Hypothesis Testing — **Detailed Explanation**

1. Overview of Hypothesis Testing

Hypothesis testing is a formal procedure for deciding whether data provide enough evidence to reject a stated claim about a population. The main elements are:

- Null hypothesis (H_o): the default claim (e.g., " $\mu = \mu_0$ ", "no effect").
- Alternative hypothesis (H₁ or H_a): what we consider if H₀ is rejected (e.g., " $\mu \neq \mu_0$ ", " $\mu > \mu_0$ ", " $\mu < \mu_0$ ").
- Test statistic: a function of sample data that has a known sampling distribution under H_o.
- Significance level (α): pre-chosen probability of making a Type I error (common choices: 0.05, 0.01).
- **P-value:** probability, under H₀, of observing a test statistic as extreme or more extreme than the one observed.
- **Decision rule:** either (a) compare p-value to α (reject H_0 if $p \le \alpha$), or (b) compare test statistic to critical value(s) (reject H_0 if statistic falls in rejection region).

2. Type I and Type II Errors, Power

- **Type I error** (α): rejecting H₀ when it is true. Probability = α (set by researcher).
- Type II error (β): failing to reject H_0 when H_1 is true. Probability depends on true effect, sample size, variance, α .
- **Power:** 1β = probability of correctly rejecting H_0 when H_1 is true. Increasing sample size, effect size, or α raises power.

Decision-outcome table:

- True H₀ & accept → Correct.
- True H₀ & reject → Type I error (α).
- False H_o & accept → Type II error (β).
- False H_o & reject → Correct (power).

Sample-size relation (two-sided z test, known σ):

$$n \approx [(z_{1-\alpha/2} + z_{1-\beta}) * \sigma / \Delta]^{2}$$

where Δ = minimum effect size you want to detect, z quantiles from standard normal.

3. Rejection Regions (Critical Regions)

- Two-tailed test: H_0 : parameter = value; H_1 : parameter \neq value. Rejection if |test statistic| > critical value (e.g., z > 1.96 for $\alpha = 0.05$).
- One-tailed test (right): H_1 : parameter > value. Reject if statistic > $z_{1-\alpha}$. Example: $\alpha = 0.05 \Rightarrow$ critical $z \approx 1.645$.

One-tailed test (left): H₁: parameter < value. Reject if statistic < z_{α}.
 Critical values depend on the sampling distribution (z, t, χ², F) and degrees of freedom.

4. Z-test

Purpose: Test means or proportions when sampling distribution is approximately normal and population variance is known (or n large so CLT applies).

One-sample mean (known σ):

Test statistic: $Z = (\bar{x} - \mu_0) / (\sigma / \sqrt{n})$

Decision: Compare Z to z critical or compute p-value from standard normal.

Two-sample mean (known σs):

$$Z = (\bar{x}_1 - \bar{x}_2 - \Delta_0) / V(\sigma_1^2/n_1 + \sigma_2^2/n_2)$$

Proportion test (one sample):

$$Z = (\hat{p} - p_0) / V[p_0(1-p_0) / n]$$

(Use pooled proportion for two-sample proportion tests when H_0 : $p_1 = p_2$.)

Assumptions: independent samples, normality (or large n), known population σ (or large n).

5. T-test (Student's t)

Used when population variance is unknown and/or sample size is small. The sampling distribution is Student's t with specific degrees of freedom (df).

One-sample t-test:

$$t = (\bar{x} - \mu_0) / (s / \sqrt{n})$$

 $df = n - 1$

Paired t-test (dependent samples):

Compute differences d_i, \bar{d} = mean difference, s_d = sd of differences. t = $(\bar{d} - \mu_d0)$ / (s_d / ν n) df = n - 1

Independent two-sample t-tests:

• Pooled t (equal variances assumed):

$$sp^{2} = [(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}] / (n_{1} + n_{2} - 2)$$

$$t = (\bar{x}_{1} - \bar{x}_{2} - \Delta_{0}) / [sp * V(1/n_{1} + 1/n_{2})]$$

$$df = n_{1} + n_{2} - 2$$

• Welch's t (unequal variances, recommended):

t =
$$(\bar{x}_1 - \bar{x}_2) / V(s_1^2/n_1 + s_2^2/n_2)$$

df $\approx (s_1^2/n_1 + s_2^2/n_2)^2 / [(s_1^4 / (n_1^2 (n_1-1))) + (s_2^4 / (n_2^2 (n_2-1)))]$ (Welch–Satterthwaite approx.)

Assumptions: samples are independent (except paired test), underlying populations approximately normal (t robust for moderate n), variance assumption differs by test.

6. F-test

Purpose (simple): Compare two population variances. Also used in ANOVA to compare means across multiple groups.

Two-sample variance test:

$$F = S_1^2 / S_2^2$$

$$df_1 = n_1 - 1$$
, $df_2 = n_2 - 1$

Reject H_0 : $\sigma_1^2 = \sigma_2^2$ if F is too large (or too small depending which variance is numerator). Because F is positive and asymmetric, use appropriate one- or two-sided critical values.

ANOVA (one-way) — relation to F:

- H_o: all group means equal.
- Between-group variability: MS_between = SS_between / (k − 1)
- Within-group variability: MS_within = SS_within / (N k)
- F = MS_between / MS_within
 Reject H₀ if F > F_{α, k-1, N-k}.

Assumptions (ANOVA/F-test): independent observations, normality in each group, homogeneity of variances (equal variances).

7. Chi-Square (χ²) Tests

a) Goodness-of-fit test — checks if observed categorical frequencies follow a specified distribution.

Statistic: $\chi^2 = \Sigma (O_i - E_i)^2 / E_i$

df = k - 1 - m (k categories, m parameters estimated from data)

Reject H_0 if χ^2 large.

b) Test of independence (contingency table) — checks if two categorical variables are independent.

- Build contingency table with r rows and c columns, observed counts O_{ij}.
- Expected counts: E_{ij} = (row_i_total * col_j_total) / N.
- $\chi^2 = \Sigma_{i=1..r} \Sigma_{j=1..c} (O_{ij} E_{ij})^2 / E_{ij}$
- df = (r 1)(c 1)Reject H_o if χ^2 large.

Assumptions: expected counts E_i typically ≥ 5 (rule of thumb); observations independent.

8. Bayesian Testing

Philosophy: Treat hypotheses or parameters as random and use prior beliefs + observed data to compute posterior beliefs. Decision-making uses posterior probabilities or Bayes factors instead of p-values.

Bayes' theorem (for hypotheses H₀ and H₁):

Posterior odds = Prior odds × Bayes factor (BF)

$$BF_{10} = P(data \mid H_1) / P(data \mid H_0)$$

Posterior probability of H₁:

 $P(H_1 \mid data) = [P(data \mid H_1) P(H_1)] / [P(data \mid H_0) P(H_0) + P(data \mid H_1) P(H_1)]$

Bayes factor interpretation (rough):

- BF < 1/10: strong evidence for H_0
- BF ≈ 1: data do not prefer either hypothesis
- BF > 10: strong evidence for H₁
 (Thresholds vary—these are conventional guidance.)

Advantages: direct probability statements about hypotheses, incorporate prior information, naturally penalizes model complexity (in many settings).

Disadvantages: requires choosing priors (can be subjective), computation can be intensive, results depend on prior choice.

Bayesian credible interval vs frequentist confidence interval: credible interval gives direct probability that parameter lies in interval (given prior and data); confidence interval has a different frequentist interpretation.