Curso de Cálculo Diferencial e Integral II DPAA-2.086 - Cálculo Diferencial e Integral II

Prof. Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

26 de outubro de 2021

Informações Importantes!!!	
Antes de prosseguir com essa disciplina é fundamental tomar conhecimento de todos	
os avisos contidos no link: Plano de Curso e Outras Informações que está no início	
da sala do curso no Moodle. Nesse link encontram-se informações sobre:	
Ementa	Plano de Curso
Metodologia de Avaliação	Prazos para entrega das atividades

Horário das aulas síncronas

Horário de Atendimento

Bibliografia Básica

Controle de frequência

Sequências

Sequência

 $\acute{\rm E}$ uma lista de números escrita em uma ordem definida.

$$a_1, a_2, \ldots, a_n$$

Uma sequencia $\{a_n\}$ ou $\{a_n\}_{n=1}^{\infty}$

Liste os cinco primeiros termos da sequência:

- a $a_n = \frac{2^n}{2n+1}$
- $a_1 = 1, \ a_{n+1} = 5a_n + 3$
- o $f_1 = 1$, $f_2 = 1$ e $f_{n+1} = f_{n-1} + f_n$ para $n \ge 3$ Esta é a famosa sequência de Fibonacci

Liste os oito primeiros termos das sequências:

- **6** $a_1 = 2, a_2 = 1, a_{n+1} = \frac{a_n a_{n-1}}{n}$ **b** $a_1 = 1, a_n = \frac{(-1)^n a_{n-1}}{n!}$

em forma de frações irredutíveis.

Limite de uma Sequência

Uma sequência $\{a_n\}$ tem limite L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se para cada $\epsilon > 0$ existir um inteiro correspondente N tal que

se
$$n > N$$
 então $|a_n - L| < \epsilon$

Valor Limite de uma Sequência

Se $\lim_{x\to\infty} f(x) = L$ e $f(n) = a_n$ quando n é um inteiro, então $\lim_{n\to\infty} a_n = L$.

Sequência Divergente

 $\lim_{x\to\infty}a_n=\infty$ significa que para cada número positivo M existe um inteiro N tal que se n>N então $a_n>M$.

Propriedades dos limites das sequências

Se $\{a_n\}$ e $\{b_n\}$ forem sequencias convergentes e c for uma constante, então:

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$
$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

 $n \rightarrow \infty$

$$n \to \infty$$

$$\lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ se } p > 0 \text{ e } a_n > 0$$

Determine se as sequências convergem ou divergem. Se convergirem, encontre o limites.

(a)
$$a_n = \frac{1}{n^2}$$

$$b_n = \frac{1}{2n}$$

$$c_n = \frac{(n+1)^2}{n}$$

a
$$a_n = \frac{1}{n^2}$$

b $b_n = \frac{1}{2n}$
c $c_n = \frac{(n+1)^2}{n}$
d $d_n = \frac{1}{n^2} + \frac{1}{2n}$

$$\bullet e_n = \left(\frac{1}{n^2} + \frac{1}{2n}\right)^2$$

$$f_n = \frac{1}{n^2} \left(\frac{1}{n^2} + \frac{1}{2n} \right)^2$$

$$g_n = n^2$$

$$q_n = n^2$$

Determine se a sequência $\left\{n \operatorname{sen}\left(\frac{\pi}{n}\right)\right\}$ converge ou diverge. Se ela convergir, encontre o limite.

Determine se as sequências convergem ou divergem. Se ela convergir, encontre o limite:

$$a_n = \frac{3 + 5n^2}{n + n^2}$$

$$\begin{cases} \frac{4^n}{1+9^n} \end{cases}$$

$$a_n = \cos n^2$$

$$a_n = \cos n$$

Teorema do Confronto dos Limites para sequências

Se $a_n \le b_n \le c_n$ para $n \ge n_0$ e $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ então $\lim_{n \to \infty} b_n = L$.

Use o Teorema do Confronto dos Limites para sequências para provar o seguinte resultado:

Se
$$\lim_{n\to\infty} |a_n| = 0$$
, então $\lim_{n\to\infty} a_n = 0$.

A Sequência r^n

Sequência r^n

A sequência $\{r^n\}$ é convergente se $-1 < r \le 1$ e divergente para os demais valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{se } -1 < r < 1 \\ 1 & \text{se } r = 1. \end{cases}$$

Determine se as sequências cujos termos gerais são dados à seguir convergem ou divergem.

- $a_n = \left(\frac{2}{3}\right)^n$ $a_n = \frac{5^n}{3^{n-1}}$

Determine se as sequências cujos termos gerais são dados à seguir convergem ou divergem.

- a $a_n = 2^n 5^{-n}$ b $a_n = \frac{(-1)^n 2^n}{3^n}$

Sequências Monótonas, Limitadas e Convergentes

Sequências Crescentes e Decrescentes

Uma sequência $\{a_n\}$ é crescente se $a_n < a_{n+1}$ para todo $n \ge 1$, isso é, $a_1 < a_2 < a_3 < \cdots$. É chamada decrescente se $a_n > a_{n+1}$, para todo $n \ge 1$. Uma sequência é monótona se for crescente ou decrescente.

Determine se as sequências dadas são crescentes, decrescentes ou não-monótonas.

- $\left\{ \frac{n}{2n+1} \right\}$
- $\left\{\frac{1}{n}\right\}$
- $\left\{ \frac{(-1)^{n+1}}{n} \right.$

Semana 2 - Exercício 1

Determine se a sequência $\left\{\frac{1-2n^2}{n^2}\right\}$ é crescente, decrescente ou não-monótonas.

Exercício

Semana 2 - Exercício 2

Determine se a sequência $\left\{\cos\left(\frac{n\pi}{3}\right)\right\}$ é crescente, decrescente ou não-monótonas.

Exercício

Semana 2 - Exercício 3

Determine se a sequência $\left\{\frac{n^n}{n!}\right\}$ é crescente, decrescente ou não-monótonas.

Sequência Limitada

Uma sequência $\{a_n\}$ é limitada superiormente se existir um número M tal que:

$$a_n \leq M$$
 para todo $n \geq 1$

Ela é limitada inferiormente se existir um número m tal que

$$m \le a_n$$
 para todo $n \ge 1$

Se ela for limitada superiormente e inferiormente, então $\{a_n\}$ é uma sequência limitada.

Teoremas da Convergência de Sequências Monótonas

- 1 Toda sequência monótona limitada é convergente.
- 2 Toda sequência monótona convergente é limitada.

Mostre que a sequência $\left\{\frac{2^n}{n!}\right\}$ é convergente.

Mostre que a sequência $\left\{\frac{5^n}{1+5^{2n}}\right\}$ é monótona e limitada. A sequência é convergente? Porque?

Séries

Série

Uma série (infinita) é a soma dos termos de uma sequência (infinita) $\{a_n\}_{n=1}^{\infty}$

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

Soma parcial

A n-ésima soma parcial s_n é a soma dos n primeiros termos de uma sequência.

$$s_1 = a_1$$

$$s_2 = a_1 + a_2$$

$$s_3 = a_1 + a_2 + a_3$$

$$s_4 = a_1 + a_2 + a_3 + a_4$$

$$\vdots$$

$$s_n = \sum_{i=1}^n a_i$$

$$\vdots$$

Naturalmente, as somas parciais formam uma sequência $\{s_n\}_{n=1}^\infty$

$$s_1, s_2, s_3, \dots, s_n, \dots \tag{1}$$

Séries Convergentes e Divergentes

Dizemos que uma série é convergente com soma s quando essa sequência (1) convergir

$$\lim_{n \to \infty} s_n = s$$

com s finito. A série será chamada divergente quando a sequência (1) divergir

$$\lim_{n\to\infty} s_n = \infty.$$

Note que:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a_i = \sum_{i=1}^\infty a_i$$

Dada a série infinita $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ determine:

- \bullet Os quatro primeiros elementos da sequência das somas parciais $\{s_n\}$.
- \bullet A fórmula para s_n em termos de n.

Mostre que a série

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

é convergente e determine para onde converge.

Exercício

Semana 4 - Exercício 3

Determine se a série $\sum_{n=1}^{\infty} \frac{2}{n^2 - 1}$ é convergente ou divergente expressando s_n como uma soma telescópica. Se for convergente, calcule sua soma.

Verifique se as séries cujo termo geral da soma parcial é dado à seguir são convergentes. Encontre os três primeiros termos da sequência que deu origem à cada série

- $s_n = \frac{n}{2n+1}$
- $s_n = \frac{n}{n+1}$

A Série Geométrica

Série Geométrica

A série geométrica é definida pela seguinte somatória:

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} + \dots \quad a \neq 0$$

onde r é a razão comum e a é o primeiro termo.

Nessa série cada termo é igual ao anterior multiplicado pela razão comum r.

Convergência da Série Geométrica

A série geométrica é convergente se |r| < 1 e sua soma é

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \quad |r| < 1,$$

e divergente se $|r| \ge 1$,

$$(r=1)$$
 As somas parciais podem ser expressas como:

$$s_n = na$$

É fácil mostrar que nesse caso a série é divergente.

$$r \neq 1$$
 As somas parciais podem ser expressas como:

$$s_n = \frac{a(1-r^n)}{1-r}.$$

Encontre a soma da série geométrica se for convergente.

- $10-2+0.4-0.08+\cdots$
- $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$

Encontre a soma da série geométrica $\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n}$ se for convergente.

ca
$$\sum \frac{3^{n+1}}{\epsilon_n}$$
 se for convergente

Um paciente toma 150 mg de fármaco, ao mesmo tempo, todos os dias. Imediatamente antes de cada comprimido que é tomado, 5% da droga permanece no corpo do paciente

- $_{\bigcirc}$ Qual a quantidade do fármaco depois do terceiro comprimido? E após o $n\text{-}\acute{\mathrm{e}}\mathrm{simo}$ comprimido?
- 6 Qual a quantidade de droga que permanece no corpo à longo prazo?

Escreva o número 1,53 $\overline{42}$ = 1,53424242... como uma razão de inteiros (fração).

Escreva o número $5,125\overline{48}$ como uma razão de inteiros (fração). (Use os resultados conhecidos sobre a Série Geométrica).

A Série Harmônica

Série Harmônica

A série harmônica é definida por:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

Divergência da Série Harmônica

A série harmônica é divergente.

Para mostrar que a série harmônica é divergente vamos recorrer as somas parciais $s_2, s_4, s_8, s_{16}, s_{32}, \dots$

$$s_2=1+rac{1}{2}$$

$$s_4 = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right)$$
$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right)$$
$$> 1 + \frac{2}{2}$$

$$s_8 = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$$
$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$$
$$> 1 + \frac{3}{2}$$

ogamente, chegamos que
$$s_{32} > 1$$

Analogamente, chegamos que $s_{32} > 1 + \frac{5}{2}$. Note que dessa forma $s_{2^n} > 1 + \frac{n}{2}$ o que

implica que:

Portanto, $\{s_n\}$ é uma série divergente.

$$\lim_{n\to\infty} s_{2^n} = \infty$$

 $s_{16} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right)$

$$> \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right)$$

$$> 1 + \frac{4}{2}$$

O Teste da Divergência

Condição de Convergência

Se a série $\sum a_n$ for convergente, então $\lim_{n\to\infty} a_n = 0$.

A contra-positiva desse resultado nos dá base para definir o teste da divergência.

Teste da Divergência

Se $\lim_{n\to\infty} a_n$ não existir ou se $\lim_{n\to\infty} a_n \neq 0$, então a série $\sum_{n\to\infty} a_n$ é divergente.

Mostre que a série $\sum_{n=1}^{\infty} \frac{5n^3}{n^3 + 2n^2 + n}$ diverge.

Exercício

Mostre que a série $\sum_{n=1}^{\infty} \frac{n^2}{n^2 + n}$ diverge.

Exercício

Mostre que a série $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ diverge.

Lembre-se
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x = e^a$$

Mostre que a série $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ diverge.

Recíproca do Teste da Divergência (FALSO!!!)

Se a série $\sum_{i=1}^{\infty} a_n$ é divergente, então $\lim_{n\to\infty} a_n$ não existe ou $\lim_{n\to\infty} a_n \neq 0$. (FALSO!!!)

Exercício

Semana 4 - Exercício 2

Mostre que a Recíproca do Teste da Divergência é falsa. (Dica: Basta apresentar um contra-exemplo.)

Propriedades operacionais das séries convergentes

Propriedades operacionais das séries convergentes

Sejam $\sum_{n=1}^{\infty}a_n$ e $\sum_{n=1}^{\infty}b_n$ séries convergentes e c é uma constante, então as seguintes séries são convergentes

$$\sum_{n=1}^{\infty} ca_n$$

$$\sum_{n=1}^{\infty} (a_n \pm b_n)$$

e, além disso,

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

Determine se a série $\sum_{n=1}^{\infty} \left[\left(\frac{\pi}{3} \right)^{n-1} + \frac{2}{3n} \right]$ é convergente ou divergente. Se for convergente, calcule sua soma.

O Teste da Integral

O Teste da Integral

Suponha que f seja uma função contínua, positiva e decrescente em $[1,\infty)$ e seja f(n). Então a sério $\sum_{n=0}^{\infty} a_n f(n)$ entered interest i

$$a_n = f(n)$$
. Então a série $\sum_{n=1}^{\infty} a_n$ é convergente se, e somente se, a integral imprópria $\int_{1}^{\infty} f(x)dx$ for convergente. Em outras palavras:

Se
$$\int_{1}^{\infty} f(x)dx$$
 for convergente, então $\sum_{n=1}^{\infty} a_n$ é convergente.

Se
$$\int_{1}^{\infty} f(x)dx$$
 for divergente, então $\sum_{n=1}^{\infty} a_n$ é divergente.

Determine se a série $\sum_{i=1}^{\infty} \frac{1}{n^2+4}$ é convergente ou divergente.

A função associada ao termo geral dessa série é $f(x) = \frac{1}{x^2 + 4}$.

Note que essa função é contínua (toda função racional é contínua no seu domínio) e positiva nos reais.

Além disso
$$f'(x) = -\frac{2x}{(x^2 + 4)^2}$$
.

Veja que f'(x) < 0 para todo x > 0, ou seja, a função f é decrescente em $(0, \infty)$.

Portanto essa função é contínua, positiva e decrescente em $[1, \infty)$.

Desta forma:

$$\int_{1}^{\infty} \frac{1}{x^{2} + 4} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{2} + 4} dx$$

$$= \lim_{n \to \infty} \int_{\arctan(1/2)}^{\arctan(n/2)} \frac{1}{2} \left(\frac{\sec^{2} \theta}{\tan^{2} \theta + 1} \right) d\theta$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{\arctan(n/2)}^{\arctan(n/2)} d\theta$$

$$= \frac{1}{2} \lim_{n \to \infty} \left[\theta \right]_{\arctan(n/2)}^{\arctan(n/2)}$$

$$= \frac{1}{2} \lim_{n \to \infty} \left[\arctan\left(\frac{n}{2} \right) - \arctan\left(\frac{1}{2} \right) \right]$$

$$= \frac{1}{2} \left[\frac{\pi}{2} - \arctan\left(\frac{1}{2} \right) \right]$$

Note que a integral indefinida é convergente, logo pelo teste da integral a série dada no enunciado converge.

Determine se a série $\sum_{n=0}^{\infty} \frac{5}{4n-3}$ é convergente ou divergente.

A função associada ao termo geral dessa série é $f(x) = \frac{5}{4x - 3}$.

Note que essa função é contínua (toda função racional é contínua no seu domínio) para $x \neq \frac{3}{4}$ e positiva para todo $x > \frac{3}{4}$.

É fácil ver que f é decrescente (o denominador é crescente e o numerador é constante), portanto essa função é contínua, positiva e decrescente em $[1, \infty)$.

$$\int_{1}^{\infty} \frac{5}{4x - 3} dx = 5 \cdot \lim_{n \to \infty} \int_{1}^{n} \frac{1}{4x - 3} dx$$

$$= 5 \cdot \lim_{n \to \infty} \left[\frac{1}{4} \ln|4x - 3| \right]_{1}^{n}$$

$$= \frac{5}{4} \cdot \lim_{n \to \infty} \ln|4n - 3|$$

$$= \frac{5}{4} \cdot \infty = \infty$$

Note que a integral indefinida é divergente, logo pelo teste da integral a série dada no enunciado divergente.

Determine se a série $\frac{1}{3} + \frac{1}{7} + \frac{1}{11} + \frac{1}{15} + \frac{1}{19} + \cdots$ é convergente ou divergente. Exiba o seu termo geral.

Exercício

Semana 5 - Exercício 2

Determine se a série $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ é convergente ou divergente.

A Série-p

Série-p

A série-p (série potência) $\sum_{n=0}^{\infty} \frac{1}{n^p}$ é convergente se p > 1 e divergente se $p \le 1$.

Há três casos à considerar, p < 0, p = 0 e p > 0:

$$p < 0$$
 Nesse caso

$$\lim_{n \to \infty} \frac{1}{n^p} = \infty$$

Logo pelo teste da divergência a série é divergente.

$$p=0$$
 Assim

$$\lim_{n\to\infty}\frac{1}{n^p}=1$$

Novamente a série é divergente pelo teste da divergência.

$$f(x) = \frac{1}{x^p}$$

Se trata de uma função racional, portanto é contínua em todo o seu domínio $(D_f = \mathbb{R}^*)$.

A função é sempre positiva e decrescente no intervalo $[1, \infty]$.

Portanto, podemos aplicar o Teste da Integral. Para tanto é necessário determinar a integral imprópria do tipo 1:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{p}} dx$$

Aqui temos três sub-casos à considerar:

$$(p>1) \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{p}} dx = \dots = \lim_{n \to \infty} \left[\frac{n^{-p+1}}{1-p} - \frac{1}{1-p} \right] = \frac{1}{p-1} > 0$$

Desse modo o Teste da Integral garante que a série é convergente se p>1 e divergente se 0.

Considerando-se os dois casos iniciais podemos concluir que a série-p é convergente se p>1 e divergente se p<1.

Determine se a série $\sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$ é convergente ou divergente.

Exercício

Determine se a série $\sum_{n=1}^{\infty} \frac{\sqrt{n-4}}{n^2}$ é convergente ou divergente.

Semana 5 - Exercício 3

Determine se a série $\sum_{n=0}^{\infty} \frac{\sqrt{n} - 5n}{n^2}$ é convergente ou divergente.

Exercício

Semana 5 - Exercício 4

Determine se a série $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \cdots$ é convergente ou divergente. Apresente o seu termo geral.

Testes da Comparação Termo à Termo

Teste da comparação termo à termo

Suponha que $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ sejam séries com termos positivos.

Se
$$\sum_{n=1}^{\infty} b_n$$
 for convergente e $a_n \leq b_n$ para todo n , então $\sum_{n=1}^{\infty} a_n$ também será convergente.

Se
$$\sum_{n=1}^{\infty} b_n$$
 for divergente e $a_n \geq b_n$ para todo n , então $\sum_{n=1}^{\infty} a_n$ também será divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}} \le \frac{\sqrt[3]{n}}{\sqrt{n^3}} = \frac{n^{1/3}}{n^{3/2}} = \frac{1}{n^{7/6}}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$.

Note que se trata de uma série-p com $p = \frac{7}{6} > 1$, portanto é uma série convergente.

Como $\frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}} \le \frac{1}{n^{7/6}}$ para todo $n \ge 1$, então a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}}$ é convergente pelo Teste da Comparação termo à termo.

Determine se a série $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. O termo geral da sequência que define a série não é definido quando n = 1, portanto:

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}} = \sum_{n=2}^{\infty} \frac{n^2}{\sqrt{n-1}}$$

Observe que para todo $n \geq 2$.

$$\frac{n^2}{\sqrt{n-1}} > \frac{1}{\sqrt{n-1}} > \frac{1}{n-1} > \frac{1}{n}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{n=1}^{\infty} \frac{1}{n}$.

Note que se trata da série harmônica, portanto é uma série divergente.

Como $\frac{n^2}{\sqrt{n-1}} \ge \frac{1}{n}$ para todo $n \ge 2$, então a série $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}}$ é divergente pelo Teste da

Comparação termo à termo.

Determine se a série $\sum_{n=0}^{\infty} \frac{4}{3^n+1}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{4}{3^n+1} < \frac{4}{3^n} = \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}$$

Dessa forma podemos aplicar o teste da comparação usando a série geométrica

$$\sum_{n=1}^{\infty} \frac{4}{3} \left(\frac{1}{3} \right)^{n-1}.$$

com termo inicial a = 4/3 e razão comum r = 1/3.

Note que r < 1, então essa série geométrica será convergente.

Como
$$\frac{4}{3^n+1} \le \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}$$
 para todo $n \ge 1$, então a série $\sum_{n=1}^{\infty} \frac{4}{3^n+1}$ é convergente pelo

Teste da Comparação termo à termo.

Testes da Comparação de Limites

Teste da comparação de limites

Suponha que $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sejam séries com termos positivos. Se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

onde c é um número finito e c>0, então ambas as séries convergem ou ambas as séries divergem.

Determine se a série $\sum_{i=1}^{\infty} \frac{1}{n^2 + 2n}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{1}{n^2 + 2n}$.

Vamos aplicar o Teste da Comparação com limite usando a série- $p \sum_{n=1}^{\infty} \frac{1}{n^2} \operatorname{com} p = 2$.

Seu termo geral é $b_n = \frac{1}{n^2}$.

Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n^2 + 2n}}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{n^2}{n^2 + 2n}$$

$$= \lim_{n \to \infty} \frac{\frac{n^2}{n^2 + 2n}}{\frac{n^2}{(n^2 + 2n)/n^2}}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n}} = 1$$

Como o limite e uma constante positiva, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$ é convergente.

Determine se a série convergente ou divergente usando os testes da comparação:

$$\sum_{k=0}^{\infty} \frac{k \operatorname{sen}^2 k}{1 + k^2}$$

$$\sum_{n=1}^{\infty} \frac{1 + \cos n}{\exp n}$$