

Dynamic Systems Electrical Mechanical Hydraulic Thermal Examples: Moving car Electric circuits Telescope positioning system

- Write a program
- Use simulation tools • Block diagram
- Bond graph model • Frequency domain (Laplace Transforms)

A block diagram represents the dynamics of the system and describes program statements in single instructions.

Basic Bond Graph Concepts Word Bond Graphs, basic elements single and multiport devices

Effort & flow are power variables

- Efforts
- Force (F) Newtons
- Voltage (V) Volts V
- Torque (T) N-meters
- Pressure (P) N/m²
- Flows....
- Velocity (V) m/s
- Current (i) Amps
- Ang. velocity(w) rad/s
- Volume flow (Q) m³
- power = effort (e) x flow (f)

System variables

- Generalized power and energy variables have the following relations:
- f = dq / dt q is a generalized displacement
- e = dp / dt p is a generalized momentum.
- · A state tetrahedron explains these relations

Physical Systems Variable Types

VAIGIABLE	MECHANICAL TRANSLATION	MECHANICAL ROTATION	ELECTRICAL	HYDRAULIC
Effort	Force (F) (Newtons N)	Torque (T) (N-m)	Voltage (Volts V)	Pressure (P) (N/m²)
Flow	Velocity (v) (m/s)	Angular velocity (w) (rad/s)	Current (i) (Amperes A)	Volume flow (Q) (m ³ /s)
Displacement	Displacement (x) (m)	Angle (rad)	Charge (q) (A-s)	Volume (m³)
Momentum	Momentum (N-s)	Angular momentum (N-m-s)	Flux linkage (V-s)	Pressure momentum (N-s/ m²)

Word bond graphs.

- Word bond graph: Simple representation of physical system; using words to imply a system component.
- Example: Car Starter/Solenoid

The word bond graph can be drawn as

battery voltage motor torque bendix

Word bond graphs

- Car Model: Power from engine is fed to clutch
 - Transmitted to gear box. Selects gear
 - Power flows to wheels via a differential gear box and drive shaft.

Efforts: Torques (T1,T2,T3,T4,T5,T6) Flows: Velocities (w1,w2,w3,w4,w5,w6)

Concept of causality

• Causality: Indicates WHO causes WHAT to WHOM

If element **A** imposes an **effort** on element **B**, then element **B responds back with** a **flow** or vice-versa,

Basic elements

To convert a word bond graph to "complete bond" graph we need some basic elements.

With these elements, bond graph models of dynamic systems can be created in any energy domain.

A resistive element (R).

- There is a static relation between effort & flow.
- Resistive elements are **idealization** of devices like, dampers, resistors, fluid carrying pipes.

Units of R

Mech. translation	Mech rotation	Electrical	Hydraulic
N-s/m	N-m-s	V/A (Ohms)	N-s/ m²

Resistive element (R)

Causality considerations:

• A resistive element takes either form

$$\mathbf{R} \mid \frac{\mathbf{e}}{\mathbf{f}}$$

Relation:e=g(f)

$$e = Rf$$

$$f = \frac{1}{R}e$$

Capacitive element (C).

- In a capacitive element a static relation exists between effort & displacement.
- These devices store or dissipate energy without loss.
- Capacitive elements are idealization of devices like, springs, capacitors, accumulators.

e e = f(q)

Linear C

Non linear C

Units of C

Mech. translation	Mech rotation	Electrical	Hydraulic
N/m	N-m/rad	farads	N/ m ⁵

Capacitive element (C)

Causality considerations:

Integral causality

$$\mathbf{C} = \frac{\mathbf{e}}{\mathbf{f}}$$

$$e = \frac{1}{C} \int f \, dt = \frac{1}{C} q$$
$$\therefore \frac{dq}{dt} = f$$

Preferred form for computational purposes

Derivative causality

$$f = C\frac{de}{dt} = \frac{dq}{dt}$$
$$\therefore \frac{dq}{dt} = C\frac{de}{dt}$$

This is not preferred form for computational purposes

Inertia element (I).

- There is a static **relation** between **flow & momentum**.
- These devices store kinetic energy
- Inertia elements are to model inductance effects in electrical circuits, mass & inertia effects in mechanical & hydraulic systems.

Units of I

Mech. translation	Mech rotation	Electrical	Hydraulic
N-s ² /m	N-m-s ²	V-s/A (Henrys)	$N-s^2/m^5$

Inertia element (I)

Causality considerations:

Integral causality

$$f = \frac{1}{I} \int e \, dt = \frac{1}{I} p$$
$$\therefore \frac{dp}{dt} = e$$

Impulse Momentum form

Preferred form for computational purposes.

Derivative causality

$$I \xrightarrow{e} f$$

$$e = I \frac{df}{dt} = \frac{dp}{dt}$$
$$\therefore \frac{dp}{dt} = I \frac{df}{dt}$$

Newton's law form

This is not preferred form of causality for I element.

The source elements SE & SF)

- An effort source: System/element which maintains an input effort. SE's are voltage sources, forces, pressure.
- A flow source: System/device which maintains a an input flow. SF's are velocity sources, current, flow sources

Effort Source

Flow source

Source elements (SE & SF)

Causality considerations:

• Effort Source

The effort source imposes an effort on the connected junction or element

Flow source

$$\mathbf{SF} \mid \frac{\mathbf{e}}{\mathbf{f}}$$

Flow source imposes a flow onto the system, connected junction or element.

Gyrator element (GY)

- **Gyrators**: Two port elements which relate input effort to output flow or viceversa by means of a modulus.
- Typical examples: voice coil, electric motor, generator.

Gyro-scope

If the rotor spins rapidly, & a small F1 will yield a proportional velocity v2, & vice-versa

Motor

Angular velocity output is proportional to applied voltage e

The (0) junction cont.

- (**0 junction**): Is a **common effort** junction.
 - All efforts are equal
 - The sum of the flows equal zero.

Summation signs will be determined by Power Flow.

(0) Junction properties

- It is a common effort junction for all bonds attached
- · All efforts are equal
- The sum of the flows equal zero.
- · Power conserving, power in equals power out
- Only one causal mark determines the input effort and thus all other efforts will be outputs
- There can only be one bond and only one bond that sets the effort input
- Power flow half arrows determine how the flows will sum

The (1) junction element

Current through C and R is the same.
Summation of voltages

Velocity is common but sumation of forces must follow Newton's law

The (1) junction cont.

- (1 junction): Is a common flow junction.
 - All flows are equal
 - The sum of the efforts equal zero.

Summation determined by Power Flow.

(1) Junction properties

- It is a common flow junction for all bonds attached
- All flows are equal
- The sum of the efforts equal zero.
- Power conserving, power in equals power out
- Only one causal mark determines the input flow and thus all other flows will be outputs
- There can only be one bond and only one bond that sets the flow input
- Power flow half arrows determine how the efforts will sum

Causal bond 1 junction TF element

Causal bond 0 junction TF element

Causal bond 1 junction GY element

Causal bond 0 junction GY element

Causal forms.

Symbol	Implied meaning & variable relation.	
c	Preferred integral causal form f= dq/dt	
I	Preferred integral causal form e= dp/dt	
— → c	Derivative causal formq= integ (f) not preferred	
I	Derivative causal formp= integ (e) not preferred	
1 TF 2	Preferred form for transformer element. (or opposite) f1=f2/m & e1=e2/m OR e1=me2 & f1=mf2	
GY	Preferred form for gyrator element. (or opposite)	