Метод Монте-Карло для вычисления матричной экспоненты

Павловский Евгений Николаевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н. Ермаков С.М. Рецензент: аспирант Самахова М.А.

Санкт-Петербург 2008г.

Постановка задачи

Постановка задачи:

- построить и исследовать алгоритм Монте-Карло вычисления матричной экспоненты
- рассмотреть приложения к системам дифференциальных уравнений и уравнениям в частных производных

План изложения:

- вычисление аналитических функций от матриц
- вычисление матричной экспоненты
- системы дифференциальных уравнений
- уравнения в частных производных (метод "прямых")

Вычисление аналитических функций от матриц

Задача: построить несмещенные оценки для функционалов $\langle u; f(\mathbf{A})v \rangle$

- ullet аналитическая функция $f(\lambda) = \sum\limits_{n=0}^{\infty} c_n \lambda^n$
- ullet $oldsymbol{\mathsf{A}} = \left\| \left. a_{i,j} \, \right\|_{i,j=1}^d \mathsf{матрица} \; d imes d
 ight.$
- ullet векторы $u = (u_1, \dots, u_d)^{\mathrm{T}}$, $v = (v_1, \dots, v_d)^{\mathrm{T}}$

Условие мажорированной сходимости: сходимость ряда $ar{f}(ar{\mathbf{A}})$

- ullet аналитическая функция $ar{f}(\lambda) = \sum_{n=0}^{\infty} |c_n| \lambda^n$
- ullet $ar{f A} = \left\| \, |a_{i,j}| \,
 ight\|_{i,j=1}^d$ матрица d imes d

Однородная цепь Маркова: $\xi_0, \xi_1, \dots, \xi_n, \dots$

- ullet $\{1,\ldots,d+1\}$ состояния цепи
- \bullet $\pi = (\pi_1, \dots, \pi_d, 0)$ начальное распределение
- ullet $\mathcal{P} = \left\| \left. p_{i,j} \, \right\|_{i,j=1}^{d+1}$ переходная матрица
- $p_{d+1,d+1} = 1$; $g_i = p_{i,d+1}$, i = 1, 2, ..., d
- ullet $au+1=\min\left\{n\geq 1: \xi_n=d+1
 ight\}$ время "жизни" цепи; $\mathbf{P}(au<\infty)=\mathbf{1}$

Несмещенные оценки

• Аналог оценки "по поглощению":

$$\zeta_{abs} = c_{\tau} \frac{u_{\xi_0}}{\pi_{\xi_0}} \frac{a_{\xi_0 \xi_1} \dots a_{\xi_{\tau-1} \xi_{\tau}}}{p_{\xi_0 \xi_1} \dots p_{\xi_{\tau-1} \xi_{\tau}}} \frac{v_{\xi_{\tau}}}{g_{\xi_{\tau}}}$$

Условия согласования:

- ullet $p_{ij}>0$, если $a_{ij}
 eq 0$
- \bullet $\pi_i > 0$, если $u_i \neq 0$
- $g_i > 0$, если $v_i \neq 0$
- 2 Аналог оценки "по столкновениям":

$$\zeta_{coll} = \sum_{k=0}^{\tau} c_k \frac{u_{\xi_0}}{\pi_{\xi_0}} \frac{a_{\xi_0 \xi_1} \dots a_{\xi_{k-1} \xi_k}}{p_{\xi_0 \xi_1} \dots p_{\xi_{k-1} \xi_k}} v_{\xi_k}$$

Условия согласования:

- $p_{ij} > 0$, если $a_{ij} \neq 0$
- $\pi_i > 0$, если $u_i \neq 0$

Анализ дисперсий

Основные результаты:

• найдена явная формула для дисперсии оценок "по поглощению"

$$\mathbf{D}\zeta_{abs} = \langle u_{\pi}; \tilde{f}(\mathbf{A}_{\mathcal{P}})v_{g} \rangle - \langle u; f(\mathbf{A})v \rangle^{2}$$

• найдено достаточное условие конечности дисперсии оценок "по столкновениям" — сходимость ряда $\tilde{f}(\mathbf{A}_{\mathcal{P}})$

Обозначения:

- ullet аналитическая функция $\tilde{f}(\lambda) = \sum_{n \geq 0} c_n^2 \lambda^n$
- ullet $oldsymbol{\mathsf{A}}_{\mathcal{P}} = \left\| \left. a_{ij}^2 / p_{ij} \, \right\|_{i,j=1}^d -$ матрица d imes d
- ullet векторы $u_\pi = (u_1^2/\pi_1, \dots, u_d^2/\pi_d)^\mathrm{T}$, $v_g = (v_1^2/g_1, \dots, v_d^2/g_d)^\mathrm{T}$

Вычисление экспоненты матрицы: несмещенные оценки

Вычислительная задача: построение несмещенных оценкок $\langle u; \exp(\mathbf{A}t)v \rangle$

1

$$ullet$$
 оценка: $\zeta = rac{t^ au}{ au!} rac{u_{\xi_0}}{\pi_{\xi_0}} rac{a_{\xi_0 \xi_1} \dots a_{\xi_{ au-1} \xi_ au}}{p_{\xi_0 \xi_1} \dots p_{\xi_{ au-1} \xi_ au}} rac{v_{\xi au}}{g_{\xi au}}$

ullet второй момент: $\mathbf{E}\zeta^2 = \langle u_\pi; J_0\left(2\sqrt{-\mathbf{A}_{\mathcal{P}}}t
ight)v_g
angle$

2

$$ullet$$
 оценка: $\eta=e^srac{t^\mu}{s^\mu}rac{u_{\xi_0}}{\pi_{\xi_0}}rac{a_{\xi_0\xi_1}\dots a_{\xi_{\mu-1}\xi_\mu}}{p_{\xi_0\xi_1}\dots p_{\xi_{\mu-1}\xi_\mu}}v_{\xi_\mu}I_{\{ au\geq \mu\}}$

ullet второй момент: $\mathbf{E}\eta^2=e^s\langle u_\pi;\exp(rac{t^2}{s}\mathbf{A}_{\mathcal{P}})v^2
angle$ и имеет распределение Пуассона с параметром s

Было выяснено:

- условие мажорированной сходимости всегда выполнено
- дисперсии оценок всегда конечны
- ullet асимптотика вторых моментов при $t o\infty$ (экспоненциальный рост)

Системы дифференциальных уравнений первого порядка

- ullet Система: $\dfrac{dx}{dt} = {f A}(t)x + f(t), \quad \left. x \right|_{t=0} = x_0$
- Результат: получены несмещенные оценки для $\langle u; x(t) \rangle$
- Достоинство: меньшая трудоемкость при больших размерностях
- ullet Недостаток: экспоненциальный рост дисперсии при $t o \infty$

Рекуррентный алгоритм Монте-Карло

Система:
$$\frac{dx}{dt}=\mathbf{A}x,\,x|_{t=0}=x_0$$
 Обозначения: $x_k=\exp(\mathbf{A}t_k)x_0,\,t_k=k\Delta t$

- ξ_k решение системы $\dfrac{dx}{dt}=\mathbf{A}x,\,x|_{t=0}=\xi_{k-1}$ методом Монте-Карло (количество независимых испытаний N_k), $\xi_0=x_0$
- ullet $arepsilon_k = \xi_k x_k$ ошибка вычисления x_k

Определение

Если найдется M>0, что выполняется условие $\sup_n\|\mathbf{Cov}\,(\varepsilon_\mathbf{n})\|\leq M$, то алгоритм называется cmoxacmuuecku устойчивым.

Результаты:

- $\|\exp(\mathbf{A}\Delta t)\| < 1$ критерий стохастической устойчивости
- ullet можно считать, что $N_k=1, k\in \mathbb{N}$
- построены и исследованы на стохастическую устойчивость рекуррентные процедуры для систем неоднородных уравнений

Системы второго порядка

Система:
$$\frac{d^2x}{dt^2}+\mathbf{A}x=f(t), \quad x|_{t=0}=x_0, \quad \frac{dx}{dt}\bigg|_{t=0}=\dot{x}_0$$
 Результаты:

- lacktriangledown получены несмещенные оценки для $\langle u; x(t) \rangle$
- 2 получены формулы для второго момента оценок
- рекуррентный алгоритм, вычисляющий на каждом шаге решение и его производную стохастически неустойчив

Метод "прямых": дискретизация

• Граничная задача:

$$u_{t} = \mathcal{L}(u) + f(x;t), \quad G = \{0 \le x \le 1, t \ge 0\} \subset \mathbb{R}^{2}$$

$$u(x;0) = \varphi(x), u(0;t) = \psi_{0}(t), u(1;t) = \psi_{1}(t)$$

$$\mathcal{L}(u) = a(x;t)u_{xx} + b(x;t)u_{x} + c(x;t)u$$

- Дискретизация: аппроксимация производных u_{xx} и u_x разностями в точках $x_n = nh, \quad n = 1, \dots, N-1; \quad N \in \mathbb{N}, \quad Nh = 1$
- Итог: сведение к решению системы вида

$$\frac{dy}{dt} = \mathbf{B}(t; h)y + g(t)$$

• Аппроксимация системы: Δt — шаг по времени, $t_k = k \Delta t$ На k-м шаге решается система

$$\frac{dy}{dt} = \mathbf{B}(t_{k-1}; h)y + g(t)$$

Метод "прямых": стохастическая устойчивость

Условия стохастической устойчивости

- Общее достаточное условие:
 - $\inf_{C} a(x;t) \geq a > 0$
 - $\bullet \sup_{G} c(x;t) \le -c < 0$
 - $\sup_{G} |b(x;t)| \leq M$
- 2 Постоянные коэффициенты. Критерий:
 - $4ac b^2 < 4\pi^2 a^2$
 - *a* > 0
- **3** Коэффициенты не зависят от x. Достаточное условие:
 - $\inf_{t} a(t) \geq a > 0$
 - $\sup_{t} \left(c(t) \pi^2 a(t) \frac{b^2(t)}{4a(t)} \right) < 0$

Выводы

- Выявлены особенности обобщения схемы Неймана-Улама на случай вычисления матричного ряда
- 2 Для случая вычисления матричной экспоненты:
 - построены и исследованы оценки, отличные от аналогов оценок схемы Неймана-Улама
 - выявлены особенности стохастического алгоритма
 - предложены и исследованы способы преодоления сложностей, возникающих при использовании стохастического алгоритма
- Впервые был построен и исследован стохастический метод "прямых"