Duet: Cloud Scale Load Balancing with Hardware and Software

Rohan Gandhi

Y. Charlie Hu

Hongqiang Harry Liu Guohan Lu Jitu Padhye
Lihua Yuan Ming Zhang

Load Balancer is Critical For Online Services

Load balancer provides high availability and scalability

Existing LBs Have Limitations

Specialized Hardware LBs

Too costly

\$100+ million for 15 Tbps

Poor robustness

1+1 redundancy

Software LBs

Scale with demand

Scale up/down according to VIP traffic

High robustness

n+1 redundancy

Software LBs have cost and performance limitations

Software LB Design

Software LB Benefits:

- High robustness
- Scale with demand

Software LB has Limitations

High latency inflation: 200 usec

Low capacity: 300k pkts/sec

5k SMuxes needed at 15Tbps traffic in 50k server DC

How can we build high performance, low cost and robust load balancer?

Duet ideas

- Use commodity switches as hardware Muxes
- Use software Muxes as a backstop

Can Switch Act As a Mux

Switches offer:

- High capacity (500+ million pkts/sec)
- Low latency inflation (1 usec)

Mux functionalities

- Split VIP traffic across DIPs
- Forward VIP traffic to DIPs

Switch resources

- ECMP
- Tunneling

Implementing HMux on Switch

Key Design Challenges

- Limited switch memory
- High failure robustness
- VIP assignment
- VIP migration

Challenge 1: Switches have Limited Memory

Workload: 100k+ VIPs and 1+ millions DIPs Single HMux cannot store all VIPs and DIPs

Table	Forwarding	ECMP	Tunneling
Max. size	16k	4k	512

Max VIPs

Max DIPs

Solution: Partitioning VIPs across HMuxes

Capacity	VIPs	DIPs	
Single HMux	16k	512	
All HMuxes	16k	512 * 2k = 1M	

Fixed

Scales with #DIPs

Challenge 2: High Robustness

- Availability during failure?
- Large number of VIPs?

Idea: Integrate SMux with HMux

	HMuxes	SMuxes	Duet
Low latency	✓	×	✓
High capacity	✓	×	7
High availability	×	✓	V
Scale to large #VIPs	×	✓	✓

Solution: Use SMuxes As a Backstop

Solution: Use SMuxes As a Backstop

- High availability during failure
- Scale to large #VIPs

VIP Traffic Distribution is Highly Skewed

Top 10% VIPs carry 99% traffic

Duet handles 86-99.9% traffic using HMuxes

Challenge 3: How to Assign VIPs?

Objective: Maximize traffic handled by HMuxes

Input:

VIP traffic, DIP locations
Topology

Constraints:

Switch memory Link capacity

Challenge 4: How to Migrate VIPs?

Solution: Migrate VIPs through SMuxes

Duet Extensions

- **✓** SNAT
- Support VIPs with 512+ DIPs
- Port based load balancing
- Load balancing in virtualized networks

Experimental Setup

Testbed

- 10 switches, 3 SMuxes
- 10 VIPs, 34 DIPs

Simulation

 Topology and traffic trace from Azure DC

- High capacity
- High availability
- Low cost

Duet Provides High Capacity

Duet Provides High Availability

Duet Reduces Cost

Duet reduces cost by 10-24x

Summary

- Specialized and software LBs have cost and performance problems
- Duet key ideas:
 - Use commodity switches as HMuxes
 - Use small number of SMuxes as backstop
- Benefits:
 - Low latency
 - High capacity
 - High robustness
 - Low cost