\partial x} = \frac{3}{3} \frac{140}{140}$	
_	= -= (mp3c3)/2 (41)	
	2 - 3m(") (")	
-		

2. "Number fluctuations in the BCS ground state." The number operator is Enka = 20 ka aka = E(aknakn + akuaku) / (1) We'll write these in terms of Tak= UkakA-VKato (0) (B-K=UKQ-K+VKato because TaxIBCS) = BxIBCS) = 0 ((4) Paka = UKXK+VKB-K and and and = UKB-K-VKXK [NKX = [(UKX + VKB-K)(UKXK+VKB+)+ (UKB-K-VKXK)(UKB-K-VKXK)] => (R) = (B(S) [B(S) = ? (B(S) ? n L | B(S) = \ V_k^2 (8cs | \beta_k\beta_t \ a_k\art | 8c) = \ \ \ V_k^2 (since <BxBt) = <axxxt >=1 The (N3) = EE (8CS | E, New 18CS) = { { 8CS [Vx.Bx (Uxxx+XxB+x) = Vxxx (Uxbx-Vxxx) } [(uxxx+Vxx+x) + Vxxx (Uxbx-Vxxx) (xxx+x) (= = = = = (8cs)(2v2 + UxVx[B-x, ax])(2v2 + UxVx[at, pt,])(8cs)

1220
3. "Another BCS ground state problem"
a) To compare at 1805) and a-ka/BCS), it is again useful to write the a's in terms of d's alps.
[at 18cs) = (UKOK+ + VKB-K)(BCS) = UKOK BCS)
while
a+418cs>=(Uspx-VKax+)(BCS)=-VKax+1BCS)
so both stakes are equal to at 1BCS), up to normalization. Also (BCS) xxt = 0, so both are orthogonal to 1BCS).
b) Since U is a C-number and $H_1 = \sum_{k} E_k(\alpha_k^{\dagger} \alpha_k^{\dagger} + \beta_k^{\dagger} \beta_k)$,
D(R) is simply D(Az) = < Ha) since (BCS FL BCS)=0
=> DCFT = Z(BCS/ak Fic/atak + BLPL) at 1BCS) (BCS/akat 1BCS)
(BCS) akat 1BCS)
= Z.Ex/Skx = Ex as desired.

an a company of the c