# DATA MINING

Regression with panel data



#### 1 TOOLS





#### 1.1 BACKGROUND

- Linear Regression:
  - For every linear model:  $Y_i = \alpha + \beta * X_i + U_I$
  - Goal: estimate a model that best fits the true model  $\hat{\alpha}$ ,  $\hat{\beta}$
- Methodology: OLS(Ordinary Least Squares)
  - To minimize the sum of the squares residuals:
    - $min \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$
    - Where  $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} * X_i$



### 2 METHODOLOGY

- 2.1 Linear Regression
- 2.1 Non-linear Regression



#### 2.1 LINEAR REGRESSION

- The Fixed Effects Model
  - GDP<sub>i, t</sub> =  $\alpha + \beta_i * X_{i, t} + \Theta_t + U_{i, t}$
- The Radom Effects Model
  - GDP<sub>i, t</sub> =  $\alpha$  +  $\beta$ <sub>i</sub> \* X<sub>i, t</sub> + y<sub>t</sub> \* E<sub>t</sub> + U<sub>i, t</sub>

 $\triangleright$ Where X is repressor, i is county, t is year,  $\Theta$  is the fixed effects over years, E is dummy variable of the year.



# FIXED VS RANDOM

|        | Pro                                                                | Con                                                                               |
|--------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Fixed  | Can only see the time effect within-year                           | No assumption needs                                                               |
| Random | Efficient Clearly see the time effect between-year and within-year | We need to assume there is<br>no correlation between time<br>effect and regressor |



#### FIXED OR RANDOW?

- Hausman test
  - $H_0$ :no correlation between regressor and time effect or  $cov(X_i, X_{i,t}) = 0$
  - Under H<sub>0</sub>: Random effects model is consistent and efficient, while fixed effects model is consistent but not efficient
  - Reject H<sub>0</sub>: Random effects model is not consistent, but fixed effects model is still consistent



## 2.2 NON-LINEAR REGRESSION

• Log(GDP<sub>i,t</sub>) =  $\alpha + \beta_i * \text{Log}(X_{i,t})$ 



#### 3 RESULT

- Coefficient of determination:
  - Linear regression: 98.68%
  - Non-linear regression: 96.74%
- Final model:
  - Linear regression with panel data using fixed effect

```
GDP_{i, t} = 1.85*10^{11} - 1.8*10^{11}*CO2 emission + 2.39* foreign investment + 238.13* labor force + 3.22*10^{7}* technical articles
```

