

Winning Space Race with Data Science

Freddy Montiel 06/18/2025

Executive Summary

Introduction

Methodology

Results

Conclusion

Appendix

OUTLINE

Executive Summary

Summary of methodologies

- Data Collection
- Data Wrangling
- Exploratory Data Analysis w Data Visualization
- EDA w SQL
- Interactive Map with Folium
- Dashboard with Ploty Dash
- Predictive Analysis (Classification)

Summary of all results

- EDA results
- Snapshots/summary of results
- -Predictive analysis results

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping Wikipedia
- Perform data wrangling
 - Filtering data
 - Filling in missing values
 - Utilized Hot One Encoding to prep data for binary classification.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Built different predictive analysis classification models and compared performance and accuracy to choose the best one.

Data Collection

- The data for this project was collected from the SpaceX API with the use of requests.get(). The data was requested in three separate instances which included booster versions, launch sites, payloads, and cores, etc. The requested data was then stored in lists which were subsequently combined into a dictionary and then into a DataFrame.
- Records pertaining to Falcon 9 were filtered for in our DataFrame. Missing values were filled in with the column average.

Data Collection – SpaceX API

Requested launch data from SpaceX API

Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()

DataFrame was subsequently parsed for data of interest and stored in lists.

Next, these lists were combined into a dictionary which was then converted into a Pandas DataFrame.

DataFrame was filtered to include Falcon 9 data exclusively

Missing values pertaining to Payload Mass were filled in with the use of .mean() and .replace()

DataFrame was saved as 'dataset_part_1.csv'

GitHub URL for SpaceX API notebook: https://github.com/montielf11/IBM-
Capstone/blob/76be61db1188255973e38dfaaa0859f59e974ae4/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

GitHub URL for Webscraping notebook: https://github.com/montielf11/IBM-

Capstone/blob/76be61db1188255973e38dfaaa0859f59e974ae4/jupyter-labs-webscraping.ipynb

Data Wrangling

GitHub URL for data wrangling notebook: https://github.com/montielf11/IBM-Capstone/blob/76be61db1188255973e38dfaaa0859f59e974ae4/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

The objective of Exploratory Data Analysis was to determine which factors influenced the success rate of Falcon 9 launches by SpaceX

- Payload Mass
- Flight Number
- Launch Site

Graphs and scatterplots created using Matplotlib and Pandas.

- Scatter: Payload Mass v. Flight Number
- Scatter: Launch Site vs Flight Number
- Scatter: Launch Site vs Payload Mass
- Scatter: Orbit vs Flight Number
- Scatter: Orbit vs Payload Mass
- Histogram: Average success rate per orbit type
- Line Chart: Success rate as time progressed

GitHub URL for data wrangling notebook:

https://github.com/montielf11/IBM-Capstone/blob/76be61db1188255973e38dfaa a0859f59e974ae4/edadataviz.ipynb

EDA with SQL

SQL queries ran included:

- SELECT DISTINCT Launch Site FROM SPACEXTABLE:
- SELECT * FROM SPACEXTABLE WHERE Launch_Site LIKE 'CCA%' LIMIT 5;
- SELECT SUM(PAYLOAD_MASS_KG_) FROM SPACEXTABLE WHERE CUSTOMER LIKE "%NASA%;
- SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE BOOSTER_VERSION LIKE "%F9 v1.1%"
- SELECT MIN(DATE) FROM SPACEXTABLE WHERE Landing_Outcome LIKE "%ground pad%"
- Select Booster_Version from SPACEXTABLE WHERE PAYLOAD_MASS_KG_ BETWEEN '4000' AND '6000' AND Mission_Outcome ='Success';
- SELECT Mission_Outcome, Count(Mission_Outcome) from SPACEXTABLE group by Mission_Outcome;
- SELECT DISTINCT Booster_Version FROM SPACEXTABLE WHERE PAYLOAD_MASS_KG_=(SELECT MAX(PAYLOAD_MASS_KG_) FROM SPACEXTABLE);
- SELECT substr("Date", 6, 2) AS Month, "Landing_Outcome", "Booster_Version", "Launch_Site" FROM SPACEXTABLE WHERE substr("Date", 0, 5) = "2015'AND "Landing_Outcome" LIKE "%drone ship% AND "Landing_Outcome" LIKE "%failure%;
- SELECT Landing_Outcome, count[Landing_Outcome). Date FROM SPACEXTABLE WHERE Date BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY Landing_Outcome ORDER BY COUNT(Landing_Outcome) DESC;

Conclusion of this lab led to summary of successful and failed launches

No attempt 10 2012-05-22 Success (drone ship) 5 2016-04-08 Failure (drone ship) 5 2015-01-10 Success (ground pad) 3 2015-12-22 Controlled (ocean) 3 2014-04-18 Uncontrolled (ocean) 2 2013-09-29 Failure (parachute) 2 2010-06-04 Precluded (drone ship) 1 2015-06-28	Date	${\bf count(Landing_Outcome)}$	Landing_Outcome
Failure (drone ship) 5 2015-01-10 Success (ground pad) 3 2015-12-22 Controlled (ocean) 3 2014-04-18 Uncontrolled (ocean) 2 2013-09-29 Failure (parachute) 2 2010-06-04	2012-05-22	10	No attempt
Success (ground pad) 3 2015-12-22 Controlled (ocean) 3 2014-04-18 Uncontrolled (ocean) 2 2013-09-29 Failure (parachute) 2 2010-06-04	2016-04-08	5	Success (drone ship)
Controlled (ocean) 3 2014-04-18 Uncontrolled (ocean) 2 2013-09-29 Failure (parachute) 2 2010-06-04	2015-01-10	5	Failure (drone ship)
Uncontrolled (ocean) 2 2013-09-29 Failure (parachute) 2 2010-06-04	2015-12-22	3	Success (ground pad)
Failure (parachute) 2 2010-06-04	2014-04-18	3	Controlled (ocean)
2 2010 00 01	2013-09-29	2	Uncontrolled (ocean)
Precluded (drone ship) 1 2015-06-28	2010-06-04	2	Failure (parachute)
Trecladed (drone ship)	2015-06-28	1	Precluded (drone ship)

Lab URL link: https://github.com/montielf11/IBM-Capstone/blob/76be61db1188255973e38dfaaa0859f59e97
https://github.com/montielf11/IBM-Capstone/blob/76be61db1188255973e38dfaaa0859f59e97
https://github.com/montielf11/IBM-Capstone/blob/76be61db1188255973e38dfaaa0859f59e97
https://github.com/montielf11/IBM-capstone/blob/76be61db1188255973e38dfaaa0859f59e97
https://github.com/montielf11/IBM-capstone/blob/76be61db1188255973e38dfaaa0859f59e97

Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
- Explain why you added those objects
- Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

DASHBOARD WITH PLOTLY DASH

- Built an interactive dashboard with Ploty:
- Dropdown menu for selecting launch sites
- Pie charts displaying success rate
- Scatter chart displaying launch site, payload mass, success and failure
- Range slider for selecting range of payload mass
- Utilized dashboard to analyze SpaceX launches to determine:
- Site with largest successful launches
- Payload ranges with highest launch success rate
- Payload ranges with lowest launch success rate
- F9 Booster versions with highest success rates

Predictive Analysis (Classification)

Model Training

Selection of Best Model

EXPLORATORY DATA
ANALYSIS RESULTS

INTERACTIVE ANALYTICS DEMO IN SCREENSHOTS

PREDICTIVE ANALYSIS RESULTS

Flight Number vs. Launch Site

 All sites had higher levels of success as Flight Number was higher

CCAFS SLC 40 had the most mixed results.

```
# Plot a scatter point chart with x axis to be Flight Number and y axis to be the Launch site, and hue to be the class values.catplot(y='LaunchSite', x='FlightNumber', data=df, hue='Class')
plt.ylabel('Flight Number', fontsize=15)
plt.ylabel('Launch Site', fontsize=15)
plt.show()

VAFB SLC 4E

Class

0

1

KSC LC 39A

Flight Number

Class

Flight Number
```


Payload vs. Launch Site

 All three launch sites had greater levels of success at relatively greater pay load masses.

 No Payload Mass was greater than 10000 for VAFB

Success Rate vs. Orbit Type

 The orbit types with the highest success rates are ES-L1, GEO, HEO, SSO, VLEO

Flight Number vs. Orbit Type

 There is a higher success rate for higher flight number for LEO flights.

 Some orbit types, such as GTO, and ISS show not correlation between Flight Number and Orbit type.

Payload vs. Orbit Type

 LEO, ISS, PO show higher success rates associated with greater Payload Mass.

 Some Orbit types such as MEO, GTO, VLEO show no improvement as Payload Mass becomes greater.

Launch Success Yearly Trend

 After 2013 the launch success rate increased steadily each year.

 The only year that saw a decrease was 2018.

All Launch Site Names

- The unique launch sites were:
 - o CCAFS LC-40
 - VAFB SLC-4E
 - KSC LC-39A
 - CCAFS SLC-40
- SQL code to obtain this result: SELECT DISTINCT Launch_Site FROM SPACEXTABLE;

Launch Site Names Begin with 'CCA'

SQL query to obtain 5 entries:
 SELECT * FROM SPACEXTABLE
 WHERE Launch_Site LIKE 'CCA%'
 LIMIT 5;

* sqli [.] one.	te:///my_	_data1.db					
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Custome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	Space)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NAS/ (COTS NRC
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NAS/
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NAS.
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NAS (CR

Total Payload Mass

- Total Payload Mass was calculated at 107010 KG.
- SQL script needed: SELECT SUM(PAYLOAD_MASS__KG) FROM SPACEXTABLE WHERE CUSTOMER LIKE '%NASA%'

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE CUSTOMER LIKE '%NASA%';

* sqlite://my_data1.db
Done.

SUM(PAYLOAD_MASS__KG_)

107010
```

Average Payload Mass by F9 v1.1

- Average Payload Mass carried by F9 V1.1 is 2534.66
- SQL script needed: SELECT SUM(PAYLOAD_MASS__KG) FROM SPACEXTABLE WHERE CUSTOMER LIKE '%NASA%'

```
Display average payload mass carried by booster version F9 v1.1

* sqlite://my_data1.db
Done.

* AVG(PAYLOAD_MASS__KG_)

2534.666666666665
```

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

SQL code required: Select .Booster_Version from SPACEXTABLE WHERE PAYLOAD_MASS__KG_ BETWEEN '4000' AND '6000' AND Mission_Outcome ='Success';

```
%sql Select Booster_Version from SPACEXTABLE WHERE PAYLOAD_MASS__KG_ BETWEEN '4000' AND '60
```


Total Number of Successful and Failure Mission Outcomes

- The following table shows landing outcomes for SpaceX and respective counts.
- The SQL code is listed above.

Boosters Carried Maximum Payload

- The following are the Booster Versions that carried the maximum payloads.
- Query code is as follows: SELECT DISTINCT
 Booster_Version FROM SPACEXTABLE WHERE
 PAYLOAD_MASS__KG_ =(SELECT
 MAX(PAYLOAD_MASS__KG_) FROM
 SPACEXTABLE);

Booster_Version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

2015 Launch Records

• The following table lists the month, landing outcome, booster version, and launch site for 2015:

 Both failed launches on record were from launch site CCAFS LC-40. Booster versions were different, however.

Month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Following code was used to produce desired query: %sql select Landing_Outcome, count(Landing_Outcome), Date FROM SPACEXTABLE WHERE Date BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY Landing_Outcome ORDER BY COUNT(Landing_Outcome) DESC;
- The highest landing outcome was No attempt followed by Success by drone ship.

Landing_Outcome	count(Landing_Outcome)	Date
No attempt	10	2012-05-22
Success (drone ship)	5	2016-04-08
Failure (drone ship)	5	2015-01-10
Success (ground pad)	3	2015-12-22
Controlled (ocean)	3	2014-04-18
Uncontrolled (ocean)	2	2013-09-29
Failure (parachute)	2	2010-06-04
Precluded (drone ship)	1	2015-06-28

Site Locations on Global Map

- The launch sites have been purposely chosen to be by the coast.
- Minimizes the chance that debris can fall on populated areas.

Color Coded Success Rates

 Success and failure are easily identified by red and green markers.

• KSC LC 39A had a high success rate.

Distance from Launch Sites

- Railway is 15.23 km away.
- Highway is 20.28 km away.
- Coastline is 14.99 km away.

Total Successful Launches by Site

• With a success rate of 41.2%, KSC LC-39A was the most successful site.

Stats for Most Successful Launch Site

• KSC LC-39A had a success rate of 76.9% and failure rate of 23.1%.

Successful Payload Mass for All Sites

 Charts show that payloads that were between 2000 and 5500 kg had the highest rates of success.

Classification Accuracy

 The model with the highest level of Accuracy was the Decision Tree.

Logistic Regression Accuracy: 0.8333333333333334

SVM Accuracy: 0.833333333333334

Decision Tree Confusion Matrix

 The confusion matrix for Decision Tree model shows only 1 error out of 18 (False Positive).

CONCLUSIONS

Decision Tree model had the best accuracy for the relevant data set

Launches with Pay load mass between 2000 and 5500 kg had the highest rates of success.

Launch sites are close to the coastline and as close to the equator as possible within the US.

Successful rate for launches had increased dramatically over time.

Site KSC LC-39A had the highest launch success rate.

