t_{α} - Critical Values of the t-Distribution with ν Degrees of Freedom Table – 4

ν	0.40		0.30	0.20	0.15	0.10	0.05	0.025	0.01	0.005
_	acres of	\$20 C 1929				26.8				
1	0.325		0.727	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	0.289		0.617	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	0.277		0.584	0.978	1.250	1.638	2.353	3.182	4.541	5.841
4	0.271		0.569	0.941	1.190	1.533	2.132	2.776	3.747	4.604
5	0.267	in t	0.559	0.920	1.156	1.476	2.015	2.571	3.365	4.032
3	,								2 1 12	2 707
,	0.265		0.553	0.906	1.134	1.440	1.943	2.447	3.143	3.707
6	0.263		0.549	0.896	1.119	1.415	1.895	2.365	2.998	3.499
7	0.262		0.546	0.889	1.108	1.397	1.860	2.306	2.896	3.355
8	0.261		0.543	0.883	1.100	1.383	1.833	2.262	2.821	3.250
9	0.260		0.542	0.879	1.093	1.372	1.812	2.228	2.764	3.169
10	0.200		F						71.00.2	2.10/
			0.540	0.876	1.088	1.363	1.796	2.201	2.718	3.106
11	0.260		0.539	0.873	1.083	1.356	1.782	2.179	2.681	3.055
12	0.259		0.537	0.870	1.079	1.350	1.771	2.160	2.650	3.012
13	0.259			0.868	1.076	1.345	1.761	2.145	2.624	2.977
14	0.258		0.537	0.866	1.074	1.341	1.753	2.131	2.602	2.947
15	0.258		0.536	0.000	*13,10			200		
	0		35.0	0.965	1.071	1.337	1.746	2.120	2.583	2.921
16	0.258		0.535	0.865	1.069	1.333	1.740	2.110	2.567	2.898
17	0.257		0.534	0.863	1.067	1.330	1.734	2.101	2.552	2.878
18	0.257		0.534	0.862	1.066	1.328	1.729	2.093	2.539	2.861
19.	0.257		0.533	0.861		1.325	1.725	2.086	2.528	2.845
20	0.257		0.533	0.860	1.064	1,525				
						1.323	1.721	2.080	2.518	2.831
21	0.257		0.532	0.859	1.063		1.717	2.074	2.508	2.819
22	0.256		0.532	0.858	1.061	1.321	1.714	2.069	2.500	2.807
23	0.256		0.532	0.858	1.060	1.319	1.711	2.064	2.492	2.797
	0.256		0.531	0.857	1.059	1.318	1.708	2.060	2.485	2.787
24			0.531	0.856	1.058	1.316	1.708	2.00.		
25	0.256		0.551				. 506	2.056	2.479	2.779
			0.521	0.856	1.058	1.315	1.706	2.052	2.473	2.77
26	0.256		0.531	0.855	1.057	1.314	1.703	2.032	2.467	2.76
27	0.256		0.531	0.855	1.056	1.313	1.701		2.462	2.75
28	0.256		0.530		1.055	1.311	1.699	2.045	2.457	2.75
29	0.256		0.530	0.854	1.055	1.310	1.697	2.042	2.731	
30	0.256		0.530	0.854	1.000				2.423	2.70
				o miles	1.050	1.303	1.684	2.021		2.66
40	0.255		0.529	0.851		1.296	1.671	2.000	2.390	2.61
60	0.254		0.527	0.848	1.045	1.289	1.658	1.980	2.358	2.57
20	0.254		0.526	0.845	1.041	1.282	1.645	1.960	2.326	4.57
00	0.254		0.524	0.842	1.036	1.202	7.000.5		or right-ta	

Note: The above table gives the values of t for one-tail test (either left-tail or right-tail test). If we have to find the value of t for a two-tail test at a level, we take the value of $\alpha/2$ for α . For example, the value of t at 5% level with 9 d.f. is $t_{0.025} = 2.262$ and the value of t at 1% level with 11 d.f. is $t_{0.005} = 3.106$