Q1. RL

Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the following samples generated from taking actions in the unknown MDP. For the following problems, assume $\gamma = 1$ and $\alpha = 0.5$.

(a) We run Q-learning on the following samples:

\mathbf{s}	a	s'	r
A	Go	В	2
С	Stop	A	0
В	Stop	A	-2
В	Go	С	-6
С	Go	A	2
A	Go	A	-2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

- (i) $Q(C, Stop) = \underline{\hspace{1cm}}$
- (ii) Q(C, Go) =_____
- (b) For this next part, we will switch to a feature based representation. We will use two features:
 - $f_1(s,a) = 1$

•
$$f_2(s, a) = \begin{cases} 1 & a = \text{Go} \\ -1 & a = \text{Stop} \end{cases}$$

Starting from initial weights of 0, compute the updated weights after observing the following samples:

	\mathbf{s}	a	s'	\mathbf{r}
ĺ	A	Go	В	4
	В	Stop	A	0

What are the weights after the first update? (using the first sample)

- (i) $w_1 =$ _____
- (ii) $w_2 =$ _____

What are the weights after the second update? (using the second sample)

- (iii) $w_1 =$ _____
- (iv) $w_2 =$ _____

Q2. Q-uagmire

Consider an unknown MDP with three states (A, B and C) and two actions $(\leftarrow \text{ and } \rightarrow)$. Suppose the agent chooses actions according to some policy π in the unknown MDP, collecting a dataset consisting of samples (s, a, s', r) representing taking action a in state s resulting in a transition to state s' and a reward of r.

s	a	s'	r
\overline{A}	\rightarrow	В	2
C	\leftarrow	B	2
B	\rightarrow	C	-2
A	\rightarrow	B	4

You may assume a discount factor of $\gamma = 1$.

(a) Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a')\right)$$

Assume that all Q-values are initialized to 0, and use a learning rate of $\alpha = \frac{1}{2}$.

(i) Run Q-learning on the above experience table and fill in the following Q-values:

$$Q(A, \rightarrow) = \underline{\hspace{2cm}} Q(B, \rightarrow) = \underline{\hspace{2cm}}$$

(ii) After running Q-learning and producing the above Q-values, you construct a policy π_Q that maximizes the Q-value in a given state:

$$\pi_Q(s) = \arg\max_a Q(s, a).$$

What are the actions chosen by the policy in states A and B?

 $\pi_Q(A)$ is equal to: $\pi_Q(B)$ is equal to:

$$\bigcirc \quad \pi_Q(A) = \leftarrow. \qquad \qquad \bigcirc \quad \pi_Q(B) = \leftarrow.$$

$$\bigcirc \quad \pi_Q(A) = \rightarrow. \qquad \qquad \bigcirc \quad \pi_Q(B) = \rightarrow.$$

$$\bigcirc$$
 $\pi_Q(A) = \text{Undefined.}$ \bigcirc $\pi_Q(B) = \text{Undefined.}$

(b) Use the empirical frequency count model-based reinforcement learning method described in lectures to estimate the transition function $\hat{T}(s, a, s')$ and reward function $\hat{R}(s, a, s')$. (Do not use pseudocounts; if a transition is not observed, it has a count of 0.)

Write down the following quantities. You may write N/A for undefined quantities.

$$\hat{T}(A, \rightarrow, B) = \underline{\hspace{1cm}} \hat{R}(A, \rightarrow, B) = \underline{\hspace{1cm}}$$

$$\hat{T}(B, \rightarrow, A) = \underline{\hspace{2cm}} \hat{R}(B, \rightarrow, A) = \underline{\hspace{2cm}}$$

$$\hat{T}(B,\leftarrow,A) = \underline{\hspace{1cm}} \hat{R}(B,\leftarrow,A) = \underline{\hspace{1cm}}$$

(c) This question considers properties of reinforcement learning algorithms for arbitrary discrete MDPs; you do not need to refer to the MDP considered in the previous parts.

2

(i)	Which of the following methods, at convergence, provide enough information to obtain an optimal policy? (Assume adequate exploration.)
	\square Model-based learning of $T(s, a, s')$ and $R(s, a, s')$.
	\square Direct Evaluation to estimate $V(s)$.
	\square Temporal Difference learning to estimate $V(s)$.
	\square Q-Learning to estimate $Q(s, a)$.
(ii)	In the limit of infinite timesteps, under which of the following exploration policies is Q -learning guaranteed to converge to the optimal Q -values for all state? (You may assume the learning rate α is chosen appropriately, and that the MDP is ergodic: i.e., every state is reachable from every other state with non-zero probability.)
	\square A fixed policy taking actions uniformly at random.
	☐ A greedy policy.
	\square An ϵ -greedy policy
	☐ A fixed optimal policy.

Q3. Reinforcement Learning

Imagine an unknown environments with four states (A, B, C, and X), two actions (\leftarrow and \rightarrow). An agent acting in this environment has recorded the following episode:

s	a	\mathbf{s}'	r	Q-learning iteration numbers (for part b)
A	\rightarrow	В	0	1, 10, 19,
В	\rightarrow	\mathbf{C}	0	$2, 11, 20, \dots$
С	\leftarrow	В	0	$3, 12, 21, \dots$
В	\leftarrow	A	0	$4, 13, 22, \dots$
A	\rightarrow	В	0	$5, 14, 23, \dots$
В	\rightarrow	A	0	$6, 15, 24, \dots$
A	\rightarrow	В	0	$7, 16, 25, \dots$
В	\rightarrow	\mathbf{C}	0	$8, 17, 26, \dots$
C	\rightarrow	X	1	$9, 18, 27, \dots$

(a) Consider running model-based reinforcement learning based on the episode above. Calculate the following quantities:

$$\hat{T}(B, \to, C) = \underline{\qquad}$$

$$\hat{R}(C, \to, X) = \underline{\qquad}$$

(b) Now consider running Q-learning, repeating the above series of transitions in an infinite sequence. Each transition is seen at multiple iterations of Q-learning, with iteration numbers shown in the table above.

After which iteration of Q-learning do the following quantities first become nonzero? (If they always remain zero, write never).

- (c) True/False: For each question, you will get positive points for correct answers, zero for blanks, and negative points for incorrect answers. Circle your answer **clearly**, or it will be considered incorrect.
 - (i) [true or false] In Q-learning, you do not learn the model.
 - (ii) [true or false] For TD Learning, if I multiply all the rewards in my update by some nonzero scalar p, the algorithm is still guaranteed to find the optimal policy.
 - (iii) [true or false] In Direct Evaluation, you recalculate state values after each transition you experience.
 - (iv) [true or false] Q-learning requires that all samples must be from the optimal policy to find optimal q-values.