

DOT/FAA/EE/93/01 DOT-VNTSC-FAA-93-5

Office of Environment and Energy Washington DC 20591

NOISE MEASUREMENT FLIGHT TEST OF FIVE LIGHT HELICOPTERS

Edward J. Rickley Kenneth E. Jones Amanda S. Keller Gregg G. Fleming

Volpe National Transportation Systems Center Cambridge MA 02142-1093

Final Report July 1993

This document has been approved for public release and sale; its distribution is unlimited.

This document is available to the public through the National Technical Information Service, Springfield, VA 22161

93 8 18 059

93-19239

U.S. Department of Transportation

Federal Aviation Administration

ISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
July 1993

3. REPORT TYPE AND DATES COVERED Final Report
July 1991-May 1993

4. TITLE AND SUBTITLE NOISE MEASUREMENT FLIGHT TEST OF FIVE LIGHT HELICOPTERS

5. FUNDING NUMBERS
FA353/A3008

6. AUTHOR(S)

Edward J. Rickley, Kenneth E. Jones, Amanda S. Keller, Gregg G. Fleming

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Department of Transportation
Research and Special Programs Administration
Volpe National Transportation Systems Center
Cambridge, MA 02142

8. PERFORMING ORGANIZATION REPORT NUMBER

DOT-VNTSC-FAA-93-5

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Department of Transportation
Federal Aviation Administration
Office of Environment and Energy
800 Independence Avenue, S.W.
Washington, DC 20591

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

DOT/FAA/EE-93/01

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

This document is available to the public through the National Technical Information Service, Springfield, VA 22161

13. ABSTRACT (Maximum 200 words)

The U.S. Department of Transportation, Federal Aviation Administration, (U.S.DOT/FAA), along with the U.S.DOT, Research and Special Programs Administration, Volpe National Transportation Systems Center (RSPA/Volpe Center) conducted a helicopter noise measurement flight test in Champaign, Illinois, during the period July 22 through 26, 1991. The primary objective of the study was to obtain the field data necessary to examine the feasibility of a simplified helicopter-noise-certification procedure (screening test). Acoustic data were measured by and stored on a hand-held sound-level meter (on-line processing) and recorded on digital tape for later off-line processing. A comparison of the measured on-line acoustic data with the acoustic data processed off-line provided the foundation necessary to evaluate the feasibility of the proposed screening test. In addition to acoustic measurements, meteorological data and helicopter tracking and performance data were also obtained.

14. SUBJECT TERMS Helicopter, Noise Measurement, Acoustic, Configuration, Meterological			15. NUMBER OF PAGES 394
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

PREFACE

This document presents the results of a helicopter noise measurement flight test conducted in Champaign, Illinois by the U.S. Department of Transportation, Federal Aviation Administration (U.S.DOT/FAA), Office of Environment and Energy and the U.S.DOT, Research and Special Programs Administration, Volpe National Transportation Systems Center (RSPA/Volpe Center). Acoustic data were measured and processed by the Volpe Center's Acoustics Facility. The successful completion of this study hinged on the cooperation and performance of the following agencies:

<u>Agency</u>	<u>Involvement</u>
FAA, Office of Environment and Energy	Test Coordination
FAA, Rotorcraft Directorate	Reduction of altitude and aircraft speed data
Schweizer Aircraft Corporation	Provided Models 300 and 330, helicopters, pilots and maintenance crews
Enstrom Helicopter Corporation	Provided Models 280 FX and TH28 helicopters and pilots
Rotorway Aircraft, Inc.	Provided Model Exec 90 helicopter and pilots
United States Army Corps of Engineers, Construction Engineering Research Laboratory (CERL)	Video camera operation and five minute weather and aircraft speed data
Willard Airport Weather Station	Hourly Automated Terminal Information Service (ATIS) reports
Willard Airport Air Traffic Control Tower	Air Traffic Control
University of Illinois at Champaign	Provided test site

The authors would like to express their sincere thanks to these agencies for their dedication to this study.

DTIC QUALITY INSPECTED 3

odes

, or

METRIC/ENGLISH CONVERSION FACTORS

ENGLISH TO METRIC

LENGTH (APPROXIMATE)

1 inch (in) = 2.5 centimeters (cm)

1 foot (ft) = 30 centimeters (cm)

1 yard (yd) = 0.9 meter (m)

1 mile (mi) = 1.6 kilometers (km)

AREA (APPROXIMATE)

1 square inch (sq in, in 2 = 6.5 square centimeters (cm 2) 1 square foot (sq ft, ft² = 0.09 square meter (m₂)

1 square yard (sq yd, yd²) = 0.8 square meter (m^2)

1 square mile (sq mi, mi²) = 2.6 square ki(ometers (km^2)

1 acre = 0.4 hectares (he) = 4,000 square meters (m^2)

MASS - WEIGHT (APPROXIMATE)

1 ounce (oz) = 28 grems (gr)

1 pound (lb) = .45 kilogram (kg)

1 short ton = 2,000 pounds (lb) = 0.9 tonne (t)

VOLUME (APPROXIMATE)

1 tesspoon (tsp) = 5 milliliters (ml)

1 tablespoon (tbsp) = 15 milliliters (ml)

1 fluid ounce (fl oz) = 30 milliliters (ml)

1 cup (c) = 0.24 liter (1)

1 pint (pt) = 0.47 liter (1)

1 quart (qt) = 0.96 liter (1)

1 gallon (gal) = 3.8 liters (1)

1 cubic foot (cu ft, ft^3) = 0.03 cubic meter (m^3)

1 cubic yard (cu yd, yd 3) = 0.76 cubic meter (m 3)

TEMPERATURE (EXACT)

[(x-32)(5/9)] °F = y °C

METRIC TO ENGLISH

LENGTH (APPROXIMATE)

1 millimeter (mm) = 0.04 inch (in)

1 centimeter (cm) = 0.4 inch (in)

1 meter (m) = 3.3 feet (ft)

1 meter (m) = 1.1 yards (yd)

1 kilometer (km) = 0.6 mile (mi)

AREA (APPROXIMATE)

1 square centimeter $(cm^2) = 0.16$ square inch (sq in, in²) 1 square meter $(m^2) = 1.2$ square yeards (sq yd, yd²)

1 square kilometer $(km^2) = 0.4$ square mile (sq mi, mi²)

1 hectare (he) = 10,000 square meters (m^2) = 2.5 acres

MASS - WEIGHT (APPROXIMATE)

1 gram (gr) = 0.036 ounce (oz)

1 kilogram (kg) = 2.2 pounds (lb)

1 tonne (t) = 1,000 kilograms (kg) = 1.1 short tons

VOLUME (APPROXIMATE)

1 milliliters (mi) = 0.03 fluid ounce (fl oz)

1 liter (1) = 2.1 pints (pt)

1 (iter (1) = 1.06 quarts (qt)

1 liter (1) = 0.26 gallon (gal)

1 cubic meter $(m^3) = 36$ cubic feet $(cu ft, ft^3)$

1 cubic meter $(m^3) = 1.3$ cubic yards (cu yd, yd³)

TEMPERATURE (EXACT)

[(9/5) y + 32] °C = x °F

QUICK INCH-CENTIMETER LENGTH CONVERSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 INCHES

QUICK FAHRENHEIT-CELSIUS TEMPERATURE CONVERSION

For more exact and or other conversion factors, see NBS Miscellaneous Publication 286, Units of Weights and Measures. Price \$2.50. SD Catalog No. C13 10286.

TABLE OF CONTENTS

Sect:	<u>ion</u>		<u>Page</u>
1.	INTR	ODUCTION	. 1-1
	1.1	Background	. 1-1
	1.2		
	1.3		
	1.4	Test Helicopter Descriptions	. 1-2
2.	MEAS	UREMENT INSTRUMENTATION	2-1
	2.1	Acoustic Measurement Instrumentation	2-1
		2 1 1 Digital December Contact	~ .
		2.1.1 Digital Recording System	2-1
		2.1.2 On-Line Processing System	. 2-3
	2.2	Meteorological Measurement Instrumentation	. 2-3
		2.2.1 On-Site Weather Station	2-4
		2.2.2 CERL Weather Station	
		2.2.3 Willard Airport Weather Station	2-4
	2.3	Altitude Measurement and Guidance	
		Instrumentation	2-4
			, , ,
3.	EXPE	RIMENTAL APPROACH	3-1
	3.1	Microphone Locations	3-1
	3.2		
	3.3	Test Series Description	3-2
	3.4	Additional Measurement Components	3-8
		•	
		3.4.1 Helicopter Speed Determination	3-8
			. 3-6
		3.4.2 Flight Path Markers and Guidance	
		Systems	3-8
		3.4.3 Cockpit Observer Log	3-9
		•	
4.	מידעת	REDUCTION	4-1
7.	DAIA	REDUCTION	4-1
	4 4	Divida 11. Damanda J. Daha	
	4.1	Digitally Recorded Data	4-1
		4.1.1 Ambient Noise	4-3
		4.1.2 Frequency Response Adjustments	4-4
		4.1.3 Spectral Shaping	4-4
		4.1.4 Simulation of a Slow Exponential	
		Time Constant	4-4
		4.1.5 Noise Metric Computations	4-5
		4.1.5.1 EPNL Family	4-5
		4.1.5.2 SEL Family	_
		4.1.5.3 OASPL	4-6

TABLE OF CONTENTS (continued)

Sect:	<u>ion</u>		<u>Page</u>
	4.2	Adjustments to Reference Conditions - Simplified Procedure	4-6
		4.2.1 Delta 1: Spherical Spreading and Atmospheric Absorption	4-7
		Correction	4-7
		4.2.3 Delta 3: Source Noise Correction	4-8
	4.3	Direct Read - On-Line Data	4-9
	4.4	Meteorological Data	4-9
	4.5	Tracking Data	4-10
5.	DISC	USSION OF RESULTS	5-1
	5.1	Sound Exposure Level Data	5-1
	5.2	•	5-2
		5.2.1 Noise Level Analysis	5-2
		5.2.2 Spectral Analysis	5-4
	5.3 5.4	Delta 3: Source Noise Correction	5~5
		Regression Models	5-6
6.	CONC	LUSIONS	6-1
7.	RECO	MMENDATIONS	7-1
APPE	NDIX	A: AS-MEASURED NOISE LEVEL DATA	A-1
APPEI	NDIX	B: CORRECTED NOISE LEVEL DATA	B-1
APPE	NDIX (C: AS-MEASURED 1/3-OCTAVE SPECTRAL DATA	C-1
APPE	NDIX	D: SEL DATA COMPARISON	D-1
APPE	NDIX	E: DELTA 3: SOURCE NOISE CORRECTION	E-1
APPE	XIDX	F: SUMMARY METEOROLOGICAL DATA	F-1
APPEI	NDIX (G: SUMMARY TRACKING DATA	G-1
GLOSS	SARY		GL-1

LIST OF FIGURES

<u>Figure</u>]	<u>Page</u>
1-1	PLAN VIEW	1-3
1-2	SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER	1-5
1-3	SCHWEIZER 330 - THREE-SEAT TURBINE-POWERED LIGHT HELICOPTER	1-9
1-4	ENSTROM 280 FX - THREE-SEAT LIGHT HELICOPTER .	1-11
1-5	ENSTROM TH-28 - THREE-SEAT TURBINE-POWERED LIGHT HELICOPTER	1-12
1-6	ROTORWAY EXEC 90 - TWO-SEAT HOME-BUILT HELICOPTER	1-13
2-1	ACOUSTIC MEASUREMENT SYSTEM	2-2
4-1	ACOUSTIC DATA ANALYSIS INSTRUMENTATION	4-2
C-A-1-1 THROUGH C-L-3-3	ONE THIRD OCTAVE SPECTRA AT PNLTm AND ONE THIRD OCTAVE TIME HISTORY	C-2
E-1 THROUGH E-12	$\mathtt{PNLT}_{\mathtt{max}}$ Vs. ADVANCING BLADE TIP MACH NUMBER	E-2
F-1 THROUGH F-5	METEOROLOGICAL DATA	F-3

LIST OF TABLES

<u>Table</u>		Page
3-1	TEST SUMMARY, JULY 22, 1991	3-3
3-2	TEST SUMMARY, JULY 23, 1991	3-4
3-3	TEST SUMMARY, JULY 24, 1991	3-5
3-4	TEST SUMMARY, JULY 25, 1991	3-6
3-5	TEST SUMMARY, JULY 26, 1991	3-7
5-1	EFFECT OF CONFIGURATION CHANGES ON OVERALL NOISE LEVELS	5-3
5-2	EFFECT OF CONFIGURATION CHANGES ON 1/3-OCTAVE BAND LEVELS	5-4
5-3A 5-3B 5-3C	DELTA 3 COMPARISON CENTERLINE CENTER	5-8
5-3D	DELTA 3 COMPARISON AVERAGE OF CENTERLINE, LEFT SIDE, AND RIGHT SIDE	5-10
5-4A 5-4B	CALCULATED PNLTm DIFFERENCE AT CERTIFICATION AIRSPEED CENTERLINE CENTER	5-12
	AIRSPEED LEFT SIDE	5-13
5-4C 5-4D	AIRSPEED RIGHT SIDE	5-14
3 40	AIRSPEED AVERAGE OF CENTERLINE, LEFT SIDE, AND RIGHT SIDE	5-15
A-A-1-1 THROUGH A-L-3-2	AS-MEASURED NOISE LEVEL DATA	. A-2
B-A-1-1 THROUGH B-L-3-2	CORRECTED NOISE LEVEL DATA	. B-2
D-A-1 THROUGH D-L-2	SEL DATA COMPARISON	. D−2
E-1 THROUGH E-3	PNLTm VS. MACH NUMBER REGRESSION MODEL EQUATIONS	E-14
G-1 THROUGH	SUMMARY HELICOPTER TRACKING DATA	. G−2

EXECUTIVE SUMMARY

This document presents the results of a helicopter noise measurement flight test conducted in Champaign, Illinois by the U.S. Department of Transportation, Federal Aviation Administration (U.S. DOT/FAA), Office of Environment and Energy and the U.S. DOT, Research and Special Programs Administration, Volpe National Transportation Systems Center (RSPA/Volpe Center). Acoustic measurements were performed on five light helicopters, as follows: the Schweizer Model 300 (in 7 design configurations), the Schweizer Model 330 (in 2 design configurations), the Rotorway Model Exec 90, the Enstrom Model 280 FX, and the Enstrom Model TH28. These measurements were performed to support the development of a lighthelicopter "screening test" whereby an applicant can demonstrate compliance with current noise limits by means of a simpler, less expensive certification procedure as compared with the current procedure in FAR part 36, Appendix H.

In order to examine differences between the proposed screening test and the existing certification methodology, levels obtained by various methods were compared. The comparison of the sound exposure level (SEL) data shows that an operator-estimated SEL can be obtained in the field using a relatively inexpensive integrating sound level meter (SLM); and although the operator-estimated SEL tends to be slightly higher than the derived from tape recorded data (per Appendix H) SEL (on average 0.4 dBA), the difference rarely exceeds 1 dBA. Based on this comparison, it appears that light-helicopter noise certification can be performed with a relatively high degree of accuracy using a hand-held SLM.

At the December, 1991, International Civil Aviation Organization (ICAO) meeting held in Montreal, Canada, the Federal Aviation Administration used the results of this measurement study as the foundation for the official U.S. position on the subject of the proposed screening test. The position tendered by the FAA was that the proposed procedure is a viable alternative to the current light-helicopter noise certification procedure found in both FAR

Part 36 and ICA, Annex 161 and that these documents should be modified accordingly.

Additional analyses are performed to determine if the least-squares regression model used to calculate the $\Delta 3$ source noise correction is influenced by the larger number of data points at the certification airspeed (six vs. two). The data suggested that the larger number of points at the target certification airspeed have little if any influence on the resulting regression model.

A supplementary analysis was performed to determine the effect of various design changes on the acoustic signatures of helicopters, using the data obtained from the two Schweizer helicopters. The noise reduction (both overall level and level in individual frequency bands) resulting from the addition of a muffler was fairly substantial, 3 - 4 dB for approach, and 6 - 8 dB for takeoff and sideline. The addition of a resonator resulted in a reduction in the noise levels for takeoff and level flyover and an increase in noise level for approach.

^{&#}x27;"International Standards and Recommended Practices, Environmental Protection," ANNEX 16 to the Convention on International Civil Aviation, Volume 1, Aircraft Noise, Second Edition, 1988.

1. INTRODUCTION

This document presents the results of a helicopter noise measurement flight test conducted in Champaign, Illinois by the U.S. Department of Transportation, Federal Aviation Administration (U.S. DOT/FAA), Office of Environment and Energy and the U.S. DOT, Research and Special Programs Administration, Volpe National Transportation Systems Center (RSPA/Volpe Center). Acoustic data were measured, processed, and analyzed by the Volpe Center's Acoustics Facility in Cambridge, Massachusetts.

1.1 BACKGROUND

The Federal Aviation Regulations, Part 36, "Noise Standards: Aircraft Type and Airworthiness Certification" (FAR Part 36), 1 establishes procedures for noise-certifying aircraft. A December, 1988 revision of FAR Part 36 included an amendment for noise certification of light (under 6000 lbs maximum takeoff weight) helicopters (Amendment 36-14, Effective 2/5/88). Since the noise signatures of rotary-wing aircraft are complex, the testing procedures required under this amendment can be correspondingly difficult to accomplish, and costly to perform. As a result, the FAA, in conjunction with the International Civil Aviation Organization (ICAO) is considering the development of a lighthelicopter "screening test" whereby an applicant can demonstrate compliance with current noise limits by means of a simpler, less expensive certification procedure.

To this end, the FAA, Office of Environment and Energy, in conjunction with the Volpe Center's Acoustics Facility, the FAA's Rotorcraft Directorate and associated aircraft certification offices, the U.S. Army Corps of Engineers, and several U.S. helicopter manufacturers, arranged a helicopter-noise-measurement

¹"Noise Standards: Aircraft Type and Airworthiness Certification," <u>Federal Aviation Regulations, Part</u>
<u>36</u>, Washington D.C.: Federal Aviation Administration, December 22, 1988.

study to be conducted at a test site in Champaign, Illinois during the period July 22 through 26, 1991.

1.2 OBJECTIVE

The objective of this study was to obtain the field data necessary to examine the feasibility of a simplified helicopternoise-certification procedure, i.e., screening test.

1.3 TEST SITE

The test site chosen for measurements was located at a test facility belonging to the University of Illinois at Champaign, Illinois. The low ambient noise level, flat topography, availability of U.S. Army Corps of Engineers facilities, airport proximity and security of the area made this location desirable. The test site was essentially flat, covered with low-cut grass and bordered in all directions by fields of corn and soybeans. There was minimal interference from extraneous noise sources since traffic on area roadways was sparse and local aircraft were routed away from the test site by the Willard Airport traffic control tower.

The test site was located in a 1-mile-square tract bordered by roads running north-to-south and east-to-west. The helicopter flight-track was run parallel-to and halfway-between the two north-to-south running roads defining the bounds of the tract containing the test site. Figure 1-1 presents a plan view of the test site.

1.4 TEST HELICOPTER DESCRIPTIONS

Acoustic measurements were performed on five light helicopters, as follows: the Schweizer Model 300, the Schweizer Model 330, the Rotorway Model Exec 90, the Enstrom Model 280 FX, and the Enstrom Model TH28. The helicopters used in this measurement study were supplied by their respective manufacturers and flown by manufacturer-employed test pilots. Each helicopter

FIGURE 1-1. PLAN VIEW

was tested in its standard configuration. In addition, the two Schweizer models were tested in a variety of configurations, including various modified exhaust systems and tail rotor designs. These additional configurations were tested to simulate the effect of various acoustic signatures on the screening process. See Figures 1-2 through 1-6 for helicopter photos, summary specifications and reference flight parameters for each of the tested configurations.

CONFIGURATION A (STANDARD)

En	~	*	_	•	

Lycoming HIO-360-D1A

Exhaust System:

No Muffler

Weights:

Weight empty 474 kg (1046 lb) Max Takeoff Weight 930 kg (2050 lb)

Performance:

Never-exceed speed at sea level Max cruising speed

at sea level (Vh)
Max rate of climb at sea level

Service ceiling Hover ceiling

> IGE OGE

Rotor System:

Number of blades 3 2
Normal rpm 471 3094

External Dimensions:

Main rotor diameter 8.18 m (26 ft 10 in) Tail rotor diameter 1.30 m (4 ft 4 in)

Length overall,

rotors turning 9.40 m (30 ft 10 in)
Height overall 2.66 m (8 ft 8 5/8 in)

95 kts (175 km/h, 109 mph)

80 kts (146 km/h, 91 mph)

228 m (750 ft)/min 3048 m (10000 ft)

1798 m (5900 ft) 840 m (2750 ft)

Reference Flight Parameters:

	Takeoff	Approach	Level Flyover (0.9Vh)
Ground Speed	40 (kts)	41 (kts)	72 (kts)
Climb Angle	10.46°	-6.00°	NA
Advancing Blade Tip			
Mach Number	NA	NA	.6898
Altitude at	112.2 (m)	120.1 (m)	150 (m)
centerline-center			

FIGURE 1-2. SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER

CONFIGURATION B

Standard Configuration with the following exceptions:

Exhaust system:

Muffler installed

Performance:

Hover ceiling

IGE

1732 m (5682 ft)

SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER

CONFIGURATION C

Standard Configuration with the following exceptions:

Exhaust system:

Muffler installed

Rotor System:

Number of blades 3 4
Normal rpm 471 2321

Performance:

Hover ceiling

IGE

1732 m (5682 ft)

SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER

CONFIGURATION D

Standard Configuration with the following exceptions:

Exhaust System:

Muffler installed Upward directed exhaust pipe

Rotor System:

Number of blades 3 4
Normal rpm 471 2321

Performance:

Hover ceiling

IGE

1732 m (5682 ft)

FIGURE 1-2. SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER (continued)

CONFIGURATION E

Standard Configuration with the following exceptions:

Exhaust System:

Muffler installed

Rotor System:

Tail rotor diameter

1.17 m (3 ft 10 in)

Performance:

Hover ceiling

IGE

1732 m (5682 ft)

SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER

CONFIGURATION F

Standard Configuration with the following exceptions:

Exhaust System:

Muffler installed Resonator installed

Weights:

Max takeoff weight

921 kg (2030 lb)

Performance:

Max cruising speed at sea level

77 kts (141 km/h, 88 mph)

Hover ceiling

IGE

1219 m (4000 ft)

Reference Flight Parameters:

Ground Speed

Takeoff 40 (kts)

41 (kts)

Approach Level Flyover (0.9Vh)

69 (kts)

Advancing Blade Tip

Mach Number

NA

NA

.6855

FIGURE 1-2. SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER (continued)

CONFIGURATION G

Standard Configuration with the following exceptions:

Exhaust System:

Muffler installed Upward directed exhaust pipes

Performance:

Hover ceiling IGE

1732 m (5682 ft)

FIGURE 1-2. SCHWEIZER 300 - THREE-SEAT LIGHT-UTILITY HELICOPTER (continued)

CONFIGURATION H (STANDARD)

		_			
T ~	~	÷	~	_	٠
Er	w	_	. 1 1	_	٠

Allison 250-C20 Turboshaft

Rotor System:

Number of blades 3 2 Normal rpm 471 3095

Weights:

Weight empty 476 kg (1050 lb) Max Takeoff Weight 930 kg (2050 lb)

External Dimensions:

Main rotor diameter 8.18 m (26 ft 10 in)
Tail rotor diameter 1.30 m (4 ft 3 in)
Length overall,
rotors turning 9.40 m (30 ft 10 in)

2.64 m (8 ft 8 in)

Performance:

Never-exceed speed at sea level
Max cruising speed at sea level
Hover ceiling
IGE
OGE

100 kts (185 km/h, 115 mph) 91 kts (169 km/h, 105 mph)

5485 m (18000 ft) 4265 m (14000 ft)

Height overall

Reference Flight Parameters:

	Takeoff	Approach	Level Flyover (0.9Vh)
Ground Speed	49 (kts)	50 (kts)	94 (kts)
Climb Angle	14.29°	-6.00°	NA
Advancing Blade Tip			
Mach Number	NA	NA	.6898
Altitude at			
centerline-center	147.2 (m)	120.1 (m)	150 (m)

FIGURE 1-3. SCHWEIZER 330 - THREE-SEAT TURBINE-POWERED LIGHT HELICOPTER

CONFIGURATION I

Same as in standard configuration except as follows:

Rotor System:

Number of blades

Main Tail

FIGURE 1-3. SCHWEIZER 330 - THREE-SEAT TURBINE-POWERED LIGHT HELICOPTER (continued)

Textron Lycoming HIO-360-FIAD flatfour engine with Rotormaster 3BT5EE10J2 turbocharger

Weights:

Weight empty 719 kg (1585 lb) Max Takeoff Weight

1179 kg (2600 lb)

Normal rpm

Rotor System:

Number of blades

External Dimensions: Main rotor diameter 9.75 m (32 ft) Tail rotor diameter 1.42 m (4 ft 8 in)

Main

3

350

Tail

2709

2

Length overall, rotors stationary 8.92 m (23 ft 3 in) Height to top of

rotor head 2.79 m (9 ft 2 in)

Performance:

Never-exceed speed at sea level Max cruising speed at sea level Max Rate of Climb at Sea Level Certificated Operating Ceiling Hover ceiling IGE OGE

Maximum Range

102 kts (189 km/h, 117 mph) 102 kts (188 km/h, 117 mph) 442 m/min (1450 ft/min) 3660 m (1200 ft)

2345 m (7700 ft) 2650 m (8700 ft)

260 nm (483 km, 300 miles)

Reference Flight Parameters:

Craund Crand	Takeoff	Approach	Level Flyover (0.9Vh) 90 (kts)
Ground Speed Climb Angle	48 (kts) 11.30°	50 (kts) ~6.00°	NA (KEB)
Advancing Blade Tip			47.00
Mach Number Altitude at	NA	NA	.6503
centerline-center	119.8 (m)	120.1 (m)	150 (m)

FIGURE 1-4. ENSTROM 280 FX - THREE-SEAT LIGHT HELICOPTER

Engine:

Allison 250-C20W Turboshaft

Retor System:

Mumber of blades

Main 3 Tail

Weights:

Weight empty 671 kg (1480 11) Max Takeoff Weight 1202 kg (2650 1b)

External Dimensions:

Sola rotor diameter 9.75 m (32 ft)
Tail rotor diameter 1.42 m (4 ft 8 in)
Tailing overall,
Totors stationary 8.92 m (23 ft 3 in)
Elith to top of
Tailing head 2.90 m (9 ft 6 in)

Performance:

Never-exceed speed at sea level
Max cruising speed at sea level
Max Rate of Climb at Sea Level
Service Ceiling
Hover ceiling
IGE
OGE
Maximum Range

11 std 4018 km/h, 142 mph)
12 std 4018 km/h, 126 mph)
13 std (1120 ft/min)
14 std (15000 ft)

3000 b (10400 ft)
4000 ft)
304 rm (676 km, 420 miles)

Reference Flight Parameters:

	Takeoff	Appreach	Level Flyover (0.9Vh)
Ground Speed	55 (kts)	55 (kts)	90 (kts)
Climb Angle	12.970	-6.00'	NA
Advancing Blade Tip			
Mach Number	NA	NA	.6503
Altitude at			
centerline-center (m)	135.0 (a)	The case)	150 (m)

FIGURE 1-5. ENSTROM TH-28 - THREE-SEAT TURBINE-POWERED LIGHT HELICOPTER

Engine:

Rotorway RW-152D

Rotor System:

Number of blades

Main

Tail

Weights:

Weight empty 376 kg (830 lb)

Max Takeoff

Weight 599 kg (1320 lb) External Dimensions:

Main rotor diameter 7.72 m (25 ft 4 in) Length of Fuselage 6.53 m (21 ft 5 in)

Height to top of

Main Rotor 2.13 m (7 ft)

Performance at max takeoff weight:

Never-exceed and max level speed Normal Cruising Speed

Max Rate of Climb at Sea Level Service Ceiling

Hover ceiling, with two persons

IGE OGE

Maximum Range

100 kts (185 km/h, 115 mph) 82 kts (153 km/h, 95 mph) 366 m/min (1200 ft/min)

3660 m (12000 ft)

2285 m (7500 ft) 1370 m (4500 ft)

174 nm (323 km, 201 miles)

Reference Flight Parameters:

Takeoff Level Flyover (0.9Vh) Approach Ground Speed 52 (m) 52 (m) 82 (m) Climb Angle 5.45° -6.00° NA Advancing Blade Tip Mach Number NA NA .5892 Altitude at centerline-center 67.4 (m) 120.1 (m) 150 (m)

FIGURE 1-6. ROTORWAY EXEC 90 - TWO-SEAT HOME-BUILT HELICOPTER

2. MEASUREMENT INSTRUMENTATION

2.1 ACOUSTIC MEASUREMENT INSTRUMENTATION

This Section describes the acoustic measurement instrumentation employed in this study. A block diagram of this instrumentation is shown in Figure 2-1.

Each acoustic measurement system consisted of a General Radio Model 1962-9610 random incidence electret microphone connected to a General Radio Model 1560-P42 preamplifier. The microphone preamplifier system was mounted on a tripod and positioned for grazing incidence at a height of 4 feet (1.2 m) above the ground (measured from the microphone diaphragm). A Brüel and Kjær Model UA0237 windscreen was placed atop each microphone to reduce the effects of wind-generated noise on the microphone diaphragm. The acoustic signal measured by the microphone/preamplifier assembly was fed through 200 feet of cable to both a digital recording system, and an on-line processing system.

2.1.1 Digital Recording System

Each digital recording system consisted of a JVC Model BR-6200U video cassette recorder (VCR) and a Sony Model PCM-F1 digital The acoustic audio processor (PCM-F1). signal from microphone/preamplifier was low-pass filtered (22 kHz anti-alias filter), digitized at a rate of 44.056 kHz and recorded on video channels 1 and 2 with a 10 dB gain offset between channels. Recorder gains were set using a fixed-step conditioning amplifier and fine tuned during calibration using the variable gain adjustment on the PCM-F1. Careful setting of recorder gain insured that the best possible signal-to-noise ratio was achieved, while allowing enough headroom to comply with applicable distortion avoidance requirements.

The output from a Datum Model 9300 Irig-B time code generator, synchronized to a single universal time base was recorded on audio channel 2 of each VCR. Pertinent test-run information was voice-annotated and recorded on audio channel 1.

FIGURE 2-1. ACOUSTIC MEASUREMENT SYSTEM

2.1.2 On-Line Processing System

Each on-line processing system consisted of a Larson Davis Model 820 Type 1 Precision Integrating Sound Level Meter/Environmental Noise Analyzer (LD 820) and a Brüel and Kjær Model 2317 Graphic Level Recorder (GLR). The acoustic signal from the microphone/preamplifier system was fed directly into the LD 820. The same acoustic signal was externally A-weighted prior to being input to the GLR.

The LD 820 was programmed to measure, and to internally Aweight and store the noise level time history (slow sound level meter response characteristics), one data record each 1/2-second. In addition, each LD 820 was set to compute and store the single event Sound Exposure Level (SEL, over the period defined by the system operator), the maximum A-weighted sound level (L_{Amax}) , and the duration of each noise event. For the purposes of this study, these parameters were stored in the internal memory of the LD 820 and were downloaded at the end of each measurement day to an AST Premium Exec Model 386SX/20 notebook computer and stored on floppy disk for later offline processing. the LD 820 has been Note: updated since this study to allow for on-line access to the SEL, the L_{Amax}, and the duration of each noise event directly from the front-panel display.

The GLR was set at a paper transport speed of 0.3 mm/s (0.118 in/s) and produced a graphic time-history recording (A-weighted level versus time). This time history served as on- site visual verification of the acoustic integrity of each test run and aided the system operators in defining the measurement period for the SEL calculation.

2.2 METEOROLOGICAL MEASUREMENT INSTRUMENTATION

This Section provides a description of the meteorological data acquisition systems.

2.2.1 On-Site Weather Station

A Climatronics Model EWS weather station was deployed at the test site to measure and continuously record temperature, relative humidity, wind speed and direction. Wind speed and direction were measured at a height of 10 feet above the ground; temperature and relative humidity were measured at a height of 8 feet above the ground. Readings were recorded in graphical form on a continuous strip chart. Supplemental temperature and humidity readings were also collected using a sling psychrometer.

2.2.2 CERL Weather Station

The weather tower, manned by CERL personnel, was located approximately ½-mile east of the centerline microphone (see Figure 1-1). Personnel at the tower recorded temperature, wind speed and wind direction at 5-minute intervals during each test day. Temperature sensors were located at heights of 13, 35, and 108 feet above the ground; while a wind speed and wind direction sensor was positioned at a height of 115 feet.

2.2.3 Willard Airport Weather Station

Hourly Automated Terminal Information Service (ATIS) reports were obtained from Willard Airport and used to supplement the onsite meteorological data. These reports contained ambient temperature, dew point, and barometric pressure. The meteorological station at Willard Airport was located approximately 5 miles east of the test site.

2.3 ALTITUDE MEASUREMENT AND GUIDANCE INSTRUMENTATION

Helicopter altitude and lateral deviation (relative to the reference flight track) were recorded using a pair of synchronized still cameras. One camera was situated approximately 1000 feet west of the centerline microphone to record helicopter position and altitude at centerline overhead. The other was positioned along the flight path approximately 1000 feet south of the centerline microphone to record lateral deviation at centerline overhead. A

graduated scale was placed 50 feet in front of each camera and used for photo scaling purposes. Helicopter approach was guided by a pulsed light approach slope indicator (PLASI). The PLASI was specially modified to produce five indication signals to help guide the pilot along a 6-degree approach path.

3. EXPERIMENTAL APPROACH

3.1 MICROPHONE LOCATIONS

Three microphones were deployed as specified in FAR Part 36, Appendix H. One microphone was placed at the centerline position, directly under the north-to-south flight track (Site 1). A second microphone was placed 150 m due west of the centerline microphone (Site 2) and the third microphone was placed 150 m due east of the centerline microphone (Site 3). The grass within a 10-foot radius around each microphone was cut to a height of less than ½-inch to minimize the effects of absorption on the ground reflected sound path (FAR Part 36, Section H36.101(b)).

3.2 NOISE MEASUREMENT SYSTEM CHECKOUT

At the beginning of each measurement day, a complete system checkout was performed on each acoustic measurement system. To establish the electronic noise floor of each system, a passive microphone simulator (dummy microphone) was substituted for each microphone. In addition, the frequency response of each system was obtained by recording a 30-second sample of pink noise from a Cetec Ivie Model IE-20B random noise generator. General Radio Model 1562-A acoustic calibrators with an output sound pressure level of 114 dB re 20 $\mu \rm Pa$ were used to calibrate the acoustic measurement systems at the start of each test day. Subsequent calibrations were performed at hourly intervals during the day and a final calibration was performed at the end of each measurement day.

To insure conformity between the three acoustic measurement sites, the time code generator (TCG) at each site was synchronized to a single universal time base. All other timekeeping instruments, e.g. stop watches (See Section 3.4.1), were then synchronized to the TCGs.

3.3 TEST SERIES DESCRIPTION

A communications network was utilized to manage the flight crews and the various data acquisition teams. This network used three 2-way walkie-talkie-based systems coordinated at the central command center (CCC), located approximately 200 feet southeast of the centerline microphone. Communication System 1 linked the CCC with the three Volpe Center acoustic measurement teams. System 2 linked the CCC with the helicopter cockpit crew, ground maintenance crews and the Willard Airport control tower. System 3 linked the CCC with the aircraft positioning team and the CERL acoustics laboratory.

Following checkout and calibration of the measuring systems, the test director at the CCC instructed the helicopter cockpit crew to proceed with the flight tests. During a typical flight test, the acoustic measurement coordinator would, at the appropriate time, instruct the system operators at Sites 1, 2 and 3 to begin simultaneous recordings of acoustic data on the digital recording systems and the GLRs. The decision to begin measuring acoustic data for the on-line SEL measurements (using the LD 820s) was left up to the individual system operators at each site. Each operator was instructed to capture the leading and trailing 10 to 15 dB down points of the acoustic signature of the test run based on the Aweighted noise level versus time history trace on the GLR chart Following each test run, the GLR time history plots were used to determine the acoustic integrity of each individual flight test. Rejected tests were rerun, as appropriate.

A complete set of measurements for each helicopter consisted of takeoff, approach, and level flyovers, per Appendix H of FAR Part 36. Note: level flyover tests were performed at multiple airspeeds so that a source noise correction could be computed (see Section 4.2.3). Tables 3-1 through 3-5 present a test summary for the 5-day measurement study. In reviewing these Tables, note the following:

• LFO, 492', XV_h - denotes a level flyover event at an altitude of 492 ft and a speed of XV_h (Test Series A and D).

TABLE 3-1. TEST SUMMARY, JULY 22, 1991

**** Schweizer 300, Configuration A *****

Test Series/	Description	Start	Stop
Run Numbers	of Test Series	<u>Time</u>	<u>Time</u>
A/A1-A6	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	08:15	08:33
D/D1-D2		08:34	08:39
D/D3-D6		08:40	08:53
D/D7-D8		09:24	09:30
D/D9-D10		09:32	09:39
B/B1-B6		09:40	10:08
C/C1-C9		10:31	11:10
	**** Rotorway Exec 9	0 ****	
A/A1-A5,A9 D/D6-D7 D/D8 D/D10 D/D11-D12 D/D13-D14 B/B15-B21 C/C22-C27	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 5.45° Takeoff, V _y	11:40 11:51 11:56 12:27 12:29 12:34 12:41	11:50 11:54 11:58 12:29 12:33 12:39 13:50 14:10
**** Schweizer 300, Configuration B ****			
A/A1-A6	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	14:58	15:15
D/D7-D8		15:16	15:20
D/D9-D10		15:24	15:27
D/D11-D12		15:28	15:32
D/D13-D14		15:34	15:39
B/B15-B20		16:08	16:33
C/C21-C28		16:36	17:06

TABLE 3-2. TEST SUMMARY, JULY 23, 1991

**** Schweizer 300, Configuration C *****

	2002202 000, 002	J	
Test Series/ Run Numbers	Description of Test Series	Start <u>Time</u>	Stop <u>Time</u>
A/A1-A7 D/D8-D9 D/D10-D11 D/D12-D13 D/D14-D16 B/B17-B24 C/C25-C30	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	06:40 06:59 07:03 07:09 07:15 07:45 08:13	06:58 07:02 07:07 07:14 07:25 08:12
***	** Schweizer 330, Confi	guration H ***	**
A/A1-A7 D/D8-D9 D/D10-D11 D/D12-D13 D/D14-D15 B/B16-B22 C/C23-C34	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 14.29° Takeoff, V _y	09:27 09:45 09:50 09:56 10:00 10:28 10:50	09:44 09:49 09:55 09:59 10:04 10:48 12:00
**** Schweizer 300, Configuration D ****			
A/A1-A6 D/D7-D9 D/D10-D11 D/D12-D13 D/D14-D15 B/B16-B23 C/C24-C29	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	12:41 12:57 13:06 13:11 13:18 13:49 14:21	12:55 13:04 13:10 13:16 13:23 14:18 14:45

TABLE 3-3. TEST SUMMARY, JULY 24, 1991

**** Schweizer 300, Configuration E *****

Test Series/ Run Numbers	Description of Test Series	Start <u>Time</u>	Stop <u>Time</u>
A/A1-A6 D/D7-D8 D/D9-D10 D/D11-D12 D/D13-D14 B/B15-B20 C/C21-C24	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	06:28 06:44 06:50 06:55 07:01 07:36 07:59	06:42 06:49 06:54 07:00 07:08 07:57 08:12
E/E1-E7	330 Test 10.46° Takeoff, V _y	11:44	12:09
***	* Schweizer 330, Confi	guration I ***	**
A/A1-A6 D/D7-D8 D/D9-D10 D/D11-D12 D/D13-D14 B/B15-B21 C/C22-C27	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 14.29° Takeoff, V _y	09:08 09:27 09:34 09:39 09:44 10:07	09:26 09:31 09:38 09:43 09:49 10:32 10:53

TABLE 3-4. TEST SUMMARY, JULY 25, 1991

**** Schweizer 300, Configuration F *****

Test Series/	Description	Start	Stop
Run Numbers	of Test Series	<u>Time</u>	<u>Time</u>
A/A1-A7	LFO, 492', 0.6Vh	06:39	06:59
D/D8-D9		07:01	07:04
D/D10-D11		07:08	07:13
D/D12-D13		07:15	07:19
D/D14-D15		07:21	07:26
B/B16-B23		07:51	08:24
C/C24-C31		08:26	08:50
***	** Schweizer 300, Configu	ration G ****	
A/A1-A7	LFO, 492', 0.9V _h LFO, 492', 1.0V _h LFO, 492', 0.8V _h LFO, 492', 0.7V _h LFO, 492', 0.6V _h 6° Approach, V _y 10.46° Takeoff, V _y	09:41	09:59
D/D8-D9		10:01	10:05
D/D10-D11		10:07	10:10
D/D12-D13		10:12	10:16
D/D14-D15		10:18	10:23
B/B16-B24		10:47	11:20
C/C25-C30		11:22	11:45

TABLE 3-5. TEST SUMMARY, JULY 26, 1991

	**** Enstrom Th28	****	
Test Series/ Run Numbers	Description of Test Series	Start <u>Time</u>	Stop <u>Time</u>
B/BT1-BT7	6° Approach, V _y	06:28	06:56
	**** Enstrom 280FX	****	
B/BP8-BP14	6° Approach, V _y	07:08	07:37
	**** Enstrom TH28	****	
C/CT15-CT21	12.97° Takeoff, V _y	07:56	08:29
	**** Enstrom 280FX	****	
C/CP22-CP27	11.30° Takeoff, V _y	08:44	09:10
	**** Enstrom TH28	****	
A/AT28-AT33	LFO, 492', 0.9V _b	10:15	10:34
D/DT34-DT35	LFO, 492', 1.0V _h	10:35	10:39
D/DT36-DT37	LFO, 492', 0.8V _h	10:40	10:47
D/DT38-DT39	LFO, 492', 0.7V _h	10:49	10:54
D/DT40-DT41	LFO, 492', 0.6V _h	10:59	11:07
	**** Enstrom 280FX	****	
A/AP42-AP47	LFO, 492', 0.9V _h	12:46	13:01
D/DP48-DP49	LFO, 492', 0.8V _h	13:03	13:07
D/DP50-DP52	LFO, 492', 0.7V _h	13:09	13:18
D/DP53-DP54	LFO, 492', 0.6V _h	13:21	13:26
D/DP55-DP57	LFO, 492', 0.6Vh	13:29	13:41

- 6° Approach, V_y denotes an approach event at a reference glide slope of 6° and at a speed of V_y (Test Series B).
- X° Takeoff, V_{y} denotes a takeoff event at a reference takeoff angle of X° and at a speed of V_{y} (Test Series C).

3.4 ADDITIONAL MEASUREMENT COMPONENTS

3.4.1 Helicopter Speed Determination

Helicopter ground speed was measured by an observer equipped with a stopwatch in the CERL weather tower, 2500 feet from the flight track. The observer used the vertical frames of the picture window in the tower to make visual alignment with fixed reference points on the flight track. By measuring the split time during which the helicopter passed between the vertical posts and the geometry of the reference triangulation, ground speed was determined.

3.4.2 Flight Path Markers and Guidance Systems

A number of methods were used to aid the helicopter pilots in maintaining the correct flight profile:

- 1. Visual cues in the form of bright blue squares were placed along the flight path common to all flight profiles.
- 2. A rotation marker was placed beneath the flight track, 1640 feet north of the centerline microphone to identify the takeoff rotation point.
- 3. A pulsed light approach slope indicator (PLASI) was placed approximately 3750 feet south of the centerline microphone at the intersection of the 6-degree approach slope and the ground. The PLASI generated light rays crossed over the centerline microphone at an altitude of 394 feet above ground level. The PLASI was specially modified to produce 5 indication signals to help guide the pilot along a 6-degree approach path, as follows:
 - A solid white signal indicated the helicopter was on the flight path.

- A solid red signal indicated the helicopter was slightly below the flight path.
- A pulsating red signal indicated the helicopter was below the allowed ½-degree deviation.
- A solid green signal indicated the helicopter was slightly above the flight path.
- A pulsating green signal indicated the helicopter was above the allowed ½-degree deviation.

Utilizing the aforementioned visual guidance, the pilots adjusted their glide slopes as appropriate, keeping the flight path within the 6 degree wedge ($\pm \frac{1}{2}$ degree) defining the target approach track.

3.4.3 <u>Cockpit Observer Loq</u>

Pertinent helicopter performance parameters such as indicated airspeed, altitude, engine & rotor RPM, and outside air temperature were recorded by an observer on board the test helicopter at the centerline overhead position. Time of overhead was transmitted by radio from the CCC in the form of a verbal "mark."

4. DATA REDUCTION

This Section describes the procedures used to arrive at the acoustic data sets found in the Appendices A through D. Data reduction followed the principals outlined in FAR Part 36, Appendix H and Advisory Circular AC 36-4B.²

4.1 DIGITALLY RECORDED DATA

Digital tape recordings were analyzed at the Volpe Center's Acoustics Facility in Cambridge, Massachusetts. Figure 4-1 is a block diagram of the acoustic data analysis instrumentation. recorded data were reproduced and fed through a Brüel and Kjær Model 2131 digital %-octave frequency analyzer (B&K 2131) and averaged into \(\frac{1}{2} - \text{second linear data records.} \) The start and duration of each processed event was identified by first listening to the recorded data to insure that no extraneous sounds contaminated the data to be analyzed (listening/screening process). Using the time code signal recorded on audio channel one of the tape, and the coincidence circuit of a Datum Model 9300 time code reader, the data reduction system was triggered to begin processing at the precise instant identified during the listening/screening process. One-half second records of %-octave band sound pressure levels (25 Hz - 10 kHz) were linearly averaged and digitized by the B&K 2131 and stored in contiguous fashion in computer data files over the operator-specified duration.

Also processed and stored in separate files were $\frac{1}{2}$ -second records of recorded calibration signals, pink noise signals and ambient data. System gain and calibration adjustments were applied to the stored data, as required. Time-of-day was assigned to the midpoint of each $\frac{1}{2}$ -second data record based upon the start time at the onset of the event and the index number assigned to each data record.

²"Noise Certification Handbook", <u>Advisory Circular</u>, <u>AC 36-4B</u>, Washington D.C.: Federal Aviation Administration, March 23, 1988.

FIGURE 4-1. ACOUSTIC DATA ANALYSIS INSTRUMENTATION

The propagation distances and position coordinates (x,y,z) of the helicopter at the time of emission of each $\frac{1}{2}$ -second data record were computed utilizing the measured tracking data (see Appendix G), time at overhead, and the average temperature data over the propagation path (see Appendix F).

4.1.1 Ambient Noise

The lowest sound pressure level measured during a flight test is limited by the background noise level. The background noise level is a function of both ambient noise level at the test site and the electronic noise floor of the data measuring and analysis system. Representative ambient data were obtained from a 5-to-10 second time-averaged sample of data recorded prior to each event. The ambient noise level was compared against the noise floor of the B&K 2131, using the +1 dB criterion (FAR Part 36, Section H36.109). Ambient data which did not meet this criterion were identified as The unmasked %-octave band ambient levels were used to masked. correct the measured raw spectral data from each event subtracting the ambient levels from the measured levels on an The following exceptions to this procedure are energy basis. noted:

- 1. The %-octave spectral data were tested for masking against the analyzer noise floor prior to being corrected for ambient (+1 dB criterion). Any %-octave band level failing the test was identified as masked and was not adjusted for ambient. Any data record with four or more masked bands below 800 Hz or with masked bands occurring in the 800, 1000, or 1250 Hz band was judged bad.
- 2. Each %-octave frequency band below 800 Hz was further tested and adjusted according to the following: If the measured level was less than the ambient +5 dB criterion, the measured level was set equal to the ambient level.
- 3. If the measured level in any %-octave frequency band, 800 Hz or above, was less than the ambient +5 dB criterion, the measured level was identified as masked and adjusted by spectral shaping (see Section 4.1.3).
- 4. If an erroneous sound, e.g., a bird chirp, was identified in a particular %-octave frequency band, the measured level in that band was replaced by a level obtained

through linear interpolation of the %-octave band levels adjacent to the contaminated frequency band.

The above process yielded the ambient corrected spectral data.

4.1.2 Frequency Response Adjustments

Utilizing a 30-second energy-averaged portion of the recorded pink noise signal, adjustments were made to the unmasked portion of the ambient corrected raw spectral data. This adjustment was made to account for deviations in the frequency response of the acoustic measurement and reproduction system.

4.1.3 Spectral Shaping

Data records with up to seven masked high frequency bands (2.5 kHz and above) were further adjusted by extrapolating from the level of the highest unmasked frequency band to the next consecutive band by an amount equal to the difference between the reference day and test day atmospheric absorption along the sound propagation path from source to receiver. If more than seven bands were identified as masked, the data record was judged bad.

Records within 1 second of and including the maximum tone-corrected perceived noise level ($PNLT_{max}$) were similarly reshaped but were limited to having a maximum of four masked bands. If more than four masked bands were identified the entire event was discarded.

Adjustments as above yielded a contiguous set of linear ½-second data records for each event.

4.1.4 <u>Simulation of a Slow Exponential Time Constant</u>

The contiguous set of linear $\frac{1}{2}$ -second data records were further processed to obtain a data set with "slow" exponential response characteristics. This was accomplished by using a weighted logarithmic averaging procedure with a sliding 2-second window (consecutive sets of four $\frac{1}{2}$ -second linear data records). The equation used for computing this running average is as follows:

```
SPL_{i} = 10log[ 0.17(10^{0.1L(i-3)} ) \\ +0.21(10^{0.1L(i-2)} ) \\ +0.24(10^{0.1L(i-1)} ) \\ +0.33(10^{0.1L(i)} )] where L; is the value of the i<sup>th</sup> level
```

Each exponentially averaged record was assigned a time-of-day and emission coordinates consistent with those of the mid-point between the second and third record of the 4-record set, i.e., the effective mid-point of the 2-second averaging period.

The exponentially averaged and adjusted data set (consecutive records of twenty-seven %-octave bands, 25 Hz - 10 kHz) resulting from the processing to this point will be referred to herein as the "as-measured" data set.

4.1.5 Noise Metric Computations

The as-measured data set was further processed to yield a family of perceived noise and A-weighted noise metrics including Effective Perceived Noise Level (EPNL) and Sound Exposure Level (SEL). Summary tables of as-measured noise level data are presented for each event by helicopter in Appendix A.

4.1.5.1 <u>EPNL Family</u> - The EPNL family of metrics were computed using twenty-four %-octave bands of data (50 Hz - 10 kHz) and include:

- EPNL Effective Perceived Noise Level computed over the 10 dB down duration of the PNLT data.
- PNLT, PNL Perceive Noise Level with and without tone correction, respectively.
- PNLT_{max} Maximum perceived noise level with tone correction.
- Dur(P) Duration time between the 10 dB down points on the PNLT time history.
- TC Tone correction and frequency band number, per FAR Part 36, Section B36.5(a), with the

computation for spectral irregularities starting with data in the 50 Hz %-octave band.

- BNDSHR Adjustment for the presence of bandsharing of tones, per FAR Part 36, Section B36.5(n).
- 4.1.5.2 <u>SEL Family</u> The SEL family of metrics were computed using twenty-seven %-octave bands of data (25 Hz-10 kHz) and include:
 - SEL Sound Exposure Level, computed over the 10 dB down duration.
 - AL A-weighted noise level.
 - AL_{max} Maximum A-weighted noise level measured for each event.
 - Dur(A) Duration time between the 10 dB-down point on the AL time history.
 - SEL(s) Simplified SEL computed according to the following:

$$SEL(s) = AL_{max} + 10.0*log(Dur(A)/2.0)$$

4.1.5.3 <u>OASPL</u> - Also computed for each record was the unweighted overall sound pressure level (OASPL) using twenty-seven %-octave bands of data (25 Hz - 10 kHz).

4.2 ADJUSTMENTS TO REFERENCE CONDITIONS - SIMPLIFIED PROCEDURE

The as-measured data were adjusted to reference conditions using the "simplified" adjustment procedure, as defined in FAR Part 36. Delta adjustments ($\Delta 1$, $\Delta 2$, $\Delta 3$) were computed and arithmetically added to as-measured values of EPNL and SEL to correct them to reference conditions.

EPNL_{cor} = EPNL_{as meas} +
$$\Delta$$
1(P) + Δ 2 + Δ 3
SEL_{cor} = SEL_{as meas} + Δ 1(A) + Δ 2 + Δ 3

Summary tables of as-measured noise level data corrected to reference conditions are presented for each event by helicopter in Appendix B.

4.2.1 Delta 1: Spherical Spreading and Atmospheric Absorption

After a determination was made of both the test and reference propagation distances at the time of $PNLT_{max}$, the as-measured $PNLT_{max}$ spectrum levels were adjusted for:

- The change in atmospheric sound absorption from the test day to standard reference day (77°F, 70% RH) over the test day propagation path.
- The reference day atmospheric sound absorption associated with the difference in propagation distance between the test day and reference propagation paths.
- The inverse square law effect resulting from the difference in propagation distance between the test day and reference propagation paths.

Utilizing these adjusted spectral levels, the corrected PNLT_{max} value (PNLT_{cor max}) was computed and with it the $\Delta 1$ (P) adjustment was obtained, as follows:

$$\Delta 1(P) = PNLT_{cor max} - PNLT_{max}$$
 (as measured)

Similarly, after adjusting the level of the AL_{max} spectrum, the corrected AL value ($AL_{cor\ max}$) was computed and with it the $\Delta 1(A)$ adjustment was obtained, as follows:

$$\Delta 1(A) = AL_{cor max} - AL_{max}$$
 (as measured)

4.2.2 Delta 2: Distance/Ground Speed Duration Correction

The minimum distance, i.e., the closest point of approach, from both the test (CPA) and reference (CPAR) flight tracks to the microphone diaphragm, were computed and used along with the test (V_{gt}) and reference (V_{gr}) ground speeds in the computation of the distance and speed portions of the duration correction ($\Delta 2$). The duration correction was computed as follows:

$$\Delta 2 = -10\log(\text{CPA/CPAR}) + 10\log(V_{gt}/V_{gr})$$

4.2.3 Delta 3: Source Noise Correction

The source noise correction ($\Delta 3$) accounts for changes in sound level associated with deviations in the in-flight advancing blade tip mach number (Mach Number_{ABT}). Changes in Mach Number_{ABT} can be associated with changes in any single or combination of the following parameters: (1) Rotor RPM; (2) Airspeed; and, (3) Ambient temperature; these are all dominant components of the Mach Number_{ABT}. Note: The source noise correction ($\Delta 3$) is applied only in the case of level flyover.

To quantify the source noise correction, the Mach Number $_{ABT}$ was computed at 77°F and at the helicopters' reference air speed and reference rotor RPM. The in-flight Mach Number $_{ABT}$ was computed by arithmetically summing the helicopter's rotational mach number and its translational mach number.

The as-measured PNLT_{max} versus in-flight Mach Number_{ABT} was then plotted for the microphones positioned directly under, to the left side, and to the right side of the helicopter. First, second, and third order least-squares regression curves were fitted to these data, which included the six clustered data points at the target certification airspeed $(0.9V_h)$ and two data points at each of the three additional airspeeds. A second order curve was found to best fit the majority of the data and was used for all further $\Delta 3$ computations. The slope of a line tangent to the regression curve at the Mach Number_{ABT} associated with each data point was used to compute the source noise correction $(\Delta 3)$, as follows:

 $\Delta 3$ = slope * (reference Mach Number_{ABT} - test Mach Number_{ABT})

Appendix E contains a plot of the regression line for each helicopter and the associated 90 percent confidence intervals. Also shown is the equation of the line, correlation coefficient and standard error from the regression analysis.

The Mach Number and values for specific noise events were computed using true airspeed and outside air temperature. Note: Since Rotorway, Inc., did not provide data relating indicated air-

speed to the calibrated airspeed, indicated airspeed was used in place of calibrated airspeed for Mach Number Computations for the Rotorway Helicopter, as appropriate.

4.3 DIRECT READ - ON-LINE DATA

As pointed out in Section 3.3, the LD 820s were programmed to measure and store the slow scale A-weighted time history data (2-records per second) for each event (SEL $_1$). The start of data collection was determined by the individual system operators onsite based upon the operator's estimate of the 10 to 15 dB down points of the A-weighted time history. To obtain a measure of the error in the operator estimated 10 to 15 dB down point, the time history data stored in the LD820s were reprocessed at the Acoustics Facility and an SEL was computed over the exact 10 dB-down duration (SEL $_2$).

The above SEL_1 and SEL_2 values (after adjusting for measurement system drift using stored calibration data) were compared against the SEL values computed using the A-weighted time history data (generated from the as-measured %-octave band digitally recorded data, see Section 4.1). A comparison of the SEL data (SEL, SEL₁, and SEL₂) is presented for each helicopter in Appendix D.

4.4 METEOROLOGICAL DATA

As seen in Section 2.2, meteorological data from three separate sources were collected and recorded during the flight tests. Wherever possible, temperature and relative humidity from the on-site weather station were used to calculate sound level adjustments to reference conditions. When this data was unavailable, the 10 m temperature from the CERL weather station and the relative humidity from the Willard Airport ATIS were used. A summary of data sources and a plot of temperature and relative humidity for each test day can be found in Appendix F.

4.5 TRACKING DATA

Helicopter tracking data, including altitude and lateral deviation from the synchronized still cameras, and ground speed measured by personnel at the CERL weather tower, were reduced by FAA personnel. Test day climb and descent angles were set equal to the reference climb and descent angles. A summary of these results is presented in Appendix G.

5. DISCUSSION OF RESULTS

The as-measured and corrected noise level data are presented without further discussion in Appendices A (Tables A-A-1-1 through A-L-3-2) and B (Tables B-A-1-1 through B-L-3-2), respectively. Appendix C presents as-measured %-octave spectral data for representative measurement runs (Figures C-A-1-1 through C-L-3-3). Appendix D (Figures D-A-1 through D-L-2) presents a comparison of the sound exposure levels computed from: (1) the digitally recorded data; (2) the on-line data based on the field-estimated 10 to 15 dB down duration; and, (3) the on-line data based on the exact 10 dB down duration. Appendix E (Figures E-1 through E-12) presents plots and a statistical summary of the least-squares regression line fit through the Mach Number ART vs. PNLT data for level flyover source noise correction. Tables E-1 through E-3 present the regression model equations for the reference data set and the four alternate data sets. The discussions of this section are based on the data presented in Appendices C, D and E.

5.1 SOUND EXPOSURE LEVEL DATA

The primary objective of this study was to obtain the data necessary to evaluate a proposed screening test for noise-certification of light helicopters. In order to examine differences between the proposed screening test and the existing certification methodology, a comparison of the SEL data acquired from this study was performed.

In Appendix D (Tables D-A-1 through D-L-2), a comparison is made of the as-measured SEL computed using: (1) the digitally recorded data (SEL); (2) the on-line data based on the field-estimated 10 to 15 dB down duration (SEL $_1$); and, (3) the on-line data based on the exact 10 dB down duration (SEL $_2$).

The ${\rm SEL_1}$ and ${\rm SEL_2}$ values are in agreement with the tapederived SEL. The ${\rm SEL_1}$ averaged 0.40 dBA higher than the SEL with a standard deviation of 0.20 dBA. The ${\rm SEL_2}$ averaged 0.02 dBA higher than the SEL with a standard deviation of 0.20 dBA. The

excellent correlations between the SEL and the SEL_2 are to be expected since they were both computed for the exact 10 dB down duration. The SEL_1 , however, was computed over the operatorestimated 10 to 15 dB down duration; as a result, more energy (longer measurement duration) was added to the overall level as compared to the tape-derived SEL. The additional energy resulted in a slightly higher SEL.

5.2 SUPPLEMENTARY ANALYSIS

A supplementary analysis was performed to determine the effect of various design changes on the acoustic signatures of helicopters, using the data obtained from the two Schweizer helicopters. In order to isolate the effects of specific design changes, the following configurations were compared (see Section 1.4 for additional clarification):

Configuration Comparison	<u>Effect Examined</u>
B vs. A	Muffler vs. No muffler
C vs. B	4-blade tail rotor vs. 2-blade tail rotor
D vs. C	Upward directed exhaust vs. Lateral exhaust (4-blade tail rotor)
G vs. B	Upward directed exhaust vs. Lateral exhaust (2-blade tail rotor)
E vs. B	Reduced diameter tail rotor vs. Standard tail rotor (2-blade tail rotor)
F vs. B	Muffler with resonator vs. Muffler
I vs. H	4-blade tail rotor vs. 2-blade tail rotor

5.2.1 Noise Level Analysis

An analysis was performed to examine the effects of each configuration change on the resulting EPNL and SEL. The following summarizes the changes. Actual changes in noise levels are presented in Table 5-1.

TABLE 5-1. EFFECT OF CONFIGURATION CHANGES ON COLORAGE BOISE LEVELS

		CONFIGURATIONS						
<u> </u>		B vs A	C vs B	D vs C	E vs B	F v:	vi. 3	I vs H
APF::OACH	EPNL	-3.44	2.67	-0.36	1.12	2	0.03	-0.05
	SEL	-3.97	4.70	-0.32	2.87	4.7	23	9.58
TAKEOFF	EPNL	-7.57	-0.07	-2.80	0.47	-1.1	0.75	-4.11
	SEL	-8.04	0.38	-2.04	0.71	-1.	₹.15	-3.08
LEVEL	EPNL	-6.63	-0.10	-3.27	0.84	-1.i.	J.47	-6.18
FLYOVER	SEL	-6.59	0.18	-2.66	1.26	-1.0.	1.88	-5.23

Muffler (B vs. A)

• The installation of the muffler resulted in a fairly substantial noise level reduction for all three test cases; 3 to 4 dB for approach, and 6 to 8 dB for takeoff and level flyover.

4-blade tail rotor (C vs. B and I vs. H)

• The 4-blade tail rotor on the pistch engine helicopter resulted in increased levels for approach and essentially no change in levels for takeoff and level flyover. However, on the turbine engine helicopter, it mesulted in essentially no change in levels for approach and a substantial reduction in noise levels for takeoff and level flyover (3.1 to 6.2 dB).

Reduced diameter tail rotor (E vs. B)

• The reduced diameter tail rotor resulted in an increase in the noise levels for all flight conditions.

Upward directed exhaust (D vs. C and G vs. B)

• The upward directed exhaust combined with the 4-blade tail rotor result 2 in a reduction in the noise levels for takeoff and level flyover. However, when combined with the 2-blade tail rotor, it resulted in and increase in the noise levels for approach and essentially no change in levels for takeoff and level yever.

Resonator (F vs. B)

• The addition of the resonator resulted in a reduction in the noise levels for takeoff and level flyover and an increase in levels for approach.

5.2.2 Spectral Analysis

To better characterize the effects of the various design configurations tested, spectral time history plots and level versus frequency plots (at PNLT_{max}) were generated for a representative event in each flight series (see Appendix C). Each as-measured spectral time history was plotted over the period of the 10 dB down duration. Examination and comparison of the plots (Figures C-A-1-1 through C-I-3-3) provide some insight into the frequency components affected by each configuration change. Table 5-2 is a summary of the changes observed in the 1/3-octave frequency bands.

TABLE 5-2. EFFECT OF CONFIGURATION CHANGES ON 1/3-OCTAVE BAND LEVELS

CHANGE	FLIGHT SERIES	REDUCED BANDS *	INCREASED BANDS*
	Approach	21-23,26-30	
Muffler Addition	Takeoff	26-38	14-15
	Level Flyover	25-38	
	Approach		21-25
4-Blade Tail	Takeoff	15-18	
Rotor	Level Flyover	15-16,18-19	
	Approach	15-16	21-23,26-30
Reduced Diameter	Takeoff	15-17	18
Tail Rotor	Level Flyover	15-16	
	Approach	15-16	
Upward Directed	Takeoff	15-16,18-19	
Exhaust	Level Flyover	15-16,18-19	
	Approach	15-16	
Resonator	Takeoff	15-16,18	
	Level Flyover	15-16,18	

^{*} ANSI S1.11-1986 Band Numbers.

The addition of the muffler resulted in a decrease in level in most 1/3-octave frequency bands above 315 Hz (band 26). The remaining configuration changes (all of which included the muffler in their design) affected the frequency bands below 100 Hz (band 20). Changing the tail rotor design from a 2-blade rotor to a 4-blade rotor with reduced rpm resulted in a clear spectral shift. This shift is a result of the change in the blade-passage frequency (BPF) associated with each rotor design. The fundamental BPF is given by BPF = (# of blades)*(rotor rpm)/60. For the 2-blade rotor f = 103 Hz (band 20) and for the 4-blade rotor f = 154 Hz (band 22). The BPF is clearly visible in the spectral time histories of the 2-blade design but is less prominent in the 4-blade design (Figures C-H-1-2 and C-I-1-2).

5.3 DELTA 3: SOURCE NOISE CORRECTION

As stated in Section 4.2.3., the source noise correction was computed for level flyover data using the slope of a second order least-squares regression curve fitted to the as measured PNLT_{max} vs. advancing blade tip mach number (Mach Number_{ABT}) data (computed from the helicopter's rotational and translational mach numbers). Figures E-1 through E-12, Appendix E, present plots of these data, regression models and the 90 percent confidence interval band (as indicated by the dashed lines) for data measured at the centerline, right side and left side of the helicopter. Also included are the regression model equations, correlation coefficients (r), and standard errors of estimate.

The second order regression models chosen for the source noise correction generally show a high correlation between PNLT_{max} and Mach Number_{ABT} at the centerline measurement position, with slightly reduced correlation at the right and left side positions. Low correlation is especially evidenced for the right and left side data in Figures E-1, E-2, and E-12. In these cases, high winds caused the noise levels at the sideline east microphone to be higher than at the sideline west microphone (See Appendix G for a summary of the meteorological conditions.)

5.4 EFFECT OF CLUSTERED DATA POINTS ON DELTA 3 REGRESSION MODELS

The data used to determine the regression models in Appendix E are comprised of 14 measured points at 5 target airspeeds: at $1.0V_h$, six at $0.9V_h$, two at $0.8V_h$, two at $0.7V_h$, and two at 0.6Vh. Note that at 0.9Vh there are six data points (three in each direction, as required at the certification airspeed). determine if a least-squares regression model fitted to these data is influenced by the larger number of data points at 0.9Vh (six vs. two), an analysis was performed using four alternate data sets constructed from the original. Alternate Data Set 1 includes the original 8 points at 0.6, 0.7, 0.8, and 1.0Vh, and two new points derived from the average of the data points from the three N-S flights and the average of the data points from the three S-N flights at 0.9Vh. Alternate Data Sets Two, Three, and Four include the original 8 points at 0.6, 0.7, 0.8, and 1.0Vh, and two new data points each using the first two, second two and third two consecutive test flights respectively (consecutive N-S and S-N flights) at 0.9V_h.

A summary of the second order least-squares regression equations used to model the original data set and each of the four alternate data sets is shown in Tables E-1 through E-34. These equations were used to compute an average $\Delta 3$ (averaged over the five target airspeeds) for the original data set and for each of the four alternate sets ($\Delta 3$, $\Delta 3_1$, $\Delta 3_2$, $\Delta 3_3$, $\Delta 3_4$ respectively). Tables 5-3A through 5-3D present the average differences between $\Delta 3$ values obtained from the original and each alternate data set (difference = $\Delta 3$ - $\Delta 3_1$).

As can be seen in Tables 5-3A (centerline), 5-3B (left side), and 5-3C (right side) the average differences are equal to or less than 0.14 dB, 0.07 dB, and 0.11 dB, respectively, with the majority of the differences (70 percent) less than 0.05 dB. In addition, the standard deviations were less than 0.34 dB. The arithmetic average and standard deviations for the pooled centerline, left side, and right side data are presented in Table 5-3D. The average difference is equal to or less than 0.07 dB and the standard

TABLE 5-3A. PELTA 3 COMPARISON CENTERLINE CENTER

Helicopter		Difference Δ3-Δ3 ₁ (dB)	Difference \$\Delta 3 - \Delta 3_2 \\ (dB)	Difference \$\Delta 3 - \Delta 3_3 (dB)	Difference Δ3-Δ3 ₄ (dB)
Schweizer 300	Average	0.00	0.00	0.00	0.00
Configuration A	Std Dev	0.02	0.01	0.03	0.00
Schweizer 300	Average	0.09	-0.05	-0.10	-0.07
Configuration B	Std Dev	0.01	0.01	0.14	0.03
Schweizer 300	Average	0.01	-0.01	0.01	0.02
Configuration C	Std Dev	0.00	0.01	0.00	0.02
Schweizer 300	Average	-0.06	-0.06	-0.03	-0.06
Configuration D	Std Dev	0.08	0.04	0.08	0.07
Schweizer 300	Average	0.00	0.00	0.01	-0.02
Configuration E	Std Dev	0.01	0.00	0.02	0.04
Schweizer 300	Average	0.01	0.01	0.14	-0.01
Configuration F	Std Dev	0.02	0.02	0.10	0.04
Schweizer 300	Average	-0.03	-0.01	-0.01	-0.06
Configuration G	Std Dev	0.03	0.02	0.02	0.07
Schweizer 330	Average	-0.01	-0.00	0.00	-0.02
Configuration H	Std Dev	0.10	0.12	0.10	0.08
Schweizer 330	Average	0.00	0.01	0.01	0.00
Configuration I	Std Dev	0.02	0.03	0.03	0.01
Enstrom	Average	-0.01	-0.03	0.05	-0.04
280FX	Std Dev	0.07	0.08	0.11	0.01
Enstrom	Average	-0.03	-0.02	-0.03	-0.01
тн28	Std Dev	0.03	0.03	0.03	0.01
Rotorway	Average	-0.01	0.00	0.03	-0.02
Exec 90	Std Dev	0.02	0.00	0.02	0.02

TABLE 5-3B. DELTA 3 COMPARISON LEFT SIDE

Helicopter		Difference ∆3-∆3 ₁ (dß)	Difference Δ3-Δ3 ₂ (dB)	Difference ∆3-∆3 ₃ (dB)	1
Schweizer 300	Average	-0.04	-0.05	0.00	-0.05
Configuration A	Std Dev	0.04	0.06	0.01	0.07
Schweizer 300	Average	0.04	0.02	0.00	0.05
Configuration B	Std Dev	0.27	0.26	0.18	0.32
Schweizer 300	Average	0.01	0.01	0.01	0.01
Configuration C	Std Dev	0.01	0.01	0.01	0.01
Schweizer 300	Average	-0.06	-0.02	-0.05	-0.07
Configuration D	Std Dev	0.11	0.04	0.14	0.10
Schweizer 300	Average	-0.01	0.00	-0.02	-0.01
Configuration E	Std Dev	0.01	0.00	0.03	0.01
Schweizer 300	Average	0.01	-0.01	0.01	-0.02
Configuration F	Std Dev	0.01	0.03	0.02	0.06
Schweizer 300	Average	0.03	0.03	0.01	0.03
Configuration G	Std Dev	0.06	0.08	0.04	0.06
Schweizer 330	Average	-0.06	0.03	-0.00	0.01
Configuration H	Std Dev	0.11	0.06	0.21	0.05
Schweizer 330	Average	0.01	0.01	0.00	0.01
Configuration I	Std Dev	0.01	0.02	0.02	0.03
Enstrom	Average	0.04	0.03	0.02	-0.02
280FX	Std Dev	0.03	0.11	0.09	0.04
Enstrom	Average	-0.03	-0.02	-0.02	-0.02
TH28	Std Dev	0.03	0.03	0.02	0.02
Rotorway	Average	0.00	0.00	-0.03	0.00
Exec 90	Std Dev	0.00	0.00	0.02	0.01

TABLE 5-3C. DELTA 3 COMPARISON RIGHT SIDE

Helicopter		Difference \$\Delta 3 - \Delta 3_1 (dB)	Difference \$\Delta 3-\Delta 3_2 (dB)	Difference Δ3-Δ3 ₃ (dB)	Difference Δ3-Δ3 ₄ (dB)
Schweizer 300	Average	0.00	0.00	0.00	0.01
Configuration A	Std Dev	0.02	0.01	0.03	0.06
Schweizer 300	Average	-0.07	-0.02	-0.06	-0.10
Configuration B	Std Dev	0.18	0.19	0.01	0.33
Schweizer 300	Average	0.00	0.00	0.00	0.01
Configuration C	Std Dev	0.01	0.00	0.00	0.02
Schweizer 300	Average	-0.08	-0.11	-0.01	-0.08
Configuration D	Std Dev	0.08	0.07	0.03	0.07
Schweizer 300	Average	-0.02	-0.05	0.00	-0.01
Configuration E	Std Dev	0.01	0.05	0.02	0.01
Schweizer 300	Average	-0.01	-0.02	-0.02	0.00
Configuration F	Std Dev	0.06	0.06	0.08	0.02
Schweizer 300	Average	-0.02	0.04	-0.05	-0.03
Configuration G	Std Dev	0.05	0.11	0.02	0.03
Schweizer 330	Average	0.01	0.01	0.00	0.02
Configuration H	Std Dev	0.02	0.03	0.03	0.05
Schweizer 330	Average	0.00	-0.01	0.00	-0.01
Configuration I	Std Dev	0.01	0.01	0.02	0.01
Enstrom	Average	0.01	-0.01	0.02	0.02
280FX	Std Dev	0.06	0.02	0.08	0.07
Enstrom	Average	-0.04	-0.04	-0.03	-0.02
тн28	Std Dev	0.05	0.06	C.05	0.02
Rotorway	Average	0.00	0.00	-0.05	0.01
Exec 90	Std Dev	0.01	0.00	0.10	0.01

TABLE 5-3D. DELTA 3 COMPARISON AVERAGE OF CENTERLINE, LEFT SIDE, AND RIGHT SIDE

Time the		Difference	$\Delta 3 - \Delta 3_2$ (dB)	Difference $\Delta 3 - \Delta 3_3$ (dB)	
		-0.01	-0.02	c.00	-0.01
	30.37	0.05	0.06	0.04	0.09
Server Carrier Carrier	Lage	0.02	-0.02	-0.05	-0.04
Configuration Page	į	0.33	0.32	0.23	0.46
Schwinger 1.0 wa		0.01	0.00	0.01	0.03
	Dev	0.01	0.01	0.01	0.03
Schweizer ve	rage	-0.07	-0.06	-0.03	-0.07
\$	Dev	0.16	0.09	0.16	0.14
Schweitung ver	rage:	-0.01	-0.02	0.00	-0.01
11			0.05	0.04	0.04
11	rage		-0.01	0.04	-0.01
· H			ე.07	0.13	0.08
School and Tours		-0.01	0.02	-0.02	-0.02
Configuration	Dev	0.08	0.14	0.05	0.10
Schulberg 127 den	naçe naçe	-0.02	0.01	0.00	0.00
Confirm while first			0.14	0.23	0.11
School on Director	nage Tage	0.00	0.00	0.00	0.00
Configuration to the	Dev.	0.02	0.04	0.04	0.03
I'm maketa	n amena. Namena	0.01	0.00	0.03	-0.01
34		0.10	0.14	0.16	0.08
		-0.03	-0.03	-0.03	-0.02
		0.07	0.07	0.06	0.03
Francisco de la company	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.00	-0.02	0.00
	•		0.00	0.10	0.02

deviations are less than or equal to 0.46 dB. This suggests that the larger number of points at the target certification airspeed (six vs. two) has little if any influence on the resulting $PNLT_{max}$ vs. Mach $Number_{ABT}$ curve fit.

A further comparison was made of the PNLT_{MAX} values computed at 77°F and at the target certification airspeed (0.9V_H) using the above five regression models. The computed values were compared one to the other using the model of the original data set as the reference. The resultant differences are shown in Tables 5-4A through 5-4D.

As can be seen in Tables 5-4A (centerline), 5-4B (left side), and 5-4C (right side) the average differences are equal to or less than 0.40 dB, 0.41 dB, and 0.62 dB, respectively, with the majority of the differences (75 percent) equal to or less than 0.20 dB. The arithmetic average for the pooled centerline, left side, and right side data are presented in Table 5-4D. The average difference is less than or equal to 0.36 dB. This suggests that the larger number of points at the target certification airspeed (six vs. two) has little if any influence on the resulting PNLT_{max} vs. Mach Number_{ART} curve fit.

TABLE 5-4A. CALCULATED PNLTm DIFFERENCE AT CERTIFICATION AIRSPEED CENTERLINE CENTER

Helicopter	Reference		Reference - Alt. Set 2		
Schweizer 300 Configuration A	91.80	-0.08	0.03	-0.12	-0.03
Schweizer 300 Configuration B	88.32	-0.20	-0.18	-0.30	-0.18
Schweizer 300 Configuration C	84.43	0.00	0.09	-0.06	-0.14
Schweizer 300 Configuration D	81.87	-0.12	-0.30	0.14	-0.15
Schweizer 300 Configuration E	85.02	0.05	0.07	-0.06	0.10
Schweizer 300 Configuration F	82.43	-0.02	0.01	-0.12	0.03
Schweizer 300 Configuration G	84.73	0.15	0.17	0.12	0.36
Schweizer 330 Configuration H	88.79	-0.08	-0.04	-0.04	-0.16
Schweizer 330 Configuration I	82.96	-0.12	-0.17	-0.11	-0.11
Enstrom 280FX	84.54	-0.15	-0.03	-0.36	0.11
Enstrom TH28	88.34	-0.28	-0.28	-0.21	-0.11
Rotorway EXEC90	83.07	-0.21	-0.02	-0.40	-0.36

TABLE 5-4B. CALCULATED PNLTm DIFFERENCE AT CERTIFICATION AIRSPEED LEFT SIDE

Helicopter	Reference		Reference - Alt. Set 2		
Schweizer 300 Configuration A	87.50	-0.14	-0.11	-0.02	-0.12
Schweizer 300 Configuration B	82.06	0. 06	0.10	0.04	0.09
Schweizer 300 Configuration C	81.10	-0.03	0.02	-0.05	-0.11
Schweizer 300 Configuration D	78.83	-0.05	-0.06	0.24	-0.12
Schweizer 300 Configuration E	81.83	0.11	0.03	0.10	0.05
Schweizer 300 Configuration F	80.65	0.12	0.11	0.08	0.08
Schweizer 300 Configuration G	82.12	-0.19	-0.26	-0.07	-0.21
Schweizer 330 Configuration H	85.22	-0.02	0.07	-0.13	0.03
Schweizer 330 Configuration I	80.69	0.15	0.28	0.00	0.26
Enstrom 280FX	83.92	-0.11	-0.18	-0.23	0.11
Enstrom TH28	85.62	-0.18	-0.41	-0.12	-0.04
Rotorway EXEC90	79.91	0.07	0.01	-0.27	0.00

TABLE 5-4C. CALCULATED PNLTm DIFFERENCE AT CERTIFICATION AIRSPEED RIGHT SIDE

Helicopter	Reference		Reference - Alt. Set 2		
Schweizer 300 Configuration A	88.26	0.02	0.01	-0.19	0.16
Schweizer 300 Configuration B	84.48	-0.22	-0.18	-0.12	-0.33
Schweizer 300 Configuration C	81.23	-0.12	0.09	0.07	-0.18
Schweizer 300 Configuration D	78.96	-0.35	-0.62	0.05	-0.42
Schweizer 300 Configuration E	81.75	0.14	0.31	0.04	0.02
Schweizer 300 Configuration F	79.54	-0.04	0.01	0.08	-0.11
Schweizer 300 Configuration G	81.02	0.07	-0.17	0.28	0.11
Schweizer 330 Configuration H	87.68	0.05	0.14	0.07	0.03
Schweizer 330 Configuration I	81.82	-0.08	-0.09	-0.07	-0.10
Enstrom 280FX	81.00	0.08	0.02	0.10	0.09
Enstrom TH28	86.39	-0.12	0.04	-0.03	-0.27
Rotorway EXEC28	79.35	-0.05	0.06	-0.42	0.14

TABLE 5-4D. CALCULATED PNLTm DIFFERENCE AT CERTIFICATION
AIRSPEED
AVERAGE OF CENTERLINE, LEFT SIDE, AND RIGHT SIDE

Helicopter	Reference - Alt. Set 1	Reference - Alt. Set 2	Reference - Alt. Set 3	Reference - Alt. Set 4
Schweizer 300 Configuration A	-0.06	-0.02	-0.11	0.00
Schweizer 300 Configuration B	-0.12	-0.09	-0.13	-0.14
Schweizer 300 Configuration C	-0.05	0.07	-0.01	-0.14
Schweizer 300 Configuration D	-0.18	-0.33	0.14	-0.23
Schweizer 300 Configuration E	30.20		0.03	0.06
Schweizer 300 Configuration F	-0.02	0.04	0.01	0.00
Schweizer 300 Configuration G	0.01	-0.09	0.11	0.09
Schweizer 330 Configuration H	-0.02	0.06	-0.03	-0.03
Schweizer 330 Configuration I	-0.02	0.00	-0.14	0.02
Enstrom 280FX	-0.06	-0.06	-0.13	0.10
Enstrom TH28	-0.19	-0.22	-0.12	-0.14
Rotorway EXEC28	-0.06	0.02	-0.36	-0.07

6. CONCLUSIONS

This measurement study has resulted in an extensive acoustic data base for five light helicopters, and several design configurations thereof.

Additional conclusions based on the findings of this study can be summarized as follows:

- The on-line operator-estimated SEL averaged 0.4 dBA higher than the tape-derived SEL with an average standard deviation of 0.2 dBA.
- The on-line reprocessed (exact 10 dB down points) SEL averaged 0.02 dBA higher than the tape-derived SEL with a standard deviation of 0.2 dBA.
- The larger number of data points at the target certification airspeed has little if any influence upon the PNLT_{max} vs. Mach Number_{ABT} curve and resulting Δ3 source noise correction for light helicopters.
- The noise reduction (both overall level and level in individual frequency bands) resulting from the addition of the muffler was fairly substantial, 3 to 4 dB for approach, and 6 to 8 dB for takeoff and sideline.
- The addition of the resonator resulted in a reduction in the noise levels for takeoff and level flyover and an increase in noise level for approach.

7. RECOMMENDATIONS

The comparison of the sound exposure level data presented in Appendix D shows that an operator-estimated SEL can be obtained in the field using a relatively inexpensive integrating sound level meter (SLM); and although the operator-estimated SEL tends to be slightly higher than the tape-derived SEL (on average 0.4 dBA), the difference rarely exceeds 1 dBA. Based on this comparison, it appears that light-helicopter noise certification can be performed with a relatively high degree of accuracy using a hand-held SLM.

The primary objective of this measurement study was to obtain the data necessary to evaluate a screening test for light helicopters proposed jointly by the Federal Aviation Administration and the International Civil Aviation Organization. December, 1991, ICAO meeting held in Montreal, Canada, the FAA used the results of this measurement study as the foundation for the official U.S. position on the subject of the proposed screening test. The position tendered by the FAA was that the proposed is a alternative the current light-helicopter viable to certification procedure found in both FAR Part 36 and ICAO, Annex 163 and that these documents should be modified accordingly.

³"International Standards and Recommended Practices, Environmental Protection, ANNEX 16 to the Convention on <u>International Civil Aviation</u>, Volume I, <u>Aircraft Noise</u>, <u>Second Edition</u>, 1988.

APPENDIX A

AS-MEASURED NOISE LEVEL DATA

This Appendix presents the as-measured noise level data, including EPNL, SEL, AL_{MAX} , and $PNLT_{MAX}$, by site, date, and helicopter configuration, Tables A-A-1-1* through A-L-3-2.

^{*}In the numerical notation for Table number, the first letter denotes Appendix, the second letter denotes helicopter configuration (as discussed in Section 1.4), the first number denotes site, i.e., site 1 - centerline, site 2 - sideline/east, or site 3 - sideline/west, and the second number differentiates between standard Far Part 36 tests (denoted by a 1) and additional flyover tests (denoted by a 2). For example, Table A-A-1-1 contains noise data measured for helicopter Configuration A (Schweizer, Standard Configuration) at the centerline measurement site, subject to standard FAR Part 36 requirements.

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE A-A-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1	CENTERLINE - CENTER					07/22/91						
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	тс	BND	MAX	NOY	BNDS	
•-	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)	
APPROAC	CH TARG	ET IAS 4	0.8 kts													
B 1	94.70	91.71	92.60	93.15	94.81	81.72	87.71	24.50	25.50	.02	1.66	20	25	26	24	
82	94.26	90.41	90.84	91.91	93.55	79.08	86.30	30.00	30.00	.02	1.64	20	25	34	26	
B3	93.14	89.62	90.11	91.40	92.92	78.89	86.48	26.50	26.00	.03	1.49	20	25	26	27	
B4	92.49	88.77	89.82	91.86	93.34	79.82	87.44	20.00	20.00	.03	1.54	20	26	25	22	
B5	93.27	90.04	90.86	92.87	94.44	80.86	87.70	20.00	20.50	.03	1.57	20	25	26	23	
B6	94.49	91.24	91.92	92.49	94.17	80.86	87.80	25.50	25.50	.03	1.68	20	25	26	24	
Avg.	93.72	90.30	91.02	92.28	93.87	80.20	87.24	24.42	24.58	.03	1.60					
Std Dv	.88	1.07	1.06	.67	.72	1.12	.67	3.89	3.76	.01	.08					
90% CI	.73	.88	.87	.55	.59	.92	.55	3.20	3.09	.00	.06					
TAKEOF	TARGE	T IAS 40	.8 kts													
C1	95.86	91.80	92.80	91.88	94.37	79.48	84.89	43.00	32.50	.00	2.50	20	26	25		
C5	96.04	92.05	92.16	92.27	94.56	79.73	84.61	35.00	33.50	.00	2.29	20	26	35	34	
C6	97.01	92.99	94.09	93.31	95.76	80.97	85.33	41.00	40.00	.01	2.45	20	26	35	34	
C7	95.72	91.75	92.43	91.54	93.71	79.16	83.42	42.50	41.00	.02	2.26	20	25	35		
C8	95.68	91.73	92.56	92.11	94.28	79.60	84.55	39.50	31.50	.02	2.17	20	25	35	34	
C9	96.48	92.53	93.16	92.72	95.24	80.49	85.03	37.00	33.50	.00	2.51	20	26	35	34	
Avg.	96.13	92.14	92.87	92.30	94.65	79.91	84.64	39.67	35.33	.01	2.36					
Std Dv	.52	.51	.69	.63	.73	.68	.66	3.16	4.08	.01	. 14					
90% CI	.43	.42	.57	.52	.60	.56	.54	2.60	3.36	.01	.12					
150 m f	LYOVER	TARGET	IAS 72.0 k	ts 0.9	9Vh											
A1	90.93	86.75	87.89	89.17	91.53	76.59	83.22	27.00	25.00	.00	2.37	20	25		35	
A2	89.46	85.50	86.18	88.55	90.73	76.07	82.87	20.50	18.00	.00	2.18	20	25		35	
A3	90.94	86.86	87.88	88.93	91.34	76.50	82.70	27.50	22.50	.00	2.41	20	25		35	
A4	89.83	85.64	86.01	89.50	91.78	77.26	83.15	15.00	14.50	.00	2.34	20	25	26	35	
A5	90.57	86.28	86.70	89.37	91.85	77.04	82.91	18.50	17.00	.00	2.50	20	26	25		
A6	89.57	85.49	85.57	88.18	90.32	75.79	82.55	19.00	17.00	.00	2.14	20	26	25	34	
Avg.	90.22	86.09	86.71	AR.95	91.26	76.54	82.90	21.25	19.00	.00	2.32					
Std Dv	.68	.63	.99	.51	.61	.56	.26	4.99	3.94	.00	. 14					
90% CI	.56	.52	.81	.42	.50	.46	.21	4.10	3.24	.00	.11					

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL * ALm + 10.0*LOG(DUR(A)/2.0

U.S. Department of Transportation Voipe Center Acoustics Facility

TABLE A-A-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1 CENTERLINE - SENTER						07/22/91						
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS	
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(d8)	(dB)	(#)	(#)	(#)	(#)	
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0	OVh											
D1	91.04	87.09	87.59	90.28	92.53	77.81	83.07	19.00	18.00	.00	2.25	20	26	35	25 35	
D2	90.13	86.09	86.45	89.48	91.62	77.16	82.97	17.00	16.50	.00	2.26	20	26	34	20	
Avg.	90.58	86.59	87.02	89.88	92.07	77.49	83.02	18.00	17.25	.00	2.26					
Std Dv	.64	.71	.80	.57	.64	.46	.07	1.41	1.06	.00	.01					
90% CI	2.87	3.16	3.58	2.53	2.87	2.05	.32	6.31	4.74	.00	.03					
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	BVh											
D5	90.06	86.05	86.82	88.57	90.83	75.76	81,97	25.50	19.50	.00	2.26	20	25	35	34	
D6	89.52	85.74	87.87	88.85	91.15	76.49	82.97	27.50	15.00	.02	2.33	20	25	35	34	
Avg.	89.79	85.90	87.34	88.71	90.99	76.13	82.47	26.50	17.25	.01	2.30					
Std Dv	.38	.22	.75	.20	.23	.52	.71	1.41	3.18	.01	.05					
90% CI	1.70	.98	3.34	.88	1.01	2.30	3.16	6.31	14.21	.06	.22					
150 m F	FLYOVER	TARGET	IAS 56.0 k	ts 0.	7Vh											
D7	90.16	86.06	86.04	87.83	90.10	75.25	82.32	24.00	22.50	.02	2.27	20	25	26	35	
D8	89.67	85.53	85.62	87.81	90.13	75.21	82.80	22.00	20.00	.02	2.31	20	25	34	35	
Avg.	89.92	85.79	85.83	87.82	90.11	75.23	82.56	23.00	21.25	.02	2.29					
Std Dv	.35	.37	.30	.01	.02	.03	.34	1.41	1.77	.00	.03					
90% CI	1.55	1.67	1.32	.06	.09	.13	1.52	6.31	7.89	.00	. 13					
150 m (FLYOVER	TARGET	IAS 48.0 k	ts 0.	6Vh											
D9	91.02	86.91	87.91	88.99	91.22	76.22	83.09	29.50	24.00	.02	2.23	20	25	34 25	35	
D10	90.57	86.58	88.83	87.20	89.34	74.81	82.74	50.50	47.00	.00	2.28	20	26	25	20	
Avg.	90.79	86.75	88.37	88.10	90.28	75.51	82.91	40.00	35.50	.01	2.26					
Std Dv	.32	.23	.65	1.27	1.33	1.00	.25	14.85	16.26	.01	.04					
90% CI	1.42	1.04	2.92	5.65	5.94	4.45	1.10	66.30	72.61	.06	.16					

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

Volpe Center Acoustics Facility

TABLE A-A-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	SIDELINE - 150 m WEST				07/22/91						
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	Alm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0. 8 kts												
B1 B2 B3 B4 B5 B6	89.32 87.56 87.64 86.79 87.10 87.84	86.81 84.85 84.74 83.89 84.40 85.21	87.92 86.25 85.95 85.75 86.12 85.68	87.49 83.18 83.70 82.89 83.86 83.00	88.39 84.48 85.20 84.10 85.42 84.25	76.86 71.98 72.38 72.23 72.95 71.79	81.07 78.90 78.80 78.82 79.12 78.56	25.50 53.50 45.50 45.00 41.50 49.00	33.00 49.50 45.00 43.00 37.00 48.50	.00 .00 .00 .00 .00	.90 1.53 1.50 1.58 1.72 1.94	26 20 27 27 27 27	26 25 27 27 27 27	27 27 25 25 25 25 27	23 26 24 24
Avg. Std Dv 90% CI	87.71 .88 .72	84.98 1.00 .82	86.28 .83 .68	84.02 1.74 1.43	85.31 1.60 1.32	73.03 1.92 1.58	79.21 .93 .76	43.33 9.64 7.93	42.67 6.51 5.35	.01 .02 .01	1.53 .35 .29				
TAKEOFF	TARGE	T 1AS 40	.8 kts												
C1 C5 C6 C7 C8 C9	91.35 92.68 91.69 91.73 91.21 91.83	87.93 89.21 88.33 88.25 88.01 88.57	89.17 90.75 89.30 89.37 88.97 89.82	85.71 87.82 86.09 85.91 85.93 86.41	87.32 89.94 87.71 87.81 87.70 88.07	74.62 76.60 74.53 74.53 74.13 74.84	80.55 81.25 80.68 79.30 79.89 80.23	57.00 52.00 60.00 61.00 61.00 63.00	57.50 53.00 60.00 60.50 60.50 63.00	.04 .00 .00 .00 .05	1.61 2.71 1.70 1.90 1.72 1.66	23 20 23 28 20 23	26 25 25 34 35 34	34 32 33 26 34 35	35 34 35 33 36 26
Avg. Std Dv 90% CI	91.75 .52 .42	88.38 .47 .38	89.56 .65 .53	86.31 .77 .64	88.09 .94 .77	74.88 .88 .72	80.32 .68 .56	59.00 3.95 3.25	59.08 3.46 2.84	.02 .03 .02	1.88 .42 .34				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	9Vh										
A1 A2 A3 A4 A5 A6	86.94 86.93 87.40 87.82	83.70 83.47 83.82 83.78 84.36 83.14	84.10 84.06 84.05 84.56 84.74 84.51	83.53 84.27 83.80 85.21 84.26 83.81	84.96 85.90 85.21 86.89 86.07 85.46	72.13 72.68 72.44 73.59 72.63 72.40	79.56 77.35 79.16 77.99 79.34 76.84	31.50 27.50 29.00 25.00 32.50 32.50	32.50 27.50 25.00 32.50	.00 .00 .00 .00	1.43 1.89 1.41 1.75 1.81 1.65	23 20 23 28 20 20	26 35 26 26 26 26 26	34 34 34 28 35 28	33 33 35 34 34 35
Avg. Std Dv 90% CI	87.27 .43 .50	83.71 .41 .33	84.34 .30 .25	84.15 .60 .49	85.75 .70 .57	72.64 .50 .41	78.37 1.14 .94	29.67 3.04 2.50	29.38 3.75 4.41	.00 .00 .00	1.66 .20 .16				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

U.S. Department of Transportation Voipe Center Acoustics Facility

TABLE A-A-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	SICELINE - 150 m WEST					07/22/91					
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0)Vh										
D1 D2	88.26 87.60	84.93 84.23	85.36 85.70	86.19 85.40	87.68 87.17	74.39 73.94	80.20 78.60	25.00 30.00	25.50 30.00	.00 .00	1.79 1.90	20 28	26 26		35 35
Avg. Std Dv 90% CI	87.93 .47 2.08	84.58 .49 2.21	85.53 .24 1.08	85.79 .56 2.49	87.43 .36 1.61	74.17 .32 1.42	79.40 1.13 5.05	27.50 3.54 15.78	27.75 3.18 14.21	.00 .00 .00	1.85 .08 .35				
150 m f	LYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
D5 D6	86.51 86.25	83.21 82.66	83.60 83.99	83.63 83.48	85.03 84.99	71.77 71.62	79.05 77.08	30.50 34.50	30.50 34.50	.00 .00	1.40 1.52	23 28	26 26		35 28
Avg. Std Dv 90% CI	86.38 .18 .82	82.93 .39 1.74	83.80 .27 1.22	83.56 .11 .47	85.01 .03 .13	71.69 .11 .47	78.07 1.39 6.22	32.50 2.83 12.63	32.50 2.83 12.63	.00 .00 .00	1.46 .08 .38				
			IAS 56.0 k		7Vh										
D7 D8	86.97 86.60	83.65 82.82	83.90 83.73	83.28 82.79	85.45 84.69	71.79 70.94	79.17 76.95	32.50 38.00	32.50 38.50	.00 .00	2.23 2.07	20 28	26 26		35 28
Avg. Std Dv 90% CI	86.79 .26 1.17	83.24 .59 2.62	83.81 .12 .54	83.04 .35 1.55	85.07 .54 2.40	71.37 .60 2.68	78.06 1.57 7.01	35.25 3.89 17.36	35.50 4.24 18.94	.00 .00 .00	2.15 .11 .51				
150 m /	FLYOVER	TARGET	IAS 48.0 k	ts 0.0	5Vh										
D9 D10	87.18 86.45	83.82 82.81	84.12 84.00	82.68 82.16	84.11 83.53	71.22 70.02	78.64 76.31	39.00 50.00	41.00 50.00	.00	1.49 1.98	23 28	26 26		33 35
Avg. Std Dv 90% CI	86.82 .52 2.30	83.32 .71 3.19	84.06 .09 .38	82.42 .37 1.64	83.82 .41 1.83	70.62 .85 3.79	77.47 1.65 7.36	44.50 7.78 34.73	45.50 6.36 28.41	.00 .00 .00	1.74 .35 1.55				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-A-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

	MICROPHONE NO.			3	SIDELINE - 150 m EAST				07/22/91						
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	DASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
В1	88.55	85.39	86.56	84.08	85.52	72.45	79.09	51.50	51.50	.00	1.49	20	23	24	25
82	89.00	85.74	87.41	84.66	85.79	73.52	79.42	49.00	49.50	.00	1.82	20	25	23	27
B3	87.54	84.83	86.61	83.73	85.84	71.91	78.45	59.00	41.50	.00	2.12	20	25	24	34
B4	87.93	84.97	86.62	83.75	84.86	72.27	79.15	54.50	49.50	.00	1.13	26	26	23	28
85	88.17	85.01	85.95	84.07	85.88	72.58	79.34	43.50	43.50	.00	1.93	27	27	23	24
B6	88.31	85.22	86.16	83.98	85.30	72.50	78.48	46.50	45.50	.00	2.43	20	25	34	26
Avg.	88.25	85.19	86.55	84.05	85.53	72.54	78.99	50.67	46.83	.00	1.82				
Std Dv	.50	.33	.50	.34	.40	.54	.42	5.59	3.93	.00	.46				
90% CI	.41	.27	.41	.28	.33	.44	.35	4.60	3.24	.00	.38				
TAKEOFF	TARGE	T 1AS 40	.8 kts												
C1	93.25	89.35	91.09	90.00	92.11	77.47	81.71	46.00	45.00	.06	2.05	20	34	35	33
C5	92.31	88.84	89.02	87.53	89.49	75.96	80.31	40.50	40.00	.01	1.96	20	34	25	33
C6	93.26	89.56	89.60	89.49	91.56	76.99	80.70	36.50	34.50	.02	2.06	20	34	25 35	33
C7	94.07	90.41	90.86	89.25	91. 9 7	78.37	81.63	35.50	35.50	.02	2.76	20	32	34	25 32
C8	93.31	89.67	88.92	87.34	89.48	75.86	79.88	40.50	41.00	.02	2.46	20	25	34	
С9	92.96	89.31	89.13	87.37	89.87	75.91	80.18	42.00	41.50	.00	2.51	20	25	34	35
Avg.	93.19	89.52	89.77	88.50	90.75	76.76	80.73	40.17	39.58	.02	2.30				
Std Dv	.57	.52	.96	1.21	1.26	1.03	.77	3.82	3.94	.02	.32				
90% CI	.47	.43	.79	1.00	1.04	.85	.63	3.14	3.24	.02	.26				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	₽Vh										
A1	88.79	85.15	87.38	86.21	87.70	74.21	78.02	41.50	41.50	.01	1.48	28	26	35 35	34
A2	87.69	84.46	85.94	85.86	87.27	<i>7</i> 3.90	79.82	32.00	32.00	.00	1.41	23	26	35	34
A3	88.73	85.16	86.81	85.12	86.73	73.39	77.46	44.00	45.50	.07	1.55	28	26	35 34	28
A4	88.12	84.77	86.14	85.37	86.80	<i>7</i> 3.35	79.64	38.00	37.50	.04	1.39	23	26	34	35
A5	88.03	84.37	84.73	85.03	86.85	73.35	77.56	27.50	30.00	.04	1.82	28	26	35	34
A6	88.51	85.24	87.34	86.03	87.69	73.87	79.65	44.50	43.50	.04	1.66	20	34	26	35
Avg.	88.31	84.86	86.39	85.60	87.17	73.68	78.69	37.92	38.33	.03	1.55				
Std Dv	.43	.38	1.01	.50	.45	.37	1.13	6.88	6.30	.03	.16				
90% CI	.36	.31	.83	.41	.37	.30	.93	5.66	5.18	.02	.14				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-A-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	3	SI	DELINE	- 150 m E/	ST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)						
150 m f	FLYOVER	TARGET	IAS 80.0 kt	:s 1.0)Vh										
D1 D2	89.38 89.12	85.77 85.81	86.86 86.77	86.87 87.73	88.77 89.51	75.32 74.94	78.78 80.40	28.50 30.50	29.00 29.50	.00 .04	1.90 1.78	28 20	26 34		34 33
Avg. Std Dv 90% CI	89.25 .18 .82	85.79 .03 .13	86.82 .06 .27	87.30 .61 2.72	89.14 .52 2.34	75.13 .27 1.20	79.59 1.15 5.11	29.50 1.41 6.31	29.25 .35 1.58	.02 .03 .13	1.84 .08 .38				
150 m f	LYOVER	TARGET	IAS 64.0 kt	s 0.8	BVh										
D5 D6	88.57 87.54	84.77 84.28	86.19 84.98	85.57 85.81	87.31 87.55	73.82 73.60	77.75 79.47	34.50 27.50	35.00 26.00	.00	1.82 1.74	20 20	26 26		34 25
Avg. Std Dv 90% CI	87.96 .59 2.62	84.52 .35 1.55	85.59 .85 3.80	85.69 .17 .76	87.43 .17 .76	73.71 .16 .69	78.61 1.22 5.43	31.00 4.95 22.10	30.50 6.36 28.41	.00 .00 .00	1.78 .06 .25				
150 m f	LYOVER	TARGET	IAS 56.0 kt	:s 0.7	V h										
D7 D8	87.87 88.37	84.45 84.85	86.16 85.98	84.47 85.31	86.16 87.00	72.69 73.19	77.00 79.58	44.50 38.00	45.00 38.00	.00 .00	1.69 1.69	20 23	26 26		35 35
Avg. Std Dv 90% CI	88.12 .35 1.58	84.65 .28 1.26	86.07 .13 .59	84.89 .59 2.65	86.58 .59 2.65	72.94 .35 1.58	78.29 1.82 8.15	41.25 4.60 20.52	41.50 4.95 22.10	.00 .00 .00	1.69 .00 .00				
150 m f	LYOVER	TARGET	IAS 48.0 kt	:s 0.6	SVh										
D9 D10	88.55 89.02	85.03 85.48	87.01 87.21	84.73 85.98	86.27 87.62	72.86 74.04	77.57 80.11	52.00 41.50	52.00 41.50	.00	1.54 1.65	20 23	26 26		33 35
Avg. Std Dv 90% CI	88.79 .33 1.48	85.26 .32 1.42	87.11 .14 .63	85.36 .88 3.95	86.94 .95 4.26	73.45 .83 3.73	78.84 1.80 8.02	46.75 7.42 33.15	46.75 7.42 33.15	.00 .00 .00	1.60 .08 .35				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENT	ER			07/2	22/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	· · · · · (#)	(#)	(#)	(#)
APPROA	CH TAR	GET IAS 4	0.8 kts										•	,	•
B15 B16 B17 B18	92.34 92.97 91.30 91.02	89.13 90.28 87.72 87.39	91.90 91.12 88.12 87.57	90.60 88.68 86.84 87.23	92.36 90.20 88.97 89.09	79.47 77.95 74.85 74.20	84.80 84.24 83.86 83.69	35.00 41.50 42.50 43.50	37.00 46.00 43.00 43.00	.02 .13 .13	1.77 1.38 2.22	20 25 20	25 25 25	27 32 35 32	28 27 32 33
819 B20	91.59 90.35	88.11 86.38	89.26 87.76	88.08 87.82	89.85 89.83	76.96 74.97	84.44 84.23	34.00 38.00	35.00 28.50	.30 .00	1.90 1.47 2.01	20 20 20	25 26 25	32 25 32	33 27 33
Avg. Std Dv 90% CI	91.59 .94 .77	88.17 1.37 1.13	89.29 1.83 1.51	88.21 1.34 1.10	90.05 1.23 1.01	76.40 2.07 1.70	84.21 .40 .33	39.08 4.02 3.31	38.75 6.49 5.34	.12 .11 .09	1.79 .32 .26			_	
TAKEOFF	TARGE	T IAS 40.	.8 kts												
C21 C23 C24 C26 C27	89.61 89.17 90.16 90.25 90.90	85.10 84.90 85.79 85.70 86.22	84.95 85.87 86.20 86.44 86.48	83.31 84.77 85.40 85.49 86.06	85.76 86.46 87.34 87.64 88.39	70.60 72.30 72.58 72.73 73.26	78.82 79.29 80.26 80.10 81.33	54.50 45.50 46.00 47.00 42.00	53.50 45.00 40.50 45.50 38.50	.00 .05 .00	2.44 1.64 2.09 2.15	20 20 20 20	25 33 25 25	33 35 33 33	34 32 34 34
C28	89.71	85.37	86.39	85.87	87.66	73.17	80.82	42.00	41.50	.00 .03	2.37 1.76	20 20	25 25	33 33	35 32
Avg. Std Dv 90% CI	89.97 .60 .50	85.51 .49 .40	86.06 .59 .48	85.15 1.01 .83	87.21 .94 .78	72.44 .97 .80	80.10 .93 .77	46.17 4.59 3.78	44.08 5.33 4.39	.01 .02 .02	2.08 .32 .26				
150 m F	LYOVER	TARGET I	AS 72.0 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A6	83.63 83.33 84.73 83.34 84.18 83.39	79.75 79.32 80.68 79.30 79.80 79.16	81.23 80.32 81.68 80.77 80.40 79.49	83.15 83.46 84.09 83.24 83.26 83.57	85.36 85.48 86.09 85.79 85.42 85.50	70.09 70.66 71.07 70.46 70.19 70.74	78.89 80.12 79.83 79.63 79.45 79.91	26.00 18.50 23.00 21.50 21.00 15.00	15.00 14.50 17.00 13.50 16.50 14.50	.00 .00 .00 .00 .00	2.21 2.02 2.01 2.54 2.16 1.93	20 20 20 20 20 20 20	25 25 25	33 33 35	32 33 32 32 32 32 32
Avg. Std Dv 90% CI	83.77 .57 .47	79.67 .56 .46	80.65 .76 .63	83.46 .34 .28	85.61 .28 .23	70.53 .37 .30	79.64 .43 .36	20.83 3.78 3.11	15.17 1.33 1.09	.00 .00 .00	2.14 .22 .18			-	_

NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTE	R			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0)Vh										
D7 D8	84.56 84.73	80.16 80.40	80.77 81.17	84.53 85.22	86.80 87.57	71.61 72.28	79.40 80.15	16.50 15.50	14.50 14.00	.00 .00	2.36 2.35	20 20	25 33	33 25	
Avg. Std Dv 90% CI	84.65 .12 .54	80.28 .17 .76	80.97 .28 1.26	84.88 .49 2.18	87.18 .54 2.43	71.94 .47 2.12	79.78 .53 2.37	16.00 .71 3.16	14.25 .35 1.58	.00 .00 .00	2.36 .01 .03				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
D9 D10	85.01 83.66	80.49 79.63	81.09 80.30	84.00 83.30	86.12 86.05	70.98 70.52	79.59 79.68	20.50 19.00	17.50 14.00	.02 .00	2.12 2.75	20 20	25 25		35 33
Avg. Std Dv 90% CI	84.34 .95 4.26	80.06 .61 2.72	80.69 .56 2.49	83.65 .49 2.21	86.09 .05 .22	70.75 .33 1.45	79.63 .06 .28	19.75 1.06 4.74	15.75 2.47 11.05	.01 .01 .06	2.43 .45 1.99				
150 m F	FLYOVER	TARGET	IAS 56.0 k	ts 0.7	7Vh										
D11 D12	85.19 83.51	80.88 79.37	81.91 80.24	82.94 83.25	85.08 85.09	70.01 70.35	80.45 81.77	31.00 19.50	25.00 17.00	.00 .00	2.14 1.83	20 20	25 25	32 33	35 32
Avg. Std Dv 90% CI	84.35 1.19 5.30	80.13 1.07 4.77	81.08 1.18 5.28	83.10 .22 .98	85.08 .01 .03	70.18 .24 1.07	81.11 .93 4.17	25.25 8.13 36.31	21.00 5.66 25.26	.00 .00 .00	1.99 .22 .98				
150 m f	FLYOVER	TARGET	IAS 48.0 k	ts 0.6	6Vh										
D13 D14	87.22 84.34	82.72 80.02	83.32 80.63	84.24 83.47	86.34 85.90	71.21 70.52	81.32 81.15	32.50 20.50	32.00 16.00	.02 .02	2.20 2.46	20 20	25 25	32 32	26 2 33
Avg. Std Dv 90% CI	85.78 2.04 9.09	81.37 1.91 8.52	81.97 1.90 8.50	83.85 .54 2.43	86.12 .31 1.39	70.86 .49 2.18	81.24 .12 .54	26.50 8.49 37.88	24.00 11.31 50.51	.02 .00 .00	2.33 .18 .82				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	SI	DELINE	- 150 m W	ST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	CH TARG	ET IAS 4	0.8 kts												
B15 B16 B17 B18 B19 B20	86.56 87.40 85.48 85.63 86.26 85.56	84.35 85.56 83.36 83.11 83.36 82.76	84.48 87.84 86.38 84.98 84.66 83.93	81.15 83.41 82.96 81.69 80.94 80.73	82.11 85.12 83.94 83.09 82.06 82.20	70.25 74.08 72.96 71.46 69.93 69.86	81.00 80.77 78.22 79.34 80.60 80.19	53.00 47.50 44.00 45.00 59.50 51.00	55.50 53.50 46.00 53.50 61.00 53.50	.00 .00 .17 .17 .17	1.12 1.72 .80 1.40 1.43	19 28 20 28 20 27	26 28 25 28 36 32	27 25 28 25 35 33	23 26 27 29 37 25
Avg. Std Dv 90% CI	86.15 .75 .62	83.75 1.03 .85	85.38 1.46 1.20	81.81 1.12 .92	83.09 1.24 1.02	71.42 1.76 1.45	80.02 1.06 .87	50.00 5.79 4.76	53.83 4.81 3.96	.11 .09 .07	1.32 .32 .25				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C21 C23 C24 C26 C27 C28	86.76 86.27 87.06 87.75 87.41 87.28	83.39 82.55 83.47 83.74 83.47 83.32	83.94 83.71 83.95 84.55 84.33 83.51	81.06 79.70 80.35 81.85 82.29 80.61	82.17 81.44 82.34 83.36 84.31 82.33	68.96 68.18 68.42 70.08 69.67 68.89	82.31 76.13 77.12 77.39 78.51 78.25	63.00 71.50 71.50 56.00 58.50 58.00	63.00 72.00 71.00 58.50 58.50 61.50	.07 .01 .00 .07 .07	1.04 1.73 1.99 1.44 2.02 1.72	23 23 23 23 23 23 23	33 23 23 33 23 23	32 33 33 32 33 33	36 26 32 34 32 32
Avg. Std Dv 90% CI	87.09 .52 .43	83.32 .40 .33	84.00 .38 .32	80.98 .96 .79	82.66 1.02 .84	69.03 .73 .60	78.29 2.15 1.77	63.08 6.91 5.68	64.08 6.01 4.95	.04 .04 .03	1.66 .37 .30				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9	₽Vh										
A1 A2 A3 A4 A5 A6	82.36 82.05 82.80 81.91 82.36 81.46	79.45 78.96 79.99 79.04 79.64 78.43	79.53 79.45 80.99 79.40 79.80 78.63	79.95 78.97 80.59 78.91 79.55 79.86	81.43 80.95 81.93 80.84 80.98 81.75	69.02 67.69 69.93 67.86 68.83 67.84	77.43 75.02 77.79 75.97 78.16 75.76	22.50 30.00 25.50 28.50 25.00 24.00	26.00 29.50 26.50 24.00 26.00 21.00	.00 .00 .00 .00 .04 .04	1.48 2.13 1.34 2.04 1.53 1.88	23 23 23 23 23 23 23	33 23 26 23 33 23	32 24 33 24 32 24	34 32 34 33 26 33
Std Dv 90% CI	.46	.56	.77 .63	.64	.46	.89 .73	1.27 1.05	2.82 2.32	2.83 2.33	.02	.33				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

MICROPHONE NO. 2 SIDELINE - 150 M WEST EV EDNI SEL SEL(s)** PNIM PNLTM ALM QASPLM DUR(A) DUR(P) BND	SHR TC	BND MAX NOY BNDS
EV EPNL SEL SEL(s)** PNLM PNLTM ALM CASPLM DUR(A) DUR(P) BND		
(dB) (dB) (dB) (dB) (dB) (dB) (Sec) (Sec) (dB)) (dB)	(#) (#) (#) (#)
•		
150 m FLYOVER TARGET IAS 80.0 kts 1.0Vh		
1/ A3.14 AU.D3 D2.U2 DU.70 D2.U2 D7.00 T0.00	04 1.36	23 26 33 32 23 32 33 34
D8 83.03 80.51 81.78 80.89 82.75 70.56 76.67 26.50 26.00 .	04 1.86	23 32 33 34
	04 1.61	
Std Dy 08 08 17 05 30 .41 1.43 3.89 4.60 .	00 .35	
90% CI .35 .38 .75 .22 1.36 1.83 6.38 17.36 20.52 .	00 1.58	
150 m FLYOVER TARGET IAS 64.0 kts 0.8Vh		
ng 82.41 79.65 79.55 79.14 80.56 68.17 78.53 27.50 28.50	06 1.37	32 32 35 23 23 23 34 33
02.41 77.03 77.73 77.04 04.07 48.04 78.47 24.50 24.00	00 2.13	23 23 34 33
010 01.72 76.44 76.52 77.75		
AVG. 62.07 /9.04 /6.74 /7.33 01120 00107 10100 01100	03 1.75	
Std Dy .49 .86 .87 .58 1.00 .11 .25 4.24 5.30 .	04 .54	
90% CI 2.18 3.82 3.88 2.59 4.45 .51 1.14 18.94 23.68 .	19 2.40	
150 m FLYOVER TARGET IAS 64.0 kts 0.7Vh		
D11 82.36 79.52 80.34 78.47 79.90 67.44 77.54 39.00 39.50 .	00 1.43	23 32 33 34
	04 1.68	23 23 26 24
DIE 01.32 13.43 17.65		
AVG. 81.94 /0.99 /7.70 /0.33 /7.72 00170 17.03	02 1.55	
Std Dv .59 .76 .50 .19 .02 .66 2.15 1.41 .35 .	03 .18 13 .79	
90% CI 2.65 3.38 2.25 .85 .09 2.94 9.60 6.31 1.58 .	13 .79	
150 m FLYOVER TARGET IAS 48.0 kts 0.6Vh		
	04 1.36	23 33 32 34 23 35 32 34
014 81.58 76.19 78.93 79.16 80.51 67.55 76.38 27.50 28.00	09 1.27	23 35 32 34
Avg. 82.83 79.71 80.84 79.15 80.51 67.86 77.31 42.50 43.25	.06 1.32	
	.06	
	.16 .28	

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0.8 kts												
B15 B16 B17 B18 B19 B20	86.33 87.75 86.59 86.75 86.16 85.89	83.90 85.22 83.76 84.03 83.23 82.84	85.79 87.44 85.08 85.48 83.82 85.03	82.09 83.70 81.29 80.46 81.24 82.02	82.98 84.34 82.74 82.10 82.19 82.93	71.48 72.53 70.27 69.74 69.88 70.64	78.53 79.38 77.17 78.73 78.36 78.86	54.00 62.00 60.50 75.00 49.50 55.00	56.00 66.50 60.50 75.00 56.50 64.00	.02 .01 .01 .01 .03 .03	.87 .63 1.85 1.85 .93	20 26 27 28 26 23	27 26 25 25 26 34	26 24 24 28 23 32	27 27 26 3 2
Avg. Std Dv 90% CI	86.58 .65 .53	83.83 .82 .67	85.44 1.19 .98	81.80 1.11 .91	82.88 .81 .66	70.76 1.07 .88	78.50 .74 .61	59.33 8.92 7.34	63.08 7.14 5.87	.02 .01 .01	1.17 .54 .44				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C21 C23 C24 C26 C27 C28	88.47 88.08 88.50 88.75 89.59 88.01	85.26 84.68 85.05 85.08 85.88 84.55	85.97 85.18 85.56 86.14 87.59 85.45	81.56 82.89 82.10 83.38 86.30 82.88	82.99 84.59 83.81 85.11 88.20 84.66	69.87 70.48 70.09 71.33 73.52 70.94	76.21 77.28 81.19 76.30 78.16 79.55	81.50 59.00 70.50 60.50 51.00 56.50	81.00 58.00 70.50 67.00 46.50 55.50	.03 .03 .03 .03 .01	1.65 1.69 1.74 1.73 1.89 2.13	23 23 23 20 23 20	33 23 23 33 35 35	35 35 33 32 33 32	32
Avg. Std Dv 90% CI	88.57 .57 .47	85.08 .47 .39	85.98 .86 .71	83.18 1.66 1.36	84.89 1.78 1.47	71.04 1.33 1.09	78.11 1.96 1.61	63.17 11.02 9.06	63.08 12.25 10.07	.02 .01 .01	1.80 .18 .15				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9	∕Vh										
A1 A2 A3 A4 A5 A6	82.71 82.08 82.67 82.08 82.59 81.37	79.78 79.45 79.95 79.32 79.71 78.80	80.69 79.44 81.21 79.51 80.56 79.51	80.30 80.87 80.30 81.30 80.07 81.14	81.96 82.29 81.61 82.81 81.21 82.63	68.86 69.78 69.10 69.97 68.87 69.62	75.92 78.78 74.77 77.95 75.47 78.58	30.50 18.50 32.50 18.00 29.50 19.50	30.50 19.00 32.50 18.00 30.00 19.00	.00 .00 .01 .00 .03	1.66 1.41 1.30 1.51 1.11 1.52	20 23 23 23 23 23 23	32 32 32 32 32 32 33	26 33 26 33 33 32	34 34 33 34 34 34
Avg. Std Dv 90% CI	82.25 .52 .43	79.50 .41 .34	80.15 .76 .63	80.66 .51 .42	82.08 .61 .50	69.37 .48 .40	76.91 1.73 1.42	24.75 6.75 5.55	24.83 6.82 5.61	.01 .01 .01	1.42 .19 .16				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-B-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m EA	ST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0)Vh										
D7 D8	83.48 82.31	80.75 79.59	81.70 80.33	80.49 82.41	81.89 83.72	69.33 70.44	75.26 78.82	34.50 19.50	33.50 19.50	.00 .00	1.39 1.35	23 23	32 33		33 35
Avg. Std Dv 90% CI	82.90 .83 3.69	80.17 .82 3.66	81.01 .97 4.32	81.45 1.36 6.06	82.81 1.29 5.78	69.89 .78 3.50	77.04 2.52 11.24	27.00 10.61 47.35	26.50 9.90 44.20	.00 .00 .00	1.37 .03 .13				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	BVh										
D9 D10	82.53 81.91	79.78 79.13	80.90 79.66	80.52 80.77	81.84 81.89	69.07 70.00	74.39 79.08	30.50 18.50	30.50 23.50	.00 .01	1.32 1.10	20 23	32 33		33 34
Avg. Std Dv 90% CI	82.22 .44 1.96	79.46 .46 2.05	80.28 .88 3.92	80.64 .18 .79	81.86 .04 .16	69.54 .66 2.94	76.74 3.32 14.81	24.50 8.49 37.88	27.00 4.95 22.10	.00 .01 .03	1.21 .16 .69				
150 m l	FLYOVER	TARGET	IAS 56.0 k	ts 0.7	∕Vh										
D11 D12	83.26 81.01	80.19 78.26	82.23 77.86	80.27 79.40	81.69 80.92	68.86 67.65	74.78 79.90	43.50 21.00	44.00 21.00	.00 .01	1.42 1.51	20 23	32 33	33 32	35 34
Avg. Std Dv 90% CI	82.14 1.59 7.10	79.23 1.36 6.09	80.05 3.09 13.80	79.83 .62 2.75	81.31 .54 2.43	68.26 .86 3.82	77.34 3.62 16.16	32.25 15.91 71.03	32.50 16.26 72.61	.00 .01 .03	1.46 .06 .28				
150 m	FLYOVER	- TARGET	IAS 48.0 k	ts 0.	6Vh										
D13 D14	84.98 81.50	81.87 78.61	83.57 79.34	79.68 81.50	80.67 82.92	68.32 70.05	76.17 80.09	67.00 17.00	68.00 19.50	.03 .02	.96 1.40		32 32		33 23
Avg. Std Dv 90% CI	83.24 2.46 10.99	80.24 2.31 10.29	2.99	80.59 1.29 5.75	81.79 1.59 7.10	69.18 1.22 5.46	78.13 2.77 12.38	42.00 35.36 157.85	43.75 34.29 153.11	.02 .01 .03	1.18 .31 1.39				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-C-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMAPY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
B18	92.42	90.65	91.04	93.61	94.66	82.59	87.58	14.00	14.50	.00	1.05	22	25	28	
B20	92.06	90.21	91.26	93.53	94.60	82.23	87.7 9	16.00	13.00	.10	.97	22	25	28	
B21	91.74	89.90	89.82	91.84	92.84	81.22	86.85	14.50	15.00	.06	.94	20	25 25	24	26
B22	90.60	88.86	89.74	92.30	93.32	81.96	86.42	12.00	13.00	.06	1.02	20	25	26	
B23	90.90	89.01	89.84	91.24	92.27	80.68	86.97	16.50	16.50	.00	1.03	22	25	24	22
B24	91.38	89.67	90.28	92.10	93.23	81.25	87.06	16.00	16.50	.00	1.27	20	25	27	26
Avg.	91.52	89.72	90.33	92.44	93.49	81.65	87.11	14.83	14.75	.04	1.05				
Std Dv	.69	.69	.67	.95	.96	.72	.50	1.69	1.57	.04	.12				
90% CI	.57	.57	.55	.78	.79	.59	.41	1.39	1.29	.04	.10				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C25	86.81	82.68	83.76	87.09	88.72	73.98	79.23	19.00	17.00	.00	1.63	20	33	35	32
C26	87.35	83.16	83.62	86.73	88.61	73.73	79.26	19.50	18.00	.00	1.99	20	33	35	32
C27	87.69	83.64	83.95	86.49	88.16	73.54	80.15	22.00	21.50	.00	1.67	20	33	35	32
C28	87.94	83.72	84.26	89.06	90.68	75.51	80.14	15.00	13.00	.00	1.62	20	35	33	34
C29	87.20	82.99	83.44	87.17	88.46	73.78	78.85	18.50	18.50	.04	1.26	20	35	33	32
C30	87.81	83.80	84.28	87.65	89.21	74.62	79.77	18.50	17.00	.04	1.56	20	33	35	32
Avg.	87.47	83.33	83.89	87.36	88.97	74.19	79.57	18.75	17.50	.01	1.62				
Std Dv	.43	.46	.34	.92	.90	.74	.54	2.25	2.76	.02	. 23				
90% CI	.35	.37	.28	.76	.74	.61	.44	1.85	2.27	.02	. 19				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9	γVh										
A1	81.64	77.85	78.65	82.16	84.02	69.23	77.46	17.50	14.00	.00	1.86	20	33	35	34
A2	83.25	79.23	79.42	82.77	84.67	69.88	78.07	18.00	16.50	.00	1.91	20	35	33	32
A3	81.60	77.62	77.87	81.92	83.74	69.12	<i>7</i> 7.49	15.00	14.50	.00	1.82	20	33	35	34
A4	83.16	79.35	81.85	83.23	85.20	70.24	<i>7</i> 8.25	29.00	21.00	.00	1.97	20	33	35 35	32
A5	81.67	78.05	79.55	82.41	84.15	69.89	<i>7</i> 8.32	18.50	13.50	.00	1.74	20	35	25	32
A7	83.70	79.82	81.68	83.67	85.63	70.80	78. 65	24.50	18.50	.10	1.96	20	33	35	32
Avg.	82.50	78.65	79.84	82.69	84.57	69.86	78.04	20.42	16.33	.02	1.38				
Std Dv	.97	.92	1.61	.66	.73	.63	.48	5.25	2.94	.04	.09				
90% CI	.80	.76	1.33	.55	.60	.52	.39	4.32	2.42	.03	.07				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-C-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	1		CENTERLI	NE - CENTE	ER			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 kt	:s1.0\	/h										
D8 D9	82.71 83.80	78.41 79.72	79.55 80.72	83.97 85.43	85.61 87.10	70.95 72.27	76.90 78.23	14.50 14.00	13.00 12.00	.10 .10	1.64 1.67	20 20	35 33		34 32
Avg. Std Dv 90% CI	83.26 .77 3.44	79.07 .93 4.14	80.14 .83 3.69	84.70 1.03 4.61	86.35 1.05 4.70	71.61 .93 4.17	77.57 .94 4.20	14.25 .35 1.58	12.50 .71 3.16	.10 .00 .00	1.65 .02 .09				
150 m F	LYOVER	TARGET	IAS 64.0 kt	s 0.8	BVh										
D10 D11	81.84 83.21	77.82 79.30	78.32 80.06	81.74 81.93	83.68 83.90	69.29 69.18	78.25 78.13	16.00 24.50	15.00 19.00	.10 .10	2.43 1.97	20 20	32 33	33 35	
Avg. Std Dv 90% CI	82.52 .97 4.33	78.56 1.05 4.67	79.19 1.23 5.49	81.83 .13 .60	83.79 .16 .69	69.24 .08 .35	78.19 .08 .38	20.25 6.01 26.83	17.00 2.83 12.63	.10 .00 .00	2.20 .33 1.45				
150 m F	LYOVER	TARGET	IAS 56.0 kt	s 0.7	'Vh										
D12 D13	81.67 83.48	77.73 79.54	78.20 80.07	81.33 82.05	83.04 83.82	68.42 69.37	79.47 79.82	19.00 23.50	18.50 23.00	.10 .10	1.71 1.78	20 20	32 32	33 33	35 35
Avg. Std Dv 90% CI	82.57 1.28 5.71	78.64 1.28 5.71	79.13 1.32 5.91	81.69 .51 2.27	83.43 .55 2.46	68.90 .67 3.00	79.65 .25 1.10	21.25 3.18 14.21	20.75 3.18 14.21	.10 .00 .00	1. <i>7</i> 5 .05 .22				
150 m F	LYOVER	TARGET	IAS 48.0 kt	s 0.6	δVh										
D14 D16	82.11 84.37	78.29 80.40	79.40 81.80	81.92 82.45	83.49 84.42	69.19 69.50	79.54 79.90	21.00 34.00	19.50 27.50	.10 .00	1.57 1.97	20 20	25 33	35 35	32 32
Avg. Std Dv 90% CI	83.24 1.60 7.13	79.35 1.49 6.66	80.60 1.70 7.58	82.18 .37 1.67	83.96 .66 2.94	69.35 .22 .98	79.72 .25 1.14	27.50 9.19 41.04	23.50 5.66 25.26	.05 .07 .32	1.77 .28 1.26				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-C-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	12	DELINE	- 150 m WE	ST.			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
**	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
B18 B20 B21 B22 B23 B24 Avg.	86.30 87.36 85.87 87.69 86.55 86.77	84.34 85.63 83.73 85.43 84.14 84.90	85.75 88.44 85.01 87.16 85.80 85.45	86.19 88.64 85.20 87.81 84.78 85.51	87.18 90.33 86.79 89.31 85.98 86.65	75.54 78.33 74.90 77.16 74.26 75.24	80.04 80.82 78.56 80.98 79.10 79.48	21.00 20.50 20.50 20.00 28.50 21.00	23.50 20.50 23.00 22.50 30.50 22.50	.03 .00 .00 .02 .00 .08	.99 1.68 1.58 1.48 1.21 1.10	22 27 27 27 28 22	26 27 27 27 28 27	27 28 26 28 29 28	29 28 34
Std Dv 90% CI	.67 .55	.75 .62	1.28 1.06	1.54 1.27	1.71 1.41	1.53 1.26	.96 .79	3.25 2.67	3.46 2.85	.03 .03	.28 .23				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C25 C26 C27 C28 C29 C30	83.17 83.78 84.31 84.41 83.33 84.45	79.19 80.04 80.48 80.55 79.60 80.65	79.04 80.31 81.09 80.96 80.12 81.48	80.35 81.34 81.51 82.59 80.47 82.46	82.00 83.09 83.90 83.78 81.65 84.23	67.90 68.48 69.19 69.74 68.22 69.51	77.14 78.49 78.23 78.90 77.91 76.91	26.00 30.50 31.00 26.50 31.00 31.50	25.50 30.00 31.00 26.00 30.50 26.50	.00 .00 .00 .00 .00	2.05 1.90 2.39 2.38 1.75 1.71	20 20 20 20 20 20	35 33 33 35 33 35	33 32 32 33 32 33	35 34 32 34
Avg. Std Dv 90% CI	83.91 .57 .47	80.08 .59 .48	80.50 .88 .72	81.45 .95 .78	83.11 1.07 .88	68.84 .75 .61	77.93 .78 .64	29.42 2.48 2.04	28.25 2.50 2.06	.01 .02 .02	2.03 .30 .25				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	γvh										
A1 A2 A3 A4 A5 A7	80.11 81.16 79.98 81.20 80.11 81.80	77.21 78.05 76.86 78.19 76.90 78.60	78.04 78.28 77.86 79.01 77.08 79.54 78.30	79.03 79.32 79.31 80.56 79.61 80.12	80.17 80.43 80.46 81.71 80.74 81.13	67.53 67.22 67.35 68.31 67.66 67.93	77.41 74.76 76.85 74.14 77.62 75.32 76.02	22.50 25.50 22.50 23.50 17.50 29.00	22.50 24.50 19.00 20.50 17.50 28.00	.00 .05 .05 .05 .05 .05	1.14 1.07 1.15 1.15 1.13 1.15	23 23 23 23 23 23 20	33 35 33 33 33 33	32 33 32 35 32 32	34 32 34
Std Dv 90% CI	.76 .62	.74 .61	.87 .72	.58 .47	.56 .46	.40	1.47 1.21	3.80 3.13	3.85 3.16	.02 .02	.03 .03				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

May 6, 1993

TABLE A-C-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	2	SI	DELINE	- 150 m WE	ST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 kt	ts 1.0)Vh										
D8 D9	81.22 83.01	77.83 79.56	78.11 79.60	80.07 81.17	81.33 82.34	67.90 68.54	76.94 75.74	21.00 25.50	20.50 25.00	.05 .05	1.58 1.45	20 23	32 35	33 34	34 33
Avg. Std Dv 90% CI	82.12 1.27 5.65	78.69 1.22 5.46	78.85 1.05 4.68	80.62 .78 3.47	81.83 .71 3.19	68.22 .45 2.02	76.34 .85 3.79	23.25 3.18 14.21	22.75 3.18 14.21	.05 .00 .00	1.52 .09 .41				
150 m F	LYOVER	TARGET	IAS 64.0 kt	ts 0.8	3Vh										
D10 D11	79.97 81.07	76.75 77.79	76.85 79.65	78.41 79.43	79.56 80.57	66.44 67.16	76.46 74.80	22.00 35.50	22.50 34.50	.05 .03	1.24 1.10	23 23	32 32		34 35
Avj. Std Dv 90% CI	80.52 .78 3.47	77.27 .74 3.28	78.25 1.98 8.83	78.92 .72 3.22	80.07 .71 3.19	66.80 .51 2.27	75.63 1.17 5.24	28.75 9.55 42.62	28.50 8.49 37.88	.04 .01 .06	1.17 .10 .44				
150 m F	LYOVER	TARGET	IAS 56.0 kt	ts 0.7	7 Vh										
D12 D13	80.51 80.44	77.16 77.33	78.19 78.84	79.01 77.74	79.94 78.72	66.97 65.32	78.42 74.70	26.50 45.00	26.50 43.00	.03 .03	.93 .97	20 20	33 32	32 34	26 26
Avg. Std Dv 90% CI	80.48 .05 .22	77.25 .12 .54	78.52 .46 2.05	78.38 .90 4.01	79.33 .86 3.85	66.15 1.17 5.21	76.56 2.63 11.74	35.75 13.08 58.40	34.75 11.67 52.09	.03 .00 .00	.95 .03 .13				
150 m F	LYOVER	TARGET	IAS 48.0 kt	ts 0.6	5Vh										
D14 D16	80.00 81.78	76.71 78.58	77.32 79.67	78.05 78.04	78.98 79.09	65.71 65.82	77.27 75.44	29.00 48.50	29.50 48.00	.03	.93 1.05	26 26	32 32	34 26	33 35
Avg. Std Dv 90% CI	80.89 1.26 5.62	77.65 1.32 5.90	78.50 1.66 7.40	78.04 .01 .03	79.04 .08 .35	65.76 .08 .35	76.35 1.29 5.78	38.75 13.79 61.56	38.75 13.08 58.40	.03 .00 .00	.99 .08 .38				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-C-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0.8 kts												
B18 B20 B21 B22 B23 B24	84.33 84.47 83.63 84.10 83.97 83.02	81.85 81.77 81.04 81.47 81.57 80.61	82.44 81.90 81.71 81.84 82.10 81.82	83.06 83.06 82.74 83.61 81.90 82.91	84.27 83.97 83.35 84.33 83.33 83.66	70.90 70.76 70.41 71.33 70.13 70.76	77.85 77.75 77.68 78.38 76.78 77.62	28.50 26.00 27.00 22.50 31.50 25.50	22.00 26.00 26.00 19.50 30.00 22.50	.03 .03 .03 .03 .00	1.72 .91 .61 .72 2.00 .70	27 22 23 24 27 23	24 24 23 24 24 23	27 23 24 23 27 24	26 26 26 23
Avg. Std Dv 90% CI	83.92 .53 .44	81.39 .47 .39	81.97 .26 .22	82.88 .56 .46	83.82 .44 .36	70.72 .41 .34	77.68 .52 .43	26.83 3.03 2.49	24.33 3.74 3.07	.03 .02 .01	1.11 .60 .49				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C25 C26 C27 C28 C29 C30	85.43 85.35 85.58 86.00 85.48 87.18	81.81 81.76 81.99 81.97 82.03 83.65	82.50 82.28 82.54 83.31 82.46 84.21	83.74 84.35 84.48 86.97 84.30 86.47	84.92 85.52 85.79 88.49 85.37 88.30	71.53 72.17 71.32 73.89 71.24 74.32	75.22 75.37 76.23 76.69 75.27 77.34	25.00 20.50 26.50 17.50 26.50 19.50	24.50 19.50 23.00 13.50 21.00 18.50	.14 .19 .19 .19 .01	1.04 .98 1.32 1.52 1.06 1.81	23 20 35 27 23 20	32 32 35 35 35 35	33 34 33 33 33 32	33 34 34 34
Avg. Std Dv 90% CI	85.84 .70 .57	82.20 .72 .59	82.88 .74 .61	85.05 1.33 1.09	86.40 1.57 1.29	72.41 1.36 1.12	76.02 .88 .72	22.58 3.90 3.21	20.00 3.87 3.19	.12 .09 .07	1.29 .33 .27				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9	PVh										
A1 A2 A3 A4 A5 A7	80.48 81.88 79.80 81.25 80.06 82.35	77.46 78.79 76.75 78.14 77.03 79.20	78.46 79.45 77.91 78.56 77.69 80.11	80.78 81.11 79.33 80.62 80.26 81.15	81.79 82.34 80.35 81.68 81.15 82.49	68.25 68.66 67.12 68.15 67.69 68.57	74.24 78.13 73.05 77.60 73.59 78.26	21.00 24.00 24.00 22.00 20.00 28.50	19.50 24.00 24.50 22.00 19.50 27.00	.02 .02 .08 .05 .05	.99 1.23 .94 1.01 .90 1.34	23 20 20 23 20 20	35 33 33 33 33 33	32 35 32 35 35 35	35 32 32
Avg. Std Dv 90% CI	80.97 1.02 .84	77.89 .98 .81	78.70 .92 .76	80.54 .68 .56	81.63 .79 .65	68.07 .58 .48	75.81 2.43 2.00	23.25 3.03 2.49	22.75 2.98 2.45	.05 .02 .02	1.07 .18 .14				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = S plifted SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-C-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m f	FLYOVER	TARGET	IAS 80.0 kt	s 1.0)Vh										
D8 D9	81.43 83.21	78.17 80.13	79.62 83.36	81.41 82.61	82.56 83.64	68.74 70.04	73.62 78.45	24.50 43.00	23.00 42.00	.05 .05	1.15 1.03	20 23	33 33		34 35
Avg. Std Dv 90% CI	82.32 1.26 5.62	79.15 1.39 6.19	81.49 2.65 11.82	82.01 .85 3.79	83.10 .76 3.41	69.39 .92 4.10	76.04 3.42 15.25	33.75 13.08 58.40	32.50 13.44 59.98	.05 .00 .00	1.09 .08 .38				
150 m F	FLYOVER	TARGET	IAS 64.0 kt	ts 0.8	3Vh										
D10 D11	80.32 82.00	76.93 78.84	77.55 80.30	79.32 80.23	80.58 81.53	66.94 67.57	73.74 76.83	23.00 37.50	22.50 35.50	.13 .13	1.14 1.30	20 20	35 33		32 35
Avg. Std Dv 90% CI	81.16 1.19 5.30	77.88 1.35 6.03	78.92 1.95 8.69	79.78 .64 2.87	81.06 .67 3.00	67.26 .45 1.99	75.29 2.18 9.76	30.25 10.25 45.78	29.00 9.19 41.04	.13 .00 00	1.22 .11 .51				
150 m f	LYOVER	TARGET	IAS 56.0 kt	s 0.7	7 Vh										
D12 D13	79.98 80.94	76.58 78.01	78.25 79.16	79.91 80.17	81.19 81.20	67.46 67.40	72.76 77.13	24.00 30.00	23.50 28.00	.02 .02	1.27 1.03	20 25	32 33	35 34	33 32
Avg. Std Dv 90% CI	80.46 .68 3.03	77.29 1.01 4.51	78.71 .64 2.87	80.04 .18 .82	81.19 .01 .03	67.43 .04 .19	74.94 3.09 13.80	27.00 4.24 18.94	25.75 3.18 14.21	.02 .00 .00	1.15 .17 .76				
150 m F	FLYOVER	TARGET	IAS 48.0 kt	:s 0.6	SVh										
D14 D16	80.16 82.45	76.66 79.36	77.83 81.23	78.92 79.40	80.21 80.83	66.53 67.00	72.56 78.65	27.00 53.00	27.50 51.50	.02 .03	1.32 1.40	20 20	32 33		34 34
Avg. Std Dv 90% CI	81.31 1.62 7.23	78.01 1.91 8.52	79.53 2.40 10.73	79.16 .34 1.52	80.52 .44 1.96	66.76 .33 1.48	75.60 4.31 19.23	40.00 18.38 82.08	39.50 16.97 75.77	.02 .01 .03	1.36 .06 .25				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1	CENTERLINE - CENTER						07/2	3/91			
E۷	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
B16 B17 B18 B20 B21 B22	91.82 92.81 92.61 89.86 88.95 90.53	90.25 91.41 91.09 88.05 86.60 88.76	91.37 92.34 91.73 88.82 86.65 89.39	92.29 93.06 92.46 89.88 88.87 90.43	93.24 94.06 93.55 90.85 89.65 91.52	81.59 82.03 81.73 78.51 77.11 80.23	86.00 87.33 86.88 85.80 85.03 85.29	19.00 21.50 20.00 21.50 18.00 16.50	18.50 19.50 18.50 20.50 18.00 17.00	.10 .06 .06 .01 .01	.86 .94 1.08 .97 .89 1.02	25 24 22 25 21 22	25 25 25 25 25 22 26	28 24 26 27 25 25	28 28 22 24
Avg. Std Dv 90% CI	91.10 1.56 1.29	89.36 1.88 1.55	90.05 2.16 1.78	91.17 1.67 1.38	92.14 1.74 1.43	80.20 2.00 1.65	86.06 .90 .74	19.42 1.99 1.63	18.67 1.21 1.00	.05 .04 .03	.96 .08 .07				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C24 C25 C26 C27 C28 C29	85.83 84.83 85.77 85.78 85.30 85.31	82.71 81.67 82.67 82.63 82.41 82.15	82.84 81.71 82.74 82.99 83.18 82.32	84.78 83.48 85.26 84.58 84.38 83.39	86.20 85.17 86.95 86.25 85.87 84.88	72.73 71.30 73.08 72.29 71.96 71.26	79.21 79.33 79.05 79.46 79.14 77.79	20.50 22.00 18.50 23.50 26.50 25.50	20.00 21.00 18.50 22.50 20.50 24.50	.07 .07 .07 .07 .07	1.42 1.68 1.69 1.66 1.50 2.16	20 20 20 20 20	34 34 33 34 34 33	33 32 32 33 33 32	33 34 32 35
Avg. Std Dv 90% CI	85.47 .39 .32	82.37 .40 .33	82.63 .53 .44	84.31 .74 .61	85.89 .76 .63	72.10 .74 .61	79.00 .61 .50	22.75 3.03 2.49	21.17 2.09 1.72	.07 .00 .00	1.68 .26 .21				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	₽Vh										
A1 A2 A3 A4 A5 A6	79.07 81.04 78.46 78.89 79.11 80.08	76.07 77.84 75.53 75.96 76.23 77.12	77.15 77.84 77.02 75.89 77.58 77.71	78.85 80.96 80.09 78.41 80.08 79.93	80.39 83.10 81.64 80.03 81.73 81.20	66.74 68.55 67.73 66.60 67.80 67.71	76.90 77.50 77.35 75.52 77.39 77.33	22.00 17.00 17.00 17.00 19.00 20.00	20.50 15.50 12.00 16.00 17.50 19.50	.00 .00 .00 .14 .14	1.87 2.14 1.80 1.47 1.65 1.27	20 20 20 20 20	34 34 34 34 34 34	33 33 33 33 33 32	35 32 25 35
Avg. Std Dv 90% CI	79.44 .95 .78	76.46 .86 .70	77.20 .71 .59	79.72 .93 .76	81.35 1.09 .90	67.52 .73 .60	77.00 .75 .62	18.67 2.07 1.70	16.83 3.06 2.52	.07 .08 .06	1.70 .31 .25				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m i	FLYOVER	TARGET	IAS 80.0 kt	ts 1.0)Vh										
D7 D9	80.08 81.38	77.27 78.16	78.49 78.56	80.48 81.16	81.98 82.93	68.60 68.90	76.71 77.35	19.50 18.50	17.00 17.50	.01 .01	1.49 2.19	20 20	34 33		32 34
Avg. Std Dv 90% CI	80.73 .92 4.10	77.71 .63 2.81	78.53 .05 .23	80.82 .48 2.15	82.46 .67 3.00	68. <i>7</i> 5 .21 .95	77.03 .45 2.02	19.00 .71 3.16	17.25 .35 1.58	.01 .00 .00	1.84 .49 2.21				
150 m l	FLYOVER	TARGET	IAS 64.0 kg	ts 0.8	₿Vh										
D10 D11	78.31 79.70	75.53 77.03	75.99 77.92	78.76 78.73	80.27 80.35	66.57 66.95	77.78 77.04	17.50 25.00	13.00 17.50	.01 .01	1.88 1.62	20 20	34 34	32 33	33 32
Avg. Std Dv 90% CI	79.00 .98 4.39	76.28 1.06 4.74	76.95 1.36 6.09	78.75 .02 .09	80.31 .06 .25	66.76 .27 1.20	77.41 .52 2.34	21.25 5.30 23.68	15.25 3.18 14.21	.01 .00 .00	1.75 .18 .82				
150 m f	FLYOVER	TARGET	IAS 56.0 kt	ts 0.7	V h										
D12 D13	79.77 80.71	76.87 77.68	78.40 78.69	79.65 79.47	81.00 81.18	67.99 67.55	78.57 78.85	22.00 26.00	21.50 22.50	.10 .10	1.25 2.03	20 20	34 34	25 33	35 32
Avg. Std Dv 90% CI	80.24 .66 2.97	77.28 .57 2.56	78.55 .20 .90	79.56 .13 .57	81.09 .13 .57	67.77 .31 1.39	78.71 .20 .88	24.00 2.83 12.63	22.00 .71 3.16	.10 .00 .00	1.64 .55 2.46				
150 m f	FLYOVER	TARGET	IAS 48.0 kt	ts 0.6	5Vh										
D14 D15	79.67 81.78	76.61 78.72	77.06 79.45	78.38 79.12	79.91 81.21	66.75 67.28	78.78 79.29	21.50 33.00	22.00 28.50	.10 .10	1.65 2.08	25 20	34 34	32 32	33 33
Avg. Std Dv 90% CI	80.72 1.49 6.66	77.67 1.49 6.66	78.26 1.69 7.55	78.75 .52 2.34	80.56 .92 4.10	67.01 .37 1.67	79.04 .36 1.61	27.25 8.13 36.31	25.25 4.60 20.52	.10 .00 .00	1.87 .30 1.36				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	SI	DELINE	- 150 m Wi	EST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
816 B17 B18 B20 B21 B22	86.91 87.45 86.72 83.75 83.75 84.05	85.24 86.18 85.33 82.04 81.61 82.39	86.33 87.11 85.40 83.95 81.52 82.32	86.12 87.18 86.31 84.08 81.61 83.40	87.93 88.30 87.23 85.41 82.46 84.25	76.02 76.70 75.98 74.29 71.41 72.78	79.94 81.53 80.47 78.20 79.57 78.93	21.50 22.00 17.50 18.50 20.50 18.00	21.00 20.00 18.00 20.00 29.50 18.50	.00 .00 .00 .03 .00	1.82 1.12 .92 1.30 1.70 .81	27 19 26 27 27 19	27 26 26 27 27 26	28 27 28 29 33 23	26 28 27 33 29 28
Avg. Std Dv 90% CI	85.44 1.76 1.45	83.80 2.00 1.64	84.44 2.23 1.84	84.78 2.11 1.74	85.93 2.30 1.89	74.53 2.09 1.72	79.77 1.17 .96	19.67 1.91 1.58	21.17 4.23 3.48	.01 .02 .02	1.28 .41 .34				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C24 C25 C26 C27 C28 C29	80.96 80.47 80.31 81.37 80.96 80.90	78.67 78.34 77.88 79.07 78.62 78.46	79.48 79.36 79.22 79.67 79.54 79.32	77.88 78.82 77.79 78.51 78.34 78.62	79.56 80.62 79.73 80.48 80.00 79.40	67.05 67.53 66.85 66.88 67.30 67.42	76.99 77.31 76.49 76.75 77.07 75.99	35.00 30.50 34.50 38.00 33.50 31.00	35.50 25.50 34.00 31.50 33.00 33.50	.04 .04 .04 .04 .04	1.98 1.80 2.00 1.97 1.75 .78	27 27 27 27 27 27 23	34 34 34 34 34 33	33 33 33 33 35 35	27 32 32 32 33 34
Avg. Std Dv 90% CI	80.83 .38 .31	78.51 .39 .32	79.43 .16 .13	78.33 .41 .34	79.97 .50 .41	67.17 .29 .24	76.77 .47 .39	33.75 2.77 2.28	32.17 3.52 2.89	.03 .02 .01	1.71 .47 .39				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9	νh										
A1 A2 A3 A4 A5 A6	76.43 78.76 76.77 78.19 77.34 78.97	73.90 77.03 74.37 75.72 74.72 76.16	74.58 77.90 75.16 76.50 75.02 76.80	75.37 78.40 76.51 77.42 78.18 77.92	76.38 78.40 77.40 78.22 79.06 78.83 78.05	63.79 66.36 64.75 65.62 65.99 65.74	77.35 74.38 77.58 73.88 77.92 74.29	24.00 28.50 22.00 24.50 16.00 25.50	23.50 26.00 21.50 24.50 16.00 25.00	.07 .00 .07 .07 .07 .07	1.87 .00 1.20 .80 .88 .91	19 26 19 23 23 23	34 34 34 34 34 34	33 33 33 33 33 33	35 35 35 26 35 35
Std Dv 90% CI	1.06 .87	1.19 .98	1.28 1.05	1.16	1.00 .82	.94 .78	1.90 1.56	4.21 3.46	3.64 3.00	.03 .02	.61 .50				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

MICROPHONE NO.			PHONE NO.	2	SI	DELINE	- 150 m WE	ST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTM	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
11	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m s	I VOVED	TARGET	IAS 80.0 k	ts 1.0)Vh										
י ווו טכו	LIOVER	, mar						44 50	45 50	00	1.06	23	34	77	35
07	77.80	75.38	77.06	79.43	80.48	67.90	77.50	16.50 31.50	15.50 30.50	.00 .07	1.42	23	33		23
D9	79.85	77.61	78.85	78.34	79.18	66.88	74.90	31.30	30.50	.07	****		~~		
		7/ /0	77 04	78.88	79.83	67.39	76.20	24.00	23.00	.04	1.24				
Avg.	78.82	76.49	77.96 1.26	.77	.92	.72	1.84	10.61	10.61	.05	.25				
Std Dv	1.45 6.47	1.58 7.04	5.65	3.44	4.10	3.22	8.21	47.35	47.35	.22	1.14				
90% CI	0.47	7.04	3.03	3.44	44.00	•••									
150 m F	FLYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
		7/ 74	75.18	75.23	76.04	64.67	77.10	22,50	23.00	.07	1.28	19			33
D10	76.04	74.31	75.10 76.55	76.11	76.76	64.79	74.35	30.00	30.00	.07	.79	23	34	33	26
D11	77.84	75.80	10.33	70.11	70.10	041.7									
Avg.	76.94	75.06	75.87	75.67	76.40	64.73	75.72	26.25	26.50	.07	1.03				
Std Dv	1.27	1.05	.97	.62	.51	.08	1.94	5.30	4.95	.00	.35				
90% CI	5.68	4.70	4.32	2.78	2.27	.38	8.68	23.68	22.10	.00	1.55				
150 m i	FLYOVER	TARGET	IAS 56.0 k	ts 0.	7∨h										
	-4	7/ 77	75.43	74.89	75.50	63.82	76.65	29.00	28.50	.04	.57	26	34	33	32 35
D12	76.37	74.33 76.43	77.52	76.97	77.97	65.28	74.48	33,50	29.50	.00	.99	23	34	33	35
D13	78.67	10.43	11.52	10.71	11.71	45.00	•	-							
Avg.	77.52	75.38	76.48	75.93	76.74	64.55	75.57	31.25	29.00	.02	.78				
Std Dv	1.63	1.48	1.48	1.47	1.75	1.03	1.53	3.18	.71	.03	.30				
90% CI	7.26	6.63	6.59	6.57	7.80	4.61	6.85	14.21	3.16	.13	1.33				
					1 d										
150 m	FLYOVER	TARGET	IS 48.0 kt	ts U.O	vn								77	7.	. 7/
D14	77.13	75.03	75.70	75.44	76.32	64.40	76.94	27.00	29.00	.00	.88		33 34	33	2 34 3 35
D15	79.74	77.27		76.81	77.80	65.13	74.93	37.00	36.50	.00	.99	23	34	٠,	, ,
2				-, ,-	77.01	41 74	75.93	32.00	32.75	.00	.94				
Avg.	78.43	76.15		76.13	77.06	64.76 .52		7.07	5.30	.00	.08				
Std Dv	1.85	1.58		.97	1.05	2.30		31.57	23.68	.00	.35				
90% CI	8.24	7.07	6.62	4.33	4.67	2.3u	0.37	31.31	23.00						

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	\$I	DELINE	- 150 m E/	AST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0.8 kts												
B16 B17 B18 B20 B21 B22	84.88 85.24 84.84 84.33 83.88 84.13	82.80 83.19 82.57 82.66 81.71 81.88	84.05 84.03 82.66 84.16 82.19 82.10	82.71 83.83 83.13 82.88 81.84 83.37	83.62 84.79 83.96 83.68 82.62 84.47	70.88 72.13 71.20 71.61 71.05 71.13	77.93 78.86 78.32 77.08 76.89 78.38	41.50 31.00 28.00 36.00 26.00 25.00	28.50 28.50 26.50 26.50 26.00 21.00	.00 .00 .10 .01 .01	.91 .97 .73 .80 .90	22 26 24 26 19 23	24 23 24 26 26 23	26 26 23 24 23 26	24 26 34 24
Avg. Std Dv 90% CI	84.55 .52 .43	82.47 .57 .47	83.20 .99 .81	82.96 .67 .56	83.86 .76 .62	71.33 .46 .38	77.91 .78 .64	31.25 6.40 5.27	26.17 2.75 2.26	.02 .04 .03	.90 .13 .11				
TAKEOFF	TARGE	T 1AS 40	.8 kts												
C24 C25 C26 C27 C28 C29	84.12 83.81 84.01 83.88 84.39 83.82	81.37 81.07 81.24 81.13 81.53 80.98	81.21 80.43 82.07 81.61 81.31 81.42	80.51 80.76 82.40 81.56 81.39 81.27	82.16 81.94 83.37 82.54 82.89 82.42	68.91 68.74 70.69 69.85 69.34 69.52	74.13 74.14 74.69 74.73 74.46 73.69	34.00 29.50 27.50 30.00 31.50 31.00	29.50 29.50 27.50 30.00 30.00 30.00	.01 .01 .01 .01 .01	1.68 1.19 .96 1.13 1.57 1.15	27 23 20 20 27 23	35 33 33 33 35 35	34 34 34 34 34 34	33 32 32 32 36 36
Avg. Std Dv 90% CI	84.01 .22 .18	81.22 .20 .17	81.34 .54 .45	81.31 .66 .55	82.55 .52 .42	69.51 .71 .58	74.31 .40 .33	30.58 2.18 1.79	29.42 .97 .80	.01 .00 .00	1.28 .28 .23				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	PVh										
A1 A2 A3 A4 A5 A6	77.87 78.41 78.34 77.88 78.05 77.24	75.25 76.02 75.75 75.71 75.77 74.97	76.40 76.86 75.92 76.05 76.31 75.50	78.27 77.63 77.22 75.90 78.31 75.47	78.91 78.62 77.94 76.72 78.92 76.37	66.19 65.72 65.71 64.59 66.65 63.89	73.76 77.55 74.24 76.40 73.54 77.12	21.00 26.00 21.00 28.00 18.50 29.00	21.00 25.50 21.00 27.50 18.50 29.00	.00 .08 .08 .08 .08	.64 .91 1.51 .82 .61	20 23 19 23 20 23	34 34 33 34 34 34	33 35 34 35 33 35	33 32
Avg. Std Dv 90% CI	77.96 .42 .35	75.58 .39 .32	76.17 .46 .38	77.13 1.20 .99	77.91 1.12 .92	65.46 1.03 .85	75.43 1.79 1.47	23.92 4.32 3.55	23.75 4.18 3.44	.07 .03 .03	.90 .33 .27				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-D-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	ST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
**	(dB)	(dB)	(d8)	(d8)	(dB)	(d8)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 kt	ts 1.()Vh										
D7 D9	78.99 79.33	76.16 76.80	75.97 77.47	78.16 79.46	79.04 80.24	66.43 67.69	73.73 78.29	18.00 19.00	18.50 19.00	.00 .80.	1.03 .78	23 23	34 34		35 35
Avg. Std Dv 90% CI	79.16 .24 1.07	76.48 .45 2.02	76.72 1.06 4.72	78.81 .92 4.10	79.64 .85 3.79	67.06 .89 3.98	76.01 3.22 14.40	18.50 .71 3.16	18.75 .35 1.58	.04 .06 .25	.90 .18 .79				
150 m F	LYOVER	TARGET	IAS 64.0 kt	ts 0.8	BVh										
D10 D11	77.78 78.56	75.25 76.17	75.72 77.33	76.33 76.74	77.26 77.41	64.50 64.84	73.75 76.55	26.50 35.50	26.00 30.00	.08 .03	1.83 .64	19 23	32 34		34 33
Avg. Std Dv 90% CI	78.17 .55 2.46	75.71 .65 2.90	76.53 1.14 5.08	76.54 .29 1.29	77.34 .11 .47	64.67 .24 1.07	75.15 1.98 8.84	31.00 6.36 28.41	28.00 2.83 12.63	.05 .04 .16	1.24 .84 3.76				
150 m F	LYOVER	TARGET	IAS 56.0 kt	ts 0.7	7 Vh										
D12 D13	78.33 78.92	75.39 76.37	75.65 77.48	76.80 76.35	77.80 77.05	64.77 64.81	72.44 77.81	24.50 37.00	30.50 37.00	.09 .04	.91 .65	19 26	34 34		35 35
Avg. Std Dv 90% CI	78.63 .42 1.86	75.88 .69 3.09	76.57 1.29 5.78	76.57 .32 1.42	77.43 .53 2.37	64.79 .03 .13	75.13 3.80 16.95	30.75 8.84 39.46	33.75 4.60 20.52	.06 .04 .16	.78 .18 .82				
150 m F	LYOVER	TARGET	IAS 48.0 kt	s 0.6	5Vh										
D14 D15	78.95 79.43	76.10 76.88	76.72 77.12	78.37 76.25	79.25 77.11	65.93 64.82	73.53 78.07	24.00 34.00	22.50 36.00	.02 .02	.86 .84	23 23	34 34	35 33	33 35
Avg. Std Dv 90% CI	79.19 .34 1.52	76.49 .55 2.46	76.92 .28 1.27	77.31 1.50 6.69	78.18 1.51 6.76	65.38 .78 3.50	75.80 3.21 14.33	29.00 7.07 31.57	29.25 9.55 42.62	.02 .00 .00	.85 .01 .06				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1	CENTERLINE - CENTER					07/2	4/91				
EV	EPNL	SEL	\$EL(s)**	PNLm	PNLTm	ALm	CASPLIN	DUR(A)	DUR(P)	BNDSHR	10	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	CH TARG	FT IAS 4	0.8 kts												
													•		~-
B15	89.43	87.08	87.94	90.28	91.49	79.19	85.29	15.00	15.00	.00	1.21 1.93	20 20	26 26	27 25	25 27
816 817	87.57 88.53	84.92 85.96	86.57 86.23	88.11 88.69	90.03 90.04	76.26 76.57	82.72 83.01	21.50 18.50	18.00 18.00	.00 .02	1.33	20	25 25	22	26
B18	89.38	87.08	86.46	88.20	90.04 89.49	76.57	83.47	19.50	18.50	.02	1.29	20	25	24 26	27
B19	90.57	88.30	88.68	90.94	92.03	79.39	86.60	17.00	16.50	.01	1.08	20	24	25	26
B20	93.17	91.56	92.07	92.99	94.30	82.41	86.54	18.50	18.50	.02	1.30	20	25	26	28
Avg.	89.78	87.48	87.99	89.87	91.23	78.40	84.61	18.33	17,42	.01	1.36				
Std Dv	1.94	2.30	2.22	1.91	1.79	2.41	1.77	2.21	1.39	.01	.30				
90% CI	1.60	1.89	1.82	1.57	1.47	1.98	1.45	1.81	1.15	.01	.24				
TAKEOFF	TARGE	T IAS 40	.8 kts												
E1	87.24	83.07	83.73	85.89	87.50	73.12	78.90	23.00	21.50	.02	1.61	20	33	32	35
E2	88.33	84.08	84.12	86.94	88.83	73.81	79.54	21.50	18.50	.01	1.88	20	33	35	32
E3	87.93	83.69	84.51	86.07	87.76	73.21	77.77	27.00	26.00	.00	1.68	20	33	35	32
E5	88.23	83.94	84.72	86.44	88.21	73.50	78.59	26.50	24.50	.01	1.76	20	35	35 33 35	32
E6	88.07	83.80	83.75	85.53	87.43	72.69	78.08	25.50	23.00	.01	1.93	20	33	35	32
E7	88.20	83.81	83.59	85.71	87.51	72.80	78.45	24.00	23.00	.01	1.94	20	33	35	32
Avg.	88.00	83.73	84.07	86.10	87.87	73.19	78.56	24.58	22.75	.01	1.80				
Std Dv	.40	.35	.46	.52	.55	.42	.62	2.13	2.58	.01	.14				
90% CI	.33	.29	.38	.43	.45	.35	.51	1.75	2.13	.01	.11				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	? Vh										
A1	83.02	79.08	79.99	83.64	85.83	70.96	78.24	16.00	13.50	.00	2.20	20	35	33	25
A2	84.26	80.52	81.78	83.36	85.60	70.64	78.56	26.00	18.00	.00	2.24	20	35	33	25
A3	83.16	79.45	82.08	83.31	85.74	70.78	78.76	27.00	14.00	.00	2.43	20	32	33 33 33	25 35 25
A4	84.34	80.44	81.30	83.73	85.94	70.99	78.70	21.50	16.50	.00	2.21	20	35	33	25
A5	82.32	78.95	81.37	82.99	85.13	70.49	78.90	24.50	13.00	.00	2.14	20 20	25 35	32 25	35 33
A6	84.88	80.91	81.90	83.48	85.53	70.84	79.10	25.50	23.50	.01	2.05	20	27	4 7	23
Avg.	83.66	79.89	81.40	83.42	85.63	70.78	78.71	23.42	16.42	.00	2.21				
Std Dv	.98	.83	.76	.26	.29	.19	.29	4.09	3.97	.00	.13				
90% CI	.80	.69	.62	.22	.24	.16	.24	3.37	3.26	.00	.10				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTE	R			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0	ΟVh										
07 08	83.05 84.75	79.11 80.67	80.01 81.64	84.86 84.63	86.81 86.72	72.05 71.86	78.60 78.91	12.50 19.00	10.00 17.00	.01 .01	1.96 2.09	50 50	35 33		32 34
Avg. Std Dv 90% CI	83.90 1.20 5.37	79.89 1.10 4.92	80.82 1.15 5.14	84.74 .16 .73	86.76 .06 .28	71.96 .13 .60	78.76 .22 .98	15.75 4.60 20.52	13.50 4.95 22.10	.01 .00 .00	2.03 .09 .41				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.	8Vh										
D9 D10	82.27 84.17	78.91 80.21	81.21 80.74	82.03 82.23	84.10 84.44	69.52 69.77	78.95 78.92	29.50 25.00	16.00 23.00	.01 .01	2.07 2.21	20 20	25 25		35 33
Avg. Std Dv 90% CI	83.22 1.34 6.00	79.56 .92 4.10	80.97 .33 1.48	82.13 -14 -63	84.27 .24 1.07	69.64 .18 .79	78.93 .02 .09	27.25 3.18 14.21	19.50 4.95 22.10	.01 .00 .00	2.14 .10 .44				
150 m F	LYOVER	TARGET	IAS 56.0 k	ts 0.	7Vh										
D11 D12	82.71 85.21	78.85 81.27	79.49 82.16	82.48 82.47	84.58 84.60	69.95 69.86	79.17 79.83	18.00 34.00	16.00 32.00	.01 .01	2.09 2.16	20 20	25 25	32 35	35 33
Avg. Std Dv 90% CI	83.96 1.77 7.89	80.06 1.71 7.64	80.83 1.89 8.44	82.48 .01 .03	84.59 .01 .06	69.90 .06 .28	79.50 .47 2.08	26.00 11.31 50.51	24.00 11.31 50.51	.01 .00 .00	2.13 .05 .22				
150 m f	FLYOVER -	- TARGET	IAS 48.0 I	cts 0.	6Vh										
D13 D14	83.25 85.35	79.50 81.34		82.73 81.59	84.88 83.64	70.35 69.32	79.77 80.00	20.50 39.00	16.50 38. 50	.01 .01	2.17 2.11	20 20	25 25		2 35
Avg. Std Dv 90% CI	84.30 1.48 6.63	80.42 1.30 5.81	1.25	82.16 .81 3.60	84.26 .88 3.91	69.83 .73 3.25	79.88 .16 .73	29.75 13.08 58.40	27.50 15.56 69.45	.01 .00 .00	2.14 .04 .19				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	PHONE NO.	2	sı	DELINE	- 150 m WE	st			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
B15 B16 B17 B18 B19 B20	84.74 83.22 83.09 83.79 84.75 86.38	82.75 81.31 80.98 81.90 82.93 84.79	84.29 82.31 81.86 83.21 84.43 85.73	83.42 80.60 82.15 82.69 83.94 86.34	84.63 81.36 83.17 83.62 84.99 87.34	72.39 69.47 70.98 71.31 73.21 75.62	78.71 77.50 77.95 78.20 79.41 80.16	31.00 38.50 24.50 31.00 26.50 20.50	24.50 38.00 28.00 32.00 29.50 22.00	.00 .04 .04 .04 .04	1.22 .94 1.02 .93 1.04 1.00	23 26 28 26 23 26	23 26 26 26 26 26 26	26 33 28 23 23 27	32 23 34 27
Avg. Std Dv 90% CI	84.33 1.23 1.01	82.44 1.38 1.14	83.64 1.45 1.19	83.19 1.93 1.59	84.18 2.01 1.65	72.16 2.12 1.74	78.65 .99 .81	28.67 6.27 5.15	29.00 5.67 4.66	.03 .02 .01	1.02 .11 .09				
TAKEOFF	TARGE	T IAS 40	.8 kts												
E1 E2 E3 E5 E6 E7	84.66 85.21 85.43 85.17 85.15 84.94	81.14 81.52 81.97 81.55 81.63 81.41	80.78 81.75 81.79 81.37 81.70 81.88	80.92 82.05 81.37 81.08 81.13 81.28	82.64 84.04 83.35 83.01 83.31 83.14	68.41 69.71 69.18 68.82 68.97 69.04	78.51 79.00 77.74 78.24 77.88 78.23	34.50 32.00 36.50 36.00 37.50 38.50	33.00 31.50 34.50 35.00 36.50 34.50	.04 .04 .04 .07 .03	1.72 2.02 2.08 1.86 2.18 1.88	23 23 23 23 23 23 23	33 33 33 23 23 23 23	32 23 23 33 33 33	32 32 32 32
Avg. Std Dv 90% CI	85.09 .26 .22	81.54 .27 .22	81.55 .41 .34	81.31 .40 .33	83.25 .46 .38	69.02 .43 .35	78.27 .45 .37	35.83 2.32 1.91	34.17 1.72 1.42	.04 .01 .01	1.96 .17 .14				
150 m F	LYOVER	TARGET	IAS 72.0 kt	ts 0.9)Vh										
A1 A2 A3 A4 A5 A6	82.04 82.87 81.74 83.00 81.66 83.11	79.31 80.12 78.82 80.53 79.06 80.52	79.84 80.97 79.20 81.80 80.32 81.74	80.39 80.80 80.81 81.16 80.37 81.39	82.00 82.54 82.18 82.66 81.61 83.18	68.87 69.07 68.99 69.43 69.02 69.70	77.90 75.07 78.18 75.08 78.07 75.21	25.00 31.00 21.00 34.50 27.00 32.00	25.00 30.00 22.00 31.50 28.00 28.00	.01 .12 .12 .00 .12 .12	1.69 1.62 1.45 1.49 1.33 1.79	20 20 20 20 20 20 20	33 32 33 33 33 32	32 33 32 32 32 33	35 34 35 26
Avg. Std Dv 90% CI	82.40 .66 .55	79.73 .76 .62	80.65 1.05 .86	80.82 .41 .33	82.36 .55 .45	69.18 .32 .26	76.58 1.61 1.32	28.42 5.00 4.12	27.42 3.44 2.83	.08 .06 .05	1.56 .17 .14				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	PHONE NO.	2	SI	DELINE	- 150 m W	EST			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(d8)	(dB)	(dB)	(d8)	(dB)	(d8)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.()Vh										
D7 D8	82.83 84.53	79.97 81.79	80.93 83.37	82.24 82.59	83.52 84.21	70.32 70.76	78.84 75.93	23.00 36.50	22.50 36.00	.05 .05	1.22 1.74	23 20	33 33	32 35	35 32
Avg. Std Dv 90% CI	83.68 1.20 5.37	80.88 1.29 5.75	82.15 1.73 7.72	82.41 .25 1.10	83.86 .49 2.18	70.54 .31 1.39	77.38 2.06 9.19	29.75 9.55 42.62	29.25 9.55 42.62	.05 .00 .00	1.48 .37 1.64				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
D9 D10	81.76 82.56	79.00 79.64	79.56 80.36	79.58 79.65	80.99 81.35	68.34 67.99	77.93 75.13	26.50 34.50	26.50 32.50	.05 .05	1.53 1.70	20 20	32 32	33 33	34 26
Avg. Std Dv 90% CI	82.16 .57 2.53	79.32 .45 2.02	79.96 .56 2.51	79.62 .05 .22	81.17 .25 1.14	68.16 .25 1.10	76.53 1.98 8.84	30.50 5.66 25.26	29.50 4.24 18.94	.05 .00 .00	1.62 .12 .54				
150 m F	LYOVER	TARGET	IAS 56.0 k	ts 0.7	7Vh										
D11 D12	81.40 84.05	78.64 80.92	78.73 83.19	79.27 79.67	80.56 81.05	67.51 68.00	77.86 74.91	26.50 66.00	26.50 78.00	.05 .04	1.28 1.34	23 20	32 32	33 35	35 34
Avg. Std Dv 90% CI	82.73 1.87 8.37	79.78 1.61 7.20	80.96 3.15 14.06	79.47 .28 1.26	80.81 .35 1.55	67.76 .35 1.55	76.39 2.09 9.31	46.25 27.93 124.70	52.25 36.42 162.59	.05 .01 .03	1.31 .04 .19				
150 m F	LYOVER	TARGET	1AS 48.0 k	ts 0.6	SVh										
D13 D14	81.34 84.28	78.53 81.21	79.42 83.41	79.87 79.78	81.20 81.70	68.36 67.88	78.17 75.15	25.50 71.50	25.50 60.50	.04 .04	1.33 2.38	20 20	33 32		34 35
Avg. Std Dv 90% CI	82.81 2.08 9.28	79.87 1.90 8.46	81.41 2.83 12.62	79.82 .06 .28	81.45 .35 1.58	68.12 .34 1.52	76.66 2.14 9.53	48.50 32.53 145.22	43.00 24.75 110.50	.04 .00 .00	1.86 .74 3.31				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E	AST			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	тс	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)						
APPROAC	CH TARG	ET IAS 4	0.8 kts												
B15	85.62	83.53	83.52	83.26	84.39	72.14	77.91	27.50	26.50	.01	1.14	23	23		28
B16	83.99	81.98	82.84	82.50	83.40	70.67	76.12	33.00	28.50	.01	.89	26	26	24	
B17	84.47	82.51	82.39	81.87	82.55	71.60	77.45	24.00	30.00	.01	.69	24	24 27	23	27 24
B18	84.65	82.83	84.40	82.55	83.82	73.18	77.76	26.50	28.00 35.00	.01	1.27 1.38	23 27	23	24	24 27
B19 B20	85.05 85.85	83.31 84.12	84.18 84.06	82.28 83.06	83.67 84.01	71.81 72.52	78.03 78.06	34.50 28.50	29.50	.01 .01	.95	26	26	24	23
BZU	65.65	04.12	04.00	03.00	04.01	12.32	76.00	20.50	29.30	.01	.73	20	20	24	23
Avg.	84.94	83.05	83.57	82.59	83.64	71.99	77.56	29.00	29.58	.01	1.05				
Std Dv	.71	.77	.80	.51	.63	.85	.74	4.00	2.92	.00	.26				
90% CI	.58	.63	.66	.42	.52	.70	.61	3.29	2.40	.00	.21				
TAKEOFF	F TARGE	T IAS 40	.8 kts												
E1	85.81	82.38	83.25	83,43	85.16	70.52	74.85	37.50	27.50	.01	1.73	23	35	33	34
E2	86.57	82.92	83.61	84.18	85.82	71.64	75.75	31.50	30.00	.01	1.69	23 23 23	35	33	32
E3	86.52	82.93	83.35	82.32	84.02	70.08	74.79	42.50	40.00	.01	1.69 1.79	23	23	33 35	33
E5	86.91	83.19	83.21	83.55	85.41	70.84	75.33	34.50	33.50	.00	1.86	23	35	23	33
E6	86.55	82.95	83.16	83.54	85.28	70.92	74.74	33.50	31.50	.01	1.74	23	35	33	34
E7	86.75	82.93	82.98	83.48	85.17	71.22	75.41	30.00	29.50	.01	1.69	23	35	33	32
Avg.	86.52	82.88	83.26	83.42	85.14	70.87	75.15	34.92	32.00	.01	1.75				
Std Dv	.38	.27	.21	.60	.60	.54	.41	4.52	4.40	.00	.07				
90% CI	.31	.22	.17	.50	.50	.45	.34	3.72	3.62	.00	.05				
150 m f	LYOVER	TARGET	IAS 72.0 k	ts 0.9	PVh										
A1	81.68	78.91	79,14	81.06	82.96	69,25	75.25	19.50	18.50	.03	1.90	20	33	32	34
A2	83.28	80.46	80.50	80.60	81.99	68.96	77.62	28.50	28.50	.03	1.93	20	33	32	34
A3	81.87	79.01	79.58	80.95	82.19	69.37	75.22	21.00	21.00	.03	1.40	20	33	32	35
A4	83.30	80.42	80.61	81.20	83.18	69.91	78.18	23.50	24.00	.03	2.00	20 20	33 33	32	35 34
A5	81.05	78.50	79.09	80.34	81.91	68.98	74.97	20.50	20.50	.03	1.57	20	32	33	26
A6	83.94	81.02	81.81	82.11	83.31	70.35	77.99	28.00	28.50	.06	1.14	23	33	32	35
Avg.	82.52	79.72	80.12	81.04	82.59	69.47	76.54	23.50	23.50	.04	1.66				
Std Dv	1.14	1.04	1.05	.61	.63	.55	1.54	3.91	4.25	_01	.34				
90% CI	.94	.85	.87	.50	.52	.45	1.27	3.22	3.50	.01	. 28				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-E-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		MICRO	MICROPHONE NO. 3			DELINE	- 150 m E/	AST			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	QASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 kt	ts 1.()Vh										
D7 D8	82.52 83.72	79.80 80.78	80.37 80.79	81.76 81.79	83.15 82.99	69.96 70.18	75.66 78.57	22.00 23.00	21.50 25.50	.06 .11	1.39 1.09	23 23			34 32
Avg. Std Dv 90% CI	83.12 .85 3.79	80.29 .69 3.09	80.58 .29 1.30	81.78 .02 .09	83.07 .11 .51	70.07 .16 .69	77.12 2.06 9.19	22.50 .71 3.16	23.50 2.83 12.63	.09 .04 .16	1.24 .21 .95				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
D9 D10	80.58 83.02	77.71 80.10	77.84 80.25	79.52 80.34	81.07 81.58	67.95 68.56	75.10 77.45	19.50 29.50	19.50 29.50	.11 .01	1.55 1.23	20 23			35 34
Avg. Std Dv 90% CI	81.80 1.73 7.70	78.90 1.69 7.55	79.04 1.70 7.60	79.93 .58 2.59	81.32 .36 1.61	68.25 .43 1.93	76.27 1.66 7.42	24.50 7.07 31.57	24.50 7.07 31.57	.06 .07 .32	1.39 .23 1.01				
150 m F	LYOVER	TARGET	IAS 56.0 kt	ts 0.7	" Vh										
D11 D12	81.15 83.29	78.27 80.41	79.00 79.86	79.78 79.29	81.07 80.97	68.30 67.75	74.45 77.27	23.50 32.50	23.50 32.00	.01 .01	1.40 1.68	20 20	32 35		26 33
Avg. Std Dv 90% CI	82.22 1.51 6.76	79.34 1.51 6.76	79.43 .61 2.71	79.54 .35 1.55	81.02 .07 .32	68.03 .39 1.74	75.86 1.99 8.90	28.00 6.36 28.41	27.75 6.01 26.83	.01 .აი .იი	1.54 .20 .88				
150 m F	LYOVER	TARGET	IAS 48.0 kt	ts 0.6	öVh										
D13 D14	81.06 83.19	77.99 80.44	77.97 81.44	78.65 79.68	80.70 81.20	66.83 68.02	75.04 77.11	26.00 44.00	25.00 40.50	.01 .01	2.12 1.53	20 23	33 32		35 34
Avg. Std Dv 90% CI	82.13 1.51 6.72	79.21 1.73 7.73	79.71 2.46 10.97	79.17 .73 3.25	80.95 .35 1.58	67.43 .84 3.76	76.07 1.46 6.53	35.00 12.73 56.83	32.75 10.96 48.93	.01 .00 .00	1.82 .42 1.86				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = Alm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(d8)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0.8 kts												
816 817 818 820 821	91.57 92.42 92.23 92.76 90.02	90.01 90.61 90.51 90.91 88.01	91.14 91.57 91.47 91.28 88.84	90.52 92.37 93.93 93.52 89.55	91.84 93.53 95.09 94.73 90.64	79.92 81.68 83.02 82.68 78.33	85.48 86.09 87.52 86.74 84.63	26.50 19.50 14.00 14.50 22.50	19.50 19.00 14.00 15.00 20.50	.01 .01 .01 .01	1.45 1.17 1.16 1.21 1.09	27 20 20 20 20	27 25 25 25 25 26	25 27 28 26 25	26 26 28 24
B2Z B23	91.79 90.40	90.13 88.38	91.32 88.88	92.43 89.62	93.41 91.07	81.21 78.47	86.52 84.15	20.50 22.00	17.50 19.50	.03 .03	.94 1.45	20 20	25 26	26 25	28 28
Avg. Std Dv 90% CI	91.60 1.03 .76	89.79 1.14 .84	90.64 1.22 .90	91.71 1.81 1.33	92.90 1.75 1.29	80.76 1.90 1.40	85.88 1.20 .88	19.93 4.46 3.27	17.86 2.48 1.82	.02 .01 .01	1.21 .19 .14				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C24 C25 C26 C28 C29 C30	88.11 85.93 87.22 87.83 86.79 86.81 87.10	83.48 81.56 82.78 83.34 82.32 82.28 82.51	84.09 82.73 83.20 84.25 82.74 83.64 83.76	86.14 84.29 84.57 85.81 83.75 85.54 84.95	88.47 86.47 86.75 88.16 86.09 87.86 87.18	73.58 72.12 72.23 73.55 71.60 73.03 72.54	80.33 78.39 78.83 80.75 78.64 79.56 79.24	22.50 23.00 25.00 23.50 26.00 23.00 26.50	22.00 22.50 24.00 20.50 24.00 22.50 27.00	.00 .02 .02 .01 .02 .00	2.35 2.16 2.19 2.34 2.31 2.32 2.22	20 20 20 20 20 20 20 20	34 35 34 34 34 34 34	35 34 35 35 35 35 35	33 33 33 26 33 33 33
Avg. Std Dv 90% CI	87.11 .72 .53	82.61 .66 .49	83.49 .61 .45	85.01 .87 .64	87.28 .90 .66	72.66 .75 .55	79.39 .88 .65	24.21 1.60 1.18	23.21 2.06 1.51	.01 .01 .01	2.27 .08 .06				
150 m F	LYOVER	TARGET	IAS 69 kts	0.94	ר										
A1 A2 A3 A4 A6 A7	81.93 83.24 81.61 82.87 82.65 81.30	78.04 79.17 77.71 78.69 78.55 77.40	78.83 79.97 78.58 79.23 79.56 78.27	80.63 80.84 80.74 80.87 80.39 80.09	82.50 82.87 82.97 82.97 82.62 82.38	68.22 68.51 68.69 68.53 68.26 68.06	77.96 77.89 78.65 78.09 77.43 77.00	23.00 28.00 19.50 23.50 27.00 21.00	21.50 26.50 18.00 21.00 24.50 18.50	.00 .00 .00 .01 .01	2.20 2.27 2.26 2.27 2.24 2.29	20 20 20 20 20 20 20	25 26 25 34 34 34	34 34 34 26 35 33	33 25 35 35 25 25
Avg. Std Dv 90% CI	82.27 .77 .63	78.26 .66 .54	79.07 .64 .52	80.59 .30 .25	82.72 .25 .21	68.38 .24 .19	77.84 .57 .47	23.67 3.31 2.72	21.67 3.33 2.74	.00 .01 .00	2.25 .03 .03				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	тc	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(d8)	(d8)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARLET	IAS 77.0 k	ts 1.	0Vh										
D8	83.14	79.11	80.15	81.14	83.39	68.69	77.61	28.00	25.50	.00	2.25	20	34	35	25
D 9	81.96	78.31	79.67	81.37	83.57	69.16	77.97	22.50	17.50	.01	2.39	20	25	34	35
Avg.	82.55	78.71	79.91	81.26	83,48	68.93	77,79	25.25	21.50	.00	2,32				
Std Dv	.83	.57	.34	.16	.13	.33	.25	3.89	5.66	.01	.10				
90% CI	3.73	2.53	1.51	.73	.57	1.48	1.14	17.36	25.26	.03	.44				
150 m F	LYOVER	TARGET	IAS 61.6 k	ts 0.	BVh										
D10	83.08	78.97	79,70	80.57	82.31	67.94	78.29	30.00	28.00	.01	1,99	20	25	26	34
D11	81.35	77.52	78.51	80.33	82.46	68.20	78.38	21.50	18.50	.01	2.19	20	25	26	34
Avg.	82.21	78.24	79.11	80.45	82.38	68.07	78,33	25.75	23.25	.01	2.09				
Std Dv	1.22	1.03	.84	.17	.11	.18	.06	6.01	6.72	.00	.14				
10 %06	5.46	4.58	3.75	.76	.47	.82	.28	26.83	29.99	.00	.63				
150 m f	LYOVER	TARGET	IAS 53.9 k	ts 0.	7Vh										
D12	83.51	79.29	80.33	80.28	82.48	68.29	78.59	32.00	31.50	.01	2.20	20	25	34	26
D13	81.95	78.17	79.65	80.76	82.54	68.51	79.25	26.00	22.00	.01	1.91	20	25	34	26
Avg.	82.73	78.73	79.99	80.52	82.51	68.40	78.92	29.00	26.75	.01	2.06				
Std Dv	1.10	.79	.48	.34	.04	. 16	.47	4.24	6.72	.00	.21				
90% CI	4.92	3.54	2.15	1.52	.19	.69	2.08	18.94	29.99	.00	.92				
150 m F	LYOVER	TARGET	IAS 46.2 k	ts 0.	6Vh										
D14	84.16	79.99	80.52	80.05	82.12	68.15	78.71	34.50	34.50	.01	2.07	20	25		34
D15	82.25	78.53	79.56	80.38	82.42	68.50	79.14	25.50	20.50	.01	2.04	20	25	34	33
Avg.	83.21	79.26	80.04	80.21	82.27	68.32	78.93	30.00	27.50	.01	2.05				
Std Dv	1.35	1.03	.68	.23	.21	. 25	.30	6.36	9.90	.00	.02				
90% CI	6.03	4.61	3.04	1.04	.95	1.10	1.36	28.41	44.20	.00	.09				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	2	s	IDELINE			07/	25/91					
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROA	CH TAR	GET IAS 4	0.8 kts												
B16	85.70	83.86	85.01	84.27	85.66	73.47	79.55	28.50	28.50	.06	1.33	27	24	27	23
B17	87.56	85.93	88.87	86.49	87.99	76.38	80.21	35.50	20.50	.06	1.51	27	27	27 26	28
B18	86.29	84.59	85.76	85.59	86.81	74.88	79.50	24.50	22.50	.01	1.21	22	26	27	28
B20	87.21	85.59	86.72	85. 9 4	87.02	75.75	79.90	25.00	25.00	.01	1.17	22	26	27	28
B21	86.07	84.42	85.58	84.12	85.46	74.28	78.87	27.00	27.50	.02	1.32	27	27	28	20 29
822	85.72	84.07	85.49	8 5. 58	87.05	75.71	78.66	19.00	19.50	.02	1.47	27	27		
B2 3	84.75	82.88	83.95	82.75	83.91	71.84	78.33	32.50	31.50	.02	1.17	22	23	28 26	26 28
Avg.	86.19	84.48	85.91	84,96	86.27	74.62	79.29	27.43	35 00		4				
Std Dv	.96	1.04	1.55	1.30	1.36	1.57	.69	5.44	25.00	.03	1.31				
90% CI	.70	.76	1.14	.96	1.00	1.15	.50	4.00	4.43 3.25	.02 .02	.14 .10				
TAKEOF	F TARGE	T IAS 40.	.8 kts												
C24	84.81	81.04	82.44	82.69	84.83	70 51									
C25	84.66	80.47	81.41	82.48	85.17	70.54	79.56	31.00	31.00	.00	2.14	23	23	33	34
C26	84.72	81.10	81.77	82.51	84.81	70.44	78.98	25.00	23.50	.02	2.68	23	23	33	34
C28	84.98	81.67	82.35	82.51	84.65	70.16	79.10	29.00	23.50	.02	2.30 2.13	23	23 23	34 33	33 34
C29	84.59	81.19	82.28	81.20	83.26	71.29	79.74	25.50	23.50	.02	2.13	23	23	33	34
C30	84.53	81.02	81.34	81.38	83.94	70.04	78.46	33.50	34.00	.02	2.06	23	23	33	34
C31	84.33	80.50	81.71	81.73	83.87	70.20	78.91	26.00	26.00	.02	2.63	23	23	33	34
	UV.33	00.50	01.71	01.73	63.67	69.54	78.52	33.00	32.50	.02	2.12	23	23	33	34
Avg.	84.66	81.00	81.90	82.07	84.36	70.32	79.04	29.00	27.71	.02	2.29				
Std Dv	.21	.41	.46	.62	.68	.54	.48	3.59	4.64	.01	.26				
90% CI	. 15	.30	.33	.45	.50	.39	.35	2.64	3.41	.01	.19				
150 m F	LYOVER	TARGET I	AS 69.3 kt	s 0.9	Vh										
A1	81.31	78.95	78.74	78.30	79.82	67.28	77 27	20.00	•• ••						
A2	82.70	79.68	79.64	79.57	81.55	67.15	77.27	28.00	28.00	.05	1.47	23	24	35	25
A3	80.95	78.48	78.83	78.41	79.88	68.04	76.04	35.50	28.00	.05	1.99	23	23	34	33
A4	82.39	79.38	79.27	79.88	82.04	67.51	77.97	24.00	26.00	.05	1.57	23	33	32	34
A6	82.63	79.55	79.42	79.78	81.95		75.88 76.45	30.00	26.50	.05	2.16	23	23	34	33
A7	80.35	78.20	78.73	78.08	79.46	67.25 68.03	75.65 76.78	33.00 23.50	28.50 25.50	.05 .00	2.17 1.39	23 20	23 34	34 33	33 26
Avg.	81.72	79.04	79.11	70.00	00.70							ξU	34	7.)	20
Std Dv	.99	.60	.39	79.00	80.78	67.54	76.60	29.00	27.08	.04	1.79				
90% CI	.81	.50		.82	1.19	.40	.90	4.81	1.24	.02	.36				
, , , , , , ,	.01	. 50	.32	.68	.97	.33	.74	3.95	1.02	.02	.29				

NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICROPHONE NO. 2			SI	DELINE	- 150 m WE	ST			07/2	5/91			
ΕV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	SND	MAX	NOY	BNDS
**	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 77.0 k	ts 1.0Vh											
D8 D9	82.89 81.66	80.02 79.37	80.49 79.42	80.51 79.71	82.47 81.26	69.03 69.42	75.67 77.99	28.00 20.00	25.00 22.00	.04 .04	1.92 1.56	23 23	23 24	33 32	34 27
Avg. Std Dv 90% CI	82.28 .87 3.88	79.69 .46 2.05	79.96 .76 3.38	80.11 .57 2.53	81.87 .86 3.82	69.22 .28 1.23	76.83 1.64 7.32	24.00 5.66 25.26	23.50 2.12 9.47	.04 .00 .00	1.74 .25 1.14				
150 m F	FLYOVER	TARGET	IAS 61.6 k	ts 0.6	BVh										
D10 D11	82.34 79.88	79.25 77.46	79.31 77.81	78.71 77.75	80.78 78.96	66.64 67.30	75.11 77.13	37.00 22.50	32.00 25.00	.05 .05	2.03 1.45	23 23	23 34	34 33	
Avg. Std Dv 90% CI	81.11 1.74 7.77	78.35 1.27 5.65	78.56 1.06 4.74	78.23 .68 3.03	79.87 1.29 5.75	66.97 .47 2.08	76.12 1.43 6.38	29.75 10.25 45.78	28.50 4.95 22.10	.05 .00 .00	1.74 .41 1.83				
150 m l	FLYOVER	TARGET	IAS 53.9 k	ts 0.	7Vh										
D12 D13	82.40 80.07	79.53 77.68	80.46 77.84	78.43 77.37	80.64 78.46	66.23 66.96	75.28 77.15	53.00 24.50	37.50 26.50	.05 .00	2.21 1.61	23 23	23 33	34 34	33 23
Avg. Std Dv 90% CI	81.24 1.65 7.36	78.60 1.31 5.84	79.15 1.85 8.27	77.90 .75 3.35	79.55 1.54 6.88	66.60 .52 2.30	76.21 1.32 5.90	38.75 20.15 89.97	32.00 7.78 34.73	.03 .04 .16	1.91 .42 1.89				
150 m l	FLYOVER	TARGET	IAS 46.2 k	ts 0.	6Vh										
D14 D15	82.61 80.38	79.29 77.97	80.32 78.16	77.59 77.36	79.89 79.28	65.62 66.78	74.93 77.04	59.00 27.50	46.00 25.00	.00 .05	2.29 1.97	23 23	23 34	34 33	33 32
Avg. Std Dv 90% CI	81.49 1.58 7.04	78.63 .93 4.17	79.24 1.52 6.80	77.47 .16 .73	79.58 .43 1.93	66.20 .82 3.66	75.99 1.49 6.66	43.25 22.27 99.45	35.50 14.85 66.30	.03 .04 .16	2.13 .23 1.01				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	3	SIDELINE - 150 m EAST						07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 4	0.8 kts												
816 817 818 820 821 822 823	86.64 86.17 85.73 86.21 85.29 84.76 85.94	84.67 83.92 83.55 83.57 82.93 82.62 83.94	84.50 84.02 83.86 83.41 83.39 83.52 84.31	83.59 83.83 83.54 82.77 82.87 82.20 82.58	85.09 84.78 84.50 84.28 83.68 83.14 83.73	72.33 72.33 71.69 71.30 71.49 70.68 72.55	78.68 78.83 78.69 77.72 77.35 77.19 77.81	33.00 29.50 33.00 32.50 31.00 38.50 30.00	32.50 29.00 31.00 39.00 31.00 36.50 34.50	.05 .01 .05 .05 .01 .00	1.50 .94 1.09 1.72 .80 .93 1.43	27 26 18 27 26 26 23	24 23 23 24 23 23 28		24 26 27 28
Avg. Std Dv 90% CI	85.82 .63 .46	83.60 .68 .50	83.86 .44 .33	83.05 .60 .44	84.17 .69 .50	71.77 .67 .50	78.04 .68 .50	32.50 3.00 2.20	33.36 3.51 2.58	.02 .02 .02	1.20 .35 .26				
TAKEOFF	TARGE	T IAS 40	.8 kts												
C24 C25 C26 C28 C29 C30 C31	86.13 85.42 86.22 86.20 86.24 86.05 85.34	82.12 81.47 82.41 82.77 82.58 82.45 81.56	82.59 82.01 83.55 83.39 82.66 82.13 81.72	82.60 82.00 82.34 82.76 82.79 81.89 80.99	84.87 84.59 84.48 84.79 85.23 84.52 83.31	70.83 70.18 70.59 71.28 70.69 70.16 69.35	76.14 75.67 75.85 76.13 76.69 76.24 75.25	30.00 30.50 39.50 32.50 31.50 31.50 34.50	30.50 29.00 38.00 31.50 30.00 30.50 33.50	.00 .00 .00 .00 .00	2.27 2.59 2.39 2.09 2.47 2.63 2.26	23 23 23 23 23 23 23 20	33 34 34 34 33 33 33	32 33 33 32 34	32 35 34
Avg. Std Dv 90% CI	85.94 .39 .29	82.19 .50 .37	82.58 .69 .51	82.20 .64 .47	84.54 .60 .44	70.44 .62 .45	76.00 .46 .34	32.86 3.28 2.41	31.86 3.05 2.24	.01 .02 .02	2.39 .19 .14				
150 m F	LYOVER	TARGET	IAS 69 kts	0.9Vh											
A1 A2 A3 A4 A6 A7	81.88 82.73 81.14 82.54 82.64 82.57	79.06 80.14 78.44 79.94 80.06 79.83	79.27 80.48 79.05 80.22 80.56 80.35	79.34 79.21 79.56 79.28 78.99 79.97	81.13 80.94 81.10 80.73 80.53 81.61	68.21 68.18 68.54 68.18 68.52 69.38	75.49 77.37 74.82 77.50 77.49 75.64	25.50 34.00 22.50 32.00 32.00 25.00	25.50 33.00 23.00 31.50 32.50 26.50	.02 .02 .02 .02 .02	1.79 1.73 1.54 1.45 1.56 1.96	19 23 23 23 23 23 23	24 34 34 34 34 24	23 33 33 33 33 23	34 32 35 35 32 34
Avg. Std Dv 90% CI	82.25 .62 .51	79.58 .68 .56	79.99 .66 .54	79.39 .34 .28	81.01 .37 .31	68.50 .46 .38	76.39 1.20 .99	28.50 4.73 3.89	28.67 4.20 3.46	.02 .00 .00	1.67 .19 .16				

NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(8)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-F-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	3	SIDELINE - 150 m EAST						07/2	5/91			
EV	EPNL	SEL	\$EL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(d8)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 77.0 k	ts 1.0	OVh										
D8 D9	83.11 82.43	80.69 79.71	81.09 79.71	80.42 80.94	82.07 82.61	69.71 69.40	78.13 75.51	27.50 21.50	28.50 21.50	.02 .02	1.65 1.67	20 23		33 34	32 33
Avg. Std Dv 90% CI	82.77 .48 2.15	80.20 .69 3.09	80.40 .98 4.35	80.68 .37 1.64	82.34 .38 1.70	69.56 .22 .98	76.82 1.85 8.27	24.50 4.24 18.94	25.00 4.95 22.10	.02 .00 .00	1.66 .01 .06				
150 m F	LYOVER	TARGET	IAS 61.6 k	ts 0.8	BVh										
D10 D11	82.09 80.72	79.37 77.83	79.47 78.21	78.31 78.25	79.84 79.76	67.57 67.60	77.18 73.74	31.00 23.00	33.50 25.50	.02 .05	1.53 1.46	23 23	34 34	33 33	
Avg. Std Dv 90% CI	81.40 .97 4.33	78.60 1.09 4.86	78.84 .90 4.00	78.28 .04 .19	79.80 .06 .25	67.58 .02 .09	75.46 2.43 10.86	27.00 5.66 25.26	29.50 5.66 25.26	.04 .02 .09	1.50 .05 .22				
150 m F	LYOVER	TARGET	IAS 53.9 k	ts 0.	7Vh										
D12 D13	82.49 81.26	79.78 78.50	80.70 79.29	78.48 78.54	80.19 79.91	67.38 67.75	77.04 73.90	43.00 28.50	43.50 29.50	.00 .00	1.71 1.53	23 23	34 34	33 33	32 35
Avg. Std Dv 90% CI	81.88 .87 3.88	79.14 .91 4.04	80.00 1.00 4.47	78.51 .04 .19	80.05 .20 .88	67.57 .26 1.17	75.47 2.22 9.91	35.75 10.25 45.78	36.50 9.90 44.20	.00 .00 .00	1.62 .13 .57				
150 m F	LYOVER	TARGET	IAS 46.2 k	ts 0.	6Vh										
D14 D15	82.83 80.89	79.85 77.82	81.01 78.68	78.32 77.65	80.42 79.36	67.30 66.78	76.80 73.77	47.00 31.00	49.00 31.50	.00 .00	2.10 1.93	23 20	34 34	33 33	32 32
Avg. Std Dv 90% CI	81.86 1.37 6.12	78.83 1.44 6.41	79.85 1.65 7.35	77.99 .47 2.12	79.89 .75 3.35	67.04 .37 1.64	75.29 2.14 9.57	39.00 11.31 50.51	40.25 12.37 55.25	.00 .00 .00	2.01 .12 .54				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTE	ER			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(ď8)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 4	0.8 kts												
B16	91.11	88.96	89.05	91.15	92.24	80.30	85.79	15.00	16.00	.01	1.19	20	25	27	26
B17	91.61	89.84	90.08	91.18	92.41	80.66	86.29	17.50	15.50	.01	1.27	27	25	27	26
B19	91.98	90.14	90.94	92.86	93.78	81.78	87.14	16.50	17.00	.20	.92	20	25 26	26	28
B20	89.72	87.39	88.03	89.19	89.95	79.14	83.44	15.50	19.50	.07	.69	23	26	28	27
B21	90.92	89.06	90.31	89.16	90.08	78.93	84.73	27.50	27.00	.07	1.05	27	27	25	26
B24	92.09	90.41	90.57	92.90	94.13	81.97	87.63	14.50	14.00	.07	1.22	20	24	25	26
Avg.	91.24	89.30	89.83	91.07	92.10	80.46	85.84	17.75	18.17	.07	1.06				
Std Dv	.88	1.10	1.09	1.66	1.78	1.28	1.56	4.90	4.70	.07	.22				
90% C1	.72	.90	.90	1.36	1.46	1.05	1.28	4.03	3.86	.06	.18				
TAKEOFF	TARGE	T 1AS 40	.8 kts												
C25	87.93	83.91	84.52	86.31	88.50	74.31	81.47	21.00	20.50	.00	2.19	20	25	32	34
C26	86.13	82.24	82.75	83.49	85.76	71.69	79.48	25.50	22.00	.00	2.27	20	25	33	32
C27	87.77	83.92	84.68	83.96	86.24	72.07	80.37	36.50	35.00	.00	2.67	20	25	34	32 32
C28	87.31	83.54	84.09	84.57	86.54	72.48	80.21	29.00	28.00	.00	2.07	20	25	33 33	32
C29	86.75	83.07	84.26	83.94	86.02	72.15	79.26	32.50	32.00	.00	2.08	20	25	33	32
C30	87.39	83.60	84.69	85.55	87.61	73.47	81.04	26.50	23.50	.00	2.06	20	25	34	33
Avg.	87.21	83.38	84.17	84.64	86.78	72.69	80.31	28.50	26.83	.00	2.22				
Std Dv	.67	.64	.74	1.09	1.06	1.00	.86	5.47	5.82	.00	.23				
90% CI	.55	.53	.60	.89	.87	.82	.71	4.50	4.79	.00	.19				
150 m F	LYOVER	TARGET	IAS 72.0 k	ts 0.9	PVh										
A2	84.11	80.25	81.51	82.79	84.85	70.37	79.80	26.00	21.00	.00	2.07	20	25	26	34
A3	83.79	80.13	82.15	83.48	85.54	71.09	79.84	25.50	18.50	.00	2.06	20	25	33 26 34	34
A4	84.02	80.21	81.39	83.20	85.32	70.69	79.70	23.50	17.00	.00	2.13	20	25 25	26	34
A5	83.81	79.88	80.64	83.52	85.56	70.64	79.74	20.00	16.50	.00	2.04	20	25	34	35
A6	83.90	80.33	82.19	82.46	84.39	69.95	79.02	33.50	19.00	.00	2.19	20	25	34 34	26
A7	83.67	80.12	82.71	82.91	84.98	70.54	79.27	33.00	25.50	.00	2.08	20	25	34	33
Avg.	83.88	80.15	81.76	83.06	85.11	70.55	79.56	26.92	19.58	.00	2.10				
Std Dv	.16	.16	.73	.42	.45	.38	.34	5.34	3.31	.00	.06				
90% CI	.13	. 13	.60	.34	.37	.31	.28	4.39	2.72	.00	.05				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	OPHONE NO.	1		CENTERLI	NE - CENTE	ER			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0	ΟVh										
D8 D9	83.81 83.38	79.96 79.54	81.73 81.53	83.13 82.75	85.03 84.86	70.76 70.65	79.57 78.82	25.00 24.50	23.50 22.00	.00 .00	2.01 2.15	20 20	25 25		33 33
Avg. Std Dv 90% CI	83.60 .30 1.36	79.75 .30 1.33	81.63 .14 .62	82.94 .27 1.20	84.94 .12 .54	70.71 .08 .35	79.19 .53 2.37	24.75 .35 1.58	22.75 1.06 4.74	.00 .00 .00	2.08 .10 .44				
			IAS 64.0 k				2.51	1130	7017		•••				
D10 D11	83.37 84.02	79.89 80.38	82.47 83.04	82.03 82.21	84.07 84.17	69.68 70.14	78.93 80.47	38.00 39.00	21.50 33.00	.00 .02	2.04 1.95	20 20	25 25		26 34
Avg. Std Dv 90% CI	83.69 .46 2.05	80.13 .35 1.55	82.75 .41 1.81	82.12 .13 .57	84.12 .07 .32	69.91 .33 1.45	79.70 1.09 4.86	38.50 .71 3.16	27.25 8.13 36.31	.01 .01 .06	2.00 .06 .28				
150 m F	LYOVER	TARGET	IAS 56.0 k	ts 0.7	∕Vh										
D12 D13	84.81 83.21	81.09 79.37	82.45 81.12	82.65 81.69	84.67 83.71	70.62 69.22	81.47 79.89	30.50 31.00	22.00 22.00	.01 .01	2.01 2.17	20 20	26 25		34 34
Avg. Std Dv 90% CI	84.01 1.13 5.05	80.23 1.22 5.43	81.79 .94 4.20	82.17 .68 3.03	84.19 .68 3.03	69.92 .99 4.42	80.68 1.12 4.99	30.75 .35 1.58	22.00 .00 .00	.01 .90 .00	2.09 .11 .51				
150 m F	LYOVER	TARGET	IAS 48.0 k	ts 0.6	SVh										
D14 D15	84.76 84.22	80.76 80.26	81.64 81.53	81.91 82.14	83.92 84.19	69.74 70.31	80.39 80.70	31.00 26.50	28.00 25.50	.01 .01	2.04 2.07	20 20	25 25		34 34
Avg. Std Dv 90% CI	84.49 .38 1.70	80.51 .35 1.58	81.59 .08 .35	82.03 .16 .73	84.06 .19 .85	70.02 .40 1.80	80.54 .22 .98	28.75 3.18 14.21	26.75 1.77 7.89	.01 .00 .00	2.05 .02 .09				

 ⁻ NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	2	s	IDELINE	- 150 m W	EST			07/2	25/91	
EV	EPNL	SEL	\$EL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX NOY BNDS
	(d8)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#) (#) (#)
APPROA	CH TAR	GET IAS 4	0.8 kts								(,	`",	(") (") (")
816	84.59	82.55	84.19	83.31	84.37	72.22	78.70	31.50	30.50	0/	1 00		22 24 22
817	85.86	84.27	85.90	86.50	87.83	76.36	79.56	18.00	19.50	.04	1.02	23	23 26 28
B19	84.82	82.98	84.62	84.08	85.05	73.40	79.42	26.50	26.50	.04	1.33	27	27 26 28
B20	85.48	83.72	85.67	85.08	86.82	75.06	77.97	23.00		.00	.97	23	26 23 28 27 29 28
B21	84.67	83.24	84.27	82.77	83.66	72.73	78.53	28.50	24.50	.00	1.73	27	
B24	86.36	84.80	84.67	84.61	85.63	74.67			30.50	.00	.89	23	26 28 27
			54.01	04.01	65.65	74.07	79.63	20.00	22.00	.00	1.12	23	24 27 23
Avg.	85.30	83.59	84.89	84.39	85.56	74.07	70 07	0/ 50					
Std Dv	.72	.84	.72	1.33			78.97	24.58	25.58	-01	1.18		
90% CI	.59	.69	.60	1.10	1.55	1.57	.67	5.17	4.48	.02	.31		
70 01	,	.07	.00	1.10	1.28	1.29	.55	4.25	3.68	.02	.26		
TAKEOF	TARGE	T IAS 40.	.8 kts										
C25	84.65	94 /0	04.44										
C26	84.16	81.40	81.61	81.80	83.68	70.31	79.06	27.00	26.00	.00	1.88	23	23 34 33
C27		80.78	81.89	81.31	83.60	69.59	78.66	34.00	31.00	.00	2.41	23	23 33 34
	84.37	81.40	82.82	82.45	84.57	70.33	79.31	35.50	22.00	.00	2.12	23	23 33 34
C28	84.05	80.47	80.72	81.09	83.12	69.66	78.99	25.50	25.00	.00	2.03	23	23 33 34 23 33 34
C29	83.39	79.79	80.80	80.26	82.67	68.13	77.76	37.00	27.50	.00	2.49	23	23 33 26
C30	83.83	80.52	81.26	81.15	83.04	69.29	79.01	31.50	30.50	.00	1.89	23	23 33 32
Avg.	84.08	80.73	81.52	81.34	83.45	69.55	78.80	74 70					
Std Dv	.44	.62	.78	.74	.67			31.75	27.00	.00	2.14		
90% CI	.36	.51	.65	.61		.81	.55	4.66	3.42	.00	. 26		
70. C.	.30		.00	.01	.55	.67	.45	3.83	2.81	.00	.21		
150 m F	LYOVER	TARGET I	AS 72.0 kt	s 0.9	Vh								
A2	82.59	79.67	79.89	80.04	92 44	40 Tt	 0						
A3	81.62	79.13	80.04		82.11	68.75	75.87	26.00	22.50	.00	2.07	23	23 33 32
A4	82.71	79.77		81.26	82.48	70.75	78.15	17.00	20.00	.00	1.22	23	33 26 34
A5	81.80		80.36	80.04	82.22	68.53	75.55	30.50	29.50	.00	2.18	23	23 33 32 32 33 34
A6		79.22	79.80	79.43	80.56	69.29	77.55	22.50	26.50	-61	1.12	23	32 33 34
AD A7	82.68	79.61	80.38	80.60	82.69	69.16	75.56	26.50	22.50	.01	2.07	23	23 33 32
A7	81.73	78.94	79.54	79.78	81.18	69.03	78.22	22.50	23.50	.01	1.39	23	26 34 33
Avg.	82.19	79.39	80.00	80.19	81.87	69.25	76.82	24.17	24.08	00	1 (0		
Std Dv	.52	.34	.33	.65	.83	.78	1.29	4.60	3.38	.00	1.68		
90% CI	.43	.28	.27	.53	.68	.65	1.06	3.78		.01	.48		
				.,,	.00	.03	1.00	3.75	2.78	.00	.40		

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICROPHONE NO. 2			SI	DELINE	- 150 m WE	ST			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 1.0)Vh										
D8 D9	83.55 81.85	80.52 79.36	80.86 80.49	82.46 79.62	83.86 80.91	71.20 68.95	76.64 78.19	18.50 28.50	19.00 28.00	.07 .04	1.32 1.25	23 23			35 32
Avg. Std Dv 90% CI	82.70 1.20 5.37	79.94 .82 3.66	80.67 .26 1.18	81.04 2.01 8.97	82.39 2.09 9.31	70.07 1.59 7.10	77.42 1.10 4.89	23.50 7.07 31.57	23.50 6.36 28.41	.05 .02 .09	1.29 .05 .22				
150 m F	LYOVER	TARGET	IAS 64.0 k	ts 0.8	3Vh										
D10 D11	82.40 82.09	79.23 79.37	79.58 79.52	80.28 78.73	82.63 80.42	68.12 67.76	76.50 78.51	28.00 30.00	24.50 29.50	.04 .04	2.36 1.72	23 23	23 33	24 34	33 32
Avg. Std Dv 90% CI	82.24 .22 .98	79.30 .10 .44	79.55 .04 .19	79.51 1.10 4.89	81.52 1.56 6.98	67.94 .25 1.14	77.51 1.42 6.35	29.00 1.41 6.31	27.00 3.54 15.78	.04 .00 .00	2.04 .45 2.02				
150 m F	LYOVER	TARGET	IAS 56.0 k	ts 0.	7Vh										
D12 D13	82.84 81.30	79.84 78.65	80.44 79.96	80.14 78.71	81.91 80.07	68.14 68.06	76.20 78.15	34.00 31.00	29.50 31.00	.04 .04	1.77 1.51	23 23	23 33		33 34
Avg. Std Dv 90% CI	82.07 1.09 4.86	79.24 .84 3.76	80.20 .34 1.52	79.43 1.01 4.51	80.99 1.30 5.81	68.10 .06 .25	77.18 1.38 6.16	32.50 2.12 9.47	30.25 1.06 4.74	.04 .00 .00	1.64 .18 .82				
150 m l	FLYOVER	TARGET	IAS 48.0 k	ts 0.	6Vh										
D14 D15	82.76 81.40	79.40 78.58	79.59 79.95	79.11 79.57	81.27 81.24	66.47 68.41	75.79 78.57	41.00 28.50	36.50 28.50	.09 .09	2.07 1.67	23 23	23 34	34 33	33 32
Avg. Std Dv 90% CI	82.08 .96 4.29	78.99 .58 2.59	79.77 .25 1.14	79.34 .33 1.45	81.25 .02 .09	67.44 1.37 6.12	77.18 1.97 8.78	34.75 8.84 39.46	32.50 5.66 25.26	.09 .00 .00	1.87 .28 1.26				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICROPHONE NO. 3			s	IDELINE	- 150 m E	AST			07/2	25/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROA	CH TAR	GET IAS 4	0.8 kts						-			•,	,	*,	,
816	84.85	82.35	83.36	83.37	84.53	71.60	78.01	30.00	70.00		4				
817	84.59	82.38	82.66	82.06	83.00	70.83	77.28	30.50	30.00	.03	1.53	27	23		27
B19	85.52	83.79	84.51	82.04	83.49	71.67	77.47	38.50	30.00	.03	.93	23 27	23 23	24	26
B20	84.00	81.88	83.44	81.72	82.67	70.60	76.48		38.00	.03	1.45	27	23	24	27
B21	85.33	83.58	83.49	82.11	83.93	71.19		38.50	38.00	.00	.95 1.82	23 27	23	24	27
B24	85.55	83.21	84.49	83.47	84.57		77.56	34.00	32.00	.00	1.82	27	24	23	27
	00.00	03.E1	07.77	03.47	04.57	71.88	78.29	36.50	39.50	.03	2.00	27	23	27	24
Avg.	84.97	82.86	83.66	82.46	83.70	74 30		-, ,-							
Std Dv	.61	.77	.72	.76		71.29	77.52	34.67	34.58	.02	1.45				
90% CI	.50	.63	.59	.62	.79	.51	.63	3.80	4.39	.02	.44				
	.,,	.05	.37	.02	.65	.42	.52	3.13	3.61	.01	.36				
TAKEOF	F TARGE	T IAS 40	.8 kts												
C25	0F FO														
	85.59	82.33	83.00	83.28	85.20	71.46	76.57	28.50	27.50	.04	1.88	23	33	34	32
C26	85.17	81.73	81.88	81.89	83.76	70.42	75.51	28.00	30.50	.04	1.87	23	33	34	12
C27	85.66	82.27	83.46	82.84	85.17	70.97	75.58	35.50	32.00	.00	1.87	23 23	33 33	34	32 32
C28	85.18	81.81	83.03	83.34	85.25	71.65	76.21	27.50	27.00	.04	1.91	20	33	22	34
C29	85.16	81. <i>7</i> 5	82.48	80.69	82.79	69.26	74.48	42.00	41.50	.04	2.10	23	33	32 32	34
C30	85.45	82.03	82.49	81.52	82.80	70.25	75.45	33.50	37.00	.02	1.36	23	33	32	34 34
Avg.	85.37	81.99	82.72	82.26	84.16	70.67	75.63	32.50	32.58	A7	4 04				
Std Dv	.23	.27	.55	1.07	1.20	.88	.72	5.68	5.67	.03	1.91				
90% CI	.19	.22	.46	.88	.99	.73	.59	4.68		.02	.32				
					.,,	./3	. 39	4.00	4.66	.01	.26				
150 m I	LYOVER	TARGET I	AS 72.0 kt	s 0.9	Vh										
A2 A3	82.30	80.12	80.51	80.55	82.05	70.10	78,27	22.00	23.50	00	4 5 4	24	7.		. ,
A3	82.35	79.83	80.38	81.03	83.02	69.59	75.69	24.00	19.00	.00 .00	1.51 1.99	26	26	?3	34
A 4	82.33	80.07	80.72	79.79	81.24	69.50	77.86	26.50				23	25 26	34	32
A5	82.67	79.76	80.34	80.70	82.08	70.03	77.98	21.50	31.00	-00	1.49	26	26	33	34
A6	82.47	80.14	80.62	79.77	81.16	69.48			28.50	.04	1.33	23	34	33	32
A7	82.24	79.35	79.56	80.19	82.03		77.86	26.00	27.00	.04	2.00	23	35	27	23
				JU. 17	02.03	69.45	76.02	20.50	21.50	.04	1.90	23	23	34	32
Avg.	82.39	79.88	80.36	80.34	81.93	69.69	76.95	23.42	25.08	.02	1,70				
Std Dv	. 16	.30	.42	.51	.68	.29	1.17	2.48	4.53						
90% CI	. 13	. 25	.34	.42	.56	.24	.96	2.04	4.33 3.73	.02	.29				
							. 70	C. U4	3.13	.02	. 24				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-G-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		MICR	OPHONE NO.	3	SI	DELINE	- 150 m E/	NST			07/2	5/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(d8)	(d8)	(#)	(#)	(#)	(#)
150 m f	LYOVER	TARGET	IAS 80.0 k	ts 1.0)Vh										
D8 D9	82.78 82.87	80.48 80.18		81.90 81.39	83.48 83.13	71.63 70.40	79.30 76.16	21.00 20.00	22.00 20.00	.04	1.58 1.73	26 23		34 34	
Avg. Std Dv 90% CI	82.82 .06 .28	80.33 .21 .95	81.12 1.02 4.55	81.65 .36 1.61	83.31 .25 1.10	71.01 .87 3.88	77.73 2.22 9.91	20.50 .71 3.16	21.00 1.41 6.31	.04 .00 .00	1.65 .11 .47				
150 m f	LYOVER	TARGET	IAS 64.0 k		3Vh										
D10 D11	81.99 82.34	79.68 79.27		78.87 79.83	80.25 81.66	68.77 68.70	77.57 75.57	30.50 28.00	34.50 28.50	.04	1.38 1.73	23 23	34 23	26 33	
Avg. Std Dv 90% CI	82.16 .25 1.10	79.47 .29 1.29	80.38 .31 1.39	79.35 .68 3.03	80.96 1.00 4.45	68.74 .05 .22	76.57 1.41 6.31	29.25 1.77 7.89	31.50 4.24 18.94	.06 .04 .16	1.56 .25 1.10				
150 m F	LYOVER	TARGET	IAS 56.0 k	ts 0.7	'V h										
D12 D13	82.55 81.88	79.94 78.92		80.04 78.37	81.66 80.65	68.98 67.69	79.13 74.93	36.50 36.00	39.00 35.00	.03	1.59 2.53	23 23	34 25	26 34	33 32
Avg. Std Dv 90% CI	82.21 .47 2.12	79.43 .72 3.22		79.21 1.18 5.27	81.15 .71 3.19	68.34 .91 4.07	77.03 2.97 13.26	36.25 .35 1.58	37.00 2.83 12.63	.03 .00 .00	2.06 .66 2.97				
150 m f	LYOVER	TARGET	IAS 48.0 k	ts 0.6	öVh										
D14 D15	82.38 82.05	79.86 78.89		78.31 78.11	80.15 80.45	67.39 67.42	78.06 75.06	44.50 38.00	44.00 31.50	.03 .03	1.84 2.53	23 23	34 23		33 34
Avg. Std Dv 90% CI	82.21 .23 1.04	79.38 .69 3.06	.46	78.21 .14 .63	80.30 .21 .95	67.40 .02 .09	76.56 2.12 9.47	41.25 4.60 20.52	37.75 8.84 39.46	.03 .00 .00	2.18 .49 2.18				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL * ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-H-1-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

EV EPNL SEL SEL(s)** PNLM PNLTM ALM OASPLM DUR(A) DUR(P) BNDSHR TC BND MAX NOY BNDS (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)			MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	3/91			
(dB) (dB) <th< th=""><th></th><th>EPNL</th><th>SEL</th><th>SEL(s)**</th><th>PNLm</th><th>PNLTm</th><th></th><th>OASPLm</th><th></th><th>DUR(P)</th><th>BNDSHR</th><th>TC</th><th>BND</th><th>MAX</th><th>NOY</th><th>BNDS</th></th<>		EPNL	SEL	SEL(s)**	PNLm	PNLTm		OASPLm		DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
B17 91.86 89.76 90.07 94.39 95.76 84.05 88.34 8.00 9.00 .10 1.37 20 25 28 26 B18 89.25 86.10 86.77 89.60 91.27 78.32 83.96 14.00 14.00 .10 1.71 20 27 25 23 819 92.37 90.16 90.10 93.83 94.67 82.32 88.78 12.00 11.50 .10 .96 20 26 27 22 820 93.02 91.04 91.24 93.73 94.98 82.64 87.98 14.50 13.50 .10 1.25 20 26 27 25 821 93.19 91.41 92.97 94.14 95.39 83.68 87.89 17.00 17.00 .03 1.22 20 28 25 27 822 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25		(dB)	(dB)	(dB)	(dB)	(dB)		(dB)		(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
B18 89.25 86.10 86.77 89.60 91.27 78.32 83.96 14.00 14.00 .10 1.71 20 27 25 23 819 92.37 90.16 90.10 93.83 94.67 82.32 88.78 12.00 11.50 .10 .96 20 26 27 22 820 93.02 91.04 91.24 93.73 94.98 82.64 87.98 14.50 13.50 .10 1.25 20 26 27 25 821 93.19 91.41 92.97 94.14 95.39 83.68 87.89 17.00 17.00 .03 1.22 20 28 25 27 822 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25	APPROAC	H TARG	ET IAS 5	0.0 kts												
819 92.37 90.16 90.10 93.83 94.67 82.32 88.78 12.00 11.50 .10 .96 20 26 27 22 820 93.02 91.04 91.24 93.73 94.98 82.64 87.98 14.50 13.50 .10 1.25 20 26 27 25 821 93.19 91.41 92.97 94.14 95.39 83.68 87.89 17.00 17.00 .03 1.22 20 28 25 27 822 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25															28	26
820 93.02 91.04 91.24 93.73 94.98 82.64 87.98 14.50 13.50 .10 1.25 20 26 27 25 821 93.19 91.41 92.97 94.14 95.39 83.68 87.89 17.00 17.00 .03 1.22 20 28 25 27 822 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25																
B21 93.19 91.41 92.97 94.14 95.39 83.68 87.89 17.00 17.00 .03 1.22 20 28 25 27 B22 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25																
822 93.75 91.98 92.76 95.03 96.00 84.47 89.00 13.50 13.50 .02 .96 20 26 27 25																
Av. 02 27 00 08 00 45 07 /5 07 49 92 59 97 44 17 17 17 09 09 1 25	B22	93.75	91.98	92.76	95.03	96.00	84.47	89.00	13.50	13.50	.02	.96	20	26	27	25
AV9. Y2.24 YU.UO YU.QO Y3.40 Y4.00 02.30 07.00 13.17 13.00 .UO 1.20	Avg.	92.24	90.08	90.65	93.45	94.68	82.58	87.66	13.17	13.08	.08	1.25				
Std Dv 1.61 2.11 2.28 1.94 1.74 2.24 1.86 3.01 2.67 .04 .28				2.28	1.94	1.74		1.86	3.01	2.67	.04	.28				
90% CI 1.32 1.74 1.87 1.60 1.43 1.85 1.53 2.48 2.20 .03 .23	90% CI	1.32	1.74	1.87	1.60	1.43	1.85	1.53	2.48	2.20	.03	.23				
TAKEOFF TARGET IAS 50.0 kts	TAKEOFF	TARGE	T IAS 50	.0 kts												
C29 84.28 80.40 81.67 84.59 86.48 71.56 81.11 20.50 14.00 .02 1.88 20 25 26 34				81.67		86.48	71.56	81.11								
c30 83.59 79.73 80.92 81.87 83.77 69.09 78.71 30.50 24.50 .02 1.89 20 25 26 34														25	26	34
C31 83.83 80.09 80.94 82.38 84.43 69.80 78.64 26.00 20.00 .02 2.06 20 25 26 34			80.09	80.94		84.43	69.80	78.64		20.00				25		
c32 84.34 80.43 81.40 83.09 85.11 70.34 79.48 25.50 21.00 .02 2.64 20 25 26 34	C32	84.34	80.43	81.40	83.09	85.11	70.34	79.48	25.50	21.00	.02		20			
c33 84.75 81.38 83.12 83.64 85.54 70.75 79.59 34.50 18.50 .06 1.84 20 25 26 34																
C34 85.34 81.31 82.13 84.52 86.59 71.82 79.83 21.50 19.00 .06 2.06 20 25 26 34	C34	85.34	81.31	82.13	84.52	86.59	71.82	79.83	21.50	19.00	.06	2.06	20	25	26	34
Avg. 84.35 80.56 81.70 83.35 85.32 70.56 79.56 26.42 19.50 .03 2.06	Ava.	84.35	80.56	81.70	83.35	85.32	70.56	79.56	26.42	19.50	.03	2.06				
Std Dv .63 .66 .83 1.11 1.12 1.04 .90 5.33 3.44 .02 .30																
90% CI .52 .54 .69 .92 .92 .86 .74 4.39 2.83 .02 .25																
150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh	150 m F	LYOVER	TARGET	IAS 93.6 ki	ts 0.9	PVh										
A1 83.68 79.62 80.46 84.20 86.08 71.17 79.32 17.00 13.50 .00 1.88 20 25 26 34	A1	83.68	79.62	80.46	84.20	86.08	71.17	79.32	17.00	13.50	.00	1.88	20	25	26	34
A2 84.62 80.44 81.68 84.59 86.86 71.47 79.36 21.00 15.50 .00 2.56 20 25 34 26	A2	84.62	80.44	81.68	84.59	86.86	71.47	79.36	21.00	15.50	.00	2.56	20	25	34	26
A3 82.88 78.72 79.48 84.51 86.24 71.52 79.14 12.50 11.50 .00 1.73 20 25 26 34		82.88	78.72	79.48	84.51	86.24		79.14	12.50	11.50	.00	1.73			26	34
A5 84.11 80.10 81.40 84.47 86.53 71.40 79.50 20.00 14.00 .00 2.06 20 25 26 34	A5	84.11	80.10	81.40	84.47	86.53	71.40	79.50	20.00	14.00	.00	2.06	20	25	26	34
A6 83.05 78.57 79.59 84.87 86.74 71.63 79.63 12.50 10.50 .05 1.82 20 25 26 34		83.05	78.57		84.87	86.74	71.63	79.63	12.50	10.50	.05	1.82	20			
A7 83.65 79.43 80.48 84.00 85.77 70.82 79.30 18.50 15.50 .05 1.78 20 25 26 34		83.65	79.43	80.48	84.00	85.77	70.82	79.30	18.50	15.50	.05	1.78	20	25	26	34
Avg. 83.66 79.48 80.52 84.44 86.37 71.33 79.38 16.92 13.42 .02 1.97	Αvα.	83.66	79 48	80.52	84.44	86.37	71 33	79.3R	16.92	13.42	. 02	1.97				
Std Dv .65 .74 .90 .30 .42 .30 .17 3.68 2.06 .03 .31																
90% CI .53 .61 .74 .25 .34 .24 .14 3.03 1.69 .02 .26																

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-H-1-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENT	R			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m l	FLYOVER	TARGET	IAS 104.0 I	kts 1.	.0Vh										
D8 D9	84.50 86.11	80.29 82.08	81.29 83.49	86.01 86.83	88.16 88.66	73.00 73.83	83.07 83.25	13.50 18.50	11.50 16.00	.07 .10	2.15 1.73	20 20	25 25		34 35
Avg. Std Dv 90% CI	85.31 1.14 5.08	81.18 1.27 5.65	82.39 1.55 6.94	86.42 .58 2.59	88.41 .35 1.58	73,42 ,59 2,62	83.16 .13 .57	16.00 3.54 15.78	13.75 3.18 14.21	.09 .02 .09	1.94 .30 1.33				
150 m l	FLYOVER	TARGET	IAS 83.2 kt	ts 0.8	3Vh										
D10 D11	82.88 85.40	78.34 80.98	78.96 81.08	83.40 84.35	86.13 86.48	70.21 71.19	79.64 80.43	15.00 19.50	12.00 17.00	.10 .10	2.72 2.14	20 20	25 25	26 26	34 34
Avg. Std Dv 90% CI	84.14 1.78 7.96	79.66 1.87 8.33	80.02 1.50 6.69	83.88 .67 3.00	86.31 .25 1.10	70.70 .69 3.09	80.04 .56 2.49	17.25 3.18 14.21	14.50 3.54 15.78	.10 .00 .00	2.43 .41 1.83				
150 m F	FLYOVER	TARGET	IAS 72.8 kt	ts 0.7	∕Vh										
D12 D13	83.19 85.31	78.69 80.70	79.41 81.64	83.64 83.93	85.64 85.91	70.66 70.76	79.48 80.86	15.00 24.50	13.00 21.50	.10 .10	2.01 1.98	20 20	25 25		
Avg. Std Dv 90% CI	84.25 1.50 6.69	79.69 1.42 6.35	80.53 1.58 7.04	83.79 .21 .92	85.78 .19 .85	70.71 .07 .32	80.17 .98 4.36	19.75 6.72 29.99	17.25 6.01 26.83	.10 .00 .00	2.00 .02 .09				
150 m i	LYOVER	TARGET	IAS 62.4 kt	ts 0.6	óVh										
D14 D15	84.23 85.60	80.69 80.97	81.09 82.24	84.18 84.44	86.19 86.49	71.31 71.73	81.06 81.04	19.00 22.50	14.50 22.00	.10 .00	2.01 2.06	20 20	25 25		
Avg. Std Dv 90% CI	84.92 .97 4.33	80.83 .20 .88	81.66 .82 3.64	84.31 .18 .82	86.34 .21 .95	71.52 .30 1.33	81.05 .01 .06	20.75 2.47 11.05	18.25 5.30 23.68	.05 .07 .32	2.03 .04 .16				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE A-H-2-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	2	SI	DELINE	- 150 m Wi	ST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	CH TARG	ET IAS 5	0.0 kts												
B17	86.13	84.32	85.27	87.11	88.80	76.98	80.62	13.50	14.00	.04	1.83	27	27	30	
B18	85.52	83.36	84.75	86.03	87.21	74.75	80.44	20.00	19.00	.04	1.33	27	24	27	25
B19	88.51	86.85	87.22	88.09	88.97	77.80	83.20	17.50	17.50	.04	1.32	27	27	26	33
B20	86.94	85.41	87.30	88.26	89.18	77.52	83.38	19.00	18.00	.05	.88	26	26	24	
B21	87.85	86.09	87.61	87.24	88.22	76.47	81.61	26.00	26.50	.05	.97	22	26	28	
B22	86.92	85.72	86.10	85.44	86.38	75.31	81.33	24.00	24.50	.04	.90	23	23	28	26
Avg.	86.98	85.29	86.38	87.03	88.13	76.47	81.76	20.00	19.92	.04	1.21				
Std Dv	1.09	1.26	1.18	1.11	1.11	1.22	1.26	4.51	4.68	.01	.37				
90% CI	.90	1.04	.97	.92	.91	1.00	1.04	3.71	3.85	.00	.30				
, , , , , , ,	• • • •		• • • • • • • • • • • • • • • • • • • •	• • • •	• • • •			2,	2.03						
TAKEOFF	TARGE	T IAS 50	.0 kts												
C29	81.49	79.01	80.09	79.59	81.30	68.33	80.54	30.00	26.00	.04	1.72	28	26	28	34
C30	81.24	78.49	80.44	79.42	80.80	68.07	79.01	34.50	34.00	.04	1.38	23	23	26	25
C31	81.67	79.22	79.88	79.39	80.80	68.19	79.14	29.50	27.50	.04	1.41	23	26	23	34
C32	81.56	79.14	79.85	79.44	81.10	68.31	79.45	28.50	27.50	.04	1.66	23	23	26	34
C33	81.63	78.66	79.29	79.27	80.57	68.23	79.77	25.50	36.50	.04	1.30	28	26	23	28
C34	82.09	79.64	79.90	79.88	81.20	68.76	79.26	26.00	23.50	.13	1.19	20	32	33	34
Avg.	81.61	79.03	79.91	79.50	80.96	68.32	79.53	29.00	29.17	.05	1.44				
Std Dv	.28	.41	.38	.21	.28	.24	.56	3.26	5.00	.04	.21				
90% CI	.23	.34	.31	.18	.23	.20	.46	2.68	4.11	.03	.17				
150 m F	LYOVER	TARGET	IAS 93.6 kt	ts 0.9	7Vh										
44	02.75	90.47	70.04	07 12	0/ 3/	74 70	77 /5	47 00	4/ 00	01	1.13	27	77	7/	32
A1 A2	82.75 85.09	80.16 82.48	79.91 82.72	83.12 82.78	84.24 84.37	71.78 71.26	77.45 77.61	13.00 28.00	14.00 24.50	.01 .01	1.97	23 23	33 32	34 33	
	82.39	79.73	80.72	83.63	84.99	72.27	82.12	14.00	14.00	.01	1.37	26	26	34	33
A3 A5	84.94	82.44	82.58	82.65	84.59	71.79	77.40	24.00	23.00	.01	2.03	23	25	33	32
A6	82.69	80.15	80.33	83.30	84.51	72.04	81.47	13.50	13.00	.01	1.22	26	34	33	32
AO A7	84.71	81.94	81.84	82.03	83.80	70.96	77.08	24.50	24.50	.28	1.51	23	23	33	33
Δ/	04.71	01.74	01.04	02.03	63.00	10.70	77.00	24.30	24.30	. 20	1.31	23	23	36	"
Avg.	83.76	81.15	81.35	82.92	84.42	71.68	78.86	19.50	18.83	.05	1.54				
Std Dv	1.27	1.27	1.20	.56	.40	.49	2.29	6.72	5.70	.11	.38				
90% CI	1.05	1.04	.98	.46	.33	.40	1.89	5.53	4.69	.09	.31				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-H-2-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	2	SI	DELINE	- 150 m Wi	ST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
150 m	FLYOVER	TARGET	IAS 104.0	kts 1.	.0vh										
D8 D9	83.84 85.43	81.29 83.18		84.70 83.54	86.24 84.90	73.50 73.08	84.06 80.46	14.00 21.50	12.50 22.00	.28 .28	1.53 1.36	19 23	32 33		34 34
Avg. Std Dv 90% CI	84.63 1.12 5.02	82.24 1.34 5.97	82.67 1.02 4.56	84.12 .82 3.66	85.57 .95 4.23	73.29 .30 1.33	82.26 2.55 11.37	17.75 5.30 23.68	17.25 6.72 29.99	.28 .00 .00	1.44 .12 .54				
150 m	FLYOVER	TARGET	IAS 83.2 k	ts 0.8	BVh										
D10 D11	81.24 85.14	78.38 82.04	78.72 82.23	80.06 82.55	81.23 84.66	69.06 70.26	79.01 77.51	18.50 31.50	22.50 30.00	.01 .00	1.27 2.12	23 23	26 23	23 32	34 25
Avg. Std Dv 90% CI	83.19 2.76 12.31	80.21 2.59 11.55	80.48 2.48 11.09	81.31 1.76 7.86	82.95 2.43 10.83	69.66 .85 3.79	78.26 1.06 4.74	25.00 9.19 41.04	26.25 5.30 23.68	.00 .01 .03	1.69 .60 2.68				
150 m l	FLYOVER	TARGET	IAS 72.8 k	ts 0.7	' Vh										
D12 D13	81.12 83.78	78.07 80.93	79.19 80.87	81.20 80.16	82.39 81.68	69.41 68.97	79.11 75.45	19.00 31.00	19.50 30.50	.03	1.17 2.15	23 23	26 23	33 33	34 32
Avg. Std Dv 90% CI	82.45 1.88 8.40	79.50 2.02 9.03	80.03 1.19 5.32	80.68 .74 3.28	82.04 .50 2.24	69.19 .31 1.39	77.28 2.59 11.55	25.00 8.49 37.88	25.00 7.78 34.73	.03 .00 .00	1.66 .69 3.09				
150 m (FLYOVER	TARGET	IAS 62.4 k	ts 0.6	SVh										
D14 D15	81.23 83.24	78.42 80.32	79.33 82.20	80.46 80.25	81.56 81.36	68.54 68.83	79.12 75.88	24.00 43.50	22.50 43.00	.03	1.13 1.07	23 23	34 32		35 33
Avg. Std Dv 90% CI	82.24 1.42 6.35	79.37 1.34 6.00	80.77 2.03 9.07	80.35 .15 .66	81.46 .14 .63	68.68 .21 .92	77.50 2.29 10.23	33.75 13.79 61.56	32.75 14.50 64.72	.04 .01 .03	1.10 .04 .19				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-H-3-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E	AST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(d8)	(d8)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 5	0.0 kts												
B17 B18 B19 B20 B21 B22	83.93 82.83 84.58 86.29 85.57 85.55	80.91 80.19 81.72 83.84 83.27 83.28	82.49 81.56 83.13 84.15 83.38 83.82	84.00 81.24 83.06 83.68 82.59 82.42	85.45 83.19 85.01 85.06 84.20 84.85	71.88 70.10 71.59 72.93 71.48 71.85	77.92 75.27 77.62 78.03 77.29 77.40	23.00 28.00 28.50 26.50 31.00 31.50	22.50 27.50 28.00 26.00 30.00 27.50	.03 .00 .03 .03 .03	1.42 1.95 1.98 1.45 2.03 2.43	27 27 27 27 27 27	24 27 25 24 24 24	35 24 27 27	23
Avg. Std Dv 90% CI	84.79 1.27 1.04	82.20 1.48 1.22	83.09 .94 .78	82.83 .99 .81	84.63 .81 .67	71.64 .91 .75	77.25 1.01 .83	28.08 3.12 2.57	26.92 2.52 2.07	.02 .02 .01	1.88 .38 .32				
TAKEOFF	TARGE	T IAS 50	.0 kts												
C29 C30 C31 C32 C33 C34	82.87 82.34 82.59 82.87 82.17 82.72	79.64 79.25 79.48 79.58 79.17 79.61	80.27 78.85 79.52 79.87 81.41 79.48	78.74 77.85 78.30 79.59 78.92 78.75	80.58 80.05 80.24 81.58 80.63 81.34	67.05 65.79 66.51 67.97 67.94 67.18	74.75 73.61 73.80 74.43 73.56 73.77	42.00 40.50 40.00 31.00 44.50 34.00	37.50 35.50 37.00 29.00 44.00 32.50	.01 .01 .01 .01 .01	1.84 2.57 2.22 1.99 1.71 2.59	23 23 23 23 23 23 23	23 25 25 23 23 25	26 23 33 33 26 34	33 34 26
Avg. Std Dv 90% CI	82.59 .29 .24	79.45 .20 .16	79.90 .88 .72	78.69 .59 .48	80.74 .60 .50	67.07 .84 .69	73.99 .49 .40	38.67 5.12 4.21	35.92 5.07 4.17	.01 .00 .00	2.15 .37 .31				
150 m F	LYOVER	TARGET	IAS 93.6 k	ts 0.9	9Vh										
A1 A2 A3 A5 A6 A7	82.50 83.82 82.75 83.45 82.58 83.24	80.14 81.11 80.48 80.99 80.22 80.37	80.04 81.37 80.55 81.60 80.59 80.87	81.53 82.57 82.79 82.74 81.23 81.62	82.88 84.11 84.19 83.93 82.35 82.95	70.75 71.26 71.26 71.82 70.28 70.46	77.31 81.53 77.34 80.70 76.67 80.26	17.00 20.50 17.00 19.00 21.50 22.00	17.50 20.00 17.00 19.00 21.00 26.50	.00 .00 .00 .09 .03 .03	1.36 1.54 1.40 1.19 1.09 1.33	23 26 23 26 23 26 23	24 26 24 33 26 26	32 34 33 32 32 32	
Avg. Std Dv 90% CI	83.06 .53 .44	80.55 .41 .33	80.84 .57 .47	82.08 .70 .57	83.40 .77 .64	70.97 .58 .48	78.97 2.09 1.72	19.50 2.19 1.80	20.17 3.44 2.83	.03 .04 .03	1.32 .16 .13				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-H-3-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	3/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	CASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
150 m l	FLYOVER	TARGET	IAS 104.0 I	kts 1.	.0Vh										
D8 D9	83.69 84.90	81.71 82.58	82.01 83.37	83.84 85.43	85.02 86.83	72.98 74.48	80.31 83.93	16.00 15.50	15.50 16.00	.21 .21	.97 1.40	19 19	32 32		33 34
Avg. Std Dv 90% CI	84.29 .86 3.82	82.15 .62 2.75	82.69 .96 4.30	84.63 1.12 5.02	85.93 1.28 5.71	73.73 1.06 4.74	82.12 2.56 11.43	15.75 .35 1.58	15.75 .35 1.58	.21 .00 .00	1.18 .30 1.36				
150 m l	FLYOVER	TARGET	IAS 83.2 k	ts 0.8	3Vh										
D10 D11	81.68 82.82	79.06 80.36	79.40 80.98	79.90 80.92	81.20 82.17	68.43 69.68	74.98 79.16	25.00 27.00	24.50 22.50	.21 .21	1.30 1.25	23 26	32 32		33 33
Avg. Std Dv 90% CI	82.25 .81 3.60	79.71 .92 4.10	80.19 1.12 5.00	80.41 .72 3.22	81.68 .69 3.06	69.06 .88 3.95	77.07 2.96 13.20	26.00 1.41 6.31	23.50 1.41 6.31	.21 .00 .00	1.27 .04 .16				
150 m (FLYOVER	TARGET	IAS 72.8 kt	ts 0.7	7Vh										
D12 D13	81.48 82.29	78.82 80.02	79.07 81.14	79.16 80.36	80.59 81.69	68.10 69.03	74.52 79.49	25.00 32.50	23.00 25.00	.21 .21	1.48 1.32	23 26	32 26		
Avg. Std Dv 90% CI	81.89 .57 2.56	79.42 .85 3.79	80.10 1.46 6.53	79.76 .85 3.79	81.14 .78 3.47	68.57 .66 2.94	77.00 3.51 15.69	28.75 5.30 23.68	24.00 1.41 6.31	.21 .00 .00	1.40 .11 .51				
150 m l	FLYOVER	TARGET	IAS 62.4 k	ts 0.6	5Vh										
D14 D15	81.02 82.28	78.33 79.52	78.26 80.10	78.65 79.81	79.80 80.98	67.47 68.13	74.57 78.51	24.00 31.50	24.50 29.00	.21 .21	1.93 1.17	23 26	25 26		33 33
Avg. Std Dv 90% CI	81.65 .89 3.98	78.93 .84 3.76	79.18 1.30 5.81	79.23 .82 3.66	80.39 .83 3.73	67.80 .47 2.08	76.54 2.79 12.44	27.75 5.30 23.68	26.75 3.18 14.21	.21 .00 .00	1.55 .54 2.40				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-I-1-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(Sec)	(Sec)	(d8)	(dB)	(#)	(#)	(#)	(#)
APPROAC	CH TARG	ET IAS 5	0.0 kts												
816 817 818 819 820 821	93.86 91.20 92.11 93.55 92.79 93.30	92.29 89.22 90.25 91.83 91.46 91.69	92.87 89.90 90.82 92.74 92.75 92.25	94.95 93.24 94.61 95.17 92.57 93.58	96.00 94.23 95.52 96.11 93.73 94.19	84.74 82.91 84.29 84.61 83.21 83.22	88.80 87.54 88.73 88.89 86.04 87.84	13.00 10.00 9.00 13.00 18.00 16.00	13.50 12.00 10.00 12.50 18.50 16.50	.00 .11 .07 .00 .05	1.05 .99 .84 .96 1.12 .60	28 22 22 22 22 29 24	28 26 25 25 26 28	25 28 28 28 29 25	29 27 26 27
Avg. Std Dv 90% CI	92.80 1.00 .82	91.12 1.16 .95	91.89 1.24 1.02	94.02 1.04 .86	94.96 1.04 .85	83.83 .81 .66	87.97 1.10 .90	13.17 3.43 2.82	13.83 3.13 2.57	.04 .05 .04	.93 .19 .15				
TAKEOF	TARGE	T IAS 50	.0 kts												
C22 C23 C24 C25 C26 C27	80.91 80.10 80.76 80.69 81.04 80.10	77.93 77.23 77.80 77.77 78.04 77.27	77.45 77.64 77.58 77.73 77.89 77.31	79.50 79.56 79.72 79.31 80.19 79.20	80.45 80.68 80.63 80.12 81.01 80.16	67.24 67.23 67.37 67.03 68.00 67.00	76.71 76.56 76.79 76.51 76.98 75.92	21.00 22.00 21.00 23.50 19.50 21.50	21.50 19.50 21.50 24.50 20.00 19.50	.00 .00 .02 .11 .01	1.05 1.12 1.00 .70 .82 1.00	33 33 37 33 24 33	33 33 26 26 26 26 33	26 34 35 33 33 26	35 34 34 34
Avg. Std Dv 90% CI	80.60 .41 .33	77.67 .34 .28	77.60 .20 .17	79.58 .35 .29	80.51 .34 .28	67.31 .36 .30	76.58 .36 .30	21.42 1.32 1.09	21.08 1.91 1.57	.03 .04 .03	.95 .16 .13				
150 m F	LYOVER	TARGET	IAS 93.6 kt	ts 0.9	γVh										
A1 A2 A3 A4 A5 A6	81.56 81.86 81.04 81.92 81.05 81.86	78.04 78.50 77.68 78.49 77.50 78.39	77.77 78.47 77.71 78.51 77.71 78.81	82.50 82.59 82.57 82.49 81.93 82.56	83.29 83.51 83.38 83.38 83.04 83.38	69.99 69.87 69.75 69.76 69.26 69.78	78.94 79.48 78.75 79.43 78.22 79.71	12.00 14.50 12.50 15.00 14.00 16.00	12.50 14.00 11.50 15.00 13.00 15.50	.00 .00 .00 .00 .00	.79 .92 .81 .88 1.23 .82	22 22 22 24 29 22	34 34 34 34 35 34	35 35 35 35 34 35	26 36 36 26 36 33
Avg. Std Dv 90% CI	81.55 .41 .34	78.10 .43 .36	78.16 .49 .40	82.44 .25 .21	83.33 .16 .13	69.74 .25 .21	79.09 .56 .46	14.00 1.52 1.25	13.58 1.53 1.26	.00 .00 .00	.91 .16 .14				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-I-1-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		MICRO	OPHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 104.0	kts 1.	.0Vh										
D7 D8	81.18 81.23	77.96 77.99	78.53 78.11	83.31 82.50	83.91 83.09	70.93 70.15	81.29 80.76	11.50 12.50	11.50 13.50	.08 .08	.52 .59	21 24	34 34		33 33
Avg. Std Dv 90% CI	81.21 .04 .16	77.97 .02 .09	78.32 .30 1.32	82.90 .57 2.56	83.50 .58 2.59	70.54 .55 2.46	81.03 .37 1.67	12.00 .71 3.16	12.50 1.41 6.31	.00 .00	.55 .05 .22				
150 m F	LYOVER	TARGET	IAS 83.2 k	ts 0.8	3Vh										
D9 D10	80.28 81.00	76.67 77.41	76.52 77.76	81.10 80.93	82.68 82.20	68.23 68.22	78.64 78.79	13.50 18.00	12.00 16.50	.08 .08	1.63 1.58	29 29	34 34	35 35	36 29
Avg. Std Dv 90% CI	80.64 .51 2.27	77.04 .52 2.34	77.14 .88 3.91	81.01 .12 .54	82.44 .34 1.52	68.23 .01 .03	78.71 .11 .47	15.75 3.18 14.21	14.25 3.18 14.21	.08 .00 .00	1.61 .04 .16				
150 m F	LYOVER	TARGET	IAS 72.8 k	ts 0.7	7Vh										
D11 D12	80.22 81.31	76.53 77.78	77.18 78.04	80.44 81.31	81.68 82.07	67.52 68.50	78.95 79.62	18.50 18.00	17.50 17.50	.00 .80	1.32 .92	29 22	35 34	34 35	36 33
Avg. Std Dv 90% CI	80.76 .77 3.44	77.15 .88 3.95	77.61 .61 2.72	80.88 .62 2.75	81.88 .28 1.23	68.01 .69 3.09	79.29 .47 2.12	18.25 .35 1.58	17.50 .00 .00	.04 .06 .25	1.12 .28 1.26				
150 m F	LYOVER	TARGET	IAS 62.4 k	ts 0.6	SVh										
D13 D14	80.49 82.14	76.71 78.79	77.01 79.63	80.12 81.38	81.07 82.28	67.12 68.57	79.45 80.33	19.50 25.50	20.00 23.00	.11 .11	.84 .90	22 24	35 34		
Avg. Std Dv 90% CI	81.32 1.17 5.21	77.75 1.47 6.57	78.32 1.85 8.26	80.75 .89 3.98	81.68 .86 3.82	67.85 1.03 4.58	79.89 .62 2.78	22.50 4.24 18.94	21.50 2.12 9.47	.11 .00 .00	.87 .04 .19				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

of Transportation
Volpe Center
Acoustics Facility

TABLE A-I-2-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	2	SI	DELINE	- 150 m Wi	EST			07/2	4/91			
E۷	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX N	OY B	NDS
••	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#) (#) (#	#)						
APPROAC	H TARG	ET IAS 5	0.0 kts												
816 B17 B18 B19 B20 B21	88.21 85.03 88.23 87.88 85.50 88.76	86.96 83.63 86.82 86.57 84.26 87.27	87.75 83.98 87.33 87.19 85.61 87.46	87.33 84.02 87.59 87.61 84.24 88.08	88.26 84.90 88.88 88.82 84.91 89.33	76.96 73.28 77.67 77.19 74.64 77.57	82.00 79.90 81.93 82.07 79.92 82.21	24.00 23.50 18.50 20.00 25.00 19.50	23.00 22.00 19.50 19.50 25.00 19.00	.00 .00 .00 .00 .00	.93 .92 1.54 1.21 .91 1.25	28 21 19 22 19 22	26 27 26 28	27 2 26 3 28 2 27 2	27 28 33 27 26 28
Avg. Std Dv 90% CI	87.27 1.58 1.30	85.92 1.56 1.28	86.55 1.47 1.21	86.48 1.84 1.51	87.52 2.05 1.69	76.22 1.82 1.50	81.34 1.11 .91	21.75 2.73 2.25	21.33 2.40 1.98	.00 .00 .00	1,13 .25 .21				
TAKEOFF	TARGE	T IAS 50	.0 kts												
C22 C23 C24 C25 C26 C27	79.02 78.88 79.32 79.34 79.60 79.03	76.70 76.48 76.63 76.74 77.17 76.68	77.22 76.87 76.93 77.17 77.54 76.96	76.89 76.67 77.72 77.54 78.43 77.29	78.27 78.45 79.52 78.59 79.99 79.02	65.53 65.41 66.23 66.20 67.33 65.82	78.57 78.50 78.74 78.63 78.84 77.96	29.50 28.00 23.50 25.00 21.00 26.00	24.50 23.00 22.50 25.50 21.00 25.00	.01 .09 .01 .01 .01	1.38 1.88 1.80 1.05 1.56 1.93	19 19 19 19 19	26 : 26 : 34 : 33 :	34 2 34 3 26 3 34 2	33 29 33 33 26 32
Avg. Std Dv 90% CI	79.20 .27 .22	76.73 .23 .19	77.12 .25 .21	77.42 .63 .52	78.97 .67 .55	66.09 .70 .57	78.54 .31 .25	25.50 3.07 2.52	23.58 1.72 1.41	.02 .03 .03	1.60 .34 .28				
150 m F	LYOVER	TARGET	IAS 93.6 k	ts 0.9	PVh										
A1 A2 A3 A4 A5 A6	78.80 79.21 78.64 78.86 78.32 78.85	75.89 77.06 76.03 76.68 75.52 76.66	75.82 77.42 76.29 77.12 75.74 77.28	78.92 78.25 79.01 78.67 78.52 77.97	80.20 79.52 80.19 80.04 79.76 79.48	67.37 67.21 67.40 67.70 66.85 66.77	80.35 75.42 80.57 74.96 79.52 74.54	14.00 21.00 15.50 17.50 15.50 22.50	13.50 21.50 14.00 18.00 15.50 21.00	.09 .01 .01 .01 .07 .03	1.19 1.28 1.39 1.38 1.17 1.47	19 19 19 19 19	34 34 34 26	33 3 26 3 26 3 33 3	34 32 33 33 34 32
Avg. Std Dv 90% CI	.29 .24	.58 .48	.75 .62	.40	.32 .27	.35	2.87 2.36	17.67 3.39 2.79	3.47 2.86	.04	.12				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-1-2-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		MICROPHONE NO. 2			SI	DELINE	- 150 m W	EST			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 104.0	kts 1.	.0Vh										
D7 D8	80.55 79.74	77.85 77.80	78.37 78.15	81.87 79.38	83.51 80.71	70.08 68.37	83.33 78.91	13.50 19.00	12.00 19.00	.03	1.64 1.33	19 19			32 26
Avg. Std Dv 90% CI	80.15 .57 2.56	77.82 .04 .16	78.26 .16 .71	80.63 1.76 7.86	82.11 1.98 8.84	69.23 1.21 5.40	81.12 3.13 13.95	16.25 3.89 17.36	15.50 4.95 22.10	.03 .00 .00	1.49 .22 .98				
			IAS 83.2 k			2					•••				
D9 D10	77.85 78.59	75.05 76.11	75.49 76.69	77.83 77.05	79.07 78.30	66.07 65.99	78.67 73.35	17.50 23.50	16.50 22.50	.10 .10	1.14 1.34	26 19	33 26		34 33
Avg. Std Dv 90% CI	78.22 .52 2.34	75.58 .75 3.35	76.09 .85 3.79	77.44 .55 2.46	78.68 .54 2.43	66.03 .06 .25	76.01 3.76 16.80	20.50 4.24 18.94	19.50 4.24 18.94	.10 .00 .00	1.24 .14 .63				
150 m F	LYOVER	TARGET	IAS 72.8 k	ts 0.7	T Vh										
D11 D12	78.01 78.66	75.28 75.98	75.22 76.53	76.72 76.20	77.89 77.41	65.01 64.84	78.90 73.33	21.00 29.50	21.00 29.50	.00 .00	1.26 1.22	19 19			26 35
Avg. Std Dv 90% CI	78.34 .46 2.05	75.63 .49 2.21	75.87 .92 4.12	76.46 .37 1.64	77.65 .34 1.52	64.93 .12 .54	76.12 3.94 17.58	25.25 6.01 26.83	25.25 6.01 26.83	.00 .00 .00	1.24 .03 .13				
150 m F	LYOVER	TARGET	IAS 62.4 kt	ts 0. <i>6</i>	öVh										
D13 D14	78.13 78.89	74.93 76.40	75.48 77.25	76.55 76.54	77.88 77.82	64.42 64.82	78.83 72.94	25.50 35.00	25.00 31.50	.00 .00	1.33 1.28	19 19	34 34		26 33
Avg. Std Dv 90% CI	78.51 .54 2.40	75.67 1.04 4.64	76.36 1.26 5.60	76.54 .01 .03	77.85 .04 .19	64.62 .28 1.26	75.89 4.16 18.59	30.25 6.72 29.99	28.25 4.60 20.52	.00 .00 .00	1.31 .04 .16				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-I-3-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		MICRO	PHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	4/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TAR	GET IAS 5	0.0 kts												
B16	85.16	82.98	84.66	81.78	83.46	71.39	77.29	42.50	36.00	.00	2.30	27	24	27	23
817	84.88	82.74	83.95	82.57	84.45	72.26	77.59	29.50	29.50	.00	1.88	27	24 24	27	23
B18	82.65	80.60	83.38	82.15	82.84	70.06	76.53	43.00 47.00	28.00 42.50	.00	.75 1.72	24 27	24	26 27	27 25
B19	84.93 85.54	83.19 83.92	84.07 84.53	82.54 81.90	83.43 83.73	70.36 71.36	76.97 77.67	41.50	34.50	.00 .00	1.83	27	24	27	23
B20 B21	85.07	83.24	84.07	82.82	83.93	70.90	77.43	41.50	29.50	.06	1.06	27	23	27	
951	05.01	03.24	04.07	02.02	03.73	70.90	,,,,,	41.50	27.30	.00	1.00			٠,	LU
Avg.	84.71	82.78	84.11	82.29	83.64	71.06	77.25	40.83	33.33	.01	1.59				
Std Dv	1.03	1.14	.46	.41	.54	.79	.43	5.91	5.48	.02	.57				
90% CI	.85	.94	.37	.34	.45	.65	.35	4.86	4.51	.02	.47				
TAKEOFF	TARGE	T IAS 50	.0 kts												
CSS	79.28	76.90	77.37	76.02	78.07	65.13	73.58	33.50	32.00	.01	2.13	19	32	34	33
C23	78.80	76.31	77.20	75.52	76.61	65.03	72.74	33.00	34.00	.01	1.81	19	34	26	35
C24	78.56	76.00	77.10	76.31	77.29	64.86	73.23	33.50	32.50	.05	.93	26	35	26	33
C25	78.47	75.97	76.47	75.12	76.36	63.63	73.00	38.50	39.00	.05	2.05	19	34	32	35
C26	79.46	76.92	77.48	75.92	77.14	64.58	73.47	39.00	39.00	.05	1.89	19	34	35	33
C27	78.82	76.33	76.89	75.54	77.27	64.34	72.95	36.00	32.50	.05	1.83	19	34	35	33
Avg.	78.90	76.40	77.09	75.74	77.12	64.59	73.16	35.58	34.83	.04	1.77				
Std Dv	.39	.42	.36	.43	.60	.56	.32	2.67	3.30	.02	.43				
90% CI	.32	.34	.30	.35	.49	-46	.27	2.20	2.71	.02	.36				
150 m F	LYOVER	TARGET	IAS 93.6 k	ts 0.9	PVh										
A1	78.83	76.26	76.17	78.35	80.10	67.14	74.79	16.00	16.00	.00	1.78	19	34	32	33
A2	79.30	76.55	76.97	79.42	80.61	67.55	80.70	17,50	17.00	.04	1.15	26	26	33	34
A3	78.72	76.60	76.92	79.56	81.04	68.47	75.60	14.00	13.00	.04	1.47	19	26	34	33
A4	79.42	76.67	76.88	79.72	80.89	67.99	80.03	15.50	15.00	.03	1.13	26	33	26	34
A5	77.73	75.68	76.77	77.95	79.38	66.66	74.07	20.50	16.50	.03	1.51	19	34	33	32
A6	79.03	76.23	76.29	79.26	80.41	67.69	79.75	14.50	14.50	.03	1.15	26	26	33	34
Avg.	78.84	76.33	76.67	79.04	80.41	67.58	77.49	16.33	15.33	.03	1.36				
Std Dv	,61	.37	.35	.72	.60	.63	2.98	2.38	1.47	.01	.27				
90% CI	.50	.30	.28	.59	.50	.52	2.45	1.96	1.21	.01	.22				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-1-3-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

	MICROPHONE NO. 3			sı	DELINE	- 150 m E/	IST			07/2	4/91				
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLM	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 104.0	kts 1.	.OVh										
D7 D8	79.07 80.65	77.13 77.95	77.63 78.22	79.96 81.31	81.43 82.83	69.18 69.77	79.14 83.24	14.00 14.00	14.00 14.00	.03 .03	1.47 1.52	19 19	34 26	33 34	32 33
Avg. Std Dv 90% CI	79.86 1.12 4.99	77.54 .58 2.59	77.93 .42 1.86	80.63 .95 4.26	82.13 .99 4.42	69.47 .42 1.86	81.19 2.90 12.94	14.00 .00 .00	14.00 .00 .00	.03 .00 .00	1.50 .04 .16				
150 m f	LYOVER	TARGET	IAS 83.2 k	ts 0.8	BVh										
D9 D10	78.30 79.32	75.50 76.05	76.40 76.62	76.90 78.30	78.53 79.59	65.61 66.41	73.77 78.46	24.00 21.00	22.00 21.50	.00	1.71 1.32	19 37	34 33	33 34	35 26
Avg. Std Dv 90% CI	78.81 .72 3.22	75.78 .39 1.74	76.51 .16 .69	77.60 .99 4.42	79.06 .75 3.35	66.01 .57 2.53	76.11 3.32 14.81	22.50 2.12 9.47	21.75 .35 1.58	.01 .02 .09	1.52 .28 1.23				
150 m F	LYOVER	TARGET	IAS 72.8 k	ts 0.7	V h										
D11 D12	78.65 79.56	75.15 76.11	75.76 77.11	76.36 78.55	78.10 79.54	64.79 66.41	73.09 79.03	25.00 23.50	25.00 28.50	.10 .10	1.63 1.12	37 26	26 26	37 34	34 33
Avg. Std Dv 90% CI	79.10 .64 2.87	75.63 .68 3.03	76.43 .96 4.27	77.46 1.55 6.91	78.82 1.02 4.55	65.60 1.15 5.11	76.06 4.20 18.75	24.25 1.06 4.74	26.75 2.47 11.05	.10 .00 .00	1.38 .36 1.61				
150 m F	LYOVER	TARGET	IAS 62.4 k	ts 0.6	öVh										
D13 D14	77.86 79.44	75.23 76.40	75.63 77.32	75.56 78.00	76.94 79.25	63.52 66.10	72.99 78.89	32.50 26.50	29.50 27.50	.10 .03	1.43 1.22	19 26	34 26	35 33	33 34
Avg. Std Dv 90% CI	78.65 1.12 4.99	75.82 .83 3.69	76.48 1.20 5.35	76.78 1.73 7.70	78.10 1.63 7.29	64.81 1.82 8.15	75.94 4.17 18.63	29.50 4.24 18.94	28.50 1.41 6.31	.06 .05 .22	1.33 .15 .66				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-1-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

	MICROPHONE NO.					CENTERLI	NE - CENT	ER			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 5	0.4 kts												
BP9	87.17	85.12	85.20	89.50	89.50	76.60	85.94	14.50	13.00 13.00	-00	.00	24	21 22	24 21	22
BP10 BP11	89.66 87.35	87.25 84.44	88.10 84.86	91.40 89.01	92.24 89.87	79.35 75.83	87.74 85.45	15.00 16.00	13.50	.07 .00	.83 .89	24 21	21	24	24 22
BP12	88.97	86.62	87.68	91.44	92.23	79.90	87.16	12.00	11.50	.00	.79	20	25	21	26
BP12	89.43	87.15	87.76	91.26	92.12	79.80	86.81	12.50	12.50	.00	.86	20	24	26	
BP14	89.25	86.72	87.00	91.04	91.88	79.04	86.71	12.50	12.00	.03	.81	21	21	26	25
DF 14	09.23	00.72	67.00	71.04	71.00	79.04	30.71	12.50	12.00	.03	.01	21	21	20	23
Avg.	88.64	86.22	86.77	90.61	91.31	78.42	86.64	13.75	12.58	.02	.70				
Std Dv	1.09	1.16	1.40	1.07	1.27	1.75	.83	1.64	.74	.03	.34				
90% CI	.90	.95	1.15	.88	1.04	1.44	.68	1.35	.61	.02	.28				
TAKEOFF	TARGE	T IAS 50	.4 kts												
CP22	86.82	83.68	84.06	86.81	87.94	74.52	80.31	18.00	16.50	.00	1,13	20	32	35	33
CP23	86.64	83.71	84.68	86.64	87.99	74.07	79.88	23.00	17.00	.00	1.34	20	32	33	35
CP24	87.23	83.99	84.61	86.69	88.05	74.50	80.11	20.50	20.00	.00	1.36	20	32	33	25
CP25	86.64	83.58	84.31	85.67	86.92	73.34	79.62	25.00	22.50	.00	1,29	20	33	32	34
CP26	86.58	83.47	84.18	85.72	86.85	73.39	79.58	24.00	23.00	.03	1.10	20	32	25	33
CP27	87.01	83.79	85.15	86.80	88.00	74.64	80.15	22.50	22.00	.07	1.13	20	25	32	33
Avg.	86.82	83.70	84.50	86.39	87.63	74.08	79.94	22.17	20.17	.02	1.23				
Std Dv	.26	. 18	-40	.54	.57	.58	.30	2.54	2.84	.03	.12				
90% CI	.21	. 15	.33	.45	.47	.48	.25	2.09	2.34	.02	. 10				
150 m F	LYOVER	TARGET	IAS 90.0 ki	ts 0.9	Vh										
AP42	82.68	80.25	81.09	82.97	84.09	70.78	77.74	21.50	15.00	.07	1.13	20	32	33	26
AP43	83.70	80.98	82.11	83.84	84.98	71.60	78.29	22.50	17.50	.07	1.14	20	32	33	34
AP44	82.81	79.84	80.73	84.93	85.88	72.77	79. <i>9</i> 3	12.50	11.00	.07	.95	20	25	33	24
AP45	84.26	81.28	82.01	84.56	85.50	72.23	78.99	19.00	18.50	.07	1.07	20	32	33	35
AP46	82.48	79.98	81.07	82.95	84.11	70.66	77.70	22.00	16.00	.07	1.16	20	32	33	
AP47	83.27	80.55	81.44	83.13	84.23	70.65	77.86	24.00	19.50	.07	1.10	25	25	32	33
Avg.	83.20	80.48	81.41	83.73	84.80	71.45	78.42	20.25	16.25	.07	1.09				
Std Dv	.68	.57	.55	.86	.77	.90	.89	4.13	3.05	.00	.08				
90% CI	.56	.47	.45	.71	.64	.74	.73	3.40	2.51	.00	.06				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-1-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTE	R			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
DP48 DP49	83.05 84.21	80.55 81.50	80.80 81.92	84.18 84.61	85.18 85.62	72.05 72.50	78.53 78.81	15.00 17.50	13.00 17.00	.07 .07	1.06 1.01	20 20			34 34
Avg. Std Dv 90% CI	83.63 .82 3.66	81.03 .67 3.00	81.36 .79 3.53	84.40 .30 1.36	85.40 .31 1.39	72.28 .32 1.42	78.67 .20 .88	16.25 1.77 7.89	15.00 2.83 12.63	.07 .00 .00	1.03 .04 .16				
150 m F	FLYOVER	TARGET	IAS 80.0 k	ts 0.8	BVh										
DP51 DP52	82.68 83.68	79.71 80.76	81.02 81.49	84.59 83.74	85.51 85.00	72.42 71.49	80.27 78.91	14.50 20.00	13.50 18.50	.07 .07	.92 1.27	20 20	25 32	26 26	24 33
Avg. Std Dv 90% CI	83.18 .71 3.16	80.24 .74 3.31	81.26 .33 1.47	84.16 .60 2.68	85.26 .36 1.61	71.96 .66 2.94	79.59 .96 4.29	17.25 3.89 17.36	16.00 3.54 15.78	.07 .00 .00	1.10 .25 1.10				
150 m f	FLYOVER	TARGET	1AS 70.0 k	ts 0.	7Vh										
DP53 DP54	82.03 83.53	79.06 8 0.70	79.20 81.76	81.91 82.76	83.03 84.02	69.54 70.70	77.83 78.69	18.50 25.50	18.00 19.00	.09 .09	1.06 1.26	20 20	25 32		33 20
Avg. Std Dv 90% CI	82.78 1.06 4.74	79.88 1.16 5.18		82.34 .60 2.68	83.52 .70 3.13	70.12 .82 3.66	78.26 .61 2.72	22.00 4.95 22.10	18.50 .71 3.16	.09 .00 .00	1.16 .14 .63				
150 m i	FLYOVER	TARGET	1AS 60.0 k	ts 0.	6Vh										
DP55 DP57	82.03 83.95	79.07 80.86		83.61 82.48	84.46 83.72	71.52 70.42	79.23 78.81	16.00 27.00	16.00 26.00	.02 .07	1.04 1.24	20 20	25 32		24
Avg. Std Dv 90% CI	82.99 1.36 6.06	79.96 1.27 5.65	.83	83.04 .80 3.57	84.09 .52 2.34	70.97 .78 3.47	79.02 .30 1.33	21.50 7.78 34.73	21.00 7.07 31.57	.05 .04 .16	1.14 .14 .63				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-2-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		MICRO	PHONE NO.	2	12	DELINE	- 150 m WE	est			07/2	6/91			
٤٧	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 5	0.4 kts								•				
BP9 BP10 BP11 BP12 BP13 BP14	85.36 85.44 85.19 85.59 84.87 85.17	83.50 83.17 83.19 83.53 82.75 83.11	83.63 82.91 83.38 83.66 82.92 82.47	85.37 84.55 85.36 85.50 84.04 84.70	86.32 85.46 86.20 86.40 84.97 85.55	73.97 73.25 74.09 74.12 72.81 73.05	80.34 79.99 80.23 80.62 79.12 79.92	18.50 18.50 17.00 18.00 20.50 17.50	17.50 18.50 17.00 17.50 20.00 17.50	.00 .07 .02 .05 .05	.95 .98 .83 .85 1.17	23 23 23 23 27 26	23 24 23 23 24 23	26 23 26 26 27 26	28 27 28 24 23 24
Avg. Std Dv 90% CI	85.27 .25 .21	83.21 .29 .24	83.16 .47 .39	84.92 .58 .48	85.82 .58 .47	73.55 .58 .48	80.04 .51 .42	18.33 1.21 1.00	18.00 1.10 .90	.04 .03 .02	.94 .13 .11				
TAKEOFF	TARGE	T IAS 50	.4 kts												
CP22 CP23 CP24 CP25 CP26 CP27	84.55 84.32 84.21 84.64 84.14 83.77	81.89 81.98 81.96 81.88 81.50 81.06	83.17 83.17 83.41 82.81 81.96 82.35	81.19 82.43 81.96 81.74 80.82 81.19	82.92 84.75 83.97 84.13 83.39 83.03	70.62 71.63 71.37 70.91 70.20 70.11	75.43 75.68 75.46 75.21 74.82 74.68	36.00 28.50 32.00 31.00 30.00 33.50	36.00 27.00 26.00 30.50 28.00 32.50	.06 .06 .05 .02 .02	2.01 2.32 1.96 2.38 2.81 1.82	19 19 19 19 19	33 34 28 34 34 34	34 33 33 28 32 33	33
Avg. Std Dv 90% CI	84.27 .31 .26	81.71 .36 .30	82.81 .56 .46	81.56 .60 .49	83.70 .71 .58	70.81 .62 .51	75.21 .39 .32	31.83 2.66 2.19	30.00 3.78 3.11	.04 .02 .02	2.22 .36 .30				
150 m F	LYOVER	TARGET	IAS 90.0 kt	s 0.9	Vh										
AP42 AP43 AP44 AP45 AP46 AP47	80.69 84.02 80.08 84.42 - 83.55	78.95 81.88 78.44 82.44 79.04 81.31	79.41 82.51 79.34 83.05 79.48 81.25	80.64 83.71 81.18 84.04 80.89 82.95	81.62 84.38 82.16 85.08 81.78 83.70	70.25 72.30 70.18 72.84 70.59 71.71	74.69 77.69 74.66 77.72 74.80 76.85	16.50 21.00 16.50 21.00 15.50 18.00	18.50 20.00 17.00 18.50	.00 .02 .02 .04 .00	.98 .68 .98 1.00 .89	22 22 26 19 22 19	32 32 26 33 26 32	33 33 32 32 32 32 33	26 26 33 26 33 26
Avg. Std Dv 90% CI	82.55 2.01 1.92	80.34 1.73 1.42	80.84 1.67 1.37	82.24 1.51 1.24	83.12 1.47 1.21	71.31 1.13 .93	76.07 1.51 1.25	18.08 2.40 1.97	18.70 1.15 1.10	.02 .02 .01	.88 .14 .11				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-2-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

	MICROPHONE NO. 2 SIDELIN					DELINE	- 150 m Wi	ST			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	YOM	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	FLYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
AP48 AP49	81.15 85.18	79.60 82.80	79.87 82.85	81.28 84.42	82.30 85.82	70.98 73.07	75.36 77.83	15.50 19.00	16.00 18.50	.02 .02	1.02 1.40	26 19	32 26	26 33	33 32
Avg. Std Dv 90% CI	83.17 2.85 12.72	81.20 2.26 10.10	81.36 2.10 9.39	82.85 2.22 9.91	84.06 2.49 11.11	72.03 1.48 6.60	76.60 1.75 7.80	17.25 2.47 11.05	17.25 1.77 7.89	.02 .00 .00	1.21 .27 1.20				
	FLYOVER		IAS 80.0 k												
DP51 DP52	80.35 83.77	78.48 81.54	79.53 81.43	80.27 82.96	81.04 83.86	69.53 71.65	74.71 76.95	20.00 19.00	20.50 19.00	.02 .02	.77 1.18	22 26	26 26	32 23	33 33
Avg. Std Dv 90% CI	82.06 2.42 10.80	80.01 2.16 9.66	80.48 1.34 5.99	81.61 1.90 8.49	82.45 1.99 8.90	70.59 1.50 6.69	75.83 1.58 7.07	19.50 .71 3.16	19.75 1.06 4.74	.02 .00 .00	.97 .29 1.29				
150 m i	FLYOVER	TARGET	IAS 70.0 k	ts 0.7	7Vh										
DP53 DP54	79.42 83.79	77.51 81.46	77.32 82.13	78.08 82.27	78.93 83.49	67.54 71.07	73.61 76.69	19.00 25.50	20.00 25.00	.02 .05	1.02 1.17	22 28	26 26	22 23	33 32
Avg. Std Dv 90% CI	81.60 3.09 13.80	79.49 2.79 12.47	79.72 3.40 15.18	80.18 2.96 13.23	81.21 3.22 14.40	69.31 2.50 11.14	75.15 2.18 9.72	22.25 4.60 20.52	22.50 3.54 15.78	.04 .02 .09	1.10 .11 .47				
150 m	FLYOVER	TARGET	IAS 60.0	cts 0.0	6Vh										
DP55 DP57	78.82 83.27	77.29 80.67	78.95 81.31	79.56 81.13	80.49 82.39	68.64 69.70	75.14 75.53	21.50 29.00	21.50 31.50	.02 .05	.93 1.27	26 28	26 23	23 26	
Avg. Std Dv 90% CI	81.04 3.15 14.05	78.98 2.39 10.67	1.67	80.35 1.11 4.96	81.44 1.34 6.00	69.17 .75 3.35	75.33 .28 1.23	25.25 5.30 23.68	26.50 7.07 31.57	.04 .02 .09	1.10 .24 1.07				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-3-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		MICRO	PHONE NO.	3	s	IDELINE	- 150 m E	AST			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	·· (#)	(#)
APPROA	CH TAR	GET LAS 5	0.4 kts												
BP9	82.71	79.69	80.04	82.14	83.27	69.73	76.79	21.50	20.00	.10	1.03	26	23	26	32
BP10	83.32	80.57	81.00	82.33	83.28	70.21	77.24	24.00	23.00	.10	.95	19	23	26	24
BP11	82.37	79.57	80.60	81.45	82.60	69.30	76.32	27.00	21.00	.10	1.15	26	26	23	22
BP12	82.82	80.01	80.66	82.42	83.53	70,25	76.83	22.00	19.00	.10	1.12	19	23	26	24
BP13	82.98	80.07	80.50	82.88	83.81	70.72	77.79	19.00	18.50	.10	.93	26			
BP14	83.26	80.31	80.76	82.12	83.18	69.79	76.68	25.00	23.50	.10	1.06	19	23 23	26 26	24 32
Avg.	82.91	80.04	80.59	82.22	83.28	70.00	76.94	23.08	20.07	4.0					
Std Dv	.36	.37	.32	.47	.40	.50	.51		20.83	.10	1.04				
90% CI	.29	.31	.26	.39	.33	.41	.42	2.84 2.33	2.07 1.70	.00 .00	.09 .07				
TAKEOF	TARGE	T IAS 50.	.4 kts												
CP22	87.24	84.07	85.19	84.88	87.07	77 00									
CP23	87.25	84.25	84.55	85.87	88.04	73.08	77.90	32.50	30.50	.05	2.14	19	35	33	32
CP24	87.08	84.49	85.55	84.35		74.24	78.92	21.50	20.50	.05	2.18	19	33	32	35
CP25	87.35	84.08	84.58	85.49	86.09	72.94	78.44	36.50	27.50	.05	1.69	19	33	32	22
CP26	87.34	84.25	85.37		87.67	73.70	78.20	24.50	22.50	.05	2.26	19	32	33	35
CP27	87.33	84.06	85.36	85.49	87.65	73.83	78.34	28.50	27.00	.05	2.17	19	33	32	35
0. 2.	07.55	54.00	65.36	84.63	86.90	<i>7</i> 3.25	77.88	32.50	31.00	.02	2.35	19	33	26	34
Avg.	87.27	84.20	85.10	85.12	87.24	73.51	78.28	29.33	26.50	.05	2 47				
Std Dv	.10	.17	.43	.59	.70	.50	.39	5.60	4.23		2.13				
90% CI	.08	.14	.35	.48	.58	.41	.32	4.61	3.48	.01 .01	.23 .19				
150 m F	LYOVER	TARGET I	AS 90.0 kt	s 0.9	Vh										
AP42	83.28	81.07	81.32	84.02	85.31	72.87	77.98	1/ 00	13 50	••					
AP43	81.46	79.88	80.40	80.83	81.99	70.51	75.10	14.00	13.50	.00	1.29	19	32	26	33
AP44	83.03	80.88	80.82	84.05	84.81	72.86		19.50	19.00	.00	1.16	22	26	33	32
AP45	81.42	79.77	80.45	81.05	82.15	70.67	77.68	12.50	13.00	.00	.76	23	32	33 33	23
AP46	82.99	81.01	81.55	83.32	83.93		75.28	19.00	19.50	.00	1.10	22	26	33	32
AP47	81.33	79.76	80.56	81.34	82.36	72.26	77.50	17.00	17.00	.06	.55	19	26	32	33
			30.30	01.34	02.30	70.56	75.71	20.00	20.00	.02	.99	22	26	32	33
Avg.	82.25	80.39	80.85	82.44	83.42	71.62	76.54	17.00	17.00	.01	00				
Std Dv	.94	.65	.48	1.52	1.45	1.16	1.31	3.11	3.08	.02	.98				
90% CI	.77	.54	.40	1.25	1.19	.96	1.08	2.56			.27				
					,	.,,	1.00	2.30	2.54	.02	. 23				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-J-3-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		MICRO	OPHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
DP48 DP49	84.71 82.03	82.62 80.46	83.07 80.99	85.57 81.86	86.62 83.09	74.32 71.45	78.94 76.22	15.00 18.00	14.50 18.00	.03 .03	1.02 1.23	19 22	32 26	33 32	
Avg. Std Dv 90% CI	83.37 1.90 8.46	81.54 1.53 6.82	82.03 1.47 6.56	83.71 2.62 11.71	84.85 2.50 11.14	72.88 2.03 9.06	77.58 1.92 8.59	16.50 2.12 9.47	16.25 2.47 11.05	.03 .00 .00	1.13 .15 .66				
150 m f	LYOVER	TARGET	IAS 80.0 k	ts 0.8	3Vh										
DP51 DP52	82.95 80.91	80.80 79.37	81.65 79.92	83.93 79.82	84.62 80.85	72.49 69.71	78.60 74.11	16.50 21.00	16.50 21.50	.07 .07	.61 1.15	26 26	23 26	26 32	32 33
Avg. Std Dv 90% CI	81.93 1.44 6.44	80.09 1.01 4.51	80.79 1.23 5.47	81.88 2.91 12.98	82.74 2.67 11.90	71.10 1.97 8.78	76.35 3.17 14.17	18.75 3.18 14.21	19.00 3.54 15.78	.07 .00 .00	.88 .38 1.70				
150 m F	LYOVER	TARGET	IAS 70.0 k	ts 0.7	7Vh										
DP53 DP54	- 80.36	75.59 78.70	75.80 78.95	81.20 79.21	82.25 80.38	70.06 68.44	75.64 74.54	7.50 22.50	- 22.00	.07 .05	1.06 1.13	19 26	26 26	23 23	32 33
Avg. Std Dv 90% CI	80.36 .00 .00	77.14 2.20 9.82	77.38 2.23 9.95	80.21 1.41 6.28	81.32 1.32 5.90	69.25 1.15 5.11	75.09 .78 3.47	15.00 10.61 47.35	22.00 .00 .00	.06 .01 .06	1.10 .05 .22				
150 m F	LYOVER	TARGET	IAS 60.0 k	ts 0.6	SVh										
DP55 DP57	81.46 80.31	79.29 78.62	80.27 79.92	81.38 78.08	82.01 79.13	70.16 67.81	76.80 74.48	20.50 32.50	20.50 32.50	.02 .05	.63 1.11	23 22	26 23	23 22	25 33
Avg. Std Dv 90% CI	80.88 .81 3.63	78.96 .47 2.12	80.09 .25 1.10	79.73 2.33 10.42	80.57 2.04 9.09	68.99 1.66 7.42	75.64 1.64 7.32	26.50 8.49 37.88	26.50 8.49 37.88	.04 .02 .09	.87 .34 1.52				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s) = Simplified SEL = Alm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-1-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

	MICROPHONE NO. 1					CENTERLI	NE - CENTI	ER			07/2	6/91			
EV	EPNL	SEL	SEL(8)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	H TARG	ET IAS 5	5.0 kts												
BT1 BT2 BT4 BT5 BT6 BT7	90.81 91.51 91.41 91.01 91.29 90.85	89.14 89.34 89.58 89.00 89.67 88.77	89.12 89.71 90.74 89.57 89.88 89.25	91.53 93.94 92.81 92.03 92.17 92.44	92.59 95.08 93.84 92.80 92.99 93.31	80.23 82.72 81.85 80.82 80.99 81.12	85.98 88.94 88.35 88.25 88.33 88.76	15.50 10.00 15.50 15.00 15.50 13.00	14.00 9.50 14.50 14.50 13.50 12.50	.00 .04 .04 .01 .01	1.06 1.11 1.03 .76 .82 .87	24 22 22 22 22 22 21	26 26 26 22 24 22	24 22 22 24 22 24	25 25
Std Dv	.30	.35	.58	.83	.92	.87	1.07	2.22	1.91	.02	.14				
90% CI	.24	.28	.48	.68	.75	.72	.88	1.83	1.57	.01	.12				
TAKEOFF	TARGE	T IAS 55	.0 kts												
CT16 CT17 CT18 CT19 CT20 CT21	90.26 89.67 89.46 89.61 89.39 89.40	86.75 86.37 86.26 86.06 86.35 86.19	86.83 86.66 87.19 86.53 86.58 86.65	90.48 90.28 90.95 90.26 89.89 90.10	92.04 91.81 92.37 91.82 91.53 91.67	78.38 77.91 78.74 77.93 77.83 78.05	84.15 83.89 84.57 84.07 83.71 83.99	14.00 15.00 14.00 14.50 15.00 14.50	13.50 13.00 12.00 13.50 13.50	.00 .10 .10 .01 .01	1.57 1.43 1.32 1.55 1.70 1.57	28 22 22 28 28 28 22	22 22 22 22 22 22 22	34 35 34 28 28 28	35 34 35 34 35 35
Avg.	89.63	86.33	86.74	90.33	91.87	78.14	84.06	14.50	13.08	.04	1.52				
Std Dv 90% CI	.33 .27	.23 .19	.24 .20	.36 .30	.30 .24	.35 .29	.29 .24	.45 .37	.58 .48	.05 .04	.13				
			IAS 90.0 kt								•				
AT28 AT29 AT30 AT31 AT32 AT33	84.54 85.46 84.68 84.88 84.16 84.42	81.91 82.84 82.13 82.24 81.57 81.77	82.19 83.65 82.44 82.57 81.61 82.46	85.96 86.67 86.06 85.83 85.91 85.60	87.26 88.02 87.12 87.12 86.98 86.87	74.23 75.20 74.84 74.28 74.01 73.86	80.46 81.02 80.78 80.69 80.60 80.12	12.50 14.00 11.50 13.50 11.50 14.50	11.50 12.50 12.00 12.50 11.00 13.50	.00 .00 .00 .00 .04 .10	1.31 1.35 1.20 1.28 1.07 1.16	28 28 22 22 22 28 28	28 28 28 22 22 22	22 22 22 28 28 28	24 34 29 27 24 27
Avg.	84.69	82.08	82.49	86.01	87.23	74.40	80.61	12.92	12.17	.02	1.23				
Std Dv 90% CI	.45 .37	.45 .37	.67 .55	.36 .30	.41 .34	.51 .42	.31 .25	1.28 1.05	.88 .72	.04 .03	.10 .09				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-1-2

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	6/91			
EV	EPNL	SEL	\$EL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(d8)	(#)	(#)	(#)	(#)
150 m F	FLYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
DT34 DT35	86.01 87.08	83.04 84.10	83.18 84.66	87.77 89.35	88.92 90.52	76.19 77.46	82.06 83.60	10.00 10.50	9.50 9.00	.10 .07	1.16 1.09	19 28	22 22	28 28	24 24
Avg. Std Dv 90% CI	86.54 .76 3.38	83.57 .75 3.35	83.92 1.05 4.58	88.56 1.12 4.99	89.72 1.13 5.05	76.82 .90 4.01	82.83 1.09 4.86	10.25 .35 1.58	9.25 .35 1.58	.09 .02 .09	1.13 .05 .22				
			IAS 80.0 k		3Vh										
DT36 DT37	83.85 85.01	81.19 82.33	81.67 82.53	85.24 85.47	86.64 86.85	73.71 73.78	80.29 80.69	12.50 15.00	12.00 13.50	.07 .07	1.39 1.38	28 22	28 22	22 28	
Avg. Std Dv 90% CI	84.43 .82 3.66	81.76 .81 3.60	82.10 .61 2.72	85.35 .16 .73	86.74 .15 .66	73.74 .05 .22	80.49 .28 1.26	13.75 1.77 7.89	12.75 1.06 4.74	.07 .00 .00	1.38 .01 .03				
			IAS 70.0 k				,,,,,								
DT38 DT39	83.41 84.43	80.76 82.02	81.20 82.66	84.39 84.21	85.73 85.56	72.31 72.77	79.75 79.49	15.50 19.50	11.50 16.50	.07 .07	1.34 1.27	22 28	22 22	28 28	27 25
Avg. Std Dv 90% CI	83.92 .72 3.22	81.39 .89 3.98	81.93 1.03 4.60	84.30 .13 .57	85.65 .12 .54	72.54 .33 1.45	79.62 .18 .82	17.50 2.83 12.63	14.00 3.54 15.78	.07 .00 .00	1.31 .05 .22				
150 m l	FLYOVER	TARGET	1AS 60.0 k	ts 0.6	6Vh										
DT40 DT41	83.88 85.28	81.40 82.47	81.84 82.95	84.94 85.26	85.97 86.51	73.09 73.29	80.80 80.64	15.00 18.50	13.50 17.50	.07 .07	1.03 1.25	22 22	22 22	28 28	
Avg. Std Dv 90% CI	84.58 .99 4.42	81.93 .76 3.38	82.40 .79 3.51	85.10 .23 1.01	86.24 .38 1.70	73.19 .14 .63	80.72 .11 .51	16.75 2.47 11.05	15.50 2.83 12.63	.07 .00 .00	1.14 .16 .69				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-2-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		MICRO	PHONE NO.	2	s	IDELINE	- 150 m W	EST			07/2	6/91	
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX NOY BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#) (#) (#)						
APPROA	CH TAR	GET IAS 5	5.0 kts										
BT1 BT2 BT4 BT5 BT6 BT7	87.92 87.99 87.48 87.35 86.72 87.37	85.73 86.19 85.38 85.32 84.75 85.25	85.48 85.59 85.42 85.40 84.97 85.27	87.88 87.42 86.78 87.59 87.08 87.78	89.10 88.49 88.03 88.66 88.18 88.94	76.06 75.81 75.21 75.86 75.31 76.11	82.57 82.23 82.13 82.45 82.14 82.50	17.50 19.00 21.00 18.00 18.50 16.50	16.50 18.50 18.00 16.50 14.00 15.50	.01 .00 .00 .00 .00	1.22 1.06 1.24 1.13 1.10	18 26 26 26 26 26 26	26 23 24 26 23 24 26 23 24 26 23 24 26 23 24 26 23 24
Avg. Std Dv 90% CI	87.47 .46 .38	85.44 .49 .40	85.36 .21 .18	87.42 .42 .35	88.57 .42 .34	75.73 .38 .31	82.34 .19 .16	18.42 1.53 1.26	16.50 1.64 1.35	.00 .00 .00	1.15 .07 .06		
TAKEOFF	TARGE	T IAS 55.	.0 kts										
CT16 CT17 CT18 CT19 CT20 CT21	87.01 86.69 86.87 86.65 86.00 86.29	84.17 84.22 84.32 83.96 83.49 83.68	84.27 85.33 85.22 84.21 85.37 84.13	85.40 85.08 86.09 85.22 84.24 84.20	86.59 86.37 87.30 86.67 85.37 85.49	73.57 73.72 74.52 73.51 72.53 72.44	79.61 79.39 80.19 79.79 78.35 78.79	23.50 29.00 23.50 23.50 38.50 29.50	22.50 22.50 22.50 23.00 23.50 25.50	.00 .00 .00 .00 .06	1.19 1.29 1.21 1.45 1.06 1.29	22 22 22 22 22 26 22	26 22 34 26 22 32 26 22 34 22 26 33 26 22 23 26 22 23
Avg. Std Dv 90% CI	86.58 .38 .31	83.97 .33 .27	84.76 .61 .50	85.04 .72 .59	86.30 .74 .61	73.38 .78 .65	79.35 .68 .56	27.92 5.90 4.86	23.25 1.17 .96	.02 .03 .03	1.25 .13 .11		
150 m F	LYOVER	TARGET I	AS 90.0 kts	s 0.9	Vh								
AT28 AT29 AT30 AT31 AT32 AT33	83.99 85.10 83.75 84.18 83.60 84.19	81.94 82.71 81.69 81.46 81.64 81.74	82.16 83.88 82.20 81.59 82.07 82.03	84.15 84.99 84.81 83.08 84.72 83.21	85.12 86.41 85.87 84.20 85.74 84.34	73.27 73.77 73.75 71.59 73.62 72.03	77.71 78.21 78.06 77.31 77.90 77.57	15.50 20.50 14.00 20.00 14.00 20.00	15.00 16.00 13.50 20.00 13.00 20.00	.03 .03 .21 .21 .06	1.01 1.50 .85 1.17 .97 1.13	22 19 18 22 18 22	26 32 33 26 33 32 26 32 33 26 33 22 26 32 33 26 33 32
Avg. Std Dv 90% CI	84.14 .53 .43	81.86 .44 .36	82.32 .79 .65	84.16 .84 .69	85.28 .88 .73	73.00 .95 .78	77.79 .33 .27	17.33 3.16 2.60	16.25 3.09 2.55	.10 .09 .07	1.11 .23 .19		

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-2-2

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

MICROPHONE NO. 2					SI	DELINE	- 150 m WE	EST			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m l	FLYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
DT34 DT35	85.01 86.69	83.06 83.77	83.15 83.73	85.75 85.44	86.94 86.56	75.02 74.07	79.00 78.98	13.00 18.50	12.50 19.00	.00 .05	1.19 1.08	18 22	33 26		32 33
Avg. Std Dv 90% CI	85.85 1.19 5.30	83.41 .50 2.24	83.44 .41 1.84	85.60 .22 .98	86.75 .27 1.20	74.54 .67 3.00	78.99 .01 .06	15.75 3.89 17.36	15.75 4.60 20.52	.03 .04 .16	1.13 .08 .35				
150 m i	FLYOVER	TARGET	IAS 80.0 k	ts 0.8	3Vh										
DT36 DT37	82.37 83.41	80.44 81.02	80.12 82.75	81.77 83.19	83.19 84.29	70.70 71.96	76.70 77.91	17.50 24.00	16.50 24.50	.05 .05	1.42 1.10	22 22	26 26	22 22	32 33
Avg. Std Dv 90% CI	82.89 .74 3.28	80.73 .41 1.83	81.44 1.86 8.31	82.48 1.00 4.48	83.74 .78 3.47	71.33 .89 3.98	77.31 .86 3.82	20.75 4.60 20.52	20.50 5.66 25.26	.05 .00 .00	1.26 .23 1.01				
150 m i	FLYOVER	TARGET	IAS 70.0 kg	ts 0.7	∕Vh										
DT38 DT39	81.65 83.20	79.73 80.88	80.33 81.85	81.04 80.91	82.11 82.14	70.02 69.88	75.91 76.39	21.50 31.50	20.50 31.50	.05 .05	1.13 1.24	18 22	26 26	34 22	33 33
Avg. Std Dv 90% CI	82.43 1.10 4.89	80.31 .81 3.63	81.09 1.07 4.79	80.98 .09 .41	82.13 .02 .09	69.95 .10 .44	76.15 .34 1.52	26.50 7.07 31.57	26.00 7.78 34.73	.05 .00 .00	1.18 .08 .35				
150 m i	FLYOVER	TARGET	IAS 60.0 kt	ts 0.6	svh .										
DT40 DT41	81.10 82.95	79.30 80.87	79.76 82.86	80.00 81.75	81.27 82.90	69.15 70.25	75.84 76.36	23.00 36.50	19.50 25.50	.05 .00	1.28 1.14	22 22	22 26	26 33	33 22
Avg. Std Dv 90% CI	82.02 1.31 5.84	80.09 1.11 4.96	81.31 2.20 9.80	80.88 1.24 5.52	82.08 1.15 5.15	69.70 .78 3.47	76.10 .37 1.64	29.75 9.55 42.62	22.50 4.24 18.94	.03 .04 .16	1.21 .10 .44				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-3-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		MICRO	PHONE NO.	3	s	IDELINE	- 150 m E	AST			07/2	26/91	
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX NOY BNDS
	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#) (#) (#)
APPROA	CH TAR	GET IAS 5	5.0 kts										
BT1 BT2 BT4 BT5 BT6	84.05 83.01 84.33 83.62 83.39	81.78 80.85 81.73 81.10 80.90	83.41 81.55 82.53 82.23 80.87	82.61 81.36 82.66 82.70 81.34	83.88 82.10 83.68 83.68 82.19	70.86 70.01 70.84 70.62 69.41	76.99 75.58 77.26 77.51 75.96	36.00 28.50 29.50 29.00 28.00	27.00 28.00 27.00 23.50 27.00	.00 .00 .00	1.27 .74 1.03 .98	26 19 26 23	26 23 28 26 27 33 26 23 28 23 26 22
BT7	83.77	81.41	82.14	82.60	83.58	70.60	77.20	28.50	24.00	.00 .00	.86 .98	19 19	23 26 24 23 26 22
Avg. Std Dv 90% CI	83.69 .47 .39	81.30 .41 .34	82.12 .86 .71	82.21 .67 .55	83.18 .81 .67	70.39 .57 .47	76.75 .79 .65	29.92 3.02 2.49	26.08 1.86 1.53	.00 .00 .00	.98 .18 .15		
TAKEOFF	TARGE	T IAS 55.	.0 kts										
CT16 CT17 CT18 CT19 CT20 CT21	86.53 87.27 86.82 87.62 86.29 85.87	83.05 83.71 83.21 83.89 82.82 82.27	83.83 84.57 83.98 83.91 83.82 82.90	84.05 84.82 84.58 85.25 83.62 83.46	86.22 86.80 86.72 87.35 85.63 85.49	72.37 73.11 73.01 73.80 71.58 71.84	78.25 79.05 79.02 79.20 77.89 78.05	28.00 28.00 25.00 20.50 33.50 25.50	22.00 24.50 22.50 20.00 21.50 22.00	.00 .00 .00 .00	2.17 1.97 2,18 2.13 2.01 2.34	19 19 19 19 19	26 22 33 26 22 33 26 22 33 26 22 32 22 26 34 26 22 24
Avg. Std Dv 90% CI	86.73 .64 .53	83.16 .59 .49	83.83 .54 .44	84.30 .70 .58	86.37 .72 .59	72.62 .84 .69	78.58 .58 .47	26.75 4.30 3.54	22.08 1.46 1.20	.00 .00	2.13 .13 .11		
150 m F	LYOVER	TARGET I	AS 90.0 kt	s 0.9	Vh								
AT28 AT29 AT30 AT31 AT32 AT33	83.93 84.00 84.16 83.70 83.13 83.65	81.36 82.08 81.47 81.52 80.63 81.64	82.02 82.69 81.45 82.12 80.94 82.21	83.36 84.26 83.96 83.85 82.93 85.26	84.64 85.44 85.05 85.12 84.09 86.34	72.24 73.27 72.85 72.70 71.78 73.92	77.22 77.82 77.83 77.74 77.10 77.15	19.00 17.50 14.50 17.50 16.50 13.50	19.50 16.50 15.00 15.50 16.00 12.50	.17 .17 .11 .11 .06	1.16 1.18 .97 1.27 1.10	19 22 22 22 22 26 18	26 32 33 26 32 34 26 33 32 26 32 33 26 32 33 34 33 35
Avg. Std Dv 90% CI	83.76 .36 .30	81.45 .47 .39	81.91 .62 .51	83.94 .80 .66	85.11 .76 .63	72.79 .75 .62	77.48 .35 .29	16.42 2.06 1.69	15.83 2.27 1.87	.11 .05 .04	1.13 .10 .08		

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-K-3-2

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		MICRO	OPHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	6/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 100.0	kts 1.	.0Vh										
DT34 DT35	85.50 86.03	82.84 83.77	83.76 83.91	85.63 86.87	86.81 88.00	74.60 75.78	79.12 80.07	16.50 13.00	16.50 13.00	.14 .12	1.04 1.01	26 22	26 26	33 34	32 33
Avg. Std Dv 90% CI	85.76 .37 1.67	83.30 .66 2.94	83.84 .10 .46	86.25 .88 3.91	87.40 .84 3.76	75.19 .83 3.73	79.60 .67 3.00	14.75 2.47 11.05	14.75 2.47 11.05	.13 .01 .06	1.02 .02 .09				
150 m F	LYOVER	TARGET	IAS 80.0 k	ts 0.8	BVh										
DT36 DT37	83.04 83.54	80.52 81.35	81.61 81.25	82.62 82.41	83.87 83.67	71.50 71.14	77.45 77.17	20.50 20.50	20.50 20.50	.12 .12	1.25 1.29	22 22	26 26	22 22	32 32
Avg. Std Dv 90% CI	83.29 .35 1.58	80.93 .59 2.62	81.43 .25 1.14	82.51 .15 .66	83.77 .14 .63	71.32 .25 1.14	77.31 .20 .88	20.50 .00 .00	20.50 .00 .00	.12 .00 .00	1.27 .03 .13				
150 m F	LYOVER	TARGET	IAS 70.0 k	ts 0.7	7Vh										
DT38 DT39	82.25 82.87	79.49 80.89	79.52 81.57	80.64 81.58	81.77 82.76	69.31 70.60	76.37 76.10	21.00 25.00	22.50 24.50	.09	1.04 1.19	22 22	22 26	23 32	
Avg. Std Dv 90% CI	82.56 .44 1.96	80.19 .99 4.42	80.55 1.45 6.46	81.11 .66 2.97	82.26 .70 3.13	69.96 .91 4.07	76.24 .19 .85	23.00 2.83 12.63	23.50 1.41 6.31	.09 .00 .00	1.12 .11 .47				
150 m F	LYOVER	TARGET	IAS 60.0 k	ts 0.6	5Vh										
DT40 DT41	81.39 82.91	79.15 81.09	79.64 81.64	80.58 80.90	81.67 82.19	69.03 70.34	75.93 75.88	23.00 27.00	22.00 27.50	.08 .08	1.01 1.29	22 22	22 26	26 32	
Avg. Std Dv 90% CI	82.15 1.07 4.80	80.12 1.37 6.12	80.64 1.42 6.33	80.74 .23 1.01	81.93 .37 1.64	69.68 .93 4.14	75.90 .04 .16	25.00 2.83 12.63	24.75 3.89 17.36	.08 .00 .00	1.15 .20 .88				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-L-1-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 5	2.0 kts												
B15 B16 B17 B18 B19 B20 B21	89.14 90.87 95.23 95.61 91.31 93.80 94.62	88.81 89.11 93.85 94.05 89.60 92.51 93.48	89.32 90.65 94.19 94.81 89.95 94.08 93.75	89.05 90.48 94.54 96.09 89.88 95.78 94.93	90.48 91.77 96.09 97.66 91.01 96.99 95.61	78.44 79.27 84.41 86.36 79.25 85.63 85.46	83.40 84.79 88.22 88.93 84.67 89.28 88.13	24.50 27.50 19.00 14.00 23.50 14.00 13.50	15.50 26.00 18.50 14.50 24.00 13.00 16.00	.00 .02 .00 .04 .04 .04	1.43 1.31 1.55 1.53 1.13 1.21	18 22 18 18 25 18 20	27 26 25 26 25 25 25	25 25 27 29 27 27 27	27 28 28 28
Avg. Std Dv 90% CI	92.94 2.49 1.83	91.63 2.36 1.73	92.39 2.32 1.70	92.96 3.03 2.22	94.23 3.03 2.23	82.69 3.52 2.58	86.77 2.40 1.76	19.43 5.80 4.26	18.21 4.96 3.64	.03 .02 .01	1.35 .16 .12				
TAKEOFF	TARGE	T IAS 52	.0 kts												
C22 C23 C24 C25 C26 C27	88.87 08.09 88.79 88.28 88.24 88.18	84.77 84.03 84.69 84.32 84.10 84.05	85.03 84.50 85.10 84.75 84.51 84.80	91.51 90.99 91.42 91.00 91.05 90.00	92.70 92.31 92.72 92.17 92.46 91.34	78.26 77.73 78.11 77.76 77.98 77.02	85.06 84.47 85.03 84.58 84.41 83.13	9.50 9.50 10.00 10.00 9.00 12.00	9.50 9.00 9.50 9.00 9.00 12.50	.04 .00 .04 .04 .04	1.18 1.32 1.30 1.18 1.41	22 20 20 20 20 20 22	25 25 25 25 25 25 25	22 34 35 36 34 22	35 34 35 33
Avg. Std Dv 90% CI	88.41 .33 .27	84.33 .33 .27	84.78 .25 .21	90.99 .54 .44	92.28 .51 .42	77.81 .44 .36	84.45 .70 .58	10.00 1.05 .86	9.75 1.37 1.13	.03 .02 .01	1.29 .09 .08				
150 m F	LYOVER	TARGET	IAS 81.9 kt	s 0.9	PVh										
A1 A2 A3 A4 A5 A9	80.74 81.16 80.83 82.31 80.55 81.15	76.98 77.60 77.40 78.57 76.69 77.31	77.26 77.50 77.93 79.13 77.20 77.66	81.46 81.04 80.84 83.12 81.80 81.81	82.59 82.01 81.82 84.45 82.89 83.12	68.66 68.47 68.27 70.24 68.91 69.06	75.72 75.88 75.89 78.12 76.93 77.00	14.50 16.00 18.50 15.50 13.50 14.50	15.00 16.50 16.00 13.50 13.50 14.00	.00 .00 .00 .00 .00	1.13 1.11 .98 1.32 1.09 1.31	22 22 22 22 22 22 22	22 22 25 25 25 25 22	34 25 22 22 22 25	33 34 26 35 24 34
Avg. Std Dv 90% CI	81.12 .63 .52	77.43 .65 .53	77.78 .71 .59	81.68 .81 .67	82.81 .94 .78	68.93 .70 .58	76.59 .94 .77	15.42 1.74 1.43	14.75 1.29 1.06	.00 .00 .00	1.16 .13 .11				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

January 29, 1992

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE A-L-1-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	1		CENTERLI	NE - CENTI	ER			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
••	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 91.0 kg	ts 1.(OVh										
A6	81.42	77.51	77.60	83.06	84.24	70.00	77.53	11.50	11.00	.00	1.27	22	22	34	35
150 m F	LYOVER	TARGET	IAS 72.8 k	ts 0.8	3Vh										
A8 A10	81.25 80.91	77.53 77.42	77.55 77.34	82.16 80.56	83.48 81.74	68.66 67.92	77.10 76.09	15.50 17.50	14.00 17.00	.00 .03	1.32 1.18	22 22	22 25	34 22	35 26
Avg. Std Dv 90% CI	81.08 .24 1.07	77.47 .08 .35	77.45 .15 .67	81.36 1.13 5.05	82.61 1.23 5.49	68.29 .52 2.34	76.60 .71 3.19	16.50 1.41 6.31	15.50 2.12 9.47	.01 .02 .09	1.25 .10 .44				
150 m F	LYOVER	TARGET	IAS 63.7 k	ts 0.7	7Vh										
A11 A12	82.34 81.52	78.76 78.68	79.67 80.43	82.86 83.73	83.79 84.52	70.25 71.98	77.91 78.59	17.50 14.00	17.00 15.00	.02 .07	.93 .71	22 22	25 26	22 25	
Avg. Std Dv 90% CI	81.93 .58 2.59	78.72 .06 .25	80.05 .54 2.40	83.29 .62 2.75	84.15 .52 2.30	71.12 1.22 5.46	78.25 .48 2.15	15.75 2.47 11.05	16.00 1.41 6.31	.05 .04 .16	.82 .16 .69				
150 m F	LYOVER	TARGET	IAS 54.6 k	ts 0.6	6Vh										
A13 A14	82.87 81.62	79.55 78.33	79.83 78.63	82.71 81.30	83.60 82.05	70.17 68.85	77.86 76.78	18.50 19.00	18.50 19.00	.07 .07	.89 .75	22 22	25 26	55 56	22 25
Avg. Std Dv 90% CI	82.25 .88 3.95	78.94 .86 3.85	79.23 .85 3.80	82.01 1.00 4.45	82.82 1.10 4.89	69.51 .93 4.17	77.32 .76 3.41	18.75 .35 1.58	18.75 .35 1.58	.07 .00 .00	.82 .10 .44				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-L-2-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO			sı	DELINE	- 150 m WE	EST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLM	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
APPROAC	H TARG	ET IAS 5	2.0 kts												
B15 B16 B17 B18 B19 B20 B21 Avg. Std Dv	86.35 86.63 86.70 86.63 88.42 84.99 87.01 86.68	85.34 85.66 85.38 84.62 87.34 83.05 84.73	85.86 87.15 87.34 85.86 90.03 83.59 86.52	85.07 84.35 86.20 83.74 88.15 82.62 85.28	86.20 85.92 88.11 85.94 89.93 85.02 87.31	75.45 75.69 76.55 73.75 78.97 72.05 75.06 75.36 2.17	80.40 79.77 79.71 78.82 81.97 78.89 79.62 79.88 1.07	22.00 28.00 24.00 32.50 25.50 28.50 28.00 26.93 3.43	24.00 29.00 24.00 32.00 30.00 28.00 25.50 27.50	.08 .08 .08 .00 .08 .00 .00	1.13 1.57 1.91 2.47 1.78 2.40 2.03	27 30 29 27 29 27 27	24 30 29 24 29 24 27	27 26 25 27 25 27 24	32 33 25 32
90% CI	.74	.95	1.43	1.31	1.23	1.59	.78	2.52	2.27	.03	.34				
C22 C23 C24 C25 C26 C27	82.96 82.10 83.67 82.40 83.30 82.41	80.51 79.49 81.39 80.03 81.07 79.83	80.43 79.80 82.60 80.05 81.42 80.57	81.92 81.39 84.38 81.10 83.84 81.84	83.10 82.97 85.00 82.49 85.05 82.46	70.89 69.69 72.94 69.94 72.26 70.57	76.09 76.25 77.70 77.27 77.48 76.15	18.00 20.50 18.50 20.50 16.50 20.00	18.00 20.00 19.00 20.00 16.00 21.00	.08 .08 .08 .08 .08	1.23 1.58 1.17 1.38 1.22	20 29 30 29 30 18	32 33 33 33 33 34	33 34 34 32 34 33	32 32 34 32
Avg. Std Dv 90% CI	82.81 .61 .50	80.39 .74 .61	80.81 1.04 .85	82.41 1.36 1.12	83.51 1.20 .99	71.05 1.29 1.06	76.82 .74 .61	19.00 1.61 1.33	19.00 1.79 1.47	.07 .02 .02	1.20 .33 .27				
150 m F	LYOVER	TARGET	IAS 81.9 kt	ts 0.9	₽Vh										
A1 A2 A3 A4 A5 A9	79.58 78.81 79.26 79.67 78.68 78.98	77.35 76.12 76.81 76.95 76.25 76.14	78.06 76.91 77.29 77.57 76.46 76.42	78.28 77.68 78.60 79.03 77.34 78.29	78.83 79.28 79.65 80.30 78.20 79.49	67.18 66.30 66.59 67.46 66.15 66.76	74.37 76.81 74.94 78.17 74.41 77.50	24.50 23.00 23.50 20.50 21.50 18.50	24.50 21.50 22.00 18.00 24.00 19.00	.00 .00 .00 .08 .06	.55 1.75 1.05 1.19 .79 1.29	22 22 27 22 26 22	32 22 33 26 32 22	33 32 32 22 23 33 26	34 33 34 33 34 32
Avg. Std Dv 90% CI	79.16 .41 .34	76.60 .51 .42	77.12 .64 .53	78.20 .61 .50	79.29 .72 .59	66.74 .51 .42	76.03 1.67 1.37	21.92 2.20 1.81	21.50 2.61 2.15	.03 .04 .03	1.10 .42 .34				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-L-2-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	OPHONE NO.	2	SI	DELINE	- 150 m ₩	EST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m i	FLYOVER	TARGET	IAS 91.0 k	ts 1.0)Vh										
A6	79.63	76.86	77.39	78.79	80.31	66.78	77.66	23.00	21.00	.00	1.52	22	34	33	32
150 m f	FLYOVER	TARGET	IAS 72.8 k	ts 0.8	3Vh										
A8 A10	78.95 79.04	76.44 76.73	76.43 77.04	78.31 77.04	79.10 77.84	66.77 65.58	76.27 75.37	18.50 28.00	18.50 28.50	.01 .06	.78 .74	21 18	26 32		32 26
Avg. Std Dv 90% CI	78.99 .06 .28	76.59 .21 .92	76.74 .43 1.93	77.68 .90 4.01	78.47 .89 3.98	66.18 .84 3.76	75.82 .64 2.84	23.25 6.72 29.99	23.50 7.07 31.57	.04 .04 .16	.76 .03 .13				
150 m F	LYOVER	TARGET	IAS 63.7 k	ts 0.7	7 ∨h										
A11 A12	79.81 78.65	77.12 76.35	77.51 76.65	78.08 77.41	79.05 78.38	66.21 65.86	77.17 75.02	27.00 24.00	26.00 21.50	.06 .08	.97 .89	26 18	26 33		22 34
Avg. Std Dv 90% CI	79,23 .82 3.66	76.74 .54 2.43	77.08 .61 2.72	77.75 .47 2.12	78.71 .47 2.12	66.04 .25 1.10	76.10 1.52 6.79	25.50 2.12 9.47	23.75 3.18 14.21	.07 .01 .06	.93 .06 .25				
150 m F	LYOVER	TARGET	IAS 54.6 k	ts 0.6	5Vh										
A13 A14	79.80 78.55	77.15 76.11	78.10 76.52	79.35 76.17	80.74 77.01	68.56 65.06	76.84 72.57	18.00 28.00	18.50 30.00	.08 .08	1.38 .84	27 19	27 32		
Avg. Std Dv 90% CI	79.18 .88 3.95	76.63 .74 3.28	77.31 1.12 4.99	77.76 2.25 10.04	78.88 2.64 11.78	66.81 2.47 11.05	74.71 3.02 13.48	23.00 7.07 31.57	24.25 8.13 36.31	.08 .00 .00	1.11 .38 1.70				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-L-3-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

		MICRO	PHONE NO.	3	S	IDELINE	- 150 m E/	AST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)						
APPROAC	CH TARG	ET IAS 5	2.0 kts												
B15 B16 B17 B18 B19 B20	87.62 88.41 88.39 89.45 87.96	86.58 87.18 87.66 88.76 86.88	88.19 88.56 88.23 90.14 86.91	87.38 87.12 87.52 89.10 86.48	88.68 88.44 89.01 89.99 88.29	77.68 77.02 78.23 79.35 76.30	82.55 82.70 81.97 84.20 81.82	22.50 28.50 20.00 24.00 23.00	19.50 27.50 20.50 24.50 21.00	.00 .00 .00 .03	1.30 1.42 1.49 .86 1.97	27 18 18 18 27	27 27 28 27 27	28 26 29 26 24	28 27
B21	88.20 87.54	87.28 86.75	89.77 88.27	88.76 87.60	89.84 88.29	79.66 77.57	84.06 82.15	20.50 23.50	22.00 24.00	.11 .25	.97 .44	18 19	28 27	27 26	26 28
Avg. Std Dv 90% CI	88.22 .64 .47	87.30 .74 .54	88.58 1.08 .79	87.71 .92 .67	88.93 .72 .53	77.97 1.21 .89	82.78 .97 .72	23.14 2.79 2.05	22.71 2.78 2.04	.06 .09 .07	1.21 .50 .36				
TAKEOFF	TARGE	T IAS 52.	.0 kts												
C22 C23 C24 C25 C26 C27	83.32 83.48 83.97 83.37 83.56 82.94	80.47 80.35 80.92 80.59 80.71 80.00	81.05 80.54 81.13 81.17 81.15 79.16	82.55 81.91 82.04 82.77 83.01 80.55	84.02 83.75 83.87 84.13 84.01 81.96	70.84 70.13 70.52 71.17 71.26 68.65	79.20 79.86 79.49 79.94 80.13 79.10	21.00 22.00 23.00 20.00 19.50 22.50	20.50 25.00 26.00 20.00 20.00 22.00	.00 .08 .00 .04 .04	1.47 1.76 1.83 1.32 1.01 1.95	22 22 22 22 22 25 22	32 32 32 32 33 27	33 34 34 33 32 34	34 33 33 34 34 32
Avg. Std Dv 90% CI	83.44 .34 .28	80.51 .32 .26	80.70 .79 .65	82.14 .88 .73	83.62 .83 .68	70.43 .97 .80	79.62 .42 .35	21.33 1.40 1.15	22.25 2.64 2.17	.03 .03 .03	1.56 .36 .29				
150 m F	LYOVER	TARGET I	AS 81.9 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A9	79.49 79.46 79.66 80.02 79.14 79.63	76.47 77.21 76.66 77.51 76.13 77.25	76.64 77.53 77.70 77.77 76.75 77.65	78.51 78.12 78.69 78.52 78.53 78.45	79.63 79.35 80.08 80.00 79.66 79.23	66.43 66.92 67.00 67.36 66.34 67.65	76.93 73.30 76.97 75.09 76.99 75.03	21.00 23.00 23.50 22.00 22.00 20.00	20.50 23.00 21.50 22.00 20.50 21.00	.02 .02 .02 .02 .02 .03	1.10 1.23 1.49 1.57 1.13	26 27 22 27 26 22	26	22 33 26 33 34 33	32 34 32 34 33 34
Avg. Std Dv 90% CI	79.57 .29 .24	76.87 .53 .44	77.34 .51 .42	78.47 .19 .16	79.66 .34 .28	66.95 .51 .42	75.72 1.51 1.24	21.92 1.28 1.05	21.42 .97 .80	.00 .00	1.21 .30 .24				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

TABLE A-L-3-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA AS MEASURED*

	EPNL SE		OPHONE NO.	3	SI	DELINE	- 150 m E/	AST			07/2	2/91			
EV	EPNL	SEL	SEL(s)**	PNLm	PNLTm	ALm	OASPLm	DUR(A)	DUR(P)	BNDSHR	TC	BND	MAX	NOY	BNDS
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(Sec)	(Sec)	(dB)	(dB)	(#)	(#)	(#)	(#)
150 m F	LYOVER	TARGET	IAS 91.0 k	ts 1.0)Vh										
A6	79.57	77.21	77.58	79.11	80.05	68.42	74.17	16.50	18.50	.02	.98	26	26	33	32
150 m F	LYOVER	TARGET	IAS 72.8 k	ts 0.8	3Vh										
A8 A10	79.13 79.55	76.74 76.64	77.61 77.95	78.40 79.56	79.41 81.07	67.72 68.29	73.70 76.49	19.50 18.50	20.50 17.50	.02 .19	1.02 1.32	26 22	26 27		33 24
Avg. Std Dv 90% CI	79.34 .30 1.33	76.69 .07 .32	77.78 .24 1.08	78.98 .82 3.66	80.24 1.17 5.24	68.01 .40 1.80	75.10 1.97 8.81	19.00 .71 3.16	19.00 2.12 9.47	.10 .12 .54	1.17 .21 .95				
150 m F	LYOVER	TARGET	IAS 63.7 k	ts 0.7	7Vh										
A11 A12	79.34	76.82 76.33	77.42 77.46	78.31 80.20	79.42 81.06	66.81 68.30	73.63 77.42	23.00 16.50	21.00	.19 .02	1.11 .84	26 26	26 26		34 22
Avg. Std Dv 90% CI	79.34 .00 .00	76.57 .35 1.55	77.44 .03 .15	79.25 1.34 5.97	80.24 1.16 5.18	67.56 1.05 4.70	75.52 2.68 11.97	19.75 4.60 20.52	21.00 .00 .00	.10 .12 .54	.98 .19 .85				
150 m F	FLYOVER	TARGET	IAS 54.6 k	ts 0.6	5Vh										
A13 A14	79.75 79.41	77.23 76.62	78.94 77.18	78.38 78.10	79.19 79.20	67.56 65.88	73.22 76.82	27.50 27.00	27.50 25.50	.02 .02	.80 1.10	23 22	33 22	32 23	34 26
Avg. Std Dv 90% CI	79.58 .24 1.07	76.93 .43 1.93	78.06 1.24 5.56	78.24 .20 .88	79.19 .01 .03	66.72 1.19 5.30	75.02 2.55 11.37	27.25 .35 1.58	26.50 1.41 6.31	.02 .00 .00	.95 .21 .95				

^{* -} NOISE INDEXES CALCULATED USING AS MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REFERENCE TRACK

^{** -} SEL(s)= Simplified SEL = ALm + 10.0*LOG(DUR(A)/2.0

APPENDIX B

CORRECTED NOISE LEVEL DATA

This Appendix presents the corrected noise level data, including EPNL, SEL, AL_{MAX} , and $PNLT_{MAX}$, by site, date, and helicopter configuration, Tables B-A-1-1* through B-L-3-2.

^{*}In the numerical notation for Table number, the first letter denotes Appendix, the second letter denotes helicopter configuration (as discussed in Section 1.4), the first number denotes site, i.e., site 1 - centerline, site 2 - sideline/east, or site 3 - sideline/west, and the second number differentiates between standard Par Part 36 tests (denoted by a 1) and additional flyover tests (denoted by a 2). For example, Table B-A-1-1 contains noise data measured for helicopter Configuration A (Schweizer, Standard Configuration) at the centerline measurement site, subject to standard FAR Part 36 requirements.

May 6, 1993

TABLE B-A-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		ı	MICROPH	ONE NO.	1		CENTE	RLINE -	CENTER				07/2	2/91		
	****	CORREC	TED (dB))	COR	RECTIO	IS (dB)		ACOUSTIC ANGLE	TRA (ACT	CKING D		ters) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	•••
APPRO	ACH 1	TARGET :	IAS 40.8	8 kts												
B1 B2 B3 B4 B5 B6	93.45 92.75 92.05	90.88 89.17 89.16 88.23 89.60 90.36	78.37 78.66 79.45 80.61	94.78 93.27 92.75 93.07 94.23 93.77	03 28 17 27 21 40	06 71 23 37 25 88	77 53 23 17 19	.00 .00 .00 .00	92.4 127.5 118.2 103.2 120.4 96.6	114.0 115.5 114.0 114.6	131.1 117.1	118.2 118.2 118.2 118.2	149.0 134.2 121.4 137.0	17.5 18.0 19.5 19.5 19.5 20.1	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	93.18 .77 .63	89.57 .94 .78	79.79 1.23 1.02	93.64 .76 .63	23 .12 .10	42 .31 .26	32 .28 .23	.00 .00	109.7 14.3 11.7	114.6 1.6 1.3		118.2 .0 .0	129.8 12.3 10.1	19.0 1.0 .8	21.1	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C1 C5 C6 C7 C8 C9	96.33 96.73 96.81 95.82	92.30 92.68 92.53 91.75		95.36 95.96 95.89 94.92	.55 .80 .20 2.18 .64 .51	.45 .76 .17 1.87 .52	78 51 48 -1.09 51 88	.00 .00 .00 .00	119.4 128.5 127.1 132.7 140.6 122.2	116.6 109.7 129.8 113.4	131.1 149.1 137.6 176.6 178.8 133.9	109.1 109.1 109.1 109.1 109.1	125.2 139.5 136.8 148.5 172.1 128.9	18.0 19.5 18.5 19.0 19.0	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	.48 .39	.46 .38	80.61 .51 .42	.47 .39	.81 .70 .57	.71 .60 .49	71 .25 .21	.00 .00	128.4 7.6 6.2	116.2 7.0 5.8	151.2 21.4 17.6	109.1 .0 .0	141.8 16.9 13.9	18.6 .7 .6	20.6	" -
150 m	FLYOVER	TAR	GET IAS	72.0 kt	s 0.9Vh											
A1 A2 A3 A4 A5 A6	90.93 90.90 90.85	86.66 86.80 86.51 86.33	76.84 77.40 77.33	91.52 91.27 91.70 92.08 92.17 91.07	01 .54 .36 .30 .32	02 .23 .34 .14 .29	49 .46 93 .34 69	.46 .46 .53 .39 .46	123.7 134.3 124.5 108.3 69.3 109.1	148.2 156.0 153.5 153.0 152.7 159.4	178.1 218.1 186.3 161.2 163.2 168.7	148.8 148.8 148.8 148.8 148.8 148.8	178.8 208.0 180.5 156.7 159.0 157.4	32.9 43.2 30.9 41.2 32.4 40.1	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	90.84 .10 .08	86.62 .17 .14	76.82 .45 .37	91.64 .44 .36	.38 .25 .21	.28 .25 .20	21 .57 .47	.46 .04 .04	111.5 23.0 18.9	153.8 3.7 3.1	179.3 21.2 17.5	148.8 .0 .0	173.4 20.1 16.5	36.8 5.3 4.4	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-A-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		þ	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	2/91		
		CORRECT	ED (dB)				NS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm		/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0	Vh										
D1 D2			78.25 77.98		.47 .87	.44 .82	76 08	.81 .81	113.2 113.9		168.8 176.1		161.9 162.7	36.0 43.7	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	91.64 .12 .54	87.61 .04 .19	78.12 .19 .85	92.74 .36 1.61	.67 .28 1.26	.63 .27 1.20	42 .48 2.15	.81 .00 .00	113.6 .5 2.2	158.1 4.2 18.6		148.8 .0 .0	162.3 .6 2.5	39.8 5.4 24.3	41.2 .0 .0	
150 m	FLYOVER	TAR	GET LAS	64.0 kt	s 0.8	۷h										
D5 D6			76.59 76.81		.88 .73	.83 .32	-1.16 .02	.17 .17	124.6 31.2		195.6 303.5	148.8 148.8	180.7 287.3	27.3 35.0	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI		86.07 .26 1.17	76.70 .16 .69	91.79 .12 .54	.81 .11 .47	.57 .36 1.61	57 .83 3.73	.17 .00 .00	77.9 66.0 294.9	2.7			234.0 75.4 336.5	31.1 5.4 24.3	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	۷h										
D7 D8			75.75 76.18		.70 1.04	.50 .97	03 39	.13 .07	128.1 127.9			148.8 148.8		30.3 30.9	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI		86.54 .18 .79	75.97 .30 1.36	90.98 .25 1.05	.87 .24 1.07	.74 .33 1.48	21 .26 1.14	.10 .04 .19	128.0 .1 .6	160.3 3.5 15.5	203.5 4.0 18.0	148.8 .0 .0	188.8 .3 1.3	30.6 .4 1.9	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.61	/h										
D9 D10			76.84 75.51		.69 .86	.62 .70	-1.15 .01	.01 .00	121.1 100.8		184.0 163.8	148.8 148.8	173.6 151.4	20.1 26.7	24.7 24.7	N-S S-N
Avg. Std Dv 90% CI	91.00 .61 2.72	86.84 .64 2.87		91.06 1.21 5.40	.77 .12 .54	.66 .06 .25	57 .82 3.66	.00 .01 .03	110.9 14.4 64.1	159.3 2.3 10.4	173.9 14.3 63.8	148.8 .0 .0	162.5 15.7 70.1	23.4 4.7 20.8	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-A-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

			4 I CROPHO	ME NO.	2	•	SIDELINE	- 15	0 m WEST				07/2	2/91		
		CORRECT	red (dB))	co	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	NCH 1	ARGET I	AS 40.8	kts												
B1 B2 B3 B4 B5 B6	88.29 86.87 87.36 86.52 86.77 87.63	85.81 83.29 84.43 82.53 83.56 83.67	76.48 71.04 72.36 71.14 72.38 70.38	87.98 84.42 85.21 84.10 85.36 84.18	41 06 .01 .00 06 07	38 94 02 -1.09 57 -1.41	61 63 29 27 27	.00 .00 .00 .00 .00	69.2 124.3 112.2 120.2 118.0 126.2	182.4 188.4 189.3 188.4 188.4 187.4	195.1 227.9 204.4 218.0 213.3 232.4	191.0 191.0 191.0 191.0 191.0	204.2 231.1 206.2 221.0 216.3 236.7	17.5 18.0 19.5 19.5 19.5 20.1	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.24 .66 .54	83.88 1.13 .93	72.30 2.20 1.81	85.21 1.46 1.20	10 .16 .13	73 .51 .42	37 .20 .17	.00 .00	111.7 21.4 17.6	187.4 2.5 2.1	215.2 14.1 11.6	191.0 .0 .0	219.3 13.1 10.7	19.0 1.0 .8	21.1 .0 .0	
TAKEOF	F TA	RGET 1A	s 40.8	kts												
C1 C5 C6 C7 C8 C9	92.74 91.42 92.15 91.63	87.48 88.93 87.91 88.48 87.78 88.20	74.76 76.63 74.59 75.40 74.39 75.30	90.31 87.92 88.86 88.60	.29 .37 .21 1.05 .90 .64	.14 .03 .06 .87 .26	59 31 48 64 48 83	.00 .00 .00 .00	102.9 110.2 85.8 114.1 142.2 107.2	186.1 189.5 186.3 198.6 191.6 190.6	190.9 201.9 186.8 217.4 312.6 199.6	185.5 185.5 185.5 185.5 185.5 185.5	190.3 197.6 185.9 203.1 302.6 194.2	18.0 19.5 18.5 19.0 19.0 17.5	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	91.77 .60 .49	88.13 .52 .43	75.18 .81 .67	88.67 .94 .77	.58 .34 .28	.30 .32 .26	56 .18 .15	.00 .00	110.4 18.4 15.2	190.4 4.6 3.8	218.2 47.4 39.0	185.5 .0 .0	212.3 44.6 36.7	18.6 .7 .6	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	ts 0.91	√h										
A1 A2 A3 A4 A5 A6	88.18	84.04 84.30 83.55 84.99 84.57 84.45	72.55 71.92 74.05 72.45 73.08	84.88 86.83 85.14 87.37 85.88 86.20	08 .93 07 .48 19 .74	07 13 52 .46 18 .68	47 .39 75 .27 49 .07	.88 .57 1.00 .48 .88 .57	117.7 137.5 122.1 101.1 73.1 72.0	209.1 225.1 209.2 220.5 206.9 225.2	236.0 333.4 246.9 224.8 216.2 236.8	211.2 211.2 211.2 211.2 211.2 211.2 211.2	312.9 249.2 215.3 220.7 222.0	32.9 43.2 30.9 41.2 32.4 40.1	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S
Std Dv 90% CI	.70 .82	.49 .40	.78 .64	.96 .79	.48 .39	.44 .37	.47 .38	.22 .18	26.9 22.1	8.5 7.0	42.7 35.1	.0 .0	36.5 30.0	5.3 4.4	.0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

90% CI

3.88

2.56

2.30

.09

1.93

TABLE B-A-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA **CORRECTED***

SIDELINE - 150 m WEST MICROPHONE NO. 07/22/91 ACOUSTIC TRACKING DATA (Meters) CORRECTED (dB) CORRECTIONS (dB) **ANGLE** (ACTUAL) (REFERENCE) SPEED(m/sec) DIR E۷ EPNL SEL ALM (Deg) PNLTm /\1(P) /\1(A) /\2 CPA SR CPAR SRR GRND REF /\3 150 m FLYOVER -- TARGET IAS 80.0 kts -- 1.0Vh 89.16 85.53 73.74 87.33 -.35 115.3 204.0 225.7 211.2 -.65 -.43 1.68 233.7 36.0 41.2 N-S 211.2 89.16 84.64 74.73 88.00 .83 .79 -.06 .91 110.5 227.4 242.8 225.5 43.7 41.2 S-N 89.16 85.09 74.24 87.67 .24 .07 112.9 Avg. 1.29 229.6 39.8 .70 3.13 Std Dv .00 .63 .83 1.02 .26 3.4 15.2 16.5 12.1 .0 5.8 5.4 .0 2.81 90% CI .00 2.12 3.73 4.55 73.9 54.0 .0 25.9 24.3 .0 150 m FLYOVER -- TARGET IAS 64.0 kts -- 0.8Vh 217.3 242.4 211.2 222.4 236.1 211.2 86.20 82.89 72.11 85.38 87.16 83.51 72.19 85.62 05 .34 .57 -.94 .28 116.3 27.3 N-S **D6** .63 .04 109.6 S-N .45 86.68 83.20 72.15 .49 112.9 219.9 Avg. 85.50 -.45 .26 239.3 211.2 229.9 31.1 32.9 Std Dv 4.7 3.6 .68 .44 .06 .17 .20 .16 -69 .03 5.4 8.1 .0 3.03 . 25 90% CI 1.96 .76 .88 19.9 150 m FLYOVER -- TARGET IAS 56.0 kts -- 0.7Vh n7 87.26 83.48 71.26 85.38 -.07 -.53 .29 .07 116.9 208.3 233.5 211.2 236.8 30.3 28.8 N-S 80 87.63 83.78 71.78 85.60 .91 .84 -.02 .14 121.2 227.4 246.8 30.9 28.8 S-N .42 87.44 83.63 71.52 85.49 119.1 249.6 . 16 . 14 .11 217.9 211.2 30.6 28.8 Avg. 241.8 Std Dv .26 .16 22.8 -21 .37 .69 .97 .22 .05 3.0 13.5 .0 ٥. 90% CI 1.17 . 95 1.64 .69 3.09 4.33 .98 .22 13.6 60.3 101.7 .0 31.6 1.9 .0 150 m FLYOVER -- TARGET IAS 48.0 kts -- 0.6Vh 86.50 83.03 71.66 84.66 87.73 83.84 70.93 84.69 D9 .55 -1.08 118.8 220.1 251.2 241.1 20.1 24.7 D10 .91 241.5 219.2 1.16 -.07 .19 105.5 232.6 26.7 24.7 87.12 226.4 246.4 23.4 83,43 71.29 84.68 .86 .68 -.57 .02 112.2 211.2 230.1 24.7 Avg. Std Dv .02 .33 8.8 39.5 6.9 30.6 .87 -52 .43 .71 .24 9.4 15.5 4.7 .0

1.48

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

3.19

1.07

42.0

.0

69.1

20.8

.0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

Volpe Center
Acoustics Facility

TABLE B-A-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		,	MICROPH	ONE NO.	3		SIDELIN	E - 15	0 m EAST				07/3	22/91		
	••••	CORRECTED (dB) SEL ALm PNLT			CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRA	CKING D	ATA (Me (REFE	ters) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPRO	ACH '	TARGET 1	IAS 40.	8 kts												
81 82 83 84 85	88.31 87.24 87.59 87.91	84.58 83.68 84.34 84.41 84.61 83.46	72.09 71.72 71.98 72.46	85.72 85.83 84.79 85.90	.46 07 01 07 .02 07	.16 -1.43 19 29 12 -1.63	96 63 29 27 28 14	.00 .00 .00 .00	107.4 126.1 127.3 93.9 120.4 133.2	188.4 189.3 188.4	233.1 238.0 188.8 218.9	191.0 191.0	236.3 240.1 191.4	17.5 18.0 19.5 19.5 19.5 20.1	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.86 .39 .32	.49 .40	71.95 .62 .51	85.58 .47 .38	.04 .21 .17	58 .75 .62	43 .31 .25	.00 .00 .00	118.0 14.7 12.1	190.0 3.9 3.2		191.0 .0 .0	225.3 26.4 21.7	19.0 1.0 .8	21.1	W-3
		RGET IA														
C1 C5 C6 C7 C8 C9	92.81 93.23 94.78 93.26	89.18 89.00 89.39 90.77 89.57 88.89	76.46 77.27 79.36 76.08	92.76 90.33 91.98 93.31 89.74 90.19	.70 .84 .42 1.34 .26	.54 .50 .28 .99 .22 .28	71 34 46 63 31 71	.00 .00 .00 .00 .00	143.2 150.6 146.5 151.7 152.2 151.6	190.4 185.3 198.1	319.1 387.8 335.4 417.9 394.8 389.6	185.5 185.5 185.5 185.5 185.5 185.5	309.9 377.7 335.6 391.3 397.2 389.9	18.0 19.5 18.5 19.0 19.0 17.5	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	93.31 .77 .63	.69 .56	1.28 1.05	91.39 1.50 1.23	.65 .41 .33 s 0.9v	.47 .29 .24	53 .18 .15	.00 .00 .00	149.3 3.6 3.0	189.0 5.3 4.3	374.1 38.2 31.4	185.5 .0 .0	366.9 35.7 29.4	18.6 .7 .6	20.6 .0 .0	
_					s U.YV	'n										
A1 A2 A3 A4 A5 A6	89.25 88.37	85.93 85.30	73.84	87.79 87.11 87.22 86.64 87.40 87.86	.09 17 .49 16 .55 .17	.10 16 .43 14 .49 .10	54 .75 96 .53 78	.57 .88 .67 .76 .57	117.2 125.5 100.3 102.2 73.9 116.9	212.5 207.3 219.9 207.7 221.0 212.3	239.0 254.7 223.5 212.5 230.0 238.0	211.2 211.2 211.2 211.2 211.2 211.2	237.5 259.5 214.7 216.1 219.8 236.8	32.9 43.2 30.9 41.2 32.4 40.1	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	89.08 .50 .41	85.61 .66 .54	73.81 .36 .29	87.33 .45 .37	.16 .31 .25	.14 .28 .23	11 .73 .60	.72 .14 .12	106.0 18.4 15.2	213.4 5.9 4.8	232.9 14.5 11.9	211.2 .0 .0	230.7 17.3 14.3	36.8 5.3 4.4	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-A-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		H	I CROPHO	NE NO.	3	:	SIDELIN	E - 15	O m EAST				07/2	2/91		
	1	CORRECT	ED (dB)			RECTIO			ACOUSTIC ANGLE	(ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
ΕV	EPNL	SEL	ALm	PNLTm		/\1(A)				CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0	√h										
D1 D2	90.32 91.25		76.11 75.02		.92 .21	.79 .08	89 .24	.91 1.68	112.7 134.6			211.2 211.2	228.9 296.8	36.0 43.7	41.2 41.2	
Avg. Std Dv 90% CI		87.19 .86 3.85	75.57 .77 3.44	89.71 .02 .09	.56 .50 2.24	.44 .50 2.24	32 .80 3.57	1.29 .54 2.43	123.7 15.5 69.1	10.3			262.8 48.0 214.4	39.8 5.4 24.3	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	V h										
D5 D6	88.19 88.16		74.16 73.68		.63 .10	.34 .08	-1.05 .25	.24 .28	100.4 106.6			211.2 211.2	214.7 220.4	27.3 35.0	32.9 32.9	
Avg. Std Dv 90% CI	88.17 .02 .09	84.60 .42 1.86	73.92 .34 1.52	87.79 .21 .92	.37 .37 1.67	.21 .18 .82	40 .92 4.10	.26 .03 .13	103.5 4.4 19.6	217.3 7.6 34.1				31.1 5.4 24.3	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	٧h										
D7 D8			73.49 73.48		.87 .31	.80 .29	08 .22	.28 .07	104.9 125.4			211.2 211.2	218.5 259.2	30.3 30.9	28.8 28.8	N-\$ S-N
Avg. Std Dv 90% CI			73.49 .01 .03	87.17 .20 .88	.59 .40 1.77	.55 .36 1.61	.07 .21 .95	.17 .15 .66	115.2 14.5 64.7	220.9 8.3 37.3	249.3 20.7 92.5	211.2 .0 .0	28.8	30.6 .4 1.9	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.6	٧h										
D9 D10			73.11 73.88		.28 16	.25 16	98 .45	.14 27	96.0 114.2	215.0 206.4		211.2 211.2		20.1 26.7	24.7 24.7	
Avg. Std Dv 90% CI	.74	.75	73.49 .54 2.43	.64	.06 .31 1.39	.05 .29 1.29	26 1.01 4.51	07 .29 1.29	105.1 12.9 57.5	210.7 6.1 27.2	221.3 7.1 31.9	211.2 .0 .0	222.0 13.6 60.6	23.4 4.7 20.8	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-B-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		K	II CROPHO	ME NO.	1		CENTE	RLINE -	CENTER	7046	WING 64	TA (Mak	07/2	2/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	(ACTU		TA (Met REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	\/S	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 40.8	kts												
B15 B16 B17 B18 B19 B20	90.52 90.71 89.64 89.04 89.89 88.66	87.28 85.94 84.80 85.10 85.60 84.65	79.23 75.78 73.92 73.97 76.75 75.02	92.15 90.11 89.30 89.17 90.25 89.92	21 09 .33 .08 .40	24 -2.17 93 23 21	-1.60 -2.17 -1.99 -2.06 -2.10 -1.78	.00 .00 .00 .00	86.1 132.0 120.1 111.0 92.6 118.6	112.8 114.0 118.6 115.8 121.5 117.4	113.0 153.6 137.1 124.0 121.6 133.7	118.2 118.2 118.2 118.2 118.2 118.2	117.2 157.4 136.7 126.6 118.3 134.7	13.9 12.3 13.4 12.9 13.4 13.9	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	89.74 .80 .66	85.60 .98 .80	75.78 2.01 1.65	90.15 1.07 .88	.10 .23 .19	62 .83 .68	-1.95 .22 .18	.00 .00 .00	110.1 17.5 14.4	116.7 3.2 2.6	130.5 14.2 11.7	118.2 .0 .0	131.8 14.9 12.3	13.3 .6 .5	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C21 C23 C24 C26 C27 C28	89.29 88.50 88.47 88.17 89.48 88.13	84.64 83.98 84.02 83.57 84.63 83.75	73.89 74.67 73.92 73.42 74.02 74.11	89.20 89.08 88.77 88.38 89.32 88.64	3.44 2.62 1.43 .74 .93	3.29 2.37 1.34 .69 .76	-3.75 -3.28 -3.12 -2.82 -2.35 -2.56	.00 .00 .00 .00	123.3 135.3 123.2 128.5 122.7 124.8	148.9 133.7 123.0 114.8 117.3 117.9	178.2 190.2 146.9 146.7 139.4 143.6	109.1 109.1 109.1 109.1 109.1	130.6 155.1 130.4 139.4 129.7 132.8	11.8 11.3 11.3 11.3 12.9 12.3	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	88.67 .57 .47	84.10 .45 .37	74.00 .40 .33	88.90 .36 .30	1.69 1.09 .90	1.56 1.05 .86	-2.98 .51 .42	.00 .00 .00	126.3 4.9 4.0	125.9 13.1 10.8	157.5 21.2 17.4	109.1 .0 .0	136.3 9.9 8.1	11.9 .6 .5	20.6 .0 .0	
150 m	FLYOVER				ts 0.91											
A1 A2 A3 A4 A5 A6	85.55 85.72 85.48 85.54 85.53 86.20	81.61 81.68 81.41 81.44 80.90 81.93	71.79 71.36 71.48 71.15 71.08 71.79	87.12 86.21 86.53 86.53 86.56 86.58	1.76 .73 .44 .74 1.14 1.08	1.70 .70 .41 .69 .89	-1.34 .26 -1.03 .05 -1.25	1.50 1.40 1.34 1.40 1.46 1.50	118.2 124.5 122.3 140.8 143.1 143.6	171.6 155.8 151.8 155.0 159.7 158.8	194.7 189.1 179.6 245.1 265.7 267.3	148.8 148.8 148.8 148.8 148.8 148.8	168.7 180.6 176.0 235.2 247.4 250.4	31.4 41.2 29.8 39.1 29.8 41.7	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	85.67 .27 .22	81.50 .35 .29	71.44 .31 .25	86.59 .29 .24	.98 .46 .38	.91 .44 .37	51 .77 .63	1.43 .06 .05	132.1 11.6 9.6	158.8 6.9 5.7	223.6 40.3 33.1	148.8 .0 .0	209.7 38.4 31.6	35.5 5.8 4.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-B-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

07/22/91 MICROPHONE NO. CENTERLINE - CENTER ACOUSTIC TRACKING DATA (Meters) CORRECTIONS (dB) (ACTUAL) (REFERENCE) SPEED(m/sec) DIR CORRECTED (dB) ANGLE E۷ EPNL SEL **PKLTm** /\1(P) /\1(A) /\2 (Deg) CPA CPAR SRR GRMD REF 150 m FLYOVER -- TARGET IAS 80.0 kts -- 1.0Vh .98 .36 87.57 83.10 72.59 87.85 -.91 160.7 179.3 148.8 166.0 36.0 N-S 2.87 116.3 2.89 45.3 .34 148.8 **D8** 88.40 83.98 72.64 88.00 .43 107.1 151.1 158.0 155.6 41.2 S-N 87.96 83.54 72.61 87.93 .74 .67 -.28 2.88 111.7 155.9 168.6 148.8 160.8 40.7 41.2 Avg. 0.0 .57 .44 .88 6.8 30.3 15.1 67.2 .0 Std Dv .62 .01 6.5 7.4 6.6 .04 29.0 .0 90% CI 2.56 .16 32.8 29.4 .06 150 m FLYOVER -- TARGET IAS 64.0 kts -- 0.8Vh 157.9 176.7 148.8 32.9 85.20 80.65 71.78 86.95 116.7 166.4 26.7 N-S DQ .83 .80 -1.16 .52 148.8 32.9 D10 81.28 70.81 86.44 .39 .29 .89 112.8 161.4 \$-¥ .61 .31 .55 .36 1.61 170.5 32.9 Avg. Std Dv 85.31 80.96 71.29 86.69 .50 114.8 154.6 148.8 163.9 10.3 1.45 .04 3.5 .15 8.8 .0 .0 .45 .69 2.8 4.6 12.3 39.1 .0 .0 90% CI 3.06 1.39 .16 20.5 15.8 45.8 .66 1.99 1.61 150 m FLYOVER -- TARGET IAS 56.0 kts -- 0.7Vh 84.42 80.03 70.85 84.42 80.23 70.90 -1.33 .80 .92 .84 .55 121.0 158.8 185.2 148.8 173.5 22.6 28.8 - .36 011 86.00 156.7 148.8 154.8 150.6 36.0 S-N .61 -.49 98.9 28.8 D12 85.70 .76 109.9 170.9 28.8 84.42 80.13 70.88 85.85 .69 -.26 156,8 148.8 162.1 29.3 Avg. 2.8 12.6 20.2 1.51 Std Dv .00 .04 .22 .21 .09 15.6 .0 16.2 .14 .21 69.8 .0 .0 90% CI .00 .63 .16 .95 .98 72.3 150 m FLYOVER -- TARGET IAS 48.0 kts -- 0.6Vh D13 84.92 80.39 71.74 86.91 .57 .53 -1.79 -1.08 111.6 154.4 166.1 148.8 160.0 17.0 24.7 N-S 148.8 84.40 80.07 -03 .02 -1.08 146.5 160.4 162.9 24.7 D14 70.54 85.93 1.11 114.1 S-H .30 84.66 80.23 71.14 86.42 .27 -1.08 112.8 150.4 163.3 148.8 161.4 24.7 Avg. Std Dv .37 .23 .38 .36 2.05 .00 5.6 4.0 .0 2.1 10.2 .0 .85 . 69 1.8 9.2 3.79 1.70 9.16 7.9 24.9 18.0 .0 .0 3.09 45.5 90% CI 1.64 1.01 1.61 .00

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-B-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

			(I CROPHO	ME NO.	2		SIDELINE	E - 15	0 m WEST				07/2	2/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	•••
APPROA	CH T	ARGET 1	AS 40.8	kts												
B15 B16 B17 B18 B19 B20	84.96 85.45 83.84 83.96 85.26 84.30	82.41 83.51 81.64 81.18 80.01 81.21	74.42 73.29 71.66 68.74	82.34 85.56 84.35 83.55 83.21 82.79	.23 .44 .41 .46 1.15	11 .34 .33 .20 -1.19	-1.82 -2.39 -2.05 -2.13 -2.16 -1.85	.00 .00 .00 .00	75.2 43.7 53.4 39.9 130.3 118.0	191.5 193.7 194.0 190.2 198.8 192.8		191.0 191.0 191.0 191.0 191.0	197.5 276.3 237.7 297.5 250.2 216.3	13.9 12.3 13.4 12.9 13.4 13.9	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	84.63 .69 .57	81.66 1.20 .98	71.40 2.14 1.76	83.63 1.17 .96	.55 .32 .26	02 .60 .49	-2.07 .21 .17	.00 .00 .00	76.8 38.9 32.0	193.5 3.0 2.4	249.2 37.2 30.6	191.0 .0 .0	245.9 37.1 30.5	13.3 .6 .5	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C21 C23 C24 C26 C27 C28	85.80 84.73 85.16 85.73 85.96 85.62	82.18 80.90 81.34 81.55 81.89 81.47	69.35 69.16 70.63 70.32	84.29 82.71 83.31 84.07 85.08 83.11	2.12 1.27 .97 .71 .77	1.88 1.17 .74 .55 .65	-3.08 -2.82 -2.87 -2.73 -2.22 -2.44	.00 .00 .00 .00	91.7 85.6 124.4 99.5 115.5 103.9	216.9 204.1 197.2 191.3 193.5 195.0	217.0 204.7 238.9 194.0 214.3 201.0	185.5 185.5 185.5 185.5 185.5 185.5	185.5 186.0 224.6 188.0 205.4 191.1	11.8 11.3 11.3 11.3 12.9	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.50 .46 .38	81.56 .44 .37	69.96 .72 .59	83.76 .88 .72	1.10 .54 .44	.93 .52 .43	-2.69 .31 .26	.00 .00	103.4 14.5 12.0	199.7 9.5 7.8	211.7 15.8 13.0	185.5 .0 .0	196.8 15.5 12.7	11.9 .6 .5	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 k	ts 0.91	√h										
A1 A2 A3 A4 A5 A6	84.26 83.62 83.87 83.13 83.76 83.14	79.11 80.96 78.77 80.57 79.41	69.47 67.15 70.25 67.07 69.16 68.18	81.82 82.36 81.53 81.77 82.79	1.23 .87 .43 .69 .79 1.04	.45 54 .32 79 .33	-1.02 .22 98 .04 -1.09	1.68 .48 1.62 .48 1.69	120.4 64.8 109.9 63.7 115.8 57.2	226.3 223.3 213.2 220.5 218.5 224.6	246.9 226.8 246.0 242.6 267.2	211.2 211.2 211.2 211.2 211.2 211.2	233.5 224.7 235.7 234.5 251.3	31.4 41.2 29.8 39.1 29.8 41.7	37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	83.63 .44 .36	79.90 .91 .75	68.55 1.30 1.07	82.15 .52 .43	.84 .28 .23	.02 .54 .44	43 .66 .54	1.06 .67 .55	88.6 29.6 24.3	221.1 4.8 3.9	248.7 14.6 12.0	.0 .0	237.5 9.4 7.7	35.5 5.8 4.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-B-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. SIDELINE - 150 m WEST 07/22/91 ACOUSTIC TRACKING DATA (Meters) (ACTUAL) SPEED(m/sec) DIR CORRECTED (dB) CORRECTIONS (dB) ANGLE (REFERENCE) ΕV EPNL SEL ALM **PNLTm** /\1(P) /\1(A) /\2 /\3 (Deg) CPA CPAR SRR GRND REF 150 m FLYOVER -- TARGET IAS 80.0 kts -- 1.0Vh 83.58 70.73 83.19 -.81 3.00 112.3 240.4 228.2 41.2 .75 84.44 81.78 71.12 83.45 .56 .27 219.9 **D8** .70 .43 82.4 -.27 70.93 1.72 97.4 220.2 230.1 211.2 220.6 40.7 41.2 85.33 82.68 83.32 .78 .65 Avg. .76 3.41 3.3 14.5 14.5 64.7 .0 Std Dv 1.25 1.27 .12 .13 1.82 21.1 10.7 6.6 .0 1.23 29.4 90% CI 5.59 5.68 .82 .54 .60 .0 47.7 .0 150 m FLYOVER -- TARGET IAS 64.0 kts -- 0.8Vh D9 83.21 79.17 68.11 81.73 223.7 311.0 211.2 293.6 1.16 -.06 -1.15 .73 134.0 26.7 32.9 N-S D10 83,60 79.27 67.64 82.66 -.37 .38 63.3 219.0 245.2 211.2 236.4 41.2 32.9 S-N .69 .81 - .22 -.17 221.4 83.40 79.22 67.88 82.20 .92 .56 98.7 278.1 211.2 265.0 34.0 32.9 Avg. 3.3 10.3 50.0 Std Dv .28 .07 .33 .66 .33 .22 1.39 .25 46.5 .0 40.4 .0 14.8 207.7 223.2 .0 180.6 90% CI 1.23 .32 1.48 2.94 1.48 .98 6.19 1.10 45.8 . 0 150 m FLYOVER -- TARGET [AS 56.0 kts -- 0.7Vh -.09 .68 - .24 220.3 238.8 211.2 228.9 22.6 28.8 81.87 78.88 68.12 80.73 -1.23 112.7 D11 N-S 248.7 211.2 83.45 79.37 66.27 80.70 222.2 236.4 D12 .75 .42 63,3 36.0 28.8 .22 .16 88.0 29.3 28.8 82.66 79.13 67.19 80.71 .80 -.24 221.3 243.8 211.2 232.6 Avg. .04 .36 34.9 .0 9.5 Std Dv .65 1.40 5.3 .0 1.12 .35 1.31 .02 1.3 7.0 23.7 31,3 2.90 6.25 1.61 156.0 6.0 90% CI 4.99 1.55 5.84 .09 . 19 .0 .0 150 m FLYOVER -- TARGET IAS 48.0 kts -- 0.6Vh -1.80 -.76 108.8 232.3 211.2 223.2 17.0 79.32 68.82 81.38 .88 219.8 24.7 D13 82.41 .66 N-S **D14** 83.68 80.05 68.04 81.24 .73 .49 .97 .40 124.9 214.8 262.1 211.2 257.7 31.4 24.7 S-N -.41 240.5 83.04 79.68 68.43 81.31 .81 .58 -.18 116.9 217.3 247.2 211.2 24.2 24.7 Avg. Std Dv 1.96 .90 .0 10.2 3.5 .10 -82 11.4 21.1 24.4 .0 .52 .55 .11 . 12 94.1 108.9 90% CI 4.01 2.30 2.46 .44 .47 54 8.74 3.66 50.8 15.8 ٥. 45.5 . 0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

May 6, 1993

TABLE B-B-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		P	II CROPHO	NE NO.	3		SIDELIN	E - 15	O m EAST				07/2	2/91		
		CORRECT	ED (dB))	СО	RRECTIO	NS (dB)	-	ACOUSTIC ANGLE	TRAC		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	ACH T	ARGET I	AS 40.8	kts												
B15 B16 B17 B18 B19 B20	84.55 85.42 84.75 84.83 84.27 84.33	82.07 82.86 81.85 81.89 81.30 81.07	71.33 72.34 70.28 69.70 69.84 70.62	82.88 84.19 82.81 82.27 82.19 83.11	10 15 .07 .17 .00	15 19 .01 04 04	-1.68 -2.18 -1.92 -2.10 -1.89 -1.74	.00 .00 .00 .00	74.8 93.7 55.4 39.7 90.9 91.8	185.2 184.5 188.3 188.7 187.0 188.0	191.9 184.9 228.6 295.2 187.0 188.1	191.0 191.0 191.0 191.0 191.0	197.9 191.4 231.9 298.7 191.0	13.9 12.3 13.4 12.9 13.4 13.9	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	84.69 .42 .35	81.84 .63 .52	70.68 1.00 .82	82.91 .72 .60	.03 .14 .11	07 .08 .07	-1.92 .20 .16	.00 .00 .00	74.4 22.4 18.4	186.9 1.7 1.4	212.6 43.7 35.9	191.0 .0 .0	217.0 43.0 35.4	13.3 .6 .5	21.1 .0 .0	
TAKEO	F TA	RGET IA	s 40.8	kts												
C21 C23 C24 C26 C27 C28	87.47 86.28 86.53 86.55 88.05 86.16	82.97 83.01 82.57 82.74 84.19 82.58	70.43 71.49 70.33 71.61 73.91 71.21	84.85 85.48 84.56 85.53 88.74 85.05	1.86 .89 .75 .42 .54	1.01 .24 .28	-2.85 -2.68 -2.72 -2.62 -2.08 -2.24	.00 .00 .00 .00	127.1 131.5 125.3 89.3 106.0 81.9	205.6 197.7 190.6 186.4 187.2 186.4	257.7 263.9 233.6 186.5 194.8 188.3	185.5 185.5 185.5 185.5 185.5 185.5	232.4 247.5 227.2 185.5 192.9 187.3	11.8 11.3 11.3 11.3 12.9 12.3	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.84 .75 .62	83.01 .61 .50	71.50 1.30 1.07	85.70 1.53 1.26	.81 .55 .45	.46 .29 .24	-2.53 .30 .25	.00 .00 .00	110.2 21.1 17.3	192.3 7.8 6.4	220.8 35.5 29.2	185.5 .0 .0	212.1 26.8 22.0	11.9 .6 .5	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 k	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	83.27 84.48 82.65 84.28 82.74 84.00	80.11 81.26 79.67 81.44 79.72 81.20	69.91 69.42 69.30 70.19 69.58 69.83	82.52 82.07 83.10 82.06 83.07	1.28 .23 .46 .29 .85	1.05 36 .20 .22 .71 .21	-1.08 .51 99 .24 -1.13	.36 1.66 .51 1.66 .43 1.69	100.3 120.2 106.3 103.4 71.8 107.8	229.5 208.9 213.6 210.7 220.8 212.0	241.8 222.5		244.5 220.0 217.1	31.4 41.2 29.8 39.1 29.8 41.7	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	83.57 .79 .65	80.57 .82 .68	69.71 .33 .27	82.68 .53 .44	.59 .40 .33	.34 .49 .40	33 .82 .67	1.05 .68 .56	101.6 16.1 13.3	215.9 7.8 6.4	228.2 9.2 7.6	211.2 .0 .0	223.4 10.7 8.8	35.5 5.8 4.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-B-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		H	I CROPHO	NE NO.	3	:	SIDELIN	E - 15	0 m EAST				07/2	2/91		
		CORRECT	ED (dB)		c		NS (dB)		ACOUSTIC ANGLE	(ACTU		TA (Met		SPEED	(m/sec)	DIR
ĒV	EPNL	SEL	ALm	PNLTm	/\1(P)					CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0	/h										
D7 D8			70.07 70.87		.96 .64	.74 .43	70 .48	.39 3.04	146.5 156.4			211.2 211.2	382.3 527.9	36.0 45.3	41.2 41.2	
Avg. Std Dv 90% CI		82.37 1.68 7.48	70.47 .57 2.53	83.60 1.07 4.77	.80 .23 1.01	.59 .22 .98	11 .83 3.73	1.71 1.87 8.37	151.4 7.0 31.3	6.7			455.1 103.0 459.7	40.7 6.6 29.4	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	/h										
D9 D10			70.00 70.30		1.21 .52	.93 .30	-1.00 1.06	.34 .70	155.2 155.6			211.2 211.2	503.2 511.6	26.7 41.2	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI		80.61 .81 3.60	70.15 .21 .95	82.73 .45 2.02	.87 .49 2.18	.62 .45 1.99	.03 1.46 6.50	.52 .25 1.14	155.4 .3 1.3	211.6 6.6 29.4		211.2 .0 .0	5.9	34.0 10.3 45.8	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	/h										
D11 D12			69.72 67.83		1.29 .54	.86 .18	-1.16 1.02		157.1 149.8			211.2 211.2	542.7 419.4	22.6 36.0	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI	83.08 .98 4.32		68.78 1.34 5.97		.91 .53 2.37	.52 .48 2.15	07 1.54 6.88	.10 .40 1.77	153.5 5.2 23.0	5.5	485.4 100.5 448.6	211.2 .0 .0	481.0 87.2 389.3	29.3 9.5 42.3	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.61	/h										
D13 D14			68.70 70.12		.54 .21		-1.61 1.18	.40 76	147.5 152.1			211.2 211.2	393.1 451.1	17.0 31.4	24.7 24.7	
Avg. Std Dv 90% CI	1.53	80.07 1.36 6.09	69.41 1.00 4.48	82.17 1.36 6.06	.38 .23 1.04	.22 .22 .98	22 1.97 8.81	18 .82 3.66	149.8 3.3 14.5	4.4	414.1 31.5 140.8		422.1 41.0 183.1	24.2 10.2 45.5	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-C-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

			IICROPHO	NE NO.	1		CENTE	RLINE -	CENTER ACOUSTIC	TDAC	KING DA	ITA (Met	07/2	3/91		
		CORRECT	ED (dB)		со	RRECTION	IS (dB)		ANGLE	(ACTU	AL)	(REFER	ENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTM	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 40.8	kts											_	
B18 B20 B21 B22 B23 B24	93.44 92.64 92.61 91.54 91.82 92.40	91.68 90.84 89.89 89.77 89.09 90.54		93.96 92.57 92.99 91.65	15 64 27 33 62 59	14 59 -1.15 36 -1.46 73	1.18 1.22 1.14 1.28 1.54 1.60	.00 .00 .00 .00	70.0 73.9 97.5 79.9 124.7 82.6	111.0 115.3 114.0 111.3	124.2 115.6 116.2 115.8 135.4 112.5	118.2 118.2 118.2 118.2 118.2 118.2	123.1 119.2 120.1 143.9	27.3 26.2 26.7 27.3 28.3 28.8	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.41 .67 .55	90.30 .91 .75	80.92 1.19 .98	93.05 1.03 .85	43 .21 .17	74 .49 .41	1.33 .20 .16	.00 .00	88.1 20.3 16.7	113.3 2.4 2.0	119.9 8.5 7.0	118.2 .0 .0	125.2 9.5 7.8	27.4 1.0 .8	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C25 C26 C27 C28 C29 C30	89.57 88.38 88.67 88.50	85.33 84.36	74.23 74.72 73.44 74.71 74.05 73.23	88.96 89.65 88.03 89.79 88.73 87.75	.24 1.04 13 89 .27	.25 .99 10 80 .27 -1.39	1.49 1.18 .82 1.62 1.02	.00 .00 .00 .00	135.6 133.6 126.7 135.5 141.4 128.0	112.3 120.5 108.3 101.4 112.1 95.1	160.5 166.4 135.0 144.6 179.9 120.7	109.1 109.1 109.1 109.1 109.1	156.0 150.6 136.0 155.5 175.0 138.5	29.8 29.8 24.7 27.8 26.7 25.7	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	88.60 .54 .45	84.48 .46 .38	74.06 .63 .52	88.82 .83 .68	16 .90 .74	13 .85 .70	1.28 .33 .27	.00 .00 .00	133.5 5.4 4.5	108.3 9.0 7.4	151.2 21.8 17.9	109.1 .0 .0	151.9 14.1 11.6	27.4 2.1 1.7	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A7	82.28 82.65 82.59 82.66 82.66 83.19	78.46 78.57 78.55 78.84 79.01 79.20	70.12 70.73 70.25 70.74 70.61 71.24	85.57 84.93 85.71 84.90 86.18	.93 .90 1.19 .51 .75	.89 .85 1.13 .50 .72 .44	.09 97 01 83 .43 87	38 53 19 19 19	105.6 106.3 98.3 98.5 115.3 105.8	163.7 162.8 167.7 157.4 161.0 156.5	169.9 169.6 169.5 159.2 178.1 162.6	148.8 148.8 148.8 148.8 148.8	154.4 155.0 150.3 150.4 164.6 154.6	41.7 32.4 41.7 32.4 44.2 31.9	37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	82.67 .29 .24	78.77 .26 .24	70.61 .40 .33	85.37 .53 .44	.81 .26 .21	.76 .26 .21	36 .60 .49	28 .14 .12	105.0 6.3 5.1	161.5 4.2 3.4	168.2 6.6 5.4	148.8 .0 .0	154.9 5.2 4.3	37.4 5.7 4.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

07/23/91 MICROPHONE NO. CENTERLINE - CENTER ACOUSTIC TRACKING DATA (Meters) CORRECTIONS (dB) (ACTUAL) (REFERENCE) SPEED(m/sec) DIR CORRECTED (dB) **ANGLE** Eν CPA **CPAR** SRR GRND REF **EPNL** SEL ALm **PNLTm** /\1(P) /\1(A) /\2 /\3 (Deg) 150 m FLYOVER -- TARGET IAS 80.0 kts -- 1.0Vh 83.89 79.51 72.09 86.93 121.1 167.0 195.1 148.8 173.7 44.2 41.2 N-S **D8** . 15 **D9** 83.97 79.80 72.68 87.61 .51 .41 -.48 .15 106.1 155.9 162.2 148.8 154.8 38.6 41.2 S-N . 15 178.6 83.93 79.65 72.38 87.27 .92 .77 - .34 113.6 161.4 148.8 164.3 41.4 41.2 Avg. Std Dv .21 13.4 .0 .57 .52 .00 10.6 7.8 23.3 .0 4.0 2.15 17.7 ٥. 90% CI .92 1.86 2.56 .00 47.4 35.0 103.9 .0 59.7 150 m FLYOVER -- TARGET IAS 64.0 kts -- 0.8Vh .09 163.7 167.8 148.8 37.0 32.9 102.7 152.5 **D10** 82.64 77.86 69.57 84.72 1.04 .28 -.34 N-S 82.93 78.89 70.00 84.85 .95 .82 -1.04 -.19 102.2 162.4 166.1 148.8 152.2 28.3 32.9 C-M 011 82.79 69.79 1.00 32.7 32.9 84.79 .55 -.47 -.26 102.4 163.0 167.0 148.8 152.4 Avg. 78.38 .0 Std Dv .73 .38 .80 .11 1.2 .0 6.2 .21 .30 .09 .06 . 2 27.5 90% CI .92 3.25 1.36 .41 .28 1.70 3.57 -47 1.6 5.4 .0 . 9 .0 150 m FLYOVER -- TARGET IAS 56.0 kts -- 0.7Vh 166.1 169.6 148.8 151.8 35.0 28.8 83.29 79.19 69.47 84.25 1.05 .36 .05 101.6 N-S D12 1.21 D13 79.71 70.49 85,10 1.28 1.12 -1.00 .05 106.8 167.2 174.6 148.8 155.4 25.7 28.8 S-N 69.98 84.68 1.25 1.09 -.32 .05 104.2 166.6 172.1 148.8 153.6 30.4 28.8 83.55 79.45 Avg. 2.5 .0 .05 .96 .00 3.5 6.6 Std Dv .37 .37 .72 .60 .05 3.7 .0 3.5 29.4 Ō. 15.8 11.4 90% CI 1.64 3.22 2.68 .22 .22 4.29 .00 16.4 .0 150 m FLYOVER -- TARGET IAS 48.0 kts -- 0.6Vh 83.96 79.99 70.24 84.69 1.05 118.2 166.1 188.5 148.8 168.8 29.3 24.7 N-S D14 1.20 .27 .38 149.4 24.7 D16 84.27 80.26 70.43 85.39 .97 .93 -1.33.25 95.4 164.1 164.8 148.8 20.1 S-N 84.11 176.6 148.8 159.1 24.7 24.7 80.13 70.33 85.04 1.09 .99 - .53 .31 106.8 165.1 Avg. Std Dv .08 1.13 13.7 6.5 .0 .09 16.8 .0 . 22 .19 .13 .49 . 16 16.1 1.4 6.3 74.8 61.2 29.0 .0 90% CI .98 .85 .60 2.21 .73 .38 5.05 .41 72.0 ٠0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

May 6, 1993

TABLE B-C-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	II CROPHO	NE NO.	2	:	SIDELINE	- 15	0 m WEST				07/2	3/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	\CH 1	ARGET 1	AS 40.8	3 kts												
B18 B20 B21 B22 B23 B24	87.41 88.17 86.86 88.69 87.66 88.01	85.45 86.49 84.75 86.44 85.30 86.16	75.57 78.21 74.92 77.03 74.10 75.11	87.20 90.17 86.78 89.17 85.77 86.50	.02 16 01 14 21 15	.03 12 .02 13 16	1.09 .98 1.00 1.15 1.33	.00 .00 .00 .00	68.4 57.8 59.2 56.6 49.8 59.8	192.4 189.7 192.3 189.8 188.9 189.6	207.0 224.2 223.8 227.3 247.2 219.4	191.0 191.0 191.0 191.0 191.0	205.4 225.7 222.3 228.7 249.9 220.9	27.3 26.2 26.7 27.3 28.3 28.8	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.80 .64 .52	85.76 .70 .58	75.82 1.52 1.25	87.60 1.70 1.40	11 .09 .08	08 .08 .07	1.15 .17 .14	.00 .00	58.6 6.0 4.9	190.4 1.5 1.2	224.8 13.1 10.8	191.0 .0 .0	225.5 14.4 11.9	27.4 1.0 .8	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C25 C26 C27 C28 C29 C30	84.98 85.69 85.17 85.22 84.48 85.15	81.76 81.34 80.68 79.63	69.33 68.36	82.35 83.58 84.05 83.09 81.70 83.86	.35 .49 .15 69 .05	71 .31 .14 -1.38 -1.06 31	1.45 1.41 .72 1.50 1.10	.00 .00 .00 .00 .00	137.5 140.8 145.9 139.3 135.2 135.1	192.4 194.3 188.6 177.0 187.2 181.1	307.6 336.7 271.5	185.5 185.5 185.5 185.5 185.5 185.5	274.3 293.6 331.0 284.5 263.2 262.9	29.8 29.8 24.7 27.8 26.7 25.7	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.11 .39 .32	80.79 .86 .71	68.34 .96 .79	83.11 .92 .76	00 .45 .37	50 .67 .55	1.21 .30 .25	.00 .00	139.0 4.1 3.3	186.8 6.6 5.5	287.2 30.0 24.7	185.5 .0 .0	284.9 25.6 21.0	27.4 2.1 1.7	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72 kts	0.9Vh											
A1 A2 A3 A4 A5 A7	80.63 80.68 80.66 80.74 80.86 81.42	77.51 77.47 77.67 77.62 78.24	68.72 67.86 68.20	80.67 81.23 80.99 82.18 80.97 81.56	.50 .80 .53 .47 .23 .43	.49 .75 .46 .41 .20	.27 92 .28 79 .65 84	25 36 13 14 13 14	109.6 114.5 109.6 110.1 117.2 107.6	228.7 222.7 221.8 217.1 220.9	251.2 236.4 236.1 244.1 231.7	211.2 211.2 211.2 211.2	232.1 224.2 224.9 237.5 221.5	41.7 32.4 41.7 32.4 44.2 31.9	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	80.83 .30 .25	77.70 .28 .23	68.10 .33 .28	81.27 .54 .44	.49 .18 .15	.43 .19 .16	22 .70 .58	19 .09 .08	111.4 3.6 3.0	222.4 3.8 3.1	239.4 7.0 5.8	211.2 .0 .0	227.4 6.1 5.0	37.4 5.7 4.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-C-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		1	41 CROPHO	WE NO.	2		SIDELIN	E - 15	0 m WEST				07/2	3/91		
		CORRECT	TED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	(ACT	JAL)	NTA (Met (REFE	ters) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAI	RGET 1AS	80.0 kt	ts 1.0	Vh										
D8 D9			68.00 68.54		.67 .39	.10 .00	.04 46	.09	137.0 120.7			211.2 211.2	309.9 245.7	44.2 38.6	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI		78.63 .80 3.57		82.37 .52 2.30	.53 .20 .88	.05 .07 .32	21 .35 1.58	.09 .00 .00	128.9 11.5 51.5	3.4			277.8 45.4 202.7	41.4 4.0 17.7	41.2 .0 .0	
TAKEOF	F TA	RGET I	\s 64.0	kts ().8Vh											
D10 D11			6.83 67.96		.57 .82	.39 .80	.27 -1.02	28 20	110.8 110.3			211.2 211.2		37.0 28.3	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI	80.60 .10 .44	77.25 .17 .76	67.40 .80 3.57	80.76 .89 3.98	.69 .18 .79	.60 .29 1.29	38 .91 4.07	24 .06 .25	110.6 .4 1.6	226.4 4.5 19.9		211.2 .0 .0		32.7 6.2 27.5	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	Vh										
D12 D13			67.57 66.08		.66 .83	.60 .76	.56 84	10 14	105.5 92.0			211.2 211.2	219.2 211.3	35.0 25.7	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI	80.96 .95 4.23	77.67 .78 3.50	66.82 1.05 4.70	80.07 .74 3.31	.75 .12 .54	.68 .11 .51	14 .99 4.42	12 .03 .13	98.8 9.5 42.6	227.1 2.4 10.7		211.2 .0 .0	215.3 5.6 24.9	30.4 6.6 29.4	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.6	√h										
D14 D16			66.24 66.74		.64 1.01	.53 .92	.48 -1.31	.05 .01	122.1 115.4			211.2 211.2		29.3 20.1	24.7 24.7	N-S S-N
Avg. Std Dv 90% CI	.23	77.99 .30 1.36	66.49 .35 1.58	79.86 .34 1.52	.82 .26 1.17	.73 .28 1.23	41 1.27 5.65	.03 .03 .13	118.8 4.7 21.2	228.4 5.3 23.7	5.7	211.2	241.6 10.9 48.6	24.7 6.5 29.0	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

90% CI

.31

.29

23.6

.0

27.1

TABLE 8-C-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. 3 SIDELINE - 150 m EAST 07/23/91 ACQUISTIC TRACKING DATA (Meters) CORRECTED (dB) CORRECTIONS (dB) **ANGLE** (ACTUAL) (REFERENCE) SPEED(m/sec) DIR /\1(P) /\1(A) /\2 E۷ EPNL SEL (Deg) SR **CPAR** SRR GRND REF ALm **PNLTm** /\3 **CPA** APPROACH -- TARGET IAS 40.8 kts 187.6 207.2 191.0 **R18** 85.31 82.66 70.52 84.06 -.21 -.38 1.20 .00 115.1 210.9 27.3 21.1 -.42 -.30 -.24 -.47 1.13 183.4 21.1 **B20** 85.13 82.48 70.34 83.50 .00 82.6 184.9 191.0 192.6 26.2 N-S - .33 - .26 191.0 187.4 26.7 **B21** 84.45 81.89 70.11 83.02 1.15 .00 97.0 186.0 192.4 21.1 N-S 191.0 85.05 84.07 186.9 27.3 **B22** 82.44 71.09 1.21 .00 94.7 187.5 191.6 21.1 N-S **B23** 84.96 82.52 69.65 82.90 -.43 -.48 1.43 .00 132.3 184.5 249.3 191.0 258.0 28.3 21.1 N-S **B24** 70.40 .00 184.2 184.3 88.2 -.35 82.29 70.35 83.47 1.27 .00 101.7 185.4 200.1 191.0 206.1 27.4 21.1 84.84 -.36 Avg. Std Dv .09 .00 25.6 26.5 1.0 .45 .37 .51 .10 .16 18.6 .0 .0 .37 21.0 90% CI _31 -39 .42 .08 .07 .13 .00 15.3 1.4 .0 21.8 .8 _0 TAKEOFF -- TARGET IAS 40.8 kts -.28 -.26 130.1 182.1 238.3 185.5 C25 83.25 1.69 29.8 20.6 86.84 71.27 . 00 242.6 84.64 N-S 284.1 C26 87.08 83.50 72.41 85.76 .24 .24 1.49 .00 137.9 190.5 185.5 276.6 29.8 20.6 N-S -.16 201.5 **C27** 86.31 82.46 70.90 85.63 -.42 .89 .00 115.9 181.2 185.5 206.2 24.7 20.6 N-S N-S **C28** 87.40 83.22 73.82 88.57 .08 -.07 1.31 .00 121.1 185.0 216.1 185.5 216.6 27.8 20.6 71.31 187.2 185.5 222.4 C29 83.20 85.42 .05 .07 1.10 .00 123.5 224.5 20.6 86.63 26.7 N-S C3087.64 84.19 73.62 87.51 -.79 -.70 nn 121.7 173.9 204 5 185.5 218.0 20.6 M-S 1.25 25.7 86.98 83.30 72.22 86.26 -.14 -.19 1.29 .00 125.0 183.3 228.2 185.5 230.4 27.4 20.6 Avg. .56 1.27 .37 .00 30.5 Std Dv .49 1.47 .34 .28 7.8 5.7 .0 25.6 2.1 .0 90% CI .41 -46 1.04 - 30 .28 .23 . 00 25.1 n .0 6.4 150 m FLYOVER -- TARGET IAS 72.0 kts -- 0.9Vh A1 80.90 77.83 68.56 82.15 .36 .31 .32 -.26 105.0 220.8 228.5 211.2 218.7 41.7 37.0 N-S 77.78 .01 -.63 -.34 101.3 218.0 80.92 68.62 82.35 -.04 213.8 211.2 215.4 32.4 37.0 A2 S-N .70 -.14 .67 99.4 A3 80.55 77.48 67.79 81.05 230.3 41.7 37.0 227.2 211.2 214.1 M-S 77.38 A4 80.46 68.13 81.63 -.05 -.02 -.62 -.13 103.4 212.9 219.0 211.2 217.2 32.4 37.0 S-N A5 81.00 77.90 68.16 81.69 .54 .47 .54 -.14 47.4 222.9 302.9 211.2 287.0 37.0 N-S 104.6 78.36 68.53 82.47 -.02 -.04 - . 68 219.6 **A7** 81.52 -.13 212.5 218.3 -.19 80.89 .23 -.15 Avg. 68.30 81.89 .26 93.5 218.3 236.4 211.2 228.4 37.4 37.0 33.0 Std Dv .38 .35 .33 .53 .32 .31 .56 .09 22.7 6.2 .0 28.7 5.7 .0

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

.07

18.7

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-C-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. SIDELINE - 150 m EAST 3 07/23/91 ACOUSTIC TRACKING DATA (Meters) CORRECTED (dB) CORRECTIONS (dB) ANGLE (ACTUAL) (REFERENCE) SPEED(m/sec) DIR E۷ EPNL SEL ALM **PNLTm** /\1(P) /\1(A) /\2 /\3 (Deg) CPA SR **CPAR** SRR GRND REF 150 m FLYOVER -- TARGET IAS 80.0 kts -- 1.0Vh 82.17 78.85 69.28 83.15 82.97 79.88 70.00 83.61 .05 -.30 .59 .54 -.04 .09 103.1 44.2 224.1 230.1 211.2 216.9 41.2 N-S D9 38.6 .09 105.0 212.4 219.9 211.2 218.7 41.2 82.57 79.36 69.64 83.38 .28 .25 -.13 .09 104.1 218.3 225.0 217.8 41.4 211.2 41.2 Std Dv .41 1.3 .25 .00 8.3 4.0 .0 ۰0 1.3 5.7 2.53 3.25 2.27 32.2 90% CI 1.45 1.96 1.83 17.7 .00 36.9 -0 .0 6.0 150 m FLYOVER -- TARGET IAS 64.0 kts -- 0.8Vh .38 -.05 .32 220.8 222.9 211.2 213.3 212.1 220.2 211.2 219.2 **D10** 80.69 77.31 67.32 80.95 .37 -.32 98.0 37.0 32.9 N-S D11 81.19 77.93 67.52 81.58 .05 -.18 105.5 28.3 32.9 S-N 80.94 77.62 67.42 .21 - .25 Avg. 81.26 .16 -.18 101.8 216.5 221.5 216.3 32.7 32.9 .71 3.16 Std Dv .35 .44 1.96 .23 .30 .10 5.3 1.9 6.2 6.2 .0 4.2 .0 90% CI 1.58 .63 1.99 23.7 .ō 18.6 27.5 8.5 Ō. 150 m FLYOVER -- TARGET IAS 56.0 kts -- 0.7Vh 80.92 77.51 67.91 81.64 80.55 77.59 67.76 81.59 012 .45 .45 .62 -.14 109.8 222.2 236.1 211.2 224.4 35.0 28.8 D13 .36 220.2 228.2 211.2 218.8 -.67 -.10 105.1 28.8 -.03 80.74 77.55 67.84 107.4 81.61 -.12 Avg. .42 .41 221.2 232.1 211.2 221.6 30.4 28.8 Std Dv .26 .06 .11 .04 .04 .06 .91 .03 3.3 5.6 .0 6.6 .0 17.7 90% CI 1.17 .25 .47 .16 .19 4.07 .13 14.8 6.3 24.9 .0 .0 150 m FLYOVER -- TARGET IAS 48.0 kts -- 0.6Vh 81.20 77.59 66.95 80.74 81.49 78.48 66.96 80.74 .42 -.04 D14 .51 .00 96.9 223.0 224.6 211.2 212.7 29.3 24.7 D16 -.09 - .91 .04 93.4 211.9 212.3 211.2 211.6 20.1 24.7 81.35 78.02 66.96 80.74 .22 . 19 -.20 .02 95.2 Avg. 217.4 218.5 211.2 24.7 212.1 24.7 Std Dv .01 .00 .44 .33 1.00 .03 2.5 8.7 6.5 90% CI .92 2.72 .03 .00 1.96 1.45 11.0 35.0 38.8 3.5 29.0 .0 .0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		×	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	3/91		
		CORRECT	ED (dB)		CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 40.8	kts												
B16 B17 B18 B20 B21 B22	93.90	90.87 92.44 91.87 89.07 86.83 88.80	81.80 82.34 81.77 78.65 77.30 79.69	94.42 93.94 91.05	.27 .36 .39 .20 .46	.21 .31 .04 .14 .19	.41 .72 .74 .88 .03	.00 .00 .00 .00	68.6 88.8 78.1 116.9 77.0 100.6	120.7 122.0 121.6 120.0 123.1 126.1	129.7 122.0 124.3 134.6 126.3 128.3	118.2 118.2 118.2 118.2 118.2 118.2	118.2 120.8 132.6 121.3	23.7 25.7 25.7 26.2 22.1 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.05 1.71 1.41	89.98 2.12 1.75	80.26 2.03 1.67	92.54 1.71 1.41	.40 .17 .14	.06 .31 .25	.56 .30 .25	.00 .00 .00	88.3 17.8 14.7	122.2 2.2 1.8	127.5 4.4 3.6	118.2 .0 .0	123.4 5.4 4.4	24.9 1.6 1.3	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C24 C25 C26 C27 C28 C29	86.03 85.17 86.39 85.74 85.30 86.17	82.71 81.90 83.15 82.41 82.29 82.16	72.39 71.12 72.85 72.31 71.91 71.78	86.07 85.10 86.86 86.44 85.94 86.24	13 07 09 .19 .07	34 18 23 .02 05	.33 .41 .71 23 07	.00 .00 .00 .00 .00	104.6 107.8 102.9 98.7 112.3 91.3	106.1 106.7 106.5 109.5 108.0 122.5	109.6 112.1 109.3 110.7 116.8 122.6	109.1 109.1 109.1 109.1 109.1	112.7 114.6 111.9 110.4 117.9 109.1	21.6 22.1 23.7 19.5 20.1 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.80 .49 .40	82.44 .44 .36	72.06 .60 .49	86.11 .59 .49	.22 .57 .47	04 .30 .25	.11 .45 .37	.00 .00	102.9 7.3 6.0	109.9 6.3 5.2	113.5 5.2 4.3	109.1 .0 .0	112.8 3.1 2.6	21.3 1.5 1.3	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A6	80.80 81.60 79.85 80.14 81.00 80.97	77.02 78.35 76.62 77.04 77.84 77.75	66.96 68.90 68.45 67.95 68.71 68.73	81.40 83.50 82.66 81.56 82.91 82.49	1.01 .40 1.02 1.53 1.18 1.29	.22 .35 .72 1.35 .91 1.02	.14 38 .14 56 .30 80	.58 .54 .23 .29 .41	80.7 98.3 97.1 114.1 101.6 93.1	161.9 153.4 162.2 169.3 162.2 164.0	164.1 155.0 163.4 185.4 165.6 164.2	148.8 148.8 148.8 148.8 148.8 148.8	150.7 150.3 149.9 162.9 151.9 149.0	41.7 35.0 41.7 37.0 43.2 34.0	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	80.73 .63 .52	77.44 .65 .53	68.28 .73 .60	82.42 .81 .66	1.07 .38 .31	.76 .42 .35	19 .45 .37	.41 .14 .11	97.5 10.9 9.0	162.2 5.1 4.2	166.3 10.1 8.3	148.8 .0 .0	152.4 5.2 4.3	38.8 3.9 3.2	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		1	41 CROPHO	ME NO.	1		CENTE	RLINE -	CENTER				07/23	3/91		
		CORRECT	red (dis))	COR	RECTION	s (d8)		ACOUSTIC ANGLE	(ACTU		TA (Met		SPEED (m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P) /\1(A	/\2	/\3	(Deg)	CPA		CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAI	RGET IAS	80.0 kts	1.0Vh											
D7 D9			69.25 69.18		1.02 .76	.65 .28	.09 91	.83 .99	109.7 94.0	161.9 158.4	171.9 158.8	148.8 148.8	158.0 149.1	45.8 35.5	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	82.13 .13 .66	76.68 .23 1.04	69.21 .05 .22	83.35 .49 2.18	.89 .18 .82	.46 .26 1.17	41 .71 3.16	.91 .11 .51	101.8 11.1 49.6	160.1 2.5 11.0	165.4 9.3 41.4	148.8 .0 .0	153.6 6.3 28.1	40.7 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	64.0 kts	0.8v	h										
D10 D11			67.01 67.90		.73 1.15	.44 .95	.54 76	.11 .20	99.0 104.1	157.8 163.5	159.8 168.5	148.8 148.8	150.6 153.3	39.6 30.3	32.9 32.9	N-5 S-N
Avg. Std Dv 90% CI	79.99 .42 1.86	77.02 .57 2.53	67.46 .63 2.81	81.25 .35 1.58	.94 .30 1.33	.69 .36 1.61	11 .92 4.10	.16 .06 .28	101.6 3.6 16.1	160.6 4.0 18.0	164.1 6.2 27.5	148.8 .0 .0	152.0 1.9 8.5	34.9 6.6 29.4	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kts	0.70	h										
D12 D13	81.03 80.90		68.70 67.79		.83 .84	.71 .24	.41 67	.02 .01	84.4 94.2		160.2 158.3	148.8 148.8		34.0 26.2	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI	80.96 .09 .41	77.63 .53 2.37	68.24 .64 2.87	81.93 .13 .60	.83 .01 .03	.47 .33 1.48	13 .76 3.41	.01 .01 .03	89.3 6.9 30. <i>9</i>	158.6 1.1 4.7	159.3 1.3 6.0	148.8 .0 .0	149.3 .2 .9	30.1 5.5 24.6	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kts	0.60	h										
D14 D15	81.04 82.11		66.84 68.10		.82 .94	.09 .82	.61 56	05 05	77.2 101.1	158.9 160.6	163.0 163.7	148.8 148.8		30.3 23.4	24.7 24.7	N-5 S-N
Avg. Std Dv 90% CI	81.57 .76 3.38	78.09 1.17 5.24	67.47 .89 3.98	81.44 1.00 4.48	.88 .08 .38	.45 .52 2.30	.03 .83 3.69	05 .00 .00	89.1 16.9 75.5	159.8 1.2 5.4	163.4 .5 2.2	148.8 .0 .0	152.1 .6 2.8	26.8 4.9 21.8	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	II CROPHO	WE NO.	2	;	SIDELIN	E - 15	0 m WEST				07/2	3/91		
		CORRECT	ED (dB)	1	СО	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAI	-		ters) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	NCH T	ARGET I	AS 40.8	kts												
B16 B17 B18 B20 B21 B22	87.69 88.58 87.81 84.85 84.26 85.24	87.25 86.33 83.06	76.21 77.05 76.21 74.40 70.40 73.17	88.72 87.55 85.60	.40 .42 .32 .19 .43 .49	.19 .35 .23 .11 -1.01	.39 .71 .77 .91 .09	.00 .00 .00 .00	59.9 95.2 84.8 53.0 65.5 98.9	196.1 197.5 195.2 192.6 196.4 198.3		191.0 191.0 191.0 191.0	191.7 191.7 239.2 209.8	23.7 25.7 25.7 26.2 22.1 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.41 1.83 1.50	84.44 2.46 2.02	74.57 2.49 2.05	86.31 2.28 1.88	.38 .11 .09	.04 .53 .43	.59 .30 .25	.00 .00 .00	76.2 19.3 15.9	196.0 2.0 1.6	213.1 18.1 14.9	191.0 .0 .0	207.7 19.4 16.0	24.9 1.6 1.3	21.1 .0 .0	
TAKEOF	F TA	RGET 1A	s 40.8	kts												
C24 C25 C26 C27 C28 C29	81.28 80.92 81.19 81.57 81.31 81.59	78.59 78.46 79.12 78.20	66.46 67.43 66.88 67.32 67.15 68.24	80.72 80.06	.06 .10 .33 .59 .62 1.01	59 10 .03 .44 15 .82	.25 .34 .55 39 27 32	.00 .00 .00 .00	79.9 85.3 84.9 78.9 83.7 101.2	183.7 184.1 187.9 192.7 192.6 199.7	193.8		188.3 186.1 186.2 189.0 186.6 189.1	21.6 22.1 23.7 19.5 20.1 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	81.31 .25 .21	78.61 .36 .30	67.25 .60 .49	80.42 .51 .42	.45 .36 .30	.07 .49 .41	.03 .40 .33	.00 .00 .00	85.7 8.1 6.6	190.1 6.1 5.0	192.3 7.1 5.8	185.5 .0 .0	187.6 1.4 1.2	21.3 1.5 1.3	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 k	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	79.93 78.45 79.39 79.55 79.60	77.57 75.64 76.51 76.72 76.45	66.13	79.37 78.18 79.45 79.73 79.56	1.11 .97 .78 1.23 .67	07 .34 .38 .82 .46	.17 37 .30 38 .50 58	1.39 .57 .60 .35 1.04 .48	66.5 94.2 67.3 102.7 107.4 82.1	217.3 221.9 230.6 219.8 221.2	223.3	211.2 211.2 211.2 211.2 211.2	211.8 228.9 216.5 221.3 213.3	41.7 35.0 41.7 37.0 43.2 34.0	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	79.34 .51 .42	76.38 .78 .64	65.76 1.14 .94	78.96 .91 .75	.92 .22 .18	.39 .28 .23	06 .44 .36	.74 .40 .33	86.7 17.6 14.5	223.2 5.1 4.2	232.8 11.4 9.4	211.2 .0 .0	7.9	38.8 3.9 3.2	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. 2 SIDELINE - 150 m WEST 07/23/91

	(CORRECT	ED (dB)		CO	RECTION	IS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALM	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kts	1.0	/h		•	. •							
D7 D9			68.30 66.94		.49 .82	.40 .06	.32 89	2.24 1.30	103.1 104.3	218.4 223.7		211.2 211.2	216.9 217.9	45.8 35.5	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI		78.21 .18 .82	67.62 .96 4.29	80.49 .69 3.06	.65 .23 1.04	.23 .24 1.07	28 .86 3.82	1.77 .66 2.97	103.7 .8 3.8	221.0 3.7 16.7		211.2 .0 .0		40.7 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	64.0 kts	0.8	/h										
D10 D11			64.44 65.54		.82 .97	23 .75	.56 65	.24 .10	74.3 106.1			211.2 211.2		39.6 30.3	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI	77.96 .42 1.89	75.44 .79 3.54	64.99 .78 3.47	77.29 .62 2.75	.89 .11 .47	.26 .69 3.09	04 .86 3.82	.17 .10 .44	90.2 22.5 100.4	224.7 2.0 8.8	233.6 2.5 11.0	211.2 .0 .0	219.6 .3 1.3	34.9 6.6 29.4	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kts	0.7	/h										
D12 D13			64.14 65.62		.54 .42	.32 .34	.55 53	08 01	106.0 84.9			211.2 211.2		34.0 26.2	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI	77.97 .82 3.66	75.68 .78 3.47	1.05	77.21 1.66 7.42	.48 .08 .38	.33 .01 .06	.01 .76 3.41	04 .05 .22	95.4 14.9 66.6	218.2 1.3 5.7	223.0 6.9 30.6	211.2 .0 .0	215.9 5.4 24.0	30.1 5.5 24.6	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kts	0.61	/h										
D14 D15			65.00 65.63	77.02 78.42	.70 .62	.60 .50	.67 47	23 18	75.7 88.1	222.9 220.6		211.2 211.2		30.3 23.1	24.7 24.7	N-S S-N
Avg. Std Dv 90% CI		76.59 .75 3.35	65.32 .45 1.99	77.72 .99 4.42	.66 .06 .25	.55 .07 .32	.10 .81 3.60	21 .04 .16	81.9 8.8 39.1	221.8 1.6 7.3	225.4 6.6 29.4	211.2 .0 .0	214.6 4.7 21.2	26.7 5.1 22.7	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		þ	II CROPHO	NE NO.	3	•	SIDELIN	E - 15	0 m EAST				07/2	3/91		
		CORRECT	ED (dB)		со	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	.CH Т	ARGET I	AS 40.8	kts												
B16 B17 B18 B20 B21 B22	85.41 86.12 85.80 85.39 84.23 85.20	83.27 83.81 83.46 83.66 81.55 82.77	70.80 71.84 71.22 71.67 70.70 71.22	84.77 84.05	01 02 .09 .12 .15	08 29 .02 .06 35	.55 .90 .86 .94 .19	.00 .00 .00 .00	78.1 87.6 96.3 87.3 83.7 102.8	188.9 189.0 190.9 191.6 191.7 193.6	193.1 189.2 192.1 191.8 192.8 198.6	191.0 191.0 191.0 191.0 191.0	195.1 191.1 192.1 191.2 192.1 195.8	23.7 25.7 25.7 26.2 22.1 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.36 .64 .53	83.09 .84 .69	71.24 .45 .37	83.96 .75 .62	.10 .11 .09	09 .19 .15	.71 .29 .24	.00 .00	89.3 8.9 7.3	191.0 1.8 1.5	192.9 3.1 2.6	191.0 .0 .0	192.9 2.0 1.7	24.9 1.6 1.3	21.1 .0 .0	
TAKEOF	F TA	RGET 1A	s 40.8	kts												
C24 C25 C26 C27 C28 C29	84.45 84.23 84.54 83.52 84.09 84.03	80.96 81.39 81.72 80.56 80.52 81.10	68.25 68.72 70.43 69.33 68.24 69.68	82.23 82.01 83.16 82.24 82.49 82.67	.07 .07 21 30 40	66 02 26 52 -1.10	.25 .34 .74 05 .10	.00 .00 .00 .00	129.4 95.7 88.7 81.4 136.9 96.1	183.7 184.1 179.9 178.4 176.7 187.4	237.7 185.0 180.0 180.4 258.8 188.5	185.5 185.5 185.5 185.5 185.5	240.0 186.4 185.5 187.6 271.5 186.5	21.6 22.1 23.7 19.5 20.1 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	84.14 .36 .30	81.04 .47 .39	69.11 .87 .71	82.47 .41 .34	09 .25 .21	40 .46 .38	.22 .30 .25	.00 .00 .00	104.7 22.8 18.8	181.7 4.0 3.3	205.1 34.3 28.2	185.5 .0 .0	209.6 37.1 30.5	21.3 1.5 1.3	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 k	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	79.12 79.60 79.61 79.15 79.73 78.47	76.40 77.17 76.38 76.68 77.26 76.01	66.28 65.81 65.72 65.01 67.20 64.51	79.09 78.74 78.59 77.45 79.66 77.18	.18 .12 .65 .73 .74	.09 .09 .01 .42 .55	.48 .26 .34 21 .46 62	.59 1.32 .28 .75 .48 1.04	86.9 122.6 67.1 98.9 96.8 90.8	212.9 211.7 219.8 221.7 221.9 223.2	213.2 251.2 238.6 224.4 223.5 223.3	211.2 211.2 211.2 211.2 211.2 211.2	211.5 250.6 229.2 213.8 212.7 211.2	41.7 35.0 41.7 37.0 43.2 34.0	37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% C1	79.28 .47 .39	76.65 .49 .40	65.76 .95 .78	78.45 .96 .79	.54 .31 .25	.30 .27 .22	.03 .46 .38	.74 .38 .31	93.8 18.1 14.9	218.5 5.0 4.1	229.0 13.6 11.1	211.2 .0 .0	221.5 15.8 13.0	38.8 3.9 3.2	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-D-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

SUMMARY NOISE LEVEL DATA CORRECTED*

		•	1I CROPHO	NE NO.	3	;	SIDELIN	E - 15	O m EAST				07/2	3/91		
		CORRECT	ED (dB)		CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC	JAL)	ATA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	RGET IAS	80.0 kt	s 1.0	Vh										
D7 D9			66.57 67.80	79.78 80.50	.74 .26	.14 .11	.23 66	1.12 2.63	97.1 91.4			211.2	212.9 211.3	45.8 35.5	41.2 41.2	
Avg. Std Dv 90% CI	81.32 .33 1.48	78.26 .86 3.85	67.18 .87 3.88	80.14 .51 2.27	.50 .34 1.52	.13 .02 .09	21 .63 2.81	1.88 1.07 4.77	94.3 4.0 18.0	217.6 7.4 33.1	218.6 8.6 38.5	211.2 .0 .0	212.1 1.1 5.1	40.7 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	Vh										
D10 D11			64.15 65.20		.26 .49	35 .36	.79 48	.09	52.0 103.2			211.2 211.2		39.6 30.3	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI	78.94 .04 .19	76.12 .47 2.12	64.68 .74 3.31	77.71 .27 1.20	.38 .16 .73	.01 .50 2.24	.16 .90 4.01	.25 .22 .98	77.6 36.2 161.6	4.0	246.2 32.2 144.0	211.2 .0 .0		34.9 6.6 29.4	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7\	/h										
D12 D13			65.19 65.20		.54 .49	.42 .39	.56 55	13 .00	75.5 84.9			211.2 211.2	218.1 212.1	34.0 26.2	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI		76.23 .01 .06	65.19 .01 .03	77.94 .57 2.53	.51 .04 .16	.40 .02 .09	.00 .78 3.50	06 .09 .41	80.2 6.6 29.7	218.4 .4 1.6	222.4 4.8 21.5	211.2 .0 .0	215.1 4.2 18.9	30.1 5.5 24.6	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.6\	/h										
D14 D15			66.17 65.24		.38 .54	.24 .42	.84 44	18 23	136.3 88.1			211.2 211.2		30.3 23.1	24.7 24.7	N-S S-N
Avg. Std Dv 90% CI	79.60 .54 2.43	76.82 .25 1.14	65.71 .66 2.94	78.60 1.45 6.47	.46 .11 .51	.33 .13 .57	.20 .91 4.04	21 .04 .16	112.2 34.1 152.2	216.5 3.4 15.2		211.2 .0 .0	258.5 66.7 297.7	26.7 5.1 22.7	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		H	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	4/91		
		CORRECT	ED (dB)		CO	RRECTION	IS (dB)	_	ACOUSTIC ANGLE	TRAC (ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 40.8	kts												
B15 B16 B17 B18 B19 B20	90.67 88.56 89.75 90.60 91.53 94.04	88.34 85.90 87.12 87.78 89.27 92.44	79.36 75.80 76.20 76.00 79.33 82.50	89.58 89.73 89.43 91.96	.16 45 31 06 07	.17 46 37 57 06	1.09 1.44 1.53 1.28 1.03	.00 .00 .00 .00 .00	91.2 104.7 111.9 106.9 86.7 71.5	121.3 113.9 115.6 118.3 118.2 120.4	121.3 117.7 124.6 123.7 118.4 127.0	118.2 118.2 118.2 118.2 118.2 118.2	122.2 127.4 123.6	27.8 28.3 29.3 28.3 26.7 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	90.86 1.85 1.53	88.47 2.25 1.85	78.20 2.67 2.20	91.12 1.94 1.60	11 .23 .19	20 .31 .25	1.19 .28 .23	.00 .00 .00	95.5 15.2 12.5	118.0 2.8 2.3	122.1 3.6 3.0	118.2 .0 .0	122.4 3.6 3.0	27.7 1.3 1.1	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
E1 E2 E3 E5 E6 E7	88.76 89.26 89.14 89.21 89.50 88.99	84.51 84.97 84.86 84.35 85.10 84.57	74.64 74.91 75.10 74.80 74.69 73.84	89.11 89.96 89.70 89.57 89.56 88.59	1.61 1.13 1.94 1.36 2.13 1.08	1.52 1.10 1.89 1.30 2.00 1.04	08 21 72 39 70 29	.00 .00 .00 .00 .00	138.9 135.6 139.6 135.5 136.6 134.7	128.0 122.9 132.2 125.3 134.6 122.3	194.7 175.6 203.9 178.9 196.0 172.2	109.1 109.1 109.1 109.1 109.1	165.9 155.9 168.3 155.8 158.9 153.6	23.7 22.1 21.1 21.6 21.6 21.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	89.14 .25 .21	84.81 .23 .19	74.66 .44 .36	89.42 .49 .40	1.54 .43 .35	1.47 .40 .33	40 .26 .22	.00 .00 .00	136.8 2.0 1.6	127.5 5.0 4.1	186.9 13.0 10.7	109.1 .0 .0	159.7 6.0 4.9	21.9 .9 .8	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A6	83.22 83.17 83.42 83.06 82.73 83.42		71.49 71.01 71.02 71.26 70.60 70.83	86.36 85.95 85.97 86.17 85.25 85.48	.53 .35 .23 .23 .12 05	.53 .37 .24 .27 .11 01	.36 74 .50 63 .75 72	69 69 47 88 47 69	111.5 108.7 108.2 112.1 111.0 117.7	159.7 157.0 154.9 155.5 152.8 151.2	171.7 165.7 163.0 167.8 163.7 170.7	148.8 148.8 148.8 148.8 148.8 148.8	159.8 157.0 156.6 160.6 159.4 168.0	43.2 32.9 43.2 33.4 45.3 31.9	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	83.17 .26 .21	79.41 .19 .15	71.04 .31 .26	85.86 .42 .35	.24 .20 .16	.25 .19 .16	08 .69 .57	65 .16 .13	111.5 3.4 2.8	155.2 3.0 2.5	167.1 3.6 3.0	148.8 .0 .0	160.2 4.1 3.4	38.3 6.2 5.1	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		M	I CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	4/91		
	,	OBBECT	ED (dB)		cor	RECTION	IS (AR)		ACOUSTIC ANGLE	TRAC	KING DA		ters) RENCE)	SPEED	(m/sec)	DIR
		.ORRECT														
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	//2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0\	/h										
D7	83 40	70 55	72.46	87.22	-41	.41	.39	37	118.2	157.9	179.2	148.8	168.8	47.8	41.2	
D8	83.96	79.83	72.01	86.92	.20	. 15	62	37	99.1	154.2	156.2	148.8	150.6	37.0	41.2	S-N
			70.01		74	.28	12	37	108.6	156.0	167.7	148.8	159.7	42.4	41.2	
Avg.	83.72			.21	.31 .15	.18	.71	.00	13.5	2.6		0.		7.6	.0	
Std Dv 90% CI	.33 1.48	.20 .88	.32 1.42	.95	.66	.82	3.19	.00	60.3	11.7		.0		34.1	.0	
		•														
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	√h										
D9	92 07	70 55	70.08	84 71	.61	.56	.49	41	113.1	159.7	173.7	148.8	161.7	39.6	32.9	N-S
D10		79.49			.44	.40	74	38	107.8	157.3	165.2	148.8	156.3	29.3	32.9	S-N
									440.4	450 5	169.4	148.8	159.0	34.4	32.9	
Avg.			70.13		.52	.48	13	39	110.4 3.7	158.5 1.7				7.3	.0	
Std Dv	.36	.04	.06	.12	.12 .54	.11 .51	.87 3.88	.02	16.7	7.6				32.5	.0	
90% CI	1.61	.19	.28	.54	. 24	.51	3.00	.07	10.7	,,,		•••				
150 m	FLYOVER	TAR	RGET IAS	56.0 kt	s 0.7	۷h										
D11	97.04	90 02	70.42	85 12	.54	.47	.75	06	112.4	158.5	171.4	148.8	160.9	36.5	28.8	N-S
D12	84.42	80.45	69.96	84.74	.14	.10	87	05	109.0	152.7	161.6	148.8	157.3	24.2	28.8	S-N
V ·-										455 /	4// 5	148.8	159.1	30.4	28.8	
Avg.	84.18				.34	.28	06	05	110.7 2.4	155.6 4.1				8.7	.0	
Std Dv	.34	.30	.33	.27	.28 1.26	.26 1.17	1.15 5.11	.01 .03	10.7	18.3				38.8	.0	
90% CI	1.52	1.36	1.45	1.20	1.20	1.17	3.11	.03	10.1	,,,,	5017	• •	,			
150 m	FLYOVER	TAS	RGET IAS	\$ 48.0 kt	ts 0.6	Vh										
D13	85 38	81 50	71.10	85.66	.78	.75	.99	.35	107.1				155.6	34.0	24.7	
D14	85.13	80.82	69.68	84.30	.66	.36	-1.24	.36	105.1	160.8	166.5	148.8	154.1	20.1	24.7	S-N
₹17	32.13	30,00			_	_			404 4	4/4 4	440 1	148.8	154.9	27.0	24.7	
Avg.	85.25	81.21	70.39	84.98	.72	.56	13	.36	106.1	161.8 1.4				9.8	.0	
Std Dv		.54	1.00		.08	.28	1.58 7.04	.01	1.4 6.3	6.3					.0	
90% CI	.79	2.43	4.48	4.29	.38	1.23	7.04	.03	0.3	0.5	12.0					

^{* -} MOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		1	MICROPHO	ONE NO.	2	;	SIDELIN	E - 15	0 m WEST				07/2	24/91		
		CORREC	TED (dB)) 	CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRA (ACT	CKING D UAL)	ATA (Me (REFE	ters) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	•
APPRO	ACH 1	TARGET	IAS 40.8	3 kts												
B15 B16 B17 B18 B19 B20	84.46 84.29	82.01 82.16 83.14 83.86		81.38 82.83 83.68 84.89	.08 .02 34 .06 10	14 52 36 .04 11	1.12 1.23 1.54 1.21 1.03 .67	.00 .00 .00 .00	84.8 96.9 88.9 90.5 78.3 84.3	194.5 193.3 186.2 194.1 191.0 199.3	194.7 186.2 194.1	191.0 191.0 191.0	192.4 191.0 191.0	27.8 28.3 29.3 28.3 26.7 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.47 1.15 .94	83.44 1.38 1.13	72.03 2.38 1.96	84.19 2.14 1.76	.01 .22 .18	13 .29 .24	1.13 .29 .23	.00 .00	87.3 6.3 5.2	193,1 4,3 3,6	194.3 4.5 3.7	191.0 .0 .0	192.2 1.5 1.2	27.7 1.3 1.1	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
E1 E2 E3 E5 E6 E7	85.75 85.97 85.66 85.83	82.02 82.46 82.00 82.17	69.93 69.33	84.50 84.15 83.56 84.16	.71 .46 .80 .55 .85	.63 .42 .75 .51 .71	.29 .07 26 06 17 03	.00 .00 .00 .00	129.8 117.1 116.4 130.1 115.5 108.2	199.7 195.8 202.0 197.5 202.4 195.9	219.9	185.5 185.5 185.5 185.5 185.5	241.2 208.3 207.0 242.5 205.5 195.2	23.7 22.1 21.1 21.6 21.6 21.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.71 .19 .16	82.07 .24 .20	69.58 .41 .33	83.89 .44 .36	.64 .17 .14	.56 .16 .13	03 .19 .16	.00 .00 .00	119.5 8.7 7.1	198,9 2,9 2,4	232.3 21.8 18.0	185.5 .0 .0	216.6 20.1 16.5	21.9 .9 .8	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kts	s 0.9V	h										
A1 A2 A3 A4 A5 A6	81.46 81.84 81.44 81.91	78.72 78.87 78.97 79.29	69.43 68.83	82.21 82.50 82.12 82.66 81.45 83.13	.21 04 06 .00 16 05	.24 03 11 .00 19 12	.49 60 .63 56 .87 69	69 77 47 99 47	98.9 98.4 107.0 96.5 103.8 101.5	220.3 215.4 213.2 217.3 211.1 212.9	223.1 217.8 223.0 218.7 217.3 217.3	211.2 211.2 211.2	213.8 213.5 220.9 212.6 217.5 215.5	43.2 32.9 43.2 33.4 45.3 31.9	37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S
Avg. Std Dv 90% CI	81.72 .25 .21	79.02 .24 .20	69.14 .30 .25	82.35 .57 .47	02 .12 .10	04 .15 .12	.02 .71 .59	69 .20 .16	101.0 3.9 3.2	215.0 3.4 2.8	219.5 2.8 2.3	211.2	215.6 3.1 2.6	38.3 6.2 5.1	37.0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

			I CROPHO	NE NO.	2	:	SIDELINE	- 15	O m WEST				07/2	4/91		
		CORRECT	ED (d8)		CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	\/ 5	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	ts 1.0	Vh										
D7 D8			70.38 70.52		.03 01	.06 24	.52 54	37 42	119.4 104.3			211.2 211.2	242.4 217.9	47.8 37.0	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI		80.39 .28 1.26	70.45 .10 .44		.01 .03 .13	09 .21 .95	01 .75 3.35	39 .04 .16	111.9 10.7 47.7	216.5 1.9 8.5		211.2 .0 .0		42.4 7.6 34.1	41.2 .0 .0	
150 m	FLYOVER	TAR	GET LAS	64.0 kt	ts 0.8 ¹	۷h										
D9 D10			68.04 68.10		.13 .13	30 .11	.67 63	40 41	105.9 101.9			211.2 211.2	219.6 215.9	39.6 29.3	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI		78.84 .18 .82	68.07 .04 .19	.25	.13 .00 .00	10 .29 1.29	.02 .92 4.10	41 .01 .03	103.9 2.8 12.6		3.0	211.2 .0 .0		34.4 7.3 32.5	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	ts 0.7	Vh										
D11 D12			67.50 67.76		.15 22	01 24	.89 78	05 03	117.2 111.6			211.2 211.2		36.5 24.2	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI	82.71 .44 1.96	79.68 .28 1.23	67.63 .18 .82	80.77 .08 .38	03 .26 1.17	13 .16 .73	.06 1.18 5.27	04 .01 .06	114.4 4.0 17.7	215.1 4.2 18.6		211.2 .0 .0		30.4 8.7 38.8	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	ts 0.6	Vh										
D13 D14			68.65 67.46		.31 .04	.29 42	1.18	.37 .45	92.8 92.7			211.2 211.2	211.5 211.4	34.0 20.1	24.7 24.7	N-S S-N
Avg. Std Dv 90% CI	83.49 .40 1.80	.08	68.06 .84 3.76	81.63 .16 .73	.17 .19 .85	06 .50 2.24	.09 1.53 6.85	.41 .06 .25	92.8 .1 .3	218.4 4.2 18.6	218.6 4.2 18.6	211.2 .0 .0	.1	27.0 9.8 43.9	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		M	II CROPHO	NE NO.	3	•	SIDELIN	- 15	O m EAST				07/2	4/91		
		CORRECT	ED (dB))	со	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 40.8	kts												
B15 B16 B17 B18 B19 B20	84.87 85.79 85.65	82.90 82.97 83.87		82.83 82.48 83.47 83.50	12 57 07 35 17	-1.13 54 94 31 33 78	1.19 1.46 1.40 1.35 1.03	.00 .00 .00 .00	101.2 97.5 63.8 49.7 44.6 103.7	191.2 183.1 192.4 187.9 191.0 185.0	184.7 214.4 246.2	191.0 191.0 191.0 191.0 191.0	194.7 192.6 212.7 250.3 271.9 196.5	27.8 28.3 29.3 28.3 26.7 25.7	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.89 .63 .52	83.61 .58 .48	71.32 .95 .78	83.35 .62 .51	29 .20 .17	67 .33 .27	1.24 .20 .16	.00 .00 .00	76.8 27.2 22.3	188.4 3.8 3.1	217.1 35.0 28.8	191.0 .0 .0	219.8 33.5 27.5	27.7 1.3 1.1	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
E1 E2 E3 E5 E6 E7	86.91 86.91 87.20	83.12 83.28 83.50 83.49	70.87 71.68 70.60 71.11 71.59 71.23	86.00 84.58 85.67	.34 .18 .56 .26 .72	.35 .04 .52 .27 .67	.40 .16 17 .03 13	.00 .00 .00 .00	124.1 120.1 127.6 122.8 124.8 126.1	194.6 192.0 197.9 193.3 200.6 191.2	235.2 221.8 249.8 229.9 244.2 236.4	185.5 185.5 185.5	224.1 214.3 234.1 220.6 225.8 229.4	23.7 22.1 21.1 21.6 21.6 21.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.94 .23 .19	83.26 .20 .17	71.18 .41 .34	85.50 .53 .44	.36 .24 .19	.31 .26 .21	.06 .21 .17	.00 .00 .00	124.2 2.6 2.2	194.9 3.6 3.0	236.2 10.0 8.2	185.5 .0 .0	224.7 6.9 5.7	21.9 .9 .8	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	82.08 81.98 81.83 81.34 82.29	79.24 78.81 79.01 78.81 79.45	69.36 69.10 69.17 69.89 69.07 70.15	82.15 82.30 83.10 81.98 83.04	.10 .16 .11 08 .07 27	.11 .14 20 02 .09 20	.54 66 .54 51 .75 69	77 69 53 88 53 69	93.7 89.8 106.5 96.7 103.1 128.0	218.8 217.9 214.7 217.0	218.8 227.3 216.2 222.8 270.1	211.2 211.2 211.2 211.2 211.2 211.2	211.2 220.3 212.7 216.8 267.9	43.2 32.9 43.2 33.4 45.3 31.9	37.0 37.0 37.0 37.0 37.0 37.0	N-S S-N N-S S-N N-S S-N
Std Dv 90% CI	.35	.27	.46	.52	.16	.15	.68 .56	.14	13.7 11.3	2.3	20.6	0.	22.1 18.1	6.2 5.1	.0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-E-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

		P	IICROPHO	NE NO.	3	;	SIDELIN	E - 15	O m EAST				07/2	4/91		
		CORRECT	ED (dB)			RRECTIO			ACOUSTIC ANGLE	(ACTL		TA (Met	ers) RENCE)	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm		/\1(A)		/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	•
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0	۷h										
D7 D8			70.07 69.56		.11 15	.11 62	.52 54	42 37	109.5 129.6			211.2 211.2		47.8 37.0	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	82.69 .05 .22	79.63 .53 2.37	69.82 .36 1.61	83.05 .30 1.33	02 .18 .82	25 .52 2.30	01 .75 3.35	39 .04 .16	119.6 14.2 63.5	1.9	255.1 34.0 151.9	.0	249.1 35.3 157.5	42.4 7.6 34.1	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	√h										
D9 D10			68.13 68.59		.35 .02	.18 .03	.62 62	45 37	96.0 126.2			211.2 211.2		39.6 29.3	32.9 32.9	N-S S-N
Avg. Std Dv 90% CI	81.57 .67 3.00	78.60 .76 3.41	68.36 .33 1.45	81.51 .13 .57	.19 .23 1.04	.11 .11 .47	.00 .88 3.91	41 .06 .25	111.1 21.4 95.3	218.7 2.3 10.1	33.7		237.1 35.0 156.3	34.4 7.3 32.5	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	√h										
D11 D12			68.29 67.23		.14 19	01 52	.88 86	04 04	105.3 138.8	218.4 216.0	226.4 327.5	211.2 211.2	218.9 320.3	36.5 24.2	28.8 28.8	N-S S-N
Avg. Std Dv 90% CI		79.05 .08 .38	67.76 .75 3.35	80.99 .30 1.36	02 .23 1.04	26 .36 1.61	.01 1.23 5.49	04 .00 .00	122.1 23.7 105.8	1.7	277.0 71.5 319.2	211.2 .0 .0		30.4 8.7 38.8	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.61	/h										
D13 D14			66.98 68.42		.28 .42		1.18 -1.16	.45 .37	97.1 115.9			211.2 211.2		34.0 20.1	24.7 24.7	N·S S-N
Avg. Std Dv 90% CI	82.89 .11 .47	79.91 .20 .88	67.70 1.02 4.55	81.30 .45 2.02	.35 .10 .44	.28 .18 .79	.01 1.65 7.39	.41 .06 .25	106.5 13.3 59.4	222.8 2.1 9.2	236.1 18.5 82.7	211.2 .0 .0	223.8 15.6 69.5	27.0 9.8 43.9	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-F-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		Þ	11 CROPHO	DNE NO.	1		CENTE	RLINE -	CENTER				07/3	25/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRA		ATA (Me (REFE	ters) RENCE)	SPEE	(m/sec)	DIR
٤٧	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	\CH 1	ARGET 1	AS 40.8	kts												
816 817 818 820 821 822 823	92.54 93.15 93.05 93.18 90.63 92.19 91.15			93.64 94.90	.11 .11 19 42 10 45 01	36 .03 21 51 11 42 03	.87 .62 1.01 .83 .70 .85	.00 .00 .00 .00 .00	129.3 72.3 80.5 76.0 102.2 85.4 101.3	121.1 120.5 117.1 114.9 118.4 114.4 119.5	126.5 118.7 118.5 121.2 114.8	118.9 118.9 118.9 118.9	124.8 120.5 122.5 121.6 119.3	26.2 24.7 26.2 24.7 24.7 24.7 25.2	21.1 21.1 21.1 21.1 21.1 21.1 21.1	H-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.27 1.02 .75	90.37 1.10 .81	80.53 1.83 1.34	92.77 1.65 1.21	14 .23 .17	23 .21 .15	.80 .13 .09	.00 .00 .00	92.4 20.0 14.7	118.0 2.6 1.9	14.1	.0	12.2	25.2 .7 .5	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C24 C25 C26 C28 C29 C30	87.91 87.32 87.53 87.84 87.34 87.43 87.01	83.33 82.86 83.04 83.40 82.71 82.88 82.42	73.23 73.82 73.00 73.18 72.12 73.64 72.67	88.07 88.26 87.57 87.73 86.77 88.49 87.31	40 1.79 .82 43 .68 .63	35 1.70 .77 37 .52 .61 .13	.20 40 51 .43 13 01	.00 .00 .00 .00 .00	115.7 102.9 100.1 110.0 96.7 100.9 102.1	133.8 121.7 107.9 120.1 119.5		111.0 111.0 111.0	112.7 118.1 111.7 113.0	21.1 22.6 20.1 22.1 21.6 22.1 20.1	20.6 20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.48 .31 .23	82.95 .34 .25	73.09 .58 .42	87.74 .59 .43	.46 .78 .57	.43 .72 .53	09 .33 .24	.00 .00	104.1 6.5 4.8	117.9 8.9 6.6	122.2 7.3 5.4	111.0 .0 .0		21.4 1.0 .7	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	69.3 kt	s 0.9\	/h										
A1 A2 A3 A4 A6 A7	82.14 82.08 81.73 81.63 81.48 81.56	78.07 77.99 77.81 77.49 77.36 77.67	68.05 68.77 68.71 68.77 68.55 68.59	82.51 83.16 83.01 83.16 82.94 82.90	.01 .29 .04 .19 .32	17 .26 .02 .24 .29	.62 -1.02 .50 -1.01 -1.07	42 42 42 42 42	119.1 103.8 107.5 100.6 107.1 111.8	151.4 155.5 151.8 155.1 157.1 160.0	173.3 160.2 159.2 157.8 164.4 172.4		170.2 153.2 156.0 151.3 155.6 160.2	41.7 29.3 40.6 29.3 29.3 39.6	35.5 35.5 35.5 35.5 35.5 35.5	N-S S-N N-S S-H S-N N-S
Avg. Std Dv 90% CI	81.77 .28 .23	77.73 .28 .23	68.57 .27 .22	82.95 .24 .20	.23 .19 .16	.19 .24 .20	30 .81 .67	42 .00 .00	108.3 6.5 5.3	155.2 3.2 2.7	164.6 6.8 5.6	148.8 .0 .0	157.8 6.8 5.6	35.0 6.2 5.1	35.5 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-F-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		,	41 CROPHO	DNE NO.	1		CENTE	RLINE -	CENTER				07/2	5/91		
		CORRECT	red (dis))	CO	RRECTIO	NS (dB)		ACQUST I C ANGLE	(ACTU		ATA (Mei (REFE		SPEED	(m/sec)	DIR
E۷	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAF	RGET IAS	77.0 kt	s 1.0	Vh										
D8 D9	81.77 81.85		69.07 68.84		.37 .27	.38 32	-1.05 .31	68 68	98.8 71.4		159.5 163.4	148.8 148.8	150.5 157.0	32.9 44.2	39.6 39.6	S-N N-S
Avg. Std Dv 90% CI	81.81 .06 .25	77.68 .09 .41	68.96 .16 .73	83.80 .06 .25	.32 .07 .32	.03 .49 2.21	37 .96 4.29	68 .00 .00	85.1 19.4 86.5	156.3 1.9 8.5	161.4 2.8 12.3	148.8 .0 .0	153.8 4.6 20.5	38.6 8.0 35.7	39.6 .0 .0	
150 m	FLYOVER	TAR	IGET IAS	61.6 kt	s 0.8	√h										
D10 D11			68.59 68.43		.81 .26	.65 .23	-1.26 .60	19 23	78.7 100.9	163.3 154.9		148.8 148.8	151.7 151.5	26.2 38.1	31.9 31.9	S-N N-S
Avg. Std Dv 90% CI	82.21 .34 1.52	78.14 .04 .19	68.51 .11 .51	82.92 .28 1.26	.53 .39 1.74	.44 .30 1.33	33 1.32 5.87	21 .03 .13	89.8 15.7 70.1	159.1 5.9 26.5	162.1 6.2 27.8	148.8 .0 .0	151.6 .1 .6	32.2 8.4 37.6	31.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	53.9 kt	s 0.7	/h										
D12 D13			68.75 68.42		.50 05	.46 09	-1.27 .91	04 04	101.4 110.3	158.6 149.8	161.8 159.7	148.8 148.8	151.8 158.5	22.1 34.5	27.8 27.8	S-N N-S
Avg. Std Dv 90% CI	82.74 .04 .19	78.70 .35 1.58	68.58 .23 1.04	82.74 .35 1.55	.22 .39 1.74	.19 .39 1.74	18 1.54 6.88	04 .00 .00	105.9 6.3 28.1	154.2 6.2 27.8	160.8 1.5 6.6	148.8 .0 .0	155.1 4.7 21.2	28.3 8.8 39.1	27.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	46.2 kt	s 0.6\	/h										
D14 D15			68.67 68.83		.66 .55	.52 .33	-1.53 .72	.21 .21	103.8 116.1		165.4 177.3	148.8 148.8	153.1 165.7	18.0 29.8	23.7 23.7	S-N N-S
Avg. Std Dv 90% CI	83.61 .16 .73	79.49 .41 1.83	68.75 .11 .51	82.88 .13 .60	.61 .08 .35	.43 .13 .60	41 1.59 7.10	.21 .00 .00	109.9 8.7 38.8	159.9 1.1 4.7	171.4 8.4 37.6	148.8 .0 .0	159.4 8.9 39.8	23.9 8.3 37.3	23.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-F-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		M	II CROPHO	NE NO.	2	:	SIDELINE	- 15	0 m WEST				07/2	5/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met	-	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	//2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	.CH T	ARGET I	AS 40.8	kts												
B16 B17 B18 B20 B21 B22 B23	86.73 88.35 87.21 87.57 86.67 86.29 85.50	84.81 86.61 85.48 86.00 85.02 84.65 83.58	73.59 76.48 74.88 75.36 74.30 75.64 71.82	88.20 86.84 86.58 85.48 86.97	.20 .21 .03 44 .02 08	.12 .10 .00 39 .02 07	.83 .57 .89 .79 .58 .64	.00 .00 .00 .00 .00	116.0 67.1 75.2 62.5 44.9 56.2 88.1	196.1 195.7 193.5 186.1 195.4 192.6 193.5	218.2 212.4 200.1 209.9 277.0 231.8 193.6	191.0 191.0 191.0 191.0 191.0 191.0	212.5 207.3 197.5 215.3 270.7 229.8 191.1	26.2 24.7 26.2 24.7 24.7 24.7 25.2	21.1 21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.90 .92 .67	85.16 .98 .72	74.58 1.53 1.13	86.27 1.35 .99	00 .22 .16	03 .17 .13	.72 .13 .09	.00 .00	72.9 23.4 17.2	193.3 3.4 2.5	220.4 27.8 20.4	191.0 .0 .0	217.7 26.5 19.5	25.2 .7 .5	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C24 C25 C26 C28 C29 C30		81.02 81.12 80.94 81.24 81.41 80.55 80.30	70.44 70.99 70.20 70.56 70.18 69.54 69.48	84.79 85.83 84.93 84.55 83.47 84.14 83.84	04 .66 .12 10 .21 .20 03	10 .55 .04 73 .14 66	.07 .09 20 .30 .08 .19	.00 .00 .00 .00 .00	104.1 107.3 104.8 109.5 96.2 111.1 99.4	187.0 199.5 189.4 185.7 190.9 190.5 187.0	192.8 209.0 195.9 196.9 192.0 204.1 189.6	185.5 185.5 185.5 185.5 185.5 185.5	191.2 194.3 191.8 196.7 186.5 198.7 188.0	21.1 22.6 20.1 22.1 21.6 22.1 20.1	20.6 20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% C1	84.86 .40 .30	80.94 .39 .29	70.20 .54 .40	84.51 .78 .57	.15 .26 .19	12 .45 .33	.05 .18 .13	.00 .00	104.6 5.3 3.9	190.0 4.6 3.4	197.2 7.0 5.1	185.5 .0 .0	192.5 4.4 3.3	21.4 1.0 .7	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	69.3 kt	ts 0.9	Vh										
A1 A2 A3 A4 A6 A7	81.06 81.08 80.41 80.85 81.08 79.79	78.66 78.77 77.86 77.50 77.84 77.49	67.38 67.12 67.81 67.55 67.46 67.93	79.96 81.80 79.73 82.42 82.31 79.51	.14 .25 15 .38 .36	.10 03 23 .04 .21 10	.54 -1.00 .55 -1.05 -1.05	93 87 93 87 93 87	44.3 62.2 95.5 63.4 61.5 100.0	219.0 219.6 213.4 222.2 222.0 218.9	313.7 248.2 214.4 248.4 252.5 222.2	211.2 211.2 211.2 211.2 211.2 211.2	302.5 238.7 212.2 236.1 240.3 214.5	41.7 29.3 40.6 29.3 29.3 39.6	35.5 35.5 35.5 35.5 35.5 35.5	N-S S-N N-S S-N S-N
Avg. Std Dv 90% CI	80.71 .52 .43	77.85 .43 .35	67.54 .29 .24	80.96 1.36 1.12	.17 .20 .17	00 .15 .13	28 . 83 . 68	90 .03 .03	71.2 21.8 17.9	219.2 3.2 2.6	249.9 35.0 28.8	211.2 .0 .0	240.7 32.7 26.9	35.0 6.2 5.1	35.5 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

of Transportation
Volpe Center
Acoustics Facility

TABLE B-F-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		м	II CROPHO	NE NO.	. 2 SIDELINE - 150 m WEST							07/25/91							
		CORRECT	ED (dB)		CO	RRECTIO	NS (dB)	l	ACOUSTIC ANGLE	TRACKING DATA (Meters (ACTUAL) (REFERENCI				SPEED	(m/sec)	DIR			
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF				
150 m	FLYOVER	TAR	GET IAS	77.0 kt	s 0.9	Vh													
D8 D9			69.22 68.92		.43 .07	.19 50		-1.18 -1.60	56.0 47.0			211.2 211.2		32.9 44.2	39.6 39.6	S-N N-S			
Avg. Std Dv 90% CI	80.79 .40 1.80	77.80 .23 1.01	69.07 .21 .95	82.12 1.11 4.96	.25 .25 1.14	16 .49 2.18	35 1.02 4.55	-1.39 .30 1.33	51.5 6.4 28.4	220.6 5.7 25.3	283.5 17.7 79.2	211.2 .0 .0	24.0	38.6 8.0 35.7	39.6 .0 .0				
150 m	FLYOVER	TAR	GET IAS	61.6 kt	s 0.8	Vh													
D10 D11			66.82 66.84		.60 14	.18 46	-1.17 .71	58 43	60.0 101.2			211.2 211.2		26.2 38.1	31.9 31.9	S-N N-S			
Avg. Std Dv 90% CI	80.60 .82 3.66	77.48 .28 1.26	66.83 .01 .06	80.10 1.81 8.08	.23 .52 2.34	14 .45 2.02	23 1.33 5.94	50 .11 .47	80.6 29.1 130.1	221.0 9.4 42.0		211.2 .0 .0		32.2 8.4 37.6	31.9 .0 .0				
150 m	FLYOVER	TAR	GET IAS	53.9 kt	s 0.7	Vh													
D12 D13	81.14 80.92		66.27 66.45	81.17 78.39	.53 07	.04 51	-1.27 .83	52 .09	62.4 121.4		254.5 253.5	211.2 211.2	238.4 247.4	22.1 34.5	27.8 27.8	S-N N-S			
Avg. Std Dv 90% CI	81.03 .16 .69	77.93 .23 1.01	66.36 .13 .57	79.78 1.97 8.78	.23 .42 1.89	23 .39 1.74	22 1.48 6.63	21 .43 1.93	91.9 41.7 186.3	220.9 6.4 28.4	254.0 .7 3.2	211.2 .0 .0	242.9 6.4 28.4	28.3 8.8 39.1	27.8 .0 .0				
150 m	FLYOVER	TAR	GET IAS	46.2 kt	s 0.6	Vh													
D14 D15			65.30 66.72		.38 .31	32 06	-1.43 .79	29 .78	60.3 104.8	223.1 222.4		211.2 211.2		18.0 29.8	23.7 23.7	S-N N-S			
Avg. Std Dv 90% CI	81.77 .69 3.09	1.56	66.01 1.00 4.48	79.93 .48 2.15	.34 .05 .22	19 .18 .82	32 1.57 7.01	.24 .76 3.38	82.6 31.5 140.5	222.8 .5 2.2	243.4 19.0 84.9	211.2 .0 .0	230.8 17.5 78.3	23.9 8.3 37.3	23.7 .0 .0				

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-F-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		M	I CROPHO	NE NO.	3		SIDELINE	- 150	O m EAST	07/25/91							
		CORRECT	ED (dB)	1	СО	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met	•	SPEED(m/sec)		DIR	
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF		
APPROA	CH T.	ARGET I	AS 40.8	kts													
B16 B17 B18 B20 B21 B22 B23	86.72 86.43 86.82 85.67 85.08		72.05 72.04 71.31 70.78 71.09 70.19 72.04	84.92 84.58 84.14 84.20 83.25 82.61 83.34	17 20 36 08 43 53 39	28 29 38 52 40 49	1.01 .75 1.06 .68 .80 .85	.00 .00 .00 .00 .00	122.8 91.9 113.3 114.9 92.8 85.9 36.4		188.2	191.0 191.0 191.0 191.0 191.0 191.0	227.2 191.1 208.0 210.5 191.2 191.5 321.9	26.2 24.7 26.2 24.7 24.7 24.7 25.2	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S N-S	
Avg. Std Dv 90% CI	86.37 .79 .58	84.04 .79 .58	71.36 .73 .53	83.86 .82 .60	31 .16 .12	41 .10 .07	.85 .14 .10	.00 .00 .00	94.0 28.9 21.3	187.5 2.4 1.8	216.5 47.5 34.9	191.0 .0 .0	220.2 46.8 34.4	25.2 .7 .5	21.1 .0 .0		
TAKEOF	F TA	RGET IA	s 40.8	kts													
C24 C25 C26 C28 C29 C30	86.00 86.13 86.42 86.30	82.09 81.58	70.38 70.70 69.96 70.48 70.58 69.60 69.27	85.16 84.46 84.32 85.32 84.58	51 .57 02 47 .09 .06	45 .52 63 80 11 56	.21 .09 20 .40 .08 .19	.00 .00 .00 .00 .00	84.6 63.4 74.7 86.1 73.5 60.6 80.9	181.1 199.5 189.4 181.7 190.9 190.5 187.0	223.2 196.4 182.1 199.1 218.6	185.5 185.5 185.5 185.5 185.5 185.5	186.3 207.4 192.2 185.9 193.4 212.8 187.8	21.1 22.6 20.1 22.1 21.6 22.1 20.1	20.6 20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S N-S	
Avg. Std Dv 90% CI	85.98 .44 .32	81.99 .42 .31	70.14 .54 .40	84.49 .69 .51	06 .37 .27	30 .45 .33	.09 .21 .15	.00 .00 .00	74.8 10.0 7.3	188.6 6.3 4.6	198.7 16.6 12.2	185.5 .0 .0	195.1 10.7 7.9	21.4 1.0 .7	20.6 .0 .0		
150 m	FLYOVER	TAR	GET IAS	69.3 kt	ts 0.9	Vh											
A1 A2 A3 A4 A6 A7	81.34 80.65 80.59 80.37 80.57 81.11	78.17 77.97 77.88		80.68 80.65 80.87 80.28 80.24 80.71	45 29 23 45 29 .16	-1.20 19 14 35 42 -1.38	.79 85 .55 79 85 .31	87 93 87 93 87 93	49.2 106.5 84.7 96.7 101.6 49.5	207.0 212.4 213.4 209.1 212.3 219.7	273.5 221.5 214.3 210.5 216.7 289.0	211.2 211.2 211.2 211.2 211.2 211.2	279.0 220.2 212.1 212.7 215.6 277.9	41.7 29.3 40.6 29.3 29.3 39.6	35.5 35.5 35.5 35.5 35.5 35.5	N-S S-N N-S S-N S-N N-S	
Std Dv 90% CI	.37	.45 .37	.59 .48	.25	.22	.54 .44	.77 .63	.03	25.8 21.3	4.3 3.6	34.4 28.3	.0	32.8 27.0	6.2 5.1	.0		

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-F-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		1	41 CROPHO	NE NO.	3		SIDELIN	IE - 15	0 m EAST	07/25/91							
		CORRECT	(dB)	*****		RRECT10			ACOUSTIC ANGLE	TRAC			A (Meters) (REFERENCE) SPEE		(m/sec)	DIR	
ΕV	EPNL	SEL	ALm	PNLTm	=	/\1(A)	-	/\3		CPA	SR	CPAR	SRR	GRND	REF	•••	
150 m	FLYOVER	TAR	RGET IAS	77.0 kt	s 1.0	Vh											
D8 D9			69.43 69.01		36 09	28 39		-1.60 -1.18	86.3 46.8			211.2 211.2	211.6 289.6	32.9 44.2	39.6 39.6	S-N N-S	
Avg. Std Dv 90% CI		78.29 .37 1.64	69.22 .30 1.33	82.11 .57 2.56	23 .19 .85	33 .08 .35	19 .84 3.76	-1,39 ,30 1,33	66.6 27.9 124.7		59.0		250.6 55.2 246.2	38.6 8.0 35.7	39.6 .0 .0		
150 m	FLYOVER	TAR	RGET IAS	61.6 kt	:s 0.8	۷h											
D10 D11			67.48 67.42		07 06	09 18	94 .66	34 66	97.8 76.3			211.2 211.2	213.2 217.4	26.2 38.1	31.9 31.9	S-N N-S	
Avg. Std Dv 90% CI		77.82 .25 1.10	67.45 .04 .19	79.74 .05 .22	06 .01 .03	14 .06 .28	14 1.13 5.05	50 .23 1.01	87.1 15.2 67.9	216.3 .8 3.5		211.2 .0 .0	215.3 3.0 13.3	32.2 8.4 37.6	31.9 .0 .0		
150 m	FLYOVER	TAR	GET JAS	53.9 kt	s 0.7	√h											
D12 D13			67.12 67.06		38 54	26 69	98 1.02	.09 52	108.9 80.2			211.2 211.2	223.3 214.4	22.1 34.5	27.8 27.8	S-N N-S	
Avg. Std Dv 90% CI	81.22 .00 3.00	78.46 .23 1.04	67.09 .04 .19	79.59 .31 1.39	46 .11 .51	47 .30 1.36	.02 1.41 6.31	21 .43 1.93	94.6 20.3 90.6	209.1 2.4 10.7		211.2 .0 .0	218.9 6.3 28.1	28.3 8.8 39.1	27.8 .0 .0		
150 m	FLYOVER	TAR	GET IAS	46.2 kt	s 0.61	/h											
D14 D15			67.31 66.26		07 14	.01 52	-1.30 .93	.78 29	101.9 98.0			211.2 211.2		18.0 29.8	23.7 23.7	S-N N-S	
Avg. Std Dv 90% CI	.61	1.00	66.79 .74 3.31	79.79 .80 3.57	11 .05 .22	25 .37 1.67	19 1.58 7.04	.24 .76 3.38	99.9 2.8 12.3	215.7 1.1 5.1	219.1 3.0 13.3	211.2	214.6 1.8 7.9	23. <i>9</i> 8.3 37.3	23.7 .0 .0		

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

April 19, 1993

of Transportation
Volpe Center
Acoustics Facility

TABLE 8-G-1-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		þ	I CROPHO	NE NO.	. 1 CENTERLINE - CENTER						07/25/91							
		CORRECT	ED (dB)		CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC		ATA (Meters) (REFERENCE)		SPEED(m/sec)		DIR		
EV	EPNL	SEL	ALM	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF			
APPROA	CH T	ARGET I	AS 40.8	kts														
B16 B17 B19 B20 B21 B24	91.94 92.82 90.13 91.55		80.26 79.71 81.71 78.56 78.00 81.81		.21 27 .13 61 .02 10	04 95 07 58 93 16	.49 .60 .70 1.02 .60	.00 .00 .00 .00	76.0 72.3 93.5 45.8 61.7 100.7	120.9 115.5 117.6 111.6 117.9 116.4	124.7 121.2 117.9 155.7 133.9 118.5	118.2 118.2 118.2 118.2 118.2 118.2	121.8 124.1 118.4 165.0 134.3 120.3	24.2 23.7 24.7 25.2 24.2 22.6	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	91.77 .92 .76	89.48 1.12 .92	80.01 1.58 1.30	91.99 1.93 1.59	10 .30 .25	46 .42 .35	.63 .22 .18	.00 .00 .00	75.0 20.2 16.6	116.7 3.1 2.5	128.7 14.5 11.9	118.2 .0 .0	130.6 17.7 14.6	24.1 .9 .7	21.1 .0 .0			
TAKEOF	F TA	RGET IA	s 40.8	kts														
C25 C26 C27 C28 C29 C30		83.68 83.54 84.18 84.21 84.46 83.65	73.52 73.51 72.85 72.98 74.34 73.59	87.68 87.65 87.64 87.07 88.33 87.75	82 1.89 1.40 .53 2.31	79 1.82 .78 .50 2.19	.56 52 51 .17 81 07	.00 .00 .00 .00 .00	107.9 116.6 80.8 98.3 91.7 113.1	100.8 132.2 125.9 115.4 137.9 110.9	105.9 147.8 127.5 116.6 138.0 120.7	109.1 109.1 109.1 109.1 109.1	114.7 122.0 110.5 110.2 109.1 118.7	21.6 22.1 21.1 22.6 21.6 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	87.92 .47 .39	83.95 .38 .31	73.47 .53 .44	87.69 .40 .33	.91 1.17 .97	.77 1.10 .90	20 .51 .42	.00 .00 .00	101.4 13.7 11.3	120.5 14.0 11.5	126.1 15.1 12.4	109.1 .0 .0	114.2 5.2 4.3	21.6 .7 .6	20.6 .0 .0			
150 m	FLYOVER	TAR	GET IAS	72.0 kt	s 0.9	Vh												
A2 A3 A4 A5 A6 A7	83.58 83.64 83.19 84.10 83.34 83.79	79.70 79.97 79.38 80.15 79.59 80.23	70.49 71.08 70.54 71.07 70.00 70.49	84.99 85.53 85.17 86.01 84.62 84.94	.14 01 15 .45 .23 04	.12 01 15 .43 .05 05	35 .26 35 .12 51	33 40 33 28 28	101.5 108.8 101.8 81.7 99.9 95.1	152.1 150.0 147.8 156.7 153.3 149.4	155.2 158.5 151.0 158.3 155.7 150.0	148.8 148.8 148.8 148.8 148.8 148.8	151.8 157.2 151.9 150.3 151.0 149.3	35.0 39.6 34.0 40.1 34.0 41.2	37.0 37.0 37.0 37.0 37.0 37.0	S-H N-S S-N N-S S-N N-S		
Avg. Std Dv 90% CI	83.61 .32 .27	79.84 .33 .27	70.61 .41 .34	85.21 .49 .41	.10 .22 .18	.06- .20 .17	06 .39 .32	32 .05 .04	98.1 9.2 7.5	151.6 3.2 2.6	154.8 3.6 3.0	148.8 .0 .0	151.9 2.8 2.3	37.3 3.3 2.7	37.0 .0 .0			

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-G-1-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

			I CROPHO	NE NO.	1	CENTERLINE - CENTER							07/25/91						
		CORRECT	ED (d8)		CO	RRECTION	ıs (dB)		ACOUSTIC ANGLE		TRACKING DATA (Meters) (ACTUAL) (REFERENCE)				(m/sec)	DIR			
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	\/5	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF				
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 1.0	Vh													
D8 D9			70.62 71.02		09 .56	14 .37	39 .04	04 24	96.6 108.8			148.8 148.8	149.7 157.2	37.6 44.2	41.2 41.2	S-N N-S			
Avg. Std Dv 90% CI	83.52 .33 1.45	79.56 .23 1.04	70.82 .28 1.26	85.18 .34 1.52	.23 .46 2.05	.12 .36 1.61	18 .30 1.36	14 .14 .63	102.7 8.6 38.5	153.3 6.9 30.9	158.3 12.5 55.9	148.8 .0 .0	153.4 5.3 23.7	40.9 4.7 20.8	41.2 .0 .0				
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	Vh													
D10 D11			69.75 70.02		.09 12	.07 12	42 .29	18 23	98.8 98.3			148.8 148.8		30.3 35.0	32.9 32.9	S-N N-S			
Avg. Std Dv 90% CI	83.40 .78 3.50	79.84 .68 3.03	69.88 .19 .85	84.11 .08 .35	01 .15 .66	02 .13 .60	06 .50 2.24	21 .04 .16	98.6 .4 1.6	149.5 2.4 10.7	151.2 2.5 11.4	148.8 .0 .0	150.4 .1 .6	32.7 3.3 14.8	32.9 .0 .0				
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	Vh													
D12 D13			70.24 69.25		40 .05	38 .03	44 .32	11 14	95.5 91.5			148.8 148.8		25.2 31.4	28.8 28.8	S-N N-S			
Avg. Std Dv 90% CI	83.65 .29 1.29	79.88 .40 1.80	69.74 .70 3.13	84.01 .36 1.61	17 .32 1.42	17 .29 1.29	06 .54 2.40	13 .02 .09	93.5 2.8 12.6	147.1 4.5 19.9	147.5 4.0 18.0	148.8 .0 .0	149.1 .4 1.9	28.3 4.4 19.6	28.8 .0 .0				
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.6	Vh													
D14 D15		80.35 80.61	69.97 70.34		.27 .08	.23 .03	51 .46	13 13	87.3 99.9			148.8 148.8		22.6 27.8	24.7 24.7	S-N N-S			
Avg. Std Dv 90% CI	84.51 .17 .76	80.48 .18 .82	70.15 .26 1.17	84.23 .06 .25	.18 .13 .60	.13 .14 .63	03 .69 3.06	13 .00 .00	93.6 8.9 39.8	152.0 2.0 8.8	153.3 .5 2.2	148.8 .0 .0	149.9 1.5 6.6	25.2 3.7 16.4	24.7 .0 .0				

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

April 19, 1993

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE B-G-2-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		1	I CROPHO	DNE NO.	2	:	SIDELIN	E - 15	50 m WEST 07/25/91							
		CORRECT	ED (dB))	CO	RRECTIO	is (dB)		ACQUSTIC ANGLE	TRACKING DATA (Meters) (ACTUAL) (REFERENCE)				SPEED	DIR	
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	\CH Т	ARGET I	AS 40.8	3 kts						,						
B16 B17 B19 B20 B21 B24	85.21 86.29 85.48 86.09 85.20 86.58	84.66 83.46 84.37	72.25 76.21 73.22 74.87 72.67 73.69	87.72 85.06 86.60	.06 11 .01 22 06 12	.03 15 18 19 06 98	.55 .54 .65 .83 .59	.00 .00 .00 .00	93.9 61.5 94.2 50.9 73.7 108.2	192.7 189.3 192.3 188.4 190.8 189.6	193.1 215.4 192.8 242.6 198.7 199.6	191.0 191.0 191.0 191.0 191.0	191.4 217.3 191.5 245.9 198.9 201.1	24.2 23.7 24.7 25.2 24.2 22.6	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.81 .59 .49	83.93 .57 .47	73.82 1.48 1.22	85.49 1.49 1.22	07 .10 .08	25 .36 .30	.58 .16 .13	.00 .00 .00	80.4 22.0 18.1	190.5 1.7 1.4	207.0 19.3 15.9	191.0 .0 .0	207.7 21.0 17.3	24.1 .9 .7	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C25 C26 C27 C28 C29 C30	84.73 84.47 84.78 84.54 84.25 83.90	81.76 79.75 80.54	70.21 70.82 68.61 69.13	83.93 85.11 83.28 83.78	19 .33 .54 .16 1.11	48 .62 .49 -1.05 1.00	.26 02 13 .32 25 08	.00 .00 .00 .00 .00	101.8 101.4 104.3 100.3 104.7 93.7	183.2 199.9 195.8 189.2 206.4 189.0	187.1 203.9 202.1 192.3 213.4 189.4	185.5 185.5 185.5 185.5 185.5 185.5	189.4 189.2 191.4 188.5 191.7 185.8	21.6 22.1 21.1 22.6 21.6 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	84.44 .33 .27	80.86 .73 .60	69.66 .79 .65	83.80 .70 .58	.35 .44 .36	.11 .76 .63	.02 .23 .19	.00 .00	101.0 4.0 3.3	193.9 8.4 6.9	198.0 10.1 8.3	185.5 .0 .0	189.3 2.1 1.8	21.6 .7 .6	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 kt	ts 0.9	Vh										
A2 A3 A4 A5 A6 A7	81.01 81.64 81.60 81.74 81.59	78.65 78.08 78.41 78.55	70.66 68.32 68.40 68.82 68.66	82.35 82.05 80.61 82.61 81.09	03 13 17 .05 08 09	18 09 21 89 34 37	29 .27 37 .26 41 .45	54 75 54 50 45 50	57.4 96.5 54.6 62.3 57.5 97.2	213.4 212.3 210.8 215.8 212.8 211.6	213.7 258.6 243.7 252.2 213.3	211.2 211.2	212.6 259.1 238.5 250.4 212.9	35.0 39.6 34.0 40.1 34.0 41.2	37.0 37.0 37.0 37.0 37.0 37.0	S-N N-S S-N N-S S-N N-S
Avg. Std Dv 90% CI	81.55 .27 .22	78.48 .22 .18	68.91 .88 .72	81.80 .78 .64	07 .08 .06	35 .29 .24	02 .38 .31	55 .11 .09	70.9 20.2 16.7	212.8 1.7 1.4	239.1 20.4 16.8	211.2 .0 .0	237.4 20.2 16.6	37.3 3.3 2.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-G-2-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		•	II CROPHO	NE NO.	. 2 SIDELINE - 150 m WEST						07/25/91							
		CORRECT	(dB))	co	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU		DATA (Meters) (REFERENCE)		SPEED(m/sec)		DIR		
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/∖3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF			
150 m	FLYOVER	TAF	RGET IAS	80.0 kt	s 1.0	Vh												
08 09			71.08 69.16		17 .21	12 .21	38 .17	- \$ 52	87.8 107.3			211.2 211.2		37.6 44.2	41.2 41.2	S-N N-S		
Avg. Std Dv 90% CI		79.60 .52 2.30	70.12 1.36 6.06	82.40 1.82 8.11	.02 .27 1.20	.04 .23 1.04	10 .39 1.74	29 .33 1.45	97.6 13.8 61.6	214.3 5.5 24.6	219.6 12.8 57.1	211.2 .0 .0		40.9 4.7 20.3	41.2 .0 .0			
150 m	FLYOVER	TAR	GET IAS	64.0 kt	s 0.8	٧ħ												
D10 D11			67.76 66.89		.00 30	36 87	38 .31	32 25	54.3 48.5			211.2 211.2		30.3 35.0	32.9 32.9	S-N N-S		
Avg. Std Dv 90% CI	81.77 .11 .47	78.36 .28 1.23	67.32 .62 2.75	81.38 1.77 7.92	15 .21 .95	62 .36 1.61	03 .49 2.18	28 .05 .22	51.4 4.1 18.3	210.8 2.8 12.3	270.4 11.7 52.1	211.2 .0 .0	271.0 15.3 68.2	32.7 3.3 14.8	32.9 .0 .0			
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	٧h												
D12 D13			67.59 67.88		50 19	55 18	41 .41	22 .04	62.5 89.7			211.2 211.2		25.2 31.4	28.8 28.8	S-N N-S		
Avg. Std Dv 90% CI	81.63 .11 .47	78.79 .18 .82	67.74 .21 .92	80.65 1.08 4.83	34 .22 .98	37 .26 1.17	.00 .58 2.59	09 .18 .82	76.1 19.2 85.9	206.4 4.5 19.9		211.2 .0 .0	19.0	28.3 4.4 19.6	28.8 .0 .0			
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.6	Vh												
D14 D15			66.72 68.21		.30 10	.25 20	53 .53	30 .35	59.9 95.8			211.2 211.2		22.6 27.8	24.7 24.7	S-N N-S		
Avg. Std Dv 90% CI	82.21 .04 .16	79.04 .31 1.39	67.46 1.05 4.70	81.35 .30 1.36	.10 .28 1.26	.02 .32 1.42	.00 .75 3.35	.02 .46 2.05	77.9 25.4 113.3	5.9	232.2 29.3 130.7	211.2 .0 .0	228.3 22.6 100.7	25.2 3.7 16.4	24.7 .0 .0			

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

April 19, 1993

TABLE B-G-3-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		P	II CROPHO	NE NO.	3	9	SIDELIN	E - 150	O m EAST				07/2	5/91		
		CORRECT	ED (dB))	CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	.CH Т	ARGET I	AS 40.8	kts												
B16 B17 B19 B20 B21 B24	85.52 85.02 86.13 84.55 85.89 85.79	82.73 83.74 82.02	71.32 70.65 70.89 69.84 70.61 71.35	82.89 83.37 82.31	.12 11 12 36 03 08	28 18 78 76 58 53	.55 .54 .73 .90	.00 .00 .00 .00	72.9 92.0 65.5 71.8 67.1 113.9	192.7 189.3 188.9 185.4 190.8	189.4 207.6 195.2	191.0 191.0 191.0 191.0 191.0	199.8 191.1 209.9 201.0 207.3 208.9	24.2 23.7 24.7 25.2 24.2 22.6	21.1 21.1 21.1 21.1 21.1 21.1	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.48 .59 .49	82.95 .64 .53	70.78 .56 .46	83.60 .92 .75	10 .16 .13	52 .25 .20	.6; .19 .16	.00 .00	80.5 18.9 15.5	189.5 2.4 2.0	201.5 7.7 6.3	191.0 .0 .0	203.0 7.2 5.9	24.1 .9 .7	21.1 .0 .0	
TAKEOF	F TA	RGET IA	s 40.8	kts												
C25 C26 C27 C28 C29 C30	85.44 85.93 86.10 85.70 85.92 85.33	82.41 82.54 82.28	70.98 71.11 71.37 71.79 69.76 70.12	84.53 85.74 85.44 83.69	54 .77 .57 .19 .90	48 .69 .40 .14 .50	.39 02 13 .32 14 .03	.00 .00 .00 .00 .00	84.9 88.8 79.7 83.1 56.2 109.1	178.1 199.9 195.8 189.2 201.0 184.1		185.5 185.5 185.5 185.5 185.5 185.5	186.2 185.5 188.5 186.8 223.1 196.3	21.6 22.1 21.1 22.6 21.6 20.6	20.6 20.6 20.6 20.6 20.6 20.6	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.74 .30 .25	82.25 .21 .18	70.86 .77 .63	84.45 1.14 .94	.29 .56 .46	.19 .43 .36	.07 .23 .19	.00 .00 .00	83.6 17.0 14.0	191.3 9.2 7.5	200.8 21.5 17.7	185.5 .0 .0	194.4 14.6 12.0	21.6 .7 .6	20.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.0 ki	ts 0.9	Vh										
A2 A3 A4 A5 A6 A7	81.39 81.86 81.20 82.58 81.61 82.18	79.32 78.88	70.10 69.43 69.27 70.23 68.98 69.06	82.89 81.08 82.23 81.28	.00 13 16 .15 .12 06	.00 16 23 .20 50 39	30 .28 36 .21 48 .45	61 63 61 45 50 45	92.0 43.5 92.2 87.4 51.6 69.8		213.9 308.0 210.5 218.2 275.9 225.5	211.2 211.2 211.2 211.2	211.4 211.4 269.6	35.0 39.6 34.0 40.1 34.0 41.2	37.0 37.0 37.0 37.0 37.0 37.0	S-N N-S S-N N-S S-N N-S
Avg. Std Dv 90% CI	81.80 .51 .42	79.13 .37 .31	69.51 .53 .44	81.92 .66 .54	01 .13 .11	18 .26 .21	03 .39 .32	54 .08 .07	72.8 21.3 17.5	213.6 2.9 2.4	242.0 40.3 33.2	211.2 .0 .0	239.3 40.1 33.0	37.3 3.3 2.7	37.0 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

April 19, 1993

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE B-G-3-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

		н	II CROPHO	NE NO.	3	\$	IDELINE	- 15	O m EAST				07/2	5/91		
		CORRECT	ED (dB)		COI	RECTION	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3		CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	:s 1.0	/h										
D8 D9			71.53 70.57		05 .19	10 .17	41 .18	08 37	93.0 58.3	211.7 217.8		211.2 211.2		37.6 44.2	41.2 41.2	S-N N-S
Avg. Std Dv 90% CI	82.55 .45 1.99	80.03 .18 .82	71.05 .68 3.03	83.38 .08 .35	.07 .17 .76	.04 .19 .85	11 .42 1.86	22 .21 .92	75.7 24.5 109.5	4.3		211.2 .0 .0		40.9 4.7 20.8	41.2 .0 .0	
150 m	FLYOVER	TAR	GET JAS	64.0 kt	:s 0.8	/h										
D10 D11			68.65 67.81		.04 06	12 89	42 .24	18 39	102.6 66.6			211.2 211.2		30.3 35.0	32.9 32.9	S-N N-S
Avg. Std Dv 90% CI	81.78 .49 2.21	78.60 .50 2.24	68.23 .59 2.65	80.94 .93 4.14	01 .07 .32	50 .54 2.43	09 .47 2.08	28 .15 .66	84.6 25.5 113.7	213.5 1.7 7.6	8.1	211.2 .0 .0		32.7 3.3 14.8	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	56.0 kt	s 0.7	/h										
D12 D13			68.93 66.32		08 .10	05 -1.37	61 .29	.06 28	102.4 47.5	212.5 215.1		211.2 211.2		25.2 31.4	28.8 28.8	S-N N-S
Avg. Std Dv 90% CI	81.96 .05 .22	78.45 1.26 5.62	67.63 1.85 8.24	81.17 .59 2.62	.01 .13 .57	71 .93 4.17	16 .64 2.84	11 .24 1.07	74.9 38.8 173.3	213.8 1.8 8.2	254.8 52.7 235.2	211.2 .0 .0	49.9	28.3 4.4 19.6	28.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	48.0 kt	s 0.61	/h										
D14 D15			67.05 66.17			34 -1.25	36 .44	.35 30	96.2 57.9			211.2 211.2		22.6 27.8	24.7 24.7	S-N N-S
Avg. Std Dv 90% CI	82.25 .07 .32	78.65 1.22 5.46	66.61 .62 2.78	80.27 .41 1.83	03 .20 .88	80 .64 2.87	.04 .57 2.53	.02 .46 2.05	77.1 27.1 120.9	3.2	232.4 29.6 132.0	211.2 .0 .0	230.9 26.0 116.2	25.2 3.7 16.4	24.7 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-H-1-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	3/91		
		CORRECT	ED (d8)) 	CO	RRECTIO	(dB)		ACOUSTIC ANGLE	TRAC (ACTU	AL)	TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPRO#	ACH T	ARGET I	AS 50.0	kts												
B17 B18 B19 B20 B21 B22		86.49 90.58 91.81 92.19	81.77 82.80	91.05 94.36 95.33 95.49	34 22 31 .35 .10 54	42 53 55 .16 .11 94	1.06 .93 .97 .61 .68 .89	.00 .00 .00 .00 .00	66.8 124.4 94.8 93.2 75.9 74.1	113.4	138.8 113.8 121.5	118.2 118.2 118.2 118.2 118.2 118.2	143.2 118.6 118.4 121.9	31.4 30.9 30.9 30.3 30.3 29.8	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.94 1.58 1.30	90.57 2.13 1.75	82.22 2.29 1.89	94.52 1.75 1.44	16 .33 .27	36 .42 .35	.86 .17 .14	.00 .00 .00	88.2 20.9 17.2	115.6 3.9 3.2	122.7 8.8 7.2	118.2 .0 .0	125.6 9.4 7.7	30.6 .6 .5	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.0	kts												
C29 C30 C31 C32 C33 C34	85.33 85.05 85.45	81.09 81.29 81.20 80.84 82.00 81.95	71.19 70.70 70.75 70.23 70.50 71.60	85.56 85.49 85.69 85.28	33 1.79 1.06 .58 26 16	37 1.61 .95 11 25 22	1.07 05 .16 .53 .88	.00 .00 .00 .00 .00	104.2 111.4 112.8 96.6 121.2 113.0	136.2 166.9 156.1 149.0 137.5 138.0	140.5 179.3 169.2 149.9 160.8 149.9	141.5 141.5 141.5 141.5 141.5 141.5		30.3 28.8 28.3 29.3 29.3	24.7 24.7 24.7 24.7 24.7 24.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.37 .37 .30	81.39 .47 .39	70.83 .49 .41	85.77 .44 .36	.45 .86 .70	.27 .82 .67	.57 .44 .36	.00 .00 .00	109.9 8.5 7.0	147.3 12.4 10.2	158.3 14.3 11.8	141.5 .0 .0	152.2 7.9 6.5	29.2 .7 .5	24.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	93.6 k	ts 0.9	Vh										
A1 A2 A3 A5 A6 A7	84.85 84.17 84.11 83.83 84.05 83.82	80.88 80.10 80.03 79.93 79.68 79.60	70.23 70.21 70.44 69.91 70.46 70.13	85.50 85.07	-1.02 -1.36 -1.17 -1.60 -1.28 69	94 -1.54 -1.08 -1.49 -1.17 69	.70 59 .90 19 .76 66	1.50 1.50 1.50 1.50 1.52 1.52	121.5 85.0 111.9 103.9 121.2 96.6	134.8 130.3 132.7 127.1 131.6 138.2	130.8 143.0 131.0 153.8 139.1	148.8 148.8 148.8 148.8 148.8 148.8	174.4 149.3 160.3 153.2 173.8 149.7	51.4 37.0 53.0 39.6 50.9 38.6	48.4 48.4 48.4 48.4 48.4	
Std Dv 90% CI	.38	.46	.20 .17	.24	.31	.33	.72	.01	14.4 11.8	3.8 3.1	11.4	.0	11.5	7.4 6.1	.0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

Std Dv

90% CI

.66

2.97

.08

.38

3.19

.61

2.72

.40

TABLE B-H-1-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. CENTERLINE - CENTER 07/23/91 ACOUSTIC TRACKING DATA (Meters) (ACTUAL) SPEED(m/sec) CORRECTED (dB) CORRECTIONS (dB) ANGLE (REFERENCE) DIR ΕV **EPNL CPAR** SRR GRND REF SEL ALm **PNLTm** $/\1(P) /\1(A) /\2$ /\3 (Deg) CPA 150 m FLYOVER -- TARGET IAS 104.0 kts -- 1.0Vh 100.6 **D8** 86.66 82.50 71.54 86.65 2.72 127.7 129.9 148.8 151.3 57.1 53.5 87.10 83.17 72.18 86.91 -1.65 .02 2.72 108.5 125.3 132.1 148.8 156.8 53.5 D9 -1.75 82.83 -1.63 -1.56 .48 104.6 126.5 131.0 148.8 154.1 51.2 53.5 86.88 71.86 86.78 2.72 Avg. 5.6 24.9 3.9 Std Dv .31 .45 .18 . 13 .65 .00 1.7 1.6 .0 8.3 ٠,0 2.90 7.6 90% CI 1.39 .82 .76 .60 .00 6.9 ٠0 17.4 37.3 .0 150 m FLYOVER -- TARGET IAS 83.2 kts -- 0.8Vh 148.8 149.4 145.0 83.52 78.91 69.92 85.91 95.2 144.4 46.3 42.7 N-S D10 -.22 - .29 .48 .38 D11 79.65 70.02 85.34 132.1 148.8 149.3 .00 .34 .05 79.28 69.97 -.73 138.6 83.82 85.63 -.68 95.0 138.0 148.8 149.4 40.2 42.7 Avg. 8.7 9.1 .0 Std Dv .42 .52 .07 .40 .65 .62 .67 9.1 .0 90% CI 1.86 2.34 .32 1.80 2.90 2.78 3.00 .22 1.3 40.4 40.7 ٠0 .3 38.8 .0 150 m FLYOVER -- TARGET IAS 72.8 kts -- 0.7Vh -.28 147.3 147.3 148.8 148.7 37.6 D12 83.30 78.66 70.52 .01 .38 90.4 40.6 N-S D13 83.59 78.92 70.13 85.34 -.57 -.63 -.87 -.28 92.3 139.4 139.5 148.8 148.9 28.8 37.6 -.28 -.38 -.25 37.6 83.45 78.79 70.32 85.49 -.28 91.4 143.4 143.4 148.8 148.8 34.7 Avg. .88 Std Dv .35 5.5 .18 .00 1.3 5.6 .0 8.3 .0 24.9 24.6 .92 .98 1.83 3.95 90% CI .82 1.23 1.55 .00 6.0 ٠0 .6 37.3 ٥. 150 m FLYOVER -- TARGET IAS 62.4 kts -- 0.6Vh 148.8 36.0 D14 83.60 79.92 70.60 85.62 -.57 -.71 .82 -.87 91.6 139.2 139.3 148.8 31.9 D15 84.54 79.80 71.61 86.48 -.01 -.12 -.29 105.4 148.5 154.0 148.8 154.3 26.7 31.9 - ,29 .03 - .58 98.5 143.9 146.6 148.8 151.6 31.4 31.9 84.07 79.86 71.10 -.41 86.05 Avg.

.0

.0

3.9

17.4

6.6

29.4

.0

.0

10.4

46.4

6.6

29.4

.42

1.86

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

1.11

4.96

.41

1.83

9.8

43.6

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

90% CI

.11

.41

.42

.18

.27

TABLE B-H-2-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA, TAIL ROTOR

SUMMARY NOISE LEVEL DATA **CORRECTED***

MICROPHONE NO. SIDELINE - 150 m WEST 07/23/91 2 ACOUSTIC TRACKING DATA (Meters) CORRECTED (dB) CORRECTIONS (dB) **ANGLE** (ACTUAL) (REFERENCE) SPEED(m/sec) DIR EPNL SEL (Deg) E۷ ALm PNLTm /\1(P) /\1(A) /\2 /\3 CPA SR **CPAR** SRR GRND REF APPROACH -- TARGET IAS 50.0 kts 49.9 182.3 238.4 191.0 86.73 84.94 76.54 -.46 -.44 1.06 .00 249.8 25.7 -.11 84.09 74.64 -.07 .84 .00 118.4 188.7 214.7 191.0 30.9 25.7 N-S **B18** 86.29 87.14 217.2 89.03 87.09 77.03 -.50 -.77 1.02 .00 59.3 181.3 210.9 191.0 30.9 25.7 N-S R19 88.47 222.2 **B20** 87.64 86.12 77.50 89.14 -.04 -.02 .74 .00 94.6 190.3 190.9 191.0 191.6 30.3 25.7 N-S **B21** 88.43 86.64 76.16 87.94 -.28 -.31 .87 .00 70.1 184.7 196.4 191.0 203.0 30.3 25.7 N-S 185.4 **B22** 87.40 85.66 74.48 86.09 - . 29 - .83 .00 82.9 186.9 191.0 192.4 87.59 .88 .00 79.2 185.4 206.4 25.7 85.76 76.06 87.85 -.27 191.0 212.7 30.6 Avg. -.41 Std Dv 1.02 1.11 1.25 1.09 .19 .33 .13 .00 25.0 3.5 19.2 .0 22.1 .0 .6 2.9 90% CI .84 .91 1.03 .89 .16 .28 .00 20.6 15.8 .0 18.2 .5 .0 TAKEOFF -- TARGET IAS 50.0 kts -.25 **C29** 82.28 79.78 68.08 81.07 -.23 1.03 .00 106.6 200.3 209.1 206.2 215.2 30.3 24.7 N-S C30 82.48 79.60 68.83 81.69 .89 .35 .00 101.9 221.7 226.6 206.2 210.7 28.8 24.7 N-S .76 .46 221.1 82.55 .33 206.2 24.7 C31 80.01 68.52 81.21 .41 .00 106.2 212.4 214.7 28.3 N-S .00 24.7 24.7 82.44 82.25 -.25 207.4 230.5 206.2 68.06 115.8 29.3 N-S C32 79.61 81.26 .16 229.1 67.91 .90 199.1 205.0 C33 79.24 80.29 - .28 -.32 .00 103.8 206.2 212.3 29.3 N-S C34 82.74 80.29 68,57 81.00 -.19 .85 .00 79.6 201.5 204.9 206.2 209.6 29.3 24.7 N-S .12 79.75 68.33 81.09 .01 .72 .00 102.3 207.1 216.2 206.2 215.3 29.2 24.7 82.46 Avg. .18 .00 Std Dv .36 .36 .46 12.1 8.8 11.3 .0 .0 .46 .44 . 26 7.1 .7 7.2 9.3 .5 90% CI .15 .30 .30 .38 .38 .36 . 22 .00 10.0 . 0 5.9 .0 150 m FLYOVER -- TARGET IAS 93.6 kts -- 0.9Vh 198.2 205.2 48.4 -.76 .55 75.1 211.2 218.6 51.4 85.31 82.81 71.12 83.48 2,77 N-S ۸2 85.09 82.04 70.41 83.95 -.42 - .85 -1.01 1.42 52.9 203.9 255.8 211.2 265.0 37.0 48.4 S-N A3 84.94 82.25 71.21 83.97 -1.02 -1.06 .81 2.77 95.6 192.1 193.0 211.2 212.2 53.0 48.4 N-S A5 81.50 70.01 71.16 83.86 -.73 1.42 2.92 41.3 197.5 299.1 195.7 85.06 -1.78-.58 211.2 319.9 39.6 48.4 S-N - .99 211.2 193.7 83.52 -.88 213.5 50.9 48.4 A6 85.22 82.79 .61 81.7 N-S 207.9 257.3 48.4 S-N A7 85.22 82.04 70.38 83.63 -.17 -.58 -.91 1.60 53.9 211.2 261.4 38.6 - .97 85.14 82.24 70.72 83.74 - .68 -.09 2,15 66.7 198.9 234.3 211.2 248.4 45.1 48.4 Ava. .43 .83 20.6 6.0 .0 Std Dv .13 .50 .22 43.0 7.4 .33 42.4 .51 .74 .0

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

.69

.61

17.0

5.0

35.3

.0

34.8

6.1

-0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

90% CI

6.44

6.19

3.73

29.4

.0

TABLE B-H-2-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

MICROPHONE NO. 07/23/91 SIDELINE - 150 m WEST ACOUSTIC TRACKING DATA (Meters) SPEED(m/sec) DIR CORRECTED (dB) CORRECTIONS (dB) (ACTUAL) ANGLE (REFERENCE) E۷ EPNL SEL ALm **PNLTm** /\1(P) /\1(A) /\2 (Deg) CPA **CPAR** SRR GRND REF 150 m FLYOVER -- TARGET IAS 104.0 kts -- 1.0Vh 190.8 88.00 85.29 72.48 85.37 -.87 -1.02 76.8 196.0 211.2 217.0 57.1 53.5 **D8** .72 4.30 72.83 **D9** 86.35 83.83 84.92 .02 -.25 -.64 1.53 80.1 206.8 209.9 211.2 214.4 45.3 53.5 S-N 78.4 2.3 - .43 87.18 84.56 72.65 85.15 -.63 .04 2.91 198.8 202.9 211.2 215.7 51.2 53.5 Avg. .96 .0 Std Dv 1.17 1.03 .25 .32 .54 1.96 9.8 8.3 .63 11.3 ٠0 1.8 10.4 2.81 43.9 .0 37.3 .0 90% CI 5.21 4.61 1.10 1.42 4.29 50.5 8.2 150 m FLYOVER -- TARGET IAS 83.2 kts -- 0.8Vh 91.8 199.5 211.2 211.3 82.63 78.89 67.56 80.61 -.62 -1.50 199.4 42.7 חומ .60 1.41 46.3 N-S D11 85.48 82.40 69.98 84.36 -.30 -.28 -.88 1.52 50.1 205.6 268.1 211,2 34.0 -.46 .23 -.14 70.9 84.06 80.65 68.77 82.49 -.89 1.46 202.5 233.8 211.2 243.4 40.2 42.7 Avg. .86 Std Dv 2.02 1.05 8.7 2.48 48.5 45.3 .0 1.71 2.65 .08 29.5 4.4 ٠0 202.4 3.85 216.6 90% CI 9.00 11.08 7.64 11.84 1.01 4.67 .35 131.6 19.6 .0 38.8 .0 150 m FLYOVER -- TARGET IAS 72.8 kts -- 0.7Vh 196.2 211.2 247.6 211.2 81.40 78.40 68.63 81.56 83.68 79.64 67.67 81.57 - .78 .67 94.5 57.5 195.6 40.6 -.83 211.9 37.6 N-S D12 -.11 -1.30 -1.10 1.11 208.7 28.8 37.6 013 250.5 S-N 79.02 68.15 81.57 -.47 -1.04 -.22 76.0 202.1 221.9 231.2 34.7 37.6 82.54 .77 211.2 Ava. Std Dv .01 .37 1.25 9.3 36.3 27.3 8.3 1.61 .88 .68 .51 26.2 . 0 .0 .48 7.20 3.91 5.59 2.15 41.4 .0 37.3 90% CI 3.03 .03 2.27 1.64 116.8 162.3 121.9 .0 150 m FLYOVER -- TARGET IAS 62.4 kts -- 0.6Vh 80.98 78.13 67.82 80.88 -.68 .80 94.4 198.7 199.3 211.2 36.0 31.9 **D14** -.72 ·.36 211.9 N-S D15 83.02 80.09 69.00 81.54 .18 .17 -.83 .44 78.3 214.7 219.3 211.2 215.7 26.7 31.9 79.11 68.41 81.21 -.25 -.28 -.02 86.4 206.7 209.3 211.2 213.8 31.4 31.9 82.00 .04 Avg. Std Dv .83 .57 11.3 .0 2.7 .0 1.44 1.39 .61 .63 1.15 11.4 14.1 6.6

2.81

2.08

2.72

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

5.15

2.53

50.8

50.5

63.1

.0

12.0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

90% CI

TABLE B-H-3-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA **CORRECTED***

MICROPHONE NO. SIDELINE - 150 m EAST 07/23/91 TRACKING DATA (Meters) ACOUSTIC CORRECTED (dB) CORRECTIONS (dB) **ANGLE** (ACTUAL) (REFERENCE) SPEED(m/sec) DIR E۷ **EPNL** SEL **PNLTm** (Deg) CPA **CPAR** SPP GRND REF ALm /\1(P) /\1(A) /\2 /\3 APPROACH -- TARGET IAS 50.0 kts 84.87 81.84 .11 .00 65.4 193.0 212.2 191.0 210.0 71.99 .13 .81 31.4 191.0 30.9 25.7 83.56 80.92 69.99 83.08 -.11 -.11 .84 .00 118.6 188.7 214.9 217.4 **B18** .27 .26 204.6 197.8 25.7 71.77 .18 194.4 191.0 30.9 N-S R19 85.56 82.62 85.28 .71 _00 108.2 201.0 83.54 191.0 25.7 -.92 195.5 193.2 72.01 85.32 .00 98.8 30.3 N-S B20 87.16 .62 191.0 25.7 B21 86.62 83.52 71.18 84.70 .50 -.30 .55 .00 59.7 198.5 229.8 221.1 30.3 N-S 195.1 **B22** 86.13 82.66 70.53 84.73 -1.32.00 105.1 188.4 191.0 197.8 29.8 .70 85.65 82.52 71.25 84.78 .15 - .39 .00 92.6 193.1 209.1 191.0 206.8 30.6 25.7 Avg. 1.01 .11 Std Dv 1.30 .60 .00 12.8 .0 .84 .90 .24 24.2 4.0 ٠0 11.2 .6 19.9 9.2 10.5 90% CI 1.07 .83 -69 .74 .20 .49 .09 .00 3.3 .0 .5 .0 TAKEOFF -- TARGET IAS 50.0 kts .00 204.8 254.0 206.2 255.6 83.78 80.30 66.79 .93 126.2 30.3 C29 80.56 - .02 - 26 24.7 N-S 24.7 C30 83.70 79.57 65.86 81.16 1.11 .07 .25 .00 56.4 227.0 272.6 206.2 247.6 28.8 N-S C31 83.68 79.64 66.37 81.03 .79 -.14 .30 .00 51.2 220.4 283.0 206.2 264.7 28.3 24.7 N-S .45 68.42 82.13 .55 251.0 206.2 240.4 29.3 24.7 N-S C32 83.98 80.59 .56 .00 121.0 215.2 80.01 68.06 80.78 .12 .72 .00 130.8 207.7 274.1 206.2 272.1 29.3 24.7 N-S C33 83.04 . 15 206.2 24.7 N-S C34 83.53 80.40 67.22 81.40 - 06 .04 - 00 51.6 206.0 262.8 263.0 29.3 24.7 Avg. 83.62 80.08 67.12 81.18 .44 .05 .58 .00 89.5 213.5 266.3 206.2 257.2 29.2 Std Dv .32 .42 .98 .45 .24 .00 40.1 8.9 12.5 .0 11.7 .0 .55 .27 .5 90% CI .34 .81 .37 .20 .22 .00 33.0 7.3 10.3 .0 9.7 .0 . 26 150 m FLYOVER -- TARGET IAS 93.6 kts -- 0.9Vh 84.11 81.14 69.93 82.68 -.20 -.82 .40 1.42 56.5 205.0 246.0 211.2 253.5 51.4 48.4 N-S A1 - . 78 2.77 84.86 82.22 70.38 83.16 -.95 - .88 95.6 193.3 194.2 211.2 212.2 37.0 48.4 S-N **A2** .47 208.1 256.4 48.4 71.10 1.42 2.77 260.2 53.0 84.44 N-S **A3** 82.20 84.00 -.19 -.16 54.3 211.2 91.3 39.6 48.4 195.7 195.7 S-N A5 84.91 82.25 70.84 83.15 -.78 - . 98 - .54 211.2 211.3 **A6** 84.21 81.88 69.99 82.03 -.32 -.29 .36 1.60 102.6 205.2 210.2 211.2 216.4 50.9 48.4 N-S 81.6 199.8 202.0 211.2 213.5 48.4 S-N A7 84.85 81.99 69.90 82.38 -.57 -.56 2.92 -.50 -.62 -.14 80.3 45.1 48.4 81.95 70.36 2.15 227.8 Avg. 84.56 82,90 201.2 217.4 211.2 .42 Std Dv .36 .51 .70 .32 .34 .61 .74 20.5 5.9 27.0 .0 22.6 7.4 .0

.28

Note: Data may have been obtained under wind conditions exceeding the restrictions of FAR Part 36 H36.101c4, see Appendix F.

.50

.61

16.8

4.8

22.2

18.6

.0

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING. THE "SIMPLIFIED" PROCEDURE

TABLE B-H-3-2

SCHV.'EIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SUMMARY NOISE LEVEL DATA CORRECTED*

		×	ICROPHO	NE NO.	3	:	SIDELIN	E - 15	0 m EAST				07/23	/91		
		CORRECT	ED (dB)		co	RRECTIO	is (das)		ACOUSTIC ANGLE	(ACTU	AL)	TA (Met (REFER		SPEED (m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	104.0 1	cts 1.	0Vh										
D8 D9			72.57 73.06		46 -1.36	41 -1.42	.46 12	1.56 4.30	77.0 86.9			211.2 211.2	216.8 211.5	57.1 45.3	53.5 53.5	N-S S-N
Avg. Std Dv 90% CI		84.33 1.43 6.38	72.82 .35 1.55		91 .64 2.84	91 .71 3.19	.17 .41 1.83	2.93 1.94 8.65	81.9 7.0 31.3	193.1 13.9 61.9	195.9 17.4 77.7	211.2 .0 .0	214.1 3.7 16.7	51.2 8.3 37.3	53.5 .0 .0	
150 m	FLYOVER	TAR	GET IAS	83.2 kt	ts 0.8	Vh										
D10 D11			68.51 68.77		.47 79	.08 91	.24 61	1,39 1,42	78.9 81.6			211.2 211.2	215.2 213.5	46.3 34.0	42.7 42.7	N-S S-N
Avg. Std Dv 90% CI	83.32 .67 3.00	80.52 .35 1.58	68.64 .18 .82	81.52 .21 .92	16 . <i>89</i> 3.98	42 .70 3.13	19 .60 2.68	1,40 , <i>02</i> ,09	80.3 1.9 8.5	204.9 16.5 73.6	208.0 17.8 79.6	211.2 .0 .0	214.4 1.2 5.4	40.2 8.7 38.8	42.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.8 kt	ts 0.7	Vh										
D12 D13			68.70 68.51		.87 36	.60 52	.09 93	1.11 .43	67.7 90.1			211.2 211.2	228.3 211.2	40.6 28.8	37.6 37.6	N-S S-N
Avg. Std Dv 90% CI	1.50 6.69	1.15 5.11	68.60 .13 .60	.09 .41	.25 .87 3.88	.04 .79 3.54	42 .72 3.22	.77 .48 2.15	78.9 15.8 70.7	212.3 16.4 73.2		211.2 .0 .0	219.8 12.1 54.0	34.7 8.3 37.3	37.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	62.4 kt	ts 0.6	Vh										
D14 D15			65.78 67.91		.17 .00	-1.69 22	.55 68	.99 04	42.5 103.5			211.2	312.9 217.2	36.0 26.7	31.9 31.9	N-S S-N
Avg. Std Dv 90% CI	82.14 .83 3.73	78.38 .29 1.29	66.85 1.51 6.72	80.48 .71 3.19	.09 .12 .54	96 1.04 4.64	07 .87 3.88	.47 .73 3.25	73.0 43.1 192.6	208.9 2.1 9.2	262.4 69.6 310.6	211.2 .0 .0	67.7	31.4 6.6 29.4	31.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-I-1-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		H	I CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	3/91		
		CORRECT	ED (dB)		со	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	PNLTm	ALm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 50.0	kts												
B16 B17 B18 B19 B20 B21	91.55 91.85 93.46 93.04	89.48 90.04 91.33	83.62 82.87	94.06 94.80 95.53	26 17 72 58 37	22 26 67 99 34	.33 .51 .46 .48 .62 .07	.00 .00 .00 .00 .00	71.7 81.5 71.7 75.6 45.9 70.8	116.2 115.5 110.5 112.0 114.8 121.1	116.8 116.4 115.7 159.9	118.2 118.2 118.2 118.2 118.2 118.2	119.5 124.5 122.1 164.7	27.3 28.3 26.7 27.3 28.8 26.7	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.89 .97 .80	91.15 1.15 .94	83.45 .66 .54	94.64 .90 .74	32 .32 .26	38 .40 .33	.41 .19 .16	.00 .00	69.5 12.2 10.1	115.0 3.7 3.0	126.6 17.0 14.0	118.2 .0 .0	130.1 17.1 14.1	27.5 .9 .7	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.0	kts												
C22 C23 C24 C25 C26 C27	81.59 80.90 81.36 81.38 81.54 81.46	78.02 78.12 78.26 78.34	67.37 67.65 67.03 67.19 67.57 67.68	81.11 80.57 80.49	.11 .43 06 .37 23	.13 .42 34 .16 43	.57 .37 .67 .32 .72	.00 .00 .00 .00	126.8 126.4 110.6 120.6 117.5 125.8	144.8 149.0 141.6 147.7 139.7 153.6	180.9 185.1 151.2 171.6 157.5 189.3	141.5 141.5 141.5 141.5 141.5 141.5	176.8 175.8 151.1 164.3 159.5 174.3	28.8 28.3 28.8 27.8 28.8 30.3	24.7 24.7 24.7 24.7 24.7 24.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	81.37 .25 .20	78.31 .23 .19	67.42 .26 .22	80.75 .25 .21	.24 .38 .31	.10 .43 .35	.53 .16 .13	.00 .00 .00	121.3 6.4 5.3	146.1 5.1 4.2	172.6 15.4 12.7	141.5 .0 .0	167.0 10.4 8.6	28.8 .8 .7	24.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	93.6 kt	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	79.44 79.49 79.19 79.29 79.30 79.41	76.12 76.28 75.73 76.04 75.59 76.17	67.20 67.52 67.09 67.20 66.49 67.11	80.30 81.02 80.81 80.64 80.44 80.49	-1.96 -1.46 -1.54 -1.71 -1.57 -1.86	-1.79 -1.35 -1.66 -1.56 -1.77 -1.67	.52 22 .42 28 .45 .00	.35 .35 .30 .40 .40	98.8 88.4 85.3 95.4 131.0 100.3	125.0 131.5 130.8 128.5 132.4 126.7	126.4 131.6 131.2 129.1 175.5 128.8	148.8 148.8 148.8 148.8 148.8 148.8	150.5 148.8 149.2 149.4 197.1 151.2	45.8 40.6 46.8 39.1 47.8 41.2	48.4 48.4 48.4 48.4 48.4	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	79.35 .11 .09	75.99 .27 .22	67.10 .34 .28	80.62 .26 .22	-1.68 .20 .16	-1.63 .16 .13	.15 .36 .30	.38 .06 .05	99.9 16.3 13.4	129.1 2.9 2.4	137.1 18.9 15.6	148.8 .0 .0	157.7 19.3 15.9	43.5 3.7 3.0	48.4 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-I-1-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

			ICROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	4/91		
		CORRECT	ED (dB)	ı	со				ACOUSTIC ANGLE	(ACTU	AL)	TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)		/\3		CPA	SR	CPAR	SRR	GRND	REF	•
150 m	FLYOVER	TAR	GET IAS	104.0 k	cts 1.	0Vh										
D7 D8			69.10 68.28		-2.05 -2.02	-1.83 -1.87	.64 .22	.51 .58	110.8 <i>9</i> 8.9			148.8 148.8	159.1 150.6	52.0 46.8	53.5 53.5	N-S S-N
Avg. Std Dv 90% CI		77.10 .27 1.20	68.69 .58 2.59	81.46 .56 2.49	-2.03 .02 .09	-1.85 .03 .13	.43 .30 1.33	.54 .05 .22	104.9 8.4 37.6	124.2 .6 2.5				49.4 3.7 16.4	53.5 .0 .0	
150 m	FLYVOER	TAR	GET IAS	83.2 kt	ts 0.8	Vh										
D9 D10	79.29 79.39		66.93 66.68		-1.37 -1.35	-1.30 -1.54	.25 42	.13 .16	76.1 75.2			148.8 148.8	153.2 153.8	40.1 34.5	42.7 42.7	
Avg. Std Dv 90% CI	79.34 .07 .32			81.08 .33 1.45	-1.36 .01 .06	-1.42 .17 .76	09 .47 2.12	.14 .02 .09	75.6 .6 2.8		136.3 .6 2.5	148.8 .0 .0	153.5 .4 1.9	37.3 4.0 17.7	42.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.8 kt	s 0.7	Vh										
D11 D12			66.33 67.49			-1.19 -1.01	.15 65	.03 .03	75.0 94.3			148.8 148.8	154.0 149.2	36.5 30.3	37.6 37.6	N-S S-N
Avg. Std Dv 90% CI	79.73 .30 1.33	75.83 .44 1.96	66.91 .82 3.66		81 .11 .47	-1.10 .13 .57	25 .57 2.53	.03 .00 .00	84.7 13.6 60.9	139.7 .1 .6			151.6 3.4 15.2	33.4 4.4 19.6	37.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	62.4 kt	s 0.6	Vh										
D13 D14			66.37 67.36		60 -1.11		.17 50	01 00	84.9 98.2	143.1 134.6		148.8 148.8		31.9 25.7	31.9 31.9	N-S S-N
Avg. Std Dv 90% C1	.33	.68	66.87 .70 3.13	.49	86 .36 1.61	98 .33 1.45	16 .47 2.12	00 .01 .03	91.6 9.4 42.0	138.9 6.0 26.8	139.9 5.4 24.3		.7	28.8 4.4 19.6	31.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-I-2-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		•	II CROPHO	WE NO.	2	:	SIDELINE	- 15	0 m WEST				07/2	4/91		
		CORRECT	ED (dB))	со	RRECTIO	NS (d8)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 50.0	kts												
B16 B17 B18 B19 B20 B21	88.08 85.07 87.96 87.76 85.66 88.60	86.84 83.39 86.19 86.51 84.31 87.17	76.38 72.44 76.64 76.67 74.03 77.15	87.67 84.33 88.21 88.24 84.41 88.85	59 57 67 58 50 48	58 84 -1.03 52 61 42	.46 .60 .40 .45 .66	.00 .00 .00 .00	76.4 108.6 61.7 75.1 57.7 61.0	182.1 182.6 181.1 182.2 183.7 184.3	187.3 192.7 205.7 188.5 217.3 210.8	191.0 191.0 191.0 191.0 191.0	196.4 201.5 216.9 197.6 225.9 218.4	27.3 28.3 26.7 27.3 28.8 26.7	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.19 1.45 1.19	85.73 1.52 1.25	75.55 1.88 1.55	86.95 2.03 1.67	56 .07 .06	67 .23 .19	.48 .13 .10	.00 .00 .00	73.4 18.9 15.6	182.7 1.2 1.0	200.4 12.6 10.4	191.0 .0 .0	209.5 12.5 10.3	27.5 .9 .7	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.0	kts												
C22 C23 C24 C25 C26 C27	79.58 79.47 79.75 79.86 79.96 79.96	77.18 76.73 77.09 77.31 77.60 77.40	65.33 65.08 65.92 66.10 66.97 65.74	78.15 78.46 79.19 78.44 79.56 79.14	12 .01 33 15 43 .12	20 33 31 10 36 08	.68 .58 .76 .67 .79	.00 .00 .00 .00	98.7 87.7 95.2 108.9 92.7 81.2	205.8 206.6 201.8 206.2 200.5 210.4	208.2 206.8 202.6 218.0 200.8 212.9	206.2 206.2 206.2 206.2	208.6 206.3 207.0 218.0 206.4 208.6	28.8 28.3 28.8 28.8 28.8 30.3	24.7 24.7 24.7 24.7 24.7 24.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	79.76 .20 .17	77.22 .30 .24	65.86 .66 .55	78.82 .55 .45	15 .21 .17	23 .12 .10	.71 .09 .07	.00 .00	94.1 9.5 7.8	205.2 3.6 2.9	208.2 6.4 5.3	206.2 .0 .0	209.2 4.5 3.7	29.0 .7 .6	24.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	93.6 ki	ts 0.9	Vh										
A1 A2 A3 A4 A5 A6	78.77 78.77 78.65 78.31 78.65 78.64	76.74 75.62 76.27 75.95	65.75 66.76 65.79 67.16 65.68 66.14	78.83 78.94 79.01 79.37 78.49 78.76	-1.37 58 -1.18 67 -1.27 72	-1.62 45 -1.61 54 -1.17 63	.25 61 .28 74 .37 51	1.08 .75 .92 .87 1.22 1.03	93.3 86.6 84.4 96.6 128.7 76.4	188.5 204.5 192.0 202.7 191.7 202.3	188.8 204.8 192.9 204.1 245.7 208.1	211.2 211.2 211.2 211.2 211.2 211.2	211.6 212.2 212.6 270.7	45.8 40.6 46.8 39.1 47.8 41.2	48.4 48.4 48.4 48.4 48.4	N-S S-N N-S S-N N-S S-N
Std Dv 90% CI	.17	.48	.61 .50	.29	.35 .28	.54	.51 .42	.17	18.3 15.0	7.0 5.7	20.2	.0	23.6 19.4	3.7 3.0	.0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-1-2-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		•	II CROPHO	NE NO.	2	:	SIDELIN	E - 150	0 m WEST				07/2	4/91		
		CORRECT	ED (dB)		CO	RRECTIO	(dB)		ACOUSTIC ANGLE	(ACTL	-	(REFER		SPEED	(m/sec)	DIR
ΕV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	104.0	kts 1.	0Vh										
D7 D8			68.81 67.72		-1.44 75	-1.27 65	.36 37	1.62 1.11	93.9 85.9		189.0 201.7		211.7 211.8	52.0 46.8	53.5 53.5	N-S S-N
Avg. Std Dv 90% CI		78.23 .48 2.15	68.26 .77 3.44	81.01 1.49 6.66	-1.10 .49 2.18	96 .44 1.96	00 .52 2.30	1.37 .36 1.61	89.9 5.7 25.3	194.9 8.8 39.5	195.4 9.0 40.1	211.2 .0 .0	211.8 .1 .3	49.4 3.7 16.4	53.5 .0 .0	
150 m	FLYOVER	TAR	GET IAS	83.2 kt	ts 0.8	Vh										
09 D10			65.04 65.32		-1.14 34	-1.03 67	.11 81	.36 .43	90.3 92.7		193.7 205.5		211.2 211.5	40.1 34.5	42.7 42.7	N-S S-N
Avg. Std Dv 90% CI		74.77 .41 1.83	65.18 .20 .88	77.94 .02 .09	74 .57 2.53	85 .25 1.14	35 .65 2.90	.40 .05 .22	91.5 1.7 7.6	199.5 8.2 36.6	199.6 8.3 37.3	211.2 .0 .0	211.4 .2 .9	37.3 4.0 17.7	42.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.8 kt	s 0.7	Vh										
D11 D12			63.91 64.68		99 17	-1.10 16	.17 91	.06 .15	72.6 106.9		207.2 220.6		221.4 220.8	36.5 30.3	37.6 37.6	N-S S-N
Avg. Std Dv 90% CI		74.73 .45 2.02	64.29 .54 2.43	77.07 .24 1.07	58 .58 2.59	63 .66 2.97	37 .76 3.41	.11 .06 .28	89.8 24.3 108.3	204.3 9.5 42.3	213.9 9.5 42.3	211.2 .0 .0	221.1 .4 1.9	33.4 4.4 19.6	37.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	62.4 kt	s 0.6	Vh										
D13 D14			63.80 64.12		71 48	62 70	.19 83	07 00	85.0 86.8		202.9 206.8			31.9 25.7	31.9 31.9	N-S S-N
Avg. Std Dv 90% CI	77.56 .02 .09	74.65 .30 1.36	63.96 .23 1.01	77.25 .12 .54	59 .16 .73	66 .05 .25	32 .72 3.22	04 .06 .25	85.9 1.3 5.7	204.3 3.0 13.3	204.9 2.8 12.3	211.2 .0 .0	211.8 .3 1.3	28.8 4.4 19.6	31.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-I-3-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		N	I CROPHO	NE NO.	3	:	SIDELINE	- 15	0 m EAST				07/2	4/91		
		CORRECT	ED (dB))	CO	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	•
APPROA	CH T	ARGET I	AS 50.0	kts												
B16 B17 B18 B19 B20 B21	85.49 85.31 82.73 85.11 86.03 85.48	82.09 80.67 83.26 84.01	70.05 71.30 69.96 70.20 71.02 71.32	84.57 82.76 83.38 83.79	.21 .12 08 05 .06 .46	-1.34 96 10 16 34	.11 .30 .16 .23 .42	.00 .00 .00 .00	114.7 114.3 81.3 107.4 58.9 99.2	197.0 195.7 191.4 192.0 193.9 200.9		191.0 191.0 191.0 191.0 191.0	210.2 209.4 193.2 200.1 223.1 193.5	27.3 28.3 26.7 27.3 28.8 26.7	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.03 1.17 .96	82.57 1.27 1.05	70.64 .64 .53	83.76 .66 .55	.12 .20 .16	41 .64 .52	.20 .16 .13	.00 .00 .00	96.0 22.0 18.1	195.2 3.5 2.9	209.4 12.0 9.9	191.0 .0 .0	204.9 11.6 9.5	27.5 .9 .7	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.0	kts												
C22 C23 C24 C25 C26 C27	79.97 79.56 79.22 79.17 80.05 79.97	77.08 75.30 76.32 76.05 76.69 76.86	64.74 63.63 64.60 63.38 63.69 64.19	78.19 76.99 77.37 76.73 77.08 77.74	.12 .38 .08 .37 06	39 -1.40 26 25 89 15	.57 .39 .58 .33 .66	.00 .00 .00 .00	78.4 91.4 116.6 85.7 96.6 89.7	211.1 216.1 210.6 214.9 206.7 216.6	215.5 216.2 235.5 215.5 208.1 216.6	206.2 206.2 206.2 206.2 206.2 206.2	210.5 206.2 230.5 206.7 207.5 206.2	28.8 28.3 28.8 27.8 28.8 30.3	24.7 24.7 24.7 24.7 24.7 24.7	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	79.66 .40 .33	76.38 .65 .53	64.04 .56 .46	77.35 .54 .44	.23 .21 .17	56 .49 .40	.54 .15 .12	.00 .00 .00	93.1 13.0 10.7	212.7 3.9 3.2	217.9 9.2 7.6	206.2 .0 .0	211.3 9.6 7.9	28.8 .8 .7	24.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	93.6 kt	s 0.9	Vh										
A1 A2 A3 A4 A5 A6	78.79 78.94 78.90 78.84 78.22 78.92	76.37 76.18 76.81 76.29 76.03 76.21	66.54 66.49 68.07 66.90 66.12 66.52	79.35 79.56 80.62 79.60 78.98 79.16	75 -1.05 42 -1.29 40 -1.25	60 -1.06 40 -1.09 54 -1.17	04 39 03 51 .01 24	.75 1.08 .63 1.22 .87 1.39	79.8 92.7 90.6 97.2 117.3 100.7	201.6 194.4 205.7 192.1 208.1 190.2	204.9 194.6 205.8 193.6 234.2 193.5	211.2 211.2 211.2 211.2 211.2 211.2		45.8 40.6 46.8 39.1 47.8 41.2	48.4 48.4 48.4 48.4 48.4	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	78.77 .27 .23	76.31 .27 .22	66.77 .68 .56	79.55 .58 .47	86 .40 .33	81 .33 .27	20 .22 .18	.99 .29 .24	96.4 12.5 10.3	198.7 7.5 6.2	204.4 15.6 12.9	211.2 .0 .0	217.1 10.2 8.4	43.5 3.7 3.0	48.4 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-1-3-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

		,	II CROPHO	ME NO.	3	9	SIDELIN	E - 15	O m EAST				07/2	4/91		
			ED (dB)			RRECTIO			ACOUSTIC ANGLE	(ACTU		TA (Met		SPEED	(m/sec)	DIR
ΕV	EPNL	SEL	ALm	PNLTm		/\1(A)		/\3		CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	RGET IAS	104.0	kts 1.	0Vh										
D7 D8			68.48 68.46		72 -1.38	70 -1.31	.08 06	.96 1.85	86.0 93.4			211.2 211.2	211.7 211.6	52.0 46.8	53.5 53.5	N-S S-N
Avg. Std Dv 90% CI		77.95 .68 3.03	68.47 .01 .06	81.08 .52 2.34	-1.05 .47 2.08	-1.00 .43 1.93	.01 .10 .44	1.40 .63 2.81	89.7 5.2 23.4	194.4 9.7 43.3	194.8 9.8 43.9	211.2 .0 .0	.1	49.4 3.7 16.4	53.5 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	83.2 kt	ts 0.8	Vh										
D9 D10			64.63 65.38		71 -1.07		15 57	.33 .43	34.5 93.3			211.2 211.2	373.3 211.6	40.1 34.5	42.7 42.7	N-S S-N
Avg. Std Dv 90% CI		74.79 .13 .57	65.00 .53 2.37	78.17 .49 2.21	89 .25 1.14	-1.00 .04 .16	36 .30 1.33	.38 .07 .32	63.9 41.6 185.6	8.0	279.0 119.3 532.6	211.2 .0 .0	114.3	37.3 4.0 17.7	42.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	72.8 kt	ts 0.7	Vh										
D11 D12			64.68 65.59		15 69	11 82	13 66	.15 .06	92.8 108.3			211.2 211.2	211.5 222.4	36.5 30.3	37.6 37.6	N-S S-N
Avg. Std Dv 90% CI		74.87 .26 1.17	65.13 .64 2.87	78.40 .64 2.84	42 .38 1.70	47 .50 2.24	40 .37 1.67	.11 .06 .28	100.6 11.0 48.9	205.4 9.2 41.0	210.9 1.9 8.5	211.2 .0 .0		33.4 4.4 19.6	37.6 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	62.4 kt	ts 0.6	Vh										
D13 D14			63.40 65.23		06 92	12 87	02 61	.05 .01	80.7 90.7			211.2 211.2		31.9 25.7	31.9 31.9	N-S S-N
Avg. Std Dv 90% CI		75.02 .17 .76	64.32 1.29 5.78	77.60 1.03 4.58	49 .61 2.72	50 .53 2.37	31 .42 1.86	.02 .04 .19	85.7 7.1 31.6	204.4 11.2 50.2	205.9 13.2 59.0	211.2 .0 .0	212.6 2.1 9.2	28.8 4.4 19.6	31.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-J-1-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		P	I CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	6/91		
		CORRECT	ED (dB)		со	RRECTION	IS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	\СH Т	ARGET 1	AS 50.4	kts												
BP9 BP10 BP11 BP12 BP13 BP14	90.33 88.38 89.69	85.87 87.69 85.45 87.36 87.67 87.39		91.88 90.10 91.89	.56 36 .23 34 65 46	30 59 .21 31 61	1.04 1.02 .80 1.05 1.12 1.11	.00 .00 .00 .00	106.7 100.7 110.1 109.8 108.2 107.3	115.2 113.8 121.9 115.1 111.4 113.4	120.3 115.8 129.8 122.3 117.3 118.8	118.2 118.2 118.2 118.2 118.2 118.2	123.4 120.3 125.9 125.6 124.5 123.8	31.9 31.4 31.9 31.9 31.4 31.9	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	89.50 .75 .62	86.90 .98 .81	78.08 1.52 1.25	91.14 .84 .69	17 .46 .38	34 .30 .25	1.02 .12 .10	.00	107.1 3.4 2.8	115.1 3.6 3.0	120.7 5.0 4.1	118.2 .0 .0	123.9 2.0 1.7	31.7 .3 .2	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.4	kts												
CP22 CP23 CP24 CP25 CP26 CP27	87.97 88.53	84.69 84.88 84.98 84.41 84.44 84.98	75.21 74.59 75.19 74.00 74.01 75.40	88.67 89.05 87.88	1.30 .68 1.00 .96 .71	.69 .52 .69 .66 .62 .76	.32 .65 .30 .16 .35	.00 .00 .00 .00	110.2 120.3 122.6 118.3 125.2 131.0	132.3 124.7 128.4 128.0 124.9 126.8		121.9 121.9 121.9 121.9 121.9 121.9	123.9 134.6 138.1 132.0 142.3 154.1	30.9 31.4 29.8 28.8 29.3 30.3	25.2 25.2 25.2 25.2 25.2 25.2	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	88.11 .37 .30	84.73 .26 .21	74.73 .63 .52	88.55 .68 .56	.92 .23 .19	.66 .08 .07	.37 .16 .13	.00 .00	121.3 7.0 5.7	127.5 2.8 2.3	150.7 9.7 8.0	121.9 .0 .0	137.5 10.2 8.4	30.1 1.0 .8	25.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 kt	:s 0.9	Vh										
AP42 AP43 AP44 AP45 AP46 AP47	83.04 83.21 83.20 83.77 83.16 82.93	80.31 80.05 80.58 80.44		84.59 85.36 86.38 85.86 85.00 85.15	.50 .38 .50 .36 .89	.30 .19 .32 .16 .67	.35 67 .56 35 .19 77	49 20 67 51 40	106.5 98.3 96.2 95.0 102.2 124.4	153.9 152.2 154.0 152.1 159.7 159.8	153.8 154.9 152.7 163.4	121.9 121.9 121.9 121.9 121.9 121.9	155.1 150.3 149.6 149.3 152.2 180.3	52.0 40.6 54.5 43.7 52.0 41.7	46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	83.22 .29 .24	80.30 .24 .20	71.83 .77 .63	85.39 .64 .53	.59 .25 .21	.39 .23 .19	12 .56 .46	46 .15 .13	103.8 11.0 9.0	155.3 3.6 2.9	163.2 15.5 12.8	121.9 .0 .0	156.1 12.0 9.9	47.4 6.1 5.0	46.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-J-1-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		P	I CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	6/91		
		CORRECT	ED (dB)	ı	CO	RRECTION	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU	AL)	TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	100.0	cts 1.	0Vh										
DP48 DP49			72.26 72.83		.38 .51	.21 .33	.22 87	41 48	97.3 87.8	152.4 154.3	153.7 154.4	121.9 121.9		55.6 43.7	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	83.31 .10 .44	80.53 .07 .32	72.54 .40 1.80	85.85 .40 1.80	.44 .09 .41	.27 .08 .38	32 .77 3.44	44 .05 .22	92.6 6.7 30.0	153.4 1.3 6.0	154.0 .5 2.2	121.9 .0 .0	149.4 .8 3.5	49.7 8.4 37.6	51.4 .0 .0	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 0.8	Vh										
DP51 DP52			72.65 71.31		.42 03	.23 18	.59 27	29 35	90.8 88.3	152.7 146.3		121.9 121.9	148.8 148.8	48.4 38.1	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	83.21 .26 1.17	80.10 .18 .82	71.98 .95 4.23	85.45 .68 3.03	.19 .32 1.42	.02 .29 1.29	.16 .61 2.72	32 .04 .19	89.6 1.8 7.9	149.5 4.5 20.2	149.5 4.5 19.9	121.9 .0 .0	148.8 .0 .0	43.3 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	70.0 kt	s 0.7	/h										
DP53 DP54			69.71 70.72		.30 .22	.17 .02	.54 34	20 20	116.6 96.2			121.9 121.9		41.7 33.4	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	.38 1.70	79.88 .42 1.89	70.21 .71 3.19	83.79 .64 2.87	.26 .06 .25	.09 .11 .47	.10 .62 2.78	20 .00 .00	106.4 14.4 64.4	150.6 1.7 7.6		121.9 .0 .0	158.0 11.9 53.0	37.6 5.9 26.2	36.0 .0 .0	
150 m	FLYOVER	TAR	GET IAS	60.0 kt	:s 0.61	/ h										
DP55 DP57	83.30 83.35		71.99 70.07		.75 22	.47 35	.61 31	10 08	89.1 98.3		159.4 145.1	148.8 148.8		38.1 27.8	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	83.32 .04 .16	80.10 .05 .22	71.03 1.36 6.06	84.35 1.21 5.40	.26 .69 3.06	.06 .58 2.59	.15 .65 2.90	09 .01 .06	93.7 6.5 29.0	151.5 11.1 49.6	152.3 10.1 45.1	148.8 .0 .0	149.6 1.1 4.7	32.9 7.3 32.5	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-J-2-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		M	I CROPHO	NE NO.	2	\$	IDELIN	E - 150	0 m WEST				07/2	5/91		
		CORRECT	ED (dB)		CO	RRECTION	is (das)		ACOUSTIC ANGLE	TRAC (ACTU	KING DA	TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 50.4	kts												
BP9 BP10 BP11 BP12 BP13 BP14	86.10 85.98 85.98 86.17 85.66 85.84	83.52 83.76 84.16 83.33	73.21 72.56 73.72 73.64 72.53 72.16	86.07 84.96 86.05 85.87 84.90 85.14	25 50 15 53 07 41	76 69 37 48 28 89	.98 1.04 .94 1.11 .86 1.08	.00 .00 .00 .00 .00	84.0 58.2 92.1 71.3 58.9 84.1	188.6 183.4 190.6 183.4 191.2 184.6	189.7 215.9 190.8 193.7 223.2 185.6	191.0 191.0 191.0 191.0 191.0	192.0 224.8 191.1 201.7 223.0 192.0	31.9 31.4 31.9 31.9 31.4	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.95 .18 .15	83.63 .32 .26	72.97 .65 .53	85.50 .56 .46	32 .19 .16	58 .24 .20	1.00 .09 .08	.00 .00 .00	74.8 14.2 11.7	187.0 3.6 3.0	199.8 15.7 12.9	191.0 .0 .0	204.1 15.8 13.0	31.7 .3 .2	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.4	kts												
CP22 CP23 CP24 CP25 CP26 CP27	85.53 85.49 85.31 85.52 84.90 84.63	82.40 83.01 82.89 82.67 81.82 81.88	70.36 71.87 71.83 71.37 69.98 70.21	83.13 85.12 84.61 84.68 83.61 83.18	.21 .37 .64 .55 .22	26 .24 .46 .46 22	.77 .80 .46 .33 .54	.00 .00 .00 .00 .00	88.9 108.6 90.6 95.7 109.4 94.6	194.6 196.6 202.0 201.1 195.2 193.8	194.7 207.5 202.0 202.1 206.9 194.4	189.8 189.8 189.8 189.8 189.8	189.8 200.2 189.8 190.7 201.2 190.4	30.9 31.4 29.8 28.8 29.3 30.3	25.2 25.2 25.2 25.2 25.2 25.2	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	85.23 .38 .31	82.44 .51 .42	70.94 .85 .70	84.06 .85 .70	.36 .20 .16	.13 .32 .26	.60 .19 .16	.00 .00 .00	98.0 8.9 7.3	197.2 3.5 2.9	201.3 5.7 4.7	189.8 .0 .0	193.7 5.5 4.5	30.1 1.0 .8	25.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 kt	s 0.9	Vh										
AP42 AP43 AP44 AP45 AP46 AP47	80.31 82.98 79.62 83.20 82.36	78.46 80.75 77.84 81.13 78.81 79.97	70.42 72.19 70.46 73.03 70.90 72.16	81.89 84.36 82.59 85.36 82.22 84.30	.27 02 .43 .28 .44	.17 11 .28 .19 .31	.40 55 .57 35 .34 67	-1.06 47 -1.45 -1.15 88 -1.22	99.7 94.0 111.2 102.6 109.2 95.9	216.0 210.4 218.3 216.4 219.1 221.8	219.1 210.9 234.2 221.7 232.0 223.0	211.2 211.2 211.2 211.2 211.2 211.2	214.3 211.7 226.6 216.4 223.7 212.3	52.0 40.6 54.5 43.7 52.0 41.7	46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	81.69 1.63 1.55	79.49 1.32 1.09	71.53 1.08 .89	83.45 1.41 1.16	.33 .21 .17	.21 .19 .15	04 .54 .44	-1.02 .33 .27	102.1 7.0 5.7	217.0 3.8 3.2	223.5 8.6 7.1	211.2 .0 .0	217.5 6.2 5.1	47.4 6.1 5.0	46.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-J-2-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		P	II CROPHO	NE NO.	2	•	SIDELIN	E - 15	0 m WEST				07/2	6/91		
		CORRECT	ED (dB)	l	COI	RRECT 101	is (dB)		ACOUSTIC ANGLE	TRAC	IAL)	TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3		CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	100.0	cts 1.0	0Vh										
DP48 DP49			71.14 73.27		.30 .51	.16 .20	.24 89	89 -1.05	85.1 102.9	215.7 220.3		211.2 211.2	212.0 216.7	55.6 43.7	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	82.28 2.09 9.31	80.09 1.37 6.12	1.51	84.46 2.64 11.78	.41 .15 .66	.18 .03 .13	32 .80 3.57	97 .11 .51	94.0 12.6 56.2	218.0 3.3 14.5	221.3 6.7 30.0	211.2 .0 .0	214.4 3.3 14.8	49.7 8.4 37.6	51.4 .0 .0	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	ts 0.81	/h										
DP51 DP52			69.58 70.71		.18 13	.05 94	.66 25	64 84	94.8 115.9			211.2 211.2	212.0 234.7	48.4 38.1	41.2 41.2	N-S S-N
A'/g. Std Dv 90% CI	81.55 1.41 6.31	79.03 .68 3.03	70.15 .80 3.57	82.48 1.77 7.92	.03 .22 .98	44 .70 3.13	.20 .64 2.87	74 .14 .63	105.4 14.9 66.6	210.1 4.3 19.3	222.0 11.5 51.5	211.2 .0 .0	223.4 16.1 71.7	43.3 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	70.0 kt	ts 0.7	V h										
DP53 DP54			67.38 71.17		.31 .25	16 .10	.55 38	47 53	107.8 92.8			211.2 211.2		41.7 33.4	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	2.35	2.28	69.27 2.68 11.97	3.18	.28 .04 .19	03 .18 .82	.09 .66 2.94	50 .04 .19	100.3 10.6 47.4	214.6 .9 4.1	220.2 8.3 37.3	211.2 .0 .0	216.6 7.3 32.5	37.6 5.9 26.2	36.0 .0 .0	
150 m	FLYOVER	TAR	GET IAS	60.0 kt	ts 0.6	/h										
DP55 DP57			69.20 69.15		.71 05	.56 55	.64 38	26 28	82.7 101.8			211.2 211.2		38.1 27.8	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	81.24 1.87 8.37	78.85 .87 3.88	69.18 .04 .16	81.77 .81 3.60	.33 .54 2.40	.00 .78 3.50	.13 .72 3.22	27 .01 .06	92.3 13.5 60.3	216.2 12.2 54.3	219.4 10.3 45.8	211.2 .0 .0	214.4 2.0 8.8	32.9 7.3 32.5	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

of Transportation
Volpe Center
Acoustics Facility

TABLE B-J-3-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		H	II CROPHO	NE NO.	3	\$	SIDELIN	E - 15	O m EAST				07/2	5/91		
		CORRECT	ED (dB)		CO	RRECTION	IS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
E۷	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	.сн т	ARGET I	AS 50.4	kts												
BP9 BP10 BP11 BP12 BP13 BP14	84.21 83.40 83.83	80.46 81.19 80.47 80.91 80.58 81.14	69.53 70.01 69.38 70.30 70.17 69.69	83.35 82.81 83.68	21 .07 .21 .15 52	20 20 .08 .05 55	.96 .81 .82 .85 1.06	.00 .00 .00 .00 .00	79.1 80.3 91.8 86.0 94.6 84.1	189.6 193.1 195.8 194.5 182.3 191.4	193.1 195.9 195.9 195.0 182.9 192.4	191.0 191.0 191.0 191.0 191.0	194.5 193.8 191.0 191.4 191.6 192.0	31.9 31.4 31.9 31.9 31.4 31.9	25.7 25.7 25.7 25.7 25.7 25.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	83.77 .36 .30	80.79 .33 .27	69.85 .37 .30	83.23 .29 .24	05 .27 .22	15 .23 .19	.90 .10 .08	.00 .00 .00	86.0 6.2 5.1	191.1 4.8 4.0	192.5 4.9 4.1	191.0 .0 .0	192.4 1.4 1.2	31.7 .3 .2	25.7 .0 .0	
TAKEOF	F TA	RGET IA	s 50.4	kts												
CP22 CP23 CP24 CP25 CP26 CP27	88.28 87.83	84.73 85.19 85.20 84.50 84.95 84.61	73.19 74.31 72.98 73.62 74.00 73.20	87.22 88.20 86.18 87.84 87.92 87.34	.15 .16 .09 .17 .27	.11 .07 .04 08 .17 05	.54 .87 .66 .50 .54	.00 .00 .00 .00	101.7 104.8 111.9 100.4 109.4 118.0	205.2 193.4 192.7 193.2 195.2 198.9	209.5 200.0 207.6 196.4 207.0 225.2	189.8 189.8 189.8 189.8 189.8 189.8	204.4 196.3 204.4 192.9 201.2 214.9	30.9 31.4 29.8 28.8 29.3 30.3	25.2 25.2 25.2 25.2 25.2 25.2	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	88.09 .21 .17	84.86 .30 .24	73.55 .52 .43	87.45 .72 .59	.21 .13 .10	.04 .10 .08	.62 .14 .11	.00 .00 .00	107.7 6.7 5.5	196.4 4.9 4.0	207.6 10.0 8.2	189.8 .0 .0	202.3 7.7 6.3	30.1 1.0 .8	25.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 kt	ts 0.9	Vh										
AP42 AP43 AP44 AP45 AP46 AP47	82.78 80.65 82.27 80.11 82.84 80.20	80.48 78.97 80.04 77.89 80.75 78.53	72.95 70.72 72.83 70.13 72.58 70.75	85.47 82.30 84.85 82.18 84.35 82.65	.16 .31 .04 .03 .42	.08 .21 03 54 .32 .19	.45 68 .70 24 .34 35	-1.11 44 -1.51 -1.10 92 -1.07	106.2 104.0 77.1 113.3 96.8 112.1	213.8 216.8 211.5 210.8 219.1 216.4	222.7 223.4 217.0 229.5 220.6 233.5	211.2 211.2 211.2 211.2 211.2 211.2	220.0 217.7 216.7 229.9 212.7 227.9	52.0 40.6 54.5 43.7 52.0 43.7	46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	81.47 1.29 1.06	79.44 1.15 .95	71.66 1.26 1.04	83.63 1.43 1.18	.21 .16 .13	.04 .31 .25	.04 .54 .44	-1.02 .35 .29	101.6 13.4 11.0	214.7 3.3 2.7	224.4 6.0 5.0	211.2 .0 .0	220.8 6.7 5.5	47.8 5.8 4.7	46.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-J-3-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

		•	11 CROPHO	NE NO.	3	:	SIDELIN	E - 15	0 m EAST				07/2	6/91		
		CORRECT	red (dB)	•		RRECTIO			ACOUSTIC ANGLE	(ACTU		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm		/\1(A)		/\3		CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	RGET IAS	100.0	kts 1.	0Vh										
DP48 DP49			74.31 71.47		.09 .15	01 .02	.32 74	92 -1.03	100.1 103.6			211.2 211.2	214.5 217.3	55.6 43.7	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	2.68	80.37 2.33 10.39	72.89 2.01 8.97	84.97 2.45 10.95	.12 .04 .19	.00 .02 .09	21 .75 3.35	98 .08 .35	101.8 2.5 11.0	212.3 .5 2.2	216.9 2.5 11.0	211.2 .0 .0	215.9 2.0 8.8	49.7 8.4 37.6	51.4 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	80.0 k	ts 0.8	Vh										
DP51 DP52			72.62 69.46		.26 .26	.13 25	.63 40	69 79	100.9 86.9			211.2 211.2		48.4 38.1	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	81.57 2.23 9.98	79.40 2.06 9.22	71.04 2.23 9.98	82.99 2.67 11.90	.26 .00 .00	06 .27 1.20	.11 .73 3.25	74 .07 .32	93.9 9.9 44.2	214.4 .6 2.8	216.6 3.2 14.2	211.2 .0 .0	213.3 2.5 11.4	43.3 7.3 32.5	41.2 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	70.0 k	ts 0.7	Vh										
DP53 DP54	- 80.19		70.03 68.30		.15 04	03 14	.63 .34	53 47	81.1 120.7	211.5 209.3		211.2 211.2		41.7 38.6	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	80.19 0.00 0.00	77.04 1.96 8.74	69.17 1.22 5.46	81.37 1.46 6.50	.06 .13 .60	09 .08 .35	.49 .21 .92	50 .04 .19	100.9 28.0 125.0	210.4 1.6 6.9	228.7 20.6 92.2	211.2 .0 .0		40.2 2.2 9.8	36.0 .0 .0	
150 m	FLYOVER	TAR	RGET IAS	60.0 k	ts 0.6	Vh										
DP55 DP57			70.19 67.43		.01 07	.03 38	.88 38	33 21	92.9 105.4			211.2 211.2		38.1 27.8	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	80.83 1.69 7.55	78.76 1.57 7.01	68.81 1.95 8.71	80.54 2.09 9.34	03 .06 .25	17 .29 1.29	.25 .89 3.98	27 .08 .38	99.2 8.8 39.5	210.1 3.6 16.1	214.1 1.7 7.6	211.2 .0 .0	215.3 5.4 24.0	32.9 7.3 32.5	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-K-1-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		M	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	5/91		
		CORRECT	ED (dB))	CO	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	\CH Т	ARGET I	AS 55.0	kts												
BT1 BT2 BT4 BT5 BT6 BT7	91.55 91.83 92.01 91.78 91.77 91.20	90.06 89.76	80.69 82.08 81.91 81.08 80.56 80.61	94.41 94.02 93.07 92.72	.47 67 .18 .27 27	.46 64 .06 .26 43 51	.26 .99 .41 .50 .75 .87	.00 .00 .00 .00	108.9 110.8 97.3 113.9 107.2 108.2	111.3 121.1 122.8 115.9	119.0 122.1 134.3 121.3	118.2 118.2 118.2 118.2 118.2 118.2	126.4 119.2 129.3 123.7	31.9 33.4 31.9 32.9 32.9 32.9	28.3 28.3 28.3 28.3 28.3 28.3	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	91.69 .28 .23	89.75 .33 .27	81.15 .68 .56	93.35 .70 .58	09 .46 .38	13 .45 .37	.63 .28 .23	.00 .00 .00	107.7 5.6 4.6	118.2 5.7 4.7	124.6 6.9 5.7	118.2 .0 .0	124.7 3.3 2.7	32.6 .6 .5	28.3 .0 .0	
TAKEOF	F TA	RGET IA	s 55.0	kts												
CT16 CT17 CT18 CT19 CT20 CT21	90.37 90.06 90.04 90.03 89.50 90.14	86.38	77.85	91.77 92.52 91.92 91.35	70 04 .15 .10 18	72 06 .12 .04 26	.81 .44 .43 .32 .29	.00 .00 .00 .00 .00	100.6 97.8 114.2 99.0 93.0 111.2	122.3 131.0 133.5 132.4 128.7 134.6	124.4 132.3 146.4 134.0 128.9 144.3	121.9 121.9 121.9 121.9 121.9 121.9	132.7 131.6 143.0 132.0 130.6 139.8	31.4 30.9 31.4 30.3 29.3 31.9	27.8 27.8 27.8 27.8 27.8 27.8	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	90.02 .29 .24	86.65 .20 .16	78.01 .46 .38	91.81 .44 .36	07 .35 .29	14 .32 .26	.46 .19 .15	.00 .00	102.6 8.3 6.8	130.4 4.5 3.7	135.1 8.7 7.1	121.9 .0 .0	134.9 5.1 4.2	30.9 .9 .8	27.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 kt	ts 0.9	Vh										
AT28 AT29 AT30 AT31 AT32 AT33	85.80 85.57 85.22 85.48 85.01	82.51 82.82 82.24	75.22 74.27 74.28 73.70 74.31	88.10 86.56 87.18 86.75 87.45	02 .08 56 .06 23	09 .02 57 .00 31 .45	.16 43 .66 27 .44 33	.54 .70 .79 .54 1.12 .34	84.5 80.9 112.4 99.2 96.7 90.7	149.8 140.6 149.4 145.1 156.7	151.7 152.1 151.3 146.1 156.7	121.9 121.9 121.9 121.9 121.9 121.9	150.6 160.9 150.7 149.8 148.8	47.8 42.2 50.9 43.7 49.9 45.3	46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	85.39 .29 .23	82.71 .34 .28	74.32 .50 .41	87.21 .55 .45	02 .38 .31	08 .34 .28	.04 .45 .37	.67 .27 .22	94.1 11.4 9.3	148.3 5.4 4.4	151.1 3.6 2.9	121.9 .0 .0	151.7 4.6 3.8	46.6 3.5 2.9	46.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-K-1-2

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		M	I CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	6/91		
		CORRECT	ED (dB)		CO	RECTION	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	100.0 k	ts 1.0)Vh										
DT34 DT35			75.90 76.90		12 52	29 56	.24 03	2.03 2.07	97.8 90.3			121.9 121.9		53.0 48.4	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	88.38 .31 1.39	85.30 .40 1.77	76.40 .71 3.16	89.40 .85 3.79	32 .28 1.26	43 .19 .85	.10 .19 .85	2.05 .03 .13	94.1 5.3 23.7	142.9 2.9 12.9	143.6 3.9 17.4	121.9 .0 .0	149.4 1.0 4.4	50.7 3.3 14.5	51.4 .0 .0	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	s 0.81	/h										
DT36 DT37			73.96 73.50		.42 .05	.25 28	.33 31	.19 .20	99.4 96.8			121.9 121.9	150.8 149.8	45.8 38.1	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	84.86 .11 .47	81.95 .01 .06	73.73 .33 1.45	86.98 .11 .51	.23 .26 1.17	02 .37 1.67	.01 .45 2.02	.19 .01 .03	98.1 1.8 8.2	150.6 4.0 17.7	152.2 4.7 20.8	121.9 .0 .0	150.3 .7 3.2	41.9 5.4 24.3	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	70.0 kt	s 0.7	/h										
DT38 DT39			72.54 73.14		.40 .65	.23 .37	.41 79	06 02	104.2 79.3			121.9 121.9		40.6 31.9	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	84.22 .09 .41	81.46 .18 .79	72.84 .42 1.89	86.17 .06 .25	.52 .18 .79	.30 .10 .44	19 .85 3.79	04 .03 .13	91.8 17.6 78.6	155.5 3.4 15.2	159.3 2.0 8.8	121.9 .0 .0	152.4 1.4 6.3	36.3 6.2 27.5	36.0 .0 .0	
150 m	FLYOVER	TAR	GET IAS	60.0 kt	s 0.6	/h										
DT40 DT41			74.38 72.79		1.57 35	1.29 50	02 34	.24 08	112.9 105.9			121.9 121.9		35.5 27.3	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	85.09 .82 3.66	82.24 .95 4.26	73.58 1.12 5.02	86.85 .98 4.36	.61 1.36 6.06	.39 1.27 5.65	18 .23 1.01	.08 .23 1.01	109.4 4.9 22.1	157.0 21.4 95.3	167.2 27.7 123.8	121.9 .0 .0	158.0 4.7 21.2	31.4 5.8 25.9	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

of Transportation
Volpe Center
Acoustics Facility

TABLE B-K-2-1

April 19, 1993

ENSTROM TH38 HELICOPTER (TURBINE ENGINE)

		Þ	II CROPHO	ONE NO.	2	;	SIDELINE	- 15	0 m WEST				07/2	6/91		
		CORRECT	ED (dB))	CO	RRECTIO	VS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	ACH 1	ARGET 1	AS 55.0	kts												
BT1 BT2 BT4 8T5 BT6 BT7	88.15 88.22 87.72 87.74 86.94 87.61	85.98 86.49 85.47 85.69 85.03 85.54	75.69 75.12 74.70 75.48 74.71 75.53	88.71 87.74 87.67 88.31 87.52 88.31	39 75 36 35 66	37 69 51 38 60 58	.62 .99 .60 .75 .88 .87	.00 .00 .00 .00	68.0 90.7 73.5 79.9 78.5 78.9	186.6 180.0 187.5 187.1 181.7 182.1	201.3 180.0 195.5 190.0 185.3 185.6	191.0 191.0 191.0 191.0 191.0	205.9 191.0 199.1 193.9 194.8 194.6	31.9 33.4 31.9 32.9 32.9 32.9	28.3 28.3 28.3 28.3 28.3 28.3	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.73 .46 .38	85.70 .50 .41	75.20 .43 .35	88.04 .47 .38	52 .18 .15	52 .13 .10	.79 .16 .13	.00 .00	78.3 7.6 6.2	184.2 3.3 2.7	189.6 7.7 6.4	191.0 .0 .0	196.6 5.3 4.3	32.6 .6 .5	28.3 .0 .0	
TAKEOR	F TA	RGET 1A	s 55.0	kts												
CT16 CT17 CT18 CT19 CT20 CT21	87.06 86.93 87.08 86.70 85.96 86.73	84.25 84.46 84.53 83.64 83.46 83.88	72.87 73.45 74.05 72.65 72.14 71.94	86.10 86.83 86.17 84.97	73 27 47 50 40 26	70 27 47 86 39	.78 .52 .68 .54 .35	.00 .00 .00 .00	108.9 102.6 106.0 111.8 94.7 98.9	187.5 196.1 192.2 191.4 193.2 194.3	198.2 201.0 199.9 206.2 193.9 196.7	198.7 198.7 193.7 198.7 198.7 198.7	210.0 203.6 206.7 214.1 199.4 201.1	31.4 30.9 31.4 30.3 29.3 31.9	27.8 27.8 27.8 27.8 27.8 27.8	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.74 .42 .34	84.04 .44 .36	72.85 .80 .66	85.86 .68 .56	44 .17 .14	53 .21 .18	.59 .16 .13	.00 .00	103.8 6.4 5.2	192.4 2.9 2.4	199.3 4.2 3.5	198.7 .0 .0	205.8 5.6 4.6	30.9 .9 .8	27.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 kt	:s 0.9\	/h										
AT28 AT29 AT30 AT31 AT32 AT33	84.45 85.55 84.75 84.75 85.27 84.71	82.25 82.92 82.64 81.73 83.24 82.10	72.56 73.79 73.05 71.64 73.31 72.33	86.67 85.22 84.55 85.50 84.81	57 .26 65 .35 24 .47	71 .02 70 .05 31 .30	.38 50 .69 31 .44 27	.64 .69 .96 .52 1.48 .32	97.5 108.4 90.2 105.3 92.4 100.0	199.8 216.0 198.1 214.0 206.0 219.4	201.5 227.6 198.1 221.9 206.2 222.8 213.0	211.2 211.2 211.2 211.2 211.2 211.2 211.2	222.6 211.2 219.0 211.4 214.5	47.8 42.2 50.9 43.7 49.9 45.3	46.3 46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Std Dv 90% CI	.41 .34	.56 .46	.76 .63	.81 .66	.49 .40	.42 .34	.49 .40	.41 .33	7.1 5.8	8.9 7.3	12.6 10.3	.0 .0	4.6 3.8	3.5 2.9	.0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-K-2-2

ENSTROM TH38 HELICOPTER (TURBINE ENGINE)

			11 CROPHO	WE NO.	2	;	SIDELIN	E - 15	0 m WEST				07/2	6/91		
		CORRECT	red (dB)	l	со	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/∖3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAF	RGET IAS	100.0	kts 1.	0Vh										
DT34 DT35			73.95 74.06		79 .05	-1.07 01	.42 29	2.15 1.84	63.6 93.7			211.2 211.2		53.0 48.4	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	87.54 1.06 4.74	84.93 .53 2.37	74.00 .08 .35	86.38 .33 1.48	37 .59 2.65	54 .75 3.35	.06 .50 2.24	2.00 .22 .98	78.6 21.3 95.0	204.9 10.5 46.7	216.6 5.6 24.9	211.2 .0 .0	223.8 17.1 76.4	50.7 3.3 14.5	51.4 .0 .0	
150 m	FLYOVER	TAF	RGET IAS	80.0 k	ts 0.8	Vh										
DT36 DT37	83.26 83.38		70.67 71.86		.11 .02	03 10	.44 32	.33 .27	111.6 92.8	212.1 210.4		211.2 211.2		45.8 38.1	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI	83.32 .08 .38	81.02 .22 .98	71.26 .84 3.76	83.81 .71 3.19	.06 .06 .28	06 .05 .22	.06 .54 2.40	.30 .04 .19	102.2 13.3 59.4	211.3 1.2 5.4	219.4 12.4 55.2	211.2 .0 .0	219.3 11.0 49.2	41.9 5.4 24.3	41.2 .0 .0	
150 m	FLYOVER	TAF	RGET IAS	70.0 k	ts 0.7	Vh										
DT38 DT39			69.83 69.99		.07 .28	19 .11	.53 62	.18 .07	76.9 97.6			211.2 211.2		40.6 31.9	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	82.68 .35 1.58	80.35 .15 .66	69.91 .11 .51	82.30 .17 .76	.17 .15 .66	04 .21 .95	05 .81 3.63	.13 .08 .35	87.3 14.6 65.3	213.4 3.0 13.3	217.1 .4 1.6	211.2 .0 .0	215.0 2.6 11.7	36.3 6.2 27.5	36.0 .0 .0	
150 m	FLYOVER	TAF	RGET IAS	60.0 k	ts 0.6	Vh										
DT40 DT41	82.06 82.11		69.61 69.70		.69 51	.46 55	.38 33	10 01	118.1 96.4	222.8 201.1		211.2 211.2		35.5 27.3	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	82.09 .04 .16	80.01 .03 .13	69.65 .06 .28	82.18 .30 1.36	.09 .85 3.79	05 .71 3.19	.02 .50 2.24	05 .06 .28	107.3 15.3 68.5	212.0 15.3 68.5	227.5 35.6 158.8	211.2 .0 .0	226.0 19.1 85.2	31.4 5.8 25.9	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-K-3-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

		M	೧೫೪೦೯೫	NE NO.	3	•	SIDELIN	E - 150	0 m EAST				07/2	6/91		
		CORRECT	ED (dB))	СО	RRECTIO	is (dB)		ACOUSTIC ANGLE	TRAC (ACTU		TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	NCH T	AKGET I	AS 55.0	kts												
BT1 BT2 8T4 BT5 BT6 3T7	84.79 83.63 84.92 84.41 84.09 84.35	81.42 82.27 81.25		82.04 83.90 84.02 82.37	.50 06 .22 .34 .18 04	.45 11 .18 30 16 13	.23 .68 .36 .45 .52	.00 .00 .00 .00 .00	91.1 100.2 97.1 84.9 83.7 83.9	204.0 193.2 197.9 200.3 197.1 192.9	204.0 196.3 199.5 201.1 198.3 193.9	191.0 191.0 191.0 191.0 191.0	191.0 194.0 192.4 191.7 192.1 192.0	31.9 33.4 31.9 32.9 32.9 32.9	28.3 28.3 28.3 28.3 28.3 28.3	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	84.36 .47 .39	81.76 .53 .44	70.38 .75 .61	83.38 .95 .78	.19 .22 .18	01 .28 .23	.48 .17 .14	.00 .00	90.2 7.2 5.9	197.6 4.2 3.5	198.8 3.6 2.9	191.0 .0 .0	192.2 1.0 .8	32.6 .6 .5	28.3 .0 .0	
TAKEOF	F TA	RGET IA	s 55.0	kts												
CT16 CT17 CT18 CT19 CT20 CT21		83.29 84.19 83.80 84.20 82.80 81.95	72.09 73.27 73.30 73.93 71.39 70.99	86.97 87.11 87.71	12 .17 .39 .36 .09	28 .16 .29 .13 19	.52 .33 .31 .18 .16	.00 .00 .00 .00 .00	118.8 109.8 115.6 116.9 113.8 121.4	199.3 204.9 209.1 208.3 202.0 202.0	227.4 217.7 231.7 233.6 220.7 236.7	198.7 198.7 198.7 198.7 198.7 198.7	211.1 220.3 222.8	31.4 30.9 31.4 30.3 29.3 31.9	27.8 27.8 27.8 27.8 27.8 27.8	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	87.23 .69 .57	83.37 .88 .73	72.49 1.18 .97	86.53 .86 .71	.16 .19 .16	12 .42 .34	.34 .16 .13	.00 .00	116.1 4.0 3.3	204.3 3.9 3.2	228.0 7.5 6.2	198.7 .0 .0	221.8 7.6 6.2	30.9 .9 .8	27.8 .0 .0	
150 m	FLYOVER	TAR	GET IAS	90.0 ki	ts 0.9	/ h										
AT28 AT29 AT3G AT31 AT32 AT33	84.85 84.49 85.36 84.15 84.63 84.06	82.34 82.63 81.78 82.08	72.61 73.03 72.85 72.53 71.71 73.97	85.43 85.09 85.14 84.07	.45 01 .04 .02 02	.37 24 .00 17 07	06 33 .38 21 .33 16	.52 .84 .78 .64 1.19	101.8 92.9 89.5 100.4 105.1 55.5	207.8 212.8 209.3	208.1 212.8 212.8 218.9	211.2 211.2 211.2	211.5 211.2 214.7 218.8	47.8 42.2 50.9 43.7 49.9 45.3	46.3 46.3 46.3 46.3 46.3	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	84.59 .48 .39	82.16 .31 .25	72.78 .74 .61	85.22 .79 .65	.11 .18 .15	01 .21 .18	01 .29 .24	.73 .28 .23	90.9 18.3 15.0	212.8 4.7 3.9	223.1 19.2 15.8	211.2 .0 .0	221.4 17.4 14.3	46.6 3.5 2.9	46.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-K-3-2

ENSTROM TH38 HELICOPTER (TURBINE ENGINE)

		•	II CROPHO	NE NO.	3	,	SIDELIN	E - 150	O m EAST				07/2	6/91		
	CORRECTED (dB) EPNL SEL ALM PNL				co	RRECTIO	(S (dB)		ACOUSTIC ANGLE	TRAC	AL)	TA (Met		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	RGET IAS	100.0	cts 1.0	0Vh										
DT34 DT35			74.51 75.12		.38 63	09 66	03 01	1.80 2.20	92.2 87.8			211.2 211.2		53.0 48.4	51.4 51.4	N-S S-N
Avg. Std Dv 90% CI	87.63 .04 .16	84.91 .55 2.46	74.82 .43 1.93	87.28 .13 .57	13 .71 3.19	38 .40 1.80	02 .01 .06	2.00 .28 1.26	90.0 3.1 13.9	208.9 14.2 63.5	209.1 14.2 63.5	211.2 .0 .0	211.4 .0 .0	50.7 3.3 14.5	51.4 .0 .0	
150 m	FLYOVER	TAR	GET IAS	80.0 kt	:s 0.8	/ h										
DT36 DT37			71.68 71.06		.40 .09	.18 08	.35 33	.26 .35	100.4 97.9			211.2 211.2	214.8 213.3	45.8 38.1	41.2 41.2	N-S S-N
Avg. Std Dv 90% CI		81.30 .01 .06	71.37 .44 1.96	84.01 .36 1.61	.25 .22 .98	.05 .18 .82	.01 .48 2.15	.31 .06 .28	99.2 1.8 7.9	213.8 4.2 18.9	216.6 5.4 24.3	211.2 .0 .0	214.1 1.1 4.7	41.9 5.4 24.3	41.2 .0 .0	
150 m	FLYOVER	TAR	GET IAS	70.0 kt	s 0.7	V h										
DT38 DT39	83.08 82.79		69.52 70.94		.30 .52	.21 .34	.41 71	.12 .10	93.1 80.7			211.2 211.2		40.6 31.9	36.0 36.0	N-S S-N
Avg. Std Dv 90% CI	82.93 .21 .92	80.43 .28 1.23	70.23 1.00 4.48	82.68 .86 3.82	.41 .16 .69	.28 .09 .41	15 .79 3.54	.11 .01 .06	86.9 8.8 39.1	218.7 2.0 8.8	220.3 3.8 17.0	211.2 .0 .0	212.8 1.8 7.9	36.3 6.2 27.5	36.0 .0 .0	
150 m	FLYOVER	TAR	GET IAS	60.0 kt	s 0.6	/h										
DT40 DT41	82.63 82.49		69.96 70.29		1.10 .11	.93 05	.17 55	03 .01	102.0 112.7			211.2 211.2		35.5 27.3	30.9 30.9	N-S S-N
Avg. Std Dv 90% CI	82.56 .10 .44	80.36 .20 .88	70.13 .23 1.04	82.54 .33 1.48	.61 .70 3.13	.44 .69 3.09	19 .51 2.27	01 .03 .13	107.3 7.6 33.8	222.6 15.5 69.1	234.1 6.6 29.7	211.2 .0 .0	222.4 9.2 41.0	31.4 5.8 25.9	30.9 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-1-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	IICROPHO	ME NO.	1		CENTE	RLINE -	CENTER				07/2	2/91		
		CORRECT	ED (dB))	СО	RRECTION	is (dB)		ACOUSTIC ANGLE	TRAC		TA (Met	-	SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
APPROA	CH T	ARGET I	AS 52.0	kts												
B15 B16 B17 B18 B19 B20 B21	91.04 95.15 94.69 90.63 93.21		78.30 78.98 84.29 85.59 78.95 85.05 83.75	91.79 96.01 96.88 90.81 96.44	10 .02 08 78 20 55 34	14 29 12 77 30 58 -1.71	.26 .15 .01 13 48 04	.00 .00 .00 .00 .00	64.7 101.7 73.3 60.0 65.0 72.8 114.3	115.7 116.3 115.9 107.8 114.1 110.1 112.6	118.8 120.9 124.5 125.9 115.3	118.2 118.2 118.2 118.2 118.2 118.2 118.2	120.7 123.4 136.5 130.4 123.8	27.8 27.3 26.2 23.7 23.1 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	92.50 2.20 1.62	90.92 2.08 1.53	82.13 3.23 2.37	93.94 2.83 2.08	29 .29 .21	56 .56 .41	15 .38 .28	.00 .00 .00	78.8 20.8 15.3	113.2 3.2 2.4	122.4 4.4 3.2	118.2 .0 .0	127.9 5.5 4.0	24.8 2.4 1.8	26.7 .0 .0	
TAKEOF	F TA	RGET IA	s 52.0	kts												
C22 C23 C24 C25 C26 C27		83.32 82.64 83.00 83.10 82.79 82.72	76.65 75.87 76.24 76.40 76.11 76.39	90.37 90.83 90.81 90.55	-1.63 -1.94 -1.89 -1.36 -1.91 62	-1.61 -1.86 -1.87 -1.36 -1.87 63	.16 .47 .18 .14 .56	.00 .00 .00 .00	116.4 119.3 127.2 121.2 120.3 114.7	54.9 53.4 53.4 56.4 53.4 61.0	61.3 61.2 67.0 66.0 61.8 67.2	65.9 65.9 65.9 65.9 65.9	73.5 75.5 82.6 77.0 76.2 72.5	23.1 24.2 22.6 23.7 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S
Avg. Std Dv 90% CI	86.99 .26 .22	82.93 .26 .21	76.28 .27 .22	90.72 .24 .20	-1.56 .51 .42	-1.53 .49 .40	.14 .45 .37	.00 .00	119.9 4.4 3.6	55.4 3.0 2.5	64.1 2.9 2.4	65.9 .0 .0	76.2 3.6 2.9	23.2 1.3 1.1	26.7 .0 .0	
150 m	FLYOVER	TAR	GET IAS	81.9 kt	ts 0.9	Vh										
A1 A2 A3 A4 A5 A9	80.12 80.72 80.20 81.58 79.90 80.72	76.25 76.67 76.79 77.93 76.04 76.80	68.09 66.97 67.80 68.81 68.59 68.64	80.99 81.33 82.94	46 -1.02 49 -1.51 33 34	57 -1.50 47 -1.43 32 42	20 .53 18 .74 36 13	.04 .04 .04 .04 .04	107.9 109.5 113.5 105.8 109.3 97.9	140.5 133.2 139.9 126.8 142.2 142.1	147.7 141.3 152.5 131.8 150.6 143.4	148.8 148.8 148.8 148.8 148.8	156.3 157.8 162.2 154.6 157.6 150.2	38.1 42.7 38.1 42.7 37.0 39.1	42.2 42.2 42.2 42.2 42.2 42.2	N-S S-N N-S S-N N-S S-N
Avg. Std Dv 90% CI	80.54 .61 .50	76.75 .66 .54	68.15 .69 .57	82.12 .80 .66	69 .47 .39	79 .53 .44	.07 .45 .37	.04 .00 .00	107.3 5.3 4.3	137.5 6.2 5.1	144.6 7.5 6.2	148.8 .0 .0	156.4 4.0 3.3	39.6 2.5 2.0	42.2 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-1-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	II CROPHO	NE NO.	1		CENTE	RLINE -	CENTER				07/2	2/91		
		CORRECT	ED (dB)		CO	RRECTION	IS (dB)		ACOUSTIC ANGLE	TRAC		TA (Met (REFER		SPEED	(m/sec)	DIR
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF	
150 m	FLYOVER	TAR	GET IAS	91.0 kts	1.0	Vh										
A6	80.20	76.07	68.15	82.60	-1.64	-1.85	.33	.08	87.4	125.6	125.7	148.8	148.9	42.7	46.8	S-N
150 m	FLYOVER	TAR	GET IAS	72.8 kts	0.8	۷h										
A8 A10			67.24 68.15		-1.53 .31	-1.42 .23	.75 83	.00	88.5 108.2	127.0 150.6		148.8 148.8	148.8 156.5	38.1 31.4	37.6 37.6	S-N N-S
Avg. Std Dv 90% CI	80.43 .06 .28	76.84 .03 .13	67.69 .64 2.87	82.00 .07 .32	61 1.30 5.81	59 1.17 5.21	04 1.12 4.99	.00 .00	98.3 13.9 62.2	138.8 16.7 74.5	142.8 22.3 99.4	148.8 .0 .0	152.6 5.4 24.3	34.8 4.7 21.2	37.6 .0 .0	
150 m	FLYOVER	TAR	GET IAS	63.7 kts	0.7	Vh										
A11 A12	82.15 81.44		70.23 72.75		.04 .88	02 .77	16 90	07 07	105.1 107.3	146.9 160.0	152.2 167.6	148.8 148.8	154.0 155.8	31.4 28.8	32.9 32.9	S-N N-S
Avg. Std Dv 90% CI	81.79 .50 2.24	78.50 .02 .09	71.49 1.78 7.96	84.62 1.11 4.96	.46 .59 2.65	.38 .56 2.49	53 .52 2.34	07 .00 .00	106.2 1.6 6.9	153.4 9.3 41.4	159.9 10.9 48.6	148.8 .0 .0	154.9 1.3 5.7	30.1 1.8 8.2	32.9 .0 .0	
150 m	FLYOVER	TAR	GET IAS	54.6 kts	0.6	Vh										
A13 A14	83.62 82.94		70.61 69.74		.58 1.08	.44 .89	.29 .37	13 13	102.9 108.6	154.3 161.5	158.3 170.4	148.8 148.8	152.6 157.0	31.4 33.4	28.3 28.3	S-N N-S
Avg. Std Dv 90% CI	83.28 .48 2.15	79.81 .49 2.18	70.18 .62 2.75	83.65 .74 3.31	.83 .35 1.58	.66 .32 1.42	.33 .06 .25	13 .00 .00	105.8 4.0 18.0	157.9 5.1 22.7	164.4 8.6 38.2	148.8 .0 .0	154.8 3.1 13.9	32.4 1.4 6.3	28.3 .0 .0	

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-2-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

		P	ICROPHO	DNE NO.	2 SIDELINE - 150 m WEST						07/22/91							
		CORRECT	ED (dB))	со	RRECTIO	IS (dB)		ACOUSTIC ANGLE	TRACKING DA		ATA (Meters) (REFERENCE)		SPEED(m/sec)		DIR		
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF			
APPROA	CH T	ARGET I	AS 52.0	kts														
B15 B16 B17 B18 B19 B20 B21	86.85 87.28 86.99 86.31 88.18 84.98 86.17	86.15 85.54 82.58 86.86 82.06	74.92 76.18 76.84 72.28 79.15 71.46 75.23	86.57 88.52 86.20 90.35 85.41	.41 .65 .41 .26 .42 .39	53 .49 .29 -1.47 .18 59	.09 01 12 57 67 41	.00 .00 .00 .00 .00	72.7 32.1 47.4 80.8 53.6 39.6 91.3	194.1 194.8 192.6 192.9 192.8 193.5 191.4	203.3 366.4 261.8 195.4 239.4 303.5 191.4	191.0 191.0 191.0 191.0 191.0 191.0	200.0 359.2 259.5 193.4 237.2 299.4 191.0	27.8 27.3 26.2 23.7 23.1 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	86.68 1.00 .74	84.56 1.81 1.33	75.15 2.64 1.94	87.31 1.66 1.22	.39 .14 .10	21 .69 .51	39 .40 .30	.00 .00	59.6 22.2 16.3	193.2 1.1 .8	251.6 64.9 47.6	191.0 .0 .0	248.5 63.0 46.2	24.8 2.4 1.8	26.7 .0 .0			
TAKEOF	F TA	RGET IA	s 52.0	kts														
C22 C23 C24 C25 C26 C27	82.51 81.77 83.07 82.04 83.10 81.72	79.08 79.82 79.56 80.78	70.83 69.59 71.97 69.91 72.20 69.74	82.96 85.00 82.57 85.07	.07 01 .00 .08 .02	06 10 97 03 06 83	52 32 61 43 23 98	.00 .00 .00 .00	116.0 76.5 70.3 91.5 64.4 41.3	159.2 159.2 160.2 159.2	177.7 163.7 169.1 160.3 176.5 245.2	163.8 163.8 163.8 163.8	182.3 168.4 174.0 163.8 181.6 248.0	23.1 24.2 22.6 23.7 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	82.37 .62 .51	79.53 .93 .76	70.71 1.15 .95	83.59 1.14 .94	.07 .11 .09	34 .44 .36	51 .27 .22	.00 .00	76.7 25.3 20.8	159.9 1.1 .9	182.1 31.7 26.1	163.8 .0 .0	186.3 31.1 25.5	23.2 1.3 1.1	26.7 .0 .0			
150 m	FLYOVER	TAR	GET IAS	81.9 kt	s 0.9	Vh												
A1 A2 A3 A4 A5 A9	78.74 78.99 79.53 78.14	76.98 76.05 76.49 76.82 75.69 75.93	65.94 66.50 67.01 65.88	78.75 78.92 79.61 79.83 77.95 79.60	08 36 04 47 25	13 36 09 45 27 .07	33 .27 32 .32 37 29	.08 .01 .08 .01 .08 .01	84.9 83.1 59.7 97.9 87.0 98.6	205.5 200.6 205.1 198.7 202.2 209.2	206.3 202.0 237.6 200.6 202.5 211.6	211.2 211.2 211.2 211.2 211.2 211.2	212.8 244.7 213.2 211.5	38.1 42.7 38.1 42.7 37.0 39.1	42.2 42.2 42.2 42.2 42.2 42.2	N-S S-N N-S S-N N-S S-N		
Avg. Std Dv 90% CI	78.91 .48 .39	76.33 .52 .43	66.54 .52 .43	79.11 .71 .58	18 .22 .18	20 .19 .16	12 .32 .27	.04 .04 .03	85.2 14.1 11.6	203.6 3.8 3.1	210.1 14.0 11.6	211.2 .0 .0	218.0 13.1 10.8	39.6 2.5 2.0	42.2 .0 .0			

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-2-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

		M	I CROPHO	NE NO.	2 SIDELINE - 150 m WEST						07/22/91							
	(CORRECT	ED (dB)		COF	RECTION	(dB)		ACOUSTIC ANGLE	TRACKING DATA (Met (ACTUAL) (REFER					(m/sec)	DIR		
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF			
150 m	FLYOVER	TAR	GET IAS	91.0 kts	1.0	/h												
A6	79.10	76.28	66.30	79.88	43	48	12	.02	67.9	197.9	213.7	211.2	228.0	42.7	46.8	S-N		
150 m	FLYOVER	TAR	GET IAS	72.8 kts	: 0.81	/h												
A8 A10			66.45 65.82		31 .33	32 .24	.27 81	01 .09	116.4 76.7			211.2 211.2		38.1 31.4	37.6 37.6	S-N N-S		
Avg. Std Dv 90% CI	78.77 .18 .79	76.31 .08 .38	66.13 .45 1.99	78.48 .44 1.96	.01 .45 2.02	04 .40 1.77	27 .76 3.41	.04 .07 .32	96.6 28.1 125.3	206.9 7.9 35.4	221.6 4.6 20.5	211.2 .0 .0	226.4 13.4 59.7	34.8 4.7 21.2	37.6 .0 .0			
150 m	FLYOVER	TAR	GET IAS	63.7 kts	0.7	/h												
A11 A12			66.51 65.95		.55 .75	.30 .09	32 74	03 .07	102.6 65.5			211.2 211.2	216.4 232.1	31.4 28.8	32.9 32.9	S-N N-S		
Avg. Std Dv 90% CI	79.37 .91 4.04	76.42 .92 4.10	66.23 .40 1.77	79.36 .33 1.48	.65 .14 .63	.20 .15 .66	53 .30 1.33	.02 .07 .32	84.1 26.2 117.1	218.1 1.8 7.9	13.4	211.2 .0 .0	224.3 11.1 49.6	30.1 1.8 8.2	32.9 .0 .0			
150 m	FLYOVER	TAR	GET IAS	54.6 kts	0.61	/h												
A13 A14			69.26 65.95		.92 1.14	.70 .89	.23 .43	05 .04	133.4 98.1			211.2 211.2		31.4 33.4	28.3 28.3	S-N N-S		
Avg. Std Dv 90% CI	80.53 .52 2.34	.40	67.60 2.34 10.45	2.48	1.03 .16 .69	.79 .13 .60	.33 .14 .63	01 .06 .28	115.8 25.0 111.4	2.7	267.3 55.0 245.6	211.2 .0 .0	252.1 54.9 245.3	32.4 1.4 6.3	28.3 .0 .0			

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-3-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

		P	II CROPHO	DNE NO.	3 SIDELINE - 150 m EAST						07/22/91							
		CORRECT	ED (dB))	СО	RRECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		NTA (Met	SPEED(m/sec)		DIR			
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF			
APPRO#	\CH Т	ARGET I	AS 52.0	kts														
B15 B16 B17 B18 B19 B20 B21	88.48 88.34 88.59 87.31	86.87 87.58 87.91 85.65 86.69	77.46 76.49 78.13 78.68 75.53 79.12 77.12	88.28 88.94 89.31 88.11 89.30	19 16 07 68 18 54 20	22 53 10 67 77 54 45	.31 .22 .03 18 47 05	.00 .00 .00 .00 .00	72.0 79.0 70.3 87.9 72.6 85.5 123.0	184.9 186.3 176.1 184.0	188.3 198.0 176.2 192.8 178.8	191.0 191.0 191.0 191.0 191.0 191.0	200.8 194.5 202.9 191.1 200.1 191.5 227.7	27.8 27.3 26.2 23.7 23.1 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	87.79 .76 .55	86.69 .91 .67	77.50 1.26 .92	88.65 .53 .39	29 .23 .17	47 .24 .17	14 .41 .30	.00 .00 .00	84.3 18.4 13.5	182.5 3.8 2.8	192.4 14.1 10.4	191.0 .0 .0	201.2 12.6 9.2	24.8 2.4 1.8	26.7 .0 .0			
TAKEOF	F TA	RGET IA	s 52.0	kts														
C22 C23 C24 C25 C26 C27	83.08 83.29 82.92	79.67 80.19 80.10	70.76 69.77 70.40 71.12 71.16 68.53	83.67 83.79 84.12 83.99	05 08 08 01 02	08 36 12 05 10 12	52 32 61 43 23	.00 .00 .00 .00	89.2 80.9 86.1 83.1 106.9 62.3	159.7 159.2 159.2 160.2 159.2 161.9	161.2 159.6 161.4	163.8 163.8 163.8	163.8 165.9 164.2 165.0 171.2 185.0	23.1 24.2 22.6 23.7 24.7 21.1	26.7 26.7 26.7 26.7 26.7 26.7	N-S N-S N-S N-S N-S		
Avg. Std Dv 90% CI	82.90 .47 .38	79.85 .53 .43	70.29 1.00 .83	83.60 .77 .63	02 .07 .06	14 .11 .09	51 .27 .22	.00 .00	84.8 14.4 11.8	159.9 1.1 .9	165.2 9.0 7.4	163.8 .0 .0	169.2 8.2 6.7	23.2 1.3 1.1	26.7 .0 .0			
150 m	FLYOVER	TAR	GET IAS	81.9 kt	ts 0.9	Vh												
A1 A2 A3 A4 A5 A9	79.08 79.53 79.25 79.86 78.81 79.40	77.25 76.10 76.74 75.75	66.31 66.60 66.75 66.09 66.51 67.48	79.54 79.06 79.98 79.34 79.88 79.10	09 29 10 66 .22 13	12 32 25 -1.27 .17 17	33 .27 32 .42 56 18	.01 .08 .01 .08 .01	110.2 60.7 94.7 57.1 106.3 77.1	205.5 200.6 205.1 194.1 211.0 203.9	229.9 205.8 231.1 219.8	211.2 211.2 211.2 211.2 211.2 211.2	242.1 211.9 251.5 220.0	38.1 42.7 38.1 42.7 37.0 39.1	42.2 42.2 42.2 42.2 42.2 42.2	N-S S-N N-S S-N N-S S-N		
Avg. Std Dv 90% CI	79.23 .36 .30	76.47 .60 .49	66.62 .48 .39	79.48 .39 .32	17 .29 .24	33 .49 .40	12 .38 .31	.04 .04 .03	84.3 22.9 18.8	203.4 5.7 4.6	219.1 10.4 8.5	211.2 .0 .0	227.9 15.6 12.8	39.6 2.5 2.0	42.2 .0 .0			

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

TABLE B-L-3-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

SUMMARY NOISE LEVEL DATA CORRECTED*

	MICROPHONE NO. 3 SIDELINE - 150 m									50 m EAST 07/22/91							
	c	ORRECT	ED (dB)	•	CO	RECTIO	NS (dB)		ACOUSTIC ANGLE	TRAC (ACTU		NTA (Met (REFER	SPEED(m/sec)		DIR		
EV	EPNL	SEL	ALm	PNLTm	/\1(P)	/\1(A)	/\2	/\3	(Deg)	CPA	SR	CPAR	SRR	GRND	REF		
150 m	FLYOVER	TAR	GET IAS	91.0 kt	s 1.0\	/h											
A 6	78.91	76.33	67.45	79.30	75	97	01	.10	98.5	193.3	195.4	211.2	213.6	42.7	46.8	S-N	
150 m	FLYOVER	TAR	GET IAS	72.8 kt	s 0.8\	/h											
A8 A10	78.85 78.92				86 .14	82 .08	.48 75	.09 01	92.7 72.5	191.5 209.9		211.2 211.2		38.1 31.4	37.6 37.6	S-N N-S	
Avg. Std Dv 90% CI	78.88 .05 .22	76.22 .38 1.07	67.64 1.04 4.64	79.88 1.88 8.40	36 .71 3.16	37 .64 2.84	14 .87 3.88	.04 .07 .32	82.6 14.3 63.8	200.7 13.0 58.1	205.9 20.1 89.7	211.2 .0 .0	216.4 7.1 31.6	34.8 4.7 21.2	37.6 .0 .0		
150 m	FLYOVER	TAR	GET IAS	63.7 kt	s 0.7\	/h											
A11 A12		76.26 76.09	66.22 68.83		04 .61	59 .53	03 74	.07 03	107.9 105.3			211.2 211.2		31.4 28.8	32.9 32.9	S-N N-S	
Avg. Std Dv 90% CI	79.34 .00 .00	76.18 .12 .54	67.53 1.85 8.24	80.52 1.62 7.23	.28 .46 2.05	03 .79 3.54	38 .50 2.24	.02 .07 .32	106.6 1.8 8.2	211.1 11.6 51.8	220.3 10.0 44.8	211.2 .0 .0	220.4 2.1 9.2	30.1 1.8 8.2	32.9 .0 .0		
150 m	FLYOVER	TAR	GET IAS	54.6 kt	s 0.6V	/h											
A13 A14	80.69 80.41		67.94 66.19		.52 .40	.38 .31	.38 .66	.04 05	85.6 98.7	214.9 214.5		211.2 211.2		31.4 33.4	28.3 28.3	S-N N-S	
Avg. Std Dv 90% CI	80.55 .20 .88	77.78 .34 1.52	67.07 1.24 5.52	79.65 .08 .35	.46 .08 .38	.34 .05 .22	.52 .20 .88	01 .06 .28	92.1 9.3 41.4	214.7 .3 1.3	216.3 1.1 4.7	211.2 .0 .0	212.8 1.3 6.0	32.4 1.4 6.3	28.3 .0 .0		

^{* -} NOISE DATA ADJUSTED TO REFERENCE CONDITIONS USING THE "SIMPLIFIED" PROCEDURE

APPENDIX C

AS-MEASURED 1/3-OCTAVE SPECTRAL DATA

This Appendix presents as-measured 1/3-octave spectral data for representative measurement runs, Figures C-A-1-1* through C-L-3-3. Each figure presents: (1) the 1/3-octave spectrum at the time of PNLT_{MAX}; and (2) the 1/3-octave spectral time history defined by the leading and trailing 10 dB down points.

^{*}In the numerical notation for Figure number, the first letter denotes Appendix, the second letter denotes helicopter configuration (as discussed in Section 1.4), and the first number denotes site, i.e., site 1 - centerline, site 2 - sideline/east, or site 3 - sideline/west, and the second number differentiates between standard Far Part 36 tests (denoted by a 1) and additional flyover tests (denoted by a 2). For example, Figure C-A-1-1 displays noise data measured for helicopter Configuration A (Schweizer, Standard Configuration), subject to standard FAR Part 36 requirements.

FIGURE C-A-1-1: EVENT B3 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION A CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-1-2: EVENT C8 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION A CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm
B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-1-3: EVENT A1 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION A CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-2-1: EVENT B3 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m WEST - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-2-2: EVENT C8 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m WEST - AS MEASURED

FIGURE C-A-2-3: EVENT A1 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m WEST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-3-1: EVENT B3 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm $\,$
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-3-2: EVENT C8 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m EAST - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm
B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-A-3-3: EVENT A1 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION A SIDELINE 150 m EAST - AS MEASURED

FIGURE C-B-1-1: EVENT B18 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION B CENTERLINE CENTER - AS MEASURED

FIGURE C-B-1-2: EVENT C27 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION B CENTERLINE CENTER - AS MEASURED

FIGURE C-B-1-3: EVENT A5 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION B CENTERLINE CENTER - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-B-2-1: EVENT B18 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m WEST - AS MEASURED

FIGURE C-B-2-2: EVENT C27 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m WEST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-B-2-3: EVENT A5 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m WEST - AS MEASURED

FIGURE C-B-3-1: EVENT B18 - APPROACH - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m EAST - AS MEASURED

FIGURE C-B-3-2: EVENT C27 - TAKEOFF - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m EAST - AS MEASURED

FIGURE C-B-3-3: EVENT A5 - LEVEL FLYOVER - 07/22/91 SCHWEIZER 300 - CONFIGURATION B SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

07/23/91 APPROACH EVENT B24 -FIGURE C-C-1-1: SCHWEIZER 300 - CONFIGURATION C CENTERLINE CENTER - AS MEASURED

FIGURE C-C-1-2: EVENT C27 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION C CENTERLINE CENTER - AS MEASURED

FIGURE C-C-1-3: EVENT A1 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION C CENTERLINE CENTER - AS MEASURED

FIGURE C-C-2-1: EVENT B24 - APPROACH - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m WEST - AS MEASURED

FIGURE C-C-2-2: EVENT C27 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m WEST - AS MEASURED

FIGURE C-C-2-3: EVENT A1 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m WEST - AS MEASURED

FIGURE C-C-3-1: EVENT B24 - APPROACH - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m EAST - AS MEASURED

FIGURE C-C-3-2: EVENT C27 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-C-3-3: EVENT A1 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION C SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-D-1-1: EVENT B18 - APPROACH - 07/23/91 SCHWEIZER 300 - CONFIGURATION D CENTERLINE CENTER - AS MEASURED

FIGURE C-D-1-2: EVENT C28 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION D CENTERLINE CENTER - AS MEASURED

FIGURE C-D-1-3: EVENT A5 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION D CENTERLINE CENTER - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm $\,$
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-D-2-1: EVENT B18 - APPROACH - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m WEST - AS MEASURED

FIGURE C-D-2-2: EVENT C28 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m WEST - AS MEASURED

FIGURE C-D-2-3: EVENT A5 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m WEST - AS MEASURED

FIGURE C-D-3-1: EVENT B18 - APPROACH - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m EAST - AS MEASURED

FIGURE C-D-3-2: EVENT C28 - TAKEOFF - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m EAST - AS MEASURED

FIGURE C-D-3-3: EVENT A5 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 300 - CONFIGURATION D SIDELINE 150 m EAST - AS MEASURED

FIGURE C-E-1-1: EVENT B15 - APPROACH - 07/24/91 SCHWEIZER 300 - CONFIGURATION E CENTERLINE CENTER - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-E-1-2: EVENT E7 - TAKEOFF - 07/24/91 SCHWEIZER 300 - CONFIGURATION E CENTERLINE CENTER - AS MEASURED

FIGURE C-E-1-3: EVENT A3 - LEVEL FLYOVER - 07/24/91 SCHWEIZER 300 - CONFIGURATION E CENTERLINE CENTER - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-E-2-1: EVENT B15 - APPROACH - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m WEST - AS MEASURED

FIGURE C-E-2-2: EVENT E7 - TAKEOFF - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m WEST - AS MEASURED

FIGURE C-E-2-3: EVENT A3 - LEVEL FLYOVER - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m WEST - AS MEASURED

FIGURE C-E-3-1: EVENT B15 - APPROACH - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m EAST - AS MEASURED

FIGURE C-E-3-2: EVENT E7 - TAKEOFF - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m EAST - AS MEASURED

FIGURE C-E-3-3: EVENT A3 - LEVEL FLYOVER - 07/24/91 SCHWEIZER 300 - CONFIGURATION E SIDELINE 150 m EAST - AS MEASURED

FIGURE C-F-1-1: EVENT B22 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION F CENTERLINE CENTER - AS MEASURED

FIGURE C-F-1-2: EVENT C26 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION F CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm
B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-F-1-3: EVENT A3 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION F CENTERLINE CENTER - AS MFASURED

B. ONE THIRD OCTAVE TIME HISTORY

(یا

FIGURE C-F-2-1: EVENT B22 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m WEST - AS MEASURED

FIGURE C-F-2-2: EVENT C26 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m WEST - AS MEASURED

FIGURE C-F-2-3: EVENT A3 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m WEST - AS MEASURED

FIGURE C-F-3-1: EVENT B22 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m EAST - AS MEASURED

FIGURE C-F-3-2: EVENT C26 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m EAST - AS MEASURED

FIGURE C-F-3-3: EVENT A3 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION F SIDELINE 150 m EAST - AS MEASURED

FIGURE C-G-1-1: EVENT B16 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION G CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm
B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-G-1-2: EVENT C25 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION G CENTERLINE CENTER - AS MEASURED

FIGURE C-G-1-3: EVENT A5 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION G CENTERLINE CENTER - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-G-2-1: EVENT B16 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m WEST - AS MEASURED

FIGURE C-G-2-2: EVENT C25 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m WEST - AS MEASURED

FIGURE C-G-2-3: EVENT A5 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m WEST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-G-3-1: EVENT B16 - APPROACH - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m EAST - AS MEASURED

FIGURE C-G-3-2: EVENT C25 - TAKEOFF - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-G-3-3: EVENT A5 - LEVEL FLYOVER - 07/25/91 SCHWEIZER 300 - CONFIGURATION G SIDELINE 150 m EAST - AS MEASURED

FIGURE C-H-1-1: EVENT B17 - APPROACH - 07/23/91 SCHWEIZER 330 - CONFIGURATION H CENTERLINE CENTER - AS MEASURED

FIGURE C-H-1-2: EVENT C30 - TAKEOFF - 07/23/91 SCHWEIZER 330 - CONFIGURATION H CENTERLINE CENTER - AS MEASURED

FREQUENCY BAND #
FIGURE C-H-1-3: EVENT A6 - LEVEL FLYOVER - 07/23/91
SCHWEIZER 330 - CONFIGURATION H
CENTERLINE CENTER - AS MEASURED

FIGURE C-H-2-1: EVENT B17 - APPROACH - 07/23/91 SCHWEIZER 330 - CONFIGURATION H SIDELINE 150 m WEST - AS MEASURED

FIGURE C-H-2-2: EVENT C30 - TAKEOFF - 07/23/91 SCHWEIZER 330 - CONFIGURATION H SIDELINE 150 m WEST - AS MEASURED

07/23/91 EVENT A6 - LEVEL FLYOVER -SCHWEIZER 330 - CONFIGURATION H FIGURE C-H-2-3: SIDELINE 150 m WEST - AS MEASURED

FIGURE C-H-3-1: EVENT B17 - APPROACH - 07/23/91 SCHWEIZER 330 - CONFIGURATION H SIDELINE 150 m EAST - AS MEASURED

FIGURE C-H-3-2: EVENT C30 - TAKEOFF - 07/23/91 SCHWEIZER 330 - CONFIGURATION H SIDELINE 150 m EAST - AS MEASURED

FIGURE C-H-3-3: EVENT A6 - LEVEL FLYOVER - 07/23/91 SCHWEIZER 330 - CONFIGURATION H SIDELINE 150 m EAST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-I-1-1: EVENT B21 - APPROACH - 07/24/91 SCHWEIZER 330 - CONFIGURATION I CENTERLINE CENTER - AS MEASURED

A. ONE THIRD OCTAVE SPECTRA AT PNLTm
B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-I-1-2: EVENT C24 - TAKEOFF - 07/24/91 SCHWEIZER 330 - CONFIGURATION I CENTERLINE CENTER - AS MEASURED

EVENT A3 - LEVEL FLYOVER - 07/24/91 FIGURE C-I-1-3: SCHWEIZER 330 - CONFIGURATION I CENTERLINE CENTER - AS MEASURED

FIGURE C-I-2-1: EVENT B21 - APPROACH - 07/24/91 SCHWEIZER 330 - CONFIGURATION I SIDELINE 150 m WEST - AS MEASURED

FIGURE C-I-2-2: EVENT C24 - TAKEOFF - 07/24/91 SCHWEIZER 330 - CONFIGURATION I SIDELINE 150 m WEST - AS MEASURED

EVENT A3 - LEVEL FLYOVER - 07/24/91 SCHWEIZER 330 - CONFIGURATION I FIGURE C-I-2-3: SIDELINE 150 m WEST - AS MEASURED

FIGURE C-I-3-1: EVENT B21 - APPROACH - 07/24/91 SCHWEIZER 330 - CONFIGURATION I SIDELINE 150 m EAST - AS MEASURED

FIGURE C-I-3-2: EVENT C24 - TAKEOFF - 07/24/91 SCHWEIZER 330 - CONFIGURATION I SIDELINE 150 m EAST - AS MEASURED

FIGURE C-I-3-3: EVENT A3 - LEVEL FLYOVER - 07/24/91 SCHWEIZER 330 - CONFIGURATION I SIDELINE 150 m EAST - AS MEASURED

FIGURE C-J-1-1: EVENT BP14 - APPROACH - 07/26/91 ENSTROM 280 FX CENTERLINE CENTER - AS MEASURED

FIGURE C-J-1-2: EVENT CP22 - TAKEOFF - 07/26/91 ENSTROM 280 FX CENTERLINE CENTER - AS MEASURED

FIGURE C-J-1-3: EVENT AP42 - LEVEL FLYOVER - 07/26/91
ENSTROM 280 FX
CENTERLINE CENTER - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-J-2-1: EVENT BP14 - APPROACH - 07/26/91 ENSTROM 280 FX SIDELINE 150 m WEST - AS MEASURED

FIGURE C-J-2-2: EVENT CP22 - TAKEOFF - 07/26/91 ENSTROM 280 FX SIDELINE 150 m WEST - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-J-2-3: EVENT AP42 - LEVEL FLYOVER - 07/26/91 ENSTROM 280 FX SIDELINE 150 m WEST - AS MEASURED

- A. ONE THIRD OCTAVE SPECTRA AT PNLTm
- B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-J-3-1: EVENT BP14 - APPROACH - 07/26/91 ENSTROM 280 FX SIDELINE 150 m EAST - AS MEASURED

FIGURE C-J-3-2: EVENT CP22 - TAKEOFF - 07/26/91 ENSTROM 280 FX SIDELINE 150 m EAST - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-J-3-3: EVENT AP42 - LEVEL FLYOVER - 07/26/91 ENSTROM 280 FX SIDELINE 150 m EAST - AS MEASURED

FIGURE C-K-1-1: EVENT BT7 - APPROACH - 07/26/91 ENSTROM TH28 CENTERLINE CENTER - AS MEASURED

FIGURE C-K-1-2: EVENT CT19 - TAKEOFF - 07/26/91 ENSTROM TH28 CENTERLINE CENTER - AS MEASURED

FIGURE C-K-1-3: EVENT AT28 - LEVEL FLYOVER - 07/26/91 ENSTROM TH28 CENTERLINE CENTER - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-K-2-1: EVENT BT7 - APPROACH - 07/26/91 ENSTROM TH28 SIDELINE 150 m WEST - AS MEASURED

FIGURE C-K-2-2: EVENT CT19 - TAKEOFF - 07/26/91 ENSTROM TH28 SIDELINE 150 m WEST - AS MEASURED

FIGURE C-K-2-3: EVENT AT28 - LEVEL FLYOVER - 07/26/91 ENSTROM TH28 SIDELINE 150 m WEST - AS MEASURED

FIGURE C-K-3-1: EVENT BT7 - APPROACH - 07/26/91 ENSTROM TH28 SIDELINE 150 m EAST - AS MEASURED

FIGURE C-K-3-2: EVENT CT19 - TAKEOFF - 07/26/91 ENSTROM TH28 SIDELINE 150 m EAST - AS MEASURED

FIGURE C-K-3-3: EVENT AT28 - LEVEL FLYOVER - 07/26/91 ENSTROM TH28 SIDELINE 150 m EAST - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-L-1-1: EVENT B18 - APPROACH - 07/22/91 ROTORWAY EXEC 90 CENTERLINE CENTER - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-L-1-2: EVENT C25 - TAKEOFF - 07/22/91 ROTORWAY EXEC 90 CENTERLINE CENTER - AS MEASURED

FIGURE C-L-1-3: EVENT A1 - LEVEL FLYOVER - 07/22/91
ROTORWAY EXEC 90
CENTERLINE CENTER - AS MEASURED

FREQUENCY BAND #
FIGURE C-L-2-1: EVENT B18 - APPROACH - 07/22/91
ROTORWAY EXEC 90
SIDELINE 150 m WEST - AS MEASURED

FIGURE C-L-2-2: EVENT C25 - TAKEOFF - 07/22/91 ROTORWAY EXEC 90 SIDELINE 150 m WEST - AS MEASURED

FIGURE C-L-2-3: EVENT A1 - LEVEL FLYOVER - 07/22/91
ROTORWAY EXEC 90
SIDELINE 150 m WEST - AS MEASURED

FIGURE C-L-3-1: EVENT B18 - APPROACH - 07/22/91 ROTORWAY EXEC 90 SIDELINE 150 m EAST - AS MEASURED

FIGURE C-L-3-2: EVENT C25 - TAKEOFF - 07/22/91 ROTORWAY EXEC 90 SIDELINE 150 m EAST - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY

FIGURE C-L-3-3: EVENT A1 - LEVEL FLYOVER - 07/22/91
ROTORWAY EXEC 90
SIDELINE 150 m EAST - AS MEASURED

B. ONE THIRD OCTAVE TIME HISTORY C-109/C-110

APPENDIX D

SEL DATA COMPARISON

This Appendix presents a comparison of the sound exposure levels computed from: (1) the digitally recorded data (SEL), (2) the online data based on the field-estimated 10 to 15 dB down duration (SEL₁), and (3) the on-line data based on the exact 10 dB down duration (SEL₂), Tables D-A-1* through D-L-2.

^aIn the numerical notation for Table number, the first letter denotes Appendix, the second letter denotes helicopter configuration (as discussed in Section 1.4), and the first number differentiates between standard Far Part 36 tests (denoted by a 1) and additional flyover tests (denoted by a 2). For example, Table D-A-1 contains comparison of SEL values measured for helicopter Configuration A (Schweizer, Standard Configuration), subject to standard FAR Part 36 requirements.

TABLE D-A-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SEL COMPARISON ONE-THIRD OCTAVE DERIVED vs. ON-SITE SLM DATA

CHAMPAIGN, ILLINOIS								07/22/91			
	SITE 1 - CENTERLINE CENTER			SITE 2 - SIDELINE 150 m WEST			SITE 3 - SIDELINE 150 m EAST				
EV	SEL*	∆SEL1**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	4SEL,	ASEL ₂		
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		
APPROACH TARGET IAS 40.8 kts											
81 82 83 84 85 86	91.7 90.4 89.6 88.8 90.0 91.2	0.6 0.4 0.4 0.6 0.5 0.5	0.2 0.1 0.1 0.1 0.1 0.1	86.8 84.9 84.7 83.9 84.4 85.2	0.5 0.0 0.4 0.4 0.3	-0.1 -0.4 -0.4 -0.3 -0.3	85.4 85.7 84.8 85.0 85.0 85.2	0.6 0.7 0.6 0.6 0.8	0.1 0.2 -0.3 -0.4 0.1 0.3		
AVG STD DV	90.3 1.1	0.5 0.1	0.1 0.1	85.0 1.0	0.3 0.2	-0.3 0.2	85.2 0.3	0.7 0.1	-0.0 0.3		
TAKEOFF -	- TARGET IA	S 40.8 kts	5								
C1 C5 C6 C7 C8 C9	91.8 92.1 93.0 91.8 91.7 92.5	0.4 0.5 0.4 0.3 0.6 0.5	0.0 0.3 0.2 0.3 -0.1 0.3	87.9 89.2 88.3 83.3 88.0 88.6	0.3 0.4 0.4 0.2 0.3 0.2	-0.0 -0.1 0.1 -0.1 -0.3 -0.1	89.4 88.8 89.6 90.4 89.7 89.3	0.6 0.5 0.5 0.5 0.5	-0.2 0.1 0.0 0.1 0.1		
AVG STD DV	92.1 0.5	0.5 0.1	0.1 0.2	88.4 0.5	0.3 0.1	-0.1 0.1	89.5 0.5	0.5 0.1	0.0 0.1		
150 m FLY0	OVER TAR	GET IAS 72	2.0 kts 0.	9Vh							
A1 A2 A3 A4 A5 A6	86.8 85.5 86.9 85.6 86.3 85.5	0.6 0.6 0.4 0.7 0.6 0.5	-0.2 0.1 0.0 0.2 0.1	83.7 83.5 83.8 83.8 84.4 83.1	0.3 0.2 0.4 0.4 0.3 0.3	-0.2 -0.1 -0.0 -0.1 -0.3 -0.4	85.1 84.5 85.2 84.8 84.4 85.2	0.2 0.2 0.3 0.2 0.5 0.2	-0.4 -0.5 -1.0 -0.7 -0.1 -0.8		
AVG STD DV	86.1 0.6	0.6 0.1	0.1 0.1	83.7 0.4	0.3 0.1	-0.2 0.2	84.9 0.4	0.3 0.1	-0.6 0.3		

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-A-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER STOCK EXHAUST (NO MUFFLER) STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SEL COMPARISON ONE-THIRD OCTAVE DERIVED vs. ON-SITE SLM DATA

CHAMPAIGN, ILLINOIS							07/22/91			
SITE 1 - CENTERLINE CENTER				SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST	
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂	
	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	
150 m FLY	OVER TAF	RGET IAS 80).0 kts 1.	0Vh						
D1	87.1	0.5	0.1	84.9	0.5	0.1	85.8	0.6	0.2	
D2	86.1	0.5	0.1	84.2	NO	Data	85.8	0.5	-0.0	
AVG	86.6	0.5	0.1	84.6	0.5	0.1	85.8	0.6	0.1	
STD DV	0.7	0.0	0.0	0.5	0.0	0.0	0.0	0.1	0.2	
150 m FLY	OVER TAF	RGET IAS 64	.0 kts 0.	8Vh						
D5	86.1	0.3	-0.2	83.2	0.7	-0.0	84.8	0.6	-0.1	
D6	85.7	0.4	-0.3	82.7	0.4	-0.4	84.3	0.7	0.1	
AVG	85.9	0.4	-0.2	82.9	0.6	-0.2	84.5	0.7	0.0	
STD DV	0.2	0.0	0.1	0.4	0.2	0.2	0.3	0.1	0.1	
150 m FLY	OVER TAR	RGET IAS 56	5.0 kts 0.	7Vh						
D7	86.1	0.2	0.0	83.7	0.4	-0.2	84.5	0.3	-0.0	
D8	85.5	0.6	0.1	82.8	0.4	-0.2	84.9	0.7	-0.0	
AVG	85.8	0.4	0.1	83.2	0.4	-0.2	84.7	0.5	-0.0	
STD DV	0.4	0.2	0.0	0.6		0.0	0.3	0.2	0.0	
150 m FLY	OVER TAR	RGET IAS 48	3.0 kts 0.	6Vh						
D9	86.9	0.5	-0.0	83.8	0.5	-0.1	85.0	0.5	0.1	
D10	86.6	0.1	-0.4	82.8	0.3	-0.4	85.5	0.7	-0.1	
AVG	86.7	0.3	-0.2	83.3	0.4	-0.3	85.3	0.6	-0.0	
STD DV	0.2	0.3	0.3	0.7	0.1	0.2	0.3	0.2	0.1	

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

^{*** -} ASEL = SEL SEL (SEL CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-B-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	CHAM	PAIGN, ILL	INOIS					07/22/91	
	SITE 1	- CENTERLII	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	∆SEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET	IAS 40.8 kt	ts						
B15	89.1	0.7	-0.3	84.4	0.4	0.1	83.9	0.4	-0.1
B16	90.3	0.6	0.1	85.6	0.6	0.0	85.2	0.3	-0.3
B17	87.7	0.4	0.2	83.4	0.5	-0.2	83.8	0.2	-0.1
B18	87.4	0.5	0.1	83.1	0.7	-0.2	84.0	0.2	-0.1
B19	88.1	0.5	0.1	83.4	0.6	-0.3	83.2	0.2	-0.0
B20	86.4	0.5	0.0	82.8	0.5	-0.2	82.8	0.6	-0.0
AVG	88.2	0.5	0.0	83.8	0.6	-0.1	83.8	0.3	-0.1
STD DV	1.4	0.1	0.2	1.0	0.1	0.1	0.8	0.2	0.1
TAKEOFF -	- TARGET IA	AS 40.8 kts	5						
C21	85.1	0.6	0.2	83.4	0.4	-0.1	85.3	0.3	0.0
C23	84.9	0.8	-0.0	82.6	0.4	-0.1	84.7	0.9	0.4
C24	85.8	0.5	0.0	83.5	0.5	-0.0	85.1	0.3	0.1
C26	85.7	0.7	0.2	83.7	0.5	-0.1	85.1		DATA
C27	86.2	0.6	0.2	83.5		DATA	85.9	-0.1	-0.4
C28	85.4	0.7	0.2	83.3	0.5	-0.0	84.6	0.1	-0.0
C26	65.4	0.7	0.2	63.3	0.5	-0.0	04.0	0.1	-0.0
AVG	85.5	0.7	0.1	83.3	0.4	-0.1	85.1	0.2	0.0
STD DV	0.5	0.1	0.1	0.4	0.1	0.1	0.5	0.4	0.3
150 m FLY	OVER TAR	RGET IAS 77	2.0 kts 0.	9Vh					
A1	79.8	0.5	-0.0	79.5	0.6	0.1	79.8	0.5	0.2
A2	79.3	0.5	-0.0	79.0	0.3	0.0	79.5	0.5	0.3
A3	80.7	0.5	0.1	80.0	0.7	0.0	80.0	0.3	0.0
A4	79.3	0.5	-0.2	79.0	0.4	-0.1	79.3	0.6	0.3
A5	79.8	0.6	0.1	79.6	0.7	0.1	79.7	0.6	0.4
A6	79.2	0.6	0.1	78.4	0.6	-0.0	78.8	0.8	0.3
MO	17.2	V.0	U. 1	10.4	0.0	-U.V	75.6	0.0	0.5
AVG	79.7	0.5	0.0	79.3	0.5	-0.0	79.5	0.6	0.2
STD DV	0.6	0.1	0.1	0.6	0.2	0.1	0.4	0.1	0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-B-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER - STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	CHAM	PAIGN, ILL		07/22/91					
	SITE 1 -	CENTERLIN	IE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ΔSEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
150 m FLY0	OVER TAR	RGET IAS 80).0 kts 1.	0Vh					
D7	80.2	0.9	0.1	80.6	0.4	-0.2	80.8	0.2	0.0
D8	80.4	0.5	0.1	80.5	0.5	0.1	79.6	0.5	-0.1
AVG	80.3	0.7	0.1	80.6	0.4	-0.1	80.2	0.3	-0.0
STD DV	0.2	0.3	0.0	0.1	0.1	0.2	0.8	0.3	0.1
150 m FLY0	OVER TAR	RGET IAS 64	.0 kts 0.	8Vh					
D9	80.5	0.5	0.1	79.7	0.7	0.1	79.8	0.5	0.1
D10	79.6	0.5	0.1	78.4	0.7	0.1	79.1	0.5	0.2
AVG	80.1	0.5	0.1	79.0	0.7	0.1	79.5	0.5	0.1
STD DV	0.6	0.0	0.0	0.9	0.1	0.1	0.5	0.0	0.0
150 m FLY0	OVER TAR	RGET IAS 56	5.0 kts 0.	7Vh					
D11	80.9	0.3	0.0	79.5	0.7	-0.0	80.2	0.4	-0.1
D12	79.4	0.5	0.0	78.5	0.3	-0.2	78.3	0.6	0.1
AVG	80.1	0.4	0.0	79.0	0.5	-0.1	79.2	0.5	0.0
STD DV	1.1	0.1	0.0	0.8	0.2	0.1	1.4	0.2	0.2
150 m FLY0	OVER TAR	RGET IAS 48	3.0 kts 0.	6Vh					
D13	82.7	0.6	0.1	81.2	0.3	-0.3	81.9	0.2	-0.1
D14	80.0	0.4	-0.0	78.2	0.5	-0.4	78.6	0.6	0.2
AVG	81.4	0.5	0.0	79.7	0.4	-0.4	80.2	0.4	0.1
STD DV	1.9	0.1	0.1	2.1	0.2	0.0	2.3	0.3	0.2

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-C-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

	CHAMPAIGN, ILLINOIS							07/23/91			
	SITE 1	CENTERLII	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST		
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂		
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		
APPROACH	TARGET	AS 40.8 k	ts								
B18	90.7	0.9	0.4	84.3	8.0	-0.4	81.9	0.5	0.1		
B20	90.2	0.7	0.3	85.6	0.5	-0.3	81.8	0.5	0.2		
B21	89.9	0.8	0.4	83.7	0.9	-0.1	81.0	0.4	-0.1		
B22	88.9	0.9	0.4	85.4	0.6	-0.2	81.5	1.3	-0.1		
823 824	89.0 89.7	0.6 0.6	0.4 0.4	84.1 84.9	0.2 0.3	-0.3 -0.0	81.6 80.6	0.3 0.4	0.2 -0.0		
024	07.7	0.6	0.4	04.7	0.5	-0.0	50.0	0.4	0.0		
AVG	89.7	0.8	0.4	84.7	0.5	-0.2	81.4	0.6	0.0		
STD DV	0.7	0.2	0.1	0.8	0.3	0.2	0.5	0.4	0.2		
TAKEOFF -	- TARGET I	NS 40.8 kts	S								
C25	82.7	0.4	0.1	79.2	0.4	-0.2	81.8	0.2	0.1		
C26	83.2	0.4	0.2	80.0	0.2	-0.2	81.8	0.4	0.1		
C27	83.6	0.4	0.2	80.5	-0.1	-0.2	82.0	0.2	0.0		
C28	83.7	0.5	0.2	80.6	0.0	-0.3	82.0	0.3	-0.1		
C29	83.0	0.5	0.2	79.6	0.2	-0.2	82.0	0.1	0.1		
C30	83.8	0.4	0.2	80.7	0.3	-0.4	83.7	0.3	0.1		
AVG	83.2	0.4	0.2	80.0	0.1	-0.2	81.9	0.2	0.0		
STD DV	0.4	0.1	0.0	0.6	0.2	0.0	0.1	0.1	0.1		
150 m FLY	OVER TAR	RGET IAS 7	2.0 kts 0.	9Vh							
A1	77.9	0.3	-0.0	77.2	0.1	-0.5	77.5	0.4	0.1		
A2	79.2	0.5	0.1	78.1	0.3	-0.3	78.8	0.5	0.1		
A3	77.6	0.5	0.1	76.9	0.3	-0.4	76.8	0.6	-0.2		
A4	79.4	0.3	-0.7	78.2	0.4	-0.2	<u>78.1</u>	1.0	0.1		
A5	78.1	0.4	-0.4	76.9	0.4	-0.2	77.0	0.5	0.1		
A7	79.8	0.4	-0.1	78.6	0.2	-0.4	79.2	NO	DATA		
AVG	78.7	0.4	-0.2	77.6	0.3	-0.3	77.9	0.6	0.0		
STD DV	0.9	0.1	0.3	0.7	0.1	0.1	1.0	0.2	0.1		

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA
** - ASEL, = SEL, -SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

ASEL = SEL -SEL (SEL CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-C-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

CHAMPAIGN, ILLINOIS							07/23/91			
	SITE 1 -	CENTERLI	IE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST	
EV	SEL*	∆SEL ₁ **	ASEL ₂ ***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂	
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
150 m FLY	OVER TAR	RGET IAS 72	2.0 kts 0.	9Vh						
D8	78.4	0.5	0.1	77.8	0.5	-0.4	78.2	0.3	-0.1	
D9	79.7	0.8	0.4	79.6	0.1	-0.4	80.1	0.3	-0.7	
AVG	79.1	0.6	0.2	78.7	0.3	-0.4	79.2	0.3	-0.4	
STD DV	0.9	0.2	0.2	1.2	0.2	0.0	1.4	0.0	0.5	
150 m FLY	OVER TAR	RGET IAS 64	.0 kts 0.	8Vh						
D10	77.8	0.9	0.2	76.8	0.0	-0.4	76.9	0.4	0.1	
D11	79.3	0.7	0.1	77.8	0.1	-0.7	78.8	0.3	-0.3	
AVG	78.6	0.8	0.1	77.3	0.1	-0.5	77.9	0.3	-0.1	
STD DV	1.0	0.1	0.1	0.7	0.0	0.2	1.4	0.1	0.3	
150 m FLY	OVER TAF	RGET IAS 56	5.0 kts 0.	7Vh						
D12	77.7	0.8	0.4	77.2	0.1	-0.4	76.6	0.7	0.0	
D13	79.5	0.7		77.3	0.2	-0.9	78.0	0.4	0.2	
AVG	78.6	0.7	0.3	77.2	0.2	-0.6	77.3	0.6	0.1	
STD DV	1.3	0.1	0.1	0.1	0.0	0.4	1.0	0.2	0.1	
150 m FLY	OVER TAR	RGET IAS 48	3.0 kts 0.	6Vh						
D14	78.3	0.7	0.2	76.7	0.3	-0.5	76.7	0.3	0.1	
D16	80.4	0.6	-0.0	78.6	0.8	-0.5	79.4	0.2	-0.8	
AVG	79.3	0.7	0.1	77.6	0.6	-0.5	78.0	0.3	-0.3	
STD DV	1.5	0.1	0.1	1.3	0.4	0.0	1.9	0.1	0.6	

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-D-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

CHAMPAIGN, ILLINOIS								07/23/91			
	SITE 1 -	CENTERLI	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST		
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL2		
••	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)		
APPROACH	TARGET I	AS 40.8 kt	:s								
B16 B17 B18 B20 B21 B22	90.3 91.4 91.1 88.1 86.6 88.8	0.8 0.6 0.6 0.6 0.7	0.5 0.4 0.4 0.3 0.3	85.2 86.2 85.3 82.0 81.6 82.4	0.7 0.9 0.8 1.1 0.9 0.8	0.4 0.3 0.4 0.5 0.4 0.3	82.8 83.2 82.6 82.7 81.7 81.9	0.1 0.2 0.4 0.2 0.3	0.0 0.1 0.1 0.0 0.1		
AVG STD DV	89.4 1.9	0.6 0.1	0.4	83.8	0.9 0.1	0.4 0.1	82.5 0.6	0.3 0.1	0.1 0.1		
TAKEOFF -	- TARGET IA	S 40.8 kts	i								
C24 C25 C26 C27 C28 C29	82.7 81.7 82.7 82.6 82.4 82.2	0.4 0.3 0.3 0.4 0.3	0.1 0.1 0.1 0.1 0.1	78.7 78.3 77.9 79.1 78.6 78.5	0.6 0.6 0.4 0.4 0.6	0.1 0.2 0.1 0.2 0.3 0.3	81.4 81.1 81.2 81.1 81.5 81.0	0.2 0.2 0.4 0.3 0.1	0.0 0.1 0.2 0.1 -0.0		
AVG STD DV	82.4 0.4	0.3 0.1	0.1 0.0	78.5 0.4	0.5 0.1	0.2 0.1	81.2 0.2	0.2 0.1	0.0 0.1		
150 m FLY	OVER TAR	GET IAS 72	.0 kts 0.9	PVh							
A1 A2 A3 A4 A5 A6	76.1 77.8 75.5 76.0 76.2 77.1	0.7 0.8 1.1 0.8 0.7 0.8	0.1 0.4 0.2 0.3 0.5	73.9 77.0 74.4 75.7 74.7 76.2	0.3 0.5 0.3 0.6 0.6	0.2 0.1 0.1 0.3 0.2	75.3 76.0 75.8 75.7 75.8 75.0	0.4 0.3 0.4 0.3 0.4	-0.1 0.2 0.2 0.2 0.2 0.2		
AVG STD DV	76.5 0.9	0.8 0.1	0.3 0.1	75.3 1.2	0.5 0.1	0.2 0.1	75.6 0.4	0.3 0.1	0.1 0.1		

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL, SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL, SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-D-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST 4-BLADE 51" DIA. TAIL ROTOR (25% RPM REDUCTION)

	CHAMPAIGN, ILLINOIS								07/23/91			
	SITE 1 -	CENTERLIN	IE CENTER	SITE 2 - S	IDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST			
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂			
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)			
150 m FLYC	OVER TAR	GET IAS 80).0 kts 1.	0Vh								
D7	77.3	0.8	0.2	75.4	0.7	0.1	76.2	0.3	0.1			
D9	78.2	0.5		77.6	0.4	0.1	76.8	0.5	0.1			
AVG	77.7	0.7	0.2	76.5	0.6	0.1	76.5	0.4	0.1			
STO DV	0.6	0.2	0.0	1.6	0.2	0.0	0.5	0.1	0.0			
150 m FLY0	OVER TAR	GET IAS 72	2.0 kts 0.	BVh								
D10	75.5	0.8	0.2	74.3	0.5	0.1	75.3	0.2	-0.1			
D11	77.0	0.5	-0.0	75.8	0.4	0.3	76.2	0.0	-0.2			
AVG	76.3	0.6	0.1	75.1	0.4	0.2	75.7	0.1	-0.2			
STD DV	1.1	0.2	0.1	1.1	0.1	0.1	0.7	0.1	0.0			
150 m FLY0	OVER TAR	GET IAS 64	.0 kts 0.	7Vh								
D12	76.9	0.6	-0.1	74.3	0.2	-0.0	75.4	0.3	0.1			
D13	77.7	0.4	0.1	76.4	0.5	0.1	76.4	0.1	-0.2			
AVG	77.3	0.5	0.0	75.4	0.3	0.0	75.9	0.2	-0.0			
STD DV	0.6	0.1	0.1	1.5	0.2	0.1	0.7	0.1	0.2			
150 m FLY0	VER TAR	GET IAS 56	.0 kts 0.	6Vh								
D14	76.6	0.6	0.2	75.0	0.5	0.3	76.1	0.4	0.1			
D15	78.7	0.5	0.2	77.3	0.5	0.2	76.9	0.2	0.1			
AVG	77.7	0.5	0.2	76.2	0.5	0.3	76.5	0.3	0.1			
STD DV	1.5	0.1	0.0	1.6	0.0	0.0	0.6	0.1	0.0			

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, * SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, * SEL, SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-E-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

	07/24/91								
	SITE 1 -	CENTERLIN	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 - SIDELINE 150 m EAST		
EV	SEL*	ASEL,**	ASEL ₂ ***	SEL	ASEL,	ASEL ₂	SEL	ΔSEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET I	AS 40.8 kt	:s						
B15 B16 B17 B10 B19 B20	87.1 84.9 86.0 87.1 88.3 91.6	0.7 0.6 0.4 0.4 0.5 0.4	0.1 -0.5 0.0 0.0 0.2 0.0	82.8 81.3 81.0 81.9 82.9 84.8	0.5 0.2 0.7 0.5 0.7	-0.0 0.1 0.1 0.2 0.3 0.3	83.5 82.0 82.5 82.8 83.3 84.1	0.2 0.1 0.4 0.4 0.3	-0.0 -0.1 -0.0 0.1 0.1 -0.1
AVG STD DV	87.5 2.3	0.5 0.1	-0.0 0.3	82.4 1.4	0.5 0.2	0.2 0.1	83.0 0.8	0.3 0.1	-0.0 0.1
TAKEOFF -	- TARGET IA	\$ 40.8 kts	.						
E1 E2 E3 E5 E6 E7	83.1 84.1 83.7 83.9 83.8 83.8	0.4 0.4 0.4 0.4 0.4	-0.2 0.1 0.0 0.1 0.0 -0.0	81.1 81.5 82.0 81.6 81.6	0.2 0.3 0.2 0.2 0.2 0.2	-0.0 -0.0 0.0 -0.0 0.1 -0.0	82.4 82.9 82.9 83.2 83.0 82.9	0.2 0.3 0.3 0.2 0.4 0.5	-0.2 0.2 0.1 0.0 0.1 0.2
AVG STD DV	83.7 0.4	0.4 0.0	0.0 0.1	81.5 0.3	0.2 0.0	-0.0 0.0	82.9 0.3	0.3 0.1	0.1 0.1
150 m FLY	OVER TARG	GET IAS 72	.0 kts 0.9	'Vh					
A1 A2 A3 A4 A5 A6	79.1 80.5 79.5 80.4 79.0 80.9	0.5 0.3 0.2 0.6 0.1 0.4	-0.1 -0.4 -0.8 -0.1 -0.7	79.3 80.1 78.8 80.5 79.1 80.5	0.4 0.6 0.5 0.6 0.4 0.7	-0.0 0.2 0.1 0.1 0.0 0.2	78.9 80.5 79.0 80.4 78.5 81.0	0.2 0.0 0.1 0.2 0.3 0.1	-0.1 -0.2 -0.1 -0.1 -0.1
AVG STD DV	79.9 0.8	0.4 0.2	-0.4 0.3	79.7 0.8	0.5 0.1	0.1 0.1	79.7 1.0	0.1 0.1	-0.1 0.0

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL₂ = SEL₂-SEL (SEL₂ CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

U.S. Department of Transportation Voipe Center Acoustics Facility

TABLE D-E-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER 2-BLADE 46" DIA. TAIL ROTOR

	CHAMPAIGN, ILLINOIS								07/24/91			
	SITE 1 -	CENTERLI	NE CENTER	SITE 2 - S	IDELINE	150 m WEST	SITE 3 - SIDELINE 150 m EAST					
EA	SEL*	ASEL,**	ASEL2***	SEL	4SEL,	ASEL ₂	SEL	ASEL,	4SEL ₂			
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)			
150 m FLY	OVER TAR	RGET IAS 80).0 kts 1.	0Vh								
D7	79.1	0.8	0.1	80.0	0.3	-0.2	79.8	0.3	0.1			
D8	80.7	0.7	-0.1	81.8	0.2	-0.3	80.8	0.3	0.0			
AVG	79.9	0.8	0.0	80.9	0.3	-0.2	80.3	0.3	0.1			
STD DV	1.1	0.0	0.1	1.3	0.1	0.1	0.7	0.0	0.1			
150 m FLY	OVER TAR	RGET IAS 64	0 kts 0.	8Vh								
D9	78.9	0.2	-0.5	79.0	0.3	-0.0	77.7	0.4	0.1			
D10	80.2	0.3	-0.1	79.6	0.4	-0.0	80.1	0.1	0.0			
AVG	79.6	0.2	-0.3	79.3	0.3	-0.0	78.9	0.2	0.0			
STD DV	0.9	0.1	0.3	0.5	0.0	0.0	1.7	0.2	0.1			
150 m FLY	OVER TAR	RGET IAS 56	5.0 kts 0.	7Vh								
D11	78.9	0.6	-0.1	78.6	0.2	-0.0	78.3	0.2	0.0			
D12	81.3	0.4	-0.1	80.9	0.2	-0.6	80.4	0.1	-0.1			
AVG	80.1	0.5	-0.1	79.8	0.2	-0.3	79.3	0.2	-0.0			
STD DV	1.7	0.1	0.1	1.6	0.0	0.4	1.5	0.1	0.1			
150 m FLY(OVER TAR	GET IAS 48	3.0 kts 0.	6Vh								
D13	79.5	0.5	-0.2	78.5	0.4	-0.0	78.0	0.5	0.0			
D14	81.3	0.4	-0.1	81.2	0.1	-0.7	80.4	0.2	-0.0			
AVG	80.4	0.4	-0.2	79.9	0.2	-0.4	79.2	0.3	-0.0			
STD DV	1.3	0.1	0.0	1.9	0.2	0.5	1.7	0.2	0.0			

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

^{*** -} ASEL2 = SEL2-SEL (SEL2 CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-F-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	07/25/91								
	SITE 1 -	- CENTERLIN	IE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(d8)	(dB)	(dB)
APPROACH	TARGET I	IAS 40.8 kt	:s						
816	90.0	0.3	-0.1	83.9	0.0	-0.2	84.7	-0.5	-0.7
B17	90.6	0.5	0.2	85.9	0.2	-0.4	83.9	0.3	-0.0
B18	90.5	0.7	0.2	84.6	0.2	-0.3	83.6	0.2	-0.0
B20	90.9	0.7	0.2	85.6	0.2	-0.2	83.6	0.3	-0.1
B21	88.0	0.4	0.1	84.4	0.2	-0.2	82.9	-0.0	-0.1
B22	90.1	0.5	0.2	84.1	0.3	-0.2	82.6	0.2	-0.4
B23	88.4	0.4	0.0	82.9	0.1	-0.6	83.9	0.2	-0.1
AVG	89.8	0.5	0.1	84.6	0.2	-0.3	83.4	^ -	
STD DV	1.2	0.1	0.1	1.1	0.1	0.2	0.5	0.2 0.1	-0.1 0.1
TAKEOFF C24 C25 C26 C28 C29 C30 C31 AVG STD DV	83.5 81.6 82.8 83.3 82.3 82.3 82.3 82.5	0.5 0.6 0.6 0.6 0.6 0.7 0.5	0.3 0.2 0.2 0.3 0.3 0.2 0.2	81.0 80.5 81.1 81.7 81.2 81.0 80.5	0.3 0.6 0.4 0.4 0.2 0.4 0.4	-0.4 0.1 -0.1 -0.2 0.0 -0.2	82.1 81.5 82.4 82.8 82.6 82.5 81.6	0.3 0.5 0.2 NO 0 0.4 0.6 0.6	-0.0 0.0 -0.1 DATA 0.2 0.2 0.3
150 m FLY0	OVER TAR	GET IAS 69	.3 kts 0.9	₽Vh					
A1	78.0	0.7	0.3	79.0	0.3	-0.0	79.1	0.0	-0.2
A2	79.2	0.7	0.1	79.7	0.4	-0.1	80.1	0.2	-0.0
A3	77.7	0.8	0.2	78.5	0.4	-0.1	78.4	0.2	-0.0 -0.1
A4	78.7	0.9	0.3	79.4	0.5	-0.1		0.2	
A6	78.6	0.8	0.2	79.6	0.5	-0.1	79.9	0.2	-0.1
A7	77.4	0.8	0.3	79.6 78.2			80.1	0.1	-0.1
~'	77.4	0.0	v.3	10.2	0.4	-0.2	78.8	0.2	-0.1
AVG	78.3	0.8	0.2	79.0	0.4	-0.1	79.4	0.1	-0.1
STD DV	0.7	0.1	0.1	0.6	0.1	0.1	0.7	0.1	0.0
			- • •		٠.,	v. i	U. 1	V. I	0.0

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-F-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND RESONATOR STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	CHAMPAIGN, ILLINOIS							07/25/91			
	SITE 1	CENTERLI	IE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST		
EV	SEL*	ASEL1**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂		
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		
150 m FLY	OVER TAI	RGET IAS 77	'.0 kts 1.	0Vh							
D8	79.1	0.6	-0.0	80.0	0.3	-0.3	80.7	0.3	-0.1		
D9	78.3	0.6	-0.0	79.4	0.2	-0.3	79.7	0.2	-0.0		
AVG	78.7	0.6	-0.0	79.7	0.3	-0.3	80.2	0.3	-0.0		
STD DV	0.6	0.0	0.0	0.5	0.0	0.0	0.7	0.1	0.1		
150 m FLY	OVER TAI	RGET IAS 61	1.6 kts 0.	8Vh							
D10	79.0	0.3	-0.1	79.3	0.1	-0.4	79.4	0.2	-0.1		
D11	77.5	0.6	-0.0	77.5	0.3	-0.4	77.8	0.4	-0.0		
AVG	78.2	0.5	-0.0	78.4	0.2	-0.4	78.6	0.3	-0.1		
STD DV	1.0	0.2	0.0	1.3	0.1	0.0	1.1	0.1	0.0		
150 m FLY	OVER TAR	RGET IAS 53	3.9 kts 0.	7Vh							
D12	79.3	0.6	-0.1	79.5	-0.0	-0.5	79.8	0.2	-0.3		
D13	78.2	0.4	-0.1	77.7	0.2	-0.4	78.5	0.2	0.0		
AVG	78.7	0.5	-0.1	78.6	0.1	-0.5	79.1	0.2	-0.1		
STD DV	0.8	0.1	0.0	1.3	0.2	0.1	0.9	0.0	0.2		
150 m FLY	DVER TAR	RGET IAS 46	5.2 kts 0.	6Vh							
D14	80.0	0.6	0.0	79.3	0.0	-0.8	79.9	0.5	-0.1		
D15	78.5	0.5	-0.1	78.0	0.3	-0.3	77.8	0.3	0.1		
AVG	79.3	0.5	-0.1	78.6	0.2	-0.5	78.8	0.4	-0.0		
STD DV	1.0	0.1	0.1	0.9	0.2	0.4	1.4	0.1	0.2		

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL, -SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL, -SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-G-1

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	CHAM	PAIGN, ILL	07/25/91						
	SITE 1	CENTERLI	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET	AS 40.8 k	ts						
B16	89.0	0.7	0.3	82.6	0.3	-0.5	82.4	0.6	0.2
B17	89.8	0.7	0.4	84.3	0.4	-0.2	82.4	0.3	0.2
B19	90.1	0.8	0.3	83.0	0.4	-0.5 -0.2	83.8	0.3	0.1
B20 B21	87.4 89.1	0.9 0.4	0.3 0.2	83.7 83.2	0.4 0.2	-0.2 -0.2	81.9 83.6	0.4 0.3	-0.2 0.1
B24	90.4	0.6	0.3	84.8	0.1	-0.2	83.2	0.3	-0.1
AVG	89.3	0.7	0.3	83.6	0.3	-0.3	82.9	0.4	0.1
STD DV	1.1	0.7	0.0	0.8	0.3	0.2	0.8	0.1	0.2
C25 C26 C27 C28 C29 C30	83.9 82.2 83.9 83.5 83.1 83.6	0.7 0.5 0.4 0.5 0.5	0.3 0.3 0.2 0.1 0.1	81.4 80.8 81.4 80.5 79.8 80.5	0.3 0.3 0.2 0.4 0.2 0.3	-0.0 -0.1 -0.4 -0.1 -0.4 -0.1	82.3 81.7 82.3 81.8 81.8	0.4 0.5 0.2 0.5 0.1 0.4	0.2 0.2 0.0 0.2 -0.2
AVG STD DV	83.4 0.6	0.5 0.1	0.2 0.1	80.7 0.6	0.3 0.1	-0.2 0.2	82.0 0.3	0.3 0.1	0.1 0.1
150 m FLY	OVER TAR	IGET IAS 72	2.0 kts 0.º	9Vh					
A2 A3 A4 A5 A6 A7	80.3 80.1 80.2 79.9 80.3 80.1	0.6 0.5 0.8 0.4 0.4	-0.1 -0.2 -0.0 0.0 -0.2 -0.2	79.7 79.1 79.8 79.2 79.6 78.9	0.5 0.7 0.6 0.4 0.6 0.5	0.0 -0.1 -0.1 -0.1 -0.2 -0.0	80.1 79.8 80.1 79.8 80.1 79.4	0.5 0.4 0.4 -0.1 0.6 0.6	0.1 -0.1 0.1 -0.6 0.1 0.2
AVG STD DV	80.2 0.2	0.5 0.2	-0.1 0.1	79.4 0.3	0.5 0.1	-0.1 0.1	79.9 0.3	0.4 0.2	-0.0 0.3
310 04	0.2	V.2	0.1	0.3	0.1	0.1	U.3	U.2	0.3

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-G-2

SCHWEIZER 300 (PISTON ENGINE) HELICOPTER WITH MUFFLER AND DIRECTED EXHAUST STANDARD 2-BLADE 51" DIA. TAIL ROTOR

CHAMPAIGN, ILLINOIS								07/25/91	
	SITE 1 -	CENTERLI	IE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)
150 m FLYC	OVER TAR	RGET IAS 80	0.0 kts 1.	0Vh					
D8 D9	80.0 79.5	1.0 0.6	-0.1 -0.1	80.5 79.4	0.6 0.1	-0.1 -0.4	80.5 80.2	0.5 0.6	-0.1 0.2
AVG	79.8	0.8	-0.1	79.9	0.4	-0.2	80.3	0.6	0.1
STD DV	0.3	0.3	0.1	0.8	0.3	0.2	0.2	0.1	0.2
150 m FLY0	OVER TAR	RGET IAS 64	4.0 kts 0.	8Vh					
D10 D11	79.9 80.4	0.5 0.5	-0.5 -0.7	79.2 79.4	0.5 0.3	-0.3 -0.2	79.7 79.3	0.4 0.6	0.0 0.0
AVG	80.1	0.5	-0.6	79.3	0.4	-0.3	79.5	0.5	0.0
STD DV	0.3	0.0	0.1	0.1	0.1	0.1	0.3	0.1	0.0
150 m FLY0	VER TAR	RGET IAS 5	5.0 kts 0.	7∨h					
D12 D13	81.1 79.4	0.7 0.6	-0.1 0.0	79.8 78.7	0.5 0.2	-0.2 -0.5	79.9 78.9	0.4 0.3	-0.1 0.2
AVG	80.2	0.7	-0.0	79.2	0.4	-0.3	79.4	0.3	0.0
STD DV	1.2	0.1	0.1	0.8	0.1	0.1	0.7	0.1	0.2
150 m FLY0	VER TAR	RGET IAS 48	3.0 kts 0.	6Vh					
D14 D15	80.8 80.3	0.7 0.5	0.1 0.1	79.4 78.6	0.3 0.2	-0.3 -0.2	79.9 78.9	0.2 0.3	-0.1 0.0
AVG	80.5	0.6	0.1	79.0	0.3	-0.2	79.4	0.3	-0.0
STD DV	0.4	0.1	0.0	0.6	0.1	0.1	0.7	0.0	0.0

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

^{*** -} ASEL2 = SEL2-SEL (SEL2 CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-H-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

SITE 1 - CENTERLINE CENTER		CHAM	PAIGN, ILL	INOIS					07/23/9	1
Cab		SITE 1 -	- CENTERLI	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
APPROACH TARGET IAS 50.0 kts B17			•	_		•	•		•	•
### 89.8	••									
B18 86.1 0.6 0.3 83.4 0.3 -0.1 80.2 0.3 -0.1 817 0.4 0.1 819 90.2 0.6 0.3 86.9 0.6 0.3 81.7 0.4 0.1 820 91.0 0.8 0.5 85.4 0.6 0.2 83.8 0.5 0.2 821 91.4 0.6 0.4 86.1 0.4 0.3 83.3 0.2 0.1 822 92.0 0.7 0.4 85.7 0.5 0.2 83.3 0.3 0.1 STD DV 2.1 0.1 0.1 1.3 0.2 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	APPROACH	TARGET	IAS 50.0 k	ts						
B19 90.2 0.6 0.3 86.9 0.6 0.3 81.7 0.4 0.1 B20 91.0 0.8 0.5 85.4 0.6 0.2 83.8 0.5 0.2 821 91.4 0.6 0.4 86.1 0.4 0.3 83.3 0.2 0.1 B22 92.0 0.7 0.4 85.7 0.5 0.2 83.3 0.3 0.1 AVG 90.1 0.7 0.4 85.3 0.5 0.2 0.1 1.5 0.1 0.1 0.1 TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 82.5 0.2 -0.1 81.1 0.6 0.2 0.3 0.3 A5 82.7 -0.0 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 0.3 0.2 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
820 91.0 0.8 0.5 85.4 0.6 0.2 83.8 0.5 0.2 821 91.4 0.6 0.4 86.1 0.4 0.3 83.3 0.2 0.1 822 92.0 0.7 0.4 85.7 0.5 0.2 83.3 0.3 0.1 AVG 90.1 0.7 0.4 85.3 0.5 0.2 82.2 0.3 0.1 STD DV 2.1 0.1 0.1 1.3 1.3 0.2 0.1 1.5 0.1 0.1 TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 -0.1 79.2 0.1 79.6 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.1 81.0 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1			0.6	0.3						
821 91.4 0.6 0.4 86.1 0.4 0.3 83.3 0.2 0.1 822 92.0 0.7 0.4 85.7 0.5 0.2 83.3 0.3 0.1 AVG 90.1 0.7 0.4 85.3 0.5 0.2 82.2 0.3 0.1 STD DV 2.1 0.1 0.1 1.3 0.2 0.1 1.5 0.1 0.1 TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9vh A1 82.2 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.5 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1				0.3						
822 92.0 0.7 0.4 85.7 0.5 0.2 83.3 0.3 0.1 AVG 90.1 0.7 0.4 85.3 0.5 0.2 82.2 0.3 0.1 STD DV 2.1 0.1 0.1 1.3 0.2 0.1 1.5 0.1 0.1 TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.1 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.2 AVG 82.2 -0.1 -0.3 82.5 0.2 -0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
AVG 90.1 0.7 0.4 85.3 0.5 0.2 82.2 0.3 0.1 STD DV 2.1 0.1 0.1 1.3 0.2 0.1 1.5 0.1 0.1 TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 C34 S1D DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh A1 82.2 -0.1 -0.3 80.2 0.5 0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 A3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh A1 82.2 -0.1 -0.3 82.5 0.2 -0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.9 0.2 -0.0 80.6 0.4 0.1	822	92.0	0.7	0.4	85.7	0.5	0.2	83.3	0.3	0.1
TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.6 0.5 0.3 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh A1 82.2 -0.1 -0.3 82.5 0.2 -0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.2 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.9 0.2 -0.0 80.6 0.4 0.1	AVG	90.1	0.7	0.4	85 7	0.5	n 2	82.2	0.3	0.1
TAKEOFF TARGET IAS 50.0 kts C29 80.4 0.5 -0.1 79.0 -0.0 -0.1 79.6 0.4 0.3 C30 79.7 0.3 -0.0 78.5 0.1 -0.8 79.3 0.5 0.3 C31 80.1 0.4 0.1 79.2 0.2 -0.1 79.5 0.4 0.3 C32 80.4 0.3 -0.0 79.1 -0.0 -0.1 79.6 0.5 0.3 C33 81.4 -0.3 -0.6 78.7 0.0 -0.1 79.2 -0.2 -0.4 C34 81.3 0.4 0.1 79.6 0.2 -0.0 79.6 NO DATA AVG 80.6 0.3 -0.1 79.0 0.1 -0.2 79.5 0.3 0.2 STD DV 0.7 0.3 0.3 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh A1 82.2 -0.1 -0.3 80.2 0.5 0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A6 81.2 0.1 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
STD DV 0.7 0.3 0.3 0.4 0.1 0.3 0.2 0.3 0.3 150 m FLYOVER TARGET IAS 93.6 kts 0.9Vh A1 82.2 -0.1 -0.3 80.2 0.5 0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1	C29 C30 C31 C32 C33 C34	80.4 79.7 80.1 80.4 81.4 81.3	0.5 0.3 0.4 0.3 -0.3	-0.1 -0.0 0.1 -0.0 -0.6 0.1	78.5 79.2 79.1 78.7 79.6	0.1 0.2 -0.0 0.0 0.2	-0.8 -0.1 -0.1 -0.1 -0.0	79.3 79.5 79.6 ?9.2 79.6	0.5 0.4 0.5 -0.2 NO	0.3 0.3 0.3 -0.4 DATA
A1 82.2 -0.1 -0.3 80.2 0.5 0.1 80.1 -0.1 -0.5 A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.4 0.6 0.2		0.7	0.3	0.3	0.4					
A2 83.1 -0.1 -0.3 82.5 0.2 -0.1 81.1 0.6 0.2 A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
A3 81.3 0.2 -0.2 79.7 0.4 0.1 80.5 0.5 0.3 A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1		82.2								
A5 82.7 -0.0 -0.3 82.4 0.3 0.1 81.0 0.6 0.3 A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
A6 81.2 0.1 -0.3 80.2 0.3 0.0 80.2 0.1 -0.1 A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1						0.4				
A7 82.1 0.2 -0.2 81.9 0.2 -0.0 80.4 0.6 0.2 AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1										
AVG 82.1 0.0 -0.3 81.2 0.3 0.0 80.6 0.4 0.1						U.5				
	A/	82.1	0.2	-0.2	81.9	U.2	-0.0	80.4	Ų.6	V.2
	AVG	82.1	0.0	-0.3	81.2	0.3	0.0	80.6	0.4	0.1
	STD DV	0.7	0.1	0.0	1.3	0.1	0.1	0.4	0.3	0.3

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL, -SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL, -SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

Voipe Center Acoustics Facility

TABLE D-H-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER STANDARD 2-BLADE 51" DIA. TAIL ROTOR

	CHAM	PAIGN, ILI	INOIS					07/23/91	1
	SITE 1	- CENTERLI	NE CENTER	\$1TE 2 - 5	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	=	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
150 m FLY	OVER TAI	RGET IAS 1	04.0 kts 1	.0vh					
D8	80.3	0.5	0.2	81.3	0.3	0.0	81.7	0.4	0.2
D9	82.1	0.6	0.2	83.2	0.2	0.0	82.6	0.6	0.2
AVG	81.2	0. <i>6</i>	0.2	82.2	0.3	0.0	82.1	0.5	0.2
STD DV	1.3	0.1	0.0	1.3	0.1	0.0	0.6	0.2	0.0
150 m FLY	OVER TAI	RGET IAS 8	3.2 kts 0.	8Vh					
D10	78.3	0.4	0.3	78.4	0.2	-0.1	79.1	0.2	0.1
D11	81.0	0.5	0.2	82.0	0.2	-0.0	80.4	0.3	0.0
AVG	79.7	0.4	0.2	80.2	0.2	-0.1	79.7	0.3	0.1
STD DV	1.9	0.1	0.0	2.6	0.0	0.0	0.9	0.1	0.1
150 m FLY	OVER TAI	RGET IAS 7	2.8 kts 0.	7Vh					
012	78.7	0.6	0.2	78.1	0.2	-0.1	78.8	0.5	0.1
013	80.7	0.5	0.2	80.9	0.2	-0.0	80.0	0.2	-0.1
AVG	79.7	0.6	0.2	79.5	0.2	-0.0	79.4	0.3	-0.0
STD DV	1.4	0.1	0.0	2.0	0.0	0.0	0.8	0.2	0.1
150 m FLY	OVER TAI	RGET IAS 6	2.4 kts 0.	6Vh					
D14	80.7	0.5	0.2	78.4	0.1	-0.1	78.3	0.5	0.3
D15	81.0	0.5	0.1	80.3	0.2	-0.5	79.5	0.4	0.1
AVG	80.8	0.5	0.2	79.4	0.1	-0.3	78.9	0.4	0.2
STD DV	0.2	0.0	0.1	1.3	0.1	0.3	0.8	0.1	0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-I-1

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

	CHAM	PAIGN, ILL	INOIS					07/24/91	
	SITE 1 -	CENTERLI	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
E۷	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
••	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET I	AS 50.0 kt	ts						
B16 B17 B18 B19 B20 B21	92.3 89.2 90.3 91.8 91.5 91.7	0.4 0.7 0.7 0.5 0.3 0.3	0.0 0.1 0.0 0.1 -0.1	87.0 83.6 86.8 86.6 84.3 87.3	0.6 0.5 0.7 0.6 0.8 0.7	0.3 0.3 0.4 0.3 0.3	83.0 82.7 80.6 83.2 83.9 83.2	0.1 0.1 0.1 -0.2 0.3 -0.1	-0.3 -0.2 -0.7 -0.6 -0.5 -0.2
AVG STD DV	91.1 1.2	0.5 0.2	0.0 0.1	85.9 1.6	0.7 0.1	0.3 0.0	82.8 1.1	0.0 0.2	-0.4 0.2
TAKEOFF -	- TARGET IA	IS 50.0 kts	3						
C22 C23 C24 C25 C26 C27	77.9 77.2 77.8 77.8 78.0 77.3	0.4 0.4 0.2 0.6 0.2	-0.0 -0.0 0.0 -0.2 0.1 -0.2	76.7 76.5 76.6 76.7 77.2 76.7	0.2 0.3 0.5 0.4 0.3	-0.1 -0.1 -0.0 0.1 0.0 0.0	76.9 76.3 76.0 76.0 76.9 76.3	0.3 0.3 0.4 0.7 0.5 0.8	0.1 -0.1 0.2 0.5 0.2 0.5
AVG STD DV	77.7 0.3	0.4 0.1	-0.1 0.1	76.7 0.2	0.3 0.1	-0.0 0.1	76.4 0.4	0.5 0.2	0.2 0.2
150 m FLY	OVER TAR	GET IAS 93	3.6 kts 0.	9Vh					
A1 A2 A3 A4 A5 A6	77.0 77.5 76.7 77.5 76.5 77.4	0.7 0.7 0.6 0.6 0.6	0.4 0.3 0.3 0.4 0.3	75.9 77.1 76.0 76.7 75.5 76.7	0.3 0.4 0.4 0.5 0.4 0.3	0.1 0.0 0.1 0.1 0.1	76.3 76.6 76.6 76.7 75.7 76.2	0.0 0.1 0.2 NO 0 0.2 0.3	-0.1 -0.1 -0.1 DATA -0.3 -0.2
AVG STD DV	77.1 0.4	0.6 0.0	0.3 0.1	76.3 0.6	0.4 0.1	0.1 0.0	76.3 0.4	0.2 0.1	-0.2 0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-I-2

SCHWEIZER 330 (TURBINE ENGINE) HELICOPTER 4-BLADE 51" DIA. TAIL ROTOR

	CHAMI	PAIGN, ILL	INOIS					07/24/91	
	SITE 1 -	CENTERLI	NE CENTER	SITE 2 - S	IDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	4SEL2	SEL	ASEL,	ASEL ₂
	(d8)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
150 m FLY	OVER TAR	GET IAS 10)4.0 kts 1	.0Vh					
D7	78.0	0.1	-0.2	77.9	0.4	0.2	77.1	0.2	-0.0
D8	78.0	0.3	-0.1	77.8	0.4	0.1	78.0	0.1	-0.1
AVG	78.0	0.2	-0.1	77.8	0.4	0.1	77.5	0.2	-0.0
STD DV	0.0	0.1	0.0	0.0	0.0	0.0	0.6	0.0	0.0
150 m FLY6	OVER TAR	GET IAS 83	3.2 kts 0.	8Vh					
D9	76.7	0.1	-0.1	75.1	0.3	0.2	75.5	-0.1	-0.3
D10	77.4	0.1	-0.1	76.1	0.4	0.1	76.1	-0.2	-0.2
AVG	77.0	0.1	-0.1	75.6	0.4	0.1	75.8	-0.1	-0.3
STD DV	0.5	0.0	0.0	0.7	0.0	0.0	0.4	0.0	0.0
150 m FLY0	OVER TAR	GET IAS 72	.8 kts 0.	7Vh					
D11	76.5	0.2	-0.1	75.3	0.2	0.1	75.2	NO 1	PATA
D12	77.8	0.1	-0.1	76.0	0.3	0.1	76.1		-0.1
AVG	77.2	0.1	-0.1	75.6	0.3	0.1	75.6	0.1	-0.1
STD DV	0.9	0.0	0.0	0.5	0.1	0.0	0.7	0.0	G.0
150 m FLY0	OVER TAR	GET IAS 62	.4 kts 0.	6Vh					
D13	76.7	0.2	-0.1	74.9	0.3	0.1	75.2	0.3	0.1
D14	78.8	0.1	-0.1	76.4	0.5	0.1	76.4	0.2	-0.1
AVG	77.8	0.2	-0.1	75.7	0.4	0.1	75.8	0.2	-0.0
STD DV	1.5	0.1	0.0	1.0	0.2	0.0	0.8	0.0	0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-J-1

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

	CHAM	PAIGN, ILL	INOIS					07/26/91	l
	SITE 1 -	CENTERLIN	IE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -		150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL,
	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)
APPROACH	TARGET I	AS 50.4 kt	:s						
BP9 BP10 8P11 BP12 8P13 BP14	85.1 87.3 84.5 86.6 87.2 86.7	0.4 0.4 0.6 0.5 0.5	0.1 0.1 0.0 0.2 0.1 0.1	83.5 83.2 83.2 83.5 82.8 83.1	0.1 0.0 0.1 -0.0 -0.1 0.1	-0.2 -0.3 -0.2 -0.3 -0.4 -0.2	79.7 80.6 79.6 80.0 80.1 80.3	0.0 0.0 -0.1 0.1 0.2 0.1	-0.3 -0.3 -0.4 -0.2 -0.2 -0.3
STD DV	1.2 - TARGET IA	0.1 S 50.4 kts	0.1	0.3	0.1	0.1	0.4	0.1	0.1
CP22 CP23 CP24 CP25 CP26 CP27	83.7 83.7 84.0 83.6 83.5 83.8	0.4 0.8 0.9 0.7 0.8 0.9	-0.0 0.4 0.5 0.3 0.4	81.9 82.0 82.0 81.9 81.5 81.1	0.3 0.6 0.4 0.4 0.3	-0.1 0.0 -0.2 0.0 -0.0	84.1 84.3 84.5 84.1 84.3 84.1	0.1 0.3 0.1 0.3 0.3	-0.2 -0.0 -0.3 0.0 -0.2 -0.4
AVG STD DV	83.7 0.2	0.8 0.2	0.3 0.2	81.7 0.4	0.4 0.1	-0.0 0.1	84.2 0.2	0.2 0.1	-0.2 0.1
150 m FLYC	VER TARG	ET IAS 90.	.0 kts 0.9	Vh					
AP42 AP43 AP44 AP45 AP46 AP47	80.3 81.0 79.8 81.3 80.0	0.2 0.4 0.6 0.4 0.3 0.4	-0.1 -0.1 0.2 0.2 -0.1	79.0 81.9 78.4 82.4 79.0 81.3	0.6 0.5 0.6 0.4 0.6 0.6	0.1 0.1 -0.0 0.1 -0.0	81.1 79.9 80.9 79.8 81.0 79.8	0.4 0.3 0.3 0.3 0.2 0.3	0.1 0.1 0.0 0.1 0.1
AVG STD DV	80.5 0.6	0.4 0.1	0.0 0.1	80.3 1.7	0.5 0.1	0.1 0.1	80.4 0.7	0.3 0.1	0.1 0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-J-2

ENSTROM 280FX HELICOPTER (PISTON ENGINE)

	CHAM	PAIGN, ILL	SIONI					07/26/91	l
	SITE 1 -	CENTERLI	NE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	•	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(d6)	(dB)	(dB)	(dB)
150 m FLY	OVER TAR	RGET IAS 1	00.0 kts 1	.0Vh					
DP48	80.6	0.7	0.2	79.6	0.5	0.1	82.6	0.5	0.2
DP49	81.5	0.5	0.2	82.8	0.6	0.2	80.5	0.2	0.0
AVG	81.0	0.6	0.2	81.2	0.6	0.2	81.5	0.4	0.1
STD DV	0.7	0.1	0.0	2.3	0.1	0.1	1.5	0.2	0.1
150 m FLY0	OVER TAR	RGET IAS 8	0.0 kts 0.	8Vh					
DP51	79.7	0.7	-0.0	78.5	0.3	-0.1	80.8	0.3	0.1
DP52	80.8	0.5	0.2	81.5	0.6	0.1	79.4	0.2	0.0
AVG	80.3	0.6	0.1	80.0	0.4	-0.0	80.1	0.3	0.1
STD DV	0.8	0.1	0.1	2.2	0.2	0.1	1.0	0.0	0.0
150 m FLY0	OVER TAR	GET IAS 7	0.0 kts 0.	7Vh					
DP53	79.1	0.4	0.1	77.5	0.4	-0.0	75.6	1.1	0.7
DP54	80.7	0.5	-0.0	81.5	0.3	-0.1	78.7	0.4	-0.0
AVG	79.9	0.4	0.0	79.5	0.4	-0.0	77.1	0.8	0.4
STD DV	1.1	0.1	0.1	2.8	0.0	0.0	2.2	0.5	0.5
150 m FLY(OVER TAR	GET IAS 6	0.0 kts 0.	6Vh					
DP55	79.1	0.5	0.1	77.3	0.5	-0.1	79.3	0.1	0.0
DP57	80.8	0.5	0.2	80.7	0.4	-0.1	78.6	0.1	-0.1
AVG	80.0	0.5	0.2	79.0	0.5	-0.1	79.0	0.1	-0.1
STD DV	1.2	0.0	0.1	2.4	0.1	0.0	0.5	0.0	0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-K-1

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

	CHAM	PAIGN, ILL	INOIS					07/26/99	ł
	SITE 1	- CENTERLI	NE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -		150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEI.	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(d8)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET I	AS 55.0 kt	:s						
BT1 BT2 BT4 BT5	89.1 89.3 89.6	0.6 0.6 0.4	0.2 0.2 0.1	85.7 86.2 85.4	0.3 0.2 0.1	-0.0 -0.1 -0.1	81.8 80.9 81.7	-0.2 0.1 0.1	-0.3 -0.1 -0.2
B16 B17	89.0 89.7 88.8	0.3 0.3 0.4	0.1 0.1 0.1	85.3 84.8 85.3	0.3 0.2 0.4	-0.1 -0.3 -0.1	81.1 80.9 81.4	0.0 -0.1 -0.1	-0.4 -0.3 -0.2
AVG STD DV	89.3 0.3	0.4	0.1 0.0	85.4 0.5	0.2 0.1	-0.1 0.1	81.3 0.4	-0.0 0.1	-0.3 0.1
TAKEOFF -	- TARGET IA	S 54.0 kts							
CT16 CT17 CT18 CT19 CT20 CT21	86.8 86.4 86.3 86.1 86.4 86.2	0.4 0.5 0.5 0.5 0.5	0.2 0.0 0.0 0.0 0.1	84.2 84.2 84.3 84.0 83.5 83.7	0.6 0.6 0.7 0.6 0.4 0.6	0.3 0.2 0.3 0.3 0.0	83.1 83.7 83.2 83.9 82.8	0.5 0.3 0.4 0.4 0.2 0.3	-0.2 0.1 0.1 0.1 -0.3
AVG STD DV	86.3 0.2	0.5 0.1	0.1 0.0	84.0 0.3	0.6 0.1	0.2 0.1	83.2 0.6	0.3 0.1	-0.0
150 m FLY	OVER TAR	GET IAS 90	.0 kts 0.9	Vh					
AT28 AT29 AT30 AT31 AT32 AT33	81.9 82.8 82.1 82.2 81.6 81.8	0.4 0.5 0.5 0.5 0.5 0.3	0.2 0.2 0.2 0.2 0.1 0.1	81.9 82.7 81.7 81.5 81.6 81.7	0.2 0.3 0.2 0.1 0.3 0.2	-0.1 -0.3 -0.2 -0.2 -0.1 -0.1	81.4 82.1 81.5 81.5 80.6 81.6	-0.0 0.5 0.4 0.4 NO D	-0.3 0.1 0.2 0.2 ATA 0.3
AVG STD DV	82.1 0.4	0.4 0.1	0.2	81.9 0.4	0.2 0.1	-0.2 0.1	81.5 0.5	0.4 0.2	0.1 0.2

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-K-2

ENSTROM TH28 HELICOPTER (TURBINE ENGINE)

	CHAMI	PAIGN, ILL	INOIS					07/26/91	
	SITE 1 -	CENTERLIN	IE CENTER	SITE 2 - S	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	ASEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
150 m FLY0	VER	GET IAS 10	00.0 kts 1	.0Vh					
DT34 DT35	83.0 84.1	0.8 0.8	0.4 0.4	83.1 83.8	0.6 0.5	0.2 0.3	82.8 83.8	0.4 0.3	0.2 0.1
AVG STD DV	83.6 0.7	0.8	0.4 0.0	83.4 0.5	0.6 0.1	0.3 0.1	83.3 0.7	0.3 0.0	0.1 0.0
150 m FLY0	VER TAR	RGET IAS 80).0 kts 0.	8Vh					
DT36 DT37	81.2 82.3	0.6 0.6	0.3 0.3	80.4 81.0	0.6 0.7	0.2 -0.0	80.5 81.4	0.5 0.4	0.2 0.2
AVG STD DV	81.8 0.8	0.6 0.0	0.3 0.0	80.7 0.4	0.6 0.1	0.1 0.1	80.9 0.6	0.4	0.0
150 m FLY0	VER TAR	GET IAS 70).0 kts 0.	7Vh					
DT38 DT39	80.8 82.0	0.6 0.5	0.1 0.3	79.7 80.9	0.4 0.4	0.1 -0.2	79.5 80. <i>9</i>	0.3 0.3	0.1 0.1
AVG STD DV	81.4 0.9	0.6 0.1	0.2 0.1	80.3 0.8	0.4 0.0	-0.1 0.2	80.2 1.0	0.3 0.0	0.1 0.0
150 m FLY0	VER TAR	GET IAS 60).0 kts 0.	6Vh					
DT40 DT41	81.4 82.5	0.7 0.7	0.3 0.2	79.3 80.9	0.5 0.5	0.0 -0.1	79.2 81.1	0.2 0.4	0.1 0.2
AVG STD DV	81.9 0.8	0.7 0.0	0.3 0.0	80.1 1.1	0.5 0.0	-0.0 0.0	80.1 1.4	0.3 0.1	0.1 0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-L-1

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

	CHAMI	PAIGN, ILL	INOIS					07/22/91	1
	SITE 1 -	CENTERLI	IE CENTER	SITE 2 -	SIDELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	SEL	ASEL,	ASEL ₂	SEL	∆SEL,	ASEL ₂
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
APPROACH	TARGET I	AS 52.0 kt	ts						
B15	88.8	0.5	0.2	85.3	0.5	-0.0	86.6	0.5	-0.1
B16	89.1	0.5	0.2	85.7	0.3	0.0	87.2	0.3	-0.5
B17	93.9	0.6	0.3	85.4	0.8	0.0	87.7	0.5	0.2
B18	94.1	0.6	0.3	84.6	0.9	-0.0	88.8	0.4	0.0
B19	89.6	0.6	0.2	87.3	0.6	-0.7	86.9	0.6	0.2
820	92.5	0.8	0.1	83.1	0.5	0.4	87.3	0.5	0.0
B21	93.5	0.7	0.2	84.7	0.3	-0.5	86.8	0.4	0.2
AVG	92.1	0.6	0.2	85.1	0.6	-0.1	87.4	0.5	0.0
STD DV	2.2	0.1	0.1	1.4	0.2	0.4	0.7	0.1	0.3
TAKEOFF -	- TARGET IA	s 52.0 kts	.						
C22	84.8	0.5	0.2	80.5	0.4	0.1	80.5	0.3	0.1
C23	84.0	0.7	0.2	79.5	0.5	0.1	80.4	0.6	0.5
C24	84.7	0.4	0.1	81.4	0.6	0.2	80.9	0.4	0.1
C25	84.3	0.5	0.2	80.0	0.4	0.1	80.6	0.3	0.2
C26	84.1	0.7	0.1	81.1	0.5	0.1	80.7	0.4	0.2
C27	84.1	0.6	0.2	79.8	0.7	0.3	80.0	0.3	0.1
AVG	84.3	0.6	0.2	80.4	0.5	0.1	80.5	0.4	0.2
STD DV	0.3	0.1	0.1	0.7	0.1	0.1	0.3	0.1	0.1
150 m FLY	OVER TAR	GET IAS 82	2.0 kts 0.	9Vh					
A1	77.0	0.3	0.0	77.4	0.4	0.1	76.5	0.0	-0.3
A2	77.6	0.4	0.1	76.1	0.4	-0.0	77.2	-0.0	-0.3
A3	77.4	0.2	0.0	76.8	0.4	-0.0	76.7	0.1	-0.1
A4	78.6	0.3	0.0	77.0	0.3	-0.2	77.5	0.1	-0.1
A5	76.7	0.2	-0.3	76.3	0.5	0.0	76.1	0.1	-0.1
Ã9	77.3	0.2	-0.2	76.1	0.6	-0.1	77.3	0.2	-0.1
77	,,,,	0.2	V.E.	70.1	0.0	V. 1	77.3	V.L	•.,
AVG	77.4	0.3	-0.1	76.6	0.4	-0.0	76.9	0.1	-0.2
STD DV	0.6	0.1	0.2	0.5	0.1	0.1	0.5	0.1	0.1

^{* -} SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA

** - ASEL, = SEL,-SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)

*** - ASEL, = SEL,-SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

TABLE D-L-2

ROTORWAY EXEC 90 HELICOPTER STANDARD MODEL (PISTON ENGINE - 2-BLADE MAIN ROTOR - 2-BLADE TAIL ROTOR)

	CHAMI	PAIGN, ILL	INOIS					07/22/91	
	SITE 1 -	CENTERLIN	IE CENTER	SITE 2 - SI	DELINE	150 m WEST	SITE 3 -	SIDELINE	150 m EAST
EV	SEL*	ASEL,**	ASEL2***	\$EL	ASEL,	ASEL ₂	SEL	ASEL,	4SEL ₂
••	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(d8)	(dB)	(dB)
150 m FLY	OVER TAR	GET IAS 91	.0 kts 1.	OVh					
A6	77.5	0.4	-0.4	76.9	0.2	-0.4	77.2	0.4	0.1
A7	**	NO DA	TA **	**	NO	Data **	**	NO 1	DATA
AVG	77.5	0.4	-0.4	76.9	0.2	-0.4	77.2	0.4	0.1
STD DV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
150 m FLY0	OVER TAR	GET IAS 73	3.0 kts 0.8	3Vh					
A8	77.5	0.4	-0.0	76.4	0.4	-0.1	76.7	0.5	0.1
A10	77.4	0.2	-0.2	76.7	0.4	-0.0	76.6	0.5	-0.0
AVG	77.5	0.3	-0.1	76.6	0.4	-0.1	76.7	0.5	0.0
STD DV	0.1	0.1	0.1	0.2	0.0	0.1	0.0	0.0	0.1
150 m FLY0	VER TAR	GET IAS 64	.0 kts 0.7	7 Vh					
A11	78.8	0.2	-0.3	77.1	0.3	-0.2	76.8	0.5	-0.0
A12	78.7	0.1	-0.2	76.4	0.5	-0.0	76.3	0.4	-0.0
AVG	78.7	0.2	-0.2	76.7	0.4	-0.1	76.6	0.4	-0.0
STD DV	0.1	0.1	0.1	0.5	0.1	0.1	0.3	0.1	0.0
150 m FLY0	VER TAR	GET IAS 55	.0 kts 0.6	s v h					
A13	79.6	0.0	-0.3	77.2	0.6	-0.1	77.2	0.2	-0.1
A14	78.3	0.1	-0.3	76.1	0.6	-0.0	76.6	0.3	-0.0
AVG	78.9	0.1	-0.3	76.6	0.6	-0.0	76.9	0.2	-0.1
STD DV	0.9	0.0	0.1	0.7	0.0	0.0	0.4	0.1	0.1

⁻ SEL DERIVED FROM 1/3-OCTAVE ANALYSIS OF TAPED NOISE DATA
- ASEL, = SEL, -SEL (SEL, ON-SITE SLM VALUE BASED UPON OPERATOR ESTIMATE OF 10 TO 15dB-DOWN DURATION)
- ASEL, = SEL, -SEL (SEL, CALCULATED FROM STORED SLM HISTORY DATA BASED UPON 10dB-DOWN DURATION)

APPENDIX E

DELTA 3: SOURCE NOISE CORRECTION

This Appendix presents plots and a statistical summary of the least-squares regression model (and associated 90 percent confidence interval) fit through the Mach Number_{ABT} vs. PNLT_{max} reference data set for level flyover source noise correction, Figures E-1 through E-12. Also included are the regression model equations for the four alternate data sets, Tables E-1 through E-3.

FIGURE E-1. PNLT $_{\rm max}$ V8. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION A 7/22/91

FIGURE E-2. PNLT VS. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION B 7/22/91

FIGURE E-3. PNLT vs. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION C 7/23/91

FIGURE E-4. PNLT $_{\rm max}$ V8. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION D 7/23/91

FIGURE E-5. PNLT $_{\rm max}$ V8. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION E 7/24/91

FIGURE E-6. PNLT $_{\rm max}$ V8. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION F 7/25/91

FIGURE E-7. PNLT $_{\rm max}$ V8. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION G 7/25/91

U.S. Department of Transportation Volpe Center Acoustics Facility

FIGURE E-8. PNLT $_{\rm max}$ VS. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 330 - CONFIGURATION H 7/23/91

FIGURE E-9. PNLT vs. ADVANCING BLADE TIP MACH NUMBER SCHWEIZER 300 - CONFIGURATION I 7/24/91

FIGURE E-10. PNLT $_{max}$ Vs. ADVANCING BLADE TIP MACH NUMBER ENSTROM 280FX 7/26/91

FIGURE E-11. PNLT vs. ADVANCING BLADE TIP MACH NUMBER ENSTROM TH28 7/26/91

FIGURE E-12. PNLT vs. ADVANCING BLADE TIP MACH NUMBER ROTORWAY EXEC90 7/22/91

TABLE E-1. PNLTM VS. MACH NUMBERAST REGRESSION MODEL EQUATIONS

			CENTERLINE		
Helicopter	Reference	Alt. Set 1	Alt. Set 2	Alt. Set 3	Alt. Set 4
Schweizer 300	978.3x²-	903.8x²-	982.9X²-	799.2x²-	1003.9x²-
Configuration A	1269.5x+502.0	1169.0x+468.2	1276.2X+504.4	1025.6x+419.1	1304.8x+514.2
Schweizer 300	3027.2x²-	2966.0x²-	3016.9x²-	2604.8x²-	3056.9X²-
Configuration B	3985.5x+1397.1	3898.2x+1366.2	3969.0x+1390.8	3415.5x+1205.2	4021.1X+1407.7
Schweizer 300	3360.2x²-	3357.0x²-	3458.8x²-	3368.7X²-	3177.4x²-
Configuration C	4516.0x+1600.7	4509.3x+1597.6	4651.7x+1647.3	4525.4X+1603.2	4261.7x+1512.4
Schweizer 300	1492.1x²-	1917.9x²-	1522.6x².	2084.4x²-	1869.8x²-
Configuration D	1971.3x+731.7	2540.0x+921.5	2002.2x+738.8	2772.8x+1002.6	2474.3x+899.1
Schweizer 300	2384.0x²-	2397.3x².	2371.1X²-	2286.3x²-	2564.8X²-
Configuration E	3202.3x+1159.6	3221.4x+1166.4	3185.1X+1153.8	3067.7x+1113.3	3453.0X+1246.4
Schweizer 300	932.4X²-	861.4x²-	887.4x²-	675.3x²-899.6x+381.9	1025.1x²-
Configuration F	1255.6X+505.0	1157.3x+471.0	1193.4x+483.5		1384.1x+549.5
Schweizer 300 Configuration G	410.0x²-531.4x+256.2	497.1X ² -655.2X+300.0	480.3x²-628.7x+289.7	314.7X²-401.9X+212.1	655.3X²-876.4X+377.1
Schweizer 330	2119.7x²-	1895.4x²-	1852.4x²-	1890.8x²-	1926.4x²-
Configuration H	2903.6x+1080.1	2588.9x+969.9	2529.1x+949.1	2583.0x+968.0	2631.4x+984.5
Schweizer 330 Configuration I	632.7X²-859.7X+373.8	475.912-636.914-294.8	452.0K²-603.1K+282.9	453.4K²-605.3X+283.7	530.0x²-713.1x+321.6
Enstrom 280FX	248.4x²-297.1x+172.7	101.2X²-105.5X+110.5	101.4X²-107.5X+111.6	15.8x²+ 11.1x+71.0	249.4X²-301.3X+174.9
Enstrom TH28	2959.7X²-	2970.3x²-	2828.5x²-	2999.7X²-	2875.2x²-
	3674.9X+1226.5	3680.9x+1226.2	3499.5x+1168.2	3719.5x+1238.8	3563.8x+1190.1
Rotorway Exec90	616.4x²-705.4x+284.7	534.8X²-606.9X+255.2	624.0x²-714.6x+287.5	471.2X²-530.4X+232.4	495.0x²-559.1x+241.0

U.S. Department of Transportation Volpe Center

PNLTM VS. MACH NUMBERABI REGRESSION MODEL EQUATIONS TABLE E-2.

			LEFT SIDE		
Helicopter	Reference	Alt. Set 1	Alt. Set 2	Alt. Set 3	Alt. Set 4
Schweizer 303	703.6x²-	911.2x²-	963.2x²-	674.1X²-	1040.5x²-
Configuration A	878.5x+358.7	1154.0x+450.1	1222.1x+472.3	838.4X+345.1	1327.3x+508.1
Schweizer 300	-198.8X ² +	-895.6X ² +	-874.4X ² +	-673.7X²+	-1016.3X ² +
Configuration B	290.3x-23.6	1217.8X-331.9	1190.8X-323.4	924.3X-235.0	1378.0X-385.0
Schweizer 300	1398.8x²-	1355.2x²-	1313.1x²-	1377.0x²-	1326.9x²-
Configuration C	1842.4x+686.4	1780.1x+664.2	1724.6x+645.9	1809.6x+674.2	1740.6x+650.5
Schweizer 300	2688.9x²-	3413.8x²-	2931.2x²-	3739.7x²-	3289.6x²-
Configuration D	3597.3x+1280.8	4573.2x+1609.1	3922.8x+1390.1	5019.5x+1761.6	4402.9x+1550.8
Schweizer 300	2762.5x²-	2805.9x²-	2744.4x²-	2892.4x²-	2826.1X²-
Configuration E	3714.6x+1329.7	3776.3x+1351.5	3690.7x+1321.8	3896.4x+1393.2	3803.2X+1360.5
Schweizer 300	1048.3x²-	1103.6X²-	1140.8x²-	974.6x²-	1207.8x²-
Configuration F	1372.8x+529.1	1449.4X+555.5	1501.0x+573.4	1270.9x+493.8	1593.7X+605.5
Schweizer 300	511.8x²-	244.2x²-	175.1x²-	346.5X²-	271.3x²-
Configuration G	648.6x+286.0	277.6x+157.6	181.4x+124.2	419.8X+206.9	313.8x+169.7
Schweizer 330	-152.1x²+	-309.3X ² +	-261.9X ² +	-605.7X²+	-28.3x²+
Configuration H	298.4x-51.0	517.2X-127.0	450.3X-103.5	933.3X-272.8	124.2x+10.2
Schweizer 330	791.9x²-	863.6x²-	941.7X²-	702.1x²-	982.7X²-
Configuration I	1036.7X+416.3	1140.2x+453.5	1251.2X+492.8	909.4x+371.2	1310.0X+513.9
Enstrom 280FX	461.6x²-	400.0x²-	227.8x²-	269.6x²-	545.4x²-
	538.5x+238.9	454.6x+210.5	230.1x+137.4	285.5x+155.8	647.6x+274.3
Enstrom TH28	1885.9x²-	1989.2X²-	1725.3x².	1982.0x²-	2023.8X²-
	2290.8x+777.8	2416.9X+816.3	2078.4x+706.0	2410.0x+814.8	2465.3X+833.0
Rotorway Exec90	185.1x²-	198.8x²-	186.9X²-	52.3X²-	164.9x²-
	214.1x+141.8	230.6x+146.7	216.2X+142.4	54.1X+93.9	189.8x+134.5

PNLTm VS. MACH NUMBERABI REGRESSION MODEL EQUATIONS TABLE E-3.

			RIGHT SIDE		
Helicopter	Reference	Alt. Set 1	Alt. Set 2	Alt. Set 3	Alt. Set 4
Schweizer 300	2573.0x²-	2682.8x²-	2615.3X²-	2398.7X²-	2924.4x²-
Configuration A	3386.4x+1199.9	3534.8x+1250.0	3444.0X+1219.5	3148.9X+1119.2	3864.9x+1362.6
Schweizer 300	2757.5x²-	3213.4x²-	3251.0x²-	2744.1x²-	3576.5x²-
Configuration B	3611.2x+1263.4	4215.3x+1463.4	4268.4x+1482.1	3589.9x+1255.2	4698.0x+1623.7
Schweizer 300	1518.0x²-	1438.7X²-	1527.4x²-	1520.5x²-	1272.3x²-
Configuration C	2011.7x+746.6	1902.6x+709.2	2024.7X+751.0	2015.7x+748.1	1673.5x+630.4
Schweizer 300	4589.1x²-	4882.1x²-	4663.8x²-	4792.5x²-	4747.0x²-
Configuration D	6101.1x+2103.9	6484.2x+2229.1	6182.9x+2125.4	6376.3x+2196.9	6300.3x+2166.6
Schweizer 300	2403.7X²-	2419.5x²-	2602.4x²-	2298.0x²-	2362.6x²-
Configuration E	3229.9X+1166.0	3254.2x+1175.1	3509.2x+1263.8	3085.0x+1116.3	3174.9x+1147.6
Schweizer 300	2425.8x²-	2588.7X²-	2607.3x²-	2663.1x²-	2491.9x².
Configuration F	3283.4x+1190.4	3508.8X+1268.4	3534.6x+1277.3	3611.9x+1304.0	3374.8x+1222.1
Schweizer 300	1632.6x²-	1410.3x²-	1202.5x²-	1683.7X²-	1520.9X²-
Configuration G	2203.7x+824.3	1901.0x+721.2	1607.7x+618.0	2281.1X+853.1	2054.9X+774.7
Schweizer 330	2425.5x²-	2468.5x²-	2500.6x²-	2371.9x²-	2549.4X²-
Configuration H	3260.1x+1176.9	3321.0x+1198.4	3365.9x+1214.0	3185.2x+1150.7	3434.5X+1238.2
Schweizer 330	2191.8x²-	2097.1x²-	2122.7x²-	2031.4x²-	2118.1x²-
Configuration 1	2996.9x+1102.9	2861.1x+1054.3	2897.3x+1067.1	2768.8x+1021.9	2890.5x+1064.6
Enstrom 280FX	494.8X²-	608.1X²-	532.6x²-	659.3x².	623.1x²-
	585.8X+252.7	733.1X+300.5	636.4x+269.6	799.8x+322.2	751.8X+306.3
Enstrom TN28	2063.2x²-	2310.9x²-	2454.1x²-	2331.7x²-	2018.1x²-
	2487.5x+831.5	2799.1x+929.5	2983.8x+988.9	2826.9x+938.7	2425.0x+810.2
Rotorway Exec90	320.0x²-	298.7X²-	320.6x²-	-470.5X²+	389.3x²-
	339.0x+168.0	313.3X+160.3	339.8x+168.2	579.1X-98.1	422.5x+193.0

APPENDIX F

SUMMARY METEOROLOGICAL DATA

This Appendix contains a summary of the meteorological data sources and a plot of temperature and relative humidity vs. time for each day, used for sound level adjustments to reference conditions, Table F-1 and Figures F-1 through F-5.

TABLE F-1. SUMMARY OF METEOROLOGICAL DATA SOURCES

Date	Temperature	Relative Humidity	Wind Speed and Direction
07/22/91	CERL Weather Tower, 35 ft. sensor	Willard Airport ATIS	On-site weather station
07/23/91	CERL Weather Tower, 35 ft. sensor	Willard Airport ATIS	On-site weather station
07/24/91	CERL Weather Tower, 35 ft. sensor	On-site weather	On-site weather
07/25/91	CERL Weather Tower, 35	On-site weather station	On-site weather
07/26/91	CERL Weather Tower, 35	On-site weather station	CERL Weather Tower

FIGURE F-1. METEROLOGICAL DATA 07/22/91

FIGURE F-2. METEROLOGICAL DATA

07/23/91

U.S. Department of Transportation Volpe Center Accustos Facility

FIGURE F-3. METEROLOGICAL DATA 07/24/91

FIGURE F-4. METEROLOGICAL DATA 07/25/91

FIGURE F-5. METEROLOGICAL DATA 07/26/91

APPENDIX G

SUMMARY TRACKING DATA

This Appendix contains helicopter tracking data for each test flight, used to calculated sound level adjustments to reference conditions, Tables G-1 through G-12.

U.S. Department of Transportation Volpe Center Accustos Facility

TABLE G-1. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION A 7/22/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B1	09:41:36	389	-32	34
B2	09:46:14	380	0	35
В3	09:51:18	385	0	38
B4	09:56:01	380	0	38
B5	10:01:01	380	0	38
В6	10:06:56	375	0	39
C1	10:32:18	385	-10	35
C5		393	-2	38
C6	10:55:31	370	2	36
C7	11:00:01	437	1	37
C8	11:04:24	382	15	37
C9	11:08:45	382	11	34
A1	08:18:10	490	-8	64
A2	08:20:27	514	42	84
A3	08:23:20	507	-25	60
A4	08:26:00	505	30	80
A5	08:28:53	504	-33	63
A6	08:31:31	526	31	78
D1	08:34:45	510	-54	70
D2	08:37:34	531	36	85
D5	08:49:08	532	-13	53
D6	08:52:23	519	25	68
D7	09:24:45	520	-44	59
D8	09:28:15	537	30	60
D9	09:33:50	521	12	39
D10	09:38:38	528	63	52

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE 3-2. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION B 7/22/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B15	16:08:36	380	13	27
B16	16:13:11	384	19	24
B17	16:17:50	395	12	26
B18	16:22:26	386	3	25
B19	16:27:19	404	25	26
B20	16:32:06	391	10	27
C21	16:36:36	500	26	23
C23	16:45:00	450	14	23
C24	16:49:06	414	14	22
C26	16:57:16	387	10	22
C27	17:01:17	395	13	25
C28	17:05:02	397	18	24
A1	14:58:27	567	-8	61
A2	15:01:52	514	34	80
A3	15:04:54	502	-1	58
A4	15:07:40	512	23	76
A 5	15:10:46	528	-8	58
A 6	15:13:17	524	30	91
D7	15:16:29	531	13	70
D8	15:18:54	499	24	88
D9	9:33:46	522	7	52
D10	15:24:30	500	28	80
D11	15:28:01	525	9	44
D12	15:31:02	511	32	70
D13	15:35:16	510	22	33
D14	15:38:_8	484	24	61

U.S. Department of Transportation Volpe Center Accustics Facility

TABLE G-3. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION C 7/23/91

	T 7			GD 01373
EVENT	OVERHEAD	ALTITUDE	LATERAL	GROUND
	TIME OF DAY	(ft)	DEVIATION	SPEED
	 		(ft)	(kts)
B18	07:49:55	389	10	53
B20	07:57:03	370	13	51
B21	08:00:45	384	13	52
B22	08:04:05	380	6	53
B23		371	9	55
B24	08:10:57	372	11	56
C25	08:14:19	378	21	58
C26	08:18:47	4.7.5	8	50
C27	08:21:49	365	15	48
C28	08:25:07	342	16	54
C29	08:28:32	378	0	52
C30	08:32:03	321	14	50
A1	06:40:54	541	6	61
A2	06:43:24	537	36	63
A3	06:45:36	553	-11	81
A4	06:48:09	520	21	63
A 5	06:50:38	532	-14	86
A7	06:57:13	517	20	62
D8	06:59:18	552	2	86
D9	07:01:57	515	15	75
D10	07:04:04	541	6	72
D11	07:06:57	535	42	55
D12	07:09:30	549	8	68
D13	07:12:48	552	21	50
D14	07:15:20	549	4	57
D16	07:23:53	540	49	39

U.S. Department of Transportation Volpe Center Accustos Facility

TABLE G-4. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION D 7/23/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B16	13:49:57	402	15	46
B17	13:53:48	406	18	50
B18	13:57:36	405	9	50
B20	14:05:37	400	2	51
B21	14:09:34	410	10	43
B22	14:13:33	420	18	50
C24	14:21:14	358	0	42
C25	14:25:01	360	0	43
C26	14:28:27	359	16	46
C27	14:32:06	368	29	38
C28	14:36:03	363	32	39
C29	14:39:35	412	26	40
A1	12:41:53	534	37	81
A2	12:44:35	507	13	68
A3	12:46:57	536	5	81
A4	12:49:34	559	22	72
A 5	12:51:35	536	-5	84
A6	12:54:20	542	-5	66
D7	12:58:22	536	-11	89
D9	13:03:54	523	27	69
D10	13:06:39	521	8	77
D11	13:09:36	540	21	59
D12	13:12:19	527	1	66
D13	13:15:39	522	- 2	51
D14	13:18:26	525	21	59
D15	13:22:16	531	4	45

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE G-5. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION E 7/24/91

EVENT	OVERHEAD	ALTITUDE	LATERAL	GROUND
	TIME OF DAY	(ft)	DEVIATION	SPEED
	<u> </u>		(ft)	(ft)
B15	07:36:20	404	7	54
B16	07:40:09	379	21	55
B17	07:44:15	385	-13	57
B18	07:48:19	394	13	55
B19	07:52:33	394	0	52
B20	07:56:25	400	30_	50
E1	11:44:28	431	11	46
E2	11:48:27	414	8	43
E3	11:52:24	445	9	41
E5	12:00:29	422	9	42
E6	12:04:24	453	4	42
E7	12:08:25	412	10_	42
A1	09:08:02	528	6	84
A2	09:10:46	519	-8	64
A3	09:15:04	512	-11	64
A4	09:20:28	514	6	65
A5	09:22:27	505	-14	88
A6	09:25:20	500	0	62
D7	09:27:34	522	0	93
D8	09:30:14	510	0	72
D9	09:34:26	528	-6	77
D10	09:37:21	520	1	57
D11	09:39:42	524	-1	71
D12	09:42:29	505	-9	47
D13	09:45:14	538	0	66
D14	09:48:51	531	-21	39

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE G-6. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION F 7/25/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B16	07:51:04	401	16	51
B17	07:55:05	399	16	48
B18	07:58:50	388	15	51
B20	08:10:60	381	-10	48
B21	08:14:59	392	20	48
B22	08:18:58	379	18	48
B23	08:22:31	396	9	49
C24	08:25:57	360	12	41
C25	08:29:20	443	0	44
C26	08:32:24	403	10	39
C28	08:39:02	358	8	43
C29	08:42:16	398	0	42
C30	08:45:20	396	0	43
C31	08:48:16	377	0	39
A1	06:39:35	500	28	81
A2	06:42:50	514	17	57
A3	06:45:47	502	0	79
A4	06:48:37	512	31	57
A6	06:54:29	519	23	57
A7	06:58:30	529	-2	77
D8	07:01:22	520	34	64
D9	07:03:46	512	6	86
D10	07:09:24	539	29	51
D11	07:12:28	512	-6	74
D12	07:16:20	523	35	43
D13	07:18:53	495	21	67
D14	07:22:35	531	16	35
D15	07:25:20	526	18	58

U.S. Department of Transportation Volpe Center Accustics Facility

TABLE G-7. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 300 CONFIGURATION G 7/25/91

EVENT	OVERHEAD	ALTITUDE	LATERAL	GROUND
EVENI	TIME OF DAY	(ft)	DEVIATION	SPEED
	112 01 2	(10)	(ft)	(kts)
B16	10:47:47	403	0	47
B17	10:51:46	385	0	46
B19	10:59:11	392	7	48
B20	11:02:55	372	6	49
B21	11:06:18	393	0	48
B24	11:18:36	388	-1	44
C25	11:21:59	340	10	42
C26	11:25:23	445	0	43
C27	11:28:52	424	0	41
C28	11:34:59	389	0	44
C29	11:38:20	464	12	42
C30	11:43:56	374	10	40
A2	9:44:47	503	-1	68
A3	9:47:18	496	1	77
A4	9:50:06	489	1	66
A 5	9:52:36	518	-5	78
A6	9:55:30	507	-8	66
A7	9:57:57	494	0	80
D8	10:01:22	491	-3	73
D9	10:04:20	523	1	86
D10	10:07:14	500	-1	59
D11	10:09:48	489	-8	68
D12	10:12:43	476	-21	49
D13	10:15:21	497	-13	61
D14	10:18:45	507	20	44
D15	10:21:43	498	-10	54

U.S. Department of Transportation Volpe Center Acoustos Facility

TABLE G-8. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 330 CONFIGURATION H 7/23/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B17	10:27:59	376	-22	61
B18	10:31:18	382	0	60
B19	10:34:25	377	-27	60
B20	10:41:18	404	-11	59
B21	10:44:26	397	-29	59
B22	10:47:48	372	-6	58
C29	11:44:11	465	-10	59
C30	11:47:30	569	-13	56
C31	11:50:50	532	-19	55
C32	11:53:54	508	-18	57
C33	11:57:04	469	-19	57
C34	12:00:30	471	-10	57
A1	09:28:07	446	-15	100
A2	09:30:35	431	23	72
A3	09:32:48	438	-35	103
A 5	09:39:26	421	4	77
A6	09:41:18	435	-25	99
A7	09:43:55	457	18	75
D8	09:45:52	422	-26	111
D9	09:48:11	412	50	88
D10	09:50:19	476	-39	90
D11	09:54:25	435	27	66
D12	09:56:14	483	-65	79
D13	09:58:48	461	18	56
D14	10:00:48	460	-26	70
D15	10:03:55	491	17	52

U.S. Department of Transportation Volpe Center Accustice Facility

TABLE G-9. SUMMARY HELICOPTER TRACKING DATA SCHWEIZER 330 CONFIGURATION I 7/24/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B16	10:10:52	386	-31	53
B16		384	-31	55
	10:14:09		<u> </u>	
B18	10:17:34	368	-21	52
B19	10:20:57	373	-20	53
B20	10:26:18	382	-21	56
B21	10:31:09	402	-35	52
C22	10:34:11	494	-12	56
C23	10:37:31	508	-22	55
C24	10:41:29	483	-20	56
C25	10:45:05	504	-14	54
C26	10:48:37	477	-8	56
C27	10:53:42	524	-9	59
A1	09:08:02	413	-28	89
A2	09:10:46	435	-22	79
A3	09:15:04	432	-30	91
A4	09:20:28	425	23	76
A 5	09:22:27	437	-36	93
A 6	09:25:20	419	26	80
D7	09:27:34	412	-27	101
D8	09:30:14	409	29	91
D9	09:34:26	436	-26	78
D10	09:37:21	437	24	67
D11	09:39:42	461	-32	71
D12	09:42:29	462	27	59
D13	09:45:14	473	-23	62
D14	09:48:51	445	22	50

U.S. Department of Transportation Volpe Center Accustos Facility

TABLE G-10. SUMMARY HELICOPTER TRACKING DATA ENSTROM 280FX CONFIGURATION J 7/26/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (KTS)
BP9	07:12:58	384	-2	62
BP10	07:17:21	379	-20	61
BP11	07:22:02	406	-11	62
BP12	07:26:39	383	-23	62
BP13	07:13:28	371	18	61
BP14	07:36:15	378	-14	62
CP22	08:44:04	446	-23	60
CP23	08:48:58	421	7	61
CP24	08:53:48	433	20	58
CP25	08:58:25	432	17	56
CP26	09:03:43	422	0	57
CP27	09:08:52	428	-11	59
AP42	12:46:55	509	5	101
AP43	12:50:04	503	-15	79
AP44	12:52:44	509	16	106
AP45	12:55:43	509	13	85
AP46	12:57:57	528	0	101
AP47	13:30:32	528	13	81
DP48	13:03:18	504	9	108
DP49	13:06:40	510	12	85
DP51	13:13:49	505	-4	94
DP52	13:17:31	484	-11	74
DP53	13:21:39	502	9	81
DP54	13:25:36	494	11	65
DP55	13:29:34	526	29	74
DP57	13:39:38	475	0	54

U.S. Department of Transportation Volpe Center Accustos Facility

TABLE G-11. SUMMARY HELICOPTER TRACKING DATA ENSTROM TH28 CONFIGURATION K 7/26/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
BT1	06:28:02	416	-37	62
BT2	06:32:23	370	-27	65
BT4	06:41:34	403	-22	62
BT5	06:46:15	408	-28	64
BT6	06:50:51	385	-32	64
BT7	06:55:16	375	-22	64
CT16	80:02:22	415	-25	61
CT17	08:07:00	445	-13	60
CT18	08:11:33	452	-37	61
CT19	08:16:54	448	-34	59
CT20	08:23:57	437	-19	57
CT21	08:28:15	456	-31	62
AT28	10:15:25	487	-49	93
AT29	10:18:05	495	19	82
AT30	10:20:39	464	-33	99
AT31	10:25:27	494	11	85
AT32	10:28:35	480	-12	97
AT33	10:33:04	518	12	88
DT34	10:35:29	477	-49	103
DT35	10:38:14	465	30	94
DT36	10:40:44	507	-11	89
DT37	10:46:19	489	-1	74
DT38	10:50:20	509	-14	79
DT39	10:53:35	522	-11	62
DT40	10:59:42	568	-27	69
DT41	11:05:50	469	-24	53

U.S. Department of Transportation Volpe Center Acoustics Facility

TABLE G-12. SUMMARY HELICOPTER TRACKING DATA ROTORWAY 7/22/91

EVENT	OVERHEAD TIME OF DAY	ALTITUDE (ft)	LATERAL DEVIATION (ft)	GROUND SPEED (kts)
B15	12:42:42	385	20	54
B16	12:46:58	387	21	53
B17	12:51:32	386	13	51
B18	12:56:42	358	34	46
B19	13:38:45	380	18	45
B20	13:43:47	366	31	48
B21	13:48:06	375	16	41
C22	13:52:54	185	0	45
C23	13:56:30	180	0	47
C24	14:03:10	180	0	44
C25	14:10:21	190	0	46
C26	14:14:21	180	0	48
C27	14:18:03	205	0	41
A1	11:40:29	465	0	74
A2	11:43:01	441	0	83
A3	11:44:57	463	0	74
A4	11:47:16	420	10	83
A5	11:49:29	470	-20	72
A9	12:24:32	470	12	76
A6	11:51:40	416	10	83
A8	11:55:57	420	21	74
A10	12:26:54	498	0	61
A11	12:29:37	485	32	61
A12	12:32:09	529	0	56
A13	12:34:60	509	34	61
A14	12:37:37	533	28	65

GLOSSARY

ATIS	Automated Terminal Information Service
BPF	Blade-Passage Frequency
CCC CERL CPA CPAR	Central Command Center Construction Engineering Research Laboratory Closest Point of Approach Closest Point of Approach Reference
EPNL	Effective Perceived Noise Level
FAA	Federal Aviation Administration
GLR	Graphic Level Recorder
ICAO	International Civil Aviation Organization
OASPL	Overall Sound Pressure Level
PLASI PNL PNLT	Pulsed Light Approach Slope Indicator Perceived Noise Level Tone-Corrected Perceived Noise Level
RSPA	Research and Special Programs Administration
SEL SLM	Sound Exposure Level Sound Level Meter
TCG	Time Code Generator
U.S. DOT	U.S. Department of Transportation

★U.S COVERNMENT PRINTING OFFICE.1993 -701 -666/ 80021