Measuring Euro Area Monetary Policy

Altavilla C., Brugnolini L., Gürkaynak R., Motto R., Ragusa G.

Conference on Macro-Finance Reserve Bank of New Zealand

13-14 December 2018

Research Question

- How to measure the effects of monetary policy in the EA?
- How to account for multi-dimensionality?
 - Rate change
 - Forward guidance Gürkaynak et al. (2005)
 - Quantitative easing Swanson (2018)
- How asset prices respond to different monetary policy dimensions?
- How to answer these questions without a dataset?

This paper

Contributions:

- 1. Build the Euro Area Monetary Policy Database (EA-MPD)
 - Regularly updated and freely available by authors
 - Diligently checking with data providers (BBG, TR)
 - Ex-ante filtering procedure Filter

 - Expect to boost monetary policy studies on the EA
- 2. Provide framework to extract multidimensional surprises
 - Based on Gürkaynak et al. (2005); Swanson (2018)
 - Accounting for ECB multi-step revealing structure
 - Estimate the number of policy factors and what these are
 - Find two types of forward guidance and QE after 2014
 - · QE measured for the first time in the EA
 - Suggest communication have changed, no responses
- 3. Assess the effects of the surprises
 - Financial variables
 - Persistence
 - Nonlinearities

ECB Governing Council

Communication structure and derivation of asset changes

Example of market reactions

OIS2Y changes around selected GC dates

Actual Data – Time-series OIS2Y changes

Euro Area Moneatry Policy Database

Asset price categories and maturities

- Overnight Index Swap (OIS) 1W, 1M, 3M, 6M, 1 to 10Y, 15Y, 20Y
- German gov. bond 3M, 6M, 1 to 10Y, 15Y, 20Y, 30Y
- Franch, Italian, Spanis gov. bond 2Y, 5Y, 10Y
- Exchange rates USD,GBP,JPY
- Stock indexes STOXX50E, SX7E

Extracting Market-Based Surprises Methodology

- We have a large dataset of asset changes (EA-MPD)
- We need interpretability—i.e., names
- How many dimensions of policy do the market reactions suggest?
 - Cragg and Donald (1997)'s test

Cragg and Donald test

	Press Re	lease Window	Conference Window		
	Pre-QE	Full sample	Pre-QE	Full sample	
$H_0: k = 0$	46.20	49.12	105.49	108.438	
· ·	(0.001)	(0.000)	(0.000)	(0.000)	
$H_0: k = 1$	18.77	22.54	33.73	39.63	
	(0.173)	(0.068)	(0.002)	(0.000)	
$H_0: k = 2$			14.86	17.44	
			(0.061)	(0.025)	
$H_0: k = 3$				3.97	
				(0.263)	

Rotated factors

Identification assumptions

- Press release one factor
 - First factor is unrestricted
- Press conference three factors, rotate such that:
 - First factor is unrestricted
 - 2. Second and third factors do not load to 1-month OIS Gürkaynak et al. (2005),
 - Third factor has minimal variance in pre-crisis period Swanson (2018)
- Factors normalized to aid interpretation

Rotated factors Interpretation

In Press Release window:

Rotated factors

- In Press Release window:
 - 1. Target

Rotated factors Interpretation

- In Press Release window:
 - 1. Target
- In Press Conference window:

Rotated factors

- In Press Release window:
 - 1. Target
- In Press Conference window:
 - 2. Forward Guidance

Rotated factors

- In Press Release window:
 - 1. Target
- In Press Conference window:
 - 2. Forward Guidance
 - 3. QE

Rotated factors

- In Press Release window:
 - 1. Target
- In Press Conference window:
 - 1. Timing
 - 2. Forward Guidance
 - 3. QE

Rotated factors

- In Press Release window:
 - Target
- In Press Conference window:
 - 1. Timing
 - 2. Forward Guidance
 - 3. QE
- No information in the conference on the setting of rates.

Do factors make sense?

- Yes.
- We check correspondance with known events

What do factors capture?

	1-month	3-month	6-month	1-year	2-year	5-year	10-year	SD Factor
Press release								
Target Residual	97.8 2.2	91.3 8.7	82.7 17.3	60.4 39.6	32.9 67.1	11.9 88.1	1.5 98.5	2.2
SD OIS	2.2	1.7	1.5	1.4	1.4	1.5	1.2	
Conference								
Timing	54.7	86.6	70.3	50.1	29.5	14.8	9.7	2.3
Forward Guidance	0.0	9.0	28.1	48.9	68.0	64.2	33.2	3.6
QE	0.0	0.2	0.0	0.1	1.7	18.7	53.8	2.0
Residual	45.3	4.2	1.6	0.9	0.8	2.3	3.3	
SD OIS	1.1	2.1	2.8	3.9	4.4	4.1	2.7	

Factors and yields

- Press release yield volatility curve is downward sloping
 - · Target captures the short-end volatility
 - Long-end is idiosyncratic noise
- Press conference yield volatility curve is hump-shaped
 - Peak is at 2 to 5 years
 - FG and QE both affect these maturities
 - Timing related to shorter (but not 1-month) maturities
 - We capture all of the variance of the high-vol. maturities

Monetary Policy Surprises

Factor loadings

Findings

- These factors make us understand:
 - 1. Isolating different signals is key to response interpretation
 - 2. The yield curve response to ECB monetary policy
- Explanatory power of factors have not changed over time
 - 1. Keeping the definitions of policy surprises constant
 - 2. We explain about all of the variance in the OIS curve
 - 3. But the variance shares change over time
- · Communication heterogeneity is crucial
 - 1. Without differentiating the signals (release/conference)
 - 2. Market responses cannot be interpreted

Assessing the Effects on Assets

Due to market-based surprises

$$y_t^i = \alpha^i + \beta_1^i T_t^i + \beta_2^i F G_t + \beta_3^i Q E_t + \gamma^i J C_t + \epsilon_t^i$$
 (1)

- y_t^i is the intraday or daily asset change
- *i* = {*Release*, *Conference*}
- T_t is Target or Timing depending on the window
- FG_t stands for Forward Guidance
- QEt stands for Quantitative Easing
- IJC_t stands for initial jobless claim surprise

Sovereign bond

We studied the effects on IT and ES sovereign bonds:

- QE narrow spreads
 - · Works as expected...
 - ...and desired
 - This is a very robust finding
- · Also, notice that:
 - · QE is extracted from OIS curve only
 - It is not defined as factor that makes spreads narrower
 - This is a finding, not an assumption

Exchange rates

We studied the effects on the EUR/USD exchnage rate:

- Euro appreciates in response to surprise tightenings
- UIP is alive and kicking
- We do not find a "saving the euro" effect

Persistence

Structural Vector Autoregressive Model (SVAR)

$$AY_t = \sum_{j=1}^{p} C_j Y_{t-j} + \epsilon_t, \quad \epsilon_t \sim \mathbb{N}(0, \mathbb{I})$$
 (2)

- Based on a Daily VAR
- VAR Data: EA daily series Sep-2004 to Sep-2018
- Variables Y_t:
 - Sovereign 10Y, AAA and BB corporate yields, log-change EUR/USD, log-change STOXX50E, EA 5Y
- Factor used as instrument for identification (Stock and Watson, 2012; Mertens and Ravn, 2013; Gertler and Karadi, 2015)

Persistence

Baseline

Persistence

Robustness

Persistence results

- · Target is not very persistent
- FG effects very persistent
- QE also quite persistent
- Persistence present for IT and ES sovereign yields as well
- QE more persistent in EA than US
 - 2-3 months (Wright, 2012; Swanson, 2018)
- We find 6m (GE) to 18m (ES) half lives

Nonlinearity Findings

We studied whether monetry policy has nonlinear effects:

- No evidence for nonlinearity
- Contradicts real effects literature for the US
- Important question about:
 - EA-US difference
 - Real economy disconnected from financial markets

Conclusion

- We build a standard database for the EA monetary policy
- We show that:
 - 1. Financial markets provide critical insights for the EA
 - 2. Financial markets differentiate between different signal
 - 3. ECB signals affect different points of the yield curve
 - 4. Differentiating between perceived signals is crucial
 - 5. QE worked effects were persistent
 - 6. No sign of nonlinear effects
- Work in progress:
 - Other markets (stocks, corp. bonds, etc.)
 - · Out-of-sample analysis on communication
- Much to do.
- That's why we make the data and code available

THANKS FOR LISTENING!

References

- Cragg, J. G. and Donald, S. G. (1997). Inferring the rank of a matrix. Journal of Econometrics, 76(1-2):223-250.
- Gertler, M. and Karadi, P. (2015). Monetary policy surprises, credit costs, and economic activity. American Economic Journal: Macroeconomics. 7(1):44–76.
- Gürkaynak, R. S., Sack, B., and Swanson, E. T. (2005). Do actions speak louder than words? the response of asset prices to monetary policy actions and statements. *International Journal of Central Banking*, 1(1).
- Mertens, K. and Ravn, M. O. (2013). The dynamic effects of personal and corporate income tax changes in the united states. American Economic Review, 103(4):1212–47.
- Stock, J. H. and Watson, M. W. (2012). Disentangling the channels of the 2007-2009 recession. *NBER Working Paper*, 18094.
- Swanson, E. (2018). Measuring the Effects of Federal Reserve Forward Guidance and Asset Purchases on Financial Markets. *NBER Working Paper*. *No. 23311*.
- Wright, J. H. (2012). What does monetary policy do to long-term interest rates at the zero lower bound? *Economic Journal*, 122(564):F447–F466.

Prefiltering

- For suspicious data points:
 - 1. Delete entries with missing Bid or Ask
 - 2. Delete entries with Bid > c or Ask > c
 - 3. Delete entries with Bid = 0 or Ask = 0
 - 4. Delete entries with $Ask Bid \ge 0$
 - 5. Delete entries with $Ask Bid \ge 50 \mu_{spread}^{daily}$
 - 6. Aggregate at minute level using last tick in a minute
 - 7. Carry forward the last observation

▶ Back to research question

Considering contemporaneous releases

US Initial Jobless Claims

- Literature included dummies for contemporaneous events
 - 1. Not considering unexpected component of the release
 - 2. Not considering sign and magnitude
 - 3. Result is no significant effect
- What we do:
 - Consider the (standardized) release unexpected component

$$S_t = \frac{A_t - \mathbb{E}(A_t)}{\sqrt{VAR(A_t - \mathbb{E}(A_t))}} \tag{1}$$

- $S_t \equiv$ Surprise, $A_t \equiv$ Actual Release, $\mathbb{E}(A_t) \equiv$ Exp. Release
- $\mathbb{E}(A_t)$ is the Bloomberg forecaster survey median
- Significant effects on all instrument Low R²

► Back to research question