Network Architectures

Reference

- Chapter 01, Computer Networking: A Top Down
 Approach, 6/E, Jim Kurose, Keith Ross, Addison-Wesley
- Adapted from part of the slides provided by the authors

CS3700 - Instructor: Dr. Zhu

What's the Internet: "nuts and bolts" view

wireless

wired

millions of connected computing devices:

- hosts = end systems
- running network apps
- communication links
 - fiber, copper, radio, satellite
 - transmission rate: bandwidth
- Packet switches: forward packets (chunks of data)
 - routers and switches
- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

A closer look at network structure:

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

CS3700 - Instructor: Dr. Zhu

The network core: Packet-Switching

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Packet-switching: store-and-forward

- One-hop example: 1 router and 2 links between source and destination
- bandwidth is also called transmission rate
 - bps: bit per second, 1 Byte = 8 bits
- transmission delay on a link = packet size / bandwidth
- propagation delay on a link = distance / propagation speed
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- Link delay = transmission delay + propagation delay
- Assuming zero queuing delay and the packet switch processing delay is d_{proc} sec, end-to-end delay = (L/R₁ + d₁/s₁ + d_{proc} + L/R₂ + d₂/s₂) seconds

CS3700 - Instructor: Dr. Zhu

Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate to an output link exceeds transmission rate of this output link:
 - packets will queue in a buffer, wait to be transmitted on this output link
 - packets can be dropped (lost) if memory (buffer) fills up
- queuing delay: the time that a packet waits in the queue for being transmitted
 - Example: when a packet arrives at the queue, one packet is halfway done being transmitted, and 5 packets have been in the queue, the packet size is 300 Bytes queuing delay = $(0.5 \times 300 + 5 \times 300) \times 8$ bits / (1.5×10^6) bits per second = 0.0088 second
 - Normally, average queuing delay is interested by researchers

Queueing delay (more)

- Notations
 - R: link bandwidth (bps)
 - L: packet length (bits)
 - a: average packet arrival rate

 $La/R \sim 0$

R ~ 0 La/R -

- Traffic Intensity = La/R
 - $La/R \sim 0$: avg. queueing delay small
 - La/R -> I: avg. queueing delay large
 - -La/R > 1: more "work" arriving than can be serviced, average delay infinite!

CS3700 - Instructor: Dr. Zhu

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Two key network-core functions

- routing: determines sourcedestination route taken by packets
- forwarding: move packets from router's input to appropriate router output

CS3700 - Instructor: Dr. Zhu

Four sources of packet delay

End-to-end delay = all d_{proc} + all d_{queue} + all d_{trans} + all d_{prop} along the path from source to destination

- d_{trans} : transmission delay:
 - L: packet length (bits)
 - R: link bandwidth (bbs)
 - $d_{trans} = L/R$
- d_{prop} : propagation delay:
 - d: length of physical link
 - s: propagation speed in medium (~2x108 m/sec)
 - $-d_{prop} = d/s$

- d_{proc}: nodal processing
 - check bit errors
 - determine output link
 - typically < msec
- d_{queue}: queueing delay
 - time waiting at output link for transmission
 - depends on congestion level of router

Alternative network core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- Commonly used in traditional telephone networks

CS3700 - Instructor: Dr. Zhu

Circuit switching: FDM versus TDM

CS3700 - Instructor: Dr. Zhu

Packet switching versus circuit switching

users

1 Mbps link

packet switching allows more users to use network!

Example:

- 1 Mb/s link
- each user:
 - o 100 kb/s when "active"
 - o active 10% of time (active probability p = 0.1)
- circuit-switching:
 - 10 users

- with N users in total, probability that exact ly M users are active =
$$\binom{N}{M}p^M(1-p)^{(N-M)}$$

– with N users in total, probability that <= M (M or less) users are active =
$$\sum_{i=0}^{M} {N \choose i} p^i (1-p)^{(N-i)}$$

– with N users in total, probability that > M (more than M) users are active =
$$1 - \sum_{i=0}^{M} \binom{N}{i} p^i (1-p)^{(N-i)}$$

- E.g., with 35 users, probability > 10 active at same time is 0.000424

CS3700 - Instructor: Dr. Zhu

Packet switching versus circuit switching (Cont.)

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - QoS (Quality of Service)
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Protocol "layers"

- Networks are complex, with many "pieces":
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software
- Why layering? dealing with complex systems:
 - explicit structure allows identification, relationship of complex system's pieces
 - o layered *reference model* for discussion
 - modularization eases maintenance, updating of system
 - o change of implementation of layer's service transparent to rest of system
 - layering considered harmful?

CS3700 - Instructor: Dr. Zhu

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - Most of the time, not really needed

application
presentation
session
transport
network
link
physical

CS3700 - Instructor: Dr. Zhu

