EME5943 현대제어시스템

김종현 교수

What is control?

What is feedforward?

Feedback: reactive

There must be an error before corrective actions are taken.

Feedforward

- Possible to measure a disturbance before it enters the system
- Taking corrective action before the disturbance has influenced
- Reducing the effect of the disturbance

<u>2</u>	
Feedback	Feedforward
Closed loop	Open loop
Acts on deviations	Acts on plans
Robust to model uncertainty	Sensitive to model uncertainty
Risk for instability	No risk for instability

Simple forms of feedback

PID control

$$u = \begin{cases} u_{\text{max}} & \text{if } e \ge e_{\text{max}} \\ k_p e & \text{if } e_{\text{min}} < e < e_{\text{max}} \\ u_{\text{min}} & \text{if } e \le e_{\text{min}}, \end{cases}$$

$$u(t) = k_i \int_0^t e(\tau) d\tau.$$

$$e(t + T_d) \approx e(t) + T_d \frac{de(t)}{dt}$$

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$$

Modeling concept

$$m\ddot{q} + c(\dot{q}) + kq = 0$$

Input

 A system variable that is independently prescribed, or defined by the environment

Output

Any system variable of interest

State variables

 A minimum set of system variable that completely characterizes the motion of a system for the purpose of predicting future motion

Modeling concept

State vector

 A vector whose elements consists of state variables

State equation

 The relationship among the change of state, present state, and input

State-space model (representation)

- A mathematical model of a system using a state equation
- It determines the system behavior for all time, given
 - ✓ The initial values of state variables
 - ✓ The specification of the inputs to the system for all times

Modeling concept

Input-output view

- Heritage of electrical engineering
- Useful for Linear Time-Invariant (LTI) system

Transfer function

 Transfer ratio of the Laplace transform of the output to the Laplace transform of the input

$$\frac{Y(s)}{U(s)} = H(s), \qquad \dot{y}(t) + ky(t) = u(t)$$

Ordinary differential equations

State space model: a form of differential equation

$$\frac{dx}{dt} = f(x,u) \qquad y = h(x,u)$$

$$x \in \mathbb{R}^n \text{ state vector } u \in \mathbb{R}^p \text{ input (vector)}$$

$$y \in \mathbb{R}^q \text{ output (vector)}$$

Linear state space system

$$\frac{dx}{dt} = Ax + Bu \qquad y = Cx + Du$$

$$\begin{array}{cccc} & & & \\$$

Ordinary differential equations

Another form of linear differential equations

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{n}y = u$$

$$x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{pmatrix} = \begin{pmatrix} d^{n-1}y/dt^{n-1} \\ d^{n-2}y/dt^{n-2} \\ \vdots \\ dy/dt \\ y \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} u$$

$$y = x_n$$

현대제어시스템

System modeling (2)

Ordinary differential equations

• Example: Balance systems

Dynamics of system

$$\begin{pmatrix} (M+m) & -ml\cos\theta \\ -ml\cos\theta & (J+ml^2) \end{pmatrix} \begin{pmatrix} \ddot{p} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} c\dot{p}+ml\sin\theta\,\dot{\theta}^2 \\ \gamma\dot{\theta}-mgl\sin\theta \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$

$$M_t = M + m$$
 $J_t = J + ml^2$
 $c_\theta = \cos \theta$ $s_\theta = \sin \theta$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \dot{p} \\ \dot{\theta} \\ \frac{-mls_{\theta}\dot{\theta}^{2} + mg(ml^{2}/J_{t})s_{\theta}c_{\theta} - c\dot{p} - (\gamma/J_{t})mlc_{\theta}\dot{\theta} + u}{M_{t} - m(ml^{2}/J_{t})c_{\theta}^{2}} \\ \frac{-ml^{2}s_{\theta}c_{\theta}\dot{\theta}^{2} + M_{t}gls_{\theta} - clc_{\theta}\dot{p} - \gamma(M_{t}/m)\dot{\theta} + lc_{\theta}u}{J_{t}(M_{t}/m) - m(lc_{\theta})^{2}} \end{pmatrix} \quad y = \begin{pmatrix} p \\ \theta \end{pmatrix}$$

$$y = \begin{pmatrix} p \\ \theta \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \dot{p} \\ \dot{\theta} \\ -mls_{\theta}\dot{\theta}^{2} + mg(ml^{2}/J_{t})s_{\theta}c_{\theta} - c\dot{p} - (\gamma/J_{t})mlc_{\theta}\dot{\theta} + u \\ M_{t} - m(ml^{2}/J_{t})c_{\theta}^{2} \\ -ml^{2}s_{\theta}c_{\theta}\dot{\theta}^{2} + M_{t}gls_{\theta} - clc_{\theta}\dot{p} - \gamma(M_{t}/m)\dot{\theta} + lc_{\theta}u \\ J_{t}(M_{t}/m) - m(lc_{\theta})^{2} \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & m^2 l^2 g/\mu & -cJ_t/\mu & -\gamma l m/\mu \\ 0 & M_t m g l/\mu & -c l m/\mu & -\gamma M_t/\mu \end{pmatrix} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ J_t/\mu \\ l m/\mu \end{pmatrix} u$$

Difference equations

- Not continuously in time, but discrete instants of time
 - → Discrete-time system

$$\frac{dx}{dt} = f(x,u) \qquad \Rightarrow \qquad x[k+1] = f(x[k], u[k])$$

$$y = h(x, u)$$
 \Rightarrow $y[k] = h(x[k], u[k])$

Linear cases

$$x[k+1] = Ax[k] + Bu[k]$$
 $y[k] = Cx[k] + Du[k]$

Solution?

$$x[k] = A^{k}x[0] + \sum_{j=0}^{k-1} A^{k-j-1}Bu[j],$$

$$y[k] = CA^{k}x[0] + \sum_{j=0}^{k-1} CA^{k-j-1}Bu[j] + Du[k],$$

$$k > 0.$$

Difference equations

- Example: Predator-prey
 - ✓ Ecological system with two species, one of which feeds on the other

Canadian lynx vs Snowshoe hare

A discrete data

Model as a difference equation by keeping track of rate of births and deaths of each species

$$H[k+1] = H[k] + b_r(u)H[k] - aL[k]H[k]$$

$$L[k+1] = L[k] + cL[k]H[k] - d_fL[k],$$

H population of hares

L population of lynxes

 $b_r(u)$ hare birth rate

 d_f lynx mortality rate

with many simplifying assumptions....

Simulation & Analysis

- Predicting evolution of system state from an initial condition
 - ✓ in closed form
 - ✓ through computer simulation
- Analyzing overall behavior of system without simulation

ex) mass-spring-damper system

$$m\ddot{q} + c\dot{q} + kq = u \qquad \Rightarrow \qquad x = (q, \dot{q}) \qquad \frac{dx}{dt} = \begin{pmatrix} x_2 \\ -\frac{c}{m}x_2 - \frac{k}{m}x_1 + \frac{u}{m} \end{pmatrix}$$
$$y = x_1$$

How can we predict?

Simulation & Analysis

Stability of an equilibrium point

ex) Equation of motion of mass-spring-damper system with no input

$$\frac{dx}{dt} = \begin{pmatrix} x_2 \\ -\frac{c}{m}x_2 - \frac{k}{m}x_1 \end{pmatrix}$$

If the initial state of the system is away from the rest position, the system will return to the rest position eventually...

the rest position is asymptotically stable

Modeling methodology

Modeling from experiments

$$m\ddot{q} + c\dot{q} + kq = u$$
 step response

$$q(t) = \frac{F_0}{k} \left(1 - \frac{1}{\omega_d} \sqrt{\frac{k}{m}} \exp\left(-\frac{ct}{2m}\right) \sin(\omega_d t + \varphi) \right)$$

$$\omega_d = \frac{\sqrt{4km - c^2}}{2m}$$
 $\varphi = \tan^{-1} \left(\frac{\sqrt{4km - c^2}}{c} \right)$

Modeling methodology

Normalization & Scaling

- Scaling by dimension-free variable
- Purpose
 - ✓ Simplifying equations for system by reducing # of parameters
 - ✓ Revealing interesting properties of model

ex) Spring-mass system

$$m\ddot{q} + kq = u$$

$$\tau = \omega_0 t$$

$$v = u/(ml\omega_0^2)$$

현대제어시스템

Dynamic behavior

ODEs

$$\frac{dx}{dt} = f(x, u) y = h(x, u)$$

$$u \in \mathbb{R}^p y \in \mathbb{R}^q$$

p = q = 1 \Rightarrow single-input, single-output (SISO) systems

Solution?

$$\frac{dx(t)}{dt} = F(x(t)) \quad \text{for all } t_0 < t < t_f \qquad \text{Many solutions}$$

Initial value problem

A unique solution

ODEs

• ex) damped oscillator

$$\ddot{q} + 2\zeta\omega_0\dot{q} + \omega_0^2q = 0 \qquad x_1 = q x_2 = \dot{q}/\omega_0 \qquad \Rightarrow \qquad \frac{dx_1}{dt} = \omega_0x_2 \frac{dx_2}{dt} = -\omega_0x_1 - 2\zeta\omega_0x_2$$

$$x_{1}(t) = e^{-\zeta \omega_{0} t} \left(x_{10} \cos \omega_{d} t + \frac{1}{\omega_{d}} (\omega_{0} \zeta x_{10} + x_{20}) \sin \omega_{d} t \right)$$

$$x_{2}(t) = e^{-\zeta \omega_{0} t} \left(x_{20} \cos \omega_{d} t - \frac{1}{\omega_{d}} (\omega_{0}^{2} x_{10} + \omega_{0} \zeta x_{20}) \sin \omega_{d} t \right)$$
where $x_{0} = (x_{10}, x_{20}) \quad \omega_{d} = \omega_{0} \sqrt{1 - \zeta^{2}}$

$$x_{1}(t) = e^{-\zeta \omega_{0} t} \left(x_{10} \cos \omega_{d} t + \frac{1}{\omega_{d}} (\omega_{0} \zeta x_{10} + x_{20}) \sin \omega_{d} t \right)$$

$$x_{2}(t) = e^{-\zeta \omega_{0} t} \left(x_{20} \cos \omega_{d} t - \frac{1}{\omega_{d}} (\omega_{0}^{2} x_{10} + \omega_{0} \zeta x_{20}) \sin \omega_{d} t \right)$$
where $x_{0} = (x_{10}, x_{20})$ $\omega_{d} = \omega_{0} \sqrt{1 - \zeta^{2}}$

solution holds only for $0 < \zeta < 1$

ODEs

• ex) No solution, Non-unique solution

$$\frac{dx}{dt} = x^2 \qquad x(0) = 1$$

only in the time interval $0 \le t < 1$

$$\frac{dx}{dt} = 2\sqrt{x} \qquad x(0) = 0$$

100 2 4 6 8 10 Time t

many solutions

Lipschitz continuity

For guaranteeing existence & uniqueness

$$\frac{dx}{dt} = F(x)$$

$$||F(x) - F(y)|| < c||x - y||$$
 for all x, y

• Sufficient condition

$$\partial F/\partial x$$
 uniformly bounded for all x

$$\frac{dx}{dt} = x^2$$

$$\frac{dx}{dt} = 2\sqrt{x}$$

Phase portraits

- To understand behavior of dynamical systems
- Vector field

$$\frac{dx}{dt} = F(x)$$

vector representing the velocity of that state

Phase portraits

- Plotting solution of differential equation
- Solutions (streamlines) from different initial conditions

Equilibrium points & Limit cycles

- Equilibrium points
 - ✓ Stationary conditions for the dynamics

state
$$x_e$$

$$\frac{dx}{dt} = F(x)$$

✓ How many?

Equilibrium points & Limit cycles

• Ex) Inverted pendulum

$$\frac{dx}{dt} = \begin{pmatrix} x_2 \\ \sin x_1 - cx_2 + u\cos x_1 \end{pmatrix}$$

open loop dynamics

Equilibrium points & Limit cycles

- Limit cycles
 - ✓ Stationary periodic solutions
 - ✓ Ex) Electronic oscillator

$$\frac{dx_1}{dt} = x_2 + x_1(1 - x_1^2 - x_2^2), \quad \frac{dx_2}{dt} = -x_1 + x_2(1 - x_1^2 - x_2^2)$$

Limit cycle

$$T > 0$$
 if $x(t+T) = x(t)$ for all $t \in \mathbb{R}$

To determine limit cycle

- analytical methods for second-order system
- generally, computational analysis

