Cursul

Elemente de Grafica pe Calculator

Profesor Florica Moldoveanu

UPB, Automatică şi Calculatoare 2020-2021

Echipa EGC

- Face parte din grupul de "Grafică şi Realitate Virtuală 3DUPB" din departamentul de Calculatoare (https://3d.pub.ro/).
- Activitati de cercetare in domeniile: Grafica pe calculator (Computer Graphics), Sisteme cu viziune, Realitate Virtuala si aplicarea sa in special in domeniul medical, Aplicatii bazate pe Realitate Augmenta, Aplicatii in medicina bazate pe IoT.
 - Numeroase proiecte de cercetare de-a lungul anilor
 - ➤ Ultimul project important: **Sound of Vision** (https://soundofvision.net/)
 - Finalizat cu realizarea unui dispozitiv dedicat nevazatorilor, pentru a-i ajuta sa se deplaseze liber in orice spatiu interior sau exterior
- Activitati didactice: EGC, Ingineria programelor (anul III), SPG (Sisteme de Prelucrare Grafica – anul IV), cursuri la programele de masterat GMRV şi MTI.
- Coordonare doctoranzi
- Organizarea Scolii de vara 3D UPB

Sisteme Grafice: clasificare (1)

De sinteză a imaginilor

Scop: crearea de imagini ale unor obiecte / scene reale sau virtuale, statice sau dinamice (animate); domeniul de studiu corespunzator: **Computer Graphics (CG).**

Aplicatii: industria de jocuri, Realitate Virtuala, arhitectura, design industrial si artistic, productia de filme, etc.

Sisteme Grafice: clasificare (2)

De prelucrare si analiza a imaginilor /Sisteme cu viziune

Scop: extragerea de informatii din imagini digitale produse de dispozitive de achizitie (camere video, scanner); domeniul de studiu: **Computer Vision (CV)**.

Aplicatii: analiza imaginilor medicale, recunoasterea obiectelor din mediul încojurator (in robotica, conducerea automata a autovehiculelor, etc), a feţelor, a caracterelor de text, recunoasterea obiectelor din imagini satelitare, etc.

Sisteme Grafice: clasificare (3)

De reconstructie si vizualizare a unor obiecte/ fenomene reale pornind de la date volumetrice; domeniul de studiu: Volume Graphics (combina algoritmi de CG si CV).

Aplicatii: medicina (vizualizarea 3D a organelor interne pornind de la imagini tomografice), vizualizarea 3D a dinamicii moleculare, a datelor meteo, etc.

Computer graphics (1)

Modelarea suprafetelor 3D

Simularea detaliilor suprafetelor (texturi)

Animatia personajelor prin captura miscarii

Simularea reflexiei si a refractiei luminii

Computer graphics (2) Imagine sintetizata prin algoritmul Ray-tracing

Computer graphics (3) Imagine sintetizata prin Ray-tracing

Prelucrarea si analiza imaginilor (1)

Eliminarea zgomotelor

Prelucrarea si analiza imaginilor (2)

Analiza imaginilor medicale (extragerea formei osului femural si efectuarea de masuratori automate)

Reconstructia si vizualizarea volumelor

Sisteme grafice de sinteza - aplicaţii

Cursul Elemente de Grafica pe Calculator: curs de Computer Graphics.

Objective:

- însuşirea de către studenţi a noţiunilor fundamentale de sinteză (creare) a imaginilor digitale
- formarea deprinderilor studenţilor de a crea aplicaţii folosind biblioteca grafică OpenGL.

Aplicatii ale sistemelor grafice de sinteza:

- Proiectarea asistata de calculator: arhitectura, constructii, design industrial, confecţii, etc.
- Jocuri pe calculator şi pe dispozitive mobile
- Cartografie
- Productia de filme
- Spatii virtuale interactive
- Etc.

Model conceptual al unui sistem grafic de sinteză

Modelul 2D/3D al scenei

- Inclus in programul de aplicatie
- Alcatuit din:
 - Primitive grafice 2D, 3D (linii, poligoane) sau obiecte complexe alcatuiesc scena
 2D/3D redata intr-un cadru imagine
 - Proprietati ale suprafetelor obiectelor din scena (culoare, textura, proprietati de reflexie/refractie a luminii)
 - Transformari de aplicat obiectelor in scopul compunerii, vizualizarii scenei si animarii obiectelor scenei
 - Surse de lumina (pozitie, caracteristici de culoare/luminozitate) într-o scena 3D
 - Parametrii camerei virtuale: pozitia în scena 3D, directia privirii, câmpul vizual
- o Este modificat de aplicatie conform logicii aplicatiei sau interactiunii cu utilizatorul
- o Orice modificare trebuie sa aiba ca efect modificarea in timp real a imaginii afisate

Operatii de sinteza a imaginilor grafice

- Efectuarea transformarilor care se aplică obiectelor pentru modelarea scenei sau animații
- Efectuarea transformarilor de proiectie din spatiul 3D in spatiul 2D
- ➤ Eliminarea obiectelor nevizibile din imaginea unei scene 3D: obiecte aflate in afara volumului vizual al camerei virtuale
- > Eliminarea fețelor nevizibile (auto-obturate) ale obiectelor
- Decuparea primitivelor care intersecteaza volumul vizual al camerei
- Rasterizarea: descompunerea primitivelor grafice in fragmente care se afiseaza in pixeli
- Calculul culorii fiecarui fragment folosind:
 modele de reflexie si refractie a luminii, calcul de umbre, texturi, s. a.
- Operaţii la nivel de pixel (operaţii raster): testul de vizibilitate a fragmentelor în imagine (testul de adancime), combinarea culorii fragmentului cu cea a pixelului in care se afiseaza, ş. a

Imaginea discretă și afișarea sa (schema conceptuală)

FPS: Frames Per Second Pentru aplicatii de timp real (imagini dinamice): 30 FPS

Operatii de sinteza

■ Imaginea discreta contine culorile fragmentelor care se afiseaza in pixelii suprafetei de afisare, codificate numeric.

■ O culoare se reprezinta prin 3 numere, care definesc o combinatie a celor 3 culori primare Red, Green, Blue (3x 8 biti).

Scurt istoric al hardware-ului grafic de sinteza Evoluţia benzii grafice

- Mijlocul anilor '90: cel mai complex hard grafic realiza numai rasterizarea primitivelor.
- Sfarsitul anilor '90: NVIDIA a introdus termenul GPU, inlocuind termenul VGA Video Graphics Addapter (introdus de IBM in 1987), devenit neadecvat pentru hardware-ul grafic dintr-un calculator.
- Hardware de accelerare grafica: hardware specializat pentru sinteza imaginilor, dar scump (ex. statiile grafice SiliconGraphics –SGI, Evans& Sutherland)
- **❖** Prima generatie GPU: pana în 1998
 - NVIDIA TNT2, ATI Rage
 - Rasterizare linii si triunghiuri, cu varfurile transformate pe CPU
 - ➤ Aplicare 1-2 texturi

Banda grafică- prima generație GPU (până în 1998)

Scurt istoric al hardware-ului grafic de sinteza(2)

- **❖** A 2-a generatie GPU (1999-2000):
- NVIDIA GeForce 256, Geforce2, ATI Radeon 7500
- Transformare varfuri 3D si calcule de iluminare standard la nivel de varfuri
- ➤ Bibliotecile OpenGL 1.x si Direct3D 7 suporta transformarea hardware a varfurilor
- ❖ A 3-a generatie GPU (2001-2002)
- NVIDIA GeForce 3, Geforce 4, ATI Radeon 8500
- > Transformare varfuri 3D si calcule de iluminare standard la nivel de varfuri
- Posibilitatea programarii calculelor de iluminare la nivel de varfuri → VERTEX SHADER (program scris de programator si transferat la GPU; executat in paralel de un numar mare de procesoare GPU pentru varfuri diferite)
- ➤ Biblioteca Direct3D 8 introduce "shader model" 1: crearea de programe Vertex Shader folosind un limbaj proprietar compus din instructiuni in lb. de asamblare si in stil C.

Banda grafică- a II-a generație GPU (1999-2000)

GPU (placa Grafică)

Banda grafică - a III-a generație GPU (2001-2002)

Scurt istoric al hardware-ului grafic de sinteza(3)

- **❖** A 4-a generatie GPU (2003 2005):
- NVIDIA GeForce FX, Cine Fx, ATI Radeon 9700
- Procesoare programabile pentru calcule la nivel de varfuri si de fragment (pixel)
- Procesoare specializate pentru calcule cu vectori si matrici
- Calcul paralel la nivel de varfuri si fragmente de primitive
- OpenGL 2.x si Direct3D 9 permit scrierea de programe VERTEX SHADER si PIXEL SHADER si transferul lor la GPU shader model 2, 3
- ➤ Bibliotecile OpenGL si Direct3D au evolut odata cu hardware-ul grafic
 - OpenGL independenta de platforma (implementata pe majoritatea sist. de operare)
 - Direct3D API proprietar Microsoft, pentru aplicatii Windows
- Limbajele pentru scrierea de shadere: GLSL (OpenGL Shading Language) parte din
 OpenGL si HLSL (High-Level Shading Language) parte din Direct3D

Banda grafică- a IV-a generație GPU (2003-2005)

GPU (placa Grafică)

Banda grafică- a V-a generație GPU (2006-2010)

Scurt istoric al hardware-ului grafic de sinteza(4)

❖A 5-a generatie GPU (2006 ->): General Purpose GPUs

- ➤ NVIDIA GeForce G80, Fermi, Kepler, ATI AMD Radeon incepand cu seria 4000
- ➤ Adauga etapa programabila GEOMETRY SHADER in plus fata de generatia a 4-a
- ➤ OpenGL 3.x si Direct3D 10 permit scrierea de programe GS → shader model 4

❖ A 6-a generatie GPU (2011 ->):

➤ Procesoare programabile pentru teselare (marirea rezolutiei geometrice) —

TESSALLATION SHADER

➤ OpenGL4.x si Direct3D 11 – Shader model 5

GPGPU (General Purpose Graphics Processing Unit)

- ❖ Performanța placii grafice (arhitectura multiprocessor, grad inalt de paralelism, procesoare dedicate, stream processing) → programare de aplicații ne-grafice pentru executie pe placa grafică: GPGPU (General Purpose Graphics Processing Unit)
- Limbaje de programare paralelă pentru executie pe placa grafica: CUDA, OpenCL
- ComputeShader (scris in GLSL) program in care se poate implementa orice calcul
 paralel nu se executa in banda grafica

Scurt istoric al hardware-ului grafic de sinteza(5)

NVIDIA RTX – cea mai recenta si mai avansata arhitectura GPU

Platforma NVIDIA RTX permite implementarea algoritmului Ray-tracing folosind API-uri si kituri software de dezvoltare dedicate: OptiX, Microsoft si DXR Vulkan.

Continutul cursului

- 1. Transformari geometrice 2D
- 2. Transformari geometrice 3D. Proiecții.
- 3. Transformarea vârfurilor primitivelor grafice în banda grafică OpenGL.
- 4. Eliminarea părților nevizibile ale scenelor 3D din imagini.
- 5. Modele de culoare.
- 6. Modele de iluminare locală a scenelor 3D.
- 7. Modele de "shading".
- 8. Redarea umbrelor în imagini.
- 9. Aplicarea texturilor pe suprafețele obiectelor.
- 10. Iluminarea globală a scenelor 3D prin algoritmul Ray Tracing.
- 11. Rasterizarea primitivelor grafice.
- 12. Algoritmi de decupare a vectorilor şi poligoanelor.

Laborator

https://ocw.cs.pub.ro/courses/egc

Pentru fiecare laborator va exista, anterior desfasurarii laboratorului, o prezentare audio/video.

- Prezentare framework folosit pentru dezvoltarea alicatiilor (laborator, teme) folosind OpenGL şi GLSL.
- 2. Reprezentarea datelor grafice intr-un program bazat pe OpenGL.
- 3. Implementarea transformarilor grafice 2D.
- 4. Implementarea transformarilor grafice 3D.
- 5. Utilizarea transformarilor efectuate in banda grafica asupra varfurilor primitivelor.
- 6. Implementarea programelor "Shader" (Vertex shader si Fragment shader) folosind limbajul GLSL (OpenGL Shading Language)
- 7. Efecte de iluminare a scenelor 3D folosind programe shader
- 8. Aplicare texturi pe suprafete 3D.