- a) Compute the eigenvalues and eigenvectors of the matrix $A=\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$
- b) Given a matrix A for which an inverse exists, find the relationship between the eigenvalues of A and A^{-1} .
- c) Show that if λ is an eigenvalue of AB, then it is also an eigenvalue of BA where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n}$.
- a) We take the characteristic polynomial of A $X_{A}(N) = \det(A NI) = (4 N)(3 N) 2 1$ $= N^{2} 7N + 10$

Solving the quadratic equation yields $N_1 = 2$ and $N_2 = 5$. The conesponding eigenvectors are given by $V_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and $V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

b) Let $A = \begin{pmatrix} 70 \\ 01 \end{pmatrix}$, then $A^{-1} = A$. Let v be an eigenvector of an arbitrory invertible matrix B. Then:

$$BV = \lambda V \iff B^{-1}BV = \lambda BV$$

$$\iff V = \lambda BV$$

$$\iff \frac{1}{\lambda} = BV$$

hence, if) is an eigenvalue of B, then $\frac{1}{3}$ is an eigenvalue of B⁻¹ if $3 \neq 0$. If 3 = 0, then 3 is also an eigenvalue of B⁻¹ with eigenvector Bv.

C) Let is be an eigenvalue of AB with eigenvoctor v. We have

$$ABV = \lambda V \iff BA(BV) = \lambda(BV) | V' = BV \in \mathbb{R}^{h}$$

$$\iff BAV' = \lambda V'$$

Exercise 2.2 - Matrix Calculus

(0.5+1+1+1 points)

In this lecture we will often compute the derivatives of multivariate functions and matrix valued functions. Let $f: \mathbb{R}^n \to \mathbb{R}$; $w, x, c \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$. Prove that the following rules hold.

a)
$$f(x) = w^T x$$
, then $\nabla_x f(x) = w$

b)
$$f(x) = x^T A x$$
, then $\nabla_x f(x) = A x + A^T x$

c)
$$f(x) = ||Bx||_2^2$$
, then $\nabla_x f(x) = 2B^T B x$

d)
$$f(x) = ||Bx - c||_2^2$$
, then $\nabla_x f(x) = 2B^T (Bx - c)$

$$f(x) = \|Y\|_2^2 \text{ with } Y = Bx e R^n.$$

We can then apply the chain-rule to get the derivative of f w.v. f χ . We have $\|Y\|_2^2 = Y^T Y$

$$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial x} \cdot \frac{\partial y^{\dagger}}{\partial y} \in \mathbb{R}^{N \times 1}$$

If can be shown in an analogous way to a) that $\frac{\partial Y^T Y}{\partial V} = 2 Y$

For the second term of the chain rule, we have $\mathcal{B}_{X} = \begin{pmatrix} \sum_{i=1}^{n} b_{i} x_{i} \\ \sum_{i=1}^{n} b_{i} x_{i} \end{pmatrix} \in \mathbb{R}^{N}$

Which means that $\frac{\partial Y}{\partial x}$ is an $n \times n$ matrix, with $\left(\frac{\partial Y}{\partial x}\right)_{i\bar{i}} = \frac{\partial Y_i}{\partial x_j} = b_{\bar{j}i}$

Therefore $\frac{\partial Bx}{\partial x} = B^T$ and we have

$$\nabla f(x) = \beta^T \cdot 2Y = \beta^T 2\beta x = 2\beta^T \beta x$$

d) We can use the chain-rule again, but with Y = Bx - C. We still have $\frac{\partial Y}{\partial x} = B^T$, because C is a constant. The gradient is then given by $\nabla f_X(x) = 2B^T(Bx - C)$