Team Contest Reference

ChaosKITs Karlsruhe Institute of Technology

25. November 2014

lı	nhaltsverzeichnis		3.3 Konvexe Hülle	
1	Datenstrukturen1.1Union-Find1.2Segmentbaum1.3Range Minimum Query	2 2 2 2	 3.4 Formeln - std::complex	11
2 G ₁ 2.1 2.2	2.2.1 Algorithmus von Dijkstra	3 3 3 4 4	$\mathbb{Z}/n\mathbb{Z}$ 4.2 Primzahlsieb von Eratosthenes4.2.1 Faktorisierung4.2.2 Mod-Exponent über \mathbb{F}_p 4.3 LGS über \mathbb{F}_p 4.4 Binomialkoeffizienten4.5 Satz von Sprague-Grundy4.6 Maximales Teilfeld	11 12 12 12 13
3	 2.4 Artikulationspunkte und Brücken 2.5 Eulertouren 2.6 Max-Flow (Edmonds-Karp-Algorithmus) . 2.6.1 Maximum Edge Disjoint Paths 2.6.2 Maximum Independent Paths Geometrie	6 7 7 7	5.1 Knuth-Morris-Pratt-Algorithmus	14 14 15 15
	3.1 Closest Pair		0	16

1 Datenstrukturen

1.1 Union-Find

```
vector<int> parent, rank2; //manche Compiler verbieten Variable mit Namen rank
2
3
   int findSet(int n) { //Pfadkompression
       if (parent[n] != n) parent[n] = findSet(parent[n]);
4
5
       return parent[n];
6
7
   void linkSets(int a, int b) { //union by rank
9
       if (rank2[a] < rank2[b]) parent[a] = b;</pre>
10
       else if (rank2[b] < rank2[a]) parent[b] = a;</pre>
11
12
           parent[a] = b;
13
           rank2[b]++;
14
15
   }
16
   void unionSets(int a, int b) {
17
18
       if (findSet(a) != findSet(b)) linkSets(findSet(a), findSet(b));
19
```

1.2 Segmentbaum

```
int a[MAX_N], m[4 * MAX_N];
2
3
   int query(int x, int y, int k = 0, int X = 0, int Y = MAX_N - 1) {
4
       if (x <= X && Y <= y) return m[k];</pre>
5
       if (y < X \mid \mid Y < x) return -10000000000; //ein "neutrales" Element
6
       int M = (X + Y) / 2;
7
       return max(query(x, y, 2 * k + 1, X, M), query(x, y, 2 * k + 2, M + 1, Y));
8
9
10
   void update(int i, int v, int k = 0, int X = 0, int Y = MAX_N - 1) {
11
       if (i < X \mid | Y < i) return;
12
       if (X == Y) {
13
           m[k] = v;
14
           a[i] = v;
15
           return;
16
17
       int M = (X + Y) / 2;
       update(i, v, 2 * k + 1, X, M);
18
       update(i, v, 2 * k + 2, M + 1, Y);
19
       m[k] = max(m[2 * k + 1], m[2 * k + 2]);
20
21
22
23
   void init(int k = 0, int X = 0, int Y = MAX_N - 1) {
24
       if (X == Y) {
25
           m[k] = a[X];
26
           return;
27
28
       int M = (X + Y) / 2;
       init(2 * k + 1, X, M);
29
30
       init(2 * k + 2, M + 1, Y);
31
       m[k] = max(m[2 * k + 1], m[2 * k + 2]);
32
```

1.3 Range Minimum Query

```
vector<int> data(RMQ_SIZE);
vector<vector<int>> rmq(floor(log2(RMQ_SIZE)) + 1, vector<int>(RMQ_SIZE));

void initRMQ() {
```

```
5
         \label{eq:formula} \textbf{for(int} \ i \ = \ \textbf{0}, \ s \ = \ \textbf{1}, \ ss \ = \ \textbf{1}; \ s \ <= \ \texttt{RMQ\_SIZE}; \ ss = s, \ s* = 2 \,, \ i + +) \ \{
 6
              for(int 1 = 0; 1 + s <= RMQ_SIZE; 1++) {</pre>
 7
                   if(i == 0) rmq[0][1] = 1;
 8
                   else {
 9
                        int r = 1 + ss;
10
                        rmq[i][1] = (data[rmq[i-1][1]] \le data[rmq[i-1][r]] ? rmq[i-1][1] : rmq[i-1][r]);
11
12
              }
13
14
15
    //returns index of minimum! [a, b)
    int queryRMQ(int 1, int r) {
16
17
         if(1 >= r) return 1;
18
         int s = floor(log2(r-1)); r = r - (1 << s);
19
         return (data[rmq[s][1]] <= data[rmq[s][r]] ? rmq[s][1] : rmq[s][r]);</pre>
20
   }
```

2 Graphen

2.1 Lowest Common Ancestor

```
1 //RMQ muss hinzugefuegt werden!
   vector<int> visited(2*MAX_N), first(MAX_N, 2*MAX_N), depth(2*MAX_N);
2
3
   vector<vector<int>> graph(MAX_N);
5
   void initLCA(int gi, int d, int &c) {
6
       visited[c] = gi, depth[c] = d, first[gi] = min(c, first[gi]), c++;
7
       for(int gn : graph[gi]) {
           initLCA(gn, d+1, c);
8
9
           visited[c] = gi, depth[c] = d, c++;
10
11
  }
  //[a, b]
12
13
  int getLCA(int a, int b) {
       return visited[queryRMQ(min(first[a], first[b]), max(first[a], first[b]))];
14
15 }
16
  //=> int c = 0; initLCA(0,0,c); initRMQ(); done!
```

2.2 Kürzeste Wege

2.2.1 Algorithmus von Dijkstra

Kürzeste Pfade in Graphen ohne negative Kanten.

```
priority_queue<ii, vector<ii>, greater<ii> > pq;
  vector<int> dist;
3 dist.assign(NUM_VERTICES, INF);
4
   dist[0] = 0;
5
   pq.push(ii(0, 0));
7
   while (!pq.empty()) {
8
       ii front = pq.top(); pq.pop();
9
       int curNode = front.second, curDist = front.first;
10
11
       if (curDist > dist[curNode]) continue;
12
13
       for (int i = 0; i < (int)adjlist[curNode].size(); i++) {</pre>
           int nextNode = adjlist[curNode][i].first, nextDist = curDist + adjlist[curNode][i].second;
14
15
16
           if (nextDist < dist[nextNode]) {</pre>
               dist[nextNode] = nextDist; pq.push(ii(nextDist, nextNode));
17
18
19
       }
20
   }
```

2.2.2 Bellmann-Ford-Algorithmus

Kürzestes Pfade in Graphen mit negativen Kanten. Erkennt negative Zyklen.

```
//n = number of vertices, edges is vector of edges
  dist.assign(n, INF); dist[0] = 0;
  parent.assign(n, -1);
   for (i = 0; i < n - 1; i++) {
       for (j = 0; j < (int)edges.size(); j++) {
6
           if (dist[edges[j].from] + edges[j].cost < dist[edges[j].to]) {</pre>
7
               dist[edges[j].to] = dist[edges[j].from] + edges[j].cost;
8
               parent[edges[j].to] = edges[j].from;
9
           }
10
       }
11
12
  //now dist and parent are correct shortest paths
13 //next lines check for negative cycles
14 for (j = 0; j < (int)edges.size(); j++) {
15
       if (dist[edges[j].from] + edges[j].cost < dist[edges[j].to]) {</pre>
16
           //NEGATIVE CYCLE found
17
18 }
```

2.2.3 FLOYD-WARSHALL-Algorithmus

Alle kürzesten Pfade im Graphen.

2.3 Strongly Connected Components (Tarjans-Algorithmus)

```
int counter, sccCounter, n; //n == number of vertices
   vector<bool> visited, inStack;
3
   vector< vector<int> > adjlist;
   vector<int> d, low, sccs;
4
5
   stack<int> s;
6
7
   void visit(int v) {
8
       visited[v] = true;
9
       d[v] = counter;
10
       low[v] = counter;
11
       counter++;
12
       inStack[v] = true;
13
       s.push(v);
14
15
       for (int i = 0; i < (int)adjlist[v].size(); i++) {</pre>
16
            int u = adjlist[v][i];
17
            if (!visited[u]) {
18
                visit(u);
19
                low[v] = min(low[v], low[u]);
20
           } else if (inStack[u]) {
21
                low[v] = min(low[v], low[u]);
22
23
       }
24
25
       if (d[v] == low[v]) {
26
            int u;
27
            do {
28
                u = s.top();
29
                s.pop():
30
                inStack[u] = false;
```

```
31
                sccs[u] = sccCounter;
32
           } while(u != v);
33
           sccCounter++;
34
35
   }
36
37
   void scc() {
38
       //read adjlist
39
40
       visited.clear(); visited.assign(n, false);
41
       d.clear(); d.resize(n);
42
       low.clear(); low.resize(n);
43
       inStack.clear(); inStack.assign(n, false);
44
       sccs.clear(); sccs.resize(n);
45
46
       counter = 0;
47
       sccCounter = 0;
48
       for (i = 0; i < n; i++) {
           if (!visited[i]) {
49
50
                visit(i);
51
52
53
       //sccs has the component for each vertex
54
```

2.4 Artikulationspunkte und Brücken

```
1
   vector< vector<int> > adjlist;
2
   vector<int> low;
3
   vector<int> d;
  vector<bool> isArtPoint;
5
  vector< vector<int> > bridges; //nur fuer Bruecken
6
   int counter = 0;
8
   void visit(int v, int parent) {
9
       d[v] = low[v] = ++counter;
10
       int numVisits = 0, maxlow = 0;
11
12
       for (vector<int>::iterator vit = adjlist[v].begin(); vit != adjlist[v].end(); vit++) {
13
           if (d[*vit] == 0) {
               numVisits++;
14
15
               visit(*vit, v);
16
               if (low[*vit] > maxlow) {
17
                    maxlow = low[*vit];
18
19
20
               if (low[*vit] > d[v]) { //nur fuer Bruecken
21
                    bridges[v].push_back(*vit); bridges[*vit].push_back(v);
22
23
24
               low[v] = min(low[v], low[*vit]);
25
           } else {
26
               if (d[*vit] < low[v]) {
27
                    low[v] = d[*vit];
28
29
           }
30
       }
31
32
       if (parent == -1) {
33
           if (numVisits > 1) isArtPoint[v] = true;
34
       } else {
35
           if (maxlow >= d[v]) isArtPoint[v] = true;
36
37
   }
38
39
   void findArticulationPoints() {
40
       low.clear(); low.resize(adjlist.size());
41
       d.clear(); d.assign(adjlist.size(), 0);
42
       isArtPoint.clear(); isArtPoint.assign(adjlist.size(), false);
```

```
43 bridges.clear(); isBridge.resize(adjlist.size()); //nur fuer Bruecken
44 for (int v = 0; v < (int)adjlist.size(); v++) {
45     if (d[v] == 0) visit(v, -1);
46     }
47 }</pre>
```

2.5 Eulertouren

- Zyklus existiert, wenn jeder Knoten geraden Grad hat (ungerichtet), bzw. bei jedem Knoten Ein- und Ausgangsgrad übereinstimmen (gerichtet).
- Pfad existiert, wenn alle bis auf (maximal) zwei Knoten geraden Grad haben (ungerichtet), bzw. bei allen Knoten bis auf zwei Ein- und Ausgangsgrad übereinstimmen, wobei einer eine Ausgangskante mehr hat (Startknoten) und einer eine Eingangskante mehr hat (Endknoten).
- Je nach Aufgabenstellung überprüfen, wie isolierte Punkte interpretiert werden sollen.
- Der Code unten läuft in Linearzeit. Wenn das nicht notwenidg ist (oder bestimmte Sortierungen verlangt werden), gehts mit einem set einfacher.

```
VISIT(v):
forall e=(v,w) in E

delete e from E

VISIT(w)
print e
```

Abbildung 1: Idee für Eulerzyklen

```
vector< vector<int> > adjlist;
   vector< vector<int> > otherIdx;
2
   vector<int> cycle;
4
   vector<int> validIdx;
5
6
   void swapEdges(int n, int a, int b) { // Vertauscht Kanten mit Indizes a und b von Knoten n.
7
       int neighA = adjlist[n][a];
8
       int neighB = adjlist[n][b];
9
       int idxNeighA = otherIdx[n][a];
10
       int idxNeighB = otherIdx[n][b];
11
       swap(adjlist[n][a], adjlist[n][b]);
12
       swap(otherIdx[n][a], otherIdx[n][b]);
13
       otherIdx[neighA][idxNeighA] = b;
14
       otherIdx[neighB][idxNeighB] = a;
15
   }
16
17
   void removeEdge(int n, int i) { // Entfernt Kante i von Knoten n (und die zugehoerige Rueckwaertskante).
18
       int other = adjlist[n][i];
19
       if (other == n) { //Schlingen
20
           validIdx[n]++;
21
           return:
22
23
       int otherIndex = otherIdx[n][i];
24
       validIdx[n]++:
25
       if (otherIndex != validIdx[other]) {
26
           swapEdges(other, otherIndex, validIdx[other]);
27
28
       validIdx[other]++;
29
   }
30
31
   //findet Eulerzyklus an Knoten n startend
32 //teste vorher, dass Graph zusammenhaengend ist! (isolierte Punkte sind ok)
   //teste vorher, ob Eulerzyklus ueberhaupt existiert!
33
34
   void euler(int n) {
35
       while (validIdx[n] < (int)adjlist[n].size()) {</pre>
36
           int nn = adjlist[n][validIdx[n]];
37
           removeEdge(n, validIdx[n]);
38
           euler(nn);
39
40
       cycle.push_back(n); //Zyklus am Ende in cycle
```

41 | }

2.6 Max-Flow (Edmonds-Karp-Algorithmus)

```
int s, t, f; //source, target, single flow
   int res[MAX_V][MAX_V]; //adj-matrix
2
   vector< vector<int> > adjList;
4
   int p[MAX_V]; //bfs spanning tree
6
   void augment(int v, int minEdge) {
7
       if (v == s) { f = minEdge; return; }
8
       else if (p[v] != -1) {
9
           augment(p[v], \ min(minEdge, \ res[p[v]][v]));\\
10
           res[p[v]][v] -= f; res[v][p[v]] += f;
11
   }}
12
13
   int maxFlow() { //first inititalize res, adjList, s and t
14
       int mf = 0;
15
       while (true) {
16
           f = 0:
17
           bitset<MAX_V> vis; vis[s] = true;
18
           queue < int > q; q.push(s);
19
           memset(p, -1, sizeof(p));
20
           while (!q.empty()) { //BFS
21
                int u = q.front(); q.pop();
22
                if (u == t) break;
23
                for (int j = 0; j < (int)adjList[u].size(); <math>j++) {
                    int v = adjList[u][j];
24
25
                    if (res[u][v] > 0 && !vis[v]) {
26
                        vis[v] = true; q.push(v); p[v] = u;
27
           }}}
28
29
           augment(t, INF); //add found path to max flow
30
           if (f == 0) break;
31
           mf += f:
32
33
       return mf;
34
   }
```

2.6.1 Maximum Edge Disjoint Paths

Finde die maximale Anzahl Pfade von *s* nach *t*, die keine Kante teilen.

- 1. Setze *s* als Quelle, *t* als Senke und die Kapazität jeder Kante auf 1.
- 2. Der maximale Fluss entspricht der unterschiedlichen Pfade ohne gemeinsame Kanten.

2.6.2 Maximum Independent Paths

Finde die maximale Anzahl Pfade von *s* nach *t*, die keinen Knoten teilen.

- 1. Setze s als Quelle, t als Senke und die Kapazität jeder Kante und jedes Knotens auf 1.
- 2. Der maximale Fluss entspricht der unterschiedlichen Pfade ohne gemeinsame Knoten.

3 Geometrie

3.1 Closest Pair

```
double squaredDist(point a, point b) {
    return (a.first-b.first) * (a.first-b.first) + (a.second-b.second) * (a.second-b.second);
}

bool compY(point a, point b) {
    if (a.second == b.second) return a.first < b.first;
    return a.second < b.second;</pre>
```

```
8 | }
9
10
   double shortestDist(vector<point> &points) {
       //check that points.size() > 1 and that ALL POINTS ARE DIFFERENT
11
12
       set<point, bool(*)(point, point)> status(compY);
13
       sort(points.begin(), points.end());
14
       double opt = 1e30, sqrtOpt = 1e15;
15
       auto left = points.begin(), right = points.begin();
16
       status.insert(*right); right++;
17
18
       while (right != points.end()) {
19
           if (fabs(left->first - right->first) >= sqrt0pt) {
20
               status.erase(*(left++));
21
           } else {
               auto lower = status.lower_bound(point(-1e20, right->second - sqrtOpt));
22
23
               auto upper = status.upper_bound(point(-1e20, right->second + sqrt0pt));
24
                while (lower != upper) {
25
                    double cand = squaredDist(*right, *lower);
26
                    if (cand < opt) {</pre>
27
                        opt = cand;
28
                        sqrt0pt = sqrt(opt);
29
30
                    ++lower;
31
               }
32
               status.insert(*(right++));
33
           }
34
35
       return sqrt0pt;
36
   }
```

3.2 Geraden

```
1
   struct pt { //complex<double> does not work here, becuase we need to set pt.x and pt.y
       double x, y;
2
3
       pt() {};
4
       pt(double x, double y) : x(x), y(y) {};
5
   };
6
7
   struct line {
8
       double a, b, c; //a*x+b*y+c, b=0 <=> vertical line, b=1 <=> otherwise
9
   };
10
11
   line pointsToLine(pt p1, pt p2) {
12
       line 1;
13
       if (fabs(p1.x - p2.x) < EPSILON) {
14
           1.a = 1; 1.b = 0.0; 1.c = -p1.x;
15
       } else {
16
           1.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
17
           1.b = 1.0;
18
           1.c = -(double)(1.a * p1.x) - p1.y;
19
20
       return 1;
21
   }
22
23
   bool areParallel(line 11, line 12) {
24
       return (fabs(11.a - 12.a) < EPSILON) && (fabs(11.b - 12.b) < EPSILON);</pre>
25
   }
26
27
   bool areSame(line 11, line 12) {
       return areParallel(11, 12) && (fabs(11.c - 12.c) < EPSILON);</pre>
28
29
30
31
   bool areIntersect(line 11, line 12, pt &p) {
32
       if (areParallel(l1, l2)) return false;
33
       p.x = (12.b * 11.c - 11.b * 12.c) / (12.a * 11.b - 11.a * 12.b);
34
       if (fabs(11.b) > EPSILON) p.y = -(11.a * p.x + 11.c);
35
       else p.y = -(12.a * p.x + 12.c);
36
       return true;
37
```

3.3 Konvexe Hülle

```
1 #include <algorithm>
2 #include <iostream>
3 | #include <sstream>
   #include <string>
5
   #include <vector>
6 using namespace std;
8
   struct point {
9
     \quad \textbf{double} \  \, \textbf{x} \, , \  \, \textbf{y} \, ; \\
10
     point(){} point(double x, double y) : x(x), y(y) {}
11
     bool operator <(const point &p) const {</pre>
12
       return x < p.x | | (x == p.x && y < p.y);
13
     }
14 | };
15
16 // 2D cross product.
17 // Return a positive value, if OAB makes a counter-clockwise turn,
18 \left| \ / \right| negative for clockwise turn, and zero if the points are collinear.
19
   double cross(const point &0, const point &A, const point &B){
     double d = (A.x - 0.x) * (B.y - 0.y) - (A.y - 0.y) * (B.x - 0.x);
20
21
     if (fabs(d) < 1e-9) return 0.0;</pre>
22
     return d;
23 | }
24
25 // Returns a list of points on the convex hull in counter-clockwise order.
26 // Colinear points are not in the convex hull, if you want colinear points in the hull remove "=" in the CCW-
27
   // Note: the last point in the returned list is the same as the first one.
28
   vector<point> convexHull(vector<point> P){
29
     int n = P.size(), k = 0;
30
     vector<point> H(2*n);
31
32
     // Sort points lexicographically
33
     sort(P.begin(), P.end());
34
35
     // Build lower hull
36
     for (int i = 0; i < n; i++) {
37
       while (k \ge 2 \&\& cross(H[k-2], H[k-1], P[i]) \le 0.0) k--;
38
       H[k++] = P[i];
39
40
41
     // Build upper hull
42
     for (int i = n-2, t = k+1; i >= 0; i--) {
43
       while (k \ge t \& cross(H[k-2], H[k-1], P[i]) \le 0.0) k--;
44
       H[k++] = P[i];
45
46
47
     H.resize(k);
48
     return H;
49
   }
```

3.4 Formeln - std::complex

```
//komplexe Zahlen als Darstellung fuer Punkte
typedef pt complex<double>;
//Winkel zwischen Punkt und x-Achse in [0, 2 * PI), Winkel zwischen a und b
double angle = arg (a), angle_a_b = arg (a - b);
//Punkt rotiert um Winkel theta
pt a_rotated = a * exp (pt (0, theta));
//Mittelpunkt des Dreiecks abc
pt centroid = (a + b + c) / 3;
//Skalarprodukt
double dot(pt a, pt b) {
   return real(conj(a) * b);
}
//Kreuzprodukt, 0, falls kollinear
```

```
14 \mid \mathbf{double} cross(pt a, pt b) {
15
       return imag(conj(a) * b);
16 | }
17 //wenn Eckpunkte bekannt
18
  double areaOfTriangle(pt a, pt b, pt c) {
19
       return abs(cross(b - a, c - a)) / 2.0;
20
21 //wenn Seitenlaengen bekannt
  double areaOfTriangle(double a, double b, double c) {
22
23
       double s = (a + b + c) / 2;
24
       return sqrt(s * (s-a) * (s-b) * (s-c));
25 | }
26 // Sind die Dreiecke a1, b1, c1, and a2, b2, c2 aehnlich?
  // Erste Zeile testet Aehnlichkeit mit gleicher Orientierung,
28 // zweite Zeile testst Aehnlichkeit mit unterschiedlicher Orientierung
29
   bool similar (pt a1, pt b1, pt c1, pt a2, pt b2, pt c2) {
30
       return (
31
           (b2 - a2) * (c1 - a1) == (b1 - a1) * (c2 - a2) | |
           (b2 - a2) * (conj (c1) - conj (a1)) == (conj (b1) - conj (a1)) * (c2 - a2)
32
33
34
35
   //Linksknick von a->b nach a->c
36
   double ccw(pt a, pt b, pt c) {
37
       return cross(b - a, c - a); //<0 => falls Rechtsknick, 0 => kollinear, >0 => Linksknick
38
39
   //Streckenschnitt, Strecken a-b und c-d
40
  bool lineSegmentIntersection(pt a, pt b, pt c, pt d) {
41
       if (ccw(a, b, c) == 0 \&\& ccw(a, b, d) == 0) { //kollinear}
42
           double dist = abs(a - b);
43
           return (abs(a - c) <= dist && abs(b - c) <= dist) || (abs(a - d) <= dist && abs(b - d) <= dist);
44
       return ccw(a, b, c) * ccw(a, b, d) <= 0 && ccw(c, d, a) * ccw(c, d, b) <= 0;
45
46 }
47
  //Entfernung von p zu a-b
48
   double distToLine(pt a, pt b, pt p) {
49
       return abs(cross(p - a, b - a)) / abs(b - a);
50 | 3
51 //liegt p auf a-b
52
  bool pointOnLine(pt a, pt b, pt p) {
53
       return abs(distToLine(a, b, p)) < EPSILON;</pre>
54
55
   //testet, ob d in der gleichen Ebene liegt wie a, b, und c
56
   bool isCoplanar(pt a, pt b, pt c, pt d) {
57
       return (b - a) * (c - a) * (d - a) == 0;
58
59
   //berechnet den Flaecheninhalt eines Polygons (nicht selbstschneidend)
60
  double areaOfPolygon(vector<pt> &polygon) { //jeder Eckpunkt nur einmal im Vektor
61
       double res = 0; int n = polygon.size();
       for (int i = 0; i < (int)polygon.size(); i++)
62
63
          res += real(polygon[i]) * imag(polygon[(i + 1) % n]) - real(polygon[(i + 1) % n]) * imag(polygon[i]);
64
       return 0.5 * abs(res);
65 }
   //testet, ob sich zwei Rechtecke (p1, p2) und (p3, p4) schneiden (jeweils gegenueberliegende Ecken)
67
   bool rectIntersection(pt p1, pt p2, pt p3, pt p4) {
68
       double minx12 = min(real(p1), real(p2)), maxx12 = max(real(p1), real(p2));
69
       double minx34 = min(real(p3), real(p4)), maxx34 = max(real(p3), real(p4));
70
       double miny12 = min(imag(p1), imag(p2)), maxy12 = max(imag(p1), imag(p2));
71
       double miny34 = min(imag(p3), imag(p4)), maxy34 = max(imag(p3), imag(p4));
       72
73
74
   //testet, ob ein Punkt im Polygon liegt (beliebige Polygone)
75
  bool pointInPolygon(pt p, vector<pt> &polygon) { //jeder Eckpunkt nur einmal im Vektor
76
       pt rayEnd = p + pt(1, 1000000);
       int counter = 0, n = polygon.size();
77
78
       for (int i = 0; i < n; i++) {
79
           pt start = polygon[i], end = polygon[(i + 1) % n];
80
           if (lineSegmentIntersection(p, rayEnd, start, end)) counter++;
81
82
       return counter & 1:
83
```

4 Mathe

4.1 ggT, kgV, erweiterter euklidischer Algorithmus

```
1 11 gcd(11 a, 11 b) {
2     return b == 0 ? a : gcd (b, a % b);
3  }
4  
5  11 lcm(11 a, 11 b) {
6     return a * (b / gcd(a, b)); //Klammern gegen Overflow
7  }
```

```
//Accepted in Aufgabe mit Forderung: |X|+|Y| minimal (primaer) und X<=Y (sekundaer)
   //hab aber keinen Beweis dafuer :)
  11 x, y, d; //a * x + b * y = d = ggT(a,b)
   void extendedEuclid(ll a, ll b) {
5
      if (!b) {
6
           x = 1; y = 0; d = a; return;
7
       extendedEuclid(b, a % b);
8
9
       11 x1 = y; 11 y1 = x - (a / b) * y;
10
       x = x1; y = y1;
11
```

4.1.1 Multiplikatives Inverses von x in $\mathbb{Z}/n\mathbb{Z}$

Sei $0 \le x < n$. Definiere d := gcd(x, n).

Falls d = 1:

- Erweiterter euklidischer Algorithmus liefert α und β mit $\alpha x + \beta n = 1$
- Nach Kongruenz gilt $\alpha x + \beta n \equiv \alpha x \equiv 1 \mod n$
- $x^{-1} :\equiv \alpha \mod n$

Falls $d \neq 1$: es existiert kein x^{-1}

4.2 Primzahlsieb von Eratosthenes

```
vector<int> primes;
   void primeSieve(ll n) { //berechnet die Primzahlen kleiner n
3
       vector<int> isPrime(n,true);
       for(11 i = 2; i < n; i+=2) {</pre>
4
5
           if(isPrime[i]) {
6
               primes.push_back(i);
7
               if(i*i <= n) {
8
                    for(11 j = i; i*j < n; j+=2) isPrime[i*j] = false;
9
10
           if(i == 2) i--;
11
12
13
```

4.2.1 Faktorisierung

```
const 11 PRIME_SIZE = 100000000;
vector<int> primes; //call primeSieve(PRIME_SIZE); before

//Factorize the number n
vector<int> factorize(11 n) {
```

```
vector < int > factor;
7
       11 \text{ num} = n;
8
       int pos = 0;
9
       while(num != 1) {
10
            if(num % primes[pos] == 0) {
11
                num /= primes[pos];
12
                factor.push_back(primes[pos]);
13
14
            else pos++;
15
           if(primes[pos]*primes[pos] > n) break;
16
17
       if(num != 1) factor.push_back(num);
18
       return factor;
19
  }
```

4.2.2 Mod-Exponent über \mathbb{F}_p

```
1 11 modPow(11 b, 11 e, 11 p) {
2         if (e == 0) return 1;
3         if (e == 1) return b;
4         11 half = modPow(b, e / 2, p), res = (half * half) % p;
5         if (e & 1) res *= b; res %= p;
7         return res;
7     }
```

4.3 LGS über \mathbb{F}_p

```
1
   void normalLine(ll n, ll line, ll p) { //normalisiert Zeile line
2
       11 factor = multInv(mat[line][line], p); //Implementierung von oben
3
       for (ll i = 0; i \le n; i++) {
4
           mat[line][i] *= factor;
5
           mat[line][i] %= p;
6
7
8
   void takeAll(11 n, 11 line, 11 p) { //zieht Vielfaches von line von allen anderen Zeilen ab
10
       for (11 i = 0; i < n; i++) {
11
           if (i == line) continue;
           11 diff = mat[i][line]; //abziehen
12
           for (11 j = 0; j \ll n; j++) {
13
               mat[i][j] -= (diff * mat[line][j]) % p;
14
15
               while (mat[i][j] < 0) {</pre>
16
                    mat[i][j] += p;
17
               }
18
           }
19
       }
20
21
22
   void gauss(ll n, ll p) { //n x n+1-Matrix, Koerper F_p
       for (ll line = 0; line < n; line++) \{
23
           normalLine(n, line, p);
24
25
           takeAll(n, line, p);
26
       }
27
   }
```

4.4 Binomialkoeffizienten

```
8 return r; }
```

4.5 Satz von Sprague-Grundy

Weise jedem Zustand X wie folgt eine Grundy-Zahl g(X) zu:

```
g(X) := \min\{\mathbb{Z}_0^+ \setminus \{g(Y) \mid Y \text{ von } X \text{ aus direkt erreichbar}\}\}
```

X ist genau dann gewonnen, wenn g(X) > 0 ist.

Wenn man k Spiele in den Zuständen X_1, \ldots, X_k hat, dann ist die Grundy-Zahl des Gesamtzustandes $g(X_1) \oplus \ldots \oplus g(X_k)$.

4.6 Maximales Teilfeld

```
//N := length of field
  int maxStart = 1, maxLen = 0, curStart = 1, len = 0;
3
   double maxValue = 0, sum = 0;
   for (int pos = 0; pos < N; pos++) {
       sum += values[pos];
6
       len++;
7
       if (sum > maxValue) { // neues Maximum
8
           maxValue = sum; maxStart = curStart; maxLen = len;
9
10
       if (sum < 0) { // alles zuruecksetzen</pre>
11
           curStart = pos +2; len = 0; sum = 0;
12
13
   //maxSum := maximaler Wert, maxStart := Startposition, maxLen := Laenge der Sequenz
```

Obiger Code findet kein maximales Teilfeld, das über das Ende hinausgeht. Dazu:

- 1. finde maximales Teilfeld, das nicht übers Ende geht
- 2. berechne minimales Teilfeld, das nicht über den Rand geht (analog)
- 3. nimm Maximum aus gefundenem Maximalem und Allem\Minimalem

5 Strings

5.1 Knuth-Morris-Pratt-Algorithmus

```
#include <iostream>
2
   #include <vector>
4
   using namespace std;
6
   //Preprocessing Substring sub for KMP-Search
7
   vector<int> kmp_preprocessing(string& sub) {
8
       vector<int> b(sub.size() + 1);
9
       b[0] = -1;
10
       int i = 0, j = -1;
11
       while(i < sub.size()) {</pre>
12
           while(j >= 0 && sub[i] != sub[j])
13
                j = b[j];
           i++; j++;
14
15
           b[i] = j;
16
17
       return b;
18
19
20
   //Searching after Substring sub in s
21
   vector<int> kmp_search(string& s, string& sub) {
22
       vector<int> pre = kmp_preprocessing(sub);
23
       vector<int> result;
24
       int i = 0, j = -1;
```

```
25
       while(i < s.size()) {</pre>
26
            while(j >= 0 && s[i] != sub[j])
27
                j = pre[j];
28
            i++; j++;
29
            if(j == sub.size()) {
30
                result.push_back(i-j);
31
                j = pre[j];
32
33
34
       return result;
35
   }
```

5.2 Trie

```
1
   //nur fuer kleinbuchstaben!
2
   struct node {
3
       node *(e)[26];
4
       int c = 0;//anzahl der woerter die an dem node enden.
5
       node() { for(int i = 0; i < 26; i++) e[i] = NULL; }
6
   };
7
8
   void insert(node *root, string *txt, int s) {
9
       if(s >= txt->length()) root->c++;
10
       else {
           int idx = (int)((*txt).at(s) - 'a');
11
12
           if(root->e[idx] == NULL) {
13
               root->e[idx] = new node();
14
15
           insert(root->e[idx], txt, s+1);
16
       }
17
   }
18
19
   int contains(node *root, string *txt, int s) {
20
       if(s >= txt->length()) return root->c;
21
       int idx = (int)((*txt).at(s) - 'a');
22
       if(root->e[idx] != NULL) {
23
               return contains(root->e[idx], txt, s+1);
24
       } else return 0;
25
```

5.3 Suffix-Array

```
1 //longest common substring in one string (overlapping not excluded)
2
   //contains suffix array:-----
3
   int cmp(string &s,vector<vector<int>> &v, int i, int vi, int u, int l) {
       int vi2 = (vi + 1) \% 2, u2 = u + i / 2, 12 = 1 + i / 2;
       if(i == 1) return s[u] - s[1];
5
       else if (v[vi2][u] != v[vi2][1]) return (v[vi2][u] - v[vi2][1]);
6
7
       else { //beide groesser tifft nicht mehr ein, da ansonsten vorher schon unterschied in Laenge
8
           if(u2 >= s.length()) return -1;
9
           else if(12 >= s.length()) return 1;
10
           else return v[vi2][u2] - v[vi2][12];
11
       }
12
   }
13
14
   string lcsub(string s) {
       if(s.length() == 0) return "";
15
       vector<int> a(s.length());
16
17
       vector<vector<int>> v(2, vector<int>(s.length(), 0));
18
       int vi = 0;
19
       for(int k = 0; k < a.size(); k++) a[k] = k;
20
       for(int i = 1; i <= s.length(); i *= 2, vi = (vi + 1) % 2) {</pre>
21
           sort(a.begin(), a.end(), [&] (const int &u, const int &l) {
22
               return cmp(s, v, i, vi, u, 1) < 0;
23
           }):
24
           v[vi][a[0]] = 0;
```

```
25
        0:1);
26
     }
27
  //---
28
     int r = 0, m=0, c=0;
29
     for(int i = 0; i < a.size() - 1; i++) {
30
31
        while(a[i]+c < s.length() && a[i+1]+c < s.length() && s[a[i]+c] == s[a[i+1]+c]) c++;
32
        if(c > m) r=i. m=c:
33
34
     return m == 0 ? "" : s.substr(a[r], m);
35
```

ChaosKITs

5.4 Longest Common Substring

```
//longest common substring.
1
2
  struct lcse {
3
     int i = 0, s = 0;
4
  };
5
  string lcp(string s[2]) {
     if(s[0].length() == 0 \mid \mid s[1].length() == 0) return "";
6
7
     vector<lcse> a(s[0].length()+s[1].length());
8
     length() ? 0 : 1);
9
     sort(a.begin(), a.end(), [&] (const lcse &u, const lcse &l) {
10
         int ui = u.i, li = l.i;
11
         while(ui < s[u.s].length() && li < s[l.s].length()) {</pre>
12
            if(s[u.s][ui] < s[l.s][li]) return true;</pre>
13
            else if(s[u.s][ui] > s[l.s][li]) return false;
14
            ui++: li++:
15
16
         return !(ui < s[u.s].length());</pre>
17
     }):
18
     int r = 0, m=0, c=0;
19
     for(int i = 0; i < a.size() - 1; i++) {</pre>
20
         if(a[i].s == a[i+1].s) continue;
21
22
         [i+1].s][a[i+1].i+c]) c++;
23
         if(c > m) r=i, m=c;
24
25
     return m == 0 ? "" : s[a[r].s].substr(a[r].i, m);
26
  }
```

5.5 Longest Common Subsequence

```
1
   string lcss(string &a, string &b) {
       int m[a.length() + 1][b.length() + 1], x=0, y=0;
3
       memset(m, 0, sizeof(m));
4
       for(int y = a.length() - 1; y >= 0; y--) {
5
           for(int x = b.length() - 1; x >= 0; x--) {
               if(a[y] == b[x]) m[y][x] = 1 + m[y+1][x+1];
6
               else m[y][x] = max(m[y+1][x], m[y][x+1]);
8
9
       } //for length only: return m[0][0];
10
       string res;
       while(x < b.length() \&\& y < a.length()) {
11
12
           if(a[y] == b[x]) res += a[y++], x++;
13
           else if(m[y][x+1] > m[y+1][x+1]) x++;
14
           else y++;
15
16
       return res;
17
   }
```

6 Sonstiges

6.1 2-SAT

- 1. Bedingungen in 2-CNF formulieren.
- 2. Implikationsgraph bauen, $(a \lor b)$ wird zu $\neg a \Rightarrow b$ und $\neg b \Rightarrow a$.
- 3. Finde die starken Zusammenhangskomponenten.
- 4. Genau dann lösbar, wenn keine Variable mit ihrer Negation in einer SCC liegt.