

.(1)	2. (2)	3. (1)	4. (3)	5. (3)	6. (2)	7. (1)	8. (1)
(1) nathongo							/// mathongo //
(1) mathongo	/// mathongo	/// mathongo					
	we to evaluate, $\lim_{x\to\infty} \left[\text{ of the form } 1^{\infty}, \text{ limit} \right]$		$m(x+3)(1+\frac{4}{x-1})$	-1) mathonao			
	$\lim_{x o\infty}(x+3)\Big(rac{4}{x-1}\Big)$	x-	→∞ ' (1	matherige			
$math \Rightarrow a =$	$\lim_{x \to \infty} (4) \left(\frac{1 + \frac{3}{x}}{1 - \frac{1}{x}} \right)$						
$\Rightarrow a =$ Hence,							
. (2)							
1: (1 . 4	4 \ 2 2 3						
$\Rightarrow e^{\lim\limits_{x o \infty} 2x \left(1 + \lim\limits_{x o \infty} 2x \left(rac{1 + i}{x} - i + i ight)} ight)$	$\left(\frac{x}{x^2} - \frac{x^2}{x^2}\right)^2 = e^3$ $\left(-\frac{4}{x^2}\right)^2 = e^3$						
$egin{aligned} &\Rightarrow e^{\lim\limits_{x o\infty}\left(2a-rac{8}{x} ight)} \ &\Rightarrow e^{2a}=e^3 \ &\Rightarrow 2a=3 \Rightarrow \end{aligned}$	/// mathongo						
	-						
α.	·· ··						
$mathon_{m o 0}^{\lim_{m o 0}} = e$	$ \circ \left(\frac{-2\sin^2\frac{x}{2m}}{\frac{x^2}{4m^2} \times 4m^2} \times m \right) $						
$ \begin{array}{c} \lim_{m \to \infty} \\ \text{math} = e^{0} \\ \end{array} $	$ \begin{pmatrix} \frac{-2\sin^2\frac{x}{2m}}{\frac{x^2}{4m^2}} \times m \times \frac{x^2}{4m^2} \\ \end{pmatrix} $						
	$\max_{x \to 0} X ^{\sin x} 0^0$ form						
$\log y = \lim_{x \to 0} \frac{\log y}{x}$	$\frac{\log x \alpha}{\cos \cos x} \frac{\alpha}{\alpha}$ othongo						
Apply L'Hos	pital rule mathongo						
$\operatorname{Log} y = \lim_{x \to 0} -1$	$\frac{\frac{1}{x}}{\cos x \cot x}$ mathongo						
	$\left(\frac{\sin x}{x}\right) \tan x$						

Answer Keys and Solutions

Answer Keys and Solutions

Answer Reys and colditions		OLL Main Grasii Godise
9. (1) $\lim_{x \to \infty} \frac{(\log x)^3 + x \cdot 3(\log x)^2 \times \frac{1}{x}}{1 + 2x}$ mathongo		
(By D.L. Hospital rule) thongo /// mothongo		
$\Rightarrow \lim_{x \to \infty} \frac{3(\log x)^2 \times \frac{1}{x} + 6(\log x) \times \frac{1}{x}}{2}$ mathongo (By D.L. Hospital rule) mathongo		
$\Rightarrow \lim_{x \to \infty} \frac{3(\log x)^2 + 6\log x}{2x}$ mathongo		
(By D.L. Hospital rule) thongo /// mothongo		
$\Rightarrow \lim_{\substack{n \to \infty \\ n \neq 0}} \frac{6 \log x \times \frac{1}{x} + \frac{6}{x}}{m + \frac{6}{x}} $ mathongo /// mathongo		
(By D.L. Hospital rule) mathong $ \Rightarrow \lim_{x\to\infty} \frac{6\log x + 6}{2x} $ mathonge		
(By D.L. Hospital rule)		
$\lim_{x \to \infty} \frac{6\left(\frac{1}{x}\right) + 0}{2}$ // mathongo /// mathongo		
(By D.L. Hospital rule) mathongo mathongo mathongo		
$=\frac{\infty}{2}=0$ 10. (11.5) tongo // mathongo // mathongo $\lim_{x\to a}\frac{x(1+a\cos x)-b\sin x}{x^3}=L, \text{ say.}$		
$L = \lim_{x o 0} rac{x \left\{1 + a \left(1 - rac{x^2}{2!} + rac{x^4}{4!} - \ldots ight) - b \left(x - rac{x^3}{3!} + rac{x^5}{5!} - \ldots ight) ight\}}{x^3}$		
$=\lim_{x\to 0}\frac{(1+a-b)+x^2\left(\frac{b}{3!}-\frac{a}{2!}\right)+x^4\left(\frac{a}{4!}-\frac{b}{5!}\right)+\dots}{x^2}\dots(\mathrm{i})$ $L=1\ \Rightarrow \mathrm{To}\ \mathrm{get}\ \mathrm{finite}\ \mathrm{limit},\ 1+a-b=0\dots(\mathrm{ii})$		
$\lim_{x \to 0} \left[\frac{x^2 \left(\frac{b}{3!} - \frac{a}{2!} \right) + x^4 \left(\frac{a}{4!} - \frac{b}{5!} \right) + \dots}{x^2} \right] = 1$ [From (i) and (ii)]		
$\Rightarrow \frac{b}{6} - \frac{a}{2} = 1$ $\Rightarrow b + 3a = 6$ (iii) mongo Solving equations (ii) and (iii), we get		
$a=-rac{5}{2},\ b=-rac{3}{2}$ $\Rightarrow 4a+b=-11.5$ mathongo $\Rightarrow 4a+b =11.5$		