1. Вероятностно-статистическая модель

Определение 1. Пусть X - некот. наблюдение. Мн-во всех значений X наз. выборочным пространством и обозначается X.

 ${\bf X}$ - результат случ. выбора элемента ${\bf X}$ с неизвестгным распределением ${\bf P}$.

Определение 2. Тройка (X, B_x, P) ,где X - выборочное пространство, B_x - σ -алгебра на $X, P = \{P : P$ - вер.мера на $(X, B_x)\}$ - семейство распределений на (X, B_x) .

Если P параметризовано, т.е. $P=\{P_{\theta}:\Theta\in O\}$, то модель (X,B_x,P) наз. параметрической. Обычно $(X,B_x)=(R^n,B(R^n))$.

Пример 1. Выборка. Пусть прибор работает некоторое случайное время. Все приборы однородны, а потому можно считать, что их времена работы - это независимые однородно распределенные СВ $\xi_1 \dots \xi_n \dots$ Пусть распр. времени работы определяется средним значением: $\Theta = E\xi_i$. Задача - оценить Θ ?

Пример 2. Линейная регрессия. Объект движется из положения Θ_1 в положение Θ_2 с нек. скоростью. Засекаем его положение в нек. моменты времени. Известны результаты измерений положения объекта в моменты времени $t_1 \dots t_n$.

$$X_i = \Theta_1 + t_1 \Theta_2 + \varepsilon_i$$

 ε_i - ошибка измерения. Задача - оценить Θ_1,Θ_2

Определение 3. Набор $X_1 \dots X_n$ - независимых одинаково распредельных CB с распр. Р называется выборкой размера n из распределения P.

Определение 4. Пусть $X_1 \dots X_n$ - выборка. Тогда $\forall B \in B(R)$ обозначим $P_n^*(B) = U_n(B)/n$ где $U_n(B)$ - число элементов выборки, попавших в B, т е $P_n^* = \frac{\sum_{i=1}^n I\{X_i \in B\}}{n}$

Утверждение 1. Пусть $X_1 \dots X_n \dots$ - выборка неогр. размера из P_x . Тогда $\forall B \in B(R): P_n^* \xrightarrow{a.s} P_x(B)$

Доказательство. $P_n^*(B) = \frac{1}{n} \sum i = 1nI\{X_i \in B\}$. Согласно УЗБЧ $P_n^* \xrightarrow{a.s.} EP_n^*(B) = EI\{X_i \in B\} = P(X_i \in B) = P_x(B)$

Определение 5. Пусть $X_1 \dots X_n$ - выборка. Тогда $F_n(x) = P_n^*(-\infty;x] = \frac{1}{n} \sum i = 1nI\{X_i \leq x\}$

Теорема 1 <Гливенко-Кантелли>. Пусть $X_1 \dots X_n \dots$ - выборка неогр. размера. $c \ \phi.p. \ F(x)$. задана на вер. np-ве (Ω, F, P) . Тогда $\sup_{x \in R} |F_n(x) - F(x)| \xrightarrow{a.s.} 0$

Доказательство. Пусть Q - мн-вол рац. чисел на R. $\forall \omega \in \Omega \longrightarrow |F_n(x,\omega) - F(x)|$ - непрерын. справа, поэтому $\sup_{x \in R} |F_n(x,\omega) - F(x)| \ge \sup_{x \in Q} |F_n(x,\omega) - F(x)|$

Тогда $D_n(x) = \sup_{x \in Q} |F_n(x,\omega) - F(x)|$ - есть sup счетного мн-ва случ. величин $D_n(\omega)$ - тоже CB.

Пусть $N \in N$ Посмотрим $\forall k=1\dots N-1 \longrightarrow X_{k,N}=\min\{x:F(x)\geq k/n\}$ Для удобства положим $x_{0,N}=-\infty,x_{N,N}=+\infty$ Пусть $x\in[x_{k,N},x_{k+1,N}]$ $F_n(x)-F(x)\leq F_n(x_{k+1,N}-0)-F(x_{k,N})=(F_n(x_{k+1,N}-0)-F(x_{k,N})-F(x_{k+1,N}-0))+(F(x_{k+1,N}-0)-F(x_{k,N})$