2017 Big Data – R programming Homework 4

2017/11/05

范真瑋

Part I: Regression

0. 使用 package: MASS 中的 "UScrime" dataframe 當作資料

1. 將所需的 library 製成 function,並 Show 出所需的資料

2. 使用 single regression 找出 UScrime 中的 y (犯罪率)與其他欄位的相關性(找出一條正相關以及一條負相關的回歸線)

3. 使用 multiple regression 找出 UScrime 中的 y (犯罪率)與其他欄位的相關性並且檢測 5 個自變數共線性的問題(使用 VIF),

```
> #3-1 multiple regression
> crime.all <- lm(y~.,UScrime)
> crime.all
call: lm(formula = y \sim ., data = UScrime)
Coefficients:
(Intercept)
                                                       Po1
                                                                   Po2
                                                                                                    Pop
-0.7330
 -5984.2876
                8.7830
                            -3.8035
                                       18.8324
                                                    19.2804
                                                               -10.9422
                                                                            -0.6638
                                                                                         1.7407
                    U1
                                U2
                                           GDP
                                                      Ineq
                                                                  Prob
                                                                              Time
    0.4204
                -5.8271
                           16.7800
                                        0.9617
                                                             -4855.2658
                                                                            -3.4790
> #3-2
> crime5 <- lm(y~NW+Time+M.F+U2+LF,UScrime)</p>
> crime5
lm(formula = y \sim NW + Time + M.F + U2 + LF, data = UScrime)
Coefficients:
                                              Time
(Intercept)
                              NW
                                                                 M.F
                                                                                     U2
                                                                                                       LF
 -4109.8645
                         0.4476
                                          12.2348
                                                             2.9709
                                                                              11.6027
                                                                                                 2.3692
> vif(crime5)
                  Time
                               M.F
1.199239 1.315131 1.851558 1.349486 1.934181
```

4. 找出 multiple regression 中最佳解 (使用逐步回歸(step)尋找)

```
> #4
> step(crime.all)
^TC=514.6
Start: AIC=514.65

y ~ M + So + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 + U2 +

GDP + Ineq + Prob + Time
                 Df Sum of Sq RSS AIC
1 29 1354974 512.65
1 8917 1363862 512.96
1 10304 1365250 513.00
1 14122 1369068 513.14
- Time 1
- Pop 1
                            18395 1373341 513.28
31967 1386913 513.74
37613 1392558 513.94
37919 1392865 513.95
1354946 514.65
 - NW
                   1
 - Po2
 <none>
                    1
 - U1
                                  837/22 1436086 513.47
144306 1499252 517.41
181536 1536482 518.56
193770 1548716 518.93
199538 1554484 519.11
402117 1757063 524.86
423031 1777977 525.42
 - Po1
 - U2
 - Ed
 - Ineq 1
Step: AIC=512.65 y \sim M + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 + U2 + GDP + Ineq + Prob + Time
                 Df Sum of Sq RSS AIC
1 10341 1365315 511.01
1 10878 1365852 511.03
1 14127 1369101 511.14
 - Time
 - Pop
                                   14127 1369101 511.14
21626 1376600 511.39
32449 1387423 511.76
37954 1392929 511.95
39223 1394197 511.99
1354974 512.65
- NW
- M.F
 - Po2
     GDP
 <none>
                                1354974 512.65
96420 1451395 513.88
144302 1499277 515.41
189859 1544834 516.81
195084 1550059 516.97
204463 1559437 517.26
403140 1758114 522.89
488834 1843808 525.13
 - U1
 - Po1
 - U2
 - M 1
 - Ed 1
- Ineq 1
Step: AIC=511.01 
 y \sim M + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 + U2 + GDP + Ineq + Prob
                  Df Sum of Sq RSS AIC
1 10533 1375848 509.37
1 15482 1380797 509.54
- NW
                                    13482 1380/9/ 509.54
21846 1387161 509.75
28932 1394247 509.99
36070 1401385 510.23
41784 1407099 510.42
1365315 511.01
- Pop
 - GDP
 <none>
 - U1 1 91420 1456735 512.05

- Doi 1 124127 1400452 512.41

Step: AIC=506.33
 y \sim M + Ed + Po1 + M.F + Pop + U1 + U2 + GDP + Ineq + Prob
                Df Sum of Sq RSS AIC
1 22345 1426575 505.07
1 32142 1436371 505.39
1 36808 1441037 505.53
1 86373 1490602 507.13
1 205814 1610043 510.76
1 218607 1622836 511.13
1 307001 1711230 513.62
1 389502 1793731 515.82
1 608627 2012856 521.25
1 1050202 2454432 530.57
 - Pop
- GDP
- M.F
 <none>
- U1
- U2
 - Prob
 - Ineq
 - Po1
Step: AIC=505.07 y \sim M + Ed + Pol + M.F + Ul + U2 + GDP + Ineq + Prob
                Df Sum of Sq RSS AIC
1 26493 1453068 503.93
1426575 505.07
1 84491 1511065 505.77
1 99463 1526037 506.24
  - GDP 1
 <none>
- M.F
- U1
     U1 1 99463 1526037 506.24 
Prob 1 198571 1625145 509.20 
U2 1 208880 1635455 509.49 
M 1 320926 1747501 512.61 
Ed 1 386773 1813348 514.35 
Ineq 1 594779 2021354 519.45 
Po1 1 1127277 2553852 530.44
 - Prob
 - M
 - Ed
 - Ineq
- Pol
Step: AIC=503.93 y \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob
                Df Sum of Sq RSS AIC

1453068 503.93

1 103159 1556227 505.16

1 127044 1580112 505.87

1 247978 1701046 509.34

1 255443 1708511 509.55

1 296790 1749858 510.67

1 445788 1898855 514.51

1 738244 2191312 521.24

1 1672038 3125105 537.93
 - M.F
 - U1
 - U2
     Inea 1
 - Po1
 lm(formula = y \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data = UScrime)
 Coefficients:
                                               9.332
                                                                             18.012
                                                                                                              10.265
                                                                                                                                                                               -6.087
                                                                                                                                                                                                               18.735
                                                                                                                                                                                                                                                                         -3796.032
```

Part II: Machine Learning

- 0. 使用 package: MASS 中的 "Rabbit" dataframe 當作資料
 - > #Part II
 - > #0
 - > data(Rabbit)
 - > head(Rabbit)

```
BPchange Dose Run Treatment Animal
     0.5
          6.25 C1 Control
1
2
     4.5 12.50 C1 Control
3
     10.0 25.00 C1 Control
                               R1
4
     26.0 50.00 C1 Control
                               R1
5
     37.0 100.00 C1 Control
                               R1
     32.0 200.00 C1 Control
                               R1
```

- 1. 使用 SVM 來分析預測 "Animal",並將結果以 CrossTable 呈現
 - > #1 SVM
 - > x <- subset(Rabbit, select = -Animal)
 - > y <- Rabbit\$Animal
 - > svm_model <- svm(Animal~., data = Rabbit)
 - > pred_model <- predict(svm_model, x)
 > crossTable(pred_model, y)

cell Contents |-----| Chi-square contribution N / Row Total N / Col Total N / Table Total

-----|

Total Observations in Table: 60

	У					
pred_model	R1	R2	R3	R4	R5	Row Total
R1	12 38.400	0 2.400	0 2.400	0 2.400	0 2.400	12
	1.000	0.000	0.000	0.000	0.000	0.200
	0.200	0.000	0.000	0.000	0.000	
R2	0	12	0	0	0	12
	2.400 0.000	38.400 1.000	2.400 0.000	2.400 0.000	2.400 0.000	0.200
	0.000 0.000	1.000 0.200	0.000	0.000 0.000	0.000	
R3	0	0	12	0	0	12
	2.400 0.000	2.400 0.000	38.400 1.000	2.400 0.000	2.400 0.000	0.200
	0.000	0.000	1.000	0.000	0.000	
R4	2,400	0 2,400	2,400	12 38.400	2,400	12
	0.000	0.000	0.000	1.000	0.000	0.200
	0.000	0.000 0.000	0.000	1.000 0.200	0.000	
R5	0	0	0	0	12	12
	2.400 0.000	2.400 0.000	2.400 0.000	2.400 0.000	38.400 1.000	0.200
	0.000 0.000	0.000 0.000	0.000	0.000 0.000	1.000	
Column Total	0.200	12 0.200	12 0.200	12 0.200	12 0.200	60

2. 使用 KNN 來分析預測 "Animal",並將結果以 CrossTable 呈現

Cell Contents

```
N / ROW TOTAL
N / ROW TOTAL
N / COl TOTAL
N / TABLE TOTAL
```

Total Observations in Table: 18

	Rabbit_pred						
Rabbit.testLabels	R1	R2	R3	R4	R5	Row Total 	
R1	1	2	0	1	0	4	
	0.250	0.500	0.000	0.250	0.000	0.222	
	1.000	0.222	0.000	0.333	0.000		
	0.056	0.111	0.000	0.056	0.000	 	
R3	0	3	1	0	0	4	
	0.000	0.750	0.250	0.000	0.000	0.222	
	0.000	0.333	0.333	0.000	0.000		
	0.000	0.167	0.056	0.000	0.000		
R4	0	3	1	0	1	5	
	0.000	0.600	0.200	0.000	0.200	0.278	
	0.000	0.333	0.333	0.000	0.500		
	0.000	0.167	0.056	0.000	0.056		
R5	0	1	1	2	1	5	
	0.000	0.200	0.200	0.400	0.200	0.278	
	0.000	0.111	0.333	0.667	0.500		
	0.000	0.056	0.056	0.111	0.056		
Column Total	1	9	3	3	2	 18	
	0.056	0.500	0.167	0.167	0.111		