TMB

Полина Андреева

April 2022

1 Задание №1. Построить конечный автомат, распознающий язык

1.1)
$$L = \{w \in \{a, b, c\}^* | |w|_c = 1\}$$

1.2)
$$L = \{w \in \{a, b\}^* | |w|_a \le 2, |w|_b \ge 2\}$$

Найдем прямое произведение двух автоматов, распознающих языки:

$$L1 = \{ w \in \{a, b\}^* | |w|_a \le 2 \}$$

$$L2 = \{ w \in \{a, b\}^* | |w|_b \ge 2 \}$$

Состояния	a	h
q1s1	q2s1	q1s2
q1s2	q2s2	q1s3
q1s3	q2s3	q1s3
q2s1	q3s1	q2s2
q2s2	q3s2	q2s3
q2s3	q3s3	q2s3
q3s1		q3s2
q3s2		q3s3
q3s3		q3s3

1.3)
$$L = \{w \in \{a, b\}^* | |w|_a \neq |w|_b\}$$

Данный язык не является регулярным, так как является дополнением к нерегулярному языку \overline{L} (в силу леммы о разрастании и замкнутости относительно операции дополнения):

$$\overline{L} = \{ w \in \{a, b\}^* | |w|_a = |w|_b \}$$

Так как язык L нерегулярный автомат построить нельзя.

1.4)
$$L = \{w \in \{a, b\}^* | ww = www\}$$

Данный язык включает в себя только пустое слово.

Также этот автомат можно изобразить следующим образом, включая в него тупиковое состояние:

Последние два автомата эквивалентны.

2 Задание №2. Построить конечный автомат, используя прямое произведение

2.1)
$$L_1 = \{ w \in \{a, b\}^* | |w|_a \ge 2 \land |w|_b \ge 2 \}$$

 $L_{11} = \{ w \in \{a, b\}^* | |w|_a \ge 2 \}$

$$L_{12} = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$$

Состояния	a	b
q1s1	q2s1	q1s2
q1s2	q2s2	q1s3
q1s3	q2s3	q1s3
q2s1	q3s1	q2s2
q2s2	q3s2	q2s3
q2s3	q3s3	q2s3
q3s1	q3s1	q3s2
q3s2	q3s2	q3s3
q3s3	q3s3	q3s3

Прямое произведение автоматов:

2.2)
$$L_2 = \{w \in \{a,b\}^* | \quad |w| \ge 3 \land |w|$$
 нечетное $\}$ $L_{21} = \{w \in \{a,b\}^* | \quad |w| \ge 3\}$

 $L_{22} = \{w \in \{a, b\}^* | \quad |w| \text{ нечетное}\}$

Состояния	a	b
q1s1	q2s2	q2s2
q1s2	q2s1	q2s1
q2s1	q3s2	q3s2
q2s2	q3s1	q3s1
q3s1	q4s2	q4s2
q3s2	q4s1	q4s1
q4s1	q4s2	q4s2
q4s2	q4s1	q4s1

Прямое произведение автоматов:

Упростим автомат:

2.3)
$$L_3 = \{w \in \{a,b\}^* \mid |w|_a$$
 чётно $\wedge |w|_b$ кратно трём
$$L_{31} = \{w \in \{a,b\}^* \mid |w|_a$$
 чётно $\}$

 $L_{32} = \{w \in \{a,b\}^* \mid |w|_a$ чётно $\}$

Состояния	a	b
q1s1	q2s1	q1s2
q1s2	q2s2	q1s3
q1s3	q2s3	q1s1
q2s1	q1s1	q2s2
q2s2	q1s2	q2s3
q2s3	q1s3	q2s1

Прямое произведение автоматов:

$$2.4) \quad L_4 = \overline{L}_3$$

Так как $T_4 = Q_3 \backslash T_3 = q1s2, q1s3, q2s1, q2s2, q2s3.$

2.5)
$$L_5 = L_2 \setminus L_3 = L_2 \setminus L_3 = L_2 \cap \overline{L}_3 = \overline{L}_3 \times L_2$$

Состояния	a (rt)	b (rt)
r1t1	42	22
r1t2	43	23
r1t3	44	24
r1t4	43	23
r2t1	52	32
r2t2	53	33
r2t3	54	34
r2t4	53	33
r3t1	62	12
r3t2	63	13
r3t3	64	14
r3t4	63	13

Состояния	a	b
r4t1	12	52
r4t2	13	53
r4t3	14	54
r4t4	13	53
r5t1	22	62
r5t2	23	63
r5t3	24	64
r5t4	23	63
r6t1	32	42
r6t2	33	43
r6t3	34	44
r6t4	33	43

3 Задание №3. Построить минимальный ДКА по регулярному выражению

$$(ab + aba)^*a \tag{1}$$

ДКА для ab:

ДКА для aba:

Автомат объединения aba и ab:

НКА с итерациями:

НКА с конкатенацией:

Избавляемся от λ -переходов:

Узлы	a	b
1	235	-
235	-	14
14	2351	-
2351	235	14

Переименуем вершины для красоты:

$$a(a(ab)^*b)^*(ab)^* \tag{2}$$

Построим НКА:

Построим эквивалентный ДКА:

Состояния	a	b
1	2	-
2	35	-
35	4	2
4	-	3
3	4	2

Минимизируем полученный автомат. Недостижимых вершин нет, а вот вершины 35 и 3 неразличимы, соединим их в вершину 3:

Красиво!

$$(a+(a+b)(a+b)b)^*$$
(3)

Построим НКА:

Построим эквивалентный ДКА:

Состояния	a	b
1	12	2
12	123	23
2	3	3
123	123	123
23	3	13
3	-	1
13	12	12

Разобьем на классы эквивалентности:

k0:{1,12,123,13} {23,2,3}

k1:{1,12} {123,13} {23} {3} {2} **k2**:{1} {12} {123} {13} {23} {3} {2}

Значит наш автомат минимален.

$$(b+c)((ab)^*c + (ba)^*)^*$$
(4)

Построим ДКА:

Минимизируем полученный автомат (состояния 2,5,7 неразличимы - сведем к вершине 257):

$$(a+b)^{+}(aa+abab+bb+baba)(a+b)^{+}$$
 (5)

Построим НКА:

Эквивалентный ДКА:

Минимизируем ДКА:

Автомат минимален.

4 Задание №4. Определить, является ли следующие языки регулярными или нет:

1. $L = \{(aab)^n b (aba)^m : n0, m0\}$

Язык регулярный, т.к. по нему можно построить ДКА:

2. $L = \{uaav : u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b|v|_a\}$

Фиксируем $\forall n \in N$ и рассматриваем слово $\omega = b^n aaa^n, \ |\omega| = 2n+2 \ge n.$ Рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0, \ |xy| \le n$:

$$x = b^k, \ y = b^l, \ z = b^{n-k-l}aaa^n,$$

где
$$1 \le k + l \le n \ \land \ l > 0$$

Других разбиений нет. Для любого из таких разбиений слово $xy^0z\notin L$. Лемма о разрастании не выполняется, значит L нерегулярный язык.

3. $L = \{a^m w : w \in \{a, b\}^*, 1|w|_b m\}$

Фиксируем $\forall n \in N$ и рассматриваем слово $\omega = a^n b^n$, $|\omega| = 2nn$. Рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x = a^{l}, y = a^{m}, z = a^{n-l-m}b^{n},$$

где
$$l + kn \wedge m \neq 0$$

Других разбиений нет. Выполним накачку:

$$xy^{i}z = a^{l}(a^{m})^{i}a^{n-l-m}b^{n} = a^{n-mi}b^{n} \notin L, i0 \in N$$

Лемма о разрастании не выполняется, значит L нерегулярный язык.

4. $L = \{a^k b^m a^n : k = n \lor m > 0\}$

Фиксируем $\forall n \in N$ и рассматриваем слово $\omega = a^n b a^n$, $|\omega| = 2n + 1n$. Рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x = a^k, y = a^m, z = a^{n-k-m}ba^n,$$

где
$$k + mn \wedge m \neq 0$$

Дргуих разбиений нет. Выполняем накачку:

$$xy^iz=a^k(a^m)^ia^{n-k-m}ba^n=a^{n+m(i-1)}ba^n\notin L,\ i2\in N$$

Получили противоречие, лемма о разрастании не выполняется, значит L нерегулярный язык.

5. $L = \{ucv : u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Фиксируем $\forall n \in N$ и рассматриваем слово $\omega = (ab)^n c (ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, \ |\omega| = 4n+1n.$ Рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x = \alpha_1 \alpha_2 ... \alpha_k, \ y = \alpha_{k+1} ... \alpha_{k+m}, \ z = \alpha_{k+m+1} ... \alpha_{4n+1} c(ab)^n,$$

где
$$k + mn \wedge m \neq 0$$

Других разбиений нет. Выполняем накачку:

$$xy^{i}z = (\alpha_{1}\alpha_{2}...\alpha_{k})(\alpha_{k+1}...\alpha_{k+m})^{i}(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^{n})$$

При i=2 имеем:

$$xy^2z = (\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^2(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n) \notin L$$

Лемма о разрастании не выполняется, значит L нерегулярный язык.