Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

PROJECT2: FREELENCER EARNING DATASET CLEANING & VISUALIZATION

STEP1 : Import libraries

```
1
    import numpy as np
2
    import pandas as pd
```

import matplotlib.pyplot as plt

4 import seaborn as sns

STEP2 : Load a dataset

```
df = pd.read_csv("/content/freelancer_earnings_bd.csv")
```

STEP3 : Data cleaning

1. Finding statistical information

1	df.de	scribe()								
₹		Freelancer_ID	Job_Completed	Earnings_USD	Hourly_Rate	Job_Success_Rate	Client_Rating	Job_Duration_Days	Rehire_Rate	Marketir
	count	1950.000000	1950.000000	1950.000000	1950.000000	1950.000000	1950.000000	1950.000000	1950.000000	195
	mean	975.500000	150.864103	5017.566667	52.579774	74.951846	3.995892	44.704615	44.556913	24
	std	563.060832	85.480770	2926.279918	26.927584	14.615735	0.575976	26.022998	20.193842	14
	min	1.000000	5.000000	51.000000	5.020000	50.160000	3.000000	1.000000	10.000000	(
	25%	488.250000	76.000000	2419.000000	30.047500	61.917500	3.510000	22.000000	27.150000	111
	50%	975.500000	149.000000	5048.000000	52.285000	75.400000	3.990000	45.000000	43.920000	25:
	75%	1462.750000	225.000000	7608.250000	75.125000	87.537500	4.500000	67.000000	61.690000	37'
	max	1950.000000	299.000000	9991.000000	99.830000	99.990000	5.000000	89.000000	79.950000	49

2. Finding all type information

<<class 'pandas.core.frame.DataFrame'>

1 df.info()

```
RangeIndex: 1950 entries, 0 to 1949
Data columns (total 15 columns):
# Column
                      Non-Null Count Dtype
    Freelancer_ID
                      1950 non-null
                                      int64
    Job_Category
                     1950 non-null
                                      object
    Platform
                      1950 non-null
                                      object
    Experience_Level 1950 non-null
                                      object
                      1950 non-null
    Client_Region
                                      object
   Payment_Method
                      1950 non-null
                                      object
    Job_Completed
                      1950 non-null
                                      int64
    Earnings_USD
                      1950 non-null
                                      int64
    Hourly_Rate
                      1950 non-null
                                      float64
    Job_Success_Rate 1950 non-null
                                      float64
                      1950 non-null
10 Client_Rating
                                      float64
11 Job_Duration_Days 1950 non-null
                                      int64
                      1950 non-null
12 Project_Type
                                      object
13 Rehire_Rate
                      1950 non-null
                      1950 non-null
```

dtypes: float64(4), int64(5), object(6)

3. Find missing values sum

14 Marketing_Spend

memory usage: 228.6+ KB

```
1 df.isna().sum()
```

```
₹
                         0
        Freelancer ID
        Job_Category
                         0
                         0
          Platform
       Experience_Level
                         0
        Client_Region
                         0
       Payment_Method
                         0
       Job_Completed
                         0
        Earnings_USD
                         0
         Hourly_Rate
                         0
      Job_Success_Rate
                        0
        Client_Rating
                         0
     Job_Duration_Days
                        0
                         0
        Project_Type
         Rehire_Rate
                         0
      Marketing_Spend
                        0
```

4. Find duplicates values

```
1 df.duplicated().sum()
```

5. Find duplicates value from freelencer Id column

```
1 df["Freelancer_ID"].duplicated().sum()
```

→ np.int64(0)

→ np.int64(0)

STEP4 : Data visualization

QUE1: Which earning interval has the highest frequency in this distribution?

```
1 sns.histplot(data=df, x="Earnings_USD")
2 plt.title("Earning in USD Distributions")
3 plt.show()
```


CONCLUSION: The bar chart reveals the frequency distribution of earnings in USD across different income intervals, with counts ranging from approximately 125 to 175.

QUE2: Does the chart suggest any correlation between hourly rate and job success rate?

```
1 sns.scatterplot(data=df, x="Hourly_Rate", y="Job_Success_Rate", hue="Earnings_USD", palette="viridis", alpha=0.5)
2 plt.title("Impact of Hourly Rate on Job Success Rate with Earnings Representation")
3 plt.show()
```


CONCLUSION: The chart explores the relationship between hourly rates and job success rates, showing no clear connection as the data points are widely scattered.

QUE3: Which job category shown in the chart has the highest earnings?

```
1 plt.figure(figsize=(13, 4))
2 sns.barplot(data=df, x="Job_Category", y="Earnings_USD", palette="bright", errorbar=("ci",0))
3 plt.title("Earnings by Job Categories")
4 plt.show()
```

 \rightarrow <ipython-input-15-593afc02f752>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.barplot(data=df, x="Job_Category", y="Earnings_USD", palette="bright", errorbar=("ci",0))

CONCLUSION: The bar chart displays earnings in USD across various job categories, with Digital Marketing having the highest earnings among them.

QUE4: Which category has the most completed jobs according to the chart?

```
1 plt.figure(figsize=(13, 4))
2 gb = df.groupby("Job_Category")["Job_Completed"].count().reset_index()
```

```
3 print(gb)
4 sns.barplot(data=gb, x="Job_Category", y="Job_Completed", palette="colorblind", errorbar=("ci",0))
5 plt.title("Job Completed by Categories")
6 sns.despine()
7 plt.show()
8 #
```

```
Job_Category Job_Completed
    а
         App Development
                                    248
    1
         Content Writing
                                    231
    2
       Customer Support
                                    244
    3
              Data Entry
                                    238
    4
      Digital Marketing
                                    231
    5
          Graphic Design
                                    265
                     SE0
                                    237
         Web Development
                                    256
    <ipython-input-17-4478381b07a4>:4: FutureWarning:
```

3/23/25, 6:59 PM

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend

sns.barplot(data=gb, x="Job_Category", y="Job_Completed", palette="colorblind", errorbar=("ci",0))

CONCLUSION: The bar chart titled "Job Completed by Categories" shows the number of jobs completed across various fields, ranging from approximately 200 to 250 jobs per category.

QUE5: How does job duration vary among beginners, intermediates, and experts in the chart?

```
1 sns.boxplot(data=df, x="Experience_Level", y="Job_Duration_Days", palette="muted")
2 plt.title("Job Duration Trends for Experience levels")
3 plt.show()
```

<ipython-input-18-97ccf45b5d75>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.boxplot(data=df, x="Experience_Level", y="Job_Duration_Days", palette="muted")

CONCLUSION: The chart highlights that job duration tends to decrease as experience level increases, with experts showing the shortest job durations on average.

QUE6: Which job category has the highest number of freelancers, as per the chart?

```
1 plt.figure(figsize=(13, 4))
2 sns.countplot(data=df, x="Job_Category", palette="cividis")
3 plt.title("Freelencers count by Job Category")
4 plt.show()
```

<ipython-input-20-2983d2959fb7>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.countplot(data=df, x="Job_Category", palette="cividis")

CONCLUSION: The chart reveals that Graphic Design has the highest count of freelancers, while Digital Marketing has the lowest, with other categories distributed in between.

QUE7: What does the chart suggest about the relationship between job success rates and client ratings?

```
1 plt.figure(figsize=(13, 4))
2 sns.scatterplot(data=df, y="Client_Rating", x="Job_Success_Rate", hue="Job_Success_Rate", palette="plasma")
3 plt.title("Client Rating vs. Job Success Rate")
4 plt.show()
```


CONCLUSION: The scatter plot reveals that higher job success rates generally correspond with higher client ratings, indicating a positive correlation.

QUE8: Which freelancing platform has the highest median job success rate in the chart?

```
1 sns.boxplot(data=df, y="Platform", x="Job_Success_Rate", palette="inferno")
2 plt.title("Job Success Rate Distributions by Platform")
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend sns.boxplot(data=df, y="Platform", x="Job_Success_Rate", palette="inferno")

CONCLUSION: The box plot displays the job success rate distributions for five freelancing platforms, highlighting variations in median, range, and potential outliers.

QUE9: Which job role holds the highest percentage in the distribution?

```
1 gb = df.groupby("Job_Category")["Job_Category"].count()
2 print(gb)
3 plt.pie(gb.values, labels=gb.index, startangle=0, shadow=True, autopct="%.2f")
4 plt.title("Freelancer Job Role Distribution")
5 plt.show()
```

→ Job_Category App Development Content Writing 231 Customer Support Data Entry 238 Digital Marketing 231 Graphic Design 265 SE0 237 Web Development 256 Name: Job_Category, dtype: int64

Freelancer Job Role Distribution

CONCLUSION: The pie chart depicts the percentage distribution of various job roles, with Graphic Design having the highest share (13.59%) and Content Writing and Digital Marketing tying for the lowest (11.85%).

QUE10: Which platform has the highest number of freelancers according to the chart?

```
1 platform = sns.countplot(data=df, x="Platform", palette="magma")
2 for i in range(0, 5):
3     platform.bar_label(platform.containers[i])
4 plt.title("Freelancer presents on platfrom")
5 plt.show()
```

<ipython-input-25-6aece0f1cb6f>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend platform = sns.countplot(data=df, x="Platform", palette="magma")

CONCLUSION: The bar chart compares freelancer numbers across five platforms, with Upwork leading at 420 and PeoplePerHour trailing at 358.

QUE11: Which region has the highest number of clients according to the chart?

```
1 cl_Region = sns.countplot(data=df, x="Client_Region", palette="coolwarm")
2 for i in range(0, 7):
3    cl_Region.bar_label(cl_Region.containers[i])
4 plt.title("Client Counts by Region")
5 plt.show()
```

<ipython-input-26-89a17f2ba20c>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend cl_Region = sns.countplot(data=df, x="Client_Region", palette="coolwarm")

CONCLUSION: The bar chart shows the number of clients from various regions, with Australia leading at 298 and Canada trailing at 246.

QUE12: How does marketing spend impact earnings according to the scatter plot?

```
1 plt.figure(figsize=(13, 4))
2 sns.scatterplot(data=df, x="Marketing_Spend", y="Earnings_USD", hue="Earnings_USD", palette="gist_heat_r")
3 plt.title("Marketing Speds vs. Earnings")
4 plt.show()
```


CONCLUSION: The scatter plot shows the relationship between marketing spend and earnings, with higher marketing spend generally associated with increased earnings.

QUE13: What percentage of users prefer Crypto as their payment method according to the chart?

```
1 gb = df.groupby("Payment_Method")["Payment_Method"].count()
2 print(gb)
3 plt.pie(gb.values, labels=gb.index, startangle=0, shadow=True, autopct="%.2f")
4 plt.title("Most Common Payment Methods")
5 plt.show()
```

Payment_Method
Bank Transfer 494
Crypto 514
Mobile Banking 476
PayPal 466

Name: Payment_Method, dtype: int64

Most Common Payment Methods

CONCLUSION: The chart showcases the percentage split of common payment methods, with Crypto emerging as the top choice at 26.36%.

QUE14: Which platform has the largest percentage of freelancers according to the pie chart?

```
1 gb = df.groupby("Platform")["Platform"].count()
2 print(gb)
3 plt.pie(gb.values, labels=gb.index, startangle=0, shadow=True, autopct="%.2f")
4 plt.title("Most Freelencers Platform")
5 plt.show()
```


Most Freelencers Platform

CONCLUSION: The pie chart displays the distribution of freelancers across five platforms, with Upwork leading at 21.54% and PeoplePerHour having the smallest share at 18.36%.

QUE15: What percentage of freelancers fall into the Beginner category according to the pie chart?

```
1 gb = df.groupby("Experience_Level")["Experience_Level"].count()
2 print(gb)
3 plt.pie(gb.values, labels=gb.index, startangle=0, shadow=True, autopct="%.2f")
4 plt.title("Freelencers Experience level")
5 plt.show()
```

Experience_Level
Beginner 668
Expert 641
Intermediate 641

Name: Experience_Level, dtype: int64

Freelencers Experience level

CONCLUSION: The pie chart depicts the distribution of freelancers based on experience levels, showing Beginners at 34.26%, with Intermediate and Experts each at 32.87%.

QUE16: Which job categories have the highest counts for fixed and hourly projects according to the chart?

```
plt.figure(figsize=(13, 4))
project_type = sns.countplot(data=df, x="Job_Category", hue="Project_Type")
for i in range(0, 2):
    project_type.bar_label(project_type.containers[i])
plt.title("Project Type by Job Category")
plt.show()
```


CONCLUSION: The bar chart compares fixed and hourly projects across job categories, with Graphic Design leading in fixed projects and App Development in hourly projects.

STEP5 : Save clean data

```
1 df.to_csv("Freelancer Cleaned Data.csv", index=False)
2 print("Data Cleaning & Visualized Completed...")
3 print("Freelancer data Cleaning & Visualized Project Done!...")
Data Cleaning & Visualized Completed...
```

Titanic Data Cleaning & Visualization Project Completed

Freelancer data Cleaning & Visualized Project Done!...

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.