## Αμφισυνεχείς και αμφιμονοσήμαντες απεικονίσεις του:

$$(\mathbb{R} \to \{(x,y) \mid x^2 + y^2 = 1\})$$

## Συμβολισμοί:

 $\mathbf{1.}S(x,r) = \{ \tilde{x} \in A \mid d(\tilde{x},x) < r \}$   $\mathbf{2.}B(x,r) = \{ \tilde{x} \in A \mid d(\tilde{x},x) \leq r \}$   $\mathbf{3.}\widehat{T_C}(a,b)$ : το τόξο που ορίζεται από τα a,b στον κύκλο C.

Δεν είναι δυνατόν να βρεθεί απεικόνηση  $\varphi$  του  $(\mathbb{R} \to \{(x,y) \mid x^2+y^2=1\}=C)$ , η οποία να είναι συγχρόνως αμφιμονοσήμαντη και αμφισυνεχής. Μάλιστα θα δείξουμε (συνοπτικά) ότι το εξής θα συμβαίνει: εάν υποθέσουμε το αμφιμονοσήμαντο συνάρτησης, θα αποκλείεται η συνέχεια, ενώ αν υποθέσουμε την συνέχεια της αντίστροφης, θα αποκλείεται το επί.

Απόδειξη:

**I.** Ας υποθέσουμε ότι η  $\varphi$  είναι μία αμφιμονοσήμαντη συνάρτηση του  $(\mathbb{R} \to C)$ .

Η  $\varphi$  δεν είναι δυνατόν να είναι συνεχής συνάρτηση, αφού μπορεί να βρεθεί μια φθίνουσα ακολουθία κλειστών συνόλων  $A_i$  με  $diam A_i \to 0$  του C τα οποία έχουν πάντοτε απροσδιόριστα μεγάλους πραγματικούς αριθμούς, και άρα στο σημείο του  $\bigcap_i A_i$  η  $\varphi$  δεν γίνεται να είναι συνεχής. Το ότι το  $\bigcap_i A_i$  είναι μονοσύνολο προκύπτει από το θεώρημα των Cantor - Fréchet. Η επιλογή των  $A_i$  μπορεί να γίνει χωρίζοντας το  $A_1 = C$  σε δύο ίσα τόξα  $\widehat{T_C}\left((1,0),\left(\cos\frac{\pi}{2},\sin\frac{\pi}{2}\right)\right),\overline{\left[\widehat{T_C}\left((1,0),\left(\cos\frac{\pi}{2},\sin\frac{\pi}{2}\right)\right)\right]_C^c}$  και διαλέγοντας όποιο από αυτά (έστω το  $A_2$ ) έχει απροσδιόριστα μεγάλους πραγματικούς αριθμούς. Η διαδικασία συνεχίζεται επαγωγικά χωρίζοντας το  $A_i$  σε δύο ίσα τόξα και επιλέγοντας το  $A_{i+1}$ .

**II.** Ας υποθέσουμε ότι η  $\varphi$  είναι μία 1-1 συνάρτηση του  $(\mathbb{R} \to C)$  με συνεχή αντίστροφη.

Εφόσον η  $\varphi^{-1}$  είναι συνεχής, τα σύνολα  $\varphi \left( (-x,x) \right)$  θα είναι όλα τους ανοικτά, και άρα τα  $\left[ \varphi \left( (-x,x) \right) \right]_C^c$  θα είναι κλειστά.

Εάν y είναι ένας αριθμός μεγαλύτερος του x, θα ισχύει ότι  $\left[\varphi\big((-x,x)\big)\right]_C^c\supseteq \left[\varphi\big((-y,y)\big)\right]_C^c$ . Πράγματι, θα το δείξουμε με άτοπο:

$$\begin{split} & \left[\varphi\big((-y,y)\big)\right]_C^c \not\subseteq \left[\varphi\big((-x,x)\big)\right]_C^c \Rightarrow \exists z \in \left[\varphi\big((-y,y)\big)\right]_C^c - \left[\varphi\big((-x,x)\big)\right]_C^c \Rightarrow \\ & \Rightarrow z \in \left[\varphi\big((-y,y)\big)\right]_C^c \text{ kai } z \in \varphi\big((-x,x)\big) \stackrel{x \leq y}{\Longrightarrow} z \in \left[\varphi\big((-y,y)\big)\right]_C^c \text{ kai } z \in \varphi\big((-y,y)\big) \end{split}$$

Αυτό είναι προφανώς άτοπο.

Με αυτά έχουμε ουσιαστικά δείξει ότι η ακολυθία  $\left(\left[\varphi\left((-x,x)\right)\right]_C^c\right)_{x\in\mathbb{N}}$  είναι μία φθίνουσα ακολουθία κλειστών συνόλων. Επομένως, από το θεώρημα των Cantor - Fréchet:

$$[\varphi(\mathbb{R})]_C^c = \bigcap_{x \in \mathbb{N}} [\varphi((-x, x))]_C^c \supseteq {x \choose x}$$

όπου  $\overset{\infty}{x}$  είναι ένας πραγματικός αριθμός. Αυτό δείχνει ότι η  $\varphi$  δεν είναι επί.

**Παράδειγμα (1 – 1, συνεχής, αλλά όχι επί):** Το αυτίστοιχο της στερεογραφικής προβολής στο επίπεδο:



Θεωρούμε τον κύκλο C στο επίπεδο και  $\varepsilon$  μια του εφαπτομένη ευθεία. Ορίζουμε τις εξής δύο απεικονήσεις:

- Έστω  $\zeta$  μία ευθεία του επιπέδου  $\mathbb{R}^2$ . Ορίζουμε την απεικόνηση  $\Pi(\zeta)=\pi_\zeta:\zeta o \varepsilon$  ως:

$$\pi_{\zeta}(x) = \varepsilon^{\perp}(x) \cap^{*} \varepsilon$$

όπου  $\varepsilon^{\perp}(x)$  είναι η κάθετη προς την  $\varepsilon$  που διέρχεται από το x και η σχέση  $\cap^*$  είναι μία σχέση που για κάθε δύο σχήματα  $\alpha, \beta$  με το πολύ 1 σημείο τομής, ορίζεται ως:

$$\cap^*:\alpha\cap^*\beta=\begin{cases}\emptyset, \text{ εάν δεν υπάρχει σημείο τομής,}\\ \text{το μοναδικό τους σημείο τομής, αν αυτές τέμνονται}\end{cases}$$

- Έστω A το (μοναδικό) σημείο του C με την μέγιστη απόσταση από την  $\varepsilon$ . Ορίζουμε την απεικόνιση  $\psi: \varepsilon \to C$  ως:

$$\psi(x) = [Ax - \{A\}] \cap^* C$$

Παρατηρούμε ότι η απεικόνιση που ορίζεται ως  $\psi \circ \left(\Pi(\zeta)(x)\right)$  είναι 1-1, συνεχής και επί του  $C-\{A\} \neq C$ .



## Ορισμός της πολυμεταβλητής συνέχειας σε παραμετροποιημένες καμπύλες

**Ορισμός:** Συνέχεια συναρτήσεων  $\mathbb{R}^n \to \mathbb{R}^m$ :

Έστω f μια συνάρτηση  $f:A\to\mathbb{R}^m$ , με  $A\subseteq\mathbb{R}^n$ . Η f θα καβείται συνεχής στο  $B\subseteq A$  εάν το ακόβουθο αβηθεύει:

$$\forall \vec{x}_0 \in B, \ \forall \varepsilon > 0, \ \exists \delta > 0: \ \forall \vec{x} \in S(\vec{x}_0, \delta) \cap B, \ ||f(\vec{x}) - f(\vec{x}_0)|| < \varepsilon$$

ή απλούστερα, με συμβολισμό ορίων θα μπορούσαμε να γράψουμε:

$$\forall \vec{x}_0 \in B, \ \lim_{x \to x_0} ||f(\vec{x}) - f(\vec{x}_0)|| = 0 \Leftrightarrow \forall \vec{x}_0 \in B, \ \lim_{x \to x_0} f(\vec{x}) = f(\vec{x}_0)$$

Στην περίπτωση μιας παραμετροποιημένης καμπύλης  $\gamma:[0,1]\to\mathbb{R}^3$ , ο ορισμός παίρνει την ακόλουθη μορφή:

Για κάθε  $t \in [0,1]$ , για κάθε  $\varepsilon > 0$ , υπάρχει  $\delta > 0$  τέτοιο ώστε για κάθε  $\tilde{t} \in (t-\delta,t+\delta) \cap [0,1]$  να ισχύει  $||\gamma(\tilde{t}) - \gamma(t)|| < \varepsilon$ .

Ερώτηση για τους ορισμούς: Εάν έχουμε μια καμπύλη  $\gamma:[0,1]\to\mathbb{R}^3$  η οποία τέμνει τον εαυτό της σε μοναδικό σημείο  $\gamma(t_0)=\gamma(t_1)=x$  με  $t_0,t_1\not\in\{0,1\}$ , τότε η καμπύλη αυτή μπορεί να θεωρηθεί θυλιά ή μόνο ο αντίστοιχος περιορισμός της  $\gamma|_{[\min\{t_0,t_1\},\max\{t_0,t_1\}]}$ ;

