

Sfinksin arvoitus

Suurella Sfinksillä on sinulle arvoitus. Sinulle annetaan verkko, jossa on N solmua. Solmut on numeroitu välillä 0: sta N-1 asti. Verkossa on M kaarta, jotka on numeroitu 0:sta M-1 asti. Jokainen kaari yhdistää kaksi eri solmua ja on kaksisuuntainen. Tarkemmin sanottuna jokaista j:tä kohden 0:sta M-1 asti (mukaan lukien) kaari j yhdistää solmut X[j] ja Y[j]. Mitä tahansa solmuparia yhdistää enintään yksi kaari. Kahta solmua kutsutaan **viereisiksi** jos ne on yhdistetty kaarella.

Jonoa solmuja v_0, v_1, \ldots, v_k ($k \geq 0$) kutsutaan **poluksi** jos kaikki peräkkäiset solmut v_l ja v_{l+1} (jokaista l kohden siten, että $0 \leq l < k$) ovat viereisiä. Sanomme, että polku v_0, v_1, \ldots, v_k **yhdistää** solmut v_0 ja v_k . Sinulle annetussa verkossa jokainen solmupari on yhdistetty jollakin polulla.

On olemassa N+1 väriä, numeroitu 0:sta N asti. Väri N on erityinen ja sitä kutsutaan **Sfinksin väriksi**. Jokaiselle solmulle on määritetty väri. Tarkemmin sanottuna solmulla i ($0 \le i < N$) on väri C[i]. Useilla solmuilla voi olla sama väri, ja voi olla värejä, joita ei ole määritetty mihinkään solmuun. Millään solmulla ei ole sfinksin väriä, eli $0 \le C[i] < N$ ($0 \le i < N$).

Polkua v_0,v_1,\ldots,v_k ($k\geq 0$) kutsutaan **monokromaattiseksi**, jos sen kaikilla solmuilla on sama väri, eli $C[v_l]=C[v_{l+1}]$ (jokaiselle l:lle siten, että $0\leq l < k$). Lisäksi sanomme, että solmut p ja q ($0\leq p < N$, $0\leq q < N$) ovat samassa **monokromaattisessa komponentissa**, jos ja vain jos ne on yhdistetty monokromaattisella polulla.

Tiedät solmut ja kaaret, mutta et tiedä mikä väri kullakin solmulla on. Haluat selvittää solmujen värit, suorittamalla **uudelleenvärjäyskokeita**.

Uudelleenvärjäyskokeessa voit värjätä mielivaltaisesti useita solmuja. Tarkemmin ottaen uudelleenvärjäyskokeen suorittamiseen valitset ensin taulukon E jonka koko on N, missä jokaiselle i ($0 \le i < N$), E[i] on välillä -1 ja N **mukaan lukien**. Sitten kunkin solmun i väristä tulee S[i], jossa S[i]:n arvo on:

- C[i], eli i :n alkuperäinen väri, jos E[i] = -1, tai
- E[i], muuten.

Huomaa, että tämä tarkoittaa, että voit käyttää Sfinksin väriä uudelleenvärjäyksessä.

Lopulta Suuri Sfinksi ilmoittaa monokromaattisten komponenttien lukumäärän verkossa, kun olet asettanut kunkin solmun i väriksi S[i] ($0 \le i < N$). Uusi väritys on käytössä vain tässä

uudelleenvärjäyskokeessa, joten **kaikkien solmujen värit palautuvat alkuperäisiksi kokeen päätyttyä**.

Sinun tehtäväsi on tunnistaa verkon solmujen värit suorittamalla korkeintaan $2\,750$ uudelleenvärjäyskoetta. Voit saada myös osittaiset pisteet jos määrität oikein jokaiselle vierekkäisten solmujen parille, onko niillä sama väri.

Toteutuksen yksityiskohdat

Sinun tulee toteuttaa seuraava funktio.

```
std::vector<int> find_colours(int N,
    std::vector<int> Y)
```

- N: verkon solmujen lukumäärä.
- *X*, *Y*: *M*:n pituiset taulukot, jotka kuvaavat kaaria.
- ullet Tämän funktion pitäisi palauttaa taulukko G, jonka pituus on N, jossa on verkon solmujen värit.
- Tätä funktiota kutsutaan täsmälleen kerran jokaisessa testitapauksessa.

Yllä oleva funktio voi tehdä kutsuja seuraavaan funktioon uudelleenvärjäyskokeiden suorittamiseen:

```
int perform_experiment(std::vector<int> E)
```

- E: N:n pituinen taulukko, joka määrittää kuinka solmut tulee värjätä.
- ullet Tämä funktio palauttaa monokromaattisten komponenttien määrän solmujen uudelleenvärjäyksen jälkeen E mukaisesti.
- Tätä funktiota voidaan kutsua enintään 2 750 kertaa.

Testijärjestelmä **ei ole mukautuva**, eli solmujen värit päätetään ennen kuin find_colours:ia kutsutaan.

Rajat

- $2 \le N \le 250$
- $N-1 \le M \le \frac{N \cdot (N-1)}{2}$
- $0 \leq X[j] < Y[j] < N$ kaikilla j siten, että $0 \leq j < M$.
- X[j]
 eq X[k] tai Y[j]
 eq Y[k] kaikilla j ja k siten, että $0 \le j < k < M$.
- Jokainen solmupari on yhdistetty jollakin polulla
- 0 < C[i] < N kaikilla i siten, että 0 < i < N.

Osatehtävät

Osatehtävä	Pisteet	Lisäehdot
1	3	N=2
2	7	$N \le 50$
3	33	Verkko on polku: $M = N-1$ ja solmut j ja $j+1$ ovat viereisiä ($0 \leq j < M$).
4	21	Verkko on täydellinen: $M=rac{N\cdot (N-1)}{2}$ ja mitkä tahansa kaksi solmua ovat viereiset.
5	36	Ei lisäehtoja.

Jokaisesta osatehtävästä voit saada osittaisen pistemäärän, jos ohjelma määrittää oikein jokaiselle vierekkäiselle pisteparille onko niillä sama väri.

Tarkemmin sanottuna saat osatehtävän koko pistemäärän, jos kaikissa testitapauksissa taulukko G jonka find_colours palauttaa on täsmälleen sama kuin taulukko C (eli G[i] = C[i] kaikille i siten, että $0 \leq i < N$). Muuten, saat 50% alatehtävän pisteistä jos seuraavat ehdot täyttyvät kaikissa testitapauksissaan:

- $ullet \quad 0 \leq G[i] < N$ jokaiselle i lle siten, että $0 \leq i < N$;
- Jokaiselle j lle siten, että $0 \le j < M$:
 - $\circ \ \ G[X[j]] = G[Y[j]] \ \text{jos ja vain jos} \ C[X[j]] = C[Y[j]].$

Esimerkki

Tarkastellaan seuraavaa kutsua

Tässä esimerkissä oletetaan, että solmujen (piilotetut) värit annetaan C=[2,0,0,0] . Tämä tapaus on esitetty seuraavassa kuvassa. Värit esitetään lisäksi numeroilla jokaiseen solmuun kiinnitetyissä valkoisissa tarroissa.

Funktio voi kutsua perform_experiment seuraavasti.

```
perform_experiment([-1, -1, -1, -1])
```

Tässä kutsussa yhtään solmua ei värjätä uudelleen, koska kaikki solmut säilyttävät alkuperäiset värinsä.

Tarkastele solmuja 1 ja 2. Molemmilla on väri 0 ja polku 1,2 on monokromaattinen polku. Tämän seurauksena solmut 1 ja 2 ovat samassa monokromaattisessa komponentissa.

Tarkastele solmuja 1 ja 3. Vaikka molemmilla on väri 0, ne ovat eri monokromaattisissa komponenteissa, koska niitä ei yhdistä monokromaattinen polku.

Kaiken kaikkiaan monokromaattisia komponentteja on 3, joihin kuuluvat solmut $\{0\}$, $\{1,2\}$ ja $\{3\}$. Siten tämä kutsu palauttaa 3.

Nyt funktio voi kutsua perform_experiment seuraavasti.

Tässä kutsussa vain solmu 0 värjätään uudelleen väriksi 0, mikä johtaa seuraavassa kuvassa näkyvään väritykseen.

Tämä kutsu palauttaa 1, koska kaikki solmut kuuluvat samaan monokromaattiseen komponenttiin. Voimme nyt päätellä, että solmujen 1, 2 ja 3 väri on 0.

Funktio voi sitten kutsua perform_experiment seuraavasti.

```
perform_experiment([-1, -1, -1, 2])
```

Tässä kutsussa solmu 3 on värjätty värillä 2, mikä johtaa seuraavassa kuvassa näkyvään väritykseen.

Tämä kutsu palauttaa 2, koska monokromaattisia komponentteja on 2, joihin kuuluvat solmut $\{0,3\}$ ja $\{1,2\}$. Voimme päätellä, että solmussa 0 on väri 2.

Funktio find_colours palauttaa sitten taulukon [2,0,0,0]. Koska C=[2,0,0,0], annetaan täydet pisteet.

Huomaa, että on myös useita palautusarvoja, joille annettaisiin 50% pisteestä, esimerkiksi [1,2,2,2] tai [1,2,2,3].

Esimerkki testijärjestelmästä

Syötteen muoto:

```
N M
C[0] C[1] ... C[N-1]
X[0] Y[0]
X[1] Y[1]
...
X[M-1] Y[M-1]
```

Tulosteen muoto:

```
L Q
G[0] G[1] ... G[L-1]
```

Tässä, L on taulukon G pituus, jonka palauttaa find_colours, ja Q on funktion perform_experiment kutsujen määrä.