PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-309324

(43)Date of publication of application: 07.11.2000

(51)Int.CI.

B65D 1/09 C08J 7/06 C23C 16/27 // C08L101:00

(21)Application number: 2000-073951

(71)Applicant: KIRIN BREWERY CO LTD

(22)Date of filing:

11.08.1994

(72)Inventor: NAGASHIMA KAZUFUMI

(54) CARBON FILM-COATED PLASTIC CONTAINER

(57)Abstract:

PROBLEM TO BE SOLVED: To manufacture a carbon film-coated plastic container which solves problems of gas barrier properties and sorption of a plastic while keeping the characteristics of the plastic container, can be used returnably, expands the range of use and the status of use of the plastic container, can be continuously and inexpensively manufactured, and can eliminate the fear of damage in handling. SOLUTION: In a carbon film coated plastic container manufacturing device, a space for storing a plastic container 20 and having the almost similar outer shape of the container to be stored and slightly larger than the outer shape of the container is formed on an outer electrode 12, and the outer electrode 12 is insulated by an insulation plate 11 with which a mouth 12A of the container to be stored in the space is brought into contact, and an inner electrode 16 is inserted from the mouth of the container into the inside of the container stored in the space, and the inner electrode is grounded,

and the interior of the space of the outer electrode is exhausted by an exhaust pipe 15, while a raw material gas is introduced from a raw material gas introducing pipe 17 into the inside of the container stored in the space of the outer electrode, and then high frequency is applied from a high frequency power source 14 to the outer electrode to generate plasma and form a solid carbon film on the inner wall face of the container.

LEGAL STATUS

[Date of request for examination]

13.08.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3545305

[Date of registration]

16.04.2004

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-309324 (P2000-309324A)

(43)公開日 平成12年11月7日(2000.11.7)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
B65D 1/09		B 6 5 D 1/00	. Z
CO8J 7/06	CER	C 0 8 J 7/06	CERZ
C 2 3 C 16/27		C 2 3 C 16/27	
# C08L 101:00		B 6 5 D 1/00	Α

審査請求 未請求 請求項の数3 OL (全 12 頁)

(21)出願番号

特願2000-73951(P2000-73951)

(62)分割の表示

特願平6-189223の分割

(22)出願日

平成6年8月11日(1994.8.11)

(ハカ田頃)

(71) 出願人 000253503

麒麟麦酒株式会社

東京都中央区新川二丁目10番1号

(72) 発明者 永嶋 一史

東京都中央区新川2丁目10番1号 麒麟麦

酒株式会社内

(74)代理人 100083839

弁理士 石川 泰男 (外2名)

(54) 【発明の名称】 炭素膜コーティングプラスチック容器

(57)【要約】

【目的】 プラスチック容器の特質を維持したままでプラスチックの有するガスパリヤ性および収着の問題を解消し、リターナブルな使用を可能にしてプラスチック容器の使用範囲と使用形態の拡大を図ることが出来るとともに、安価で連続生産することができ、しかも取扱いにおいて損傷の虞のない炭素膜コーティングプラスチック容器を提供する。

【構成】 炭素膜コーティングプラスチック容器は、プラスチック容器20を収容し収容される容器の外形とほぼ相似で容器の外形よりも僅かに大きい空所が外部電極12に形成され、この空所内に収容される容器の口部12Aが当接される絶縁板11により外部電極12が絶縁され、空所内に収容された容器の内側に容器の口部から内部電極16が挿入されるとともにこの内部電極が接地され、外部電極の空所内が排気管15により排気され、外部電極の空所内に収容された容器の内側に原料ガス供給管17から原料ガスが供給され後、外部電極に高周波電源14により高周波が印加されプラズマが発生されて、容器の内壁面に硬質炭素膜を形成する製造装置により製造される。

【特許請求の範囲】

【請求項1】 プラスチック材により形成された容器の 内壁面に、硬質炭素膜が形成されていることを特徴とす る炭素膜コーティングプラスチック容器。

【請求項2】 前記硬質炭素膜が、ダイヤモンド状炭素 膜である請求項1に記載の炭素膜コーティングプラスチ ック容器。

【請求項3】 前記容器が飲料用ボトルである請求項1 に記載の炭素膜コーティングプラスチック容器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、内壁面を硬質炭素膜 によりコーティングされたプラスチック容器に関する。

【従来の技術】一般に、プラスチック容器は、その成形 の容易性や軽量性、さらには低コストである点等の種々 の特性から、食品分野や医薬品分野等の様々な分野にお いて、包装容器として広く使用されている。

【0003】しかしながら、プラスチックは、よく知ら れているように、酸素や二酸化炭素のような低分子ガス を透過する性質を有し、さらに低分子有機化合物が内部 に収着してしまうという性質を有しているため、プラス チック容器はガラス等の他の容器に比べて、その使用対 象や使用形態が様々な制約を受ける。

【0004】ととで、収着とは、プラスチックの組成中 に低分子有機化合物が浸透し拡散してプラスチック中に 吸収されている現象をいう。

【0005】例えば、ビール等の炭酸飲料をプラスチッ ク容器に充填した場合、プラスチックを透過して容器の 内部に浸透する酸素によって、内容物である飲料が経時 30 的に酸化を起こし劣化してしまったり、また炭酸飲料の 炭酸ガスがプラスチックを透過し容器の外部に放出され てしまうため、炭酸飲料が気の抜けた飲料になってしま う。

【0006】また、オレンジジュース等の香気成分を有 する飲料をプラスチック容器に充填した場合、飲料に含 まれる低分子有機化合物である香気成分(例えばオレン ジジュースのリモネン等)がプラスチックに収着される ため、飲料の香気成分の組成がバランスを崩して、飲料 の品質が劣化してしまう虞が有る。

【0007】また、プラスチック容器については、その 組成中に含まれる低分子化合物の溶出が問題になる場合 が有る。すなわち、プラスチック容器に純度を要求され る内容物(特に液体)を充填した場合、プラスチック組 成中に含まれている可塑剤や残留モノマ、その他の添加 剤が内容物中に溶出し、内容物の純度を損なったりする 可能性が有る。

【0008】一方、使用済み容器の回収が、現在、社会 問題化しており、資源のリサイクル化が進められている

しても、ガラス容器の場合と異なり、使用後回収までの 間、環境中に放置されていると、その間にカビ臭など種 々の低分子有機化合物がプラスチック容器に収着する。 この収着した低分子有機化合物は、洗浄後もプラスチッ ク内に残存するため、プラスチック容器を再充填容器と して使用する場合、収着された低分子有機化合物が異成 分として充填された内容物中に徐々に溶け出してしま い、内容物の品質低下や衛生上の問題が生じる。このた め、プラスチック容器は、リターナブル容器として使用 10 されている例はほとんどない。

【0009】上記のようなプラスチック容器の低分子ガ スを透過する性質や低分子有機化合物が内部に収着して しまうという性質を抑制するために、プラスチックを配 向させ結晶化度を向上させたり、より収着性の低いプラ スチックやアルミの薄膜等を積層する方法も使用されて いるが、何れもプラスチック容器の特質を維持したまま で、ガスバリア性や収着の問題を完全に解決することは 出来ていない。

【0010】 ここで、近年、DLC (Diamond Like Car bon) 膜の薄膜形成技術が知られてきており、従来、ビ ーカやフラスコ等の実験器具をDLC膜によりコーティ ングしたものが知られている。このDLC膜は、炭素間 のSP³ 結合を主体としたアモルファスな炭素で、非常 に硬く、絶縁性に優れ、高屈折率で非常に滑らかなモル フォロジを有する硬質炭素膜である。

【0011】従来、このようなDLC膜の形成技術をビ ーカやフラスコ等の実験器具のコーティングに使用した ものとしては、特開平2-70059号公報に記載され たものがある。

【0012】この特開平2-70059号公報に記載さ れたDLC膜の形成装置は、次のようなものである。す なわち、図16に示すように、炭素源ガスの導入口1A と排気孔1Bを有する反応室1内に陰極2が配置され、 この陰極2に形成された空所2A内にビーカ等の実験器 具3が収容される。そして、この実験器具3の内側にア ースされた陽極4が挿入された後、反応室1内が排気孔 1 Bからの排気によって減圧される。そして、導入口1 Aから炭素源ガスが導入された後、陰極3に高周波電源 5から髙周波が印加され、炭素源ガスが励起されて発生 40 するプラズマにより、実験器具3の表面にDLC膜が形 成される。

[0013]

【発明が解決しようとする課題】しかしながら、上記し たDLC膜の形成装置は、反応室1内に陰極2および陽 極4が収容され、反応室1の容積がコーティング対象で ある実験器具3の大きさに比べて非常に大きいため、真 空操作にかかる時間とエネルギの無駄が多く、さらに、 このDLC膜の形成装置は形成速度が10~1000Å /分であり、その生成速度が遅いため、安価に連続生産 が、プラスチック容器を再充填容器として使用しようと 50 することは困難であるという問題を有している。

器を飲料用ボトルとして使用すれば、従来の飲料用ガラ ス容器の代りに、リターナブル容器として使用すること が出来る。

[0021]

【実施例】以下、この発明の実施例を図面に基づいて説

【0022】図1は、この発明による炭素膜コーティン グプラスチック容器を製造するための製造装置を示して いる。この製造装置は、基台10上にセラミック製の絶 縁板11が取り付けられ、この絶縁板11上に外部電極 12が取り付けられている。この外部電極12は、DL C膜形成のための真空チャンバを兼ねているものであ り、その内部にコーティング対象の容器20を収容する ための空間が形成されている。 との外部電極 12内の空 間はそとに収容される容器20の外形よりも僅かに大き くなるように形成されている。この容器20は、飲料用 ボトルであるが、他の用途に使用される容器であっても よい。

[0023]外部電極12は、本体部12Aと、この本 体部12Aの上部に着脱自在に取り付けられて本体部1 2Aの内部を密閉するようになっている蓋体12Bとか ら構成されている。との外部電極12には、整合器13 を介して高周波電源14が接続されている。また、外部 電極12内の空間には、排気管15が連通されており、 図示しない真空ポンプによって空間内の空気が排気され るようになっている。

【0024】外部電極12の空間内には、内部電極16 が挿入され、空間の中心部に位置するように配置されて いる。との内部電極16は、その外形が容器20の口部 20 Aから挿入可能でかつ容器20の内部形状とほぼ相 似形になるように形成されている。外部電極12と内部 電極16との間隔は、あらゆる位置において、10~1 50mmの範囲でほぼ均一に保たれるようにするのが好 ましい。

【0025】この内部電極16には、原料ガス供給管1 7が接続されていて、図示しないガス流量制御器を介し てとの原料ガス供給管17に原料ガスが流入され、内部 電極16に形成された吹出し孔16Aから吹き出される ようになっている。この吹出し孔16Aは、吹き出した 原料ガスを均一に拡散させるために、図示のように内部 電極16の側部に複数個形成されることが好ましいが、 原料ガスが直ぐに均一に拡散されるような場合は、内部 電極16の頂部に1個形成するようにしても良い。内部 電極16は、原料ガス供給管17を介してアースされて

【0026】絶縁板11には、図2および3に拡大して 示すように、複数個(この実施例では4個)の溝11A が形成されており、図2から分かるように、外部電極1 2内に容器20が収容され容器20の口部20Aが絶縁 【0020】また、炭素膜コーティングプラスチック容 50 板11に当接された状態で、外部電極12の内壁面と容

【0014】との従来のDLC膜の形成装置は、ビーカ やフラスコ等の実験器具を対象としてれに付加価値をつ けることを目的にしているため、製造コストや製造時間 をあまり問題にしていないが、ビールやオレンジジュー ス等の飲料用の充填容器は、安価なものが大量に必要と されるため、このDLC膜形成装置を飲料用容器の製造 に使用することは出来ない。

【0015】また、上記したDLC膜の形成装置によれ は、炭素源ガスが陰極2とコーティング対象である実験 器具3との間の隙間にも回り込むため、器具3の内面に 10 限定してコーティングを行うことが出来ない。

【0016】飲料用の充填容器は、ビーカやフラスコ等 の実験器具の場合と違って、工場内の製造工程において また販売ルートにおいて、充填容器同士がぶつかったり 擦れあったりする機会が多い。とのため、飲料用の充填 容器の外面にDLC膜を形成した場合、このDLC膜は 薄く硬いものであるので、DLC膜自体が損傷して、充 填容器の商品価値を損なうことが考えられる。したがっ て、飲料用の充填容器については、容器の内壁面にのみ DLC膜を形成するようにすることが要求される。

【0017】この発明は、上記従来の問題点を解決する ためになされたものである。すなわち、この発明は、プ ラスチック容器の特質を維持したままでプラスチックの 有するガスバリア性および収着の問題を解消し、リター ナブルな使用を可能にしてプラスチック容器の使用範囲 と使用形態の拡大を図ることが出来るとともに、安価で 連続生産することができ、しかも取扱いにおいて損傷の 虞のない炭素膜コーティングプラスチック容器を提供す ることを目的とする。

[0018]

【課題を解決するための手段】上記目的を達成するため に、この発明による炭素膜コーティングプラスチック容 器は、プラスチック材により形成された容器の内壁面 に、硬質炭素膜が形成されていることを特徴としてお り、さらにこの硬質炭素膜が、ダイヤモンド状炭素膜で あることを特徴としている。

[0019]

【作用】上記炭素膜コーティングプラスチック容器によ れば、プラスチック容器の内壁面にコーティングされた 硬質炭素膜によって、酸素や二酸化炭素のような低分子 40 無機ガスの透過度を著しく減少させることが出来るだけ でなく、臭いを有する各種の低分子有機化合物の収着 を、完全に抑制することが出来る。また、この硬質炭素 膜の形成によって、プラスチック容器の有する透明性が 損なわれることもない。なお、硬質炭素膜としては、ダ イヤモンド状炭素膜が好ましい。このダイヤモンド状炭・ 素膜とは、iカーボン膜または水素化アモルファスカー ボン膜とも呼ばれる硬質炭素膜のことで、SP'結合を 主体にしたアモルファスな炭素膜のことである。

器20の外壁面との間に形成される容器の外部空間21 Aと排気管15とが、溝11Aを介して連通されるよう になっている。

【0027】次に、上記製造装置によるDLC膜の形成 の方法について説明する。

【0028】外部電極12内には、蓋体12Bを外した 状態で、本体部12Aの上部開口部からプラスチック製 の容器20が差し込まれて、収容される。このとき、内 部電極16は、容器20の□部20Aから容器20内に 挿入される。そして、□部20Aが絶縁板11上に当接 10 されて容器20が外部電極12内に位置決めされた後、 蓋体12Bが閉められて、外部電極12内が密閉され る。とのとき、外部電極12の内壁面と容器20の外壁 面との間の間隔は、ほぼ均一に保たれており、かつ容器 20の内壁面と内部電極16の外壁面との間の間隔も、 ほぼ均一に保たれている。

【0029】との後、外部電極12内の空気を真空ポン プにより排気して、外部電極12内を真空にする。との とき、絶縁板11に形成された溝11Aによって、容器 20の内部空間21Bのみならず容器20の外壁面と外 20 部電極12の内壁面との間の外部空間21Aも排気され て、真空にされる。とれは、外部空間21Aも真空にし ておかないと、後述するプラズマ発生の際に、この外部 空間21A内が髙温になり、容器20のプラスチック材 質に悪影響を与えるためである。

【0030】 この時の真空度は、10⁻¹~10⁻¹ torrが 望ましい。これは、10-1以上の真空度で良いとすると 容器内に不純物が多くなり過ぎ、10-1未満の真空度に しようとすると、排気するのに時間とエネルギがかかり 過ぎるためである。

【0031】との後、図示されていないガス流量制御器 から原料ガス供給管17に炭素源の原料ガスが供給さ れ、内部電極16に形成された吹出し孔16Aから真空 状態の内部空間21B内に吹き出される。この原料ガス の供給量は、 $1 \sim 100 ml/min$ が好ましく、この原料ガ スの供給によって、内部空間21B内の圧力が0.5~ 0.001 torr以内に調整される。

【0032】ととで、外部空間21A内は溝11Aを介 して排気されるため、外部空間21A内の圧力は内部空 間21B内の圧力よりも少し遅れて低下する。このた め、排気直後は外部空間21A内の圧力が内部空間21 Bよりも僅かに高くなっている。したがって、排気直後 に原料ガスを供給するようにすれば、内部空間2 1 B内 に吹き出された原料ガスが外部空間21A内に入り込む ことはない。

【0033】原料ガスとしては、常温で気体または液体 の脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水 素類、含窒素炭化水素類などが使用される。そして、特 に、炭素数が6以上のベンゼン、トルエン、o-キシレ ン、m-キシレン、p-キシレン、シクロヘキサン等が望ま 50 依存する。高周波出力の増加、容器20内の原料ガスの

しい。これらの原料は、単独で用いても良いが、2種以 上の混合ガスとして使用するようにしても良い。さら に、これらのガスをアルゴンやヘリウムの様な希ガスで 希釈して用いる様にしても良い。

【0034】との原料ガスの供給後、外部電極12に整 合器13を介して髙周波電源14から電力が投入され る。この電力の投入によって、外部電極12と内部電極 16間にプラズマが発生される。このとき、内部電極1 6はアースされているが、外部電極12は絶縁板11に より絶縁されているため、、外部電極12に負の自己バ イアスが発生し、これによって外部電極12に沿った容 器20の内壁面にDLC膜が均一に形成される。

【0035】すなわち、容器20の内壁面におけるDL C膜の形成は、改良されたプラズマCVD法により行わ れる。このプラズマCVD法によれば、低温プラズマを 利用することで、DLC膜の形成時の温度が比較的低い 温度に設定できるため、プラスチックのような耐熱性の 悪い物品を基盤とする場合に好適であり、しかも比較的 安価で広い面積のDLC膜の形成を行うことが出来る。 【0036】ととで、低温プラズマとは、反応器内部が 低圧に維持されている場合、プラズマ中の電子温度が高 く、イオンや中性分子の温度がそれに比べて著しく低い

状態のプラズマ、すなわち、いわゆる非平衡状態のプラ

ズマのことをいう。

【0037】外部電極12と内部電極16の間にプラズ マが発生すると、絶縁されている外部電極12の内壁面 に電子が蓄積するため、この外部電極12が負電位に自 己バイアスされる。外部電極12側には、この蓄積電子 のために500~1000V程度の電位降下が生じる。 30 とのとき、ブラズマ中に炭素源となる炭酸ガスが存在す

ることによって、プラスにイオン化された炭素源が外部 電極12に沿うように位置されている容器20の内壁面 に選択的に衝突し、ついで近接する炭素同士が結合する ことによって、容器20の内壁面に極めて緻密なDLC 膜からなる硬質炭素膜が形成される。

【0038】なお、DLC膜からなる硬質炭素膜とは、 iカーボン膜または水素化アモルファスカーボン膜(a -C:H)とも呼ばれる硬質炭素膜のことで、SP3 結 合を主体にしたアモルファスな炭素膜のことである。

【0039】DLC膜の膜厚は、高周波の出力、容器2 0内の原料ガスの圧力、供給ガス流量、ブラズマ発生時 間、自己バイアスおよび原料の種類等に依存するが、低 分子有機化合物の収着抑制効果およびガスバリア性の向 上効果と、プラスチックとの密着性、耐久性および透明 性等との両立を図るため、0.05~5μmとなるよう にするのが好ましい。

【0040】また、DLC膜の膜質も、同様に、髙周波 の出力, 容器20内の原料ガスの圧力, 供給ガス流量, プラズマ発生時間、自己バイアスおよび原料の種類等に 予め容器の内面にマジックインキ等でマスキングを行って、DLCを被覆した後、ジエチルエーテル等でマスキングを除去し、Vecco社製、表面形状測定器DECTACK3によって膜厚を測定した。

【0047】(2) DLCの密度

成膜前と成膜後の重量差を測定し、(1) で求めた膜厚か ら密度を算出した。

【0048】(3) 密着性1

容器の側壁部について、JISK5400の基盤目テー 0 ブ法に準じて、以下の条件で行った。

[0049]

①切り傷のすきま間隔:1 mm

②ます目の数 :100

【0050】(4) 密着性2

容器の側壁部について、新東科学製、連続加重式引掻試 験機HEIDON22を使用して、以下の条件で行っ た。密着の程度は、膜が剥がれ始めたときの引掻針にか かる垂直加重で表した。

[0051]

した。

Φ引掻針の素材、形状:ダイヤ、50μR

②加重速度 : 100g/min

③テーブル速度 :1000mm/min

【0052】(5) 耐アルカリ性

水酸化ナトリウムを10wt%となるように添加したアルカリ溶液を容器内部に充填し、75°Cの湯浴中に24時間浸漬し、DLCの形状変化、剥離の有無を確認した。結果は24時間以上の浸漬で変化のないものを優、12時間以上の浸漬で変化のないものを良として表した。

I 【0053】(6) 炭酸ガスバリヤー性 MODERN CONTROL社製PERMATRAN C-4型を使用して、炭酸ガスの透過量を25℃で測定

【0054】(7) 酸素ガスバリヤー性

MODERN CONTROL社製OX-TRANTW INを使用して、酸素の透過量を40℃で測定した。 【0055】(8) 低分子有機化合物(香気成分)の収

【 0 0 5 5 】(8) 低分子有機化合物(香気成分)の収 着性

環境材の一種として臭いを有する低分子有機化合物(香 40 気成分)を使用し、松井らの方法(J. Agic. Fo od. Chem., 1992, 40, 1902-190 5)を参考にして試験を行った。

【0056】手順は以下の通りである。

【0057】 **①**各種香気成分(n-オクタン、n-オクタナール、n-オクタノール、ヘキサン酸エチル、d-リモネン)をそれぞれ100ppm添加した0.3%シュガーエステル溶液を作り、モデルフレーバ溶液とする。

【0058】 ②モデルフレーバ溶液を容器に700ml 50 充填し、蓋をした後、20℃で1カ月間保管する。

圧力減少、供給ガスの流量減少、自己バイアスの増加および原料の炭素数の低下等は、何れもDLC膜の硬化、緻密さの向上、圧縮応力の増大および脆さの増大の原因になる。このため、プラスチックとの密着性および膜の耐久性を維持しつつ低分子有機化合物の収着抑制効果やガスバリア効果を最大限に発揮させるには、高周波出力が50~1000W、容器20内の原料ガス圧が0.2~0.01torr、供給ガスの流量が10~50ml/min、自己バイアスが-200~-1000V、原料ガスの炭素数が1~8個程度になるように設定されるのが好ましい。

【0041】なお、DLC膜とプラスチックとの密着性をさらに向上させるために、DLC膜を形成する前に、アルゴンや酸素などの無機ガスによってプラズマ処理を行い、容器20の内壁面を活性化させる様にしても良い。

【0042】図4は、以上のようにしてDLC膜が形成されたブラスチック容器の側断面を示している。図中、20Aはプラスチック材を、20Bはプラスチック材20Aの内壁面に形成されたDLC膜をそれぞれ示してい 20る。このように、内壁面をDLC膜20Bによってコーティングされたプラスチック容器は、酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることが出来るだけでなく、臭いを有する各種の低分子有機化合物の収着を、完全に抑制することが出来る。また、このDLC膜の形成によって、プラスチック容器の有する透明性を損なうこともない。

【0043】なお、容器20を形成するプラスチック材としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、シクロオレフィンコポリマ樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、エチレンービニルアルコール共重合樹脂、ポリー4ーメチルペンテンー1樹脂、ポリメタクリル酸メチル樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリロニトリル・ブタジエン・スチレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、ポリアミド樹脂、ポリアミド樹脂、ポリアミド樹脂、ポリアシート樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、アイオノマ樹脂、ポリスルホン樹脂および4フッ化エチレン樹脂などが挙げられる。

【0044】上記製造装置および製造方法によって製造された炭素膜コーティングプラスチック容器について行った(1) DLCの膜厚、(2) DLCの密度、(3) 密着性1、(4) 密着性2、(5) 耐アルカリ性、(6) 炭酸ガスバリヤ性、(7) 酸素ガスバリヤ性、(8) 低分子有機化合物(香気成分)の収着性の各評価の結果は、下記の通りである。

【0045】なお、各評価は、以下の方法により行った。

【0046】(1) DLCの膜厚

【0059】**③**1カ月後、モデルフレーバ溶液を廃棄 し、60℃の蒸留水で容器の内部を洗浄した後乾燥させ ス

[0060] **②**ジエチルエーテルを充填し、容器に収着した香気成分を抽出する。

【0061】⑤ジエチルエーテルを容器から取りだし、 無水硫酸ナトリウムを添加して脱水する。

【0062】 ©アミルベンゼンを内標準としてガスクロマトグラフによって定量分析を行う。結果は、1ppmの香気成分が存在する水溶液が容器中にある場合、容器 10 に収着する香気成分の量をμgで表示する。従って、単位はμg/ppm/bottleとなる。

【0063】[試験1]プラスチック容器として容量700mlのポリエチレンテレフタレート樹脂製容器(三井ペット樹脂(株)製PET樹脂、タイプL125)を図1の外部電極12内に収納し、固定した。

【0064】次に、真空ポンプを作動させ、外部電極12内を10⁻¹torr以下まで真空(背圧)にした後、前処理としてアルゴンを30ml/minの流速で圧力が0.04torrとなるようにプラスチック容器内部に導入20し、300WのRf電力を投入して容器内面をプラズマ処理した。その後、補助ガスにアルゴンを用い、原料ガスとしてトルエン,シクロヘキサン,ベンゼンまたはpーキシレンを容器内部に導入し、図5に示した条件で容器の内面にDLCを均一に被覆した。

【0065】試験結果

膜厚、成膜速度、密度、密着性1、密着性2、耐アルカリ性の各評価の結果は図6に示す通りである。密度はいずれも2.00g/cm³を越えており、膜は極めて緻密であった。

【0066】基盤目試験の結果、ポリエチレンテレフタレート樹脂との密着性は良好で、実際の使用に十分耐えられることが明らかになった。また、耐アルカリ性は問題なく、DLCの膜がきわめて安定しており、ポリエチレンテレフタレート樹脂を完全に保護していることが判明した。

【0067】酸素透過度、二酸化炭素透過度及び各種香気成分の収着の程度に関しては、その結果が図7に示されている。緻密なDLCの膜は香気成分の収着を完全に抑制するだけでなく、酸素及び二酸化炭素の透過を効果 40的に抑制した。

【0068】また、DLCを内面に被覆したプラスチック容器の胴部の紫外可視領域における透過スペクトルが、図8に示されている。

【0069】約500nm前後から紫外部にかけて透過率が急激に減少しており、DLC膜のコーティングは、内容物の紫外線による劣化をも抑制するのに有効であることが示唆された。

[0070]図9は、試験1の条件でプラスチック容器の胴部に被覆された薄膜のラマン・スペクトルである。

【0071】[試験2]プラスチック容器として容量700mlのポリアクリロニトリル・スチレンコポリマ樹脂製容器(三菱モンサント化成製:PAN樹脂、タイプL700)が使用される以外は、試験1と同様の方法により容器内面にDLC膜を形成した。DLC膜の形成の条件は図10に示される通りである。また、試験1と同様にして、膜厚、密度、密着性1、密着性2、耐アルカリ性、炭酸ガスバリヤ性、酸素ガスバリヤ性および低分子有機化合物の収着性について各試験を行った。

【0072】試験結果

膜厚,膜形成速度,密度,密着性1,密着性2および耐アルカリ性についての試験結果は、図11に示される通りである。膜厚および密度については、試験1の場合と同様に、良好であった。また、密着性1および密着性2については、試験1の場合と同様に問題がなく、DLCとアクリロニトリル・スチレンコポリマ樹脂との密着性はボリエチレンテレフタレート樹脂と同様で、実用上問題のないことが判明した。

【0073】酸素透過度、二酸化炭素透過度及び各種香気成分の収着の程度については、その結果が図12に示されている。すなわち、アクリロニトリル・スチレンコポリマ樹脂は本来ガスバリヤ性に優れており、さらに、DLCを被覆したことで、酸素及び二酸化炭素の透過量が極めて低いレベルに達することが明らかになった。各種香気成分の収着量は、試験1と同様に、検出限界以下であり、官能評価においても問題なかった。

【0074】[試験3] プラスチック容器として容量700mlのシクロオレフィンコポリマ樹脂製容器(三井石油化学製:COC樹脂タイプAPL6015)を使用30 した以外は、試験1と同様の方法により、DLCを容器内部に被覆した。DLC膜の形成の条件は図13に示されている。また、試験1と同様に、膜厚、密度、密着性1、密着性2、耐アルカリ性、炭酸ガスバリヤ性、酸素ガスバリヤ性及び低分子有機化合物の収着性のそれぞれの試験を行った。

【0075】試験結果

膜厚、成膜速度、密度、密着性1、密着性2、耐アルカリ性の各試験の結果は図14に示されている。試験1及び試験2と同様に、いずれの試験項目についても問題はなく、特にプラスチック容器とDLCとの密着性は極めて良好であった。

【0076】酸素透過度、二酸化炭素透過度及び各種香気成分の収着性については、その結果が図15に示されている。シクロオレフィンコポリマ樹脂はオレフィン系樹脂であるため、酸素透過度、二酸化炭素透過度および香気成分収着量が比較的大きいが、DLCにより被覆することにより、かなりのレベルまで抑制できることが判明した。

[0077]

【発明の効果】以上のように、この発明による炭素膜コ

ーティングプラスチック容器は、ガスバリヤ性に優れているとともに、臭い成分等の低有機化合物の収着を完全に抑制することが出来、広い分野の包装容器として利用することを可能にし、しかも再充填可能なリターナブル容器として使用することが出来る。しかも、この発明による炭素膜コーティングプラスチック容器は、硬質炭素膜が容器の内壁面にのみ形成されているので、容器の取扱いにおいて、形成された硬質炭素膜が損傷する虞はない。

11

[0078] 容器の内壁面に形成される硬質炭素膜がダ 10 イヤモンド状炭素膜の場合には、上記効果が、一層顕著 になる。

【0079】また、この発明による炭素膜コーティングプラスチック容器を飲料用ボトルとして使用する場合には、このプラスチック容器を従来の飲料用ガラス容器の代りにリターナブル容器として使用することができる。

【図面の簡単な説明】

【図1】との発明による炭素膜コーティングプラスチック容器を製造するための製造装置の一実施例を示す側断面図である。

- 【図2】同実施例の一部を拡大して示す断面図である。
- 【図3】同実施例の絶縁板を示す平面図である。
- 【図4】との発明による炭素膜コーティングブラスチック容器の一実施例を示す側断面図である。
- 【図5】硬質炭素膜の形成条件を示す表である。
- 【図6】図5の条件により形成された硬質炭素膜の膜厚 等の評価結果を示す表である。
- [図7]図5の条件により形成された硬質炭素膜の酸素 透過度等の評価結果を示す表である。
- 【図8】図5の条件により硬質炭素膜が形成されたプラ*30

- * スチック容器の紫外可視領域における透過スペクトルを示すグラフである。
 - 【図9】図5の条件により形成された硬質炭素膜のラマン・スペクトルを示すグラフである。
 - 【図10】硬質炭素膜の他の形成条件を示す表である。
 - 【図11】図10の条件により形成された硬質炭素膜の 膜厚等の評価結果を示す表である。
 - 【図12】図10の条件により形成された硬質炭素膜の 酸素透過度等の評価結果を示す表である。
- 10 【図13】硬質炭素膜のさらに他の形成条件を示す表で ある
 - 【図14】図13の条件により形成された硬質炭素膜の 膜厚等の評価結果を示す表である。
 - 【図15】図13の条件により形成された硬質炭素膜の酸素透過度等の評価結果を示す表である。
 - 【図16】従来技術を示す断面図である。

【符号の説明】

- 11…絶縁板
- 11A…溝
- 20 12…外部電極
 - 14…高周波電源
 - 15…排気管
 - 16…内部電極
 - 16 A…吹出し孔
 - 17…原料ガス供給管
 - 20…容器
 - 20 A…□部
 - 21 A…外部空間
 - 2 1 B…内部空間

【図3】

【図5】

	原料			補助ガス			1	
実験NO.	種類	圧力	種類	流量	Eカ	出力	自己パイアス	時間
		(Torr)		(m1/min)	(Torr)	(W)	(V)	(S)
1	n-ヘ キ サン	0.04	なし			400	-680	10
2	n-ヘキサン	0.10	なし			400	-571	10
3	n-ヘキサン	0.04	アルゴン	30	0.04	400	-678	10
4	n-ヘキサン	0.04	なし	<u> </u>	T —	500	-731	10
5	n-ヘキサン	0.04	なし		<u> </u>	200	-466	10
6	n-ヘキサン	0.02	なし	I		400	-740	10
7	シクロヘキサン	0.04	なし	_	_	400	-714	10
8	ベンセン	0.04	なし		i —	400	-700	10
9	P-キシレン	0.04	なし	i —	T	400	-666	10
10	n-ヘキサン	0.04	なし	T	! ==	400	-683	20
11	n-ヘキサン	0.02	アルゴン	30	0.02	500	725	10
12	n-ヘキサン	0.02	アルゴン	40	0.04	500	-706	10

【図6】

実験 NO.	蹼厚 (Å)	密皮 (g/cm³)	密着性 1	密着性 2(g)	耐アルカリ性
1	1878	2.23	100/100	19.4	ô
2	2756	1-88	100/100	21.7	0
3	1644	2.54	100/100	19.4	0
4	2207	2.84	100/100	21.8	0
5	1531	1.61	100/100	17.7	0
6	1069	2.75	100/100	19.9	0
7	1702	2.31	100/100	16.6	0
8	1761	2.42	100/100	17-0	0
9	1993	2.11	100/100	19.5	0
10	4174	2.28	100/100	26.1	0
11	1001	2.64	100/100	17.7	0
12	922	2.82	100/100	18-1	0

注1: 密着性 1 : 100の桝目に対し、剥離しなかった桝目の数 注2: 耐アルカJ性: ♥ 優 ○ 良 × 剝離

[図7]

央默 NO.	聚素透過度	二酸化炭素透過度	収 着 (#g/ppm/bottle)						
	(al/day/pkg)	(#1/day/pkg)	オクタン	オクタナール	オクタノール	ヘキサン 酸 エチル	d-リモネン		
未処理PETボトル	43.7	142.4	21.98	81.31	37.38	40.18	56.32		
1	7.8	14-8		_		_	! —		
_ 2	6.2	12-2			_	_	_		
3	7.5	14.4			i –	_	_		
4	4.3	11.9		I	_				
_ 5	8.9	15.7							
6	5.6	13.6					L		
7	5.6	13.0				_			
8 .	5.5	12.5			_	_			
9	5.4	12.5		<u> </u>			_		
10	5.0	11.9		_		_			
- 11	5.7	14.3	_	<u> </u>		_	_		
12	6.0	14.0		· –					

【図8】

[図9]

【図10】

皮肤NO. 種類	타	補助ガス				45.5 -	時間	
	種類	圧力	種類	種類 流量		出力	自己バイアス	n-A-limb
		(Tarr)		(mi/min)	(Torr)	(W)	(V)	(S)
1	カーヘキサン	0.04	なし	_		400	-688	10
2	n-ヘキサン	0.10	なし	-		400	-556	10
3	n-ヘキサン	0.04	アルゴン	30	0.04	400	-670	10
4	n-ヘキサン	0.04	なし	_		500	-725	10
5	n-ヘキサン	0.04	なし	-		200	-459	10
6	n-ヘキサン	0.02	なし	_	_	400	-733	10
7	シクロヘキサン	0.04	なし	-	_	400	-713	10
8	へいゼン	0.04	なし	_	-	400	-696	10
9	P-キシレン	0.04	なし		-	400	-657	10
10	n-ヘキサン	0.04	なし	_	_	400	-683	20
11	n-ヘキサン	0.02	アルゴン	30	0.02	500	-716	10
12	n-ヘキサン	0.02	アルゴン	40	0.04	500	-700	10

密着性2(g)

25.8

23.3

20.6

29.5

26.6

27.7

19.3

22.5

24.4

31.9

22.1

24.1

耐

[図11]

密度 (g/cm²)

2.11

1.97

2.62

2.73

1.54

2.66

2.21

2.65

2.23

2.19

2.88

2.94

密蒼性 1

100/100

100/100

100/100

100/100

100/100

100/100

100/100

100/100

100/100

100/100

100/100

100/100

アルカリ性	
0	
0	
0	
0	1-
0	
0	2
0	_
0	2
0	-
0	
0	

0

|--|

注1: 密着性 1 : 100の桝目に対し、銅離しなかった桝目の数 注2: 耐アルカル性: 〇 優 〇 良 X 剥離

膜厚 (Å)

1962

2711

1698

2315

1457

1112

1776

1809

2076

4003

954

1011

央数 NO.

2

3

5

6

7

8 9

10

11

12

【図12】

実験 NO.	酸素透過度	二酸化炭素透過度	収 羞						
	/n1/day/pkg	(µ1/day/pkg)	オクタン	オクタナール	オクタノール	ヘキサン 政 エチル	dーりモネン		
未处理PANボトル	33.8	119.8	3.64	4.01	9.55	6.16	10.32		
1	2.2	7.8		_		_	<u> </u>		
2	1.9	6.5		_		_	_		
3	2.5	6.7					<u> </u>		
4	1.4	3.2			_	_			
5 .	2.2	9.6							
6	2.0	5.3		· -					
7	1.9	6.1		. —		_	-		
8	1.7	6.0		· —	_		<u> </u>		
9	1.6	5.4		-		_	<u> </u>		
10	-1.0	5.2		_		_	I —		
11	1.3	7.1				_			
12	1.6	7.3	···		-		<u> </u>		

[図13]

8		原料		補助ガス			自己バイアス	時間
実験NO. 種類	種類	E 力	種類	決量	圧力	出力	自己ハイノス	nd in
		(Torr)	1	(mix/min)	(Tat)	(W)	(v)	(S)
1	n-ヘキサン	0.04	なし		_	400	-677	10
2	n-ヘキサン	0.10	なし		_	400	-571	10
3	nーヘキサン	0.04	アルゴン	30	0.04	400	-692	10
4	n-ヘキサン	0.04	なし		_	500	-755	· 10
5	Π-ヘキサン	0.04	なし		_	200	-476	10
6	n-ヘキサン	0.02	なし			400	-721	10
7.	シクロヘキサン	0.04	なし		1	400	-719	10
8	ペンセン	0.04	なし	_	-	400	-696	10
9	P-キシレン	0.04	なし	- 1	_	400	-670	10
10	カーヘキサン	0.04	なし	_	_	400	-691	20
11	n-ヘキサン	0.02	アルゴン	30	0.02	500	-728	10
12	n-ヘキサン	0.02	マルブン	40	0.04	500	-700	10

[図14]

失験 NO.	膜厚 (Å)	密度 (g/cm³)	密着性 1	密着性2(g)	耐アルカリ性
1	1978	2.33	100/100	26.5	0
2	3005	1.95	100/100	27.2	0
3	1891	2.61	100/100	26.4	0
4	2564	2.81	100/100	27.5	0
5	1611	1.72	100/100	24.3	0
6	1322	2.77	100/100	22.1	0
7	1883	2.29	100/100	20.0	0
8	1926	2.44	100/100	23.3	0
9	2079	2.08	100/100	28.9	O
10	4537	2.35	100/100	31.1	0
11	1147	2.71	100/100	22.5	0
12	1005	2.81	100/100	25.2	Ð

注1: 客差性 1 : 100の桝目に対し、利酸しなかった桝目の数 注2: 耐アルカリ性: 〇 優 〇 良 × 刺離

【図15】

実験 NO.	酸亲透過皮	二酸化炭素透過度	収着 (pg/ppm/bottle)						
	(xd/day/pkg)	(Ml/day/pkg)	オクタン	オクタナール	オクタノール	ヘキサン酸 エチル	出圧な		
未処理COCボトル	362.5	566.9	121.54	95.82	33.61	62.59	181.91		
1	39.7	60.8			Ϊ –		<u> </u>		
2	31.1	51.9	_	T -	<u> </u>				
3	42.5	57.7				<u>i – </u>	<u> </u>		
4	22.3	42.3		<u> </u>	1 —		<u>i – </u>		
5	46.8	66.7			<u>i – </u>	<u> </u>			
6	33.3	60.0			<u> </u>		!		
7	31.8	56.4			<u>i — </u>		<u>i – </u>		
8	29.5	50.1			<u>i – </u>	<u> </u>	<u>! </u>		
9	28.4	43.9	_	L.=	<u> </u>	<u> </u>	<u>i – </u>		
10	26.6	42.2	_		<u> </u>		<u> </u>		
11	30.0	52.5		T -	i	<u> </u>			
12	30.7	54.6		_		i —	<u> </u>		

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第2部門第6区分

【発行日】平成14年1月9日(2002.1.9)

【公開番号】特開2000-309324 (P2000-309324A)

【公開日】平成12年11月7日(2000.11.7)

【年通号数】公開特許公報12-3094

[出願番号] 特願2000-73951 (P2000-73951)

【国際特許分類第7版】

B65D 1/09

C08J 7/06 CER

C23C 16/27

// C08L 101:00

[FI]

B65D 1/00

C083 7/06 CER Z

C23C 16/27

B65D 1/00 A

【手続補正書】

【提出日】平成13年8月13日(2001.8.13)

7

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 炭素膜コーティング飲料用ボトルの製造方法、炭素膜コーティング飲料用ボトルの使用方法および炭素膜コーティング飲料用ボトル

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 プラスチック材によりプラスチック製ボトルを形成する工程と、

前記プラスチック製ボトルの内壁面に硬質炭素膜を形成 する工程と、を備えることを特徴とする炭素膜コーティ ング飲料用ボトルの製造方法。

【請求項2】 前記硬質炭素膜の密度が1.54g/cm³以上であることを特徴とする請求項1に記載の炭素膜コーティング飲料用ボトルの製造方法。

【請求項3】 再充填可能な炭素膜コーティング飲料用ボトルの使用方法であって、

回収された前記飲料用ボトルを洗浄する洗浄工程と、 前記洗浄工程により洗浄された前記飲料用ボトルに内容 物を充填する充填工程と、を備え、

前記飲料用ボトルはプラスチック材により形成されると

ともに、前記プラスチック材の内壁面に硬質炭素膜が形成されていることを特徴とする炭素膜コーティング飲料 用ボトルの使用方法。

【請求項4】 前記硬質炭素膜の密度が1.54g/cm³以上であることを特徴とする請求項3に記載の炭素膜コーティング飲料用ボトルの使用方法。

【請求項5】 内壁面に硬質炭素膜が形成されたプラスチック製の飲料用ボトルであって、前記硬質炭素膜が、前記飲料用ボトルの外壁面とほぼ相似形の空間を有する外部電極と、前記飲料用ボトルの内壁面とほぼ相似形の外形を有する接地された内部電極とを用意し、

前記飲料用ボトルを、その外壁面と前記外部電極の内壁 面との間隔がほぼ均一に保たれるようにして前記外部電 極の空所に設置し、

前記内部電極を、その外壁面と前記飲料用ボトルの内壁 面との間隔がほぼ均一に保たれるようにして前記飲料用 ボトルに挿入し、

前記外部電極内の空間を排気して内部電極と前記飲料用 ボトルの内壁面および外部電極と前記飲料用ボトルの外 壁面との間に真空を形成し、

前記飲料用ボトル内に原料ガスを導入し、

前記外部電極に髙周波を印加する手順によって形成されていることを特徴とする炭素膜コーティング飲料用ボトル。

【請求項6】 ブラスチック材により形成されたボトル の内壁面に硬質炭素膜が形成されていることを特徴とす る炭素膜コーティング食品用ボトル。

【請求項7】 前記硬質炭素膜の密度が1.54g/cm³以上であることを特徴とする請求項6に記載の炭素膜コーティング食品用ボトル。

【請求項8】 プラスチック材により形成されたボトルの内壁面に硬質炭素膜が形成されていることを特徴とする炭素膜コーティング医薬用ボトル。

【請求項9】 前記硬質炭素膜の密度が1.54g/cm³以上であることを特徴とする請求項8に記載の炭素 障コーティング医薬用ボトル。

【請求項10】 内壁面に硬質炭素膜が形成された炭素膜コーティングプラスチック容器の製造方法であって、減圧反応室と、プラスチック容器の内側に配置されアースされた内部電極と、前記プラスチック容器の外側に配置され絶縁された状態で高周波電源に接続された外部電極と、を備えると共に、前記外部電極によって前記減圧反応室が形成された硬質炭素膜形成装置を用い、

前記減圧反応室を減圧すると共に、炭素源ガスを導入し、前記高周波電源から高周波を印加して、前記ブラスチック容器の内壁面に硬質炭素膜を形成することを特徴とする炭素膜コーティングプラスチック容器の製造方法。

【請求項11】 前記減圧反応室に着脱可能に取り付けられるとともに、前記減圧反応室内を密閉可能とする蓋体を有し、前記蓋体の開閉によって減圧反応室内に前記プラスチック容器を挿入し、前記硬質炭素膜を形成することを特徴とする請求項10に記載の炭素膜コーティングプラスチック容器の製造方法。

【手続補正3】

【補正対象書類名】明細書【補正対象項目名】0018

【補正方法】変更

【補正内容】

[0018]

【課題を解決するための手段】上記目的を達成するために、この発明による炭素膜コーティング飲料用ボトルの製造方法は、プラスチック材によりプラスチック製ボトルを形成する工程と、プラスチック製ボトルの内壁面に硬質炭素膜を形成する工程と、を備えることを特徴としている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0019

【補正方法】変更

【補正内容】

[0019]

【作用】上記炭素膜コーティング飲料用ボトルの製造方法によれば、ブラスチック容器の内壁面にコーティングされた硬質炭素膜によって、酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることが出来るだけでなく、臭いを有する各種の低分子有機化合物の収着を、完全に抑制することが出来る。また、この硬質炭素膜の形成によって、ブラスチック容器の有する透明性が損なわれることもない。なお、硬質炭素膜としては、ダイヤモンド状炭素膜が好ましい。このダイヤモンド状炭素膜とは、iカーボン膜または水素化アモルファスカーボン膜とも呼ばれる硬質炭素膜のことで、SP・結合を主体にしたアモルファスな炭素膜のことである。

