FEDSKETCH: COMMUNICATION-EFFICIENT AND DIFFERENTIALLY-PRIVATE FEDERATED LEARNING VIA SKETCHING

2.7

2.8

FARZIN HADDADPOUR*, BELHAL KARIMI[†], PING LI[‡], AND XIAOYUN LIN[§]

Abstract. Communication complexity and privacy are the two key challenges in Federated Learning where the goal is to perform a distributed learning through a large volume of devices. In this work, we introduce FedSKETCH and FedSKETCHGATE algorithms to address both challenges in Federated learning jointly, where these algorithms are intended to be used for homogeneous and heterogeneous data distribution settings respectively. The key idea is to compress the accumulation of local gradients using count sketch, therefore, the server does not have access to the gradients themselves which provides privacy. Furthermore, due to the lower dimension of sketching used, our method exhibits communication-efficiency property as well. We provide, for the aforementioned schemes, sharp convergence guarantees. Finally, we back up our theory with various set of experiments

Key words. Federated Learning, Compression, Sketching, Communication-efficient

1. Introduction. Increasing applications in machine learning include the learning of a complex model across a large amount of devices in a distributed manner. In the particular case of federated learning, the training data is stored across these multiple devices and can not be centralized. Two natural problems arise from this setting. First, communications bottlenecks appear when a central server and the multiple devices must exchange gradient-informed quantities. Then, privacy-related issues due to the protection of the sensitive individual data must be taken into account.

The former has extensively been tackled via quantization [1], sparsification [16] and compression [3] methods yielding to a drastic reduction of the number of bits required to communicate those gradient-related informations. Solving the privacy issue has been widely executed injecting an additional layer of random noise in order to respect differential-privacy property of the method.

With the focus of communication-efficiency, [7] proposes a distributed SGD algorithm using sketching and they provide the convergence analysis in homogeneous data distribution setting.

Also with focus on privacy, in [9], the authors derive a single framework in order to tackle these issues jointly and introduce DiffSketch based on the Count Sketch operator. Compression and privacy is performed using random hash functions such that no third parties are able to access the original data. Yet, [9] does not provide the convergence analysis for the DiffSketch in Federated setting. In this work, we provide a thorough convergence analysis for the Federated Learning using sketching. The main contributions of this paper are summarized as follows:

- Based on the current compression methods, we provide a new algorithm HEAPRIX that displays an unbiased estimator of the full gradient we ought to communicate to the central parameter server. We theoretically show that HEAPRIX jointly reduces the cost of communication between devices and server, preserves privacy and is unbiased.
- We develop a general algorithm for communication-efficient and privacy pre-

^{*}Baidu Research, Seattle, USA (farzin@gmail.com).

[†]Baidu Research, Beijing, CN (karimibelhal@baidu.com).

[‡]Baidu Research, Seattle, USA (liping@baidu.com).

[§]Baidu Research, Seattle, USA (xiaoyun.li@rutgers.edu).

- serving federated learning based on this novel compression algorithm. Those methods, namely FedSKETCH and FedSKETCHGATE, are derived under *homogeneous* and *heterogeneous* data distribution settings.
- Non asymptotic analysis of our method is established for convex, Polyak-Lojasiewicz (generalization of strongly-convex) and nonconvex functions in Theorem 5.1 and Theorem 5.5 for respectively the i.i.d. and non i.i.d. case, and highlight an improvement in the number of iteration required to achieve a stationarity point.

Related Work for Communication-efficient Distributed Setting: [7] develop a solution for leveraging sketches of full gradients in a distributed setting while training a global model using SGD [13, 4]. They introduce Sketched-SGD and establish a communication complexity of order $\mathcal{O}(\log(d))$ where d is the dimension of the parameters, i.e. the dimension of the gradient. Other recent solutions to reduce the communication cost include quantized gradient as developed in [1, 11, 14]. Yet, their dependence on the number of devices p makes them harder to be used in some settings. Additionally, there are other research efforts such as [5, 12, 2] that exploit compression in Federated Learning. Finally, there is also a recent work of [6] which exploits variance reduction with compression jointly in distributed optimization. Related Work for Privacy-preserving Setting: Differentially private methods

exploits variance reduction with compression jointly in distributed optimization. Related Work for Privacy-preserving Setting: Differentially private methods for federated learning have been extensively developed and studied in the recent years. The remaining of the paper is organized as follows. Section 2 gives a formal presentation of the general problem. Section 3 describes the various compression algorithms used for communication efficiency and privacy preservation, and introduces our new compression method. The training algorithms are provided in Section 4 and their respective analysis in the strongly-convex or nonconvex cases are provided Section 5. Notation: For the rest of the paper we indicate the number of communication rounds and number of bits per round per device with $R(\epsilon)$ and B(d) respectively. For the rest of the paper we indicate the count sketch of any vector \boldsymbol{x} with $\mathbf{S}(\boldsymbol{x})$

2. Problem Setting. The federated learning optimization problem across p distributed devices is defined as follows:

74 (2.1)
$$\min_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x}) \triangleq \left[\min_{\boldsymbol{x} \in \mathbb{R}^d} \frac{1}{p} \sum_{j=1}^p F_j(\boldsymbol{x}) \right]$$

where $F_j(\boldsymbol{x}) = \mathbb{E}_{\xi \in \mathcal{D}_j} [L_j(\boldsymbol{x}, \xi)]$ is the local cost function at device j. ξ is a random variable with probability distribution \mathcal{D}_j , and L_j is a loss function that measures the performance of model \boldsymbol{x} . We note that, while for the homogeneous data distribution, we assume \mathcal{D}_j for $1 \leq j \leq p$ have the same distribution and $L_1 = L_2 = \ldots = L_p$, in the heterogeneous setting these data distributions and loss functions L_j can be different from device to device.

3. Compression Operation. A common sketching solution employed to tackle (2.1) is called Count Sketch and is described Algorithm 3.1.

Algorithm 3.1 CS: Count Sketch to compress $x \in \mathbb{R}^d$.

```
1: Inputs: \boldsymbol{x} \in \mathbb{R}^d, t, k, \mathbf{S}_{t \times k}, h_j (1 \leq i \leq t), sign_j (1 \leq i \leq t)
2: Compress vector \boldsymbol{x} \in \mathbb{R}^d into \mathbf{S}(\boldsymbol{x}):
3: for \boldsymbol{x}_i \in \boldsymbol{x} do
4: for j = 1, \dots, t do
5: \mathbf{S}[j][h_j(i)] = \mathbf{S}[j-1][h_{j-1}(i)] + \mathrm{sign}_j(i).\boldsymbol{x}_i
6: end for
7: end for
8: return \mathbf{S}_{t \times k}(\boldsymbol{x})
```

3.1. Unbiased Compressor.

84

93

98

188

101

102

103

DEFINITION 3.1 (Unbiased compressor). A randomized function, $C: \mathbb{R}^d \to \mathbb{R}^d$ is called an unbiased compression operator with $\Delta \geq 1$, if we have

$$\mathbb{E}\left[\left.C(oldsymbol{x})
ight] = oldsymbol{x} \quad and \quad \mathbb{E}\left[\left\|\left.C(oldsymbol{x})
ight\|_2^2
ight] \leq \Delta \left\|oldsymbol{x}
ight\|_2^2 \ .$$

- 89 We indicate this class of compressor with $C \in \mathbb{U}(\Delta)$.
- 90 We note that this definition leads to the property

$$\mathbb{E}\left[\left\|\mathbf{C}(\boldsymbol{x}) - \boldsymbol{x}\right\|_{2}^{2}\right] \leq (\Delta - 1)\left\|\boldsymbol{x}\right\|_{2}^{2}.$$

Remark 3.2. Note that in case of $\Delta=1$ our algorithm reduces for the case of no compression. This property allows us to control the noise of the compression.

Algorithm 3.2 PRIVIX[9]: Unbiased compressor based on sketching.

```
1: Inputs: \boldsymbol{x} \in \mathbb{R}^d, t, k, \mathbf{S}_{t \times k}, h_j (1 \le i \le t), sign_j (1 \le i \le t)

2: Query \tilde{\boldsymbol{x}} \in \mathbb{R}^d from \mathbf{S}(\mathbf{x}):

3: for i = 1, \dots, d do

4: \tilde{\boldsymbol{x}}[i] = \operatorname{Median}\{\operatorname{sign}_j(i).\mathbf{S}[j][h_j(i)] : 1 \le j \le t\}

5: end for

6: Output: \tilde{\boldsymbol{x}}
```

PROPERTY 1 ([9]). For our proof purpose we will need the following crucial properties of the count sketch described in Algorithm 3.1, for any real valued vector $\mathbf{x} \in \mathbb{R}^d$:

1) Unbiased estimation: As it is also mentioned in [9], we have:

$$\mathbb{E}_{\mathbf{S}}\left[\mathit{PRIVIX}[\mathbf{S}\left(\mathbf{x}\right)]\right] = \mathbf{x}$$
.

2) Bounded variance: With $k = \mathcal{O}\left(\frac{e}{\mu^2}\right)$ and $t = \mathcal{O}\left(\ln\left(\frac{1}{\delta}\right)\right)$, we have the following bound with probability $1 - \delta$:

$$\mathbb{E}_{\mathbf{S}}\left[\left\|\textit{PRIVIX}[\mathbf{S}\left(\mathbf{x}\right)] - \mathbf{x}\right\|_{2}^{2}\right] \leq \mu^{2} d\left\|\mathbf{x}\right\|_{2}^{2}.$$

- Therefore, PRIVIX $\in \mathbb{U}(1+\mu^2 d)$ with probability $1-\delta$.
- 106 Remark 3.3. We note that $\Delta = 1 + \mu^2 d$ implies that if $k \to d$, $\Delta \to 1 + 1 = 2$, which
- 107 means that the case of no compression is not covered. Thus, the algorithms based on
- this may converges poorly.

Definition 3.4. A randomized mechanism \mathcal{O} satisfies ϵ -differential privacy, if for 109 input data S_1 and S_2 differing by up to one element, and for any output D of \mathcal{O} ,

$$\Pr\left[\mathcal{O}(S_1) \in D\right] \le \exp\left(\epsilon\right) \Pr\left[\mathcal{O}(S_2) \in D\right].$$

- Assumption 1 (Input vector distribution). For the purpose of privacy analysis, 113
- similar to 3, we suppose that for any input vector S with length |S| = l, each element 114
- $s_i \in S$ is drawn i.i.d. from a Gaussian distribution: $s_i \sim \mathcal{N}(0, \sigma^2)$, and bounded by a 115
- 116 large probability: $|s_i| \leq C, 1 \leq i \leq p$ for some positive constant C > 0.
- Theorem 3.5 (ϵ differential privacy of count sketch, [9]). For a sketching algorithm 117
- \mathcal{O} using Count Sketch $\mathbf{S}_{t \times k}$ with t arrays of k bins, for any input vector S with length l 118
- satisfying Assumption 1, \mathcal{O} achieves $t. \ln \left(1 + \frac{\alpha C^2 k(k-1)}{\sigma^2 (l-2)} (1 + \ln(l-k))\right) differential$ 119
- privacy with high probability, where α is a positive constant satisfying $\frac{\alpha C^2 k(k-1)}{\sigma^2(l-2)}(1+$ 120
- $\ln(l-k) \leq \frac{1}{2} \frac{1}{\alpha}.$

123

The proof of this theorem can be found in [9]. 122

3.2. Biased compressor.

- DEFINITION 3.6 (Biased compressor). A (randomized) function, $C: \mathbb{R}^d \to \mathbb{R}^d$ is called 124
- a compression operator with $\alpha > 0$ and $\Delta \geq 1$, if we have 125

$$\mathbb{E}\left[\left\|\alpha\boldsymbol{x} - \bar{C}(\boldsymbol{x})\right\|_{2}^{2}\right] \leq \left(1 - \frac{1}{\Delta}\right) \left\|\boldsymbol{x}\right\|_{2}^{2},$$

- 128 then, any biased compression operator C is indicated by $C \in \mathbb{C}(\Delta, \alpha)$.
- The following Lemma links these two definitions: 129
- LEMMA 3.7 ([6]). We have $\mathbb{U}(\Delta) \subset \mathbb{C}(\Delta)$. 130
- 131 An instance of biased compressor based on sketching is given in Algorithm 3.3.

Algorithm 3.3 HEAVYMIX [7]

- 1: **Inputs:** S_g ; parameter-k
- 2: Compress vector $\tilde{\mathbf{g}} \in \mathbb{R}^d$ into $\mathbf{S}(\tilde{\mathbf{g}})$:
- 3: Query $\hat{\ell}_2^2 = (1 \pm 0.5) \|\mathbf{g}\|^2$ from sketch $\mathbf{S_g}$ 4: $\forall j$ query $\hat{\mathbf{g}}_j^2 = \hat{\mathbf{g}}_j^2 \pm \frac{1}{2k} \|\mathbf{g}\|^2$ from sketch $\mathbf{S_g}$
- 5: $H = \{j | \hat{\mathbf{g}}_j \geq \frac{\hat{\ell}_2^2}{k} \}$ and $NH = \{j | \hat{\mathbf{g}}_j < \frac{\hat{\ell}_2^2}{k} \}$ 6: $\text{Top}_k = H \cup rand_\ell(NH)$, where $\ell = k |H|$
- 7: Get exact values of Top_k
- 8: Output: $\mathbf{g}_S : \forall j \in \text{Top}_k : \mathbf{g}_{Si} = \mathbf{g}_i \text{ and } \forall \notin \text{Top}_k : \mathbf{g}_{Si} = 0$
- LEMMA 3.8 ([7]). HEAVYMIX, with sketch size $\Theta\left(k\log\left(\frac{d}{\delta}\right)\right)$ is a biased compressor with 132 $\alpha = 1$ and $\Delta = d/k$ with probability $\geq 1 - \delta$. In other words, with probability $1 - \delta$, 133 HEAVYMIX $\in C(\frac{d}{k},1)$. 134
- 3.3. Sketching Based on Induced Compressor. The following Lemma from 135 [6] shows that how we can transfer biased compressor into an unbiased compressor: 136
- LEMMA 3.9 (Induced Compressor [6]). For $C_1 \in \mathbb{C}(\Delta_1)$ with $\alpha = 1$, choose $C_2 \in$ $\mathbb{U}(\Delta_2)$ and define the induced compressor with 138

$$C(\mathbf{x}) = C_1(\mathbf{x}) + C_2(x - C_1(\mathbf{x})) ,$$

- 141 then, the induced compressor C satisfies $C \in \mathbb{U}(\mathbf{x})$ with $\Delta = \Delta_2 + \frac{1-\Delta_2}{\Delta_1}$.
- 142 Remark 3.10. We note that if $\Delta_2 \geq 1$ and $\Delta_1 \leq 1$, we have $\Delta = \Delta_2 + \frac{1-\Delta_2}{\Delta_1} \leq \Delta_2$.
- 143 Using this concept of the induced compressor we introduce HEAPRIX:

Algorithm 3.4 HEAPRIX

- 1: **Inputs:** $x \in \mathbb{R}^d$, $t, k, \mathbf{S}_{t \times k}$, $h_j (1 \le i \le t)$, $sign_j (1 \le i \le t)$, parameter-k
- 2: Approximate S(x) using HEAVYMIX
- 3: Approximate $\mathbf{S}\left(x \texttt{HEAVYMIX}[\mathbf{S}(x)]\right)$ using PRIVIX
- 4: Output: $\text{HEAVYMIX} [\mathbf{S}(\mathbf{x})] + \text{PRIVIX} [\mathbf{S}(\mathbf{x} \text{HEAVYMIX} [\mathbf{S}(\mathbf{x})])]$
- 144 COROLLARY 3.11. Based on Lemma 3.9 and using Algorithm 3.4, we have $C(x) \in \mathbb{U}(\mu^2 d)$.
- 146 Remark 3.12. We highlight that in this case if $k \to d$, then $C(x) \to x$ which means
- that your convergence algorithm can be improved by decreasing the noise of compres-
- sion (with choice of bigger k).

151

152 153

154

156

157

158

- In the following we define two general framework for different sketching algorithms for homogeneous and heterogeneous data distributions.
 - 4. Algorithms for homogeneous and heterogeneous settings. In the following, first we present two algorithm for homogeneous setting. Then, we present two algorithms for heterogeneous algorithms to deal with data heterogeneity.
 - **4.1. Homogeneous setting.** In this section, we propose two algorithms for the setting where data at distributed devices is correlated. The proposed Federated Learning with averaging uses sketching to compress communication. The main difference between first algorithm and the algorithm in [9] is that we use distinct local and global learning rates. Additionally, unlike [9] we do not add add local Gaussian noise for the privacy purpose.

In FedSKETCH, we indicate the number of communication rounds between devices and server with R, and the number of local updates at device j is illustrated with τ , which happens between two consecutive communication rounds. Unlike [5], server node does not store any global model, instead device j has two models, $\boldsymbol{x}^{(r)}$ and $\boldsymbol{x}_j^{(\ell,r)}$. In communication round r device j, the local model $\boldsymbol{x}_j^{(\ell,r)}$ is updated using the rule

$$\boldsymbol{x}_{j}^{(\ell+1,r)} = \boldsymbol{x}_{j}^{(\ell,r)} - \eta \tilde{\mathbf{g}}_{j}^{(\ell,r)}$$
 for $\ell = 0, \dots, \tau - 1$,

where $\tilde{\mathbf{g}}_{j}^{(\ell,r)} \triangleq \nabla f_{j}(\mathbf{x}_{j}^{(\ell,r)}, \Xi_{j}^{(\ell,r)}) \triangleq \frac{1}{b} \sum_{\xi \in \Xi_{j}^{(\ell,r)}} \nabla L_{j}(\mathbf{x}_{j}^{(\ell,r)}, \xi)$ is a stochastic gradient of f_{j} evaluated using the mini-batch $\Xi_{j}^{(\ell,r)} = \{\xi_{j,1}^{(\ell,r)}, \dots, \xi_{j,b_{j}}^{(\ell,r)}\}$ of size b_{j} . η is the local learning rate. After τ local updates locally, model at device j and communication round r is indicated by $\mathbf{x}_{j}^{(\tau,r)}$. The next step of our algorithm is that device j sends the count sketch $\mathbf{S}_{j}^{(r)} \triangleq \mathbf{S}_{j}\left(\mathbf{x}_{j}^{(\tau,r)} - \mathbf{x}_{j}^{(0,r)}\right)$ back to the server. We highlight that

$$\mathbf{S}_{j}^{(r)} \triangleq \mathbf{S}_{j} \left(\boldsymbol{x}_{j}^{(\tau,r)} - \boldsymbol{x}_{j}^{(0,r)} \right) = \mathbf{S}_{j} \left(\eta \sum_{\ell=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(\ell,r)} \right) = \eta \mathbf{S}_{j} \left(\sum_{\ell=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(\ell,r)} \right) ,$$

which is the aggregation of the consecutive stochastic gradients multiplied with local updates η .

Upon receiving all $\mathbf{S}_{j}^{(r)}$ from devices, the server computes

163 (4.1)
$$\mathbf{S}^{(r)} = \frac{1}{p} \sum_{j=1}^{p} \mathbf{S}_{j}^{(r)}$$

and broadcasts it to all devices. Devices after receiving $\mathbf{S}^{(r)}$ from server updates global model $\boldsymbol{x}^{(r)}$ using rule

$$oldsymbol{x}^{(r)} = oldsymbol{x}^{(r-1)} - \gamma \mathtt{PRIVIX} \left[\mathbf{S}^{(r-1)}
ight]$$
 .

All these steps are summarized in FedSKETCH (Algorithm 4.1). A variant of this algorithm which using a different compression scheme, called HEAPRIX is also described in Algorithm 4.1. We note that for this variant we need to have an additional communication round between server and worker j to aggregate $\delta_j^{(r)} \triangleq \mathbf{S}_j$ [HEAVYMIX($\mathbf{S}^{(r)}$)]. Then, server averages all $\delta_j^{(r)}$ and broadcasts to all devices the following quantity:

170 (4.2)
$$\tilde{\mathbf{S}}^{(r)} \triangleq \frac{1}{p} \sum_{j=1}^{p} \delta_{j}^{(r)}.$$

Remark 4.1 (Improvement over [5]). An important feature of our algorithm is that due to lower dimension of the count sketch, the resulting averages ($\mathbf{S}^{(r)}$ and $\tilde{\mathbf{S}}^{(r)}$) taken by the server, are also of lower dimension. Therefore, these algorithms exploit bidirectional compression in communication from server to device back and forth. As a result, due to this bidirectional property of communicating sketching for the case of large quantiziation error shown by $q = \theta(\mu^d)$ in [5], our algorithms outperform FedCom algorithm in [5]. Furthermore, sketching-based server-devices communication algorithm such as ours also provides privacy as a by-product.

Algorithm 4.1 FedSKETCH (R, τ, η, γ) : Private Federated Learning with Sketching.

Inputs: x⁽⁰⁾ as an initial model shared by all local devices, the number of communication rounds R, the number of local updates τ, and global and local learning rates γ and η, respectively
 for r = 0,..., R - 1 do
 parallel for device j = 1,..., n do:

```
parallel for device j = 1, ..., n do:
  4:
                         if PRIVIX variant:
                               Computes \mathbf{\Phi}^{(r)} \triangleq \mathtt{PRIVIX} \left[ \mathbf{S}^{(r-1)} \right]
  5:
                         \begin{aligned} &\text{if HEAPRIX variant:} \\ &\text{Computes } \boldsymbol{\Phi}^{(r)} \triangleq \texttt{HEAVYMIX} \left[ \mathbf{S}^{(r-1)} \right] + \texttt{PRIVIX} \left[ \mathbf{S}^{(r-1)} - \tilde{\mathbf{S}}^{(r-1)} \right] \end{aligned}
  6:
  7:
                         Set \boldsymbol{x}^{(r)} = \boldsymbol{x}^{(r-1)} - \gamma \boldsymbol{\Phi}^{(r)}
  8:
                       Set x_j^{(0,r)} = x^{(r)}
for c = 0, ..., \tau - 1 do
 9:
10:
                             Sample a mini-batch \xi_j^{(\ell,r)} and compute \tilde{\mathbf{g}}_j^{(\ell,r)} \triangleq \nabla f_j(\boldsymbol{x}_j^{(\ell,r)}, \xi_j^{(c,r)})
\boldsymbol{x}_j^{(\ell+1,r)} = \boldsymbol{x}_j^{(\ell,r)} - \eta \ \tilde{\mathbf{g}}_j^{(\ell,r)}
11:
12:
13:
                            Device j sends \mathbf{S}_{j}^{(r)} \triangleq \mathbf{S}_{j} \left( \boldsymbol{x}_{j}^{(0,r)} - \boldsymbol{x}_{j}^{(\tau,r)} \right) back to the server.
14:
                  Server computes
15:
                            \mathbf{S}^{(r)} = \frac{1}{p} \sum_{j=1} \mathbf{S}_j^{(r)} and broadcasts \mathbf{S}^{(r)} to all devices.
16:
                    if HEAPRIX variant:
17:
                         Second round of communication to obtain \delta_i^{(r)} := \mathbf{S}_i \left[ \text{HEAVYMIX}(\mathbf{S}^{(r)}) \right]
18:
                  Broadcasts \tilde{\mathbf{S}}^{(r)} \triangleq \frac{1}{p} \sum_{j=1}^{p} \delta_{j}^{(r)} to devices end parallel for
19:
20:
21: end
22: Output: x^{(R-1)}
```

180 **4.2.** Heterogeneous setting. In the previous section, we discussed algorithm FedSKETCH, which is originally designed for homogeneous setting where data distri-181 bution available at devices are identical. However, in a heterogeneous setting where 182 data distribution could be different, the aforementioned algorithms may fail to perform well in practice. The main reason to cause this issue is that in Federated learning 184 185 devices are using local stochastic descent direction which could be different than global descent direction when the data distribution are non-identical. 186 Therefore, to mitigate the effect of data heterogeneity, we introduce new algorithm 187 FedSKETCHGATE based on sketching. This algorithm uses the idea of gradient track-188 ing introduced in [5] (with compression) and a variation in [10] (without compres-189 sion). The main idea is that using an approximation of global gradient, $\mathbf{c}_{i}^{(r)}$, we 190 correct the local gradient direction. For the FedSKETCH GATE with PRIVIX variant, 191 the correction vector $\mathbf{c}_{j}^{(r)}$ at device j and communication round r is computed us-192 ing the update rule $\mathbf{c}_{j}^{(r)} = \mathbf{c}_{j}^{(r-1)} - \frac{1}{\tau} \left(\mathtt{PRIVIX} \left(\mathbf{S}^{(r-1)} \right) - \mathtt{PRIVIX} \left(\mathbf{S}_{j}^{(r-1)} \right) \right)$ $\mathbf{S}_{j}^{(r-1)} \triangleq \mathbf{S}\left(\boldsymbol{x}_{j}^{(0,r-1)} - \ \boldsymbol{x}_{j}^{(au,r-1)}\right)$ is computed and stored at device j from previous 194 communication round r-1. The term $\mathbf{S}^{(r-1)}$ is computed similar to FedSKETCH in 195 (4.1). For FedSKETCHGATE, the server needs to compute $\tilde{\mathbf{S}}^{(r)}$ using (4.2). Then, device 196 j computes $\Phi_j \triangleq \texttt{HEAPRIX}[\mathbf{S}_j^{(r)}]$ and $\Phi \triangleq \texttt{HEAPRIX}(\mathbf{S}^{(r-1)})$ and updates the correction 197 vector $\mathbf{c}_{i}^{(r)}$ using the recursion $\mathbf{c}_{i}^{(r)} = \mathbf{c}_{i}^{(r-1)} - \frac{1}{\tau} (\mathbf{\Phi} - \mathbf{\Phi}_{i})$.

Algorithm 4.2 FedSKETCHGATE (R, τ, η, γ) : Private Federated Learning with Sketching and gradient tracking.

```
1: Inputs: x^{(0)} = x_i^{(0)} shared by all local devices, communication rounds R, local
        updates \tau, global and local learning rates \gamma and \eta.
       for r = 0, ..., R - 1 do
                  parallel for device j = 1, ..., n do:
  3:
                        \begin{array}{l} \textbf{if PRIVIX variant:} \\ \text{Set } \mathbf{c}_{j}^{(r)} = \mathbf{c}_{j}^{(r-1)} - \frac{1}{\tau} \left( \texttt{PRIVIX} \left( \mathbf{S}^{(r-1)} \right) - \texttt{PRIVIX} \left( \mathbf{S}_{j}^{(r-1)} \right) \right) \end{array}
  4:
  5:
                             Computes \Phi^{(r)} \triangleq PRIVIX(\mathbf{S}^{(r-1)})
  6:
                       if HEAPRIX variant: Set \mathbf{c}_{j}^{(r)} = \mathbf{c}_{j}^{(r-1)} - \frac{1}{\tau} \left( \mathbf{\Phi}^{(r)} - \mathbf{\Phi}_{j}^{(r)} \right)
  7:
  8:
                             \text{Computes } \boldsymbol{\Phi}^{(r)} \triangleq \texttt{HEAVYMIX} \left[ \mathbf{S}^{(r-1)} \right] + \texttt{PRIVIX} \left[ \mathbf{S}^{(r-1)} - \tilde{\mathbf{S}}^{(r-1)} \right]
 9:
                       Set \boldsymbol{x}^{(r)} = \boldsymbol{x}^{(r-1)} - \gamma \boldsymbol{\Phi}^{(r)} and \boldsymbol{x}_{i}^{(0,r)} = \boldsymbol{x}^{(r)}
10:
                      for \ell=0,\ldots,\tau-1 do
11:
                            Sample a mini-batch \xi_j^{(\ell,r)} and compute \tilde{\mathbf{g}}_j^{(\ell,r)} \triangleq \nabla f_j(\boldsymbol{x}_j^{(\ell,r)}, \xi_j^{(\ell,r)})
\boldsymbol{x}_j^{(\ell+1,r)} = \boldsymbol{x}_j^{(\ell,r)} - \eta\left(\tilde{\mathbf{g}}_j^{(\ell,r)} - \mathbf{c}_j^{(r)}\right)
12:
13:
14:
                           Device j sends \mathbf{S}_{i}^{(r)} \triangleq \mathbf{S} \left( \boldsymbol{x}_{i}^{(0,r)} - \boldsymbol{x}_{i}^{(\tau,r)} \right) back to the server.
15:
                 {\bf Server} \ {\bf computes}
16:
                           \mathbf{S}^{(r)} = \frac{1}{p} \sum_{j=1} \mathbf{S}_{j}^{(r)} and broadcasts \mathbf{S}^{(r)} to all devices.
17:
                   if HEAPRIX variant:
18:
                             Device j computes \Phi_i^{(r)} \triangleq \text{HEAPRIX}[\mathbf{S}_i^{(r)}]
19:
                             Second round of communication to obtain \delta_i^{(r)} := \mathbf{S}_j (HEAVYMIX[\mathbf{S}^{(r)}])
20:
                             Broadcasts \tilde{\mathbf{S}}^{(r)} \triangleq \frac{1}{n} \sum_{i=1}^{p} \delta_{i}^{(r)} to devices
21:
                 end parallel for
22:
23: end
24: Output: x^{(R-1)}
```

- 5. Convergence Analysis. The following assumptions are required for our analysis:
- 201 Assumption 2 (Smoothness and Lower Boundedness). The local objective functional control of the sum of t
- tion $f_j(\cdot)$ of jth device is differentiable for $j \in [m]$ and L-smooth, i.e., $\|\nabla f_j(\boldsymbol{u}) \nabla f_j(\boldsymbol{u})\|$
- 203 $\nabla f_j(\mathbf{v}) \| \leq L \|\mathbf{u} \mathbf{v}\|, \ \forall \ \mathbf{u}, \mathbf{v} \in \mathbb{R}^d$. Moreover, the optimal objective function $f(\cdot)$ is
- 204 bounded below by $f^* = \min_{\boldsymbol{x}} f(\boldsymbol{x}) > -\infty$.
- 205 Assumption 3 (Polyak-Lojasiewicz (PL)). A function f satisfies the PL conditon
- with constant μ if $\frac{1}{2} \|\nabla f(\boldsymbol{x})\|_2^2 \ge \mu (f(\boldsymbol{x}) f(\boldsymbol{x}^*))$, $\forall \boldsymbol{x} \in \mathbb{R}^d$ with \boldsymbol{x}^* is an optimal solution.
- 5.1. Convergence of FEDSKETCH for homogeneous setting. Now we focus on the homogeneous case in which the stochastic local gradient of each worker is an unbiased estimator of the global gradient.
- Assumption 4 (Bounded Variance). For all $j \in [m]$, we can sample an independent
- 212 mini-batch ℓ_j of size $|\Xi_i^{(\ell,r)}| = b$ and compute an unbiased stochastic gradient $\tilde{\mathbf{g}}_j =$

- $\nabla f_j(\boldsymbol{w}; \Xi_j), \mathbb{E}_{\xi_j}[\tilde{\mathbf{g}}_j] = \nabla f(\boldsymbol{w}) = \mathbf{g}$ with the variance bounded is bounded by a constant σ^2 , i.e., $\mathbb{E}_{\Xi_j}[\|\tilde{\mathbf{g}}_j \mathbf{g}\|^2] \leq \sigma^2$.
- Theorem 5.1. Suppose that the conditions in Assumptions 2-4 hold. Given 0 <
- $k = \mathcal{O}\left(\frac{e}{\mu^2}\right) \leq d$, and Consider FedSKETCH in Algorithm 4.1 with sketch size B =216
- $\mathcal{O}\left(k\log\left(\frac{dR}{\delta}\right)\right)$. If the local data distributions of all users are identical (homogeneous 217 218 setting), then with probability $1-\delta$ we have
 - Nonconvex:

221

223

224 225

229

230

231

232

233

PRIVIX Set $\eta = \frac{1}{L\gamma} \sqrt{\frac{p}{R\tau\left(\frac{\mu^2 d}{p} + 1\right)}}$ and $\gamma \geq m$, the sequence of iterates satisfies 220

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \le \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{1}{\epsilon}\right) \text{ and } \tau = \mathcal{O}\left(\frac{\frac{\mu^2 d}{p} + 1}{p\epsilon}\right).$$

HEAPRIX Set $\eta = \frac{1}{L\gamma} \sqrt{\frac{p}{R\tau\left(\frac{\mu^2d-1}{p}+1\right)}}$ and $\gamma \geq m$, the sequence of iterates satisfies 222

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_{2}^{2} \leq \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{1}{\epsilon}\right) \text{ and } \tau = \mathcal{O}\left(\frac{\frac{\mu^{2}d-1}{p}+1}{p\epsilon}\right).$$

- Strongly convex or PL: PRIVIX Set $\eta = \frac{1}{2L(\frac{\mu^2d}{d}+1)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy

$$\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\Big] \le \epsilon \text{ if we set } R = \mathcal{O}\left(\left(\frac{\mu^2 d}{p} + 1\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right) \text{ and}$$

- 227
- $\tau = \mathcal{O}\left(\frac{1}{m\epsilon}\right).$ HEAPRIX Set $\eta = \frac{1}{2L\left(\frac{\mu^2d-1}{p}+1\right)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy 228

$$\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\Big] \le \epsilon \text{ if we set}$$

$$R = \mathcal{O}\left(\left(rac{\mu^2 d - 1}{p} + 1\right) \kappa \log\left(rac{1}{\epsilon}\right)\right) \ and \ au = \mathcal{O}\left(rac{1}{m\epsilon}\right).$$

- Convex:
- PRIVIX Set $\eta = \frac{1}{2L\left(\frac{\mu^2d}{v}+1\right)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy

$$\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\Big] \leq \epsilon \ \text{if we set } R = \mathcal{O}\left(\frac{L\left(1 + \frac{\mu^2 d}{p}\right)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right) \ \text{and}$$

- 234
- $\tau = \mathcal{O}\left(\frac{1}{m\epsilon^2}\right).$ HEAPRIX Set $\eta = \frac{1}{2L\left(\frac{\mu^2d-1}{n}+1\right)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy 235

236
$$\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\Big] \le \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{L\left(\frac{\mu^2 d - 1}{p} + 1\right)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right) \text{ and}$$
237
$$\tau = \mathcal{O}\left(\frac{1}{m\epsilon^2}\right).$$

- Several auxiliary results regarding communication cost can be derived as follows: 238
- COROLLARY 5.2 (Total communication cost). The total communication cost per-worker

becomes240

241 242

$$\mathcal{O}(RB) = \mathcal{O}\left(Rk\log\left(\frac{dR}{\delta}\right)\right) = \mathcal{O}\left(\frac{k}{\epsilon}\log\left(\frac{d}{\epsilon\delta}\right)\right)$$

We note that this result in addition to improving over the communication complexity of federated learning of the state-of-the-art from $\mathcal{O}\left(\frac{d}{\epsilon}\right)$ in [8, 15, 10] to $\mathcal{O}\left(\frac{kp}{\epsilon}\log\left(\frac{dp}{\epsilon\delta}\right)\right)$, it also implies differential privacy. As a result, total communication cost is

$$BpR = \mathcal{O}\left(\frac{kp}{\epsilon}\log\left(\frac{d}{\epsilon\delta}\right)\right).$$

262 263

265

274

276

278 279

We note that the state-of-the-art in [8] the total communication cost is 243

$$BpR = \mathcal{O}\left(pd\left(\frac{1}{\epsilon}\right)\right) = \mathcal{O}\left(\frac{pd}{\epsilon}\right)$$

- Thus, we improve this result, in terms of dependency to d, from pd to $p \log(d)$. In com-246 parison to [7], we improve the total communication per worker from $\mathcal{O}\left(\frac{k}{\epsilon^2}\log\left(\frac{d}{\epsilon^2\delta}\right)\right)$ 247
- to $\mathcal{O}\left(\frac{k}{\epsilon}\log\left(\frac{d}{\epsilon\delta}\right)\right)$. 248
- Remark 5.3. It is worth noting that most of the available communication-efficient 249
- algorithm with quantization or compression only consider communication-efficiency
- from devices to server. However, Algorithm 4.1 also improves the communication 251
- efficiency from server to devices as well. 252
- COROLLARY 5.4 (Total communication cost for PL or strongly convex). To achieve 253
- the convergence error of ϵ , we need to have $R = \mathcal{O}\left(\kappa(\frac{\mu^2 d}{p} + 1)\log\frac{1}{\epsilon}\right)$ and $\tau = \left(\frac{1}{\epsilon}\right)$.
- This leads to the total communication cost per worker of 255

$$BR = \mathcal{O}\left(k\kappa(\frac{\mu^2 d}{p} + 1)\log\left(\frac{\kappa(\frac{\mu^2 d^2}{p} + d)\log\frac{1}{\epsilon}}{\delta}\right)\log\frac{1}{\epsilon}\right)$$

As a consequence, the total communication cost of FedSKETCH, Alg. 4.1, becomes: 258

259
$$BpR = \mathcal{O}\left(k\kappa(\mu^2 d + p)\log\left(\frac{\kappa(\frac{\mu^2 d^2}{p} + d)\log\frac{1}{\epsilon}}{\delta}\right)\log\frac{1}{\epsilon}\right)$$

We note that the state-of-the-art in [8] the total communication cost is

$$BpR = \mathcal{O}\left(\kappa pd\log\left(\frac{1}{\epsilon}\right)\right) = \mathcal{O}\left(\kappa pd\log\left(\frac{1}{\epsilon}\right)\right)$$

We improve this result, in terms of dependency to d, improving from pd to p + d. 264

5.2. Convergence of FedSKETCHGATE in data heterogeneous setting.

- Assumption 5 (Bounded Local Variance). For all $j \in [m]$, we can sample an in-266 dependent mini-batch Ξ_j of size $|\xi_j| = b$ and compute an unbiased stochastic gradient 267
- $\tilde{\mathbf{g}}_j = \nabla f_j(\boldsymbol{w}; \Xi_j), \mathbb{E}_{\boldsymbol{\xi}}[\tilde{\mathbf{g}}_j] = \nabla f_j(\boldsymbol{w}) = \mathbf{g}_j.$ Moreover, the variance of local stochastic gradients is bounded above by a constant σ^2 , i.e., $\mathbb{E}_{\Xi}[\|\tilde{\mathbf{g}}_j \mathbf{g}_j\|^2] \leq \sigma^2$.
- 269
- Theorem 5.5. Suppose that the conditions in Assumptions 2 and 5 hold. Given 0 <
- $k = \mathcal{O}\left(\frac{e}{\mu^2}\right) \leq d$, and Consider FedSKETCHGATE in Algorithm 4.2 with sketch size B = 0271
- $\mathcal{O}\left(k\log\left(\frac{dR}{\delta}\right)\right)$. If the local data distributions of all users are identical (homogeneous 272
- setting), then with probability 1δ we have 273
 - Nonconvex:
 - PRIVIX Set $\eta = \frac{1}{L\gamma}\sqrt{\frac{p}{R\tau(\mu^2d)}}$ and $\gamma \geq m$, the sequence of iterates satisfies

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \le \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{\mu^2 d + 1}{\epsilon}\right) \text{ and } \tau = \mathcal{O}\left(\frac{1}{p\epsilon}\right).$$

HEAPRIX Set $\eta = \frac{1}{L\gamma}\sqrt{\frac{p}{R\tau(\mu^2d)}}$ and $\gamma \geq m$, the sequence of iterates satisfies 277

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \leq \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{\mu^2 d}{\epsilon}\right) \text{ and } \tau = \mathcal{O}\left(\frac{1}{p\epsilon}\right).$$

PRIVIX Set
$$\eta = \frac{1}{2L(\mu^2d+1)\tau\gamma}$$
 and $\gamma \geq m$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\mathbf{w}^{(R)}) - f(\mathbf{w}^{(*)})\right] \leq \epsilon$ if we set $R = \mathcal{O}\left(\left(\mu^2d+1\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \mathcal{O}\left(\frac{1}{m\epsilon}\right)$.

HEAPRIX Set $\eta = \frac{1}{2L(\mu^2d)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\mathbf{w}^{(R)}) - f(\mathbf{w}^{(*)})\right] \leq \epsilon$ if we set $R = \mathcal{O}\left(\left(\mu^2d\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \mathcal{O}\left(\frac{1}{m\epsilon}\right)$.

• Convex:

PRIVIX Set $\eta = \frac{1}{2L(\mu^2d+1)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\mathbf{w}^{(R)}) - f(\mathbf{w}^{(*)})\right] \leq \epsilon$ if we set $R = \mathcal{O}\left(\frac{L(1+\mu^2d)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \mathcal{O}\left(\frac{1}{m\epsilon^2}\right)$.

HEAPRIX Set $\eta = \frac{1}{2L(\mu^2d)\tau\gamma}$ and $\gamma \geq m$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\mathbf{w}^{(R)}) - f(\mathbf{w}^{(*)})\right] \leq \epsilon$ if we set $R = \mathcal{O}\left(\frac{L(\mu^2d)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \mathcal{O}\left(\frac{1}{m\epsilon^2}\right)$.

$$\mathbb{E}\left[f(\mathbf{w}^{(R)}) - f(\mathbf{w}^{(*)})\right] \leq \epsilon \text{ if we set } R = \mathcal{O}\left(\frac{L(\mu^2d)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right) \text{ and } \tau = \mathcal{O}\left(\frac{1}{m\epsilon^2}\right)$$
.

6. Conclusion. In this paper, we introduced FedSKETCH and FedSKETCHGATE algorithms for homogeneous and heterogeneous data distribution setting respectively for Federated Learning wherein communication between server and devices is only performed using count sketch. Our algorithms, thus, provide communication-efficiency and privacy. We analyze the convergence error for *non-convex*, *Polyak-Lojasiewicz* and *general convex* objective functions in the scope of Federated Optimization.

 $304 \\ 305$

306

307

308

309

310

311

312

313 314

315

316

317

 $\frac{318}{319}$

320

321

322

323 324

325

326

327

328 329

330

331 332

299 REFERENCES

- 300 [1] D. ALISTARH, D. GRUBIC, J. LI, R. TOMIOKA, AND M. VOJNOVIC, *Qsgd: Communication-efficient sgd via gradient quantization and encoding*, in Advances in Neural Information Processing Systems, 2017, pp. 1709–1720.
 - [2] D. BASU, D. DATA, C. KARAKUS, AND S. DIGGAVI, Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local computations, in Advances in Neural Information Processing Systems, 2019, pp. 14695–14706.
 - [3] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, signsgd: Compressed optimisation for non-convex problems, arXiv preprint arXiv:1802.04434, (2018).
 - [4] L. Bottou and O. Bousquet, *The tradeoffs of large scale learning*, in Advances in neural information processing systems, 2008, pp. 161–168.
 - [5] F. HADDADPOUR, M. M. KAMANI, A. MOKHTARI, AND M. MAHDAVI, Federated learning with compression: Unified analysis and sharp guarantees, arXiv preprint arXiv:2007.01154, (2020).
 - [6] S. Horváth and P. Richtárik, A better alternative to error feedback for communicationefficient distributed learning, arXiv preprint arXiv:2006.11077, (2020).
 - [7] N. IVKIN, D. ROTHCHILD, E. ULLAH, I. STOICA, R. ARORA, ET AL., Communication-efficient distributed sgd with sketching, in Advances in Neural Information Processing Systems, 2019, pp. 13144–13154.
 - [8] S. P. KARIMIREDDY, S. KALE, M. MOHRI, S. J. REDDI, S. U. STICH, AND A. T. SURESH, Scaffold: Stochastic controlled averaging for on-device federated learning, arXiv preprint arXiv:1910.06378, (2019).
 - [9] T. Li, Z. Liu, V. Sekar, and V. Smith, Privacy for free: Communication-efficient learning with differential privacy using sketches, arXiv preprint arXiv:1911.00972, (2019).
 - [10] X. LIANG, S. SHEN, J. LIU, Z. PAN, E. CHEN, AND Y. CHENG, Variance reduced local sgd with lower communication complexity, arXiv preprint arXiv:1912.12844, (2019).
 - [11] Y. LIN, S. HAN, H. MAO, Y. WANG, AND W. J. DALLY, Deep gradient compression: Reducing the communication bandwidth for distributed training, arXiv preprint arXiv:1712.01887, (2017).
 - [12] A. REISIZADEH, A. MOKHTARI, H. HASSANI, A. JADBABAIE, AND R. PEDARSANI, Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization, arXiv preprint arXiv:1909.13014, (2019).
 - [13] H. ROBBINS AND S. MONRO, A stochastic approximation method, The annals of mathematical statistics, (1951), pp. 400–407.
- 333 [14] S. U. STICH, J.-B. CORDONNIER, AND M. JAGGI, Sparsified sgd with memory, in Advances in 334 Neural Information Processing Systems, 2018, pp. 4447–4458.
- 335 [15] J. WANG AND G. JOSHI, Cooperative sgd: A unified framework for the design and analysis of 336 communication-efficient sgd algorithms, arXiv preprint arXiv:1808.07576, (2018).
- [16] J. WANGNI, J. WANG, J. LIU, AND T. ZHANG, Gradient sparsification for communication-efficient distributed optimization, in Advances in Neural Information Processing Systems, 2018, pp. 1299–1309.

- Appendix A. Proof of main Theorems. The proof of Theorem 5.1 follows directly 340
- 341 from the results in [5]. For the sake of the completeness we review an assumptions
- from this reference for the quantiziation with their notation. 342
- Assumption 6 ([5]). The output of the compression operator $Q(\mathbf{x})$ is an unbiased 343
- estimator of its input x, and its variance grows with the squared of the squared of 344
- ℓ_2 -norm of its argument, i.e., $\mathbb{E}\left[Q(\mathbf{x})\right] = \mathbf{x}$ and $\mathbb{E}\left[\left\|Q(\mathbf{x}) \mathbf{x}\right\|^2\right] \leq q\left\|\mathbf{x}\right\|^2$. 345
 - **A.1. Proof of Theorem 5.1.** Based on Assumption 6 we have:
- Theorem A.1 ([5]). Consider FedCOM in [5]. Suppose that the conditions in As-347 sumptions 2, 4 and 6 hold. If the local data distributions of all users are identical 348 (homogeneous setting), then we have
- 349 350

- Nonconvex: By choosing stepsizes as $\eta = \frac{1}{L\gamma} \sqrt{\frac{p}{R\tau(\frac{q}{p}+1)}}$ and $\gamma \geq p$, the sequence of iterates satisfies $\frac{1}{R}\sum_{r=0}^{R-1}\left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} \leq \epsilon$ if we set $R=O\left(\frac{1}{\epsilon}\right)$
- 351 and $\tau = O\left(\frac{\frac{q}{p}+1}{p\epsilon}\right)$. 352
- Strongly convex or PL: By choosing stepsizes as $\eta = \frac{1}{2L(\frac{q}{p}+1)\tau\gamma}$ and $\gamma \geq$
- m, we obtain that the iterates satisfy $\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) f(\boldsymbol{w}^{(*)})\right] \leq \epsilon$ if we set 354
- $R = O\left(\left(\frac{q}{p} + 1\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right) \ and \ \tau = O\left(\frac{1}{p\epsilon}\right).$ Convex: By choosing stepsizes as $\eta = \frac{1}{2L\left(\frac{q}{p} + 1\right)\tau\gamma}$ and $\gamma \geq p$, we obtain that
- the iterates satisfy $\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) f(\boldsymbol{w}^{(*)})\right] \leq \epsilon$ if we set
- $R = O\left(\frac{L\left(1 + \frac{q}{p}\right)}{\epsilon} \log\left(\frac{1}{\epsilon}\right)\right) \text{ and } \tau = O\left(\frac{1}{p\epsilon^2}\right).$ 358
- *Proof.* Since the sketching PRIVIX and HEAPRIX, satisfy the Assumption 6 with q =359
- $\mu^2 d$ and $q = \mu^2 d 1$ respectively with probability 1δ . Therefore, all the results in 360
- Theorem 5.1, conclude from Theorem A.1 with probability $1-\delta$ and plugging $q=\mu^2 d$ 361 and $q = \mu^2 d - 1$ respectively into the corresponding convergence bounds.
- 362 363
 - **A.2.** Proof of Theorem 5.5. For the heterogeneous setting, the results in [5] requires the following extra assumption that naturally holds for the sketching:
 - Assumption 7 ([5]). The compression scheme Q for the heterogeneous data distribution setting satisfies the following condition

$$\mathbb{E}_{Q}[\|\frac{1}{m}\sum_{j=1}^{m}Q(\boldsymbol{x}_{j})\|^{2}-\|Q(\frac{1}{m}\sum_{j=1}^{m}\boldsymbol{x}_{j})\|^{2}]\leq G_{q}.$$

- We note that since sketching is a linear compressor, in the case of our algorithms for 365
- heterogeneous setting we have $G_q = 0$. 366
- Next, we restate the Theorem in [5] here as follows: 367
- THEOREM A.2. Consider FedCOMGATE in [5]. If Assumptions 2, 5, 6 and 7 hold, 368
- 369 then even for the case the local data distribution of users are different (heterogeneous
- setting) we have 370
- Non-convex: By choosing stepsizes as $\eta = \frac{1}{L\gamma} \sqrt{\frac{p}{R\tau(q+1)}}$ and $\gamma \geq p$, we ob-371
- tain that the iterates satisfy $\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \le \epsilon$ if we set $R = O\left(\frac{q+1}{\epsilon}\right)$ 372
- and $\tau = O\left(\frac{1}{n\epsilon}\right)$. 373

- Strongly convex or PL: By choosing stepsizes as $\eta = \frac{1}{2L\left(\frac{q}{p}+1\right)\tau\gamma}$ and $\gamma \geq \sqrt{p\tau}$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) f(\boldsymbol{w}^{(*)})\right] \leq \epsilon$ if we set $R = O\left((q+1)\kappa\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = O\left(\frac{1}{p\epsilon}\right)$.
- ** Convex: By choosing stepsizes as $\eta = \frac{1}{2L(q+1)\tau\gamma}$ and $\gamma \geq \sqrt{p\tau}$, we obtain that the iterates satisfy $\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) f(\boldsymbol{w}^{(*)})\right] \leq \epsilon$ if we set $R = O\left(\frac{L(1+q)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = O\left(\frac{1}{p\epsilon^2}\right)$.
- 280 Proof. Since the sketching PRIVIX and HEAPRIX, satisfy the Assumption 6 with q=381 μ^2d and $q=\mu^2d-1$ respectively with probability $1-\delta$. Therefore, all the results in Theorem 5.5, conclude from Theorem A.2 with probability $1-\delta$ and plugging $q=\mu^2d$ and $q=\mu^2d-1$ respectively into the convergence bounds.
- Appendix B. Convergence result for FEDSKETCH without memory. From the Lsmoothness gradient assumption on global objective, by using $\underline{\mathbf{S}}^{(r)} = \tilde{\mathbf{g}}^{(r)}$ in inequality
 (??) we have:

387 (B.1)
$$f(\boldsymbol{x}^{(r+1)}) - f(\boldsymbol{x}^{(r)}) \le -\gamma \langle \nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)} \rangle + \frac{\gamma^2 L}{2} \|\tilde{\mathbf{g}}^{(r)}\|^2$$

389 We define the following:

390 (B.2)
$$\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)} = \frac{\eta}{p} \sum_{j=1}^{p} \mathbf{S} \left[\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right]$$

392 Additionally, we define an auxiliary variable as

393 (B.3)
$$\tilde{\mathbf{g}}^{(r)} = \frac{\eta}{p} \sum_{j=1}^{p} \left[\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right]$$

395 By taking expectation on both sides of above inequality over sampling, we get:

$$\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{x}^{(r+1)}) - f(\boldsymbol{x}^{(r)})\right]\right] \\
\leq -\gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\right\rangle\right]\right] + \frac{\gamma^{2}L}{2}\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\|^{2}\right] \\
= -\gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right]\right] + \gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)} - \tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\right\rangle\right]\right] \\
+ \frac{\gamma^{2}L}{2}\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)} - \tilde{\mathbf{g}}^{(r)} + \tilde{\mathbf{g}}^{(r)}\|^{2}\right] \\
\stackrel{(a)}{=} -\gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right]\right] + \gamma\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \mathbf{g}^{(r)} - \mathbf{g}_{\mathbf{S}}^{(r)}\right\rangle\right]\right] \\
+ \frac{\gamma^{2}L}{2}\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)} - \tilde{\mathbf{g}}^{(r)} + \tilde{\mathbf{g}}^{(r)}\|^{2}\right] \\
\stackrel{(b)}{\leq} -\gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right]\right] + \frac{\gamma}{2}\left[\frac{1}{mL}\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + mL\mathbb{E}_{\mathbf{S}}\left[\left\|\mathbf{g}^{(r)} - \mathbf{g}_{\mathbf{S}}^{(r)}\right\|_{2}^{2}\right]\right] \\
+ \gamma^{2}L\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)} - \tilde{\mathbf{g}}^{(r)}\right\| + \left\|\tilde{\mathbf{g}}^{(r)}\right\|^{2}\right] \\
\stackrel{(c)}{\leq} -\gamma \mathbb{E}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right] + \frac{\gamma}{2}\left[\frac{1}{mL}\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + mL\left(1 - \frac{k}{d}\right)\left\|\mathbf{g}^{(r)}\right\|_{2}^{2}\right] \\
+ \gamma^{2}L\mathbb{E}\left[\left(1 - \frac{k}{d}\right)\left\|\tilde{\mathbf{g}}^{(r)}\right\|_{2}^{2} + \left\|\tilde{\mathbf{g}}^{(r)}\right\|_{2}^{2}\right] \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right] + \frac{\gamma}{2mL}\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{mL\gamma}{2}\left(1 - \frac{k}{d}\right)\left\|\mathbf{g}^{(r)}\right\|_{2}^{2} \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right] + \frac{\gamma}{2mL}\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{mL\gamma}{2}\left(1 - \frac{k}{d}\right)\left\|\mathbf{g}^{(r)}\right\|_{2}^{2} \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left\langle\nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right] + \frac{\gamma}{2mL}\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{mL\gamma}{2}\left(1 - \frac{k}{d}\right)\left\|\mathbf{g}^{(r)}\right\|_{2}^{2}\right) \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left(1 - \frac{k}{d}\right)\mathbb{E}\left[\left\|\tilde{\mathbf{g}^{(r)}\right\|_{2}^{2}\right]\right] \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left(1 - \frac{k}{d}\right)\mathbb{E}\left[\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right) \\
\stackrel{(d)}{=} -\gamma \mathbb{E}\left[\left(1 - \frac{k}{d}\right)\mathbb{E}\left(1 - \frac{k}{d}\right)\mathbb{E}\left$$

In order to bound term (I) in (B.4) we use the combination of Lemmas ?? and ?? we obtain:

$$-\gamma \mathbb{E}\left[\left\langle \nabla f(\boldsymbol{x}^{(r)}), \tilde{\mathbf{g}}^{(r)} \right\rangle \right]$$

$$\leq \frac{\gamma}{2} \eta \frac{1}{p} \sum_{j=1}^{p} \sum_{c=0}^{\tau-1} \left[-\left\| \nabla f(\boldsymbol{x}^{(r)}) \right\|_{2}^{2} - \left\| \mathbf{g}_{j}^{(\ell,r)} \right\|_{2}^{2} + L^{2} \eta^{2} \sum_{\ell=0}^{\tau-1} \left[\tau \left\| \mathbf{g}_{j}^{(\ell,r)} \right\|_{2}^{2} + \sigma^{2} \right] \right].$$

400 Term (II) can be bounded simply as follows:

401
$$\left\| \mathbf{g}^{(r)} \right\|_{2}^{2} = \left\| \frac{\eta}{p} \sum_{j=1}^{p} \left[\sum_{c=0}^{\tau-1} \mathbf{g}_{j}^{(c,r)} \right] \right\|_{2}^{2}$$
402 (B.4)
$$\leq \frac{\tau \eta^{2}}{p} \sum_{j=1}^{p} \sum_{c=0}^{\tau-1} \left\| \mathbf{g}_{j}^{(c,r)} \right\|_{2}^{2}$$

404 Next we bound term (III) using the following lemma:

Lemma B.1.

405 (B.5)
$$\mathbb{E}\left[\left\|\tilde{\mathbf{g}}^{(r)}\right\|_{2}^{2}\right] \leq \frac{\eta^{2}\tau}{p} \sum_{j=1}^{p} \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + \frac{\eta^{2}\tau}{p}\sigma^{2}$$

Proof.

$$\begin{aligned}
&\mathbb{E}\left[\left\|\tilde{\mathbf{g}}^{(r)}\right\|_{2}^{2}\right] = \mathbb{E}\left[\left\|\tilde{\mathbf{g}}^{(r)} - \mathbb{E}\left[\tilde{\mathbf{g}}^{(r)}\right]\right\|_{2}^{2}\right] + \left\|\mathbb{E}\left[\tilde{\mathbf{g}}^{(r)}\right]\right\|_{2}^{2} \\
&= \mathbb{E}\left[\left\|\tilde{\mathbf{g}}^{(r)} - \mathbf{g}^{(r)}\right\|_{2}^{2}\right] + \left\|\mathbf{g}^{(r)}\right\|_{2}^{2} \\
&= \mathbb{E}\left[\left\|\frac{\eta}{p}\sum_{j=1}^{p}\left[\sum_{c=0}^{\tau-1}\tilde{\mathbf{g}}_{j}^{(c,r)}\right] - \frac{\eta}{p}\sum_{j=1}^{p}\left[\sum_{c=0}^{\tau-1}\mathbf{g}_{j}^{(c,r)}\right]\right\|_{2}^{2}\right] + \left\|\frac{\eta}{p}\sum_{j=1}^{p}\left[\sum_{c=0}^{\tau-1}\mathbf{g}_{j}^{(c,r)}\right]\right\|_{2}^{2} \\
&= \frac{\eta^{2}}{p^{2}}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{j}^{(c,r)} - \mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2}\right] + \left\|\frac{\eta}{p}\sum_{j=1}^{p}\left[\sum_{c=0}^{\tau-1}\mathbf{g}_{j}^{(c,r)}\right]\right\|_{2}^{2} \\
&\leq \frac{\eta^{2}}{p^{2}}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{j}^{(c,r)} - \mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2}\right] + \frac{\eta^{2}\tau}{p}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} \\
&\leq \frac{\eta^{2}}{p^{2}}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\sigma^{2} + \frac{\eta^{2}\tau}{p}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} \\
&\leq \frac{\eta^{2}}{p^{2}}\sum_{j=1}^{p}\sum_{c=0}^{\tau-1}\left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + \frac{\eta^{2}\tau}{p}\sigma^{2}
\end{aligned}$$

Next, we put all the pieces together as follows:

(B.7)

$$\begin{aligned}
&\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{x}^{(r+1)}) - f(\boldsymbol{x}^{(r)})\right]\right] \\
&417 \leq \frac{\gamma}{2}\eta \frac{1}{p} \sum_{j=1}^{p} \sum_{\ell=0}^{\tau-1} \left[-\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} - \left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2} + L^{2}\eta^{2} \sum_{\ell=0}^{\tau-1} \left[\tau\left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2} + \sigma^{2}\right]\right] \\
&+ \frac{\gamma}{2mL} \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{mL\gamma}{2} \left(1 - \frac{k}{d}\right) \frac{\tau\eta^{2}}{p} \sum_{j=1}^{p} \sum_{\ell=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2} \\
&+ \gamma^{2}L \left(2 - \frac{k}{d}\right) \left[\frac{\eta^{2}\tau}{p} \sum_{j=1}^{p} \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2} + \frac{\eta^{2}\tau}{p}\sigma^{2}\right] \\
&420 &= \frac{\tau\eta\gamma}{2} \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{\gamma}{2}\eta \frac{1}{p} \sum_{j=1}^{p} \sum_{\ell=0}^{\tau-1} \left[-\left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2} + L^{2}\eta^{2}\tau^{2} \left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2}\right] + \frac{\gamma\eta^{3}L^{2}\tau^{2}}{2}\sigma^{2} \\
&+ \frac{\gamma}{2mL} \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{mL\gamma}{2} \left(1 - \frac{k}{d}\right) \frac{\tau\eta^{2}}{p} \sum_{j=1}^{p} \sum_{\ell=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2}
\end{aligned}$$

$$+ \gamma^2 L \left(2 - \frac{k}{d} \right) \frac{\eta^2 \tau}{p} \sum_{i=1}^p \sum_{\ell=0}^{\tau-1} \left\| \mathbf{g}_j^{(\ell,r)} \right\|_2^2 + \gamma^2 L \left(2 - \frac{k}{d} \right) \frac{\eta^2 \tau}{p} \sigma^2$$

423
$$= \left(\frac{\tau\eta\gamma}{2} - \frac{\gamma}{2mL}\right) \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2}$$

$$-\left(\frac{\eta\gamma}{2} - \frac{\eta\gamma}{2}\left(L^{2}\eta^{2}\tau^{2}\right) - \frac{mL\eta\gamma}{2}\left(1 - \frac{k}{d}\right)\tau\eta - \gamma^{2}L\eta^{2}\tau\left(2 - \frac{k}{d}\right)\right)\frac{1}{p}\sum_{i=1}^{p}\sum_{\ell=0}^{\tau-1}\left\|\mathbf{g}_{j}^{(\ell,r)}\right\|_{2}^{2}$$

$$+\frac{\gamma\eta^3L^2\tau^2}{2}\sigma^2 + \gamma^2L\left(2 - \frac{k}{d}\right)\frac{\eta^2\tau}{p}\sigma^2$$

(B.8]

$$\stackrel{(a)}{\leq} - \left(\frac{\tau\eta\gamma}{2} - \frac{\gamma}{2mL}\right) \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{\gamma\eta^{3}L^{2}\tau^{2}}{2}\sigma^{2} + \tau\eta^{2}\gamma^{2}L\left(2 - \frac{k}{d}\right)\frac{\sigma^{2}}{p}$$

428 where (a) follows from the learning rate choices of

$$\frac{429}{430} \quad (B.9) \qquad \frac{\eta \gamma}{2} - \frac{\eta \gamma}{2} \left(L^2 \eta^2 \tau^2 \right) - \frac{mL\eta \gamma}{2} \left(1 - \frac{k}{d} \right) \tau \eta - \gamma^2 L \eta^2 \tau \left(2 - \frac{k}{d} \right) \ge 0$$

431 which can be simplified further as follows:

432 (B.10)
$$1 - L^2 \eta^2 \tau^2 - mL\tau \eta \left(1 - \frac{k}{d} \right) - 2\gamma L \eta \tau \left(2 - \frac{k}{d} \right) \ge 0$$

434 Then using B.8 we obtain:

435 (B.11)
$$\frac{\tau \gamma}{2} \left(\eta - \frac{1}{\tau mL} \right) \left\| \nabla f(\boldsymbol{x}^{(r)}) \right\|_{2}^{2}$$

436 (B.12)
$$\leq \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{x}^{(r+1)}) - f(\boldsymbol{x}^{(r)})\right]\right] + \tau \eta^2 \gamma^2 L\left(2 - \frac{k}{d}\right) \frac{\sigma^2}{p} + \frac{\gamma \eta^3 L^2 \tau^2}{2} \sigma^2$$

438 which leads to the following bound:

(B.13)
$$\left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} \leq \frac{2\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{x}^{(r+1)}) - f(\boldsymbol{x}^{(r)})\right]\right]}{\tau\gamma\left(\eta - \frac{1}{\tau mL}\right)} + \frac{2\eta^{2}\gamma L\left(2 - \frac{k}{d}\right)\frac{\sigma^{2}}{p}}{\left(\eta - \frac{1}{\tau mL}\right)} + \frac{\eta^{3}L^{2}\tau}{\left(\eta - \frac{1}{\tau mL}\right)}\sigma^{2}$$

Now averaging over r communication rounds we achieve:

$$\begin{aligned} & \text{(B.14)} \\ & \frac{442}{443} & \frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{x}^{(r)}) \right\|_2^2 \leq \frac{2\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(*)})\right]\right]}{R\tau\gamma\left(\eta - \frac{1}{\tau mL}\right)} + \frac{2\eta^2\gamma L\left(2 - \frac{k}{d}\right)\frac{\sigma^2}{p}}{\left(\eta - \frac{1}{\tau mL}\right)} + \frac{\eta^3L^2\tau}{\left(\eta - \frac{1}{\tau mL}\right)}\sigma^2 \mathbf{m}^2 \mathbf{m$$

We note that for this case we have the following conditions over learning rate:

445 (B.15)
$$L^{2}\eta^{2}\tau^{2} + mL\tau\eta\left(1 - \frac{k}{d}\right) + 2\gamma L\eta\tau\left(2 - \frac{k}{d}\right) \le 1, \ \eta > \frac{1}{mL\tau},$$

B.1. Proof of Theorem ??. From (B.8) under condition with:

448 (B.16)
$$L^{2}\eta^{2}\tau^{2} + mL\tau\eta\left(1 - \frac{k}{d}\right) + 2\gamma L\eta\tau\left(2 - \frac{k}{d}\right) \le 1,$$

450 we obtain:

451 (B.17)
$$\mathbb{E}\left[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(r)})\right]$$
452
$$\leq -\left(\frac{\tau\eta\gamma}{2} - \frac{\gamma}{2mL}\right) \left\|\nabla f(\boldsymbol{x}^{(r)})\right\|_{2}^{2} + \frac{\gamma\eta^{3}L^{2}\tau^{2}}{2}\sigma^{2} + \tau\eta^{2}\gamma^{2}L\left(2 - \frac{k}{d}\right)\frac{\sigma^{2}}{p}$$
(B.18)
$$\overset{(PL)}{\leq} -\left(\tau\mu\eta\gamma - \frac{\mu\gamma}{mL}\right) \left[f(\boldsymbol{w}^{(r)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{\gamma\eta^{3}L^{2}\tau^{2}}{2}\sigma^{2} + \tau\eta^{2}\gamma^{2}L\left(2 - \frac{k}{d}\right)\frac{\sigma^{2}}{p}$$

which leads to the following bound:

456 (B.19)
$$\mathbb{E}\left[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(*)})\right] \leq \left(1 - \eta\mu\gamma\tau + \frac{\mu\gamma}{mL}\right) \left[f(\boldsymbol{w}^{(r)}) - f(\boldsymbol{w}^{(*)})\right]$$

$$+ \frac{\gamma\eta^3L^2\tau^2}{2}\sigma^2 + \tau\eta^2\gamma^2L\left(2 - \frac{k}{d}\right)\frac{\sigma^2}{p}$$

COMMUNICATION-EFFICIENT AND DIFFERENTIALLY-PRIVATE FL VIA SKETCHING9

which leads to the following bound by setting $\Delta \triangleq 1 - \eta \mu \gamma \tau + \frac{\mu \gamma}{mL} = 1 - \mu \gamma \tau \left(\eta - \frac{1}{mL\tau} \right)$:
(B.21)

460
$$\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right]$$

$$461 \quad \leq \Delta^{R} \left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right] + \frac{1 - \Delta^{R}}{1 - \Delta} \left(\frac{\gamma \eta^{3} L^{2} \tau^{2}}{2} \sigma^{2} + \tau \eta^{2} \gamma^{2} L \left(2 - \frac{k}{d} \right) \frac{\sigma^{2}}{p} \right)$$

$$462 \leq \Delta^{R} \left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right] + \frac{1}{1 - \Delta} \left(\frac{\gamma \eta^{3} L^{2} \tau^{2}}{2} \sigma^{2} + \tau \eta^{2} \gamma^{2} L \left(2 - \frac{k}{d} \right) \frac{\sigma^{2}}{p} \right)$$

$$463 = \left(1 - \mu \gamma \tau \left(\eta - \frac{1}{mL\tau}\right)\right)^{R} \left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{\left(\frac{\gamma \eta^{3} L^{2} \tau^{2}}{2} \sigma^{2} + \tau \eta^{2} \gamma^{2} L\left(2 - \frac{k}{d}\right) \frac{\sigma^{2}}{p}\right)}{\mu \gamma \tau \left(\eta - \frac{1}{mL\tau}\right)}$$
(B.22)

$$464
_{465} \leq \exp\left(\mu\gamma\tau\left(\eta - \frac{1}{mL\tau}\right)R\right)\left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{\left(\frac{\gamma\eta^3L^2\tau}{2}\sigma^2 + \eta^2\gamma^2L\left(2 - \frac{k}{d}\right)\frac{\sigma^2}{p}\right)}{\mu\gamma\left(\eta - \frac{1}{mL\tau}\right)}$$

466 Then for the choice of $\eta = \frac{n}{mL\tau}$, for m > n > 1, we obtain:

467 (B.23)
$$\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right] \le \exp\left(\frac{\gamma(n-1)R}{m\kappa}\right) \left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] +$$

$$\frac{\left(\frac{\gamma n^3 L^2 \tau}{2m^3 L^3 \tau^3} \sigma^2 + \frac{n^2}{m^2 L^2 \tau^2} \gamma^2 L \left(2 - \frac{k}{d}\right) \frac{\sigma^2}{p}\right)}{\mu \gamma \left(\frac{n-1}{mL\tau}\right)}$$

$$= \exp -\left(\frac{\gamma(n-1)R}{m\kappa}\right) \left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right]$$

470 (B.25)
$$+ \frac{\left(\frac{n^3}{2m^2} + \frac{n^2}{m}\gamma L\left(2 - \frac{k}{d}\right)\frac{1}{p}\right)}{\mu\tau (n-1)}\sigma^2$$

We note that regarding condition in (B.16), if we let $\eta = \frac{n}{mL\tau}$ for m > n > 1, we

473 need to satisfy the following condition:

474 (B.26)
$$\frac{n^2}{m^2} + n\left(1 - \frac{k}{d}\right) + \frac{2n\gamma\left(1 - \frac{k}{d}\right)}{m} \le 1$$

Now if you let $\gamma = \frac{m}{2}$, we need to impose the following condition over k and d as

477 follows:

478 (B.27)
$$n\left(1 - \frac{k}{d}\right) \le \frac{1}{3} \implies d\left(1 - \frac{1}{3n}\right) \le k \le d$$