

Chapter 19 Chemical Thermodynamics

Zeroth Law of Thermodynamics

Equilibrium – unchanged with time

First Law of Thermodynamics

E (system) + E (surrounding) = constant

$$\Delta E = q + w$$

TABLE 5.1 • Sign Conventions for q , w , and ΔE			
For q	+ means system gains heat	— means system <i>loses</i> heat	
For w	+ means work done <i>on</i> system	 means work done by system 	
For ΔE	+ means net gain of energy by system	- means <i>net loss</i> of energy by system	

© 2012 Pearson Education, Inc.

$$w = -P_{\rm ext} \Delta V$$

Driving Force of a Process

This is a spontaneous process and $\Delta E = 0$.

Driving Force of a Process

Case study 2: Dissolution

$$KI(s) \rightarrow K^{+}(aq) + I^{-}(aq) \Delta H = +21 \text{ kJ/mol}$$

Weak hydration energy

Case study 3: Melting

These are spontaneous processes but $\Delta E > 0$!

Driving Force of a Process

What's in common?

Increase in randomness or disorder

Balls in a container

Both in A
Both in B
Each has one

Balls in a container

Both in A 1
Both in B
Each has one

	# of ways	A	В
Both in A	1		
Both in B	1		
Each has one			
		ш	

	# of ways	A	В
Both in A	1		
Both in B	1		
Each has one	1		

	# of ways	A	В
Both in A	1		
Both in B	1		
Each has one	2		

Balls in a container

B # of ways All in A All in B 2 in A, 1 in B 2 in B, 1 in A

# 0	of ways	Α	В
All in A	1		
All in B	1		
2 in A, 1 in B	1		
2 in B, 1 in A			

#	of ways	Α	В
All in A	1		
All in B	1		
2 in A, 1 in B	2		
2 in B, 1 in A			

#	of ways	Α	В
All in A	1		
All in B	1		
2 in A, 1 in B	3		
2 in B, 1 in A			

# (of ways	Α	В
All in A	1		
All in B	1		
2 in A, 1 in B	3		
2 in B, 1 in A	3		

Balls in a container

What about 20 balls in two containers

of ways =
$$\frac{N!}{n_a! n_b!}$$

N: Total # of balls

 $n_{\rm a}$: # of balls in A

 $n_{\rm b}$: # of balls in B

$$N! = N \times (N-1) \times (N-2) \times ... \times 1$$

Randomly place 20 balls in two containers

State A

State B

State C

Balls in A	Balls in B	# of ways
20	0	1
19	1	20
10	10	184756

Not likely

Very likely

Randomly place one mole of molecules in two containers

State D

State E

Balls in A	Balls in B	# of ways
1 mole	0	1
0.5 mole	0.5 mole	Many many

Impossible

Observed

States of greater disorder are favored over more ordered states!

Order or Disorder?

Order or Disorder?

Order or Disorder?

Outside

State D

State E

Balls in A	Balls in B	# of ways (inside)
1 mole	0	1
0.5 mole	0.5 mole	Many many

Greater disorder

We measure "disorder" by the number of ways that the inside can be arranged, so that from the outside it looks the same!

Learning Check

Which one of the following has the largest disorder?

- 1. Five atoms of Argon
- 2. One molecule of CH₄
- 3. Two molecules of oxygen

Learning Check

Which one of the following has the largest disorder?

- 1. One mole of Argon
- 2. One mole of water
- 3. One mole of methane

Change in Energy Form?

q (heat): Disordered form of energy

w (work): Ordered form of energy

Isothermal Expansion of an Ideal Gas

$$PV = nRT$$

Isothermal Process

$$P_1V_1 = P_2V_2$$

 $M_1 \rightarrow 0$ Free expansion

$$\Longrightarrow w=0$$

@Houghton Mifflin Company. All rights reserved.

Isothermal Expansion of an Ideal Gas

$$M_1 \rightarrow M_1/4$$

$$P_{2} = \frac{P_{1}}{4}$$
 \Rightarrow $V_{2} = 4V_{1}$ \Rightarrow $w = -\frac{P_{1}}{4}(4V_{1} - V_{1}) = -\frac{3}{4}P_{1}V_{1}$
 $w = -\frac{3}{4}P_{1}V_{1}$

Do we have the same amount of work done for

$$M_1 \to M_1/2 \to M_1/4$$
 ? (i) (ii)

Isothermal Expansion of an Ideal Gas

(i) $M_1 \to M_1/2$

$$P_2 = \frac{P_1}{2} \implies V_2 = 2V_1 \implies w = -\left(\frac{P_1}{2}\right)(2V_1 - V_1) = -\frac{1}{2}P_1V_1$$

(ii) $M_1/2 \to M_1/4$

$$P_3 = \frac{P_2}{2} \implies V_3 = 2V_2 \implies w = -\left|\frac{1}{2}\left(\frac{P_1}{2}\right)\right| \left[2(2V_1) - 2V_1\right] = -\frac{1}{2}P_1V_1$$

Total work done in two steps = $-P_1V_1$

Total work done in one step =
$$-\frac{3}{4}P_1V_1$$

©Houghton Mifflin Company. All rights reserve

Reversible Processes

In thermodynamics, a <u>reversible</u> process is a process that occurs when the system is **infinitesimally close to equilibrium at each step** throughout the entire process.

Hypothetical examples:

Expansion in infinite steps ($P_{\text{system}} = P_{\text{ext}}$)

Real-life examples:

Water boiling; ice melting

Coexistence → Equilibrium

TABLE 10.3 Summary of the Isothermal Expansion

	Number of Steps	w
Expansion	0 (no mass)	0
(constant T)	1	$-0.75P_1V_1$
,	2	$-1P_{1}V_{1}$
	4	$-1.16P_1V_1$
	∞	$-1.4P_1V_1$

Work done by the system is at maximum for reversible processes.

 $\Delta E = 0$ at constant T for ideal gas (has kinetic energy only), i.e. 0 = w + q

Heat Change of a Reversible Isothermal Expansion

$$w = -\sum_{i=1}^{\infty} P_i \Delta V_i$$

$$w = -\int_{V_0}^{V_{\mathrm{f}}} P_{ext} dV$$
 $P_{ext} = P = \frac{nRT}{V}$ For ideal gas only

$$P_{ext} = P = \frac{nRT}{V}$$

$$w_{rev} = -nRT \ln \left(rac{V_{
m f}}{V_0}
ight)$$
 State functions $q_{rev} = nRT \ln \left(rac{V_{
m f}}{V_0}
ight)$

@Houghton Mifflin Company. All rights reserved.

Isothermal Compression of an Ideal Gas

$$M_1/4 \rightarrow M_1$$

$$P_1/4 \rightarrow P_1 \quad \Longrightarrow \quad 4V_1 \rightarrow V_1$$

$$w = -P_1(V_1 - 4V_1) = 3P_1V_1$$

$$M_1/4 \to M_1/2 \to M_1$$

$$w = -\frac{P_1}{2} (2V_1 - 4V_1) - P_1 (V_1 - 2V_1)$$
$$= 2P_1 V_1$$

©Houghton Mifflin Company. All rights reserved.

TABLE 10.3 Summary of the Isothermal Expansion and Compression Experiments

	Number of Steps	w	q
Expansion	0 (no mass)	0	0
(constant T)	1	$-0.75P_1V_1$	$0.75P_1V_1$
	2	$-1P_{1}V_{1}$	$1P_1V_1$
	4	$-1.16P_1V_1$	$1.16P_1V_1$
	∞	$-1.4P_1V_1$	$1.4P_1V_1$
Compression	1	$3P_1V_1$	$-3P_{1}V_{1}$
(constant T)	2	$2P_1V_1$	$-2P_{1}V_{1}$
	4	$1.67P_1V_1$	$-1.67P_1V_1$
	∞	$1.4P_1V_1$	$-1.4P_1V_1$

@Houghton Mifflin Company. All rights reserved.

Isothermal Cyclic Expansion-Compression of an Ideal Gas

One-step expansion and compression (system unchanged):

$$w_{\text{net}} = -0.75P_1V_1 + 3P_1V_1 = 2.25P_1V_1$$

$$\Delta E = w_{\text{net}} + q_{\text{net}} = 0$$

$$\therefore q_{\text{net}} = -2.25 P_1 V_1$$

©Houghton Mifflin Company. All rights reserved

Ordered energy transfer (work) transformed to disordered energy transfer (heat)

- Something in the surrounding has changed!

Isothermal Cyclic Expansion-Compression of an Ideal Gas

One step:
$$w_{\text{net}} = -q_{\text{net}} = 2.25 P_1 V_1$$

Two steps:
$$w_{\text{net}} = -q_{\text{net}} = P_1 V_1$$

Four steps:
$$w_{\text{net}} = -q_{\text{net}} = 0.51 P_1 V_1$$

	Number of Steps	w
Expansion	0 (no mass)	0
(constant T)	1	$-0.75P_1V_1$
•	2	$-1P_{1}V_{1}$
	4	$-1.16P_1V_1$
	∞	$-1.4P_1V_1$
Compression	1	$3P_1V_1$
(constant T)	2	$2P_1V_1$
	4	$1.67P_1V_1$
	∞	$1.4P_1V_1$

Path dependent, not a state function

The system is unchanged.
The surrounding has changed!

Isothermal Cyclic Expansion-Compression of an Ideal Gas

Reversible expansion and compression (system unchanged):

$$W_{\text{rev, net}} = -1.4P_1V_1 + 1.4P_1V_1 = 0$$

$$\therefore q_{\text{rev, net}} = +1.4P_1V_1 - 1.4P_1V_1 = 0$$

	Number of Steps	w
Expansion	0 (no mass)	0
(constant T)	1	$-0.75P_1V_1$
	2	$-1P_{1}V_{1}$
	4	$-1.16P_1V_1$
	∞	$-1.4P_{1}V_{1}$
Compression	1	$3P_1V_1$
(constant T)	2	$2P_1V_1$
	4	$1.67P_1V_1$
	∞	$1.4P_1V_1$

No net change after a cyclic path

 $\Rightarrow q_{rev}$ and w_{rev} are state functions! – path is defined

Both the system and the surrounding are unchanged.

Isothermal Cyclic Compression and Expansion

Isothermal Cyclic Expansion-Compression of an Ideal Gas

Reversible process:
$$w_{\text{rev, net}} = q_{\text{rev, net}} = 0$$

System and surrounding are returned to their original conditions.

Irreversible process:
$$w_{net} > 0$$
 $q_{net} < 0$ (Finite steps)

System is returned to the original condition but **NOT** the surrounding.

All real compression or expansion processes are thermodynamically irreversible!

(Energy distribution changed to a more disordered form)

Second Law of Thermodynamics

States of greater disorder are favored over more ordered states!

Energy spontaneously tends to flow only from being concentrated in one place to becoming diffused or dispersed and spread out.

Entropy: Definition of Disorder in Thermodynamics

Microscopic

Macroscopic

Number of microstates Ω

Entropy S

Balls in A	Balls in B	# of ways
1 mole	0	1
0.5 mole	0.5 mole	Many many

S is an extensive state function like E and H

For a combined system A+B

$$\Omega_{A+B} = \Omega_A \times \Omega_B$$

$$S_{A+B} = S_A + S_B$$

$$S \propto \ln \Omega$$

$$|S = k_{\rm B} \ln \Omega|$$

Entropy: Definition of Disorder in Thermodynamics

$$S = k_{\rm B} \ln \Omega$$

 Ω = Number of ways corresponding to a given state

 $k_{\rm B} = {\rm Boltzmann's\ constant} = R/N_{\rm A}$

ΔS of a single ideal gas molecule

$$S = k_{\rm B} \ln \Omega$$

$$V_1 \rightarrow V_2$$

$$\Delta S = k_{\rm B} \left\{ \ln \Omega_2 - \ln \Omega_1 \right\}$$

$$\Delta S = k_{\rm B} \ln \frac{\Omega_2}{\Omega_1}$$

ΔS of a single ideal gas molecule

$$\frac{\Omega_2}{\Omega_1} = \frac{V_2}{V_1}$$

$$\Delta S = k_{\rm B} \ln \frac{V_2}{V_1}$$

$$\Omega_2 \Longrightarrow V_2 \times V_2$$

$$\Omega_1 \Longrightarrow V_1 \times V_1$$

$$\frac{\Omega_2}{\Omega_1} = \left(\frac{V_2}{V_1}\right)^2$$

ΔS of *n* moles of ideal gas molecules

$$\frac{\Omega_2}{\Omega_1} = \left(\frac{V_2}{V_1}\right)^{nN_A}$$

$$\Delta S = k_{\rm B} \ln \frac{\Omega_2}{\Omega_1}$$

$$\Delta S = nN_{\rm A}k_{\rm B}\ln\frac{V_2}{V_1}$$

$$\Delta S = nR \ln \frac{V_2}{V_1}$$

R: Gas constant 8.314 JK⁻¹mol⁻¹

Mixing May Not Lead to Larger Entropy

$$\Delta S = nR \ln \frac{V_2}{V_1}$$

$$n = 1$$

$$\Delta S_1 = 2R \ln 2 > 0$$

$$\Delta S_{11} = 0$$

$$\Delta S_{11} = -2R \ln 2 < 0$$

Demixing May Not Lead to Smaller Entropy

$$\Delta S = nR \ln \frac{V_2}{V_1}$$

Heat Change of a Reversible Isothermal Process

$$w = -\sum_{i=1}^{\infty} P_i \Delta V_i$$

$$w = -\int_{V}^{V'} P_{\rm ext} dV$$
 $P_{\rm ext} \approx P = \frac{nRT}{V}$ For ideal gas only

$$P_{\rm ext} \approx P = \frac{nRI}{V}$$

$$q_{\text{rev}} = nRT \ln \left(\frac{V_2}{V_1}\right)$$

@Houghton Mifflin Company. All rights reserved

For an isothermal process

$$\Delta S = nR \ln \frac{V_2}{V_1}$$

$$q_{rev} = nRT \ln \left(\frac{V_2}{V_1} \right)$$

$$\therefore \Delta S = \frac{q_{rev}}{T}$$

The pathway under reversible/equilibrium conditions!

Sign of ΔS determined by the heat flow direction.

Unit of S is J/K

Second Law of Thermodynamics

Energy spontaneously tends to flow only from being concentrated in one place to becoming diffused or dispersed and spread out.

For any spontaneous process, the entropy of the universe must be increasing!

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0$$

Spontaneous process – a process occurring on its own and requires no outside help.

Second Law of Thermodynamics

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0$$

☆ A quick analysis

$\Delta \mathcal{S}_{sys}$	$\Delta S_{ m surr}$	$\Delta S_{ m univ}$	
+	+	+	Spontaneous
_	_	_	Non-spontaneous
+	_	?	Depends on the relative
_	+	?	size

Total Entropy Change for Reversible Processes

Under equilibrium conditions:

$$\Delta S_{\rm sys} = \frac{q_{rev}}{T}$$

$$\Delta S_{\text{surr}} = \frac{-q_{rev}}{T_{\text{surr}}}$$

Surrounding's point of view

$$\Delta S_{system} + \Delta S_{surrounding} = 0$$

because $T = T_{\text{surr}}$ at equilibrium!

Entropy of the Surrounding for Irreversible Processes

By definition, the surrounding has constant *P, V, T, etc.*

That is, the heat exchange in the surrounding occurs under *equilibrium conditions*:

$$\Delta S_{\text{surr}} = \frac{-q_{rev}}{T_{\text{surr}}}$$

 ΔS_{surr} is primarily determined by the heat flow to or from the system.

q < 0: system \rightarrow surrounding $\Rightarrow S_{\text{surr}}$ increases

q > 0: system \leftarrow surrounding $\Rightarrow S_{surr}$ decreases

Second Law of Thermodynamics

Heat is not observed to pass spontaneously from a body at low T to a body at higher T.

Because ΔS is path independent, we can consider a reversible process without losing generality:

$$\Delta S = \frac{q_{rev}}{T}$$

For the same amount of heat:

$$\Delta S = \frac{q_{rev}}{T} \qquad \begin{array}{c} \text{Low } T \rightarrow \text{larger } \Delta S \\ \text{High } T \rightarrow \text{smaller } \Delta S \end{array}$$

Heat flow: Low
$$T \rightarrow \text{High } T$$

 $\Delta S - \Delta S < 0$

Learning Check

Calculate the entropy change of the universe when an ice cube is melted at 10°C.

$$\Delta S$$
 (melting, 273 K) = 22.00 J K⁻¹ mol⁻¹

$$\Delta H$$
 (melting, 273 K) = 6.006 kJ mol⁻¹

$$H_2O$$
 (ice, 283 K) \rightarrow H_2O (liquid, 283 K)

$$\Delta S_{\rm universe} = \Delta S_{\rm system} - \frac{\Delta H}{T_{\rm surr}}$$

$$= 22.00 - 6006 / 283 = 0.78 \,\mathrm{JK^{-1}} \,\mathrm{mol^{-1}}$$

$$\Delta S_{\text{universe}} > 0$$

Spontaneous!