Frequent Itemsets

1. Overview

The market-basket model

- Describe a common form of many-to-many relationship between two kinds of objects.
 - A large set of items. e.g.: things sold in a supermarket.
 - A large set of baskets, each of which is a small set of items.
 e.g.: things one customer buys on one trip to the supermarket.
 - Number of baskets cannot fit into memory.

Definition of a frequent itemsets

- A set of items that appears in many baskets is said to be frequent.
- Assume a value s: *support threshold*.
- If I is a set of items.
 - The support for I is the number of baskets in which I is a subset.
- I is frequent if its support is s or higher.

Example: frequent itemsets

- items = {milk, coke, pepsi, beer, juice}
 - o B1: m,c,b
 - o B2: m,p,j
 - o B3: m,b
 - o B4: c,j
 - o B5: m,p,b
 - o B6: m,c,b,j
 - o B7: c,b,j
 - o B8: b,c
- Support value s = 3 (three baskets)
- Frequent itemsets:
 - \circ {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

Applications

- Items: products; Baskets: sets of products.
 - O Given that many people buy beer and diapers together: run a sale on diapers and raise price of beer.

- o Given that many people buy hotdog and mustards together: run a sale of hotdog and raise price of mustards.
- Items = documents; baskets = sentences/phrases.
 - Items that appear together too often could represent plagiarism.
- Items = words, basket = documents.
 - Unusual words appearing together in large number of documents indicating interesting relationship.

Scale of the problem

- Walmart sells hundreds of thousands of items, and has billions of transactions (shopping basket/cart at checkout).
- The Web has billions of words and many billions of pages.

2. Association Rules:

Definition

- If-then rules about the contents of baskets.
- {i_1, i_2, ..., i_k} -> j means: "If a basket contains all of i_1,...,i_k then it is likely to contain j."
- Confidence of this association rule is the probability of j given {i_1,...,i_k}.
- \circ The fraction of the basket with $\{i_1,...,i_k\}$ that also contain j.
- Example:
 - o B1: m,c,b
 - o B2: m,p,j
 - o B3: m,b
 - o B4: c,j
 - o B5: m,p,b
 - o B6: m,c,b,i
 - o B7: c,b,j
 - o B8: b,c
- An association rule: {m,b} -> c
 - o Basket contains m and b: B1, B3, B5, B6
 - o Basket contains m, b, and c: B1, B6
 - \circ C = 2 / 4 = 50%

Finding association rules

- Find all association rules with support >= s and confidence >=c
- Hard part: finding the frequent itemsets.

Computation model

- Data is stored in flat files on disk.
- Most likely basket-by-basket.
- Expand baskets into pairs, triples, etc as you read the baskets.
 - Use k nested loops to generate all sets of size k.
- I/O cost: per passes (all baskets read).

Main memory bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
- We need to keep count of things (occurrences of pairs/triples/...) when we read baskets.
- The number of different things we can count is limited by main memory.
- Swapping counts is going to be horrible.

3. Algorithms

Naive algorithm

- Hardest problem is finding frequent pairs because they are the most common.
- Read file once, counting in main memory the occurences of each pair.
- For each basket of n items, there will be n(n-1)/2 pairs, generated by double-nested loops.
- If n^2 exceeds main memory, we fails.

Naive algorithm: how do we count

- Count all pairs using a triangular matrix.
 - Requires 4 bytes per pair for all possible pairs: 2n^2
- Keep a table of triples [i, j, c] with c is the count of pair {i,j}.
 - Requires 12 bytes only for pairs with count > 0: 12p with p is the number of pairs that actually occur.

A-Priori algorithm

- Limit the need for main memory.
- Key idea: monotonicity
 - o If a set of items appears at least s times, so does every subset of this set.
- Contrapositive: If an item i does not appear in s baskets, then no pair containing i can appear in s baskets.
- A-Priori algorithm:
 - o Pass 1: read baskets and count the item occurrences. Only keep items that appear at least s times frequent items.
 - Pass 2: read baskets again and only count in main memory only those pairs whose both items were found to be frequent from Pass 1.
 - Repeat the process with increasing number of items added to only sets found to be frequent.

- C1 = all items
- In general, L_k are members of C_k with support greater than or equal to s.
- C (k+1) includes (k+1) sets, each k of which is in L k.

A-Priori at scale

- Under two passes.
- SON: Savasere-Omiecinski-Navathe
- Adaptable to a distributed data model (mapreduce).
 - Repeatedly read small subsets of the baskets into main memory and perform a-priori on these subsets, using a support that is equal to the main support divided by the total numbers of subsets.
 - Aggregate all candidate itemsets and determine which are frequent in the entire set.

1. Overview

General problem statement

- Given a set of data points, with a notion
 of distance between points, group the points into some
 number of clusters so that:
 - Members of a cluster are close/similar to each other.
 - Members of different clusters are dissimilar.
- Usually
 - Points are in high-dimensional space (observations have many attributes).
 - Similarity is defined using a distance measure:
 Euclidean, Cosine, Jaccard, edit distance ...

Clustering is a hard problem

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- In most cases, looks are not deceiving.
- But:
 - Many applications involve not 2, but 10 or 10,000 dimensions.
 - High-dimensional spaces look different.

Example

- Clustering Sky Objects:
 - A catalog of 2 billion sky objects represents objects by their radiation in 7 dimensions (frequency bands)
 - Problem: cluster into similar objects, e.g., galaxies, stars, quasars, etc.
- Clustering music albums
 - Music divides into categories, and customer prefer a few categories

- Are categories simply genres?
- Similar Albums have similar sets of customers, and vice-versa
- Clustering documents
 - Group together documents on the same topic.
 - Documents with similar sets of words maybe about the same topic.
 - Dual formulation: a topic is a group of words that cooccur in many documents.

Distance measures: Cosine, Jaccard, Euclidean

- Different ways of representing documents or music albums lead to different distance measures.
- Document as set of words
 - Jaccard distance
- Document as point in space of words.
 - o $x_i = 1$ if i appears in doc.
 - Euclidean distance
- Document as vector in space of words.
 - Vector from origin to ...
 - Cosine distance.
- 2. Methods of clustering

Overview

- Hierarchical:
 - Agglomerative (bottom up): each point is a cluster, repeatedly combining two nearest cluster.
 - Divisive (top down): start with one cluster and recursively split it.
- Point assignment:
 - Maintain a set of clusters
 - Points belong to nearest cluster
- The curse of dimensionality:

- In high dimensions, almost all pairs of points are equally far away from one another.
- Almost any two vectors are almost orthogonal.

Hierarchical clustering

- Initial decisions
 - O How will clusters be represented?
 - O When to merge/split clusters?
 - O When to stop?
- Basic algorithm is not very efficient (O(n3))
- A slightly more efficient approach
 - \circ Calculate distance of all pairs (O(n2))
 - Create a priority queue for all pairs and their distance (O(n2))
 - $\qquad \text{Remove all entries in the queue that were merged} \\ \qquad ((O(logn)))$
 - Calculate distances based on new clusters' centroids.

Point assignment: K-means clustering

- Assumes Euclidean space/distance
- Pick k, the number of clusters.
- Initialize clusters by picking on point per cluster.
- Until converge
 - For each point, place it in the cluster whose current centroid it is nearest.
 - A cluster centroid has its coordinates calculated as the averages of all its points' coordinates.
 - After all points are assigned, update the locations of centroids of the k clusters.
 - Reassign all points to their closest centroid.

The big question

- How to select k?
- Try different k, looking at the change in the average distance to centroid, as k increases.
- Approach 1: sampling
 - Cluster a sample of the data using hierarchical clustering, to obtain k clusters.
 - Pick a point from each clsuter (e.g. point closest to centroid)
 - Sample fits in main memory.
- Approach 2: Pick dispersed set of points
 - Pick first point at random
 - Pick the next point to be the one whose minimum distance from the selected points is as large as possible.
 - Repeat until we have k points.
- 3. Extensions to large data: BFR

Overview

- Bradley-Fayyad-Reina: a variant of k-means designed to handle very large (disk-resident) data sets.
- Assumes clusters are normally distributed around a centroid in a Euclidean space
- Key approach: summarize clusters instead of keep track of points.

BFR: k selection

- Select k centroids from the initial data set
 - Take k random points, or
 - Take a small random sample and cluster optimally, or

 Take a sample, pick a random point, then k-1 more points, each as far from the previously selected points as possible.

BFR: storing data points

- Keep track of three sets of points
 - Discard set (DS)
 - Points close enough to a centroid to be summarized
 - Compression set (CS)
 - Group of points that are close together but not close to any existing centroid
 - These points are summarized but not assigned to a cluster
 - Points are discarded after summarized.
 - Retained set (RS)
 - Isolated points waiting to be assigned to a CS
 - Actual data points storage here
 - For each cluster (a DS), all the points in the DS is summarized by
 - The number of points, N
 - The vector SUM, whose ith component is the sum of the coordinates of the points in the ith dimension.
 - The vector SUMSQ, similar to SUM, but is sum of squares instead.
 - Recalling movie rating: to find average we need sum (SUM) and count (N).
 - SUMQ is for variance (tightness of cluster).
 - 2d+1 storage requiment to represent any cluster of any size

d is the number of dimensions

BFR: actual clustering

- Load a memory-full of points
- Find points that are sufficiently close to a cluster centroid and add those points to that cluster and the DS.
 - Adjust statistics of clusters in DS
 - Implied discard
- Use any main-memory clustering algorithm to cluster the remaining points from the current memory load **and** the RS.
 - Summarized clusters go to CS
 - Consider merging clusters in CS
 - Outliers (points) go to RS
- If this is last iterations, merge all compressed sets in CS and RS points to their nearest cluster.

BFR: questions

- How close is close enough
 - Mahalanobis distance is less than a threshold.
- Should two clusters be combined?
 - Combine statistics (N, SUM, SUMQ)
 - Combine if the combined variance is small (below some threshold)
- 4. Extensions to large data: CURE

Overview

- BFR problems
 - Normal distribution assumtion for all dimensions
 - Axes are fixed
- CURE: Clustering Using Representatives
 - Assume Euclidean distance
 - Allow clusters to assume any shape

 Use a collection of representative points to represent clusters

CURE Pass 1

- Pick a sample of points that fit in main memory
- Cluster these points hierarchically.
- Pick a sample of points from each cluster, as dispersed as possible
 - Pick representatives from sample by, for example, moving them 20% toward the centroids.

CURE Pass 2

- Rescan the dataset and visit each point p.
- Place it in the closet cluster
 - Find the nearest representative to p and assign p to that representative's cluster.

1. Online algorithms

Overview

- Classic model
 - O All inputs are observable and can be used in computation
 - o offline algorithm.
- Online algorithms:
 - Input are observed one at a time.
 - o Decision are made based on observed input and cannot be changed.
 - Similar to data streaming model.

Example: Bipartitate Matching

- Nodes: Boys and Girls
- Edges: Preferences
- Goal: Match boys to girls so that maximum number of preferences is satisfied.

Matches: (1,a), (2,b), (3,d)Cardinality of matching: 3

- Matches: (1,c), (2,b), (3,d), (4, a)
- Cardinality of matching: 4 (perfect matching)

Matching algorithm

- Offline: polynomial-time
 - Hopcroft-Karp algorithm
 - But what if we don't know the entire graph upfront?
- Online: greedy algorithm
 - Given: set of boys
 - Each round a new girl's preferences are revealed
 - Do we pair immediately or not?
 - Similar applications:
 - Scheduling tasks on servers
- Key question for online performance:
 - Don't expect for best performance similar to offline algorithms
 - O How close can you get?

Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
- Initial form of web advertising
- Popular websites charged X\$ for every 1,000 impressions of the ad
 - Called CPM rate (Cost per thousand (mille in Latin) impressions)
 - Modeled similar to TV, magazine ads
- From untargeted to demographically targeted
- Low click-through rates (CTR)
 - Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords
 - Sponsored Links

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem:
 - What ads to show for a given query? (this lecture)
 - If I am an advertiser, which search terms should I bid on and how much should I bid? (not in scope for the class)

Adwords Problem

Overview

- Given:
 - 1. A set of bids by advertisers for search queries
 - 2. A click-through rate (CTR) for each advertiser-query pair
 - 3. A budget for each advertiser (say for 1 month)
 - 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search guery
 - Each advertiser has enough budget left to pay for the ad if it is clicked upon

More specifics

- A stream of queries arrives at the search engine: Q1, Q2, ...
- Several advertisers bid on each query
- When query Qi arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the expected revenue per click (i.e., Bid*CTR)
- Advertisers' list

Advertisers	Bid	CTR	Bid * CTR
A	\$1.00	1%	1 cent

В	\$0.75	2%	1.5 cent
С	\$0.50	2.5%	1.125 cents

Maximum profits

Advertisers	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cent
С	\$0.50	2.5%	1.125 cents
A	\$1.00	1%	1 cent

- Clearly we need an online algorithm!
- Complications:
 - Budget: each advertiser has a limited budget (Greedy anyone?)
 - CTR of an add is unknown

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - $_{\odot}$ Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
- Clickthrough rate (CTR) is measured historically
- Very hard problem: Exploration vs. exploitation
 - Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
 - Explore: Shall we show a brand new ad to get a better sense of its clickthrough rate

Algorithms

Greedy Algorithm

- Our setting: Simplified environment
 - There is 1 ad shown for each query
 - All advertisers have the same budget B
 - All ads are equally likely to be clicked
 - \circ Value of each ad is the same (1)
- Simplest algorithm is greedy:
 - For a query pick any advertiser who has bid 1 for that query
 - Competitive ratio of greedy is 1/2

Greedy Algorithm: Bad scenario

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
 - Worst case greedy choice: B B B B _ _ _ _
 - Optimal: AAAABBBBB
 - Competitive ratio: 1/2
- This is the worst case!
 - Note: Greedy algorithm is deterministic It always resolves draws in the same way

BALANCE algorithm (MSVV)

- Earlier result: An Optimal Algorithm for On-line Bipartite Matching by Karp, Vazirani, and Vazirani
 - Lower bound for competitive rate: 1-1/e
- Original work: An optimal deterministic algorithm for online b-matching by Kalyanasundaram and Pruhs.
 - Unweighted bipartite graph G = (S,R,E) where S and R are the two vertex partitions and E is the edge set.
 - o At the ith unit of time, 1/leqi/leqn, vertex $ri \in R$ and all edges incident to r i are revealed to the algorithm A.
 - A must then either decline to ever service r i or irrevocably select a site S
 k adjacent to r i in G to service r i
 - \circ Also achieve lower bound 1-1/e
- Adwords and Generalized online matching by Mehta, Saberi, Vazirani, and Vazirani
 - Common generalization of RANKING and BALANCE
 - \circ Also achieve lower bound 1-1/e
- For each query, pick the advertiser with the largest unspent budget.
 - Break ties arbitrarily

- More specifics:
 - A bidder pays only if the user clicks on his ad.
 - Advertisers have different daily budgets.
 - Instead of charging a bidder his actual bid, the search engine company charges him the next highest bid.
 - Multiple ads can appear with the results of a query.
 - Advertisers enter at different times.

Example BALANCE

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: AAAABBBBB
- In general: For BALANCE on 2 advertisers Competitive ratio: 3/4

BALANCE: General result

- In the general case, worst competitive ratio of BALANCE is $1-1 \ / \ e = approx.$ 0.63
 - No online algorithm has a better competitive ratio!
- Can be generalized to arbitrary bids.
- Key issue: finding the correct trade-off between the bid and (fraction of) the unspent budget.
- BALANCE tradeoff function:

$$\circ \quad \psi(x) = 1 - e(x - 1)$$

• BALANCE algorithm: Allocate the next query to bidder i maximizing the product of their bid and $\psi\left(T(i)\right)$ where T(i) is the fraction of the bidder budget that has been spent so far