0423 진행상황

1. 영화 리뷰 데이터 진행

• 참고자료: https://codetorial.net/tensorflow/natural_language_processing_in_tensorflow_01.html

방법론

- 1. from tensorflow.keras.preprocessing.text import Tokenizer
- 단어와 숫자의 키-값 쌍을 포함하는 딕셔너리를 반환

2. tokenizer.texts_to_sequences

```
sentences = [
  'I love my dog',
  'I love my cat',
  'You love my dog!',
  'Do you think my dog is amazing?'
]
```

```
{'my': 1, 'love': 2, 'dog': 3, 'i': 4, 'you': 5, 'cat': 6, 'do': 7, 'think': 8, 'is': 9, 'amazing': 10} [[4, 2, 1, 3], [4, 2, 1, 6], [5, 2, 1, 3], [7, 5, 8, 1, 3, 9, 10]]
```

- 이 때, 등장하지 않은 단어는 아예 포함되지 않음!!
- Tokenizer(oov_token="<00V>") : 등장하지 않은 토큰 <OOV> 처리 : 1

- **3.** from tensorflow.keras.preprocessing.sequence import pad_sequences
- 리스트 형식의 input값을 모두 같은 입력값을 가지는 array 형태의 시퀀스로 변환

• max len 의 파라미터를 조절해가며 대부분의 정보를 담는 파라미터를 선정!

4. Embedding layer

• Embedding(단어 사전 개수, 임베딩 차원, input_length = 문장 길이)

5. Modeling

• DNN, LSTM, LSTM(2층), BI-LSTM, BI-LSTM(2층),1D-CNN

• Config

• Optimizer : Adam (빠르게 수렴할듯)

• Loss: binary_crossentropy

• Batch_size: 32,

• Early stopping (10)

6. Evaluation

• 성능 비교

	형태소 분석	모델명	test 정확도
0	okt	DNN	0.546701
1	okt	LSTM	0.792896
2	okt	LSTM_2layer	0.789895
3	okt	Bi-LSTM	0.770385
4	okt	Bi-LSTM-2	0.510255
5	okt	1D-CNN	0.799400
6	okt_조사제거	DNN	0.537605
7	okt_조사제거	LSTM	0.798899
8	okt_조사제거	LSTM_2layer	0.781891
9	okt_조사제거	Bi-LSTM	0.775388
10	okt_조사제거	Bi-LSTM-2	0.781891
11	okt_조사제거	1D-CNN	0.798399
12	mecab	DNN	0.565037
13	mecab	LSTM	0.806403
14	mecab	LSTM_2layer	0.789895
15	mecab	Bi-LSTM	0.795398
16	mecab	Bi-LSTM-2	0.786893
17	mecab	1D-CNN	0.797899
18	mecab_조사제거	DNN	0.549084
19	mecab_조사제거	LSTM	0.793897
20	mecab_조사제거	LSTM_2layer	0.800400
21	mecab_조사제거	Bi-LSTM	0.784392
22	mecab_조사제거	Bi-LSTM-2	0.750375
23	mecab_조사제거	1D-CNN	0.798899

악플 리뷰

- 이진분류 성능 개선에 집중하려고함
- baseline

	모델명	test 정확도
0	DNN	0.642614
1	LSTM	0.829670
2	LSTM_2layer	0.640797
3	Bi-LSTM	0.640797
4	Bi-LSTM-2	0.640797
5	1D-CNN	0.843407

추후 진행상황

- 텍스트 분야에서 data argumentation
- word2vec feature로 성능 비교