Using an Adaptation of The Game Of Life To Measure Crowd Throughput

AIMS AND OBJECTIVES

AIM:

TO INVESTIGATE OVERCROWDING USING THE GAME OF LIFE AND DEPICT THE RESULTS WITH COUPLED MAP LATTICES.

- Implement a working version of the Game of Life;
- Allow the Game to use an infinite plain and account for non-touching neighbours;

OBJECTIVES:

- Gather data which shows the relationship between overcrowding and overall movement speed;
- Research coupled map lattices and depict data graphically through use of them.

PROJECT BACKGROUND

GAME OF LIFE

- · Runs on cellular automata
 - Grid of cells with two states.
 - Runs on its own from the rules set out at the beginning.
- Alive neighbours in this generation dictate its state in the next generation.
 - Alive and 2/3 alive neighbours -> Alive.
 - Dead and 3 neighbours -> Alive
 - Else -> Dead.

$$(2r+1)^2-1$$

PROJECT BACKGROUND

PRACTICAL APPLICATIONS

Encryption

Computations

IMPLEMENTATION

FIRST ITERATION:

Console application

- · Dynamic grid sizes.
- Notable preset cell arrangements
- · User feedback:
 - · Generation count.
 - · Alive cell count.

```
fow many rows should the grid have?
How many columns should the grid have?
Press Enter to contiune to the next generation or 'exit' to quit.
Seneration 2
   ###### #
Press Enter to contiune to the next generation or 'exit' to quit.
```

IMPLEMENTATION

SECOND ITERATION:

- Cell class draws squares:
 - Black filled square for Alive cells.
 - Grey outline for Dead cells.
- Toggle for displaying cell data.
- User interface with buttons for controlling functionality.

```
public void Draw(Graphics graphics)
{
    if(Alive)
        graphics.FillRectangle(BlackBrush, x, y, width, height);
    else
        graphics.DrawRectangle(GrayPen, x, y, width, height);
}
```

D	D	D	D	D	
0 -> D	0 → D	1 → D	1 → D	1 → D	
D	D	D	A	D	
1 -> D	1 -> D	3 → A	1 → D	2 → D	
D	A	D	A	D	
1 → D	1 → D	5 → D	3 -> A	3 → A	
D	D	A	A	D	
1 -> D	2 → D	3 → A	2 → A	2 → D	
D	D	D	D	D	
0 -> D	1 → D	2 -> D	2 → D	1 → D	

IMPLEMENTATION

EXTRA FEATURES:

· Game working on an infinite plain

 Ability to search for neighbours further away those that are touching.

0 → D	0 -> D	0 -> D	0 -> D	0 -> D	0 -> D	0 -> D	0 -> D	0 -> D	0 -> D
) -> D	0 -> D	1 → D	1 → D	1 -> D	1 -> D	1 -> D	1 -> D	1 -> D	0 -> D
0 → D	1 -> D	3 -> A	2 -> D	0 → D					
) → D	1 -> D	3 -> A	3 -> A	3 -> A	3 -> A	3-> A	3 -> A	2 -> D	0 → D
) -> D	1 -> D	3 -> A	3 -> A	3 -> A	2 → A	3 -> A	3 -> A	2 -> D	0 -> D
0 → D	1 -> D	3 -> A	3 -> A	2 -> A	2 -> A	3 -> A	3 -> A	2 → D	0 -> D
) -> D	1 -> D	3 -> A	2 -> D	0 -> D					
0 -> D	1 -> D	3 -> A	2 -> D	0 -> D					
0 → D	1 -> D	2 -> D	1->0	0 -> D					
0 -> D									

COUPLED MAP LATTICES

AIM:

Research coupled map lattices and depict data graphically through use of them.

- Shows dynamic systems better.
- Ideal for Game of Life which changes over time.
- · Will be used to show crowd movement data.

COUPLED MAP LATTICES

COUPLED MAP LATTICES

EXAMPLE 2:

EXPERIMENTATION

ROOMS

- · Room filled with a crowd.
- Each cell contains directions pointing to the exit.
- Cell can only move for if it's not overcrowded.
- Same experiment run with different search ranges.
 - Recorded generations taken for humans to leave

RESULTS ANALYSIS

- First human always took the same
- Coupled map lattices highlight areas where build up or slow movement occurred.
 - Usually at the start or at conjoining paths.

EVALUATION

SUCCESSES:

- Game of Life implementation.
 - Many features: debug, alternate rules, dynamic grid sizes, user feedback etc.
- Infinite plain by joining edges.
- · Coupled map lattice option.
- Search over range functionality.

LIMITATIONS:

- Game of Life differs greatly from crowd movements.
 - Game of Life cells act independently.
 - A move in diagonal is worth double.
- The cell that is searched first is at an advantage to move away first.

FURTHER DEVELOPMENT

- More tests with different starting arrangements.
- Options to move vertically or horizontally if a diagonal move is unavailable.
- Options to support multiple routes and exits.
- Made using an application type that had better graphical performance.

PRODUCT DEMONSTRATION