Vector Calculus Notes

Gabriel Ravacci

Fall - Winter 2022

Contents

1	Line Integrals			
	1.1	Vector Fields	2	
	1.2	Line Integrals	2	
2	Surface Integrals			
	2.1	Parametrized Surfaces	4	
	2.2	Tangent Planes	4	
		Surface Integrals	5	
		Flux Integrals	6	
3	Gra	d, Div and Curl	7	
4	Integral Theorems			
	4.1	Divergence Theorem	8	
	4.2	Green's Theorem	8	
		Stoke's Theorem	9	

Line Integrals

1.1 Vector Fields

Definition 1. A vector field is defined as a function that

- In the plane, assigns each point (x, y) in a subset ω a two component vector \mathbf{v} .
- In space, assigns each point (x, y, z) in a subset Ω a three component vector \mathbf{v} .

Definition 2. A vector field is said to be **conservative** if there exists some function φ s.t.

$$\mathbf{F} = \nabla \varphi$$

and φ is called the **potential** function.

Theorem 1. Screening test for convervative vector fields

• In \mathbb{R}^2 for some $\mathbf{F} = F_1(x, y)\hat{\mathbf{i}} + F_2(x, y)\hat{\mathbf{j}}$, \mathbf{F} is conservative if:

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$$

• In \mathbb{R}^3 , for some $\mathbf{F} = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, \mathbf{F} is conservative if:

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \qquad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x} \qquad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}$$

1.2 Line Integrals

Definition 3. Denote by C the parametrized path $\mathbf{r}(t)$ with $t_0 \le t \le t_1$. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} (\mathbf{F_{1}} dx + \mathbf{F_{2}} dy + \mathbf{F_{3}} dz) = \int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{t}(t) dt$$

Remark. Note that if *C* is a closed path, we may write: $\oint_C \mathbf{F} \cdot d\mathbf{r}$

Theorem 2. Let **F** be a continuous and defined vector field on all of \mathbb{R}^2 or \mathbb{R}^3 . Then:

- 1. **F** is conservative.
- 2. $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$
- 3. $\int \mathbf{F} \cdot d\mathbf{r}$ is path indepedentt. That is, for any two curves C_1, C_2 that start at P_0 and end at $P_1, \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$

If any of these are true, all three are true.

Surface Integrals

2.1 Parametrized Surfaces

There are three common ways to specify a functio in \mathbb{R}^3 :

- 1. Explicitly: z = f(x, y) where $(x, y) \in \mathcal{D} \subset \mathbb{R}^2$
- 2. Implicitly: G(x, y, z) = K
- 3. By range of function: $\mathbf{r}: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$ where each $(u, v) \in \mathcal{D} \mapsto \mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$.

Example. The unit sphere $G(x, y, z) = x^2 + y^2 + z^2 = 1$ can be parametrized as

$$\mathbf{r}(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$$

with $\theta \in [0, 2\pi)$ and $\varphi \in (0, \pi)$.

2.2 Tangent Planes

Theorem 3. Normal vectors to surfaces

• Let $\mathbf{r}: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a parametrized surface and let $(x_0, y_0, z_0) = \mathbf{r}(u_0, v_0)$ be a point on the surface. Then

$$T_u = \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$$

$$\mathbf{T}_v = \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$$

$$\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$$

is normal to the surface.

• Let G(x, y, z) = K be a surface and let (x_0, y_0, z_0) be a point on the

surface. Then

$$\mathbf{n} = \mathbf{\nabla} G(x_0, y_0, z_0)$$

is normal to the surface.

2.3 Surface Integrals

Theorem 4. For a parametrized surface $\mathbf{r}(u, v)$

$$\hat{\mathbf{n}} dS = \pm \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} du dv$$
$$dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du dv$$

Remark. Note that the \pm is because there are two unit normal vectors corresponding to the inside and outside of the surface.

Corollary. For a surface z = f(x, y)

$$\hat{\mathbf{n}} dS = \pm \left(-f_x \mathbf{i} - f_y \mathbf{j} + \mathbf{k} \right) dx dy$$
$$dS = \sqrt{1 + f_x^2 + f_y^2} dx dy$$

Proof. We may parametrize a surface given by z = f(x, y) as

$$\mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} + f(x, y)\mathbf{k}$$

then

$$\frac{\partial \mathbf{r}}{\partial x} = \mathbf{i} + f_x \mathbf{k}$$

$$\frac{\partial \mathbf{r}}{\partial y} = \mathbf{j} + f_y \mathbf{k}$$

$$\hat{\mathbf{n}} = \frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = -f_x \mathbf{i} - f_y \mathbf{j} + \mathbf{k}$$

And from this result:

Corollary. For a surface G(x, y, z) = K, then

$$\hat{\mathbf{n}} dS = \pm \frac{\nabla G}{\nabla G \cdot k} dx dy$$
$$dS = \left| \frac{\nabla G}{\nabla G \cdot k} \right| dx dy$$

and holds for dxdz and dydz.

Definition 4. We define a surface integral to be

$$\iint_{S} \rho dS$$

which gives the value of a function ρ across the surface. If we let ρ = 1 we get the surface are, that is:

$$A_S = \iint_S \mathrm{d}S$$

2.4 Flux Integrals

Definition 5. We define a flux integral to be

$$\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} dS$$

which describes the rate at which some vector field **F** "flows" or crosses through a surface *S*.

Lemma 1. Let a fluid have density described by $\rho(x, y, z, t)$ and velocity described by $\mathbf{v}(x, y, z, t)$. Then, the rate at which it is crossing through a surface S is

$$\Phi = \iint_{S} \rho \mathbf{v} \cdot \hat{\mathbf{n}} dS$$

where $\hat{\mathbf{n}}(x, y, z)$ is a unit normal vector to *S*. If this is positive the fluid is crossing opposite to the normal.

Grad, Div and Curl

Definition 6. We informally define the **del** ∇ operator as

$$\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$$

We may apply this operator to functions in \mathbb{R}^3 as follows.

Definition 7. We define

a. the **gradient** of a scalar function f(x, y, z) is the vector field

grad
$$f = \nabla f = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z} k$$

b. The **divergence** of a vector field $\mathbf{F}(x, y, z)$ is the scalar function

$$\operatorname{div} \mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

c. The **curl** of a vector field $\mathbf{F}(x, y, z)$ is the vector function

$$\operatorname{curl} \mathbf{F} = \mathbf{\nabla} \times \mathbf{F} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{bmatrix}$$

Integral Theorems

4.1 Divergence Theorem

First, some definitions:

Definition 8. a. A surface is **smooth** if it has a parametrization $\mathbf{r}(u, v)$ with continuous partial derivative $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ and their cross product is ponzeron

b. A surface is **piecewise smooth** if it is composed of multiple smooth surfaces.

which leads us into

Theorem 5 (Divergence Theorem). Let V be a bounded solid with a piecewise smooth surface ∂V and let F be a vector field that has continous first partial derivatives in V. Then

$$\iint_{\partial V} \mathbf{F} \cdot \hat{\mathbf{n}} dS = \iiint_{V} \mathbf{\nabla} \cdot \mathbf{F} dV$$

4.2 Green's Theorem

First we need some definitions:

Definition 9. A curve *C* with parametrization $\mathbf{r}(t)$, $a \le t \le b$, is **closed** if $\mathbf{r}(a) = \mathbf{r}(b)$.

Definition 10. A curve *C* is **simple** if it does not cross itself.

Definition 11. A curve C is **piecewise smooth** if it has a parametrization $\mathbf{r}(t)$ which is continuous, differentiable and the derivative is also continuous and nonzero.

Theorem 6 (Green's Theorem). Let R be a finite region in the xy-plane and let C bound R and consist of finite number of simple, closed and piecewise smooth curves that are oriented consitently with R. Then let F_1 and F_2 have continuous first partial derivative in R. Then

$$\oint_C \left[F_1(x, y) dx + F_2(x, y) dy \right] = \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy$$

it is often more useful to define it as

$$\oint_C \langle P, Q \rangle \cdot d\mathbf{r} = \iint_R (Q_x - P_y) \, dx dy$$

Corollary. Consider a region *R* and a curve *C* such that Green's Theorem applies, then

$$Area(R) = \frac{1}{2} \oint_C [x dy - y dx]$$

Example. Let us compute the area of the circle $x^2 + y^2 \le a^2$ using Green's Theorem. We parametrize it as

$$\mathbf{r}(t) = a\cos t\,\mathbf{\imath} + a\sin t\,\mathbf{\jmath}$$

with $0 \le t \le 2\pi$. Then

$$A = \iint_{R} dxdy$$

$$= \frac{1}{2} \oint_{C} [xdy - ydx]$$

$$= \frac{1}{2} \int_{0}^{2\pi} (a\cos t)(a\cos t) - (a\sin t)(-a\sin t)dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} a^{2}\cos^{2}t + a^{2}\sin^{2}tdt$$

$$= \frac{1}{2} \int_{0}^{2\pi} a^{2}dt$$

$$= \frac{1}{2} a^{2} \int_{0}^{2\pi} dt$$

$$= \frac{1}{2} a^{2}(2\pi)$$

$$= \pi a^{2}$$

4.3 Stoke's Theorem

Definition 12 (Stoke's Theorem). Let S be a piecewise smooth oriented surface whose boundary (∂S) also consits of a finite number of piecewise, smooth, simple curves oriented consitently with $\hat{\bf n}$. Such that if you walk along ∂S , $\hat{\bf n}$ points upwards and S is on your left. And let $\bf F$ be a vector field that has continuous first partial derivatives in S. Then

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \mathbf{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} dS$$