Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner

 $Sommersemester\ 2011$ Lösungen der Mittelklausur 24. Juni 2011

Diskrete	Wahrsc	heinlic	${f hkeit}$	${f stheorie}$
	, , ctrrr > c.			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

	Disk	rete	e W	/ah	rsch	iein	lich	kei	tsthe	eorie	
Nam	e		Vorname			Studiengang		Matrikelnummer			
						□ B:	☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ WirtInf.				
Hörsa	al		Re	eihe			Sitzplatz		Unterschrift		
					••••						
Code:											
seiten) o	hreiben eitszeit tworten der betre enrechn	Sie nie beträg sind i effende ungen	Felde cht m gt 90 n die en Au mac	r in I it Ble Minu gehe fgabe hen.	eistift iten. ftete A en eins Der S	buchstoder : Angab zutrag	aben in rot e auf en. A	aus uer/gr den j	üner Fa eweilig m Schn	arbe! en Seiter nierblattl	oen Sie! n (bzw. Rück bogen könner lls abgegeber
Hörsaal verla Vorzeitig abg Besondere B	gegeben	ngen:			b.	is	•••	/	von .	b	is
	A1	A2	A3	A4	A5	Σ	Kor	rekto	<u>r</u>		
Erstkorrektı	ur								_		
Zweitkorrekt	ur										

Aufgabe 1 (6 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. In jedem diskreten Wahrscheinlichkeitsraum $\langle \Omega, \Pr \rangle$ gibt es ein Elementarereignis $e \in \Omega$ mit $\Pr[e] \neq 0$.
- 2. Es gibt keinen diskreten Wahrscheinlichkeitsraum $\langle \Omega, Pr \rangle$ mit $|\Omega| = 1$.
- 3. Für jede diskrete Zufallsvariable X ist das zweite zentrale Moment gleich der Varianz Var[X].
- 4. Sei $\lambda \in \mathbb{R}$ mit $\lambda < 0$. Dann ist die Funktion $f : \mathbb{R} \to [0,1]$ mit $f(i) = \frac{e^{-\lambda}\lambda^i}{i!}$ für alle $i \in \mathbb{N}_0$ und f(i) = 0 für alle $i \in \mathbb{R} \setminus \mathbb{N}_0$ keine (diskrete) Dichtefunktion.
- 5. Falls X Poisson-verteilt ist, dann ist auch X+1 Poisson-verteilt.
- 6. Jede konstante Folge $(H_i)_{i\in\mathbb{N}}$, die für alle $i\in\mathbb{N}$ aus Ereignissen H_i gleich einem Ereignis H besteht (d. h. $H_i=H$), ist rekurrent.

Lösung

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Wahr! Es gilt $\sum_{e \in \Omega} \Pr[e] = 1$.
- 2. Falsch! $\langle \{1\}, \Pr \rangle$ mit $\Pr[1] = 1$ ist ein Wahrscheinlichkeitsraum mit $|\Omega| = 1$.
- 3. Wahr! Nach Definition.
- 4. Wahr! $f(1) = \frac{e^{-\lambda}\lambda^1}{1!} < 0$.
- 5. Falsch! Wegen $W_{X+1} = \mathbb{N}$ gilt $f_{X+1}(0) = 0 \neq \frac{e^{-\lambda}\lambda^0}{0!}$ für alle λ .
- 6. Falsch! $\Pr[H_3|\overline{H_1}\cap H_2] = \Pr[H|\emptyset]$ ist nicht definiert.

Aufgabe 2 (8 Punkte)

Seien $W = \langle \Omega, \Pr \rangle$ und $\overline{A} = \Omega \setminus A$ für Ereignisse A über Ω . Wir betrachten Ereignisse A und B, so dass die folgenden bedingten bzw. unbedingten Wahrscheinlichkeiten gelten.

$$\Pr[A] = \frac{1}{3}, \quad \Pr[B|A] = \frac{5}{12}, \quad \Pr[A|B] = \frac{1}{5}.$$

- 1. Zeigen Sie, dass die Ereignisse A und B abhängig sind.
- 2. Berechnen Sie $Pr[B|\overline{A}]$ als Bruchzahl.
- 3. Berechnen Sie $\Pr[A \cup B]$ als Bruchzahl.

Lösung

1.
$$\Pr[A] = \frac{1}{3} \neq \frac{1}{5} = \Pr[A|B]$$
. (2P)

2. Satz von Bayes:

$$\Pr[A|B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B|A] \cdot \Pr[A] + \Pr[B|\overline{A}] \cdot \Pr[\overline{A}]}$$

$$\frac{1}{5} = \frac{\frac{5}{12} \cdot \frac{1}{3}}{\frac{5}{12} \cdot \frac{1}{3} + \Pr[B|\overline{A}] \cdot \frac{2}{3}}.$$

Daraus
$$\Pr[B|\overline{A}] = \frac{5}{6}$$
. (3P)

3.
$$\Pr[A \cap B] = \Pr[B|A] \cdot \Pr[A] = \frac{5}{12} \cdot \frac{1}{3} = \frac{5}{36}$$
,
$$\Pr[B] = \Pr[B|A] \cdot \Pr[A] + \Pr[B|\overline{A}] \cdot \Pr[\overline{A}] = \frac{5}{12} \cdot \frac{1}{3} + \frac{5}{6} \cdot \frac{2}{3} = \frac{25}{36}$$
.

Einsetzen in Siebformel:

$$\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] = \frac{8}{9}. \tag{3P}$$

Aufgabe 3 (10 Punkte)

Wir werfen gleichzeitig und unabhängig mit einem blauen und einem roten fairen Würfel und definieren eine diskrete Zufallsvariable X wie folgt:

Falls der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel, dann sei der Wert von X gleich 0. Andernfalls sei X durch die Augenzahl des blauen Würfels gegeben. Wenn beispielsweise der blaue Würfel die Augenzahl 6 zeigt, dann hat X stets den Wert 6. Es gilt $W_X = \{0, 1, 2, ..., 6\}$.

- 1. Geben Sie die Dichtefunktion f_X für X an.
- 2. Berechnen Sie den Erwartungswert $\mathbb{E}[X|X\neq 0]$ der bedingten Variablen $X|X\neq 0$.
- 3. Wir wiederholen das Werfen der Würfel so lange, bis im *n*-ten Wurf zum ersten Mal der rote Würfel eine höhere Augenzahl zeigt als der blaue Würfel.

Sei X_i für $i \in \mathbb{N}$ die Zufallsvariable für den *i*-ten Wurf. Die Verteilung der X_i ist also identisch mit der Verteilung von X.

Seien N und Y Zufallsvariable, wobei N den Wert n liefere und $Y = \sum_{i=1}^{N} X_i$ gelte.

Berechnen Sie den Erwartungswert $\mathbb{E}[N]$ von N.

Berechnen Sie nun den Erwartungswert $\mathbb{E}[Y]$ von Y.

Lösung

1.
$$f_X(0), f_X(1), \dots, f_X(6) = \frac{15}{36}, \frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}.$$
 (3P)

2. Sei X' die bedingte Variable mit Dichte

$$f_{X'}(0) = 0 \text{ und } f_{X'}(i) = \frac{f_X(i)}{\Pr[X \neq 0]} = \frac{36}{21} f_X(i) \text{ für } i \neq 0.$$
 (2P)

Dann gilt
$$\mathbb{E}[X|X \neq 0] = \frac{1}{21}(1+2^2+3^2+4^2+5^2+6^2) = \frac{91}{21}.$$
 (1P)

3. N ist geometrisch verteilt mit Erfolgswahrscheinlichkeit $p = \frac{15}{36}$. $\mathbb{E}[N] = \frac{36}{15}$. (2P)

$$\mathbb{E}[Y] = \sum_{n=1}^{\infty} \mathbb{E}[Y|N=n] \cdot p(1-p)^{n-1}$$

$$= \sum_{n=1}^{\infty} \mathbb{E}[X|X \neq 0] \cdot (n-1) \cdot p(1-p)^{n-1}$$

$$= \mathbb{E}[X|X \neq 0] \cdot \mathbb{E}[N-1]$$

$$= \frac{91}{21} \cdot \frac{21}{15} = \frac{91}{15}.$$

Es gilt auch $\mathbb{E}[Y] = \mathbb{E}[N] \cdot \mathbb{E}[X]$. (Siehe dazu Tutoraufgabe 3 von Blatt 6.) (2P)

Bemerkung: Es gilt

$$\mathbb{E}[N] \cdot \mathbb{E}[X] = \mathbb{E}[N] \cdot (p\mathbb{E}[X|X=0] + (1-p)\mathbb{E}[X|X \neq 0])$$

= $\frac{1}{p}(1-p)\mathbb{E}[X|X \neq 0] = (\mathbb{E}[N]-1) \cdot \mathbb{E}[X|X \neq 0]$.

Aufgabe 4 (10 Punkte)

Wir betrachten ein Münzwurfexperiment, das darin besteht, jede von drei unterschiedlichen Münzen A bzw. B bzw. C so lange zu werfen, bis Kopf erscheint. Dabei nehmen wir an, dass die Erfolgswahrscheinlichkeiten für einen einzigen Wurf mit A bzw. B bzw. C die Werte $p_1 = \frac{1}{3}$ bzw. $p_2 = \frac{1}{2}$ bzw. $p_3 = \frac{2}{3}$ sind. Die Münzen A und C sind also unfair.

 X_A bzw. X_B bzw. X_C seien die entsprechenden unabhängigen Zufallsvariablen, die die Anzahl der Würfe mit A bzw. B bzw. C zählen. Die Gesamtzahl der Würfe sei gegeben durch die Zufallsvariable $Y=X_A+X_B+X_C$.

- 1. Sei $G_Y(s)$ die wahrscheinlichkeitserzeugende Funktion für Y. Bestimmen Sie $G_Y'(0)$.
- 2. Sei f_Y die Dichtefunktion von Y. Bestimmen Sie $f_Y(4)$.
- 3. Bestimmen Sie den Erwartungwert $\mathbb{E}[Y]$.
- 4. Zeigen Sie $\Pr[Y \ge 16,5] \le \frac{1}{10}$. <u>Hinweis:</u> Benutzen Sie die Ungleichung von Chebyshev.

Lösung

1.
$$f_Y(1) = 0$$
. Daraus folgt $G'_Y(0) = 0$. (2P)

2.
$$f_Y(4) = p_1 p_2 p_3 (1 - p_1) + p_1 p_2 p_3 (1 - p_2) + p_1 p_2 p_3 (1 - p_3) = \frac{1}{6}$$
. (3P)

3.
$$\mathbb{E}[Y] = \mathbb{E}[X_A] + \mathbb{E}[X_B] + \mathbb{E}[X_C] = \frac{13}{2}$$
. (2P)

4.
$$\operatorname{Var}[Y] = \operatorname{Var}[X_A] + \operatorname{Var}[X_B] + \operatorname{Var}[X_C] = \frac{35}{4}$$
.
 $\operatorname{Pr}[Y \ge 16,5] = \operatorname{Pr}[|Y - 6,5| \ge 10] \le \frac{35}{400} \le \frac{1}{10}$. (3P)

Aufgabe 5 (6 Punkte)

Wir betrachten die Menge {A, U, T, 0} der Buchstaben des Wortes AUTO als Box, aus der wir einzelne Buchstaben Laplace-verteilt und unabhängig genau 5 Mal (mit Zurücklegen) zufällig auswählen wollen. Beispiel: Es könnten dreimal 0 und zweimal U gewählt werden.

Seien X bzw. Y diskrete Zufallsvariablen, die die Anzahl der gewählten 0 bzw. T in der 5-elementigen Auswahl der Buchstaben zählen.

- 1. Geben Sie die Dichtefunktionen für X und Y explizit an. Bekannte Funktionen können Sie dabei verwenden. Geben Sie insbesondere für $\Pr[X=2]$ einen arithmetischen Ausdruck an.
- 2. Berechnen Sie die gemeinsame Dichte Pr[X = 1, Y = 1].
- 3. Sind die Ereignisse X=1 und Y=1 unabhängig? Begründen Sie Ihre Antwort!

Lösung

1.
$$f_X(i) = b(i; 5, \frac{1}{4}).$$

$$\Pr[X = 2] = {5 \choose 2} (\frac{1}{4})^2 \cdot (\frac{3}{4})^3.$$
(2P)

2.
$$\Pr[X = 1, Y = 1] = 5 \cdot 4 \cdot (\frac{1}{4})^2 (\frac{2}{4})^3$$
 (2P)

3. Nein!
$$\Pr[X = 1, Y = 1] \neq \Pr[X = 1] \cdot \Pr[Y = 1]$$
 (2P)