

Name: _	
Teacher: _.	
Class:	

2015 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

Time allowed: 2 hours (plus 5 minutes reading time)

Syllabus	Assessment Area Description and Marking Guidelines	Questions
Outcomes		
	Chooses and applies appropriate mathematical techniques in	1-10
	order to solve problems effectively	
HE2, HE4	Manipulates algebraic expressions to solve problems from topic	11, 12
	areas such as inverse functions, trigonometry, polynomials and	
	circle geometry.	
HE3, HE5	Uses a variety of methods from calculus to investigate	13
HE6	mathematical models of real life situations, such as projectiles,	
	kinematics and growth and decay	
HE7	Synthesises mathematical solutions to harder problems and	14
	communicates them in appropriate form	

Total Marks 70

Section I 10 marks

Multiple Choice, attempt all questions, Allow about 15 minutes for this section

Section II 60 Marks

Attempt Questions 11-14,

Allow about 1 hour 45 minutes for this section

General Instructions:

- Questions 11-14 are to be started in a new booklet.
- The marks allocated for each question are indicated.
- In Questions 11 14, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used.

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 60	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
	Percent	

SECTION I (One mark each)

Answer each question by circling the letter for the correct alternative on this sheet.

Allow about 15 minutes for this section.

- Which expression is a correct factorisation of $x^3 + 64$ 1
 - (A) $(x-4)(x^2-4x+16)$
 - (B) $(x-4)(x^2-8x-16)$
 - (C) $(x+4)(x^2+4x-16)$
 - (D) $(x + 4) (x^2 4x + 16)$
- Which expression is equal to $\int \sin^2 3x \ dx$? 2

 - (A) $\frac{1}{2} (x \frac{1}{3}\sin 3x) + C$ (B) $\frac{1}{2} (x + \frac{1}{3}\sin 3x) + C$ (C) $\frac{1}{2} (x \frac{1}{6}\sin 6x) + C$ (D) $\frac{1}{2} (x + \frac{1}{6}\sin 6x) + C$
- 3 Which inequality has the same solutions as

$$|x+2|+|x-3|=5$$
?

- $x^2 x 6 \le 0$
- (B) $\frac{1}{x-3} \frac{1}{x+2} \le 0$
- (C)
- $(D) \qquad \frac{5}{3-x} \ge 1$
- A Mathematics department consists of 5 female and 5 male teachers. How many 4 committees of 3 teachers can be chosen which contain at least one female and one male?
 - (A) 100
 - (B) 120
 - (C) 200
 - (D) 2500
- Consider the function $f(x) = \frac{2x}{x+1}$ and its inverse function $f^{-1}(x)$. Evaluate $f^{-1}(3)$. 5
 - (A) -3
 - (B)
 - (C)
 - (D)

6 Which group of three numbers could be the roots of the polynomial equation

$$x^3 + a x^2 - 41 x + 42 = 0$$
?

- (A) 2, 3, 7
- (B) 1, -6, 7
- (C) -1, -2, 21
- (D) -1, -3, -14
- 7 A family of ten people is seated randomly around a circular table. What is the probability that the two oldest members of the family sit together?
 - (A) $\frac{2!6!}{10!}$
 - (B) $\frac{8!2!}{10!}$
 - (C) $\frac{8!2!}{9!}$
 - (D) $\frac{9!2!}{9!}$
- 8) Let x = 1 be a first approximation to the root of the equation $\cos x = \log_e x$.

What is a better approximation to the root using Newton's method?

- (A) 1.28
- (B) 1.29
- (C) 130
- (D) 1.31
- 9 What is the value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$? Use the substitution $u = \tan x$.
 - (A) -0.6009
 - (B) 0.6913
 - (C) $\log_e \sqrt{3}$
 - (D) $\log_e 3$

- 10 Let $|a| \le 1$. What is the general solution of Sin 2x = a?
 - (A) $x = n\pi + (-1)^n \frac{\sin^{-1} a}{2}, n \text{ is an integer}$
 - (B) $x = \frac{n\pi + (-1)^n \sin^{-1} a}{2}$, n is an integer
 - (C) $x = \frac{2n\pi \pm \sin^{-1} a}{2}$, n is an integer
 - (D) $x = 2n\pi \pm \frac{\sin^{-1} a}{2}$, n is an integer

Question 11 (15 marks) Use a NEW writing booklet.

- a) Evaluate $\lim_{x\to 0} \frac{\sin 3x}{5x}$
- b) Find $\int \frac{x+1}{x^2+4} dx$
- c) Find $\frac{d}{dx} [\cos^{-1} (3x^2)]$ 2
- d) Find the acute angle between the lines 3y = 2x + 8, and y = 5x 9.
- e) The points $P\left(2ap,ap^2\right)$ and $Q\left(2aq,aq^2\right)$ lie on the parabola $x^2=4ay$.
 - (i) The equation of the chord PQ is $y = \frac{1}{2}(p+q)x apq$. (Do NOT prove this).

If the chord PQ passes through (0,a) , show that pq=-1.

(ii) Given the chord PQ passes through (0,a) and the normals at P and Q intersect at the point R whose coordinates are

$$(-apq [p+q], a [p^2 + pq + q^2 + 2]).$$

Find the equation of the locus of R.

f)

The sketch shows the graph of the curve y=f(x) where $f(x)=2\cos^{-1}\frac{x}{3}$. The area under the curve for $0 \le x \le 3$ is shaded.

- (i) Find the *y* intercept.
- (ii) Find the domain and range of $f(x) = 2 \cos^{-1} \frac{x}{3}$.
- (iii) Calculate the area of the shaded region. 2

Question 12 (15 marks) Use a NEW writing booklet

- a) Let α , β , γ be the roots of the equation $x^3-3x^2-6x-1=0$.
 - (i) Find $2\alpha + 2\beta + 2\gamma$. 1 (ii) Find $\alpha^2 + \beta^2 + \gamma^2$
- b) A particle moves in a straight line and its position in metres at anytime t seconds is given by $x = 3\cos 2t 4\sin 2t$
 - (i) Express the motion in terms of $A\cos(nt + \alpha)$.
 - (ii) Find the particle's greatest speed. (Answer to the nearest whole number).

c) A coffee maker has the shape of a double cone 60cm high. The radii at both ends are 4cm. Coffee is flowing from the top cone at the rate of $5cm^3/s$.

- (i) Show that radius (R) in the bottom cone is $\frac{2 (30-H)}{15}$
- (ii) How fast is the level of coffee in the bottom cone rising at the instant when the coffee in this cone is 6 cm deep?
- d) In the diagram, *ST* is tangent to both the circles at *A*.

 The points *B* and *C* are on the larger cicles, and the line *BC* is a tangent to the smaller circle at *D*. The line *AB* intersects the smaller circle at *X*.

Copy or trace the diagram into your answer booklet.

i) Explain why
$$\angle AXD = \angle ABD + \angle XDB$$

1

1

ii) Explain why
$$\angle AXD = \angle TAC + \angle CAD$$

1

iii) Hence show that AD bisects $\angle BAC$

Question 13 (15 marks) Use a NEW writing booklet

- a) In a bag there are 6 red, 4 white and 3 black balls. Three balls are drawn simultaneously. What is the probability that these are:
 - (i) all red.
 - (ii) exactly 2 white balls.
- b) In the diagram, Q (x_0 , y_0) is a point on the unit circle $x^2+y^2=1$ at an angle θ from the positive x -axis, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. The line through N (0,1) and Q intersects the line y=-1 at P. The points T (0, y_0) and S (0, -1) are on the y -axis.

- (i) Using the fact that Δ TQN and Δ SPN are similar, show that $SP=\frac{2\cos\theta}{1-\sin\theta}$
- (ii) Show that $\frac{\cos \theta}{1-\sin \theta} = \sec \theta + \tan \theta$.
- (iii) Show that $\angle SNP = \frac{\theta}{2} + \frac{\pi}{4}$
- (iv) Hence, show that $\tan(\frac{\theta}{2} + \frac{\pi}{4}) = \sec \theta + \tan \theta$.

c) A freshly caught fish, initially at 18°C, is placed in a freezer that has a constant

unknown temperature of $x^{\circ}C$. The cooling rate of the fish is proportional to the difference between the temperature of the freezer and the temperature T° C, of the fish.

It is known that T satisfies the equation $\frac{dT}{dt} = -k (T - x)$,

where t is the number of minutes after the fish is placed in the freezer.

- (i) Show that $T = x + Ae^{-kt}$ satisfies this equation.
- 1 (ii) If the temperature of the fish is 10° C after $7\frac{1}{2}$ minutes,

Show that the fish's temperature after t minutes is given by

$$T = x + (18 - x)e^{\frac{2}{15}\log_e \left[\frac{10 - x}{18 - x}\right]t}$$

- (iii) Find the temperature of the fish after 15 minutes when the initial freezer temperature is $5^{\circ}C$. Answer to the nearest degree.
- d) Use the principle of mathematical induction to show that

 $4^n - 1 - 7n > 0$ for all integers $n \ge 2$.

3

1

Question 14 (15 marks) Use a NEW writing booklet

a) From a point A is due south of a tower, the angle of elevation of the top of the tower T, is 23° . From another point B, on a bearing of 120° , from the tower, the angle of elevation of T is 32° . The distance AB is 200 metres.

- i) Copy or trace the diagram into your writing booklet, adding the given information to your diagram.
- ii) Hence find the height of the tower to the nearest metre.
- b) A particle is projected horizontally from a point P, h metres above O, with a velocity of V metres per second. The equation of the motion of the particle are $\ddot{x} = 0$ and $\ddot{y} = -g$.

(i) If the horizontal position of the particle at time t is x=Vt, show that the vertical position is given by $y=h-\frac{1}{2}\;g\;t^2\;.$

A canister containing a life raft is dropped from a helicopter to a stranded sailor. The helicopter is travelling at a constant velocity of 216 km/h, at a height of 120 metres above sea level, along a path that passes above the sailor.

- (ii) How long will the canister take to hit the water? (Answer to one decimal place). (Take $g=10\ m/s^2$).
- (iii) A current is causing the sailor to drift at a speed of 3.6 km/h in the same direction as the plane is travelling. The canister is dropped from the plane when the horizontal distance from the plane to the sailor is *D* metres. What values can *D* take if the canister lands at most 50 metres from the stranded sailor?
- c) The depth of water y metres on a tidal creek is given $y=5-4\cos\frac{t}{2}$, for $0 \le t \le 4\pi$. the time being measured in hours.
 - (i) Draw a neat sketch of $y = 5 4\cos\frac{t}{2} \text{ , showing all important features.}$
 - (ii) If the low tide one day is at 1.00 p.m., when is the earliest time that a ship requiring 3 m of water can enter the creek? Give your answer in hours and minutes.

2

END

SECTION I (One mark each)

Answer each question by circling the letter for the correct alternative on this sheet. Allow about 15 minutes for this section.

- Which expression is a correct factorisation of $x^3 + 64$
 - (A) $(x-4)(x^2-4x+16)$
 - (B) $(x-4)(x^2-8x-16)$

 - (C) $(x + 4) (x^2 + 4x 16)$ (D) $(x + 4) (x^2 4x + 16)$
- Which expression is equal to $\int \sin^2 3x \, dx$?
 - (A) $\frac{1}{2}(x-\frac{1}{3}\sin 3x)+C$
 - $\frac{1}{2}\left(x+\frac{1}{3}\sin 3x\right)+C$

 - $\frac{1}{2}(x \frac{1}{6}\sin 6x) + C$ $\{D\} \quad \frac{1}{2}(x + \frac{1}{6}\sin 6x) + C$
- Which inequality has the same solutions as
 - $|x+2| \div |x-3| = 5$?
 - (A)) $x^2 - x - 6 \le 0$
 - $\frac{1}{x-3} \frac{1}{x+2} \le 0$ TB1
 - (C) $|2x-1| \geq 5$
 - $\frac{5}{3-x} \ge 1$ (D)
 - A Mathematics department consists of 5 female and 5 male teachers. How many committees of 3 teachers can be chosen which contain at least one female and one male?
 - (B)
 - (B) 120
 - (C) 200

 - 5 Consider the function $f(x) = \frac{2x}{x+1}$ and its inverse function $f^{-1}(x)$. Evaluate $f^{-1}(3)$.
 - (A) -3
 - (B)
 - (C)
 - (D) a

- 6 Which group of three numbers could be the roots of the polynomial equation $x^3 + ax^2 - 41x + 42 = 0$?
 - 2.3.7
 - (B) 1, -5, 7 -1, -2, 21
 - (D) -1, -3, -14
- 7 A family of ten people is seated randomly around a circular table. What is the pro that the two oldest members of the family sit together?
 - {A}
 - 5121 101 (B)
- 8121 91 (C)
- 9121 91 (D)
- 8) Let x=1 be a first approximation to the root of the equation $\cos x = \log_e x$. What is a better approximation to the root using Newton's method?
 - (A) 1.28
- **®** 1.29
 - 130 (C)
- (D) 1.31
- 9 What is the value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sec^2 x}{\tan x} dx$? Use the substitution $u = \tan x$.
 - -0.6009(A)
 - 0.6913 (B)
 - $\log_{\bullet}\sqrt{3}$
 - log_e3 (D)

- Let $|a| \le 1$. What is the general solution of Sin 2x = a?
 - $x = n\pi + (-1)^n \frac{\sin^{-1} a}{2}$, n is an integer
 - (B) $x = \frac{nn + (-1)^n \sin^{-1} a}{2}$, n is an integer
 - $x = \frac{2nn \pm \sin^{-1} a}{2}, n \text{ is an integer}$
 - $x = 2n\pi \pm \frac{\sin^{-1} a}{2}$, n is an integer

Solutions

Comments

Question 11

a) $\lim_{x\to 0} \frac{3x}{5x} = \lim_{x\to 0} \frac{3}{5} \frac{5x}{3x}$

 $= \frac{3}{5} \lim_{n \to \infty} \frac{3n}{3n}$ $= \frac{3}{5}$

well done

b) $\int \frac{x+1}{x^2+1} dx = \int \frac{x}{x^2+1} + \frac{1}{x^2+1} dx$

 $=\frac{1}{2}\int \frac{2x}{x^2+4} dx + \frac{1}{2}\int \frac{2}{x^2+4} dx$

= $\frac{1}{2}$ ln $(x^2 + 4) + \frac{1}{2}$ tan $\frac{1}{2}$ + $\frac{1}{2}$

well done.

c) $\frac{d}{dn} \left(\cos^{-1} (3x^2) \right) = -\frac{1}{\sqrt{1-(3x^2)^2}} \cdot 6x$

 $= \frac{-6u}{\sqrt{1-9x^4}}$

d) $y_1 = \frac{2x}{3} + \frac{8}{3}$: $M_1 = \frac{2}{3}$

 $y_2 = 5x - 9$: $M_2 = 5$

 $\frac{1}{1+m} = \frac{m_2 - m_1}{1+m_1}$

 $= \left| \frac{5 - \frac{2}{3}}{1 + \frac{10}{3}} \right| \checkmark \qquad \therefore \quad 0 = 45^{\circ} \checkmark$

good.

e)

$$y = \frac{1}{2} (p+q)x - apq$$
 passes through $(0, a)$

a=0-apg ~

$$pq = -\frac{\alpha}{\alpha}$$

ii The equation of the locus.

$$x = -apq(p+q) - 0$$

$$y = \alpha (p^2 + pq + q^2 + 2) - 3$$

from @ pg = -1

$$x = \alpha(p+q)$$

$$\therefore (p+q) = \frac{\alpha}{\alpha} \qquad -3$$

and $(p+q)^2 = p^2 + 2pq + q^2$ = $p^2 + q^2 - 2$

$$(p+q)^2+3 = p^2+q^2+1$$

$$= a (p^2 + g^2 + 1)$$

$$= a (p+g)^2 + 3$$

$$= a \left[\left(\frac{x}{a} \right)^2 + 3 \right]$$

$$= a \left(\frac{x^2 + 3a^2}{a^2} \right)$$

$$ay = x^2 + 3a^2$$

$$x^2 = a(y-3a)$$

good

many smolen did not get to this stage of the solutions

many shdents lost a manc for not patting the final answer back to this form.

$$y = 2 (0s^{-1} 0)$$

= $2 \times \frac{\pi}{2}$

well done.

Must got this right.

$$y = 2.05^{-1} \frac{24}{3}$$
 $\cos^{-1} \frac{2}{3} = \frac{y}{2}$

many students lot a mark for not being able to do the integration correctly.

$$\frac{\text{Questian } 12}{x^3 - 3x^2 - 6x - 1} = 0$$

ii
$$K^2 + \beta^2 + 8^2 = (\alpha + \beta + \beta)^2 - 2(\alpha + \beta + \alpha + \beta)$$
 well done
= $(3)^2 - 2(\frac{c}{\alpha})$
= $9 - 2(-6)$

oi 3 cos 2t - 4 son 2t =
$$A \cos(nt + d)$$
 = $5 \cos(2t + \tan^{-1}(\frac{t}{3}))$

OR x = 5 (05 (2t +52°)

or $x = 5 \cos(2t + 0.927)$

tan x = 4 /

ii The greatest speed when $\alpha = 0$, 2i = 0 $5\cos(2t + 0.927) = 0$ 26 +0.927 = ==

t= 0.32 sec (2 d.p) will

$$i. \quad x = -10 \text{ Sin} (2t + 0.927)$$
$$= -10 \text{ Sin} (2 \times 0.32 + 0.927)$$

2-10 m/s V ~ 10 m/s moving to the left. well done

well done.

done

$$\frac{R}{4} = \frac{30 - H}{30} \checkmark$$

$$R = \frac{4(30-H)}{30}$$

$$R = \frac{2}{15}(30-H)$$

$$V = \pi R^{2} H$$

$$= \pi \cdot 4^{2} \cdot 30 - \pi \left[\frac{2}{3}(30 - H)\right]^{2}(30 - H) H = 6$$

$$= 160 \pi - \frac{4\pi}{67}(30 - H)^{3}$$

$$\frac{dV}{dH} = \frac{3 \times 4\pi}{675} (30-H)^2 \qquad (H=6)$$

$$=\frac{6912\pi}{675}$$

$$\frac{dH}{dt} = \frac{dV}{dt} \times \frac{dH}{dV}$$

$$= 5 \times \frac{675}{6912}$$

$$= \frac{125}{256\pi} \text{ cm/s} /$$

although a simple exercise, many students had a great deal of difficulty.

Few students were able to fully succeed with this question. Many failed to reolite that the required volume ivos the difference between two cones. Confusion in to belling variable lengths olso added to their difficulty

 $\angle A \times D = \angle A B D + \angle \times D B$

LAXD is on exterior angle of ABOX, the exterior angle is equal to the suroff the opposite interior agles.

well done

 $< A \times 0 = < TAO$

An angle between a tangent and a churd is equal to the angle in the alternate segment:

well done.

let < xBD = x and < xDB = B

:. < A+D = X+B pant(i) Hence < TAC = < ABC = × (alternate / Segment them

Also <AXD = <TAD = X+p from ii

: $\angle CAD = x + \beta - x$ = β and $\angle XAD = \angle XDB = \beta$ (alternate segment theorem)

... < CAD = < XAD = B Hence, AD bosects & SAC

often not often not attempted or students Segment theorem) anoble to from ii complete this part.

Question 13	marking.	Commento
a) $6R$, 4ω , $3B = 13$ total		6 5 0
(i) P(all K) = Cs		· some used $\frac{6}{13} \times \frac{5}{12} \times \frac{4}{11}$, which
^{/3} C3	Danswer	works for (i) but not (i)
= 10/143		· for (ii), the issue is combinations
(ii) P(exactly 2W) = 4G. 9G		20 13 × 12 × 11 gwes 143 which
$= \frac{10}{143}$ $= \frac{10}{143}$ (ii) $P(exactly 2\omega) = {}^{4}G. {}^{9}G.$ $= {}^{13}C3$		is one permutation only / thowas a
$= \frac{6 \times 9}{286}$		common error)
$=\frac{27}{143}$	Danswer	
(b)		Note: (b), (c) and (d) - escept for
(i) D's symular => sides un ratio		c(iii) - are all Show questions,
À. TO = TN		which were universally poorly dor
Poncarde => P(coro, sino)	Oconeponents	You MUST explain where each
:. SN=2 (diameter of circle)	explained/derived	component comes from!
TQ=cont	, ,	· (i) explicitly stated "Using the
TN=SN-OT	O ratio +algebr	fact that ", so students who
= 1-sub	correct	did not use this fact got no mai
: SP = SN.TO NN		
$= \frac{2. \cos \theta}{1-\sin \theta} \text{ as regd.}$		
(ii) $LHS = \frac{COD}{1-SON}O$		· many poor attempts at the
COO y Stsue		trig manipulations - many
$=\frac{\cos(1+\sin\theta)}{1-\sin^2\theta}$		students unfamiliar with
$ \begin{array}{r} - (-sin\theta - [+sin\theta] \\ $	(1) manipulations	try identities in general.
1+3un 0 = con0	correct	
= coo + Son 6 = coo + Coo		
= sec & Han O		
=RHS		
(iii) LSOQ = #+0		· some students used
LSNQ = \$ LSOQ (Lature = 2 Latentre)	Duse of wide	isoscoles trangle properties
= 2 (= +0)	property (or	correctly to receive the mark.
$=\frac{9}{2}+\frac{11}{4}$ as regd.	equivalent)	' many poor attempts that
· · · · · · · · · · · · · · · · · · ·	V	mined circle properties.
		7

÷

(iv) $ten(2+\frac{\pi}{4})$ = $ten(LSNP)$ (from(ii) = $ten(LSNP)$ (from(iii) c) (i) $T = x + he^{-kt}$ (from(iii)) c) (ii) $T = x + he^{-kt}$ (from(iii)) = $ten(LSNP)$ (from(iii)) c) (ii) $T = x + he^{-kt}$ (from(iii)) = $ten(T-x)$ (which was advarded no montro-call thin info already, given, so nothing the set of the inition already, given, so nothing the set of thin info already, given, so nothing the set of the inition already, given, so nothing the set of thin info already, given, so nothing the set of the inition already, given, so nothing the set of the inition already, given, so nothing the set of the inition already, given, so nothing the set of the inition already, given, so nothing the set of the inition already, given, so nothing the set of the inition already, given, so nothing the set of the inition already given, so nothing the set of the set	(b)	marking	Comments
= tan (LSNP) from (ii) = \$\frac{1}{8}\text{ (tender in ASNP)} \ O \linking all \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(iv) tan (\$ + #)		
He components $\frac{1-50,00}{1-50,00}$ $\frac{1-50,00}{1-50,00}$ $\frac{1}{1-50,00}$ $\frac{1}{1-50,000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,0000}$ $\frac{1}{1-50,00000}$ $\frac{1}{1-50,00000000000000000000000000000000000$	= tan (LSNP) from (ii)		· very few able to follow
Le coup ovents $\frac{1-50,00}{1-50,00} = \frac{1}{1-50,00}$ $\frac{1}{1-50,00} = \frac{1}{1-50,00}$ (i) $T = x + Ae^{-kt}$ So $4e^{-kt} = T - x$ $\frac{1}{5} = -k Ae^{-kt}$ $\frac{1}{5} = -k Ae^{-kt}}$ $\frac{1}$	= SP (tandefn in ASNP)	Olinking all	and explain all links
together. = $3\pi \cdot \Theta + \tan \theta$ ($from (iii)$) c) (i) $T = x + Ae^{-kt}$ $\Rightarrow Ae^{-kt} = T - x$ $\Rightarrow Ae^{-kt} = T - x$ $\Rightarrow Ae^{-kt} = T - x$ $\Rightarrow Ae^{-kt} = -k Ae^{-kt}$ $\Rightarrow $	$= \frac{20070}{1-5400} \times \frac{1}{2} (from(i))$		
c) (i) $T = x + Ae^{-kt}$ 30 $Ae^{-kt} = T - x$ $at = -kAe^{-kt}$ $= -k(T - x)$ (ii) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iii) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iii) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iv) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iv) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iv) $T = x + Ae^{-kt}$ $= -k(T - x)$ (iv) $T = x + Ae^{-kt}$ (iv) $T = x + Ae^{$	= 1-5000	together.	
(i) $T=x+He^{kt}$ so $Ae^{-kt}=T-x$ $E=-kHe^{kt}$ $E=-kHe^{kt}$ $E=-k(T-x)$ which was awarded no marks - all this info already given, so nothing $E=-k(T-x)$ $E=-k(T-x)$ which was awarded no marks - all this info already given, so nothing $E=-k(T-x)$ $E=x+He^{-kt}$ $E=x+He^{-k$	= sac 0 + fant (from (iii))	V	
(i) $T=x+He^{kt}$ so $Ae^{-kt}=T-x$ $E=-kHe^{kt}$ $E=-kHe^{kt}$ $E=-k(T-x)$ which was awarded no marks - all this info already given, so nothing $E=-k(T-x)$ $E=-k(T-x)$ which was awarded no marks - all this info already given, so nothing $E=-k(T-x)$ $E=x+He^{-kt}$ $E=x+He^{-k$		-	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			/b+
$ \begin{array}{llllllllllllllllllllllllllllllllllll$. ,	_ (N	many did - R(Ae +x-21)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1) full explanation	· many also wrote: dt = - kHe
(ii) $T=x+Ae^{-kt}$ this info already given, so nothing $t=0$, $T=18$ (initially) (was "shown" in this working $t=0$, $T=18$ (initially) (was "shown" in this working $t=0$. $t=0$ (ii) was probably the best done $t=0$ (iii) was probably the best done part of Q13, although several students skipped steps and then $t=\frac{1}{2}$, $t=0$ (order marks) (order	The state of the s		
t=0, T=18 (initially) $18=x+He$ $=x+H$ $0 steps to A value$ $10=x+He$ $10=x+(18-x)e$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			- VI.
$= x + H$ $\therefore A = \mathcal{C} - x $ $S = T = x + (\mathcal{S} - x) \in \mathbb{R}$ $\text{S. } T = x + (\mathcal{S} - x) \in \mathbb{R}$ $\text{Thus } t = \frac{15}{5}, T = 10$ $\text{S. } T = 10 - \frac{15}{5}k$ $\text{Thus } t = x + (\mathcal{S} - x) \in \mathbb{R}^{\frac{1}{2}k}$ $10 - x = (\mathcal{S} - x) \in \mathbb{R}^{\frac{1}{2}k}$ $10 - x = (\mathcal{S} - x) \in \mathbb{R}^{\frac{1}{2}k}$ $\frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = e^{-\frac{15}{2}k}$ $\frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = e^{-\frac{15}{2}k}$ $\frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)}$ $\frac{ \mathcal{O} - x }{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{15} \ln \frac{(\mathcal{O} - x)}{(\mathcal{O} - x)} = \frac{15}{$	-: 18 = x + Ae°		00-03
S $T=x+(18-x)e$ then $t=\frac{15}{2}$, $T=10$ thus $10=x+(18-x)e^{-\frac{15}{2}k}$ $10-x=(18-x)e^{-\frac{15}{2}k}$ $10-x=(18-x)e^{-\frac{15}{2}$	•	1 steps to A value	· (ii) was probably the best done
S $T=x+(18-x)e$ then $t=\frac{15}{2}$, $T=10$ thus $10=x+(18-x)e^{-\frac{15}{2}k}$ $10-x=(18-x)e^{-\frac{15}{2}k}$ $10-x=(18-x)e^{-\frac{15}{2}$		correct	1
then $t = \frac{2}{3}$, $T = 10$ thus $10 = x + (18-x)e^{-\frac{15}{2}k}$ $10 - x = (18-x)e^{-\frac{15}{2}k}$	s t= x+(18-x)e	-	
$ \frac{(10-2)}{(18-x)} = e^{-\frac{12}{5}k} $ $ = x + (18-x) e^{-\frac{12}{5}\ln(\frac{10-x}{18-x})} $ $ = x + (18-x) e^{-\frac{12}{5$	then t= 2, T=10 = 45		
$ \frac{(16-2)}{(18-x)} = e^{-\frac{x}{2}R} $ $ \frac{-\frac{x}{2}k}{18} = \ln\left(\frac{(0-x)}{18-x}\right) $ $ \frac{-\frac{x}{2}k}{18-x} = \ln\left(\frac{(0-x)}{18-x}\right) $ $ \frac{-\frac{x}{2}k}{18-x} = \frac{1}{18}\ln\left(\frac{(0-x)}{18-x}\right) $ $ = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ and correctly substituted} $ $ = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ and correctly substituted} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or ready substituted} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left(\frac{(0-x)}{18-x}\right)} \text{ or read} $ $ \frac{(11)}{18-x} = x + (18-x)e^{-\frac{x}{18}\ln\left($	thus 10 = x + (18-x) e 15h		
$ \frac{-\frac{15}{2}k}{18-x} = \ln\left(\frac{10-x}{18-x}\right) $ $ \frac{-\frac{15}{2}k}{15\ln\left(\frac{10-x}{18-x}\right)} = \frac{1}{15\ln\left(\frac{10-x}{18-x}\right)} $ $ \frac{-\frac{15}{2}k}{15\ln\left(\frac{10-x}{18-x}\right)} = \frac{1}{15\ln\left(\frac{10-x}{18-x}\right)} $ $ = x + (18-x)e^{\frac{1}{18-x}} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} = \frac{1}{18-x} $ $ \frac{(iii)}{18-x} = \frac{1}{18-x} $ $\frac{(iii)}{18-x} = \frac{1}{18-x} $ $\frac{(iii)}{18-x} = \frac{1}{18-x}$ $\frac{(iii)}{18-x} = \frac{1}{18-x} $ $\frac{(iii)}{18-x} = \frac{1}{18-x}$ $\frac{(iii)}{18-x} = \frac{1}{18-x} $ $\frac{(iii)}{18-x} = \frac{1}{$	$\frac{10-x=(18-x)e^{\frac{-x}{2}x}}{(10-21)} - \frac{15b}{2}$		
$ \begin{array}{lll} $	$\frac{(10-x)}{(18-x)} = \frac{2}{(0-x)}$	botalung logs	
(iii) $x=5$, $t=15$ Then $T=5+(18-5)e^{\frac{1}{18}}[n(\frac{10-5}{18-5})]$ is non-generally substituted but could not enter into their calculator correctly! $=5+13e^{\frac{1}{13}}$ Danswer Read! to the nearest degree!	$\frac{2R = 11(18-x)}{1 - 2(1-x)}$		A No. of the second of the sec
(iii) $x=5$, $t=15$ Then $T=5+(18-5)e^{\frac{1}{18}}[n(\frac{10-5}{18-5})]$ is non-generally substituted but could not enter into their calculator correctly! $=5+13e^{\frac{1}{13}}$ Danswer Read! to the nearest degree!	1 + - 15 M (18-x) - 25 M (10-21)	(1) R value correct	
(iii) $x=5$, $t=15$ Then $T=5+(18-5)e^{\frac{1}{18}}[n(\frac{10-5}{18-5})]$ is non-generally substituted but could not enter into their calculator correctly! $=5+13e^{\frac{1}{13}}$ Danswer Read! to the nearest degree!	= x + (18-x) C 2 + (10-x)	and correctly substituted	
tean. The later of	$\frac{-1}{(ii)} = \frac{-1}{x = 5} + \frac{1}{25} = $		L out clituled
tean. The later of	then $T = 5 + (18-5)e^{\frac{25}{15}(n(\frac{10-5}{18-5}))^{1/5}}$		locat could not onter into
tean. The later of	$=5+13e^{\frac{7}{2\ln(\frac{5}{13})}}$		1
	<i>= 6.92307</i>	Danswer	
8			
			8

* •

	marking	comments.
d) Show 4"-1-7n70 for n72		· in steps land 3, the
1. Show true for n=2.		LHS=
$LHS = 4^2 - 1 - 7 \times 2$		
=		= RHS process us
>0		needed. Many students
Hence true for n=2		could not do this successfu
2, Assume true for n=k		· most studento were ab
ie assume 4 ^k -1-7k70	O correct assumption plus previous working	toget to this point and
or 4k > 7k+1	plus previous working	gain this mark.
3. Show true for n=k+1		· most wrote few, if any,
ie show 4kH-1-7(kH)>0		of the supporting "words
LHS=4 +1-7(k+1)		reeded to explain what
$=4.4^{k}-1-7k-7$		they were doing.
> 4(7k+1)-8-7k using assumption	Ocorrectuse of anumption	or for step 3, the line
> 28k+4-8-7k		4k+1-1-7(k+1)>0
> 21k-4		was the starting point
70 as k72 means 216-4738	(resolved for to and	formany students
Hence true for n=k+1	concluding statement	attempts. This is a
4. But as true for n=2, hence true for n=2,		statement of truth,
and so on by principle of induction.		which we are trying
		to show, so cannot
		be used. Most got no
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	marks from thus point
		on.
		1 4 -1-7h 70 was
		also common for 3.
		· clearly show He
		use of the assumption
	. ,	as which point the
		sign becomes > and
	· · ·	Stays that way !!
1/1 m 12 1 1	ed from 4 to 3 pages - no	9
Note: @13 golns resurd	La from 1 to 3 pages 10	page 14.

;

tan 23° =
$$\frac{h}{x}$$
 $x = h(0 + 23^{\circ})$

tan $32^{\circ} = \frac{h}{y}$
 $y = h(0 + 32^{\circ})$

Using cosine rule:

$$200^{2} = \chi^{2} + y^{2} - 2\chi y \cos 60^{\circ}$$

$$= h^{2} \cot^{2} 23^{\circ} + h^{2} \cot^{2} 32^{\circ} - 2h^{2} \cot^{2} 32^{\circ} \cot 32^{\circ}$$

$$= h^{2} \left[\left(\cot^{2} 23^{\circ} + \cot^{2} 32^{\circ} - \left(\cot 23^{\circ} \cdot \cot 32^{\circ} \right) \right] \right]$$

$$h^{2} = \frac{200^{2}}{\cot^{2} 23^{\circ} + \cot^{2} 32^{\circ} - \cot 23^{\circ} \cot 32^{\circ}}$$

$$h^{2} = \frac{200^{2}}{\left(5.55 + 2.56 - 2.36 \times 1.6 \right)}$$

$$= 9208$$

h = 96 m (neanest m). V

Comment: i) most students were given the mark allocated for the diagram. However, it was poorly is drawn. Diagrams should be at least to fapage big. A ruler should have been used and the given information should have been labelled clearly.

ii) Some need to learn the cosine rule. many did not use the version of the cosine rule for finding a side. This resulted in errors because making h2 the subject became harder.

Comments b)i) Poorly done. / · · · - 9 This is a show question. students needed to show the integration process and obtain the values of the constants of $\dot{y} = -\int g \, dt$ = $-gt + C_1, t = 0, \dot{y} = 0$ i. C= 0 integration · c = 0 with reasoning. y = - Sgt dt x=vt was given in did not need to $= \frac{-gt^2}{2} + c_2, \text{ at } t = 0, y = h$ $\therefore c_2 = h$ show this, $y = h - gt^2$ 1 V = 216 Km/h = 60m/s 11) overall, well done. 120 m Question asked for answer to 1 dec. pl. but marks were not deducted if you didn't do this. The canaister hits the water when y = 0, A=120 0 = 120 - 10 + 2St2 = 120 t = 4.9 sec. / iii) After 4.9 sec, the heli copter has sii) many were not successful with travelled: 2 = Vt = 60 x 4.9 this question, A major error was not being consistent with units . = 294 m frem the origin most had no idea how to begin, marks Vsailor = 3.6 km/h = 1 m/s v were strictly billocated as shown here. : 2 sailor = 1 m/s x 4.9 sec Sailors drift = 4.9 m

Comments

y=5-4 LOS =

shape v features

c)i) araph was
unsatisfactory. Axes
should be labelled.
The period was wrong.
Extreme points were
notlabelled. The
restricted domain was
not observed araph
c)ii) Too many careless

errors eg. writing am, instead of p.m., 2xIJ=II, etc.
Time is not in deamer?

Time is not in degrees & ... the earlies time minutes. The Ship can enter should have been the creek is working in radians.

 $3 = 5 - 4 \cos \frac{1}{2}$ $4 \cos \frac{1}{2} = \frac{1}{2}$ t = 2.09 h = 2h 6 micros

END