

Experiment Title- 2.1

Student Name: Lipakshi UID: 20BCS5082

Branch: BE-CSE Section/Group-20BCSWM_607-B

Semester:5 Date of Performance:27/10/2022

Subject Name: Machine Learning Lab Subject Code: 20CSP-317

1. Aim: Implement Support Vector Machine on any data set and analyze the accuracy with Logistic regression.

2. Source Code and Output:

importnumpyasnp

importpandasaspd

importseabornassns

importmatplotlib.pyplotasplt

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.metricsimportclassification_report,confusion_matrix

 $from sklearn.metric simportroc_curve, auc$

fromsklearn.preprocessingimportlabel binarize

from sklearn. multiclass import One VsRest Classifier

fromsklearn.metricsimportprecision_recall_curve

fromsklearn.metricsimportroc_auc_score

fromsklearn.linear modelimportLogisticRegression

from sklearn.svm import SVC

data=pd.read_csv('Downloads/iris data.csv')

data.head()

	sepal.length	sepal.width	petal.length	petal.width	variety	Unnamed: 5
0	5.1	3.5	1.4	0.2	Setosa	NaN
1	4.9	3.0	1.4	0.2	Setosa	NaN
2	4.7	3.2	1.3	0.2	Setosa	NaN
3	4.6	3.1	1.5	0.2	Setosa	NaN
4	5.0	3.6	1.4	0.2	Setosa	NaN

data.info()

Class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
sepal.length 150 non-null float64
sepal.width 150 non-null float64
petal.length 150 non-null float64
petal.width 150 non-null float64
variety 150 non-null float64
variety 150 non-null float64
dtypes: float64(5), object(1)

memory usage: 6.5+ KB

tmp=data.drop('Unnamed: 5',axis=1)
tmp.head()

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

```
X=data.drop(['Unnamed: 5','variety'],axis=1)
y=data['variety']
# print(X.head())
print(X.shape)
# print(y.head())
print(y.shape)
```

lit(X,y,test_size=0.4,random_state=5)
print(X train.shape) print(Y train.shape) print(X test.shape) print(y test.shape)

(150, 4) (150,)

(90, 4) (90,) (60, 4) (60,)

logreg.fit(X_train, y_train) y_pred=logreg.predict(X_test) **print**(metrics.accuracy_score(y_test, y_pred))

0.9333333333333333

logreg.predict([[6, 3, 4, 2]])

array(['Virginica'], dtype=object)

logreg.predict([[5, 3, 1, 0]]) sv=SVC() sv.fit(X_train, y_train)

```
array(['Setosa'],
dtype=object)
```

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
```

pred=sv.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

```
0.9333333333333333
```

sv.predict([[6, 3, 4, 2]])

```
array(['Versicolor'], dtype=object)
```

sv.predict([[5, 3, 1, 0]])

array(['Setosa'], dtype=object)

Learning outcomes (What I have learnt):

- 1. I learnt what is support vector machine.
- 2. Practical use of SVM.
- 3. How machine learning helps to analyze datasets.

Evaluation Grid:

Sr. No. Parameters Marks Obtained Maximum Marks	
---	--

1.	Student Performance (Conduct of experiment) objectives/Outcomes.	12
2.	Viva Voce	10
3.	Submission of Work Sheet (Record)	8
	Total	30

