University of Oslo : Department of Informatics

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Context-Free Grammars & Parsing

Stephan Oepen & Murhaf Fares

Language Technology Group (LTG)

November 3, 2016

Overview

Last Time

- Sequence Labeling
- Dynamic programming
- Viterbi algorithm
- Forward algorithm

Today

- Grammatical structure
- Context-free grammar
- Treebanks
- Probabilistic CFGs

Recall: Ice Cream and Global Warming

Recall: Viterbi Algorithm

To find the best state sequence, maximize:

$$P(s_1 \dots s_n | o_1 \dots o_n) = P(s_1 | s_0) P(o_1 | s_1) P(s_2 | s_1) P(o_2 | s_2) \dots$$

The value we cache at each step:

$$v_i(s) = \max_{k=1}^{L} \left[v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s) \right]$$

- ► The variable $v_i(s)$ represents the maximum probability that the *i*-th state is s, given that we have seen O_1^i .
- At each step, we record backpointers showing which previous state led to the maximum probability.

Recall: Dynamic Programming

- Dynamic programming algorithms
 - solve large problems by compounding answers from smaller sub-problems
 - record sub-problem solutions for repeated use
- They are used for complex problems that
 - can be described recursively
 - require the same calculations over and over again
- Examples:
 - Dijkstra's shortest path
 - minimum edit distance
 - longest common subsequence
 - Viterbi decoding

Recall: An Example of the Viterbi Algorithmn

Recall: Using HMMs

The HMM models the process of generating the labelled sequence. We can use this model for a number of tasks:

- \triangleright P(S,O) given S and O
- ► P(O) given O
- ► S that maximizes P(S|O) given O
- $ightharpoonup P(s_x|O)$ given O
- We learn model parameters from a set of observations.

Moving Onwards

Determining

- ▶ which string is most likely: √
 - How to recognize speech vs. How to wreck a nice beach
- ▶ which tag sequence is most likely for flies like flowers: √
 - NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

From Linear Order to Hierarchical Structure

- The models we have looked at so far:
 - ► *n*-gram models (Markov chains).
 - Purely linear (sequential) and surface-oriented.
 - sequence labeling: HMMs.
 - Adds one layer of abstraction: PoS as hidden variables.
 - Still only sequential in nature.
- Formal grammar adds hierarchical structure.
 - In NLP, being a sub-discipline of AI, we want our programs to 'understand' natural language (on some level).
 - Finding the grammatical structure of sentences is an important step towards 'understanding'.
 - Shift focus from sequences to grammatical structures.

Why We Need Structure (1/3)

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
 - interchangeable in similar syntactic environments.
 - can be co-ordinated
 - can be moved within a sentence as a unit
- (1) Kim read [a very interesting book about grammar]_{NP}. Kim read [it]_{NP}.
- (2) Kim [read a book] $_{VP}$, [gave it to Sandy] $_{VP}$, and [left] $_{VP}$.
- (3) [Read the book] $_{VP}$ I really meant to this week.

Why We Need Structure (2/3)

Constituency

- Constituents are theory-dependent, and are not absolute or language-independent.
- A constituent usually has a head element, and is often named according to the type of its head:
 - ► A noun phrase (NP) has a nominal (noun-type) head:
 - (4) [a very interesting book about grammar $]_{NP}$
 - A verb phrase (VP) has a verbal head:
 - (5) [gives books to students] $_{\rm VP}$

Why We Need Structure (3/3)

Grammatical functions

- Terms such as subject and object describe the grammatical function of a constituent in a sentence.
- Agreement establishes a symmetric relationship between grammatical features.

The <u>decision</u> of the Nobel committee member<u>s</u> surprises most of us.

- Why would a purely linear model have problems predicting this phenomenon?
- Verb agreement reflects the grammatical structure of the sentence, not just the sequential order of words.

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, giving us a way to:

judge or predict well-formedness

Kim was happy because	. passed the exam.
Kim was happy because	. final grade was an A

make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with {chopsticks|tuna}.

derive abstract representations of meaning

Kim gave Sandy a book.
Kim gave a book to Sandy.
Sandy was given a book by Kim.

A Grossly Simplified Example

The Grammar of Spanish

```
S \rightarrow NP VP
                              {VP(NP)}
VP \rightarrow V NP
                                {V(NP)}
VP \rightarrow VP PP
                              {PP(VP)}
                                {P(NP)}
PP \rightarrow P NP
NP → "nieve"
                                  { snow }
NP → "Juan"
                                   {John}
NP → "Oslo"
                                   {Oslo}
V \rightarrow "amó" {\lambda b \lambda a adore (a,b)}
P \rightarrow \text{"en"}
            \{\lambda d\lambda c \text{ in } (c,d)\}
```


Meaning Composition (Still Very Simplified)

Another Interpretation


```
S: {adore (John, in (snow, Oslo)}
NP: {John}
                     VP: \{\lambda a \text{ adore } (a, \text{in } (\text{snow}, \text{Oslo}))\}
    Juan
            V:\{\lambda b\lambda a \text{ adore } (a,b)\}\ NP:\{in (snow, Oslo)\}\
                         amó
                                       NP:{snow}
                                                                 PP:\{\lambda c \text{ in } (c, Oslo)\}
                                           nieve
                                                      P:\{\lambda d\lambda c \text{ in } (c,d)\}
                                                                                     NP:{Oslo}
                                                                                         Oslo
                                                                  en
                                                          NP \rightarrow NP PP \{ PP(NP) \}
```

Context Free Grammars (CFGs)

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
 - natural languages, programming languages, communication protocols, ...
- Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
 - When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.
- Powerful enough to express sophisticated relations among words, yet in a computationally tractable way.

CFGs (Formally, this Time)

Formally, a CFG is a quadruple: $G = \langle C, \Sigma, P, S \rangle$

- ► C is the set of categories (aka *non-terminals*),
 - ► {S, NP, VP, V}
- \triangleright Σ is the vocabulary (aka *terminals*),
 - {Kim, snow, adores, in}
- ► *P* is a set of category rewrite rules (aka *productions*)

$$S \rightarrow NP \ VP$$
 $NP \rightarrow Kim$ $VP \rightarrow V \ NP$ $NP \rightarrow snow$ $V \rightarrow adores$

- ▶ $S \in C$ is the *start symbol*, a filter on complete results;
- ▶ for each rule $\alpha \rightarrow \beta_1, \beta_2, ..., \beta_n \in P$: $\alpha \in C$ and $\beta_i \in C \cup \Sigma$

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_G is defined as the set of strings that can be derived from S.
- ▶ To derive w_1^n from S, we use the rules in P to recursively rewrite S into the sequence w_1^n where each $w_i \in \Sigma$
- The grammar is seen as generating strings.
- Grammatical strings are defined as strings that can be generated by the grammar.
- The 'context-freeness' of CFGs refers to the fact that we rewrite non-terminals without regard to the overall context in which they occur.

Treebanks

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)

- About one million tokens of Wall Street Journal text
- Hand-corrected PoS annotation using 45 word classes
- Manual annotation with (somewhat) coarse constituent structure

One Example from the Penn Treebank

Elimination of Traces and Functions

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6 $S \rightarrow NP VP PP$ 0.4
- ► These are conditional probabilities the probability of the right hand side (RHS) given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$
- We can learn these probabilities from a treebank, again using Maximum Likelihood Estimation.

Estimating PCFGs (1/3)

Estimating PCFGs (2/3)


```
RB \rightarrow Still
                                                            ADVP \rightarrow RB
(S
                                                            |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                            NNP \rightarrow Time
    (|.| ".")
                                                            POS \rightarrow 's
    (NP
                                                            NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                            NN \rightarrow move
        (NN "move"))
                                                            NP \rightarrow NP NN
     (VP
                                                            VBZ \rightarrow is
        (VBZ "is")
                                                            VBG → being
        (VP
                                                            VBN → received
             (VBG "being")
                                                            RB \rightarrow well
             (VP
                                                            VP → VBN ADVP
                (VBN "received")
                                                            VP \rightarrow VBG VP
                (ADVP (RB "well")))))
                                                            \backslash . \rightarrow .
    (\. "."))
                                                            S \rightarrow ADVP \mid NP VP \mid
                                                            START \rightarrow S
```

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into probabilities.

$$P(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.) \approx \frac{C(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.)}{C(S)}$$

$$= \frac{50}{1150}$$

$$= 0.0435$$