# Analysis of Transient Permeation and Conduction in Composites with External Transport Resistance

Jerry H. Meldon a,\*, Phong A. Tran b

<sup>a</sup>Chemical and Biological Engineering Department, Tufts University, Medford, MA <sup>b</sup>Chemical Engineering Department, Northeastern University, Boston, MA

Abstract—

Laplace transformation is applied to develop "short-time" solutions to the partial differential equations governing transient diffusive transport in single slabs and multi-layer composites, with and without external transport resistance. The solutions apply the well-known technique of manipulating a Laplace-domain solutions so that the infinite series which emerges in the time domain may be truncated after fewer terms as  $t \to 0$ . In many cases, the lead terms in the short-time series and the conventional (separation-of-variables-based) "long-time" series together suffice to accurately characterize transport from t=0 into the steady-state. This is illustrated here for the case of transient membrane permeation.

#### I. INTRODUCTION

Fitting membrane transport parameters to experimental permeation data (Fig. 1) often relies on solutions to "Fick's 2nd Law," i.e.<sup>[1]</sup>:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \tag{1}$$

Thus, Daynes (1920) solved Eq. 1 subject to [2]:

$$C(x,0) = 0 (0 \le x \le L); C(0,t) = C_0; C(L,t) = 0$$

via separation of variables, obtaining:

$$C/C_0 = 1 - y - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi y) e^{-n^2 \pi^2 \tau}}{n} \quad (y = x/L, \tau = Dt/L^2)$$
 (2)

Insertion of Eq. 2 into the mass permeated expression, i.e.:

$$M(t) = -D \int_0^t \frac{\partial C}{\partial x} (L, \underline{t}) d\underline{t}$$
 (3)

$$\left[ m = \frac{M}{C_0 L} = -\int_0^t \frac{\partial c}{\partial y} (1, \underline{\tau}) d\underline{\tau} \right]$$
 (4)

yields the following result:

$$m(\tau) = \tau - \frac{1}{6} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\left(-1\right)^n e^{-n^2 \pi^2 \tau}}{n^2}$$
 (5)



Fig. 1: Schematic diagram of gas permeation apparatus. When the sweep gas flow is sufficiently high, the concentration gradient in the boundary layer at the downstream membrane surface will be negligible – i.e., for mathematical modeling purposes, the concentration at the downstream surface may be set equal to zero.

It follows from Eq. 4 that the permeant's diffusion coefficient (D) can be deduced from the "time lag" ( $t_{Lag}$ ), i.e. the t-axis intercept of the steady-state asymptote in a plot of mass permeated (M) vs. time (Fig. 2). Since  $\lim_{\tau \to \infty} m = \tau - 1/6$ , it

follows that:

$$D = L^2 / 6t_{lag} \tag{6}$$

Needless to say, the theoretical analysis can be considerably more challenging, e.g., when there are significant external mass transfer effects or the membrane is a composite of different material laminates.

In such cases, as shown below, Laplace transformation (Churchill, 1944) is often a more straightforward and practical approach than separation of variables<sup>[3]</sup>. The lead terms in series solutions obtained via Laplace transformation, often suffice to accurately model, not only the initial transient period, but even into the steady-state.

<sup>\*</sup> Corresponding Author: Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155; e-mail: Jerry.Meldon@tufts.edu



**Fig. 2**: Solid line: Cumulative mass permeated (M) vs. time (t). Broken line: Steady-state asymptote.

#### II. METHODOLOGY

The Laplace operator, L, is defined as follows:

$$L[g(t)] = \int_{-\infty}^{\infty} e^{-st} g(t) dt = \hat{g}(s)$$
 (7)

Operation on non-dimensionalized Eq. 1  $\left(\frac{\partial c}{\partial \tau} = \frac{\partial^2 c}{\partial y^2}\right)$  and on the simple permeation boundary conditions yields:

$$\frac{d^2\hat{c}}{dy^2} = s\hat{c}, \ \hat{c}(0) = \frac{1}{s}, \ \hat{c}(1) = 0$$
 (8)

the solution to which is:

$$\hat{c} = \frac{\sinh[q(1-y)]}{s \cdot \sinh(q)} \qquad (q \equiv \sqrt{s})$$
 (9)

It follows that:

$$\hat{m} \left( = -\frac{1}{s} \frac{d \,\hat{c}}{d \,y} \Big|_{y=1} \right) = \frac{1}{qs \cdot \sinh(q)} \tag{10}$$

Rather than seek m(t) via rigorous inverse transformation of Eq. 10, it pays to first manipulate it, as follows, into an equivalent expression whose inversion is straightforward:

$$\hat{m} = \frac{1}{qs \cdot \sinh(q)} = \frac{2}{qs(e^{q} - e^{-q})} = \frac{2e^{-q}}{qs(1 - e^{-2q})}$$

$$= \frac{2e^{-q}(1 + e^{-2q} + e^{-4q} + ...)}{qs} = \frac{2(e^{-q} + e^{-3q} + e^{-5q} + ...)}{qs}$$
(11)

Widely available  $[\hat{g}(s),g(t)]$  tables (e.g., Myers, 1998) include the following entry<sup>[4]</sup>:

$$L^{-1}\left(\frac{e^{-aq}}{qs}\right) = 2\sqrt{\frac{\tau}{\pi}} e^{-a^2/4\tau} - a \cdot erfc\left(\frac{a}{2\sqrt{\tau}}\right)$$
 (12)

$$\therefore m = 2 \sum_{n=0}^{\infty} \left[ 2 \sqrt{\frac{\tau}{\pi}} e^{-(2n+1)^2/4\tau} - (2n+1) erfc \left( \frac{2n+1}{2\sqrt{\tau}} \right) \right]$$
 (13)

The solid curve in Fig. 3 is based on the exact solution, i.e., *either* series, Eq. 5 or 13. The symbols denote m values calculated from the lead terms, to which the respective infinite series reduce at long and short times ( $t \to \infty$  and  $t \to 0$ ), i.e.:

$$m_{Long} = \tau - \frac{1}{6} + \frac{2e^{-\pi^2 \tau}}{\pi^2} \tag{14}$$

$$m_{Short} = 2 \left[ 2 \sqrt{\frac{\tau}{\pi}} e^{-1/4\tau} - erfc \left( \frac{1}{2\sqrt{\tau}} \right) \right]$$
 (15)

Notably, the respective lead terms in the two infinite series solutions together suffice to accurately calculate the *complete* time dependence of the mass permeated.



Fig. 3: Mass permeated vs. time (dimensionless terms). Solid curve: Eq. 5 or Eq. 13; diamonds: Eq. 15; triangles: Eq. 16.

#### III. APPLICATIONS

## A. Permeation in a single layer with downstream mass transfer resistance

Referring again to Fig. 1, a finite sweep gas flowrate implies nonzero permeant concentrations at the downstream membrane surface; which require the following more generally applicable boundary condition:

$$\left. \frac{\partial C}{\partial x} \right|_{x=L} = -\left(\frac{k}{D}\right) C_{x=L} \tag{16}$$

$$\left. \frac{\partial c}{\partial y} \right|_{y=1} = -Bc_{y=1} \quad \left( B \equiv \frac{kL}{D} \right)$$
 (17)

where k is the downstream gas-phase mass transfer coefficient and B is the mass transfer Biot number.

The separation of variables solution to Eq. 1 now gives:

$$m = \frac{B\tau}{1+B} - 2\sum_{n=1}^{\infty} \frac{B\sqrt{\lambda_n^2 + B^2} \left(1 - e^{-\lambda_n^2 \tau}\right)}{\lambda_n^2 \left(B + \lambda_n^2 + B^2\right)}$$
(18)

where the eigenvalues,  $\lambda_n$ , are defined by:

$$\lambda_n + B \tan \lambda_n = 0 \tag{19}$$

The lead expression in Eq. 19, i.e., the long-time solution, is:

$$m_{Long} = \frac{B\tau}{1+B} - \frac{2B\sqrt{\lambda_1^2 + B^2} \left(1 - e^{-\lambda_1^2 \tau}\right)}{\lambda_1^2 \left(B + \lambda_1^2 + B^2\right)}$$
(20)

In the corresponding Laplace transformation-based solution, the transform of the dimensionless mass permeated becomes:

$$\hat{m} = \frac{B}{qs \left[ q \cosh(q) + B \sinh(q) \right]}$$
 (21)

Manipulation analogous to what led from Eq. 10 to Eq. 11, leads Eq. 20 to assume the following more convenient form:

$$\hat{m} = \frac{2Be^{-q} \left[ 1 - \left( \frac{q - B}{q + B} \right) e^{-2q} + \left( \frac{q - B}{q + B} \right)^{2} e^{-4q} - \dots + \dots \right]}{qs(q + B)}$$
(22)

The short-time solution, obtained by inverting the lead terms,

$$\hat{m} \approx \frac{2Be^{-q}}{qs(q+B)} \tag{23}$$

is:

$$m_{Short} = 2 \left[ 2e^{-\frac{1}{4}\tau} \sqrt{\frac{\tau}{\pi}} - \frac{1+B}{B} erfc \left( \frac{0.5}{\sqrt{\tau}} \right) + \frac{e^{B(1+B\tau)}}{B} erfc \left( \frac{0.5}{\sqrt{\tau}} + B\sqrt{\tau} \right) \right]$$
(24)

Fig. 4 compares values of mass permeated vs. time (in dimensionless terms) for five different B values, based on Eqs. 18, 20 and 24.



**Fig. 4**: Mass permeated vs. time (dimensionless terms);  $B = \infty$  (broken line), 25 (diamonds), 5 (triangles), 1 (squares), 0.2 (circles). Solid lines: exact solution (Eq. 18); unfilled symbols: Eq. 20; filled symbols: Eq. 24.

The long and short-time solutions closely approximate the exact solution. Notably, the high-accuracy range of the short-time approximation extends into the steady-state.

## B. Permeation in a 2-layer composite with downstream resistance



**Fig. 5**: Schematic diagram of gas permeation apparatus with two-layer composite membrane.

Transient diffusion in the composite membrane in Fig. 5 is assumed to be governed by Eq. 1 as follows:

$$\frac{\partial C_{j}}{\partial t} = D_{j} \frac{\partial^{2} C_{j}}{\partial x_{j}^{2}} \quad (j = 1, 2)$$

$$C_{1}(-L_{1}, t) = C_{0}, \quad C_{2}(L_{2}, t) = 0$$

$$C_{2}(0, t) = KC_{1}(0, t), \quad D_{1} \frac{\partial C_{1}}{\partial x_{1}}(0, t) = D_{2} \frac{\partial C_{2}}{\partial x_{2}}(0, t)$$

or, in dimensionless terms,

$$\frac{\partial^{2} c_{1}}{\partial y_{1}^{2}} = \frac{\partial c_{1}}{\partial \tau}, \quad \frac{\partial^{2} c_{2}}{\partial y_{2}^{2}} = \gamma^{2} \frac{\partial c_{2}}{\partial \tau} \tag{26}$$

$$c_{1}(y_{1},0) = c_{2}(y_{2},0) = 0; \quad c_{1}(0,\tau) = 1, \quad \frac{\partial c_{2}}{\partial y_{2}}(1,\tau) = -Bc_{2}(1,\tau)$$

$$c_{1}(0,\tau) = c_{2}(0,\tau), \quad \frac{\partial c_{1}}{\partial y_{1}}(0,\tau) = \beta \frac{\partial c_{2}}{\partial y_{2}}(0,\tau)$$

$$\left[c_{1} \equiv \frac{C_{1}}{C^{*}}, \quad c_{2} \equiv \frac{C_{2}}{KC^{*}}, \quad \tau \equiv \frac{D_{1}t}{L_{1}^{2}}, \quad y_{j} \equiv \frac{x_{j}}{L_{j}}, \right]$$

$$\gamma \equiv \frac{L_{2}}{L_{1}} \sqrt{\frac{D_{1}}{D_{2}}}, \quad \beta \equiv \frac{KD_{2}L_{1}}{D_{1}L_{2}}, \quad B \equiv \frac{kL_{2}}{D_{2}}$$

We first consider cases of negligible external transport resistance  $[B\to\infty, c_2(1,\tau)=0]$ . For K=1, solutions to the analogous heat conduction problem based on separation of variables, are applicable (Sakai, 1922)<sup>[5]</sup>. That of Carslaw and Jaeger (2011) yields the following result<sup>[6]</sup>:

$$m\left(\equiv \frac{M}{C^*L_1}\right) = \frac{\beta\tau}{\beta+1} - 2\beta\gamma \sum_{n=1}^{\infty} \frac{1 - e^{-\lambda_n^2\tau}}{\lambda_n^2 \left[ (1 + \beta\gamma^2) \sin \lambda_n \sin(\gamma\lambda_n) - \gamma(\beta+1) \cos \lambda_n \cos(\gamma\lambda_n) \right]}$$
(27)

where the eigenvalues,  $\lambda_n$ , consist of:  $\cot \lambda_+ + \beta \gamma \cot(\gamma \lambda_-) = 0 \tag{28}$  plus the common roots of:

$$\sin \lambda_n = 0 \quad and \quad \sin(\gamma \lambda_n) = 0$$
 (29)

The corresponding exact Laplace-domain expression is:

$$\hat{m} = \frac{2\gamma\beta}{qs\{(1+\beta\gamma)\sinh[q(\gamma+1)]+(1-\beta\gamma)\sinh[q(\gamma-1)]\}}$$
(30)

When Eq. 30 is manipulated as Eqs. 10 and 21 had been, the inverse of the truncated result is:

$$m_{Short} = \frac{4\gamma\beta}{(1+\beta\gamma)} \left\{ 2\sqrt{\frac{\tau}{\pi}} \left[ e^{-\frac{(\gamma+1)^2}{4\tau}} + e^{-\frac{9(\gamma+1)^2}{4\tau}} \right] - (\gamma+1)erfc \left( \frac{\gamma+1}{2\sqrt{\tau}} \right) - 3(\gamma+1)erfc \left[ \frac{3(\gamma+1)}{2\sqrt{\tau}} \right] + \left[ \frac{1-\beta\gamma}{1+\beta\gamma} \right] \cdot \left[ 2\sqrt{\frac{\tau}{\pi}} \left( e^{-\frac{(3\gamma+1)^2}{4\tau}} - e^{-\frac{(\gamma+3)^2}{4\tau}} \right) + (\gamma+3)erfc \left( \frac{\gamma+3}{2\sqrt{\tau}} \right) - (3\gamma+1)erfc \left( \frac{3\gamma+1}{2\sqrt{\tau}} \right) \right] \right\}$$

For the more general case of nonzero B (significant external mass transfer resistance), apparently no closed-form extension of Eq. 27 is available. The exact Laplace-domain expression for the mass permeated is:

$$\hat{m} =$$

$$\frac{\kappa B e^{-q}}{qs \begin{cases} \sinh \rho q + e^{-q} \sinh q \left(\kappa \cosh \rho q - \sinh \rho q\right) \\ + \omega q \left[\cosh \rho q \left(1 - e^{-q} \sinh q\right) + \kappa e^{-q} \sinh \rho q \sinh q\right] \end{cases}}$$

$$\left(\kappa = K \sqrt{\frac{D_2}{D_1}}, \ \rho = \sqrt{\frac{D_1}{D_2}} \frac{L_2}{L_1}, \ \omega = \frac{\sqrt{D_1 D_2}}{k L_1} \right)$$
(32)

The corresponding manipulated expression is:

$$\hat{m}_{Short} = \left[ \frac{4\kappa B e^{-q(1+\rho)}}{qs(\kappa+1)(1+\omega q)} \right].$$

$$\left[ 1 - \frac{(\kappa-1)(1-\omega q)e^{-2\rho q}}{(\kappa+1)(1+\omega q)} + \left( \frac{1-\omega q}{1+\omega q} \right) e^{-2(1+\rho)q} + \left( \frac{\kappa-1}{\kappa+1} \right) e^{-2q} \right]$$
(33)

Inversion yields  $m_{short}(\tau)$ . The result is given in Appendix A.

Fig. 6 and 7 show the overlap of results based on the exact and short-time solutions: Eqs. 27 and 31, without external mass transfer effects; Eqs. 32 (via numerical Laplace inversion) and 33, with such effects.

In the following section, Laplace transformation is applied to derive a short-time solution for permeation in a 3-layer composite.



**Fig. 6**: Mass permeated vs. time (dimensionless terms),  $B = \infty$ , K = 1. Solid lines: Exact solution (Eq. 27). Symbols: Short-time solution (Eq. 31); circles:  $\beta = 0.5$ ,  $\gamma = 2$ ; diamonds:  $\beta = 1$ ,  $\gamma = 1$ ; triangles:  $\beta = 25$ ,  $\gamma = 1$ ; squares:  $\beta = 5$ ,  $\gamma = 0.2$ .

**Fig. 7**: Mass permeated vs. time, B = 1. Solid lines: numerical inversion of Eq. 32. Symbo



Short-time solution (Eq. 33); triangles:  $\kappa$  = 2,  $\rho$  = 0.5,  $\omega$  = 2; diamonds:  $\kappa$  = 5  $\rho$  = 1,  $\omega$  = 2; circles:  $\kappa$  = 1  $\rho$  = 1,  $\omega$  = 1; squares:  $\kappa$  = 0.5,  $\rho$  = 2,  $\omega$  = 0.5.

ls:

## C. Permeation in a 3-layer composite



Fig. 8: Schematic diagram of gas permeation apparatus with three-layer composite membrane.

$$D_{i} \frac{\partial^{2} C_{i}}{\partial x_{i}^{2}} = \frac{\partial C_{i}}{\partial t}$$

$$C_{i}(x_{i}, 0) = 0$$

$$C_{1}(L_{1}, t) = \alpha_{1} p = C_{0}, C_{3}(L_{3}, t) \approx 0$$
(34)

$$C_{2}(0,t) = K_{21}C_{1}(0,t), \quad C_{3}(0,t) = K_{32}C_{2}(L_{2},t)$$

$$D_{1}\frac{\partial C_{1}}{\partial x_{1}}(0,t) = D_{2}\frac{\partial C_{2}}{\partial x_{2}}(0,t), \quad D_{2}\frac{\partial C_{2}}{\partial x_{2}}(L_{2},t) = D_{3}\frac{\partial C_{3}}{\partial x_{3}}(0,t)$$

$$c_{1} \equiv \frac{C_{1}}{C_{0}}, \quad c_{2} = \frac{C_{2}}{K_{21}C_{0}}, \quad c_{3} = \frac{C_{3}}{K_{31}C_{0}}, \quad K_{21} \equiv \frac{\alpha_{2}}{\alpha_{1}}, \quad K_{32} \equiv \frac{\alpha_{3}}{\alpha_{2}}$$

$$y_{1} \equiv \frac{x_{1}}{L_{1}}, \quad y_{2} \equiv \frac{x_{2}}{L_{2}}, \quad y_{3} \equiv \frac{x_{3}}{L_{3}}, \quad \tau \equiv \frac{D_{1}t}{L_{1}^{2}} \quad \left(K_{31} \equiv K_{21}K_{32}\right)$$

$$\frac{\partial^{2}c_{1}}{\partial y_{1}^{2}} = \frac{\partial c_{1}}{\partial \tau}, \quad c_{1}(-1,\tau) = 1 \qquad (35)$$

$$\frac{\partial^{2}c_{2}}{\partial y_{2}^{2}} = \left(\frac{r_{12}}{\lambda_{12}^{2}}\right)\frac{\partial c_{2}}{\partial \tau}, \quad \frac{\partial^{2}c_{3}}{\partial y_{3}^{2}} = \left(\frac{r_{13}}{\lambda_{13}^{2}}\right)\frac{\partial c_{3}}{\partial \tau}$$

$$c_{3}(1,\tau) = 0, c_{2}(1,\tau) = K_{32}c_{3}(0,\tau)$$

$$c_{1}(0,\tau) = c_{2}(0,\tau), \quad \frac{\partial c_{1}}{\partial y_{1}}(0,\tau) = K_{21}\left(\frac{\lambda_{12}}{r_{12}}\right)\frac{\partial c_{2}}{\partial y_{2}}(0,\tau)$$

$$\frac{\partial c_{2}}{\partial y_{2}}(1,\tau) = K_{32}\left(\frac{\lambda_{23}}{r_{23}}\right)\frac{\partial c_{3}}{\partial y_{3}}(0,\tau)$$

$$r_{12} \equiv \frac{D_{1}}{D_{2}}, \lambda_{12} \equiv \frac{L_{1}}{L_{2}}, r_{13} \equiv \frac{D_{1}}{D_{3}}, \lambda_{13} \equiv \frac{L_{1}}{L_{3}}, r_{23} \equiv \frac{D_{2}}{D_{3}}, \lambda_{23} \equiv \frac{L_{2}}{L_{3}}$$

$$\hat{m} = \frac{\hat{M}}{LC} = -\left(\frac{L_{1}}{D_{1}}\right)\frac{K_{31}D_{3}}{sL}\left(\frac{\partial c_{3}}{\partial y_{3}}\right) \qquad (36)$$

$$\frac{\hat{m} = \frac{\alpha_{3}\sqrt{D_{3}}}{\left\{ \alpha_{1}\sqrt{D_{1}}\cosh[q] \begin{pmatrix} \cosh[\rho_{12}q]\sinh[\rho_{13}q] \\ +\frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{2}}}\sinh[\rho_{12}q]\cosh[\rho_{13}q] \end{pmatrix} + \frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{3}}}\cosh[\rho_{13}q] + \frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{3}}}\cosh[\rho_{13}q]\cosh[\rho_{12}q] \right\}} (37)$$

which is equivalent to the Laplace-domain solution presented by Barrie *et al.* <sup>[7]</sup>.

The manipulated transform and its time-domain inverse are listed in Appendix B.



Fig. 9: Mass permeated vs. time (dimensionless terms), B = 1. Solid lines: Exact solution (numerical inversion of Eq. 37). Symbols: Short-time solution (Appendix B); circles:  $\alpha_1 = 1$ ,  $\alpha_2 = \alpha_3 = 2$ ,  $D_1 = 1$ ,  $D_2 = 2$ ,  $D_3 = 1$ ,  $L_1 = L_2 = L_3 = 1$ ; squares:  $\alpha_1 = 2$ ,  $\alpha_2 = \alpha_3 = 1$ ,  $D_1 = D_2 = 1$ ,  $D_3 = 3$ ,  $L_1 = 1$ ,  $L_2 = 2$ ,  $L_3 = 1$ ; triangles:  $\alpha_1 = 2$ ,  $\alpha_2 = \alpha_3 = 1$ ,  $D_1 = D_2 = 1$ ,  $D_3 = 5$ ,  $D_1 = 1$ ,  $D_2 = 2$ ,  $D_3 = 2$ 



Fig. 10: Mass permeated vs. time (dimensionless terms), B = 1. Solid lines: Exact solution (numerical inversion of Eq. 37). Symbols: Short-time solution (Appendix B); triangles:  $\alpha_1 = 2$ ,  $\alpha_2 = \alpha_3 = 1$ ,  $D_1 = 5$ ,  $D_2 = D_3 = 1$ ,  $L_1 = 1$ ,  $L_2 = 2$ ,  $L_3 = 1$ ; squares:  $\alpha_1 = 2$ ,  $\alpha_2 = 1$ ,  $\alpha_3 = 3$ ,  $D_1 = 1$ ,  $D_2 = 3$ ,  $D_3 = 1$ ,  $L_1 = 1$ ,  $L_2 = 2$ ,  $L_3 = 5$ .

The short-time solution obtained via Laplace transformation again accurately predicts the early course of permeation.

## REFERENCES

- [1] Crank, J. The Mathematics of Diffusion. Oxford University press, 1979.
- [2] Daynes, H. A. "The process of diffusion through a rubber membrane." Proc. Royal Society of London A 97, no. 685, pp. 286-307.(1920).
- [3] Churchill, R. V.. "Modern Operational Mathematics in Engineering." McGraw-Hill (1944).
- [4] Myers, G. E. "Analytical Methods in Conduction Heat Transfer." (1971).
- [5] Sakai, S. "Linear conduction of heat through a series of connected rods." Sci. Rep. Tohoku Univ 11 (1922): 351.
- [6] Carslaw, H. S., and J. C. Jaeger. "Conduction of Heat in Solids." Oxford: Clarendon Press, 1959, 2nd ed. (1959)
- [7] Barrie, J. A., J. D. Levine, A. S. Michaels, and P. Wong. "Diffusion and solution of gases in composite rubber membranes." Transactions of the Faraday Society 59 (1963): 869-878.

## APPENDIX A: PERMEATION IN A TWO-LAYER COMPOSITE WITH EXTERNAL MASS TRANSFER RESISTANCE: SHORT-TIME SOLUTION

$$\begin{split} & \left(2\sqrt{\frac{\tau}{\pi}}e^{\frac{(1+\rho)^2}{4\tau}} - (1+\rho+\omega)erfc\left(\frac{1+\rho}{2\sqrt{\tau}}\right) + \omega e^{\frac{1+\rho}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{1+\rho}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \frac{[\kappa-1]}{[\kappa+1]}\left(2\sqrt{\frac{\tau}{\pi}}e^{\frac{(3+\rho)^2}{4\tau}} - (3+\rho+\omega)erfc\left(\frac{3+\rho}{2\sqrt{\tau}}\right) + \omega e^{\frac{3+\rho}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3+\rho}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right)\right) \\ & - \left[\frac{\kappa-1}{[\kappa+1]}\right] - 2\omega\left(-\frac{2}{\omega}\sqrt{\frac{\tau}{\pi}}e^{\frac{(3\rho+1)^2}{4\tau}} + \left(1 + \frac{3\rho+1}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3\rho+1}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right)\right) \\ & + 5\omega^2\sqrt{\frac{\tau}{\pi}}e^{\frac{(3\rho+1)^2}{4\tau}} - 3\omega erfc\left(\frac{3\rho+1}{2\sqrt{\tau}}\right) + 2\sqrt{\frac{\tau}{\pi}}e^{\frac{(3\rho+1)^2}{4\tau}} - (3\rho+1)erfc\left(\frac{3\rho+1}{2\sqrt{\tau}}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{4\tau}\cdot\frac{\tau}{\omega^2}}e^{\frac{(3\rho+1)^2}{4\tau}} - \left(\frac{3\rho+1}{2\sqrt{\tau}}\right) \\ & + \left(1 + \frac{3(\rho+1)}{2\sqrt{\tau}}\right) + 2\sqrt{\frac{\tau}{\pi}}e^{\frac{(3\rho+1)^2}{4\tau}} - \left(\frac{3(\rho+1)}{2\sqrt{\tau}}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3\rho+1}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\sqrt{\tau}}{\omega}\right) \\ & + \left(1 + \frac{3(\rho+1)}{\omega} + \frac{2\tau}{\omega^2}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right) \\ & + \left(1 + \frac{2\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right) \\ & + \left(1 + \frac{2\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega^2}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^{\frac{3(\rho+1)^2}{\omega}\cdot\frac{\tau}{\omega}}erfc\left(\frac{3(\rho+1)}{2\sqrt{\tau}} + \frac{\tau}{\omega}\right)e^$$

## APPENDIX B: PERMEATION IN A 3-LAYER COMPOSITE: LAPLACE-DOMAIN SOLUTION AND SHORT-TIME TIME-DOMAIN SOLUTION

$$\hat{m} = \frac{8\alpha_{3}\sqrt{D_{3}}}{\left\{\alpha_{1}\sqrt{D_{1}}\left(e^{q} + e^{-q}\right)\left[\left(e^{q(\rho_{12} + \rho_{13})} - e^{q(\rho_{12} - \rho_{13})} + e^{q(-\rho_{12} + \rho_{13})} - e^{q(-\rho_{12} - \rho_{13})}\right) + \frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{2}}}\left(e^{q(\rho_{12} + \rho_{13})} - e^{q(-\rho_{12} - \rho_{13})} + e^{q(-\rho_{12} - \rho_{13})}\right)\right\} + \left\{\alpha_{2}\sqrt{D_{2}}\left(e^{q} - e^{-q}\right)\left[\left(e^{q(\rho_{12} + \rho_{13})} - e^{q(-\rho_{12} + \rho_{13})} - e^{q(-\rho_{12} - \rho_{13})} + e^{q(-\rho_{12} - \rho_{13})}\right) + \frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{2}}}\left(e^{q(\rho_{12} + \rho_{13})} + e^{q(-\rho_{12} - \rho_{13})} + e^{q(-\rho_{12} - \rho_{13})}\right)\right\}\right\}$$

$$\begin{split} K_{1} &= \alpha_{1}\sqrt{D_{1}}, \quad K_{2} &= \alpha_{1}\sqrt{D_{1}}\frac{\alpha_{3}}{\alpha_{2}}\frac{\sqrt{D_{3}}}{\sqrt{D_{2}}}, \quad K_{3} &= \alpha_{2}\sqrt{D_{2}}, \quad K_{4} &= \alpha_{3}\sqrt{D_{3}}, \quad K_{5} &= K_{1} + K_{2} + K_{3} + K_{4} \\ & \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\rho_{1}+\beta_{1}+\beta_{1})^{2}}{4\tau}} - (\rho_{12} + \rho_{13} + 1)erfc\left(\frac{\rho_{12} + \rho_{13} + 1}{2\sqrt{\tau}}\right) - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\rho_{1}+\beta_{1}+\beta_{1})^{2}}{4\tau}} - (\rho_{12} + 3\rho_{13} + 1)erfc\left(\frac{\rho_{12} + 3\rho_{13} + 1}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} + K_{2} - K_{3} + K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (3\rho_{12} + \rho_{13} + 1)erfc\left(\frac{3\rho_{12} + \rho_{13} + 1}{2\sqrt{\tau}}\right)\right]\left[\frac{K_{1} - K_{2} - K_{3} + K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (\rho_{12} + 3\rho_{13} + 1)erfc\left(\frac{3\rho_{12} + 3\rho_{13} + 1}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} - K_{2} + K_{3} + K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (\rho_{12} + \rho_{13} + 3)erfc\left(\frac{\rho_{12} + \rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{K_{1} + K_{2} - K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (\rho_{12} + 3\rho_{13} + 3)erfc\left(\frac{\rho_{12} + 3\rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} + K_{2} + K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (3\rho_{12} + \rho_{13} + 3)erfc\left(\frac{3\rho_{12} + \rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} + K_{2} + K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (\beta_{12} + 2\rho_{13} + 3)erfc\left(\frac{3\rho_{12} + \rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} + K_{2} + K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (3\rho_{12} + \rho_{13} + 3)erfc\left(\frac{3\rho_{12} + \rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} - K_{2} + K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (3\rho_{12} + 2\rho_{13} + 3)erfc\left(\frac{3\rho_{12} + 2\rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} - K_{2} - K_{3} - K_{4}}{K_{5}}\right] - \left[2\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}e^{\frac{-(\beta_{11}+\beta_{11}+\beta_{11})^{2}}{4\tau}} - (\beta_{12} + \beta_{13} + 3)erfc\left(\frac{3\rho_{12} + 2\rho_{13} + 3}{2\sqrt{\tau}}\right)\right]\left[\frac{-K_{1} - K_{2} - K_{3} - K_{4}}{K_{5}}\right] -$$