Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 11. Oktober 2022

Schriftlicher Test

\sim	1.	1				. •	
√ †11	പാ	rond	onid	ont	11 to L	cation	۰
Jiu	uic.	ıcııu	CHIL	LLLL		lauvi	L

NACHNAME	
VORNAME	
MATRIKELNUMMER	
STUDIENGANG	□ Informatik Bachelor, □

Ich möchte die von mir in der Hausaufgabe erreichten Punkte anrechnen lassen. (Ja/Nein)

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	3	14	Modelle Regulärer Sprachen
2	4	16	Untermengen-Konstruktion
3	5	22	MINIMIERUNG EINES DFA
4	6	13	CYK-ALGORITHMUS
5	7	10	Modelle Kontextfreier Sprachen I
6	8	5	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	14	16	22	13	10	5	80
ERREICHT							
KORREKTOR:IN							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(14 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{0, 1\}$, die reguläre Sprache $A_1 \triangleq \{x101y \mid x, y \in \Sigma^*\}$, die reguläre Grammatik $G_2 \triangleq (\{\ \vec{S},\ T,\ \vec{U},\ V\ \},\ \widecheck{\Sigma},\ P_2,\ \vec{S})$ und der NFA $M_3 \triangleq (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \Delta_3, \{ q_0, q_1 \}, \{ q_3 \})$ mit:

a. (5 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

c. (3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

d. (2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_1, q_3\}, \{q_4\})$ mit $\Sigma = \{a, b\}$ und Δ :

a. (13 Punkte) Berechne: Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M' zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (3 Punkte) $\mathit{Gib}\ \mathrm{L}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_7, q_8\})$ mit $Q \triangleq \{ q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8 \}, \Sigma \triangleq \{ a, b \} \text{ und } \delta$:

a. (**, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?

b. (**, 9 Punkte) Gib an: Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen *an,* die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{\ldots\}$, angegeben werden.

d. (**, 5 Punkte) Gib den minimierten DFA M' an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: CYK-Algorithmus

(13 Punkte)

Gegeben sei ein Alphabet $\Sigma \triangleq \{a, b\}$ sowie zwei Grammatiken $G_1 \triangleq (\{S, A, B, C\}, \Sigma, P_1, S)$ und $G_2 \triangleq (\{S, T, U, V, W\}, \Sigma, P_2, S)$ mit:

a. (5 Punkte) Gib eine Grammatik G_3 in CNF mit $L(G_1) = L(G_3)$ an.

$$P_{2}: S \rightarrow VW \mid UT$$

$$T \rightarrow WT \mid US$$

$$U \rightarrow WU \mid TW \mid b$$

$$V \rightarrow a \mid VV \mid TV$$

$$W \rightarrow a \mid UU$$

b. (8 Punkte) Berechne: Gegeben sei das Wort $w \triangleq baaab$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G_2)$ oder $w \notin L(G_2)$.

$CYK_w(i,j)$	1	2	3	4	5
1: b	{U}	Ø	773	₹7.U.V} ₹U} W€	FW)
2: a	{W, V}	₹S,V}	f V, S}	103	
3: a	{v,w}	751V)	くいろ		
4: a	{VIW}	303			
5: b	<i>{</i> υ}			WE	LCGn
	II			La	λ s ∉

Aufgabe 5: Modelle Kontextfreier Sprachen I

(10 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und die kontextfreie Sprache

$$A \triangleq \left\{ xbc^n \mid n \in \mathbb{N}^+ \land x \in \{ ab, bb \}^+ \land |x|_b = n \land |x|_a > 0 \right\}$$

a. (3 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

$$G = (\{S, x, Y\}, \{\Sigma, P, S\})$$
 mH P:
 $S \Rightarrow ab \times c \mid bb \times cc$
 $x \Rightarrow ab \times c \mid bb \times cc \mid ab \times c$
 $Y \Rightarrow ab \times c \mid bb \times c \mid b$

b. (7 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

$$\begin{array}{c} 0, +/t \\ \Rightarrow 0 \\ \hline b, \Box/\Box \\ b, +/t \\ \hline b, +/t \\ \hline \end{array}$$

$$\begin{array}{c} 0, +/t \\ \hline b, \Box/\Box \\ \hline b, +/t \\ \hline \end{array}$$

$$\begin{array}{c} 0, +/t \\ \hline b, +/t \\ \hline \end{array}$$

$$\begin{array}{c} 0, -/t \\ \hline b, +/t \\ \hline \end{array}$$

$$\begin{array}{c} 0, -/t \\ \hline b, +/t \\ \hline \end{array}$$

Aufgabe 6: Modelle Kontextfreier Sprachen II

(5 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \stackrel{\triangle}{=} (\{ q_0, q_1, q_2, q_3, q_4 \}, \Sigma, \{ \Box, \bullet, \star \}, \Box, \Delta, q_0, \{ q_3 \})$ mit Δ :

a. (2 Punkte) $\mathit{Gib}\ \mathrm{L}_{\mathrm{End}}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

<i>Matrikelnummer:</i> —	Name:
Auf dieser Seite löse	ich einen Teil der Aufgabe:
Teilaufgabe:	8

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		