Math 103A Homework 3

James Holden

January 25, 2019, Winter 2019

Question 1. Find all subgroups of $(Z_8, +_8)$.

Proof. $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Let G be a group. Let H be a subgroup of G. Lagrange theorem states that the order of subgroups of G divide the order of G. The subgroups of G are as follows:

$$H_1 = \{\{0, 1, 2, 3, 4, 5, 6, 7\}, +_8\}$$

$$H_2 = \{\{0, 2, 4, 6, \}, +_8\}$$

$$H_4 = \{\{0,4\}, +_8\}$$

$$H_{\emptyset} = \{\{\emptyset\}, +_8\}$$

Question 2. Let G be a group and let $g \in G$; assume that ord(g) = n. Show that $g^{-1} = g^{n-1}$.

Proof. Let $g \in G$. We know since ord(g) = n, G has a finite number of elements. This means that there exists $n \in \mathbb{Z}^+$ such that $g^n = e$.

$$g^{n} = e$$

$$g^{n-1+1} = e$$

$$g^{n-1}g^{1} = e$$

$$g^{n-1} = eg^{-1}$$

$$g^{n-1} = g^{-1}$$

The statement is proven.

Question 3. (a) Find the order of all the elements in $(\mathbb{Z}_7, +_7)$.

Proof.
$$Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

W know for $a \in G$, $ord_G(a) = min\{n : a^n = e\}$. That is to say, the order of each element is the minimum number of times to apply the group operation to that element to get back to e.

For
$$a = 1$$
, $ord_G(a) \ge 1$

For
$$a=2$$
, $ord_G(a)=7$

For
$$a = 3$$
, $ord_G(a) = 7$

For
$$a = 4$$
, $ord_G(a) = 7$

For
$$a = 5$$
, $ord_G(a) = 7$

For
$$a = 6$$
, $ord_G(a) = 7$

This arises because 7 is prime.

(b) Let p be a prime number. Find the order of all the elements in $(\mathbb{Z}_p, +_p)$. (Hint: recall from Math 109 that if g.c.d.(a, n) = 1, then we have the following: a|mn for some $m \in \mathbb{Z}$ if and only if a|m.)

Proof. Since there is no integer in $2 \dots p$ which is coprime with p, the order of all the elements in \mathbb{Z}_p is p.

Question 4. Let p be a prime number. Find all the subgroups of $(\mathbb{Z}_p, +_p)$. (Hint: use problem 3(b) above.)

Proof. Using Lagrange's Theorem, the only subgroups of a prime-sized cyclic group are $\{\emptyset\}$ and $\{0, 1, \dots, p\}$, the group itself.

Question 5. Exercise 4 page 45: 30, 32, 35, 36.

- (a) Question 30: Let \mathbb{R}^* be the set of all real numbers except 0. Define * on \mathbb{R}^* by letting a*b=|a|b.
 - (a) Show that * gives an associative binary operation on \mathbb{R}^*

Proof. Let $a, b, c \in \mathbb{R}^*$. Associative property states: (a*b)*c = a*(b*c)

$$LHS = (\mid a \mid *b) * c$$
$$= (\mid a \mid b \mid)c$$
$$= (\mid ab \mid)c$$

$$RHS = a * (|b|*c)$$
$$= |a||b||c$$
$$= (|ab|)c$$

We note that |ab| = |a| |b| which is easily verifiable by testing cases. Since the right hand side(RHS) of the associative rquation equals the left hand side(LHS) of the associative equation, the operator * gives an associative binary property.

(b) Show there is a left identity for * and a right inverse for each element in \mathbb{R}^*

Proof. Let $b \in \mathbb{R}^*$.

Left Identity:
$$e * b = \mid e \mid b = eb = b$$

Right Inverse: $b * b^{-1} = \mid b \mid b^{-1} = bb^{-1} = e$

(c) Is \mathbb{R}^* with this binary operation a group?

Proof. We have shown that $(\mathbb{R}^*,*)$ is associative and an identity and inverse element exists within the group for every member of the group. We also know it is closed under group operation. Therefore it is a group.

(d) Explain the significance of this exercise.

Proof. To check if a binary operation paired with a set is a group you simply carry out the above steps/checks. \Box

(b) Question 32: Show that every group G with identity e and such that x * x = e for all $x \in G$ is abelian.

Proof. Let $a, b \in G$. Since, G is a group, we know $(a * b), (b * a) \in G$. Let x = (a * b). Then e = x * x = (a * b) * (a * b).

$$e = (a * b) * (a * b)$$

$$e * (b * a) = (a * b) * (a * b) * (b * a)$$

$$(b * a) = a * b * a * (b * b) * a$$
[by associativity]
$$(b * a) = a * b * a * e * a$$

$$(b * a) = a * b * (a * a)$$

$$(b * a) = a * b * e$$

$$b * a = a * b$$

which is the definition of an abelian group.

(c) Question 35: Show that if $(a * b)^2 = a^2 * b^2$ for $a, b \in G$, then a * b = b * a.

Proof. We seek to prove that if $(ab)^2 = a^2b^2$, G is abelian.

$$(ab)^{2} = a^{2}b^{2}$$

$$(ab)(ab) = a^{2}b^{2}$$

$$abab = a^{2}b^{2}$$

$$a^{-1}(abab)b^{-1} = a^{-1}a^{2}b^{2}b^{-1}$$

$$ebae = eabe$$

$$ba = ab$$

Thus, G is abelian.

(d) Question 36: Let G be a group and let $a, b \in G$. Show that $(a * b)' = a' * b' \iff a * b = b * a$. ' is left inverse.

Proof. Again we want to show G is abelian.

$$ab = ((ab)^{-1})^{-1}$$

$$= (a^{-1}b^{-1})^{-1}$$

$$= (b^{-1})^{-1}(a^{-1})^{-1}$$

$$= ba$$

Thus, G is abelian.