Considere que, para um dado sistema, se deseja gerar uma base de regras a partir de dados numéricos obtidos mediante ensaios (onde x e y são as variáveis dos antecedentes e z é a variável do consequente das regras). Os conjuntos Fuzzy correspondentes a cada uma das variáveis são definidos de antemão, conforme mostrado abaixo:

Considere os dados obtidos mediante ensaios mostrados a seguir:

X	у	Z
-22	1,7 -4,5	
-18	1,9	-2,5
-12	2,7	-1,7
-4	3,2	-0,5
-2	3,4	1,5
4	3,8	2,1
8	4,7	3,8
14	5	5,5

Determine, por meio do método de extração de regras de Wang & Mendel, o conjunto de regras possível de ser obtido a partir dos dados numéricos fornecidos. <u>Deixe claro o procedimento utilizado</u>. Este pode ser detalhado de modo gráfico e não é requerida precisão absoluta nos resultados, que devem ser colocados na "matriz" de regras (vazia) a seguir.

2ª Questão

Um sistema dinâmico é controlado por um sistema de inferência fuzzy (SIF), cujas regras estão explicitadas abaixo. Neste SIF, as variáveis de entrada são x e y, e a variável de saída é u.

x^y	VS	SM	ZO	BG	VB
NB `	PS		PM	PB	
NM		PS			PB
NS	M	NS	PS	PM	PB
ZO	NM		ZE	PM	
PS					PM
PM	NB			NS	PS
PB			NM	NM	NS

Todas as variáveis são definidas em universos <u>discretos</u>, conforme mostrado nas figuras abaixo. As funções de pertinência correspondentes aos conjuntos fuzzy associados a cada variável são definidas, portanto, pelos graus de pertinência assinalados nas figuras.

Considere que, em instantes de tempo consecutivos i e i+1, as leituras de x e y são as dadas na tabela abaixo:

0 1

2 3 4 5

-4 -3 -2 -1

Instante	x	y
i	16	1,6
i+1	14	-0,6

Os valores acima são mapeados para os universos por meio de fatores de escala $G_x = 0.2$ e $G_y = 2$. Como os universos são discretos, eventualmente será necessário efetuar também uma quantização (arredondamento para o valor mais próximo).

A partir dos conjuntos fuzzy de entrada (variáveis x e y) e saída (variável u), e fazendo uso do método de defuzzificação da Média dos Máximos, determine a saída do SIF nos instantes i e i+1 (são dois casos, portanto). Apresente soluções gráficas, supondo a regra composicional max-min, implicação por min e combinação dos antecedentes também por min. Não se requer precisão absoluta nas soluções.