

Algebra

Alessandro D'Andrea

6. Crittografia RSA

Richiami

- $ightharpoonup (\mathbb{Z}/n)^{\times}$ è un gruppo rispetto alla moltiplicazione
- ► Teorema di Eulero: se gli elementi invertibili in \mathbb{Z}/n sono in totale $\varphi(n)$, allora $a^{\varphi(n)} \equiv 1 \mod n$ non appena MCD(a, n) = 1.
- Oggi: Come calcolare potenze modulo n sia di elementi invertibili che di elementi non invertibili
- Crittografia RSA

Potenze modulo *n*

Supponiamo di voler calcolare 2¹²³⁴ modulo 101. Strade possibili:

- ► Calcoliamo 2¹²³⁴ e poi calcoliamo il resto nella divisione per 101
- Calcoliamo le potenze di 2 modulo 101 moltiplicando ogni precedente potenza per 2
- Utilizziamo in modo intelligente il Teorema di Eulero

Potenze, caso invertibile - I

La base 2 è invertibile modulo 101.

▶ Se MCD(a, n) = 1, allora $a^{\varphi(n)} \equiv 1 \mod n$.

Poiché 101 è primo, $\varphi(101) = 100$. Allora

$$2^{100} \equiv 1 \mod 101.$$

Quindi

$$2^{1234} = 2^{12 \cdot 100 + 34} = (2^{100})^{12} \cdot 2^{34} \equiv 1^{12} \cdot 2^{34} \equiv 2^{34} \mod 101.$$

Calcolare 234 è più semplice, o quantomeno più rapido.

Potenze, caso invertibile - II

$$2^{2}$$
 = 4
 $2^{4} = (2^{2})^{2}$ = 4^{2} = 16
 $2^{8} = (2^{4})^{2}$ = 16^{2} = 256 \equiv 54 mod 101
 $2^{16} = (2^{8})^{2}$ \equiv 54² = 2916 \equiv -13 mod 101
 $2^{32} = (2^{16})^{2}$ \equiv (-13)² = 169 \equiv 68 mod 101
 $2^{34} = 2^{32} \cdot 2^{2} \equiv 68 \cdot 4$ = 272 \equiv 70 mod 101

In conclusione,

$$2^{1234} \equiv 2^{34} \equiv 70 \mod 101.$$

Potenze, caso non invertibile - I

Abbiamo imparato a calcolare rapidamente una potenza mod *n* quando la base è invertibile.

Calcoliamo 2^{1234} modulo 100. Problema: $MCD(2, 100) = 2 \neq 1$.

Il teorema cinese dei resti ci dice che possiamo calcolare un numero modulo 4 e modulo 25 e poi mettere insieme queste informazioni.

Sappiamo che $2^2 \equiv 0 \mod 4$, quindi ogni potenza successiva è 0.

Ora calcoliamo 2¹²³⁴ mod 25.

Potenze, caso non invertibile - II

Per quanto riguarda $2^{1234} \mod 25$, abbiamo $\varphi(25) = 20$ e MCD(2, 25) = 1. Poiché

$$1234 = 61 \cdot 20 + 14$$

allora

$$2^{1234} \equiv 2^{14} \mod 25.$$

$$2^{2}$$
 = 4
 $2^{4} = (2^{2})^{2}$ = 4^{2} = 16
 $2^{8} = (2^{4})^{2}$ = 16^{2} = $256 \equiv 6 \mod 25$

$$2^{14} = 2^8 \cdot 2^4 \cdot 2^2 \equiv (6 \cdot 16) \cdot 4 = -16 \equiv 9 \mod 25$$

Potenze, caso non invertibile - III

$$\begin{cases} 2^{1234} \equiv 0 \mod 4 \\ 2^{1234} \equiv 9 \mod 25. \end{cases}$$

Risolviamo allora

$$\begin{cases} x \equiv 0 \mod 4 \\ x \equiv 9 \mod 25. \end{cases}$$

Abbiamo x = 9 + 25t. Sostituendo, $9 + 25t \equiv 0 \mod 4$, cioè

$$t \equiv -1 \mod 4$$
.

Allora t = -1 + 4s, e sostituendo nuovamente, x = 9 + 25(-1 + 4s), cioè

$$x \equiv -16 \equiv 84 \mod 100$$
.

In conclusione, $2^{1234} \equiv 84 \mod 100$.

Potenze modulo N = pq

Se N = pq, dove p < q sono primi, allora $\varphi(N) = (p-1)(q-1)$.

- ▶ Se MCD(a, N) = 1, allora $a^{\varphi(N)} \equiv 1 \mod N$.
 - $ightharpoonup a^{\varphi(N)+1} \equiv a \mod N$;
 - $ho a^{k\varphi(N)+1} \equiv a \mod N.$
- ▶ Se MCD(a, N) = p, allora
 - $a^{q-1} \equiv 1 \mod q$
 - $ightharpoonup a^q \equiv a \mod q$
 - ▶ $a^n \equiv 0 \mod p$ per ogni $n \ge 1$
 - $a^q = a^{(q-1)+1} \equiv a \mod pq = N$
 - $a^{h(q-1)+1} \equiv a \mod N.$
 - $a^{\varphi(N)+1} \equiv a \mod N.$
 - $ho a^{k\varphi(N)+1} \equiv a \mod N.$
- ▶ Se MCD(a, N) = q oppure pq, succede la stessa cosa.

Le potenze di a modulo N=pq si ripetono ogni $\varphi(N)$ esponenti, a prescindere dal valore di a.

Ho bisogno di ricevere messaggi sicuri.

- Rendo pubblica una chiave per codificare i messaggi che devono essermi inviati
- Tengo privata una chiave per decodificare i messaggi che ho ricevuto codificati
- Codificare, se si è in possesso della chiave pubblica, deve essere una procedura rapida
- Decodificare, se si è in possesso della chiave privata, deve essere una procedura rapida
- Decodificare, se non si è in possesso della chiave privata, deve essere una procedura molto lenta
- Ricavare la chiave privata dalla chiave pubblica deve essere una procedura molto lenta

Problema: trovare uno schema crittografico che abbia tutte queste proprietà.

Crittografia RSA - I

Lo schema crittografico RSA possiede (più o meno) tutte queste proprietà.

Messaggio in chiaro: $0 \le m < N = pq$.

Chiave (pubblica) di codifica: $1 \le d < \varphi(N)$, scelto in modo che \overline{d} sia invertibile mod $\varphi(N)$.

Codifica: $m \mapsto m^d \mod N$.

Un computer calcola rapidamente $m^d \mod N$.

Per decodificare devo estrarre la radice d.esima di m^d modulo N.

Crittografia RSA - II

Se d è invertibile modulo $\varphi(N)$, posso calcolare il suo inverso h con l'algoritmo euclideo e l'identità di Bézout.

Chiave (privata) di decodifica: $1 \le h < \varphi(N)$, scelto in modo che \overline{h} sia l'inverso di \overline{d} in $\mod \varphi(N)$.

Se $dh \equiv 1 \mod \varphi(N)$, allora

$$(m^d)^h = m^{dh} = m^{1+k\varphi(N)} \equiv m \mod N.$$

Decodifica: $m \mapsto m^h \mod N$.

Un computer calcola rapidamente $m^h \mod N$.

Crittografia RSA - III

Chi ha prodotto le chiavi ha scelto due numeri primi p, q che conosce, e li ha moltiplicati ottenendo N = pq. I numeri p e q sono tenuti privati, mentre N viene reso pubblico.

Chi ha prodotto le chiavi può calcolare facilmente

$$\varphi(N) = \varphi(pq) = (p-1)(q-1) = N+1-(p+q).$$

Conoscere $\varphi(N)$ è equivalente a conoscere la fattorizzazione N = pq, perché da N e da $\varphi(N)$ si ricava la somma p + q.

Non sono note procedure rapide per fattorizzare un numero (grande). Sono invece note procedure rapide per trovare primi grandi.

Trovare due primi grandi e moltiplicarli è veloce. Fattorizzare il prodotto così ottenuto richiede molto tempo.

Crittografia RSA - IV

Nella pratica:

- ➤ Si producono due numeri primi *p*, *q* di 1024 cifre binarie, cioè circa 300 cifre decimali. (richiede secondi)
- ▶ Si calcola il prodotto N = pq e si sceglie $1 < d < \varphi(N)$ in modo che \overline{d} sia invertibile mod N. (pressoché immediato)
- ▶ Si calcola l'inverso \overline{h} di \overline{d} . Si ottiene 1 < h < $\varphi(N)$. (pressoché immediato)
- ▶ Si rendono pubblici *N*, *d*. Si tiene privato *h*.
- ► Tutti possono codificare un messaggio utilizzando N, d. (frazioni di secondo)
- Tutti possono decodificare un messaggio se conoscono h. (frazioni di secondo)
- Conoscere h è (pressoché) equivalente a fattorizzare N. (Allo stato attuale: svariate decine di anni utilizzando una rete molto grande di sistemi dedicati?)

Anticipazioni

Fra qualche lezione, cercheremo di capire, qualitativamente, come trovare primi grandi.

Avremo bisogno di capire come funzionano le congruenze quadratiche.