Лекция 5: Value Function Approximation

Антон Романович Плаксин

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- S бесконечное пространство состояний
- \bullet \mathcal{A} конечное пространство действий
- \mathcal{P} неизвестная функция (тензор) вероятностей переходов между состояниями

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

• *R* — неизвестная функция (матрица) вознаграждений

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — коэффициент дисконтирования

Пример: Cartpole

- Состояния: \mathbb{R}^4 или пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: +1 на каждом шаге

Пример: Atari Games

- Состояния: пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: очки в игре

Monte-Carlo Algorithm

Пусть $Q(s,a)=0,\,N(s,a)=0$ и $\varepsilon=1.$ Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

Определяем $\varepsilon = 1/k$

Monte-Carlo Algorithm

Пусть $Q(s,a)=0,\,N(s,a)=0$ и $\varepsilon=1.$ Для каждого эпизода $k\in\overline{1,K}$ делаем:

- Согласно $\pi = \varepsilon$ -greedy(Q) получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) .
- Для каждого $t \in \overline{0, T-1}$ обновляем Q и N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

Определяем $\varepsilon=1/k$

SARSA Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t , переходим в состояние S_{t+1} , совершаем действие $A_{t+1} \sim \pi(\cdot|S_{t+1})$
- По $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$ обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon = 1/k$

Q-Learning Algorithm

Пусть Q(s,a)=0 и $\varepsilon=1.$

Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t переходим в состояние S_{t+1} .
- По (S_t, A_t, R_t, S_{t+1}) обновляем Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Полагаем, например, $\varepsilon = 1/k$

Аппроксимация

Идея аппроксимации

- ullet Задать функцию $Q^{ heta}(s,a)$, параметризованную $heta \in \mathbb{R}^N$
- ullet Найти такое heta, чтобы

$$Q^{ heta}(s,a) pprox q_{\pi}(s,a)$$
 или $Q^{ heta}(s,a) pprox q_{*}(s,a)$

Аппроксимация

Идея аппроксимации

- ullet Задать функцию $Q^{ heta}(s,a)$, параметризованную $heta \in \mathbb{R}^N$
- \bullet Найти такое θ , чтобы

$$Q^{ heta}(s,a)pprox q_{\pi}(s,a)$$
 или $Q^{ heta}(s,a)pprox q_{*}(s,a)$

Дифференцируемые аппроксиматоры

- Линейные комбинации функций
- Нейронные сети

Линейная комбинация функций

$$Q^{\theta}(s, a) = \sum_{i=1}^{n} \theta_{i} \varphi_{i}(s, a),$$

где $\varphi_i(s,a)$ — заданные функции

Линейная комбинация функций

$$Q^{\theta}(s, a) = \sum_{i=1}^{n} \theta_{i} \varphi_{i}(s, a),$$

где $\varphi_i(s,a)$ — заданные функции

Градиент

$$\nabla_{\theta} Q^{\theta}(s, a) = \begin{pmatrix} \varphi_1(s, a) \\ \vdots \\ \varphi_n(s, a) \end{pmatrix}$$

Пример $\varphi_{i,j}(\overline{s,a})$

		j		
	0	0	0	0
	0	0	0	0
i	0	1	0	0
	0	0	0	0

Пример $\varphi_{i,j}(s,a)$

Нейронная сеть

Нейронная есть

$$F_j^{\theta}(X) = f_{out}\left(b_j + \sum_{k=1}^4 w_{j,k} f\left(\hat{b}_k + \sum_{l=1}^5 \hat{w}_{k,l} f\left(\tilde{b}_l + \sum_{i=1}^4 \tilde{w}_{l,i} x_i\right)\right)\right), \quad j \in \overline{1,2}.$$

$$F^{\theta}(X) \in \mathbb{R}^2, \quad X \in \mathbb{R}^4, \quad \theta \in \mathbb{R}^{59}$$

Определение q_{π}

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Определение q_{π}

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Monte-Carlo Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Определение q_{π}

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

1

Monte-Carlo Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

 \Downarrow

Monte-Carlo Update for Q^{θ}

$$Loss(\theta) = \left(G_t - Q^{\theta}(S_t, A_t)\right)^2$$

Определение q_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

1

Monte-Carlo Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

 $\downarrow \downarrow$

Monte-Carlo Update for Q^{θ}

$$Loss(\theta) = \left(G_t - Q^{\theta}(S_t, A_t)\right)^2$$
$$\nabla_{\theta} Loss(\theta) = -\left(G_t - Q^{\theta}(S_t, A_t)\right) \nabla_{\theta} Q^{\theta}(S_t, A_t)$$

Определение q_{π}

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

11

Monte-Carlo Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Monte-Carlo Update for Q^{θ}

$$Loss(\theta) = (G_t - Q^{\theta}(S_t, A_t))^2$$
$$\nabla_{\theta} Loss(\theta) = -(G_t - Q^{\theta}(S_t, A_t))\nabla_{\theta}Q^{\theta}(S_t, A_t)$$
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

Bellman Expectation Equation для q_π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

SARSA Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

SARSA Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right)$$

SARSA Update for Q^{θ}

$$Loss(\theta) = (R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t))^2$$

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

SARSA Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

SARSA Update for Q^{θ}

$$Loss(\theta) = \left(R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t)\right)^2$$

$$\nabla_{\theta} Loss(\theta) \approx - \left(R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t) \right) \nabla_{\theta} Q^{\theta}(S_t, A_t)$$

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

SARSA Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

SARSA Update for Q^{θ}

$$Loss(\theta) = (R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t))^2$$

$$\nabla_{\theta} Loss(\theta) \approx -(R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t))\nabla_{\theta} Q^{\theta}(S_t, A_t)$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

 \Downarrow

Q-Learning Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right)$$

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

 \Downarrow

Q-Learning Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right)$$

 \Downarrow

Q-Learning Update for Q^{θ}

$$Loss(\theta) = \left(R_t + \gamma \max_{a'} Q^{\theta}(S_{t+1}, a') - Q^{\theta}(S_t, A_t)\right)^2$$

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

1

Q-Learning Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right)$$

 \Downarrow

Q-Learning Update for Q^{θ}

$$Loss(\theta) = \left(R_t + \gamma \max_{a'} Q^{\theta}(S_{t+1}, a') - Q^{\theta}(S_t, A_t)\right)^2$$
$$\nabla_{\theta} Loss(\theta) \approx -\left(R_t + \max_{a'} \gamma Q^{\theta}(S_{t+1}, a') - Q^{\theta}(S_t, A_t)\right) \nabla_{\theta} Q^{\theta}(S_t, A_t)$$

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

1

Q-Learning Update for Q

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right)$$

 \Downarrow

Q-Learning Update for Q^{θ}

$$Loss(\theta) = \left(R_t + \gamma \max_{a'} Q^{\theta}(S_{t+1}, a') - Q^{\theta}(S_t, A_t)\right)^2$$

$$\nabla_{\theta} Loss(\theta) \approx -\left(R_t + \max_{a'} \gamma Q^{\theta}(S_{t+1}, a') - Q^{\theta}(S_t, A_t)\right) \nabla_{\theta} Q^{\theta}(S_t, A_t)$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

$$S = \{0, 1, \dots, n-1\}, \quad A = \{0, 1, \dots, m-1\}$$

$$S = \{0, 1, \dots, n-1\}, \quad A = \{0, 1, \dots, m-1\}$$

$$arphi_{i,j}(s,a) = \left\{ egin{array}{ll} 1, & \mbox{если } s=i, \ a=j, \ 0, & \mbox{иначе}, \end{array}
ight. \quad i \in \mathcal{S}, \quad j \in \mathcal{A}$$

$$S = \{0, 1, \dots, n-1\}, \quad A = \{0, 1, \dots, m-1\}$$

$$arphi_{i,j}(s,a) = \left\{ egin{array}{ll} 1, & \mbox{если } s=i, \ a=j, \ 0, & \mbox{иначе}, \end{array}
ight. \quad i \in \mathcal{S}, \quad j \in \mathcal{A}$$

$$Q^{\theta}(s,a) = \theta_{s,a}$$

$$S = \{0, 1, \dots, n-1\}, \quad A = \{0, 1, \dots, m-1\}$$

$$arphi_{i,j}(s,a) = \left\{ egin{array}{ll} 1, & ext{если } s=i, \ a=j, \ 0, & ext{иначе}, \end{array}
ight. \quad i \in \mathcal{S}, \quad j \in \mathcal{A}$$

$$Q^{\theta}(s,a) = \theta_{s,a}$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

$$S = \{0, 1, \dots, n-1\}, \quad A = \{0, 1, \dots, m-1\}$$

$$\varphi_{i,j}(s,a) =
\begin{cases}
1, & \text{если } s = i, \ a = j, \\
0, & \text{иначе,}
\end{cases}$$
 $i \in \mathcal{S}, \quad j \in \mathcal{A}$

$$Q^{\theta}(s,a) = \theta_{s,a}$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

$$\begin{pmatrix} \theta_{0,0} \\ \vdots \\ \theta_{s,a} \\ \vdots \end{pmatrix} = \begin{pmatrix} \theta_{0,0} \\ \vdots \\ \theta_{s,a} \\ \vdots \end{pmatrix} - \alpha \begin{pmatrix} 0 \\ \vdots \\ -(R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t)) \end{pmatrix}$$

Сходимость

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	X
Sarsa	✓	(✓)	X
Q-learning	✓	×	Х

 $({\boldsymbol{\checkmark}}) = {\sf chatters} \ {\sf around} \ {\sf near-optimal} \ {\sf value} \ {\sf function}$

Experience Replay

- Сохраняем четверку: $(S_t, A_t, R_t, S_{t+1}) \to Memory$
- Учимся на батче четверок: $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

• Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy (Q^{θ}) , получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy (Q^{θ}) , получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$
- Берем $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$, определяем целевые значения

$$y_i = \left\{ egin{array}{ll} r_i, & ext{если } s_i' ext{-терминальное}, \\ r_i + \gamma \max_{a'} Q^{ heta}(s_i', a'), & ext{иначе} \end{array}
ight.$$

функцию потерь $Loss(\theta)=\frac{1}{n}\sum_{i=1}^n \left(y_i-Q^\theta(s_i,a_i)\right)^2$ и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q^{θ}), получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$
- Берем $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$, определяем целевые значения

$$y_i = \left\{ egin{array}{ll} r_i, & ext{если } s_i' ext{-терминальное}, \\ r_i + \gamma \max_{a'} Q^{\theta}(s_i', a'), & ext{иначе} \end{array} \right.$$

функцию потерь $Loss(\theta)=\frac{1}{n}\sum_{i=1}^n \left(y_i-Q^\theta(s_i,a_i)\right)^2$ и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

 \bullet Уменьшаем ε

Пример: Atari Games

- Состояния: пиксели с экрана
- Действия: \rightarrow , \leftarrow , «0»
- Награда: очки в игре

 На вход подаются 4 последних предобработанных изображения экрана

- На вход подаются 4 последних предобработанных изображения экрана
- На выходе $Q^{\theta}(s, a_1), \dots, Q^{\theta}(s, a_{18})$

- На вход подаются 4 последних предобработанных изображения экрана
- На выходе $Q^{\theta}(s, a_1), \dots, Q^{\theta}(s, a_{18})$
- Структура сети и гиперпараметры не меняются для всех игр

- На вход подаются 4 последних предобработанных изображения экрана
- На выходе $Q^{\theta}(s, a_1), \dots, Q^{\theta}(s, a_{18})$
- Структура сети и гиперпараметры не меняются для всех игр

Результаты в Atari games

Mnih V., at el. Playing Atari with Deep Reinforcement Learning. 2013.

Можно ли использовать Experience Replay для MC и SARSA?

Можно ли использовать Experience Replay для MC и SARSA?

HET

Можно ли использовать Experience Replay для MC и SARSA?

HET

Потому что тройки (S_t, A_t, R_t) и пятерки $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$ зависят от Policy, а она все время меняется

Autocorrelation

Q-Learning Update for Q^{θ}

- $y = r + \gamma \max_{a'} Q^{\theta}(s', a')$
- $Loss(\theta) = (y Q^{\theta}(s, a))^2$
- $\theta \leftarrow \theta \alpha \nabla_{\theta} Loss(\theta)$

Autocorrelation

Q-Learning Update for Q^{θ}

- $y = r + \gamma \max_{a'} Q^{\theta}(s', a')$
- $Loss(\theta) = (y Q^{\theta}(s, a))^2$
- $\theta \leftarrow \theta \alpha \nabla_{\theta} Loss(\theta)$

Проблема

Если Reward в двух близких состояниях сильно отличается, то при Q-Learning Update возможно $Q^{\theta}(s,a) \to \infty$

Hard Target Networks $Q^{\theta'}(s, a)$

- Определяем $\theta = \theta'$
- Делаем достаточно много итераций:

•
$$y = r + \gamma \max_{a'} Q^{\theta'}(s', a')$$

•
$$Loss(\theta) = (y - Q^{\theta}(s, a))^2$$

•
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

• Полагаем $\theta' = \theta$

Soft Target Networks $Q^{\theta'}(s, a)$

•
$$y = r + \gamma \max_{a'} Q^{\theta'}(s', a')$$

•
$$Loss(\theta) = (y - Q^{\theta}(s, a))^2$$

•
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

$$\bullet \ \theta' \leftarrow \tau\theta + (1-\tau)\theta'$$

Результаты Experience Replay и Target Network

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

Double DQN

•
$$y = r + \gamma Q^{\theta}(s', \operatorname{argmax}_{a'} Q^{\theta'}(s', a'))$$

•
$$Loss(\theta) = (y - Q^{\theta}(s, a))^2$$

•
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

•
$$\theta' \leftarrow \tau\theta + (1-\tau)\theta'$$

Результаты Double DQN

Van Hasselt H., Guez A., Silver D. Deep Reinforcement Learning with Double Q-Learning. 2016.

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- S $\frac{\text{бесконечное}}{\text{пространство состояний}}$
- \mathcal{A} бесконечное пространство действий
- \mathcal{P} неизвестная функция (тензор) вероятностей переходов между состояниями

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

• *R* — неизвестная функция (матрица) вознаграждений

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — коэффициент дисконтирования

Пример: Pendulum

- ullet Состояния: \mathbb{R}^2 или пиксели с экрана
- Действия: [-2,2]

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$
- Берем $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$, определяем целевые значения

$$y_i = \left\{ egin{array}{ll} r_i, & ext{если } s_i' ext{-терминальное}, \\ r_i + \gamma \max_{a'} Q^{ heta}(s_i', a'), & ext{иначе} \end{array}
ight.$$

функцию потерь $Loss(\theta)=\frac{1}{n}\sum_{i=1}^n \left(y_i-Q^\theta(s_i,a_i)\right)^2$ и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

 \bullet Уменьшаем ε

Задаем структуру аппроксимации Q^{θ} , начальные вектор параметров θ , вероятность исследования среды $\varepsilon=1$. Для каждого эпизода k делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi(\cdot|S_t)$, где $\pi = \varepsilon$ -greedy(Q), получаем награду R_t переходим в состояние S_{t+1} . Сохраняем (S_t, A_t, R_t, S_{t+1}) $\to Memory$
- Берем $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$, определяем целевые значения

$$y_i = \left\{ egin{array}{ll} r_i, & ext{если } s_i' ext{-терминальное}, \\ r_i + \gamma \displaystyle \max_{a'} Q^{ heta}(s_i', a'), & ext{иначе} \end{array}
ight.$$

функцию потерь $Loss(\theta)=\frac{1}{n}\sum_{i=1}^n \left(y_i-Q^\theta(s_i,a_i)\right)^2$ и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss(\theta)$$

 \bullet Уменьшаем ε

Gu S., Lillicrap T., Sutskever I., Levine S. Continuous Deep Q-Learning with Model-based Acceleration. 2016.

$$Q^{\theta}(s, a) = V^{\theta_V}(s) + A^{\theta_A}(s, a), \quad \theta = (\theta_V, \theta_A)$$

Gu S., Lillicrap T., Sutskever I., Levine S. Continuous Deep Q-Learning with Model-based Acceleration. 2016.

$$Q^{\theta}(s, a) = V^{\theta_V}(s) + A^{\theta_A}(s, a), \quad \theta = (\theta_V, \theta_A)$$

где

$$A^{\theta_A}(s,a) = -(a - \mu^{\theta_\mu}(s))^T P^{\theta_P}(s) (a - \mu^{\theta_\mu}(s)), \quad \theta_A = (\theta_\mu, \theta_P)$$

Gu S., Lillicrap T., Sutskever I., Levine S. Continuous Deep Q-Learning with Model-based Acceleration. 2016.

$$Q^{\theta}(s, a) = V^{\theta_V}(s) + A^{\theta_A}(s, a), \quad \theta = (\theta_V, \theta_A)$$

где

$$A^{\theta_A}(s,a) = -(a - \mu^{\theta_\mu}(s))^T P^{\theta_P}(s) (a - \mu^{\theta_\mu}(s)), \quad \theta_A = (\theta_\mu, \theta_P)$$

$$P^{\theta_P}(s) = L^{\theta_P}(s)L^{\theta_P}(s)^T$$

Gu S., Lillicrap T., Sutskever I., Levine S. Continuous Deep Q-Learning with Model-based Acceleration. 2016.

$$Q^{\theta}(s, a) = V^{\theta_V}(s) + A^{\theta_A}(s, a), \quad \theta = (\theta_V, \theta_A)$$

где

$$A^{\theta_A}(s,a) = -(a - \mu^{\theta_\mu}(s))^T P^{\theta_P}(s) (a - \mu^{\theta_\mu}(s)), \quad \theta_A = (\theta_\mu, \theta_P)$$

где

$$P^{\theta_P}(s) = L^{\theta_P}(s)L^{\theta_P}(s)^T$$

Тогда

- $\bullet \max_{a} Q^{\theta}(s, a) = ????$
- $\operatorname{argmax}_{a} Q^{\theta}(s, a) = ???$

Gu S., Lillicrap T., Sutskever I., Levine S. Continuous Deep Q-Learning with Model-based Acceleration. 2016.

$$Q^{\theta}(s, a) = V^{\theta_V}(s) + A^{\theta_A}(s, a), \quad \theta = (\theta_V, \theta_A)$$

где

$$A^{\theta_A}(s,a) = -(a - \mu^{\theta_\mu}(s))^T P^{\theta_P}(s) (a - \mu^{\theta_\mu}(s)), \quad \theta_A = (\theta_\mu, \theta_P)$$

$$P^{\theta_P}(s) = L^{\theta_P}(s)L^{\theta_P}(s)^T$$

- $\bullet \max_{a} Q^{\theta}(s, a) = V^{\theta_{V}}(s)$
- $\operatorname{argmax}_a Q^{\theta}(s, a) = \mu^{\theta_{\mu}}(s)$

Организационные вопросы

- Пятница, 17:50, аудитория 622
- Отчетность: домашние работы
- \bullet Страничка курса: https://github.com/imm-rl-lab/UrFU_course
- E-mail для связи:

вопросы?