AVL Trees

Kuan-Yu Chen (陳冠宇)

2018/10/17 @ TR-212, NTUST

AVL Trees.

- AVL tree is a self-balancing binary search tree
 - AVL tree is designed by G.M. Adelson-Velsky and E.M. Landis in 1962
 - The heights of the two sub-trees of a node may differ by at most one
- The structure of an AVL stores an additional variable called the Balance Factor
 - Every node has a balance factor
 - The balance factor of a node is calculated by subtracting the height of its right sub-tree from the height of its left sub-tree
 - Every node has a balance factor of -1, 0, or 1

AVL Trees..

- If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one level higher than that of the right sub-tree
 - Left-heavy tree
- If the balance factor of a node is 0, then it means that the height of the left sub-tree is equal to the height of the right sub-tree
 - Balance tree
- If the balance factor of a node is −1, then it means that the left sub-tree of the tree is one level lower than that of the right sub-tree
 - Right-heavy tree

Insertion

- In the AVL tree, the step of insertion is usually followed by an additional step of rotation
 - Rotation is done to restore the balance of the tree
- Insert a node with value 71 in a given AVL tree

Rotations.

LL rotation

 The new node is inserted in the left sub-tree of the left sub-tree of the critical node

• RR rotation

 The new node is inserted in the right sub-tree of the right sub-tree of the critical node

Rotations..

LR rotation

 The new node is inserted in the right sub-tree of the left sub-tree of the critical node

• RL rotation

 The new node is inserted in the left sub-tree of the right sub-tree of the critical node

LL Rotation.

- By LL Rotation
 - Node B becomes the root, with T1 and A as its left and right child
 - T2 and T3 become the left and right sub-trees of A

LL Rotation..

- Example for LL Rotation
 - Insert 18 in a given AVL tree

RR Rotation.

- In the context of RR rotation
 - Node B becomes the root, with A and T3 as its left and right child
 - T1 and T2 become the left and right sub-trees of A

RR Rotation..

- Example for RR Rotation
 - Insert 89 in a given AVL tree

LR Rotation.

- By LR rotation
 - Node C becomes the root, with B and A as its left and right children
 - Node B has T1 and T2 as its left and right sub-trees and T3 and
 T4 become the left and right sub-trees of node A

LR Rotation..

- Example for RR Rotation
 - Insert 37 in a given AVL tree

RL Rotation

- By RL rotation
 - Node C becomes the root, with A and B as its left and right children
 - Node A has T1 and T2 as its left and right sub-trees and T3 and
 T4 become the left and right sub-trees of node B

Example.

• Construct an AVL tree by inserting the following elements in the given order: 63, 9, 19, 27, 18, 108, 99, 81

Example..

• Construct an AVL tree by inserting the following elements in the given order: 63, 9, 19, 27, 18, 108, 99, 81

Deletion

- Deletion of a node in an AVL tree may disturb the balance of the tree
 - To rebalance the AVL tree, we need to perform rotations!
 - R rotation
 - L rotation

Examples – 1

• Delete 72 from a given AVL tree

Examples – 2.

• Delete 72 from a given AVL tree

Examples – 2...

• Delete 72 from a given AVL tree

Questions?

kychen@mail.ntust.edu.tw