

The Foundations: Logic and Proofs

Chapter 1

Edited by: Dr. Meshal Alfarhood

Proof Methods

Section 1.7 and Section 1.8

Proof Techniques

- Each theorem takes the form "if p, then q"
- Proof methods:
 - Direct proof $(p \rightarrow q)$
 - Indirect proof $(\neg q \rightarrow \neg p)$
 - Proof by contradiction $(\neg p \rightarrow F)$
 - Proof by cases $(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land ... \land (p_n \rightarrow q)$
 - Disproof by counterexample
 - Induction

Some Definitions

Definition: The integer n is <u>even</u> if there exists an integer k such that n=2k, and n is <u>odd</u> if there exists an integer k, such that n=2k+1.

Definition: An integer a is a <u>perfect square</u> if there is an integer b such that $a = b^2$.

Definition: The real number r is <u>rational</u> if there exist integers p and q where $q \ne 0$ such that $\frac{r=p/q}{q}$ and p and q have no common factors

Direct Proof

Direct Proof: Assume that p is true, and show that q must also be true. $(p \rightarrow q)$

Example 1: Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

Solution: Assume that n is odd. Let n=2k+1 for an integer k.

Then,
$$n^2 = (2k + 1)^2$$

= $4k^2 + 4k + 1$
= $2(2k^2 + 2k) + 1$
= odd number

Direct Proof₂

Example 2: Give a direct proof of the theorem "if m and n are both perfect squares, then nm is also a perfect square."

Solution: Assume that *m* and *n* are both perfect squares.

Let
$$m = s^2$$
 and $n = t^2$.

Then,
$$mn = s^2 t^2$$

= $(ss)(tt)$
= $(st)(st)$
= $(st)^2$
= perfect square

Indirect Proof

Indirect Proof: Assume $\neg q$ true and show $\neg p$ is true also. $(\neg q \rightarrow \neg p)$

Example 1: Prove that if *3n+2* is an odd integer, then *n* is odd.

Solution: Assume n is even. So, n=2k for some integer k. ($\neg q$)

Then, 3n+2=3(2k)+2 =6k+2 =2(3k+1) $= even number (<math>\neg p$)

Indirect Proof₂

Example 2: Prove that if n^2 is odd, then n is odd.

Solution: Assume *n* is even. Let n=2k for an integer k. $(\neg q)$

```
Then, n^2 = 4k^2
= 2 (2k^2)
= even number (\neg p)
```

Proof by Contradiction

Proof by Contradiction: Assume $\neg p$ true and derive a contradiction. $(\neg p \rightarrow F)$

Example 1: Use a proof by contradiction to proof that $\sqrt{2}$ is irrational.

Solution: Suppose $\sqrt{2}$ is rational $(\neg p)$. Then there exists integers **a** and **b** with $\sqrt{2}$ =a/b, where b≠ 0 and a and b have no common factors.

- Then: $\sqrt{2} = \frac{a}{b} \rightarrow 2 = \frac{a^2}{b^2} \rightarrow a^2 = 2b^2$
- Therefore a^2 must be even. If a^2 is even then a must be even. Since a is even, a=2c for some integer c.
- Then: $2b^2 = 4c^2 \rightarrow b^2 = 2c^2$
- Therefore b^2 is even. Again then b must be even as well.
- But then 2 must divide both a and b. This contradicts our assumption that a and b have no common factors. Therefore, $\sqrt{2}$ is irrational.

Proof by Contradiction₂

Another way for *Proof by Contradiction*: Assume $p \land \neg q$ true and derive a contradiction.

$$p \rightarrow q \equiv p \land \neg q \rightarrow F$$

Example 2: Prove that if *3n+2* is an odd integer, then *n* is odd.

Solution: Assume 3n+2 is odd (p) and n is even ($\neg q$). So, n=2k for some integer k.

Then,
$$3n+2 = 3(2k) + 2$$

 $=6k + 2$
 $= 2(3k + 1)$
 $= \text{even number } (\neg p) \rightarrow \text{contradiction}$

Proof by Cases

To prove a conditional statement of the form:

$$(p_1 \lor p_2 \lor \dots \lor p_n) \rightarrow q$$

Show:
$$[(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land \dots \land (p_n \rightarrow q)]$$

Each of the implications $p_i \rightarrow q$ is a *case*.

Proof by Cases₂

Example: Show that any integer ending with 2 cannot be a perfect square.

Solution: Let n be an integer. We show that n² cannot have 2 in units digit.

Let
$$n = 10a + b$$
, where $b = 0,1,2,3,4,5,6,7,8,\text{or }9$
Then, $n^2 = (10a + b)^2$
 $= 100a^2 + 20ab + b^2$
 $= 10(10a^2 + 2ab) + b^2$ The final decimal digit of n^2 is b^2

Case1:
$$b=0 \rightarrow b^2 = 0$$
 Case6: $b=5 \rightarrow b^2 = 25$ Case2: $b=1 \rightarrow b^2 = 1$ Case7: $b=6 \rightarrow b^2 = 36$ Case3: $b=2 \rightarrow b^2 = 4$ Case8: $b=7 \rightarrow b^2 = 49$ Case4: $b=3 \rightarrow b^2 = 9$ Case9: $b=8 \rightarrow b^2 = 64$ Case5: $b=4 \rightarrow b^2 = 16$ Case10: $b=9 \rightarrow b^2 = 81$

Thus, square of an integer ends with 0,1,4,5,6,9

Disproof by Counterexample

Recall:
$$\exists x \neg P(x) \equiv \neg \forall x P(x)$$

Example 1: Prove or disprove that "All prime integers are odd."

Solution: The integer "2" is <u>even</u> and prime. So the claim is false.

Example 2: Prove or disprove that "Every positive integer is the sum of the squares of 2 integers."

Solution: The integer "3" is a counterexample. So the claim is false.