

Matemática Discreta 2

Aula 05

Cristiane Loesch cristiane.costa@unb.br

Brasília 2025

Seja $p \in \mathbb{N}^*$, p > 1 , p é dito PRIMO se os únicos fatores positivos de p são 1 e p .

Seja $p \in \mathbb{N}^*$, p > 1, p é dito PRIMO se os únicos fatores positivos de p são 1 e p.

Um número $c \in \mathbb{N}^*$, c > 1, que não é primo é dito COMPOSTO, ou seja, $c \in \mathbb{N}^*$ é composto se, e somente se, $\exists a \in \mathbb{N}^* / a | c \land 1 < a < c$.

NÚMEROS PRIMOS – CRIVO DE ERASTÓTENES

EXEMPLO

1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	92
3	13	23	33	43	53	63	73	83	93
4	14	24	34	44	54	64	74	84	94
5	15	25	35	45	55	65	75	85	95
6	16	26	36	46	56	66	76	86	96
7	17	27	37	47	57	67	77	87	97
8	18	28	38	48	58	68	78	88	98
9	19	29	39	49	59	69	79	89	99
10	20	30	40	50	60	70	80	90	100

NÚMEROS PRIMOS - CRIVO DE ERASTÓTENES

EXEMPLO					l					
	1	11	21	31	41	51	61	71	81	91
Excluir números	2									
pares exceto o 2	3	13	23	33	43	53	63	73	83	93
	5	15	25	35	45	55	65	75	85	95
	7	17	27	37	47	57	67	77	87	97
	9	19	29	39	49	59	69	79	89	99

NÚMEROS PRIMOS – CRIVO DE ERASTÓTENES

EXEMPLO										l
	1	11		31	41		61	71		91
Evoluiu mánagues	2									
Excluir números pares exceto o 2	3	13	23		43	53		73	83	
Excluir números múltiplo de 3,	5		25	35		55	65		85	95
	7	17		37	47		67	77		97
		19	29		49	59		79	89	

NÚMEROS PRIMOS - CRIVO DE ERASTÓTENES

EXEMPLO	1			l			1	l 1		
	1	11		31	41		61	71		91
Evoluir números	2									
Excluir números pares exceto o 2	3	13	23		43	53		73	83	
Excluir números múltiplo de 3, exceto o 3	5									
Excluir números múltiplo de 5 e 7, exceto 5 e 7	7	17		37	47		67			97
		19	29			59		79	89	

NÚMEROS PRIMOS - CRIVO DE ERASTÓTENES

EXEMPLO		l		1		l				
		11		31	41		61	71		
Excluir números	2									
pares exceto o 2	3	13	23		43	53		73	83	
Excluir números múltiplo de 3, exceto o 3	5									
Excluir números múltiplo de 5 e 7, exceto 5 e 7	7	17		37	47		67			97
Primos são numeros maiores que 1		19	29			59		79	89	

Proposições

- → Se p e q são primos e p|q => p=q
- \rightarrow Se p é primo e p/a => mdc(p, a) =1 (demonstrar)

Proposições

- \rightarrow Se p e q são primos e p|q => p=q
- \rightarrow Se p é primo e p/a => mdc(p, a) =1 (demonstrar)

PROPRIEDADES:

(Lema de Euclides)

Sejam a, b, p números inteiros

- i) se p é primo e p|ab então ou p|a ou p|b (demonstrar pesquise)
- ii) se $p|a^2 => p|a$ (demonstrar pesquise)

Exemplo:

Se n é composto, então tem um divisor primo menor ou igual a \sqrt{n}

Seja
$$a \in \mathbb{Z}/1 < a < n \land n = ab$$
 ou $a \le \sqrt{n}$ ou $b \le \sqrt{n}$

por contradição:

$$a > \sqrt{n} \wedge b > \sqrt{n}$$

$$a \cdot b > \sqrt{n} \cdot \sqrt{n}$$

$$a \cdot b > n$$
 absurdo!

Logo,
$$a \le \sqrt{n}$$
 ou $b \le \sqrt{n}$

Como saber se N é primo?

* deve-se dividi-lo por todos os primos d para os quais

$$d^2 < N$$
 ou $d < \sqrt{N}$

Exemplo: são primos?

- a) 97
- b) 143
- c)391

TEOREMA FUNDAMENTAL DA ARITMÉTICA

Todo inteiro n> 1 ou é primo ou pode ser escrito de forma única como um produto de fatores primos, onde os fatores primos são escritos em ordem não decrescente.

PESQUISAR DEMONSTRAÇÃO - POR INDUÇÃO

NÚMEROS PRIMOS: Primos Gêmeos

- → existem infinitos números primos gêmeos
- → são primos cuja diferença entre eles é a b = 2

```
Exemplos:

3 e 5

5 e 7

11 e 13

17 e 19

4967 e 4969

etc
```

NÚMEROS PRIMOS: Primos de Mersenne

Número de Mersenne: $Mn = 2^n-1$

- * família de números
- * quando n é primo, Mn são chamados primos de Mersenne
- * nem todo Mn é primo
- * muito utilizados em Criptografia
 - → Criptogafia:
 - * números cada vez maiores para a criação de chaves
 - * tecnologia + rápida → números primos maiores
 - * utilizam primos de Mersenne

NÚMEROS PRIMOS: Primos de Mersenne

PROPOSIÇÃO:

• Se 2^n -1 é primo, então n é primo.

* o fato de n ser primo não implica Mn primo

Exemplo:
$$2^2 - 1 = 3$$

 $2^3 - 1 = 5$
 $2^5 - 1 = 31$

O maior número primo conhecido é 2¹³⁶ 2⁷⁹ 8⁴¹ – 1, que possui 41 024 320 algarismos quando escrito na base 10.

PROPOSIÇÃO:

• Sejam a e n números naturais maiores do que 1. Se a^n -1 é primo, então a=2 e n é primo. Equivalentemente, se a>2 ou n é composto, então a^n -1 é composto

NÚMEROS PRIMOS: Primos de Mersenne

VEJA:

https://impa.br/notices/por-que-a-descoberta-do-maior-numero-primo-importa/#:~:text=O%20novo%20maior%20n%C3%BAmero%20primo%20da%20hist%C3%B3ria%20%C3%A9%20o,de%20Mersenne%20descoberto%20at%C3%A9%20agora

Por que a descoberta do maior número primo importa?

NÚMEROS PRIMOS : Conjecturas de GoldBach's

Todo inteiro par n, n>2, é a soma de dois primos.

EXEMPLO:

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 5 + 5

12 = 5 + 7

14 = 7 + 7

. . .

* tal conjectura foi testada para todos os inteiros positivos até 4x10⁸ Mas não existe prova

DECOMPOSIÇÃO EM FATORES PRIMOS

Dado um inteiro n , $n \neq -1,0,1$. Existem primos $p_1 < ... < p_k$ e $\alpha_1,...,\alpha_k$, univocamente determinados, tais que :

$$n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$$

EXEMPLO:

$$480 = 2^5 \cdot 3 \cdot 5 \rightarrow 480 = 2^5 \cdot 3^1 \cdot 5^1 \cdot 7^0$$

$$560 = 2^4 \cdot 5 \cdot 7 \rightarrow 560 = 2^4 \cdot 3^0 \cdot 5^1 \cdot 7^1$$

Obs: decomposição em fatores primos: potencias positivas em ordem crescente

^{*} vantagem: escrever os dois números utilizando o mesmo conjunto de primos

^{*} desvantagem: expoentes nulos estarão presentes.

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja
$$n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$$
 e $\alpha_i\in\mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

PESQUISAR

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ e $\alpha_i\in\mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ e $\alpha_i \in \mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^5 . 3 . 5$$

. .

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ e $\alpha_i\in\mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^5 . 3 . 5$$

D(480)

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ e $\alpha_i\in\mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^5 . 3 . 5$$

2.3

D(480)

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n=\pm p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ e $\alpha_i\in\mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^5 . 3 . 5$$
 2 . 3 $2^2 . 3$

$$2^4 \cdot 3$$

 $2^5 \cdot 3$

QUANTIDADE DE DIVISORES DE UM INTEIRO

Seja $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ e $\alpha_i \in \mathbb{N}$. Todo divisor positivo de n é da forma

$$n = \pm p_1^{\beta_1} p_2^{\beta_2} ... p_k^{\beta_k}$$

$$0 \le \beta_i \le \alpha_i$$
, $\forall i = 1, ..., k$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^{5} \cdot 3 \cdot 5$$
 $2 \cdot 3$ $2^{5} \cdot 3 \cdot 5$ $2^{2} \cdot 3$ $2^{2} \cdot 5$ $2 \cdot 3 \cdot 5$ $2^{2} \cdot 3$ $2^{3} \cdot 5$ $2^{2} \cdot 3 \cdot 5$ $2^{4} \cdot 3$ $2^{4} \cdot 5$ $2^{5} \cdot 3 \cdot 5$ $2^{5} \cdot 3 \cdot 5$ $2^{5} \cdot 3 \cdot 5$

Suponha que a decomposição de *n* em fatores primos seja

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$$

Sejam

$$m = p_1^{\beta_1} p_2^{\beta_2} ... p_k^{\beta_k}$$

um divisor de n com $0 \le \beta_i \le \alpha_i$, $\forall i=1,...,k$.

Quantos são os valores possíveis que β_i pode assumir => α_i +1

O número de divisores de n é igual a:

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)...(\alpha_k + 1)$$

QUANTIDADE DE DIVISORES DE UM INTEIRO

$$d(n)=(\alpha_1+1)(\alpha_2+1)(\alpha_3+1)...(\alpha_k+1)$$

EXEMPLO: Divisores de 480 e 560

$$480 = 2^5 . 3 . 5$$

$$D(480) = (5+1)(1+1)(1+1) = 6 \cdot 2 \cdot 2 = 24$$

EXERCÍCIO:

4) Pesquisar quais são as regras de divisibilidade entre 2 e 11

EXERCÍCIO:

4) Pesquisar quais são as regras de divisibilidade entre 2 e 11