Linear Algebra

Riddhiman

July 2023

1 Preface

Self study Linear Algebra notes. Source is *Vector Calculus*, *Linear Algebra*, and *Differential Geometry* by John and Barbara Hubbard. These notes will start from Section 1.3. Notes for Sections 1.1 and 1.2 will be added later.

2 Matrix Multiplication as Linear Transformation

Definition 2.1 (Linear transformation from \mathbb{R}^n to \mathbb{R}^m): A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a mapping such that for all scalars a and for all $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$,

$$T(\vec{\mathbf{v}} + \vec{\mathbf{w}}) = T(\vec{\mathbf{v}}) + T(\vec{\mathbf{w}}) \text{ and } T(a\vec{\mathbf{v}}) = aT(\vec{\mathbf{v}})$$
 (2.1)

This above was the definition of a linear transformation. The following theorem will relate matrices to linear transformation.

Theorem 2.1 (Matrices and linear transformation)

1. Any $m \times n$ matrix A defines a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by matrix multiplication:

$$T(\vec{\mathbf{v}}) = A\vec{\mathbf{v}}.\tag{2.2}$$

2. Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is given by multiplication by the $m \times n$ matrix [T]:

$$T(\vec{\mathbf{v}}) = [T]\vec{\mathbf{v}},\tag{2.3}$$

where the i^{th} column of [T] is $T(\vec{\mathbf{e}}_i)$.

Proof to part 2 of Theorem 2.1. Given that our domain is \mathbb{R}^n we can write any vector $\vec{\mathbf{v}} \in \mathbb{R}^n$ as

$$\vec{\mathbf{v}} = u_1 \vec{\mathbf{e}}_1 + u_2 \vec{\mathbf{e}}_2 + \ldots + u_n \vec{\mathbf{e}}_n = \sum_{i=1}^n u_i \vec{\mathbf{e}}_i$$

Thus,

$$T(\vec{\mathbf{v}}) = T\left(\sum_{i=1}^{n} u_i \vec{\mathbf{e}}_i\right)$$
$$= \sum_{i=1}^{n} u_i T(\vec{\mathbf{e}}_i)$$

Also note that since every i^{th} column of [T] is $T(\vec{\mathbf{e}}_i)$. When [T] is multiplied by $\vec{\mathbf{v}}$, the i^{th} of the resultant column vector can be denoted as $u_1T(\vec{\mathbf{e}}_1) + \ldots + u_nT(\vec{\mathbf{e}}_n)$ which is just $T(\vec{\mathbf{v}})$.

2.1 Finding the matrix of a linear transformation

By Theorem 2.1 is it clear that to find the matrix say [T] associated with the linear transformation T we have to find what T does to the basis vectors $\vec{\mathbf{e}}_i$.

For example, consider a straight line passing through the origin of \mathbb{R}^2 . Also consider two arbitrary vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$. We wish to find the resultant vectors when $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are reflected about the line. Using the figure below it is easy to see that the act of reflecting vectors about a straight line passing through the origin is a linear transformation. Let this transformation be called T.

Figure 2.1: Reflection is linear

Recall that the first column of [T] is $T\begin{pmatrix} 1\\0 \end{pmatrix}$, and thus the second column is $T\begin{pmatrix} 0\\1 \end{pmatrix}$. Let the line make an angle θ with the x-axis. Then the matrix comes out to be

$$[T] = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

Now just multiply this matrix by any vector to get the reflected vector. This is how matrices behave – they encode linear transformations.

Another example of a linear transformation is the projection matrix. This matrix projects given vectors onto a certain line passing through the origin. If said line is

making an angle θ with the x-axis then the matrix is

$$\begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

In both the cases above, how the where the basis vectors land after applying the transformation was found by basic trigonometry.

2.2 Geometry interpretation of linear transformation

A linear transformation may be applied to entire subsets of \mathbb{R}^n instead of just individual vectors. Here are some transformations, their matrix representations, and how each point in \mathbb{R}^n behaves when transformed.

Example 2.1 (Identity transformation): The identity transformation : $\mathbb{R}^n \to \mathbb{R}^n$ is represented by I_n . Applying this transformation to a subset of \mathbb{R}^n leaves it unchanged.

Example 2.2 (Scaling transformation): This transformation T enlarges everything by a factor of a and is given by $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$.

Example 2.3 (Stretching transformation): These transformations are of the form $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. It will stretch the unit square into a rectangle.

Example 2.4 (Rotation transformation): This is a transformation R which rotates the subset by an angle θ in the counterclockwise around the origin. This is given by

$$[R] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(a) The scaling transformation given by $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ turns the unit square into the square with side length 2

(b) The linear transformation given by $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ stretches the unit circle into an ellipse

Theorem 2.2 (Composition corresponds to matrix multiplication)

Suppose $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^l$ are linear transformations given by the matrices [S] and [T] respectively. Then the $[T \circ S]$ is linear and

$$[T \circ S] = [T][S] \tag{2.4}$$

Proof. First we will prove that $T \circ S$ is indeed a linear transformation. Hence, consider the following

$$(T \circ S)(a\vec{\mathbf{v}} + b\vec{\mathbf{w}}) = T(S(a\vec{\mathbf{v}} + b\vec{\mathbf{w}})) = T(aS(\vec{\mathbf{v}}) + bS(\vec{\mathbf{w}}))$$

$$= T(aS(\vec{\mathbf{v}})) + T(bS(\vec{\mathbf{w}}))$$

$$= aT(S(\vec{\mathbf{v}})) + T(S(\vec{\mathbf{w}}))$$

$$= a(T \circ S)(\vec{\mathbf{v}}) + b(T \circ S)(\vec{\mathbf{w}}).$$

This shows that $T \circ S$ is a linear transformation has a corresponding matrix $[T \circ S]$. Now we have to prove Equation 2.4. For this we will use the following two facts:

- 1. $A\vec{\mathbf{e}}_i$ is the i^{th} column of A.
- 2. The i^{th} column of AB is $A\vec{\mathbf{b}}_i$ where $\vec{\mathbf{b}}_i$ is the i^{th} column of B.

Now,

$$[T \circ S]\vec{\mathbf{e}}_i = (T \circ S)(\vec{\mathbf{e}}_i) = T(S(\vec{\mathbf{e}}_i)) = T([S]\vec{\mathbf{e}}_i) = [T]([S]\vec{\mathbf{e}}_i). \tag{2.5}$$

Notice that by fact (1), $[T \circ S]\vec{\mathbf{e}}_i$ is the i^{th} column of $[T \circ S]$ and that $[S]\vec{\mathbf{e}}_i$ is the i^{th} column of [S], and thus by fact (2), $[T]([S]\vec{\mathbf{e}}_i)$ becomes the i^{th} column of [T][S]. Since the columns of $[T \circ S]$ and [T][S] are equivalent, they are the same matrix, which proves Equation 2.4.

Given below is an example desmostrating composition of linear transformations.

Figure 2.3: Result of applying $\begin{bmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ to the unit square.

2.3 Invertibility of matrices and linear transformations

Proposition 2.3

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible if and only if the $m \times n$ matrix [T] is invertible. If it is invertible, then

$$[T^{-1}] = [T]^{-1} (2.6)$$

Before we prove this lets first break it down a bit. This proposition has essentially two statements which we have to prove,

- A linear transformation T is invertible if [T] is invertible.
- [T] is invertible if the linear transformation T is invertible and $[T^{-1}] = [T]^{-1}$.

Proof. We prove the statements one by one.

Assume that [T] is invertible. To prove that $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible we just have to prove that T is both one-one and onto. Consider a vector $\vec{\mathbf{y}} \in \mathbb{R}^m$ and a transformation $S: \mathbb{R}^m \to \mathbb{R}^n$ such that $[S] = [T]^{-1}$. Thus we can write

$$\vec{\mathbf{y}} = ([T][S])\vec{\mathbf{y}} = T(S(\vec{\mathbf{y}})),$$

This is enough to prove that T is onto, since $\vec{\mathbf{y}}$ can be any vector in \mathbb{R}^m and it always has a solution $S(\vec{\mathbf{y}})$ in \mathbb{R}^n . Next we prove that T is one-one. Assume two vectors $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_1 \in \mathbb{R}^n$ and that $T(\vec{\mathbf{x}}_1) = T(\vec{\mathbf{x}}_2)$. Thus,

$$\vec{\mathbf{x}}_1 = ([S][T])\vec{\mathbf{x}}_1 = S(T(\vec{\mathbf{x}}_1)) = S(T(\vec{\mathbf{x}}_2)) = ([S][T])\vec{\mathbf{x}}_2 = \vec{\mathbf{x}}_2.$$

Thus T is one-one. Hence, if [T] is invertible then T is also invertible. But aren't we assuming that S is injective here?

Now we will prove the second statement. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible. We will first prove that $T^{-1}: \mathbb{R}^m \to \mathbb{R}^n$ is also linear (and hence has a matrix $[T^{-1}]$ associated with it). This is proved by the following computation. Let $\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2 \in \mathbb{R}^m$, then

$$T(aT^{-1}(\vec{\mathbf{y}}_1) + bT^{-1}(\vec{\mathbf{y}}_2)) = aT(T^{-1}(\vec{\mathbf{y}}_1)) + bT(T^{-1}(\vec{\mathbf{y}}_2)) = a\vec{\mathbf{y}}_1 + b\vec{\mathbf{y}}_2$$

= $T \circ T^{-1}(a\vec{\mathbf{y}}_1 + b\vec{\mathbf{y}}_2)$.

Since, T is one-one, we can conclude that $aT^{-1}(\vec{\mathbf{y}}_1) + bT^{-1}(\vec{\mathbf{y}}_2) = T^{-1}(a\vec{\mathbf{y}}_1 + b\vec{\mathbf{y}}_2)$ proving that T^{-1} is linear. Now we are left to prove that $[T^{-1}] = [T]^{-1}$.

3 The geometry of \mathbb{R}^n

3.1 The dot product

Just everyone's favourite dot product. Also known as the standard inner product.

Definition 3.1 (Dot product): The dot product $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}$ of two vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$ is

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \coloneqq x_1 y_1 + x_2 y_2 + \dots + x_n y_n. \tag{3.1}$$

The dot product is commutative, distributive and can be denoted as matrix multiplication:

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \vec{\mathbf{x}}^\top \vec{\mathbf{y}} = \vec{\mathbf{y}}^\top \vec{\mathbf{x}}.$$

. Similarly, matrix multiplication can be viewed in form of dot products. Now we define length in terms of dot product.

Definition 3.2 (Length of a vector):