Statistical Analysis and Document Mining

TD1: Multiple linear regression

January 2022

Exercise 1

The dataset swiss available in R contains the following information:

Description:

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888.

Format:

A data frame with 47 observations on 6 variables, _each_ of which is in percent, i.e., in [0,100].

```
[,1] Fertility Ig, 'common standardized fertility measure'
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % draftees receiving highest mark on army examination
[,4] Education % education beyond primary school for draftees.
[,5] Catholic % 'catholic' (as opposed to 'protestant').
[,6] Infant.Mortality live births who live less than 1 year.
```

All variables but 'Fertility' give proportions of the population.

We want to study the effect of these 5 socio-economic indicators on the fertility measure.

1. Firstly, we apply a multiple regression:

Call:

```
lm(formula = Fertility ~ . , data = swiss)
```

Residuals:

```
Min 1Q Median 3Q Max -15.2743 -5.2617 0.5032 4.1198 15.3213
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
              (Intercept)
Agriculture
              -0.17211
                         0.07030 -2.448 0.01873 *
Examination
              -0.25801
                         0.25388 -1.016 0.31546
Education
              -0.87094
                         0.18303 -4.758 2.43e-05 ***
Catholic
               0.10412
                         0.03526
                                2.953 0.00519 **
                         0.38172
                                 2.822 0.00734 **
Infant.Mortality 1.07705
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
```

Residual standard error: 7.165 on 41 degrees of freedom Multiple R-squared: 0.7067, Adjusted R-squared: 0.671 F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

- Is there a relationship between Examination and fertility measure? In which direction?
- Is there a relationship between Education and fertility measure? In which direction?
- 2. The simple regression, using the variable Examination gives:

Call:

lm(formula = Fertility ~ Examination, data = swiss)

Residuals:

Min 1Q Median 3Q Max -25.9375 -6.0044 -0.3393 7.9239 19.7399

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 86.8185 3.2576 26.651 < 2e-16 ***
Examination -1.0113 0.1782 -5.675 9.45e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 9.642 on 45 degrees of freedom Multiple R-squared: 0.4172, Adjusted R-squared: 0.4042 F-statistic: 32.21 on 1 and 45 DF, p-value: 9.45e-07

Is this result in adequation with the result performed by the multiple regression? Hint: the correlation matrix for this dataset is

> cor(swiss)

	Fertility	Agriculture	${\tt Examination}$	Education	Catholic	Infant.Mortality
Fertility	1.0000000	0.35307918	-0.6458827	-0.66378886	0.4636847	0.41655603
Agriculture	0.3530792	1.00000000	-0.6865422	-0.63952252	0.4010951	-0.06085861
Examination	-0.6458827	-0.68654221	1.0000000	0.69841530	-0.5727418	-0.11402160
Education	-0.6637889	-0.63952252	0.6984153	1.00000000	-0.1538589	-0.09932185
Catholic	0.4636847	0.40109505	-0.5727418	-0.15385892	1.0000000	0.17549591
Infant.Mortality	0.4165560	-0.06085861	-0.1140216	-0.09932185	0.1754959	1.00000000

Exercise 2

The dataset mtcars available in R contains the following information:

Description:

The data was extracted from the 1974 _Motor Trend_ US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

Format:

A data frame with 32 observations on 11 variables.

```
[, 1]
            Miles/(US) gallon
      mpg
[, 2]
            Number of cylinders
      cyl
[, 3]
      disp Displacement (cu.in.)
[, 4]
            Gross horsepower
      hp
[, 5]
      drat Rear axle ratio
[, 6]
            Weight (lb/1000)
      wt
[, 7]
      qsec 1/4 mile time
[, 8]
      ٧S
            V/S
[, 9]
            Transmission (0 = automatic, 1 = manual)
      am
[,10]
      gear Number of forward gears
      carb Number of carburetors
[,11]
```

We would like to study the influence of these ten factors on the fuel consumption. To do so, we consider two statistical analysis with R:

1. We first do a multiple linear regression considering all features:

```
Call:
lm(formula = mpg ~ . , data = mtcars)
Residuals:
```

Min 1Q Median 3Q Max -3.4506 -1.6044 -0.1196 1.2193 4.6271

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	12.30337	18.71788	0.657	0.5181
cyl	-0.11144	1.04502	-0.107	0.9161
disp	0.01334	0.01786	0.747	0.4635
hp	-0.02148	0.02177	-0.987	0.3350
drat	0.78711	1.63537	0.481	0.6353
wt	-3.71530	1.89441	-1.961	0.0633 .
qsec	0.82104	0.73084	1.123	0.2739
VS	0.31776	2.10451	0.151	0.8814
am	2.52023	2.05665	1.225	0.2340
gear	0.65541	1.49326	0.439	0.6652
carb	-0.19942	0.82875	-0.241	0.8122

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 2.65 on 21 degrees of freedom Multiple R-squared: 0.869, Adjusted R-squared: 0.8066 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

2. Then, we do a new regression with fewer predictors:

Call:

lm(formula = mpg ~ carb + gear + drat, data = mtcars)

Residuals:

Min 1Q Median 3Q Max -8.333 -1.802 0.369 1.543 6.122

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7848 3.8829 0.202 0.84129

carb -2.3866 0.3786 -6.303 8.13e-07 ***

gear 3.5144 1.1553 3.042 0.00506 **

drat 3.6309 1.5395 2.358 0.02557 *

Signif. codes: 0 ~*** 0.001 ~** 0.01 ~* 0.05 ~.~ 0.1 ~ ~ 1

Residual standard error: 2.985 on 28 degrees of freedom Multiple R-squared: 0.7784, Adjusted R-squared: 0.7547 F-statistic: 32.79 on 3 and 28 DF, p-value: 2.656e-09

- Has the number of cylinders an effect on the fuel consumption? In which direction?
- Has any predictor an effect and in which way?

Exercise 3

Let $\hat{\beta}$ the estimated coefficients obtained by multiple regression:

$$\hat{\beta} = \arg\min_{\beta} \left[\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right]$$

Consider now a new estimator $\hat{\beta}$ constrained to satisfy the relation:

$$\sum_{j=1}^{p} \hat{\beta}_j^2 \leqslant t$$

where t is a fixed positive real number. Using Lagrange multipliers, this is equivalent to write:

$$\hat{\beta} = \arg\min_{\beta} \left[\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right]$$

where λ is a fixed positive real number. (there is a bijection between values of t and λ).

- 1. Why is it interesting to introduce λ (or t)?
- 2. Write the new estimator $\hat{\beta}$.
- 3. How could we choose λ ?
- 4. Is the new estimator equivariant to scale?
- 5. Compare the bias and variance of the new estimator to those from the initial one.

Exercise 4

Prove Proposition 1. As a bonus, prove its Corollary.

Proposition 1 Let U be some Gaussian vector with covariance matrix $\sigma^2 I$, E be some linear subspace, Π_E be some orthogonal projector on E (assuming the canonical dot product). Then $\Pi_E U$ and $\Pi_{E^{\perp}} U$ are two independent Gaussian vectors.

Corollary 1 As a consequence, in the linear regression model $Y = X\beta + \varepsilon$,

- $X\hat{\beta}$ and $Y X\hat{\beta}$ are independent,
- $\hat{\beta}$ and $\hat{\sigma}$ are independent.

Hints: we remind that the MLE is $\hat{\beta} = (XX^T)^{-1}X^TY$ and that the minimal variance unbiased estimator of σ^2 is $\frac{n}{n-p-1}\sum_{i=1}^n \hat{\varepsilon}_i^2$.

Exercise 5:

Prove Proposition 2. As a bonus, prove its Corollary.

Proposition 2 Let U be some centred Gaussian vector with covariance matrix $\sigma^2 I$, E be some linear subspace, r = dim(E), Π_E be some orthogonal projector on E (assuming the canonical dot product).

Then $\frac{1}{\sigma^2} \|\Pi_E U\|^2$ has a χ_r^2 distribution.

Corollary 2 As a consequence, in the linear regression model $Y = X\beta + \varepsilon$,

$$\frac{1}{\sigma^2} \|Y - X\hat{\beta}\|^2 = \frac{n - p - 1}{\sigma^2} \hat{\sigma}^2$$

has a χ^2_{n-p-1} distribution if X is a matrix in $\mathbb{R}^{n\times (p+1)}$ of full rank.

Moreover,
$$\frac{(n-p-1)\|X(\hat{\beta}-\beta)\|^2}{(p+1)\|Y-X\hat{\beta}\|^2}$$
 has a Fisher distribution $\mathcal{F}(p+1,n-p-1)$.

Hints: diagonalize matrix Π_E and use the basis that makes Π_E diagonal to compute $\|\Pi_E U\|^2$ and its distribution. Note that this should involve some linear isometry.