

Orange Pi Lite 2 用户手册

History

Ver	Data	Author	Brief	Publish	Memo
1.0	2018-05-07	Leeboby	创建文档		
1.1	2019-7-10	Leeboby	更新音频操作说明		
1.2	2019-12-16	Leeboby			

目录

_,	Orange Pi Lite 2 的基本特性	I
	1. 什么是 Orange Pi Lite 2	1
	2. Orange Pi Lite 2 的用途	1
	3. Orange Pi Lite 2 是为谁设计的	1
	4. Orange Pi Lite 2 的硬件特性	3
	5. GPIO 规格	4
二、	开发板使用说明	5
	1. 准备硬件与软件工具	5
	2. 开发板的供电方式	5
三、	Android 编译环境搭建	6
	1. 获取 SDK 源码压缩包	6
	2. 搭建编译环境	6
	3. 编译 SDK 源码	7
四、	Linux 编译环境搭建	10
	1. 从 Github 获取 Linux SDK 的源码	10
	2. 从百度云盘获取 Linux SDK 的源码	12
	3. 搭建编译环境	12
	4. 编译 Linux 和 U-boot 源码	12
	5. Linux SDK 使用示例	14
五、	Android 固件烧录	18
	1. Android 固件烧录步骤	18
六、	Linux 固件烧录	20
	1. Etcher 的安装方式	20
	2. 通过 Etcher 烧录 Linux 固件的方法	21
七、	Linux 系统的使用说明	22
	1. Linux 启动亮灯情况说明	22
	2. 登录账号和密码	22
	3. 扩展 rootfs 分区	22
	4. 录音放音测试方法	23
	5. WIFI 的配置方法	23
八、	串口调试工具介绍	24

1.	基于 Windows 平台的使用	25
2.	基于 Linux 平台的使用	29

一、 Orange Pi Lite 2 的基本特性

1. 什么是 Orange Pi Lite 2

香橙派是一款开源的单板卡片电脑,新一代的 arm64 开发板,它可以运行 Android 7.0、Ubuntu 和 Debian 等操作系统。香橙派单板电脑使用全志 H6 系统级芯片,同时拥有 1GB LPDDR3 内存。

2. Orange Pi Lite 2 的用途

我们可以用它搭建:

- 一台计算机
- 一个网络服务器
- 游戏机
- 高清视频播放器
- 扬声器
- Android
-

还有其他更多的功能,因为Orange Pi Lite 2是开源的。

3. Orange Pi Lite 2 是为谁设计的

Orange Pi Lite 2 不仅仅是一款消费品,同时也是给任何想用技术进行创作创新的人设计的。它是一款非常简单、有趣、实用的工具,你可以用它去打造你身边的世界。

www.orangepi.cn 1 www.xunlong.tv

底层视图

www.orangepi.cn 2 www.xunlong.tv

4. Orange Pi Lite 2 的硬件特性

硬件特性介绍			
CPU	高性能全志 H6 芯片, 4 核 64 位 Cortex-A53		
GPU	高性能多核 GPU Mali T720		
内存	1GB LPDDR3(与 GPU 共享)		
板载存储	TF 卡 (最大 32GB)		
板载 WIFI+BT	AP6255, IEEE 802.11 AC/b/g/n/, BT4.1		
音频输入 MIC			
音频输出 HDMI			
视频输入 具有 CSI 接口的摄像头模块			
视频输出 HDMI 2.0a			
电源 DC 输入, MicroUSB (OTG)可以用作电源			
USB 2.0 端口 1个 USB 2.0 HOST, 1个 USB 2.0 OT			
USB 3.0 端口	1个 USB 3.0 HOST		
底层设备 40 pin 接头			
GPIO(1x3) □ UART, ground.			
LED 灯 电源指示灯和状态指示灯			
按键 电源(K1)			
支持的操作系统	Android、Ubuntu 和 Debian 等操作系统		
外观规格介绍			
产品尺寸	68mm × 48mm		
重量	31.5 克		
OrangePi	OrangePi™是深圳市迅龙软件有限公司的注册商标		

www.orangepi.cn 3 www.xunlong.tv

5. GPIO 规格

下图是香橙派 Lite 2 的 GPIO 引脚功能图:

Orange Pi Lite 2 引脚对应表格 CON12-P01 VCC-3.3V VCC-IO			
CON12-P02	VCC-5V	DCIN	
CON12-P03	TWI1-SDA	PH06	
CON12-P04	VCC-5V	DCIN	
CON12-P05	TWI1-SCK	PH05	
CON12-P06	GND	GND	
CON12-P07	PWM1	PH04	
C0N12-P08	PD21	PD21	
CON12-P09	GND	GND	
CON12-P10	PD22	PD22	
CON12-P11	UART3_RX	PD24	
CON12-P12	PC09	PC09	
CON12-P13	UART3_TX	PD23	
CON12-P14	GND	GND	
CON12-P15	UART3_CTS	PD26	
CON12-P16	PC08	PC08	
CON12-P17	VCC-3V3	VCC-IC	
CON12-P18	PC07	PC07	
CON12-P19	SPIO_MOSI	PC02	
C0N12-P20	GND	GND	
C0N12-P21	SPIO_MISO	PC03	
C0N12-P22	UART3_RTS	PD25	
C0N12-P23	SPIO_CLK	PC00	
C0N12-P24	SPIO_CSO	PC05	
C0N12-P25	GND	GND	
CON12-P26	PH03	PH03	

www.orangepi.cn 4 www.xunlong.tv

二、开发板使用说明

1. 准备硬件与软件工具

硬件需求:

- Orange Pi Lite 2 开发板
- TF 卡,最小 8GB 容量, class 10 级,建议使用品牌 TF 卡,如:闪迪 16G TF 卡
- 一台编译用的主机,配置最好满足以下条件:

64 位 CPU

8 GB 及以上内存

100GB 以上的空闲磁盘空间

操作系统最好为 Ubuntu14.04 (用于编译 Android 源码) Ubuntu18.04 (用于编译 Linux 源码)

软件需求:

- Orange Pi Lite 2 SDK
- Orange Pi Lite 2 固件
- Android 和 Linux 烧录工具

以上软件可以通过 Github、Mega 网盘和百度云盘获取,详情参见中英文官网:

http://www.orangepi.org/downloadresources/ http://www.orangepi.cn/downloadresourcescn/

2. 开发板的供电方式

开发板的供电方式有两种:

- DC (5V 2A) 供电: 插入 DC 适配器后即可开机。
- Micro USB (5V 2A) OTG 供电: 插入 Micro USB 适配器后即可开机。

三、 Android 编译环境搭建

以下的操作都是在安装有 Ubuntu 14.04 的 PC 上进行的, 其它版本的 Ubuntu 系统或者 Linux 发行版可能会有一些区别。

1. 获取 SDK 源码压缩包

Android 源码包下载完后,首先需要将多个压缩文件合并成一个,然后进行解压。

```
$ mkdir OrangePi Lite2
```

- \$ cat H6-2018-1-2.tar.gza* > OrangePi Lite2.tar
- \$ tar xf OrangePi Lite2.tar -C OrangePi Lite2

2. 搭建编译环境

● 安装 JDK

Android 7.0 开发只能使用 openjdk8 的版本,高于或低于此版本以及 oracle 的 JDK 都会导致编译失败。Openjdk-8 的安装命令如下:

```
$ sudo add-apt-repository ppa:openjdk-r/ppa
```

- \$ sudo apt-get update
- \$ sudo apt-get install openjdk-8-jdk

● 配置 JAVA 环境变量

比如安装路径为 /usr/lib/jvm/java-8-openjdk-amd64, 可以在终端执行如下命令配置环境变量

- \$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
- \$ export PATH=\$JAVA HOME/bin:\$PATH
- \$ export CLASSPATH=.:\$JAVA HOME/lib:\$JAVA HOME/lib/tools.jar

www.orangepi.cn 6 www.xunlong.tv

● 安装平台支持软件

对于 Ubuntu14.04:

```
$ sudo apt-get update
$ sudo apt-get install git gnupg flex bison gperf build-essential \
zip curl zlib1g-dev gcc-multilib g++-multilib libc6-dev-i386 \
lib32ncurses5-dev x11proto-core-dev libx11-dev lib32z1-dev ccache \
libg11-mesa-dev libxm12-utils xs1tproc unzip
$ sudo apt-get install u-boot-tools
```

3. 编译 SDK 源码

SDK 解压后,解压的目录下会有 andorid 和 lichee 两个子目录, lichee 目录主要内容如下:

```
lichee/brandy/u-boot-2014.07#uboot 代码目录lichee/bootloader/uboot_2014_sunxi_spl#boot0 代码目录lichee/linux-3.10#内核代码lichee/tools#方案硬件配置,打包工具等
```

● 内核编译流程

在 lichee 目录下输入以下命令:

\$ cd OrangePi_Lite2/lichee

```
$ ./build.sh config
Welcome to mkscript setup progress
All available chips:
```

- 0. sun50iw1p1
- 1. sun50iw2p1
- 2. sun50iw6p1
- 3. sun8iw11p1
- 4. sun8iw12p1
- 5. sun8iw6p1

6. sun8iw7p1

7. sun8iw8p1

8. sun9iw1p1

Choice: 2

All available platforms:

0. android

1. dragonboard

2. linux

3. eyeseelinux

Choice: 0

All available business:

0. 5. 1

1. 4.4

2. 7. x

Choice: 2

编译成功后输出内容如下:

内核代码在 lichee/linux-3.10 目录,执行上述命令在编译前会自动将配置文件从 lichee/linux-3.10/arch/arm64/configs/sun50iw6p1smp_android_7.x_defconfig 拷贝到 lichee/linux-3.10/.config 作为默认配置,下次编译时可以直接在 lichee 目录下运行 ./build.sh,将继续采用上一次的 .config 配置。

● uboot/boot0 编译流程(可选)

通常情况下无需重新编译 uboot, 但如果对 uboot 有定制修改可以编译,编译方法如下:

```
cd lichee/brandy/u-boot-2014.07
make distclean && make sun50iw6p1_config && make -j5 #编译 uboot
cd lichee/brandy/u-boot-2014.07
make distclean && make sun50iw6p1_config && make spl #编译 boot0
```

如果没有编译 uboot/boot0 的话,默认是采用 lichee/tools/pack/chips/sun50iw6p1/bin 已经预编译好的结果,采用上述命令重编译后,将会自动替换掉上述文件。

● Android 代码编译流程

```
$ cd android
$ source ./build/envsetup.sh
$ lunch petrel_fvd_p1-eng
$ extract-bsp
$ make -j8 && pack
```

其中 pack 命令是打包生成固件,如果编译打包过程都顺利通过,会提示下面的信息:

```
Dragon execute image.cfg SUCCESS!
-----image is at-----
OrangePi_Lite2/lichee/tools/pack/sun50iw6p1_android_petrel-p1_uart0.img
pack finish
```

根据提示,可以在 OrangePi_Lite2/lichee/tools/pack/ 目录下看到生成的安卓固件 sun50iw6p1_android_petrel-p1_uart0.img,下面,请参照 《Android 固件烧录》部分 完成安卓固件的烧录。

www.orangepi.cn 9 www.xunlong.tv

四、 Linux 编译环境搭建

1. 从 Github 获取 Linux SDK 的源码

● Orange Pi Linux 源码下载器

Orange Pi lite2 的 Linux 源码已经上传到 GitHub,目前支持的内核版本为 Linux 4.9 和主线内核(部分驱动还在开发中),我们可以使用 Orange Pi Linux 源码专用的下载器进行下载,获取下载器源码的方式如下所示:

```
$ sudo apt-get install git
$ git clone https://github.com/orangepi-xunlong/OrangePi_Build.git
$ cd OrangePi_Build
$ ls
Build_OrangePi.sh lib README.md
```

● 运行下载器

\$./Build_OrangePi.sh

输入 root 密码, 然后回车

选择 O Build system with uboot/kernel/rootfs/image 进入开发板型号选择的界面

选择 orange pi lite2, 回车后进入内核版本的选择界面

```
12 Orange Pi Win
13 Orange Pi Win plus
14 Orange Pi 3
15 Orange Pi Lite2
16 Orange Pi One Plus
17 Orange Pi 4
18 Orange Pi RK3399
```

目前 orangepi lite2 开发板支持 Linux 4.9 和 mainline 两个版本的内核代码,选择 其中一个后回车就会开始下载对应的 SDK 源码

下载的源码会存放在 OrangePi_Build 的同级目录下

```
$ ls ../OrangePi_Build -1
OrangePi_Build
OrangePiH6_Linux4.9 (其中内核版本为 Linux4.9)
OrangePiH6_mainline (目前内核版本为 Linux5.3.5)
```


2. 从百度云盘获取 Linux SDK 的源码

如果 GitHub 下载代码失败,可以从百度云盘直接下载 Linux SDK 的源码压缩包。下载链接为:

https://pan.baidu.com/s/15NOF_eAwbN9ah3dfWx0ArQ

3. 搭建编译环境

Orange Pi H6 Linux SDK 目前只在 **ubuntu 18.04** 的 PC 中测试过。使用前请先准备好 **ubuntu 18.04** 的主机环境。

Orange Pi H6 的 Linux 源码目录结构如下所示:

\$ cd OrangePiH6_Linux4.9 \$ tree -L 1				
build.sh -> scripts/build.s	编译启动脚本 存放额外的配置文件 Linux 内核源码 存放输出文件,编译源码后才会生成 编译过程使用的脚本文件 内核和 u-boot 使用的交叉编译工具链 存放 boot0 和 u-boot 的源码			
6 directories, 1 file				

4. 编译 Linux 和 U-boot 源码

● 执行编译启动脚本

```
$ cd OrangePiH6_Linux4.9
$ sudo ./build.sh
```

选择 orangepi lite2 并回车

Orange Pi Build System
Welcome to Orange Pi Build System. Pls choose Platform.

O OrangePi 3

1 OrangePi Lite2
2 OrangePi OnePlus
3 OrangePi Zero2

其中各选项的功能如下:

- 0 Build Release Image —— 编译 ubuntu 或 debian 的发行版镜像
- 1 Build Rootfs —— 编译 ubuntu 或 debian 的 rootfs
- 2 Build Uboot —— 编译 boot0 和 u-boot 的源码
- 3 Build Linux —— 编译 Linux 内核源码
- 4 Build Module only —— 编译 Linux 内核模块
- 5 Update kernel Image —— 更新 SD 卡 Linux 系统中的内核
- 6 Update Module —— 更新 SD 卡 Linux 系统中的内核模块
- 7 Update Uboot —— 更新 SD 卡 Linux 系统的 boot0 和 u-boot 以及 dtb 的配置

编译生成的最终文件会保存在 output 目录下

5. Linux SDK 使用示例

下面将以在内核源码中新增一个 rtl8812AU USB WIFI 内核模块的方式完整的演示下 Linux SDK 的使用方法。

● 从 github 获取 rtl8812AU 的源码

```
$ cd OrangePiH6_Linux4.9/kernel/drivers/net/wireless
$ git clone https://github.com/diederikdehaas/rt18812AU.git
Cloning into 'rt18812AU'...
remote: Counting objects: 2347, done.
Receiving objects: 100% (2347/2347), 7.87 MiB | 22.00 KiB/s, done.
Resolving deltas: 100% (1292/1292), done.
Checking connectivity... done.
```

● 添加 rtl8812AU 的配置

```
$ cd OrangePiH6_Linux4.9/kernel/drivers/net/wireless
$ git diff .
diff --git a/drivers/net/wireless/Kconfig b/drivers/net/wireless/Kconfig
index 373666b..b7ebd5c 100755
--- a/drivers/net/wireless/Kconfig
+++ b/drivers/net/wireless/Kconfig
@@ -294, 4 +294, 5 @@ source "drivers/net/wireless/rt18192eu/Kconfig"
```



```
+source "drivers/net/wireless/rt18812AU/Kconfig"
endif # WLAN

diff --git a/drivers/net/wireless/Makefile
b/drivers/net/wireless/Makefile
index fd8a466..3aef800 100755
--- a/drivers/net/wireless/Makefile
+++ b/drivers/net/wireless/Makefile
@@ -66, 3 +66, 4 @@ obj-$(CONFIG_XR_WLAN) += xradio/
+obj-$(CONFIG_RTL8812AU) += rt18812AU/
```

● 在内核配置中选中 Realtek 8812A USB WiFi, 并编译成内核模块

```
🔊 🗐 🧻 make menuconfig ARCH=arm64
.config - Linux/arm64 3.10.65 Kernel Configuration
 Device Drivers > Network device support > Wireles
                                                Wireless LAN
   Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys.
   Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded <M> module <> module capable
                --- Wireless LAN
                < > USB ZD1201 based Wireless device support
                      Wireless RNDIS USB support
                [ ] Enable WiFi control function abstraction
                      Atheros Wireless Cards --->
                <M> Broadcom FullMAC wireless cards support
                (/system/etc/firmware/fw_bcmdhd.bin) Firmware path
                (/system/etc/firmware/nvram.txt) NVRAM path
                         Enable Chip Interface (SDIO bus interface support) --->
                         Interrupt type (Out-of-Band Interrupt)
                    Broadcom IEEE802.11n embedded FullMAC WLAN driver
                      IEEE 802.11 for Host AP (Prism2/2.5/3 and WEP/TKIP/CCMP)
                < > Marvell 8xxx Libertas WLAN driver support
                      TI Wireless LAN support
                     Marvell WiFi-Ex Driver
                <M>
                      Realtek 8723B SDIO or SPI WiFi
                <M>> Realtek 8189F SDIO WiFi
                <M> Realtek 8189E SDIO WiFi
                      Realtek 8188E USB WiFi
                      Realtek 8192E USB WiFi
                       Realtek 8723B USB WiFi
                      Realtek 8822B SDIO WiFi
                      XRadio WLAN support -
Realtek 8812A USB WiFi
```

● 根据《编译 Linux 和 U-boot 源码》一节的方法重新编译内核

www.orangepi.cn 15 www.xunlong.tv


```
O Build Release Image
1 Build Rootfs
2 Build Uboot
3 Build Linux
4 Build Module only
5 Update Kernel Image
6 Update Module
7 Update Uboot
```

部分编译 Log 如下所示:

```
Start Compile.....
Start Compile Module
CC [M] drivers/net/wireless/rt18812AU/core/rtw_cmd.o
CC [M] drivers/net/wireless/rt18812AU/core/rtw_security.o
CC [M] drivers/net/wireless/rt18812AU/core/rtw_debug.o
CC [M] drivers/net/wireless/rt18812AU/core/rtw_io.o
CC [M] drivers/net/wireless/rt18812AU/core/rtw_ioctl_query.o
CC [M] drivers/net/wireless/rt18812AU/core/rtw_ioctl_set.o
```

编译完后,可以在 **output/lib/modules/4.9.118+/kernel/drivers/net/wireless/rtl8812AU** 中可以找到编译好的内核模块

```
$ cd output/lib/modules/4.9.118+/kernel/drivers/net/wireless/rt18812AU
$ ls
8812au.ko
```

● 更新内核模块

首先将已烧好 Linux 固件的 SD 卡插入用来编译 Linux 源码的 PC 机(装有 Ubuntu 18.04 的实体机或者虚拟机)中,当系统识别并成功挂载插入的 SD 卡后,我们就可以在/media/\$LOGNAME 下看到对应分区的名字

```
$ cd /media/$LOGNAME
$ ls
BOOT 存放内核
rootfs 根文件系统
```

然后根据《编译 Linux 和 U-boot 源码》一节的说明选择 6 Update Module 来更新内核模块

接下来就可以通过 SD 卡启动系统,并使用新增的 8812au.ko 内核模块驱动 USB WIFI 网卡

五、 Android 固件烧录

Android 固件不能在 Linux 中通过 dd 命令或者在 Windows 中通过 Win32 Diskimager 工具来写入 TF 卡。需要使用工具 PhoenixCard 来写入,PhoenixCard 当前的最新版本为 PhoenixCard V4.1.2,可从官网下载页的官方工具中下载。

1. Android 固件烧录步骤

● 格式化 TF 卡

检查插入的 TF 卡是否与选择的盘符一致,单击"恢复卡"按钮,开始格式 TF

www.orangepi.cn 18 www.xunlong.tv

● 然后选择固件,选择启动卡

请注意下图红色标记的地方

● 点击"烧卡",开始写入 TF 卡,等待烧录完成。

Android 固件成功烧写后,单击"关闭" 按钮,然后就可以将 TF 卡插入开发板启动系统

www.orangepi.cn 19 www.xunlong.tv

六、 Linux 固件烧录

我们可以通过 Etcher 将 Orange Pi Lite 2 的 Linux 固件烧录到 TF 卡中,由于 Orange Pi Lite 2 没有板载 eMMC,所以我们只能通过 TF 来启动系统。Etcher 支持如下的操作系统:

- Linux (大多数发行版,如 Ubuntu)
- MacOS 10.9 和后续的版本
- Windows 7 和后续的版本

Etcher 软件安装包可以在其官网 https://etcher.io/ 中下载,也可以从 Orange Pi Lite 2 的官网下载页的**官方工具**中下载

1. Etcher 的安装方式

- Etcher 在 Windows 系统中的安装方式和普通软件的安装方式一样,这里不再 赘述。
- Etcher 在 Ubuntu 和 Debian 系统中的安装方式如下
- 1. 增加 Etcher Debian 仓库:

\$ echo "deb https://dl.bintray.com/resin-io/debian stable etcher" | sudo tee /etc/apt/sources.list.d/etcher.list

- 2. 下载 key
- \$ sudo apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys 379CE192D401AB61
- 3. 更新和安装
- \$ sudo apt-get update && sudo apt-get install etcher-electron

www.orangepi.cn 20 www.xunlong.tv

- 4. 卸载方式
- \$ sudo apt-get remove etcher-electron
- \$ sudo rm /etc/apt/sources.list.d/etcher.list && sudo apt-get update

2. 通过 Etcher 烧录 Linux 固件的方法

● 首先打开 Etcher, 其界面如下图所示

- 然后通过 "Select image" 选择需要烧录的 Linux 固件
- 接着插入 TF 卡, Etcher 会自动识别相应驱动器
- 最后点击 "Flash!"开始烧录,烧录完后,即可插入开发板启动系统

www.orangepi.cn 21 www.xunlong.tv

七、Linux 系统的使用说明

1. Linux 启动亮灯情况说明

● 启动后板载 LED 灯会先亮红灯,然后红灯灭,黄灯长亮

2. 登录账号和密码

- 用户名 root, 密码: orangepi
- 用户名 orangepi, 密码: orangepi

3. 扩展 rootfs 分区

做好系统运行卡之后应立即进行文件系统 rootfs 分区的扩展,这将能大大提升系统的性能,避免空间不足带来的各种繁琐问题

我们可以进入系统后使用系统内置的脚本 resize rootfs. sh 进行扩容:

未扩容前系统可用空间的大小情况

root@OrangePi:~# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mmcblk0p2 1.1G 520M 488M 52% / 481M 0 481M0% /dev devtmpfs 0 489M 0% /dev/shm tmpfs 489M 489M 6.6M 483M 2% /run tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs tmpfs 489M 0 489M 0% /sys/fs/cgroup /dev/mmcblk0p1 50M 29M 22M 58% /boot

运行系统内置的扩容脚本

root@OrangePi:~# resize_rootfs.sh

扩容后系统可用空间的大小情况

root@OrangePi:~# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mmcb1k0p2 7.2G 539M 6.4G 8% /

devtmpfs	481M	0	481M	0% /dev
tmpfs	489M	0	489M	0% /dev/shm
tmpfs	489M	13M	477M	3% /run
tmpfs	5.0M	4.0K	5.OM	1% /run/lock
tmpfs	489M	0	489M	0% /sys/fs/cgroup
/dev/mmcblk0p1	50M	29M	22M	58% /boot

4. 录音放音测试方法

注: 主线内核的 Audio Codec 音频驱动暂时还不可用

● 测试录音功能

```
root@orangepilite2:~# arecord -d 10 -f cd -D hw:1,0 -t wav Test.wav
Recording WAVE 'Test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
root@orangepilite2:~#
```

● 测试 HDMI 放音功能,直接使用 aplay 命令播放即可

```
root@orangepilite2:~# aplay Test.wav
```

5. WIFI 的配置方法

在 /etc/network/interface 中加入下面的配置, 然后重启即可

```
auto wlan0
iface wlan0 inet dhcp
wpa-ssid orangepi //此处填入 WIFI 账号(现在是 orangepi)
wpa-psk orangepi //此处填入 WIFI 密码(现在是 orangepi)
```


八、串口调试工具介绍

首先需要准备一根和下图类似的 USB 转 TTL 串口线:

按下图接好串口线,从板子的背面的丝印可以看到不同颜色的线对应的功能如下:

- 黑色——GND
- 绿色——RX
- 白色──TX

www.orangepi.cn 24 www.xunlong.tv

1. 基于 Windows 平台的使用

在使用 OrangePi 做项目开发过程中,为了获得更多的调试信息,OrangePi 默认支持串口信息调试。对于开发者而言,只需准备上面提到的材料,即可简单的获得串口调试信息。不同的上位机使用的串口调试工具大同小异,基本可以参考下文的方法进行部署。使用 Windows 平台进行串口调试的工具很多,通常使用的工具是putty。本节以 putty 作为例子进行部署讲解。

● 安装 USB 驱动

下载最新版的驱动 PL2303_Prolific_DriverInstaller_v130.zip, 下载解压。

以管理员身份选择应用程序安装

等待安装完成

● 下载安装 Putty

Putty 可从下面的地址下载,请选择适合自己开发环境的版本。

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

直接双击下载的 putty. exe 即可打开 putty, 软件界面如下图所示。

www.orangepi.cn 26 www.xunlong.tv

● 设备信息的获取

在 Windows7 中,我们可以通过设备管理器查看串口连接是否正常以及串口的设备号。如果设备没有正常识别,请检查驱动是否安装成功。如果驱动安装有问题,可以尝试使用 360 驱动大师扫描安装驱动。

● Putty 配置

串行口设置成相应的端口号(COM4),关闭流控,速度设置成115200

● 启动调试串口输出

OrangePi 上电开机, putty 将会自动打印串口 log 信息

2. 基于 Linux 平台的使用

在 Linux 平台使用 putty 和 Windows 平台区别不太,下面主要说明有差异地方的操作步骤。所有操作都是基于 Ubuntu 14.04 系统。

● 安装并启动 Putty

```
$ sudo apt-get install putty
$ sudo putty
```

● 配置 Putty

串口号可以通过 ls /dev/ttyUSB* 查看波特率需要设置为 115200

