

AON6850

100V Dual N-Channel MOSFET SDMOS ™

General Description

The AON6850 is fabricated with SDMOSTM trench technology that combines excellent $R_{\text{DS(ON)}}$ with low gate charge and low Qrr.The result is outstanding efficiency with controlled switching behavior. This universal technology is well suited for PWM, load switching and general purpose applications.

Product Summary

 $\begin{array}{lll} V_{DS} & 100V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 28A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 35 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 7V) & < 42 m\Omega \end{array}$

100% UIS Tested 100% R_a Tested

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	100	V
Gate-Source Voltage		V_{GS}	±25	V
Continuous Drain	T _C =25°C		28	
Current	T _C =100°C	'D	18	Α
Pulsed Drain Current ^Ĉ		I _{DM}	55	
Continuous Drain Current	T _A =25°C		5	^
	T _A =70°C	IDSM	4	A
Avalanche Current ^C		I _{AS} , I _{AR}	28	A
Avalanche energy L=	0.1mH ^C	E _{AS} , E _{AR}	39	mJ
Power Dissipation ^B	T _C =25°C	В	56	W
	T _C =100°C	P _D	22	VV
Power Dissipation ^A	T _A =25°C	Ь	1.7	10/
	T _A =70°C	P _{DSM}	1.1	W
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	20	24	°C/W		
Maximum Junction-to-Ambient AD	Steady-State	N _θ JA	60	72	°C/W		
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1.8	2.2	°C/W		

Electrical Characteristics (T₁=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		100			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				10	^			
	Zero Gate Voltage Drain Current	T _J =55°C	T _J =55°C			50	μΑ			
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±25V				100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		2.5	3.4	4	V			
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V		55			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =5A			27	35	m()			
			T _J =125°C		46	56	mΩ			
		V_{GS} =7V, I_D =4A			32	42	mΩ			
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=5A$			15		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V			
Is	Maximum Body-Diode Continuous Current					45	Α			
DYNAMIC	PARAMETERS									
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz		1220	1530	1840	pF			
C _{oss}	Output Capacitance			108	155	202	pF			
C _{rss}	Reverse Transfer Capacitance			39	66	93	pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.3	0.7	1.1	Ω			
SWITCHII	NG PARAMETERS		-							
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =5A		19	24	29	nC			
Q_{gs}	Gate Source Charge			7	9	11	nC			
Q_{gd}	Gate Drain Charge			4.8	8	11.2	nC			
t _{D(on)}	Turn-On DelayTime				11		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =9.8 Ω , R_{GEN} =3 Ω			5.5		ns			
t _{D(off)}	Turn-Off DelayTime				16		ns			
t _f	Turn-Off Fall Time				4		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=500A/μs		16	23	30	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =5A, dI/dt=500A/μs		58	83	108	nC			

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation PDSM is based on R ala and the maximum allowed junction temperature of 150 °C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev 1.0: January 2024 www.aosmd.com Page 2 of 7

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial

D. The R_{NJA} is the sum of the thermal impedence from junction to case R_{NJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

 ${\rm I_S}$ (A) Figure 17: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current

I_S (A)
Figure 18: Diode Reverse Recovery Time and
Softness Factor vs. Conduction Current

di/dt (A/μs) Figure 19: Diode Reverse Recovery Charge and Peak Current vs. di/dt

di/dt (Α/μs)
Figure 20: Diode Reverse Recovery Time and Softness Factor vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

