Теория параллелизма

Отчёт Уравнение теплопроводности

Цели работы:

Выполнить расчёт уравнения теплопроводности на:

- 1. одном ядре СРИ
- 2. нескольких ядрах СРИ
- 3. GPU

Выполнить сравнение времени выполнения программы с различными входными параметрами для каждого из указанных устройств для вычисления. Произвести оптимизацию кода. Провести профилирование программы с помощью Nsight System.

Используемый компилятор: pgc++

Используемый профилировщик: nsys

Как производили замер времени работы:

В начале и в конце программы производилась фиксация текущего времени с использованием команд из chrono, разница этого времени выводилась в стандартный поток вывода.

CPU-onecore

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128x128	1.93c	$9.9*10^{-7}$	30074
256x256	27.18c	$9.9*10^{-7}$	102885
512x512	119.22c	9.9 * 10 ⁻⁷	339599

CPU-multicore

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128x128	0.31c	9.9 * 10 ⁻⁷	30074
256x256	2.71c	9.9 * 10 ⁻⁷	102885
512x512	32.31c	9.9 * 10 ⁻⁷	339599

GPU

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128x128	1.28c	$9.9 * 10^{-7}$	30074
256x256	4.17c	9.9 * 10 ⁻⁷	102885
512x512	16.68c	9.9 * 10 ⁻⁷	339599
1024x1024	108.86	$1.37 * 10^{-6}$	1000000

Диаграмма сравнения время работы CPU-onecore, CPU-multicore и GPU

Общее время работы, с

Выполнение на GPU

Этапы оптимизации на сетке 512х512

Этап	Время	Точно	Количество	Комментарии
№	выполнения	сть	итераций	(что было
				сделано)
1	0.023c	0.11	100	Сетка представляется в
				виде двумерного
				массива;
				Под arr и arr new
				выделяется память на
				CPU;
				Под arr_new выделяется
				память на GPU с
				помощью acc data
				create;
				arr, max error и size
				переносятся на GPU с
				помощью директивы
				acc data copy
				На GPU происходит
				заполнение границ
				обеих сеток, этот
				процесс
				распараллеливается с
				помощью acc parallel
				loop independent
				В процессе расшета
				В процессе расчета
				следующего шага сетки
				применяется редукция

				по функции тах для переменной тах_еггог с помощью reduction(тах:тах_еггог); Копирование массивов происходит поэлементно и распараллеливается с помощью асс parallel loop collapse(2) independent; Значение тах_еггог обновляется в памяти СРU в конце каждой итерации с помощью асс update host
2	0.020c	0.11	100	Сетка представляется в виде одномерного массива; Обращение к индексам массива происходит с помощью макроса ID, которая переводит индексы двумерного массива в одномерный. Копирование массивов происходит с помощью копирования участка памяти из агг_пеw в агг на GPU

Диаграмма оптимизации (по горизонтали - номер этапа; по вертикали - время работы, с)

0,005

0,000 -

GPU – оптимизированный вариант

Размер сетки	Время	Точность	Количество
	выполнения		итераций
128x128	1.20c	9.9 * 10 ⁻⁷	30074
256x256	3.70c	9.9 * 10 ⁻⁷	102885
512x512	17.30c	9.9 * 10 ⁻⁷	350241
1024x1024	102.64c	$1.37 * 10^{-6}$	1000000

Диаграмма сравнения времени работы CPU-onecore, CPU-multicore, GPU(оптимизированный вариант) для разных размеров сеток

Вывод:

В ходе работы была написана программа для решения уравнения теплопроводности, было произведено сравнение времени выполнения на CPU-onecore, CPU-multicore и GPU, была выполнена оптимизация кода, а также было выполнено профилирование через Nsight System.

Как видно из полученных данных, с ростом размера сетки общее время меньше всего становится при выполнении на GPU. При выполнении на небольших размерах сетки лучше выполнять программу на CPU-multicore, так как из-за копирования данных время выполнения на GPU будет больше.

Приложение

https://github.com/HerrPhoton/Heat_equation

Профилирование кода на этапе №1

Профилирование кода на этапе №2

