Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Introducción

Motivación

¿Es posible hacer que las redes neuronales sean capaces ver?

- Localidad
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica: Detectar patrones que definen un objeto.

Introducción: Historia

¿Cómo funciona nuestra visión?

En 1981, David Hubel y Torsten Wiesel reciben el Nobel de medicina por sus contribuciones en el campo de la neurociencia y su investigación sobre el procesamiento visual en el cerebro.

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Introducción: Historia

Neocognitron

En 1980, Fukushima propone una forma de implementar el modelo jerárquico del sistema nervioso visual de Hubel y Wiesel utilizando redes neuronales.

- Creado a partir de convoluciones.
- Capaz de detectar composiciones jerárquicas.
- Algoritmo de entrenamiento ineficiente

Introducción: Historia

Convolutional networks

En 1990, LeCun entrena una red convolucional utilizando backpropagation. Aboga por el aprendizaje de características end-to-end en la clasificación de imágenes.

Convolutional Neural Networks (CNNs)

Convoluciones

Codificación de imágenes

Las imágenes son matrices de **pixels**. Cada uno posee un valor entre [0,255] que representan la intensidad.

- Si la imagen es en escala de grises, solo tendremos una matriz.
- Si es en color, tendremos tres matrices, una por cada canal (Rojo, Verde y Azul).

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

• Una pequeña imagen en escala de grises de 100×100 generaría un vector de 10000.

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

ullet Una pequeña imagen en escala de grises de 100 imes 100 generaría un vector de 10000.

Definición

Operación matemática capaz de extraer características o patrones de unos datos de entrada, típicamente imágenes o señales.

Compuesta por:

- Datos de entrada x.
- Uno o varios kernels o filtros u.
- Salida o.

Convolutional Neural Networks (CNNs)

Convoluciones 1D

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Las convoluciones pueden aplicar diferentes kernels o filtros.

Por ejemplo, en una señal eléctrica, podemos aplicar un filtro para buscar incrementos de voltaje (en 1 unidad):

$$(0,0,0,0,1,2,3,3) \circledast (-1,1) = (0,0,0,1,1,1,0)$$

Convolutional Neural Networks (CNNs)

Convoluciones 2D

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Tendremos por tanto:

- Matriz 2D de entrada $\mathbf{x} \in \mathbb{R}^{W \times H}$
- Matriz 2D kernel $\mathbf{u} \in \mathbb{R}^{w \times h}$
- Matriz 2D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1} \times {}^{H-h+1}$

La operación de convolución en 2D sería:

$$\mathbf{o}_{j,i} = (\mathbf{x} \circledast \mathbf{u})[j,i] = \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{n+j,m+i} \cdot \mathbf{u}_{n,m}$$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Gráficamente:

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Gráficamente:

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Convolutional Neural Networks (CNNs)

Convoluciones 3D

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

Tendremos por tanto:

- Tensor 3D de entrada $\mathbf{x} \in \mathbb{R}^{C \times W \times H}$
- Tensor 3D kernel $\mathbf{u} \in \mathbb{R}^{C \times w \times h}$
- Tensor 3D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1} \times {}^{H-h+1}$

La operación de convolución en 3D sería:

$$\mathbf{o}_{j,i} = \sum_{c=0}^{C-1} (\mathbf{x}_c \circledast \mathbf{u}_c)[j,i] = \sum_{c=0}^{C-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{c,n+j,m+i} \cdot \mathbf{u}_{c,n,m}$$

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. En este caso aplicaremos convoluciones 3D.

Múltiples dimensiones

La operación de convolución se puede aplicar en múltiples dimensiones, pero las más comunes son las anteriores. 1D, 2D v 3D.

¡Muy importante!

Los valores de $\mathbf{o} \in \mathbb{R}$ son los únicos **parámetros** de la convolución, es decir, se aprenden durante el entrenamiento del modelo.

El propio modelo decide que filtros son más adecuados para la tarea que se pretende resolver.

Convoluciones: Hiperparámetros

Aunque la operación de convolución es siempre la misma, existen **múltiples hiperparámetros** que podemos ajustar.

Los más relevantes:

- Número D de filtros o kernels.
- Tamaño $w \times h$ de cada kernel.
- Padding de la convolución.
- Stride de la convolución.

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de **o** será: $D \times W w + 1 \times H h + 1$

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de **o** será: $D \times W w + 1 \times H h + 1$

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de **o** será: $D \times W w + 1 \times H h + 1$

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los *D* han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 2:

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los D han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 3:

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los D han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 4:

Padding

Al aplicar una convolución, vemos que la salida es de menor tamaño que la entrada. El **padding** nos permite evitarlo.

- El padding añade un "marco" de píxels a la entrada. El grosor es un hiperparámetro.
- El valor por defecto de estos nuevos píxels suele ser zero (zero padding).

Padding

Al aplicar una convolución, vemos que la salida es de menor tamaño que la entrada. El **padding** nos permite evitarlo.

- El padding añade un "marco" de píxels a la entrada. El grosor es un hiperparámetro.
- El valor por defecto de estos nuevos píxels suele ser zero (zero padding).

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro \mathbf{u} de \mathbf{una} en \mathbf{una} unidad sobre la entrada \mathbf{x} en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Tamaño de la salida

Como acabas de ver, el padding y el stride también influyen en el tamaño de la salida o.

- Si llamamos s al tamaño del stride.
- Y p al tamaño del padding.

El tamaño de la salida sería el siguiente:

$$\left(\frac{W+2p-w}{s}+1\right) \times \left(\frac{H+2p-h}{s}+1\right)$$

Pooling

Arquitecturas

Referencias

Referencias

1 Lecture 5: Convolutional networks