Math 171 Midterm Examination

May 1, 2014

5		uti	O	n	5
and the same	400				-

Name_____

1	10
2	10
3	10
4	10
5	10
Total	50

Signature

Directions:

- 1. This is an open book/open notes exam, but you may not use the internet during the exam.
- 2. Your signature above indicates that you accept the University Honor Code.
- 3. Write your solutions on the exam sheet; you may use the back side of a page if you run out of space. Throughout the exam you should give complete and clear proofs of your statements, justifying your steps. If you are using a particular theorem, be sure to state clearly what you are using. If you have a question about what you may assume without proof, please be sure to ask.
- 4. You have 2 hours to complete this test. It has 5 problems worth a total of 50 pts.
- 5. Good luck!

Problem 1. Let $\{a_n\}$ be a sequence of real numbers.

(a) (5 pts) Assume that there is a number $\epsilon > 0$ such that $|a_n - a_m| > \epsilon$ for $n \neq m$. Show that for any number R > 0 the set $\{n : |a_n| \leq R\}$ is finite.

The condition implies that sany has no Cauchy subsequence. If for some R>0 the set \$n:19n1 \le R\gamma\$ were infinite then it would contain a convergent subsequence by Bolzano-Weierstrass. This subsequence would be Cauchy which is a contradiction. Therefore the set is finite for all R>0.

(b) (5 pts) Suppose for each positive integer n we have $|a_{n+1} - a_n| < 2^{-n}$. Show that the sequence converges.

We have for any n, $k \ge 1$ $|a_{n+k}-a_n| \le |a_{n+k}-a_{n+k-1}| + \dots + |a_{n+1}-a_n|$ $< \sum_{k=1}^{2} \frac{1}{n-k+1} = 2^{-n} \sum_{i=1}^{k} \frac{1}{2^i} < 2^{-n}$ Given ≥ 0 , let N be large enough so that $2^n < \ge 1$ for $n,m \ge N$ where $w \ge 1.0.9$ we assume m = n+k > n.

For $n,m \ge N$ where $w \ge 1.0.9$ we assume m = n+k > n.

we have $|a_m-a_n| < 2^{n-1} < \ge 1$.

we have $|a_m-a_n| < 2^{n-1} < \ge 1$.

and hence convergent (Caushy criterion).

Problem 2. Let (M,d) be the metric space with $M=[1,\infty)$ and $d(x,y)=|\frac{1}{x}-\frac{1}{y}|$.

(a) (7 pts) Show that a subset $O \subseteq M$ is open if and only if O is an open subset of $[1,\infty)$ with its usual distance function. (You may assume that if $d(x,y) < (2x)^{-1}$, then $|x-y| < 2x^2d(x,y)$.)

(=) Assume 0 is open in M Let $x \in 0$ & $\varepsilon > 0$ such that $B_{\varepsilon}^{M}(x) \leq 0$. Since $d(x,y) \leq |x-y|$ it follows that $(x-\varepsilon, x+\varepsilon) \cap [1,\infty) \leq B_{\varepsilon}^{M}(x)$ and so 0 is open in $[1,\infty)$ with its usual distance. (=) Assume 0 is open in $[1,\infty)$ with its usual dist. Let $x \in 0$ and $\varepsilon > 0$ so that $(x-\varepsilon, x+\varepsilon) \cap [1,\infty) \leq 0$ Let $x \in 0$ and $\varepsilon > 0$ so that $(x-\varepsilon, x+\varepsilon) \cap [1,\infty) \leq 0$ Let $S = \min_{x \in X} \{2x^{2}\}^{2} \leq \frac{1}{2}$ and we see that if $d(x,y) \leq S$ then $|x-y| \leq 2x^{2} \leq \varepsilon \leq \frac{1}{2}$, so $B_{\varepsilon}^{M}(x) \leq 0$ and 0 is open in M.

(b) (3 pts) Show that the set of positive integers is a closed bounded subset of M which is not compact.

N is closed in M since it is closed in [0,20) with its usual distance (part (a)). Again by (a) each set gray for ne IN is open in IN, so we have $\Theta = gray: ne INg is an open cover with mo finite subcover, so IN is not compact.

IN <math>\subseteq B^{m}(1) = [1,20)$, so IN is bounded.

Problem 3. (a) (7 pts) Suppose M is a metric space, A is a subset of M, and f is a uniformly continuous real valued function defined on A. Show that there is a continuous function \hat{f} on \bar{A} such that $\hat{f}(x) = f(x)$ for $x \in A$.

Claim: If {xn} is Cauchy in A then {f(xn)} in Cauchy Pf: E>0 => 3 8 R.t. |f(x)-f(y)| < E U d(x,y) < 8 8>0 => 3 N r.t. d(xn, xm)<8 if n, m > N. Thur for n, m > N we have |flxn |-flxm | < E & {flxn} in Cauchy. Given $x \in \overline{A}$, $\exists \{x_n\}$ in A with $\lim x_n = x$. Define f(x) = limf(xn). If XEA we have f(x) = f(x) rince f in continuous at X. If X & A and {43 mg is another sequence from A with lim 3n = x, then we have d(xn, yn) - o and thus by uniform continuity If(xn)-f(yn)) -> 0 & hence lim f(yn) = lim f(xn) = f(x). Thur f is well defined. Since If(x)-f(y) | < pup |f(P)-f(g)| for x, y & A, we see that f is uniformly cont on A.

(b) (3 pts) Give an example of a bounded continuous function on (0,1) which is not uniformly continuous. Justify your answer.

f(x) = pin(x) is continuous on (0,1) but does not extend continuously to [0,1] and so f(x) is not uniformly continuous by (a). **Problem 4.** (10 pts) Let M_1 and M_2 be metric spaces and let f be a map from M_1 to M_2 . Show that f is continuous if and only if for all subsets A of M_1 we have $f(\bar{A}) \subseteq \overline{f(A)}$.

(=) A sume f is continuous Let yef(A), no 3 x E A with y=f(x). Let (Xn? in A with lim Xn = X. Since f in continuous at x we have $\lim_{x \to \infty} f(x_n) = f(x) = y$. Thur is a limit point of f(A); that is, y & F(A) (E) Assume f(A) C F(A) V A S M1. Let XEM, Suppose f is not continuous at X. 38070 Ro that Y8>0 3 yeB8(X) such that fly) & BEN(flx)). Take S=1/2 and let yn be such a point. Let A be the set consisting of the points & yn: n=1,2,3,-7. Since yn > x we see that x EA, but flyn) & BE(fix) and so f(x) & F(A), a controdiction ... f in continuous at x for all x EM,.

Problem 5. Let M be a compact metric space. Suppose, for some positive integer n, we have nonempty closed subsets F_1, \ldots, F_n such that $F_i \cap F_j = \phi$ for $i \neq j$, and such that $M = \bigcup_{i=1}^n F_i$. Let n(M) be the maximum such integer n. We take $n(M) = \infty$ if n can be aribtrarily large.

(a) (7 pts) Suppose that for all $x \in M$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x)$ is connected. Show that n(M) is finite.

Since $F_i = (U F_i)$ we see that each F_i in open. Since $B_{\epsilon}|_{X}$ is connected we must have $B_{\epsilon}|_{X}) \subseteq F_i$ for some iSince M is compact we can cover M by a finite number of such balls $B_{\epsilon}|_{X}$, ..., $B_{\epsilon}|_{X}$

finite number of such balls $B_{\epsilon_i}(x_i)$, ..., $B_{\epsilon_k}(x_k)$ Now each ball $B_{\epsilon_i}(x_i)$ is contained in one and only one F_i , so it follows that $n \leq k$.

 $n(m) \leq h < \infty$

(b) (3 pts) Give an example of a compact metric space M with $n(M) = \infty$. $M = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \} = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$. M in closed and bounded hence compact.

For any integer n we can take $F_i = \frac{51}{12}$ for i=1,...,n and $F_{n+1} = M \setminus \bigcup_{i=1}^{n} F_i$. All petr are closed and

pairwise disjoint, so n(m) = so.