

Universidade Federal de Roraima Data:18/03/2020 Álgebra Linear MB 202

Turma: 1

Prof^a Kelly Karina Santos

Operações com Matrizes

1. Adição

Dadas duas matrizes de mesma ordem $A_{m \times n} = [a_{ij}]$ e $B_{m \times n} = [b_{ij}]$, definimos a soma de A e B e denotamos por A + B como a matriz de ordem $m \times n$ dada por:

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Exemplo:
$$\begin{bmatrix} 1 & 0 & 4 \\ 2 & -3 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 2 & -1 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$$

Propriedades:

Dadas as matrizes $A, B \in C$ de mesma ordem $m \times n$, temos:

i)
$$A + B = B + A$$
 (comutatividade)

ii)
$$A + (B + C) = (A + B) + C$$
 (associatividade)

iii)
$$A + 0 = A$$
, onde 0 denota a matriz nula $m \times n$

2. Multiplicação por escalar

Seja $A = [a_{ij}]_{m \times n}$ e K um escalar (ou seja, um número real ou complexo), então definimos o produto de k por A como sendo a matriz dada por:

$$kA = [ka_{ij}]_{m \times n}$$

Exemplo:
$$2\begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 14 \\ 0 & 6 \end{bmatrix}$$

3. Transposição

Dada uma matriz $A = [a_{ij}]_{m \times n}$ definimos A^t (e lemos "A transposta") da seguinte forma:

$$A^t = [b_{ij}]_{n \times m}$$
, onde $b_{ij} = a_{ji}$

Exemplo:

Se
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 8 \end{bmatrix}$$
 então $A^t = \begin{bmatrix} 1 & 3 \\ 2 & -4 \\ 0 & 8 \end{bmatrix}$

Propriedades:

- i) Uma matriz é simétrica se e somente se ela é igual à sua transposta;
- ii) $(A^t)^t = A$, ou seja, a transposta da transposta de uma matriz é ela mesma;
- $(A+B)^t = A^t + B^t$
- iv) $(kA)^t = kA^t$, onde k é um escalar.

4. Multiplicação de matrizes

Sejam $A = [a_{ij}]_{m \times n}$ e $B = [b_{ij}]_{n \times p}$. O produto de A e B é a matriz $C = AB = [c_{ij}]_{m \times p}$ onde:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + \dots + a_{in} b_{nj}$$

Note que o produto de duas matrizes só está definido quando o número de colunas da primeira é igual ao número de linhas da segunda. Além disso a matriz reultante deste produto terá o número de linhas da primeira e o número de colunas da segunda.

A expressão para c_{ij} acima nos diz que para obter o elemento c_{ij} da matriz AB devemos multiplicar os elementos da coluna i da matriz A pelos elementos da coluna j da matriz B e somar o resultado.

Exemplo:

$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} -2 & 2 \\ 1 & 0 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-2) + 3 \cdot 1 + (-1) \cdot 3 & 1 \cdot 2 + 3 \cdot 0 + (-1) \cdot 5 \\ 0 \cdot (-2) + 2 \cdot 1 + 5 \cdot 3 & 0 \cdot 2 + 2 \cdot 0 + 5 \cdot 5 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 17 & 25 \end{bmatrix}$$

Propriedades:

- i) Em geral $AB \neq BA$;
- ii) AI = IA = A onde I denota uma matriz identidade (onde I é uma matriz identidade com orde
- iii) A(B+C) = AB + AC
- iv) (A+B)C = AC + BC
- (AB)C = A(BC)
- $vi) (AB)^t = B^t A^t$
- $vii) 0 \cdot A = 0 e A \cdot 0 = 0$

Exercícios

1. Sejam
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 2 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} -3 & 0 & 0 \\ 2 & 1 & 1 \end{bmatrix} C = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} e D = \begin{bmatrix} -1 & 2 \end{bmatrix}$$

Encontre:

- a) A+B;
- b) $A \cdot C$
- $c) B \cdot C$
- d) $D \cdot A$
- e) -B
- f) -D
- 2. Por que em geral $(A+B)(A-B) \neq A^2 B^2$?

3. Dadas as matrizes
$$A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}, e C = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

Mostre que AB = BA = 0, AC = A e CA = C.

4. Considere a seguinte afirmação: $(AB)^t = A^t.B^t$. A afirmação é verdadeira ou falsa? Justifique sua resposta.