SOFT COMPUTING LAB

(Course Code: 22UPCSC1E12)

A programming laboratory record submitted to Periyar University, Salem

In partial fulfillment of the requirements for the degree of

MASTER OF COMPUTER APPLICATIONS

By

ELANCHEZHIAN M.

[Reg. No.: U22PG507CAP006]

DEPARTMENT OF COMPUTER SCIENCE PERIYAR UNIVERSITY

(NAAC `A++` Grade with CGPA 3.61) – NIRF RANK 59 – ARIIA RANK 10 PERIYAR PALKALAI NAGAR,

SALEM - 636 011.

(APRIL - 2023)

CERTIFICATE

	This is to certify that	at the Program	ming Laboratory entitled
"SOFT CO	OMPUTING LAB (2	22UPCSC2E	12)" is a bonafide record
work done by	Mr. /Ms		
Register No:		_as partial fulfi	llment of the requirements
for the degree	of Master of Computer A	pplication, in the	e Department of Computer
Science, Periy	var University, Salem, duri	ng the Academic	e Year 2022-2023.
Staff In-	charge		Head of the Department
Sul	omitted for the practical exa	nination held on	
Internal	Examiner]	External Examiner

CONTENTS

S.NO	DATE	TITLE OF THE PROGRAM	PAGE NO	SIGNATURE
1.		Implementation of Logic gates using Artificial Neural Network		
2.		Implementation of Perception Algorithm		
3.		Implementation of Back Propagation Algorithm		
4.		Implementation of Self Organizing Maps		
5.		Implementation of Radial Basis Function Network		
6.		Implementation of De-Morgan's Law		
7.		Implementation of McCulloch Pits Artificial Neuron model		
8.		Implementation of Simple genetic algorithm		
9.		Implementation of fuzzy based Logical operations		
10.		Implementation of fuzzy based arithmetic operations		

1. Implementation of Logic gates using Artificial Neural Network

```
import numpy as np
from matplotlib import pyplot as plt
def sigmoid(z):
    return 1/(1+np.exp(-z))
def inPa(inFe,neInHi,ouFe):
    w1=np.random.randn(neInHi,inFe)
    w2=np.random.randn(ouFe,neInHi)
    b1=np.zeros((neInHi,1))
    b2=np.zeros((ouFe,1))
    parameters={"w1": w1, "b1": b1,"w2": w2, "b2": b2}
    return parameters
def forPro(X,Y,parameters):
    m=X.shape[1]
    w1=parameters["w1"]
    w2=parameters["w2"]
    b1=parameters["b1"]
    b2=parameters["b2"]
    z1=np.dot(w1,X)+b1
    a1=sigmoid(z1)
    z2=np.dot(w2,a1)+b2
    a2=sigmoid(z2)
    cache=(z1,a1,w1,b1,z2,a2,w2,b2)
    logprobs = np.multiply(np.log(a2),Y)+np.multiply(np.log(1-a2),(1-Y))
```

```
cost = -np.sum(logprobs)/m
    return cost, cache, a2
def baPro(X,Y,cache):
    m=X.shape[1]
    (z_1,a_1,w_1,b_1,z_2,a_2,w_2,b_2)=cache
    dz2 = a2-Y
    dw2=np.dot(dz2,a1.T)/m
    db2 = np.sum(dz2,axis=1,keepdims =True)
    da1=np.dot(w2.T,dz2)
    dz1=np.multiply(da1,a1*(1-a1))
    dw1=np.dot(dz1,X.T)/m
    db1=np.sum(dz1,axis= 1, keepdims =True)/m
    gradients = {"dz2": dz2, "dw2": dw2, "db2": db2, "dz1": dz1,
    "dw1": dw1,"db1": db1}
    return gradients
def upPar(parameters, gradients, learningRate):
    parameters["w1"]=parameters["w1"] - learningRate * gradients["dw1"]
    parameters["w2"]=parameters["w2"] - learningRate * gradients["dw2"]
    parameters["b1"]=parameters["b1"] - learningRate * gradients["db1"]
    parameters["b2"]=parameters["b2"] - learningRate * gradients["db2"]
    return parameters
X = np.array([[0, 0, 1, 1], [0, 1, 0, 1]])
Y = np.array([[0, 0, 0, 1]])
neInHi=2
inFe=X.shape[0]
ouFe=Y.shape[0]
parameters = inPa(inFe,neInHi,ouFe)
epoch = 100000
```

```
learningRate=0.01
losses =np.zeros((epoch,1))
for i in range(epoch):
     losses[i,0], cache, a2=forPro(X,Y,parameters)
     gradients=baPro(X,Y,cache)
     parameters=upPar(parameters, gradients, learningRate)
plt.figure()
plt.plot(losses)
plt.xlabel("EPOCHS")
plt.ylabel("LOSS VALUE")
plt.show()
X = \text{np.array}([[1, 1, 0, 0], [0, 1, 0, 1]])
cost, \_, a1 = forPro(X,Y,parameters)
prediction =(a2>0.5)*1.0
print(prediction)
```


[[0. 0. 0. 1.]]

3. Implementation of Back Propagation Algorithm

```
import numpy as np
from matplotlib import pyplot as plt
def sigmoid(z):
  return 1/(1 + np.exp(-z))
def initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures):
  W1 = np.random.randn(neuronsInHiddenLayers, inputFeatures)
  W2 = np.random.randn(outputFeatures, neuronsInHiddenLayers)
  b1 = np.zeros((neuronsInHiddenLayers, 1))
  b2 = np.zeros((outputFeatures, 1))
  parameters = {"W1": W1, "b1": b1,"W2":W2, "b2": b2}
  return parameters
def forwardPropagation(X, Y, parameters):
  m = X.shape[1]
  W1 = parameters["W1"]
  W2 = parameters["W2"]
  b1 = parameters["b1"]
  b2 = parameters["b2"]
  Z1 = np.dot(W1, X) + b1
  A1 = sigmoid(Z1)
  Z2 = np.dot(W2, A1) + b2
  A2 = sigmoid(Z2)
```

```
cache = (Z1, A1, W1, b1, Z2, A2, W2, b2)
  logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), (1 - Y))
  cost = -np.sum(logprobs) / m
  return cost, cache, A2
def backwardPropagation(X, Y, cache):
  m = X.shape[1]
  (Z1, A1, W1, b1, Z2, A2, W2, b2) = cache
  dZ2 = A2 - Y
  dW2 = np.dot(dZ2, A1.T) / m
  db2 = np.sum(dZ2, axis = 1, keepdims = True)
  dA1 = np.dot(W2.T, dZ2)
  dZ1 = np.multiply(dA1, A1 * (1- A1))
  dW1 = np.dot(dZ1, X.T) / m
  db1 = np.sum(dZ1, axis = 1, keepdims = True) / m
  gradients = {"dZ2": dZ2, "dW2": dW2, "db2": db2,
  "dZ1": dZ1, "dW1": dW1, "db1": db1}
  return gradients
def updateParameters(parameters, gradients, learningRate):
  parameters["W1"] = parameters["W1"] - learningRate * gradients["dW1"]
  parameters["W2"] = parameters["W2"] - learningRate * gradients["dW2"]
  parameters["b1"] = parameters["b1"] - learningRate * gradients["db1"]
  parameters["b2"] = parameters["b2"] - learningRate * gradients["db2"]
  return parameters
```

```
X = \text{np.array}([[0, 0, 1, 1], [0, 1, 0, 1]])
Y = np.array([[0, 1, 1, 0]])
neuronsInHiddenLayers = 2
inputFeatures = X.shape[0]
outputFeatures = Y.shape[0]
parameters = initializeParameters(inputFeatures, neuronsInHiddenLayers,
outputFeatures)
epoch = 100
learningRate = 0.01
losses = np.zeros((epoch, 1))
for i in range(epoch):
  losses[i, 0], cache, A2 = forwardPropagation(X, Y, parameters)
  print("Epoch:", i, "Loss", losses[i])
  gradients = backwardPropagation(X, Y, cache)
  parameters = updateParameters(parameters, gradients, learningRate)
plt.figure()
plt.plot(losses)
plt.xlabel("EPOCHS")
plt.ylabel("LOSS VALUE")
plt.show()
X = \text{np.array}([[1, 1, 0, 0], [0, 1, 0, 1]])
cost, _, A2 = forwardPropagation(X, Y, parameters)
prediction = (A2 > 0.5) * 1.0
print(prediction)
```

Epoch: 0 Loss [0.76693298]

Epoch: 1 Loss [0.76543201]

.

.

.

Epoch: 98 Loss [0.70380534]

Epoch: 99 Loss [0.70362287]

[[0. 0. 0. 0.]]

2. Implementation of Perception Algorithm

```
import numpy as np
def unitStep(v):
      if v \ge 0:
             return 1
      else:
             return 0
def perceptronModel(x, w, b):
      v = np.dot(w, x) + b
      y = unitStep(v)
      return y
def OR_logicFunction(x):
      w = np.array([1,1])
      b = 0.5
      return perceptronModel(x, w, b)
test1 = np.array([0,1])
test2 = np.array([1,1])
test3 = np.array([0,0])
test4 = np.array([1,0])
print("OR({ } ,{ })) = { }".format(0,1, OR\_logicFunction(test1)))
print("OR({}),{}) = {}".format(1,1,OR\_logicFunction(test2)))
print("OR({}),{}) = {}".format(0,0, OR\_logicFunction(test3)))
print("OR({ } ,{ })) = { }".format(0,1, OR\_logicFunction(test4)))
```

$$OR(0,1) = 1$$

 $OR(1,1) = 1$
 $OR(0,0) = 1$
 $OR(0,1) = 1$

4. Implementation of Self Organizing Maps

```
import math
class SOM:
  def winner(self, weights, sample):
     D0 = 0
     D1 = 0
     for i in range(len(sample)):
       D0 = D0 + math.pow((sample[i] - weights[0][1]),2)
       D1 = D1 + math.pow((sample[i] - weights[1][i]),2)
       if D0 > D1:
          return 0
       else:
          return 1
  def update(self, weights, sample, J, alpha):
     for i in range(len(weights)):
       weights[J][i] = weights[J][i] + alpha *(sample[i] -weights[J][i])
     return weights
def main():
    T = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
     m, n = len(T), len(T[0])
     weights = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
     ob = SOM()
```

```
epochs = 3000
    alpha = 0.5
    for i in range(epochs):
       for j in range(m):
         sample = T[j]
         J = ob.winner(weights, sample)
         weights = ob.update(weights, sample, J, alpha)
    s = [0, 0, 0, 1]
    J = ob.winner(weights, s)
    print("Test sample s belongs to Cluster : ", J)
    print("Trained weights : ",weights)
if __name__ == "__main__":
  main()
```

Test sample s belongs to Cluster: 0 Trained weights: [[0.66666666666666666666666666666666666					

5. Implementation of Radial Basis Function Network

```
import numpy as np
class RBFNN:
  def __init__(self, kernels, centers, beta=1, lr=0.1, epochs=80):
     self.kernels = kernels
     self.centers = centers
     self.beta = beta
     self.lr = lr
     self.epochs = epochs
     self.w = np.random.randn(kernels, 1)
     self.b = np.random.randn(1, 1)
     self.errors = [] # Changed 'error' to 'errors' for consistency
     self.gradients = []
  def rbf_activation(self, x, center):
     return np.exp(-self.beta * np.linalg.norm(x - center)**2)
  def linear_activation(self, A):
    return np.dot(self.w.T, A) + self.b
  def least_square_error(self, pred, y):
     return (y - pred)**2
  def _forward_propagation(self, x):
     A1 = np.array([[self.rbf_activation(x, center)] for center in self.centers])
     A2 = self.linear_activation(A1)
     return A2, A1
```

```
def _backward_propagation(self, y, pred, A1):
     error = self.least_square_error(pred, y)
     dw = -2 * np.dot(A1, (y - pred).T)
     db = -2 * (y - pred)
     self.w = self.w - self.lr * dw
     self.b = self.b - self.lr * db
     self.errors.append(error)
  def fit(self, x, y):
     for _ in range(self.epochs):
       for xi, yi in zip(x, y):
          pred, A1 = self._forward_propagation(xi)
          self._backward_propagation(yi, pred, A1)
  def predict(self, x):
     A2, \_ = self._forward_propagation(x)
     return 1 if np.squeeze(A2) \geq 0.5 else 0
def main():
  x = \text{np.array}([[0, 0], [0, 1], [1, 0], [1, 1]])
  y = np.array([[0], [1], [1], [0]])
  rbf = RBFNN(kernels=2, centers=np.array([[0, 1], [1, 0]]), beta=1,
  lr=0.1,epochs=1000)
  rbf.fit(x, y)
  print(f"RBF weights: {rbf.w}")
  print(f"RBF bias: {rbf.b}")
  print()
  print("---XOR GATE---")
  print(f"| 1 xor 1: {rbf.predict(x[3])} |")
```

```
print(f"| 0 xor 0: {rbf.predict(x[0])} |")
print(f"| 1 xor 0: {rbf.predict(x[2])} |")
print(f"| 0 xor 1: {rbf.predict(x[1])} |")

if __name__ == "__main__":
    main()
```

```
RBF weights: [[2.50264625]
[2.50264595]]
RBF bias: [[-1.8413432]]
---XOR GATE---
| 1 xor 1: 0 |
| 0 xor 0: 0 |
| 1 xor 0: 1 |
| 0 xor 1: 1 |
```

6. Implementation of De-Morgan's Law

```
def demorgan_law(statement):
    if 'not (' in statement and ' and ' in statement:
        # not (A and B) = (not A) or (not B)
        A, B = statement.split('not (')[1].split(' and ')
        return f'(not {A}) or (not {B})'
    elif 'not (' in statement and ' or ' in statement:
        # not (A or B) = (not A) and (not B)
        A, B = statement.split('not (')[1].split(' or ')
        return f'(not {A}) and (not {B})'
    else:
        return statement
```

```
statement1 = 'not (A and B)'
demorgan_law(statement1)
'(not A) or (not B))'
statement2 = 'not (A or B)'
demorgan_law(statement2)
'(not A) and (not B))'
statement3 = 'C and D'
demorgan_law(statement3)
'C and D'
```

8. Implementation of Simple genetic algorithm

```
from numpy.random import randint
from numpy.random import rand
def onemax(x):
  return -sum(x)
def selection(pop, scores, k=3):
  selection_ix = randint(len(pop))
  for ix in randint(0, len(pop), k-1):
     if scores[ix] < scores[selection_ix]:
       selection_ix = ix
  return pop[selection_ix]
def crossover(p1, p2, r_cross):
  c1, c2 = p1.copy(), p2.copy()
  if rand() < r_cross:
     pt = randint(1, len(p1)-2)
     c1 = p1[:pt] + p2[pt:]
     c2 = p2[:pt] + p1[pt:]
  return [c1, c2]
def mutation(bitstring, r_mut):
  for i in range(len(bitstring)):
     if rand() < r_mut:
       bitstring[i] = 1 - bitstring[i]
```

```
def genetic_algorithm(objective, n_bits, n_iter, n_pop, r_cross, r_mut):
  pop = [randint(0, 2, n_bits).tolist() for _ in range(n_pop)]
  best, best_eval = 0, objective(pop[0])
  for gen in range(n_iter):
     scores = [objective(c) for c in pop]
     for i in range(n_pop):
       if scores[i] < best_eval:
          best, best_eval = pop[i], scores[i]
          print(">\%d, new best f(\%s) = \%.3f" \% (gen, pop[i], scores[i]))
     selected = [selection(pop, scores) for _ in range(n_pop)]
     children = list()
     for i in range(0, n_pop, 2):
       p1, p2 = selected[i], selected[i+1]
       for c in crossover(p1, p2, r_cross):
          mutation(c, r_mut)
          children.append(c)
     pop = children
  return [best, best_eval]
n_iter = 100
n bits = 20
n_{pop} = 100
r_{cross} = 0.3
r_mut = 1.0 / float(n_bits)
best, score = genetic algorithm(onemax, n bits, n iter, n pop, r cross, r mut)
print('Done!')
print(f(%s) = %f' % (best, score))
```

9. Implementation of fuzzy based Logical operations

```
A = dict()
B = dict()
Y = dict()
A = \{"a": 0.2, "b": 0.3, "c": 0.6, "d": 0.6\}
B = \{"a": 0.9, "b": 0.9, "c": 0.4, "d": 0.5\}
print('The First Fuzzy Set is :', A)
print('The Second Fuzzy Set is :', B)
for A_key, B_key in zip(A, B):
  A_{value} = A[A_{key}]
  B_value = B[B_key]
  if A_value > B_value:
     Y[A_key] = A_value
  else:
     Y[B_key] = B_value
print('Fuzzy Set Union is :', Y)
A = dict()
B = dict()
Y = dict()
A = \{"a": 0.2, "b": 0.3, "c": 0.6, "d": 0.6\}
B = \{"a": 0.9, "b": 0.9, "c": 0.4, "d": 0.5\}
print('The First Fuzzy Set is :', A)
print('The Second Fuzzy Set is :', B)
```

```
for A_key, B_key in zip(A, B):

A_value = A[A_key]

B_value = B[B_key]

if A_value < B_value:

Y[A_key] = A_value

else:

Y[B_key] = B_value

print('Fuzzy Set Intersection is :', Y)

Y = dict()

A = {"a": 0.2, "b": 0.3, "c": 0.6, "d": 0.6}

print('The Fuzzy Set is :', A)

for A_key in A:

Y[A_key] = 1 - A[A_key]

print('Fuzzy Set Complement is :', Y)
```

```
The First Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
The Second Fuzzy Set is: {'a': 0.9, 'b': 0.9, 'c': 0.4, 'd': 0.5}
Fuzzy Set Union is: {'a': 0.9, 'b': 0.9, 'c': 0.6, 'd': 0.6}
The First Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
The Second Fuzzy Set is: {'a': 0.9, 'b': 0.9, 'c': 0.4, 'd': 0.5}
Fuzzy Set Intersection is: {'a': 0.2, 'b': 0.3, 'c': 0.4, 'd': 0.5}
The Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
Fuzzy Set Complement is: {'a': 0.8, 'b': 0.7, 'c': 0.4, 'd': 0.4}
```

10. Implementation of fuzzy based arithmetic operations

```
def fuzzy_addition(a, b):
  result = \{ \}
  for key_a, value_a in a.items():
     for key_b, value_b in b.items():
       if key_a == key_b:
          result[key_a] = max(value_a, value_b)
          break
  return result
def fuzzy_subtraction(a, b):
  result = \{ \}
  for key_a, value_a in a.items():
     for key_b, value_b in b.items():
       if key_a == key_b:
          result[key_a] = max(value_a - value_b, 0)
          break
  return result
def fuzzy_multiplication(a, b):
  result = \{ \}
  for key_a, value_a in a.items():
     for key_b, value_b in b.items():
       if key_a == key_b:
          result[key_a] = value_a * value_b
          break
  return result
```

```
def fuzzy_division(a, b):
  result = {}
  for key_a, value_a in a.items():
     for key_b, value_b in b.items():
       if key_a == key_b and value_b != 0:
          result[key_a] = value_a / value_b
          break
  return result
A = \{"a": 0.2, "b": 0.3, "c": 0.6, "d": 0.6\}
B = \{"a": 0.9, "b": 0.9, "c": 0.4, "d": 0.5\}
C = fuzzy\_addition(A, B)
print("Fuzzy set addition: ", C)
D = fuzzy\_subtraction(A, B)
print("Fuzzy set subtraction: ", D)
E = fuzzy_multiplication(A, B)
print("Fuzzy set multiplication: ", E)
F = fuzzy\_division(A, B)
print("Fuzzy set division: ", F)
```

Fuzzy set addition: {'a': 0.9, 'b': 0.9, 'c': 0.6, 'd': 0.6}

Fuzzy set subtraction: {'a': 0, 'b': 0, 'c': 0.19999999999999, 'd': 0.099999999999998}

Fuzzy set multiplication: {'a': 0.18000000000000000, 'b': 0.27, 'c': 0.24, 'd': 0.3}
Fuzzy set division: {'a': 0.222222222222224, 'b': 0.3333333333333333, 'c': 1.49999999999999, 'd': 1.2}

7. Implementation of McCulloch Pits Artificial Neuron model

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import sklearn.datasets
cancer = sklearn.datasets.load_breast_cancer()
data = pd.DataFrame(cancer.data, columns=cancer.feature_names)
data["class"] = cancer.target
data.head()
plt.plot(data.T, "*")
plt.xticks(rotation="vertical", c="red", size=5)
plt.yticks(c="blue")
plt.show()
x = data.drop("class", axis=1)
y = data["class"]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
x_train_binarized = x_train.apply(pd.cut, bins=2, labels=[1, 0]).values
x_test_binarized = x_test.apply(pd.cut, bins=2, labels=[1, 0]).values
plt.figure(figsize=(15, 5))
plt.plot(x_train_binarized.T, "*")
plt.xticks(c="red", size=13)
plt.yticks(c="blue", size=13)
plt.show()
```

```
class MP_Neuron:
  def __init__(self):
     self.b = 0
  def model(self, x):
    return np.sum(x) \geq self.b
  def fit(self, x, y):
     accuracy = \{\}
     for b in range(x.shape[1] + 1):
       self.b = b
       yhat = []
       for row in x:
          yhat.append(self.model(row))
       accuracy[b] = accuracy_score(yhat, y)
    best_b = max(accuracy, key=accuracy.get)
     self.b = best_b
    return accuracy, best_b, accuracy[best_b]
  def predict(self, x, y):
     yhat = []
     for row in x:
       yhat.append(self.model(row))
     accuracy = accuracy_score(y, yhat)
    return accuracy
neuron = MP_Neuron()
accuracy, best_b, accuracy_model = neuron.fit(x_train_binarized, y_train)
print("The optimal value of b:", best_b)
print("Accuracy of model on training data:", accuracy_model * 100)
```

```
accuracies = list(accuracy.values())
plt.plot(accuracies)
plt.xticks(c="red")
plt.yticks(c="blue")
plt.show()
accuracy = neuron.predict(x_test_binarized, y_test)
print("Accuracy of model on test data:", accuracy * 100)
```


The optimal value of b: 27 Accuracy of model on training data: 86.37362637362638 Accuracy of model on test data: 80.7017543859649

