STAT 500 HW4

1. Check the constant variance assumption for the errors. Modify the model if necessary (see below).

Figure 1

Code:

##plot residuals vs fitted values

result1 <- lm(gamble ~ sex+ status+ income+ verbal)

par(mfrow = c(1,2))

plot(result1\$fitted, result1\$residual, xlab= "Fitted", ylab= "Residuals")

abline(h = 0)

##plot absolute values of residuals vs fitted values

plot(result1\$fitted, abs(result1\$residual), xlab= "Fitted", ylab= "|Residuals|")

summary(lm(abs(result1\$residual) ~ result1\$fitted))

Coefficients (regression of $|\hat{\varepsilon}|$ and \hat{y})

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.3303 2.8789 3.241 0.00224 ** result1\$fitted 0.2645 0.0968 2.732 0.00895 **

In left plot of figure 1, we make a regression of $\hat{\varepsilon}$ and \hat{y} , it shows that the variance of $\hat{\varepsilon}$ and the scatter are not symmetrically distributed in the vertical direction, but displays a slightly downward trend. So it violates nonlinearity.

In the right plot of figure 2, we make a regression of $|\hat{\varepsilon}|$ and \hat{v} , we can see that the scatters are still not vertically symmetric. And since p-value of coefficients of this regression are both less than 0.05, the linear relationship between $|\hat{\epsilon}|$ and \hat{y} is rather significant. So it violates constant variance.

Figure 2

Codes:

Coefficients (regression of $|\hat{\epsilon}|$ and $sqrt(\hat{y})$

	Estimate	Std. Error	t value	Pr(>ltl)
(Intercept)	1.01136	0.32365	3.125	0.00311 **
result2\$fitted	0.14957	0.08242	1.815	0.07623.

In order to offset the influence of non-constant variance, we make a square root transformation of response and then regress $\hat{\varepsilon}$ and the new response. It shows in figure 2 that, both $\hat{\varepsilon}$ and $|\hat{\varepsilon}|$ become more vertically symmetric. And the linear relationship between $|\hat{\varepsilon}|$ and \hat{y} is no more significant, as the p-value=0.07623 > 0.05. Then we may consider the variance of $\hat{\varepsilon}$ as constant.

2. Check the normality assumption.

Normal Q-Q Plot

qqnorm (residuals (result2), ylab="Residuals")
qqline (residuals (result2))

In the plot of figure 3, we compare $\hat{\varepsilon}$ to "ideal" normal observations by Q-Q plot. qqline joining first and third quartiles is not influenced by outliers and $\hat{\varepsilon}$ follows the line approximately, except for slightly heavy tails. So $\hat{\varepsilon}$ can be considered normal.

verbal gamble

14.1

69.7

1

1.5

15.0

3. Check for large leverage points.

Figure 4

Half-normal plot in figure 4 shows that the #35 and #42 points diverge substantially from the rest of data, thus the two points have large leverages.

4. Check for outliers.

Code:

##problem 4	24
> ## compute (externally) studentized residuals	>## compute p-value
> ti <- rstudent(result2)	> 2*(1-pt(max(abs(ti)),df = 47-5-1))
> max(abs(ti))	[1] 0.00414277
[1] 3.037005	> ## compare to alpha/n
> which(ti == max(abs(ti)))	> 0.05/47
24	[1] 0.00106383

Since the p-value of the largest (externally) studentized residual is 0.00414277, which is larger than level 0.00106383, we conclude that the #24 point is not an outlier. Then no outlier can be seen in the regression model.

5. Check for influential points.

> ## Compute Cook's distance	> ## Compute changes in coefficients
> cook <- cooks.distance(result2)	> result.inf <- lm.influence(result2)
> halfnorm (cook, nlab=4, vlab = "Cook's distances")	

> plot(result.inf\$coef[,2], result.inf\$coef[,3], xlab="Change in sex", ylab="Change in status", xlim=c(-0.4, 0.48), ylim=c(-0.015, 0.018))

> identify (result.inf\\$coef[, 2], result.inf\\$coef[, 3])

> ## interactive tool to identify points by clicking

In the first plot of figure 5, #24, #5 and #39 points have larger cook's distance from other points. The second plot of figure 5 shows the leaveout-one differences in the coefficients related to sex and status. We find that #24, #5, #32, #6 points stick out on the plot. Then we examine the effects of removing #24 and #5 points below.

> summary(result2)

> result.24 <- lm(sqrt(gamble) \sim sex+ status+ income+ verbal, data = teengamb,subset = (row.names(teengamb) !="24"))

> summary(result.24)

Can	

 $lm(formula = sqrt(gamble) \sim sex + status + income + verbal)$

Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) 2.97707 1.57947 1.885 0.06638.

sex	-2.04450	0.75416	-2.711	0.00968 **

status 0.03688 0.02582 1.428 0.16057 income 0.47938 0.09418 5.090 7.94e-06 ***

verbal -0.42360 0.19950 -2.123 0.03967 * Residual standard error: 2.084 on 42 degrees of freedom Multiple R-squared: 0.5646, Adjusted R-squared: 0.5231 F-statistic: 13.61 on 4 and 42 DF,

p-value: 3.362e-07

Call:

lm(formula = sqrt(gamble) ~ sex + status + income + verbal, data = teengamb, subset = (row.names(teengamb) != "24"))

Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) 2.11915 1.47175 1.440 0.1575

sex	-1.70997	0.69840	-2.448	0.0187 *	verbal -0.35706 0.18375 -1.943 0.0589 . Residual standard error: 1.906 on 41 degrees of
status	0.04387	0.02372	1.849	0.0716 .	freedom Multiple R-squared: 0.5503, Adjusted R-squared: 0.5065 F-statistic: 12.55 on 4 and 41 DF, p-value: 9.403e-07
income	0.44312	0.08695	5.096 8.	22e-06 ***	21, p
>##check for #5 point					
> result.5 <- lm(sqrt(gamble) ~ sex+ status+ income+ verbal, data = teengamb,subset = (row.names(teengamb) !="5"))					
> summa	> summary(result.5)				
Coefficients:					income 0.47517 0.09150 5.193 6.01e-06 ***
Estimate Std. Error t value Pr(>ltl)			r t value P	Pr(>ltl)	verbal -0.40768 0.19395 -2.102 0.04174*
(Intercept) 3.56531 1.56567 2.277 0.02806 *		0.02806 *	Residual standard error: 2.024 on 41 degrees of freedom Multiple R-squared: 0.5976, Adjusted		
sex	-2.47471	0.76745 -	3.225 0	.00248 **	R-squared: 0.5584 F-statistic: 15.22 on 4 and 41 DF, p-value: 1.041e-07
status	0.02388	0.02601	0.918).36397	

Comparing the data fit without #24 to the full data fit, we notice that the coefficient for sex increases about 15% and the verbal term is no longer significant.

In the data fit without #5, the coefficient for sex decreases about 20%, but the multiple R-squared increased slightly.