South
$$(Q, 1, (q.)_{qeQ}, +, <)$$

l'ensemble des

fonettos de multiplicatios

per q (ex F_q $(q') = q \cdot q'$)

a)
$$\exists x \cdot (3 < 2x \land hx < y)$$
 $per(q)$ $q \in Q$

(a) $\exists x \cdot (\frac{3}{2} < x \land x < \frac{y}{h})$ and and 2

(b) $\frac{3}{2} < \frac{y}{h}$

b)
$$3x \cdot 7(2x < 3x)$$

(3) $3x \cdot (2x = 3x) \cdot 3x < 2x$)
(3) $(3x \cdot 2x = 3x) \cdot (3x \cdot 3x < 2x)$
 $x = 0$ $x < 0$

(3)
$$-3x - (4y \cdot x \le y \lor y \le 5 \lor y < 2x)$$
(3) $-3x \cdot 3y \cdot x > y \land y > 5 \land y > 2x$
(3) $-3x \cdot (x > 5) \land y > 2x$
(3) $-3x \cdot (x > 5) \land y > 2x$
(3) $-3x \cdot (x > 5) \land y > 2x$
(4) $-3x \cdot (x > 5) \land y > 2x$
(5) $-3x \cdot (x > 5) \land y > 2x$
(6) $-3x \cdot (x > 5) \land y > 2x$
(7) $-3x \cdot (x > 5) \land y > 2x$
(8) $-3x \cdot (x > 5) \land y > 3x$
(9) $-3x \cdot (x > 5) \land y > 3x$
(10) (11) $-3x \cdot (x > 5) \cdot (x > 5)$
(12) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(13) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(13) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(13) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(14) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(15) $-3x \cdot (x > 5) \cdot (x > 5) \cdot (x > 5)$
(15) $-3x \cdot (x > 5) \cdot (x > 5)$
(16) $-3x \cdot (x > 5) \cdot (x > 5)$
(17) $-3x \cdot (x > 5) \cdot (x > 5)$
(18) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$
(19) $-3x \cdot (x > 5) \cdot (x > 5)$

Exercise 5:

cas 1: z est mand.

19mplication est yer viais

con 1 => 1

Cas 2: 2 est son minimel.

Il suffit de choisir un y

salisfaisant y < xden on oura $(0 \Rightarrow ...) = 1$

done ℓ_5 est vollèt das hous les con \Rightarrow ℓ_5 \in $\text{Th}(A_{ols})$

Exercise 1:

Exercise 4:

a. Non
$$37 \times = v_2$$
, $y = v_0$ et $3 = v_2$

on $n'a$ peux $E(x, y)$

athrib $I \not= v_0$

b. Non cut so at =
$$v_3$$
, $y = v_0$
 $G(x) = (E(v_3, v_0) \land \neg (v_3 = v_0) \Rightarrow \neg G(v_0)$

I act up modife

TO 12

Exerde 5: