1 Část a

Obrázek 1: Konstrukce

Označme vzdálenost od vrcholu úhlu O od dotykového bodu A_1 jako l, poloměr jako r a střed kružnice α jako S_{α} . Víme, že trojúhelník A_1OS_{α} je pravoúhlý. Tím pádem vzdálenost $|OS_{\alpha}| = \sqrt{l^2 + r^2}$ a délka výšky z bodu A_1 je $v = \frac{lr}{\sqrt{l^2 + r^2}}$ (tento vzorec získáme použitím Euklidových vět o výšce a odvěsnách).

Aby šlo čtyřúhelníku $A_1A_2B_2B_1$ vepsat kružnice, musí být tečnový, pro který platí, že součet protějších stran je konstatní. Protože kružnice α a β jsou nutně stejnolehlé, určíme koeficient stejnolehlosti k z podmínky pro tečnový čtyřúhelník:

$$2v + 2kv = 2(kl - l)$$

$$(1+k)\frac{lr}{\sqrt{l^2 + r^2}} = (k-1)l$$

$$(1+k)\frac{r}{\sqrt{l^2 + r^2}} = k-1$$

$$\frac{r}{\sqrt{l^2 + r^2}} + 1 = k - k\frac{r}{\sqrt{l^2 + r^2}}$$

$$\frac{\sqrt{l^2 + r^2} + r}{\sqrt{l^2 + r^2}} = k\left(1 - \frac{r}{\sqrt{l^2 + r^2}}\right)$$

$$k = \frac{\frac{\sqrt{l^2 + r^2} + r}{\sqrt{l^2 + r^2}}}{\frac{\sqrt{l^2 + r^2} + r}{\sqrt{l^2 + r^2}}} = \frac{\sqrt{l^2 + r^2} + r}{\sqrt{l^2 + r^2} - r}$$

Protože středy S_{α} a S_{β} leží na ose úhlu XOY, tak na něm bude ležet i dotykový bod kružnic, pokud existuje. A protože průsečík osy úhlu a kružnice α bližší k bodu O je ve vzdálenosti $\sqrt{l^2 + r^2} - r$, tento bod se ve stejnolehlosti se středem O a koeficientem k zobrazí na vzdálenější průsečík osy úhlu a kružnice α ve vzdálenosti $\sqrt{l^2 + r^2} + r$. A anžto ve stejné stejnolehlosti jsou zobrazené celé kružnice α a β , tento vzdálenější bod je dotykovým bodem kružnicí α a β , což jsme chtěli ukázat.