FAoptions

Contents

FA on Combined Scale (2 Factor Solution): People Centered Development and Nationalist	5
Development	2
Solar Energy: CFA on Combined Scale (2 Factor Solution)	7
Coal: CFA on Combined Scale 2 Factor Solution (Pdevelop and Ndevelop)	
Linear Models: Perceived risk X Pdevelop and Ndevelop	12
Linear Models: Perceived Benefit X Pdevelop and Ndevelop	
Linear Models: Acceptance (Risk - Benefit) X Pdevelop & Ndevelop	14
FA on Separate scales: Scale 1:Eco-political values of the perceiver	15
4 factor solution (Characteristics of the perceiver)	15
Linear Models: Perceived Risk X 4 Factor Solution(separate scale)	
Linear Models: : Perceived Risk X 4 Factor Solution (separate scale)	19
Linear Models: Acceptance(Risk-Benefit) X 4 Factor Solution (separate scale)	
2 factor solution (Characteristics of the perceiver)	21
Linear Models: Perceived Risk X 2 factor solution (separate scale)	
Linear Models: Perceived Benefit X 2 FA solution (separate scales)	
FA on Separate scale: Scale 2: Characteristics of the Technology(2 factor solution)	26
Nuclear Energy: positive (alpha = 0.73) and negative (alpha = 0.79) characteristics (2 factor solution)	26
Solar Energy: positive (alpha $=0.85$) and negative (alpha $=0.81$)characteristics (2 factor solution)	29
Coal: positive (alpha = 0.67) and negative (alphs = 0.72) characteristics (2 factor solution)	33
Linear Models: Perceived Risk X positive and negative characteristics of the technology	36
Linear Models: Perceived Benefit X positive and negative characteristics of the technology	37
Linear Models: Acceptance(Benefit - Risk) X positive and negative characteristics of the technology	38

S

FA on Combined Scale (2 Factor Solution): People Centered Development and Nationalist Development

Nuclear Energy: EFA on Combined Scale (2 Factor Solution)

Table 1: 2 factor solution

code	Items	Pdevelop	Ndevelop	Communality U	niqueness Co	omplexity
Health risk(nuclear)	Nuclear energy poses a great risk to the health of people living around it	0.663		0.447	0.553	1.034
Spoils Natural Beauty(nuclear)	Nuclear energy spoils the natural beauty of the landscape	0.619		0.390	0.610	1.035
$Pollution\ risk(nuclear)$	Nuclear energy increases pollution of air/water/land	0.578		0.335	0.665	1.002
$\begin{array}{c} {\rm Displacement} \\ {\rm risk(nuclear)} \end{array}$	Nuclear energy is leading to displacement of people from their land	0.574		0.371	0.629	1.249
Anti Mechanisation of work	Rapid mechanization of work is taking away jobs from workers in this country	0.54		0.336	0.664	1.297
Pro Regulations	Regardless of ownership, the government should pass strong regulations and implement them $$	0.534		0.301	0.699	1.116
Anti Large Industries	Large corporations are destroying the local industries in India and benefiting only a handful of people	0.523		0.275	0.725	1.014
Environment over Development	Polluting industries that spoil the environment should be shut down even it costs people their jobs	if _{0.417}		0.175	0.825	1.011
Pro Public ownership	The government should own most large businesses and industries			0.140	0.860	1.218
Pro Globaleconomy	Foreign companies have led to a range of benefits for the Indian people an society	d		0.227	0.773	1.997
Pro Decentralisation	Local politicians shouldn't have to ask permission from the central government to implement policies			0.102	0.898	1.001
Limits on Wealth	A limit should be put to how much wealth a person can amass			0.153	0.847	2.000
Pro Private ownership	All businesses and industries should be owned privately			0.042	0.958	1.757
Pro Localeconomy	India would be better off if foreign companies didn't come to here			0.017	0.983	1.057

w

Table 1: 2 factor solution

code	Items	Pdevelop	Ndevelop	Communality Un	iqueness Co	omplexity
National development(nuclear)	Nuclear energy pushes forward the country's development		0.665	0.464	0.536	1.095
Community pride(nuclear)	I would be proud if my community used nuclear energy		0.622	0.450	0.550	1.321
National pride(nuclear)	Nuclear energy is a mark of pride for our nation		0.597	0.405	0.595	1.266
Local prosperity(nuclea	r)Nuclear energy brings economic prosperity to the surrounding regions		0.594	0.363	0.637	1.055
Job opportunities(nuclear)	Nuclear energy will bring jobs to the local community		0.428	0.223	0.777	1.409
Reliance on government(nuclear)	I don't like the idea that I have to rely on the government for electricity from nuclear energy			0.156	0.844	1.005
Pro Large Industries	Large scale industries are required for the development of the country the will benefit everyone	at		0.170	0.830	1.712
Pro Centralisation	Laws and policies would be implemented more smoothly if more power lawith the central government	ay		0.090	0.910	1.863
Anti Regulations	There is too much red-tape and the government should not interfere with businesses and industries	h		0.070	0.930	1.704
Development over Environment	Economic growth and creating jobs should be prioritized over environmental protection			0.004	0.996	1.512

Table 2: Eigenvalues and Variance Explained for Combined Scale (2 Factor Solution)

Property	Pdevelop	Ndevelop
SS loadings	3.264	2.440
Proportion Var	0.136	0.102
Cumulative Var	0.136	0.238
Proportion Explained	0.572	0.428
Cumulative Proportion	0.572	1.000

Net benefit Nuclear vs Pdevelop by State

lavaan 0.6.15 ended normally after 17 iterations ## Estimator ML## ## Optimization method NLMINB Number of model parameters 23 ## ## ## Number of observations 540

Model Test User Model:

```
##
##
    Test statistic
                                                  236.201
    Degrees of freedom
##
                                                       43
    P-value (Chi-square)
                                                    0.000
##
##
## Model Test Baseline Model:
##
                                                 2291.291
##
     Test statistic
##
     Degrees of freedom
                                                       55
##
     P-value
                                                    0.000
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                    0.914
##
     Tucker-Lewis Index (TLI)
                                                    0.889
##
## Loglikelihood and Information Criteria:
##
##
    Loglikelihood user model (HO)
                                                -8659.806
    Loglikelihood unrestricted model (H1)
##
                                                -8541.706
##
##
    Akaike (AIC)
                                                17365.613
##
    Bayesian (BIC)
                                                17464.319
##
     Sample-size adjusted Bayesian (SABIC)
                                                17391.309
##
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                    0.091
##
     90 Percent confidence interval - lower
                                                    0.080
     90 Percent confidence interval - upper
                                                    0.103
##
     P-value H_0: RMSEA <= 0.050
                                                    0.000
##
     P-value H_0: RMSEA >= 0.080
                                                    0.950
##
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                    0.071
##
## Parameter Estimates:
##
    Standard errors
##
                                                 Standard
##
     Information
                                                 Expected
##
     Information saturated (h1) model
                                               Structured
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
                                                            Std.lv Std.all
##
     Pdevelop =~
##
      HEALTHSOLAR
                         0.970
                                  0.049
                                          19.888
                                                    0.000
                                                             0.970
                                                                      0.779
##
      BEAUTYSOLAR
                         0.820
                                  0.052 15.860
                                                    0.000
                                                             0.820
                                                                      0.654
                         0.703
                                  0.049 14.226
                                                             0.703
      DISPLACESOLAR
                                                    0.000
                                                                      0.599
                                  0.050
##
                         1.096
                                          22.088
                                                    0.000
      POLLUTESOLAR
                                                             1.096
                                                                      0.843
                                  0.057
                                                                     -0.255
##
      INDUSTRYSMALL
                        -0.319
                                          -5.571
                                                    0.000
                                                            -0.319
                                  0.051
##
      OWNERREG
                        -0.315
                                          -6.175
                                                    0.000
                                                            -0.315
                                                                     -0.282
##
      MECHANISATION
                        -0.452
                                  0.052 -8.698
                                                    0.000
                                                            -0.452
                                                                     -0.389
##
    Ndevelop =~
```

##	DEVSOLAR	1.055	0.047	22.613	0.000	1.055	0.829
##	PRIDESOLAR	1.065	0.048	22.101	0.000	1.065	0.817
##	NPRIDESOLAR	1.009	0.047	21.327	0.000	1.009	0.797
##	PROSPERSOLAR	1.025	0.047	21.792	0.000	1.025	0.809
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	Pdevelop ~~						
##	Ndevelop	-0.262	0.047	-5.621	0.000	-0.262	-0.262
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.HEALTHSOLAR	0.609	0.053	11.491	0.000	0.609	0.393
##	.BEAUTYSOLAR	0.902	0.064	14.185	0.000	0.902	0.573
##	.DISPLACESOLAR	0.882	0.060	14.768	0.000	0.882	0.641
##	.POLLUTESOLAR	0.490	0.055	8.917	0.000	0.490	0.290
##	.INDUSTRYSMALL	1.463	0.090	16.230	0.000	1.463	0.935
##	.OWNERREG	1.147	0.071	16.182	0.000	1.147	0.920
##	.MECHANISATION	1.143	0.072	15.912	0.000	1.143	0.848
##	.DEVSOLAR	0.505	0.043	11.626	0.000	0.505	0.312
##	.PRIDESOLAR	0.567	0.047	12.074	0.000	0.567	0.333
##	.NPRIDESOLAR	0.585	0.046	12.661	0.000	0.585	0.365
##	.PROSPERSOLAR	0.555	0.045	12.321	0.000	0.555	0.346
##	Pdevelop	1.000				1.000	1.000
##	Ndevelop	1.000				1.000	1.000

Solar Energy: CFA on Combined Scale (2 Factor Solution)

Solar People Centered Development alpha = 0.75

Solar Nationalist Development alpha = 0.86

Table 3: Confirmatory Factor Analysis(CFA) on Solar Energy

Scale	Items	Loadings	Standard Error	zvalue	pvalue	ci.lower	ci.upper	std.lv	std.all
People Centered Development	Solar energy poses a great risk to the health of people living around it	0.970	0.049	19.888	0	0.8744108	1.0655965	0.9700037	0.7792714
People Centered Development	Solar energy spoils the natural beauty of the landscape	0.820	0.052	15.860	0	0.7190998	0.9218976	0.8204987	0.6537278
People Centered Development	Solar energy is leading to displacement of people from their land	0.703	0.049	14.226	0	0.6057287	0.7993080	0.7025183	0.5989088
People Centered Development	Solar energy increases pollution of air/water/land	1.096	0.050	22.088	0	0.9990468	1.1936080	1.0963274	0.8428439
People Centered Development	Large corporations are destroying the local industries in India and benefiting only a handful of people	-0.319	0.057	-5.571	0	-0.4318889	-0.2070914	-0.3194901	-0.2554075
People Centered Development	Regardless of ownership, the government should pass strong regulations and implement them	-0.315	0.051	-6.175	0	-0.4147132	-0.2148716	-0.3147924	-0.2819769
People Centered Development	Rapid mechanization of work is taking away jobs from workers in this country	-0.452	0.052	-8.698	0	-0.5538088	-0.3501230	-0.4519659	-0.3893190
Nationalist Development	Solar energy pushes forward the country's development	1.055	0.047	22.613	0	0.9638459	1.1467835	1.0553147	0.8294606
Nationalist Development	I would be proud if my community used Solar energy	1.065	0.048	22.101	0	0.9708762	1.1598306	1.0653534	0.8166840
Nationalist Development	Solar energy is a mark of pride for our nation	1.009	0.047	21.327	0	0.9161682	1.1016049	1.0088866	0.7969797

```
##
## Call:
## lm(formula = Risky_Solar ~ age + Uppercaste + Male + Hindu +
      Urban + State + KahanS + KahanH + Pdevelop + Ndevelop, data = sfascale_scores)
## Residuals:
               10 Median
                               30
                                      Max
## -1.9138 -0.4677 -0.1288 0.2755 3.8143
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      2.737482
                                 0.143017 19.141 < 2e-16 ***
## age
                     -0.005030
                                 0.035936 -0.140 0.88874
## Uppercaste
                                 0.082097 -0.404
                     -0.033151
                                                  0.68653
## Male
                     -0.004959
                                 0.090677 -0.055
                                                   0.95641
## Hindu
                     -0.137916
                                 0.095575
                                           -1.443
                                                   0.14963
## UrbanUrban
                                           -0.730 0.46564
                     -0.066933
                                 0.091671
## StateRajasthan
                     -1.351258
                                 0.143198
                                          -9.436 < 2e-16 ***
## StateTamil Nadu
                                 0.170603 -7.707 6.73e-14 ***
                     -1.314794
## StateUttar Pradesh -0.926163
                                 0.158665
                                           -5.837 9.42e-09 ***
## StateWest Bengal
                    -0.969840
                                0.185254
                                          -5.235 2.41e-07 ***
## KahanS
                      0.031638
                                 0.069903
                                           0.453 0.65103
## KahanH
                                 0.067244 -2.921 0.00364 **
                     -0.196447
## Pdevelop
                      0.031323
                                 0.061275
                                            0.511 0.60943
## Ndevelop
                      0.012994
                                 0.053525
                                            0.243 0.80828
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8389 on 513 degrees of freedom
     (13 observations deleted due to missingness)
## Multiple R-squared: 0.4297, Adjusted R-squared: 0.4152
## F-statistic: 29.73 on 13 and 513 DF, p-value: < 2.2e-16
```

Coal: CFA on Combined Scale 2 Factor Solution (Pdevelop and Ndevelop)

Coal People Centered Development Alpha = 0.78

Coal Nationalist Development Alpha = 0.6

Table 4: Confirmatory Factor Analysis(CFA) on Coal

Scale	Items	Loadings	Standard Error	zvalue	pvalue	ci.lower	ci.upper	std.lv	std.all
People Centered Development	Coal powered plants poses a great risk to the health of people living around it	0.722	0.050	14.378	0	0.6231797	0.8199012	0.7215405	0.6589018
People Centered Development	Coal powered plants spoils the natural beauty of the landscape	0.717	0.048	14.839	0	0.6227149	0.8122502	0.7174825	0.6758232
People Centered Development	Coal powered plants is leading to displacement of people from their land	0.626	0.055	11.301	0	0.5172562	0.7343179	0.6257871	0.5394144
People Centered Development	Coal powered plants increases pollution of air/water/land	0.630	0.041	15.260	0	0.5488005	0.7105443	0.6296724	0.6910990
People Centered Development	Large corporations are destroying the local industries in India and benefiting only a handful of people	0.601	0.057	10.462	0	0.4883282	0.7134684	0.6008983	0.5045829
People Centered Development	Regardless of ownership, the government should pass strong regulations and implement them	0.488	0.055	8.904	0	0.3808612	0.5958528	0.4883570	0.4372022
People Centered Development	Rapid mechanization of work is taking away jobs from workers in this country	0.658	0.056	11.805	0	0.5489483	0.7675273	0.6582378	0.5598383
Nationalist Development	Coal powered plants pushes forward the country's development	0.629	0.059	10.700	0	0.5137870	0.7442109	0.6289990	0.6259019
Nationalist Development	Coal powered plants brings economic prosperity to the surrounding regions	0.596	0.058	10.338	0	0.4830019	0.7090010	0.5960014	0.5996861
Nationalist Development	I would be proud if my community used Coal powered plants	0.445	0.063	7.096	0	0.3220686	0.5678796	0.4449741	0.4027845

Linear Models: Perceived risk X Pdevelop and Ndevelop

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:32

Table 5: Perceived Risk X Pdevelop and Ndevelope

	Table 5. I efceived fusi	Dependent variable:	pe ————————————————————————————————————
	Risky Nuclear	Risky_Solar	Risky Coal
	(1)	(2)	(3)
200	0.037	-0.005	0.133***
age	(0.057)	(0.036)	
	(0.051)	(0.030)	(0.046)
Uppercaste	-0.035	-0.033	-0.060
o pp or coope	(0.106)	(0.082)	(0.090)
	,	(0.002)	,
Male	-0.085	-0.005	0.019
	(0.116)	(0.091)	(0.103)
	`	` , ,	`
Hindu	0.024	-0.138	0.155
	(0.117)	(0.096)	(0.106)
UrbanUrban	0.023	-0.067	0.051
OrbanOrban	(0.111)	(0.092)	
	(0.111)	(0.092)	(0.102)
StateRajasthan	0.190	-1.351***	-0.349**
z careroa gas criari	(0.181)	(0.143)	(0.142)
	` /	, ,	,
StateTamil Nadu	1.293***	-1.315^{***}	-1.387^{***}
	(0.239)	(0.171)	(0.226)
a	, , ,		
StateUttar Pradesh	-0.056	-0.926^{***}	-1.243^{***}
	(0.193)	(0.159)	(0.171)
StateWest Bengal	0.972***	-0.970***	-0.124
State West Deligal	(0.226)	(0.185)	(0.124)
	(0.220)	(0.169)	(0.198)
KahanS	0.108	0.032	0.044
	(0.103)	(0.070)	(0.085)
	, ,	, ,	, ,
KahanH	0.003	-0.196***	0.148^*
	(0.095)	(0.067)	(0.086)
D.1 . 1	0.4454	0.001	0.410***
Pdevelop	0.145*	0.031	0.412***
	(0.075)	(0.061)	(0.079)
Ndevelop	0.236***	0.013	0.031
racvelop	(0.061)	(0.054)	(0.067)
	, ,	(0.054)	(0.007)
Constant	3.028***	2.737***	3.069***
	(0.172)	(0.143)	(0.157)
	` ,	,	,
Observations	405	527	457
\mathbb{R}^2	0.289	0.430	0.287
Adjusted R^2	0.266	0.415	0.266
Residual Std. Error	0.925 (df = 391)	0.839 (df = 513)	0.877 (df = 443)
F Statistic	$12.248^{***} (df = 13; 391)$	$29.727^{***} (df = 13; 513)$	13.728^{***} (df = 13; 443)
Notes	())	, , ,	0.1. *** < 0.05. **** < 0.05

*p<0.1; **p<0.05; ***p<0.01

Linear Models: Perceived Benefit X Pdevelop and Ndevelop

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:33

Table 6: Perceived Benefit X Pdevelop and Ndevelop

	Table 0. Telectived Belle	Dependent variable:	лор
	Ben Nuclear	Ben Solar	Ben Coal
	(1)	(2)	(3)
Uppercaste	-0.178*	-0.119	-0.236***
o ppereusee	(0.102)	(0.080)	(0.091)
Male	0.036	0.0002	0.037
	(0.112)	(0.088)	(0.103)
Hindu	0.329***	0.169^*	0.039
	(0.113)	(0.093)	(0.107)
UrbanUrban	0.093	-0.081	0.169
	(0.107)	(0.089)	(0.103)
age	-0.073	-0.023	0.029
	(0.050)	(0.034)	(0.046)
StateRajasthan	-0.573***	0.495***	-0.327**
J	(0.175)	(0.147)	(0.142)
StateTamil Nadu	-0.406*	0.564***	-0.316
	(0.235)	(0.177)	(0.238)
StateUttar Pradesh	-0.516***	0.077	-0.531***
	(0.187)	(0.159)	(0.173)
StateWest Bengal	-0.095	0.943***	-0.169
O O	(0.222)	(0.184)	(0.198)
KahanS	-0.057	0.014	-0.017
	(0.103)	(0.069)	(0.086)
KahanH	0.231**	0.140**	0.141
	(0.093)	(0.070)	(0.087)
Pdevelop	0.191***	0.194***	0.265***
•	(0.073)	(0.048)	(0.066)
Ndevelop	0.292***	-0.018	0.213***
1	(0.060)	(0.068)	(0.049)
Constant	3.287***	3.426***	3.205***
	(0.166)	(0.139)	(0.157)
Observations	407	535	455
\mathbb{R}^2	0.193	0.254	0.171
Adjusted R^2	0.166	0.235	0.147
Residual Std. Error	0.898 (df = 393)	0.815 (df = 521)	0.880 (df = 441)
F Statistic	$7.210^{***} (df = 13; 393)$		7.020^{***} (df = 13; 441)

Note: *p<0.1; **p<0.05; ***p<0.01

Linear Models: Acceptance (Risk - Benefit) X Pdevelop & Ndevelop

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:33

Table 7: Acceptance (Risk - Benefit) X Pdevelop and Ndevelop

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	,r	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$Dependent\ variable:$	
age -0.108 (0.069) -0.016 (0.053) -0.148** (0.062) Uppercaste -0.153 (0.143) -0.091 (0.121) -0.162 (0.120) Male 0.146 (0.157) 0.013 (0.133) 0.137 Hindu 0.324** (0.158) 0.310** (0.141) -0.194 (0.141) UrbanUrban 0.093 (0.150) 0.040 (0.135) 0.079 (0.136) StateRajasthan -0.771*** (0.244) 1.830*** (0.213) 0.143 (0.188) StateTamil Nadu -1.747*** (0.327) 1.820*** (0.251) 1.177*** (0.302) StateUttar Pradesh -0.462* (0.261) 0.990*** (0.235) 0.791*** (0.228) StateWest Bengal -1.082*** (0.309) 1.860*** (0.274) -0.055 (0.228) StateWest Bengal -0.193 (0.139) -0.044 (0.274) -0.042 (0.261) KahanS -0.193 (0.139) -0.044 (0.103) -0.042 (0.103) 0.013 (0.103) KahanH 0.257** (0.103) 0.340*** (0.103) 0.0114 (0.103) 0.0114 (0.104) Pdevelop 0.023 (0.103) -0.039 (0.103) -0.374*** (0.260) Observations R² 401 (0.232) 524 (0.211)		Nuclear		
age -0.108 (0.069) -0.016 (0.053) -0.148** (0.062) Uppercaste -0.153 (0.143) -0.091 (0.121) -0.162 (0.120) Male 0.146 (0.157) 0.013 (0.133) 0.137 Hindu 0.324** (0.158) 0.310** (0.141) -0.194 (0.141) UrbanUrban 0.093 (0.150) 0.040 (0.135) 0.079 (0.136) StateRajasthan -0.771*** (0.244) 1.830*** (0.213) 0.143 (0.188) StateTamil Nadu -1.747*** (0.327) 1.820*** (0.251) 1.177*** (0.302) StateUttar Pradesh -0.462* (0.261) 0.990*** (0.235) 0.791*** (0.228) StateWest Bengal -1.082*** (0.309) 1.860*** (0.274) -0.055 (0.228) StateWest Bengal -0.193 (0.139) -0.044 (0.274) -0.042 (0.261) KahanS -0.193 (0.139) -0.044 (0.103) -0.042 (0.103) 0.013 (0.103) KahanH 0.257** (0.103) 0.340*** (0.103) 0.0114 (0.103) 0.0114 (0.104) Pdevelop 0.023 (0.103) -0.039 (0.103) -0.374*** (0.260) Observations R² 401 (0.232) 524 (0.211)		(1)	(2)	(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	age		-0.016	-0.148**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0 -			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uppercaste	-0.153	-0.091	-0.162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.143)	(0.121)	(0.120)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		` ′	,	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Male			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.157)	(0.133)	(0.137)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TT:1	0.204**	0.210**	0.104
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hindu			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.158)	(0.141)	(0.141)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UrbanUrban	0.003	0.040	0.079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Orbanorban			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.150)	(0.133)	(0.130)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateRajasthan	-0.771^{***}	1.830***	0.143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	, ,	· · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateTamil Nadu			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.327)	(0.251)	(0.302)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Contract Date	0.400*	0.000***	o = o4***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateUttar Pradesh			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.261)	(0.235)	(0.228)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	StateWest Rongel	1 022***	1 260***	0.055
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	State West Deligar			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.309)	(0.214)	(0.201)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KahanS	-0.193	-0.044	-0.042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110110110			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	,	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KahanH			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.128)	(0.099)	(0.114)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D.1. 1	0.000	0.000	0.0-1444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pdevelop			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.103)	(0.090)	(0.106)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Malarralan	0.066	0.102**	0.267***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ndevelop			
		(0.084)	(0.079)	(0.089)
	Constant	0.220	0.675***	0.260
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	COIDOMIL			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(0.202)	(0.211)	(0.200)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Observations	401	524	453
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\mathbb{R}^2			
Residual Std. Error 1.246 (df = 387) 1.230 (df = 510) 1.159 (df = 439) F Statistic 5.825*** (df = 13; 387) $34.992***$ (df = 13; 510) $3.713***$ (df = 13; 439)				
F Statistic 5.825^{***} (df = 13; 387) 34.992^{***} (df = 13; 510) 3.713^{***} (df = 13; 439)	Residual Std Error			1.159 (df = 439)
		5.825^{***} (df = 13: 387)		3.713^{***} (df = 13.439)
		3.323 (df 13, 301)		

*p<0.1; **p<0.05; ***p<0.01

15

FA on Separate scales: Scale 1:Eco-political values of the perceiver

4 factor solution (Characteristics of the perceiver)

Cronbach's alpha values: Regulated Industrialisation = 0.59, localisation = 0.52, Free market = 0.57, Private Development = 0.58

Table 8: 4 factor solution same for all technologies

code	Items	regulat industr aliza- tion	ed ri- localisatio n	ree on narket	private develop-Comment	munality Unio	queness Com	plexity
Pro Regulations	Regardless of ownership, the government should pass strong regulations and implement them	0.54				0.366	0.634	1.520
Anti Mechanisation of work	Rapid mechanization of work is taking away jobs from workers in this country	0.506				0.330	0.670	1.585
Limits on Wealth	A limit should be put to how much wealth a person can amass	0.483				0.304	0.696	1.638
Anti Large Industries	Large corporations are destroying the local industries in India and benefiting only a handful of people		0.534			0.409	0.591	1.780
Pro Localeconomy	India would be better off if foreign companies didn't com to here	ıe	0.524			0.287	0.713	1.090
Pro Decentralisation	Local politicians shouldn't have to ask permission from the central government to implement policies					0.134	0.866	2.021
Pro Centralisation	Laws and policies would be implemented more smoothly more power lay with the central government	if	0.	.488		0.280	0.720	1.360
Pro Globaleconomy	Foreign companies have led to a range of benefits for the Indian people and society	2	0.	.478		0.298	0.702	1.598
Anti Regulations	There is too much red-tape and the government should not interfere with businesses and industries		0.	.473		0.399	0.601	2.220
Pro Large Industries	Large scale industries are required for the development of the country that will benefit everyone	of	0.	.432		0.302	0.698	1.902
Development over Environment	Economic growth and creating jobs should be prioritized over environmental protection	l			0.536	0.290	0.710	1.014

Table 8: 4 factor solution same for all technologies

code	Items	regulated industri-localisation aliza-market tion	private develop-Comm ment	nunality Unic	ueness Comp	plexity
Pro Private ownership	All businesses and industries should be owned privately		0.508	0.274	0.726	1.121
Environment over Development	Polluting industries that spoil the environment should be shut down even if it costs people their jobs	e	-0.464	0.428	0.572	2.548
Pro Public ownership	The government should own most large businesses and industries		-0.43	0.433	0.567	3.201

Table 9: Eigenvalues and Variance Explained for Rotated Factor Solution $\,$

Property	MR1 MR3 MR4 MR2
SS loadings	1.2151.1911.0911.037
Proportion Var	0.0870.0850.0780.074
Cumulative Var	0.0870.1720.2500.324
Proportion Explained	0.2680.2630.2410.229
Cumulative Proportion	n0.2680.5310.7711.000

Linear Models: Perceived Risk X 4 Factor Solution(separate scale)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:34

Table 10: Perceived Risk X 4 Factor Solution(separate scale)

		Dependent variable:	,
	Risky Nuclear	Risky Solar	Risky Coal
	(1)	$(\overline{2})$	$(\overline{3})$
Uppercaste	-0.116	0.001	-0.070
11	(0.102)	(0.072)	(0.088)
Male	0.107	-0.023	0.001
	(0.108)	(0.078)	(0.095)
Hindu	-0.009	-0.121	0.196^{*}
	(0.120)	(0.088)	(0.104)
UrbanUrban	0.197^{*}	-0.064	0.174^{*}
	(0.105)	(0.080)	(0.095)
age	-0.155***	-0.023	0.003
	(0.043)	(0.031)	(0.038)
StateRajasthan	0.474***	-1.602***	0.081
	(0.166)	(0.116)	(0.139)
StateTamil Nadu	-0.251	-1.721***	-1.434^{***}
	(0.189)	(0.138)	(0.169)
StateUttar Pradesh	0.111	-1.248***	-0.763***
	(0.188)	(0.137)	(0.163)
StateWest Bengal	1.444***	-1.309***	0.372**
_	(0.199)	(0.151)	(0.182)
regulateindustry	0.071	0.080**	0.210***
	(0.055)	(0.041)	(0.049)
ocalisation	0.101^*	0.069^{*}	0.139***
	(0.052)	(0.038)	(0.046)
reemarket	-0.085^*	0.049	-0.093**
	(0.047)	(0.036)	(0.043)
ovtdevelopment	-0.095	0.010	-0.002
	(0.060)	(0.042)	(0.051)
Constant	3.282***	2.990***	3.163***
	(0.167)	(0.125)	(0.148)
Observations	609	686	644
\mathbb{R}^2	0.157	0.434	0.242
Adjusted R^2	0.139	0.423	0.226
Residual Std. Error	1.088 (df = 595)	0.838 (df = 672)	0.969 (df = 630)
F Statistic	$8.539^{***} (df = 13; 595)$	$39.620^{***} (df = 13; 672)$	$15.450^{***} (df = 13; 63)$

Note: *p<0.1; **p<0.05; ***p<0.01

Linear Models: : Perceived Risk X 4 Factor Solution (separate scale)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:35

Table 11: Perceived Risk X 4 Factor Solution (separate scale)

		(1	
		Dependent variable:	
	Ben_Nuclear	Ben_Solar	Ben_Coal
	$\frac{(1)}{-0.155^*}$	(2)	$\frac{(3)}{-0.263^{***}}$
Uppercaste	-0.155*	-0.084	-0.263***
1 1	(0.085)	(0.072)	(0.081)
	, ,	,	,
Male	-0.00003	-0.022	[0.129]
	(0.089)	(0.077)	(0.090)
II:n d.,	0.378***	0.172**	0.110
Hindu			
	(0.100)	(0.087)	(0.097)
UrbanUrban	0.079	0.082	0.104
013011013011	(0.089)	(0.078)	(0.091)
	, ,	` ′	, ,
age	0.009	-0.026	0.044
	(0.035)	(0.030)	(0.038)
C/ / D : /1	0.510***	0.792***	0.005**
StateRajasthan	-0.516***		-0.265**
	(0.139)	(0.115)	(0.130)
StateTamil Nadu	0.042	0.398***	-0.064
State railii raaa	(0.157)	(0.137)	(0.162)
	,	(0.191)	,
StateUttar Pradesh	-0.775***	0.251^*	-0.772***
	(0.160)	(0.137)	(0.155)
C . III . D . 1	0.400	at at at at at state	
StateWest Bengal	-0.102	1.111***	-0.256
	(0.171)	(0.150)	(0.173)
regulateindustry	0.276***	0.093**	0.283***
regulatementstry	(0.047)	(0.040)	(0.047)
	, ,	(0.040)	, ,
localisation	0.184***	0.029	0.179***
	(0.042)	(0.037)	(0.044)
	0.050444	0.044	0.4.00***
freemarket	0.358***	-0.041	0.186***
	(0.039)	(0.034)	(0.040)
pvtdevelopment	0.080^{*}	0.064	0.094*
pvidevelopment	(0.049)	(0.042)	(0.049)
	(0.049)	, ,	, ,
Constant	3.265^{***}	3.298***	3.249***
	(0.139)	(0.122)	(0.140)
	` ′	` ,	` ,
Observations	626	701	625
\mathbb{R}^2	0.253	0.187	0.165
Adjusted \mathbb{R}^2	0.237	0.171	0.147
Residual Std. Error	0.915 (df = 612)	0.833 (df = 687)	0.901 (df = 611)
F Statistic	$15.953^{***} (df = 13; 612)$		$9.291^{***} (df = 13; 611)$
\overline{Note} :		*p<(0.1; **p<0.05; ***p<0.01
		P	, r 10.00

19

Linear Models: Acceptance(Risk-Benefit) X 4 Factor Solution (separate scale)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:35

Table 12: Acceptance(Risk-Benefit) X 4 Factor Solution (separate scale)

	1 (Dependent variable:	
	Nuclear	Solar	Coal
		(2)	(3)
age	(1) 0.134**	-0.010	0.007
0-	(0.058)	(0.045)	(0.055)
Uppercaste	-0.072	-0.102	-0.181
Oppereasie	(0.136)	(0.102)	(0.116)
	, ,	,	, ,
Male	-0.066	0.005	0.115
	(0.145)	(0.114)	(0.128)
Hindu	0.393**	0.301**	-0.138
IIIIaa	(0.159)	(0.129)	(0.138)
	` ,	` ,	` ,
UrbanUrban	-0.153	0.151	-0.063
	(0.142)	(0.117)	(0.129)
StateRajasthan	-0.971***	2.415***	-0.243
Statertajastiiaii	(0.222)	(0.170)	(0.185)
~	, ,	, ,	, ,
StateTamil Nadu	[0.225]	2.211***	1.425***
	(0.255)	(0.203)	(0.235)
StateUttar Pradesh	-0.926^{***}	1.514***	0.046
State C ttal T Tagesh	(0.254)	(0.201)	(0.221)
G	, ,	, ,	, ,
StateWest Bengal	-1.537^{***}	2.428***	-0.529^{**}
	(0.270)	(0.221)	(0.245)
regulateindustry	0.203***	0.022	0.052
	(0.075)	(0.060)	(0.066)
1 1:	0.071	0.042	0.001
localisation	0.071	-0.043	0.021
	(0.069)	(0.055)	(0.062)
freemarket	0.402^{***}	-0.109**	0.219***
	(0.064)	(0.052)	(0.059)
pvtdevelopment	0.167**	0.057	0.114
pytdevelopment	(0.080)	(0.062)	(0.070)
	(0.000)	(0.002)	(0.070)
Constant	0.041	0.311*	0.141
	(0.224)	(0.183)	(0.199)
Observations	588	678	606
R ²	0.178	0.440	0.165
Adjusted R^2	0.178	$0.440 \\ 0.429$	0.146
Residual Std. Error	1.433 (df = 574)	1.219 (df = 664)	1.265 (df = 592)
F Statistic	9.552^{***} (df = 13; 574)	40.206^{***} (df = 13; 664)	8.968^{***} (df = 13; 592)
Note:	(-1 10, 011)	, , ,	0.1; **p<0.05; ***p<0.01
11000.		p<0	,, p<0.00, p<0.01

20

${\bf 2}$ factor solution (Characteristics of the perceiver)

Table 13: 4 factor solution same for all technologies

code	Items	MR1	MR2	Communality Un	iqueness Co	omplexity
Anti Mechanisation of work	Rapid mechanization of work is taking away jobs from workers in this country	0.521		0.273	0.727	1.008
Pro Regulations	Regardless of ownership, the government should pass strong regulations and implement them	0.494		0.277	0.723	1.265
Anti Large Industries	Large corporations are destroying the local industries in India and benefiting only a handful of people	0.487		0.246	0.754	1.074
Limits on Wealth	A limit should be put to how much wealth a person can amass	0.477		0.249	0.751	1.185
Pro Large Industries	Large scale industries are required for the development of the country that will benefit everyone	of 0.452		0.205	0.795	1.007
Pro Centralisation	Laws and policies would be implemented more smoothly more power lay with the central government	if _{0.445}		0.216	0.784	1.179
Pro Globaleconomy	Foreign companies have led to a range of benefits for the Indian people and society	0.435		0.191	0.809	1.018
Anti Regulations	There is too much red-tape and the government should not interfere with businesses and industries	0.423		0.193	0.807	1.157
Pro Decentralisation	Local politicians shouldn't have to ask permission from the central government to implement policies			0.113	0.887	1.658
Pro Localeconomy	India would be better off if foreign companies didn't com to here	ıe		0.108	0.892	1.720
Environment over Development	Polluting industries that spoil the environment should be shut down even if it costs people their jobs	e	0.522	0.408	0.592	1.797
Development over Environment	Economic growth and creating jobs should be prioritized over environmental protection		-0.509	0.262	0.738	1.022
Pro Public ownership	The government should own most large businesses and industries	0.445	0.488	0.436	0.564	1.983
Pro Private ownership	All businesses and industries should be owned privately		-0.481	0.244	0.756	1.108

Table 13: 4 factor solution same for all technologies

code	Items	MR1	MR2	Communality Uniqueness Complexity
code	TUEIRS	MIKI	MR2	Communanty Offiqueness Complexity

Linear Models: Perceived Risk X 2 factor solution (separate scale)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:36

Table 14: Perceived Risk X 2 factor solution (separate scale)

		Dependent variable:	
	Risky Nuclear	Risky_Solar	Risky Coal
	$\overline{(1)}$	$(\overline{2})$	$(\overline{3})$
Uppercaste	-0.114	0.002	-0.054
	(0.102)	(0.072)	(0.090)
Male	0.101	-0.023	0.003
	(0.109)	(0.078)	(0.096)
Hindu	-0.001	-0.119	0.207*
1111144	(0.120)	(0.088)	(0.106)
UrbanUrban	0.197*	-0.064	0.173*
OrbanOrban	(0.106)	(0.080)	(0.097)
	-0.163***	,	,
age	-0.163 (0.042)	-0.025 (0.030)	-0.014 (0.038)
G	` /	, ,	, ,
StateRajasthan	0.444***	-1.618^{***}	0.061
	(0.159)	(0.109)	(0.134)
StateTamil Nadu	-0.183	-1.715^{***}	-1.286^{***}
	(0.184)	(0.135)	(0.168)
StateUttar Pradesh	0.125	-1.255***	-0.729^{***}
	(0.187)	(0.136)	(0.166)
StateWest Bengal	1.478***	-1.309***	0.486***
	(0.192)	(0.145)	(0.179)
MR1	0.024	0.117***	0.122**
1,1101	(0.056)	(0.041)	(0.050)
MR2	0.128**	0.005	0.044
1/111/2	(0.064)	(0.045)	(0.055)
Q	,	,	,
Constant	3.289***	2.993***	3.149***
	(0.167)	(0.124)	(0.151)
Observations	609	686	644
\mathbb{R}^2	0.149	0.434	0.207
Adjusted R ²	0.134	0.425	0.193
Residual Std. Error	1.091 (df = 597)	0.837 (df = 674)	0.989 (df = 632)
F Statistic	$9.540^{***} (df = 11; 597)$	$46.935^{***} (df = 11; 674)$	$\frac{14.992^{***} (df = 11; 632)}{(0.1; **p < 0.05; ***p < 0.05)}$

Note: *p<0.1; **p<0.05; ***p<0.01

Linear Models: Perceived Benefit X 2 FA solution (separate scales)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:36

Table 15: Perceived Benefit X 2 FA solution (separate scales)

		Dependent variable:	
	Ben Nuclear	Ben Solar	Ben Coal
	$\overline{}(1)$	$\overline{(2)}$	$\overline{(3)}$
Uppercaste	-0.162*	-0.078	-0.258***
	(0.085)	(0.072)	(0.081)
Male	0.007	-0.022	0.127
	(0.089)	(0.077)	(0.090)
Hindu	0.376***	0.174**	0.118
	(0.100)	(0.088)	(0.097)
UrbanUrban	0.077	0.079	0.095
	(0.089)	(0.079)	(0.091)
age	0.013	-0.037	0.040
	(0.034)	(0.030)	(0.037)
StateRajasthan	-0.499^{***}	0.797***	-0.266**
v	(0.133)	(0.110)	(0.124)
StateTamil Nadu	0.018	0.475***	0.031
	(0.152)	(0.134)	(0.156)
StateUttar Pradesh	-0.783^{***}	0.275**	-0.761^{***}
	(0.159)	(0.137)	(0.155)
StateWest Bengal	-0.116	1.178***	-0.201
	(0.164)	(0.146)	(0.167)
MR1	0.486***	0.041	0.373***
	(0.047)	(0.041)	(0.047)
MR2	-0.059	-0.052	-0.067
	(0.052)	(0.045)	(0.052)
Constant	3.258***	3.295***	3.236***
	(0.140)	(0.123)	(0.140)
Observations	626	701	625
\mathbb{R}^2	0.247	0.174	0.157
Adjusted R^2	0.233	0.161	0.142
Residual Std. Error	0.918 (df = 614)	0.838 (df = 689)	0.904 (df = 613)
F Statistic	$18.290^{***} (df = 11; 614)$	$13.194^{***} (df = 11; 689)$	$10.380^{***} (df = 11; 613)$
Note:		*p<	(0.1; **p<0.05; ***p<0.01

^{##} Factor Analysis using method = minres

^{##} Standardized loadings (pattern matrix) based upon correlation matrix

##		item	MR1	MR2	h2	u2	com
##	Health risk(nuclear)	3	0.86		0.74	0.26	1.0
##	Pollution risk(nuclear)	2	0.73		0.54	0.46	1.0
##	Spoils Natural Beauty(nuclear)	4	0.69		0.48	0.52	1.0
##	Displacement risk(nuclear)	1	0.51		0.28	0.72	1.1
##	National pride(nuclear)	6		0.65	0.43	0.57	1.0
##	National development(nuclear)	7		0.64	0.44	0.56	1.2
##	Local prosperity(nuclear)	8		0.63	0.42	0.58	1.1

^{##} Call: fa(r = Nuclear2, nfactors = 2, rotate = "varimax")

```
## Community pride(nuclear)
                             5
                                           0.59 0.38 0.62 1.2
##
##
                        MR1 MR2
## SS loadings
                        2.11 1.61
## Proportion Var
                        0.26 0.20
## Cumulative Var
                        0.26 0.46
## Proportion Explained 0.57 0.43
## Cumulative Proportion 0.57 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
## df null model = 28 with the objective function = 2.26 with Chi Square = 1045.26
\#\# df of the model are 13 and the objective function was 0.16
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.06
## The harmonic n.obs is 467 with the empirical chi square 48.57 with prob < 5.2e-06
## The total n.obs was 467 with Likelihood Chi Square = 76 with prob < 6.2e-11
## Tucker Lewis Index of factoring reliability = 0.866
## RMSEA index = 0.102 and the 90 % confidence intervals are 0.08 0.125
## BIC = -3.91
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
                                                   MR1 MR2
## Correlation of (regression) scores with factors 0.92 0.86
## Multiple R square of scores with factors
                                                   0.84 0.74
## Minimum correlation of possible factor scores
                                                 0.69 0.47
```

FA on Separate scale: Scale 2: Characteristics of the Technology(2 factor solution)

Nuclear Energy: positive (alpha = 0.73) and negative (alpha = 0.79) characteristics (2 factor solution)

Table 16: Separate scale 2 factor solution: Nuclear energy

code	Items	Social CostsPride	Communality Un	iqueness (Complexity
Health risk(nuclear)	Nuclear energy poses a great risk to the health of people living around it	0.859	0.738	0.262	1.000
$Pollution\ risk(nuclear)$	Nuclear energy increases pollution of air/water/land	0.73	0.541	0.459	1.031
Spoils Natural Beauty(nuclear)	Nuclear energy spoils the natural beauty of the landscape	0.692	0.479	0.521	1.002
$\begin{array}{c} {\rm Displacement} \\ {\rm risk(nuclear)} \end{array}$	Nuclear energy is leading to displacement of people from their land	0.51	0.275	0.725	1.115
National pride(nuclear)	Nuclear energy is a mark of pride for our nation	0.654	0.432	0.568	1.023
National development(nuclear)	Nuclear energy pushes forward the country's development	0.638	0.441	0.559	1.168
Local prosperity(nuclear	r)Nuclear energy brings economic prosperity to the surrounding regions	0.63	0.422	0.578	1.126
Community pride(nuclear)	I would be proud if my community used nuclear energy	0.593	0.383	0.617	1.175

Table 17: Eigenvalues and Variance Explained for Rotated Factor Solution

Property	Social_CostsPride
SS loadings	2.1061.606
Proportion Var	0.2630.201
Cumulative Var	0.2630.464
Proportion Explained	0.5670.433
Cumulative Proportion	n 0.5671.000

```
##
## Call:
## lm(formula = Risky Nuclear ~ Uppercaste + Male + Hindu + Urban +
##
       age + State + socialcosts + pride, data = Nuclearwscores2)
##
## Residuals:
##
       Min
                  1Q
                      Median
## -2.68987 -0.68716 0.06119 0.60552
                                        2.48833
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                  0.15836 18.663 < 2e-16 ***
## (Intercept)
                       2.95539
## Uppercaste
                      -0.01360
                                  0.10074
                                           -0.135
                                                    0.8926
                                  0.10872 -1.203
                                                    0.2296
## Male
                     -0.13078
## Hindu
                      -0.09259
                                  0.10803 -0.857
                                                    0.3919
## UrbanUrban
                       0.07682
                                  0.10463
                                           0.734
                                                    0.4632
## age
                       0.08810
                                  0.04837
                                            1.821
                                                    0.0692 .
## StateRajasthan
                                           2.381
                       0.40252
                                 0.16905
                                                    0.0177 *
## StateTamil Nadu
                       1.45348
                                 0.20709
                                           7.019 8.55e-12 ***
## StateUttar Pradesh 0.23762
                                 0.17026
                                            1.396
                                                    0.1635
## StateWest Bengal
                                 0.17523
                                           7.576 2.14e-13 ***
                       1.32747
## socialcosts
                       0.10745
                                  0.05585
                                            1.924
                                                    0.0550 .
## pride
                       0.22645
                                  0.05087
                                            4.452 1.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9341 on 439 degrees of freedom
     (16 observations deleted due to missingness)
## Multiple R-squared: 0.3015, Adjusted R-squared: 0.284
## F-statistic: 17.23 on 11 and 439 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = Ben_Nuclear ~ Uppercaste + Male + Hindu + Urban +
##
       age + State + socialcosts + pride, data = Nuclearwscores2)
##
## Residuals:
                  10
                     Median
                                    30
                                            Max
## -2.56084 -0.56917 -0.06033 0.71307
                                        2.37365
## Coefficients:
```

```
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 0.16851 18.849 < 2e-16 ***
                      3.17637
## Uppercaste
                     -0.28702
                                 0.10762 -2.667 0.00793 **
## Male
                                          0.496 0.61979
                      0.05770
                                0.11622
## Hindu
                      0.30107
                                0.11499
                                          2.618 0.00914 **
## UrbanUrban
                                         1.874 0.06160 .
                      0.20845 0.11124
                     -0.08402 0.05161 -1.628 0.10425
## age
                                0.18027 -1.122 0.26234
## StateRajasthan
                     -0.20233
                                0.21989 -1.290 0.19779
## StateTamil Nadu
                     -0.28362
## StateUttar Pradesh -0.21817
                                0.18224 -1.197 0.23190
## StateWest Bengal
                      0.20319
                                 0.18827
                                          1.079 0.28106
## socialcosts
                                 0.05988
                                          1.946 0.05230
                      0.11652
## pride
                      0.29774
                                 0.05516
                                          5.398 1.1e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.001 on 443 degrees of freedom
     (12 observations deleted due to missingness)
## Multiple R-squared: 0.1262, Adjusted R-squared: 0.1045
## F-statistic: 5.814 on 11 and 443 DF, p-value: 8.02e-09
##
## Call:
## lm(formula = Risky_Nuclear ~ Uppercaste + Male + Hindu + Urban +
##
      age + State + socialcosts + pride, data = Nuclearwscores3)
##
## Residuals:
##
       Min
                 1Q
                      Median
## -2.68987 -0.68716 0.06119 0.60552 2.48833
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                 0.15836 18.663 < 2e-16 ***
## (Intercept)
                      2.95539
## Uppercaste
                                 0.10074 -0.135
                                                  0.8926
                     -0.01360
## Male
                                 0.10872 -1.203
                                                  0.2296
                     -0.13078
## Hindu
                                 0.10803 -0.857
                                                  0.3919
                     -0.09259
## UrbanUrban
                      0.07682
                              0.10463
                                         0.734
                                                  0.4632
## age
                      0.08810
                              0.04837
                                         1.821
                                                  0.0692 .
## StateRajasthan
                                         2.381
                      0.40252
                                0.16905
                                                  0.0177 *
## StateTamil Nadu
                      1.45348
                              0.20709
                                         7.019 8.55e-12 ***
## StateUttar Pradesh 0.23762 0.17026
                                         1.396
                                                  0.1635
## StateWest Bengal
                      1.32747 0.17523
                                          7.576 2.14e-13 ***
## socialcosts
                      0.10745
                                 0.05585
                                          1.924
                                                  0.0550 .
## pride
                      0.22645
                                 0.05087
                                          4.452 1.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9341 on 439 degrees of freedom
## Multiple R-squared: 0.3015, Adjusted R-squared: 0.284
## F-statistic: 17.23 on 11 and 439 DF, p-value: < 2.2e-16
```

Solar Energy: positive (alpha =0.85) and negative (alpha =0.81) characteristics (2 factor solution) ## Factor Analysis using method = minres ## Call: fa(r = Solar2, nfactors = 2, rotate = "varimax") ## Standardized loadings (pattern matrix) based upon correlation matrix MR1 MR2 h2 u2 com ## item ## National development(Solar) 7 0.83 0.70 0.30 1.0 ## National pride(Solar) 6 0.82 0.67 0.33 1.0 ## Local prosperity(Solar) 0.65 0.35 1.0 8 0.80 ## Community pride(Solar) 5 0.80 0.67 0.33 1.1 ## Health risk(Solar) 3 0.82 0.68 0.32 1.0 2 ## Pollution risk(Solar) 0.81 0.68 0.32 1.1 ## Spoils Natural Beauty(Solar) 0.65 0.42 0.58 1.0 ## Displacement risk(Solar) 0.59 0.35 0.65 1.0 MR1 MR2 ## SS loadings 2.69 2.13 ## Proportion Var 0.34 0.27 ## Cumulative Var 0.34 0.60 ## Proportion Explained 0.56 0.44 ## Cumulative Proportion 0.56 1.00 ## Mean item complexity = 1 ## Test of the hypothesis that 2 factors are sufficient. ## ## df null model = 28 with the objective function = 3.73 with Chi Square = 2283.32 ## df of the model are 13 and the objective function was 0.07

The root mean square of the residuals (RMSR) is 0.02
The df corrected root mean square of the residuals is 0.03

Tucker Lewis Index of factoring reliability = 0.969

Fit based upon off diagonal values = 1
Measures of factor score adequacy

BIC = -37.94

The harmonic n.obs is 617 with the empirical chi square 12.5 with prob < 0.49 ## The total n.obs was 617 with Likelihood Chi Square = 45.58 with prob < 1.7e-05

RMSEA index = 0.064 and the 90 % confidence intervals are 0.044 0.084

##	MR1	MR2
## Correlation of (regression) scores with factor	rs 0.94	0.92
## Multiple R square of scores with factors	0.89	0.84
## Minimum correlation of possible factor scores	0.77	0.68

Table 18: Separate scale 2 factor solution: Solar energy

code	Items	Pride	Social Costs Com	munality Ur	niqueness Co	mplexity
National development(Solar)	Solar energy pushes forward the country's development	0.83		0.698	0.302	1.025
National pride(Solar)	Solar energy is a mark of pride for our nation	0.818		0.669	0.331	1.000
Local prosperity(Solar)	Solar energy brings economic prosperity to the surrounding regions	0.804		0.648	0.352	1.005
Community pride(Sola	r) I would be proud if my community used solar energy	0.801		0.667	0.333	1.080
$Health\ risk(Solar)$	Solar energy poses a great risk to the health of people living around it		0.823	0.684	0.316	1.021
$Pollution\ risk(Solar)$	Solar energy increases pollution of air/water/land		0.806	0.680	0.320	1.094
Spoils Natural Beauty(Solar)	Solar energy spoils the natural beauty of the landscape		0.647	0.422	0.578	1.017
Displacement risk(Sola	x)Solar energy is leading to displacement of people from their land		0.59	0.348	0.652	1.001

Table 19: Eigenvalues and Variance Explained for Rotated Factor Solution

Property	${\bf PrideSocial_}$	_Costs
SS loadings	2.687	2.129
Proportion Var	0.336	0.266
Cumulative Var	0.336	0.602
Proportion Explained	0.558	0.442
Cumulative Proportion	n0.558	1.000

```
##
## Call:
## lm(formula = Risky_Solar ~ Uppercaste + Male + Hindu + Urban +
##
       age + State + pride + socialcosts, data = Solarwscores2)
##
## Residuals:
##
      Min
                1Q Median
                               3Q
## -1.8949 -0.5353 -0.1545 0.3593 3.7745
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                 0.13333 21.347 < 2e-16 ***
## (Intercept)
                      2.84619
## Uppercaste
                     -0.08132
                                 0.07925
                                          -1.026
                                                    0.305
                                 0.08710 -0.473
                                                    0.636
## Male
                     -0.04120
## Hindu
                     -0.11529
                                 0.09031 -1.277
                                                    0.202
                                 0.08707 -1.339
## UrbanUrban
                     -0.11661
                                                    0.181
                                          0.351
## age
                      0.01209
                                 0.03448
                                                    0.726
                                 0.13282 -10.905 < 2e-16 ***
## StateRajasthan
                     -1.44844
## StateTamil Nadu
                     -1.45727
                                 0.15266 -9.546 < 2e-16 ***
## StateUttar Pradesh -1.16088
                                 0.14359 -8.085 3.52e-15 ***
## StateWest Bengal
                    -1.05363
                                 0.14252 -7.393 4.93e-13 ***
## pride
                      0.03100
                                 0.04511
                                          0.687
                                                    0.492
## socialcosts
                      0.08313
                                 0.04580
                                                    0.070 .
                                           1.815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.873 on 592 degrees of freedom
     (13 observations deleted due to missingness)
## Multiple R-squared: 0.3933, Adjusted R-squared: 0.382
## F-statistic: 34.89 on 11 and 592 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = Ben_Solar ~ Uppercaste + Male + Hindu + Urban +
##
       age + State + KahanH + KahanS + pride + socialcosts, data = Solarwscores2)
##
## Residuals:
       Min
                 10
                     Median
                                   30
                                           Max
## -3.09665 -0.36332 -0.09527 0.61588 2.10050
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   ## Uppercaste
                  -0.131669
                           0.075748 -1.738 0.082683 .
## Male
                  0.034569 0.082830 0.417 0.676577
## Hindu
                  0.155051 0.086322 1.796 0.072968 .
## UrbanUrban
                  -0.032985 0.081896 -0.403 0.687266
## age
                  -0.017383 0.032351 -0.537 0.591243
                  ## StateRajasthan
## StateTamil Nadu
                   ## StateUttar Pradesh -0.008497
                           0.142059 -0.060 0.952324
## StateWest Bengal
                 0.545084
                           0.144327 3.777 0.000175 ***
## KahanH
                   0.132315
                            0.058307 2.269 0.023608 *
## KahanS
                            0.060399 -0.105 0.916146
                  -0.006362
## pride
                  0.218994
                            0.043488 5.036 6.31e-07 ***
## socialcosts
                  -0.066542
                            0.044650 -1.490 0.136671
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8318 on 598 degrees of freedom
    (5 observations deleted due to missingness)
## Multiple R-squared: 0.2298, Adjusted R-squared: 0.2131
## F-statistic: 13.73 on 13 and 598 DF, p-value: < 2.2e-16
```

Measures of factor score adequacy

Coal: positive (alpha = 0.67) and negative (alphs = 0.72) characteristics (2 factor solution) ## Factor Analysis using method = minres ## Call: fa(r = Coal2, nfactors = 2, rotate = "varimax") ## Standardized loadings (pattern matrix) based upon correlation matrix MR1 MR2 h2 u2 com ## item ## Pollution risk(Coal) 2 0.71 0.50 0.50 1.0 ## Health risk(Coal) 3 0.66 0.45 0.55 1.0 ## Spoils Natural Beauty(Coal) 4 0.64 0.43 0.57 1.1 ## Displacement risk(Coal) 1 0.49 0.24 0.76 1.0 ## National pride(Coal) 6 0.71 0.50 0.50 1.0 ## Community pride(Coal) 5 0.62 0.38 0.62 1.0 ## National development(Coal) 0.53 0.40 0.60 1.7 ## Local prosperity(Coal) 0.49 0.32 0.68 1.6 ## MR1 MR2 ## SS loadings 1.79 1.43 ## Proportion Var 0.22 0.18 ## Cumulative Var 0.22 0.40 ## Proportion Explained 0.56 0.44 ## Cumulative Proportion 0.56 1.00 ## Mean item complexity = 1.2 ## Test of the hypothesis that 2 factors are sufficient. ## ## df null model = 28 with the objective function = 1.71 with Chi Square = 1054.46 ## df of the model are 13 and the objective function was 0.15 ## The root mean square of the residuals (RMSR) is 0.04 ## The df corrected root mean square of the residuals is 0.06 ## The harmonic n.obs is 621 with the empirical chi square 63.83 with prob < 1.1e-08 ## The total n.obs was 621 with Likelihood Chi Square = 94.07 with prob < 2.3e-14 ## Tucker Lewis Index of factoring reliability = 0.83 ## RMSEA index = 0.1 and the 90 % confidence intervals are 0.082 0.12 ## BIC = 10.46## Fit based upon off diagonal values = 0.98

##	MR1	MR2
## Correlation of (regression) scores with factors	0.87	0.84
## Multiple R square of scores with factors	0.75	0.71
## Minimum correlation of possible factor scores	0.50	0.41

Table 20: Separate scale 2 factor solution: Coal

code	Items	Social Costs Pride	Communality Ur	niqueness Co	omplexity
Pollution risk(Coal)	Coal powered plants increases pollution of air/water/land	0.705	0.498	0.502	1.005
${\it Health\ risk}({\it Coal})$	Coal powered plants poses a great risk to the health of people living arount	$^{\mathrm{und}}$ 0.662	0.447	0.553	1.043
Spoils Natural Beauty(Coal)	Coal powered plants spoils the natural beauty of the landscape	0.642	0.429	0.571	1.078
Displacement risk(Coa	l) Coal powered plants is leading to displacement of people from their lar	nd 0.486	0.236	0.764	1.000
National pride(Coal)	Coal powered plants is a mark of pride for our nation	0.705	0.504	0.496	1.026
Community pride(Coa	l) I would be proud if my community used Coal powered plants	0.618	0.382	0.618	1.005
$\begin{array}{c} {\rm National} \\ {\rm development(Coal)} \end{array}$	Coal powered plants pushes forward the country's development	0.535	0.401	0.599	1.691
Local prosperity(Coal)	Coal powered plants brings economic prosperity to the surrounding regi	ons 0.488	0.324	0.676	1.634

Table 21: Eigenvalues and Variance Explained for Rotated Factor Solution $\,$

Property	Social_CostsPride
SS loadings	1.7921.430
Proportion Var	0.2240.179
Cumulative Var	0.2240.403
Proportion Explained	0.5560.444
Cumulative Proportion	n 0.5561.000

Linear Models: Perceived Risk X positive and negative characteristics of the technology

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:39

Table 22: LMs with separate scale 2 FA solution: Perceived Risk

	$\overline{Dependent\ variable}:$		
	Risky Nuclear Risky Solar Risky Coal		
	$\frac{\sqrt{1}}{1}$	$(\overline{2})$	(3)
Uppercaste	-0.014	-0.081	0.012
11	(0.101)	(0.079)	(0.084)
Male	-0.131	-0.041	0.023
	(0.109)	(0.087)	(0.094)
Hindu	-0.093	-0.115	0.177^{*}
	(0.108)	(0.090)	(0.096)
UrbanUrban	0.077	-0.117	0.079
	(0.105)	(0.087)	(0.091)
age	0.088*	0.012	0.153***
	(0.048)	(0.034)	(0.040)
StateRajasthan	0.403**	-1.448^{***}	-0.275^{**}
	(0.169)	(0.133)	(0.129)
StateTamil Nadu	1.453***	-1.457^{***}	-0.947^{***}
	(0.207)	(0.153)	(0.203)
StateUttar Pradesh	0.238	-1.161^{***}	-0.978***
	(0.170)	(0.144)	(0.150)
StateWest Bengal	1.327***	-1.054***	-0.222^*
	(0.175)	(0.143)	(0.128)
socialcosts	0.107^{*}	0.083^{*}	0.423***
	(0.056)	(0.046)	(0.044)
pride	0.226***	0.031	0.067
	(0.051)	(0.045)	(0.041)
Constant	2.955***	2.846***	2.995***
	(0.158)	(0.133)	(0.140)
Observations	451	604	607
\mathbb{R}^2	0.301	0.393	0.205
Adjusted R ²	0.284	0.382	0.190
Residual Std. Error	0.934 (df = 439)	0.873 (df = 592)	0.935 (df = 595)
F Statistic	$17.226^{***} (df = 11; 439)$	$34.885^{***} (df = 11; 592)$	$13.913^{***} (df = 11; 595)$

*p<0.1; **p<0.05; ***p<0.01

Linear Models: Perceived Benefit X positive and negative characteristics of the technology

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:39

Table 23: LMs with separate scale 2 FA solution: Perceived Benefit

Ben_Nuclear		Dependent variable:		
$\begin{array}{c} \text{Male} & (0.108) & (0.076) & (0.084) \\ \text{Male} & 0.058 & 0.035 & 0.148 \\ (0.116) & (0.083) & (0.094) \\ \text{Hindu} & 0.301^{***} & 0.155^* & 0.129 \\ (0.115) & (0.086) & (0.096) \\ \text{UrbanUrban} & 0.208^* & -0.033 & 0.167^* \\ (0.111) & (0.082) & (0.092) \\ \text{age} & -0.084 & -0.017 & 0.018 \\ (0.052) & (0.032) & (0.040) \\ \text{StateRajasthan} & -0.202 & 0.369^{***} & -0.180 \\ (0.180) & (0.129) & (0.128) \\ \text{StateTamil Nadu} & -0.284 & 0.454^{***} & -0.361^* \\ (0.020) & (0.155) & (0.199) \\ \text{StateUttar Pradesh} & -0.218 & -0.008 & -0.359^{**} \\ (0.182) & (0.142) & (0.151) \\ \text{StateWest Bengal} & 0.203 & 0.545^{***} & -0.570^{***} \\ (0.188) & (0.144) & (0.128) \\ \text{KahanH} & & & & & & & & & & & & & & & & & & &$		Ben_Nuclear	Ben_Solar	Ben_Coal
$\begin{array}{c} \text{Male} & (0.108) & (0.076) & (0.084) \\ \text{Male} & 0.058 & 0.035 & 0.148 \\ (0.116) & (0.083) & (0.094) \\ \text{Hindu} & 0.301^{***} & 0.155^* & 0.129 \\ (0.115) & (0.086) & (0.096) \\ \text{UrbanUrban} & 0.208^* & -0.033 & 0.167^* \\ (0.111) & (0.082) & (0.092) \\ \text{age} & -0.084 & -0.017 & 0.018 \\ (0.052) & (0.032) & (0.040) \\ \text{StateRajasthan} & -0.202 & 0.369^{***} & -0.180 \\ (0.180) & (0.129) & (0.128) \\ \text{StateTamil Nadu} & -0.284 & 0.454^{***} & -0.361^* \\ (0.020) & (0.155) & (0.199) \\ \text{StateUttar Pradesh} & -0.218 & -0.008 & -0.359^{**} \\ (0.182) & (0.142) & (0.151) \\ \text{StateWest Bengal} & 0.203 & 0.545^{***} & -0.570^{***} \\ (0.188) & (0.144) & (0.128) \\ \text{KahanH} & 0.132^{**} \\ \text{KahanS} & -0.006 \\ \text{Socialcosts} & 0.117^* & -0.067 & 0.241^{***} \\ (0.060) & \text{socialcosts} & 0.117^* & -0.067 & 0.241^{***} \\ (0.060) & \text{socialcosts} & 0.117^* & -0.067 & 0.241^{***} \\ \text{(0.055)} & (0.043) & (0.043) \\ \text{pride} & 0.298^{***} & 0.219^{***} & 0.313^{***} \\ (0.055) & (0.043) & (0.040) \\ \text{Constant} & 3.176^{***} & 3.487^{***} & 3.079^{***} \\ \text{(0.169)} & (0.129) & (0.129) & (0.141) \\ \text{Observations} & 455 & 612 & 603 \\ \text{R}^2 & 0.126 & 0.230 & 0.177 \\ \text{Adjusted R}^2 & 0.104 & 0.213 & 0.161 \\ \text{Residual Std. Error} & 1.001 (df = 443) & 0.832 (df = 598) & 0.931 (df = 591) \\ \text{F Statistic} & 5.814^{***} (df = 11; 443) & 3.726^{***} (df = 13; 598) & 11.537^{***} (df = 11; 591) \\ \end{array}$		(1)	(2)	(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uppercaste			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.108)	(0.076)	(0.084)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Male	0.058	0.035	0.148
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.116)	(0.083)	(0.094)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hindu	0.301***	0.155^{*}	0.129
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.115)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UrbanUrban	0.208*	-0.033	0.167*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	age	-0.084	-0.017	0.018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateRajasthan	-0.202	0.369***	-0.180
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	StateTamil Nadu	-0.284	0.454***	-0.361*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	StateUttar Pradesh	-0.218	-0.008	-0.359**
	StateWest Bengal	0.203	0.545***	-0.570***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KahanH		0.132**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KahanS		-0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.060)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	socialcosts	0.117*	-0.067	0.241***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.060)	(0.045)	(0.043)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pride	0.298***	0.219***	0.313***
	r		(0.043)	
	Constant	3.176***	3.487***	3.079***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Observations	455	612	603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}^2			
Residual Std. Error 1.001 (df = 443) 0.832 (df = 598) 0.931 (df = 591) F Statistic 5.814*** (df = 11; 443) 13.726*** (df = 13; 598) 11.537*** (df = 11; 591)				
F Statistic 5.814^{***} (df = 11; 443) 13.726^{***} (df = 13; 598) 11.537^{***} (df = 11; 591)			0.219 0.832 (df - 508)	
		5.814^{***} (df = 11: 443)	$13.726^{***} (df = 13:598)$	$11.537^{***} (df = 11:591)$
	Note:	(==, 115)		1 /

37

Linear Models: Acceptance (Benefit - Risk) ${\bf X}$ positive and negative characteristics of the technology

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Jan 10, 2024 - 10:07:40

Table 24: LMs with separate scale 2 FA solution: Perceived Benefit

	Dependent variable:		
	Nuclear	Solar	Coal
	(1)	(2)	(3)
age	-0.180***	-0.023	-0.149***
	(0.067)	(0.051)	(0.053)
Uppercaste	-0.262*	-0.059	-0.210*
	(0.141)	(0.116)	(0.110)
Male	0.211	0.086	0.140
	(0.153)	(0.128)	(0.122)
Hindu	0.432***	0.288**	-0.079
	(0.151)	(0.133)	(0.126)
UrbanUrban	0.169	0.124	0.084
	(0.146)	(0.128)	(0.120)
StateRajasthan	-0.588**	1.891***	0.103
	(0.235)	(0.196)	(0.168)
StateTamil Nadu	-1.756***	2.066***	0.648**
	(0.290)	(0.224)	(0.266)
StateUttar Pradesh	-0.445^*	1.218***	0.579***
	(0.238)	(0.211)	(0.198)
StateWest Bengal	-1.180***	1.713***	-0.332**
	(0.247)	(0.210)	(0.167)
socialcosts	-0.0002	-0.164**	-0.187^{***}
	(0.078)	(0.067)	(0.057)
pride	0.072	0.225***	0.245***
r	(0.072)	(0.066)	(0.053)
Constant	0.164	0.536***	0.131
	(0.221)	(0.196)	(0.184)
Observations	446	601	599
$ m R^2$	0.189	0.420	0.091
Adjusted R^2	0.168	0.420	0.074
Residual Std. Error	1.299 (df = 434)	1.277 (df = 589)	1.213 (df = 587)
F Statistic	$9.166^{***} (df = 434)$	$38.840^{***} (df = 589)$	
	, , ,	*p<(

38