Let's go cisco live!

Lessons Learned from Designing Routed Optical Networks

... or how to embrace tradeoffs for fun and profit

Emerson Moura, Distinguished Solutions Engineer

Acknowledgements

- Authors:
 - Dirk Schroetter, Technical Solutions Architect
 - Velimir Vujnovic, Principal Architect

- The bare minimum of analog domain
- Lesson 1: Optical Performance
- Lesson 2: Build on IP traffic demands, not capacities
- Lesson 3: Topologies & architectures matter, but constraints even more so
- Lesson 4: IP services are protected and restored using IP
- Summary

"If you haven't found the tradeoffs, you haven't looked hard enough."

Russ White's Rule #1 Mr. EIGRP

The bare minimum on the analog domain

DWDM transport is analog technology

In order to deal with intrinsic modeling complexity, we split the problem in smaller pieces.

> Example: end-to-end service is split into smaller WSS Domains: ROADM to ROADM -> WSS Domain 1 and WSS Domain 2

BRKOPT-2015

Acronyms:

- WSS: Wavelength selective switch
- ROADM: Reconfigurable Optical Add/Drop Multiplexer

DWDM transport is analog technology (Cont'd)

Typical flow for optical analisys:

Required input:

Topology (span length & attenuation), EOL margins

Method:

Gaussian Noise simulation

Interesting:

• How we build the Add/Drop structure for the ROADM

Lesson 1: Optical Performance

ZR+ and Transponder performance - comparable

Example from latest customer Cisco OpenZR+ test over 3rd party DWDM

Lesson 2: Build on IP traffic demands, not capacities

US operator "metro" simulation results

- Simulation using P95 of busy hour traffic
- X Tb/s busy hour traffic.
- 8 X Tb/s installed capacity
- Single wavelength on aggregation rings

Original design - dual-homed

34.1 Gb/s

Routed Optical Networking benefits

29.3
Gb/s
Median site traffic

-97%
Wavelength usage

-95% Energy usage

Transforming Hub & Spoke to Hop-by-Hop

Original design - dual-homed

Customer reported being short on wavelengths

Simulation Results

	PMO at 40% max installed capacity	P95 busy hour traffic
Sum inter-site demands	6.408 Tb	1.976 Tb
Inter-site installed capacity	38.7 Tb	30.3 Tb
Intra-site installed capacity	67.26 Tb	62.8 Tb
ZR/ZR+ pluggables	194	152
Grey pluggables	334	314
Maximum λ used between hubs	4	2
Maximum λ used on rings	2	1
WC link utilization	100 %	70.69 %

Power savings from TXP elimination alone: 55.000 kWh p.a.

Lesson 3: Topologies & architectures matter, but constraints even more so.

A toy network showing the concept ...

Number of interfaces

- · Not "one size fits all"
- Consider:
 - · Fiber cost / availability
 - Relative importance of sites
 - Achievable bitrates
 - · Impact on resiliency
 - Physics
- · Both approaches have their place in designs.

A toy network showing the concept ...

Number of interfaces

- Not "one size fits all"
- Consider:
 - · Fiber cost / availability
 - Relative importance of sites
 - Achievable bitrates
 - Impact on resiliency
 - Physics
- · Both approaches have their place in designs.

Limitted by physics to 200G - 8 interfaces in total

A toy network showing the concept ...

Number of interfaces

Same demand, 6 interfaces instead of 8

- · Not "one size fits all"
- Consider:
 - · Fiber cost / availability
 - Relative importance of sites
 - Achievable bitrates
 - Impact on resiliency
 - Physics
- · Both approaches have their place in designs.

Real example 1

Real example 2

Key takeaways

- Be pragmatic.
 - Optical bypass is a valid design choice as seen in previous examples
 - Use hop—by-hop and optical bypass the combination will likely provide the best result.

Physics forcing architectures

What can you do in order to increase fiber capacity?

Wider channel	Better FEC	Higher modulation	Better spectral efficiency	Use L-Band
"Easily" done	Increased reach	More bits per symbol -> Higher capacity	More b/s/Hz	"Easily" done
Increased capacity per channel	Higher overhead eats into usable capacity	Reach: ~ 1/(constellation size)	Dispersion coefficient $oldsymbol{eta}$	Doubles # channels
Fewer channels	Power, real estate, cost	X km @ 16QAM -> X/4 km @ 64QAM	Nonlinear coefficient γ	Increases attenuation
Increased blocking probability	No "dramatically better" FEC on horizon	Reality check	Reduce attenuation	Negatively impacts spectral efficiency
		Requires drastically different fiber to to have big effect	Reduce reach	Not well suited for some fiber types (ex. low dispersion fibers)

Not a question of "if" but "when" physics mandates shorter paths

Lesson 4: IP services are protected and restored using IP

Omnidirectional Add/Drop

Wiring determines direction

Channel switched to direction

Colorless Add/Drop

OK, so what is the use case?

Optical Protection

Bridge green λ to lower part of network – same patch panel port

Optical Restoration with recoloring

Compute new path (optical control plane) and change to $red \lambda$ – same port

Is λ blocking really an issue?

It can be - especially in meshed networks! (Only probabilities >= 10 % shown)

Negative effect on OSNR & bitrate due to CDC

Does optical restoration work for the Asia net?

Relations	157
Relations w/o regenerators	121
Relations >= 2 spans	117
Restorable on same bitrate	82
Requires regenerators standing-by on the restoration paths	35

Optical restoration is (by design) not fast - think minute(s)

Of the three networks, Asia network was specifically set up for DWDM restoration

Does optical restoration work for the Asia net?

Relations	157
Relations w/o regenerators	121
Relations > 2 spans	117
Restorable on same bitrate	82
Requires regenerator	35

Relations	157
Relations w/o regenerators	121
Relations > 2 spans	N/A
Restorable on same bitrate	72
Requires regenerator	49

Optical restoration is (by design) not fast – think minute(s)

Of the three networks, Asia network was specifically set up for DWDM restoration

Actual Network Results

Reduced TCO with enhanced availability vs. Present mode of Operation

What about Reliability?

PMO = 50% additional cost for equivalent availability to the Routed Optical Network

Present Mode of Operation	Routed Optical Networking
~ 45 Tbps traffic demands	All IP Protection/Restoration
Optical Restoration used	Saved 12000 km of fiber (3 x LA -> NYC)

"Design is an iterative process. You probably need one more iteration than you've done to get it right.

Russ White's Rule #2 Mr. EIGRP

That EMEA network - customer view

Switching to single plane

Customer Ask Final Solution Protection Electrical Switch Transponder **OPS** Router Router 290 292 400G IFs 400G IFs 580 Wavelengths Wavelengths # DWDM # DWDM systems systems

... still survives complete failure at A, B

Summary

Conclusion

- It is all about tradeoffs
- Design from IP layer down
- Physics determine trade-offs...
- Know your IP demands
- Simplify DWDM network
 - Add/Drop structures
 - IP "restoration"
- Design tools

Thank you

