SIGNAL ANALYSIS

IEEE Press 445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Stamatios V. Kartalopoulos, Editor in Chief

M. Akay	M. E. El-Hawary	M. Padgett
J. B. Anderson	R. J. Herrick	W. D. Reeve
R. J. Baker	D. Kirk	S. Tewksbury
J. E. Brewer	R. Leonardi	G. Zobrist
	M. S. Newman	

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor
John Griffin, Acquisitions Editor
Tony VenGraitis, Project Editor

SIGNAL ANALYSIS

TIME, FREQUENCY, SCALE, AND STRUCTURE

Ronald L. Allen Duncan W. Mills

Copyright © 2004 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 0-471-23441-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To Beverley and to the memory of my parents, Mary and R.L. (Kelley).

R.L.A.

To those yet born, who will in some manner—large or small—benefit from the technology and principles described here. To the reader, who will contribute to making this happen.

D.W.M.

CONTENT

	Pre	face	xvii	
	Ack	nowle	xxi	
1	Sign	nals: A	nalog, Discrete, and Digital	1
	1.1	Introd	4	
		1.1.1	Basic Concepts	4
		1.1.2	Time-Domain Description of Signals	11
		1.1.3	Analysis in the Time-Frequency Plane	18
		1.1.4	Other Domains: Frequency and Scale	20
	1.2	Analo	og Signals	21
		1.2.1	Definitions and Notation	22
		1.2.2	Examples	23
		1.2.3	Special Analog Signals	32
	1.3	Discre	ete Signals	35
		1.3.1	Definitions and Notation	35
		1.3.2	Examples	37
		1.3.3	Special Discrete Signals	39
	1.4	Samp	ling and Interpolation	40
		1.4.1	Introduction	40
		1.4.2	Sampling Sinusoidal Signals	42
		1.4.3	Interpolation	42
		1.4.4	Cubic Splines	46
	1.5	Perio	dic Signals	51
		1.5.1	Fundamental Period and Frequency	51
		1.5.2	Discrete Signal Frequency	55
		1.5.3	Frequency Domain	56
		1.5.4	Time and Frequency Combined	62
	1.6	Speci	al Signal Classes	63
		1.6.1	Basic Classes	63
		1.6.2	Summable and Integrable Signals	65
				vii

VIII CONTENTS	viii	CONTENTS	
---------------	------	----------	--

		1.6.3	Finite Energy Signals	66
		1.6.4	Scale Description	67
		1.6.5	Scale and Structure	67
	1.7	Signa	ls and Complex Numbers	70
		1.7.1	Introduction	70
		1.7.2	Analytic Functions	71
		1.7.3	Complex Integration	75
	1.8	Rand	lom Signals and Noise	78
		1.8.1	Probability Theory	79
		1.8.2	Random Variables	84
		1.8.3	Random Signals	91
	1.9	Sumn	nary	92
		1.9.1	•	93
		1.9.2	Resources	95
		1.9.3	Looking Forward	96
		1.9.4	Guide to Problems	96
	Refe	erences		97
	Prob	olems		100
2	Disc	crete S	ystems and Signal Spaces	109
	2.1	Opera	ations on Signals	110
		2.1.1	Operations on Signals and Discrete Systems	111
		2.1.2	Operations on Systems	121
		2.1.3	Types of Systems	121
	2.2	Linea	r Systems	122
		2.2.1	Properties	124
		2.2.2	Decomposition	125
	2.3	Trans	lation Invariant Systems	127
	2.4	Conv	olutional Systems	128
		2.4.1	Linear, Translation-Invariant Systems	128
		2.4.2	Systems Defined by Difference Equations	130
		2.4.3	Convolution Properties	131
		2.4.4	Application: Echo Cancellation in Digital Telephony	133
	2.5	The l	^p Signal Spaces	136
		2.5.1	l ^p Signals	137
		252	Stable Systems	138

				CONTENTS	ix
		2.5.3	Toward Abstract Signal Spaces		139
		2.5.4	Normed Spaces		142
		2.5.5	Banach Spaces		147
	2.6	Inner	Product Spaces		149
		2.6.1	Definitions and Examples		149
		2.6.2	Norm and Metric		151
		2.6.3	Orthogonality		153
	2.7	Hilbe	ert Spaces		158
		2.7.1	Definitions and Examples		158
		2.7.2	Decomposition and Direct Sums		159
		2.7.3	Orthonormal Bases		163
	2.8	Summ	nary		168
	Refe	erences			169
	Prol	olems			170
3	Analog Systems and Signal Spaces				173
	3.1	Analo	og Systems		174
		3.1.1	Operations on Analog Signals		174
		3.1.2	Extensions to the Analog World		174
		3.1.3	Cross-Correlation, Autocorrelation, and Convolutio	n	175
		3.1.4	Miscellaneous Operations		176
	3.2	Conv	olution and Analog LTI Systems		177
		3.2.1	Linearity and Translation-Invariance		177
		3.2.2	LTI Systems, Impulse Response, and Convolution		179
		3.2.3	Convolution Properties		184
			Dirac Delta Properties		186
		3.2.5	Splines		188
	3.3	Analo	og Signal Spaces		191
		3.3.1	L^p Spaces		191
		3.3.2	Inner Product and Hilbert Spaces		205
		3.3.3	Orthonormal Bases		211
		3.3.4	Frames		216
	3.4	Mode	ern Integration Theory		225
		3.4.1	Measure Theory		226
		3.4.2	Lebesgue Integration		232

X CONTENTS

	3.5	Distri	butions	241
		3.5.1	From Function to Functional	241
		3.5.2	From Functional to Distribution	242
		3.5.3	The Dirac Delta	247
			Distributions and Convolution	250
		3.5.5	Distributions as a Limit of a Sequence	252
	3.6	Sumn	nary	259
		3.6.1	Historical Notes	260
		3.6.2	Looking Forward	260
		3.6.3	Guide to Problems	260
	Refe	erences		261
	Prob	olems		263
4	Tim	e-Dom	nain Signal Analysis	273
	4.1	Segm	entation	277
		_	Basic Concepts	278
		4.1.2	Examples	280
		4.1.3	Classification	283
		4.1.4	Region Merging and Splitting	286
	4.2	Thres	holding	288
		4.2.1	Global Methods	289
		4.2.2	Histograms	289
		4.2.3	Optimal Thresholding	292
		4.2.4	Local Thresholding	299
	4.3	Textu	re	300
		4.3.1	Statistical Measures	301
		4.3.2	Spectral Methods	308
		4.3.3	Structural Approaches	314
	4.4	Filter	ing and Enhancement	314
		4.4.1	Convolutional Smoothing	314
		4.4.2	Optimal Filtering	316
		4.4.3	Nonlinear Filters	321
	4.5	Edge	Detection	326
		4.5.1	Edge Detection on a Simple Step Edge	328
		4.5.2	Signal Derivatives and Edges	332
		4.5.3	Conditions for Optimality	334
		4.5.4	Retrospective	337

		CONTENTS	хi
	 4.6 Pattern Detection 4.6.1 Signal Correlation 4.6.2 Structural Pattern Recognition 4.6.3 Statistical Pattern Recognition 		338 338 342 346
	4.7 Scale Space4.7.1 Signal Shape, Concavity, and Scale4.7.2 Gaussian Smoothing		351 354 357
	4.8 Summary		369
	References		369
	Problems		375
5	Fourier Transforms of Analog Signals		383
	 5.1 Fourier Series 5.1.1 Exponential Fourier Series 5.1.2 Fourier Series Convergence 5.1.3 Trigonometric Fourier Series 		385 387 391 397
	 5.2 Fourier Transform 5.2.1 Motivation and Definition 5.2.2 Inverse Fourier Transform 5.2.3 Properties 5.2.4 Symmetry Properties 		403 403 408 411 420
	5.3 Extension to $L^2(\mathbb{R})$ 5.3.1 Fourier Transforms in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ 5.3.2 Definition 5.3.3 Isometry		424 425 427 429
	5.4 Summary5.4.1 Historical Notes5.4.2 Looking Forward		432 432 433
	References		433
	Problems		434
6	Generalized Fourier Transforms of Analog Signals		440
	6.1 Distribution Theory and Fourier Transforms		440
	6.1.1 Examples		442
	6.1.2 The Generalized Inverse Fourier Transform		443
	6.1.3 Generalized Transform Properties		444

xii	CONTENTS
-----	----------

	6.2	Gener	alized Functions and Fourier Series Coefficients	451
		6.2.1	Dirac Comb: A Fourier Series Expansion	452
		6.2.2	Evaluating the Fourier Coefficients: Examples	454
	6.3	Linear	r Systems in the Frequency Domain	459
		6.3.1	Convolution Theorem	460
		6.3.2	Modulation Theorem	461
	6.4	Introd	uction to Filters	462
		6.4.1	Ideal Low-pass Filter	465
		6.4.2	Ideal High-pass Filter	465
		6.4.3	Ideal Bandpass Filter	465
	6.5	Modu	lation	468
		6.5.1	Frequency Translation and Amplitude Modulation	469
		6.5.2	Baseband Signal Recovery	470
		6.5.3	Angle Modulation	471
	6.6	Summa	ary	475
	Refe	erences		476
	Prob	olems		477
7	Disc	crete Fo	ourier Transforms	482
	7.1	Discre	ete Fourier Transform	483
		7.1.1	Introduction	484
		7.1.2	The DFT's Analog Frequency-Domain Roots	495
		7.1.3	Properties	497
		7.1.4	Fast Fourier Transform	501
	7.2	Discre	ete-Time Fourier Transform	510
		7.2.1	Introduction	510
			Properties	529
		7.2.3	LTI Systems and the DTFT	534
	7.3	The Sa	ampling Theorem	538
		7.3.1	Band-Limited Signals	538
		7.3.2	Recovering Analog Signals from Their Samples	540
		7.3.3	Reconstruction	543
		7.3.4	Uncertainty Principle	545
	7.4	Summ	nary	547
	Refe	erences		548
	Prob	olems		549

			CONTENTS	xiii
8	The	e z-Trai	nsform	554
	8.1	Conc	eptual Foundations	555
		8.1.1	Definition and Basic Examples	555
		8.1.2	Existence	557
		8.1.3	Properties	561
	8.2	Invers	sion Methods	566
		8.2.1	Contour Integration	566
		8.2.2	Direct Laurent Series Computation	567
		8.2.3	Properties and z-Transform Table Lookup	569
		8.2.4	Application: Systems Governed by Difference Equations	571
	8.3	Relat	ted Transforms	573
		8.3.1	Chirp z-Transform	573
		8.3.2	Zak Transform	575
	8.4	Sumn	nary	577
		8.4.1	Historical Notes	578
		8.4.2	Guide to Problems	578
	Refe	erences		578
	Prol	blems		580
9	9 Frequency-Domain Signal Analysis		585	
	9.1	Narro	owband Signal Analysis	586
		9.1.1	Single Oscillatory Component: Sinusoidal Signals	587
		9.1.2	Application: Digital Telephony DTMF	588
		9.1.3	Filter Frequency Response	604
		9.1.4	Delay	605
	9.2	Frequ	ency and Phase Estimation	608
		9.2.1	Windowing	609
		9.2.2	Windowing Methods	611
		9.2.3	Power Spectrum Estimation	613
		9.2.4	Application: Interferometry	618
	9.3	Discr	ete filter design and implementation	620
		9.3.1	Ideal Filters	621
		9.3.2	Design Using Window Functions	623
		9.3.3	Approximation	624
		9.3.4	Z-Transform Design Techniques	626
		9.3.5	Low-Pass Filter Design	632

xiv	′	CONTEN	TS	
		9.3.6	Frequency Transformations	639
		9.3.7	Linear Phase	640
	9.4	Widel	oand Signal Analysis	643
	9.4.1		Chirp Detection	643
			Speech Analysis	646
			Problematic Examples	650
	9.5	Analo	g Filters	650
			Introduction	651
			Basic Low-Pass Filters	652
			Butterworth	654
			Chebyshev	664
			Inverse Chebyshev	670
			Elliptic Filters	676
		9.5.7	Application: Optimal Filters	685
	9.6	Specia	alized Frequency-Domain Techniques	686
		9.6.1	Chirp-z Transform Application	687
			Hilbert Transform	688
			Perfect Reconstruction Filter Banks	694
	9.7	Summ	ary	700
	Ref	erences		701
	Prol	blems		704
10	Tin	ne-Fren	uency Signal Transforms	712
	10.1			713
	10.1 Gabor Transforms			715

9.7 Summ	ary	700
References		701
Problems		704
10 Time-Freq	uency Signal Transforms	712
10.1 Gabo	or Transforms	713
10.1.1	Introduction	715
10.1.2	Interpretations	717
10.1.3	Gabor Elementary Functions	718
10.1.4	Inversion	723
10.1.5	Applications	730
10.1.6	Properties	735
10.2 Shor	t-Time Fourier Transforms	736
10.2.1	Window Functions	736
10.2.2	Transforming with a General Window	738
10.2.3	Properties	740
10.2.4	Time-Frequency Localization	741

				CONTENTS	ΧV
	10.3	Discreti	ization		747
		10.3.1	Transforming Discrete Signals		747
		10.3.2	Sampling the Short-Time Fourier Transform		749
		10.3.3	Extracting Signal Structure		751
		10.3.4	A Fundamental Limitation		754
		10.3.5	Frames of Windowed Fourier Atoms		757
		10.3.6	Status of Gabor's Problem		759
	10.4 Quadratic Time-Frequency Transforms				760
		10.4.1	Spectrogram		761
		10.4.2	Wigner-Ville Distribution		761
		10.4.3	Ambiguity Function		769
		10.4.4	Cross-Term Problems		769
		10.4.5	Kernel Construction Method		770
	10.5	The Bal	lian-Low Theorem		771
		10.5.1	Orthonormal Basis Decomposition		772
		10.5.2	Frame Decomposition		777
		10.5.3	Avoiding the Balian–Low Trap		787
	10.6	Summa	ry		787
		10.6.1	Historical Notes		789
		10.6.2	Resources		790
		10.6.3	Looking Forward		791
	Refe	rences		791	
	Prob	lems		794	
11	Tim	e-Scale		802	
	11.1	Signa	l Scale		803
	11.2	Conti	nuous Wavelet Transforms		803
		11.2.1	An Unlikely Discovery		804
		11.2.2	Basic Theory		804
		11.2.3	Examples		815
	11.3	Frame	S		821
		11.3.1	Discretization		822
		11.3.2	Conditions on Wavelet Frames		824
		11.3.3	Constructing Wavelet Frames		825
		11.3.4	Better Localization		829
	11.4	Multir	esolution Analysis and Orthogonal Wavelets		832
		11.4.1	Multiresolution Analysis		835

		11.4.2	Scaling Function	847		
		11.4.3	Discrete Low-Pass Filter	852		
		11.4.4	Orthonormal Wavelet	857		
	11.5	11.5 Summary				
	Refe	References				
	Prob	lems		867		
12	Mixed-Domain Signal Analysis					
	12.1	Wavelet Methods for Signal Structure		873		
		12.1.1	Discrete Wavelet Transform	874		
		12.1.2	Wavelet Pyramid Decomposition	875		
		12.1.3	Application: Multiresolution Shape Recognition	883		
	12.2	Mixed	-Domain Signal Processing	893		
		12.2.1	Filtering Methods	895		
		12.2.2	Enhancement Techniques	897		
	12.3	Biophy	ysical Applications	900		
		12.3.1	David Marr's Program	900		
		12.3.2	Psychophysics	900		
	12.4	12.4 Discovering Signal Structure		904		
		12.4.1	Edge Detection	905		
		12.4.2	Local Frequency Detection	908		
		12.4.3	Texture Analysis	912		
	12.5 Pattern Recognition Networks		913			
		12.5.1	Coarse-to-Fine Methods	913		
		12.5.2	Pattern Recognition Networks	915		
			Neural Networks	916		
		12.5.4	Application: Process Control	916		
	12.6	Signal	Modeling and Matching	917		
		12.6.1	Hidden Markov Models	917		
			Matching Pursuit	918		
		12.6.3	Applications	918		
	12.7 Afterword			918		
	References					
	Probl	ems		925		
	Index	C		929		

This text provides a complete introduction to signal analysis. Inclusion of fundamental ideas—analog and discrete signals, linear systems, Fourier transforms, and sampling theory—makes it suitable for introductory courses, self-study, and refreshers in the discipline. But along with these basics, *Signal Analysis: Time, Frequency, Scale, and Structure* gives a running tutorial on functional analysis—the mathematical concepts that generalize linear algebra and underlie signal theory. While the advanced mathematics can be skimmed, readers who absorb the material will be prepared for latter chapters that explain modern mixed-domain signal analysis: Short-time Fourier (Gabor) and wavelet transforms.

Quite early in the presentation, Signal Analysis surveys methods for edge detection, segmentation, texture identification, template matching, and pattern recognition. Typically, these are only covered in image processing or computer vision books. Indeed, the fourth chapter might seem like a detour to some readers. But the techniques are essential to one-dimensional signal analysis as well. Soon after learning the rudiments of systems and convolutions, students are invited to apply the ideas to make a computer understand a signal. Does it contain anything significant, expected, or unanticipated? Where are the significant parts of the signal? What are its local features, where are their boundaries, and what is their structure? The difficulties inherent in understanding a signal become apparent, as does the need for a comprehensive approach to signal frequency. This leads to the chapters on the frequency domain. Various continous and discrete Fourier transforms make their appearance. Their application, in turn, proves to be problematic for signals with transients, localized frequency components, and features of varying scale. The text delves into the new analytical tools—some discovered only in the last 20 years—for such signals. Time-frequency and time-scale transforms, their underlying mathematical theory, their limitations, how they differently reveal signal structure, and their promising applications complete the book. So the highlights of this book are:

- The signal analysis perspective;
- The tutorial material on advanced mathematics—in particular function spaces, cast in signal processing terms;
- The coverage of the latest mixed domain analysis methods.

We thought that there is a clear need for a text that begins at a basic level while taking a *signal analysis* as opposed to *signal processing* perspective on applications.

The goal of signal analysis is to arrive at a structural description of a signal so that later high-level algorithms can interpret its content. This differs from signal processing *per se*, which only seeks to modify the input signal, without changing its fundamental nature as a one-dimensional sequence of numerical values. From this viewpoint, signal analysis stands within the scope of artificial intelligence. Many modern technologies demand its skills. Human–computer interaction, voice recognition, industrial process control, seismology, bioinformatics, and medicine are examples.

Signal Analysis provides the abstract mathematics and functional analysis which is missing from the backgrounds of many readers, especially undergraduate science and engineering students and professional engineers. The reader can begin comfortably with the basic ideas. The book gradually dispenses the mathematics of Hilbert spaces, complex analysis, disributions, modern integration theory, random signals, and analog Fourier transforms; the less mathematically adept reader is not overwhelmed with hard analysis. There has been no easy route from standard signal processing texts to the latest treatises on wavelets, Gabor transforms, and the like. The gap must be spanned with knowledge of advanced mathematics. And this has been a problem for too many engineering students, classically-educated applied researchers, and practising engineers. We hope that Signal Analysis removes the obstacles. It has the signal processing fundamentals, the signal analysis perspective, the mathematics, and the bridge from all of these to crucial developments that began in the mid-1980s.

The last three chapters of this book cover the latest mixed-domain transform methods: Gabor transforms, wavelets, multiresolution analysis, frames, and their applications. Researchers who need to keep abreast of the advances that are revolutionizing their discipline will find a complete introductory treatment of time-frequency and time-scale transforms in the book. We prove the Balian-Low theorem, which pinpoints a limitation on short-time Fourier representations. We had envisioned a much wider scope for mixed-domain applications. Ultimately, the publication schedule and the explosive growth of the field prevented us from achieving a thorough coverage of all principal algorithms and applications—what might have been a fourth highlight of the book. The last chapter explains briefly how to use the new methods in applications, contrasts them with time domain tactics, and contains further references to the research literature.

Enough material exists for a year-long university course in signal processing and analysis. Instructors who have students captive for two semesters may cover the chapters in order. When a single semester must suffice, Chapters 1–3, 5, 7, 8, and 9 comprise the core ideas. We recommend at least the sections on segmentation and thresholding in Chapter 4. After some programming experiments, the students will see how hard it is to make computers do what we humans take for granted. The instructor should adjust the pace according to the students' preparation. For instance, if a system theory course is prerequisite—as is typical in the undergraduate engineering curriculum—then the theoretical treatments of signal spaces, the Dirac delta, and the Fourier transforms are appropriate. An advanced course can pick up the mathematical theory, the pattern recognition material in

Chapter 4, the generalized Fourier transform in Chapter 6, and the analog filter designs in Chapter 9. But the second semester work should move quickly to and concentrate upon Chapters 10–12. This equips the students for reading the research literature.

RONALD L. ALLEN San José, California

DUNCAN W. MILLS Mountain View, California

ACKNOWLEDGMENTS

We would like to thank the editorial and production staffs on John Wiley and Sons and IEEE Press for their efficiency, courtesy, patience, and professionalism while we wrote this book. We are especially grateful to Marilyn G. Catis and Anthony VenGraitis of IEEE Press for handling incremental submissions, managing reviews, and providing general support over the years. We are grateful to Beverley Andalora for help with the figures, to William Parker of Philips Speech Recognition Systems for providing digital speech samples, and to KLA-Tencor Corporation for reflectometry and scanning electron microscopy data samples.

RONALD L. ALLEN
DUNCAN W. MILLS