Difference Of Convex (DC) Functions and DC Programming

Songcan Chen

Outline

- 1. A Brief History
- 2. DC Functions and their Property
- 3. Some examples
- 4. DC Programming
- 5. Case Study
- 6. Our next work

1. A Brief History

- 1964, Hoang Tuy, (incidentally in his convex optimization paper),
- 1979, J. F. Toland, Duality formulation
- 1985, Pham Dinh Tao, DC Algorithm
- 1990 ---, Pham Dinh Tao, et al

• ...

H. Tuy, *Concave programming under linear constraints,* Translated Soviet Mathematics 5 (1964), 1437-1440.

J. F. Toland, On subdi®erential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, M¶emoire 60 (1979), 173-180.

Pham Dinh Tao, *Duality in d.c.* (di®erence of convex functions) optimization. Subgradient methods, Trends in Mathematical Optimization, International Series of Numer Math. 84 (1988), Birkhauser, 277-293.

Applicable Fields

- For smooth/non-smooth and convex/non-convex optimization problems, especially,
- For large-scale DC problems → Robust and efficient in solving!

Hence

- Machine learning (Clustering, Kernel optimization, Feature selection,...)
- Engineering (Quality control,...)
- •

2.1 DC Functions

Definition 2.1. Let C be a convex subset of Rⁿ.
 A real-valued function f: C → R is called DC on C, if there exist two convex functions g, h: C → R such that f can be expressed in the form

$$f(x)=g(x)-h(x) \tag{1}$$

h(x) convex \rightarrow -h(x) concave.

If C= Rⁿ, then f is simply called a DC function.

Notice: DC representation for f is NOT unique, in fact, can have infinite decompositions!

2.2 Their Properties

Let f and f_i , i = 1, ..., m, be DC functions. Then, the following functions are also DC:

1)
$$\sum_{i=1}^{m} \lambda_i f_i$$
, $\lambda_i \in R, i = 1, 2, ..., m$.

2)
$$\max_{i=1,2,...,m} \{f_i\}$$
 and $\min_{i=1,2,...,m} \{f_i\}$

- 3) |f(x)|
- $4) \quad \prod_{i=1}^{m} f_i$

2.2 Their Properties (Cont'd)

- Every function f: Rⁿ → R whose second partial derivatives are continuous everywhere is DC.
- 2) Let C be a compact convex subset of Rⁿ. Then for any continuous function c: C → R and for any ε >0, there exists a DC function f: C → R such that
 - $|c(x)-f(x)| < \varepsilon$, for any x in C.
- 3) Let $f: \mathbb{R}^n \to \mathbb{R}$ be DC, and let $g: \mathbb{R} \to \mathbb{R}$ be convex. Then, the composite function $(g \circ f)(x) = g(f(x))$ is DC.

3. Some simple examples

- 1) x^tQx, Q=A-B, A and B are positive semi-definite.
- 2) x^ty,
- 3) Let d_M be a distance function, then $d_M(x)=\inf\{||x-y||: y \text{ in } M\}.$

Proof of 3)

Proof: We have

$$\begin{split} d_M^2(x) &= \inf\{||x-y||^2 : y \in M\} \\ &= ||x||^2 + \inf\{-||x||^2 + ||x-y||^2 : y \in M\} \\ &= ||x||^2 - \sup\{||x||^2 - ||x-y||^2 : y \in M\} \\ &= ||x||^2 - \sup\{2x^Ty - ||y||^2 : y \in M\}. \end{split}$$

The norm $p(x) = ||x||^2$ is convex, and the function $q(x) := \sup\{2x^Ty - ||y||^2 : y \in M\}$ is the pointwise supremum of a family of affine functions, and hence convex.

4. DC Programming

- 4.1 Primal Problem
- 4.2 Dual Problem
- 4.3 DC Algorithm (DCA)

4.1 Primal Problem

A general form

(P_{dc})
$$\alpha = \inf\{f_0(x) : x \in X \subseteq R^n, f_i(x) \le 0, i = 1, 2, ..., m\}$$

Where $f_i=g_i-h_i$, i=1,2,...,m are DC functions and X is a closed convex subset of \mathbb{R}^n .

Constrained (closed) Set X can be represented by a convex indicator function which is added to the $g_0(x)$ $(f_0=g_0-h_0)$: $I_X(x)=0$ if x in X, $+\infty$ otherwise.

4.1 Primal Problem (Cont'd)

When X is constrained by a set of linear inequality equations and the objective function is linear, the optimization problem is called polyhedral DC, solving it amounts to solving a linear programming.

For example, selecting features based on SVM and I_0 norm [5].

Notations

1) The conjugate function g^* of g is defined by

$$g^*(y) = \sup\{\langle x, y \rangle - g(x) : x \in X\}$$

2) Support Domain of g(x)

$$dom g = \{x \in X : g(x) < +\infty\}$$

3) ε -subdifferential of g(x) at x⁰, when ε =0, simply called subdifferential.

$$\partial_{\epsilon}g(x^{o}) = \{ y \in Y : g(x) \ge g(x^{o}) + \langle x - x^{o}, y \rangle - \epsilon \quad \forall x \in X \}$$

Notations (Cont'd)

Support Domain of the subdifferential ∂g

$$\operatorname{dom}\,\partial g = \{x \in X : \, \partial g(x) \neq \emptyset\}$$

Range Domain of ∂g

range
$$\partial g = \bigcup \{\partial g(x) : x \in \text{dom } \partial g\}$$

4.2 Dual Problem

Using the definition of conjugate functions, we have

$$\begin{split} \alpha &= \inf \{ g(x) - h(x) : x \in X \} \\ &= \inf \{ g(x) - \sup \{ \langle x, y \rangle - h^*(y) : y \in Y \} : x \in X \} \\ &= \inf \{ \beta(y) : \ y \in Y \} \end{split}$$

with

$$(P_y) \qquad \beta(y) = \inf\{g(x) - (\langle x, y \rangle - h^*(y)) : x \in X\}$$

$$\beta(y) = h^*(y) - g^*(y)$$
 if $y \in \text{dom } h^*, +\infty$ otherwise.

4.2 Dual Problem (Cont'd)

Dual Formulation:

(D)
$$\alpha = \inf\{h^*(y) - g^*(y) : y \in Y\}$$

Where $Y = dom \partial h^*$.

A perfect symmetry exists between the primal and its dual programs (P) and (D):

the dual program to (D) is exactly (P).

4.2 Dual Problem (Cont'd)

• The necessary local optimality condition for P_{dc} , is

$$\partial h(x^*)$$
 in $\partial g(x^*)$

 A point that x* that verifies the generalized Kuhn-Tucker condition

$$\partial h(x^*) \cap \partial g(x^*) \neq \emptyset$$

is called a critical point of g-h.

4.3 DCA

DCA Scheme

INPUT

– Let $x^0 \in \mathbb{R}^p$ be a best guest, $0 \leftarrow k$.

REPEAT

- Calculate $y^k \in \partial h(x^k)$.
- Calculate

$$x^{k+1} \in \arg\min\left\{g(x) - h(x^k) - \langle x - x^k, y^k \rangle \quad s.t.x \in \mathbb{R}^p\right\}. \tag{P_k}$$

 $-k+1 \leftarrow k$.

UNTIL {convergence of x^k .}

Affine majorization of the concave part -h(x)!

4.3 DCA (Cont'd)

- Different decompositions → thus make trade-off between Complexity of each step,
 - number of iterations.
 - Local convergence, empirically: "good" optima.

4.3 DCA (Cont'd)

Convergence properties

- -DCA is a descent method (i.e., the sequences $\{g(x^k) h(x^k)\}$ and $\{h^*(y^k) g^*(y^k)\}$ are both decreasing) without linesearch;
- If the optimal value α of problem (P_{dc}) is finite and the infinite sequences $\{x^k\}$ and $\{y^k\}$ are bounded, then every limit point x^* (resp. y^*) of $\{x^k\}$ (resp. $\{y^k\}$) is a critical point of g-h (resp. h^*-g^*), i.e., $\partial h(x^*) \cap \partial g(x^*) = \emptyset$ (resp. $\partial h^*(y^*) \cap \partial g^*(y^*) = \emptyset$).
- DCA has a *linear convergence* for general DC programs.

5. Case Study

- 5.1 Fuzzy c-means Clustering
- 5.2 Feature Selection and Classification

5.1 Fuzzy c-means Clustering

$$\begin{cases} \min J_m(U, V) := \sum_{k=1}^n \sum_{i=1}^c u_{i,k}^m ||x_k - v_i||^2 \\ s.t \quad u_{i,k} \in [0, 1] \text{ for } i = 1, ..., c \quad k = 1, ..., n \\ \sum_{i=1}^c u_{i,k} = 1, \ k = 1, ..., n \end{cases}$$

FCM (Cont'd)

- How to be changed to DC
 - 1) g and h?
 - 2) X a convex set of variables (U, V)?

Characterization of Convex Set

• From the centers' solution $V=\{v_i, i=1,2,...,c\}$,

$$v_i \sum_{k=1}^{n} u_{i,k}^m = \sum_{k=1}^{n} u_{i,k}^m x_k$$

$$||v_i||^2 \le \frac{\left(\sum_{k=1}^n u_{i,k}^m ||x_k||\right)^2}{\left(\sum_{k=1}^n u_{i,k}^m\right)^2} \le \sum_{k=1}^n ||x_k||^2 := r^2$$

Leading to the Euclidean ball R_i with radius r. It is convex! In fact, $\|v_i\| \le \max\{\|x_k\|, k=1, 2, ..., n\}$ for all i.

Characterization of Convex Set

• For U, let $u_{i,k} = t_{i,k}^2$

Constraints

$$\sum_{i=1}^{c} u_{i,k} = 1$$

Leading to the Euclidean sphere S_k with radius 1. It is NOT convex.

Equivalent Formulation to FCM

$$\begin{cases} \min J_{2m}(T, V) := \sum_{k=1}^{n} \sum_{i=1}^{c} t_{i,k}^{2m} ||x_k - v_i||^2 \\ s.t \quad T \in \mathcal{S} := \Pi_{k=1}^n S_k, \ V \in \mathcal{C} := \Pi_{i=1}^c R_i \end{cases}$$

A DC decomposition of the above objective function

$$J_{2m}(T,V) = \frac{\rho}{2}(||T||^2 + ||V||^2) - \left[\frac{\rho}{2}||(T,V)||^2 - J_{2m}(T,V)\right]$$

DC Formulation

For all $(T, V) \in \mathcal{S} \times \mathcal{C}$

$$J_{2m}(T,V) = \frac{\rho}{2}n + \frac{\rho}{2}||V||^2 - H(T,V)$$

with
$$H(T,V) := \frac{\rho}{2} ||(T,V)||^2 - J_{2m}(T,V)$$

A Question: is H(T, V) unconditionally convex? No!

Condition ensuring H(T,V)

Proposition 1. Let $\mathcal{B} := \Pi_{k=1}^n B_k$, where B_k is the ball of centre 0 and radius 1 in \mathbb{R}^c . The function H(T,V) is convex on $\mathcal{B} \times \mathcal{C}$ for all values of ρ such that

$$\rho \ge \frac{m}{n}(2m-1)\alpha^2 + 1 + \sqrt{\left[\frac{m}{n}(2m-1)\alpha^2 + 1\right]^2 + \frac{16}{n}m^2\alpha^2},\tag{8}$$

where

$$\alpha = r + \max_{1 \le k \le n} \|x_k\| \,. \tag{9}$$

Notice here B denotes a Ball and thus is convex!

In fact, *alpha* can be 2 max{ || xk || , k=1, 2, ..., n}!

Proof (1)

Proof: from
$$H(T,V) = \sum_{k=1}^{n} \sum_{i=1}^{c} \left[\frac{\rho}{2} t_{i,k}^{2} + \frac{\rho}{2n} \|v_{i}\|^{2} - t_{i,k}^{2m} \|x_{k} - v_{i}\|^{2} \right]$$

Just prove the function are convex for all *i* and *k*

$$h_{i,k}(t_{i,k},v_i) := \frac{\rho}{2}t_{i,k}^2 + \frac{\rho}{2n}||v_i||^2 - t_{i,k}^{2m}||x_k - v_i||^2$$

Define
$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $f(x,y) = \frac{\rho}{2}x^2 + \frac{\rho}{2n}y^2 - x^{2m}y^2$

Its Hessian

$$J_f(x,y) = \begin{pmatrix} \rho - 2m(2m-1)y^2x^{2m-2} - 4mx^{2m-1}y \\ -4mx^{2m-1}y & \frac{\rho}{n} - 2x^{2m} \end{pmatrix}$$

Proof (2)

For all (x, y): $0 \le x \le 1; ||y|| \le \alpha$

$$|J_f(x,y)| = \left(\rho - 2m(2m-1)y^2x^{2m-2}\right)\left(\frac{\rho}{n} - 2x^{2m}\right) - 16m^2x^{4m-2}y^2$$

$$\geq \frac{1}{n}\rho^2 - \left[2\frac{m}{n}(2m-1)y^2x^{2m-2} + 2x^{2m}\right]\rho - 16m^2x^{4m-2}y^2$$

$$\geq \frac{1}{n}\rho^2 - 2\left(\frac{m}{n}(2m-1)\alpha^2 + 1\right)\rho - 16m^2\alpha^2.$$

So f(x, y) is convex on $[0, 1] \times [-\alpha, \alpha]$

Proof (3)

implying

$$\theta_{i,k}(t_{i,k},v_i) := \frac{\rho}{2} t_{i,k}^2 + \frac{\rho}{2n} ||x_k - v_i||^2 - t_{i,k}^{2m} ||x_k - v_i||^2$$

is convex on $\{0 \le t_{i,k} \le 1, ||v_i|| \le r\}$

Further $h_{i,k}$ is convex

$$h_{i,k}(t_{i,k}, v_i) = \theta_{i,k}(t_{i,k}, v_i) + \frac{\rho}{n} \langle x_k, v_i \rangle - \frac{\rho}{2n} ||x_k||^2$$

Finally, the function H(T,V) is convex on $B \times C$.

Proof (4)

For all $T \in B$ (closed ball) and a given matrix $V \in C$, the function $J_{2m}(T,V)$ is concave in variable T (since H(T,V) is convex). Hence S (sphere, i.e., boundary) contains minimizers (reaching at boundary) of $J_{2m}(T,V)$ on B, i.e.,

$$\min \left\{ \frac{\rho}{2} \|V\|^2 - H(T, V) : (T, V) \in \mathcal{B} \times \mathcal{C} \right\}$$

$$= \min \left\{ \frac{\rho}{2} \left\| V \right\|^2 - H(T, V) : (T, V) \in \mathcal{S} \times \mathcal{C} \right\}$$

DC Formulation

$$\min \left\{ \frac{\rho}{2} \left\| V \right\|^2 - H(T, V) : \ (T, V) \in \mathcal{B} \times \mathcal{C} \right\}$$

$$\min \left\{ \frac{\chi_{\mathcal{B} \times \mathcal{C}}(T, V) + \frac{\rho}{2} \|V\|^2 - H(T, V)}{s.t. (T, V) \in \mathbb{R}^{c \times n} \times \mathbb{R}^{c \times p}} \right.$$

$$\chi_{\mathcal{B}\times\mathcal{C}}(T,V) + \frac{\rho}{2} \left\|V\right\|^2 - H(T,V) := G(T,V) - H(T,V)$$

where
$$G(T,V) := \chi_{\mathcal{B} \times \mathcal{C}}(T,V) + \frac{\rho}{2} \|V\|^2$$

Solving FCM by DCA (1)

A key: construct two sequences $(Y', Z') \in \partial H(T', V')$ and

$$(T^{l+1}, V^{l+1}) \in \operatorname{arg\,min} \left\{ \frac{\rho}{2} \left\| V \right\|^2 - \langle (T, V), (Y^l, Z^l) \rangle \right\}$$

 $s.t. (T, V) \in \mathcal{B} \times \mathcal{C}.$

H is differentiable and its gradient at the point (T', V'):

$$\nabla H(T^l, V^l) = \rho(T^l, V^l) - (2mt_{i,k}^{2m-1} ||x_k - v_i||^2, 2\sum_{k=1}^n (v_i - x_k)t_{i,k}^{2m})$$
 (14)

Algorithm 1. DCA applied to FCM

INPUT

- $-T^0 \in \mathbb{R}^{c \times n}$ and $V^0 \in \mathbb{R}^{c \times p}$.
- -l=0. Let $\epsilon>0$ be sufficiently small number.

REPEAT

- Calculate $(Y^l, Z^l) = \nabla H(T^l, V^l)$ via (14);
- Calculate (T^{l+1}, V^{l+1}) via (15) and (16);
- $-l+1 \leftarrow l$.

$$\mathbf{UNTIL}\{\|(T^{l+1}, V^{l+1}) - (T^{l}, V^{l})\| \le \epsilon(\|(T^{l+1}, V^{l+1})\|)\}$$

Solving FCM by DCA (2)

$$T^{l+1} = \operatorname{Proj}_{\mathcal{B}}(Y^l), V^{l+1} = \operatorname{Proj}_{\mathcal{C}}(\frac{1}{\rho}Z^l)$$

More precisely:

$$V_{i,.}^{l+1} = \begin{cases} \frac{(Z^l)_{i,.}}{\rho} & \text{if } ||(Z^l)_{i,.}|| \le \rho r \\ \frac{(Z^l)_{i,.}r}{||(Z^l)_{i,.}||} & \text{otherwise} \end{cases}, i = 1, .., c,$$
(15)

$$T_{.,k}^{l+1} = \begin{cases} Y_{.,k}^{l} & \text{if } ||Y_{.,k}^{l}|| \le 1\\ \frac{(Y^{l})_{.,k}}{||(Y^{l})_{.,k}||} & \text{otherwise} \end{cases}, k = 1,..,n.$$
 (16)

Accelerating DCA -- FCM-DCM (1)

Algorithm 2. Combined FCM-DCA algorithm

INPUT

- Let U^0 and V^0 be the membership and the cluster centers randomly generated.
- Set l=0. Let $\epsilon>0$ be sufficiently small number.

REPEAT

i. One iteration of FCM:

Accelerating DCA -- FCM-DCM (2)

- Compute the cluster centers V^l via

$$v_i = \sum_{k=1}^n u_{ik}^m x_k / \sum_{k=1}^n u_{ik}^m \quad \forall i = 1, .., c.$$
 (17)

- Compute the membership U^l via

$$u_{ik} = \left[\sum_{j=1}^{c} \frac{\|x_k - v_i\|^{2/(m-1)}}{\|x_k - v_j\|^{2/(m-1)}} \right]^{-1}.$$
 (18)

- Set $t_{ik} = \sqrt{u_{ik}}$, $\forall i = 1, ..., c$ and $\forall k = 1, ..., n$.

Accelerating DCA -- FCM-DCM (3)

ii. One iteration of DCA:

- Calculate $(Y^l, Z^l) = \nabla H(T^l, V^l)$ via (14);
- Calculate (T^{l+1}, V^{l+1}) via (15) and (16);
- $-l+1 \leftarrow l$

$$\mathbf{UNTIL}\{\|(T^{l+1}, V^{l+1}) - (T^l, V^l)\| \le \epsilon(\|(T^{l+1}, V^{l+1})\|)\}$$

Two phase algorithm 3

INPUT

- Let U^0 and V^0 be the membership and the cluster centers randomly generated.
- Set l=0. Let $\epsilon>0$ be sufficiently small number.

PHASE 1:

- Perform q iterations of Algorithm 2 for obtaining (T^{q+1}, V^{q+1}) .
- Update $(T^0, V^0) \leftarrow (T^{q+1}, V^{q+1})$

PHASE 2:

- Apply Algorithm 1 from the initial point (T^0, V^0) until the convergence.

Partial results

Table 1. Computation time of FCM Algorithm and Algorithm 2, 3

Data FCM		$^{\circ}$ CM	Algorithm 2			Algorithm 3		
N° Size c	$N^{o}F$	Time	$N^{o}I$	Time	q	$N^{o}D$	Time	
$1 128^2 2$	24	1.453	16	1.312	12	10	1.219	
$2 128^2 2$	17	1.003	12	0.985	10	2	0.765	
$3 \ 256^2 \ 3$	36	15.340	24	13.297	20	2	10.176	
$4 \ 256^2 \ 3$	75	31.281	57	30.843	30	12	26.915	
$5 \ 256^2 \ 3$	39	15.750	27	14.687	20	14	13.125	
$6 \ 256^2 5$	91	84.969	75	86.969	40	78	61.500	
$7 \ 256^2 \ 3$	73	31.094	62	34.286	15	21	24.188	
$8 \ 256^2 3$	78	34.512	52	32.162	20	13	29.182	
$9 \ 512^2 \ 3$	49	92.076	41	102.589	30	46	74.586	
$10 \ 512^2 \ 5$	246	915.095	196	897.043	120	86	691.854	

Fig. 1. The original noisy image and the results of segmentation (c−3)

- (a) (resp. (b)) corresponds to the original image without (resp. with) noise;
- (c) (resp. (d)) represents the resulting image given by FCM Algorithm without (resp. with) spatial information.
- (e) represents the resulting image given by Algorithm 2 without spatial information
- (f) (resp. (g)) represents the resulting image given by **Algorithm 3** without (resp. with) spatial information.

Fig. 2. The medical noisy image and the results of segmentation (c=3)

Fig. 3. The medical noisy image and the results of segmentation (c=3)

Fig. 4. The Blume noisy image and the results of segmentation (c=5)

5.2 Feature Selection and Classification

Formulation of problem

 Given two finite point sets A and B in Rⁿ represented by the matrices A ∈ R^{m×n} and B ∈ R^{k×n}, respectively. Discriminate these sets by a separating plane (w ∈ Rⁿ, y ∈ R)

$$P = \{x \mid x \in \mathbb{R}^n, x^T w = \gamma\} \tag{1}$$

which uses as few features as possible.

The optimization problem

$$\min_{w,\gamma,y,z} (1-\lambda)(\frac{1}{m}e^{T}y + \frac{1}{k}e^{T}z) + \lambda \|w\|_{0}$$

$$s.t \qquad -Aw + e\gamma + e \le y$$

$$Bw - e\gamma + e \le z$$

$$y \ge 0, z \ge 0.$$
(2)

Where y_i , i=1,2,...,m and z_j , j=1,2,...,k are non-negative slack variables, e is a vector with all entries of 1.

The zero-norm:
$$||w||_0 := card \{w_i : w_i \neq 0\}$$

P. S. Bredley and O. L. Mangasarian, *Feature Selection via concave minimization and support vector machines*, ICML'08.

Optimization Difficulty of Zero-Norm

- Discontinuity at the origin
- NP-Hard

Solution: Approximation to Zero-norm! for example,

$$||v||_0 \simeq e^T (e - \varepsilon^{-\alpha v})$$

Approximate Zero-norm

$$||w||_0 \simeq \sum_{i=1}^n \eta(\alpha, w_i).$$

where

$$\eta(x,\alpha) = \left\{ \begin{array}{ll} 1 - \varepsilon^{-\alpha x} & \text{if } x \geq 0 \\ 1 - \varepsilon^{\alpha x} & \text{if } x < 0 \end{array} \right., \alpha > 0.$$

Reformulation of the optimization

$$\min \left\{ \begin{array}{l} F(y,z,w,\gamma) := (1-\lambda)(\frac{e^Ty}{m} + \frac{e^Tz}{k}) \\ +\lambda \sum\limits_{i=1}^n \eta(w_i) : (y,z,w,\gamma) \in K \end{array} \right\}$$

where *K* is the polyhedral convex set defined by:

$$K := \left\{ \begin{array}{l} (y,z,w,\gamma) \in \mathbb{R}^{m+k+n+1} : \\ -Aw + e\gamma + e \leq y, \\ Bw - e\gamma + e \leq z \end{array} \right\}.$$

A DC decomposition of the approximation

$$\eta(x) = g(x) - h(x)$$

where

$$g(x) = \begin{cases} \alpha x & \text{if } x \ge 0 \\ -\alpha x & \text{if } x < 0 \end{cases}$$

$$h(x) = g(x) - \eta(x) = \left\{ \begin{array}{ll} \alpha x - 1 + \varepsilon^{-\alpha x} & \text{if } x \geq 0 \\ -\alpha x - 1 + \varepsilon^{\alpha x} & \text{if } x < 0 \end{array} \right.$$

They are both convex!

Illustration

DC Decomposition of the Objective

$$F(y, z, w) := G(y, z, w) - H(y, z, w)$$

where:

$$G(y,z,w):=(1-\lambda)(\frac{e^Ty}{m}+\frac{e^Tz}{k})+\lambda\sum_{j=1}^ng(w_j)$$

$$H(y, z, w) := \lambda \sum_{j=1}^{n} h(w_j)$$

A Final Formulation: FSC-DC

min
$$\{G(y, z, w) - H(y, z, w) : (y, z, w, \gamma) \in K\}$$

$$\min \left\{ \begin{array}{l} \chi_K(y, z, w, \gamma) + G(y, z, w) - H(y, z, w) : \\ (y, z, w, \gamma) \in \mathbb{R}^m \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}, \end{array} \right\}$$

$$(13)$$

DCA Revisited

Generic DCA scheme:

Initialization: Let $x^0 \in \mathbb{R}^p$ be a best guest,

$$0 \leftarrow k$$
.

iteration k = 0, 1, ...

Calculate $y^k \in \partial H(x^k)$

Calculate

$$x^{k+1} \in \arg\min \left\{ \begin{array}{l} G(x) - H(x^k) - \langle x - x^k, y^k \rangle : \\ x \in \mathbb{R}^p \end{array} \right\}$$

$$k + 1 \leftarrow k$$

Until convergence of x^k .

DCA for FSC

Initialization Let τ be a tolerance sufficiently small, set k = 0.

Choose $(y^0, z^0, w^0, \gamma^0) \in \mathbb{R}^m \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}$.

Repeat

- Compute v^k ∈ ∂H(w^k) via (15).
- Solve the linear program (16) to obtain (y^{k+1}, z^{k+1}, w^{k+1}, γ^{k+1})
- k+1 ← k

Until

$$||y^{k} - y^{k-1}|| + ||z^{k} - z^{k-1}|| + ||w^{k} - w^{k-1}|| + ||\gamma^{k} - \gamma^{k-1}|| \le \tau \left(1 + ||y^{k}|| + ||z^{k}|| + ||w^{k}|| + ||\gamma^{k}||\right)$$

(15) And (16)

$$v_{j} = \begin{cases} \alpha(1 - \varepsilon^{-\alpha w_{j}}) & \text{if } w_{j} \geq 0 \\ -\alpha(1 - \varepsilon^{\alpha w_{j}}) & \text{if } w_{j} < 0 \end{cases}$$
(15)

$$\min\{G(y, z, w) - \langle v^k, w \rangle : (y, z, w, \gamma) \in K\}$$

$$= \min \left\{ \begin{array}{l} (1-\lambda)(\frac{e^Ty}{m} + \frac{e^Tz}{k}) + \\ \lambda \sum\limits_{j=1}^n \max\left\{\alpha w_j, -\alpha w_j\right\} - \langle v^k, w \rangle \\ \text{s.t.} \quad (y,z,w) \in K \end{array} \right\}$$

$$\Leftrightarrow \min \left\{ \begin{array}{l} (1 - \lambda)(\frac{e^T y}{m} + \frac{e^T z}{k}) + \lambda \sum_{i=1}^n t_j \\ -\langle v^k, w \rangle : (y, z, w, \gamma, t) \in \Omega \end{array} \right\}$$
(16)

Feasible Domain

$$\Omega := \left\{ \begin{array}{l} (y, z, w, \gamma, t) \in \mathbb{R}^{m+k+n+1+n} : \\ (y, z, w, \gamma) \in K, \\ -\alpha w_j \le t_j, \alpha w_j \le t_j, j = 1..n \end{array} \right\}$$

An Important Theorem

Theorem 1 (Convergence properties of Algorithm DCA)

- (i) DCA generates a sequence $\{(y^k, z^k, w^k, \gamma^k)\}$ such that the sequence $\{F(y^k, z^k, w^k)\}$ is monotonously decreasing.
- (ii) The sequence $\{(y^k, z^k, w^k, \gamma^k)\}$ converges to $(y^*, z^*, w^*, \gamma^*)$ after a finite number of iterations.
- (iii) The point (y*,z*,w*) is a critical point of the objective function F in Problem (13).

Experimental Result

		FSV		DCA			
Data set	selected	correctness (%)		selected	correctness (%)		
	feature (%)	train	test	feature (%)	train	test	
Pima Indian	66	75.22	74.60	50	76.02	71.18	
BUPA Liver	75	68.18	65.20	50	87.44	85.99	
Ionosphere	31	90.47	84.07	9	73.50	63.24	
WPBC (24 mo)	12	73.97	66.42	9	80.00	75.13	
WPBC (60 mo)	8	70.70	67.05	6	74.40	72.50	
Average	38.4	75.70	71.47	24.8	78.36	73.42	

Selection of the λ : CV

- Step 1. Set aside 10% of the training data as a "tuning" set.
- Step 2. Obtain a classifier for the given value of λ .
- Step 3. Determine correctness on the "tuning" set.
- Step 4. Repeat steps 1-3 10 times, each time setting aside a different 10% portion of the training data. The "score" for this value of λ is the average of the 10 correctness values determined in Step 3.

6. Our next work: Applying DCP

- (Structured) AUC-FSC-DC (based SVM)
- Asymmetric (SVM) FSC-DC
- FSC based on DR and LR
- KFCM-DC and Combination
- NMF-DC and Combination
- SPP-DC (mainly in Sparse solving)

• ...

Reference

- [1] R. Horst, N. V. THOAI, DC Programming: Overview, JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, 1999.
- [2] PHAM DINH TAO AND LE THI HOAI AN, CONVEX ANALYSIS APPROACH TO D.C. PROGRAMMING, ACTA MATHEMATICA VIETNAMICA, 22(1) 1997, pp. 289-355.
- [3] Le Thi Hoai An, D.C. Programming for Solving a Class of Global Optimization Problems via Reformulation by Exact Penalty, C. Bliek et al. (Eds.): COCOS 2002, LNCS 2861, pp. 87–101, 2003.
- [4] Julia Neumann, Christoph Schnorr, and Gabriele Steidl, SVM-Based Feature Selection by Direct Objective Minimisation, C.E. Rasmussen et al. (Eds.): DAGM 2004, LNCS 3175, pp. 212–219, 2004.
- [5] Hoai An Le Thi, Hoai Minh Le, Van Vinh Nguyen, Tao Pham Dinh, A DC programming approach for feature selection in support vector machines learning, Adv Data Anal Classif (2008) 2:259–278.
- [6] Le Thi Hoai An, M. Taye Belghiti, Pham Dinh Tao, Feature Selection via DC Programming and DCA, J Glob Optim (2007) 37:593–608.
- [7] Hoai An Le Thi, Hoai Minh Le, Tao Pham Dinh, Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms, ADAC (2007) 1:85–104.
- [8] Le ThiHoai An, M. Tayeb Belghiti, Pham Dinh Tao, A new efficient algorithm based on DC programming and DCA for Clustering, J Glob Optim (2007) 37:593–608.
- [9] LE THI Hoai An, LE Hoai Minh, NGUYEN Van Vinh, PHAMDINHTao, Combined Feature Selection and Classification using DCA, IEEE IC on Research, Innovation and Vision for the Future (RIVF), 2008, pp:233-239.
- [10] Le Thi Hoai An, <u>Van Vinh Nguyen</u>, <u>Samir Ouchani</u>: Gene Selection for Cancer Classification Using DCA. <u>ADMA 2008</u>: 62-72.
- [11] Le Thi Hoai An, <u>Le Hoai Minh</u>, <u>Nguyen Trong Phuc</u>, <u>Pham Dinh Tao</u>: Noisy Image Segmentation by a Robust Clustering Algorithm Based on DC Programming and DCA. <u>Industrial Conf. DM 2008</u>: 72-86.

• Thanks a lot!

• Q & A