Методы машинного обучения. Линейные ансамбли

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 26 ноября 2024

Содержание

- Простое голосование
 - Общее определение ансамбля
 - Бэггинг и случайные подпространства
 - Случайные леса
- Взвешенное голосование
 - Адаптивный бустинг AdaBoost
 - Основная теорема AdaBoost
 - Алгоритм AdaBoost
- Эксперименты с бустингом
 - Вид разделяющей поверхности
 - Переобучение бустинга
 - Недостатки AdaBoost

Определение ансамбля

$$X^\ell=(x_i,y_i)_{i=1}^\ell\subset X imes Y$$
 — обучающая выборка, $y_i=y^*(x_i)$ $a_t\colon X o Y$, $t=1,\ldots,T$ — обучаемые *базовые алгоритмы*

Идея ансамблирования (Ю.И.Журавлёв): как из множества по отдельности плохих алгоритмов a_t построить один хороший?

Декомпозиция базовых алгоритмов $a_t(x) = C(b_t(x))$

 $a_t\colon X\stackrel{b_t}{\longrightarrow} R\stackrel{C}{\longrightarrow} Y$, где R — удобное пространство оценок, b_t — алгоритмические операторы, C — решающее правило

Ансамбль (композиция) базовых алгоритмов $a_1, \dots, a_T,$ $F \colon R^T \to R$ — корректирующая (агрегирующая) операция

$$a(x) = C(F(b_1(x), \ldots, b_T(x))),$$

Ю.И. Журавлёв. Об алгебраическом подходе к решению задач распознавания или классификации. Проблемы кибернетики, 1978.

M. Kearns, L. G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. 1989.

Пространства оценок и решающие правила

- Пример 1: классификация, Y конечное множество, R = Y, $C(b) \equiv b$ решающее правило не используется.
- ullet Пример 2: классификация на 2 класса, $Y=\{-1,+1\}$,

$$a(x) = \operatorname{sign}(b(x)),$$

$$R = \mathbb{R}$$
, $b: X \to \mathbb{R}$ — real-valued classifier, $C(b) \equiv \text{sign}(b)$.

ullet Пример 3: классификация на M классов $Y=\{1,\ldots,M\}$,

$$a(x) = \arg \max_{y \in Y} b_y(x),$$

$$R = \mathbb{R}^M, \;\; b \colon X o \mathbb{R}^M, \;\; C(b_1, \dots, b_M) \equiv \arg\max_{y \in Y} b_y.$$

• Пример 4: регрессия, $Y = R = \mathbb{R}$, $C(b) \equiv b$ — решающее правило не используется.

Агрегирующие (корректирующие) функции

Общие требования к агрегирующей функции:

- ullet $F(b_1,\ldots,b_T,x)\in \left[\min_t b_t,\max_t b_t
 ight]$ среднее по Коши orall x
- ullet $F(b_1,\ldots,b_T,x)$ монотонно не убывает по всем b_t

Примеры агрегирующих функций:

• простое голосование (simple voting):

$$F(b_1,\ldots,b_T)=\frac{1}{T}\sum_{t=1}^T b_t$$

• взвешенное голосование (weighted voting):

$$F(b_1,\ldots,b_T) = \sum_{t=1}^T \alpha_t b_t, \quad \sum_{t=1}^T \alpha_t = 1, \quad \alpha_t \geqslant 0$$

ullet смесь алгоритмов (mixture of experts) c функциями компетентности (gating function) $g_t\colon X o \mathbb{R}$

$$F(b_1,...,b_T,x) = \sum_{t=1}^{T} g_t(x)b_t(x)$$

Проблема разнообразия (diversity) базовых алгоритмов

Измерение с.в. ξ по независимым наблюдениям $\{\xi_t\}$:

- ullet Е $rac{1}{T}(\xi_1+\cdots+\xi_T)={\sf E}\xi$ матожидание среднего
- ullet D $rac{1}{T}(\xi_1+\cdots+\xi_T)=rac{1}{T}$ D ξ дисперсия o 0 при $T o\infty$

Но базовые алгоритмы не являются независимыми с.в.:

- решают одну и ту же задачу
- настраиваются на один целевой вектор (y_i)
- обычно выбираются из одной и той же модели

Способы повышения разнообразия базовых алгоритмов:

- обучение по различным (случайным) подвыборкам
- обучение по различным (случайным) наборам признаков
- обучение из разных параметрических моделей
- обучение с использованием рандомизации
- (иногда даже) обучение по зашумлённым данным

Методы стохастического ансамблирования

Способы повышения разнообразия с помощью рандомизации:

- ullet bagging (bootstrap aggregating) подвыборки обучающей выборки «с возвращением», в каждую выборку попадает $1-\left(1-rac{1}{\ell}
 ight)^\ell
 ightarrow 1-rac{1}{e}pprox 63.2\%$ объектов, при $\ell
 ightarrow\infty$
- pasting случайные обучающие подвыборки
- random subspaces случайные подмножества признаков
- random patches случ. подмн-ва и объектов, и признаков
- cross-validated committees выборка разбивается на k блоков (k-fold) и делается k обучений без одного блока

Пусть μ : $(G,U) \mapsto b$ — метод обучения по подвыборке $U \subseteq X^{\ell}$, использующий только признаки из $G \subseteq F^n = \{f_1, \dots, f_n\}$

Tin Kam Ho. The random subspace method for constructing decision forests. 1998. Leo Breiman. Bagging predictors // Machine Learning. 1996.

Методы стохастического ансамблирования в одном псевдо-коде

```
Вход: обучающая выборка X^{\ell}; параметры: T,
     \ell' — объём обучающих подвыборок,
     n' — размерность признаковых подпространств,
     \varepsilon_1 — порог качества базовых алгоритмов на обучении,
     \varepsilon_2 — порог качества базовых алгоритмов на контроле;
Выход: базовые алгоритмы b_t, t = 1, ..., T;
для всех t = 1, ..., T
    U_t := \mathsf{случайная} подвыборка объёма \ell' из X^\ell;
    G_t := случайное подмножество мощности n' из F^n;
   b_t := \mu(G_t, U_t)
   если Q(b_t, U_t) > \varepsilon_1 то не включать b_t в ансамбль;
   если Q(b_t, X^{\ell} \setminus U_t) > \varepsilon_2 то не включать b_t в ансамбль;
```

Ансамбль — простое голосование:
$$b(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

Несмещённая оценка ошибок

Out-of-bag — несмещённая оценка ансамбля на объекте:

$$OOB(x_i) = \frac{1}{|T_i|} \sum_{t \in T_i} b_t(x_i), \qquad T_i = \{t : x_i \notin U_t\}$$

Несмещённая оценка ошибки ансамбля на обучающей выборке:

$$OOB(X^{\ell}) = \sum_{i=1}^{\ell} \mathcal{L}(OOB(x_i), y_i),$$

где $\mathscr{L}ig(b(x_i),y_iig)$ — значение функции потерь на объекте x_i .

Оценивание важности признаков f_j , $j=1,\ldots,n$:

$$\mathsf{importance}_j = \frac{\mathsf{OOB}^j(X^\ell) - \mathsf{OOB}(X^\ell)}{\mathsf{OOB}(X^\ell)} \cdot 100\%,$$

где при вычислении $b_t(x_i)$ для OOB^j значения признака f_j случайным образом перемешиваются на всех объектах $x_i \notin U_t$.

Преобразование простого голосования во взвешенное

ullet Линейная модель над готовыми признаками $b_t(x)$:

$$b(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

• Обучение: МНК для регрессии, LR для классификации:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(b(x_i), y_i) \to \min_{\alpha}.$$

Регуляризация: $\alpha_t \geqslant 0$ либо LASSO: $\sum_{t=1}^{l} |\alpha_t| \leqslant \varkappa$.

• Наивный байесовский классификатор предполагает независимость с.в. $b_t(x)$ и даёт аналитическое решение:

$$lpha_t = \ln rac{1 -
ho_t}{
ho_t}, \quad t = 1, \dots, T,$$

 p_t — оценка вероятности ошибки базового алгоритма b_t .

Случайный лес (Random Forest)

Грубое обучение деревьев для случайного леса:

- бэггинг над решающими деревьями, без pruning
- признак в каждой вершине дерева выбирается из случайного подмножества k из n признаков. По умолчанию $k = \lfloor n/3 \rfloor$ для регрессии, $k = \lfloor \sqrt{n} \rfloor$ для классификации

Параметры, которые можно настраивать (в частности, по ООВ):

- число Т деревьев
- ullet число k случайно выбираемых признаков
- максимальная глубина деревьев
- минимальное число объектов в расщепляемой подвыборке
- минимальное число объектов в листьях
- критерий расщепления: MSE для регрессии, энтропийный или Джини для классификации

Breiman L. Random Forests. Machine Learning, 2001.

Постепенное сглаживание разделяющей поверхности

Пример разделения выборки с помощью отдельных деревьев (показаны соответствующие бутстреп-подвыборки) и случайного леса с числом деревьев 10, 100, 1000:

https://dyakonov.org/2019/04/19/ансамбли-в-машинном-обучении

Разновидности решающих лесов

- Случайный лес (Random Forest)
- Использование большого числа простых решающих деревьев в качестве признаков, в любом классификаторе.
- Oblique Random Forest, Rotation Forest $f_{\nu}(x)$ линейные комбинации признаков, выбираемые по энтропийному критерию информативности.
- Решающий список из решающих деревьев:
 - при образовании статистически ненадёжного листа этот лист заменяется переходом к следующему дереву;
 - следующее дерево строится по объединению подвыборок, прошедших через ненадёжные листы предыдущего дерева.

Преимущества и ограничения стохастического ансамблирования

Преимущества:

- метод-обёртка (envelop) над базовым методом обучения
- подходит для классификации, регрессии и других задач
- простая реализация и простое распараллеливание
- возможность получения несмещённых оценок ООВ
- возможность оценивания важности признаков
- RF один из лучших универсальных методов в ML

Ограничения:

- требуется оооооочень много базовых алгоритмов
- трудно агрегировать устойчивые базовые методы обучения

Бустинг для задачи классификации с двумя классами

Возьмём
$$Y=\{\pm 1\}$$
, $b_t\colon X\to \{-1,0,+1\}$, $C(b)=\mathrm{sign}(b)$. $b_t(x)=0$ — отказ (лучше промолчать, чем соврать).

Взвешенное голосование:

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right), \quad x \in X.$$

Функционал качества композиции — число ошибок на X^{ℓ} :

$$Q_T = \sum_{i=1}^{\ell} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right].$$

Две основные эвристики бустинга:

- ullet фиксация $lpha_1 b_1(x), \dots, lpha_{t-1} b_{t-1}(x)$ при добавлении $lpha_t b_t(x)$;
- ullet гладкая аппроксимация пороговой функции потерь $[M\leqslant 0].$

Гладкие аппроксимации пороговой функции потерь [M < 0]

 $V(M) = (1 - M)_{+}$ — кусочно-линейная (из SVM);

Экспоненциальная аппроксимация пороговой функции потерь

Оценка функционала качества Q_T сверху:

$$Q_{T} \leqslant \widetilde{Q}_{T} = \sum_{i=1}^{\ell} \underbrace{\exp\left(-y_{i} \sum_{t=1}^{T-1} \alpha_{t} b_{t}(x_{i})\right)}_{W} \exp\left(-y_{i} \alpha_{T} b_{T}(x_{i})\right)$$

Нормированные веса: $\widetilde{W}^\ell = (\widetilde{w}_1, \dots, \widetilde{w}_\ell)$, $\widetilde{w}_i = w_i \ / \ \sum_{j=1}^\ell w_j$.

Взвешенная доля ошибочных (negative) и правильных (positive) классификаций с нормированными весами $U^\ell=(u_1,\ldots,u_\ell)$:

$$N(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = -y_i]; \quad P(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = y_i].$$

 $1-{\sf N}-{\sf P}$ — взвешенная доля отказов от классификации.

Y.Freund, R.E.Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1995

Основная теорема бустинга (для AdaBoost)

Пусть $\mathscr{B}-$ достаточно богатое семейство базовых алгоритмов.

Teopeма (Freund, Schapire, 1996)

Пусть для любого нормированного вектора весов U^{ℓ} существует алгоритм $b\in \mathscr{B}$, классифицирующий выборку хотя бы немного лучше, чем наугад: $P(b;U^{\ell})>N(b;U^{\ell})$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$\begin{split} b_T &= \arg\max_{b \in \mathscr{B}} \sqrt{P(b;\widetilde{W}^\ell)} - \sqrt{N(b;\widetilde{W}^\ell)}. \\ \alpha_T &= \frac{1}{2} \ln \frac{P(b_T;\widetilde{W}^\ell)}{N(b_T;\widetilde{W}^\ell)}. \end{split}$$

R.E.Schapire, Y.Singer. Improved boosting using confidence-rated predictions. 1999

Доказательство (шаг 1 из 2)

Воспользуемся тождеством $\forall \alpha \in \mathbb{R}, \ \forall b \in \{-1,0,+1\}$: $e^{-\alpha b} = e^{-\alpha}[b\!=\!1] + e^{\alpha}[b\!=\!-1] + [b\!=\!0].$

Положим для краткости $\alpha = \alpha_T$ и $b_i = b_T(x_i)$. Тогда

$$\widetilde{Q}_{T} = \left(e^{-\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = y_{i}] + e^{\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = -y_{i}] + \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = 0]\right) \underbrace{\sum_{i=1}^{\ell} w_{i}}_{1-P-N}$$

$$= \left(e^{-\alpha}P + e^{\alpha}N + (1-P-N)\right) \widetilde{Q}_{T-1} \to \min_{\alpha, b}.$$

$$\tfrac{\partial}{\partial \alpha} \widetilde{Q}_T = \left(-e^{-\alpha} P + e^{\alpha} N \right) \widetilde{Q}_{T-1} = 0 \ \Rightarrow \ e^{-\alpha} P = e^{\alpha} N \ \Rightarrow \ e^{2\alpha} = \tfrac{P}{N}.$$

Получили требуемое: $\alpha_{\mathcal{T}} = \frac{1}{2} \ln \frac{P}{N}$.

Доказательство (шаг 2 из 2)

Подставим оптимальное значение $lpha=rac{1}{2}\lnrac{P}{N}$ обратно в $\widetilde{Q}_{\mathcal{T}}$:

$$\begin{split} \widetilde{Q}_{\mathcal{T}} &= \left(e^{-\alpha}P + e^{\alpha}N + (1-P-N) \right) \widetilde{Q}_{\mathcal{T}-1} = \\ &= \left(1 + \sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N - P - N \right) \widetilde{Q}_{\mathcal{T}-1} = \\ &= \left(1 - \left(\sqrt{P} - \sqrt{N} \right)^2 \right) \widetilde{Q}_{\mathcal{T}-1} \to \min_b. \end{split}$$

Поскольку \widetilde{Q}_{T-1} не зависит от α_T и b_T , минимизация \widetilde{Q}_T эквивалентна либо максимизации $\sqrt{P}-\sqrt{N}$ при P>N, либо максимизации $\sqrt{N}-\sqrt{P}$ при P< N, однако второй случай исключён условием теоремы.

Получили
$$b_T = rg \max_b \sqrt{P} - \sqrt{N}$$
 . Теорема доказана.

Следствие 1. Сходимость

Теорема

Если на каждом шаге семейство \mathscr{B} и метод обучения обеспечивают построение базового алгоритма b_t такого, что

$$\sqrt{P(b_t; \widetilde{W}^{\ell})} - \sqrt{N(b_t; \widetilde{W}^{\ell})} = \gamma_t > \gamma$$

при некотором $\gamma>0$, то за конечное число шагов будет построен корректный алгоритм a(x).

Доказательство. Q_T сходится к нулю со скоростью геометрической прогрессии:

$$Q_{T+1} \leqslant \widetilde{Q}_{T+1} = \widetilde{Q}_T(1-\gamma^2) \leqslant \cdots \leqslant \widetilde{Q}_1(1-\gamma^2)^T.$$

Наступит момент, когда $\widetilde{Q}_{\mathcal{T}} < 1$. Но тогда $Q_{\mathcal{T}} = 0$, поскольку $Q_{\mathcal{T}} \in \{0,1,\ldots,\ell\}$.

Следствие 2. Исходный (классический) вариант AdaBoost

Пусть отказов нет, $b_t\colon X o \{\pm 1\}$. Тогда P=1-N.

Teopeма (Freund, Schapire, 1995)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in \mathscr{B}$, классифицирующий выборку хотя бы немного лучше, чем наугад: $N(b;U^\ell)<\frac{1}{2}$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$b_T = \arg\min_{b \in \mathscr{B}} N(b; \widetilde{W}^{\ell}).$$

$$\alpha_T = \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_T; \widetilde{\mathcal{W}}^\ell)}{\mathcal{N}(b_T; \widetilde{\mathcal{W}}^\ell)}.$$

Y.Freund, R.E.Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1995

Алгоритм AdaBoost (в исходном варианте)

```
Вход: обучающая выборка X^{\ell}; параметр T;
Выход: базовые алгоритмы и их веса \alpha_t b_t, t = 1, ..., T;
инициализировать веса объектов: w_i := 1/\ell, i = 1, ..., \ell;
для всех t = 1, ..., T:
    обучить базовый алгоритм:
           b_t := \arg\min N(b; W^{\ell});
          \alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^{\ell})}{\mathcal{N}(b_t; \mathcal{W}^{\ell})};
    обновить веса объектов:
           w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), \quad i = 1, \ldots, \ell;
    нормировать веса объектов:
           w_0 := \sum_{i=1}^{\ell} w_i;
           w_i := w_i/w_0, \quad i = 1, \dots, \ell
```

Эвристики и рекомендации

- Базовые классификаторы (weak classifiers):
 - решающие деревья используются чаще всего;
 - пороговые правила, т.н. «решающие пни» (data stumps)

$$\mathscr{B} = \left\{ b(x) = \left[f_j(x) \leqslant \theta \right] \mid j = 1, \ldots, n, \ \theta \in \mathbb{R} \right\};$$

- для SVM бустинг не эффективен.
- Отсев шума: отбросить объекты с наибольшими w_i .
- Модификация формулы для $lpha_t$ на случай $\mathit{N}=0$:

$$\alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^\ell) + \frac{1}{\ell}}{\mathcal{N}(b_t; \mathcal{W}^\ell) + \frac{1}{\ell}};$$

Дополнительный критерий остановки:
 увеличение частоты ошибок на контрольной выборке.

Случайный лес и бустинг в сравнении с другими методами

Эксперименты на трёх двумерных модельных выборках:

Решения могут выглядеть странно... тем не менее, RF и бустинг — одни из самых сильных универсальных методов в ML

Эксперименты с алгоритмом классификации AdaBoost

Удивительное отсутствие переобучения вплоть до T=1000 (нижняя кривая — обучение, верхняя – тест):

До этих экспериментов считалось, что увеличение числа параметров неизбежно приводит к переобучению

R.E.Schapire, Y.Freund, Wee Sun Lee, P.Bartlett. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics, 1998.

Иногда AdaBoost всё же переобучается...

... но не сильно, и на тысячах базовых классификаторах. Слева: зависимость ошибки на тестовой выборке от $|\mathcal{T}|$. Справа: разделяющая поверхность при переобучении.

G.Rätsch, T.Onoda, K.R.Müller. An improvement of AdaBoost to avoid overfitting. 1998.

Недостатки AdaBoost

- ullet Чрезмерная чувствительность к выбросам из-за e^{-M}
- Неинтерпретируемое нагромождение из сотен алгоритмов
- Не удаётся строить короткие композиции из «сильных» алгоритмов типа SVM (только длинные из «слабых»)
- Требуются достаточно большие обучающие выборки (бэггинг обходится более короткими)

Способы устранения:

- Отсев выбросов по критерию увеличения веса w;
- ullet Обучение b_t по случайным подвыборкам как в бэггинге
- Градиентный бустинг с произвольными функциями потерь
- Явная оптимизация распределения отступов

- Ансамбли позволяют решать сложные задачи, которые плохо решаются отдельными базовыми алгоритмами
- Обычно ансамбль строится *алгоритмом-обёрткой* (envelop): базовые алгоритмы обучаются готовыми методами
- Базовые алгоритмы: компромисс качество/различность
- Две основные эвристики бустинга (и не только AdaBoost):
 - обучать базовые алгоритмы по одному
 - использовать гладкую замену пороговой функции потерь
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности T
- Практическое сравнение бустинга и бэггинга:
 - бустинг лучше для классов с границами сложной формы
 - бэггинг лучше для коротких обучающих выборок
 - бэггинг легче распараллеливается