

کاربرد برنامهریزی ریاضی در تولید الگوریتمهای تقریبی

محمدهادی فروغمنداعرابی پاییز ۱۳۹۶

برشها و متریک

جلسه بيستم

نگارنده: فائزه فاطمی نژاد

در این جلسه مساله برش چند طرفه کمینه را با استفاده از برنامهریزی خطی حل میکنیم.

١ مسأله برش چند طرفه كمينه

گراف بدون جهت G=(V,E) را داریم که هر یال آن وزن $c_e \geq \circ$ را دارد و k تا از رأسهای آن را ویژه مینامیم و باG=(V,E) مشخص میکنیم. میخواهیم تعدادی از یالهای آن را حذف کنیم به طوری که هیچ دو رأس ویژه ای در یک مؤلفه همبندی قرار نداشته باشند و مجموع وزن یالهای حذف شده کمینه باشد.

اگر فقط دو رأس ویژه داشتیم از الگوریتم برش کمینه استفاده میکردیم و جواب بهینه به راحتی به دست میآمد. با استفاده از این نکته الگوریتم تقریبی زیر را به دست میآوریم.

k بین ۱ بین اتا i

همه راسهای ویژه به جز s_i را ترکیب کن و الگوریتم برش کمینه را روی s_i اجرا کن

یالهای به دست آمده را در مجموعه F_i قرار بده

مجموعه $F = \bigcup F_i$ را به عنوان جواب برگردان.

تحليل:

اين الگوريتم ٢ _ تقريب است.

هر یال عضو $F^* = \bigcup F_i^*$ را که در نظر بگیرید حداکثر در دو تا از F_i^* ها می آید و میدانیم $C(F_i) \leq c(F_i)$ زیرا الگوریتم برش کمینه بهترین جواب را برای هر F_i پیدا می کند. بنابراین:

$$\sum_{i=1}^k c(F_i) \leq \sum_{i=1}^k c(F_i^*) \leq \operatorname{Y}\! c(F^*) = \operatorname{Y}\! OPT$$

برای ترکیب راسهای ویژه در هر مرحله می توان راس فرضی t را در نظر گرفت که با یال ∞ به همه راسهای ویژه به جز s_i متصل است. الگوریتم برش کمینه بین s_i و t ارزانترین مجموعه از یالها را به دست می آورد به طوری که s_i با هیچ راس ویژه دیگری متصل نباشد.

با تغییر جزئی در الگوریتم می توان ضریب تقریب را کمی بهتر کرد. اگر مجموعه F را برابر اجتماع ۱ k-1 تا از F_i ها قرار دهیم، همچنان یک جواب شدنی برای مساله به دست آوردهایم. پس آن F_i ای که بیشترین هزینه را دارد(فرض کنید F_i) از F_i حذف می کنیم. بیشترین هزینه F_i ها حداقل برابر F_i هزینه F_i است. بنابراین :

$$\sum_{i=1}^{k-1} c(F_i) \leq \sum_{i=1}^{k-1} c(F_i^*) \leq \mathsf{Y}(\mathsf{I} - \frac{\mathsf{I}}{k}) c(F^*) = \mathsf{Y}(\mathsf{I} - \frac{\mathsf{I}}{k}) OPT$$

و الگوریتم $(\frac{1}{k})$ تقریب است.

تعبیر دیگری از مسأله می تواند این باشد که رأسهای گراف را به k مولفه همبندی افراز کنیم به طوری که هر مولفه دقیقا یک رأس ویژه را در بر بگیرد و مجموع یالهایی که دو سر آنها از دو مولفه متفاوتاند کمینه باشد.

برنامهريزي خطي

$$\begin{split} \min \frac{1}{\mathbf{Y}} \sum_{e} c_e \sum_{i} z_e^i \\ z_e^i \geq x_u^i - x_v^i, & \forall (u,v) \in E, \forall i \\ z_e^i \geq x_v^i - x_u^i, & \forall (u,v) \in E, \forall i \\ \sum_{i} x_v^i = \mathbf{1}, & \forall v \in V \\ x_{s_i}^i = \mathbf{1}, & i \in [k] \\ & \circ \leq x_v^i, & i \in [k] \end{split}$$

 $x_{s_i}=e_i$ متغیر x_v^i نشاندهنده این است که رأس v در مولفه همبندی i قرار دارد یا خیر.اگر v را بردارهای kتایی در نظر بگیریم میبینیم که v در مولفه همبندی v و از آنجا که v را بردارهای v برنامهریزی خطی به صورت زیر نوشته میشود:

$$\begin{split} \min \frac{\mathbf{1}}{\mathbf{T}} \sum_{e} c_e ||x_v - x_u||_{\mathbf{1}} \\ x_{s_i} &= e_i, \\ x_u &\in \Delta_k \end{split} \qquad i \in [k]$$

که Δ_k مجموعه تمام بردارهای عضو \mathbb{R}^k است که حاصل جمع قدرمطلق مولفههای آنها که همان $||x_u||_1$ است برابرا باشد. قصد داریم مجموع یالهای واقع در برش را کمینه کنیم بنابراین در گرد کردن ترجیح میدهیم هر چقدر c_e یالی بزرگتر باشد، $||x_u-x_v||_1$ دو سر آن کمتر باشد. باز حل این برنامهریزی خطی از الگوریتم زیر استفاده میکنیم:

الكوريتم:

الف) عدد r در بازه $(\circ, 1]$ با توزیع یکنواخت را به طور تصادفی انتخاب کن

ب) یک جایگشت تصادفی از ۱ تا k انتخاب کن و در π قرار بده

: k تا i از تا i

دور هر $s_{\pi}(i)$ یک گوی به طول r قرار بده

تمام رأسهایی که تا به حال در هیچ مولفهای قرار نگرفتهاند و $|x_{s_{\pi(i)}}-x_v||_{1}\leq \pi$ قرار بده

ت) تمام رأسهایی که به هیچ مولفهای نسبت داده نشدهاند را در مولفه $\pi(k)$ قرار بده

ج) مجموعه F شامل تمام یالهایی که دو سر آنها در دو مولفه متمایز قرار دارد را به عنوان جواب برگردان.

تحليل الگوريتم:

ميخواهيم اميد هزينه را محاسبه كنيم.

$$\mathbb{E}[W] = \sum_e c_e \mathbb{P}r[e \in F]$$

گویها را به صورت $B(s_i,r)$ نشان میدهیم و S_i^e نمایانگر اولین i که یکی از دو سر e در $B(s_i,r)$ بیفتد است. همچنین A_i^e نشان دهنده این است که $B(s_i,r)$ بیفتد است. $B(s_i)$ دریم:

$$\begin{split} \mathbb{P}r[X_i^e] &= |x_v^i - x_u^i| \leq \frac{\mathsf{1}}{\mathsf{1}}||x_u - x_v||_{\mathsf{1}} \\ \mathbb{P}r[(u,v) \in E] &= \sum \mathbb{P}r[S_i^e \wedge X_i^e] \end{split}$$

v اندیس نزدیکترین s به یکی از u یا v باشد داریم:

$$\mathbb{P}r[X_i^e\cap S_i^e]=\mathbb{P}r[X_i^e\cap S_i^e]$$
 قبل از i در π بیاید $l]\mathbb{P}r[X_i^e\cap S_i^e]$ قبل از i در π بیاید از i در π بیاید از i بعد از i در i بیاد از i در i در i بیاد از i در i بیاد از i در i در i بیاد از i در i بیاد از i در i در

چون جایگشت تصادفی است به احتمال $\frac{1}{2}$ بعد از i می آید.قسمت اول نیز برابر صفر است. بنابراین:

$$\mathbb{P}r[X_i^e \cap S_i^e] \leq \frac{1}{7} \mathbb{P}r[X_i^e \cap S_i^e]$$
 بعد از i در π بیاید $[i] = \frac{1}{7} \mathbb{P}r[X_i^e] = \frac{1}{7} |x_u^i - x_v^i|$ پس احتمال اینکه $[u,v)$ یال واقع در برش باشد برابر است با :

$$\begin{split} \sum_{i=1}^k \mathbb{P}r[S_i^e \wedge X_i^e] \\ &= \frac{1}{\mathbf{Y}} \sum_{i \neq l} |x_v^i - x_u^i| + |x_v^l - x_u^l| \\ &= \frac{1}{\mathbf{Y}} ||x_v^i - x_u^i||_1 + \frac{1}{\mathbf{Y}} |x_v^l - x_u^l||_1 \\ &\leq \frac{\mathbf{Y}}{\mathbf{Y}} ||x_v^i - x_u^i||_1 \end{split}$$

در نتیجه داریم:

$$\begin{split} \mathbb{E}[W] &\leq \frac{\mathbf{r}}{\mathbf{r}} \sum_{e} c_{e} ||x_{v}^{i} - x_{u}^{i}||_{\mathbf{1}} \\ &\leq \frac{\mathbf{r}}{\mathbf{r}} \cdot \frac{\mathbf{1}}{\mathbf{r}} \sum_{e} c_{e} ||x_{v}^{i} - x_{u}^{i}||_{\mathbf{1}} \\ &\leq \frac{\mathbf{r}}{\mathbf{r}} OPT \end{split}$$

پس این الگوریتم $\frac{7}{7}$ _ تقریب است.