Lecture 9: Structural Estimation

Dynamic Programming

Thomas Jørgensen

Reduced for

Examp

Additional method

Until next

Structural estimation

- We know how to solve dynamic programming models
- How can we estimate them? We need
 - 1 Data on (some) states
 - 2 Data on (some) choices
- Two standard approaches
 - 1 Maximum likelihood (ML)
 - ② General Method of Moments (GMM)
- Simulated versions:
 - 1 Maximum Simulated Likelihood (MSL, SML)
 - 2 Method of Simulated Moments (MSM, SMM)
- Example model: Life-cycle buffer-stock model
 - States: M_{it} , P_{it}
 - Choice: Cit
- **Parameters** to estimate: $\theta = \{\beta, \rho\}$
 - Calibration: G, σ_{ψ} , σ_{ξ} , R, and λ ("known")

Reduced for

Examp

A 1.100 - - 1 - - - - 0 - - 1

Until next

Maximum likelihood estimation (MLE)

• Assume that observed log-consumption is contaminated with mean-zero i.i.d. normal **measurement error**

$$\epsilon_{it}(\theta) \equiv \log C_{it} - \log C_t^{\star}(M_{it}, P_{it}; \theta) \sim \mathcal{N}(0, \sigma_{\xi}^2)$$

• The **likelihood** of observing the data then is

$$Pr(M, P|\theta) = \prod_{i=1}^{N} \prod_{t=1}^{T_d} \phi(\epsilon_{it}(\theta))$$

where $M = \{M_{it}\}_{1,1}^{N,T_d}$ and $P = \{P_{it}\}_{1,1}^{N,T_d}$ and

$$\phi(\epsilon_{it}) = \frac{1}{\sqrt{2\pi\sigma_{\xi}^2}} \exp\left(-\frac{\epsilon_{it}^2}{2\sigma_{\xi}^2}\right)$$

is the Gaussian density function

• MLE then is

$$\hat{\theta} = \arg\min_{\theta} -\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T_d} \log(\phi(\epsilon_{it}(\theta)))$$

Note: We need to resolve the model for each new guess of θ

Reduced form

Examp

Additional method

Until next

Maximum Simulated Likelihood (MSL)

- MLE Requires that we observe *permanent* income, P_{it} !
- Integrate it out to get the marginal likelihood:

$$\Pr(M|\theta) = \mathbb{E}[\Pr(M, P|\theta)|M, \theta]$$

$$= \int_{P_{T_d}} \int_{P_{T-1}} \cdots \int_{P_1} \Pr(M, P|\theta) dP_T dP_{T-1} \cdots dP_1$$

• Drawing *S* draws of $P_1, P_2, \ldots, P_{T_d}$ could be used to get

$$\widehat{\Pr(M|\theta)} = \frac{1}{S} \sum_{s=1}^{S} \Pr(M, P^{(s)}|\theta)$$

and the MSL estimator is then

$$\hat{\theta} = \arg\min_{\theta} - \log\left(\widehat{\Pr(M|\theta)}\right)$$

- We would need extremely many draws to approximate this T-dimensional integral: Remember Jensen's Inequality!
- (We could actually use the Kalman Filter in the current model!)

Reduced for

Examp

Additional method

Method of Simulated Moments (MSM)

- Let Λ^d be some **moments** in the data
 - Could be avg., var, cov, regression-coefs, etc.
- Let Λ_s(θ) be the same moments calculated on data simulated from the model solved with parameters θ
- MSM then is

$$\hat{\theta} = \arg\min_{\theta} \left(\Lambda^d - \Lambda^m(\theta) \right)' W \left(\Lambda^d - \Lambda^m(\theta) \right)$$

where we average across simulations

$$\Lambda^m(\theta) \equiv \frac{1}{S} \sum_{s=1}^{S} \Lambda_s(\theta)$$

and *W* is a positive-definite **weighting matrix**.

• We still approximate the T_d -dimensional integral with S simulations but we do not suffer from Jensen's inequality

Reduced form

Examp

Additional mothor

Until next

Weighting matrix

- Typical choices are
 - Theoretically optimal (see Adda and Cooper for formula) Can cause problems in finite samples
 - **2 Diagonal matrix** with **inverse** of (bootstrapped) empirical **variances of the moments** (scaled appropriately)
 - § Freely chosen to focus on fitting some specific dimensions of the data

Reduced for

Examp

Additional method

Until next

Indirect inference / minimum distance

- Many different names for very similar approaches
 - McFadden (1989): Method of Simulated Moments (MSM)
 - Duffie and Singleton (1993): Simulated Minimum Distance (SMD)
 - Gourieroux, Monfort and Renault (1993) + Smith (1993): Indirect Inference (II)
- SMD/II rely on an auxillary statistical model
 - Let Λ^d be the parameters of the auxiliary model when estimated on the *actual* data
 - Let $\Lambda_s(\theta)$ be the parameters of the auxiliary model when estimated on *simulated* data
- **Note:** The auxiliary statistical model is *misspecified* and its parameters are thus typically *not interpretable*

Reduced for

Examp

Additional method

Until next

Simulation Pitfalls

- FIX the seed (or draws!)
- Flat objective function!
 - Discrete choices: Taking a mean of an indicator function
- Gradient based numerical optimization will likely FAIL!
 - Use, e.g., fminsearch (Nelder-Mead)
 - Or some smoothing device (e.g. Logit)
- As $N, S \rightarrow \infty$ this problem vanishes
- The problem is also less severe around θ_0
- Continuous outcomes do not have this problem

Examp

Additional method

Asymptotics

 MSM is consistent and asymptotically normal under standard assumptions

$$\sqrt{N}(\hat{\theta} - \theta_0) \to \mathcal{N}(0, (1 + S^{-1})V)$$

where θ_0 are the true parameters

- **Standard formulas for V:** See Adda and Cooper *Remember: Standard errors are large if large changes in θ imply small changes in the objective function*
- Computational limitations: To compute standard errors we need to resolve the model

Reduced for

Examp

Additional method

Identification

- Is there enough variation in the data to identify θ ? Very hard to *prove* anything because the model is typically strongly non-linear
- MSM: At least the same number of moments as parameters
- Problems:
 - 1 The objective function might have multiple minima
 - **2** The objective function could be very flat in some directions
- **Graphical inspection is useful:** Plot the objective function in the neighborhood of the found optimum Systematic approaches are being developed (Andrews et al (2017))
- Use more data
 - **1 Quantitatively:** More agents, more time periods
 - Qualitative: New types of data, e.g natural experiments around policy changes

Reduced form

Examp

Additional method

Until nevt

Estimation experiment

- **1** Solve the buffer-stock model and simulate a full panel
- ② Construct a data set from the simulated data Likelihood: Log-consumption at age 45 with measurement error MSM: Average wealth for each age between 40 and 55
- **3** Try to **estimate** $\theta = \{\beta, \rho\}$

Reduced for estimation

Exampl

Additional method

Implementation, $\hat{\theta}_{MSM} = \arg\min_{\theta} Q(\theta)$

For Λ^d and a given value of θ , $Q(\theta)$:

- **1** Solve model to get $c_t^*(m;\theta)$ on a grid of m
- **2** For s = 1, ..., S:
 - lacktriangle Simulate N agents for T periods to get

$$\begin{split} C_{it}^{(s)}(\theta) &= P_{it}^{(s)} \cdot \boldsymbol{\xi_{t}^{\star}}(M_{it}^{(s)}(\theta) / P_{it}^{(s)}; \theta) \\ M_{it}^{(s)}(\theta) &= RA_{it-1}^{(s)}(\theta) + Y_{it}^{(s)} \\ A_{it-1}^{(s)}(\theta) &= M_{it-1}^{(s)}(\theta) - C_{it-1}^{(s)}(\theta) \\ Y_{it}^{(s)} &= P_{it}^{(s)} \boldsymbol{\xi}_{it}^{(s)} \\ P_{it}^{(s)} &= GP_{it-1}^{(s)} \boldsymbol{\psi}_{it}^{(s)} \end{split}$$

for some initial A_{i0} and P_{i0} and draws of $\xi_{it}^{(s)}$ and $\psi_{it}^{(s)}$.

2 Calculate the moments using this simulated data, $\Lambda_s(\theta)$

$$(\{\frac{1}{N}\sum_{i=1}^{N}A_{it}^{(s)}(\theta)\}_{t=40}^{55})$$

3 Calculate the objective function

$$Q(\theta) = \left(\Lambda^d - \frac{1}{S} \sum_{s=1}^{S} \Lambda_s(\theta)\right)' W\left(\Lambda^d - \frac{1}{S} \sum_{s=1}^{S} \Lambda_s(\theta)\right)$$

Reduced form

77 1

-

T Ten Ail an out-

Buffer-stock: MSM

Reduced form

m 1

T Too dil an assault

Buffer-stock: Likelihood

Reduced for

Examp

Additional method

Until next

Robustness

- Curse of dimensionality and lack of identification
 - \Rightarrow we cannot estimate all the parameters of the model
 - \Rightarrow first step calibration is necessary
 - 1 Calculations on own data (e.g. exogenous processes)
 - 2 References to previous estimates
 - 3 Standard choices
- **Robustness:** Can we vary the calibration choices without changing the result substantially?
 - Or the opposite: When does the result break down?
 - Approach being developed by yours truly..
- Calibration is also important for
 - 1 Gaining intuition for how the model work
 - 2 Initial guesses for estimation algorithm

Reduced form

Examp

Additional metho

Reduced form estimation

- Critic of structural estimation: **Requires many assumptions**
- **Alternative:** Estimate reduced form equations "derived" from the model
- My (and others) claim: To turn reduced form parameter estimates into policy advice a lot of assumptions are often implicitely required

"All econometric work relies heavily on a priori assumptions. The main difference between structural and experimental (or "atheoretic") approaches is not in the number of assumptions but the extent to which they are made explicit." (Keane, 2012)

- The beauty of models:
 - 1 Ensure consistent world view
 - 2 Allow us to combine heterogenous facts and extrapolate from a myriad of past experiences
 - **3** Better models are clearly defined even if we never find *the* true model we can make *progress*
- Frontier: Combine the two and use exogenous variation to estimate structural model.

Reduced form

Examp

Additional method

Until next

The Lucas critique

- The Lucas critique: Behavioral rules change with policy
 - ⇒ policy advice can not rely on estimated behavioral rules
 - \Rightarrow we need to estimate *structural parameters*

"Invariance of parameters in an economic model is not, of course, a property which can be assured in advance, but it seems reasonable to hope that neither tastes nor technology vary systematically with variations in counter-cyclical policies." (Lucas, 1977)

- Other stuff might be approximately invariant
- Rigourous microfoundations:
 - **1 Mathematically:** Based on (boundedly) rational behavior derived as a solution to a formal optimization problem
 - **2** Economically: The assumptions are realistic

Reduced for

Examples

Additional method

Until next

Examples

- Gourinchas and Parker (2002): First structural estimation of buffer-stock consumption model
 - **Method:** MSM with a lot of first stage calibrations
 - Data: Cross-sectional consumption data from CEX
- Two other examples:
 - **1** Cagetti (2003): MSM matching of *median* wealth profiles
 - Oruedahl and Jørgensen (2017):
 MSM Monte Carlo of misspecifying the income process
 - **3** Druedahl and Jørgensen (2018):

 MSM estimation of an extended Buffer-Stock model with learning

Reduced form

Examples

A ddistant I meather the

Until next

Gourinchas and Parker (2002) I

TABLE III
STRUCTURAL ESTIMATION RESULTS

MSM Estimation	Robust Weighting	Optimal Weighting
Discount Factor (β)	0.9598	0.9569
S.E.(A)	(0.0101)	
S.E.(B)	(0.0179)	(0.0150)
Discount Rate $(\beta^{-1} - 1)(\%)$	4.188	4.507
S.E.(A)	(1.098)	
S.E.(B)	(1.949)	(1.641)
Risk Aversion (ρ)	0.5140	1.3969
S.E.(A)	(0.1690)	
S.E.(B)	(0.1707)	(0.1137)
Retirement Rule:		
γ_0	0.0015	5.68 10
S.E.(A)	(3.84)	
S.E.(B)	(3.85)	(16.49)
γ_1	0.0710	0.0613
S.E.(A)	(0.1215)	
S.E.(B)	(0.1244)	(0.0511)
$\chi^2(A)$	175.25	
$\chi^2(B)$	174.10	185.67

Noise: MSM estimation for entire group. Standard errors calculated without (A) and with [B) correction for first stage estimation. Cell size is $\delta(6\theta)$ 1 households. The last row reports a test of the overidentifying restrictions distributed as a Chi-squared with δ 6 degrees of freedom. The critical value at δ % is $\delta(31)$. Efficient estimates are calculated with a weighting matrix $\widehat{\Omega}$ computed from the robust estimates.

Method:

Reduced form

Examples

Additional method

Gourinchas and Parker (2002) II

FIGURE 7.—The role of risk in saving and wealth accumulation.

Reduced form

Examp

Additional methods

Until next

Mathematical Programming with Equilibrium Constraints (MPEC)

- Idea: Do not solve the model, treat it as a constraint
- Example: Infinite horizon buffer-stock consumption model

$$\hat{\theta}, \hat{c}_1, \dots, \hat{c}_{\#} = \arg \max_{\theta, c_1, \dots, c_{\#}} \mathcal{L}(\theta)$$
s.t.
$$0 \leq c_j \leq m_j$$

$$0 \geq \mathcal{E}_j$$

$$0 = (m_j - c_j)\mathcal{E}_j$$

where \mathcal{E}_j is the j'th Euler-residual

$$\mathcal{E}_{j} \equiv \beta R \mathbb{E}_{t} [(G\psi_{t+1} c_{t+1} (\frac{1}{G\psi_{t+1}} Ra_{i} + \xi_{t+1}))^{-\rho}] - c_{j}^{-\rho}$$

and $c_{t+1}(\bullet)$ is interpolated using $c_1, c_2, \ldots, c_\#$

• See Jørgensen (2013) + Will see this later again

Reduced form

Exampl

Additional mothod

Until next

Until next

- Ensure that you understand:
 - 1 Maximum likelihood estimation
 - 2 Method of simulated moments
 - **3** How to discuss identification

