An Empirical Evaluation of VoIP Playout Buffer Dimensioning for

Kuan-Ta Chen, Academia Sinica

Chen-Chi Wu and Chin-Laung Lei, National Taiwan University

Chun-Yin Huang, National Taiwan Ocean University

Playout Buffering

 Voice needs to be played smoothly, but network may inject delay variance (jitters)

The Tradeoff

 As buffering sacrifices delay in exchange for a higher chance that voice packets arrive on time

- - better speech quality
 - lower conversational interactivity
- Smaller buffer size
 - worse speech quality
 - higher conversational interactivity

Playout Buffer Dimensioning

- Deciding the optimal buffer size
 - maintain a balance between conversational interactivity and speech quality

- It's challenging because of so many factors
 - Network delay
 - Network delay jitter
 - Network loss
 - Codec implementation
 - Redundancy control
 - Error recovery
 - Transport protocol, etc

changes over time

Proposals on Buffer Dimensioning

- Many algorithms have been proposed
 - The k largest delay among the previous m delays [Naylor'85]
 - Inflate buffer size when packets arrive late, and shrink buffer size over time [Stone'95]
 - Weighted sum of EWMA of delay and delay jitter [Ramjee'94]
 - Automatic adjustment of EWMA weights [Narbutt'03]
 - Weight adjustment within talk bursts [Liang'03, Sreenan'03]
 - ...

We are curious about ...

Skype: 405 million registrars (15 million online)

Whether a gap exists between research community and software practitioners?

In other words ...

Do commercial products really adopt any of these proposals?

What's the performance of commercial products (in terms of buffer dimensioning)?

Our Contribution

- A systematic measurement methodology for measuring VoIP playout buffer size
- Show that the real-life VoIP applications do not adjust their buffer sizes appropriately
 - based on QoE measures
- A regression-based algorithm to compute the optimal buffer size given a network condition
 - Light-weight computation; thus can be applied in run time

Talk Progress

Overview

- Measuring Applications' Buffer Size
 - Experiment Methodology
 - Measurement Results
- Deriving Optimal Buffer Size
 - Methodology
 - Derived Buffer Sizes
 - Evaluation of Applications' Dimensioning Algorithms
- Conclusion & On-going Work

Experiment Methodology

- Dummynet for controling network conditions (delay, jitter, and packet loss)
- Use a recording card (ESI Maya44) to ensure timesynchronized audio recordings from two hosts

Buffer Size Estimation

- End-to-end delay components
 - Network delay (dummynet)
 - Coder delay + packetization delay (assumes 50 ms)
 - Playout buffering delay (unknown)
- Buffer size = e2e delay network delay 50 ms

Experiment Settings

Application: Skype, Google Talk, MSN Messenger

- Network delay & jitter: 0 ms, 25 ms, 50ms, ..., 200 ms
- Network loss rate: 0%, 1%, ..., 10%

- 10 VoIP calls for each app/network setting
 - Each call lasts 240 seconds

Effect of Delay and Jitter

- Skype maintains the same buffer size
- Google Talk slightly adjusts the buffer size according to delay and jitter
- MSN Messenger's buffer size grows linearly as the jitter increases

Effect of Packet Loss

 All three applications do not adapt buffer size to packet loss

Having seen the different behavior of the applications, ...

Which one application's playout dimensioning is best?

Is the best one optimal?

Talk Progress

- Overview
- Measuring Applications' Buffer Size
 - Experiment Methodology
 - Measurement Results

- Deriving Optimal Buffer Size
 - Methodology
 - Derived Buffer Sizes
 - Evaluation of Applications' Dimensioning Algorithms
- Conclusion
- On-going Work

Deriving Optimal Buffer Size - QoE

- How to define the "optimal" buffer size?
 - Buffer size that yields the best quality of experience (QoE)
- How to measure the QoE of a VoIP call?
 - PESQ (ITU-T P.862, Perceptual Evaluation of Speech Quality)
 - measures listening quality
 - signal level, accurate
 - E-Model (ITU-T G.107)
 - measures overall quality (listening + interactivity)
 - network level, lightweight but not accurate in listening quality

QoE Assessment Model [Ding'03]

Deriving Optimal Buffer Size - Simulation

For each (buffer size, network setting)

- 1. Encode an audio clip into a sequence of VoIP frames
- Impairment at the network
 - network delay & jitter
 - packet loss (Gilbert model)
- 3. Packet discarding at the receiver
 - drop a packet if its arrival time is later than scheduled time (sent time + playout buffer size)
- 4. Decode the result frames (a subset of original frames) to a **degraded** audio clip
- 5. Compute average QoE scores

Derived Optimal Buffer Size (1)

Derived Optimal Buffer Size (2)

A typical relationship between QoS and QoE

QoS, e.g., speech quality or (e2e delay)-1

Comparing Real-Life Applications with Optimal Settings

 MSN Messenger's buffer dimensioning algorithm is better than those of Skype and Google Talk

Modeling Optimal Buffer Size

 Using a linear regression to model the optimal buffer size given a network setting

$$(const.) + coef_{delay} \cdot delay +$$
 $coef_{delay \cdot jitter} \cdot delay \cdot jitter +$
 $coef_{delay \cdot jitter \cdot plr} \cdot delay \cdot jitter \cdot plr$

Variable	Coef	Std. Err.	t	Pr > t
(constant)	157	20	7.54	$< 2 \times 10^{-9}$
delay	-1.05	0.21	-4.78	$< 2 \times 10^{-5}$
$delay \cdot jitter$	0.02	< 0.01	17.25	$< 2 \times 10^{-16}$
$delay \cdot jitter \cdot plr$	-0.57	0.04	-11.65	$< 5 \times 10^{-15}$

Talk Progress

- Overview
- Measuring Applications' Buffer Size
 - Experiment Methodology
 - Measurement Results
- Deriving Optimal Buffer Size
 - Methodology
 - Derived Buffer Sizes
 - Evaluation of Applications' Dimensioning Algorithms
 - Conclusion & On-going Work

Conclusion

- Our results show that MSN Messenger performs the best in terms of buffer dimensioning
 - Proprietary codec are used in Skype
 - Other factors may dominate the final quality perceived by users
- Results from the research community seem not be applied in real-life VoIP applications
 - methods not generalizable enough?
 - methods not inutitive enough?
 - methods not practical enough? (e.g., hard to implement)
 - other explanations?
- A regression modeling appraoch to compute the optimal buffer size in run time

On-going Work

- More factors in measuring applications' buffer dimensioning behavior
 - frame size, redundancy control, loss burstiness, speech codec,
 ...

- More factors in deriving optimal buffer size
 - transport protocol (TCP in addition to UDP), speech codec, ...
- Real-life network experiments to evaluate the regression-based buffer dimensioning algorithm

Thank You!

Kuan-Ta Chen

http://www.iis.sinica.edu.tw/~ktchen

