ОДИН МЕТОД ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ЛИНЕЙНЫМИ СИСТЕМАМИ БЕЗ ПРЕДВАРИТЕЛЬНОЙ ПАРАМЕТРИЧЕСКОЙ ИДЕНТИФИКАЦИИ СИСТЕМЫ

Н.М. Дмитрук, Е.А. Манжулина

Белорусский государственный университет, Минск, Беларусь {dmitrukn,fpm.manzhuli}@bsu.by

Рассмотрим линейную стационарную дискретную систему G, минимальная реализация (A,B,C,D) которой известна:

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t) + Du(t), \quad t = 0, \dots, T - 1.$$
(1)

Здесь $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$ — состояние системы, управление и выходной сигнал в момент времени t, (A, B) — управляема, (A, C) — наблюдаема.

Траекторией системы G будем называть пару $\{u,y\} = \{u(t),y(t)\}_{t=0}^{T-1}$ из управления и выходного сигнала, удовлетворяющую (1) при некотором (наблюдателю неизвестном) начальном состоянии $x(0) \in \mathbb{R}^n$. В каждом конкретном процессе управления реализуется некоторая траектория $\{u^p,y^p\} = \{u^p(t),y^p(t)\}_{t=0}^{T-1}$ системы G, которая определяется реализовавшимся, но наблюдателю неизвестным начальным состоянием $x_0^p \in X_0$ и поданным на вход системы (1) управлением u^p . Далее будем считать, что в процессе управления доступны лишь неточные измерения выходных сигналов вида $\tilde{y}^p(t) = y^p(t) + \xi(t), \quad t = 0, \dots, T-1$, где $\xi(t) \in \Xi = \{\xi \in \mathbb{R}^p : ||\xi||_{\infty} \le \varepsilon$ — неизвестная ограниченная ошибка измерения в момент времени t.

Поставим задачу о минимизации энергетических затрат на управление системой $J(u)=\sum_{t=0}^{T-1}\|u(t)\|^2$ на множестве доступных управляющих воздействий $u(t)\in U=\{u\in\mathbb{R}^m:u_{\min}\leq u\leq u_{\max}\}$, гарантирующих выполнение ограничений на выходные сигналы $y(t)\in Y(t)=\{y\in\mathbb{R}^p:G(t)y\leq g(t)\},\ G(t)\in\mathbb{R}^{q\times p},\ g(t)\in\mathbb{R}^q,\ t=0,\ldots,T-1$ при всех возможных реализациях начального состояния $x(0)\in X_0=\{x\in\mathbb{R}^n:x_{\min}\leq x\leq x_{\max}\}$. В данной задаче для построения оптимальной обратной связи по неточным измерениям может быть использовна модификация результатов работы [1].

В докладе исследуется случай, когда реализация (A,B,C,D) системы в пространстве состояний не известна. Классический подход в подобных ситуациях состоит в предварительной идентификации системы и последующей формулировке и решении рассмотренной выше задачи. В настоящей работе будет предложен альтернативный подход, не нуждающийся в явном параметрическом представлении системы. Вместо модели (A,B,C,D) будем использовать полученное в [2] представление любой траектории системы G на основе одной предварительно сгенерированной траектории из управления и выходного сигнала $\{u^d,y^d\}=\{u^d(t),y^d(t)\}_{t=0}^{T^d-1}$, которую далее будем называть априорной траекторией. Будем считать, что априорная траектория $\{u^d,y^d\}$ измерена точно, для системы G дана верхняя оценка размерности ее состояния n (см. [2]). Также будем полагать, что управление u^d является постоянно возбуждающим порядка T, т.е. матрица Ганкеля

$$H_{T}(u^{d}) = \begin{pmatrix} u^{d}(0) & \cdots & u^{d}(T^{d} - T) \\ \vdots & \ddots & \vdots \\ u^{d}(\tau - 1) & \cdots & u^{d}(\tau - 1 + T^{d} - T) \\ u^{d}(\tau) & \cdots & u^{d}(\tau + T^{d} - T) \\ \vdots & \ddots & \vdots \\ u^{d}(T - 1) & \cdots & u^{d}(T^{d} - 1) \end{pmatrix} = \begin{pmatrix} U_{\tau}^{p} \\ U_{\tau}^{f} \end{pmatrix}$$

имеет полный строчный ранг [3]. Здесь блоки U^p_{τ} и U^f_{τ} соответствуют "прошлому" и "будущему" для момента τ . Это деление потребуется в последующем при построении множества возможных траекторий $\{u^p_{\tau}, u, y^p_{\tau}, y\}$ длины T с некоторой фиксированной "прошлой" частью $\{u^p_{\tau}, y^p_{\tau}\} = \{u^p(t), y^p(t)\}_{t=0}^{\tau-1}$ длины τ и нефиксированной "будущей" частью $\{u, y\} = \{u(t), y(t)\}_{t=\tau}^{T-1}$. Аналогичным образом разбивается построчно матрица Ганкеля $H_T(y^d)$.

Ставя целью нахождение аналога принципа разделимости управления и наблюдения для линейных систем с известной моделью в пространстве состояний (см. [4]) для рассматриваемого случая, следуем идее декомпозиции будущего выходного сигнала y: $y=y_0+\hat{y}$, где $y_0=\{y_0(t)\}_{t=\tau}^{T-1}$ — выходной сигнал системы G, соответствующий управлению u и тривиальному начальному условию $x(\tau)=0$; $\hat{y}=\{\hat{y}(t)\}_{t=\tau}^{T-1}$ — выходной сигнал неуправляемой системы G для некоторого начального условия $x(\tau)$, согласующегося с текущей позицией процесса $\{u_{\tau}^p, \tilde{y}_{\tau}^p\}$. Эта идея нашла выражение в следующем результате, касающемся вопроса построения "будущей" части траектории с фиксированной "прошлой" частью. Доказательство основано на теореме 3 из [2], представляющей собой критерий принадлежности $\{u,y\}$ множеству траекторий системы G, сформулированный в терминах матриц Ганкеля априорных сигналов $H_T(u^d), H_T(y^d)$.

Лемма 1. Пусть $\{u_{\tau}^p, y_{\tau}^p\}$ — некоторая фиксированная прошлая траектория системы G длины $\tau \geq n$. Тогда любая траектория $\{u_{\tau}^p, u, y_{\tau}^p, y\}$ длины T системы G однозначно представима в виде суммы траекторий $\{0, u, 0, y_0\}$ и $\{u_{\tau}^p, 0, y_{\tau}^p, \hat{y}\}$ длины T, причем для фиксированного управления и определить неизвестные будущие участки y_0, \hat{y} можно следующим образом:

1. Найти некоторые решения $\hat{\alpha}(\tau)$, $\alpha_0(\tau)$ алгебраичеких уравнений

$$\begin{pmatrix} U_{\tau}^{p} \\ Y_{\tau}^{p} \\ U_{\tau}^{f} \end{pmatrix} \hat{\alpha}(\tau) = \begin{pmatrix} u_{\tau}^{p} \\ y_{\tau}^{p} \\ 0 \end{pmatrix}, \quad \begin{pmatrix} U_{\tau}^{p} \\ Y_{\tau}^{p} \\ U_{\tau}^{f} \end{pmatrix} \alpha_{0}(\tau) = \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}.$$

2. Вычислить $\hat{y} = Y_{\tau}^{f} \hat{\alpha}(\tau), y_{0} = Y_{\tau}^{f} \alpha_{0}(\tau).$

Лемма 1 позволяет обосновать предложенную схему управления системой на основе априорных данных $\{u^d, y^d\}$: при всех $\tau = n, \ldots, T-1$:

- 1) найти оценки $\chi_i(t|\tau)$, решив первую из задач (2) (задачу оптимального наблюдения, см. [1]) для $i=1,\ldots,q,\,t=\tau,\ldots,T-1;$
- 2) найти решение $\alpha_0^*(\tau, u_\tau^p, \tilde{y}_\tau^p)$ второй из задач (2)(задачи оптимального управления, см. [1]);
 - 3) подать на вход системы управление $u^p(\tau)=U^d(\tau)\alpha_0^*(\tau,u_\tau^p,\tilde{y}_\tau^p)$.

$$\chi_{i}(t|\tau) = \max_{\hat{\alpha}(\tau)} G_{i}(t)Y^{d}(t)\hat{\alpha}(\tau), \qquad \min_{\alpha_{0}(\tau)} \alpha_{0}(\tau)^{T}(U_{\tau}^{f})^{T}U_{\tau}^{f}\alpha_{0}(\tau), \qquad (2)$$

$$\begin{pmatrix} U_{\tau}^{p} \\ U_{\tau}^{f} \end{pmatrix} \hat{\alpha}(\tau) = \begin{pmatrix} u_{\tau}^{p} \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} U_{\tau}^{p} \\ Y_{\tau}^{p} \end{pmatrix} \alpha_{0}(\tau) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad (2)$$

$$\tilde{y}_{\tau}^{p} - \varepsilon 1 \leq Y_{\tau}^{p} \hat{\alpha}(\tau) \leq \tilde{y}_{\tau}^{p} + \varepsilon 1 \qquad G(t)Y^{d}(t)\alpha_{0}(\tau) \leq g(t) - \chi(t|\tau), \qquad u_{\min} \leq U^{d}(t)\alpha_{0}(\tau) \leq u_{\max}, \quad t = \tau, \dots, T - 1,$$

где $U^d(t) = (u^d(t), u^d(t+1), \dots, u^d(t+T^d-T))$, аналогично $Y^d(t)$, 1 — единичный вектор.

Практическая эффективность предложенного алгоритма управления иллюстрируется примерами, а теоретическое обоснование его реализуемости дает следующий результат.

Теорема 1. Если задачи оптимального наблюдения и управления () имеют решение в момент времени $\tau = n$, то они разрешимы и в каждый из последующих моментов $\tau = n + 1, \dots, T - 1$. При этом критерий качества, значение которого определяется в момент $\tau \kappa a \kappa J(\tau) = \sum_{t=0}^{\tau-1} ||u^p(t)||^2 + \sum_{t=\tau}^{T-1} ||u^*(t|\tau)||^2$, является невозрастающей функцией от τ .

Литература

- 1. Габасов Р., Дмитрук Н.М., Кириллова Ф.М. *Оптимальное управление многомерными систе-мами по неточным измерениям их выходных сигналов* // Труды Института математики и механики УрО РАН. 2004 Т. 10. № 2. С. 33–57.
- 2. Berberich J., Allgöwer F. A trajectory-based framework for data-driven system analysis and control // European Control Conference, Saint Petersburg, Russia, 2020. P. 1365–1370.
- 3. Willems J. C., Markovsky I., Rapisarda P., De Moor B. L. M. A note on persistency of excitation // Systems & Control Letters. 2005. V. 54. P. 325–329.
 - 4. Kurzhanskii A. B., Vályi I. Ellipsoidal calculus for estimation and control Nelson Thornes, 1997.

Информация для содержания сборника

Дмитрук Н.М., Манжулина Е.А. Один метод оптимального управления линейными системами без предварительной параметрической идентификации системы Дмитрук Н.М. Белорусский государственный университет, Минск, Беларусь dmitrukn@bsu.by Манжулина Е.А. Белорусский государственный университет, Минск, Беларусь fpm.manzhuli@bsu.by