جمعية أصدقاء الرباضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

Bac Blanc Epreuve de Maths(remplacée)

Niveau: 7C Durée:4h Proposée le 26 décembre 2018 de 8h à 12h

Exercice 1 (4 points)

On considère la matrice $A = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix}$.

- Calculer A^2 et vérifier que $A^2 = A + 2I_2$ où I_2 est la matrice identité d'ordre 2. 1)
- En déduire une expression de A^3 sous la forme $\alpha A + \beta I_2$ où α et β des réels. 2)
- On considère les suites numériques (r_n) et (s_n) définies par $\begin{cases} r_0 = 0 \text{ et } s_0 = 1 \\ r_{n+1} = r_n + s_n \\ s_{n+1} = 2r_n \end{cases} .$ 3)

a) Calculer r_1 , s_1 ; r_2 , s_2 ; r_3 et s_3 .

- b) Vérifier que $A^2 = r_2A + s_2I_2$ et $A^3 = r_3A + s_3I_2$.
- b) Vérifier que $A^2 = r_2A + s_2I_2$ et $A^3 = r_3A + s_3I_2$. c) Démontrer que pour tout entier naturel n , $A^n = r_nA + s_nI_2$. (On admet que $A^0 = I_2$)
- Démontrer que la suite (k_n) définie par $k_n=r_n-s_n$ est géométrique de raison $-\mathbf{1}$. En déduire l'expression de k_n en fonction de n.
- On admet que la suite (t_n) définie par $t_n=r_n+\frac{(-1)^n}{3}$ est géométrique de raison2. 5)
- a) Déduire l'expression de t_n en fonction de n.
- b) Déduire des questions précédentes, une expression explicite de r_n et s_n en fonction de n
- c)En déduire, pour tout entier naturel n non nul, une expression des coefficients de la matrice Aⁿ

Exercice 2(5 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 17x - 13y = 2

- 1.a) Vérifier que (7,9) est une solution particulière de (E).
 - b) Résoudre (E) dans $\mathbb{Z} \times \mathbb{Z}$ puis dans $\mathbb{N} \times \mathbb{N}$.
- c) En déduire les solutions de l'équation $(E_1): 17x 13y = 4$.
- $\begin{cases}
 q \equiv 5 & [13] \\
 1 & [17]
 \end{cases}$ si et seulement si $q \equiv 18[221]$. **2.a)** Soit $q \in \mathbb{Z}$. Montrer que:
- b) Une marchandise est mise dans des cartons à 13 pièces le dernier carton ne contient que 5 pièces et si elle est mise dans des cartons à 17 pièces le dernier carton ne contient qu'une seule pièce (1). Déterminer les nombres possibles de pièces de cette marchandise sachant qu'on a moins de 600
- 3.a) Justifier que $10^{16} \equiv 1[17]$. Enoncer le théorème utilisé.
- b) Déterminer suivants les valeurs de l'entier naturel n le reste de la division euclidienne de 10ⁿpar
 - 3. c) Existe-t-il un entier naturel p tel que 10^p ≡ 18[221] ?

Exercice 3 (5 points)

Le plan complexe est muni d'un repère orthonormé (O;u,v).

- 1) Pour tout nombre complexe z, on pose: $P(z) = z^3 + (2+6i)z^2 11z 8 + 6i$
- a) Calculer P(2i).
- b) Déterminer les nombres a et b tels que pour tout z de \mathbb{C} : $P(z) = (z-2i)(z^2+az+b)$
- c) Résoudre, dans l'ensemble des nombres complexes, l'équation (E) : P(z) = 0.

- d) En déduire les solutions de l'équation (E') : $z^6 (2+6i)z^4 11z^2 8 + 6i = 0$ dans \mathbb{C} .
- 2) Soient A, B et C les images des solutions de l'équation P(z) = 0 avec $|z_A| < |z_B| < |z_C|$.
- a) Placer les points A, B et C.
- b) Donner l'expression complexe de la similitude directe s de centre A qui transforme C en B.
- c) Déterminer le rapport de s.
- d) Soit θ un angle de s. Montrer que $\cos \theta = \frac{3}{\sqrt{10}}$ et $\sin \theta = \frac{1}{\sqrt{10}}$.
- 3) On considère l'application f qui à tout point d'affixe z associe le point M' d'affixe z' telle que

$$z' = \frac{3+i}{8}z + \frac{-5+i}{8}$$
.

 $z' = \frac{3+1}{8}z + \frac{-5+1}{8}$. Soit le point $M_0(3,4)$, et pour tout entier naturel $n \in \mathbb{N}$ on pose $M_{n+1} = f(M_n)$. Soit z_n l'affixe du point M_n.

- a) Vérifier, en utilisant l'expression de f, que l'affixe du point $M_1 = f(M_0)$ est 2i.
- b) Montrer que pour tout $n \in \mathbb{N}$ on a : $z_n = -1 + \left(\frac{3+i}{8}\right)^n (4+4i)$.
- c) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = M_0 M_1 + M_1 M_2 + ... + M_{n-1} M_n$. Exprimer S_n en fonction de n et calcular $\lim_{n\to+\infty} S_n$.

Exercice 4 (6 points)

Le plan complexe est rapporté à un repère orthonormé $(0;\vec{u},\vec{v})$.

- 1) Résoudre dans \mathbb{C} l'équation $z^2 2iz 4(1-i) = 0$.
- 2) Soit $\theta \in \left[0, \frac{\pi}{2}\right]$ et $E(\theta)$ l'équation : $z^2 2ize^{i\theta} 4(1-i)e^{2i\theta} = 0$.
 - a) Résoudre $E(\theta)$, on note z'et z'' les solutions telles que |z'| > |z''|.
 - b) Mettre sous forme exponentielle le nombre z''.
- 3) On considère les points M', M'' d'affixes respectives $2e^{i\theta}$ et $-2(1-i)e^{i\theta}$ et le point N image de M' par la rotation de centre O et d'angle $\frac{\pi}{2}$.
- a) Montrer que pour tout réel $\theta \in \left[0, \frac{\pi}{2}\right]$, le point M' appartient à un cercle Γ que l'on précisera.
- b) Déterminer l'affixe du point N en fonction de θ.
- c) Montrer que OM'NM" est un parallélogramme.
- d) En déduire un programme de construction du point M'' à partir d'une position donnée de M' sur Γ . Placer les points N et M".
- 4) On considère l'équation $E'(\theta)$: $(z\sqrt{2}-1)^3 = (-2+2i)e^{i\theta}z^3$.
- a) Déterminer les racines cubiques du nombre complexe $V = (-2+2i)e^{i\theta}$.
- b) Soit $x \in \left[0, \frac{\pi}{2}\right]$. On pose $\frac{z\sqrt{2}-1}{z} = \sqrt{2}e^{ix}$. Montrer que $z = \frac{\sqrt{2}}{4}\left(1 + i\cot\frac{x}{2}\right)$. En déduire les solutions de l'équation $E'(\theta)$.

Fin.

vww.amimath.i