지능시스템

과제1 - 벨만 기대방정식

2019305059

이현수

● 다음의 State diagram으로 나타난 MDP에 대해 벨만 기대방정식을 세우고 이를 행렬식을 이용하여 푸시오.

벨만 기대 방정식

$$V(S0) = 0.5 \times 0.9 \times V(S1) + 0.5 \times 0.9 \times V(S2)$$

$$V(S1) = 0.4 \times 0.9 \times V(S0) + 0.3 \times (1 + 0.9 \times V(S2)) + 0.3 \times (-1 + 0.9 \times V(S8))$$

$$V(S2) = 0.8 \times 0.9 \times V(S3) + 0.2 \times 0.9 \times V(S5)$$

$$V(S3) = 0.6 \times (-1+0.9 \times V(S0)) + 0.4 \times 0.9 \times V(S4)$$

$$V(S4) = 0.5 X (1+0.9 X V(S5)) + 0.5 X 0.9 X V(S6)$$

$$V(S5) = 0.4 \times (1+0.9 \times V(S6)) + 0.3 \times (-1+0.9 \times V(S7)) + 0.3 \times (-2+0.9 \times V(S8))$$

$$V(S6) = 0.2 \times 0.9 \times V(S4) + 0.4 \times 0.9 \times V(S7) + 0.4 \times (10 + 0.9 \times V(S9))$$

$$V(S7) = 0.2 \times 0.9 \times V(S6) + 0.8 \times (2+0.9 \times V(S9))$$

$$V(S8) = 0.6 \times 0.9 \times V(S7) + 0.4 \times 0.9 \times V(S8)$$

행렬식

```
V = AV + B
```

$$V - AV = B$$

$$(E - A)V = B$$

$$V = (E - A)^{-1}B$$

E 행렬은 아래와 같다.

```
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}
```

E-A 행렬은

г 1	-0.45	-0.45	0	0	0	0	0	0 1
-0.36	1	-0.27	0	0	0	0	0	-0.27
0	0	1	-0.72	0	-0.18	0	0	0
-0.54	0	0	1	-0.36	0	0	0	0
0	0	0	0	1	-0.45	-0.45	0	0
0	0	0	0	0	1	-0.36	-0.27	-0.27
0	0	0	0	-0.18	0	1	-0.36	0
0	0	0	0	0	0	-0.18	1	0
L 0	0	0	0	0	0	0	-0.54	0.64

$(E-A)^{-1}$ 은 파이썬으로 구해보면

```
import numpy as np
x = np.array([[1,-0.45,-0.45,0,0,0,0,0,0],
             [-0.36,1,-0.27,0,0,0,0,0,-0.27],
             [0,0,1,-0.72,0,-0.18,0,0,0],
             [-0.54,0,0,1,-0.36,0,0,0,0],
             [0,0,0,0,1,-0.45,-0.45,0,0],
             [0,0,0,0,0,1,-0.36,-0.27,-0.27],
             [0,0,0,0,-0.18,0,1,-0.36,0],
             [0,0,0,0,0,0,-0.18,1,0]
             [0,0,0,0,0,0,0,-0.54,0.64]]
y=np.linalg.inv(x)
print(y)
[[1.62390176 0.73075579 0.92805985 0.66820309 0.2982193 0.30124946
  0.32036771 0.43177342 0.43537721]
 [0.75507534 1.3397839 0.70152556 0.5050984 0.23253253 0.23091424
  0.2816506    0.52156573    0.66263828]
 [0.631373
             0.28411785 1.36082967 0.97979736 0.43017703 0.438529
  0.43027764 0.43793077 0.30486664]
 [0.87690695 0.39460813 0.50115232 1.36082967 0.57272765 0.34793486
  0.46016096 0.42876093 0.31326032]
 [0.
             0.
                       0.
                                               1.1435812 0.51461154
  0.79767334 0.54334246 0.21710174]
             0.
                        0.
                                              0.09896175 1.04453279
 [0.
  0.54978748 0.71790497 0.44066227]
 [0.
             0.
                        0.
                                              0.22010759 0.09904841
  1.22281993 0.48952271 0.04178605]
             0.
                        0.
                                               0.03961937 0.01782871
  0.22010759 1.08811409 0.00752149]
             0.
                        0.
                                               0.03342884 0.01504298
  0.18571578 0.91809626 1.56884626]]
```

$(E-A)^{-1}$ X B는

г1. 623902	0.730756	0.928060	0.668203	0.298219	0.301249	0.320368	0.431773	0.4353771	Г	0 1	
								0.662638		0	
0.631373	0.284118	1.360830	0.979797	0.430177	0.438529	0.430278	0.437931	0.304867		0	
0.876907	0.394608	0.501152	1.360830	0.572728	0.347935	0.460161	0.428761	0.313260	-	0.6	
0	0	0	0	1.143581	0.514612	0.797673	0.543342	0.217102	* O). 5	
0	0	0	0	0.098962	1.044533	0.549787	0.717905	0.440662	-	0.5	
0	0	0	0	0.220108	0.099048	1.222820	0.489823	0.041786		4	
0	0	0	0	0.039619	0.017829	0.220108	1.088114	0.007521	1	l. 6	
L o	0	0	0	0.033429	0.015043	0.185716	0.918096	1.568846 []]	L	0]	

파이썬으로 계산하면

```
b=np.array([[0],[0],[0],[-0.6],[0.5],[-0.5],[4],[1.6],[0]])
result=np.dot(y,b)
print(result)

[[1.56987137]
        [1.65885766]
        [1.82974539]
        [1.82255994]
        [4.37452611]
        [2.87501237]
        [5.73504566]
        [2.63230822]
        [2.22101006]]
```

$$(E - A)^{-1} \times B = \begin{bmatrix} 1.569871 \\ 1.658858 \\ 1.829745 \\ 1.822560 \\ 4.374526 \\ 2.875012 \\ 5.735046 \\ 2.632308 \\ 2.221010 \end{bmatrix}$$

결과 :

V(S0) = 1.569871

V(S1) = 1.658858

V(S2) = 1.829745

V(S3) = 1.822560

V(S4) = 4.374526

V(S5) = 2.875012

V(S6) = 5.735046

V(S7) = 2.632308

V(S8) = 2.221010

V(S9) = 0