落球法测定液体的粘度

姓名: 卢杨 学号: PB23000043 2024年5月6日

1 实验数据

表 1: 小球数据

大球 $r(/10^{-2}m)$	0.3018	0.3020	0.3020	0.3015	0.3021	0.3018
大球 $m(/10^{-3}kg)$	0.1136	0.1136	0.1136	0.1137	0.1128	0.1134
大球 $t(/s)$	4.16	4.23	4.21	4.17	4.20	4.23
中球 $r(/10^{-2}m)$	0.2518	0.2520	0.2516	0.2518	0.2517	0.2517
中球 $m(/10^{-3}kg)$	0.0657	0.0656	0.0655	0.0655	0.0651	0.0653
中球 $t(/s)$	5.87	6.03	5.96	5.94	5.88	6.00
小球 $r(/10^{-2}m)$	0.1820	0.1820	0.1820	0.1821	0.1820	0.1819
小球 $m(/10^{-3}kg)$	0.0245	0.0243	0.0245	0.0248	0.0246	0.0246
小球 $t(/s)$	11.05	10.97	11.29	11.11	11.22	11.20

表 2: 客观数据

密度 $\rho_0/10^3 kg/m^3$	0.956	0.956	0.956
温度 T	25.1	25.1	25.1
桶直径 $D/10^{-2}m$	8.160	8.154	8.162
桶高度 $h/10^{-2}m$	42.1	42.2	42.2
匀速区间 $l/10^{-2}m$	18.75		'

2 实验数据处理

2.1 求平均值

表 3: 球的数据平均值

大球 $r(/10^{-2}m)$	0.3018
大球 $m(/10^{-3}kg)$	0.1135
大球 $t(/s)$	4.2
中球 $r(/10^{-2}m)$	0.2517
中球 $m(/10^{-3}kg)$	0.06545
中球 $t(/s)$	5.9467
小球 $r(/10^{-2}m)$	0.1820
小球 $m(/10^{-3}kg)$	0.02455
小球 $t(/s)$	11.14

表 4: 客观数据平均值

密度 $\rho_0/10^3 kg/m^3$	0.956
温度 T	25.1
桶直径 $D/10^{-2}m$	8.1587
桶高度 $h/10^{-2}m$	42.167

2.2 求平均速度

使用公式 $v = \frac{l}{t}$ 即可计算求得

表 5: 球的速度平均值

大球 $v(/m \cdot s^{-1})$	0.04464
中球 $v(/m \cdot s^{-1})$	0.03153
小球 $v(/m \cdot s^{-1})$	0.01683

2.3 粘滞系数粗略计算

使用公式进行计算

$$\eta = \frac{(m - \rho_0 V)g}{6\pi vr}$$

其中, 取 $g = 9.8m/s^2$, 有

表 6: 粘滞系数粗略计算

大球	0.012723953962248125
中球	0.010112643568152217
小球	0.006936515802236658

2.4 粘滞系数修正

我们对雷诺数进行计算

$$R_e = \frac{2rv\rho_0}{\eta}$$

得到的

表 7: 雷诺数

大球	20.250368923783547
中球	15.008907960039814
小球	8.44372299050132

通过一级、二级、三级公式修正的结果如下

表 8: 粘滞系数修正

大球 η_0	0.010555639571414683
大球 η_1	-0.03775650328572819
大球 η_2	-0.05792156705830437
中球 η_0	0.00863779055194359
中球 η_1	-0.019820910050634896
中球 η_2	-0.032349243540126166
小球 η_0	0.0061776257546557189
小球 η_1	-0.00480425261159204
小球 η_2	-0.01053358787947256

2.5 结果分析和讨论

我们可以看到,其实到第二级修正之后就开始不符合实际了,其实这是因为雷诺数 R_e 的值过大采用原始式子

$$\eta = \frac{1}{18} \frac{(\rho_0 - \rho)gd^2}{v(1 + 1.24\frac{d}{2R})(1 + 3.3\frac{d}{2h})(1 + \frac{3}{16}R_e)}$$

可以进行重新计算,得到以下结果

表 9: 粘滞系数修正

大球 η	0.0022004924781837496
中球 η	0.0022646578424000913
小球 η	0.002391464227460848

可以看到这样修正之后的结果符合实际

3 思考题

- 1. 本实验可能引起误差的因素有哪些?
 - 小号球下落速度较慢, 秒表测量通过匀速区时间时容易测不准引起误差。
 - 未等液面平静就释放小球,液面晃动得扰动可能引起实验误差。
 - 小球释放点离液面较高,导致小球在进入液面时有较大的初速度,引起实验误差。
 - 测量时没有让视线与液面刻度线齐平,导致读数误差较大
- 2. 设容器内 N1 和 N2 之间为匀速下降区,那么对于同样材质但直径较大的球,该区间也是匀速下降区吗? 反过来呢?
 - 根据斯托克斯公式可以得出,在同一液体中(粘度系数不变),体积越大的小球匀速下降区越长,由此得出,对于直径较大的球,该区间不是匀速下降区,反过来,对于直径较小的球,该区间仍是匀速下降区。
- 3. 什么是雷诺系数? 说明其物理意义。结合实验,分析影响
 - 雷诺系数是惯性力和粘性力的比值,它可以用来判断流体的流动状态
 - 当存在雷诺数时,具体计算粘滞系数需要除以一个大于一的参量,从宏观上看,雷诺数增大, 是增大了物体在流体中的阻力
- 4. 本实验所采用的测液体粘滞系数的方法是否对一切液体都适用
 - 不是,斯托克斯公式是建立在牛顿黏度公式上的,非牛顿流体等其他流体不满足斯托克斯公 式,不能使用其进行粘滞系数的测量