Técnicas Fundamentales

Algoritmo de Karatsuba y

Programación Dinámica

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Recordatorio: Dividir para conquistar

Esta es la forma genérica de una algoritmo que utiliza la técnica de dividir para conquistar:

```
Bosquejo de general de algoritmo  \begin{aligned} & \textbf{DividirParaConquistar}(w) \\ & \textbf{if } |w| \leq k \textbf{ then return InstanciasPequeñas}(w) \\ & \textbf{else} \\ & \textbf{Dividir } w \textbf{ en } w_1, \dots, w_\ell \\ & \textbf{for } i := 1 \textbf{ to } \ell \textbf{ do} \\ & S_i := \textbf{DividirParaConquistar}(w_i) \\ & \textbf{return Combinar}(S_1, \dots, S_\ell) \end{aligned}
```

¿Cuál es la complejidad de un algoritmo de dividir para conquistar?

Recordatorio: Suma de números enteros

Sean $a,b\in\mathbb{Z}$ con $n\geq 1$ dígitos cada uno. Sea

$$c = a + b$$
.

Considere el algoritmo usual de la suma para calcular c.

Consideramos la suma de dos dígitos, comparación de dos dígitos y resta de un número con a lo más dos dígitos con uno de un dígito como las operaciones a contar, cada una con costo 1.

Preguntas

- 1. ¿Cuántas operaciones realiza el algoritmo en el peor caso?
- 2. ¿Cuántos dígitos puede tener c?

¿Se puede **sumar** más rápido que $\mathcal{O}(n)$?

Recordatorio: Multiplicación de números enteros

Sean $a, b \in \mathbb{Z}$ con $n \ge 1$ dígitos cada uno. Sea

$$d = a \cdot b$$

Considere el algoritmo usual de la multiplicación para calcular d.

Esta vez tome la suma y la multiplicación de dígitos como las operaciones a contar, ambas con costo 1.

Preguntas

- 1. ¿Cuántas operaciones realiza el algoritmo en este caso?
- 2. ¿Cuántos dígitos puede tener d?

Outline

Dividir para conquistar: Multiplicar

Programación dinámica: Grafos

Outline

Dividir para conquistar: Multiplicar

Programación dinámica: Grafos

Algoritmo de multiplicación de Karatsuba

Andréi Kolmogorov

Anatoli Karatsuba

Algoritmo de multiplicación de Karatsuba

Sean $a, b \in \mathbb{Z}$ con n dígitos cada uno, donde $n = 2^k$ para algún $k \in \mathbb{N}$.

Se puede representar a y b de la siguiente forma:

$$a = a_1 \cdot 10^{\frac{n}{2}} + a_2$$

 $b = b_1 \cdot 10^{\frac{n}{2}} + b_2$

Tenemos entonces que:

$$a \cdot b = a_1 \cdot b_1 \cdot 10^n + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{\frac{n}{2}} + a_2 \cdot b_2$$

Algoritmo de multiplicación de Karatsuba

$$a \cdot b = a_1 \cdot b_1 \cdot 10^n + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{\frac{n}{2}} + a_2 \cdot b_2$$

Para calcular $a \cdot b$ entonces debemos calcular las siguientes multiplicaciones:

1. $a_1 \cdot b_1$

3. $a_2 \cdot b_1$

2. $a_1 \cdot b_2$

4. $a_2 \cdot b_2$

Obtenemos entonces un algoritmo recursivo

Para resolver el caso de largo n realizamos 4 llamadas para los casos de largo $\frac{n}{2}$

¿Cuál el la complejidad de este algoritmo?

R: Se puede usar el teorema Maestro para deducir que este algoritmo es de orden $\Theta(n^2)$.

La idea clave en el algoritmo de Karatsuba

Podemos calcular $a \cdot b$ realizando las siguientes multiplicaciones:

- 1. $c_1 = a_1 \cdot b_1$
- 2. $c_2 = a_2 \cdot b_2$
- 3. $c_3 = (a_1 + a_2) \cdot (b_1 + b_2)$

Tenemos entonces que:

$$a \cdot b = c_1 \cdot 10^n + (c_3 - (c_1 + c_2)) \cdot 10^{\frac{n}{2}} + c_2$$

Esta expresión se conoce como el algoritmo de Karatsuba.

¿Cuántas operaciones realiza este algoritmo?

Tiempo de ejecución del algoritmo de Karatsuba

Sea T(n) el número de operaciones realizadas en el **peor caso** por el algoritmo de Karatsuba para dos números de entrada con n dígitos cada uno.

Para determinar el orden de T(n) utilizamos la siguiente **ecuación de** recurrencia (con $e \in \mathbb{N}$ una constante):

$$T(n) = \begin{cases} 1 & n=1 \\ 3 \cdot T\left(\frac{n}{2}\right) + e \cdot n & n>1 \end{cases}$$

Tiempo de ejecución del algoritmo de Karatsuba

$$a \cdot b = c_1 \cdot 10^n + (c_3 - (c_1 + c_2)) \cdot 10^{\frac{n}{2}} + c_2$$

$$T(n) = \begin{cases} 1 & n = 1 \\ 3 \cdot T(\frac{n}{2}) + e \cdot n & n > 1 \end{cases}$$

Preguntas

- 1. ¿Qué supuestos realizamos al formular esta ecuación?
 - n es una potencia de 2 y que $(a_1 + a_2)$ y $(b_1 + b_2)$ tienen $\frac{n}{2}$ dígitos cada uno.
- 2. ¿Qué representa la constante e?
 - Calcular $(a_1 + a_2)$, $(b_1 + b_2)$, $(c_1 + c_2)$ y $(c_3 (c_1 + c_2))$.
 - Construir $a \cdot b$ a partir de c_1 , c_2 y $(c_3 (c_1 + c_2))$, lo cual puede tomar tiempo lineal en el peor caso. ¿Por qué?

Resolviendo la ecuación de recurrencia

Utilizando el **Teorema Maestro** obtenemos que T(n) es $\Theta(n^{\log_2(3)})$.

 Pero este resultado es válido bajo los supuestos realizados anteriormente.

¿Cómo debe formularse el algoritmo de Karatsuba en el caso general?

Caso general del algoritmo de Karatsuba

En el caso general, representamos las entradas a y b de la siguiente forma:

$$a = a_1 \cdot 10^{\left\lfloor \frac{n}{2} \right\rfloor} + a_2$$
$$b = b_1 \cdot 10^{\left\lfloor \frac{n}{2} \right\rfloor} + b_2$$

La siguiente ecuación de recurrencia para T(n) captura la cantidad de operaciones realizadas por el algoritmo (para constantes e_1 , e_2):

$$T(n) = \begin{cases} e_1 & n \leq 3 \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) + e_2 \cdot n & n > 3 \end{cases}$$

Ejercicio

Demuestre usando inducción constructiva que T(n) es $\mathcal{O}(n^{\log_2(3)})$

■ En particular, demuestre lo siguiente: $\exists c \in \mathbb{R}^+$. $\exists d \in \mathbb{R}^+$. $\exists n_0 \in \mathbb{N}$. $\forall n \geq n_0$. $T(n) \leq c \cdot n^{\log_2(3)} - d \cdot n$

Outline

Dividir para conquistar: Multiplicar

Programación dinámica: Grafos

Programación dinámica: un primer ingrediente

Al igual que dividir para conquistar, la técnica de programación dinámica resuelve un problema dividiéndolo en sub-problemas más pequeños.

Pero a diferencia de dividir para conquistar, en este caso se espera que **los sub-problemas estén traslapados**.

De esta forma se reduce el número de sub-problemas a resolver, de hecho se espera que este número sea pequeño (al menos polinomial).

Contando el número de caminos en un grafo

Sea G = (V, E) un grafo dirigido.

Recordar que una secuencia v_1, \ldots, v_ℓ de elementos en N es un camino en G si:

- 1. $\ell > 2$
- 2. $(v_i, v_{i+1}) \in E$ para cada $i \in \{1, ..., \ell 1\}$

Decimos que un camino v_1, \ldots, v_ℓ va desde v_1 a v_ℓ , y definimos su largo como $(\ell - 1)$, vale decir, el número de aristas en el camino.

Contando el número de caminos en un grafo

Dado un grafo G=(V,E), un par de nodos v_i , v_f en V y un número ℓ , queremos desarrollar un algoritmo que cuente el **número de caminos** desde v_i a v_f en G cuyo largo es igual a ℓ

Suponemos que $V=\{1,\ldots,n\}$, $1\leq \ell\leq n$ y representamos G a través de su matriz de adyacencia M tal que:

Si $(i,j) \in E$, entonces M[i,j] = 1, en caso contrario M[i,j] = 0.

Una primera definición de ContarCaminos

Queremos entonces definir la función **ContarCaminos**(M, v_i , v_f , ℓ).

```
\begin{aligned} & \textbf{ContarCaminos}(M[1\dots n][1\dots n],\ v_i,\ v_f,\ \ell) \\ & \textbf{if}\ \ell=1\ \textbf{then}\ \textbf{return}\ M[v_i,v_f] \\ & \textbf{else} \\ & aux := 0 \\ & \textbf{for}\ v_j := 1\ \textbf{to}\ n\ \textbf{do} \\ & aux += M[v_i,v_j] \cdot \textbf{ContarCaminos}(M,\ v_j,\ v_f,\ \ell-1) \\ & \textbf{return}\ aux \end{aligned}
```

Observe que usamos la notación C[1 ... m][1 ... n] para indicar que la matriz C tiene m filas y n columnas.

Una segunda definición de ContarCaminos

Podemos reducir el número de llamadas recursivas:

```
\begin{aligned} & \textbf{ContarCaminos}(M[1\dots n][1\dots n],\ v_i,\ v_f,\ \ell) \\ & \textbf{if}\ \ell = 1\ \textbf{then}\ \textbf{return}\ M[v_i,v_f] \\ & \textbf{else} \\ & aux := 0 \\ & \textbf{for}\ v_j := 1\ \textbf{to}\ n\ \textbf{do} \\ & \textbf{if}\ M[v_i,v_j] = 1\ \textbf{then} \\ & aux += \textbf{ContarCaminos}(M,\ v_j,\ v_f,\ \ell-1) \\ & \textbf{return}\ aux \end{aligned}
```