Supplementary Information

Table S1: Species-specific bark thickness regression equations

Species	Equations	r.2
Carya cordiformis	ln[B]=-1.56+0.416*ln[DBH]	0.226
Carya glabra Carya ovalis	ln[B]=-0.393+0.268*ln[DBH] ln[B]=-2.18+0.651*ln[DBH]	$0.040 \\ 0.389$
Carya tomentosa Fagus grandifolia	ln[B]=-0.477+0.301*ln[DBH] ln[B]=1*ln[DBH]	0.297 NA
Fraxinus americana	ln[B]=0.418+0.268*ln[DBH]	0.256
Juglans nigra	$\ln[B] = 0.346 + 0.279 \ln[DBH]$	0.246
Liriodendron tulipifera Quercus alba	ln[B]=-1.14+0.463*ln[DBH] ln[B]=-2.09+0.637*ln[DBH]	$0.545 \\ 0.603$
Quercus prinus	ln[B] = -1.31 + 0.528*ln[DBH]	0.577
Quercus rubra	ln[B] = -0.593 + 0.292*ln[DBH]	0.087

Table S2: Species-specific height regression equations

Species	Equations	r.2
Carya cordiformis	0.332+0.808*x	0.874
Carya glabra	0.685 + 0.691 *x	0.841
Carya ovalis	0.533 + 0.741 *x	0.924
Carya tomentosa	0.726+0.713*x	0.897
Fagus grandifolia	0.708 + 0.662 * x	0.857
Liriodendron tulipifera	1.33+0.52*x	0.771
Quercus alba	0.74 + 0.645 *x	0.719
Quercus prinus	0.41 + 0.757 *x	0.886
Quercus rubra	1.00+0.574*x	0.755
all	0.839 + 0.642 *x	0.857

Table S3: Palmer drought severity index (PDSI) by month for focal droughts and other years referenced in the manuscript

year	month	PDSI	rank	SPEI.12	rank.1
focal droughts					
1966	May	-2.98	2	-1.81558	1
NA	June	-3.40	2	-1.59211	3
NA	July	-4.08	2	-1.82143	2
NA	August	-4.82	1	-2.31902	1
1977	May	-2.96	3	-0.55995	15
NA	June	-3.28	3	-1.02211	6
NA	July	-3.61	3	-1.15754	6
NA	August	-3.68	3	-1.25919	5
1999	May	-3.63	1	-1.53213	2
NA	$\overline{\mathrm{June}}$	-4.21	1	-2.17327	1
NA	July	-4.53	1	-2.05719	1
NA	August	-4.64	2	-2.10613	2
others					
1964	May	-1.08	20	-0.95005	8
NA	$\overline{\mathrm{June}}$	-1.97	11	-1.52262	4
NA	July	-2.46	8	-1.41640	3
NA	August	-2.98	5	-1.73564	4
1991	May	-1.79	10	0.72003	39
NA	$\overline{\mathrm{June}}$	-2.10	10	0.99093	42
NA	July	-2.17	10	0.48912	36
NA	August	-3.06	4	-0.03232	22
2007	May	-1.37	16	0.56800	32
NA	June	-1.59	16	-0.23301	16
NA	July	-2.40	9	-0.46184	13
NA	August	-2.55	11	0.12468	26

Table S4. Correlation of species' traits with tree height across all individuals in the ForestGEO plot

variable	model	coefficient	p-value
WD	$WD\sim ln[H]$	-0.16	0
LMA	LMA~ln[H]	7.86	0
ring porosity	ring porosity~ln[H]	0.34	0
PLA	PLA~ln[H]	1.37	0
TLP	$PLA\sim ln[H]$	0.13	0

Figure S1: Map of ForestGEO plot showing TWI and location of cored trees

Figure S2: Time series of Palmer Drought Severity Index (PDSI) for the 2.5 years prior to each focal drought

Figure S3: Changes in height by canopy position