Generatorne funkcije

13.11.2024.

1 Generatorne funkcije nizova

U ovoj lekciji upoznaćemo se sa pojmom funkcija generatrisa (generatornih funkcija), koje predstavljaju koristan alat u matematici, posebno u kombinatorici i analizi nizova. Funkcije generatrise omogućavaju nam da "kodiramo" informacije o nizu kroz koeficijente beskonačnog stepenog reda. Korišćenjem ovih funkcija, možemo rešavati razne probleme koji se odnose na prebrojavanje, analizu nizova, kao i rekurentne relacije. Takođe ćemo prikazati neke od najčešće korišćenih generatornih funkcija i demonstrirati njihove primene kroz konkretne primere i formule.

1.1 Pre nego što počnemo... podsetnik

Da bismo uveli pojam generatornih funkcija, potrebno je da se podsetimo pojma redova. Iako su redovi i generatorne funkcije slični, postoje važne razlike između njih koje ćemo razjasniti.

Definicija Stepeni red je beskonačna suma

$$\sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

U ovom izrazu, koeficijenti a_i čine niz koji red generiše, a x je promenljiva koja je osnova svakog člana. Ovaj oblik koristi se u mnogim oblastima matematike kao sredstvo za reprezentaciju funkcija pomoću beskonačnih suma.

Teorema Jedan poseban tip stepenog reda je beskonačni geometrijski niz. Zbir svih članova beskonačnog geometrijskog niza u kojem je |x| < 1 zadat je formulom

$$b+bx+bx^2+\ldots+bx^n+\ldots=\frac{b}{1-x}$$

Dokaz Neka je S zbir elemenata datog beskonačnog geometrijskog niza. Znamo da je

$$S = b + bx + bx^2 + bx^3 + \dots$$

Množenjem datog izraza sa x dobijamo

$$xS = bx + bx^2 + bx^3 + bx^4 + \dots$$

Oduzimanjem prethodne dve jednakosti dobijamo

$$(1-x)S = b \implies S = \frac{b}{1-x}$$

1.2 Definicija generatornih funkcija

Definicija Neka je $(a_0, a_1, a_2, ..., a_n, ...)$ niz realnih brojeva, tj. beskonačna uređena torka. Otvorena forma funkcije generatrise datog niza je onda stepeni red

$$\sum_{n \geq 0} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n + \dots$$

Uvodimo pojam zatvorene forme: Da ne bismo pisali otvorenu formu, generatornu funkciju možemo predstaviti i kroz zatvorenu formu

$$\sum_{n>0} a_n z^n = A(z)$$

Primetimo! Generatorna funkcija je red samo u simboličkom smislu, jer promenljiva z nije nepoznata i nikad ne dobija vrednost. Ona samo nosi eksponent da bi se znalo koji član po redu je u pitanju. Time nas ne zanima nikakva konvergencija, kao što je to slučaj kod redova.

Primer (*Važna generatorna funkcija!*) Posmatrajmo niz $\{a_n\}_{n\in\mathbb{N}}$ takav da je $(\forall n\in\mathbb{N})a_n=1$ tj.

$$(1, 1, 1, 1, \dots)$$

Njegova funkcija generatrisa je stepeni red sledećeg oblika

$$A(z) = 1 + z + z^2 + z^3...$$

što se, primenom formule za zbir beskonačnog geometrijskog reda koja je data svodi na

$$A(z) = \frac{1}{1-z}$$

1.3 Osobine generatornih funkcija

Posmatrajmo sledeće osobine funkcija generatrisa, koje nam mogu poslužiti za pronalaženje generatrise za proizvoljni niz. Dokaz ovih osobina sledi iz algebarskih osobina polinoma.

Osobina 1 (sabiranje) Neka su $(a_0, a_1, a_2, ...)$ i $(b_0, b_1, b_2, ...)$ dva niza i neka su A(z) i B(z) njihove zatvorene forme funkcije generatrise, redom. Generatrisa niza $(a_0 + b_0, a_1 + b_1, a_2 + b_2, ...)$ je onda A(z) + B(z)

Osobina 2 (*skaliranje*) Neka je $(a_0, a_1, a_2, ...)$ niz i neka je A(z) njegova generatrisa. Generatrisa niza $(ca_0, ca_1, ca_2, ...)$ gde je c realan broj data je sa cA(z)

Osobina 3 Neka je $(a_0, a_1, a_2, ...)$ niz i neka je A(z) njegova generatrisa. Generatrisa niza $(a_0, ca_1, c^2a_2, c^3a_3...)$ gde je c realan broj data je sa A(cz)

Osobina 4 (desno pomeranje) Neka je $(a_0, a_1, a_2, a_3, ...)$ niz i neka je A(z) njegova generatrisa. Generatrisa niza $(0, 0, 0, ...0, a_0, a_1, a_2, ...)$ gde niz počinje sa n nula je $z^n A(z)$

Osobina 5 (*levo pomeranje*) Ako je A(z) generatrisa niza $(a_0,a_1,a_2,...)$, onda je generatrisa niza $(a_n,a_{n+1},a_{n+2},...)$ jednaka

$$\underbrace{A(z) - (a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1} z^{n-1})}_{z^n}$$

Osobina 6 Ako je A(z) generatrisa niza $(a_0, a_1, a_2, ...)$, onda je generatrisa niza $(a_0, 0, 0, ..., 0, a_1, 0, 0, ..., 0, a_2, ...)$ gde između svakog ne-nultog člana imamo n-1 nula jednaka $A(z^n)$

Osobina 7 ($mno\check{z}enje$) Neka su $(a_0, a_1, a_2, ...)$ i $(b_0, b_1, b_2, ...)$ dva niza i neka su A(z) i B(z) njihove funkcije generatrise, redom. Funkcija $A(z) \cdot B(z)$ je onda generatrisa niza čiji je opšti član dat sa

$$c_n = \sum_{i=0}^n a_i b_{n-i}$$

Osobina 8 (*diferenciranje*) Neka je $(a_0, a_1, a_2, ...)$ niz i neka je A(z) njegova generatrisa. Generatrisa niza $(a_1, 2a_2, 3a_3, ..., na_n, ...)$ data je sa A'(z)

Osobina 9 (integraljenje) Neka je (a_0,a_1,a_2,\ldots) niz i neka je A(z) njegova generatrisa. Generatrisa niza $(0,a_0,\frac{1}{2}a_1,\frac{1}{3}a_2...,\frac{1}{n}a_{n-1},\ldots)$ data je sa $\int_0^z A(t)dt$

1.3.1 Računanje funkcije generatrise datog niza

Pomoću ovih osobina i činjenice da je generatrisa niza (1,1,1,...) jednaka $A(z)=\frac{1}{1-z}$ možemo naći generatrisu skoro svakog realnog niza

Primer 1 Naći funkciju generatrisu niza (1, 1, 2, 2, 4, 4, 8, 8, ...)

Započnimo od niza (1, 1, 1, 1, ...) i njegove generatrise

$$A(z) = \frac{1}{1-z}$$

Primenom osobine 3 dobijamo da je generatrisa niza (1, 2, 4, 8, ...) jednaka

$$B(z) = A(2z) = \frac{1}{1 - 2z}$$

Zatim, primenom osobine 6 dobijamo da je generatrisa niza (1,0,2,0,4,0,...) jednaka

$$C(z) = B(z^2) = \frac{1}{1 - 2z^2}$$

Nakon toga, primenom osobine 4 dobijamo da je generatrisa niza (0,1,0,2,0,4,...) jednaka

$$D(z)=zC(z)=\frac{z}{1-2z^2}$$

Konačno, sabiranjem prethodna dva niza i primenom osobine 1 dobijamo da je generatrisa traženog niza

$$E(z) = C(z) + D(z) = \frac{1+z}{1-2z^2}$$

Primer 2 Napisati otvoreni oblik funkcije

$$\frac{1}{1+2z}\frac{1}{1-3z}$$

Počnimo opet od činjenice da je generatrisa niza (1, 1, 1, ...) jednaka

$$A(z) = \frac{1}{1-z} = \sum_{i=0}^{\infty} z^{i}$$

Primenom osobine 3 dobijamo

$$B(z) = \frac{1}{1+2z} = A(-2z) = \sum_{n=0}^{\infty} (-2z)^n = 1-2z+4z^2+\dots$$

$$C(z) = \frac{1}{1 - 3z} = A(3z) = \sum_{n=0}^{\infty} (3z)^n = 1 + 3z + 9z^2 + \dots$$

(Prvi način) Množenjem ove dve funkcije dobijamo traženi otvoreni oblik

$$D(z) = B(z) \cdot C(z) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} (-2z)^{i} (3z)^{n-i}$$

(Drugi način) Dati proizvod možemo razložiti na zbir

$$\frac{2}{5} \frac{1}{1+2z} + \frac{3}{5} \frac{1}{1-3z}$$

Zamenom funckija B(z) i C(z) dobijamo

$$D(z) = \frac{2}{5}B(z) + \frac{3}{5}C(z) = \sum_{n=0}^{\infty} \frac{3^{n+1} + (-1)^n 2^{n+1}}{5} z^n$$

Iako smo dobili dve različite otvorene forme, može se dokazati da su jednake, tako što ćemo pokazati da niz $a_n = \sum_{i=0}^n (-2)^i (3)^{n-i}$ prati rekurentnu jednačinu $a_0 = 1, a_n = 3a_{n-1} + (-2)^n$, a zatim je rešiti i dobiti da je rešenje $a_n = \frac{3^{n+1} + (-1)^n 2^{n+1}}{5}$

```
[]: import sympy as sp
     # Definišemo promijenljivu z:
     z = sp.symbols("z")
     def generisi_funkciju_niza(zatvorena_forma, broj_clanova):
           Kreira funkciju niza iz zatvorene forme generatorne funkcije.
         :param zatvorena forma: Zatvorena forma generatorne funkcije (simbolički_{\sqcup}
      \hookrightarrow izraz \ u \ z).
         :param broj_clanova: Broj članova za prikaz i računanje vrednosti.
         :return: Funkcija koja računa n-ti član niza.
         # Razvijamo zatvorenu formu u stepeni red do željenog broja članova:
         otvorena_forma = sp.series(zatvorena_forma, z, 0, broj_clanova).removeO()
         # Uzimamo koeficijente redom (od z^0 do z^(broj_clanova-1)):
         koeficijenti = [otvorena_forma.coeff(z, i) for i in range(broj_clanova)]
         # Kreiramo funkciju niza koja vraća n-ti član:
         def funkcija_niza(n):
             if n < len(koeficijenti):</pre>
                  return koeficijenti[n]
```

```
else:
            print("Nema dovoljno članova u razvijenom nizu. Povećajte broju
  ⇔članova.")
            return None
    return funkcija niza
broj_clanova = int(input("Unesite željeni broj članova niza: "))
# Primjer za Fibonačijev niz: z/(1-z-z**2)
unos = input("Unesite zatvorenu formu koristeći z kao simbol (npr. '1/(1 - z)'):
 □ )
try:
    zatvorena_forma = sp.sympify(unos)
except sp.SympifyError:
    print("Greška pri unosu. Provjerite da li je izraz ispravno unijet.")
funkcija niza = generisi funkciju niza(zatvorena forma, broj_clanova)
print(f"\nPrvih {broj_clanova} članova niza:")
for n in range(broj_clanova):
    print(f"a({n}) =", funkcija_niza(n))
Unesite željeni broj članova niza: 10
Unesite zatvorenu formu koristeći z kao simbol (npr. '1/(1 - z)'): z/(1-z-z**2)
Prvih 10 članova niza:
a(0) = 0
a(1) = 1
a(2) = 1
a(3) = 2
a(4) = 3
a(5) = 5
a(6) = 8
a(7) = 13
a(8) = 21
a(9) = 34
```

1.4 Primena funkcija generatrisa

Generatorne funkcije predstavljaju moćan alat u kombinatorici i diskretnoj matematici, omogućavajući nam da na efikasan način analiziramo i manipulišemo nizovima i sekvencama podataka. Njihova primena obuhvata širok spektar problema, od prebrojavanja kombinatornih objekata, rešavanja rekurentnih relacija, pa sve do dokazivanja različitih identiteta. Kroz transformaciju diskretnih nizova u formalne funkcije, generatorne funkcije pružaju sredstvo za bolje razumevanje strukture i ponašanja nizova, što je naročito korisno u situacijama kada su klasične tehnike nedovoljno fleksibilne ili složene za analizu.

1.4.1 Generatorne funkcije i binomna formula

Definicija Neka je k nenegativan ceo broj, a u proizvoljan realan broj. Uopšteni binomni koeficijent, u oznaci $\binom{u}{k}$, definisan je sa

Primeri

1. Za $\binom{-1}{k}$ imamo:

$$\binom{-1}{k} = \frac{(-1)(-2)(-3)\dots(-1-k+1)}{k!} = \frac{(-1)^k \cdot 1 \cdot 2 \cdot \dots \cdot k}{k!} = (-1)^k$$

2. Za $\binom{-2}{k}$ imamo:

$$\binom{-2}{k} = \frac{(-2)(-3)\dots(-2-k+1)}{k!} = \frac{(-1)^k \cdot 2 \cdot 3 \cdot \dots \cdot (k+1)}{k!} = (k+1)(-1)^k$$

3. Za $\binom{-3}{k}$ imamo:

$$\binom{-3}{k} = \frac{(-3)(-4)\dots(-3-k+1)}{k!} = \frac{(-1)^k \cdot 3 \cdot 4 \dots (k+2)}{k!} \cdot \frac{2}{2} = \frac{(k+2)(k+1)}{2} (-1)^k$$

Teorema (uopštena binomna formula) Neka je u proizvoljan realan broj. Tada je

$$(1+z)^u = \sum_{n>0} \binom{u}{n} z^n.$$

Dokaz Pomoću Maklorenovog polinoma, što je poznato iz algebre.

Primer Odrediti otvoren oblik generatorne funkcije ako je njen zatvoren oblik:

$$\frac{1}{1-cz} = (1-cz)^{-1} = \sum_{n \geq 0} \binom{-1}{n} (-cz)^n = \sum_{n \geq 0} (-1)^n (-1)^n (cz)^n = \sum_{n \geq 0} (cz)^n$$

Primer Odrediti otvorene oblike generatornih funkcija, ako su zatvoreni oblici: 1. Za $\frac{1}{(1-z)^m}$ imamo:

$$\frac{1}{(1-z)^m} = (1-z)^{-m} = \sum_{n \ge 0} \binom{-m}{n} (-z)^n = \sum_{n \ge 0} \binom{m+n-1}{n} z^n$$

2. Za $\frac{1}{(1-z)^2}$ imamo:

$$\frac{1}{(1-z)^2} = \sum_{n>0} \binom{n+1}{n} z^n = \sum_{n>0} (n+1)z^n$$

3. Za $\frac{1}{(1-z)^3}$ imamo:

$$\frac{1}{(1-z)^3} = \sum_{n \geq 0} \binom{n+2}{n} z^n = \sum_{n \geq 0} \frac{(n+2)(n+1)}{2} z^n$$

1.4.2 Rešavanje rekurentnih relacija pomoću generatornih funkcija

Primer 1 Koristi generatorne funkcije da rešiš rekurentnu relaciju $a_n = 5a_{n-1} - 6a_{n-2}$ sa početnim uslovima $a_0 = 6$ i $a_1 = 30$.

Rešenje Da bismo rešili rekurentnu relaciju $a_n=5a_{n-1}-6a_{n-2}$ sa početnim uslovima $a_0=6$ i $a_1=30$ koristeći generatorne funkcije, krenimo korak po korak.

Definišemo generatornu funkciju: neka je $A(z) = \sum_{n \geq 0} a_n z^n$, generatorne funkcija za niz (a_n) .

Rekurentna relacija glasi $a_n=5a_{n-1}-6a_{n-2},$ što možemo zapisati u obliku sume kao

$$\sum_{n>0} a_n z^n = 5 \sum_{n>0} a_{n-1} z^n - 6 \sum_{n>0} a_{n-2} z^n$$

Da bismo izrazili sve sume u obliku $\sum_{n\geq 2} a_n z^n,$ promenićemo indekse

$$\sum_{n\geq 2}a_nz^n=A(z)-a_0-a_1z$$

$$\sum_{n\geq 2}a_{n-1}z^n=z(A(z)-a_0)$$

$$\sum_{n\geq 2}a_{n-2}z^n=z^2A(z)$$

Ubacujemo ove izraze nazad u relaciju

$$A(z) - a_0 - a_1 z = 5z(A(z) - a_0) - 6z^2 A(z)$$

Uvedemo početne uslove $a_0 = 6$ i $a_1 = 30$

$$A(z) - 6 - 30z = 5z(A(z) - 6) - 6z^{2}A(z)$$

Pomerimo sve članove sa A(z) na levu stranu i članove bez A(z) na desnu

$$A(z) - 5zA(z) + 6z^2A(z) = 6$$

Odavde je $A(z) = \frac{6}{1-5z+6z^2} = \frac{18}{1-3z} - \frac{12}{1-2z}$.

Sada, da bismo našli zatvorenu formu za A(z), koristićemo sumu u obliku geometrijskog niza.

Za prvi član

$$\frac{1}{1-2z} = \sum_{n\geq 0} (2z)^n = \sum_{n\geq 0} 2^n z^n$$

Dakle, prvi član postaje

$$\frac{-12}{1-2z} = -12\sum_{n\geq 0} 2^n z^n$$

Za drugi član

$$\frac{1}{1-3z} = \sum_{n\geq 0} (3z)^n = \sum_{n\geq 0} 3^n z^n$$

Dakle, drugi član postaje

$$\frac{18}{1 - 3z} = 18 \sum_{n \ge 0} 3^n z^n$$

Sada možemo da napišemo A(z) kao sumu

$$A(z) = -12 \sum_{n \geq 0} 2^n z^n + 18 \sum_{n \geq 0} 3^n z^n$$

tj.

$$A(z) = \sum_{n \ge 0} \left(-12 \cdot 2^n + 18 \cdot 3^n \right) z^n$$

Dakle, zatvorena forma za A(z) je

$$A(z) = \sum_{n \ge 0} \left(-12 \cdot 2^n + 18 \cdot 3^n \right) z^n$$

Sledi da je eksplicitna formula za a_n jednaka

$$a_n = 6(3^{n+1} - 2^{n+1})$$

Primer 2 (formiranje rekurentne relacije) Računarski sistem smatra niz decimalnih cifara važećom kodnom rečju ako taj niz sadrži paran broj nula. Na primer, 1230407869 je validna kodna reč, dok 120987045608 nije. Postavite rekurentnu relaciju za a_n .

Rešenje

Za a_1 imamo 10 mogućih jednocifrenih nizova (brojevi od 0 do 9). Međutim, broj 0 nije validan jer sadrži samo jednu cifru 0, što nije paran broj. Dakle, za $a_1 = 9$ postoji 9 validnih jednocifrenih kodnih reči (1, 2, 3, ..., 9).

Zadatak je da pomoću rekurentne relacije pronađemo kako se broj validnih n-cifrenih kodnih reči može povezati sa brojem validnih n-1-cifrenih kodnih reči.

Postoje dva disjunktna slučaja prema kojima možemo formirati validnu kodnu reč sa n cifara:

1. **Dodavanje cifre koja nije 0**: Ako imamo validan niz od n-1 cifara, možemo mu dodati bilo koju cifru osim 0 (1 do 9). Na ovaj način, broj validnih nizova se povećava za $9a_{n-1}$, jer možemo dodati jednu od 9 cifara na bilo koji od validnih nizova dužine n-1.

2. **Dodavanje cifre 0 na nevalidan niz**: Ako imamo nevalidan niz od n-1 cifara, i na njega dodamo cifru 0, dobićemo validan niz sa n cifara. Nevalidan niz od n-1 cifara mora imati **neparan** broj cifara 0 (jer će dodavanje 0 učiniti ukupan broj 0 cifara parnim). Dakle, broj takvih mogućnosti je broj nevalidnih nizova dužine n-1, što je $10^{n-1}-a_{n-1}$, jer postoji ukupno 10^{n-1} mogućih nizova, a a_{n-1} njih je validno.

Unija ova dva disjunktna skupa je, po principu zbira, ukupan broj validnih n-cifrenih kodnih reči:

$$a_n = 9a_{n-1} + (10^{n-1} - a_{n-1})$$

tj.

$$a_n = 8a_{n-1} + 10^{n-1}, a_1 = 9$$

Primer 2 (formiranje generatorne funkcije) Pretpostavimo da je važeća kodna reč n-cifreni broj u decimalnom zapisu koji sadrži paran broj nula. Neka a_n označava broj važećih kodnih reči dužine n. U prošlom zadatku pokazali smo da niz $\{a_n\}$ zadovoljava rekurentnu relaciju $a_n = 8a_{n-1} + 10^{n-1}$ i početni uslov $a_1 = 9$. Koristeći generetorne funkcije naći eksplicitnu formulu za a_n .

Rešenje

Da bismo pojednostavili rad sa funkcijama generisanja, proširujemo ovu sekvencu tako što postavljamo $a_0=1$. Kada dodelimo ovu vrednost a_0 i koristimo rekurentnu relaciju, dobijamo:

$$a_1 = 8a_0 + 10^{1-1} = 8 \times 1 + 1 = 9,$$

što je u skladu sa našim početnim uslovom. (Ima smisla jer postoji jedan kodni niz dužine 0 — prazan string.)

Zatim, pomnožimo obe strane rekurentne relacije sa z^n da bismo dobili:

$$a_n z^n = 8a_{n-1} z^n + 10^{n-1} z^n.$$

Neka $A(z) = \sum_{n\geq 0} a_n z^n$ bude generatorna funkcija niza a_0, a_1, a_2, \dots Sabrali smo obe strane poslednje jednačine počevši od n=1, da bismo dobili

$$A(z)-a_0=\sum_{n\geq 1}a_nz^n=\sum_{n\geq 1}\left(8a_{n-1}z^n+10^{n-1}z^n\right).$$

Prva suma se može prepisati kao

$$\sum_{n\geq 1} 8a_{n-1}z^n = 8z\sum_{n\geq 1} a_{n-1}z^{n-1} = 8zA(z),$$

a druga suma je

$$\sum_{n\geq 1} 10^{n-1} z^n = z \sum_{n\geq 0} 10^n z^n = \frac{z}{1 - 10z},$$

prema poznatoj formuli za sumu geometrijskog niza.

Dakle, imamo

$$A(z) - 1 = 8zA(z) + \frac{z}{1 - 10z}$$
.

Rešavanjem za A(z), dobijamo

$$A(z) = \frac{1 - 9z}{(1 - 8z)(1 - 10z)}.$$

tj.

$$A(z) = \frac{1}{2} \left(\frac{1}{1 - 8z} + \frac{1}{1 - 10z} \right).$$

Koristeći formulu za generatornu funkciju geometrijskih nizova sledi

$$A(z) = \frac{1}{2} \left(\sum_{n \ge 0} 8^n z^n + \sum_{n \ge 0} 10^n z^n \right).$$

Na kraju, dobijamo eksplicitnu formulu za a_n , broj validnih n-cifrenih kodnih reči

$$a_n = \frac{1}{2}(8^n + 10^n).$$

1.4.3 Rešavanje celobrojnih jednačina pomoću generatornih funkcija

Primer Majica se prodaje u tri boje: plavoj, sivoj i beloj. Kupac želi 3 komada: S i B do 1 komad, P do 3. Na koliko načina se ova kupovina može ostvariti?

Rešenje Prvi faktor: 0-3 plave majice, druga dva za 0 ili 1 sivu/belu majicu Traženi broj kombinacija sa ponavljanjem je koeficijent uz x^3 , jednak je 4 i odgovara sledećim kombinacijama: PPP, PPS, PPB, PBS.

Primer Pronađi generatornu funkciju za broj načina na koji agent za oglašavanje može da kupi n minuta $(n \in Z^+)$ vremena za reklame ako vremenski slotovi za reklame dolaze u blokovima od 30, 60 ili 120 sekundi.

Rešenje Neka 30 sekundi predstavlja jednu vremensku jedinicu. Tada je odgovor broj celobrojnih rešenja za jednačinu

$$a + 2b + 4c = 2n$$
 , $0 < a, b, c$,

Asocirana generatorna funkcija je

$$\begin{split} f(x) &= (1+x+x^2+\dots)(1+x^2+x^4+\dots)(1+x^4+x^8+\dots) \\ &= \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^4}, \end{split}$$

i koeficijent uz

$$x^{2n}$$

predstavlja broj particija od 2n u jedinice, dvojke i četvorke, što je rešenje zadatka.

Primer Kutija sadrži 30 crvenih, 40 plavih i 50 belih lopti. Lopte iste boje se ne razlikuju međusobno. Na koliko načina se može izabrati 70 lopti iz kutije?

Rešenje Broj koji tražimo je jednak koeficijentu uz x^{70} u proizvodu

$$(1+x+x^2+\cdots+x^{30})(1+x+x^2+\cdots+x^{40})(1+x+x^2+\cdots+x^{50}).$$

Ovaj izraz nećemo množiti, nego ćemo iskoristiti činjenicu da je

$$1 + x + x^2 + \dots + x^{30} = \frac{1 - x^{31}}{1 - x},$$

što je zbir konačne geometrijske progresije.

Ceo proizvod se sada može napisati kao

$$\frac{1-x^{31}}{1-x} \cdot \frac{1-x^{41}}{1-x} \cdot \frac{1-x^{51}}{1-x} = (1-x)^{-3}(1-x^{31})(1-x^{41})(1-x^{51}).$$

Činilac $(1-x)^{-3}$ može da se razvije u stepeni red prema uopštenoj binomnoj teoremi:

$$\sum_{n>0} \binom{-3}{n} (-1)^n x^n = \sum_{n>0} \frac{(n+2)(n+1)}{2} (-1)^n (-1)^n x^n = \sum_{n>0} \frac{(n+2)(n+1)}{2} x^n.$$

U proizvodu preostalih činilaca $(1-x^{31})(1-x^{41})(1-x^{51})$ je dovoljno naći koeficijente samo za stepene do x^{70} . Stoga dobijamo proizvod $\left(\binom{2}{2}+\binom{3}{2}x+\binom{4}{2}x^2+\binom{5}{2}x^3+\dots\right)\cdot \left(1-x^{31}-x^{41}-x^{51}+\dots\right)$, gde u drugom paru zagrada stoji ... umesto stepena većih od x^{70} (najmanji stepen od tih ostalih članova je $x^{31}\cdot x^{41}=x^{72}$).

Koeficijent uz x^{70} u ovom proizvodu, što je i traženi broj izbora lopti iz kutije, jednak je

$$\binom{70+2}{2} - \binom{70+2-31}{2} - \binom{70+2-41}{2} - \binom{70+2-51}{2} = 1061.$$

1.4.4 Dokazivanje identiteta pomoću generatornih funkcija

Zadatak Koristeći generatorne funkcije, dokazati identitet

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

za svako $n \in \mathbb{N}$.

Rešenje. Posmatraćemo identitet

$$(1+x)^n \cdot (1+x)^n = (1+x)^{2n}$$

Prema binomnoj formuli, koeficijent uz x^n u razvoju stepena binoma $(1+x)^{2n}$ jednak je $\binom{2n}{n}$. Ako posmatramo polinom p(x) sa leve strane i primenimo binomnu formulu, dobijamo

$$p(x) = \left(1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n\right) \cdot \left(1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n\right).$$

Primetimo da je

$$p(x) = \sum_{i \geq 0} a_i x^i \cdot \sum_{i \geq 0} b_i x^i, \quad \text{gde je } a_i = b_i = \begin{cases} \binom{n}{i}, & i \in \{0, \dots, n\} \\ 0, & \text{inače.} \end{cases}$$

Prema definiciji proizvoda, dobijamo

$$\begin{split} p(x) &= \sum_{m=0}^{2n} \left(\sum_{j=0}^m a_j b_{m-j} \right) x^m \\ &= \sum_{m=0}^n \left(\sum_{j=0}^m a_j b_{m-j} \right) x^m + \sum_{m=n+1}^{2n} \left(\sum_{j=0}^m a_j b_{m-j} \right) x^m \\ &= \sum_{m=0}^n \left(\sum_{j=0}^m \binom{n}{j} \binom{n}{m-j} \right) x^m + \sum_{m=n+1}^{2n} \left(\sum_{j=0}^m a_j b_{m-j} \right) x^m. \end{split}$$

Koeficijent uz x^n dobijamo kada u prvoj sumi posmatramo član za koji je m=n, a to je

$$\sum_{j=0}^{n} \binom{n}{j} \binom{n}{n-j} = \sum_{j=0}^{n} \binom{n}{j}^2 = \binom{2n}{n}$$

1.4.5 Neke korisne generatorne funkcije

G(z)	Zatvorena forma	Otvorena forma
$\frac{1}{1-z}$	$\sum_{k=0}^{\infty} z^{k} \\ \sum_{k=0}^{\infty} (-1)^{k} z^{k} \\ \sum_{k=0}^{\infty} z^{mk} \\ \sum_{k=0}^{\infty} c^{k} z^{k} \\ \sum_{k=0}^{\infty} {m+k-1 \choose k} z^{k}$	$1 + z + z^{2} + z^{3} + \dots$ $1 - z + z^{2} - z^{3} + \dots$
$\frac{\overline{1+z}}{1-z^m}$	$\sum_{\substack{k=0\\ k \neq 0}} (-1)^{2} z$	$1 + z^m + z^{2m} + z^{3m} + \dots$
$ \frac{\frac{1}{1-z}}{\frac{1}{1+z}} \frac{\frac{1}{1+z}}{\frac{1}{1-z^m}} \frac{\frac{1}{1-cz}}{\frac{1}{(1-z)^m}} $	$\sum_{k=0}^{\infty} c^k z^k $ $\sum_{k=0}^{\infty} {m+k-1 \choose k} z^k$	$1 + cz + c^2 z^2 + c^3 z^3 + \dots$ $1 + mz + {\binom{m+1}{2}} z^2 + {\binom{m+2}{3}} z^3 + \dots$
$\frac{z}{(1-z)^2}$	$\sum_{k=0} \kappa z^{\kappa}$	$0 + z + 2z^2 + 3z^3 + \dots$
$(1+z)^c$	$\sum_{k=0}^{\infty} {c \choose k} z^k$ $\sum_{k=0}^{\infty} \frac{z^k}{k!}$	$1 + cz + \binom{c}{2}z^2 + \binom{c}{3}z^3 + \dots$
e^z	$\sum_{k=0}^{\infty} \frac{z^k}{k!}$	$1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$

1.5 Zadaci

Zadatak 1. Naći zatvorenu formu genratorne funkcije $\sum_{n\geq 0}(n+1)^2z^n.$

Zadatak 2. Koliko različitih načina postoji da se osam istih kolačića podeli među troje različite dece, ako svako dete dobije najmanje dva kolačića, a najviše četiri?

Zadatak 3. Pronađite eksplicitnu formulu Fibonačijevog niza koristeći generatorne funkcije.