Step2: splitting dataset into training and testing data

```
In [5]: X = df[['Years Experience']]
y=df['Salary']
```

In [6]: X

Out[6]:

4		Years Experience
	0	1.1
	1	1.3
	2	1.5
	3	2.0
	4	2.2
	5	2.9
	6	3.0
	7	3.2
	8	3.7
	9	3.9
	10	4.0
	11	4.0
	12	4.1
	13	4.5
	14	4.9
	15	5.1
	16	5.3
	17	5.9
	18	6.0

```
In [7]: |y
Out[7]: 0
                39343
                46205
         1
         2
                37731
         3
                43525
         4
                39991
         5
                56642
         6
                60150
         7
                54445
         8
                64445
         9
                57189
         10
                63218
         11
                55794
         12
               56957
         13
                57081
         14
                61111
         15
                67938
                66029
         16
         17
                83088
         18
               93940
         Name: Salary, dtype: int64
```

Step2: import Library

```
In [8]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size = 0.2, random
# always write train first then test
```

Step3: Fit- Linear Regression Model

```
In [9]: from sklearn.linear_model import LinearRegression
    model =LinearRegression().fit(X_train, y_train)
    model
Out[9]: LinearRegression()
```

Step 4: Plotting

```
In [10]: import matplotlib.pyplot as plt
```

```
In [25]: plt.scatter(X_train, y_train)
    plt.plot(X_train, model.predict(X_train), color="green")
    plt.xlabel("Years of Experience")
    plt.ylabel("Salary")
    plt.title("Train Plot")
    plt.show()
    #plt.scatter(X_test, y_test)
```



```
In [11]: plt.scatter(X_test, y_test)
    plt.plot(X_test, model.predict(X_test), color="green")
    plt.xlabel("Years of Experience")
    plt.ylabel("Salary")
    plt.title("Test Plot")
    plt.show()
```


Step5: Testing and Evaluation Model

```
In [12]: #model fitness
    model.score(X_test,y_test)

Out[12]: 0.5571840287254162

In [13]: model.score(X_train,y_train)

Out[13]: 0.8389395127764611

In [14]: print("score for train data", model.score(X_test,y_test))
    print("score for train data",model.score(X_train,y_train))

    score for train data 0.5571840287254162
    score for train data 0.8389395127764611
```

Step6: Prediction of Unknown Value

```
#how much salary for 5 years of experience, bcz we find salary on the basis of
In [15]:
         model.predict([[5]])
         C:\Users\lenovo\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning:
         X does not have valid feature names, but LinearRegression was fitted with fea
         ture names
           warnings.warn(
Out[15]: array([66671.58179853])
In [17]: model.predict(X test)
Out[17]: array([59051.96838835, 38479.01218084, 56766.08436529, 74291.19520872])
In [18]:
         #How much salary for 3 different experience
         model.predict([[5],[10],[12]])
         C:\Users\lenovo\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning:
         X does not have valid feature names, but LinearRegression was fitted with fea
         ture names
           warnings.warn(
Out[18]: array([ 66671.58179853, 104769.64884946, 120008.87566983])
In [20]: #How much salary for 3 different experience--another way
         x = ([5],[10],[12])
         model.predict(x)
         C:\Users\lenovo\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning:
         X does not have valid feature names, but LinearRegression was fitted with fea
         ture names
           warnings.warn(
Out[20]: array([ 66671.58179853, 104769.64884946, 120008.87566983])
In [ ]:
```