

Linking granulation performance with residence time & liquid distributions in twin-screw granulation

Ashish Kumar

LPPAT-lab meeting

Traditional to new granulation method

At appropriate conditions, granulation is in steady state

 $transfer in \approx constant \approx transfer out$

$$\frac{d\left[P_{m}\right]}{dt}\approx0\approx\frac{d\left[G_{m}\right]}{dt}$$

Two key implications

- 1. Fluxes are roughly constant (Dynamics are transient)
- 2. Same amount of time is to complete all sub-processes

High Shear Wet Granulation involves different rate processes

Granule Size Distribution

Having many time-scales is challenging

Residence time-scale

Having many time-scales is challenging

Mixing time scale

Residence time and moisture distributions effect on the granulation performance

Screw Configuration

- Number of kneading discs (4, 6, 2x6)
- Stagger angle (30°, 60°, 120°)

Process parameters

- Material throughput (10-25 kg/h)
- Screw speed (500-900 rpm)
- Liquid-to-solid ratio (6-8%)

Fines < 150 μm

Yield fraction > 150 to <1400 μm

Oversized > 1400 μm

Analysis of distributions in twin-screw granulation

Measurement by distributions

Results

Summary

Tracer concentration in granules measured by NIR chemical imaging

Tracer maps used to measure distributions

Qualitative assessment of the RTD profiles

$$\tau = \frac{\int_0^\infty t \cdot e(t)dt}{\int_0^\infty e(t)dt}$$

Mean residence time, τ (a measure of the mean of the distribution)

$$\sigma^2 = \frac{\int_0^\infty (t - \tau)^2 \cdot e(t) dt}{\int_0^\infty e(t) dt}$$

Variance, σ^2 (width of the distribution)

$$Pe = \frac{UL}{D}$$

Péclet Number, Pe

(Rate of axial transport by convection)
Rate of axial transport by dispersion)

Qualitative assessment of the moisture maps

Shannon Entropy based Mixing Index

$$H(X) = \sum_{j=1}^{n} P(X) \log_{200}(1/P(X_{j}))$$

$$MI = -\frac{1}{\log_{200}(n)} \sum_{j=1}^{n} P(X_j) \log_{200} P(X_j)$$

FFT to obtain Frequency and amplitude

Analysis of distributions in twin-screw granulation

RTD Measurement by Chemical Imaging

Results

Summary

Increase in L/S lubricates moving parts but flow is sluggish

Mixed-flow transport at a high screw speed & plug-flow transport when more kneading discs

Axial mixing $lack \uparrow$ when Normalised variance $lack \uparrow$ and Péclet number $lack \downarrow$

Throughput force is more dominant at a high screw speed

Increase no. of kneading and in L/S led to improved liquid distribution in bulk

S/L mixing \uparrow when MI \uparrow , Frequency \downarrow and Amplitude \downarrow

Trade-off existed between high throughput and number of kneading discs

Increase in L/S and no. of kneading led to improved liquid distribution, hence less fines

Analysis of distributions in twin-screw granulation

RTD Measurement by Chemical Imaging

Results

Summary

The results showed that...

..material throughput and number of kneading discs dictate solid-liquid mixing.

...till good mixing kneading discs are not there TSG should better be operated at lower throughput.

.. non-conventional screw elements with modified geometries should be explored for improvement in solid-liquid mixing.

Prof. Thomas De Beer Prof. Ingmar Nopens Prof. Krist V. Gernaey

Valérie Vanhoorne Fien De Leersnyder Dr. Jurgen Vercruysse

Maunu Toiviainen Dr. Mikko Juuti

Maija Alakarjula Prof. Jarkko Ketolainen

Discrete element method (DEM): detailed simulation of wet granulation

Involved physics in granulation

- Mixing
- Wetting
- Aggregation (PBM)
- Breakage (PBM)

Challenges of PBM

- Does not include geometrical effect
- Rate of sub-processes (i.e. aggregation, breakage) is lumped into kernels which are
 - Size dependent
 - Energy/shear dependent
- Need extensive experimental calibration

Every contact and neighborhood matter!

DEM for detailed investigation

Particle scale DEM

Initial parameter values

Parameter	values
Throughput	10-25 kg/h
Material density	1500 kg/m3
Bulk density	500-750 kg/m3
Particle diameter	30-70 μm
Number of particles	~60- 150 million # /sec

A lot of detail can be extracted

Sheared-box simulation

Breakage is dominant mechanism at high fill ratio

Laboratory of Pharmaceutical Process Analytical Technology

Ashish.Kumar@UGent.be