Appendix 1

The integrated population model provides a framework for synthesizing multiple demographic datasets to mutually inform shared parameters. In Appendix 1.1, we further describe the Drayton Harbor time series data (D1). In Appendix 1.2, we describe additional information about the size-at-age data (D2), the model fitted to size-at-age data (D2), and posterior summaries. In Appendix 1.2, we describe the mark-recapture data (D3).

Appendix 1.1

Below we describe the total removal effort and catch of European green crab (EGC, *C. maenas*) in Drayton Harbor (D1). While the removal count data is collected at many time points throughout the trapping season, we discretize the time intervals into biweekly periods in the model.

Drayton Harbor data were subset to only include recruits (age < 1) that appear in a single cohort in the fall of each year (Figure 1B). This subset only removed three recruit individuals in 2022 from the dataset, which were from an off-cycle recruitment cohort.

Table A1.1: Number of crabs caught and total removal effort (number of traps) during each biweek and year. Julian day signifies the first Julian day of the discretized biweek period. F, M, and S correspond to Fukui, Minnow, and Shrimp traps, respectively.

Julian day	year	F (catch)	F (effort)	M (catch)	M (effort)	S (catch)	S (effort)
102	2020	12	48	22	43	0	0
116	2020	16	67	10	62	0	0
130	2020	8	62	5	57	0	0
144	2020	4	100	0	96	0	0
158	2020	1	64	0	44	0	0
172	2020	12	61	0	60	0	0
186	2020	7	82	0	71	0	0
200	2020	8	97	4	87	0	0
214	2020	4	15	0	10	0	0
228	2020	15	57	23	52	0	0
60	2021	1	180	4	180	0	0
74	2021	7	168	1	168	0	0
88	2021	8	130	2	130	0	0
102	2021	9	207	2	205	0	0
116	2021	4	180	0	180	0	0
130	2021	6	198	0	198	0	0
144	2021	2	120	0	120	0	0
158	2021	0	123	0	123	0	0
172	2021	18	200	0	203	0	0
186	2021	1	251	1	251	12	27
200	2021	8	296	3	297	27	39
228	2021	0	0	0	60	23	24
74	2022	0	135	0	135	3	12
88	2022	2	195	0	195	13	17
102	2022	0	90	0	90	4	12
116	2022	0	127	1	125	4	16
130	2022	2	120	0	120	22	27
144	2022	0	0	0	0	4	6
158	2022	0	62	1	62	15	23
172	2022	0	207	0	207	20	71

Julian day	year	F (catch)	F (effort)	M (catch)	M (effort)	S (catch)	S (effort)
186	2022	0	30	0	30	6	50
200	2022	0	0	0	0	5	26
214	2022	0	0	2	26	23	25
228	2022	7	27	29	118	37	50
242	2022	0	0	0	0	6	12
256	2022	8	30	16	30	16	10
74	2023	0	120	2	120	3	20
88	2023	2	163	1	163	20	31
102	2023	2	95	2	95	23	34
116	2023	0	0	0	0	12	26
130	2023	5	60	2	60	8	28
144	2023	0	80	2	80	18	14
158	2023	0	60	0	60	2	26
172	2023	0	43	2	45	2	22
186	2023	0	72	0	149	6	31
200	2023	0	15	0	45	0	18
214	2023	0	30	1	105	10	30
228	2023	0	0	0	0	0	6
242	2023	1	45	1	90	14	112

Appendix 1.2

Below we provide additional information about the size-at-age data (D2), the model fitted to size-at-age data (D2), code used to fit data to the model, and posterior summaries.

Appendix 1.2.1

Size-at-age data (D2) are collected from two sources: 1) records from crab removal observations in north-eastern Pacific estuaries from Yamada et al. 2005, when the somatic growth of a strong recruitment class was tracked over time, and 2) crabs with an assigned year class from Drayton Harbor that were easily identifiable based on size and carapace color. While data from these Drayton Harbor recruits enter the integrated population model likelihood twice (D1 and D2), extensive simulation-based research has revealed that IPMs are robust to dependent data (Abadi 2010; McDonald 2016). Ages are assigned assuming recruitment settlement in March. ADD CITATIONS

Table A1.2: Number of size-at-age records during each year and waterbody in the northeastern Pacific.

Year	Waterbody	n
1995	Humboldt Bay	2
1997	Coos Bay	2
1998	Yaquina Bay	1
1999	Barkley Sound	2
1999	Price Bay	1
2000	Clayoquot Sound	1
2000	Nootka Sound	1
2001	Little Espinosa Inlet	3
2007	Klaskino Inlet	1
2011	Gale Passage	2
2015	Kildidt Inlet	2
2016	Higgins Passage	1

Year	Waterbody	n
2016	Westcott Bay	1
2017	Becher Bay	3
2017	Padilla Bay	1
2017	Whidbey Island	2
2018	Port Townshend Bay	1
2018	Scow Bay	1
2018	Westcott Bay	2
2018	Whidbey Island	1
2018	Witty's Lagoon	1
2019	Bellingham	3
2019	Boundary Bay	3
2019	Chuckanut Bay	1
2019	Esquimalt Lagoon	2
2019	Lummi Bay	2
2019	Salt Spring Island	4
2019	Samish Bay	1
2019	Sequim Bay	3
2019	Westcott Bay	1
2019	Witty's Lagoon	2
2020	Chuckanut Bay	1
2020	Daajing Giids	1
2020	Drayton Harbor	253
2021	Drayton Harbor	30
2022	Drayton Harbor	125

Appendix 1.2.2

The integrated population model (IPM) is fitted hierarchically, such that the seasonal growth parameters are fit with the size-at-age records, and the summarized posteriors are used to develop prior distributions in the overall IPM. Below, we detail the model used to fit the seasonal growth parameters with the size-at-age data.

The size-at-age data, $W_{a,i}$, indicating carapace width at age a in year i are fit to the same seasonal growth model as in the main text (Somers). Except here, we account for non-independence among data collected in the same year, since growth rate is likely affected by water temperature, which varies from year-to-year.

The expected carapace width of a crab at age a is:

$$\widetilde{W}_{a,i} = y_{\infty} (1 - exp(-k(a - t_0) - S(a) + S(t_0))) + \epsilon_i$$

$$S(a) = \frac{Ck}{2\pi} sin(2\pi(a - t_s))$$

$$S(t_0) = \frac{Ck}{2\pi} sin(2\pi(t_0 - t_s))$$

To account for non-independence among data collected within the same year, we add a normally distributed error term with standard deviation term, τ_y , to the equation for expected carapace width, $\widetilde{W}_{a,i}$:

$$\epsilon_i \sim Normal(0, \tau_y)$$

To account for individual variation in growth rate, the observed size-at-age data, $W_{a,i}$, follows a normal distribution, with the expected carapace width $\widetilde{W}_{a,i}$, and standard deviation, τ_w .

$$W_{a,i} \sim Normal(\widetilde{W}_{a,i}, \tau_w)$$

We use uninformative priors for the parameters:

$$k \sim dunif(0,2)$$

$$C \sim Uniform(0,2)$$

$$t_s \sim Uniform(-1,0)$$

$$t_0 \sim Uniform(-1,1)$$

$$\tau_y \sim Uniform(0,100)$$

$$\tau_w \sim Uniform(0,100)$$

$$y_{\infty} \sim Uniform(80,140)$$

Appendix 1.2.3

Here we provide posterior summaries of the seasonal growth parameters fit with the size-at-age data.

Table 3: Table A1.2: Posterior summaries, including the mean, standard deviation, 95% credibility interval (highest density interval), Rhat, and effective sample size. An X in 'IPM prior' indicates that the posterior is used in the overall IPM. Descriptions of parameters can be found in Appendix 1.2.2.

parameter	mean	sd	95 CI	Rhat	ESS	IPM prior
C	0.816	0.13	(0.559, 1.067)	1.00	7883	X
k	0.635	0.096	(0.457, 0.83)	1.02	189	X
y_{∞}	97.58	5.57	(86.81, 109.07)	1.02	205	X
t_0	-0.033	0.145	(-0.328, 0.199)	1.01	268	
$ au_w$	0.445	0.605	(0.02, 1.535)	1.02	2165	
$ au_y$	0.029	0.002	(0.025, 0.033)	1.00	31490	
t_s	-0.645	0.028	(-0.697, -0.589)	1.00	1982	X

Figure A1: Trace plots of posterior samples of size-at-age model. Colors refer to separate chains. Descriptions of parameters can be found in Appendix 1.2.2.

