# **Project Planning Phase**

# **Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)**

| Date          | 27 October 2023                             |
|---------------|---------------------------------------------|
| Team ID       | Team-593093                                 |
| Project Name  | Project – Eye Disease Prediction Using Deep |
|               | Learning                                    |
| Maximum Marks | 8 Marks                                     |

## **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

Use the below template to create product backlog and sprint schedule

| Sprint     | Functional Requirement (Epic)      | User Story<br>Number | User Story / Task                                                                                                                                                                                                                                                                                     | Story Points | Priority | Team<br>Members             |
|------------|------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------------------|
| Sprint-1,2 | Data Collection and Preprocessing  | USN-1                | As a Data Scientist, I want to Clean and preprocess the collected data, addressing issues like noise, artifacts, and inconsistent image resolutions.                                                                                                                                                  | 15           | High     | Mundru Dharani<br>Harshitha |
| Sprint-3,4 | Model Architecture and Development | USN-2                | As a Machine Learning Engineer, I want to Implement the selected model architecture using a deep learning framework (e.g., TensorFlow or PyTorch).  Train the model on the preprocessed dataset, optimizing hyperparameters and incorporating data augmentation techniques to enhance generalization. | 16           | High     | Bhavya Sri<br>Duggina       |
| Sprint-5,6 | Model Evaluation and Optimization  | USN-3                | As a Machine Learning Engineer, I want to Fine-tune the model by adjusting hyperparameters, including learning rate and batch size, to improve its predictive accuracy. Implement techniques like dropout and batch normalization to prevent overfitting and improve generalization.                  | 15           | High     | Harshith<br>Maride          |

| Sprint-7,8  | Model Deployment and Integration | USN-4 | As a Full Stack Developer, I want to Develop an API or web interface to enable users to submit images for disease prediction. Deploy the model on a cloud or server environment to make it accessible for real-time predictions. | 10 | Medium | Dushyanth<br>Narendra,<br>Bhavya Sri<br>Duggina                            |
|-------------|----------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|----------------------------------------------------------------------------|
| Sprint-9,10 | Testing and Evaluation           | USN-5 | As a Assurance Specialist, I want to test the track the model's performance, including prediction accuracy and response times.  Set up automated alerting and errorhandling mechanisms to address issues in real-time.           | 8  | Medium | Dharani Harshitha, Dushyanth Narendra, Bhavya Sri Duggina, Harshith Maride |

## **Project Tracker, Velocity & Burndown Chart: (4 Marks)**

| Sprint      | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points Completed (as on Planned End Date) | Sprint Release Date (Actual) |
|-------------|-----------------------|----------|-------------------|------------------------------|-------------------------------------------------|------------------------------|
| Sprint-1,2  | 15                    | 1 Days   | 20 Oct 2023       | 20 Oct 2023                  | 15                                              | 20 Oct 2023                  |
| Sprint-3,4  | 16                    | 4 Days   | 21 Oct 2023       | 24 Oct 2023                  | 16                                              | 24 Oct 2023                  |
| Sprint-5,6  | 15                    | 2 Days   | 24 Oct 2023       | 25 Oct 2023                  | 15                                              | 25 Oct 2023                  |
| Sprint-7,8  | 10                    | 3 Days   | 25 Oct 2023       | 27 Oct 2023                  | 10                                              | 27 Oct 2023                  |
| Sprint-9,10 | 8                     | 1 Day    | 27 Oct 2023       | 27 Oct 2023                  | 8                                               | 27 Oct 2023                  |
|             |                       |          |                   |                              |                                                 |                              |
|             |                       |          |                   |                              |                                                 |                              |
|             |                       |          |                   |                              |                                                 |                              |

Velocity:
The team velocity of the 11-day sprint duration is:

Velocity = (15+16+15+10+8)/5 = 12.8

Average Velocity = Sprint Duration/Velocity =11/12.8 =0.86

## **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



## TIMELINE:



### SPRINTS:











### **CUMULATIVE FLOW DIAGRAM:**



