Concentration Bound for Stochastic Approximation with Markov Noise

Siddharth Chandak, 17D070019 Guide - Prof. Vivek S. Borkar 12th May 2021

Electrical Engineering IIT Bombay

Outline

- Introduction
 - An Example: Q-Learning
- Main Result
 - Setup
- Proof (Outline)
- Application: Asynchronous Q-Learning

Introduction

Stochastic Approximation

- Method to solve h(x) = 0 given noisy measurements of $h(\cdot)$
- Basic form:

$$x_{n+1} = x_n + a(n)(h(x_n) + M_{n+1}(x_n)), n \ge 0,$$

- Has applications in:
 - Reinforcement learning algorithms (will see soon)
 - Stochastic Gradient Descent

Fixed Point Schemes

- Contraction: $||F(x-y)|| \le \alpha ||(x-y)||$ where $\alpha \in (0,1)$
- Fixed Point: $F(x^*) = x^*$
- Iteration:

$$x_{n+1} = x_n + a(n) (F(x_n) - x_n + M_{n+1}(x_n)), n \ge 0,$$

Almost sure convergence¹ to x*

¹Under appropriate conditions

With Markov Noise

- Y_n : irreducible, finite state space Markov chain
- Iteration:

$$x_{n+1} = x_n + a(n) (F(x_n, Y_n) - x_n + M_{n+1}(x_n)), n \ge 0,$$
 (1)

Contraction:

$$\| \sum_{i \in S} \pi(i) (F(x, i) - F(z, i)) \| \le \alpha \|x - z\|$$

- Fixed Point: $\sum_{i} \pi(i) F(x^*, i) = x^*$
- ullet Almost sure convergence of iterates x_n to x^*

²Under appropriate conditions

Our Work

- · 'High probability' concentration bound
- $\|x_n x^*\| \le$ ____ for all $n \ge n_0$ with probability exceeding 1- ____
- Extension of previous work³ which considers contractive stochastic approximation

 $^{^3 \}mbox{V. S. Borkar, "A concentration bound for contractive stochastic approximation", Systems and Control Letters$

Example: A very brief introduction to Q-learning

- ullet Consider finite state space S and finite action space A
- At each time step n, agent chooses action $Z_n \in A$ when it is in state $X_n \in S$
- Markov control policy:

$$P(X_{n+1} = j | X_m, Z_m, m \le n) = p(j | X_n, Z_n) \ \forall n,$$

• Objective: Minimize

$$E\left[\sum_{m=0}^{\infty} \gamma^m k(X_m, Z_m)\right]$$

Example: A very brief introduction to Q-learning

• Q-Learning Algorithm:

$$\begin{split} Q_{n+1}(i,u) &= Q_n(i,u) + a(n)I\{X_n = i, Z_n = u\} \\ &\times \left(k(i,u) + \gamma \min_{a} Q_n(X_{n+1},a) - Q_n(i,u) \right) \end{split}$$

• $Q_n \to Q^{*4}$ where Q^* is a solution of

$$Q(i, u) = k(i, u) + \alpha \sum_{j} p(j|i, u) \min_{a} Q(j, a),$$

⁴Under appropriate conditions

Asynchronous vs Synchronous

• Synchronous - no Markov noise:

$$Q_{n+1}(i, u) = Q_n(i, u) + a(n) \times \left(k(i, u) + \gamma \min_{a} Q_n(Y_{n+1}(i, u), a) - Q_n(i, u) \right)$$

Asynchronous - has Markov noise:

$$Q_{n+1}(i, u) = Q_n(i, u) + a(n)I\{X_n = i, Z_n = u\}$$

$$\times \left(k(i, u) + \gamma \min_{a} Q_n(X_{n+1}, a) - Q_n(i, u)\right)$$

• Can be rewritten in the form of (1) - gives us probabilistic bounds on $\|Q_n-Q^*\|$

Main Result

• For $x_n = [x_n(1), ..., x_n(d)]^T \in \mathcal{R}^d$,

$$x_{n+1} = x_n + a(n) (F(x_n, Y_n) - x_n + M_{n+1}(x_n)), n \ge 0,$$

ullet Y_n - irreducible Markov chain taking values in a finite state space S

$$\begin{split} P(Y_{n+1} = j | Y_n = i_n, ..., Y_0 = i_0) &= P(Y_{n+1} = j | Y_n = i_n) \\ &= p(j | i_n), i_0, ..., i_n, j \in S \end{split}$$

 \bullet With stationary Distribution - $\pi(\cdot)$

$$x_{n+1} = x_n + a(n) (F(x_n, Y_n) - x_n + M_{n+1}(x_n)), n \ge 0,$$

- $\{M_n(x)\}$ martingale difference sequence w.r.t. $\mathcal{F}_n \coloneqq \sigma(x_0, M_m(x), x \in \mathcal{R}^d, m \le n), \ n \ge 0$
- $E[M_{n+1}(x)|\mathcal{F}_n] = \theta \text{ a.s. } \forall x, n$
- $|M_n^l(x)| \le K_0(1 + ||x||)$ a.s., for some $K_0 > 0$

$$x_{n+1} = x_n + a(n) \big(F(x_n, Y_n) - x_n + M_{n+1}(x_n) \big), n \ge 0,$$

• Contraction:

$$\| \sum_{i \in S} \pi(i) (F(x, i) - F(z, i)) \| \le \alpha \|x - z\|, x, z \in \mathcal{R}^d$$

• $\widetilde{F}_n(x,i) \coloneqq F(x,i) + M_{n+1}(x)$ satisfies

$$\|\widetilde{F}_n(x,i)\| \le K + \alpha \|x\|$$
 a.s.

$$x_{n+1} = x_n + a(n) \big(F(x_n, Y_n) - x_n + M_{n+1}(x_n) \big), n \ge 0,$$

a(n) - Non-negative stepsizes

$$\sum_{n} a(n) = \infty, \sum_{n} a(n)^{2} < \infty$$

• Eventually non-increasing, i.e., there exists $n^* \ge 1$ such that $a(n+1) \le a(n), \forall n \ge n^*$

Some Definitions

$$b_m(n) := \sum_{k=m} a(k), 0 \le m \le n < \infty$$
$$\beta(n) := \sup_{m \ge n} (1 - a(m+1))a(m)$$
$$\varphi(n) := \sup_{m \ge n} e^{a(m)}$$
$$\kappa(d) = \|1\|$$

Theorem

Theorem 2.1

Let $n_0 \geq 0$ satisfy $\varphi(n_0) \leq \frac{1}{\alpha}$, $a(n_0) < 1$ and a(n) is non-increasing after n_0 . Then there exist finite, positive constants c_1 , c_2 and D such that for $\delta > 0$ and $n \geq n_0$,

$$||x_n - x^*|| \le e^{-(1-\alpha)b_{n_0}(n)} ||x_{n_0} - x^*|| + \frac{\delta + (4a(n_0) + 2\varphi(n_0))c_1}{1 - \alpha\varphi(n_0)}$$

with probability exceeding

1 -
$$2d(n - n_0)e^{-D\delta^2/\beta(n)}$$
, $0 < \delta \le C\varphi(n_0)$,
1 - $2d(n - n_0)e^{-D\delta/\beta(n)}$, $\delta > C\varphi(n_0)$,

where
$$C = e^{\kappa(d)(K_0(1+||x_{n_0}||+\frac{K}{1-\alpha})+c_2)}$$
.

Theorem (cont.)

Theorem 2.2

Let $n_0 \geq 0$ satisfy $\varphi(n_0) \leq \frac{1}{\alpha}$, $a(n_0) < 1$ and a(n) is non-increasing after n_0 . Then there exist finite, positive constants c_1 , c_2 and D such that for $\delta > 0$,

$$||x_n - x^*|| \le e^{-(1-\alpha)b_{n_0}(n)} ||x_{n_0} - x^*|| + \frac{\delta + (4a(n_0) + 2\varphi(n_0))c_1}{1 - \alpha\varphi(n_0)} \,\forall n \ge n_0,$$

with probability exceeding

1 -
$$2d \sum_{n \ge n_0} (n - n_0) e^{-D\delta^2/\beta(n)}, \ 0 < \delta \le C\varphi(n_0),$$

1 - $2d \sum_{n \ge n_0} (n - n_0) e^{-D\delta/\beta(n)}, \ \delta > C\varphi(n_0).$

Proof (Outline)

An Important Lemma

Lemma 3.1

$$\sup_n \|x_n\| \le \|x_{n_0}\| + \frac{K}{1-\alpha}$$
 a.s. for $n \ge n_0$

Proof (Outline): We use the fact that

$$\|\widetilde{F}_n(x,i)\| \le K + \alpha \|x\|$$
 a.s..

and then proceed inductively.

Proof of the Main Result

Proof (Outline):

• Define z_n for $n \ge n_0$ by:

$$z_{n+1} = z_n + a(n)(\sum_i \pi(i)F(z_n, i) - z_n),$$
 (2)

where $z_{n_0} = x_{n_0}$.

•
$$||x_n - x^*|| \le ||x_n - z_n|| + ||z_n - x^*||$$
.

Some Manipulation

Proof (cont.):

• With some manipulation:

$$x_{n+1} - z_{n+1} = (1 - a(n))(x_n - z_n)$$

$$+ a(n)M_{n+1}$$

$$+ a(n)(\sum_i \pi(i)(F(x_n, i) - F(z_n, i)))$$

$$+ a(n)(F(x_n, Y_n) - \sum_i \pi(i)F(x_n, i)).$$

Further Manipulation

Proof (cont.):

• For $n,m\geq 0$, let $\phi(n,m)=\prod_{k=m}^n(1-a(k))$ if $n\geq m$ and 1 otherwise. For some $n\geq n_0$, we iterate the above for $n_0\leq m\leq n$,

$$x_{m+1} - z_{m+1} = \sum_{k=n_0}^{m} \phi(m, k+1) a(k) M_{k+1}$$

$$+ \sum_{k=n_0}^{m} \phi(m, k+1) a(k) (\sum_{i} \pi(i) (F(x_k, i) - F(z_k, i)))$$

$$+ \sum_{k=n_0}^{m} \phi(m, k+1) a(k) (F(x_k, Y_k) - \sum_{i} \pi(i) F(x_k, i)).$$

Poisson Equation

Proof (cont.):

• Poisson Equation:

$$V(x,i) = F(x,i) - \sum_{j} \pi(j)F(x,j) + \sum_{j} p(j|i)V(x,j).$$
 (3)

• A possible solution:

$$V_1(x,i) = E_i \left[\sum_{m=0}^{\tau-1} (F(x, Y_m) - \sum_j \pi(j) F(x,j)) \right], i \in S$$

- $V_{max} = \max_{x,i} ||V(x,i)||$
- $V'_{max} = \max_{x,i,l} ||V^l(x,i)||$

More Manipulations using Poisson equation

Proof (cont.):

$$\begin{split} &\sum_{k=n_0}^m \phi(m,k+1)a(k)(F(x_k,Y_k) - \sum_i \pi(i)F(x_k,i)) \\ &= \sum_{k=n_0+1}^m \phi(m,k+1)a(k)(V(x_k,Y_k) - \sum_j p(j|Y_{k-1})V(x_k,j)) \\ &+ \sum_{k=n_0+1}^m \left((\phi(m,k+1)a(k) - \phi(m,k)a(k-1)) \sum_j p(j|Y_{k-1})V(x_k,j) \right) \\ &+ \sum_{k=n_0+1}^m \phi(m,k)a(k-1)(\sum_j p(j|Y_{k-1})(V(x_k,j) - V(x_{k-1},j))) \\ &+ \phi(m,n_0+1)a(n_0)V(x_{n_0},Y_{n_0}) - \phi(m,m+1)a(m) \sum_j p(j|Y_m)V(x_m,j) \end{split}$$

Some Final Manipulations

Proof (cont.):

Define

$$\zeta_m = \kappa(d) \max_{l} \max_{n_0 \le k \le m} |\sum_{r=n_0}^{k-1} \phi(k, r+1) a(r) (M_{r+1}^l(x_r) + V_r'^l(x_r))|$$

- Define $x_m' = \sup_{n_0 \le k \le m} \|x_k z_k\|$
- Then

$$x'_{m+1} \le \alpha \varphi(n_0) x'_m + \zeta_n + V_c(n_0)$$

• And finally,

$$x'_{m} \le \frac{1}{1 - \alpha \varphi(n_{0})} (\zeta_{n} + V_{c}(n_{0})), n_{0} \le m \le n$$
 (4)

Using A Scalar Martingale Inequality⁵

Proof (cont.):

• Then for a suitable constant D>0 and $\delta\in(0,C\gamma_1]$, we have

$$P(\zeta_n \ge \delta) \le 2d(n - n_0)e^{-D\delta^2/\beta(n)} \tag{5}$$

and for $\delta > C\gamma_1$,

$$P(\zeta_n \ge \delta) \le 2d(n - n_0)e^{-D\delta/\beta(n)}.$$
 (6)

- $C = e^{\kappa(d)(K_0(1+||x_{n_0}||+\frac{K}{1-\alpha})+2V'_{max})}$
- $\gamma_1 = \sup_{n \ge n_0} \varphi(n) = \varphi(n_0)$

⁵Appendix

The Other Term

Proof (cont.):

$$z_{n+1} - x^* = (1 - a(n))(z_n - x^*) + a(n) \sum_{i} \pi(i)(F(z_n, i) - F(x^*, i)),$$

$$||z_{n+1} - x^*|| \le (1 - (1 - \alpha)a(n))||z_n - x^*||$$

$$\le e^{-(1 - \alpha)b_{n_0}(n)}||x_{n_0} - x^*||$$
(7)

The End

Proof (cont.):

• Combine (7) with (4) and use the fact that $\zeta_n < \delta$ holds with probabilities given by (5) and (6).

_

Asynchronous Q-Learning

A Brief Introduction (Again)

- ullet Consider finite state space S and finite action space A
- At each time step n, agent chooses action $Z_n \in A$ when it is in state $X_n \in S$
- Markov control policy:

$$P(X_{n+1} = j | X_m, Z_m, m \le n) = p(j | X_n, Z_n) \ \forall n,$$

• Objective: Minimize

$$E\left[\sum_{m=0}^{\infty} \gamma^m k(X_m, Z_m)\right]$$

A Brief Introduction (Again)

• Q-Learning Algorithm:

$$\begin{split} Q_{n+1}(i,u) &= Q_n(i,u) + a(n)I\{X_n = i, Z_n = u\} \\ &\times \left(k(i,u) + \gamma \min_{a} Q_n(X_{n+1},a) - Q_n(i,u) \right) \end{split}$$

• $Q_n \to Q^{*6}$ where Q^* is a solution of

$$Q(i, u) = k(i, u) + \alpha \sum_{j} p(j|i, u) \min_{a} Q(j, a),$$

⁶Under appropriate conditions

- Assume off-line simulation with a fixed randomized stationary policy.
 For application of our theorem
- (X_n, Z_n) together forms the Markov chain with the transition probabilities as:

$$P(j, v|i, u) = p(j|i, u)\Phi(v|j)$$

- ullet $\Phi(v|j)$ is the randomized policy
- Stationary distribution for this Markov chain $\pi(i,u)=\pi_{\Phi}(i)\Phi(u|i)$
- Under the norm $\|\cdot\|_{\infty}$

Can be rewritten as:

$$Q_{n+1}(i,u) = Q_n(i,u) + a(n) \Big(F^{(i,u)}(Q_n,Y_n) - Q_n(i,u) + M_{n+1}^{(i,u)}(Q_n) \Big)$$

where

$$\begin{split} F^{i,u}(Q,X,Y) &= I\{X=i,Z=u\} \times \\ &\left(k(i,u) + \gamma \sum_{j} p(j|i,u) \min_{a} Q(j,a) - Q(i,u)\right) + Q(i,u) \end{split}$$

and

$$M_{n+1}^{i,u}(Q) = \gamma I\{X_n = i, Z_n = u\} \times \left(\min_{a} Q(X_{n+1}, a) - \sum_{j} p(j|i, u) \min_{a} Q(j, a)\right).$$

- Most assumptions of the theorem can be easily verified
- The map $\sum_{i,u}\pi(i,u)F(\cdot,i,u)$ is a contraction with $\alpha=(1-(1-\gamma)\pi_{min})$
- The result can be used on iterates Q_n .

Corollary 4.1

Let $n_0 \geq 0$ satisfy $\varphi(n_0) \leq \frac{1}{\alpha}$, $a(n_0) < 1$ and a(n) is non-increasing after n_0 . Then there exist finite positive constants c_1 , c_2 and D such that for $\delta > 0$ and $n \geq n_0$,

$$||Q_n - Q^*|| \le e^{-(1-\alpha)b_{n_0}(n)}||Q_{n_0} - Q^*|| + \frac{\delta + (4a(n_0) + 2\varphi(n_0))c_1}{1 - \alpha\varphi(n_0)}$$

with probability exceeding

1 -
$$2d(n - n_0)e^{-D\delta^2/\beta(n)}$$
, $0 < \delta \le C\varphi(n_0)$,
1 - $2d(n - n_0)e^{-D\delta/\beta(n)}$, $\delta > C\varphi(n_0)$,

where
$$C = e^{\kappa(d)(2(1+\|Q_{n_0}\|_{\infty} + \frac{\|k\|_{\infty}}{1-\alpha}) + c_2)}$$

Corollary 4.2

Let $n_0 \geq 0$ satisfy $\varphi(n_0) \leq \frac{1}{\alpha}$, $a(n_0) < 1$ and a(n) is non-increasing after n_0 . Then there exist finite positive constants c_1 , c_2 and D such that for $\delta > 0$ and for all $n \geq n_0$,

$$||Q_n - Q^*|| \le e^{-(1-\alpha)b_{n_0}(n)}||Q_{n_0} - Q^*|| + \frac{\delta + (4a(n_0) + 2\varphi(n_0))c_1}{1 - \alpha\varphi(n_0)},$$

with probability exceeding

1 -
$$2d \sum_{n \ge n_0} (n - n_0) e^{-D\delta^2/\beta(n)}, \ 0 < \delta \le C\varphi(n_0),$$

1 - $2d \sum_{n \ge n_0} (n - n_0) e^{-D\delta/\beta(n)}, \ \delta > C\varphi(n_0).$

Thank You!

Appendix: A Concentration Inequality

Let $\{M_n\}$ be a real valued martingale difference sequence with respect to an increasing family of σ -fields $\{\mathcal{F}_n\}$. Assume that there exist $\varepsilon, C > 0$ such that

$$E\left[e^{\varepsilon |M_n|}\middle|\mathcal{F}_{n-1}\right] \leq C \ \forall \ n \geq 1, \text{a.s.}$$

Let $S_n := \sum_{m=1}^n \xi_{m,n} M_m$, where $\xi_{m,n}$, $m \le n$,, for each n, are a.s. bounded $\{\mathcal{F}_n\}$ -previsible random variables, i.e., $\xi_{m,n}$ is \mathcal{F}_{m-1} -measurable $\forall m \ge 1$, and $|\xi_{m,n}| \le A_{m,n}$ a.s. for some constant $A_{m,n}, \forall m,n$. Suppose

$$\sum_{m=1}^{n} A_{m,n} \le \gamma_1, \max_{1 \le m \le n} A_{m,n} \le \gamma_2 \omega(n),$$

for some $\gamma_i, \omega(n) > 0$, $i = 1, 2; n \ge 1$. Then we have:

Theorem 5.1. There exists a constant D > 0 depending on $\varepsilon, C, \gamma_1, \gamma_2$ such that for $\epsilon > 0$,

$$P(|S_n| > \epsilon) \le 2e^{-\frac{D\epsilon^2}{\omega(n)}}, \quad if \ \epsilon \in \left(0, \frac{C\gamma_1}{\varepsilon}\right],$$
 (45)

$$2e^{-\frac{D\epsilon}{\omega(n)}}$$
, otherwise. (46)

This is a variant of Theorem 1.1 of [22]. See [3], Theorem A.1, pp. 21-23, for details.