Neural Rendering for Transparent Objects

Patrick Radner

Motivation

- Novel view synthesis
- 3D reconstruction
 - Not accurate enough
 - Transparency
- Deferred Neural Rendering

Problem Statement

Novel-view synthesis given poses and geometry

Transparent objects

Coarse geometry

Reconstruction

- Colmap (BundleAdjustment)
- Fails completely
 - Transparency
 - View-dependent effects

Reconstruction - ClearGrasp

ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation, Sajjan 2019

DeepVoxels and SRN

Neural Radiance Fields (NERFs)

- $(x,y,z,\theta,\phi) \rightarrow RGB\alpha$
- Volume rendering

Deferred Neural Rendering

Novel-view synthesis given poses and geometry

Transparent objects

Coarse geometry

Deferred Neural Rendering

Concept

Depth Peeling

- Order independent transparency
- Render transparent scene multiple times
 - Depth write and depth > previous depth
- Store uv-layers for neural rendering

Neural Textures

- Local properties
 - Color
 - Normals
 - Opacity
 - etc.

Bi-Linear interpolation

Renderer Architecture

U-net

- Overfitting → interpolating
- 16M params
- Blurry
- Artifacts
- Focus on view-dir

PerPixel (1x1 conv ResNet)

- Better at extreme views
- 40K params
- More like classical rendering
- No inpainting

Losses

- L1
 - No highlights
- Perceptual (VGG)
 - Color
- →L1 + VGG

VGG only

Testing Methodology

- Blue: training
- Green: interpolating
- Red: extrapolating

Extrinsics

- Specular highlights are a problem
- Idea: add extrinsics to input
 - Simply as view-direction
 - Spherical Harmonics
 - Coefficients as extra texture channels

	Interpolating	Extrapolating
No extrinsics	33.09	32.96
View dir	33.19	32.99
SH	33.80	32.52

Results - interpolating

Results - extrapolating

Limitations

Conclusion

- Deferred Neural Rendering for transparent objects
- Per-pixel vs U-net
- Specular highlights don't work
- No inpainting

Future Work

- In-the-wild testing (ClearGrasp)
- Textures for Scan2CAD
- Lighting

Questions

