Date de rendu: 13/11/2020

Devoir maison

EXERCICE 1:

MAT551

Cobords et mesures invariantes

1. Remarquons dans un premier temps l'inclusion

$$C_b(X,T) \subset C_m(X,T)$$
,

en effet si l'on prend $\phi \in C_b(X,T)$, alors pour toute mesure $\mu \in \mathcal{M}(X,T)$

$$\int \phi d\mu = \int \psi \circ T - \psi d\mu$$

$$= \int \psi \circ T d\mu - \int \psi d\mu$$

$$= \int \psi dT_{\star} \mu - \int \psi d\mu$$

$$= 0 \quad \text{par } T \text{ invariance de } \mu.$$

En montrant que l'ensemble $C_m(X,T)$ est un fermé on obtiendra le résultat souhaité

$$\overline{\mathcal{C}_b(X,T)} \subset \overline{\mathcal{C}_m(X,T)} = \mathcal{C}_m(X,T).$$

Comme C(X) est un espace métrique on peut utiliser un argument séquentiel. Soit $(\phi_n)_{n \in \mathbb{N}}$ une suite de $C_m(X,T)$ convergeant vers ϕ . Alors pour $n \in \mathbb{N}$

$$\begin{aligned} |\int \phi d\mu| &= |\int \phi d\mu - \int \phi_n d\mu| \\ &\leq \int |\phi - \phi_n| d\mu \\ &\leq \int \|\phi - \phi_n\| d\mu \underset{n \to \infty}{\longrightarrow} 0. \end{aligned}$$

La limite appartient donc à $C_m(X, T)$ qui est donc bien fermé.

2. *i.* On applique un corollaire du théorème de Hahn Banach dans sa formulation géométrique, étant donné un espace vectoriel E, un sous espace vectoriel $M \subset E$ non dense, il existe une forme linéaire continue Λ non nulle qui s'annule sur M. Il est facile de vérifier que $\mathcal{C}_b(X,T)$ et $\mathcal{C}_m(X,T)$ sont des \mathbf{R} espaces vectoriels, le premier sous espace du

second. Ils contiennent la fonction nulle sont stables par somme et multiplication par un scalaire.

En supposant que l'inclusion $\overline{\mathcal{C}_b(X,T)} \subsetneq \mathcal{C}_m(X,T)$ soit stricte on obtient que $\mathcal{C}_b(X,T)$ n'est pas dense dans $\mathcal{C}_m(X,T)$. On conclut par le corollaire précédent l'existence de Λ telle que

$$C_b(X,T) \subset \{\phi \in C(X) \mid \Lambda(\phi) = 0\} \subsetneq C_m(X,T).$$

On sait de plus que le noyau d'une forme linéaire continue est fermé, ainsi on obtient

$$\overline{\mathcal{C}_b(X,T)} \subset \{\phi \in \mathcal{C}(X) \mid \Lambda(\phi) = 0\} \subsetneq \mathcal{C}_m(X,T).$$

ii. Puisque Λ s'annule sur les cobords, pour toute fonction continue ψ on a

$$\int \psi \circ T - \psi d\mu = 0 = \int \psi \circ T d\mu - \int \psi d\mu.$$

On en déduit que μ est T-invariante. Les mesures boréliennes positives $T_{\star}\mu_{+}$, $T_{\star}\mu_{-}$ satisfont donc

$$\int \psi dT_{\star} \mu_{+} - \int \psi dT_{\star} \mu_{-} = \int \psi \circ T d\mu_{+} - \int \psi \circ T d\mu_{-}$$

$$= \int \psi \circ T d\mu$$

$$= \int \psi d\mu$$

$$= \int \psi d\mu_{+} - \int \psi d\mu_{-}.$$

De l'hypothèse d'unicité on en déduit que pour tout borélien *A*,

$$T_{\star}\mu_{+}(A) \geq \mu_{+}(A)$$
 et $T_{\star}\mu_{-}(A) \geq \mu_{-}(A)$.

Remarquons que $T_{\star}\mu_{+}$, $T_{\star}\mu_{-}$ sont mutuellement séparées. Si $\mu_{+}(E)=1$, $\mu_{-}(E)=0$,

$$T_{\star}\mu_{+}(E) \geq \mu_{+}(E) = 1$$
 et,

$$T_{\star}\mu_{-}(E) = \int_{E} T d\mu_{-}$$

$$\leq ||T||_{\infty}\mu_{-}(E)$$

$$= 0,$$

puisque *T* est continue sur *X* compact donc bornée.

En inversant les rôles de μ et $T_{\star}\mu$ qui sont égales, on obtient l'inégalité inverse et donc l'égalité. Par définition, nous venons de montrer que μ_+, μ_- sont T-invariantes.

iii. Puisque μ_+ , μ_- sont T-invariantes et finies les mesures $\frac{1}{\mu_+(X)}\mu_+$, $\frac{1}{\mu_-(X)}\mu_- \in \mathcal{M}(X,T)$. Si $\phi \in \mathcal{C}_m(X,T)$ alors

$$\frac{1}{\mu_+(X)}\int \phi \mathrm{d}\mu_+ = 0 = \frac{1}{\mu_-(X)}\int \phi \mathrm{d}\mu_-.$$

Donc

$$\int \phi \mathrm{d}\mu_+ = 0 = \int \phi \mathrm{d}\mu_-,$$

et il en découle que

$$\Lambda(\phi) = \int \phi \mathrm{d}\mu_+ - \int \phi \mathrm{d}\mu_- = 0.$$

Ainsi nous obtenons une contradiction

$$C_m(X,T) \subset \{\phi \in C(X) \mid \Lambda(\phi) = 0\}.$$

3. On raisonne par contraposée. Si pour toutes mesures ergodiques μ_1, μ_2 on a

$$\int \phi \mathrm{d}\mu_1 = \int \phi \mathrm{d}\mu_2 = c \in \mathbf{R},$$

 $c < \infty$ comme ϕ est continue sur X compact donc bornée. Alors si $\mu \in \mathcal{M}(X,T)$, comme les mesures ergodiques sont les points extrémaux des mesures T-invariantes on obtient par le théorème de Choquet l'existence d'une distribution M_{μ} sur $\mathcal{M}(X,T)$ supportée par les mesures ergodiques telle que

$$\int \phi d\mu = \int (\int \phi d\nu) dM_{\mu}(\nu), \ \nu \text{ ergodiques.}$$

Comme par hypothèse

$$\int \phi d\nu = c \quad \forall \nu \in \mathcal{M}_e(X,T),$$

on en déduit

$$\int \phi \mathrm{d}\mu = c \quad \forall \mu \in \mathcal{M}(X, T).$$

Ainsi pour $\mu \in \mathcal{M}(X,T)$

$$\int (\phi - c) d\mu = \int \phi d\mu - c\mu(X) = c - c = 0.$$

Donc en posant $\psi = \phi - c$ on obtient $\phi = \psi + c$, $\psi \in C_m(X, T)$. On a donc bien montré

$$\phi \in \mathcal{C}_m(X,T) + \mathbf{R}.$$

4. Par le point précédent il existe deux mesures ergodiques μ_1 , μ_2 satisfaisant

$$\int \phi d\mu_1 \neq \int \phi d\mu_2.$$

 $\mathcal{M}(X,T)$ muni de la topologie faible-* est métrisable, comme les mesures périodiques sont denses dans les mesures ergodiques μ_1,μ_2 sont toutes deux limites de suites de mesures périodiques. Par définition de la topologie faible-* l'application

$$\mu \longmapsto \int \phi \mathrm{d}\mu$$

et continue, on peut donc trouver au moins deux mesures périodiques, une dans chaque suite, $\tilde{\mu_1}$, $\tilde{\mu_2}$ disons, satisfaisant

$$\int \phi d\tilde{\mu_1} \neq \int \phi d\tilde{\mu_2}.$$

EXERCICE 2:

Ensemble de divergence, quelques généralités

6. On montre que l'ensemble $\mathcal{B}(\phi)$ est T-invariant. Soit $x \in T^{-1}(\mathcal{B}(\phi))$, et soit $y \in \mathcal{B}(\phi)$ tel que T(x) = y. Alors pour $n \in \mathbf{N}$ fixé on a

$$\frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) = \frac{\phi(x)}{n} + \frac{1}{n} \sum_{k=1}^{n-1} \phi \circ T^{k-1}(y)$$
$$= \frac{\phi(x)}{n} + \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(y) - \frac{\phi(T^{n-1}(x))}{n}.$$

Comme ϕ est bornée, en prenant la limite inférieure on remarque que

$$\liminf_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) = \liminf_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(y),$$

de même pour la limite supérieure. Ainsi $x \in \mathcal{B}(\phi)$ qui est donc bien T-invariant.

Par le théorème ergodique ponctuel, si $\mu \in \mathcal{M}(X,T)$, alors pour μ presque tout $x \in X$ on a la convergence de la suite

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}\phi\circ T^k(x)\right)_{n\in\mathbf{N}}.\tag{1}$$

L'ensemble de divergence des sommes de Birkhoff est donc de μ mesure nulle.

De plus, par le théorème 4.11 des notes de cours lorsque μ est uniquement ergodique la convergence de la suite (1) ci dessus est uniforme vers une constante, on a donc convergence pour tout $x \in X$ et l'ensemble de divergence $\mathcal{B}(\phi)$ est vide.

7. Par la question 2., nous savons que $C_m(X,T) = \overline{C_b(X,T)}$. Prenons donc $\phi \in C_m(X,T)$ et une suite de cobords $(\phi_n)_{n \in \mathbb{N}}$ donc ϕ est la limite uniforme. Notons pour tout $n \in \mathbb{N}$

$$\phi_n = \psi_n \circ T - \psi_n, \quad \psi_n \in \mathcal{C}(X),$$

nous obtenons alors pour $x \in X$ quelconque et $j \in \mathbb{N}$

$$\frac{1}{n} \sum_{k=0}^{n-1} \phi_j \circ T^k(x) = \frac{1}{n} \sum_{k=0}^{n-1} (\psi_j \circ T - \psi_j) \circ T^k(x)$$
$$= \frac{1}{n} (\psi_j \circ T^n - \psi_j)(x) \xrightarrow[n \to \infty]{} 0$$

puisque ψ_i est continue sur X qui est compact, et donc bornée.

Par convergence uniforme, en prenant la limite $j \to \infty$ on obtient le résultat souhaité. Puisque le choix de $x \in X$ était arbitraire on a convergence partout et l'ensemble de divergence $\mathcal{B}(\phi)$ est vide.

EXERCICE 3:

Ensemble de divergence pour des dynamiques minimales

8. (X, T) est un espace métrique nous pouvons appliquer un argument séquentiel. Soient $n \ge N$ alors la somme

$$\frac{1}{n}\sum_{k=0}^{n-1}\phi\circ T^k$$

est une application continue comme somme de compositions d'applications continues. Si l'on considère une suite $(x_i)_{i\in\mathbb{N}}$ de $W(N,\varepsilon)$ convergeant vers $x\in X$, alors nous obtenons

par passage à la limite et continuité

$$\lim_{j \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x_j) \ge \int \phi \mathrm{d}\mu + \varepsilon \qquad \text{d'une part,}$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) \quad \text{d'autre part.}$$

Comme $n \ge N$ était arbitraire $x \in W(N, \varepsilon)$ qui est donc fermé.

9. Nous venons de montrer que pour tous N>0, $\varepsilon>0$ l'ensemble $W(N,\varepsilon)$ est maigre. En effet comme il est fermé nous avons

$$\overline{W(N,\varepsilon)} = W(N,\varepsilon)$$
 et donc $(\overline{W(N,\varepsilon)})^{o} = W(N,\varepsilon)^{o} = \emptyset$.

Nous savons que le complémentaire d'un ensemble maigre contient un sous ensemble dense. Aussi

$$W(N,\varepsilon) = \{ x \in X \mid \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) \ge \int \phi d\mu + \varepsilon, \ \forall n \ge N \}$$
$$= \{ x \in X \mid \liminf_{n} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) \ge \int \phi d\mu + \varepsilon \}.$$

Comme le résultat est valable pour tout $\varepsilon>0$, que μ est une mesure ergodique et en remarquant que

$$\mathcal{B}(\phi)^c = \{x \in X \mid \liminf_n \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) \ge \limsup_n \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x)\},$$

on en conclut que $\mathcal{B}(\phi)$ contient un sous ensemble dense de X.

EXERCICE 4:

Ensemble de divergence pour le décalage sur $\{0,1\}^N$