Talk at Kyoto University, Japan hosted by Prof. Yutaka Yamamoto November 2002

Hybrid and Switched Systems: Modeling and Analysis

João P. Hespanha

University of California at Santa Barbara

References

The following slides were adapted from the course ECE594D— *Hybrid Control and Switched systems* taught at the University of California, Santa Barbara during the Spring of 2002.

A fairly complete list of references can be found in the courses web page: http://www.ece.ucsb.edu/~hespanha/ece594d-hybrid/

but most of the material taught is covered by the following references:

- [1] A. van der Schaft and H. Schumacher. *An Introduction to Hybrid Dynamical Systems*. Lecture Notes in Control and Information Sciences 251, Springer-Verlag, 2000.
- [2] J. Hespanha. *Encyclopedia of Life Support Systems*, Chapter Stabilization Through Hybrid Control. Feb. 2001. To appear
- [3] J. Hespanha. Tutorial on Supervisory Control. Lecture notes for the tutorial workshop "Control Using Logic and Switching" offered at the 40th Conf. on Decision and Control, Orland, FL, Dec. 2001.

The references [2] and [3] can be found in the publications section of my web page: http://www.ece.ucsb.edu/~hespanha/

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Example #1: Bouncing ball

Free fall
$$\equiv \ddot{y} = -g$$

Collision
$$\equiv y^+(t) = y^-(t) = 0$$

$$\dot{y}^+(t) = -c\dot{y}^-(t)$$

 $c \in [0,1] \equiv \text{energy absorbed at impact}$

Notation: given $x:[0,\infty)\to\mathbb{R}^n\equiv$ piecewise continuous signal

$$x^-:(0,\infty)\to\mathbb{R}^n$$
 $x^-(t):=\lim_{\tau\uparrow t}x(t),\quad\forall t>0$

$$x^{-}:(0,\infty)\to\mathbb{R}^{n}$$
 $x^{-}(t):=\lim_{\tau\uparrow t}x(t), \quad \forall t>0$
 $x^{+}:[0,\infty)\to\mathbb{R}^{n}$ $x^{+}(t):=\lim_{\tau\downarrow t}x(t), \quad \forall t\geq0$

at points t where x is continuous $x(t) = x^{-}(t) = x^{+}(t)$

By convention we will generally assume right continuity, i.e.,

$$x(t) = x^+(t) \quad \forall t \ge 0$$

Example #1: Bouncing ball

Example #2: Thermostat

goal \equiv regulate temperature around 75°

 $x \equiv$ mean temperature

when heater is off: $\dot{x} \approx -x + 50$ ($x \rightarrow 50^{\circ}$)

when heater is on: $\dot{x} \approx -x + 100$ $(x \to 100^{\circ})$

event-based control

Example #2: Thermostat

Example #3: Transmission

Example #3: Automatic transmission

Example #4: Tank system

*

goal ≡ prevent the tank from emptying or filling up

 $\delta \equiv$ delay between command is sent to pump and the time it is executed

How to choose y_{\min} and y_{\max} for given μ , λ , δ ?

Example #4: Multiple-tank system

Initialized rectangular hybrid automata

- all differential equations have constant r.h.s.
- all jump cond. are of the form: state var. $1 \in$ fixed interval 1 & state var. $2 \in$ fixed interval 2 & etc.
- all resets have constant r.h.s.

Most general class of hybrid systems for which there exist completely automated procedures to compute the set of reachable states

Example #5: Supervisory control

 $\sigma \equiv$ switching signal taking values in the set $\{1,2\}$

E.g. #5 a): Vision-based control of a flexible manipulator

goal \equiv drive θ_{tip} to zero, using feedback from

- $\theta_{\rm base} \rightarrow {\rm encoder} \ {\rm at} \ {\rm the} \ {\rm base}$
- θ_{tip} \rightarrow machine vision (needed to increase the damping of the flexible modes in the presence of noise)

 To achieve high accuracy in the measurement of θ_{tip} the camera must have a **small field of view**

output feedback output:
$$y := \begin{cases} \begin{bmatrix} \theta_{\text{base}} \\ \theta_{\text{tip}} \end{bmatrix} & |\theta_{\text{tip}}| \leq \theta_{\text{max}} \\ \theta_{\text{base}} & |\theta_{\text{tip}}| > \theta_{\text{max}} \end{cases}$$

E.g. #5 a): Vision-based control of a flexible manipulator

E.g., LQG controllers that minimize
$$\lim_{T\to\infty} \frac{1}{T} E\left[\int_0^T \theta_{\rm tip}^2 + \dot{\theta}_{\rm tip}^2 + \rho u^2 dt\right]$$

E.g. #5 a): Vision-based control of a flexible manipulator

feedback connection with controller 1 (θ_{base} and θ_{tip} available)

feedback connection with controller 2 (only θ_{base} available)

E.g. #5 a): Vision-based control of a flexible manipulator

Example #5 b): Adaptive supervisory control

Goal: stabilize process, regardless of which is the actual process model

Supervisor must

- try to determine which is the correct process model by observing u and y
- select the appropriate controller

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Example #4: Multiple-tank system

goal ≡ prevent the tank from emptying or filling up

 $\delta \equiv$ delay between command is sent to pump and the time it is executed

How to formally describe this hybrid system?

(Example #2: Thermostat)

 $x \equiv$ mean temperature

 \mathcal{Q} \equiv set of discrete states \mathbb{R}^n \equiv continuous state-space

 $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{vector field}$

 $\varphi \colon \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$

Example: $Q := \{ \text{ off, on } \}$ n := 1

$$f(q,x) := \begin{cases} -x + 50 & q = \text{off} \\ -x + 100 & q = \text{on} \end{cases} \qquad \varphi(q,x) := \begin{cases} \text{on,} & q = \text{off, } x \le 73 \\ \text{off,} & q = \text{off, } x > 73 \\ \text{off,} & q = \text{on, } x \ge 77 \\ \text{on,} & q = \text{on, } x < 77 \end{cases}$$

(Example #2: Thermostat)

$x \equiv$ mean temperature

 \mathcal{Q} \equiv set of discrete states \mathbb{R}^n \equiv continuous state-space

 $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{vector field}$

 $\varphi \colon \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$

$$\varphi(q_1,x) = q_2 ?$$

$$\varphi(q_1,x)=q_3?$$

$$Q \equiv \text{set of discrete states}$$

$$\mathbb{R}^n$$
 \equiv continuous state-space

$$f: \mathcal{Q} \times \mathbb{R}^{n} \to \mathbb{R}^{n} \equiv \text{vector field}$$

$$\varphi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$$

$$\rho: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{reset map}$$

$$x\coloneqq\rho\left(q_{1},x^{-}\right)\qquad\varphi\left(q_{1},x^{-}\right)=q_{2}\;?$$

$$\gcd q_{1}$$

$$\dot{x}=f(q_{2},x)$$

$$\gcd q_{1}$$

$$\dot{x}=f(q_{1},x)$$

$$\dot{x}=f(q_{3},x)$$

$$\varphi\left(q_{1},x^{-}\right)=q_{3}\;?\qquad x\coloneqq\rho\left(q_{1},x^{-}\right)$$

at every transition we have:

$$egin{cases} q = arphi(q^-, x^-) \ x =
ho(q^-, x^-) \end{cases}$$

between transitions we have:

$$\dot{x} = f(q, x)$$

$$Q \equiv \text{set of discrete states}$$

$$\mathbb{R}^n$$
 \equiv continuous state-space

$$f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{vector field}$$

$$\Phi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \times \mathbb{R}^n \equiv \text{discrete transition (\& reset map)}$$

$$\Phi(q,x) = \begin{bmatrix} \Phi_1(q,x) \\ \Phi_2(q,x) \end{bmatrix} = \begin{bmatrix} \varphi(q,x) \\ \rho(q,x) \end{bmatrix}$$

$$x\coloneqq \Phi_2(q_1,x^-) \qquad \Phi_1(q_1,x^-)=q_2 \ ?$$

$$mode \ q_1$$

$$\dot{x}=f(q_2,x)$$

$$\dot{x}=f(q_1,x)$$

$$mode \ q_3$$

$$\dot{x}=f(q_3,x)$$

$$\dot{x}=f(q_3,x)$$

$$x\coloneqq \Phi_2(q_1,x^-)$$

at every transition we have:

$$(q,x) = \Phi(q^-, x^-)$$

between transitions we have:

$$\dot{x} = f(q, x)$$

$$Q \equiv \text{set of discrete states}$$

$$\mathbb{R}^n$$
 \equiv continuous state-space

$$f: \mathcal{Q} \times \mathbb{R}^{n} \to \mathbb{R}^{n} \equiv \text{vector field}$$

$$\Phi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \times \mathbb{R}^n \equiv \text{discrete transition (\& reset map)}$$

$$\Phi(q,x) = \begin{bmatrix} \Phi_1(q,x) \\ \Phi_2(q,x) \end{bmatrix} = \begin{bmatrix} \varphi(q,x) \\ \rho(q,x) \end{bmatrix}$$

$$q_2 ?$$

Compact representation of a hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$ $q \in \mathcal{Q}, x \in \mathbb{R}^n$

Example #5: Multiple-tank system

goal ≡ prevent the tank from emptying or filling up

 $\delta \equiv$ delay between command is sent to pump and the time it is executed

Example #5: Multiple-tank system

 $Q \coloneqq \{ \text{ off, won, on, woff } \}$ $\mathbb{R}^2 \equiv \text{continuous state-space}$

$$f(q, x) := \begin{cases} \begin{bmatrix} -\mu \\ 0 \end{bmatrix} & q = \text{off} \\ \begin{bmatrix} -\mu \\ 1 \end{bmatrix} & q = \text{won} \\ \begin{bmatrix} \lambda - \mu \\ 0 \end{bmatrix} & q = \text{on} \\ \begin{bmatrix} \lambda - \mu \\ 1 \end{bmatrix} & q = \text{woff} \end{cases}$$

$$\varphi(q,x) := \begin{cases} \text{off} & q = \text{woff}, \tau \geq \delta \\ \text{off} & q = \text{off}, y > y_{\min} \\ \text{won} & q = \text{off}, y \leq y_{\min} \\ \text{won} & q = \text{won}, \tau < \delta \end{cases} \qquad \rho(q,x) := \begin{cases} x & q = \text{woff}, \tau \geq \delta \\ x & q = \text{off}, y > y_{\min} \\ \begin{bmatrix} y \\ 0 \end{bmatrix} & q = \text{off}, y \leq y_{\min} \\ x & q = \text{won}, \tau < \delta \\ \vdots & \vdots \end{cases}$$

Solution to a hybrid automaton

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$ $q \in \mathcal{Q}, x \in \mathbb{R}^n$

Definition: A *solution* to the hybrid automaton is a pair of right-continuous signals $x:[0,\infty)\to\mathbb{R}^n$ $q:[0,\infty)\to\mathcal{Q}$

such that

- 1. x is piecewise differentiable & q is piecewise constant
- 2. on any interval (t_1,t_2) on which q is constant

continuous evolution

$$x(t) = x(t_1) + \int_{t_1}^{t} f(q(t_1), x(\tau)) d\tau \qquad \forall t \in [t_1, t_2)$$

3.
$$(q(t), x(t)) = \Phi(q^{-}(t), x^{-}(t)) \quad \forall t \ge 0$$

discrete transitions

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Example #2: Thermostat

The state of the system remains bounded as $t \to \infty$:

$$\min\{y(0), y^* - h\} \le y(t) \le \max\{y(0), y^*\} \qquad \forall t \ge 0$$

Example #2: Thermostat

 A_0 , A_1 asymptotically stable (all eigenvalues with negative real part)

- 1. if system would stay in off mode forever then eq. state $x_{\rm eq} = A_0^{-1} b_0$ is asymptotically stable & $y \to y_{\rm off} \coloneqq c_0 A_0^{-1} b_0 \le y^* h$
- 2. if system would stay in on mode forever then eq. state $x_{eq} = A_1^{-1} b_1$ is asymptotically stable & $y \to y_{on} \coloneqq c_1 A_1^{-1} b_1 \ge y^*$

With switching, does the overall state x of the system remains bounded as $t \to \infty$?

A different view on hybrid systems...

$$\mathcal{Q}, \mathbb{R}^n$$
 \equiv state-spaces $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n$ \equiv vector field

 $\varphi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$ $\rho: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{reset map}$

supervisor (finite automaton driven by the continuous state)

switched systemwith resets(ODE with resets)

An hybrid system can be viewed as the interconnection of a supervisor and a switched system (essentially the Simulink/Stateflow model)

Example #2: Thermostat

supervisor (finite automaton)

switched system (ODE with resets)

1st On an interval (τ,t) the maximum number of switchings $N(\tau,t)$ is bounded by

$$N(\tau, t) \le 1 + \frac{c \max_{s \in (\tau, t)} ||x(s)||}{h} (t - \tau)$$

2nd Assuming that the max. number of switchings $N(\tau,t)$ on (τ,t) is bounded:

$$N(\tau, t) \le N_0 + \frac{t - \tau}{\tau_D}$$

Then there exist constants α , β , γ s.t.

$$||x(t)|| \le \alpha ||x(\tau)|| + \beta + \gamma y^*$$

3rd For any choice of τ_D and h such that

$$h \le c\tau_D \left(\alpha ||x(0)|| + \beta + \gamma y^* \right)$$

x must be bounded for any solution compatible with 1& 2

property of the supervisor

property of the switched system

property of the interconnection

Switched system

parameterized family of vector fields $\equiv f_p : \mathbb{R}^n \to \mathbb{R}^n$ $p \in Q$ switching signal \equiv piecewise constant signal $\sigma : [0,\infty) \to Q$ parameter set

 $S \equiv$ set of admissible switching signals

E.g.,
$$S := \{ \sigma : N_{\sigma}(\tau, t) \le 1 + (t - \tau), \forall t > \tau \ge 0 \}$$

of discontinuities of σ in the interval (τ, t)

$$\dot{x} = f_{\sigma}(x) \qquad \sigma \in \mathcal{S}$$

A *solution* to the switched system is any pair (σ, x) with $\sigma \in S$ and x a solution to

$$\dot{x} = f_{\sigma(t)}(x)$$
 time-varying ODE

Switched system with state-dependent switching

parameterized family of vector fields $\equiv f_p : \mathbb{R}^n \to \mathbb{R}^n$ $p \in Q$ switching signal \equiv piecewise constant signal $\sigma : [0,\infty) \to Q$ parameter set

 $S \equiv \text{ set of admissible pairs } (\sigma, x) \text{ with } \sigma \text{ a switching signal and } x \text{ a signal in } \mathbb{R}^n$ $E.g., S \coloneqq \{(\sigma, x) : N_{\sigma}(\tau, t) \le 1 + \sup_{s \in (\tau, t)} ||x(s)|| (t - \tau), \forall t > \tau \ge 0 \}$

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}$$

for each x only some σ may be admissible

A *solution* to the switched system is a pair $(\sigma, x) \in S$ for which x is a solution to

$$\dot{x} = f_{\sigma(t)}(x)$$
 time-varying ODE

Switched system with resets

parameterized family of vector fields $\equiv f_p : \mathbb{R}^n \to \mathbb{R}^n$ $p \in Q$ switching signal \equiv piecewise constant signal $\sigma : [0,\infty) \to Q$ parameter set

 $S \equiv \text{set of admissible pairs } (\sigma, x) \text{ with } \sigma \text{ a switching signal and } x \text{ a signal in } \mathbb{R}^n$

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

A *solution* to the switched system is a pair $(\sigma, x) \in S$ for which

1. on every open interval on which σ is constant, x is a solution to

$$\dot{x} = f_{\sigma(t)}(x)$$
 time-varying ODE

2. at every switching time t, $x(t) = \rho(\sigma(t), \sigma^{-}(t), x^{-}(t))$

Time-varying systems vs. Hybrid systems vs. Switched systems

Time-varying system \equiv for each initial condition x(0) there is only one solution

$$\dot{x} = f_{\sigma(t)}(x)$$
 (all f_p locally Lipschitz)

Hybrid system \equiv for each initial condition q(0), x(0) there is only one solution

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$

Switched system \equiv for each x(0) there may be several solutions, one for each admissible σ

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

the notions of stability, convergence, etc. must address "uniformity" over all solutions

Time-varying systems vs. Hybrid systems vs. Switched systems

Time-varying system \equiv for each initial condition x(0) there is only one solution

$$\dot{x} = f_{\sigma(t)}(x)$$
 (all f_p locally Lipschitz)

Hybrid system \equiv for each initial condition q(0), x(0) there is only one solution

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$

Switched system \equiv for each x(0) there may be several solutions, one for each admissible σ

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

every hybrid system can be viewed as a switched system. Indeed, just pick:

$$\mathcal{S} := ig\{ (x,\sigma) : (q,x) := \Phi(q^-,x^-) ig\} \
ho(q_2,q_1,x_1) := egin{cases} x_2 & \exists x_2 : (q_2,x_2) = \Phi(q_1,x_1) \ x_1 & ext{otherwise} \end{cases}$$

Stability of switched systems

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}$$

equilibrium point $\equiv x_{eq} \in \mathbb{R}^n$ for which $f_q(x_{eq}) = 0 \ \forall \ q \in Q$

class $\mathcal{K} \equiv$ set of functions $\alpha : [0, \infty) \rightarrow [0, \infty)$ that are

- 1. continuous
- 2. strictly increasing
- 3. $\alpha(0)=0$

Definition (class \mathcal{K} function definition):

The equilibrium point x_{eq} is (*globally Lyapunov*) *stable* if $\exists \alpha \in \mathcal{K}$:

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \quad \forall t \ge t_0 \ge 0$$

along any solution $(\sigma, x) \in S$ to the switched system

 α is independent of $x(t_0)$ and σ

Asymptotic stability of switched systems

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}$$

equilibrium point $\equiv x_{eq} \in \mathbb{R}^n$ for which $f_q(x_{eq}) = 0 \ \forall \ q \in Q$

class $\mathcal{K} \equiv$ set of functions $\alpha : [0, \infty) \rightarrow [0, \infty)$ that are

- 1. continuous
- 2. strictly increasing
- 3. $\alpha(0)=0$

Definition:

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is (*globally*) asymptotically stable if it is Lyapunov stable and for every solution that exists on $[0,\infty)$ $x(t) \to x_{eq}$ as $t \to \infty$.

Uniform asymptotic stability of switched systems

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}$$

equilibrium point $\equiv x_{eq} \in \mathbb{R}^n$ for which $f(x_{eq}) = 0$

class $\mathcal{KL} \equiv \text{set of functions } \beta : [0,\infty) \times [0,\infty) \to [0,\infty) \text{ s.t.}$

- 1. for each fixed t, $\beta(\cdot,t) \in \mathcal{K}$
- 2. for each fixed s, $\beta(s,\cdot)$ is monotone decreasing and $\beta(s,t) \to 0$ as $t \to \infty$

Definition (class \mathcal{KL} function definition):

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is *uniformly asymptotically stable* if $\exists \beta \in \mathcal{KL}$:

$$||x(t) - x_{eq}|| \le \beta(||x(t_0) - x_{eq}||, t - t_0) \ \forall \ t \ge t_0 \ge 0$$
 along any solution $(\sigma, x) \in \mathcal{S}$ to the switched system

β is independent of $x(t_0)$ and σ

We have *exponential stability* when

$$\beta(s,t) = c e^{-\lambda t} s$$
 with $c, \lambda > 0$

Three notions of stability

Definition (class \mathcal{K} function definition):

The equilibrium point x_{eq} is *stable* if $\exists \alpha \in \mathcal{K}$:

$$\alpha$$
 is independent of $x(t_0)$ and σ

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \quad \forall t \ge t_0 \ge 0$$

along any solution $(x, \sigma) \in S$ to the switched system

Definition:

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is *asymptotically stable* if it is Lyapunov stable and for every solution that exists on $[0,\infty)$

$$x(t) \to x_{\rm eq} \text{ as } t \to \infty.$$

Definition (class \mathcal{KL} function definition):

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is *uniformly asymptotically stable* if $\exists \beta \in \mathcal{KL}$:

$$||x(t) - x_{eq}|| \le \beta(||x(t_0) - x_{eq}|/t - t_0) \ \forall \ t \ge t_0 \ge 0$$

along any solution $(\sigma, x) \in S$ to the switched system

β is independent of $x(t_0)$ and σ

exponential stability when $\beta(s,t) = c e^{-\lambda t} s$ with $c,\lambda > 0$

Example

$$\dot{x} = \sigma x$$

 $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, +1\}$

 $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$

 $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ with infinitely many switches

 $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ with infinitely many switches and interval between consecutive discontinuities bounded below by 1

 $S \equiv$ set of piecewise constant switching signals taking values in $Q := \{-1, 0\}$ with infinitely many switches and interval between consecutive discontinuities below by 1 and above by 2

Example

$$\dot{x} = \sigma x$$

- $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, +1\}$ unstable
- $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ stable but not asympt.
- $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ with infinitely many switches stable but not asympt.
- $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ with infinitely many switches and interval between consecutive discontinuities bounded below by 1 asympt. stable
- $S \equiv$ set of piecewise constant switching signals taking values in $Q \coloneqq \{-1, 0\}$ with infinitely many switches and interval between consecutive discontinuities below by 1 and above by 2 uniformly asympt. stable

Linear switched systems

$$\dot{x} = A_{\sigma}x$$
 $x = R_{\sigma,\sigma^{-}}x^{-}$ $(\sigma, x) \in \mathcal{S}$ $A_{q}, R_{q,q} \in \mathbb{R}^{n \times n}$ $q, q' \in Q$

vector fields and reset maps linear on x

Linear switched systems

$$\dot{x} = A_{\sigma}x$$
 $x = R_{\sigma,\sigma^{-}}x^{-}$ $(\sigma, x) \in \mathcal{S}$ $A_{q}, R_{q,q} \in \mathbb{R}^{n \times n}$ $q, q' \in Q$

vector fields and reset maps linear on x

$$x(t) = \Phi_{\sigma}(t, \tau)x(\tau)$$

state-transition matrix for the switched system (σ -dependent)

$$\Phi_{\sigma}(t,\tau) := e^{A_{\sigma(t_k)}(t-t_k)} R_{\sigma(t_k),\sigma(t_{k-1})} e^{A_{\sigma(t_{k-1})}(t_k-t_{k-1})} \dots$$

$$\dots R_{\sigma(t_2),\sigma(t_1)} e^{A_{\sigma(\tau)}(t_1-\tau)} \qquad t \ge \tau$$

 $t_1, t_2, t_3, ..., t_k \equiv$ switching times of σ in the interval $[t, \tau)$

Linear switched systems

$$\dot{x} = A_{\sigma}x$$
 $x = R_{\sigma,\sigma^{-}}x^{-}$ $(\sigma, x) \in \mathcal{S}$ $A_{q}, R_{q,q'} \in \mathbb{R}^{n \times n}$ $q, q' \in Q$

$$x(t) = \Phi_{\sigma}(t, \tau)x(\tau)$$
 state-transition matrix (σ -dependent)

$$\Phi_{\sigma}(t,\tau) := e^{A_{\sigma(t_k)}(t-t_k)} R_{\sigma(t_k),\sigma(t_{k-1})} e^{A_{\sigma(t_{k-1})}(t_k-t_{k-1})} \dots \dots R_{\sigma(t_1),\sigma(\tau)} e^{A_{\sigma(\tau)}(t_1-\tau)} \qquad t \ge \tau$$

 $t_1, t_2, t_3, ..., t_k \equiv$ switching times of σ in the interval $[t, \tau)$

Analogous to what happens for (unswitched) linear systems:

1.
$$\Phi_{\sigma}(\tau,\tau) = I \quad \forall \tau$$

2.
$$\Phi_{\sigma}(t,s) \Phi_{\sigma}(s,\tau) = \Phi_{\sigma}(t,\tau) \quad \forall t \ge s \ge \tau \quad \text{(semi-group property)}$$

3. if t is not a switching time, $\Phi_{\sigma}(t,\tau)$ is differentiable at t and

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi_{\sigma}(t,\tau) = A_{\sigma(t)}\Phi_{\sigma}(t,\tau)$$

4. if *t* is a switching time,

$$\Phi_{\sigma}(t,\tau) = R_{\sigma(t),\sigma^{-}(t)}\Phi_{\sigma}^{-}(t,\tau)$$

for a given σ , Φ_{σ} is a

"solution" to
the switched
system with
resets

but now Φ_{σ} may not be nonsingular (will be singular if one of the R_{qq} , are)

Uniform vs. exponential stability

$$\dot{x} = A_{\sigma} x$$

$$x = R_{\sigma,\sigma^-}x^-$$

$$(\sigma, x) \in \mathcal{S}$$

$$\dot{x} = A_{\sigma}x$$
 $x = R_{\sigma,\sigma^{-}}x^{-}$ $(\sigma, x) \in \mathcal{S}$ $A_{q}, R_{q,q} \in \mathbb{R}^{n \times n}$ $q, q' \in Q$

state-independent switching $\equiv S$ is such that

$$(\sigma, x) \in \mathcal{S} \Rightarrow (\sigma, z) \in \mathcal{S}$$

for any other piecewise continuous z

only σ determines whether or not (σ, x) is admissible

Theorem:

For switched linear systems with state-independent switching, uniform asymptotic stability implies exponential stability (two notions are equivalent)

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Stability under arbitrary switching

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

 $S_{\text{all}} \equiv \text{set of all pairs } (\sigma, x) \text{ with } \sigma$ piecewise constant and x piecewise
continuous
any switching
signal is admissible

$$\rho(p, q, x) = x \ \forall \ p, q \in \mathbb{Q}, x \in \mathbb{R}^n$$

no resets

If one of the vector fields f_q , $q \in Q$ is unstable then the switched system is unstable

Why?

- 1. because the switching signals $\sigma(t) = q \ \forall \ t$ is admissible
- 2. for this σ we cannot find $\alpha \in \mathcal{K}$ such that

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \ \forall \ t \ge t_0 \ge 0, \ ||x(t_0) - x_{eq}|| \le c$$
 (must less for all σ)

But even if all f_q , $q \in Q$ are stable the switched system may still be unstable ...

Stability under arbitrary switching

$$\dot{x} = A_1 z$$
 asympot. stable

 $\dot{x} = A_2 z$ asympot. stable

$$\sigma(t) := \begin{cases} 1 & x_1 x_2 \le 0 \\ 2 & x_1 x_2 > 0 \end{cases}$$

$$\dot{x} = A_{\sigma} x$$

Stability under arbitrary switching

$$\dot{x} = A_1 z$$
 asympot. stable

 $\dot{x} = A_2 z$ asympot. stable

$$\sigma(t) := \begin{cases} 1 & x_1 x_2 \ge 0 \\ 2 & x_1 x_2 < 0 \end{cases}$$

$$\dot{x} = A_{\sigma} x$$

for some admissible switching signals the trajectories grow to infinity \Rightarrow switched system is unstable

Common Lyapunov function

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

The same V could be used to prove stability for all the unswitched systems

$$\dot{x} = f_q(x)$$

Common Lyapunov function

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$)

1st Take an arbitrary solution (σ, x) and define $v(t) := V(x(t)) \forall t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le 0$$

2nd Therefore

$$v(t) := V(x(t)) \le v(0) := V(x(0)) \qquad \forall t \ge 0$$

V(x(t)) is always bounded...

Example

$$\dot{x} = A_{\sigma} x$$

Defining $V(x_1, x_2) := x_1^2 + x_2^2$

common Lyapunov function

$$\frac{\partial V}{\partial x}A_1x = -x_1^2 - 1.4375x_2^2 - (x_1 + .75x_2)^2 < 0$$

$$\frac{\partial V}{\partial x}A_2x = -x_1^2 - 1.4375x_2^2 - (x_1 + .75x_2)^2 < 0$$

uniform asymptotic stability

Example

$$\dot{x} = A_{\sigma} x$$

Defining
$$V(x_1,x_2) := x_1^2 + x_2^2$$

common Lyapunov function

$$\frac{\partial V}{\partial x} A_1 x = -4x_2^2 \le 0$$
$$\frac{\partial V}{\partial x} A_2 x = -4x_2^2 \le 0$$

stability (not asymptotic) (problems, e.g., close to the x_2 =0 axis)

Converse result

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Assume Q is finite. The switched system is uniformly asymptotically stable (on S_{all}) if and only if there exists a common Lyapunov function, i.e., continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) < 0 \qquad \forall z \in \mathbb{R}^n \setminus \{0\}, \ q \in \mathcal{Q}$$

Note that...

- 1. This result generalized for infinite Q but one needs extra technical assumptions
- 2. The sufficiency was already established. It turns out that the existence of a common Lyapunov function is also necessary.
- 3. Finding a common Lyapunov function may be difficult. E.g., even for linear systems *V* may not be quadratic

Example

The switched system is uniformly exponentially stable for arbitrary switching but there is no common quadratic Lyapunov function

Algebraic conditions for stability under arbitrary switching

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

Theorem: If Q is finite all A_q , $q \in Q$ are asymptotically stable and

$$A_p A_q = A_q A_p \qquad \forall p, q \in Q$$

then the switched system is uniformly (exponentially) asymptotically stable

Theorem: If all the matrices A_q , $q \in Q$ are asymptotically stable and upper triangular or all lower triangular then the switched system is uniformly (exponentially) asymptotically stable

(there exists a common Lyapunov function V(x) = x' P x with P diagonal)

Theorem: If there is a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ such that all the matrices common similarity

$$B_q = T A_q T^{-1} \qquad (T^{-1} B_q T = A_q)$$

transformation are upper triangular or all lower triangular then the switched system is uniformly (exponentially) asymptotically stable

> Lie Theorem actually provides the necessary and sufficient condition for the existence of such $T \equiv$ Lie algebra generated by the matrices must be solvable

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Example #11: Roll-angle control

$$\ddot{\theta} + 50.875\ddot{\theta} + 43.75\dot{\theta} = -1000u$$

set-point control \equiv drive the roll angle θ to a desired value $\theta_{\text{reference}}$

measurement noise

n

Example #11: Roll-angle control

set-point control \equiv drive the roll angle θ to a desired value $\theta_{\text{reference}}$

measurement noise

n

controller 1

$$\ddot{u} + 63\ddot{u} + 751\dot{u} + 4471u$$

= $6.7\ddot{e} + 340\dot{e} + 316e$

controller 2

$$\ddot{u} + 974\ddot{u} + 4.7 \times 10^5 \dot{u} + 1.2 \times 10^8 u$$
$$= 10^6 (48\ddot{e} + 322\dot{e} + 316e)$$

fast but
very
sensitive to
noise
(high-gain)

How to build the switching controller to avoid instability?

Switching controller

controller 1

$$\ddot{u} + 63\ddot{u} + 751\dot{u} + 4471u$$

$$= 6.7\ddot{e} + 340\dot{e} + 316e$$

realization:
$$\dot{z} = F_1 z + g_1 e$$

 $u = h_1 z$

$$F_{1} = \begin{bmatrix} -63 & -23 & -17 \\ 32 & 0 & 0 \\ 0 & 8 & 0 \end{bmatrix} g_{1} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$
$$h_{1} = \begin{bmatrix} 1.7 & 2.7 & .31 \end{bmatrix}$$

controller 2

$$\ddot{u} + 974\ddot{u} + 4.7 \times 10^5 \dot{u} + 1.2 \times 10^8 u$$
$$= 10^6 (48\ddot{e} + 322\dot{e} + 316e)$$

realization:
$$\dot{z} = F_2 z + g_2 e$$

 $u = h_2 z$

$$F_2 = \begin{bmatrix} -974 & -459 & -229 \\ 1024 & 0 & 0 \\ 0 & 512 & 0 \end{bmatrix} g_2 = \begin{bmatrix} 8192 \\ 0 \\ 0 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} 5859 & 38 & 0.074 \end{bmatrix}$$

overall system:

$$\begin{bmatrix}
\dot{x}_{P} \\
\dot{z}
\end{bmatrix} = \begin{bmatrix}
A_{P} & b_{P}h_{\sigma} \\
-g_{\sigma}c_{P} & F_{\sigma}
\end{bmatrix} \begin{bmatrix}
x_{P} \\
z
\end{bmatrix} + \begin{bmatrix}
0 \\
g_{\sigma}
\end{bmatrix} (\theta_{\text{ref}} - n)$$

$$\dot{x} = A_{\sigma}x + b_{\sigma}(\theta_{\text{ref}} - n) \qquad A_{q} := \begin{bmatrix}
A_{P} & b_{P}h_{q} \\
-g_{q}c_{P} & F_{q}
\end{bmatrix} q \in \mathcal{Q} := \{1, 2\}$$

Theorem:

For every family of input-output controller models, there always exist a family a controller realizations such that the switched closed-loop systems is exponentially stable for arbitrary switching.

One can actually show that there exists a common quadratic Lyapunov function for the closed-loop.

Outline

1. Examples of hybrid systems

- Bouncing ball
- Thermostat
- Transmission
- Multiple-tank
- Supervisory control

2. Formal models for hybrid systems

3. Switched systems

- Motivation
- Linear switched systems
- Lyapunov stability, asymptotic stability, exponential stability

4. Stability of switched systems under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

5. Controller realizations for stable switching

6. Stability under state-dependent switching

- State-dependent common Lyapunov function
- Multiple Lyapunov functions
- LaSalle's invariance principle

Current-state dependent switching

*
$$\dot{x} = f_{\sigma}(x)$$
 $x = x^{-}$ $(\sigma, x) \in \mathcal{S}$ no resets

 $\chi \coloneqq \{\chi_q \in \mathbb{R}^n : q \in Q\} \equiv \text{(not necessarily disjoint) covering of } \mathbb{R}^n, \text{ i.e., } \cup_{q \in Q} \chi_q = \mathbb{R}^n$

Current-state dependent switching

 $S[\chi] \equiv \text{ set of all pairs } (\sigma, x) \text{ with } \sigma \text{ piecewise constant and } x \text{ piecewise continuous such that } \forall t, \sigma(t) = q \text{ is allowed only if } x(t) \in \chi_q$

Thus $(\sigma, x) \in \mathcal{S}[\chi]$ if and only if $x(t) \in \chi_{\sigma(t)} \ \forall \ t$

Common Lyapunov function for arbitrary switching

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, \ z \in \mathbb{R}^n$$

Then for arbitrary switching S_{all}

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$)

1st Take an arbitrary solution (σ, x) and define $v(t) := V(x(t)) \forall t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le 0$$

2nd Therefore

$$v(t) := V(x(t)) \le v(0) := V(x(0)) \qquad \forall t \ge 0$$

V(x(t)) is always bounded...

Common Lyapunov function for current-state dep. switching

$$\dot{x} = f_{\sigma}(x)$$
 $x = x^{-}$ $(\sigma, x) \in \mathcal{S}[\chi]$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, z \in \chi_q$$

Then for current-state dependent switching $S[\chi]$

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$)

1st Take an arbitrary solution (σ, x) and define $v(t) := V(x(t)) \forall t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le 0$$
 still holds because $x(t) \in \chi_{\sigma(t)}$

2nd Therefore

$$v(t) := V(x(t)) \le v(0) := V(x(0)) \qquad \forall t \ge 0$$

Same conclusions as before ...

Common Lyapunov function for current-state dep. switching

$$\dot{x} = f_{\sigma}(x)$$
 $x = x^{-}$ $(\sigma, x) \in \mathcal{S}[\chi]$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, z \in \chi_q$$

Then for current-state dependent switching $S[\chi]$

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Note that:

- Same conclusion would hold for any subset of $S[\chi]$
- Some (or all) the unswitched systems may not be stable $\dot{x} = f_q(x)$
- This theorem does not guarantee existence of solutions (as opposed to the usual Lyapunov Theorem and the ones for state independent switching)...

Common Lyapunov function for current-state dep. switching

$$\dot{x} = f_{\sigma}(x)$$
 $x = x^{-}$ $(\sigma, x) \in \mathcal{S}[\chi]$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, z \in \chi_q$$

Then for current-state dependent switching $S[\chi]$

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

E.g.,
$$Q \coloneqq \{-1, +1\}, \chi_{-1} \coloneqq [0, \infty), \chi_{+1} \coloneqq (-\infty, 0)$$

$$\dot{x} = \sigma = \begin{cases} -1 & x \ge 0 \\ +1 & x < 0 \end{cases} \qquad f_{-1}(x) \coloneqq -1$$

$$f_{+1}(x) \coloneqq +1 \qquad \text{no solutions}$$
exists

For $x_{eq} = 0$ is an equilibrium point and for $V(z) := z^2$

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) = \begin{cases} -2z & q = -1, \ z \ge 0 \\ 2z & q = +1, \ z < 0 \end{cases} \le 0$$

Multiple Lyapunov functions

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S} \subset \mathcal{S}[\chi]$

 $V_q: \mathbb{R}^n \to \mathbb{R}, q \in \mathbb{Q} \equiv \text{ family of Lyapunov functions (cont. dif., pos. def., rad. unb.)}$

$$\frac{\partial V_q}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, z \in \chi_q$$

Given a solution (σ, x) and defining $v(t) := V_{\sigma(t)}(x(t)) \ \forall \ t \ge 0$

1. On an interval $[\tau, t)$ where $\sigma = q$ (constant)

v decreases

$$\dot{v} = \frac{\partial V_q}{\partial x}(x)\dot{x} = \frac{\partial V_q}{\partial x}(x)f_\sigma(x) = \frac{\partial V_q}{\partial x}(x)f_q(x) \le W(x(t)) \le 0$$

2. But at a switching time t, where $\sigma^-(t) = p \neq \sigma(t) = q$,

$$v^{-}(t) = V_p(x^{-}(t))$$
 $v(t) = V_q(x(t))$
 v may be discontinuous
(even without reset)

Multiple Lyapunov functions

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S} \subset \mathcal{S}[\chi]$

 $V_q: \mathbb{R}^n \to \mathbb{R}, q \in \mathbb{Q} \equiv \text{ family of Lyapunov functions (cont. dif., pos. def., rad. unb.)}$

$$\frac{\partial V_q}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, \ z \in \chi_q$$

Given a solution (σ, x) and defining $v(t) := V_{\sigma(t)}(x(t)) \ \forall \ t \ge 0$

1. On an interval $[\tau, t)$ where $\sigma = q$ (constant)

v decreases

$$\dot{v} = \frac{\partial V_q}{\partial x}(x)\dot{x} = \frac{\partial V_q}{\partial x}(x)f_\sigma(x) = \frac{\partial V_q}{\partial x}(x)f_q(x) \le W(x(t)) \le 0$$

2. But at a switching time t, where $\sigma^-(t) = p \neq \sigma(t) = q$,

$$v^{-}(t) = V_p(x^{-}(t)) \qquad v(t) = V_q(x(t))$$

we would be okay if *v* would not increase at switching times

Multiple Lyapunov functions

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S} \subset \mathcal{S}[\chi]$

Theorem: (*Q* finite)

Suppose there exists a family of continuously differentiable, positive definite, radially unbounded functions $V_q: \mathbb{R}^n \to \mathbb{R}, q \in Q$ such that

$$\frac{\partial V_q}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, \ z \in \chi_q$$

and at any $z \in \mathbb{R}^n$ where a switching signal in S can jump from p to q

$$V_p(z) \ge V_q(\rho(q, p, z))$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$)

1st Take an arbitrary solution (σ, x) and define $v(t) := V_{\sigma}(x(t)) \ \forall \ t \ge 0$ while σ is constant: $\dot{v} = \frac{\partial V_{\sigma}}{\partial x}(x)\dot{x} = \frac{\partial V_{\sigma}}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le 0$

and, at points of discontinuity of σ : $v^{-}(t) \ge v(t)$ does not increase from now on same as before ...

Multiple Lyapunov functions

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S} \subset \mathcal{S}[\chi]$

Theorem: (*Q* finite)

Suppose there exists a family of continuously differentiable, positive definite, radially unbounded functions $V_q: \mathbb{R}^n \to \mathbb{R}, q \in Q$ such that

$$\frac{\partial V_q}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall q \in \mathcal{Q}, \ z \in \chi_q$$

and at any $z \in \mathbb{R}^n$ where a switching signal in S can jump from p to q

$$V_p(z) \ge V_q(\rho(q, p, z))$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

The V_q 's need not be positive definite and radially unbounded "everywhere"

It is enough that
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||z||) \leq V_q(z) \leq \alpha_2(||z||) \quad \forall q \in \mathbb{Q}, z \in \chi_q$

LaSalle's Invariance Principle (ODE)

$$\dot{x} = f(x)$$
 $x \in \mathbb{R}^n$

 $M \in \mathbb{R}^n$ is an invariant set $\equiv x(t_0) \in M \Rightarrow x(t) \in M \ \forall \ t \geq t_0$

Theorem (LaSalle Invariance Principle):

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n$$

Then x_{eq} is a Lyapunov stable equilibrium and the solution always exists globally. Moreover, x(t) converges to the largest invariant set M contained in

$$E := \{ z \in \mathbb{R}^n : W(z) = 0 \}$$

Note that:

- 1. When W(z) = 0 only for $z = x_{eq}$ then $E = \{x_{eq}\}$. Since $M \subset E$, $M = \{x_{eq}\}$ and therefore $x(t) \to x_{eq} \Rightarrow$ asympt. stability
- 2. Even when *E* is larger then $\{x_{eq}\}$ we often have $M = \{x_{eq}\}$ and can conclude asymptotic stability.

LaSalle's Invariance Principle (linear system)

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^n$

 $M \in \mathbb{R}^n$ is an invariant set if $x(0) \in M \Rightarrow x(t) \in M \ \forall \ t \geq 0$

Theorem (LaSalle Invariance Principle–linear system, quadratic V): Suppose there exists a positive definite matrix P

$$A'P+PA\leq -Q\leq 0$$

Then the system is stable.

Moreover, x(t) converges to the largest invariant set M contained in

$$E := \{ z \in \mathbb{R}^n : Q z = 0 \}$$

Note that:

1. Since $Q \ge 0$ we can always write $Q = C' C \dots$

LaSalle's Invariance Principle (linear system)

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^n$

 $M \in \mathbb{R}^n$ is an invariant set if $x(0) \in M \Rightarrow x(t) \in M \ \forall \ t \geq 0$

Theorem (LaSalle Invariance Principle–linear system, quadratic *V*):

Suppose there exists a positive definite matrix *P*

$$A'P + PA \le -C'C \le 0$$

Then the system is stable.

Moreover, x(t) converges to the largest invariant set M contained in

$$E := \{ z \in \mathbb{R}^n : C z = 0 \}$$

Why? show that $C'Cz = 0 \Rightarrow Cz = 0$

Note that:

- 2. When Q > 0 then $E = \{0\}$. Since $M \subset E$, $M = \{0\}$ and therefore $x(t) \to 0 \Rightarrow$ asympt. stability
- 3. Even when E is larger then $\{0\}$ we often have $M = \{0\}$ and can conclude asymptotic stability.

When does this happen?

Asymptotic stability from LaSalle's IP

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^n$

 $M \in \mathbb{R}^n$ is an invariant set if $x(0) \in M \Rightarrow x(t) \in M \ \forall \ t \geq 0$

 $M \equiv$ largest invariant set contained in $E \coloneqq \{ z \in \mathbb{R}^n : Cz = 0 \}$ $x_0 \in M$ if and only if $x(t) \coloneqq e^{At} x_0 \in M \subset E \quad \forall t \ge 0$

$$M := \left\{ z \in \mathbb{R}^n : \begin{bmatrix} {C \atop CA} \\ {CA}^2 \\ \vdots \\ {CA}^{n-1} \end{bmatrix} z = 0 \right\}$$

(check that this is indeed an invariant set ...)

LaSalle's Invariance Principle (linear system)

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^n$

 $M \in \mathbb{R}^n$ is an invariant set if $x(0) \in M \Rightarrow x(t) \in M \ \forall \ t \geq 0$

Theorem (LaSalle Invariance Principle–linear system, quadratic V): Suppose there exists a positive definite matrix P

$$A'P + PA \le -C'C \le 0$$

Then the system is stable. Moreover, x(t) converges to

observability matrix of the pair (C,A)

$$M := \left\{ z \in \mathbb{R}^n : Oz = 0 \right\} \qquad O := \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

When O is nonsingular, we have asymptotic stability (pair (C,A) is observable)

Back to switched linear systems...

$$\dot{x} = A_{\sigma}x \qquad x = R_{\sigma,\sigma^{-}}x^{-} \qquad (\sigma, x) \in \mathcal{S}$$

Theorem: (*Q* finite)

Suppose there exist positive definite matrices $P_q \in \mathbb{R}^{n \times n}$, $q \in Q$ such that

$$A_a' P_a + P_a A_a \le -C_a' C_a \le 0 \quad \forall q \in Q$$

and at any $z \in \mathbb{R}^n$ where a switching signal in $\mathcal{S}[\chi]$ can jump from p to q

$$z' P_p z \ge z' R'_{qp} P_q R_{qp} z$$

Then the switched system is stable.

from general theorem

Moreover, if every pair (C_q, A_q) , $q \in Q$ is observable then

- 1. if $S \subset S_{\text{weak-dwell}}$ then it is asymptotically stable
- 2. if $S \subset S_{p-dwell}[\tau_D, T]$ then it is uniformly asymptotically stable.

Sets of switching signals

 $\mathcal{S}_{dwell}[\tau_D] \equiv \text{switching signals with "dwell-time" } \tau_D > 0, \text{ i.e., interval}$ between consecutive discontinuities larger or equal to τ_D

 $\mathcal{S}_{\text{p-dwell}}[\tau_{\text{D}},T] \equiv \text{switching signals with "persistent dwell-time" } \tau_{\text{D}} > 0 \text{ and}$ "period of persistency" T > 0, i.e., \exists infinitely many intervals of length $\geq \tau_{\mathcal{D}}$ on which sigma is constant & consecutive intervals with this property are separated by no more than T

 $\mathcal{S}_{\text{weak-dwell}} \coloneqq \cup_{\tau D > 0} \mathcal{S}_{\text{p-dwell}}[\tau_D, +\infty] \equiv \text{each } \sigma \text{ has persistent dwell-time} > 0$

$$\mathcal{S}_{dwell}[\tau_D] \subset \mathcal{S}_{p\text{-dwell}}[\tau_D,\!0] \subset \mathcal{S}_{weak\text{-dwell}} \subset \mathcal{S}_{all}$$

LaSalle's IP for switched systems

$$\dot{x} = A_{\sigma}x \qquad x = R_{\sigma,\sigma^{-}}x^{-} \qquad (\sigma, x) \in \mathcal{S}$$

Theorem: (*Q* finite)

Suppose there exist positive definite matrices $P_q \in \mathbb{R}^{n \times n}$, $q \in Q$ such that

$$A_q, P_q + P_q, A_q \le -C_q, C_q \le 0 \quad \forall q \in Q$$

and at any $z \in \mathbb{R}^n$ where a switching signal in $S[\chi]$ can jump from p to q

$$V_p(z) \ge V_q(R_{q\,p}\,z)$$

Then the switched system is stable.

from general theorem

Moreover, if every pair (C_q, A_q) , $q \in Q$ is observable then

- 1. if $S \subset S_{\text{weak-dwell}}$ then it is asymptotically stable
- 2. if $S \subset S_{p-dwell}[\tau_D, T]$ then it is uniformly asymptotically stable.

 $\mathcal{S}_{\text{p-dwell}}[\tau_{\text{D}},T] \equiv \text{switching signals with "persistent dwell-time" } \tau_{\text{D}} > 0 \text{ and "period of persistency" } T > 0, \text{ i.e., } \exists \text{ infinitely many intervals of length } \geq \tau_{\mathcal{D}} \text{ on which sigma is constant & consecutive intervals with this property are separated by no more than } T$

 $\mathcal{S}_{\text{weak-dwell}} \coloneqq \cup_{\tau D > 0} \mathcal{S}_{\text{p-dwell}}[\tau_D, +\infty] \equiv \text{each } \sigma \text{ has persistent dwell-time} > 0$

$$S_{\text{dwell}}[\tau_{\text{D}}] \subset S_{\text{p-dwell}}[\tau_{\text{D}},0] \subset S_{\text{weak-dwell}} \subset S_{\text{all}}$$

Example

$$\dot{x} = A_{\sigma} x$$

Choosing $P_1 = P_2 = I$ common Lyapunov function

$$A'_q P_q + P_q A_q = -c'_q c_q \le 0$$
 $c_q := \begin{bmatrix} 0 & 2 \end{bmatrix}$ $\forall q \in \{1, 2\}$

$$O_q := \left[\begin{smallmatrix} c_q \\ c_q A_q \end{smallmatrix} \right] = \left[\begin{smallmatrix} 0 & 2 \\ \pm 2 & -4 \end{smallmatrix} \right] \quad q \in \{1,2\} \quad \textit{nonsingular (observable)}$$

- One can find $\sigma \notin S_{\text{weak-dwell}}$ for which we do not have asymptotic stability
- One can find $\sigma \in S_{\text{weak-dwell}}$, $\sigma \notin S_{\text{p-dwell}}[\tau_D, T]$ for which asymptotic stability is not uniform (problems, e.g., close to the $x_2=0$ axis)

LaSalle's IP for switched systems

$$\dot{x} = A_{\sigma}x \qquad x = R_{\sigma,\sigma^{-}}x^{-} \qquad (\sigma, x) \in \mathcal{S}$$

Theorem: (*Q* finite)

Suppose there exist positive definite matrices $P_q \in \mathbb{R}^{n \times n}$, $q \in Q$ such that

$$A_a' P_a + P_a A_a \le -C_a' C_a \le 0 \quad \forall q \in Q$$

and at any $z \in \mathbb{R}^n$ where a switching signal in $S[\chi]$ can jump from p to q

$$V_p(z) \ge V_q(R_{qp} z)$$

Then the switched system is stable.

from general theorem

Moreover, if every pair (C_q, A_q) , $q \in Q$ is observable then

- 1. if $S \subset S_{\text{weak-dwell}}$ then it is asymptotically stable
- 2. if $S \subset S_{p-dwell}[\tau_D, T]$ then it is uniformly asymptotically stable.
 - a) Finiteness of *Q* could be replaced by compactness
 - b) In some cases it is sufficient for all pairs (C_q, A_q) , $q \in Q$ to be detectable (e.g., when $A_q = A + B F_q$)
 - c) When the pairs (C_q, A_q) , $q \in Q$ are not observable x converges to the smallest subspace \mathcal{M} that is invariant for all unswitched system and contains the kernels of all O_q
 - d) There are nonlinear versions of this result (no uniformity?)