

13-INPUT NAND GATE

SN54/74LS133

13-INPUT NAND GATE LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
lOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS133

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for	
VIL		74			0.8	V	All Inputs	All Inputs
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
Vall	Output HICH Voltage	54	2.5	3.5		٧	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth	Table Table
Voi	Output LOW Voltage	54, 74		0.25	0.4	V		V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	Input HICH Current	Input HICH Current			20	μΑ	$V_{CC} = MAX$, $V_{IN} = 2.7 V$	
l IIH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current				-0.4	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$	
los	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current Total, Output HIGH Total, Output LOW				0.5	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH	Turn-Off Delay, Input to Output		10	15	ns	V _{CC} = 5.0 V
tPHL	Turn-On Delay, Input to Output		40	59	ns	C _L = 15 pF

Case 648-08 N Suffix 16-Pin Plastic

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35 1.75		0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	3SC 0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	A 18.80 19.55		0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54 BSC		0.100 BSC		
Н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
M	0° 10		0°	10°	
S	0.51 1.01		0.020	0.040	

- OTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION LTO CENTER OF LEAD WHEN

- 5. DIMENSION I TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD
- 620-09.

	MILLIM	ETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	19.05	19.55	0.750	0.770			
В	6.10	7.36	0.240	0.290			
С	_	4.19	_	0.165			
D	0.39	0.53	0.015	0.021			
E	1.27 BSC		0.050 BSC				
F	1.40	1.77	0.055	0.070			
G	2.54 BSC		0.100 BSC				
J	0.23	0.27	0.009	0.011			
K	K - 5.08		_	0.200			
L	7.62 BSC		0.300 BSC				
M	0°	15°	0°	15°			
N	0.39	0.88	0.015	0.035			

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

