

School of Arts, Humanities and Social Science

Module title and code: Applications of Data Science (CMP020L014)

Title of coursework: Coursework (Portfolio)

Learning outcomes:	LO1: Demonstrate a comprehensive understanding of current developments in data science.
	LO2: Systematically and critically analyse and evaluate diverse sources of data to solve a problem.
	LO3: Propose and develop a data science solution for a complex dataset.
Assessment weighting	Mid-term presentation report: 25%, Final report: 75%
Maximum mark	100
Submission details (e.g. submission link)	Part 1: Submit the mid-term presentation report in PDF format: https://moodle.roehampton.ac.uk/mod/assign/view.php?id=2097536 Part 2: Submit the final report in PDF format and MATLAB code in .m/.mlx format:
Word limit (if applicable)	https://moodle.roehampton.ac.uk/mod/assign/view.php?id=2097537 2500-word limit for a mid-term presentation report. 4000-word limit for a final report.
Date set	24/02/2025
Deadline	Mid-term presentation report: 30/03/2025 Final report: 14/04/2025
Feedback and marks	For feedback, refer to the rubric at the end of this coursework. Marks will be released within 4 weeks of the final submission deadline.
Assessment setter's name	Dr Mohammad F Khan

1) ASSESSMENT OVERVIEW:

This assignment evaluates your skills in proposing and developing a data science solution for a complex dataset and presenting your findings in a report. You are required to complete a set of tasks by selecting one problem from the options in **Task 1** (or choosing a similar problem as per Appendix 2), applying techniques such as feature engineering, visualisation, and statistical analysis to enhance machine learning algorithms, and comprehensively analysing and reporting your results.

Important: Do not use neural networks or deep learning in this coursework. If you choose a research article that uses neural networks, replace that section with an alternative explainable AI algorithm.

2) ACADEMIC MISCONDUCT:

"Academic integrity and honesty are fundamental to the academic work you produce at the University of Roehampton. You are expected to complete coursework which is your own and which is referenced appropriately. The university has in place measures to detect academic dishonesty in all its forms. If you are found to be cheating or attempting to gain an unfair advantage over other students in any way, this is considered academic misconduct, and you will be penalised accordingly." Further details about "Student Code of Conduct" and "Disciplinary Regulations" can be found at: https://www.roehampton.ac.uk/corporate-information/policies/

3) TASKS:

• Task 1: Select one of the following real-world problems to investigate and solve. Alternatively, you may identify a similar problem in a different domain (see Appendix 2).

> Problem 1: Classification of diabetic retinopathy

Diabetic retinopathy is a leading cause of vision impairment and blindness among diabetic patients. Early detection through retinal image analysis is crucial for timely intervention. However, manual diagnosis by ophthalmologists is time-consuming, subjective, and prone to variability. Automated classification of diabetic retinopathy using machine learning can improve accuracy and efficiency, but challenges such as imbalanced datasets, feature extraction, and differentiation between severity levels persist. Developing a robust classification model that effectively distinguishes diabetic retinopathy stages from retinal fundus images is essential for enhancing diagnostic reliability and patient outcomes.

Resources:

- o Research article: https://www.mdpi.com/2075-4418/12/9/2262
- o Dataset: https://zenodo.org/records/4647952#.YGNjXVUzbIU

▶ Problem 2: Detecting wet signature forgery through images

Detecting forgery in wet signatures through images is essential to safeguard the authenticity of legal and financial documents. Wet signatures are widely used for verifying identity and consent; forgery can lead to fraud, data breaches, and unauthorised transactions. Image-based detection allows for detailed analysis of signature characteristics, such as stroke patterns, pressure points, and ink flow, which are difficult to replicate perfectly. Advanced techniques like AI and machine learning enhance accuracy, identifying subtle inconsistencies that might escape human observation. This ensures the integrity of documents, protects individuals and organisations from potential fraud, and upholds trust in sensitive transactions.

Resources:

- o Research article: https://www.mdpi.com/2076-3417/10/11/3716
- o Dataset: https://www.kaggle.com/datasets/akashgundu/signature-verification-dataset

> Problem 3: Detecting wildfire using surveillance data

Wildfires pose a significant threat to ecosystems, human lives, and infrastructure. Early detection is crucial for effective mitigation, but traditional methods relying on satellite imagery and ground-based sensors often suffer from delays and limited coverage. Surveillance video data offers a real-time alternative for wildfire detection. Still, challenges such as varying lighting conditions, smoke interference, and false alarms due to similar visual patterns make accurate identification difficult. Hence it is necessary to develop an advanced machine learning-based model to detect wildfires in surveillance videos, enhancing early warning systems and enabling rapid response to minimise environmental and economic damage.

Resources:

- o Research article: https://ieeexplore.ieee.org/abstract/document/9690875
- o Dataset: https://datasets.omdena.com/dataset/onfire-dataset

Note: Use a university PC for downloading the aforementioned research articles or refer to Appendix 1 for downloading the research articles at home by using a university library login. If required, you can alternatively opt for a similar type of problem having a different application domain with a different dataset, which must follow Tasks 2-7 given below. The new problem must be decided after a detailed discussion with the module tutor. For more information, refer to the guidelines given in Appendix 2 for deciding on a new problem.

• Task 2: Refine the dataset by choosing at least 100 images or 01 video sample (3-second video recorded at ≥30 fps) for each class.

Helpful tip: Choosing the image/video dataset for binary classification involves several key considerations. First, ensure the dataset has balanced classes to avoid bias in model training. The images should be relevant to the classification task and of sufficient quality, with clear features distinguishing the two categories. Consider the size of the dataset; larger datasets provide more training examples, improving model generalisation. Additionally, check for labelled data to facilitate supervised learning. Dataset diversity, including variations in lighting, angles, and backgrounds, is crucial for building a robust model.

• Task 3: Formulate a mathematical concept for feature engineering for the image/video data.

Helpful tip: Formulating a mathematical concept for feature engineering in the data involves designing and defining transformations that extract meaningful patterns. To reveal the patterns that are not visible in the spatial domain, you can think of starting by representing images as matrices of pixel intensities; applying pre-processing techniques like mathematical filters to detect edge and texture-based features in the data; reducing the dimensionality of the data through principal component analysis (PCA); projecting the data into lower-dimensional spaces while retaining key characteristics; applying advanced feature engineering methods like HoG transform, Fourier transform, wavelet transform et cetera to analyse the frequency components. The goal of this task is to encode complex information into compact, informative features that can enhance model performance and enable accurate classification.

• **Task 4:** Apply descriptive and inferential statistical tools to analyse the data and test the model performance.

Helpful tip: Descriptive statistics summarise image data by calculating metrics like mean, median, kurtosis, skewness, standard deviation, and pixel intensity distributions to understand patterns and variability. They can help in identifying data imbalances or anomalies before model training. For inferential statistics, techniques like hypothesis testing and confidence intervals evaluate relationships in image features, such as comparing pixel intensity distributions across classes. In machine learning classification, these statistics assess feature relevance, help refine pre-processing steps, and validate model assumptions. Inferential statistics also help test the significance of model performance metrics, ensuring robust conclusions about the classifier's effectiveness on unseen image data. Together, they may enhance the data-driven decision-making process.

• Task 5: Create appropriate visualisations, e.g. 2D/3D plots of the complex data and simulation results.

Helpful tip: Employ colour, size, transparency, and marker shapes to encode additional variables in the plot without overcrowding the plot. Use different scaling functions for different feature values, and visualise the scale in the single plot to maintain the interpretability and clarity of the data.

• Task 6: Incorporate machine learning algorithms (excluding neural networks) in your final solution.

Helpful tip: To apply machine learning algorithms to features extracted from image data for binary classification, start by looking into the data obtained from the feature engineering step, ensuring it is normalised for optimal machine learning performance. Feed these features into the machine learning model. Use hyper-optimisation to handle non-linearly separable data. Evaluate the model using metrics like accuracy, sensitivity, specificity, recall, F1-score, AUC et cetera to ensure robust classification performance.

• Task 7: Develop clear, well-commented MATLAB code without relying on built-in functions. The code must be executable on a university machine that can load the cloud dataset and produce the reported output without issues.

Helpful tip: Writing good comments in MATLAB code enhances readability and helps others understand the logic. Begin by commenting at the start of the script or function, explaining its purpose, inputs, and outputs. Use inline comments to clarify complex or non-obvious code, explaining the reasoning behind key steps or formulas. Keep comments concise, but informative avoid redundancy, and focus on what the code does, rather than how. Group-related blocks of code with section comments for better organisation. Ensure comments are up-to-date and relevant as code evolves, improving maintainability and making it easier for collaborators or future you to understand the code's functionality.

4) DELIVERABLES (WHAT YOU WILL NEED TO SUBMIT):

Submit your work in two parts:

• Part 1: Mid-term Presentation and Report (25 marks)

Present your progress in a 10-minute seminar talk with 10-15 slides, followed by a 5-minute Q&A. The presentation slides and 2500-word mid-term report (in PDF format) should include the following information:

- The literature review related to the problem you have opted for from Task 1.
- Explanation of the dataset by using tools from data visualisation.
- Descriptive statistical analysis of the dataset you have opted for.

- ➤ Discussion on the part of the solution you have implemented to solve that problem mentioned in Task 3.
- A vision of how you are going to apply machine learning to that problem selected in Task 1.

Helpful tip: Complete the following tutorial to develop effective presentation skills: https://roehampton.libwizard.com/f/presentations

• Part 2: Final Report (75 marks)

- Submit a 4000-word final report in PDF format using the provided template.
- ➤ Include your MATLAB (.m/.mlx) file with the report.

5) ASSESSMENT EXPECTATIONS AND RUBRIC:

	Criteria	Expectation	Maximum marks (100)
Presentation (in class) & mid-term report submission	Mid-term presentation and brief report	 The literature review related to the problem you have opted for from Task 1. Explaining the dataset by using tools from data visualisation. Present the descriptive statistical analysis of the dataset you have opted for. Discuss the part of the solution you have implemented to solve that problem mentioned in Task 3. Present a vision of how you are going to apply machine learning to that problem opted in Task 1. 	25
Final report submission	Abstract, conclusion and format of demonstration	A brief 200-300 words glance at the problem statement and its possible solution along with results. Demonstrating report by using appropriate language, clear formatting, and correct referencing.	10
	Introduction/Literature review appropriateness	A detailed survey of related work that covers relevant literature review on the chosen problem. Discuss the detailed modifications you have conducted to the reference research article.	10
	Mathematical understanding and feature engineering	Detailed mathematical formulation is provided with an appropriate explanation of the algorithmic equations used in the study. Also, showing the ability to define a part of a problem in the scope of algebra, calculus, probability, approximation theory and/or numerical analysis.	20
	Statistical analysis	Appropriate and detailed inferential and descriptive statistical analyses are conducted to refine the possible solution.	10
	Data visualisation	Various types of graphical representation attempted to visualise the dataset as well as simulation results. Also showing the ability to efficiently visualise overlapping complex data distribution/simulation results in single plots.	5
	Application of machine learning algorithm	Multiple algorithms have been used for comparison purposes, and a comprehensive analysis has been conducted with detailed reasoning.	10
	Programming language used/Statistical software used	A clear well-commented MATLAB code has been developed without using built-in functions.	10

Rubric	Distribution of marks					
	100-80%	79-70%	69-60%	59-50%	49-00% (Fail)	
Abstract, conclusion and	A brief 200-300 words	A brief 200-300 words	A brief 200-300 words	A general 200-300 words	The report failed to use	
format demonstration	glance at the problem	understandable language,				
	statement and its possible	statement and its possible	statement and its possible	statement. Demonstrating	reasonable formatting and	
	solution along with results.	solution along with results.	solution along with results.	report by using	referencing.	
	Demonstrating report by	Demonstrating report by	Demonstrating report by	understandable language,		
	using appropriate	using appropriate	using understandable	reasonable formatting and		
	language, clear formatting	language, clear formatting	language, good formatting	referencing.		
	and correct referencing.	and correct referencing.	and correct referencing.			
Introduction/Literature	Demonstrates	Demonstrates very broad	Demonstrates in-depth	Evidence of independent	Limited evidence of	
review appropriateness	outstandingly broad and	and in-depth independent	independent reading from	reading from a wide range	independent reading. The	
	in-depth independent	reading from appropriate	appropriate sources,	of appropriate sources,	application of literature is	
	reading from appropriate	sources, including the	including the most current	including current ones.	too descriptive overall.	
	sources, including the	most current ones in the	ones in the field. The	Clear, accurate, systematic		
	most current ones in the	field. The choice of	choice of sources clearly	application of the material.		
	field. The choice of sources	sources clearly enhances	enhances the fulfilment of	Shows an ability to		
	highly enhances the	the fulfilment of the	the assignment objectives.	appraise material critically.		
	fulfilment of the	assignment objectives.	Clear, accurate, systematic			
	assignment objectives.	Clear, accurate, systematic	application of material			
	Clear, accurate, systematic	application of material	with developed and/or			
	application of material	with well-developed	integrated critical			
	with highly developed	and/or integrated critical	appraisal.			
	and/or integrated critical	appraisal.				
	appraisal.					
Mathematical	Application of knowledge	Demonstrates a very	Shows a systematic and	Effective application of	Knowledge of	
understanding and	and understanding of	detailed, accurate,	accurate understanding of	knowledge of key	mathematical theory is	
feature engineering	mathematical concepts is	systematic mathematical	key mathematical theories,	mathematical theories and	inaccurate/incomplete.	
	outstanding and shows	understanding.	including the most up-to-	conclusions resulting from	The choice of	
	mastery of the discipline	Appropriately selected	date ones, which are	own research.	mathematical theory is	
	and professional practice.	theoretical knowledge is	appropriately applied,		inappropriate/incomplete.	
	Appreciation of the limits	integrated into the overall	along with own research,		Application and/or	
	of theory is demonstrated	assessment task, including	within the context of the		understanding of concepts	
	throughout the work. The	up-to-date theories,	assessment task.		are very limited.	
	approach to the	concepts and practices of				

		I	1		1
	assessment task is	the subject area and own			
	informed by the most up-	research.			
	to-date theories, concepts				
	and practices in the				
	discipline and own				
	research.				
Statistical analysis	Appropriate and detailed	Appropriate and detailed	Appropriate and detailed	Appropriate inferential	Basic descriptive statistical
	inferential and descriptive	inferential and descriptive	inferential and descriptive	and/or descriptive	analysis is conducted on
	statistical analyses are	statistical analyses are	statistical analyses are	statistical analyses are	the dataset with limited or
	conducted on the dataset	incorrect or no			
	to refine the possible	to refine the possible	but have limited evidence	but no evidence is	explanation.
	solution.	solution.	of refinement of the	provided of refinement of	
			possible solution	the possible solution.	
Data visualisation	Various types of graphical	Various types of graphical	Various types of graphical	A basic but relevant type	The graphical
	representation attempted	representation attempted	representation attempted	of graphical representation	representation is limited
	to visualise the dataset as	to visualise the dataset as	to visualise the dataset as	attempted to visualise the	and/or inappropriate for
	well as simulation results.	well as simulation results.	well as simulation results.	dataset as well as the	the defined problem.
	Demonstrated the ability	Demonstrated the ability		simulation results.	
	to efficiently visualising	to efficiently visualise			
	overlapping complex data	overlapping complex data			
	distribution/simulation	distribution/simulation			
	results in single 3D plots.	results in single 2D plots.			
Application of machine	Multiple algorithms have	Multiple algorithms have	Multiple algorithms have	A single algorithm has	A single algorithm has
learning algorithm	been used for comparison	been used for comparison	been used with detailed	been used with limited	been used with limited
5 5	purposes, and a	purposes, and a	reasoning. Demonstrates a	reasoning. Demonstrates	reasoning. Demonstrates
	comprehensive analysis	comprehensive analysis	reasonable understanding	reasonable understanding	incorrect or no
	has been conducted with	has been conducted with	of the application of	of the application of	understanding of the
	detailed reasoning.	detailed reasoning.	knowledge in optimising	knowledge.	application of knowledge.
	Demonstrates a good	Demonstrates a good	the solution.		
	understanding of the	understanding of the			
	application of knowledge	application of knowledge			
	in optimising the solution.	in optimising the solution.			
Programming language	A clear well-commented	A clear well-commented	A clear well-commented	A clear well-commented	A vague-commented or
used/Statistical software	MATLAB code has been	uncommented MATLAB			
used	developed without using	developed using minimal	developed using a	developed by using lots of	code has been developed
	built-in functions.	built-in functions.	reasonable number of	built-in functions.	by using lots of built-in
			built-in functions.		functions.
	I .	1	1	I.	

ADDITIONAL INFORMATION (IF REQUIRED):

APPNEDIX 1: DOWNLOADING RESTRICTED RESEARCH PAPER:

- For the ScienceDirect paper given in Problem 1, visit: https://library.roehampton.ac.uk/sciencedirect, and for the IEEE paper given in Problems 3, visit: https://library.roehampton.ac.uk/iel
- Use your university credentials to log in, search for the paper title, and download the paper.

APPENDIX 2: HOW TO DECIDE A NEW PROBLEM:

To decide the new problem, you must contact your module tutor first. The reference article for the new problem must belong to the Science Citation Index Expanded (SCIE) database and require images/videos as a dataset. The step-to-step process for deciding a new problem can be conducted by using the following steps:

- Search the keywords of the problem in Google Scholar (https://scholar.google.com/).
- Filter the search result that should not go beyond research paper that are older than 5 years. For example, if you are taking the Application of Data Science module in year 2022, the research article you can opt should lie in the range 2018-2022.
- Discuss the modification you are planning in the reference article with your module tutor.
- Confirm with the tutor, if the article of your choice falls in the SCIE Journal category by searching the journal name in MJL (https://mjl.clarivate.com/search-results) and appears in the Web of Science Core Collection: Science Citation Index Expanded list.
- Refer to the screenshot below from MJL illustrating the example paper mentioned in Problem 3 which belongs to IEEE Access journal:

