## Bioinformatics CS300

**Crash course:** 

Transcription and Translation Running Python in Docker or Online

Spring 2021
Oliver BONHAM-CARTER

## Genes vs Gene Expression

ALLEGHENY COLLEGE

All genes are present in the genome genes only expressed when needed

Of the many recipes in the cookbook...

... Only transcribe and translate 4<sup>th</sup> of July recipes in **July** 



... Only transcribe and translate the Thanksgiving turkey recipe in **November** 





# Transcription and Translation (Gene Expression)





#### **Transcription**

copy a set of ingredients/instructions from a cookbook to create a recipe

Dark Charalate Cake

Mix to-gether in a band

4-10y aguares of Bakers Cho.

13 cup butter

7 cup bailing water

while this is melting, sift

to-gether

2 cups cake flaur

2 cups sugar

1'2 tep. sala

1 top. salt

mip the water mixture well and

add dry ingredients in 3 partions



#### **Translation**

use the recipe to create a dish



### Transcription and Translation





## Animation: DNA $\rightarrow$ RNA $\rightarrow$ Protein



Cold Spring Harbor Laboratory link: https://dnalc.cshl.edu/view/16933-3D-Animation-of-DNA-to-RNA-to-Protein.html

#### **Structure: RNA vs DNA**



- RNA uracil replaces thymine (no Ts in RNA)
- RNA single stranded (one backbone, no basepairs)



## Antisense and Sense Strands of DNA – Relative to the gene being transcribed





Genes for coding proteins are found on "antisense" strands. Their complements are found on the "sense" strand.



#### Beginnings and Endings of Genes Promoters and Terminators

... co Gators! <terminator> ...

Transcription is initiated at a promoter sequence and ends at a terminator sequence. The transcript is synthesized in a 5'-to-3' direction.



Both DNA strands serve as templates for transcription.



# Transcription RNA From DNA



Cold Spring Harbor Laboratory link: https://www.dnalc.org/resources/3d/12-transcription-basic.html



### Sense and Antisense DNA



- Antisense is the non-coding DNA strand of a gene
- A cell uses antisense DNA strand as a template for producing messenger RNA (mRNA) that directs the synthesis of a protein.

#### **Exon and Introns**





#### Add 2 eggs to the flour and stir

- In most eukaryotic genes, coding regions (exons) are interrupted by noncoding regions (introns). Introns do not contain the message and are removed from the RNA after transcription but prior to translation.
  - During the process of RNA splicing, introns are removed and exons joined to form a contiguous coding sequence.

### Splicing Exon Material





- Exons: a segment of a DNA or RNA molecule containing information coding for a protein or peptide sequence.
- Eukaryotic pre-mRNA contains exons and introns\*
  - \*some pre-mRNAs contain only one exon











- Triplet code
  - Combinations of three nucleotides code for one amino acid
  - Three nucleotides = codon
- Redundancy
  - Sometimes >1 codon codes for same amino acid
  - 20 amino acids, 64 possible codons

#### Standard genetic code

- Start and Stop codons
  - Often, Start codon is "AUG" (methionine)
  - Codons UAA, UAG, and UGA indicate the *end* of the transcript

| 1st  | 2nd base           |                                       |     |                   |                    |                       |                    |                    | 3rd  |
|------|--------------------|---------------------------------------|-----|-------------------|--------------------|-----------------------|--------------------|--------------------|------|
| base | Т                  |                                       | С   |                   | A                  |                       | G                  |                    | base |
| т    | TTT                | (Phe/F) Phenylalanine                 | TCT | (Ser/S) Serine    | TAT                | (Tyr/Y) Tyrosine      | TGT                | (Cys/C) Cysteine   | Т    |
|      | TTC                |                                       | TCC |                   | TAC                |                       | TGC                |                    | С    |
|      | TTA                | (Leu/L) Leucine                       | TCA |                   | TAA <sup>[B]</sup> | Stop (Ochre)          | TGA <sup>[B]</sup> | Stop (Opal)        | A    |
|      | TTG                |                                       | TCG |                   | TAG <sup>[B]</sup> | Stop (Amber)          | TGG                | (Trp/W) Tryptophan | G    |
| С    | CTT                |                                       | CCT | (Pro/P) Proline   | CAT                | (His/H) Histidine     | CGT                | (Arg/R) Arginine   | Т    |
|      | CTC                |                                       | CCC |                   | CAC                |                       | CGC                |                    | С    |
|      | CTA                |                                       | CCA |                   | CAA                | (Gln/Q) Glutamine     | CGA                |                    | A    |
|      | CTG                |                                       | CCG |                   | CAG                |                       | CGG                |                    | G    |
| A    | ATT                | (Ile/I) Isoleucine (Met/M) Methionine | ACT | (Thr/T) Threonine | AAT                | (Asn/N) Asparagine    | AGT                | (Ser/S) Serine     | Т    |
|      | ATC                |                                       | ACC |                   | AAC                |                       | AGC                |                    | С    |
|      | ATA                |                                       | ACA |                   | AAA                | (Lys/K) Lysine        | AGA                | (Arg/R) Arginine   | A    |
|      | ATG <sup>[A]</sup> |                                       | ACG |                   | AAG                |                       | AGG                |                    | G    |
| G    | GTT                | (Val/V) Valine                        | GCT | (Ala/A) Alanine   | GAT                | (Asp/D) Aspartic acid | GGT                | (Gly/G) Glycine    | Т    |
|      | GTC                |                                       | GCC |                   | GAC                |                       | GGC                |                    | С    |
|      | GTA                |                                       | GCA |                   | GAA                | (Glu/E) Glutamic acid | GGA                |                    | A    |
|      | GTG                |                                       | GCG |                   | GAG                |                       | GGG                |                    | G    |

### **Another Triplet Table**







#### **Translation**

 The information from DNA is rewritten in a new language: RNA







- mRNA Translation (2 mins)
  - https://www.youtube.com/watch?v=8dsTvBaUMvw
- Protein Synthesis and the Lean, Mean Ribosome Machines (7 mins)
  - https://www.youtube.com/watch?v=h5mJbP23Buo
- From DNA to protein 3D, 2.5 mins)
  - https://www.youtube.com/watch?v=gG7uCskUOrA





## Bring the Code!





## Please Install Your Software

- We will be using Git and GitHub. Please setup your account at https://github.com/ and also download a Git client software from https://git-scm.com/downloads
- We will also be using the Atom editor to write code. Please download and install your editor from https://atom.io/
- For most labs, we will be using Docker. Please download and install your Docker Desktop installation (note: not the Docker ToolBox) from https://www.docker.com/. Help: https://hub.docker.com/
- If necessary, please help each other to install this software. Or see the department's Technical Leaders with questions.





## File: Dockerfile

(for Docker Desktop)

Creates your container to run your Python code.

FROM ubuntu:20.04

RUN apt-get update && apt-get -y install git htop vim python3 python3-pip

RUN \
pip3 install --upgrade pip

WORKDIR /root

CMD ["bash"]





## Script files

(for Docker Desktop)

Automatically create and run your containers!

#### **Builder scripts:**

- build\_linux.sh
- build\_macOS.sh
- build\_win.bat

#### **Executer scripts**:

- run\_linux.sh
- run macOS.sh
- run\_win.bat







- Or, try Python3 programming using an interactive shell from repl.it
- Link: https://repl.it/languages/python3



```
r python™
                    Downloads
           About
                                Documentation
                                                Cor
      ['BANANA', 'APPLE', 'LIME']
      [(0, 'Banana'), (1, 'Apple'), (2, 'Lime')]
```

- Some trouble to make Python3 work with Docker ToolBox
- Install and use Python3 however you want!
- Get Python3 from the Python Software Foundation
- Login http://www.python.org/downloads





- Download and install the version of Python3 for your OS being sure to add the PATH to the environmental variables (check the path option!)
- Ask questions if you have trouble installing the program
- Check with the installation material to learn how to launch



## Python3

```
#Calculating values
3 / 4
2 * 6
3.1415 - 2.718
x = 1
y = 2
print(x+y)
result = x + y
print("The result is :", result)
```



## Python3

```
# Integers, counting numbers
   num\_int = 1
# Floats, decimals
   num_float = 3.1415
# Strings
   s_str = " Hello World"
# Combining variables in print statements
   x_int = 1
   print(" The integer variable is :", x_int)
   num_float = 3.14
   print(" The float variable is :", num_float)
   s_str =("Hello World'')
   print(" The integer is equal to", s_str)
```



### Calculate

```
3 + 4 # Addition
3 - 4 # Subtraction
3 * 4 # Multiplication
3 / 4 # Division of 3 by 4
# Modulus; Returns the remainder from the
division 3 ** *4
3%4
# Powers; raise three to the power of four
= 3*3*3*3
= 3^4
= pow(3,4)
```



### Strings

```
# Remember each char of a string has own
position
s str = "ABC"
s_str[0] = 'A'
s_str[1] = 'B'
s_str[2] = 'C'
s_str[200] = ??
# Another way to iterate
# through a string using its length
for i_int in range(len(s_str)):
  print(s_str[i_int])
```



## Counting and Finding

```
# Getting input from a user
resp_str = input("Enter your name :")
print(" Hello", resp_str, "!")
# Determine number of chars in a string
lengthOfName_int = len(resp_str)
# Find a subset-string in the string
resp_str.find("M")
                        >>> resp_str = input("Enter your name :")
resp_str.find("A")
                        Enter your name :Mark
                        >>> print(" Hello",resp_str,"!")
resp_str.find("R")
                         Hello Mark!
resp_str.find("K")
                        >>> resp_str.find("M")
resp_str.find("ARK")
                        >>> resp_str.find("A")
                         >>> resp_str.find("a")
```



## Counting and Finding

```
Find char occurrence in a string
resp_str = "Hello!!"
resp_str.count("H")
resp_str.count("l")

Find number of specific triples in string
resp_str = "Hellollollo!!"
resp_str.count("llo")
resp_str.find("llo")
```

```
>>> resp_str = "Hellollollo!!"
>>> resp_str.count("l")
6
>>> resp_str.count("llo")
3
```



## A Short Program Watch for tabs that define code blocks

```
print("Welcome to the program!")
prmpt_str = " Please enter your name :"
# place the string above into input statement
name_str = input(prmpt_str)
print(" Your name is :", name_str)
print(" And is <<",len(name_str),">> chars long!")
# print the chars on lines
print(" What are the characters in the string? ")
for i in range(len(name_str)):
    # note the tabs for this block!
    # we iterate through the positions in string
    print(" + char :",name_str[i])
# find out how many a's are in the name
numChar_int = name_str.count("a")
print(" The number of a's in your name :", numChar int)
```

For this code, see file, pythonDemo.py, in your sandbox.



### Consider This ...

- Work with your peers or by yourself
- Write a short program in Python3 accepts a short sequence of DNA (that you type in) and counts the occurrences of:
  - A's
  - T's
  - G's
  - C's
  - "AT", "TA"
  - "GC" and "CG"







- Now, go get a real piece of DNA and try out your code
- Link for organism: *Gordonia phage Orchid*, complete genome,
  - https://www.ncbi.nlm.nih.gov/nuccore/NC\_030915.1?repor t=fasta
- What results did you find in terms of the pairs of AT's, TA's, GC's and CG's?
- Are the numbers of pairs similar or dissimilar?

