

Evaluation, Learning Curves & Babysitting Prof. Lamberto Ballan

Recap: Learning Curves

 You can compute learning curves w.r.t. different "dimensions" (e.g. evaluation measures, no. samples)

Learning Curves

Often learning curves are plotted w.r.t. the loss

What to do next

- Debugging (and babysitting) a learning algorithm:
 - Suppose you have implemented a regularized linear regression model for predicting housing prices
 - It doesn't work on new data; what should you do next?
 - You can get more training data → Fixes high variance
 - ▶ Try smaller set of features → Fixes high variance
 - ▶ Try getting more features → Fixes high bias
 - Try adding complexity to the model (e.g. polynomial features)
 - Try decreasing $\lambda \rightarrow Fixes high bias$
 - Try increasing $\lambda \rightarrow Fixes high variance$

Diagnosing our datasets

 Learning curves can be also used to diagnose the quality of our training/validation sets

Unrepresentative Training Set

- The training set does not provide sufficient information to learn the problem
- It may occur if the training set has too few examples as compared to the validation set

Diagnosing our datasets

 Learning curves can be also used to diagnose the quality of our training/validation sets

Unrepresentative Validation Set

Artificial Neural Networks I

Prof. Lamberto Ballan

- Algorithms that are modelled (loosely) after the brain
 - Neural networks have been introduced in late 1950s
 - They were widely used in 1980s and early 1990s; their popularity largely diminished in late 1990s
 - Recent "resurgence": late 2000s/early 2010s (deep learning revolution)
 - Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural Networks and Al winters

• The "one learning algorithm" hypothesis

Auditory cortex learns to see [Roe et al., 1992]

Somatosensory cortex learns to see

[Metin and Frost, 1989]

- The "one learning algorithm" hypothesis
 - Because of these experiments there is this sense that if the same part of the brain can process sight or sound or touch, then (maybe) there is one learning algorithm
 - Therefore, instead of designing hundreds of different algorithms, we need to approximate this one algorithm

Neural Networks: applications

• Neural networks are everywhere...

Neural Networks

 Let's start by looking at what a single neuron in the brain looks like

Artificial Neural Networks

 We define a simple model for an artificial neuron (computational unit)

Artificial Neural Networks

 We define a simple model for an artificial neuron (computational unit)

 $h_{\theta}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{\theta}^{\mathrm{T}} \mathbf{x} > 0 \end{cases}$

0 otherwis

F. Rosenblatt, 1958

Artificial Neural Networks

 We define a simple model for an artificial neuron (computational unit)

$$f(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Unit

"activation function" "non-linearity"

Neural Networks: activation functions

 Nowadays there are several activation functions you may encounter:

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x,x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural Networks: definition

 A (artificial) neural network is just a group of this different neurons strong together

Neural Networks: architectures

 Here the term architecture refers to how the different neurons are connected to each other

2-layer neural network

or 1-hidden-layer neural net

Fully Connected layers

3-layer neural network

or 2-hidden-layer neural net

Note: when we say N-layer neural network, we do not count the input layer

Neural Networks: architectures

 Sizing neural networks: the two metrics that are commonly used to measure the size of a NeuralNet are the #neurons or (more commonly) the #parameters

(a) **2-layer neural network**

(b) **3-layer neural network**

- hidden layer 1 hidden layer 2
- (b) has 4+4+1 neurons; how many (learnable) parameters?
- (b) #parameters: 3x4 + 4x4 + 4x1 = 32 + 9 (biases) = 41

Neural Networks: model representation

 A (artificial) neural network is just a group of this different neurons strong together

- Input units are set by some exterior function (it can be generated by sensors) which causes their output links to be activated at the specified level
- Working forward through the network, these outputs are going to be the input for the next layer
 - Each output is just the weighted sum of the activation on the links feeding into a node
 - The activation function transforms this linear combination: typically this is a non linear function (such a sigmoid)
 - This function corresponds to the "threshold" of that node

$$a_{1}^{(2)} = f(\theta_{10}^{(1)} x_{0} + \theta_{11}^{(1)} x_{1} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3})$$

$$a_{2}^{(2)} = f(\theta_{20}^{(1)} x_{0} + \theta_{21}^{(1)} x_{1} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3})$$

$$a_{3}^{(2)} = f(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{1} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3})$$

 $a_i^{(j)}$: activation of unit i in layer j

 $\mathbf{\theta}^{(j)}$: matrix of weights controlling function mapping from layer j to layer j+1

If network has u_j units in layer j and u_{j+1} units in layer j+1, then $\mathbf{\theta}^{(j)}$ will be of dimension $u_{j+1} \times (u_j+1)$

$$h_{\theta}(\mathbf{x}) = a_{1}^{(3)} = f(\theta_{10}^{(2)} a_{0}^{(2)} + \theta_{11}^{(2)} a_{1}^{(2)} + \theta_{12}^{(2)} a_{2}^{(2)} + \theta_{13}^{(2)} a_{3}^{(2)})$$

(vectorization)

 $a_i^{(j)}$: activation of unit i in layer j

 $\theta^{(j)}$: matrix of weights controlling function mapping from layer j to layer j+1

 $z_i^{(j)}$: linear combination of the input nodes

$$a_{I}^{(2)} = f \left[(\theta_{10}^{(1)} x_{0} + \theta_{11}^{(1)} x_{1} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3}) \right] = f(z_{I}^{(2)})$$

$$a_{2}^{(2)} = f \left(\theta_{20}^{(1)} x_{0} + \theta_{21}^{(1)} x_{1} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3} \right) = f(z_{2}^{(2)})$$

$$a_{3}^{(2)} = f \left(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{1} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3} \right) = f(z_{3}^{(2)})$$

$$h_{\theta}(\mathbf{x}) = a_{1}^{(3)} = f(\theta_{10}^{(2)} a_{0}^{(2)} + \theta_{11}^{(2)} a_{1}^{(2)} + \theta_{12}^{(2)} a_{2}^{(2)} + \theta_{13}^{(2)} a_{3}^{(2)}) = f(z_{1}^{(3)})$$

$$a_{I}^{(2)} = f(\theta_{10}^{(1)} x_{0} + \theta_{11}^{(1)} x_{I} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3}) = f(z_{I}^{(2)})$$

$$a_{2}^{(2)} = f(\theta_{20}^{(1)} x_{0} + \theta_{21}^{(1)} x_{I} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3}) = f(z_{2}^{(2)})$$

$$a_{3}^{(2)} = f(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{I} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3}) = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{I} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3}) = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{I} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3}) = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(z_{3}^{(2)})$$
Add bias: $a_{0}^{(2)} = 1$

$$a_{3}^{(2)} = \theta^{(2)} a_{3}^{(2)}$$

$$a_{3}^{(2)} = f(z_{3}^{(2)})$$

$$a_{4}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{7}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{1}^{(2)} = f(z_{3}^{(2)})$$

$$a_{2}^{(2)} = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(z_{3}^{(2)})$$

$$a_{4}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{7}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{1}^{(2)} = f(z_{3}^{(2)})$$

$$a_{2}^{(2)} = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(z_{3}^{(2)})$$

$$a_{4}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{7}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{1}^{(2)} = f(z_{3}^{(2)})$$

$$a_{2}^{(2)} = f(z_{3}^{(2)})$$

$$a_{3}^{(2)} = f(z_{3}^{(2)})$$

$$a_{4}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{5}^{(2)} = f(z_{3}^{(2)})$$

$$a_{7}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)})$$

$$a_{7}^{(2)} = f(z_{3}^{(2)})$$

$$a_{8}^{(2)} = f(z_{3}^{(2)$$

"forward propagation"

 This forward propagation view also help us to understand what neural networks might be doing

A few examples

Let's try to compute logical functions

A few examples

Let's try to compute logical functions

$$x_{1}, x_{2} \in \{0, 1\}$$
 $y = x_{1} \text{ OR } x_{2}$
 $0 \quad 0 \quad 0 \quad = f(-10) \approx 0$
 $0 \quad 1 \quad 1 \quad = f(10) \approx 1$
 $\theta_{10}^{(1)} = -10$
 $0 \quad 1 \quad 1 \quad = f(30) \approx 1$

Representing Boolean functions

$$y = (\text{NOT } x_I)$$

$$x_I \qquad y \qquad h_{\theta}(\mathbf{x})$$

$$= f(10 - 20 x_I)$$

$$x_I \qquad y \qquad h_{\theta}(\mathbf{x})$$

$$0 \qquad 1 \qquad = f(10) \approx 1$$

$$= f(10 - 20 x_I)$$

$$1 \qquad 0 \qquad = f(-10) \approx 0$$

$$y = (\text{NOT } x_{1}) \text{ AND (NOT } x_{2})$$

$$x_{1} \quad x_{2} \quad y \quad h_{\theta}(\mathbf{x})$$

$$0 \quad 0 \quad 1 \quad = f(10) \approx 1$$

$$0 \quad 1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 1 \quad 0 \quad = f(-10) \approx 0$$

$$1 \quad 1 \quad 0 \quad = f(-30) \approx 0$$

Representing Boolean functions

- In 1969 Minsky and Seymour showed that it was impossible for perceptrons to learn an XOR function
 - Often it's (incorrectly) reported that they also conjectured that a similar result would hold for multi-layer perceptrons
 - Nevertheless, it caused a significant decline in interest and funding of neural network research
 - It took ten more years until neural networks experienced a resurgence in the 1980s

M.Minsky, S.Papert, "Perceptrons: an introduction to computational geometry", MIT Press, 1969 (expanded edition published in 1987)

Contact

- Office: Torre Archimede 6CD, room 622
- Office hours (ricevimento): Monday 11:00-13:00

- ĭ lamberto.ballan@unipd.it
- ♠ http://www.lambertoballan.net
- ♠ http://vimp.math.unipd.it
- @ twitter.com/lambertoballan