'Conway's Game'

* TOTLIFE

Sebastian Pucher
Adam Gohain

Origins of GoL

Predates Computers

1940 mathematical concept John Von Neumann / Stanislaw Ulam Idea of Life (what does it mean)!? Complex Model

∩? John Conway

Simplified the model down, Published his verison in *Scientific America*: 1970 50 dollar to whoever could find a boundless starting configuration

\bigcap Z Dude.... What's the Big Deal?

Popularity in the game exploded
Pattern reachability / complex circuitry

$\bigcap \angle$ Following Topics

How to "Play"
Pattern Reachability
Turing Completeness /
limits of what's possible

How to Play / Example

What Game? Is this even a Game?

∩1 "0 player game"

Infinite 2 dimensional grid Automata rules:

- Birth
- Death
- Persistence

∩ ? Different "Life-Forms"

Still lifes Oscillators Spaceships

∩7 Example

Visual game Ratatui

Pattern Reachability (on a Finite Grid)

1 Encoding GoL (4 - tuple)

d: dimensions

K / Sigma: finite alphabet of states {0,1}

W: width of neighborhood (3)

P: local mapping rule

C: Map from all cells in grid C to states in k Known as the configuration

77 Global rule

Updates all local configurations simultaneously

 \bigcap Orbit definition

$$Orbit(X) = \{ \rho^t(X) \mid t \ge 0 \}$$

$$GoL = \langle d, k, w, p \rangle$$

 $p:\Sigma^N o\Sigma$

$$N = [-r, r]^d \subseteq \mathbb{Z}^d,$$

$$X:C o \Sigma$$

$$\rho(X)(c) = p(X_c)$$

Pattern Reachability Cont.

1 Formal Decision Problem: (PREP)

Does there exist a time $t \ge 0$ such that the configuration $P^{\Lambda}t(X)$ contains the given target pattern X_n ?

○ Certificate: 2 - Tuple

t: nondeterministically guessed generation / computanal steps needed X_n: Target pattern configuration

$$Z = < t, X_0 >$$

∩ Computation Time

Total compute time for t steps is: O(t * n) = O(n * t)

For each cell $c \in C_0$ check if $\rho^t(X)(c) = X_0(c)$.

Pattern Reachability Cont.

∩1 Oscillators

$$\mathbf{PREP}(\langle t, X_{0,p=0} \rangle) \wedge \mathbf{PREP}(\langle t+1, X_{0,p=1} \rangle) \wedge \cdots \wedge \mathbf{PREP}(\langle t+n, X_{0,p=p_n} \rangle)$$

? Spaceships

$$\mathbf{PREP}(\langle t, X_{0,p=0,v=(1,-1)} \rangle) \wedge \mathbf{PREP}(\langle t+1, X_{0,p=1,v=(1,1)} \rangle) \wedge \cdots \wedge \mathbf{PREP}(\langle t+n, X_{0,p=n,v=(1,\pm 1)} \rangle)$$

More Constructions

 \bigcap Gliders

Spaceships that self-translate vertically and horizontally by one cell over n generations, where n is called the period

 \bigcap Guns

An **oscillator** that **periodically** emits **spaceships**

ि दे Gosper's Glider Gun

First discovered by Bill Gosper in 1970 A gun that emits gliders in one of 4 directions (NW, NE, SW, SE)

Logical Gates: NOT

Logical Gates: AND

Logical Gates: OR

Examples

GoL is Turing Complete!

