Taller 1 Control de calidad. 2024-I

Universidad Nacional de Colombia

Michel Mendivenson Barragán Zabala* Anderson Arley Quintero Morales[†]

2024-03-13

Ejercicio 1:

En la tabla que se muestra a continuación de este enunciado, se reportan los tres últimos dígitos de las mediciones de los diámetros interiores de un cilindro para la construcción de los motores de cierta marca comercial de automóvil. El régimen de la producción de los cilindros es tal que las muestras se pueden recolectar cada media hora, pero con tamaños de máximo cinco unidades. Es de interés establecer si el proceso se encontraba bajo control estadístico cuando se recolectaron las muestras, mediante el diseño de las \bar{X} y R.

x5	x4	x3	x2	x1	Muestra
_	_	204	202	205	1
_	_	202	205	207	2
_	202	198	201	196	3
_	217	196	198	203	4
_	_	199	202	201	5
_	_	_	203	197	6
_	_	201	196	205	7
_	_	196	199	197	8
_	_	_	200	201	9
200	199	204	203	195	10
_	_	_	202	202	11
_	_	_	203	198	12
_	_	200	196	202	13
200	202	209	187	201	14
199	197	204	196	202	15
_	199	197	204	200	16
_	201	201	199	197	17
_	200	202	204	205	18
_	200	199	201	200	19
_	201	196	205	201	20
_	_	199	198	197	21
201	205	201	200	200	22
_	_	204	202	202	23
_	198	201	203	198	24
_	_	201	201	204	25
_	_	197	194	206	26
_	_	198	204	200	27

^{*}Departamento de Estadística, mbarraganz@unal.edu.co

[†]Departamento de Estadística, aquinteromo@unal.edu.co

x5	x4	x3	x2	x1	Muestra
_	_	_	199	199	28
_	_	_	204	198	29
200	199	204	200	203	30
_	201	197	203	196	31
_	_	203	199	197	32
199	200	199	194	197	33
_	201	196	201	203	34

Como se puede observar en la tabla, no todas las muestras son del mismo tamaño por lo que se decide usar la metodología explicada en el capítulo 6.3.2. The x and s Control Charts with Variable Sample Size del libro Introduction to statistical quality control del autor Douglas C. Montgomery. Donde se establece una carta cuyos límites superior e inferior varian de acuerdo al tamaño de la muestra n. Así pues, el autor define:

• La línea central de la carta:

$$\bar{x} = \frac{\sum_{i=1}^{m} n_i \bar{x_i}}{\sum_{i=1}^{m} n_i} n_i$$

• La estimación de \bar{s} :

$$\bar{s} = \left[\frac{\sum_{i=1}^{m} (n_i - 1) s_i^2}{\sum_{i=1}^{m} n_i - m} \right]^{-\frac{1}{2}}$$

Siendo m la cantidad de muestras recolectadas, n_i el tamaño de la muestra i, así como $\bar{x_i}$ es la media de la muestra i y s_i^2 su varianza.

• El límite inferior de la carta:

$$\bar{x} - A_3 \bar{s}$$

Con A_{3i} corresponiente a la tabla de valores usando el tamaño n_i .

• El límite superior de la carta:

$$\bar{x} + A_3\bar{s}$$

Por esto, calculamos la media, la varianza y el tamaño de cada una de las muestras en el siguiente bloque de código:

```
D1$Media = apply(X = D1, MARGIN = 1, FUN = function(x) mean(x[1:5], na.rm = T))
D1$Var = apply(X = D1, MARGIN = 1, FUN = function(x) var(x[1:5], na.rm = T))
D1$n_i = apply(X = D1, MARGIN = 1, FUN = function(x) sum(!is.na(x[1:5])))
```

De donde obtenemos las siguientes medias, varianzas y tamaños de muestra:

n_i	Var	Media
3	2.3333333	203.6667
3	6.33333333	204.6667
4	7.5833333	199.2500
4	89.6666667	203.5000
3	2.3333333	200.6667
2	18.0000000	200.0000
3	20.3333333	200.6667

n_i	Var	Media
3	2.3333333	197.3333
2	0.5000000	200.5000
5	12.7000000	200.2000
2	0.0000000	202.0000
2	12.5000000	200.5000
3	9.3333333	199.3333
5	63.7000000	199.8000
5	11.3000000	199.6000
4	8.6666667	200.0000
4	3.6666667	199.5000
4	4.9166667	202.7500
4	0.6666667	200.0000
4	13.5833333	200.7500
3	1.0000000	198.0000
5	4.3000000	201.4000
3	1.3333333	202.6667
4	6.0000000	200.0000
3	3.0000000	202.0000
3	39.0000000	199.0000
3	9.3333333	200.6667
2	0.0000000	199.0000
2	18.0000000	201.0000
5	4.7000000	201.2000
4	10.9166667	199.2500
3	9.3333333	199.6667
5	5.7000000	197.8000
4	8.9166667	200.2500

Y calculando los valores de \bar{x} y \bar{s} :

```
# Cálculo del valor de la línea central
XBarra = sum(D1$Media * D1$n_i) / sum(!is.na(D1[,1:5]))

# Cálculo del ancho del intervalo
SBarra = sqrt(sum((D1$n_i - 1) * D1$Var)/(sum(!is.na(D1[,1:5])) - nrow(D1)))
```

```
## El valor de X barra estimado es: 200.4407
## El valor de S barra estimado es: 3.674802
```

Los siguientes valores corresponden a los valores tabulados con los distintos tamaños de cada una de las muestras:

```
A3n2 = 2.659
A3n3 = 1.954
A3n4 = 1.628
A3n5 = 1.427
A = c(A3n2, A3n3, A3n4, A3n5)
```

Y finalmente, se realiza la gráfica:

```
ylim = c(min(XBarra - A * SBarra), max(XBarra + A * SBarra)), cex.main = 2)
abline(h = XBarra, col = 'darkgray', lwd = 1)

LimInf = seq(from = 0.5, by = 1, length.out = 34)
LimMay = seq(from = 1.5, by = 1, length.out = 34)

UCL = XBarra + A[D1$n_i - 1] * SBarra
LCL = XBarra - A[D1$n_i - 1] * SBarra

segments(x0 = LimInf+0.1, x1 = LimMay-0.1, y0 = UCL, y1 = UCL, col = 'darkblue', lwd = 1.5)
segments(x0 = LimInf+0.1, x1 = LimMay-0.1, y0 = LCL, y1 = LCL, col = 'darkblue', lwd = 1.5)
```

Carta \overline{X}

Figure 1: Carta X barra para tamaño de muestra variable (Ejemplo cilindros)

Al revisar esta gráfica, como no hay puntos fuera de los límites de la carta ni notamos patrones aparentes por lo que determinamos que la media de la estadística de control del proceso es estable en el momento. Por otro lado, la carta \mathbf{R} se construye de una forma similar con la línea central \bar{s} y los límites superior e inferior $B_{4i}\bar{s}$ y $B_{3i}\bar{s}$. Al tratarse de tamaños de muestra de 2 a 5, B_{3i} es siempre 0 por lo que sólo nos interesará el límite superior. A continuación la carta de control:

```
B4n2 = 3.267; B4n3 = 2.568; B4n4 = 2.266; B4n5 = 2.089

B = c(B4n2,B4n3, B4n4, B4n5)

plot(y = sqrt(D1$Var), x = 1:34, type = 'b', col = 'darkblue', main = TeX('Carta $R$'),
        ylab = 'Desviación estándar muestral', xlab = 'Número de muestra',
        ylim = c(0,max(B4n2 * SBarra)), cex.main = 2)

abline(h = SBarra, col = 'darkgray', lwd = 1)
```

```
LimInf = seq(from = 0.5, by = 1, length.out = 34)
LimMay = seq(from = 1.5, by = 1, length.out = 34)

UCL = B[D1$n_i - 1] * SBarra

segments(x0 = LimInf + 0.1, x1 = LimMay - 0.1, y0 = UCL, y1 = UCL, col = 'darkblue', lwd = 1.5)
```

Carta R

Figure 2: Carta R para tamaño de muestra variable (Ejemplo cilindros)

En cuanto a la varianza de la característica de calidad del proceso, vemos que esta no se encuentra estable o bajo control debido a que la muestra 4 y la muestra 14 están fuera de los límites de control.

Hablando de este método para construir cartas de control, se menciona que otra aproximación posible es tomar $n=\bar{n}$, esta alternativa funciona bien sobre todo si los tamaños de las muestras no varían demasiado y permite una mejor visualización de la carta. Sin embargo, la alternativa con los límites variando permite tener en cuenta el tamaño de la muestra y por ende tener menos falsas alarmas. En términos prácticos, en cuanto a presentaciones es mejor la primera alternativa, pero en términos técnicos es más adecuada la técnica aquí presentada. Además, estas cartas también son más sensibles a cambios pequeños pues los límites se ajustarán para detectar estas variaciones más rápidamente.

Ejercicio 2:

En primer lugar importamos la base de datos, y construimos la carta \bar{x} para el nivel medio teniendo en cuenta los valores de μ_0 y σ_0

```
Punto2 <- read.csv2("Ejercicio 1 Taller 1.csv", sep="")
Punto2$X_barra <- rowMeans(Punto2[, c("X1", "X2", "X3", "X4", "X5")])
library(ggplot2)
mu_0=20
UCL=20+(6*(3/sqrt(22)));UCL</pre>
```

[1] 23.83761

```
LCL=20-(6*(3/sqrt(22)));LCL
```

[1] 16.16239

Y asi obtenemos los limites y linea central correspondiente a la carta, ahora procedemos a graficarla:

```
ggplot(Punto2, aes(x = MUESTRA, y = X_barra)) +
  geom_line() +
  geom_point() +
  geom_hline(yintercept = 20, linetype = "dashed", color = "red") +
  geom_hline(yintercept = 20+(6*(3/sqrt(22))), linetype = "dashed", color = "blue") +
  geom_hline(yintercept = 20-(6*(3/sqrt(22))), linetype = "dashed", color = "blue") +
  labs(x = "Muestra", y = "Media (X-barra)", title = "Gráfico de Control X-barra")
```

Gráfico de Control X-barra

Con base en el grafico podemos decir que el proceso se sale de control a partir de la muestra numero 14 ya que se sale de los limites de control con una magnitud de:

```
mean(Punto2$X_barra[14:22])-mu_0
```

[1] 2.420578

Lo anterior sale de comparar la media del proceso desde que sale de control hasta el final de la toma de muestras contra μ_0 lo que nos da como resultado 2.420578 que en este caso seria la magnitud de cambio.