» Classification with Two Classes

- * Will Johnny like or dislike the pie?
- * Training data:

- Features: Shape (round, square, triangle), filling (white, gray, dark), crust (thick, thin, light, dark), size (big, small) etc
- To make prediction match features of pie against previous examples from training data

» Classification with Two Classes

* Examples:

- * Movies reviews: positive or negative?
- * Images: Does a picture contain human faces?
- * Finance: Is person applying for a loan likely to repay it?
- * Advertising: If display an ad on web page is the person likely to click on it?
- * Online transactions: fraudulent or not?
- * Tumor: malignant or benign?
- As before x="input" variable/features e.g. text of email, location, nationality
- Now y="output" variable/"target" variable only takes values

 1 or 1 (with linear regression y was real valued). In
 classification y often referred to as the label¹.
- We want to build a classifier that predicts the label of a new object e.g whether a new email is spam or not.

 $^{^{1}}$ Note could also use values 0 and 1 rather than -1 and 1, leave this as an exercise

» Logistic Regression: Model

- * As before $\theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$ with $x_0 = 1$, x_1, \dots, x_n the input features and $\theta_0, \dots, \theta_n$ the (unknown) parameters.
- * Model: $sign(\theta^T x)$ i.e. predict output +1 when $\theta^T x > 0$ and output -1 when $\theta^T x < 0$. Decision boundary is $\theta^T x = 0$ (green line in plot above)
- * $\theta^T x = 0$ defines a point in one dimension e.g. $1 + 0.5x_1 = 0 \rightarrow x_1 = -2 \dots$
- * ... a line in two dimensions e.g.
- $2 + x_1 + 2x_2 = 0 \Rightarrow x_2 = -x_1/2 1 \dots$
- * .. and a plane in higher dimensions

» Logistic Regression: Decision Boundary

* Example: suppose x is vector $\mathbf{x} = [1, \mathbf{x}_1, \mathbf{x}_2]^T$ e.g. \mathbf{x}_1 might be tumour size and \mathbf{x}_2 patient age.

- * $\theta_0 = 0$, $\theta_1 = 0.5$, $\theta_2 = -0.5$.
- * $sign(\theta^T x) = +1$ when $0.5x_1 0.5x_2 > 0$ i.e. when $x_1 > x_2$.
- When data can be separated in this way we say that it is linearly separable.
- Often the 3D plot on left is sketched in 2D as shown in right (easier to draw!)

» Logistic Regression: Decision Boundary

* Not all data is linearly separable e.g.

* Training data:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

$$* \mathbf{x} \in \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \mathbf{x}_0 = 1, \mathbf{y} \in \{-1, 1\}$$

- * Model: $h_{\theta}(\mathbf{x}) = sign(\theta^T \mathbf{x})$
- * How to choose parameters heta ?

- * Model: $sign(\theta^Tx)$ i.e. predict output +1 when $\theta^Tx>0$ and output -1 when $\theta^Tx<0$
- * Suppose we try square error $\frac{1}{m}\sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})^2$.
 - Roughly speaking, minimising square error fits the same line to the data that we would fit by eye
 - * Works ok on left-hand plot above: $sign(\theta^T x) = -1$ for points to the left of green line and $sign(\theta^T x) = +1$ for points to the right.
 - * Not so good in right-hand plot data points far to the right pull point where $\theta^{\mathsf{T}} x$ crosses zero to the right, so causing misclassification

* We might consider the 0-1 loss function:

$$\frac{1}{m}\sum_{i=1}^{m}\mathbb{I}(h_{\theta}(\mathbf{x}^{(i)})\neq\mathbf{y}^{(i)})$$

where indicator function $\mathbb{I}=1$ if $h_{\theta}(\mathbf{x}^{(i)})\neq\mathbf{y}^{(i)}$ and $\mathbb{I}=0$ otherwise. But hard to work with.

* For logistic regression we use:

$$\frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)}\theta^{T} \mathbf{x}^{(i)}}) / \log(2)$$

noting that y = -1 or y = +1. Scaling by log(2) is optional, but makes the loss 1 when $y^{(i)}\theta^T x^{(i)} = 0$.

Loss function: $\log(1 + e^{-y\theta^Tx})/\log(2)$

- * So a small penalty when $\theta^T x \gg 0$ and y = 1, and when $\theta^T x \ll 0$ and y = -1.
- * Minimising this thus gives preference to θ values that push $\theta^T x$ well away from the decision boundary $\theta^T x = 0$.

» Summary

- * Model: $h_{\theta}(x) = sign(\theta^T x)$
- * Parameters: θ
- * Cost Function: $J(heta) = rac{1}{m} \sum_{i=1}^m \log(1 + m{e}^{-m{y}^{(i)} \, m{ heta}^T m{\chi}^{(i)}})$
- * Optimisation: Select θ that minimises $J(\theta)$

» Gradient Descent

As before, can find θ using gradient descent. For

$$\begin{split} J(\theta) &= \tfrac{1}{m} \sum_{i=1}^m \log(1 + \boldsymbol{e}^{-\boldsymbol{y}^{(i)} \boldsymbol{\theta}^T \boldsymbol{\chi}^{(i)}}) \colon \\ &* \ \tfrac{\partial}{\partial \theta_i} J(\theta) = \tfrac{1}{m} \sum_{i=1}^m -\boldsymbol{y}^{(i)} \boldsymbol{\chi}_j^{(i)} \tfrac{\boldsymbol{e}^{-\boldsymbol{y}^{(i)} \boldsymbol{\theta}^T \boldsymbol{\chi}^{(i)}}}{1 + \boldsymbol{e}^{-\boldsymbol{y}^{(i)} \boldsymbol{\theta}^T \boldsymbol{\chi}^{(i)}}} \end{split}$$

* (Remember
$$\frac{d \log(x)}{dx} = \frac{1}{x}$$
, $\frac{d \exp(x)}{dx} = exp(x)$ and chain rule $\frac{df(z(x))}{dx} = \frac{df}{dz}\frac{dz}{dx}$)

So gradient descent algorithm is:

- * Start with some θ
- * Repeat:

for
$$j$$
=0 to n $\{\delta_j := -\frac{\alpha}{m} \sum_{i=1}^m y^{(i)} x_j^{(i)} \frac{e^{-y^{(i)} \theta^{T_X^{(i)}}}}{1 + e^{-y^{(i)} \theta^{T_X^{(i)}}}} \}$ for j =0 to n $\{\theta_j := \theta_j + \delta_j \}$

 $*~J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

» Python sklearn

Logistic regression:

```
import numpy as np

Xtrain = np.random.uniform(0,1,100)

ytrain = np.sign(Xtrain-0.5)

Xtrain = Xtrain.reshape(-1, 1)

from sklearn.linear\model import LogisticRegression

model = LogisticRegression(penalty='none',solver='lbfgs')

model.ft(Xtrain, ytrain)

print''intercent %f. slope %f"%(model.intercent . model.coef ))
```

Typical output:

intercept -267.026565, slope 529.954559

- * Prediction $\hat{y} = sign(-267.026565 + 529.954559x)$
- * i.e. y = +1 when -267.026565 + 529.954559x > 0 and y = -1 when -267.026565 + 529.954559x < 0
- * i.e. y=+1 when x>267.026565/529.954559=0.50392 and y=-1 when x<267.026565/529.954559=0.5039
- * We generated data using y=+1 when x>0.5 and y=-1 when x<0.5. So model learned from training data is *roughly* correct, but not perfect. That's normal. *Why?*

» Python sklearn

Plotting predictions

```
import matplotlib.pyplot as plt
plt.rc('font', size=18)
plt.rcParams[figure.constrained_layout.use'] = True
plt.scatter(Xtrain, ytrain, color='grea', marker='+')
plt.scatter(Xtrain, ypred, color='green', marker='+')
plt.Alabel('input x'); plt.ylabel("output y")
plt.legend(['train', 'predict'])
plt.howl)
```


» Logistic Regression With Multiple Classes

* Examples:

- * Email folder tagging: work, friends, family, hobby
- * Weather, sunny, cloudy, rain, snow
- Given where I live in Dublin, predict which political party I'll vote for.
- * Now y="output" variable/"target" variable takes values 0,1,2,.... E.g. y = 0 if sunny, y = 1 if cloudy, y = 2 if rain etc.

» Logistic Regression With Multiple Classes

* Train a classifier $sign(\theta^Tx)$ for each class i to predict the probability that y=i. Training data: re-label data as y=-1 when $y\neq i$ and as y==1 when y=i, so we're back to a binary classification task.

» SVM: Choice of Cost Function

In an SVM use the "hinge" loss function $\max(0, 1 - y\theta^T x)$:

Main differences from logistic loss function:

- hinge-loss is not differentiable ("non-smooth")
- * hinge loss assigns zero penalty to all values of θ which ensure $\theta^T x \ge 1$ when y = 1, and $\theta^T x \le -1$ when y = -1

» SVM: Choice of Cost Function

In an SVM use the "hinge" loss function $\max(0, 1 - y\theta^T x)$:

- * So long as $y\theta^Tx>0$ then by scaling up θ sufficiently, e.g. to 10θ or 100θ , then we can always force $y\theta^Tx>1$ i.e. $\max(0,1-y\theta^Tx)=0$
- * To get sensible behaviour we have to penalise large values of θ . We do this by adding penalty $\theta^T\theta=\sum_{i=1}^n\theta_i^2$
- * Final SVM cost function is:

$$J(heta) = rac{1}{m} \sum_{i=1}^m \max(0, 1 - \mathbf{y}^{(i)} \mathbf{ heta}^T \mathbf{x}^{(i)}) + \mathbf{ heta}^T \mathbf{ heta} / \mathbf{C}$$

where C > 0 is a weighting parameter that we have to choose (making C bigger makes penalty less important).

» SVM Summary

- * Model: $h_{\theta}(x) = sign(\theta^T x)$
- * Parameters: θ
- $\overline{*}$ Cost Function: $J(heta) = rac{1}{m} \sum_{i=1}^m \max(0, 1 m{y}^{(i)} heta^T m{x}^{(i)}) + heta^T heta/\mathcal{C}$
- * Optimisation: Select θ that minimise $J(\theta)$
- Observe that only difference from Logistic Regression is in the choice of cost function.
- * SVM cost function:
 - * Includes penalty $\theta^T \theta/C$. We can also add a penalty like this to Logistic Regression though \to regularisation, we'll come back to this later
 - * Terms in sum are zero for points where $\mathbf{y}^{(i)} \mathbf{\theta}^T \mathbf{x}^{(i)} \geq 1 \to \mathsf{this}$ is the important difference.
 - * It means that training data points $(x^{(i)}, y^{(i)})$ with $y^{(i)}\theta^Tx^{(i)} \ge 1$ don't contribute to the cost function
 - * Only the training data points with $\mathbf{y}^{(i)} \theta^T \mathbf{x}^{(i)} < 1$ are relevant o support vectors. Can make computations more efficient.

» Gradient Descent for SVMs

Subgradient descent algorithm for SVMs is:

- * Start with some θ
- * Repeat:

for
$$j$$
=0 to n $\{\delta_j := -\alpha(2\theta_j/C - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)} \mathbb{1}(y^{(i)}\theta^Tx^{(i)} \leq 1))$ for j =0 to n $\{\theta_j := \theta_j + \delta_j\}$ where $\mathbb{1}(y^{(i)}\theta^Tx^{(i)} \leq 1) = 1$ when $y^{(i)}\theta^Tx^{(i)} \leq 1$ and zero otherwise.

 $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

» Python sklearn

Logistic regression:

from sklearn.svm import LinearSVC
model = LinearSVC(C=1.0).fit(Xtrain, ytrain)
print("intercept %f, slope %f"%(model.intercept_, model.coef_))

Typical output: intercept -1.890453, slope 3.867570

- * So prediction is y = +1 when x > 1.890453/3.867570 = 0.4888 and y = -1 when x < 0.4888
- * cf Logistic Regression:intercept -267.026565, slope 529.954559 i.e. y=+1 when x>0.5039 and y=-1 when x<0.5039
- * Recall penalty term encourages SVM to choose smaller θ . Changing to use ${\it C}=1000$ gives intercept -19.830632, slope 40.271028 i.e. decision boundary ${\it x}=19.830632/40.271028=0.4924$