PONTO DE CONTROLE 1 - ELETRÔNICA EMBARCADA

Clara Fonseca da Justa, Hallana Rayssa Alves da Silva

Programa de Graduação em Engenharia Eletrônica, Faculdade Gama Universidade de Brasília Gama, DF, Brasil

email: clarajusta31@gmail.com, hallanarayssa@gmail.com

1. JUSTIFICATIVA

O Brasil é um país localizado em uma região inter - tropical e possui grande potencial para aproveitamento de energia solar durante todo o ano. Apesar disso, a matriz energética brasileira ainda apresenta a energia hidraúlica como principal fonte da geração de eletricidade. Entretanto, nos últimos anos há um intenso esforço para que a geração solar fotovoltaica ocupe um espaço maior na matriz energética.[1]

Dados do Operador Nacional do Sistema Elétrico - ONS, demonstram a evolução da potência instalada e geração de usinas solares fotovoltaicas, desde setembro de 2015 até janeiro de 2019.[2]

Fig. 1. Evolução da geração e potência instalada de usinas solares fotovoltaicas.

Esses dados são referentes à geração de usinas solares fotovoltaicas do Sistema Interligado Nacional - SIN, e abrangem apenas as usinas em operação comercial. De acordo com as informações oferecidas pelo ONS e ao analisar a figura 1 é possível verificar que em setembro de 2015, quando as primeiras usinas entraram em operação, a potência instalada foi de 10 MW. Já em março de 2019 a potência instalada foi de 1800 MW. Através dessas informações é possível verificar que houve um crescimento significativo no uso dessa energia limpa.

Além das usinas em operação comercial, há uma outra modalidade de geração de energia solar: os sistemas sola-

res fotovoltaicos de microgeração e minigeração em Unidades Consumidoras - UC (residências, comércios, indústrias, edifícios públicos e na zona rural). Nesta modalidade as unidades que adotam o uso de placa solar, são compensadas pela energia injetada na rede em relação a energia consumida.[3]

Relatórios sobre Unidades Consumidoras com geração distribuída levantados pela CEB, traz informações copiladas e mapas sobre o uso de sistemas fotovoltaicos e fonte solar na região Centro-Oeste. Geração distribuída é o termo utilizado para referenciar a energia elétrica que é gerada próxima ou no local de consumo. Na figura 2 demonstra-se a quantidade de geração distribuída (1233), o número de unidades consumidoras que utilizam esta energia (1312) e a potência instalada (16959,61 kW). Já na figura 3 é possível notar que a adoção desse tipo de sistema vem em uma crescente desde de 2015.

Centro Oeste	1.233	1.312	16.959,61
Total	1.233	1.312	16.959,61

Fig. 2. Geração de energia solar em Unidades Consumidoras na região centro - oeste.

		501		
ANO	QTD GD	UCs REC CRÉDITOS	POT INSTALADA (kW)	
2019	497	537	6.734,90	
2018	403	424	5.813,08	
2017	210	222	3,274,97	
2016	87	92	853,35	
2015	36	37	283,31	
Total	1.233	1,312	16,959,61	

Fig. 3. Evolução da geração de energia solar em Unidades Consumidoras na região centro - oeste.

Os benefícios desse sistema são muitos, vão deste ao baixo impacto ambiental até a redução de perdas por transmissão e distribuição da energia. Porém, o custo para a instalação de um sistema fotovoltaico é elevado. O preço

médio para a instalação de placas solares para um consumo de 2kWp é de aproximadamente 15.000 reais.[4]

Na tabela abaixo (figura 4) é possível estimar o investimento necessário para a instalação de um sistema fotovoltaico dependendo do tamanho da residência.

Tamanho da Residência	Modelo do Sistema	Preço Médio	
Casa pequena, com 2 pessoas	Sistema de 1.32Kwp	R\$ 10.673,36	
Casa média, com 3 ou 4 pessoas	Sistema de 2,64Kwp	R\$ 17.570,00	
Casa média, com 4 pessoas	Sistema de 3,3Kwp	R\$ 20.320,00	
Casa grande, com 4 ou 5 pessoas	Sistema de 4,62Kwp	R\$ 25.695,00	
Casa grande, com 5 pessoas	Sistema de 6,6Kwp	R\$ 32.410,00	
Mansão, com mais de 5 pessoas	Sistemas de até 10,56Kwp	R\$ 52,240,00	

Fig. 4. Preço da energia solar fotovoltaica residencial.

Por esse motivo, quanto maior a eficiência das placas solares, mais rápido será o retorno finaceiro da instalação. Para a otimização da captação solar, propõem-se a implementação de um dispositivo de baixo custo, um seguidor solar.

2. OBJETIVOS

Implementar um sistema de seguidor solar de baixo custo e eficaz em comparação aos que existem.[5]

2.1. Objetivos Específicos

- Movimentar dois servos motores para controlar os eixos de rotação em bases de placas fotovoltaicas usando o microcontrolador MSP430;
- Monitorar com eficácia dados de sensores de luminosidade e sensores de irradiação solar de forma com que a placa guie-se através do local com maior incidência dos raios solares;

3. REQUISITOS

Para desenvolver o projeto será usado um microcontrolador MSP430, que tem como função movimentar dois servos motores, que serão posicionados no eixo "x" e no eixo "y". Esses servos motores irão se movimentar a partir dos dados coletados por 4 sensores de luminosidade. Os LDR's (Light Dependent Resistor), sensor mostrado na figura 5, serão analisados em pares, gerando dois conjuntos, o primeiro responsável pelo movimento azimutal e o segundo pelo movimento de declinação. Os LDR's de cada conjunto serão separados um do outro por meio de um perfil "T", como mostra a figura 6. Sendo o microcontrolador acionado quando existe uma diferença entre as impedâncias

dos LDR's. O microcontrolador irá enviar um pulso para movimentação (pwm) ao servo motor quando ocorre essa diferença e reposiciona o sistema até que a discrepância entre as impedâncias seja mínima. O primeiro conjunto de LDR's compara a intensidade luminosa entre o lado direito e o lado esquerdo. O segundo conjunto compara os valores de um referencial em cima e outro abaixo, como mostra a figura 7.

Fig. 5. Sensor Light Dependent Resistor - LDR.

Fig. 6. Conjunto de sensores separados por meio de perfil T.

Fig. 7. Referencial de orientação utilizado

- Placa fotovoltaica para geração de energia fotovoltaica
- PWM servo Para realizar a movimentação.

Com o intuito de realizar um protótipo funcional, será usado um Arduino Uno e a plataforma Energia IDE, que possui equivalência do Arduino para a MSP430. O esquemático a ser montado pode ser observado da figura 8.

Fig. 8. Protótipo no Arduino.

Os dados dos divisores de tensão dos LDR's serão entradas de 4 pinos no Arduino, que serão armazenados analogicamente. As variáveis responsáveis por armazenar os valores dos LDR's serão comparadas entre os dois LDR's de cada conjunto. O primeiro servo motor será controlado a partir dos dados do primeiro conjuntos e o segundo servo motor será controlado a partir dos dados do segundo conjunto. Feita a análise dos valores de incidência de luminosidade dos conjuntos, os servomotores são movimentados até que a discrepância entre os valores analisados seja mínima.

4. REVISÃO BIBLIOGRÁFICA

Um seguidor solar é um sistema microcontrolado que altera a posição de um painel solar em função da irradiação do sol. A energia solar fotovoltaica vem sendo amplamente utilizada e é considerada uma fonte de energia limpa. Devido aos beneficios e eficiencia dessa tecnologia, uma relatório da Agência Internacional de Energia (AIE) constatou que até 2060 é possível que um terço da energia do mundo seja gerada por tecnologia fotovoltaica.

Uma célula solar ou uma celúla fotovoltaica é um dispositivo que converte a luz solar em eneria elétrica. Essas

Fig. 9. Funcionamento do seguidor solar - Tracker.

celúlas apresentam eficiência na conversão da energia de 16 per cento, dependendo do material utilizado na fabricação de até 28 per cento.

Fig. 10. Comparação entre a energia gerada por um sistema fixo e outro com seguidor solar.

Esses sistemas descritos, quando possuem seguidores solares, também chamados de tracker, melhoram o rendimento ao captar a energia considerando o movimento do sol como um fator real e fazendo com que as placas solares sigam na direção em que a incidência solar for maior.O aumento é em torno de 30 per cento na produção de energia quando comparados a sistemas fixos.

5. REFERENCIAS

- [1] S. L. d. A. R. R. Enio Bueno Pereira, Fernando Ramos Martins, "Atlas brasileiro de energia solar."
- [2] O. N. do Sistema Elétrico ONS, "Boletim mensal de geração solar fotovoltaica."
- [3] CEB, "Relatórios sobre unidades consumidoras com geração distribuída informações copiladas e mapas."
- [4] "Portal solar. seguidor solar tracker: Vantagens e desvantagens. disponível em:https://www.portalsolar.com.br/blog-

[5] J. D. B. de Araújo, "Protótipo de rastreador solar de um eixo baseado em microcontrolador," 2015.