Theory of Computation, Fall 2023 Assignment 3 Solutions

- Q1. (a) Ture.
 - (b) False. $R\emptyset = \emptyset$.
 - (c) False. When $R = \emptyset$, $R \cup \emptyset^* = \{e\} \neq \emptyset$.
 - (d) Ture.
- Q2. $(a^*ba^*ba^*ba^*)^* \cup a^*$
- Q3. The regular expression is $b(ab \cup b)^*$

- Q4. Let $L = \{ww : w \in a, b^*\}$. Suppose, for the sake of contradiction, that this language is regular. Let p be the pumping length given by the pumping theorem. Consider the string $w = a^p b a^p b \in L$. By pumping theorem, w can be written as w = xyz such that
 - (i) $xy^iz \in L$ for any $i \ge 0$
 - (ii) $|y| \ge 0$, and
 - (iii) $|xy| \le p$
 - (ii) and (iii) imply that $y = a^k$ for some $k \ge 0$. Consider the string $xy^0z = a^{p-k}ba^pb$. Clearly, this string does not belong to L. This contradicts with (i). Therefore, L is non-regular.
- Q5. Assume that $L_1 = \{0^m 1^n : m \neq n\}$ is regular. Since $L = L(0^*1^*)$ is regular, by the closure property of regular languages, $L L_1 = \{0^n 1^n : n \geq 0\}$ is regular (because $L L_1 = L \cap \overline{L}_1$). It is, however, known that $\{0^n 1^n : n \geq 0\}$ is not regular. Contradiction.
- Q6. As A is regular, there is a DFA $M=(K,\Sigma,\delta,s,F)$ that accepts A. Consider the following DFA $M'=(K',\Sigma',\delta',s',F')$ where
 - $K' = K, \Sigma' = \Sigma, \delta' = \delta, s' = s$ and
 - $F' = \{p \in K: (p, w) \vdash_M^* (q, e) \text{ for some } w \in B \text{ and some } q \in F\}$

It is straightforward that M' accepts A/B, so A/B is regular.

^{*} Remark: One may notice that, we **cannot** acctually construct M' (in particular, the set F') because B may contain an infinite number of strings. This does not invalidate our proof. To prove that A/B is regular, it suffices to show that existence of M'. There is no need to actually construct it.