数学分析定理手册

aytony

2023年5月28日

目录

1	集合与映射				
	1.1	集合	4		
	1.2	映射与函数	4		
2	数列极限				
	2.1	实数系的连续性	4		
	2.2	数列极限	5		
	2.3	无穷大量	6		
	2.4	收敛准则	7		
3	函数极限与连续函数				
	3.1	函数极限	8		
	3.2	连续函数	11		
	3.3	无穷大量	12		
	3.4	闭区间上的连续函数	12		
4	微分		13		
	4.1	微分和导数	13		
	4.2	导数的意义和性质	13		
	43	导数加则运管和反函数或导注则	13		

	4.4	复合函数求导法则及其应用	14
	4.5	高阶导数和微分	14
5	微分	中值定理及其应用	15
	5.1	微分中值定理	15
	5.2	L'Hospital 法则	17
	5.3	Taylor 多项式和插值多项式	17
	5.4	函数的 Taylor 公式及其应用	18
	5.5	应用举例	18
9	数项	级数	18
	9.2	上极限与下级限	18
10	函数	项级数	20
	10.1	函数项级数的一致收敛性	20
11	Eucli	id 空间上的极限和连续	21
12	多元	函数的微分学	21
	12.1	偏导数与全微分	21
	12.2	多元复合函数的求导法则	22
	12.3	中值定理和 Taylor 公式	23
	12.4	隐函数	24
	12.5	偏导数在几何中的应用	28
	12.6	无条件极值	28
	12.7	条件极值与 Lagrange 乘数法	29
13	重积	分	29
	13.1	有界闭区域上的重积分	29
	13.2	重积分的性质与计算	31
14	曲线	积分、曲面积分与场论	31

14.1	第一类曲线积分与第一类曲面积分	31
附录 A	实数系基本定理之间的等价证明	33
A.1	九个实数系基本定理的叙述	33
A.2	用确界存在定理证明其它定理	33
	A.2.1 单调有界定理	33
A.3	用单调有界定理证明其它定理	34
	A.3.1 闭区间套定理	34
A.4	用闭区间套定理证明其它定理	34
	A.4.1 单调有界定理	34
	A.4.2 Bolzano-Weierstrass 定理	35
A.5	用 Heine-Borel 有限覆盖定理证明其它定理	36
	A.5.1 Weierstrass 聚点原理	36
A.6	用 Bolzano–Weierstrass 定理证明其它定理	36
	A.6.1 Cauchy 收敛原理	36
A.7	用 Cauchy 收敛原理证明其它定理	37
A.8	用 Dedekind 分割定理证明其它定理	37
A.9	用 Weierstrass 聚点原理证明其它定理	37
	A.9.1 Bolzano-Weierstrass 定理	37
A.10	用连续函数介值定理证明其它定理	37
附录 B	常用结论	37
B.1	常用等价无穷小	37
附录 C	导数表	39
附录 D	基本积分表	40

1 集合与映射

1.1 集合

定理 1.1.1. 可列个可列集之并也是可列集.

定理 1.1.2. 有理数集 ◎ 是可列集.

例 1.1.2. 整数集 Z 是可列集.

1.2 映射与函数

定理 1.2.1 (三角不等式). 对于任意实数 a 和 b ,都有

$$||a| - |b|| \le |a + b| \le |a| + |b|$$
.

定理 1.2.2 (平均值不等式). 对任意 n 个正数 a_1, a_2, \dots, a_n ,有

$$\frac{a_1 + a_2 + \dots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \cdots a_n} \geqslant \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}},$$

等号当且仅当 a_1, a_2, \cdots, a_n 全部相等时成立.

2 数列极限

2.1 实数系的连续性

定理 2.1.1 (确界存在定理,实数系的连续性). 非空有上界的数集必有上确界,非空有下界的数集必有下确界.

定理 2.1.2 (确界唯一性定理). 非空有界数集的上(下)界是唯一的.

定理 (Dedekind 分割定理). 设 \tilde{A}/\tilde{B} 是实数集 \mathbb{R} 的一个切割,则或者 \tilde{A} 有最大数,或者 \tilde{B} 有最小数.

2.2 数列极限

定理 2.2.1 (极限的唯一性). 收敛数列的极限必唯一.

定理 2.2.2 (极限的有界性). 收敛数列必有界.

定理 2.2.3 (极限的保序性). 设数列 $\{x_n\}$, $\{y_n\}$ 均收敛,若 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$,且 a < b,则存在正整数 N,当 n > N 时,成立

$$x_n < y_n$$
.

推论 (极限的保号性). 1. 若 $\lim_{n\to\infty} y_n = b > 0$,则存在正整数 N,当 n > N 时,

$$y_n > \frac{b}{2} > 0 ;$$

2. 若 $\lim_{n\to\infty} y_n = b < 0$,则存在正整数 N,当 n > N 时,

$$y_n < \frac{b}{2} < 0 \; ;$$

定理 2.2.4 (极限的夹逼性). 若三个数列 $\{x_n\}, \{y_n\}, \{z_n\}$ 从某项开始成立

$$x_n \leqslant y_n \leqslant z_n \; , \quad n > N_0 \; ,$$

 $\exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a, \quad \exists \lim_{n \to \infty} y_n = a.$

定理 2.2.5 (极限的四则运算). 设 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$,则

- 1. $\lim_{n\to\infty} (\alpha x_n + \beta y_n) = \alpha a + \beta b \ (\alpha, \beta 是常数);$
- $2. \lim_{n\to\infty} (x_n y_n) = ab;$
- $3. \lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b} \ (b\neq 0).$

例 2.2.2. $\{q^n\}$ (0 < |q| < 1) 是无穷小量.

- 例 2.2.4. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- 例 2.2.6. 若 $\lim_{n\to\infty}a_n=a$,则

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a .$$

例 2.2.7. $\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0.$

例 2.2.8.

$$\lim_{n \to \infty} (a_1^n + a_2^n + \dots + a_p^n)^{\frac{1}{n}} = \max_{1 \le i \le p} \{a_i\} ,$$

其中 $a_i \ge 0$ $(i = 1, 2, 3, \dots, p)$.

例 2.2.10. 当 a > 0 时, $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

例 2.2.12. 设 $a_n > 0$,且 $\lim_{n \to \infty} a_n = a$,则有

$$\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a .$$

习题 2.2.5. 若 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$,则 $\lim_{n\to\infty} x_n = a$.

习题 2.2.6. 设 $\sqrt{x_n} \geqslant 0$,且 $\lim_{n \to \infty} x_n = a \geqslant 0$,则有 $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$.

习题 2.2.7. $\{x_n\}$ 是无穷小量, $\{y_n\}$ 是有界数列,则 $\{x_ny_n\}$ 是无穷小量.

2.3 无穷大量

定理 2.3.1. 设 $x_n \neq 0$,则 $\{x_n\}$ 是无穷大量的充分必要条件是 $\{\frac{1}{x_n}\}$ 是无穷小量.

定理 2.3.2. 设 $\{x_n\}$ 是无穷大量,若当 $n > N_0$ 时, $\{y_n\} \geqslant \delta > 0$ 成立,则 $\{x_ny_n\}$ 是无穷大量.

推论. 设 $\{x_n\}$ 是无穷大量, $\lim_{n\to\infty} y_n = b \neq 0$,则 $\{x_ny_n\}$ 与 $\{\frac{x_n}{y_n}\}$ 都是无穷大量.

定理 2.3.3 (Stolz **定理**). 设 $\{y_n\}$ 是严格单调增加的正无穷大量,且

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a\quad (a\ \text{可以为有限量,}\ +\infty\ \text{与}\ -\infty),$$

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a \; .$$

例 2.3.1. 设 |q| > 1,则 $\{q^n\}$ 是无穷大量.

例 2.3.3.

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_l} = \begin{cases} 0, & k < l, \\ \frac{a_0}{b_0}, & k = l, \\ \infty, & k > l. \end{cases}$$

例 2.3.4.

$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1} \ .$$

例 2.3.5. 设 $\lim_{n\to\infty}a_n=a$,则

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2}=\frac{a}{2}.$$

2.4 收敛准则

定理 2.4.1 (单调有界定理). 单调有界数列必定收敛.

定理 2.4.2 (闭区间套定理). 如果 $\{[a_n, b_n]\}$ 形成一个闭区间套,则存在唯一的实数 ξ 属于所有的闭区间 $[a_n, b_n]$,且 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

定理 2.4.3. 实数集 R 是不可列集.

定理 2.4.4. 若数列 $\{x_n\}$ 收敛于 a,则它的任何子列 $\{x_{n_k}\}$ 也收敛于 a,即

$$\lim_{n \to \infty} x_n = a \quad \Rightarrow \quad \lim_{n \to \infty} n_{n_k} = a \; .$$

定理 2.4.5 (Bolzano-Weierstrass 定理). 有界数列必有收敛子列.

定理 2.4.6. 若 $\{x_n\}$ 是一个无界数列,则存在子列 $\{x_{n_k}\}$,使得

$$\lim_{n\to\infty} x_{n_k} = \infty .$$

定理 2.4.7 (Cauchy 收敛原理, 实数系的完备性). 数列 $\{x_n\}$ 收敛的充分必要条件是: $\{x_n\}$ 是基本数列.

定理 2.4.8. 实数系的完备性等价于实数系的连续性.

例 2.4.1. 设 $x_1 > 0$, $x_{n+1} = 1 + \frac{x_n}{1 + x_n}$, $n = 1, 2, 3, \cdots$. 则有数列 $\{x_n\}$ 收敛,且 $\lim_{n \to \infty} x_n = \frac{1 + \sqrt{5}}{2}$.

例 2.4.2. 设 $0 < x_1 < 1, x_{n+1} = x_n(1-x_n), n = 1, 2, 3, \cdots$. 则 $\{x_n\}$ 收敛,且 $\lim_{n \to \infty} x_n = 0$.

推论. $\lim_{n\to\infty}(nx_n)=1$,故 x_n 与 $\frac{1}{n}$ 为等价无穷小.

例 2.4.4 (Fibonacci 数列). 设 $\{a_n\}$ 为 Fibonacci 数列,则有 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{\sqrt{5}-1}{2}$.

例 2.4.5. 数列 $\{n\sin\frac{180^{\circ}}{n}\}$ 收敛.

 $\mathbf{\dot{L}}$. 定义 π 后,利用弧度制可以将以上极限式写成

$$\lim_{n\to\infty}\frac{\sin(\pi/n)}{\pi/n}=1\;.$$

例 2.4.6. 数列 $\left\{ \left(1 + \frac{1}{n} \right)^n \right\}$ 单调增加,数列 $\left\{ \left(1 + \frac{1}{n} \right)^{n+1} \right\}$ 单调减少,两者收敛于同一极限.

推论.

$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$$
.

例 2.4.7. 讨论数列 $\{a_n\}$,其中

$$a_n = 1 + \frac{1}{2p} + \frac{1}{3p} + \dots + \frac{1}{n^p} \quad (p > 0)$$
.

当 p > 1 时,数列 $\{a_n\}$ 收敛; 当 $0 时,数列 <math>\{a_n\}$ 是正无穷大量.

例 2.4.8. 记
$$b_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
,则数列 $\{b_n\}$ 收敛.

例 2.4.14. 设数列 $\{x_n\}$ 满足压缩性条件:

$$|x_{n+1} - x_n| \le k|x_n - x_{n-1}|, \quad 0 < k < 1, n = 2, 3, \dots,$$

则 $\{x_n\}$ 收敛.

3 函数极限与连续函数

3.1 函数极限

定理 3.1.1 (极限的惟一性). 设 A 与 B 都是函数 f(x) 在点 x_0 处的极限,则 A = B.

定理 3.1.2 (局部保序性). 若 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, (此处 A, B 可以是非 ∞ 的广义极限)且 A>B,则存在 $\delta>0$,当 $0<|x-x_0|<\delta$ 时,成立

$$f(x) > g(x) .$$

推论. 若 $\lim_{x\to x_0}f(x)=A\neq 0$ (此处 A 可以是非 ∞ 的广义极限),则存在 $\delta>0$,当 $0<|x-x_0|<\delta$ 时,成立

$$|f(x)| > \frac{|A|}{2} .$$

推论. 若 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, (此处 A, B 可以是非 ∞ 的广义极限)且存在 r > 0,使得当 $0 < |x - x_0| < r$ 时,成立 $g(x) \leqslant f(x)$,则

$$B \leqslant A$$
.

推论 (局部有界性). 若 $\lim_{x\to x_0} x = A$,则存在 $\delta > 0$,使得 f(x) 在 $U(x_0, \delta)$ 中有界.

定理 3.1.3 (极限的夹逼性). 若存在 r > 0,使得当 $0 < |x - x_0| < r$ 时,成立

$$g(x) \leqslant f(x) \leqslant h(x)$$
,

且 $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A$,则 $\lim_{x \to x_0} f(x) = A$ (此处 A 可以是非 ∞ 的广义极限).

定理 3.1.4 (函数极限的四则运算). 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$,则

- 1. $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha A + \beta B \quad (\alpha, \beta 是常数);$
- 2. $\lim_{x \to x_0} (f(x)g(x)) = AB$;
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \quad (B \neq 0).$

要求以上各式可以是广义极限,但不为待定型.

定理 3.1.5 (Heine 定理). $\lim_{x\to x_0} f(x) = A$ 的充分必要条件是: 对于任意满足 $\lim_{n\to\infty} x_n = x_0$,且 $x_n \neq x_0$ $(n=1,2,3,\cdots)$ 的数列 $\{x_n\}$,相应的函数值数列 $\{f(x_n)\}$ 成立

$$\lim_{n \to \infty} f(x) = A .$$

推论. $\lim_{x\to x_0} f(x)$ 存在的充分必要条件是: 对于任意满足条件 $\lim_{n\to\infty} x_n = x_0$ 且 $x_n \neq x_0$ $(n=1,2,3,\cdots)$ 的数列 $\{x_n\}$,相应的函数值数列 $\{f(x_n)\}$ 收敛.

定理. 函数 f(x) 在 x_0 极限存在的充分必要条件是 f(x) 在 x_0 的左极限与右极限存在并且相等.

定理 3.1.6. 函数极限 $\lim_{n\to\infty} f(x)$ 存在而且有限的充分必要条件是:对于任意给定的 $\varepsilon>0$,存在 X>0,使得对于一切 x',x''>X,成立

$$|f(x') - f(x'')| < \varepsilon.$$

推论. 可以对应给出函数极限 $\lim_{x\to x_0} f(x)$, $\lim_{x\to x_{0^+}} f(x)$, $\lim_{x\to x_{0^-}} f(x)$, $\lim_{x\to -\infty} f(x)$ 存在而且有限的 Cauchy 收敛原理.

M 3.1.4.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

推论. 在 $0 < x < \frac{\pi}{2}$ 时,有 $\sin x < x < \tan x$.

例 3.1.5. 对于任意实数 $\alpha \neq 0$,有

$$\lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha \; ;$$

对于任意实数 $\alpha, \beta \neq 0$,则有

$$\lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} = \frac{\alpha}{\beta} .$$

例 3.1.6. $\sin \frac{1}{x}$ 在 x = 0 没有极限.

例 3.1.12.

$$L = \lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_k x^k}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_j x^j} = \begin{cases} \frac{a_n}{b_n}, & n = m, \\ 0, & n < m, \\ \infty, & n > m. \end{cases}$$

$$l = \lim_{x \to 0} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_k x^k}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_j x^j} = \begin{cases} \frac{a_k}{b_k}, & k = j, \\ 0, & k > j, \\ \infty, & k < j. \end{cases}$$

例 3.1.13.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e.$$

推论.
$$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}$$
.

3.2 连续函数

定理 (连续函数的四则运算). 设 $\lim_{x\to x_0}f(x)=f(x_0), \lim_{x\to x_0}g(x)=g(x_0)$,则

- 1. $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha f(x_0) + \beta g(x_0)$ (α, β 是常数);
- 2. $\lim_{x \to x_0} (f(x)g(x)) = f(x_0)g(x_0);$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f(x_0)}{g(x_0)} (g(x_0) \neq 0).$

定理 3.2.1 (反函数存在性定理). 若函数 y = f(x), $x \in D_f$ 是严格单调增加(减少)的,则存在它的反函数 $x = f^{-1}(y)$, $y \in R_f$,并且 $f^{-1}(y)$ 也是严格单调增加(减少)的.

定理 3.2.2 (反函数连续性定理). 设函数 y = f(x) 在闭区间 [a,b] 上连续且严格单调增加, $f(a) = \alpha, f(b) = \beta$,则它的反函数 $x = f^{-1}(y)$ 在 $[\alpha, \beta]$ 连续且严格单调增加.

定理 3.2.3 (复合函数的连续性). 若 y = g(x) 在点 x_0 连续, $g(x_0) = u_0$,又 y = f(u) 在点 u_0 连续,则复合函数 $f \circ g(x)$ 在点 x_0 连续.

推论. 若 f(x) 在 x_0 连续,则有 $\lim_{x\to x_0} f(x) = f\left(\lim_{x\to x_0} x\right)$.

定理 3.2.4. 一切初等函数在其定义区间上连续.

例 3.2.7. 设 Riemann 函数 R(x) 定义如下:

$$R(x) = \begin{cases} \frac{1}{p}, & x = \frac{q}{p} \ (p \in \mathbb{N}^+, q \in \mathbb{Z} \setminus \{0\}, \ p, q \subseteq \mathbb{Z}), \\ \\ 1, & x = 0, \\ \\ 0, & x \notin \mathbb{Z} \times \mathbb{Z} \end{cases}$$

其中定义 R(0) = 1 是因为 x = 0 可写成 $x = \frac{0}{1}$,同时也保证了 R(x) 的周期性.

有 R(x) 在任意点 x_0 的极限都存在,且极限值为 0. 换言之,一切无理点是 R(x) 的连续点,而一切有理点是 R(x) 的第三类不连续点.

例 3.2.8. 区间 (a, b) 上单调函数的不连续点必为第一类不连续点.

3.3 无穷大量

定理. $f(x) \to A \Leftrightarrow f(x) = A + o(1)$.

推论. $\alpha \sim \beta \Leftrightarrow \beta = \alpha + o(\alpha)$.

定理 3.3.1 (等价量替换定理). 设 u(x), v(x) 和 w(x) 在 x_0 的某个去心邻域 $\overset{\circ}{U}$ 上有定义,且 $\lim_{x\to x_0} \frac{v(x)}{w(x)} = 1$ (即 $v(x) \sim w(x)(x \to x_0)$),那么

1.
$$\stackrel{\text{def}}{=} \lim_{x \to x_0} u(x)w(x) = A$$
 时, $\lim_{x \to x_0} u(x)v(x) = A$.

2.
$$\stackrel{\underline{\smile}}{=} \lim_{x \to x_0} \frac{u(x)}{w(x)} = A$$
 时, $\lim_{x \to x_0} \frac{u(x)}{v(x)} = A$.

例.
$$\sin \sim x(x \to 0), 1 - \cos x \sim \frac{1}{2}x^2(x \to 0).$$

推论. $\arcsin x \sim x(x \to 0)$, $\tan x \sim x(x \to 0)$, $\arctan x \sim x(x \to 0)$.

例 3.3.1.
$$x = o\left(\left(\frac{-1}{\ln x}\right)^k\right) (x \to 0^+, k \in \mathbb{N}^+).$$

例 3.3.2.
$$e^{-\frac{1}{x}} = o(x^k)(x \to 0^+, k \in \mathbb{N}^+).$$

例 3.3.3.
$$ln(1+x) \sim x(x \to 0)$$
.

例 3.3.4.
$$e^x - 1 \sim x(x \to 0)$$
.

例 3.3.5.
$$(1+x)^{\alpha}-1\sim \alpha x(x\to 0)$$
.

例 3.3.8.

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n+1} x^{n+1} + \dots + a_m x^m}{b_n x^n + b_{n+1} x^{n+1} + \dots + b_m x^m} = \lim_{x \to \infty} \frac{a_m x^m}{b_m x_m} = \frac{a_m}{b_m} \quad (a_m, b_m \neq 0) ,$$

$$\lim_{x \to 0} \frac{a_n x^n + a_{n+1} x^{n+1} + \dots + a_m x^m}{b_n x^n + b_{n+1} x^{n+1} + \dots + b_m x^m} = \lim_{x \to 0} \frac{a_n x^n}{b_n x_n} = \frac{a_n}{b_n} \quad (a_n, b_n \neq 0) .$$

3.4 闭区间上的连续函数

定理 3.4.1 (有界性定理). 若函数 f(x) 在闭区间 [a,b] 上连续,则它在 [a,b] 上有界.

定理 3.4.2 (最**值定理).** 若函数 f(x) 在闭区间 a,b 上连续,则它在闭区间 a,b 上必能取到最大值与最小值,记存在 ξ 和 $\eta \in [a,b]$,对于一切 $x \in [a,b]$,成立

$$f(\xi) \leqslant f(x) \leqslant f(\eta)$$
.

定理 3.4.3 (零点存在定理). 若函数 f(x) 在闭区间 [a,b] 上连续,且 $f(a)\cdot f(b)<0$,则一定存在 $\xi\in(a,b)$,使得 $f(\xi)=0$.

定理 3.4.4 (介值定理). 若函数 f(x) 在闭区间 [a,b] 上连续,则它一定能取到最大值 $M = \max\{f(x) \mid x \in [a,b]\}$ 和最小值 $m = \min\{f(x) \mid x \in [a,b]\}$ 之间的任何一个值.

定理 3.4.5. 设函数 f(x) 在区间 X 上定义,则 f(x) 在 X 上一致连续的充分必要条件是: 对任何点列 $\{x'_n\}(x'_n \in X)$ 和 $\{x''_n\}(x''_n \in X)$,只要满足 $\lim_{n\to\infty}(f(x'_n)-f(x''_n))=0$.

定理 3.4.6 (Cantor **定理**). 若函数 f(x) 在闭区间 [a,b] 上连续,则它在 [a,b] 上一致连续.

定理 3.4.7. 若函数 f(x) 在有限开区间 (a,b) 上连续,则 f(x) 在 (a,b) 上一致连续的充分 必要条件是: $f(a^+)$ 与 $f(b^-)$ 存在.

4 微分

4.1 微分和导数

定理 4.1.1. 函数 f(x) 在 x 处可微的充分必要条件是 f(x) 在 x 处可导.

4.2 导数的意义和性质

4.3 导数四则运算和反函数求导法则

定理 4.3.1 (加法求导法则). 设 f(x) 和 g(x) 在某一区间上是可导的,则对任意常数 c_1 和 c_2 ,它们的线性组合 $c_1 f(x) + c_2 g(x)$ 也在该区间上可导,且满足如下线性关系

$$[c_1 f(x) + c_2 g(x)]' = c_1 f'(x) + c_2 g'(x) .$$

定理 4.3.2 (乘法求导法则). 设 f(x) 和 g(x) 在某一区间上是可导的,则它们的积函数也在该区间上可导,且满足

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x);$$

相应的微分表达式为

$$d[f(x) \cdot g(x)]' = d[f(x)]g(x) + f(x)d[g(x)].$$

定理 4.3.3 (倒数求导法则). 设 f(x) 和 g(x) 在某一区间上是可导的,且 $g(x) \neq 0$,则它们的商函数也在该区间上可导,且满足

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x);$$

相应的微分表达式为

$$d[f(x) \cdot g(x)]' = d[f(x)]g(x) + f(x)d[g(x)].$$

推论 (除法求导法则). 设 g(x) 在某一区间上可导,且 $g(x) \neq 0$,则它的倒数也在该区间上可导,且满足

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2};$$

相应的微分表达式为

$$d\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)d[f(x)] - f(x)d[g(x)]}{[g(x)]^2}.$$

定理 4.3.4 (反函数求导定理). 若函数 y = f(x) 在 (a,b) 上连续、严格单调、可导并且 $f'(x) \neq 0$,记 $\alpha = \min\{f(a^+), g(b^-)\}, \beta = \max\{f(a^+), f(b^-)\}, 则它的反函数 <math>x = f^{-1}(y)$ 在 α, β 上可导,且有

$$[f^{-1}(y)]' = \frac{1}{f'(x)}$$
.

4.4 复合函数求导法则及其应用

定理 4.4.1 (复合函数求导法则). 设函数 u=g(x) 在 $x=x_0$ 可导,而函数 y=f(u) 在 $u=u_0=g(x_0)$ 处可导,则复合函数 y=f(g(x)) 在 $x=x_0$ 可导,且有

$$[f(g(x))]' = f'(u_0)g'(x_0) = f'(g(x_0))g'(x_0)$$
.

4.5 高阶导数和微分

定理 4.5.1 (高阶导数加法求导法则). 设 f(x) 和 g(x) 都是 n 阶可导的,则对任意常数 c_1 和 c_2 ,它们的线性组合 $c_1 f(x) + c_2 g(x)$ 也是 n 阶可导的,且满足如下的线性运算关系

$$[c_1 f(x) + c_2 g(x)]^{(n)} = c_1 f^{(n)}(x) + c_2 g^{(n)}(x).$$

定理 4.5.2 (Leibniz 公式). 设 f(x) 和 g(x) 都是 n 阶可导函数,则它们的积函数也 n 阶可导,且成立公式

$$[f(x) \cdot g(x)]^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x) g^{(k)}(x) .$$

5 微分中值定理及其应用

5.1 微分中值定理

定理 5.1.1 (Fermat 引理). 设 x_0 是 f(x) 的一个极值点,且 f(x) 在 x_0 处导数存在,则

$$f'(x_0) = 0.$$

定理 5.1.2 (Rolle **定理**). 设函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 上可导,且 f(a) = f(b),则至少存在一点 $\xi \in (a,b)$,使得

$$f'(\xi) = 0.$$

定理 5.1.3 (Lagrange 中值定理). 设函数 f(x) 在闭区间 [a,b] 连续,在开区间 (a,b) 可导,则至少存在一点 $\xi \in (a,b)$,使得

$$f'(\xi) = \frac{f(b) - b(a)}{b - a}.$$

推论. Lagrange 公式也可以写成

$$f(b) - f(a) = f'(a + \theta(b - a))(b - a), \quad (\theta \in (0, 1))$$

,或将 a 记为 x, b-a 记为 Δx ,则有

$$f(x + \Delta x) - f(x) = f'(x + \theta \Delta x) \Delta x, \quad \theta \in (0, 1)$$

定理 5.1.4. 若 f(x) 在 (a,b) 上可导且有 $f'(x) \equiv 0$,则 f(x) 在 (a,b) 上恒为常数.

定理 5.1.5 (一阶导数与单调性的关系). 设函数 f(x) 在区间 I 上可导,则 f(x) 在区间 I 上 单调增加的充分必要条件是: 对于任一 $x \in I$ 有 $f'(x) \ge 0$;

特别地, 若对于任一 $x \in I$ 有 f'(x) > 0, 则 f(x) 在 I 上严格单调增加.

定理 5.1.6 (二阶导数与凸性的关系). 设函数 f(x) 在区间 I 上二阶可导,则 f(x) 在区间 I 上是下凸函数的充分必要条件是: 对于任意 $x \in I$ 有 f''(x) > 0.

特别地,若对于任意 $x \in I$ 有 f''(x) > 0,则 f(x) 在 I 上是严格下凸函数.

定理 5.1.7. 设 f(x) 在区间 I 上连续, $(x_0 - \delta, x_0 + \delta) \subset I$.

- 1. 设 f(x) 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上二阶可导. 若 f''(x) 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上的符号相反,则点 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点;若 f''(x) 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上的符号相同,则点 $(x_0, f(x_0))$ 不是曲线 y = f(x) 的拐点.
- 2. 设 f(x) 在 $(x_0 \delta, x_0 + \delta)$ 上二阶可导,若点 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点,则 f''(x) = 0.

定理 5.1.8 (Jensen 不等式). 若 f(x) 为区间 I 上的下凸(上凸)函数,则对于任意 $x_i \in I$ 和满足 $\sum_{i=1}^{n} \lambda_i = 1$ 的 $\lambda_i > 0 (i = 1, 2, \dots, n)$,成立

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i) \quad \left(f(\sum_{i=1}^{n}) \lambda_i x_i \geqslant \sum_{i=1}^{n} \lambda_i f(x_i)\right).$$

特别地,取 $\lambda_i = \frac{1}{n} (i = 1, 2, \dots, n)$,就有

$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) \leqslant \frac{1}{n}\sum_{i=1}^{n}f(x_i) \quad \left(f\left(\frac{1}{n}\sum_{i=1}^{n}f(x_i)\right) \geqslant \frac{1}{n}\sum_{i=1}^{n}f(x_i)\right) .$$

定理 5.1.9 (Cauchy 中值定理). 设 f(x) 和 g(x) 都在闭区间 [a,b] 上连续,在开区间 (a,b) 上可导,且对于任意 $x \in (a,b), g'(x) \neq 0$. 则至少存在一点 $\xi \in (a,b)$,使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

例 5.1.1 (Legendre **多项式**). 如下定义的函数

$$p_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \quad (n = 0, 1, 2, \dots)$$

被称为 Legendre 多项式,且 $p_n(x)$ 在 (-1,1) 上恰有 n 个不同的根.

例 5.1.3.

$$|\arctan a - \arctan b| \leq |a - b|$$
.

5.2 L'Hospital 法则

定理 5.2.1 (L'Hospital 法则). 设函数 f(x) 和 g(x) 在 (a, a + d] 上可导(d 是某个正常数),且 $g'(x) \neq 0$. 若此时有

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$

或

$$\lim_{x \to a^+} g(x) = \infty ,$$

且 $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ 存在(可以为有限或 ∞),则成立

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

5.3 Taylor 多项式和插值多项式

定理 5.3.1 (带 Peano **余项的** Taylor **多项式**). 设 f(x) 在 x_0 处有 n 阶导数,则存在 x_0 的一个邻域,对于该邻域中的任一点 x,成立

$$f(x) = f(x_0) + f'(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n + r_n(x) ,$$

其中余项 $r_n(x)$ 满足

$$r_n(x) = o((x - x_n)^n) .$$

定理 5.3.2 (带 Lagrange **余项的** Taylor **多项式**). 设 f(x) 在 [a,b] 上具有 n 阶连续导数,且在 (a,b) 上有 n+1 阶导数. 设 $x_0 \in [a,b]$ 为一定点,则对于任意 $x \in [a,b]$,成立

$$f(x) = f(x_0) + f'(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n + r_n(x) ,$$

其中余项 $r_n(x)$ 满足

$$r_n(x) = \frac{f^{(n)}(\xi)}{(n+1)!} (x - x_0)^{n+1} .$$

定理 5.3.3 (插值多项式的余项定理). 设 f(x) 在 [a,b] 上具有 n 阶连续导数,在 (a,b) 上具有 n+1 阶导数,且 f(x) 在 [a,b] 上的 m+1 个互异点 x_0,x_1,\cdots,x_m 上的函数值和若干阶导数值 $f^{(j)}(x_i)(i=0,1,\cdots,m,j=0,1,\cdots,n_i-1,\sum_{i=0}^m n_i=n+1)$ 是已知的,则对于任意 $x\in [a,b]$,上述插值问题有余项估计

$$r_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^m (x - x_i)^{n_i},$$

这里 ξ 是介于 $x_{\min} = \min\{x_0, x_1, \cdots, x_m, x\}$ 和 $x_{\max}\{x_0, x_1, \cdots, x_m, x\}$ 之间的一个数(一般依赖于 x).

5.4 函数的 Taylor 公式及其应用

定理 5.4.1. 设 f(x) 在 x_0 的某个邻域有 n+2 阶导数存在,则它的 n+1 次 Taylor 多项式的导数恰为 f'(x) 的 n 次 Taylor 多项式.

5.5 应用举例

定理 5.5.1 (极值点判定定理). 设函数 f(x) 在 x_0 点的某一邻域中有定义,且 f(x) 在 x_0 点 连续.

- 1. 设存在 $\delta > 0$, 使得 f(x) 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上可导.
 - (a) 若在 $(x_0 \delta, x_0)$ 上有 $f'(x) \ge 0$,在 $(x_0, x_0 + \delta)$ 上有 $f'(x) \le 0$,则 x_0 是 f(x) 的极大值点.
 - (b) 若在 $(x_0 \delta, x_0)$ 上有 $f'(x) \leq 0$,在 $(x_0, x_0 + \delta)$ 上有 $f'(x) \geq 0$,则 x_0 是 f(x) 的极小值点.
 - (c) 若 f'(x) 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上同号,则 x_0 不是 f(x) 的极值点.
- 2. 设 $f'(x_0) = 0$,且 f(x) 在 x_0 点二阶可导.
 - (a) 若 $f''(x_0) < 0$,则 x_0 是 f(x) 的极大值点.

 - (c) 若 $f''(x_0) = 0$, 则 x_0 可能是 f(x) 的极值点, 也可能不是 x_0 的极值点.

9 数项级数

9.2 上极限与下级限

定理 9.2.1. E 的上确界 H 和下确界 h 均属于 E,即

 $H = \max E$, $h = \min E$.

定理 9.2.2. $\lim_{n\to\infty} x_n$ 存在(有限数、 $+\infty$ 或 $-\infty$)的充分必要条件是

$$\overline{\lim}_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n .$$

定理 9.2.3. 设 $\{x_n\}$ 是有界数列. 则

- 1. $\overline{\lim}_{n\to\infty} = H$ 的充分必要条件是:对任意给定的 $\varepsilon > 0$,
 - (a) 存在正整数 N, 使得

$$x_n < H + \varepsilon$$

对一切 n > N 成立;

(b) $\{x_n\}$ 中有无穷多项,满足

$$x_n > H - \varepsilon$$
.

- 2. $\underline{\lim}_{n\to\infty} = h$ 的充分必要条件是: 对任意给定的 $\varepsilon > 0$,
 - (a) 存在正整数 N, 使得

$$x_n > h - \varepsilon$$

对一切 n > N 成立;

(b) $\{x_n\}$ 中有无穷多项,满足

$$x_n < h + \varepsilon$$
.

定理 9.2.4 (上下级限的加法运算). 设 $\{x_n\}$, $\{y_n\}$ 是两数列,则

1.
$$\overline{\lim}_{n\to\infty}(x_n+y_n)\leqslant \overline{\lim}_{n\to\infty}x_n+\overline{\lim}_{n\to\infty}y_n$$

$$\underline{\lim}_{n\to\infty}(x_n+y_n)\geqslant \underline{\lim}_{n\to\infty}x_n+\underline{\lim}_{n\to\infty}y_n;$$

2. 若 $\lim_{n\to\infty} x_n$ 存在,则

$$\overline{\lim}_{n\to\infty}(x_n+y_n)=\overline{\lim}_{n\to\infty}x_n+\overline{\lim}_{n\to\infty}y_n,$$

$$\underline{\lim}_{n\to\infty}(x_n+y_n)=\underline{\lim}_{n\to\infty}x_n+\underline{\lim}_{n\to\infty}y_n.$$

(要求上述诸式的右端不是待定型,即不为 $(+\infty)$ + $(-\infty)$ 等.)

定理 9.2.5 (上下级限的乘法运算). 设 $\{x_n\}$, $\{y_n\}$ 是两数列,

1. 若 $x_n \geqslant 0, y_n \geqslant 0$,则

$$\overline{\lim}_{n\to\infty}(x_ny_n)\leqslant \overline{\lim}_{n\to\infty}x_n\cdot\overline{\lim}_{n\to\infty}y_n\;,$$

$$\underline{\lim}_{n\to\infty}(x_ny_n)\geqslant \underline{\lim}_{n\to\infty}x_n\cdot\underline{\lim}_{n\to\infty}y_n;$$

2. 若 $\lim_{n \to \infty} x_n = x, 0 < x < +\infty$,则

$$\underline{\lim}_{n\to\infty}(x_ny_n) = \lim_{n\to\infty}x_n \cdot \overline{\lim}_{n\to\infty}y_n ,$$

$$\overline{\lim}_{n\to\infty}(x_ny_n) = \lim_{n\to\infty}x_n \cdot \underline{\lim}_{n\to\infty}y_n.$$

(要求上述诸式的右端不是待定型,即不为 $0\cdot(+\infty)$ 等.)

定理 9.2.6 (上下级限的第二定义). 设 $\{x_n\}$ 是一个有界数列,记

$$H^* = \lim_{n \to \infty} \sup_{k > n} \{x_k\} ,$$

$$h^* = \lim_{n \to \infty} \inf_{k > n} \{x_k\} .$$

则 H^* 是 $\{x_n\}$ 的最大极限点, h^* 是 $\{x_n\}$ 的最小极限点.

10 函数项级数

10.1 函数项级数的一致收敛性

定义 (函数项级数). 设 $u_n(x)(n=1,2,3,\cdots)$ 是具有公共定义域 E 的一列函数,我们将这无穷个函数的"和"

$$u_1(x) + u_2(x) + \cdots + u_n(x) + \cdots$$

称为**函数项级数**,记为 $\sum_{n=1}^{\infty} u_n(x)$.

定义 10.1.1 (收敛点、收敛域、和函数、点态收敛). 设 $u_n(x)(n=1,2,3,\cdots)$ 在 E 上定义. 对于任一固定的 $x_0 \in E$, 若数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,则称函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在点 x_0 收敛,或称 x_0 是 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛点.

函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛点全体所构成的集合称为 $\sum_{n=1}^{\infty} u_n(x)$ 的**收敛域**.

设 $\sum\limits_{n=1}^\infty u_n(x)$ 的收敛域为 $D\subset E$,则 $\sum\limits_{n=1}^\infty u_n(x)$ 就定义了集合 D 上的一个函数

$$S(x) = \sum_{n=1}^{\infty} u_n(x), \ x \in D.$$

S(x) 称为 $\sum_{n=1}^{\infty} u_n(x)$ 的**和函数**. 由于这是通过逐点定义的方式得到的,因此称 $\sum_{n=1}^{\infty} u_n(x)$ 在 D 上**点态收敛**于 S(x).

定义 10.1.2 (**一致收敛**). 设 $\{S_n(x)\}(x \in D)$ 是一函数序列,若对给定的 $\varepsilon > 0$,存在仅与 ε 有关的正整数 $N(\varepsilon)$,当 $n > N(\varepsilon)$ 时,

$$|S_n(x) - S(x)| < \varepsilon$$

对一切 $x \in D$ 成立,则称 $\{S_n(x)\}$ 在 D 上一致收敛于 S(x),记为 $S_n(x) \stackrel{D}{\Rightarrow} S(x)$.

若函数项级数 $\sum\limits_{n=1}^{\infty}u_n(x)(x\in D)$ 的部分和函数序列 $\{S_n(x)\}$,其中 $S_n(x)=\sum\limits_{k=1}^nu_k(x)$,在 D 上一致收敛于 S(x),则我们称 $\sum\limits_{n=1}^{\infty}u_n(x)$ 在 D 上一致收敛于 S(x).

定义 10.1.3 (内闭一致收敛). 若对于任意给定的闭区间 [a,b]ssetD,函数序列 $\{S_n(x)\}$ 在 [a,b] 上一致收敛于 S(x),则称 $S_n(x)$ 在 D 上**内闭一致收敛**于 S(x).

定理 10.1.1. 设函数序列 $\{S_n(x)\}$ 在集合 D 上点态收敛于 S(x),定义 $S_n(x)$ 与 S(x) 的 "距离"为

$$d(S_n, S) = \sup_{x \in D} |S_n(x) - S(x)|,$$

则 $|S_n(x)|$ 在 D 上一致收敛于 S(x) 的充分必要条件是

$$\lim_{n\to\infty} d(S_n, S) = 0 .$$

推论. 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在 D 上一致收敛,则函数序列 $\{u_n(x)\}$ 在 D 上一致收敛于 $u(x)\equiv 0$.

11 Euclid 空间上的极限和连续

12 多元函数的微分学

12.1 偏导数与全微分

定理 12.1.1. 设 $D \in \mathbb{R}^2$ 为开集, $(x_0, y_0) \in D$ 为一定点. 如果函数

$$z = f(x, y)$$

在 (x_0, y_0) 可微,那么对于任一方向 $v = (\cos \alpha, \sin \alpha)$, f 在 (x_0, y_0) 点沿方向 v 的方向导数存在,且

$$\frac{\partial f}{\partial v}(x_0, y_0) = \frac{\partial f}{\partial x}(c_0, y_0) \cos \alpha + \frac{\partial f}{\partial y}(x_0, y_0) \sin \alpha \ .$$

定理 12.1.2. 设函数 x = f(x,y) 在 (x_0, y_0) 点的某个邻域上存在偏导数,并且偏导数在 (x_0, y_0) 连续,那么 f 在 (x_0, y_0) 点可微.

定理 12.1.3. 如果函数 z = f(x,y) 的两个混合偏导数 f_{xx} 和 f_{yx} 在点 (x_0,y_0) 连续,那么等式

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

成立.

定理 12.1.4. 向量值函数 f 在 x^0 点可微的充分必要条件是向量值函数 f 的每个坐标分量函数 $f_i(x_1, x_2, \dots, x_n) (i = 1, 2, \dots, m)$ 都在 x^0 点可微. 此时成立微分公式

$$dy = f'(x^0)dx .$$

12.2 多元复合函数的求导法则

定理 12.2.1 (链式法则). 设 g 在 $(u_0, v_0) \in D_g$ 点可导,即 x = x(u, v), y = y(u, v) 在 (u_0, v_0) 点可偏导. 记 $x_0 = x(u_0, v_0), y_0 = y(u_0, v_0)$,如果 f 在 (x_0, y_0) 点可微,那么

$$\frac{\partial z}{\partial u}(u_0, v_0) = \frac{\partial z}{\partial x}(x_0, y_0) \frac{\partial x}{\partial u}(u_0, v_0) + \frac{\partial z}{\partial y}(x_0, y_0) \frac{\partial y}{\partial u}(u_0, v_0);$$

$$\frac{\partial z}{\partial v}(u_0, v_0) = \frac{\partial z}{\partial x}(x_0, y_0) \frac{\partial x}{\partial v}(u_0, v_0) + \frac{\partial z}{\partial u}(x_0, y_0) \frac{\partial y}{\partial v}(u_0, v_0).$$

定理 12.2.2 (链式法则). 设 g 在 $x^0 \in D_g$ 点可到,即 y_1, y_2, \cdots, y_m 在 x^0 点可偏导,且 f 在 $y^0 = g(x^0)$ 点可微,则

$$\frac{\partial z}{\partial x_i}(x^0) = \frac{\partial z}{\partial y_1}(y^0)\frac{\partial y_1}{\partial x_i}(x^0) + \frac{\partial z}{\partial y_2}(y^0)\frac{\partial y_2}{\partial x_i}(x^0) + \dots + \frac{\partial z}{\partial y_m}(y^0)\frac{\partial y_m}{\partial x_i}(x^0), \ i = 1, 2, \dots, n.$$

上式可以用矩阵表示为

$$\left(\frac{\partial z}{\partial x_1}, \frac{\partial z}{\partial x_2}, \dots, \frac{\partial z}{\partial x_n}\right)_{x=x^0} = \left(\frac{\partial z}{\partial y_1}, \frac{\partial z}{\partial y_2}, \dots, \frac{\partial z}{\partial y_n}\right)_{y=y^0} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}_{x=x^0}.$$

或用向量值函数的导数记号表示为

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0)$$
.

定理 12.2.3. 设 $f:D_f(\subset \mathbb{R}^k) \to \mathbb{R}^m$ 与 $g:D_g(\subset \mathbb{R}^n) \to \mathbb{R}^n$ 分别是多元向量值函数,且分别在 D_f 与 D_g 上具有连续导数. 如果 g 的值域 $g(D_g) \subset D_f$,并记 u=g(x),那么复合向量值函数 $f \circ g$ 在 D_g 上也具有连续的导数,并且成立等式

$$(f \circ g)'(x) = f'(u) \cdot g'(x) = f'[g(x)] \cdot g'(x) ,$$

其中 f'(u), g'(x) 和 $(f \circ g)'(x)$ 是相应的导数,即 Jacobi 矩阵.

12.3 中值定理和 Taylor 公式

定理 12.3.1 (中值定理). 设二元函数 f(x,y) 在凸区域 $D \subset \mathbb{R}^2$ 上可微,则对于 D 内任意两点 (x_0,y_0) 和 $(x_0+\Delta x,y_0+\Delta y)$,至少存在一个 $\theta(0<\theta<1)$,使得

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + f_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y.$$

推论. 如果函数 f(x,y) 在区域 $D \subset \mathbb{R}^2$ 上的偏导数恒为零,那么它在 D 上必是常值函数.

定理 12.3.2. 设 n 元函数 $f(x_1, x_2, \dots, x_n)$ 在凸区域 $D \subset \mathbb{R}^2$ 上可微,则对于 D 内任意两点 $(x_1^0, x_2^0, \dots, x_n^0)$ 和 $(x_1^0 + \Delta x_1, x_2^0 + \Delta x_2, \dots, x_n^0 + \Delta x_n)$,至少存在一个 $\theta(0 < \theta < 1)$,使得

$$f(x_1^0 + \Delta x_1, x_2^0 + \Delta x_2, \cdots, x_n^0 + \Delta x_n) - f(x_1^0, x_2^0, \cdots, x_n^0)$$

$$= \sum_{i=1}^n f_{x_i}(x_1^0 + \theta \Delta x_1, x_2^0 + \theta \Delta x_2, \cdots, x_n^0 + \theta \Delta x_n) \Delta x_i.$$

定理 12.3.3 (Taylor 公式). 设函数 f(x,y) 在点 x_0, y_0 邻域 $U = O((x_0, y_0), r)$ 上具有 k+1 阶连续偏导数,那么对于 U 内每一点 $(x_0 + \Delta x, y_0 + \Delta y)$ 都成立

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \dots + \frac{1}{k!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^k f(x_0, y_0) + R_k.$$

其中 $R_k = \frac{1}{(k+1)!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y} \right)^{k+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) (0 < \theta < 1)$ 称为 Lagrange 余项.

注. 这里

$$\left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^p f(x_0, y_0) = \sum_{i=0}^p C_p^i \frac{\partial^p f}{\partial x^{p-i} \partial y^i} (x_0, y_0) (\Delta x)^{p-i} (\Delta y)^i \quad (p \geqslant 1).$$

推论. 设 f(x,y) 在点 (x_0,y_0) 的某个邻域上具有 k+1 阶连续偏导数,那么在点 (x_0,y_0) 附近成立

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \dots + \frac{1}{k!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^k f(x_0, y_0) + o((\sqrt{x^2 + y^2})^k).$$

定理 12.3.4. 设 n 元函数 $f(x_1, x_2, \dots, x_n)$ 在点 $x_1^0, x_2^0, \dots, x_n^0$ 附近具有 k+1 阶连续偏导数,那么在这点附近成立如下的 Taylor 公式:

$$f(x_1^0 + \Delta x_1, x_2^0 + \Delta x_2, \dots, x_n^0 + \Delta x_n) = f(x_1^0, x_2^0, \dots, x_n^0) + \left(\sum_{i=1}^n \Delta x_i \frac{\partial}{\partial x_i}\right) f(x_1^0, x_2^0, \dots, x_n^0) + \frac{1}{2!} \left(\sum_{i=1}^n \Delta x_i \frac{\partial}{\partial x_i}\right)^2 f(x_1^0, x_2^0, \dots, x_n^0) + \dots + \frac{1}{k!} \left(\sum_{i=1}^n \Delta x_i \frac{\partial}{\partial x_i}\right)^k f(x_1^0, x_2^0, \dots, x_n^0) + R_k,$$

其中

$$R_k = \frac{1}{(k+1)!} \left(\sum_{i=1}^n \Delta x_i \frac{\partial}{\partial x_i} \right)^{k+1} f(x_1^0 + \Delta x_1, x_2^0 + \Delta x_2, \dots, x_n^0 + \Delta x_n), \quad 0 < \theta < 1$$

为 Lagrange 余项.

12.4 隐函数

定理 12.4.1 (一元隐函数存在定理). 若二元函数 F(x,y) 满足条件:

- 1. $F(x_0, y_0) = 0$;
- 2. 在闭矩形 $D = \{(x,y)||x-x_0| \leq a, |y=y_0| \leq b\}$ 上,F(x,y) 连续,且具有连续偏导数;
- 3. $F_y(x,y) \neq 0$,

那么

1. 在点 (x_0, y_0) 附近可以从函数方程

$$F(x,y) = 0$$

惟一确定隐函数

$$y = f(x), \quad x \in O(x, \rho)$$
,

它满足 F(x, f(x)) = 0,以及 $y_0 = f(x_0)$;

- 2. 隐函数 y = f(x) 在 $x \in O(x_0, \rho)$ 上连续;
- 3. 隐函数 y = f(x) 在 $x \in O(x_0, \rho)$ 上有连续的导数,且

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x(x,y)}{F_y(x,y)} .$$

定理 12.4.2 (多元隐函数存在定理). 若 n+1 元函数 $F(x_1,x_2,\cdots,x_n,y)$ 满足条件:

- 1. $F(x_1^0, x_2^0, \cdots, x_n^0, y^0) = 0$;
- 2. 在闭矩形 $D = \{(x,y) | |x_i x_i^0| \le a, |y = y^0| \le b, i = 1, 2, \dots, n\}$ 上,F(x,y) 连续,且具有连续偏导数 $F_y, F_{x_i}, i = 1, 2, \dots, n$;
- 3. $F_y(x_1^0, x_2^0, \dots, x_n^0, y^0) \neq 0$, 那么
- 1. 在点 $(x_1^0, x_2^0, \dots, x_n^0, y^0)$ 附近可以从函数方程

$$F(x_1, x_2, \cdots, x_n, y) = 0$$

惟一确定隐函数

$$y = f(x_1, x_2, \dots, x_n), \quad x_1, x_2, \dots, x_n \in O((x_1^0, x_2^0, \dots, x_n^0), \rho),$$

它满足 $F(x_1,x_2,\cdots,x_n,f(x_1,x_2,\cdots,x_n))=0$,以及 $y^0=f(x_1^0,x_2^0,\cdots,x_n^0)$;

- 2. 隐函数 $y = f(x_1, x_2, \dots, x_n)$ 在 $x \in O((x_1^0, x_2^0, \dots, x_n^0), \rho)$ 上连续;
- 3. 隐函数 $y = f(x_1, x_2, \cdots, x_n)$ 在 $x \in O((x_1^0, x_2^0, \cdots, x_n^0), \rho)$ 上有连续的导数,且

$$\frac{dy}{dx_i} = -\frac{F_{x_i}(x_1, x_2, \dots, x_n, y)}{F_{y_i}(x_1, x_2, \dots, x_n, y)}, \ i = 1, 2, \dots, n.$$

定理 12.4.3 (多元向量值隐函数存在定理). 设函数 F(x, y, u, v) 和 G(x, y, u, v) 满足条件:

- 1. $F(x_0, y_0, u_0, v_0) = 0, G(x_0, y_0, u_0, v_0) = 0$;
- 2. 在闭长方体

$$D = \{(x, y, u, v) | |x - x_0| \le a, |y - y_0| \le b, |u - u_0| \le c, |v - v_0| \le d\}$$

上,函数F,G连续,且具有连续偏导数;

3. 在 (x_0, y_0, u_0, v_0) 点, 行列式

$$\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} \neq 0 ,$$

那么

1. 在点 x_0, y_0, u_0, v_0 附近可以从函数方程组

$$\left\{ F(x, y, u, v) = 0 , G(x, y, u, v) = 0 \right.$$

惟一确定向量值隐函数

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}, \quad (x,y) \in O((x_0,y_0),\rho),$$

它满足
$$\begin{cases} F(x, y, f(x, y), g(x, y)) = 0, \\ G(x, y, f(x, y), g(x, y)) = 0, \end{cases}$$
 以及 $u_0 = f(x_0, y_0), v_0 = g(x_0, y_0);$

- 2. 这个向量值隐函数在 $O((x_0, y_0), \rho)$ 上连续:
- 3. 这个向量值隐函数在 $O((x_0, y_0), \rho)$ 上具有连续的导数,且

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = -\begin{pmatrix} F_u & F_v \\ G_u & G_v \end{pmatrix}^{-1} \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix}.$$

定理 12.4.4. 设 $m \uparrow n + m$ 元函数 $F_i(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m) (i = 1, 2, \dots, m)$ 满足以下条件:

- 1. $F_i(x_1^0, x_2^0, \dots, x_n^0, y_1^0, y_2^0, \dots, y_m^0) = 0, i = 1, 2, \dots, m;$
- 2. 在闭长方体

$$D = \{(x_1^0, x_2^0, \dots, x_n^0, y_1^0, y_2^0, \dots, y_m^0) |$$

$$|x_i - x_i^0| \le a_i, |y_j - y_j^0| \le b_j, i = 1, 2, \dots, n; j = 1, 2, \dots, m \}$$

上,函数 $F_i(i=1,2,\cdots,m)$ 连续,且具有连续偏导数;

3. 在 $(x_1^0, x_2^0, \dots, x_n^0, y_1^0, y_2^0, \dots, y_m^0)$ 点, Jacobi 行列式

$$\frac{\partial(F_1, F_2, \cdots, F_m)}{\partial(y_1, y_2, \cdots, y_m)} \neq 0,$$

那么

1. 在点 $(x_1^0, x_2^0, \dots, x_n^0, y_1^0, y_2^0, \dots, y_m^0)$ 的某个邻域上,可以从函数方程组

$$\begin{cases} F_1(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m) = 0, \\ F_2(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m) = 0, \\ \vdots \\ F_m(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m) = 0, \end{cases}$$

惟一确定向量值隐函数

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{pmatrix}, \quad (x_1, x_2, \dots, x_n) \in O((x_1^0, x_2^0, \dots, x_n^0), \rho),$$

它满足

$$F_i(x_1, x_2, \cdots, x_n, f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = 0,$$

以及 $y_i^0 = f_i(x_1^0, x_2^0, \cdots, x_n^0) (i = 1, 2, \cdots, m);$

- 2. 这个向量值隐函数在 $O((x_1^0, x_2^0, \cdots, x_n^0), \rho)$ 上连续;
- 3. 这个向量值隐函数在 $O((x_1^0, x_2^0, \cdots, x_n^0), \rho)$ 上具有连续的导数,且

$$\begin{pmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n}
\end{pmatrix} = - \begin{pmatrix}
\frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \cdots & \frac{\partial F_1}{\partial y_m} \\
\frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} & \cdots & \frac{\partial F_2}{\partial y_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \cdots & \frac{\partial F_m}{\partial y_m}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \cdots & \frac{\partial F_m}{\partial y_m}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n}
\end{pmatrix} - \begin{pmatrix}
\frac{\partial F_1}{\partial x_1} &$$

在具体计算向量值隐函数的导数时,通常用以下方法:分别对

$$F_i(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m) = 0, \quad i = 1, 2, \dots, m$$

关于 x_i 求偏导,得到

$$\frac{\partial F_i}{\partial x_j} + \sum_{k=1}^m \frac{\partial F_i}{\partial y_k} \frac{\partial y_k}{\partial x_j} = 0, \quad i = 1, 2, \dots, m.$$

解这个联立方程组,应用 Cramer 法则得到

$$\frac{\partial y_k}{\partial x_j} = -\frac{\frac{\partial (F_1, F_2, \cdots, F_{k-1}, F_k, F_{k+1}, \cdots, F_m)}{\partial (y_1, y_2, \cdots, y_{k-1}, x_j, y_{k+1}, \cdots, y_m)}}{\frac{\partial (F_1, F_2, \cdots, F_m)}{\partial (y_1, y_2, \cdots, y_m)}}, \quad k = 1, 2, \cdots, m; \ j = 1, 2, \cdots, n.$$

定理 12.4.5 (逆映射定理). 设 $P_0 = (u_0, v_0) \in D, x_0 = x(u_0, v_0), y_0 = y(u_0, v_0), P'_0 = (x_0, y_0)$,且 f 在 D 上具有连续导数. 如果在 P_0 点处的 Jacobi 行列式

$$\frac{\partial(x,y)}{\partial(u,v)} \neq 0 \; ,$$

那么存在 P_0' 的一个邻域 $O(P_0', \rho)$, 在这个邻域上存在 f 的具有连续导数的逆映射 g:

$$u = u(x, y), v = v(x, y), (x, y) \in O(P'_0, \rho),$$

满足

1. $u_0 = u(x_0, y_0), v_0 = v(x_0, y_0);$ $\frac{\partial u}{\partial x} = \frac{\partial y}{\partial v} / \frac{\partial(x, y)}{\partial(u, v)}, \quad \frac{\partial u}{\partial y} = -\frac{\partial x}{\partial v} / \frac{\partial(x, y)}{\partial(u, v)},$ 2. $\frac{\partial v}{\partial x} = -\frac{\partial y}{\partial u} / \frac{\partial(x, y)}{\partial(u, v)}, \quad \frac{\partial u}{\partial y} = \frac{\partial x}{\partial u} / \frac{\partial(x, y)}{\partial(u, v)}.$

定理 12.4.6. 设 D 为 \mathbb{R}^2 中的开集,且映射 $f:D\to\mathbb{R}^2$ 在 D 上具有连续导数. 如果 f 的 Jacobi 行列式在 D 上恒不为零,那么 D 的像集 f(D) 是开集.

12.5 偏导数在几何中的应用

定理 12.5.1. 曲线 $\begin{cases} F(x,y,z)=0, \\ &\text{在 }P_0 \text{ 点的法平面就是由向量 } \operatorname{grad} F(P_0) \text{ 和 } \operatorname{grad} G(P_0) \end{cases}$ 张成的过 P_0 的平面.

12.6 无条件极值

定理 12.6.1 (必要条件). 设 x_0 为函数 f 的极值点,且 f 在 x_0 点可偏导,则 f 在 x_0 点的各个一阶偏导数都为 0,即

$$f_{x_1}(x_0) = f_{x_2}(x_0) = \dots = f_{x_n}(x_0) = 0$$
.

定理 12.6.2. 设 (x_0, y_0) 为 f 的驻点,f 在 (x_0, y_0) 附近具有二阶连续偏导数. 记

$$A = f_{xx}(x_0, y_0), B = f_{xy}(x_0, y_0), G = f_{yy}(x_0, y_0),$$

并记

$$H = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2 ,$$

那么

- 1. 若 H > 0: A > 0 时 $f(x_0, y_0)$ 为极小值; A < 0 时 $f(x_0, y_0)$ 为极大值;
- 2. 若 H < 0: $f(x_0, y_0)$ 不是极值.

定理 12.6.3. 设 n 元函数 f(x) 在 $x_0 = (x_1^0, x_2^0, \dots, x_n^0)$ 附近具有二阶连续偏导数,且 x_0 为 f(x) 的驻点,那么当二次型

$$g(\zeta) = \sum_{i,j=1}^{n} f_{x_i x_j}(x_0) \zeta_i \zeta_j$$

正定时, $f(x_0)$ 为极小值; 当 $g(\zeta)$ 负定时, $f(x_0)$ 为极大值; 当 $g(\zeta)$ 不定时, $f(x_0)$ 不是极值.

推论. 若 det $A_k > 0 (k = 1, 2, \dots, n)$,则二次型 $g(\xi)$ 是正定的,此时 $f(x_0)$ 为极小值;若 $(-1)^k \det A_k > 0 (k = 1, 2, \dots, n)$,则二次型 $g(\xi)$ 是负定的,此时 $f(x_0)$ 为极大值.

12.7 条件极值与 Lagrange 乘数法

定理 12.7.1 (条件极值的必要条件). 若 $x_0 = (x_1^0, x_2^0, \cdots, x_n^0)$ 为函数 f(x) 满足约束条件的条件极值点,则必存在 m 个常数 $\lambda_1, \lambda_2, \cdots, \lambda_m$,使得在 x_0 点成立

$$\operatorname{grad} f = \lambda_1 \operatorname{grad} g_1 + \lambda_2 \operatorname{grad} g_2 + \cdots + \lambda_m \operatorname{grad} g_m$$
.

定理 12.7.2. 设点 $x_0=(x_1^0,x_2^0,\cdots,x_n^0)$ 及 m 个常数 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 满足方程

$$\begin{cases} \frac{\partial L}{\partial x_k} = \frac{\partial f}{\partial x_k} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_k} = 0, \\ g_t = 0, \end{cases}$$
 $(k = 1, 2, \dots, n; l = 1, 2, \dots, m),$

则当方阵

$$\left(\frac{\partial^2 L}{\partial x_k \partial x_i}(x_0, \lambda_1, \lambda_2, \cdots, \lambda_m)\right)_{n \times n}$$

为正定(负定)矩阵时, x_0 为满足约束条件的条件极小(大)值点,因此 $f(x_0)$ 为满足约束条件的条件极小(大)值.

13 重积分

13.1 有界闭区域上的重积分

定理 13.1.1. 有界点集 D 是可求面积的充分必要条件是它的边界 ∂D 的面积为 0.

定理 13.1.2. 若 f(x,y) 在零边界闭区域 D 上连续,那么它在 D 上可积.

命题. 设 D 为 \mathbb{R}^2 上的零边界闭区域,函数 z=f(x,y) 在 D 上有界. 将 D 用曲线网分成 n 个小区域 $\Delta D_1, \Delta D_2, \cdots, \Delta D_n$,并记所有小区域 ΔD_i 的最大直径为 λ ,即

$$\lambda = \max\{\mathrm{diam}\Delta D_i\} \ .$$

在每个 ΔD_i 上任取一点 (ξ_i, η_i) , 记 $\Delta \sigma_i$ 为 ΔD_i 的面积.

设 M_i 和 m_i 分别为 f(x,y) 在 ΔD_i 上的上确界和下确界, 定义 Darboux 大和为

$$S = \sum_{i=1}^{n} M_i \Delta \sigma_i ;$$

Darboux 小和为

$$s = \sum_{i=1}^{n} m_i \Delta \sigma_i .$$

则有以下性质:

- 1. 若在已有的划分上添加有线条曲线作进一步划分,则 Darboux 大和不增,Darboux 小和不减.
- 2. 任何一个 Darboux 小和都不大于任何一个 Darboux 大和. 因此,若记 $I^* = \inf\{S\}, I_* = \sup\{s\}$ (这里上、下确界是对所有划分来取的),则有

$$s \leqslant I_* \leqslant I^* \leqslant S$$
.

3. f(x,y) 在 D 上可积的充分必要条件是:

$$\lim_{\lambda \to 0} (S - s) = 0 \; ,$$

即

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \omega_i \Delta \sigma_i = 0.$$

这里 $\omega_i = M_i - m_i$ 是 f(x,y) 在 ΔD_i 上的振幅. 此时成立

$$\lim_{\lambda \to 0} s = \lim_{\lambda \to 0} S = \iint_D f(x, y) d\sigma.$$

13.2 重积分的性质与计算

命题 (线性性). 设 f 和 g 都在区域 Ω 上可积, α , β 为常数,则 $\alpha f + \beta g$ 在 Ω 上也可积,并且

$$\int_{\Omega} (\alpha f + \beta g) dV = \alpha \int_{\Omega} f dV + \beta \int_{\Omega} g dV.$$

命题 (区域可加性). 设区域 Ω 被分成两个内点不相交的区域 Ω_1 和 Ω_2 ,如果 f 在 Ω 上可积,则 f 在 Ω_1 和 Ω_2 上都可积;反之,如果 f 在 Ω_1 和 Ω_2 上可积,则 f 也在 Ω 上可积. 此时成立

$$\int_{\Omega} f \mathrm{d}V = \int_{\Omega_1} f \mathrm{d}V + \int_{\Omega_2} f \mathrm{d}V \ .$$

14 曲线积分、曲面积分与场论

14.1 第一类曲线积分与第一类曲面积分

定义 14.1.1 (第一类曲线积分). 设 L 是空间 \mathbb{R}^3 上一条可求长的连续曲线,其端点为 A 和 B,函数 f(x,y,z) 在 L 上有界. 令 $A = P_0, B = P_n$. 在 L 上从 A 到 B 顺序地插入分点 $P_1, P_2, \cdots, P_{n-1}$,再分别在每个小弧段 $P_{i-1}P_i$ 上任取一点 (ξ_i, η_i, ζ_i) ,并记第 i 个小弧段 $P_{i-1}P_i$ 的长度为 $\Delta s_i (i = 1, 2, \cdots, n)$,作和式

$$\sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta s_i .$$

如果当所有小弧段的最大长度 λ 趋于零时,这个和式的极限存在,且与分点 $\{P_i\}$ 的取法及 $P_{i-1}P_i$ 上的点 (ξ_i,η_i,ζ_i) 的取法无关,则称这个极限值为 f(x,y,z) 在曲线 L 上的第一类曲线 积分,记为

$$\int_I f(x,y,z) ds \quad \vec{\boxtimes} \quad \int_I f(P) dS .$$

即

$$\int_{L} f(x, y, z) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta s_i ,$$

其中 f(x,y,z) 称为被积函数, L 称为积分路径.

定义 14.1.2 (第一类曲面积分). 设曲面 Σ 为有界光滑(或分片光滑)曲面,函数 f(x,y,z) 在 Σ 上有界. 将曲面 Σ 用一个光滑曲线网分成 n 片小区面 $\Delta\Sigma_1, \Delta\Sigma_2, \cdots, \Delta\Sigma_n$,并记 $\Delta\Sigma_i$

的面积为 ΔS_i . 在每片 $\Delta \Sigma_i$ 上任取一点 (ξ_i, η_i, ζ_i) ,作和式

$$\sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i .$$

如果当所有小曲面 $\Delta \Sigma_i$ 的最大直径 λ 趋于 0 时,这个和式的极限存在,且极限值与小曲面的分发和点 (ξ_i,η_i,ζ_i) 的取法无关,则称此极限值为 f(x,y,z) 在曲面 Σ 上的第一类曲面积分,记为 $\int_{-\infty}^{\infty} f(x,y,z) \mathrm{d}S$,即

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i ,$$

其中 f(x,y,z) 称为被积函数, Σ 称为积分曲面.

定理 14.1.1. 设 L 为光滑曲线,函数 f(x,y,z) 在 L 上连续,则 f(x,y,z) 在 L 上的第一类曲线积分存在,且

$$\int\limits_I f(x,y,z) \mathrm{d}s = \int_\alpha^\beta f(x(t),y(t),z(t)) \sqrt{x'^2(t) + y'^2(t) + z'^2(t)} \mathrm{d}t \;.$$

定理 14.1.2. 对于有界光滑曲面 Σ ,可以计算其面积为

$$S = \iint_D \sqrt{EG - F^2} du dv ,$$

其中

$$E = \mathbf{r}_u \cdot \mathbf{r}_u = x_u^2 + y_u^2 + z_u^2 ,$$

$$F = \mathbf{r}_u \cdot \mathbf{r}_v = x_u x_v + y_u y_v + z_u z_v ,$$

$$G = \mathbf{r}_v \cdot \mathbf{r}_v = x_v^2 + y_v^2 + z_v^2 ,$$

它称为曲面的 Gauss 系数.

命题 (第一类曲线积分的线性性). 如果函数 f,g 在 L 上的第一类曲线积分存在,则对于任何常数 $\alpha,\beta,\alpha f+\beta g$ 在 L 上的第一类曲线积分存在,且成立

$$\int_{L} (\alpha f + \beta g) ds = \alpha \int_{L} f ds + \beta \int_{L} g ds.$$

命题 (第一类曲线积分的路径可加性). 设曲线 L 分成了两段 L_1, L_2 . 如果函数 f 在 L 上的第一类曲线积分存在,则它在 L_1 和 L_2 上的第一类曲线积分也存在. 反之,如果函数 f 在 L_1 和 L_2 上的第一类曲线积分存在,则它在 L 上的第一类曲线积分也存在. 并成立

$$\int_{L} f ds = \int_{L_1} f ds + \int_{L_2} f ds.$$

附录 A 实数系基本定理之间的等价证明

A.1 九个实数系基本定理的叙述

定理 A.1 (确界存在定理). 非空有上界的数集必有上确界, 非空有下界的数集必有下确界.

定理 A.2 (单调有界定理). 单调有界数列必定收敛.

定理 A.3 (闭区间套定理). 如果 $\{[a_n,b_n]\}$ 形成一个闭区间套,则存在唯一的实数 ξ 属于所有的闭区间 $[a_n,b_n]$,且 $\xi=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

定理 A.4 (Heine–Borel 有限覆盖定理). 设 Δ 是闭区间 [a,b] 的一个无限开覆盖,则从 Δ 中可以选出有限个开覆盖 [a,b].

定理 A.5 (Bolzano-Weierstrass 定理). 有界数列必有收敛子列.

定理 A.6 (Cauchy 收敛原理). 数列 $\{x_n\}$ 收敛的充分必要条件是: $\{x_n\}$ 是基本数列.

定理 A.7 (Dedekind 分割定理). 设 \tilde{A}/\tilde{B} 是实数集 \mathbb{R} 的一个切割,则或者 \tilde{A} 有最大数,或者 \tilde{B} 有最小数.

定理 A.8 (Weierstrass **聚点原理**). 设 E 是有界无限的实数点集,则 E 至少有一个聚点.

定理 A.9 (介值定理). 若函数 f(x) 在闭区间 [a,b] 上连续,则它一定能取到最大值 $M = \max\{f(x) \mid x \in [a,b]\}$ 和最小值 $m = \min\{f(x) \mid x \in [a,b]\}$ 之间的任何一个值.

A.2 用确界存在定理证明其它定理

A.2.1 单调有界定理

 \overline{u} . 不妨设 $\{x_n\}$ 单调增加且有上界. 根据确界存在定理,由 $\{x_n\}$ 构成的数集必有上确界 β ,满足:

- 1. $\forall n \in \mathbb{N}^+, x_n \leqslant \beta$;
- 2. $\forall \varepsilon > 0, \exists x_{n_0}, x_{n_0} > \beta \varepsilon$.

取 $N = n_0$, 对 $\forall n > N$ 有

$$\beta - \varepsilon < x_{n_0} \leqslant x_n \leqslant \beta ,$$

因而 $|x_n - \beta| < \varepsilon$, 于是得到

$$\lim_{n\to\infty} x_n = \beta \ .$$

A.3 用单调有界定理证明其它定理

A.3.1 闭区间套定理

 \mathbf{u} . 设 { $[a_n, b_n]$ } 构成闭区间套. 则有

$$\begin{cases} [a_{n+1}, b_{n+1}] \subset [a_n, b_n], \ n = 1, 2, 3, \cdots \\ \lim_{n \to \infty} (b_n - a_n) = 0. \end{cases}$$

于是有

$$a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n \leqslant b_n \leqslant \cdots \leqslant b_2 \leqslant b_1, \ n = 1, 2, 3, \cdots$$

于是 $\{a_n\}$ 单调增加且有上界, $\{b_n\}$ 单调下降且有下界. 由单调有界定理,数列 $\{a_n\}$, $\{b_n\}$ 极限存在.

设
$$\lim_{n\to\infty} a_n = \xi$$
, $\lim_{n\to\infty} b_n = \xi'$. 于是有

$$\xi' = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = 0 + \xi = \xi.$$

于是 $\xi = \xi'$. 考虑到 $a_n \leq \xi \leq b_n$, 于是有 ξ 属于闭区间套中所有的闭区间.

再证 ξ 唯一. 若 ξ 不唯一,设存在 $\xi'' \neq \xi$ 属于所有的闭区间. 有 $a_n \leqslant \xi'' \leqslant b_n$,且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$,由夹逼定理知道 $\xi'' = \xi$,出现矛盾. 于是有 ξ 唯一.

A.4 用闭区间套定理证明其它定理

A.4.1 单调有界定理

 $\mathbf{\overline{u}}$. 设数列 $\{a_n\}$ 单调增有上界,其一个上界为 M.

下构造一个闭区间套 $\{[l_n, r_n]\}$. 令 $l_1 = a_1, r_1 = M$. 设 $m_1 = \frac{l_1 + r_1}{2}$,考虑 $[l_1, m_1]$, $[m_1, r_1]$ 两个闭区间. 若 $[m_1, r_1]$ 中含有 $\{a_n\}$ 中的项,则令 $[l_2, r_2] = [m_1, r_1]$,否则令 $[l_2, r_2] = [l_1, m_1]$. 于是有 $[l_2, r_2]$ 中一定有 $\{a_n\}$ 中的项,且 r_2 一定是 $\{a_n\}$ 的上界. 类似地,令 $m_2 = \frac{l_2 + r_2}{2}$,若 $[m_2, r_2]$ 中含有数列 $\{a_n\}$ 中的项,则令 $[l_3, r_3] = [m_2, r_2]$,否则令 $[l_3, r_3] = [l_2, m_2]$. 依此类推可以构造出一列闭区间. 显然有 $\lim_{n \to \infty} (r_n - l_n) = 0$,并且 $[l_{n+1}, r_{n+1}] \subset [l_n, r_n]$, $n = 1, 2, 3, \cdots$,故有 $\{[l_n, r_n]\}$ 形成闭区间套,且每一个闭区间中都有 $\{a_n\}$ 中的项存在,每一个 r_n 都是 $\{a_n\}$ 的上界.

由闭区间套定理知道存在唯一的 ξ 属于闭区间套中所有的闭区间. 下证明数列 $\{a_n\}$ 收敛于 ξ . 对 $\forall \varepsilon > 0$,一定可以取到一个闭区间 $[l_p, r_p]$,使得 $r_p - l_p < \frac{\varepsilon}{2}$. 由闭区间套构造过程知道 $\{a_n\}$ 中存在项落在区间 $[l_p, r_p]$ 中. 设其为 a_q . 则取 N = q,对 $\forall n > N$,有 $l_p \leqslant a_N \leqslant a_n \leqslant r_p$,又知道 $\xi \in [l_p, r_p]$,于是有 $|a_n - \xi| \leqslant |a_n - l_p| + |\xi - l_p| < \varepsilon$. 从而数列 $\{a_n\}$ 收敛.

A.4.2 Bolzano-Weierstrass 定理

 \vec{u} . 设数列 $\{a_n\}$ 有界,即有 M>0,满足 $M>a_n,\ n=1,2,3,\cdots$. 下构建一个闭区间套 $\{[l_n,r_n]\}$.

- 1. $\diamondsuit a_1 = -M, b_1 = M.$
- 2. 数列 $\{a_n\}$ 一定有无穷项在 $[l_1, r_1]$ 内. 将其一分为二,设 $m_1 = \frac{l_1 + r_1}{2}$,考虑两个闭区间 $[l_1, m_1], [m_1, r_1]$,至少有一个区间内包含无穷项数列项. 可以令其为 $[l_2, r_2]$.
- 3. 依此类推,对 $\forall n \in \mathbb{N}^+$,可以构造出闭区间 $[l_n, r_n]$.

有 $\lim_{n\to\infty} (r_n - l_n) = \lim_{n\to\infty} \frac{2M}{2^{n-1}} = 0$,且显然有 $[l_{n+1}, rb_{n+1}] \subset [l_n, r_n]$,于是有 $\{[l_n, r_n]\}$ 构成一个闭区间套. 由闭区间套定理,存在唯一的 ξ 属于闭区间套中所有的闭区间.

下构造一个收敛至 ξ 的子列 $\{a_{n_k}\}$. 由于数列 $\{a_n\}$ 中有无穷项在 $[l_n, r_n]$ 中,故可以取 $a_{n_1} \in [l_1, r_1]$. 然后可以取 $n_2 > n_1$,使得 $a_{n_2} \in [l_2, r_2]$. 依此类推,可以构造出子列 $\{a_{n_k}\}$. 因为 $l_p \leqslant a_{n_p} \leqslant r_p$,且 $\lim_{n \to \infty} l_p = \lim_{n \to \infty} r_p = \xi$,由夹逼定理知道 $\lim_{n \to \infty} a_{n_p} = \xi$,这个子列收敛.

A.5 用 Heine-Borel 有限覆盖定理证明其它定理

A.5.1 Weierstrass 聚点原理

证. 用反证法. 设 E 没有聚点.

由于 E 有界,存在 [a,b],使得 $E \subset [a,b]$. $\forall \varepsilon \in [a,b]$,有 ε 不是 E 的聚点,则存在 ξ 的邻域 $U(\xi,\delta_{\varepsilon})$,使得 $\overset{\circ}{U}(\xi,\delta_{\varepsilon})\cap E=\emptyset$. 即除了 ξ 之外, ξ 的邻域 $U(\xi,\delta_{\varepsilon})$ 中没有 E 的点.

记 $\Delta = \{U(\xi, \delta_{\varepsilon}) \mid \xi \in [a, b]\}$,则 Δ 是 [a, b] 的开覆盖. 根据 Heine-Borel 有限覆盖定理知道存在 Δ 中有限的开区间 $\{U(\xi_i) \mid \xi_i \in [a, b], i = 1, 2, \cdots, n\}$ 覆盖 [a, b],即 $[a, b] \subset \bigcup_{i=1}^n U(\xi_i)$,自然有 $E \subset [a, b] \subset \bigcup_{i=1}^n U(\xi_i)$. 根据假设 $\bigcup_{i=1}^n U(\xi_i) \cap E = \emptyset$,从而 E 是有限集,且 $E \subset \{\xi_1, \xi_2, \xi_3, \cdots\}$. 这与 E 是无限集矛盾.

A.6 用 Bolzano-Weierstrass 定理证明其它定理

A.6.1 Cauchy 收敛原理

 $\overline{\boldsymbol{u}}$. \Rightarrow) 设数列 $\{a_n\}$ 收敛, $\lim_{n\to\infty}a_n=A$. 则对 $\forall \varepsilon>0$,存在 $N>\mathbb{N}^+$,使得 $\forall n>N$,有 $|a_n-A|\leqslant \frac{\varepsilon}{2}$. 取 N'=N,则有对 $\forall n,m>N$,有

$$|a_n - a_m| \leqslant |a_n - A| + |a_m - A| < \varepsilon.$$

于是 $\{a_n\}$ 是基本数列.

 \Leftarrow) 设数列 $\{a_n\}$ 是基本数列.

先证数列 $\{a_n\}$ 有界. 取 $\varepsilon=1$,则存在 N,对 $\forall n>N$,有 $|a_n-a_N|\leqslant \varepsilon=1$. 令 $M=\max\{|a_1|,|a_2|,\cdots,|a_N|,|a_N|+1\}$,则有 $M\geqslant |a_n|,\, n=1,2,3,\cdots$. 于是有数列 $\{a_n\}$ 有界. 再证数列 $\{a_n\}$ 收敛. 由于数列 $\{a_n\}$ 是基本数列,故存在 $M\in\mathbb{N}^+$,使得 $\forall p,q>M$,有

$$|x_p - x_q| < \frac{\varepsilon}{2} .$$

又由 Bolzano–Weierstrass 定理,数列 $\{a_n\}$ 存在子列 $\{a_{n_k}\}$ 收敛. 设 $\lim_{n\to\infty}a_{n_k}=\xi$. 则对 $\forall \varepsilon>0$,一定能取到 N>M,使得 $\forall k>N$,使得

$$|a_{n_k} - \xi| \leqslant \frac{\varepsilon}{2} .$$

于是对 $\forall n > n_N$, 有

$$|a_n - \xi| \leqslant |a_n - a_{n_k}| + |a_{n_k} - \xi| \leqslant \varepsilon.$$

于是数列 $\{a_n\}$ 收敛向 ξ .

A.7 用 Cauchy 收敛原理证明其它定理

A.8 用 Dedekind 分割定理证明其它定理

A.9 用 Weierstrass 聚点原理证明其它定理

A.9.1 Bolzano-Weierstrass 定理

证 设 $\{a_n\}$ 为有界数列, $B = \{a_n | n = 1, 2, 3, \cdots\}$. 下对 B 分类讨论.

当 B **为有限集时**,设 $B = \{b_1, b_2, \cdots, b_m\}$. 则一定存在 b_p ,有 b_p 在数列 $\{a_n\}$ 中出现无限次(若不然,则有 B 中所有项在数列 $\{a_n\}$ 中出现有限次,而 B 又是有限集,从而 $\{a_n\}$ 是有限数列,矛盾). 则将 $\{a_n\}$ 中所有等于 b_p 的项提取出来成为一个子列 $\{a_{n_k}\}$,则有这个子列为常数列,显然收敛.

当 *B* **为无限集时**,由于数列 $\{a_n\}$ 有界,故 *B* 也有界. 由 Weierstrass 聚点原理知道 *B* 中一定存在聚点 ξ . 下试构造一个 $\{a_n\}$ 收敛至 ξ 的子列 $\{a_{n_k}\}$. 设 $a_{n_1}=a_p$,其中 a_p 为数列 $\{a_n\}$ 中第一个不等于 ξ 的项. 由聚点定义知道 $\mathring{U}(\xi,\frac{1}{n})$ 中有无限个 $\{a_n\}$ 中的项,于是可以取到 $n_2>n_1$,使得 $a_{n_2}\in\mathring{U}(\xi,\frac{1}{2})$. 同理可以取到 $n_3>n_2$,使得 $a_{n_3}\in\mathring{U}(\xi,\frac{1}{3})$. 依此类推可以得到数列 $\{a_{n_k}\}$,其中 $a_{n_k}\in\mathring{U}(\xi,\frac{1}{n})$,从而有此数列收敛.

A.10 用连续函数介值定理证明其它定理

附录 B 常用结论

B.1 常用等价无穷小

- $\sin \sim x(x \to 0)$
- $\arcsin x \sim x(x \to 0)$

- $1 \cos x \sim \frac{1}{2}x^2(x \to 0)$
- $\tan x \sim x(x \to 0)$
- $\arctan x \sim x(x \to 0)$
- $(1+x)^{\alpha}-1\sim \alpha x(x\to 0)$
- $e^x 1 \sim x(x \to 0)$
- $\ln(1+x) \sim x(x \to 0)$
- $\tan x \sin x \sim \frac{1}{2}x^3$

附录 C 导数表

$$(C)' = 0 \qquad \qquad d(C) = 0 \cdot dx = 0$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \qquad \qquad d(x^{\alpha}) = \alpha x^{\alpha - 1} dx$$

$$(\sin x)' = \cos x \qquad \qquad d(\sin x) = \cos x dx$$

$$(\cos x)' = -\sin x \qquad \qquad d(\cos x) = -\sin x dx$$

$$(\tan x)' = \sec^2 x \qquad \qquad d(\tan x) = \sec^2 x dx$$

$$(\cot x)' = -\csc^2 x \qquad \qquad d(\cot x) = -\csc^2 x dx$$

$$(\sec x)' = \tan x \sec x \qquad \qquad d(\sec x) = \tan x \sec x dx$$

$$(\csc x)' = -\cot x \csc x \qquad \qquad d(\sec x) = -\cot x \csc x dx$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} \qquad \qquad d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} dx$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad \qquad d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} dx$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad \qquad d(\arccos x) = -\frac{1}{1 + x^2} dx$$

$$(\arccos x)' = \frac{1}{1 + x^2} \qquad \qquad d(\arccos x) = -\frac{1}{1 + x^2} dx$$

$$(\arccos x)' = \frac{1}{1 + x^2} \qquad \qquad d(\arccos x) = \frac{1}{1 + x^2} dx$$

$$(arctan x)' = \frac{1}{1 + x^2} \qquad \qquad d(\arccos x) = \frac{1}{1 + x^2} dx$$

$$(ax^2)' = \ln a \cdot a^x \qquad \qquad d(\cos x) = \sin x dx$$

$$(\cos x)' = \sinh x \qquad \qquad d(\cos x) = \sinh x dx$$

$$(\cosh x)' = \sinh x \qquad \qquad d(\cosh x) = \sinh x dx$$

$$(\cosh x)' = \sinh x \qquad \qquad d(\cosh x) = \sinh x dx$$

$$(\cosh x)' = -\cosh^2 x \qquad \qquad d(\sinh x) = \operatorname{sech}^2 x dx$$

$$(\cosh x)' = -\operatorname{csch}^2 x \qquad \qquad d(\sinh x) = \operatorname{sech}^2 x dx$$

$$(\cosh x)' = -\operatorname{csch}^2 x \qquad \qquad d(\sinh x) = -\operatorname{csch}^2 x dx$$

$$(\sinh^{-1} x)' = -\operatorname{csch}^2 x \qquad \qquad d(\sinh^{-1} x) = \frac{1}{1 + x^2} dx$$

$$(\cosh^{-1} x)' = \frac{1}{x^2 - 1} \qquad d(\tanh^{-1} x) = \frac{1}{x^2 - 1} dx$$

$$(\tanh^{-1} x)' = (\coth^{-1} x)' = \frac{1}{1 - x^2} \qquad d(\tanh^{-1} x) = \operatorname{d(\coth^{-1} x)} = \frac{1}{1 - x^2} dx$$

附录 D 基本积分表

$$\int x^{\alpha} \mathrm{d}x = \begin{cases} \frac{1}{\alpha+1} x^{\alpha+1} + C \,, & \alpha \neq -1 \\ \ln|x| + C \,, & \alpha = -1 \end{cases} \qquad \int \ln x \mathrm{d}x = x(\ln x - 1) + C$$

$$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C \,, 特別地 \int e^x \mathrm{d}x = e^x + C$$

$$\int \sin x \mathrm{d}x = -\cos x + C \qquad \int \cos x \mathrm{d}x = \sin x + C$$

$$\int \tan x \mathrm{d}x = -\ln|\cos x| + C \qquad \int \cot x \mathrm{d}x = \ln|\sin x| + C$$

$$\int \sec x \mathrm{d}x = \ln|\sec x + \tan x| + C \qquad \int \csc x = \ln|\csc x - \cot x| + C$$

$$\int \sinh x \mathrm{d}x = \cosh x + C \qquad \int \cosh x \mathrm{d}x = \sinh x + C$$

$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \qquad \int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

$$\int \sqrt{a^2 - x^2} \mathrm{d}x = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\int \sqrt{x^2 \pm a^2} \mathrm{d}x = \frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \pm a^2 \ln|x + \sqrt{x^2 \pm a^2}| \right) + C \,.$$