Lecture 1 - Numbers and Notation

Robert Lowe

Division of Mathematics and Computer Science
Maryville College

Outline

Outline

 You have been taught a litany of rules and procedures, but no ideas.

- You have been taught a litany of rules and procedures, but no ideas.
- Your textbooks were lacking in text. Lots of color, lots of problems, no substance!

- You have been taught a litany of rules and procedures, but no ideas.
- Your textbooks were lacking in text. Lots of color, lots of problems, no substance!
- Being bad at math was socially acceptable, and you seized the opportunity because memorizing rules and procedures is boring.

Image Source:

https://www.maa.org/press/

periodicals/convergence/

Tally Marks 40,000 years old

Image Source:

https://www.maa.org/press/

periodicals/convergence/

- Tally Marks 40,000 years old
- Ishango Bone 20,000 years old, may have been a rudimentary calculator

Image Source:

https://www.maa.org/press/

periodicals/convergence/

- Tally Marks 40,000 years old
- Ishango Bone 20,000 years old, may have been a rudimentary calculator
- Formal mathematics, as we know it today, really started about 3000 years ago

Image Source:

https://www.maa.org/press/

periodicals/convergence/

Ancient Numeral Systems - Roman Numerals

Ancient Numeral Systems - Roman Numerals

Representing Numbers as Figures

Ancient Numeral Systems - Roman Numerals

- Representing Numbers as Figures
- Example: Roman Numeral System

Numerals		Transitions	
ı	1		
V	5	IV	4
Χ	10	IX	9
L	50	XL	40
С	100	XC	90
D	500	CD	400
М	1000	CM	900

 Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)

$$0 I + I = ?$$

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)
 - 0 I + I = ?
 - ② III + I =?

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)
 - 0 I + I = ?
 - **2** III + I =?

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)
 - $\mathbf{0} \ \mathbf{I} + \mathbf{I} = ?$
 - ② III + I = ?

- Arithmetic was usually done with some sort of manipulative aid (counting board, abacus, etc).
- Roman numeral arithmetic is difficult. (Let's Try it)
 - $\mathbf{0} \ \mathbf{I} + \mathbf{I} = ?$
 - 2 III + I = ?

 - $\mathbf{0} \ \mathbf{V} \mathbf{I} = ?$

Image Source:

https://www.mathematics-monster.

com/glossary/Al-Khwarizmi.htmMaryville

 Introduced to the Western world by Al-Khwarizmi, but was invented in India

Image Source:

https://www.mathematics-monster.

com/glossary/Al-Khwarizmi.htm

- Introduced to the Western world by Al-Khwarizmi, but was invented in India
- Digits 0-9

Image Source:

https://www.mathematics-monster.

com/glossary/Al-Khwarizmi.htmlaryvi

- Introduced to the Western world by Al-Khwarizmi, but was invented in India
- Digits 0-9
- Positional value system

10 ³	10 ²	10 ¹	10 ⁰

Image Source:

https://www.mathematics-monster.

com/glossary/Al-Khwarizmi.htmlarv

Works very well for arithmetic!

Works very well for arithmetic!

Works very well for arithmetic!

$$1 + 1 = ?$$

- Works very well for arithmetic!
 - $\mathbf{0} 1 + 1 = ?$
 - 2 3 + 1 = ?
 - 315 + 5 = ?

- Works very well for arithmetic!
 - 0 1 + 1 = ?
 - 2 3 + 1 = ?
 - 15 + 5 =?
 - $\mathbf{4} \ 5 1 = ?$

- Works very well for arithmetic!
 - $\mathbf{0} 1 + 1 = ?$
 - **2** 3 + 1 =?
 - 15 + 5 =?
 - $\mathbf{4} \ 5 1 = ?$
 - $5 \times 4 = ?$

Outline

Fundamental operations: +, −, ×, ÷

- Fundamental operations: +, −, ×, ÷
- Alternate notations for multiplication: 3×5 , $3 \cdot 5$, 3(5), $3 \cdot 5$

- Fundamental operations: $+, -, \times, \div$
- Alternate notations for multiplication: 3×5 , $3 \cdot 5$, 3(5), $3 \cdot 5$
- Alternate notations for division: $4 \div 2$, $\frac{4}{2}$, $2)\overline{4}$, 4/2

 Convention PEMDAS - Parenthesis, Exponent, Multiply, Divide, Add, Subtract

- Convention PEMDAS Parenthesis, Exponent, Multiply, Divide, Add, Subtract
- Multiplication and Division are the same operation, so is Add and Subtract

Ties are broken left to right

- Convention PEMDAS Parenthesis, Exponent, Multiply, Divide, Add, Subtract
- Multiplication and Division are the same operation, so is Add and Subtract

Ties are broken left to right

• Example: $3^2 + 4 \times 2 - 16 \div (2 + 2)$

 Writing very large or very small numbers is very error prone.

- Writing very large or very small numbers is very error prone.
- We usually only really care about the first few values (more on this later).

- Writing very large or very small numbers is very error prone.
- We usually only really care about the first few values (more on this later).
- Base 10 gives us a way to do this!

- Writing very large or very small numbers is very error prone.
- We usually only really care about the first few values (more on this later).
- Base 10 gives us a way to do this!
- Large numbers have 0's at the right hand side. This is effectively multiplying by 10. So we can use exponents:

$$1,200,000 = 1.2 \times 10^6$$

- Writing very large or very small numbers is very error prone.
- We usually only really care about the first few values (more on this later).
- Base 10 gives us a way to do this!
- Large numbers have 0's at the right hand side. This is effectively multiplying by 10. So we can use exponents:

$$1,200,000 = 1.2 \times 10^6$$

 Small numbers of 0's between the decimal point and nonzero digits. This is effectively dividing by 10:

$$0.0000012 = 1.2 \times 10^{-6}$$

