# CS598 DLH Project, Summer 2023

### **Project Presentation by Mitch & Sathish**

{sbrama2, mm109}@illinois.edu

Group ID: 195 Paper ID: 175

#### Paper:

SurfCon: Synonym Discovery on Privacy-Aware Clinical Data,
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

Link to Paper: <a href="https://dl.acm.org/doi/pdf/10.1145/3292500.3330894">https://dl.acm.org/doi/pdf/10.1145/3292500.3330894</a>

## **Problem**

- Automatically discovering synonyms (e.g., "c vitamin",
   "vit c", "ascorbic acid") or misspelled variations (e.g.
   "viatmin c") can help find valuable information such as
   patient-clinical interactions and disease treatment
   outcomes.
- Documentation of medical terms in unstructured fields is error prone and often captured in shorthand
- Current taxonomies (e.g. UMLS) help to group medical concepts, but do not bridge the gap to this noisy documentation

### **Solution**

- Utilize co-occurrence data of medical terms in clinical notes to build a robust synonym generation model
- Consider visual similarity of terms and semantic similarity





# **Approach**

#### **SurfCon for Synonym Generation**

Build Surface Form and Global Context representation of medical terms using Character and word embeddings and co-frequency data from Clinical notes

#### Two information categories in privacy-aware clinical data:

- Surface form information of a medical term
- Global contexts from the given co-occurrence graph.



Figure 2 : SurfCon Architecture



Figure 1 : SurfCon Approach

#### Bi-level surface form encoding component:

- Model the similarity between two terms at the surface form level
- Exploits both character and word-level information to encode a medical term into a vector.
- Computes a surface score of two terms based on similarity
- Works well for detecting synonyms similar on surface form only.

#### **Context matching component:**

- Aims to discover synonyms that are not similar in surface form
- Uses term's context to represent semantic meaning
- Utilizes the co-occurrence graph as a representation of a term's global context
- Generates context semantic vector for the candidate term wrt query term
- Using training set of term's contexts, seeks to predict the global context of a novel term

### **Results**

#### **Synonym Generator:**

Model successfully handles shorthand and misspellings to produce synonymous terms

#### **Handles Out of Vocabulary Terms:**

Model performs well on terms that were not present in the frequency graph

#### Improvement over existing methods:

Model shows marked improvement from surface form, global context, and existing hybrid models.
SurfCon is also robust to dissimilar terms, showing significant improvement against other methods

|                                 | Methods             | 1-day Dataset |          |        |          |        |  |
|---------------------------------|---------------------|---------------|----------|--------|----------|--------|--|
| Method Category                 |                     | Dev           | InV Test |        | OOV Test |        |  |
|                                 |                     |               | All      | Dissim | All      | Dissim |  |
| Surface form<br>based methods   | CharNgram [13]      | 0.8755        | 0.8473   | 0.4657 | 0.7427   | 0.4131 |  |
|                                 | CHARAGRAM [40]      | 0.8705        | 0.8507   | 0.5504 | 0.7609   | 0.5142 |  |
|                                 | SRN [25]            | 0.8886        | 0.8565   | 0.5102 | 0.7241   | 0.4341 |  |
| Global context<br>based methods | Word2vec [23]       | 0.3838        | 0.3748   | 0.3188 | -        | -      |  |
|                                 | LINE(2nd) [34]      | 0.4279        | 0.4301   | 0.3494 | -        | -      |  |
|                                 | DPE-NoP [30]        | 0.6222        | 0.6107   | 0.4855 | -        | -      |  |
| Hybrid methods                  | Concept Space [37]  | 0.8094        | 0.8109   | 0.4690 | -        | -      |  |
| (surface+context)               | Planetoid [41]      | 0.8813        | 0.8514   | 0.5612 | 0.731    | 0.4714 |  |
| Our model and variants          | SurfCon (Surf-Only) | 0.9160        | 0.9053   | 0.6145 | 0.8228   | 0.5829 |  |
|                                 | SurfCon (Static)    | 0.9242        | 0.9151   | 0.6542 | 0.8285   | 0.5933 |  |
|                                 | SurfCon             | 0.9348        | 0.9176   | 0.6821 | 0.8301   | 0.6009 |  |

```
Input your query (Press 'exit' to exit): epi tissue
Searching 52804 candidate terms by 18.916 seconds

Top ranking Terms:
1     epithelial tissue
2     osseous tissue
3     fibrofatty tissue
4     skin tissue
5     adventitial tissue
6     deep tissue
7     splenic tissue
8     periurethral tissue
9     lung tissue
10     brain tissue
```

# **Reproduction Study**

#### Replaced CharNGram with FastText embeddings:

 Utilized pre-trained subword embeddings from FastText as a replacement for the 2-4 Gram embeddings with CharNGram

#### **Implemented Data Loading and Preprocessing:**

- Build data loading and transformation code for building input datasets and labels
- Implemented code to replicate data preprocessing measures including PPMI, subsampling, and data splitting

#### **Performed Ablation Experiment:**

 Executed SurfCon training without Context Matching to reevaluate significance in Synonym generation

#### Performed reproduction of full SurfCon Architecture:

 Trained Surfcon Surface-form and Global context data, utilizing inductive global context prediction with dynamic context matching

# **Study Outcomes**

#### **SurfCon Innovative Approach Verified:**

 Even with utilizing a different pre-trained subword embedding, we were able to verify the claim that SurfCon improved the Synonym generation task over existing methods

#### **Context Matching Claim Questioned:**

 Our model saw better results without the use of Context Matching for Test sets (including Dissimilar terms), calling into question the significance of this component on the task

Table 1: Model evaluation in MAP between Paper Claims vs Our reproduction

| Methods                | Paper Claims |               | Our reproduction results |        |               |                  |
|------------------------|--------------|---------------|--------------------------|--------|---------------|------------------|
|                        | Dev          | InV Test(All) | InV Test (Dissim)        | Dev    | InV Test(All) | InV Test(Dissim) |
| SurfCon<br>(Surf-Only) | .9160        | .9053         | .6145                    | 0.9465 | 0.9097        | 0.6757           |
| SurfCon                | .9348        | .9176         | .6821                    | 0.921  | .8766         | .6176            |

#### Using Paper Model:

```
Input your query (Press 'exit' to exit): vitamin c
Searching 52804 candidate terms by 22.11 seconds

Top ranking Terms:

1     vitamin b
2     vitamin d3
3     vitamin b-12
4     vitamin b complex
5     cyanocobalamin
6     vitamin a
7     vitamin e
8     vitamin d2
9     vitamin b-6
10     vitamin b12
```

#### Using our model

Begin querying: Input your query (Press 'exit' to exit): vitamin c Searching 52804 candidate terms by 21.737 seconds

1 vitamin b
2 b vitamins
3 vitamin b12
4 vitamin b 12
5 c vitamin
6 vitamin b deficiency
7 vitamin b-12
8 b vitamin
9 vitamin b 1
10 vitamin b complex

Top ranking Terms: