Seven years in Finance

Linear Algebra meets Wall Street

Thomas Schmelzer

thomas.schmelzer@gmail.com

Congratulations!

Martin, when I first met you you were half your age, and you seemed pretty old. Now you seem pretty young!

I wish I could be with you and Ursula and the family to share in the celebration.

Being a Quant

• Left academia (Canada, thank you!) and became a quant in 2007

 Applying maths (optimization, linear algebra, statistics, machine learning, etc.) to problems in finance

Returned to Switzerland in 2010 and since February 2014:
 Head of Quantitative Research for a Swiss Wealth Manager @ Geneva

Last year

- Gardening leave at Maui, Hawaii
- Padi Open Water Diver, Cycling up Haleakala, ...
- Wrote papers with Raphael Hauser, Erling Andersen and Joachim Dahl
- Only available on ArXiv.org

Motivation

- Great research out there, but ignored in industry.
- Numerous and often amazing mistakes.

The Sculptor method

$$\min_{\mathbf{w} \in \mathbb{R}^m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

Such that:

$$w \ge 0$$
$$\sum w = 1$$

- Compute $C = (X^T X)^{-1}$
- Compute $w' = C * X^T y$
- Delete negative entries from w' (first constraint)
- Scale w' (second constraint)

Seven Sins in Portfolio Optimization

• The mother of all problems in portfolio optimization:

$$x(t) = \arg \max_{x \in \mathbb{R}^n} x^{\mathrm{T}} \mu,$$

s.t. $x^{\mathrm{T}} Q x \leq \sigma_{\max}^2$

- Where do we get μ and Q from?
 - Time series analysis
 - regression and extrapolation
 - The car analogy

Fig. 2.1. Contour lines of the expected variance x^TQx for $Q = \begin{pmatrix} 0.2 & 0.1 \\ 0.1 & 0.2 \end{pmatrix}$. The red line marks the boundary of the ellipsoid $x^TQx \leq 1$. The eigenvectors of Q define the principal directions of the ellipsoid and the inverse of the square roots of the eigenvalues are the corresponding equatorial radii.

User feedback

- It's broken
- My problems are far too complicated for this
- We have developed a proprietary method far superior
- Some are rediscovering familiar concepts...

(The solvers) overuse statistically estimated information and magnify the impact of estimation errors. It is not simply a matter of garbage in, garbage out, but, rather, a molehill of garbage in, a mountain of garbage out" (Michaud 1998)

An analytic solution exists, but...

$$x_* = \sigma_{\text{max}} \frac{Q^{-1}\mu}{\sqrt{\mu^{\text{T}}Q^{-1}\mu}}$$

Constraints on x

- Positivity
- Constraints on the sum of (some) entries of x
- Constraints on the 1-Norm of x
- Bounds on individual entries
- Dependency on a previous state

Analytic solution rather useless here.... (as often)

Any negative eigenvalues here?

- Solution blows up.
- Problem is unbounded.
- Constraints to avoid this?!

$$x(t) = \arg \max_{x \in \mathbb{R}^n} x^{\mathrm{T}} \mu,$$

s.t. $x^{\mathrm{T}} Q x \le \sigma_{\max}^2$

Eigenvalues too small?

$$x_* = \sigma_{\text{max}} \frac{Q^{-1}\mu}{\sqrt{\mu^{\text{T}}Q^{-1}\mu}}$$

$$Q^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} v_i v_i^{\text{T}}$$

- Small eigenvalues in a covariance often correspond to statistical noise. Solver will prefer the allocation in principal portfolios (e.g. eigenvectors) corresponding too small eigenvalues
- Regularization, Shrinkage estimators, etc.
- Spectral transformation of Q required.

Two steps?

$$y^* = \eta y = \sigma_{\text{max}} \frac{\mu}{\sqrt{\mu^T Q \mu}}$$

Maximize the expected return (on a unit sphere) and then lengthen the vector

The Sharpe Ratio

- Solution is maximizing the Sharpe Ratio
- But maximizing the Sharpe ratio isn't a good idea!

$$S(x) = \frac{x^{\mathrm{T}}\mu - r_f}{\sqrt{x^{\mathrm{T}}Qx}}$$

Assume $r_f = 0$

The wrong solver

- Create your own solver!?
- Simulated Annealing!
- Matlab's quadprog

- Dedicated solver for SOCP (Second Order Cone Programs):
- Mosek, Sedumi, SDPT3, ...

$$x(t) = \arg \max_{(x,t) \in \mathbb{R}^{2n}} \left[x^{\mathrm{T}} \mu - \sum_{i=1}^{n} p_i t_i \right]$$

s.t.
$$x^{\mathrm{T}}Cx \leq \sigma_{\mathrm{max}}^2$$
,
 $x_i - x_i^0 \leq t_i$,
 $x_i^0 - x_i \leq t_i$.

$$x(t) = \arg\max_{x \in \mathbb{R}^n} x^{\mathrm{T}} \mu - \sum_{i=1}^n p_i |x_i - x_i^0|$$

s.t. $x^{\mathrm{T}} C x \le \sigma_{\max}^2$.

ifting

Solving the impossible

$$x(t) = \arg \max_{x \in \mathbb{R}^n} x^{\mathrm{T}} E[R]$$

s.t. $x^{\mathrm{T}} \operatorname{Cov}(R, R) x \le \sigma_{\max}^2$
 $e^{\mathrm{T}} x = 1$

What's the common source of problems?

• People underestimate the complexity of optimization problems.

 The freedom to formulate problems has resulted in various poor choices.

• Optimization is often considered as some sort of IT problem.

How to do it then?

Applications of second-order cone programming ¹

Miguel Sousa Lobo ^{a,2}, Lieven Vandenberghe ^{b,*}, Stephen Boyd ^{c,3}, Hervé Lebret ^{d,4}

We consider the second-order cone program (SOCP)

minimize $f^{T}x$

subject to $||A_ix + b_i|| \leq c_i^T x + d_i$, $i = 1, \ldots, N$,

Thank you

Thomas Schmelzer

thomas.Schmelzer@gmail.com

http://arxiv.org/abs/1310.3396

http://arxiv.org/abs/1310.3397

or

git clone https://github.com/tschm/mhg70