MCMC-Based Particle filtering for Multi-Target Tracking

Alemany Nicolas, Calvet Rémi, Clayton Pierre

January 10, 2025

Article

- On MCMC-Based Particle Methods for Bayesian Filtering : Application to Multitarget Tracking
- François Septier (University of Southern Brittany), Sze Kim Pang (DSO National Laboratories), Avishy Carmi, (Ben-Gurion University of the Negev), S.J. Godsill(University of Cambridge)

Objective

Objective: track multiple targets moving within a surveillance area, where the number of targets can change over time due to births and deaths in a highly cluttered environment, using MCMC based particle filtering

Reminder

Bayesian Filtering: At each time step k, compute the posterior distribution of the hidden state x_k given all observations up to that time $z_{0:k}$:

$$p(x_k|z_{0:k}) = \frac{p(z_k|x_k) p(x_k|z_{0:k-1})}{p(z_k|z_{0:k-1})}$$

where:

- $p(z_k|x_k)$ is the likelihood function.
- $p(x_k|z_{0:k-1})$ is the **predictive distribution**, obtained from the prior and the state transition model.
- $p(z_k|z_{0:k-1})$ is the **evidence** or **marginal likelihood**, serving as a normalization constant.

Reminder

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability distribution by constructing a Markov chain that has the desired distribution as its equilibrium distribution.

Key Idea: Generate a sequence of samples $\{x^{(0)}, x^{(1)}, x^{(2)}, \dots\}$ such that, after a sufficient number of steps, the samples are from the target distribution p(x).

Problem Formulation

- 5000 x 5000 surveillance area
- Up to 5 targets (varying to birth and deaths) starting at random positions (uniformly distributed)
- Near constant velocity motion

State Transition Equations for Active Targets

State Transition Equation for Active Targets

For an active target $(e_{k,n} = 1)$, the state transition is given by:

$$x_{k,n} = Ax_{k-1,n} + w_{k,n}$$

where:

- $x_{k,n}$: State vector of the *n*-th target at time k.
- A: State transition matrix.
- $w_{k,n}$: Process noise, modeled as zero-mean Gaussian noise.

State Transition Equations for Active Targets

State Transition Matrix A

The state transition matrix A captures the near-constant velocity assumption:

$$A = \begin{bmatrix} I_2 & \Delta t \ I_2 \\ 0_{2\times 2} & I_2 \end{bmatrix}$$

- I_2 : 2 × 2 identity matrix.
- Δt : Time interval between k-1 and k.
- $0_{2\times 2}$: 2×2 zero matrix.

MCMC-Based Particle filtering for Multi-Target Tracking

State Transition Equations for Active Targets

Process Noise $W_{k,n}$

The process noise accounts for random accelerations and maneuvers:

$$w_{k,n} \sim \mathcal{N}(0,Q)$$

where the covariance matrix Q is:

$$Q = \sigma^2 \begin{bmatrix} \frac{\Delta t^3}{3} I_2 & \frac{\Delta t^2}{2} I_2 \\ \frac{\Delta t^2}{2} I_2 & \Delta t I_2 \end{bmatrix}$$

- \bullet σ^2 : Process noise variance, representing the uncertainty in the target's acceleration.
- Q: Captures correlation between position and velocity due to the integration of acceleration over time.

State Representation

State Vector x_k

At each time step k, the overall state vector x_k encapsulates the kinematic states of all potential targets up to a predefined maximum number N_{max} . Each target's kinematic state includes its position and velocity in two dimensions:

$$x_k = [x_{k,1}, \dots, x_{k,N_{\text{max}}}, \ y_{k,1}, \dots, y_{k,N_{\text{max}}}, \ \dot{x}_{k,1}, \dots, \dot{x}_{k,N_{\text{max}}}, \ \dot{y}_{k,1}, \dots, \dot{y}_{k,N_{\text{max}}}]^T$$

- $x_{k,n}$, $y_{k,n}$: Position coordinates of the *n*-th target.
- $\dot{x}_{k,n}$, $\dot{y}_{k,n}$: Velocity components of the *n*-th target.

State Representation

Existence Vector e_k

Each potential target is associated with an existence indicator $e_{k,n}$, which is a binary variable indicating whether the target is active (1) or inactive (0) at time k:

$$e_k = [e_{k,1}, e_{k,2}, \dots, e_{k,N_{\mathsf{max}}}]^T, \quad e_{k,n} \in \{0,1\}$$

- Active Target: $e_{k,n} = 1$, the *n*-th target is present and moving according to the motion model.
- Inactive Target: $e_{k,n} = 0$, the *n*-th target is not present; its state variables are set to a predefined value x_{death} representing inactivity.

Observation Model

Measurements z_k

At time k, the sensor produces M_k measurements:

$$z_k = \{z_k^1, z_k^2, \dots, z_k^{M_k}\}$$

Each measurement z_k^m is a two-dimensional vector representing a position in the surveillance area.

Clutters

Clutter measurements are false alarms that do not correspond to any target. They are modeled as a Poisson process over the surveillance area.

Probability Density of Clutter:

 $p_C(z_k^m) = \frac{1}{A}$

A: Area of the surveillance region.

Observation Model

Measurement Model for Targets

For an active target $(e_{k,n} = 1)$, the measurement is modeled as:

$$z_k^m = Hx_{k,n} + v_k^m$$

where:

• H: Measurement matrix, typically extracting the position components:

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

• v_k^m : Measurement noise, modeled as zero-mean Gaussian noise with covariance R:

$$v_k^m \sim \mathcal{N}(0, R)$$

4 D F 4 D F 4 E F 4 E F 9) Q (*

Observation Model

Likelihood of a Measurement from a Target

$$p(z_k^m|x_{k,n}) = \mathcal{N}(z_k^m; Hx_{k,n}, R)$$

Reminder

Objective

The objective of the MCMC steps is to approximate the distribution of $p(x_k, e_k|z_{0:k})$ in order to be able to sample from it to make predictions of $(x_k, e_k|z_{0:k})$.

MCMC based Particle Filtering

Here is an overview of the MCMC-based particle filtering algorithm:

1. Initialization

Generate an initial set of particles

$$\{x_{-1}^{(j)}, e_{-1}^{(j)}\}_{j=1}^{N_p}$$

representing the prior distribution at time k = -1 (or k = 0).

MCMC based Particle Filtering

2. For each time step k:

- MCMC Iterations & Refinement Steps:
 - Jointly propose new particles $(x_k^*, e_k^*, x_{k-1}^*, e_{k-1}^*)$ and compute the Metropolis-Hastings acceptance probability, using the set of particles $(\{x_{k-1}^{(j)}, e_{k-1}^{(j)}\}_{j=1}^{N_p})$ given by the previous time step iteration.
 - Refinement: Perform individual updates of $x_{k,n}$ and $e_{k,n}$ for each target n with their acceptance probabilities.
- Burn-in and Thinning:
 - Discard burn-in iterations and keep every N_{thin} -th sample.
- Approximating the Filtering Distribution: Use the accepted particles

$$\{x_k^{(j)}, e_k^{(j)}\}_{j=1}^{N_p}$$

to approximate $p(x_k, e_k \mid z_{0:k})$ using the empirical distribution.

Target Distribution and Acceptance Probabilities

Target Distribution $p(x_k, e_k, x_{k-1}, e_{k-1}|z_{0:k})$:

• The joint posterior distribution is proportional to the product of the likelihood and the prior:

$$p(x_k, e_k, x_{k-1}, e_{k-1}|z_{0:k}) \propto p(z_k|x_k, e_k) p(x_k, e_k|x_{k-1}, e_{k-1}) p(x_{k-1}, e_{k-1}|z_{0:k-1})$$

Since $p(x_{k-1}, e_{k-1}|z_{0:k-1})$ is untractable, use the approximation calculated at the step before :

$$\hat{p}(x_k, e_k, x_{k-1}, e_{k-1}|z_{0:k}) = p(z_k|x_k, e_k) * p(x_k, e_k|x_{k-1}, e_{k-1}) * \hat{p}(x_{k-1}, e_{k-1}|z_{0:k-1})$$

where

$$\hat{\rho}(x_{k-1}, e_{k-1}|z_{0:k-1}) = \frac{1}{N_{\rho}} \sum_{i=1}^{N_{\rho}} \delta(x_{k-1} - x_{k-1}^{(j)}) \delta(e_{k-1} - e_{k-1}^{(j)})$$

• The "real" target distribution we use is $\hat{p}(x_k, e_k, x_{k-1}, e_{k-1}|z_{0:k})$.

Target Distribution and Acceptance Probabilities

Computing Necessary Densities:

• Transition Probabilities:

$$p(x_k, e_k | x_{k-1}, e_{k-1})$$
 is given by the motion model.

• Existence Probabilities:

$$p(e_k|e_{k-1})$$
 is defined by the birth and death probabilities.

• Observation Likelihood:

$$p(z_k|x_k,e_k)$$
 is computed using the measurement model and accounts for clutter.

• Prior Distributions:

$$p(x_{k-1}, e_{k-1}|z_{0:k-1})$$
 is approximated using particles from the previous time step.

Target Distribution and Acceptance Probabilities

Acceptance Probability for Joint Proposal:

- Accept $\{x_k^{(m)}, e_k^{(m)}, x_{k-1}^{(m)}, e_{k-1}^{(m)}\} = \{x_k^*, e_k^*, x_{k-1}^*, e_{k-1}^*\}$ with probability α , else retain previous state.

Refinement Steps

Algorithm 1 Updating Individual Targets

- 1: **for** each target *n* **do**
- 2: Propose New Existence Variable $e_{k,n}^*$:
- 3: Sample $e_{k,n}^*$ from the transition probability:

$$e_{k,n}^* \sim p(e_{k,n}|e_{k-1,n}^{(m)})$$

- 4: Propose New State $x_{k,n}^*$:
- 5: if $e_{k,n}^* = 1$ then
- 6: Propose $x_{k,n}^*$ from the state transition model:

$$x_{k,n}^* \sim p(x_{k,n}|x_{k-1,n}^{(m)}, e_{k,n}^*, e_{k-1,n}^{(m)})$$

7: else

- 8: Set $x_{k,n}^* = x_{death}$.
- 9: end if
- 10: Compute Acceptance Probability α_n :
- 11: Compute the acceptance probability:

$$\alpha_{0} = \min \left\{ 1, \frac{\rho(s_{k,n}^{*}, s_{k,n}^{*}, s_{k,n}^{$$

- 12: Accept or Reject:
- 13: if $U(0,1) < \alpha_n$ then
- 14: Accept $(x_{k,n}^*, e_{k,n}^*)$.
- 15: else 16: F
 - Retain previous values $(x_{k,n}^{(m)}, e_{k,n}^{(m)})$.
- 17: end if
- 18: end for

Reminder

Filtering algorithm:

MCMC Iterations & Refinement Steps:

- Jointly propose new particles $(x_k^*, e_k^*, x_{k-1}^*, e_{k-1}^*)$ and compute the Metropolis-Hastings acceptance probability, using the set of particles $(\{x_{k-1}^{(j)}, e_{k-1}^{(j)}\}_{j=1}^{N_p})$ given by the previous time step iteration.
- Refinement: Perform individual updates of $x_{k,n}$ and $e_{k,n}$ for each target n with their acceptance probabilities.

• Burn-in and Thinning:

- Discard burn-in iterations and keep every N_{thin} -th sample.
- Approximating the Filtering Distribution: Use the accepted particles

$$\{x_k^{(j)}, e_k^{(j)}\}_{j=1}^{N_p}$$

to approximate $p(x_k, e_k \mid z_{0:k})$ using the empirical distribution.

Results

Trajectories

Results

Cardinality

Git Hub

https://github.com/Pierre-Clayton/Multitarget-Tracking

Algorithm 1 2 MCMC-Based Particle Algorithm adapted

• Number of particles N_p , burn-in period N_{burn} , thinning interval N_{thin}

- The number of MCMC iterations per time step N_{MCMC} is given by $N_{MCMC} = N_p * N_{thin} + N_{burn}$
- Model parameters: P_B , P_D , $\sigma_{x,n}^2$, Λ_C , Λ_x^n , etc.
- Observations $\{z_{0:k}\}$ for each time step k

Ensure: Particle-based approximation of the filtering posterior $p(x_k, e_k \mid z_{0:k})$ that will be noted $\hat{p}(x_k, e_k \mid z_{0:k})$. It also makes predictions using those approximations.

- 1: Initialization:
- 2: Initialize particle set $\{(\boldsymbol{x}_{-1}^{(j)}, \boldsymbol{e}_{-1}^{(j)})\}_{i=1}^{N_p}$
- 3: for k = 1 to T do

(We start MCMC with target distribution $\hat{p}(x_k, e_k, x_{k-1}, e_{k-1}|z_{0:k}) = p(z_k|x_k, e_k) * p(x_k, e_k|x_{k-1}, e_{k-1}) * \hat{p}(x_{k-1}, e_{k-1}|z_{0:k-1})$ where $\hat{p}(x_{k-1}, e_{k-1}|z_{0:k-1}) = \frac{1}{N_p} \sum_{j=1}^{N_p} \delta(x_{k-1} - x_{k-1}^{(j)}) \delta(e_{k-1} - e_{k-1}^{(j)})$.

- for m=1 to N_{MCMC} do
- (a) Joint Draw 5:

Propose $\{\boldsymbol{x}_{k}^{*}, \boldsymbol{e}_{k}^{*}, \boldsymbol{x}_{k-1}^{*}, \boldsymbol{e}_{k-1}^{*}\} \sim q_{1}(\boldsymbol{x}_{k}, \boldsymbol{e}_{k}, \boldsymbol{x}_{k-1}, \boldsymbol{e}_{k-1} \mid \boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{e}_{k}^{(m-1)}, \boldsymbol{x}_{k-1}^{(m-1)}, \boldsymbol{e}_{k-1}^{(m-1)}) \propto \sum_{j=1}^{N_{p}} p(\mathbf{x}_{k} \mid \boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{x}_{k-1}^{(m-1)})$ 6: $\mathbf{x}_{k-1}^{(j)}, \mathbf{e}_k) p(\mathbf{e}_k \mid \mathbf{e}_{k-1}^{(j)}) \delta(\mathbf{x}_{k-1}^{(j)}) \delta(\mathbf{e}_{k-1}^{(j)})$ (equation 14 of the article) Compute MH acceptance probability ρ_1 :

$$\rho_{1} = \min \left\{ 1, \frac{\hat{p}(\boldsymbol{x}_{k}^{*}, \boldsymbol{e}_{k}^{*}, \boldsymbol{x}_{k-1}^{*}, \boldsymbol{e}_{k-1}^{*} \mid \boldsymbol{z}_{0:k})}{q_{1}(\boldsymbol{x}_{k}^{*}, \boldsymbol{e}_{k}^{*}, \boldsymbol{x}_{k-1}^{*}, \boldsymbol{e}_{k-1}^{*} \mid \boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{e}_{k}^{(m-1)}, \boldsymbol{x}_{k-1}^{(m-1)}, \boldsymbol{e}_{k-1}^{(m-1)})} \right. \\ \times \frac{q_{1}(\boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{e}_{k}^{(m-1)}, \boldsymbol{x}_{k-1}^{(m-1)}, \boldsymbol{e}_{k-1}^{(m-1)} \mid \boldsymbol{x}_{k}^{*}, \boldsymbol{e}_{k}^{*}, \boldsymbol{x}_{k-1}^{*}, \boldsymbol{e}_{k-1}^{*})}{\hat{p}(\boldsymbol{x}_{k}^{(m-1)}, \boldsymbol{e}_{k}^{(m-1)}, \boldsymbol{x}_{k-1}^{(m-1)}, \boldsymbol{e}_{k-1}^{(m-1)} \mid \boldsymbol{z}_{0:k})} \right\}$$

- Accept $\{x_k^{(m)}, e_k^{(m)}, x_{k-1}^{(m)}, e_{k-1}^{(m)}\} = \{x_k^*, e_k^*, x_{k-1}^*, e_{k-1}^*\}$ with probability ρ_1 , else retain previous state. 8:
- 9: (b) Refinement
- for each target n do 10:
- Propose $\{\boldsymbol{x}_{k,n}^*, \boldsymbol{e}_{k,n}^*\} \sim q_3(\boldsymbol{x}_{k,n}, \boldsymbol{e}_{k,n}^{(m)} | \boldsymbol{x}_{k,n}^{(m)}, \boldsymbol{e}_{k,n}^{(m)}, \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k-1,n}^{(m)}) = p(\boldsymbol{x}_{k,n} | \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k,n}) \times p(\boldsymbol{e}_{k,n} | \boldsymbol{e}_{k-1,n}^{(m)})$ 11:
- Compute MH acceptance probability ρ_3 : 12:

$$\rho_{3} = \min \left\{ 1, \frac{p(\boldsymbol{x}_{k,n}^{*}, \boldsymbol{e}_{k,n}^{*} \mid \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k-1,n}^{(m)}, \boldsymbol{z}_{0:k})}{q_{3}(\boldsymbol{x}_{k,n}^{*}, \boldsymbol{e}_{k,n}^{*} \mid \boldsymbol{x}_{k,n}^{(m)}, \boldsymbol{e}_{k,n}^{(m)}, \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k-1,n}^{(m)})} \right. \\ \times \frac{q_{3}(\boldsymbol{x}_{k,n}^{(m)}, \boldsymbol{e}_{k,n}^{(m)} \mid \boldsymbol{x}_{k,n}^{*}, \boldsymbol{e}_{k,n}^{*}, \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k-1,n}^{(m)})}{p(\boldsymbol{x}_{k,n}^{(m)}, \boldsymbol{e}_{k,n}^{(m)} \mid \boldsymbol{x}_{k-1,n}^{(m)}, \boldsymbol{e}_{k-1,n}^{(m)}, \boldsymbol{z}_{0:k})} \right\}$$

- Accept $\{x_{k,n}^{(m)}, e_{k,n}^{(m)}\} = \{x_{k,n}^*, e_{k,n}^*\}$ with probability ρ_3 , else retain previous state. 13:
- 14:
- (c) Thinning and Burn-in 15:
- if $m > N_{\text{burn}}$ and $m \equiv 0 \pmod{N_{\text{thin}}}$ then 16:
- Store $\{x_k^{(j)}, e_k^{(j)}\} \leftarrow \{x_k^{(m)}, e_k^{(m)}\}$ 17:
- end if 18:
- end for 19:

20:

(d) Approximation $\hat{p}(x_k,e_k|z_{0:k})$ with the new particle set Store $\hat{p}(x_k,e_k|z_{0:k})=\frac{1}{N_p}\sum_{j=1}^{N_p}\delta(x_k-x_k^{(j)})*\delta(e_k-e_k^{(j)}).$ (e) Sampling and make predictions using the approximation $\hat{p}(x_k,e_k|z_{0:k})$

21:

Sample multiple times from $\hat{p}(x_k, e_k|z_{0:k})$ and take the mean for example. (could consider other procedures) (Note that the sampling is easy since it is the density of a discrete random variable)

22: end for