Applied Statistical Methods II

Some additional topics II

How do we choose the number of latent factors

- $\bullet \ \mathbf{Y}_{p\times n} = \mathbf{L}_{p\times K} \mathbf{C}_{n\times K}^T + \mathbf{E}_{p\times n}$
- The rows g = 1, ..., p of **Y** are genes (or survey questions, companies, etc.).
 - We assume each row behaves as a standard linear model, $\mathbf{E}_{g\cdot} \sim (\mathbf{0}, \sigma^2 I_n)$
 - Entries of *E* are independent.
- The columns i = 1,..., n of Y are samples (or individuals, time, etc.)
- Ultimate goal is to understand $L \in \mathbb{R}^{p \times K}$ and $C \in \mathbb{R}^{n \times K}$.
- Problem: we don't know K! How should we estimate it?
- Choosing K is likely the most important part of exploratory factor analysis (Brown, 2014).

How do we choose the number of latent factors

- $\bullet \ \mathbf{Y}_{p\times n} = \mathbf{L}_{p\times K} \mathbf{C}_{n\times K}^T + \mathbf{E}_{p\times n}$
- The rows g = 1, ..., p of **Y** are genes (or survey questions, companies, etc.).
 - We assume each row behaves as a standard linear model, $\mathbf{E}_{g} \sim (\mathbf{0}, \sigma^2 \mathbf{I}_n)$
 - Entries of *E* are independent.
- The columns i = 1,..., n of Y are samples (or individuals, time, etc.)
- Ultimate goal is to understand $\mathbf{L} \in \mathbb{R}^{p \times K}$ and $\mathbf{C} \in \mathbb{R}^{n \times K}$.
- Problem: we don't know K! How should we estimate it?
- Choosing K is likely the most important part of exploratory factor analysis (Brown, 2014).

Using a scree plot

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Plot the eigenvalues of $p^{-1} Y^T Y$.
- Recall

$$E\left(p^{-1}\mathbf{Y}^{T}\mathbf{Y}\right) = \mathbf{C}\left(p^{-1}\mathbf{L}^{T}\mathbf{L}\right)\mathbf{C}^{T} + E(p^{-1}\mathbf{E}^{T}\mathbf{E})$$

$$= \mathbf{C}\left(p^{-1}\mathbf{L}^{T}\mathbf{L}\right)\mathbf{C}^{T} + \bar{\sigma}^{2}I_{n}$$

$$\bar{\sigma}^{2} = p^{-1}\sum_{g=1}^{p}\sigma_{g}^{2}$$

- Idea: if the eigenvalues of the signal $C(p^{-1}L^TL)C^T$ are large, they should be much bigger than those from the noise $p^{-1}E^TE$.
- Look for an elbow in the scree plot: a point below which the eigenvalues are "small" and can be ignored.
- Problems: qualitative, usual does not work in real data.

Using a scree plot

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Plot the eigenvalues of $p^{-1} Y^T Y$.
- Recall

$$E\left(p^{-1}\mathbf{Y}^{T}\mathbf{Y}\right) = \mathbf{C}\left(p^{-1}\mathbf{L}^{T}\mathbf{L}\right)\mathbf{C}^{T} + E(p^{-1}\mathbf{E}^{T}\mathbf{E})$$

$$= \mathbf{C}\left(p^{-1}\mathbf{L}^{T}\mathbf{L}\right)\mathbf{C}^{T} + \bar{\sigma}^{2}I_{n}$$

$$\bar{\sigma}^{2} = p^{-1}\sum_{g=1}^{p}\sigma_{g}^{2}$$

- Idea: if the eigenvalues of the signal $C(p^{-1}L^TL)C^T$ are large, they should be much bigger than those from the noise $p^{-1}E^TE$.
- Look for an elbow in the scree plot: a point below which the eigenvalues are "small" and can be ignored.
- Problems: qualitative, usual does not work in real data.

Using a scree plot: simulated data

Simulated data, small eigenvalues

Using a scree plot: real gene expression data

- Real gene expression data from Knowles et al., 2018.
- Measured the expression of p = 12,317 genes in n = 217 samples.
- What value of K would you use?

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Bai & Ng (2002): A BIC-like criteria.
 - f(k) = R(k) + kP(p, n). Choose k to minimize f(k).
 - $R(k) = (np)^{-1} \| \mathbf{Y} \hat{\mathbf{L}}^{(k)} \left\{ \hat{\mathbf{C}}^{(k)} \right\}^T \|_F^2$ are the sum of squared residuals for PCA's estimates when it is assumed K = k.
 - P(p,n) is a penalty function that satisfies $P(p,n) \to 0$ and $\min(n,p)P(p,n) \to \infty$ as $n,p \to \infty$.
 - Example: $P(p, n) = 1/\log \{\min(n, p)\}$
 - This is a groundbreaking paper.
 - **Serious problem**: This only works in theory and in practice if the eigenvalues of $C(p^{-1}L^TL)C^T$ are **very large** (i.e. $\approx n$).
 - In these cases, we might as well use a scree plot!
- There are lots of similar methods (Ahn & Horenstein, 2013; Lu & Su, 2016; Li et al., 2018).
- All suffer from the same problems.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Bai & Ng (2002): A BIC-like criteria.
 - f(k) = R(k) + kP(p, n). Choose k to minimize f(k).
 - $R(k) = (np)^{-1} \| \mathbf{Y} \hat{\mathbf{L}}^{(k)} \left\{ \hat{\mathbf{C}}^{(k)} \right\}^T \|_F^2$ are the sum of squared residuals for PCA's estimates when it is assumed K = k.
 - P(p, n) is a penalty function that satisfies $P(p, n) \to 0$ and $\min(n, p)P(p, n) \to \infty$ as $n, p \to \infty$.
 - Example: $P(p, n) = 1/\log \{\min(n, p)\}$
 - This is a groundbreaking paper.
 - **Serious problem**: This only works in theory and in practice if the eigenvalues of $C(p^{-1}L^TL)C^T$ are **very large** (i.e. $\approx n$).
 - In these cases, we might as well use a scree plot!
- There are lots of similar methods (Ahn & Horenstein, 2013; Lu & Su, 2016; Li et al., 2018).
- All suffer from the same problems.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Bai & Ng (2002): A BIC-like criteria.
 - f(k) = R(k) + kP(p, n). Choose k to minimize f(k).
 - $R(k) = (np)^{-1} \| \mathbf{Y} \hat{\mathbf{L}}^{(k)} \left\{ \hat{\mathbf{C}}^{(k)} \right\}^T \|_F^2$ are the sum of squared residuals for PCA's estimates when it is assumed K = k.
 - P(p,n) is a penalty function that satisfies $P(p,n) \to 0$ and $\min(n,p)P(p,n) \to \infty$ as $n,p \to \infty$.
 - Example: $P(p, n) = 1/\log \{\min(n, p)\}$
 - This is a groundbreaking paper.
 - **Serious problem**: This only works in theory and in practice if the eigenvalues of $C(p^{-1}L^TL)C^T$ are **very large** (i.e. $\approx n$).
 - In these cases, we might as well use a scree plot!
- There are lots of similar methods (Ahn & Horenstein, 2013; Lu & Su, 2016; Li et al., 2018).
- All suffer from the same problems.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Bai & Ng (2002): A BIC-like criteria.
 - f(k) = R(k) + kP(p, n). Choose k to minimize f(k).
 - $R(k) = (np)^{-1} \| \mathbf{Y} \hat{\mathbf{L}}^{(k)} \left\{ \hat{\mathbf{C}}^{(k)} \right\}^T \|_F^2$ are the sum of squared residuals for PCA's estimates when it is assumed K = k.
 - P(p, n) is a penalty function that satisfies $P(p, n) \to 0$ and $\min(n, p)P(p, n) \to \infty$ as $n, p \to \infty$.
 - Example: $P(p, n) = 1/\log \{\min(n, p)\}$
 - This is a groundbreaking paper.
 - **Serious problem**: This only works in theory and in practice if the eigenvalues of $C(p^{-1}L^TL)C^T$ are **very large** (i.e. $\approx n$).
 - In these cases, we might as well use a scree plot!
- There are lots of similar methods (Ahn & Horenstein, 2013; Lu & Su, 2016; Li et al., 2018).
- All suffer from the same problems.

Parallel analysis (PA) to choose K

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- A more data-driven approach, based on permutation.
- Y = Signal + Noise.
- Idea: we only include a factor k if it's eigenvalue is suitably greater than that of the noise.
- Goal: need to understand singular values of the noise.
- Option 1: use random matrix theory (RMT) to understand the singular values of *E*.
 - There are some really beautiful results here. See Chapter 5 of Eldar & Kutyniok (2012) for some of them.
 - Problem: results are sensitive to distributional assumptions on E.
- Option 2: Use the observed data to estimate singular values of *E*.
 - Called parallel analysis (PA).
 - A very old idea (dates back to at least 1992). The first theoretical results were recently published (Dobriban, 2020).

Parallel analysis (PA) to choose K

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- A more data-driven approach, based on permutation.
- \bullet Y = Signal + Noise.
- Idea: we only include a factor k if it's eigenvalue is suitably greater than that of the noise.
- Goal: need to understand singular values of the noise.
- Option 1: use random matrix theory (RMT) to understand the singular values of *E*.
 - There are some really beautiful results here. See Chapter 5 of Eldar & Kutyniok (2012) for some of them.
 - Problem: results are sensitive to distributional assumptions on *E*.
- Option 2: Use the observed data to estimate singular values of E.
 - Called parallel analysis (PA).
 - A very old idea (dates back to at least 1992). The first theoretical results were recently published (Dobriban, 2020).

Parallel analysis (PA) to choose K

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- A more data-driven approach, based on permutation.
- Y = Signal + Noise.
- Idea: we only include a factor k if it's eigenvalue is suitably greater than that of the noise.
- Goal: need to understand singular values of the noise.
- Option 1: use random matrix theory (RMT) to understand the singular values of *E*.
 - There are some really beautiful results here. See Chapter 5 of Eldar & Kutyniok (2012) for some of them.
 - Problem: results are sensitive to distributional assumptions on *E*.
- Option 2: Use the observed data to estimate singular values of E.
 - Called parallel analysis (PA).
 - A very old idea (dates back to at least 1992). The first theoretical results were recently published (Dobriban, 2020).

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Mean center the rows of \mathbf{Y} , i.e. $\mathbf{Y} \leftarrow \mathbf{Y} \left(I_n n^{-1} \mathbf{1}_n \mathbf{1}_n^T \right)$
- Let $\delta_1, \delta_2, \dots, \delta_{\min(n,p)}$ be the singular values of **Y**.
- Idea: choose \hat{K} s.t. $\delta_{\hat{K}}$ is suitably larger than singular values of the noise \mathbf{E} .
- To approximate the singular values of the noise *E*:
 - ① "Break" the signal \mathbf{LC}^T by independently permuting entries in the rows of \mathbf{Y} : $\tilde{\mathbf{E}}_{g\cdot}^{(b)} = \mathbf{\Pi}_g \mathbf{Y}_{g\cdot}$, $\mathbf{\Pi}_g$ a random permutation matrix.
 - 2 Let $\delta_1^{(b)}, \delta_2^{(b)}, \dots, \delta_{\min(n,p)}^{(b)}$ be the s.v. of $\tilde{\boldsymbol{E}}^{(b)}$.
 - 3 Repeat for b = 1, ..., B. This gives you an approximate dist'n of the $\sigma_k(\mathbf{E})$ (the kth singular value of \mathbf{E}).
- Keep factor k if $\delta_k > 95\%$ of the of the $\delta_k^{(b)}$'s.
- **Problem**: $\tilde{E}^{(b)}$ is often very different from E.
- Subject to **eigenvalue shadowing**: $\tilde{\mathbf{E}}^{(b)}$ is contaminated by factors with large eigenvalues.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Mean center the rows of \mathbf{Y} , i.e. $\mathbf{Y} \leftarrow \mathbf{Y} \left(I_n n^{-1} \mathbf{1}_n \mathbf{1}_n^T \right)$
- Let $\delta_1, \delta_2, \dots, \delta_{\min(n,p)}$ be the singular values of **Y**.
- Idea: choose \hat{K} s.t. $\delta_{\hat{K}}$ is suitably larger than singular values of the noise \mathbf{E} .
- To approximate the singular values of the noise *E*:
 - "Break" the signal \boldsymbol{LC}^T by independently permuting entries in the rows of \boldsymbol{Y} : $\tilde{\boldsymbol{E}}_{g\cdot}^{(b)} = \boldsymbol{\Pi}_g \boldsymbol{Y}_{g\cdot}$, $\boldsymbol{\Pi}_g$ a random permutation matrix.
 - \bullet Let $\delta_1^{(b)}, \delta_2^{(b)}, \dots, \delta_{\min(n,p)}^{(b)}$ be the s.v. of $\tilde{\boldsymbol{E}}^{(b)}$.
 - 3 Repeat for b = 1, ..., B. This gives you an approximate dist'n of the $\sigma_k(\mathbf{E})$ (the kth singular value of \mathbf{E}).
- Keep factor k if $\delta_k > 95\%$ of the of the $\delta_k^{(b)}$'s.
- **Problem**: $\tilde{\mathbf{E}}^{(b)}$ is often very different from \mathbf{E} .
- Subject to **eigenvalue shadowing**: $\tilde{\mathbf{E}}^{(b)}$ is contaminated by factors with large eigenvalues.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

- Mean center the rows of Y, i.e. $Y \leftarrow Y \left(I_n n^{-1} \mathbf{1}_n \mathbf{1}_n^T\right)$
- Let $\delta_1, \delta_2, \dots, \delta_{\min(n,p)}$ be the singular values of **Y**.
- Idea: choose \hat{K} s.t. $\delta_{\hat{K}}$ is suitably larger than singular values of the noise \mathbf{E} .
- To approximate the singular values of the noise *E*:
 - "Break" the signal \boldsymbol{LC}^T by independently permuting entries in the rows of \boldsymbol{Y} : $\tilde{\boldsymbol{E}}_{g\cdot}^{(b)} = \boldsymbol{\Pi}_g \boldsymbol{Y}_{g\cdot}$, $\boldsymbol{\Pi}_g$ a random permutation matrix.
 - \bullet Let $\delta_1^{(b)}, \delta_2^{(b)}, \dots, \delta_{\min(n,p)}^{(b)}$ be the s.v. of $\tilde{\boldsymbol{E}}^{(b)}$.
 - 3 Repeat for b = 1, ..., B. This gives you an approximate dist'n of the $\sigma_k(\mathbf{E})$ (the kth singular value of \mathbf{E}).
- Keep factor k if $\delta_k > 95\%$ of the of the $\delta_k^{(b)}$'s.
- **Problem**: $\tilde{\mathbf{E}}^{(b)}$ is often very different from \mathbf{E} .
- Subject to **eigenvalue shadowing**: $\tilde{E}^{(b)}$ is contaminated by factors with large eigenvalues.

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 I_n)$$

- Mean center the rows of Y, i.e. $Y \leftarrow Y \left(I_n n^{-1} \mathbf{1}_n \mathbf{1}_n^T\right)$
- Let $\delta_1, \delta_2, \dots, \delta_{\min(n,p)}$ be the singular values of **Y**.
- Idea: choose \hat{K} s.t. $\delta_{\hat{K}}$ is suitably larger than singular values of the noise \mathbf{E} .
- To approximate the singular values of the noise *E*:
 - "Break" the signal \boldsymbol{LC}^T by independently permuting entries in the rows of \boldsymbol{Y} : $\tilde{\boldsymbol{E}}_{g.}^{(b)} = \boldsymbol{\Pi}_g \boldsymbol{Y}_{g.}$, $\boldsymbol{\Pi}_g$ a random permutation matrix.
 - 2 Let $\delta_1^{(b)}, \delta_2^{(b)}, \dots, \delta_{\min(n,p)}^{(b)}$ be the s.v. of $\tilde{\mathbf{E}}^{(b)}$.
 - 3 Repeat for b = 1, ..., B. This gives you an approximate dist'n of the $\sigma_k(\mathbf{E})$ (the kth singular value of \mathbf{E}).
- Keep factor k if $\delta_k > 95\%$ of the of the $\delta_k^{(b)}$'s.
- **Problem**: $\tilde{\mathbf{E}}^{(b)}$ is often very different from \mathbf{E} .
- Subject to **eigenvalue shadowing**: $\tilde{\mathbf{E}}^{(b)}$ is contaminated by factors with large eigenvalues.

Other algorithms

 $\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \ \mathbf{E}_{g \cdot} \sim (\mathbf{0}, \sigma^2 \mathbf{I}_n).$ Assume rows of \mathbf{E} are independent.

- Bi-cross validation (Wang & Owen, 2016; McKennan & Nicolae, 2019).
- Idea: partition columns of Y into training (f) and test (-f) sets

$$m{Y} = egin{bmatrix} m{Y}_{(-f)} \ m{Y}_f \end{bmatrix} = egin{bmatrix} m{L}_{(-f)} m{C}^T \ m{L}_f m{C}^T \end{bmatrix} + egin{bmatrix} m{E}_{(-f)} \ m{E}_f \end{bmatrix}$$

- Key observation: $\mathbf{E}_{(-f)}$ is independent of \mathbf{E}_f !
- Can estimate C from Y_f .
- Test estimate using $Y_{(-f)}$.
- In my (biased) opinion, this is the most reliable way to estimate K.
- Has really beautiful theory (McKennan & Nicolae, 2019).