Flexible Modeling of Transition Processes via Bayesian Spline Rate Models

with Application to Estimating and Projecting Modern Contraceptive Prevalence

Herb Susmann Leontine Alkema

University of Massachusetts Amherst

July 2022

UMassAmherst

 Increasing interest in estimates and projections of demographic and health indicators.

- Increasing interest in estimates and projections of demographic and health indicators.
- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a *transition* between stable states.

- Increasing interest in estimates and projections of demographic and health indicators.
- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a transition between stable states.
- Classic example: demographic transition.
 - Transition from high total fertility rate and high under-5 mortality to low fertility, low mortality.

- Increasing interest in estimates and projections of demographic and health indicators.
- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a transition between stable states.
- Classic example: demographic transition.
 - Transition from high total fertility rate and high under-5 mortality to low fertility, low mortality.
- Existing statistical models for estimating and projecting trends in these indicators draw on these patterns.

- Increasing interest in estimates and projections of demographic and health indicators.
- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a transition between stable states.
- Classic example: demographic transition.
 - Transition from high total fertility rate and high under-5 mortality to low fertility, low mortality.
- Existing statistical models for estimating and projecting trends in these indicators draw on these patterns.
- This presentation: We propose a new type of model, called B-spline Transition Models, for flexibly estimating indicators that follow transitions.

 Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.
- Existing model: Family Planning Estimation Model (FPEM, Cahill et al. 2018).

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.
- Existing model: Family Planning Estimation Model (FPEM, Cahill et al. 2018).
- Goal: estimate and project mCPR in countries from 1970-2030.

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.
- Existing model: Family Planning Estimation Model (FPEM, Cahill et al. 2018).
- Goal: estimate and project mCPR in countries from 1970-2030.
- Dataset aggregated by United Nations Population Division (UNPD) from surveys conducted by governments or international organizations.

Raw Data

Example Fits

• Let $\eta_{c,t}$ be the true value of the indicator in country c at time t (c = 1, ..., C, t = 1, ..., T).

- Let $\eta_{c,t}$ be the true value of the indicator in country c at time t (c = 1, ..., C, t = 1, ..., T).
- Observed data y_i , i = 1, ..., n with associated properties c[i], t[i], ...

- Let $\eta_{c,t}$ be the true value of the indicator in country c at time t (c = 1, ..., C, t = 1, ..., T).
- Observed data y_i , i = 1, ..., n with associated properties c[i], t[i], ...
- *Process model* describes evolution of $\eta_{c,t}$.

- Let $\eta_{c,t}$ be the true value of the indicator in country c at time t $(c=1,\ldots,C,\ t=1,\ldots T)$.
- Observed data y_i , i = 1, ..., n with associated properties c[i], t[i], ...
- *Process model* describes evolution of $\eta_{c,t}$.
- Data model describes relationship between y_i and $\eta_{c[i],t[i]}$.

July 2022

 Our contribution: a model class for indicators that follow a transition.

- Our contribution: a model class for indicators that follow a transition.
- Transition Models have a process model given by

$$g_1(\eta_{c,t}) = \underbrace{g_3(t, \eta_{c,s
eq t}, \alpha_c)}_{ ext{systematic}} + \underbrace{\epsilon_{c,t}}_{ ext{smoothing}}.$$

- Our contribution: a model class for indicators that follow a transition.
- Transition Models have a process model given by

$$g_1(\eta_{c,t}) = \underbrace{g_3(t,\eta_{c,s
eq t},\alpha_c)}_{ ext{systematic}} + \underbrace{\epsilon_{c,t}}_{ ext{smoothing}}.$$

• The systematic component has the following form:

$$\mathbf{g_3}(t, \eta_{c,s \neq t}, \alpha_c) = \begin{cases} \Omega_c, & t = t_c^*, \\ g_1(\eta_{c,t-1}) + f(\eta_{c,t-1}, P_c, \beta_c), & t > t_c^*, \\ g_1(\eta_{c,t+1}) - f(\eta_{c,t+1}, P_c, \beta_c), & t < t_c^*, \end{cases}$$

where $\alpha_c = \{\Omega_c, P_c, \beta_c\}$.

- Our contribution: a model class for indicators that follow a transition.
- Transition Models have a process model given by

$$g_1(\eta_{c,t}) = \underbrace{g_3(t,\eta_{c,s
eq t},\alpha_c)}_{ ext{systematic}} + \underbrace{\epsilon_{c,t}}_{ ext{smoothing}}.$$

• The systematic component has the following form:

$$g_{3}(t, \eta_{c,s\neq t}, \alpha_{c}) = \begin{cases} \Omega_{c}, & t = t_{c}^{*}, \\ g_{1}(\eta_{c,t-1}) + f(\eta_{c,t-1}, P_{c}, \beta_{c}), & t > t_{c}^{*}, \\ g_{1}(\eta_{c,t+1}) - f(\eta_{c,t+1}, P_{c}, \beta_{c}), & t < t_{c}^{*}, \end{cases}$$

where $\alpha_c = \{\Omega_c, P_c, \beta_c\}$.

• The function f is called the transition function.

Example B-spline Transition Function

Sharing information on shape of transition function

Smoothing component

Recall the process model has two components:

$$g_1(\eta_{c,t}) = \underbrace{g_3(t, \eta_{c,s
eq t}, \alpha_c)}_{ ext{systematic}} + \underbrace{\epsilon_{c,t}}_{ ext{smoothing}}.$$

Smoothing component: AR(1) process of the form

$$\epsilon_{c,t}|\epsilon_{c,t-1}, \tau, \rho \sim N(\rho * \epsilon_{c,t-1}, \tau^2)$$

Smoothing component

Data Model: connection to observed data

- Let y_i , i = 1, ..., n be the observed mCPR for country c[i] and year y[i] from data source d[i].
- For each observation we have an estimate s_i^2 of the sampling error.
- We also expect each data source to have additional non-sampling error $\sigma^2_{d[i]}$.
- Truncated normal data model:

$$y_i | \eta_{c[i],t[i]}, \sigma_{d[i]}^2 \sim N_{(0,1)} \left(\eta_{c[i],t[i]}, s_i^2 + \sigma_{d[i]}^2 \right).$$

Choosing a spline specification

Validation exercise: hold out all observations after a cutoff year L=2010.

	95% UI				Error	
	% Below	% Included	% Above	CI Width ×100	ME ×100	MAE ×100
Model Check 2 (<i>L</i> = 2010), <i>n</i> = 133						
B-spline ($d=2$, $K=5$)	3.76%	94.7%	1.5%	32.0	-1.670	4.64
B-spline ($d = 2, K = 7$)	6.02%	91.7%	2.26%	31.5	-1.260	4.68
B-spline ($d = 3$, $K = 5$)	3.76%	94.7%	1.5%	32.4	-1.630	4.48
B-spline ($d=3, K=7$)	3.76%	94%	2.26%	31.6	-0.965	4.57

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error. Measures calculated using the last held-out observation within each area.

Illustrative Fits

Kenya Raw Data

Data Source

- DHS
- MICS
- National survey
- + Other
- PMA

Kenya Transition Function

Kenya Smoothing Component

Kenya mCPR Estimates

Rwanda Raw Data

Data Source

- DHS
- ▲ MICS
- National survey
- + Other
- PMA

Rwanda Transition Function

Rwanda Smoothing Component

Rwanda mCPR Estimates

Trends can be seen in regional and subregional transition functions

Summary

- Subclass of Transition Models for indicators that follow transitions.
- B-spline Transition Model: flexible modelling approach based on B-splines.
- Generated estimations and projections of mCPR in countries from 1970-2030.
- Found systematically different transitions in countries across regions.
- Flexible model framework that can be easily extended to new settings and use cases.