II. kolo kategorie Z7

Z7-II-1

Na kartě je napsáno čtyřmístné přirozené číslo, ve kterém můžeme vyškrtnout jakékoli dvě číslice a vždy dostaneme dvojmístné přirozené číslo, jež je beze zbytku dělitelné číslem 5. Kolik takových čtyřmístných přirozených čísel existuje? (Pozor, např. číslo 06 není dvojmístné.)

(L. Šimůnek)

Možné řešení. Číslice vyhovujícího čtyřmístného čísla označíme takto: v je na místě tisíců, x na místě stovek, y na místě desítek a z na místě jednotek. Přirozené číslo je dělitelné pěti, právě když má na místě jednotek číslici 0 nebo 5. Po vyškrtnutí dvou číslic z původního čísla se na místo jednotek mohou dostat číslice x, y nebo z, proto tyto číslice mohou být jedině 0 nebo 5. Podle zadání dostaneme po vyškrtnutí jakýchkoli dvou číslic dvojmístné číslo. Takto vzniklé číslo může mít na místě desítek číslice v, x nebo y, tyto číslice tedy nemohou být 0.

Shrneme-li oba předchozí poznatky, může být číslice v rovna jakékoli číslici od 1 do 9, číslice x a y mohou být jedině 5 a číslice z může být 0 nebo 5. Dohromady tak existuje $9 \cdot 2 = 18$ čtyřmístných čísel vyhovujících zadání.

Hodnocení. 1 bod za poznatek, že po škrtání se na místo jednotek dostávají číslice x, y, z; 1 bod za podmínku $v, x, y \neq 0; 1$ bod za zjištění, že x a y je 5; 1 bod za poznatek, že z je 0 nebo 5; 1 bod za počet možností pro číslici v; 1 bod za výsledek 18.

Žáka ohodnoťte plným počtem bodů, i když stanoví podmínky a pak dojde k počtu 18 vypsáním všech vyhovujících čísel. Řešení, v němž jsou vypsány všechny možnosti bez jakéhokoli komentáře, ohodnoťte nejvýše 4 body.

Z7–II–2

Karel a Vojta zjistili, že kuchyňské hodiny na chalupě se předbíhají o 1,5 minuty za každou hodinu a hodiny v ložnici se o půl minuty každou hodinu zpožďují. V pravé poledne seřídili hodiny na stejný a správný čas. Hodiny v kuchyni i v ložnici mají obvyklý dvanáctihodinový ciferník. Urči, kdy nejdříve budou (bez dalšího opravování)

- 1. kuchyňské hodiny ukazovat opět přesný čas,
- 2. hodiny v ložnici ukazovat opět přesný čas,
- 3. oboje hodiny ukazovat opět stejný (i když možná nesprávný) čas.

(M. Volfová)

Možné řešení. 1. Hodiny budou ukazovat opět přesný čas, když předběhnou skutečný čas o 12, 24, 36, . . . hodin. Nejdříve tedy, když předběhnou skutečný čas o 12 hodin neboli o 720 minut. Toho dosáhnou za 720 : 1,5 = 480 hodin. Kuchyňské hodiny budou opět ukazovat přesný čas nejdříve za 480 hodin (což je právě 20 dnů).

- 2. Nejdříve budou hodiny ukazovat opět přesný čas, když se oproti skutečnému času opozdí o 12 hodin neboli o 720 minut. Toho dosáhnou za 720:0.5=1440 hodin. Hodiny v ložnici budou opět ukazovat přesný čas nejdříve za 1440 hodin (což je právě 60 dnů).
- 3. Každou hodinu se rozdíl času, který ukazují kuchyňské hodiny, oproti času, který ukazují hodiny v ložnici, zvýší o 1,5+0,5=2 minuty. Tento rozdíl musí postupně dosáhnout 720 minut, a to se stane za 720:2=360 hodin. Hodiny budou opět ukazovat stejný čas nejdříve za 360 hodin (což je právě 15 dnů).

Hodnocení. Každá část úlohy je za 2 body, z nichž je vždy 1 bod za zdůvodnění.

Z7-II-3

V trojúhelníku ABC označíme středy stran CB a CA písmeny K a L. Víme, že čtyřúhelník ABKL má obvod $10\,\mathrm{cm}$ a trojúhelník KLC má obvod $6\,\mathrm{cm}$. Vypočítej délku úsečky KL. $(J.\ Mazák)$

Možné řešení. Úsečka KL je v trojúhelníku ABC střední příčkou rovnoběžnou s AB, neboť K a L jsou středy stran BC a AC. Platí tedy 2|KL| = |AB| a také víme, že |AL| = |LC| a |CK| = |KB|.

Obvod trojúhelníku KLC je |CK| + |KL| + |LC| = 6. Obvod čtyřúhelníku ABKL je

$$|AB| + |BK| + |KL| + |LA| = 10.$$

Součet na levé straně právě zmíněné rovnosti můžeme podle předchozích pozorování vyjádřit jako 2|KL|+(|CK|+|KL|+|LC|), neboli 2|KL|+6. Zmíněná rovnost tak získává tvar

$$2|KL| + 6 = 10,$$

odkud dostáváme 2|KL| = 4, tj. |KL| = 2 (cm).

Hodnocení. 2 body za zjištění a zdůvodnění, že |AB| = 2|KL|; 2 body za úvahy o obvodech; 2 body za výpočet |KL|.