

Modelando estrutura com Blocos em SysML

Curso Ford
Prof. Lucas Albertins

Agenda

- □ Blocos
- □ Diagramas de Blocos
- □ Relacionamentos entre Blocos
- □ Variantes e Configurações
- Modelando Fluxos
- □ Comportamento de Blocos
- Utilizando Portas
- □ Conclusões

SysML

UML Profile for System Engineering

Blocos

- Elementos estruturais básicos
- Fornecem um conceito universal para descrever a estrutura de um elemento ou sistema (lógico, conceitual ou físico)
 - Sistema
 - Hardware
 - Software
 - Dados
 - Procedimentos
 - Pessoa

Blocos

«block»

Anti-Lock Controller

constraints

maxSize

parts

brakeModulator : BrakeModulator tractionDetector : TractionDetector

references

sensor: Sensor

values

valvePosition : Integer

operations

break(): Boolean

- Define um tipo que descreve um conjunto de instâncias (objetos)
- Três aspectos:
 - Estrutural
 - Comportamental
 - Restrições

Blocos

«block» BrakeModulator allocatedFrom «activity»ModulateBrakingForce values DutyCycle: Real

- Múltiplos compartimentos podem
- descrever as características do bloco
 - Properties (parts, references, values, ports)
 - Operations
 - Constraints
 - Allocations from/to other model elements (e.g. atividades)
 - Requisitos que o bloco satisfaz
 - Compartimentos definidos pelo usuário

Propriedades de um bloco

- Elementos estruturais primários de um bloco
- Tem um tipo que define sua característica
- Possui três categorias
 - Part Property
 - Define a composição do bloco em termos dos seus elementos constituintes
 - Reference Property
 - Trata das partes referenciadas que são possuídas por outros blocos
 - Value Property
 - Descreve características quantificáveis como velocidade, peso, etc.

Parte (Part Property)

- Uso de um bloco no contexto de composição
- Ilustra o uso de um bloco dentro de outro
- IBD para ilustrar conexões entre diferentes partes
- Não é uma instância!

Instância

- Elemento para representar um uso real de um bloco
- Os valores das propriedades devem ser concretizados
- Elemento que representa o bloco em tempo de execução
- Podem ser utilizadas no contexto de simulação

	«block» wireless Camera : Wireless Camera			
=	wireless Camera.partProperty wireless Camera.partProperty1 attery life = 500000.0 s			
	«block» wireless Camera.partProperty1 : Wifi Card			
	«block» wireless Camera.partProperty : Battery			

Block / Part / Instance

Diagramas de Blocos

BDD – Block Definition Diagram

Diagramas de Blocos

IBD – Internal Block Diagram

BDD vs IBD

BDD

- Blocos são definições/tipos
- Capturam propriedades
- Reusados em vários contextos

IBD

- Trata da conexão das partes que compõem um bloco
- Parte é o uso de um bloco no contexto de uma composição

```
p1 sensor: Sensor

Pulse
p1 brakeModulator: BrakeModulator

p2 source tractionDetector: TractionDetector
```


Relacionamentos entre Blocos

- BDD
- Associação
 - Composição
 - Agregação
 - Simples
- Generalização
- Realização
- Uso ou Dependência (Usage)

Associação

Relação estrutural entre blocos

Associação – Tipificando associações

-	ibd [Block] Surveillance Network [Surveillance Net	Block] Surveillance Network [Surveillance Network]					
	surveillance System : Surveillance System	adsl dte comms : ADSL Co	adsl dce	command Center : Command Center			

Associação – Tipificando associações

Papéis

BDD – Block Definition Diagram - Nomeclatura

ibd [Block] Anti-Lock Controller [Anti-Lock Controller]

Agregação

- Tipo especial de ass
- Relacionamento todo
- que a parte

Composição

- Tipo especial de agregação
- Relação de posse mais forte
- O todo é responsável pela criação da parte
- A parte não vive sem o todo

Exercício

Crie um BDD que modela o domínio automobilístico onde devemos considerar os elementos internos como também externos. Seu modelo deve considerar elementos para veículo, passageiros, motorista, e ambiente externo com Estrada (com inclinação e fricção), Atmosfera (com temperatura e densidade do ar), e EntidadeExterna (elemento que pode ser visualizado pelo motorista). O detalhamento da estrutura interna do veículo não precisa ser realizada neste momento, pois o foco são nos elementos citados. Use somente os relacionamentos abordados até o momento.

Dependência ou Uso

- Relacionamento não estrutural
 - mais fraco que associação
- Uma dependência entre dois elementos indica que mudança em um elemento pode causar mudanças no outro

Multiplicidade

Multiplicidade define quantas partes participam do relacionamento

- O número de partes de um bloco relacionadas a uma parte de outro bloco
- Especificado em cada uma das pontas do relacionamento

Tipos de Multiplicidade

- Não especificada
- Exatamente um
- Zero ou mais
- Muitos (mesmo que 0..*)
- Um ou mais
- Zero ou um
- Intervalo determinado
- Valores múltiplos

1	
0*	
*	
1*	
01	
24	
2, 46	

Exemplo: Multiplicidade BDD

É uma boa prática especificar as multiplicidades no BDD e manter sua consistência no IBD!

Centro de Informática UNIVERSIDADE FEDERAL UN PERNAMBUR

Exemplo: Multiplicidade IBD

É uma boa prática especificar as multiplicidades no BDD e manter sua consistência no IBD!

Exercício

 Incremente seu modelo colocando multiplicidade nos relacionamentos que você acha relevante.

Navegação

- Especifica a direção da associação
- Associações são bidirecionais por default, mas é desejável que a navegação seja restringida a apenas uma direção
- Associações bidirecionais são mais difíceis de implementar e acoplam o modelo

Exemplo: Navegação

É uma boa prática sempre que possível especificar a direção da navegação para deixar o modelo consistente em termos de acoplamento.

Exercício

 Cheque o seu modelo e veja se existe locais onde a navegação é interessante de ser adicionada.

Generalização/Especialização

- Relacionamento entre blocos onde um bloco compartilha a estrutura (propriedades e relacionamentos) e comportamento (operações) com outros blocos
- Define uma hierarquia de abstrações

Generalização/Especialização

Superclasse

- Elemento pai da hierarquia
- Possui elementos comuns que são compartilhados

Subclasse

- Elementos filhos
- Possui elementos especializados
- Reusa elementos da superclasse
- Pode redefinir elementos da superclasse

Generalização Simples vs Múltipla

Redefinição

Modelando Variabilidade com Generalização

 Como modelar um veículo que possa ter variações de motores com 4 e 6 cilindros?

Modelando Variabilidade com Generalização

Exercício

- Verifique no seu modelo elementos onde generalização/especialização podem ser aplicados e atualize-o.
- Construa um IBD para contextualizar as conexões entre o seu veículo, o ambiente externo (estrada, entidade externa, atmosfera), e o motorista. Não use portas no momento. Tente utilizar apenas conexões entre as partes. Considere as seguintes conexões (sem tipá-las por enquanto):
 - O motorista deve interagir como o veículo com um comando de aceleração e seleção de marcha
 - Entidades externas podem ser visualizadas pelo motorista
 - O veículo deve receber informações da atmosfera
 - O veículo deve poder se mover pela estrada através do uso de torque

Modelando Configurações Usando Instâncias

Exercício

- Crie diferentes configurações para o ambiente externo, com estradas e atmosferas que reflitam diversas configurações.
- Altere o seu modelo para permitir a modelagem de veículos com Sistema de transmissão, os quais podem ser manual e automático. Modelar Veículos com Sistema de Transmissão Manual e Automático e suas variações. O primeiro considere que o Sistema possui apenas 5 marchas. No modo automático temos no mínimo 4 marchas e sem limite superior. Por fim, crie diferentes configurações de veículos com diferentes sistemas de transmissão.

Realização

Indica que um elemento serve como contrato que o outro deve seguir

Exemplos:

Interface

- Interfaces definem um tipo especificando apenas a assinatura das operações
- Idealmente, interfaces deveriam prover contratos

Usadas para especificar um conjunto de características comportamentais, que, em geral, são realizadas por portas no modo <<pre>provided>> ou <<required>>.

operations +serv1() +serv2()

E InterfaceBlock?

InterfaceBlock

- Um tipo especial de bloco que não contém estrutura nem comportamento
- Usadas junto com portas proxy para:
 - tipificar portas
 - encapsular portas

- Em geral, fluxos modelam elementos físicos
- Ex: Bomba de Água
 - Água que flui para dentro e fora
 - Eletricidade que flui para dentro da Bomba

 Mas também podem ser sistemas elétricos

ıformação ou sinais em

- •Item é o termo usado para representar elementos que fluem entre partes
 - Podem ser tipificados por Blocos, ValueType ou Signal
- Item <- Bloco: Descrever itens complexos
 - Ex: Água pode ter valueProperties para representar Pressão e Temperatura
- Item <- ValueType: Elemento simples quantificável
 - Ex: TempAgua para representar a temperatura da águ
- Item <- Signal: Controle de comportamento
 - Ex: Sinal de ligado/desligado

•Item é o termo usado para representar elementos que fluem entre partes

wblock»
Light

values
flux: W
illuminance: Ix

«signal» On/Off «block» MGPEG4

ralues frame rate : Hz lines : Integer

«valueType» Water

attributes
Pressure : Integer
Temperature : Integer

- Blocos podem tem FlowProperties para indicar propriedades que fluem para dentro e/ou fora dele.
- Elas contém: nome, tipo, multiplicidade e direção (in, out ou inout).

«block»
Light Source
flow properties
out beam: Light

«block»
Light Sensor

flow properties
in incoming light: Light

Modelando Fluxos no IBD

Compatibilidade de FlowProperties

Modelando Fluxos no IBD

Incompatibilidade de Fluxo

Exercício

- Altere o IBD do domínio automobilístico para considerar fluxos entre as conexões das diferentes partes. Relembrando:
 - O motorista deve interagir como o veículo com um comando de aceleração e seleção de marcha
 - Entidades externas podem ser visualizadas pelo motorista
 - O veículo deve receber informações da atmosfera (ar)
 - O veículo deve poder se mover pela estrada através do uso de torque

- Comportamentos (Behaviors)
 - Global/Principal: executado quando o bloco é instanciado
 - Métodos/Operações: executados posteriormente ao longo do tempo de vida do bloco
- Um behavior pode invocar diversos outros behaviors
- Behaviors podem ter parametros de entrada, saída, e entrada/saída

Comportamento de Blocos

- Formalismos:
 - Máquina de estado: bloco reagindo a eventos
 - Atividades: fluxo de ações podendo transformar entradas em saídas
 - Interações (diagrama de sequência): como as partes interagem através de troca de mensagens
 - Comportamento Opaco: comportamento textual em alguma linguagem externa
 - Comportamento de função: similar ao opaco só que não afeta o estado do bloco. Geralmente associado a funções matemáticas

Comportamento de blocos

- O que usar para modelar o comportamento principal de um bloco?
- Alguns exemplos:
 - Máquina de estados que descreve o funcionamento reativo de um bloco
 - Atividades para descrever um fluxo ativo de ações
 - Híbrido Máquina de estado com atividades

Comportamento de Blocos

- Tipos de features comportamentais de um bloco:
- Operações: comportamento geralmente disparado por uma requisição síncrona
- Recepção de Sinais: comportamentos somente disparados assíncronamente
- Ambos podem ter parâmetros de entrada, saída, e entrada/saída

«block» Surveillance System signal receptions StatusReport(id : String, logTime : date, report : String)

Exercício

- Crie os blocos abaixo como parte de um veículo e defina as suas operações como descrito:
 - GPS
 - retornaPosicao(): Posicao
 - definaRota(Posicao atual, Posicao destino): Rota
 - enviaPosicao(Posicao atual): void
 - Multimedia
 - connectarBluetooth(Dispostivo d)
 - buscarDispositivosBluetooth(): Dispositivo[0..*]
 - atenderChamadaTelefonica(): void

- Portas são pontos de acesso na fronteira de um bloco ou parte usados para encapsular comunicação
- Devem estar conectadas a outras portas
- Tipos:
 - Full port
 - Proxy port

Modelando Portas - Full port

- Similar a partes
- Possuem tipos
- Geralmente representam elementos físicos
- Podem ter portas aninhadas (nested)
- Diferença de uma parte é que quando a propriedade isEncapsulated do bloco que a contém é true, conectores externos não podem se ligar a ela

Modelando Portas - Full port

Modelando Portas - Proxy port

- Expõe elementos do bloco
- São tipadas somente por InterfaceBlocks
- Podem representar tanto elementos físicos quanto acesso a comportamentos (serviços)
- Não são partes como as full ports
- Podem ser aninhadas

Proxy ports

Comparação full e proxy ports

Full Port

- É uma parte: tipada por bloco
- Normalmente representa elementos físicos
- Pode ter comportamento associado e mudar valores que fluem através dela

Proxy Port

- Não é uma parte: tipada por InterfaceBlock
- Não tem comportamento associado
- Portão de acesso aos elementos internos do bloco
- Não pode transformar elementos que fluem por ela
- Esconde elementos internos (expõe contrato de comunicação) - Blackbox

- Conexão entre portas:
 - Portas podem se conectar a partes ou outras portas através de conectores
 - Portas podem estar conectadas a mais de uma outra porta ou parte.
 - Cada conexão deve ter seu próprio conector

- Conexão entre portas:
- Regras de compatibilidade externa são iguais para full e proxy
- Regras de compatibilidade interna diferentes entre full e proxy:
- Full ports: podem estar conectadas a partes ou outras full ports de tipos diferentes
- Proxy ports: tipos das conexões internas devem ser compatíveis

Conexão entre portas:

Conexão full ports:

- Similar a conexão entre partes
- Regras de flow properties também se aplicam

Portas conjugadas (somente proxy ports):

- mecanismo para reusar um único InterfaceBlock para duas portas que se comunicam em direções opostas.
- Uma porta é a conjugada da outra
- Indicadas colocando um '~' no tipo da porta.

OBS: Multiplicidades devem ser compatíveis

Exercício

- Altere o componente veículo para utilizar portas ao invés de conexões diretas entre o mesmo e os elementos externos.
- Altere o modelo do Veículo para contemplar um novo componente chamado PowerTrain, o qual deve ser composto pelo Motor, Transmissão e duas Rodas dianteiras. As outras duas rodas traseiras continuam sendo partes do veículo. Crie portas e conecte os elementos internos do veículo, considere as ligações com as portas de fronteira do mesmo. Lembre-se de criar elementos para tipar as portas (Blocos no caso de full ports ou InterfaceBlocks no caso de proxy).

Definindo serviços através de portas

Exercício

- Refine o modelo dos blocos Multimedia, GPS, Bluetooth em termos de serviços expostos em portas. Assuma que Multimedia consome os serviços fornecidos por GPS e Bluetooth. Pense em outros serviços e possíveis interações entre Multimedia e outros blocos, e modele ao menos uma nova comunicação. Abaixo segue as assinaturas de operações de GPS e Multimedia já solicitadas.
 - GPS
 - retornaPosicao(): Posicao
 - definaRota(Posicao atual, Posicao destino): Rota
 - enviaPosicao(Posicao atual): void
 - Multimedia
 - connectarBluetooth(Dispostivo d)
 - buscarDispositivosBluetooth(): Dispositivo[0..*]
 - atenderChamadaTelefonica(): void

Modelando estrutura com Blocos em SysML

Curso Ford Prof. Lucas Albertins