《微积分A2》第三十讲

教师 杨利军

清华大学数学科学系

2020年06月01日

Bessel 不等式

Corollary

定理: 对任意 $[-\pi,\pi]$ 上的可积函数 f(x),成立如下不等式(称

Bessel 不等式)

$$\frac{1}{2}a_0^2 + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx,$$

其中 a_0, a_k, b_k 是函数 f(x) 的 Fourier 系数.

证明

证明:在最佳均方逼近定理的证明过程,对任意正整数 N, 我们得到如下等式

$$\begin{split} &\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x) - S_N(x)]^2 dx \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{1}{2} a_0^2 - \sum_{k=1}^{N} (a_k^2 + b_k^2). \end{split}$$

由此可见, 对任意正整数 N

$$\frac{1}{2}a_0^2 + \sum_{k=1}^N (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

令 N → $+\infty$, 即得 Bessel 不等式. 推论得证.

推论, Fourier 系数趋向于零

Corollary

推论:设 a_0, a_k, b_k 是任意可积函数 f(x) 的 Fourier 系数,则当

 $k\to +\infty$ 时, $a_k\to 0$, $b_k\to 0$.

Proof.

证明:根据Bessel不等式可知,级数

$$\frac{1}{2}a_0^2 + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2)$$

收敛, 从而 $a_k^2 + b_k^2 \rightarrow 0$, $k \rightarrow +\infty$. 命题得证.

三角级数为 Fourier 级数的必要条件

根据 Bessel 不等式, 如果三角级数

$$\frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos kx + b_k \sin kx)$$

是某个可积函数的 Fourier 级数, 无论收敛与否, 其由其系数所构成的级数

$$\frac{1}{2}a_0^2 + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2)$$

收敛. 因此虽然如下两个三角级数

$$\sum_{k=1}^{+\infty} \frac{\sin kx}{\sqrt{k}}, \quad \sum_{k=2}^{+\infty} \frac{\cos kx}{\ln k},$$

均收敛, 但它们都不是任何可积函数的 Fourier 级数. 🚬 👢

Fourier 级数的平方收敛性

Theorem

<u>定理</u>: 设 f(x) 在 $[-\pi,\pi]$ 上可积, 记 $S_n(x)$ 为 f(x) 的 Fourier 级

数的部分和,则

$$\lim_{n\to+\infty}\int_{-\pi}^{\pi}[f(x)-S_n(x)]^2dx=0.$$

定理证明

 \overline{u} 明: 这里只证 f(x) 是以 2π 为周期的连续函数情形. 此时根据 Fejér 定理可知在 $[-\pi,\pi]$ 上, $\sigma_n(x)$ \Rightarrow f(x), 即对 $\forall \varepsilon > 0$, 存在正整数 $N = N(\varepsilon)$, 使得

$$|f(x) - \sigma_n(x)| < \varepsilon, \quad \forall n \ge N, \quad \forall x \in [-\pi, \pi],$$

其中 $\sigma_n(x)$ 是部分和序列 $\{S_k(x)\}$ 的前n+1项的算术平均,即

$$\sigma_n(\mathbf{x}) \stackrel{\triangle}{=} \frac{S_0(\mathbf{x}) + S_1(\mathbf{x}) + \dots + S_n(\mathbf{x})}{n+1},$$

证明续

故 $\sigma_n(x)$ 也是至多 n 次三角多项式. 因此根据 Fourier 级数的最佳均方逼近定理可知, $\forall n > N$,

$$\int_{-\pi}^{\pi} [f(\textbf{x}) - \textbf{S}_{\textbf{n}}(\textbf{x})]^2 d\textbf{x} \leq \int_{-\pi}^{\pi} [f(\textbf{x}) - \sigma_{\textbf{n}}(\textbf{x})]^2 < 2\pi \epsilon^2,$$

定理得证.

Parseval 等式

Theorem

定理: 设函数 f(x) 在 $[-\pi,\pi]$ 上可积,则如下等式成立

$$\frac{1}{2}a_0^2 + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx, \quad (*)$$

其中 $\{a_0, a_k, b_k\}_{k>1}$ 为函数 f(x) 的 Fourier 系数.

注: 等式(*) 常称作 Parseval 等式. 将 Bessel 不等式中的不等 号该为等号即是 Parseval 等式. 实际上 Bessel 不等式在更大的 范围内成立, 而 Parseval 等式成立的范围相比而言较小.

定理证明

Proof.

证: 之前已证

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \left[f(x) - S_n(x) \right]^2 dx$$

$$=\frac{1}{\pi}\!\int_{-\pi}^{\pi}\!f^2(x)dx-\frac{1}{2}a_0^2-\sum_{k=1}^n(a_k^2+b_k^2).$$

根据 Fourier 平方收敛性可知,上述等式左边当 $n o +\infty$ 时的

极限为零. 这就证明 Parseval 等式成立.

例子

例: 之前已证

$$\mathbf{x}^2 = \frac{\pi^2}{3} + 4\sum_{k=1}^{+\infty} \frac{(-1)^k \cos k\mathbf{x}}{k^2}, \quad \forall \mathbf{x} \in [-\pi, \pi],$$

即函数 x^2 的 Fourier 系数为 $a_0 = \frac{2\pi^2}{3}$, $a_k = \frac{4(-1)^k}{k^2}$, $b_k = 0$. 于

是由 Parseval 等式

$$\frac{1}{2}a_0^2 + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx,$$

我们得到

$$\frac{1}{2} \left\lceil \frac{2\pi^2}{3} \right\rceil^2 + \sum_{k=1}^{+\infty} \left\lceil \frac{4(-1)^k}{k^2} \right\rceil^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} (x^2)^2 dx.$$

例子续

即

$$\frac{2\pi^4}{9} + 16\sum_{k=1}^{+\infty} \frac{1}{k^4} = \frac{2\pi^4}{5}.$$

由此我们得到 Euler 于 1734 年所证明的公式

$$\sum_{k=1}^{+\infty} \frac{1}{k^4} = \frac{\pi^4}{90}.$$

一个注记

注:对任意正整数 m, Euler 已证明级数

$$\sum_{k=1}^{+\infty} \frac{1}{k^{2m}}$$

可以表示为 π^{2m} 的有理数倍数. 人们期待但至今无人能证明

$$\sum_{k=1}^{+\infty} \frac{1}{k^3} \stackrel{?}{=} \frac{p}{q} \pi^3,$$

其中p,q均为正整数.

习题选解, 习题一

习题一 (第5章总复习题第4题): 证明级数

$$\sum_{n\geq 1} x^{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}} \quad (*)$$

当 $x \in (0, e^{-1})$ 时收敛, 当 $x \ge e^{-1}$ 时发散.

证明: 回忆调和级数的前 n 部分和可表示为

$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\ln n+\gamma+a_n,$$

其中 $\gamma=0.577\cdots$, 称为 Euler 常数, $a_n\to 0$, $n\to +\infty$. 因此

级数 (*) 与 $\sum_{n>1} x^{\ln n}$ 的收敛性相同. 这是因为对于 x>0,

习题一,续一

$$\frac{x^{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}}}{x^{\ln n}}=x^{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}-\ln n}=x^{\gamma+a_n}\to x^{\gamma}>0.$$

考虑级数 $\sum_{\mathsf{n}>1}\mathsf{x}^{\mathsf{ln}\,\mathsf{n}}$. 注意该级数的一般项可写作

$$x^{\ln n} = e^{(\ln n)(\ln x)} = n^{\ln x}.$$

由此可见,当 $\mathbf{x} \in (0, \mathbf{e}^{-1})$ 时, $\ln \mathbf{x} < -1$,故级数 $\sum_{n \geq 1} \mathbf{x}^{\ln n}$ 收敛. 当 $\mathbf{x} \geq \mathbf{e}^{-1}$ 时, $\ln \mathbf{x} \geq -1$,故级数 $\sum_{n \geq 1} \mathbf{x}^{\ln n}$ 发散. 命题得证.

习题二

例二 (第5章总复习题第3题(11)): 判断如下级数的收敛性

$$\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \sqrt{2 - \sqrt{2 + \sqrt{2} + \sqrt{2}}} + \cdots$$

解: 记

$$\begin{split} u_1 &= \sqrt{2}, \\ u_2 &= \sqrt{2 + \sqrt{2}}, \\ u_3 &= \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \\ \vdots \end{split}$$

习题二,续一

再记 $v_1=u_1,\,v_{n+1}=\sqrt{2-u_n},\,\forall n\geq 1,\,$ 则所考虑的级数可写作 $\sum_{n\geq 1}v_n.$ 易证序列 u_n 严格单调上升. 由归纳法不难证明 $u_n\leq 2,\,\forall n\geq 1.$ 因此序列 u_n 收敛. 设 $u_n\to u^*.$ 注意到 u_n 满足关系式 $u_{n+1}=\sqrt{2+u_n}.$ 令 $n\to +\infty$ 得 $u^*=\sqrt{2+u^*}.$ 由此不难解得 $u^*=2.$ 考虑一般项 $v_n.$

$$\begin{split} v_{n+1}^2 &= 2 - u_n = \frac{(2 - u_n)(2 + u_n)}{2 + u_n} = \frac{4 - u_n^2}{2 + u_n} \\ &= \frac{4 - (2 + u_{n-1})}{2 + u_n} = \frac{2 - u_{n-1}}{2 + u_n} < \frac{2 - u_{n-1}}{2} = \frac{v_n^2}{2}. \end{split}$$

习题二,续二

由此可见

$$v_{n+1}<\frac{v_n}{\sqrt{2}}<\dots<\frac{v_1}{(\sqrt{2})^n}.$$

因此级数 $\sum_{n>1} v_n$ 收敛. 解答完毕.

注记: 法93严君啸同学向我指出成立估计式 $\mathbf{v}_{\mathsf{n}+1}^2 < \frac{\mathsf{v}_{\mathsf{n}}^2}{2}$. 这改进了整个证明. 在此感谢严君啸同学.

艾克热木同学的证明

工物90艾克热木在微信群里提供了如下精妙的证明. 在此感谢艾克热木同学与大家分享他的解法. 记 $\alpha = \frac{\pi}{4}$, 则

$$egin{aligned} & \mathsf{u}_1 = \sqrt{2} = 2 \mathsf{cos} lpha, \ & \mathsf{u}_2 = \sqrt{2 + \mathsf{u}_1} = 2 \sqrt{rac{1}{2}(1 + \mathsf{cos} lpha)} = 2 \mathsf{cos} rac{lpha}{2}, \ & \cdots, \quad \mathsf{u}_\mathsf{n} = 2 \mathsf{cos} rac{lpha}{2^\mathsf{n} - 1} o 2. \end{aligned}$$
 再记 $\mathsf{v}_1 = \mathsf{u}_1 = \sqrt{2} = 2 \mathsf{cos} lpha = 2 \mathsf{sin} lpha,$ 则 $\mathsf{v}_2 = \sqrt{2 - \mathsf{u}_1} = \sqrt{2 - 2 \mathsf{cos} lpha} = 2 \sqrt{rac{1}{2}(1 - \mathsf{cos} lpha)} = 2 \mathsf{sin} rac{lpha}{2}$

艾克热木同学的证明, 续

由归纳法不难证明

$$\begin{split} \mathbf{v}_{\mathsf{n}+1} &= \sqrt{2 - \mathsf{u}_{\mathsf{n}}} = \sqrt{2(1 - \mathsf{cos}\frac{\alpha}{2^{\mathsf{n}-1}})} \\ &= 2\sqrt{\frac{1}{2}(1 - \mathsf{cos}\frac{\alpha}{2^{\mathsf{n}-1}})} = 2\mathsf{sin}\frac{\alpha}{2^{\mathsf{n}}}, \quad \forall \mathsf{n} \geq 1. \end{split}$$

由于

$$\frac{v_n}{\frac{\alpha}{2^n}} = \frac{2sin\frac{\alpha}{2^{n-1}}}{\frac{\alpha}{2^n}} = \frac{4sin\frac{\alpha}{2^{n-1}}}{\frac{\alpha}{2^{n-1}}} \to 4,$$

且正项级数 $\sum_{n\geq 1} \frac{\alpha}{2^n}$ 显然收敛,根据比较判别法的极限形式可知,级数 $\sum_{n\geq 1} \mathbf{v}_n$ 收敛. 证毕.

习题三

习题三 (课本第258页习题5.3题10, 土木97李洛琪推荐): 讨论 p 为何值时, 级数

$$\sum_{n\geq 1}\frac{\sin n}{n^p+\sin n}$$

绝对收敛,条件收敛和发散,

解: 记 $u_n = \frac{\sin n}{nP + \sin n}$. 显然当 $p \le 0$ 时, 级数发散, 因为一般项 不趋向于零. 设p>0. 将un 写作如下形式

$$\begin{split} u_n &= \frac{\sin n}{n^p + \sin n} = \frac{\sin n}{n^p} \left(1 + \frac{\sin n}{n^p} \right)^{-1} \\ &= \frac{\sin n}{n^p} \left(1 - \frac{\sin n}{n^p} + O(\frac{1}{n^{2p}}) \right) \end{split}$$

习题三,续一

$$\Rightarrow \quad u_n = \frac{\sin n}{n^p} - \frac{\sin^2 n}{n^{2p}} \left(1 + O(\frac{1}{n^p}) \right). \quad (*)$$

- (i) 情形 $0 . 由于级数 <math>\sum \frac{\sin n}{n^p}$ 对任意 p > 0 均收致 (D 判别法),且易证 $\sum \frac{\sin^2 n}{n^{2p}}$ 发散. (证明方法与证明 $\sum \frac{\cos^2 n}{n}$ 发散 类似. 参见 May09讲义第42页.) 从而级数 $\sum \frac{\sin^2 n}{n^{2p}} \left(1 + O(\frac{1}{n^p})\right)$ 发散(比较判别法). 因此级数 $\sum_{n \ge 1} u_n$ 当 0 时发散.
- (ii) 情形 $1/2 . 此时级数 <math>\sum \frac{\sin n}{n^p}$ 条件收敛, 正项级数 $\sum \frac{\sin^2 n}{n^{2p}}$ 绝对收敛, 从而级数 $\sum \frac{\sin^2 n}{n^{2p}} \left(1 + O(\frac{1}{n^p})\right)$ 绝对收敛(比较判别法). 再根据等式(*)知级数 $\sum_{n \ge 1} u_n$ 当 1/2 时条件收敛.

习题三, 续二

(iii) 情形 p>1. 显然此时级数 $\sum_{n\geq 1} \frac{\sin n}{n^p+\sin n}$ 绝对收敛. 解答完毕.

习题四

<u>习题四</u> (法93严君啸推荐并提供了如下两个解答):求级数

$$\frac{1}{1} - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \frac{1}{8} + \cdots$$

$$+ \frac{1}{4k+1} - \frac{1}{4k+2} - \frac{1}{4k+3} + \frac{1}{4k+4} + \cdots,$$

的和, 级数的排列规则如下, 顺序按 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, \cdots 的顺序, 符号 按 +, -, -, +, 不断循环.

解法一:利用已知结论

$$\sum_{k>1} \frac{\sin kx}{k} = \frac{\pi-x}{2}, \quad \forall x \in (0,2\pi),$$

习题四,续一

取 $x = \frac{\pi}{2}$ 即得

$$\sum_{k \ge 1} \frac{\sin k\pi/2}{k} = \frac{\pi - \frac{\pi}{2}}{2} = \frac{\pi}{4}.$$

左边级数可写作

$$\sum_{k\geq 1} \frac{\sin k\pi/2}{k} = \sum_{k\geq 0} \frac{\sin (k\pi + \pi/2)}{2k+1} = \sum_{k\geq 1} \frac{(-1)^k}{2k+1}$$
$$= \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

由此得如下著名的级数之和

习题四,续二

$$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}. \quad (*)$$

再回忆一个已知结论

$$\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2,$$

$$\Rightarrow \quad \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2} \ln 2. \quad (**)$$

由级数(*)减级数(**)得

$$\frac{1}{1} - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \frac{1}{8} + \dots = \frac{\pi}{4} - \frac{1}{2} \ln 2.$$

习题四,续三

解法二: 考虑幂级数

$$\sum_{n\geq 1} \frac{(-1)^{n-1}x^{2n}}{2n(2n-1)},$$

其和函数记作 S(x). 易求得其收敛半径为 1, 收敛域为 [-1,1]. 显然这个幂级数在 [-1,1] 上一致收敛. 根据连续性守恒定理 知 S(x) 在 [-1,1] 上连续. 以下我们来求 S(x). 对等式

$$S(x) = \sum_{n \ge 1} \frac{(-1)^{n-1} x^{2n}}{2n(2n-1)}$$

两边两次求导得

习题四,续四

$$\begin{split} S'(\textbf{x}) &= \sum_{n \geq 1} \frac{(-1)^{n-1} \textbf{x}^{2n-1}}{2n-1}, \\ S''(\textbf{x}) &= \sum_{n \geq 1} (-1)^{n-1} \textbf{x}^{2n-2} = \frac{1}{1+\textbf{x}^2}. \\ &\Rightarrow \quad S'(\textbf{x}) = \arctan \textbf{x} + \textbf{C}_1. \end{split}$$

注意到
$$\mathsf{S}'(0)=0$$
,故 $\mathsf{C}_1=0$,从而 $\mathsf{S}'(\mathsf{x})=\mathsf{arctan}\,\mathsf{x}$.同理由 $\mathsf{S}(0)=0$ 可知

$$S(x) = \int_0^x \arctan t dt = t \arctan t \Big|_0^x - \int_0^x \frac{t dt}{1 + t^2}$$

习题四,续五

$$= x \arctan x - \frac{1}{2} \ln (1 + x^2), \quad \forall x \in [-1, 1].$$

 $\mathbf{P} \mathbf{x} = \mathbf{1}$

$$\mathsf{S}(1) = \arctan 1 - \frac{1}{2} \ln 2 = \frac{\pi}{4} - \frac{1}{2} \ln 2,$$

$$\lim_{n > 1} \frac{(-1)^{n-1}}{2n(2n-1)} = \frac{\pi}{4} - \frac{1}{2} \ln 2.$$

注意
$$\frac{1}{2n(2n-1)} = \frac{1}{2n-1} - \frac{1}{2n}$$
, 故

$$\sum_{n\geq 1} (-1)^{n-1} \left(\frac{1}{2n-1} - \frac{1}{2n} \right) = \left(\frac{1}{1} - \frac{1}{2} \right) - \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) - \left(\frac{1}{7} - \frac{1}{8} \right) + \dots = \frac{\pi}{4} - \frac{1}{2} \ln 2$$

习题四,续六

不难证明上述等式左边级数的括号可以去掉(见下注),因此我们就证明了

$$\frac{1}{1} - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \frac{1}{8} + \dots = \frac{\pi}{4} - \frac{1}{2} \ln 2.$$

 \underline{i} : 不难证明, 若两个级数 $\sum a_n$ 和 $\sum b_n$ 均收敛, 且收敛于 A 和 B, 则级数

$$a_1 + b_1 + a_2 + b_2 + a_3 + b_3 + \cdots$$
 (*)

收敛, 且收敛于 A+B. 记级数(*)为 $\sum c_n$, 记级数 $\sum a_n$, $\sum b_n$ 和 $\sum c_n$ 的前 n 项部分和为 A_n , B_n 和 C_n , 则显然

习题四,续七

$$C_{2n} = A_n + B_n \rightarrow A + B,$$

$$C_{2n+1} = A_n + B_n + a_{n+1} \rightarrow A + B.$$

因此 $C_n \to A + B$. 命题得证.

习题五, Dini 定理

Theorem

Dini 定理级数版: 假设

- (i) 函数 $u_k(x)$ 在 [a,b] 上连续且 $u_k(x) \geq 0$, $x \in [a,b]$, $\forall k \geq 1$;
- (ii) 级数 $\sum_{k\geq 1} u_k(x)$ 在 [a,b] 上处处收敛, 其和函数记作 S(x);
- (iii) 函数 S(x) 在 [a,b] 上连续,

则函数级数 $\sum_{k>1} u_k(x)$ 在 [a,b] 上一致收敛.

Dini 定理序列版

Theorem

Dini 定理序列版:设

- (i) 函数 $f_n(x)$ 在闭区间 [a,b] 上连续, 且函数列 $\{f_n(x)\}$ 收敛;
- (ii) 极限函数 $f(x) \stackrel{\triangle}{=} \lim_{n \to +\infty} f_n(x)$ 在 [a,b] 上连续;
- (iii) 对每个 $x \in [a,b]$, 序列 $\{f_n(x)\}$ 为单调的,

则函数列 $\{f_n(x)\}$ 在闭区间 [a,b] 上一致收敛.

(法93严君啸推荐)

Dini 定理证明

Dini 定理序列版的证明: 不妨设函数列 $\{f_n(x)\}$ 单调下降,且极限函数 $f(x)\equiv 0$. 若不然考虑函数列 $\{f_n(x)-f(x)\}$ 即可.以下我们来证明 $f_n(x)\Rightarrow 0$ on [a,b], 即对于任意 $\varepsilon>0$, 存在正整数 $N=N(\varepsilon)$, 使得 $0\leq f_n(x)<\varepsilon$, $\forall x\in [a,b]$, $\forall n\geq N$. 反证. 若不然,则存在 $\varepsilon_0>0$,对任意j,存在 $m_j\geq j$,以及存在点 $x_j\in [a,b]$,使得 $f_{m_j}(x_j)\geq \varepsilon_0$. 由假设 $f_n(x)$ 单调下降,故

$$f_j(x_j) \geq f_{m_j}(x_j) \geq \varepsilon_0.$$

根据 Bolzano-Weierstrass 定理知有界序列 $\{x_j\}$ 存在收敛子列 $\{x_{j_n}\}$. 设 $x_{j_n} \to x^* \in [a,b]$, $n \to +\infty$.

Dini 定理证明, 续一

对任意正整数 m, 由于 $j_n\to +\infty$, $n\to +\infty$, 故当 n 充分大时, $j_n>m$. 于是由函数列 $\{f_m(x)\}$ 的单调下降性质得

$$f_m(x_{j_n}) \geq f_{j_n}(x_{j_n}) \geq \varepsilon_0.$$

于不等式 $f_m(x_{j_n}) \ge \varepsilon_0$ 中,令 $n \to +\infty$ 即得 $f_m(x^*) \ge \varepsilon_0 > 0$, $\forall m$. 此与假设 $\lim_{m \to +\infty} f_m(x^*) = 0$ 相矛盾. 定理得证.

复习, 闭集的一个充要条件

Lemma

<u>引理</u>:设D \subset IRⁿ为一个子集,则D为闭集,当且仅当D包含它的每个收敛点列的极限,即若点列 $\{x_k\}\subset$ D收敛,且 $x_k\to x^*$.则 $x^*\in$ D.

有界闭集上连续函数的性质

Theorem

设 D ⊂ IRⁿ 为有界闭集, f(z) 是定义在 D 上的连续函数, 则

- (i)(有界性) 存在 M > 0, 使得 $|f(z)| \leq M$, $\forall z \in D$;
- (ii)(最值性) 存在 $z_1, z_2 \in D$, 使得 $f(z_1) \le f(z) \le f(z_2)$, $\forall z \in$
- D, 换言之, 连续函数 f(z) 在有界闭集 D 上, 分别在点 z_1 和 z_2 处取得最小值和最大值.

连续可微, 可微, 偏导存在性与连续之关系

偏导数连续性 ⇒ 可微性 ⇒ 连续性 ↓ 偏导存在性

行列式求导规则

定理: 设 $a_{ii} = a_{ii}(t)$ 可导, $t \in J$, $i, j = 1, 2, \dots, n$, 则行列式 $det[a_{ii}(t)]$ 可按行或按列求导. 以 n = 3 为例, $(det[a_{ii}])' =$

$$\begin{vmatrix} a'_{11} & a'_{12} & a'_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a'_{21} & a'_{22} & a'_{23} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a'_{21} & a'_{22} & a'_{23} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a'_{21} & a'_{22} & a'_{23} \\ a'_{31} & a'_{31} & a'_{33} \end{vmatrix}$$

或者 (det[aii])' =

$$\begin{vmatrix} a_{11}' & a_{12} & a_{13} \\ a_{21}' & a_{22} & a_{23} \\ a_{31}' & a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12}' & a_{13} \\ a_{21} & a_{22}' & a_{23} \\ a_{31} & a_{31}' & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13}' \\ a_{21} & a_{22} & a_{23}' \\ a_{31} & a_{31}' & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13}' \\ a_{21} & a_{22} & a_{23}' \\ a_{31} & a_{31} & a_{33}' \end{vmatrix} .$$

行列式的偏导数公式

Lemma

行列式函数 $\det: {\rm IR}^{n^2} \to {\rm IR}, \, A = [a_{ij}] \in {\rm IR}^{n^2} \mapsto \det A$ 的偏导数由下式给出

$$\frac{\partial}{\partial a_{ij}}\det \mathbf{A} = \mathbf{A}_{ij}, \quad i,j=1,2,\cdot\cdot\cdot,n, \quad (*)$$

其中 A_{ij} 表示行列式 det A 的元素 a_{ij} 所对应的代数余子式.

隐函数定理 (the Implicit Function Theorems, IFT)

定理 (二维情形): 设二元函数 F(x,y) 在平面开集 $D \subset IR^2$ 上是 C^1 的. 假设 $F(x_0,y_0)=0$, $(x_0,y_0)\in D$ 且 $F_y(x_0,y_0)\neq 0$, 则 存在唯一的(隐) 函数 $f\colon J_\alpha\to J'_\beta$, 其中 $J_\alpha\stackrel{\triangle}{=}(x_0-\alpha,x_0+\alpha)$, $J'_\beta\stackrel{\triangle}{=}(y_0-\beta,y_0+\beta)$, 使得

- (i) $y_0 = f(x_0)$, $F(x, f(x)) \equiv 0$, $\forall x \in J_\alpha$;
- (ii) 对于 $(x,y) \in J_{\alpha} \times J'_{\beta}$, F(x,y) = 0 当且仅当 y = f(x),
- (iii) 隐函数 f(x) 是 C^1 的, 且

$$f'(x) = -\frac{F_x(x,y)}{F_y(x,y)}\bigg|_{y=f(x)}, \quad \forall x \in J_\alpha.$$

