Significance and

Errors

Recap: Statistical significance

A p-value of 0.05 or below is conventionally called "statistically significant"

A p-value of 0.01 or below is conventionally called "highly statistically significant"

CAUTION: These thresholds are arbitrary

Significance levels

The threshold below which the p-value is deemed small enough to reject the null hypothesis

If p-value $< \alpha$, then reject H₀

If p-value $\geq \alpha$, then do not reject H₀

If the p-value is small...

Reject H₀

The sample would be extreme if H₀ were true

The results are statistically significant

We have evidence for H_a

If the p-value is not small...

Do not reject Ho

The sample would not be too extreme if H₀ were true

The results are not statistically significant

The test is inconclusive: either H₀ or H_a may be true

Why can't we accept Ha?

For the logical fallacy of believing that a hypothesis has been proved to be true, merely because it is not contradicted by the available facts, has no more right to insinuate itself in statistical than in other kinds of scientific reasoning...

- R.A. Fisher

Statistical

Errors

Two types of errors

Probability of a Type I error

Probability of a Type I error

Probability of a Type I error

How to set the signficance level

Consider which type of error is worse

If a Type I error is much worse, then set α lower

If a Type II error is much worse, then set α higher

CAUTION: Statistically significant results are not required to be practically significant