GENERAL RELATIVITY & COSMOLOGY

A Quick Guide

Huan Bui

Colby College Physics & Statistics Class of 2021

December 16, 2018

Contents

1	Ove	erview and Review	3
	1.1	Review of Special Relativity	3
	1.2	The Equivalence Principle	3
	1.3	Versions of the Equivalence Principle	3
		1.3.1 The Strong Equivalence Principle	3
		1.3.2 The Weak Equivalence Principle	3
2	Rev	view of Multivariable and Vector Calculus	4
3	Flat	t 3-dimensional space	5
	3.1	Basis vectors	5
	3.2	Contravariant and covariant vectors	5
	3.3	Metric tensor	5
	3.4	Coordinate transformation	5
	3.5	Tensors	5
4	Flat	t spacetime	6
	4.1	Special Relativity	6
	4.2	Relativistic Electrodynamics	6
5	Cur	eved spaces	7
	5.1	2-dimensional curved spaces	7
	5.2	Manifolds	7
	5.3	Tensors on manifolds	7
6	Gra	avitation and Curvature	8
	6.1	Geodesics and Affine connections $\Gamma^{\sigma}_{\mu\nu}$	8
	6.2	Parallel transport	8
	6.3	Covariant differentiation	8
	6.4	Newtonian limit	8
7	Ein	stein's field equations	9
	7.1	The stress-energy tensor $T^{\mu\nu}$	9
	7.2	The stress-energy tensor $T^{\mu\nu}$	9
	7.3	The Einstein equations	9
	7.4	Schwarzschild solution	9
8	Pre	edictions and tests of general relativity	10
	8.1	Gravitational redshift	10
	8.2	Radar time-delay experiments	10
	8.3	Black Holes	10

9	Cosmoslogy		
	9.1	The Friedman-Robertson-Walker solution	11
	9.2	Hubble's "constant" $H(t)$	11
	9.3	Recent discoveries in cosmology	11
	9.4	The cosmological constant	11

1 Overview and Review

What is general relativity? It's a theory of gravity.

Replaces Newton's law of gravity, for heavy masses and high precision.

Keep in mind, GR is not compatible with Quantum Mechanics.

Question in Physics: how to reconcile GR and QM?

- 1.1 Review of Special Relativity
- 1.2 The Equivalence Principle
- 1.3 Versions of the Equivalence Principle
- 1.3.1 The Strong Equivalence Principle
- 1.3.2 The Weak Equivalence Principle

2 Review of Multivariable and Vector Calculus

- 3 Flat 3-dimensional space
- 3.1 Basis vectors
- 3.2 Contravariant and covariant vectors
- 3.3 Metric tensor
- 3.4 Coordinate transformation
- 3.5 Tensors

- 4 Flat spacetime
- 4.1 Special Relativity
- 4.2 Relativistic Electrodynamics

- 5 Curved spaces
- 5.1 2-dimensional curved spaces
- 5.2 Manifolds
- 5.3 Tensors on manifolds

- 6 Gravitation and Curvature
- 6.1 Geodesics and Affine connections $\Gamma^{\sigma}_{\mu\nu}$
- 6.2 Parallel transport
- 6.3 Covariant differentiation
- 6.4 Newtonian limit

7 Einstein's field equations

- 7.1 The stress-energy tensor $T^{\mu\nu}$
- 7.2 Riemann curvature tensor $R^{\lambda}_{\ \mu\nu\sigma}$
- 7.3 The Einstein equations
- 7.4 Schwarzschild solution

- 8 Predictions and tests of general relativity
- 8.1 Gravitational redshift
- 8.2 Radar time-delay experiments
- 8.3 Black Holes

- 9 Cosmoslogy
- 9.1 The Friedman-Robertson-Walker solution
- 9.2 Hubble's "constant" H(t)
- 9.3 Recent discoveries in cosmology
- 9.4 The cosmological constant