Mergesort and Quicksort

Sorting algorithms

- Insertion, selection and bubble sort have quadratic worst-case performance
- The faster comparison based algorithm ?
 O(nlogn)
- Mergesort and Quicksort

Merge Sort

- Apply divide-and-conquer to sorting problem
- Problem: Given n elements, sort elements into nondecreasing order
- Divide-and-Conquer:
 - If n=1 terminate (every one-element list is already sorted)
 - If n>1, partition elements into two or more subcollections; sort each; combine into a single sorted list
- How do we partition?

Partitioning - Choice 1

- First n-1 elements into set A, last element set B
- Sort A using this partitioning scheme recursively
 - B already sorted
- Combine A and B using method Insert() (= insertion into sorted array)
- Leads to recursive version of InsertionSort()
 - Number of comparisons: O(n²)
 - Best case = n-1
 - Worst case =

Partitioning - Choice 2

- Put element with largest key in B, remaining elements in A
- Sort A recursively
- To combine sorted A and B, append B to sorted A
 - Use Max() to find largest element → recursive SelectionSort()
 - Use bubbling process to find and move largest element to right-most position → recursive BubbleSort()
- All O(n²)

Partitioning - Choice 3

- Let's try to achieve balanced partitioning
- A gets n/2 elements, B gets rest half
- Sort A and B recursively
- Combine sorted A and B using a process called merge, which combines two sorted lists into one
 - How? We will see soon

Example

Partition into lists of size n/2

Example Cont'd

Merge

Static Method mergeSort()

```
Public static void mergeSort(Comparable []a, int left, int
 right)
 // sort a[left:right]
 if (left < right)</pre>
 {// at least two elements
    int mid = (left+right)/2; //midpoint
    mergeSort(a, left, mid);
    mergeSort(a, mid + 1, right);
    merge(a, b, left, mid, right); //merge from a to b
    copy(b, a, left, right); //copy result back to a
```

Merge Function

Evaluation

- Recurrence equation:
- Assume n is a power of 2

$$c_1$$
 if n=1
 $T(n) = 2T(n/2) + c_2n$ if n>1, n=2^k

Solution

By Substitution:

$$T(n) = 2T(n/2) + c_2n$$

 $T(n/2) = 2T(n/4) + c_2n/2$

$$T(n) = 4T(n/4) + 2 c_2 n$$

$$T(n) = 8T(n/8) + 3 c_2 n$$

$$T(n) = 2^{i}T(n/2^{i}) + ic_{2}n$$

Assuming $n = 2^k$, expansion halts when we get T(1) on right side; this happens when i=k $T(n) = 2^kT(1) + kc_2n$

Since $2^k = n$, we know $k = \log n$; since $T(1) = c_1$, we get

$$T(n) = c_1 n + c_2 n \log n;$$

thus an upper bound for T_{mergeSort}(n) is O(nlogn)

Quicksort Algorithm

Given an array of *n* elements (e.g., integers):

- If array only contains one element, return
- Else
 - pick one element to use as pivot.
 - Partition elements into two sub-arrays:
 - Elements less than or equal to pivot
 - Elements greater than pivot
 - Quicksort two sub-arrays
 - Return results

Example

We are given array of n integers to sort:

40	20	10	80	60	50	7	30	100
----	----	----	----	----	----	---	----	-----

Pick Pivot Element

There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

40	20	10	80	60	50	7	30	100
----	----	----	----	----	----	---	----	-----

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:

- 1. One sub-array that contains elements >= pivot
- 2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original data array.

Partitioning loops through, swapping elements below/above pivot.

1. While data[too_big_index] <= data[pivot] ++too_big_index

1. While data[too_big_index] <= data[pivot] ++too_big_index

1. While data[too_big_index] <= data[pivot] ++too_big_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

Partition Result

Recursion: Quicksort Sub-arrays

- Assume that keys are random, uniformly distributed.
- What is best case running time?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?

Quicksort: Worst Case

- Assume first element is chosen as pivot.
- Assume we get array that is already in order:

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.
 - 5. Swap data[too_small_index] and data[pivot_index]

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.
 - 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.
 - 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.
 - 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.
 - 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition?

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time: O(n²)!!!

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time: O(n²)!!!
- What can we do to avoid worst case?

Improved Pivot Selection

Pick median value of three elements from data array: data[0], data[n/2], and data[n-1].

Use this median value as pivot.

Improving Performance of Quicksort

- Improved selection of pivot.
- For sub-arrays of size 3 or less, apply brute force search:
 - Sub-array of size 1: trivial
 - Sub-array of size 2:
 - if(data[first] > data[second]) swap them
 - Sub-array of size 3: left as an exercise.