

Dynamic Scaling & Load Balancing

Building for scale

- Scaling & Load Balancing: What & Why?
- Understanding AWS Auto Scaling
- Understanding AWS Elastic Load Balancers

The Need For Flexibility

Without Cloud Computing

(i.e., on-premise)

Hardware Utilization

(e.g., because of incoming requests)

Capacity exceeded

Max. Capacity

Paying too much (for idle resources)

The Need For Flexibility

Without Cloud Computing

(i.e., on-premise)

Hardware Utilization

(e.g., because of incoming requests)

Max. Capacity

Paying too much (for idle resources) With Cloud Computing

(e.g., via AWS services)

Hardware Utilization

(e.g., because of incoming requests)

Capacity is dynamically adjusted

AWS Compute Scaling Services

EC2 Auto Scaling

Service which can be used to automatically add / remove EC2 instances (based on conditions)

Ensures sufficient capacity at all times, without over-provisioning

Elastic Load Balancer (ELB)

Service to distribute load (e.g., incoming requests) evenly across available instances

Ensures that all available instances are utilized equally

Application
Load Balancer

Network Load Balancer

Elastic Load Balancer

Application Load Balancer

Feature-rich

Broad variety of request forwarding conditions & rules

Capable of SSL termination

Can reduce app complexity

Use for (most) HTTP apps

Network Load Balancer

Very lean

Limited configuration options

Fixed IP address

Perfect for non-HTTP traffic

Use for non-HTTP services

Using Auto Scaling

Using Load Balancers

Summary

Elasticity, Scalability & High Availability

Workloads don't necessarily have even load patterns

Too little or too much capacity can be a big problem

Being able to scale instantly & automatically is important

Load should also be distributed evenly to avoid downtimes

Auto Scaling

Automatically add / remove instances

Set clear rules and min / max requirements

Instance count is adjusted to incoming load based on rules

Use launch templates & VPC / subnet settings

Elastic Load Balancer

ALB & NLB can be used for distributing traffic evenly

Define target groups (in VPCs / Subnets) and forwarding rules

ALB is perfect for HTTP traffic (and feature-rich)

NLB is great for other network traffic