Cours sur la planification expérimentale

Les plans fractionnaires

Sir Ronald Aylmer Fisher (1890 - 1962)

Exemple d'utilisation des plans d'expériences

Exemple R&D: modifier la texture de galettes de sarrasin

Objectif : réduire la proportion importante de galettes qui se déchirent lorsqu'on les déplie

Plusieurs variables interviennent dans le process :

- Quantité d'eau (45%, 55%)
- Température de la plaque (180°, 220°)
- Étalement de la pâte (automatique, à la main)
- Quantité de pâte par galette (55 g, 65 g)
- Farine (bio, non bio)
- Pliage (à chaud, à froid)
- Température de stockage (6 degrés, 15 degrés)

7 variables à 2 modalités

Exemple d'utilisation des plans d'expériences

- > Quelles expériences réaliser pour déterminer les facteurs influents ?
 - 1ère solution : tester toutes les combinaisons possibles

```
2^7 = 128 expériences (1 expérience = 1 demi-journée)
```

☐ Impossible de faire autant d'expériences !!!

- > On s'autorise 16 expériences, quel choix faire ?
 - 2^{ème} idée : faire varier 1 facteur à la fois
 - ⇒ Pb : impossible d'estimer les interactions
 - 3^{ème} idée : faire varier tous les facteurs à la fois

Difficulté : ne pas confondre les effets des facteurs

Peut-on construire des plans ayant de bonnes propriétés avec peu d'expériences ?

Choix des facteurs et des modalités

On veut généralement :

- étudier le maximum de facteurs
- prendre beaucoup de modalités par facteur

Pb: nombre d'expériences augmente sensiblement

Facteurs à 2 niveaux : plans simples mais très utiles car beaucoup d'applications

Les plans complets : matrice des essais

Construction plan fractionnaire

p facteurs à 2 niveaux : toutes les combinaisons sont testées : plan 2^p

effets

Pour 2 facteurs à 2 niveaux : plan 2^2

• le modèle additif :

$$Y_{ij} = \mu + \alpha_i + \beta_j$$

I A B

1 +1 +1
1 +1 Matrice des
1 -1 +1 effets

1 -1

• le modèle avec interaction :

$$Y_{ij} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij}$$
I A B AB
$$1 + 1 + 1 + 1$$

$$1 + 1 - 1 - 1$$

$$1 - 1 + 1 - 1$$

Introduction

Construction plan fractionnaire

• le modèle additif :

$$\mathbf{X} = \begin{bmatrix} 1 & +1 & +1 \\ 1 & +1 & -1 \\ 1 & -1 & +1 \\ 1 & -1 & -1 \end{bmatrix}$$

$$(X'X) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = n \ I_3$$

• le modèle avec interaction :

$$\mathbf{X} = \begin{bmatrix} 1 & +1 & +1 & +1 \\ 1 & +1 & -1 & -1 \\ 1 & -1 & +1 & -1 \\ 1 & -1 & -1 & +1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & +\mathbf{1} & +\mathbf{1} & +\mathbf{1} \\ \mathbf{1} & +\mathbf{1} & -\mathbf{1} & -\mathbf{1} \\ \mathbf{1} & -\mathbf{1} & +\mathbf{1} & -\mathbf{1} \\ \mathbf{1} & -\mathbf{1} & -\mathbf{1} & +\mathbf{1} \end{bmatrix} \qquad (X'X) = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} = n \ I_4$$

(X'X) = n Id (avec n = nb d'expériences) : matrice d'Hadamard

Qu'est ce qu'un bon plan?

Qu'est ce qu'un bon plan?

Choisir les essais qui permettent d'avoir une estimation des effets de chaque variable la plus précise possible

Il faut minimiser : $V(\widehat{\beta}) = (X'X)^{-1} \sigma^2$

Dépend uniquement du **choix** des expériences

Variabilité résiduelle : dépend des résultats des expériences

Objectif des plans : trouver les expériences telles que $(X'X)^{-1}$ soit « minimale »

Introduction

Construction plan fractionnaire

Plan complet 2³, modèle additif

n complet 2³, modèle additif
$$(X'X) = n \ I_4 = 8 \ I_4 \qquad (X'X)^{-1} = \begin{pmatrix} 0.125 & 0 & 0 & 0 \\ 0 & 0.125 & 0 & 0 \\ 0 & 0 & 0.125 & 0 \\ 0 & 0 & 0 & 0.125 \end{pmatrix} \begin{bmatrix} I \\ A \\ B \\ C \end{bmatrix}$$

4 essais choisis au hasard

$$(X'X)^{-1} = \begin{bmatrix} 0.50 & 0.00 & -0.25 & 0.25 \\ 0.00 & 0.50 & 0.25 & 0.25 \\ -0.25 & 0.25 & 0.50 & 0.00 \\ 0.25 & 0.25 & 0.00 & 0.50 \end{bmatrix}$$

$$\begin{bmatrix} 0.25 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.25 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.25 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.25 \end{bmatrix}$$

4 essais bien choisis:

Remarque: $(XX)^{-1} = \frac{1}{4} \text{Id}$

Variance de l'estimateur de l'effet du facteur A augmente

Il n'y a plus indépendance entre l'estimation du facteur A et celle du facteur C

Attention : Supprimer des essais au hasard déséquilibre tout

Construction d'un plan 2³⁻¹

3 facteurs à 2 modalités en $2^{3-1} = 4$ essais

	Α	В	С
	1	1	1
	1	1	-1
	1	-1	1
→	1	-1	-1
	-1	1	1
→	-1	1	-1
→	-1	-1	1
	-1	-1	-1
•			

Choix de 4 essais

1ère idée : pour chaque facteur, tester les niveaux 1 et -1 un même nb de fois

2ème idée : pour chaque couple de 2 facteurs, prendre autant de combinaisons (1,1), (-1,1), (1,-1) et (-1,-1)

Choix d'essais dans le cas général :

1ère idée : les niveaux de chaque facteur testés un même nb de fois

2^{ème} idée : prendre autant de combinaisons (1,1), (-1,1), (1,-1) et (-1,-1) pour chaque couple de 2 facteurs

3^{ème} idée : prendre autant de combinaisons (1,1,1), (1,1,-1), (1,-1,1), ... pour chaque triplet de 3 facteurs

4^{ème} idée : prendre autant de combinaisons (1,1,1,1), (1,1,-1), (1,1,-1,1), ... pour chaque quadruplet de 4 facteurs

• • •

Beaucoup trop compliqué de construire un plan de cette façon Besoin d'un principe de construction simple si beaucoup de facteurs

Constat

- ➤ Un plan complet permet d'estimer tous les facteurs et toutes les interactions d'ordre 2, 3, 4, ...
- ➤ Interactions d'ordre 3 et + sont souvent négligeables
- \triangleright Exemple : plan 2^5 :

1 + 5 + 10 = 16 paramètres intéressants à estimer

Constante Effet Interactions d'ordre 2

Dommage de faire 32 expériences pour n'estimer « que » 16 paramètres

Principe de construction des plans fractionnaires 2^{p-k}

- 1. Choix d'un plan de base à 2^{p-k} essais
- 2. Construction de la matrice des effets du modèle saturé avec ce plan de base
- 3. Choix des confusions : affectation des effets principaux
- 4. Détermination des confusions résultantes

Retour sur le plan fractionnaire 2³⁻¹

Construction plan fractionnaire

- 1. Choix d'un plan de base à $2^2 = 4$ essais
- 2. Construction de la matrice des effets du modèle saturé avec ce plan de base
- 3. Le facteur C est confondu avec l'interaction AB
- 4. Détermination des confusions résultantes : C = AB

Confusion d'effet (alias) et générateur d'alias

Construction plan fractionnaire

$$C = AB \implies CC = ABC \implies I = ABC$$

I	A	В	AB
ABC	BC	AC	C
1	1	1	1
1	1	-1	-1
1	-1	1	-1
1	-1	-1	1

$$I = ABC \implies A(I) = A(ABC) \implies A = BC$$

 $\implies B(I) = B(ABC) \implies B = AC$

Confusion d'effet (plan 2³⁻¹)

Générateur d'alias : I = ABC

X'X non inversible car confusion entre I et ABC, entre A et BC, ...

Mais si on se restreint à l'étude des effets principaux :

XX s'écrit simplement et est facilement inversible : $(XX)^{-1} = \frac{1}{1}$ Id 15/24

D

Construction d'un plan fractionnaire 2⁴⁻¹

- 1. Choix d'un plan de base à $2^3 = 8$ essais
- 2. Construction de la matrice des effets du modèle saturé avec ce plan de base
- 3. L'interaction ABC certainement négligeable : confondre le facteur D avec l'interaction ABC
- 4. Détermination des confusions résultantes : D = ABC

1	Α	В	С	AB	AC	ВС	ABC
1	1	1	1	1	1	1	1
1	1	1	-1	1	-1	-1	-1
1	1	-1	1	-1	1	-1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	1	-1	-1	1	-1
1	-1	1	-1	-1	1	-1	1
1	-1	-1	1	1	-1	-1	1
1	-1	-1	-1	1	1	1	-1

Confusion d'effet (alias) et générateur d'alias

$$D = ABC \implies DD = ABCD \implies I = ABCD$$

I	A	В	C	AB	AC	BC	ABC	
ABCD	BCD	ACD	ABD	CD	BD	AD	D	D I
1	1	1	1	1	1	1	1	1 1
1	1	1	-1	1	-1	-1	-1	-1 1
1	1	-1	1	-1	1	-1	-1	-1 1
1	1	-1	-1	-1	-1	1	1	1 1
1	-1	1	1	-1	-1	1	-1	-1 1
1	-1	1	-1	-1	1	-1	1	1 1
1	-1	-1	1	1	-1	-1	1	1 1
1	-1	-1	-1	1	1	1	-1	-1 1

$$I = ABCD \Longrightarrow A(I) = A(ABCD) \Longrightarrow A = BCD$$

Construction d'un plan fractionnaire 2⁵⁻²

- 1. Choix d'un plan de base à $2^3 = 8$ essais
- 2. Construction de la matrice des effets du modèle saturé avec ce plan de base
- 3. Affectation des effets principaux

D E

I	Α	В	С	AB	AC	BC	ABC
1	1	1	1	1	1	1	1
1	1	1	-1	1	-1	-1	-1
1	1	-1	1	-1	1	-1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	1	-1	-1	1	-1
1	-1	1	-1	-1	1	-1	1
1	-1	-1	1	1	-1	-1	1
1	-1	-1	-1	1	1	1	-1

4. Détermination des confusions résultantes

$$D = AB$$
 $E = AC$

Confusion d'effet (alias) et générateur d'alias

$$D = AB$$
 $\Longrightarrow DD = ABD$ $\Longrightarrow I = ABD$ $E = AC$ $\Longrightarrow EE = ACE$ $\Longrightarrow I = ACE$

On a aussi $E = BCD$ $\Longrightarrow EE = BCDE$ $\Longrightarrow I = BCDE$ $I = ABD = ACE$ $\Longrightarrow II = (ABD)(ACE)$ $\Longrightarrow I = BCDE$

Confusion d'effets: estimation de paquets d'effets ou interactions.

Paquet bleu estimable mais impossible de savoir ce qui est dû à C, à l'interaction ABCD, l'interaction AE, l'interaction BDE

Nombre de facteurs et nombre d'essais

Résolution = longueur du plus petit générateur d'alias

Exemple: plan 2^{4-1} : I = ABCD

Résolution IV

plan 2^{5-2} : I = ABD = BCE = BCDE

Résolution III

Résolution III : effet principaux confondus avec interactions d'ordre 2 ou plus

Résolution IV : effet principaux confondus avec interactions d'ordre 3 ou plus

Résolution V : effet principaux confondus avec interactions d'ordre 4 ou plus et interactions d'ordre 2 confondues avec interactions d'ordre 3 ou plus

S	3	4	5	6	7	8	9
Nb d'expériences : 2 ^s	8	16	32	64	128	256	512
Nb de facteurs en résolution 3 : 2 ^s -1	7	15	31	63	127	255	511
Nb de facteurs en résolution 4 : 2 ^{s-1}	4	8	16	32	64	128	256
Nb de facteurs en résolution 5	3	5	6	8	11	17	≥ 23

Dépouillement des résultats

Règles:

On considère négligeables :

- 1. tous les termes d'un paquet lorsque le paquet est négligeable
- 2. les interactions d'ordre supérieur ou égal à 3
- 3. les interactions entre 2 effets négligeables
- 4. les interactions comprenant un effet négligeable
- 5. toutes les interactions

Contraintes de + en + fortes

Dépouillement des résultats : exemple plan 2⁵⁻²

Construction plan fractionnaire

Les paquets 3, 4, 7 et 8 sont négligeables

Règle 1 : tous les termes des paquets 3, 4, 7 et 8 sont négligeables

Règle 2 : les interactions d'ordre supérieur à 2 sont négligeables

Règle 3 : les interactions entre 2 effets négligeables sont négligeables (aucune)

Règle 4 : les interactions comprenant un effet négligeable (BD, CE, AB, AC)

Règle 5 : toutes les interactions sont négligeables (inutile)

De la résolution 3 à la résolution 4

Ajout du plan complémentaire au plan de résolution 3

Plan complet

Exemple: plan 2⁵⁻²

Plan initial:

$$\left. \begin{array}{l} D = AB \\ E = AC \end{array} \right\} I = ABD = ACE = BCDE$$

Plan complémentaire :

$$-D = (-A)(-B) \implies D = -AB$$

 $-E = (-A)(-C) \implies E = -AC$

Plan complet:

$$D = ABS$$

$$E = ACS$$

$$I = ABDS = ACES = BCDE$$

S	A	В	С	D	Е
1	1	1	1	1	1
1	1	1	-1	1	-1
1	1	-1	1	-1	1
1	1	-1	-1	-1	-1
1	-1	1	1	-1	-1
1	-1	1	-1	-1	1
1	-1	-1	1	1	-1
1	-1	-1	-1	1	1
-1	-1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	1	-1	1	-1
-1	-1	1	1	1	1
-1	1	-1	-1	1	1
-1	1	-1	1	1	-1
-1	1	1	-1	-1	1
-1	1	1	1	-1	-1

complémentaire

Démarche statistique

- 1. Définir la problématique
- 2. Choisir les expériences à réaliser (planification expérimentale)
- 3. Effectuer les expériences
- 4. Dépouiller les résultats (analyse de variance)

Retrouver ce cours sur Youtube

- https://www.youtube.com/HussonFrancois
- Dans Google, taper les mots clés :
 Youtube plans d'expériences Husson