Lines and line segments

$x_1, x_2 \in R$
$y = \theta x_1 + (1 - \theta)x$
$y = x_2 + \theta(x_1 - x_2)$

Affine Sets (C)

 $x_1,x_2\in C,\theta\in R$ $\theta x_1 + (1 - \theta)x_2 \in C$

Subspace

 $V = C - x_0 = \{x - x_0 | x \in C\}$

Affine Hull of C

Set of all affine combinations of points in ${\sf C}$ $\mathbf{aff} C = \{\theta_1 x_1 + \ldots + \theta_k x_k |$ $x_1,...,x_k\in C,\theta_1+...+\theta_k=1\}$

Relative interior

 $\mathbf{relint}C = \{x \in C | B(x,r) \cap \mathbf{aff}C \subseteq C$ for some r > 0

Relative boundary = $cl C \cdot relint C$

Convex Hull

Set of all convex combinations of points in C $\mathbf{conv} C = \{\theta_1 x_1 + \ldots + \theta_k x_k | x_i \in C, \theta_i \ge 0$ $i=1,\dots,k,\theta_1x_1+\dots+\theta_kx_k=1\}$

Cones $x \in C, \theta \ge 0 \Rightarrow \theta x \in C$ Convex Cone

 $x_1,x_2\in C,\theta_1,\theta_2\geq 0\Rightarrow \theta_1x_1+\theta_2x_2\in C$

Conic Hull

Set of all conic combinations of points in C $\{\theta_1 x_1 + \dots + \theta_k x_k | x_i \in C, \theta_i \ge 0, i = 1, \dots, k\}$

empty set \emptyset , single pt $\{x_0\}$ whole space \mathbf{R}^n

Hyperplane

 $\{x|a^Tx = b\} \text{ OR } \{x|a^T(x-x_0) = 0\}$ where $a \in \mathbf{R}^n$, $a \neq 0$, $b \in \mathbf{R}$

$$\left\{ x|a^T\big(x-x_0\big) = 0 \right\} = x_0 + a^\perp$$
 where $a^\perp = \left\{ v|a^Tv = 0 \right\}$

Halfspaces

Closed halfspace

 $\{x|a^Tx\leq b\}^{\cdot}\operatorname{OR}\ \{x|a^T(x-x_0)\leq 0\}\ ,\ a\neq 0$ boundary of halfspace is hyperplane

Open halfspace (interior of halfspace) $\{x|a^Tx < b\}$

Euclidean Ball

 x_c is center, r is scalar radius $B(x_c, r) = \{x | ||x - x_c||_2 \le r\}$ $B(x_c, r) = \{x | (x - x_c)^T (x - x_c) \le r^2\}$ $B(x_c,r) = \{x_c + ru| \ ||u||_2 \le 1\}$ where r > 0 and $||...||_2 = (u^Tu)^{1/2}$

Ellipsoids

 $\epsilon = \{x | (x - x_0)^T P^{-1} (x - x_c) \le 1\}$ where $P = P^T > 0$

P is symmetric and positive definite

 $\epsilon = \{x_c + Au | ||u||_2 \le 1\}$

A is square and nonsingular Ball is and ellipsoid $P = r^2I$

Degenerate ellipsoid: A is SPSD but singular Affine dimension(degen ellipsoid) = rank(A)

Norm balls and norm cones

 x_c is center, r is radius, ||.|| any norm in \mathbf{R}^n norm ball B = $\{x | ||x|| \le r\}$ $\text{norm cone C} = \{(x,t)|\ ||x|| \leq t\} \subseteq \mathbf{R}^{n+1}$

Polyhedra = {halfspaces ∩ hyperplanes}

All affine sets are polyhedra.

polytope: bounded polyhedron $P = \{x | a_j^T x \leq b_j, j=1,...,m, c_j^T x = d_j, j=1,...,m, c_j^$

 $P = \{x | Ax \le b, Cx = d\}$ where

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \ C = \begin{bmatrix} c_1^T \\ \vdots \\ c_m^T \end{bmatrix}$$

Simplexes

 $C = \text{conv}\{v_0, ..., v_k\}$ $= \left\{\theta_0 v_0 + \ldots + \theta_k v_k \middle| \theta \ge 0, 1_T \theta = 1\right\}$ then $x \in C$ iff $x = v_0 + By$

Convex hull description of polyhedra $\mathbf{conv}\{v_1,...,v_k\} = \mathbf{conv}(\mathsf{finite}\;\mathsf{set})$ $= \{ \theta_1 v_1 + \dots + \theta_k v_k | \theta \ge 0, 1^T \theta = 1 \}$

Generalization of convex hull description where $m \leq k \ \left\{ \theta_1 v_1 + \ldots + \theta_k v_k \middle| \ \theta_1 + \ldots + \theta_m = \right.$ $1, \theta_i \ge 0, i = 1, ..., k$

Positive semidefinte cone

Symmetric Ms: $\mathbf{S}^n = \{X \in \mathbf{R}^{n \times n} | X = X^T\}$ SPSDMs: $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n | X \ge 0\}$ SPDMs: $\mathbf{S}^n_{++} = \{X \in \mathbf{S}^n | X > 0\}$

if $\theta_1, \theta_2 \ge 0$ and $A, B \in \mathbf{S}^n_+$ then $\theta_1 A + \theta_2 B \in \mathbf{S}^n_+$

Operations that preserve convexity

if S_{α} is convex for every $\alpha \in A$ then $\cap_{\alpha \in A} S_{\alpha}$ is convex (Intersection)

Closed convex set S: ∩of all halfspaces $S = \bigcap \{ \mathcal{H} | \mathcal{H} \text{ halfspace}, S \subseteq \mathcal{H} \}$

Affine functions

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine if f(x) = Ax + b where $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$

 $S \subseteq \mathbf{R}^n$ is convex. Below both also convex image of S under f $f(S) = \{f(x)|x \in S\}$ inverse image: $f^{-1}(S) = \{x | f(x) \in S\}$

Linear-fractional and perspective functions The Perspective function P: $\mathbf{R}^{n+1} \to \mathbf{R}^n$

 $\operatorname{dom} P = \mathbf{R}^n \times \mathbf{R}_{++} \Rightarrow P(z,t) = z/t$

If $C \subseteq \mathbf{dom}P$ is convex: $P(C) = \{P(x) | x \in C\}$ If $C \subseteq \mathbb{R}^n$ is convex:inverse under P is convex $P^{-1} = \{(x,t) \in \mathbb{R}^{n+1} | x/t \in C, t > 0\}$

Convex Functions

Basic properties and examples

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if **dom** f is a convex set if $\forall x, y \in \mathbf{dom} \ f \ \mathsf{and} \ 0 \le \theta \le 1$ $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

Extended-value extensions

$$\begin{split} &\text{if } f \text{ is convex } \tilde{f}: \mathbf{R}^n \to \mathbf{R} \bigcup \{\infty\} \\ &\tilde{f} = \left\{ \begin{array}{c} f(x)x \in \operatorname{dom} \ f \\ & \infty \ x \notin \operatorname{dom} \ f \end{array} \right. \end{split}$$

 $\mathbf{dom} \ f = \{x | \tilde{f}(x) < \infty\} \ for \ 0 < \theta < 1$ $\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$

First-order conditions

 $f(y) \ge f(x) + \nabla f(x)^T (y - x) \forall x, y \in \text{dom } f$ global underestimator:1st-order Taylor approx. local info: derive global info

Second-order conditions

f is twice differentiable: $\nabla^2 f$ exists $\nabla^2 f(x) \ge 0 \ \forall x \in \mathbf{dom} \ f$

f is concave iff **dom** f is convex & $\nabla^2 f(x) \le 0$

Sublevel sets

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$ $C_{\alpha} = \{x \in \text{dom } f | f(x) \le \alpha \}$ Sublevel sets of a convex function are convex Superlevel set of a concave f are convex $C_{\alpha} = \{x \in \text{dom } f | f(x) \ge \alpha \}$ Converse not true

Epigraph

Graph of a function $f: \mathbb{R}^n \to \mathbb{R} \subseteq \mathbb{R}^{n+1}$ Epigraph of a function $f: \mathbb{R}^n \to \mathbb{R} \subseteq \mathbb{R}^{n+1}$ **epi** $f = \{(x, t) | x \in \text{dom } f, f(x) \le t\}$

A function is convex iff its epigraph is a convex set. A function is concave iff its hypograph is a convex set.

 $\mathbf{hypo}\ f = \{(x,t)|t \leq f(x)\}$

 $J(\sigma x + (1 - \sigma)y) \le \sigma J(x) + (1 - \sigma)J(y)$ If f is convex, $x_1,...,x_k \in \operatorname{dom} f$ $\theta_1, \dots, \theta_k \ge 0$ with $\theta_1 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$ x is random variable $x \in \mathbf{dom} \ f$ with p=1 $f ext{ is convex } \Rightarrow f(\mathbf{E}x) \leq \mathbf{E}f(x)$ $prob(x = x_1) = \theta, prob(x = x_2) = 1 - \theta$

Inequalities

Arithmetic-geometric mean inequality: $\sqrt{ab} \le (a+b)/2 \ \forall a,b \ge 0$

f is not convex $\Rightarrow f(\mathbf{E}x) > \mathbf{E}f(x)$

Operations that preserve convexity

Nonnegative weighted sums

 f, f_1, f_2 are convex functions and Scaling: $\alpha \ge 0 \to \alpha f$ is convex Addition: $f_1 + f_2$ is convex

Convex cone: set of convex functions (a nonnegative weighted sum of convex functions) $f = w_1 f_1 + \dots + w_m f_m$ is convex

Nonnegative weighted sum of: concave function → concave strictly cvx/ccv functions → strictly cvx/ccv

f(x,y) is convex in x for each $y \in \mathcal{A}$ $w(y) \ge 0$ for each $y \in \mathcal{A}$ $g(x) = \int_{\mathcal{A}} w(y) f(x,y) dy \rightarrow \text{ is convex in } x$ image of a convex set under a linear mapping is convex epi(wf) = epi f

Composition with an affine mapping

 $f: \mathbf{R}^n \to \mathbf{R}, A \in \mathbf{R}^{n \times m}$ and $b \in \mathbf{R}^n$ $g(x) = f(Ax + b), \text{ dom } g = \{x | Ax + b \in \text{dom } f\}$ f: convex/concave ⇒ g is convex/concave

Pointwise maximum and supremum

f pointwise maximum of convex functions f_1, f_2 $f(x) = max\{f_1(x), f_2(x)\} \rightarrow convex$ $\mathsf{dom}\ f = \mathsf{dom}\ f_1 \cap \mathsf{dom}\ f_2$ f pointwise supremum over infinite set of cvx fns $g(x) = \sup_{y \in \mathcal{A}} f(x, y) \rightarrow \text{convex}$ $\mathbf{dom}\ g = \{x | (x,y) \in \mathbf{dom}\ f \,\forall y \in$ $\mathcal{A}, \sup_{y \in \mathcal{A}} f(x, y) < \inf$ epi $g = \bigcap_{y \in \mathcal{A}} \text{epi } f(\cdot, y)$

Composition

 $h: \mathbf{R}^k \to \mathbf{R}, g: \mathbf{R}^n \to \mathbf{R}^k, f = h \circ g: \mathbf{R}^n \to \mathbf{R}$ f(x) = h(g(x)), $\mathbf{dom}\ f = \{x \in \mathbf{dom}\ g | g(x) \in \mathbf{dom}\ h\}$

Optimization Problems

f is differentiable: f is convex iff **dom** f is convex minimize $f_0(x)$ subject to $f_i(x) \le 0, i = 1, ..., m$ $h_i(x) = 0, i = 1, ..., p$ $x \in \mathbf{R}^n$ optimization variable $f_0: \mathbf{R}_n \to \mathbf{R}$ objective or cost function $f_i(x) \le 0$ inequality constraints $f_i: \mathbb{R}^n \to \mathbb{R}$ inequality constraint functions $h_i(x) = 0$ equality constraints $h_i: \mathbf{R}^n \to \mathbf{R}$ equality constraint functions

> domain $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$ $x \in \mathcal{D}$ is feasible if satisfies constraints problem feasible if \exists one feasible point feasible set: set of all feasible points

if no constraints → unconstrained problem

optimal value $p^* = \inf\{f_0(x)|f_i(x) \le 0, i = 0\}$ $1, ..., m, h_i(x) = 0, i = 1, ..., p$

Optimal and locally optimal points

optimal point x*: solves optimization problem if x^* is feasible and $f_0(x^*) = p^*$ optimal set: set of all optimal points $X_{opt} = \{x | f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., h_i(x) = 0, i = 1, ...$ $1,...,p, f_0(x) = p^*$

If \exists optimal point then problem is solvable optimal value is attained or achieved ϵ -suboptimal point x:feasible point x, with $f_0(x) \le p^* + \epsilon$