Albert-Ludwigs-Universität Freiburg

Betriebssysteme

Blatt 05

Students: Julian Polzer jp390, David Janzen dj57

Tutor: Gruppe 7

1 Aufgabe

2 Aufgabe

- 1. Symboltabelle (st) bei start bds = 128:
 - st(x) = (var, int, 128)
 - st(y) = (var, int, 129)
 - st(z) = (const, int, 5)
- 2. Befehlsfolge ReTi

Die einzelnen Schritte:

- 1. x abspeichern und SP um eins senken
- 2. y abspeichern und SP um eins senken
- 3. z abspeichern und SP um eins senken
- 4. z * y rechnen und SP um eins heben
- 5. 10 abspeichern und SP um eins senken
- 6. 10 + (z * y) rechnen und SP um eins heben
- 7. x + (10 + (z * y)) rechnen und SP um eins heben

Befehl	Schrittzugehörigkeit
SUBI SP 1	1
LOAD ACC 128	1
STOREIN SP ACC 1	1
SUBI SP 1	2
LOAD ACC 129	2
STOREIN SP ACC 1	2
SUBI SP 1	3
LOAD ACC (130 / 5)	3
STOREIN SP ACC 1	3
MOVE ACC IN1	4
LOAD ACC $[SP + 2]$	4
ADD ACC IN1	4
STOREIN SP ACC 2	4
LOAD ACC 10	5
STOREIN SP ACC 1	5
MOVE ACC IN1	6
LOAD ACC [SP - 2]	6
ADD ACC IN1	6
STOREIN SP ACC 1	6
ADDI SP 1	6
MOVE ACC IN1	7
LOAD ACC [SP - 2]	7
ADD ACC IN1	7
STOREIN SP ACC 1	7
ADDI SP 1	7

3. Um den Stack maximal zu benutzen klammert man wie folgt: $(x_1 + (x_2 + (x_3 + (... + (x_n)))...)_n$

Um den Stack minimal zu benutzen klammert man wie folgt:

$$(n(((x_1+x_2)+x_3)..+x_n))$$

3 Aufgabe

ReTi Code	explenation
1. LOAD ACC 10	x in den ACC laden
2. $JUMP < +3$	Falls $x < 0 \Rightarrow 3$ Befehle nach vorne springen
3. LOAD ACC 11	y in den ACC laden
4. $JUMP < +3$	Falls $y < 0 \Rightarrow 3$ Befehle nach vorne springen
5. LOAD ACC 10	x in den ACC laden
6. JUMP $\geq +8$	springen falls $y < 0$ und $x \ge 0$
7. LOAD ACC 11	y in den ACC laden
8. JUMP $\geq +5$	springen falls $x < 0$ und $y \ge 0$
9. LOAD ACC 10	x in den ACC laden
10. SUB ACC 11	x - y im ACC rechnen
11. JUMP $\leq +2$	in dem Fall ist $x \leq y$
12. JUMP $+2$	in diesem Fall ist $x > y$
13. LOADI ACC 1	Soll hier den return von 1 darstellen
14. LOADI ACC 0	Soll hier den return von 0 darstellen