1. INSTALAÇÃO DO SENSOR HC-SR04

DESCRIÇÃO:

1.1. Posicionamento do Sensor

Para garantir uma medição precisa, o sensor ultrassônico HC-SR04 deve ser instalado em ambas as extremidades de cada corredor do supermercado. Escolha uma altura que permita detectar pessoas, evitando interferências de objetos ou carrinhos de compras. Certifique-se de que o alcance máximo do sensor cobre toda a largura do corredor, que não deve exceder 2 metros.

1.2. Conexão ao Arduino

Primeiramente, conecte os pinos do sensor HC-SR04 à protoboard, usando fios jumpers. Ligue os pinos VCC e GND do sensor aos terminais correspondentes na placa Arduino (5V e GND, respectivamente). Em seguida, conecte os pinos Trigger e Echo do sensor aos pinos digitais 12 e 13 do Arduino. Após isso, conecte a placa Arduino à máquina física que processará os dados, utilizando um cabo USB adequado. Certifique-se de que as conexões estão firmes para evitar falhas.

Visualização:

PASSO A PASSO:

Passo 1: Posicionar o Sensor

- 1. Escolha o início e o fim de cada corredor como pontos de instalação.
- 2. Fixe o sensor HC-SR04 em uma superfície estável, garantindo que ele esteja alinhado com o corredor.
- 3. Certifique-se de que o sensor esteja posicionado em uma altura que detecte pessoas sem interferências de objetos no chão.

Passo 2: Conectar os Componentes

- 1. Conecte os pinos do sensor HC-SR04 na protoboard:
 - **VCC**: Alimente com 5V.
 - **GND**: Conecte ao GND.
 - **Trigger**: Conecte ao pino digital 9 no Arduino.
 - **Echo**: Conecte ao pino digital 10 no Arduino.
- 2. Use fios jumper para ligar os pinos da protoboard aos pinos correspondentes na placa Arduino Uno R3.

Passo 3: Conectar ao Computador

- 1. Use um cabo USB para conectar a placa Arduino ao computador físico que irá capturar os dados.
- 2. Verifique se o LED indicador do Arduino acende, confirmando a conexão.

Visualização:

2. CONFIGURAÇÃO DO SOFTWARE

2.1. Instalação do Arduino IDE

Baixe e instale o software Arduino IDE, disponível gratuitamente no site oficial da Arduino. Após instalar, conecte a placa Arduino ao computador e abra o software. No menu Ferramentas, selecione a placa "Arduino Uno" e configure a porta COM correspondente ao dispositivo. Isso permite que o computador se comunique diretamente com a placa.

2.2. Uso do Arduino IDE

No Arduino IDE, você pode escrever códigos que controlam o funcionamento do sensor. Utilize o editor para desenvolver o código, verificando erros clicando no botão "√" na interface. Carregue o código no Arduino utilizando o botão de upload. Para visualizar os dados capturados pelo sensor, utilize o Monitor Serial, acessível no menu Ferramentas. O Ploter Serial também é uma ferramenta útil para observar gráficos de leitura em tempo real.

PASSO A PASSO:

Passo 1: Instalar o Arduino IDE

- 1. Acesse o site oficial do Arduino (arduino.cc) e faça o download da versão adequada ao seu sistema operacional.
- 2. Instale o programa seguindo as instruções na tela.

Passo 2: Configurar o Arduino IDE

- 1. Conecte o Arduino ao computador via USB.
- 2. Abra o Arduino IDE.
- 3. Vá até Ferramentas > Placa e selecione Arduino Uno.
- 4. Em Ferramentas > Porta, escolha a porta COM onde o Arduino está conectado.

Passo 3: Escrever o Código

- 1. No Editor de Código, escreva ou copie o código necessário para capturar os dados do sensor.
- 2. Clique no botão "√" (Verificador) para verificar o código.
- 3. Clique na seta (Upload) para carregar o código na placa.

Visualização:

Editor de código, verificardor, upload de código, monitor serial e ploter serial.

Selecionando a placa Arduino Uno e a porta serial correta no menu de ferramentas:

```
File Edit Sketch Tools Help
               4 Arduino Uno
                                                                                                 V 0
     codigo_Arduino.ino
            #include <Ultrasonic.h>
            #include "Ultrasonic.h"
             const int PINO TRIGGER = 12;
        5
             const int PINO_ECH0 = 13;
             HC_SR04 sensor(PINO_TRIGGER, PINO_ECHO);
0
        10
             void setup(){
        11
        12
               Serial.begin(9600);
        13
        14
        15
             void loop(){
        16
               Serial.println(sensor.distance());
        17
        18
              delay(1000);
        19
```

Escrevendo o código para coletar e processar os dados do sensor:

3. CONFIGURAÇÃO DO VSCODE

DESCRIÇÃO:

3.1. Instalação e Configuração

Baixe e instale o Visual Studio Code, uma ferramenta poderosa para desenvolvimento de software. Após instalar, adicione extensões como Node.js, Serial Monitor e MySQL para facilitar o desenvolvimento e integração com o Arduino. No VSCode, você poderá editar os códigos para manipular os dados capturados e armazená-los no banco de dados.

3.2. Preparação do Código

No código fornecido, estão configurados um servidor Node.js e uma conexão com o banco de dados MySQL. Certifique-se de alterar as configurações do banco para corresponder às credenciais do seu ambiente. Salve e execute o código para garantir que o servidor está funcionando corretamente.

PASSO A PASSO:

Passo 1: Instalar o Visual Studio Code

- 1. Baixe o <u>VSCode</u> e instale no computador.
- 2. Abra o programa após a instalação.

Passo 2: Instalar Extensões Necessárias

- 1. No menu lateral, clique em "Extensões" (ícone de quadrados).
- 2. Procure e instale:
 - Node.js Extension Pack.
 - · Serial Monitor.
 - · MySQL.

Passo 3: Configurar o Projeto

- 1. Crie uma nova pasta para o projeto.
- 2. Adicione o código fornecido neste manual ao arquivo principal do projeto (ex.: app. js).

4. CONFIGURAÇÃO DO SERVIDOR

DESCRIÇÃO:

4.1. Preparando o Ambiente

Antes de executar o servidor, instale o Node.js. Após a instalação, no terminal do VSCode, navegue até o diretório do projeto e execute o comando npm install. Isso garantirá que todas as dependências necessárias, como serialport, express e mysql2, sejam instaladas corretamente.

4.2. Iniciando o Servidor

Com as dependências instaladas, inicie o servidor utilizando o comando <code>npm start</code>. O servidor será executado na porta 3300, e os dados capturados pelo sensor serão disponibilizados para acesso em endpoints como <code>http://localhost:3300/sensores/digital</code>. Certifique-se de que o servidor está ativo antes de prosseguir para os testes.

PASSO A PASSO:

Passo 1: Instalar Node.js

- 1. Acesse o site oficial do Node.js e baixe a versão LTS.
- 2. Instale o Node.js seguindo as etapas no instalador.

Passo 2: Configurar o Ambiente

1. No terminal, navegue até a pasta do projeto:

```
bash
Copiar código
cd /caminho/da/pasta/projeto
```

2. Instale as dependências necessárias:

```
bash
Copiar código
npm install serialport express mysql2
```

Passo 3: Iniciar o Servidor

1. Inicie o servidor com:

```
bash
Copiar código
npm start
```

2. Confirme que o servidor foi iniciado com sucesso verificando a mensagem no terminal:

```
yaml
Copiar código
API executada com sucesso na porta 3300.
```

5. CONEXÃO ENTRE MÁQUINAS VIA IPv4

DESCRIÇÃO:

Para acessar os dados em outras máquinas na mesma rede, você precisará do endereço IPv4 do servidor. Em máquinas Windows, abra o Prompt de Comando e digite ipconfig para localizar o endereço IPv4. Substitua localhost pelo IPv4 no código ou no software cliente. Por exemplo, o endpoint http://localhost:3300/sensores/digital será acessado como http://[IPv4]:3300/sensores/digital. Certifique-se de que o firewall está configurado para permitir conexões na porta 3300.

PASSO A PASSO:

Passo 1: Obter o Endereço IPv4

- 1. Abra o terminal do sistema operacional.
- 2. Use o comando ipconfig (Windows) ou ifconfig (Linux/Mac) para encontrar o IPv4 da máquina onde o servidor está rodando.

Passo 2: Configurar o Cliente

- 1. Substitua localhost pelo endereço IPv4 encontrado.
- 2. Acesse o servidor pela URL:

arduino Copiar código http://[IPv4]:3300/sensores/digital

6. BANCO DE DADOS MYSQL

6.1. Configuração Inicial

O banco de dados MySQL é utilizado para armazenar os dados capturados pelo sensor. Configure um servidor MySQL e crie uma tabela chamada medicao. Insira as credenciais corretas no código do servidor para garantir a conexão. Por padrão, as configurações incluem o host 10.18.35.80, porta 3307, usuário Spacesense e senha Space@34231.

6.2. Testando a Conexão

Execute o servidor e verifique se os dados do sensor estão sendo registrados corretamente no banco de dados. Utilize ferramentas como MySQL Workbench ou um terminal para inspecionar os dados inseridos na tabela medicao.

7. TESTES E VALIDAÇÃO

DESCRIÇÃO:

Para validar o sistema, inicie com testes básicos no Monitor Serial para garantir que os sensores estão capturando dados corretamente. Em seguida, verifique se o servidor está operacional e se os dados estão sendo transmitidos para o banco de dados. Por último, simule conexões entre máquinas na rede local para garantir que o sistema está acessível externamente.

PASSO A PASSO:

Passo 1: Testar o Sensor

- 1. Abra o Monitor Serial no Arduino IDE.
- 2. Confirme que os valores de distância estão sendo capturados corretamente.

Passo 2: Testar a API

- 1. Abra um navegador ou ferramenta como Postman.
- 2. Acesse:

```
bash
Copiar código
http://localhost:3300/sensores/digital
```

3. Verifique se os dados capturados estão sendo exibidos corretamente.

Passo 3: Verificar o Banco de Dados

- 1. Conecte-se ao MySQL.
- 2. Execute um comando para visualizar os dados na tabela medicao:

```
sql
Copiar código
SELECT * FROM medicao;
```