如

마 效

শ

东 南大学考 试 卷 (A 卷)

课程名称 概率论与数理统计 考试学期 18-19-2 得分

适 用 专 业		全校	考试形式		闭卷	考证	考试时间长度 120 分钟		
题号	_		111	四	五.	六	七	八	
得分									

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \, \text{表示标准正态分布的分布函数},$$

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.064) = 0.025; P(T_{24} \ge 1.711) = 0.05;$
 $P(T_{25} \ge 2.060) = 0.025; P(T_{25} \ge 1.708) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$
 $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 设 A,B 为两随机事件,且 $B \subset A$,则下列式子不正确的是(
 - (A) $P(A \cup B) = P(A)$
- (B) P(AB) = P(B)

(C) P(B|A) = P(B)

- (D) P(A-B) = P(A) P(B)
- 2) 随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} x^2 & 0 < x < 1 \\ 1/3 & 1 \le x < 3, \\ 0 & \sharp \, \stackrel{\sim}{\sqsubseteq} \end{cases}$$

X 的期望 EX 为

$$(B)\int_{0}^{1}x^{3}dx + \frac{1}{2}$$

$$(A)\int_0^1 x^3 dx$$

$$(B) \int_0^1 x^3 dx + \frac{1}{3}$$

$$(C)\int_0^1 x^3 dx + \int_1^3 \frac{x}{3} dx$$

$$(D)\int_0^1 x^3 dx + \int_1^3 \frac{1}{3} dx$$

)

3) 设随机变量 X 与 Y 相互独立,且 X,Y 都服从正态分布 $\mathbb{N}(0,2)$.

$$\diamondsuit Z = |X + Y|$$
,则 $P(Z > 2)$ 的值为.

(A) 0.8413

(B) 0.1587

(C) 0.3174

(D) 0.6826

第1页共5页-

效

4)	设离散随机变量 X	的分布函数为 F	(x),	$\mathbb{E} x_1 < x$	$x_1 < x_2$	是X的三个	个相邻的取值,
----	-----------	------------	------	----------------------	-------------	-------	---------

则 $P(X = x_2)$ 的值为 ().

$$(A) P(x_1 \le X \le x_2)$$

(B)
$$F(x_3) - F(x_1)$$

(C)
$$P(x_1 < X < x_2)$$

(D)
$$F(x_2) - F(x_1)$$

5) 设总体 $X \sim N(10,10)$, $X_1,...,X_{10}$ 是来自该总体的样本,

则
$$\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$$
 服从 ()

(A) N(0,1)

(B) N(1,1)

(C) N(10,10)

(D) N(10,1)

二、填充题(每空格 2', 共 26')

- 1) 己知 P(B)=0.4,P(A)=0.3,P(A|B)=0.5,则 $P(B|\bar{A})=$
- 2) 设 X,Y 为相互独立的随机变量,且 $P\{X \ge 0\} = P\{Y \ge 0\} = 3/4$,则 $P\{\max(X,Y) \ge 0\} =$.
- 3) 设随机变量 X 服从泊松分布,方差为 2, $P(X=2) = ______$ 。
- 4) 随机变量 X, Y 相互独立, X~N(0,2), Y~N(0,2), 则 P(X=Y)=____。
- 5) 随机变量 X, Y 的联合分布律为: P(X=0,Y=0)=0.3; P(X=0,Y=1)=0.2; P(X=2,Y=0)=0.1; P(X=2,Y=1)=0.4。则 X+Y 分布律为。
- 6) 若随机变量 X,Y 满足, DX=DY=2, 相关系数 r=0.3,则 cov(X-Y,X+2Y)= 。
- 7) 设随机变量序列 $\{Xn,n=1,2,...\}$ 独立同分于均值为 5 的指数分布,则 $\frac{1}{n}(X_1^2 + X_2^2 + ... + X_n^2) \xrightarrow{p} _____.$
- 8) 设总体 X 服从正态分布 N(-12,1) , $X_1,X_2,...,X_{10}$ 是来此该总体的样本, \bar{X} 表示样本均值, 则 $\sum_{i=1}^{10} (X_i \bar{X})^2$ 服从_____分布。
- 9) 随机变量 X 的分布律为 P(X=-10)=0.3, P(X=10)=0.7, 则其分布函数 **第 2 页 共 5 页**-

答

卷无效

自

觉

为_____

- 10) 随机变量 X 的概率密度为 $f(x) = \begin{cases} 2(1-x), & 0 < x < 1 \\ 0, & 其他 \end{cases}$,则 Y=2X-1 的密度函数为_____。
- 11) 设 X_1, X_2, X_3, X_4 是 来 自 正 态 总 体 N(0,10) 的 简 单 随 机 样 本 , 若 $c(X_1 + X_2)^2 + X_3^2/10 \sim \chi^2(2)$,则常数c =______。
- 12) 设某总体服从 N(m,4),有来自该总体的容量为 16 的简单随机样本,其样本均值为 12.5,则在水平 α =0.1 下,m 的置信区间长度为_____。
- 13) 设总体 X 的概率密度为 $f(x,b) = \begin{cases} bx^{b-1} & 0 < x < 1 \\ 0 &$ 其它 \end{cases} , b > 0 为未知参数。若 0.2, 0.3,0.15,0.35,0.55,0.85 是来自该总体的简单随机样本的观测值,则 b 的矩估计值为_____。
- 三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} axy^2 & 0 < x < 1, x - 1 < y < 0 \\ 0 & 其他 \end{cases}$$

求(1)常数a;(2)Y的边缘密度函数;(3)条件概率P(X<0.5|Y=-0.6)。

和

帅

佻

姓名

蓝

卷无效

小

四、(10') 设有来自三个地区的各 10 名, 15 名和 20 名考生的报名表, 其中女生的报名表分别为 3 份, 5 份和 10 份。随机地取一个地区的报名表, 从中先后抽出两份. (1)求先抽到的一份是女生表的概率; (2)已知后抽到的一份是女生表, 求先抽到的一份是女生表的概率。.

五、(10')设随机变量 X 和 Y 相互独立,且都服从 U[0,2]。令 Z=X+2Y,求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

六、(9') 设一本书共 200 页,每一页的印刷错误数服从泊松分布 P(2)。试用中心极限定理 近似计算该书的印刷错误总数大于 420 的概率。

七、(10')设总体 X 的概率密度为

$$f(x,\theta) = \begin{cases} \theta x^{-(\theta+1)} & x \ge 1 \\ 0 & x < 1 \end{cases}, (\theta > 0)$$

其中 θ 为未知参数。 $X_1,...X_n$ 为来自该总体的样本。令 $\eta = \frac{1}{\theta}$,(1)求参数 η 的最大似然估计量 $\hat{\eta}$,(2) $\hat{\eta}$ 是否是 η 的无偏估计量,说明理由。.

群名

紪

八、 (10')设总体 X 服从正态分布 N (u, σ^2),u 和 σ^2 未知。 现有来自该总体样本容量为 25 的样本,其样本均值为-5,样本标准差为 2。 (1) 试检验 H₀: u=-6, v.s. H₁: u>-6.(检验 水平 α = 0.05),(2)求 σ^2 的置信度为 95%的置信区间。