자기소개

한국원자력연구원 미래전략본부 지능형컴퓨팅연구실 이유한 선임연구원

Table of Contents

(01) Background of YH

Profile

학력

학부: 부산대학교 화공생명공학부 졸업 (2008.03 ~ 2014.02)

석사: KAIST 생명화학공학과 졸업 (2014.03 ~ 2016.02)

박사: KAIST 생명화학공학과 졸업(예정) (2016.03 ~ 2020.02)

실험실: Molecular Simulation Laboratory (Prof. Jihan Kim)

세부 전공: Molecular simulation, computational chemistry,

Machine learning, deep learning

#병역

육군 기계화학교 K-1 전차 조종수 조교 (만기 전역)

이유한

Profile

테크니컬 스킬

Programming

: C, MATLAB, Python

Computational chemistry

: Quantum Espresso, VASP, COTA

Data science

: Tensorflow, Keras, Pytorch, Sklearn, various visualization libraries

이유한

(02) YH as researcher

Two main subjects of my degree

Gas sensing

- ➤ I've simulated the sensing behavior of various chemi-resistors for various applications.
 - > Harmful gas sensing
 - > Hydrogen monitoring

Porous material

- ▶ I've simulated the adsorption properties of MOFs for various applications.
 - CCS (carbon capture storage)
 - Hydrogen storage

Two main skills of my degree – Molecular simulation

From master to 2nd year of Ph.D

Quantum mechanics # Classical mechanics

$$\widehat{H}\psi = E\psi$$

Gas sensing

- Binding energy
- Density of states

Grand canonical Monte Carlo simulation

Porous material

- Working capacity
- Heat of adsorption
- Binding energy
- > Henry coefficient
- Adsorption isotherm

Two main skills of my degree – Data science

From 3rd year of Ph.D to 4th year of Ph.D

Gas sensing

- Anomaly detection (Sensitivity)
- Classification (Sensitivity)

Porous material

- > Henry coefficient
- Defect

https://intellipaat.com/blog/what-is-data-science/

O2.1 Research 1

Methods – Anomaly detection

Anomaly

- ➤ All patterns(point, behavior) which are unexpected and different from the normal patterns.
- > Type:
 - (1) Point anomaly.
 - (2) Contextual anomaly.
 - (3) Collective anomaly (point + contextual).

Contextual anomaly (unexpected temperature)

Chandola et al, ACM Computing Surveys, 41, 15 (2009).

Methods – Deep learning based anomaly detection

Anomaly detection

Deep learning

Chandola et al, ACM Computing Surveys, 41, 15 (2009).

> Artificial neural network can find the distribution of normal state automatically.

Methods – Representation learning using auto-encoder

Auto-encoder (AE)

: Neural network architecture which learn the features during reconstruction of input.

Rumelhart et al, Parallel Distributed Processing. Vol1: Foundations. MIT Press, Cambridge, MA. (1986)

Vincent et al, J.Mach. Learn. Res. 11, 3371-3408 (2010)

Latent, represented features

Methods – Overall process: semi-supervised learning

- Learning the normal exclusively.
- ➤ Model are optimized to represent the normal statistics.
- \triangleright 1,000 reconstruction errors of training(N₂) were calculated.

Methods – Overall process: semi-supervised learning

 \triangleright 3,000 reconstruction errors of test(N₂, H₂) were calculated.

Poor classification

Good classification

Results – Finding an optimal architecture

Fully-connected layer

LSTM layer

1-D convolutional layer

GRU layer

Generative adversarial networks

O2.2 Research 2

Introduction – Adsorption properties of MOFs

Property	Definition		
Adsorption isotherm	Gas uptake as a function of pressure at const. T		
Heat of adsorption	Heat given off by gas adsorption		
Binding energy	Lowest potential energy between host material and guest molecule		
Henry adsorption coefficient	Slope of the adsorption isotherm at low external P		

Heat of adsorption

$$Q_{st} = \frac{\partial K_H}{\partial \beta}$$
 where $\beta = k_B T$

Binding energy

Introduction – Calculation of henry adsorption coefficient

Random insertion of guest molecules in unit cell

Potential energy calculation more than 100,000 U_i

Henry adsorption coefficient (K_H) calculation

$$K_H = \frac{1}{N} \sum_{i=1}^{N} \exp\left(-\frac{U_i}{k_B T}\right)$$

$${\rm CO_2} ext{-MOFs DFT interaction energy:} \ \ U_i = U_{(MOF + CO_2, i)} - (U_{MOF} + U_{CO_2, i})$$

Number of CO ₂ molecules (N)	Time to compute U_{MOF} (minutes)	Time to compute U_{CO2} (minutes)	Time to compute $U_{MOF+CO2}$ (minutes)	Total time
1	1 to 2	0.1 to 0.2	1 to 2	5-10 minutes
100,000	1 to 2	10,000 to 20,000	100,000 to 200,000	3 to 5 months
1,000,000	1 to 2	100,000 to 200,000	1,000,000 to 2,000,000	2 to 4 years

Results – Efficient sampling to reduce computational costs

Introduction – Efficient calculation of K_H with DL

Approximation of Energy potential of gas adsorption

Reduction of computation cost for adsorption property calculation

Hypothesis/motives

- If we have a model to calculate the adsorption energy of gases, we can reduce the number of calculation.
- This leads to fast adsorption property calculation.

Methods – Graph input generation (adsorption state)

- Crystals are also represented as Graph.
- Adsorption in crystal is also represented as Graph.

Summary

Analyzed various properties of MOFs using computational chemistry and deep learning.

Analyzed gas sensing performance of chemi-resistors using computational chemistry and deep learning.

(03) YH as Kaggler

취미!! 특기!!

취미!! 특기!!

Kaggle

Kaggle

머신러닝 대회

캐글 as a company

- 2010년 설립된 빅데이터 솔루션 대회 플랫폼 회사
- 2017 년 3월에 구글에 인수

Kaggle

캐글 as a community

- 현재 200만명의 회원 보유
- Data science, ML, DL 을 주제로 모인 community

Kaggle

Competition - Data Race for 데이터 과학자!

기업, 정부기관, 단체, 연구소, 개인

Dataset With Prize

kaggle

Dataset & Prize 개발 환경(kernel) 커뮤니티(follow, discussion)

전 세계 데이터 사이언티스트

현재 프로필

다수의 머신 러닝 대회 경험 (약 30번 이상)

ex) 정형 데이터, 이미지 대회, 자연어 처리 대회.

유수의 국제 머신 러닝 대회 수상 이력

- 분자 특성 예측 대회 3등 0.11% (2749팀).
- 안구 당뇨병성 망막증 분류 대회 3등 0.10% (2943팀).
- 신용카드 fraud detection 대회 11등, 0.17% (6381팀).

머신 러닝 대회 플랫폼 상위 랭커 (마스터)

- 머신 러닝 랭킹 전세계 0.10% (109/122,351).
- 국내 3등.

@-3 months ago

10 months ago

해왔던 대회들

Porto: 고객이 내년에 자동차 보험금 청구를 할 것인가?

Home Credit: 고객이 앞으로 대출 상환을 할 것인가?

Costa rican: 고객의 소득 수준을 ML 로 구분하라

Elo: 거래 내역 데이터를 가지고, 고객 충성도를 예측하라

New York taxi: Taxi 탑승 시간을 예측하라

직방: 아파트 거래가격 예측하라

INFOCARE: 아파트 경매가격 예측해라

해왔던 대회들

Tensorflow: 30개 단어를 구분하는 AI 만들어라

Quora: 성실한, 불성실한 질문을 구분해내라

Doodle: 340개의 클래스 별 낙서를 ANN 으로 구분하라

Protein: 28개의 클래스 별 Protein 을 ANN 으로 구분하라

Airbus: 바다 위 배를 찍은 위성 사진에서 배의 위치를 찾아내라

Statoil: 바다 위 <mark>빙산과, 배</mark>를 구분하라

My capacity for AI – Tabular data

정형

- Exploratory data analysis.
 - Visualization.
- Feature engineering, preprocessing techniques.
 - Category encoding, feature engineering.
- Conventional ML algorithms.
 - Lightgbm, xgboost, catboost.

신용카드 Fraud detection 대회: 11등 0.17% (6347팀 참여).

My capacity for AI – Computer vision

Image classification. - Category classification, regression. 이미지 Object detection. Semantic segmentation, instant segmentation. Pre-trained Fine-tuned model model (eyeball) (ImageNet)

당뇨성 망막 병증 중증도 분류 대회: 3등 0.10% (2943팀 참여).

My capacity for Al – Graph data

그래프 (graph data)

- Graph neural networks.
- Embedding with transformer.

Graph neural network

Chemical property

분자 물성 예측 대회: 3등 0.10% (2749팀 참여).

My capacity for AI – Natural Language Processing

자연어 처리

- Various preprocessing.
- Various embedding with LSTM.
- BERT based models.

2013

2017

2018

Word encoding

One hot encoding

Bag of words

TF-IDF

Word embedding

Word2Vec Fasttext (2013) (2017)

GloVe (2014)

Sentence embedding

ELMo GPT BERT (2018) (2018)

XInet RoBERTa (2019) (2019)

독성 문장 분류 대회: 26등 0.80% (3165팀 참여).

Profile

#활동

캐글 코리아 페이스북 페이지 운영자 (현재 7,298명)

캐글코리아 Kaggle Korea

Non-Profit Facebook Group Community

- > 2018년 6월 12일 Kaggle 본사로부터 캐글 코리아 이름 사용 허가
- ▶ 2018년 6월 15일 캐글 코리아 개설

Profile

#활동

캐글 코리아 페이스북 페이지 운영자 (현재 7,298명)

안수빈님이 게시물을 공유했습니다. 4월 2일 오후 10:45 · ♣ 주제를 추가하세요

안녕하세요! 캐글 코리아 🙂

부족하지만 학교 동아리 학우들과 함께 캐글을 시작하기 위해, 캐글 강의를 찍기로 했습니다. 부끄럽지만 이왕 찍는 김에 많은 분들이 보시고, 날카롭고 쓴 피드백을 받으면 좋을 것 같아 올려봅니다.

+ 추가로 머신러닝 기초 스터디에서 scikit-learn 기본 함수들을 적용할만한 좋은 데이 터셋이 있다면 추천부탁드립니다. 데이터 특성이 비교 적었으면 좋겠습니다.... 더 보기

더 보기

YOUTUBE.COM

[수비니움의 캐글 따라하기] 1강. 타이타닉 (1)

강의용을 위해 만든 영상입니다. 부족하지만 도움이 되면 좋을 것 같습니다. 아마 3~4강으로 예상됩니다. + Parch는 부모님이 아니라 parent + children입니다....

🕦 이유한님, 권순선님 외 27명

댓글 2개 공유 11회

40

캐글(머신러닝 대회) 만한 공부 방법이 없어요 ⓒ

04) Dream of YH

Transferability of Al

머신 러닝의 장점

데이터 도메인이 달라도 같은 방법론을 적용할 수 있다.

시계열 데이터 From gas sensor 시계열 데이터 From KAERI

이미지 데이터 From 안구 이미지 데이터 From KAERI

- Various time series analysis.
- Anomaly detection using deep learning.
- Classification, regression.

- Image classification.
 - Category classification, regression.
- Object detection.
 - Semantic segmentation, instant segmentation.

지원 부서 요구 역량 – 직무수행 내용

원자로 운전 중 발생하는 센서 데이터의 시계열 데이터 분석 및 Anomaly detection 기법 연구

Zhang et al, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 12, SECOND QUARTER 2010

- 안전을 위해 모든 인공지능 기술을 동원하여 안전 극대화

지원 부서 요구 역량 – 직무수행 내용

인공지능 기반 객체 인식 수행 및 비파괴/의료영상을 위한 인공지능 기반 객체 인식.

- 최신 딥러닝 Computer vision 기술 활용해 자동화 실현

KAERI 에서 해보고 싶은 꿈들

세계 최고 수준의 안전한 에너지에 대한 비전

- 인공지능 기술 기반한 원전 내 센서 성능(속도, 민감도, 선택도) 극대화
- 인공지능 기반 위험요소 판단 기술 자동화

안전재료 기술 개발

- 인공지능 기술 기반 재료 디자인

원내 AI 역량 증진

- 스터디 운영

KAERI 소속으로 대회 1등 수상하기

- 캐글 그랜드마스터 (국내 3 or 4 호!)

KAERI 에서 해보고 싶은 꿈들

Data scientist in KAERI

함께 공부해서 함께 일합시다

#도메인 전문가

- 데이터 명세
 - 도메인 지식이 핵심!
- 데이터 전처리
 - 그냥 주면 못해요
 - 알아야 처리를...
- AI 기본 지식
 - 다 되는게 아닙니다 ☺

AI 전문가

- 자유로운 아이디어 제시
 - 해봐야 알아요.
- 새로운 기술 트렌드 공유
 - 같이 공부해요.
- 유기적인 협업
 - 효율적인 툴 사용.

함께 공부해서 함께 일합시다

#도메인 전문가

- 데이터 명세
 - 도메인 지식이 핵심!
- 데이터 전처리
 - 그냥 주면 못해요
 - 알아야 처리를...
- AI 기본 지식
 - 다 되는게 아닙니다 ☺

AI 전문가

- 자유로운 아이디어 제시
 - 해봐야 알아요.
- 새로운 기술 트렌드 공유
 - 같이 공부해요.
- 유기적인 협업
 - 효율적인 툴 사용.

터놓고 공유하며 소통합시다.

잘 부탁드립니다. 많이 배우겠습니다!

