Long Title of This Talk With A Subtitle If Necessary

Author W. Fullname

The University of Texas at Austin

December 7, 2014

Your 10-15 minute presentation will have ...

- 2 slides on intro to the problem
- what feature you're adding if appropriate
- build system and version control infos
- Verification plan
- Convergence plots
- Grvy timer results or something similar
- Code coverage (if appropriate)
- How did you start out?
 - ▶ What worked?
 - What didn't work?
- If you were starting over . . .
 - ► What would you do differently?
 - What would you do the same?
 - Lessons learned

Basic Slide

This is a basic slide. There are many like it, but this one is mine.

- item 1
- item 2
- item 3
- item 4

Example 1: 2 Blocks with nested item lists

First Block

- First Item
 - ► Subitem
- · Second Item:
 - ► More subitems
 - And more

Second Block

With an item

Example 2: 2 Columns; one column with two blocks, one block with two columns!

Block 2

- item A
- item B

Block 3

- item a
- item b
- item c
- item d

Image and Bullet points

- Validation is done repeatedly with increasingly complex scenarios
- Validation pyramid may be recursive

Two Blocks with added text for emphasis

V&V-UQ framework requires experimental data

Calibration of component model parameters

- Thermochemistry (e.g. kinetic parameters)
- Radiation (e.g. absorptions & emissions)
- Turbulence (e.g. model constants)
- Ablation (e.g. kinetic parameters)

Validation

- Component and subcomponent models
- Coupling between models
- · Full system

1 Block and 1 Image in Column format

Extensive experimental data

- Space Act Agreement
 - Ames EAST
 - Langley RCS
 - ► Ames & JSC Arc Jets
 - ► AEDC T9
 - ► CUBRC
 - ► Cal Tech
- Legacy data
- Sandia
- PECOS

Facility	Description	Flow	Measure	Calibration	Validate
UT	TGA	N/A	Mass(T) slow heat	Ablation Kinetics	Ablation
EAST	Shock Tube	Hypersonic	Radiometry	Chemistry, Radiation	Aerothermo radiation
Langley	RV model	M=6,10,cold, laminar	q_s,T_s		Navier- Stokes
Langley RCS	RCS model	M=10,cold, laminar	q_S, P_s		Navier- Stokes
Sandia HWT	Sphere-cone model	M=5,8,14, cold	P_s, ρ_u	Turbulence	Turbulence
Sandia TWT	Turbulent BL w/steady cross- flow	M=0.8,cold	u(2-D)	Turbulence	Turbulence
Sandia TWT	Turbulent bound- ary layer	M < 3, cold	P_s , u(2 - D)	Turbulence	Turbulence
Langley	Legacy Boundary layer experiments	M < 11, cold	ρ_u, T	Turbulence	Turbulence
AEDC T9	RV model w/wo roughness	M=6,cold	q_s, T_s	Turbulence	Turbulence, transition
ArcJet	PICA and copper targets	M < 12, hot,long	Particle density	Particles	Part. gen/ transport
ArcJet	Ablative material flow	M < 12, hot,long	$q_s, T_s, \sigma_s,$ Recession		All
CUBRC LENS 1	Model w/ blow- ing / roughness	M < 25, hot	P_s, q_s, T_s, σ_s		All except ablation
CUBRC LENS	Model w/ RCS jets	M < 25, hot	P_s, q_s, T_s, σ_s		All except ablation
CUBRC LENS X	RV Model	M < 25, hot	P_s, q_s, T_s, σ_s		Turbulence, chemistry, radiation
CalTech T5	RV Model	M < 5, hot,laminar	q_s, T_s		Chemistry, radiation, transport
Fire II	Apollo-era flight test		$q_s, T_s,$ Radiometry		All
Apollo IV	Apollo lunar ex- change flight test		$q_s, T_s,$ Radiometry		All
LEO	CEV Low ex- change orbit		$q_s, T_s,$ Radiometry		All
LEX	2m capsule lunar exchange		$q_s, T_s,$ Radiometry		All
Stardust	Comet sample- return mission		TPS condi- tion		All

1 image and 1 itemized Block

Goals

- Calibrate and (in)validate a two-temperature thermochemical model
- Investigate implementation of the validation cycle with QUESO
- Develop a 1D problem for future exploration of adjoints

Block and then Two Images in a Column

Facility

- LENS I HST
 - Variable Re reflected shock tunnel
 - ► Tests: Perfect gas data, enthalpy effects, distributed roughness, roughness w/ blowing, high-fidelity
- LENS XX
 - ► Variable Re shock expansion tunnel
 - ► Tests: Facility and measurement capabilities similar to EAST
- Visit planned for May 2009

Two Images in Two Blocks in a Column

11 / 13

Fancy Block / Column work

Goals

- Demonstrate capability to couple ablation and radiation models with existing hypersonic code (DPLR)
- Evaluate sensitivity of the ablation rate and peak heat flux (Qols)
 - Identify most important models
 - Evaluate utility of surrogate quantities of interest

Coupled hypersonic flow for LEO and lunar reentry, including:

- Arrhenius chemistry
- Gray temperature dependent radiation
- Algebraic(Baldwin-Lomax) turbulence models

- Thermal nonequilibrium
- Single phase flow (i.e. no particles)

- 1-dimensional solid-phase ablation with ad hoc kinetics (as in CMA, FIAT, Chaleur)
- Equilibrium surface chemistry

Thank you!

Questions?