

Course Number: CSE206

Digital Logic Design Sessional

Experiment No:	07
Topic:	Flip-Flops and Registers
Group Members	1805061, 1805062,
	1805063, 1805064,
	1805065
Section	B1
Department	CSE
Date of Submission	12.06.2021

PROBLEM NO: 1

Problem Statement:

Design and implement a master-slave JK flip-flop using only NAND gates.

Truth Table:

Clock	Inputs		Present	Next State
			State	
	J	K	Q_n	Q_{n+1}
0	X	X	X	Qn
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Excitation Table:

Clock	J	K	Q _{n+1}	Mode
0	X	X	Qn	No change
1	0	0	Qn	No change
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	Q _n '	Toggle

Required Equation in Minimized Form (Using K-Map):

• K-Map for Q_{n+1}:

	_ JK	00	01	11	10
Qn	JK	J'K'	J'K	JK	JK'
0	Q _n '	0	0	1	1
1	Qn	1	0	0	1

$$Q_{n+1} = JQ_n' + Q_nK'$$
 [Combining K-map results]
= $JQ_n' + Q_nK'$

Required Instruments:

No.	Name of Instruments	Quantity
1.	IC-7400	4
2.	1 bit Input Pin	2
3.	1 bit output Pin	2
4.	Clock pulse	1
5.	Wires	A lot

Circuit Diagram:

Observation:

Master-Slave JK Flip-Flop is introduced to solve the continuous toggling of output in specific cases, and taking one output as current state in input, it solves the problem.

PROBLEM NO: 2

Problem Statement:

Design and implement a 4-bit universal shift register.

Excitation Table:

		Input					Outpu	t	
Clear	Clock	S ₁	S_0	Interna	A_3	A_2	A_1	A ₀	Mode
				l Signal					
0	Х	Х	Х	Х	0	0	0	0	Async
1	Х	0	0	Х	A_3	A_2	A_1	A ₀	Hold
1	1	0	1	A _{i-1}	Input	A ₃	A 2	A 1	Shift
					right				Right
1	1	1	0	A _{i+1}	A_2	A ₁	A_0	Input	Shift
								left	Left
1	1	1	1	Ai	I ₃	l ₂	l ₁	I ₀	Parallel
									Load

Required Instruments:

No.	Name of Instruments	Quantity
1.	IC-7474	2
2.	IC-74153	2
3.	1 bit Input Pin	6
4.	2 bit Input Pin	1
5.	1 bit Output Pin	4
6.	Clock Pulse	1
7.	Wires	A lot

Circuit Diagram:

Observation:

We need four 4x1-MUXs, four D-flip flops and a clock in order to make a 4-bit universal shift register. We can build an n-bit universal shift register using the same configuration. For n-bit shift register, we will need, n 4x1-MUXs and n D-flip flops and a clock.

In n-bit shift register, the 0th input of MUX_i will be A_i. The 1st input of MUX_i will be A_{i+1} and the input right shift will be connected with 1st input (n-1)th MUX. The 2nd input of MUX_i will be A_{i-1} and the input left shift will be connected with 2nd input of 0th MUX. I_i input will be connected with 3rd input of MUX_i. The output of MUX_i will be input of D_i. The ith output of register A_i will be output Q_i of ith D-flipflop.