

DEEP LEARNING DEEP NEURAL NETWORKS

Tor Andre Myrvoll 2020-10-05

Introduction - Outline

- Overview of the coming lectures
- ▶ What are deep neural networks (DNN)?
- Examples of DNN applications
- Learning DNN parameters

Introduction - Overview

- Lecture 1: Multilayer perceptrons and back-propagation
- Lecture 2: Training DNNs best practice
- Lecture 3: Convolutional Neural Networks (CNN)
- Lecture 4: Generative Adversariel Networks (GAN). Recursive Neural Networks (RNN)

$$f(x) = \begin{cases} 1 & \sum_{i} w_{i}x_{i} + b \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x) = \begin{cases} 1 & 0.5(x_1 + x_2) - 1 > 0 \\ 0 & \text{otherwise} \end{cases}$$

- ► The perceptron was very popular in the 1950s, but problems with generalization to more complex problems made it fall out of vogue
- Over the years the two major ideas made the use of neural networks feasible:
 - Multiple layers of perceptrons made the networks more powerful
 - Differentiable processing functions made optimization easier
- ► Today one of the most commonly used neural networks is the *multilayer* perceptron

- Deep Neural Networks are in essence functions/mappings
- The mappings are defined by the parameters of the DNN
- Parameters are learned from data using a training algorithm
- DNNs can express a wide variety of mappings
 - ▶ Regression problems: $f : \mathbb{R}^m \to \mathbb{R}^n$
 - ▶ Posterior distributions: $f : \mathbb{R}^m \to \{p_1, p_2, \dots, p_n\}, p_i > 0 \forall i, \sum p_i = 1$
 - ▶ Multilabels: $f : \mathbb{R}^m \to [0,1]^n$, where $p \in [0,1]$ indicates to what extend a label is present

Simple network structures like the one shown in the previous slide are often called feed-forward networks or multilayer perceptrons

Multilayer perceptrons with one or more layers are *universal approximators*:

- Assume $x \in E \subset \mathbb{R}^m$, where *E* is a closed and bounded subset.
- Let $f: E \to \mathbb{R}^n$ be a smooth function defined on E.
- It can then shown that for every $\varepsilon > 0$ there always exists a neural network i with N parameters implementing a function $g : E \to \mathbb{R}^n$, so that $|f(x) g(x)| < \varepsilon$.

This means that we can be sure that whatever relationship our data represents, our neural network can model it given enough parameters.

- In practice however, this theorem *seems* of little use, as a single layer network will grow exponentially when we increase the dimensionality of the domain, \mathbb{R}^m .
- ▶ In other words, going from \mathbb{R}^m to \mathbb{R}^{m+1} , will on average increase the number of parameters to obtain an accuracy within $\varepsilon > 0$ by a factor C > 1.
- ► This may not sound bad if $C = 1 + \delta$, but consider classifying a 512 × 512 pixel image?! $((C + \delta)^{512 \times 512} = (C + \delta)^{262144}$ will be a large number unless $C \approx 1$)
- ► This is where the power of deep neural networks enters. Experiments and theoretical analysis shows that incresing the depth of a neural network, will at some point dramatically decrease the number of parameters needed to approxiate a given function.

Multilayer perceptrons - Simplest MLP ever

Multilayer perceptrons - Simplest MLP ever

The input-output relationship of this network is:

$$y = w \cdot f(v \cdot x + b)$$

Multilayer perceptrons - Slightly more complicated MLP

The input-output relationship of this network is already much more complicated.

Multilayer perceptrons - Slightly more complicated MLP

Using matrix notation:

$$Y = W^T \cdot f(V^T \cdot X + B)$$

Multilayer perceptrons - General MLP

Multilayer perceptrons - General MLP closeup

- ► Weight matrix W¹
- ightharpoonup Bias vector B^I
- Excitation vector $z^{l} = W^{l,T} \cdot v^{l-1} + B^{l}$
- ► Activation vector v' = f(z')

Activation functions - Hidden layer functions

Activation functions:

► The sigmoid:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

► The hyperbolic tangent:

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

The rectified linear unit:

$$\mathsf{ReLU}(z) = \left\{ \begin{array}{ll} 0, & z < 0 \\ z, & 0 \le z \end{array} \right.$$

Activation functions - Sigmoid

- Function: $\sigma(z) = \frac{1}{1+e^{-z}}$
- Continuous approximation to the classical perceptron function

$$per(z) = \begin{cases} 0, & z < 0 \\ 1, & 0 \le z \end{cases}$$

 Used to be the most popular activation function for MLPs

Activation functions - Hyperbolic tangent

- Function: $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
- ► Symmetric version of the sigmoid

$$per(z) = \begin{cases} 0, & z < 0 \\ 1, & 0 \le z \end{cases}$$

Popular alternative to the sigmoid

Activation functions - Rectified Linear Unit

- Function: ReLU(z) = $\begin{cases} 0, & z < 0 \\ z, & 0 \le z \end{cases}$
- The most common activation function today
- Training ReLU based networks faster and easier

Activation functions - Final layer functions

The functions used in the final layer, the output, of the network, varies from the functions used in the hidden layers. Examples:

- Linear output: f(z) = z. Mostly used in regression where one typically wants unbounded output.
- Softmax: Let $\{z_i\}$ be the elements of the exitation vector z. Then the ith output from the softmax function is

$$f_i(z) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

We see that the elements of the softmax function are positive and sums to one. Used for classification problems.

▶ Sigmoid: Same as for hidden layers. Used in multi-label classification.

Training the network - The forward computation

Training the network - The forward computation

- ▶ Given an input $x \in \mathbb{R}^m$, we want to compute the output, f(x) of the neural network.
- This is done using a simple forward loop over the layers of the networks
- As we we do the forward computation we will store the intermediate results for use with the backpropagation algorithm that we will be discussing after this

Training the network - The forward computation

```
1: v^0 \leftarrow x
 2: for l \leftarrow 1, L do
 3: z^l \leftarrow W^l v^{l-1} + B^l
 4: v' \leftarrow f'(z')
 5: end for
 6: if Regression then
 7. v^L \leftarrow z^L
 8: else
 9: v^L \leftarrow \operatorname{softmax}(z^L)
10: end if
```

Training the network - The objective function

The MLP is determined by the following:

- The network topology
 - Number of layers
 - Number of nodes per layer
- ▶ The choice of nonlinearities f(x)
- ▶ The weights $\{W^I\}$ and biases $\{B^I\}$

The network topology and nonlinearity is usually chosen in advance and held fixed while we optimize the network parameters.

Training the network - The objective function

Given a training set $X = \{x_n\}$, $Y = \{y_n\}$. To train an MLP we need to define an *objective function* that measures the discrepancy, or error, between the output of an MLP, $\hat{y}_n = f(x_n)$, and the *true value* from the training set, y_n .

- ▶ We define a *loss function* $I(y, \hat{y})$, that measures the loss when we predict \hat{y} as opposed to y.
- Examples of loss functions are:
 - ► The squared error: $I(y, \hat{y}) = ||y \hat{y}||^2$. This is a good choice for regression problems
 - ▶ The cross entropy loss: $I(y, \hat{y}) = \sum_{i} -y_{i} \log \hat{y}_{i}$. This is the most common choice for classification problems where y is a vector of 0-1 labels.

Training the network - Learning the parameters

▶ Given a loss function we can define the *total loss* for the training problem:

$$L(W, B, X, Y) = \frac{1}{|X|} \sum_{n} I(y_n, f(x_n; W, B))$$

▶ Our goal is now to find the network parameters *W*, *B* so that

$$\hat{W}, \hat{B} = \underset{W,B}{\operatorname{arg\,min}} L(W, B, X, Y)$$

- ▶ It is not possible to *solve* this in closed form, or even approximately.
- The solution is to use numerical search, or more specifically, gradient descent

Training the network - Gradient descent

Assume we have a function f(x) that we want to minimize with respect to x. That is, we want to find

$$x^* = \operatorname*{arg\,min}_{x} f(x)$$

The function is too complicated to solve directly, however, we can compute the gradient at any point x. Let $f(x^{(0)})$ be an initial guess of the minimum of the function. We know that the gradient $\nabla_x f(x)$ points towards larger f(x), while the negative gradient points towards smaller f(x). Let our next guess for x^* be

$$x^{(1)} = x^{(0)} - \epsilon \nabla_x f(x)$$

For small ϵ we are guaranteed that $f(x^{(1)} < f(x^{(0)})$, and so we can create a sequence of updates that may converge to the optimal value.

Training the network - Gradient descent

Training the network - Gradient descent

We plan to optmimize the MLP parameters in the following way:

- **1.** Initialize $W^{(0)}$, $B^{(0)}$, eg. by using Gaussian noise
- 2. Iterate until convergence:

$$W^{(i)} = W^{(i-1)} - \epsilon \nabla_W L(W, B, X, Y)$$

$$B^{(i)} = B^{(i-1)} - \epsilon \nabla_B L(W, B, X, Y)$$

To achieve this we need to be able to compute $\nabla_W L(W, B, X, Y)$ and $\nabla_B L(W, B, X, Y)$.

$$\nabla_W L(W,B,X,Y) = \frac{1}{|X|} \sum_n \nabla_W I(y_n, f(x_n; W, B))$$

(*B* is computed in a similar manner)

Training the network - The backward propagation algorithm

It turns out that the gradients can be computed in an efficient manner using back propagation

- 1. Initilize the network
- 2. For each iteration
 - **2.1** Do the forward computation
 - **2.2** Compute the gradient wrt. the last set of weights, W^L for each training example x_n, y_n
 - **2.3** It can now be shown that the gradient wrt. W^I depends on the gradient wrt. W^{I+1} . Hence, we can start at the end and propagate the gradient backward to the beginning of the network

Training the network - Back propagation

In a little more detail (discussing *W* only, *B* is similar):

For each layer / we can compute

$$\nabla_{W_t^l} L(W, B, X, Y) = \left[f'(z_t^l) \cdot e_t^l \right] (v_t^{l-1})^T$$

where

$$e_t^l = (W_t^l)^T (f'(z_t^l \cdot e_t^{l+1}))$$

starting with

$$e_t^L = (V_t^L - y)$$

Summary - Wrapping up

- Neural networks are functions
- Universal approximation means they can model anything given by a mapping
- ► They can be efficiently trained using back propagation

Summary - Next time

- Best practices for neural network training
- Batch, mini-bacth, stochastic gradient descent
- Regularization, drop-out
- Normalization
- ► And more...

Thank you for your attention

