A peculiar continued fraction

$$f(x) = \frac{1}{x + \frac{1}{x + \frac{1}{x + \cdots}}}$$

now consider f(x) - 1, in other words

$$f(x) = 1 + \frac{1}{x + \frac{1}{x + \frac{1}{x + \cdots}}} \quad \text{for } x = 1 \text{ we have } \dots$$

$$f(1) = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$$

I will show that this continued fraction converges and surprisingly converges to the golden ratio