反协变米田引理

若知 $F_2: \stackrel{\mathsf{Cop}}{\longrightarrow} \stackrel{\mathsf{Cat}}{\longrightarrow} \mathsf{Set}$ 则 反变米田引理的陈述如下:

 $\bullet \quad \underbrace{((_ \xrightarrow{\mathsf{C}} \mathsf{C}_2) \xrightarrow{\mathsf{C}_{\mathsf{Sp}}} \mathsf{Set}}_{\mathsf{Cp}} \xrightarrow{\mathsf{Set}} \underbrace{\mathsf{Set}}_{\mathsf{C}_2} \underbrace{\mathsf{F}_2})$

反变米田引理的证明如下:

1. \leftarrow : 考虑任意 (c_2F_2) 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_2} , 于是便可构建一个完整的 η_2 。 易知 η_2 是一个自然变换。

2. \Rightarrow : 考虑任意等式左侧的 $\frac{\eta_1}{\eta_1}$: 若上述交换图成立 则可对任意 $\frac{\eta_1}{\eta_1}$ 指派 $\overline{\text{etc}} = \frac{1}{|c_1|} \overline{\text{id}} \left(\overline{\text{c}} \right)^{\eta_1}$ 为 $\overline{\text{c}}_2 \overline{F}_2$ 中与之对应的元素 ;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_2 唯一地确定了 η_2 , 反之 η_2 也唯一确定了 c_2 。

若还知 $F_1: \stackrel{\mathsf{Cat}}{\mathsf{C}} \to \mathsf{Set}$ 则 协变米田引理的陈述如下:

协变米田引理的证明如下:

1. \Leftarrow : 考虑任意 (c_1F_1) 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_1} , 于是便可构建一个完整的 η_1 。 易知 η_1 是一个自然变换。

2. \Rightarrow : 考虑任意等式左侧的 $\frac{\eta_1}{\eta_1}$: 若上述交换图成立 则可对任意 $\frac{\eta_1}{\eta_1}$ 指派 etc $=\frac{1}{12}$ 点 $\frac{1}{12}$ 中与之对应的元素 ;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_1 唯一地确定了 η_1 , 反之 η_1 也唯一确定了 c_1 。

可表和余可表函子的泛性质

接下来定义一个重要的概念:

• F_2 为**可表函子**当且仅当 存在 C^{op} 中对象 c_2 使得 c_2 c_2 c_2 c_2 c_2 成立,即 c_2 よ 与 c_2 间存在自然同构。 此时称 c_2 可由对象 c_2 表出。

同理我们也有如下对偶概念:

• F_1 为**余可表函子**当且仅当存在 C 中对象 c_1 使得 $(c_1 \xrightarrow{c} _) = c_1 \stackrel{c}{\sqsubset} \stackrel{F_1}{\simeq}$ 成立。

即 $c_1 \stackrel{\mathcal{L}}{\vdash} 5$ 间存在自然同构。

此时称 F_1 可由对象 c_1 余可表出。

米田和尤达嵌入

根据前面的内容我们可知

・ よ:
$$C \xrightarrow{\mathsf{Cat}} (C^{\mathrm{op}} \xrightarrow{\mathsf{Set}} \mathsf{Set})$$
 $c_2 \longmapsto (c_2 \xrightarrow{\mathsf{Cop}} _) = (_ \xrightarrow{\mathsf{C}} c_2)$ 构成一个函子,称作预层 $f_2 \longmapsto (f_2 \xrightarrow{\mathsf{Cop}} _) = (_ \xrightarrow{\mathsf{C}} f_2) = (_ \overset{\mathsf{C}}{\circ} f_2)$ 构成一个函子间映射,即自然变换

构成一个完全忠实函子,该函子称作是米田嵌入。

证明如下:

よ是函子,因为

$$\begin{array}{l} \bullet \quad \underset{:c_2}{\overset{\mathsf{C}}{\mathrm{id}\, \mathbb{k}}} = \overset{\mathsf{C}}{(-\circ : c_2 \mathrm{id})} = \underset{:(c_2 \mathbb{k})}{\overset{\mathsf{C}}{\mathrm{id}}} \mathrm{id} \\ \bullet \quad (f_2 \overset{\mathsf{C}}{\circ} f_2') |_{\mathbb{k}} = \overset{\mathsf{C}}{(-\circ (f_2 \overset{\mathsf{C}}{\circ} f_2'))} = \overset{\mathsf{C}}{(-\circ f_2)} \overset{\mathsf{Cat}}{\circ} \overset{\mathsf{C}}{(-\circ f_2')} = \overset{\mathsf{C}}{f_2 \mathbb{k}} \overset{\mathsf{Cat}}{\circ} \overset{\mathsf{Cat}}{f_2'} \mathbb{k} , \end{array}$$

由于函子具有保持对象/映射性质的能力,

故便可知 f_2 よ 为同构当且仅当 f_2 为同构。

よ 是完全忠实的 , 因为

将反变米田引理中的 F_2

换成 (**c**′₂ → _)

也就是

$$((c_2 \downarrow))$$
 $\xrightarrow{C_2 \leftrightarrow Set}$ $(c_2' \downarrow))$ $\overset{Set}{\cong}$ $(c_2' \hookrightarrow c_2)$ $(c_2(c_2' \downarrow))$ C 的 hom-set $(c_2 \downarrow c_2' \downarrow)$ $(c_2 \downarrow c_2' \downarrow)$

(i) Note

由于函子能够保持态射的性质,

对任意左侧集合中的自然同构

右侧集合也会有同构与之对应, 反之亦然。

这也就证明了前面自然同构相关定理省略的部分。

根据前面的内容我们可知

• 尤:
$$C^{\mathrm{op}} \xrightarrow{\mathsf{Cat}} (C \xrightarrow{\mathsf{Set}} \mathsf{Set})$$
 $c_1 \longmapsto (c_1 \xrightarrow{\mathsf{C}} \mathsf{L})$ 构成一个函子
 $f_1^{\mathrm{op}} \longmapsto (f_1^{\mathrm{op}} \xrightarrow{\mathsf{C}} \mathsf{L}) = (f_1^{\mathrm{op}} \overset{\mathsf{C}}{\circ} \mathsf{L})$ 构成一个函子间映射,即自然变换

构成一个完全忠实函子,该函子称作是尤达嵌入。

证明如下:

• 尤是函子,因为

•
$$[\underline{\operatorname{cop}}_{:\operatorname{c}_1}\operatorname{id}\mathcal{H}] = [\underline{\operatorname{c}}_{:\operatorname{c}_1}\operatorname{id}] = \underline{\operatorname{c}}_{:(\operatorname{c}_1\mathcal{H})}\operatorname{id}$$
•
$$[f_1 \overset{\operatorname{Cop}}{\circ} f_1']\mathcal{H} = [([f_1 \overset{\operatorname{Cop}}{\circ} f_1'])\overset{\operatorname{C}}{\circ}_{-}) = [(f_1 \overset{\operatorname{Cop}}{\circ} \overset{\operatorname{C}}{\circ}_{-}) \overset{\operatorname{C}}{\circ}_{-})$$

• 尤是完全且忠实的,因为

将协变米田引理中的 F_1

换成 $(\mathbf{c}_1' \rightarrow \underline{\hspace{0.5cm}})$

即可获得下述公式:

也就是

(i) Note

由于函子能够保持态射的性质,

对任意左侧集合中的自然同构

右侧集合也会有同构与之对应,反之亦然。

这也就证明了前面自然同构相关定理省略的部分。