Prove the following statements (10 points)

• 1. If a|b and a|c, then a|(mb+nc), where $m, n \in \mathbb{Z}$

$$a|b$$
 means $\exists k_1 \in \mathbb{Z}$ such that $b = k_1 a$
 $a|c$ means $\exists k_2 \in \mathbb{Z}$ such that $c = k_2 a$

We want to know if mb+nc can be factorized as the product of a and an integer.

Obviously, $mb = mk_1a$, $nc = nk_2c$. Adding them together, we have

$$mb + nc = mk_1a + nk_2a = (mk_1 + nk_2)a$$

Obviously, $(mk_1 + nk_2)$ is an integer, that is mb + nc can be factorized as the product of a and an integer!

According to the definition of division, we have a|(mb+nc).