CPU Instruction Set

Tables below specify the mnemonic, encoding, clock cycles, affected flags (ordered as znhc), and description. The timings assume a CPU clock frequency of 4.194304 MHz (or 8.4 MHz for CGB in double speed mode), called "T-states". Because all Game Boy timings are divisible by 4, many people specify timings and clock frequency divided by 4, called "M-cycles".

8-bit Load instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
ld r,r	XX	4		r=r
ld r,n	xx nn	8		r=n
ld r,(HL)	XX	8		r=(HL)
ld (HL),r	7x	8	_	(HL)=r
ld (HL),n	36 nn	12	_	(HL)=n
ld A,(BC)	0A	8		A=(BC)
ld A,(DE)	1A	8		A=(DE)
ld A,(nn)	FA	16		A=(nn)
ld (BC),A	02	8		(BC)=A
ld (DE),A	12	8		(DE)=A
ld (nn),A	EA	16	_	(nn)=A
ld A, (FF00+n)	FØ nn	12		read from io-port n (memory FF00+n)
ld (FF00+n),A	EØ nn	12	_	write to io-port n (memory FF00+n)
ld A, (FF00+C)	F2	8	_	read from io-port C (memory FF00+C)
ld (FF00+C),A	E2	8		write to io-port C (memory FF00+C)
ldi (HL),A	22	8		(HL)=A, HL=HL+1
ldi A,(HL)	2A	8		A=(HL), HL=HL+1
ldd (HL),A	32	8		(HL)=A, HL=HL-1
ldd A,(HL)	3A	8	_	A=(HL), HL=HL-1

16-bit Load instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
ld rr,nn	x1 nn nn	12		rr=nn (rr may be BC,DE,HL or SP)
ld (nn),SP	08 nn nn	20	_	(nn)=SP
ld SP,HL	F9	8	_	SP=HL
push rr	x5	16		SP=SP-2 (SP)=rr; rr may be BC,DE,HL,AF
pop rr	x1	12	(AF)	rr=(SP) SP=SP+2; rr may be BC,DE,HL,AF

8-bit Arithmetic/Logic instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
add A,r	8x	4	z0hc	A=A+r
add A,n	C6 nn	8	z0hc	A=A+n
add A,(HL)	86	8	z0hc	A=A+(HL)
adc A,r	8x	4	z0hc	A=A+r+cy
adc A,n	CE nn	8	z0hc	A=A+n+cy
adc A,(HL)	8E	8	z0hc	A=A+(HL)+cy
sub r	9x	4	z1hc	A=A-r
sub n	D6 nn	8	z1hc	A=A-n
sub (HL)	96	8	z1hc	A=A-(HL)
sbc A,r	9x	4	z1hc	A=A-r-cy
sbc A,n	DE nn	8	z1hc	A=A-n-cy
sbc A,(HL)	9E	8	z1hc	A=A-(HL)-cy
and r	Ax	4	z010	A=A & r
and n	E6 nn	8	z010	A=A & n
and (HL)	A6	8	z010	A=A & (HL)
xor r	Ax	4	z000	A=A xor r
xor n	EE nn	8	z000	A=A xor n
xor (HL)	AE	8	z000	A=A xor (HL)
or r	Bx	4	z000	A=A r
or n	F6 nn	8	z000	A=A n
or (HL)	В6	8	z000	A=A (HL)
cp r	Вх	4	z1hc	compare A-r

Mnemonic	Encoding	Clock cycles	Flags	Description
cp n	FE nn	8	z1hc	compare A-n
cp (HL)	BE	8	z1hc	compare A-(HL)
inc r	XX	4	z0h-	r=r+1
inc (HL)	34	12	z0h-	(HL)=(HL)+1
dec r	XX	4	z1h-	r=r-1
dec (HL)	35	12	z1h-	(HL)=(HL)-1
daa	27	4	z-0c	decimal adjust A
cpl	2F	4	-11-	A = A xor FF

16-bit Arithmetic/Logic instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
add HL,rr	х9	8	-0hc	HL = HL+rr ; rr may be BC,DE,HL,SP
inc rr	х3	8	_	rr = rr+1 ; rr may be BC,DE,HL,SP
dec rr	хВ	8		rr = rr-1 ; rr may be BC,DE,HL,SP
add SP,dd	E8 dd	16	00hc	SP = SP +/- dd; dd is 8-bit signed number
ld HL,SP+dd	F8 dd	12	00hc	HL = SP +/- dd ; dd is 8-bit signed number

Rotate and Shift instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
rlca	07	4	000c	rotate A left
rla	17	4	000c	rotate A left through carry
rrca	0F	4	000c	rotate A right
rra	1F	4	000c	rotate A right through carry
rlc r	CB 0x	8	z00c	rotate left
rlc (HL)	CB 06	16	z00c	rotate left
rl r	CB 1x	8	z00c	rotate left through carry

Mnemonic	Encoding	Clock cycles	Flags	Description
rl (HL)	CB 16	16	z00c	rotate left through carry
rrc r	CB 0x	8	z00c	rotate right
rrc (HL)	CB ØE	16	z00c	rotate right
rr r	CB 1x	8	z00c	rotate right through carry
rr (HL)	CB 1E	16	z00c	rotate right through carry
sla r	CB 2x	8	z00c	shift left arithmetic (b0=0)
sla (HL)	CB 26	16	z00c	shift left arithmetic (b0=0)
swap r	СВ 3х	8	z000	exchange low/hi-nibble
swap (HL)	CB 36	16	z000	exchange low/hi-nibble
sra r	CB 2x	8	z00c	shift right arithmetic (b7=b7)
sra (HL)	CB 2E	16	z00c	shift right arithmetic (b7=b7)
srl r	СВ 3х	8	z00c	shift right logical (b7=0)
srl (HL)	CB 3E	16	z00c	shift right logical (b7=0)

Single-bit Operation instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
bit n,r	CB xx	8	z01-	test bit n
bit n,(HL)	CB xx	12	z01-	test bit n
set n,r	CB xx	8		set bit n
set n,(HL)	CB xx	16		set bit n
res n,r	CB xx	8		reset bit n
res n,(HL)	CB xx	16	_	reset bit n

CPU Control instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
ccf	3F	4	-00c	cy=cy xor 1
scf	37	4	-001	cy=1
nop	00	4	_	no operation

Mnemonic	Encoding	Clock cycles	Flags	Description
halt	76	N*4	_	halt until interrupt occurs (low power)
stop	10 00	?	_	low power standby mode (VERY low power)
di	F3	4	_	disable interrupts, IME=0
ei	FB	4	_	enable interrupts, IME=1

Jump instructions

Mnemonic	Encoding	Clock cycles	Flags	Description
jp nn	C3 nn nn	16		jump to nn, PC=nn
jp HL	E9	4		jump to HL, PC=HL
jp f,nn	xx nn nn	16/12		conditional jump if nz,z,nc,c
jr PC+dd	18 dd	12	_	relative jump to nn (PC=PC+8-bit signed)
jr f,PC+dd	xx dd	12/8	_	conditional relative jump if nz,z,nc,c
call nn	CD nn nn	24	_	call to nn, SP=SP-2, (SP)=PC, PC=nn
call f,nn	xx nn nn	24/12		conditional call if nz,z,nc,c
ret	C9	16		return, PC=(SP), SP=SP+2
ret f	XX	20/8		conditional return if nz,z,nc,c
reti	D9	16		return and enable interrupts (IME=1)
rst n	xx	16		call to 00,08,10,18,20,28,30,38