BT6270 - Computational Neuroscience Assignment 2

Parth Keyur Doshi BE17B024

Simulating the two variable FitzHugh-Nagumo neuron model

Case 1

 $I_{\text{ext}} = 0$

a) Phase Plot

b) V(t) vs t, W(t) vs t, Trajectories

ii) V(0) > a, W(0) = 0

Case 2

$$11 < I_{ext} < 12$$

We need oscillations in this case.

To find I1 and I2, we need to find the extremas of the equation.

We solve the equation F'(x) = 0 to get the roots, and then solve the F(x) to get the corresponding values of I1 and I2.

$$I1 = 0.259$$
 and $I1 = 0.739$

Phase plots of I1 and I2

a) Phase Plot for I = 0.5

b) Fixed point (0.5, 0.5) is unstable A small disturbance of (0.001, 0.001) causes it to spiral into a limit cycle.

c) V(t) vs t, W(t) vs t

Both V(t) and W(t) show periodic ossicallations

Case 3

 $I_{\text{ext}} > 12$

 $I_{ext} = 0.8 A$

a) Phase Plot

b) The steady state is at (0.845,0.845) We start from a point (0.9,0.9)

The trajectory spins back, hence it is a stable fixed point

c) V(t) vs t, W(t) vs t

Both the trajectories spiral back to the fixed point

Case 4

The minima of the v null cline lies below w null cline, and maxima lies above it.

The slope b/r needs to be smaller than slope connecting the minima and maxima.

b/r < 0.1667

Let's consider b/r value of 0.12

b = 0.012

r = 0.01

I = 0.05

a) Phase plot for I = 0.05 A

b) P1=(0.106, 0.013) P2=(0.581, 0.070) P3=(0.813, 0.097)

P1 - Stable as it converges

P2 - Stable as it converges

P3 - Stable as it converges

c) V(t) vs t, W(t) vs t

