Analiza 3 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Bojana Magajne 2020/21

Kazalo

1	PA	RAMETRIČNO PODANE KRIVULJE	4
2	PLO	OSKVE V \mathbb{R}^3	5
3	3.1 3.2 3.3 3.4	TEGRALI S PARAMETROM Izlimitirani integrali s parametrom	7 7 8 10 11
4	VE 4.1 4.2 4.3	ČKRATNI INTEGRALI Cilindrične ali valjne koordinate Sferične koordinate Splošne koordinate	13 16 17 18
5	PL0 5.1 5.2	Površina ploskve in ploskovni integral skalarne funkcije Krivuljni integral	20 21 21 21 23 24
6	6.1 6.2 6.3 6.4	Enačbe 1. reda	25 25 27 29 30
7	7.1 7.2 7.3 7.4	Metrika, krogla, odprt in zaprte množice	32 32 32 33 34 35 36
		7.4.1 Zveznost	$\frac{36}{38}$

		7.4.3 Bonus meme: Negibne točke kontrakcij	38
8	ко	MPLEKSNA ANALIZA	39
	8.1	Poti in območja v kompleksni ravnini	39
	8.2	Odvedljivost v kompleksnem smislu in konformnost	40
		8.2.1 Kompleksna odvedljivost	40
		8.2.2 Konformne preslikave	41
	8.3	Cauchy-Riemannovi enakosti	41
	8.4	Integriranje kompleksnih funkcij	42
	8.5	Ovojno število	45
	8.6	Cauchyjeva-Greenova formula	45
	8.7	Razvoj v Laurentovo in v Taylorjevo vrsto	47
	8.8	Logaritem in potence	49
	8.9	Izrek o residuih	49

1 PARAMETRIČNO PODANE KRIVULJE

Trditev 1.1. Če je \vec{r} odvedljiva vektorska funkcija (njene komponente x, y in z so odvedljive funkcije spremenljivke t), potem je

$$\dot{\vec{r}}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0))$$

tangentni vektor na krivuljo $t \mapsto \vec{r}(t)$ v točki $\vec{r}(t_0)$, če velja $\dot{\vec{r}}(t_0) \neq 0$.

Trditev 1.2. Če je \vec{r} zvezno odvedljiva vektorska funkcija na intervalu [a, b] (za a < b), je potem dolžina krivulje, ki jo določa, enaka

$$s = \int_a^b \|\dot{\vec{r}}(t)\| dt.$$

To velja tudi za funkcijo, ki so le *odsekoma zvezne*. Opazimo tudi, da je zgornja dolžina neodvisna od parametrizacije krivulje.

Trditev 1.3. Naj bo \vec{r} zvezno odvedljiva vektorska funkcija, definirana na intervalu [a,b] (za a < b) in naj bo $\psi : [a,b] \to [\alpha,\beta]$ zvezno odvedljiva bijekcija, tako da $t = \psi(\tau)$ preteče interval [a,b], ko τ preteče interval $[\alpha,\beta]$ (za $\alpha < \beta$). Potem je

$$\int_a^b \|\dot{\vec{r}}(t)\|dt \ = \ \int_\alpha^\beta \|\frac{d}{d\tau}\vec{r}(\psi(\tau))\|d\tau.$$

2 PLOSKVE V \mathbb{R}^3

Definicija 2.1 (Ploskev). Podmnožica $P \subseteq \mathbb{R}^3$ je *ploskev*, če za vsako točko $\vec{r} \in P$ obstaja taka okolica $H \subseteq \mathbb{R}^3$, da je $P \cap H$ graf kake zvezno odvedljive funkcije $\phi: D \to \mathbb{R}$, definirane na kaki *odprti* podmnožici $D \subseteq \mathbb{R}^2$.

To pomeni, da se na $P \cap H$ ena od koordinat x, y, z da enolično izraziti kot funkcija preostalih, torej da je $P \cap H$ ene od oblik:

$$\begin{split} P \cap H &= \{(x, y, \phi(x, y)) \mid (x, y) \in D\}, \\ P \cap H &= \{(x, \phi(x, z), y) \mid (x, z) \in D\}, \\ P \cap H &= \{(\phi(y, z), y, z) \mid (y, z) \in D\}. \end{split}$$

Trditev 2.1 (Izrek o implicitni funkciji). Naj bo $g: \mathbb{R}^3 \to \mathbb{R}$ zvezno odvedljiva funkcija in privzemimo, da je množica $P = g^{-1}(0)$ neprazna. Če je

$$\nabla g(\vec{r}) \neq 0$$

za $\forall \vec{r} \in P$ je P ploskev.

Enačba oblike $\vec{r} = \vec{r}(t)$ $(t \in [a, b] \subseteq \mathbb{R}, a < b)$ predstavlja krivuljo v \mathbb{R}^3 . Privzeli bomo, da je pri tem \vec{r} zvezno odvedljiva funkcija spremenljivke t. Taka krivulja leži na ploskvi $P = g^{-1}(0)$ natanko tedaj, ko je $g(\vec{r}(t)) = 0$ za $\forall t \in [a, b]$. Ko to enakost odvajamo po t, dobimo

$$\nabla g(\vec{r}(t)) \cdot \dot{\vec{r}}(t) = 0.$$

Ta enakost pomeni, da je vektor $\nabla g(\vec{r}(t))$ pravokoten na tangentni vektor $\dot{\vec{r}}(t)$ krivulje v točki $\vec{r}(t)$.

Če sedaj izberemo poljubno točko \vec{r}_0 na ploskvi P in opazujemo vse krivulje na ploskvi P, ki gredo skozi točko \vec{r}_0 (vsaka taka krivulja $\vec{r} = \vec{r}(t)$ zadošča pogoju $\vec{r}(t_0) = \vec{r}_0$ za kak t_0), vidimo, da je vektor $\nabla g(\vec{r}_0)$ pravokoten na tangentni vektor $\vec{r}(t_0)$ vsake take krivulje.

To pomeni, da mora biti vektor $\nabla g(\vec{r}_0)$ pravokoten na ploskev P. To velja za vsako točko $\vec{r}_0 \in P$.

Definicija 2.2 (Normalni vektor). Vektor $\nabla g(\vec{r})$ imenujemo normalni vektor na ploskev $P=g^{-1}(0)$ v točki $\vec{r}\in P$. Ravnino $T_{\vec{r}}P$ z normalnim vektorjem $\nabla g(\vec{r})$ skozi točko \vec{r} na ploskvi P pa imenujemo tangentna ravnina na ploskev P v točki \vec{r} .

Tangentna ravnina na P skozi točko \vec{r} je torej vzporedna vsem tangentnim vektorjem v točki \vec{r} na krivulje skozi \vec{r} na ploskvi P.

3 INTEGRALI S PARAMETROM

Definicija 3.1 (Integral s parametrom). Naj bo f zvezna funkcija dveh spremenljivk, definirana na pravokotniku $P = [a, b] \times [c, d]$ (a < b, c < d). Integral

 $F(y) = \int_a^b f(x,y) \ dx \tag{1}$

je funkcija spremenljivke y. Tak integral imenujemo $integral\ s\ parametrom\ y.$

Trditev 3.1. Če je f zvezna funkcija na pravokotniku $P = [a, b] \times [c, d]$, je funkcija F (definirana z (1)) zvezna na intervalu P.

Izrek 3.1. Naj bo f zvezna na pravokotniku $P = [a, b] \times [c, d]$ in privzemimo, da obstaja parcialni odvod $\frac{\partial f}{\partial y}$, ki naj bo zvezen na P. Potem je funkcija F (podana z (1)) odvedljiva in velja

$$F'(y) = \frac{d}{dy} \int_a^b f(x,y) \ dx = \int_a^b \frac{\partial f}{\partial y}(x,y) \ dx. \tag{2}$$

3.1 Izlimitirani integrali s parametrom

Definicija 3.2. Integral $F(y)=\int_a^\infty f(x,y)\ dx$ je enakomerno konvergenten za $y\in S\subseteq \mathbb{R}$, če za $\forall \varepsilon>0\ \exists M\in \mathbb{R}$, da za $\forall b\geq M$ in $\forall y\in S$ velja

$$\left| \int_{b}^{\infty} f(x, y) dx \right| < \varepsilon.$$

Za razliko od navadne konvergence mora tukaj obstajati tak M, ki je istočasno ustrezen za $\forall y \in S$, torej je $M = M_{\varepsilon}$ odvisen le od ε , ne pa tudi od y. Pri navadni konvergenci bi bil veljalo $M = M_{\varepsilon,y}$.

Trditev 3.2. Če je f zvezna funkcija na pasu $P = [a, \infty) \times [c, d]$ in integral

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

enakomerno konvergenten za $y \in [c, d]$, je F zvezna funkcija na [c, d].

3.2 Dvojni in dvakratni integrali

Definicija 3.3. Naj bo $P = [a, b] \times [c, d]$ in $f : P \to \mathbb{R}$ funkcija. Delitev $D_{[a,b]}$ intervala [a,b] je določena z zaporedjem točk

$$a = x_0 < x_1 < \ldots < x_m = b.$$

Delitev $D_{[a,b]}$ skupaj s poljubno delitvijo $D_{[c,d]}$ intervala [c,d], določeno z

$$c = y_0 < y_1 < \ldots < y_n = d,$$

določa neko delitev pravokotnika P na manjpe pravokotnike

$$P_{i,j} = [x_{i-1}, x_i] \times [y_{i-1}, y_i], (i = 1, ..., m; j = 1, ..., n).$$

Naj bo

$$m_{i,j} = \inf_{(x,y)\in P_{i,j}} f(x,y),$$

$$M_{i,j} = \sup_{(x,y)\in P_{i,j}} f(x,y).$$

Z $\Delta_{i,j}p=\Delta_ix\cdot\Delta_jy=(x_i-x_{i-1})(y_j-y_{j-1})$ označimo ploščino pravokotnika $P_{i,j}.$ Vsoto

$$\underline{S}_D = \sum_{i=1}^m \sum_{j=1}^n m_{i,j} \Delta_{i,j} p$$

imenujemo spodnja, vsoto

$$\overline{S}_D = \sum_{i=1}^m \sum_{j=1}^n M_{i,j} \Delta_{i,j} p$$

pa zgornja Riemannova vsota funkcije f pri delitvi D.

Lema 1. Če je N nadaljevanje delitve D pravokotnika P, za spodnje in zgornje Riemannove vsote poljubne omejene funkcije $f: P \to \mathbb{R}$ velja

$$\underline{S}_N \geq \underline{S}_D$$
 in $\overline{S}_N \leq \overline{S}_D$.

Definicija 3.4. Omejena funkcija $f: P \to \mathbb{R}$ je na pravokotniku P integrabilna v $Riemannovem \ smislu$, če velja

$$\underline{S} = \overline{S},$$

kjer je \underline{S} supermum njenih spodnjih, \overline{S} pa infimum njenih zgornjih Riemannovih vsot. Tedaj skupno vrednost $\underline{S}=\overline{S}$ označimo kot

$$\iint_P f(x,y) \ dp,$$

kjer pomeni dp = dxdy ploščinski element, in jo imenujemo dvojni integral funkcije f po pravokotniku P.

Izrek 3.2. Zvezna funkcija f na pravokotniku $P = [a, b] \times [c, d]$ je integrabilna in velja

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \iint_{P} f(x, y) dp = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy. \quad (3)$$

Enak zaključek velja tudi za funkcijo f, ki ni nujno zvezna, če je N množica njenih točk nezveznosti taka, da jo za $\forall \varepsilon > 0$ lahko pokrijemo s kakim zaporedjem pravokotnikov, katerih vsota ploščin je pod ε . Tedaj pravimo, da ima N mero 0.

Posledica. Za funkcijo f, ki je na pravokotniku P integrabilna v Riemannovem smislu, konvergirajo Riemannove vsote S proti $\iint_P f(x,y) dp$, ko gredo velikosti delilnih pravokotnikov (njihove diagonale) proti 0.

Natančneje: za $\forall \varepsilon > 0 \; \exists \delta > 0$, da je

$$\left| S - \iint_P f(x, y) \ dp \right| < \varepsilon$$

za vsako Riemannovo vsoto funkcije f pri vsaki delitvi pravokotnika P, kjer si dolžine diagonal pod δ .

3.3 Integriranje in odvajanje integralov s parametrom

Izrek 3.3. Naj bo f zvezna na pasu $[a, \infty) \times [c, d]$. Če je integral $\int_a^\infty f(x, y) \ dx$ enakomerno konvergenten za $y \in [c, d]$, potem je

$$\int_{c}^{d} \int_{a}^{\infty} f(x, y) \ dx \ dy = \int_{a}^{\infty} \int_{c}^{d} f(x, y) \ dy \ dx.$$

Izrek 3.4. Naj bosta f in $\frac{\partial f}{\partial y}$ zvezni na pasu $[a,\infty)\times[c,d]$, naj bo integral

$$F(y) = \int_{a}^{\infty} f(x,y) dx$$

konvergenten za $y \in [c, d]$ in naj bo integral

$$\int_{a}^{\infty} \frac{\partial f}{\partial y}(x,y) \ dx$$

enakomerno konvergenten na [c,d]. Potem je F odvedljiva funkcija in velja

$$F'(y) = \frac{d}{dy} \int_a^\infty f(x,y) \ dx = \int_a^\infty \frac{\partial f}{\partial y}(x,y) \ dx.$$

Izrek 3.5 (Kriterij za ugotavljanje enakomerne konvergence).

Integral $\int_a^\infty f(x,y)\ dx = F(y)$ je enakomerno konvergenten na S natanko tedaj, ko za $\forall \varepsilon>0\ \exists N\in\mathbb{R},$ da za poljubna $d>b\geq N$ in za $\forall y\in S$ velja

$$\left| \int_b^d f(x, y) \ dx \right| < \varepsilon.$$

Posledica. Če je $|f(x,y)| \leq g(x,y)$ za $\forall (x,y) \in [a,\infty) \times [c,d]$ in je integral $\int_a^b g(x,y) \ dx$ enakomerno konvergenten na [c,d], je enakomerno konvergenten tudi integral $\int_a^b f(x,y) \ dx$.

Izrek 3.6 (2. izrek o povprečju). Naj bo f integrabilna, g pa nenegativna padajoča (odvedljiva) funkcija na intervalu [a, b]. Potem $\exists \xi \in [a, b]$, da je

$$\int_a^b f(x)g(x) \ dx = g(a) \int_a^{\xi} f(x) \ dx.$$

3.4 Eulerjevi funkciji Γ in B

Definicija 3.5 (Funkcija Γ). Na poltraku x>0 je funkcija Γ definirana z

$$\Gamma(x) = \int_0^\infty t^{t-1} e^{-t} dt. \tag{4}$$

Trditev 3.3 (Rekurzivna formula). Za $\forall x > 0$ velja

$$\Gamma(x+1) = x\Gamma(x).$$

Posledica. $\Gamma(n+1) = n!$ za $\forall n \in \mathbb{N}$

To nam namiguje, naj definiramo

$$x! := \Gamma(x+1)$$
 za $\forall n \in \mathbb{N}$.

Rekurzivna formula nam omogoča, da razširimo definicijsko območje funkcije Γ . Če je namreč $x \in (-1,0)$, je $x+1 \in (0,1)$, zato je vrednost $\Gamma(x+1)$ že definiramo in lahko postavimo

$$\Gamma := \frac{\Gamma(x+1)}{x}.$$

S ponavljanjem rekurzivne formule dobimo

$$\Gamma(x) = \frac{\Gamma(x+n)}{x(x+1)\dots(x+n-1)}.$$
 (5)

Za $\forall x \in \mathbb{R}$, ki ni negativno celo število ali 0, lahko izberemo tak najmanjši $n \in \mathbb{N}$, da je (x+n) > 0; tedaj je vrednost $\Gamma(x+n)$ že definirana in lahko $\Gamma(x)$ definiramo s formulo (5).

Definicija 3.6. Funkcija beta je definirana kot

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad (x > 0, y > 0).$$
 (6)

Lahko se je prepričati, da je integral v (6) konvergenten, če je x>0 in y>0.

Z vpeljavo nove integracijske spremenljivke $t=\sin^2\varphi$ lahko definicijo funkcije Bzapišemo tudi kot

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1} \varphi \cos^{2y-1} \varphi d\varphi.$$
 (7)

Trditev 3.4. Za poljubna pozitivna x, y je

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 (8)

Izrek 3.7 (Stirlingova formula).

$$\lim_{n \to \infty} \frac{n!}{\sqrt{n} (\frac{n}{e})^n} \ = \ \sqrt{2\pi}$$

Trditev 3.5 (Wallisova formula).

$$\lim_{n \to \infty} \frac{1}{2n+1} \prod_{j=1}^{n} \left(\frac{2j}{2j-1} \right)^2 = \frac{\pi}{2}$$

4 VEČKRATNI INTEGRALI

Definicija 4.1. Naj bo $f: K \to \mathbb{R}$ omejena funkcija, definirana na kvadru $K = [a, b] \times [c, d] \times [e, g]$ v \mathbb{R}^3 . Vse tri intervale [a, b], [c, d] in [e, g] razdelimo na podintervale z delilnimi točkami:

$$a = x_0 < \dots < x_{i-1} < x_i < \dots < x_m = b,$$

$$c = y_0 < \dots < y_{j-1} < y_j < \dots < y_n = d,$$

$$e = z_0 < \dots < z_{k-1} < z_k < \dots < z_p = g.$$

S tem razdelimo kvader K na manjše podkvadre

$$K_{i,j,k} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k];$$

to delitev imenujemo D. Označimo

$$m_{i,j,k} = \inf_{(x,y,z) \in K_{i,j,k}} f(x,y,z),$$

$$M_{i,j,k} = \sup_{(x,y,z) \in K_{i,j,k}} f(x,y,z)$$

ter tvorimo spodnjo in zgornjo Riemannovo vsoto pri tej delitvi:

$$\underline{S}_D = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p m_{i,j,k} \Delta_{i,j,k} V,$$

$$\overline{S}_D = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p M_{i,j,k} \Delta_{i,j,k} V,$$

kjer je

$$\Delta_{i,i,k}V = \Delta_i x \Delta_i y \Delta_k z = (x_i - x_{i-1})(y_i - y_{i-1})(z_k - z_{k-1})$$

prostornina kvadra $K_{i,j,k}$. Končno naj bo

$$\underline{S} = \sup_{D} \underline{S}_{D}$$
 in $\overline{S} = \inf_{D} \overline{S}_{D}$,

kjer teče D po vseh takih delitvah kvadra K. Če je $\underline{S}=\overline{S}$ pravimo, da je funkcija f integrabilna na kvadru K in skupno vrednost $\underline{S}=\overline{S}$ označimo kot

$$\iiint_K f(x,y,z) \ dV$$

ter jo imenujemo trojni (Riemannov) integral funkcije f.

Definicija 4.2. Naj bo Ω poljubna omejena podmnožica v \mathbb{R}^n (n = 1, 2, 3, ...), $f: \Omega \to \mathbb{R}$ pa omejena funkcija. Izberimo kvader K oblike $K = [a, b] \times [c, d] \times ...$, ki naj vsebuje Ω , definirajmo funkcijo $f_K: K \to \mathbb{R}$ kot

$$f(x) = \begin{cases} f(x, y, \dots) & ; (x, y, \dots) \in \Omega \\ 0 & ; (x, y, \dots) \in K \setminus \Omega \end{cases}$$

ter večkratni integral $\int \cdots \int_{\Omega} f(x, y, \ldots) dV$ kot

$$\int \cdots \int_{\Omega} f(x, y, \ldots) \ dV = \int \cdots \int_{K} f_{K}(x, y, \ldots) \ dV.$$

Trditev 4.1. Če ima presek *omejenih* množic Ω_1 in Ω_2 v \mathbb{R}^2 (ali v \mathbb{R}^n) mero 0, potem je

$$\int \cdots \int_{\Omega_1 \cup \Omega_2} f(x_1, \dots, x_n) dV = \int \cdots \int_{\Omega_1} f(x_1, \dots, x_n) dV + \int \cdots \int_{\Omega_2} f(x_1, \dots, x_n) dV$$

Trditev 4.2. Naj bosta f_1 in f_2 zvezni funkciji na Ω ter c_1 in c_2 poljubni konstanti. Potem velja

$$\int \cdots \int_{\Omega} (c_1 f_1 + c_2 f_2) \ dV = c_1 \int \cdots \int_{\Omega} f_1 \ dV + c_2 \int \cdots \int_{\Omega} f_2 \ dV.$$

Trditev 4.3. Če je $f \leq g$, potem je $\iint_{\Omega} f \ dp \leq \iint_{\Omega} g \ dp$ in podobno za večkratne integrale. Če je torej funkcija f omejena na mnoćici Ω navzgor s konstanto M, navzdol pa s konstanto m, potem velja

$$mp_{\Omega} \leq \iint_{\Omega} f dp \leq Mp_{\Omega},$$

kjer je p_{Ω} ploščina množice Ω .

Trditev 4.4.

$$\left| \iint_{\Omega} f \ dp \right| \le \iint_{\Omega} |f| \ dp$$

Trditev 4.5. Naj bo Ω kompaktna množica v \mathbb{R}^2 , katere rob sestoji iz končno mnogo krivulj oblike $\vec{:}[a,b] \to \mathbb{R}^2$ za kake zvezno odvedljive funkcije \vec{r} in kake intervale [a,b]. Izberimo pravokotnik P, ki vsebuje Ω , in naj bo D poljubna delitev tega pravokotnika s premicami, vzporednimi koordinatnima osema. V vsakem od tistih delilnih pravokotnikov P_k delitve D, ki sekajo Ω , izberemo točko $\vec{r}_k \in P_k \cap \Omega$, označimo z $\Delta_k p$ ploščino pravokotnika P_k in tvorimo Riemannovo vsoto

$$S_D(f) = \sum_k f(\vec{r_k}) \Delta_k p,$$

kjer teče indeks le po tistih delilnih pravokotnikih P_k , ki sekajo Ω . Za vsako zvezno funkcijo f na Ω je integral $\iint_{\Omega} f(\vec{r}) \ dp$ enak limiti vsot $S_D(f)$, ko gredo velikosti vseh delilnih pravokotnikov (torej največja diagonala vseh delilnih pravokotnikov) proti 0. Natančneje, za $\forall \varepsilon > 0 \ \exists \delta > 0$, da je

$$\left| S_D(f) - \iint_{\Omega} f(\vec{r}) \ dp \right| < \varepsilon,$$

če je maksimalna diagonalna delilnih pravokotnikov P_k manjša od δ .

Posledica. Naj bo Ω podana kot

$$\Omega = \{ (x, y) \in \mathbb{R}^2 \mid g_1(x) \le y \le g_2(x), \ a \le x \le b \},$$
 (9)

kjer sta g_1 in g_2 zvezni funkciji na intervalu [a,b] in $g_1(x) \leq g_2(x)$ za $\forall x \in [a,b]$. Naj bosta M_1 in M_2 taki števili, da pravokotnik $P = [a,b] \times [M_1, M_2]$ vsebuje množico Δ (torej $M_1 \leq g_1(x) \leq g_2(x) \leq M_2$ za $\forall x \in [a,b]$). Po definiciji imamo potem za vsako zvezno funkcijo $f: \Omega \to \mathbb{R}$:

$$\iint_{\Omega} f(x,y) \ dp = \iint_{P} f_{P}(x,y) \ dp,$$

kjer je f_P funkcija na P, definirana z

$$f_P(x,y) = \begin{cases} f(x,y) & ; \ (x,y) \in \Omega \\ 0 & ; \ (x,y) \in P \setminus \Omega. \end{cases}$$

Po zgornjem izreku pa je

$$\iint_{P} f_{P}(x,y) \ dp = \int_{a}^{b} \left(\int_{M_{1}}^{M_{2}} f(x,y) \ dy \right) dx = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \ dy \right) dx,$$

kjer smo upoštevali, da je funkcija f_P enaka 0 izven Ω in zato $\int_{M_1}^{M_2} f_P(x,y) \ dy = \int_{g_1(x)}^{g_2(x)} \ dy$. Torej velja naslednja trditev:

Trditev 4.6. Za vsako *zvezno* funkcijo f na množici Ω , definirani kot (9), velja

$$\iint_{\Omega} f(x,y) \ dp = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \right) dx.$$

Trditev 4.7. Za območja Ω , podana kot $\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid g_1(x, y) \leq z \leq g_2(x, y), \ (x, y) \in \Lambda\}$, in (skoraj povsod) zvezne funkcije f na njih velja

$$\iiint_{\Omega} f(x, y, z) \ dV = \iint_{\Lambda} \left(\int_{g_1(x)}^{g_2(x)} f(x, y, z) \ dz \right) dp.$$

4.1 Cilindrične ali valjne koordinate

Definicija 4.3. Lega točke (x,y,z) v prostoru $\mathbb R$ je določena s koordinato z in polarnima koordinatama r,φ njene projekcije (x,y,0) na ravnino x,y. Trojko φ,r,z imenujemo *cilindrične* ali *valjne* koordinatne točke. S kartezičnimi koordinatami so povezane prek enakosti

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z.$$

Pri tem lahko r zavzame vse nenegativne vrednosti, z vse realne vrednosti, φ pa na intervalu $[0,2\pi)$. Za dano točko T pomeni r njeno razdaljo od osi z, ki je enaka razdalji projekcije točke T na ravnino x,y od koordinatnega izhodišča.

Posledica (Koordinatne ploskve).

 $\bullet\,$ Ploskve z=konstanta so ravnine, vzporedne z ravnino x,y

- \bullet Ploskve r = konstanta so neskončni valji, katerih os je os z
- Ploskve $\varphi = \text{konstanta pa so polravnine}$

4.2 Sferične koordinate

Definicija 4.4. Sferične ali krogelne koordinate točke T(x, y, z) so:

- $R = \sqrt{x^2 + y^2 + z^2}$ razdalja od izhodišča
- \bullet θ kot, ki ga vektor $\vec{0T}$ oklepa s pozitivnim poltrakom osi z
- φ kot, ki ga pravokotna projekcija vektorja $0\vec{T}$ na ravnino x,y oklepa s pozitivnim poltrakom osi x

Naj bo kot doslej r
, razdalja T od osi z. Potem je $r=R\sin\theta$ in

$$x = R\sin\theta\cos\varphi, \quad y = R\sin\theta\sin\varphi, \quad z = R\cos\theta.$$

Tukaj lahko zavzame kot θ vrednosti na intervalu $[0, \pi]$ (0 je na pozitivnem, π pa na negativnem poltraku osi z), kot φ pa vrednosti na intervalu $[0, 2\pi)$.

Volumni element v sferičnih koordinatah je

$$dV = R^2 \sin \theta \ dR \ d\theta \ d\varphi.$$

Od tod sledi, da lahko trojni integral po telesu Ω , ki je opisano kot

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : g_1(\varphi, \theta) \le R \le g_2(\varphi, \theta), (\varphi, \theta) \in \Lambda\},\$$

kjer sta $g_1 \leq g_2$ zvezni funkciji na množici $\Lambda \subset \mathbb{R}^2$, izrazimo kot

$$\iiint_{\Omega} f(x,y,z) \ dV = \iint_{\Lambda} \left(\int_{g_1(\varphi,\theta)}^{g_2(\varphi,\theta)} f(R\sin\theta\cos\varphi, \ R\sin\theta\sin\varphi, \ R\cos\theta) R^2 \sin\theta \ dR \right) d\theta \ d\varphi.$$

Posledica (Koordinatne ploskve).

- Ploskve R = konstanta so sfere
- Ploskve $\theta = \text{konstanta so stožci}$
- Plosvke $\varphi = \text{konstanta so polravnine}$

4.3 Splošne koordinate

Definicija 4.5. Naj bo V odprta podmožica v ravnini. Vlogo splošnih koordinat na V lahko igra vsak tak par funkcij

$$u = u(x, y), \quad v = v(x, y)$$

na V, da iz $(x,y) \neq (x_1,y_2)$ sledi $(u(x,y),v(x,y)) \neq (u(x_1,y_1),v(x_1,y_1))$, kar pomeni, da je točka (x,y) enolično določena s parom (u(x,y),v(x,y)). Drugače povedano, vektorska funkcija

$$F: V \to \mathbb{R}^2, \ F(x,y) = (u(x,y), v(x,y))$$

mora biti injektivna. Zavoljo diferencialnega računa predpostavimo, da sta funkciji u in v zvezno odvedljivi. Iz izreka o inverzni preslikavi vemo, da potem obrnljivost Jacobijeve matrike F'(x,y) preslikave F zagotavlja injektivnost preslikave F v okolici točke (x,y), ne pa na celem definicijskem območju V, zato jo je treba posebej privzeti. Tedaj je pri pogoju, da je F'(x,y) obrnljiva matrika za $\forall (x,y) \in V$, preslikava F dejansko bijekcija na odprto množico U := F(V), inverzna preslikava

$$G := F^{-1} : U \to V$$

pa je tudi zvezno odvedljiva in

$$G'(\vec{q}) = (F'(G(\vec{q})))^{-1}$$
 za $\forall \vec{q} \in U$.

Pri fiksnih u_0 in v_0 imenujemo krivulje u=(x,y) in v=(x,y) koordinatne krivulje.

Izrek 4.1. Naj bo $G: U \to V$ taka zvezno odvedljiva bijekcija, kjer sta U in V odprti podmnožici v \mathbb{R} , da je det $G'(\vec{r}) \neq 0$ za $\forall \vec{r} \in U$. Označimo $\vec{r} = (u, v)$ in G(u, v) = (x(u, v), y(u, v)). Naj bo Ω kompaktna podmnožica v V, katere rob naj sestoji iz končno mnogo zvezno odvedljivih krivulj (oz. naj ima mero 0), f pa naj bo zvezna funkcija na V (razen morda na množici z mero 0). Potem je

$$\iint_{\Omega} f(x,y) \ dx \ dy \ = \ \iint_{G^{-1}(\Omega)} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)}(u,v) \right| du \ dv,$$

kjer je

$$\frac{\partial(x,y)}{\partial(u,v)}(u,v) = \det G'(u,v) = \det \begin{bmatrix} \frac{\partial x}{\partial u}(u,v) & \frac{\partial x}{\partial v}(u,v) \\ \frac{\partial y}{\partial u}(u,v) & \frac{\partial y}{\partial v}(u,v) \end{bmatrix}.$$

Lema 2. Naj bo $L: \mathbb{R}^2 \to \mathbb{R}^2$ obrnljiva linearna preslikava in Λ paralelogram. Potem med ploščinama paralelograma Λ in $L(\Lambda)$ velja zveza

$$p_{L(\Lambda)} = |\det L|_{p_{\Lambda}}.\tag{10}$$

Enaka povezava velja tudi za vsako kompaktno podmnožico Λ v \mathbb{R}^2 oziroma za vsako ravninsko podmnožico, za katero je ploščina definirana.

Lema 3. Naj bo $G: U \to \mathbb{R}^2$ zvezno odvedljiva injektivna preslikava s povsod obrbljivim odvodom G'(u,v), definirana na odprti množici U, K kompaktna podmnožica v $U, \Lambda = \{(u,v) \in \mathbb{R}^2; \ |u-a| \le h, \ |v-b| \le h\}$ pa kvadrat s središčem (a,b) in stranico dolžine 2h, vsebovan v K. Označimo

$$L = \det G'(a,b) = \det \begin{bmatrix} \frac{\partial x}{\partial u}(a,b) & \frac{\partial x}{\partial v}(a,b) \\ \frac{\partial y}{\partial u}(a,b) & \frac{\partial y}{\partial v}(a,b) \end{bmatrix}$$

in naj boApreslikava, definirana zA(u,v)=G(a,b)+L(u-a,v-b). Potem za $\forall \varepsilon>0 \ \exists \delta>0$ (neodvisen od izbire kvadrata), da za ploščini likov $G(\Lambda)$ in $A(\Lambda)$, ko je $h<\delta,$ velja

$$|p_{G(\Lambda)} - p_{A(\Lambda)}| < \varepsilon p_{\Lambda}.$$

Ker se preslikavi A in Lrazlikujeta le za translacijo, lahko v tej oceni nadomestimo A z L.

5 PLOSKOVNI IN KRIVULJNI INTEGRAL

5.1 Površina ploskve in ploskovni integral skalarne funkcije

Definicija 5.1. Naj bo Λ pravokotnik s središčem $(u, v) \in \Omega$ in stranicama du, dv, ki naj bosta vzporedni koordinatnima osema in je L Jacobijeva matrika preslikave $\vec{r} = \vec{r}(u, v)$, torej

$$L = \begin{bmatrix} \frac{\partial}{\partial u} \vec{r}(u, v) & \frac{\partial}{\partial v} \vec{r}(u, v) \end{bmatrix}.$$

Ploščina paralelograma $L(\Lambda)$ je tako

$$p_{L(\Lambda)} \ = \ \|duL(1,0)\times dvL(0,1)\| \ = \ du \ dv \ \|\frac{\partial}{\partial u}\vec{r}(u,v)\times \frac{\partial}{\partial v}\vec{r}(u,v)\|.$$

Celotno površino ploskve lahko izračunamo tako, da seštejemo ploščine takih paralelogramov in limitiramo njihove velikosti proti 0, s čimer preide vsota v integral

$$p = \iint_{\Omega} \|\frac{\partial}{\partial u} \vec{r}(u, v) \times \frac{\partial}{\partial v} \vec{r}(u, v)\| du dv.$$

Z upoštevanjem Lagranje
ove identitete $\|\vec{a} \times \vec{b}\| = \sqrt{\|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a} \cdot \vec{b})^2}$, lahko nekoliko poenostavimo formulo:

$$E(u,v) = \|\frac{\partial}{\partial u}\vec{r}\|^2, \quad F(u,v) = \frac{\partial}{\partial u}\vec{r} \cdot \frac{\partial}{\partial v}\vec{r}, \quad G(u,v) = \|\frac{\partial}{\partial v}\vec{r}\|^2$$
$$p = \iint_{\Omega} \sqrt{EG - F^2} \ du \ dv.$$

Označimo $\vec{q} = (u, v)$. Jacobijeva matrika $\dot{\vec{r}}(\vec{q})$ je

$$[\dot{\vec{r}}(\vec{q})]^T [\dot{\vec{r}}(\vec{q})] \ = \ \begin{bmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{bmatrix},$$

od kjer dobimo determinanto

$$\det [\dot{\vec{r}}(\vec{q})]^T [\dot{\vec{r}}(\vec{q})] = E(u, v)G(u, v) - F(u, v)^2.$$

Zamenjava spremenljivk:

$$\begin{split} \iint_{\Lambda} \sqrt{E(s,t)G(s,t) - F(s,t)^2} \ ds \ dt \ &= \ \iint_{\Lambda} \sqrt{E(s,t)G(s,t) - F(s,t)^2} \left| \frac{\partial (u,v)}{\partial (s,v)} \right| \ ds \ dt \\ &= \ \iint_{\Omega} \sqrt{E(u,v)G(u,v) - F(u,v)^2} \ du \ dv. \end{split}$$

Trditev 5.1. Definicija površine ploskve je neodvisna od parametrizacije.

Definicija 5.2. Naj bo f funkcija, definirana na ploskvi \mathcal{P} z enačbo $\vec{r} = \vec{r}(u, v), (u, v) \in \Omega \subseteq \mathbb{R}^2$. *Ploskovni integral* te funkcije po ploskvi \mathcal{P} je definirana kot

$$\iint_{\mathcal{P}} f \ dp \ = \ \iint_{\Omega} f(\vec{r}(u,v)) \sqrt{E(u,v)G(u,v) - F(u,v)^2} \ du \ dv.$$

Lahko bi pokazali, da je ploskovni integral neodvisen od parametrizacije ploskve.

5.2 Krivuljni integral

5.2.1 Krivuljni integral skalarne funkcije

Definicija 5.3. Naj bo f (zvezna) funkcija na krivulji γ z enačbo $\vec{r} = \vec{r}(t)$, $a \le t \le b$. Krivuljni integral funkcije f po krivulji γ , je definiran kot

$$\int_{\gamma} f(\vec{r}) \ ds = \int_{a}^{b} f(\vec{r}(t)) || \dot{\vec{r}}(t) || \ dt.$$

5.2.2 Krivuljni integral vektorske funkcije

Definicija 5.4. Krivuljni integral je definiran kot

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \dot{\vec{r}}(t) dt.$$

Trditev 5.2. Če je $t=t(\tau)$ ($\alpha \leq \tau \leq \beta$) naraščajoča zvezno odvedljiva funkcija novega parametra τ in t preteče interval [a,b], ko τ preteče interval $[\alpha,\beta]$, potem je

$$\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{d}{dt} \vec{r}(t) dt = \int_{\alpha}^{\beta} \vec{F}(\vec{r}(t(\tau))) \cdot \frac{d}{dt} \vec{r}(t(\tau)) d\tau,$$

kar pomeni, da je krivuljni integral enak za vse parametrizacije dane krivulje z enako orientacijo.

Če je pa $t=t(\tau)$ padajoča funkcija in t preteče interval [a,b], ko τ teče od β do α , potem je

$$\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{d}{dt} \vec{r}(t) dt = -\int_{\alpha}^{\beta} \vec{F}(\vec{r}(t(\tau))) \cdot \frac{d}{dt} \vec{r}(t(\tau)) d\tau,$$

kar pomeni, da pri spremembi orientacije krivulje, krivuljni integral spremeni predznak.

Trditev 5.3.

(i)
$$\int_{\gamma \dot{+} \lambda} \vec{F} \cdot d\vec{r} \; = \; \int_{\gamma} \vec{F} \cdot d\vec{r} + \int_{\lambda} \vec{F} \cdot d\vec{r},$$

kjer je \vec{F} vektorsko polje na $\gamma \dotplus \lambda$

(ii)
$$\int_{\gamma^-} \vec{F} \cdot d\vec{r} = -\int_{\gamma} \vec{F} \cdot d\vec{r}$$

Krivuljo γ , katere končna točka se ujema z začetno, imenujemo sklenjena.

Trditev 5.4. Naj bo \vec{F} vektorsko polje na U. Velja

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = 0$$

za vsako sklenjeno krivuljo γ v U natanko tedaj, ko je

$$\int_{\gamma_1} \vec{F} \cdot d\vec{r} = \int_{\gamma_2} \vec{F} \cdot d\vec{r}$$

za vsaki krivulji γ_1 in γ_2 v U,ki imata isto začetno in isto končno točko.

5.2.3 Krivuljni integral potencialnega polja

Definicija 5.5. Vektorsko polje $\vec{F}: U \to \mathbb{R}^3$ (\mathbb{R}^2) je potencialno, če obstaja taka funkcija $u: U \to \mathbb{R}^3$ (\mathbb{R}^2), imenovana potencial polja \vec{F} , da je

$$\vec{F} = \vec{\nabla}u$$
.

kjer je $\vec{\nabla} u$ gradient funkcije u.

Trditev 5.5. Zvezno odvedljivo vektorsko polje $\vec{F} = (M,N)$ je potencialno le, če velja

 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$

Trditev 5.6. Krivuljni integral potencialnega vektorskega polja $\vec{\nabla}u$ po katerikoli krivulji γ v definicijskem območju polja je

$$\int_{\gamma} \vec{\nabla} u \cdot d\vec{r} = u(\vec{r}(b)) - u(\vec{r}(a)),$$

kjer sta $\vec{r}(a)$ in $\vec{r}(b)$ začetna in končna točka krivulje γ . Torej je krivuljni integral danega potencialnega polja neodvisen od poteka krivulje, odvisen je le od njene začetne in končne točke.

Trditev 5.7. Vektorsko polje \vec{F} na območju U je potencialno natanko tedaj, ko je za vsaki dve točki \vec{r}_0 in \vec{r} iz U krivuljni integral $\int_{\gamma} \vec{F} \cdot d\vec{r}$ enak za vse krivulje γ v U z začetno točko \vec{r}_0 in končno točko \vec{r} .

Posledica. Vektorsko polje \vec{F} na U je potencialno natanko tedaj, ko je

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = 0$$

za vsako sklenjeno krivuljo γ v U.

5.2.4 Povezava med krivuljnim in dvojnim integralom

Izrek 5.1. Naj bo Ω kompaktna ravninska množica, katere rob $\partial\Omega$ sestoji iz končno mnogo sklenjenih zvezno odvedljivih krivulj, parametriziranih na kompaktnih interavlih in usmerjenih tako, da je Ω na njihovi levi. Za vsako zvezno odvedljivo vektorsko polje $\vec{F}=(M,N)$, definirano na kaki okolici množice Ω , velja Greenova formula

$$\int_{\partial\Omega} (M \ dx + N \ dy) = \iint_{\Omega} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \ dp.$$

Ravninsko območje U brez lukenj imenujemo enostavno povezano. Natančneje: U je enostavno povezano, če je njegov komplement v razširjeni ravnini (torej v $\mathbb{R}^2 \cup \{\infty\}$ povezana množica, se pravi je iz enega kosa).

Posledica. Na enostavnem povezanem območju <math>U je pogoj

$$\frac{\partial M}{\partial y} \; = \; \frac{\partial N}{\partial x}$$

potreben in zadosten za potencialnost vektorskega polja $\vec{F} = (M, N)$.

6 DIFERENCIALNE ENAČBE

Definicija 6.1. Splošna diferencialna enačba reda n je enačba oblike

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

kjer je F dana funkcija n+2 spremenljivk definirana na kakem območju v \mathbb{R}^{n+1} , y neznana funkcija spremenljivke x, $y^{(k)}$ $(k=1,\ldots,n)$ pa njeni odvodi. $Red\ enačbe$ je red najvišjega odvoda, ki nastopa v enačbi.

6.1 Enačbe 1. reda

Definicija 6.2 (Enačba z ločljivima spremenljivkama). To je enačba oblike

$$g(y)y' = f(x),$$

kjer sta f in g zvezni funkciji. V tem primeru obe strani lahko integriramo in dobimo

$$\int g(y)dy = \int f(x)dx \quad \Rightarrow \quad G(y) = F(x) + C,$$

kjer sta F in G primitivni funkciji f in g ter je C integracijska konstanta. Če se da izraziti y = y(x) smo dobili rešitev, sicer rečemo, da zgornja enačba predstavlja rešitev v implicitni obliki.

Definicija 6.3 (Enačba oblike $y'=f(\frac{y}{x})$). Naj bo f zvezna funkcija. Z novo neznanko $v=\frac{y}{x}$, torej y=xv in y'=xv', kar enačbo preoblikuje v

$$xv' = f(v) - v,$$

kjer sta spremenljivki x in v ločljivi.

Definicija 6.4 (Linearna enačba 1. reda). To je vsaka enačba, ki se jo da preoblikovati v

$$y' = py + q,$$

kjer sta p in q zvezni funkciji na kakem intervalu I (lahko tudi poltrak ali cela realna os). Če je $q \equiv 0$ imenujemo enačbo homogena. Tedaj sta spremenljivki ločljivi. Ko $q \not\equiv 0$, najprej enačbo rešimo homogeno enačbo in nato rešitev vstavimo v enačbo (variacija konstante). Dobimo

$$u' = C'e^P + Ce^P P.$$

kjer je P' = p. Originalno enačbo tako preoblikujemo v

$$C'e^P = q.$$

Od tod izračunamo $C = \int_a^x e^{-P(t)} q(t) dt + K$, kjer je K konstanta in sledi

$$y(x) = Ce^{P(x)} = e^{P(x)} \int_a^x e^{-P(x)} q(t) dt + Ke^{P(x)}.$$

Definicija 6.5 (Bernoullijeva enačba). To je enačba oblike

$$y' = py + qy^n$$
,

kjer sta p in q zvezni funkciji in $n \in \mathbb{R} \setminus \{0,1\}$ realna konstanta. Za n > 0 je ena rešitev te enačbe $y \equiv 0$. Pri deljenju enačbe z y^n vidimo, da jo vpeljava nove neznanke $v = y^{1-n}$ spremeni v linearno. Tedaj $y = v^{\frac{1}{1-n}}$ in $y' = \frac{1}{1-n}v^{\frac{1}{1-n}-1}v'$, enačba pa se preoblikuje v

$$\frac{1}{1-n}v' = pv + q,$$

ki je linearna. Pri deljenju z $v^{\frac{1}{1-n}}$ izgubimo rešitve v, ki so za n > 0 enake 0. V vsaki ničli x_0 funkcije v je tudi $y(x_0) = 0$ in $y'(x_0) = 0$, če je $n \in (0,1)$, zato lahko v točki $(x_0,0)$ združimo rešitvi $y \equiv 0$ in $y = v^{\frac{1}{1-n}}$.

Definicija 6.6 (Eksaktna enačba). Diferencialno enačbo y' = f(x, y) lahko zapišemo tudi kot f(x, y)dx - dy = 0. Splošnejšo enačbo take oblike

$$\omega := f(x, y)dx + g(x, y)dy = 0,$$

znamo rešiti, če je izraz ω totalni diferencial kake funkcije u, torej

$$\omega = du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy.$$

Tedaj $\omega = du = 0$ pomeni (na povezanem območju v ravnini), da je funkcija u konstantna, torej u(x,y) = C, kar imamo lahko za implicitno podano rešitev.

Pogoj, da je ω totalni diferencialn oz. da je $f = \frac{\partial u}{\partial x}$ in $g = \frac{\partial u}{\partial y}$ za kako funkcijo u, je enakost

$$\frac{\partial f}{\partial y} = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial g}{\partial x}.$$

Na splošno ω ni totalni diferencial, lahko pa morda najdemo tako funkcijo μ brez ničel, da je $\mu\omega$ totalni diferencial funkcije u. Tak μ imenujemo integrirajoči množitelj. Ker je $\omega=0$ ekvivalentna enačbi $du=\mu\omega=0$, je u(x,y)=C spet implicitno podana rešitev.

Pogoj, da je $\mu\omega$ totalni diferencial kake funkcije je

$$\frac{\partial (\mu f)}{\partial y} \ = \ \frac{\partial (\mu g)}{\partial x} \ \text{ oz. } \ \frac{1}{\mu} \left(g \frac{\partial \mu}{\partial x} - f \frac{\partial \mu}{\partial y} \right) \ = \ \frac{\partial f}{\partial y} - \frac{\partial g}{\partial x}.$$

Če $\exists \mu = \mu(x)$, torej $\frac{\partial \mu}{\partial y} = 0$, se enakost poenostavi ter dobimo (kjer g ni 0)

$$\frac{d(\ln \mu)}{dx} = \frac{\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x}}{q}.$$

Če je izraz na desni odvisen le od x, potem je

$$\mu = e^{\int \frac{\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x}}{g} dx}.$$

integrirajoči množitelj. Podobno lahko izpeljemo, če $\exists \mu = \mu(y)$

6.2 Homogene linearne diferencialne enačbe 2. reda

Definicija 6.7. Splošna linearna diferencialna enačba 2. reda je enačba oblike

$$f(x)y'' + g(x)y' + h(x)y = d(x),$$

kjer so f, g, h in d zvezne funkcije na kakem intervalu I, y pa neznana, dvakrat zvezno odvedljiva funkcija. Če je desna stran $d \equiv 0$, imenujemo enačbo homogena. Kadar f nima ničel, dobimo po deljenju z f ekvivalentno enačbo oblike

$$y'' + p(x)y' + q(x)y = r(x),$$

kjer so p, q in r zvezne funkcije. Vse funkcije tukaj imajo lahko vrednosti v \mathbb{C} . Zgornje enačbe ne moremo vedno rešiti eksplicitno z znanimi funkcijami, rešitve pa vedno obstajajo in so določene enolično pri začetnih pogojih.

Izrek 6.1. Če so p, q in r zvezne funkcije na intervalu I, potem za $\forall x_0 \in I$ in poljubni konstanti $y_0, \tilde{y}_0 \in \mathbb{C}$ obstaja natanko ena dvakrat zvezno odvedljiva funkcija $y: I \to \mathbb{C}$, ki zadošča enačbi y'' + p(x)y' + q(x)y = r(x) in začetnima pogojema

$$y(x_0) = y_0, \quad y'(x_0) = \tilde{y}_0.$$

Če so pri tem p, q, r realne funkcije in $y_0, \tilde{y}_0 \in \mathbb{R}$, potem je tudi rešitev y realna funkcija.

Definicija 6.8 (Linearna neodvisnost). Funkciji y_1 in y_2 sta linearno neodvisni, če nobena njuna netrivialna linearna kombinacija $c_1y_1 + c_2y_2$ ($c_1, c_2 \in \mathbb{C}$ sta konstanti, $(c_1, c_2) \neq (0, 0)$) ni identično enaka 0. To pomeni, da nobena od obeh funkcij ni konstanten večkratnik druge.

Definicija 6.9. Determinanta Wronskega funkcij y_1, y_2 je funkcija, definirana kot

$$W_{y_1,y_2}(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = y_1(x)y'_2(x) - y'_1(x)y_2(x).$$

Trditev 6.1 (Liouvillova formula). Za determinanto Wronskega $W = W_{y_1,y_2}$ dveh rešitev y_1, y_2 enačbe y'' + p(x)y' + q(x)y = 0 velja Liouvillova formula

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(t)dt}$$

za $\forall x \in I$, kjer je x_0 poljubna točka iz intervala I, nad katerim opazujemo enačbo. Torej je W bodisi enaka 0 bodisi nima nobene ničle na I.

Trditev 6.2. Rešitvi y_1, y_2 enačbe y'' + p(x)y' + q(x)y = 0 sta na intervalu I linearno neodvisni natanko tedaj, ko njuna determinanta Wronskega W ni identično enaka 0 na I, kar je natanko takrat, ko W nima nobene ničle na I.

Izrek 6.2. Množica vseh rešitev enačbe y'' + p(x)y' + q(x)y = 0, je dvo-razsežen vektorski prostor. Če sta torej y_1 in y_2 linearno neodvisni rešitvi, potem lahko vsako rešitev y izrazimo kot njuno linearno kombinacijo, $y = c_1y_1 + c_2y_2$, kjer sta c_1, c_2 primerni konstanti (v splošnem kompleksni, sicer pa realni, če nas zanimajo le realne rešitve in sta y_1 in y_2 realni funkciji).

Trditev 6.3. Naj bo y_p partikularna rešitev enačbe y'' + py' + qy = r (torej neka konkretna rešitev), y pa poljubna nadaljna rešitev. Potem je funkcija

$$y_h := y - y_p$$

rešitev ustrezne homogene enačbe y''+py'+qy=0. Velja tudi obratno: za vsako rešitev y_h homogene enačbe y''+py++gy=0 je vsota

$$y = y_p + y_h$$

rešitev enačbe y'' + py' + qy = r.

6.3 Enačbe s konstantnimi koeficienti in Eulerjeva enačba

Definicija 6.10. Enačbo oblike

$$x^2y'' + pxy' + qy = 0, (x > 0),$$

kjer ta p in q konstanti, imenujemo (homogena) $Eulerjeva\ enačba$. To enačbo rešujemo z vplejavo nove neodvisne spremenljivke prek zveze $x=e^t$, kjer

dobimo zvezi
$$y'=e^{-t}\dot{y}$$
 in $y''=e^{-2t}(\ddot{y}-\dot{y}),$ kjer je $\dot{y}=\frac{dy}{dt}$ in dobimo

$$\ddot{y} + (p-1)\dot{y} + qy = 0.$$

6.4 Sistemi linearnih diferencialnih enačb s konstantnimi koeficienti

Definicija 6.11. Sistem linearnih diferencialnih enačb prvega reda

$$\dot{x}_i = \sum_{j=1}^n a_{i,j}(t)x_j + f_i(t), \quad i = 1, \dots, n,$$

kjer so $a_{i,j}$ in f_i dane zvezne spremenljivke $t,\,x_i$ pa neznanke, lahko zapišemo kot

$$\frac{d}{dt}\vec{x} = A(t)\vec{x} + \vec{f}(t),$$

kjer smo vpeljali matrično funkcijo $A(t) := [a_{i,j}(t)]$ ter vektoski funkciji $\vec{f}(t) = (f_1(t), \dots, f_n(t))^T$ in $\vec{x}(t) = (x_1(t), \dots, x_n(t))^T$. Vse te funkcije so definirane na kakem intervali (a, b), ki je lahko tudi poltrak ali pa cela realna os \mathbb{R} .

Kadar je $\vec{f}\equiv 0$, imenujemo sistem homogen. V primerih, ko je matrika A konstantna, lahko homogen sistem $\frac{d}{dt}\vec{x}=A\vec{x}$ rešimo elementarno. Tedaj namreč za matrično funkcijo $e^{tA}:=\sum_{n=0}^{\infty}\frac{t^n}{n!}A^n$ (vrsta konvergira za $\forall t\in\mathbb{R}$) velja enakost

$$\frac{d}{dt} \left(e^{tA} \right) = A e^{tA}.$$

Zato za njen inverz e^{-tA} velja

$$\frac{d}{dt} \left(e^{-tA} \vec{x} \right) = \vec{0},$$

kar pove, da je vektorska funkcija $t\mapsto e^{-tA}\vec{x}$ konstantna, recimo enaka \vec{c} , torej

$$\vec{x} = e^{tA}\vec{c}$$
.

Trditev 6.4. Naj bo A matrika reda 2×2 . Če se da A diagonalizirati in sta λ_1, λ_2 njeni lastni vrednosti, je splošna rešitev sistema $\frac{d}{dt}\vec{x} = A\vec{x}$ oblike

$$\vec{x} = e^{\lambda_1 t} \vec{a} + e^{\lambda_2 t} \vec{b},$$

kjer sta \vec{a} in \vec{b} lastna vektorja matrike A, ki pripadata lastnima vrednostma λ_1 in λ_2 (zaporedoma). Če pa se A ne da diagonalizirati, potem je splošna rešitev že omenjenega sistema oblike

$$\vec{x} = e^{\lambda t} (\vec{a} + t\vec{b}),$$

kjer je λ lastna vrednost matrike $A,\,\vec{b}$ pripadajoči vektor, \vec{a} pa tak vektor, da je $(A-\lambda I)\vec{a}=\vec{b}.$

7 METRIČNI PROSTORI

7.1 Metrika, krogla, odprt in zaprte množice

7.1.1 Metrika

Definicija 7.1. $Metrični \ prostor$ je $neprazna \ množica \ M,$ opremljena s preslikavo

$$d: M \times M \to [0, \infty),$$

ki ima naslednja lastnosti za $\forall x, y, z \in M$:

- 1. $d(x,z) \le d(x,y) + d(y,z)$ (trikotniška neenakost)
- 2. d(y, x) = d(x, y)
- 3. $d(x,y) = 0 \iff x = y$

Preslikavi d pravimo razdalja ali matrika, elemente množice M pa imenujemo tudi točke. Pogosto bomo rekli, da je metrični prostor kar par (M, d).

Definicija 7.2. Naj bo M metrični prostor z metriko d. Za $\forall a \in M$ in za $\forall r \in [0, \infty)$ imenujemo množico $B(a, r) = \{x \in M \mid d(x, a) < r\}$ odprta krogla s središčem a in polmerom r. Množico $\overline{B}(a, r) = \{x \in M \mid d(x, a) \leq r\}$ pa imenujemo zaprta krogla s središčem a in polmerom r.

Očitno je
$$B(a,r) \subseteq \overline{B}(a,r) \subseteq B(a,r+\varepsilon)$$
 za $\forall \varepsilon > 0$.

7.1.2 Odprte in zaprte množice

Definicija 7.3. Podmnožica G metričnega prostora M je odprta, če za $\forall a \in G$ obstaja tako realno število r > 0, da je $B(a,r) \subseteq G$. Podmnožica F je zaprta v M, če je njen komplement F^C odprta množica. Intuitivno: v ravnini (ali pa prostoru) so odprte tiste podmnožice, ki ne vsebujejo svojega roba, zaprte pa tiste, ki svoj rob vsebujejo.

Posledica. Množici M in \emptyset sta hratki odrti in zaprti množici. V splošnem obstajajo tudi podmnožice, ki niso niti odprte, niti zaprte.

Trditev 7.1. Odprta krogla je odprta množica, zaprta krogla je zaprta množica v vsakem metričnem prostoru M.

Trditev 7.2.

- 1. Unija poljubne družine *odprtih* podmnožic metričnega prostora je odprta podmnožica.
- 2. Presek končno mnogo *odprtih* podmnožic metričnega prostora je odprta podmnožica.

Posledica.

- 1. Presek poljubne družine *zaprtih* podmnožic metričnega prostora je zaprta podmnožic je zaprta podmnožica.
- 2. Unija končno mnogo zaprtih podmnožic je zaprta podmnožica.

Posledica. Podmnožica v metričnem prostoru je *odprta* natanko tedaj, ko se da izraziti kot unija odprtih krogel.

7.1.3 Rob, notranjost in zaprtje

Definicija 7.4.

- 1. Točka $a \in S$ je notranja točka množice S, če je $B(a,r) \subseteq S$ za kak r > 0. Množica \mathring{S} vseh notranjih točk množice S imenujemo notranjost množice S.
- 2. Točka $a \in M$ je robna točka za S, če vsaka odprta krogla B(a,r) seka takò množico S kot njen komplement:

$$B(a,r) \cap S \neq \emptyset$$
 in $B(a,r) \cap S^C \neq \emptyset$ za $\forall r > 0$.

Množico ∂S vseh robnih točk imenujemo robmnožice S.

- 3. Točka $a \in M$ je zunanja za S, če je $B(a,r) \subseteq S^C$ za kak r > 0.
- 4. $Zaprtje \overline{S}$ množice S je

$$\overline{S} = S \cup \partial S$$
.

Posledica.

- Množica je odprta \iff vse njene točke so notranje
- Notranjost vsake množice je odprta množica.
- Točka $a \in M$ je v zaprtju podmnožice $S \iff B(a,r) \cap S \neq \emptyset$ za $\forall r > 0.$
- $\overline{S} = \mathring{S} \cup \partial S$

Trditev 7.3. Zaprtje podmnožice S v metričnem prostoru M je enako preseku vseh zaprtih podmnožic v M, ki vsebujejo S. Torej je podmnožica S zaprta natanko tedaj, ko je $\overline{S} = S$.

Definicija 7.5. Podmnožico S v metričnem prostoru M imenujemo povsod gosta podmnožica, če je $\overline{S} = M$.

Definicija 7.6. Okolica točke a v metričnem prostoru M je podmnožica $G \subseteq M$, ki vsebuje kako odprto kroglo B(a,r) s pozitivnim polmerom r.

7.2 Polnost

Definicija 7.7. Zaporedje (a_n) v metričnem prostoru (M,d) je konvergentno, če obstaja taka točka $a \in M$, da za $\forall \varepsilon > 0$ obstaja tak $n_0 \in \mathbb{N}$, da je

$$d(a_n, a) < \varepsilon$$
 za $\forall n \ge n_0$.

Tedaj imenujemo točko a limita zaporedja (a_n) in zapišemo $a = \lim_{n \to \infty} a_n$. Zaporedje, ki ni konvergentno, imenujemo divergentno.

Definicija 7.8. Zaporedje (a_n) v metričnem prostoru (M, d) je *Cauchyjevo*, če za $\forall \varepsilon > 0$ obstaja tak $n_0 \in \mathbb{N}$, da je

$$d(a_n, a_m) < \varepsilon$$
 za $\forall n, m \ge n_0$.

Definicija 7.9. Metrični prostor (M, d) je poln, če je vsako Cauchyjevo zaporedje v njem konvergentno (z limito v M).

Trditev 7.4. Neprazna podmnožica F polnega metričnega prostora (M, d) je poln metrični prostor (za razdaljo d) natanko tedaj, ko je zaprta.

Izrek 7.1. Za $\forall m = 1, 2, ...$ je \mathbb{R}^m (z običajno evklidsko normo) poln prostor. Prav tako je poln tudi prostor \mathbb{C}^m .

Definicija 7.10. Diameter ali premer podmnožice S metričnega prostora (M,d) je

$$d(S) := \sup \{d(x,y) \mid x,y \in S\}.$$

Izrek 7.2 (Cantorjev izrek o preseku). Naj bo (M,d) poln metrični prostor, $F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots$ pa padajoče zaporedje nepraznih zaprtih podmnožic v M, katerih diametri $d(F_n)$ konvergirajo proti 0. Potem presek

$$F := \cap_{n=1}^{\infty} F_n$$

vsebuje natanko eno točko.

7.3 Kompaktnost

Definicija 7.11. Točka $s \in M$ je stekališče zaporedja (a_n) v metričnem prostoru (M,d), če je za $\forall r > 0$ v krogli B(s,r) neskončno mnogo členov zaporedja. Pri tem štejemo vsak člen tolikokrat, kolikokrat nastopa v zaporedju.

Definicija 7.12. Metrični prostor M je kompakten, če ima vsako zaporedje iz M stekališče v M. Podmnožica metričnega prostora M je kompaktna, če je kompaktna kot metrični prostor za metriko, ki jo podeduje iz M.

Trditev 7.5. Zaprta podmnožica kompaktnega metričnega prostora je kompaktna.

Lema 4. Vsak kompakten metrični prostor je poln.

Definicija 7.13. Podmnožica S metričnega prostora (M,d) je *omejena*, če je vsebovana v kaki krogli, torej če obstaja kako tako realno število r > 0, da je $S \subseteq B(a,r)$ za kako točko $a \in M$.

Izrek 7.3 (Heine-Borel). Podmnožica v \mathbb{R}^n je kompaktna natanko tedaj, ko je zaprta in omejena.

7.4 Zvezne preslikave

7.4.1 Zveznost

Definicija 7.14. Naj bosta (M_1, d_1) in (M_2, d_2) metrična prostora. Preslikava $f: M_1 \to M_2$ je *zvezna* v točki $a \in M_1$, če za $\forall \varepsilon > 0$ obstaja tak $\delta > 0$, da za $\forall x \in M_1$ iz $d_1(x, a) < \delta$ sledi

$$d_2(f(x), f(a)) < \varepsilon$$
.

Z drugimi besedami, f je zvezna v točki a, če za $\forall \varepsilon > 0$ obstaja tak $\delta > 0$, da je

$$f(B(a,\delta)) \subseteq B(f(a),\varepsilon).$$

Preslikava f je zvezna, če je zvezna v vsaki točki $a \in M_1$.

Trditev 7.6. Preslikava $f: M_1 \to M_2$ je zvezna v točki $a \in M_1$ natanko tedaj, ko za vsako zaporedje $(a_n)_n$ v M_1 , ki konvergira proti a, konvergira zaporedje $(f(a_n))_n$ proti f(a).

Trditev 7.7. Preslikava $f: M_1 \to M_2$ je zvezna natanko tedaj, ko je $f^{-1}(G)$ odprta množica v M_1 za vsako odprto podmnožico $G \subseteq M_2$.

Posledica. Preslikava $f: M_1 \to M_2$ je zvezna natanko tedaj, ko je $f^{-1}(F)$ zaprta množica v M_1 za vsako zaprto množico $F \subseteq M_2$.

Trditev 7.8. Če je $f: M_1 \to M_2$ zvezna preslikava, je f(K) kompaktna podmnožica v M_2 za vsako kompaktno podmnožico $K \subseteq M_1$.

Definicija 7.15. Preslikava $f: M_1 \to M_2$ je omejena, če je $f(M_1)$ omejena podmnožica v M_2 .

Posledica. Naj bo $f: M_1 \to M_2$ zvezna preslikava med metričnima prostoroma. Slika f(K) vsake kompaktne podmnožice $K \subseteq M_1$ je omejena v M_2 .

Trditev 7.9. Kompozitum zveznih preslikav je zvezna preslikava.

Definicija 7.16. Bijektivno zvezno preslikavo, katere inverz je zvezen, imenujemo homeomorfizem. Metrična prostora M_1 in M_2 sta homeomorfize, če obstaja kak homeomorfizem $f: M_1 \to M_2$.

7.4.2 Enakomerna zveznost

Definicija 7.17. Preslikavo $f: M_1 \to M_2$ med metričnima prostoroma (M_1, d_1) in (M_2, d_2) je enakomerno zvezna, če za $\forall \varepsilon > 0$ obstaja tak $\delta > 0$, da za vsaki točki $x, y \in M_1$ iz $d_1(x, y) < \delta$ sledi

$$d_2(f(x), f(y)) < \varepsilon$$
.

Trditev 7.10. Če je (M_1, d_1) kompakten metrični prostor, je vsaka zvezna preslikava $f: M_1 \to M_2$ enakomerno zvezna za vsak metrični prostor (M_2, d_2) .

7.4.3 Bonus meme: Negibne točke kontrakcij

Definicija 7.18. Preslikava $f: M \to M$ metričnega prostora (M, d) vase je *skrčitev* ali *kontrakcija*, če obstaja kako število $q \in [0, 1)$, da je

$$d(f(x), f(y)) \le q \cdot d(x, y)$$

za vsaka $x, y \in M$. Očiteno je vsaka kontrakcija (enakomerno) zvezna.

Definicija 7.19. Točka $x \in M$ je negibna ali fiksna za preslikavo $f: M \to M$, če f(x) = x.

Izrek 7.4 (Banachov izrek o skrčitev). Za vsako kontrakcijo $f: M \to M$ polnega metričnega prostora (M,d) obstaja natanko ena negibna točka $a \in M$.

8 KOMPLEKSNA ANALIZA

8.1 Poti in območja v kompleksni ravnini

Definicija 8.1. Naj bo D odprta podmnožica kompleksne ravnine \mathbb{C} . Pot v D je odsekoma zvezno odvedljiva preslikava $\gamma:[a,b]\to D$, kjer je [a,b] zaprt interval v \mathbb{R} . Množico D imenujemo s potmi povezano, če za vsaki točki $z,w\in D$ obstaja taka pot γ v D, da je

$$\gamma(a) = z \text{ in } \gamma(b) = w.$$

Opomba.

- 1. Običajno pojem povezanosti s potmi definiramo brez zahteve, da mora biti preslikava γ odsekoma odvedljiva, zadošča le zveznost, vendar se je lahko prepričati, da sta za odprte množice D v ravnini definiciji ekvivalentno. ¹
- 2. Vsaka s potmi povezana množica D je povezana 2 v naslednjem smislu: edini razcep množice D na unijo $D = D_1 \cup D_2$ dveh disjunktnih odprtih $(relativno\ v\ D)$ podmnožic je, ko je ena od množic D_i prazna, druga pa enaka D. Za odprte množice v ravnini sta pojma povezanosti in $povezanosti\ s\ potmi\ ekvivalentna$, torej D je povzana natanko takrat, ko je $s\ potmi\ povezana$.

Definicija 8.2. *Odprto povezano* množico v kompleksni ravnini $\mathbb C$ bomo imenovali *območje*.

Definicija 8.3. Razširjena kompleksna ravnina je $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$. Okolice točke ∞ so množice oblike $(\mathbb{C} \setminus K) \cup \{\infty\}$, kjer je K kompaktna podmnožica v \mathbb{C} .

 $^{^1}$ Vsako zvezno preslikavo $\gamma:[a,b]\to D$ nam
reč lahko poljubno dobro aproksimiramo z odsekoma linearno preslikavo, se pravi s poligonsko krivuljo. Še več, vsako tako pot je mogoče poljubno natančno aproksimirati z zvezno odveljivo pot
jo, zato bi se v definiciji povezanosti s potmi za odprte množice lahko omejili na zvezno odvedljive poti.

²Pomeni, da je iz enega kosa.

8.2 Odvedljivost v kompleksnem smislu in konformnost

8.2.1 Kompleksna odvedljivost

Definicija 8.4. Naj bo $f: D \to \mathbb{C}$ funkcija, definirana na *odprti* množici $D \subseteq \mathbb{C}$. Pravimo, da je f odvedljiva v kompleksnem smislu ali holomorfna v točki $z \in D$, če obstaja limita

$$f'(z) := \lim_{w \to z} \frac{f(w) - f(z)}{w - z}.$$

To limito imenujemo odvod funkcije fvtočki z. Če je f
 odvedljiva v vsaki točki $z\in D,$ rečemo, da je
 fholomorfna na D

Trditev 8.1. Funkcija f, podana s potenčno vrsto

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots = \sum_{n=0}^{\infty} a_n z^n, (a_n) \in \mathbb{C},$$

je holomorfna na krogu |z| < R, kjer je njen odvod enak

$$f'(z) = g(z) := \sum_{n=0}^{\infty} n a_n z^{n-1}.$$

Tukaj je R konvergenčni polmer vrste $\sum_{n=0}^{\infty} a_n z^n$.

Posledica. Če vrsta $f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n$ konvergira na krogu $|z - \alpha| < R$, potem je funkcija f neskončnokrat odvedljiva (v kompleksnem smislu) in

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-\alpha)^{n-k}.$$

Torej je

$$a_k = \frac{f^{(k)}(\alpha)}{k!}.$$

8.2.2 Konformne preslikave

Definicija 8.5. Naj bo $\gamma:[0,1] \to \mathbb{C}$ kaka zvezno odvedljiva pot, ki naj gre skozi točko $z_0 \in \mathbb{C}$, torej $z_0 = \gamma(t_0)$ za kak $t_0 \in [0,1]$. Tangentni vektor v točki z_0 na pot γ je tedaj (gledan kot kompleksno število) enak $\dot{\gamma}(t_0)$. Nadalje naj bo f funkcija, ki je definirana in holomorfna na kakem območju, ki vsebuje množico $[\gamma] := \gamma([0,1])$. Tangentni vektor v točki $f(z_0)$ na pot $f \circ \gamma$ je potem

$$\frac{d}{dt} (f \circ \gamma) (t_0) = f'(z_0) \dot{\gamma}(t_0).$$

Pri tem privzamemo, da je $f'(z_0) \neq 0$. Dolžina tega tangentnega vektorja je torej

$$|f'(z_0)||\dot{\gamma}(t_0)|.$$

njegov argument pa arg $\dot{\gamma}(t_0) + \arg f'(z_0)$.

Za dve taki, v točki z_0 sekajoči poti γ_1 in $\gamma_2,$ je kot med njima 3 enak

$$\psi := \arg \dot{\gamma}_2(t_2) - \arg \dot{\gamma}_1(t_1).$$

Kot med potema $f \circ \gamma_1$ in $f \circ \gamma_2$ v presečišču $f(z_0)$ je torej

$$\arg \frac{d}{dt} (f \circ \gamma_2) (t_2) - \arg \frac{d}{dt} (f \circ \gamma_1) (t_1) =$$

$$= (\arg f'(z_0) + \arg \dot{\gamma}_2(t_2)) - (\arg f'(z_0) + \arg \dot{\gamma}_1(t_1) = \psi$$

Torej preslikava f ohranja kote med krivuljami. Zato imenujemo holomorfne preslikave z neničelnim odvodom tudi konformne preslikave.

8.3 Cauchy-Riemannovi enakosti

Izrek 8.1. Naj bosta u(x,y) in v(x,y) realni funkciji na odprti množici D v ravnini. Če je funkcija f=u+iv holomorfna na D, sta u in v odvedljivi ⁴ in veljata Cauchy-Riemannovi enakosti

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 in $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$.

 $[\]overline{^3}$ Kot med njunima tangentnima vektorjema $\dot{\gamma_j}(t_j),$ kjer je $\gamma_j(t_j)=z_0,\,j=1,2$

⁴V realnem smislu.

V obratno smer pa velja: če so partialni odvodi $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ in $\frac{\partial v}{\partial y}$ zvezni na D in veljata Cauchy-Riemannovi enakosti, potem je f holomorfna na D in

$$f' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}.$$

Definicija 8.6. Dvakrat zvezno odvedljivo funkcijo, definirano na odprti množici $D \subseteq \mathbb{R}^n$, imenujemo harmonična na D, če je

$$\Delta u := \sum_{j=1}^{n} \frac{\partial^2 u}{\partial x_j^2}(u) = 0 \quad (x \in D).$$

Operator Δ imenujemo Laplaceov operator.

Trditev 8.2. Realni in imaginarni del *holomorfne* funkcije sta *harmonični* funkciji. Na *enostavno povezanem* območju je vsaka harmonična funkcija realni del kake holomorfne funkcije.

8.4 Integriranje kompleksnih funkcij

Definicija 8.7. Integral kompleksne funkcije f = u + iv, kjer sta u in v realni integrabilni funkciji na intervalu [a, b], definiramo kot

$$\int_a^b f(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt.$$

Funkcijo f = u + iv imenujemo integrabilna, če sta integrabilni funkciji u in v.

Integral kompleksnih funkcij ima podobne lastnosti kot integral realnih funkcij, npr.

$$\int_{a}^{b} (\alpha f + \beta g) dt = \alpha \int_{a}^{b} f dt + \beta \int_{a}^{b} g dt$$

za poljubni konstanti $\alpha, \beta \in \mathbb{C}$ in integrabilni kompleksni funkciji f in g. Integral kompleksne funkcija f na intervalu [a,b] bi lahko ekvivalentno definirali tudi kot limito Riemannovih vsot

$$\sum_{j=1}^{n} f(\xi_j)(t_j - t_{j-1}), \quad \xi_j \in [t_{j-1}, t_j],$$

ko gre širina $\max_{1 \le j \le n} (t_j - t_{j-1})$ delitve

$$a = t_1 < t_1 < \ldots < t_{j-1} < t_j < \ldots < t_n = b$$

intervala [a, b] proti 0.

Trditev 8.3.

$$\left| \int_{a}^{b} f dt \right| \leq \int_{a}^{b} |f| dt, \quad (a \leq b).$$

Definicija 8.8. Če je $\gamma:[a,b]\to D$ zvezno odvedljiva, $f:D\to\mathbb{C}$ pa zvezna funkcija, kjer je $D\subseteq\mathbb{C}$ poljubna množica, ki vsebuje $\gamma([a,b])$, definiramo krivuljni integral kot

$$\int_{\gamma} f(z)dz := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

Če je $\gamma:[a,b]\to D$ poljubna pot ⁵, pa najprej [a,b] razdelimo na podintervale $[t_{j-1},t_j]$, na katerih je γ zvezno odvedljiva, in definiramo $\int_{\gamma} f(z)dz$ kot vsoto integralov $\int_{t_{j-1}}^{t_j} f(\gamma(t))\gamma'(t)dt$.

Trditev 8.4. Če je $\varphi:[c,d]\to [a,b]$ naraščujoča zvezno odvedljiva bijekcija, je

$$\int_{\gamma \circ \varphi} f(z) dz = \int_{\gamma} f(z) dz.^{6}$$

Izrek 8.2.

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| dz.$$

⁵Torej le odsekoma zvezno odvedljiva

 $^{^6{\}rm Krivuljni}$ integral je torej neodvisen od parametrizacije krivulje.

Definicija 8.9. Poti $\gamma:[a,b]\to D$ nasprotna je pot

$$\gamma^-: [a,b] \to D, \quad \gamma^- = \gamma(a+b-t).$$

Ko teče t od a do b, potuje točja $\gamma(t)$ od $\gamma(a)$ do $\gamma(b)$, točka $\gamma^-(t)$ pa v nasprotni smeri od $\gamma(b)$ do $\gamma(a)$.

Trditev 8.5.

$$\int_{\gamma^{-}} f(z)dz = -\int_{\gamma} f(z)dz.$$

Trditev 8.6.

$$\int_{\gamma_1 + \gamma_2} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz.$$

Definicija 8.10. Pot $\gamma:[a,b]\to D$ je *sklenjena*, če je $\gamma(b)=\gamma(a)$. Če imata poti γ_1 in γ_2 isto začetno in isto končno točko, potem je $\gamma_1+\gamma_2^-$ sklenjena pot.

Lema 5. Naj bo $f:D\to\mathbb{C}$ (zvezna) funkcija. Potem je

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

za vsaki dve poti γ_1 in γ_2 v D, ki imata isto začetno in isto končno točko, natanko tedaj, ko je

$$\int_{\gamma} f(z)dz = 0$$

za vsako *sklenjeno* pot γ v D.

Lema 6. Za vsako holomorfno funkcijo $F:D\to\mathbb{C}$ z zveznim odvodom in vsako pot $\gamma:[a,b]\to D$ je

$$\int_{\gamma} F'(z)dt = F(\gamma(b)) - F(\gamma(a)).^{7}$$

 $^{^7\}mathrm{Privzamemo},$ da je F'zvezna funkcija.

Izrek 8.3. Naj bo $f:D\to\mathbb{C}$ taka zvezna funkcija na območju D, da je

$$\int_{\gamma} f(z)dz = 0$$

za vsako sklenjeno pot γ vD. Potem obstaja taka $\mathit{holomorfna}$ funkcija Fna D,da je

$$f = F'$$
.

8.5 Ovojno število

Definicija 8.11. Za sklenjeno pot γ v \mathbb{C} in vsako točko α , ki ne leži na sliki poti γ , je *ovojno število* (ali *indeks*) definirano kot

$$I_{\gamma}(\alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}.$$

8.6 Cauchyjeva-Greenova formula

Izrek 8.4 (Cauchyjev izrek). Naj bo γ taka sklenjena pot v neprazni odprti množici $D \subseteq \mathbb{C}$, da je $I_{\gamma}(w) = 0$ za $\forall w \in \mathbb{C} \backslash D$. Potem za vsako v kompleksne smislu odvedljivo funkcijo $f: D \to \mathbb{C}$ velja

$$\int_{\gamma} f(z)dz = 0.$$

Izrek 8.5 (Cauchyjeva formula). Naj bo γ taka *sklenjena* pot v *neprazni* odprti množici $D \subseteq \mathbb{C}$, da je $I_{\gamma}(\zeta) = 0$ za $\forall \zeta \in \mathbb{C} \setminus D$. Potem za vsako holomorfno funkcijo $f: D \to \mathbb{C}$ velja

$$I_{\gamma}(w)f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - w} dw$$

za $\forall w \in D \setminus [\gamma]$.

Posledica (Cauchyjeva formula za kolobar). Naj bo f holomorfna funkcija na kaki okolici kolobarja $K:=\{z\in\mathbb{C}:\ r\leq |z-\alpha|\leq R\}$ ⁸. Potem za vsak w iz notranjosti kolobarja K⁹ velja

$$f(w) = \frac{1}{2\pi i} \oint_{|z-\alpha|=R} \frac{f(z)}{z-w} dz - \frac{1}{2\pi i} \oint_{|z-\alpha|=r} \frac{f(z)}{z-\alpha} dz,$$

kjer sta oba integrala po pozitivno orientiranih krožnicah. 10

Posledica. Če je torej f holomorfna na kaki okolici kroga $|z-\alpha| \leq R$, potem je za vsak w v notranjosti tega kroga

$$f(w) = \frac{1}{2\pi i} \oint_{|z-\alpha|=R} \frac{f(z)}{z-w} dz.$$

Posledica. Holomorfna funkcija na območju D je neskončnokrat odvedljiva. Za $\forall n \in \mathbb{N}$ in vsak zaprt krog $\overline{D}(\alpha, r)$, vsebovan v D, velja za $\forall w \in D(\alpha, r)$ enakost

$$f^{(n)}(w) = \frac{n!}{2\pi i} \oint_{|z-\alpha|=r} \frac{f(z)}{(z-w)^{n+1}} dz.$$

Če je torej |f| omejena, se pravi $|f(z)| \leq M$ za kak M in $\forall z \in D$, potem velja Cauchyjeva ocena za odvod

$$|f^{(n)}(\alpha)| \le \frac{Mn!}{r^n}.$$

Posledica (Liouvillow izrek). *Omejena holomorfna* funkcija f na $\mathbb C$ je konstantna.

Posledica (Osnovni izrek algebre). Vsak nekonstanten kompleksen polinom

$$p(z) = z^n + a_{n_1}z^{n-1} + \ldots + a_0, \quad (n \ge 1)$$

ima vsaj eno kompleksno ničlo.

⁸Kjer sta r < R nenegativni konstanti.

⁹Torej $r < |w - \alpha| < R$

 $^{^{10} \}rm Kolobar$ leži potem na desni strani notranje krožnice, od tod predznak- pred drugim integralom.

8.7 Razvoj v Laurentovo in v Taylorjevo vrsto

Izrek 8.6 (Laurentov razvoj). Funkcijo f, holomorfno na kaki okolici kolobarja $K = \{z \in \mathbb{C} : r \leq |z - \alpha| \leq R\}$, lahko za vsak w iz notranjosti kolobarja razvijemo v Laurentovo vrsto

$$f(w) = \sum_{n=0}^{\infty} c_n (w - \alpha)^n + \sum_{n=-1}^{-\infty} c_n (w - \alpha)^n,$$

kjer je

$$c_n = \frac{1}{2\pi i} \int_{|z-\alpha|=R} \frac{f(z)}{(z-\alpha)^{n+1}} dz \quad za \ n \ge 0$$

in

$$c_n = \frac{1}{2\pi i} \int_{|z-\alpha|=r} \frac{f(z)}{(z-\alpha)^{n+1}} dz \quad za \ n \le -1.$$

Prva vrsta v f(w) ¹¹ konvergira za vse w znotraj kroga $|w - \alpha| < R$, druga ¹² pa ua vse w zunaj kroga $|w - \alpha| \le r$. Vrsti predstavljata holomorfni funkciji na območjih konvergence.

Posledica (Taylorjev razvoj). Funkcijo f, ki je holomorfna na okolici zaprtega kroga $\overline{D}(\alpha, R)$, lahko razvijemo v Taylorjevo vrsto

$$f(w) = \sum_{n=0}^{\infty} c_n (w - \alpha)^n \quad (|w - \alpha| < R),$$

kjer je

$$c_n = \frac{1}{2\pi i} \int_{|z-\alpha|=R} \frac{f(z)}{(z-\alpha)^{n+1}} dz$$

in kjer integriramo krožnici po pozitivni smeri.

Trditev 8.7. Ničle holomorfne funkcije $f:D\to\mathbb{C}$ na območju D nimajo stekališč v D, če f ni identično enaka 0.

¹¹Regularni del Laurentovega razvoja.

¹²Glavni del Laurentovega razvoja.

Posledica. Če se holomorfni funkciji f in g, definirani na območju D, ujemata na kaki podmnožici $S \subseteq D$, ki ima kako stekališče v D, potem je g = f.

Trditev 8.8. Naj bo α izolirana singularna točka holomorfne funkcije f. Če je f omejena v kaki okolici točke α , potem je α premostljiva singularna točka.

Opomba. V zogrnji trditvi je pomembno, da je f holomorfna povsod na kaki okolici točke α , razen morda v točki α . Funkcije $z \mapsto \sqrt{z}$, na primer, je sicer omejena v bližini točke 0, vendar se je ne da definirati kot holomorfne funkcije v okolici točke 0, zato 0 zanjo ni premostljiva singularna točka.

Izrek 8.7 (Casorati-Weierstrass). Če je α bistvena singularna točka funkcije f^{13} , potem za $\forall w \in \mathbb{C}$ ter $\forall \varepsilon > 0$ in $\forall \delta > 0$ obstaka tak $z \in D(\alpha, \delta) \setminus \{\alpha\}$, da je

$$|f(z) - w| < \varepsilon.$$

Definicija 8.12. Točka ∞ je *izolirana singularna* točka funkcije f, če je 0 *izolirana singularna* točka funkcije

$$z \mapsto \hat{f}(z) := f\left(\frac{1}{z}\right).$$

Pravimo, da je ∞ premostljiva singularna točka (pol), če je 0 taka točka za funkcijo \hat{f} .

Definicija 8.13. Funkcija f je meromorfna na odprti množici D, če obstaja taka podmnožica $S \subset D$, da S nima nobenega stekališča v D, da je vsaka točka iz S pol funkcije f in da je f holomorfna na $D \setminus S$.

 $^{^{13}\}mathrm{Ta}$ je sicer holomorfnana kaki okolici te točke, razen v α

8.8 Logaritem in potence

Definicija 8.14. Kompleksno število $w \neq 0$ lahko enolično zapišemo v polarni obliki $w = |w|e^{i\varphi}, -\pi < \varphi < \pi$, zato naravni logaritem definiramo na naslednji način:

$$\ln(w) = \ln(|w|) + i\varphi = \ln(|w|) + i\arg(w)$$

za $w \in \mathbb{C} \setminus (-\infty, 0], -\pi < \varphi < \pi.$

Trditev 8.9. Izberemo poljubno točko $w_0 \in D := \mathbb{C} \setminus (-\infty, 0]$. Za $\forall w \in D$ je

 $\ln(w) - \ln(w_0) = \int_{w_0}^w \frac{dz}{z} := \int_{\gamma} \frac{dz}{z},$

kjer je γ poljubna zvezno~odvedljiva pot vDz začetno točko w_0 in končno točko w. Zato je

 $\ln'(w) = \frac{1}{w}.$

Definicija 8.15. Za $\forall \alpha \in \mathbb{C}$ in $z \in \mathbb{C} \setminus (-\infty, 0]$ naj bo

$$z^{\alpha} = e^{\alpha \ln(z)},$$

na prerezani ravnini.

8.9 Izrek o residuih

Definicija 8.16. Koeficient c_{-1} v Laurentovem razvoju

$$f(z) = \sum_{-\infty}^{\infty} c_n (z - \alpha)^n$$

holomorfne funkcije f okrog izolirane singularne točke α imenujemo residuum funkcije f v točki α . Označimo z $\mathrm{Res}(f;\alpha)$.

Izrek 8.8 (Izrek o residuih). Naj bo S podmnožica območja $D \subseteq \mathbb{C}$, ki naj nima nobenega stekališča v D, f holomorfna funkcija na $D \setminus S$ in γ taka sklenjena pot (ali pa cikel) v $D \setminus S$, da je $I_{\gamma}(\alpha) = 0$ za $\forall \alpha \in \mathbb{C} \setminus D$. Potem je

 $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{\alpha \in S} \operatorname{Res}(f; \alpha) I_{\gamma}(\alpha).$

8.10 Odprtost holomorfnih preslikav

Definicija 8.17. Preslikavo $f:D\to\mathbb{C}$ imenujemo odprta, če je f(U) odprta množica za vsako odprto podmnožico $U\subseteq D$.

Izrek 8.9 (Princip maksima). Če je f nekonstantna holomorfna preslikava na odprti množici D, potem funkcija |f| ne more doseči maksima v nobeni točki iz D. Minimum lahko doseže le v ničlah funkcije f.