熱力學 結報

一、 實驗數據與分析

A. 熱輻射

不同性質所產生的熱輻射:

功率(w)	黑(mv)	白(mv)	平(mv)	粗(mv)
66.67	7.4	7.6	0.3	3.7
77.78	13.5	13.2	1.0	6.6
100	19.1	18.4	0.8	9.0

表一、不同性質的面所產生的熱輻射

由表一可得知,黑色較白色更容易放出熱輻射,而粗糙面較平滑面更容易放出熱輻射。

點熱源之輻射平方反比定律:

距離(m)	熱輻射電壓(v)	熱源電壓(v)	log x	log v	
0.06	0.0077	10	-1.22185	-2.11351	
0.07	0.0062	10	-1.1549	-2.20761	
0.08	0.0047	10	-1.09691	-2.3279	
0.09	0.0038	10	-1.04576	-2.42022	
0.10	0.0032	10	-1	-2.49485	

表二、固定熱源電壓,在不同距離下所測量之熱輻射電壓

圖一、Log V 對 Log X 做圖

實驗做出來點熱源幅射約與距離的 1.76 次方成反比,與理論值有些誤差

高溫史蒂芬-波茲曼定律:

熱源電壓(v)	電流(A)	距離(m)	熱輻射電壓(v)	電阻(Ω)
10.0	1.581	0.06	0.0085	6.325111
10.5	1.621	0.06	0.0092	6.477483
11.0	1.661	0.06	0.0098	6.622517
11.5	1.698	0.06	0.0105	6.772674
12.0	1.735	0.06	0.0112	6.916427

表三、固定距離,測量不同的熱源電壓所產生之熱輻射電壓 $R_{ref}: 0.0045\ K^{-1}$ 。

根據公式: $T = \frac{R - R_{ref}}{\alpha R_{ref}} + 300(K)$,

熱源電壓(v)	熱輻射電壓(v)	T(K)	log V	log T
10.0	0.0085	1834.753	-2.07058	3.263578
10.5	0.0092	1877.079	-2.03621	3.273482
11.0	0.0098	1917.366	-2.00877	3.282705
11.5	0.0105	1959.076	-1.97881	3.292051
12.0	0.0112	1999.007	-1.95078	3.300814

表四、根據公式計算出溫度

圖二、Log V對Log T做圖

由圖二可知,體積與溫度的 3.19 次方成正比,理論值應為體積與溫度的 4 次方成正比

B. 熱引擎

管半徑:0.015 m。

管截面積: 0.000706858 m²。

熱引擎實驗:

水溫(C)	砝碼(kg)	F(N)	壓力(N/m²)	體積(ml)	體積(m³)
22.9	0	0	0	28	0.000028
22.9	0.12957	1.269786	1796.38	21	0.000021
81.4	0	0	0	45	0.000045
81.4	0.12951	1.269198	1795.548	40	0.00004

表五、熱引擎實驗四個資料點的量測數據

查理定律:

温度 T(C)	溫度 T(K)	體積 V(ml)	體積 V(m³)
23.0	296.15	0.0	0
37.1	310.25	2.0	0.0000020
46.8	319.95	5.2	0.0000052
51.1	324.25	7.0	0.0000070
64.6	337.75	12.0	0.0000120

表六、定量定壓下,測量溫度與氣體體積

圖三、氣體體積對溫度做圖

波以耳定律:

砝碼重(g)	F(N)	壓力(N/m²)	體積(ml)	體積(m³)
0	0	0	15.0	0.0000150
201.0	1.96980	2786.697	27.5	0.0000275
251.2	2.46176	3482.678	25.0	0.0000250
330.0	3.23400	4575.174	22.0	0.0000220
78.8	0.77224	1092.496	48.0	0.0000480

表七、定量定溫下,測量氣體體積與壓力

圖四、壓力對體積做圖

C. y值

二、 問題討論

1. 請查詢史蒂芬-波茲曼定律,寫出熱輻射與溫度的關係式,並舉出三個日常生活中能運用的例子。

 $j^* = \epsilon \sigma T^4$, j^* 為物體的輻射度,T 為絕對溫度, ϵ 為黑體輻射係數,若為完全 黑體, $\epsilon = 1$, σ 為史帝芬-波茲曼常數。

- (1) 耳溫槍
- (2)設置在一些地方(如機場)的體溫監控儀。
- (3)雷射測溫槍
- 2. 生活中有什麼應用與實驗 B 的熱引擎類似?

內燃機:透過加熱水蒸發變成水蒸氣向上的力量,使渦輪轉動,進而使其能驅動輪子前進。

發電機:透過加熱水變成水蒸氣向上的力量,使渦輪轉動,經由電磁感應裝置轉換成電能。

汽車引擎:透過燃燒室點火引爆油氣,膨脹的空氣推動活塞,並透過一些機構 可以轉成轉動能。

3. 請以在實驗 \mathbb{C} 中測量到的 γ 值,寫出空氣 \mathbb{P} 與 \mathbb{V} 的關係式。

流入氣體的熱量 dQ,氣體的內能變化dU,和氣體對外界所作的功 pdV 之間有下式的關係:dQ=dU+pdV,在絕熱過程中,dQ=0,經過整理後可寫 $d = dU + C1 = -\gamma \ln V + C2$,d = C,因此d = C0,因此d = C0。

三、 心得

以前高中教到氣體這個單元時,並沒有做什麼實驗,而是簡單介紹了波以耳定律、 查理定律、給呂薩克定律以及道耳吞定律後,就是一堆繁複的計算,當時的我只知 道遇到題目時,使用理想氣體方程式後一切都迎刃而解,經過這次實驗後,我學到 了氣體體積、壓力與溫度間的關係,理想氣體方程式不再是一道冷冰冰的公式。