Course 4

Generated subspace, linear maps

Prof. dr. Septimiu Crivei

Chapter 2. Vector Spaces

Basic properties

- 2 Subspaces
- Generated subspace
- 4 Linear maps

Application: image crossfade

Following [Klein], we describe a way to achieve an image crossfade effect.

Intersection of subspaces

For a vector space V over K, we denote by S(V) the set of all subspaces of V. Sometimes, this set is denoted by $S_K(V)$ if we like to emphasize the field K.

Theorem

Let V be a vector space over K and let $(S_i)_{i \in I}$ be a family of subspaces of V. Then $\bigcap_{i \in I} S_i \in S(V)$.

Proof. [...]

In general, the union of two subspaces of a vector space is not a subspace. For instance, $S = \{(x,0) \mid x \in \mathbb{R}\}$ and $T = \{(0,y) \mid y \in \mathbb{R}\}$ are subspaces of the canonical real vector space \mathbb{R}^2 , but $S \cup T$ is not a subspace of \mathbb{R}^2 . Indeed, for instance, we have $(1,0), (0,1) \in S \cup T$, but $(1,0) + (0,1) = (1,1) \notin S \cup T$.

Generated subspace

Now we are interested in how to "complete" a given subset of a vector space to a subspace in a minimal way.

Definition

Let V be a vector space and let $X \subseteq V$. Then we denote

$$\langle X \rangle = \bigcap \{ S \le V \mid X \subseteq S \}$$

and we call it the subspace generated by X or the subspace spanned by X. Here X is called the generating set of $\langle X \rangle$. If $X = \{v_1, \ldots, v_n\}$, we denote $\langle v_1, \ldots, v_n \rangle = \langle \{v_1, \ldots, v_n\} \rangle$.

- (1) $\langle X \rangle$ is the "smallest" (with respect to inclusion) subspace of V containing X.
- (2) $\langle \emptyset \rangle = \{0\}.$
- (3) If $S \leq V$, then $\langle S \rangle = S$.

System of generators

Definition

A vector space V over K is called *finitely generated* if $\exists v_1, \ldots, v_n \in V \ (n \in \mathbb{N}) \text{ such that}$

$$V = \langle v_1, \ldots, v_n \rangle.$$

Then the set $\{v_1, \ldots, v_n\}$ is called a system of generators for V.

Definition

Let V be a vector space over K and $v_1, \ldots, v_n \in V \ (n \in \mathbb{N})$. A finite sum of the form

$$k_1v_1+\cdots+k_nv_n$$

where $k_i \in K$ (i = 1, ..., n), is called a (finite) linear combination of the vectors v_1, \ldots, v_n .

Characterization of the generated subspace

Theorem

Let V be a vector space over K and let $\emptyset \neq X \subseteq V$. Then

$$\left\langle X\right\rangle =\left\{ k_{1}v_{1}+\cdots+k_{n}v_{n}\mid k_{i}\in K\,,\ v_{i}\in X\,,i=1,\ldots,n\,,\ n\in\mathbb{N}^{*}\right\} ,$$

that is, the set of all finite linear combinations of vectors of X.

Proof. We prove the result in 3 steps, by showing that

$$L = \{k_1v_1 + \dots + k_nv_n \mid k_i \in K, \ v_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^*\}$$

is the smallest subspace of V containing X [...].

Corollary

Let V be a vector space over K and let $x_1, \ldots, x_n \in V$. Then

$$\langle x_1, \dots, x_n \rangle = \{ k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n \}.$$

Examples I

(a) Consider the canonical real vector space \mathbb{R}^3 . Then

$$\langle (1,0,0), (0,1,0), (0,0,1) \rangle$$

$$= \{k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) \mid k_1, k_2, k_3 \in \mathbb{R}\}$$

$$= \{(k_1,0,0) + (0,k_2,0) + (0,0,k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\}$$

$$= \{(k_1,k_2,k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \mathbb{R}^3.$$

Hence \mathbb{R}^3 is generated by the three vectors (1,0,0), (0,1,0) and (0,0,1), and thus it is finitely generated.

(b) Consider the canonical vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 . Similarly as above, we have:

$$\langle (\widehat{1}, \widehat{0}, \widehat{0}), (\widehat{0}, \widehat{1}, \widehat{0}) \rangle = \{ (k_1, k_2, \widehat{0}) \mid k_1, k_2 \in \mathbb{Z}_2 \} \neq \mathbb{Z}_2^3.$$

Linear maps

Examples II

Hence \mathbb{Z}_2^3 is not generated by the two vectors $(\widehat{1},\widehat{0},\widehat{0})$ and $(\widehat{0},\widehat{1},\widehat{0})$. But it is generated by $(\widehat{1},\widehat{0},\widehat{0})$, $(\widehat{0},\widehat{1},\widehat{0})$ and $(\widehat{0},\widehat{0},\widehat{1})$, hence it is finitely generated.

(c) Consider the subspace

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

of the canonical real vector space \mathbb{R}^3 . Let us write it as a generated subspace. Expressing x=y+z, we have:

$$S = \{(y+z,y,z) \mid y,z \in \mathbb{R}\} = \{(y,y,0) + (z,0,z) \mid y,z \in \mathbb{R}\}$$

= \{y(1,1,0) + z(1,0,1) \cdot y,z \in \mathbb{R}\} = \langle (1,1,0), (1,0,1) \langle.

Alternatively, one may express y or z by using the other two components and get other writings of S as a generated subspace, namely $S = \langle (1,1,0), (0,-1,1) \rangle = \langle (1,0,1), (0,1,-1) \rangle$. We see that S is finitely generated.

Sum of subspaces

In what follows we shall be interested in "decomposing" a vector space into subspaces.

Definition

Let V be a vector space over K and let $S, T \leq V$. We define the sum of the subspaces S and T as the set

$$S + T = \{s + t \mid s \in S, t \in T\}.$$

Theorem

Let V be a vector space over K and $S, T \leq V$. Then $S + T = \langle S \cup T \rangle$, hence $S + T \leq V$.

Proof. We prove the equality by double inclusion [...].

Direct sum of subspaces

Definition

Let V be a vector space over K and let $S, T \leq V$. If $S \cap T = \{0\}$, then S + T is denoted by $S \oplus T$ and is called the *direct sum* of the subspaces S and T.

Theorem

Let V be a vector space over K and let $S, T \leq V$. Then

$$V = S \oplus T \iff \forall v \in V, \exists ! s \in S, t \in T : v = s + t.$$

Proof. [...]

Example

Consider the canonical real vector space \mathbb{R}^2 . Then $\mathbb{R}^2 = S \oplus T$, where $S = \{(x,0) \mid x \in \mathbb{R}\}$ and $T = \{(0,y) \mid y \in \mathbb{R}\}$.

Linear maps

Definition

Let V and V' be vector spaces over the same field K. A function $f:V\to V'$ is called:

(1) (K-)linear map (or (vector space) homomorphism or linear transformation) if

$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in V,$$

$$f(kv) = kf(v), \quad \forall k \in K, \forall v \in V.$$

- (2) isomorphism if it is a bijective K-linear map.
- (3) endomorphism if it is a K-linear map and V = V'.
- (4) automorphism if it is a bijective K-linear map and V = V'.

Properties of linear maps

If $f:V\to V'$ is a K-linear map, then the first condition from its definition tells us that f is a group homomorphism between the groups (V,+) and (V',+). Then we have f(0)=0' and $f(-v)=-f(v), \ \forall v\in V$.

We denote by $V \simeq V'$ the fact that two vector spaces V and V' are isomorphic. We also denote

$$\begin{aligned} \operatorname{Hom}_{\mathcal{K}}(V,V') &= \left\{ f: V \to V' \mid f \text{ is K-linear} \right\}, \\ \operatorname{End}_{\mathcal{K}}(V) &= \left\{ f: V \to V \mid f \text{ is K-linear} \right\}, \\ \operatorname{Aut}_{\mathcal{K}}(V) &= \left\{ f: V \to V \mid f \text{ is bijective K-linear} \right\}. \end{aligned}$$

Characterization of linear maps

Theorem

Let V and V' be vector spaces over K and $f: V \to V'$. Then f is a K-linear map $\iff f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2), \forall k_1, k_2 \in K, \forall v_1, v_2 \in V$.

Proof. [...]

Examples I

- (a) Let V and V' be vector spaces over K and let $f: V \to V'$ be defined by f(v) = 0', $\forall v \in V$. Then f is a K-linear map, called the *trivial linear map*.
- (b) Let V be a vector space over K. Then the identity map $1_V:V\to V$ is an automorphism of V.
- (c) Let V be a vector space and $S \leq V$. Define $i: S \to V$ by i(v) = v, $\forall v \in S$. Then i is a K-linear map, called the *inclusion linear map*.
- (d) Let V be a vector space over K and $a \in K$. Define $t_a : V \to V$ by $t_a(v) = av$, $\forall v \in V$. Then t_a is an endomorphism of V.

Examples II

(e) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = x + y. Then f is an \mathbb{R} -linear map, because we have

$$f(k_1(x_1, y_1) + k_2(x_2, y_2)) = f(k_1x_1 + k_2x_2, k_1y_1 + k_2y_2)$$

$$= (k_1x_1 + k_2x_2) + (k_1y_1 + k_2y_2)$$

$$= k_1(x_1 + y_1) + k_2(x_2 + y_2)$$

$$= k_1f(x_1, y_1) + k_2f(x_2, y_2)$$

for every $k_1, k_2 \in K$ and for every $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. On the other hand, $f : \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = xy is not an \mathbb{R} -linear map, because, for instance, we have

$$f((1,0)+(0,1))=f(1,1)=1\neq 0=f(1,0)+f(0,1).$$

(f) Let $\theta \in \mathbb{R}$ and let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta),$$

Linear maps Course 4

16

Examples III

which is the counterclockwise rotation of angle θ about the origin in the plane. Then f is an \mathbb{R} -linear map. In particular, for $\theta=\frac{\pi}{2}$, we have f(x,y)=(-y,x).

(g) For an interval $I = [a, b] \subseteq \mathbb{R}$ we considered the real vector space

$$\mathbb{R}^I = \{ f \mid f : I \to \mathbb{R} \}$$

and its subspaces

$$C(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ continuous on } I \},$$

$$D(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ derivable on } I \}.$$

Then

$$F:D(I,\mathbb{R}) \to \mathbb{R}^I, \quad F(f) = f',$$
 $G:C(I,\mathbb{R}) \to \mathbb{R}, \quad G(f) = \int_a^b f(t)dt,$

are \mathbb{R} -linear maps.

Properties of linear maps

Theorem

- (i) Let $f: V \to V'$ be an isomorphism of vector spaces over K. Then $f^{-1}: V' \to V$ is again an isomorphism of vector spaces over K.
- (ii) Let $f:V\to V'$ and $g:V'\to V''$ be K-linear maps. Then $g\circ f:V\to V''$ is a K-linear map.

Proof. Homework.

Kernel and image of a linear map

Definition

Let $f: V \to V'$ be a K-linear map. Then the set

$$\operatorname{Ker} f = \{ v \in V \mid f(v) = 0' \}$$

is called the kernel (or the $null\ space$) of the K-linear map f and the set

$$\operatorname{Im} f = \{ f(v) \mid v \in V \}$$

is called the image (or the $range\ space$) of the K-linear map f.

Kernel and image are subspaces

Theorem

Let $f: V \to V'$ be a K-linear map. Then

$$\operatorname{Ker} f \leq V$$
 and $\operatorname{Im} f \leq V'$.

Proof. [...]

Theorem

Let $f: V \to V'$ be a K-linear map. Then

$$\operatorname{Ker} f = \{0\} \iff f \text{ is injective}.$$

Proof. [...]

Linear maps and generated subspaces

$\mathsf{Theorem}$

Let $f: V \to V'$ be a K-linear map and let $X \subseteq V$. Then

$$f(\langle X \rangle) = \langle f(X) \rangle$$
.

Proof. If $X = \emptyset$, then we have:

$$f(\langle\emptyset\rangle) = f(\{0\}) = \{f(0)\} = \{0'\} = \langle\emptyset\rangle = \langle f(\emptyset)\rangle.$$

If $X \neq \emptyset$, use

$$\langle X \rangle = \{k_1 v_1 + \dots + k_n v_n \mid k_i \in K, \ v_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^*\} [\dots].$$

21

The vector space of linear maps

Theorem

Let V and V' be vector spaces over K. Consider on $Hom_K(V, V')$ the operations: $\forall f, g \in \text{Hom}_K(V, V')$ and $\forall k \in K$, $f + g, k \cdot f \in \operatorname{Hom}_K(V, V')$, where

$$(f+g)(v) = f(v) + g(v),$$

$$(kf)(v) = kf(v)$$

 $\forall v \in V$. Then $\operatorname{Hom}_{K}(V, V')$ is a vector space over K.

Corollary

Let V be a vector space over K. Then $\operatorname{End}_{\kappa}(V)$ is a vector space over K.

Extra: Image crossfade I

A black-and-white image of (say)

$$n = 1024 \times 768$$

pixels can be viewed as a vector in the real canonical vector space \mathbb{R}^n , where each component of the vector is the intensity of the corresponding pixel.

Let us consider two vectors representing images:

Now consider the following intermediate images:

Extra: Image crossfade II

The vectors corresponding to the above images are the following linear combinations of the vectors v_1 and v_2 :

$$v_1, \quad \frac{8}{9}v_1 + \frac{1}{9}v_2, \quad \frac{7}{9}v_1 + \frac{2}{9}v_2, \quad \frac{6}{9}v_1 + \frac{3}{9}v_2, \quad \frac{5}{9}v_1 + \frac{4}{9}v_2, \\ \frac{4}{9}v_1 + \frac{5}{9}v_2, \quad \frac{3}{9}v_1 + \frac{6}{9}v_2, \quad \frac{2}{9}v_1 + \frac{7}{9}v_2, \quad \frac{1}{9}v_1 + \frac{8}{9}v_2, \quad v_2.$$

One may use these images as frames in a video in order to get a crossfade effect.