Detection of Players and Football in Broadcasted Video Stream

Problem Statement

Given a broadcasted **Video** of a football match,

We aimed to develop a Machine
Learning System using the help of Deep
Learning and Computer Vision such that
moving players on the pitch like Players and
Football can be detected properly.

Source: https://arxiv.org/abs/1912.05445

Project Pipeline

ISSIA-CNR dataset:

- 6 synchronized, long-shot views of the football pitch.
 - Recorded at 25 FPS with 1920x1088 resolution
 - Total frames 17993
 - **129154** Players
 - **8336** Balls
- 6 annotation file in .xgtf format.
 - Contains bounding box info.
 - For Player (xtl, ytl, width, height)
 - For Ball (x_center, y_center)

SPD-BMV-2017 Dataset:

- Videos from 2 professional football match.
 - Recorded by 3 cameras at 30 FPS with 1280x720x3 resolution.
 - Contains 2019 image frames
 - 22586 annotated Players
 - 2942 Balls
- 2 annotation file in .mt format.
 - Contains bounding box info.
 - Only for Player (x_min, y_min, width, height).
 - Annotated Ball using CVAT.
 - Ball bounding box (x_min, y_min, width, height)

MOUNSIF Dataset:

- Videos from 2 professional football match.
 - Recorded by 5 cameras at 25 FPS with
 1280x720x3 resolution
 - Contains 500 .jpg image frames
 - 7799 annotated Players
 - 856 annotated Balls
- 2 annotation file in .txt format.
 - Contains bounding box info.
 - For player (x_min, y_min,width, height)
 - For Ball (x_min, y_min,width, height)

0.025 Width Mean = 38 Height Mean = 87 0.020 0.015 Oensity 0.010 0.005 0.000 50 100 0 150 200 250 300 350

Class Distribution Plot

Height-Width Distribution Plot

Height-Density Plot

Width-Density Plot

Dataset Construction

- Discarded garbage annotations.
- Extract frames from the videos using ffmpeg tool where each frame contains 3 color channel.
- Convert the dataset provided annotation format into model specific format -
 - (class_id, xtl, ytl, xbr, ybr)where player_id : 2, ball_id : 1
- Merge those three types of dataset and splitted into Training, Validation and Testing subset.

Prior Anchor box Generation

Bounding box relationship

- Obtained 9 cluster centers from heights, widths of all the bounding boxes using K-means clustering.
- 9 anchor box for 3 types of object
 - Small
 - Medium
 - Large

But What's It Needed For ?

Data Augmentation Strategies

- MixUp: Overlaying of Image pairs proportionally with each-other.
- CutOut : Randomly masks square portion from images during training.
- CutMix: In CutMix, the cutout is replaced with a part of another image.

What's For ?
Reduces the chance of Overfitting.

Data Augmentation Strategies

MOSAIC: Combines 4 training images into one in certain ratios (instead of only two in CutMix).

What's For?

- Helps to learn how to identify SMALLER scaled objects.
- Reduces the needs for a large mini-batch size.

aug_-319215602_0_-238783579.jpg

aug_1474493600_0_-45389312.jpg

aug_-1271888501_0_-749611674.jpg

aug_1715045541_0_603913529.jpg

aug_1462167959_0_-1659206634.jpg

aug_1779424844_0_-589696888.jpg

YOLOv4 Overview

- Uses CSPDarknet53 as Feature Extractor.
- Neck helps to add layers between the Backbone and the dense prediction block(Head).
- It's Prediction Block predicts bounding boxes in 3 scales just like YOLOv3.

Source: https://files.ai-pool.com/a/7697d5bc15ad2b6d6bb1c3a86cc792cb.png

Detections at 3 Scales

- Downsample the image at three separate places at the network.
- For large object detection:

Strides: 32

Output: 13x13

- For medium object detection:
 - Strides: 16
 - o Output: **26x26**
- For small object detection:
 - Strides: 8
 - Output: **52x52**

Thus It Performs Better at Detecting Smaller Objects Like Soccer Player or Ball in Aerial Images.

Feature Maps In Output Layers

Image Grid. The Red Grid is responsible for detecting the dog

- At each scale, every grid can predict 3 bounding boxes using 3 prior anchor boxes values.
- For instance, 416x416 image is downsample to 13x13 blocks, then the RED block predicts 255 values or 3*(4+1+80) values.
- Box-coordinates: tx, ty are offsets and w,h are width-heights.
- Objectness Score: Confidence score of whether this block contains the center of any object in the actual image.
- Class Probabilities: Probabilities of the detected object belonging to a particular class.

Role of Prior Anchor Boxes

- Model gives (t_x, t_y, t_w, t_h) as bounding box information.
- Center Coordinates: Pass (t_x, t_y) to a sigmoid function, then add the top-left coordinates(C_x, C_y) to predict the actual coordinates(b_x, b_y) of the bounding box.
- Bounding Box Dimension: Dimensions of the bounding box are predicted by applying a log-space transformation to (t_w, t_h), then multiplying with an anchor box dim (p_w, p_h).
- Now (b_x, b_y, b_w, b_h) are actual bounding box coordinates.

Source:inverseai.com/media/blog_uploads/2020/12/09/image-20201209205 805-1.png

Multiple Bounding Box for Same Object

- Need to keep the one with highest confidence score.
- Non-Max Suppression :

Step 1: Select the box with highest objectiveness score

Step 2: Compare the overlap (intersection over union) of this box with other boxes

Step 3: Remove the bounding boxes with overlap (**intersection over union**) >50%

Step 4: Move to the next highest objectiveness score.

Step 5: Finally, repeat steps 2-4

Before non-max suppression

Non-Max Suppression

After non-max suppression

https://www.inverseai.com/media/blog_uploads/2020/12/20/nms.bmp

Intersection Over Union

- Describe the extent of overlap of two boxes.
- The greater the region of overlap, the greater the IOU.
- Used in NMS, which eliminates multiple boxes that surround the same object.

https://miro.medium.com/max/468/1*r0o3vX-x979Q84_lbJWS_g.jpeg

Focal Loss in YOLOv4

- Works well when extreme imbalance between foreground and background.
- Based on the cross-entropy loss by introducing a (1 - p_i)^Y coefficient.
- Focus the importance on the correction of misclassified examples.

https://miro.medium.com/max/700/1*kD5xdrktQit8zOkvYJqVIA.png

ISSIA-CNR Dataset:

	True Positive	False Positive	Average Precision
Player	1039	92	92.85%
Ball	7	25	13.28%

Precision	Recall	F1-score	mAP
0.90	0.90	0.90	0.53

Detection Sample on ISSIA_CNR Dataset

SPD-BMV Dataset:

	True Positive	False Positive	Average Precision
Player	1075	74	98.35%
Ball	59	22	78.78%

Precision	Recall	F1-score	mAP
0.92	0.97	0.94	0.8

Detection Sample on SPD-BMV Dataset

MOUNSIF Dataset:

	True Positive	False Positive	Average Precision
Player	1450	164	91.34%
Ball	36	60	34.42%

Precision	Recall	F1-score	mAP
0.87	0.89	0.88	0.61

Detection Sample on MOUNSIF Dataset

Training with PyTorch Implementation

Trained for 80 epochs,
And It's a Complete Disaster.

