

Paco van der Vliet David Verboom Anouk Raanhuis

Inhoud

- I. Case uitleg
- II. Statespace
- III. Baseline
- IV. Algoritmes
- V. Resultaten
- VI. Vergelijking
- VII. Conclusie

I. Case uitleg

- Dienstregeling voor treinen
- Noord-Holland & Nederland
- Connecties
 - ['Alkmaar', 'Hoorn'] -> 24 min
- Trajecten creëren binnen een tijdsframe
 - o ['Den Helder', 'Alkmaar', 'Hoorn'] -> 60 min
- Kwaliteitsscore (K)
 - \circ K = p*10.000 (T*100 + Min)

II. Statespace

- N = het aantal trajecten in je lijnvoering
- X = het aantal maximale connecties per station
- Y = het maximum aantal bereden verbindingen in 1 traject

$$\mathbf{Y} = \frac{tijdsframe}{minimum\ duur\ traject} - 1$$

Voorbeeld:

0

- Utrecht Centraal: 9 connecties
- Tijdsframe = 180 minuten
- Maximum trajecten = 20 trajecten
- Minimum duur = 5 minuten
- 20 * (9^36) + 19 * (9^36) + 18 * ... **= 5,45 x 10^35**

III. Baseline

- Total Random Algorithm
 - Random hoeveelheid trajecten
 - Random startstation
 - Random keuze uit tracks

histogram 1: Totally Random

IV. Algoritmen

- Totally random
- Semi random
- Greedy
- Breadth First
- Depth First
- Hillclimber
- Local Search

V. Resultaten Breadth-First

Optimizing Algorithm Performance: Breadth_first Approach Visualisation at Nationaal Level

V. Resultaten Local Search

VI. Vergelijking

histogram 1: Totally Random

histogram 2: Breadth First

histogram 3: Local Search

VII. Conclusie

- Iteratieve algoritmes werken beter dan constructieve algoritmes
 - Alle niet dezelfde routes doorlopen zonder bijhouden score.
 - Iteratief gevonden oplossingen verbeteren is sneller. Depth- en Breadth First werken niet goed bij de state space van onze case¹.
- Beste score gemeten is 7092,2808988764045
 - o 11 trajecten
 - \circ P = 97,75%

1. Liang, P., [Stanford Online]. (2022, 31 mei). Constraint Satisfaction Problems (CSPs) 1 - Overview | Stanford

CS221: AI (Autumn 2021) [Video]. YouTube. https://www.youtube.com/watch?v=-IO4fPO0rxk

VIII. Future work

- Heuristieken
- Randomheid toevoegen
 - Breadth First: limiet is start vanaf 1 station, ook mogelijkheid om per traject van een nieuw station te beginnen. Bezochte stations, eindstation eerste traject
- Probability
 - Aannemen slechtere oplossingen, simulated annealing/aangepaste local search

Vragen?

- EINDSTATION -

