

High Performance Anomalic Polymer Prepared by Poly Condlansation . (2) PolyCarbonate Sheet, transparent and tough Screen. пко:-ф-з-ф-се FO-Q-S-D-+ (n+) KCl Byether sulphone (PES) Moulding, Cooling Menbanu $n_{KO-\Phi-OK} + n_{F-\Phi-E-\Phi-F} \rightarrow - \{0-\Phi-O-\Phi-E-\Phi\}_n$ Polyetheretherkelone +(2n+)kFSlabt of $260^{\circ}c$ PEEK nce-l-Q-l-ce + nkn-D-N/2 -> f-l-D-NH-D-Nf+

Roly (p-phenylene krephtholde (2n-1) Hele RAZ+ RBZ Polyaddelion wir Heal Caupling n-Br-D-Br + nCK=ak ->

Re(ocome) lovic

Catalyst

Catalyst

Catalyst

Replace of the confidence of the

relebelte 4(3) excellent thermal Stability Polysiloxanes . nce-si-ce + (n+1)40 > Ho fsi of H + 2nHCl Psy addition: R=Rz=Chz
Poly(climethyl belowene) with removal of syproduct Linear Polywrethanes are prepared by RA2 + RB2 Polyaddition of discepanates no=c=n-R1-N=c=0 + n 10140-R2-104 fc-N-R-N-8-02-07n R=-(ch2)=-Softness of Polyweethane is many made varying with Changery Polyd, 40-(CH) -OH Hoten - the ten - cm 2, 3, 4, - . nigid solid Poly (Impylene) diskide) diol dissocyonates with diamines yields polyureas. 2-8 5/ml n 0=c= N-R, - N=c=0 + n 1/2 N-R-N1/2 -fe-n-E-n-E-n-fe Par rate is very fast

lase B: Consider a Strange 21 h
LI Lase B: Consider a Step growth poly of RA2 \$ RB2
P2 P Hence in Such Case, ratio of att=0 NA NB
P2 functional and Process Patro of
P2 Hence in Such Case, ratio of att=0 NA NB Present in excess Are Known Allie at t=0 Present in excess
mown magned as reactant valio (r)
No it should be less than 1.
at t = 0 No = NA + NB = NB(NA+1) NB(1+r) inital total ful group available for reaction has two ful arm a attention
inital total fred group (2) = NB(1+r)
Quailable for reaction because each reactant
So at any 1: 11
So at any line it' but only one react with
Us Counter movemen.
no. of unreacted Agroup fron (RA) = NA - AN - A LONG
B (RA) PINA => rNB(I-P)
NB-pNA extent of reaction
= NB(1-rb) Win
So at any line't' No. of unresold Agroup Afron(RA) = NA - PNA => rNB(I-P) RB= NB(I-rp) Hence total fral group available at t'
$Seneral Garothers eg: \frac{N_B(1-p) + N_B(1-rp)}{2} = \frac{N_B(1+r-2rp)}{2}$
General Carothus eg: $ \frac{N_{0}(1-p) + N_{0}(1-rp)}{2} = \frac{N_{0}(1+r-2rp)}{2} $ $ \frac{N_{0}(1+r-2rp)}{2} = \frac{N_{0}(1+r-2rp)}{2} $ $ \frac{N_{0}(1+r-2rp)}{2} = \frac{1+r}{1+r-2rp} $ $ \frac{N_{0}(1+r-2rp)}{2} = \frac{1+r}{1+r-2rp} $ $ \frac{N_{0}(1+r-2rp)}{2} = \frac{1+r}{1+r-2rp} $
Na(Hm)/2
$\frac{2n}{N} = \frac{1+n}{N}$
$\chi_n = \frac{N_B(Hr)/2}{N_B(1+r-2rp)/2} = \frac{1+r}{1+r-2rp}$
4 p=1 ⇒ [xn= 1+r] Hence xn Can be related with p and r based on the Commonwer taken - it may be Classical
Hence and 1+1-24 1-4
Hence 'In Can be related with p and n qual reactivity Case 'A'
based on the Comonomer taken - it may be Calculated
To impurity: Consider a case where RD: Do in Draw in presence
Hence x_n Can be related with p and r based on the Commonwer taken — it may be Calculated even in presence of impurity: Consider a case where RA is present as impurity in Assignment: Please relate x_n, p, r for $(RA_2 + RB_2)$ mornowner System
- relate xn, p, r for (RA) 100 102 moment System
(12TKB2+KA) Lyslew

Scanned with CamScanner

C	more of monomer in	Perbability of m decules hair & mer in Chain	
Contd	Z=1 Mo	(1-b)	
	x=2 2M.	p(1-b)	
L.1 P41	x=3 BM.	p²(1-b)	
[74]	ż-i imo	pi-(1-p)	
	x=n nmo		
We know fox = (1-p)pid	x=i IMo Z	(-+) pi-1	
$\bar{M}_{n} = 3$	Z zi Mi Zim	(1-p) pi-1	
$= \vec{m}_{a}$	Zipid- Zipi	Eipid=1 (1-p)2	
Assignment: Solwe Comp	oldly >		
$\frac{M_n = \overline{M_n}}{1 - 1}$	• M _u	$\Delta = M_0 \frac{(1+\beta)}{(1-\beta)}$	
weight average degree of $(X\omega) = \frac{(1+\beta)}{(1-\beta)}$			
		= 1+4	
	at	p >> 1.	
		1	
	Ma	= 2 (PDI -2)	
		= 2 (PDI - 2) for steep grow in folymerization	
		. 0	

Assignment based on lecture L:

- 1. Terephthalic acid is reacted with Ethylene glycol at Equal molar Concentration of 2 molflit. At what time from the Start of Polymerization have reached to 95% Conversion of Terephthalic acid. Consider the poly is of Solf-Calabysed in nature with rate Constant & = 1.75 × 10² lit/mi. Sec. Also Calculate the molecular weight of PET as well.
- 2. Calculate the molecular weight of polybutylene isophthalale prepared from Imole 1,4 bulone diol and 0.99 mole isophthalic acid when the polymerization reaction is terminated at 99.8%. What would be the maximum molecular weight if the reaction is not terminated at 99.8%.

Note: Please Subnit ALI by Monday 6,2020 (12 Noon) by email.