

DPP # 10

M.M.:38MAX. TIME: 20 Min.

ONLY ONE OPTION CORRECT TYPE

- A mixture of gas "X" (mol. wt. 16) and gas Y (mol. wt. 28) in the mole ratio a: b has a mean 1. molecular weight 20. What would be mean molecular weight if the gases are mixed in the ratio b: a under identical conditions (gases are non reacting). [3]
 - (A) 24
- (B) 20
- (C) 26
- (D) 40
- 2. How many moles of P₄O₆ and P₄O₁₀ will be produced by the combustion of 12.4 gm of phosphorus in 12.8 gm of O_2 , leaving no P_4 or O_2 ? [Atomic wt. P = 31] [3]
 - (A) 0.11 mol and 0.3 mol

(B) 0.15 mol and 0.25 mol

(C) 0.05 mol each

- (D) 0.1 mol each
- 3. The density of a liquid is 1.2 g/mL. There are 35 drops in 2 mL. The number of molecules in 1 drop is (molecular weight of liquid = 70): [3]

 - (A) $\frac{1.2}{35}$ N₀ (B) $\left(\frac{1}{35}\right)^2$ N₀ (C) $\frac{1.2}{\left(35\right)^2}$ N₀
- (D) $1.2 N_0$
- 4. An oxide of iron contains 30% of oxygen by mass simplest formula of oxide is -
 - (A) Fe_2O_3
- (B) FeO
- (C) Fe₂O
- (D) Fe_3O_4

ONE OR MORE THAN ONE OPTION CORRECT TYPE

Hexamethylenediamine $[H_2N+(CH_2)+($ 5. form dimer as: [3]

$$NH_{2} + CH_{2} + HO - C + CH_{2} + COH \xrightarrow{50\% \text{ yield}} H_{2}N (CH_{2})_{6} NH - C + CH_{2} + COH + H_{2}O$$
Dimer

The dimer polymerises to form Nylon 6,6 as per the reaction -

Select the correct statement -

- (A) 290 gm of Hexamethylenediamine is required to make 610 gm of dimer.
- (B) 730 gm of adipic acid is required to make 610 gm of dimer.
- (C) In order to obtain 1.13 kg of Nylon-6,6 at least 1220 gm of dimer is required.
- (D) In order to obtain 1.13 kg of Nylon-6,6 at least 1742.9 gm of dimer is required.

[3]

- When $N_2(g)$ and $H_2(g)$ are mixed $N_2H_4(g)$, $NH_3(g)$ or both may form, depending upon the relative amount of N_2 and H_2 taken. If initial moles of N_2 , H_2 are x, y and final moles of N_2H_4 , NH_3 are z, v, then the correct options from the following in order of (x, y, z, v) is/are
 [3]
 - (A) (2, 2, 1, 0)
- (B)(3, 8, 1, 4)
- (C)(4, 9, 4, 1)
- (D) (0.5, 3, 0, 1)

Comprehension:

7. FeSO₄ undergoes decomposition as

[6]

$$2FeSO_4(s) \longrightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$$

At 1 atm 273K, if (7.6 gm) FeSO₄ is taken then

- (i) The volume occupied by the gases at 1 atm & 273 K.
 - (A) 22.4 lit
- (B) 11.2 lit
- (C) 1.12 lit
- (D) 2.24 lit

- (ii) The average molar mass of the gaseous mixture.
 - (A)72
- (B) 36
- (C) 48
- (D) 60

MATCH THE COLUMN

8. Match the column. [8]

Column-I				Column-II	
Atomic masses				% composition of heavier isotope	
	Isotope-I	Isotope-II	Avg		
(A)	(z - 1)	(z+2)	Z	(P)	33.33% by moles
(B)	(z + 1)	(z + 3)	(z + 2)	(Q)	50% by moles
(C)	Z	3z	2z	(R)	% by mass dependent on z
(D)	(z - 1)	(z + 1)	Z	(S)	75% by mass

INTEGER/SUBJECTIVE TYPE

9. The abundance of three isotopes of oxygen are as follows

[3]

% of
$$O^{16} = 90\%$$

% of
$$O^{17}$$
 + % of O^{18} = 10%

Assume at. mass same as mass no. Find out % of O^{17} and O^{18} , if the avg. atomic mass is 16.12.

10. Assume isotope of chlorine present on the unknown planet are ³⁴Cl and ³⁸Cl. If average atomic weight of Cl is found to be 35. What is the sum of moles of proton and neutron in 7 gm of sample of chlorine [3]