Primo Esonero di "Reti Logiche e Calcolatori" del 20/4/2016 – Traccia A – Tempo: 2 ore

ESERCIZIO: Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo $101\beta_2\beta_1\beta_0\alpha_1\alpha_0$. I bit rappresentano un numero binario $\mathbf{B}=\beta_2\beta_1\beta_0$ a tre bit in complemento a 2, mentre i bit rappresentano un numero binario $\mathbf{A}=\alpha_1\alpha_0$ a due bit in complemento a 2. <u>Al ricevimento dell'ultimo bit della sequenza</u> (ossia α_0), la rete restituisce 1 se almeno un numero tra \mathbf{A} e \mathbf{B} è negativo pari. Si assuma che 0 sia un numero positivo pari. Si ricorda che un numero binario in complemento a 2 è negativo se il bit più significativo vale 1 ed è pari se il bit meno significativo vale 0. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
X:	0	1	1	0	0	1	<u>0</u>	1	0	1	0	1	0	0	1	<u>0</u>	1	1	0	1	0	0	0	1	1	0	1	1	0	0	0	1	0	
Z:	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	<u>0</u>	0	0	0	0	0	0	0	0	0	1	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=5, infatti in tale istante di tempo la rete riceve la sequenza di start "101", negli istanti da 8 a 12 riceve $B=010\ (+2)$ e $A=10\ (-2)$. Avendo ricevuto almeno un numero negativo pari, restituisce 1 nell'istante t=12. – La rete riceve la seconda sequenza valida a partire dall'istante t=14, infatti in tale istante di tempo la rete riceve la sequenza di start "101", negli istanti da 17 a 21 riceve $B=101\ (-3)$ e $A=00\ (0)$. Non avendo ricevuto alcun numero negativo pari, restituisce 0 nell'istante t=21. – Infine, la rete riceve la terza sequenza valida a partire dall'istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "101", negli istanti da 27 a 31 riceve $t=100\ (-4)$ e $t=100\ ($

Primo Esonero di "Reti Logiche e Calcolatori" del 20/4/2016 – Traccia B – Tempo: 2 ore

ESERCIZIO: Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo $001\beta_2\beta_1\beta_0\alpha_1\alpha_0$. I bit rappresentano un numero binario $B=\beta_2\beta_1\beta_0$ a tre bit in complemento a 2, mentre i bit rappresentano un numero binario $A=\alpha_1\alpha_0$ a due bit in complemento a 2. Al ricevimento dell'ultimo bit della sequenza (ossia α_0), la rete restituisce 1 se almeno un numero tra $A=\alpha_1\alpha_0$ e $B=\alpha_1\alpha_0$ è positivo dispari. Si assuma che 0 sia un numero positivo pari. Si ricorda che un numero binario in complemento a 2 è positivo se il bit più significativo vale 0 ed è dispari se il bit meno significativo vale 1. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
X:	0	1	1	0	0	0	<u>0</u>	1	1	1	0	0	1	0	<u>0</u>	<u>0</u>	1	1	0	1	0	0	0	1	<u>0</u>	0	1	0	1	1	1	1	0	
Z:	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=5, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 8 a 12 riceve B=110 (-2) e A=01 (+1). Avendo ricevuto almeno un numero positivo dispari, restituisce 1 nell'istante t=12. – La rete riceve la seconda sequenza valida a partire dall'istante t=14, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 17 a 21 riceve B=101 (-3) e A=00 (0). Non avendo ricevuto alcun numero positivo dispari, restituisce 0 nell'istante t=21. – Infine, la rete riceve la terza sequenza valida a partire dall'istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "001", negli istanti da 27 a 31 riceve

Primo Esonero di "Reti Logiche e Calcolatori" del 20/4/2016 – Traccia C – Tempo: 2 ore

ESERCIZIO: Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo $010\beta_2\beta_1\beta_0\alpha_1\alpha_0$. I bit rappresentano un numero binario $\mathbf{B}=\beta_2\beta_1\beta_0$ a tre bit in complemento a 2, mentre i bit rappresentano un numero binario $\mathbf{A}=\alpha_1\alpha_0$ a due bit in complemento a 2. Al ricevimento dell'ultimo bit della sequenza (ossia α_0), la rete restituisce 1 se almeno un numero tra \mathbf{A} e \mathbf{B} è negativo dispari. Si assuma che 0 sia un numero positivo pari. Si ricorda che un numero binario in complemento a 2 è negativo se il bit più significativo vale 1 ed è dispari se il bit meno significativo vale 1. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
X:	0	1	1	0	0	<u>0</u>	1	0	0	1	1	1	1	0	<u>0</u>	1	0	1	0	0	0	1	1	1	<u>0</u>	1	<u>0</u>	1	0	1	0	0	0	
Z:	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=5, infatti in tale istante di tempo la rete riceve la sequenza di start "010", negli istanti da 8 a 12 riceve $B=011\ (+3)$ e $A=11\ (-1)$. Avendo ricevuto almeno un numero negativo dispari, restituisce 1 nell'istante t=12. – La rete riceve la seconda sequenza valida a partire dall'istante t=14, infatti in tale istante di tempo la rete riceve la sequenza di start "010", negli istanti da 17 a 21 riceve $B=100\ (-4)$ e $A=01\ (+1)$. Non avendo ricevuto alcun numero negativo dispari, restituisce 0 nell'istante t=21. – Infine, la rete riceve la terza sequenza valida a partire dall'istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "010", negli istanti da 27 a 31 riceve $B=101\ (-3)$ e $A=00\ (0)$. Avendo ricevuto almeno un numero negativo dispari, restituisce 1 nell'istante t=31.

Primo Esonero di "Reti Logiche e Calcolatori" del 20/4/2016 – Traccia D – Tempo: 2 ore

ESERCIZIO: Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo $110\beta_2\beta_1\beta_0\alpha_1\alpha_0$. I bit rappresentano un numero binario $B=\beta_2\beta_1\beta_0$ a tre bit in complemento a 2, mentre i bit rappresentano un numero binario $A=\alpha_1\alpha_0$ a due bit in complemento a 2. Al ricevimento dell'ultimo bit della sequenza (ossia α_0), la rete restituisce 1 se almeno un numero tra $A=\alpha_1\alpha_0$ e $B=\alpha_1\alpha_0$ è positivo pari. Si assuma che 0 sia un numero positivo pari. Si ricorda che un numero binario in complemento a 2 è positivo se il bit più significativo vale 0 ed è pari se il bit meno significativo vale 0. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
X:	0	1	0	1	1	1	1	0	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	1	1	1	<u>0</u>	0	1	0	1	0	0	
Z:	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=5, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 8 a 12 riceve B=111 (-1) e A=00 (0). Avendo ricevuto almeno un numero positivo pari, restituisce 1 nell'istante t=12. – La rete riceve la seconda sequenza valida a partire dall'istante t=14, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 17 a 21 riceve B=100 (-4) e A=01 (+1). Non avendo ricevuto alcun numero positivo pari, restituisce 0 nell'istante t=21. – Infine, la rete riceve la terza sequenza valida a partire dall'istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istanti da 27 a 31 riceve t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istante t=24, infatti in tale istante di tempo la rete riceve la sequenza di start "110", negli istante t=24, infatti in tale istante di tempo la rete riceve la reteriore dell'istante t=24, infatti in tale istante riceve la reteriore dell'istante t=24, infatti in tale istante riceve la reteriore dell'istante t=24, infatti in tale istante riceve la reteriore dell'is

