Pima Indians Diabetes Database

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35		33.6	0.627	50	1
1		85	66	29	0	26.6	0.351	31	0
2	8	183	64		0	23.3	0.672	32	1
3		89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5		116	74			25.6	0.201	30	0
6		78	50	32	88	31.0	0.248	26	1
7	10	115	0	0		35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1
10	4	110	92			37.6	0.191	30	0
11	10	168	74	0	0	38.0	0.537	34	1
12	10	139	80		0	27.1	1.441	57	0
13		189	60	23	846	30.1	0.398	59	1
14		166	72	19	175	25.8	0.587	51	1
15	7	100	0			30.0	0.484	32	1
16	0	118	84	47	230	45.8	0.551	31	1
17	7	107	74	0		29.6	0.254	31	1
18		103	30	38	83	43.3	0.183	33	0
19	1	115	70	30	96	34.6	0.529	32	1

Context:

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Objective:

Extract insights using visual and statistical exploration.

What I have used:

- Pandas
- Seaborn
- Matplotlib

Using these technologies to find the insights in the dataset of a population with diabetes and not diabetes, which tells the factors that affect the possibility of person diagnosing from diabetes.

Univariate Analysis:

Checking class distribution (outcome column), how the affected people are, The bar graph tells that there is a chance of having an imbalance or having a healthy population that are taken on record.

- High glucose levels strongly indicate potential diabetes cases
- Elevated BMI suggests obesity, a key contributor to insulin resistance.
- Insulin levels, particularly when abnormally high or missing, point to metabolic irregularities.
- Age distribution may highlight how diabetes prevalence increases in older individuals.
- The Diabetes Pedigree Function shows whether family history plays a major role.

Bivariate Analysis:

Check how features differ from outcome

- **1.**Median glucose levels for diabetic individuals (Outcome = 1) will likely be higher than non-diabetic individuals (Outcome = 0).
- 2. Outliers appear as points outside the box range, showing extreme glucose levels.
- **3.**Spread of glucose values in the diabetic group may indicate variability, potentially highlighting cases of uncontrolled diabetes.
- **4.**If the boxes don't overlap much, it suggests glucose is a strong differentiating factor for diabetes classification(glucose is a strong predictor for distinguishing between the two groups).

In case of Glucose and BMI:

If diabetic cases mostly have higher glucose and BMI values, it suggests obesity and high sugar intake are strong diabetes predictors.

In case of Insulin and Glucose:

Clear separation of points can indicate insulin resistance is strongly linked to diabetes.

In case of Age and Glucose:

Older individuals with higher glucose levels might show how age increases diabetes risk.

In case of Blood Pressure and BMI:

If higher BMI values align with increased blood pressure, it strengthens the link between obesity and hypertension.

Correlation Heatmap:

Tells are related the factors are

Positive Correlation, means Strong correlativity (Closer to +1):

- 1.If glucose and diabetes outcome have a high correlation, it suggests glucose is a key predictor for diabetes.
- 2.If BMI and blood pressure show strong correlation, it reinforces obesity's impact on hypertension.

Negative Correlation (Closer to -1):

1.If age and insulin levels show negative correlation, it might indicate insulin production decreases with age.

