GIẢI TÍCH I BAI 13

§2. ĐẠO HÀM RIÊNG VÀ VI PHÂN (TT)

2. Vi phân toàn phần

Định nghĩa. f(x, y) xác định trên $D \subset \mathbb{R}^2$, $M_0(x_0; y_0) \in D$. Nếu $\exists A, B$ không phụ thuộc vào Δx , Δy để có $\Delta f = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y$, ở đó $\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \alpha = 0$, $\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \beta = 0$

thì ta bảo hàm f khả vi tại M_0 và có d $f(M_0) = A\Delta x + B\Delta y$ là vi phân toàn phần của hàm f tai M₀.

Hàm f được gọi là khả vi trong miền $D \Leftrightarrow f$ khả vi tại $\forall M \in D$.

Chú ý. f(x, y) khả vi tại $M_0(x_0; y_0) \Rightarrow f(x, y)$ liên tục tại $M_0(x_0; y_0)$.

Ví du 1. Xét tính khả vi của các hàm số sau tại (0; 0)

a)
$$u = x + 2y$$

b)
$$u = 2x + \sqrt[3]{y}$$

b)
$$u = 2x + \sqrt[3]{y}$$

c) $f(x, y) = \begin{cases} \frac{x^3y}{x^6 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ (f không liên tục tại $(0; 0) \Rightarrow$ không khả vi)
d) $f(x, y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
e) $f(x, y) = \begin{cases} \frac{x \tan y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ (f không liên tục tại $(0; 0) \Rightarrow$ không khả vi)
f) $f(x, y) = \begin{cases} \frac{x \sin y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ (không khả vi)
Dịnh lí 1, $f(x, y)$ có các đạo hàm riệng cấp 1, liên tục trong lập cấp $M_0(x_0 : y_0)$

d)
$$f(x, y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

e)
$$f(x, y) = \begin{cases} \frac{x \tan y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

f)
$$f(x, y) = \begin{cases} \frac{x \sin y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 (không khả vi)

Định lí 1. f(x, y) có các đạo hàm riêng cấp 1 liên tục trong lân cận $M_0(x_0; y_0)$

 \Rightarrow f(x, y) khả vi tại $M_0(x_0; y_0)$ và có $dz = f'_x \Delta x + f'_y \Delta y$

Ví du 2. Tính vi phân toàn phần

a)
$$z = \frac{1}{2} \ln(x^2 + y^2)$$

b)
$$u = \frac{z}{\sqrt{x^2 + y^2}}$$
, $du(3, 4, 5)$

c)
$$z = \arctan xy$$

d)
$$u = x^{y^z}$$

Chú ý. Dưa vào vi phân để tính gần đúng:

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0)\Delta x + f'_y(x_0, y_0)\Delta y$$

Ví dụ 3. Tính gần đúng

a)
$$(1,02)^3(0,97)^2$$

a)
$$(1,02)^3(0,97)^2$$
 b) $\sqrt{(4,05)^2 + (2,93)^2}$

c)
$$(1,04)^{2,02}$$

d)
$$\ln(\sqrt[3]{1,03} + \sqrt[4]{0,98} - 1)$$
 e) $\sin 32^{\circ} \cos 59^{\circ}$

f) Tính gần đúng sự biến thiên của hàm số $z = \frac{x+3y}{y-3x}$ khi x biến thiên từ $x_1 = 2$ đến

 $x_2 = 2.5$ còn y từ $y_1 = 4$ đến $y_2 = 3.5$.

g) Hình chữ nhật có hai cạnh a = 10cm và b = 24cm. Đường chéo / thay đổi như thế nào nếu canh a dài thêm 4mm còn canh b ngắn đi 1mm? Tính giá trị gần đúng và so sánh với giá trị đúng của nó.

h) Chiều cao của một hình nón h = 30cm, bán kính đáy R = 10cm. Thể tích của nó thay đổi như thế nào nếu tăng h thêm 3mm và giảm R đi 1mm?

i)
$$\ln(0.02 + \sqrt[3]{1.03})$$
 (0.03)

k)
$$\sqrt[3]{(1,97)^2 + 4e^{0.06}}$$
 (2.01)

I)
$$A = \sqrt[3]{(1,04)^3 + (2,03)^2 + 3}$$

m)
$$A = \sqrt[4]{(3,04)^2 + (2,02)^3 - 1}$$

3. Vi phân hàm hợp, tính bất biến, các dạng vi phân

Cho hàm $f: B \subset \mathbb{R}^2 \to \mathbb{R}$, $\varphi: D \subset \mathbb{R}^2 \to B$

$$(x, y) \xrightarrow{\varphi} (u(x, y), v(x, y)) \xrightarrow{f} f(u(x, y), v(x, y))$$

Định lí 2. f có các đạo hàm riêng liên tục trên B, còn u, v có các đạo hàm riêng liên tục trên D thì $f \cdot \varphi$ có các đạo hàm riêng và

$$\frac{\partial}{\partial x}(f \circ \varphi) = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \; ; \quad \frac{\partial}{\partial y}(f \circ \varphi) = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$$

Chú ý.

1°/
$$z = f(x, y), y = y(x)$$
 thì có $\frac{dz}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} y'(x)$

2°/
$$z = f(x, y), x = x(t), y = y(t)$$
 thì có $\frac{dz}{dt} = \frac{\partial f}{\partial x} x'(t) + \frac{\partial f}{\partial y} y'(t)$

Ví du 4. Tính

a)
$$\frac{dz}{dt}$$
, $z = \frac{x}{v}$, $x = e^t$, $y = \ln t$

a)
$$\frac{dz}{dt}$$
, $z = \frac{x}{v}$, $x = e^t$, $y = \ln t$ d) $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $z = \arctan \frac{x}{v}$, $x = u \sin v$, $y = u \cos v$

b)
$$\frac{dz}{dx}$$
, $z = u^v$, $u = \sin x$, $v = \cos x$

b)
$$\frac{dz}{dx}$$
, $z = u^v$, $u = \sin x$, $v = \cos x$ **e)** $u = \frac{e^{zx(y-z)}}{a^2+1}$, $y = a \sin x$, $z = \cos x$,

c)
$$z'(x)$$
 và $\frac{dz}{dx}$, $z = \arctan \frac{y}{x}$, $y = x^2$

tính
$$\frac{du}{dx}$$
.

Tính bất biến của vi phân cấp 1:

$$z = z(u, v), u = u(x, y), v = v(x, y) \Rightarrow dz = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv$$

Phép toán: u, v là các hàm khả vi, khi đó ta có

$$d(u \pm v) = du \pm dv, \ d(uv) = udv + vdu, \ d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}, \ v \neq 0$$

4. Đạo hàm của hàm ẩn

Khái niệm về hàm ẩn: Hệ thức F(x, y) = 0 xác định một hay nhiều hàm ẩn y theo x. Tương tự, hệ thức F(x, y, z) = 0 xác định một hay nhiều hàm ẩn z theo các biến số x và *y*.

Hệ hai phương trình $\begin{cases} F(x, y, z, u, v) = 0 \\ G(x, y, z, u, v) = 0 \end{cases}$ xác định một hay nhiều cặp hàm số ẩn u, v

của ba biến số x, y, z.

Định lí 3. $F(x_0, y_0) = 0$, F(x, y) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0)$ và $F'_{y}(M_0) \neq 0$ thì hệ thức F(x, y) = 0 xác định hàm ẩn y = f(x) trong lân cận nào đó của điểm x_0 , thoả mãn $y(x_0) = y_0$ và khả vi liên tục trong lân cận này, và có

$$y'(x_0) = -\frac{F_x'(M_0)}{F_y'(M_0)}$$

Định lí 4. $F(x_0, y_0, z_0) = 0$, F(x, y, z) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0, z_0)$ và $F'_z(M_0) \neq 0$, khi đó hệ thức F(x, y, z) = 0 xác định hàm ẩn z = f(x, y) trong lân cận nào đó của (x_0, y_0) thoả mãn $z(x_0, y_0) = z_0$ liên tục và có các đạo hàm riêng liên tục trong lân cận này, và có

$$z'_{x}(x_{0}; y_{0}) = -\frac{F'_{x}}{F'_{z}}(M_{0}), z'_{y}(x_{0}; y_{0}) = -\frac{F'_{y}}{F'_{z}}(M_{0})$$

Định lí 5. $F(x_0, y_0, z_0, u_0, v_0) = 0$, $G(x_0, y_0, z_0, u_0, v_0) = 0$, các hàm F(x, y, z, u, v), G(x, y, z, u, v) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0, z_0, u_0, v_0)$ và định thức

$$D \equiv \frac{D(F, G)}{D(u, v)} = \begin{vmatrix} F'_u & F'_v \\ G'_u & G'_v \end{vmatrix} \neq 0,$$

khi đó hệ thức $\begin{cases} F(x, y, z, u, v) = 0 \\ G(x, y, z, u, v) = 0 \end{cases}$ xác định hai hàm ẩn u = f(x, y, z), v = g(x, y, z)

trong lân cận nào đó của (x_0, y_0, z_0) , thoả mãn $u(x_0, y_0, z_0) = u_0$, $v(x_0, y_0, z_0) = v_0$, các hàm u, v liên tục và có các đạo hàm riêng liên tục trong lân cận này và có

$$u'_{X}(x_{0} ; y_{0} ; z_{0}) = -\frac{1}{D} \cdot \frac{D(F, G)}{D(x, v)}(M_{0}) ; v'_{X}(x_{0} ; y_{0} ; z_{0}) = -\frac{1}{D} \cdot \frac{D(F, G)}{D(u, x)}(M_{0}).$$

Tương tự có $u'_y(x_0; y_0; z_0), v'_y(x_0; y_0; z_0), u'_z(x_0; y_0; z_0), v'_z(x_0; y_0; z_0)$

Ví dụ 5.

- a) $z^3 3xyz = a^3$, tính dz
- b) $1 + xy \ln(e^{xy} + e^{-xy}) = 0$, tính dy.
- c) $\frac{x}{z} = \ln \frac{y}{z} + 10$, tính dz
- d) $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$, tính dy, dz.
- e) $x = u \cos v$, $y = u \sin v$, $z = u^2$, tính vi phân toàn phần dz.
- f) $x = v \cos u u \cos v + \sin u$, $y = v \sin u u \sin v \cos u$, $z = (u v)^2$, tính dz.
- g) Phương trình $x.e^{yz} = y + z + 1$ xác định hàm ẩn z(x, y). Tính dz(0; 0)

(dx - dy)

h) Hàm ẩn z = z(x, y) xác định bởi phương trình $z - ye^{x/z} = 0$. Tính dz(0; 1)

(dx + dy)

i) Hàm ẩn z = z(x, y) xác định bởi phương trình $xe^{y/z} - z = 0$. Tính dz(1; 0)

(dx - dy)

k) Phương trình $x + 2y + z = ye^{xz}$ xác định hàm ẩn z = z(x, y). Tính dz(0; 1)

$$(-2dx - dy)$$

I) Phương trình $xe^{yz} = 2x - y - z$ xác định hàm ẩn z = z(x, y). Tính dz(1; 0)

$$(dx - 2dy)$$

- m) Phương trình $y(z-\sqrt{x^2-z})=-2$ xác định hàm ẩn z=z(x,y). Chứng minh rằng $\frac{1}{x}z_x'+y^2z_y'=2$
- n) Phương trình $x\left(z-\sqrt{y^2-z}\right)=3$ xác định hàm ẩn z=z(x,y). Chứng minh rằng $x^2z_x'-\frac{1}{v^2}z_y'=-3$

o)
$$x^3 - 2y^3 + 3z^3 = (x + y)z$$
. Tính $dz(1; -1)$ $\left(-\frac{4}{9}dx + \frac{5}{9}dy\right)$

p)
$$3x^3 + 2y^3 + z^3 = (x + y)z$$
. Tính $dz(-1; 1)$ $(-\frac{8}{3}dx - \frac{5}{3}dy)$

Have a good understanding!