# Seleção de Genes Candidatos

Alan Silva

Aula 08

# Tipos de análise genética de função gênica

- Genética Direta (Forward genetics)
  - Do fenótipo ao genótipo

Variações naturais Mutações induzidas



Seleção de fenótipo



Identificar o gene e a função

Biblioteca de Mutantes

RNA seq

**SNPs** 

**Proteoma** 

Secretoma

- Genética Reversa (Reverse genetics)
  - Do genótipo ao fenótipo

Gene ou proteína conhecidos



Mutação induzida/ Expressão alterada



Encontra no fenótipo a função

Deleção
Silenciamento
Super-expressão
Marcação fluorescente

## Métodos de seleção de genes candidatos

- Biblioteca de transformantes com mutação aleatória
- Gene semelhante em outras espécies
  - Genes Homólogos
    - Genes Ortólogos
    - Genes Parálogos



Mutantes de *Colletotrichum graminicola* Fonte: Alan Silva



Fonte: Thomas Shafee (2018)

#### Biblioteca de transformantes

# Molecular Plant Pathology MOLECULAR PLANT PATHOLOGY (2011) 12(1), 43–55 Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation

STEFFEN MÜNCH¹, NANCY LUDWIG¹, DANIELA S. FLOSS¹,†, JANYCE A. SUGUI¹,‡, ANNA M. KOSZUCKA², LARS M. VOLL², UWE SONNEWALD² AND HOLGER B. DEISING¹,\*

\(^1\)Martin-Luther-University Halle-Wittenberg, Faculty of Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Betty-Heimann-Str. 3, 06120 Halle (Saale), Germany

<sup>2</sup>Friedrich-Alexander-University Erlangen-Nürnberg, Institute of Biology, Chair of Biochemistry, Staudtstr. 5, 91058 Erlangen, Germany







#### Biblioteca de transformantes



Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation

STEFFEN MÜNCH<sup>1</sup>, NANCY LUDWIG<sup>1</sup>, DANIELA S. FLOSS<sup>1</sup>+, JANYCE A. SUGUI<sup>1</sup>+, ANNA M. KOSZUCKA<sup>2</sup>, LARS M. VOLL<sup>2</sup>, UWE SONNEWALD<sup>2</sup> AND HOLGER B. DEISING<sup>1,\*</sup>

\*\*Maril And Expensive Medical Conference of Confere

(Same), Germany

Friedrich-Alexander-University Erlangen-Nümberg, Institute of Biology, Chair of Biochemistry, Staudtstr. 5, 91058 Erlangen, Germany

#### • Análise de crescimento e infecção / Southern blot





#### Biblioteca de transformantes

Molecular Plant Pathology

MOLECULAR PLANT PATHOLOGY DB111 (1816, 43-55)

DD1: 16.11110.1384-1293.2813.88451.A

Identification of virulence genes in the corn pathogen

Colletotrichum graminicola by Agrobacterium

tumefaciens-mediated transformation

STEFERN MÖNCH!, NANCY LUDWIG!, DANIELA S. FLOSS'+1, JANYCE A. SUGUI'-1,

ANNA M. KOSZUCKA!, LARS M. VOLL!, UWE SONNEWALD! AND HOLGER B. DEISING'\*

Vasins stame Unwenty-leid-Winterleip Early of Agrobation and Interioral Source, Propagnichings and Path Protectors, Reg Hennam-Str. 2, 1617.17.1486

March. Christophy.

• Genome Walking para identificar a região de inserção





### Busca de genes homólogos: Estudo de caso

- Gene descrito em outras espécies
  - Encontrar a sequência de DNA ou Aminoácidos publicada
    - Normalmente descrito como Accession Number
  - Blastar no genoma do seu organismo em estudo
    - Blast no NCBI / Blast local e predição com Bioedit/Augustus
    - Tipos de Blast: BlastN, BlastP, tBlastN, BlastX
  - Anotação gênica e número de cópias
    - Verificar se existe anotação no NCBI, Uniprot, Ensenbl etc
    - Verificar se o gene possui cópia única
  - Baixar sequências similares de outras espécies
    - Sequências gênicas ou de aminoácidos
    - Espécies do mesmo gênero, mais distantes e um *outgroup*
  - Construir uma árvore filogenética

### 1. Encontrar sequência de SNF1 de S. cerevisiae

#### **Nucleotídeos**

>SNF1 Saccharomyces cerevisiae S288C

#### Aminoácidos

>SNF1\_Scerevisiae\_protein

### 2. Encontrar SNF1 em C. graminicola

- Com genoma no NCBI
  - Blastar escolhendo espécie



- Sem genoma no NCBI
  - Instalar genoma no Bioedit
  - Blastar localmente



Fazer predição no Augustus



# 3. Anotação gênica e número de cópias

- Anotação
  - Verificar anotação no NCBI/Ensembl/Uniprot
  - Verificar função descrita em outras espécies
- Número de cópias
  - Blastar da outra espécie e blastar o próprio gene/proteína
  - Verificar os hits e valores de similaridade
    - Accession length: tamanho da sequência encontrada
    - Query cover: quanto de uma sequência cobre a outra
    - Percentage identity: nº de caracteres idênticos na sequência coberta
    - Expectation value: probabilidade do match ser ao acaso

# 4. Baixar sequências similares de outras espécies

- Procedimento ideal
  - Encontrar sequências de estudos publicados (validados)
  - Usar sequências presentes em outras árvores publicadas
  - Alinhar no Mega e fazer vistoria
- Procedimento alternativo
  - Blastar o seu gene/proteína e selecionar vários hits
  - Alinhar no Mega e fazer vistoria

# 4. Construir árvore filogenética

- Objetivo da Árvore
  - Reproduzir o caminho evolutivo das espécies utilizadas
  - Agrupar conforme a filogenia
  - Confirmar homologia do gene entre as espécies
  - Árvore preliminar no MEGA para conferir agrupamentos
  - Árvore final mais robusta

