Service Service 00/02/05/06/19



# Service Manual

# Personal Information Products - Service Quality Support

**PCL 304** 

is a small size, high performance notebook computer using the newest technology. It is a 80C386 based PC/SX with a high contrast VGA LCD display, a high speed 40 MB harddisk and a floppy diskette drive-for 1.44 MB or 720 KB diskette.

An AC adapter is supplied which both powers the system and also recharges the internal NiCad battery. The system typically offers 2 hours of battery operations and is designed for professionals who travel frequently yet require a high performance PC/SX.

#### **Safety Precaution**

There are special components used in the computer which are important for safety. These parts are shaded on the schematic diagram and indicated by a safety mark! On the replacement parts list, It is essential that these critical parts should be replaced with the manufacturer's specified parts to prevent shock, fire or other hazards. Do not modify the original design without written permission of the manufacturer or this will void the original parts and labor guarantee.

#### Acknowledgements

The following trademarks are the respective properties of the following trademark holders:

IBM, VGA, EGA, CGA, MDA, PC-DOS, PS/2, PC/AT, PC/XT Registered trademarks of International Business Machines Corporation

Microsoft, MS-DOS, XENIX, MS-OS/2, Windows Registered trademarks of Mocrosoft Corporation

Registered trademarks of Mocrosoft Corporation

Hercules
Registered trademarks of Hercules Computer Technology

Centronics
Registered trademarks of Centronics Corporation

Phoenix
Registered trademarks of Phoenix Technology Ltd.

Lotus and Lotus 1-2-3 Registered trademarks of Lotus Development Company

Intel, 80386, 80286, 80287 Registered trademarks of Intel Corporation

PHILIPS CONSUMER ELECTRONICS .
Personal Information Products-Service Quality Support

# **TABLE OF CONTENTS**

|                |                                            | page       |                     |                                                 | pag        |
|----------------|--------------------------------------------|------------|---------------------|-------------------------------------------------|------------|
| 1.             | SYSTEM UNIT                                |            | 6.                  | DIAGNOSTICS                                     |            |
| 1.1            | Technical specifications                   | 1-1        | 6.1                 | Functional testprogram                          | 6-1        |
| 1.2            | Description of controls and terminal socke | ts1-2      | 6.2                 | Error messages                                  | 6-2        |
| 1.3            | Input/output specification                 | 1-4        |                     | Power On Test messages User diagnostic messages | 6-2<br>6-3 |
|                |                                            |            | 6.3                 | Outline diagnostic test                         |            |
| 2.             | GENERAL SYSTEM DESCRIPTION                 |            | 6.4                 | Diagnostic description                          | 6-4        |
| 2.1            | Introduction                               | 2-1        | 6.4.1               |                                                 | 6-4        |
|                |                                            | 2-1        |                     | RAM diagnostics                                 | 6-5        |
| 2.2            | Main board                                 | 2-2        |                     | Keyboard diagnostics                            | 6-5        |
| 2.2.1          |                                            | 2-2        |                     | Video diagnostics                               | 6-5        |
| 2.2.2          | Memory<br>RAM                              | 2-3        |                     | Floppy disk diagnostics                         | 6-5        |
|                | ROM                                        | 2-3        |                     | Serial port diagnostics                         | 6-5        |
|                | I/O connections                            | 2-4        | 6.4.7               | Printer port diagnostics                        | 6-5        |
|                | Serial & parallel port assignments         | 2-4        | 6.5                 | Power on selftest error codes                   | 6-6        |
|                |                                            | 2-5        |                     | Tools and took outlinment                       | 6-6        |
| 2.2.7<br>2.2.8 | Video BIOS ROM                             | 2-5        | 6.6                 | Tools and test equipment                        | 6-6        |
| 2.3            | Power supply                               | 2-5        | 7                   | VOLTAGE ADAPTER                                 |            |
| 2.3.1          |                                            | 2-5        | 7.1                 | Specifications                                  | 7-1        |
|                | Recharging a battery                       | 2-5        | 7.0                 | •                                               | 7-1        |
| 2.3.3          | Power conservation                         | 2-6        | 7.2                 | Parts list                                      | 7-1        |
| 2.3.4          |                                            | 2-6        | 8                   | CIRCUIT BOARD ASSEMBLIES (CBA)                  |            |
| 2.4            | Keyboard                                   | 2-7        |                     | Main board                                      |            |
| 2.5            | Video                                      | 2-8        | <b>8.1</b><br>8.1.1 |                                                 | 8-1        |
| 2.6            | Hard disk drive                            | 2-8        | 8.1.2               | Connector pin assignment                        | 8-2        |
| 2.6.1          | Conner CP4044                              | 2-8        |                     | Block diagram                                   | 8-6        |
|                |                                            | 2-8        |                     | CBA component layout                            |            |
| 2.7            | Floppy disk drive                          | 2-8        |                     | 1. Top side                                     | 8-7        |
| 2.7.1          | Sony MPF-220                               | 2-0        |                     | 2. Bottom side                                  | 8-8        |
|                | CONFIGURATIONS                             |            | 8.1.5               | Circuit diagrams                                |            |
| 3              | CONFIGURATIONS                             |            |                     | 1. AT control section                           | 8-9        |
| 3.1            | System upgrades                            | 3-1        |                     | 2. Processor section                            | 8-1        |
|                | System memory configurations               | 3-1        |                     | 3. Keyboard interface                           | 8-1        |
| 3.2            |                                            | 3-2        |                     | 4. Clock & Buffer section                       | 8-1        |
| 3.2.1          | Expanded memory                            | 3-2        |                     | 5. BIOS module connector                        | 8-1        |
| 3.2.2          | Address map                                | 3-2        |                     | 6. Memory slot circuitry                        | 8-1        |
|                | OVCTEMBLE                                  |            |                     | 7. Supply connector                             | 8-1        |
| 4.             | SYSTEM UTILITY                             |            |                     | 8. Keyboard controller & interface              | 8-1        |
| 4.1            | Setup                                      | 4-1        |                     | 9. VGA controller                               | 8-1        |
| 4.1.1          | Setup page                                 | 4-2        |                     | 10. Video DRAM circuitry                        | 8-1        |
|                |                                            |            |                     | 11. Buffer section                              | 8-1        |
| 5.             | SYSTEM UNIT ASSEMBLY/DISASSEM              | BLY        |                     | 12. CRT interface & LCD connection              | 8-2        |
|                | A                                          |            |                     | 13. Serial & parallel interface                 | 8-2        |
| 5.1            | Assembly/Disassembly                       | 5-1        |                     | 14. FDD & HDD circuitry                         | 8-2        |
| 5.1.1          | Top cover removal                          | 5-1        |                     | 15. Connector circuitry                         | 8-2        |
|                | Keyboard removal                           |            |                     | 16. Expansion circuitry                         | 8-2        |
|                | Power board removal                        | 5-3<br>5-4 |                     | 17. VGA interface circuitry                     | 8-2        |
|                | Mother board removal                       |            | 8.1.6.              | Parts list                                      | 8-2        |
|                | Floppy disk drive removal                  | 5-4        | 8.1.7.              | Troubleshoot flow chart                         | 8-2        |
| 5.1.6          |                                            | 5-4        | 8.2                 | Power board                                     |            |
| 5.2            | Mechanical                                 | r. c       | 8.2.1               | Power supply assembly                           | 8-3        |
|                | Parts list cabinet                         | 5-6<br>5-7 |                     | Connector pin assignment                        | 8-3        |
|                | Exploded view                              | 5-7        |                     | Block diagram                                   | 8-3        |
| 5.3            | Interconnections                           | <b>5</b> 0 |                     |                                                 |            |
| 5.3.1          | Wiring diagram                             | 5-8        |                     |                                                 |            |

|       |                                   | page |
|-------|-----------------------------------|------|
| 3.2.4 | CBA component layout              |      |
|       | 1. Top side                       | 8-33 |
|       | <ol><li>Bottom side</li></ol>     | 8-34 |
| 3.2.5 | Circuit diagrams                  |      |
|       | Power management                  | 8-36 |
|       | 2. Drive circuitry                | 8-37 |
|       | 3. Stabilizer circuitry           | 8-38 |
| 8.2.6 | Parts list                        | 8-40 |
| 8.2.7 | Troubleshoot flow chart           | 8-41 |
| 8.3   | Keyboard                          |      |
| 8.3.1 | Keyboard assembly                 | 8-43 |
| 8.3.2 | Scan code                         | 8-43 |
|       | Connector pin assignment          | 8-43 |
|       | CBA component layout              |      |
|       | 1. Top side                       | 8-45 |
|       | 2. Bottom side                    | 8-46 |
| 8.3.5 | Circuit diagram                   | 8-47 |
| 8.3.6 | Parts list                        | 8-48 |
| 9     | DEVICES                           |      |
| 9.1   | Hard disk drive                   |      |
|       | PCL304 HDD assembly specification | 9-1  |
|       | Pin assignment                    | 9-1  |
| 9.1.3 |                                   | 9-1  |
|       |                                   |      |
| 9.2   | Floppy disk drive                 | 9-2  |
| 9.2.1 | FDD assembly specification        | 9-2  |
| 9.2.2 | Pin asignment                     | 9-2  |
| 9.2.3 | Installing instructions           | 3-2  |
| 9.3   | LCD assembly                      |      |
| 9.3.1 | Specifications                    | 9-4  |
| 9.3.2 |                                   | 9-4  |
| 9.3.3 |                                   | 9-6  |
| 9.4   | Battery pack                      | 9-6  |
| 10    | MODIFICATION                      |      |
| 10.1  | General information.              | 10-1 |
|       |                                   |      |

#### 1 SYSTEM UNIT

#### 1.1 Technical specifications

#### General

#### Adapter:

Mains voltage

90-270 V (Universal)

Mains frequency Max output power 48-63 Hz 22 Watt (Cont)

#### System:

Ambient temperature: Relative humidity

+5 to +35C 20% to 80% 8.000 ft.

Altitude Weight

3.03 kg

Dimensions

280x220x50 mm (WxDxH)

#### LCD:

Type

VGA B/W LCD with backlight

Dot pixels Dot size

640 x 480

0.24 x 0.24 mm 0.27 mm

Dot pitch Display area

180 x 133 mm (WxH)

Display mode

VGA mode (CGA/EGA/MDA emul)

Charater mode

80 columns x 25/43 lines

40 columns x 25/43 lines

Graphics mode

640 x 480 dots

Specification

Processor Coprocessor 80386SX 16MHz 80387SX (option)

Clock Speed

16 MHz or 8 MHz, software se-

lectable

**Extended Memory** 

3 MB, 5 MB

Display

640x480 pixels LCD panel,

IBM VGA compatible

Sound Buzzer

Floppy Disk Drive

3.5", 1.44 MB, double side, high density floppy disk drive

3.5", 42.9 MB hard disk with 29 ms average access time.

79/80 keys, 101/102-key key-

board compatible

External Key

Numeric Keypad or IBM com-

patible keyboard, 6-pin female

mini DIN connector

PS/2 Mouse Port

PS/2 Mouse, 6-pin female mini

**DIN** connector

Serial Port

Hard Disk

Keyboard

1 asynchronous serial RS-

232C port,,9-pin male D-sub

connector

Parallel Port

Centronics-type parallel port, 25-pin female D-sub connector

Video Port

15-pin female D-sub connector

for external monitor; IBM VGA

compatible

Internal Modem port :

20-pin male connector for internal 2400 bps modem (option).

External Floppy

External Floppy Disk Drive

port, Disk Drive 25-pin female

D-subconnector.

Expansion Bus

Provides a 16-bit interface to the Notebook system, 96-pin

male D-sub connector

**AC Power** Main Battery 90V-270V full range adapter

4.8V, 5.0Ahr NiCd battery pack with over-charge protection

# 1.2 Description of controls and terminal sockets

#### Right side panel

- 1. Screen latch right
- 2. Diskette slot
- 3. Eject button
- 4. External keyboard connector
- 5. Mouse connector
- 6. Power switch



#### Left side panel

- 7. Battery compartiment
- 8. External Video connector
- 9. Screen latch left



#### Rear panel

- 10. Battery-charger connector
- 11. External diskdrive connector (D-Shell)
- 12. Parallel port Centronics (D-Shell)
- 13. Serial port RS-232 (D-Shell)
- 14. Expansion connector



#### Inside the Notebook

- 15. 80 key keyboard
- 16. Cover memory expansion
- 17. Harddisk activity LED
- 18. Floppy activity LED
- 19. Power on indicator
- 20. Stand-by / Charge LED
- 21. Stand-by / cover switch
- 22. VGA LCD display



#### 1.3 Input/ouput specification

#### External keyboard connector (4):

Description

1. Data

2. Nc

3. Ground

+5V DC 4.

5. Clock

6. Nc

#### Mouse connector (5):

Description

Data 1.

2. Nc

3. Ground

4. +5V DC

5. Clock

6. Nc

#### Video connector (8):

Pin Description

Red 1.

2. Green

3. Blue

Nc 4.

5. Analogue ground

6. Analogue ground

7. Analogue ground

Analogue ground 8.

9. Nc

10. Analogue ground

Nc 11.

12.

13. Horizontal sync.

14. Vertical sync.

15. Nc

#### External diskdrive connector (11):

Pin Description

Ground 1.

2. Index\*

Track 0\* 3.

4. Write Protect\*

5. Read Data\*

6. Disk Change\*

7. +5V DC

8. +5V DC

+5V DC 9.

10. Drive Select\*

11. Motor On\*

12. Write Data\*

Write Enable\* 13.

14. Reduce Write Curr.\*

Head Select\* 15.

16. Direction\*

17. Step\*

**GND** 18-25



MDA.02669 T19/019





MDA.02668 T19/019

0 10

0 250

0

0

0

0

#### Parallel port (12):

| Pin | Description |
|-----|-------------|
|-----|-------------|

- Strobe\* 1.
- Data 0 2.
- 3. Data 1
- Data 2 4.

13<sub>0</sub>

14 o

PARALLEL CENTRONICS

- Data 3 5.
- 6. Data 4
- Data 5 7.
- Data 6 8.
- Data 7 9.
- Ack\* 10.
- 11. Busy
- Paper end 12.
- Select 13.
- 14. Auto linefeed\*
- Error\* 15.
- Initialize\* 16.
- 17. Select in\*
- 18-25 GND

#### Serial port RS-232C (13):

- Pin Description
- CD (carrier detected) 1.
- RXD (received data) 2.
- TXD (transmitted data) 3.
- 4. DTR (data terminal ready)
- 5. **GND**
- DSR (data set ready) 6.
- 7. RTS (request to send)
- 8. CTS (clear to send)
- 9. RI (ring indicator)

#### Supply connector (10):

- Pin Description
- Va (5.6V DC +3/-6% 1.
- Vb (6.1V DC +/- 5% 2.
- POK (7.15V DC 7.65V DC 0A 50 mA) 3. Outer shield = Ground



0

0

SERIAL CENTRONICS

MDA.02668 T19/019



<sup>\*</sup> Active low

# EXPANSION BUS CONNECTOR



### Expansion Bus connector (14):

| 1.  | GND              | 33. | SD7       | 65. | IRQ10    |
|-----|------------------|-----|-----------|-----|----------|
| 2.  | RESETDRV         | 34. | SD6       | 66. | IRQ11    |
| 3.  | + 5V             | 35. | SD5       | 67. | IRQ12    |
| 4.  | IRQ9             | 36. | SD4       | 68. | IRQ15    |
| 5.  | N.C.             | 37. | SD3       | 69. | IRQ14    |
| 6.  | DREQ2            | 38. | SD2       | 70. | DACK0 *  |
| 7.  | + 5V             | 39. | SD1       | 71. | DREQ0    |
| 8.  | ows *            | 40. | SD0       | 72. | DACK5 *  |
| 9.  | +5V              | 41. | BIOCH     | 73. | DREQ5    |
| 10. | GND              | 42. | AEN       | 74. | DACK6 *  |
| 11. | SMEMW **         | 43. | SA19      | 75. | DREQ6    |
| 12. | SMEMR *          | 44. | SA18      | 76. | DACK7 *  |
| 13. | IOW *            | 45. | SA17      | 77. | DREQ7    |
| 14. | IOR *            | 46. | SA16      | 78. | MASTER * |
| 15. | DACK3 *          | 47. | SA15      | 79. | SBHE *   |
| 16. | DREQ3            | 48. | SA14      | 80. | LA23     |
| 17. | DACK1 *          | 49. | SA13      | 81. | LA22     |
| 18. | DREQ1            | 50. | SA12      | 82. | LA21     |
| 19. | RFF *            | 51. | SA11      | 83. | LA20     |
| 20. | BSYSCLK          | 52. | SA10      | 84. | LA19     |
| 21. | IRQ7             | 53. | SA9       | 85. | LA18     |
| 22. | IRQ6             | 54. | SA8       | 86. | LA17     |
| 23. | IRQ5             | 55. | SA7       | 87. | MEMR *   |
| 24. | IRQ4             | 56. | SA6       | 88. | MEMW *   |
| 25. | IRQ3             | 57. | SA5       | 89. | SD8      |
| 26. | DACK2            | 58. | SA4       | 90. | SD9      |
| 27. | TC               | 59. | SA3       | 91. | SD10     |
| 28. | BALE             | 60. | SA2       | 92. | SD11     |
| 29. | + 5V             | 61. | SA1       | 93. | SD12     |
| 30. | DOSC             | 62. | SA0       | 94. | SD13     |
| 31. | GND              | 63. | MEMCS16 * | 95. | SD14     |
| 32. | <b>IOCHECK</b> * | 64. | IOCS *    | 96. | SD15     |
|     |                  |     |           |     |          |

- \* Active "low"
- \*\* aActive "high"

#### 2. GENERAL SYSTEM DESCRIPTION

#### 2.1 Introduction

The system features a 16 Mhz 80C386 based PC/AT compatible main board placed in a high performance small size laptop chassis.

#### The basic system includes:

- \* Main board assembly,.
- \* Power board assembly,
- \* Keyboard assembly,
- \* Floppy disk drive,
- \* Hard disk drive,
- \* LCD assembly,
- \* Main battery
- \* Adapter.

#### 2.2. Main board

#### The main board compromises the following of gic:

- \* CPU (Central Processing Unit)
  The 80C386SX is used for the system CPU (3.2 bit microprocessor) and the CPU clock frequency can be switched for low speed operation from the standard 16 Mhz to 8 Mhz.
- System logic (HT-21)
  The HT-21 performs CPU and peripheral support functions including that of DMA Controllers, a Memory mapper, Timers, Counters, Interupt controllers, a Bus controller and their supporting circuitry.
  This chip also includes address buffers, data tranceivers, memory drivers, parity checking and supporting circuitry.
  An asynchronous AT Bus clock allows for a constant 8 Mhz clock rate.
- \* ROM (Read Only Memory)
  The ROM BIOS consists of one 128 x 8 bit EPROM module.
- \* RAM (Random Access Memory)
  The 1 MB on board standard RAM is factory installed.
- \* Real Time Clock Generator (DS-1287)
  The DS-1287 is a complete subsystem in a typical application. A lithium energy source, quartz crystal and write-protection circuitry are contained within the 24-pin dual inline package.

  The functions include a nonvolatile time-of-day clock, an

alarm, a one hundred-year calender, programmable interrupt, square wave generator, and 50 bytes of nonvolatile static RAM.

The Real Time Clock plus RAM is distinctive in that timeof-day and memory are maintained even in the absence of power.

- Keyboard Controller & Encoder (8042 & 80C51)
   Controller is the 8042 and encoder is 80C51
- \* LCD/CRT Controller Interface (CL-GD 610, 620) The CL-GD610 graphics/attributes chip and the CL-GD620 Sequencer/CRT controller chip are hardware compatible with the IBM VGA, EGA, CGA and MDA standard.
- \* Parallel Port & Serial Port interface (82C601)
  The 82C601 chip features drivers for the output buffers, such as the host data bus and parallel port data bus. It incorporates two 16450 compatible UARTs, one enhanced parallel port and various chip selects.
- \* Floppy disk interface (8473) The floppy disk controller provided with two floppy disk drivers through an internal FDD interface and the other external FDD interface.
- \* The system has a built-in hard disk with a capacity of 40 Megabytes (MB), average access time is 29 ms.

#### 2.2.1 Processor

The central processing unit consists out of a 80C386SX microprocessor and an optional 80C387SX numeric coprocessor.

The 80C386 generates 24 address bits and 16 data bits. The 24 address bits are generated by 23 dedicated address lines A1 - A23, with A0 being derived from the microprocessor byte low enable signal. The 80C386SX instruction set is a superset of the 8086/8088 and also includes the instruction set of the 80186. The 80C386SX is object code compatible with the 8086, 80286 and 80386 microprocessor.

#### 2.2.2 Memory

The 80C386SX has a physical address space of 16 Mbytes in protected mode and of 1 Mbyte in real mode. Figure XXX shows how this address space is utilized. The protected mode additional address space is a continuation of the real mode address space with one exception, the BIOS ROM is present at the top of the 16 Mbyte address space (it has two locations in protected mode).

#### 2.2.3 RAM

The notebook can carry up to 5MB RAM internally, which is most sufficient memory to run the most demanding applications or to use the most powerful operating systems.

The notebook mainboard is socketed for one SIMM (Single In line Memory Modules), which can hold 2MB or 4 MB of memory.

The on board standard 1MB RAM can be expanded to 3 or 5MB.

| On board | SLOT 1 | Total Memory  |
|----------|--------|---------------|
| 1MB      |        | 1MB (default) |
| 1MB      | 2MB    | змв           |
| 1MB      | 4MB    | 5MB           |

Fig. 2-2

#### Addressable Memory Space



Fig. 2-1

# The system board can consists of the following memory types:

Conventional Memory:

This is the memory from 0KB to 640KB and is used in Real Mode by, e.g., DOS.

Extended Memory:

This is all addressable memory above the 1MB border and can only be accessed by the CPU when it is working in protected mode.

Expanded Memory:

Expanded memory is not addressable by the CPU, but must be mapped via I/O into addressable memory within the first 1MB of address space in memory page frames of 16KB. The chips in this system support LIM-EMS 4.0.

Shadow Memory:

This is memory between 640KB and 1MB which is normally not accessible unless the chips in the system are programmed to enable this memory to copy ROM into. It can also be mapped to addressable memory for use as normal RAM.

#### NOTE:

An expansion board, connected via an expansion box, with expanded memory can NOT co-exist with the on-board expanded memory. Only one of the two, together with its driver, may be installed.

#### 2.2.4 ROM

The system board contains one, 128K by 8-bit EPROM module. The ROM is not parity checked and has an access time of 200ns. The ROM is a combined BIOS containing the system BIOS and video BIOS.

It also contains the power on testing and boot loader. To gain faster access, the BIOS can be copied to RAM during power on (refer to section 4.1).

The system BIOS is present at the following location:

At the top of the first 1 Mbyte of address space (0F0000 h - 0FFFFF h)

The video BIOS is present at the following location:

In the area from 512 Kbyte to 576 Kbyte (0E0000 h - 0EFFFF h)

#### 2.2.5 I/O Connections

On the main board, the following Input/Output connections are provided:

CN2: Expansion slot connector. This connector is located at the rear side of the notebook.

CN11: 20-pin flexible flat cable diskette drive control/data connector.

CN6: 44-pin header, AT-bus connector, used to connect ATembedded hard disk drives

CN3: DB-9P, serial port connector. Via the SETUP program this port can be disabled, or can be configured as PORT 1. PORT 1 has the base I/O address 3F8h. For COM port assignments, refer to subsection 2.2.4.1.

J1: DP-25P, serial port connector. Via the SETUP program this port can be disabled, or can be configured as PORT 2. PORT 2 has the base I/O address of 2F8h. For COM port assignments, refer to subsection 2.2.4.1.

CN4: DB-25S, parallel port connector. Via the SETUP program this port can be disabled, or can be onfigured as PORT 2. PORT 2 has the base I/O address 378h. For LPT port assignments, refer to subsection 2.2.4.1.

CN1: DB-15S, analog video connector. This port can be disabled/ enabled via software, [Fn] + [F10].

CN14: 6-pin, Mini-Din type keypad connector. This port supports AT compatible types only.

CN13: 6-pin, Mini-Din type PS/2 Mouse connector. This port supports PS/2 compatible types only.

#### 2.2.6 Serial And Parallel Port Assignments

The serial ports require eight consecutive I/O addresses for access to the control and status registers. COM1 is always assigned to the highest I/O address (when using only one port, this may be either on 2F8h or 3F8h). If two serial ports are installed COM2 is assigned to the next lower I/O address (COM1 is assigned to 3F8h and COM2 is assigned to 2F8h). The table on the next page gives the three possible configurations:

| Configuration | Base<br>Addr. | Port     | Base<br>Addr.     | Port              |
|---------------|---------------|----------|-------------------|-------------------|
| 1<br>2<br>3   | 3F8h<br>3F8h  | COM1     | 2F8h<br>-<br>2F8h | COM1<br>-<br>COM2 |
|               |               | Fig. 2-3 |                   |                   |

The parallel ports require three consecutive I/O addresses for access to the control, status and data registers. LPT1 is always assigned to the highest I/O address available (when using one parallel port, this may be on 278h, 378h or 3BCh). If two parallel ports are installed, LPT2 is assigned to a lower I/O address. If three parallel ports are installed, LPT3 is assigned to the lowest I/O address. The following table gives the seven possible configurations:

| Configu-<br>ration | Base<br>Addr. | Port | Base<br>Addr. | Port | Base<br>Addr. | Port |
|--------------------|---------------|------|---------------|------|---------------|------|
| 1                  | -             | -    | -             | -    | 278h          | LPT1 |
| 2                  | -             | -    | 378h          | LPT1 | -             | -    |
| 3                  | 3BCh          | LPT1 | -             | -    | •             | -    |
| 4                  | -             | -    | 378h          | LPT1 | 278h          | LPT2 |
| 5                  | 3BCh          | LPT1 | -             | -    | 278h          | LPT2 |
| 6                  | 3BCh          | LPT1 | 378h          | LPT2 | -             | -    |
| 7                  | 3BCh          | LPT1 | 378h          | LPT2 | 278h          | LPT3 |

Fig. 2-4

#### 2.2.7 Video Graphics Adapter

The on-board video graphics capability is incorporated using a Cirrus CL-GD610/620 graphics controller. The controller, with 256KB of video memory (2x256kx4 DRAM) supports VESA 1 (800x600 high resolution with 16 colors from a palette of 262,144 colors) and VGA resolutions and is also backwards compatible, emulating EGA, CGA, MDA and Hercules graphics standards.

#### 2.2.8 Video BIOS ROM

The video BIOS is physically situated with the system BIOS in a 128KB EPROM on the motherboard. The logical address for this BIOS is located in system memory area E0000h to EFFFFh. The BIOS supports 132 column and 60 line text modes, 72x540 and 800x600 16-color graphics mode, and 800x600 16-color VESA 1 mode.

The BIOS accesses are limited to 8-bit accesses unless the BIOS is shadowed into RAM using the SETUP program. Then the accesses are of 16-bits.

#### 2.3 Power supply

The power board houses a sophisticated power management which ensures that the NiCad battery can power the system for the maximum possible time.

#### 2.3.1 Power low indication.

Under battery power, the Notebook will automatically monitor the battery.

\* When it senses that the battery has about 20 minutes of power available, the power LED will begin to blink once every second, and the system buzzer will beep twice every 15 seconds.

At this warning work should be finished within about 10 minutes.

\* If the Notebook senses that the battery power is critical, the power LED will blink twice a second and the beeps will sound four times every ten seconds.

Files must be saved immediately to disk(ette), or supply AC power.

 If the battery should "die" before time was left to shut down the Notebook, the system would have automatically powered down.

#### 2.3.2 Recharging a battery

The Notebook always checks on the charge level of the battery via a sophisticated power management control. When the system is running under AC power the CHR/STB LED will be lit to show that the battery is being recharged (standby mode is disabled under AC power).

#### Remark:

NiCad batteries have a tendency to lose capacity in case they are not fully discharged. In other words, if they are always used for approximately the same time, such as 100 minutes, and then recharged, they will hold only a 100 minute charge. No more charge can be increased.

Once this situation occurs, it can not be corrected by simply discharging and recharging again.

This Notebook has the utility to solve this problem by using the program "DPDISCHG".

After running the "DPDISCHG" utility the power has to be turn off and on again for normal operation.

#### 2.3.3 Power conservation.

The Notebook offers numerous power conservation features in order to prolong battery life to the maximum.

Intelligent power saving

This feature is automatic and requires no control from the user. It is functional at all times on battery power.

1. A slower rate of DRAM refresh is used.

- The FDD will be monitered wether the drive is being used. If not the FDD controller will be shut down. Any instruction which requires access to the drive, the FDD controller will automatically be "woken up".
- 3. The CPU monitors its own activity. If no operation is taking place, the PCU is slowered down from the 16Mhz or 8Mhz rate to 4Mhz.

When CPU activity is resumed, the clock speed is automatically returned to the original speed.

This feature will be overridden if the "Auto-standby disable" option in the Setup utility is selected.

\* Selectable power down.

This feature is encountered in the Setup utility.

For a preset "trip time" which is specified in the Setup utility the system can be instructed to shut down power consuming components.

Backlight power off:
 Screen backlight is powered down if the LCD power down time elapses with no srceen activity and no key stroke.

2. LCD screen power off:

LCD screen is powered down if the LCD power down time elapses with no srceen activity and no key stroke.

3. HDD power down:

The HDD power is shut down if the HDD power down time elapses with no hard disk activity.

#### 2.3.4 Stanby Mode

Standby mode is only available, and necessary, when battery power is used. In this node the amount of power required by the system is greatly reduced.

Standby mode can be entered in two ways:

- \* Press the Standby mode switch.
- \* Closing the LCD cover without turning off the power. In this case a warning beep will sound to indicate that the power has not been sitched off.

The techniques used to conserve power in standby mode are listed below.

- The clock speed is reduced to 4Mhz.
- \* The HDD is powered down.
- \* Screen backlighting is switched off.
- \* The LCD screen is switched off.
- \* The LCD controller is powered down
- \* Floppy disk controller is powered down.
- \* Keyboard LEDs are turned off.

When the system is in standby mode, the CHR/STB LED will flash to alert the system condition.

#### 2.4 Keyboard

The notebook's keyboard has 79 keys (for USA) or 80 keys (for Europe). Some of the keys have dual assignments which are activated by a keystroke, or by holding down the special Fn function key. In this way all the functions of a full size 101/102 keyboard can be duplicated.

In addition special key combinations are assigned to control other functions of the system.

#### **Key Combination summary:**

| Key Combination      | . waitiiia. j                                        |
|----------------------|------------------------------------------------------|
| [Fn] + [Esc]         | Disable the screen save feature                      |
| [Fn] + [1]           | Increase contrast                                    |
| [Fn] + [2]           | Decrease contrast                                    |
| [Fn] + [3]           | Increase brightness                                  |
| [Fn] + [4]           | Decrease brightness                                  |
| [Fn] + [F4]          | Width control for Hercules displays                  |
| [Fn] + [F5]          | Centering control for displays under 480 pixels high |
| [Fn] + [F6]          | Automap Enable/Disable                               |
| [Fn] + [F7]          | Runs the Notebook at low speed (8 Mhz)               |
| [Fn] + [F8]          | Runs the Notebook at high speed (16 Mhz)             |
| [Fn] + [F9]          | Normal/reverse video                                 |
| [Fn] + [F10]         | LCD or CRT ouput                                     |
| $[Fn] \div [Alt]$    | European [Alt Gr] key                                |
| [Fn] + [Ins]         | Single apostrophe [ ' ]                              |
| [Fn] + [Shift] + [In | s] A tilde mark [ ~ ]                                |

#### 2.5 Video

Refer to 2.2.5

#### 2.6. Hard Disk Drives

#### 2.6.1. Conner CP4044

The Conner CP4044 is a 40MB, 3" hard disk dive. The drive is mounted internally within the chassis of the system unit.

For further product specifications, refer to chapter 9.2.

#### 2.7. Floppy Disk Drives

#### 2.7.1. Sony MPF-220

The Sony MPF-220 is a 3" floppy disk drive. The drive can work with either normal (720KB) or high density (1.44MB) floppy disks. The drive has a sensor to detect normal or high density. In the SETUP program the floppy disk should be configured as: 3" 1.44MB

The drive is mounted internally within the chass is of the system unit.

For further product specifications, refer to chapter 9.1.

#### 3. CONFIGURATIONS

This chapter describes the upgrade options and the possible memory configurations of the system.

#### 3.1 System Upgrades

Options that can be ordered to upgrade the system are the following:

#### Description

80C387SX numeric co-processor 2MB SIMM (80ns) 4MB SIMM (80ns)

#### 3.2 Memory configurations

The notebook has standard 1MB (= 1024KB) of RAM on board and this can be expanded up to 5MB.

Generally, DOS can only use the first 640KB of RAM (base memory), and memory above 640KB can be treated in different ways.

#### \* Extended Memory:

This is a simple continuation of Base 1MB memory. less using special programs or utilities, most of the software applications will be unable to address this memory.

#### \* Expanded Memory:

Extended memory can be transformed into Expanded memory (LIM EMS 4.0).

This is a tecnique of forming a "window" in the Base memory through which some programs can see "pages" of data in Expanded memory. The program can therefore address all RAM.

#### \* Shadow RAM:

Shadow RAM applies only to the first 384K of extended memory (standard notebooks). Instead of using this space as extended or expanded memory, the system and/or VGA BIOS can be copied to this space.

It will lead to some performance gain, especially in applications which make extensive calls on the BIOS.

Refer to the documentation of the software (program) to be installed to decide which option to choose.

#### Summarizing:

Enter the total amount of RAM in the system under the item Memory Size. If only 1MB RAM is available, then the spare 384KB can be designated as Shadow RAM, EMS memory, or Extended Memory

RAM beyond 1MB, may be allocated as Extended or Expanded, or a mixture of both.

Only use whole numbers of megabytes when dividing RAM.

The table below shows all the possiblities.

#### Note:

Extended Memory is automatically calculated by SE-TUP after the other items have been entered.

| Memory size                               | 1M  | 1M   | 1M  | зм   | 3 <b>/</b> 1 | 3M   |
|-------------------------------------------|-----|------|-----|------|--------------|------|
| EMS size<br>Shadow Ram<br>Extended<br>Mem | Off | 128K | Off | 128K | 128K         | 128K |

Fig. 3-1

| Memory size                             | 5M   | 5M | 5M                  | 5M                                   | 5M |
|-----------------------------------------|------|----|---------------------|--------------------------------------|----|
| EMS size<br>Shadow Ram<br>Extended Mem. | 128K |    | 2304K<br>128K<br>2M | 128 <b>O</b> K<br>128 <b>K</b><br>3M |    |

Fig. 3-2

#### 3.2.1 Expanded Memory

The on-board chipset is fully hardware/software compatible with the Lotus Intel Microsoft Expanded Memory Specifications (LIMEMS) version 4.0. This implementation allows a 64KB block in the area from 040000h - 09FFFFh (256KB - 640KB) or from 0C0000h to 0EFFFFh to be used as a window, allowing the complete 7552KB (maximum) of on-board RAM to be accessed. Accessing is accomplished by means of paging. The 64KB block is divided into four 16KB pages which can access individual portions of the 7552KB area.

Expanded memory can be assigned by using the SETUP utility. The 'EMS' field in the SETUP program must be set to the correct value when using EMS memory. This field specifies the amount of memory to be used as expanded memory by an expanded memory driver, such as the QUAD EMS.SYS driver provided on the utility diskette.

If EMS memory is being used on an expansion board, via an expansion box, the 'EMS' field in the SETUP utility must be set to zero. The EMS driver delivered with expansion board should be used instead of the QUAD\_EMS driver.

#### Memory address map

The System Memory Map is shown as follows:

|                    | Memory          | Function                                                 |
|--------------------|-----------------|----------------------------------------------------------|
| 000000 -<br>09FFFF | 640K By-<br>tes | Base Memory                                              |
| 0A0000 -<br>0BFFFF | 128K By-<br>tes | Video RAM (Graphic<br>Display Buffer)                    |
| 0D0000 -<br>0DFFFF | 64K<br>Bytes    | EMS default memory base address                          |
| 0E0000 -<br>0EFFFF | 64K<br>Bytes    | ROM for Video BIOS                                       |
| 0F0000 -<br>0FFFFF | 64K<br>Bytes    | ROM for System BIOS                                      |
| 100000 -<br>FDFFFF | 15M<br>Bytes    | Memory - 1M to 15M installed on memory expansion options |
| FE0000 -           | 64K<br>Bytes    | Duplicated code<br>assignment at address<br>0E0000       |
| FF0000 -           | 64K<br>Bytes    | Duplicated code assignment at address                    |
| FFFFFF             |                 | 0F0000                                                   |

#### 3.2.2 Address Map

#### I/O Address Map

| Hex Range        | Device                                                |
|------------------|-------------------------------------------------------|
| 000 - 01F        | DMA controller #1                                     |
| 020 - 03F        | Interrupt Controller #1                               |
| 040 - 05F        | Timer                                                 |
| 060<br>062 - 06F | Keyboard Controller                                   |
| 061              | Port B Register, PPI                                  |
| 070 - 07F        | Real Time Clock, NMI (Non-<br>interruptable Mask) bit |
| 080 - 08F        | DMA Page Reg.                                         |
| 090 - 091        | DMA Map Reg.                                          |
| 092              | Alternate Gate A20 and Host<br>Reset                  |
| 093 - 09F        | DMA Map Reg.                                          |
| 0A0 - 0BF        | Interrupt Controller #2                               |
| 0C0 - 0DF        | DMA Controller #2                                     |
| OFO - OFF        | Math Coprocessor                                      |
| 1E8 - 1E9        | PMU Control Reg.                                      |
| 1EC - 1EF        | EMS and Control Reg.                                  |
| 2F8 - 2FF        | Serial Port 2                                         |
| 300 - 31F        | Reserved                                              |
| 378 - 37F        | Parallel printer port 1                               |
| 380 - 3AF        | Reserved                                              |
| 3B0 - 3DF        | Video Graphics Monitor<br>Adapter                     |
| 3F0 - 3F7        | Diskette Controller                                   |
| 3F8-3FF          | Serial Port 1                                         |

At power-on time, the Non-Maskable Interrupt (NMI) into the 80386SX is masked off. The Mask Bit can be set and reset with System Programs as following:

Mask on: Write to I/O address hex 070, with data bit 7 equal to a logic 0.

Mask off: Write to I/O address hex 070, with data bit 7 equal to a logic 1.

#### 4. SYSTEM UTILITY

In this chapter a description is given of the utilities delivered with the system on the utilities diskette.

#### 4.1 Setup

The SETUP consists of a display page for the ROM version. To access the ROM BIOS SETUP, the following keys should be pressed simultaneously:

This can be done at any time, provided that no running application has taken over the keyboard interrupt handlers. <CTRL>+<ALT> + <ESC> may be pressed during Power On Diagnostics when the machine is first switched on to change the setup information prior to the machine booting. If a configuration error is detected during POD, an appropriate beep code and error message is displayed, then the following message is displayed:

#### Press <F1> to resume, <F3> to enter Setup

If the <F1> key is pressed, the machine continues with its booting procedure. If <F3> is pressed, the SETUP program is immediately executed.

The SETUP consists of two columns, in which the current values of the CMOS RAM are highlighted. The current settings can be changed by using the <INS> and <DEL> the keys.

#### <+>, <+>, < +>, < + > and <ENTER>:

Use to select the field(s) within the page whose values are to be changed.

<INS>, <DEL> : Used to change the field to the required value.

<F10>

: Used to write the new configuration information to the CMOS and reboot the system.

<F1>

: Changes will not be saved into the CMOS RAM and the system will reboot. In the disk version of SETUP, pressing <F1> will not reboot the system.

#### 4.1.1 Setup page

The system SETUP program is contained in the BIOS-ROM which is built into the set. It can be invoked by pessing simultaniously the CTRL and the ALT key, and will e holding them down, hitting the ESC key. The screen shown in Fig. 4-1 will appear on the LCD (or the external monitor if attached and selected).

| DATE (MM/DD/YY)                                      | 11/27/90                                    |
|------------------------------------------------------|---------------------------------------------|
| TIME (HH:MM:SS)                                      | 10:45:00                                    |
| INTERNAL DISKETTE                                    | 1.44M                                       |
| EXTERNAL DISKETTE                                    | NONE                                        |
| HARD DISK                                            | 20MB                                        |
| HDD POWER DOWN                                       | 1 MIN                                       |
| BOOT DISK                                            | C                                           |
| SPEED SELECT                                         | HIGH                                        |
| PASSWORD                                             | DISABLE                                     |
| RS232                                                | ENABLE                                      |
| MODEM                                                | DISABLE                                     |
| RS232/MODEM                                          | COM1/COM2                                   |
| MEMORY SIZE                                          | 1M                                          |
| EMS SIZE                                             | OFF                                         |
| SHADOW RAM                                           | 384K                                        |
| EXT MEMORY SIZE                                      | OFF                                         |
| AUTO STANDBY                                         | ENABLE                                      |
| DISPLAY TYPE                                         | VGA                                         |
| VIDEO ATTRIBUTE                                      | NORMAL                                      |
| LCD POWER DOWN                                       | 2 MIN                                       |
| VERTICAL COMPEN WIDTH COMPRESSION AUTO MAP BOLD FONT | STRETCHED<br>DISP LEFT<br>ENABLE<br>DISABLE |

Fig. 4-1

#### Date and time:

These two items can be corrected by typing in the accurate figures from the keyboard. The same format as shown on the screen has to be used.

#### Internal External diskette:

Internal diskette is the Notebook's installed floppy. This is a 1.44MB, 3.5" drive, so it is entered as 1.44MB. If a external drive is added through the external drive connector it must be configured here.

Either 1.2MB or 360K for 5.35" drives, or 1.44MB of 720KB for 3.5" drives. If no external drive is applicable, select none.

#### Hard disk

The Notebook hard disk has a capacity of 40MB or 80MB. Enter this item as 40MB or 80MB accordingly, select NONE to disable the hard disk.

#### **HDD Power Down:**

A power saving feature. This feature comes into operation automatically if no keystroke is entered, or software instruction issued, for a certain length of time.

This is the "trip time".

When no activity is registered, the trip time starts counting down. If the trip time expires with no activity, automatic power down takes place. The SETUP utility allows to choose the time which will elapse (in minutes) before the notebook implements the power saving.

#### Boot from:

Via this item the system will find an operating system to load on and start up.

Three possiblities are available:

- \* Boot from hard disk
- \* Boot from external floppy, assigned as drive B
- \* Boot from internal floppy, assigned as drive A

#### Speed select:

This setup item specifies the speed at which the system will run each time you start or reset the notebook, either HIGH (16MHz) or LOW (8MHz).

Note:

The system speed can be changed any time by using special key combination, see chapter 2.4.

#### Password:

The password feature enables or disables data security. Instruction guiding the user through the proces of altering the password are diplayed on the highlighted line of the screen.

#### RS232, Modem, RS232/Modem:

- \* If no serial device is installed through the serial port a little power by diabling the item RS232.
- \* Similary if no internal modem is installed disable the item modem.
- \* For the third item RS232/Modem, the location of each of these items can be selected as either COM1 (address 3F8 hex and interrupt IRQ4) or COM2 (address 2F8 hex and interrupt IRQ3).

Memory size, EMS size, Shadow RAM, Ext. Memory size:

These items are are entered in Kilobytes (K) or Megabytes (M). A standard notebook has 1MB of Random Access Memory (RAM) and this can be expanded up to 5MB.

Note:

DOS can only use the first 640KB of RAM (called base memory) and memory above 640KB can be treated in different ways, see chapter 3.2.

#### Auto standby:

This is the trip time before the system goes into standby mode.

#### Power management:

Selects the power management of the notebook.

#### Monitor type:

Selects the type of monitor to be connected to the notebook.

#### Display type:

This item configures the kind of video display you are using. The notebook has a VGA controller, but is fully backward compatible with previous video standards.

Selected displays are:

VGA, EGA, CGA, and MGA (MGA includes the MDA and Hercules standards).

#### Video attribute:

Selects wether the notebook will start up using normal or reverse video.

#### Note:

The video mode can be changed any time by using special key combination, see chapter 2.4.

#### LCD Power down:

Another power saving feature. The trip time length indicates when the system shuts down the screen backlighting.

#### Vertical compensation, width compression:

Refers to the way the notebook treats displays which are shorter or wider than the LCD screen, see also chapter 2.4 for an explantion of the options.

The option selected in Setup will be used by the system unless the selection is overiden via the key combinations described in chapter 2.4.

#### Automap:

When enabled, colors are mapped to shades of grey. When disabled, colors are mapped to one of two shades.

#### **Bold font:**

When enabled, intensified characters are shown as bold. When disabled, intensified chracters are shown as highlighted.

#### **5 SYSTEM UNIT DISASSEMBLY**

#### 5.1 Assembly/disassembly

#### 5.1.1 Top cover removal

- Before removing the top cover of the set, be sure to disconnect the connector of the battery charger at the rearside of the set.
- Also be sure that the battery is removed.
- Refer to Fig. 5-1
- Remove the two screws in the bottom of the set.
- Remove three screws at the rear of the set, after removing the coverplates.
- Open the cover for the video-connector and remove two screws which are located there.
- Open the cover for the keyboard / mouse connector and remove the two screws which are there.

- For the next part refer to Fig. 5-2
- Open up the screen by using the latches on bit is sides of the set.
- Remove the coverplate which covers two scr<sup>®</sup> which hold the RAM-expansion slots.
- Unlock screws (A) and remove the coverplate
- The keyboard can now be slided in the direction of arrow B for about 1 2 cm. Be carefull not to damage he keyboard connection wire D.
- Remove screw C which hold the uppercase.
- Remove the flat-cable to the LCD-display by fiting the connector and sliding the cable out, see Fig. 5-3.
- Lift the topcover for about 3 cm and disconnet two connectors from the LCD-backlight and the battery, a Fig. 5-4.
- Remove the uppercover from the set and you can access the motherboard and the power board.



Fig. 5.1





#### 5.1.2 Keyboard removal

- Remove the top cover (See 5.1.1)
- Slide up the connector fixing the flat cable to the keyboard and remove the keyboard with cable, see Fig. 5-5.

#### 5.1.3 Powerboard removal

- Remove the top cover (See 5.1.1)
- Remove one screw (2) near the power switch. See Fig. 5-6.
- Remove the ROM-/ and RAM-module(s) by pulling them out.
- The powerboard (K) can now be removed by pulling it out in upward direction, see Fig. 5-7.

#### 5.1.4 Motherboard removal

- Remove the top cover, see 5.1.1.
- Remove the keyboard, see 5.1.2.
- Remove the powerboard, see 5.1.3.
- Remove two screws (3) and one hex bolt.
- Remove the flexible cable from the floppy disk by pulling it out of the connector.
- Disconnect the harddisk by pulling the connector from the mainboard. Be carefull not to damage this very sensitive connectioncable.
- Remove the motherboard by pulling it up, starting on the right side, see Fig. 5-8.

#### 5.1.5 Floppy disk drive removal

- Remove the top cover, see 5.1.1.
- Remove the keyboard, see 5.1.2.
- Remove the powerboard, see 5.1.3.
- Remove the flexible cable from the motherboard.
- Remove one screw (1) and the bracket which holds both the floppydrive and the harddisk, see Fig. 5-10.
- Shift the floppy diskdrive for about 6 mm to the left and lift it up to remove it, see Fig. 5-9.





45 816 A12

#### 5.1.6 Harddisk removal

- Remove the top cover, see 5.1.1.
- Remove the keyboard, see 5.1.2.
- Remove the powerboard, see 5.1.3.
- Disconnect the harddisk by pulling the connector from the mainboard. Be carefull not to damage this very sensitive connectioncable.
- Remove one screw (1) and the bracket which holds both the harddisk (G) and the floppydrive (J)
  - The harddisk can be removed by lifting it out of the lower case, see Fig. 5-10.



#### 5-4

#### 5.2 Mechanical

# Use of the postion numbers in the exploded view of the cabinet. Parts list cabinet

All parts in the exploded view have been provided with a position number. In the exploded view four types of position numbers have been used:

- A. The numbers 1 to 99 of small size relate to standard fixing material. The parts list belonging to the exploded view mentions the kind, the dimensions and code number (if applicable).
- B. The position numbers of the specific parts are of a larger size. The description and the code numbers have been printed in the parts list belonging to the exploded view. These numbers go from 100 up to 199.
- C. The numbers 500 to 599 are not mentioned in the parts list. It is supposed that the parts indicated by these numbers are not subject to wear or damage. These parts are not stocked. Supply of these parts is possible, as long as the system is being produced. The purpose of these position numbers is to be able to indicate the relevant parts in correspondence.
- D. Parts indicated by a letter/figure combination. This category of numbers is used for those parts which have been drawn in the exploded view to indicate their position in the set. The code number and the description of the part are mentioned in another parts list.

#### 5.2.2 Partslist Cabinet:

#### Accessories:

4822 310 50107 4822 710 20001 Detach key tool Test program (floppy)

#### Service parts:

| 101 4822 404 60672<br>102 4822 130 91015<br>103 4822 404 60671<br>104 4822 462 41861<br>106 4822 321 61297 | Support (R) LCD assy Support (L) LCD flat cable Battery                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 107 4822 450 61754<br>108 4822 404 60702<br>109 4822 432 40085<br>111 4822 432 40083<br>112 4822 432 40079 | Display plate Hinge cover assy LCD cover assy Memory door Top cabinet                      |
| 113 4822 432 40082<br>114 4822 432 40081<br>116 4822 256 60321<br>117 4822 432 40086<br>118 4822 321 60976 | Cover Cover Battery holder Door left KBD flat cable                                        |
| 119 4822 219 82529<br>121 4822 321 60977<br>122 4822 321 61278<br>123 4822 691 20684<br>124 4822 691 20685 | Keyboard (USA)<br>Floppy flat cable<br>HDD flat cable<br>FDD assy 40 MB<br>FDD assy 1.44MB |
| 126 4822 411 61741<br>127 4822 432 40078<br>128 4822 432 40087<br>129 4822 462 41861                       | Knob on/off<br>Base assy<br>Door right<br>Foot                                             |

4822 212 60062 4822 212 60061 Power supply Main board



#### 5.3.1 Wiring diagram



#### **6 DIAGNOSTICS**

#### 6.1 Functional test program

The power self test will only test a part of the total system. Therefor a functional test program is available to test the remaining system parts for correct functioning. This test program comes on a 3 1/2" 720 K floppy (4822 710 20001) and can be used for all PCL-line personal

computers.
The test program was designed to test the basic system functions in a fast way:

- floppy drive
- hard disk
- mouse
- R232-interface
- Video controller
- monitor
- printer interface

The test results can be printed (see Fig. 6-1).

To start the test first read the instruction for use which can also be found on the test floppy
Type "A:README" to find out the way of executing the test program.

CMOS Data/Serial Number

Drive A = 3.5 inch, 720 kByte Drive B - Not Intstalled

Harddisk 1 – 40 MByte (Formatted) Serial number : 1A 0 0 0 0 0 0 0 0 0 0 0

Data: Wednesday may 9, 1991

**BIOS Data** 

# Testresults of the PCL304/00 computer </ 1 Testing the floppy disk drive uinit A: 2 Testing the floppy disk drive uinit B: </ 3 Testing the harddisk drive uinit C: 4 Testing the keyboard for Laptop computers 5 Reserved for future use 6 Testing the mouse hardware and software 7 Testing the RS-232 serial connector </ 8 Testing the Color Graphics Adaptor. (On VGA emulated CGA) 7 Testing the Video Graphics Array in mode 18 (640\*480\*16) </ 10 Parking the harddisk heads in the safety zone Passed Passed

Fig. 6-1

#### 6.2 Error messages

This chapter describes diagnostics messages; power on messages and user diagnostics messages.

#### 6.2.2 Power on diagnostic test messages:

**BEEP MESSAGES**;

- 01. ONE BEEP: No error is found
- 02. ONE LONG AND THREE SHORT BEEPS: Video error.
- 03. TWO SHORT BEEPS: A non fatal error. The Notebook will allert to the error with a message.

#### SCREEN MESSAGES;

- REFRESH TIMING ERROR:
   The refresh clock is not operating as expected.
- KEYBOARD ERROR OR NO KEYBOARD PRESENT. Either there is a keyboard problem, or the keyboard is not attached.
- 03. MEMORY SIZE ERROR RUN SETUP.

  The amount of memory found by the POST is different than the amount specified by SETUP.
- REAL CLOCK ERROR RUN SETUP.
   The real time clock is not operating as expected.
- ERROR ENCOUNTERED INITIALIZING HARD DRIVE.
   Try resetting the system. If the problem persists, contact your dealer.
- ERROR INITIALIZING HARD DISK CONTROLLER.
   Try resetting. If the same message appear, contact your dealer.
- FLOPPY DISK CONTROLLER ERROR OR NO CONTROLLER PRESENT.
   POST cannot locate the floppy drive. If the problem persists, contact your dealer.
- 08. DISKETTE DRIVES OR TYPES MISMATCH, ERROR RUN SETUP. FDD not installed or cable connection bad. If the message appears again after SETUP, contact your dealer.
- 09. CMOS RAM ERROR. Check battery/RUN SETUP CMOS is not valid. The CMOS battery may be malfunctioning. It possible to continue in running the Notebook, but SETUP has to be run every time the system will be boot. Consult your dealer about replacement of the CMOS battery.
- DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER.
   The BIOS can not load the system from the disk. The disk may be either unformatted as a bootable disk or defective.
- PRESS F1 KEY TO CONTINUE OR ALT-CTRL-ESC TO SETUP.
   An error was found during Power on diagnostics test.
   To attempt to boot the system hit the F1 key or press ALT-CTRL-ESC to run the SETUP program.

#### 6.2.2 User diagnostic messages:

#### (1) Floppy disk

Status 00:

#### **DISK ERROR STATUS:**

status 01: Invalid function request Address mark not found status 02: status 03: Write protect error status 04: Sector not found status 05: Reset failed status 07: Drive parameter activity failed status 08: DMA overrun on operation status 09: Data boundary error status 0A: Bad sector flag detected. status 0B: Bad cylinder detected status 0D: Invalid number of sectors on format status 0E: Control data address mark detected status 0F: DMA arbitration level out of range ECC or CRC error status 10:

Data compare error

status 10: ECC or CRC error
status 11: ECC corrected data error
status 20: General control failure.
status 40: Seek operation failed

status 80: Seek opera

status BB: Undefined error occurred status CC: Write fault on selected drive status E0: Status error/error register=0 status FF: sense operation failed

#### (2) Serial port

#### LOOPBACK STATUS:

B7: 1-Time out

B6: 1-Transmit shift registeris empt

B5: 1-Transmit holding register is empty

B4: 1-Break

B3: 1-Framing error

B2: 1-Parity error

B1: 1-Overrun error

B0: 1-Data ready

#### (3) Printer port

#### LOOPBACK STATUS:

B7: 1-Not busy

B6: 1-Acknowledge

B5: 1-Out of paper

B4: 1-Printer is selected

B3: 1-I/O error

B2: 1-Unused

B1: 1-Unused

B0: 1-Time out6.

#### 6.3 Outline of Diagnostics Test

This Diagnostics Test Program is prepared for the purpose of Testing and Troubleshooting hardware functions of the

This program is loaded from the disk drive and operates under the management of MS-DOS (Disk Operating System).

Diagnostics Menu

This is the menu for the testing procedures.

The menu you obtained may differ slightly depending on the devices installed in your computer system.

If you choose:

(1) MAIN BOARD Test the Main Board.

(2) FLOPPY DISK DRIVE Test the floppy disk drive connected to the system.

(3) KEYBOARD Test the keyboard.

(4) COLOR/GRAPHICS VIDEO Test the color/graphic controller and display, connected

(5) 1 SERIAL PORT Test the RS-232C serial port of the system.

(6) 1 PRINTER PORT Test the printer port.

(7) MEMORY

Test the base memory. (The number of KB or will change depending on the configuration of your system.) and tests the expanded memory. (The number of KB will change depending on the configuration of your system.)

#### 6.4 Diagnostics Description

#### 6.4.1 Main Board Test

|                                                                       | Procedure                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                                                                 |                                                                                                                                                                                                                                                                                                                              |
| PIT Counter Read-<br>ing Writing Dia-<br>gnostics and<br>Counter Test | Check reading and writing of the timer #0 of the PIT (Programmable Interval Timer). Set the initializing value on the timers #0 and verify that counting down is functioning properly after a fixed period of time has elapsed.  The timer #1 is not used as a refresh counter for the DRAM and does not need to be checked. |
| Page Register<br>Reading/Writing<br>Diagnostics                       | Check reading and writing of the page register. Bytes I/O R/W test Data: 00H, 55H, AAH, FFH.                                                                                                                                                                                                                                 |
| DMA Controller<br>Reading/Writing<br>Diagnostics                      | Check reading and writing of the address register of the DMAC #0 and of the word count register of the DMAC #0 Data: 00H, 55H, AAH, FFH                                                                                                                                                                                      |
| PIC Reading/<br>Writing<br>Diagnostics and<br>Interrupt Test          | Check reading and writing of the #0 IMR (Interrupt Mask Register) of the PIC (Programmable Interrupt Controller). Verifies whether a PIC #0 interrupt test is carried out properly through a TIMER interrupt test                                                                                                            |
| RTC Diagnostics                                                       | Confirm the data in real time clock is within the proper range.                                                                                                                                                                                                                                                              |
| END                                                                   |                                                                                                                                                                                                                                                                                                                              |

6 4 2 PAM Disapportice

|                                         | Procedure                                                                                                                                      |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                                   |                                                                                                                                                |
| Data Reading/<br>Writing<br>Diagnostics | Perform the byte reading/writing test using data patterns 00H, 55H, AAH, FFH. This applies to load addresses from 00000H to top of the memory. |
| End                                     |                                                                                                                                                |

#### 6.4.3 Keyboard Diagnostics

|                               | Procedur@                                                                                                                                                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                         |                                                                                                                                                                 |
| Keyboard Codes<br>Diagnostics | Press any key to recall a scanning code, which is converted to a code. Confirm that the code corresponds to the denotation show on the top of the press ed key. |
| End                           |                                                                                                                                                                 |

#### 6.4.4 Video Diagnostics

|                                                     | Procedure                                                             |
|-----------------------------------------------------|-----------------------------------------------------------------------|
| Start                                               |                                                                       |
| Character Sets<br>Diagnostics                       | Display two ASCII character sets and check them.                      |
| Gray Scale<br>Diagnostics                           | Display 8 gray scale on the display and check them.                   |
| Displayed Charact-<br>er Attribute Dia-<br>gnostics | Check the character attributes on the 80*25 & 40*25 display.          |
| Graphic Mode<br>Diagnostics                         | to verify that the 640*200 & 320*200 graphic mode display is correct. |
|                                                     | Procedure                                                             |
| One Page Display<br>on Text Mode<br>Diagnostics     | Check each page (1-3) shown on the 80*25 display.                     |
| End                                                 |                                                                       |

#### 6.4.5 Floppy Disk Diagnostics

|                                     | Procedure                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                               |                                                                                                                                                                                                                                                                                                                                                                                                                |
| FDD Reading/<br>Writing Diagnostics | Set the parameters according to the FDD and the medium. Repeat the following procedure on each track form No.0 to the largest No.; READ (INT 13H, AH=02H) and confirm that reading has been carried out properly. WRITE (INT 13H, AH=03H) and confirm that writing has been carried out properly. Then compare the result with the data of the reading and writign test to confirm that both values are equal. |
| End                                 | (It may scratch diskette)                                                                                                                                                                                                                                                                                                                                                                                      |

#### 6.4. 6 Serial Port Diagnostics

|                                       | Procedure                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                                 |                                                                                                                                                                                                                                                                                                                                                     |
| Loop-Back<br>Connector<br>Diagnostics | Perform the loop-back test in the following procedures; *Set the transferring rate (9600 bps) *Set the transferring system (8 bits, none parity, and 1 stop bit). *Transmit the data. *Receive the data. *Is the received data equal to the transmitted data? *Check that no frame error, overrun error, time-out error parity error have occurred. |
| End                                   |                                                                                                                                                                                                                                                                                                                                                     |

#### 6.4.7 Printer Port Diagnostics

|                                          | Procedure                                                                                                                                                                                                                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start                                    |                                                                                                                                                                                                                                                                            |
| Loop-Back Con<br>nector Diagno-<br>stics | Perform the loop-back in the following procedure:  *Confirm that the initialization has been carried out properly.  *Transmit the data.  *Receive the data.  *Is the received data equal to the transmitted data?  *Check that no I/O error, time-out error have occurred. |
| End                                      |                                                                                                                                                                                                                                                                            |

#### 6.5 Power on Selftest Error Codes

V86P POST ERROR CODE:

TEST ------1/O Port 80H POST CODE

| POSTCODE | 1E31/O FOIL 80IT                                                               |
|----------|--------------------------------------------------------------------------------|
| POST 1   | PROCESSOR TEST 1: PROCESSOR STATUS VERIFICATION CONTINUE TEST IF               |
|          | OK.                                                                            |
| POST 2   | PROCESSOR TEST 2: READ/WRITE/VERIFY ALL REGISTERS.                             |
| POST 3   | INITIALIZE 82C100                                                              |
| POST 4   | INITIALIZE 82C425                                                              |
| POST 5   | INITIALIZE 82C601                                                              |
| POST 6   | INITIALIZE CHIPS (DMA, 8259) DISABLE COLOR AND MONO VIDEO, PARITY CIRCUIT, DMA |
| POST 9   | CHECKSUM THE ROM - 32K BY-<br>TES                                              |
| POST 10  | TEST FONT SRAM                                                                 |
| POST 14  | INITIALIZE REAL TIME CLOCK                                                     |
| POST 15  | TEST COMS CHECKSUM                                                             |
| POST 21  | TEST FIRST 64K MEMORY<br>BANK                                                  |
| POST 22  | SETUP INTERRUPT TABLE IN<br>FIRST 64K                                          |
| POST 23  | SETUP VIDEO I/O OPERATION                                                      |
| POST 24  | TEST VIDEO MEMORY                                                              |
| POST 25  | TEST 8259 MASK BITS -CHAN-<br>NEL 1                                            |
| POST 28  | TEST COMS CHECKSUM FLAG                                                        |
| POST 29  | CLEAR MEMORY SIZE                                                              |
| POST 30  | SIZING SYSTEM MEMORY                                                           |
| POST 31  | TEST BASE MEMORY 64K TO<br>TOP OF MEMORY                                       |
| POST 32  | TEST STUCK 8259'S INTER-<br>RUPT<br>BITS                                       |
| POST 34  | TEST 8259 INTERRUPT FUNC-<br>TIONALITY                                         |
| POST 35  | SIZING EXPANSION MEMORY SYSTEM                                                 |
| POST 36  | SETTING EXPANSION MEMORY SYSTEM                                                |
| POST 37  | SETTING COM/PRN PORT                                                           |
| POST 42  | KEYBOARD ENABLE AND TEST<br>SETUP HARDWARE INTERRUP<br>TABLE                   |
| POST 43  | TEST AND INITIALIZE FLOPPY CONTROLLER                                          |
| POST 44  | TEST PARALLEL PORT TEST SERIAL PORT TEST GAME PORT                             |
| POST 47  | CHECK 8087 INSTALLATION                                                        |
| POST 49  | SCAN EXTERNAL BIOS AND EXECUTE IT                                              |
| POST FF  | INT 19 BOOT ATTEMPT                                                            |
|          |                                                                                |

#### 6.6 Tools and test equipment

The following special items are required.
For Diagnostics Test:
(1) Loopback Adapter (For Serial Port Test)
Interconnect the 9-Pin, female, D-shell connector

| Pin No.         |       | Pin No.             |
|-----------------|-------|---------------------|
| Carrier Detect  | 1 - 5 | Signal Ground       |
| Received Data   | 2 - 3 | Transmitted data    |
| Data Set Ready  | 6 - 4 | Data Terninal Ready |
| Request to Send | 7 - 8 | Clear to Send       |

(2) Loopback Adapter (For Parallel Port Test) Interconnect 25-Pin, male, D-shell connector & Shown below.

| Pin <b>No.</b> | Pin No. |
|----------------|---------|
| 1 -            | 13      |
| 2 -            | 15      |
| 10 -           | 16      |
| 11 -           | 17      |
| 12 -           | 14      |

For Assembly/Disassembly

- (1) 5.5mm Nut Driver (2) "+" Screw Driver

#### **7 VOLTAGE ADAPTER**

#### 7.1 Specifications

The adapter is a full range AC input adapter which operates from 90VAC to 270VAC, 50/60Hz, so it is universal for all the countries. The brief specifications are listed as follows:

#### Input Characteristics

| Input voltage   | 90VAC - 270VAC     |
|-----------------|--------------------|
| Input frequency | 47 Hz to 63 Hz     |
| Input current   | 1.2A (RMS) max for |
|                 | 115VAC             |
|                 | 0.6A (RMS) max for |
|                 | 230VAC             |

#### **Output Characteristics** (Voltage Va)

| Output Voltage     | 5.6VDC+3/-6% |
|--------------------|--------------|
| Load current range | 0A to 3A     |
| Ripple & noise     | 200 mVp-p    |

#### (Voltage Vb)

| Output voltage     | 6.1VDC+-5% |
|--------------------|------------|
| Load current range | 0A to 1.2A |

#### (Voltage POK)

| Output voltage     | 7.15VDC-<br>7.65VDC |  |
|--------------------|---------------------|--|
| Load current range | 0A to 50mA          |  |

#### Adapter DC-cord Pin Assignment

| Pin No.               | Output |  |
|-----------------------|--------|--|
| 1.                    | Va     |  |
| 2.                    | Vb     |  |
| 3.                    | POK    |  |
| The outer shell = GND |        |  |



7-1

Fig. 7.1

#### 7.2 Parts list

| 4822 212 60021 | Complete assy       |
|----------------|---------------------|
| 4822 432 40032 | Lower cabinet       |
| 4822 432 40033 | Top cabinet         |
| 4822 321 61342 | DC power cable      |
| 5322 321 14018 | Mains cable (Euro)  |
| 4822 321 10713 | Mains cable (UK)    |
| 4822 321 10712 | Mains cable (Swiss) |



Fig. 7-2

## **8 CIRCUIT BOARD ASSEMBLIES** (CBA)

#### 8.1 Main Board

#### 8.1.1. Main board assembly

The Main Board consists of the following systems:

CPU (Central Processing Unit)

System Logic (HT-21)

ROM (Read only Memory ) BIOS

RAM (Random Access Memory)

Real Time Clock Generator (DS-1287)

Keyboard Controller & Encoder (8042 & 80C51)

LCD/CRT Controller Interface (CL-GD 610, 620)

Parallel Port & Serial Port Interface (82C601)

Floppy Disk Interface (8473)

The 80386SX is used for the system CPU (32 bit microprocessor) and the CPU clock frequency can be switched for low speed operation from the standard 16 MHz to 8 MHz. The ROM BIOS consists of one 128K x 8 bit EPROM modu-

The standard RAM is factory installed 1 MB.

The Liquid Crystal Display (LCD) controller is compatible with programs that use the IBM Video Graphics Array.

The floppy disk controller provided with two floppy disk drives through an internal FDD interface and the other external FDD interface.

The system has a built-in hard disk with a capacity of 40 Megabytes (MB), and average access time is 29ms.

#### 8.1.2 Connector pin assignment

#### J1 25-Pin Female Connector for EXT. FDD

| Pin No. | Signal | Pin No. | Singal |
|---------|--------|---------|--------|
| 1.      | GND    | 14.     | -RWC   |
| 2.      | -IDX   | 15.     | -HS    |
| 3.      | TR00   | 16.     | -DIRC  |
| 4.      | -WP    | 17.     | -STEP  |
| 5.      | -RD    | 18.     | GND    |
| 6.      | -DCH   | 19.     | GND    |
| 7.      | +5V    | 20.     | GND    |
| 8.      | +5V    | 21.     | GND    |
| 9.      | +5V    | 22.     | GND    |
| 10.     | -DS2   | 23.     | GND    |
| 11.     | -MO2   | 24.     | GND    |
| 12.     | -WD    | 25.     | GND    |
| 13      | -WGATE |         |        |

#### CN1 15-Pin Female Connector for CRT

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | IOR    | 9.      | NC     |
| 2.      | IOG    | 10.     | GND    |
| 3.      | IOB    | 11.     | M SO   |
| 4.      | MS2    | 12.     | MS1    |
| 5.      | GND    | 13.     | BHSYNC |
| 6.      | GND    | 14.     | BVSYNC |
| 7.      | GND    | 15.     | NC     |
| 8.      | GND    |         |        |

#### CN2 96-Pin Connector for EXT. Bus

| Pin No.    | Signal   | Pin No.  | Signal        |
|------------|----------|----------|---------------|
| 1.         | GND      | 28.      | BALE          |
| 2.         | RESETDRV | 29.      | <b></b>       |
| 3.         | +5V      | 30.      | 0SC           |
| 4.         | IRQ3     | 31.      | GND           |
| 5.         | NC       | 32.      | -IOCHCK       |
| 6.         | DRQ2     | 33.      | \$ <b>D</b> 7 |
| 7.         | +5V      | 34.      | SD6           |
| 8.         | -OWS     | 35.      | SD5           |
| 9.         | +5V      | 36.      | SD4           |
| 10,        | GND      | 37.      | SD3           |
| 11.        | -SMEMW   | 38.      | SD2           |
| 12.        | -SMEMR   | 39.      | SD1           |
| 13.        | -IOW     | 40.      | SD0           |
| 14.        | -IOR     | 41.      | OCHRDY        |
| 15.        | -DACK3   | 42.      | AEN           |
| 16.        | DRQ3     | 43.      | SA19          |
| 17.        | -DACK1   | 44.      | SA18          |
| 18.        | DRQ1     | 45.      | SA17          |
| 19.        | -REF     | 46.      | SA16          |
| 20.        | SYSCLK   | 47.      | SA15          |
| 21.        | IRQ7     | 48.      | SA14          |
| 22.        | IRQ6     | 49.      | SA13          |
| 23.        | IRQ5     | 50.      | SA12          |
| 24.        | IRQ4     | 51.      | SA11          |
| 25.        | IRQ3     | 52.      | SA10          |
| 26.        | -DACK2   | 53.      | SA9           |
| 27.        | TC       | 54.      | SA8           |
| 55.        | SA7      | 76.      | -DACK7        |
| 56.        | SA6      | 77.      | DRQ7          |
| 57.        | SA5      | 78.      | -MASTER       |
| 58.        | SA4      | 79.      | -SBHE         |
| 59.        | SA3      | 80.      | LA23          |
| 60.        | SA2      | 81.      | LA22          |
| 61.        | SA1      | 82.      | LA21          |
| 62.        | SA0      | 83.      | LA20          |
| 63.        | -MEMCS16 | 84.      | LA19          |
| 64.        | -IOCS16  | 85.      | LA18          |
| 65.        | IRQ10    | 86.      | LA17          |
| 66.        | IRQ11    | 87.      | -MEMR         |
| 67.        | IRQ12    | 88.      | -MEMW         |
| 68.        | IRQ15    | 89.      | SD8           |
| 69.        | IRQ14    | 90.      | SD9           |
| 70.        | -DACK0   | 91.      | SD10          |
| 71.        | DRQ0     | 92.      | SD11          |
| 72.        | -DACK5   | 93.      | SD12          |
| 73.        | DRQ5     | 94.      | SD13          |
| 74.        | -DACK6   | 95.      | SD15          |
| 74.<br>75. | DRQ6     | 96.      | SD16          |
| /5.        | וחחמס    | <u> </u> |               |

8-2 CN3 9-Pin Male Connector for CDM Port

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | DCD    | 6.      | DSR    |
| 2.      | RXD    | 7.      | RTS    |
| 3.      | TXD    | 8.      | CTS    |
| 4.      | DTR    | 9.      | RI     |
| 5.      | GND    |         |        |

#### CN4 25-Pin Female Connector for Parallel

| Pin No. | Signal  | Pin No. | Signal  |
|---------|---------|---------|---------|
| 1.      | -STROBE | 14.     | -AUTOFD |
| 2.      | PD0     | 15.     | -PTRERR |
| 3.      | PD1     | 16.     | -INIT   |
| 4.      | PD2     | 17.     | -SLCTIN |
| 5.      | PD3     | 18.     | GND     |
| 6.      | PD4     | 19.     | GND     |
| 7.      | PD5     | 20.     | GND     |
| 8.      | PD6     | 21.     | GND     |
| 9.      | PD7     | 22.     | GND     |
| 10.     | -ACK    | 23.     | GND     |
| 11.     | PTRBUSY | 24.     | GND     |
| 12.     | PE      | 25.     | GND     |
| 13.     | SLCT    |         |         |

# CN5 20-Pin Flexible Flat Circuit Connector for LCD Assembly

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | VDD    | 11.     | UD0    |
| 2.      | GND    | 12.     | UD1    |
| 3.      | VEE    | 13.     | UD2    |
| 4.      | LC     | 14.     | UD3    |
| 5.      | LMDD   | 15.     | LD0    |
| 6.      | NC     | 16.     | LD1    |
| 7.      | LC     | 17.     | LD2    |
| 8.      | FLM    | 18.     | LD3    |
| 9.      | SH     | 19.     | +5V    |
| 10.     | NC     | 20.     | NC     |

#### CN8 40-Pin Housing RAM Module

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | -CASL3 | 21.     | MA4    |
| 2.      | +5V    | 22.     | D11    |
| 3.      | -CASL3 | 23.     | MA5    |
| 4.      | -CASH3 | 24.     | D10    |
| 5.      | D0     | 25.     | D3     |
| 6.      | -CASH3 | 26.     | GND    |
| 7.      | MAO    | 27.     | MA6    |
| 8.      | GND    | 28.     | D9     |
| 9.      | MA1    | 29.     | MA7    |
| 10.     | D15    | 30.     | D8     |
| 11.     | D1     | 31.     | D4     |
| 12.     | D14    | 32.     | -RAS3  |
| 13.     | MA2    | 33.     | MA8    |
| 14.     | -RAS3  | 34.     | D7     |
| 15.     | МАЗ    | 35.     | MA9    |
| 16.     | D13    | 36.     | D6     |
| 17.     | D2     | 37.     | D5     |
| 18.     | D12    | 38.     | -RMWE  |
| 19.     | GND    | 39.     | +5V    |
| 20.     | GND    | 40.     | +5V    |

#### CN6 44-Pin header for HDD Assembly

| Pin No. | Signal  | Pin No. | Signal  |
|---------|---------|---------|---------|
| 1.      | -RESET8 | 23.     | -IOW    |
| 2.      | GND     | 24.     | -IOR    |
| 3.      | IDED7   | 25.     | -IOR    |
| 4.      | SD8     | 26.     | GND     |
| 5.      | SD6     | 27.     | NC      |
| 6.      | SD9     | 28.     | NC      |
| 7.      | SD5     | 29.     | NC      |
| 8.      | SD10    | 30.     | GND     |
| 9.      | SD4     | 31.     | IRQ14   |
| 10.     | SD11    | 32.     | -IOCS16 |
| 11.     | SD3     | 33.     | SA1     |
| 12.     | SD12    | 34.     | NC      |
| 13.     | SD2     | 35.     | SA0     |
| 14.     | SD13    | 36.     | SA2     |
| 15.     | SD1     | 37.     | -HDCS   |
| 16.     | SD14    | 38.     | CS1     |
| 17.     | SD0     | 39.     | -ACTIVE |
| 18.     | SD15    | 40.     | GND     |
| 19.     | GND     | 41.     | +5V     |
| 20.     | NC      | 42.     | +5V     |
| 21.     | NC      | 43.     | GND     |
| 22.     | GND     | 44.     | +5V     |

#### CN7 40-Pin Housing RAM Module

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | -CASL2 | 21.     | MA4    |
| 2.      | +5V    | 22.     | D11    |
| 3.      | -CASL2 | 23.     | MA5    |
| 4.      | -CASH2 | 24.     | D10    |
| 5.      | D0     | 25.     | D3     |
| 6.      | -CASH2 | 26.     | GND    |
| 7.      | MAO    | 27.     | MA6    |
| 8.      | GND    | 28.     | D9     |
| 9.      | MA1    | 29.     | MA7    |
| 10.     | D15    | 30.     | D8     |
| 11.     | D1     | 31.     | D4     |
| 12.     | D14    | 32.     | -RAS2  |
| 13.     | MA2    | 33.     | MA8    |
| 14.     | -RAS2  | 34.     | D7     |
| 15.     | MA3    | 35.     | MA9    |
| 16.     | D13    | 36.     | D6     |
| 17.     | D2     | 37.     | D5     |
| 18.     | D12    | 38.     | -RMWE  |
| 19.     | GND    | 39.     | +5V    |
| 20.     | GND    | 40.     | +5V    |

#### CN9 20-Pin Header for Power Board

| Pin No. | Signal   | Pin No. | Signal   |
|---------|----------|---------|----------|
| 1.      | +5V      | 11.     | GND      |
| 2.      | +5V      | 12.     | -FDDLED  |
| 3.      | +5V      | 13.     | GND      |
| 4.      | +5V      | 14.     | -HDDLED  |
| 5.      | NC       | 15.     | GND      |
| 6.      | NC       | 16.     | BEEP     |
| 7.      | VEE      | 17.     | GND      |
| 8.      | CONTRAST | 18.     | LCDPWREN |
| 9.      | VDD      | 19.     | GND      |
| 10.     | BRIGHT   | 20.     | LCDE     |

# CN10 22-Pin Flexible Flat Circuit Connector for Keyboard Assembly

| Pin No. | Signal   | Pin No. | Signal |
|---------|----------|---------|--------|
| 1.      | +5V      | 12.     | MY1    |
| 2.      | -STRAPEN | 13.     | MY2    |
| 3.      | MX7      | 14.     | MY3    |
| 4.      | MX6      | 15.     | MY4    |
| 5.      | MX5      | 16.     | MY5    |
| 6.      | MX4      | 17.     | MY6    |
| 7.      | МХЗ      | 18.     | MY7    |
| 8.      | MX2      | * 19.   | MY8    |
| 9.      | MX1      | 20.     | MY9    |
| 10.     | MXo      | 21.     | MY10   |
| 11.     | MY0      | 22.     | MY11   |

# CN11 20-Pin Flexible Flat Circuit Connector for FDD Assembly

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | -STEP  | 11.     | -WD    |
| 2.      | +5V    | 12.     | GND    |
| 3.      | -IDX   | 13.     | -FWE   |
| 4.      | +5V    | 14.     | GND    |
| 5.      | GND    | 15.     | -RDD   |
| 6.      | DS1    | 16.     | GND    |
| 7.      | NC     | 17.     | -TR00  |
| 8.      | M01    | 18.     | -WP    |
| 9.      | DIRC   | 19.     | -HS    |
| 10.     | GND    | 20.     | -DCH   |

#### CN12 16-Pin Housing for Power Board

| Pin No. | Signal  | Pin No. | Signal  |
|---------|---------|---------|---------|
| 1.      | PCUD0   | 9.      | PCUD4   |
| 2.      | -Hostwr | 10.     | -KIVRAM |
| 3.      | PCUD1   | 11.     | PCUD5   |
| 4.      | -HDSTRD | 12.     | NC      |
| 5.      | PCUD2   | 13.     | PCUD6   |
| 6.      | -PCUINT | 14.     | -PDS    |
| 7.      | PCUD3   | 15.     | PCUD7   |
| 8.      | PWRG00D | 16.     | NC      |

#### CN13 6-Pin Mini-DIN Connector for PS/2 Mouse

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | MDATA  | 4.      | +5     |
| 2.      | NC     | 5.      | MCLOCK |
| 3.      | GND    | 6.      | NC     |

# CN14 6-Pin Mini-Din Connector for EXT. Keyboard/Keypad

| Pin No. | Signal | Pin No. | Signal      |
|---------|--------|---------|-------------|
| 1.      | KPDATA | 4.      | +5V         |
| 2.      | NC     | 5.      | <b>₩CLK</b> |
| 3.      | GND    | 6.      | NC          |

#### CN15 20-Pin Header for Int. Modem

| Pjin No. | Signal | Pin No. | Signal |
|----------|--------|---------|--------|
| 1.       | -DCD2  | 11.     | -RTS2  |
| 2.       | GND    | 12.     | NC     |
| 3.       | RXD2   | 13.     | -CTS2  |
| 4.       | SPK2   | 14.     | NC     |
| 5.       | TXD2   | 15.     | -RI2   |
| 6.       | NC     | 16.     | NC     |
| 7.       | -DTR2  | 17.     | NC     |
| 8.       | GND    | 18.     | +5V    |
| 9.       | -DSR2  | 19.     | NC     |
| 10.      | GND    | 20.     | GND    |



45 771 A12

# 8.1.4 CBA component layout

1. Top side



COMPONENT SIDE

## 2. Bottom side



SOLDER SIDE



























Sheet 13 of 17

no 45 788 A1Z





## 8.1.6 Partslist Main board:

| U3     | 4822 209 63325 | CI-CD610-32QC-G      |
|--------|----------------|----------------------|
| U-1    | 4822 209 63333 | Kb/mouse ctrl 8042   |
| U14    | 4822 209 63328 | 82C601               |
| U15    | 4822 209 63324 | HT 21                |
| U20    | 4822 209 63329 | 80C286-12            |
| U22    | 4822 209 63327 | DP8473v              |
| SPK1   | 4822 280 10243 | Buzzer               |
| U-RA   | 4822 212 60022 | 328 ram module       |
| U-SY   | 4822 900 10203 | Sys/rom module (338) |
| U-13   | 4822 209 63326 | DS1287 (rtc)         |
| U-19   | 4822 209 63332 | Kb encoder 80C51     |
| U-24   | 4822 209 63314 | CI-CD620-32QC-C      |
| CN9.10 | 4822 265 41088 | Mini din 6p          |
|        |                |                      |

# **Troubleshooting Main Board**



45 765 A12





#### 8.2 Power Board

### 8.2.1 Power Supply Assembly

The power supply consists of charge control circuit on the power board and some other control circuits on the main board. It receives power from adapter (5.6V, 6.1V, 7.15V)) or battery (4.8V nominal) and supplies power to:

- (1) The main board (+5V, PG, BTW, BUP, LCDE)
- (2) The LCD (VDD, VEE)
- (3) The backlight (CCFT)
- (4) Battery power indicator (PGR, PRD, CHRG, CHRG)
  Please refer to the block diagram on the following page for
  the operation concept.

The power board consists of four blocks as follows:

1. Charge control circuit

The power controller 87C51 can detect the battery whether charging is completed (charge LED off) by sensing the battery voltage. It is because, after battery is fully charged, further charging will cause the reduction of its voltage.

2. Voltage detector

The 87C51 reads the voltage of main battery, +5V from ADC0833 and manages the power of the whole system.

a. When switch on the unit, firstly, it detects the input voltage is enough or not, the turn on the control circuit to generate 5V, send PG (POWER GOOD) signal for main board, and light up green power LED. When the output voltage is lower than 4.6V, it will change to battery low mode. Under thismode, the buzzer will beep twice every 15 seconds. Upon using battery and the output voltage being lower than 4.5V, it will change to battery warning mode, the buzzer will beep four times every 10 seconds.

3. Power supply circuit

The transformer can transform the input voltage 5.0V to 15V, which supports the MOSFET as bias voltage. The output MOSFET is regulated to 5V.

4. Power supply of LCD circuit

It generates VDD and VEE for LCD when the signal LCDE is high. The circuit uses 5V to generate VDD. The VEE depends on the signal from keyboard controller 87C51 on the main board. When the duty of the signal increases, the VEE de-creases.

5. Power Supply for Backlight (CCFT)

It generates VBL for CCFT when the signal BLE is low. The circuit uses VSW to generate VBL. The VBL depends on the signal from keyboard controller 87C51 on the main board. When the duty of the siganl increases, the VBL increase.

#### 8.2.2 Connector pin assignment

#### CN1 4-pin Voltage Adapter connector

## Pin.no Signal

- 1 VA
- 2 VB
- 3 POK
- 4 GND

#### J2 2-pin battery connector

## Pin.no Signal

- 1 +VM
- 2 GND

#### J3 5-pin backlight connector

#### Pin.no

#### Signal

- 1 VCFF (AC)
- 2 NC
- 3 NC
- 4 NC
- 5 VCFF (AC)



# 8.2.4 CBA component layout 1. Top side



# 2. Bottom side



|  |  | η. |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  | ř. |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  | 4  |
|  |  | :  |
|  |  | :  |
|  |  | :  |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  | .* |
|  |  | .* |
|  |  |    |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |
|  |  | .* |



|   | • |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
| • |   |
|   |   |
|   |   |
|   |   |



# 8.2.6 Partslist Power board:

|         | 4822 212 60062  | Complete assy  |
|---------|-----------------|----------------|
| SW1     | 4822 271 30728  | Micro switch   |
| U1      | 4822 209 63318  | ADC0833        |
|         | 5322 209 81559  | LM336BZ        |
|         | 4822 209 70287  | M5237L         |
|         | 4822 209 30135  | LT1170         |
|         | 4822 209 30136  | Microprocessor |
|         | 4822 212 60063  | Module DC-AC   |
| U5      | 4822 209 63315  | 80C51          |
| SW2     | 4822 277 21463  | Slide on/off   |
| U4-U7   | 4822 209 63319  | LM3578A        |
| U19,U33 | 34822 209 63316 | TL431          |
| LED1-4  | 4822 130 82343  | Green          |
| CN1     | 4822 265 41085  | Mini din 3p    |
|         | 4822 280 20486  | Relay mini     |

# **Troubleshooting Power Board**





## 8.3 Keyboard

# 8.3.1 Keyboard Assembly

Keyboard assembly consists of a printed circuit board, key switches and key caps. The Keyboard Assembly is connected to the Main Board through a 22 pin flat flexible cable.

## 8.3.2 Scan Code

| Key  | Make   | Break | Key   | Make | Break      |
|------|--------|-------|-------|------|------------|
| No.  | Code   | Code  | No.   | Code | Code       |
| 1.   | 29     | A9    | 29.*  | 2B   | AB         |
| 2.   | 02     | 82    | 30.   | ЗА   | BA         |
| 3.   | 03     | 83    | 31.   | 1E   | 9E         |
| 4.   | 04     | 84    | 32.   | 1F   | 9F         |
| 5.   | 05     | 85    | 33.   | 20   | <b>A</b> 0 |
| 6.   | 06     | 86    | 34.   | 21   | A1         |
| 7    | 07     | 87    | 35.   | 22   | A2         |
| 8.   | 08     | 88    | 36.   | 23   | A3         |
| 9.   | 09     | 89    | 37.   | 24   | A4         |
| 10.  | OA     | 8A    | 38.   | 25   | <b>A</b> 5 |
| 11.  | ОВ     | 8B    | 39.   | 26   | <b>A</b> 6 |
| 12.  | ос     | 8C    | 40.   | 27   | A7         |
| 13.  | OD     | 8D    | 41.   | 28   | A8         |
| 15.  | OE     | 8E    | 42**. | 2B   | AB         |
| 16.  | OF     | 8F    | 43.   | 1C   | 9C         |
| 17.  | 10     | 90    | 44.   | 2A   | AA         |
| 18.  | 11     | 91    | 45**. | 56   | D6         |
| 19.  | 12     | 92    | 46.   | 2C   | AC         |
| 20.  | 13     | 93    | 47.   | 2D   | AD         |
| 21.  | 1.4    | 94    | 48.   | 2E   | AE         |
| 22.  | 15     | 95    | 49.   | 2F   | AF         |
| 23.  | 16     | 96    | 50.   | 30   | B0         |
| 24.  | 17     | 97    | 51.   | 31   | B1         |
| 25.  | 18     | 98    | 52.   | 32   | B2         |
| 26.  | 19     | 99    | 53.   | 33   | B3         |
| 27.  | 1A     | 9A    | 54.   | 34   | B4         |
| 28.  | 1B     | 9B    | 55.   | 35   | B5.        |
|      |        |       |       |      |            |
| Key  | Make   | Break | Key   | Make | Break      |
| No.  | 1      | Code  | No.   | Code | Code       |
| 57.  | 35     | B6    | 116.  | 3F   | BF         |
| 58.  | 36     | 9D    | 117.  | 40   | CO         |
| 60.  | 38     | B8    | 118.  | 41   | C1         |
| 61.  | 39     | B9    | 119.  | 42   | C2         |
| 90.  | 45     | C5    | 120.  | 43   | C3         |
| 110. |        | 81    | 121.  | 44   | C4         |
| 112. |        | BB    | 122.  | 57   | D7         |
| 113. |        | ВС    | 123.  | 58   | D8         |
| 114. |        |       | 125.  | 46   | C6         |
|      | .   3D | BD    | 120.  | 1 40 | 00         |

<sup>\* 101-</sup>Key keyboard only.

<sup>\*\* 102-</sup>key keyboard only.



| 8.3.3 Connecto | r pin assignment |
|----------------|------------------|
|----------------|------------------|

| Key<br>No. | Base Case,<br>or Shift +<br>Num Lock<br>Make/<br>Break | Shift Case<br>Make/Break          | Num Lock<br>on<br>Make/Break      |
|------------|--------------------------------------------------------|-----------------------------------|-----------------------------------|
| 75         | D0 52/<br>E0 D2                                        | E0 AA E0<br>52/<br>E0 D2 E0<br>2A | E0 2A E0<br>52/<br>E0 D2 E0<br>AA |
| 76         | E0 53/<br>E0 D3                                        | E0 AA E0<br>53/<br>E0 D3 E0<br>2A | E0 2A E0<br>53/<br>E0 D3 E0<br>AA |
| 79         | E0 4B/<br>E0 CB                                        | E0 AA E0<br>4B/<br>E0 CB E0<br>2A | E0 2A E0<br>4B/<br>E0 CB E0<br>AA |
| 80         | E0 47/<br>E0 C7                                        | E0 AA E0<br>47/<br>E0 C7 E0<br>2A | E0 2A E0<br>47/<br>E0 C7 E0<br>AA |
| 81         | E0 4F/<br>E0 CF                                        | E0 AA E0<br>4F/<br>E0 CF E0<br>2A | E0 2A E0<br>4F/<br>E0 CF E0<br>AA |
| 83         | E0 48/<br>E0 C8                                        | E0 AA E0<br>48/<br>E0 C8 E0<br>2A | E0 2A E0<br>48/<br>E0 C8 E0<br>AA |
| 84         | E0 50/<br>E0 D0                                        | E0 AA E0<br>50/<br>E0 D0 E0<br>2A | E0 2A E0<br>50/<br>E0 D0 E0<br>AA |
| 85         | E0 49/<br>E0 C9                                        | E0 AA E0<br>49/<br>E0 C9 E0<br>2A | E0 2A E0<br>49/<br>E0 C9 E0<br>AA |
| 86         | E0 51/<br>E0 D1                                        | E0 AA E0<br>51/<br>E0 D1 E0<br>2A | E0 2A E0<br>51/<br>E0 D1 E0<br>AA |
| 89         | E0 4D/<br>E0 CD                                        | E0 AA E0<br>4D/<br>E0 CD E0       | E0 2A E0<br>4D/<br>E0 CD E0       |

\* If the left shift key is held down, the AA/2A shift make and break is sent with the other scan codes. If the right Shift key is held down. B6/36 is sent. If both Shift key are down, both sets of codes are sent with the other scan code.

2A

| Key<br>No. | Scan Code<br>Make/Break     | Ctrl Case,<br>Shift Case<br>Make/Break | Alt Case<br>Make/<br>Break |
|------------|-----------------------------|----------------------------------------|----------------------------|
| 124        | E0 2A E0 37/<br>E0 B7 E0 AA | E0 37 /E0 B7                           | 54/D4                      |

| Key No. | Make Code         | Ctrl Key Pres-<br>sed |
|---------|-------------------|-----------------------|
| 126     | E1 1D 45 9D<br>C5 | E0 46 E0 C6           |

This key not typematic. All associated scan codes occur on the make of the key.

U.S. KEYBOARD



MDA.02991 T19/117

EUROPEAN KEYBOARD



MDA.02990 T19/117



# 2. Bottom side



45 763 A12

## 8.3.5 Circuit diagram



# 8.3.6 Partslist Keyboard:

4822 219 82529 Complete assy (USA version) 4822 130 30621 1N4148 4822 130 82362 LED (green)

4822 130 82362 LED (green)
4822 111 91977 Resistor network

4822 321 60976 flat cable 4822 271 30729 Keyswitch 4822 271 30728 Keyswitch fn

## 9 DEVICES

#### 9.1 Hard disk drive

# 9.1.1 PCL304 HDD assembly specification

The PCL304 uses a 3.5" 42.9MB 19.05mm (0.75") hard disk drive type Conner CP4034:

Servo

Embedded

Nr. platters

Data heads

2 Formatted capacity 42.9 MB

Bytes per block

512

Blocks per drive Sectors/track

83.904

Bytes/track

39 19456

2100 TPI

track density recording density **34 K BPI** 

data tranfer rate

to/from buffer

3.75 MB/sec

to/from media

1.25 MB/sec

Recording method

2 of 7 RLL

Average Seek time Startup time (max.)

29 ms

20 sec.

Average latency Rotation speed (1%) 2913 RPM

10.3 ms

Interleave

1:1

Buffer size

32K

Supply voltage Power consumption:

5V

Read/write/seek

2.8 W 0.4 W

Standby Dimensions

0.75" x 4.00" x 5.15"

# 9.1.2 Pin Assignment

| Pin No. | Signal   | Pin No. | Signal     |
|---------|----------|---------|------------|
| 1.      | -RESET   | 23.     | -IOW       |
| 2.      | GND      | 24.     | GND        |
| 3.      | +DATA 7  | 25.     | -IOR       |
| 4.      | +DATA 8  | 26.     | GND        |
| 5.      | +DATA 6  | 27.     | RESERVED   |
| 6.      | +DATA 9  | 28.     | ALE        |
| 7.      | +DATA 5  |         | RESERVED   |
| 8.      | +DATA 10 | 30.     | GND        |
| 9.      | +DATA 4  | 31.     | IRQ14      |
| 10.     | +DATA 11 | 32.     | -IO16      |
| 11.     | +DATA 3  | 33.     | +ADDR 1    |
| 12.     | +DATA 12 | 34.     | -PDIAG     |
| 13.     | +DATA 2  | 35.     | +ADDR 0    |
| 14.     | +DATA 13 | 36.     | +ADDR 2    |
| 15.     | +DATA 1  | 37.     | -CSO       |
| 16.     | +DATA 14 | 38.     | -CS1       |
| 17.     | +DATA 0  | 39.     | -ACTIVE    |
| 18.     | +DATA 15 | 40.     | GND        |
| 19.     | GND      | 41.     | +5V(Logic) |
| 20.     | KEY      | 42.     | +5V(Motor) |
| 21.     | RESERVED | 43.     | GND        |
| 22.     | GND      | 44.     | -XT/AT     |

# 9.1.3 Installing instructions

Hard disk units are non repairable system components, this means that in case of failures the complete hard disk unit has to be replaced.

The removal and mounting of the drive is described in chap-

Installing a new hard disk does not require special actions. After changing the hard disk configuration run SET UP see chapter 4.

# 9.2 Floppy disk drive

## 9.2.1 FDD assembly specification

The PCL304/00 uses a 3.5" 1.44 MB 0.75" height floppy disk drive, type Sony MPF-220 with:

| Capacity (unformatted) | 1MB/2MB             |
|------------------------|---------------------|
| Capacity (formatted)   | 720 KB/1440 KB      |
| Recording mode         | MFM                 |
| Recording density      | 8717 BPI/17434 BPI  |
| Data transfer rate     | 250K BPS/500K BPS   |
| Singal track seek time | 3 ms                |
| Average access time    | 100 ms              |
| Rotation speed         | 300 r.p.m.          |
| Number of tracks       | 160                 |
| Number of cylinders    | 80                  |
| Number of heads        | 2                   |
| Track density          | 135 TPI             |
| Dimension (inch)       | 4(W)x0.75(H)x5.1(D) |
| Power supply           | 5V                  |

## 9.2.2 Pin Assignment

| Pin No. | Signal   | Pin No. | Signal |
|---------|----------|---------|--------|
| 1.      | STEP     | 11.     | WDATA  |
| 2.      | +5V      | 12.     | GND    |
| 3.      | IDX      | 13.     | WGATE  |
| 4.      | +5V      | 14.     | GND    |
| 5.      | GND      | 15      | RDATA  |
| 6.      | DS1      | 16.     | GND    |
| 7.      | DS2      | 17.     | TR00   |
| 8.      | MOTOR ON | 18.     | WP     |
| 9.      | DIRC     | 19.     | HS     |
| 10.     | GND      | 20.     | DCH    |

## 9.2.3 Installing instructions

Like thwe hard disk unit, floppy drives are also considered as a non repairable system component.

In case of failures the complete floppy drive has to be re-

The removal and mounting of the floppy drive is described in chapter 5.

Installing a new floppy drive does not require special actions. After changing the floppy disk configuration run SET UP see chapter 4.





# 9.3 LCD Assembly

## 9.3.1 Specifications

LCD Assembly consists of a 640x480 dots LCD module (LM64P701), a LCD cover, a LCD panel, a decoration plate and 2 connecting cables. Following please find the specification of the LCD:

| Resolution          | 640x480 dots               |
|---------------------|----------------------------|
| Duty                | 1/240                      |
| Туре                | FTN reflective type LCD    |
| Dot Size            | 0.24 (W) x 0.24<br>(H)     |
| Dot Spacing         | 0.03                       |
| Outline Dimension   | 257(W)x158.5(H)x<br>9.5(D) |
| Effective View Area | 180 (W) x 133<br>(H)       |
| Power supply VDD    | 5V                         |
| Power supply VEE    | -22V~- 28V                 |

# 9.3.2 Theory of the LCD operation

The following figure is the block diagram of the LCD module:

The LCD driver is 80 bits LSI, consisting of shift registers, latch circuits and LCD driver circuits. Display data which are externally divided into data for each row (640 dots) will be sequentially transferred in the form of 4-bit parallel data through shift registers by Clock Signal CP2 from the left top of the display face.

When data of one row (640 dots) have been input, they will be latched in the form of parallel data for 640 lines of signal electrodes by Latch Signal CP1. Then the corresponding drive signal will be transmitted to the 640 lines of column electrodes of the LCD panel by the LCD drive circuits. At this time, scan start-up signal S has been transferred from the scan signal driver to the 1st row of scan electrodes, and the contents of the data signals are displayed on the 1st rows of upper and lower half of the display face according to the combinations of voltages applied to the scan and signal electrodes of the LCD.

While the 1st rows of data are being displayed, the 2nd rows of data are entered. When 640 dots of data have been transferred, then latched on the falling edge of CP1 clock, the display face proceeds to the 2nd rows of display. Such data input will be repeated up to the 240th row of each display segment, from upper to lower rows, to complete one frame of display by time sharing method. Then data input proceeds to the next display face.

Scan start-up Signal S generates scan signal to drive horizontal electrodes.

Since DC voltage, if applied to LCD panel, causes chemical reaction which will deteriorate LCD panel, drive waveform shall be inverted at every display frame to prevent the generation of such DC voltage. Control Signal M plays such a role. Because of the characteristics of the CMOS driver LSI, the power consumption of the unit goes up as the operating frequency CP2 increases. Thus the driver LSI applies the system of transferring 4-bit parallel data through the 4 lines of shift registers to reduce the data transfer speed CP2. Thanks to the LSI, the power consumption of the unit will be minimized.

In this circuit configuation, 4-bit display data shall be therefore input to data input pins of DU0-3 (upper display segment) and DL0-3 (lower display segment.)

Furthermore the LCD unit adopts bus line system for data input to minimize the power consumption. In this system data input terminal of each driver LSI is activated only when relevant data input is fed. Data input for column electrodes of both the upper and the lower display segment and chip select of driver LSI are made as follows:

The driver LSI at the left end of the display face is first selected, and the adjacent driver LSI of the right side is selected when 80 dots data (20 CP2) is fed. This process is sequentially continued until data is fed to the driver L at the right end of the display face.

This process is simultaneously followed at the column driver LSI of both the upper and the lower display segments. Thus data input for both the upper and the lower display segments must be fed through 4 -bit bus line sequentially from the left end of display face.

Since this graphic display unit contains no refresh RAM, it requires data and timing pulse inputs even for static display.

Frame cycle of 11.7 ms min. or frame frequency of 85 Hz max. will demonstrate optimum display quality in terms of flicker an 'shadowing'. LCD unit functions at the minimum frame cycle of 8 ms (maximum frame frequency of 125 Hz).



Fig. 9-2

45 690 A14

## 9.3.3 LCD Pin Assignment

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 1.      | VDD    | 8.      | SCAN   |
| 2.      | VSS    | 9.      | CP2    |
| 3.      | VEE    | 10.     | N.C.   |
| 4.      | CP1    | 11.     | DU0    |
| 5.      | N.C.   | 12.     | DU1    |
| 6.      | N.C.   | 13.     | DU2    |
| 7.      | YSCL   | 14.     | DU3    |

| Pin No. | Signal | Pin No. | Signal |
|---------|--------|---------|--------|
| 15.     | DLO    | 18.     | DL3    |
| 16.     | DL1    | 19.     | EI     |
| 17      | DL2    | 20.     | E0     |

CCFT Pin Assignment

| CCFT PIII ASSIGNMENT |        |  |
|----------------------|--------|--|
| Pin No.              | Signal |  |
| 1.                   | HV     |  |
| 2.                   | N.C.   |  |
| 3.                   | N.C.   |  |
| 4.                   | N.C.   |  |
| 5.                   | GND    |  |

### 9.4 Battery pack

Battery Pack (4KR-5000DE) consists of 4 pcs of rapid charge type Nickel-Cadmium battery sealed together, a 80 degrees celcius breaker for protection and two contact plates.

Each of the battery is 1.2V 5000 mAH, so the total voltage is 4.8V. During charging, the voltage of battery is going up to 6.2V, which means the battery is fully charged. Then the voltage is going down, same sense, circuit of the power board catches the change of the voltage drop and makes the control circuit stop charging the battery pack.

# 10 MODIFICATION

 Description of the system used for publishing modification data and supplements to the Service Manual.

All modification data and supplements to the service manual are published by means of Service Information bullitins.

Each Service Information has a number, for example:



A Service Information bullitin consists of a yellow front sheet, as the case may be followed by supplementary and/or replacement sheets.

Replacements sheets serve to replace existing sheets in the Service Manual. These sheets are identified by an additional letter after the page number, for example 5-1a. Page 5-1a then takes the place of page 5-1.

Supplementary sheets are inserted between the existing sheets in the Service Manual. These sheets can be identified by an additional figure following the page number, for example 5-1-1.

Sheet 5-1-1 should be inserted after page 5-1.

Each Service Information is accompanied by an updated list of contents per page.

For each page added or each page replaced the list of contents indicates with wich Service Information the relevant page has been published.

 Description of the system by means of which modifications are indicated in the notebook computer.

All important parts of the notebook computer, such as power supply, p.c. boards and modules, are provided with a sticker. These stickers specify a number of product data.

The meaning of this data will now be explained for the most important sections.

The complete system unit
 Type plate
 The type plate is located underneeth the system unit.

 Below a sample of such a type plate is given:



Printed panels

The stickers are generally located on the component side of the circuit board assembly (CBA).

E.G. 00 becomes 01.



- The production status number will not always be mentioned.
- In case of an important modification, the revision number or letter will be increased in alphabetical or numerical order.