1 Type I and II Errors

	True state of H_0	
Statistical decision	H_0 True	H₀ False
Reject H ₀	Type I Error	Correct
Do not reject H_0	Correct	Type II Error

Definitions:

- α : Probability of rejecting H_0 given that H_0 is true.
- β : Probability of not rejecting H_0 given that H_0 is false.

2 Relevante Übersetzungen

- 1. Dispersion: Streuung (vermutlich SD gemeint)
- 2. Scatter: Streuung (vermutlich SD gemeint)

3 P-Value

Hypothese	Test-Typ	p-Wert Berechnung
$H_0: \mu \geq \mu_0$	Einseitig (links)	p = pnorm(z)
$H_0: \mu \leq \mu_0$	Einseitig (rechts)	$p = 1 - \mathtt{pnorm}(z)$
H_0 : $\mu = \mu_0$	Zweiseitig	$p = 2 \cdot \mathtt{pnorm}(- z)$

- Der Index 0 z.b. μ_0 bedeutet, dass es sich um einen gegebenen Wert, und nicht um einen geschätzten Wert handelt.

I) Gauß Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet

Mean μ ist unbekannt, wir kennen SD σ

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \leq \mu_0, \quad H_0: \mu \geq \mu_0$$

Symbol	Bedeutung
n	Stichprobengröße
σ_0	Standardabweichung der gesamtheit
$\overline{X}_{(n)}$	Sample Mean

Decision Rule *R*:

$$T = \frac{\overline{X} - \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	rejection region R
$\mu = \mu_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(u_{1-\alpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -u_{1-\alpha})$

Beispiel:

```
1 n <- 100
 2 sd <- 0.3
 3 sample_mean <- 10.1
   alpha <- 0.1
 5 | #HO: mu = 10, H1: mu != 10
 6 mu<sup>0</sup> <- 10
   #Rejection region
   ru \leftarrow qnorm(1-(alpha/2))
9 rl <- -qnorm(1-(alpha/2))
   #[-1.644854, 1.644854]
10
                                                11
   #teststatistic
   t <- (sample_mean - mu0) / (sd / sqrt(n) _{13}
       )
13
   t > ru
14
   #3.333333
   #we reject h0 because we are in the
       rejection region
   p_value <- 1 - pnorm(t)</pre>
16
17
   #0.0004290603
```

II) t-Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet.

Mean μ und SD σ_0 sind unbekannt

Gegeben muss sein:

$$H_0: \mu = \mu_0$$
, $H_0: \mu \le \mu_0$, $H_0: \mu \ge \mu_0$

Symbol	Bedeutung
n	Stichprobengröße
$S_{(n)}$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{\overline{X} - \mu_0}{\frac{s_{(n)}}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region R:

H_0	Rejection Region R
$\mu = \mu_0$	$(-\infty, -t_{n-1,1-\frac{\alpha}{2}}) \cup (t_{n-1,1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(t_{n-1,1-lpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -t_{n-1,1-\alpha})$

Beispiel:

```
1 #H0: mu >= 250, h1: < 250
2 n <- 82
3 sample_mu <- 248
4 sample_sd <- 5
5 alpha <- 0.05
6 mu0 <- 250
7 R <- -qt(1-alpha, n-1)
8 #[, -1.663884]
9 t <- (sample_mu - mu0) / ((sample_sd) / sqrt(n))
10 #-3.622154
11 t < r
12 p_value <- pt(t,n - 1)
13 #0.0002540167</pre>
```

III) Test für Varianz σ_0^2 :

Hauptziel: Hier wird die Hypothese über die Varianz (σ_0^2) getestet.

Mean μ und SD σ sind unbekannt

Λ Kein $σ_0$ da σ gegeben durch H_0 Λ Also kein Schätzwert Λ

Gegeben muss sein:

$$H_0: \sigma^2 = \sigma_0^2, \quad H_0: \sigma^2 \le \sigma_0^2, \quad H_0: \sigma^2 \ge \sigma_0^2$$

Symbol	Bedeutung
$S_{(n)}^2$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{(n-1) S_{(n)}^2}{\sigma_0^2} \in R \implies \text{reject } H_0.$$

Rejection Region R:

H_0	rejection region <i>R</i>
$\sigma^2 = \sigma_0^2$	$(0, \chi^2_{n-1, \frac{\alpha}{2}}) \cup (\chi^2_{n-1, 1-\frac{\alpha}{2}}, \infty)$
$\sigma^2 \leq \sigma_0^2$	$(\chi^2_{n-1,1-lpha},\infty)$
$\sigma^2 \ge \sigma_0^2$	$(0,\chi^2_{n-1,\alpha})$

Beispiel:

```
\#h0: sd >= 7, h1: sd < 7
 2 n <- 82
   sample mu <- 248
  sample sd <- 5
  alpha <- 0.05
   sd0 <- 7
 7
   #Rejection region
 8
   R <- qchisq(alpha, n-1)
   #[,61.26148
 9
10 #Teststatistics
   t \leftarrow ((n - 1) * sample sd)/sd0
11
   #57.85714
12
   t < r
13
   p_value <- pchisq(t, n-1)</pre>
14
15
   #0.02419782
```

IIII) Bernoulli Test für Probability p_0 :

Hauptziel: Zu prüfen, ob die beobachtete Erfolgsrate \hat{p} signifikant von der vorgegebenen Wahrscheinlichkeit p_0 abweicht

Probability p_0 ist unbekannt

Number of successes:
$$X = \sum_{i=1}^{n} X_i \sim B(n, p)$$
, d.h. $\mathbb{E}(X) = np$
$$\mathrm{Var}(X) = np(1-p)$$
.

Gegeben muss sein:

$$H_0: p = p_0, \quad H_0: p \le p_0, \quad H_0: p \ge p_0$$

Symbol	Bedeutung
n	Stichprobengröße
X	Number of successes
\hat{p}	$\frac{X}{n}$ Example Probabilitz

Teststatistic

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}, \quad \text{mit } \hat{p} = \frac{X}{n}.$$

Decision Rule

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \in R \quad \Longrightarrow \quad \text{Reject } H_0.$$

Rejection Region R

H_0	Rejection Area <i>R</i>
$p = p_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$p \le p_0$	$(u_{1-\alpha},\infty)$
$p \ge p_0$	$(-\infty, -u_{1-\alpha})$

Normal Approximation: #a) 80% immunity rate

```
#b) H0: p \le 80, H1: p > 80
   p0 <- 0.8; n <- 200; x <- 172
3
   alpha \leftarrow 0.05
5
   phut <- x / n
   #Rejection region
   R \leftarrow pnorm(1 - alpha)
   #r <- [0.8289439, ]
9
   #teststatistic
   t \leftarrow (phut-p0)/sqrt((p0 * (1 - p0)) / n)
10
   #2.12132
11
12 t > R
13
   p_value <- 1 - pnorm(t)</pre>
14 #0.01694743
```

Exact test:

I) 2-Sample Gauss Test:

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means sind unbekannt, wir kennen σ_1, σ_2

Gegeben muss sein:

$$H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$$

Symbol	Bedeutung
	Stichprobengrößen
σ_1 , σ_2	SD der gesamtheiten
$\overline{X}_{(n_1)}$, $\overline{Y}_{(n_2)}$	Sample Means

Teststatistik:

$$T = \frac{\overline{X}_{(n_1)} - \overline{Y}_{(n_2)} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Decision Rule R:

$$T \in R \Longrightarrow \text{reject } H_0$$

Rejection Region *R*:

H_0	Rejection Region R
$\mu_1 = \mu_2$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu_1 \leq \mu_2$	$(u_{1-\alpha},\infty)$
$\mu_1 \ge \mu_2$	$(-\infty, u_{\alpha})$

Beispiel:

```
1 \mid m1 \leftarrow c(5.46, 5.34, ..., 5.82)
 2 \mid m2 \leftarrow c(5.45, 5.31, 4.11, ..., 4.09)
 3 \mid sd1 < -0.5
 4 sd2 <- 0.6
 5 \mid n1 \leftarrow length(m1)
 6 \mid n^2 \leftarrow length(m^2)
 7 | #test the HO: mu1 >= mu2
 8 alpha <- 0.05
 9 #rejection Region
10 r <- qnorm(alpha)</pre>
11 #[ , -1.644854]
12 #teststistic
13 t \leftarrow (mean(m1) - mean(m2)) /
    sqrt((sd1^2 / n1) + (sd2^2 / n2))
14
15 #1.027782
16 p_value <- pnorm(t)
17 #0.8479739
18 #we fail to reject HO since we are
        outside of the rejection area
```

II) 2-Sample t-Test (Varianzen gleich und unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1 , μ_2 sind unbekannt und $\sigma_1 = \sigma_2$

Gegeben muss sein:

```
H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2
```

⚠ Es muss für x und y ein Sample gegeben sein ⚠ **Beispiel:**

III) Welsh test (Varianzen ungleich, aber unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1, μ_2 sind unbekannt und $\sigma_1 \neq \sigma_2$

Gegeben muss sein:

```
H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2
```

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

IV) Two Paired Sample t-Test

↑ Wenn Z.B einzelne Partienten vorher nacher ↑ Hauptziel: Wir berechnen als erstes den Unterschied aller Werte der beiden Samples, und dann schauen ob der Mean signifikant Unterschiedlich von 0 ist.

σ ist unbekannt

Gegeben muss sein:

$$H_0: \mu_1 = 0$$
, $H_0: \mu_1 \le 0$, $H_0: \mu_1 \ge 0$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

↑ Das einzige was sich ändert ist: paired = T↑

V) Testing two Variances - F Test

Hauptziel: Wir vergleichen die beiden sample Varianzen.

σ ist unbekannt

Gegeben muss sein:

```
H_0: \sigma_1 = \sigma_2, H_0: \sigma_1 \leq \sigma_2, H_0: \sigma_1 \geq \sigma_2
```

⚠ Es muss für x und y ein Sample gegeben sein ⚠ **Beispiel:**

```
x <- c(102.4, 101.3, ..., 100.1)
y <- c(98.4, 101.7, ..., 101.0)
#H0: sd_x <= sd_y, H1: sd_x > sd_y
alpha <- 0.05
var.test(x = x, y = y, alternative = '
    greater', conf.level = 1-alpha)
#p-value = 0.03404</pre>
```

Beispiel: Erst H0 dass vars gleich sind. Wenn nicht reject, dann müssten wir mein Mean test, var.equal auf True

10