Introdução aos modelos DSGE

Exercícios sobre Expectativas Racionais e a crítica de Lucas

João Ricardo Costa Filho*

Questão 1: Expectativas, regras e discricionariedade

Trabalhemos com um exemplo baseado no artigo de N. Gregory Mankiw intitulado Recent Developments in Macroeconomics: A Very Quick Refresher Course, publicado no Journal of Money, Credit and Banking em agosto de 1988:

Assuma que a curva de oferta agregada de uma economia seja dada por:

$$Y_t = \overline{Y} + \alpha \left(\pi - E[\pi] \right), \tag{1}$$

onde Y_t é o PIB, π e $E[\pi]$ representam a taxa de inflação e o seu valor esperado, respectivamente e $\alpha > 0$ é uma constante. Considere um gestor de política econômica cuja função utilidade (U) pode ser representa por:

$$U = Y_t - \phi \pi_t^2, \tag{2}$$

com $\theta > 0$. Assuma, por simplicidade, que o gestor de política econômica pode controlar a taxa de inflação e responda:

- a) Encontre a taxa de inflação ótima (π^*) sob o ponto de vista do gestor de política econômica.
- b) O hiato do produto será inflacionário ou deflacionário caso $\pi=\pi^*$ e $E[\pi]=0$?
- c) O que acontecerá com o hiato do produto se $E[\pi] = \pi^*$?

Questão 2: Simulação

Vamos simular a economia do exercício anterior. Para isso, assuma $\alpha=5, \theta=0.5, \overline{Y}=100.$ Consideremos os seguintes períodos: t=0,1,2,3,4,5,6,7,8,9,10. Em t=0, considere que $\pi=E[\pi]=2$ pontos percentuais. Em t=1, o gestor de política econômica altera a taxa de inflação para π^* . O objetivo do exercício é simular o que acontece com o hiato do produto,

^{*&}lt;joaocostafilho.com>.

em percentual do PIB potencial, com base em três cenários para a dinâmica do ajuste das expectativas a partir de t = 2:

- a) Assuma que o ajuste total ocorrerá linearmente entre t=2 e t=10, isto é, em cada um desses perdíodos, será acrescida uma fração da diferença entre a expectativa de inflação em t=1 e π^* à expectativa da inflação no período anterior. Exemplo, se $E_{t=1}[\pi]=1$ e $\pi^*=10$, a diferença é igual a 9 e ela deve ser distribuída igualmente entre os períodos t=2 e t=10. Portanto, no exemplo, $E_{t=1}[\pi]=1$, $E_{t=2}[\pi]=2$, $E_{t=3}[\pi]=3$, ..., $E_{t=10}[\pi]=\pi^*=10$.
- b) Faça uma simulação análoga à do item anterior (ou seja, para os mesmos períodos t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), mas agora considere que o ajuste será entre t = 2 e t = 5.
- c) Faça uma simulação análoga à do item anterior (ou seja, para os mesmos períodos t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), mas agora considere que o ajuste será entre t = 2 e t = 3.
- d) Faça uma simulação análoga à do item anterior (ou seja, para os mesmos períodos t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), mas agora considere que o ajuste será todo em t = 2.
- e) Faça uma simulação análoga à do item anterior (ou seja, para os mesmos períodos t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), mas agora considere que o ajuste será todo em t = 1.

Questão 3: A literatura

Descreva textualmente os resultados das questões (1) e (2) com base na introdução do artigo Rules Rather than Discretion: The Inconsistency of Optimal Plans de Finn E. Kydland e Edward C. Prescott, publicado no \$Journal of Political Economy em junho de 1977.