AM-GM Inequality: For positive reals $\omega_1, \ldots, \omega_n$ and a_1, \ldots, a_n the following holds true:

$$\frac{\sum_{i=1}^{n} \omega_{i} a_{i}}{\sum_{i=1}^{n} \omega_{i}} \geq \sum_{i=1}^{n} \omega_{i} \sqrt{\prod_{i=1}^{n} a_{i}^{\omega_{i}}}$$

Yay that was pretty scary looking. Here's a slightly less intimidating form (though sometimes you will want to use the above form):

$$\frac{a_1 + a_2 + \dots a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Surprisingly, this is all you will need to know for this lecture other than basic algebra and the fact that $x^2 \ge 0$. The rest will be problems, because inequalities are a difficult concept to master and the best way to master anything is to do a lot of problems!

- 1. Verify that $a^2 + b^2 \ge 2ab$, first with AM-GM and then with the fact that $x^2 \ge 0$.
- 2. If abc = 1, minimize $a^3 + b^3 + c^3$ for positive reals a,b,c.
- 3. For $x \ge 0$, minimize $x^2 + \frac{2}{x}$.
- 4. For $a, b \ge 0$, maximize $\frac{2ab}{a^2+b^2}$.
- 5. For $a, b \ge 0$, maximize $\frac{6ab}{a^2+9b^2}$.
- 6. For $x \ge 0$, minimize $x + \frac{1}{x+1}$ (no Calculus!).
- 7. For $x \ge 0$, minimize $\frac{x^3+2}{x+3}$.
- 8. Which is bigger, 2007! or $(1003)^{2007}$?
- 9. If you can have 1 of one coin, 5 of another coin, and 10 of a third coin, and can choose pennies, nickels, and dimes, in what way should you choose the coins to maximize your net gain?
- 10. This intuitive result can in fact be generalized: $x^2 + y^2 + z^2 \ge xy + yz + zx$. Show that this is always true.