

Regression with Regularization

Mentor: Pararawendy Indarjo

Linkedin: https://www.linkedin.com/in/pararawendy-indarjo/ Blog: medium.com/@pararawendy19

Hey I'm, **Pararawendy Indarjo**

I am a,

- CURRENTLY | Senior DS at Bukalapak
- 19 20 | Data Analyst at Eureka.ai

BSc Mathematics

MSc Mathematics

Outline

- Bias-Variance Trade-Off in ML Models
- Regularization in Linear Regression
- Ridge Regression
- LASSO
- Choosing the best regularization parameter
- Assignment

Bias & Variance in ML Models

Bias

- Model systematically deviates from the true data pattern
- i.e. discrepancy between average model prediction and ground truth
- **High bias** is usually associated with **underfitting**

Variance

- Variability in the model prediction
- i.e. small change on the data, leads to significant change on the model output
- High variance is usually associated with overfitting

Underfitting

- Overly-simplified model
- Indication: high error (evaluation metrics) on both train and test data

Overfitting

- Overly-complex model
- Start modeling the noise, instead of the true pattern of the data
- Indication: low training error, high test error

Bias & Variance Illustration

Remember the concepts via dart board pictures

Bias-Variance Trade-Off

We want the sweet-spot between the two

- 3 sources of model error
 - o Bias
 - Variance
 - Irreducible error (inherent noise)

Bias-Variance Trade-Off

We want the sweet-spot between the two

- 3 sources of model error
 - o Bias
 - Variance
 - Irreducible error (inherent noise)
- Therefore, we can
 - reduce bias by increasing variance
 - E.g. use more complex model
 - reduce variance by increasing bias
 - E.g. use simpler model, including model with regularization

The ideal state is to find the balance between
 bias and variance → minimum model error

Regularization in Linear Regression

- Regularization (penalization):
 - Make the model more regular/simple
 - By shrinking the model coefficients towards zero
 - I.e. coefficients with smaller absolute values
- Objective:
 - To reduce model variance, by (slightly) increasing the model bias
 - Ultimately, to address overfitting

RECAP

Objective/Loss Function

The magnitude we want to minimize when training the model

- Residual: delta between the real target variable y and the predicted target variable y_{hat}
 - Predicted values = regression line
- Train the model to minimize: Residual sum of squares

total error =
$$\sum_{i} (y_i - \hat{y_i})^2$$

- red points are our data points
- black line is the regression line (our prediction values)

Ridge

Linear regression with modified loss function

$$\sum_{i} (y_i - \hat{y}_i)^2 + \lambda \sum_{j} \beta_j^2$$

- Where lambda is non-negative regularization parameter
 - Larger == heavier regularization
 - 0 == ordinary linear regression
- Effect to the model coefficients (beta)
 - Beta will become smaller (larger lambda == smaller beta)
 - Yet they all <u>never</u> be exactly zero

LASSO

Linear regression with modified loss function

$$\sum_{i} (y_i - \hat{y}_i)^2 + \lambda \sum_{j} |\beta_j|$$

- Where lambda is non-negative regularization parameter
 - Larger == heavier regularization
 - 0 == ordinary linear regression
- Effect to the model coefficients (beta)
 - Beta will become smaller (larger lambda == smaller beta)
 - Some of them will be <u>exactly zero</u>
 (eliminated from the model)

Modeling Flow: Regularized Regression

Split the data

80 : 20 is fine

Multicollinearity check

- Calculate VIF score for each feature
- Correlation analysis to drop redundant feature
- Fit the model on training data
 - Define and fit Lasso() or Ridge()
 - Only include retained features from step 2
- Model diagnostic
 - Residual plot
 - R2 score on training data
 - No need QQ-plot
 - Not assuming normally distributed residuals
 - Evaluate the model on test data
 - RMSE
 - MAE ← New for today

The Data Used

• For the rest of the lecture, we will

```
regression_data.csv
```

- The data is about university admit probability, based on several applicant's features
 - o GRE score
 - o TOEFL score
 - University ranking
 - Motivation letter quality
 - o Recommendation letter strength
 - o GPA
 - Research experience

Split the Data

Using train_test_split() function

Recall, we want to predict admit_prob

Multicollinearity (1/2)

Variance Inflation Factor

- Multicollinearity: when two or more features/predictors are highly correlated each other
- This can cause coefficients of estimates become unreliable
 - o i.e. little change in the training data leads to completely different learned coefficients
- We can detect this by computing Variance Inflation Factor (VIF) for each feature

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

- On a high level: VIF feature j will be high if j can be predicted using the rest of other features. Vice versa
- VIF == 1 → No multicollinearity
- VIF between 4 and 10 → Moderate multicollinearity
- VIF > 10 → Severe multicollinearity

Multicollinearity (2/2)

Using statsmodels library

Feature Correlation

To prevent multicollinearity

- We can draw a correlation heatmap
 - Using sns.heatmap()
- We found that gre_score, toefl_score, and gpa are highly correlated each other
 - We decide to include only gpa to represent these three features
 - Because it is the most correlated with the target variable
- Note: Threshold: abs(corr) >= 0.8

Training the Model

Excluding gre_score and toefl_score

For lasso, only need to change Ridge to Lasso

Comparing the Coefficients

Ridge

	feature	coefficient
0	intercept	-0.764483
1	univ_ranking	0.007031
2	motiv_letter_strength	0.004406
3	recommendation_strength	0.014806
4	gpa	0.160723
5	research_exp	0.038290

Lasso

	feature	coefficient
0	intercept	0.702539
1	univ_ranking	0.006951
2	motiv_letter_strength	0.000000
3	recommendation_strength	0.000000
4	gpa	0.000000
5	research_exp 0.0000	

exactly zero

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Comparing the Coefficients

Ridge

	feature	coefficient
0	intercept	-0.764483
1	univ_ranking	0.007031
2	motiv_letter_strength	0.004406
3	recommendation_strength	0.014806
4	gpa	0.160723
5	research_exp	0.038290

Lasso

)
)
)
)
)
0

exactly zero

But...

How to select the best lambda?

Modeling Flow:
Regularized
Regression
(with choosing lambda)

Split data: train - validate - test

- 80% → 80% training vs 20% validation
- 20% testing

Multicollinearity check

- Calculate VIF score for each feature
- Correlation analysis to drop redundant feature

Fit multiple models on training data

- Train multiple models with different lambdas (alpha)
- Only include retained features from step 2

Choose the best lambda from validation set

The one with the smallest RMSE

Model diagnostic

Residual plot, R2 score on training data

Evaluate the model on test data

- RMSE
- MAE ← New for today
- MAPE ← New for today

Split the Data

We now have three data: train-validation-test

- First, split the data into **pre-train** and **testing** (80:20)
 - o Using train_test_split(feature, target)
- Next, split pre-train data into train and validation (80:20)
 - Using train_test_split(feature_pretrain, target_pretrain)

Feature Correlation

To prevent multicollinearity

- Same as previously, will drop:
 - o gre score
 - o toefl_score

Train Multiple Models

Lambda (alpha) in [0.01, 0.1, 1, 10]

```
from sklearn.linear model import Ridge
# train the model
X admit train = feature admit train.to numpy()
y admit train = target admit train.to numpy()
# define the model
ridge reg pointzeroone = Ridge(alpha=0.01, random state=42)
ridge reg pointone = Ridge(alpha=0.1, random state=42)
ridge reg one = Ridge(alpha=1, random state=42)
ridge reg ten = Ridge(alpha=10, random state=42)
# fit the model (training)
ridge reg pointzeroone.fit(X admit train, y admit train)
ridge reg pointone.fit(X admit train, y admit train)
ridge reg one.fit(X admit train, y admit train)
ridge reg ten.fit(X admit train, y admit train)
```


Choosing the Best Lambda

Using validation data

```
alphas = [0.01, 0.1, 1., 10]
models = [ridge reg pointzeroone,
          ridge reg pointone,
          ridge reg one,
          ridge reg ten]
for model, alpha in zip(models, alphas):
    y predict validation = model.predict(X admit validation)
    rmse = np.sqrt(mean squared error(y admit validation,y predict validation))
    print(f'RMSE of Ridge regression model with alpha = {alpha} is {rmse}')
                                                                                   -The best lambda is 0.01
RMSE of Ridge regression model with alpha = 0.01 is 0.05732468266149709
RMSE of Ridge regression model with alpha = 0.1 is 0.05734237964771404
RMSE of Ridge regression model with alpha = 1.0 is 0.057528698222295276
RMSE of Ridge regression model with alpha = 10 is 0.05983184011212863
```


Interpreting the Best Model

Best model == model with the best lambda

	feature	coefficient
0	intercept	-0.741404
1	univ_ranking	0.005556
2	motiv_letter_strength	0.009497
3	recommendation_strength	0.015778
4	gpa	0.155693
5	research_exp	0.042721

Interpretation?

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Model Evaluation (1/2)

- After we are satisfied (enough) with the model, we perform model evaluation
- Essentially, we check how is the model performance on test data
- To do so, we will compute these two regression metrics
 - Mean absolute error (MAE):
 - How far in absolute basis is the model's prediction from the actual data on average
 - Mean absolute percentage error (MAPE)
 - How far in relative percentage basis is the model's prediction relative to the actual data on average

$$MAPE = \frac{100\%}{n} \sum_{\substack{y = \widehat{y} \\ \text{equinost the actual value}}} \sum_{\substack{$$

Model Evaluation (2/2)

```
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_absolute_percentage_error
mean_absolute_error(y_admit_test, y_predict_test)
mean_absolute_percentage_error(y_admit_test, y_predict_test)
MAE for testing data is 0.039665519822843456
```

MAPE for testing data is 0.0646079497445827

- MAE = 0.040
 - On average, our prediction deviates the true admit prob by 0.040
- MAPE = 0.065 = 6.5%
 - Moreover, this 0.040 is equivalent to 6.5% deviation relative to the true admit_prob

When to Use: Ridge vs LASSO

Ridge

- Only make the coefficients small, NOT zero
- Works well if there are many large parameters of about the same value

- Can set some coefficients to zero
 - Thus performing variable selection
- Tends to do well if there are a small number of significant parameters and the others are close to zero

That said, ridge and LASSO oftentimes perform similarly, just train both and choose the best!

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Assignment

- What to submit? Google colab link (don't forget to share access to me: pararawendy19@gmail.com)
 - Format notebook name: HW_REGRESSION_<YOUR
 COMPLETE NAME>

Assignment

The Data Used

- For the assignment, we will use the following data
 - o **Download link**
- The data is about predicting housing price (medv) in Boston city, features:
 - Criminal rate (crim)
 - Residential land zoned proportion (zn)
 - Non-retail business acres proportion (indus)
 - Is bounds with river (chas)
 - Nitrogen oxides concentration (nox)
 - Number rooms average (rm)
 - Owner age proportion (age)
 - Weighted distance to cities (dis)
 - Accessibility index (rad)
 - Tax rate (tax)
 - Pupil-teacher ratio (ptratio)
 - Black proportion (black)
 - Percent lower status (Istat)

Assignment

Instructions

- 1. Split data: train validate test (point: 10)
- 2. Draw correlation plot on training data and perform feature selection on highly correlated features (point: 10)
- 3. Fit models on training data (lambdas = [0.01, 0.1, 1, 10]) *(point:50)*
 - a. Ridge regression (point: 25)
 - b. LASSO (point: 25)
- 4. Choose the best lambda from the validation set (point: 20)
 - a. Use RMSE as metric
 - b. Interpret a sample of the coefficients of the best model
 - i. Ridge regression
 - ii. LASSO
- 5. Evaluate the best models on the test data (+ interpretation) (point: 10)
 - a. MAE
 - b. MAPE
 - c. RMSE

Thank you

