2010 U OF I MOCK PUTNAM EXAM

- 1. (a) Given a set with n elements (where n is a positive integer), prove that exactly 2^{n-1} of its subsets have an odd number of elements.
 - (b) Determine, with proof, the number of 8 by 8 matrices in which each entry is 0 or 1 and each row and each column contains an odd number of 1's.
- 2. A sheet of paper contains the numbers $101, 102, \ldots, 200$. Suppose you play the following game on this list of numbers. At each stage, you pick two of the numbers on the list, say a and b, cross these out, and replace them by the single number ab + a + b. You keep doing this until only a single number is left (which happens after 99 such moves). Determine, with proof, what this last number is.
- 3. Among all powers of 2, what percentage begin with the digit 1 in their decimal representation? More precisely, if f(n) denotes the number of integers among the first n powers of 2 (i.e., $2^1, 2^2, \ldots, 2^n$) whose decimal representation begins with the digit 1, show that the limit $\lim_{n\to\infty} f(n)/n$ exists and compute its value.
- 4. Given a positive integer d, define a lattice traversal of step size d to be an infinite polygonal path $P_0P_1P_2...$ in the plane satisfying the following conditions:
 - (i) The distance between any two consecutive points P_i and P_{i+1} on the path is d.
 - (ii) Each point P_i on the path is a lattice point (i.e., has integer coordinates).
 - (iii) Each lattice point in the plane occurs at least once as a point P_i on the path.

Determine, with proof, for which integers $d \in \{2, 3, ..., 10\}$ there exists a lattice traversal of step size d.

- 5. Let $1 \le a_1 < a_2 < a_3 \dots$ be a sequence of positive integers, such that $a_k/k \to \infty$ as $k \to \infty$, and let A(n) denote the number of terms in this sequence that are $\le n$. Prove that there exist infinitely many positive integers n that are divisible by A(n).
- 6. Find, with proof, the precise set of real numbers α , such that any sequence x_n , $n = 1, 2, 3, \ldots$, of real numbers satisfying

(1)
$$\lim_{n \to \infty} (x_n - x_{n-2}) = 0.$$

also satisfies

$$\lim_{n \to \infty} \frac{x_n}{n^{\alpha}} = 0.$$

[Solutions at http://www.math.uiuc.edu/contests.html]