Macroeconomic Implications of Early Retirement in the Public Sector The Case of Brazil

Gerhard Glomm Juergen Jung Chung Tran

Department of Economics Indiana University, Bloomington

PET06 Conference in Hanoi

Generosity of Public Pensions for Public Servants

" Integrality" and Parity".

Earnings Profile

Early Retirement in the Public Sector

• 64% of civil servants retire before age 55.

Table: Source: Ministry of the Budget and Administration 2002

Sustainability?

- Public sector retirees account for 5% of all retirees in Brazil, but receive 45% of all retirement payments.
- Souza et al. (2004) report that the deficit of the pension system is around 4.5% of GDP, 3.5% is caused by the public sector, the remaining 1% comes from the private sector.
- Sustainability?
- Lula Reform 2003.

Questions and Main Findings

Questions:

- How does pension policy affect individual retirement decisions in the public sector?
- Quantify the effects of decreasing the generosity of public sector pensions.

Main findings:

- Decreasing generosity, increases retirement age from 55 to 65 could raise long-run income by over 2 %.
- Welfare gains.
- Transitions are smooth and monotone.

Next Steps

- Introduction
- 2 The Model
 - The Government
 - Households and Firms
 - Calibration
- Policy Experiments
- 4 Conclusion

The Model

- 12-period OLG model, 5 years per period.
- Born at age of 20, face lifetime uncertainty, and die for sure at age of 80.
- Private sector workers: work 9 periods until 65 and retire.
- Public sector workers: decide when to retire: 50, 55, 60 or 65 (depending on generosity of public pensions).
- Public sector retirees can work in the private sector.
- Population growth.
- Accidental bequests are redistributed to newborn generation.

Preferences and Technology

Preferences:

$$V = \sum_{j=1}^{12} \beta^{j-1} \left(\prod_{i=1}^{j} \pi_i \right) \left[\frac{\left(c_{j,t+j-1} \right)^{1-\sigma}}{1-\sigma} \right] + \sum_{k=J_1-J_e}^{J_1} \beta^{k-1} \left(\prod_{i=1}^{k} \pi_i \right) \theta L_{k,t+k-1}$$

Technology:

$$Y_{t} = AG_{t}^{\alpha_{1}}K_{t}^{\alpha_{2}}\left(H_{t}^{p}\right)^{\alpha_{3}},$$

Public goods production:

$$G_t = Y_t^G = Z \left[\left(K_t^G \right)^{\eta} + \chi \left(H_t^g \right)^{\eta} \right]^{1/\eta}$$

Law of motion for public capital:

$$K_{t+1}^G = (1 - \delta_{K^G}) K_t^G + I_t^G.$$

Human capital production:

$$h_{j,t}^{\kappa} = e^{\beta_0^{\kappa} + \beta_1^{\kappa} j + \beta_2^{\kappa} j^2}, \ \kappa = \{p, g\},$$

where $\beta_0^{\kappa}, \beta_2^{\kappa} < 0$ and $\beta_1^{\kappa} > 0$.

- Share of public sector workers: $n^g = \frac{N^g}{\sum_{i=1}^{J_1-J_e} \mu_i}$
- Private sector human capital: $H_t^p = n^p \sum_{j=1}^{J_1} \mu_j h_{j,t}^p$
- Public sector human capital: $H_t^g = n^g \sum_{j=1}^{J_1} \mu_j h_{j,t}^p$

public wages

Government Budget Constraint

$$\Delta_{C_{G,t}} Y_t + \Delta_{G,t} Y_t + n^g \sum_{j=1}^{J_1 - J_e} w_t^g h_{j,t}^g \mu_j + n^p \sum_{j=J_1 + 1}^{12} (1 - \tau_{R,t}) \Psi^p w_t^p h_{J_1}^p \mu_j$$

$$+ n^g (1 - \tau_{R,t}) \left[\sum_{j=J_1 - J_e + 1}^{J_1} \Psi^g_1 w_t^g h_{J_1 - J_e}^g \mu_j + \sum_{j=J_1 + 1}^{12} \Psi^g_2 w_t^g h_{J_1 - J_e}^g \mu_j \right]$$

$$= \tau_{L,t}^g n^g \sum_{j=1}^{J_1 - J_e} w_t^g h_{j,t}^g \mu_j + \tau_{L,t}^p n^p \sum_{j=1}^{J_1} w_t^p h_{j,t}^p \mu_j + \tau_{B,t} \sum_{j=1}^{J} s_{j,t} v_j + \tau_{K,t} q_t K_t$$

$$+ \tau_{L,t}^g n^g \sum_{j=J_1 - J_e + 1}^{J_1} w_t^p h_{j,t}^p \mu_j$$

retirees working in private sector

private pensions

Firm and Private Household Problems

- Firm: $\max_{(H_t^p, K_t)} F(G_t, K_t, H_t^p) w_t^p H_t^p q_t^k K_t$
- Private household:

$$\max_{\left\{c_{1,t+j-1}^{\rho}\right\}} V(c_{j,t+j-1}^{\rho}) = \sum_{j=1}^{12} \beta^{j-1} \left(\prod_{i=1}^{j} \pi_i\right) \frac{\left(c_{j,t+j-1}^{\rho}\right)^{1-\sigma}}{1-\sigma} s.t.$$

$$\sum_{j=1}^{12} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) c_{j,t+j-1}^{p} = \underbrace{ \left[\begin{array}{c} (1 - \tau_{B,t}) T_{B,1} \\ + \sum\limits_{j=1}^{J_1} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1 - \tau_{L,t+j-1}^{p} \right) w_{t+j-1}^{p} h_{t}^{p} \\ + \sum\limits_{j=J_1+1}^{12} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1 - \tau_{R,t+j-1} \right) \Psi^{p} w_{t+j-1}^{p} h_{J_1}^{p} \end{array} \right]}_{\mathcal{I}_{t}^{p}}$$

Public Household Problem

$$\max_{\left\{c_{1,t+j-1}^{g},J_{e}\right\}} \sum_{j=1}^{12} \beta^{j-1} \left(\prod_{i=1}^{j} \pi_{i}\right) \left[\frac{\left(c_{j,t+j-1}^{g}\right)^{1-\sigma}}{1-\sigma}\right] + \sum_{k=J_{1}-J_{e}}^{J_{1}} \beta^{k-1} \left(\prod_{i=1}^{k} \pi_{i}\right) \theta L_{k,t+k-1}$$

s.t.

$$\sum_{j=1}^{12} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) c_{j,t+j-1}^{g} = \underbrace{ \begin{bmatrix} (1-\tau_{B,t}) T_{B,1} \\ + \sum\limits_{j=1}^{J_1-J_e} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1-\tau_{L,t+j-1}^p \right) w_{t+j-1}^g h_j^g \\ + \sum\limits_{j=J_1-J_e+1}^{J_1} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1-\tau_{R,t+j-1} \right) \Psi_1^g w_{t+j-1}^g h_{J_1-J_e}^g \\ + \sum\limits_{j=J_1+1}^{12} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1-\tau_{R,t+j-1} \right) \Psi_2^g w_{t+j-1}^g h_{J_1-J_e}^g \\ + \sum\limits_{j=J_1-J_e+1}^{J_1} \left(\prod\limits_{k=1}^{j} \frac{1}{R_{t+k-1}} \right) \left(1-L_{j,t}^g \right) \left(1-\tau_{L,t}^g \right) w_t^p h_j^p \\ \end{bmatrix}$$

Deep Parameters

	Parameters	
Preferences		
	discount factor	$\beta = 0.995^5 = 0.9752$
	leisure	$\theta = 0.01$
	fraction of leisure	L = 0.6
Technology		
	Consumption Good:	<i>A</i> = 18.38
		$\alpha_1 = 0.1$
		$\alpha_2 = 0.4$
		$\alpha_{3} = 0.6$
		$\delta = 194^5 = 0.2661$
	Public Good:	Z = 1
		$\chi = 1$
	public capital and labor are substitutes:	$\eta=0.5$
		$\delta_{K^G} = 1 - 0.96^5 = 0.1846$
	Human Capital:	$\beta_0 = -0.2314$
		$\beta_1 = 0.0529$
		$\beta_2 = -0.00093$

Income-Age Profiles

Table: Income-age profiles of private and public sector workers when public sector early retirees are working 40% of their time in the private sector. Source for dashed line: Ferreira (2005)

Government Policy Parameters

	Variables for Benchmark Case $J^e = 2$			
Policies:				
Δ_G	Investment in public good (in % of private sector output)	2.5%		
$\Delta_{Cg} \ \Psi^{ ho}$	Government consumption (in % of private sector output)	20%		
	indexation parameter (generosity of private pensions)	0.5		
ξ	public wages as a fraction of private wages	1.15		
Ψ_2^g	indexation parameter (generosity of public pensions)			
ψ_{2}^{g} ψ_{1}^{g}	generosity of early public retirement (benchmark)	.94		
Expenditures:				
$n^g \sum_{j=1}^{J_1-J_e} w_t^g h_{j,t} N_j$	wage bill public sector workers (in % of output)	5.1%		
$\frac{T_1^g + T_2^g}{\frac{T^p}{Y}}$	public pensions (in % of private sector output)	2.9%		
$\frac{T^{\rho}}{\nabla}$	private pensions (in % of private sector output)	6.3%		
Taxes:				
$ au_{L}$	labor tax rate	40%		
$ au_{K}$	capital tax rate	16.3%		
Population:				
n	population growth rate	1.5%		
n ^g	fraction of civil servants	7%		
n ^p	fraction of private sector employees	93%		

Welfare Maximizing Early Retirement Period

Table: Public agent retirement age as function of public pension generosity Ψ_1^g when capital tax adjusts

Policy Experiments and Sensitivity Analysis

	J ^e :	0 (age 65)	1 (age 60)	2 (age 55)	3 (age 50)
L:					
0.60		102.130	101.182	100.000	98.469
0.80		102.811	101.597	100.000	97.842
1		103.503	102.018	100.000	97.203
σ :					
0.50		102.303	101.317	100.000	98.156
1		102.192	101.233	100.000	98.342
1.50		102.130	101.182	100.000	98.46 9
2		101.893	101.063	100.000	98.636
α_1 :					
0		101.694	100.933	100.000	98.800
0.05		101.888	101.047	100.000	98.641
0.1		102.130	101.182	100.000	98.469
0.15		102.436	101.358	100.000	98.255
0.2		102.817	101.561	100.000	97.947
η :					
-2		102.252	101.357	100.000	98.070
-1		102.251	101.356	100.000	98.072
0		102.200	101.282	100.000	98.266
0.50		102.130	101.182	100.000	98.469
0.80		102.126	101.175	100.000	98.505

3 Channels

Decrease in generosity of public pensions increases private sector output via three channels:

- Human capital effect
- Income effect due to lower pensions when old
- Tax effect

These effects increase output directly or work via increases in savings.

Transition Paths after Policy Reform

Table: Transition from retiring early at 50, 55 and 60 to 65 with early retirees working on average 40% of their time in the private sector. Capital tax τ_K adjusts to clear the government budget constraint.

Welfare Analysis

Table: Compensating consumption given to individuals to offset the policy change that induces civil servants to postpone their retirement from age 55 to 65 in terms of life-time welfare per age cohort,

Conclusion

We have studied the effects of generous early retirement for civil servants on capital accumulation and long-run level of income.

- Decreasing early retirement benefits sharply, increases public sector retirement years from 55 to 65 and raises steady state income by over 2%.
- The transition lasts about 15 periods or 75 years.
- Extensions
 - Introduce intra generational heterogeneity to address distributional issues.
 - Introduce population aging.