ALGO QCM

17

- 1. Quel élément n'est pas dans la signature d'un type abstrait?
 - (a) Les TYPES
 - (b) Les OPERATIONS
 - (c) Les PRECONDITIONS
- 2. La construction d'une liste récursive est basée entre autres sur?
 - (a) La suppression du Kième élément d'une liste
- (b) La récupération du reste de la liste
- (c) L'insertion d'un élément à la $K^{i\grave{e}me}$ place
- (d) L'ajout d'un élément en tête de liste
- 3. Quelles opérations ne définissent pas une liste récursive?
 - ((a) debut
 - (b) longueur

SAR

(e) Jème

4. Pour la déclaration

TYPES true UTILISE but, incredible

l'opération thats : incredible x but -> true est?

- (a) Un observateur
- (b) Une opération interne
- (c) Un rapporteur
- d) pre opération externe
- (e) Un observeur
- 5. Une opération utilisée pour préciser le domaine de définition d'une autre est?
 - (a) Une opération ponctuelle
 - (b) Une opération auxiliaire
 - (c) Une opération partielle
 - (d) Une précondition
- 6. Un type algébrique abstrait doit être?
- (a) Complet
- (b) Conséquent
- (c) Consistant
- (d) Complément

- 7. Que représentent opé1 et opé2 dans l'axiome suivant (dans lequel e est un élément et l une liste) opé1(opé2 (e,l)) = 1?
 - (a) opé1 = fin, opé2 = tête
 - (b) opé1 = cons, opé2 = fin
 - (c) opé1 = fin, opé2 = cons
 - (d) opé $1 = \cos$, opé2 =tête
- 8. Que représentent opé1 et opé2 dans l'axiome suivant (dans lequel e est un élément et l une liste) opé1(opé2 (e,1)) = e?
 - (a) opé1 = premier, opé2 = tête
 - (b) opé1 = cons, opé2 = premier
 - (c) opé1 = premier, opé2 = cons
 - (d) opé1 = fin, opé2 = premier
- 9. Une opération qui n'est pas définie partout est?
 - (a) Une opération ponctuelle
 - (b) Une opération auxiliaire
 - (c) Une opération partielle
 - (d) Une précondition
- 10. Pour la déclaration

TYPES Vrai, Ouf UTILISE De, Truc

l'opération c'est-un : Vrai x Truc x De -> Ouf est?

- (a) Un observateur
- (b) Une opération interne
- (c) Une opération externe
- (d) Un observeur

QCM N°9

lundi 22 octobre 2018

Question 11

Soit (u_n) une suite réelle bornée. Alors

- a. (u_n) est monotone
- b. (u_n) est convergente
- c. (u_n) est divergente
- d. rien de ce qui précède

Question 12

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{\cos(n)}{n}$. Alors

- a. (u_n) n'a pas de limite
- b. (u_n) diverge vers $+\infty$
- c. (u_n) diverge vers $-\infty$
- (u_n) converge vers 0
 - e. rien de ce qui précède

Question 13

Soit (u_n) une suite de réels non nuls vérifiant pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{3}{4}$. Alors

- a. (u_n) est constante
- b. (u_n) est convergente
- c. (u_n) est divergente
- d. (u_n) est géométrique
- e. rien de ce qui précède

Question 14

Soit (u_n) une suite réelle. La définition de « (u_n) converge vers 0 » est

- a. $\exists \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ n \geqslant N \Longrightarrow |u_n| < \varepsilon$
- $\exists v \in \mathcal{S} \quad \forall n \in \mathbb{N} \quad \exists N \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n| < \varepsilon$
- c. $\exists N \in \mathbb{N} \implies 0 \quad \forall n \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n| < \varepsilon$

TOTAL STREET, TOTAL

Question 15

Soit (u_n) une suite réelle convergeant vers -1. Alors

- a. $u_n 1 \xrightarrow[n \to +\infty]{} 0$
- b. $|u_n-1| \xrightarrow[n\to+\infty]{} 0$
- c. $|u_n| \xrightarrow[n \to +\infty]{} 1$
- d. (u_n) est bornée
- e. rien de ce qui précède

Question 16

On lance un dé. On note A et B les événements suivants :

A: « on obtient un numéro pair » et B: « on obtient un multiple de 4 ». Alors

- a. A et B sont incompatibles
- b. A et B ne sont pas incompatibles
- c. A et B sont indépendants
- d. A et B ne sont pas indépendants

Question 17

Soient $\ell \in \mathbb{R}$ et (u_n) une suite réelle vérifiant :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$$

Alors

- a. (u_n) converge vers ℓ .
- b. $\exists K \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leqslant K$
- c. $\exists K \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n| \leqslant K$
- d. rien de ce qui précède

Question 18

Soient A et B deux événements indépendants quelconques. Alors

$$P(A \cup B) = P(A) + P(B)$$

$$\text{(b)}P(A \cap B) = P(A)P(B)$$

c.
$$P(A \cap B) = P(A) + P(B)$$

$$P(A \cup B) = P(A)P(B)$$

$$P(A \cap B) = P(A \cup B)$$

Question 19

Soit $(n,p) \in \mathbb{N}^2$ tel que $n \geqslant p$. Alors C_n^p est égal à

a.
$$\frac{n!}{(n-p)!}$$

$$\underbrace{b.}_{p!} (n-1)(n-2)\dots(n-p+1)$$

c.
$$\frac{p!}{n!(p-n)!}$$

$$\underbrace{\mathbf{d}.}_{p!(n-p)!}^{n!}$$

e. rien de ce qui précède

Question 20

Soient A un événement et (B_1, B_2, B_3) un système complet d'événements tel que pour tout $i \in [1, 3], P(B_i) \neq 0$. Alors

$$(a)P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$$

$$P(A) = P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + P(A \mid B_3)P(B_3)$$

$$P(A) = P(A \cup B_1)P(B_1) + P(A \cup B_2)P(B_2) + P(A \cup B_3)P(B_3)$$

A:
$$P(A) = P(A \cup B_1) + P(A \cup B_2) + P(A \cup B_3)$$

$$P(A) = P(A \cap B_1)P(B_1) + P(A \cap B_2)P(B_2) + P(A \cap B_3)P(B_3)$$

	MCQ 3, CIE (Article 2,3)
	21. The two ways in which the brain beats Google in finding information are
	A) efficiency and accuracy (B) context and speed C) accuracy and speed D) volume and speed
	22. 'Ususally students studying for a test remember more if they quiz themselves than by rereading their textbooks or notes' because
9	A) it gives them an idea of different possible questions. B) it takes less time.
	C) every time one retrieves information from memory, it becomes a bit easier to find it the next time. D) none of the above.
	23. The type of facts that the brain should try to memorise instead of trying to get help from Google are
	A) the facts that are needed fast and frequently.
	B) the facts that take up less volume.
\	C) the alternative facts. D)contextual facts.
×	
	24. I didn't realise you are so about this subject.
	A) sensible
	B) reasonable
e)	C) sensitive D) relative
	25. I visit my relatives, so I almost never see my uncle John.
	A) always
	B) sometimes
	C) often (Ď) seldom
	26. A 'selection bias' is
	A) choosing to talk only about the bad effects of something.
	B) a study of comparison of performance and the characteristics of the students who choose to use
	laptops for taking notes. C) a phenomenon of using laptops while getting bored.
	D) none of the above.

27. The reason why the understanding of a lecture is better among those who take notes using pen and paper, compared to those who use laptops, is
A) one can write faster than type. B) the laptops are distracting. C) writing by hand needs the content to be processed and condensed. D) laptops can break down.
28. A 'negative externality' is(Choose the best definition from the following)
 A) an external factor that affects the results of something. B) when one person's consumption harms the well-being of others. C) the negative effects of the use of something. D) none of the above.
29. Technology changes so fast, it is hard to it.
A) keep in with B) go with
C) keep
D) keep up with
30. 'The accident could have been prevented.' In this sentence, the word 'prevent' means
A) noticed
B) warned
C) stopped
D) told

The following questions are about all videos of Unit 1 of the MOOC "Public Speaking"

- 31. What three preliminary things should I get information about when first invited to give a public presentation?
 - I should get information about how long I should speak, what I should wear and the location of the speech.
 - b. I should get information about the audience, location and compensation.
 - <u>c.</u> I should get information about the audience, occasion and subject.
 - d. I should get information about who is requesting me to speak, the audience and the occasion.
- 32. When analyzing the audience demographically, you should consider all of the following except:
 - a. Age
 - b. Gender
 - Racial, ethnic or cultural background
 - d. Actually, you should consider ALL of the above.
- 33. When we consider audience members' beliefs, attitudes and values, we are analyzing the audience:
 - a None of the above
 Psychologically
 C. Situationally
- d. Demographically
- 34. "Size" of audience, "physical layout of room" and formality/informality of a presentation are all considerations Professor Jenkins recommends when analyzing the public speaking:
 - a. Occasion
 - b. Beliefs, attitudes and values of an audience
 - c. Demographic makeup of the audience
 - d. Attire for the presentation
- 35. Speeches that inform us about animals might best represent which main objective or purpose of an informative speech?
 - a. An event
 - b. A concept
 - <u>c.</u> An object
 - d. A process
- 36. A speech about the Royal Wedding of Prince Harry and Meghan Markle best represents which type of informative speech discussed by Professor Jenkins?
 - a. An event
 - b. A concept
 - c. An object
 - d. A process
- 37. When one pilfers content from two or maybe three sources and passes this information off as one's own during a speech, this is a form of:
 - a. Global plagiarism
 - b. Patchwork plagiarism
 - c. Incremental plagiarism
 - d. Creative plagiarism
- 38. Properly citing sources in a speech is an effective way to avoid plagiarism when speaking. Speakers are encouraged to cite the following during their speech:
 - <u>a.</u> Author
 - X b. Source
 - c. How information was accessed
 - d. All of the above
- 39. When one organizes the body of a speech about an organization and focuses on the organization's establishment, key milestones by decade, and the organization today, the main points of the speech probably follow a
 - _____ pattern. a. Topical
 - b. Spatial
 - c. Problem-Solution
 - d. Chronological

- 40. Which of the following is not suggested by Professor Jenkins as one of the four things to include in the introduction of your speech?
 - Establish your credibility
 - Support the main points of your speech with solid evidence
 - Identify the purpose of your speech Preview the main points of your speech

EPITA-S₁ 2018/2019

Q.C.M n°3 de Physique

41- L'équation de la trajectoire correspondant aux équations horaires :

$$\begin{cases} x(t) = 3t \\ y(t) = -9t^2 + 6t \end{cases}$$
 est donnée par :

a)
$$y(x) = x^2 + 2x$$
 c) $y(x) = -3x^2 + 2x$
b) $y(x) = -3x^2 + x$ d) $y(x) = -x^2 + 2x$

42- Le vecteur unitaire \vec{u}_{θ} des coordonnées cylindriques vérifie

a)
$$\frac{d\vec{u}_{\rho}}{dt} = \dot{\theta} \vec{u}_{\rho}$$
 c) $\frac{d}{dt} = \ddot{\theta} \vec{u}_{\theta}$ d) $\frac{d\vec{u}_{\rho}}{dt} = \ddot{0}$

43- Le vecteur position en coordonnées polaires s'écrit :

a)
$$O\vec{M} = \rho . \vec{u}_{\rho} + \rho . \theta . \vec{u}_{\theta}$$
 b) $O\vec{M} = \rho . \vec{u}_{\rho} + \theta . \vec{u}_{\theta}$ c) $O\vec{M} = \rho . \vec{u}_{\rho}$

44- Le vecteur vitesse en coordonnées cylindriques s'écrit

a)
$$\vec{V} = \rho \vec{u}_{\rho} + z \vec{u}_{z}$$
 (b) $\vec{V} = \left(\rho \vec{u}_{\rho} + \rho \dot{\theta} \vec{u}_{\theta}\right) + z \vec{u}_{z}$ (c) $\vec{V} = \rho \vec{u}_{\rho} + \dot{\theta} \vec{u}_{\theta} + z \vec{u}_{z}$

45- Le vecteur vitesse d'un mouvement circulaire de rayon R admet en coordonnées polaires l'expression suivante :

a)
$$\vec{V} = \begin{pmatrix} V_{\rho} = R \dot{\theta} \\ V_{\theta} = 0 \end{pmatrix}$$
 b) $\vec{V} = \begin{pmatrix} V_{\rho} = -R (\dot{\theta})^2 \\ V_{\theta} = 0 \end{pmatrix}$ c) $\vec{V} = \begin{pmatrix} V_{\rho} = R \\ V_{\rho} = R \dot{\theta} \end{pmatrix}$ d) $\vec{V} = \begin{pmatrix} V_{\rho} = 0 \\ V_{\theta} = R \dot{\theta} \end{pmatrix}$

46- Le vecteur accélération d'un mouvement d'équations horaires : $\begin{cases} x(t) = R \sin(\omega t) \\ y(t) = R \cos(\omega t) \end{cases}$, tels que R et ω sont des constantes s'écrit $R \cdot \cos(\omega t) \cdot \omega \qquad \qquad R \cdot \cos(\omega t) \cdot \omega$

a)
$$\vec{a} = \begin{pmatrix} R.\omega^2 \cos(\omega t) \\ -R.\omega^2 \sin(\omega t) \end{pmatrix}$$
 c) $\vec{a} = \begin{pmatrix} -R.\omega^2 \cos(\omega t) \\ -R.\omega^2 \sin(\omega t) \end{pmatrix}$ d) $\vec{a} = \begin{pmatrix} R.\omega\cos(\omega t) \\ -R.\omega\sin(\omega t) \end{pmatrix}$

A. Zellagui

47- Le vecteur unitaire \vec{u}_{ρ} des coordonnées cylindriques vérifie :

$$\underbrace{a) \frac{d\vec{u}_{\rho}}{dt} = \dot{\theta} \vec{u}_{\theta}}_{dt} = \dot{0}$$

$$c) \frac{d\vec{u}_{\rho}}{dt} = \ddot{0}$$

$$b) \frac{d\vec{u}_{\rho}}{dt} = \frac{d\vec{u}_{\theta}}{dt} \cdot \dot{\theta}$$

$$d) \frac{d\vec{u}_{\rho}}{dt} = -\dot{\theta} \vec{u}_{\theta}$$

48- On considère un mouvement d'équations horaires : $\begin{cases} x(t) = R \sin(\omega t) \\ y(t) = R \cos(\omega t) \end{cases}$, les équations de passage vers la base polaire permettent d'écrire :

a)
$$\rho = R$$
 et $\theta = \omega$ c) $\rho = R\omega$ et $\theta = \omega t$
b) $\rho = R$ et $\theta = \omega t$

49- L'équation de la trajectoire du mouvement d'équations horaires $\begin{cases} x(t) = R \sin(\omega t) \\ y(t) = R \cos(\omega t) \end{cases}$ (Où R et ω sont des constantes positives) est :

a)
$$x^2 + y^2 = 1$$
 b) $x + y = R$ c) $x^2 + y^2 = R^2$

50-Les équations horaires d'un mouvement en coordonnées cartésiennes sont données par :

$$O\vec{M} = \begin{pmatrix} x(t) = \rho_0 . e^{\theta(t)} . \cos(\theta(t)) \\ y(t) = \rho_0 . e^{\theta(t)} . \sin(\theta(t)) \\ z(t) = \rho_0 . \ln(1 + \theta(t)) \end{pmatrix}$$

On donne : $\theta(t) = \omega t$; ω et ρ_0 sont constantes positives.

Ces équations écrites en coordonnées cylindriques donneraient

a)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0(\cos(\theta(t)) - \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

$$(b) O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 \cdot e^{\theta(t)} \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

$$c) O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 \cdot e^{\theta(t)} (\cos(\theta(t)) + \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées

Q1. L'intensité du courant qui entre dans un dipôle passif est supérieure à l'intensité de celui qui en ressort.

Q2. Quelle est la résistance vue entre A et B?

b.
$$16R$$

c. $\frac{3}{5}R$
d. $\frac{2}{5}R$

Q3. Soit le circuit ci-contre. Quelle est l'égalité correcte ?

$$U_{1} = R_{1}.I$$

$$U_{2} = R_{2}.(I_{2} + I_{4})$$

$$C-U_{3} = -R_{3}.I$$

$$d-U_{4} = E_{2}$$

Q4. Dans le circuit ci-contre, que vaut U?

- **Q5.** Un interrupteur fermé a :
 - un courant infini qui le traverse
 - b-une tension nulle à ses bornes
- une tension infinie à ses bornes
- طر Aucune de ces réponses

Q6. Une résistance court-circuitée a : .

a-un courant nul qui la traverse

c- une tension quelconque à ses bornes

b-une tension infinie à ses bornes

d-Aucune de ces réponses

Si on applique la loi d'Ohm avec R en $k\Omega$ et I en mA, on obtient directement U en : Q7.

- a. kV
- 6.) V

- c. mV
- d. MV

Soit le circuit ci-contre. Choisir la bonne réponse ?

$$I_1 = 4.1$$

$$(b-)_1 = \frac{1}{4}$$

$$\int_{1}^{\infty} I_{1} = \frac{3}{4} \cdot I$$

d-
$$I_1 = \frac{3R}{4}I$$

Q9. Soit le circuit ci-contre. Choisir la bonne réponse ?

b-
$$I_2 = \frac{E}{R_1}$$
.

c-
$$I_2 = \frac{R_2}{R_1 + R_2} E$$
.

$$(d-)I_2 = \frac{R_1}{R_1 + R_2}E$$

Q10. Quelle formule peut être correcte ? (toutes les résistances sont en Ohm, les tensions E et U, en volt et les courants I et I', en ampère) :

$$G I' = \frac{R_1 \cdot (R_2 \cdot R_3 + R_4^2)}{R_1 \cdot R_2 + R_3^2} I$$

b-
$$U = \frac{R_1.R_2.R_3}{R_1+R_2+R_3}I \propto X R \neq V$$

c-
$$R = \frac{R_1 + R_2}{R_1 \cdot R_2}$$
 62 4 62

c-
$$R = \frac{R_1 + R_2}{R_1 \cdot R_2}$$
 \mathcal{L} $\mathcal{$

QCM 3

Architecture des ordinateurs

Lundi 22 octobre 2018

- 11. Quel est le résultat de la soustraction suivante : $2000_{17} 1_{17}$?
 - A. 1FFF₁₇

1666

- B. 1999₁₇
- C. 1GGG₁₇
- D. 1666₁₇
- 12. Quel nombre est égal à 216?
 - A. 32768₁₀
 - B. $2^{17} 2^{16}$
 - C. 20000₁₆
 - D. 1000000000000000000₂

- 13. En supposant que $110_b = 14_{16}$, quelle est la valeur de la base b?
 - A. 5
 - B. Impossible
- 14. Quel nombre est égal à 999,9916?

- B: 100110011001,10011001₈
 - C. 4631,461₈
 - D. 10011001100,110011001₂
- 15. Quel nombre est égal à 127,25₁₀ ?
 - (A.) 1333,1₄
 - B. 177,18
 - C. 7F,2₁₆
 - 111111,012

- $\overline{16. \ 1110110_2 + 1110111_2 + 1001011_2 + 101110_2} =$
 - A. 1 0110 00102
 - B. 1 0111 0110₂
 - 1 0110 01102
 - D. 1 0110 01002
- 17. $521_8 + 324_8 + 217_8 =$
 - A. 2265₈
 - (B) 1264₈
 - C. 2264₈
 - D. 1265₈
- 18. $B29_{16} + A5C_{16} + ED2_{16} =$
 - A. 3457₁₆
 - B. 3456₁₆
 - (C.) 2457₁₆
 - D. 2456₁₆
- 19. Le complément à un de BC₁₆ est :
 - A. 41₁₆
 - B. 42₁₆
 - (C) 4316
 - D. 44₁₆
- 20. Le complément à deux de BC₁₆ est :
 - A. 41₁₆
 - B. 42₁₆
 - C. 43₁₆
 - D. 44_{16}

B

1