IN0013 week 2 exercise

Logic gates

1. The diagram below shows 5 logic gates and 5 names. Draw a line matching the logic gates with the respective names

2. Complete the truth table for the NOR gate

3. Write a logic statement that corresponds to the following logic circuit

(A AND B) AND (NOT B OR C)

4. One way to think of the basic logic gate types (all but the XOR and XNOR gates) is to consider what single input state guarantees a certain output state. For example, we could describe the function of an OR gate as such:

Any high input guarantees a high output.

Identify what type of gate is represented by each of the following phrases:

• Any high input guarantees a low output: NOR

Any low input guarantees a high output: NAND

• Any low input guarantees a low output: AND

5. Design a logic circuit to model the requirement for a gym membership. To become a member of this prestigious gym (X = 1), the 4 criteria requirements are listed below

Parameter	Description of parameter	Binary value	Condition				
А	Over 18	1	True				
		0	False				
В	Recommended	1	True				
		0	False				
С	Full-time	1	True				
		0	False				
D	Retired	1	True				
		0	False				

Membership is approved (X = 1) if the person:

- is over the age of 18 and has been recommended by a pre-existing member and
- either is working full-time or is retired, but not both.

Draw a logic circuit to represent the membership requirement and draw the truth table showing the logic results. X = (A and B) and (C xor D)

A	В	С	D	A AND B	C XOR D	(A AND B) AND (C XOR D)
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	0	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	0	0
1	1	0	0	1	0	0
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	0	0

Binary

- 1. Write the following decimal number as a binary number
 - a. 4 = 100
 - b. 11 = 1011
 - **C.** 16 = 10000
 - d. 19 = 1 0011
 - e. 59 = 11 1011
- 2. Write the following binary number as a decimal number
 - a. 11 = 3
 - b. 110 = 6
 - C. $1100 = 2^3 + 2^2 + 0 + 0 = 8 + 4 = 12$
 - d. 1101 = 13
 - e. 101111 = 47
- 3. Add these binary numbers
 - a. 11 + 11 = 110
 - b. 1100 + 0101

- C. 1000 + 0011 = 1011
- d. 10101+01111

4. Two complements – use two complements to compute these binary operations

- 5. ASCII numbers transform these letters into ascii or the other way around
 - a. computer = 99 111 109 112 117 116 101 114
 - b. fundamental = 102 117 110 100 97 109 101 110 116 97 108
 - c. 80 121 116 104 111 110 = Python