

INITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No: 37697-0033

Applicant(s):

Edward W. MERRILL et al.

Confirmation No.: 8881

Serial No.:

09/764,445

Examiner: To be assigned

Filing Date:

January 19, 2001

Group Art Unit: 3738

Title:

RADIATION AND MELT TREATED ULTRA HIGH MOLECULAR

WEIGHT POLYETHYLENE PROSTHETIC DEVICES

REQUEST FOR INTERFERENCE UNDER 37 C.F.R. §1.607(a)

RECEIVED

JAN 0 2 2003

Commissioner for Patents Washington, D.C. 20231

JAN 0 7 2003 TC 1700

Sir:

Pursuant to 37 C.F.R. §1.607, Applicants hereby request that an interference be declared between the above-captioned patent application and U.S. Patent Nos. 6,017,975 and its continuation 6,242,507 to Saum *et al.* (the '975 patent and the '507 patent respectively). Copies of the '975 and '507 patents accompany this request. Applicants added claims 124-30 to the instant application in a preliminary amendment dated January 19, 2001, and added claims 131-42 by preliminary amendment on August 3, 2001. Applicants also have added claim 143 by way of preliminary amendment, filed herewith.

I. Presentation of Counts

Pursuant to 37 C.F.R. §1.607(a)(2), Applicants present the following proposed count:

Count 1:

A process for preparing a medical implant having improved mechanical properties, wherein the method comprises:

irradiating a polyethylene article to form free radicals; and

heating the polyethylene article to a temperature at or above the melting point such that the free radicals can recombine.

II. Identification of Patent Claims Corresponding to the Proposed Count

Pursuant to 37 CFR §1.607(a)(3), Applicants hereby identify the claims of the '975 and '507 patents that correspond to the proposed count:

Claims 1-38 of the '975 patent; and

Claims 1-20 of the '507 patent, which are terminally disclaimed over the claims of the '975 patent due to obviousness-type double patenting.

III. Identification of Application Claims Corresponding to the Proposed Count

Pursuant to 37 CFR § 1.607(a)(4), (5), Applicants hereby identify the application claims that correspond to the counts:

Presently, claims 124-30 and 43 correspond to the present count. Although claims 131-42 would correspond to the present count, they will be canceled at a later

date without prejudice or disclaimer because they are pending in another application and are subject to another Request for Interference against another patent. Claims 131-42 will be canceled when that other interference is declared. Accordingly, only claims 124-30 and 143 are discussed below.

Support for the claims can be found throughout the application, and exemplary support is set forth below:

CLAIM	SUPPORT
124. A process for preparing a medical	Improved mechanical properties are
implant having an improved balance of wear	disclosed at Tables 1-4. Bar stock, a
properties and oxidation resistance comprising	type of preform, is disclosed at page
the steps of:	17, lines 1-3. Medical implants are
	disclosed at page 1, lines 12-15. (e_j)
	Oxidation resistance is discussed at
	page 3, lines 18-19, and the last two
	lines of page 63.
irradiating a porform of ultrahigh malagular	Times of a death day a line in
irradiating a perform of ultrahigh molecular	Types of polyethylene, including
weight polyethylene to form free radicals;	ultrahigh molecular weight
	polyethylene, are disclosed at page
	32, lines 21-24. Irradiation is
	disclosed at page 13, last paragraph.
	Formation of free radicals is discussed
	at page 14, first paragraph.
annealing the irradiated proferm by booting in	Tomporatures observe the contribution
annealing the irradiated preform by heating in	Temperatures above the melting
a substantially oxygen-free atmosphere at a	point, including those above 150°C,
temperature above about 150°C, for a time	are disclosed at page 20, lines 17-22.

sufficient to recombine substantially all of the	The use of a low oxygen-containing
free radicals and cross-link the ultrahigh	nitrogen atmosphere is disclosed at
molecular weight polyethylene;	page 45. Recombination of free
	radicals is discussed at page 14, first
	paragraph.
cooling the cross-linked preform while	Cooling in a nitrogen atmosphere is
maintaining a substantially oxygen-free	disclosed at page 45.
atmosphere;	With
forming a medical implant from the cross-	Fabricated articles, such as medical
linked preform;	implants, are disclosed at page 29,
	lines 21-23 and Example 3.
packaging the medical implant in an air-	Packaging is a known requirement of
permeable package; and	medical implants to protect them from
	the environment. Most packaging is
	air permeable.
sterilizing the packaged implant using non-	Sterilization is a known requirement
irradiative methods.	for medical implants.
125. A process for preparing a medical	Improved mechanical properties are
implant having an improved balance of wear	disclosed at Tables 1-4. Bar stock, a
properties and oxidation resistance comprising	type of preform, is disclosed at page
the steps of:	17, lines 1-3. Medical implants are
	disclosed at page 1, lines 12-15.
	Oxidation resistance is discussed at
	page 3, lines 18-19, and the last two
	lines of page 63.
irradiating a preform of ultrahigh molecular	Types of polyethylene, including

weight polyethylene to form free radicals;	ultrahigh molecular weight
	polyethylene, are disclosed at page
	32, lines 21-24. Irradiation is
	disclosed at page 13, last paragraph.
	Formation of free radicals is discussed
	at page 14, first paragraph.
	at page 14, ilist paragraph.
annealing the irradiated preform by heating in	Temperatures above the melting
a substantially oxygen-free atmosphere at a	point, including those above 150°C,
temperature above about 150°C, to cross-link	are disclosed at page 20, lines 17-22.
the ultrahigh molecular weight polyethylene;	The use of a low oxygen-containing
	nitrogen atmosphere is disclosed at
	page 45. Cross-links are disclosed at
	page 14, second paragraph.
cooling the cross-linked preform while	Cooling in a nitrogen atmosphere is
maintaining a substantially oxygen-free	disclosed at page 45.
atmosphere;	
forming a medical implant from the cross-	Exhricated articles, such as modical
linked preform.	Fabricated articles, such as medical
illiked preiofffi.	implants, are disclosed at page 29,
	lines 21-23 and Example 3.
126. A medical implant prepared according	See discussion for claim 124.
to the process of claim 124.	
127. A medical implant prepared according	See discussion for claim 125.
to the process of claim 125.	
128. A cross-linked ultrahigh molecular	Cross linked ultrahigh malagular
9	Cross-linked ultrahigh molecular
weight polyethylene having a swell ratio of less	weight polyethylene having improved
than about 5 and an oxidation level of less	mechanical properties are disclosed at

than about 0.2 carbonyl area/mil sample	Tables 1-4.
thickness after aging the ultrahigh molecular	145/55 1-4.
weight polyethylene at 70°C, for 14 days in	
oxygen at a pressure of about 5 atmospheres.	
129. A medical implant comprising the	Medical implants made from cross-
ultrahigh molecular weight polyethylene of	linked ultrahigh molecular weight
claim 128.	polyethylene having improved
	mechanical properties are disclosed at
	page 1, lines 12-15 and Table 1-4.
130. A process for preparing a medical	Medical implants made from cross-
implant having an improved balance of wear	linked ultrahigh molecular weight
properties and oxidation resistance comprising	polyethylene having improved
the steps of:	mechanical properties are disclosed at
	page 1, lines 12-15 and Table 1-4.
	Oxidation resistance is discussed at
	page 3, lines 18-19, and the last two
	lines of page 63.
irradiating a preform of ultrahigh molecular	Types of polyethylene, including
weight polyethylene to form free radicals;	ultrahigh molecular weight
	polyethylene, are disclosed at page
	32, lines 21-24. Irradiation is
	disclosed at page 13, last paragraph.
	Formation of free radicals is discussed
	at page 14, first paragraph.
annealing the irradiated preform by heating at	Temperatures above the melting
a temperature above about 150°C, for a time	point, including those above 150°C,
sufficient to recombine substantially all of the	are disclosed at page 20, lines 17-22.

free radicals and cross-link the ultrahigh	Cross-links are disclosed at page 14,
molecular weight polyethylene;	second paragraph.
cooling the cross-linked preform;	Cooling is disclosed at page 45.
forming a medical implant from the cross-	Fabricated articles, such as medical
linked preform;	implants, are disclosed at page 29,
	lines 21-23 and Example 3.
packaging the medical implant in an air-	Packaging is a known requirement of
permeable package; and	medical implants to protect them from
	the environment. Most packaging is
	air permeable.
sterilizing the packaged implant using non-	Sterilization is a known requirement
irradiative methods.	for medical implants.
143. A process for preparing a medical	Medical implants made from cross-
implant having improved mechanical	linked ultrahigh molecular weight
properties, wherein the method comprises:	polyethylene having improved
	mechanical properties are disclosed at
	page 1, lines 12-15 and Table 1-4.
irradiating a polyethylene article to form free	Types of polyethylene, including
radicals; and	ultrahigh molecular weight
	polyethylene, are disclosed at page
	32, lines 21-24. Irradiation is
	disclosed at page 13, last paragraph.
	Formation of free radicals is discussed
	at page 14, first paragraph.
heating the polyethylene article to a	Temperatures above the melting point

temperature at or above the melting point such	are disclosed at page 20, lines 17-22.
that the free radicals can recombine.	Recombination of free radicals is
	disclosed at page 14, first paragraph.

IV. Compliance with 35 USC § 135(b)

Claims 124-42 were copied prior to the one-year anniversary of the issuance of the '975 patent and its obvious counterpart '507 patent. Moreover, original claim 36 and its dependents, for example, correspond to the count and were pending well before the one-year anniversary of the issuance of the '975 and '507 patents. Accordingly, the requirements of 35 USC § 135 have been met.

V. Statement under 37 CFR § 1.608(a)

The undersigned attorney of record hereby states that there is a basis for which applicant is entitled to judgment relative to patentee. Applicants' earliest effective filing date is February 13, 1996 from U.S. Serial No. 08/600,744, which is almost five months earlier than the filing of patentee's first provisional application, filed July 9, 1996. Applicants' specification, as well as the priority '744 application, fully support the claims. Accordingly, applicants submit that (i) an interference should be declared, (ii) applicants should be deemed the senior party, (iii) applicants be afforded the benefit of all priority applications, and (iv) applicants enjoy the presumption of first invention under

U.S. Serial No. 09/764,445

37 CFR § 1.657. Applicants therefore submit that they have demonstrated an entitlement to judgment and that the interference should be declared in due course.

December 30, 2002

HELLER EHRMAN WHITE & McAULIFFE 1666 K Street, N.W., Suite 300 Washington, D.C. 20006

Tel: 202-912-2000 Fax: 202-912-2020 Respectfully submitted,

John P. Isacson Reg. No. 33,715

26633