

October 1987 Revised January 1999

CD4013BC Dual D-Type Flip-Flop

General Description

The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent data, set, reset, and clock inputs and "Q" and "Q" outputs. These devices can be used for shift register applications, and by connecting "Q" output to the data input, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line respectively.

Features

Wide supply voltage range: 3.0V to 15V
High noise immunity: 0.45 V_{DD} (typ.)
Low power TTL: fan out of 2 driving 74L compatibility: or 1 driving 74LS

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- · Alarm system
- · Industrial electronics
- Remote metering
- Computers

Ordering Code:

Order Number	Package Number	Package Description
CD4013BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4013BCSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4013BCN	N14A	14-Lead Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Pin Assignments for DIP, SOIC and SOP

Truth Table

CL (Note 1)	D	R	Ø	ď	Ø
\	0	0	0	0	1
~	1	0	0	1	0
~	х	0	0	Q	Q
х	х	1	0	0	1
х	х	0	1	1	0
х	х	1	1	1	1

No Change x = Don't Care Case Note 1: Level Change

Absolute Maximum Ratings(Note 2)

(Note 3)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ V}_{\text{DC}} \text{ to +18 V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ V}_{\text{DC}} \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to +150}^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 3)

DC Supply Voltage (V_{DD}) +3 V_{DC} to +15 V_{DC} Input Voltage (V_{IN}) 0 V_{DC} to V_{DD} V_{DC} Operating Temperature Range (T_A) -40°C to +85°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 3: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	-40°C		+25°C			+ 85°C		Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		4.0			4.0		30	μΑ
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		8.0			8.0		60	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		16.0			16.0		120	μΑ
V _{OL}	LOW Level	I _O < 1.0 μA								
	Output Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	V
		$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	V
V _{OH}	HIGH Level	I _O < 1.0 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95			4.95		V
		$V_{DD} = 10V$	9.95		9.95			9.95		V
		$V_{DD} = 15V$	14.95		14.95			14.95		V
V _{IL}	LOW Level	I _O < 1.0 μA								
	Input Voltage	$V_{DD} = 5V$, $V_O = 0.5V$ or 4.5V		1.5			1.5		1.5	V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0			3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$		4.0			4.0		4.0	V
V _{IH}	HIGH Level	I _O < 1.0 μA								
	Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ

Note 4: I_{OH} and I_{OL} are measured one output at a time.

AC Electrical Characteristics (Note 5) $T_A = 25^{\circ}C, C_L = 50 \text{ pF}, R_L = 200 \text{k}, unless otherwise noted}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCK OPERAT	TION		II.	<u>l</u>	I	
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	350	ns
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		65	120	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Clock	$V_{DD} = 5V$		100	200	ns
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		32	65	ns
t _{RCL} , t _{FCL}	Maximum Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time	$V_{DD} = 10V$			10	μs
		$V_{DD} = 15V$			5	μs
tsu	Minimum Set-Up Time	$V_{DD} = 5V$		20	40	ns
		$V_{DD} = 10V$		15	30	ns
		$V_{DD} = 15V$		12	25	ns
fcL	Maximum Clock	$V_{DD} = 5V$	2.5	5		MHz
	Frequency	$V_{DD} = 10V$	6.2	12.5		MHz
		$V_{DD} = 15V$	7.6	15.5		MHz
SET AND RESET	OPERATION		•	•		
t _{PHL(R)} ,	Propagation Delay Time	$V_{DD} = 5V$		150	300	ns
t _{PLH(S)}		$V_{DD} = 10V$		65	130	ns
		$V_{DD} = 15V$		45	90	ns
t _{WH(R)} ,	Minimum Set and	$V_{DD} = 5V$		90	180	ns
t _{WH(S)}	Reset Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		25	50	ns
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350±0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320(7.620 - 8.128) 0.065 0.145 - 0.200 0.060 (1.524) 4° TYP Optional (1.651) (3.683 - 5.080)95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508)0.125 - 0.150 $\overline{(3.175 - 3.810)}$ $\overline{(1.905 \pm 0.381)}$ 0.014-0.023 TYP (7.112)-MIN $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ $0.325 ^{\,+\,0.040}_{\,-\,0.015}$

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

8.255 + 1.016

N14A (REV.F)

www.fairchildsemi.com