1. Transitorio de primer orden

1.1. FM 4.2

Calcular la corriente i(t) para t > 0.

Datos:

$$\epsilon = 24 \text{ V}$$
 $R_1 = 8 \Omega$
 $R_2 = 4 \Omega$
 $R_3 = 4 \Omega$
 $L = 15 \text{ H}$

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0 y obtenemos:

$$i(t) = \frac{\epsilon}{R_2 + R_3}$$

Por tanto, $i(0^-) = 3$ A. Al tratarse de una bobina, $i(0^+) = i(0^-) = 3$ A.

A continuación dibujamos el circuito para t>0 para obtener la respuesta natural y la respuesta forzada.

Para obtener la respuesta natural apagamos las fuentes. En este circuito obtenemos:

Queda por determinar la constante de integración.

Para obtener la respuesta forzada volvemos a activar las fuentes. En este circuito obtenemos:

Con estos dos resultados podemos obtener la respuesta completa:

$$i(t) = i_n(t) + i_\infty(t)$$

 $i(t) = A \cdot e^{-4t/9} + 2A$

Para determinar la constante de integración recurrimos a las condiciones iniciales:

$$i(0^+) = A + 2.4$$

 $i(0^+) = 3$
 $A = 0.6$

Por tanto,

$$i(t) = 0.6 \cdot e^{-4t/9} + 2.4$$

1.2. FM 4.3

Calcular la tensión en bornes del condensador para t > 0.

Datos:

$$\epsilon = 20 \,\mathrm{V}$$
 $I_g = 4 \,\mathrm{A}$
 $R_1 = 6 \,\Omega$
 $R_2 = 4 \,\Omega$
 $R_3 = 12 \,\Omega$
 $C = 1/16 \,\mathrm{F}$

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0 y obtenemos:

$$u_C(t) = I_g \cdot R_1$$

Por tanto, $u_c(0^-) = 24 \,\text{V}$. Al tratarse de un condensador, $u_C(0^+) = u_C(0^-) = 24 \,\text{V}$. A continuación dibujamos el circuito para t > 0 para obtener la respuesta natural y la respuesta forzada.

Para obtener la respuesta natural apagamos las fuentes. En este circuito obtenemos:

$$\begin{array}{c|c}
 & C & C \\
\hline
R_2 & C \\
\hline
R_3 & C
\end{array}$$

$$R_{th} = R_2 + R_3 = 16 \Omega$$

 $\tau = C/G_{th} = 1 \text{ s}$
 $u_{Cn}(t) = A \cdot e^{-\frac{t}{\tau}} = A \cdot e^{-t}$

Queda por determinar la constante de integración.

Para obtener la respuesta forzada volvemos a activar las fuentes. En este circuito

obtenemos:

Con estos dos resultados podemos obtener la respuesta completa:

$$u_C(t) = u_{Cn}(t) + u_{c\infty}(t)$$

$$u_C(t) = A \cdot e^{-t} + 20$$

Para determinar la constante de integración recurrimos a las condiciones iniciales:

$$u_C(0^+) = A + 20$$

 $u_C(0^+) = 24$
 $A = 4 \text{ V}$

Por tanto,

$$u_C(t) = 4 \cdot e^{-t} + 20$$

1.3. HKD 8.4

Determina las corrientes $i_L(t)$ e $i_1(t)$ para t > 0.

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0:

Obtenemos:

$$i_L(t) = \frac{\epsilon}{R_4} = 360 \,\mathrm{mA}$$

Al tratarse de una bobina, $i_L(0^+) = i_L(0^-) = 360 \,\mathrm{mA}$.

En este circuito podemos calcular $i_1(0^-)=\frac{\epsilon}{R_3}=200\,\mathrm{mA}$. Este valor nos servirá de referencia cuando calculemos $i_1(t)$.

A continuación dibujamos el circuito para t>0 para obtener la respuesta natural y la respuesta forzada. En el circuito resultante no hay fuentes, por lo que únicamente tendremos respuesta natural.

$$L_{eq} = L_1 + L_2 || L_3 = 2,2 \, \mathrm{mH}$$
 $R_{th} = (R_1 + R_2) || R_3 + R_4 = 110 \, \Omega$
 $au = L_{eq} / R_{th} = 20 \, \mu \mathrm{s}$
 $i_{Ln}(t) = A \cdot e^{-\frac{t}{\tau}} = A \cdot e^{-5 \cdot 10^{-4} \cdot t}$

Queda por determinar la constante de integración. Dado que la respuesta forzada es 0 podemos calcular directamente esta constante con la respuesta natural y las condiciones iniciales:

$$i_L(t) = i_{Ln}(t) = A \cdot e^{-5 \cdot 10^{-4} \cdot t}$$

 $i_L(0^+) = A = 0.36$

Por tanto,

$$i_L(t) = 0.36 \cdot e^{-5.10^{-4} \cdot t} A$$

Para calcular la corriente $i_1(t)$ usamos un divisor de corriente a partir de $i_L(t)$:

$$i_1(t) = -i_L(t) \cdot \frac{1/R_3}{1/R_3 + 1/(R_1 + R_2)} = -0.24 \cdot e^{-5.10^{-4} \cdot t} A$$

En el primer apartado habíamos obtenido $i_1(0^-)=200\,\mathrm{mA}$. Con esta ecuación obtenemos $i_1(0^+)=-240\,\mathrm{mA}$. Los valores no coinciden porque en una resistencia no hay condición de continuidad.

2. Transitorio de segundo orden

2.1. FM 4.8

El circuito de la figura ha alcanzado el régimen permanente con el interruptor cerrado. El interruptor se abre en t=0. Calcula las expresiones de la tensión en bornes del condensador y de la corriente por la bobina para t>0.

Datos:

$$\epsilon_g = 10 \text{ V}$$
 $R_1 = 10 \Omega$
 $R_2 = 5 \Omega$
 $L = 2,5 \text{ H}$
 $C = 0,2 \text{ F}$

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0 y obtenemos:

Por tanto,
$$u_c(0^+) = u_c(0^-) = 10 \text{ V y } i_L(0^+) = i_L(0^-) = 1 \text{ A}.$$

A continuación dibujamos el circuito para t>0 para obtener la respuesta natural y la respuesta forzada. En el circuito resultante no hay fuentes, por lo que no habrá respuesta forzada.

$$i_{L}(t) = A_{1} \cdot e^{s_{1} \cdot t} + A_{2} \cdot e^{s_{2} \cdot t}$$

$$\downarrow u_{R}(t) = A_{1} \cdot e^{s_{1} \cdot t} + A_{2} \cdot e^{s_{2} \cdot t}$$

$$\downarrow s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$\downarrow s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$\downarrow u_{L}(t) = A_{1} \cdot e^{s_{1} \cdot t} + A_{2} \cdot e^{s_{2} \cdot t}$$

$$\downarrow s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$\downarrow s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$\downarrow \alpha = \frac{R}{2L} = 3 \text{ s}^{-1}$$

$$\downarrow \omega_{0} = \frac{1}{\sqrt{LC}} = \sqrt{2} \text{rad s}^{-1}$$

Dado que $\alpha > \omega_0$ se trata de un transitorio sobreamortiguado:

$$s_1 = -0.354 \,\mathrm{s}^{-1}$$

 $s_2 = -5.645 \,\mathrm{s}^{-1}$
 $i_L(t) = A_1 \cdot e^{-0.354 \cdot t} + A_2 \cdot e^{-5.645 \cdot t}$

Para determinar las constantes de integración recurrimos a las condiciones iniciales:

$$u_R(t) + u_L(t) = u_C(t)$$

$$u_L(0^+) = u_C(0^+) - u_R(0^+)$$

$$u_R(0^+) = R \cdot i_L(0^+) = 15 \text{ V}$$

$$u_L(0^+) = 10 - 15 = -5 \text{ V}$$

Por tanto,

$$i_L(0^+) = 1 \,\mathrm{A}$$
 $\frac{di_L(t)}{dt}\Big|_{t=0^+} = \frac{1}{L} \cdot u_L(0^+) = -2 \,\mathrm{A}\,\mathrm{s}^{-1}$

Con estos resultados, particularizamos la ecuación de $i_L(t)$ para t=0 y así planteamos las ecuaciones para obtener A_1 y A_2 :

$$i_L(0^+) = A_1 + A_2 = 1$$

$$\frac{di_L(t)}{dt}\Big|_{t=0^+} = A_1 \cdot s_1 + A_2 \cdot s_2 = -2$$

Por tanto,

$$A_1 = 0.689$$

 $A_2 = 0.311$

Finalmente,

$$i_L(t) = 0.689 \cdot e^{-0.354 \cdot t} + 0.311 \cdot e^{-5.645 \cdot t}$$

Para obtener la tensión en el condensador recurrimos a la LKV:

$$u_C(t) = u_R(t) + u_L(t) =$$

$$= R \cdot i_L(t) + L \frac{di_L(t)}{dt} =$$

$$= 9,7275 \cdot e^{-0,354 \cdot t} + 0,275 \cdot e^{-5,645 \cdot t}$$

2.2. FM 4.9

En el circuito de la figura, calcula la tensión $u_c(t)$ para t>0.

Datos:

$$\epsilon_g = 4 \text{ V}$$
 $R_1 = 2 \Omega$
 $R_2 = 2 \Omega$
 $L = 2 \text{ H}$
 $C = 0.25 \text{ F}$