TD6: Valeurs propres - Vecteurs propres

2020/2021

E3FI

Semestre 2

1 Cours

Définition 1. Un vecteur propre d'une application linéaire q est un vecteur \vec{x} dont l'image $q(\vec{x})$ $(g(\vec{x}) \neq 0)$ reste colinéaire à \vec{x} .

Définition 2. Etant donnée une application linéaire g de E dans E, un vecteur \vec{x} de E est un vecteur propre de g si et seulement si il existe un réel $\lambda \neq 0$ tel que $g(\vec{x}) = \lambda \vec{x}$. Le nombre λ est appelé valeur propre associée au vecteur propre \vec{x} pour g.

Remarque 1. Si A est la représentation matricielle de l'application linéaire L, un vecteur propre (resp. valeur propre) de A sera par définition un vecteur propre (resp. valeur propre) de l'application linéaire L.

Définition 3. Si λ est une valeur propre de l'application linéaire L, on note V_{λ} le sous-espace vectoriel de V engendré par les vecteurs propres associé à la valeur propre λ .

Rappel 1. Le polynôme caractéristique d'une matrice carrée A est $det(A - \lambda Id)$ (c'est un polynôme en λ).

Théorème 1. Les valeurs propre d'une matrice carrée sont les racines de son polynôme caractéristique.

Exemple 1. On considère la matrice $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

- (i) Montrons que le vecteur $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la la valeur propre 2.
- (ii) Montrons que le vecteur $\vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur propre dont on déterminera la valeur propre associée.
- (iii) Montrons que $\lambda = -1$ est une valeur propre dont on déterminera un vecteur propre associé.

(i)
$$A \times \vec{v} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2.\vec{v}$$

(ii)
$$A \times \vec{w} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3.\vec{w}$$

(iii) On cherche
$$(x, y, z)$$
 tel que : A. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$ ssi $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$ ssi $\begin{cases} 2x + z = -x \\ y + 2z = -y \\ 2y + z = -z \end{cases}$ ssi $\begin{cases} 3x = -z \\ z = -y \\ 2y = -2z \end{cases}$ on a donc $(x, y, z) = (3, 1, -1)$

$$ssi \begin{cases} 2x+z=-x \\ y+2z=-y \\ 2y+z=-z \end{cases} ssi \begin{cases} 3x=-z \\ z=-y \\ 2y=-2z \end{cases} ssi \begin{cases} 3x=-z \\ y=-z \end{cases} On \ a \ donc \ (x,y,z)=(3,1,-1)$$

2 Exercices

Exercice 1. Calculer les valeurs propres des matrices suivantes :

$$A = \begin{pmatrix} -1 & 4 \\ 4 & -1 \end{pmatrix}; \qquad B = \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix}; \qquad C = \begin{pmatrix} 3 & -1 \\ 6 & -4 \end{pmatrix};$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}; \qquad E = \begin{pmatrix} 7 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & -4 & 1 \end{pmatrix};$$

Exercice 2. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'application linéaire définie par : $f \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3x + 4y \\ 4x - 3y \end{pmatrix}$

- (i) Ecrire la matrice de f dans la base canonique de \mathbb{R}^2 . On la notera A.
- (ii) Montrer que le vecteur $\vec{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est vecteur propre de f. Quelle est la valeur propre associée?
- (iii) Montrer que le vecteur $\vec{v}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ est également vecteur propre de f. Quelle est la valeur propre associé?
- (iv) Montrer que la famille $\{\vec{v}_1, \vec{v}_2\}$ forme une base de \mathbb{R}^2 .
- (v) Quelle est la matrice de f dans la base $\{\vec{v}_1, \vec{v}_2\}$? On la notera D.
- (vi) Soit P la matrice dont la première colonne est le vecteur \vec{v}_1 et dont la deuxième colonne est le vecteur \vec{v}_2 . Calculer P^{-1} .
- (vii) Quelle relation y-a-t-il entre A, P, P^{-1} et D?
- (viii) Calculer A^n , pour $n \in \mathbb{N}$.

Exercice 3. Soit M la matrice réelle 3×3 suivante :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- (i) Déterminer les valeurs propres de M.
- (ii) Montrer que M est diagonalisable.
- (iii) Déterminer une base de vecteurs propres et P la matrice de passage.
- (iv) On a $D = P^{-1}MP$, pour $k \in \mathbb{N}$ exprimer M^k en fonction de D^k , puis calculer M^k .

Exercice 4. Soit f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -8 & -3 & -3 & 1 \\ 6 & 3 & 2 & -1 \\ 26 & 7 & 10 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- (i) Démontrer que 1 et 2 sont des valeurs propres de f. On admet que ce sont les seules.
- (ii) Déterminer les vecteurs propres de f associés aux valeurs propres..

(iii) Soit \vec{u} un vecteur propre de f pour la valeur propre 2. Trouver des vecteurs \vec{v} et \vec{w} tels que

$$f(\vec{v}) = 2\vec{v} + \vec{u} \ et \ f(\vec{w}) = 2\vec{w} + \vec{v}.$$

Exercice 5. Soit la matrice
$$A = \begin{pmatrix} -3 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
.

- (i) Calculer les valeurs propres de A.
- (ii) (a) Donner une base et la dimension de chaque sous-espace propre de A.
 - (b) A est diagonalisable; justifier cette affirmation et diagonaliser A.