

**FCC ID: UF9IPS149** Date of issue: 2007-01-02



# Test Report acc. to the relevant standard 47 CFR Part 15 C – Intentional Radiators Measurement Procedure: ANSI C63.4 - 1992 relating to G. Lufft Mess- und Regeltechnik GmbH 2.4 GHz-Radar-Sensor IPS-149

Measurement of Radio- Noise Emissions from Low- Voltage Electrical and Electronic Equipment Technical characteristics and test methods for radio equipment in the frequency range 9 kHz to 40 GHz

m. dudde hochfrequenz-technik Rottland 5a D-51429 Bergisch Gladbach

 Tel.: +49 2207-9689-0
 Fax: +49 2207 9689-20

 e-mail: manfred.dudde@t-online.de
 http://www.dudde.com

Test report no. 07003839

**EUT: 2,4 GHz Radar Sensor IPS-149** 



FCC ID: UF9IPS149 Date of issue: 2007-01-02

| Manufacturer's details      |                                         |
|-----------------------------|-----------------------------------------|
| Manufacturer                | G. Lufft Mess- und Regeltechnik GmbH    |
| Manufacturer's grantee code | UF9                                     |
| Manufacturer's address      | G. Lufft Mess- und Regeltechnik GmbH    |
|                             | Gutenbergstr. 20                        |
|                             | D-70736 Fellbach                        |
|                             | Germany                                 |
|                             | Phone: +49 (0) 711 51822 0              |
|                             | Fax: +49 (0) 711 51822 41               |
|                             | 47 CFR Part 15C - Intentional Radiators |
| Relevant standard used      | ANSI C63.4-1992                         |
|                             | G. Lufft Mess- und Regeltechnik GmbH    |

| Test Report prepared by |                                           |  |
|-------------------------|-------------------------------------------|--|
| Technical engineer      | Ralf Trepper                              |  |
|                         | m.dudde hochfrequenz-technik (laboratory) |  |
|                         | Rottland 5a                               |  |
|                         | 51429 Bergisch Gladbach                   |  |
|                         | Germany                                   |  |
|                         | Phone: +49 2207 96890                     |  |
|                         | Fax: +49 2207 968920                      |  |
|                         | E-mail: m.duddelabor@dudde.com            |  |

| Equipment category | Field disturbance sensor                                             |  |
|--------------------|----------------------------------------------------------------------|--|
| Trade name         | Lufft                                                                |  |
| Type designation   | 2.4 GHz Radar Sensor IPS-149                                         |  |
| Serial no.         |                                                                      |  |
| Variants           | IRS-20 / IRS-21                                                      |  |
|                    | (Variants in which the 2.4GHz Radar Sensor IPS-149 will be built in) |  |
|                    |                                                                      |  |
|                    |                                                                      |  |
|                    |                                                                      |  |
|                    |                                                                      |  |
|                    |                                                                      |  |
|                    |                                                                      |  |
|                    |                                                                      |  |

Fax: +49 2207 9689-20

http://www.dudde.com

e-mail: manfred.dudde@t-online.de

Page 3 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



FCC ID: UF9IPS149 Date of issue: 2007-01-02

## 0 Test result

| CFR<br>Section      | Report<br>Chapter | 1 -                                 |      | 'est resu<br>OK | lt              |
|---------------------|-------------------|-------------------------------------|------|-----------------|-----------------|
| 15.203              | 10.1              | Antenna requirement                 | pass | <del>fail</del> | n.a.            |
| 15.249(a)           | 10.2              | Field strength limits (fundamental) | pass | <del>fail</del> | <del>n.a.</del> |
| 15.249(d)<br>15.209 | 10.2              | Radiated spurious emissions pass    |      | <del>fail</del> | <del>n.a.</del> |
| 15.215(c)           | 10.3              | 20 dB bandwidth                     | pass | <del>fail</del> | n.a.            |

|                        | -   |               |
|------------------------|-----|---------------|
| Test requirements kept | yes | <del>no</del> |

Signature

(Technical engineer)

Ralf Trepper

Signature (Manager)

Manfried Dudde

Man had Duckel



Date of issue: 2007-01-02

## FCC ID: UF9IPS149

| List of contents                                                 | Page |
|------------------------------------------------------------------|------|
| 0 Test result                                                    | 3    |
| 1 Test laboratory                                                | 5    |
| 2 Introduction                                                   | 5    |
| 3 Product                                                        | 6    |
| 4 Test schedule                                                  | 6    |
| 5 Product and measurement documentation                          | 7    |
| 6 Observations and comments                                      | 7    |
| 7 Summary                                                        | 7    |
| 8 Conclusions                                                    | 8    |
| 9 Operation description                                          | 9    |
| 10.1 Antenna requirement                                         | 10   |
| 10.1.1 Regulation                                                | 10   |
| 10.1.2 Result                                                    | 10   |
| 10.2 Radiated emissions                                          | 11   |
| 10.2.1 Regulation                                                | 11   |
| 10.2.2 Test equipment                                            | 13   |
| 10.2.2 Test procedures                                           |      |
| 10.2.3 Calculation of field strength Section 15.209 below 30 MHz | 14   |
| 10.2.3 Calculation of field strength Section 15.209 above 30 MHz | 14   |
| 10.2.4 Calculation of average correction factor.                 |      |
| 10.2.5 Calculation of the field strength Section 15.249          | 15   |
| 10.2.6 Result                                                    | 16   |
| 10.3.1 Regulation                                                |      |
| 10.3.2 Calculation of the 20 dB bandwidth limit                  | 20   |
| 10.3.3 Test equipment                                            | 20   |
| 10.3.4 Test procedure                                            | 20   |
| 10.3.5 Test result                                               | 21   |
| 11 Additional information to this test report                    | 22   |

e-mail: manfred.dudde@t-online.de

Page 5 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

# 1 Test laboratory

Company name : m.dudde hochfrequenz-technik

Street : Rottland 5a

City : 51429 Bergisch Gladbach

Country : Germany

Laboratory : FCC Registration Number: 699717

This site has been fully described in a report submitted to the FCC, and renewed with letter dated July 12, 2005, Registration Number 699717.

Phone : +49-2207-9689-0 Fax : +49-2207-9689-20

E-Mail : manfred.dudde@t-online.de Web : http://www.dudde.com

## 2 Introduction

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz - technik.

This report contains the result of tests performed by m. dudde hochfrequenz - technik for the purpose of a type approval. The order for carrying out these tests has been placed by:

## **Manufacturer**

Company name : G. Lufft Mess- und Regeltechnik GmbH

Address : Gutenbergstr. 20

Postcode : 70736
City/town : Fellbach
Country : Germany

Telephone : +49 (0) 711 51822 67 Fax : +49 (0) 711 51822 41

Date of order : 2006-06-20

References : Mr. Axel Schmitz-Hübsch

E-mail : Axel.Schmitz-Huebsch@lufft.de

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 <a href="http://www.dudde.com">http://www.dudde.com</a>



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### 3 Product

Samples of the following apparatus were submitted for testing:

Type of equipment : field disturbance sensor

Trademark : lufft

Type designation : 2.4 GHz Radar Sensor IPS-149 Hardware version : 2.4 GHz Radar Sensor IPS-149

Serial number : --Software release : ---

Power used : 5.0 V DC

Frequency range : 2.4000 GHz ... 2.4835 GHz
Frequency used : 2.435 GHz to 2.475 GHz
Generated or used frequencies : 2.435 GHz to 2.475 GHz

FCC ID : UF9IPS149

#### 4 Test schedule

The tests were carried out in accordance with the specifications detailed in chapter 7 "Summary" of this report at:

#### - m. dudde hochfrequenz - technik, D-51429 Bergisch Gladbach

The test sample was received on:

- 2006-06-20

The tests were carried out in the following period of time:

- 2006-12-13 - 2006-12-14

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### 5 Product and measurement documentation

For issuing this report the following product documentation was used and the following annexes were created:

| Description                                            | Date       | <b>Identifications</b> |
|--------------------------------------------------------|------------|------------------------|
| External photographs of the Equipment Under Test (EUT) | 2006-10-20 | Annex no. 1            |
| Internal photographs of the Equipment Under Test (EUT) | 2006-10-20 | Annex no. 2            |
| Occupied bandwidth plot                                | 2006-10-20 | Annex no. 3            |
| FCC ID label sample                                    | 2006-10-20 | Annex no. 4            |
| User Manual                                            | 2006-10-20 | Annex no. 5            |
| Test setup photos                                      | 2006-10-20 | Annex no. 6            |
| Block diagram                                          | 2006-10-20 | Annex no. 7            |
| Schematics                                             | 2006-10-20 | Annex no. 8            |
| Technical description                                  | 2006-10-20 | Annex no. 9            |
|                                                        |            |                        |

The above mentioned documentation will be filed at m. dudde hochfrequenz - technik for a period of 10 years following the issue of this report.

#### 6 Observations and comments

# 7 Summary

The product is intended for the use in the following areas of application:

Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the frequency range of 9 kHz to 40 GHz

The samples were tested according to the following specification:

47 CFR Part 15 – Intentional Radiators, ANSI C63.4 - 1992

 Tel.: +49 2207-9689-0
 Fax: +49 2207 9689-20

 e-mail: manfred.dudde@t-online.de
 http://www.dudde.com

Page 8 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### **8 Conclusions**

Samples of the apparatus were found to **CONFORM WITH** the specifications stated in chapter 7 "Summary" of this report.

In the opinion of m. dudde hochfrequenz - technik, the samples satisfied all applicable requirements relating to the network interface types specified in chapter 7 "Summary".

The results of the type tests as stated in this report are exclusively applicable to the product item as identified in this report. m. dudde hochfrequenz - technik does not accept any responsibility for the results stated in this report, with respect to the properties of product items not involved in these tests.

This report consists of a main module, modules with test results and annexes listed in chapter 5:

"Product documentation". All pages have been numbered consecutively and bear the m. dudde hochfrequenz - technik logo, the report number and sub numbers.

The total number of pages in this report is 23.

#### **Tester:**

Date : 2007-01-02

Name : Ralf Trepper

Signature : Alf Triple

#### **Technical responsibility for area of testing:**

Date : 2007-01-02

Name : Manfried Dudde

Signature : Man but Quelch

e-mail: manfred.dudde@t-online.de

Vers. no. 1.06

Fax: +49 2207 9689-20 <a href="http://www.dudde.com">http://www.dudde.com</a>

Page 9 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

# 9 Operation description

9.1 EUT details

see User Manual in Annex No. 5

9.2 EUT configuration

Operation: : As soon as the equipment is powered up, TX start operating

Purpose of operation : see User Manual in Annex No. 5

9.3 EUT measurement description

As soon as the EUT connected to the power supply it starts, after a short delay, to operate in continuous mode. The maximum radiation will be achieved, if the EUT is adjusted as described by the manufacturer in the manual. The inclination of the test sample will be brought into a prescribed angle to the aerial antenna.

Tel.: +49 2207-9689-0 Fax: +49 2207 9689-20 e-mail: manfred.dudde@t-online.de http://www.dudde.com



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

# 10.1 Antenna requirement

#### 10.1.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31 (d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

#### **10.1.2 Result**

| The equipment meets the requirements |                |    | ne       | <del>n.a.</del> |
|--------------------------------------|----------------|----|----------|-----------------|
|                                      |                |    |          |                 |
| Further test results are attached    | <del>yes</del> | no | page no: |                 |

n.a x See page no. 22



FCC ID: UF9IPS149 Date of issue: 2007-01-02

#### 10.2 Radiated emissions

#### 10.2.1 Regulation

Test requirement: FCC CFR47, Part 15C Section 15.249, Test procedure: ANSI C63.4:1992

| Fundamental frequency | Field strength of fundamental | Field strength of spurious emissions |
|-----------------------|-------------------------------|--------------------------------------|
| (MHz)                 | $(\mu V/m)$                   | $(\mu V/m)$                          |
| 902-928               | 50                            | 500                                  |
| 2400-2483.5           | 50                            | 500                                  |
| 5725-5875             | 50                            | 500                                  |
| 24.0-24.25 GHz        | 250                           | 2500                                 |

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

Section 15.33 Frequency range of radiated measurements: (a) Unless otherwise noted in the specific rule section under which the equipment operates for an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Tel.: +49 2207-9689-0 Fax: +49 2207 9689-20 e-mail: manfred.dudde@t-online.de http://www.dudde.com



FCC ID: UF9IPS149 Date of issue: 2007-01-02

Test requirement: FCC CFR47, Part 15C Section 15.209, Test procedure: ANSI C63.4:1992

Section 15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field strength<br>(µV/m) | Measurement distance (μV/m) |
|--------------------|--------------------------|-----------------------------|
| 0.009-0.490        | 2400/F(kHz)              | 300                         |
| 0.490-1.705        | 24000/F(kHz)             | 30                          |
| 1.705-30.0         | 30                       | 30                          |
| 30-88              | 100                      | 3                           |
| 88-216             | 150                      | 3                           |
| 216-960            | 200                      | 3                           |
| Above 960          | 500                      | 3                           |

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

Test report no. 07003839

Page 13 of 23 **EUT: 2,4 GHz Radar Sensor IPS-149** 

Date of issue: 2007-01-02 FCC ID: UF9IPS149

#### 10.2.2 Test equipment

| Type                             | Manufacturer/                        | Serial no. | Last calibration | Next calibration |
|----------------------------------|--------------------------------------|------------|------------------|------------------|
|                                  | Model no.                            |            |                  |                  |
| Receiver                         | Hewlett Packard<br>Spectrum Analyzer | 3528U00990 | 2006/05          | 2008/05          |
| (9 kHz –26.5 GHz)                | 8593E (171)                          |            |                  |                  |
| Pre-amplifier (100kHz - 1.3GHz)  | Hewlett Packard<br>8447 E (166a)     | 1726A00705 | 2006/03          | 2008/03          |
| Loop antenna<br>(0.009 - 30 MHz) | Schwarzbeck                          |            |                  |                  |
| Bilog antenna<br>(30 - 1000 MHz) | CHASE<br>CBL611A (167)               | 1517       | 2003/09          | 2009/09          |
| Horn antenna<br>(0,86-8,5 GHz)   | Schwarzbeck<br>BBHA 9120 A (284)     | 236        | 1998/01          | 2008/01          |

#### **10.2.2 Test procedures**

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3 m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 1992 Section 8 "Radiated Emissions Testing"

| Radiated emissions test characteristics    |                                            |
|--------------------------------------------|--------------------------------------------|
| Frequency range                            | 0.009 MHz - 10,000 MHz                     |
| Test distance                              | 3 m*(for frequencies above 30 MHz)         |
| Test instrumentation resolution bandwidth  | 9 kHz (0.009 – 30MHz)                      |
|                                            | 120 kHz (30 MHz - 1,000 MHz)               |
|                                            | 1 MHz (1000 MHz - 10,000 MHz)              |
| Receive antenna scan height                | 1 m (0.009 MHz - 30 MHz)                   |
|                                            | 1 m - 4 m (30 MHz - 10,000 MHz)            |
| Receive antenna polarization / orientation | $0 - 360^{\circ}$                          |
|                                            | Vertical / horizontal (30 MHz - 1,000 MHz) |

<sup>\*</sup> According to Section 15.31 (f)(1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).



FCC ID: UF9IPS149 Date of issue: 2007-01-02

#### 10.2.3 Calculation of field strength Section 15.209 below 30 MHz

The receiver reading gives not directly the field strength result in (dBµV/m). The antenna factors of the loop antenna and cable losses must be added to find the correct result.

For frequencies below 30 MHz and for a test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40 dB/decade (inverse linear distance for field strength measurements).

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Loop antenna factor + cable loss

 $FS = 40.7 - 40 = 0.7 [dB\mu V/m]$ 

Level in  $\mu$ V/m Common Antilogarithm (0.7/20) = 1.1

#### 10.2.3 Calculation of field strength Section 15.209 above 30 MHz

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

#### 10.2.4 Calculation of average correction factor

The average correction factor is computed by analyzing the "worst case" on time in any 100msec time period and using the formula: Corrections Factor  $+ 20*\log$  (worst case on time/100msec) Analysis of the remote transmitter worst case on time in any 100msec time period is an on time of 50msec, therefore the correction factor is  $20*\log(50/100) = -6 \text{ dB}$ . The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de

http://www.dudde.com

Vers. no. 1.06

Page 15 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### 10.2.5 Calculation of the field strength Section 15.249

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

#### For example:

The receiver reading is  $32.7 \text{ dB}\mu\text{V}$ . The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of  $35.91 \text{dB}\mu\text{V/m}$ .

The  $35.91 dB\mu V/m$  value can be mathematically converted to its corresponding level in  $\mu V/m$ .

Level in  $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$ 

For a test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1), the field strength is calculated by adding additionally an extrapolation factor of 20dB/decade (inverse linear distance for field strength measurements).

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### 10.2.6 Result

| f<br>(GHz) | Bandwidth<br>(kHz)  | Noted<br>receiver<br>level | Test<br>distance | Correction factor  | Distance<br>extrapol.<br>factor | AV<br>Correction<br>factor | Level<br>corrected | Limit  | Margin | Polaris.<br>EUT<br>/ | Anten<br>heigh |
|------------|---------------------|----------------------------|------------------|--------------------|---------------------------------|----------------------------|--------------------|--------|--------|----------------------|----------------|
|            | Type<br>of detector | dBμV                       | m                | dB                 | dB                              | dB                         | dBμV/m             | dBμV/m | dB     | antenna              | cm             |
| 2.4350     | 1000, PK            | 74.4                       | 3                | 11.1* <sup>6</sup> | 0                               | 0                          | 85.5               | 94     | 8.5    | V,0° / V             | 165            |
| 4.8700     | 1000, PK            | 34.0                       | 3                | 9.9* <sup>6</sup>  | 0                               | 0                          | 43.9               | 54     | 10.1   | V,0° / V             | 14             |
| 7.3050     | 1000, AV            | < 14                       | 3                | 15.9* <sup>6</sup> | 0                               | 0                          | 29.9               | 54     | 24.1   | H,V/H,V              | 100-4          |
| 9.7400     | 1000, AV            | < 14                       | 3                | 17.6* <sup>6</sup> | 0                               | 0                          | 31.6               | 54     | 22.4   | H,V/H,V              | 100-4          |
| 12.1750    | 1000, AV            | < 14                       | 3                | 21.2*6             | 0                               | 0                          | 35.2               | 54     | 18.8   | H,V/H,V              | 100-4          |
| 14.6100    | 1000, AV            | < 14                       | 3                | 22.6*6             | 0                               | 0                          | 36.6               | 54     | 17.4   | H,V/H,V              | 100-4          |
| 17.0450    | 1000, AV            | < 18                       | 1                | 23.2*6             | -19.1                           | 0                          | 22.1               | 54     | 31.9   | H,V/H,V              | 100-4          |
| 19.4800    | 1000, AV            | < 18                       | 1                | 43.5               | -19.1                           | 0                          | 42.4               | 54     | 11.6   | H,V/H,V              | 100-4          |
| 21.9150    | 1000, AV            | < 18                       | 1                | 43.4               | -19.1                           | 0                          | 42.3               | 54     | 11.7   | H,V/H,V              | 100-4          |
| 24.3500    | 1000, AV            | < 18                       | 1                | 44.9               | -19.1                           | 0                          | 43.8               | 54     | 10.2   | H,V/H,V              | 100-4          |
| 26.7850    | 1000, AV            | < 18                       | 1                | 45.7               | -19.1                           | 0                          | 44.6               | 54     | 9.4    | H,V/H,V              | 100-4          |

#### Bandwidth = the measuring receiver bandwidth

Remark: \*\frac{1}{2} noise floor noise level of the measuring instrument \le 3.5dB\mu V @ 3m distance (30 - 1,000 MHz)

Remark: \* $^2$  noise floor noise level of the measuring instrument  $\leq 4.5 \text{dB}\mu\text{V}$  @ 3m distance (1,000 – 2,000 MHz)

Remark: \*3 noise floor noise level of the measuring instrument  $\leq 10 \text{dB} \,\mu\text{V}$  @ 3m distance (2,000 – 5,500 MHz)

Remark: \* $^4$  noise floor noise level of the measuring instrument  $\leq 14 dB\mu V$  @ 3m distance (5,500 – 14,500 MHz) Remark: \* $^5$  for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: \*6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

| The equipment meets the requirements |                | yes | <del>no</del> | <del>n.a.</del> |
|--------------------------------------|----------------|-----|---------------|-----------------|
|                                      |                |     |               |                 |
| Further test results are attached    | <del>yes</del> | no  | page no:      |                 |

n.a x See page no. 22

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de Vers. no. 1.06



FCC ID: UF9IPS149 Date of issue: 2007-01-02

| f<br>(GHz) | Bandwidth (kHz) Type | Noted receiver level | Test<br>distance | Correction factor  | Distance extrapol. | AV<br>Correction<br>factor | Level corrected | Limit  | Margin | Polaris.<br>EUT | Antenna<br>height |
|------------|----------------------|----------------------|------------------|--------------------|--------------------|----------------------------|-----------------|--------|--------|-----------------|-------------------|
|            | of detector          | dBμV                 | m                | dB                 | dB                 | dB                         | dBμV/m          | dBμV/m | dB     | antenna         | cm                |
| 2.4650     | 1000, PK             | 73.4                 | 3                | 11.1*6             | 0                  | 0                          | 84.5            | 94     | 9.5    | V,0°/V          | 170               |
| 4.9300     | 1000, PK             | 36.6                 | 3                | 9.9* <sup>6</sup>  | 0                  | 0                          | 46.5            | 54     | 7.5    | V,0° / V        | 145               |
| 7.3950     | 1000, AV             | < 14                 | 3                | 15.9* <sup>6</sup> | 0                  | 0                          | 29.9            | 54     | 24.1   | H,V/H,V         | 100-400           |
| 9.8600     | 1000, AV             | < 14                 | 3                | 17.6* <sup>6</sup> | 0                  | 0                          | 31.6            | 54     | 22.4   | H,V/H,V         | 100-400           |
| 12.3250    | 1000, AV             | < 14                 | 3                | 21.2*6             | 0                  | 0                          | 35.2            | 54     | 18.8   | H,V/H,V         | 100-400           |
| 14.7900    | 1000, AV             | < 14                 | 3                | 22.6*6             | 0                  | 0                          | 36.6            | 54     | 17.4   | H,V/H,V         | 100-40            |
| 17.2550    | 1000, AV             | < 18                 | 1                | 23.2*6             | -19.1              | 0                          | 22.1            | 54     | 31.9   | H,V/H,V         | 100-40            |
| 19.7200    | 1000, AV             | < 18                 | 1                | 43.5               | -19.1              | 0                          | 42.4            | 54     | 11.6   | H,V/H,V         | 100-40            |
| 22.1850    | 1000, AV             | < 18                 | 1                | 43.4               | -19.1              | 0                          | 42.3            | 54     | 11.7   | H,V/H,V         | 100-40            |
| 24.6500    | 1000, AV             | < 18                 | 1                | 44.9               | -19.1              | 0                          | 43.8            | 54     | 10.2   | H,V/H,V         | 100-40            |
| 27.1150    | 1000, AV             | < 18                 | 1                | 45.7               | -19.1              | 0                          | 44.6            | 54     | 9.4    | H,V/H,V         | 100-40            |
|            |                      |                      |                  |                    |                    |                            |                 |        |        |                 |                   |

Bandwidth = the measuring receiver bandwidth

Remark: \*\(^1\) noise floor noise level of the measuring instrument  $\leq 3.5 dB\mu V$  @ 3m distance (30 - 1,000 MHz) Remark: \*\(^2\) noise floor noise level of the measuring instrument  $\leq 4.5 dB\mu V$  @ 3m distance (1,000 - 2,000 MHz)

Remark: \*3 noise floor noise level of the measuring instrument  $\leq 10 \text{dB}\mu\text{V}$  @ 3m distance (2,000 – 5,500 MHz) Remark: \*4 noise floor noise level of the measuring instrument  $\leq 14 dB\mu V$  @ 3m distance (5,500 – 14,500 MHz)

Remark: \*5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: \*6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

| The equipment meets the requirements |                | yes | <del>no</del> | <del>n.a.</del> |
|--------------------------------------|----------------|-----|---------------|-----------------|
|                                      |                |     |               |                 |
| Further test results are attached    | <del>yes</del> | no  | page no       | •               |

See page no. 22

e-mail: manfred.dudde@t-online.de

Vers. no. 1.06



Date of issue: 2007-01-02 FCC ID: UF9IPS149

| f<br>(MHz) | Bandwidth<br>(kHz)  | Noted receiver level | Test<br>distance | Correction factor | Distance extrapol. | Level corrected | Limit         | Margin | Polarisatio<br>EUT<br>/ |
|------------|---------------------|----------------------|------------------|-------------------|--------------------|-----------------|---------------|--------|-------------------------|
|            | Type<br>of detector | dΒμV                 | m                | dB                | factor dB          | dBμV/m          | dBμV/m        | dBμV/m | antenna<br>orientatio   |
| 0.1200     | PK/0.2kHz           | < 4.0                | 10               | 20.2              | -59.1              | -34.90          | Pk46.0- @ 300 | 80.90  | V, H/0-36               |
|            | AV/0.2kHz           | < 4.0                | 10               | 20.2              | -59.1              | -34.90          | AV26.0 @ 300  | 80.90  | V, H/0-36               |
| 0.5000     | AV/0.2kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV33.6 @ 30   | 28.5   | V, H/0-36               |
| 1.5000     | AV/0.2kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV24.1 @ 30   | 19.00  | V, H/0-36               |
| 3.0000     | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
| 5.0000     | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
| 8.0000     | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
| 10.0000    | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
| 20.0000    | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
| 30.0000    | AV/9.0kHz           | < 4.0                | 10               | 20.2              | -19.1              | 5.10            | AV29.5 @ 30   | 24.4   | V, H/0-36               |
|            |                     |                      |                  | No emission       | ons detected       |                 |               |        |                         |

Remark: \*1 Noise level of the measuring instrument  $\leq$  4.0dB $\mu$ V @ 10m distance (0.009 MHz –30 MHz) Remark: \* Peak Limit according to Section 15.35 (b).

| The equipment meets the requirements |                | ,  | yes | <del>no</del> | <del>n.a.</del> |
|--------------------------------------|----------------|----|-----|---------------|-----------------|
|                                      |                |    |     |               |                 |
| Further test results are attached    | <del>yes</del> | no | ŗ   | oage no:      |                 |

n.a x See page no. 22

Tel.: +49 2207-9689-0

Fax: +49 2207 9689-20 e-mail: manfred.dudde@t-online.de http://www.dudde.com



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

|            | TRANS               | SMITTEI        | R SPURIO         | OUS RADI                    | ATION A            | ABOVE 30                   | MHz (See        | ction 15.2 | 05, 15.209 | 9)                   |                   |
|------------|---------------------|----------------|------------------|-----------------------------|--------------------|----------------------------|-----------------|------------|------------|----------------------|-------------------|
| f<br>(MHz) | Bandwidth (kHz)     | Noted receiver | Test<br>distance | Correction factor           | Distance extrapol. | AV<br>Correction<br>factor | Level corrected | Limit      | Margin     | Polaris.<br>EUT<br>/ | Antenna<br>height |
|            | Type<br>of detector | level<br>dBµV  | m                | dB                          | factor<br>dB       | dB                         | dBμV/m          | dBμV/m     | dBμV/m     | antenna              | cm                |
| 30.0000    | 100, AV             | ≤3.5           | 3                | -2.60 <b>*</b> <sup>5</sup> | 0                  | 0                          | 0.90            | 40.00      | 39.10      | H,V/H,V              | 100-400           |
| 88.0000    | 100, AV             | ≤3.5           | 3                | -10.80* <sup>5</sup>        | 0                  | 0                          | -7.30           | 40.00      | 47.30      | H,V/H,V              | 100-400           |
| 216.0000   | 100, AV             | ≤ 3.5          | 3                | -10.30* <sup>5</sup>        | 0                  | 0                          | -6.80           | 43.50      | 50.30      | H,V/H,V              | 100-400           |
| 960.0000   | 100, AV             | ≤3.5           | 3                | 8.50* <sup>5</sup>          | 0                  | 0                          | 12.00           | 43.50      | 31.50      | H,V/H,V              | 100-400           |
| 1700.0000  | 1000, AV            | ≤ 4.5          | 3                | 3.80* <sup>6</sup>          | 0                  | 0                          | 8.30            | 54.00      | 45.70      | H,V/H,V              | 100-400           |
| 2250.0000  | 1000, AV            | ≤ 10           | 3                | 8.00 <b>*</b> <sup>6</sup>  | 0                  | 0                          | 18.00           | 54.00      | 36.00      | H,V/H,V              | 100-400           |
| 4000.0000  | 1000, AV            | ≤ 10           | 3                | 8.40* <sup>6</sup>          | 0                  | 0                          | 18.40           | 54.00      | 35.60      | H,V/H,V              | 100-400           |
| 5000.0000  | 1000, AV            | ≤ 10           | 3                | 9.10 <b>*</b> <sup>6</sup>  | 0                  | 0                          | 19.40           | 54.00      | 34.60      | H,V/H,V              | 100-400           |
| 7500.0000  | 1000, AV            | ≤ 14           | 3                | 12.9* <sup>6</sup> 0        | 0                  | 0                          | 26.90           | 54.00      | 27.10      | H,V/H,V              | 100-400           |
| 8300.0000  | 1000, AV            | ≤ 14           | 3                | 14.80* <sup>6</sup>         | 0                  | 0                          | 28.80           | 54.00      | 25.20      | H,V/H,V              | 100-400           |
| 9400.0000  | 1000, AV            | ≤ 14           | 3                | 16.00* <sup>6</sup>         | 0                  | 0                          | 30.00           | 54.00      | 24.00      | H,V/H,V              | 100-400           |
| 11000.0000 | 1000, AV            | ≤ 14           | 3                | 18.25* <sup>6</sup>         | 0                  | 0                          | 32.25           | 54.00      | 21.75      | H,V/H,V              | 100-400           |
|            |                     |                |                  |                             |                    |                            |                 |            |            |                      |                   |
| Measurer   | ment uncert         | tainty         |                  |                             |                    |                            | 4 dB            |            |            |                      |                   |

Bandwidth = the measuring receiver bandwidth

Remark: \*1 noise floor noise level of the measuring instrument  $\leq 3.5 \text{dB}\mu\text{V}$  @ 3m distance (30 – 1,000 MHz)

Remark: \*2 noise floor noise level of the measuring instrument  $\leq 4.5 dB\mu V$  @ 3m distance (1,000 – 2,000 MHz) Remark: \*3 noise floor noise level of the measuring instrument  $\leq 10 dB\mu V$  @ 3m distance (2,000 – 5,500 MHz)

Remark: \*\(^4\) noise floor noise level of the measuring instrument \(^5\) 10dB\(\mu\) \(\omega\) 3m distance (2,000 - 3,500 MHz)

Remark: \*\(^4\) noise floor noise level of the measuring instrument \(^5\) 14dB\(\mu\) \(\omega\) 3m distance (5,500 - 14,500 MHz)

Remark: \*5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: \*6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

| The equipment meets the requirements |                | yes | <del>110</del> | <del>n.a.</del> |
|--------------------------------------|----------------|-----|----------------|-----------------|
| Further test results are attached    | <del>ves</del> | no  | page no        | ··              |

n.a x See page no. 22



**FCC ID: UF9IPS149** Date of issue: 2007-01-02

#### 10.3 Bandwidth

#### 10.3.1 Regulation

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### 10.3.2 Calculation of the 20 dB bandwidth limit

The 20 dB bandwidth limit = 0.05 \* 2.4 GHz = 120 MHz

#### 10.3.3 Test equipment

| Type             | Manufacturer/     | Serial no. | Last calibration | Next calibration |
|------------------|-------------------|------------|------------------|------------------|
|                  | Model no.         |            |                  |                  |
| Receiver         | Hewlett Packard   | 3528U00990 | 2006/05          | 2008/05          |
| (30MHz - 1GHz)   | Spectrum Analyzer |            |                  |                  |
|                  | 8593 E            |            |                  |                  |
|                  | (171)             |            |                  |                  |
| Test fixture for | Dudde             |            |                  |                  |
| relative         |                   |            |                  |                  |
| measurement      |                   |            |                  |                  |
| Power supply     | Hewlett Packard   |            | 2006/05          | 2008/05          |
|                  | (DC Power Supply) |            |                  |                  |
|                  | 6034L             |            |                  |                  |
|                  | (226)             |            |                  |                  |

#### 10.3.4 Test procedure

ANSI C63.4-1992 Section 13.1.7 Occupied Bandwidth Measurements. The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce worst-case (i.e., the widest) bandwidth. In order to measure the modulated signal properly, a resolution bandwidth that is small compared to the bandwidth required by the procuring or regulatory agency shall be used on the measuring instrument. However, the 6 dB resolution bandwidth of the measuring instrument shall be set to a value greater than 5% of the bandwidth requirements.

D-51429 Bergisch Gladbach Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20 http://www.dudde.com

Test report no. 07003839 Page 21 of 23

EUT: 2,4 GHz Radar Sensor IPS-149



FCC ID: UF9IPS149 Date of issue: 2007-01-02

10.3.5 Test result

The measured 20 dB bandwidth is: ......180.0 KHz

| The equipment meets the requirements |     | yes           | <del>no</del> | <del>n.a.</del> |
|--------------------------------------|-----|---------------|---------------|-----------------|
|                                      |     |               |               |                 |
| Further test results are attached    | yes | <del>no</del> | Annex n       | io: 3           |

e-mail: manfred.dudde@t-online.de

Fax: +49 2207 9689-20

http://www.dudde.com

Page 22 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



FCC ID: UF9IPS149 Date of issue: 2007-01-02

# 11 Additional information to this test report

# Remarks

n.a. Not applicable, because the antenna is part of the PCB

n.a.<sup>2</sup> Not applicable, because the EUT is directly battery powered

Tel.: +49 2207-9689-0 e-mail: manfred.dudde@t-online.de Vers. no. 1.06

Fax: +49 2207 9689-20 http://www.dudde.com Page 23 of 23

Test report no. 07003839 EUT: **2,4 GHz Radar Sensor IPS-149** 



FCC ID: UF9IPS149 Date of issue: 2007-01-02

**End of test report** 

e-mail: manfred.dudde@t-online.de