实验二 射极跟随器

一、实验目的

- 1、熟悉 Multisim9 软件的使用方法。
- 2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
- 3、学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法,了解共射极电路特性。
 - 4、学习 Multisim9 参数扫描方法
 - 5、学会开关元件的使用

二、虚礼实验仪器及器材

双踪示波器 信号发生器

交流毫伏表

数字万用表

三、实验步骤

1. 画出电路如图所示

2.直流工作点的调整

如上图所示,V1 频率 1kHz,Vi=3V,R1= $82K\Omega$,R2=1.8 $K\Omega$ 。通过扫描电阻 R1 的阻值,在输入端输入稳定的正弦波信号,通过观察输出 5 端的波形,使其为最大不失真波形,此时,便可以确定 Q1 的静态工作点。具体步骤如下:

2. 点击上图中按钮 "More>>", 出现如下图所示

3. 点击按钮 "Edit Analysis",如下图所示

☆把其中的 end time 设置为 0.1 秒,如果太大,那计算机计算时间将会变得很长 4.点击 OK

5.设置输出如下图所示

※其中的\$5 就是输出电阻上的"5"编号

- 6.点击 Simulate 按钮
- 7.出现如下图形

8.用鼠标左键单击图形,选出一个虚拟矩形框,如下所示

9.结果如下,图形被放大。其中有很多条用不同颜色表示仿真图形重叠在一起。

10.单击工具栏 ■ W Q Q Q □ D V V 使出现如下所示数据

	\$5.	rr1	resistance=820	\$5.	rr1	resistance=933	\$5.	rr1	resist
	40,		TCDIDCANCE OBO	40,		rebibeance 500	40,		TCDIDO
x1			28.2051m			28.2051m			
у1			3.5777			3.6866			
x2			28.2051m			28.2051m			
y 2			3.5777			3.6866			
dx			0.0000			0.0000			
dy			0.0000			0.0000			
1/dx									
1/dy									
min x			0.0000			0.0000			
max x			100.0000m			100.0000m			:
min y			-4.6736			-4.5641			
max y			4.1313			4.1576			
offset x			0.0000			0.0000			
offset v			0.0000			0.0000			

找 \max y 和 \min y 所对应行的数据,他们数据差别最小的便是我们要的数据。找到它所对应的电阻阻值(该例题为 $138k\,\Omega$),去更改 R1 的阻值。

11.更改电路图如下

12.进行静态工作点仿真,选择菜单栏中 simulate/analyses/Dc operating point,如右图 所示

13.单击 simulate, 把所仿真数据填入下表

Vb	Vc	Ve	Ie=Ve/Re

14.测量电压放大倍数

双击万用表, 档位在交流, 此时把数据填入下表

Vi(单位)	V0(单位)	Av=V0/Vi

15.测量输入电阻,电路如下所示

双击万用表,填下表

Vs(图中1端电压)	Vi(图中6端电压)	Ri=Vi*Rs/(Vs-Vi)

16.测量输出电阻,电路如下所示

※S1 是开关,是为了测试无穷和带负载是的电压,用空格键来控制其开与关。万用表要打在交流档。注意:信号源电压为 2V,因为空载时电路会失真。

填表

VL (就是开关闭合时)	R0= (V0-VL) *RL/VL
	VL(就是开关闭合时)

17.思考与练习

1、创建如图所示的整流电路,并进行仿真,观察输入和输出波形。

2、分析射极跟随器的性能和特点。