1. Problem

Let random variable W have mean $\mu_W = 22$ and standard deviation $\sigma_W = 6$. Let random variable X represent the **sum** of n = 100 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_x = ?$
- (c) Using normal approximation, determine P(X < 2267.2).
- (d) Using normal approximation, determine P(X > 2285.2).

2. Problem

Let random variable W have mean $\mu_W = 9$ and standard deviation $\sigma_W = 3$. Let random variable X represent the **sum** of n = 196 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_x = ?$
- (c) Using normal approximation, determine P(X < 1769.04).
- (d) Using normal approximation, determine P(X > 1759.8).

3. Problem

Let random variable W have mean $\mu_W = 58$ and standard deviation $\sigma_W = 10$. Let random variable X represent the **average** of n = 144 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_x = ?$
- (c) Using normal approximation, determine P(X < 58.15).
- (d) Using normal approximation, determine P(X > 57.02).

4. Problem

Let random variable W have mean $\mu_W = 55$ and standard deviation $\sigma_W = 6$. Let random variable X represent the **average** of n = 36 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 54.57).
- (d) Using normal approximation, determine P(X > 56.52).

5. Problem

Let random variable W have mean $\mu_W = 55$ and standard deviation $\sigma_W = 13$. Let random variable X represent the **sum** of n = 144 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 8224.2).
- (d) Using normal approximation, determine P(X > 7979.28).

6. Problem

Let random variable W have mean $\mu_W = 45$ and standard deviation $\sigma_W = 9$. Let random variable X represent the **average** of n = 121 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 44.57).
- (d) Using normal approximation, determine P(X > 44.19).

7. Problem

Let random variable W have mean $\mu_W = 59$ and standard deviation $\sigma_W = 18$. Let random variable X represent the **average** of n = 144 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 60.17).
- (d) Using normal approximation, determine P(X > 56.44).

8. Problem

Let random variable W have mean $\mu_W = 32$ and standard deviation $\sigma_W = 8$. Let random variable X represent the **average** of n = 64 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_x = ?$
- (c) Using normal approximation, determine P(X < 31.55).
- (d) Using normal approximation, determine P(X > 31.3).

9. Problem

Let random variable W have mean $\mu_W = 14$ and standard deviation $\sigma_W = 3$. Let random variable X represent the **sum** of n = 100 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 1390.4).
- (d) Using normal approximation, determine P(X > 1370.9).

10. Problem

Let random variable W have mean $\mu_W = 14$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **sum** of n = 100 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 1388).
- (d) Using normal approximation, determine P(X > 1420.2).

11. Problem

Let random variable W have mean $\mu_W = 9$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **average** of n = 169 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 8.83).
- (d) Using normal approximation, determine P(X > 9.02).

12. Problem

Let random variable W have mean $\mu_W = 18$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **sum** of n = 169 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 3072.42).
- (d) Using normal approximation, determine P(X > 3033.94).

- 1. (a) 2200
 - (b) 60
 - (c) 0.8686
 - (d) 0.1314
- 2. (a) 1764
 - (b) 42
 - (c) 0.5478
 - (d) 0.4522
- 3. (a) 58
 - (b) 0.8333
 - (c) 0.5714
 - (d) 0.4286
- 4. (a) 55
 - (b) 1
 - (c) 0.3336
 - (d) 0.6664
- 5. (a) 7920
 - (b) 156
 - (c) 0.9744
 - (d) 0.0256
- 6. (a) 45
 - (b) 0.8182
 - (c) 0.2981
 - (d) 0.7019
- 7. (a) 59
 - (b) 1.5
 - (c) 0.7823
 - (d) 0.2177

- 8. (a) 32
 - (b) 1
 - (c) 0.3264
 - (d) 0.6736
- 9. (a) 1400
 - (b) 30
 - (c) 0.3745
 - (d) 0.6255
- 10. (a) 1400
 - (b) 20
 - (c) 0.2743
 - (d) 0.7257
- 11. (a) 9
 - (b) 0.1538
 - (c) 0.1379
 - (d) 0.8621
- 12. (a) 3042
 - (b) 26
 - (c) 0.879
 - (d) 0.121