Cloud & IoT Security

Assignment 1: Configuring Cloud Firewall to Allow Only HTTP and SSH Access

Objective

The aim of this assignment is to create a virtual machine (VM) in a cloud environment (AWS, Azure, or Google Cloud) and configure its firewall to allow **only HTTP (port 80)** and **SSH (port 22)** access while blocking all other inbound network traffic. Verification is conducted through testing allowed and denied port accessibility.

Platform Used

For this assignment, **Amazon Web Services (AWS)** EC2 was used due to its simplicity in managing security groups and network configurations.

(You can perform equivalent actions in Azure NSG or Google Cloud VPC firewall.)

Step 1: Launch a Virtual Machine Instance

- 1. Log in to the AWS Management Console.
- 2. Go to Services → EC2 → Instances → Launch Instance.
- 3. Choose an Amazon Machine Image (AMI) such as **Ubuntu 22.04 LTS**.
- 4. Select an instance type (e.g., t2.micro, free tier eligible).
- 5. Configure network settings:
 - Select the default VPC.
 - Choose Create new security group.
- 6. Enter instance name and key pair for SSH authentication.

Step 2: Configure the Firewall (Security Group) Rules

In AWS, Security Groups act as a virtual firewall to control inbound and outbound network traffic.

Create or edit the security group associated with the VM as follows:

Inbound Rules

Туре	Protocol	Port Range	Source	Description
SSH	TCP	22	Your IP (or CIDR)	Allow SSH access
HTTP	TCP	80	0.0.0.0/0	Allow web access

Remove any other pre-existing inbound rules such as HTTPS (443) or ICMP.

Outbound Rules

Keep the default outbound rule (allow all traffic) to enable updates and communications initiated by the VM.

Save and attach this security group to the instance.

Step 3: Connect to the Instance via SSH

From a terminal on your local system, connect to the VM using its public IP address:

ssh -i yourkey.pem ubuntu@<public-ip-address>

If successful, this confirms SSH (port 22) access is working correctly.

Step 4: Enable and Test HTTP Access

1. Install Apache web server on the VM:

sudo apt update

sudo apt install apache2 -y

2. Once installed, confirm the server is running:

systemctl status apache2

3. Open a browser and navigate to:

text

http://<instance-public-ip>

You should see the default Apache web page, confirming HTTP (port 80) access is open.

Step 5: Verify Other Ports Are Blocked

Use nmap or telnet to scan the instance for open ports:

Example command from your local system:

nmap -Pn <public-ip-address>

Expected output should show only:

- Port 22/tcp open (SSH)
- Port 80/tcp open (HTTP)

All other ports should appear as filtered or closed, confirming that your firewall settings are enforced.

Step 6: Verification and Evidence

Test Description	Expected Result	Status
SSH connection (port 22)	Connection successful	Passed
HTTP access (port 80)	Apache page loads successfully	Passed
Other ports (e.g., 21, 25, 8080)	Connection refused or filtered	Passed

Step 7: Azure and Google Cloud Alternatives

- Azure: Configure inbound rules in the Network Security Group (NSG) for the VM. Allow ports 22 and 80 only;
 block all others.
- Google Cloud: Create VPC firewall rules to allow only TCP ports 22 and 80 to the VM network tag.

Google Cloud firewall verification commands:

gcloud compute firewall-rules list

nmap <vm-external-ip>

Conclusion

The assignment successfully demonstrated the setup of a secure virtual machine instance with restricted network access. The security group/firewall was effectively configured to allow only **SSH (22)** and **HTTP (80)** traffic while preventing unauthorized inbound connections across all other ports. This principle enhances cloud instance security by reducing the exposed attack surface.