Introduction to Dynamical Systems

Carson James

1

Contents

N	fotation	vii
Pı	reface	1
1	Basic Concepts	3
	1.1 Measure Preserving Transformations	3
	1.2 Measure Preserving Systems	5
\mathbf{A}	\mathbf{App}	7
	A.1 Reading Diagrams and associated digraphs of diagrams	7

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Basic Concepts

1.1 Measure Preserving Transformations

Definition 1.1.0.1. We define **Meas** by

- $Obj(Meas) := \{(X, A) : (X, A) \text{ is a measurable space}\}.$
- for $(X, \mathcal{A}), (Y, \mathcal{B}) \in \text{Obj}(\mathbf{Meas}),$

$$\operatorname{Hom}_{\mathbf{Meas}}((X, \mathcal{A}), (Y, \mathcal{B})) := \{ f : X \to Y : f \text{ is } (\mathcal{A}, \mathcal{B}) \text{-measurable} \}$$

• for $(X, \mathcal{A}), (Y, \mathcal{B}), (Z, \mathcal{C}) \in \text{Obj}(\mathbf{Meas}), f \in \text{Hom}_{\mathbf{Meas}}((X, \mathcal{A}), (Y, \mathcal{B}))$ and $g \in \text{Hom}_{\mathbf{Meas}}((Y, \mathcal{B}), (Z, \mathcal{C})),$

$$g \circ_{\mathbf{Meas}} f := g \circ_{\mathbf{Set}} f$$

Exercise 1.1.0.2. We have that Meas is a category.

Proof.

Exercise 1.1.0.3. We have that Meas is a Cartesian monoidal category.

Definition 1.1.0.4. Let $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ be probability spaces and $f \in \text{Hom}_{\mathbf{Meas}}((X, \mathcal{A}), (Y, \mathcal{B}))$. Then T is said to be **measure preserving** if $f_*\mu = \nu$.

Exercise 1.1.0.5. Let $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ be probability spaces and $f \in \text{Hom}_{\mathbf{Meas}}((X, \mathcal{A}), (Y, \mathcal{B}))$. Then f is measure preserving iff for each $\phi \in L^1(Y, \mathcal{B}, \nu), \phi \circ f \in L^1(X, \mathcal{A}, \mu)$ and

$$\int_{Y} \phi \, d\nu = \int_{X} \phi \circ f \, d\mu$$

Proof.

• (\Longrightarrow): Suppose that f is measure preserving. $\phi \in L^1(Y, \mathcal{B}, \nu)$. Then the a basic result on the change of variables implies that $\phi \circ f \in L^1(X, \mathcal{A}, \mu)$ and

$$\int_{Y} \phi \, d\nu = \int_{Y} \phi d \, f_* mu$$
$$= \int_{X} \phi \, d\mu$$

• (\Leftarrow): Suppose that for each $\phi \in L^1(Y, \mathcal{B}, \nu)$, $\phi \circ f \in L^1(X, \mathcal{A}, \mu)$ and

$$\int_Y \phi \, d\nu = \int_X \phi \circ f \, d\mu$$

Let $B \in \mathcal{B}$. Since ν is a probability measure, $\chi_B \in L^1(Y, \mathcal{B}, \nu)$. Thus

$$\nu(B) = \int_{Y} \chi_{B} d\nu$$

$$= \int_{X} \chi_{B} \circ f d\mu$$

$$= \int_{X} \chi_{f^{-1}(B)} d\mu$$

$$= \mu(f^{-1}(B))$$

$$= f_{*}\mu(B)$$

Since $B \in \mathcal{B}$ is arbitrary, $f_*\mu = \nu$.

Definition 1.1.0.6. We define **Prob** by

- $Obj(\mathbf{Prob}) = \{(X, \mathcal{A}, \mu) : (X, \mathcal{A}, \mu) \text{ is a probability space}\}.$
- for $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu) \in \text{Obj}(\mathbf{Prob}),$

 $\operatorname{Hom}_{\mathbf{Prob}}((X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)) = \{ f \in \operatorname{Hom}_{\mathbf{Meas}}((X, \mathcal{A}), (Y, \mathcal{B})) : f \text{ is measure preserving} \}$

• for $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu), (Z, \mathcal{C}, \lambda) \in \text{Obj}(\mathbf{Prob}), f \in \text{Hom}_{\mathbf{Prob}}((X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu))$ and $g \in \text{Hom}_{\mathbf{Prob}}((Y, \mathcal{B}, \nu), (Z, \mathcal{C}, \lambda)),$

$$g \circ_{\mathbf{Prob}} f := g \circ_{\mathbf{Set}} f$$

Exercise 1.1.0.7. We have that **Prob** is a category.

Proof.

Exercise 1.1.0.8. We have that **Prob** is not a Cartesian monoidal category.

Proof. content...

Even though **Prob** does not have products, when applying the forgetful functor $U: \mathbf{Prob} \to \mathbf{Meas}$, we get a category with products \mathbf{Meas} , so in some sense, an object in \mathbf{Meas} is an equivalence class of objects in \mathbf{Prob} where we ignore our notions of size/interaction of sub-objects. After applying the U to a potential product $(Z, \mathcal{C}, \lambda) \in \mathrm{Obj}(\mathbf{Prob})$ (i.e. there are associated measure preserving maps $f_X: Z \to X$ and $f_Y: Z \to Y$) to get $(Z, \mathcal{C}) \in \mathrm{Obj}(\mathbf{Meas})$, then $(Z, \mathcal{C}) \in \mathrm{Obj}(\mathbf{Meas})$ is a potential product with the same associated maps and we get the unique map $h: Z \to X \times Y$ in \mathbf{Meas} yielding the typical commutative diagram for products in \mathbf{Meas} (i.e. $h = f_X, f_Y$). In general h does not preserve measure unless λ can be written as a tensor product. We can quantify how far off a potential product $(Z, \mathcal{C}, \lambda) \in \mathrm{Obj}(\mathbf{Prob})$ (i.e. an element of the equivalence class) is from being a product by looking at the information loss (relative entropy) across h

1.2 Measure Preserving Systems

Definition 1.2.0.1. Let $(X, A) \in \text{Obj}(\mathbf{Meas})$, $f \in \text{End}_{\mathbf{Meas}}(X, A)$ and $\mu \in \mathcal{M}(X, A)$. Then μ is said to be f-invariant if $f_*\mu = \mu$.

Exercise 1.2.0.2. Let X be a compact metric space and $f \in \operatorname{End}_{\mathbf{Top}}(X)$. Then there exists $\mu \in \mathcal{P}(X, \mathcal{A})$ such that μ is f-invariant.

Hint:

Proof.

Definition 1.2.0.3. Let $(X, \mathcal{A}, \mu) \in \mathbf{Prob}$ and $f \in \mathrm{End}_{\mathbf{Prob}}(X, \mathcal{A}, \mu)$. Then (X, \mathcal{A}, μ, f) is said to be a measure-preserving dynamical system.

Exercise 1.2.0.4.

Appendix A

App

A.1 Reading Diagrams and associated digraphs of diagrams

Definition A.1.0.1. Let

$$\begin{array}{ccc}
C & \xrightarrow{g} & A \\
h \downarrow & \downarrow f & \Longrightarrow & C & A \\
A & \xrightarrow{f} & B & & & h
\end{array}$$

see an intro to the language of category theory by roman for description

Definition A.1.0.2. A diagram is said to be **commutative** if for each path of length ≥ 2 , in the associated digraph gives the same morphism.

8 APPENDIX A. APP