Ανάπτυξη Λογισμικού για Δυσεπίλυτα Αλγοριθμικά Προβλήματα

Evóτητα 2: Clustering

Γιάννης Εμίρης

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

November 21, 2016

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Clustering

Definition (k clusters)

Given n objects, and k > 1, partition the objects into k subsets (clusters) so as to optimize some objective function.

- Objects in the same cluster are more "similar" (or closer) to each other than to those in other clusters.
- Possible criteria: minimizing the total distance among all cluster points, minimizing the distance of cluster points to some center, etc.
- Variations: k is unknown and computed, e.g., by the Silhouette method. Capacitated/balanced: k given, clusters of equal cardinality.
- Applications: Classification, Social Network Analysis, Recommender Systems, Market Research, Bioinformatics etc.

Good Clustering, with centers

Approaches

- hierarchical (agglomerative): each point initializes a cluster, merge until stopping criterion, e.g., predetermined number of clusters, or if merging creates cluster with points too far apart.
- point-assignment: given some initial clusters, assign points to "best" cluster; might allow combining / splitting clusters, or unassign points. Example: k-means (our focus).

(Ullman et al:Mining Massive datasets)

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Vector spaces

Problem definition

- Clustering that minimizes objective function.
- k is given.
- Centroids do not have to be part of the dataset

k-means

- k-means is the most common problem: Main algorithms:
 - -- Lloyd's algorithm is standard.
 - -- Elkan's uses triangular inequality to accelerate updates.
- Also used to construct initial clusters for more sophisticated method.
- In Euclidean space, assignment is point location to the k Voronoi cells.

k-means: Objective function

Typical ambient space is \mathbb{R}^d but can generalize to metric space \mathcal{Z} .

Minimization function

In any metric space over points/objects \mathcal{Z} with distance/metric function d, let the dataset be $X = \{x_1, \dots, x_n\} \subset \mathcal{X} \subset \mathcal{Z}, k > 1$. Given centroids $C \subset \mathcal{Z}$, let

$$d(x_i, C) = \min_{c \in C} d(x_i, c).$$

Consider vector $v(C) = (d(x_1, C), \dots, d(x_n, C))$. The k-means objective is:

$$\min_{C \subseteq \mathcal{Z}, |C| = k} \|v(C)\|_2^2 = \sum_{i=1}^n d(x_i, C)^2.$$

The k-means objective is NP-hard, but for the ℓ_2 metric, Lloyd's algorithm converges quickly to a *local* minimum.

Variations

Various minimizations

Recall $X = \{x_i\}, v(C) = (d(x_1, C), \dots, d(x_n, C))$, where $C \subset \mathcal{Z}$ are the centroids, and the k-means objective is:

$$\min_{C \subseteq \mathcal{Z}, |C| = k} \|v(C)\|_2^2 = \sum_{i=1}^n d(x_i, C)^2.$$

Similar objectives:

- -- k-median: $\min_{C\subseteq\mathcal{Z},|C|=k}\|v(C)\|_1$,
- -- k-medoid: $\min_{C \subseteq X, |C| = k} ||v(C)||_1$.
- k-center: $\min_{C \subset X, |C| = k} \|v(C)\|_{\infty}$,

Algorithm

Initialize k centers randomly (or using some strategy).

- Assignment: Assign each object to its nearest center.
- 2 Update: Calculate mean $\frac{1}{\tau} \sum_{i=1}^{\tau} \vec{v_i}$ of each cluster, make it new center.

Repeat the two steps until there is no change in the assignments.

Properties

- Each distance calculation = O(d) because vectors in \mathbb{R}^d .
- Assignment = O(nkd), Update = O(nd),
- #iterations unknown, in practice $\ll n$.
- Converges to local minimum in Euclidean space (depends on initialization)

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Properties

Lemma

For centers a, b, and point x: $d(x, a) \le d(a, b)/2 \Rightarrow d(x, a) \le d(x, b)$.

Proof. $x \in Ball$ centered at a with radius d(a, b)/2.

Corollary: x shall not be assigned to b.

Lemma (Triangular)

If center c is updated to c' then:

$$|d(x,c)-d(c,c')|\leq d(x,c')\leq d(x,c)+d(c,c').$$

Maintain bounds

Initialisation

- Pick initial centers c and assign each x to closest center c(x).
- Set $u(x) \leftarrow d(x, c(x))$, $l(x, c) \leftarrow d(x, c)$, $\forall c \neq c(x)$.
- Compute d(c, c') for all centers $c \neq c'$.

Update bounds

Compute d(c, c') for all centers $c \neq c'$.

- Upper bound u(x) on distance of x to its center c; for new center c' of x's cluster: update $u(x) \leftarrow u(x) + d(c, c')$.
- Lower bound I(x, c) to any other center $c \neq c(x)$; update when c changes to c': $I(x,c') \leftarrow |I(x,c) - d(c,c')|$.

These bounds follow from the triangular inequalities.

Elkan's Assignment

```
for each point x do
   if u(x) \le d(c(x), c')/2, for all centers c' \ne c(x) then Skip x; continue
   end if
   for each c' to which x is not assigned do
       if u(x) not opt, compute u(x) \leftarrow d(x, c(x)); mark u(x) as opt;
       if u(x) \le d(c, c')/2, or u(x) \le l(x, c') then Skip c'; continue
       end if
       compute d(x, c');
       if d(x,c') < u(x) then assign x to c'; set u(x) \leftarrow d(x,c')
       end if
       update I(x,c') \leftarrow d(x,c');
   end for
end for
```

Elkan's algorithm

Elkan's algorithm offers, compared to Lloyd's,

- -- large experimental speedup,
- -- same output, same convergence,
- -- requires much higher storage.

Initialization

Final

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

k-medoids

Goal: Handle any distance metric; k-means only if consistent with mean.

k-medoids (PAM is simplest algorithm) use centroids that **belong** to the dataset:

Definition (Medoid)

The medoid of a set is the object of the set that minimizes total dissimilarity (distance) to all other objects in the set.

Objective function (cf. above): Minimize sum of distances to point's centroid.

vs k-means

- -- k-means tends to select convex spherical clusters; k-medoids less so.
- -- k-means is more sensitive to noisy data and outliers.
- -- k-means is faster and easier to implement.

(Kaufman-Rousseeuw'87)

Partitioning Around Medoids (PAM)

Initialize k centroids randomly.

- Assignment: Assign each object to nearest centroid; compute objective
- Update:

for each centroid m do

for each non-centroid t do

Swap m and t, compute new objective function value.

end for

end for

Keep configuration (centroids) with min objective value.

Repeat steps 1 and 2 until there is no change of configuration (centroids).

Let distance calculation = O(d'). Update of Objective = O((n-k)d'), if 2nd best centroid known. Hence, update = $O((n-k)^2kd') \sim n^2$.

Update of Objective cost function

Objective function:
$$J = \sum_{i=1}^{N-\kappa} \operatorname{dist}(i, c(i)), \ c(i) = \text{ centroid of } i\text{'s cluster.}$$

For each i store 2nd best centroid c'. Centroid m replaced by non-centroid t:

• For i : c(i) = m,

$$\Delta J = \begin{cases} \operatorname{dist}(i,t) - \operatorname{dist}(i,m), & \text{if } \operatorname{dist}(i,t) \leq \operatorname{dist}(i,c') : \text{ do nothing} \\ \operatorname{dist}(i,c') - \operatorname{dist}(i,m), & \text{if } \operatorname{dist}(i,t) > \operatorname{dist}(i,c') : \text{ assign } i \text{ to } c', \\ & \text{update } i\text{'s 2nd best centroid} \end{cases}$$

• For $i: c(i) \neq m$,

$$\Delta J = \begin{cases} 0, & \text{if } \operatorname{dist}(i,t) \geq \operatorname{dist}(i,c(i)) : \text{ do nothing} \\ \operatorname{dist}(i,t) - \operatorname{dist}(i,c(i)), & \text{if } \operatorname{dist}(i,t) < \operatorname{dist}(i,c(i)) : \text{ assign } i \text{ to } t \end{cases}$$

Initial

Final

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Outline

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Accelerating updates

Two faster updates, which may however lose accuracy compared to PAM. Recall that after every swap we compute J in O((n-k)d').

Improved Update

Instead of swapping centroid m with every point t, swap m only with every non-centroid in same cluster as m.

Complexity: n - k iterations instead of k(n - k), hence update $= O((n - k)^2 d')$

2. Update à la Lloyd's

For every cluster: (i) compute its medoid t, (ii) swap its current centroid m with t.

The medoid t minimizes $\sum_{i \in C} d(i, t)$ over all possible objects t in cluster C. Computed in $O(a^2a')$, assuming clusters have $a \simeq n/k$ items.

Total Complexity = $O((ka^2 + k(n-k))d') = O((n^2/k + nk)d') = O(n^2d')$ (Park-Jun'09).

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Clustering Large Applications (CLARA)

General Idea: run entire algorithm with sample of size $n' \ll n$. Use s samples drawn independently, return best clustering.

Overall algorithm:

for
$$i=1,\ldots,s$$
 do apply PAM on a random (uniform) sample of size n' assign n points to k computed centroids calculate the total cost of the partitioning

end for

return best partitioning

Experimental results recommend: s = 5, n' = 40 + 2k.

CLARA based on RANdomised Search (CLARANS)

- Update: swap m's with t's, for some randomly selected (m, t)'s only.
- Picking random $Q \subset \{1, ..., k\} \times \{1, ..., n-k\}$, s times.

Select k centroids by some initialization method.

for
$$i = 1, \ldots, s$$
 do

Cluster n-k points to k centroids by some assignment method.

Randomly select set Q of |Q| pairs (m, t), |Q| < k(n - k).

for
$$(m, t) \in Q$$
 do

Swap m with t; compute new objective value.

end for

Keep centroids with minimum objective value over |Q| choices.

end for

Output centroids yielding minimum objective value over s candidates.

Experimentals recommend: s = 2, $|Q| = \max\{0.12 \cdot k(n-k), 250\}$. (Na-Han:IEEE Tran.Know.Data Eng'02) (Theodoridis et al.:Patt.Recognition,ch.14)

Implement CLARANS

Consider a dataset of *n* points/objects with *k* clusters.

How to choose one uniformly distributed pair from

$$\{(m,t): m=0,\ldots,k-1, t=0,\ldots,n-1\}.$$

Pick a uniformly distributed integer $x \in [0, kn - 1]$ and return

$$(x \mod k, \lfloor \frac{x}{k} \rfloor).$$

PAM vs CLARA / CLARANS

CLARA / CLARANS are approximations of PAM, but: CLARA applies to the overall algorithm, while CLARANS is an approximation of the update.

CLARANS is in $O(n^2)$, CLARA is significantly faster.

CLARANS leads to a better clustering, especially if CLARA's random sample is biased.

Both methods rely heavily on their random choices/parameters.

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Improve Initialisation 1: Spread-out

initialization++: k-means++ / k-medoids++:

- (1) Choose a centroid uniformly at random; $t \leftarrow 1$.
- (2) \forall non-centroid point i = 1, ..., n t, let $D(i) \leftarrow$ min distance to some centroid, among t chosen centroids.
- (3) Choose new centroid: r chosen with probability proportional to $D(r)^2$:

prob[choose
$$r$$
] = $D(r)^2 / \sum_{i=1}^{n-t} D(i)^2$.

Let $t \leftarrow t + 1$

(4) Go to (2) until t = k = given #centroids.

Expected approximation ratio = $O(\log k)$ (Arthur-Vassilvitskii:SODA'07)

Implement initialization++

Given D(i) > 0, i = 1, ..., n - t, compute n - t (float) partial sums

$$P(r) = \sum_{i=1}^{r} D(i)^{2}, \quad r = 1, \dots, n-t,$$

and store them in an array (or binary tree) P. To avoid the P(r)'s being very large, we may normalize all D(i)'s by dividing them by $\max_i D(i)$.

Pick a uniformly distributed float $x \in [0, P(n-t)]$ and return

$$r \in \{1, 2, \ldots, n-t\} : P(r-1) < x \le P(r),$$

where P(0) = 0: r chosen with probability proportional to $P(r) - P(r-1) \sim D(i)^2$. Can find r by binary search in array P.

Improve Initialisation 2: Concentrate

Select centroids close to dataset's center of mass (and to each other) as follows.

- (1) Calculate symmetric $n \times n$ distance matrix of all objects, i.e. all distances d_{ij} from every object $i=1,\ldots,n$ to every other object $j=1,\ldots,n, i\neq j$.
- (2) For object i compute

$$v_i = \sum_{i=1}^n \frac{d_{ij}}{\sum_{t=1}^n d_{jt}}, \quad i = 1, \dots, n.$$

(3) Return the k objects with k smallest v_i values.

Algorithm proposed in (Park-Jun'09).

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- Evaluation

Assignment by direct method

Exact approach for small data

At each iteration:

- For every point, compute distance to every centroid.
- 2 Return (exact) nearest centroid.

Approximate approach for big data

At each iteration:

- lacktriangle Index k centroids into data-structure, e.g. LSH hashtables.
- For every non-centroid point, run ANN to find nearest centroid.
- Return (approximate) nearest centroid.

This is the standard approach in almost all big data implementations today.

Assignment by Range search

Reverse approach (LSH/DBH)

- Index n points into L hashtables: once for entire algorithm.
- LSH/DBH TableSize < n/8: avoid buckets with very few items.
- At each iteration, for each centroid c, range/ball queries centered at c.
- Mark assigned points: either move them at end of LSH buckets (and insert "barrier", or mark them using "flag" field).
- Increase radii by $\times 2$, start with min(dist between centers)/2, until all points assigned, or most ranges/balls do not assign a new point.
- \bullet For a given radius, if a point lies in > 2 balls, compare its distances to the respective centroids, assign to closest centroid.
- At end: for every unassigned point, compare its distances to all centroids

- Clustering
- 2 Vector spaces
 - Elkan's Algorithm
- Metric spaces
- General Improvements
 - Swapping
 - Sampling
 - Initialization
 - Relation to LSH/DBH
- 5 Evaluation

Internal evaluation

Evaluate clustering without reference to objective function. Try to capture meaning of clustering.

- Let k be the number of computed clusters.
- Internal evaluation considers the given pointset and the clusters, produces quality coefficient for each partition; k may be a parameter.
- External evaluation: use known class labels and benchmarks: often created by humans.

In the sequel we present internal evaluation methods, mainly Silhouette.

Silhouette

- -- For $1 \le i \le n$, a(i) = average distance of i to other objects in same cluster.
- Let b(i) = average distance of i to objects in *next best* (neighbor) cluster, i.e. cluster of 2nd closest centroid.

Silhouette of Object i

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} = \left\{ \begin{array}{ll} 1 - a(i)/b(i), & \text{if } a(i) < b(i) \\ 0, & \text{if } a(i) = b(i) \\ b(i)/a(i) - 1, & \text{if } a(i) > b(i) \end{array} \right\} \in [-1, 1].$$

Interpret silhouette

- $s(i) \rightarrow 1$: i seems correctly assigned to its cluster;
- $s(i) \simeq 0$: borderline assignment (but not worth to change);
- $s(i) \rightarrow -1$: i would be better if assigned to next best cluster.

Silhouette: Cluster and clustering

Specific clusters

- Evaluate a cluster: Compute average s(i) over all i in some cluster.
- -- If k is too large or too small, some clusters shall display much smaller silhouettes than the rest
- -- Silhouette plots are used to improve k: try different k's and see if clusters have roughly equal silhouettes.

Overall Clustering

Overall Silhouette coefficient = average s(i) over i = 1, ..., n.

High if well clustered, low may indicate bad k (or existence of outlier points).