Master Data Science and Business Analytics - Exam: Machine Learning

Directions

Fill the empty code cells in order to implement the described tasks and reproduce the given output.

A slight difference of your output in values and number of rows does not affect a positive evaluation

The program must be reproducible: repeated executions must give the same results

Workflow

In [2]:

- 1. load the data in memory
- 2. drop the useless data
- 3. separe the predicting attributes X from the class attribute y
- 4. split X and y into training and test
- 5. train a classifier of your choice and find the best parameter setting using **cross validation**, optimize for best **accuracy**
- 6. show a classification report for the training set
- 7. test the optimized classifier with the test set and show a classification report

```
# insert your imports here
In [1]:
         # insert here your initial variable settings and load the data
```

Have a quick look to the data.

- use the .shape attribute to see the size
- use the .head() function to see column names and some data
- use the .hist() method for an histogram of the numeric columns
- show an histogram of the target column
- use seaborn pairplot to show the numeric data, use the target values as color

In [3]:

Shape of the input data (1000, 6)

In [4]:

Out[4]

:		C00	C01	C02	C03	C04	Class
	0	NaN	0.466367	-0.176765	1.546514	0.149219	С
	1	NaN	-0.136792	1.551591	NaN	1.357674	а
	2	2.712560	-0.495846	NaN	1.483562	1.656526	b
	3	-2.166084	-0.582271	0.353011	-1.864210	-2.267033	b
	4	2.848831	-0.507369	1.661752	1.466627	1.938519	b

In [5]:

generate histogram of numeric features

In [6]: # generate histogram of target column

In [7]: # pairplot using target as color

Verify if there are nan values in the dataset, and, in case, drop rows with nan

In [8]:

There are 519 nan values

In [9]:

After drop there are 0 nan values

- Split predicting attributes and target into X and y
- Show the number of samples in train and test, show the number of features

In [10]:

There are 434 samples in the training dataset There are 145 samples in the testing dataset Each sample has 5 features

Optimising the estimator

- determine the range of the parameters for the estimator
- repeatedly fit the estimator with cross validation for each value of the parameter range and find the value of the parameter giving the best accuracy
- print the value of the best parameter

In [11]:

The best parameter value is 12

- fit the estimator using the train part
- use the fitted estimator to predict using the test features
- compute the accuracy on the test set and print it with the best parameter value
- print a classification report and the confusion matrix for the test set

In [12]:

The accuracy on test set tuned with cross_validation is 79.3% with parameter 12

In [13]:

classification report on test set

	precision	recall	f1-score	support
a	0.80	0.73	0.76	51
b	0.80	0.89	0.84	54
С	0.77	0.75	0.76	40
accuracy			0.79	145
macro avg	0.79	0.79	0.79	145
weighted avg	0.79	0.79	0.79	145

In [14]:

Confusion matrix for test set

[[37 8 6] [3 48 3] [6 4 30]]