# [SoC Design: Term Project] Hardware accelerator for CNN

Chester Sungchung Park
SoC Design Lab, Konkuk University

Webpage: <a href="http://soclab.konkuk.ac.kr">http://soclab.konkuk.ac.kr</a>



### **Teaching Assistants**

- ☐ Jooho Wang (joohowang@konkuk.ac.kr), Ph.D. candidate
- □ Sunwoo Kim (<u>sunwkim@konkuk.ac.kr</u>), Ph.D. candidate

#### **Outline**

- ☐ Hardware accelerator
- ☐ CNN for MNIST
- ☐ Design flow
- ☐ Design constraints
- Evaluation
- Submission
- Presentation
- □ Appendix

#### **Hardware Accelerator**



... accelerate applications and workloads by offloading a portion of the processing onto adjacent silicon subsystems such as **graphics processing units (GPUs)** and **field-programmable gate arrays (FPGAs).** 

#### Hyper-Moore's Law (Nvidia)

We are just on the precipice of **a new Moore's Law**– one that is driven by traditional CPUs with **accelerator** kickers

#### Apple's AP





#### **Hardware Accelerator**

#### ☐ SoC integration



### **MNIST (Input Images)**



#### **CNN for MNIST**



#### **CNN for MNIST**

- ☐ Full-SW implementation (Jooho Wang)
  - Set the stack and heap size as explained in the appendix
  - Run the main program and check the results in the Console window





Source: Y-H. Chen



Source: Y-H. Chen







#### □ Pseudo code

For 
$$(n = 0; n < N; n + +)$$
 Channel  
For  $(c = 0; c < C; c + +)$  Filter  
For  $(m = 0; m < M; m + +)$  of height  
For  $(f = 0; f < F; f + +)$  of width  
For  $(e = 0; e < E; e + +)$  f width  
For  $(r = 0; r < R; r + +)$  f width  
of  $[e][f][m][n] + = if[r + e][s + f][c][n] \cdot f[r][s][c][m]$   
Feature map out Feature map in Filter

### **Design Flow**



### **Design Constraints**

- ☐ Modify <u>only</u> the convolution part of Layer 2 (convolution2\_hw) in the main program
  - Implement the <u>hardware accelerator</u> to which you can offload <u>all</u> the <u>arithmetic operations</u>
  - Do not modify any other part in the main program

### **Design Constraints**

☐ Example of hardware accelerator



\* Single MAC hardware block assumed (no parallelism)



#### **Evaluation**

- ☐ Submission completeness
  - Reproducibility (10pt)
- □ Accuracy
  - Classification error (20pt)
  - Quantization error (10pt)
- ☐ Execution time
  - Convolution in Layer 2 (30pt)
- Novelty
  - Any good ideas (10pt)

### Reproducibility

- ☐ Make sure that your submission is complete
  - In other words, it is possible to reproduce your design together with the results (accuracy and performance) using only the submitted files

### **Accuracy**

- Run the main program and check the accuracy of convolution2\_hw in the Console window
  - Classification error
    - ✓ A new set of 10 test images will not be given in advance
  - Quantization error
    - ✓ NSR measures the difference from the reference results (e.g., quantization noise)

```
<Reference design>
estimated label: 0 (0.1069348)
estimated label: 1 (0.0899757)
estimated label: 2 (0.1065318)
estimated label: 3 (0.0880197)
estimated label: 4 (0.0886517)
estimated label: 5 (0.1049255)
estimated label: 6 (0.0922938)
estimated label: 7 (0.1232479)
estimated label: 8 (0.1233093)
estimated label: 9 (0.1174142)
Average time (usec): 258928.7757874
Total time (usec): 375775.9928703
<HW-based design>
estimated label: 0 (0.1069348)
estimated label: 1 (0.0899757)
estimated label: 2 (0.1065318)
estimated label: 3 (0.0880197)
estimated label: 4 (0.0886517)
estimated label: 5 (0.1049255)
estimated label: 6 (0.0922938)
estimated label: 7 (0.1232479)
estimated label: 8 (0.1233093)
estimated label: 9 (0.1174142)
Average time (usec): 258929.1334152
Total time (usec): 375774.6517658
```

Measure performance: NSR(dB) = -inf

#### **Performance**

- □ Run the main program and check the performance of convolution2\_hw in the Console window
  - Execution time

```
<Reference design>
estimated label: 0 (0.1069348)
estimated label: 1 (0.0899757)
estimated label: 2 (0.1065318)
estimated label: 3 (0.0880197)
estimated label: 4 (0.0886517)
estimated label: 5 (0.1049255)
estimated label: 6 (0.0922938)
estimated label: 7 (0.1232479)
estimated label: 8 (0.1233093)
estimated label: 9 (0.1174142)
Average time (usec): 258928.7757874
Total time (usec): 375775.9928703
<HW-based design>
estimated label: 0 (0.1069348)
estimated label: 1 (0.0899757)
estimated label: 2 (0.1065318)
estimated label: 3 (0.0880197)
estimated label: 4 (0.0886517)
estimated label: 5 (0.1049255)
estimated label: 6 (0.0922938)
estimated label: 7 (0.1232479)
estimated label: 8 (0.1233093)
estimated label: 9 (0.1174142)
Average time (usec): 258929.1334152
Total time (usec): 375774.6517658
```

Measure performance: NSR(dB) = -inf

### **Any Good Ideas**

- ☐ Anything that can reduce the execution time such as
  - DMA-based data transfer
  - Array of multiple MAC hardware blocks
  - Row-stationary dataflow
- □ For the state-of-the-art hardware accelerator for CNN, refer to the following paper (and those citing it available at <a href="http://ieeexplore.ieee.org">http://ieeexplore.ieee.org</a>):
  - Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE JSSC, Jan. 2017

#### **Submission**

- ☐ Due date: Dec. 11 (Mon), 2017, 23:59:59 GMT+9
- ☐ Zip the following files into a single file and send it to <a href="mailto:chesterku2013@gmail.com">chesterku2013@gmail.com</a>
  - C/Verilog source/header files and any other files that are needed to reproduce your design
  - Copy of the <u>entire</u> SDK folder in your project (including the bitstream)
  - Slideset file (PPT) including the results in the Console window
- ☐ You can post a question in the Q&A of the course page (https://www.sites.google.com/site/kusocdesignlab/q-a-2)
- No delay will be acceptable!



#### **Submission**

#### ☐ SDK folder in your project







#### **Presentation & Demo**

- □ Dec. 12 (Tue) 10:30~12:00 / 14 (Thu) 09:00~10:30,2017, New Eng. Bldg #1113
  - Team-presentation with <u>exactly</u> the same **slideset** file as submitted on Dec. 11
  - Team-demo with <u>exactly</u> the same **SDK folder** as submitted on Dec. 11
- 1. Bring a storage device (e.g., HDD) having the <u>entire</u> **project folder** just in case (e.g., when the SDK folder does not work)
- 2. Note that any progress made later than **Dec. 11** can**not** be counted for evaluation



## **Appendix**

### Generating a linker script

- ☐ Select the application project in the Project Explorer or C/C++ Projects view
- ☐ Right-click *Generate Linker*Script or click Xilinx Tools >
  Generate Linker script.



### Generating a linker script

☐ Set both the heap and stack sizes in the *Basic* tab to 104857600 as shown below

