

Ricardo C. A. da Rocha

Protocolos para Comunicação Segura

Ricardo C. A. da Rocha

Roteiro

E-mail Seguro

Camada de Rede: IPSec Camada de Transporte: TLS VPN: Redes Virtuais Privadas Segurança em Redes sem Fio

DNS Seguro: DNSSec

Mensagem de Correio

Dividida em duas partes: cabeçalho e corpo

Cabeçalho

- ◆ Contém informações necessárias à transferência da mensagem
- ◆ Informa por quais servidores de correio a mensagem passou
- ◆ Informa a data de envio e de recebimento
- ◆ Contém os seguintes campos, dentre outros:
 - Endereço do remetente (campo "From: ")
 - Endereço do destinatário (campo "to: ")
 - Assunto da mensagem (campo "subject: ")
 - Destinatários que receberão uma cópia da msg. (campo "cc: ")
 - Destinatários que receberão uma cópia escondida (campo "bcc: ")

Corpo

◆ Contém a mensagem propriamente dita

INSTITUTO DE INFORMÁTICA - UFG

Endereço Eletrônico

Formato do Endereço Eletrônico

◆São escritos através de um par de identificadores separados pelo símbolo @

nome_do_usuário@nome_do_dominio

◆Exemplo

ricardo@inf.ufg.br

♦nome_do_usuário

- Identificação (Login) do usuário na rede
- Não podem conter espaços e nem acentos

◆nome_do_dominio

- Identifica o domínio do usuário destinatário
- Pode ser o nome do servidor de correio do domínio
- Será usado para a procura do registro MX do DNS

INSTITUTO DE INFORMÁTICA - UFO

SMTP

Simple Mail Transport Protocol

- Protocolo da família TCP/IP encarregado de transmitir mensagens de correio eletrônico
- ◆ Se assemelha ao sistema de correio comum
 - Confia integralmente nas informações passadas pelos agentes
- ◆ Utiliza o TCP
- ◆ Atende requisições de clientes na porta 25
- ◆ Utiliza o registro MX do DNS para descobrir o servidor de destino

◆Paradigma comando/resposta

- Para cada comando enviado do Emissor-SMTP para o Receptor-SMTP ocorrerá uma resposta do Receptor com um código numérico seguido de um texto
- Comandos básicos obrigatórios
 - HELO, MAIL FROM, RCPT TO, DATA, NOOP, QUIT e RSE

Exemplo de Sessão de Comunicação

Cliente estabelece comunicação via sockets TCP com a porta 25 do servidor de SMTP

- Gera uma chave privada simétrica, K_s
- Codifica mensagem com K_s (por eficiência)
- Também codifica K_s com a chave pública de Bob

E-mail seguro • Alice quer enviar e-mail confidencial e-mail, m, para Bob. $m \longrightarrow K_{\varsigma}(\cdot)$ $K_{S}(m)$ $K_{S}(\cdot)$ Internet $K_{S} \longrightarrow \boxed{K_{B}^{+}(\cdot)}$ $K_{B}^{+}(K_{S})$ $K_B^+(K_S)$ $K_B^-(\cdot)$ Alice envia uma mensagem de e-mail, m Bob recebe uma mensagem de e-mail, m

- ullet Usa sua chave privada para decodificar e recuperar $K_{\scriptscriptstyle S}$
- ullet Usa K_s para decodificar $K_s(m)$ e recuperar m

E-mail seguro • Alice quer fornecer autenticação de emissor e integridade de mensagem. $\underbrace{K_{A}^{-}(H(m))}_{K_{A}^{+}(\cdot)}$ $\longrightarrow H(\cdot) \longrightarrow K_{\underline{A}}^{-}(\cdot) \longrightarrow K_{\underline{A}}^{-}(H(m))$ Internet H(·) Alice envia a mensagem de e-mail m Bob recebe a mensagem de e-mail m Alice assina digitalmente a mensagem Envia tanto a mensagem (aberta) quanto a assinatura digital

Soluções para E-mail Seguro

- Padrão OpenPGP (RFC 4880) padrão de fato
 - PGP Pretty Good Privacy
 - GPG Gnu Privacy Guard
- S/MIME (RFC 2633)
 - Aplicável em qualquer cenário de envio de dados usando MIME, não apenas e-mail.
 - Tipo de dado: application/pkcs7-mime

INSTITUTO DE INFORMÁTICA - UFO

Pretty good privacy (PGP)

Esquema de codificação de e-mail da Internet, padrão de fato

Usa criptografia de chave simétrica, criptografia de chave pública, função de hash e assinatura digital, como descrito

Fornece confidencialidade, autenticação do emissor, integridade

Uma mensagem PGP:

---BEGIN PGP SIGNED MESSAGE---Hash: SHA1

Bob:My husband is out of town tonight.Passionately yours, Alice

---BEGIN PGP SIGNATURE---Version: PGP 5.0 Charset: noconv

yhHJRHhGJGhgg/12EpJ+lo8gE4 vB3mqJhFEvZP9t6n7G6m5Gw2 ---END PGP SIGNATURE---

Protocolos para Comunicação Segura

Ricardo C. A. da Rocha

Roteiro

E-mail Seguro

Camada de Rede: IPSec

Camada de Transporte: TLS VPN: Redes Virtuais Privadas Segurança em Redes sem Fio

DNS Seguro: DNSSec

IPsec: Segurança de camada de rede

Confidencialidade na camada de rede:

- Hospedeiro transmissor criptografa os dados no datagrama IP
 Segmentos TCP e UDP; mensagens ICMP e SNMP

Autenticação na camada de rede - Hospedeiro de destino pode autenticar o endereço IP da origem

Dois protocolos principais:

- Protocolo de autenticação de cabeçalho (AH)

- Protocolo de encapsulamento seguro dos dados (ESP)

- Tanto o AH quanto o ESP realizam uma associação da fonte e do destino:

 Cria um canal lógico de camada de rede denominado associação de segurança (SA Security association)

Cada SA é unidirecional

Unicamente determinado por:

- Protocolo de segurança (AH ou ESP)
 Endereço IP de origem
 ID de conexão de 32 bits

Modo AH - Autenticação IPSec AH Header next hdr AH len Reserved SPI (Security Parameters Index) Sequence Number Authentication Data (usually MD5 or SHA-1 hash)

Protocolos para Comunicação Segura

Ricardo C. A. da Rocha

Roteiro

E-mail Seguro

Camada de Rede: IPSec

Camada de Transporte: TLS

VPN: Redes Virtuais Privadas Segurança em Redes sem Fio

DNS Seguro: DNSSec

Camada de sockets segura (SSL)

Segurança de camada de transporte para qualquer aplicação baseada no TCP usando serviços SSL

Usado entre browsers Web e servidores para comércio eletrônico (https)

- Serviços de segurança:

 Autenticação de servidor

 Criptografia de dados
- Autenticação de cliente (opcional)

Servidor de autenticação:

- Browser com SSL habilitado inclui chaves públicas para CA confiáveis
- Browser pede certificado do servidor, emitido pela CA confiável
- Browser usa chave pública da CA para extrair a chave pública do servidor do certificado

- O SSL/TLS permite executar duas funções básicas:
 - autenticação entre o cliente e o servidor.
 - criptografia na troca de mensagens.

O servidor se autentica para o cliente (obrigatório)

SSL/TLS

O cliente se autentica para o servidor (opcional)

INSTITUTO DE INFORMÁTICA - UFO

SSL Handshake

- 1. Do Cliente para o Servidor
 - versão do SSL
 - configuração de criptografia
- 2. Do Servidor para o Cliente
 - versão do SSL
 - configuração de criptografia
 - certificado do servidor
 - (opcionalmente, requisita o certificado do cliente)

SSL Handshake

3. O Cliente:

- Usa as informações recebidas para autenticar o servidor.
- Se a autenticação falhar, o usuário é alertado sobre o problema e a conexão é abortada.
- Se o servidor for autenticado, o cliente:
 - Cria um segredo que futuramente será usado para criar uma chave de sessão.

 - Criptografa o segredo com a che OPCIONAL prvidor requirente: o climate o che segredo envial o ab servidor.

ública do servidor. autenticação do lo junto com o

SSL Handshake

4. O Servidor:

- (OPCIONAL: se o certificado do cliente foi solicitado) o servidor verifica a identidade do cliente.
 - Se a verificação falhar, a sessão é terminada.
- O servidor usa sua chave privada para decifrar o segredo e segue uma série de procedimentos para gerar a chave de sessão/chave secreta.
- O servidor informa ao cliente que completou a geração da chave de sessão/chave secreta.

SSL Handshake

5. O Cliente:

- Gera a chave de sessão (seereta) a partir do segredo, utilizando os mesmos procedimentos que o servidor.
- O cliente informa ao servidor que completou a chave de sessão.

6. O handshake está complet

- Cliente e servidor criptografan suas mensagens usando a chave de sessão.

Roteiro E-mail Seguro Camada de Rede: IPSec Camada de Transporte: SSL VPN: Redes Virtuais Privadas Segurança em Redes sem Fio DNS Seguro: DNSSec

Soluções Usuais

Utilizar o enlaces de comunicação temporários

- LINHAS DISCADAS:
 - · sistema público de telefonia

Utilizar enlaces de comunicação permanentes

- LINHAS DEDICADAS ou PRIVATIVAS:
 - Serviços disponibilizados por empresas de telecomunicação.

Tecnologias para Linhas Privativas

Linhas privativas podem ser implementadas com:

- ATM ou Frame-Relay
 - Comunicação Orientada a Conexão

Ambas as tecnologias permitem dividir a banda de um enlace físico através de circuitos virtuais

Garantia de largura de banda

Linhas Privadas X Linhas Discadas

Acesso Discado

- Serviço caro
- Velocidade limitada pela tecnologia das centrais telefônicas e pelos meios físicos utilizados.
- Sujeito a interrupções de funcionamento.

Linhas Privativas:

- Segurança por isolação física dos enlaces de comunicação.
- Custos elevados de implantação e manutenção, principalmente para longas distâncias.
- O custo aumenta com o número de pontos que compõe a linha privativa.

INSTITUTO DE INFORMÁTICA - UFO

VPN: Virtual Private Networks

Uma rede virtual privada (VPN) é um meio de simular uma rede privada sobre uma rede pública.

- REDE VIRTUAL: rede formada por conexões virtuais
- CONEXÃO VIRTUAL: conexões temporárias, não físicas, estabelecidas entre os pontos que se deseja estabelecer uma comunicação segura.

VPN sobre Internet = Extranet

A principal motivação para as VPN's é a possibilidade de utilizar a Internet como meio físico de comunicação, sendo uma alternativa muito mais viável que a alocação de linhas privativas.

INSTITUTO DE INFORMÁTICA - UF

Linhas Virtuais Privadas

Linhas Virtuais Privativas:

- √ segurança por criptografia e autenticação.
- permite criar redes privativas com uma infinidade de enlaces sem aumento de custo significativo.
- ✓ Permite transportar diversos tipos de protocolos de rede através de técnicas de tunelamento.

Formas de Implementação das VPNs

- VPN de Acesso
- Intranet VPN
- Extranet VPN

INSTITUTO DE INFORMÁTICA - LIFO

VPN de Acesso

Acesso remoto de usuários móveis e pequenos escritórios à uma rede corporativa

 mesmas políticas de segurança de uma rede privada.

Método de Acesso

- MODEM, IDSN, ADSL, CABO, etc.

Exemplo Vendedor que precisa acessar a rede corporativa de um ponto remoto. CATALOGO SISTEMA DE PRODUTOS PEDIDOS INTERNET

Tipos de VPN de Acesso

As VPNs de acesso podem ser de dois tipos, dependendo do ponto onde começa a rede segura:

- 1. Iniciada pelo Cliente
- 2. Iniciada pelo Servidor de Acesso a Rede (NAS)

INSTITUTO DE INFORMÁTICA - UFG

Iniciada pelo Cliente

O tunelamento acontece fim-a-fim (entre a máquina do cliente e o destino final).

- O computador do usuário necessita de um aplicativo ou sistema operacional que suporte a VPN.
- Os computadores do cliente e servidor perdem recursos de processamento.

Iniciada pelo Servidor de Acesso a Rede (NAS)

O tunelamento acontece a partir do servidor que atende a chamada do usuário no provedor (NAS).

- Configuração transparente para o usuário remoto.
- Não existe segurança nos dados até eles chegarem no ISP.

INSTITUTO DE INFORMÁTICA - UF

Conclusões para VPN de Acesso

Iniciada pelo cliente

- A rede segura é fim-a-fim
- O computador do usuário precisa de suporte fim a fim.
- A informação de cada usuário deve ser roteada separadamente.

Iniciada pelo NAS

- O computador do usuário não precisa de suporte a VPN.
- Não garante segurança até chegar no ISP.

Requisitos das VPN's

Uma tecnologia de VPN deve atender aos seguintes requisitos básicos:

- Isolamento em relação a rede pública.
- Acesso a rede virtual apenas para usuários autorizados.
- Confidencialidade das informações.

Conceitos Básicos de uma VPN

- TUNELAMENTO
- AUTENTICAÇÃO
- CRIPTOGRAFIA

INSTITUTO DE INFORMÁTICA - UFO

Requisitos: Isolamento em Relação à Rede Pública

Isolamento em relação a rede pública:

- As redes internas e a rede pública devem estar fisicamente conectadas, mas logicamente separadas
- Deve-se ter controle sobre quais informações podem atravessar a fronteira entre a rede interna e externa.

<u>IMPLEMENTAÇÃO</u>:

- FIREWALL E TUNELAMENTO

Requisitos para uma VPN

- B) Acesso a rede virtual apenas para usuários autorizados
 - A identidade do transmissor e do receptor deve ser provada de um para o outro.

IMPLEMENTAÇÃO: AUTENTICAÇÃO

Requisitos da VPN

- C) Confidencialidade das informações
 - Apenas as máquinas ou redes envolvidas diretamente na comunicação podem interpretar o conteúdos das mensagens trocadas.

IMPLEMENTAÇÃO: CRIPTOGRAFIA

Protocolos para VPN

PPTP

- Tunelamento de Camada 2
- Point-to-Point tunneling Protocol

I 2TP

- Level 2 Tunneling Protocol (L2TP)
- Combinação do L2F e PPTP

IPSec

- Tunelamento de Camada 2

SSL

- Tunelamento na Camada de Transporte

INSTITUTO DE INFORMÁTICA - UF

Tipos de Tunelamento

Tunelamento de Camada 2

- Os pacotes são encapsulados no protocolo PPP (camada 2), e depois recebem o cabeçalho de tunelamento.
 - Exemplos PPTP e L2TP

Tunelamento de Camada 3

- Os pacotes recebem diretamente o cabeçalho de tunelamento.
 - Exemplo: IPSec.

PPTP: Point-to-Point tunneling **Protocol**

Desenvolvido por PPTP Forum:

- Ascend Communication, U.S. Robotics, 3Com Corporation, Microsoft Corporation e ECI Telematics
- Padronizado por RFC

Requisitos para Utilização:

- Os sistemas operacionais do cliente e do servidor devem suportar PPTP
- PPTP é o protocolo de tunelamento mais difundido no mercado:
 - Windows, Linux, Roteadores, etc...

Tunelamento em PPTP

Princípio de tunelamento:

- Encapsular datagramas do protocolo de rede inteiros dentro de um envelope IP.
 - Protocolos de Rede: TCP/IP, IPX/SPX
- Oferece recursos de:
 - · Autenticação e Criptografia

datagrama IP

cabeçalho

corpo

IP, IPX, etc

Cenários de Utilização do PPTP

Cenários:

- 1. Acesso por modem:
 - O cliente estabelece uma conexão com um provedor (ISP) e depois com o servidor de VPN.
- 1. Acesso por placa de rede:
 - · O cliente já está na Internet, ele se conecta diretamente ao servidor de VPN.
 - O cliente e o servidor da VPN se encontram na mesma rede corporativa.

IPs de tunelamento

Uma conexão PPTP que encapsula protocolos TCP/IP em outro datagrama IP envolve a utilização de 2 pares de IP:

- IP sem tunelamento
 - cliente: IP_{NORMAL2} (200.17.98.217)
 - servidor: IP_{NORMAL1} (200.134.51.6)
- IP com tunelamento
 - cliente: IP_{VPN2} (192.168.0.2)
 - servidor: IP_{VPN1} (192.168.0.1)

Roteiro

E-mail Seguro

Camada de Rede: IPSec Camada de Transporte: SSL VPN: Redes Virtuais Privadas

Segurança em Redes sem Fio

DNS Seguro: DNSSec

INSTITUTO DE INFORMÁTICA - UFG

Requisitos

Autenticação entre cliente e AP

- Baseada em chave compartilhada

Confidencialidade dos dados

 Troca de mensagens por disseminação → não existe confidencialidade "física"

Dois mecanismos: WEP e WPA

Autenticação com nonces

AP desafia cliente para encriptar um *nonce* (número aleatório) com a chave
Se cliente é capaz, então ele possui a chave e a autenticação é finalizada

INSTITUTO DE INFORMÁTICA - UFO

Falhas na Encriptação 802.11 WEP

Vulnerabilidade

IV 24 bits, 1 por pacote \rightarrow em algum momento IV é reutilizado

IV é transmitido em texto plano e a reutilização é detectada

Ataque:

- Ataque do texto plano conhecido
- Atacante descobre k_iv
- Quando IV é reutilizado, atacante descobre chaves

INSTITUTO DE INFORMÁTICA - LU

Encriptação no 802.11i

802.11i popularmente conhecido pelas siglas WPA e WPA2

- $-WPA \rightarrow 802.11i$ -draft
- $-WPA2 \rightarrow 802.11i$ (final)

Encriptação fornecida (AP→Cliente→AP)

- TKIP: funciona em hardware legado WEP
- CCMP: encriptação mais forte (AES)

INSTITUTO DE INFORMÁTICA - UF

TKIP

TKIP: Temporal Key Integrity Protocol
Projetado para funcionar com hardware legado
baseado no WEP

- Exige atualização de firmware
- Exigências de poder de processamento limitadas

Projeto: evitar injeção de pacotes, ataques de replay, descoberta de chaves por análise estatísticas (todas fraquezas maiores do WEP)

INSTITUTO DE INFORMÁTICA - UFO

TKIP: Message Integrity Code

Message Integrity Code visa dificultar a injeção de pacotes sem que seja detectado

- Oferece mecanismo para checagem da integridade dos pacotes transmitidos
- Substitui mecanismo falho do CRC

INSTITUTO DE INFORMÁTICA - LIE

TKIP MIC

Chave de 64 bits dividida em 2 de 32 bits (X e Y) MAC origem e destino, e QoS adicionados no payload do pacote

Mensagem quebrada em pacotes de 32 bits (M_1 , M_2 , M_3 ,... M_i)

- X=X⊕Mi
- X e Y recalculados com função leve

INSTITUTO DE INFORMÁTICA - LIE

TKIP: Verificação MIC

Pacotes gerados não são previsíveis

Destinos podem calcular integridade dos pacotes

- Se duas falhas no MIC são encontradas nos pacotes em 60 segundos, então considera-se que um ataque está em ação
 - · Nova reassociação com o AP
 - · Novas chaves são geradas

Pacotes ainda encapsulados no WEP

- Erros de transmissão dificilmente causam falha no MIC
- CRC continua existindo

INSTITUTO DE INFORMÁTICA - UF

TKIP: Mecanismos Adicionais

Proteção contra ataques de replay

 Número de sequência TKIP para cada MAC PDU

Algoritmo de mistura de chaves

- Evita problema do reuso de chave do WEP, quando IV é repetido.
- TTAK (TKIP-mixed Transmit Address and Key)
- 80 bits =f(chave₁₂₈,MAC,TSC_{32-mais-sig})

CCMP

CCMP: Counter Mode with Cipher Block Chaining (CBC) Message Authentication Code Protocol

Utiliza chaves de 128-bits, com um bloco de 128 bits de encriptação

Usa número único (PN) de 48 bits por pacote, incrementado em cada frame

- Modo contator

CCMP: Revisão do Modo Contador

 $IV \rightarrow 104$ bits nonce + 24 bits do contador

CCMP: Integridade da Mensagem

Campo AAD adicionado ao pacote

- Considera endereços, número fragmento, QoS
- Concatenado ao payload e encriptado
- Qualquer mudança em 1 bit de qualquer parte do pacote muda o dado encriptado
 - Funciona como verificador do MIC

Roteiro

E-mail Seguro

Camada de Rede: IPSec Camada de Transporte: SSL VPN: Redes Virtuais Privadas Segurança em Redes sem Fio

DNS Seguro: DNSSec

Revisão de DNS

DNS – Domain Name System

- •Camada de transporte e rede só entendem endereços IP
- Identificador 32 bits (v.4): 200.137.221.69, 208.67.222.222, 139.82.24.231
- •Dificuldade para uso de endereços IP por usuários e aplicações
- Endereços IP não possuem um significado claro para usuário: propósito, localização da estação
 Difíceis de lembrar e validar
- Endereços IP podem mudar
- •DNS mapeia endereços IP em nomes hierárquicos e significantes
- Consulta: qual é o IP da estação www.inf.ufg.br?

DNS - Domain Name System

- •Padrão Aberto para Resolução de Nomes Hierárquicos
- · Agrupa nomes em domínios;
- Base de dados distribuída implementada em uma hierarquia de servidores DNS;
- Protocolo de aplicação que permite as máquinas consultarem essa base de dados distribuída.
- Atende requisições na porta 53
- Utiliza UDP e TCP
- •Especificações do DNS (RFCs)
- RFCs 1034, 1035, 1101, 1123, 1183 e 1536.
- •Principal implementação dos servidores DNS:
- Berkeley Internet Name Domain (BIND)
- · Implementação desenvolvida na Berkeley University

Organização dos Domínios

- •O espaço de domínio de nomes é dividido em duas áreas principais:
- · Domínios Genéricos:
- 3 caracteres para indicar a atividade.
- · .com, .edu, .gov, .int, .mil, .net, .org
- .int: organizações internacionais
- .mil: organizações militares
- .org: organizações não comerciais
- Domínios Geográficos:
- 2 caracteres para identificar o país.
- .br, .fr, .jp, etc.

Ricardo Coutentunes da Rocha

Descentralização •A descentralização e delegação de autoridade simplifica o gerenciamento, limita o tráfego e aumenta a confiabilidade.

Registro de Recursos

- •RR é um tupla que contém
- Domain_name, Time_to_Live, Type, Value

Tipo	Significado	Valor
SOA	Start of authority	Parâmetros da zona
Α	IP de um host	Inteiro 32-bits (IPv4)
MX	Servidor e-mail	Prioridade, domínio aceitando e-mail
NS	Servidor de nomes	Nome do servidor to domínio
CNAM E	Nome canônico	Nome do domínio
PTR	Ponteiro	Apelido para endereço IP
HINFO	Descrição da estação	Texto ASCII com CPU, OS,
TXT	Texto	Texto ASCII não-interpretado

INSTITUTO DE INFORMÁTICA - UFO

Tipos de Servidores de DNS

•Primário

- É o servidor autoritário para zona. A inclusão, alterações ou exclusão dos registros da zona são feitas através deste servidor.
- O servidor primário envia uma cópia dos seus arquivos de dados para o servidor secundário através de um processo denominado "zone transfer"

Secundário

 Funciona como backup. Apenas lê os arquivos de dados do servidor primário, e responde as requisições dos clientes quando requisitado.

Caching-Only

- São servidores DNS que apenas efetuam consultas e guardam o resultado numa cache e retornam os resultados.
- Um servidor DNS realiza consulta a outros servidores sempre que tiver que localizar um nome externo as zonas que controla.

USOS Adicionais Características interessantes Simples paradigma request-response Bancos de dados textuais simples Cache distribuído automaticamente mantido pela Internet Balanceamento de carga baseado em DNS Manutenção de mais um registro A (IP) para mesmo nome Respostas alternam a sequência dos IPs da resposta Bancos de dados simples textuais Ex: Lista negra de IPs mantida por SPAMHAUS Validação de origem de mensagens no DomainKeys DNS mantém chave pública de autenticação de origem de mensagens de um domínio

- - Histórico 'rico' e recente de problemas de segurança
- · Confiabilidade dos resultados em cache
- · Solução parcial: certificados SSL autenticados
- Solução: DNSSec extensão segura do DNS
- Validação de domínios
- Nomes de domínios não devem ser considerados confiáveis
- Solução: uso de EV-Certificates
- •Não permite consultas mais complexas

Solução Efetiva Uso de DNSSec Implementa integridade das respostas de servidores de DNS Respostas validadas por chaves de cada servidor Trabalho da Disciplina

INSTITUTO DE INFORMÁTICA - UFG
Referências Iniciais Sugeridas Ataques DNS e DNSSec
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html http://registro.br/suporte/tutoriais/dnssec.html