PRACTICAL 3

Aim:To build the model for prediction of profit

Imported libraries

```
In [21]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import plotly.express as px
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import r2_score,mean_squared_error
   from sklearn.linear_model import LinearRegression
```

Reading Dataset

```
data = pd.read_csv(r"practical2.csv")
In [22]:
In [23]:
           data.head()
Out[23]:
              R&D Spend Administration
                                         Marketing Spend
                                                               State
                                                                         Profit
                165349.20
                               136897.80
                                                 471784.10 New York 192261.83
           1
                162597.70
                                                                     191792.06
                               151377.59
                                                 443898.53 California
           2
                153441.51
                               101145.55
                                                 407934.54
                                                             Florida 191050.39
           3
                144372.41
                               118671.85
                                                 383199.62 New York 182901.99
                142107.34
                                91391.77
                                                 366168.42
                                                           Florida 166187.94
```

Data Preprocessing

```
In [24]: data.isnull()
```

Out[24]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
5	False	False	False	False	False
6	False	False	False	False	False
7	False	False	False	False	False
8	False	False	False	False	False
9	False	False	False	False	False
10	False	False	False	False	False
11	False	False	False	False	False
12	False	False	False	False	False
13	False	False	False	False	False
14	False	False	False	False	False
15	False	False	False	False	False
16	False	False	False	False	False
17	False	False	False	False	False
18	False	False	False	False	False
19	False	False	False	False	False
20	False	False	False	False	False
21	False	False	False	False	False
22	False	False	False	False	False
23	False	False	False	False	False
24	False	False	False	False	False
25	False	False	False	False	False
26	False	False	False	False	False
27	False	False	False	False	False
28	False	False	False	False	False
29	False	False	False	False	False
30	False	False	False	False	False
31	False	False	False	False	False
32	False	False	False	False	False
33	False	False	False	False	False
34	False	False	False	False	False
35	False	False	False	False	False

	R&D Spend	Administration	Marketing Spend	State	Profit
36	False	False	False	False	False
37	False	False	False	False	False
38	False	False	False	False	False
39	False	False	False	False	False
40	False	False	False	False	False
41	False	False	False	False	False
42	False	False	False	False	False
43	False	False	False	False	False
44	False	False	False	False	False
45	False	False	False	False	False
46	False	False	False	False	False
47	False	False	False	False	False
48	False	False	False	False	False
49	False	False	False	False	False

```
In [30]: column_to_remove = 'State'
df = data.drop(column_to_remove, axis=1)
```

Making data Ready for regression model

```
In [32]: X = df.drop('Profit', axis=1) # Exclude the target column
y = df['Profit']
```

Splitting the Dataset

```
In [33]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
```

Training The Model

```
In [34]: model = LinearRegression()
  model.fit(X_train, y_train)

Out[34]: v LinearRegression
  LinearRegression()
```

Making predictions based on testing data

```
In [35]: y_pred = model.predict(X_test)
In [39]: print(y_pred-y_test)
diff=y_pred-y_test
```

-7604.322835

13

```
39
               3888.990816
              -1044.171840
         30
             -18424.371850
         17
               3758.027344
               15319.284863
         48
         26
               3283.013658
         25
               -6525.875855
         32
                 272.756386
         19
               -9670.707078
         Name: Profit, dtype: float64
In [40]:
         print(diff**2)
               5.782573e+07
         39
               1.512425e+07
               1.090295e+06
              3.394575e+08
         45
         17
              1.412277e+07
              2.346805e+08
         48
         26
              1.077818e+07
         25
               4.258706e+07
         32
               7.439605e+04
               9.352258e+07
         Name: Profit, dtype: float64
```

Evaluting the model

```
In [36]: mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

Mean Squared Error: 80926321.22295167
```

Visualizing the Conclusion

```
In [48]: import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

In [49]: sns.pairplot(df, kind="reg", height=3, aspect=1.5)
plt.suptitle('Pairplot with Regression Lines for Multiple Variables', y=1.02)
plt.show()
```

