

Optimality Properties and Low-Complexity Solutions to

Coordinated Multicell Transmission

Emil Björnson, Mats Bengtsson, Björn Ottersten

KTH Royal Institute of Technology ACCESS Linnaeus Center Stockholm, Sweden

GLOBECOM'10

Outline

- Introduction: Multicell Transmission
- How to measure performance?
 - Weighted sum performance
 - Simplified convex problem
- Common Optimality Properties
 - Power allocation and beamforming structure
- Low-Complexity Solution
 - Approximation suitable for distributed precoding
 - Evaluated on measured multicell channels

Intro: No Coordination

- Non-Cooperative Multicell Downlink
 - Conventional single cell processing
 - Interference at cell edge users uncontrollable
 - Can be improved by coordinating interference

Intro: Full Coordination

- Centralized Cooperative Multicell Downlink
 - Backhaul network and central station (CS)
 - Centralized processing as "one cell"
 - Impractical?

Intro: Dynamic Clusters

Practical Coordination Structure

- C_k = Coordinate interference to terminals
- \mathcal{D}_k = Data transmission to terminals
- Limits sharing of data and channel knowledge (full/no coordination are special cases)

System Model

Assumptions

- K_t base stations with N_t antennas
- K_r single-antenna user terminal
- $\mathbf{h}_k = \left[egin{array}{c} \mathbf{h}_{1k} \ dots \ \mathbf{h}_{K_t k} \end{array}
 ight]$ - Channel from all BSs to MS_k: - BS $_{j}$ knows \mathbf{h}_{jk} for $k \in \mathcal{C}_{j}$

Data Transmission

- Signal vector to MS_k: s_k

$$y_k = \mathbf{h}_k^H \mathbf{C}_k \sum_{\bar{k}=1}^{K_r} \mathbf{D}_{\bar{k}} \mathbf{s}_{\bar{k}} + \underline{n_k}$$

Sorts out signals from coordinating transmit **BSs**

Sorts out antennas

Noise and distant interference

GLOBECOM'10

System Model (2)

- Transmission Strategies
 - Signal correlation matrix: $\mathbf{S}_k = \mathbb{E}\{\mathbf{s}_k\mathbf{s}_k^H\}$
 - Arbitrary rank
- Power Constraints

- Per base station:
$$\sum_{k \in \mathcal{D}_j} \operatorname{tr}\{\underline{\mathbf{D}_{jk}}\mathbf{S}_k\mathbf{D}_{jk}^H\} \leq P_j$$

Sorts out antennas of BS_i

- Models hardware, regulations, economy, etc.
- Extension to arbitrary constraints: [Björnson2011]

How to Measure Performance?

- User Performance Measure: R_k
 - Increasing function of SINRs (depend on $\mathbf{S}_k = \mathbb{E}\{\mathbf{s}_k\mathbf{s}_k^H\}$)
 - E.g., data rate, bit error rate, MSE, etc.
- System Performance: Weighted Sum maximize $\mu_1 R_1 + \mu_2 R_2 + ...$ $s_1, s_2, ...$
 - Finds Pareto optimal points
 - Fairness depends on μ_1, μ_2, \dots

(P1): Weighted Sum Maximization

Optimization Problem

$$\begin{array}{ll} \text{maximize} & \sum\limits_{\mathbf{S}_1, \dots, \mathbf{S}_{K_r}}^{K_r} \sum\limits_{k=1}^{\mu_k R_k} (\mathbf{S}_1, \dots, \mathbf{S}_{K_r}, \sigma_k^2) \\ \text{subject to} & \sum\limits_{\bar{k} \in \mathcal{D}_j} \operatorname{tr}\{\mathbf{D}_{j\bar{k}} \mathbf{S}_{\bar{k}} \mathbf{D}_{j\bar{k}}^H\} \leq P_j \ \forall j \\ & \mathbf{S}_k \succeq \mathbf{0} \ \forall k. \end{array}$$

- Difficult Problem
 - Non-convex and NP-hard
 - Find structure of the optimal solution?

(P2): Quality of Service Constraints

- Given Performance/QoS Point $(\gamma_1, \ldots, \gamma_{K_r})$
 - Find strategy: $R_k \geq \gamma_k \ \forall k$
- What to Optimize?
 - Minimize power? ⇒ Solution may use too much power!
 - Instead: Best possible under power constraints
- Solution: Optimize worst noise $\alpha^2 \sigma_k^2$ that can be handled
 - lpha-parameter: Constraints $R_k \geq \gamma_k$ satisfied if $lpha \geq 1$

Second order cone Convex problem

maximize
$$c$$
 $S_1,...,S_{K_r},lpha$

$$\text{maximize} \quad \alpha \\ \text{S1,...,S}_{K_r,\alpha} \quad \alpha \\ \text{Subject to} \quad R_k(\mathbf{S}_1,\ldots,\mathbf{S}_{K_r},\alpha^2\sigma_k^2) \geq \gamma_k \ \ \forall k, \\ \mathbf{S}_k \succeq \mathbf{0}, \ \sum_{\bar{k} \in \mathcal{D}_i} \text{tr}\{\mathbf{D}_{j\bar{k}}\mathbf{S}_{\bar{k}}\mathbf{D}_{j\bar{k}}^H\} \leq P_j \ \ \forall j,k. \\ \end{cases}$$

Connection: (P1) and (P2)

- (P2) solves "half" the original problem!
- Price for convexity
 - Need to know optimal user QoS!
- (P1) and (P2): Common Properties
 - Equal if optimal performance of (P1) are constraints in (P2)
 - Properties of (P2) that holds for any $(\gamma_1,\ldots,\gamma_{K_r})$
 - These also holds for (P1)!

Optimality Property 1

Exists optimal solutions with

- 1. Full power usage (if $|\mathcal{C}_k| \leq N_t$)
- 2. Single-stream beamforming (i.e., $\mathbf{S}_k = \mathbf{w}_k \mathbf{w}_k^H$)
- Intuitive Results Non-trivial Proofs
 - Insufficient antennas: Power should be limited
 - Multi-stream solutions exists in special cases
- Allows Simplifications
 - Use total power at all transmitters
 - No SIC-receivers or vector coding required

GLOBECOM'10

Optimality Property 2

Uplink-downlink duality for (P2)

- Based on Lagrange duality theory
- Transmit beamformers ⇔ Receive filters

Motivation

- Easier to solve uplink problems

Optimality Property 3

Beamforming Parametrization

- Optimal strategies $\mathbf{S}_k = \mathbf{w}_k \mathbf{w}_k^H$ satisfy

$$\mathbf{w}_{k} = c_{k} \left(\sum_{j} a_{j} \mathbf{D}_{jk} + \sum_{\bar{k} \neq k} b_{\bar{k}} \mathbf{D}_{k}^{H} \mathbf{C}_{\bar{k}}^{H} \mathbf{h}_{\bar{k}} \mathbf{h}_{\bar{k}}^{H} \mathbf{C}_{\bar{k}} \mathbf{D}_{k} \right)^{-1} \mathbf{D}_{k}^{H} \mathbf{h}_{k}$$

for some parameters a_j , $b_{\overline{k}} \in [0,1]$.

- Optimal Strategies
 - Depends on $K_t + K_r$ parameters
 - Power allocation c_k also function of these
- New Approach: Find Good Parameters
 - Iterative search
 - Heuristic selection Easy to find good ones!

Simple Distributed Strategy

- Motivation: Centralized Solutions Require
 - Much backhaul signaling (CSI, data, sync)
 - High Computational Resources
- Distributed Low-Complexity Solution:
 - Select parameters a_j , $b_{\overline{k}}$ in Property 3 heuristically
 - Calculate independently on each BS
- Result
 - Distributed Virtual SINR (DVSINR) Beamforming
 - Tailored for weighted sum performance

Measurement-Based Evaluation

Multicell Channel Measurements

- Realistic urban scenario in Stockholm
- Correlation between BSs (usually ignored)
- Two sectorized 4-antenna BSs

BS: Rooftops

MS: Street level (4 users)

Measurement-Based Evaluation (2)

- Weighted Sum Rate
 - Data rate: $R_k(\cdot) = \log_2(1 + SINR_k)$
 - Proportional fairness
- Precoding Schemes
 - 1. Optimal Precoding
 - 2. Modified Optimal Precoding: $|\sum_{j} inter._{j}|^{2} \rightarrow \sum_{j} |inter._{j}|^{2}$

(No interference cancellation between BSs)

- 3. DVSINR Multicell (data from both BSs)
- 4. DVSINR Single-cell (date from one BS)
- 5. Single-cell processing

GLOBECOM'10

Measurement-Based Evaluation (3)

- Average Weighted Sum Rate
 - Large gain with interference coordination
 - Small gain with joint data: Both DVSINR approaches good

Measurement-Based Evaluation (4)

Average User Rates

- Large improvements for cell edge terminals
- Not all terminals benefit from multicell coordination

Summary

- Interference Limits Multicell Performance
 - Managed by multicell coordination
- Optimization: Weighted Sum Performance
 - Full power usage and single-stream beamforming
 - Simple parametrization of optimal beamforming
- Distributed Approximation: DVSINR
 - Heuristic use of parameterization
- Measurement-based Multicell Evaluation
 - Interference coordination greatly improves performance
 - Important measurement observations:
 - Not all terminals benefit from multicell coordination
 - Small practical benefit with joint data transmission

References

Journal version

- Includes multicarrier and arbitrary power constraints

E. Björnson, N. Jaldén, M. Bengtsson, B. Ottersten, "Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission," Submitted to IEEE Trans. on Signal Processing.

Previous work

E. Björnson, R. Zakhour, D. Gesbert, and B. Ottersten, "Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical strategies with instantaneous and statistical CSI," IEEE Trans. on Signal Processing, aug 2010.

E. Björnson and B. Ottersten, "On the Principles of Multicell Precoding with Centralized and Distributed Cooperation," in Proc. WCSP'09, 2009. **Best Paper Award**.

Thank You for Listening!

Questions?

Papers and Presentations Available: http://www.ee.kth.se/~emilbjo