MT09-A2020 - Examen médian - Questions de cours

Durée : 30mn. Sans documents ni outils électroniques - Rédiger sur l'énoncé

NOM PRÉNOM : Place n°:

ATTENTION, il y a 3 exercices indépendants pour cette partie questions de cours!

Exercice 1 (barème approximatif: 2.5 points)

Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ une matrice symétrique réelle (n > 0). Soit une base orthonormée $(y_i)_{i=1,\dots,n}$ de vecteurs propres associés aux valeurs propres $(\lambda_i)_{i=1,\dots,n}$ pour A. On suppose que les valeurs propres sont ordonnées : $\lambda_1 \leq \ldots \leq \lambda_n$.

1. Que vaut $y_i^T y_j$ pour i, j = 1, ..., n?

Réponse : comme $(y_i)_{i=1,\dots,n}$ est orthonormée, on a $y_i^T y_j = 0$ si $i \neq j$, et $y_i^T y_i = ||y_i||_2^2 = 1$.

2. En utilisant la base $(y_i)_{i=1,\dots,n}$, calculez x^Tx .

Réponse : on décompose x dans la base $(y_i)_{i=1,\dots,n}$: il existe des uniques $\xi_j, j=1,\dots,n$ tels que $x=\sum_{j=1}^n \xi_j y_j$. Comme la base est orthonormée, on trouve : $x^Tx=\sum_{i=1}^n \sum_{j=1}^n \xi_i \xi_j y_i^T y_j=\sum_{j=1}^n \xi_j^2$.

3. Calculez $x^T A x$.

Réponse : comme y_j est vecteur propre pour la valeur propre λ_j , il vient par linéarité de $A: Ax = \sum_{j=1}^n \xi_j Ay_j = \sum_{j=1}^n \lambda_j \xi_j y_j$. D'où, comme la base est orthonormée, on trouve : $x^T Ax = \sum_{i=1}^n \sum_{j=1}^n \xi_i \xi_j \lambda_j y_i^T y_j = \sum_{j=1}^n \lambda_j \xi_j^2$.

4. En déduire : $\sup_{x \neq 0} \frac{x^T A x}{x^T x} \leq \lambda_n.$

Réponse : soit $x \neq 0$. En utilisant l'ordre des valeurs propres, il vient $x^TAx \leq \lambda_n(\sum_{j=1}^n \xi_j^2) = \lambda_n x^T x$. Comme $x \neq 0$, on peut diviser par $x^Tx = \|x\|_2^2 \neq 0$ et obtenir la majoration : $\frac{x^TAx}{x^Tx} \leq \lambda_n$ vraie pour tout $x \neq 0$. On a un majorant de $\frac{x^TAx}{x^Tx}$ indépendant de $x \neq 0$. On passe au sup à gauche qui est le plus petit des majorants pour obtenir le résultat.

Exercice 2 (barème approximatif: 2 points)

Soit une matrice $A \in \mathcal{M}_{nn}(\mathbb{R})$ pour n > 0 une matrice symétrique définie positive.

1. Montrer que toutes les sous-matrices principales de A, notées $[A]_k$ pour $k=1,\ldots,n$, sont symétriques définies positives.

Réponse : revoir la définition de SDP. Soit k fixé dans $\{1, \ldots, n\}$. Il est évident que $[A]_k$ est symétrique. De plus pour $y \in \mathbb{R}^k$, si $y \neq 0$, alors

$$y^{T}[A]_{k}y = \sum_{i=1}^{k} \sum_{j=1}^{k} y_{i}a_{ij}y_{j} = [y^{T}0...0]A \begin{bmatrix} y \\ 0 \\ \vdots \\ 0 \end{bmatrix} > 0,$$

 $\mathbf{car}\ A\ \mathbf{est}\ \mathbf{SDP}\ \mathbf{et}\ x = \left[\begin{array}{c} y \\ 0 \\ \vdots \\ 0 \end{array}\right] \in \mathbb{R}^n\ \mathbf{est}\ \mathbf{non}\ \mathbf{nul}.$

2. Déterminer le noyau d'une matrice symétrique définie positive.

Réponse : soit $x \in \text{Ker}(A)$ où A est SDP. Alors Ax = 0, ce qui implique $x^TAx = 0$ et donc x = 0. Donc $\text{Ker}(A) = \{0\}$ et A, carrée, est inversible.

3. Conclure sur la faisabilité de la factorisation A = LU.

Réponse : soit A SDP, donc toutes ses sous-matrices principales sont aussi SDP donc elles sont inversibles. C'est une CNS pour que la factorisation A = LU soit faisable sans permutation.

Exercice 3 (barème approximatif: 2.5 points)

1. Définir l'ensemble des flottants \mathcal{F}_{10} . On expliquera ce que signifient les constantes t, L et U (notations du cours).

Réponse : cf. cours.
$$\Box$$

2. Donner la valeur de $\varepsilon_{\text{mach},10}$.

Réponse :
$$\varepsilon_{\mathbf{mach},10} = \frac{1}{2} 10^{-t+1}$$
.

3. Soit un réel $\varepsilon > 0$. On étudie le système $\left[\begin{array}{cc} -\varepsilon & -2 \\ 1 & 5.5 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{cc} -2+\varepsilon \\ 4.5 \end{array} \right].$

Effectuer l'élimination de Gauss en arithmétique exacte sans permutation.

Réponse : le déterminant de la matrice vaut $-5.5\varepsilon+2$, donc la matrice est inversible si $\varepsilon<\frac{2}{5.5}$, ce qu'on suppose.

$$Ax = b \iff \begin{cases} -\varepsilon x_1 - 2x_2 &= -2 + \varepsilon \\ (5.5 - \frac{2}{\varepsilon})x_2 &= 4.5 + \frac{-2+\varepsilon}{\varepsilon} \end{cases}$$

$$\iff \begin{cases} -\varepsilon x_1 - 2x_2 &= -2 + \varepsilon \\ (5.5 - \frac{2}{\varepsilon})x_2 &= 5.5 - \frac{2}{\varepsilon} \end{cases}$$

$$\iff x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$(1)$$

4. On suppose que l'on travaille en flottant en base 10 avec 3 chiffres significatifs et on prend $\varepsilon = 10^{-3}$.

- (a) Calculer $-2 \oplus \varepsilon$.
- (b) Calculer $4.5 \oplus \left(\frac{-2 \oplus \varepsilon}{\varepsilon}\right)$.
- (c) Calculer $5.5 \ominus \frac{2}{\varepsilon}$.
- (d) Résoudre le système en arithmétique flottante. On fera attention à bien décomposer les étapes. Pour information, fl $\left(\frac{200}{199}\right) = 1.01$.

Réponse : on fait les calculs flottants en faisant les arrondis au plus proche à 10^{-3} près :

$$2 \ominus \varepsilon = fl(2.00 - 0.001) = fl(1.999) = 2.00 = 2$$

$$\frac{-2 \oplus \varepsilon}{\varepsilon} = -fl(\frac{2.00}{\varepsilon}) = -2.00 \times 10^3 = -2000$$

$$4.5 \oplus \left(\frac{-2 \oplus \varepsilon}{\varepsilon}\right) = fl(4.50 - 2000) = -fl(1995.5) = -2.00 \times 10^3 = -2000$$

$$5.5 \ominus \frac{2}{\varepsilon} = fl(5.50 - 2000) = -fl(1994.5) = -1.99 \times 10^3 = -1990,$$

donc on trouve en arithmétique flottante

$$\begin{split} \widetilde{A}\widetilde{x} &= \widetilde{b} &\iff \left\{ \begin{array}{rcl} -\varepsilon \widetilde{x}_1 \ominus 2\widetilde{x}_2 &=& -2.00 \\ -1.99 \times 10^3 \widetilde{x}_2 &=& -2.00 \times 10^3 \end{array} \right. \\ &\iff \left\{ \begin{array}{rcl} \widetilde{x}_2 &=& \mathrm{fl}(\frac{200}{199}) = 1.01 \\ \varepsilon \widetilde{x}_1 &=& 2.00 \ominus 2\widetilde{x}_2 = \mathrm{fl}(2.00 - 2.02) = -2.00 \times 10^{-2} \\ \end{array} \right. \\ &\iff \left. \widetilde{x} = \left[\begin{array}{rcl} -20.0 \\ 1.01 \end{array} \right]. \end{split}$$

Il y a une erreur catastrophique.

Note: si on va trop vite, et qu'on commute les additions (donc qu'on utilise (2) au lieu de (1)), on obtient $\widetilde{x} = \begin{bmatrix} 0.00 \\ 1.00 \end{bmatrix}$.

MT09-A2020 - Examen médian

Durée: 1 heure.

Polycopiés de cours et scilab autorisés - pas d'outils numériques

Questions de cours déjà traitées : environ 7 points.

RÉDIGER CHAQUE EXERCICE SUR UNE COPIE DIFFÉRENTE!

Exercice 1 : (barème approximatif : 8 points) CHANGEZ DE COPIE

Il est possible de traiter une question en admettant les résultats précédents.

Soit n un entier strictement positif et soient deux vecteurs $a \in \mathbb{R}^n$ et $b \in \mathbb{R}^{n-1}$.

On s'intéresse à la factorisation de Cholesky $A = CC^T$ d'une matrice A symétrique définie positive et tridiagonale de $\mathcal{M}_{n,n}(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} a_1 & b_1 \\ b_1 & a_2 & b_2 \\ & b_2 & a_3 & b_3 \\ & & \ddots & \ddots & \ddots \\ & & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & & b_{n-1} & a_n \end{pmatrix}$$

On notera C_j la jème colonne de C.

1. Rappeler les propriétés de C.

Réponse : C est triangulaire inférieure et $c_{i,i} > 0$ pour tout $i = 1, \ldots, n$.

2. Par identification de la première colonne de C, montrer que C_1 est de la forme $C_1 = (c_1, d_2, 0, ..., 0)^T$ et exprimer les valeurs de c_1 et d_2 en fonction de a_1 et b_1 .

Réponse : Comme A est SDP, on sait que la factorisation $A = CC^T$ est possible, donc toutes les opérations sont faisables. On peut travailler élément par élément. Je préfère travailler directement sur toute la colonne.

On calcule la première colonne de $A:A_1=C(C^T)_1=C(\underline{C}_1)^T=C(c_{1,1}e_1)=C_1c_{1,1},$ où les e_i sont les vecteurs de la base canonique de \mathbb{R}^n . Par identification, on trouve: $c_{1,1}=\sqrt{a_1}$ car $c_{1,1}>0$, $c_{2,1}=\frac{b_1}{c_{1,1}}$ et $c_{i,1}=0$ si $i\geq 3$. Finalement:

$$C_1 = (c_1, d_2, 0, ..., 0)^T$$
 avec $c_1 = \sqrt{a_1}$ et $d_2 (= c_{2,1}) = \frac{b_1}{c_1}$.

3. Par identification de la deuxième colonne de C, montrer que C_2 est de la forme $C_2 = (0, c_2, d_3, 0, ..., 0)^T$ où l'on exprimera c_2 et d_3 .

Réponse : On calcule la deuxième colonne de A : $A_2=C(C^T)_2=C(\underline{C}_2)^T=C(c_{2,1}e_1+c_{2,2}e_2)=C_1c_{2,1}+C_2c_{2,2}$.

Il vient pour la première ligne : $b_1 = c_{1,1}c_{2,1} + 0$, ce qui est vrai (cf. C_1).

Il vient pour la deuxième ligne : $a_2 = c_{2,1}^2 + c_{2,2}^2$.

Il vient pour la troisième ligne : $b_2 = 0 + c_{3,2}c_{2,2}$.

Il vient pour la ième ligne : $0 = 0 + c_{i,2}c_{2,2}$ si $i \ge 4$.

Par identification, on trouve : $c_{2,2} = \sqrt{a_2 - c_{2,1}^2}$ car $c_{2,2} > 0$, $c_{3,2} = \frac{b_2}{c_{2,2}}$ et $c_{i,2} = 0$ si $i \ge 4$. Finalement :

$$C_2 = (0, c_2, d_3, 0, ..., 0)^T \quad \text{ avec } \quad c_2 = \sqrt{a_2 - d_2^2} \quad \text{et } \ d_3 (= c_{3,2}) = \frac{b_2}{c_2}.$$

4. Montrer par récurrence que les colonnes C_j de C s'écrivent sous la forme : $C_j = (0, \ldots, 0, c_j, d_{j+1}, 0, \ldots, 0)^T$, où l'on exprimera c_j et d_{j+1} .

Réponse : On montre par récurrence que pour tout $j=2,\ldots,n-1$ on a : $C_j=(0,\ldots,0,c_j,d_{j+1},0,\ldots,0)^T$, avec $c_j(=c_{j,j})=\sqrt{a_j-d_j^2}$ et $d_{j+1}(=c_{j+1,j})=\frac{b_j}{c_j}$. C'est vrai pour j=2. On suppose que c'est vrai au rang j-1 et on montre que c'est vrai pour j.

On calcule la jème colonne de A: $A_j=C(C^T)_j=C(\underline{C}_j)^T=C(d_je_{j-1}+c_{j,j}e_j)=C_{j-1}d_j+C_jc_{j,j}$. Donc :

$$A_{j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b_{j-1} \\ a_{j} \\ b_{j} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = d_{j} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ c_{j-1} \\ d_{j} \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + c_{j,j} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ c_{j,j} \\ c_{j+1,j} \\ c_{j+2,j} \\ \vdots \\ c_{n,j} \end{pmatrix}$$

Il vient pour la (j-1)ème ligne : $b_{j-1} = d_j c_{j-1}$, ce qui est vrai par hypothèse de récurrence (cf. C_{j-1}).

Il vient pour la jème ligne : $a_j = d_i^2 + c_{i,j}^2$.

Il vient pour la (j+1)ème ligne : $c_{j+1,j}c_{j,j}=b_j$.

Il vient pour les lignes suivantes : $c_{i,j}c_{j,j}=0$ si $i\geq j+2$.

Finalement, comme la matrice est SDP, $a_j - d_j^2 > 0$ et on trouve pour j = 2 à n - 1:

$$C_j = (0, \dots, 0, c_j, d_{j+1}, 0, \dots, 0)^T,$$
 avec $c_j = \sqrt{a_j - d_j^2}$ et $d_{j+1} = \frac{b_j}{c_j}$.

On note que pour j = n, il vient en faisant des calculs similaires (" d_{n+1} " et " b_n " n'existent pas) :

$$C_n = (0, \dots, 0, c_n)^T$$
, avec $c_n = \sqrt{a_n - d_n^2}$.

En résumé, C s'écrit :

$$C = \begin{pmatrix} c_1 \\ d_2 & c_2 \\ & d_3 & c_3 \\ & & \ddots & \ddots \\ & & & d_{n-1} & c_{n-1} \\ & & & & d_n & c_n \end{pmatrix} \quad \text{avec} \quad \begin{cases} c_1 = \sqrt{a_1}, \ c_j = \sqrt{a_j - d_j^2}, \ j = 2, \dots, n \\ d_{j+1} = \frac{b_j}{c_j}, \ j = 1, \dots, n-1 \end{cases}$$

5. Écrire une fonction scilab : [c, d] = choltridiag(a, b) réalisant la factorisation de Cholesky d'une matrice symétrique définie positive tridiagonale (on fera notamment attention à l'ordre des opérations).

Réponse: Une implémentation possible est:

```
function [c, d] = choltridiag(a, b)  \begin{aligned} & n = \text{length}(a) \\ & \text{if length}(b) & \cong \text{n-1 then error('tailles incorrectes'); end} \end{aligned}   \text{tol} & = 1\text{E-12;} \\ & \text{c} & = \text{zeros}(n, 1); \text{d} & = \text{zeros}(n, 1); \end{aligned}   \text{if } a(1) < \text{tol then disp}(a(1)); \text{ error('A non SDP'); end}   \text{c}(1) & = \text{sqrt}(a(1)); \end{aligned}   \text{for ii} & = 2\text{:n}   & \text{d}(ii) & = b(ii\text{-}1) / c(ii\text{-}1);   & \text{cc} & = a(ii) - d(ii)*d(ii);   & \text{if cc} & < \text{tol then disp}(cc); \text{ error("A non SDP"); end}   & \text{c}(ii) & = \text{sqrt}(cc); \end{aligned}  end endfunction
```

6. Compter le nombre d'additions et de multiplications de cette fonction.

Réponse : Dans cette implémentation, il y a 2(n-1) multiplications et divisions et (n-1) additions. En comptant la racine carrée, il y a donc 4(n-1)+1 opérations flottantes.

7. Calculer la factorisation LU (on parle bien de la factorisation LU et non de Cholesky) de la matrice

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

Que constatez-vous ? La matrice A est-elle définie positive ? Expliquer pourquoi.

Réponse : On fait la factorisation LU en identifiant les lignes et les colonnes (par Doolittle). Comme A est symétrique, c'est équivalent à faire la factorisation $A = LDL^T$.

$$A = LDL^{T} = \begin{pmatrix} 1 & 0 & 0 \\ l_{2,1} & 1 & 0 \\ l_{3,1} & l_{3,2} & 1 \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3} \end{pmatrix} \begin{pmatrix} 1 & l_{2,1} & l_{3,1} \\ 0 & 1 & l_{3,2} \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} d_{1} & l_{2,1}d_{1} & l_{3,1}d_{1} \\ l_{2,1}d_{1} & l_{2,1}^{2}d_{1} + d_{2} & l_{2,1}l_{3,1}d_{1} + l_{3,2}d_{2} \\ l_{3,1}d_{1} & l_{2,1}l_{3,1}d_{1} + l_{3,2}d_{2} & l_{3,1}^{2}d_{1} + l_{3,2}^{2}d_{2} + d_{3} \end{pmatrix}$$

On trouve par identification (on ne travaille que colonne par colonne, car A est symétrique): $d_1 = a_{1,1} = 1$, $l_{2,1} = \frac{a_{2,1}}{i} = 2$, $l_{3,1} = \frac{a_{3,1}}{i} = 0$, puis

$$d_1=a_{1,1}=1,\ l_{2,1}=rac{a_{2,1}}{d_1}=2,\ l_{3,1}=rac{a_{3,1}}{d_1}=0,\ \mathbf{puis}$$
 $d_2=a_{2,2}-l_{2,1}^2d_1=1,\ l_{3,2}=rac{1}{d_1}(a_{3,2}-l_{2,1}l_{3,1}d_1)=2,\ \mathbf{et}\ \mathbf{enfin}$ $d_3=a_{3,3}-(l_{3,1}^2d_1+l_{3,2}^2d_2)=1,\ \mathbf{soit}:$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \ D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

En fait, on trouve la matrice de la factorisation de Cholesky avec C=L, car D contient des 1 sur la diagonale : $A=LDL^T=LIL^T=LL^T$. On note bien que l'algorithme de la factorisation LU (ou LDL^T ici) est différent de l'algorithme de Cholesky, même si le résultat est identique.

On conclut que A est SDP, car la factorisation de Cholesky est faisable. On aurait pu appliquer le précédent algorithme de Cholesky adapté aux matrices tridiagonales.

Exercice 2: (barème approximatif: 5 points) CHANGEZ DE COPIE

Soit la matrice bidiagonale de $\mathcal{M}_{mn}(\mathbb{R})$ pour n > 0.

$$A = \begin{bmatrix} 1 & -2 & & & \\ & 1 & -2 & & \\ & & \ddots & \ddots & \\ & & & 1 & -2 \\ & & & & 1 \end{bmatrix}.$$

On rappelle que $\sum_{i=0}^{p} 2^i = 2^{p+1} - 1$, si p est un entier.

1. Calculer l'inverse de A en résolvant Ax = b pour b quelconque. On pourra faire une récurrence.

Réponse : Le système Ax = b est équivalent à :

$$Ax = b \iff \begin{cases} x_1 - 2x_2 = b_1 \\ x_2 - 2x_3 = b_2 \\ \dots \\ x_{n-1} - 2x_n = b_{n-1} \\ x_n = b_n \end{cases}$$

$$\iff \begin{cases} x_n = b_n \\ x_i = b_i + 2x_{i+1}, \ i = 1 \dots, n-1 \end{cases}$$

$$\iff \begin{cases} x_n = b_n \\ x_i = \sum_{j=0}^{n-i} 2^j b_{i+j}, \ i = 1 \dots, n-1 \end{cases}$$

Cela se montre sans difficulté par récurrence décroissante : connaissant x_i , on calcule $x_{i-1}=b_{i-1}+2x_i=b_{i-1}+\sum_{j=0}^{n-i}2^{j+1}b_{i+j}=\sum_{k=0}^{n-i+1}2^kb_{i+k-1}$, en faisant le changement de variable k=j+1 dans la somme.

Finalement:

$$A^{-1} = \begin{bmatrix} 1 & 2 & 4 & \dots & 2^{n-1} \\ & 1 & 2 & \dots & 2^{n-2} \\ & & \ddots & \ddots & \vdots \\ & & & 1 & 2 \\ & & & & 1 \end{bmatrix}.$$

2. Prendre $b = [-1; -1; \ldots; -1; 1]^T$, calculer x tel que Ax = b. Que valent $||x||_{\infty}$ et $||b||_{\infty}$?

Réponse : pour ce b, le terme i de $x = A^{-1}b$ s'écrit : $x_i = -\sum_{j=0}^{n-i-1} 2^j + 2^{n-i} = -2^{n-i} + 1 + 2^{n-i} = 1$

Donc on obtient $x = [1; 1; \dots; 1]^T$. Il vient : $||x||_{\infty} = ||b||_{\infty} = 1$.

3. Prendre $\delta b = \epsilon[1;1;\ldots;1;1]^T$, calculer δx tel que $A \delta x = \delta b$. Donner $\|\delta x\|_{\infty}$ et $\|\delta b\|_{\infty}$.

Réponse : pour ce δb , le terme i de $\delta x = A^{-1}\delta b$ s'écrit : $\delta x_i = \epsilon (\sum_{j=0}^{n-i} 2^j) = \epsilon (2^{n-i+1} - 1)$

 $\textbf{Donc on obtient} \ \delta x = \epsilon[2^n-1;2^{n-1}-1;\dots;2^2-1;1]^T. \ \textbf{Il vient:} \ \|\delta x\|_{\infty} = \epsilon(2^n-1) \ \textbf{et} \ \|\delta b\|_{\infty} = \epsilon.$

4. Montrer que la première ligne de A^{-1} vaut : $(\underline{A}^{-1})_1 = [1 \ 2 \ 4 \ \dots \ 2^{n-1}].$

Réponse : Voir réponse à la question 1. On peut également vérifier que $(\underline{A}^{-1})_1 A = e_1^T$. \square

5. Calculer $||A||_{\infty}$ et $||A^{-1}||_{\infty}$. En déduire $\chi_{\infty}(A)$, le conditionnement de A.

Réponse : On trouve $|||A|||_{\infty} = 1 + 2 = 3$ et $|||A^{-1}|||_{\infty} = \sum_{j=0}^{n-1} 2^j = 2^{n+1} - 1$ (max atteint pour la première ligne).

Donc
$$\chi_{\infty}(A) = 3(2^n - 1)$$
.

6. Commenter les résultats trouvés.

Réponse: Le conditionnement de cette matrice croît très rapidement avec n.

D'après le cours, partant d'un système Ax=b, que l'on perturbe en changeant le second membre : $A(x+\delta x)=b+\delta b$, on a l'estimation suivante :

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \chi_{\infty}(A) \frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}.$$

C'est-à-dire que, si le conditionnement est grand, une petite perturbation relative sur le second membre δb peut créer de très grande moditification relative sur la solution (un grand δx).

C'est le cas ici : une petite perturbation sur b $(\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}} = \epsilon)$ provoque une grande perturbation sur x : $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} = \epsilon(2^n - 1)$, ce qui est possible car $\chi_{\infty}(A) = 3\epsilon(2^n - 1)$ est grand.

On note que, avec ces choix de b et δb , on a presque égalité dans l'inégalité ci-dessus (à un facteur 3 près).