Introduction To Tree

By Yash Gupta

Tree Terminologies

Root:

Parents: A, B, F

Children: B, E, F, C, D, G, H, I

Siblings: {B,E,F}, {C,D}, {G,H,I} Leaves: C,D,E,G,H,I

Internal nodes: B,F

Binary Tree

Binary Tree Properties

• Maximum Height : $H_{\text{max}} = N$

- Minimum Height: $H_{\min} = [\log_2 N] + 1$
- Nodes at level L: 2^L

Minimum Nodes

$$N_{\min} = H$$

• Maximum Nodes : $N_{\text{max}} = 2^H - 1$

Binary Tree Types

- Complete Tree
 - Maximum number of entries for its height.
- Nearly Complete
 - Minimum height for its nodes and all nodes in the last level are found on the left
- Strictly binary Tree
 - Either two subtrees or no node

(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)

Properties

- A strictly binary tree with L leaves must have 2L-1 nodes
- A x-ary complete tree with L leaves , I internal nodes is given by L=(x-1)I + 1
- Note: I internal node also includes parent node

Expression Tree

• Step 1 : Convert infix to postfix/prefix expression

 Step 2 : Perform Postfix evaluation to generate tree

Contact Info

- trainers@finaldesk.com
- rishabh@finaldesk.com
- nilesh@finaldesk.com
- jignesh@finaldesk.com
- yash@finaldesk.com
- anand@finaldesk.com