Formal Concept Analysis

I Contexts, Concepts, and Concept Lattices

Robert Jäschke Asmelash Teka Hadgu

FG Wissensbasierte Systeme/L3S Research Center Leibniz Universität Hannover

slides based on a lecture by Prof. Gerd Stumme

Agenda

- Many-valued Contexts and Conceptual Scaling
 - Many-valued Contexts
 - Conceptual Scaling
 - Elementary Scales

Many-valued Contexts

- so far: one-valued attributes
- in language, the word "attribute" refers not only to properties which an object may have or not
- attributes like "color", "weight", "sex", or "grade" have values
- now: many-valued attributes
- (DIN 2330 calls many-valued attributes Merkmalarten.)

Many-valued Contexts: Definition

Def.: A many-valued context (G, M, W, I) consists of sets G, M and W and a ternary relation I between G, M and W (i.e., $I \subseteq G \times M \times W$) for which it holds that

$$(g, m, w) \in I$$
 and $(g, m, v) \in I$ always implies $w = v$.

The elements of

- G are called objects, those of
- M (many-valued) attributes and those of
- W attribute values.

 $(g,m,w)\in I$ is read as "the attribute m has the value w for the object g".

Many-valued Contexts: Properties

- ullet Many-valued attributes can be regarded as partial maps from G in W.
- We can write m(g) = w instead of $(g, m, w) \in I$.
- example: maintainability(mid-engine) = very poor

representation as a table

The entry in row g and column m represents the attribute value m(g).

(If the attribute m does not have a value for the object g, there will be no entry.)

Many-valued Contexts

• domain of an attribute m:

$$dom(m) := \{ g \in G \mid (g, m, w) \in I \text{ for some } w \in W \}$$

- An attribute m is called *complete*, if dom(m) = G.
- A many-valued context is *complete*, if all its attributes are complete.

Many-valued Contexts: "Drive Concepts for Motorcars"

A comparison of the different options to arrange the engine and the drive mechanism of a motorcar. 1

 $\mathsf{E} := \mathsf{economy} \ \mathsf{of} \ \mathsf{space}$

M := maintainability

C := cost of construction

De := drive efficiency empty DI := drive efficiency loaded

R := road holding/handling properties;

S := self-steering efficiency

 $^{^{}m 1}$ Schlag nach! $100\,000$ Tatsachen aus allen Wissensgebieten. BI Verlag, 1982

How can we compute concepts for a many-valued context?

- By transforming it into a one-valued context:
 - each many-valued attribute is interpreted by means of a context
 - this context is called conceptual scale
- The concepts of this *derived* context are *interpreted* as concepts of the many-valued context.
- This process is called conceptual scaling
 - conceptual scales are not uniquely determined
 - result depends on the chosen scales

Def.: A *scale* for the attribute m of a many-valued context is a (one-valued) context $\mathbb{S}_m := (G_m, M_m, I_m)$ with $m(G) \subseteq G_m$. The objects of a scale are called *scale values*, the attributes are called *scale attributes*.

			++	+	
Sp	•=	excellent	×	×	
~κ	•	good		×	
		very poor			×

- Every context can be used as a scale.
- Formally, there is no difference between a scale and a context.
- We will use the term "scale" only for contexts which have a clear conceptual structure and which bear meaning.

Def.: If (G, M, W, I) is a many-valued context and $\mathbb{S}_m, m \in M$ are scale contexts, then the *derived context with respect to plain scaling* is the context (G, N, J) with

$$N:=\bigcup_{m\in M}\dot{M}_m,$$

and

$$gJ(m,n):\iff m(g)=w \text{ and } wI_mn.$$

 $(\dot{M}_m := \{m\} imes M_m$, to ensure that the attributes are disjoint)

Conceptual Scaling: "Drive Concepts for Motorcars"

	De	DI	R	S	E	С	М
conventional	poor	good	good	understeering	good	medium	excellent
front-wheel	good	poor	excellent	understeering	excellent	very low	good
rear-wheel	excellent	excellent	very poor	oversteering	poor	low	very poor
mid-engine	excellent	excellent	good	neutral	very poor	low	very poor
all-wheel	excellent	excellent	good	understeering/neutral	good	high	poor

Using those scales:

		u	0	n	u/n
C	understeering	×			
$\mathbb{S}_{S} :=$	oversteering		×		
	neutral			×	
	understeering/neutral				×

		++	+	_	
a a	excellent	×	×		
$\mathbb{S}_{E} := \mathbb{S}_{M} :=$	good		×		
	poor			×	
	very poor			×	×

			++	+	
Sd	•=	excellent	×	×	
×κ	•	good		×	
		very poor			×

		vl	I	m	h
	very low	×	×		
$\mathbb{S}_{C} :=$	low		×		
	medium			×	
	high				×

... we get the following context:

Conceptual Scaling: "Drive Concepts for Motorcars"

	De		DI R			S				E				(2			N	Л						
	++	+	_	++	+	_	++	+		u	0	n	u/n	++	+	_		vl	Π	m	h	++	+	_	
conventional			×		×			X		×					×					×		×	×		
front-wheel		×				×	×	×		×				×	×			×	×				×		
rear-wheel	×	×		×	×				×		×					×			×				×		
mid-engine	×	×		×	×			×				×				×	×		×					×	×
all-wheel	×	×		×	×			×					×		×						×			×	

(If we had used the scale \mathbb{S}_E for the attributes De, Dl, and R as well, the derived context would have only turned out slightly different.)

The derived one-valued context is obtained from the many-valued context (G, M, W, I) and the scale contexts $\mathbb{S}_m, m \in M$ as follows:

- ullet the object set G remains unchanged
- ullet every many-valued attribute m is replaced by the attributes of \mathbb{S}_m

In the table representation, we can visualize scaling as follows: Every attribute value m(g) is replaced by the row of \mathbb{S}_m which belongs to m(g):

	D	е	L	DI		_	R				S				Е			C			М				
conventional	po	or	Г	good good und		nde	erst	eeri	ng		good		me	medium		ex	excellent								
front-wheel	god	od		poor excellent und		nde	rst	eeri	ng	ex	cel	lent	t ver	y l	low go			d							
rear-wheel	excel	lent	ex	celle	nt	ver	y po	or	c	ovei	rste	erii	ng		ро	or	- 1	low		ver	ур	oor			
mid-engine	excel	lent	ex	celle	nt	g	good					*		++		_	1	_		ver	ур	oor			
all-wheel	excel	lent	e	celle	nt	g	boo		under					++		+					poc	r			
				excellent			nt	×		×															
	[Эе		DI R		Г		go	bc		T	X		╗	(2			Ν	Λ					
	++	+	_	++	+	_	++	+				ро	or		Ť		×		T	m	h	++	+	_	
conventional			X	1	×			×		×			1		×			_	ī	×		×	×		
front-wheel		X				Х	×	×		X				×	×			×	×				×		
rear-wheel	×	×		×	×				×		×					×			×				×		
mid-engine	×	×		×	×			×				×				×	×		×					×	×
all-wheel	×	×		×	×			×					×		×						×			×	

Conceptual Scaling: "Drive Concepts for Motorcars"

De := drive efficiency empty
DI := drive efficiency loaded
R := road holding/handling properties
S := self-steering efficiency
E := economy of space
C := cost of construction
M := maintainability

Which contexts can we use for scaling?

- formally, any binary relation can be regarded as a context
- → interesting contexts from mathematics
 - have structural properties occurring very rarely with empirical data
 - great importance for data analysis
 - "ideal structures"
 - can be used as scales

We introduce so-called elementary scales.

Nominal Scales: $\mathbb{N}_n := (\mathbf{n}, \mathbf{n}, =)^2$

- to scale attributes, the values of which mutually exclude each other
- example: attribute with values { masculine, feminine, neuter}
- we obtain a partition of the objects into extents
- the partitions correspond to the values of the attribute

	1	2	3	4
1	×			
2		×		
3			×	
4				×

The Nominal Scale \mathbb{N}_4 .

 $^{{}^{2}\}mathbf{n} := \{1, \dots, n\}$

Ordinal Scales: $\mathbb{O}_n := (\mathbf{n}, \mathbf{n}, \leqslant)$

- to scale attributes, the values of which are ordered and each value implies the weaker ones
- example: attribute with values { loud, very loud, extremely loud}
- attribute values result in a chain of extents, interpreted as a hierarchy

	1	2	3	4
1	×	×	×	×
2		×	×	×
3			×	×
4				×

$$0 \leqslant 4$$

$$4 \leqslant 3$$

$$3 \leqslant 2$$

$$2 \leqslant 1$$

The Ordinal Scale \mathbb{O}_4 .

Interordinal Scales:
$$\mathbb{I}_n := (\mathbf{n}, \mathbf{n}, \leqslant) \mid (\mathbf{n}, \mathbf{n}, \geqslant)$$

- questionnaires often offer opposite pairs as possible answers allowing a choice of intermediate values
- for example active-passive, talkative-taciturn, etc.
- → bipolar ordering of the values
 - extents of the interordinal scale are precisely the intervals of values
 - the betweenness relation is reflected conceptually

	≤1	≤2	≤ 3	≪4	≥1	≥2	≥3	≥4
1	×	×	×	×	×			
2		×	×	×	×	×		
3			×	×	×	×	×	
4				×	×	×	×	×

The Interordinal Scale \mathbb{I}_4 .

Biordinal Scales:
$$\mathbb{M}_{n,m} := (\mathbf{n}, \mathbf{n}, \leqslant) \cup (\mathbf{m}, \mathbf{m}, \geqslant)$$

- often opposite pairs are used simpler: each object is assigned one of the two poles, allowing graduations – "partition with a hierarchy"
- example: {very low, low, loud, very loud} (→ suggests loud and low mutually exclude each other, very loud implies loud, very low implies low)
- example: school mark excellent is also very good, good, and satisfactory, but not unsatisfactory or a fail

	≤1	≤2	≤3	≪4	≥5	≥6
1	×	×	×	×		
2		×	×	×		
3			×	×		
4				×		
5					×	
6					×	×

The Biordinal Scale $\mathbb{M}_{4,2}$.

The **Dichotomic Scale:** $\mathbb{D} := (\{0,1\},\{0,1\},=)$

- ullet special case: isomorphic to \mathbb{N}_2 amd $\mathbb{M}_{1,1}$
- ullet closely related to \mathbb{I}_2
- frequently used to scale attributes with values like {yes, no}

	0	1
0	×	
1		×

The Dichotomic Scale \mathbb{D} .

- frequently, all many-valued attributes can be interpreted with respect to the same scale or family of scales
- nominally scaled context: if all scales \mathbb{S}_m are nominal scales, etc.
- a many-valued context is called nominal, if the nature of the data suggests nominal scaling
- a many-valued context is called an *ordinal context* if for each attribute the set of values is ordered in a natural way

Elementary Scales: Example "Forum Romanum"

Forum Romanum		В	GB	М	Р
1	Arch of Septimus Severus	*	*	**	*
2	Arch of Titus	*	**	**	
3	Basilica Julia			*	
4	Basilica of Maxentius	*			
5	Phocas column		*	**	
6	Curia				*
7	House of the Vestals			*	
8	Portico of Twelve Gods		*	*	*
9	Temple of Antonius and Fausta	*	*	***	*
10	Temple of Castor and Pollux	*	**	***	*
11	Temple of Romulus		*		
12	Temple of Saturn			**	*
13	Temple of Vespasian			**	
14	Temple of Vesta		**	**	*

Example of an ordinal context: Ratings of monuments on the Forum Romanum in different travel guides (B = Baedecker, GB = Les Guides Bleus, M = Michelin, P = Polyglott). The context becomes ordinal through the number of stars awarded. If no star has been awarded, this is rated zero.

Elementary Scales: Example "Forum Romanum"

Forum Romanum		B GB		iΒ	M			Р
		*	*	**	*	**	***	*
1	Arch of Septimus Severus	×	×		×	×		×
2	Arch of Titus	×	×	×	×	×		
3	Basilica Julia				×			
4	Basilica of Maxentius	×						
5	Phocas column		×		×	×		
6	Curia							$ \times $
7	House of the Vestals				×			
8	Portico of Twelve Gods		×		×			$ \times $
9	Temple of Antonius and Fausta	×	×		×	×	×	$ \times $
10	Temple of Castor and Pollux	×	×	×	×	×	×	$ \times $
11	Temple of Romulus		×					
12	Temple of Saturn				×	×		$ \times $
13	Temple of Vespasian				×	×		
14	Temple of Vesta		×	×	×	×		$ \times $

Elementary Scales: Example "Forum Romanum"

Temple of Castor and Pollux