Regularized Linear Regression

Andrew Ho

Signal Data Science

Motivation for regularization

- MSE = $(intrinsic error)^2 + (bias)^2 + variance$
- Ordinary least squares is unbiased
 - Isn't the model with the lowest MSE in general
- Introducing some bias can reduce variance
- Two major problems result in inflated coefficients
 - Collinearity among predictors
 - Overfitting

Two equivalent formulations

- Penalize large coefficients
 - Instead of minimizing sum of squared errors (SSE), minimize SSE + λ*sum(|coefficients|)
 - Or minimize SSE + λ *sum(|coefficients|2)
- Impose Bayesian prior on coefficients
 - Use a Gaussian or Laplacian prior for coefficients being closer to 0

Penalty leads to lower RMSE

(Applied Predictive Modeling, p. 125)

Lasso and ridge regression

- Minimizing SSE + λ*sum(|coefficients|)
 - Called "lasso" or "L¹ penalization"
 - Tends to shrink some coefficients to 0 and leave others
 - Easy to interpret
- Minimizing SSE + λ*sum(|coefficients|²)
 - Called "ridge regression" or "L² penalization"
 - Tends to shrink coefficients uniformly
- "L^p penalization" comes from notion of p-norm
 - $|x|_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$

L¹ coefficient shrinkage

(Applied Predictive Learning, p. 126)

L² coefficient shrinkage

(Introduction to Statistical Learning, p. 216)

Duality of optimization

- Two equivalent mathematical formulations
 - Minimizing SSE + λ*sum(|coefficients|)
 - Minimizing SSE subject to sum(|coefficients|) $\leq s_1(\lambda)$
- Same for ridge regression
 - Minimizing SSE + λ*sum(|coefficients|²)
 - Minimizing SSE subject to sum($|coefficients|^2$) $\leq s_2(\lambda)$

Visual intuition

L¹ regularization

L¹ regularization

