الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

لدراسة تطور التفاعل الحادث بين محلول حمض الأوكساليك $H_2C_2O_4(aq)$ ومحلول بيكرومات البوتاسيوم $H_2C_2O_4(aq)$ بدلالة الزمن، حضر نا مزيجا تفاعليا يحتوي على البوتاسيوم $C_1=3.0\times 10^{-2}mol\cdot L^{-1}$ من محلول حمض الأوكساليك الذي تركيزه المولي $V_1=100\,mL$ حجم $V_2=100\,mL$ من محلول بيكرومات البوتاسيوم الذي تركيزه المولي $V_2=100\,mL$ وبضع قطرات من حمض الكبريت المركز. نتابع تطور المزيج التفاعلي من خلال معايرة شوارد الكروم $C_1=0.8\times 10^{-2}$ المتشكلة بدلالة الزمن فنحصل على المنحنى البياني (الشكل $C_1=0.8\times 10^{-2}$) الذي يمثل تطور المزيز المولي لشوارد الكروم $C_1=0.8\times 10^{-2}$ بدلالة الزمن المنافق الزمن المنافق الزمن المنافق المنافق النوع المنافق المنا

1- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟

2- اعتمادا على المعطيات و المنحنى البياني أكمل جدول التقدم المميز لهذا التفاعل.

(انقل الجدول الآتي على ورقة الإجابة):

	$3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) = 2Cr^{3+}(aq) + 6CO_2(aq)$	$+ 7H_2O(\ell)$					
الحالة	كمية المادة (mmol) الحال						
الابتدائية	بوفرة	بوفرة					
الانتقالية	بوفرة	بوفرة					
النهائية	بوفرة	بو فرة					

هل التفاعل تام أم غير تام ؟ لماذا ؟

 $t_{1/2}$ عرّف زمن نصف التفاعل $t_{1/2}$ ، ثم قدّر قيمته بيانيا.

4- أ- عرّف السرعة المجمية ٧ التفاعل، ثم عبّر عنها

 $\cdot [Cr^{3+}(aq)]$ بدلالة النركيز المولى لشوارد الكروم

t=8sو و t=0 و المحطنين t=0

ج- فسر على المستوى المجهري تناقص هذه السرعة

مع مرور الزمن.

التمرين الثاني: (04 نقاط)

في يوم 2012/04/01 بمخبر الفيزياء، قرأنا من البطاقة التقنية المرفقة لمنبع مشع المعلومات الآتية:

- γ و β^- : الإشعاعات : β^- و β^- الإشعاعات : β^- الإشعاعات : β^-
- $m_0 = 5,02 \times 10^{-2} g$: الكتلة الابتدائية $t_{1/2} = 30,15 \, ans$ نصف العمر -

بينما لاحظنا تاريخ صنع المنبع غائبا عن هذه البطاقة.

 $A = 14,97 \times 10^{10} Bq$ النشاط A للمنبع فنجد المنبع نقيس باستعمال عداد Geiger النشاط A

- -1 اكتب معادلة تفكك نواة السيزيوم، ثم عرّف الإشعاعين -3 و -1
- -2 احسب العدد الابتدائى N_0 لأنوية السيزيوم التي كانت موجودة بالمنبع لحظة صنعه.
 - s^{-1} ب النشاط الإشعاعي λ ب -3
- A_0 المتبارة الحرفية التي تربط النشاط A بعدد الأنوية المتبقية في المنبع، ثم احسب النشاط A_0 المميز للعينة لحظة صنعها.
 - 5- استنتج بالحساب تاريخ صننع العيّنة.

 $N_A = 6.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $N_A = 6.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta S = 0.02 \times 10^{23} \, mol^{-1}$

التمرين الثالث: (04 نقاط)

 $.25\,^{\circ}$ ن في المحاليل في $.25\,^{\circ}$

نحضر محلولا S حجمه C_6H_5COOH بحل كتلة m من حمض البنزويك النقي C_6H_5COOH في الماء.

- 1- اكتب معادلة انحلال حمض البنزويك في الماء.
- . أعط عبارة ثابت الحموضية K_a للثنائية أساس/حمض.
- $V_a=20\,mL$ الصوديوم محلول حمض البنزويك بمحلول هيدروكسيد الصوديوم $V_a=20\,mL$ الشكل ($V_a=20\,mL$ المناس المضاف ($V_a=20\,mL$ الأساس المضاف ($V_a=20\,mL$ المناس الم
 - أ- اكتب معادلة تفاعل المعايرة.
 - ب- عين إحداثيات النقطيتين E' و E' من (الشكل-2). ما مدلولهما الكيميائي؟ جد التركيز المولى c_a لحمض البنزويك.
 - s المحلول m المحتلة m المحلول s النقى المستعملة لتحضير المحلول s

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ للثنائية K_a قيمة K_a قيمة K_a قيمة K_a النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 E_6 9 و E_6 1 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و E_6 1 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 ما النوع الكيميائي الذي المؤلد ا

 $M(C) = 12 \ g \cdot mol^{-1}$ $M(H) = 1 \ g \cdot mol^{-1}$ $M(O) = 16 \ g \cdot mol^{-1}$

التمرين الرابع: (04 نقاط)

ندرس في مرجع سطحي أرضي نعتبره غاليليا حركة سقوط كرية في الهواء. (الشكل-3) يُمثّل تطور سرعة مركز عطالة الكرية v بدلالة الزمن t .

1 من البيان :

أ- حدّد المجال الزمني لنظامي الحركة.
 ب- عين قيمة السرعة الحدية ٧٠.

ج- احسب a_0 تسارع مركز عطالة الكرية في اللحظة t=0.

ماذا تستنتج؟

د- ما هي قيمة التسارع لحظة وصول
 الكرية إلى سطح الأرض؟

t=3s اللحظة t=3s المطاقة الحركية للكرية في اللحظة

v(t) الفراغ. v(t) المركة السقوط الشاقولي لمركز عطالة الكرية في الفراغ. m = 30g ، كتلة الكرية $g = 9.80 \, m \cdot s^{-2}$

التمرين التجريبي: (04 نقاط)

لدراسة تطور شدة التيار الكهربائي i(t) المار في ثنائي القطب RL بدلالة الزمن، وتأثير المقدارين R و L على هذا التطور، نركب الدارة الكهربائية (الشكل-4).

المعمال راسم المتزاز مهبطي ذي ذاكرة. u_R بين طرفي الناقل الأومي R باستعمال راسم الهتزاز مهبطي ذي ذاكرة. 1 أ- أعد رسم الدارة على ورقة الإجابة ثم بين عليها كيفية ربط راسم الالهتزاز المهبطي.

 $u - arins تطور التوتر الكهربائي <math>
u_R(t)$ مكنتنا من متابعة تطور الشدة i(t) للتيار الكهربائي المار في الدارة. في الدارة. فسر ذلك.

2- نغلق القاطعة:

أ- جد المعادلة التفاضلية لشدة التيار الكهربائي i(t) المار في الدارة.

auب علما أن حل هذه المعادلة من الشكل: $i(t) = A(1-e^{-\frac{t}{r}})$ جد عبارتي A و au

ماذا يمثلان ؟

-3 ننجز ثلاث تجارب مختلفة باستعمال وشيعة مقاومتها t ثابنة تقريبا وذاتيتها L قابلة للتغيير ونواقل أومية مختلفة. يبين (الشكل-5) المنحنيات البيانية لتطور شدة التيار الكهربائي i(t) بدلالة الزمن t بالنسبة للتجارب الثلاث ويمثل الجدول المرفق قيم L و R المستعملة في كل تجربة:

	_												
										<u> </u>	<u>.</u>		
<u> </u>		<u> </u>	.,,,	•••		2		L	L				
		مند	-	-					3	_	_		
					-	T-			†	†	ļ		
				 		-			ļ		·	ļ	
19	 -				-	-	-		<u> </u>	 		t ([ms]
0	Ō.	15	·				<u>' </u>	·	-				

	التجربة 1	التجربة 2	التجربة 3
L (mH)	30	20	40
$R(\Omega)$	290	190	190

أ- أنسب كل تجربة بالمنحنى البياني الموافق لها. علِّل ذلك.

ب- جد قيمة المقاومة ٢.

الموضوع الثاني

التمرين الأول: (04 نقاط)

 $.25\,^{\circ}$ د كل المحاليل في $.25\,^{\circ}$

 $c_1=1.0 \times 10^{-2}~mol \cdot L^{-1}$ تركيزه المولي CH_3-COOH الإيثانويك S_1 لحمض الإيثانويك PH=3,4 وله PH=3,4

أ- اكتب معادلة تفاعل حمض الإيثانويك مع الماء.

ب- أنشئ جدولا لتقدم التفاعل الكيميائي.

ج- بيّن أن CH3-COOH لا يتفاعل كليا مع الماء.

 K_1 أثبت أن K_1 ثابت التوازن للتفاعل يعطى بالعلاقة:

. لتفاعل، ثم احسب قيمته، حيث: au_{lf} نسبة النقدم النهائي للتفاعل. $K_I = c_I \frac{ au_{lf}^2}{I - au_{lf}}$

ه- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المحلول؟

 $c_2 = 1.0 \times 10^{-1} \, mol \cdot L^{-1}$ في تجربة ثانية حضرنا محلو S_2 لحمض الإيثانويك تركيزه المولي أحدث $\sigma = 5.0 \times 10^{-2} \, mS \cdot m^{-1}$ الناقلية النوعية له $\sigma = 5.0 \times 10^{-2} \, mS \cdot m^{-1}$

أ- احسب التراكيز المواية للأنواع الشاردية المتواجدة في المحلول.

 K_2 و τ_{2f} ب-ب

3- أ- ما تأثير التراكيز المولية الابتدائية على نسبة التقدم النهائي؟

ب- هل يتعلق ثابت التوازن K بالتراكيز المولية الابتدائية؟

 $\lambda_{H_{2}O^{+}} = 35$, $9 \text{ mS} \cdot \text{m}^{2} \cdot \text{mol}^{-1}$; $\lambda_{CH_{2}-COO^{-}} = 4$, $1 \text{ mS} \cdot \text{m}^{2} \cdot \text{mol}^{-1}$

التمرين الثاني: (04 نقاط)

يستخدم اليود 131 أساسا في معالجة سرطان الغدة الدرقية.

-1 أعط تركيب نواة اليود $I_{53}^{13I}I$.

-2 احسب E_{r} طاقة الربط لنواة اليود E_{r}

 $.\beta^{-}$ إن اليود 131 يصدر -3

اكتب معادلة التفكك الحاصلة لنواة اليود 131، علما أن نواة البنت الناتجة X^{\prime}_{Z} تكون واحدة من الأنوية التالية: X^{\prime}_{Z} الأنوية التالية: X^{\prime}_{Z} المنافقة: X^{\prime}_{Z

 $m_0 = 0.696 \, g$ عينة من اليود 131 كتاتها -4

أ- اكتب قانون التناقص الإشعاعي.

ب- يمثل (الشكل-1) منحنى تطور InN بدلالة الزمن t. استنتج منه قيمة λ ثابت التفكك

و t_{13} نصف العمر لليود 131.

ج- ما كتلة اليود 131 المتفككة بعد 16 jours ؟

الشكل-1

المعطبات:

 $m({}_{1}^{1}H)=1,00728\,u$; $m({}_{53}^{131}I)=130,97851\,u$; $m(n)=1,00866\,u$; $1u=931,5\,MeV\,/\,c^{2}$

التمرين الثالث: (04 نقاط)

تتكون دارة كهربائية (الشكل-2) من:

- Y_1 . E مولد للتوتر الكهربائي قوته المحركة الكهربائية E . E ناقل أومه مقاه مته E . E مقاه مته E . E
 - ناقل أومى مقاومته Ω 100- ناقل أ
 - وشيعة ذاتيتها L ومقاومتها r
 - قاطعة X.

الشكل-2

نوصل مدخلي راسم الاهتزاز المهبطي ذي ذاكرة (الشكل-2)، في اللحظة t=0 نغلق القاطعة Kفنشاهد على الشاشة المنحنيين البيانيين (1) و (2) (الشكل-3).

2-أ- ما قيمة التوتر الكهربائي £؟

 I_0 جد قيمة شدة التيار الكهربائي الأعظمي

ج- احسب قيمة r مقاومة الوشيعة.

 τ أنه متجانس مع الزمن. وبيّن بالتحليل البُعدي أنه متجانس مع الزمن.

4- احسب الطاقة الأعظمية المخزنة في الوشيعة.

التمرين الرابع: (04 نقاط)

خلال منافسة رمي الجلة في الألعاب الأولمبية ببكين، حقق الرياضي الذي فاز بهذه المنافسة النتيجة d = 21,51 m

اعتمادا على الغيلم المسجل لعملية الرمي ولأجل معرفة قيمة السرعة v_0 التي قذفت بها الجلة، تَمَّ استخراج بعض المعطيات أثناء لحظة الرمي:

 $h_A = 2,00 \, m$ قُذِفت المجلة من النقطة A الواقعة على ارتفاع المزاوية بالنسبة لسطح الأرض وبالسرعة \overline{v}_0 التي تصنع الزاوية $\alpha = 45^\circ$ مع الخط الأفقى (الشكل-4).

($O; i, \bar{k}$) ونختار اللحظة الابتدائية t=0 هي اللحظة التي يتم فيها قذف الجلة من النقطة A. نهمل احتكاكات الجلة مع الهواء ودافعة أرخميدس بالنسبة لقوة ثقل الجلة.

 $d = x_c = 21.51 \, m$

المختار، ثم z=h(t) المعلم المختار، ثم x=f(t) المعلم المختار، ثم x=f(t) المعلم المختار، ثم المختار، ثم z=g(x) المعلم المختار، ثم المختار، ثم z=g(x) المختار، ثم الم

-2 جد عبارة السرعة الابتدائية v_0 بدلالة g ، α ، h_A بدلالة v_0 بدلالة السرعة الابتدائية σ

3- جد المدة الزمنية التي تستغرقها الجلة في الهواء.

 $g = 9.8 \, m \cdot s^{-2}$

التمرين التجريبي: (04 نقاط)

لأجل الدراسة الحركية لتفاعل محلول يود البوتاسيوم مع الماء الأكسجيني، نحضر في بيسشر في اللحظة t=0 المزيج التفاعلي t=0 المشكل من الحجم $V_1=368\,m$ من محلول يود البوتاسيوم الدذي تركيزه المولي $c_1=0,05mol\cdot L^{-1}$ والحجم $V_2=32\,m$ من الماء الأكسجيني الدذي تركيزه المولي تركيزه المولي $c_1=0,05mol\cdot L^{-1}$ وكمية كافية من حمض الكبريت المركز، فيتم إرجاع الماء الأكسجيني بواسطة شوارد اليود $c_2=0,10\,mol\cdot L^{-1}$ وفق تفاعل بطيء ينتج عنه ثنائي اليود.

ننمذج التفاعل الكيميائي الحادث بالمعادلة الآتية :

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$$

نتابع التطور الحركي للتفاعل من خلال قياس التركيز المولي لثنائي اليود المتشكل في لحظات زمنية متعاقبة، وذلك باستعمال طريقة المعايرة اللونية الآتية:

نأخذ في اللحظة t عينة حجمها $V=40,0\,mL$ من المزيج التفاعلي s ونسكبها في بيشر يحتوي الجليد المنصهر والنشاء، فيتلون المزيج بالأزرق، بعد ذلك نضيف تدريجيا إلى هذه العينة محلولا مائيسا لثيوكبريتات الصوديوم ($c_3=0.10\,mol\cdot L^{-1}$) الذي تركيزه المولى $c_3=0.10\,mol\cdot L^{-1}$ المعايرة المتفاء اللون الأزرق. باستغلال الحجم V_E لثيوكبريتات الصوديوم المُضاف ومعادلة تفاعل المعايرة نستنتج التركيز المولى لثنائي اليود في اللحظة V_E

نعيد العملية في لحظات متعاقبة، ثم نرسم تطور التركيز المولي لثنائي اليود $I_2(aq)$ المتشكل بدلالة الزمن t فنحصل على المنحنى البياني (الشكل-5).

ب- ما هي الوسيلة التي نستعملها لأخذ 40mL من المزيج التفاعلي؟

الثنائيتان مرجع/مؤكسد المساهمتان في هذا التحول هما: $I_2(aq)/I^-(aq)$

 $S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$ و

- يد التكافؤ، ثم جد العبارة الحرفية الموافقة للتركيز المولي لثنائي اليود $I_2(aq)$ بدلالة الحجم V والحجم V والتركيز المولي c_3 لثيوكبريتات الصوديوم.
- 3- أنشئ جدولا للتقدم المميز لتفاعل يود البوتاسيوم والماء الأكسجيني وبيّن أن الماء الأكسجيني هو المتفاعل المحد.
 - t = 100s السرعة الحجمية للتفاعل، ثم احسب قيمتها في اللحظة v = -4
 - $t_{\frac{1}{2}}$ جد بیانیا زمن نصف التفاعل -5