ESL 720 Energy Conservation MAJOR TEST PART C

TOTAL MARKS: 35

- Q1. State if the following statements are TRUE or FALSE. Give reasons for your answers. (Any TEN)
 - (i) The efficiency and life of an induction motor depends loading.
 - (ii) It is advisable to disconnect some electrical equipments from the main in order to reduce electricity consumption, while for some equipments this does not matter.
 - (iii) Only about 66% of useful energy may be available at the load end of an electrical equipment, taking the generation end electric energy input as 100%.
 - (iv) Transformer Open eireuit test gives eopper losses and Short circuit test gives core losses.
 - (v) The presence of an air gap in a magnetic circuit cause an increase in the current required for creating magnetic flux.
 - (vi) Instantaneous Power in Single Phase and Three Phase circuits contains a harmonic component.
 - (vii) The torque developed in an induction motor depends on slip.
 - (viii)VFD can be effective in saving electrical energy for a range of operating conditions.
 - (ix) K-Factor transformer can be used for transformer rating under harmonic currents.
 - (x) Simple payback period method is better than Present Worth Analysis to justify replacing a standard motor with an energy efficient motor.
 - (xi) The PF under distorted current varies as $\sqrt{1 + (THD)^2}$.

[20]

- A 3 Φ, 415 V line voltage, 6 pole 50 Hz induction motor offers a total resistance of 7.2 ∠ 30° Ω per phase at full load. The per phase stator impedance is (2.06 + j 1.6) Ω. Attempt any FIVE.
 - (a) Draw the equivalent eircuit for the motor identifying the different impedances. Determine the stator current for star connection.
 - (b) Find the effective resistance offered by the rotor side (magnetizing impedance \sim 10 Ω) and rotor speed in rpm, the slip being 10%.
 - (e) Calculate the eapaeitances required to make the power factor unity for star and delta connections.
 - (d) If the motor is being provided using a eable with impedance $1 + j0.5 \Omega$, find the line voltage at the motor terminals for an inrush current 6 times the full load current with starting PF of 0.3.
 - (e) Assuming the stator loss to be 33% of the total loss, determine the motor efficiency.
 - (f) What will be effect of harmonics on motor losses?

Part-B (Max. Marks: 10)

Important: Please attempt on separate answer sheets

- 1. Answer the followings briefly:
- i) In a eloth-shop, you want to replace one burnt-out lamp by a new lamp. What precautions you will take, apart from wattage of the lamp?
- ii) Mention the difference between Capital Recovery Factor (CRF) and Sinking Fund Factor (SFF).
- iii) Govt. of India has declared ECBC-2006, a couple of years before. What does it relate to?
- iv) What is the problem with thermal insulation when used at low temperature?
- v) Why U_{cdge} ≥ U_{centre} in energy efficient windows?

 (5×1)

- 2. A building wall consists of 25 cm. concrete (k=1.75 Wm⁻¹ K⁻¹) and the room temp. is 23.6 °C. The wet bulb temp. is 16.8 °C, $h_i = 9.4$ W m⁻² K⁻¹ and $h_o = 34$ W m⁻² K⁻¹
 - i) What is the temperature on the inside surface of the wall?
 - ii) Will the moisture condense on the wall?
 - iii) How many layers of 1.25 cm. thick fiber board insulation (k=1.75 Wm⁻¹ K⁻¹) should be applied on the inside wall surface to prevent moisture condensation?

(5)