PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 9 (Apr 4 – Apr 11)

- 1 (10+5) a) Let L be the splitting field of the polynomial $t^{13} 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.
 - b) How many intermediate subfields are there in the extension $L:\mathbb{Q}$?
- **2** (10) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.
- **3** (10) Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.
- 4 (10) Let L: K be a finite Galois extension, $G:=\operatorname{Gal}_K(L)$. For any $\alpha \in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha)$$
 and $\operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha)$.

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

- **5** (15+15) a) Find all of the subfields of $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$.
 - b) Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3}, e^{2\pi i/3}))$.

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (10+5) a) Let L be the splitting field of the polynomial $t^{13} 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.
 - b) How many intermediate subfields are there in the extension $L:\mathbb{Q}$?

Solution. a) Let $G = \operatorname{Gal}_{\mathbb{Q}}(t^{13} - 1)$ and we know (see lectures) that G is isomorphic to the cyclic group $\mathbb{Z}_{12} = \langle g \rangle$. It has four non-trivial subgroups $\langle g^6 \rangle$, $\langle g^4 \rangle$, $\langle g^3 \rangle$, $\langle g^2 \rangle$.

- b) In total we have 6 subgroups of G and hence 6 intermediate subfields thanks to the fundamental theorem of Galois theory.
- 2 (10) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.

Solution. We have subfields $\mathbb{F}_3 - \mathbb{F}_{3^2} - \mathbb{F}_{3^4} - \mathbb{F}_{3^8}$ and $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8}) \cong \mathbb{Z}_8 = \langle \Phi \rangle$, where Φ is the Frobenius automorphism (see lectures). Thus the correspondent subgroups are $\langle \Phi \rangle - \langle \Phi^2 \rangle - \langle \Phi^4 \rangle - Id$ and their orders are 8, 4, 2 and 1.

3 (10) Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.

Solution. By Theorem 2 of Lecture 19 we need to check that $\operatorname{Fix}_L(G) = L^G = \operatorname{Fix}_L(\operatorname{Gal}_{L^G}(L)) = \operatorname{Fix}_L(G_{L^G})$. But by the 6 part of Theorem 1 of the same lecture (applied to $G = \operatorname{Gal}_K(L)$) we know exactly that $\operatorname{Fix}_L(G) = \operatorname{Fix}_L(\operatorname{Gal}_{L^G}(L))$.

4 (10) Let L: K be a finite Galois extension, $G:=\mathrm{Gal}_K(L)$. For any $\alpha\in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha)$$
 and $\operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha)$.

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

Solution. Clearly, for any $g \in G$ one has $g(\text{Tr}(\alpha)) = \text{Tr}(\alpha)$, and $g(\text{Norm}(\alpha)) = \text{Norm}(\alpha)$. By assumption L : K is Galois and hence the $L^G = K$. Thus $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

- **5** (15+15) a) Find all of the subfields of $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$.
 - b) Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3},e^{2\pi i/3}))$.

Solution. a) - b) Let $\varepsilon = e^{2\pi i/3}$, $\alpha = 2^{1/3}$ and $L = \mathbb{Q}(2^{1/3}, e^{2\pi i/3})$. One can think about L as the splitting field of $f(t) = t^3 - 2$. By the tower law one has $[L : \mathbb{Q}] = [L : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \cdot 3 = 6$ and hence $G := \operatorname{Gal}_{\mathbb{Q}}(L) \cong S_3$ (see lectures). The subfields are $\mathbb{Q}, \mathbb{Q}(\alpha), \mathbb{Q}(\varepsilon), \mathbb{Q}(\alpha\varepsilon), \mathbb{Q}(\alpha\varepsilon^2)$ and $\mathbb{Q}(\alpha, \varepsilon)$ and it is easy to check that they are different. There are no other fields as there are exactly six subgroups of G. Indeed,

$$S_3 \cong D_3 \cong M_3 = \{ \sigma_{k,l} : \varepsilon \to \varepsilon^k, \, \alpha \to \alpha \varepsilon^l, \, k = 1, 2, \, l = 0, 1, 2 \}.$$

Let

$$\sigma := \sigma_{1,1} : \qquad \sigma(\varepsilon) = \varepsilon, \quad \sigma(\alpha) = \alpha \varepsilon$$
 (1)

be a circle of length three (σ cyclically permutes $\alpha, \alpha \varepsilon, \alpha \varepsilon^2$) and

$$\tau := \sigma_{2,0}: \qquad \tau(\alpha) = \alpha, \quad \tau(\varepsilon) = \varepsilon^2$$
 (2)

be a transposition (it interchanges two of the roots (namely, $\alpha \varepsilon$ and $\alpha \varepsilon^2$), leaving the third root α fixed). Clearly, $S_3 = \langle \sigma, \tau \rangle$. Then

$$\mathbb{Q}, \mathbb{Q}(\alpha), \mathbb{Q}(\varepsilon), \mathbb{Q}(\alpha\varepsilon), \mathbb{Q}(\alpha\varepsilon^2), \mathbb{Q}(\alpha, \varepsilon)$$

correspond to the subgroups

$$G, \langle \tau \rangle, \langle \sigma \rangle, \langle \sigma^2 \tau \rangle, \langle \sigma \tau \rangle, Id$$

(of orders 6, 2, 3, 2, 2 and 1). Indeed, clearly, $\langle \sigma \rangle$ fixes $\mathbb{Q}(\varepsilon)$ and since $\tau(\alpha) = \alpha$, $\tau(\varepsilon) = \varepsilon^2$ it follows that $\langle \tau \rangle$ fixes $\mathbb{Q}(\alpha)$. Now using (1), (2) one has

$$\sigma^2 \tau(\alpha \varepsilon) = \sigma^2(\alpha \varepsilon^2) = \sigma(\alpha) = \alpha \varepsilon$$
,

and

$$\sigma \tau(\alpha \varepsilon^2) = \sigma(\alpha \varepsilon) = \alpha \varepsilon^2$$
.

Therefore, $\langle \sigma^2 \tau \rangle$ fixes $\mathbb{Q}(\alpha \varepsilon)$ and $\langle \sigma \tau \rangle$ fixes $\mathbb{Q}(\alpha \varepsilon^2)$.