复习高等代数

一. 线性空间

定义 设 F 是包含 0 和 1 的数集,若 F 中任意两个数的和差积商(0 不作除数)仍然在 F 中,则称 F 是一个数域。

如有理数集Q,实数集R,复数集C都是数域,但整数集Z不是数域。

定义 设V是一个非空集合,F是一个数域。在V中定义两种运算:加法与数乘。

- (1) **加法**: 对V 中任意两个元素 α 和 β ,定义V 中一个唯一确定的元素 η 与之对应,称为 α 与 β 的和,记为 $\eta = \alpha + \beta$ 。
- (2) **数乘**: 对V 中任意一个元素 α 和数域 F 中的任意一个数 k ,定义 V 中一个唯一确定的元素 δ 与之对应,称为 k 与 α 的数量乘积,记为 $\delta = k\alpha$ 。

规定集合V 中定义的上述加法与数乘运算满足以下八条规律:(设 α , β , γ 是集合V 中的任意元素, k, l 是数域F 中的任意数)

- (1) 加法交换律, $\alpha + \beta = \beta + \alpha$;
- (2) 加法结合律, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- (3) 存在零元 θ , $\alpha + \theta = \alpha$;
- (4) 存在负元 α^* , $\alpha + \alpha^* = \theta$;
- (5) 存在单位元数 1, $1 \cdot \alpha = \alpha$;
- (6) 数乘结合律, $k(l\alpha) = (kl)\alpha$;
- (7) 分配律, $(k+l)\alpha = k\alpha + l\alpha$;
- (8) 分配律, $k(\alpha + \beta) = k\alpha + k\beta$ 。

则称集合V是数域F上的一个线性空间。

全体n维实向量在通常的向量加法与数乘运算下,构成实数域R上的一个线性空间,称为n维向量空间,记为 R^n 。

全体实随机变量在通常的加法与数乘运算下,也构成实数域 R 上的一个线性空间,称为随机变量空间。需要注意的是,n 维向量空间只是线性空间的一个例子,还有其他各种各样的线性空间。

二. 内积与长度

向量的数量积: R^n 中两个n维向量 $\alpha = (a_1, a_2, \dots, a_n)^T$ 与 $\beta = (b_1, b_2, \dots, b_n)^T$,数

$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

称为向量 α 与 β 的数量积或内积,记为 α • β 或 (α, β) 。

注: (1) 数量积 α •β 中间的点乘号 "•" 不能省略。

- (2) 设 α 与 β 是n维列向量,数量积 α • β 看作矩阵乘积为 α ^T β ,写作 $\alpha\beta$ 无意义。
- 一般地,定义线性空间 / 上内积运算。 学校 () 内积是一种 4平身 7

定义 设V 是数域F 上的线性空间。对V 中任意两个元素 α 和 β ,定义F 中一个唯一确定的数与之对应,如果满足以下四条规律:(设 α , β , γ 是线性空间V 中的任意元素,k 是数域F 中的任意数)

- (1) 交換律, $(\alpha, \beta) = (\beta, \alpha)$; $(\alpha, \beta) = (\beta, \alpha)$
- (2) 加法分配率, $(\alpha, \beta + \gamma) = (\alpha, \beta) + (\alpha, \gamma)$;
- (3) 数乘结合律, $k(\alpha, \beta) = (k\alpha, \beta)$;
- (4) 自身非负性, $(\alpha,\alpha) \ge 0$,等号成立当且仅当 $\alpha = \theta$ 为零元素。

显然n维向量的数量积就是内积,两个随机变量的协方差也是内积(将常数看作随机性为零的量)。

定义 设V 是数域F 上定义有内积运算的线性空间。对V 中任意元素 α ,称 $\sqrt{(\alpha,\alpha)}$ 为 α 的长度,记为 $\|\alpha\|$ 。

定义 设V 是数域F 上定义有内积运算的线性空间。对V 中任意两个非零元素 α 和 β ,称

$$\arccos \frac{(\alpha, \beta)}{\|\alpha\| \cdot \|\beta\|}$$

为 α 与 β 的夹角。

定义 设V 是数域F 上定义有内积运算的线性空间。若 $(\alpha,\beta)=0$,则称 α 与 β 正交。

高等代数与概率论中相关概念的对应关系:

高等代数	概率论
内积 (α, β)	协方差Cov(X, Y)
长度 $\ \alpha\ = \sqrt{(\alpha, \alpha)}$	标准差 $\sqrt{\operatorname{Var}(X)}$
夹角余弦 $\frac{(\alpha, \beta)}{\ \alpha\ \cdot\ \beta\ }$	相关系数 $\frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$
正交 $(\alpha,\beta)=0$	不相关 $Cov(X,Y)=0$

三. 标准正交基与正交矩阵

将长度等于1的向量称为单位向量。并且以下所讨论的向量均为列向量。

若n维向量空间 R^n 中的一组非零向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 两两正交,称之为正交向量组。若正交向量组中每一个向量都是单位向量,则称之为正交单位向量组。正交向量组必定线性无关。

定义 若n维向量空间 R^n 中n个单位向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 两两正交,则称之为 R^n 中一组标准正交基。

注:标准正交基的几何意义是直角坐标系,且 R^n 中任一向量都可由标准正交基唯一线性表示。设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 R^n 中一组标准正交基,则

$$(\alpha_i, \alpha_j) = \alpha_i^T \alpha_j = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$

定义 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 R^n 中一组标准正交基,称n阶矩阵 $C=(\alpha_1,\alpha_2,\cdots,\alpha_n)$ 为正交矩阵。设C为正交矩阵,则

$$C^{T}C = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T}\alpha_{1} & \alpha_{1}^{T}\alpha_{2} & \cdots & \alpha_{1}^{T}\alpha_{n} \\ \alpha_{2}^{T}\alpha_{1} & \alpha_{2}^{T}\alpha_{2} & \cdots & \alpha_{2}^{T}\alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T}\alpha_{1} & \alpha_{n}^{T}\alpha_{2} & \cdots & \alpha_{n}^{T}\alpha_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = E \cdot 0$$

因此 $C^T = C^{-1}$ 。

对于 R^n 中任意的线性无关向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$,可构造与之等价的正交单位向量组 $\beta_1^*,\beta_2^*,\cdots,\beta_m^*$ 。其方法称为施密特标准正交化。

正交化: 取 $\beta_1 = \alpha_1$; 再取 $\beta_2 = \alpha_2 - k\beta_1$, 确定常数 k, 使得 $\beta_2 = \beta_1$ 正交。

$$(\beta_1, \beta_2) = (\beta_1, \alpha_2) - k(\beta_1, \beta_1) = 0$$
,

可得

$$k = \frac{(\beta_1, \alpha_2)}{(\beta_1, \beta_1)},$$

故

$$\beta_2 = \alpha_2 - \frac{(\beta_1, \alpha_2)}{(\beta_1, \beta_1)} \beta_1 \circ$$

进一步,取 $\beta_3 = \alpha_3 - k_1\beta_1 - k_2\beta_2$,确定常数 k_1, k_2 ,使得 β_3 与 β_1, β_2 都正交。

$$(\beta_1, \beta_3) = (\beta_1, \alpha_3) - k_1(\beta_1, \beta_1) - 0 = 0, \quad (\beta_2, \beta_3) = (\beta_2, \alpha_3) - 0 - k_2(\beta_2, \beta_2) = 0,$$

可得

$$k_1 = \frac{(\beta_1, \alpha_3)}{(\beta_1, \beta_1)}, \quad k_2 = \frac{(\beta_2, \alpha_3)}{(\beta_2, \beta_2)},$$

故

$$\beta_3 = \alpha_3 - \frac{(\beta_1, \alpha_3)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\beta_2, \alpha_3)}{(\beta_2, \beta_2)} \beta_2$$

以此类推,得到与 $\alpha_1, \alpha_2, \dots, \alpha_m$ 等价的正交向量组 $\beta_1, \beta_2, \dots, \beta_m$ 。

单位化:令

$$eta_1^* = rac{eta_1}{\|eta_1\|}, eta_2^* = rac{eta_2}{\|eta_2\|}, \cdots, eta_m^* = rac{eta_m}{\|eta_m\|},$$

可得 $\beta_1^*, \beta_2^*, \dots, \beta_m^*$ 是与 $\alpha_1, \alpha_2, \dots, \alpha_m$ 等价的正交单位向量组。

特别是,当m=n时,可得 β_1^* , β_2^* ,…, β_n^* 是 R^n 中一组标准正交基。而当m< n时,总能在 $\alpha_1,\alpha_2,\dots,\alpha_m$ 后面再增加n-m个n维向量,得到n个线性无关的n维向量 $\alpha_1,\alpha_2,\dots,\alpha_m,\dots,\alpha_n$,再正交化单位化,得到 R^n 中一组标准正交基 β_1^* , β_2^* ,…, β_n^* ,也就是能将其扩充为一组标准正交基。再进一步组成正交矩阵

$$C = (\beta_1^*, \beta_2^*, \dots, \beta_n^*) .$$

定义 设两组变量 $x_1, x_2, \dots, x_n = y_1, y_2, \dots, y_n$ 满足关系

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n \\ \dots & \dots & \dots & \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n \end{cases}, \not\exists EEEET \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

即 X = CY, 称为由 $X = (x_1, x_2, \dots, x_n)^T$ 到 $Y = (y_1, y_2, \dots, y_n)^T$ 的线性变换, 矩阵 C 为变换阵。

若变换阵 C 可逆,即 $|C| \neq 0$,则称 X = CY 是可逆线性变换。若变换阵 C 为正交阵,则称 X = CY 是正交变换。

注: 正交变换保持内积、长度、夹角、正交性不变。

设 C 为正交阵, 正交变换 $X_1 = CY_1$, $X_2 = CY_2$, 有

$$(X_1, X_2) = X_1^T X_2 = (CY_1)^T CY_2 = Y_1^T C^T CY_2 = Y_1^T EY_2 = Y_1^T Y_2 = (Y_1, Y_2),$$

$$||X_1|| = \sqrt{(X_1, X_1)} = \sqrt{(Y_1, Y_1)} = ||Y_1||$$

即正交变换前后向量内积、长度不变,进一步可得向量夹角、正交性不变。

四. 特征值与特征向量

定义 设 A 为 n 阶 方阵,若存在数 λ 和 n 维非零向量 X ,使得 $AX = \lambda X$,则称 λ 是 A 的特征值, X 是 A 的对应于特征值 λ 的特征向量。

如
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
,取 $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,有

$$AX = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} = 5X$$
,

故 $\lambda = 5$ 是 A 的特征值, $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 是对应的特征向量。

又如
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix}$$
,取 $X = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$,有

$$AX = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0X,$$

故 $\lambda = 0$ 是 A 的特征值, $X = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ 是对应的特征向量。

一般地,设 λ 是A的特征值,X是对应的特征向量,有 $AX = \lambda X$,得齐次线性方程组 $(\lambda E - A)X = O$,由于特征向量X是非零向量,即 $(\lambda E - A)X = O$ 有非零解,则其系数行列式 $|\lambda E - A| = 0$ 。设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

则行列式

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix} = \lambda^{n} + c_{n-1}\lambda^{n-1} + \cdots + c_{1}\lambda + c_{0}$$

为n次多项式。

定义 设A为n阶矩阵,称 $\lambda E - A$ 为矩阵 A 的特征矩阵,其行列式 $|\lambda E - A|$ 为A 的特征多项式, $|\lambda E - A| = 0$ 为A 的特征方程,特征方程的根称为特征根,也就是特征值。

结论: n阶方阵必有n个特征根(包括复数根,且重根按重数计算)。

求特征值与特征向量的步骤:

- (1) 求解特征方程 $|\lambda E A| = 0$,得n阶矩阵A的n个特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$ 。
- (2) 对每一个特征值 λ_i ,求解齐次线性方程组 $(\lambda_i E A)X = O$,其全部非零解都是A的特征向量。

例 设
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 求 A 的特征值与特征向量。

解:特征方程

$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda + 1)^2 = 0$$
,

得特征值 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$ 。

取 $\lambda = 2$,求解齐次线性方程组(2E - A)X = O,因

$$2E - A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

得基础解系
$$X_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
, 故对应于 $\lambda_1=2$ 的全部特征向量为 $k_1X_1=k_1\begin{pmatrix}1\\1\\1\end{pmatrix}$, $(k_1\neq 0)$ 。

取 $\lambda_2 = \lambda_3 = -1$,求解 (-E - A)X = O,因

得基础解系
$$X_2=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
, $X_3=\begin{pmatrix} -1\\0\\1 \end{pmatrix}$, 对应于 $\lambda_2=\lambda_3=-1$ 的全部特征向量为

相似矩阵有相同的特征值

$$k_2 X_2 + k_3 X_3 = k_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $(k_2, k_3$ 不全为 $0)$ 。

注:(1)对应于不同特征值的特征向量线性无关。

(2) k 重特征值对应的线性无关特征向量可以是一个,也可以是多个,但不超过 k 个。

五. 相似矩阵与矩阵对角化

定义 设A,B为n阶方阵,若存在可逆矩阵P,使得 $P^{-1}AP=B$,则称A与B相似,记为 $A\sim B$,且矩阵P称为变换阵。

如
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
,取 $P = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$, $|P| = -3 \neq 0$, P 可逆, 有

$$P^{-1}AP = -\frac{1}{3} \begin{pmatrix} 1 & -1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = B,$$

故

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \sim B = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}.$$

相似矩阵有很多共同的性质,而对角阵是一种简单的矩阵,讨论一般n阶方阵能否相似于对角阵。 **定理** n阶方阵 A 相似于对角阵的充分必要条件是 A 有 n 个线性无关的特征向量。

证明: 必要性: 设 A 相似于对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$,且变换阵 $P = (X_1, X_2, \cdots, X_n)$ 。因变换阵 P 可逆,则 P 的列向量组 X_1, X_2, \cdots, X_n 线性无关。

由于 $P^{-1}AP = \Lambda$,有 $AP = P\Lambda$,即

$$AP = A(X_1, X_2, \dots, X_n) = (AX_1, AX_2, \dots, AX_n)$$

$$= P\Lambda = (X_1, X_2, \dots, X_n) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = (\lambda_1 X_1, \lambda_2 X_2, \dots, \lambda_n X_n),$$

则 $AX_1 = \lambda_1 X_1$, $AX_2 = \lambda_2 X_2$, \cdots , $AX_n = \lambda_n X_n$, 即 λ_1 , λ_2 , \cdots , λ_n 是 A 的特征值, X_1 , X_2 , \cdots , X_n 是对应的特征向量。 因 X_1 , X_2 , \cdots , X_n 线性无关,所以 A 有 n 个线性无关的特征向量。

充分性:设A有n个线性无关的特征向量 X_1, X_2, \dots, X_n ,且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是相应的特征值,则有

$$AX_1 = \lambda_1 X_1, AX_2 = \lambda_2 X_2, \dots, AX_n = \lambda_n X_n$$

令对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,且变换阵 $P = (X_1, X_2, \dots, X_n)$,有 P 可逆,可得 $AP = P\Lambda$,即 $P^{-1}AP = \Lambda$, 所以 A 相似于对角阵 Λ 。

相似对角似

此定理表明: 若n阶方阵 A有n个线性无关的特征向量,则 A相似于对角阵,且对角阵 Λ 的主对角线上元素就是 A 的特征值,变换阵 P 的列向量组就是 A 的线性无关特征向量。

推论 若 n 阶方阵 A 有重根,则 A 相似于对角阵的充分必要条件是 A 的每个 k 重特征根恰好对应于 k 个线性无关特征向量。

下面给出矩阵对角化的一个应用。设 $x_1=x_1(t), x_2=x_2(t), \cdots, x_n=x_n(t)$ 是n个一元函数,考虑n维常系数线性微分方程组

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n; \\ \frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n; \\ \dots & \dots & \dots & \dots \\ \frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}, \quad \text{EFFIX} \quad \frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

即 $\frac{dX}{dt}=AX$ 。如果n阶方阵 A相似于对角阵,存在可逆矩阵P,使得 $P^{-1}AP=\Lambda$ 为对角阵。作可逆线性变换 X=PY,有 $P\frac{dY}{dt}=APY$,即 $\frac{dY}{dt}=P^{-1}APY=\Lambda Y$,得到

换
$$X = PY$$
 ,有 $P\frac{dY}{dt} = APY$,即 $\frac{dY}{dt} = P^{-1}APY = \Lambda Y$,得到
$$\begin{cases} \frac{dy_1}{dt} = \lambda_1 y_1; \\ \frac{dy_2}{dt} = \lambda_2 y_2; \\ \vdots \\ \frac{dy_n}{dt} = \lambda_n y_n. \end{cases}$$

解得

$$y_i = C_i e^{\lambda_i t}$$
, C_i 为任意常数, $i = 1, 2, \dots, n$,

再根据X = PY,可得到 $x_i = x_i(t)$ 的解。

六. 实对称阵的正交相似对角化

实好部 A 对应4 不同特征值的特征向量正交

不加证明的给出以下定理。

定理 实对称阵特征值必为实数。

定理 实对称阵不同特征值的特征向量相互正交。

定理 n 阶实对称阵必有n 个线性无关特征向量,因此必定相似于对角阵。

n阶实对称阵有n个线性无关特征向量,将其正交化单位化。由于不同特征值的特征向量相互正交,因此正交化只需在同一特征值内线性无关特征向量之间进行,正交化后仍为其特征向量。从而得到n阶实对称阵的n个线性无关特征向量构成 R^n 的一组标准正交基,再进一步组成正交矩阵。

这样n阶实对称阵A有n个特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$,对应有n个线性无关特征向量 X_1,X_2,\cdots,X_n ,将其正

交化单位化,得到 $\eta_1^*,\eta_2^*,\cdots,\eta_n^*$,令对角阵 $\Lambda = \operatorname{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n)$,矩阵 $C = (\eta_1^*,\eta_2^*,\cdots,\eta_n^*)$,C为正交阵,

则实对称阵 A 可正交相似对角化

$$C^{-1}AC = C^TAC = \Lambda$$

七. 二次型及其标准型

定义 n个变量 x_1, x_2, \dots, x_n 的二次齐次多项式

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + a_{22}x_2^2 + \dots + 2a_{2n}x_2x_n + \dots + a_{nn}x_n^2$$

称为一个n元二次型。

一般地, 先将二次型一般形式写成一般对称形式:

这里,设 $a_{ij} = a_{ji}$,记

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

有

$$f(x_1, x_2, \dots, x_n) = (x_1 \quad x_2 \quad \dots \quad x_n) \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix} \begin{pmatrix} x_1 \end{pmatrix}$$

$$= (x_1 \quad x_2 \quad \cdots \quad x_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$= X^T A X$$
.

故二次型的矩阵形式为 $f = X^T A X$, 这里矩阵 A 为对称阵, 称为二次型 f 的系数矩阵。

二次型的系数矩阵:平方项系数不变写在主对角线上,乘积项系数分半写在对称位置上。只含平方项的二次型 $f(x_1,x_2,\cdots,x_n)=a_1x_1^2+a_2x_2^2+\cdots+a_nx_n^2$,称为标准形,其系数矩阵是对角阵

$$\Lambda = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} \circ$$

帮准的分数和军是37解

二次型 $f = X^T A X$, 作可逆线性变换 X = C Y, 有

$$f = (CY)^T A(CY) = Y^T C^T A CY$$
.

设 $B = C^T A C$, B为对称阵, 也就是变换后新二次型的系数矩阵。

注: A = B 相似,即 $C^{-1}AC = B$; A = B 合同,即 $C^{T}AC = B$ 。矩阵相似与合同是两个不同的概念。 当 C 为正交阵时,相似与合同才是一致的。

前面已经知道,对称阵A必正交相似于对角阵 Λ ,从而对称阵A必合同于对角阵 Λ 。这样二次型 $f=X^TAX$ 通过正交变换 X=CY 化为只含平方项的标准形 $f=Y^T\Lambda Y$,这就是正交变换法化二次型为标准形。

正交变换法化二次型为标准形的步骤:

- (1) 写出二次型 f 的系数矩阵 A,即 $f = X^T AX$ 。
- (2) 求解特征方程 $|\lambda E A| = 0$, 得n阶矩阵A的n个特征值 $\lambda, \lambda, \dots, \lambda_n$ 。
- (3) 对每一个特征值 λ_i ,求解齐次线性方程组 ($\lambda_i E A$)X = O ,得到基础解系。所有特征值对应的基础解系构成 A 的 n 个线性无关特征向量 X_1, X_2, \cdots, X_n 。
 - (4) 将 X_1, X_2, \dots, X_n 正交化单位化,得到 R^n 的一组标准正交基 $\eta_1^*, \eta_2^*, \dots, \eta_n^*$ 。
- (5) 令对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,矩阵 $C = (\eta_1^*, \eta_2^*, \dots, \eta_n^*)$, C 为正交阵。使得实对称阵 A 正交相似对角于对角阵, $C^{-1}AC = C^TAC = \Lambda$ 。
 - (6) 二次型 $f = X^T A X$ 通过正交变换 X = C Y 化为只含平方项的标准形 $f = Y^T \Lambda Y$ 。