Universitat de Barcelona

APUNTS

PRIMER SEMESTRE

Introducció al Càlcul Diferencial

Autor:
Mario VILAR

Professor:
Dra. Sara Ana SOLANILLA
BLANCO

20 de desembre de 2020

Índex

1	PR	ELIMINARS DE ICD	5
	1.1	Conjunts de nombres. Intervals	5
		1.1.1 Els nombres reals (\mathbb{R})	5
		1.1.2 Subconjunts i intervals	6
	1.2	Axioma del suprem	6
		1.2.1 Primera aproximació a les demostracions matemàtiques	7
	1.3	Aplicacions i propietats	8
	1.4	Funcions elementals	9
		1.4.1 Polinomis	9
		1.4.2 El valor absolut	9
		1.4.3 Exponencials	9
		1.4.4 Logaritmes	10
		1.4.5 Funcions trigonomètriques	11
		1.4.6 Composició de funcions	12
2	SUC	CCESSIONS	13
	2.1	Introducció a les successions	13
	2.2	Successions monòtones	16
	2.3	Successió de Cauchy	18
	2.4	Altres límits	19
		2.4.1 Criteris	19
	2.5	Observacions finals	20
3	LÍM	IITS I CONTINUÏTAT	21
	3.1	Límit d'una funció a un punt	21
		3.1.1 Límits laterals	24
	3.2	Límits infinits i límits a l'infinit	24
		3.2.1 Límits indeterminats	26
		3.2.2 Comparació de funcions	27
	3.3	Funcions contínues. Tipus de continuïtat	28
		3.3.1 Funcions fitades i monòtones	28
		3.3.2 Funcions contínues	29
		3.3.3 Tipus de discontinuïtat	30
	3.4	Teoremes de Weierstrass, Bolzano i del valor intermig	31
	3.5	Apunts finals	32
		3.5.1 Teoremes fonamentals sobre límits	32

INDEX

		3.5.2 Exemples resolts	33		
		3.5.3 Altres figures	35		
		July Introduction and the contract of the cont	00		
4	DEI	RIVADES	37		
	4.1	Derivada d'una funció en un punt	37		
		4.1.1 Interpretació geomètrica	37		
	4.2	Regles de derivació i càlcul de derivades	39		
		4.2.1 La regla de la cadena	40		
		4.2.2 Derivada de la funció inversa	40		
		4.2.3 Derivació logarítmica	41		
		4.2.4 Derivades laterals	41		
	4.3	Indeterminacions	42		
		4.3.1 Regla de l'Hôpital	42		
5	CRI	EIXEMENT I CONVEXITAT	43		
	5.1	Creixement i derivada	43		
	5.2	Teorema de Rolle i aplicacions	44		
	5.3	Punts d'inflexió	46		
	5.4	Representació gràfica de funcions	48		
		5.4.1 Domini, punts de tall, simetries i asímptotes	48		
		5.4.2 Zones de creixement i decreixement	49		
		5.4.3 Exemple	50		
	5.5	Apunts finals	51		
		5.5.1 Exemples resolts	51		
6		RMULA DE TAYLOR I APLICACIONS	53		
	6.1	Polinomi de Taylor. Terme de resta	53		
	6.2	Aplicacions	56		
		6.2.1 Càlculs aproximats	56		
		6.2.2 Designaltats	56		
		6.2.3 Càlcul de límits	56		
D:	hlia-	rmo Go	59		
Ы	Bibliografia				

Capítol 1

PRELIMINARS DE ICD

1.1 Conjunts de nombres. Intervals

Definim els següents conjunts de nombres:

- Els nombres naturals (\mathbb{N}): $\{1, 2, 3, \dots, n\}$
- Els nombres enters (\mathbb{Z}): $\{-n, \dots, -1, 0, 1, \dots, n\}$

Així, podem construir els nombres racionals a partir dels enters: $\mathbb{Q} = \frac{n}{m}, n \in \mathbb{Z}, m \in \mathbb{Z} - \{0\}$. Fixem-nos com amb aquests nombres no en tenim prou plantejant-nos un problema molt fàcil.

Exemple 1.1.1. Considerem un triangle rectangle amb dos costats d'1m i una hipotenusa de $\sqrt{2}$ m.

Proposició 1.1.1. $\sqrt{2} \in \mathbb{Q}$?

Demostraci'o. Suposem que sí, és a dir, $\sqrt{2} \in \mathbb{Q}$. Argumentarem per un mètode anomenat **reducci\'o a l'absurd**. Si $\sqrt{2} \in \mathbb{Q}$, tenim que $\sqrt{2} = \frac{n}{m}, n \in \mathbb{Z}, m \in \mathbb{Z} - \{0\}$ i sense factors en com'u. Suposarem n, m > 0. Així:

$$m\sqrt{2} = m \implies 2m^2 = n^2 \implies n = parell, n = 2k, k \in \mathbb{N}$$
 (1.1.1)

I, per tant:

$$2m^2 = 4x^2 \implies m^2 = 2k^2 \implies m = parell, k \in \mathbb{N}. \tag{1.1.2}$$

Això és contradictori, ja que els dos són parells però no haurien de tenir factors en comú. Per tant, $\sqrt{2} \notin \mathbb{Q}$ i $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. Això ens indica que necesitem més nombres.

1.1.1 Els nombres reals (\mathbb{R})

Se solen representar en una recta ordenats. No hi ha una descripció explícita dels nombres reals. La definició és delicada i no la veurem en aquest curs. Podríem dir que els nombres reals \mathbb{R} estan formats pels x que tenen una expressió decimal del tipus: $x = a_0, a_1 a_2 a_3 \cdots a_n$, on $a_0 \in \mathbb{Z}$ i $a_n \in \{0, 1, 2, \dots, 9\}, n \in \mathbb{N}$. Amb aquesta expressió tenim que si $a_0 > 0$:

$$x = a_0 + \frac{a_1}{10^1} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n}$$
(1.1.3)

1.1.2 Subconjunts i intervals

Els subconjunts de nombres poden estar determinats explícitament o per una propietat.

Exemple 1.1.2 (Determinat explícitament). $\{\frac{1}{n}, n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$

Exemple 1.1.3 (Per una propietat). $\{x \in \mathbb{R} \mid x^2 - 1 \ge 3\}$

A partir de conjunts se'n poden construir d'altres. Siguin A i B dos subconjunts $\mathbb R$ podem constuir els conjunts:

- Unió: $A \cup B = \{x \mid x \in A \ o \ x \in B\},\$
- Intersecció: $A \cap B = \{x \mid x \in A \ i \ x \in B\},\$
- Complementari: $A^C = \{x \mid x \in \mathbb{R} \setminus A\} = \mathbb{R} \setminus A$,
- Producte cartesià: $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

Els subconjunts de \mathbb{R} més utilitzats són els intervals. Anomenarem **interval obert d'extrems**: a i b, a < b, al conjunt

$$(a,b) = \{ x \in \mathbb{R}, a < x < b \}, \tag{1.1.4}$$

i **interval tancat d'extrems** al conjunt a i b, a < b al conjunt

$$[a, b] = \{x \in \mathbb{R}, a \le x \le b\}.$$
 (1.1.5)

També poden ser mixtes. Si no precisem com és, l'agafarem per defecte obert. També s'utilitzen **entorns**, intervals centrats, és a dir, simètrics a banda i banda d'un punt fixe a (oberts o tancats) i de radi r:

$$I(a,r) = \{ x \in \mathbb{R} \mid a - r < x < a + r \} = \{ x \in \mathbb{R}, |x - a| < r \}$$
 (1.1.6)

$$\overline{I}(a,r) = \{ x \in \mathbb{R} \mid a - r \le x \le a + r \} = \{ x \in \mathbb{R}, |x - a| \le r \}$$
 (1.1.7)

Existeixen menys racionals \mathbb{Q} que irracionals \mathbb{I} . Tot i així, són densos en \mathbb{R} . Per a qualsevol interval $I \subseteq \mathbb{R}$, tenim que:

$$I \cap \mathbb{Q} \neq \emptyset \tag{1.1.8}$$

$$I \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset \tag{1.1.9}$$

Això implica que qualsevol $x \in \mathbb{R}$ es pot aproximar per racionals i irracionals.

1.2 Axioma del suprem

Sigui $A \subset \mathbb{R}, A \neq \emptyset$. Es diu cota o fita superior de A a tot nombre $c \in \mathbb{R}$ tal que $c \geq x \ \forall x \in A$. Es diu fita inferior de A a tot nombre $C \in \mathbb{R}$ tal que $x \geq c \ \forall x \in A$. Dit això:

- En cas que existeixin fites superiors, es diu que el conjunt és fitat superiorment.
- En cas que existeixin fites inferiors, es diu que el conjunt és fitat inferiorment.
- Un conjunt és fitat si ho és superior i inferiorment.

- Si una fita superior c de $A \in A$, aleshores aquesta fita rep el nom de **màxim de** A i escriurem: c = max(A). De la mateixa manera, si una fita inferior c de $A \in A$, aleshores aquesta fita rep el nom de **mínim de** A i escriurem: c = min(A).
- Si A és un conjunt fitat superiorment, anomenarem **suprem de** A (**o** sup(A)) al mínim del conjunt de cotes superiors d'A. De la mateixa manera, si A és un conjunt fitat inferiorment, anomenarem **ínfim de** A (**o** inf(A)) al màxim del conjunt de cotes inferiors d'A.

Com a exemple, tenim el conjunt $A = \{1\} \cup [2,3)$. El seu conjunt de fites superiors és $[3,+\infty)$ i d'inferiors és $(-\infty,1]$. Doncs: sup(A) = 3, inf(A) = 1, $max(A) = \nexists$, min(A) = 1.

Definició 1.2.1 (Axioma del suprem). Tot subconjunt $A \subset \mathbb{R}$ fitat superiorment té suprem.

Definició 1.2.2 (Axioma de l'ínfim). Tot subconjunt $A \subset \mathbb{R}$ fitat inferiorment té ínfim.

1.2.1 Primera aproximació a les demostracions matemàtiques

Lema 1.2.1. $A \subset \mathbb{R}$ $i \in \{0\}$

Demostració. Denotem $\alpha = sup(A)$ i suposem que aquest suprem és finit. Aleshores l'interval $(\alpha - \epsilon, \alpha)$ conté algun element d'A. Per **reducció a l'absurd** suposem que $(\alpha - \epsilon, \alpha) \cup A = \emptyset$. Aleshores, com que $\alpha = sup(A)$, tenim que $A \subset (-\infty, \alpha - \epsilon]$. En particular, $\alpha - \epsilon$ és una fita superior d'A, la qual cosa resulta contradictòria.

Proposició 1.2.2. \mathbb{N} no té fites superiors. Si \mathbb{N} fos fitat superiorment, llavors per l'axioma del suprem, existeix $\alpha = \sup(\mathbb{N})$ i és finit.

Demostració. Pel lema anterior, $(\alpha - \frac{1}{2}, \alpha] \cap \mathbb{N} \neq \emptyset$. Sigui $z \in \mathbb{N}$ tal que $\alpha - \frac{1}{2} < z \le \alpha \implies \alpha < z + \frac{1}{2} < z + 1$. Com veiem, no pot ser que $\sup(\mathbb{N}) = \alpha$ sigui més petit que un \mathbb{N} .

Teorema 1.2.3. Entre $x, y \in \mathbb{R}^+$, tenim que $\exists c \in \mathbb{Q}, d \in \mathbb{I}$ (no utilitzarem aquestes variables c i d).

Demostració. Ho volem demostrar tant per \mathbb{R}^+ com \mathbb{R}^- . Però, sense pèrdua de generalitat, podem suposar que es tracta solament de \mathbb{R}^+ . Operem:

$$0 < x < y : x, y \in \mathbb{R}^+ \implies y - x > 0 \implies \frac{1}{y - x} > 0 \implies \exists n \in \mathbb{N} : n > \frac{1}{y - x}$$
 (1.2.1)

Considerem tot seguit el nombre nx. Existeix $m \in \mathbb{N}$ tal que:

$$m-1 \le nx < m \Leftrightarrow \frac{m-1}{n} \le x < \frac{m}{n}$$
 (1.2.2)

Deduïm que: $x < \frac{m}{n} \le x + \frac{1}{n} < x + (y - x) = y$, és a dir:

$$x < \frac{m}{n} < y \implies \frac{m}{n} \in (x, y) \tag{1.2.3}$$

Per trobar un \mathbb{I} , sigui $z \in \mathbb{R} \setminus \mathbb{Q}, z > 0$, qualsevol, sabem que l'interval (zx, zy) conté almenys un racional $s \in \mathbb{Q}$. Per tant:

$$zx < s < zy \implies x < \frac{s}{z} < y, \quad \frac{s}{z} \notin \mathbb{Q}$$
 (1.2.4)

1.3 Aplicacions i propietats

Les funcions són un cas particular de les aplicacions.

Definició 1.3.1. Una aplicació entre dos conjunts A i B és un subconjunt S del producte cartesià $A \times B$ en què per cada $a \in A$ existeix un únic $b \in B$ tal que $(a, b) \in S$.

En general, designarem l'aplicació per f (o una lletra semblant) i escriurem $f: A \longrightarrow B$. I, en lloc de $(a,b) \in S$ direm b=f(a). A l'element b l'anomenarem $imatge\ de\ a$ i a a, l'antiimatge $de\ b$.

El que caracteritza una aplicació és el fet que per tot $a \in A$ té sempre una imatge i només una. En canvi, pot passar que alguns elements $b \in B$ no tinguin cap antiimatge o en tinguin més de una. Donada una aplicació $f: A \longrightarrow B$, diem **domini** al conjunt A i s'escriu Dom(f) = A. Anomenem **recorregut** de f al subconjunt de B format pels elements que tenen antiimatge.

$$R(f) = \{ b \in B \mid \exists a \in A, f(a) = b \}$$
 (1.3.1)

Donat un subconjunt $C \subseteq B$, diem **antiimatge de** C al conjunt d'elements d'A que són enviats a C, és a dir,

$$f^{-1}(c) = \{x \in A, f(x) \in C\}. \tag{1.3.2}$$

Anomenem gràfica de f al conjunt

$$G(f) = \{(a, b) \in A \times B \mid b = f(a)\} \subseteq A \times B \tag{1.3.3}$$

Definició 1.3.2. Una aplicació $f: A \longrightarrow B$ es diu injectiva si per cada element de B té com a molt una antiimatge o, equivalentment, si $f(a) = f(a') \implies a = a'$.

Definició 1.3.3. Una aplicació $f:A\longrightarrow B$ és exhaustiva si cada element $b\in B$ té almenys una antiimatge, és a dir, si R(f)=B.

Definició 1.3.4. Una aplicació $f:A\longrightarrow B$ és bijectiva si és injectiva i exhaustiva a la vegada, és a dir, cada element de B té exactament una antiimatge.

Definició 1.3.5. Si una funció és bijectiva, es pot definir l'aplicació inversa $f^{-1}: B \longrightarrow A$ mitjançant $f^{-1}(b) = a, f(a) = b$.

Una vegada hem vist tot això, deduïm que una funció és una aplicació entre nombres.

Exemple 1.3.1. Notem $R_+ = \{x \in \mathbb{R}, x > 0\} = (0, +\infty).$

- 1 La funció $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = x^2$, no és ni injectiva ni exhaustiva i $R(f) = [0, +\infty]$.
- **2** La funció $f: \mathbb{R}_+ \longrightarrow \mathbb{R}, f(x) = x^2$, és injectiva però no exhaustiva.
- 3 La funció $f: \mathbb{R} \longrightarrow \mathbb{R}_+ \cup \{0\}, f(x) = x^2$, és exhaustiva però no injectiva.
- **4** La funció $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x) = x^2$, és bijectiva i la seva inversa és $f^{-1}(y) = \sqrt{y}$.

Si A i B són finits i existeix una bijecció $f:A\longrightarrow B$, aleshores A i B tenen el mateix nombre d'elements. Si són infinits no és necessàriament així. $Per\ exemple,\ f(n)=2n$. Els conjunts que estan en bijecció amb $\mathbb N$ s'anomenaran **conjunts numerables**.

Per justificar si una funció és injectiva, exhaustiva o bijectiva, també ens podríem ajudar de demostracions per contrarrecíproc.

1.4 Funcions elementals

1.4.1 Polinomis

Un polinomi de grau n té l'expressió següent:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 : \quad a_0, \dots, a_{n-1} \in \mathbb{R}, a_n \neq 0.$$
 (1.4.1)

El seu domini és tot \mathbb{R} i el recorregut depèn del grau i dels coeficients.

Una funció racional és el coeficient entre dos polinomis tal que

$$Q(x) = \frac{P(x)}{Q(x)} \tag{1.4.2}$$

on p i q són polinomis. El seu domini és $D(Q)=\{x\in\mathbb{R},q(x)\neq0\}$ i el recorregut és variable.

1.4.2 El valor absolut

Definim el valor absolut com:

$$f(x) = |x| = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$
 (1.4.3)

Observem que |x| és la distància al 0 i |x-a| la distància entre x i a. Tenim que $D(f) = \mathbb{R}$ i $R(f) = \mathbb{R}_+ \cup \{0\}$. Un resultat molt útil que usarem sovint és la **desigualtat triangular**:

$$|x+y| \le |x| + |y|, \quad \forall x, y \in \mathbb{R}$$
 (1.4.4)

1.4.3 Exponencials

Donat a > 0, la funció exponencial de base a és:

$$f(x) = a^x, \quad x \in \mathbb{R} \tag{1.4.5}$$

Es compleixen les propietats següents:

- Si $x = n, n \in \mathbb{N}$, $a^n = aa$ (n vegades).
- $a^0 = 1$
- Si $x = -n, n \in \mathbb{N}, a^{-n} = \frac{1}{a^n}$.
- Si $x = \frac{1}{n}, n \in \mathbb{N}, \exists \alpha \in \mathbb{R}_+$ tal que $\alpha^n = a$. Aleshores $a^{\frac{1}{n}} = \alpha$, i s'escriu $\sqrt[n]{a}$.
- Si $x = \frac{n}{m}; n, m \in \mathbb{Z}$ sense factors en comú i m > 0, aleshores tenim que $a^{\frac{n}{m}} = (a^{\frac{1}{m}})^n$.
- Si $x \in \mathbb{R}$, $x = a_0 a_1 a_2 a_3 \cdots a_n$ i les aproximacions $x_k = a_0 a_1 a_2 \cdots a_k \in \mathbb{Q}$. Es pot demostrar que:

$$a^{x_k} \xrightarrow[k \nearrow +\infty]{} a \tag{1.4.6}$$

Propietats de les exponencials

Siguin a, b > 0 i $x, y \in \mathbb{R}$. Aleshores: $a^x a^y = a^{x+y}$, $(a^x)^y = a^{xy}$, $(ab)^x = a^x b^x$. Si a > 1, a^x és creixent $(x < y \implies a^x < a^y)$ i si $a \in (0, 1)$, a^x és decreixent $(x < y \implies a^x > a^y)$.

Més endavant parlarem del nombre e, el qual facilita els càlculs de moltes operacions: és un nombre que fa que el pendent de la recta tangent a la gràfica en el punt (0,1) = 1.

1.4.4 Logaritmes

La funció exponencial $f: \mathbb{R} \longrightarrow (0, +\infty), y = f(x) = a^x, a > 0$, és bijectiva i ens permet construir la seva inversa:

$$f^{-1}:(0,+\infty)\longrightarrow \mathbb{R} \qquad y\longrightarrow \log_a y$$
 (1.4.7)

i s'anomena logaritme en base a de y,

$$\log_a y = x \Leftrightarrow a^x = y \tag{1.4.8}$$

El logaritme en base e se'n diu logaritme neperià i s'escriu $\log y$ o $\ln y$. Cal recordar que no significa logaritme en base 10.

Propietats dels logaritmes

Siguin a, b > 0 i x, y > 0. Llavors:

- $1 \log_a(xy) = \log_a x + \log_b y$
- $2 \log_a(x^y) = y \log_a x, y \in \mathbb{R},$
- $3 \log_a(xy) = \log_e b + \log_b x, b > 0$ (fórmula del canvi de variable).

Demostració. És una conseqüència directa de les propietats de l'exponencial. Com tenim que $(a^x)^y = a^{xy} =$ es compleix

$$a^{y\log_a x} = (a^{\log_a x})^y = x^y. (1.4.9)$$

Si anomenem $z=\log_a x^y$, llavors $a^z=x^y=a^{y\log_a x}$. Siguin $z=\log_a x$ i $y=\log_b x$. Així, $a^z=b^y=x$ i $z=\log_a b^y=y\log_a b$, obtenint el resultat.

Utilitzant l'últim apartat podem calcular qualsevol logaritme en funció del neperià:

$$\log_a x = \frac{\ln x}{\ln a} \tag{1.4.10}$$

11

1.4.5 Funcions trigonomètriques

Són les funcions que apareixen en la mesura d'angles dels triangles rectangles:

Tenint en compte la figura del triangle rectangle, podem definir una sèrie d'operacions: $\sin x = \frac{\overrightarrow{BC}}{\overrightarrow{AC}}$, $\cos x = \frac{\overrightarrow{AB}}{\overrightarrow{AC}}$, $\tan x = \frac{\overrightarrow{BC}}{\overrightarrow{AB}}$, $\cot x = \frac{\cos x}{\sin x} = \frac{\overrightarrow{AB}}{\overrightarrow{BC}}$

Si ens situem en un cercle de radi 1 i considerem l'angle x en radians que dona lloc al triangle dibuixat. Tenim les següents igualtats.

Donarem una sèrie de propietats molt utilitzades:

Propietats de les funcions trigonomètriques, $\forall x \in \mathbb{R}$

- Les funcions sin i cos són 2π periòdiques, $\sin x + 2\pi = \sin x$; $\cos x + 2\pi = \cos x$.
- $\bullet |\sin x| \le 1, |\cos x| \le 1.$
- $\bullet \sin^2 x + \cos^2 x = 1.$
- $\sin(2x) + 2\sin x \cos x$, $\cos(2x) + \cos^2 x \sin^2 x$.
- $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$, $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$

1.4.6 Composició de funcions

Podem construir altres funcions a partir de sumes, restes, multiplicacions, divisions o composicions de funcions conegudes. Suposem A, B, C, D conjunts de nombres, $B \subseteq C$ i les funcions $f: A \longrightarrow B, \quad g: C \longrightarrow D$.

Definirem la composició de f i g com la funció $g \circ f: A \longrightarrow D$, com $(g \circ f)(x) = g(f(x)), x \in A$. No és commutativa.

OBSERVACIÓ: no totes les funcions conegudes o importants són elementals, o poden obtenir-se a partir d'operacions algebraiques o composició de funcions elementals.

Capítol 2

SUCCESSIONS

2.1 Introducció a les successions

Definició 2.1.1 (Successió). Una successió de nombres reals és una aplicació de \mathbb{N} en a \mathbb{R} , és a dir,

$$a: \mathbb{N} \longrightarrow \mathbb{R}, n \longrightarrow a_n$$
 (2.1.1)

que fa correspondre a cada n un nombre real, $f(n) = a_n$. $\{a_n, n \in \mathbb{N}\}$, on a_n serà el **terme** general de la successió [3].

Exemple 2.1.1. $a_n = a_{n-1} + a_{n-2}, n \ge 3, a_1 = a_2 = 1$, successió de Fibonacci.

Definició 2.1.2 (Límit d'una successió). Una successió $\{a_n, n \in \mathbb{N}\}$ a \mathbb{R} es diu que té de **límit** de la successió el nombre $l \in \mathbb{R}$, o bé que convergeix cap a l, si per a tot $\epsilon > 0$ $\exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$, $|a_n - l| < \epsilon$. Escriurem:

$$\lim_{n \to \infty} a_n = \lim_n a_n = l \tag{2.1.2}$$

Exemple 2.1.2. Sigui $a_n = \frac{1}{n}, n \in \mathbb{N}$. Provem que té límit 0. Per qualsevol $\epsilon > 0$ prou petit, $\exists n_0 = [\frac{1}{\epsilon}] + 1$, on [] és la part entera, tal que $\forall n \geq n_0$,

$$\left|\frac{1}{n} - l\right| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} < \epsilon$$
 (2.1.3)

Definició 2.1.3 (Successió divergent). Una successió que no és convergent l'anomenarem divergent [3].

Definició 2.1.4. Si una successió té límit, aquest és únic.

Demostració. Suposem que existeixen dos límits l_1 i l_2 d'una mateixa successió $a_{nn\in\mathbb{N}}$. Aleshores, fixat $\epsilon > 0$, $\exists n_1, n_2 \in \mathbb{N}$ tal que:

$$|a_n - l_1| < \epsilon, \forall n \ge n_1 \tag{2.1.4}$$

$$|a_n - l_2| < \epsilon, \forall n > n_2 \tag{2.1.5}$$

Llavors, si per $n \ge \max(n_1, n_2)$ tenim que

$$|l_1 - l_2| = |l_1 - a_n + a_n - l_2| \le |l_1 - a_n| + |a_n - l_2| < 2\epsilon$$
(2.1.6)

i com això és cert $\forall \epsilon > 0$, això implica que $l_1 = l_2$.

Definició 2.1.5. La successió $\{a_n\}$ és acotada [3] si

$$\exists k \in \mathbb{R} \mid |a_n| \le M, \forall n \in \mathbb{N} \tag{2.1.7}$$

Teorema 2.1.1. Tota successió convergent és acotada. Com a conseqüència, tota successió no fitada és divergent [3].

Demostració. Sigui $l = \lim_n a_n$. Fixem, per exemple $\epsilon = 1$. Aleshores, $\exists n_0 \in \mathbb{N}$ tal que

$$|a_n - l| < 1, \forall n \ge n_0 \tag{2.1.8}$$

En particular,

$$|a_n| \le |a_n - l| + |l| < 1 + |l|, \forall n \ge n_0 \tag{2.1.9}$$

Així:

$$|a_n| \le \max(|a_1|, |a_2|, \dots, |a_n|, |l| + 1) \Leftrightarrow |a_n| \le M$$
 (2.1.10)

Observació 2.1.1. Pot ser acotada, però no convergent. Per exemple, $a_n = (-1)^n$

Tot seguit donarem una sèrie de propietats algebraiques i d'ordre.

Teorema 2.1.2. Siguin $\{a_n\}_{\mathbb{N}}$ i $\{b_n\}_{\mathbb{N}}$ dues successions amb $\lim_n a_n = a$ i $\lim_n b_n = b$. Aleshores,

- $1 \lim_{n} (\lambda a_n) = \lambda a /3/$
- $2 \lim_n (a_n \pm b_n) = a \pm b,$
- $3 \lim_n (a_n * b_n) = a * b,$

Demostració. 2. Donat $\epsilon > 0$, $\exists n_1, n_2$ tals que

$$|a_n - a| < \frac{\epsilon}{2}, \forall n \ge n_1 \tag{2.1.11}$$

$$|b_n - b| < \frac{\epsilon}{2}, \forall n \ge n_2 \tag{2.1.12}$$

Si $n_0 = \max(n_1, n_2), \forall n \ge n_0$ tenim que

$$|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} \implies |a_n - a| + |b_n - b| < \epsilon \quad (2.1.13)$$

3. Sigui k la cota de $\{a_n\}_{n\in\mathbb{N}}$ que sabem que està acotada. Donats $\frac{\epsilon}{2|b|}>0$ i $\frac{\epsilon}{2k}>0$ existeixen $n_1,n_2\in\mathbb{N}$ tals que

$$|a_n - a| < \frac{\epsilon}{2|b|}, \forall n \ge n_1 \tag{2.1.14}$$

$$|b_n - b| < \frac{\epsilon}{2k}, \forall n \ge n_2 \tag{2.1.15}$$

Llavors per qualsevol $\epsilon > 0, \exists n_0 = \max(n_1, n_2)$ tal que $\forall n \geq n_0$,

$$|a_{n}b_{n} - ab| \leq |a_{n}b_{n} - a_{n}b| + |a_{n}b - ab|$$

$$= |a_{n}||b_{n} - b| + |b||a_{n} - a|$$

$$\leq k|b_{n} - b| + |b||a_{n} - a|$$

$$< k\frac{\epsilon}{2k} + |b|\frac{\epsilon}{2|b|} = \epsilon \implies |a_{n}b_{n} - ab| < \epsilon$$

$$(2.1.16)$$

_

Observació 2.1.2. Per al teorema 2.1.2. cal considerar $a - a_n \le |a - a_n|$ i $-(a - a_n) \ge -|a - a_n|$. **Teorema 2.1.3.** Sigui $\{a_n\}_{n\in\mathbb{N}}$ una successió convergent amb límit $\lim_n a_n = a$. Si existeixen

constants $c, d \in \mathbb{R}$ i $n_0 \in \mathbb{N}$

$$c \le a_n \le d, \ \forall n \ge n_0 \implies c \le a \le d$$
 (2.1.17)

Demostració. Suposem a > d (l'altre cas es farà de manera similar). Prenem $\epsilon = a - d > 0$. Per definició de límit, $\exists n_1 \in \mathbb{N}$ tal que $\forall n \geq n_1$ es té

$$|a_n - a| < \epsilon = a - d \tag{2.1.18}$$

En particular,

$$a_n = a - (a - a_n) \ge a - |a - a_n| > a - (a - d) = d$$
 (2.1.19)

i això és contradictori. Per reducció a l'absurd la contradicció ve de suposar a>d. Així, $a\leq d$.

Més generalment podríem provar:

Teorema 2.1.4. Siguin $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ dues successions satisfient

$$\lim_{n} a_n = a \tag{2.1.20}$$

$$\lim_{n} b_n = b \tag{2.1.21}$$

Si $\exists n_0 \in \mathbb{N} \ tal \ que \ a_n \leq b_n, \forall n \geq n_0, \ aleshores \ a \leq b.$

Observació 2.1.3. Aquest resultat no és cert si $a_n < b_n, \forall n \ge n_0$, no implica que a < b. Agafem com a contraexemple

$$a_n = -\frac{1}{n}, b_n = \frac{1}{n} \implies 0 < 0 \ (\Longrightarrow \bot)$$
 (2.1.22)

Teorema 2.1.5 (Lema o Teorema del Sandwich). Siguin $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, $\{c_n\}_{n\in\mathbb{N}}$ successions per a les quals existeix $n_o \in \mathbb{N}$ tal que

$$a_n \le b_n \le c_n, \forall n \ge n_0 \tag{2.1.23}$$

$$\lim_{n} a_n = \lim_{n} c_n = l \implies \lim_{n} \mathbf{b_n} = \mathbf{l}$$
 (2.1.24)

Exemple 2.1.3. 1 Comprovem que $\lim_{n} \frac{\sin n}{n^{\frac{1}{3}}} = 0$. Sabem que $\lim_{n} (\pm \frac{1}{n^{\frac{1}{3}}}) = 0$. Aplicant el Teorema del Sandwich i les designaltats

$$-\frac{1}{n^{\frac{1}{3}}} \le \frac{\sin n}{n^{\frac{1}{3}}} \le \frac{1}{n^{\frac{1}{3}}},\tag{2.1.25}$$

obtenint el resultat desitjat.

2 Provem que $\lim_{n} \frac{(-1)^n + n}{3n+1} = \frac{1}{3}$. És immediat comprovar que

$$\lim_{n} \frac{n-1}{3n+1} = \frac{1}{3} \tag{2.1.26}$$

$$\lim_{n} \frac{n+1}{3n+1} = \frac{1}{3}.$$
 (2.1.27)

Com abans, el teorema del Sandwich i les desigualtats

$$\frac{n-1}{3n+1} \le \frac{(-1)^n + n}{3n+1} \le \frac{n+1}{3n+1},\tag{2.1.28}$$

ens implica el resultat.

Observació 2.1.4. Cal tenir en consideració les següents desigualtats: $|\cos n| \le 1$ i $|(-1)^n| \le 1$.

2.2 Successions monòtones

Definició 2.2.1. Una successió és monòtona si és creixent o decreixent. [3]

Definició 2.2.2. Una successió $\{a_n\}_{n\in\mathbb{N}}$ és monòtona creixent (decrexent) si $\forall n\in\mathbb{N}$,

$$a_n \le a_{n+1} \quad (a_n \ge a_{n+1}), \ \forall n.$$
 (2.2.1)

Es denota per $a_n \nearrow (a_n \searrow)$.

Definició 2.2.3. La successió $\{a_n\}_{n\in\mathbb{N}}$ és acotada si ho és superiorment i inferiorment, o equivalentment, $\exists M>0$ tal que $\forall n\in\mathbb{N}$,

$$|a_n| \le M. \tag{2.2.2}$$

Si la successió només compleix que $\exists M \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}$,

$$a_n < M, \tag{2.2.3}$$

aleshores és acotada superiorment. Podem definir també acotada inferiorment de manera anàloga.

Teorema 2.2.1. Tota successió monòtona creixent i acotada superiorment és convergent. Anàlogament, tota successió monòtona decreixent i acotada inferiorment és convergent.

Demostració. Sigui $S = \sup_n a_n$. Sabem que $a_n \leq S$, i que $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ tal que $S - \epsilon < a_{n_0}$. Per monotonia

$$S - \epsilon < a_{n_0} \le a_n \le S, \ \forall n \ge n_0. \tag{2.2.4}$$

Per tant,

$$|a_n - S| < \epsilon, \ \forall n \ge n_0, \tag{2.2.5}$$

i això implica que

$$\lim_{n} a_n = S. \tag{2.2.6}$$

Exemple 2.2.1. Sabem que $\lim_n (1 + \frac{1}{n})^n) = e$. Però anem a veure que la successió $\{a_n = (1 + \frac{1}{n})^n)\}_{n \in \mathbb{N}}$ és creixent i acotada i, per tant, té límit. Veiem primer el creixement. Desenvolupant el binomi de Newton tenim que

$$\mathbf{a_n} = \left(\mathbf{1} + \frac{\mathbf{1}}{\mathbf{n}}\right)^{\mathbf{n}} = 1 + \binom{n}{1} 1^n \frac{1}{n} + \binom{n}{2} 1^{n-1} \left(\frac{1}{n}\right)^2 + \dots + \binom{n}{n} 1^0 \left(\frac{1}{n}\right)^n$$

$$= 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^2} + \dots + \binom{n}{n-1} \frac{1}{n^{n-1}} + \binom{n}{n} \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{n-1}{n}\right),$$

$$(2.2.7)$$

$$\mathbf{a_{n}} = \left(1 + \frac{1}{n+1}\right)^{n+1} = 1 + 1 + \frac{1}{2}\left(1 - \frac{1}{n+1}\right) + \frac{1}{3!}\left(1 - \frac{1}{n+1}\right)\left(1 - \frac{2}{n+1}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n+1}\right)\left(1 - \frac{2}{n+1}\right) \times \dots \times \left(1 - \frac{n-1}{n+1}\right) + \frac{1}{(n+1)!}\left(1 - \frac{1}{n+1}\right)\left(1 - \frac{2}{n+1}\right) \times \dots \times \left(1 - \frac{n}{n+1}\right),$$
(2.2.8)

on en aquesta darrera igualtat hem utilitzat els mateixos arguments que abans. Fixem-nos que a_{n+1} té un terme més que a_n , aquest terme és

$$\frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(2 - \frac{1}{n+1} \right) \times \dots \times \left(1 - \frac{n}{n+1} \right) \ge 0 \tag{2.2.9}$$

que és positiu. La resta de termes de a_n i a_{n+1} poden ser comparats. Veiem que un terme qualsevol de a_n i a_{n+1} compleix que:

$$\frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \times \ldots \times \left(1 - \frac{k-1}{n} \right) \\
\leq \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \times \ldots \times \left(1 - \frac{k-1}{n+1} \right) \tag{2.2.10}$$

Així,

$$a_n \le a_{n+1} \tag{2.2.11}$$

Ara veurem que està acotada per 3. Per qualsevol $n \ge 1$,

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = 1 + 1 + \frac{1}{2}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) * \dots * \left(1 - \frac{n-1}{n}\right)$$

$$\leq 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \leq 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} < 3.$$

$$(2.2.12)$$

A la penúltima desigual
tat hem utilitzat que $\frac{1}{k!} \leq \frac{1}{2^{k-1}}$ perquè $2^{k-1} \leq k!$ ja que

$$2^{k-1} = 2 \times \dots (\times k - 1) \times 2 \le k(k-1) \times \dots \times 2 \times 1 = k!$$
 (2.2.13)

i a l'última hem empleat que

$$\frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}} \le \sum_{k=1}^{+\infty} \frac{1}{2k} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$
 (2.2.14)

Observació 2.2.1. Hem de conèixer les següents expressions:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 (2.2.15)

Figura 2.1: Binomi de Newton

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{2.2.16}$$

Figura 2.2: Coeficients binomials

2.3 Successió de Cauchy

Una manera equivalent de provar la convergència, sense conèixer a priori el valor del límit, és la següent:

Definició 2.3.1. Una successió $\{a_n\}_{n\in\mathbb{N}}$ és de Cauchy si per tot $\epsilon>0, \exists n_0\in\mathbb{N}$ tal que $\forall n,m\geq n_0$ es té

$$|a_n - a_m| < \epsilon \tag{2.3.1}$$

Exemple 2.3.1. Comprovem que $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ és de Cauchy. Fixem $\epsilon>0$ i mirem per quin $n_0\in\mathbb{N}$ tenim que si $n,m\geq n_0$, la designaltat

$$\left| \frac{1}{n} - \frac{1}{m} \right| = \frac{1}{m} \left(1 - \frac{m}{n} \right) < \frac{1}{m},$$
 (2.3.2)

i triant $n_0 > \frac{1}{\epsilon}$, s'obté que si $n, m \ge n_0, \frac{1}{m} < \epsilon$, i, per tant, es compleix la desigualtat de dalt.

Una de les aplicacions més importants d'aquesta definició és el teorema següent: es pot provar l'equivalència entre ser convergent i ser de Cauchy a \mathbb{R} . És una de les característiques que defineixen el conjunt \mathbb{R} , l'anomenada **completitud**.

Teorema 2.3.1. Sigui $\{a_n\}_{n\in\mathbb{N}}$ una successió. Aleshores, $\{a_n\}_{n\in\mathbb{N}}$ és convergent $\Leftrightarrow \{a_n\}_{n\in\mathbb{N}}$ és de Cauchy.

 $Demostració. \ (\Longrightarrow).$ Com que la successió és convergent, $\exists p \in \mathbb{R}$ tal que:

$$\forall \epsilon > 0 \; \exists n_0 \; \middle| \; |a_n - p| < \epsilon/2, \; \forall n > n_0.$$
 (2.3.3)

Per tant, per a qualssevol $n, m > n_0$ tenim:

$$\forall \epsilon > 0 \ \exists n_0 \ \middle| \ |a_n - p| < \epsilon/2; |a_m - p| < \epsilon/2, \ \forall n, m > n_0.$$
 (2.3.4)

de manera que:

$$|a_n - a_m| \le |a_n - p| + |a_m - p| < \epsilon/2 + \epsilon/2 = \epsilon,$$
 (2.3.5)

que és la condició De Cauchy presentada a la definició 2.3.

Teorema 2.3.2 (Teorema de Bolzano-Weierstrass). Sigui $\{a_n\}_{n\in\mathbb{N}}$ una successió acotada. Aleshores existeix una subsuccessió convergent. Convergent \Longrightarrow fitada, fitada \Longrightarrow parcial convergent.

Demostració. Primer aclarir que una subsuccessió (o successió parcial) de $\{a_n\}_{n\in\mathbb{N}}$ és una successió de la forma $\{a_{n_k}\}_{k\in\mathbb{N}}$, on $n_1 < n_2 < \ldots < n_k < \ldots$ Prenem I = [A, B] tal que $\forall a_n \in I$ i dividim l'interval en dues meitats. En alguna de les dues meitats hi ha infinits termes de la successió (podrien ser les dues meitats). Ens quedem la meitat I_1 que conté infinits elements i prenem com a a_{n_1} el primer element de la successió que compleix $a_{n_1} \in I_1$. Repetim el procés amb I_1 i ens quedem amb la meitat que conté infinits elements, anomenem-la I_2 , triem $a_{n_2} \in I_2$ de la mateixa manera. Anem repetint aquesta idea i obtenim una subsucessió $a_{n_k} \in I_k$ tal que si $k, m \geq n_0$, aleshores:

$$|a_{n_k} - a_{m_k}| < \frac{B - A}{2^{n_0}} \tag{2.3.6}$$

perquè cada cop anem fent meitats. Així, $\{a_{n_k}\}_{k\in\mathbb{N}}$ és una successió de Cauchy, i per tant, convergent.

2.4. ALTRES LÍMITS

2.4 Altres límits

Aquesta noció de convergència a podem estendre a successió amb límit infinit.

Direm que la successió $\{a_n\}_{n\in\mathbb{N}}$ tendeix a $+\infty$ si $\forall M\in\mathbb{R}_+$ (o M>0), $\exists n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ es té $a_n>M$.

Ho escriurem $\lim_{n\to+\infty} a_n = +\infty$. Anàlogament pel $\lim_{n\to+\infty} a_n = -\infty$.

Exemple 2.4.1. • $\lim_{n\to+\infty} \log n = +\infty$

- $\lim_{n\to+\infty} -\sqrt{n} = -\infty$
- En canvi, $\{(-1)^n n\}_{n\in\mathbb{N}}$ no convergeix ni a $+\infty$ ni a $-\infty$.

Cal vigilar a l'hora de fer operacions amb límits, els infinits són símbols per indicar el comportament de la successió, no són nombres reals.

Teorema 2.4.1. Siguin $\{a_n\}_{n\in\mathbb{N}}$ i $\{b_n\}_{n\in\mathbb{N}}$ dues successions amb límits $\lim_{n\to+\infty} a_n = a$ i $\lim_{n\to+\infty} b_n = +\infty$, respectivament. Aleshores:

$$\lim_{n \to +\infty} (a_n + b_n) = +\infty \tag{2.4.1}$$

$$\lim_{n \to +\infty} (a_n b_n) \begin{cases} +\infty, & si \ a > 0, \\ -\infty, & si \ a < 0, \end{cases}$$
 (2.4.2)

$$Si \ a \neq 0, \lim_{n \to \infty} \frac{a_n}{b_n} = 0 \tag{2.4.3}$$

Tenint en compte que hi ha uns quants límits que no estan definits, que depenen de cada cas en particular. Se les anomena **indeterminacions**.

Exemple 2.4.2. Siguin $a_n = n^2$ i $b_n = \sqrt{n}$. Obviament,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = +\infty \text{ i } \lim_{n \to \infty} \frac{a_n}{b_n} = +\infty, \lim_{n \to \infty} \frac{b_n}{a_n} = 0$$
 (2.4.4)

2.4.1 Criteris

Ara donarem una sèrie de criteris útils en segons quines successions:

Criteri d'Stolz

Sigui $\{B_n\}_{n\in\mathbb{N}}$ una successió estrictament creixent amb $\lim_{n\to\infty} B_n = +\infty$ i sigui $\{A_n\}_{n\in\mathbb{N}}$ una successió de nombres reals tals que

$$\lim_{n \to +\infty} \frac{A_n - A_{n-1}}{B_n - B_{n-1}} = l. \tag{2.4.5}$$

Aleshores,

$$\lim_{n \to +\infty} \frac{A_n}{B_n} = l. \tag{2.4.6}$$

Exemple 2.4.3. Comprovem que $\lim_{n\to+\infty}\frac{\ln n}{n}=0$. Fixem-nos que $A_n=\ln n$ i $B_n=n$ compleixen les hipòtesi del criteri i mirem

$$\lim_{n \to +\infty} \frac{A_n - A_{n-1}}{B_n - B_{n-1}} = \lim_{n \to +\infty} \frac{\ln n - \ln(n-1)}{1} = \lim_{n \to +\infty} \ln \frac{n}{n-1} = \lim_{n \to +\infty} \ln \left(1 + \frac{n}{n-1}\right) = 0.$$
(2.4.7)

Figura 2.3: Definició gràfica de successió convergent

2.5 Observacions finals

Observació 2.5.1. Una successió es pot donar expressant el terme n-èssim com una funció de n, és el que s'anomena **expressar el terme general de la successió**, la qual cosa permet conèixer cadascun dels elements de la successió substituint el valor de n allà on correspongui [2]. Notem, però, que el coneixement d'uns quants termes de la successió no permet deduir el terme general.

Exemple 2.5.1 (Successions definides per recurrència). Una successió és recurrent si el terme n-èssim x_n es defineix mitjançant una expressió que permet obtindre'l a partir dels anteriors x_1, x_2, \dots, x_{n-1} .

Observació 2.5.2. El límit de la suma i del producte de successions convergents permet establir la convergència d'una altra successió quan aquesta s'obté com a resultat d'operacions entre diverses successions convergents i límits coneguts, tal i com es mostra a continuació:

Demostració. Sigui la següent successió x_n

$$\{x_n\}_{n\in\mathbb{N}} = \left\{\frac{7n^2 + 9n - 1}{6n^2 + 13n + 6}\right\},\tag{2.5.1}$$

$$\frac{7n^2 + 9n - 1}{6n^2 + 13n + 6} = \frac{7 + 9\frac{1}{n} - \frac{1}{n}\frac{1}{n}}{6 + 13\frac{1}{n} + 6\frac{1}{n}\frac{1}{n}} \xrightarrow{lim(1/n)=0} \frac{7 + 9*0 - 0*0}{6 + 13*0 + 6*0*0} = \frac{7}{6}$$
(2.5.2)

Capítol 3

LÍMITS I CONTINUÏTAT

3.1 Límit d'una funció a un punt

Sigui $D \subseteq \mathbb{R}$ i $f: D \longrightarrow \mathbb{R}$. Donat $a \in D$ direm que el límit de f quan x tendeix a a és l si a mesura que x es va apropant a a el valor de f(x) es va apropant a l.

Definició 3.1.1. El límit de f quan x tendeix a a és $l \in \mathbb{R}$, i ho escriurem $\lim_{x\to a} f(x) = l$, si per tot $\epsilon > 0$, $\exists \delta > 0$ tal que

$$\forall x \in D, \ 0 < |x - a| < \delta \implies |f(x) - l| < \epsilon. \tag{3.1.1}$$

En termes d'intervals, ho podem escriure com:

$$x \in D \cap (a - \delta, a + \delta) \setminus \{a\} \implies f(x) \in (l - \epsilon, l + \epsilon).$$
 (3.1.2)

Definició 3.1.2. En altres paraules, per tot entorn de l existeix un entorn de x = a si x viu a aquest entorn de a, sigui $x \neq a$, llavors f(x) viu a l'entorn de l fixat al principi.

Definició 3.1.3. Direm que el límit de f quan x tendeix a a per la dreta és $l \in \mathbb{R}$ i ho escriurem $\lim_{x\to a^+} f(x) = l$, si $\forall \epsilon > 0$, $\exists \delta > 0$ tal que

$$x \in D \cap (a, a + \delta) \implies f(x) \in (l - \epsilon, l + \epsilon) \implies |f(x) - l| < \epsilon$$
 (3.1.3)

De la mateixa manera, ho podríem definir per l'esquerra.

Exemple 3.1.1. Provem que $\lim_{x\to a} x^2 = a^2$. Farem el cas a > 0.

Demostraci'o. Fixem $\epsilon > 0$ i veurem que $\exists \delta > 0$ tal que

$$0 < |x - a| < \delta \implies |x^2 - a^2|\epsilon. \tag{3.1.4}$$

Si $|x-a| < \delta$ tenim que per la designaltat per la designaltat triangular

$$|x^{2} - a^{2}| = |x - a||x + a| < \delta(|x| + |a|) < 2a + \delta, \tag{3.1.5}$$

on hem emprat que

$$|x+a| \le |x| + |a| \le |x-a| + 2|a| < \delta + 2a. \tag{3.1.6}$$

Llavors n'hi ha prou triant $\delta < a$ i $\delta < \frac{\epsilon}{3a}$ per obtenir el resultat.

Observació 3.1.1. Notem que l no té per què pertànyer al recorregut de f(x).

Exemple 3.1.2. Veiem que $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ no existeix.

Demostració. Efectivament, pels punts $x_k = \frac{1}{\pi k}, k \in \mathbb{N}, \sin\left(\frac{1}{x_k}\right) = 0$, i per tant

$$\lim_{k \in \mathbb{N}, k \to +\infty} \sin\left(\frac{1}{x_k}\right) = 0; \tag{3.1.7}$$

en canvi, si agafem $y_k = \left(\frac{1}{\frac{\pi}{2}} + 2\pi k\right), k \in \mathbb{N}, \sin\left(\frac{1}{y_k}\right) = 1$, i, llavors,

$$\lim_{k \in \mathbb{N}, k \to \infty} \sin\left(\frac{1}{y_k}\right) = 1. \tag{3.1.8}$$

Així, no és cert que quan x convergeix a 0 la funció tendeixi a un valor $l \in \mathbb{R}$.

Exemple 3.1.3. Provem que $\lim_{x\to 3} (4x - 5) = 7$.

Demostració. Considerem $\epsilon > 0$, qualsevol. Llavors:

$$|f(x) - 7| < \epsilon \implies |4x - 12| < \epsilon \implies 4|x - 3| < \epsilon, \tag{3.1.9}$$

de manera que si considerem $\delta = \epsilon/4$, tindrem que $\forall \epsilon > 0$:

$$|x-3| < \delta \implies |f(x)-7| < \epsilon. \tag{3.1.10}$$

Definició 3.1.4. Diem que una funció $f:D\longrightarrow \mathbb{R}$ és acotada superiorment si $\exists M\in \mathbb{R}$ tal que $f(x)\leq M, \ \forall x\in D$. Una funció és acotada inferiorment si $\exists m\in \mathbb{R}$ tal que $f(x)\geq m, \ \forall x\in D$. Diem que és acotada si a la vegada és acotada superiorment i inferiorment, i això vol dir que $\exists M\in \mathbb{R}^+$ tal que $|f(x)|\leq M, \ \forall x\in D$. En més detall al subapartat 3.3.1.

Teorema 3.1.1. Si $\lim_{x\to a} f(x) = l \in \mathbb{R}$ existeix un entorn d'a on la funció f(x) és acotada.

Demostració. Fixem $\epsilon = 1 > 0$. Sabem que $\exists \delta > 0$ tal que $\forall x \in I(a, \delta) \setminus \{a\}$, aleshores:

$$0 < |x - a| < \delta \Rightarrow |f(x) - l| < \epsilon \implies l - 1 \le f(x) \le l + 1. \tag{3.1.11}$$

Teorema 3.1.2. Sigui $0 \subseteq \mathbb{R}$ i $f, g : D \longrightarrow \mathbb{R}$. Sigui $a \in D$ tal que existeixen els límits:

$$\lim_{x \to a} f(x) = l_f \ i \ \lim_{x \to a} g(x) = l_y. \tag{3.1.12}$$

Aleshores:

- (i) $\lim_{x\to a} (f(x) + g(x)) = l_f + l_y$,
- (ii) $\lim_{x\to a} (f(x) \times g(x)) = l_f \times l_y$,
- (iii) Si $g(x) \neq 0$ en un entorn d'a també tenim $\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \left(\frac{l_f}{l_g}\right)$
- (iv) Si $f(x) \leq g(x)$ en un entorn d'a, $l_f \leq l_g$.

Observació 3.1.2. Les proves són similars a les de les successions. A l'apartat (iv), si són estrictes les designaltats no és cert, agafem per exemple f(x) = x i $g(x) = x + x^2$ i $x \to 0$. $x < x^2 \Longrightarrow 0 \le 0$.

Teorema 3.1.3 (Teorema del Sandwich). Siguin $f, h, g: D \longrightarrow \mathbb{R}$ tal que

$$f(x) \le h(x) \le g(x), \forall x \in D \text{ (en un entorn d'a)}$$
 (3.1.13)

Sigui $a \in D$ pel qual \exists els límits de f i h al punt d'a i a més coincideixen

$$l = \lim_{x \to a} f(x) = \lim_{x \to a} g(x). \tag{3.1.14}$$

Aleshores,

$$\lim_{x \to a} h(x) = l. \tag{3.1.15}$$

Exemple 3.1.4. En un entorn del zero

$$-x \le \sin x \le x,\tag{3.1.16}$$

i com que $\lim_{x\to 0} x = \lim_{x\to 0} (-x) = 0$, tenim que

$$\lim_{x \to 0} \sin x = 0 \tag{3.1.17}$$

Exemple 3.1.5. Per a $x \in (0, \frac{\pi}{2})$ tenim que

$$\sin x \le x \le \tan x,\tag{3.1.18}$$

això implica que

$$\cos x \le \frac{\sin x}{x} \le 1,$$

i per tant

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1. \tag{3.1.19}$$

Figura 3.1: Relació entre \sin i \tan

3.1.1 Límits laterals

Definició 3.1.5 (Límit per l'esquerra de la funció f(x) en el punt a). La funció f(x) tendeix a b_1 quan $x \to a^-$ si

$$\forall \epsilon > 0, \ \exists \ \delta > 0 \ \Big| \ |f(x) - b_1| < \epsilon \text{ si } a - \delta < x < a, \tag{3.1.20}$$

i s'escriu

$$\lim_{x \to a^{-}} f(x) = b_1. \tag{3.1.21}$$

Definició 3.1.6 (Límit per la dreta de la funció f(x) en el punt a). La funció f(x) tendeix a b_2 quan $x \to a^+$ si:

$$\forall \epsilon > 0, \ \exists \ \delta > 0 \ \Big| \ |f(x) - b_2| < \epsilon \text{ si } a < x < a + \delta, \tag{3.1.22}$$

i s'escriu

$$\lim_{x \to a^+} f(x) = b_2. \tag{3.1.23}$$

Definició 3.1.7 (Existència del límit). Existeix el límit de la funció f(x) en el punt a, $\lim_{x\to a} f(x) = b$, si, i només si:

$$\lim_{x \to a^{-}} f(x) = b \quad \text{i} \quad \lim_{x \to a^{+}} f(x) = b. \tag{3.1.24}$$

3.2 Límits infinits i límits a l'infinit

Definició 3.2.1 (Entorn de $\pm \infty$). Un entorn a $+\infty$ és un interval que va des d'una constant M fins a $+\infty$. Equivalentment, un entorn a $-\infty$ és un interval que va des de $-\infty$ fins a M.

Entorn a
$$+\infty$$
: $(M, +\infty)$, Entorn a $-\infty$: $(-\infty, M)$ (3.2.1)

Definició 3.2.2 (Límit infinit). Sigui $f:(a,b) \longrightarrow \mathbb{R}$. Direm que el límit de f quan x tendeix a per la dreta és $+\infty$, i ho escriurem $\lim_{x\to a^+} f(x) = +\infty$, si $\forall M>0, \exists \ \delta>0$ tal que

$$x \in (a, a + \delta) \implies f(x) > M.$$
 (3.2.2)

Anàlogament, $\lim_{x\to a^-} f(x) = -\infty$, si $\forall M < 0, \exists \delta > 0$ tal que

$$x \in (a - \delta, a) \implies f(x) < -M.$$
 (3.2.3)

Els límits a b es defineixen de manera similar.

Sigui $f:(a,+\infty) \longrightarrow \mathbb{R}$. Direm que el límit de f quan x tendeix a $+\infty$ és $l \in \mathbb{R}$, i ho escriurem $\lim_{x\to\infty} f(x) = l$, si $\forall \epsilon > 0$, $\exists k > 0$ tal que

$$x > k \implies |f(x) - l| < \epsilon. \tag{3.2.4}$$

Anàlogament, si $f:(-\infty,b)\longrightarrow \mathbb{R}$, direm que $\lim_{x\to -\infty}f(x)=l$, si $\forall \epsilon>0$, $\exists \ k>0$ tal que

$$x < -k \implies |f(x) - l| < \epsilon. \tag{3.2.5}$$

Definició 3.2.3 (Límit a l'infinit). Donada $f:(a,+\infty) \longrightarrow \mathbb{R}$, direm que $\lim_{x\to+\infty} f(x) = +\infty$ si $\forall M>0$, $\exists \ k>0$ tal que

$$x > k \implies f(x) > M \tag{3.2.6}$$

En altres paraules, per tot entorn de l ($\forall \epsilon > 0$), $\exists M > 0$ tal que si x > M (perquè en aquest cas, l'entorn seria d' ∞ , no de x = a), $|f(x) - l| < \epsilon$.

Exemple 3.2.1. Considerem

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

polinomis de graus n i m amb $a_n, b_m > 0$. Aleshores,

$$\lim_{x \to +\infty} \left(\frac{p(x)}{q(x)} \right) = \begin{cases} +\infty, & n > m, \\ \frac{a_n}{b_m}, & n = m, \\ 0, & n < m. \end{cases}$$
 (3.2.7)

Per veure això hem emprat:

$$\frac{p(x)}{q(x)} = \frac{x^n \left(a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}}\right)}{x^m \left(b_m + \frac{b_{m-1}}{x} + \dots + \frac{b_1}{b^{m-1}}\right)},$$
(3.2.8)

i el fet que

$$\lim_{n \to +\infty} \left(\frac{1}{x^n} \right) = 0, \forall n \in \mathbb{N}.$$

Observació 3.2.1. Els infinits no són nombres i, per tant, cal justificar les operacions entre ells.

Proposició 3.2.1. Siguin f i g funcions $amb \lim_{x\to +\infty} f(x) = l$ i $\lim_{x\to \infty} g(x) = +\infty$. Aleshores:

- 1. $\lim_{x \to +\infty} (f(x) + g(x)) = +\infty$,
- 2. $\lim_{x \to +\infty} (f(x) g(x)) = -\infty,$
- 3. $\lim_{x \to +\infty} \left(\frac{f(x)}{g(x)} \right) = 0$,

4.
$$\begin{cases} \lim_{x \to +\infty} f(x) \times g(x) = +\infty, & \text{si } l > 0, \\ \lim_{x \to +\infty} f(x) \times g(x) = +\infty, & \text{si } l < 0. \end{cases}$$

Demostraci'o.

1. Fixant M > 0, $\exists f_f, k_g > 0$ tal que

$$|f(x) - l| < 1, \ \forall x > k_f,$$
 (3.2.9)

$$q(x) > M - l + 1, \ \forall x > k_a.$$
 (3.2.10)

Llavors, si $x > \max(k_f, k_q)$,

$$f(x) + g(x) > l - 1 + M - l + 1 = M. (3.2.11)$$

- 2. Es pot demostrar d'una manera similar.
- 3. Fixem $\epsilon > 0$, volem veure que $\exists k > 0$ tal que

$$x > k \implies \left| \frac{f(x)}{g(x)} \right| < \epsilon.$$
 (3.2.12)

Prenem $M = \frac{l+1}{\epsilon}$ i considerem k > 0 tal que |f(x) - l| < 1 i g(x) > M, si x > k. Aleshores, si x > k,

$$\left| \frac{f(x)}{g(x)} \right| < \frac{l+1}{M} = \epsilon. \tag{3.2.13}$$

4. Suposem l > 0. Volem veure que fixat $M > 0, \exists k > 0$ tal que

$$x > k \implies f(x) \times g(x) > M. \tag{3.2.14}$$

Elegim $\epsilon > 0$ prou petit tal que $l - \epsilon > 0$. Existeix $k_j > 0$ tal que si $x > k_f$, aleshores $f(x) > l - \epsilon$. També existeix $k_g > 0$ tal que, si $x > k_g$, aleshores

$$g(x) > \frac{M}{l - \epsilon}.\tag{3.2.15}$$

Per tant, si $x > \max(k_f, k_g)$ tenim que

$$f(x) \times g(x) > (l - \epsilon) \frac{M}{l - \epsilon} = M. \tag{3.2.16}$$

3.2.1 Limits indeterminats

Hi haurà molts límits que dependran de cada cas que estudiem o analitzem.

Exemple 3.2.2. $(\pm \infty) - (\mp \infty)$

Observació 3.2.2. Si agafem f(x) = 2x i $g(x) = 3x^2$, tenim que

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty, \text{ i}$$

$$\lim_{x \to +\infty} (f(x) - g(x)) = -\infty$$

$$\lim_{x \to +\infty} (g(x) - f(x)) = +\infty$$

Exemple 3.2.3. $0 \times (\pm \infty)$

Exemple 3.2.4. $\frac{0}{0}$

Exemple 3.2.5. $\frac{\pm \infty}{\pm \infty}$

Exemple 3.2.6. $1^{\pm \infty}, 0^0, (\pm \infty)^0$. D'aquests, molts es poden resoldre utilitzant

$$f(x)^{g(x)} = e^{g(x)\ln f(x)}$$
(3.2.17)

Observació 3.2.3. Una altra opció per a resoldre algunes d'aquestes indeterminacions és utilitzant el nombre e. La funció $f(x) = \left(1 + \frac{1}{x}\right)^x$ és monòtona creixent i acotada superiorment i, per tant:

$$e = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right),\tag{3.2.18}$$

i si $\lim_{x\to +\infty} g(x) = +\infty$, veurem més endavant la **regla de l'Hôpital**, que

$$\lim_{x \to +\infty} \left(1 + \frac{1}{g(x)} \right) = e \tag{3.2.19}$$

3.2.2 Comparació de funcions

Si a>1, sabem que $\lim_{x\to+\infty}a^x=+\infty$; i per les propietats de logaritmes també podem deduir que

$$\lim_{x \to +\infty} \log_a x = +\infty. \tag{3.2.20}$$

Haurem d'estudiar quina va més ràpid a l'infinit.

Proposició 3.2.2. Siqui a > 1 i c > 0. Aleshores,

$$\lim_{x \to +\infty} \left(\frac{\log_a x}{x^c} \right) = 0 \ i \ \lim_{x \to +\infty} \left(\frac{x^c}{a^x} \right) = 0. \tag{3.2.21}$$

Observació 3.2.4. A vegades escriurem $\log_a x \lesssim x^c \lesssim a^x$, $(x \to +\infty)$ o bé $\log_a x = o(x^2)$ i $x^c = o(a^x)$.

Demostració. Fixem-nos que agafant $y = x^2$ obtenim que

$$\lim_{x \to +\infty} \left(\frac{\log_a x}{x^c} \right) = \lim_{y \to +\infty} \left(\frac{\log_a y^{\frac{1}{c}}}{y} \right) = \lim_{y \to +\infty} \left(\frac{\frac{1}{c} \log_a y}{y} \right) = 0 \tag{3.2.22}$$

Aquest límit és 0 perquè si y és prou gran,

$$\frac{\log_a[y]}{[y]+1} \le \frac{\log_a y}{y} \le \frac{\log_a([y]+1)}{[y]},\tag{3.2.23}$$

on [.] és la part entera. L'estudi de

$$\lim_{n \to +\infty} \left(\frac{\log_a n}{n+1} \right) = \lim_{n \to +\infty} \left(\frac{\log_a (n+1)}{n} \right) = 0 \tag{3.2.24}$$

és similar a veure un resultat que ja hem vist

$$\lim_{n \to +\infty} \frac{\log n}{n} = 0. \tag{3.2.25}$$

Per l'altre resultat, emprant $y = a^x$, tenim que

$$\lim_{x \to +\infty} \left(\frac{x^c}{a^x} \right) = \lim_{x \to +\infty} \left(\frac{\log y}{y} \frac{1}{\log a} \right) = 0. \tag{3.2.26}$$

Les comparacions d'aquest tipus també es poden fer a l'entorn de punts $a \in \mathbb{R}$.

Definició 3.2.4.

- 1. Direm que f és un **infinitèssim** quan x tendeix a $a \to \mathbb{R}$ si $\lim_{x\to a} f(x) = 0$.
- 2. Si f i g són dos infinitèssims quan x tendeix a $a \in \mathbb{R}$, direm que f és d'**ordre superior a** \mathbf{g} si

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = 0, \tag{3.2.27}$$

és a dir, si f es fa petita més ràpidament que g quan x tendeix a a, s'escriu $f(x) = o(g(x), x \to a)$.

3. Direm que f i g són infinitèssims equivalents si

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = 1, \tag{3.2.28}$$

i ho escriurem $f(x) \simeq g(x), x \to a$.

4. La funció $\alpha(x)$ és un **infinitèssim quan** $x \to \pm \infty$ [3] si

$$\lim_{x \to +\infty} \alpha(x) = 0. \tag{3.2.29}$$

Exemple 3.2.7. $\sin x \simeq x, x \to 0$.

Exemple 3.2.8. $1 - \cos x \simeq o(x), x \to 0$. Com que $1 - \cos x = 2\sin^2\frac{x}{2}$ tenim que

$$\lim_{x \to 0} \left(\frac{1 - \cos x}{x} \right) = \lim_{x \to 0} \frac{x}{2} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2 = 0$$

3.3 Funcions contínues. Tipus de continuïtat

3.3.1 Funcions fitades i monòtones

Definició 3.3.1. La funció f(x) és fitada si

$$\exists M > 0 \mid |f(x)| \le M, \ \forall x \in A. \tag{3.3.1}$$

Notem que si no existeix aquesta M, la funció f(x) no és fitada en A.

• La funció f(x) és fitada quan $x \to a$ si

$$\exists \delta > 0 \mid |f(x)| < M \text{ si } x \in I(a, \delta)$$
 (3.3.2)

• La funció f(x) és fitada quan $x \to \infty$ si

$$\exists N > 0 \mid f \text{ \'es fitada } \forall |x| > N. \tag{3.3.3}$$

Definició 3.3.2 (Monòtona creixent). Es diu que la funció f(x) és monòtona creixent si compleix que

$$f(x_1) \le f(x_2) \text{ si } x_1 \le x_2.$$
 (3.3.4)

3.3.2 Funcions contínues

Definició 3.3.3. Sigui $f: D \longrightarrow \mathbb{R}$ i $a \in D$. Direm que f és contínua en el punt $a \in D$ si $\exists \lim_{x \in a} f(x)$ i aquest val f(a).

De manera equivalent, f és contínua al punt a si $\forall \epsilon > 0$, $\exists \delta > 0$ tal que

$$x \in D \cap I(a, \delta) \implies f(x) \in I(f(a), \epsilon)$$
 (3.3.5)

Quan f diem que és contínua a D entendrem que és contínua a tots els $a \in D$, i això ho denotarem per $f \in \varphi(D)$.

Exemple 3.3.1. La funció f(x) = [x] és contínua a tot $a \in \mathbb{R} \setminus \mathbb{Z}$ i discontínua a \mathbb{Z} .

Exemple 3.3.2. La funció

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

és discontínua a tot arreu per la propietat de densitat de \mathbb{Q} i $\mathbb{R} \setminus \mathbb{Q}$.

Exemple 3.3.3. La funció

$$f(x) = \begin{cases} x \times \sin\left(\frac{1}{x}\right), & \text{si } x \neq 0, \\ 0, & \text{si } x = 0, \end{cases}$$

és contínua a tot arreu.

Exemple 3.3.4. La funció

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{si } x \neq 0, \\ 0, & \text{si } x = 0, \end{cases}$$

és discontínua al punt a=0.

Les propietats vistes al Teorema 3.1.2 donen lloc al resultat següent:

Teorema 3.3.1. Sigui $f, g: D \longrightarrow \mathbb{R}$ contínues al punt $a \in D$. Aleshores, les funcions f + g, $f \times g$ són contínues al punt $a \in D$. Si a més, $g(x) \neq 0 \ \forall x \in D$ (o en un entorn de a), aleshores f/g també és contínua al punt $a \in D$.

La continuïtat es conserva per la composició de funcions.

Teorema 3.3.2. Siguin $f: D \longrightarrow \mathbb{R}$ i $g: E \longrightarrow \mathbb{R}$ amb $f(D) \subseteq E$. Si f és contínua al punt $a \in D$ i g és contínua al punt $f(a) \in E$, aleshores la funció composta $g \circ f$ també és contínua al punt $a \in D$.

Demostració. Com g és contínua al punt f(a), $\forall \epsilon > 0 \; \exists \; \delta > 0$ tal que

$$y \in E \cap I(f(a), \delta) \implies g(y) \in I(g(f(a)), \epsilon).$$
 (3.3.6)

Per la continuïtat de f al punt a, fixat $\delta > 0$, $\exists \beta > 0$ tal que

$$x \in D \cap I(a, \beta) \implies f(x) \in I(f(a), \delta).$$
 (3.3.7)

Aleshores, si $x \in D \cap I(a, \beta)$ podem prendre y = f(x) a la primera implicació i deduïm $g(f(x)) \in I(g(f(a)), \epsilon)$ com volíem.

Exemple 3.3.5. La funció

$$f(x) = \begin{cases} \sin x \times \sin\left(\frac{\pi}{\sin x}\right), & \text{si } x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\}, \\ 0, & \text{si } x = 0, \end{cases}$$

és contínua al punt a=0.

Aplicació 3.3.3. Podem utilitzar aquests resultats i el fet que les exponencials i logaritmes són contínues per mirar si són contínues d'altres funcions. Un cas clàssic és el de les funcions tipus $f(x)^{g(x)}$, que es poden escriure com

$$f(x)^{g(x)} = e^{g(x) \ln f(x)}. (3.3.8)$$

 $Si\ f(x) > 0\ i \lim_{x \to a} f(x) = l \neq 0\ i \lim_{x \to a} g(x) = t$

$$\implies \lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \ln f(x)} = e^{t \ln l}$$
 (3.3.9)

3.3.3 Tipus de discontinuïtat

Definició 3.3.4 (Discontinuïtat evitable). Quan $\exists \lim_{x\to a} f(x)$ però no coincideix amb f(a).

Definició 3.3.5 (Discontinuïtat de salt). Existeixen els límits laterals però no coincideixen.

$$\begin{cases} f(a^+) = \lim_{x \to a^+} f(x), \\ f(a^-) = \lim_{x \to a^-} f(x), \text{ el salt és la diferència entre els dos límits laterals.} \end{cases}$$
(3.3.10)

Definició 3.3.6 (Discontinuïtat asimptòtica, o de salt infinit). Quan com a mínim un dels límits laterals és infinit es deu a vegades que la discontinuïtat és asimptòtica. Notem que existeixen les essencials, en les quals això no succeeix.

Figura 3.2: Discontinuïtats de salt finit i de salt infinit.

Observació 3.3.1. Les discontinuïtats de funcions monòtones són de salt finit. Suposem que f és creixent. Fixat $a \in D$ tenim que $f(x) \le f(a)$ si $x \le a$, i així f(x) és acotada superiorment (per f(a)) quan $x \le a$. Com que f és creixent i acotada superiorment, $\exists \lim_{x\to a^-} f(x)$. De manera anàloga, es pot veure el límit per la dreta.

Figura 3.3: Discontinuïtat evitable

3.4 Teoremes de Weierstrass, Bolzano i del valor intermig

Aquests tres teoremes són propietats fonamentals de les funcions contínues.

Diem que $f: D \longrightarrow \mathbb{R}$ assoleix un **màxim absolut** al punt $a \in D$ si $f(x) \leq f(a)$ per a tots $x \in D$. Anàlogament, diem que $a \in D$ és un mínim absolut de f si $f(x) \geq f(a)$, $\forall x \in D$.

Teorema 3.4.1 (Teorema de Weierstrass). Sigui $f : [a,b] \longrightarrow \mathbb{R}$ contínua. Aleshores f és acotada i assoleix un màxim i un mínim absolut.

Demostració. Només demostrarem que f és acotada a mode d'exemple. Suposem que f no és acotada superiorment. Així:

$$f([a,b])$$
 no acotada superiorment $\Leftrightarrow \forall n \geq 1, \exists x_n[a,b] \text{ tal que } f(x_n) \geq n \implies f(x_n) \xrightarrow{n \nearrow +\infty} +\infty$

$$(3.4.1)$$

Per altra banda, com $\{x_n, n \in \mathbb{N}\}\subseteq [a, b]$ pel teorema de Bolzano-Weierstrass podem assegurar que $\exists \{x_{n_k}, k \geq 1\}$ parcial convergent

$$f(x_{n_k}) \xrightarrow{k \nearrow +\infty} f(x)$$
 [!!!]

Això és contradictori amb (3.4.1).

Observació 3.4.1. Aquest teorema és fals si parlem de (a, b) en lloc de [a, b].

Teorema 3.4.2 (Teorema de Bolzano). Sigui $f : [a, b] \longrightarrow \mathbb{R}$ contínua tal que f(a)f(b) < 0. Aleshores, existeix $c \in (a, b)$ tal que f(c) = 0.

Demostració. Dividim I = [a, b] en dues meitats d'igual longitud. A un dels dos intervals la funció compleix una propietat anàloga a l'interval inicial, sempre que el punt central no valgui 0. Aquest procés es va repetint i convergent en un punt $c \in (a, b)$ on f s'anul·li.

Observació 3.4.2. Tot polinomi de grau senar té almenys una arrel real.

Teorema 3.4.3 (Teorema del valor mig). Sigui $f : [a, b] \longrightarrow \mathbb{R}$ contínua i sigui z un valor entre f(a) i f(b). Aleshores existeix $c \in [a, b]$ tal que f(c) = z.

Demostració. Notem g(x) = f(x) - z. Sigui g(a) > 0 o g(b) = 0 ja hem acabat la demostració. Altrament g(a) i g(b) tenen signe diferent i podem aplicar el teorema anterior.

Figura 3.4: Representació gràfica del teorema Bolzano-Weierstrass.

3.5 Apunts finals

3.5.1 Teoremes fonamentals sobre límits

Teorema 3.5.1. Siguin f(x), g(x) funcions definides en $A \subset \mathbb{R}$ i tals que

$$\lim_{x \to p} f(x) = a \ i \ \lim_{g \to p} g(x) = b. \tag{3.5.1}$$

Aleshores podem calcular els límits següents:

1. Suma i resta:

$$\lim_{x \to p} [f(x) \pm g(x)] = a \pm b. \tag{3.5.2}$$

2. Producte:

$$\lim_{x \to p} [f(x) \times g(x)] = a \times b \tag{3.5.3}$$

3. Quocient (si $b \neq 0$)

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \frac{a}{b}.$$
(3.5.4)

4. Potència:

$$\lim_{x \to p} [f(x)]^n = \left[\lim_{x \to p} f(x)\right]^n = a^n, \ amb \ n \in \mathbb{Z}^+$$
 (3.5.5)

Demostració. Provem, a tall d'exemple, el producte. Tenim que

$$\lim_{x \to p} f(x) = a \implies f(x) = a + \alpha(x) \text{ amb } \lim_{x \to p} \alpha(x) = 0,$$

$$\lim_{x \to p} g(x) = b \implies g(x) = b + \beta(x) \text{ amb } \lim_{x \to p} \beta(x) = 0,$$

i, consegüentment,

$$f(x) \times g(x) = ab + a\beta(x) + b\alpha(x) + \alpha(x)\beta(x), \tag{3.5.6}$$

però els últims tres termes són infinitèssims quan $x \to p$, així que $\lim_{x \to p} f(x) \times g(x) = ab$

3.5.2 Exemples resolts

Exemple 3.5.1. Proveu que

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4. \tag{3.5.7}$$

Demostració. La funció $f(x) = \frac{x^2-4}{x-2}$ no està definida en x=2, però això no suposa cap problema, ja que per tal que existeixi el límit només cal que f(x) estigui definida per a valors arbitràriament propers a 2, com efectivament succeeix. Necessitem demostrar que $\forall \epsilon > 0, \exists \delta > 0$:

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| < \epsilon, \text{ si } |x - 2| < \delta.$$
 (3.5.8)

Vegem-ho:

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| = \left| \frac{(x + 2)(x - 2)}{x - 2} - 4 \right| = |x + 2 - 4| < \epsilon \implies |x - 2| < \epsilon, \tag{3.5.9}$$

desigualtat que es verifica si agafem $\delta = \epsilon$. Per tant, podem dir que el límit de la funció en el punt x = 2 existeix i és igual a 4.

Exemple 3.5.2. Proveu que

$$\lim_{x \to 0} \frac{1}{x^2} = +\infty. \tag{3.5.10}$$

Demostració. Suposem que $|x-0|=|x|<\delta$. Aleshores:

$$f(x) = \frac{1}{x^2} > \frac{1}{\delta^2} \implies \text{ si agafem } M = \frac{1}{\delta^2} \implies f(x) > M$$

$$M = \frac{1}{\delta^2} \Leftrightarrow \delta^2 = \frac{1}{M} \Leftrightarrow \delta = \frac{1}{\sqrt{M}}$$
(3.5.11)

Així doncs, hem demostrat que per a qualsevol M>0, f(x)>M sempre que $|x|<\delta=\frac{1}{\sqrt{M}}$.

Exemple 3.5.3. Calculeu

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin^m(x)} - \sqrt{1 - \sin^m(x)}}{x^n} \tag{3.5.12}$$

per a cada $m, n \in \mathbb{N}$.

De mostraci'o.

$$\lim_{x \to 0} \frac{2\sin^m(x)}{x^n \left(\sqrt{1 + \sin^m(x)} + \sqrt{1 - \sin^m(x)}\right)} \iff \lim_{x \to 0} \frac{\sin^m(x)}{x^n} \times \frac{2}{\sqrt{1 + \sin^m(x)} + \sqrt{1 - \sin^m(x)}}$$

$$\iff \lim_{x \to 0} \left(\left(\frac{\sin(x)}{x}\right)^m \times \frac{x^m}{x^n} \times \frac{2}{\sqrt{1 + \sin^m(x)} + \sqrt{1 - \sin^m(x)}}\right) \implies 1^m \times \frac{x^m}{x^n} \times \frac{2}{\sqrt{1 + 0} + \sqrt{1 + 0}}$$

$$\iff x^{m-n} \implies \begin{cases} 0 & \text{si } m - n > 0 \\ 1 & \text{si } m = n \\ \infty & \text{si } m - n < 0 \end{cases}$$

Exemple 3.5.4. Siguin $\alpha, \beta \in \mathbb{R}$ i sigui la funció $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida per

$$f(x) = \begin{cases} |x|^{\alpha} \log(1-x), & \text{si } x \le 0, \\ x^{\beta} \sin\left(\frac{\pi}{x}\right), & \text{si } x > 0. \end{cases}$$
 (3.5.13)

Digueu si els valors de $\alpha, \beta \in \mathbb{R}$ per als que f sigui contínua.

Demostració. Les branques són separadament contínues a l'interior. Analitzem el punt de contacte x=0: $\lim_{x\to 0^-}=\lim_{x\to 0^+}=\lim_{x\to 0}=f(0)$.

$$f(0) = \begin{cases} 0, & \text{si } \alpha \ge 0\\ \nexists, & \text{si } \alpha < 0 \end{cases}$$

$$\lim_{x \to 0^{-}} |x|^{\alpha} \times \log(1-x) = \begin{cases} 0, & \text{si } \alpha \ge 0, \\ 0, & \text{si } -1 < \alpha < 0, \\ 1, & \text{si } \alpha = -1 \end{cases}, \quad \lim_{x \to 0^{+}} x^{\beta} \times \sin\left(\frac{\pi}{x}\right) = \begin{cases} 0 \times \text{ afitat } = 0, & \beta > 0, \\ \neq 0 \times \text{ oscil·lant } = \nexists, & \beta \le 0 \end{cases}$$

$$\infty, \quad \text{si } \alpha < -1$$

Per tal que sigui contínua, $\alpha \ge 0 \land \beta > 0$.

$$\lim_{x \to 0^{-}} |x|^{\alpha} \times \log(1 - x) = \frac{0}{0} = \lim_{x \to 0^{-}} \frac{\log(1 - x)}{|x|^{-\alpha}} = \lim_{x \to 0^{-}} \frac{\log(1 - x)}{-x} \times \frac{-x}{|x|^{-\alpha}} = 1 \times \lim_{x \to 0^{-}} \frac{-x}{|x|^{-\alpha}} = \lim_{x \to 0^{-}} \frac{|x|}{|x|^{-\alpha}} = \lim_{x \to 0^{-}} |x|^{1+\alpha}$$

Exemple 3.5.5. Sigui $f : \mathbb{R} \longrightarrow \mathbb{R}$ una funció contínua que s'anul·la en un únic punt a. Sigui $(x_n)_n$ una successió de reals tal que $(x_{n+1} - x_n)_n$ convergeix cap a 0. A més, per a cada n es verifica que $f(x_{n+1})f(x_n) \leq 0$. Demostreu que $(x_n)_n$ és convergent i calcular el seu límit. [1]

Demostració. Sigui $n \in \mathbb{N}$. De la hipòtesi $f(x_{n+1})f(x_n) \leq 0$ es conclou que

$$f(x_{n+1}) \ge 0 \text{ i } f(x_n) \le 0$$

$$f(x_{n+1}) \le 0 \text{ i } f(x_n) \ge 0$$

En qualsevol cas, el teorema de Bolzano aplicat a l'interval $[x_{n+1}, x_n]$ o bé $[x_n, x_{n+1}]$ ens assegura l'existència d' $a_n \in [x_{n+1}, x_n]$ o bé $a_n \in [x_n, x_{n+1}]$ tal que $f(a_n) = 0$. Donat que f s'anul·la solament en el punt $a, a_n = a$ per a tot $n \in \mathbb{N}$.

Demostrarem que $(x_n)_n$ convergeix cap a a. Sigui $\epsilon > 0$. Cal determinar $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ llavors $|x_n - a| < \epsilon$. Donat que per hipòtesi $(x_{n+1} - x_n)_n$ convergeix cap a 0, sigui $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies |x_{n+1} - x_n| < \epsilon. \tag{3.5.14}$$

Si $n \ge n_0$, es compleix que

$$|x_n - a| \le |x_n - x_{n+1}| = |x_{n+1} - x_n| < \epsilon, \tag{3.5.15}$$

on en la primera designaltat s'ha utilitzat que per a tot $n \in N$, $a \in [x_{n+1}, x_n]$, o bé $a \in [x_n, x_{n+1}]$.

3.5.3 Altres figures

Figura 3.5: Definició de límit d'una funció

Capítol 4

DERIVADES

4.1 Derivada d'una funció en un punt

Definició 4.1.1. Sigui f definida a un interval I i sigui $a \in I$. Direm que f és derivable al punt a si existeix el límit

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$
 (4.1.1)

Quan es compleix el valor del límit s'escriu

$$f'(a) \equiv \frac{df}{dx}(c). \tag{4.1.2}$$

Observem que

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0. \tag{4.1.3}$$

Observació 4.1.1. L'aplicació lineal

$$L: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto L(x) = f'(a)x \tag{4.1.4}$$

s'anomena diferencial de f al punt a i es designa per dfa. Això es pot generalitzar a diverses variables.

4.1.1 Interpretació geomètrica

Té una relació clara amb el creixement de la funció. El quocient

$$\frac{f(x) - f(a)}{x - a} = \tan \alpha \tag{4.1.5}$$

dona el pendent de la recta que uneix (a, f(a)) i (x, f(x)). Quan fem convergir x cap a a obtenim el pendent de la recta tangent de f al punt (a, f(a)). De manera formal [3]:

$$\forall \epsilon > 0, \ \exists \delta > 0 \ | \ |x - a| < \delta \implies \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \epsilon. \tag{4.1.6}$$

Per tant, si existeix la derivada en a podrem aproximar la funció al voltant d'a per la seva recta tangent. Aquesta aproximació serà millor com més petit sigui ϵ (\Longrightarrow δ més petit).

Exemple 4.1.1. $f(x) = c \implies f'(a) = 0, \ \forall a \in \mathbb{R}.$

Demostració.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{c - c}{x - a} = 0 \tag{4.1.7}$$

Figura 4.1: Definició de derivada.

Exemple 4.1.2. $f(x) = x^n, n \in \mathbb{N} \implies f'(a) = na^{n-1}, \ \forall a \in \mathbb{R}.$

Demostració.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} (x^{n-1} + ax^{n-2} + \dots + a^{n-1}) = na^{n-1}.$$
 (4.1.8)

Exemple 4.1.3. $f(x) = b^x, b > 0 \implies f'(a) = b^a(\ln b), \ \forall a \in \mathbb{R}$

Demostració.

$$\lim_{x \to a} \frac{b^{x} - b^{a}}{x - a} = b^{a} \lim_{x \to a} \frac{b^{x - a} - 1}{x - a} \xrightarrow{y = b^{x - a} - 1} = b^{a} \lim_{x \to a} \frac{y}{\log_{b}(1 + y)} = b^{a} \lim_{x \to a} \frac{1}{\log_{b}(1 + y)^{\frac{1}{y}}} = \frac{b^{a}}{\log_{b} e}$$

$$= \frac{b^{a}}{\ln \frac{b}{b}} = b^{a} \times \ln b \quad (4.1.9)$$

En particular, $f(x) = e^x \implies f'(a) = e^a, \ \forall a \in \mathbb{R}.$

Exemple 4.1.4. $f(x) = \sin x \implies f'(a) = \cos a, \ \forall a \in \mathbb{R}.$

Demostració.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2 \times \cos\left(\frac{x + a}{2}\right)\sin\left(\frac{x - a}{2}\right)}{x - a} = \cos\left(\frac{2a}{2}\right) \times 1 = \cos a. \tag{4.1.10}$$

En el següent teorema veurem que la derivabilitat és un grau més de regularitat que la continuïtat.

Teorema 4.1.1. Sigui f una funció derivable al punt $a \in I$. Aleshores, f és contínua al punt $a \in I$. En altres paraules, f derivable $\implies f$ contínua.

Demostració. Fixem-nos que

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = f'(a) \times 0 = 0.$$
 (4.1.11)

Observació 4.1.2. El recíproc és fals. Agafem com a exemple la funció f(x) = |x|. Aquesta funció és contínua però no derivable. Vegem-ho:

Demostració.

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{|x| - 0}{x - 0} = 1$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x| - 0}{x - 0} = -1$$

$$\implies \nexists \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \implies \nexists f'(0) \qquad (4.1.12)$$

4.2 Regles de derivació i càlcul de derivades

Teorema 4.2.1. Siguin f i g dues funcions definides a un interval I i sigui $a \in I$. Aleshores les funcions f + g i fg són derivables i

$$(f+g)'(a) = f'(a) + g'(a), (fg)'(a) = f'(a)g(a) + f(a)g'(a).$$
(4.2.1)

Si a més $g(x) \neq 0$, en un entorn de a, aleshores f/g també és derivable i

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g'(a)^2}.$$
(4.2.2)

Demostració. La suma es pot veure fàcilment a partir de la definició. Quant al producte:

$$(fg)'(a) = \lim_{x \to a} \frac{(fg)(x) - (fg)(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) + f(x)g(a) - f(x)g(a) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x)(g(x) - g(a))}{x - a} + \lim_{x \to a} \frac{g(a)(f(x) - f(a))}{x - a} = f(a)g'(a) + g(a)f'(a). \quad (4.2.3)$$

Pel quocient utilitzem que $f/g=f\frac{1}{g}$ i fem servir la propietat del producte que acabem de demostrar i

$$\left(\frac{1}{g}\right)'(a) = \lim_{x \to a} \frac{\frac{1}{g(x)} - \frac{1}{g(a)}}{x - a} = \lim_{x \to a} \frac{\frac{g(a) - g(x)}{g(x)g(a)}}{x - a} = -\lim_{x \to a} \frac{g(x) - g(a)}{(x - a)g(x)g(a)} = \lim_{x \to a} \frac{1}{g(x)g(a)} \frac{g(x) - g(a)}{x - a} = -\frac{g'(a)}{g(a)^2}. \quad (4.2.4)$$

Efectivament,

$$\left(\frac{f}{g}\right)'(a) = \left(f\frac{1}{g}\right)'(a) = f'(a)\frac{1}{g(a)} - f(a)\frac{g'(a)}{g(a)^2} = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$
(4.2.5)

4.2.1 La regla de la cadena

Ara estudiarem la derivada de la composició de funcions.

Teorema 4.2.2. Sigui f definida a un interval I i sigui g definida a un interval J tal que $f(I) \subset J$. Si f és derivable al punt a i g és derivable al punt b = f(a), aleshores $g \circ f$ és derivable al punt a i

$$(g \circ f)'(a) = g'(f(a))f'(a). \tag{4.2.6}$$

Demostració. Calculem el límit

$$\lim_{x \to a} \frac{(g \circ f)(x) - (g \circ f)(a)}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \times \frac{f(x) - f(a)}{x - a} = g'(f(a)) \times f'(a).$$

4.2.2 Derivada de la funció inversa

Teorema 4.2.3. Sigui f definida en [a,b], injectiva, contínua i derivable a un punt $x_0 \in (a,b)$ amb $f(x_0) \neq 0$. Aleshores, la funció inversa f^{-1} és derivable a $y_0 = f(x_0)$ i

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)},\tag{4.2.7}$$

o equivalentment,

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}, \text{ per } y = f(x_0).$$
 (4.2.8)

Demostració. Com la funció és injectiva podem construir una funció bijectiva complint

$$(f^{-1} \circ f)(x) = (f^{-1}(f(x))) = x \tag{4.2.9}$$

i, aleshores per la regla de la cadena, tenim que

$$(f^{-1}(f(x)))f'(x) = 1 (4.2.10)$$

i emprant f(x) = y i $x = f^{-1}(y)$ quedaria demostrat. També ho podem demostrar a partir de la definició [3]:

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$
(4.2.11)

Observació 4.2.1. La condició $f'(x_0) \neq 0$ és necessària perquè $f(x) = x^3$ n'és un exemple.

Exemple 4.2.1. $f(x) = x^n, n \in \mathbb{N}$. Aquí, $f^{-1}(y) = y^{\frac{1}{n}}$ i, per tant,

$$(f^{-1})'(y) = \frac{1}{f'\left(y^{\frac{1}{n}}\right)} = \frac{1}{ny^{\frac{n-1}{n}}} = \frac{1}{n}y^{\frac{1}{n}-1}.$$
 (4.2.12)

Fixem-nos que si derivem $y^{\frac{1}{n}}$ obtenim el mateix.

Exemple 4.2.2. $f(x) = e^x$,

$$f^{-1}(y) = \ln y \implies (f^{-1})'(y) = \frac{1}{f'(\ln y)} = \frac{1}{e^{\ln y}} = \frac{1}{y}.$$
 (4.2.13)

Exemple 4.2.3. $f(x) = \sin x$, aquesta funció és bijectiva de $\left(\frac{-\pi}{2}, \frac{-\pi}{2}\right)$ a (-1, 1).

$$f^{-1} = \arcsin y \xrightarrow{(f^{-1}(y))^1} = \frac{1}{\cos(\arcsin y)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin y)}} = \frac{1}{\sqrt{1 - y^2}}$$
(4.2.14)

4.2.3 Derivació logarítmica

Si tenim y = f(x) i resulta complicat derivar podem utilitzar que $\ln y = \ln f(x)$, i aleshores derivant

$$\frac{y'(x)}{y(x)} = (\ln f(x))' \implies y'(x) = y(x)(\ln f(x))'. \tag{4.2.15}$$

Exemple 4.2.4. Derivem per exemple $f(x) = x^x, x > 0$.

$$\ln f(x) = \ln x^x = x \ln x, \quad \frac{f'(x)}{f(x)} = \ln x + 1 \implies f'(x) = f(x)(\ln x + 1) = x^x(\ln x + 1). \tag{4.2.16}$$

4.2.4 Derivades laterals

Fins ara hem definit la derivada d'una funció f(x) en un punt c interior al domini (a, b),

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},\tag{4.2.17}$$

exigint a més que aquest límit fos finit. Ara ampliarem aquest concepte per incloure els extrems de l'interval.

Definició 4.2.1 (Derivada lateral). Sigui f una funció contínua en un interval tancat [a, b]. Direm que f admet **derivada lateral per la dreta** en a si

$$\exists \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} \equiv f'_{+}(a) \text{ i és finit.}$$
 (4.2.18)

Anàlogament, definirem la derivada lateral per l'esquerra en b com

$$\exists \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} \equiv f'_{+}(b) \text{ i \'es finit.}$$
 (4.2.19)

4.3 Indeterminacions

La derivació serveix per resoldre algunes indeterminacions.

4.3.1 Regla de l'Hôpital

Siguin f i g funcions derivades a (a,b) on $-\infty \le a < b \le +\infty$, i suposem que $g'(x) \ne 0$ per a tot $x \in (a,b)$. Suposem que el límit $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ és indeterminat del tipus $\frac{0}{0}$ o $\frac{\infty}{\infty}$.

Definició 4.3.1. Si existeix $l = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$, on l és real o $\pm \infty$, aleshores $\lim_{x \to a^+} \frac{f(x)}{g(x)} = l$. Anàlogament, si existeix $l = \lim_{x \to b^-} \frac{f'(x)}{g'(x)}$, on l és real o $\pm \infty$, aleshores $\lim_{x \to b^-} \frac{f(x)}{g(x)} = l$.

Exemple 4.3.1.

$$\lim_{x \to \infty} \frac{\ln x}{x} = 0, \text{ perquè } \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0.$$

Exemple 4.3.2.

$$\lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} = \frac{a}{b}, \text{ perquè } \lim_{x \to 0} \frac{a\cos(ax)}{b\cos(bx)} = \frac{a}{b}.$$

Podem encabir-hi altres indeterminacions.

1. $(+\infty) - (+\infty)$ es redueix a

$$f(x) - g(x) = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}}$$
(4.3.1)

Exemple 4.3.3.

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x},$$

i aleshores estudiem

$$\lim_{x \to 0} \frac{\cos x - 1}{\sin x + x \cos x}$$

i com torna a ser indeterminació tornem a aplicar l'Hôpital

$$\lim_{x \to 0} \frac{-\sin x}{\cos x + \cos x + x \sin x} = 0 \implies \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right) = 0$$

2. També podem estudiar $0 \times \pm \infty$ mitjançant $f(x)g(x) = \frac{f(x)}{\frac{1}{g(x)}}$.

Exemple 4.3.4.

$$\lim_{x \to 0} \sqrt{x} \ln x = \lim_{x \to 0} \frac{\ln x}{x^{-\frac{1}{2}}} = \frac{\text{existeix limit}}{\text{suposant que}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{2}x^{\frac{3}{2}}} = -2\lim_{x \to 0} \sqrt{x} = 0.$$

3. Finalment també podem tractar $1^{\pm\infty},0^0,(\pm\infty)^0$ utilitzant

$$f(x)^{g(x)} = e^{\ln x f(x)^{g(x)}} = e^{g(x) \ln x f(x)}.$$
(4.3.2)

Exemple 4.3.5.

$$\lim_{x \to a} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e, \text{ si } \lim_{x \to a} f(x) = +\infty.$$
 (4.3.3)

Efectivament,

$$\lim_{x \to a} f(x) \ln \left(1 + \frac{1}{f(x)} \right) = \lim_{x \to a} \frac{\ln \left(1 + \frac{1}{f(x)} \right)}{\frac{1}{f(x)}} = \lim_{x \to a} \frac{\frac{1}{1 + \frac{1}{f(x)}} \times \frac{-f'(x)}{f(x)^2}}{\frac{-f'(x)}{f(x)^2}} = \lim_{x \to a} \frac{1}{1 + \frac{1}{f(x)}} = 1$$

Capítol 5

CREIXEMENT I CONVEXITAT

5.1 Creixement i derivada

Definició 5.1.1. Una funció f és estrictament creixent en un interval I si per a tota parella $x_1, x_2 \in I$ amb $x_1 < x_2 \implies f(x_1) < f(x_2)$. La funció f és estrictament creixent a un punt $a \in I$ si existeix un entorn $I(a, \epsilon) \subset I$ tal que

$$\frac{f(x) - f(a)}{x - a} > 0, \ \forall x \in I(a, \epsilon). \tag{5.1.1}$$

Es pot definir de manera anàloga les funcions estrictament decreixents.

Definició 5.1.2 (Màxim relatiu). Una funció f té un màxim relatiu al punt a si existeix un entorn $I(a, \epsilon)$ tal que $\forall x \in I(a, \epsilon) \implies f(x) \leq f(a)$.

Definició 5.1.3 (Mínim relatiu). Una funció f té un mínim relatiu al punt a si existeix un entorn $I(a, \epsilon)$ tal que $\forall x \in I(a, \epsilon) \implies f(x) \geq f(a)$.

La relació entre la derivada de la funció i el creixement i l'existència d'extrems relatius ve donada pel resultat següent.

Teorema 5.1.1. Sigui f una funció derivable definida a un interval I i sigui $a \in I$. Llavors:

- 1. Si f'(a) > 0, la funció és estrictament creixent al punt a.
- 2. Si f'(a) < 0. la funció és estrictament decreixent al punt a.
- 3. Si f té un extrem relatiu al punt $a \implies f'(a) = 0$.

Demostració.

- 1. Sigui $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a} > 0$, existeix un entorn $I(a, \epsilon)$ tal que $\frac{f(x) f(a)}{x a} > 0$ si $x \in I(a, \epsilon)$.
- 2. Sigui $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a} < 0$, existeix un entorn $I(a, \epsilon)$ tal que $\frac{f(x) f(a)}{x a} < 0$ si $x \in I(a, \epsilon)$.
- 3. Si f'(c) > 0 (f'(c) < 0) la funció és estrictament creixent (decreixent) en a i, per tant, no pot tenir cap extrem en aquest punt. Així doncs, l'única possibilitat és f'(x) = 0.

Observació 5.1.1.

1. Els recíprocs de l'enunciat anterior no són certs en termes generals.

Exemple 5.1.1. Considerem a tall d'exemple la funció $f(x) = x^3$ i el punt a = 0. La funció és estrictament creixent al punt a (no té extrems relatius a a) però f'(a) = 0.

2. No significa el mateix ser creixent a un punt a que ser-ho a un entorn $I(a,\epsilon)$. Al primer cas hem de fer x,y a un entorn d'a

$$f(x) < f(a) < f(y), \quad x < a < y.$$
 (5.1.2)

mentre que en el segon cas,

$$f(x) \le f(y), \quad x < y. \tag{5.1.3}$$

Exemple 5.1.2.

$$f(x) = \begin{cases} 0, & x = 0\\ x + 2x^2 \sin \frac{1}{x}, & x \neq 0. \end{cases}$$

És creixent a 0 però no a cap interval $I(0,\epsilon)=(-\epsilon,\epsilon)$. Podem comprovar que f'(0)=1,

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h + 2h^2 \sin \frac{1}{h}}{h} = 1,$$

i per tant és creixent a 0. En canvi, la derivada $f'(x) = 1 + 4x \sin \frac{1}{x} - 2 \cos \frac{1}{x^2}$ pren valors positius i negatius a tot entorn $(-\epsilon, \epsilon)$.

5.2 Teorema de Rolle i aplicacions

Teorema 5.2.1 (Teorema de Rolle). Sigui $f \in \mathcal{C}([a,b])$, derivable a tot (a,b) tal que f(a) = f(b). Aleshores existeix $c \in (a,b)$ tal que f'(c) = 0. Equivalentment,

$$f \in \mathscr{C}([a,b]) \text{ derivable en } (a,b) \mid f(a) = f(b) \implies \exists c \in (a,b) \mid f'(c) = 0.$$
 (5.2.1)

Demostració. Pel teorema de Weierstrass, la funció té un màxim M i un mínim m, absoluts. Si la funció no és constant (si ho és, ja està), f(m) < f(M). Així, un dels dos no és un dels extrems de l'interval [a, b]. Per tant, $\exists c \in (a, b)$ que és un extrem relatiu (i absolut) de f i, per tant, f'(c) = 0.

Observació 5.2.1. Notem que si agafem f(x) = |x|, el teorema no es compleix perquè la funció no és derivable en 0.

Com a consequencia del teorema 5.2.1, sorgeix el Teorema del valor mitjà de Lagrange.

Teorema 5.2.2 (Teorema del valor mitjà de Lagrange). Sigui $f \in \mathcal{C}([a,b])$ i derivable a tot (a,b). Aleshores, $\exists c \in (a,b)$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$
 (5.2.2)

Demostració. Apliquem el teorema de Rolle a la funció:

$$F: [a, b] \longrightarrow \mathbb{R} \tag{5.2.3}$$

$$x \mapsto F(x) = (f(b) - f(a))x - (b - a)f'(x).$$
 (5.2.4)

Figura 5.1: Representació gràfica de l'aplicabilitat del teorema de Rolle a diverses escollides d' x_0

Tenim la caracterització del creixement d'una funció derivable mitjançant el signe de la primera derivada.

Teorema 5.2.3. Sigui f derivable a un interval (a, b). Aleshores,

- 1. f és creixent $\iff f'(x) \ge 0, \ \forall x \in (a,b).$
- 2. f és decreixent $\iff f'(x) \leq 0, \ \forall x \in (a,b).$

Observació 5.2.2. Notem que es parla de creixement i decreixement sense estrictivitats.

Demostració.

1. Si f és creixent,

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0, \ x, x_0 \in (a, b), \ x \ne x_0, \tag{5.2.5}$$

i passant al límit queda $f'(x_0) \ge 0$. Recíprocament, suposem que $f'(x) \ge 0, \forall x \in (a, b)$. Aplicant el teorema 5.2.2 a l'interval $(x_1, x_2), x_1 < x_2, x_1, x_2 \in (a, b)$, obtenim que $\exists c \in (x_1, x_2) \subset (a, b)$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}. (5.2.6)$$

Com que $f'(c) \ge 0 \implies f(x_2) - f(x_1) \ge 0 \implies f(x_2) \ge f(x_1)$ si $x_1 < x_2$.

2. Es demostra de manera anàloga.

Teorema 5.2.4. Sigui f derivable a un interval (a,b) tal que f'(x) = 0, $\forall x \in (a,b)$. Aleshores, f és una funció constant.

Demostració. Fixem qualsevol $x_0 \in (a, b)$. Pel teorema 5.2.2 i la hipòtesi, existeix c entre x i x_0 per qualsevol $x \in (a, b)$ tal que

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0} = 0, (5.2.7)$$

i per tant,

$$f(x) = f(x_0). (5.2.8)$$

_

Corol·lari 5.2.5. Si dues funcions tenen la mateixa derivada, aleshores difereixen d'una constant.

Demostració. Si f'(x) = g'(x), $\forall x \in (a,b)$ pel teorema 5.2 tenim F(x) = f(x) - g(x) és constant.

Observació 5.2.3.

1. Els teoremes de Rolle i Lagrange es poden utilitzar per obtenir desigualtats entre funcions.

Exemple 5.2.1.

$$e^x > 1 + x, \ \forall x \in \mathbb{R}.$$

Si x > 0, apliquem el teorema del valor mitjà de Lagrange a la funció $f(x) = e^x$ a l'interval (0, x). Així, existeix $c \in (0, x)$ tal que

$$e^x - e^0 = f'(c)(x - 0) = e^c x.$$

Com que $e^c > e^0 = 1$, deduïm $e^x - 1 \ge x$. Si x < 0,

$$e^x - e^0 = e^c x \ge x,$$

perquè c < 0, $e^c < 1$ i com x < 0, $xe^c \ge x$.

2. També podem utilitzar els resultats vistos aquí per determinar l'existència de solucions d'equacions.

Exemple 5.2.2. Sigui $f : \mathbb{R} \longrightarrow \mathbb{R}$ dues vegades derivable amb $f''(x) \neq 0$, $\forall x \in \mathbb{R}$ i tal que per $a, b, c \in \mathbb{R}$, a < b < c tenim que f(a) = 0, f(b) = 3 i f(c) = 1. Podem demostrar que f(x) = 2 té exactament dues solucions.

El que volem veure és que hi ha exactament dos punts on s'anul·la la funció g(x) = f(x) - 2. Per hipòtesi,

$$g(a) = -2 < 0, \quad g(b) = 1 > 0, \quad g(c) = -1 < 0,$$

de manera que el teorema de Bolzano ens assegura l'existència de $x_1 \in (a,b)$ i $x_2 \in (b,c)$ tal que $g(x_1) = g(x_2) = 0$. Ara veurem per reducció a l'absurd que no hi ha més punts on s'anul·la g. En primer lloc, el teorema de Rolle implica que existeix $c \in (x_1, x_2)$ tal que g'(c) = f'(c) = 0. Suposem que existís un altre punt x_3 amb $g(x_3) = 0$ i suposem que $x_3 > x_2$ (els altres casos es fan d'una forma semblant). Aleshores, pel teorema de Rolle existeix un $d \in (x_2, x_3)$ tal que g'(d) = f'(d) = 0. I ara aplicant el teorema de Rolle a la funció f' i l'interval [c, d] obtenim un punt $\alpha \in (c, d)$ amb $f''(\alpha) = 0$, i això és contradictori amb la hipòtesi $f''(x) \neq 0$, $\forall x$.

5.3 Punts d'inflexió

Les derivades successives també poden donar informació sobre la funció i les seves particularitats.

Definició 5.3.1 (Estrictament convexa). Sigui f derivable en un entorn d'un punt a. Diem que f és **estrictament convexa en** a si la gràfica d'f en un entorn d'a queda per sobre de la recta tangent a $(a, f(a), \text{ més precisament si existeix un entorn } I(a, \epsilon)$ on

$$f(x) > f(a) + f'(a)(x - a), \ \forall x \in I(a, \epsilon), x \neq a.$$
 (5.3.1)

Definició 5.3.2 (Estrictament còncava). Sigui f derivable en un entorn d'un punt a. Diem que f és **estrictament còncava en** a si existeix un entorn $I(a, \epsilon)$ on

$$f(x) < f(a) + f'(a)(x - a), \ \forall x \in I(a, \epsilon), x \neq a.$$
 (5.3.2)

Si les desigualtats no són estrictes, parlarem de funció convexa o còncava.

Definició 5.3.3 (Punt d'inflexió). f té un **punt d'inflexió a** a si la gràfica d'f travessa la recta tangent a f, és a dir, si existeix un entorn $I(a, \epsilon)$ on

$$f(x) > f(a) + f'(a)(x - a), \ x \in I(a, \epsilon), x > a,$$
 (5.3.3)

$$f(x) < f(a) + f'(a)(x - a), \ x \in I(a, \epsilon), x < a,$$
 (5.3.4)

o bé

$$f(x) < f(a) + f'(a)(x - a), \ x \in I(a, \epsilon), x > a,$$
 (5.3.5)

$$f(x) > f(a) + f'(a)(x - a), \ x \in I(a, \epsilon), x < a.$$
 (5.3.6)

Observació 5.3.1. Hi ha excepcions, com la de l'exemple següent.

Exemple 5.3.1.

$$f(x) = \begin{cases} 0, & x = 0, \\ x^2 \sin \frac{1}{x}, & x \neq 0. \end{cases}$$

És derivable al punt a = 0,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0.$$

Però en canvi no té cap d'aquestes propietats, ja que oscil·la massa com per poder-les determinar.

Observació 5.3.2. Quan una funció és derivable dues vegades tenim una relació entre la segona derivada i la convexitat: si la segona derivada és positiva, la primera derivada és creixent i per tant la funció és convexa.

Teorema 5.3.1. Sigui f una funció derivable a un interval I i sigui $a \in I$ pel que existeix f''(a). Aleshores:

- 1. Si $f''(a) > 0 \implies la funció és estrictament convexa al punt a.$
- 2. Si $f''(a) > 0 \implies la funció és estrictament còncava al punt a.$
- 3. Si a és un punt d'inflexió $\implies f''(a) = 0$.

Observació 5.3.3. Pot passar que la primera i segona derivades siguin nul·les, de manera que els teoremes que hem vist fins ara no aclarin quin creixement i quina convexitat tenim. Si la funció es pot anar derivant podem resoldre aquestes qüestions mirant les derivades successives.

Teorema 5.3.2. Sigui f derivable n vegades a un interval I i sigui $a \in I$ amb

$$f''(a) = f'''(a) = \dots = f^{(n-1)}(a) = 0, f^{(n)}(a) \neq 0.$$
 (5.3.7)

Aleshores,

- 1. Si n és senar, a és un punt d'inflexió.
- 2. Si n és parell,
 - (a) Si $f^{(n)}(a) > 0$, llavors f és estrictament convexa en a.
 - (b) Si $f^{(n)}(a) < 0$, llavors f és estrictament còncava en a.

Si a més f'(a) = 0, llavors a és un mínim relatiu en el cas (a) i un màxim relatiu en el cas (b).

Corol·lari 5.3.3. Sigui f dues vegades derivable a un interval I. Llavors:

$$f \text{ \'es convexa} \iff f''(x) \ge 0, \ \forall x \in I.$$
 (5.3.8)

Observació 5.3.4. Existeix una definició general de convexitat que no requereix la derivabilitat de la funció. Direm que f és convexa a un interval I si per $x_1, x_2 \in I$, $x_1 < x_2$ i $t \in [0, 1]$ es té

$$f((1-t)x_1 + tx_2) < (1-t)f(x_1) + tf(x_2).$$
(5.3.9)

Es pot veure que aquesta definició implica continuïtat.

5.4 Representació gràfica de funcions

5.4.1 Domini, punts de tall, simetries i asímptotes

Domini de f

Donar el domini de la funció. Recordem la definició de domini.

Definició 5.4.1 (Domini de R). Definim el **domini de** R, que denotem per dom(R), com

$$dom(R) = \{x \in A \mid \exists y \in B((x, y) \in R)\}.$$
 (5.4.1)

Punts de tall amb els eixos

Si $0 \in \text{dom}(f) \implies (0, f(0))$ és on talla la funció l'eix vertical. Si, en canvi, $x \in \text{dom}(f)$ tal que f(x) = 0, és on talla amb l'eix horitzontal.

Simetries i/o periodicitat

Definició 5.4.2 (Funció parell). Una funció f es diu parell si és simètrica respecte l'eix vertical,

$$f(x) = f(-x), \ \forall x \in \text{dom}(f). \tag{5.4.2}$$

Definició 5.4.3 (Funció senar). Una funció f es diu **parell** si és simètrica respecte l'origen,

$$f(-x) = -f(x), \ \forall x \in \text{dom}(f). \tag{5.4.3}$$

Per aeuestes funcions, la gràfica de la part $x \geq 0$ determina la part x < 0.

Definició 5.4.4. Una funció es diu periòdica de període p si

$$f(x+p) = f(x), \ \forall x \in \text{dom}(f). \tag{5.4.4}$$

Aquesta funció té una gràfica que que da determinada per $\text{dom}(f) \cap \overline{I}$ on I és quals evol interval de longitud p.

Asímptotes

Són rectes a les quals s'acosta la funció quan x tendeix a un punt de la vora del domini o a l'infinit. Tres tipus:

1. Verticals: Si $a \notin \text{dom}(f)$ però es pot aproximar per punts de dom(f), podem tenir

$$\lim_{x \to a, x \in \text{dom}(f)} f(x) = \pm \infty. \tag{5.4.5}$$

Aleshores, x = a és una asímptota vertical. Alguns cops només un dels límits laterals és $\pm \infty$ i així, x = a és una asímptota vertical pel costat corresponent.

2. Horitzontals: Si

$$\lim_{x \to +\infty} f(x) = l \in \mathbb{R} \text{ o } \lim_{x \to -\infty} f(x) = l \in \mathbb{R}, \tag{5.4.6}$$

Aleshores, la recta y = l és una asímptota horitzontal. Alguns cops només un dels límits laterals és un valor real, aleshores només tenim asímptota només pel costat corresponent, o poden ser les dues diferents.

3. Oblíques: Si $\lim_{x\to\pm\infty} |f(x)-(mx+n)|=0$, la recta y=mx+n és una asímptota oblíqua. Els valors m i n els podem determinar a partir dels límits

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \text{ i } n = \lim_{x \to \pm \infty} (f(x) - mx). \tag{5.4.7}$$

Potser només existeix la d'un costat.

5.4.2 Zones de creixement i decreixement

Creixement

Quan f' > 0, la funció és estrictament creixent, i quan f' < 0 és estrictament decreixent. Els punts $a \in \text{dom}(f)$ amb f'(a) = 0 és possible que siguin extrems relatius de f però no podem assegurar-ho fins mirar les derivades successives o estudiar el creixement en un entorn.

Convexitat

Quan f'' > 0 la funció és convexa, i quan f'' < 0 és còncava. Els punts amb f''(a) = 0 són punts d'inflexió si $f'(a) \neq 0$. Si també s'anul·la f'(a) apliquem el teorema 5.3.2 per determinar si és màxim, mínim o punt d'inflexió.

5.4.3 Exemple

Representem $f(x) = \frac{2x^2 - 1}{x}$

Figura 5.2: Gràfica de la funció

- 1. **Domini:** $dom(f) = \mathbb{R} \setminus \{0\}.$
- 2. Talls amb els eixos: $0 \notin \text{dom}(f)$, no hi ha talls amb l'eix vertical. Amb l'horitzontal:

$$f(x) = \frac{2x^2 - 1}{x} = 0 \iff x = \pm \sqrt{\frac{1}{2}} = x = \frac{\pm \sqrt{2}}{2}$$

3. Simetries:

$$f(-x) = \frac{2x^2 - 1}{-x} = -\frac{2x^2 - 1}{x} = -f(x)$$

 $\implies f$ és senar (simètrica respecte l'origen) i aleshores només ens cal estudiar el cas x > 0.

4. Asímptota vertical:

$$\lim_{x\to 0^+} \frac{2x^2-1}{x} = -\infty \implies x = 0 \text{ asímptota vertical}$$

5. **Asímptotes horitzontals:** No hi ha asímptotes horitzontals perquè

$$\lim_{x \to +\infty} \frac{2x^2 - 1}{x} = +\infty. \tag{5.4.8}$$

6. Asímptotes oblíques:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x^2 - 1}{x^2} = 2$$

$$n = \lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} \frac{-1}{x^2} = 0$$
(5.4.9)

Això implica que y = 2x és una asímptota oblíqua.

5.5. APUNTS FINALS 51

7. La funció f és derivable en tot el domini. $f'(x) = 2 + \frac{1}{x^2} > 2 > 0 \implies$ és estrictament creixent en tot el domini.

8. Si estudiem la segona derivada

$$f''(x) = -\frac{2}{x^3}$$
, si $x > 0 \implies f$ còncava $(x < 0 \implies f$ convexa).

Com que no hi ha f''(x) = 0, no hi ha punts d'inflexió.

5.5 Apunts finals

5.5.1 Exemples resolts

Exemple 5.5.1. Demostrar que tota funció f definida en un interval I, derivable i amb derivada acotada, és uniformement contínua en I.

Demostració. Donat que per hipòtesi f' està acotada, sigui M > 0 tal que

$$|f'(x)| < M, \ \forall x \in I.$$

Notem que per hipòtesi f també és uniformement contínua en I. Ho és si, i només si,

$$\forall \epsilon > 0, \ \exists \delta > 0 \ | \ |x - y| < \delta, \ x, y \in I \implies |f(x) - f(y)| < \epsilon. \tag{5.5.1}$$

Sigui $\epsilon > 0$ i considerem $\delta = \frac{\epsilon}{M}$. Si $|x - y| < \delta$, $x, y \in I$, llavors, aplicant el teorema del valor mitjà a la funció f s'obté

$$|f(x) - f(y)| = |x - y||f'(z)| < |x - y|M < \delta M = \epsilon,$$

on en la primera igualtat s'utilitza que $z \in (x, y) \subset I$ i, per tant, f'(z) < M.

Exemple 5.5.2. Fixat $\alpha \in \mathbb{R}$, definim $f : \mathbb{R} \longrightarrow \mathbb{R}$ per

$$f(x) = 2x^3 - x^2 + 2x$$
, si $x \notin A = \bigcup_{n=1}^{+\infty} \left\{ \frac{(-1^n)}{n} \right\}$, $f\left(\frac{(-1)^n}{n}\right) = (-1)^n \frac{\alpha n + 1}{n^{\alpha} + 2}$.

Determinar els valor d' α pels quals f és contínua i derivable en x=0.

Demostració. Estudiem primer la continuïtat de f. Si f és contínua en x=0, en particular s'ha de complir que

$$\lim_{n \to +\infty} f\left(\frac{(-1)^n}{n}\right) = f(0) = 0,$$

i consegüentment que

$$\lim_{n \to +\infty} (-1)^n \frac{\alpha n + 1}{n^{\alpha} + 2} = 0.$$

Per tant, condició necessària per tal que f sigui contínua en x=0 és que $1<\alpha$.

Vegem que aquesta condició és també suficient. Sigui $g: \mathbb{R} \longrightarrow \mathbb{R}$ la funció definida per $g(x) = 2x^3 - x^2 + 2x$, que és contínua en tot \mathbb{R} i que coincideix en $\mathbb{R} \setminus A$ amb f. Per tant, donat

 $\epsilon > 0$ existeix $\delta > 0$ tal que si $|x| < \delta$ llavors $|g(x)| < \epsilon$. A més, si $\alpha > 1$, es compleix l'expressió anterior, en conseqüència, $n_0 > \delta$ tal que

$$n \ge n_0 \implies \left| f \frac{(-1)^n}{n} \right| < \epsilon.$$

Això és f és contínua a 0.

Per tal d'estudiar la derivabilitat notem que la funció g és derivable en 0 i g'(0) = 2. Per tant, si f és derivable en 0, s'ha de verificar que

$$\lim_{n \to +\infty} \frac{f\left(\frac{(-1)^n}{n}\right)}{\frac{(-1)^n}{n}} = \lim_{n \to +\infty} \frac{\alpha n^2 + n}{n^{\alpha} + 2} = 2.$$

Deduïm doncs de tot això que si f és derivable en x=0, llavors $\alpha=2$. Un raonament totalment anàleg al de la continuïtat, demostra que aquesta condició és també certa.

Capítol 6

FÓRMULA DE TAYLOR I APLICACIONS

Si la funció és prou regular podem apropar la funció per un polinomi. La fórmula de Taylor diu quin és el polinomi de grau n que millor aproxima f en un entorn d'un punt i dona un control de l'error.

Definició 6.0.1. Un polinomi p(x) té ordre de contacte superior a n amb la funció f(x) al punt a si

$$\lim_{x \to a} \frac{f(x) - p(x)}{|x - a|^n} = 0,$$
(6.0.1)

i escrivim

$$f(x) = p(x) + o(|x - a|^n). (6.0.2)$$

Exemple 6.0.1. Agafem $f(x) = \frac{1}{1-x}$ i $p(x) = 1 + x + x^2 + \ldots + x^n$, i observem que al punt 0 tenen un ordre de contacte superior a n. Per la fórmula de la sèrie geomètrica,

$$p(x) = 1 + x + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x},$$

i

$$\lim_{x \to 0} \frac{f(x) - p(x)}{|x - 0|^n} = \lim_{x \to 0} \frac{\frac{1}{1 - x} - \frac{1 - x^{n+1}}{1 - x}}{|x|^n} = \lim_{x \to 0} \frac{x^{n+1}}{(1 - x)|x|^n} = 0$$

6.1 Polinomi de Taylor. Terme de resta

Teorema 6.1.1. Sigui f una funció n-1 cops derivable a un interval I, i sigui $a \in I$ on f^{n-1} és derivable. Aleshores, el polinomi

$$P_n(x) = \sum_{i=0}^n \frac{f^{(j)}(a)}{j!} (x-a)^j = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 (6.1.1)

té ordre de contacte superior a n amb f al punt a.

Demostració. Aplicant l'Hôpital reiteradament obtenim

$$\lim_{x \to a^{+}} \frac{f(x) - p_{n}(x)}{(x - a)^{n}} = \lim_{x \to a^{+}} \frac{f^{(n-1)}(x) - [f^{(n-1)}(a) + f^{(n)}(a)(x - a)]}{n!(x - a)} = 0, \tag{6.1.2}$$

per la definició de f^{n-1} derivable al punt a. L'altre límit es fa de manera anàloga.

Definició 6.1.1. A $p_n(x)$ se l'anomena polinomi de Taylor de grau n de f al punt a, i depèn d'f, del grau de n i del punt a.

Observació 6.1.1. Fixem-nos que el polinomi de Taylor de grau 1 de f al punt a és precisament la recta tangent a la gràfica d'f al punt (a, f(a)).

Proposició 6.1.2. El polinomi de Taylor $p_n(x)$ és l'únic polinomi de grau menor o igual a n que té ordre de contacte superior a n amb f en el punt a.

Demostraci'o. Suposem que q(x) és un altre polinomin de grau menor o igual a n amb aquesta propietat. Llavors:

$$\lim_{x \to a} \frac{p_n(x) - q_n(x)}{|x - a|^n} = \lim_{x \to a} \frac{p_n(x) - f(x)}{|x - a|^n} + \lim_{x \to a} \frac{f(x) - q_n(x)}{|x - a|^n} = 0.$$
 (6.1.3)

Així, el polinomi $P(x) = p_n(x) - q_n(x)$ té com a molt grau n i, per tant, es pot expressar de la forma

$$P(x) = A_0 + A_1(x - a) + A_2(x - a)^2 + \dots + A_n(x - a)^n, \ A_0, \dots, A_n \in \mathbb{R}.$$
 (6.1.4)

Aleshores,

$$\lim_{x \to a} \frac{A_0 + A_1(x - a) + \dots + A_n(x - a)^n}{|x - a|^n} = 0,$$
(6.1.5)

i l'única tria possible de coeficients és $A_0 = A_1 = \ldots = A_n = 0$.

Observació 6.1.2. El valor dels coeficients del polinomi de grau n que té ordre de contacte superior a n amb f al punt a es pot obtenir també de la forma següent. Sigui

$$p(x) = C_0 + C_1(x - a) + \ldots + C_n(x - a)^n, \ C_0, C_1, \ldots, C_n \in \mathbb{R},$$
(6.1.6)

un polinomi genèric de grau n. Com que ha de tenir ordre de contacte superior a 0 tenim

$$0 = \lim_{x \to a} [f(x) - p(x)] = f(a) - C_0 \implies C_0 = f(a). \tag{6.1.7}$$

Com que l'ordre de contacte és també superior a 1, per la regla de l'Hôpital obtenim que

$$0 = \lim_{x \to a^{+}} \frac{f(x) - p(x)}{x - a} = \lim_{x \to a^{+}} [f'(x) - p'(x)] = f'(a) - C_{1} \implies C_{1} = f'(a), \tag{6.1.8}$$

i així iterativament aplicant el mateix argument per a tots els ordres de contacte $k \leq n$ obtenint $C_k = \frac{f^{(k)(a)}}{k!}$.

Exemple 6.1.1.

1. $f(x) = e^x$ i a = 0. Tenim $f^{(x)}(x) = e^x, \forall k \in \mathbb{N}$ i $f^k(0) = 1$. El polinomi de Taylor de grau n al punt 0:

$$p_n(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \dots + \frac{f^{(n)}(0)}{n!}(x - 0)^n = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}.$$

Si canviem a a = 1:

$$p_n(x) = e + e(x-1) + \ldots + \frac{e}{n!}(x-1)^n.$$

2. $f(x) = \sin x$ i a = 0. Tenim

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = 1$$

$$f^{iv}(x) = \sin x \qquad f^{iv}(0) = 0$$

Així, $f^{2k}(0) = 0$ i $f^{2k+1}(0) = (-1)^k$

$$P_{2k+1}(x) = f(0) + f'(0)x + \ldots + \frac{f^{2k+1}(0)}{(2k+1)!}x^{2k+1} = x - \frac{x^3}{3!} - \frac{x^5}{5!} + \ldots + (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Definició 6.1.2. Sigui f derivable n vegades a un interval I i sigui $a \in I$. Diem **resta de Taylor d'ordre** n **de la funció** f **al punt** a:

$$R_n(x) = f(x) - p_n(x) = f(x) - \sum_{j=0}^n \frac{f^j(a)}{j!} (x - a)^j$$
(6.1.9)

El terme de la resta es pot veure com l'error en aproximar f pel polinomi de Taylor de grau n a l'entorn a.

Definició 6.1.3 (Fórmula de Taylor). Sigui f derivable n+1 cops a un interval I. Per a $a,x\in I$ es té

$$f(x) = p_n(x) + R_n(x) = \sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!} (x - a)^j + R_n(x),$$
 (6.1.10)

i existeix c entre x i a tal que

$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}.$$
(6.1.11)

Aquesta darrera expressió $R_n(x)$ s'anomena resta de Lagrange.

Observació 6.1.3. Tal i com és d'esperar, aquest terme d'error disminueix a mesura que x s'acosta a a i n creix. Existeixen altres expressions de resta, el de Cauchy o també es pot donar una forma d'integral.

Exemple 6.1.2.

1. $f(x) = e^x$, amb a = 0. La resta de Lagrange té la forma, per algun valor c entre 0 i x:

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1} = \frac{e^c}{(n+1)!}x^{n+1},$$

i això dona lloc a la fórmula de Taylor

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \frac{e^c}{(n+1)!} x^{n+1}.$$
 (6.1.12)

2. $f(x) = \sin x$ i a = 0. Mirem la fórmula de Taylor per a grau 2k (parell).

$$R_{2k}(x) = \frac{f^{(2k+1)}(c)}{(2k+1)!} x^{2k+1} = \frac{(-1)^k \cos c}{(2k+1)!} x^{2k+1},$$

i
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + \frac{(-1)^k \cos c}{(2k+1)!} x^{2k+1}$$

6.2 Aplicacions

6.2.1 Càlculs aproximats

Aproximem un valor de f (el qual no sabem calcular) per a un valor $p_n(x)$ triat de manera que l'error comès en l'aproximació (el terme de resta) sigui menor que la precisió que ens demanen.

Exemple 6.2.1. Calculem e amb un error de 10^{-4} . Considerem la funció exponencial $f(x) = e^x$ i la fórmula 6.1.12. Aproximarem e = f(1) per $p_n(1)$ cometent un error que controlem amb $R_n(1)$. Fem-ho:

$$|f(1) - p_n(1)| = \left| e - 1 - 1 - \frac{1}{2!} - \dots - \frac{1}{n!} \right| = \frac{e^c}{(n+1)!} \le \frac{3}{(n+1)!},$$

ja que $c \in [0,1]$. Així doncs, triem n tal que $\frac{3}{(n+1)!} < 10^{-4}$. Aleshores, podem assegurar que

$$p_n(1) = 1 + 1 + \frac{1}{2} + \ldots + \frac{1}{n!}$$

aproxima f(1) = e amb un error menor que 10^{-4} . Cal, doncs:

$$(n+1)! > 30000 \implies n \ge 7 \implies P_7(1) = 1 + 1 + \frac{1}{2} + \dots + \frac{1}{7!} = 2,7118554.$$

6.2.2 Designaltats

Si podem determinar el signe de terme de resta $R_n(x)$ tenim una designaltat entre la funció f(x) i el polinomi de Taylor $p_n(x)$, és a dir,

$$f(x) \le p_n(x)$$
, quan $R_n(x) \le 0$, (6.2.1)

$$f(x) \ge p_n(x)$$
, quan $R_n(x) \ge 0$. (6.2.2)

Exemple 6.2.2. Demostrem que

$$\cos x \ge 1 - \frac{x^2}{2}, \ \forall x \in (-\pi, \pi).$$

Primer desenvolupem per $f(x) = \cos x$ a l'entorn del 0 obtenint

$$\cos x = 1 - \frac{x^2}{2} + \frac{\sin c}{3!}x^3,$$

on c és un punt intermig entre 0 i x. Aleshores, $\sin c$ té el mateix signe que $\sin x$, que és el mateix que x i, per tant, que x^3 . Tot plegat, $(\sin c)x^3 \ge 0$ i així acabem.

6.2.3 Càlcul de límits

Algunes de les indeterminacions que hem treballat fins ara es podem resoldre de manera senzilla utilitzant el fet que el polinomi de Taylor d'ordre n de f al punt a té ordre de contacte superior a n amb f. Escrivim:

$$f(x) = p_n(x) + o(|x - a|^n), (6.2.3)$$

on $o(|x-a|)^n$ indica un terme tal que

$$\lim_{x \to a} \frac{o(x-a)^n}{|x-a|^n} = 0. \tag{6.2.4}$$

6.2. APLICACIONS 57

Exemple 6.2.3.

1. Calcule
m $\lim_{x\to 0}\frac{x-\sin x}{x^3}.$ Utilitzem el desenvolupament de $\sin x$

$$\sin x = x - \frac{x^3}{3!} + o(|x|^3).$$

Així, tenim

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!}\right) + o(|x|^3)}{x^3} = \lim_{x \to 0} \frac{1}{3!} + \frac{o(|x|^3)}{x^3} = \frac{1}{6}.$$

2. Calcule
m $\lim_{x\to 0}\frac{1-\cos x}{e^x-1-x}.$ Sabem que

$$\cos x = 1 - \frac{x^2}{2} + o(|x|^2),$$

$$e^x = 1 + x + \frac{x^2}{2} + o(|x|^2).$$

Així,

$$\lim_{x \to 0} \frac{\frac{x^2}{2} + o(|x|^2)}{\frac{x^2}{2} + o(|x|^2)} = \lim_{x \to 0} \frac{\frac{1}{2} + \frac{o(|x|^2)}{x^2}}{\frac{1}{2} + \frac{o(|x|^2)}{x^2}} = 1.$$

La unicitat del polinomi de Taylor permet obtenir el desenvolupament de funcions que són composicions de funcions conegudes. Per exemple, calcularem

$$\lim_{x \to 0} \frac{e^{x^3} - 1 - x^4}{\sin x^2}$$

tenim que

$$e^z = 1 + z + o(z) \implies e^{x^3} = 1 + x^3 + o(|x|^3),$$

 $\sin z = z - \frac{z^3}{3!} + o(|z|^3) \implies \sin x^2 = x^2 - \frac{x^6}{6} + o(x^6).$

Això dona

$$\lim_{x \to 0} \frac{e^{x^3} - 1 - x^4}{\sin x^2} = \lim_{x \to 0} \frac{1 + x^3 + o(|x|^3) - 1 - x^4}{x^2 - \frac{x^6}{6} + o(x^6)} = \lim_{x \to 0} \frac{x^3 + o(|x|^3)}{x^2 + o(|x|^3)} = 0.$$

Bibliografia

- [1] Aramburu, J. M. O. *Introducció a l'anàlisi matemàtica*, vol. 28. Univ. Autònoma de Barcelona, 2002.
- [2] JARAUTA BRAGULAT, E. Análisis matemático de una variable: fundamentos y aplicaciones, 2000.
- [3] JULIÀ-DÍAZ, B., AND GUILLEUMAS, M. Anàlisi matemàtica d'una variable, vol. 376. Edicions Universitat Barcelona, 2011.