Федеральное государственное образовательное бюджетное учреждение высшего образования

«Финансовый университет при Правительстве Российской Федерации» Московский филиал Финуниверситета

Кафедра «Информационные технологии и анализ больших данных»

ДОМАШНЕЕ ТВОРЧЕСКОЕ ЗАДАНИЕ

по дисциплине «	Эконометрика»
на тему: «Эконометрически	й_анализ_рынка_жилой_недвижимости»
	Выполнила студентка2_ курса,
	группыПМ22-3,
	формы обученияочная
	Перминова_Мария_Александровна
	Проверил преподаватель:
	Михайлолва_Светлана_Сергеевна
	профессор ДАДиМО

Содержание:

1) Актуальность, цель, задачи, гипотезы работы	3
2) Данные	3
3) Алгоритм автоматизированного создания спецификации модели	5
а) Автоматизированный отбор значимых факторов с помощью метода включе	ния5
b) Подсчёт основных статистических показателей для всех моделей: статисти Стьюдента для коэффициентов регрессии, тест Фишера для всей модели	
с) Проверка на наличие гетероскедастичности	6
d) Проверка на наличие автокорреляции	7
е) Проверка на наличие мультиколлинеарности	7
4) Оценка качества модели	7
5) Заключение	8
Вывод: как результат мы получили таблицу с помощью которой можно делать предсказания о стоимости квартиры на основе её характеристик. (см файл df в папке решения)	_factors2.csv
Способы применения работы:	8
Что пробовала, но не получилось:	9
Полезные ресурсы:	9

1) Актуальность, цель, задачи, гипотезы работы

Актуальность: анализ рынка жилой недвижимости и дальнейшее построение моделей для прогноза стоимости важная задача, в качественной реализации которой заинтересованы многие группы лиц: риэлторы, люди, планирующие приобретение жилья, инвесторы, экономисты и пр.

Цель работы: Создать программу, которая автоматизирует процесс построения спецификаций эконометрических моделей. С помощью полученного алгоритма на основе данных по регионам России за 2018-2021 года создать для каждого из регионов качественную модель.

Задачи:

- 1) Найти готовый датасет, в котором будут представлены данные о российском рынке недвижимости (мы будем рассматривать только квартиры).
- 2) Предобработать данные, посмотреть статистики, сделать выводы
- 3) Написать алгоритм автоматизированного создания спецификации модели. Данный алгоритм должен включать в себя: отбор факторных переменных, проверку на значимость коэффициентов и уравнения в целом, проверку на наличие гетероскедастичности, автокорреляции и мультиколлинеарности.
- 4) Выбрать из датафрейма несколько наблюдений, сделать для них предсказание, рассчитать ошибку, сделать вывод о качестве моделей.

Гипотеза: у каждого региона в силу экономических, географических и прочих особенностей цены на квартиры формируются по-разному. Определенные значения факторов могут сильно увеличивать стоимость квартиры.

2) Данные

В качестве данных для работы были выбраны данные с платформы kaggle о российской недвижимости по 84 регионам за 2014-2021 года.

https://www.kaggle.com/datasets/mrdaniilak/russia-real-estate-20182021

Данные имеют следующие поля:

- 'date' дата публикации объявления;
- `time` время публикаци объявления;
- 'geo_lat' значение координаты (широта);
- 'geo_lo' значение координаты (долгота);
- 'region' код региона РФ;
- `building_type` Тип здания. 0 Прочее. 1 Панельный дом. 2 Монолит. 3 Кирпичный. 4 Блочный. 5 Деревянный;
- `object_type` Тип квартиры. 1 Вторичное жилье; 11 Новая квартира в новостройке;
- `level` Этаж, на котором находится квартира;
- `levels` Количество этажей;
- `rooms` Количество жилых комнат. Если значение -1 это значит, что квартира является "студией";
- `area` Совокупная площадь квартиры;
- `kitchen_area` Площадь кухни;
- 'price' Цена в рублях РФ.

Была проведена предобработка данных. Были убраны выбросы, добавлен столбец region_name, путём получения с помощью сервиса (https://www.geonames.org/) по значениям широты и высоты названий регионов России. Среди регионов было решено оставить те, по которым есть хотя бы 500 наблюдений, т.к. например для Сахалинской области в датасете было только 8 наблюдений, что крайне мало.

Также данные были проверены на наличие пустых значений, таковых не оказалось. После предобработки для каждого из регионов были построены гистограммы распределения цен и графики box plot. Данные графики уже на этапе анализа данных могут многое сказать о рынке недвижимости того или иного региона.

Например для Москвы средняя стоимость квартиры примерно 8 млн. руб. В то время как для Московской области средняя цена приблизительно 5 млн. руб.

А если посмотреть на графики распределения цен на квартиры, будет видно, что многие из них имеют правостороннюю асимметрию.

Также были построены матрицы корреляции и матрицы частных коэффициентов корреляции для удобства ручного анализа.

- 3) Алгоритм автоматизированного создания спецификации модели
- а) Автоматизированный отбор значимых факторов с помощью метода включения

В качестве подхода к отбору факторов для модели я использовала пошаговый метод.

- 1) На первом шаге мы строим модель парной регрессии с фактором, коэффициент корреляции у которого с целевой переменной максимальный.
- 2.1) Далее на каждом шаге цикла выбирается тот фактор, добавление которого в модель увеличивает коэффициент детерминации наибольшим образом.
- 2.2) Важно, что если рассматриваемый фактор имеет сильную корреляционную связь, (более 0.8) с другими, уже отобранными факторами, такой регрессор в модель не включаем.
- 3) В случае малого количества факторных переменных, мы можем менять значение переменной level, которая отвечает за минимальный прирост коэффициента детерминации при добавлении нового фактора в модель

Как результат мы получаем датафрейм, где каждому региону соответствует список факторных переменных.

	region_name	factors
0	Санкт-Петербург	['area', 'date_encoded', 'kitchen_area', 'room
1	Московская область	['area', 'levels', 'date_encoded', 'kitchen_ar
2	Нижегородская область	['area', 'rooms', 'date_encoded', 'levels', 'o
3	Краснодарский край	['area', 'date_encoded', 'building_type', 'roo
4	Москва	['area', 'date_encoded', 'building_type', 'obj

b) Подсчёт основных статистических показателей для всех моделей: статистики Стьюдента для коэффициентов регрессии, тест Фишера для всей модели

Далее для каждого региона строим модели множественной линейной регрессии с помощью пакета statsmodels, рассчитываем t статистики Стьюдента для каждого из факторов. Сохраняем списки статистически значимых факторов для каждого из регионов. Далее опять строим модели множественной линейной регрессии, но уже беря только статистически значимые факторы, рассчитываем F статистику Фишера для всего уравнения в целом. Результат данного этапа выглядит следующим образом:

	region_name	factors	t_test	factors_significant	F_test
0	Санкт-Петербург	[area, date_encoded, kitchen_area, rooms, leve	[True, True, True, True, True, True, True, True, True, True, Tru	[area, date_encoded, kitchen_area, rooms, leve	True
1	Московская область	[area, levels, date_encoded, kitchen_area, obj	[True, True, True, True, True, True]	[area, levels, date_encoded, kitchen_area, obj	True
2	Нижегородская область	[area, rooms, date_encoded, levels, object_typ	[True, True, True, True, True, True]	[area, rooms, date_encoded, levels, object_typ	True

с) Проверка на наличие гетероскедастичности

Для проверки на наличие гетероскедастичности, было решено использовать графический метод (Q-Q plot), а также тест Шапиро-Уилка. Данный тест хорошо себя показывает как на малых, так и на больших выборках, в случае наших данных. Тест не выполняется ни для одного из регионов. Это показалось подозрительным, поэтому я провела ещё тест Хетера-Бройша-Пагана, результат тот же. Наличие гетероскедастичности я могу объяснить тем, что в наших данных присутствуют наблюдения для разных квартир, и, условно, нашу выборку можно разбить на более мелкие подвыборки. Посмотрим как это скажется на предсказательной способности модели.

d) Проверка на наличие автокорреляции

В качестве теста на автокорреляцию был выбран тест Дарбина-Уотсона, все предпосылки для его применения выполняются: гетероскедастичность отсутствует, нет ошибок в спецификации моделей. Все регионы прошли тест, автокорреляция отсутствует.

е) Проверка на наличие мультиколлинеарности

Учитывая, что при отборе факторов для каждой модели при прямом проходе мы добавляли регрессор в модель только в том случае, если он не коррелировал с остальными, мы сильно снизили вероятность возникновения мультиколлинеарности. Будем использовать VIF тест. Высокий VIF для одного из регрессоров означает, что этот регрессор сильно коррелирован с другими переменными в модели. Факторы с высоким значением VIF мы убираем.

Также в самом конце добавим в нашу единую таблицу столбец с коэффициентами регрессии. В результате мы получили таблицу, в которой содержится вся необходимая информация для построения моделей.

4) Оценка качества модели

Выберем для каждого региона рандомные 300 строк, сделаем предсказания и оценим качество модели с помощью метрики МАРЕ.

Средняя ошибка модели 0.25, что является хорошим результатом.

```
np.mean(mape_list)
0.25070693056413246
```

Вот значения МАРЕ для первых 5 регионов:

```
mape_list[:5]

[0.286043550959676,
0.3326830012276756,
0.3776038953490468,
0.3256199459970478,
0.22828061419768422]
```

Минимальные и максимальные значения ошибки. В наилучшем случае модель ошибается в 10% наблюдений, в наихудшем в 40%

```
min(mape_list), max(mape_list)
(0.12572382926590125, 0.4027298009514719)
```

5) Заключение

Вывод: как результат мы получили таблицу с помощью которой можно делать предсказания о стоимости квартиры на основе её характеристик. (см файл df_factors2.csv в папке решения)

Способы применения работы:

- 1) Если к имеющимся данным добавить различные экономические факторы с росстата, например рождаемость в регионе, уровень развития строительного бизнеса и пр., можно будет выявить нетривиальные закономерности между регионом и факторами, которые влияют на стоимость квартир.
- 2) Если спарсить данные с 2021 по 2023 года и добавить к нашим данным, то можно использовать алгоритм для предсказания стоимости квартир в регионах на следующий год. Это может быть полезно риелторам, а также людям, планирующим покупку жилья в будущем.
- 3) Несмотря на то, что наличие гетероскедастичности не сильно испортило качество модели, в будущем будет полезно научиться её смягчать. Для этого можно использовать как классические подходы, так и пытаться строить модели на данных в разрезе региона и других факторов.

Что пробовала, но не получилось:

1) Парсить данные. За основу было взято готовое решение (https://github.com/lenarsaitov/cianparser), однако данный парсер извлекал из данных не все доступные поля (метро, например), а также использование сторонних прокси, не решало проблему появления капчи. В будущем планируется написание собственного парсера, способного извлекать информацию о расстоянии до метро, название района, где находится квартира и пр.

Полезные ресурсы:

- 1) <u>https://www.kaggle.com/datasets/mrdaniilak/russia-real-estate-20182021</u>
- 2) <u>https://studfile.net/preview/2829140/page:8/</u>
- 3) https://github.com/romanakentev/real-estate/blob/main/Real_Estate_ENG.ipynb
- 4) https://www.hse.ru/mirror/pubs/share/423684138.pdf
- 5) https://github.com/lenarsaitov/cianparser