Probability review III: Measuring dependence

Topics we'll cover

- 1 When are two random variables independent?
- 2 Qualitatively assessing dependence
- 3 Quantifying dependence: covariance and correlation

Independent random variables

Random variables X, Y are **independent** if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y).

Pick a card out of a standard deck. X = suit and Y = number.

Independent random variables

Random variables X, Y are **independent** if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y).

Flip a fair coin 10 times. X = # heads and Y = last toss.

Independent random variables

Random variables X, Y are **independent** if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y).

 $X,Y\in\{-1,0,1\}$, with these probabilities:

			Y	
		-1	0	1
	-1	0.4	0.16	0.24
X	0	0.05	0.02	0.03
	1	0.05	0.16 0.02 0.02	0.03

Dependence

Example: Pick a person at random, and take

H = height

W = weight

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w).$$

Not accurate: height and weight will be positively correlated.

Positive correlation

H, W are positively correlated

This also implies $\mathbb{E}[HW] > \mathbb{E}[H] \mathbb{E}[W]$.

Types of correlation

H, W positively correlated This also implies

$$\mathbb{E}[HW] > \mathbb{E}[H]\,\mathbb{E}[W]$$

$$X, Y$$
 negatively correlated $\mathbb{E}[XY] < \mathbb{E}[X] \mathbb{E}[Y]$

$$X, Y$$
 uncorrelated $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$

Pearson (1903): fathers and sons

Heights of fathers and their full grown sons

Correlation coefficient: pictures

r = 0.25

r = -0.75

Covariance and correlation

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

Correlation

$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

This is always in the range [-1, 1].

If X, Y independent then cov(X, Y) = 0. But the converse need not be true.

Covariance and correlation: example

Find cov(X, Y) and corr(X, Y)