1. A squadron of planes is approaching a RADAR installation. The squadron has the following characteristics:

$$\begin{split} \sigma &= 8m^2 \\ G_R &= 3.2 \\ P_{r,min,\ RWR} &= 400nW \\ altitude &= 3500ft,\ AGL \end{split}$$

The RADAR installation has the following characteristics:

$$\begin{split} f &= 900 \text{MHz} \\ G_T &= 250 \\ P_T &= 9 \text{kW} \\ P_{r,\text{min,RADAR}} &= 15 \text{fW} \\ \text{altitude} &= 175 \text{ft, AGL} \end{split}$$

(a) For the conditions specified, what will be the maximum line of sight distance between the RADAR and the lead aircraft?

$$R_{LOS} =$$
 165 km

(b) What is the maximum distance from which the lead aircraft's RWR will detect the RADAR?

$$R_{RWR} =$$
 113 km

(c) What is the maximum distance from which the RADAR will detect the planes?

$$R_{RADAR} = 64.0 \text{ km}$$

(d) Who will see who first, and at what range?

2. For the data given in Problem 1, what would be the planes' new altitude so that the line-of-sight distance matches the RWR detection distance?

Altitude = 1,310 ft

3. For the data given in Problem 1, what is the minimum RCS value  $(\sigma)$  required for the RADAR to be able to detect the plane at the original LOS distance?

 $\sigma = \boxed{ 351 \ m^2}$ 

4. The RCS of a fighter is approximately 20 square meters. The RCS of a missile is approximately 0.2 square meters. How many times farther away can the fighter be detected than the missile?

 $\sigma = \begin{bmatrix} 3.16 \text{ times farther} \end{bmatrix}$ 

5. During an exercise, a UAS is used to gather information on the red forces. The red team has deployed a mobile RADAR unit, with the following parameters:

| RADAR unit                              | UAS                                   |
|-----------------------------------------|---------------------------------------|
| Frequency = 450 MHz                     | $RCS = 0.4 m^2$                       |
| Transmit Power = $1.5$ kW               | Receive antenna gain $= 3$            |
| Antenna gain = 200                      | Minimum power received = 1.25 $\mu W$ |
| Minimum power received $= 1 \text{ fW}$ |                                       |



$$R_{LOS} =$$
 20.0 km

3 of 3

(b) How much power is received by the RADAR if the UAS is 
$$30 \text{ km}$$
 from the RADAR?

$$R_{RWR} =$$
 6.64 fW

(c) For the conditions specified, what will be the maximum line of sight distance between the RADAR and the UAS?

$$R_{LOS} =$$
 47.47 km

(d) What is the maximum distance from which the UAS RWR will detect the RADAR?

$$R_{RWR} = 45.02 \text{ km}$$

(e) What is the maximum distance from which the RADAR will detect the UAS?

$$R_{RADAR} =$$
 48.15 km

(f) Who will see who first, and at what range?