1: MDP

The following MDP represents a simple transportation problem.

- States: s1, s2, s3, s4, s5, s6, s7; s1 is the start state
- Actions: In states s1, s2 and s3, two actions are possible: WALK and TELEPORT States s4, s5, s6 and s7 are terminal/absorbing states.
- Reward: R(s1) = R(s2) = R(s3) = -0.1

R(s4) = -4

R(s5) = 2

R(s6) = 5

R(s7) = -2

The transition probabilities are given by the following tables:

ACTION: WALK		Ending State								
		s1	s2	s3	s4	s5	s6	s7		
Starti ng State	s1	0.5	0.5	0	0	0	0	0		
	s2	0	0	0	0.5	0.5	0	0		
	s3	0	0	0.5	0	0	0.5	0		

ACTION: TELEPORT		Ending State									
		s1	s2	s3	s4	s5	s6	s7			
Starti	s1	0	0.5	0.5	0	0	0	0			
ng State	s2	0	0	0.25	0.75	0	0	0			
	s3	0	0	0	0	0	0.5	0.5			

Assuming
$$V_0(s_1) = 0$$
, $V_0(s_2) = 0$, $V_0(s_3) = 0$ and for the terminal states: $V_0(s_4) = R(s_4) = -4$, $V_0(s_5) = R(s_5) = 2$, $V_0(s_6) = R(s_6) = 5$, $V_0(s_7) = R(s_7) = -2$

- (a) After one step of value iteration, what is the utility of $V_1(s_1)$, $V_1(s_2)$ and $V_1(s_3)$? Please show all of your work.
- (b) After two steps of value iteration. What is the utility of $V_2(s_1)$, $V_2(s_2)$ and $V_2(s_3)$? Please show all of your work.
- (c)(Programming) Please write a program to perform value iteration on this problem. Recall that the value iteration algorithm iterates and updates the utilities using:

$$U_{t+1}(S_i) = \max_{a} \left(R(S_i) + \gamma \sum_{S_j} P(S|S_i, a) \times U_t(S_j) \right)$$

- What is the utility of the states s_1, s_2 , and s_3 after two iterations with $\gamma = 1$? Verify that the program output matches the result in question b.
- Assuming $\gamma = 0.95$, what is the utility of the states s_1, s_2 , and s_3 when the algorithm converges? What is the optimal policy for this MDP?

Utility: sum q (discounted) reward V: Maximize expected utility

$$V_{o}(S1) = V_{o}(S2) = V_{o}(S3) = D \# initial expected$$
 $V_{o}(S1) = V_{o}(S2) = V_{o}(S3) = D \# initial expected$
 $V_{o}(S4) = R(S4) = -4$, $V_{o}(S5) = R(S5) = 2$, $V_{o}(S6) = R(S6) = 5$, $V_{o}(S7) = R(S7) = -2$

a) # iteration 1

$$V_{1}(S_{1}) = \max_{A} \left(R(S_{1}) + 1 \sum_{S_{j}} P(S_{1}S_{1},A) *V_{0}(S_{j}) \right)$$

$$= \max_{A} \left(\begin{bmatrix} -0.1 + (0.5.0) + (0.5.0) \\ -0.1 + (0.5.0) + (0.5.0) \end{bmatrix} \right)$$
Telepot

$$V_1(\varsigma_1) = -0 \cdot 1$$

$$V_{1}(S_{2}) = \max_{A} \left(R(S_{2}) + 1 \sum_{S_{j}} P(S_{1}S_{2},A) *V_{0}(S_{j}) \right)$$

$$= \max_{A} \left(\left[-0.1 + (0.5 - 4) + (0.5 - 2) - 0.1 + (0.75 - 4) + (0.25 - 0) \right] \right)$$

$$V_1(\varsigma_2) = -|\cdot|$$

$$V_{1}(S^{3}) = \max_{A} \left(R(S^{3}) + 1 \sum_{S^{3}} P(S|S^{3},A) *V_{0}(S^{3}) \right)$$

$$= \max_{A} \left(\left[-0.1 + (0.5.5) + (0.5.0) \right] -0.1 + (0.5.5) + (0.5.0) \right)$$

$$V_{1}(s3) = 2.4$$

$$V_{2}(S_{1}) = \max_{A} \left(R(S_{1}) + 1 \sum_{S_{j}} P(S_{1}|S_{1},A) * V_{1}(S_{j}) \right)$$

$$= \max_{A} \left(\left[-0.1 + (0.5 \circ -0.1) + (0.5 \circ -1.1) \right] + (0.5 \circ -1.1) \right]$$
Telepot

$$V_2(S1) = 0.55$$

$$V_{2}(S_{2}) = \max_{A} \left(R(S_{2}) + 1 \sum_{S_{j}} P(S_{1} S_{2}, A) * V_{1}(S_{j}) \right)$$

$$= \max_{A} \left(\begin{bmatrix} -0.1 + (0.5 \circ -4) + (0.5 \circ 2) \\ -0.1 + (0.75 \circ -4) + (0.25 \circ 2.4) \end{bmatrix} \right)$$
Telepot

$$V_2(si) = -1.1$$

$$V_{2}(S_{3}) = \max_{A} \left(R(S_{3}) + 1 \sum_{S_{j}} P(S|S_{3},A) * V_{1}(S_{j}) \right)$$

$$= \max_{A} \left(\begin{bmatrix} -0.1 + (0.5 \cdot 5) + (0.5 \cdot 2.4) \\ -0.1 + (0.5 \cdot 5) + (0.5 \cdot -2) \end{bmatrix} \right)$$
Telepot

$$V_2(53) = 3.6$$

(C) (i) same as part (b)

(ii) SI-utility: 1.45 Policy: Teleport S2-utility: -1.05 Policy: Walk S3-utility: 4.33 Policy: Walk