Generalized Linear Models Overdispersion

Demetris Athienitis

Model Fit

From the properties of the χ^2 distribution, we know that

$$E(\chi_{\nu}^2) = \nu$$

For a well fitting model we expect

$$X^2 \approx \text{Residual d.f.}$$

However, there are cases of concern where

$$X^2 \gg \text{Residual d.f.}$$

Could use G^2 (Residual Deviance) as an alternative, since $X^2 \approx G^2$, but not as efficient in detecting overdispersion.

Reasons

- Badly fitting model
 - omitted terms/variables
 - incorrect relationship (link)
 - outliers
- Variation greater than predicted by model that leads to overdispersion
 - count data: $V(Y) > \mu$
 - binomial data: $V(Y) > n\pi(1-\pi)$

Causes of Overdispersion

- variability of experimental material individual level variability
- correlation between individual responses, e.g. litters of rats
- cluster sampling, e.g. areas; schools; classes; children
- aggregate level data
- omitted unobserved variables
- excess zero counts (structural and sampling zeros)

Consequences

With correct mean model we have consistent estimates of β but:

- incorrect standard errors
- selection of overly complex models

Remark

Overdispersion is much more common for count data, especially due to the restriction by the Poisson model E(Y) = V(Y).

Checking overdispersion

- ullet Check whether $X^2\gg df$, or $rac{X^2}{df}\gg 1$
- Fit a different model with additional parameters that allow variance to be greater and test the significance of those parameters
 - ullet count data: Negative Binomial, parameter heta is introduced and estimated via MLE

$$V(Y) = \mu + \left(\frac{1}{\theta}\right)\mu^2$$

 \bullet binomial data: Beta-Binomial, parameter ρ is introduced and estimated via MLE

$$V(Y) = n\pi(1-\pi)[1 + (n-1)\rho]$$

In R

- Negative Binomial: glm.nb{MASS}
- Beta-Binomial: betabinomial{VGAM}

Example (Homicide)

1308 individuals who where classified as "Black" or "White" were asked: "How many homicide victims have you personally known?"

	Number of victims								
Race	0	1	2	3	4	5	6		
Black	119	16	12	7	3	2	0		
White	1070	60	14	4	0	0	1		

>	head(h	nomici	de)	#data	entered	in	"shorter"	format
		race						
1	0	Black	119	ı				
2	1	Black	16	;				
3	2	Black	12	!				
4	3	Black	7					
5	4	Black	3	;				
6	5	Black	2					

Example

- > homicide=transform(homicide,race=relevel(race,"White"))
- > hom.poi=glm(nvics~race,family=poisson(link="log"),
- + weights=Freq,data=homicide)
- > summary(hom.poi)

Null deviance: 962.80 on 10 degrees of freedom Residual deviance: 844.71 on 9 degrees of freedom

Checking for overdispersion via $X^2/(df)\gg 1$ we first notice that the way the data was entered, the degrees of freedom is not 9 but actually 1308-2=1306

- > sum(resid(hom.poi,type="pearson")^2)/
- + (sum(homicide\$Freq)-length(hom.poi\$coefficients))
- [1] 1.745692

Some evidence of overdispersion is apparent.

Example

```
> library(MASS)
> hom.nb=glm.nb(nvics~race,weights=Freq,data=homicide)
```

> summary(hom.nb)

.

Theta: 0.2023

Std. Err.: 0.0409

$$\left(rac{1}{\widehat{ heta}}
ight)pprox 5$$

seems substantial in. Much better now,

- > sum(resid(hom.nb,type="pearson")^2)/
- + (sum(homicide\$Freq)-length(hom.nb\$coefficients))
- [1] 1.090373

Example

More examples in notes.

Remark

The Beta-Binomial application is omitted here but an alternative method that does not use a likelihood approach but merely the structure between the mean and variance are the

- count data: Pseudo-Poisson
- binomial data: Pseudo-Binomial

but as result likelihood ratio tests are not possible.

We learned

- What is overdispersion
- Why it may occur
- How to identify it
- Possible model remedies