

MTH 309T LINEAR ALGEBRA EXAM 1

Kayı UB Pe	Mono				ccle		Inc	struc	tions					
5 O 0 0 1 1 2 2 3 3 4 4 6 6 6 6 7 7 8 8 9 9		67	() () () () () () () () () () () () () (2 0 1 3 4 6 6 7 8 9	3 0 1 2 6 6 7 8 9	9 0 1 2 3 4 6 6 7 8	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 							
							7		7	TOTAL	GRADE			

9	8	7	20	20	6	1			71	B-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \ \checkmark \\ 2 \ \checkmark_2 \\ b \ \checkmark_3 \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 2 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 2 & -1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$\begin{bmatrix}
1 & 1 & 0 \\
-1 & 0 & 2 \\
2 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
3 & -1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & -6 \\
2 & 1 & -1 & 2 & 6
\end{bmatrix}$$

$$\begin{bmatrix} 110 & 100 \\ 010 & 3-1-2 \\ 001 & -11 \end{bmatrix} \begin{bmatrix} -2 & 12 \\ 3-1-2 \end{bmatrix}$$

$$A^{T-1} = \begin{bmatrix} -2 & 12 \\ 3-1-2 \end{bmatrix}$$

$$C = \begin{bmatrix} 13 & 13 & 13 \\ 12 & -12 & 6 \end{bmatrix}$$

 $\begin{bmatrix} 110'100 \\ 010'3-1-2 \\ 0011-111 \end{bmatrix}$ Sympler: $(A^{T})^{-1} = (A^{-1})^{T}$ $A^{T-1} = \begin{bmatrix} -2 & 1 & 2 \\ 3-1-2 \\ -1 & 1 & 1 \end{bmatrix}$ end then yen can use problem 2.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 1 & -3 & -2 \end{bmatrix}$$
 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix} 2 \cdot 1$$

$$\begin{cases} x_1 = 2x_2 + 1 \\ x_2 = 3 \end{cases}$$

$$\begin{bmatrix} x_1 = 7 \\ x_2 = 3 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 &$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

Fuse,

Guntu example

$$u = \begin{bmatrix} 1 \\ 2 \end{bmatrix} & = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} & = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

$$u + w = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \right)$$

$$\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} & \in Span \left(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True because in order to be independent there must be no dependency on another vector, so it a vector were to leave the group that vector would still be independent.

This could be explained more clearly...

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False a why?

b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation and $u,v,w\in\mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

$$V = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \omega = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \omega = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \quad u = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad T = \begin{bmatrix} 5 \\ 7 \end{bmatrix} \quad ?$$