Fonctions numériques. Rappels et compléments 1

I - Limites

Lorsque nous écrivons ∞ cela signifie que c'est valable pour $+\infty$ comme pour $-\infty$ Il existe quatre cas d'indétermination dans les opérations sur les limites :

$$<<+\infty-\infty>>;$$
 $<<\frac{\infty}{\infty}>>;$ $<<\frac{0}{0}>>;$ $<<0\times\infty>>$

Limites usuelles

$$n \in \mathbb{N}^*$$

$$-\lim_{x \to +\infty} x^n = +\infty$$

$$-\lim_{x \to +\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ pair} \\ -\infty & \text{si } n \text{ impair} \end{cases}$$

$$-\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$-\lim_{x \to \infty} \frac{1}{x^n} = 0$$

$$-\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$-\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Remarque 1

Les fonctions cosinus et sinus n'ont pas de limites à l'infini.

Limite de la composée de deux fonctions

Propriété 2

Soient f et g deux fonctions, a, b et c trois réels pouvant éventuellement être $+\infty$ ou $-\infty$.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} g[f(x)] = c$

Exemple 3

Calculons
$$\lim_{x \to +\infty} \cos \left(\frac{x+1}{x^2-2} \right)$$

Calculons
$$\lim_{x \to +\infty} \cos\left(\frac{x+1}{x^2-2}\right)$$
On a: $\lim_{x \to +\infty} \frac{x+1}{x^2-2} = 0$ et $\lim_{x \to 0} \cos x = \cos 0 = 1$ donc par composée $\lim_{x \to +\infty} \cos\left(\frac{x+1}{x^2-2}\right) = 1$

Comparaisons de limites

Théorème 4

Soient f, g et h trois fonctions et $l \in \mathbb{R}$ et $a = +\infty$ ou $a = -\infty$ ou $a \in \mathbb{R}$.

Hypothèse 1	Hypothèse 2	Conclusion
$f \leq g$	$\lim_{x \to a} f(x) = +\infty$	$\lim_{x \to a} g(x) = +\infty$
$f \leq g$	$\lim_{x \to a} g(x) = -\infty$	$\lim_{x \to a} f(x) = -\infty$
$ f(x)-l \leq g(x)$	$\lim_{x \to a} g(x) = 0$	$\lim_{x \to a} f(x) = l$
$g \le f \le h$	$\lim_{x \to a} g(x) = l \text{ et } \lim_{x \to a} h(x) = l$	$\lim_{x \to a} f(x) = l$

Remarque 5

Le dernier théorème est parfois appelée « le théorème des gendarmes ».

Exemple 6 — Soit $f(x) = x + 3\cos x$.

Pour tout $x \in \mathbb{R}$: $x - 3 \le f(x) \le x + 3$

· On a:
$$x - 3 \le f(x)$$
 et $\lim_{x \to 3} x - 3 = +\infty$ donc $\lim_{x \to 3} f(x) = +\infty$

· On a:
$$x - 3 \le f(x)$$
 et $\lim_{\substack{x \to +\infty \\ x \to -\infty}} x - 3 = +\infty$ donc $\lim_{\substack{x \to +\infty \\ x \to -\infty}} f(x) = +\infty$
· On a: $f(x) \le x + 3$ et $\lim_{\substack{x \to -\infty \\ x \to -\infty}} x - 3 = -\infty$ donc $\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = -\infty$

— Calculons
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$
.

Pour tout
$$x \ge 1$$
: $-1 \le \sin x \le 1$
En multipliant par $-1 \le \sin x \le 1$

En multipliant par
$$\frac{1}{x}$$
: on a $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$

Pour tout
$$x \ge 1$$
: $-1 \le \sin x \le 1$
En multipliant par $\frac{1}{x}$: on a $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$
Or $\lim_{x \to +\infty} (-\frac{1}{x}) = \lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} \frac{\sin x}{x} = 0$

Limites et nombre dérivé

Théorème 7

Soit *f* une fonction dérivable.

Si
$$\lim_{x \to a} f'(x) = l$$
, (l réel fini ou pas) alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

Exemple 8

Calculons
$$\lim_{x\to 0} \frac{\sin x}{x}$$

Posons $f(x) = \sin x$

On a
$$f(0) = 0$$
 et $f'(x) = \cos x$

Donc
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} f'(x) = \lim_{x \to 0} \cos x = 1$$

II - Branches infinies d'une courbe

Soit une fonction numérique f et $\mathscr C$ sa courbe représentative dans un repère orthogonal du plan.

1. Asymptotes

Asymptote verticale

Elle traduit, graphiquement, le fait que la fonction f admet une limite infinie en un réel a.

Définition 9

Si $\lim_{x \to a^+} f(x) = \infty$ ou $\lim_{x \to a^-} f(x) = \infty$ ou $\lim_{x \to a} f(x) = \infty$ alors la droite d'équation (D) x = a est une asymptote verticale à la courbe \mathscr{C} .

$$\lim_{x \to a^{-}} f(x) = -\infty$$

Asymptote horizontale

Elle traduit, graphiquement, le fait que la fonction f admet une limite finie à l'infini.

Définition 10

Si $\lim_{x\to\infty} f(x) = b$ (réel) alors la droite y = b est une asymptote horizontale à la courbe \mathscr{C} en ∞

Exemple 11

Pour la fonction $f: x \mapsto 3 + \frac{5}{x-1}$

- la droite d'équation y = 3 est asymptote horizontale
- la droite d'équation x = 1 est asymptote verticale à la courbe de f.

Asymptote oblique

Définition 12

Soit f une fonction et Δ la droite d'équation y = ax + b.

Si $\lim_{x \to \infty} (f(x) - (ax + b)) = 0$ alors la droite d'équation y = ax + b est une asymptote oblique à la courbe de f en ∞ .

Exemple 13

Pour la fonction $f: x \mapsto x + \frac{2}{x-1}$ dont la courbe est représentée ci dessous, la droite d'équation y = x est asymptote oblique à la courbe.

Remarque 14

Si f s'écrit sous la forme f(x) = ax + b + g(x) et si $\lim_{x \to \infty} g(x) = l$ (réel) alors la droite y = lax + b + l est une asymptote à \mathscr{C} en ∞ .

Exemple 15

Pour la fonction $f: x \mapsto 2x + 5 - \frac{2x}{x-1}$ la droite d'équation y = 2x + 3 est asymptote oblique à sa courbe en ∞ car $\lim_{x \to \infty} \frac{2x}{x-1} = 2$.

Position relative d'une courbe et son asymptote

Pour étudier la position relative de la courbe $\mathscr C$ d'une fonction f par rapport à son asymptote Δ : y = ax + b, on étudie le signe de la différence f(x) - ax - b.

- Si f(x) ax b > 0 alors \mathscr{C} est située au-dessus de la courbe de Δ
- Si f(x) ax b < 0 alors la courbe de $\mathscr C$ est située en-dessous de la courbe de Δ
- Si f(x) ax b = 0 alors la courbe de \mathscr{C} et Δ sont sécantes.

On tiendra compte de l'ensemble sur lequel on doit étudier la position relative des deux courbes.

2. Recherche de branches infinies

Lorsque $\lim f(x) = \infty$, la courbe $\mathscr C$ présente une branche infinie qu'il faut étudier.

- Si $\lim_{x\to\infty} \frac{f(x)}{x} = 0$ alors la courbe $\mathscr C$ présente une branche parabolique dans la direction de l'axe des abscisses.
- Si $\lim_{x\to\infty}\frac{f(x)}{x}=\infty$ alors la courbe $\mathscr C$ présente une branche parabolique dans la direction de l'axe des ordonnées.
- Si $\lim_{x \to \infty} \frac{f(x)}{x} = a$ réel non nul alors on calcule $\lim_{x \to \infty} (f(x) ax)$ Si $\lim_{x \to \infty} (f(x) ax) = b$ (réel) alors la droite (D) d'équation : y = ax + b est asymptote à la
 - courbe \mathscr{C} .
 - Si $\lim_{x\to\infty} (f(x) ax) = \infty$ alors la courbe admet une branche parabolique de direction asymptotique la droite d'équation y = ax.

Exercice 16

On considère la fonction f définie par : $f(x) = \begin{cases} \sqrt{x+4} & \text{si } x \ge 2\\ x+3-\frac{2}{x+1} & \text{si } x < 2 \end{cases}$

- 1. Déterminer les limites de f aux bornes de D_f .
- 2. Etudier la nature des branches infinies de la courbe \mathscr{C} de f.
- 3. Etudier la position relative de \mathscr{C} par rapport à son asymptote oblique.

Solution.

tion. 1.
$$f(x)$$
 existe ssi $\begin{cases} x+4 \ge 0 \\ x \ge 2 \end{cases}$ ou $\begin{cases} x-1 \ne 0 \\ x < 2 \end{cases}$

$$f(x)$$
 existe ssi $\begin{cases} x \ge -4 \\ x \ge 2 \end{cases}$ ou $\begin{cases} x \ne -1 \\ x < 2 \end{cases}$

$$f(x)$$
 existe ssi $\begin{cases} x \ge -4 \\ x \ge 2 \end{cases}$ ou $\begin{cases} x \ne -4 \\ x < 2 \end{cases}$

f(x) existe ssi $x \ge 2$ ou $x \in]-\infty$, $-1[\cup]-1$, 2[

donc f(x) existe ssi $x \in]-\infty$, $-1[\cup]-1$, $2[\cup[2, +\infty[$

D'où
$$D_f=\left]-\infty$$
 , $-1[\;\cup\;]-1$, $+\infty[$

Limites aux bornes de $D_f \lim_{x \to +\infty} x + 4 = +\infty$ par composée $\lim_{x \to +\infty} \sqrt{x + 4} = +\infty$ d'où $\lim_{x \to +\infty} f(x) = -\infty$ $+\infty$

$$\lim_{x \to -\infty} x + 3 - \frac{2}{x - 1} = \lim_{x \to -\infty} x + 3 - \lim_{x \to -\infty} \frac{2}{x - 1} = -\infty \text{ d'où } \lim_{x \to +\infty} f(x) = -\infty$$

L'étude de la limite en 1 se fait uniquement sur la restriction $x \mapsto x + 3 - \frac{2}{x-1}$

$$\begin{cases} \lim_{x \to 1^{+}} x + 3 = 4 \\ \lim_{x \to 1^{+}} -\frac{2}{x - 1} = -\infty \end{cases} \quad \text{donc } \lim_{x \to 1^{+}} f(x) = -\infty$$
$$\begin{cases} \lim_{x \to 1^{-}} x + 3 = 4 \\ \lim_{x \to 1^{-}} -\frac{2}{x - 1} = +\infty \end{cases} \quad \text{donc } \lim_{x \to 1^{-}} f(x) = +\infty$$

2. Puisque $\lim_{x \to 1^+} f(x) = -\infty$ et $\lim_{x \to 1^-} f(x) = +\infty$ donc la droite d'équation x = 1 est une asymptote verticale à la courbe de f.

Puisque la restriction de f sur $]-\infty$, 2[s'écrit sous la forme $x\mapsto x+3-\frac{2}{x-1}$ et que $\lim_{x\to-\infty}\frac{2}{x-1}=0$ donc la droite Δ d'équation y=x+3 est une asymptote oblique à la courbe de f.

D'autre part $\lim_{x \to +\infty} f(x) = +\infty$ doc \mathscr{C}_f présente une branche infinie en $+\infty$.

Calculons $\lim_{x \to +\infty} \frac{f(x)}{x}$

$$\lim_{x\to +\infty} \frac{\sqrt{x+3}}{x} = \lim_{x\to +\infty} \frac{x+3}{x\sqrt{x+3}} = \lim_{x\to +\infty} \frac{x+3}{x} \times \lim_{x\to +\infty} \frac{1}{\sqrt{x+3}} = 1 \times 0 = 0 \text{ d'où } \mathscr{C}_f \text{ admet un branche parabolique d'axe (Ox).}$$

3. Etudions la position relative de Δ et \mathscr{C}_f .

Pour cela étudions le signe de $f(x) - (x+3) = -\frac{2}{x-1}$ pour x < 2

X	$-\infty$	1	2
signe de $-\frac{2}{x-1}$	+		_

Sur $]-\infty$, $1[-\frac{2}{x-1}>0$ donc \mathscr{C}_f est au dessus de Δ . Sur $]-\infty$, $1[-\frac{2}{x-1}<0$ donc \mathscr{C}_f est au dessous de Δ .

III - Continuité

Continuité en un réel

Définition 17

Une fonction f est continue en un réel a ssi $a \in D_f$ et $\lim_{x \to a} f(x) = f(a)$.

Illustration graphique

 \cdot f continue en a signifie : dans le tracé de la courbe on « ne lève pas » la main quand on passe au point d'abscisse a.

La courbe n'y présente aucun saut, aucun trou, aucune asymptote verticale.

· Par exemple ici la fonction n'est pas continue en 0.

Exemple 18

Soit
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{x-1} & \text{si } x \neq 1 \\ \frac{1}{2} & \text{si } x = 1 \end{cases}$$

Etudions la continuité de f en 1.

Pour $x \neq 1$, f(x) existe si et seulement, si $x \geq 0$ et $x - 1 \neq 0$

si et seulement, si $x \ge 0$ et $x \ne 1$

si et seulement, si $x \in [0, 1[\cup]1, +\infty[$

Or $f(1) = \frac{1}{2}$ d'où f(x) existe si et seulement, si $x \in [0, +\infty[$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

donc $\lim_{x \to 1} f(x) = f(1) = \frac{1}{2}$ d'où f est continue en 1.

Continuité à droite - continuité à gauche

Propriété 19

f est continue en a si et seulement, si $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.

Prolongement par continuité

Définition 20

Soit f une fonction **non** définie en a et l un nombre réel tel que $\lim_{x \to a} f(x) = l$. On appelle **prolongement par continuité** de f en a, la fonction g définie par :

$$g(x) = \begin{cases} f(x) & \text{si } x \neq a \\ l & \text{si } x = a \end{cases}$$

NB: La fonction g est définie et continue en a.

Exemple 21

Montrons que la fonction $f: x \mapsto \frac{x^2 - x - 2}{x - 2}$ est prolongeable par continuité en 2 et trouvons son prolongement par continuité.

Réponse:

f(x) existe si et seulement, si $x \neq 2$.

$$f(x)$$
 existe si et seulement, si $x \neq 2$.
$$\lim_{\substack{x \to 2 \ \text{en } 2.}} \frac{x^2 - x - 2}{x - 2} = \lim_{\substack{x \to 2}} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{\substack{x \to 2}} (x + 1) = 3 \text{ finie donc } f \text{ est prolongeable par continuité en } 2.$$

Son prolongement par continuité en 2 est la fonction g définie par :

$$g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si} \quad x \neq 2\\ 3 & \text{si} \quad x = 2 \end{cases}$$

IV - Dérivabilité

Dérivabilité en un réel

Définition 22

Soit f une fonction définie sur un intervalle I et $a \in I$.

f est dérivable en a s'il existe un nombre réel l tel que $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$ l est le **nombre dérivé** de f en a. On le note f'(a).

Autre formulation de la définition

On fait le changement de variable suivant h = x - a

f est dérivable en a s'il existe un nombre réel l tel que $\lim_{h \to 0} \frac{f(a+h) - f(a)}{l} = l$

Soit
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{x-1} & \text{si } x \neq 1 \\ \frac{1}{2} & \text{si } x = 1 \end{cases}$$

Etudions la dérivabilité de f en 1.

Réponse:

On avait trouvé que $D_f = [0, +\infty[$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{\sqrt{x - 1}}{x - 1} - \frac{1}{2}}{x - 1} = \lim_{x \to 1} \frac{2\sqrt{x} - (x + 1)}{2(x - 1)^2} = \lim_{x \to 1} \frac{-x^2 + 2x - 1}{2(x - 1)^2(2\sqrt{x} + x + 1)} = \lim_{x \to 1} \frac{-1}{2(2\sqrt{x}$$

Donc f est dérivable en 1 et de nombre dérivé $f'(1) = -\frac{1}{8}$.

Propriété

Propriété 24

Si f est dérivable en a, alors f est continue en a

Contre-exemple 25

La réciproque de cette propriété est fausse.

La fonction $x \mapsto |x|$ est continue en 0 mais elle n'est pas dérivable en 0.

Propriété: Dérivabilité à droite - dérivabilité à gauche

Propriété 26

f est dérivable en a si et seulement, si :

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = l \quad \text{r\'eel}$$

$$f_d^{'}(a) = f_g^{'}(a)$$

Le nombre dérivé de f à droite en a = Le nombre dérivé de f à gauche en a

Notation 27

Les notations $f_d^{'}(a)$ et $f_g^{'}(a)$ s'utilisent que lorsque la limite du taux de variation est un réel.

Cas de non dérivabilité

- · Si $\lim_{x \to a} \frac{f(x) f(a)}{x a} = +\infty$ ou $-\infty$ alors f n'est pas dérivable en a.
- · Si $f'_d(a) \neq f'_g(a)$ alors f n'est pas dérivable en a.

Interprétation graphique de la dérivabilité

1. Si f est dérivable en a alors sa courbe \mathscr{C} admet au point d'abscisse a c-à-d le point A(a, f(a)) une **tangente** de coefficient directeur (ou pente) f'(a) d'équation :

$$y = f'(a)(x - a) + f(a)$$

Méthode 28 (Méthode pour construire la tangente)

Si la pente s'écrit sous la forme $f'(a) = \frac{\Delta y}{\Delta x}$. Alors on part de A, on « avance » vers la droite du dénominateur(positif) Δx et on « monte » (ou « descend ») du numérateur Δy : ce qui donne un deuxième point que l'on relie à A..

Remarque 29

f'(a) = 0 si et seulement si $\mathscr C$ admet au point d'abscisse a une tangente horizontale d'équation y = f(a).

Dans ce cas, le point A(a, f(a)) est soit un **extremum** (maximum ou minimum) soit un **point d'inflexion**.

A est un minimum, B est un maximum, C est un point d'inflexion

- 2. Si f est dérivable à droite et à gauche de a telle que $f'_d(a) \neq f'_g(a)$ alors $\mathscr C$ admet au point A(a,f(a)) deux demi-tangentes de pentes respectives $f'_d(a)$ et $f'_g(a)$: le point A est un point **anguleux**.
- 3. Détaillons les cas d'une limite infinie.

$$\bullet \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = +\infty$$

La courbe de f admet au point A(a, f(a)) une demi-tangente verticale dirigée vers le haut.

•
$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = -\infty$$

La courbe de f admet au point $A(a, f(a))$

La courbe de f admet au point A(a, f(a))une demi-tangente verticale dirigée vers le bas.

•
$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = +\infty$$

La courbe de f admet au point

La courbe de f admet au point A(a, f(a))une demi-tangente verticale dirigée vers le bas.

$$\bullet \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = -\infty$$

La courbe de f admet au point A(a, f(a))

une demi-tangente verticale dirigée vers le haut.

- 4. Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = +\infty$ et $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = -\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales dirigées vers le haut d'équation x = a. A est un **point de rebroussement**.
- 5. Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = -\infty$ et $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = +\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales dirigées vers le bas d'équation x = a. A est un point de rebroussement.
- 6. Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = +\infty$ et $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = +\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales de même équation x = a l'une dirigée vers le haut et l'autre vers le bas. A est un point d'inflexion.
- 7. Si $\lim_{x \to a^{-}} \frac{f(x) f(a)}{x a} = +\infty$ et $\lim_{x \to a^{-}} \frac{f(x) f(a)}{x a} = -\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales de même équation x = a l'une dirigée vers le haut et l'autre vers le bas. A est un point d'inflexion à tangente verticale.

V - Continuité et dérivabilité sur un intervalle

Définition 30 — f est continue (resp. dérivable) sur l'intervalle I si elle est continue (resp. dérivable) en tout réel $x \in I$.

La fonction qui à tout réel x de I associe le nombre dérivé de f en x s'appelle fonction dérivée ou dérivée de f et est notée f': x → f'(x).
 L'ensemble des réels x pour lesquels f'(x) existe est appelé ensemble ou domaine de dérivabilité de f : c'est le domaine de définition de f'.

Rappelons ci-dessous les fonctions dérivées de certaines fonctions usuelles.

Fonction f définie par :	Dérivable sur	Fonction dérivée $f'(x)$
$f(x) = k, \ k \in \mathbb{R}$	R	0
$f(x)=x^n,\ n\in\mathbb{Q}$	R	nx^{n-1}
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$-\frac{1}{x^2}$
$f(x) = \sqrt{x}$	R ₊ *	$\frac{1}{2\sqrt{x}}$
$f(x) = \cos x$	\mathbb{R}	$-\sin x$
$f(x) = \sin x$	\mathbb{R}	$\cos x$
$f(x) = \tan x$	$(2k-1)\frac{\pi}{2},(2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$	$1 + \tan^2 x$ ou $\frac{1}{\cos^2 x}$

Propriété 31

Soient f et g deux fonctions continues (resp. dérivables) sur un intervalle I.

- les fonctions f + g et fg sont continues (resp. dérivables) sur I.
- Si de plus $g \neq 0$ sur I alors les fonctions $\frac{1}{g}$ et $\frac{f}{g}$ sont continues (resp. dérivables) sur I.

Cas particuliers

- Les fonctions polynômes sont continues et dérivables sur \mathbb{R} .
- Les fonctions rationnelles sont continues et dérivables sur tout intervalle de leur ensemble de définition.
- Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont continues et dérivables sur \mathbb{R} .
- La fonction $x \mapsto \tan x$ est continue et dérivable sur tout intervalle du type $\left| (2k-1)\frac{\pi}{2} \right|$, $(2k+1)\frac{\pi}{2} \left| (2k-1)\frac{\pi}{2} \right|$, $k \in \mathbb{Z}$.

Image d'un intervalle par une fonction continue

Nous admettons le théorème suivant.

Théorème 32

Si f est une fonction *continue* sur un intervalle I alors f(I) est un intervalle .

Cas particuliers

Le tableau suivant donne les images de quelques intervalles simples par une fonction continue **et strictement monotone** . a et b peuvent être éventuellement $+\infty$ ou $-\infty$.

	f(I)	f(I)	
	si f continue et strictement croissante	si f continue et strictement décroissante	
I = [a, b]	[f(a),f(b)]	[f(b),f(a)]	
I = [a, b[$f(a), \lim_{x \to b^{-}} f(x)$	$\lim_{x \to b^{-}} f(x), f(a)$	
I=]a,b]	$\lim_{x \to a^+} f(x), f(b)$	$f(b), \lim_{x \to a^+} f(x)$	
I=]a,b[$\lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)$	$\lim_{x \to b^-} f(x), \lim_{x \to a^+} f(x)$	

Continuité et dérivabilité de la composée de deux fonctions

Propriété 33

- · Si f est continue sur l'intervalle I et g continue sur l'intervalle f(I) alors la fonction $g \circ f$ est continue sur *I*.
- · Si f est dérivable sur l'intervalle I et g dérivable sur l'intervalle f(I) alors la fonction $g \circ f$ est dérivable sur I et pour tout $x \in I$, on a :

$$(g \circ f(x))' = f'(x) \times g'[f(x)]$$

Exemple 34

Soit $h(x) = \cos\left(\frac{1}{x}\right)$. Calculons h'(x).

On a $D_h =]-\infty$, $0[\cup]0$, $+\infty[$

Attention : Avant de dériver une fonction, il est recommandé de justifier sa dérivabilité même si la question ne le précise pas.

La fonction rationnelle $x \mapsto \frac{1}{x}$ est définie sur \mathbb{R}^* donc dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty$ [.

La fonction $x \to \cos x$ est dérivable sur \mathbb{R} ; en particulier sur chacun des intervalles $]-\infty$, 0 et]0, $+\infty[$

D' où par composée h est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$.

Pour tout $x \neq 0$: $h'(x) = \frac{1}{x^2} \sin(\frac{1}{x})$

Conséquence 35

- · Si f est dérivable (resp. continue) sur I et g dérivable sur \mathbb{R} alors $g \circ f$ est dérivable (resp. continue) sur *I*.
- · Si f est **continue et positive** sur I alors \sqrt{f} est continue sur I. · Si f est **dérivable et strictement positive** sur I alors \sqrt{f} est dérivable sur I.

Formules de dérivation

Soient u et v deux fonctions dérivables, $r \in \mathbb{Z}^*$ et $k \in \mathbb{R}$

Fonction	ku	u + v	uv	$\frac{u}{v}$	$\frac{1}{v}$	\sqrt{u}	u^r
Dérivée	ku'	u' + v'	u'v+v'u	$\frac{u'v-v'u}{v^2}$	$-\frac{v'}{v^2}$	$\frac{u'}{2\sqrt{u}}$	$ru'u^{r-1}$

$v \circ u$	sin <i>u</i>	cos u	tan <i>u</i>
$u' \times (v' \circ u)$	$u'\cos u$	$-u'\sin u$	$\frac{u'}{\cos^2 u}$ ou $u'(1 + \tan^2 u)$

Exercice 36

Soit
$$f(x) = \frac{(x+1)\sqrt{x-2}}{x-1}$$
.

- 1. Justifier la continuité de f sur son D_f .
- 2. Etudier la dérivabilité de f sur son D_f .
- 3. Calculer f'(x).

Solution. 1. f(x) existe si et seulement, si $x \ge 2$ et $x \ne 1$ donc $D_f = [2, +\infty[$

1^{re} méthode

La fonction $x \mapsto \frac{x+1}{x-1}$ est une fonction rationnelle définie sur [2, $+\infty$ [donc continue sur $[2, +\infty[$

La fonction $x \mapsto x - 2$ est continue et positive sur $[2, +\infty[$ donc la fonction $x \mapsto \sqrt{x-2}$ est continue sur $[2, +\infty[$ par composée.

On en déduit que f est continue sur D_f comme produit et composée de fonctions continues.

2^{re} méthode

La fonction $x \mapsto x + 1$ est continue sur $[2, +\infty]$,

La fonction $x \mapsto x - 1$ est continue et non nulle sur $[2, +\infty]$,

La fonction $x \mapsto x - 2$ est continue et positive sur $[2, +\infty[$ donc la fonction $x \mapsto \sqrt{x-2}$ est continue sur $[2, +\infty[$ par composée.

On en déduit que f est continue sur D_f comme produit, quotient et composée de fonctions continues.

2. 1^{re} méthode

La fonction $x \mapsto \frac{x+1}{x-1}$ est une fonction rationnelle définie sur [2, $+\infty$ [donc dérivable sur

$$[2, +\infty[$$

La fonction $x \mapsto x - 2$ est dérivable et strictement positive sur]2, $+\infty$ [donc la fonction $x \mapsto \sqrt{x-2}$ est dérivable sur]2, $+\infty$ [. par composée.

On en déduit que f est dérivable sur]2 , $+\infty$ [comme produit et composée de fonctions dérivables.

2^{re} méthode

La fonction $x \mapsto x + 1$ est dérivable sur $[2, +\infty[$

La fonction $x \mapsto x - 1$ est dérivable et non nulle sur sur $[2, +\infty]$

La fonction $x \mapsto x - 2$ est dérivable et strictement positive sur]2, $+\infty$ [donc la fonction $x \mapsto \sqrt{x-2}$ est dérivable sur]2, $+\infty$ [par composée.

On en déduit que f est dérivable sur]2 , $+\infty$ [comme produit, quotient et composée de fonctions dérivables.

3.
$$\forall x > 2, f'(x) = \frac{-2}{(x-1)^2} \times \sqrt{x-2} + \frac{1}{2\sqrt{x-2}} \times \frac{x+1}{x-1}$$

Soit $f'(x) = \frac{x^2 - 4x + 7}{2(x-1)^2 \sqrt{x-2}}$

Dérivée et sens de variations

Théorème 37

Soit f une fonction dérivable sur un intervalle I.

- f est strictement croissante sur I si et seulement si : $\forall x \in I$, $f'(x) \ge 0$ et f' ne s'annule qu'en un nombre fini de points de I.
- f est strictement décroissante sur I si et seulement si : $\forall x \in I$, $f'(x) \le 0$ et f' ne s'annule qu'en un nombre fini de points de I.
- f est croissante sur I si et seulement si : $\forall x \in I, f'(x) \ge 0$.
- f est décroissante sur I si et seulement si : $\forall x \in I, f'(x) \le 0$.

Signe d'une fonction à partir de ses variations

Les cas classiques :

Les cas classiques.			
x	•••	α	•••
f'(x))	- o	+
f(x)		$f(\alpha) \ge 0$	

Si f(x) admet un minimum positif sur I alors f est positive sur I.

x	•••		α		•••
f'(x))	+	0	_	
f(x)	_	$\int f$	$(\alpha) \leq$	0_	*

Si f(x) admet un maximum négatif sur I alors f est négative sur I.

x	··· α ···
f'(x)	+
f(x)	0

f(x) est négatif si $x \le \alpha$.

f(x) est positif si $x \ge \alpha$.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		α	
f'(x)		_	
f(x)	/	0_	

f(x) est positif si $x \le \alpha$.

f(x) est négatif si $x \ge \alpha$.

Dérivées successives

Définition 38

Soit f une fonction dérivée sur I, sa fonction dérivée f' est appelée fonction dérivée première et est notée $f^{(1)}$.

Si f' est dérivable sur I, on dit que f est deux fois dérivable alors dans ce cas la fonction dérivée de f' c'est à dire (f')' est appelée fonction dérivée seconde de f et est notée f'' ou $f^{(2)}$.

Si f'' est à son tour dérivable sur I, alors sa fonction dérivée est appelée fonction dérivée troisième de f et est notée f''' ou $f^{(3)}$.

Par itération si la dérivée n-ième de f existe, on la note $f^{(n)}$.

Exemple 39

 $f(x) = x \sin x$

 $f'(x) = \sin x + x \cos x$, $f''(x) = 2 \cos x + x \sin x$, $f^{(3)}(x) = -3 \sin x + x \cos x$, etc.

Remarque 40

- $f^{(n)}$ est aussi appelée dérivée d'ordre n de f.
- · En **Physique** $f', f'', \dots, f^{(n)}$ sont notées respectivement $\frac{df}{dx}, \frac{d^2f}{dx^2}, \dots, \frac{d^nf}{dv^n}$.

Notion de différentielle

Une petite variation Δx de la variable x provoque une petite variation $\Delta y = f(x + \Delta x) - f(x)$ des images.

Lorsque Δx est voisin de 0, on assimile $dx = \Delta x$ et on peut écrire : $\frac{dy}{dx} = f'(x)$ ou dy = f'(x)dx ou $dy = f'(x)\Delta x$.

Exemple 41

Pour la fonction $y = 2x^2 - x$ avec x = 1 et $\Delta x = 0.01$

Vérifier que la différentielle dy = 0.03 et l'accroissement $\Delta y = 0.0302$

Position d'une courbe par rapport à sa tangente

Nous admettons le résultat suivant :

Si f est une fonction deux fois dérivable sur I et si f'' est négative sur I, alors la courbe $\mathscr C$ de f est en dessous de toutes ses tangentes. On dit que $\mathscr C$ est **concave.**

Si f est une fonction deux fois dérivable sur I et si f'' est positive sur I, alors la courbe $\mathscr C$ de f est en dessus de toutes ses tangentes. On dit que $\mathscr C$ est **convexe.**

Point d'inflexion

Définition 42

On dit que la courbe de f admet un point d'inflexion d'abscisse x_0 si la courbe y traverse sa tangente.

La courbe traverse sa tangente (en bleu).

Théorème 43

Si f est deux fois dérivable sur un intervalle ouvert I contenant x_0 et si f'' s'annule en changeant de signe en x_0 alors le point de la courbe d'abscisse x_0 est un **un point d'inflexion**.

Exemple 44

Reprenons l'exemple précédent $f: x \mapsto x^3 - 3x^2$

f est dérivable sur \mathbb{R} car fonction polynôme.

On a
$$f'(x) = 6x^2 - 6x$$
 et $f''(x) = 6x - 6$

$$f''(x) = 0 \iff x = 1$$

X	$-\infty$	1	+∞
signe de $f''(x)$	+	0	_

D'après le tableau de signes, f'' s'annule en 1 en changeant de signe; donc le point (1,-2) est un point d'inflexion de la courbe.

Inégalité des accroissements finis

Nous admettons le théorème de l'inégalité des accroissements finis et nous donnons ici les deux formes.

Théorème 45

Première forme

Soit f une fonction dérivable sur un intervalle I. On suppose qu'il existe deux réels m et M tels que : $m \le f'(x) \le M$ pour tout $x \in I$.

Alors pour tous a et b de I(b > a) on a : $m(b - a) \le f(b) - f(a) \le M(b - a)$

Deuxième forme

Soit f une fonction dérivable sur un intervalle I. On suppose qu'il existe un réel M tel que : $|f'(x)| \le M$ pour tout $x \in I$.

Alors pour tous a et b de I on a : $|f(b) - f(a)| \le M|b - a|$

Exercice 46

Soit f la fonction définie sur $\left[0, \frac{\pi}{4}\right]$ par $f(x) = \sin x$

Démontrer que $\forall x \in \left[0, \frac{\pi}{4}\right]$ on a : $\frac{\sqrt{2}}{2}x \le \sin x \le x$

Solution. La fonction f est dérivable sur $I = \left[0, \frac{\pi}{4}\right]$ et $\forall \in I$ on a : $f'(x) = \cos x$

Or
$$\forall x \in \left[0, \frac{\pi}{4}\right]$$
 on a $\frac{\sqrt{2}}{2} \le \cos x \le 1$ donc pour $a = 0$ et $b = x \in I$,

le T.I.A.F donne :
$$-1 \times \frac{\sqrt{2}}{2}(x-0) \le \sin x - \sin 0 \le 1 \times (x-0)$$

d'où $\frac{\sqrt{2}}{2}x \le \sin x \le x$.

VI - Théorème des valeurs intermédiaires

Théorème 47 (T.V.I)

Soit f une fonction **continue** sur un intervalle [a, b].

Pour tout nombre réel β compris entre f(a) et f(b), il existe **au moins** un réel $\alpha \in [a, b]$ tel que $f(\alpha) = \beta$.

Conséquence 1

Si f une fonction **continue et strictement monotone** sur l'intervalle [a, b] alors pour tout nombre réel β compris entre f(a) et f(b), il existe **un unique** un réel $\alpha \in [a, b]$ tel que $f(\alpha) = \beta$.

Conséquence 2

a, b, c et d désignent soit des réels, soit $+\infty$, soit $-\infty$.

Soit f une fonction **continue et strictement monotone** sur l'intervalle]a, b[telle que :

$$\lim_{x \to a} f(x) = c \quad \text{et} \quad \lim_{x \to b} f(x) = d$$

Alors pour tout nombre réel β compris entre c et d, l'équation $f(x) = \beta$ admet une solution unique $\alpha \in [a, b[$.

Exercice 48

Soit *f* la fonction définie par $f(x) = x^3 + x + 1$.

- 1. Etudier les variations de f.
- 2. Montrer que l'équation f(x) = 0 admet une seule solution α dans \mathbb{R} . En déduire que $\alpha \in]-1$, 0[
- 3. Déterminer un encadrement de α d'amplitude 0,01.

Solution. 1. f est définie, continue et dérivable sur \mathbb{R} .

$$f'(x) = 3x^2 + 1 > 0 \ \forall x \in \mathbb{R} \ \text{Donc} \ f \ \text{est strictement croissante sur} \ \mathbb{R}$$

$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} f(x) = \lim_{\substack{x \to +\infty \\ x \to -\infty}} x^3 + x + 1 = \lim_{\substack{x \to +\infty \\ x \to -\infty}} x^3 = +\infty$$

x	$-\infty$ $+\infty$
f'(x)	+
f(x)	+∞ -∞*

2. f est continue et strictement croissante sur \mathbb{R} à valeurs dans sur \mathbb{R} . Or $0 \in \mathbb{R}$ donc d'après la conséquence du T.V.I il existe un unique réel α tel que $f(\alpha) = 0$.

De plus
$$f(-1)f(0) = -1 \times 1 < 0$$
 donc

$$f(-1) < 0 < f(0)$$

$$\Leftrightarrow f(-1) < f(\alpha) < f(0)$$

 $\Leftrightarrow -1 < \alpha < 0$ car f est strictement croissante.

- 3. Encadrement de α d'amplitude 0,01 par la méthode du balayage.
 - · Recherchons d'abord un encadrement de α par deux décimaux consécutifs d'ordre 1. Calculons de proche en proche les images par f des nombres décimaux d'ordre 1 de l'intervalle [-1, 0[jusqu'à ce qu'on observe un changement de signe.

X	-0,9	-0.8	-0,7	-0,6	-0,5	-0,4	-0,3	-0,2	-0,1
f(x)	_	_	_	+					

On obtient $-0.7 < \alpha < -0.6$

 \cdot Recherchons ensuite un encadrement de α par deux décimaux consécutifs d'ordre 2. Calculons de proche en proche les images par f des nombres décimaux d'ordre 2 de l'intervalle]-0,7, -0,6[jusqu'à ce qu'on observe un changement de signe.

х	-0,69	-0,68	-0,67	-0,66	-0,65	-0,64	-0,63	-0,62	-0,61
f(x)	_	+							

On obtient
$$-0.69 < \alpha < -0.68$$

Conséquence 3

Si f est **continue et strictement monotone** sur l'intervalle [a, b] et si f(a)f(b) < 0Alors l'équation f(x) = 0 admet une unique solution $\alpha \in [a, b]$.

Remarque 49

Pour montrer que l'équation f(x) = x admet une unique solution dans l'intervalle I; on pose g(x) = f(x) - x et on applique le T.V.I à la fonction g sur l'intervalle I.

Exemple 50

Montrons que l'équation $\cos x = x$ admet une unique solution α telle que $\frac{\pi}{6} \le \alpha \le \frac{\pi}{4}$. *Réponse*

Remarquons que $\cos x = x \Leftrightarrow \cos x - x = 0$

Posons la fonction $f(x) = \cos x - x$ pour $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.

f est dérivable sur $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ comme somme de deux fonctions dérivables.

Pour $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$, $f'(x) = -\sin x - 1 < 0$; donc f est strictement décroissante.

De plus $f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} - \frac{\pi}{6} > 0$ et $f(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\pi}{4} < 0$.

Donc f est continue et strictement décroissante sur l'intervalle $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

et $f(\frac{\pi}{6})f(\frac{\pi}{4}) < 0$ d'où l'équation f(x) = 0 admet une unique solution $\alpha \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.

VII - Fonction réciproque d'une fonction continue et strictement monotone

Théorème 51 (Théorème de la bijection)

Soit f une fonction continue et strictement monotone sur l'intervalle I; alors f réalise une bijection de I vers l'intervalle f(I).

En plus sa bijection réciproque f^{-1} est continue et strictement monotone sur l'intervalle f(I) et a le même sens de variation que f.

Les courbes représentatives de f et f^{-1} , dans un repère orthonormé sont symétriques par rapport à la droite d'équation y = x (la première bissectrice du repère).

 \cdot Si de plus f est dérivable sur I et f' ne s'annule pas sur I alors f^{-1} dérivable sur f(I) et

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad \forall y \in f(I)$$

Remarque 52

Posons f(a) = b

Si f est dérivable en a et $f'(a) \neq 0$ alors f^{-1} est dérivable en b et $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Attention

Si f est dérivable en a et f'(a) = 0 ou n'existe pas alors f^{-1} n'est pas dérivable en b.

Exercice 53

Soit *f* la fonction définie par $f(x) = 4x^2 + 4x + 2$.

- 1. Etablir le tableau de variations de f.
- (a) Soit g la restriction de f à l'intervalle $\left[-\frac{1}{2}, +\infty\right]$. Montrer que g réalise une bijection de $\left| -\frac{1}{2}, +\infty \right|$ vers un intervalle J à préciser.
 - (b) Justifier que g^{-1} est dérivable en 2 puis calculer $(g^{-1})'(2)$.

Solution. 1. f est définie, continue et dérivable sur \mathbb{R} .

$$f'(x) = 8x + 4 \ \forall x \in \mathbb{R}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4x^2 + 4x + 2 = \lim_{x \to +\infty} 4x^2 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 4x^2 + 4x + 2 = \lim_{x \to -\infty} 4x^2 = +\infty$$

x	$-\infty$ $-\frac{1}{2}$ $+\infty$
f'(x)	- 0 +
f(x)	1

- 2. (a) g est continue et strictement croissante sur $\left[-\frac{1}{2}, +\infty\right]$ donc réalise une bijection $\left[-\frac{1}{2}, +\infty\right]$ de vers $g\left(\left[-\frac{1}{2}, +\infty\right]\right)$
 - Or $g(\left[-\frac{1}{2}, +\infty\right[) = \left[g(-\frac{1}{2}), \lim_{x \to +\infty} g(x)\right] = [1, +\infty[$
 - (b) Pour $\overline{\text{répondre}}$ à cette question, il faut calculer l'antécédent de 2 par g.

$$g(x) = 2 \Leftrightarrow 4x^2 + 4x + 2 = 2 \Leftrightarrow 4x^2 + 4x = 0 \Leftrightarrow x = 0 \text{ ou } x = -1$$

Le seul antécédent dans $\left[-\frac{1}{2}, +\infty \right[\text{ est } 0.$

Or g est dérivable en 0 et $g'(0) = f'(0) = 4 \neq 0$ donc g^{-1} est dérivable en 2. On a $(g^{-1})'(2) = \frac{1}{g'(0)} = \frac{1}{4}$.

On a
$$(g^{-1})'(2) = \frac{1}{g'(0)} = \frac{1}{4}$$
.