

## Análise e Transformação de Dados

## Teste 2 - Exemplo

| Maio de 2022                                                                                                                                                                                                                   | Duração: 60min.                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Teste com consulta restrita a uma página A4 de a<br>Não é permitido o uso de meios electrónicos (con<br>Qualquer tentativa de fraude conduzirá à anulação                                                                      | nputador, etc.), excepto calculadora básica.                                                             |
| Nome:                                                                                                                                                                                                                          | N°                                                                                                       |
| <ol> <li>[2] Dado o sistema de tempo discreto pela função resultante da aplicação do período de amostragem <i>T</i></li> <li>a) "O sistema é" □ estável</li> </ol>                                                             | ( /( /                                                                                                   |
| b) "tem" zeros(s) e c) "um tempo de atraso puro de" $ \square 0.1s \qquad \square 0.2s \qquad \square 0.3s \qquad \square 0.4s $ d) "e um ganho em regime estacionário de"                                                     | pólo(s) pólo(s)1s                                                                                        |
| <ol> <li>[2] Dado o sistema de tempo discreto pela função expressão da resposta a impulso do sistema, h[n], co</li> </ol>                                                                                                      | de transferência $G(z) = \frac{0.4z^{-3}}{1 - 0.8z^{-1}}$ , determinar a                                 |
| Resposta: $h[n] = $                                                                                                                                                                                                            |                                                                                                          |
| 3. [2] Considerar um sistema (SLIT), com con $y[n] = 0.5x[n-1] + 0.3x[n-3] + 1.1y[n-1] - 0.3y[n-1]$ do sistema, $y[n]$ , em regime estacionário, quando a e o degrau unitário, com $U(z) = 1/(1-z^{-1})$ , e $\delta[n]$ o imp | -2]. Determinar o valor para onde tende a saída entrada é $x[n] = 5u[n-2] - 2\delta[n-5]$ , sendo $u[n]$ |
| Resposta:                                                                                                                                                                                                                      |                                                                                                          |

| 4. [2] Sabendo que a resposta en $H(3) = 3j$ , qual a expressão do $x[n] = 2\sin[3n]$ :                                                                                          | -                                               | -                                                 | -                                       |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------|
|                                                                                                                                                                                  |                                                 | $y + \frac{\pi}{2}$ $y = \frac{\pi}{2}$           | $[n] = 2\sin[9n + 1]$                   | $\pi]$          |
|                                                                                                                                                                                  |                                                 | $y + \frac{\pi}{2}$                               | $[n] = 6\sin[3n + x]$                   | $\pi$ ]         |
| 5. [2] Estabelecer corretamente as respetiva Série de Fourier trigono $x(t) = 4(\sin(3t+1))^2$                                                                                   | ométrica, indicando                             | * /                                               | •                                       | não nulas da    |
| $x(t) = 2\cos(5t) + \sin(5t - 1)$                                                                                                                                                | '                                               | m=0  e  m=1                                       | <b>D</b> : <i>m</i> =0 e <i>m</i> =     |                 |
| $x(t) = 4\sin(6t)\cos(9t - 6)$                                                                                                                                                   |                                                 | m=2  e  m=3                                       |                                         |                 |
| $x(t) = 1 + \cos(5t - 1)$                                                                                                                                                        | G:                                              | <i>m</i> =3 e <i>m</i> =15                        | H: <i>m</i> =1 e <i>m</i> =             | 5               |
| 6. [2] Qual das seguintes frequênce verifica o Teorema da Amostrago ☐ 61 Hz ☐ 91 Hz ☐ 12                                                                                         | em para o sinal $x(t)$                          | $=1+(\sin(90\pi t))^2$                            |                                         |                 |
| 7. [2] Sendo $C_m$ e $\theta_m$ os coeficiente período $T_0 = 2\pi$ , e $c_m$ os coeficiente expressões são verdadeiras (V) o $C_3 =  c_3  \square V   \square F $ $C_4 =  c_4 $ | entes da Série de Fo<br>u falsas (F):           | ourier complexa d                                 | e $x(t)$ , indique s                    | se as seguintes |
| $C_3 =  c_3  \sqcup V   \sqcup F   C_4 = 14$                                                                                                                                     |                                                 | $C_0 =  C_0  \sqcup V   \sqcup$                   | $\mathbf{F}  \theta_3 = -\angle c_{-3}$ | , L V   L F     |
| <ol> <li>[2] Considere um sinal periódic<br/>100π rad/s, cujas componentes</li> </ol>                                                                                            | -                                               | * *                                               | -                                       |                 |
| $c_{-5} = 3j$ ,                                                                                                                                                                  | 3,                                              | $c_2 = 2j$ ,                                      |                                         | $c_5 = -3j$ .   |
| Quais as frequências (em Hz) pre                                                                                                                                                 |                                                 |                                                   | □ 40 e 100 H                            | Ηz              |
| □ 20 e 50 Hz                                                                                                                                                                     | □ 100 e 2                                       |                                                   | ☐ Nenhuma                               |                 |
| 9. [2] Qual o valor do período fi amostragem do sinal $x(t) = 1$ amostragem de 600 Hz?                                                                                           |                                                 | •                                                 |                                         | •               |
|                                                                                                                                                                                  |                                                 |                                                   |                                         |                 |
| Resposta: $N = $                                                                                                                                                                 |                                                 |                                                   |                                         |                 |
| 10. [1] Diga se a seguinte afirmação "Os coeficientes da Série de Four ser obtidos a partir da Transform com o sinal <i>xp</i> ( <i>t</i> ) durante um per □ Ve                  | ier complexa, $c_m$ , de ada de Fourier, $X(w)$ | e um sinal $xp(t)$ , po<br>y), de um sinal $x(t)$ | ), não periódico através de: $c_m$ =.   | , que coincide  |
|                                                                                                                                                                                  |                                                 |                                                   |                                         |                 |

| 11. [1] Completar a seguinte afirmação: "A Transformac                                                                                                                                                                                                                                                                                                                                                                                                                             | da de Fourier Discreta (DF1) do zero padding                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| do sinal $x[n], \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in a 1 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| melhora a resolução espectral do si                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| mantém a resolução espectral do sinal."                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| piora a resolução espectral do sinal                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 12. [2] Dado o sinal de tempo discreto $x[n] = 1 - 2\sin[0.03\pi n + \frac{\pi}{2}] + \cos[0.07\pi n]$ , qual o período da Transformada de Fourier Discreta (DFT) do sinal?                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Resposta: $N = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 13. [2] Considerando que a Transformada de Fourier Discreta (DFT) de um dado sinal periódico de tempo discreto com $N = 50$ resultou em $X_{DFT}[2] = -X_{DFT}[-2] = -50j$ e $X_{DFT}[5] = X_{DFT}[-5] = -100$ , complete a expressão da Série de Fourier trigonométrica desse sinal periódico de tempo discreto:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $x[n] = \underline{\qquad} \cos[\underline{\qquad} n + \underline{\qquad}] + \underline{\qquad}$                                                                                                                                                                                                                                                                                                                                                                                   | $_{}\cos[$ $_{}n+_{}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 14. [2] Aplicando a STFT a um sinal de tempo discreto (obtido com uma frequência de amostragem f <sub>s</sub> =1000Hz), usando uma janela de largura igual a 500ms sem sobreposição, verificou-se que, na 2ª janela, o valor máximo de  DFT  é o 50° valor da DFT.  Qual o valor da frequência (em Hz) a que ocorre o valor máximo de  DFT ?  □ 48 Hz □ 49 Hz □ 50 Hz □ 98 Hz □ 99 Hz □ 100 Hz □ Nenhuma                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| _ ,, ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LI 39 IIZ LI 100 IIZ LI NCIIIIuliia                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, $x[n]$ , obtido com uma dada frequên                                                                                                                                                                                                                                                                                                                                                             | entar o espectro (magnitude) de um sinal áudio                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres                                                                                                                                                                                                                                                                                                                                                                                                                     | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, x[n], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri                                                                                                                                                                                                                                                                                                             | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio .mento do sinal x[n]                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % comprix= % obtém                                                                                                                                                                                                                                                                                  | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, x[n], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N=                                                                                                                                                                                                                                                                                                                      | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio .mento do sinal x[n]                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % comprix= % obtém                                                                                                                                                                                                                                                                                  | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N=                                                                                                                                                                                                                                                                                                     | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém  if % gera a  f=else  f=end                                                                                                                                                                                                                                                    | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz                                                                                                                                                                                                                                                                                                                                                |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém  if % gera a  f=else  f=end                                                                                                                                                                                                                                                    | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém  if % gera a  f=else  f=end                                                                                                                                                                                                                                                    | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal a escala de frequências em Hz  enta a magnitude da DFT  completar o código em Matlab que permite arec(t) apenas com a componente de frequência                                                                                                                                                                                                                            |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém if % gera a f=else f=end  % repres  16. [3] Na continuação do código do exercício anterior, reconstruir e representar o sinal aproximado de áudio <i>x</i> mais relevante (correspondente ao valor máximo da m                                                                 | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio amento do sinal x[n] a DFT do sinal a escala de frequências em Hz  enta a magnitude da DFT  completar o código em Matlab que permite arec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre                                                                                                                                                                               |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém  if % gera a  f=else  f=end  % repres  16. [3] Na continuação do código do exercício anterior, reconstruir e representar o sinal aproximado de áudio <i>x</i> mais relevante (correspondente ao valor máximo da m à frequência 0).  X_max_abs=max(abs(X)); % valor máximo ind= | entar o espectro (magnitude) de um sinal áudio cia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz  senta a magnitude da DFT  completar o código em Matlab que permite crec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre  da magnitude da DFT % obtém os índices na DFT                                                                                                                                   |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N= % compri  X= % obtém  if % gera a  f=else  f=end  % repres  16. [3] Na continuação do código do exercício anterior, reconstruir e representar o sinal aproximado de áudio <i>x</i> mais relevante (correspondente ao valor máximo da m à frequência 0).  X_max_abs=max(abs(X)); % valor máximo ind= | entar o espectro (magnitude) de um sinal áudio cia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz  senta a magnitude da DFT  completar o código em Matlab que permite crec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre  da magnitude da DFT % obtém os índices na DFT                                                                                                                                   |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequênt [x, fs]=audioread('sinal_audio.wav');  N= % comprix  X= % obtém if % gera a f=                                                                                                                                                                                                                                                               | entar o espectro (magnitude) de um sinal áudio acia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz  enta a magnitude da DFT  completar o código em Matlab que permite crec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre  da magnitude da DFT % obtém os índices na DFT % frequência mais relevante % coeficiente C da componente                                                                         |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N=                                                                                                                                                                                                                                                                                                     | entar o espectro (magnitude) de um sinal áudio cia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz  enta a magnitude da DFT  completar o código em Matlab que permite crec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre  da magnitude da DFT % obtém os índices na DFT % obtém os índices na DFT % frequência mais relevante % coeficiente C da componente % coeficiente θ da componente                  |  |  |
| 15. [3] Completar o código em <i>Matlab</i> que permite repres de tempo discreto, <i>x</i> [ <i>n</i> ], obtido com uma dada frequên [x, fs]=audioread('sinal_audio.wav');  N=                                                                                                                                                                                                                                                                                                     | entar o espectro (magnitude) de um sinal áudio cia de amostragem fs.  % Lê o sinal áudio mento do sinal x[n] a DFT do sinal escala de frequências em Hz  enta a magnitude da DFT  completar o código em Matlab que permite crec(t) apenas com a componente de frequência agnitude da DFT; pode admitir que não ocorre  da magnitude da DFT % obtém os índices na DFT % obtém os índices na DFT % frequência mais relevante % coeficiente C da componente % coeficiente O da componente % vetor temporal |  |  |