Mathe SA Zusammenfassung

Inhalt

Matrizenrechnun	ng:	2
Spezielle Arter	n von Matrizen	3
Rechenregeln.		4
Multiplikatio	on	4
Inverse Matrix		6
Determinanter	n	7
Anwendungsb	eispiele	8
Übergangsgrap	oh ?	10
Übergangsmat	rizen	11
Transformation	nen BS 145	12
		12
Planungsrechn	nung	13
DGL		14
Grundbegriffe	?	14
Richtungsfeld.		14
Einfache DGL		15
Separable DGL	. (Trennung der Variablen)	16
Beispiel zu Tre	nnung der Variablen	18
		18
Lineare DGL er	ster Ordnung	19
		19
		20
Lineare DGL 2.	Ordnung mit konstanten Koeffizienten	22
		25
Spezielle Ansät	tze	26

Matrizenrechnung:

Markisen Ein (Zohlen-) Shema der Form				
(aij) = A = or or or ER'n leter or or or or heilst nom Mahir.				
Man schricht auch $A=(a,j)$, $a,j=1$, $m\in\mathbb{R}^m$. Man schricht auch $A=(a,j)$, $a,j=1$, $m\in\mathbb{R}^m$. Live Lileworkton (\mathbb{R}^m) . Man $= n$, so ist die Ausahl der Leilen gleich der Ausahl der Spollen und man spricht von einer quadratischen Mathix.				
Boys. (1 2 3) 2 x 3 Mahix A = (4 5 6) a22 = 5				
Spollenuktor deilemæktor $\vec{l} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} m = 1$ $\vec{l} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} n = 1$				

Spezielle Arten von Matrizen

Spollenukter Leilenackter

$$\vec{a} = \begin{pmatrix} \frac{1}{2} \end{pmatrix} m = 1$$

Spexielle Arten von Matrisen

· Wallmatrie (°°°)

· quad. Matrix (m=n) ($\frac{1}{3}$ - $\frac{1}{4}$)

· Diagonalmatrix ($\frac{1}{3}$ °°) quadratrish

· Einheitsmatrix ($\frac{1}{3}$ °°) Diagonalmatrix | quadratrish

```
Dreicksmathin (190) over (200)

Manyamierte Matrix AT: (orig) = agi

A-(335)

B=(34)

B=(34)

B=(33)

A=AT

(234)

quadratinal
```

Rechenregeln

Multiplikation

Eigenschaften der Matrizenmultiplikation

Eigenshaften der Mahisenmultiplikation

· kein KG: A·B = B·A

· AG: A·(B·C) = (A·B)·C

Inverse Matrix

```
Die inverse Mahie A
    A \cdot A^{-1} = E A \cdot A^{-1} \in \mathbb{R}^n
  1 Bap : A= (33)
  Methode 1:

(12) (ab) = (10)

(10)
1/\alpha + 2c = 1 I II-2I: \alpha = -2 c = -\frac{3}{2}

1/\alpha + 2c = 0 II IV-2I: \beta = 1

3 \cdot \alpha + 4 \cdot c = 0 III A^{-1}
                                                                       A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{5}{3} & -\frac{5}{2} \end{pmatrix}
 Methode 2:
   A= 1-1 (d-b) de1.A= 1.4-3-2=-2
   A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}
 Methode 3: Yours- Jordan - Algorithmus
12 100)
                                                          AIE
A'AIA'E
(1, 26 1,00) · (-3)

0-2 -31 ] I (-3)+II
                                                         EIA-1
(10-21-21) I+I
```

Determinanten

Anwendungsbeispiele

	Def.: Mahix A & R" ist regular => ng (A) = n
	Salz: A ist ugular => det. A +0
3)	Invare Gleichungssysteme Prehmptrix and transformationen p. p'(x' y') = (n.cos(x+vl) n.om(d+vl)) p. p'(x' y') = (n.cos(x) n.m.(d+vl))

Übergangsgraph?

Übergangsmatrizen

Me bei der Blonungnerhnung beschribt man brier stufenweise Norgänge. Die Morgänge Meten mun in zeitleiber Mohrtge auf.
Bei Anlostischen Mburgangsprozenen nemnt man Zustandsfolgen
auch Markow-Kelle.

Brp.: In einer Meinstadt mit ca. 2000 Nourhalten gibt es drie
große Supermörbte A, B und C zur Mersongung mit Green. Neuslenkens
wird zur Beschrieben:


```
1 3500 H. Raulen ba A, M200 li B and $200 bi C.

(Bereilne Britishing in folgender aroun im Normanal.

(M= (0,7 0,1 0,1) Vo= (3600)

(M= (0,7 0,1 0,1) Vo= (3600)

(N= M. Vo= (1,000) V2= V1: M= (4660)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)

(1,000)
```

Transformationen BS 145

5.3.2 Transformationsmatrizen

Transformationen wie Drehungen oder Schiebungen können mithilfe von Matrizen durchgeführt werden. Die Transformation eines (Orts-)Vektors \vec{x} erfolgt dabei durch linksseitige Multiplikation mit einer Transformationsmatrix T.

Für den transformierten (Orts-)Vektor \vec{x}' gilt: $\vec{x}' = T \cdot \vec{x}$

Drehungen

Ein Punkt Q(x|y) befindet sich in einem Abstand r zum Koordinatenursprung O. Dabei schließt die Strecke OQ mit der x-Achse den Winkel α ein. Dreht man OQ um den Winkel ϕ in mathematisch positiver Richtung (gegen den Uhrzeigersinn), so erhält man den Punkt Q'(x'|y').

Die Position von Q kann mithilfe eines Vektors angegeben werden:

$$\overline{OQ} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\alpha) \\ r \cdot \sin(\alpha) \end{pmatrix}$$

Für Q' erhält man:

$$\overrightarrow{OQ'} = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\alpha + \phi) \\ r \cdot \sin(\alpha + \phi) \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\alpha) \cdot \cos(\phi) - r \cdot \sin(\alpha) \cdot \sin(\phi) \\ r \cdot \sin(\alpha) \cdot \cos(\phi) + r \cdot \cos(\alpha) \cdot \sin(\phi) \end{pmatrix} = \begin{pmatrix} x \cdot \cos(\phi) - y \cdot \sin(\phi) \\ y \cdot \cos(\phi) + x \cdot \sin(\phi) \end{pmatrix}$$

Diese Matrix kann als Ergebnis folgender Matrizenmultiplikation angeschrieben werden:

$$\overrightarrow{OQ'} = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = D \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

D ... Drehmatrix

 Drehung eines Punkts P(x|y) in R² um den Winkel φ um den Koordinatenursprung:

$$D = \begin{pmatrix} cos(\phi) & -sin(\phi) \\ sin(\phi) & cos(\phi) \end{pmatrix}$$

• Drehung eines Punkts P(x|y|z) in \mathbb{R}^3 um den Winkel φ um die z-Achse:

$$D = \begin{pmatrix} cos(\phi) & -sin(\phi) & 0 \\ sin(\phi) & cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Planungsrechnung

B) In einem 2 stutigen broduktionsprozers werden aus 3 Rohstollen (R) swächst die Zwisdenprodukte (Z) und dorous die Endynadukte (E) lergestellt (laut Grophik)

DGL Grundbegriffe? Richtungsfeld

Einfache DGL

$$y' = 3x^{2}$$

 $Y(x) = \int 3x^{2} dx = 3\frac{x^{3}}{5} + C = x^{3} + C$ all garaines Inligad
 $P(2|3)$
 $3 = 2^{3} + C \Rightarrow C = -5$
 $y = x^{3} - 5$ particulars Inligad

Separable DGL (Trennung der Variablen)

Cardbidingung: quadra sind verschiedene Wale oon verschiedenen Stellen der Flet.

Bsg:
$$Y'' = 2x^2$$

 $Y' = S 2x^2 dx = 2 \frac{x^3}{3} + C_1$
 $Y = S(2x^3 + C_1) dx = \frac{x^4}{3} \frac{x^4}{x_1} + C_{1.x} + C_2 = \frac{1}{6}x^4 + C_{1x} + C_2$

Osspe: Ein Gegensland word in einer bliche von 7 m mit einer Infangsgeschwindigkeit von 2m/s nach den aestlundert.

- oon 2m/s nach den geschlendert.

 a) Mie lander die Inbergsbedergungen?
- b) Beschriben sie die Flugbohn.
- C) Nach welcher Fell fall dur Gugerstand en Boolen?

a)
$$\gamma(0) = 7 m$$

$$\dot{\gamma}(0) = 2 \frac{m}{s}$$

$$v = \dot{v} = \frac{dv}{dt}$$

$$\alpha = \frac{dv}{dt} - \frac{d^2v}{dt} = \dot{v}$$

b)
$$\ddot{Y} = -g$$

 $\ddot{Y} = -gt + C_1$ $\ddot{Y}(0) = 2\%$ = $-g \cdot 0 + C_1 \Rightarrow C_1 = 2\%$
 $Y = -gt^2 + C_1 \cdot t + C_2$ $Y(0) = 7m = -g \cdot 0^2 + C_1 \cdot 0 + C_2 \Rightarrow C_2 = 7m$
 $Y(t) = -\frac{1}{2}gt^2 + 2t + 7$

c)
$$0 = -\frac{9\ell^2}{2} + 2\ell + 7$$
 $\ell = \frac{1}{1415}$

Separable DGL

all generic
$$Y' = \frac{dy}{dx}$$

all generic Soung (TRENNUNG d. VARIABLEN)

$$\frac{dy}{dx} = \frac{f(x)}{g(y)}$$

$$g(y) dy = f(x) dx$$

$$Sg(y) dy = Sf(x) dx$$

$$G(y) = F(x) + C_1$$

$$\Rightarrow y = G^{-1}(F(x)) + C$$

Beispiel zu Trennung der Variablen

$$\frac{dy}{dx} = x^{2} \cdot y$$

$$\frac{dy}{dx} = x^{2} \cdot dx$$

$$\frac{dy}{y} = x^{2} dx$$

$$\frac{dy}{dx} = x^{2} dx$$

Osp:
$$Y' = \frac{Y}{x-2}$$

$$\frac{dY}{dx} = \frac{Y}{x-2}$$

$$\frac{dy}{dx} = \frac{dx}{x-2}$$

$$\frac{dy}{Y} = \frac{dx}{x-2}$$

$$en|Y| = en|x-2| + en(C) = en(|x-2| \cdot C)$$

$$\underline{Y} = C \cdot (x-2)$$

Lineare DGL erster Ordnung

Sineare DG	Len enster Orde	une
BS79 →	Len erster Orde wichtige Begriffe	0
1	$Q(x) \cdot y = S(x)$	
S(x) = 0 :	lin. homogenen	DGL 1. Ordnung
S(x) + 0 :	lis. ishomogenen	DG L 1. Ordnung

ellepreni Sōsurg

1) hon. DGL

$$y' + o(x) \cdot y = 0$$
 $\frac{dy}{dx} = -o(x) \cdot y$
 $\frac{dy}{dx} = -\int o(x) dx$
 $\frac{$

Sozungen von y'+0(x). y =-S(x) hal die Gestall y=1/h+1/p
homogene parthulare sozung
daug d inhomogenen GL

from Dal:
$$y'' + \frac{y}{x} = 0$$

$$\frac{dx}{dx} = -\frac{y}{x}$$

$$\int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln |y| = -\ln |x| + \ln |C| = \ln \frac{C}{x}$$

$$Y_h = \frac{C}{x}$$

$$\ln |x| = -\frac{C}{x} = C(x) \cdot x^{-1}$$

$$NR: Y_p' = C(x) \cdot x^{-1} - C(x) \cdot x^{-2} = \frac{C'(x)}{x} - \frac{C(x)}{x^2}$$

$$Y_p'' + \frac{y}{x} = x^2 + 4$$

$$Y_p'' + \frac{y}{x^2} + \frac{C(x)}{x^2} + \frac{x^2}{x^2} + \frac{x^2}{x^2}$$

$$C'(x) - \frac{C(x)}{x^2} + \frac{C(x)}{x^2} + \frac{x^2}{x^2} + \frac{x^2}{x^2}$$

$$C'(x) = (x^2 + 4) \cdot x$$

$$C'(x) = x^3 + 4x$$

$$C(x) = \int C'(x) dx = \frac{x^4}{4} + \frac{x^2}{2} + C_2$$

$$Y_p = \frac{C(x)}{x} = \frac{x^3}{4} + 2 \cdot x + \frac{C}{x}$$

$$Y = Y_h + Y_p = \frac{C(x)}{x} + \frac{x^3}{4} + 2x + \frac{C}{x} = \frac{C}{x} + \frac{x^3}{4} + 2x$$

$$\frac{C_1}{X} + \frac{C_2}{X} = \frac{C}{X}$$

$$C = C_1 + C_2$$

Lineare DGL 2. Ordnung mit konstanten Koeffizienten

=> Ansolo
$$Y = e^{\lambda x}$$

 $Y' = \lambda \cdot e^{\lambda x}$
 $Y'' = \lambda^2 e^{\lambda x}$
 $\lambda^2 e^{\lambda x} + \alpha_1 \lambda e^{\lambda x} + \alpha_2 e^{\lambda x} = 0$ /se¹
 $\lambda^2 + \alpha_1 \lambda + \alpha_2 = 0$ chorelbrishishe Geleragible die Eigenerbe λ_1 und λ_2
 $\lambda_{12} = \frac{-\alpha_1 \pm \sqrt{\alpha_1^2 - 4 \cdot 1 \alpha_2}}{2 \cdot 1}$

```
1. Foll: \lambda_1 and \lambda_2 well

Y_h = C_1 \cdot e^{-\lambda_1 x} + C_2 e^{-\lambda_1 x}

2. Foll: \lambda_1 = \lambda_2 - \lambda well

Y_1 = \left(C_1 + C_2 x\right) e^{-\lambda_1 x}

3. Foll \lambda_1 and \lambda_2 sind konjugud complex

\lambda_{1,2} = \Omega \pm bi

\left(e^{i x} = \cos(x) + i \sin(x)\right)

Y_n = e^{-\lambda_1 x} \left(C_1 \cos(bx) + C_2 \sin(bx)\right)
```

b) inhomogene DGL

Losung Y = Y + Y p1. Sosungsmöglidheit für Y_p : Variation der Konstanter

Osse: $Y'' - 5y' + 6y = x^2$ homogen: Y'' - 5y' + 6y = 0 drische: $Y = e^{\lambda x}$ $\lambda^2 - 5\lambda + 6 = 0$ $\Rightarrow \lambda_1 = 3, \lambda_2 = 2$ $Y_h = C_1 e^{3x} + C_2 e^{2x}$

cirkomorgane: $Y_p = C_1(x) e^{3x} + C_1(x) e^{2x}$ $\Rightarrow Y' = C_1 e^{3x} + C_3 e^{3x} + C_2 e^{2x} + C_2 e^{2x} + C_2 e^{2x}$ 1. Budingung: $C_1 e^{3x} + C_2 e^{2x} + C_2 e^{2x} = 0$ * sollthin licks Budingung rough $C_1C_1 = 2$ turbilionally about DGL = mx + Geodung $\Rightarrow Y'' = 3 C_1 e^{3x} + 9 C_1 e^{3x} + C_2 e^{2x} + 4 C_2 e^{2x}$ einsubstitute $C_1 e^{3x} + 9 C_1 e^{3x} + C_2 e^{2x} + 4 C_2 e^{2x} + 4 C_2 e^{2x}$ einsubstitute $C_1 e^{3x} + 2 C_2 e^{3x} + 2$

(a))
$$1)-2.c_{1}^{1}e^{3x}-2.c_{2}^{1}e^{2x}=0$$

 $2)3.c_{1}^{1}e^{3x}+2.c_{2}^{1}e^{2x}=x^{2}$
 $C_{1}^{1}e^{3x}=x^{2}$
 $C_{1}=S(x^{2}e^{-3x})dx=-\frac{1}{3}(x^{2}+\frac{2}{3}x+\frac{2}{9})e^{-3x}$
 $2xPI$

b)
$$-C_{2}!e^{2x} = x^{2}$$

$$C_{2}' = -x^{2} e^{-2x}$$

$$C_{2} = \int_{-x^{2}}^{2} e^{-2x} dx = (\frac{x^{2}}{2} + \frac{x}{2} + \frac{1}{4})e^{-2x}$$

$$2xpI$$

$$Y_{p} = -\frac{1}{3} \times^{2} - \frac{2}{9} \times -\frac{2}{27} + \frac{\times^{2}}{2} + \frac{\times}{2} + \frac{1}{4} = \frac{1}{6} \times^{2} + \frac{5}{18} \times^{+} + \frac{19}{108}$$

$$Y = C_{1} e^{3 \times} + C_{2} e^{1 \times} + \frac{1}{6} \times^{2} + \frac{5 \times}{18} + \frac{18}{108}$$

Spezielle Ansätze

einschen in Ingole
$$2a - 5 \cdot (2ax+b) + 6 \cdot (ax^2+bx+c) = x^2$$

$$2a - 10ax - 5b + 6ax^2 + 6bx + 6c = x^2$$

$$6ax^2 + (-10a+6b) \cdot x + (2a-5b+6c) = x^2 + 0 \cdot x + 0$$

By:
$$y'' - 3y' = x^2 + 2$$
 Ansah: $y_p = Q.x^3 + bx^2 + c.x + d$

nearly $y'' + Q_1 y' = \sum_{i=0}^{n} C_i x^i$ $(dh Q_2 = 0)$

which $y_p = \sum_{i=0}^{n+1} b_i x^i$

which $y_p = \sum_{i=0}^{n+1} b_i x^i$

PNS:
$$\lambda=0$$
 ode $\lambda=3$

$$Y_h = C_1 \cdot e^{0 \cdot x} + C_2 \cdot e^{3x}$$

$$Y_p = Q_X^3 + b_X^2 + c_X + d$$

$$Y_p' = 3q_X^2 + 2b_X + c$$

$$Y_p'' = 6q_X + 2b$$

$$6 ex + 2b - 3 \cdot (3ex^{2} + 2bx + c) = x^{2} + 2$$

$$6ex + 2b - 9ex^{2} - 6bx - 3c - x^{2} + 0x + 2$$

$$-9e = 1$$

$$6e - 6b = 0$$

$$2b - 3c = 2$$

$$6e - 6b$$

$$2 \cdot (-\frac{1}{9}) - 3c = 2$$

$$3c = -\frac{2}{9} - \frac{18}{9} = -\frac{20}{9}$$

$$c = -\frac{20}{27}$$

$$Y = C_1 + C_2 \cdot e^{3x} - \frac{1}{9}x^3 - \frac{1}{9}x^2 - \frac{20}{27}x$$

(
$$\lambda - 2$$
)² = 0 $\lambda_1 = 2$, $\lambda_2 = -2$ $m = 2$ when for the warsel $(\lambda - 2)^2 = 0$ $\lambda_{12} = 2$ $m = 2$ is a single factor warsel

Observed
$$Y = 4y = e^{3x}$$
 Ansely e^{-2x}
 $(\lambda+2)(\lambda-2) = 0 \Rightarrow \lambda_1 = 2$
 $(\lambda+2)(\lambda-2) = 0 \Rightarrow \lambda_2 = -2$

homogen: $Y_h = C_1e^{2x} + C_2e^{-2x}$

whomogen: $Y_p = b \cdot e^{3x}$
 $9b \cdot e^{3x} - 4 \cdot be^{3x} - e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$
 $y = 4b \cdot e^{3x} - 4b \cdot e^{3x}$

S(x) = Q.
$$\cos(mx) + b \cdot \sin(mx)$$

• noun $\cos(mx)$ and $\sin(mx)$ with Samager due

homogran Gl. $\sin(mx)$
 $\Rightarrow y_p = A \cdot \cos(mx) + B \cdot \sin(mx)$

• noun $y_n = C_1 \cos(\omega x) + C_2 \cdot \sin(\omega x)$ and $y_n = \omega$
 $\Rightarrow y_p = A \cdot x \cdot \cos(m \cdot x) + B \cdot x \cdot \sin(mx)$

One and
$$3 + y^2 + y = \sin(2x)$$
 which $y = e^{\lambda x}$ $\lambda_1^2 + 1 - 0 = 2\lambda^2 - 1$ $\lambda_1 = i + i + 2 = i$ $\lambda_2 = i + i + 2 = i$ $\lambda_3 = i + i + 2 = i$ $\lambda_4 = i + 2$

$$-4A\cos(2x) - 4B\sin(2x) + A\cos(2x) + B\sin(2x) = \sin(2x) + 0.\cos(2x)$$

$$\Rightarrow -4A + A = 0$$

$$\Rightarrow B = -\frac{1}{3}$$

$$Y = C_{1} \cdot \cos(x) + C_{2} \cdot \sin(x) - \frac{1}{3} \cdot \sin(2x)$$

Onsp(1)
$$y'' + y'' - 2y = x + x^2 + cos(x)$$

$$\lambda^2 + \lambda - 2 = 0 \implies \lambda_1 - 2$$

$$\lambda_2 - 1$$

Romogen: $Y_h = C_1 e^x + C_2 e^{-2x}$

$$\text{inhomogen } V_{p_1} = Qx^2 + bx + C$$

$$Y_{p_2} = d cos(x) + e son(x)$$

$$Y_p = Y_{p_1} + Y_{p_2}$$

$$P_1 = 2e^{-2x} + b^{-2} + 2e^{-2x} + 2e^{-$$

Pz: -d cos(x) -e sin(x) -d sin(x) +ecos(x) - 2 d cos(x) - 2 e sin(x) = cos(x)

$$-d+e-2d+1 - y - 3d=1 / 3$$

$$-e-d-2e=0 - y - 3e-d=0$$

$$-10d-3$$

$$d=-\frac{3}{10}, e=\frac{1}{10}$$

$$Y = C_1e^{x} + C_2e^{x} - \frac{x^{2}}{2} - x - 1 - \frac{3}{10} \cos(x) + \frac{1}{10} \sin(x)$$

