kd education academy (9582701166

STD 11 Maths Total Marks: 222 Time: 10 Hour

kd90+ ch- 4 complex numbers and quadratic equations

* Match the following.

[5]

1.	Part (a)	Part (b)
	1. Value of $(1+i)\left(1+i^2\right)\left(1+i^3\right)\left(1+i^4\right)$	(a) 0
	2. $a=1+i$ then value of a^2	(b) $-i$
	3. Square root of $-i$	(c) 2 <i>i</i>
	4. i^{135}	(d) $\pm \frac{1}{\sqrt{2}}(1-i)$
	5. i^{-999}	(e) i

* Choose the right answer from the given options. [1 Marks Each]

[52]

2. If $i^2 = -1$, then the sum $i + i^2 + i^3 + ...$ upto 1000 terms is equal to:

$$(B) -1$$

³. If, $x^4 + 4x^3 + 6ax^2 + 6bx + c$ is divisible by $x^3 + 3x^2 + 9x + 3$. Then, what is the value of a + b + c?

4. If p and q are the roots of the equation $x^2 + px + q = 0$ then, what are the values of p and q? (A) p = 1, q = -2 (B) p = 0, q = 1 (C) p = -2, q = 0 (D) p = -2, q = 1

(A)
$$p = 1$$
, $q = -2$

(B)
$$p = 0$$
, $q = 1$

(C)
$$p = -2$$
, $q = 0$

(D)
$$p = -2$$
, $q = 1$

5. A real value of x satisfies the equation $\frac{3-4ix}{3+4ix} = a - ib(a, b \in R)$, if $a^2 + b^2 =$

- 6. If $x^2 + px + 1 = 0$ and $(a b) x^2 + (b c) x + (c a) = 0$ have both roots common, then what is the form of a, b, c?

- (A) a, b, c are in A.P (B) b, a, c are in A.P (C) b, a, c are in G.P (D) b, a, c are in H.P
- 7. If $i^2 = -1$, then the sum $i + i^2 + i^3 + ...$ upto 1000 terms is equal to:

8. According to De Moivre's theorem what is the value of $z^{\frac{1}{n}}$

(A)
$$r^{rac{1}{n}} \left[\cos 2kn + heta
ight) + i \sin (2kn + heta)
ight]$$

(B)
$$r^{\frac{1}{n}} \left\lceil \frac{\cos 2kn + \theta)}{n} - \frac{i \sin(2kn + \theta)}{n} \right\rceil$$

(C)
$$r^{\frac{1}{n}} \left\lceil \frac{\cos 2kn + \theta)}{n} + \frac{i \sin(2kn + \theta)}{n} \right\rceil$$

(D)
$$r^{rac{1}{n}} \left[\cos 2kn + heta
ight) - i\sin(2kn + heta)
ight]$$

9.	If $rac{1-\mathrm{ix}}{1+\mathrm{ix}}=\mathrm{a}+\mathrm{ib},$ then $\mathrm{a}^2+\mathrm{b}^2=$			
	(A) 1	(B) -1	(C) 0	(D) none of these
10.	Find mirror image of	point representing $x + i$	i y on real axis:	
	(A) (x, y)	(B) (-x, -y)	(C) (-x, y)	(D) (x, -y)
11.	If $(1+i)(1+2i)(1+3i)$	(1+ni) = a+ib, then	$2.5.10.17(1+n^2) =$	
	(A) $a - ib$	(B) $a^2 - b^2$	(C) $a^2 + b^2$	(D) none of these
12.	The value of $(1+i)(1+i)$	$-\mathrm{i}^2)(1+\mathrm{i}^3)(1+\mathrm{i}^4)$ is		,
	(A) 2	(B) 0	(C) 1	(D) i
13.	The square root of (-	15 – 8i) is:		
	(A) $\pm (1-4\mathrm{i})$	(B) $\pm (1+4\mathrm{i})$	(C) $\pm(-2+4\mathrm{i})$	(D) None of these
14.	If $\frac{3+2\mathrm{i}\sin\theta}{1-2\mathrm{i}\sin\theta}$ is a real num	nber and $0< heta<2\pi,$ the		
	(A) π	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{6}$
15.	If, α and β are the r	oots of the equation	$2x^2 - 3x - 6 = 0$, then	n what is the
	equation whose roots are a^2+2 and eta^2+2			
	(A) $4x^2 + 49x + 118 =$	(B) $4x^2 - 49x + 118 =$	(C) $4x^2 - 49x - 118 =$	(D) $x^2 - 49x + 118 =$
	0	0	0	0
16.	If $x + iy = (1+i)(1+2i)$	$(1+3\mathrm{i}), then \mathrm{x}^2 + \mathrm{y}^2 = 0$		
	(A) 0	(B) 1	(C) 100	(D) none of these
17.	If, $(a+1)x^2 + 2(a+1)x$ equation have real an	+(a-2)=0 then, for d distinct roots?	what parameter of	'a' the given
	(A) $(-\infty,\infty)$	(B) $(-1,\infty)$	(C) $[-1,\infty)$	(D) $(-1,1)$
18.	If $z = 1 - \cos \theta + i \sin \theta$,	then $ \mathbf{z} $		
		(B) $2\cos\frac{\theta}{2}$	(C) $2\left \sin\frac{\theta}{2}\right $	(D) $2 \left \cos \frac{\theta}{2}\right $
19.	If one root of the equ	$x^2 + px + 12 = 0$	is 4, while the equatior	$1 x^2 + px + q =$
	0 has equal roots, the			
	•	(B) $\frac{4}{49}$	(C) 4	(D) None of these.
20.	If $z = 2 - 3i$ then $z^2 - 4z$	z + 13 =		
	(A) 0	(B) 1	(C) 2	(D) 3
21.	The complex number	z which satisfies the co	andition $\left rac{\mathrm{i}+\mathrm{z}}{\mathrm{i}-\mathrm{z}} ight =1$ lies or	1:
		(B) The x-axis	(C) The y-axis	(D) The line $x + y = 1$
22.	If $a = \cos \theta + i \sin \theta$, the	$n \frac{1+a}{1-a} =$		
	(A) $\cot \frac{\theta}{2}$	(B) $\cot \theta$	(C) $i\cot\frac{\theta}{2}$	(D) $i \tan \frac{\theta}{2}$

23.	The argument of $\frac{1-i\sqrt{3}}{1+i\sqrt{3}}$	is:		
	(A) 60°	(B) 120°	(C) 210°	(D) 240°
24.	If, $(a+1)x^2 + 2(a+1)x$ equation have equal r	+a-2=0 then, for oots?	what parameter of	'a' the given
	(A) $\Big(-\infty,-1\Big)$	(B) $\Big[-1,\infty\Big)$	(C) $(0,1)$	(D) Not possible
25.	Choose the correct an $\sin x + i\cos 2x$ and $\cos x$	nswer. $- \operatorname{isin} 2\mathrm{x}$ are conjugate		
	(A) $x = n\pi$	(B) $\mathbf{x} = \left(\mathbf{n} + \frac{1}{2}\right) \frac{\pi}{2}$	(C) $x = 0$	(D) no value of x
26.	Convert -1 + i into pola	ar form:		
	(A) $\sqrt{2}, \frac{5\pi}{4}$	(B) $\sqrt{2}, \frac{3\pi}{4}$	(C) $-\sqrt{2}, \frac{\pi}{4}$	(D) $\sqrt{2}, \frac{\pi}{4}$
27.	Choose the correct and The value of $(z+3)(\bar{z}+\bar{z})$		200	
	(A) $ z + 3 ^2$	(B) z - 3	(C) $z^2 + 3$	(D) None of these.
28.	A quadratic equation	$ax^2 + bx + c = 0$ has two	o distinct real roots, if	
	(A) $a = 0$	(B) $b^2 - 4ac = 0$		(D) $b^2 - 4ac > 0$
^{29.} The number of real roots of the equation $(x^2 + 2x)^2 - (x + 1)^2 - 55 = 0$:			0:	
	(A) 2	(B) 1	(C) 4	(D) None of these.
30.	The polar form of (i^{25})) ³ is:		
	(A) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$	(B) $\cos \pi + \mathrm{i} \sin \pi$	(C) $\cos \pi - i \sin \pi$	(D) $\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$
31.	What will be the sum have one common room	of b + c if the equation ot:	$a = x^2 + bx + c = 0$ and $a = 0$	$x^2 + 3x + 3 = 0$
	(A) 2	(B) 4	(C) 6	(D) 8
32.	Choose the correct an	nswer.		
	The real value of α for (A) $(n+1)\frac{\pi}{2}$	which the expression	$rac{1-i\sinlpha}{1+2i\sinlpha}$ is purely real is (B) $(2n+1)rac{\pi}{2}$	5:
	(C) nπ		(D) None of these, wh	ere $n \in N$
33.	If $z_1 = 2 + 3i$ and $z_2 = 5 + 2i$, then find sum of two complex numbers:			
	(A) 4 + 8i	(B) 3 - i	(C) 7 + 5i	(D) 7 - 5i
34.	Choose the correct an	iswer.		
	The real value of θ for	which the expression	$rac{1+\mathrm{i}\cos heta}{1-2\mathrm{i}\cos heta}$ is a real number	er is:
	(A) $n\pi + \frac{\pi}{4}$	(B) $n\pi + (-1)^n \frac{\pi}{4}$	(C) $2\mathrm{n}\pi\pm\frac{\pi}{2}$	(D) None of these.

	(A) 1	(B) -1	(C) 0	(D) none of these.
36.	What is the number o	f solution(s) of the equ	uation $ \sqrt{\mathrm{x}-2} + \sqrt{\mathrm{x}(\sqrt{\mathrm{x}})}$	$\overline{(-4)} + 2 = 0$
	(A) 2		(B) 4	
	(C) No solution		(D) Infinitely many sol	utions
37.	$\frac{1+2i+3i^2}{1-2i+3i^2}$ equals:			
	(A) i	(B) -1	(C) -i	(D) 4
38.	The value of $(1+\mathrm{i})^4$ +	$(1-\mathrm{i})^4$ is:		
	(A) 8	(B) 4	(C) -8	(D) -4
39.	Choose the correct ar			
A real value of x satisfies the equation $\left(rac{3-4\mathrm{ix}}{3+4\mathrm{ix}} ight)=lpha-\mathrm{i}eta(lpha,eta\in\mathrm{R})$ if $lpha^2+eta^2=$			$^2 + \beta^2 =$	
	(A) 1	(B) -1	(C) 2	(D) -2
40.	Solve $\sqrt{3x^2} + x + \sqrt{3} =$	0		
	(A) $\frac{-1\pm\mathrm{i}\sqrt{11}}{6\sqrt{3}}$	(B) $\frac{1\pm \mathrm{i}\sqrt{11}}{6\sqrt{3}}$	(C) $\frac{1\pm\sqrt{11}}{6\sqrt{3}}$	(D) $\frac{-1\pm\sqrt{11}}{6\sqrt{3}}$
41.	If $\frac{1+7\mathrm{i}}{\left(2-\mathrm{i}\right)^2}$, then:			
	(A) $ \mathrm{z} =2$	(B) $ \mathbf{z} = \frac{1}{2}$	(C) $\mathrm{amp}(\mathrm{z}) = \frac{\pi}{4}$	(D) $amp(z) = \frac{3\pi}{4}$
42.	If α, β are the roots of	the equation $x^2 - p(x)$	+ 1) – c = 0, then $(\alpha + 1)$)(eta+1)=
	(A) c	(B) c - 1	(C) 1 - c	(D) None of these.
43.	If $(x + iy)^{\frac{1}{3}} = a + ib$, the	$\frac{x}{a} + \frac{y}{b}$		
	If $(x + iy)^{\frac{1}{3}} = a + ib$, the (A) 0	(B) 1	(C) -1	(D) none of these
44.	If $\alpha\beta$ are the roots o	f the equation x ² + px	$\alpha + q = 0$ then $-\frac{1}{\alpha} + \frac{1}{\beta}$	are the roots
	of the equation:			
	(A) $x^2 - px + q = 0$	(B) $x^2 + px + q = 0$	(C) $qx^2 + px + 1 = 0$	(D) $qx^2 - px + 1 = 0$
45.	The number of roots	of the equation $\frac{(x+2)(x-1)}{(x+3)(x+1)}$		
	(A) 0	(B) 1	(C) 2	(D) 3
46.	If α, β are the roots	of the equation x2 -	+ px + 1 = 0; γ, δ the	roots of the
		0, then $(\alpha - \gamma)(\alpha + \delta)(\beta)$		
	(A) $q^2 - p^2$	(B) $p^2 - q^2$	(C) $p^2 + q^2$	(D) None of these.
47.	The least positive inte	ger n such that $\left(\frac{2\mathrm{i}}{1\mathrm{L}\mathrm{i}}\right)^\mathrm{n}$	is a positive integer, is	:
		(1+1)		

35. If $\mathbf{z} = \left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)\!,$ then z^4 equals:

	_			
(Δ)	1	6

48. Solve
$$2x^2 + \sqrt{2x+2} = 0$$

(A)
$$\frac{-1 \pm i\sqrt{7}}{2\sqrt{2}}$$

(B)
$$\frac{1 \pm i\sqrt{7}}{2\sqrt{2}}$$

(C)
$$\frac{1\pm\sqrt{7}}{2\sqrt{2}}$$

(D)
$$\frac{-1 \pm \sqrt{7}}{2\sqrt{2}}$$

49. The value of
$$\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}-1$$
 is

$$(A) -1$$

$$(C) -3$$

50. The value of
$$\frac{(i^5+i^6+i^7+i^8+i^9)}{(1+i)}$$
 is:

(A)
$$\frac{1}{2}(1+i)$$

(B)
$$\frac{1}{2}(1-i)$$

(C)
$$1$$

(D)
$$\frac{1}{2}$$

51. If
$$z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{6}$$
, then

(A)
$$|z| = 1, arg(z) = \frac{\pi}{4}$$

(B)
$$|z| = 1, arg(z) = \frac{\pi}{6}$$

(C)
$$|z| = \frac{\sqrt{3}}{2}, arg(z) = \frac{5\pi}{24}$$

(D)
$$|z| = \frac{\sqrt{3}}{2}, arg(z) = tan^{-1} \frac{1}{\sqrt{2}}$$

52. The number of real solutions of
$$|2x - x^2 - 3| = 1$$
 is:

$$(C)$$
 3

53. If
$$\alpha$$
 and β are imaginary cube roots of unity, then the value of $\alpha^4 + \beta^{28} + \frac{1}{\alpha\beta}$ is:

$$(B) -1$$

(D) None of these

* Given section consists of questions of 2 marks each.

[54]

⁵⁴. Express the complex number
$$\left(-2 - \frac{1}{3}i\right)^3$$
 in the form of a + ib.

- 55. Find the multiplicative inverse of the complex numbers $=\sqrt{5}+3i$
- 56. Express the following in the form of a + ib.

$$\frac{(3+\sqrt{5}i)(3-\sqrt{5}i)}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-\sqrt{2}i)}$$

57. Find the modulus of
$$\frac{1+i}{1-i} - \frac{1-i}{1+i}$$
.

58. Find the number of non-zero integral solutions of the equation $|1-i|^x=2^x$.

59. If
$$(a + ib) (c + id) (e + if) (g + ih) = A + iB$$
 then show that $(a^2 + b^2)(c^2 + d^2)(e^2 + f^2)(g^2 + h^2) = A^2 + B^2$

^{60.} If
$$\left(\frac{1+i}{1-i}\right)^m=1$$
 then find the least positive integral value of m.

$$61$$
. Express $(5 - 3i)^3$ in the form $a + ib$.

62. Represent the complex number
$$z = 1 + i\sqrt{3}$$
 in the polar form.

63. Convert the complex number
$$\frac{-16}{1+\sqrt{3}i}$$
 into polar form.

64. Solve
$$\sqrt{5}x^2 + x + \sqrt{5} = 0$$

- 65. Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$
- 66. Evaluate the following: i^{528}
- 67. Find the square root of the following complex numbers: 4i
- 68. Evaluate the following:

$$i^{30} + i^{40} + i^{60}$$

69. Evaluate the following:

$$i^{49} + i^{68} + i^{89} + i^{110}$$

70. Express the following complex numbers in the standard form a + ib:

$$\left(\frac{1}{1-4\mathrm{i}} - \frac{2}{1+\mathrm{i}}\right) \left(\frac{3-4\mathrm{i}}{5+\mathrm{i}}\right)$$

- 71. If Z_1 , z_2 , z_3 are complex numbers such that $|z_1|=|z_2|=|z_3|=\left|\frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3}\right|=1$, then find the value of $|z_1+z_2+z_3|$.
- 72. Express the following complex numbers in the standard form a + ib:

$$\frac{(1-i)^3}{1-i^3}$$

- 73. Find the number of solutions of $z^2 + |z|^2 = 0$.
- 74. Show the following quadratic equation by factorization method:

$$27x^2 - 10x + 1 = 0$$

75. Show the following quadratic equation:

$$x^2 - (2 + i) x - (1 - 7i) = 0$$

76. Show the following quadratic equation:

$$x^2 - (3\sqrt{2} + 2i)x + 6\sqrt{2}i = 0$$

77. Show the following quadratic equation:

$$(2 + i) x^2 - (5 - i) x + 2 (1 - i) = 0$$

78. Show the following quadratic equation by factorization method:

$$x^2 - (2\sqrt{3} + 3i)x + 6\sqrt{3}i = 0$$

- 79. If $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3 = x + iy$, then find (x, y).
- 80. Find the value of the following:

$$(1+i)^8 + (1-i)^8$$

* Given section consists of questions of 3 marks each.

81. Evaluate $\left[i^{18}+\left(rac{1}{i}
ight)^{25}
ight]^3$

- 82. Reduce $\left(\frac{1}{1-4i} \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$ to the standard form.
- 83. If $x-iy=\sqrt{rac{a-ib}{c-id}}\,$ prove that $(x^2+y^2)^2=rac{a^2+b^2}{c^2+d^2}$
- 84. Convert in the polar form: $\frac{1+7i}{(2-i)^2}$
- 85. If a + ib $=rac{(x+i)^2}{2x^2+1}$, prove that $a^2+b^2=rac{(x^2+1)^2}{(2x^2+1)^2}$.
- 86. If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 y^2)$
- 87. If α and β are different complex numbers with $|\beta|=1$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha}\beta}\right|$
- ⁸⁸. Express $\frac{5+\sqrt{2}i}{1-\sqrt{2}i}$ in the form of a + ib.
- 89. If x + iy = $\frac{a+ib}{a-ib}$, prove that $x^2 + y^2 = 1$
- 90. Write the complex number $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ in the polar form.
- 91. $(1+i)^6+(1-i)^3$
- 92. Find the values of the following expressions: $i^{30}+i^{80}+i^{120} \label{eq:constraint}$
- 93. Show the following quadratic equation by factorization method:

$$\sqrt{2}x^2 + x + \sqrt{2} = 0$$

94. Show the following quadratic equation:

$$ix^2 - x + 12i = 0$$

- 95. If $\frac{(1+i)^2}{2-i} = x + iy$, then find the value of x + y.
- 96. If $\frac{(a^2+1)^2}{2a-i} = x + iy$, what is the value of $x^2 + y^2$?
 - * Given section consists of questions of 5 marks each.
- 97. Express the following complex numbers in the form $r(\cos\theta + i\sin\theta)$: $1 \sin\alpha + i\cos\alpha$
- 98. Find the least positive integral value of n for which $\left(\frac{1+i}{1-i}\right)^n$ is real.
- 99. Evaluate the following:

$$2x^3 + 2x^2 - 7x + 72$$
, when $x = \frac{3-5i}{2}$

- 100. $x^4 + 4x^3 + 6x^2 + 4x + 9$, when $x = -1 + i\sqrt{2}$
- 101. Express the following complex numbers in the form ${\bf r}(\cos\theta+i\sin\theta)$: $\tan\alpha-i$
- 102. $2x^4 + 5x^3 + 7x^2 x + 41$, when $x = -2 \sqrt{3}i$

[55]

103.	For a positive integer n, find the value of $(1-i)^n \left(1-\frac{1}{i}\right)^i$.
104.	Express the following complex numbers in the form $r(\cos\theta + i\sin\theta)$:

 $1 + i \tan \alpha$

105. Evaluate the following:

$$x^4 - 4x^3 + 4x^2 + 8x + 44$$
, when $x = 3 + 2i$

106. If
$$\left(\frac{1-i}{1+i}\right)^{100}=a+ib,$$
 find (a, b).

107. If
$$a = \cos \theta + i \sin \theta$$
, find the value of $\left(\frac{1+a}{1-a}\right)$

* Case study based questions

[8]

108. A complex number z is pure real if and only if $\bar{z}=z$ and is pure imaginary if and only if $\bar{z}=-z$.

Based on the above information, answer the following questions.

(i) If
$$(1+i)z=(1-i)ar{z}$$
 , then $-iar{z}$ is

(a)
$$-\bar{z}$$
 (b) z (c) \bar{z} (d) z^{-1}

(ii)
$$\overline{Z_1Z_2}$$
 is

(ii)
$$\overline{Z_1Z_2}$$
 is
 (a) $\bar{z}_1\bar{z}_2$ (b) $\bar{z}_1+\bar{z}_2$ (c) $\frac{z_1}{z_2}$ (d) $\frac{1}{z_1z_2}$

(iii) If x and y are real numbers and the complex number $\frac{(2+i)x-i}{4+i} + \frac{(1-i)y+2i}{4i}$ is pure real, the relation between x and y is

(a)
$$8x - 17y = 16$$
 (b) $8x + 17y = 16$

(b)
$$8x + 17y = 16$$

(c)
$$17x - 8u = 16$$

(c)
$$17x - 8y = 16$$
 (d) $17x - 8y = -16$

(iv) If $z=rac{3+2i\sin\theta}{1-2i\sin\theta}\left(0<\theta\leqrac{\pi}{2}
ight)$ is pure imaginary, then θ is equal to

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{4}{6}$ (c) $\frac{6}{3}$ (d) $\frac{\pi}{12}$

(v) If z_1 and z_2 are complex numbers such that $\left|rac{z_1-z_2}{z_1+z_2}
ight|=1$

(a)
$$\frac{z_1}{z_2}$$
 is pure real (b) $\frac{z_1}{z_2}$ is pure imaginary

(c)
$$z_1$$
 is pure real

(c) z_1 is pure real (d) z_1 and z_2 are pure imaginary

109. We have, $i = \sqrt{-1}$. So, we can write the higher powers of i as follows

(i)
$$i^2 = -1$$

(ii)
$$i^3 = i^2 \cdot i = (-1) \cdot i = -i$$

(iii)
$$i^4 = (i^2)^2 = (-1)^2 = 1$$

(iv)
$$i^5=i^{4+1}=i^4\cdot i=1\cdot i=i$$

(v)
$$i^6=i^{4+2}=i^4\cdot i^2=1\cdot i^2=-1$$

In order to compute i^n for n>4, write $i^n=i^{4q+r}$ for some $q,r\in N$ and $0\leq r\leq 3$.

Then,
$$i^n=i^{4q}\cdot i^r=\left(i^4
ight)^q\cdot i^r=(1)^q\cdot i^r=i^r$$
 .

In general, for any integer $k, i^{4k}=1, i^{4k+1}=i, i^{4k+2}=-1$ and $i^{4k+3}=-i$.

On the basis of above information, answer the following questions.

- (i) The value of i^{37} is equal to
 - (a) i
- (b) -i (c) 1
- (d) -1
- (ii) The value of i^{-30} is equal to
 - (a) i

- (b) 1 (c) -1 (d) -i
- (iii) If $z = i^9 + i^{19}$, then z is equal to

 - (a) 0+0i (b) 1+0i (c) 0+i
- (d) 1 + 2i
- (iv) The value of $\left[i^{19}+\left(rac{1}{i}
 ight)^{25}
 ight]^2$ is equal to

- (a) -4 (b) 4 (c) i (d) 1
- (v) If $z = i^{-39}$, then simplest form of z is equal to
 - (a) 1 + 0i
- (b) 0+i
- (c) 0 + 0i
- (d) 1 + i

"The only one who can tell you 'you can't win' is you, and you don't have to listen." -----