

2018 Mathematical Methods Trial Exam 1 Solutions © 2018 itute

Q1a The function and its inverse intersect at y = x.

Let
$$mx^2 + 1 = x$$
, $mx^2 - x + 1 = 0$. For one solution, $\Delta = 0$, $1 - 4m = 0$, $m = \frac{1}{4}$

Q1b
$$x = -\frac{-1}{2m} = 2$$
, (2, 2)

Q2a Stationary points,
$$f'(x) = 3(x-1)^2 + m = 0$$
, $x = 1 \pm \sqrt{\frac{-m}{3}}$.

For two stationary points, m < 0.

For one, m = 0. For none, m > 0.

Q2b Select
$$m = 1$$
, $f'(x) = 3(x-1)^2 + 1 = 3x^2 - 6x + 4$

$$f(x) = x^3 - 3x^2 + 4x + 1$$

Q3a Remainder =
$$f\left(\frac{1}{2}\right)$$
 = 9

Q3b Translate f(x) in the negative y-direction by 9 units.

Q3c Expand and compare coefficients of
$$x^3$$
 and x^2 :

$$4p-8=8$$
 and $-2p+4q=0$, $p=4$ and $q=2$

Q4a $\cos(\sin x) = 1$, $\sin x = 0$ since $-1 \le \sin x \le 1$

 $x = n\pi$ where *n* is an integer

Q4b
$$f'(x) = (-\sin(\sin x))(\cos x)$$

Let
$$f'(x) = 0$$
, $(-\sin(\sin x))(\cos x) = 0$

$$\sin x = 0$$
 or $\cos x = 0$, .: $x = \frac{n\pi}{2}$ where *n* is an integer

Q5a
$$f(x)=1+e^{\frac{x}{2}}, f'(x)=\frac{1}{2}e^{\frac{x}{2}}$$

The graph of f'(x) is the same as the graph of f(x)-1 dilated parallel to the y-axis by a factor of $\frac{1}{2}$.

It has y = 0 as an asymptote, and y-intercept $\left(0, \frac{1}{2}\right)$.

Q5b
$$f^{-1}(x) = 2\log_e(x-1)$$
, $\frac{d}{dx}f^{-1}(x) = \frac{2}{x-1}$ for $x > 1$

The graph of $\frac{d}{dx} f^{-1}(x)$ has asymptotes y = 0 and x = 1.

http://www.learning-with-meaning.com/

Q6a
$$y = \log_a(a \tan x) = \log_a a + \log_a(\tan x)$$

$$\frac{dy}{dx} = \frac{1}{\tan x} \times \sec^2 x = \frac{\cos x}{\sin x} \times \frac{1}{\cos^2 x} = \frac{1}{(\sin x)(\cos x)}$$

Q6b
$$\int_{-\pi}^{\frac{\pi}{3}} \frac{1}{(\sin x)(\cos x)} dx = \left[\log_e (a \tan x)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$

$$= \log_e \left(a \tan \frac{\pi}{3} \right) - \log_e \left(a \tan \frac{\pi}{6} \right) = \log_e \left(a \sqrt{3} \right) - \log_e \left(\frac{a}{\sqrt{3}} \right) = \log_e 3$$

Q7a
$$v = \frac{t+6}{(t+1)^2} = \frac{t+1}{(t+1)^2} + \frac{5}{(t+1)^2} = \frac{1}{t+1} + \frac{5}{(t+1)^2}$$

Q7b Distance travelled =
$$\int_{0}^{4} v \, dt = \int_{0}^{4} \left(\frac{1}{t+1} + \frac{5}{(t+1)^2} \right) dt$$

$$= \left[\log_e(t+1) - \frac{5}{t+1}\right]_0^4 = \log_e 5 + 4.$$

Average speed =
$$\frac{\log_e 5 + 4}{4}$$
 m s⁻¹

Q8
$$p \approx \hat{p} = \frac{900}{2500} = 0.36$$

95% confidence interval

$$\approx \left(0.36 - 2\sqrt{\frac{0.36 \times 0.64}{2500}}, 0.36 + 2\sqrt{\frac{0.36 \times 0.64}{2500}}\right)$$

$$\approx (0.36 - 0.02, 0.36 + 0.02) = (0.34, 0.38)$$

Q9a

	Male	Not male	
VCE	0.24	0.08	0.32
Not VCE	0.16	0.52	0.68
	0.40	0.60	1

$$Pr(\text{male} \mid \text{VCE}) = \frac{Pr(\text{male} \cap \text{VCE})}{Pr(\text{VCE})} = \frac{0.24}{0.32} = 0.75$$

Q9b Binomial distribution:
$$n = 25$$
, $p = \frac{540}{1200} = 0.45$

$$Pr(X = 12 \text{ or } 13) = Pr(X = 12) + Pr(X = 13)$$
$$= {}^{25}C_{12}(0.45^{12})(0.55^{13}) + {}^{25}C_{13}(0.45^{13})(0.55^{12})$$

Q10a
$$1.5a \times 2 + a \times 2 = 1$$
, $a = 0.2$

Q10b Let M be the median.

$$\int_{1}^{M} 1.5 \times 0.2 \, dx = [0.3x]_{1}^{M} = 0.3(M-1) = 0.5, \ M = \frac{8}{3}$$

Q10c
$$\overline{X} = \int_{-\infty}^{\infty} xf(x)dx = \int_{1}^{3} 0.3x \, dx + \int_{4}^{6} 0.2x \, dx$$

$$= \left[\frac{0.3x^2}{2}\right]_1^3 + \left[\frac{0.2x^2}{2}\right]_4^6 = 1.2 + 2 = 3.2$$

Please inform mathline@itute.com re conceptual and/or mathematical errors