

(11)

EP 0 477 972 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 04.09.1996 Bulletin 1996/36
- (51) Int CL6: C12Q 1/70, C12Q 1/68, C12P 19/34 // C07H21/04
- (21) Application number: 91116561.1
- (22) Date of filing: 27.09.1991
- (54) Nucleotide sequences useful as type-specific probes, PCR primers and LCR probes for the amplification and detection of human papilloma virus, and related kits and methods

Nukleotid-Sequenzen nützlich als typenspezifische Sonden, PCR Primers und LCR Sonden zur Amplifikation und zum Nachweis von humanem Papillomavirus, sowie dazu verwendete Kits und Verfahren

Séquences nucléotidiques utiles comme sondes spécifiques du type amorces de PCR et sondes pour l'amplification et détection du virus-papilloma humain, et kits et procédés utilisés dans ce but

- (84) Designated Contracting States: AT BE CHIDE DK ES FRIGBIGRIT LINL SE
- (30) Priority: 28.09.1990 US 589948 28.09.1990 US 590105 28.09.1990 US 590253
- (43) Date of publication of application: 01.04.1992 Bulletin 1992/14
- (73) Proprietor: ABBOTT LABORATORIES Abbott Park, Illinois 60064-3500 (US)
- (72) Inventors:
 - Joseph, Jeffrey L. Cherry Hill, New Jersey 08002 (US)
 - · Bouma, Stanley R. Mundelein, Illinois 60060 (US)

- · Marshall, Ronald L. Zion, Illinois 60099 (US)
- · Laffler, Thomas G. Libertyville, Illinois 60048 (US)
- (74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano & Associati S.r.I. Via Meravigii, 16 20123 Milano (IT)
- (56) References cited:

EP-A- 0 301 968 EP-A- 0 402 132 WO-A-87/05630 WO-A-89/09940 WO-A-91/10675

EP-A-0 320 308 EP-A- 0 425 995 WO-A-89/05357 WO-A-90/02821

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

30

35

45

50

This invention relates generally to human papilloma virus, and more particularly, relates to nucleotide sequences of short strands of human papilloma virus which can be amplified and/or used to determine the presence of human papilloma virus products in a test sample, and some of which also can be amplified and/or used to determine the specific type of human papilloma virus of types 16 and 18 present in the test sample.

Human papilloma virus (HPV) is recognized as a venereally-transmitted disease of the anogenital tract which often is associated with the pathogenesis of corvical cancer and its precursor lesions. More than 56 types of HPV have been characterized. Of these, at least 21 types infect the anogenital tract. L. Gregoire et al., <u>J. Clin, Micro.</u> 27 (12): 2660-2665 (1989). These mucosotropic viruses are associated most frequently with benign condyloma or latent infections. However, the presence of HPV in premalignant lesions and invasive cancers, particularly of the cervix, may reflect the oncogenic potential of these viruses. See P. M. Howley, in <u>Important Advances in Oncology</u>, D. T. DeVita, Jr. et al., eds., J. B. Lippincott, Philadelphia, PA (1987) at pages 55-73.

Certain HPV types, namely, HPV type 16 and type 18, and to a lesser extent HPV types 31, 33 and 35, are found in a high proportion of invasive cervical cancers and their metastases. However, many HPV types which infect the anogenital tract, such as HPV types 6 and 11, are found most commonly in benign condyloma and only rarely are found in invasive cancers. HPV detected in the anogenital tract can be classified broadly as low risk papilloma viruses (HPV types 6 and 11), intermediate risk papilloma viruses (HPV types 31, 33 and 35) or high risk papilloma viruses (HPV types 16 and 18), based on the association of the particular HPV type with malignancy. A. T. Lorincz et al., J. Nat'l Cancer Inst., 79:671 (1987). Thus, the detection of the presence of HPV and the determination of the specific type of HPV can provide a diagnostic and prognostic tool useful for determining the clinical significance associated with certain HPV types. The early detection of HPV by sensitive and specific reagents and methodologies also could provide earlier therapeutic management and counseling.

A need therefore exists for accurate and reliable methods to identify and type HPV in clinical specimens. However, known polyclonal antisera prepared by immunizing animals with disrupted virions are capable of detecting HPV antigens in only about 30-70% of cutaneous and mucosal warts. Further, the antisera are broadly cross-reactive. Available immunological tests have two major drawbacks. First, only well-differentiated cells apparantly are capable of viral antigen expression. HPV-infected tissues which show higher degrees of neoplasia, such as carcinoma in situ, rarely contain HPV antigen. Thus, the further the development of the malignancy, the smaller the amount of detectable virus in the tested tissue. Secondly, these immunological tests are unable to identify specific viral types.

It is known that papilloma viruses share amino acid sequences in the major capsid proteins. See, for example, C. C. Baker, in The Papovaviridae (Vol. 2), P. M. Howley and N. P. Salzman, eds., Plenum Publ. Corp., New York (1987) at pages 321-385. The DNAs of this virus cross-hybridize, indicating homologous sequences. M. F. Law et al., J. Virol. 58:225-229 (1979). Thus, molecular hybridization techniques have been developed as a more sensitive and specific means of detecting and differentiating HPV DNA and RNA in clinical specimens. See A. T. Lorinez, Obstetrics and Gynecol. Clinics of N. America 14:451 (1987).

Sequences specific for the DNA and RNA of human papilloma virus are known and have been published. See, for example, PCT application No. WO 89/69940 published October 19, 1989, PCT application No. WO 86/05816 published October 9, 1986 and European Patent Application No. 0 301 968 published February 1, 1989.

The molecular hybridization techniques used to detect homologous DNA sequences are sensitive and can be highly specific if used with probes which bind to nucleic acid sequences which are unique to a particular HPV type. However, the concentration of total viral DNA in a given clinical sample may be below the limit of sensitivity of the test. For example, the amount of viral DNA in dysplastic cervical lesions is reduced with increasing dysplasia.

To overcome this problem of sensitivity, viral DNA sequences can be amplified by using, for example, the polymerase chain reaction (PCR) or the ligase chain reaction (LCR) techniques. The products thus obtained can be identified by using conventional hybridization techniques for identification of virus types, such as Southern blotting. See C. Oste, Biotechniques 6:163(1988), K. B. Mullis, U. S. Patent No. 4,683,202, and EP-A-320 308 (BioTechnica).

Both PCR and LCR serve to amplify the DNA present in a test sample to detectable levels. In practice, the level of sensitivity is about 50 to 100 copies per sample. The next most sensitive technique is dot-blot, which can detect about 10,000 molecules, while Southern blot reliably detects about 100,000 copies of DNA per sample.

Thus, the appropriate diagnosis of HPV may require two steps. In one strategy, the presence of a clinically relevant type of HPV is first detected with a group-specific primer. After the presence of HPV is detected, differentiation between types can be performed by using a type-specific probe having low homology between the HPVs of the group. Alternatively, differentiation can be performed using a mixture of type-specific probes at the outset, provided these probes amplify DNA independently of each other, and that they can be detected independently. In the past, such tasks were attempted using specific antibodies. In general, nucleic acid probes and primers allow greater discrimination among subtypes than do antibodies. The use of DNA-based tests increases both sensitivity and specificity over prior-art antibody-based tests.

It therefore would be advantageous to provide oligonucleotide strands of DNA which could be amplified and used to detect the presence, if any, of HPV in a test sample. It also would be advantageous to provide short oligonucleotide strands of DNA which could be amplified and used to detect the presence, if any, of specific types of HPV in the test sample. The combined use of oligonucleotide strands would be advantageous for allowing for the specific and sensitive in vitro diagnosis of the presence and specific type of HPV present in test samples.

SUMMARY OF THE INVENTION

Oligonucleotides of from about 10 to about 60 nucleotides are provided which can be amplified and used either to detect specific sequences of specific types of human papilloma virus, or consensus regions with high homology among different types. The presence of HPV is determined by contacting the test sample with sequences provided to detect the presence, if any, of HPV types 6, 11, 16, 18, 31, 33 and 61. This may be done with or without prior amplification, for example, by PCR or LCR. Either type-specific or consensus amplification is also possible. Two oligonucleotides are provided if the sequence is to be amplified by PCR, and four oligonucleotides provided if amplification is by LCR, in accordance with these known amplification procedures. After the presence of HPV is detected, the type of HPV present in the sample can be determined by using HPV type-specific probes, by subsequent rounds of PCR, or by LCR. Alternatively, the presence of type-specific HPV can be determined by contacting the test sample directly with type-specific nucleotide sequence provided by the invention for the detection of HPV types 16 and 18. Also provided are methods for using the oligonucleotides and kits for amplifying and detecting the presence of human papilloma virus.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

30

45

50

FIG. 1 is a photograph of a gel following electrophoresis showing the results when the primers PCR 1 and PCR5 were used to amplify selected plasmids wherein HPV 6 is in lane 1, HPV 11 is in lane 2, HPV 16 is in lane 3, HPV 18 is in lane 4, and HPV 31 is in lane 5, HPV 33 is in lane 6, HPV 61 is in lane 7, and molecular weight standards are in lane 8.

FIG. 2 is a photograph of a gel following electrophoresis showing the results when the primers PCR 1, PCR2, PCR3, PCR4 and PCR5 were used to amplify plasmid p65.16.8 (HPV 16). PCR1 and PCR5 are primers according to the invention.

FIG. 3 is a photograph of the ethidium bromide-stained gels wherein PCR 1 4 and PCR15 are used in conjunction with IWDO to obtain amplified PCR product.

FIG. 4 is a graph of results obtained from performing LCR on 10⁷ molecules of the selected target using LCR5A, LCR5A', LCR5B and LCR5B'. The rate of reaction of 4-methyl lumbelliferone is expressed as fluorescence counts/second/second and plotted against the target HPV type.

FIG. 5 is a graph of results obtained from performing LCR on 10⁷ molecules of the selected target using LCR6A, LCR6A', LCR6B and LCR6B'. The rate of reaction of 4-methyllumbelliferone is expressed as fluorescence counts/second/second and plotted against the target HPV type.

FIG. 6 is a graph of results obtained from performing LCR on 10⁷ molecules of the selected target using LCR7A, LCR7A', LCR7B and LCR7B'. The rate of reaction of 4-methyllumbelliferone is expressed as fluorescence counts/second/second and plotted against the target HPV type.

FIG. 7 is a graph of results obtained from performing LCR on 10⁷ molecules of the selected target using LCR8A, LCR8A', LCR8B and LCR8B'. The rate of reaction of 4-methyllumbelliferone is expressed as fluorescence counts/second/second and plotted against the target HPV type.

DETAILED DESCRIPTION OF THE INVENTION

The appropriate diagnosis of HPV requires two sets of conditions. The first enables the detection of all pertinent types, and the second set allows differentiation among them. In the past, such tasks have been attempted using specific antibodies. In general, nucleic acid probes and primers allow greater discrimination among subtypes than do antibodies. Thus, the use of DNA-based tests tends to increase both sensitivity and specificity over antibody-based tests.

U. S. Patents No. 4,683,195 and 4,683,202 teach a method of amplifying DNA sequences by using PCR. This method now is a standard procedure in many molecular biology laboratories. Examples 1-3 which follow below utilize the procedures taught in these two patents and the method as described in the package insert of the commercially-available Gene-Amp™ kit (Document No. 55635-6/89, Perkin-Elmer/Cetus, Emeryville, CA).

In PCR, two complementary polynucleotide strands are amplified by treating the strands with two oligonucleotide primers such that an extension product of each primer is synthesized which is complementary to each nucleic acid strand. The primers are selected such that the extension product of one primer forms a template for the synthesis of an extension product from the other primer once the extension product of the one primer is separated from the template. A chain reaction is maintained by a cycle of denaturing the primer extension products from their templates, treating

the single-stranded molecule generated with the same primers to re-anneal, and allowing the primers to form further extension products. The cycle is repeated for any many times as it takes to increase the target nucleic acid segments to a concentration where they can be detected.

The amplified target sequence can be detected by any of several known techniques; for example, by denaturing the double-stranded products formed by PCR, and treating those products with one or more reporter probes which hybridize with the extension products. The reporter probe has a detectable label, and usually is added in excess. The unhybridized reporter probe, therefore, must be separated from the hybridized reporter probe by involving a separation step. In another method of detecting the extension products without reporter probe and a separation step, the extension products are detected by gels stained with ethicium bromide. The diagnosis can be confirmed by transferring the DNA to nitrocellulose and probing with a probe specific to the HPV type suspected of being present in the sample.

Alternately with PCR, one may take advantage of known restriction sites within the HPV DNA to demonstrate that the amplified DNA contains the expected sequence by examining the cleavage pattern(s) generated with one or more restriction endonucleases. Verifying the authenticity of the amplified sequence may be necessary for two reasons: (1) to ensure that sequences complementary to the amplifying primers are not fortuitously present in cellular DNA which does not contain HPV DNA, and (2), to identify the type of HPV present in the sample. If the sequences chosen for amplification are conserved among HPV types, then the finding of an amplified product does not implicate a particular HPV type. It also should be possible to predict the size of the amplified product based on the binding positions of the two primers. Thus, when that product is found, one reasonably can be assured that HPV is present. However, two different types of HPV may give the same or different size products. Thus, hybridization should be used to confirm the identity of the amplified sequence until confidence is built that the interpretation of the results is reliable. It should be pointed out that the PCR technique will identify only closely related, or type-specific sequences in the absence of highly homologous primers, since only a small portion of the genome is analyzed.

Another particularly useful detection technique is described in EP-A-357 011. In this method, a different reporter molecule, e.g. hapten, is attached to each primer. Following amplification, but before denaturation, duplexes can be detected by "capturing" one hapten (hapten1) with a solid phase coated with anti-hapten1. The separated complex can be detected with a conjugate of label and anti-hapten2, and label associated with the solid phase can be measured.

The Ligase Chain Reaction (LCR) amplifies sections of DNA by copying the section of DNA, and copying the copies of that section of DNA, many times over. This method is described in European Patent Application No. 0 320 308 published June 14, 1989, which is incorporated herein by reference. In this procedure, two probes (for example, A and B) complementary to immediately adjacent regions of a target sequence are hybridized and ligated. This ligated probe then is denatured away from the target, after which it is hybridized with two additional probes (A' and B') of sense opposite to the initial probes A and B. The secondary probes are themselves then ligated. Subsequent cycles of denaturation/hybridization/ligation create the formation of double-length probes of both sense (+) and antisense (-).

In LCR, the nucleic acid of the sample is provided either as single stranded DNA or as double-stranded DNA which is denatured to separate the strands. Four probes are utilized: the first two probes (A and B) are the so-called primary probes, and the second two probes (A' and B') are the so-called secondary probes. The first probe (A) is a single strand capable of hybridizing to a first segment of the primary strand of the target nucleotide sequence. The second probe (b) is capable of hybridizing to a second segment of the primary strand of the target nucleotide sequence. The 5' end of the first segment of the primary strand of the target is positioned relative to the 3' end of the second segment of the primary strand of the target to enable joining of the 3' end of the first probe to the 5' end of the second probe, when the probes are hybridized to the primary strand of the target nucleotide sequence. The third probe (A') is capable of hybridizing to the first probe, and the fourth probe (B') is capable of hybridizing to the second probe (B). The hybridized probes are ligated to form reorganized fused probe sequences. Then, the DNA in the sample is denatured to separate ligated probes from sample DNA. Successive cycles wherein the ligated probes and target DNA undergo the above-described process are performed to increase the amount of detectable DNA in the sample. The amount of cycles performed is dependent upon the sequence used and the sensitivity required of the test. Usually, the cycle can be repeated from 15 to 60 times. At least one of the probes can be conjugated to a signal generating compound.

If the four probes are conjugated to appropriate binding members, the detection of amplified product can be accomplished using standard manual or automated immunoassay procedures known to those skilled in the art. These procedures include, for example, immunochromatography, ELISA, EIA and MEIA. Hybridization also can be accomplished by following standard dot-, slot- or replica-blot procedures which are known to those in the art. The sequences can be labelled with an appropriate signal generating compound (label), which is capable of generating a measureable signal detectable by external means. The various signal generating compounds contemplated include chromogens, catalysts such as enzymes, luminescent compounds such as fluoroscein and rhodamine, chemiluminescent compounds, radioactive elements such as ³²P, and other labels known to those of ordinary skill in the art. The selection of a particular label is not critical, but it will be capable of producing a a signal either by itself or in conjunction with one or more additional substances. A variety of different indicator reagents can be formed of label and specific binding member. Either the label or a specific binding member can be varied. Examples of specific binding members which

can be used as a member of the indicator reagent include antibodies, both monoclonal, polyclonal, and fragments thereof; avidin or biotin, biotin and anti-biotin, a carbohydrate or a lectin, a complementary nucleotide sequence, an effector or a receptor molecule, an enzyme cofactor or an enzyme; an enzyme inhibitor or an enzyme; also any antigenic substances, haptens, antibodies, and combinations thereof.

The test sample can be any biological material suspected of containing HPV. Thus, the test sample can be human body tissue, or a test sample which contains cells suspected of containing HPV.

The invention will now be described by way of Examples, which are meant to describe, but not to limit, the spirit and scope of the invention.

The following terms used in the examples are trademarks, tradenames or chemical abbreviations as specified:

TRIS - chemical abbreviation for [tris(hydroyxmethyl)aminomethane], used as a buffer.

EDTA - chemical abbreviation for ethylenediaminetetraacetic acid, a chelating agent.

FITC - chemical abbreviation for fluorescein isothiocyanate, a flourescent hapten derivative.

NHS-ester - chemical abbreviation for N-hydroxysuccinamide ester

MES - chemical abbreviation for [2-(N-morpholino)ethanesulfonic acid], a buffer

TWEEN®-20 - trademark of Atlas Chemical for polyoxyethylene sorbitan monolaurate, a detergent.

BIS-TRIS - chemical abbbreviation for [bis-(2-hydroxyethyl)-amino]tris-(hydroxymethyl)methane, a buffer.

TRITON X- 1000 - trademark of Rohm & Haas for nonaethylene glycol octylphenol ether, a detergent.

IMx® - trademark of Abbott Laboratories for an automated instrument for performing microparticle enzyme immunoassay (MEIA).

EXAMPLES

EXAMPLE 1

25

5

10

15

20

PCR was performed essentially following the package insert of the commercially available Gene-Amp™ kit (document No. 55635-6/89, available from Perkin-Elmer/Cetus, Emeryville, CA). The following reagents were mixed in a 0.5 mL polypropylene tube and used in performing PCR

30	Reagent	Final Concentration				
	Water	(to give final volume ≈ 50 or 100 μL)				
	Reaction Buffer	10 mM TRIS pH 8.3				
		50 mM KC1				
35		1.5 mM MgC12				
		0.01% gelatin				
	dNTP mixture	200 μM each of dATP,dCTP,dGTP, and TTP				
	pCR1	1 μΜ				
40	pCR2	1 μM				
	plasmid	10 μL 1 ng/100μL				
	(or control-human placental DNA (P	ooled Placental DNA, catalog D-3287, Sigma Chemical Co, St. Louis MO).				
	DNA polymerase,					
45	Thermus Acquaticus	25 or 63.9 units/1 mL				

After mixing, the reaction mixture was overlayed with $100\,\mu\text{L}$ of mineral oil. The tube then was placed in an instrument capable of incubation at several temperatures, and subjected to 30 or 40 cycles of programmed temperature change. The precise cycle of temperature change used, and the instrument used, varied with the experiment, and is detailed in the descriptions of the figures in Example 3.

EXAMPLE 2

Following the procedure of Example 1, the following sequences were found to amplify sections of papilloma virus types 6, 11, 16, 18, 31, 33, and 61 using PCR.

PCRI: CAGATGICIC IGTGGCGGCC TAGTG (ID No. 1)

PCR5:	AGGTGTCAGG	AAAACCAAAT	TTATT	(10 No. 5)
PCR 14:	GAATTAGITA	GACCATTTAA	AAG	(ID No 6)
PCR15:	GGGGAAACAC	CAGAATGGAT	A	(ID No. 7)
IWDO:	ATCATATGCC	CACTGTACCA	٢	(ID No. 8)

Sequence IWDO is derived from a sequence disclosed in International application number PCT/US86/00629 (WO 86/05816).

TABLE 1 shows the sequences and where they map to to in the various types.

TABLE 1
SEQUENCES WHICH CAN BE USED AS PROBES OR PCR PRIMERS

20	5PROBE	SEQ ID No.	SEQUENCE	SENSE	MAPS TO:	MAPS TO:	MAPS TO:	MAPS TO:	MAPS TO:	MAPS TO:
					(type 6)	(type 11)	(type 16)	(type 18)	(type 31)	(type 33)
	PCR1:	1 CAG	ATGTCTCTGTGGCGGCCTAG	TG +	5786-5810	5768-5792	5634-5658	5610-5634	5550-5574	5591-5615
25	PCR2:	2 CGT	TTTCCATATTTTTTTGCAGA	TG +	5767-5791	5749-5773	615-5639	5591-5615	5531-5555	5572-5596
	OPCR3:	3 AAG	TTGTAAGCACCGATGAATA	ATGT •	5844-5868	5826-5850	695-5719	5671-5695	5611-5635	5652-5676
	PCR4:	4 441	GTACCCTAAATACCCTATA	770 -	6008-5984	5990-5966	865-5841	5841-5817	5784-5760	5825-5801
	PCR5:	S AGG	TGTCAGGAAAACCAAATT	TATT -	6044-6020	6026-6002	5901-5877	5877-5853	5820-5796	5861-5837
30	PCR 14:	6 GAA	TTAGTTAGACCATTTAAA	AG .	1495-1517	1495-1517	1524-1546	1595-1617	1462-1484	1518-1540
	PCR 15:	7 GGC	GAAACACCAGAATGGATA		1834-1854	1834-1854	1863-1583	1934-1954	1801-1821	1857-1877
	51WDO:	8 ATC	ATATGCCCACTGTACCAT	•	1931-1911	1931-1911	1960-1940	2031-2011	1898-1678	1954-1934

note: PCR2, PCR3 and PCR4 are not probes or PCR primers of the invention

EXAMPLE 3

40

35

5

15

Linearized plasmids containing full-length papilloma virus inserts in pGEM3 were used as targets. These were pHPV6.1 (HPV6), pSP65.11.5 (HPV 11), p65.16,8 (HPV16), pHPV18H(HPV18), pG3 HPV31 (HPV31), pLNK322,HPV33 (HPV33), and pBR322.HPV61 (HPV61). The Programmable Cyclic Reactor[™] (available from Ericomp, San Diego) was used as the incubation instrument. Following PCR procedures as described in Example 1,10 μL aliquots were analyzed by electrophoresis through agarose (comprising a 5:3 ratio of NuSieve® SeaKem® GTG, available from the FMC Corp., Rockland, ME) in a buffer comprising 0.089 M TRIS, 0.089 M borate, 2 mM EDTA, and 0.5 ppt ethidium bromide.

FIG. 1 is a photograph of an ethidium bromide-stained 1.2% agarose gel showing results using 63.9 units/mL DNA polymerase, in the DNA Thermal CyclerTM (Perkin-Elmer/CETUS, Emeryville, CA). The samples were heated for 5 minutes at 94°C, then subjected to 40 cycles of a temperature program of: 1 minute at 94°C, 2 minutes at 40°C, and 1.5 minutes at 72°C. The PCR primers used in this case were PCR 1 and PCR5 of Example 2. Examination of the gel following electrophoresis showed bands at the expected positions, i.e. 292 bp. Lane 1, HPV6; lane 2, HPV 11; lane 3, HPV16; lane 4, HPV 18; lane 5, HPV31; lane 6, HPV33, lane 7, HPV61; lane 8, pooled human placental DNA (suspected of having HPV infection); lane 9, molecular weight markers-Hae III digest of ΦX174.

FIG. 2 is a photograph of an ethidium bromide-stained 4% agarose gel showing results using 25 units/mL DNA polymerase, in the Programmable Cycler Reactor™ (Ericomp, San Diego, CA). Samples in this case were subjected to 30 cycles of a temperature program of: 50°C for one (1) minute, 72°C for two (2) minutes and 95°C for one (1)) minute. In this case, the primers PCR1, PCR2, PCR3, PCR4 and PCR5 of Example 2 were used to amplify plasmid

p65,16,8(HPV 16). Examination of the gel of Figure 2 shows bands at the expected positions, i.e., PCR 1 and PCR4, 235 bp, lane 2; PCR1 and PCR5, 267 bp, lane 4; PCR2 and PCR4, 254 bp, lane 6; PCR2 and PCR5, 286 bp, lane 8; PCR3 and PCR4, 174 bp, lane 10; PCR3 and PCR5, 206 bp, lane 12; molecular weight marker, 123, 246, 369, 492,... bp ladder, lane 1. Note footnote to Table 1.

FIG. 3 is a photograph of an ethidium bromide-stained 1.2% agarose gel showing results using the same conditions as FIG. 1. In this case, PCR14 and PCR15 were used as primers in conjunction with IWDO. The expected size of the amplified PCR product of PCR 14 and IWDO is 437 bp for all of the HPV types tested. The expected size of the product of PCR 15 and IWDO is 98 bp. Products of these sizes appear in the gels, confirming that PCR14 and PCR15, used in conjunction with IWDO, will amplify HPV DNA of types 6, 11, 16, 18, 31, 33, and 61. Lane 1, Molecular weight marker (Hae III digest of FX 174); PCR 14 + IWDO, lanes 2-9, lane 2, HPV6; lane 3, HPV 11, lane 4, HPV16; lane 5, HPV18; lane 6, HPV31; lane 7, HPV33; lane 8, HPV61; lane 9, human placental DNA suspected of being infected with HPV; PCR 5 + IWDO, lanes 10-17; lane 10, HPV6; lone 11, HPV 11; lane 12, HPV16; lane 13, HPV18; lone 14, HPV31; lane 15, HPV33; lane 16, HPV61; lane 17, human placental DNA suspected of being infected with HPV; lane 18, molecular weight marker (Hae III digest of FX174 and HinD III digest of 1 DNA).

EXAMPLE 4

10

15

20

25

30

35

40

45

55

The following reagents were mixed in a 0.5 mL polypropylene tube as follows for the Liquise Chain Reaction (LCR):

Reagent	Volume	Final Concentration
Water	21 μL	
Reaction Buffer	10 μL	50 mM EPPS pH7.8
	1	10 mM NH ₄ Cl
	ŀ	10 mM MgCl ₂
		100 mM K+ (from all sources
		0.001% BSA
		1 mM DDT
Nicotine Adenine Dinucleotide (NAD)	0.5 μL	100 μL
ProbeA (sense)	4 μL	5.0 x 10 ¹¹ molecules
ProbeA' (antisense, 5'-phosphate)	4 μL	7.5 x 10 ¹¹ molecules
ProbeB (sense, 5'-phosphate)	4 μL	7.5 x 10 ¹¹ molecules
Probe B' (antisense)	4 μL	5.0 x 10 ¹¹ molecules
Target (including human placental carrier DNA at 10 µg/mL)	1. 5 μL	15 ng/50 μL
DNA ligase, Thermus therpophilus	1 μL	

This reaction mixture was overlayed with 30 µL of mineral oil. The tube was placed in an instrument capable of incubation at several temperatures (e.g. thermal cycler from Coy Laboratory Products (Ann Arbor, MI) or the Programmable Cycler Reactor™ (available from Ericomp, San Diego, CA), and then subjected to several cycles of programmed temperature change. Each cycle involved incubation at 50°C for one minute and 85°C for one minute.

EXAMPLE 5

The following procedure was used when performing the Ligase Chain Reaction (LCR), which is described in published European Patent Application No. 0 320 308 A2. The reagents of Example 4 were utilized in the procedure as follows: Two probes (A and B) complementary to immediately adjacent to regions of a target sequence were hybridized and ligated. This ligated probe was denatured away from the target, and hybridized with two additional probes (A' and B') of sense opposite to the initial probes (A and B). The secondary probes then were ligated. Subsequent cycles of denaturation/hybridization/ligation created the formation of double-length probes of both + and - sense.

EXAMPLE 8

The following sequences were determined to be specific for a portion of the E6 region of HPV type 16:

Probe	SEQ ID No.	Sequence			Mans to:
LCR5A	81	GCTGCAAACA	ACTATACATG	ATATAA	157 - 182
LCR5A	82	pTTATATCATG	TATAGTTGTT	TGCAGC	182 - 157
LCR58	83	pTATTAGAATG	TGTGTACTGC	AAGCA	183 - 208
LCR5B'	84	TGCTTGCAGT	ACACACATTC	TAATA	208 - 157

EXAMPLE 9

10

30

40

45

50

55

Base-denatured plasmids which contained full-length papilloma virus inserts in pGEM3 were used as targets. These plasm ids were pG3HPV6(+) (HPV6), pSP 65. 11.5 (HPV11), pSP65.168 (HPV16), p63HPV18H(-)(HPV18), p63:HPV31 (HPV31), pLNK322:HPV33 (HPV33), pBR322:HPV35 (HPV35), pUC19:HPV52 (HPV52), pLNK322:HPV58 (HPV58), pUC9:HPV59 (HPV59) and PBR322:HPV61 (HPV61). All of the oligonucleotides used as probes from Example 8 had chemical labels covalently attched at the ends distal from ligation. These labels were: 5'-fluorescein-LCRSA, 3'-fluorescein-LCRSA', 3'- biotin-LCR5B and 5'-biotin-LCR5B'. Covalent attachment was performed by known methods, i.e., reaction of amine-terminated oligonucleotides with FITC or biotin-NHS-ester essentially following the procedures of Kansal et al., Tet. Letters 29:5537-5540 (1988). The thermal cycler used was obtained from Coy Laboratory Products, Ann Arbor, MI.

Following the LCR procedure of Examples 4 and 5, the mixtures were analyzed using a prototype version of the IM_x® instrument (Abbott Laboratories, Abbott Park, IL), following the protocol for microparticle enzyme immunoassays as follows. A 40µL aliquot of an LCR mixture was diluted 1:1 with distilled water. This diluted mixture was incubated with 50µL antifluorescein-conjugated polystyrene microparticles for five (5) minutes to form a suspension of immune complexes on the microparticles. This suspension then was transferred to an inert glass fiber matrix, to which the microparticles became attached. The matrix was washed with buffer (0.3M Nacl, 10 mM TRIS pH8, 0,1%NaN₃), Any immune complexes attached to the glass matrix was detected by using alkaline phosphatase-labeled conjugate that catalyzed the hydrolysis of 4-methylumbelliferone. The rate at which the 4-methylumbelliferone was generated on the matrix was proportional to the concentration of LCR product formed in the reaction mixture.

Referring to FIG. 4, the graph shows the results obtained from performing LCR on 10⁷ molecules of the targets in shown. The rate shown is the rate of generation of 4-methylumbelliferone, and is expresssed as fluorescence counts/second/second. Background signal is approximately 10 c/s/s, as shown by the amplification of human placental DNA. The only values above background are those for sample containing HPV16, and those values are about 60 times background signal.

EXAMPLE 10

The following sequences were determined to be specific for a portion of the E6 region of HPV type 18:

Probe	SEQ ID No.	<u>Seauence</u>			Mans to:
LCR6A	85	CTTCACTGCA	AGACATACAA	ATAA	172 - 195
LCR6A	86	PTTATTTCTAT	GTCTTGCAGT	GAA	195 - 173
LCR6B	87	PCCTGTGTATA	TTGCAAGACA	GTAT	196 - 219
LCR68'	88	TACTGTCTTG	CAATATACAC	AGG	218 - 196

EXAMPLE 11

Plasmids which contained full-length papilloma virus inserts in pGEM3 were used as targets. The plasmids used were those described in Example 9. All of the oligonucleotides used as probes obtained from Example 10 had chemical labels covalently attached at the ends distal from ligation. The thermal cycler was obtained from Coy Laboratory Products, Ann Arbor, MI.

Following LCR procedure described in Examples 4 and 5, the mixtures were analyzed as described in Example 9 using the prototype version of the IM_x® instrument (Abbott Laboratories, Abbott Park, IL).

Reterring to FIG. 5, the graph dislays the results obtained from performing LCR on 10⁷ molecules of the targets. The rate shown is the rate of generation of 4-methylumbelliferone, and is expressed as fluorescence counts/second/

second. Background signal is approximately 15 c/s/s, as shown by the amplification of human placental DNA. The only values above background are those for sample containing HPV 8, and those values are about 40 times background signal.

EXAMPLE 12

The following sequences were determined to be specific for a portion of the E6 region of HPV type 18:

10	Probe	SEQ ID No.	<u>Sequence</u>			Maos to:
	LCR7A	89	TATATTGCAA	GACAGTATTG	GAAC	200 - 223
	LCR7A	90	POTTCCAATAC	TGTCTTGCAA	TTTA	223 - 200
	LCR7B	91	pTTACAGAGGT	ATTTGAATTT	GCATT	224 - 249
15	LCR7B	92	AATGCAAATT	CAAATACCTC	TGTAA	249 - 224

EXAMPLE 13

Plasmids which contained full-length papilloma virus inserts in pGEM3 were used as targets. The plasmids were those of Example 9 All of the oligonucleotides from Example 12 which were used as probes had chemical labels covalently attached at the ends distal from ligation. The thermal cycler was as described in Example 11.

Following the LCR procedure of Examples 4 and 5, the mixtures were analyzed as described in Example 9 using the prototype version of the IMx instrument (Abbott Laboratories, Abbott Park, IL).

Referring to FIG. 6, the graph shows the results obtained from performing LCR on 10^7 molecules of the targets. The rate shown is the rate of generation of 4-methylumbelliferone, and is expressed as fluorescence counts/second/second. Background signal is approximately 15 c/s/s, as shown by the amplification of human placental DNA. The only values above background are those for sample containing HPV 18, and those values are about 80 times background signal.

EXAMPLE 14

30

50

55

The following sequences were determined to be specific for a portion of the E6 region of HPV type 16

35	Probe	SEQ ID No.	Sequence	l		Maps to
	LCR8A	93	GTATGGAACA	ACATTAGAAC	AGÇA	352 - 375
	LCR8A	94	PTGCTGTTCTA	ATGTTGTTCC	ATAC	375 - 352
40	LCR8B	95	PATACAACAAA	CCGTTGTGTG	ATTT	376 - 399
	LCR8B'	96	AAATCACACA	ACGGTTTGTT	GTAT	399 - 376

45 EXAMPLE 15

Plasmids which contained full-length papilloma virus inserts in pGEM3 were used as targets. All of the oligonucleotides from Example 14 used as probes had chemical labels covalently attached at the ends distal from ligation. The thermal cycler was as described in Example 11.

Following LCR procedure of Examples 4 and 5, the mixtureswere analyzed as described in Example 9 using the prototype version of the IM_x ® instrument (Abbott Laboratories, Abbott Park, IL).

Referring to FIG. 7, the graph details the results obtained from performing LCR on 107 molecules of the targets. The rate shown is the rate of generation of 4-mothylumbelliferone, and is expressed as fluorescence counts/second/second. Background signal is approximately 10 c/s/s, as shown by the amplification of human placental DNA. The only values above background are those for sample containing HPV 16, and those values are about 36 times background signal.

EXAMPLE 16

The attached Appendix (example 16) discloses the sequences of the invention aligned to known sequences.

5 EXAMPLE 16

APPENDIX

HUMAN PAPILLOMA VIRUS

HOMAN PAPILLOWA VINC

The appendix lists the sequences of HPV types 6, 11, 16, 18, 31, and 33. It also shows where the sequences of this invention line up with respect to these HPV sequences. In addition, the appendix shows where other sequences, known to the Inventors as of 28 September 1990, and claimed or disclosed by or unknown to others, line up with respect to these sequences.

- 1. Sequences and Regions Claimed by Us;
- 20 PCR = Sequences per examples 1 through 3 (only PCR1, PCR5 PCR14 and PCR15)

ALIGNMENT of TYPES 6, 11, 16, 18, 31, and 33; with CONSENSUS SEQUENCE

- LCR = Sequences per examples 4 through 14 only
- 2. Sequences and Regions Unknown to Others and Not Claimed by Us;
- PCR = Sequences designated PCR other than those above JJ
- LCR = Sequences designated LCR other than those above
- 3. Sequences and Regions Claimed by Others;
 (Italics represents antisense sequences)
 - AUS = International application number (Australians) PCT/AU88/00047 (WO 88/06634)
- 35 WL = International application number (Wayne Lancaster, Wayne State University) PCT/US86/00629 (WO 86/05816)
 - BE = European Patent Application (Belgians) 89.033834 (X= T or U)
- 40 C = International application number (CETUS) PCT/US89/03747 (WO 90/C2821)
 - O = International application number (Oncor) PCT/US89/O1318 (WO 89/09940)

and

- 4. Sequences and Regions Disclosed by Others.
- S = Sarkar, F.H. and Crissman, J.D. Biotechniques 9 180-184 (1990) (Italics represents antisense sequences)

55

50

45

	6	1 gttaataacaatcttggtttaa aaaataggaggg accgaaa acggttcaaccgaaaa
	11	1 CTTANTACANTCTTAGTTTAN ANANGAGGAGG ACCGANA ACGGTTCANCCGANAN
5	33	l gtaactathatgCcaAGttta AAAA AGtAGGGtGTAACCGAAA gCGGTTCAACCGAAAA
	16	1 actaCAATAAT tcAtGTATA AAA ctaAGGGGGTAACCGAAA tCGGTTGAACCGAAAC
	31	1 TAATA ATAATAAT CETAGTATA AAA AAgtAGGGAGTGACCGAAA GEGGTGAACCGAAAA
10		
	18	1 atTAATActTttaAcaattgTAGTATAtAAA AA AGGGAGTaACCGAAAacGgtcgGgACCGAAAA
	con	taatata-ta-aa-tottag-T-tA-AAAaaag-AGGGagtaACCGAAA-acggtt-aACCGAAAa C4-GCCAASTTGGCTTTT
		CS-GCCAGCCCTGCTTTT
_		
15		C36-CGGTTSAACCGAAAA
		C37~CGGTCGGACCGAAAA
		CJ8-CGGTTSAACCGAAAM
		C39-CGGTTCAACCGAAAM
		O15-attaatacttttaacaattgtagtatataa aa agggagtaaccgaaaacggtcgggaccgaaaa-o15
		024- ACTACAATAAT TCATGTATA AAA CTAAGGGCGTAACCGAAA TCGGTTGAACCGAAAC-024
20		S1-cggtcggaccgaaaa
		S3-ACCGAAAC
	6	58 CGGTTgTATATAAA CCAGCCCtAAAAtTTAGCAAACGAGGCATTATGGAAAGTgcAaATGCCTCCAC
	11	
25		
	33	62 CGGTgcaTATAtAAAGCA aACATTTTgcagtaAGgtActGCACgACtATGTTTCAAGACaCtgAGGA
	16	
	10	
	31	60 CGGTTGGTÄTÄTÄÄÄGCÄcataGTaTTtTGtgCaÄAccTÄCÄgacGCcATGTTcaÄaaATCCtgCAGA
30	18	
	cen	CGGTt-gtatatAAagcagca-aatgcaaaca-agcatt-cqatgttt-aagAtcCc-ga
		GCC-C4 AUS1-ATGCCTCCAC
		GCC-C5
35		CGG-C36 C67-AAATCCTGCAGA
		CGG-C37 C68-CCTACAGACGCCATGTTCA-C68
		CGG-C38 C71-GCAGTAAGGTACTGCAC-C71
		CGG-C39 010-GGATCCAACACG
		O15-CGGT GTATATAAA AGATGTGAGAAACACACACACAATACTATGGCGCGCTTTGAGGATCC-015
		024-CGGTTAGTATA AAAGCA GACATTTTATGCACCAAAAGAGAACTGCAATGTTTCCACAGGA(-024)
		CGGTG-S1 S2-CCGCGCGAAACTCCTAGGTTGTGC-S2
40		CGGTTAGTATA AAAGC-S3
		COSTADAVA NENOCESS

	6	125	GTCTGCAACGaCCATAGACCAGTTGTGCAAGACGTTTAATCTATCTATGCALACG	tTGCAAATTaAtT
	11	125	GTCTGCAACACCATAGACCAGTTGTGCAAGACGTTTAATCTCTCTC	:cTGCAAATTCAGT
5	33	129	aaaaccacGaacaTTgCAtgAtTTGTGCcAAGCaTTGGAGACAACTATACACAA	ATEGRACIACAGT
	16	124	geGACCeaGAAAgTTaCcacAgTTATGCaCAGageTGcAAACAACTATACATGA	LATAALATTAGAAT
	31	128	aaGACCtcGgAAaTTgCaTGAaCTAaGCtCGGcAtTGgAAAtAcCctacgATGAa	actaagattgaatt
10	18	131		caTAgaAaTaAccT
	con		g-gacCaagaatTacat-AgtTgtGCa-ggc-tTgaA-a-atCtatgcAt-a- GTCTGCAAC-AUS1 AUS7-GCAAGACGTTTAATCT-AUS7	T-ssataaa-T
				TCTGCAAATTCAGT
			-GCGACCCTACAAGCTACCTGATCTGTGCACGGAACTGAACACTTCACTGCAAGA	
15			-GCGACCCAGAAAGTTACCACAGTTATGCACAGAGCTGCAAACAACTATACATGA	
		:	54-CTGGGTCTTTCAATGGTGTCAATA-S4	
	6	193	GEGTGTTTTGCA&GAATGCACTGACCAC&GCAGAGATETATECATATGC&TATA	AACACCTAAAGGTC
				1 111111111
20	11		GCGTGTTTTGCAGGAATGCACTGACCACCGCAGAGATATATGCATATGCCTATA	1 111 111
	33	197	ĠĊĠĠĠġĸĸĠĊŔĸĸŔĸĊĊŧŦĠĊĸĸĊĠĸĿĊŦĠĸĠĠŔĸŔĸŦĠĸŧŦŦŢĠĊĸŦŦŢġ	caGATTTAAcaGTT
	16	192	GTGTGTACTGCAAGCAACAGTTACtGCGACGTGAGGTATATGACTTTGCtTTTC	ggGATTTAtgcATA
				111111 111
25	31	196	GTGTCTACTGCAAaggtCAGTTAacAgaAACAGAGGTATTaGAtTTTGCATTTA	CAGATITACCATA
25	18	199		aAGATTTAtttgTg
	con		GtGTgtatTGCAagaacatTgacac-a-caGAGgTaTatgaaTtTGCaTtTa	magAttTAagT- -ACACCTAAAGGTC
			GC-C74 AUS3-TGAGGTATATGACTTTGCTTTT	
30			C60-GAGGTATWTGAHTTTGC-C60	O1-CTAAAGGTT
30			C61-GAGATWTATKCATATGC-C61	02-CTAAAGGTT
			C69-ACAGTATTGGAACTTACAG-C69	04-GATTTCCAA
			C70-CAACAGTTACTGCGACG-C70	O6-TTATGCATA
			C72-GACAGTATTGGAACTTACAG-C70	07-TTATGCATA
			S5-GTGTTTTGCAGGAATGCACTGACCA-55	08-aatacgtat
35		010	-gtgtatattgcaagacagtattcgaacttacagaggtatttgaatttgcattta	
				Oll-TTATTTGTG
				O12-TTATTTGTG
				013-AATAAACAC
				017-CTAAAGGTC
				018-CTAAAGGTC
40				020-GATTTCCAG
		024	-gtgtgtactgcaagcaacagttactgcgacgtgaggtatactttgcttttc	GGGATTTATGCATA-024 025-TTATTTGTG

	0	201	CTGTEECGAGGCGGCTATCCATGCAGCCTGGGCGTGCGTAGAACTECAEGGAAAAATAAACCA
5	11	261	
	41	701	GTGTGGCGAGACACTETCCcTTGCAGCGTGTGCCTGETGCTTAGAACTGCAAGGGAAAATTAACCA
	33	265	GTATATAGAGAGGGAAATCCATTTGGAATATGTAAactgTGTTTgcgGTTcTtATCTAAAATTAGTGA
	16	260	GTATATAGAGALGGGAATCCATATGCLGTATGTGALAAATGTTTAAAGTTTTATTCTAAAATTAGTGA
10	31	264	GTATATAGGGACGacAcACCACAcGgaGTgTGTacaAAATGTTTAAGATTTATTCAAAAGTAAGTGA
	18	267	GTGTATAGAGACagtAtACCcCAtGctGcatGccatAAATGTaTAgatTTTTATTCtAgAaTtAGaGA
	con		gT-TataGaGacggcaatCCatztGcag-aTGtgasaTGttTagaatTttattctAaAaTtAgtgA
15			C-44CTCTGYCGWWAGGTAWACGW-C44 JJ1-aattagnga
15			C-45CTCTGTCATATGGCGTACGA-C45 AUS8-GTGA
			C-46CCCTGCTGTGTGTGCCT-C46 S6-GT
			C-47 CYCTGCYGWWWGGTAWACSW-C47
			C-48CYCTGYYGWAGGTAWACGW-C48 C-49CYCTGYYGWDWGGTAWACSW-C49
			C56-HGAGACRGCWWTCCATWTG-C56
20			C57-MGAGACRGSWWTCCATWTG-C57
			C58-MGAGACRGVWWTCCATWTG-C58
			C59-AGAGACAGTATACCGCATG-C59 GTGTGGCGAGACAACTTTCCCTTTGCAGCGTGTGCCTGTTG-01
			GTGTGGCGAGACAACTTTCCC-02
25			O3-CAACTTTCCCTTTGCAGCGTGTGCCTGTTG-O3
25			CACACCGCTCTGTTGAAAGGGAAACGTCGCACACGGACAAC-04
			GTATATAGAGATGGGAATCCA-06
			GTATATAGAGATGGGAATCCATATGCTGTATGTGATAAATG-07 CATATATCTCTACCCTTAGGTATACGACATACACTATTTAC-08
			O9-ACCCTTAGGTATACGACATACACTATTTAC-O9
30		010	-GTGTATAGAGACAGTATACCCCATGCTGCATGCCATAAATGTATAGATTTTATTCTAGAATTAGAGA-010
50			GTGTATAGAGACAGTATACCG-011
			GTGTATAGAGACAGTATACCCCATGCTGCATGCCATAAATG-012 CACATATCTCTGTCATATGGGGTACGACGTACGGTATTTAC-013
			014-GTCATATGGGGTACGACGTACGCTATTTAC-014
			-CTGTTTCGAGGCGGCTATCCA-017
35		018	-CTGTTTCGAGGCGGCTATCCATATGCAGCCTGCGCGTGCTG-018
			019-GCCGATAGGTATACGTCGGACGCCACGAC-019 GACAAAGCTCCGCCGATAGGTATACGTCGGACGCGCCACGAC-020
		024	-GALAARGETEEGEEGATAGOTATAEGTEGGALGEGEACGAC-V2V -GTATATAGAGATGGGAATCCATATGCTGTATGTGATAAATGTTTAAAGTTTTATTCTAAAATTAGTGA-024
			GTGTATAGAGACAGTATACCG-025
			026-CAGTATACCCCATGCTGCATGCCATAAATG-026
40			
45			
50			

	6	329	ATATAGACACTTTGATTATGCTGGATATGCAACAACAGTtGAAGAAGAAACtAAacAAGAGAATcTTAG
	11	329	
5	33	333	ATATAGACATTATAATTATECTGTATATGGAAATACATTAGAACAABACAGEEAAAAAAACCTTTaaaTG
	16	328	gTATAGACATTATEGTTATAGTETGTATGGAACATCATTAGAACAGGAALaGAACAAACCGTTGTGTG
	31	332	
10	18	335	
	con		aTatAGAcatTaTaattAt-cTgt-TATGgAacaACAtTaGAA-Aa-aaactAAcaaag-t-Tat-tg atatagacatt-JJ1 GTATAGACATTAT-AUS8
15			C50-ATAHSACAYATACSTTGWTGTMATCTT-C50 C51-ATAHSACAYATACSTTGWTGTMATC-C51
			C52-ATAHSACAYATACSTTGWTGTMAT-C52 C53-CTGAGACACATACCTCTGTGTGTAACC-C53
			C54 <i>-ctgagacacatacctctgtgtgtaa-</i> c54 C55 <i>-ctgagacacatacctctgtgtgta-</i> c55
20			-ATTAAGACATTATTCAGACTCTGTGTATGGAGACACATTGGAAAAACTAACT
		024	-gtatagacattattgttatagtttgtatggaacaacattagaacagcaatacaacaaaca
	6	397	ACGTGCTAATTCGGTGCTACCTGTGTCACAAACCGCTGTGTGAAGTAGAAAA ggTAAAACAtATACT
25	11	397	AAGTGTTAATTCGETGTTACCTGTCTCACAAgCCGTTGTGAAATAGAAAAA CTAAAGCACATAET
	33	401	AAaTaTTAATTAGGTGTATTATATGTCAAAgaCCLTTGTGTCCTCAAGAAAAAAAGGACATGTGGAT
	16	396	ATTTGTTAATTAGGTGTATTAACTGTCAAAagCCacTGTGTCCTGAAGAAAAgCAAAGACATCTGGAC
30	31	400	ATTTGTTAATTAGGTGTATAACGTGTCAAAGACGTTGTGTCCAGAAGAAAAACAAAGACATETGGAT
	18	403	
35	con		AttrgtTAATtaGgTGtattgTGtCAaAaaCCgtTGtgTccagaAGAAAAaca-agAcatctat AUS4-AATTAATCCACATAAT-AUS4 AUS5-TGTCATAACCTTGAATGTCT-AUS5
			-atttattaataaggtgcctgcggtgccagaaaccgttgaatccagcagaaaaacttagacaccttaat-010 -atttgttaattaggtgtattaactgtcaaaagccactgtgtcctgaagaaaagcaaagccacactggac-024
40			

```
gCTAAATtgtacGTGGAAGGG
          464 macchaggcgcggttcathan
                                                                        TCGcTG
              GGGAAAGGCACGCTTCATAAAA
                                                                        111 11
                                           111111
                                                     111111111
                                           CTAAATAACCAGTGGAAGGG
              ttAAACAAACGATTTCATAATAT
                                            TteGGGTCGtTGGGCAGGGCGeTGTgeGgCgTGTTG
                 11: 1: 1:11 ::11::1:1
                                               414141 484 4 43 44 441
       16
              AAAAAGCAAAGATTCCATAATATA
                                             aggggtcggtggaccggtcgatgtatgtcttgttg
               AAAAAGAAACGATTCCACAACATAG
                                              GAGGAAGGTGGACAGGACGETGCATAGCATGTTG
                111
                                                 11 1
           471 gÄÄÄÄacgÄČGÄŤŤtČÄČÄÄČÄŤÄĞctgggcactataGÄgGccaGtgccattcgTGCtgcaaccGagc
      con
               &&&&Aa--acgatTtCAtAA-atag-----cta&aggacg-tgGgcagggcg-tgc&tggct-Gttg
               TGGTGTATAGA-AUS 9
                                             AUS6-AAATGTATAGATTTTTATTC-AUS6
                                                                 C65-CAACCGAGC
15
           O10-GAAAAACGACGATTTCACAACATAGCTGGGCACTATAGAGGCCAGTGCCATTCGTGCTGCAACCGAGC-010
           024-AAAAAGCAAAGATTCCATAATATA
                                             AGGGGTCGGTGGACCGGTCGATGTATGTCTTGTTG-024
          512
                                 CCTACACTGC
                                                   TGGACAACATGCATG
                                                                     GAAGACaTGT
                                                   111111111111111
                                                                     344111 111
                                  20
       11 512
                                 CLTACACTGC
                                                   TGGACAACATGCATG
                                                                     GAAGACLTGT
                                    1 11111
                                                   11 1 11
                                                             1111
       33
           528
                     gaggtcccgACGTAGAGAAACTGCactgtgAcgTGTAAAAacgcCATGagagGACACaagcC
                                                1 11111
                                                             1111
                                                                     1111
                             111111111111
       16
           523 cagateateAAGAaCACGTAGAGAAAC
                                              CCAGCTGTAA tCATGCATGGAGATACAC
                                              1111 | 1111 | 11111
                     GagAAGACCtCGTActGAAAC
25
       31
           527
                                              CCAagTGTAA aCATGCgTGGAGAAACAC
                       1 111 1
                                              1 1
                                                    18
           539 acqacaGqaAcGACtcCaacqacqcAqaqaaacaCaAqtataAtattAaGtaTGcAtqqACctaaqqC
               --ga--gagaagaccacgta-aga-Actgca---ccaggtgtAaaacatgcaTGgagagAcacaaggc
                     C64-GAACACGTAGAGAAAC
                                              CCAG-C64
30
                       ACGACAGGA-C65
                 C66-GAGGTCCCGACGTAGAGAA-C66
           O10-ACGACAGGAACGACTCCAACGACGCAGAGAACACAAGTATAATATTAAGTATGCATGGACCTAAGGC-010
           O24-CAGATCATCAAGAACACGTAGAGAAAC
                                              CCAG~024
                                TATEGTAETAGACCTGCAACCTCCAGACCCTGTAGGGTTACATTGCTATG
           547 TACCCTAAAGGA
                                35
               1111111111111
               TACCCTAAAGGA
                                             TTTatATCCTGAaCCAACTGAcCTATACTGCTATG
                                   11 1111
                11 1111111
                                ATATGTLTTAGA
       33
           590 AACGTTAAAGGA
                                1111 1 11111
                                                  1 11 11 11 111111 11 11111 1111
                11 11 11
           579 TACATTGCALGA
                                ATATATGTTAGA
                                             TTTGCAACCAGAGACAACTGALCTCTACTGTTATG
                                             40
               111 11111 11
                                111 1111111
                                             TTTGCAACCEGAGGCAACTGACCTCCACTGTTATG
       31
           577 TACGTTGCAAGAC
                                 TATGTGTTAGA
                                                          i 111111 1 111 1 1
                11 111111111
                                      607 aACaTTGCAAGACattgtaTtgcatTTAGAgeeccaaaAtgaaattcCggtTGACCTtCtaTGTcAcG
       18
               tAC-tT--AgGAc----at-tgt-tTAGAcctt---catcc-ga-cCa--tGaccTacacTG-tAtG
      con
45
                                              BE16-ACCAGAGACAACXGAXCXCXACXGX-BE16
                                   BE18-GXXAGAXXXGCAACCAGAGACAACXGAXCXCXAC-BE18
           \tt 010-AACATTGCAAGACATTGTATTGCATTTAGAGCCCCAAAATGAAATTCCGGTTGACCTTCTATGTCACG-010
                                                                         C89-G
                                                                         C90-G
```

15

50

	6	609 AGCAATTAGtAGACAGCTCAGA AGATGA GGTGGACGAAGTGGACGGACAGACCAACCT
	11	
5	33	
	16	
	31	636 AGCAATTACCCGACAGCTCAGAEGAGGATGCCATTAGACAGTCCAGCTGGACAA GCAGAACCG
10	18	
	con	AGCAATTAaGACagctcaGAtga-gAtGAtga-aT-GAc-qg-c-gatggacaagacgcacAaCcg AGCAATTAGWAGAC-C89 BE8-GACGAAGCAGCGACGACAAGAXXC-BE8 AGCAATTAARYGAC-C90 BE9-GAGGXGGACGAGCGACAAGATTCACAACC-BE9 BE13-XGAGGXGGACAAGGXGGACAAC-BE13
15		BE14-AGAAGAXGAGGXGGACAAGGXGGACAAACAAGACG-BE14
		BE15-CAGAACCG BE17-ACAAGCAGAACCG
		C62-CGAAGTGGACGACAAGAT-C62
		C63-CAAGGTGGACAAACAAGACC-C63 O10-AGCAATTAAGCGACTCAGAGGAAAAACGATGAAATAGA TGGAGTTAATCATCAACATTTACCAG
20	6	671 TTARABCATCATTCCAAATAgTGACCTGTTG CTGTGGATGTGAC AGCAACGTtCGA
	11	671 TTÁÁCÁCÁTÁTÁCCÁÁÁTÁCTGÁCCTGTTG CTGTGGÁTGÁC ÁGCÁACGTGCGÁ
	33	
25	. 16	
	31	701 GACACCAATTACAATATCGTtACCTTTTGTTGT GAGTGTAAGT CTACACTTCGt
	18	
30	con	g-cacagcattaCcA-At-gT-ACctgtTGttgt-ctgg-TGT-ActaccAcagTtcg-GACAGAGCCCAX-BE15 BE19-AGXGXGACXCXACGCXXCGG
		GACAGAGCCCA-BE17 BE20-XXGCAAGXGXGACXCXACGCXXCGG BE24-XXGXAAGXGXGAGCCAGAAXXGAG
		BE25-AXGXGXAAGXGGAAGCCAGAAXXGAG Olo-CCCGACGAGCCGAACCACAACGTCACACATGTTGTGTGTG
35		
40		

	6	728	CTGGTTGTGcAGTGtACAGAaaAAGACATCAGAGAAGTgCAAGAGCTTCTGtTGGGGAACACTAAACAT
	11		CTGGTTGTGGAGTGCACAGACGGAGACACTACAAGACCTTTTGCTGGCCACACTAAATAT
5			
	33	771	TTaTGTGTcaAcActAcAccaaGtGACctaCGAACcaTACAgcAaCTacTtATGGGCACAGTGAATAT
	16	760	TTGTGcGTACAAGCACACGCTAGACATTCGtACtTTGgAAGACCTGTTAATGGGCACACTAGGAAT
	31	758	TTGTGtGTACAGAGCACACAAGTAGAATTCGCALATTGCAAGAGCTGTTAATGGGCtCAtTtGGAAT
10			
	18	809	cTagtaGTAgAaAGCtCAgcAGacGAccTTCGagcATTcCAgcAGCTGTTtcTGaaCaCccTqtcctT
	con		-TgtGTacAgaGcaCAgaag-aGAcaTtcGaacatTgcAa-AgCTgtT-aTGggcaCacTaaa-aT
			XXG-BE19 BE29-AGCAAGXGACCXACGAACCAXACA-BE29 C42-CCCGTGTGAYYYDTA XXGXGCGXAC-BE20 C43-CTTGTGGGACAGGAA
			CXAGX~BE25
15			BE30-AGXACAGCAAGXGACCXACGAACCAXACAGCAACX-BE30
		010-	-CTAGTAGTAGAAAGCTCAGCAGACGACCTTCGAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTT-010
	6	796	agtgtgtcccatctgcgc ac Cgaagacetaacaaegatggcggacgattcaggtacagaaaat
	11	706	TGTGTGTCCCATCTGCGC AC CAAAACCATAACAAGGATGGCGGACGATTCAGGTACAGAAAAT
20	11	/30	
	33	839	TGTGTGCCCLACCTGTGC ACAGCAREAAACATCAECEACGATGGCCGATCCTGAAGGTACAAAEGgg
	16	828	TGTGTGCCCCAtCTGTTCT CAGAAACcATAATCTACcATGGCTGATCCTGCAGGTACcAATGGGGAA
	31	826	cGTGTGCCCCAaCTGTTCT aCtAgACtGTAA CTACAATGGCTGATCCAGCAGGTACAGATGGGGA
25	-		
	18	877	tGTGTGtCCgtggTGTgC atCccagCaGTAAgCaACAATGGCTGATCCAGaAGGTACAGAcGGGGA
	con		tGTGTG-CCcatcTGtgCtaca-aaacaataatcaaCaAtgG-tgggta-ag-qgat
			D-CACACRGGTAGACRCG-C40 C75-ATGGCKGAYCCTGMAGGTAC-C75
		C 4 .	1-CACACAGGCACCACACG-C41 C76-ATGGCKGAYGATTCAGGTAC-C76 ACACAC-C42 C77-ATGGCKGAYCCTTCAGGTAC-C77
30			ACACAC-C43 C81-TACCGMCTRGGACKTCCATG-C81
			C82-TACCGMCTRCTAAGTCCATG-C82
			C83- <i>TACCGMCTRGGAAGTCCATG</i> -C83
		010	-TGTGTGTCCGTGGTGTGC ATCCCAGCAGTAAGCAACAATGGCTGATC-010
	6	859	GAGGGGTCtGGGTGTACAGGATGGTTTATGGTAGAAGCtATAGTgcAaCACcCaACAGG TAC
35			
	11	859	GAGGGGTCGGGGTGTACAGGATGGTTATGGTAGAAGCCATAGTAGAGCACACLACAGG TAC
	33	906	
	,,	300	
	16	895	GaGGGtACGGGATGTAATGGATGGTTTATGTAGAGGCtGTAGTGGAAAAAAAAAA
40			
	31	891	GGGGACGGGATGCAATGGTTGTTATGTAGAAGC>A&TtGACAGACAGACAGACAGG GGA
	18	943	
			CONTRACTOR AND ACCOMPANIAN CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE PROPE
45	con		gagGGgacgGGTGtA-tGGaTGGTTtta-GTAgAaGCt-TagTagA-aaaaaACAGGa C78-TGTAMWGGMTGGTTTTATGT-C78
			C79-TGTAWWGGHTGGTTTGAGGT-C79
			C80-TGTANWGGMTGGTTTATGGT-C80
			CB4-ACATKWCCKACCAAAATACA-C84
			CBS-ACATKWCCKACCAAACTCCA-CBS
50			C86-ACATKVCCKACTAAATACCA-C86

	6	921	ACAAATATCAGACGATGAGGAGGAGGAGGACAGTGGGTATGACATGGTGGACTTTATTGATGAGAGAAATATCAGACGATGAGAAGAAGGAAG
5	11	921	ACAAATATCAGAAGATGAGGAAGAGGAGGAGGAGGAGGAGTAGGAATGACATGGTGGACTTTATTGATG
	33	968	TAATATETCAGAAGATGAGGAEGAAACAGGAGATCACAGTGGCACGGATTTACTAGAGTTTATAGATG
	16	957	rgctatatcágacgágaacgágaacgágatagagagtgártagágagártragtágáetrítátágtaa
0	31	951	caacATTTCAGAGGACGAAÁÁTGÁÁGÁCAGtÁGTGATACtGGGGÁGGÁTATGGTtGACTTTATTGACA
		1009	stcagatgacGAGGACGAAAATG caACAG ACACaGGGtcGGATATGGTaGAtTTTATTGAtA
	con		a-aaat-tcaGA-GA-GAg-AtGaa-a-g-ggatgAcA-tGGgtagGAtaTggTaGAcTTTATtGat-
15	6	989	A CAGGAATATTACA CAGAATTCaGTGGAAGCACAGGCATTGTTTAAGAGGCAGGAGGCG
	11	989	
	33	1036	Attetatggadaatágtatácággcágásacagaggcágcagggggggggggggggggg
20	16	1025	ATGATÁATĠÀETÄTEŁAÄCÄĊÄĠĠĊÄĠÄAÄĊÄĠĀĠAĊĀĠĊĀĊĀĿĠĊgŤTĠŤTŤĀĊŤGCĀĊĀĠĠĀĀĠCĀ
	31	1019	AttgTAATGLATACBACAAtCAGGCAGAAGCAGAGACAGGCATTGTTTCATGCACAGGAAGCG
	18	1071	cacaaggaacÁÍtttgtgÁaCÁGGCÁGÁGAGAGACÁGCACÁGGCÁÍTGTTGCATGCGCAGGAGGE
2 5	cou		attataatgcatatataataCAggcagAcagaG-cAGCaCagGCaTTGTTtaat-c-CAGGA-Gcg
	6	1048	GACACCCATTATGCGACTGTGCAGGACCTAAAACGAAAGTATTTAGGtAGTCCATATGTtAGTCCTAT
	11	104B	GATGCTCATTATGCGACTGTGCAGGACCTAAAACGAAAGTATTTAGGCAGTCCATATGTAAGTCCTAT
30	33	1104	ĠĀĠĠĀŤġĀŤŤŁħāĀŦĠĊŤĠŤĠĿġĿĠċaĊŤĀĀĀĊĠĀĀĠŤ ŢŤĠĊĊġĠ
	16	1093	ahachachtaghghtschaftachsgittchhhhhichhhiil At Ttegfhetca
	31	1087	gÁggÁÁCÁŤGCÁGÁGGÉEGŤGĆÁGGŤŤĆŤÁÁÁÁCGÁÁÁGŤ ÁŤgŤaĞGŤÁĞŤCČE
35	18	1139	cÁcaÁtgÁTGCÁcÁaGtgtTGCÁtGTŤtTÁÁÁÁCGÁÁÁĞT ttgcaggaggcagcaga
	con		gA-gatcATt-agaggctgTgcagGttcTAAAACGAAAGTatttagg-agtccatgtga-tgcc-t BEI-XAAAACGAAAGX-BEI
			BE2-AGGACCXAAAACGAAAGXAXXXAG-BE2
40			BE3-AGGXXCXAAAACGAAAGXXXXGG-BE3 BE4-AXGXXXXAAAACGAAAGXXXGCAG-BE4

	6	1116	ARACACTATAGCegAgGCAGTGGAAAGTGAAATAAGTCCACGATTGGACGCCATTAAACTTACAAGAC
	11	1116	AAGCAATGTAGCTAATGCAGTAGAAAGTGAGATAAGTCCACGGTTAGACGCCATTAAACTTACAACAC
5	33	1151	
	16	1146	CTTAGTGATATTAG TGGATGTGTAGACAATAATATTAGTCCTAGATTAAAAGCTATATGTA
	31	1141	TAGETGTGTGGATEATAATATTAGTCCACGGTTAAAAGCTATATGCA
10	18	1198	
	con		a-aca-tatAttagaggcagtggaa-gtGtggatagtt-taagtccgtaaaagctAta-gta
		•	
15	6	1184	AGCCAAAAAAGGTAAAGCGACGGCTGTTTcAAACcaGGGAAcTAACGGACAGTGGATATGGCTATTCT
	•		
	11	1184	AGCCAAAAAAGGTAAAGCGACGGCTGTTTGAAACACGGGAA&TAACGGACAGTGGATATGGCTATTCT
	33	1219	AAAATAAAGAAtGGACATACGAAAAACGAAAATAGATGAGCTAGAAGACAGCGGGATATGGCAATACT
20	16	1207	TAGAAAAAcAAAGTAGAGCtGCAAAAaGGAGAtTATTTCAAagcGAAGACAGCGGGTATGGCAATACT
	31	1202	TAGAAAATAACAGTAAAACAGCAAAACGAAGACTCTTTGAACTCCAGACAGCGGGTATGGCAATACT
	1.0	1266	The boundary of the control of the c
25	10	1200	TAAALAgTqqqcaqAAAAagGCAAAAaGqcGqCTqTTTacAaTatCAGAtAGtGGCTATGGCtqTtCT
25	con		-a-aaAaaaag-g-Aaaag-aaaa-g-a-aatatttgaacta-caGACAG-GGaTATGGC-aT-CT
			JJ3-tatggetattet C87-ATACCGTTANGA
			C88-ATACCGAYAWGA
30			
		1267	GAAGTGGAAGCTGGAACGGGAACG CAGGTAGAGAAACA TGGCG
	•	1232	GAAGTGGAAGCTGgaacgggAACG CAGGTAGAGAAACA TGGCG
	11	1252	GAAGTGGAAGCTG CAACG CAGGTAGAGAAACA TGGCG
35			
	33	1287	GAAGTGGAAACT CAGCAGAT GGTA CAACA GGTAG
		1275	
	16	12/5	GAAGTGGAAACT CAGCAGAT G TTACA GGTAG
	31	1270	GAAGTGGAAAC GCAGCAGAT G GTACA GGTAG
40			
	18	1334	GAAGTGGAAGC aacaCAGATtcaggtaacTACAaatggcgaacatggcggcaatgtatGTAG
			CALCONCOLA Characteristics and accompany accompany and accompany and accompany and accompany accompany and accompany and accompany accompany accompany accompany and accompany accompa
	con		GAAGTGGAA-Ctggca-caGataggtagagACAGtaG gaagtggaagctgnnnnncnacagat-JJ3
			CTTCACCT-C87
45			CTTCACCT-C88

	6	1295	taCCGGAAAATGG GGGAGATGGTCAGGAAAaGGA
	11	1289	A CCCGGAAAATGG GGGAGATGGTCAGGAAAGGGA
5			
	33	1321	A AagtcAAAATGG cgACAC AaActtaaAtGActtaGA
	16	1306	A gggcGccatgagactgAAACACcAtgtagtcAgtAtagtGg
	31	1301	A GGAG CAAC AACA AC
10			
	18	1396	tggcggcagtacGGAGgctatagaCAACgggggcacagagggcAACA AC
	con		$\verb"a$
	6	1329	CACAGGAAGGACATAGAGGG GGAGGAACATAGAGAGGGGGGAAGCGCGGAAACAGtgtaC
15	• • •		
	11	1323	CACAGGAĞĞĞAĞATAGAĞĞGTGAGĞĞTĞĞAAĞATAGAĞAĞĞĞĞĞAAĞĞAGĞAGĞAGĞAGÇAĞCAĞCACCĞ
	33	1358	atCtAGTGGGGtgGGGGAtGaTtcaGAaGTaAGctGTgagacaaatGtAGaTagctGTGAAA
	16	1349	
20			
	31	1317	Attaagt tgtaatggtagtg acggga cacatagtgaacgagaga
	18	1445	A gcagtgtagacggTacaAGTG AC aAtAgcaatAtaGAaAat
	con		a-caagtagggacagaga-ggt-agga-gagtgataga-cgggaagcaagtgAaaga-a
25			
	6	1391	GgGAGCATGCAGqCACAgCAGGAATAT TgGAATTgtTAAAATGTAAaGATtTAC GggCagCATT
	11	1391	GAGAGCATGCAGACACCACCAGGAATAT TAGAATTACTAAAATGTAAGGATATAC GALCLACATT
30	33	1420	
	16	1417	CTALALGCCAAACACCACLLACAA ATATTTTAAATGTACTAAAAACTAGTAATGCAAAGGCAGCAAT
	31	1301	aTgAAaCtCCAACAC GLA ATATATTgcAaGTGTTAAAAACTAGCAATGgtAAAGCtGCTAT
35	18	1487	gTaAAtCcaCAAtgtaccataGcAcAatTAaaagActTGTTAAAAgtaAaCAATaaacAAGgaGCTAT
	con		gtgaat-caa-c-ca-caggaAtAtattagaaatgtt-tAaaaaag-aaTacaaaagcagc-aT
	6	1455	ACLTGGTAAGTTTAAAGAaTGCTTTGGGCTGTCLTTTaTaGATTTAATTAGGCCATTTAAAAGTGATA
40	11	1455	ACATGGTAAGTTTAAAGACTGCTTTGGGCTGTCATTTTGTTCGATTTAATTAGGCCATTTAAAAGTGATA
	33	1478	ATTALATAAATTTAAAGAGGECTATGGAATAAGTTTTATGGAATTAGTAAGACCATTTAAAAGTGATA
			GTTAGCAAATTTAAAGAGTTATACGGGGTGAGTTTTtcaGAATTAGTAAGACCATTTAAAAGTAATA
45	31	1422	GTTAGGtAAATTTAAAGAATTATATGGEGTAAGTTTTAŁGGAACTAATTAGGCCATTTCAAAGCAATA
	18	1555	GTTAGCAGEATTTAAAGACACATATGGGCTAtCATTTACAGAEtTAGTTAGAAATTTAAAAGEGATA
	con		-ttaggtaaaTTTAAAGA-tTatGGgcTtTTTataGA-tTA-TtAG-ccaTTTAAAAGtgATA
			JJ4-ttagttagaccatttaaaagtgata
50			

	6	1523	### ##################################
5			AAACAAGGTGTaCaGATTGGTGTATaaCAGGATATGGAATTAGTCCatcagTAGCAGAAAGTTTAAAA
			AAtCAACGTGTtgcGATTGGTGTATtGCTGCATTTGGAcTTACACCcAgtaTAGCtGAcAGTaTAAAA
			AAAGCACATGTACtGATTGGTGTAGCTGCGTTTGGAGTTACAGGACAGTTGCAGAAGGATTTAAA
10			AAACCACGTGTACAGATTGGGTTACAGCTALATTTGGAGTAAACCACAATAGCAGAAGGATTTAAA
	con		aAac-AcaTGTacaGATTGGt-tagC-ggaTtTGGaaT-aatccta-aaTagCaGAaggatTtaAAaaacaacNtgtNcagattgg-JJ4
15	6	7. 1501	AAATTAATTGAGCCATTAAGTTTATATGCACATATACAATGGCTAACAAATGCATGGGGAATGGTAŁT
	••	-334	AAGTTAATTGAGCCATTAAGTTTATATGCACATATACAATGCCTtACAAATGCATGGGAATGGTAcT
	33	1614	gtattaattaaacagcatágittgtatactcatttacaatgtttaacttgcgatagaggaataataat
20	16	1620	ACACTATTACAACAATATTGTTTATATTtaCACATtCAAAGTTTAGCATGTTCaTGGGGAATGGTTGT
	31	1558	ACCCTATTGCAACCATATTGTTTTGTATTGCCATETACAAAGTTTAGCATGTTCcTGGGGGCATGGTTAT
	18	1691	ACACTATTACAGCCATTTTATATTGCCCATTTCAALGTCTAGacTGTaaaTGGGGagTatTaAT
25	con		aca-TAaTtcA-Ccat-tagtTTaTATgcaCAtaTaCAAtGt-Ta-catgtgcatGgGGaaTggTaaT
	6	1659	gTTAGTATTALTAAGATTTAAAGTAAATAAAAGLAGAAGTACCGTLGCACGTACACTLGCAACGCTAT
	11	1659	ATTAGTATTAATAAGTTTAAAGTAAATAAGAGCAGATGTACCGTGGCACGTACAtTAGGTACGTTAT
30			
	33	1682	ATTALTGTTÄÄTLÄGATTTÄGGTGTÄGCÄÄAÄÄCÄĞGTLAÄCAĞTaĞCÄAAACTAATGAĞTÄALTTÄT
	16	1688	GTTACTATTAGTAAGATATAAATGTGGAAAAAATAGAgaAACAATTGAAAAATTgcTGtcTAAAcTAT
	31	1626	GTTAATGCTEGTGAGATETAAATGTGGAAAAAATAGAATAACAATTGAAAAAATTATTAGAAAAATTAT
35			
	con		-TTAgtatTa-TaaGaTttAaatgt-gtAAaA-tAGa-taACagTtGcaaaa-tatTaggtA-gtTaT
40	6	1727	TAAATATACCTGAAAACCAAATGTTAATAGAGCCACCAAAAATACAAAGTGGtGTtgcAGCCCTGTAT
46			TATCAATACCTGAAAcaTGTATGGTEATAGAGCCACCAAAATTACGGAGCCAACACACGEGCATTGTAT
4 5	16	1756	TATGTGTGTCTcCAAtgTGTATGaTGATAGAGCCtCCAAAATTgCGTAGtACAGCAGCAGCATTATAT
	31	1694	TGTGTaTATCTaCAAaTTGTATGTTAATTCAGCCACCCAAATTaCGTAGCACAGCTGCAGCATTATAT
	18	1827	
50	con		TatataTacCTgaAAattgtATGtTaAT-gAgCCaCCaAAAAttaccaaAGtagag-gcaCCa-T-TAT

	6	1795	TGGTTTcGtACAGGtATaTCAAATGCcAGTACAGTTATAGGGGAAGCaCCaGAATGGATAACACGCCA
	11	1795	TGGTTTAGGACAGGCATCTCAAATGCAAGTACAGTTATAGGGGAGGCGCCGGAATGGATAACGCGCCA
5	33	1818	ŤĠĠŤŤŤÀĠŖŔĊŔĠġĸŔŤġŤĊŔŔŔċĸŦŦŔĠŤĠĸŧĠŤĸċĸŔĠĠĿĸċĸĸĊĸĊĊĿĠŔŔŤĠĠŔŤŔġŖŧĸĠĸĊĿ
	16	1924	
	31	1762	TGGTACAGAACAGGAATgTCAAACATTAGCGALGTATATGGLGAAACACCACAATGGATAGAAAGACA
10	18	1895	TGGTAŁAGAACAGGAATATCAAAŁATTAGŁGAAGTAAŁqGGaGACACACCŁGAGTGGATACAAAGACŁ
			•
	con		TGGT-tagaACAGqaATaTCAAAtattAGtgaaGTaa-aGG-gaaaCaCCaGAaTGGATA-aaaGaCa BE32-AXAXCAAAXAXXAGXGAAGX-BE32 JJ6-tqqataNaaaqaca
			• • • • • • • • • • • • • • • • • • • •
15	6	1863	aACaGTTATTGAACAcgGGTTGGCaGACAGTCAGTTTAAATTAACaGAAATGGTGCAGTGGGCGTATG
	11	1863	gac-gttattgaacatagettggctgacagtcaatttaaattaactgaaaatggtgcagtgggcatatg
	33	1886	AACtGTTTTACAACATAGCTTTAATGATAaTAtATTTGAtTAAGTGAAATGGTACAGTGGGCATATG
20	16	1892	AACAGTATTACAACATAGTTTTAATGATtqTACATTTGAATTATCaCAGATGGTACAATGGGCCTACG
	21	1030	AACAGTATTACAGCATAGTTTTAATGACACAACATTTGATTTGTCCCAAATGGTACAATGGGCATATG
			-
		1963	taCtaTtaTaCaaCaTgGaaTagATGAtAgcAatTTTGATTTGTCagAAATGGTACAATGGGCATtTG
25	con		aACagTt-TacAaCAtaGttTt-atGA-agtaaaTTTgA-TTa-cagAaATGGTaCA-TGGGCaTatGaacNqttatacaacatagtttNgatgat-JJ6
	6	1931	ATAATGACATaTGCGAGGAGAGTGAAATtGCATTTGAATATGCACAAAGGGGAGATTTTGATTCTAAT
	11	1931	ATAATGALATLIGLGAaGAAAGTGAGATAGCATTTGAATATGCACAGCGTGGAGACTTTGACTCCAAT
30	31	1054	ATAACGAGETAACGGACGATAGTGACATTGCATATEAETATGCACAACTTGCAGAETCAAATAGTAAT
,0			
	16	1960	ATAATGAcaTAgTaGACGATAGTGAAATTGCATATAAATATGCACAATTGGCAGACACTAATAGTAAT
	31	1898	ACAATGAtgTtATgGATGATAGTGAAATTGCGTATAAATATGCACAATTAGCtGACAGTGATAGTAAT
35	18	2031	ÀtAATGAgGTgAcaGATGAaAGGGATATGGCaTtTgAATATGCcttATTAGCaGACAGCAACAGCAAT
	con		AtAAtGA-aTaaGA-GAtAGtGAaATtGCaT-TgAaTATGCacaatt-GcaGAct-AtagtAAT
	6	1999	GCAcGaGCaTTTTTAAATAGCAATATGCAGGCaAAATATGTGAAAGATTGTGCAACTATGTGLACAC
1 0			
	11	1999	GCAAGGGCCTTTTTAAATAGTAATATGCAGGCLAAATATGTAAAAGATTGTGCAATTATGTGCAGACA
	33	2022	GCtgctgCatttttaaaaagtaactcacaagcaaaaatagtaaaggactgtggaataatgtgtacaca
	16	2020	GCAAGTGCGTTTGTAAAAAGTAATTCACAGGCAAAAATtGTAAAGGATTGTGGAACAATGTGTAGACA
15	10		
	31	1966	GCALGTGCATTTTTAAAAAGTAATTCGCAGGCAAAAATAGTLAAAGATTGTGGAACAATGTGTAGACA
	18	2099	GCAGCTGCCTTTTAAAAAGCAATTGCCAGCLAAALattTAAAAGATTGTGCCACAATGTGCAAACA
	C05		$-CC_{2}+a_{1}CC_{2}+a_{2}CC_{2}$ λ

			•
	6	2067	TTATAAACATGCAGAAATGAGGAAGATGTCTATAAAACAATGGATAAAACATAGGGGTtCTAAAATAG
	• • • • • • • • • • • • • • • • • • • •	2067	
5	11	2007	TTATAAACATGCAGAAATGAAAAAGATGTCTATtAAACAATGGATtAAGtATAGGGGGTACTAAAGTtG
	33	2090	TTATAAAAAAGCAGAAAAAcgtaAaatGTCaATagGACAATGGATACAAagTAGATGTGAAAAaacAa
	16	2096	TTATAAACGAGCAGAAAAAaaACAAATGagtATGaGtCAATGGATAAAAtaTAGATGTGAtAggGTAg
10	31	2034	TTATAAACGAGCAGAAAAACGACAAATGeecATGGGACAGTGGATEAAAAGTAGATGTGACAAAGTE
	18	2167	TTATAggCGAGCccAAAAACGACAAATGaatATGtcACAGTGGATacgAttTAGATGTtcaAAAaTag
	con		TTATAaac-aGCagAAAaa-ga-AaATGtctATgagaCAaTCGATaaaataTAGatGTg-tAaa-tag
			JJ11-tggataaaatatagatgtNctaaaatag
15	6	2135	AagGcacAGGaAAtTGGAAaCCAATTGTaCAaTTcCTAcGACATCAAAAtATAGAATTcATTCCtTTT
	11	2135	AcaGTGEAGGEAACTGGAAGCCAATTGTGCAGTTECTAAGACATCAAAACATAGAATTTATTCCATTT
	33	2158	ATGATGGAGGAAATTGGAGACCAATAGTACAGTTGTTAAGATATCAAAACATtGAATTTACAGCATTT
20		21.64	
	16	2104	ATGATGGAGGTGATTGGAAGCAAATtGTtAtGTTTTTAAGGTATCAAggtgTAGAGTTTATGTCATTT
	31	2102	
	18	2235	atgaaggggagattggagacaatagtgcaattcctgcGAtaccaacaatagagttataacattt
25	con		atgatggaGGAtTGGAccaAT-GTacagTTt-TaaGatAtCAAaa-aTaGAaTTtatCaTTT
			Atgatggaggaaattgga-JJ11 JJ12-cattt
		2242	Tentral transmission of Company and Compan
	•	2203	TTAACtAAAtTtAAATTATGGCTGCACGGtACGCCAAAAAAAAACTGCATAGCCATAGTAGGCCCtCC
	11	2203	TTAAGCAAACTAAAATTATGGCTGCACGGGACGCCCAAAAAAAA
30			111 1 111 1 1 1 1 1 1
	33	2226	TTAGGTGCATTtAAAAagTTTTTaaAAGGtATACCAAAAAAAAgeTGTATgeTAATTTgTGGaCCAGC
	16	2232	TTAaCTGCATTAAAAAgaTTTTTgcAAGGcATACCLAAAAAAAALTGcATaTTAcTATATGGTGCAGC
35	31	2170	TTALCTGCATTAAAgctgTTTTTAAAAGGAgTgCCaAAgAAAAAcTGTATLTTAaTAcATGGTGCAcC
	10	2303	TTAGGAGCCTTAAAAtcaTTTTTAAAAGGAACCCCAAAAAAAATGTtTAGTAtTttgTGGacCAgC
	10	1303	ing quoco i innaccati i i innacconcentantante i di cia qua i conje
	con		TTAa-tgcatTaAAattaTtttTAaGGaa-gCCaAAaAAAAa-TGtaTagtaaT-t-tGG-cCa-C
			ttaagtgcattaaaattatttttgcaaggNacNccNaaaaaaaa-JJ12
40			
	6	2271	aGALACTGGGAAATCGTACTTTTGLATGAG TTTAATAAgcTTTCTAGGAGGLACAGTTATTAGTCAT
	11	22/1	tGAcACTGGGAAGTCGTgCTTTTGcATGAG TTTAATtAAGTTTTTgGGgGGAACAGTTATTAGTTAT
	33	2294	
45		, -	
	16	2300	TAACACAGGTAAATCATEATTTGGEATGAG TTTAATGAAATTTCTGCAAGGGTCTGTAATATGETET
	31	2238	TAATACAGGTAAATCATATTTTGGAATGAGCCTTATTGAGCTTTLTACAAGGATGTaTAATATCATAT
50	18	2371	aAATACAGGaAAATCATATTTTGGAATGAGLETTAT acaCTTTaTACAAGGAGcagTAATATCATET
50	COR		

	6 2	2338	GTaAATTCCaGCAGCCATTTtTGGtTqCAaCCqtTAqtaGATGCtAAgGTaGCATTgTTaGATGATGC
5	11	2338	GTTAATTCCTGCAGCCATTTGTGGCTACAGCCACTAACGGATGCAAAAGTGGCATTATTGGATGATGC
	33	2361	GTAAATTCTAAAAGECACTTTTGGTTGCAGCCATTAECAGATGCAAAAATAGGAATGATGATGATGE
	16	2367	GTAAATTCTAAAAGcCATTTTTGGTTACAACCATTAGCAGATGCCAAAATAGGLATGTTAGATGATGC
	21	2206	
10	31	2300	GCAAATTCAAAAAGTCATTTTTGGTTACAACCACTGGCtGATGCTAAAATAGGCATGTTAGATGATGC
	18	2438	GtgAATTCcActAGTCATTTTTGGTTggAACCgtTaaCaGATaCTAAggTTgGcCATGTTAGATGATGC
	con		GtaAATTCcaaaAG-CAtTTtTGGtT-cAaCCatTagcaGATgCtAAa-TaG-aaTgtTaGATGATGc
15			
	6	2406	AACACAgCCATGTTGGAŁATATATGGATACATATATGAGAAAŁŁTGTTAGATGGTAATCCTATGAGŁA
		2426	
	11	2406	CACACAACCATGTTGGACATATATGGATACATATATGAGAAACCTATTAGATGGTAATCCTATGAGCA
	33	2429	aACgCcAathaGTTGGACATATATAGATGATGACATGAGAAATGCgTTAGATGGAAATgaAATTTCAA
20			
	16	2435	TACAgtGCCcTGTTGGAACTACATAGATGACAAttTAAGAAATGCATTGGATGGAAATttAAGTTTCTA
	31	2374	TACAACGCCATGTTGGCATTATATAGACAATTACCTACGAAATGCACTAGGATGGCAACCCTGTATCTA
25	18	2506	aACGACcaCgTGTTGGacaTActTtGAtAccTAtaTgaGAAATGCgtTAGATGGCAAtCCaaTAagTA
	con		33C3C3C3C3C3C4CMTCC3c3M34-3M4C34c
			aACaccgccatGTTGGacaTAtaTaGAtatAtaTgaGAAAtgc-tTaGATGG-AAtcc-aTtA JJ15-gttggacatatatNgatacNtatatgagaaatgcgttagatgg~JJ15
	6	2474	TtGAcAGAAAgCATAaAGCATTGACATTAATTAAATGTCCACCtCTgCTaGTaACgTCcaAcATAGAt
30	11	2474	TAGATAGAAAACATAGAGCATTAACATTAATTAAGTGTCCACCGCTACTGGTTACATCAAATATAGAC
	33	2497	TAGATGTGAAACATAGGGGATTAGTGCAAŁTAAAATĠTCĊACCAĊTĠĊŤŁĊŤTACcTCAAATAGAAAT
	16	2502	TGC ATCOM A A COMMACA - CAMMACA - CA
35	•	- 505	TgGATGTAAAGCATAGAGCATTgGTaCAAcTAAAATGGCCTCCATTATTAATTACATCTAACATtAAT
	31	2442	Tagatgtaaagcataaagcettaatgcagetaaaatgtcctccettattgattacatctaatataaat
	18	2574	TEGATagAAAGCACAAACCATTAATACAACTAAAATGTCCTCCaaTACTaCTAACCACAAATATACAT
	con		TaGAtaAAqCAtA-agCaTTaatacaa-TaAAaTGtCC-CCacTacTa-TtACatCaAAtAtaaAt
10	6	2542	ATTACHAAAGAAGAHAAATAHAAGTATTTACATACTAGAGTAACAACATTTACATTTCCAAATCCATT
	11	1542	
		2342	ATTAGCÁAÁGAGÁGÁGÁAATACÁÁATÁTTTÁCÁTÁGTÁGAGTEACCACÁTTTÁCATTTCCÁAATCCATT
	33	2565	GCaGGCACAGAGTCTAGATGGCCATATTTACATAGTAGATTAACAGTATTTGAATTTAAAAAATCCATT
15			
	16	2571	GCtGGTACAGATTCTAGgTGGCCttATTTACATAATAGATTGGTGGTGTTTACATTTCCtAATgagTT
	31	2510	GCAGGTAAGGATGACAGATGGCCATAGGTACATAGGAGAGTGGTGGTGGTLTTTACATTTCCAAATGCATT
			GCAGGTAAGGATGACAGATGGCCATACCTACATAGCAGACTGGTGGTTTTTACATTTCCAAATCCATT
			GCAGGTAAGGATGACAGATGGCCATAGCTACATAGGAGAGTGGTGGTLTTTACATTTCCAAATCCATT
o			GCAGGTAAGGATGACAGATGGCCATACCTACATAGCAGACTGGTGGTTGTTTTACATTTCCAAATCCATT

	6	2610	CCCETTTGACAGAAATGGGAATGCAGTGTATGAACTGTAAATACAAACTGGAAATGTTTETTTGAAA
	11	2610	CCC-TTGACAGAATGGGAATGCAGT-TATGAACTATCAGATGCAAACTGGAAATGTTGTTTGAAA
5	33	2633	cccatttdaegalaatdgelacccagtdtatgelatalaatdatdalaatdalatcctttttctcla
	16	2639	TCCATTTGACGAAAACGGAAATCCAGTGTATGAGCTtAATGATAAGAACTGGAAATCCTTTTTCTCAA
	31	2578	ŤĊĊŔŤŤŤĠŔĊŖŔŔŔŔĊĠĠŔŔŔŤĊĊŔĠŤĸŤŔŤĠŔĸĿŤŖŔġŤĠŔŤŔŔĸŔŔĊŤĠĠŔŔŔŤĊĊŦŦŦŦŦĊŦĊŔĸ
0	18	2710	TCCATTTGATARARATGGCARTCCAGTATATGRATATARATGACARARATTGGARATGTTTTTTTTTT
	con		-CCatttgacaaAAAtgg-AAtcCAGT-TATGaacTaaatgAtaaaAActgGAAATTTtTTAA
_	6	2678	GACTGTCGTC&AGCCTAGACATTcAGGATTCtGAGGA CGAGGAA GATGGAAGCAATAGCCAA
15	11	2678	GACTGTCCTCCAGCCTAGACATTGAGGATTCAGAGGA CGAGGAA GATGGAAGCAATAGCCAA
	33	2701	GGACGTGCTGCAAATTAGATTTaataGAGGAAGAGA CAAGGAAAACCATGCAGGAAATATCage
22	16	2707	GGACGTGGTCCAGATTAAGTTTGCACGAGGACGAGGA GGACGTGGTCCAGATTAAGTTTGCACGAGGACGAGGACGACGACGACGACGACGACGACGAC
20	31	2646	GGACGTGGTGCAGATTAAATTTGCACGAGGAAGAGAGACGATGGAGACTCTTTCCCA
	18	2778	GGACATGGT-CAGATTAGATTTGCACGAGGAAGAGGAAGAGAGAGAGCGGAAGGAA
25	con		GgacgTgGTccAgatTAgattTgcacGAggaaGAGGAc-agGAaaacgAtGGAca-T-tcc-a
	6	2740	GCGTTTAGATGCGTGCCAGGAACAGTTGTTAGAACTTTATGAAGAAAACAGTACTGACCTACACAAAC
	11	2740	GCGTTTAGATGCGTGCCAGGACCAGTTGTTAGAACTTTATGAAGAAAACAGTACTGATATACACAAAC
30	33	2766	ACGTTTAAATGCAGEGCAGGAGAAAATACTAGAECTTTACGAAGCTGATAAAACTGATTACCAECAC
	16	2772	ACGTTTAAATGTGTGTCAGGACAAAATACTAAGACATTATGAAAATGATACAGACCTACGTGACC
	31	2711	
35	18	2846	
	con		aCGTTTAaaTgcgtg-CAGGAcaAaaTatTAgaaC-tTAtGAA-atgA-AgtAc-gaccTacacaaaC
40	6	2808	AtgTatTGCATTGGAAATGCATgAGACAtGAAAGTGTATTAtTAtAtAAAGCAAAACAAATGGGCCTa
	11	2808	ACATTATGCATTGGAAATGCATACGALTGGAAAGTGTATTACTACACAAAAGCAAAACAAATGGGCCTg
	33	2834	AaATTGAaCATTGGAAACEGATACGCATGGAGTGTGCTTTATTGTAEAGAGCCAAACAAATGGGATTT
45	16	2840	ATÁTAGACTÁTTGGÁÁÁGAGATGGGGCTAGÁATGTGCTATATTAGAAGGCCAGAGAÁÁTGGGATTT
	31	2779	ATATAGACTATTGGAAACAEATECGACTEGAATGTGEAETAATGTATAAAGCAAGAGAAATGGGAATA
	18	2914	AAATACAGTATTGGCAACtaATaCGttggGAAaaTGCAATAtTCTtTgCAGCAAGgGAAcatGGCATA
50	COR		AtaTagag-ATTGGaAAc-cATacGactgGAa-gTG-atTatt-tataaaGCaA-a-AAatgGGTa

	6	2876	AGCCACATAGGaaTgCAAGTAGTgCCACCATTAAAgGTGTCcGAagCaAAAGGACATAATGCcATTGA
	11	2876	
5	1 1	2902	
	16	2908	aAACATATTAACCACCAaGTGGTGCCAaCacTGGCCGTATCAAAGAatAAAGCATTACAAGCAATTGA
10	31	2847	CÁCAGTÁTTÁÁCCÁCCAGGTGGTGCCÁGCGTTGECAGTÁTCAAAGGCCATACAAGCTATTGA
, ,	18	2982	CAGACATTAAACCACCAGGTGGTGCCAGCCTataacaTtTCAAAaagtAAAGCacataAAGCTATTGA
	con		aaccataTaa-ccacCA-GTgGTgCCa-Cattgac-gtaTCaaAgactAAAGcat-AaGctATTGA
			JJ18-tcaaagactaaagcacataaageNattga
15	6	2944	AATGCAAATGCATTTAGAATCaTTAttAAggACTgAGTATAGTATGGAACCgTGGACATTACAAGAAA
	11	2944	ÄÄŤĠĊÄÄÄŤĠĊÄŤŤŤÄĠÄÄŤĊĸŤŤÄgĸÄÄAAÄĊŤĊÄĠŤÄŤġĠŤġŤĠĠÄÄĊĊŧŤĠĠÄĊÄŤŤÄĊÄġĠÄĸÄ
	33	2970	
20	16	2976	
20			
			ACTaCAAATGAtGTTqGAAACAtTAAATAACACTqAATACAAAAATGAGGAcTGGACAATGCAgcAAA
	19	3050	ACTGCAAATGGecetacAAggcettgcacAaAgtcgATACAAAAccGAGGAtTGGACAcTGCAagAcA
25	con		AcTgCAAaTg-c-tTagAaacatTaaaaactca-TAtagtagaaca-TGGACAtT-CAagA-a actgcaaatgg-JJ18
		2010	• • • • • • • • • • • • • • • • • • • •
	•	3012	CAAGTTATGAAATGTGGCAAACACCACC tAAACGCTGtTTTAAAAAACGGGGGCAAAACTGTAGAAGT
20	11	3012	CCAGTTATGAAATGTGGCTAACACCACC CAAACGGTGGTTTTAAAAAACAGGGAAALACTGTGGAGGT
30	33	3038	Calgettagaggtgtggetttgtgaleele haaltgttttallaachaggagaaleagtaactgt
	16	3044	
	31	2983	
35			CAtGogagGAACTaTggaatACaGaACCTACtcactgcTTTAAAAAA ggTGGccAaACaGTAcAaGT
		•	
	con		caaG-t-tGAa-TgTggctaac-gcACCaacaa-g-tgttT-AAAAAacatGGa-A-AC-GTagaaGT
	6	3079	tAAATTTGA TGGCTGTGCAaACAATaCAATGGAtTATGTGGTATGGACAGATGTGTAtgTGCAGG
40	11	3079	AAAATTTGA TGGCTGTGAAGACAATgtAATGGAGTATGTGGTATGGACACATATATACCTGCAGG
	33	3105	GCAATATGA CAALGACAAAAAAAATACAATGGATTATACAAACTGGggtgAAATATATATATATAG
	16	3111	GCAGTTTGATGG aGACATAŁgCAATACAATGCATTATACAAACTGGACACATATATATTTTGTG
45			
	18	3185	######################################
	con		qcAaTtTGAtggcaacgatgaaaacaatacaatggAttat-caaactggacagatataTAtaTgtg

```
6 3144 ACAAtGACaCcTGGGTAAAgGTgcaTAGTatqGTAGATGCtAAGGGtATATATTACACATGTGGACAA
                           1111 111 | 11111111 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 
                                                                          11 3144 ACAAcGACtCATGGGTAAAaGTAACTAGTtccGTAGATGCcAAGGGCATATATATATATATGTGGACAA
                                                  1 11 11 1
                                                                                      1 11 1111
                                                                          111111
              33 3170 ÁgGÁAGÁLaCÁTĞLACTÁTGGTLÁCAGĞQAAAĞTÁĞÁTTATÁLAĞĞTÁTGTÁTTÁTÁTÁCATAAGLGC
              311 (*111111 | 141 | E
                            111 1
                                        10
              31 3115 tÁGÁTGGGGBÁTGEÁCTGTTGTGGÁAGGGCÁÁGTTAÁTTGTAÁGGGGBATTTATTATGTACATGAAGGA
                                                                                        111
                                                                          11 1 1
              18 3253 atGcaGGaacATGggacaaaaccGctacctgtGTaAgTcacAgGGGatTgTATTATGTAAAgGAAGG
                           a-gaaGacacatgg-cta-ggt-g-t-gt-aaGTagattataagGGtaTaTATTAt-tacatgaagga
  15
                6 3212 TTTAAAACATATTATGTAAACTTTGtaAAAGGGGCAGAAAAGTATGGGAGCACCAAaCATTGGGAAGT
              - 11 - 1
                                                                                                                     11111111
               33 3238 gaAAAggtATATTTTaaAtATTTTAAAGAgGATGCtGcAAAGTATtcTAAAACacAAaTgTGGGAAGT
              20
               31 3183 CAEAEAACATATTTTGTAAAETTTACAGAAGAGGCAAAAAAATATGGGACEggTAAAAAAATGGGAAGT
                               111111111111
                                                                                                               18 3321 táchacáCgittitatatághaftithahagtGhatgtghAhAhATATGGGHacacaggthCgfGGAAGT
                           t-taaaacaTaTT-TgtaaAtTTTaaa-aaGAggcagaAAA-TATgg-Aa-ac-aaaaa-TGGGAAGT
 25
             con
                5 3280 ATGTTATGGCAGCACAGTTAT
                                                               ATGTTCTCCTGC
                                                                                     ATCTGTATCTAGCACTACACAGAAGTAT
                                                                                     marrialina a miniti
                           11111111111111111
                                                               11 3280 ATGTTATGGCAGCACAGTTAT
                                                                                     ATCTGTATCTAGCACTGtACGAGAAGTAT
                                                               ATGTTCTCCTGC
                                                               11 1
                                                                                                                          1 111
                                                  33 3306 ACATGEGGGTGGTCAGGTAAT
                                                                                                               ACCA
                                                                                     GTCTATATCTAGCA
 30
                                                                                                                         AATAT
                                                                                                               11 1
                                                                  1 1111111
                                                                                                    1111
                                                                                                                          \perp 111
                             1111 111111111111
                                                               ALTATGTCCTACATCTGTGTTTAGCAGCA
                                                                                                               ACGA
              16 3312 ECATGCGGGTGGTCAGGTAAT
                                                                                                                          AGTAT
                             }!!!!!!!!!!!!!!!!!!!!!!!
                                                                  \Pi\Pi
                                                                                                                          1 111
               31 3251 gCATGCGGGTGGTCAGGTAATTG
                                                                 TTTETCCTgaATCTGTaTTTAGCAG
                                                                                                            TGACGA
                                                                                                                          AaTAT
                            111 11 1 1 1111111
                                                                  1 1
                                                                                              11 111
                                                                                                             11111
              18 3389 aCATtttGGgaaTaAtGTAATTGattgTaaTgactctatgtgcagTAcCAG
                                                                                                            TGACGACGCTAT
35
                           acaT---GGt-gt-agGTaATtg-at-tt-Tcctgcatc-tct-t--c-AGcactgac-aagaagTAT
             con
                                                                                                                 BE21-CGGTAT
                6 3342 CCATTCCTGAA LCTACTACATACACCCCGCACAGACC LCCACCCT LGTGTCCLCAAGC
                           111111 1 11
               11 3342 CCATTGCTGAA CCTACTACATACACCCCCGCACAGACCACCGCCCCTACAGTGTCCGCCCCGC
                            111 1 11111 1
                                                 1111111
                                                                          111111
                                                                                                                               11
               33 3362 CCACTACTGAAACTGGTGACATACA
                                                                                               AAC
                                                                                                         gaTaacCGACC
                                                                                                                              AC
                                                                         qACAGAC
                            11 11 111111 1 1
                                                                                               111
                                                                                                                  11111
                                                                                                                               11
                                                                               cttgGCC
                                                                                               AACeACeCCGCCGCGACCCATAC
               16 3371 CCTCTcCTGAAAtTATTaggcagCA
45
                                                111
                                                                               \Pi
                                                                                               411 11 11 11 11 1 1 1 1
                                                                                               AACaACACCaCCaCAtCGaATTC
               31 3310 CCT
                                    tTGCTggGATTGTTACAAAGCTACcaacaGCC
                                              1 111111 1 111111
                                                                                                    1 11
                                                                                                AgeACACCCCCCCCACCGtATTC
                                   GCTaCTCaGCTTGTTAAACAGCTAC
                           CCact-cTgaaa---ttgacatacAcccacgcacagacc--c--caacaac-cctcc-Caacc-ataC
             con
                           CC---GCXACXCAGCXXG-BE21
50
```

5		3403	
Ū			
	33	3410	CACAAGC ageggeeAAACgaeGACGAC cTgCAGacACCA
	16	3426	CA AAGCCGtCGCCTTGGGCACC GAAG AAACacaGACGAC TAToCAGCGACCAAGA
10	31	3368	
		2502	CA GCACCGtgtcCgTGGGCACC GCGAAGGCCTACGGC GAGACGTC
	10	3303	CA gcACCgtgtcCgTGGGCACC GcaAAGaccTaCGGC caGACGTC BE10-GGCGXGXCGCCGCCXAG-BE10
15	con		CAcaaaccgtcgccttgggcacc-g-gaaggcgtacgaagac-gacgacgtcc-cc-agaccaaca
	6	3439	AGCACGaggagtccaACaGTCCcCTtgCAACgCCtTGTGTGTGGCCcACATtgGAcCCGTGGACAGTg
	11	1442	AGCACG tggACCGTCCaCTaaCAACaCCcTGTGTGTGGCCaACATCaGAtCCGTGGACAGTA
20	33	3449	CAGACACCGCCCAGCCCCT tacaaAgcTGTTctGTGCA gaCccCgCCtTGGACAaTA
	16	3481	tcagagccagacacc gaaacccctgccacaccactaagttgttgcacagagactcagtggacagtg
	31	3435	acagagccagagac agaaacacccaccacaaaagttgttgcgaggcgactccgtggacagtg
25	18	3548	
23	con	3340	
			acaaagccagaccgc-aaaCccct-c-acaccatgt-tttggtgcacagcggctccgTGGACagTg
	6	3507	GARACCACARCCTCATCACTAAC AATCACGACCACCARA GACGG AACAACAG
30	11	3504	gÁÁtCaÁCAÁCATCGTCÁCTGÁC ÁÁTTACAÁCAÁGCÁCAÁA GÁAGG ÁÁCAACTG
	33	3506	gAACAgcaCgtACTGCAACTAACtGC aCAAACAAGCAgCGGA cTgtGTGT AgTTc
	16	3548	
35	71	3502	TCAACTGtggggTTaTCaGTGCAGCT gcatgCACAAaccAAACAA GGGCTGTCAGTtGTcc
	18	3604	TCAAC ccacTTcTCgGTGCAGCTacacctacaggcaacAACAAaagacGGaaacTCtGTaGTqg
	con		caac-ccartgc-actaaCagctaat-c-aacaagcacca-Aagggtgtcaaca-t-g
40	6	3562	TAACAGTECAGCTACGCCTATAGTGCAAETECAAGGTGAATCCAATTGTTTAAAGTGTTTTAGATATA
	11	3559	Teacagtgcagctacgcctatagtgcaactgcaaggtgattccaattgtttaaaatgttttagatata
45	33	3561	TAACGTTGCA CCTATAGTGCATTTAAAAGGTGA#TC##ATAGTTTAAAATGTTTAAGATA
	16	3603	TAACACTACA CCCATAGTACATTTAAAAAGGTGATGCtAATACTTTAAAATGTTTAAGATA
	31	3563	TGCAACTACA CCTATAATACACTTAAAAGGTGATGCAAATALATTAAAATGTTTAAGATA
	1.8	3668	
50	con		TaacacTaCagctacgCCtATAgT-CAttTaaAAGGTGAttcaAAtagtTTAAAaTGTTTaaGaTAta

```
6 3630 GgCTaAATGACAgAcAcAgACATTTaTTTGAtTTAatATCaTCAACGTGGCAcTGGGCCTCctCaaAG
       14:11:1
                                           CAGATTARAACCETATAAAGAGTTGTATAGTTCEATGTCATCCACCTGGCATTGGACCAGEGACAAC
              TAGATTEAAAAAgcATEgtaCATTGTATACTGCAGTGTCGTCTACATGGCATTGGACAGGacAtAAT
       16 3663
                    111
                              111111
                                        TÄĞÇÇŤĞEÇÄÄÄAEÀŤA&&ÇAÄŤŤĞŤÁŤÇAAÇAĞŤĞŤĆAŤĆŤÀĊÁŤĞĞĆÁŤŤĞĞÁČÁEĞE&ÇAÇAĞŤ
       31 3623
10
                 18 3728
              CAGATTGCGAAAACATAGCGACCACTATAGAGATATCATCCACCTGGCATTGGACA
                                                                ggtgc
             g-agattt-aaaaa-Ata-aca-ttgTaT-a-t-a-t-TCaTC-AC-TGGCAtTGGaC-tg-cc-aa-
      con
             gcagatt-JJ20
15
        6 3698 GCACCACATAAA CATGCCATTGTAACtgTAACAT
                                            ATGALAGTGAGGAACAAAGGCAACAGTTTT
              111111
       11 3695 GCACCACATAAAA ATGCAATTGTAACatTAACAT
                                            ATAGCAGTGAGGAACAACGtCAGCAaTTTT
       33 3688 aaAAAtagTAAAA ATGGAATTGTAACtGTAACATETGtaACTGAACAGCAACAAC
                                                             1
                                                                 \Pi\Pi
                                                             AaatgTTTT
               111
                    1111
20
       16 3730 GŁÁÁÁACATÁÁÁÁ gTGCÁÁTTGTŁÁCACTŁÁCÁTATGAŁÁGTGÁÁTGGCÁÁC
                                                           GtGACcAaTT
              1 111 1 1111
                                             31 3690 GGAAAACATAAAAA TGCEATTGTAACGETAACATATAEAAGTACATCACAA
                                                          AGAGACGALTTTT
              1 11 11/11 1 1/ 1 11 11/1/1
                                                          111
                                            111 11111
                                                               1 1111
       18 3791 aGgcAAtgaAAAAAcaGgaATacTgACtgTAACATAccatAGTgaAaCACAA
                                                          AGAacaaAaTTTT
25
             g-a-aacatAAAaaatGcaATtgTaACtgTaACATatgatagt-aa-agcAAcaaag--aacaaTTTT
        6 3762 TAGALGETGTAAAAATACCCCCLACCATTAGCCA CAAACTGGGATTTATGTCACTGCACCTATTGTA
       11 3759 TAAACAGTGTAAAAATACCACCACCATTAGGCAT AAGGTGGGGTTTATGTCACTACATTTATTGTA
                    41111111111
                                  1 1
                                       4 1 111111
30
       33 3752 TAGGTAGGGTAAAAATACCACC tACTGTGGAAAT AAG
                                                        TACTGGATTTAT
                                                        1111111111111
                    41 111111111
                                 11111 11
       16 3794 TgtcTcaaGTtARAATACCA AAaACTaTtaCAGT
                                             GTC
                                                        TACTGGATTTAT
                                             111
                                                            11111
                    31 3754 TARATACTGTARARATACC tARCACAGTAtCAGT
                                             GTCaacaggatatatgactATTTA
              1111111
35
       18 3856 TARATACTGT
             TanatactGTananataccaccacaaca-tagcaat-aaggtcgg-tttatgt-actg-atttattgta
      con
        6 3829 AtttgtatatatgtaaAtgtgTaaATATATGgTATtgGTGTAatacaActgTACaTGTATGGAAGTgG
                              40
                      CCATTACACCTGEATATATG TATAEGTGTA CATAACATACGTGTATGGAGGTAG
       11 3826 A
                                         HILL THE
                       11111
       33 3801
                     G aCATTA
       16 3843
                     Ġ
                                                                  tCt
45
       31 3812
                                                                  gCc
       18 3866
                                     tgcaattccagatagtgtacaaatattggtgggataCa
      COD
              a-----g--catta----t--atatatggtatatgtgta--cataacaaacatgtatggaagtcg
```

55

	6	3897	TGCCTGTACAAAT&GCTGCAGGAACAACCAGCACATTCATACT GCCTGTT&T&ATTGCAT
5	. 11	3881	TGCCTGTACAAATTGCTGCAGCAACAACTACAACATTGATATT GCCTGTTGTTATTGCAT
	33	3833	TGCTGC TAALTGLATALAACGATGATATTEGTTTTTG LATTATGTTTTATATT
	16	3847	athra canatortgatacrachechachtracragegrachtrira Citractif Grafa
10	31	3815	TAATGATEGAActaAatattTcTAcagtaAgCATT gTGCtaTGCTTTTTTG CTTTTGTGTG
	18	3904	TgAcaATgtAAtacAtatgcTgTAgtaccAatATgttatCacTtaTTTTttatTTTCTTTTGTGT
	con		tgac-atacaa-ttgctgc-tgaacaaccA-cAtt-ata-TgctttttggccTtt-cTtttgtgtt 021-CTGCAGGAACAACCAGCACATTCATACT GCCTGTTATAATTGCAT
15	6	3957	TTGttGTATGTtTTqTTAGcATcaTACTTATtqTATqdATATCTGAqTTTaTtGTqTAcACATCTGTG
	11	3941	TTGCaGTATGTATTCTTAGLATTGTATATATATATATCTGALTTTTGTAGTATATACATCTGTG
20	33	3886	
	16	3911	
	31	3880	CTACEATTT GTGTGTCT tgTcATACGTCCaCTtgTgcTGTCTGTGTCggtATAtgCAaCAcTA
25	18	3971	
	con	021	-tgctgtttg-tgtgt-tgcatta-tacgtccatt-atattttct-tttctgtatatacatctg -TTGTTGTATGTTTTGTTAGCATCATACTTATTGTATTGGATATCTGAGTTTATTGTGTACACATCTGTG-021
	6	4025	CTaGTACTAACACTGCTTTTATATTTACTATTGTGGCTGCTATTAACAACCCCCTT GCAATTtTTCC
30	11	4009	CTGGTACTAACACTTCTTTATATTTGCTTTTGTGGCTttTATATTAACAACCCCTTT GCAATTCTTTT
	33	3950	CTGGT gTTGGTATTgcTgcTtTggGtgTTTGTGG gAtCtcCTTTaaaAATT TTTT
	16	3974	aTAAT ATTGGTATT acTaTTgTGGaTAACaGCAgCCTCTgCgTTTaG
35	31	3943	cTAtT ATTaTtgT gattTtaTGGgttAttGCAaCCTCTcCaTTacG
	18	3971	
40	con	021	Ctagtac-tt-attttttttatatttgcttttgtggcttttatgaa-aac-cc-ttc-caatttttCTAGTACTAACACTGCTTTTATATTTACTATTGTGGCTGCTATTAACAACCCCCTT GCAATTTTTCC-021

```
||||||||||||
tTGCTATTT
                                   1
                                       111111111
                                                     \Pi
                                  GİTGEİTİTÄTÄT ETA
                                                    CCAATGATGTGTATTAATTE
                           1 11111
                                   111
                                         1111
                                               11
                                                    111 1 1 1 11
      16 4021 gTGTTTtaTTGTATATATtaTATTT
                                         TATA
                                               TA
      1111111111 3111 11111
                                   111
                                         1111
                                               11
                                         TATA
                                               TATALECCATTATTTTTAATECATAC
10
     con
            tactaacactgtatat-tgctattttcgttc-ttttatatactata-tccattgtttttaat-cata-
         OZI-TACTAACTCTACTTGTGTGTTACTGTCCCGCATTGTATATACACTACTATATTGT
                                                               TACCACA-021
       6 4154 cAgcaatGATGctAACatGtCAatTtAATGATGGaGAT AcctGGctGggtttGtTGTtatgtG
      11 4144 TAATGGTGATGETAACCTGTCACTTAAATGATGGEGAT ACATGGETGTETCTGTGGTTGTTEACTG
15
      33 4051 TCATGCACAgcaTAtgacacaACaagAgTAATGTATAT ACATGLATATATTGTTtGTATATAtgTG
                                    1111111111 1111
                                                      [[]]]
             111111
                             - 1
                        gcTTTTTAAttacaTAATGTATATGTACATAATGtaATTGTT ACATATA
                          111111
                                            11 1 1 1 11 11
             111111
20
      31 4044 ACATGCA
                       tctTTTTTAA
                                            GTCAACAGTAACTTTTTT AC
                                            1 11
                                                     11111
      18 3971
                              AtgcatgtatgtgtgctGcCAtgtcccgCTTTTgccAtctgtctgta
             -catgcacatg-taac-t-t-Aattaaataatggagatgtacatggttg-tTtt-tg-t-t-tatgtg
     con
         021-CAGCAATGATGCTAACATGTCAATTTAATGATGGAGAT ACCTGGCTTGGGTTGTGGTTGTTATGTG-021
25
                                          6 4220 CCTTTATTGTAGggaTgtTgGGgTTaTTaTT
      11 4210 CATTTGTTGTAGETGTAGTTGGTTGTT
                 CATGGTGTTTTAACATTGTTGTT
                                           | ||
gTTATTTT
                                                        AGITTTTTTTTTTTTTTT
      33 4117 CA
                                            HHHH
                          1 1
                                  1 11
                                                      1 1113111111111
30
                   1 1
      16 4132
               1111111
                                          1 [] [] [
                                                           31 4081
                 TEGTGTATAC
                                          TgTTgtTTgTatTgGTattggTaTTggTaTTgg
                   11 1 1
                                                     11
      18 4018 tgtqtqcGTaTqcAtqqqtattqqtatttqttatatTqtqqTaataacGTcccctqccacaqcaTtc
35
             cattt-tt-qtg-a-t-ttag--tt-tt-tt-tt-ttt-ttt--a--q-t-t-ttttt--ttt-t-
          021-CCTTTATTGTAGGGATGTTGGGGTTATTATT
                                        GATGCACTATAGAGCTGTACAAGGGGATAAAC-021
       6 4283 ACACGAAATGTaagAAGTGTAA CAAAC aCAACtgTAaTGatGATTATGTaaCTATGCattATacT
      40
                            HHH
                                        1 1 1 1
      33 4171 ttACTAA
                            TAAAT
                                        AccTTTATaTtttagcaGTGTAT
                                          1111
      16 4196
                               TIGTTTGETTGTTTTTTA
                               H III H HHEH
      45
                  18 4086 acagtaTATgtaTtTtgTttttTaTTgccCaTgTTacTattgcatatacatgctatattgtctttaca
     COR
            a-actabatçtattaagtgtaatt-t--cc-t--tttT-atgttgattaagtgtatatg---tatact
         021-ACACCAAATGTAAGAAGTGTAA CAAAC ACAACTGTAATGATGATTATGTAACTATGCATTATACT-021
```

50

	6	4348	actgATGGtGATTAT aTaTAtATGAAtTAGACTAAACCgTTTTTTATAtttgtaacaGTGTAtGc
_	11	4341	gaTaATGGaGATTATG TgTACATGAACTAGACTAAACC TTTTTTATACAGtgtgtgtGTGTAcGt
5	33	4206	ŁATTATG
	16	4214	ataaactgTTATTA
	31	4164	TTATTA
10	18	4154	gtaattgtataggttgttttatacagtgtattgtacattgtatattttgttttataccttttaTgcTt
	con	021-	g-taatggagattatgtatacatgaa-tagagtaaacc-ttttttatatt-ttaat-gt-tatt- -ACTGATGGTGATTAT ATATATGAATTAGAGTAAACCGTTTTTTATATTTGTAACAGTGTATGC-021
15	6	4413	TttgTATAccATggcacAtagTAGGGCcCGacGACGcAAgCGTGCGTCAGCtACACAGCTATATCAAA
	11	4405	TagtTÁTÁ LÁTAALGAÁACGTÁGGGCÁCGGAGÁCGLÁÁACGTGCGTCÁGCGÁCÁCAACTÁTÁTCÁÁÁ
	33	4213	ÁGÁCACÁAÁÓGATCTACÁAGGCGCA ÁGCGTGCATCTGCAACÁACTÁTÁGCÁÁA
20	16	4228	CttaacaATGCGACACAAACGtTCTgCAAAACGCACaAAACGTGCATCGGCTACcCAACTtTATAAAA
	31	4170	
	18	4222	tttgtattTttGtaatAAAaGtatggtAtccCaCcgTgccgcacgacgcaaacgggctTcggtaactg
25	con	021-	tttgtatat-aga-acañacgt-c-gcaagacgc-gtaaacgtgc-tc-gctacacaactatatcaaa -TTTGTATACCATGGCACATAGTAGGGCCCGACGACGCAAGCGTGCGT
	6	4481	CATGUAAACUCACTGGAACATGCCCCCCAGATGTAATTCCTAAGGTGGAGCACAACACCATTGCAGAT
	11	4472	CATGGAAGGCCACTGGEACATGECCCCAGATGTAATTCCTAAAGTEGAACAEACTACEATTGCAGAT
30	33	4268	CATGCAAGGCCACAGGGCACGTGCCACCGGATGTTATTCCTAAAGTGGAAGGAA
	16	4296	CATGCAAAcagGCAGGTACATGTCCACCEGACATTATACCTAAGGTEGAAGGCAAAACEATTGCEGAA
	31	4233	CATGLAAAgcAGCAGGTACLTGTCCALCAGACGTTATACCTAAaaTaGAACATACLACGATTGCAGAC
35	18	4290	acTtatAtaaAaCAtGTAaacaatCtggtacatgTccACCTgAtgTtGttCcTAaggtggagGgcacC
	con	021	catgcalagccaCagGtlcatgtcCaccagatgttat-CCTalagTtGaacatlataccattGcagat -CltGtlaactCACTGGllcatgCCCCCCAGATGTALTTCCTlagGTGGAGCACACACCATTGCAGAT-021
40			

5

	6	4549	CAAATATTAAAATGGGGAAGETTGGGGGTGTTTTTTGGAGGGTTGGGTATAGGCACGGGEECCGGCAC
5	11	4540	CÁAÁTÁTTÁAÁATGGGGÁÁGGTTÁGGGGTTÍTÍTÍTTGGTGGGTTÁGGTÁTTGGEACAGGGGCTGGTAG
	33	4336	CAAATECTEAAATATGGCAGTTTAGGGGTTTTTTTTGGTGGTTAGGTATTGGCACAGGCTCTGGTEC
	16	4364	CAAATATTACAATATGGAAGTATGGGTGTATTTTTTGGTGGGTTAGGAATTGGAACAGGGTCGGGTAC
		4301	
10	31	4301	
	18	4358	acgtTAgcAgataAaatattgcaatGgtcaagccTTGGTataTTttttgggTGGacttGGCataGGTAC
	con	021	<pre>caaaTattaaaatatggaagttt-gGggttttttTTGGtgggTTaggtattGG-acaGGctctGGtac -CAAATATTAAAATGGGGAAGTTTGGGGGTGTTTTTTGGAGGGTTGGGTATAGGCACGGGTTCCGGCAC-021</pre>
		UZI.	-CANALATIANALAGGAAAATT14000010111111100003011000111111000003011000111111
15	6	4617	TGGGGGTCGTaCtGGcTATgTtCCCTTacaAActTCTgCaAAaCCTtCTATTACTaGtGGGCCtatgG
		4500	
	11	4608	TGGcGGTCGTgCaGGgTATaTACCCTTGGGAAGCTCTCCCAAGCCTGCTATTACTGGGGGGCCaGCAG
	. 33	4404	AGGŁGGA&GGACTGGCŤÁŤgŤÁČCŁAŤŁĠĠŁÁCŁgaoĆĆaCCŁAĆAGCTGCAAŁccCcŁTGCagCCTa
20	16	4432	AĠĠĠĠĠĠĊĠĊĊĊĠĠġŶĀŶaŶŧĊĊaŧŶġĠĠaĀĊĀaĠġĊĊŢĊĊĠĀĊĀĠĊŤaĊĀĢŦaĊĀcŦŢġŧţĊŢġ
	31	4369	TGGGGGTCGCACTGGaTATGTCCCtcTtaGtACACGtCCTtCTACAGtaTCtGAGGCAAGTaTaCCTa
	18	4426	rccaciqcthcaccqqqrcqtacaqqqtachttccattqqqrqqqqcqttCcahtaCAqtqqTqgaTq
25	con		tGGcgGtcGtaCtGGgtaTgttcC-ttgggaAct-ctccctacagctactaatacag-gcc-cctg
			BE11-GAAGCXCXCCCAAGCCXGCXAXX-BE11
			BE12-tatatacccttggglagcxcxccccaagccxgcxax-be12 -tgggggtcgtactggctatgttcccttacaaacttctgcaaaaccttctattactagtgggcctatgg-021
		021	-TGGGGGTCGTACTGGCTATGTTCCCTTACAAACTTCTGCAAAACCTTCTATIACTAGIGGCCTATGG-021
	6	4685	CtcGTCCtcCtGTGgTqGTGGAGCCTGTqGCCCCTTCqGATCCaTCtATTGTGTCtTTAATTGAaGAa
30			1 (((() () () () () () () () () () () ()
	11	4676	caccircogcoacteristicacccirciticecaricerceariticistic ettaatiticagaag
	33	4472	TACGTCCLCCGCTLACTGTAGACACTGTTGGaCCTTLAGACLCGTCTATAGTGTCATTAATAGAAGAA
	16	4500	TAAGACCCCCttTaACaGTAGAtCCTGTgGGCCCTTctGAtCCtTCTATAGTtTCTTTAGTgGAAGAA
35	31	4437	TTAGACCACCAGTTAGCATLGACCCTGTAGGECCCTTGGACCCCTCTATAGTAGTTTTGAAGAA
	18	4494	TTgGtCCtaCAcgTccCccaGtggtTaTtGaaCCtgTGGgCCCCaCagacccAtcTaTTGTTacAttA
	con		t-cGtCCtcCagttac-gtaGagccTgTtGgcCCtt-gGa-cCctCtatagtgtcttTa-Ttgaagaa
40	con	BE	26-CGXCCXCCGGXXACXGXAGAXA-BE26 JJ22-TCTATTGTGTCNTTAATNGAAGAA
70		В	E27-GXCCXCCGGXXACXGXAGACACX-BE27 022-GGATCCATCTATTGTGTCTTTAATTGAAGAA
			BE28-XCCXCCGGXXACXGXAGACACXGXXGGACCXXXAG-BE28
		021	-ctcstcctcctgtggtggtggagcctgtggccccttcggatcc-021

	6	4753	TCGGCAATCATTAACGCAGGGCCCC TGAAATCGTGCCCCC TGCACACGGTGGGTTTAC
	11	4744	TCtGCTATTATTAAtGCtGGTGCACC TGAggTqGTaCCCCC TACACAgGGTGGcTTAC
5	33	4540	
	16	4568	ACTAGTTTTATTGATGCTGGTGCACCAaCa+CTG+aCC+TCcATTCCcCCaga+g+ATCAGGaTTTag
	31	4505	tcTGGaaTTgTTGATGTTGCTGC cccTGCTCCTAtaCCacacCCTCCTacaACATCTGGGTTTGA
10	18	4562	ataGaggactccagTGTgGttaCatcaggTGCaCCTAggCCtacgttTaCTggcACgTCTGGGTTTGA
15	con		-ctggtattatt-atGctGgtgCacca-ctgctgc-atccccctcct-caccatctGGgTTT-a TCTAGTNTTATTAATGCAGGTGCACC-JJ22 BE5-CAXXAACGCAGGGGCGCCXGAA-BE5 BE6-GGCAAXCAXXAACGCAGGGGCG-BE6 BE7-GCAAXCAXXAACGCAGGGGCCCXGAAAXXGXGCC-BE7
		022	O5-GTACCCCC TACACAGGGTGGCTTTAC
			-TCGGCAATCATTAACGCAGGGGCGCC TGAAATTGTGCCCCC TGCACACGGTGGGTTTAC-022
			aATtaCATCcTCTGAAaCaACTACcCCTGCaATaTTgGATGT aTCaGTT ACtAGTCACACTA
20	11	4803	TATAÁCATCATCATCACACTÁCACCTGCEATTTTAGATGT GTCTGTT ÁCGAATCACACTA
	33	4599	TGTTACTACATCTGCAGATACTACACCTGCaATTATTAATGTttcaTCTGTTgggggAgtcatCTATTC
	16	4636	
25	31	4570	
	18	4630	tATaaCatCtgCgGgtacaACtACACCTGCggtTTTggatatcacaccttcgtctacctCtgtgtcTA
	con	05.	taTtaCCatCtgcagACtACaCCTGCaatttTt-atgtcatctgtttac-actta-Ta -TATAACATCATCTGAATCGACTACACCTGCTATTTTAGATGT GTCTGTT ACCAATCACACTA-05
30		022	-AATTACATCCTCTGAAACAACTACCCCTGCAATATTGGATGT ATCAGTT ACTAGTCACACTA-022
	6	4874	CtACTA GTaTaTTTagAAATCCtgTcTTTACAGAACCtTCTGTAAcACAaCCCCAACCACCcGTG
	11	4865	CCACTA GTGTGTTTC-BARATCCCCTGTTTTACAGAACCGTCTGTAATACAGCCCCAACCAA
35	33	4667	aractattectacacatteaaatcccacatttactgaaccatctgtactacaccctccagcgcctgca
	16	4692	
	31	4623	
40	18	4698	tttccacaacCAatttTaccAATCCTgCaTTTtCTGATCCgTCcaTtaTtgAagtTCCacaAaCTGgg
	con		ctactatta-tacaTaaaAATCC-ac-TTtaCtGAaCCaTCtgTaatacAgcctCcaccacCtGc-
			-CCACTA GTGTGTTCAAAATCCCCTGTTTACAGAACCGTCTGTAATACAGCCCCAACCACCTGTG-05 -CTACTA GTATATTTAGAAATCCTGTCTTTACAGAACCTTCTGTAACACAACCCCAACCACCCGTG-022
45			O27-CTGCA

	6	4939	GAGGCEARTGGACAEATAETAATETCTGCACCCACEGTAACGTCACACCCTATAGAGGAAATTCCEET
	11	4930	GÁGGCCÁgTGGECÁGATÁGTEÁTATÓTGCCCCAÁCAATÁÁCATCECÁACATGTÁGÁAGACATTCCAET
5	33	4735	GÁAGCCEGÍGGACATTÍTAÍA EÍTTÍCÍTCCCCEACTGÍTÁGGACACAÁA GÍTATGAÁAACATACCAAÍ
			GÁÁRCEggAGGGCÁTTTTÁCACTTTCATCACTATTÁGEÁCÁCÁTÁATTATGAAGAAATECCTÁT
			GARACA ECAGGTOATTACTÁCTTTCATCATCA ECTATTAGCA CACATARTTATGAGGAATACCTAT
10		4766	GAggtggCAGGTaATgTXtTtgTTggtaCccCtaCatcTgGaACACATgggTATGAGGAAATACCTtT
	con	05-	GA-gcc-GGtcAttTa-ta-TttcttC-cC-aCtattag-aCaCAtaattatGA-gAaAT-CCtaT -GAGGCCAGTGGTCACATACTTATATCTGCCCCAACAATAACATCCCAACATGTAGAAGACATTCCACT-05
15			-GAGGCTANTGGACATATANTTTCTGCACCCACTGTAACGTCACACCCTATAGAGGAAATTCCTTT-022 -GAAGCCTCTGGACATTTATATTTCTTCCCCTACTGTTAGCACACAAAGTTATGAAAACATACCAAT-027
			AGAŁACTTTTGTgGTATCATCTAGTGATAGEGGECCTACATCCAGTACECCTGTTCCTGGTaCTgcaC
			AGACACTTTTGTTGTATCCTCTAGTGATAGTGGACCTACATCCAGTACtCCTGTTCCTGGTqCTtttC
20			GĠĂTĂĊĸŤŤĠŤŤĠŤŤĊĊĸĊĸĠĸĊĸĠŢŔĠŤĸĸĿĠŢĸŔĊŔŤĊĸŔĠĊŔĊĠĊĊĸŦŦĊĊĸĠĠĠŦĊŦĊĠĊĊ
			GGÁTÁCATTTATTGTTAGCÁCÁAÁCCCTTACACAGTAACLAGTAGCACACCCATACCAGGGTCTCGCC
			GGATACATTTATTGTTTCTACTAAtaaTGAAAAcaTAACAAGTAGCACACCCATtCCAGGGGTGCGCC
25	con	4034	-gAtACaTTTgttgtttccactaatgataaac-aAcatAG-AC-CCcaTtCC-gg-gctcgcC
		022	-AGACACTTTTGTTGTATCCTCTAGTGATAGTGGACCTACATCCAGTACTCCTCTTCCTCGTGCTTTTC-05 -AGATACTTTTGTGGTATCATCTAGTGATAGCGGTCCTACATCCAGTACCCCTGTTCCTGGTACTGCAC-022 -GGATACCTTTGTTGTTTTCCACAGACAGTAGTAATGTAACATCAAGCACGCCCATTCCAGGGTCTCGCC-027
30	6	5075	CTCGGCCTCGtGTGGGccTaTATAGTCGTGCATTGCACCAGGTGCAGGTTACAGACCCtGCaTTTcTt
	11	5066	ĊŤĊĠĠĊĊŤĊĠġĠŤĠĠĠŦŦŤġŤÄŤÄĠŤĊĠŤĠĊĠŦŦaĊÄġĊĀĠĠŤĀĊĀĠĠŤŤĀĊġĠĀĊĊĊĠĠĊġŦŦŦŦŦġ
	33	4871	CTGTGGCACGCCTEGGTTTATATAGTCG CAACACGGTTA AGGTTGTEGACCCTGC
35			Cagtggcacgcctaggattatatagtcg CACaACACACACAGGTTA AAGTTGTaGACCCTGC
			GTCctGCACGTtTAGGGTTATATAGT AAGGCtACACAAGTAA AAGTTATTGAtCCaaC
			GTgtaGCAgGTccccGccTtTAcAGT AgGGCctacCAACAAGT gtcAGTggcTaAcCCtga
40	con	05 022	ct-tggcacGtct-gG-tTaTAtAGTcgtgc-atgacaaCAgGTtaca-gttgttga-cctgc-ctcGGCCTCGGGTGGGTTGTATAGTCGTGCCTTACAGCAGGTACAGGTTACGGACCCGGGTTTTTG-05-ctcGGCCTCGTGTGGGCCTATATAGTCGTGCATTGCACCAGGTGCAGGTTACAGACCCTGCATTTCTT-022-cTGTGGCACGCCTTGGTTTATATAGTCG-CAATACCCAACAGGTTA AGGTTGTTGACCCTGC-027

	6	5143	TCCACtCCtCAACGGTTAATtACaTAT GAtAACCCTGTATATGAA GGGGAGGATG
	11	5134	TCCACqCCaCAgCGaTTggTAACTTAT GACAACCCTGTcTATGAA GGGAGAAGATG
5			
	33	4932	TTTTETAACatCgCCTcaTAAACTTATaACATATGATAATCCTGCATtTGAAAGctTtGAccctGAaG
		4057	
	10	495/	TTTTgTAACcaCTCCGAcTAAACTTATTACATATGATAATCCTGCATATGAAGGTTAGATGEGGAta
	31	4979	GTTTCTTAgtgCTCCAAaacAgCTAATTACATATGAaAACCCTGCcTATGAAacTgTAaATGCtGAaG
		40.5	
10	18	4963	GTTTCTTAcacgTCCAtcctcttTAATTACATATGAcAACCC gGCctttG
			goccico
	con		ttttct-accactcctta-taacttATtacatatGAtAAcCCtgcatatgaaagt-taga-gc-gatg
		05-	-TCCACGCCACAGCGATTGGTAACTTAT GACAACCCTGTCTATGAA GGAGAAGATG-05
			-TCCACTCCTCAACGCTTAATTACATAT GATAACCCTGTATATGAA GGGGAGGATG-022
		027-	-TTTTTTAACATCGCCTCATAAACTTATAACATATGATAATCCTGCATTTGAAAGCTTTGACCCTGAAG-027
15			
	6	5198	TEAGTGTACAATTTAGECATGAETCTA TACACAATGCACCTGATGAGGCETTTATGGAGATA
	11	5189	Targtttrachatttracecatgrateta techéchárácácátgragatatat
20	33	5000	ACACATTACAATTTCaaCATAGTGATA TatcaccTGCTCCTGATCCTGACTTTCTaGATATT
20	• •		
	10	3023	AtaCattatattttCtagtAatGatAatagtattaAtaTaGCtCCaGAtCCTGACTTttTgGATATa
	21	4947	
	31	4347	
	18	5013	
25		3023	ngeergrayneartacaccacaccigatectegrayigatectectoniceaontiliargonini
25	con		a-acttTacAattTac-cataattaTaat-ctcttaataatGctCCtGATcc-GacTTTaTgGAtATt
		05	-TAAGTTTACAATTTACCCATGAGTCTA TCCACAATGCACCTGATGAAGCATTTATGGATATT-05
		022	-TTAGTGTACAATTTAGTCATGATTCTA TACACATGCACCTGATGAGGGTTTTATGGACATA-022
		027	-ACACATTACAATTTCAACATAGTGATA TATCACCTGCTCCTGATCCTGACTTTCTAGATATT-027
30	6	5260	ATTCGttTgCAcAGACCtGCcATtgCGTCCcGACGtGGcCTTGTGCGgTacAGTCGCATTGGaCAACG
		£ 2 E 3	
	11	3231	ATTAGACTACATAGACCAGCTATAACGTCCAGACGGGGTCTTGTGCGCTTTTAGTCGCATTGGGCAACG
	33	5062	ATTOCATTACATAC
		3046	ATTGCATTACATAGGCCEGCTATEACATCTEGEAGACATACTGTGCGTTTTAGTAGAGTAG
	16	5093	GTTGCtTTACATAGGCCaGCatTaACCTCTaGgcGtAcTggcaTTAGgTACAGTAGAaTtGGTAATAA
35		****	
	31	5009	ATAGCATTACATAGGCCTGCccTtACCTCacGtaGgAacACTGTTAGATATAGTAGAcTAGGTAATAA
		•	
	18	5081	ATCCGtcTACATAGGCCTGCttTaACaTCcaGgcGtgggACTGTTcGcTtTAGTAGAtTAGGTcAacg
			,
	con		aTtgtTaCAtAGgCCtGCtaT-aC-TCc-G-cGtggtactgT-cG-T-tAGTaGaaT-GGtcAa
40			JJ24-TACATAGGCCTGCTATAACNTCCAGNCGTGGTNNTGTGCGNTTTAGTAGA-JJ24
		05-	-ATTAGACTACATAGACCAGCTATAACGTCCAGACGGGGTCTTGTGCGTTTTAGTCGCATTGGGCAACG-05
			016-ACTGTGCGTTTTAGTAGAGTAGGTCAAAA-016
		022-	-ATTCGTTTGCACAGACCTGCCATTGCGTCCCGACGTGGCCTTGTGCGGTACAGTCGCATTGGACAACG-022
		027	-attgcattacataggcctgctattacatctcgtagacatactgtgcgttttagtagagtaggtcaaaa-027
_			O28-GTAGACATACTGTGCGTTTTAGTAGAGTAGGTCAAAA
45			

	6	5328	GGGGTCEATGGACACECGCAGGGGAAAGCACATAGGGGCCCGCATECATTATT
	11	5319	GGGGTCcATGtACACGCAGTGGAcAACAtATAGGtGCCCGCATACATTATT
5	22	5130	
•			
	16	5161	ACARACACTACGERCTCGTAGTGGARARECTATAGGTGCTRAGGTACATTATTATTATTATGATTTAAGTA
	31	5077	AČÁÁÁCTETGÉGGÁČTÉGTÁGTGGTGCEAČTÁTEGGTGCAÁGGGTGČÁTTÁTTÁTTÁTTATATATTÁGTÁ
10	18	5149	[
	con		-g-aaCtaTgcacACtCGcAGtGG-aaacatATaGGtGCtaqq-TaCAtTaTTatcatgatataagta
			-GGGGTCCATGTACACACGCAGTGGACAACATATAGGTGCCCGCATACATTATT(-05)
			-AGCCACACTTAAAACTCGCAGTGGTAAACAAATTGGAGCTAGAATACATTATTATCAGGATTTAAGTC-016 -GGGGTCTATGCACACTCGCAGCGGAAAGCACATAGGGGCCCGCATTCATT
15		027-	-AGCCACACTTANAACTCGCAGTGGTANACANATTGGAGCTAGAATACATTATTATCAGGATTTAAGTC-027
		028-	-AGCCACACTTARARCTCGCAGTGGTARACAANTTGGAGCTAGAATACATTATTATCAGGATTTAAGTC-028
	8	5381	TTEREGREATTTCACCEATTGCACAGGCTGCAGAAGAAATAGAAATGCACCCTCTEGTGG
20	11	5372	TTCAGGRCATTTCACCAGTTACACAAGCTGCAGAGGAAATAGAACTGCACCCTCTAGTGG
	33	5198	CTATTG TgcCtttAGAcCACaccgTgCcAAATgaACAAtaTgAATtAcAgcCTttaCaTgAtacT
	16	5229	CTATTGATCCTGCAGAAAAtagaatTACAAACTatAacAccTtCtaCAtAtACTACcACTTCacaT
			gTATTAATCCTGCAGgtGAAAgTATTGAAATGCAACCTTTAGgggCgTCTGCAACTACtACTTCtacT
25	31	2143	
	18	5217	cTATTgcaCCTtCcccaGAAtaTATTGAAcTGCAgCCTTTAG taTCTGC caCggag
	con		ctattgatc-t-cagaacacattaca-aagct-caag-aatcaa-ctaccctcg
		016	(05-)TTCAGGACATTTCACCAGTTACACAAGCTGCAG-05 -CTATTG TGCCTTTAGACCACACCGTGCCAAATGAACAATATGAATTACAGCCTTTACATGATACT-016
30		022	
			-CTATTG TGCCTTTAGACCACACCGTGCCAAATGAACAATATGAATTACAGCCTTTACATGATACT-027 -CTATTG TGCCTTTAGACCACACCGTGCCAAATGAACAATATGAATTACAGCCTTTACATGATACT-028
05	6	5441	CTGCAcAggATGALACaTTTGATATTTATGCTGAALCLTTTGAaCCTggCaLTaACCCTacCCAACAc
35	11	5432	
	33	5263	tCtaCaTCqtCTtaTaGTATTAATqATGG tTTqTATGATqTTTATGC TqaCqAtGT
40	16	5297	gCAgCcTCacCTacTTCTATTAATaATGGA TTaTATGATaTTTATGCaGATgacttTattACAGA
	31	5213	
	1.6	5277	
		2013	
45	con	016	-t-aaa-atat-T-ttAt-taTg-acag-ac-atgatatttgctaccctt-ccaaTCTACATCGTCTTATAGTATTAATGATGG TTTGTATGATGTTTATGC TGACGATGT-016
			-TCTACATCGTCTTATAGTATTAATGATGG TTTGTATGATGTTTATGC TGACGATGT-027
			-TCTACATCGTCTTATAGTATTAATGATGG TTTGTATGATGTTTATGC TGACGATGT-028

	6	5509	cCTGTTACAaatatatcagAtaCaTATtTaACtTCCACACCTAATACagTTACACAAcCGTGGGGTAA
5	11	5500	tCTGTTACA CAGECETATCTTACCTCCACACCTAATACCCTTTCACAAtCGTGGGGTAA
	33	5319	ggaTaaTgtAcaCaCcccAtgCaacaCTCATacAgtaCgTTtgCAaCaacaCgTACcaGcAATGTgt
	16	5362	TACTECTACAACCCCGGtACCAtctgtacCCTCtACatcTTTaTCAGGtTATATTCCTGCAAATACAA
10	31	5278	TAATGETTCCcCTtCtaCTGCTGtACAGTCCaCatCTGCTGTGTCTCCCTATGTCCTACAAATACCA
10	18	5338	TACTACCTCCttTgCattTttTaAtAtAtTCgcCcaCTatatctTCTGCCTcTtcctaTAgtAATgtaA
	con		ta-tttt-catctcattcatcacctacc-ttatcagcct-tc-ca-tagtaatgtaa
			-GGATAATGTACACACCCCAATGCAACACTCATACAGTACGTTTGCAACAACACGTACCAGCAATGTGT-016 -GGATAATGTACACACCCCAATGCAACACTCATACAGTACGTTTGCAACAACACGTACCAGCAATGTGT-027
15		028-	-GGATAATGTACACACCCCAATGCAACACTCATACAGTACGTTTGCAACAACACGTACCACACATGTTGT-028
	6	5577	CACCACAGTECCATTGTCACTECCTAATGACCEGTTTETACAATCTGGGCCTGAEATAACTTTTCCTA
20			
			Cartecetttegetggegeatacartricetetagtateageteetgatatacccartaataatet
25			CtGTgCCacTAAGTaCaGgTTttGAcATTCCcaTATTtTCtGGgCCTGATgTACCtATagAgCATgCA
		5406	CgGTcCCttTAAcctCctcTTggGAtgTgCCtgTATacaCgGGtCCTGAT AttacattAcCATctA
	con		<pre>ca-taCctttaaatt-tg-aTtcgatat-cCtgt-tt-tc-ggtCctGat-taccataacattt-cta -CTATACCTTTAAATACAGGATTTGATACTCCTGTTATTGTCTGGCCCTGATATACCTTCCCCTTTATTT-016</pre>
30			-CTATACCTTTAAATACAGGATTTGATACTCCTGTTATGTCTGGCCCTGATATACCTTCCCCTTTATTT-027 -CTATACCTTTAAATACAGGATTTGATACTCCTGTTATGTCTGGCCCTGATATACCTTCCCCTTTATTT-028
	6	5645	CTGCAcCTATGGGAACACCCTTTAGTCCTGTAACTCCTGCTTTACCTACAGGCCCTGTTTTcATTACA
35	11	5627	CTGCA+CTATGGGAACACCCTTTAGTCCTGTAACTCCTGCTTTACCAGGCCCTGTTTTTATTACA
	33	5455	CCCACACCTAGCCCATTEGT TCCTATEECGCCTEETTTTCCTEEEGACACCATTGTTGTAGAC
	16	5498	gaCcaAgCTccTTCATTAAT TCCTATaGttCCagggTCTCCACAAtAtACaATTaTTGGTGAT
	31	5414	CotaCACaGgtŤŤttCCCATŤ ŤĊĊŤŧŤGGCCĊĊŤaCaaĊgĊĊAĊAAgtGŤĊŤĂŤŤtŤŤĠŤŤĠĂŤ
10	18	5472	
	con		ct-c-act-tgtg-ac-a-ttttagtCCtatagctCCtgctt-tcC-caag-c-ctaTTttt-ttgat
			BE22-CCCAXXGXAXCACCCACGGCCC-BE22 BE23-CCCAXXGXAXCACCCACGGCCCXGCCXCACACA-BE23
15			-CCCACATCTAGCCCATTTGT TCCTATTCGCCTTTTTTCCTTTTGACACCATTGTTGTAGAC-016 -CCCACATCTAGCCCATTTGT TCCTATTTCGCCTTTTTTCCTTTTTGACACCATTGTTGTAGAC-027
			-CCCACATCTAGCCCATTGT TCCTATTCGCCTTTTTTCCTTTTGACACCATTGTTGTAGAC-028

```
6 5713 GGTTCTGGaTTETATTTGCATCCTGCATGGTAETTTGCACGEAAACGCCGTAAACGTATTCCCTTATT
      11 5695 GGTTCTGACTTCTATTTGCATCCTACATGGTACTTTGCACGCAGACGCCGTAAACGTATTCCCTTATT
                      111 1111111 1 1
                                   111 1111111
      33 5518 GGTGCTGACTTTGETTTACATCCTAGTTATTELATTTTACGEEGGaGGCGTAAACGTTTTCCATATTT
                                            4 1111111111 11111
              16 5561 GeaGGTGACTTTTATTTACATCCTAGTTAGTTAGTTACGAABBACGTAAACGTTTACCATATTT
             31 5477 GGGGGTGATTTTTATTTGCACCCTAGTTATTATTTTAAAAcgtCGACGTAAACGTGTAtCATATTT
                111 1111111
                                             44444444444
                         - 11
                               18 5537 GGtacacATTaTTATTTGtggCCattaTATTATTTaTtcctaagaaACGTAAACGTGTtcCcTATTT
10
            {\tt GqtqctqacTtttaTTTqcatCCtaq-TatTat-Ttttacqta-acqaCGTAAACGT-TtcC-TatTT}
     con
                                          JJ25-CGTAAACGTNTTCCCTATTT
                                              PCR2-CGTTTTCCATATTT
         15
                        GGCGGCCTAGCGACAGCACAGTATATGTGCCTCCTCCLAACCCTGTATCC
      6 5781 TTTTCAGATGT
                        11 5763 TITTACAGATGT
                                   411111 11 1111111
                                                      1111111
            111111111111
                         $111111111111 H
                                                    GTACCTGTATCT
      33 5586 TTTTÄCÄGÄTGTCegTgTGGCGGCCTÄGTGÄGGCCÄCÄGTgTÄCcTGCCTCCT
      GTCCCAGTATCT
20
            11 | 11 | 11 | 11 |
                                                    GTCCCAGTGTCT
      31 5545 TTTTACAGATGTCTCTGTGGCGGCCTAGGGAGGCTACTGTCTACTTACCACCT
            1 111 1
      18 5605 TTTTqCAGATGqCTtTGTGGCGGCCTAGtGAcaaTACcGTaTAtcTtCCACCT
                                                    ccttCtGTGgCa
25
            TTTTaCAGATGtetetgtGGCgGCCTAG-GA--ccACaGTaTA--TgCCtCCTcc-gtccCtGTatCt
     con
            TTTTNCAGATGTCTNTGTGGCGGCCTAGTGA-JJ25
            PCR1-CAGATGTCTCTGTGGCGGCCTAGTG-PCR1
            TTTTGCAGATG-PCR2
         027-TTTTACAGATGTCCGTGTGGCGCCTAGTGAGGCCACAGTGTACCTGCCTCCT GTACCTGTATCT-027
30
       6 5843 AAAGTTGTTGCCACGGATGCLTATGTTAcLCGCACCAACATATTTTATCATGCCAGCAGTTCTAGACT
            11 5825 ÁÁGGTTGTTGCCÁCGGÁTGCGTÁTGTTAAACGCÁCCÁACATATTTTÁTCATGCCAGCAGTTCTÁGÁCT
            35
              31 5610 AAAGTTGTAAGCACGGATGAATATGTAACACGAACATATATTATCAcGCAGGCAGGCAGCTAGGCT
      40
            AaaGTTGTaaqcACqGATGaaTATGTtac-CqcAC-AaCATaT-TTATcAtGC-qGcAqttCtAGacT
          JJ26-GTTGTNANCACGGATGANTATGTTACTCGCACAA-JJ26
         PCR3-AAGTTGTAAGCACCGATGAATATGT-PCR3
        LCRIA-AAGTTGTAAGCACGGATGAATATGT-LCRIA
                          LCRIB-TGCACGCACAAACATATATTATCA-LCRB
45
                         LCRIB'-ACGTGCGTGTTTGTATATAGTA-LCRB'
         027-AAAGTTGTCAGCACTGATGAATATGTGTCTCGCACAAGCATTTATTATTATGCTGGTAGTTCCAGACT-027
       6 5911 tCTTGCaGTGGGACATCCtTATTttTCcATaAAA cggGcTAA C
                                                  AAAA CEGTTGTGC
```

39

50

	11	5893	
5	33	5719	tcttgctgttggccatccatatttttctattaaaaatcctagtaa cgctaaaaaattattggtac
	16	5762	acttgcagttggacatccctattttcctattaaaaaacctaacaat aacaaaa tattagttc
	31	5678	GCTTACAGTAGGCCATCCATATTATECCATAGCCEAAAECTGACAATCCTAAAAAAA TAGTTGTAC
10	18	5738	
	con		-cTtgC-GTtGGacATcCaTATTtttctaTtaaaaaacctgctaatcaacaaaAaa-tagttgTaC JJ27-GTTGGACATCCATATTTT-JJ27
		027-	-TCTTGCTGTTGGCCATCCATATTTTCTATTAAAAATCCTACTAA CGCTAAAAAATTATTGGTAC-027
15			
	6	5967	CAAAGGTGTCaGGATATCAATAcAGGGTaTTTAAGGTGGTGTTACCAGATCCTAACAAATTTGCATTG
	11	5949	CAAAGGTGTCLGGATATCAATATAGAGTgTTTAAGGTAGTGTTGCCAGATCCTAACAAGTTTGCATTa
20	33	5784	
	16	5824	
	31	5743	CAAAGGTGTCAGGATTACAATATAGGGTATTTAGGGTtCGTTTACCAGAtCCAAAGAAATTTGGATTT
	18	5800	
25	con		Caaaggtgtcaggatcaatatagggtatttagggt-cttaccagatcctaa-aaatttggattt
			JJ28-CAATATAGGGTATTTAGGGTNCNGTTACC-28 30-AATAAATTTGGATTN
		027-	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027
30		027	PCR4 <i>-gttatatcccata</i> aatcccatgttaa-pcr4pcr5 <i>-tta</i> tttaaa <i>ccaaaa</i>
30	6		PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGAcTCGTCtCTTTCGAtCCCACAACACGTTTAGTATGGGCATGCACAGGccTaGAGGTGGG
30		6035	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTCGACCCCACAACACCGTTTAGTATGGGCCACAGGCCTAGAGGTGGG
30 35	11	6035 6017	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTGGACCCCACAACACACGGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
	11 33	6035 6017 5852	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCCACAACACCATTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
	11 33 16	6035 6017 5852 5892	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCCACAACACCGTTTAGTATGGGCTGCACAGGCCTAGAGGTGGG
	11 33 16 31	6035 6017 5852 5892 5811	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGAcTCGTCCCTCTTCGACCCCACACACCACGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
35	11 33 16 31	6035 6017 5852 5892 5811	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCGGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCCACAACACACGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
35	11 33 16 31 18	6035 6017 5852 5892 5811 5868	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCACAACAACGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
35	11 33 16 31 18	6035 6017 5852 5892 5811 5868	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTTTTCGACCCCACAACACACGCTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
35 40	11 33 16 31 18	6035 6017 5852 5892 5811 5868	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCACAACAACGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG
35 40	11 33 16 31 18	6035 6017 5852 5892 5811 5868	PCR4-GTTATATCCCATAAATCCCATGTTAA-PCR4PCR5-TTATTTAAACCAAAA -CCAAAGTATCAGGCTTGCAATATAGGGTTTTTAGGGTCCGTTTACCAGATCCTAATAAATTTGGATTT-027 CCTGACTCGTCCCTCTTTCGACCCACAACAACGTTTAGTATGGGCATGCACAGGCCTAGAGGTGGG

	6	6103	CAGGGGaCAGCCaTTAGGEGTGGTAAGTGGACATCCETTcCTAAAEAAATATGATGATGTEGAAA
5	11	6085	
	33	5920	TAGAGGGCÄGCCATTAGGCGTTGGCATAÄGTGGECATCCTTTATTAAACAAATTTGATGACACEGAAA
	16	5960	
	31	5879	TCGcGGgCAGCATTAGGTGTAGGEATTAGTGGECATCATTATTAAATAAATTEGATGACACTGAAA
10	18	5936	
	con	027-	G-GGtCAGCCATTAGGtGTtGG-attagtgg-catcc-ttattaaataaatttgatgacactgaaa -tagagggcagccattaggcgttggcataagtggtcatcctttattaaacaaatttgatgacactgaaa-027
15			
	6	6171	AT teaGGGagTGGTGGTAACCTGGaCAGGATAACAGGGTTAATGTAGGTATGGATTATAAACAA
	. 11	6153	ATAGTGGEGGTATGGTGGTAAECCTGGTCAGGATAATGAGGTTAATGTAGGTATGGATTATAAACAA
20	33	5988	ccgGTAacaaGTATcCTGGACAACCgGGTGCtGATAATAGGGAATGTtTATCCATGGATTATAAACAA
	16	6028	AtGCTAGTGCtATGCaGcAaATGCaGGTGtgGATAATAGaGAATGTATATCtATGGATTACAAACAA
	31	5947	Actoratagatatgoccigrogtectggcaccgátáatágggaatgtatatoaatggattataaacaa
25	18	6004	gtTCccATgccgccaCgtcTaaTgtTtctgagGAcgtTAGGGAcaaTgTgTCtgTaGATTATAAgCAg
	con	027	at-ctaatgggtatgctggtaatcctggtgagGAtaatAGgGaaTgTatctaTgGATTAtAAaCAa -CCGGTAACAAGTATCCTGGACAACCGGGTGCTGATAATAGGGAATGTTTATCCATGGATTATAAACAA-027
30	6	6236	ACACAAtTATGCATGGTtGGaTGTGCCCCCCCtTTgGGGCGAGCATTGGGGTAAAGGTAAACAGTGTAC
	11	6221	
	33	6056	ACACAGTTATGTTTACTTGGATGTAAGCCtCCAACAGGGGAACATTGGGGTAAAGGTGttgCtTGTAC
35	16	6096	ACACAATTGTGTTTAATTGGTTGCAAACCACCTATAGGGGAACACTGGGGCAAAGGatccCcATGTAC
	31	6015	ACACAAeTGTGTTTACTTGGTTGCAAACCACCTATTGGaGAGCAETGGGGTAAAGGEAGTCCTTGTAG
	18	6072	ACACAGETATGTaTEETqGGcTGEqccCCEgCTATTGGgGAaCACTGGGcTAAAGGcAcTgCTTGTAa
10	con		ACaca-ttat6t-ta-ttgg-tgtccacctataggggaacattggggtaaaggtactccttgtac -Acacagttatgtttacttggatgtaagcctccaacaggggaacattggggtaaaggtgttgcttgtac-027
15			

	6	6304	EAATACACTGTACAGGCTGGCCCGCCCTTAGAACTTATTACCAGTGTAAAAAAAA
	11	6289	AAATACetCTGTACABATGGTGACTGCCCCCCGTTGGAACTTATTACCAGTGTTATACAGGATGGGG
5			
	33	6124	TAaTGCAGGACeTgCcaaTGATTGTCCACCLTTAGAACTTATAAALACTATTATTGAGGATGGTG
	16	6164	cAAŤgtŤĠĊÁĠŤÀAaŤĊĊaGĠŤĠÁŤŤĠŤĊĊÁĊĊÁŤŤÁĠÁġŢŤAÁŤÁÁÁcÁCAĠŤŤAŤŤCAĠĠAŤĠĠŤĠ
	31	6083	tÁÁGA aTGCT aTtÁC GCC CEGGTGÁTTGTCC ECCÁTTÁGÁATTÁÁAAÁA E ECÁGTTÁT aCAAGATGGGG
10	18	6140	atogegTcCTtTatCaCagGGcGATTGcCCcCCtTTAGAAcTtAAAAAcaCAGTTtTggAAGATGGtG
	con		-aata-tgCtgtaccctggtGAtTG-CC-CC-TTaGAacTtAtaAacac-gTTaTacAgGATGGtG JJ36-GATGGTG
		027-	- TAATGCAGCACCTGCCAATGATTGTCCACCTTTAGAACTTATAAATACTATTATTGAGGATGGTG-027
15			
	6	6372	ALATGGTTGACACAGGCTTTGGTGCTATGAATTTTGCLGALTTGCAGACCAATAAATCAGATGTTCCL
	11	6387	
20			
	33	6189	ATATGGTGGACACAGGATTTGGTEGCATGGATTTTA&AACATTGCAGGCTAATAAAAGTGATGTTCCt
	16	6232	ATATGGTTCATACLGGCTTTGGTGCTATGGACTTTACTACATTACAGGCTAACAAAGTGAAGTTCCa
	31	6151	
25	18	6208	
			· · · · · · · · · · · · · · · · · · ·
	con		Atatggttgatacagggtttggtggtatggatttact-catt-ca-gc-Aataaa-gtgatgttcct Atatggttgatacagggtttggtgctatgga-36 37-Cattncangcnaataaangtgatgttcct
		027	-ATATGGTGGACACAGGATTTGGTTGCATGGATTTTAAAACATTGCAGGCTAATAAAAGTGATGTTCCT-027
30			
	6	6440	aTTGAcATaTGTGGcACTacaTGLAAATATCCaGATTATTTaCAAATGGCTGCAGACCCaTATGGTGA
	11	6425	CTTGATATTTGTGGaACTqtcTGCAAATATCCtGATTATTTqCAAATGGCTGCAGACCCTTATGGTGA
			- #1}##############
35	33	6257	aTTGATATTTGTGGcAgTAcaTGCAAATATCCAGATTATTTAAAAATGaCTagtGAgCCTTATGGTGA
	16	6300	cTGGATATTTGTAcaTCTATTTGCAAATATCCACATTATATAAAATGGTgcCaGAaCCATATGGCGA
	31	6219	TTGGACATTTGTAAtTCTATTTGTAAATATCCAGATTATCTTAAAATGGTTGCtGAgCCATATGGCGA
	18	6276	TTGGAtATTTGTcAgTCTATTTGTAAATATCCtGATTATtTacAAATGtcTGCaGAtCCtTATGGGGA
0			
	con		-T-GAtATtTGTggcTattTG-AAATATCCaGATTATtTa-AAATGgctgcaGA-CC-TATGGtGA NTNGATATTTGT-JJ37 JJ38-AAATATCCAGATTATTTANAAATGG-JJ38
		027-	-ATTGATATTTGTGGCAGTACATGCAAATATCCAGATTATTTAAAAATGACTAGTGAGCCTTATGGTGA-027
5			
~			

	6	6508	TAGATTATTTTTTTTTTCGGAAGGAACAATGTTTGCCACACACTTTTTTTAACAGGGCtGGcgagG
_	11	6493	TAGGTTGTTTTTTTTTTTTTTGCGAAAGGAACAAATGTTTGCEAGACACTTTTTTTAATAGGGCGGGTACEG
5	33	6325	TAGETTATTTTCTETCGACGEGAACAAATGTTTGTAAGACACTTTTTTAATAGGGCTGGTACAE
	16	6368	CAGGTTATTTTTTTTTTACGAAGGGAACAATGTTTGTEAGACATTTaTTTAATAGGGCTGGTACEG
	31	6287	TACATTATTTTTATTACGEAGGGAACAATGTTTGTEAGGCATTTTTTTATAGAECAGGCACGG
10			
	18	6344	TtCcaTgTTTTTTTgcTTACGgcGtGAgCAgcTtTTTGctAGGCATTTTTggAATAGAgCAGGtACta
	con		tag-tTaTTTTTTTattTaCGaaggGAaCAaaTgTTTG-tAGaCAtTTtTttAAtAGggCtGGtactg
			WO 86/05816-GAGG
		027	-tagtttattttttttttttcttcgacgtgaacaaatgtttgtaagacacttttttaatagggctggtacat-027
15			
	6	6576	TGGGGGAACCTGTGCCTGATacaCTtaTaaTtAAgGGtaGTggaAAtcGcaCgTCTGTAGggAGTAGT
	11	6561	TGGGGGAACCTGTGCCTGATGACCTGTTggTaAAAGGggGTaatAACAGatCaTCTGTAGctAGTAGT
	11	0201	
	33	6393	ŤaĠĠaĠŔġġĊŤĠŤŧĊĊeĠŔŤĠŔĊĊŤĠŤŔĊŔŤŦŔŔŔĠĠŧŦĊaĠĠaŔĊŦŔĊŦĠĊŧŤĊŤaŤŧċaĸŔĠċŔĠŤ
20	1.6	6436	TTGGTGAAaaTGTACCAGAcGALTTATACATTAAAGGCTCLGGGTCTACTGCAAATTTAGCCAGGLCA
	10	0430	
	31	6355	ŤŤĠĠŤĠÀÁŧĊġĠŤċĊĊŦaċŧĠĂĊŤŤÄŤÄŤÄŤÄŤÄÁĠĠĊŤĊċĠĠŤŤĊaĂĊaĠĊŦÄĊŤŤŤÄĠĊŧÄacaĠŦ
	10	6412	TGGGTGAcaCtGTgCCTcaatcCTTATATATAAAGGCaCaGGTatgcCtGCTtCacctGgcAgCtGT
25	10	0412	194016ACACCG19CC1CaaccC11A1A11AAAGGCaCaGG1aCgCcCGC1CCacCCGgCAGCCG1
23	con		TgGGtGAa-ctGTgCCtgatgac-Tata-aTtAAaGGctctggtactactgC-tct-tagc-Ag-agt
			TGGGGGAACCTGTGCCTGATACACTTATAATTAAGGGTAGTGGAAATCGCACGTCTGTA-WO86/05816 LCR2A-ACCTGTTGGTAAAAGGGGGTAATAA-LCR2A
			LCRZA'-GGACAACCATTTCCCCCATTATT-LCRZA'
			LCR2B-CAGATCATCTGTAGCTAGTAGT
3 0			LCR2B'-GTCTAGTAGACATCGATCATCA LCR3A-ATTTATAGATTAAAGGCTCTGGGTC-LCR3A
			LCR3A'-AAATATGTAATTTCCGAGACCCAG-LCR3A'
			LCR3B-TACTGCAAATTTAGCCAGTTCA
			LCR3B'-ATGACGTTTAAATCGGTCAAGT LCR4A-CCTTATATATTAAAGGCACAGGTAT-LCR4A
			LCR4A'-GAATATATAATTTCCGTGTCCATA-LCR4A'
35			LCR4B-GCCTGCTTCACCTGGCAGCTGT
		027	LCR4B'-CGGACGAAGTGGACCGTCGACA -TAGGAGAGGCTGTTCCCGATGACCTGTACATTAAAGGTTCAGGAACTACTGCCTCTATTCAAAGCAGT-027
		021	-INGONGROUTGITCCCGRIGACCIGIACRITAMOGIICADGAACIACIGCCICIAIICAAAGCAGI-Q27
40			
‡ 0			

	- 6	6644	ATaTATGTtaAcACcCCqAGcGGCTctTGGTGTCcTCtGAGGCaCAATTgTTTAATAAGCCATATTG
	•	••••	
	11	6629	ATTTATGT&CALAC&CCTAGTGGCTCATTGGTGTCTTC&GAGGCTCAATTATTAATAA&CCATATTG
5	33	6461	
	16	6504	AATTATTTTCCTACACCTAGTGGETCLATGGTTACCTCLGATGCCCAAATATTCAATAAACCLTATTG
	31	6423	Acatactiticciacacctaccicciticaticcitiacctacacaaactatitati
10	10	6400	
	con	0400	gtgTAtTcTCCctCtCCaAGtGGCTCtATtGTTACcTCtGActCcCAgtTgTTTAATAAACCATATTG attTattttcc-aCaCCtAGtGGCTCtaTgGTtaC-TCtGA-gC-CAatTaTTtAATAAaCCaTATTG
			AT-LCR2B JJ39-GTTACNTCTGANGCNCAATTATTAATAAACCATATTG
			TAA-LCR3B
_			TTA-LCR3B'
15			GT-LCR4B CAC-LCR4B'
		027	-ac-ecryb -gcttttttttcccactcctagtggatcaatggttacttccgaatctcagttatttaataagccatattg-027
		6717	GCTaCAAAAaGCccCAGGGACATAACAATGGTATTTGLTGGGGLAALCAACTGTTTGTTACTGTGGTAG
	ŭ	0/12	
20	11	6697	GCT+CAAAAgGC+CAGGGACATAACAATGGTATTTGeTGGGGAAACCAC+TGTTTGTTACTGTGGTAG
	33	6529	GCTACAACGtGCACAaGGtCATAATAATGGTATTTGTTGGGGGCAAtCAGGTATTTGTTACTGTGGTAG
	10		
	16	65/2	GttaCAACGaGCACAGGGcCACAATAATGGCATTTGTTGGGGtAACCAactATTTGTTACTGTtGTtG
25	31	6491	ĠaŤġĊŔŔĊĠĿĠĊĿĊŔĠĠĠĸĊŔĊŔŔŤŔŔŤĠĠŦŔŤŤĠŤŤĠĠĠĠĸŔŔŦĊŔġŦŤŔŤŦŦĠŦŦŖĊŦĠŢŦŖĠ
	18	6548	GtTaCAtaagGCaCAGGGtCAtAAcAATGGTgTTTGcTGGcatAATCAATTATTTGTTACTGTGGTAG
	con		GCTACAAGCaCAGGGaCAtAA-AATGGtaTTTGtTGGGGGTAATCAATTATTTGTTACTGTGGTAG GCTACAANNNGCACA-JJJ9 J41-AATGGTATTTGTTGGGGGTAATCAATTATTTGTTACTGTGGTAG
30			C6-GCMCAGGGWCATAAYAATGG-C6 C1-CTGTGGTAG
50			C7-CTGTTGTTG C8-CTGTGGTAG
			C10-CAGTTGTAG
			C11-CTGTGGTTG C12-CTGTTGTGG
			C12-C1G11G1GG C13-CTGTTGTAG
35			C14-CTGTGGTAG
		027	C15-ctgtagtgg -GCTACAACGTGCACAAGGTCATAATAATGGTATTTGTTGGGGCAATCAGGTATTTGTTACTGTGGTAG-027
			The state of the s
40			
40			
45			
50			

```
6 6780 ATACCACACGCAGTACCAACATGACALTATG
                                     TGCATCeGTaaCTACATCTtCcACATACACc
      TGCATCLGTGCTAAATCTGCTACATACACL
5
      111111 1
                                         11 111
                                     CaCACAAGTMACTAGtGACAGTACATATAAA
      GCCATALCEACTECAGAAACTACATATAAA
      10
            11
                                                      41 1 1
      18 6616 ATACCACtCccAGTACCAATtTaaCaaTaTGTGCTtctaCAcagtCtcctgtaccTgggcaATaTgAt
     con
            ATACCACaCqcAGTACcAAtaTqaCatTaTGtgct--tgCa---q-aacta-aq-tactacATatasa
            ATACC-JJ41
                                    C16-CATCCGTAACTACATCTTCCA-C16
            ATACCACACGCAGTAC-C1
                                     C17-TCTGTGTCTAAATCTGCTACA-C17
            ATACTACACGCAGTAC-C7
                                  C20-CACACAAGTAACTAGTGACAG-C20
15
            ATACCACTCGCAGTAC~C8
                                     C23-CAGTCTCCTGTACCTGGG-C23
            ATACTACTCGCAGCAC-C10
                                      C31-TTGCAAACAGTGATACTACATT-C31
            ATACTACCCGTAGTAC-C11
            ATACTACCAGAAGCAC-C12
            ATACTACTAGAAGCAC-C13
            ATACCACACGTAGTAC-C14
20
            ACACTACCCGCAGTAC-C15
         027-ATACCACTCGCAGTACTAATATGACTTTATG
                                     CACACAAGTAACTAGTGACAGTACATATAAA-027
       6 6842 AATTCEGATTATAAAGAGTACATGCGECATGTGGAAGAGTATGATTTACAATTTATTTTCAATTATG
      11 6827 AATTCAGATTATAAGGAATACATGCGCCATGTGGAGGAGTTTGATTTACAGTTTATTTTCAATTGTG
      30
      31 6624 AGTAGTAALTTTAAGAGTATLTAAGACATGGTGAGGAATLTGATTTACAATTTATATTTCAGTTATG
               - 38 16161 - 11118 - 111161 - 1111111 - 1111111 - 111111 - 11111 - 11111
      18 6684 gcTáccááaTTTÁÁgcÁGTÁTagcÁGACÁTGLTGÁGCÁÁTATGÁTTTGÉAGTTTÁTETTTCÁGTTGTG
            aatactaAttttAA-gAqTA-ata-GaCATGt-GAqGAataTGATtTaCAqTTTaTtTTTCAatT-TG
         35
       6 6910 TAGCATTACATTqTCTGCtGAAGTaATGGCCTATATtCACACAATGAATCCCTCTGTTTTGGAAGACT
            11 6895 TAGCATTACATTATCTGCAGAAGTCATGGCCTATATBCACACAATGAATCCLTCTGTTTTTGGAGGACT
      33 6727 CAAAGTTACCTTAACTGCAGAAGTTATGACATATATECATGCTATGAATCCagaTATTTTAGAAGAET
40
            31 6692 ČÁŘÁŘŤŘÁČAŤŤÁLCŤĠČÁĠÁCaŤaŘŤĠŘĊŘŤŘTŘŤŤĊŘGAGŤŘŤĠŘŘŤeČLĢČŤŘŤŤTTGĠŘaĠŘŤŤ
               111111 11 1111
      18 6752 tÁctÁTtÁCtTTÁACTGCAGAtgTtATGtCcTATATTCALAGTATGAATagcagTATTTTAGAGGATT
45
            -AaaattaCatta-CtGCaGAagttAtGaC-tAtAtttA-actAtGAAtccc-ctattTtgGA-GA-t
         027-CAAAGTTACCTTAACTGCAG-027
```

50

	6	6978	GGAACTTTGGGTTATCGCCTCCCCAAATGGTACALTaGAAGATACC	DASASTEDATGTGCACAG
_	11	6963	GGAACTTTGGTTTATCGCCTCCACCAAATGGTACACTqGAGGATAC	
5			11 11111111 11111 11 11 1 1	11111 1 111 11 111
	33	6795	GGCAATTTGGTTTAACACCTCCtCCAteTGeTAgttTAcAGGATAC	TATAGGTTTGTtaccTCtCAG
	16	6841	GGAATTTTGGTcTAcaACCTCCcCCAgqAGGcACacTAGAaGATACt	TATAGGTTTGT aaCcCAG
		6760		11111111111 1111
10	31	6/60	GGAATTTTGGATTGACCACCCCCCCCAGGTTCTTTGGAGGATACC	TATAGGTTTGTCaccTCaCAG
		6820	GGAACTTTGGtgTtcCCcCcCcCcCcaaCtacTagTTTGGtGGATACa	TATEGETTTGTACAATCEGEE
	con		GGaAcTTTGGttTa-c-cCtCCcCCaactggtac-tT-gagGATACc	
				C21-TTGT AACCCAG C34-TTTGT AACCCAG
15				C35-GTTTGT AACCCAG
				000-011141 101044114
	6	7046	GCCATTACCTGTCAAAAgCCCACtCCTGAAAAgGAAAAgCcaGA	TCCCTATAAGAAccTtAGTT
	•			
	11	7031	GCCATTACCTGTCAGAAACCCACACCTGAAAAAGAAAACAGGA	TCCCTATAAGGAtaTGAGTT
20				
	33	6863	GCtATTACgTGTCAAAAAaCagtACCTCCAAAgGAAAAgGAAGA	CCCCTTAGGTAAATATACAT
	16	6006	GCAATTGCtTGTCAAAAAcaTaCACCTCCAgcaCCtAAaGAAGATga	1
		0,00		11 111 111 11
	31	6828	GCCATTACATGTCAAAAAacTGCcCCcCaAaagCCcAAgGAAGAT	CCaTTTA AAgAtTAtgtaT
25				
	18	6888	GCtATTACcTGTCAAAAggaTGCtgCaCcggctgaaAAtaAgGAT	CCcTaT gAtaAgTtaaagT
	con		GCcATTaCcTGTCAaAAacct-cacCtc-aaaggaaAAggaaGAt	
			GCAATTGCT-C21 C18-CATACACCTCCAGCACCTAA-C18	JJ46-T
30			C19-GGATGCTGCACCGGCTGA-C19	
			C22-AAAAACAGTACCTCCAAAGGA-C22 C27-TTTTTGTCATGGAGGTTTCCT-C27	
			C24-CACACCTGAAAAAGAAAAACAG-C24	
			C28-GTGTGGACTTTTTCTTTTTGTC-C28	
			C25-CTCCTGAAAAGGAAAAGCCA-C25	
35			C26-GAGGACTTTTCCTTTTCGGT-C26	
			C29-CCAAAAGCCCAAGGAAGAT	C-C29
			C30-CAAAAGCCCAAGGAAGAT C32-CAGAAACCCACACCTGAAAAAGA-C32	C-C30
			C33-AGAAACCCACACCTGAAAAAGAA-C33	
			GCAATTGCT-C34 023-GGA	TCCCTATAAGGATATGAGTT
40			GCAATTGCT-C35 O15-GGAT	CCCTAT GATAAGTTAAAGT

	6	7110	TTTGGGAGGTTAAtTTAAAGAAAGTTTTCtAGTGAATTgGATCAGTATCCttTGGGACGCAAGTTT
_	11	7095	TTTGGGAGGTTAACTTAAAGAAAGTTTTCAAGTGAATTAGATCAGTTTCCCCTttGGACGtAAGTTT
5	33	6927	TTTGGGAAGTggATTTAAAGGAAAAaTTTTCAGCAGAtTTAGATCAGTTTCCTTTGGGACGCAAGTTT
	16	6973	TTTGGGAAGT&AATTTAAAGGAAAAGTTTTCTGCAGAccTAGATCAGTTTCCTTTAGGACGCAAATTT
	-		
10	31	6892	TTTGGGAGGTLAATTTAAAGAAAAGTTTTCTGCAGALTTAGATCAGTTTCCACTGGGLCGCAAATTT
	18	6952	TTTGGaAtGTggATTTAAAgGAAAAGTTTCTttAGACTTAGATCAATATCCcCTtGGaCGtAAATTT
	con		TTTGGgAgGTtaAtTTAAA-GAAAAgTTTTCtgcaGA-tTaGATCAgTtTCCt-TgGGaCGcAA-TTT
			TTTGGGAGGTTAATTTAAANGAAAAGTTTTCTGCAGANTTAGATCA-JJ46 C2-GATCAGTTTCCYYTKGGACG-C2
15			C3-GATCAGTWTCCYYTKGGACG-C3 C7-CTAGTCAWAGGRRAMCCTGC-C7
			-TTTGGAATGTGGATTTAAAGGAAAAGTTTTCTTTAGACTTAGATCAATATCCCCTTGGACGTAAATTT-015
		023	-titgggaggttaacttaaaagaaaagtttcaagtgaattagatcagtttccccttggacgtaagttt-023
		7178	TT qTT acaaagtggatataggggacgetcct
20			
	11	7163	TTA TT GCAAAGTGGATATEGAGGACGGACGT
	33	6995	TTA TTACagGcAggtcttaaagcAaaAcctaaacttaaACGtgcAGcccccaCAtCcaCCcgCA
	16	7041	TTA CTACAAGCAGGATtgAaGGCGaBACCAAAATTTACALLAGGAAAACGAAAAGCTACACCCACCA
25	31	6960	TTA tTACAGGCAGGATatAGGGCacgtCCtAAATTTAAAGCAGGtAAACG TAGTGCACCC t
	10	7020	TT ggTtCAGGCtGGATtgcGtcgcaagCCcAccaTaggccCtcGcAAACG T tctg
		7020	,
30	con	015	TTataagcaggattgagggcaaaaccaaaaataa-a-cacgaaaa-gatatag-gcaccc-cct -TT GGTTCAGGCTGGATTGCGTCGCAAGCCCACGTAGGCCCTCGCAAACG T TCTG-015
		023	-TTA TT GCAAAGTGGATATCGAGGACGGACGT-023
	6	7209	CTatTCGTACAGGTqTtAAGCGCCCtGCTGTtTCcAAagCCTCTgCtGCCCCtAAACGtAAgCGcgCC
35	11	7194	CTGCTCGTACAGGTaTaAAGCGCCCaGCTGTgTCtAAgcCCTCTaCAGCCCCcAAACGAAAAGGTaCC
	33	7059	CaTCgTCTgCAaaacgcAAaaaggttaaaaAATAAcAcTttGtgtaAttgtgtTAtgtTGTtgtTttg
	16	7108	CCTCATCTACCECTACAACEGCEAAACG CAAAAAACGTAAGGEEGTAA GEATTGTATGTA
40	3.1	/421	CagCATCTACCACTACAcCaGCaAAACGtaAAAAAAC TAAAaaGTAAtgGatgTGTATGTAAtaCaT
	18	7075	CtcCATCTgCCACTAC gtcttC TAAA ccTGccAagCgT
	con	015	Ct-catcTaC-actacaaacat-aat-aa-gtaa-ctg-a-cc-ct-a-c-tgtatcc-
			-CTCCATCTCCCACTAC GTCTTC TAAA CCTGCCAAGCGT-015 -CTGCTCGTACAGGTATAAAGCGCCCAGCTGTGTCTAAGCCCTCTACAGCCCCCAAACGAAAACGTACC-023
45			

```
6 7277 AAAACEAAAAGGTAATATGTGT
                                      aTaTGTacTGTT
       5
                                       111
       33 7127 TtcTGtcTAtGTactTtgtgTTGT
                                       TGTGTTGTGTTgtTGT
       | | | | | | | 16 7167 TgtTGaaTtaGTGT
                                                ATATGT
                               1111
                                       \Pi\Pi\Pi
                             TGETTGT
                                       TGTGT
                             ШШЙ
                 1 1 1111
                                                111111
        31 7088 GTGTctgTatGTGTAtGTGCTTGTgctgtatTGT
                                               ATATGTGTGTGTttgtgtgtTATATA tg
10
                       11111 1111
                                                18 7113 GTG
                      CGTGTACGTGC
                                        caGgaagtaATATGTGTGTGT gtatataTATATAcat
              -t-tctataagtgtat-tgtttgtg----tgtGtagtgt-tatgtgtgtgt-----tatata---
           015-GTG
                     CGTGTACGTGC
                                       CAGGAAGTAATATGTGTGTGT GTATATATATATACAT-015
           15
        6 7313
                         AT
                         11
        11 7302
                         ATTTATATG
                                                       TGTTGTA
                                                                 gTGTGT
                          1 1 1111
                                                       1111111
                                                                  HHH
20
        33 7167
                  TTGT TETETGTGTATG
                                        TGttacaaTgtATgTTATGTTGTATGTtacTGTGTTTG
                  1111 | 1 | 11111
                                        111111
        16 7199
                  TTGTATGTgctTGTATG
                                        TG CTTGTAAATATTAAGTTGTATGT
                                           11111111 11111
                                                                   113 11
        31 7150 gTATATGTATGTATG CGTGTGT
                                                                  TATGTGTG
                                          ACTTGTATATAT GEATAGTATGT
        1111
25
                                                          aTtgcattgTATG
           -tatttgtatgttttgtatg-c-tgtgt-tgt-cttgtatatattatgttgtatgtt-gtgtgtttg
O15-CTATTGTTGTTT GTATGCCTGTGTTTGTGTTTGT TGTAT G ATTGCATTGTATG G-O15
O23- ATTTATATG T TGTTGTA GTGTGT(-O23)
30
        6 7315
                                                            ATATATGT
                                                             11 7325
                                       ATATGT TECTTGT ATTGTG
                                                             TATATGT
                                        11111 1 11111 1111
                                                             1 11111
        33 7221 T
                                      ttTATGTgTaCTTGTttGTGTGcATGTTcTATGTacttgt
                                                     11111 1111
35
                                                  CACGIGIGIATGT
        16 7248 TATGTATG
                            gtaTAATAAA
        11111111
                           1111
                                                       18 7221 TATGTATG
                                                      gtTGTATGTTGTatgTtacTAt
40
              tatgtatg-----tgttaataaa----ttatgt-ttcttgtt-gtgtgtatgtt-tatgta--tat
                                                      GTTGTATGTTGTATGTTACTAT-015
           015-TATGTATG GTTGTT
           023-
                                       ATATGT TTCTTGT ATTGTG TATATGT(-023)
```

45

50

55

	6	7323	GT GTATGTACTGT
5	11	7351	GTATEATGTTTGTGTATATGT GTAT GTATGTA TGT
	33	7262	CAGETTCCTGTTTGTGTATATGTtaataaaacattgTgTGTATtTgtTaAACtATttgTATGTA TGT
	16	7279	GTtTtTaAaTgcTTgtgtAACTATTGT gTcATgcAacATaAaTAaacttatT
10	31	7277	AccetaTtagtaacatactattActTAtTtataAACTATTGTtccTActTgtTcctAcTtgttCCTgc
	18	7257	AtttgtTggtatgtggcaTtaaAtaAaaTatgttttgtggtTctgTgtgTtaTgtggtTgcgcCCTag
	con		atat-tgtttgtgtatat-ataatataagaaactatgttttttatgtaatattTatgtactgt -ATTTGTTGGTATGTGGGATTAAATAAAATATGTTTTGTGGTTCTGTGTGTTATGTGGTTGCGCCCCTAG-015
15		023	
	6	7336	TATGT ATATGT GTGTGTGTGTCtGTGTGAatgtaAgtTATTTGTGtAATGTGTATGTGTT
	11	7386	TATGTEGETATGTAEGTETGTGTTEAGTGTGT GEATATTTGTGGAATGTGTATGTTT
20	33	7329	TATGT AtatgggtgtaccTataTGaGTAagGagTTgTATTgcTtGccctacCcTGCATTgc
	16	7331	gtTTCaacAcctACtaaTtgTgtTggtTaTtcAtTGTATaTaAactaTatTtGctACATcCtgTtt
	31	7345	TCCTCccaAtagtCATgTacTTaTtTctgccTatAaTTTAggTgTcacgccaTaGTaAaAgTtgtaca
25	18	7325	TgagtaacAactgtATtTgtgTtTgTggtatgggtgTTgcttgtTgggctatataTtgtccTgtattt
	con	0) F	tatgtaa-aa-gt-attttgt-tttt-tgtgtgtaatgtattttattta
			-TATGTTGTTATGTTGTGTGTTTAGTGTGT GTATATATTTGTGGAATGTGTATGTA
30	6	7400	TaTGTGCAATAAACAATTAcctcTtgtTacacCCTGT qACtCAGTGgctgttgcacgcGTTtTGgT
	11	7450	TETGTGCAATAACAATTA TTatgTgtgtCCTGTTACACCCAGTG actaaGTTgTGtT
	33	7390	
35	16	7399	
	31	7413	CccGqTccqtTtTttqcaACTaaAqctacTCCATTTTqaTTTtatGCaqCCAtTTTAaATcccTAACC
	18	7393	CaaGtTataaaacTgcacACcttAcagcaTCCATTTTatccTacaatcctCcaTTTtgcTgtgcAACC
40	con		tatgttcaa-aatt-attaccttata-t-tcc-tt-t-acat-cagtg-c-attttacgttt-act
			-CAAGTTATAAAACTGCACACCTTACAGCATCCATTTTATCCTACAATCCTCCATTTTGCTGCAACC-015 -TTTGTGCAATAAACAATTA TTATGTGTGTGCCTGTTACACCCAGTG ACTAAGTTGTGTT-023
			024-GAATTCGGTTGCAT
45			

TtTgTaataTacCTATACTATg
cgTtTtcggTtACTTgGCAtac
ACTATGGTETAAACTTGTACGT
1 1 1 11 11
cagtaGTTcTGcggTTtTTgGT
11 11 1 1 1
tttggcTTaTGtctgTggTttT
t-tt-tt-T-actttgct-tt
TTTGTAATATACCTATACTATG-023
ACTATEGTTTAAACTTGTACGT-024
CTTECC&CCAATTTGTTACAAC
ACTTACCTCAAATTTGTTALAAC
ACTGtgtTtgTcTgTACTtgctg
CTG CTTGCCAACCATtCC
11 _ 1
tGCcaacaTTCTggcTtgTagt
ggCactgeTeCTacaTatTttg
actc-tcttct-tattata-c
GGCACTGCTCCTACATATTTTG-015
ACTTACCTCAAATTTGTTATAAC-023
ACTG CTTGCCAACCATTCC-024
rgccctgccaagttgcttgccaa
TGCCCTGCCAAGTAtCTTGCCAA

	6	7662	gtgcatcatatcctgccaaCcACACACCTGGCgcCAGGGtGCGGTATTGC CTtaCtcATAA
	11	7706	
9	33	7662	tgtacTtgctgcAttgacTCAtatataCatGCAGtgcaAATtgcaaAaTaCTTAATTgtacTAatAgtT
	16	7666	cactatgcgccAcgccttacatAccgctgctiGgcacAtatttttggcTttTAactAAccTAAt
	31	7657	tGtftaaaTACAACtgtagttcaACtATgtgfcatgcAcaTATATTataTTaTTGCTAcAcAcCCTTAAA
10	18	7626	aGgTgcgcTACAAC aATtgcTtgcatAacTATAT ccactcCCTA AgtaaTaAAA
	con		tg-tatg-tacaacgccatc-a-acaactgg-agca-aatt-tata-t-cttt-cta-aactaaaa BE31-XXAGGCACAXAXXXX-BE31 <u>hpv16</u> +18+33
	•		-AGGTGCGCTACAAC AATTGCTTGCATAACTATAT CCACTCCCTA AGTAATAAAA-015 -CACTATGCGCCAACGCCTTACATACCGCTGTTAGGCACATATTTTTGGCTTGTTTTAACTAAC
15			
	6	7723	ACCTGTC TTTGTgttAtActtTTaTGcAcTGtAGCCAActcTTAAAAGCATTTTTGGCTTgTAGCa
	11	7753	ACCTGTCGGTTTGT ACAATGTTGTGGATTGCAGCCAAAGGTTAAAAGCATTTTTGGCTTCTAGCt
20	33	7730	TaCAcATGCTTTtaggcACATAtTTTTactTTaCtttcAAAccTTAAgtGCAGTTTTGGCTT aCa
	16	7734	TgCATATTEGGCALAaggTTTTAaacTTCTAAggCcAaCLAAatgTcAccctAGTTCATaCaTgaActg
	31	7725	CTGCŤTŤŤAĠĠĊÁCÁTATŤŤŤ GTAgaTŤÀTCŁATÁŁĊCŁTGATŤGCAGŁGCTĞĞŤŤŁŁGCACÁŁGŁ
	18	7680	CTGCTTTTAGGCACATATTTTAGTEEGTTETEACTLAAGGTAATTGCALACLTGGCTT
25	con		c-tttaatataat-tagtttt-tattgctcaaatTaaa-gcattt-t-gcttgtagc- BE31-XXAGGCACAXAXXXX-BE31 hpv16+18+33
		016	BE31-XXAGGCACAXXXXX-BE31 hpv16+18+33 -CTGCTTTTAGGCACATATTTTAGTTTTTTTTTTTAGCTTAAGCTAATTGCATACTTGGCTT-(O15)
			-TGCATATTTGGCATAAGTTTAAACTTCTAAGGCCAACTAAATGTCACCCTAGTTCATACATGAACTG-024
30			
	6	7789	GCACATTTTTTTTGCtCTTAGTGTTTTGGTatACAATAaCataAAAAATGAGTAACCTAAGGTCACACACCC
	11	7818	GAACATTTTGTACCCTTAGTATATEATGCACAATACCGACAAAATGAGTAACCTAAGGTCACACACC
35	33	7795	cAAttgcTTTGTAtgCcaAactaTgccTTGTAAAAgtgagtcActacctgttTaTtAccaGGTGTGga
	16	7802	TGtAAAGGTTAGtcaTacATtgTTCATTTGTAAAA CTGcAcatgCGTGTGtg
	31	7792	
	18	7738	
40	con	015	-aa-atttt-tact-ttat-tt-a-tttaaaaaaac-gtaaa-tgtattaagga-gta GTACAACTACTTCATGTCCAACATTCTCTACCCTTAACATGAACTATAAT ATGACTAAG-015 -TGTAAAGGTTAGTCATACATTGTTCATTTGTAAAA CTGCACATGGGTGTGTG-024

0

5

```
6 7857 TGCGACCGGTTTCGGTTAtCCACACCCTACATATTTCCTTCTTATA
              11 7886 TGCAACCGGTTTCGGTTACCCACACCCTACATATTTCCTTCTTATA
      33 7863 CLAACCG TTTTAGGTCAtaTTggtCATTTA tAATCETTTATAATA
               11
                                     111111 1
                                                  1111111111
                              GGGTTACACATTTACAAGCAACTTATATAATAATACT
      16 7854 CAAACCGATTTT
      31 7860 agGTattAcaccgtTTTCGGTTACAGCTTTACAAGCAAtTGTTCTTTTTATACT
10
                                        11
                           111 1 11 1
      18 7800 ctGTgcatacatagTTTatGcaACcGaaaTAggttgggcaGcaCaTacTATACTtttc
              cg-aac---ttt-ggttatg--acccat-tA-a-ttc-tt-ttataataatact----
          O15-CTGTGCATACATAGTTTATGCAACCGAAATAGGTTGGGCAGCACATACTATACTTTTC-(O15)
          024-CAAACCGATTTT
                             GGGTTACACATTTACAAGCAACTTATATAATAATAATACTAA(-024)
15
```

20

25

30

Claims

Claims for the following Contracting States: AT, BE, CH, LI, DE, DK, FR, GB, GR, IT, NL, SE

 A composition useful in LCR for amplifying the DNA of human papilloma virus present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following oligonucleotide sets:

35	LCR5:	SEQ ID No. 81 82 83 84	TTATATCATG TATTAGAATG	ACTATACATG TATAGTTGTT TGTGTACTGC ACACACATTC	ATATAA, TGCAGC, AAGCA, TAATA;
40	LCR6:	SEQ ID No. 85 86 87 88	TTATTTCTAT	AGACATAGAA GTCTTGCAGT TTGCAAGACA CAATATACAC	GAA
50	LCR7:	SEQ ID No. 89 90 91 92	TATATTGCAA GTTCCAATAC TTACAGAGGT AATGCAAATT	ATTTGAATTT	GAAC, ITTA, GCATT, IGTAA; and
55	LCR8:	SEQ ID No. 93 94 95 96	TGCTGTTCTA ATACAACAAA	ACATTAGAAC ATGTTGTTCC CCGTTGTGTG ACGGTTTGTT	AGCA, ATAC, ATTT, GTAT.

- 2. A composition according to claim 1 for amplifying the DNA of human papilloma virus type 1 6 present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following oligonucleotide sets: LCR5 (SEQ ID Nos. 81,82,83 and 84) and LCR8 (SEQ ID Nos. 93, 94, 95 and 96).
- 3. A composition according to claim 1 for amplifying the DNA of human papilloma virus type 18 present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following oligonucleotide sets: LCR 6(SEQ ID Nos. 85,86,87 and 88) and LCR 7 (SEQ ID Nos. 89,90,91 and 92).
- A kit for detecting the presence of human papilloma virus DNA in a test sample, comprising: a composition according to any of claims 1 to 3; and further comprising a ligase.
- 15 5. A kit according to claim 4, wherein said ligase is thermostable.

5

10

20

35

50

55

6. A composition useful in PCR for amplifying the DNA of human papilloma virus present in a test sample, said composition comprising:

a first nucleic acid primer of sense direction, capable of hybridizing to the antisense strand of HPV DNA, said primer having from 10 to about 30 nucleotides in length and having a sequence selected from the group consisting of the following sequences:

25	SEO ID No.	CAGATGTCTC	TGTGGCGGCC	TAGTG.
	6 7		GACCATTTAA CAGAATGGAT	
30	81 85 89	GCTGCAAACA CTTCACTGCA TATATTGCAA GTATGGAACA	AGACATAGAA	ATAA, GAAC and

a second nucleic acid primer of antisense direction, capable of hybridizing to the sense strand of HPV DNA, said primer having from 10 to about 30 nucleotides in length and-having a sequence selected from the group consisting of the following sequences:

SEQ ID No.

40				
	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
	84	TGCTTGCAGT	ACACACATTC	TAATA,
	88	TACTGTCTTG	CAATATACAC	AGG,
45	92	AATGCAAATT	CAAATACCTC	TGTAA and
	96	AAATCACACA	ACGGTTTGTT	GTAT;

provided said first and second primers hybridize to their respective antisense and sense strands at locations such that their 3' ends do not overlap and, in the direction of extension, the 5' ends of said primers are spaced turther apart than the 3' ends of said primers.

- A composition according to claim 6 wherein said first and second primers are selected from the following pairs of oligonucleotide sequences (identified by Sequence ID No.):
 1 and 5, 6 and 5, 7 and 5, 81 and 84, 85 and 88, 89 and 92, and 93 and 96.
- 8. A kit for detecting the presence of human papilloma virus DNA in a test sample, comprising: a composition according to claim 6 or 7; and further comprising a polymerase.

- 9. A kit according to claim 8 wherein said polymerase is thermostable.
- 10. A consensus oligonucleotide for hybridizing human papilloma virus types 6, 11, 16, 18, 31, 33 and 61, which oligonucleotide comprises from about 10 to about 60 nucleotides in length and is selected from the group of sequences consisting of:

SEQ ID No.			
1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
5	AGGTGTCAGG	AAAACCAAAT	TTATT,
6	GAATTAGTTA	GACCATTTAA	AAG and
7	GGGGAAACAC	CAGAATGGAT	Α;

and their complements.

5

10

15

30

45

50

55

11. A type-specific oligonucleotide for determining the presence of human papilloma virus type 16, having a sequence selected from the group consisting of:

SEQ ID No.

20	81	GCTGCAAACA	ACTATACATG	ATATAA,
	82	TTATATCATG	TATAGTTGTT	TGCAGC,
	83		TGTGTACTGC	
	84	TGCTTGCAGT	ACACACATTC	TAATA,
	93		ACATTAGAAC	
25	94	TGCTGTTCTA	ATGTTGTTCC	ATAC,
	95	ATACAACAAA	CCGTTGTGTG	ATTT and
	96	AAATCACACA	ACGGTTTGTT	GTAT:

and their complements.

12. A type-specific oligonucleotide for determining the presence of human papilloma virus type 18, having a sequence selected from the group consisting of: <u>SEQ ID No.</u>

SEQ ID No.

35				_
	85	CTTCACTGCA	AGACATAGAA	ATAA,
	86	TTATTTCTAT	GTCTTGCAGT	GAA,
	87	CCTGTGTATA	TTGCAAGACA	GTAT,
	88	TACTGTCTTG	CAATATACAC	AGG,
40	89	TATATTGCAA	GACAGTATTG	GAAC,
10	90	GTTCCAATAC	TGTCTTGCAA	TTTA,
	91	TTACAGAGGT	ATTTGAATTT	GCATT and
	92	AATGCAAATT	CAAATACCTC	TGTAA;

and their complements.

- 13. A method for determining the presence of any human papilloma virus in a test sample, comprising:
 - a. hybridizing DNA in the test sample with at least one consensus oligonucleotide selected from the group of claim 10, said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and
 - b. determining the presence of human papilloma virus by detecting the signal generated.
- 14. A method for determining the presence of human papilloma virus type 16 in a test sample, comprising:
- a. hybridizing DNA in the test sample with at least one oligonucleotide selected from the group of claim 11, said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and
 - b. determining the presence of human papilloma virus by detecting the signal generated.

- 15. A method for determining the presence of human papilloma virus type 18 in a test sample, comprising:
 - a. hybridizing DNA in the test sample with at least one oligonucleotide selected from the group of claim 12, said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and
 - b. determining the presence of human papilloma virus by detecting the signal generated
- 16. A method according to any of claims 13-15, further comprising a step of amplification prior to or concurrent with said hybridizing step.
- 17. A method according to claim 16, wherein said amplification step comprises PCR or LCR.

Claims for the following Contracting States: ES

5

10

15

50

55

1. A composition useful in LCR for amplifying the DNA of human papilloma virus present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following aligonucleotide sets:

20	LCR5:	SEQ ID No. 81 82 83 84	TTATATCATG TATTAGAATG	ACTATACATG ATATAA, TATAGTTGTT TGCAGC, TGTGTACTGC AAGCA, ACACACATTC TAATA;
	LCR6	SEQ ID NO) .	
		85	CTTCACTG	CA AGACATAGAA ATAA,
		86	TTATTTCT.	
30		87	CCTGTGTA	TA TIGCAAGACA GTAT,
		88		TG CAATATACAC AGG;
35	LCR7:	5EQ ID No. 89 90 91 92	GTTCCAATAC TTACAGAGGT	
40				
	LCR8:	SEQ ID No.		
		93		ACATTAGAAC AGCA,
		94		ATGTTGTTCC ATAC.
45		95	ATACAACAAA	
70		96	AAATCACACA	A ACGGTTTGTT GTAT.

- 2. A composition according to claim 1 for amplifying the DNA of human papilloma virus type 16 present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following oligonucleotide sets LCR5 (SEQ ID Nos. 81,82,83 and 84) and LCR8 (SEQ ID Nos. 93, 94, 95 and 96).
- 3. A composition according to claim 1 for amplifying the DNA of human papilloma virus type 18 present in a test sample, said composition comprising a set of four oligonucleotide probes, said probe sets being selected from the group consisting of the following oligonucleotide sets: LCR6(SEQ ID Nos. 85,86,87 and 88) and LCR 7(SEQ ID Nos. 89,90,91 and 92).
- 4. A kit for detecting the presence of human papilloma virus DNA in a test sample, comprising:

a composition according to any of claims 1 to 3; and further comprising a ligase.

- 5. A kit according to claim 4, wherein said ligase is thermostable.
- A composition useful in PCR for amplifying the DNA of human papilloma virus present in a test sample, said composition comprising:

a first nucleic acid primer of sense direction, capable of hybridizing to the antisense strand of HPV DNA, said primer having from 10 to about 30 nucleotides in length and having a sequence selected from the group consisting of the following sequences:

	SEQ ID No.	CAGATGTCTC	TGTGGCGGCC	TAGTG,
15				
	6	GAATTAGTTA	GACCATTTAA	AAG,
	7	GGGGAAACAC	CAGAATGGAT	Α,
	81	GCTGCAAACA	ACTATACATG	ATATAA,
20	85	CTTCACTGCA	AGACATAGAA	ATAA,
	89	TATATTGCAA	GACAGTATTG	GAAC and
	93	GTATGGAACA	ACATTAGAAC	AGCA; and

a second nucleic acid primer of antisense direction, capable of hybridizing to the sense strand of HPV DNA, said primer having from 10 to about 30 nucleotides in length and having a sequence selected from the group consisting of the following sequences:

SEG ID No.

	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
0	84	TGCTTGCAGT	ACACACATTC	TAATA,
	88	TACTGTCTTG	CAATATACAC	AGG,
	92	AATGCAAATT	CAAATACCTC	TGTAA and
	96	AAATCACACA	ACGGTTTGTT	GTAT;

provided said first and second primers hybridize to their respective antisense and sense strands at locations such that their 3' ends do not overlap and, in the direction of extension, the 5' ends of said primers are spaced further apart than the 3' ends of said primers.

- A composition according to claim 6 wherein said first and second primers are selected from the following pairs of oligonucleotide sequences (identified by Sequence ID No.):
 1 and 5, 6 and 5, 7 and 5, 81 and 84,
 85 and 88, 89 and 92, and 93 and 96.
 - 8. A kit for detecting the presence of human papilloma virus DNA in a test sample, comprising: a composition according to claim 6 or 7; and further comprising a polymerase.
 - 9. A kit according to claim 8 wherein said polymerase is thermostable
- 50 10. A method for determining the presence of any human papilloma virus in a test sample, comprising:
 - a. hybridizing DNA in the test sample with at least one consensus oligonucleotide selected from the group of sequences consisting of:

55

10

25

30

35

40

	SEQ ID No.			
	1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
	5	AGGTGTCAGG	AAAACCAAAT	TIATI,
5	6	GAATTAGTTA	GACCATTTAA	AAG and
	7	GGGGAAACAC	CAGAATGGAT	A:

and their complements,

10

15

30

35

50

55

said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and

- b. determining the presence of human papilloma virus by detecting the signal generated.
- 11. A method for determining the presence of human papilloma virus type 16 in a test sample, comprising:
 - a. hybridizing DNA in the test sample with at least one oligonucleotide selected from the group of sequences consisting of:

SEQ ID No.

20				
	81	GCTGCAAACA	ACTATACATG	ATATAA,
	82	TTATATCATG	TATAGTTGTT	TGCAGC.
	83		TGTGTACTGC	
	84		ACACACATTC	
25	93	GTATGGAACA	ACATTAGAAC	AGCA,
	94	TGCTGTTCTA	ATGTTGTTCC	ATAC.
	95	ATACAACAAA	CCGTTGTGTG	ATTT and
	96	AAATCACACA	ACGGTTTGTT	GTAT -

and their complements, said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and

- b. determining the presence of human papilloma virus by detecting the signal generated.
- 12. A method for determining the presence of human papilloma virus type 18 in a test sample, comprising:
 - a. hybridizing DNA in the test sample with at least one oligonucleotide selected from the group of sequences consisting of:

SEO ID No.

40	85	CTTCACTGCA	AGACATAGAA	ATAA.
	86	•	GTCTTGCAGT	•
	87		TTGCAAGACA	
	88	TACTGTCTTG	CAATATACAC	AGG,
	89	TATATTGCAA	GACAGTATTG	GAAC,
45	90	GTTCCAATAC	TGTCTTGCAA	TTTA,
	91	TTACAGAGGT	ATTTGAATTT	GCATT and
	92	AATGCAAATT	CAAATACCTC	TGTAA:

and their complements,

- said oligonucleotide being conjugated to a signal generating compound capable of producing a detectable signal; and
- b. determining the presence of human papilloma virus by detecting the signal generated.
- 13. A method according to any of claims 10-12, further comprising a step of amplification prior to or concurrent with said hybridizing step.
 - 14. A method according to claim 13, wherein said amplification step comprises PCR or LCR.

Patentansprüche

5

10

Patentansprüche für folgende Vertragsstaaten: AT, BE, CH, LI, DE, DK, FR, GB, GR, IT, NL, SE

1. Zusammensetzung, die für die LCR (*ligase chain reaction*, Ligasekettenreaktion) zur Vervielfachung der DNA des humanen Papillomavirus nützlich ist, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfaßt, wobei die Sondensätze aus der Gruppe gewählt sind, die aus den folgenden Oligonukleotidsätzen besteht:

15	LCR5:	SEQ ID N F 81 82 83 84	GCTGCAAACA ACTATACATG ATATAA. TTATATCATG TATAGTTGTT TGCAGC. TATTAGAATG TGTGTACTGC AAGCA. TGCTTGCAGT ACACACATTC TAATA;
20	LCR6:	SEQ ID N r 85 86 87 88	CTTCACTGCA AGACATAGAA ATAA, TTATTTCTAT GTCTTGCAGT GAA, CCTGTGTATA TTGCAAGACA GTAT, TACTGTCTTG CAATATACAC AGG;
30	LCR 7:	SEQ 10 N r 89 90 91 92	TATATTGCAA GACAGTATTG GAAC, GTTCCAATAC TGTCTTGCAA TTTA. TTACAGAGGT ATTTGAATTT GCATT, AATGCAAATT CAAATACCTC TGTAA; und
35	LCR8:	SEQ ID NE 93 94 95 96	GTATEGAACA ACATTAGAAC AGCA, TGCTGTTCTA ATGTTGTTCC ATAC, ATACAACAAA CCGTTGTGTG ATTT, AAATCACACA ACGGTTTGTT GTAT.

- 2. Zusammensetzung nach Anspruch 1 zur Vervielfachung der DNA des humanen Papillomavirus Typ 16, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfaßt, wobei die Sondensätze aus der Gruppe gewählt sind, die aus den folgenden Oligonukleotidsätzen besteht: LCR5 (SEQ ID Nrn 81, 82, 83 und 84) und LCR8 (SEQ ID Nrn 93, 94, 95 und 96)
- 3. Zusammensetzung nach Anspruch 1 zur Vervielfachung der DNA des humanen Papillomavirus Typ 18, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfaßt, wobei die Sondensätze aus der Gruppe gewählt sind, die aus den folgenden Oligonukleotidsätzen besteht: LCR6 (SEQ ID Nrn 85, 86, 87 und 88) und LCR7 (SEQ ID Nrn 89, 90, 91 und 92).
- 4. Kit zum Nachweis der Anwesenheit der DNA des humanen Papillomavirus in einer Testprobe, das folgendes umfaßt:
 eine Zusammensetzung nach einem der Ansprüche 1 bis 3, und des weiteren eine Ligase.
 - 5. Kit nach Anspruch 4, worin die Ligase thermostabil ist.
- 55 6. Zusammensetzung, die bei der PCR ("polymerase chain reaction" Polymerasekettenreaktion) zur Vervielfachung der DNA des humanen Papillomavirus nützlich ist, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung folgendes umfaßt:

einen ersten Nukleinsäureprimer, der zur Richtung gleichläufig ist, welcher zur Hybridisierung an den gegenläufigen Strang der HPV-DNA befähigt ist, wobei der Primer 10 bis ungefähr 30 Nukleotide lang ist und eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus den folgenden Sequenzen besteht:

5	1	CAGATGTCTC	TGTGGCGGCC	TAGTG.
10	6 7		GACCATTTAA CAGAATGGAT	
	81 85 89 93	CTTCACTGCA TATATTGCAA	ACTATACATG AGACATAGAA GACAGTATTG ACATTAGAAC	ATAA. GAAC und
15				4114

einen zweiten Nukleinsäureprimer, der zur Richtung gegenläufig ist, welcher zur Hybridisierung an den gleichläufigen Strang der HPV-DNA befähigt ist, wobei der Primer 10 bis ungefähr 30 Nukleotide lang ist und eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus den folgenden Sequenzen besteht:

SEO ID Nr

20

45

50

25	5	AGGTGTCAGG	AAAACCAAAT	TTATT,	
	84	TGCTTGCAGT	ACACACATTC	TAATA,	
	88	TACTGTCTTG	CAATATACAC	AGG,	
	92	AATGCAAATT	CAAATACCTC	TGTAA	und
30	96		ACGGTTTGTT		~~

vorausgesetzt, daß der erste und der zweite Primer an ihre jeweiligen gleich- und gegenläufigen Stränge an solchen Stellen hybridisieren, daß ihre 3'-Enden nicht überlappen, und daß die 5'-Enden der Primer in Verlängerungsrichtung weiter räumlich abgesetzt sind als die 3'-Enden der Primer.

- Zusammensetzung nach Anspruch 6, worin der erste und zweite Primer aus den folgenden Paaren von Oligonukleotidsequenzen (die durch die Sequenz ID Nr bezeichnet sind) gewählt sind:
 und 5, 6 und 5, 7 und 5, 81 und 84,
 und 88. 89 und 92, und 93 und 96.
- 8. Kit zum Nachweis der Anwesenheit der DNA des humanen Papillomavirus in einer Testprobe, das folgendes umfaßt: eine Zusammensetzung nach Anspruch 6 oder ,7 und des weiteren eine Polymerase.
 - 9. Kit nach Anspruch 8, worin die Polymerase thermostabil ist.
 - 10. Consensus-Oligonukleotid zur Hybridisierung der humanen papillomaviren Typ 6, 11, 16, 18, 31, 33 und 61, wobei das Oligonukleotid ungefähr 10 bis ungefähr 60 Oligonukleotide lang ist und aus der Gruppe von Sequenzen gewählt ist, die aus folgendem besteht:

SEO ID Nr

55 CAGATGTCTC TGTGGCGGCC TAGTG.
5 AGGTGTCAGG AAAACCAAAT TTATT.
6 GAATTAGTTA GACCATTTAA AAG
7 GGGGAAACAC CAGAATGGAT A;

und aus deren Komplementen.

11. Typ-spezifisches Oligonukleotid zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 16, das eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus folgendem besteht:

SEO ID Nr

10	81 82 83 84	TATTAGAATG TATTAGAATG TGCTTGCAGT	ACTATACATG TATAGTTGTT TGTGTACTGC ACACACATTC	TGCAGC, AAGCA TAATA
	93	GTATGGAACA	ACATTAGAAC	AGCA.
	94	TGCTGTTCTA	ATGITGITCC	ATAC.
15	95	ATACAACAAA	CCGTTGTGTG	ATTT
	96	AAATCACACA	ACGGTTTGTT	GTAT; und

und aus deren Komplementen.

20 12. Typ-spezifisches Oligonukleotid zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 18, das eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus folgendem besteht:

SEO ID Nr

25	

30

35

5

85	CTTCACTGCA	AGACATAGAA	ATAA,	
• -	TTATTTCTAT	GTCTTGCAGT	GAA,	
86	CCTGTGTATA	TTGCAAGACA	GTAT,	
87	TACTOTOTALA	CAATATACAC	AGG.	
88	TACIGICITO	GACAGTATTG	GAAC	
89		TOTOTTOCAA	TTTA	
90	GTTCCAATAC	TGTCTTGCAA	COATT	
91	TTACAGAGGT	ATTTGAATTT	GCATI	una
92	AATGCAAATT	CAAATACCTC	.1GTAA;	

und aus deren Komplementen.

- 13. Verfahren zur Bestimmung der Anwesenheit irgendeines humanen Papillomavirus in einer Testprobe, das folgendes umfaßt:
- a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Consensus-Oligonukleotid, das aus der Gruppe nach Anspruch 10 gewählt ist, wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nachweisbaren Signals befähigt ist, und
 - b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird-
- 45 14. Verfahren zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 16 in einer Probe, das folgendes umfaßt:
 - a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Oligonukleotid, das aus der Gruppe nach Anspruch 11 gewählt ist, wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nachweisbaren Signals befähigt ist, und
 - b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird
 - 15. Verfahren zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 18 in einer Testprobe, das folgendes umfaßt:

5**5**

50

a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Oligonukleotid, das aus der Gruppe nach Anspruch 12 gewählt ist, wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nachweisbaren Signals befähigt ist, und

- b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird.
- 16. Verfahren nach einem der Ansprüche 13-15, das des weiteren einen Vervielfachungsschritt umfaßt, der vor oder in Konkurrenz mit dem Hybridisierungsschritt stattfindet.
- 17. Verfahren nach Anspruch 16, worin der Vervielfachungsschritt PCR oder LCR umfaßt.

Patentansprüche für folgenden Vertragsstaat : ES

5

10

15

45

1. Zusammensetzung, die f\u00fcr die LCR ("ligase chain reaction", Ligasekeftenreaktion) zur Vervielfachung der DNA des humanen Papillomavirus n\u00fctzlich ist, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfa\u00dft, wobei die Sondens\u00e4tze aus der Gruppe gew\u00e4hlt sind, die aus den folgenden Oligonukleotids\u00e4tzen besteht:

20	LCR5:	SEQ ID N F 81 82 83 84	GCTGCAAACA ACTATACATG ATATAA. TTATATCATG TATAGTTGTT TGCAGC. TATTAGAATG TGTGTACTGC AAGCA. TGCTTGCAGT ACACACATTC TAATA;
25	LCR6:	SEQ ID N r 85 86 87 88	CTTCACTGCA AGACATAGAA ATAA, TTATTTCTAT GTCTTGCAGT GAA, CCTGTGTATA TTGCAAGACA GTAT, TACTGTCTTG CAATATACAC AGG;
35	LCR7:	SEQ ID N r 89 90 91 92	TATATIGCAA GACAGTATIG GAAC, GITCCAATAC IGTCITGCAA IITA, ITACAGAGGI ATTIGAATII GCAII, AAIGCAAATI CAAATACCIC IGTAA;
40	LCRS:	SEQ 10 Nr 93 94 95 96	GTATGGAACA ACATTAGAAC AGCA, und TGCTGTTCTA ATGTTGTTCC ATAC, ATACAACAAA CCGTTGTGTG ATTT, AAATCACACA ACGGTTTGTT GTAT.

- Zusammensetzung nach Anspruch 1 zur Vervielfachung der DNA des humanen Papillomavirus Typ 16, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfaßt, wobei die Sondensätze aus der Gruppe gewählt sind, die aus den folgenden Oligonukleotidsätzen besteht: LCR5 (SEQ ID Nrn 81, 82, 83 und 84) und LCR8 (SEQ ID Nrn 93, 94, 95 und 96).
- 3. Zusammensetzung nach Anspruch 1 zur Vervielfachung der DNA des humanen Papillomavirus TYP 18, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung einen Satz von vier Oligonukleotidsonden umfaßt, wobei die Sondensätze aus der Gruppe gewählt sind, die aus den folgenden Oligonukleotidsätzen besteht: LCR6 (SEQ ID Nrn 85, 86, 87 und 88) und LCR7 (SEQ ID Nrn 89, 90, 91 und 92).
- 4. Kit zum Nachweis der Anwesenheit der DNA des humanen Papillomavirus in einer Testprobe, das folgendes umfaßt: eine Zusammensetzung nach einem der Ansprüche 1 bis 3, und des weiteren eine Ligase.
 - 5. Kit nach Anspruch 4, worin die Ligase thermostabil ist.

- 6. Zusammensetzung, die bei der PCR ("polymerase chain reaction" polymerasekettenreaktion) zur Vervielfachung der DNA des humanen Papillomavirus nützlich ist, der in einer Testprobe vorhanden ist, wobei die Zusammensetzung folgendes umfaßt:
 - einen ersten Nukleinsäureprimer, der zur Richtung gleichläufig ist, welcher zur Hybridisierung an den gegenläufigen Strang der HPV-DNA befähigt ist, wobei der Primer 10 bis ungefähr 30 Nukleotide lang ist und eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus den folgenden Sequenzen besteht:

SEO ID Nr

10

	1	CAGATGTCTC	TGTGGCGGCC	TAGTG.
--	---	------------	------------	--------

15

20

25

6	GAATTAGTTA	GACCATTTAA	AAG,
7		CAGAATGGAT	

81

GCTGCAAACA ACTATACATG ATATAA.

85

CTTCACTGCA AGACATAGAA ATAA,

89 TATATTGCAA GACAGTATTG GAAC und

93

GTATGGAACA ACATTAGAAC AGCA; und

einen zweiten Nukleinsäureprimer, der zur Richtung gegenläufig ist, welcher zur Hybridisierung an den gleichläufigen Strang der HPV-DNA befähigt ist, wobei der Primer 10 bis ungefähr 30 Nukleotide lang ist und eine Sequenz aufweist, die aus der Gruppe gewählt ist, die aus den folgenden Sequenzen besteht:

SEO ID Nr

30

40

45

50

55

	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
35	84 88 92 96		ACACACATTC CAATATACAC CAAATACCTC ACGGTTTGTT	AGG,

vorausgesetzt, daß der erste und der zweite Primer an ihre jeweiligen gleich- und gegenläufigen Stränge an solchen Stellen hybridisieren, daß ihre 3'-Enden nicht überlappen, und daß die 5'-Enden der Primer in Verlängerungsrichtung weiter räumlich abgesetzt sind als die 3'-Enden der Primer.

- Zusammensetzung nach Anspruch 6, worin der erste und zweite Primer aus den folgenden Paaren von Oligonuklectidsequenzen (die durch die Sequenz ID Nr bezeichnet sind) gewählt sind: 1 und 5, 6 und 5, 7 und 5, 81 und 84, 85 und 88, 89 und 92, und 93 und 96.
- 8. Kit zum Nachweis der Anwesenheit der DNA des humanen Papillomavirus in einer Testprobe, das folgendes umfaßt:
 - eine Zusammensetzung nach Anspruch 6 oder 7, und des weiteren eine Polymerase.
- 9. Kit nach Anspruch 8, worin die Polymerase thermostabil ist.
- 10. Verfahren zur Bestimmung der Anwesenheit irgendeines humanen papillomavirus in einer Testprobe, das folgendes umfaßt:
 - a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Consensus-Oligonukleotid, das aus der Gruppe von Sequenzen gewählt ist, die aus folgendem besteht:

SEO ID Nr

5 CAGATGTCTC TGTGGCGGCC TAGTG. 5 AGGTGTCAGG AAAACCAAAT TTATT 6 GAATTAGTTA GACCATTTAA AAG und 10 7 GGGGAAACAC CAGAATGGAT A: und aus deren Komplementen, wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nach-15 weisbaren Signals befähigt ist, und b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird. 11. Verfahren zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 16 in einer Probe, das folgendes umfaßt: 20 a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Oligonukleotid, das aus der Gruppe von Sequenzen gewählt ist, die aus folgendem besteht: SEO ID Nr 25 30 18 GCTGCAAACA ACTATACATG ATATAA, 82 TTATATCATG TATAGTTGTT TGCAGC, TATTAGAATG TGTGTACTGC AAGCA, 83 35 IGCTTGCAGT ACACACATTC TAATA. 84 GTATGGAACA ACATTAGAAC AGCA, 93 94 TGCTGTTCTA ATGTTGTTCC ATAC. ATACAACAAA CCGTTGTGTG ATTT und 95 40 96 AAATCACACA ACGGTTTGTT GTAT; und aus deren Komplementen, wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nachweisbaren Signals befähigt ist, und 45 b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird. 12. Verfahren zur Bestimmung der Anwesenheit des humanen Papillomavirus Typ 18 in einer Testprobe, das folgendes umfaßt 50 a. Hybridisieren der DNA in der Testprobe mit wenigstens einem Oligonukleotid, das aus der Gruppe von Sequenzen gewählt ist, die aus folgendem besteht:

SEO ID Nr

	85	CTTCACIGCA	AGACATAGAA	ATAA.	
5	86		GTCTTGCAGT		
5	87		TTGCAAGACA		
	88		CAATATACAC		
	89	TATATTGCAA	GACAGTATTG	GAAC,	
	90	GTTCCAATAC	TGTCTTGCAA	TTTA,	_
10	91	TTACAGAGGT	ATTTGAATTT	GCATT	und
	92	AATGCAAATT	CAAATACCTC	TGTAA	:

und aus deren Komplementen,

- 15 wobei das Oligonukleotid an eine signalerzeugende Verbindung konjugiert ist, die zur Erzeugung eines nachweisbaren Signals befähigt ist, und
 - b. Bestimmen der Anwesenheit des humanen Papillomavirus, indem das erzeugte Signal nachgewiesen wird.
- 13. Verfahren nach einem der Ansprüche 10-12, das des weiteren einen Vervielfachungsschritt umfaßt, der vor oder in Konkurrenz mit dem Hybridisierungsschritt stattfindet.
 - 14. Verfahren nach Anspruch 13, worin der vervielfachungsschritt PCR oder LCR umfaßt.

25 Revendications

Revendications pour les Etats contractants sulvants : AT, BE, CH, LI, DE, DK, FR, GB, GR, IT, NL, SE

1. Composition utile dans la LCR pour amplifier l'ADN de virus du papillome humain présent dans échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants :

35	LCR5:	n° d'identification	
35		81	GCTGCAAACA ACTATACATG ATATAA,
		82	TTATATCATG TATAGTTGTT TGCAGC,
		83	TATTAGAATG TGTGTACTGC AAGCA,
40		84	TGCTTGCAGT ACACACATTC TAATA;

	LCR6:	n° d'identification			
45		85	CTTCACTGCA	AGACATAGAA	ATAA,
		86	TTATTTCTAT	GTCTTGCAGT	GAA,
		87	CCTGTGTATA	TTGCAAGACA	GTAT,
50		88	TACTGTCTTG	CAATATACAC	AGG;

	LCR7:	nº d'identification		
		89	TATATTGCAA GACAGTATTG GAAC	
5		90	GTTCCAATAC TGTCTTGCAA TTTA,	
		91	TTACAGAGGT ATTTGAATTT GCATT,	
		92	AATGCAAATT CAAATACCTC TGTAA	; et
10				
	LCR8:	nº d'identification		
		93	GTATGGAACA ACATTAGAAC AGC	A,
4.5		94	TGCTGTTCTA ATGTTGTTCC ATA	C,
15		95	ATACAACAAA CCGTTGTGTG ATT	Γ,
		96	AAATCACACA ACGGTTTGTT GTA	T.

- 2. Composition selon la revendication 1, destinée à amplifier l'ADN de virus du papillome humain de type 16 présent dans un échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants:
- LCR5 (n° d'identification 81, 82, 83 et 84) et LCR8 (n° d'identification 93, 94, 95 et 96).
- 3. Composition selon la revendication 1, destinée à amplifier l'ADN de virus du papillome humain de type 18 présent dans un échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants:
 LCR6 (n° d'identification 85, 86, 87 et 88) et LCR7 (n° d'identification 89, 90, 91 et 92).
- 4. Kit de détection de la présence d'ADN de virus du papillome humain dans un échantillon à doser, comprenant : une composition selon l'une quelconque des revendications 1 à 3, et en outre une ligase.
- 5. Kit selon la revendication 4, dans lequel ladite ligase est thermostable.

20

25

30

35

40

6. Composition utile dans la PCR pour amplifier l'ADN de virus du papillome humain présent dans un échantillon à doser, ladite composition comprenant :

une première amorce d'acide nucléique de direction sens, capable de s'hybrider au brin antisens de l'ADN de HPV, ladite amorce ayant de 10 à environ 30 nucléotides de long et une séquence sélectionnée dans le groupe constitué par les séquences suivantes :

45	N° d'identification 1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
50	6 7	GAATTAGTTA GGGGAAACAC	GACCATTTAA CAGAATGGAT	AAG, A,
	81 85 89	CTTCACTGCA	ACTATACATG AGACATAGAA GACAGTATTG	ATAA,
55	93	GTATGGAACA	ACATTAGAAC	AGCA; et

une deuxième amorce d'acide nucléique de direction antisens, capable de s'hybrider au brin sens de l'ADN

de HPV, ladite amorce ayant de 10 à environ 30 nucléotides de long et une séquence sélectionnée dans le groupe constitué par les séquences suivantes :

	N° d'identification			
5	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
	0.4	TOTTOCACT	ACACACATTC	ፐለ ለፐለ
	84	-		•
	88	TACTGTCTTG	CAATATACAC	AGG,
10	92	AATGCAAATT	CAAATACCTC	TGTAA et
	96	AAATCACACA	ACGGTTTGTT	GTAT:

pour autant que lesdites première et deuxième amorces s'hybrident à leurs brins respectifs antisens et sens à des emplacements tels que leurs extrémités 3' ne se chevauchent pas et que, dans la direction d'extension, les extrémités 5' desdites amorces soient plus espacées que les extrémités 3' desdites amorces.

- 7. Composition selon la revendication 6, dans laquelle lesdites première et deuxième amorces sont sélectionnées parmi les paires suivantes de séquences oligonucléotidiques (identifiées par leur numéro d'identification): 1 et 5, 6 et 5, 7 et 5, 81 et 84, 85 et 88, 89 et 92, et 93 et 96.
- 8. Kit de détection de la présence d'ADN de virus du papillome humain dans un échantillon à doser, comprenant : une composition selon la revendication 6 ou 7 et en outre une polymérase.
- 9. Kit selon la revendication 8, dans lequel ladite polymérase est thermostable.
 - 10. Oligonucléotide consensus pour hybridation du virus du papillome humain des types 6, 11, 16, 18, 31, 33 et 61, lequel oligonucléotide a d'environ 10 à environ 60 nucléotides de long et est sélectionné dans le groupe de séquences constitué par:

	Nº d'identification			
	1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
35	6	GAATTAGTTA	GACCATTTAA	AAG ct
	7	GGGGAAACAC	CAGAATGGAT	Α;

et leurs compléments.

15

20

30

55

11. Oligonucléotide spécifique d'un type, destiné à déterminer la présence du virus du papillome humain de type 16, ayant une séquence sélectionnée dans le groupe constitué par :

	Nº d'identification			
	81		ACTATACATG	
45	82	TTATATCATG	TATAGTTGTT	TGCAGC,
	83	TATTAGAATG	TGTGTACTGC	AAGCA,
	84	TGCTTGCAGT	ACACACATTC	TAATA,
	93	GTATGGAACA	ACATTAGAAC	AGCA,
50	94	TGCTGTTCTA	ATGTTGTTCC	ATAC,
	95	ATACAACAAA	CCGTTGTGTG	ATTT et
	96	AAATCACACA	ACGGTTTGTT	GTAT;

et leurs compléments.

12. Oligonucléotide spécifique d'un type, destiné à déterminer la présence du virus du papillome humain de type 18. ayant une séquence sélectionnée dans le groupe constitué par :

	Nº d'identification			
	85	CTTCACTGCA AC	GACATAGAA	ATAA,
5	86	TTATTTCTAT GT		
	87	CCTGTGTATA TI		
	88	TACTGTCTTG CA		
	89	TATATTGCAA GA		
10	90	GTTCCAATAC TO		TTTA,
	91	TTACAGAGGT AT	TTGAATTT	GCATT et
	92	AATGCAAATT CA		TGTAA;

et leurs compléments.

20

25

30

- 5 13. Procédé de détermination de la présence d'un virus quelconque du papillome humain dans un échantillon à doser, comprenant :
 - a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide consensus sélectionné dans le groupe selon la revendication 10, ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et
 - b. la détermination de la présence du virus du papillome humain par détection du signal émis
 - 14. Procédé de détermination de la présence du virus du papillome humain de type 16 dans un échantillon à doser, comprenant :
 - a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide sélectionné dans le groupe selon la revendication 11, ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et
 - b. la détermination de la présence du virus du papillome humain par détection du signal émis.
 - 15. Procédé de détermination de la présence du virus du papillome humain de type 18 dans un échantillon à doser, comprenant :
 - a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide sélectionné dans le groupe selon la revendication 12, ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et
 - b. la détermination de la présence du virus du papillome humain par détection du signal émis,
- 16. Procédé selon une quelconque des revendications 13 à 15, comprenant en outre une étape d'amplification avant ou pendant ladite étape d'hybridation.
 - 17. Procédé selon la revendication 16, dans lequel ladite étape d'amplification comprend la PCR ou la LCR.
- 45 Revendications pour l'Etat contractant suivant : ES
 - 1. Composition utile dans la LCR pour amplifier l'ADN de virus du papillome humain présent dans échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants:

50		- '	•		
30	LCR5:	n° d'identification			
		81	GCTGCAAACA	ACTATACATG	ATATAA,
		82	TTATATCATG	TATAGTTGTT	TGCAGC,
55		83	TATTAGAATG	TGTGTACTGC	AAGCA,
		84	TGCTTGCAGT	ACACACATTC	TAATA;

5	LCR6:	n° d'identification 85 86 87 88	CTTCACTGCA AGACATAGAA ATAA, TTATTTCTAT GTCTTGCAGT GAA, CCTGTGTATA TTGCAAGACA GTAT, TACTGTCTTG CAATATACAC AGG;
10			
15	LCR7:	n° d'identification 89 90 91 92	TATATTGCAA GACAGTATTG GAAC GTTCCAATAC TGTCTTGCAA TTTA, TTACAGAGGT ATTTGAATTT GCATT, AATGCAAATT CAAATACCTC TGTAA; et
20			
25	LCR8:	n° d'identification 93 94 95 96	GTATGGAACA ACATTAGAAC AGCA, TGCTGTTCTA ATGTTGTTCC ATAC, ATACAACAAA CCGTTGTGTG ATIT, AAATCACACA ACGGTTTGTT GTAT.

2. Composition selon la revendication 1, destinée à amplifier l'ADN de virus du papillome humain de type 16 présent dans un échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants:

LCR5 (n° d'identification 81, 82, 83 et 84) et LCR8 (n° d'identification 93, 94, 95 et 96).

3. Composition selon la revendication 1, destinée à amplifier l'ADN de virus du papillome humain de type 18 présent dans un échantillon à doser, ladite composition comprenant un ensemble de quatre sondes oligonucléotidiques, lesdits ensembles de sondes étant sélectionnés dans le groupe constitué par les ensembles d'oligonucléotides suivants:

LCR6 (n° d'identification 85, 86, 87 et 88) et LCR7 (n° d'identification 89, 90, 91 et 92).

- 4. Kit de détection de la présence d'ADN de virus du papillome humain dans un échantillon à doser, comprenant : une composition selon l'une quelconque des revendications 1 à 3, et en outre une ligase.
- 5. Kit selon la revendication 4, dans lequel ladite ligase est thermostable.
- **6.** Composition utile dans la PCR pour amplifier l'ADN de virus du papillome humain présent dans un échantillon à doser, ladite composition comprenant :

une première amorce d'acide nucléique de direction sens, capable de s'hybrider au brin antisens de l'ADN de HPV, ladite amorce ayant de 10 à environ 30 nucléotides de long et une séquence sélectionnée dans le groupe constitué par les séquences suivantes :

55

30

35

40

45

	N d'identification 1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
5	6 7	GAATTAGTTA GGGGAAACAC		AAG, A,
10	81 85 89 93	TATATTGCAA	AGACATAGAA GACAGTATTG	ATATAA, ATAA, GAAC et AGCA; et

15

30

35

40

45

55

une deuxième amorce d'acide nucléique de direction antisens, capable de s'hybrider au brin sens de l'ADN de HPV, ladite amorce ayant de 10 à environ 30 nucléotides de long et une séquence sélectionnée dans le groupe constitué par les séquences suivantes :

20	N° d'identification 5	AGGTGTCAGG	AAAACCAAAT	TTATT,
	84	TGCTTGCAGT	ACACACATTC	TAATA,
	88	TACTGTCTTG	CAATATACAC	AGG,
25	92		CAAATACCTC	
	96	AAATCACACA	ACGGTTTGTT	GTAT;

pour autant que lesdites première et deuxième amorces s'hybrident à leurs brins respectifs antisens et sens à des emplacements tels que leurs extrémités 3' ne se chevauchent pas et que, dans la direction d'extension, les extrémités 5' desdites amorces soient plus espacées que les extrémités 3' desdites amorces.

- Composition selon la revendication 6, dans laquelle lesdites première et deuxième amorces sont sélectionnées parmi les paires suivantes de séquences oligonucléotidiques (identifiées par leur numéro d'identification):
 1 et 5, 6 et 5, 7 et 5, 81 et 84,
 85 et 88, 89 et 92, et 93 et 96.
- 8. Kit de détection de la présence d'ADN de virus du papillome humain dans un échantillon à doser, comprenant : une composition selon la revendication 6 ou 7 et en outre une polymérase.
- 9. Kit selon la revendication 8, dans lequel ladite polymérase est thermostable.
- 10. Procédé de détermination de la présence d'un virus quelconque du papillome humain dans un échantillon à doser, comprenant :

a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide consensus sélectionné dans le groupe de séquences constitué par :

	N° d'identification			
50	1	CAGATGTCTC	TGTGGCGGCC	TAGTG,
	5	AGGTGTCAGG	AAAACCAAAT	TTATT,
	6	GAATTAGTTA	GACCATTTAA	AAG et
	7	GGGGAAACAC	CAGAATGGAT	Α;

et leurs compléments, ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et

b. la détermination de la présence du virus du papillome humain par détection du signal émis.

- 11. Procédé de détermination de la présence du virus du papillome humain de type 16 dans un échantillon à doser, comprenant :
 - a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide sélectionné dans le groupe de séquences constitué par :

	Nº d'identification			
	81	GCTGCAAACA	ACTATACATG	ATATAA,
10	82	TTATATCATG	TATAGTTGTT	TGCAGC,
	83	TATTAGAATG	TGTGTACTGC	AAGCA,
	84	TGCTTGCAGT	ACACACATTC	TAATA,
	93	GTATGGAACA	ACATTAGAAC	AGCA,
	94	TGCTGTTCTA	ATGTTGTTCC	ATAC,
15	95	ATACAACAAA	CCGTTGTGTG	ATTT et
	96	AAATCACACA	ACGGTTTGTT	GTAT;

et leurs compléments,

ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et

- b. la détermination de la présence du virus du papillome humain par détection du signal émis,
- 12. Procédé de détermination de la présence du virus du papillome humain de type 18 dans un échantillon à doser, comprenant :
 - a. l'hybridation de l'ADN dans l'échantillon à doser avec au moins un oligonucléotide sélectionné dans le groupe de séquences constitué par :

	Nº d'identification			
30	85	CTTCACTGCA	AGACATAGAA	ATAA,
	86	TTATTTCTAT	GTCTTGCAGT	GAA,
	87	CCTGTGTATA	TTGCAAGACA	GTAT,
	88	TACTGTCTTG	CAATATACAC	AGG,
35	89	TATATTGCAA	GACAGTATTG	GAAC,
	90	GTTCCAATAC	TGTCTTGCAA	TTTA,
	91	TTACAGAGGT	ATTTGAATTT	GCATT et
	92	AATGCAAATT	CAAATACCTC	TGTAA:

et leurs compléments,

ledit oligonucléotide étant conjugué à un composé émetteur d'un signal, capable de produire un signal détectable, et

- b. la détermination de la présence du virus du papillome humain par détection du signal émis.
- 45 13. Procédé selon une quelconque des revendications 10 à 12, comprenant en outre une étape d'amplification avant ou pendant ladite étape d'hybridation.
 - 14. Procédé selon la revendication 13, dans lequel ladite étape d'amplification comprend la PCR ou la LCR.

5*5*

50

5

20

25

FIG. 1

FIG. 2

FIG. 3

