Lista de Exercícios Linhas de Transmissão

- 1. Uma linha de transmissão possui os seguintes parâmetros: $R=4,11~\Omega/m,~L=0,00337~H/m,~G=0,295~\mu~mhos/m$ e $C=0,00915~\mu~F/m$. Encontre $Z_0,~\gamma$ e a impedância de entrada a 20~m da carga $Z_L=(50+j~50)~\Omega$ sabendo que a linha opera numa freqüência de 1~k~Hz. Resp. $Z_0=612~|~-5,35^{\circ}~\Omega;~\gamma=0,00345+j~0,0354$ e $Z_{in}=616~|~68,1^{\circ}~\Omega$.
- 2. Repetir o problema anterior com R=G=0, isto é, uma linha de transmissão sem perdas. Resp. $Z_0=607\,\Omega;\,\gamma=j\,0,0354$ e $Z_{in}=601,12\,|\,80,64^o\,\Omega.$
- 3. Uma linha de transmissão possui os seguintes parâmetros: $R=4,0~\Omega/m,~L=0,004~H/m,~G=0,3~\mu\,mhos/m$ e $C=0,01~\mu\,F/m$. Encontre $Z_0,~\gamma$ e a impedância de entrada a 20~m da carga $Z_L=(75+j~75)~\Omega$ sabendo que a linha opera numa freqüência de 2~k~Hz.
- 4. Repetir o problema anterior com R=G=0, isto é, uma linha de transmissão sem perdas.
- 5. A capacitância por metro de uma linha de transmissão é de 100 pF/m. Assumindo que é uma linha sem perdas e o meio seja o ar, determine Z_0 e β na freqüência de 500 MHz. Resp. $Z_0 = 33, 33 \Omega$; $\beta = 10, 47 \, rad/m$.
- 6. Uma linha de transmissão, operando em 500 MHz, tem $Z_0=80\,\Omega$, $\alpha=0,04\,Np/m$, $\beta=1,5\,rad/m$. Encontre os parâmetros da linha, R,~L,~G e C. Resp. $R=3,2\,\Omega/m,~L=38,2\,nH/m,~G=5\times 10^{-4}\,S/m$ e $C=5,97\,pF/m$.
- 7. Uma linha telefônica tem $R = 30 \Omega/km$, L = 100 mH/km, G = 0 e $C = 20 \mu F/km$. Para f = 1 kHz, encontre: a) a impedância característica da linha; b) a constante de propagação; c) a velocidade de fase. Resp. a) $Z_0 = 70,75 | -1,367^{\circ}\Omega$; b) $\gamma = (2,121 \times 10^{-4} + j 8,888 \times 10^{-3})/m$; c) $v_f = 7,069 \times 10^5 m/s$.
- 8. Uma linha de transmissão de 50 Ω (impedância característica) está carregada com $Z_L = 80 \Omega$. Sabendo que a tensão na carga é de $V_L = 5 V$ encontre Γ , TOE, Z_{in} em $l = \lambda/4$, $\lambda/2$ e $3 \lambda/8$ e V_{max} , V_{min} , I_{max} e I_{min} , com as suas respectivas posições em relação a carga. Resp. $\Gamma = 0,230769 \, A; \, TOE = 1,6; \, Z_{in} = 31,25,\, 80,\, 50 \, \underline{)25,99^o} \, \Omega; \, V_{max} = V_L = 5 \, V; \, V_{min} = 3,125 \, V; \, I_{max} = 0,10 \, A$ e $I_{min} = 0,0625 \, A$.
- 9. Uma linha de transmissão sem perdas com $C=8\times 10^{-11}\,F/m$ e $L=2\times 10^{-7}\,H/m$, tem $40\,m$ de comprimento e uma carga $Z_L=20\,\Omega$. Se uma fonte ideal de tensão fornece $100\,V$ na entrada da linha e está operando numa freqüência de $5\,MHz$, determine a corrente de entrada da linha e a corrente na carga. Resp. $i_{in}=1,022\,|\,31,682^o\,A,\,i_L=2,085\,|\,7,405^o\,A$
- 10. Uma linha de transmissão sem perdas com $C=9\times 10^{-11}~F/m$ e $L=3\times 10^{-7}~H/m$, tem 35 m de comprimento e uma carga $Z_L=15~\Omega$. Se uma fonte ideal de tensão fornece 100~V na entrada da linha e está operando numa freqüência de 10~MHz, determine a corrente de entrada da linha e a corrente na carga.
- 11. Uma linha de transmissão que opera na freqüência $\omega = 10^6 \, rad/s$ tem $\alpha = 0,921 \, Np/m$, $\beta = 1 \, rad/m$ e $Z_0 = (60 + j \, 40) \, \Omega$ e o seu comprimento é de $2 \, m$. Se a linha está conectada à uma fonte de tensão de $10 \, | \, 0^o \, V$, impedância interna $Z_g = 40 \, \Omega$ e esta terminada por uma carga

- de $(20+j50)\Omega$, determine: a) a impedância de entrada; b) a corrente de entrada da linha; c) a corrente na metade da linha. Resp. a) $Z_{in} = (60, 25+j38, 79)\Omega$; b) $I_{in} = 93, 03 | -21, 15^{\circ} mA$; c) $I(z=l/2) = 35, 10 | 281^{\circ} mA$.
- 12. Uma linha de transmissão sem perdas, de 30 metros de comprimento, com $Z_0 = 50\,\Omega$ está operando na freqüência de $2\,MHz$ e possui uma carga $Z_c = (60+j\,40)\,\Omega$. Se a velocidade de propagação na linha é $v=1,8\times 10^8\,m/s$, determine: a) o coeficiente de reflexão; b) a taxa de onda estacionária; c) a impedância de entrada. Resp. $\Gamma=0,3523\,\underline{|\,56^o;}$ b) TOE=2,088; c) $Z_{in}=(23,97+j\,1,35)\,\Omega$.
- 13. Repetir o problema anterior usando a carta de Smith.
- 14. O comprimento de onda em uma certa linha sem perdas é $10 \, cm$. Se a impedância de entrada normalizada é $z_{ent} = 1 + j \, 2 \, \Omega$, use a carta de Smith para determinar: a) s; b) z_L , se o comprimento da linha é de $12 \, cm$; c) x_L , se $z_L = 2 + j \, x_L$, onde $x_L > 0$.
- 15. Uma linha de transmissão sem perdas de $50\,\Omega$ opera com uma velocidade que é $(3/4)\,c$. Uma carga $Z_L = 60 + j\,30\,\Omega$ está localizada em z = 0. Use a carta de Smith para calcular: a) s; b) a distância a partir da carga até o mínimo de tensão mais perto se $f = 300\,MHz$; c) a impedância de entrada se $f = 200\,MHz$ e a entrada é em $z = -110\,cm$.
- 16. Uma linha de transmissão de $300\,\Omega$ é curto-circuitada em z=0. Um máximo de tensão, $|V|_{max}=10\,V$, é encontrado em $z=-25\,cm$ e a tensão mínima, $|V|_{min}=0\,V$ está em $z=-50\,cm$. Use a carta de Smith para calcular Z_L (com o curto-circuito substituído pela carga) se as leituras de tensão são: a) $|V|_{max}=12\,V$ em $z=-5\,cm$ e $|V|_{min}=5\,V$; b) $|V|_{max}=17\,V$ em $z=-20\,cm$ e $|V|_{min}=0\,V$;
- 17. Uma linha de transmissão de $200\,\Omega$ é curto-circuitada em z=0. Um máximo de tensão, $|V|_{max}=12\,V$, é encontrado em $z=-20\,cm$ e a tensão mínima, $|V|_{min}=0\,V$ está em $z=-40\,cm$. Use a carta de Smith para calcular Z_L (com o curto-circuito substituído pela carga) se as leituras de tensão são: a) $|V|_{max}=14\,V$ em $z=-5\,cm$ e $|V|_{min}=6\,V$; b) $|V|_{max}=15\,V$ em $z=-20\,cm$ e $|V|_{min}=0\,V$;
- 18. Uma linha de transmissão de 50 Ω está carregada com $Z_L = (25 + j 60) \Omega$. O comprimento da linha é de 3 m e $\lambda = 4 m$. Usando a carta de Smith determine: a) Γ ; b) Z_{in} a uma distância de 0,05 λ da carga; c) TOE; d) a localização do 1º máximo e do 1º mínimo de tensão em relação à carga. Resp. a) $\Gamma = 0,68 \ | \ -72^{\circ}$; b) $Z_{in} = (15 + j 35) \Omega$; c) TOE = 5,2; d) $l_{min} = 0,6 m$ e $l_{max} = 1,6 m$.
- 19. Uma linha de transmissão de 50 Ω está carregada com $Z_L = (15 + j \, 20) \, \Omega$. Usando a carta de Smith determine: a) Γ ; b) TOE; c) a impedância da linha de transmissão a uma distância de $0,05\,\lambda$; d) a localização do 1º mínimo de tensão em relação à carga. Resp. a) $\Gamma = 0,6\,\underline{|-133^o|}$; b) TOE = 4; c) $Z_{in} = (13 + j \, 4, 5) \, \Omega$; d) $l_{min} = 0,065\,\lambda$.
- 20. Uma carga $Z_L = (100 + j \, 150) \,\Omega$ está conectada a uma linha de transmissão sem perdas com $Z_0 = 75 \,\Omega$. Usando a carta de Smith determine: a) Γ ; b) TOE; c) a admitância da carga Y_L ; d) a impedância a $0, 4\lambda$ da carga; e) a localização de V_{max} e V_{min} em relação à carga, se a linha tiver um comprimento de $0, 6\lambda$; f) a impedância de entrada da linha. Resp. a) $\Gamma = 0,659 \, | \, 40^\circ$; b) TOE = 4,82; c) $Y_L = (3,04-j4,67) \, mS$; d) $Z_{in} = (22,5+j47,25) \,\Omega$; e) $1^\circ V_{max}$ em $0,055 \, \lambda$, único V_{min} em $0,3055 \, \lambda$; f) $Z_{in} = (135-j165) \,\Omega$.

Linhas de Transmissão

21. Um cabo coaxial flexível vai ser usado na freqüência de 300 MHz, suas características são: $Z_0 = 52\,\Omega$, $\alpha = 0,0156\,Np/m$ e comprimento de 75 m. A velocidade da onda eletromagnética que propaga na linha é de 0,66 c e a carga na linha é $Z_L = Z_0$. A linha é excitada por um gerador de 300 MHz que tem uma tensão de circuito aberto de $V_g = 50\,V_{ef}$ e uma impedância interna de $Z_g = 52\,\Omega$. Calcule o valor de tensão e a potência nos terminais de entrada e de saída da linha. Resp. $V_{in} = 25\,V_{ef}$; $V_L = 7,76\,|\,229,0909^o\,V_{ef}$; $P_{in} = 12,02\,W$; $P_L = 1,16\,W$.

- 22. Uma carga $Z_L = 25 + j \, 75 \, \Omega$ está localizada em z = 0 na linha bifilar sem perdas para a qual $Z_0 = 50 \, \Omega$ e v = c. a) se $f = 300 \, MHz$, calcule a menor distância d(z = -d) na qual a admitância de entrada tenha uma parte real igual a $1/Z_0$ e uma parte imaginária negativa; b) qual o valor da capacitância C que poderia ser conectada transversalmente na linha, neste ponto, para fornecer uma taxa de onda estacionária unitária na porção restante da linha.
- 23. Uma antena transmissora apresenta à sua linha alimentadora uma resistência de radiação de 50 Ω . Usou-se um cabo coaxial com $Z_0=50~\Omega$, para haver o casamento. Para aumentar o ganho na transmissão deseja-se colocar duas destas antenas em paralelo, continuando a usar o mesmo cabo coaxial. Projete um casador de $\lambda/4$ para ser inserido entre as antenas e o cabo coaxial, sabendo que a freqüência de operação é de 300 MHz. Resp. característica do cabo casador: comprimento = 25 cm, L=117,84~nH/m e C=94,3~pF/m.
- 24. Sobre uma linha de transmissão sem perdas com $Z_0=50~\Omega$ foi medida uma TOE de 3,6 e o 1º máximo foi encontrado a uma distância de 0,30 λ da carga. Encontre o coeficiente de reflexão e a impedância de carga da linha de transmissão. Resp. $\Gamma=0,565217 \, \underline{|\, 216^o},$ $Z_L=(15,231-j\,14,871)~\Omega.$
- 25. Uma linha de transmissão com $Z_0=50~\Omega$ e comprimento de 1 m opera na freqüência de 150~MHz. A velocidade de propagação na linha é de $3\times 10^8~m/s$. Sabendo que a carga da linha de transmissão é de $75~\Omega$, projete uma casador de impedância de $\lambda/4$ para ser inserido entre a carga e a linha de transmissão. Após a instalação do casador, a carga mudou para $Z_L=(36+j625)~\Omega$, calcule o coeficiente de reflexão e a impedância de entrada da linha de transmissão. Resp. característica do cabo casador: comprimento =50~cm, $L=0,2~\mu~H/m$ e C=54,43~p~F/m; $\Gamma=0,9865~l-116,3578^o$; $Z_{in}=5,99~l-86,70^o~\Omega$.
- 26. O barramento de uma rede de computadores é composto de um cabo coaxial com 400~m de comprimento. Esse cabo tem impedância característica de $50~\Omega$ e velocidade de propagação de $200\times10^6~m/s$. A rede não está funcionando apropriadamente. Medindo-se a impedância em um dos terminais (o outro terminado com $50~\Omega$), obteve-se o valor em módulo de $100~\Omega$ na freqüência de 100~kHz. Considerando a possibilidade de o cabo estar em curto-circuito, determine a provável localização desse defeito. Resp. 352, 4~m.
- 27. Uma linha de transmissão sem perdas com 75Ω de impedância característica opera a 30MHz. A velocidade de propagação é $3 \times 10^8 m/s$. Sabendo que a impedância de carga é $Z_L = (30-j\,30)\Omega$ e a impedância de entrada é $Z_{in} = (30+j\,30)\,\Omega$, determine, usando a carta de Smith: a) o coeficiente de reflexão; b) o comprimento da linha; c) qual deve ser o comprimento da linha para que $Z_{in} = (33,75+j\,37,5)\Omega$. Rep. a) $\Gamma = 5\,|\,-130^{\circ};$ b) l = 1,4m; c) esta impedância não faz parte do círculo de impedâncias desta linha de transmissão, assim, não existe comprimento da linha que gere esta impedância de entrada.
- 28. Uma linha de transmissão sem perdas com $Z_0 = 300 \Omega$ tem 20 m de comprimento e opera em $20 \, MHz$. A velocidade de propagação na linha é de $2 \times 10^8 \, m/s$. Se a linha está terminada por

Linhas de Transmissão 4

uma carga $Z_L = (450 - j 240) \Omega$, use as expressões analíticas para obter: a) as posições do $1^{\underline{0}}$ máximo e do $1^{\underline{0}}$ mínimo; b) a impedância de entrada da linha. Resp. a) $1^{\underline{0}}$ máximo a 1,941 m da carga, $1^{\underline{0}}$ mínimo a 4,441 m da carga; b) $Z_{in} = Z_L = (450 - j 240. \Omega)$. Comprove usando a carta de Smith.

- 29. Questão: Ao se conectar uma antena FM, com impedância de entrada de $300\,\Omega$, a um receptor, usando uma linha de transmissão de $Z_0=300\,\Omega$, um pedaço de uma linha de transmissão de $Z_0=150\,\Omega$, com $2,75\,m$ foi adicionado por engano entre a antena e a linha principal. Considere que todas as linhas sejam sem perdas, que a velocidade de propagação da energia seja $2\times 10^8\,m/s$ e que a impedância de entrada do receptor seja $Z=300\,\Omega$. Qual a TOE introduzida na linha principal sabendo que o sistema opera a $100\,MHz$. Resp. TOE=2,76.
- 30. Uma rede de casamento, utilizando um elemento reativo em série com um comprimento d de uma LT, é utilizado para casar uma carga de $35 j\,50\,\Omega$ em uma LT de $100\,\Omega$ a $1\,GHz$. Determine o comprimento completo de linha d e o valor do elemento reativo se: a) um capacitor série for utilizado; b) um indutor série for utilizado. Resp. a) $d=0,254\,\lambda,\,C=1,14\,pF;$ b) $0,408\,\lambda,\,L=22,3\,nH.$
- 31. Uma rede de casamento consiste em um comprimento de LT em série com um capacitor. Determine o comprimento (em comprimentos de onda) exigido para a seção de LT e o valor do capacitor necessário (em $1\,GHz$) para casar uma impedância de carga de $10-j\,35\,\Omega$ para a linha de $50\,\Omega$.
- 32. Uma LT sem perdas com $Z_0 = 100 \Omega$ e 0,269 λ de comprimento é terminada em uma carga $Z_L = 60 + j 40 \Omega$. Utilize a carta de Smith para determinar: a) Γ ; b) TOE; c) Z_{in} e d) a distância a partir da carga até o primeiro máximo de tensão; Compare com os valores exatos.
- 33. Uma LT sem perdas com $Z_0 = 75 \Omega$ e $0,69 \lambda$ de comprimento é terminada em uma carga $Z_L = 15 + j \, 67 \, \Omega$. Utilize a carta de Smith para determinar: a) Γ ; b) TOE; c) Z_{in} e d) a distância a partir da carga até o primeiro máximo de tensão; Compare com os valores exatos.
- 34. Um sinal de $2, 4\,GHz$ é injetado em uma LT de comprimento $1, 5\,m$, terminada em uma carga casada. O sinal gasta $2, 25\,ns$ para atingir a carga e sofre $1, 2\,dB$ de perda. Determine a constante de propagação. Resp. $\gamma = 0, 092 + j\,62, 8\,1/m$.
- 35. A impedância de entrada para uma LT sem perdas com $30\,cm$ de comprimento e $Z_0=100\,\Omega,$ operando em $2\,GHZ$, é $Z_{in}=92,3-j$ 67, $5\,\Omega$. A velocidade de propagação é $0,70\,c$. Determine a impedância de carga. Resp. $Z_L=50\,\Omega$.
- 36. Uma LT de comprimento 0.4λ e $Z_0 = 50 \Omega$ está carregada com $Z_L = 60 + j \, 50 \, \Omega$. Determine usando a carta de Smith e as expressões exatas: a) TOE; b) Γ ; c) Z_{in} ; d) 1^{o} máximo e 1^{o} mínimo.
- 37. Uma LT de comprimento 0.4λ e $Z_0 = 50 \Omega$ está carregada com $Z_L = 40 j \, 30 \, \Omega$. Determine usando a carta de Smith e as expressões exatas: a) TOE; b) Γ ; c) Z_{in} ; d) $1^{\underline{o}}$ máximo e $1^{\underline{o}}$ mínimo.
- 38. Uma LT de comprimento 0.3λ e $Z_0 = 75 \Omega$ está carregada com $Z_L = 40 j \, 50 \, \Omega$. Determine usando a carta de Smith e as expressões exatas: a) TOE; b) Γ ; c) Z_{in} ; d) 1^{ϱ} máximo e 1^{ϱ} mínimo.

Linhas de Transmissão 5

39. Uma LT de comprimento 0.2λ e $Z_0 = 50 \Omega$ está carregada com $Z_L = 60 + j \, 30 \, \Omega$. Determine usando a carta de Smith e as expressões exatas: a) TOE; b) Γ ; c) Z_{in} ; d) 1^{ϱ} máximo e 1^{ϱ} mínimo.

- 40. Uma linha de transmissão sem perdas com $Z_0=150~\Omega$ tem 20 m de comprimento e opera em 25 MHz. A velocidade de propagação na linha é de $2\times 10^8~m/s$. Se a linha está terminada por uma carga $Z_L=(300+j~150)~\Omega$, use as expressões analíticas para obter: a) as posições do 1^0 máximo e do 1^0 mínimo; b) a impedância de entrada da linha. Comprove usando a carta de Smith.
- 41. Uma linha de transmissão sem perdas com $Z_0 = 50 \Omega$ tem 20 m de comprimento e opera em $30 \ MHz$. A velocidade de propagação na linha é de $2 \times 10^8 \ m/s$. Se a linha está terminada por uma carga $Z_L = (150 j \ 200) \ \Omega$, use as expressões analíticas para obter: a) as posições do 1° máximo e do 1° mínimo; b) a impedância de entrada da linha. Comprove usando a carta de Smith.
- 42. Uma antena transmissora apresenta à sua linha alimentadora uma resistência de radiação de 50 Ω . Usou-se um cabo coaxial com $Z_0 = 50 \Omega$, para haver o casamento. Para aumentar o ganho na transmissão deseja-se colocar três destas antenas em paralelo, continuando a usar o mesmo cabo coaxial. Projete um casador de $\lambda/4$ para ser inserido entre as antenas e o cabo coaxial, sabendo que a freqüência de operação é de $300 \, MHz$.