Paper Review

A Osamu Katagiri Tanaka A01212611@itesm.mx

09 Dec 2019

- - Poly(styrene-co-butadiene)

Poly(styrene-co-a-methylstyrene)

- NFES

Good electrical conductivity and environmental stability for biomedical and technological applications

Polystyrene (PS)

Polyaniline (PANI)

However, the poor solubility of PANI in common solvents and low molecular weight interferes with electrospinning into uniform fibers

Previous Work (2009)

e-Polymers 2009, no. 114

http://www.e-polymers.org ISSN 1618-7229

Electrospinning polyaniline-polyacrylonitrile nanofibers

Fatemeh Raeesi, Mahdi Nouri,* Akbar Khodaparast Haghi

Department of Textile, University of Guilan, Rasht, Iran, P.O. Box 41625-3756; fax: +98-131-6690271; email: mnouri69@guilan.ac.ir

(Received: 08 November, 2008; published: 21 October, 2009)

Typically, the use of an insulating copolymer with high molecular weight is expected to act as a remedy

However, the presence of a nonconducting polymer modifies the properties of PANI

100% PAN Fiber diam: 652nm Fiber diam: 602nm

10% PANI w/PAN

20% PANI w/PAN

Fiber diam: 425nm

30% PANI w/PAN

100% PANI Fiber diam: 164nm Fiber diam: <NA>

The Paper (2012) ...

Polyaniline nanofibers: Towards pure electrospun PANI

Precursory polmer

Collector aluminium foil

P. Frontera, C. Busacca, P. Antonucci, M. Lo Faro, E. Falletta et al.

Citation: AIP Conf. Proc. 1459, 253 (2012); doi: 10.1063/1.4738460

View online: http://dx.doi.org/10.1063/1.4738460

"In this work we report the preparation of highly pure polyaniline fibers by

electrospinning process."

"Here we report a route to prepare PANI fibres reducing the PEO amount from 1 to 0% w/w with respect to the amount of PANI."

FFES - Process Parameters

Polymer precursor: PANI doped with Dodecyl Benzene Sulfonic Acid to produce PANI-DBSA

Solvent: Chloroform with different PEO to PANI-DBSA concentrations

Deposition temperature: 21 °C

Deposition rate: 707 µl/h

Needle-to-collector distance: 12 cm

Electrospinning variation: rotating drum as collector

high magnification

low magnification

PANI:PEO 1:1 w/w PANI:PEO 1:0.8 w/w PANI:PEO 1:0.2 w/w PANI:PEO 1:0.1 w/w Fiber diam: 597nm Fiber diam: 306nm Fiber diam: 259nm Fiber diam: 240

References

- 1. Cárdenas, B. (2017). Advanced Manufacturing Techniques for the Fabrication and Surface Modification of Carbon Nanowires, 160.
- 2. Flores, D. R. (2017). Role of rheological properties in near field electrospun fibers morphology, 130.

Previous work

The production of C-MEMS:

- 1. Polymer patterning through photolithography electrospinning
- 2. Carbonization through pyrolysis

Best Results so far by Braulio & Ricardo

Fiber yield rate of 81 % Fiber diameter before pyrolisis of 4.966 μm Fiber diameter after pyrolisis of 204 nm Fiber length of 60.5 \pm 4.3 μm Fiber resistance from 407 K Ω to 1.727 M Ω

Polymer Solutions

wt% PEO	SU-8 2002 [mg]	PEO [mg]	TBT [mg]
0.25	2246	5.65	11.32

= 2 ml of solution

Poly(ethylene oxide) (PEO)

With zero shear viscosity of 0.88 Pa.s electrospun at 600V (solution used to

get the results of the previous slide)

Next step -> Discover a new polymer solution to beat Braulio's record ...

wt% PEO Solution

The EMS polymer solution consisted of 2ml of SU-8 2002 mixed with 0.5 wt% of Poly(ethylene oxide) (PEO, 4,000,000 MW; SigmaAldrich Inc., Cat. N. 189464) and 0.5 wt% Tetrabutylammonium Tetrafluoroborate salts (TBATFB; SigmaAldrich Inc., Cat. N. 217964) to increase its conductivity and allow smooth polymer flow during electrospinning.

All reagents were used as received. Magnetic stirring of these components was performed for 1hr at 75°C and low rpm (100-150 rpm).

MICROCHEM CORP SU-8 2002 500ML

encempass

Manufacturer: MICROCHEM CORP Y111029

https://www.fishersci.com/shop/products/NC0702370/nc0702370#?keyword=MIC ROCHEM+CORP+PHOTORESIST+SU-8

MICROCHEM CORP SU-8 DEVELOPER 4L

enormpass

N,N Dimethylformamide (DMF)

Tetrabutylammonium tetrafluoroborate (TBF)

Cyclopentanone (CAS: 120-92-3)

Mixed Triarylsulfonium/Hexafluoroantimonate Salt (CAS: 89452-37-9)/(CAS: 71449-78-0)

Propylene Carbonate (CAS: 108-32-7)

Epoxy Resin (CAS: 28906-96-9)

2-(Chloromethyl)oxirane; formaldehyde; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol

Safety	Solvents	CAS Number	Presentation
	1-Methyl-2-pyrrolidinone (NMP)	872-50-4	anhydrous, 99.5% 328634-100ML 328634-1L
	Dichloromethane (Methylene chloride)	75-09-2	anhydrous, ≥99.8%, 40-150 ppm amylene as stabilizer 270997-100ML 270997-1L
	Dimethylacetamide (DMAc)	127-19-5	anhydrous, 99.8% 271012-100ML 271012-1L
250 ml	Dimethylformamide (DMF)	68-12-2	anhydrous, 99.8% 227056-100ML 227056-1L
1 L	Tetrahydrofuran (THF)	109-99-9	anhydrous, ≥99.9%, inhibitor-free 401757-1L
	Dihydrolevoglucosenone (Cyrene)	53716-82-8	807796-100ML 807796-1L
	Polymers		
	Polystyrene (PS)	9003-53-6	average Mw 192,000 430102-1KG
	Poly(styrene-co-butadiene)	9003-55-8	butadiene 4 wt. %, melt index 6 g/10 min (200°C/5kg) 430072-1KG
	Poly(styrene-co-α-methylstyrene)	9011-11-4	457205-250G
	Polybenzimidazole (PBI)	26985-65-9	rod, diam. 9.5 mm, L 25 mm, black GF31259527-1EA
	Polyaniline (PANI / emeraldine salt)	25233-30-1	average Mw >15,000, powder (Infusible), 3-100 μm particle size 428329-5G
	Polyvinylcarbazole (PVK)	25067-59-8	average Mw ~1,100,000, powder, 182605-5G

<subTitle>

<content> <key concept>

