A textbook for LIN 361/539 "Mathematical Methods in Linguistics" at Stony

Brook University

Sets: The basics

Sets are the fundamental building block of modern mathematics. Intuitively, a set is a collection of objects, but with two important twists:

- 1. Sets are unordered.
- 2. Sets contain no duplicates.

Example 1.

Suppose you want to keep a record of which words occur in a text. You aren't interested in how often a given word occurred, just whether it occurs at all. Nor do you care in which order the words occurred in the text. So you are actually interested in the *set* of words that occur in the text.

Each property is explained in detail below, but let's first put some helpful notation in place.

1 List notation

Sets are often written as lists with curly braces around them. So $\{a, b, c, d\}$ denotes the set containing a, b, c, d. Here a, b, c, d are some arbitrary objects. This is known as **list notation**. More complex sets are defined with **set-builder notation**, which will be covered in a later unit.

EXAMPLE 2.

Consider the string *If John slept, then Mary left*. Its set of words (ignoring sentence-initial capitalization) is {if, John, left, Mary, slept, then}.

Exercise 1.

Write the following as a set:

- the first names of your three favorite actors/actresses,
- the colors of the rainbow,
- all even numbers between 1 and 11

2 Elements and set membership

The objects contained in a set are called its **elements** or **members**. One writes $e \in S$ to indicate that e is an element of S. The opposite is denoted $e \notin S$: e is not an element of S. The symbol \in thus indicates **set membership**.

A textbook for LIN 361/539 "Mathematical Methods in Linguistics" at Stony Brook University

EXAMPLE 3.

Let W be the set of words in the string *If John slept, then Mary left*. Then it holds that $left \in W$ and $right \notin W$. But it is not the case that $then \notin W$ or $awake \in W$.

You might be wondering why we use the symbol \in for set membership. The following mnemonic, while historically inaccurate, may help you with remembering the notation: \in looks like a stylized E, and $x \in S$ means that x is an Element of S.

Sometimes \ni is used as the mirror image of \in . For example, $a \in S$ could also be written as $S \ni a$.

Example 4.

Continuing the previous example, it is true that $left \in W \ni then$. That is to say, both $left \in W$ and $then \in W$ are true.

Exercise 2.

Put \in , \ni , \notin , $\not\equiv$ in the gaps below as appropriate:

- 5 {1, 2, 4, 5, 8}
- 6 {1, 2, 4, 5, 8}
- {5} {1, 2, 4, 5, 8}
- 5 {1,2,4,5,8} 6

Sets can contain arbitrary objects, including other sets. However, the members of a set are just the elements immediately contained by the set, not what might in turn be contained inside of those elements.

Example 5.

The set $\{a, \{b\}\}\$ has two members: a and $\{b\}$. While b is an element of $\{b\}$, it is not an element of $\{a, \{b\}\}\$.

Exercise 3.

Put \in , \ni , \notin , $\not\equiv$ in the gaps below as appropriate:

- 5 {1,{2,4},5,8}
- 6 {1,{2,4,5,8}}
- {5}_{{1},{2,4},{5},8}
- 5 {{1, 2, 4, 5, 8}} 6

A textbook for LIN 361/539 "Mathematical Methods in Linguistics" at Stony Brook University

3 Lack of order

Even though we may write sets in a linear fashion as lists, they have no internal order. The set $\{a,b\}$ could also be written as $\{b,a\}$. So we have $\{a,b\} = \{b,a\}$, and $\{a,b,c\} = \{a,c,b\} = \{b,a,c\} = \{b,c,a\} = \{c,a,b\} = \{c,b,a\}$.

Example 6.

Consider the strings *If John slept, then Mary left* and *If Mary left, then John slept*. While they are clearly distinct sentences, their sets of words are identical.

Exercise 4.

For each one of the following, fill the gap with = or \neq as appropriate:

- $\{a,b\}$ $\{a,b\}$
- $\{b,a\}$ $\{a,b\}$
- $\{b, a, c, d\}_{\{e, a, b, d\}}$

4 Lack of duplicates/Idempotency

Sets are **idempotent**, which means that duplicates are ignored. So $\{a, b\} = \{a, a, b\} = \{a, b, b, a, b, a, b, a, a\}$. It also holds that $\{a\} = \{a, a\} = \{a, a, a\}$, and so on.

Example 7.

Linguists distinguish between **word types** and **word tokens**. The sentence *dogs love dogs* contain two tokens of the type *dogs*, and one token of the type *love*. The sentences *dogs love* and *dogs love dogs* are different with respect to word tokens, but identical with respect to word types. So if you care about word types rather than word tokens, you're dealing with a set because the only thing that matters is which words the text contains, not how many tokens of each word.

EXAMPLE 8.

Consider the sentence *If police police police, then police police police*. Its set of words (ignoring capitalization) is {if, police, then}.

Exercise 5.

For each one of the following, fill the gap with = or \neq as appropriate:

- $\{a,b\}$ $\{a,a,b,b\}$
- $\{b, a\} \{a, b, a\}$
- $\{c, b, a, a, d, c\}$ $\{a, a, b, d, c, c, c\}$
- $\{a\}$ $\{a, a, a, a, a, a, c, a, a, a, a, a, a\}$

A textbook for LIN 361/539 "Mathematical Methods in Linguistics" at Stony Brook University

Exercise 6.

The sentence *If police police police, then police police police* actually uses two different word types. It just just so happens that both are pronounced and spelled *police*. But one is the **noun** *police*, the other one the **verb** *police*. We can use the **parts of speech** N and V, respectively, to distinguish between the noun *police* and the verb *police*. Let us add parts of speech to all the words in the string (we use C for the **complementizers** *if* and *then*): *If*[*C*] *police*[*N*] *police*[*N*], *then*[*C*] *police*[*N*] *police*[*N*]. What would be the corresponding set of words for this string (i.e. where we now distinguish between *police*[*N*] and *police*[*V*])?

It is important to keep in mind that idempotency only holds with respect to the elements of a set, not what may be contained by those elements.

Example 9.

Even though $\{a\} = \{a, a\}$, it is not the case that $\{a\} = \{a, \{a\}\}$. The former is the set containing a, the other is the set containing a and the set of a.

Exercise 7.

For each one of the following, fill the gap with = or \neq as appropriate:

- $\{a,b\}_{a,a,b,\{b\}}$
- $\{\{b\},\{a\}\}\ \{\{a\},\{b\},\{a\}\}\$
- $\{c, b, \{a, a\}, d, c\}$ $\{\{a\}, b, d, c, c, c\}$
- $\{a\}$ $\{a, a, a, a, a, a, a, \{a\}, a, a, a, a, a, a\}$

5 Recap

- Sets are collections of arbitrary objects.
- Sets are unordered and idempotent (= duplicates are ignored).
- Sets can be defined with list notation, e.g. $\{a, b\}$.
- The objects contained in a set are called its *elements* or *members*.
- The symbols ∈ and ∉ are used to indicate membership and non-membership, respectively.
- Occasionally, \ni is used as the mirror image of \in .
- While sets may contain objects that are themselves collections of other objects, these objects inside objects are not considered for set membership. Remember: a ∈ {a} and {a} ∈ {{a}}, but a ∉ {{a}}.