Take Home Assignment – due on 10-04-22 – CPE 487

Student Name Alexander Gaskins

1. Convert the following numbers with the indicated bases to decimal:

a)
$$(431)_5 = [4 \cdot 5^2] + [3 \cdot 5^1] + [1 \cdot 5^0] = 116$$

b) $(198)_{12} = [1 \cdot 12^2] + [9 \cdot 12^1] + [8 \cdot 12^0] = 260$
c) $(445)_8 = [4 \cdot 8^2] + [4 \cdot 8^1] + [5 \cdot 8^0] = 293$
d) $(345)_6 = [3 \cdot 6^2] + [4 \cdot 6^1] + [5 \cdot 6^0] = 137$

- 2. Add and multiply the following numbers without converting them to decimal:
 - a) Binary numbers 1011 and 101.

b) Hexadecimal numbers 2E and 34.

2E
$$[E+4] = 0x12 \text{ carry } 1 \text{ from } 0x12 \text{ leave the } 2$$

34 $[2+3+1] = 0x6$
+ 6 on the left, 2 on the right

3. Decode the following ASCII code:

 $11000111\ 11101111\ 01101000\ 01101110\ 00100000\ 11000100\ 11101111\ 11100101$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$? ? ? ? h ? ? n

4. Complete the timing diagram of the following circuit by adding the timing trace for **f**:

X or -Z = F $F \mid 1 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 1 \mid 1 \mid 1$

5. Construct the truth table describing the output of the following circuit.

x	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Y or Z	-X	Y	F
0	1	0	0
1	1	0	1
1	1	1	0
1	1	1	0
0	0	0	1
1	0	0	0
1	0	1	1
1		1	1

6. The timing diagram below is correct for a 2-input (A & B) NOR gate.

In	Output	
Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

7. Using VHDL signal assignment statements, write a description of the circuit (called and or gates) below

Note that C' is same as C

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity and or gates is
Port ( c : in STD LOGIC;
d : in STD LOGIC;
b : in STD LOGIC;
a : in STD LOGIC;
cprime: in STD LOGIC;
end and_or_gates;
architecture SignalProcess of and or gates is
signal sig1,sig2,sig3,sig4: std logic;
begin
sig1 <= ( c and d );
sig2 <= ( b and cprime );</pre>
sig3 <= ( sig1 or b );</pre>
sig4 \le (a and sig3);
F <= ( sig2 or sig4 );
end SignalProcess;
```