

Devrev ;

Expert Answers in a Flash: Improving Domain-Specific QA

Team 53

Agenda

- Solution Pipeline
- Para Retrieval (DeLADE)
- Para Ranker (Cross Encoder)
- Question Answering (QA)
 Model
- Synthetic Data Generation
- Theme Wise Analysis
- Caching Analysis
- Final Pipeline
- Future Opportunities

Solution Pipeline

Modules used

Search Method

DeLADE [1]

Paragraph Ranker

Cross-Encoder [2]

QA model

ELECTRA-small [3]

Benefits offered

High degree of modularity.

Scales well with large data.

Powered by a state-of-the-art QA model.

DeLADE-CLS

Dense Hybrid Representations

- Embedding generation technique for faster and effective passage retrieval.
- Uses DeLADE A variant of SPLADE.
- Joint training of DLR and Semantic representations ([CLS] embeddings) to generate Dense Hybrid Representations.
- Pretrained on the MS MARCO dataset.

Why DeLADE?

- Used to reduce search space towards finding the relevant context paragraph.
- Experiments showed greater accuracy and reduced latency speed of DeLADE-CLS-P with dot similarity over other search methods.
- Relative increase in both Para and QA scores by around 6% and 9% over vector-based search methods (ANNOY, FAISS, etc.)

MRR@10
 R@1K
 nDCG@10

Comparison on MS MARCO

• DeLADE returns top k most relevant paragraphs for a question.

- Para Accuracy
 - => 1 : Any of the K paragraphs matches the target paragraph
 - => 0: Otherwise
- Fine tuning of DeLADE performed on the 'train' split (80%) and evaluated on 'val' split (10%) of the provided training dataset.

Cross Encoder

- Paragraph ranking module.
- Generates score based on semantic similarity.
- Comes in pipeline right after DeLADE.
- Built on MiniLM architecture.
- Pretrained on MS MARCO.

Why Cross Encoder?

• Use of cross-encoder leads to drastic increase in scores.

- Distinctive feature Use of siamese and triplet networks.
- MiniLM-L4-v2 pretrained checkpoint found to give optimal performance.

Cross Encoder Experiments: Base or Finetuned?

Fine tuning of cross
 encoder performed on the
 'train' split of the provided
 dataset, with results on the
 'val' split.

• Most optimal performance - finetuned till 17 epochs.

ELECTRA-small

- Based on replaced token detection.
- Requires less compute than MLM based learning.
- Has three variants small, base and large, with the latter returning SoTA results on SQuAD v2.
- We use pretrained ELECTRA-small finetuned on SQuAD v2.

Model	F1
MiniLM	91.5%

TinyBERT

SqueezeBERT

92.5%

93.2%

ELECTRA-small

94.5%

ELECTRA-small improvements: Base or Finetuned?

Fine Tuning of ELECTRA-small was performed on 'train' split of the provided training dataset, with evaluation done on the 'val' split.

Synthetic QA Data Generation

Experiments using Synthetic Data

 Fine Tuning of ELECTRAsmall was done on synthetic data.

Evaluation performed on 10%
 'test' split of training data.

Theme wise Analysis

• Theme wise F1 score found on all themes from 'test' split.

 Finetuning performed on bottom 16 worst themes.

Caching Analysis

Final Pipeline

- F1 = 92.8%
- Para Score = 95.1%
- QA Score = 91.5%
- Mean inference time

per question = 767.0ms

(reported on 10% 'test' split of

provided training data)

DeLADE-CLS-P (base)

Paragraph Ranker:

Cross-encoder (finetuned)

QA Model:

ELECTRA-small (base)

Future Opportunities

- Large-data oriented improvements in the caching process.
- Use of Knowledge Graphs as an alternative to traditional seq2seq text modelling.
- Use of rule-based algorithms for answer verification.
- Optimization of large QA models (ATLAS, Retro-Reader) via training-based approaches such as distillation

Bibliography

- 1. Liu, Ye, et al. "Dense hierarchical retrieval for open-domain question answering." arXiv preprint arXiv:2110.15439 (2021).
- 2. Reimers, Nils, and Iryna Gurevych. "Sentence-bert: Sentence embeddings using siamese bert-networks." arXiv preprint arXiv:1908.10084 (2019).
- 3. Clark, Kevin, et al. "Electra: Pre-training text encoders as discriminators rather than generators." arXiv preprint arXiv:2003.10555 (2020).

Thank You