MATH 462

project examples.

Image Segmentation Losses
Boundaires & Geometry.
RL Losses (time permitting)

Lecture 16 29.10.202)

project examples. Loss design for Image segmentation. $d = d_1 \times d_1$ copie image.

each pixel has $y_j \in \{l_3, ..., K\} = J_k$ X=Rd $y = y_k^{\alpha}$ xi yie yx Goal leave $h(x) \in \mathcal{G}$ understand losses for this type of y Our Goal Step 1 Ignore structure of mage adjacent przels should usually have sam class.

Convolutional Newal Networks. activations O NN DNN 3 CNN D' Linear models. History Neural Networks X X ML X NN X CNN. newuns

$$\mathcal{H} = \begin{cases} \chi \to (w, \chi) \to (\sigma(w_1, \chi)) \\ \vdots \\ w_n \chi \end{cases}$$

$$\sigma(w_n - \chi)$$
one layer renal network term
$$t \in \mathbb{R}$$

nonlinearity.

good for a while.

XOR

input $(\pm 1,\pm 1)$ or $\max(b_1,b_2)$ or $\min(b_1,b_1)$ -1

6 (1 = 1-t 17C

Add Eddenlayu $\frac{1}{x_1} = \frac{1}{w^2}$ $\frac{1}{w^2} = \frac{1}{w^2}$ $\frac{1}{x_1} = \frac{1}{w^2}$ $\frac{1}{w^2} = \frac{1}{w^2}$ $\frac{1}{x_1} = \frac{1}{w^2}$ $f(x) = \sigma(w \cdot x)$ missing 2-Layer network →rate 7 method Thm universal approximation.

"Can fit any fin " with 2-laye N-N. -> gurelembrahe. ML later sound more. f, it with algorish min Z(W)

DNN Drep neval notwork with L layer ResNet 56 $\chi \rightarrow f_1 = \sigma(W_1 x)$ $f_{k+1} = \sigma(W_k f_k(x))$ 56 layers Size big. W: nx > nx+1 full matrix. Apps RL NLP (early)
shallow M.n. Computer Vision Utof T 2007 ImageNet CNN

ResNet fk+1= fk(x)+o(Wkfk(x)) $f(x) \rightarrow$ [[]]]] No free lunch one leaving alg.

can't work for everythy. Ans model should incorporate Esour domain knowledge

 $d = 10^6$ $W : \mathbb{R}^{10^6} \to \mathbb{R}^{10^6}$ Given f; fints f: PR 7PR Gabor Filter Given -w 3 + w g/y = 0 f*W(x) L(+1,-1). (fi, fizi,...) (f(x+h)-f(x)/ $= \int_{-w}^{w} f(x+y) g(y) dy$ Consolution $\int g(x) = 1$

several wongs. Approximate f'(x) f(x+h)-f(x) $\frac{f(\lambda)-f(\chi-h)}{h} = \frac{(-1,+1)}{h}$ $\int \left(-\frac{1}{2h} + \frac{1}{2h}\right)$ f(x+h)-f(x-h) 2D edgedsterstors Gabor f; /ters CNN trained see 1st layer is close Galor folters

Id convolution Matrix

$$g = (g_1, g_2, g_3, g_4, g_5)$$
 $M = \begin{bmatrix} g & g & g \\ 0 & g & g \\ 0 & 0 & g \end{bmatrix}$
 $M : f = f * g$
 $(Mf)_i$
 $f * g)_i = \sum_{i=1}^{n} f_{i * j} g_j$
 $Em_i; f_j$
 $Exercise$ Show can represent with a matrix of form $g_i g_j$
 $Exp(g) = f * g = (-1, 0, 1)$
 $f = f * g = (-1, 0, 1)$
 $f = f * g = (-1, 0, 1)$
 $f = f * g = (-1, 0, 1)$
 $f = f * g = (-1, 0, 1)$
 $f = f * g = (-1, 0, 1)$

2d con Matry Ind Cisj) = nů + j 2d convolute Matry. $\Delta f = \frac{\partial f}{\partial x^2} + \frac{\partial f}{\partial x^3}$ cowolution simila sports. implements Matrix Com

layer! $f_1 = \sigma(W_1 x)$ Ld conveolut unptenent as a small constating [-w, 0, + w] layers t [3x3] $f_{xy1} = \sigma(W_{xy1}f_{t})$ Still convolution OR -4-2024 Stip 2d grow adjant for handwore puposis. Conv. NN hyperparum. Architection WENXM 9 9 9 In no no no no no we com. shapl Comolntonn f_i represent f_i rectangl frok