Curvas Elípticas en Criptografía

Trabajo Fin de Grado

Adrián H. Ranea Robles 13 de julio de 2016

Universidad de Granada

Tabla de contenidos

- 1. Teoría de curvas elípticas
- 2. Criptografía con curvas elípticas
- 3. ссеру
- 4. Estudio del cifrado de las páginas de la UGR

Teoría de curvas elípticas

Definición de curva elíptica

Sea *K* un cuerpo. Una curva elíptica *E* se define por una ecuación de la forma

$$E: y^2 = x^3 + ax^2 + b (1)$$

donde $a, b \in K$ y $-16(4a^3 + 27b^2) \neq 0$.

Denotamos por E(K) al conjunto de pares $(x, y) \in K \times K$ que verifican (1) más un punto adicional ∞ .

Ejemplos de curvas elípticas sobre $\ensuremath{\mathbb{R}}$

Versión geométrica del método de la cuerda y la tangente

Versión geométrica del método de la cuerda y la tangente

Teorema

 $(E(K), +, \infty)$ es un grupo abeliano.

4

Endomorfismos

Un endomorfismo de E es un homomorfismo $\alpha: E(\overline{K}) \to E(\overline{K})$ dado por funciones racionales r_1, r_2

$$\alpha(x,y)=(r_1(x),r_2(x)y).$$

El grado de α es el grado de r_1 .

 α es separable si la derivada $r_1(x)'$ no es idénticamente cero.

Un ejemplo es el endomorfismo multiplicación por n

$$n(P) = nP, \ \forall P \in E(\overline{K}).$$

5

Endomorfismos

Proposición

- α es separable \implies deg $(\alpha) = |\ker(\alpha)|$.
- α no es separable \implies deg $(\alpha) > |\ker(\alpha)|$.

Proposición

 $\alpha \neq 0 \implies \alpha$ es sobreyectiva.

Proposición

n(P) es separable $\iff car(K) \nmid n$.

Subgrupos de torsión

Un elemento de $E(\overline{K})$ cuyo orden es finito se llama punto de torsión.

El subgrupo de n-torsión es el subgrupo de $E(\overline{K})$ dado por

$$E[n] = \{ P \in E(\overline{K}) \mid nP = \infty \}.$$

Subgrupos de torsión

Un elemento de $E(\overline{K})$ cuyo orden es finito se llama punto de torsión.

El subgrupo de n-torsión es el subgrupo de $E(\overline{K})$ dado por

$$E[n] = \{ P \in E(\overline{K}) \mid nP = \infty \}.$$

Teorema

Si *car*(*K*) ∤ *n*, entonces

$$E[n] \simeq \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

Si car(K) = p > 0, y p|n, entonces

$$E[n] \simeq \mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'} \text{ o } \simeq \mathbb{Z}_n \oplus \mathbb{Z}_{n'}$$

donde $n = p^r n' \operatorname{con} p \nmid n'$.

Curvas elípticas sobre cuerpos finitos

Sea \mathbb{F}_q el cuerpo finito de q elementos.

 $E(\mathbb{F}_q)$ es un grupo abeliano *finito*.

Un ejemplo importante de endomorfismo sobre $E(\overline{\mathbb{F}_q})$ es el endormofirsmo de Frobenius

$$\phi_q(x,y) = (x^q, y^q), \quad \phi_q(\infty) = \infty$$

Curvas elípticas sobre cuerpos finitos

Sea \mathbb{F}_q el cuerpo finito de q elementos.

 $E(\mathbb{F}_q)$ es un grupo abeliano *finito*.

Un ejemplo importante de endomorfismo sobre $E(\overline{\mathbb{F}_q})$ es el endormofirsmo de Frobenius

$$\phi_q(x, y) = (x^q, y^q), \quad \phi_q(\infty) = \infty$$

Proposición

Sea E una curva elíptica definida sobre un cuerpo finito \mathbb{F}_q y consideremos el endomorfismo ϕ_q^n-1 con $n\geq 1$. Entonces

- 1. $\ker(\phi_q^n 1) = E(\mathbb{F}_{q^n}).$
- 2. $\phi_q^n 1$ es separable, por lo que $|E(\mathbb{F}_{q^n})| = \deg(\phi_q^n 1)$.

Teorema de Hasse

Teorema de Hasse

Sea E una curva elíptica definida sobre un cuerpo finito \mathbb{F}_q . Entonces el orden de $E(\mathbb{F}_q)$ verifica

$$|q+1-|E(\mathbb{F}_q)||\leq 2\sqrt{q}.$$

Criptografía con curvas

elípticas

Seguridad del ECDLP

El problema del logaritmo discreto sobre curvas elípticas

Dada una curva elíptica E sobre \mathbb{F}_q , un punto $P \in E(\mathbb{F}_q)$ de orden n y un punto $Q \in \langle P \rangle$, encontrar el entero $k \in [0, n-1]$ tal que Q = kP.

Con las siguientes restricciones sobre los parámetros:

- $n > 2^{80}$.
- $p > 2^{160}$.
- $|E(\mathbb{F}_q)| \neq q, q-1$.

se cree que el ECDLP es intratable para los ataques conocidos.

Parámetros de dominio y pareja de llaves

Los participantes de un protocolo suelen acordar unos parámetros de dominio:

- Una curva elíptica E definida sobre un cuerpo finito \mathbb{F}_q
- Un punto base $P \in E(\mathbb{F}_q)$ junto a su orden n.

Además, cada uno dispone de una pareja de llaves:

- Una llave privada d
- Una llave pública Q.

Para generar la pareja de llaves, se elige un punto aleatorio Q = dP en el grupo $\langle P \rangle$. La correspondiente llave privada es $d = \log_p Q$.

Porqué usar curvas elípticas en criptografía

Los dos principales problemas intratables usados en los sistemas de llave pública son:

- El problema de factorización de enteros → RSA.
- ullet El problema del logaritmo discreto ightarrow ECC.

Porqué usar curvas elípticas en criptografía

Los dos principales problemas intratables usados en los sistemas de llave pública son:

- El problema de factorización de enteros \rightarrow RSA.
- El problema del logaritmo discreto → ECC.

	Nivel de seguridad (bits)				
	80	112	128	192	256
ECC (orden n)	160	224	256	384	514
RSA (módulo n)	1024	2048	3072	8192	15360

Cuadro 1: Comparación de tamaños de parámetros para niveles de seguridad equivalentes.

Protocolo de Intercambio de Llaves Diffie-Hellman para Curvas Elípticas (ECDH)

- 1. Alicia y Bob concuerdan unos parámetros de dominio D = (q, a, b, P, n).
- 2. Alicia calcula su pareja de llaves (Q_A, d_A) .
- 3. Bob calcula su pareja de llaves (Q_B, d_B) .
- 4. Alicia y Bob intercambian sus llaves pública Q_A , Q_B .
- 5. Alicia calcula $d_A Q_B$ y Bob calcula $d_B Q_A$. Ambos cálculos devuelven el punto $(d_A d_B)P$.

ссеру

Criptografía con Curvas Elípticas con Python

ccepy es una biblioteca escrita en python 3 para implementar técnicas de la criptografía con curvas elípticas.

Herramientas

- Sphinx
- Hypothesis
- Google Style Guide
- Git

Módulos

El software ccepy consta de cuatro módulos principales:

- Aritmética elemental.
- Cuerpos finitos
- Curvas elípticas
- Esquemas criptográficos

y uno secundario:

Listado de curvas elípticas.

Search door

Primeros paso

Aritmética elementa

Cuerpos finit

Curvas elípticas

Listado de curvas elípticas

Docs » Curvas elípticas

View page source

Curvas elípticas

Aritmética con curvas elípticas.

Este módulo permite operar con el grupo de puntos de una curva elíptica.

Para utilizar las funciones y las clases de este módulo, debe importarlo previamente:

```
# reemplace ... por la función/clase que desea utilizar
from ccepy.curvas_elipticas import ...
```

Para operar con puntos de una curva elíptica, use las funciones de la forma curva elíptica_sobre_* y los operadores aritméticos habituales.

```
>>> E = curva_eliptica_sobre_Fq(a=2, b=3, p=97) # y^2 = x^3 + 2x + 3 sobre F97

>>> E.coeficientes

Coeficientes(a=2, b=3)

>>> P = E(0, 10)

>>> Q

(0,10)

>>> Q = E(3, 6)

>>> Q

(3,6)

>>> P + Q

(0,87)

>>> P

(0,87)

>>> P

(23,24)
```

Usando ccepy

Para instalar la última versión de ccepy:

```
pip install ccepy
```

Un ejemplo de aritmética de curvas elípticas:

```
>>> E = curva_eliptica_sobre_Fq(a=2, b=3, p=97)
>>> E(0, 10) + E(3, 6)
(85,71)
```

páginas de la UGR

Estudio del cifrado de las

HTTPS

HTTP envía la información en texto claro.

Problema: cualquiera que intercepte el tráfico de red puede leer lo que se está enviando y recibiendo.

Solución: HTTPS. Utiliza los protocolos criptográficos SSL/TLS de la capa de transporte para cifrar el tráfico HTTP.

HTTPS

HTTP envía la información en texto claro.

Problema: cualquiera que intercepte el tráfico de red puede leer lo que se está enviando y recibiendo.

Solución: HTTPS. Utiliza los protocolos criptográficos SSL/TLS de la capa de transporte para cifrar el tráfico HTTP.

Todas las páginas web que requieran información sensible deberían utilizar HTTPS sobre SSL/TLS y no HTTP.

Páginas web de la UGR vulnerables

Numerosas páginas web de la Universidad de Granada solicitan credenciales y no cifran el tráfico (no implementan HTTPS).

```
• http://sucre.ugr.es
```

- http://calidad.ugr.es
- http://secretariageneral.ugr.es
- http://internacional.ugr.es

Páginas web de la UGR vulnerables

Numerosas páginas web de la Universidad de Granada solicitan credenciales y no cifran el tráfico (no implementan HTTPS).

- http://sucre.ugr.es
- http://calidad.ugr.es
- http://secretariageneral.ugr.es
- http://internacional.ugr.es

Otras páginas permiten tanto el envío de las credenciales cifradas o no cifradas (permiten tanto HTTP como HTTPS).

- http://oficinavirtual.ugr.es/ai
- http://sede.ugr.es/sede/mis-procedimientos/ index.html