Appendix N

Proposed DO-260B Provisions for Backward

Compatibility with DO-260 and DO-260A

Message Formats

N Proposed DO-260<mark>BA</mark> Provisions for Backward Compatibility with DO-260 and DO-260A Message Formats

N.1 Introduction

N.1.1 Purpose of this Appendix

This Appendix:

- a) Defines the formats and coding for extended squitter ADS-B Messages that are broadcast by ADS-B Version Zero (0), RTCA DO-260 conformant 1090 MHz ADS-B Subsystems;
- b) Defines the formats and coding for extended squitter ADS-B Messages that are broadcast by ADS-B Version One (1), RTCA DO-260A conformant 1090 MHz ADS-B Subsystems; and
- Defines how the ADS-B report generation function of Version TwoOne (24) 1090 MHz ADS-B Receiving Subsystems is to utilize messages received from targets that are broadcasting with either Version Zero (0) or Version One (1) message formats.

N.1.2 Message Version Number

The Version Number for all 1090 MHz ADS-B Messages originating for each specific ADS-B target is determined from the decoding of the Version Number subfield of the Aircraft Operational Status Message. An ADS-B Version One (24) Receiving Subsystem initially assumes that the messages conform to Version Zero (0) message formats, until or unless received Version Number data indicates otherwise. The Version Number is retained and associated with all messages from that specific target. This Version Number is used for determining the applicable message formats to be applied for the decoding of all 1090 MHz ADS-B Messages received from that target.

N.2 1090 MHz ADS-B 1090 MHz ADS-B-Version 0 Message Processing

N.2.1 ADS-B Version 0 Message Types Message Types

Table N-1 provides those ADS-B Version Zero (0) (i.e., originating from a RTCA DO-260 conformant 1090 MHz ADS-B Transmitting Subsystem) 1090 MHz ADS-B Messages that are to be used for ADS-B report generation by a Version One-Two (21) conformant 1090 MHz ADS-B Receiving Subsystem.

Note: Table N-1 lists only those Version Zero (0) 1090 MHz ADS-B Message types that are required to be received and used for ADS-B report generation by a Version One Two (42) 1090 MHz ADS-B Receiving Subsystem. The other Version Zero (0) ADS-B Messages types defined by RTCA DO-260, including messages types 29 and 30, are not to be used by Version TwoOne (42) ADS-B Receiving Subsystems for the purpose of ADS-B report generation.

Table N-1: Version Zero (0) ADS-B Message Types

Message Format TYPE Code(s)	Assignment	Nominal Broadcast Rate
1 through 4	Extended Squitter Identification and Category	5.0 s airborne/10.0 s surface
5 through 8	Extended Squitter Surface Position	0.5 s in motion/5.0 s stationary
9 through 18 and 20 through 22	Extended Squitter Airborne Position	0.5 s
19	Extended Squitter Airborne Velocity	0.5 s
28	Extended Squitter Aircraft Status (e.g., emergency/priority)	1.0 s
31	Aircraft Operational Status	1.7 s

N.2.1N.2.1.1 Message TYPE Codes

The first 5-bit field in every 1090 MHz ADS-B Message contains the message format TYPE. As shown in Table N-2, the TYPE code (i.e., format type) is used to differentiate the messages into several classes: airborne position, airborne velocity, surface position, identification, aircraft status, etc. The general definition for all ADS-B Messages Types used for Version Zero (0) ADS-B Messages has been retained for Version One-Two (42) messages. It must be noted for Version Zero (0) ADS-B Messages, format TYPE Code 29 was defined but the corresponding messages were not to be transmitted. For Version Zero (0) ADS-B Subsystems, TYPE code 29 was associated with intent messages conveying Trajectory Change Point (TCP) information. Although the message formats for TCP related messages were defined within RTCA DO-260 the requirements and the associated test procedures prohibited the broadcast of such messages. RTCA DO-260 defined TYPE Code 30 for Aircraft Operational Coordination Messages. requirements and associated provisions for Aircraft Operational Coordination Messages have now been withdrawn by this version of these MOPS. Although RTCA DO-260 (i.e., Version 0) conformant implementations are not prohibited from transmitting Aircraft Operational Coordination Messages (i.e., using TYPE Code 30), Version TwoOne (24) conformant ADS-B Receiving Subsystems have no requirement for the reception and processing of these broadcasts. Version One-Two (42) ADS-B Receiving Subsystems will generate ADS-B reports based only on the reception of Version Zero (0) ADS-B Messages with ADS-B Message TYPE Code values of 0 through 22, 29 and 31.

Table N-2: Format TYPE Codes for Version 0 and Version 24 Messages

ТҮРЕ	Version 0	Version 21				
Code	Message Format	Message Format				
0	No Position Information	No Position Information				
1	Identification (Category Set D)	Identification (Category Set D)				
2	Identification (Category Set C)	Identification (Category Set C)				
3	Identification (Category Set B)	Identification (Category Set B)				
4	Identification (Category Set A)	Identification (Category Set A)				
5	Surface Position	Surface Position				
6	Surface Position	Surface Position				
7	Surface Position	Surface Position				
8	Surface Position	Surface Position				
9	Airborne Position	Airborne Position				
10	Airborne Position	Airborne Position				
11	Airborne Position	Airborne Position				
12	Airborne Position	Airborne Position				
13	Airborne Position	Airborne Position				
14	Airborne Position	Airborne Position				
15	Airborne Position	Airborne Position				
16	Airborne Position	Airborne Position				
17	Airborne Position	Airborne Position				
18	Airborne Position	Airborne Position				
19	Airborne Velocity	Airborne Velocity				
20	Airborne Position	Airborne Position				
21	Airborne Position	Airborne Position				
22	Airborne Position	Airborne Position				
23	Reserved for Test Purposes	Test Message				
24	Reserved for Surface System Status	Reserved for Surface System Status				
25	Reserved	Reserved				
26	Reserved	Reserved				
27	Reserved	Reserved for Trajectory Change				
28	Extended Squitter Aircraft Status	Extended Squitter Aircraft Status				
29	Reserved for Trajectory Intent	Target State and Status				
30	Operational Coordination	Reserved				
31	Operational Status	Operational Status				

N.3N.2.2 State Vector Reports Generated using Version Zero (0) Messages

The following subparagraphs summarize the ADS-B State Vector Report generation requirements (see §2.2.8.1) for Version One-Two (2+) systems when receiving Version Zero (0) ADS-B Messages.

The contents of State Vector Reports are specified in Table 2.2.8.1. The contents of the State Vector Reports are composed primarily from the information received from airborne aircraft in Airborne Position Messages and Airborne Velocity Messages or for aircraft/vehicles on the airport surface in Surface Position Messages. Many of the parameters contained within these messages are encoded the same, and occupy the same positions with the overall message structure, for both Version Zero (0) and for Version One-Two (24) messages. However, in a few cases the decoding and/or report assembly processing must be handled differently for Version Zero (0) messages as compared to that required by these MOPS (§2.2.8.1) for Version One-Two (24) messages. The following subparagraphs describe the required use of Version Zero (0) messages for ADS-B report generation by a Version One-Two (42) compliant ADS-B Receiving Subsystem.

N.3.1N.2.2.1 State Vector Report to 1090 MHz ADS-B Message Mapping

Table 2.2.8.1 specifies the overall State Vector Report format and the source for each parameter that is to be reported when the target aircraft/vehicle is broadcasting with Version One-Two (\$\frac{1}{2}\$) ADS-B Message formats. In a similar fashion, Table N-3 below defines the 1090 MHz ADS-B Message-to-State Vector Report mapping that will be used when the target aircraft/vehicle is broadcasting using Version Zero (0) ADS-B Messages. Note there are some minor differences in the specific names applied to certain otherwise identical Version Zero (0) versus Version Two (\$\frac{1}{2}\$) messages subfields. The only new or changed State Vector Report parameter between RTCA DO-260 (i.e., Version 0) and these MOPS is for—the Navigation Integrity Category (NIC) parameter, which has replaced Navigation Uncertainty Category (NUC) from the initial version of these MOPS. The following subparagraph discusses the NIC parameter and its mapping from Version Zero (0) messages to the State Vector Report. The remaining State Vector Report parameters are described in §2.2.8.1.

The formats of the Version Zero (0) 1090 MHz ADS-B Messages are specified in Figure N-1 through Figure N-7.

Table N-3: ADS-B State Vector Data Elements – Version Zero (0) 1090 MHz ADS-B Messages to Report Structure Mapping

Column #	REPORT STRUCTU	RE	VERSION ZERO (0) MESS RELEVA		CTURE			REPORT ST	RUCTURE	RELEVANT	
	1	2	3	4	5	6	7	8	9	10	11
Item #	Parameter / Contents	Notes	Received Message Structure	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	Units	Data Structure	Data Byte #
0a, 0b	Report Type and Structure Identification	4	Airborne Position - "DF"	N/A	1 – 5	24	N/A	N/A	discrete	MddL Mddd ddddddd ddddddL	0 -2
0c	Validity Flags		N/A	N/A	N/A	16	N/A	N/A	discrete	ddddddd ddddddd	3 - 4
1	Participant Address	4	Airborne Position - "AA" Surface Position - "AA" Airborne Velocity – "AA"	N/A N/A N/A	9 - 32 9 - 32 9 - 32	24	N/A	N/A	discrete	Mddddddd ddddddd DddddddL	5 - 7
2	Address Qualifier		N/A	N/A	N/A	8	N/A	N/A	discrete	00000M0L	8
3	Time of Applicability (Position and Velocity)	4	Airborne Position – "Time" Surface Position – "Time" Airborne Velocity	21 21 N/A	53 53 N/A	24	511.9921875	0.0078125 (1/128)	seconds	Mddddddd ddddddL Mddddddd ddddddL Mddddddd ddddddL	9 - 11
4	Latitude (WGS-84)	4	Airborne Position – "Encoded Latitude" Surface Position – "Encoded Latitude"	23 - 39 23 - 39	55 - 71 55 - 71	24	+/- 180	0.0000215	degrees	SMdddddd ddddddd DddddddL	12 - 14
5	Longitude (WGS-84)	4	Airborne Position – "Encoded Longitude" Surface Position – "Encoded Longitude"	40 - 56 40 - 56	72 - 88 72 - 88	24	+/- 180	0.0000215	degrees	SMdddddd dddddddd DddddddL	15 - 17
6	Altitude, Geometric (WGS-84)	4, 5	Airborne Position – "TYPE", & "Altitude" Airborne Velocity – "Diff. Sign Bit" & "Geo Height Diff. from Baro. Alt."	1 - 5, & 9 - 20 49 50 - 56	33 - 37 41 - 52 81 82 - 88	24	+/- 131,072	0.015625	feet	SMdddddd dddddddd dddddddL	18 - 20
7	North / South Velocity	4, 5	Airborne Velocity – "Direction Bit for N-S Vel." & "N/S Velocity"	25 26 - 35	57 58 – 67	16	+/- 4,096	0.125	knots	SMdddddd ddddddL	21 - 22
8	East / West Velocity	4, 5	Airborne Velocity – "Direction Bit E-W Vel." & "E/W Velocity"	14 15 - 24	46 47 – 56	16	+/- 4,096	0.125	knots	SMdddddd ddddddL	23 - 24
9	Ground Speed while on the Surface	4, 6	Surface Position – "Movement"	6 - 12	38 – 44	8	N/A	N/A	discrete	MdddddL	25

Appendix N Page N - 8

Column #	REPORT STRUCTU	RE	VERSION ZERO (0) MESS RELEVA		TURE			REPORT ST	RUCTURE	RELEVANT	
	1 2		3 4		5	6	7	8	9	10	11
Item #	Parameter / Contents	Notes	Received Message Structure	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	Units	Data Structure	Data Byte #
10	Heading while on the Surface	4, 6	Surface Position – "Ground Track"	14 - 20	46 – 52	8	+/- 180	1.40625	degrees	SMdddddL	26
11	Altitude, Barometric (Pressure Altitude)	4, 5	Airborne Position – "TYPE", & "Altitude"	1 - 5 9 - 20	33 – 37 41 – 52	24	+/- 131,072	0.015625	feet	SMdddddd dddddddd dddddddL	27 - 29
12	Vertical Rate, Geometric/Barometric (WGS-84)	4, 5	Airborne Velocity – "Source Bit for Vert. Rate", "Sign Bit for Vert. Rate" & "Vert. Rate"	36 37 38 - 46	68 69 70 – 78	16	+/- 32,768	1.0	ft./min.	SMdddddd ddddddL	30 - 31
13	Navigation Integrity Category (NIC)	4	Airborne Position "Type Code" Surface Position "Type Code"	1 – 5 1 - 5	33 – 37 33 - 37	8	N/A	N/A	discrete	0000MddL	32
14	Estimated Latitude (WGS-84)	7	Airborne Position – "Encoded Latitude" Surface Position – "Encoded Latitude"	23 - 39 23 - 39	55 - 71 55 - 71	24	24	+/- 180	0.00002 15	degrees	33 - 35
15	Estimated Longitude (WGS-84)	7	Airborne Position – "Encoded Longitude" Surface Position – "Encoded Longitude"	40 - 56 40 - 56	72 - 88 72 - 88	24	24	+/- 180	0.00002 15	degrees	36 - 38
16	Estimated North/South Velocity	7	Airborne Velocity – "Direction Bit for N-S Vel." & "N-S Velocity"	25 26 - 35	57 58 – 67	16	+/- 4,096	0.125	knots	SMdddddd ddddddL	39 - 40
17	Estimated East/West Velocity	7	Airborne Velocity – "Direction Bit for E-W Vel." & "E-W Velocity"	14 15 - 24	46 47 – 56	16	+/- 4,096	0.125	knots	SMdddddd ddddddL	41 - 42
18	Surveillance Status/Discretes		Airborne Position – "Surveillance. Status" Airborne Velocity – "Intent Change Flag"	6 – 7 9	38 – 39 9	4	N/A	N/A	discrete	dddd dddd	43
19	Report Mode		N/A	N/A	N/A	8	N/A	N/A	discrete	000000ML	44
										TOTAL BYTES	45

Notes for Table N-3:

- 1. In the "Data Structure" column (i.e., column 10), "S" indicates the "sign-bit," "M" indicates the Most Significant Bit of the data field, "d" indicates data bits in the field, "L" indicates the Least Significant Bit of the data field, "0" indicates the bit is to always be set to a value of zero (0) and "x" indicates "Don't Care" bits in the data field.
- 2. If data is not available to support theses fields, then the entire data field shall be set to ALL ZEROs if the field is delivered to the application.
- 3. The Report Type Identifier is used to identify the type of ADS-B Report being generated as defined in §2.2.8.1.1.1.
- 4. Items annotated with Note 4 represent "Critical" State Vector items, however certain items are only applicable while airborne and others only applicable while on the surface (see Notes 5 and 6 below).
- 5. Parameters annotated with Note 5 are only present in the State Vector Report when the aircraft is airborne
- 6. Parameters annotated with Note 6 are only present in the State Vector Report with the aircraft is on the airport surface
- 7. Estimated values may be either an actual value from a received message, if available, or a calculated value such as produced by a surveillance tracker algorithm. For example it is possible for a surveillance tracker to produce an updated estimate of the target's horizontal position based on just the receipt of a new velocity message.
- 8. The Time of Applicability is actually a grouping of 3 individual parameters as defined in §2.2.8.1.4

N.3.1.1N.2.2.2 Navigation Integrity Category (NIC)

The ADS-B Version Zero (0) Surface and Airborne Position Messages have associated with each specific TYPE Code a corresponding Horizontal Protection Limit and a 95% Containment Radius. For the purpose of generating a State Vector Report, RTCA DO-260 (i.e., Version 0) mapped these message parameters to a Navigation Uncertainty Category (NUC). As defined by Table 2-11, Version One-Two (21) Surface and Airborne Position Messages associated the ADS-B Message TYPE Code with the parameters of Horizontal Containment Limit (R_C) and Navigation Integrity Category (NIC). Although Version Zero (0) ADS-B Messages were not defined by RTCA DO-260 to directly include a value for NIC, the values defined by Table 2-11 for R_C and NIC have been selected such that the it is possible to map the TYPE Code values from Version Zero (0) ADS-B Message to a corresponding value for NIC. The Surface and Airborne Position Message TYPE Codes associated with Version Zero (0) 1090 MHz ADS-B Messages are mapped to the NIC values shown in Table N-4 for the purpose of generating State Vector Reports.

Table N-4: Version Zero (0) Format Type Code Mapping to Navigation Source Characteristics

		"TYPE" Subfield Code Definitions (DF = 17 o	or 18)	
TYPE Code	Format	Horizontal Protection Limit, HPL	Altitude Type	Reported NIC
0	No Position Information		Baro Altitude or No Altitude Information	0
5	Surface Position	HPL < 7.5 m	No Altitude Information	11
6	Surface Position	HPL < 25 m	No Altitude Information	10
7	Surface Position	HPL < 185.2 m (0.1 NM)	No Altitude Information	8
8	Surface Position	HPL ≥ 185.2 m (0.1 NM)	No Altitude Information	0
9	Airborne Position	HPL < 7.5 m	Baro Altitude	11
10	Airborne Position	7.5 m ≤ HPL < 25 m	Baro Altitude	10
11	Airborne Position	25 m ≤ HPL < 185.2 m (0.1 NM)	Baro Altitude	8
12	Airborne Position	185.2 m (0.1 NM) ≤ HPL < 370.4 m (0.2 NM)	Baro Altitude	7
13	Airborne Position	380.4 m (0.2 NM) ≤ HPL < 926 m (0.5 NM)	Baro Altitude	6
14	Airborne Position	26 m (0.5 NM) \(\leq\) HPL < 1852 m (1.0 NM)	Baro Altitude	5
15	Airborne Position	1852 m (1.0 NM) ≤ HPL < 3704 m (2.0 NM)	Baro Altitude	4
16	Airborne Position	$7.704 \text{ km } (2.0 \text{ NM}) \le \text{HPL} < 18.52 \text{ km } (10 \text{ NM})$	Baro Altitude	1
17	Airborne Position	18.52 km (10 NM) ≤ HPL < 37.04 km (20 NM)	Baro Altitude	1
18	Airborne Position	HPL ≥ 37.04 km (20 NM)	Baro Altitude	0
20	Airborne Position	HPL < 7.5 m	GNSS Height (HAE)	11
21	Airborne Position	HPL < 25 m	GNSS Height (HAE)	10
22	Airborne Position	HPL ≥ 25 m	GNSS Height (HAE)	0

Notes for Table N-4:

- 1. "Baro-Altitude" refers to barometric pressure altitude, relative to a standard pressure of 1013.25 millibars (29.92 in Hg). It does not refer to baro corrected altitude.
- 2. The GNSS height (HAE) defined in Type Codes 20 to 22 is used when baro altitude is not available.
- 3. The horizontal protection level, HPL, is derived from ARINC 429 label 130, which is variously called HIL (Horizontal Integrity Limit) or HPL (Horizontal Protection Level).

N.4N.2.3 Mode Status Reports

Table 2.2.8.2 defines the overall Mode Status Report format and the source for each parameter that is to be reported when the target aircraft/vehicle is broadcasting with Version One-Two (24) ADS-B Message formats. In a similar fashion, Table N-5 below defines the 1090 MHz ADS-B Message-to-State Vector Report mapping that will be used when the target aircraft/vehicle is broadcasting using Version Zero (0) ADS-B Messages. Note that there are some significant differences in the message parameters available from Version Zero (0) versus Version Two (24) ADS-B Messages. As a result, This results in Mode Status Reports related to target aircraft/vehicles broadcasting Version Zero (0) ADS-B Messages being are substantially less complete than would be possible when Mode Status Reports generated from Version One-Two (42) ADS-B Messages are being received. The following subparagraphs discuss those Mode Status Report parameters that must be processed and/or mapped differently for Version Zero (0) ADS-B Messages. The remaining Mode Status Report parameters not specifically addressed in the following subparagraphs will be generated as specified in §2.2.8.2 (i.e., using the same mapping as for Version One-Two (24) ADS-B Messages).

The formats of the Version Zero (0) 1090 MHz ADS-B Messages are specified in Figure N-1 through Figure N-7.

Table N-5: ADS-B Mode Status Data Elements – Version Zero (0) 1090 MHz ADS-B Messages to Report Structure Mapping

Column	REPORT STRUCTU	RE	MESSAGE STRUCTU	IRE RELEV	ANT			REPORT STR	UCTURE RELEV	VANT	
#	1	2	3	4	5	6	7	8	9	10	11
Item #	Parameter / Contents	Notes	Received Version 0 Message Sources	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	Units	Data Structure	Data Byte #
0a,0b	Report Type and Structure		N/A	N/A	N/A	24	N/A	N/A	discrete	MddL Mddd ddddddd dddddddL	0 - 2
0c	Validity Flags		N/A	N/A	N/A	8	N/A	N/A	discrete	ddddddd	3
1	Participant Address		Airborne Velocity - "AA" - OR - Operational Status – "AA" - OR -	N/A N/A	9 – 32 9 – 32	24 24	N/A	N/A	discrete	Mddddddd ddddddd ddddddL	4 – 6
			Aircraft Identification – "AA"	N/A	9 – 32	24					
2	Address Qualifier		N/A reserved for future use			8	N/A	N/A	discrete	00000M0L	7
3	Time of Applicability		N/A	N/A	N/A	16	511.9921875	0.0078125 (1/128)	seconds	Mdddddd ddddddL	8 - 9
4	ADS-B Version		Operational Status – "Version Number"	41 - 43	73 - 75	8	0 - 7	1	discrete	00000MdL	10
5a	Call Sign		Aircraft Identification – "Ident Char."	14 – 56	41 – 88	64	N/A	N/A	Alphanumeric characters	OMdddddL OMdddddL OMdddddL OMdddddL OMdddddL OMdddddL OMdddddL OMdddddL	11 – 18
5b	Emitter Category		Aircraft Identification – "Emitter Category"	6 – 8	38 - 40	8	N/A	N/A	discrete	000MdddL	19
5c	A/V Length and Width Codes	5	N/A	21 - 24	53 - 56	8	N/A	N/A	N/A	00000000	20
6	Emergency/Priority Status		Aircraft Status Message – Subtype 1 – "Emergency/Priority Status"	9 - 11	36 - 38	8	N/A	N/A	discrete	00000MbL	21
7	Capability Codes		Operational Status – "CC-4"	9 - 12	41 - 44	24	See Section N.4.4		00000000 dd000000 0000000	22 - 24	
8	Operational Mode	4	N/A			16	N/A	N/A	N/A	00000000 00000000	25 - 26
9a	SV Quality - NACp		Airborne Position "Type Code" Surface Position "Type Code"	1 – 5 1 - 5	33 – 37 33 - 37	8	N/A	N/A	discrete	00000000	27
9b	SV Quality - NACv		Airborne Velocity Message	11 - 13	43-45	8	N/A	N/A	discrete	00000MdL	28

Column	REPORT STRUCTU	RE	MESSAGE STRUCTU	IRE RELEV	ANT			REPORT STR	UCTURE RELEV	VANT	
#	1	2	3	4	5	6	7	8	9	10	11
Item #	Parameter / Contents	Notes	Received Version 0 Message Sources	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	Units	Data Structure	Data Byte #
			"NUC _R "								
9c	SV Quality – SIL	4, 5	Airborne Position – "Type Code" Surface Position – "Type Code"	1 – 5 1 - 5	33 – 37 33 - 37	8	N/A	N/A	discrete	000000ML	29
<u>9d</u>	SV Quality – SIL Supplement		N/A	<u>N/A</u>	<u>N/A</u>	<u>8</u>	N/A	N/A	<u>discrete</u>	xxxxxLxx	<u>29</u>
<u>9e</u>	<u>SV Quality – SIL</u> <u>Supplement</u>		<u>N/A</u>	N/A	N/A	<u>8</u>	N/A	N/A	discrete	xxxMLxxx	<u>29</u>
<u>9f</u> 9d	SV Quality – GVASV Quality – BAQ (reserved)		N/AN/A	N/AN/A	N/AN/A	<u>8</u> 8	N/AN/A	N/AN/A	discretediscret	xxxxxML000000ML	<u>30</u> 30
9ge	SV Quality – NICbaro	4	N/A	N/A	N/A	8	N/A	N/A	discrete	0000000L	31
10a	Track/Heading and Horizontal Reference Direction (HRD)	4	Airborne Velocity – "SUBTYPE" - "Magnetic Heading Status Bit" Surface Position Message – "Status Bit for Ground Track"	6 - 8 14	38 - 40 46 45	8	N/A	N/A	discrete	0000000L	32
10b	Vertical Rate Type		Airborne Velocity – "Vert. Rate Source"	36	68	8	N/A	N/A	discrete	0000000L	33
11	(Reserved for) Flight Mode Specific Data					8	<u>N/A</u>	<u>N/A</u>	discrete	xxxxxMdL	<u>34</u>
1 <u>2</u> +	Other (Reserved)		Reserved			8		Reserved		ddddddd	3 <u>5</u> 4
										TOTAL BYTES:	36 5

Notes for Table N-5:

- 1. In the "Data Structure" column (i.e., column 10), "S" indicates the "sign-bit," "M" indicates the Most Significant Bit of the data field, "d" indicates data bits in the field, "L" indicates the Least Significant Bit of the data field, "0" indicates the bit is to always be set to a value of zero (0), and "x" indicates "Don't Care" bits in the data field.
- 2. If data is not available to support these fields, then the entire data field shall be set to ALL ZEROs.
- 3. The Report Type Identifier is used to identify the type of ADS-B Report being generated as defined in §2.2.8.1.1.1.

Appendix N

Page N - 14

- 4. This parameter is not available for aircraft/vehicles broadcasting Version Zero (0) ADS-B Messages. If included in the Mode Status report the value of this parameter is to be set to all zeros otherwise it may be omitted from the Mode Status Report and its omission indicated in the Report Type and Structure Parameter using the format defined in Table 2.2.8.2.1.1.
- 5. This parameter is not available for aircraft/vehicles broadcasting Version Zero (0) ADS-B messages. This parameter is to be omitted from the Mode Status Report and its omission indicated in the Report Type and Structure Parameter using the format defined in Table 2.2.8.2.1.1.

N.4.1N.2.3.1 ADS-B Version

The format of the Aircraft Operational Status Message substantially differs between the Version Zero (0) ADS-B Message format shown in Figure N-7 and the Version One Two (42) ADS-B Message format specified in §2.2.3.2.7.3 of these MOPS. The Version One Two (24) Aircraft Operational Status Message format includes an explicit Version Number subfield (ME bits 41-43). For a Version Zero (0) ADS-B Aircraft Operational Status Message, these same bits are unassigned and are expected to be set to a value of ZERO (0). A Version One Two (24) ADS-B Receiving Subsystem will, as a default, assume the received messages are using Version Zero (0) ADS-B Message format unless, or until, an Aircraft Operational Status Message is received and the Version Number is confirmed to be other than Zero. However, in the case of a Version One Two (24) ADS-B Subsystem's reception of an Aircraft Operational Status Message, the ADS-B Receiving Subsystem will decode "ME" bits 41-43 and determine if the target aircraft is broadcasting messages that are ADS-B Version Zero (0) or Version One (1) or Version Two (2) and then decode the remainder of the message in accordance with the message format applicable to that Version Number.

<u>Note:</u> The Version Number determined from the decoding of the Version Number subfield of the Aircraft Operational Status message must be retained and associated with the specific target since it is used in determining the applicable formats to be used for the decoding of the other message types.

N.4.2N.2.3.2 Emitter Category

The ADS-B Report Assembly Function will extract "TYPE" and "ADS-B Emitter Category" from the Aircraft Identification and Category Message (Figure N-3) and encode the "Emitter Category" field of the Mode Status Report as shown in Table 2.2.8.2.7. The Emitter Category conveyed in the Aircraft Identification and Category Message is mapped into the Mode Status Report, Emitter Category field as specified by Table 2.2.8.2.7. However, it must be noted that in the Version Zero (0) Aircraft Identification and Category Message, the Emitter Category subfield conveys a subset of the Emitter Categories allowed by the Mode Status Report.

N.4.3N.2.3.3 A/V Length and Width Code

The A/V Length and Width Code is not conveyed by Version Zero (0) 1090 MHz ADS-B Messages. This parameter is only included in the Mode Status Report when reporting on an aircraft or vehicle that is on the airport surface. When no A/V Length and Wide Code is available, as is the case for target A/V that are broadcasting Version Zero (0) ADS-B Messages, the A/V Length and Wide Code parameter will not be included in the Mode Status Report and its omission so indicated in the Report Type and Structure Parameter using the coding specified in Table 2.2.8.2.1.1.

N.4.4N.2.3.4 Emergency/Priority Status

The Emergency/Priority Status conveyed in the Aircraft Status Message (Figure N-6) will be directly mapped into the Mode Status Report, Emergency/Priority Status field as

specified in §2.2.8.2.9. However, it must be noted that in the Version Zero (0) Aircraft Extended Squitter Status Message, the Emergency/Priority Status subfield conveys a subset of the Emergency/Priority Status categories allowed by the Mode Status Report.

N.4.5N.2.3.5 Capability Codes

The Version Zero (0) Operational Status Message (Figure N-7) conveys Control Codes with information limited to TCAS and CDTI capabilities, as shown in Table N-6. The Version Zero (0) Aircraft Operational Status Message format specifies coding only for the case of CC-4 (En Route Operational Capabilities). Therefore the CC-1, CC-2 and CC-3 subfields, as specified in Figure N-7, are to be considered reserved and not used for Version Zero (0) ADS-B Messages.

For the case of CC-4, this 4-bit (bits 9-12) subfield will be mapped to the Capability Code field of the Mode Status Report as shown in Table N-6. The remaining bits within the Mode Status Report Capability Code field will be set to Zero (0). If no Aircraft Operational Status Message has been received, then the Capability Code field may be omitted from the Mode Status Report and its omission so indicated in the Report Type and Structure Parameter using the coding specified in Table 2.2.8.2.1.1.

	CC-4 Encoding: En Route Operational Capabilities										
	Coding (0) Messages)	Meaning (Version Zero (I) Messages)	Mapping to MS Report Capability Code field								
Bit 9,10	Bit 11,12	(Version Zero (0) Messages)	CC Field Bits 11, 12								
	0 0	TCAS Operational or unknown; CDTI not Operational or unknown	10								
0.0	0 1	TCAS Operational or unknown; CDTI Operational	11								
	1 0	TCAS not Operational; CDTI not Operational or unknown	00								
	1 1	TCAS not Operational; CDTI Operational	01								

Table N-6: En-Route Operational Capabilities Encoding

N.4.6N.2.3.6 Operational Modes

Version Zero (0), RTCA DO-260 conformant, ADS-B Message formats do not define coding for the Operational Mode subfield of the operational status message. Therefore the OM-1, OM-2, OM-3 and OM-4 subfields, as shown in Figure N-7, are to be considered reserved and not used for ADS-B Version Zero (0) messages. Mode Status Reports for target aircraft/vehicles broadcasting Version Zero (0) ADS-B Messages will not include the Operational Mode field in the report and indicate the omission of this parameter in the Report Type and Structure Parameter using the coding specified in Table 2.2.8.2.1.1.

N.4.7N.2.3.7 Navigation Accuracy Category for Position (NAC_P)

The Version Zero (0) ADS-B Surface and Airborne Position Messages have associated with each specific TYPE code a corresponding Horizontal Protection Limit and a 95% Containment Radius (i.e., position error). For a Version One (1) ADS-B Receiving Subsystem, the TYPE codes of the received Version Zero (0) ADS-B Messages will be mapped into the value of the Navigation Accuracy Category for Position (NAC_P) as shown below in Table N-7 for the purpose of generating the Mode Status Report.

Version 0 Message TYPE CODE	Message Format	Position Error (95%)	ADS-B MS Report NAC _P value
0	No Position Info	Unknown	0
5	Surface Position	< 3 m	11
6	Surface Position	< 10 m	10
7	Surface Position	< 0.05 NM	8
8	Surface Position	> 0.05 NM	0
9	Airborne Position	< 3 m	11
10	Airborne Position	< 10 m	10
11	Airborne Position	< 0.05 NM	8
12	Airborne Position	< 0.1 NM	7
13	Airborne Position	< 0.25 NM	6
14	Airborne Position	< 0.5 NM	5
15	Airborne Position	< 1 NM	4
16	Airborne Position	< 5 NM	1
17	Airborne Position	< 10 NM	1
18	Airborne Position	> 10 NM	0
20	Airborne Position	< 4 m	11
21	Airborne Position	< 15 m	10
22	Airborne Position	> 15 m	0

Table N-7: Type Code to NAC_P Mapping

<u>Note:</u> The Position Error column of the table indicates the greater of the horizontal or vertical 95% containment radius as listed in Table N-4 for Version Zero (0) messages.

N.4.8N.2.3.8 Navigation Accuracy Category for Velocity (NAC_v)

The Version Zero (0) ADS-B Airborne Velocity Message (see Figure N-4 and Figure N-5) includes a subfield that conveys the Navigation Uncertainty Category for Velocity (NUC_R). The received value of NUC_R will be mapped directly one-for-one to the Navigation Accuracy Category for Velocity (NAC_V) field of Mode Status Report.

N.4.9N.2.3.9 Surveillance Source Integrity Level (SIL)

The <u>Surveillance–Source</u> Integrity Level (SIL) defines the probability of the integrity containment region described by the NIC parameter being exceed for the selected geometric position source, including any external signals used by the source. The value of SIL can only be inferred from the information conveyed in Version Zero (0) ADS-B

Messages. Table N-8 provides the mapping between the message Type Code for a Version Zero (0) transmitting system and the value of SIL to be reported by a Version One (1) receiving system within the Mode Status Report (see §2.2.8.2.14).

Table N-8: SIL Reporting

Version 0 Message TYPE CODE	Message Format	Integrity Level (probability of exceeding the horizontal containment radius (R _C) without an indication)	ADS-B MS Report SIL value
0	No Position Info	No Integrity	0
5	Surface Position	1 X 10 ⁻⁵ per flight hour or per sample	2
6	Surface Position	1 X 10 ⁻⁵ per flight hour or per sample	2
7	Surface Position	1 X 10 ⁻⁵ per flight hour or per sample	2
8	Surface Position	1 X 10 ⁻⁵ per flight hour or per sample	2
9	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
10	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
11	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
12	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
13	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
14	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
15	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
16	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
17	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
18	Airborne Position	No Integrity	0
20	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
21	Airborne Position	1 X 10 ⁻⁵ per flight hour or per sample	2
22	Airborne Position	No Integrity	0

N.4.10N.2.3.10 Barometric Altitude Integrity Code (NIC_{BARO})

The Barometric Altitude Integrity Code (NIC_{BARO}) parameter of the Mode Status Report is a 1-bit flag used to indicate if the barometric altitude being reported in the State Vector Report has been cross-checked against another source of pressure altitude. The Version Zero (0) ADS-B Messages do not include information related to the cross-checking of barometric altitude. Therefore, Mode Status Reports for target aircraft/vehicles broadcasting Version Zero (0) ADS-B Messages will not include the NIC_{BARO} field in the report and therefore will indicate the omission of this parameter in the Report Type and Structure Parameter using the coding specified in Table 2.2.8.2.1.1.

N.4.11N.2.3.11 Track/Heading and Horizontal Reference Direction (HRD)

Version Zero (0) Airborne Velocity Messages with SUBTYPE equal to 3 or 4 include a "Magnetic Heading Status Bit" as shown in Figure N-4. A 1090 MHz ADS-B Receiving Subsystem, upon receiving an Airborne Velocity Message with a Subtype of 3 or 4, must decode the Magnetic Heading Status Bit to determine if Magnetic Heading Data is "Available." The ADS-B Receiving Subsystem will set the value of the True/Magnetic Heading subfield (see §2.2.8.2.17, of the Mode Status Report), as specified in Table N-9.

Table N-9: Track/Heading and HRD Subfield

Version 0 Airborne Velocity Message SUBTYPE	Airborne Velocity Message "Magnetic Heading Status Bit"	Surface Position Message "Ground Track Status Bit"	Meaning	ADS-B MS Report True/Magnetic Heading subfield coding Bits 1 - 0
N/A	N/A	0	No Valid Track/ Heading or Heading Direction Reference information available	00
1 or 2	N/A	1	Ground Track being reported	01
3 or 4	0	N/A	Heading relative to true north being reported	00
3 or 4	1	N/A	Heading relative to magnetic north being reported	11

Notes:

- 1. When no valid data is available the "Track/Heading and HRD" parameter may be reported as ALL ZEROs, or omitted, from the Mode Status Report and the omission of this parameter indicated in the Report Type and Structure Parameter using the coding defined in Table 2.2.8.2.1.1.
- 2. As defined in §2.2.8.2.17, when receiving Version One (1) messages, the Track/Heading and HRD information are conveyed within the Operation Status Message. However, when receiving Version Zero (0) messages the equivalent information can be determined for airborne aircraft from the value of the "SUBTYPE" subfield and for Subtype=3 or 4 messages the value of the "Magnetic Heading Status Bit" of the Airborne Velocity Message (Figure N-4 and Figure N-5). When a target aircraft/vehicle is on the surface a value of 01 should be reported when a Surface Position Message (Figure N-2) is received with the "Ground Track Status Bit" set to a value of ONE (1) indicating that the valid ground track data is provided.
- 3. Version 0 Airborne Velocity Messages, Subtypes 3 and 4 always report Heading relative to Magnetic North, never relative to True North.

N.5N.2.4 Air Referenced Velocity Reports

The requirements of §2.2.8.3.2 for Air Referenced Velocity (ARV) Reports apply to the ARV Report Assembly requirements when the target aircraft is broadcasting either Version Zero (0) or Version TwoOne (21) ADS-B Message formats.

N.6N.2.5 Target Status Reports

RTCA DO-260 defined a message format using message TYPE Code 29 to convey Aircraft Trajectory Intent information in the form of Trajectory Change Point (TCP) information. A 1090 MHz ADS-B Receiving Subsystem conforming to these MOPS (i.e., RTCA DO-242A) does not use any message with a TYPE Code of 29 that is received from a Version Zero (0) ADS-B Transmitting Subsystem for the purpose of report generation.

Note: Prior to generation of a Target Status Report, the 1090 MHz ADS-B Receiving Subsystem must positively confirm that any received message with a TYPE Code of 29 has originated from a target aircraft with an ADS-B Version Number other than Zero (0). The ADS-B Version can be determined from the contents of the Version Number subfield of the Aircraft Operational Status Message (see §2.2.8.2.5 and §N.4.2].

N.3 1090 MHz ADS-B Version 1 Message Processing

N.3.1 ADS-B Version 1 Message Types

ADS-B Version One (1) (i.e., originating from a RTCA DO-260A conformant 1090 MHz ADS-B Transmitting Subsystem) 1090 MHz ADS-B Messages are the same basic message types as Version Two (2). Some messages have different formats and contain additional or eliminated message subfields. The Target State and Status Message changed from Version One (1) to Version Two (2). Version One (1) transmitters use subtype 0 for the Target State and Status Message and Version Two (2) transmitters use subtype 1 for backward compatibility. Version Two (2) receivers do not generate Target State and Status Reports from Version One (1) Target State and Status Messages but utilize the accuracy and integrity parameters in the message (see §N.3.2 and §N.3.3). See §N.4.2 for Version One (1) message formats. Version One (1) transmitters do not broadcast the Extended Squitter Aircraft Status Message (subtype 2), the 1090ES TCAS Resolution Advisory (RA) Message.

N.3.1.1 Message TYPE Codes

The first 5-bit field in every 1090 MHz ADS-B Message contains the message format TYPE. The TYPE code (i.e., format type) is used to differentiate the messages into several classes: airborne position, airborne velocity, surface position, identification, aircraft status, etc. The general definition for all ADS-B Messages Types used for Version One (1) ADS-B Messages has been retained for Version Two (2) messages.

N.3.2 State Vector Reports Generated using Version One (1) Messages

The following subparagraphs summarize the ADS-B State Vector Report generation requirements (see §2.2.8.1) for Version Two (2) systems when receiving Version One (1) ADS-B Messages.

The contents of State Vector Reports are specified in Table 2.2.8.1. The contents of the State Vector Reports are composed primarily from the information received from airborne aircraft in Airborne Position Messages and Airborne Velocity Messages or for

aircraft/vehicles on the airport surface in Surface Position Messages. Many of the parameters contained within these messages are encoded the same, and occupy the same positions with the overall message structure, for both Version One (1) and for Version Two (2) messages. However, in a few cases the decoding and/or report assembly processing must be handled differently for Version One (1) messages as compared to that required by these MOPS (§2.2.8.1) for Version Two (2) messages. The following subparagraphs describe the required use of Version One (1) messages for ADS-B report generation by a Version Two (2) compliant ADS-B Receiving Subsystem.

N.3.2.1 State Vector Report to 1090 MHz ADS-B Message Mapping

Table 2.2.8.1 specifies the overall State Vector Report format and the source for each parameter that is to be reported when the target aircraft/vehicle is broadcasting with Version Two (2) ADS-B Message formats. In a similar fashion, Table N-10 below defines the 1090 MHz ADS-B Message-to-State Vector Report mapping that will be used when the target aircraft/vehicle is broadcasting using Version One (1) ADS-B Messages. Note there are some minor differences in the specific names applied to certain otherwise identical Version Zero (0) versus Version Two (2) messages subfields. The following subparagraph discusses the NIC parameter and its mapping from Version Zero (0) messages to the State Vector Report. The remaining State Vector Report parameters are described in §2.2.8.1.

The formats of the Version One (1) 1090 MHz ADS-B Messages are specified in Figure N-8 through Figure N-15.

Table N-10: ADS-B State Vector Data Elements – Version One (1) 1090 MHz ADS-B Messages to Report Structure Mapping

Column #	REPORT STRUCTU	<u>RE</u>	VERSION ONE (1) MESS RELEVA		TURE			REPORT ST	RUCTURE	RELEVANT	
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>	<u>11</u>
<u>Item #</u>	Parameter / Contents	Notes	<u>Received</u> <u>Message Structure</u>	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	<u>Units</u>	<u>Data Structure</u>	<u>Data</u> Byte #
<u>0a, 0b</u>	Report Type and Structure Identification	<u>4</u>	Airborne Position - "DF"	<u>N/A</u>	<u>1 – 5</u>	<u>24</u>	<u>N/A</u>	<u>N/A</u>	discrete	MddL Mddd ddddddd ddddddL	0 -2
<u>0c</u>	Validity Flags		<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>16</u>	<u>N/A</u>	<u>N/A</u>	discrete	ddddddd ddddddd	<u>3 - 4</u>
1	Participant Address	<u>4</u>	Airborne Position - "AA" Surface Position - "AA" Airborne Velocity - "AA"	N/A N/A N/A	$\frac{9-32}{9-32}$ $\frac{9-32}{9-32}$	<u>24</u>	<u>N/A</u>	<u>N/A</u>	discrete	Mddddddd ddddddd DddddddL	<u>5 - 7</u>
<u>2</u>	Address Qualifier		<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	<u>discrete</u>	<u>00000M0L</u>	<u>8</u>
<u>3</u>	Time of Applicability (Position and Velocity)	<u>4</u>	Airborne Position – "Time" Surface Position – "Time" Airborne Velocity	21 21 <u>N/A</u>	53 53 <u>N/A</u>	<u>24</u>	<u>511.9921875</u>	0.0078125 (1/128)	seconds	Mddddddd ddddddL Mddddddd ddddddL Mddddddd ddddddL	<u>9 - 11</u>
4	Latitude (WGS-84)	<u>4</u>	Airborne Position – "Encoded Latitude" Surface Position – "Encoded Latitude"	23 - 39 23 - 39	<u>55 - 71</u> <u>55 - 71</u>	<u>24</u>	<u>+/- 180</u>	0.0000215	degrees	SMdddddd ddddddd DddddddL	<u>12 - 14</u>
<u>5</u>	Longitude (WGS-84)	<u>4</u>	Airborne Position – "Encoded Longitude" Surface Position – "Encoded Longitude"	<u>40 - 56</u> <u>40 - 56</u>	<u>72 - 88</u> <u>72 - 88</u>	<u>24</u>	<u>+/- 180</u>	0.0000215	degrees	SMdddddd ddddddd DddddddL	<u> 15 - 17</u>
<u>6</u>	Altitude, Geometric (WGS-84)	4, 5	Airborne Position – "TYPE", & "Altitude" Airborne Velocity – "Diff, Sign Bit" & "Geo Height Diff, from Baro. Alt."	1 - 5, & 9 - 20 49 50 - 56	33 - 37 41 - 52 81 82 - 88	<u>24</u>	+/- 131,072	0.015625	<u>feet</u>	SMdddddd dddddddd dddddddL	<u> 18 - 20</u>
7	North / South Velocity	<u>4, 5</u>	Airborne Velocity – "Direction Bit for N-S Vel." & "N/S Velocity"	2 <u>5</u> 26 - 3 <u>5</u>	<u>57</u> <u>58 – 67</u>	<u>16</u>	<u>+/- 4,096</u>	0.125	<u>knots</u>	SMdddddd ddddddL	<u>21 - 22</u>
<u>8</u>	East / West Velocity	<u>4, 5</u>	Airborne Velocity – "Direction Bit E-W Vel." & "E/W Velocity"	14 15 - 24	46 47 – 56	<u>16</u>	<u>+/- 4,096</u>	0.125	<u>knots</u>	SMdddddd ddddddL	<u>23 - 24</u>
9	Ground Speed while on the Surface	<u>4, 6</u>	Surface Position – "Movement"	<u>6 - 12</u>	<u>38 – 44</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	MdddddL	<u>25</u>

Column #	REPORT STRUCTU	<u>RE</u>	VERSION ONE (1) MESSAGE STRUCTURE RELEVANT		REPORT STRUCTURE RELEVANT						
	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>	<u>11</u>
<u>Item#</u>	Parameter / Contents	Notes	<u>Received</u> <u>Message Structure</u>	"ME" Field Bits	Message Field Bits	# of Bits	<u>Range</u>	Resolution	<u>Units</u>	Data Structure	<u>Data</u> Byte #
<u>10</u>	Heading while on the Surface	<u>4, 6</u>	Surface Position – "Ground Track"	<u>14 - 20</u>	<u>46 – 52</u>	<u>8</u>	<u>+/- 180</u>	1.40625	degrees	<u>SMdddddL</u>	<u>26</u>
11	Altitude, Barometric (Pressure Altitude)	<u>4, 5</u>	Airborne Position – "TYPE", & "Altitude"	<u>1 - 5</u> <u>9 - 20</u>	$\frac{33 - 37}{41 - 52}$	<u>24</u>	<u>+/- 131,072</u>	0.015625	<u>feet</u>	SMdddddd ddddddd ddddddL	<u>27 - 29</u>
<u>12</u>	Vertical Rate, Geometric/Barometric (WGS-84)	<u>4, 5</u>	Airborne Velocity – "Source Bit for Vert. Rate", "Sign Bit for Vert. Rate" & "Vert. Rate"	36 37 38 - 46	68 69 70 - 78	<u>16</u>	<u>+/- 32,768</u>	<u>1.0</u>	ft./min.	SMdddddd dddddddL	<u>30 - 31</u>
<u>13</u>	Navigation Integrity Category (NIC)	<u>4</u>	Airborne Position "Type Code" Surface Position "Type Code" Operational Status – "NIC Supplement"	$\frac{1-5}{1-5}$ $\frac{44}{4}$	$\frac{33 - 37}{33 - 37}$ $\frac{76}{}$	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	<u>0000MddL</u>	<u>32</u>
<u>14</u>	Estimated Latitude (WGS-84)	<u>7</u>	Airborne Position – "Encoded Latitude" Surface Position – "Encoded Latitude"	23 - 39 23 - 39	<u>55 - 71</u> <u>55 - 71</u>	<u>24</u>	<u>24</u>	<u>+/- 180</u>	<u>0.00002</u> <u>15</u>	<u>degrees</u>	<u>33 - 35</u>
<u>15</u>	Estimated Longitude (WGS-84)	<u>7</u>	Airborne Position – "Encoded Longitude" Surface Position – "Encoded Longitude"	<u>40 - 56</u> <u>40 - 56</u>	<u>72 - 88</u> <u>72 - 88</u>	<u>24</u>	<u>24</u>	<u>+/- 180</u>	0.00002 15	degrees	<u>36 - 38</u>
<u>16</u>	Estimated North/South Velocity	<u>7</u>	Airborne Velocity – "Direction Bit for N-S Vel." & "N-S Velocity"	2 <u>5</u> 26 - 35	<u>57</u> <u>58 – 67</u>	<u>16</u>	<u>+/- 4,096</u>	0.125	<u>knots</u>	SMdddddd ddddddL	<u>39 - 40</u>
<u>17</u>	Estimated East/West Velocity	<u>7</u>	Airborne Velocity – "Direction Bit for E-W Vel." & "E-W Velocity"	<u>14</u> 15 - 24	<u>46</u> 47 – 56	<u>16</u>	<u>+/- 4,096</u>	0.125	knots	SMdddddd ddddddL	<u>41 - 42</u>
<u>18</u>	Surveillance Status/Discretes		Airborne Position – "Surveillance. Status" Airborne Velocity – "Intent Change Flag"	<u>6 – 7</u> <u>9</u>	<u>38 – 39</u> <u>9</u>	<u>4</u> <u>4</u>	<u>N/A</u>	<u>N/A</u>	discrete	dddd dddd	<u>43</u>
<u>19</u>	Report Mode		<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	<u>discrete</u>	<u>000000ML</u>	<u>44</u>
		·								TOTAL BYTES	<u>45</u>

Notes for Table N-10:

- 1. In the "Data Structure" column (i.e., column 10), "S" indicates the "sign-bit," "M" indicates the Most Significant Bit of the data field, "d" indicates data bits in the field, "L" indicates the Least Significant Bit of the data field, "0" indicates the bit is to always be set to a value of zero (0) and "x" indicates "Don't Care" bits in the data field.
- 2. If data is not available to support theses fields, then the entire data field shall be set to ALL ZEROs if the field is delivered to the application.
- 3. The Report Type Identifier is used to identify the type of ADS-B Report being generated as defined in §2.2.8.1.1.1.
- 4. Items annotated with Note 4 represent "Critical" State Vector items, however certain items are only applicable while airborne and others only applicable while on the surface (see Notes 5 and 6 below).
- 5. Parameters annotated with Note 5 are only present in the State Vector Report when the aircraft is airborne
- 6. Parameters annotated with Note 6 are only present in the State Vector Report with the aircraft is on the airport surface
- 7. Estimated values may be either an actual value from a received message, if available, or a calculated value such as produced by a surveillance tracker algorithm. For example it is possible for a surveillance tracker to produce an updated estimate of the target's horizontal position based on just the receipt of a new velocity message.
- 8. The Time of Applicability is actually a grouping of 3 individual parameters as defined in §2.2.8.1.4

N.3.2.2 Navigation Integrity Category (NIC)

As defined by Table 2-11, Version Two (2) Surface and Airborne Position Messages have associated with each specific ADS-B Message TYPE Code a corresponding Horizontal Containment Limit (R_C) and Navigation Integrity Category (NIC). The TYPE Code is used along with the NIC Supplement in the Operational Status Message to decode the NIC. The Surface and Airborne Position Message TYPE Codes associated with Version One (1) 1090 MHz ADS-B Messages along with the NIC Supplement are used to map to the NIC values shown in Table N-11 for the purpose of generating State Vector Reports.

Table N-11: Version One (1) Format Type Code Mapping to Navigation Source Characteristics

"TYPE" Subfield Code Definitions (DF = 17 or 18)

		"TYPE" Sub	ofield Code Definitions (DF = 17 or 18)		
TYPE Code	NIC Supp	<u>Format</u>	Horizontal Containment Radius Limit (Rc)	Altitude Type	Reported NIC
<u>0</u>	<u>N/A</u>	No Position Information		Baro Altitude or No Altitude <u>Information</u>	<u>0</u>
<u>5</u>	<u>0</u>	Surface Position	Rc < 7.5 m	No Altitude Information	<u>11</u>
<u>6</u>	<u>0</u>	Surface Position	<u>Rc < 25 m</u>	No Altitude Information	<u>10</u>
<u>7</u>	<u>1</u>	Surface Position	Rc < 75 m	No Altitude Information	<u>9</u>
<u>7</u>	<u>0</u>	Surface Position	Rc < 0.1 NM (185.2 m)	No Altitude Information	<u>8</u>
<u>8</u>	<u>0</u>	Surface Position	Rc > 0.1 NM (185.2 m)	No Altitude Information	<u>0</u>
<u>9</u>	<u>0</u>	Airborne Position	Rc < 7.5 m	Baro Altitude	<u>11</u>
<u>10</u>	0	Airborne Position	Rc < 25 m	Baro Altitude	<u>10</u>
<u>11</u>	<u>1</u>	Airborne Position	<u>Rc < 75 m</u>	Baro Altitude	9
<u>11</u>	<u>0</u>	Airborne Position	Rc < 0.1 NM (185.2 m)	Baro Altitude	<u>8</u>
<u>12</u>	<u>0</u>	Airborne Position	<u>Rc < 0.2 NM (370.4 m)</u>	Baro Altitude	<u>7</u>
<u>13</u>	<u>0</u>	Airborne Position	Rc < .5 NM (926 m)	Baro Altitude	<u>6</u>
<u>13</u>	<u>1</u>	Airborne Position	<u>Rc < 0.6 NM (1111.2 m)</u>	Baro Altitude	<u>6</u>
<u>14</u>	<u>0</u>	Airborne Position	<u>Rc < 1.0 NM (1852 m)</u>	Baro Altitude	<u>5</u>
<u>15</u>	<u>0</u>	Airborne Position	<u>Rc < 2 NM (3.704 km)</u>	Baro Altitude	<u>4</u>
<u>16</u>	<u>1</u>	Airborne Position	<u>Rc < 4 NM (7.408 km)</u>	Baro Altitude	<u>3</u>
<u>16</u>	<u>0</u>	Airborne Position	<u>Rc < 8 NM (14.816 km)</u>	Baro Altitude	<u>2</u>
<u>17</u>	<u>0</u>	Airborne Position	<u>Rc < 20 NM (37.04 km)</u>	Baro Altitude	<u>1</u>
<u>18</u>	<u>0</u>	Airborne Position	Rc > 20 NM (37.04 km)	Baro Altitude	<u>0</u>
<u>20</u>	<u>0</u>	Airborne Position	$\underline{\text{Rc} < 7.5 \text{ m}}$	GNSS Height (HAE)	<u>11</u>
<u>21</u>	<u>0</u>	Airborne Position	<u>Rc < 25 m</u>	GNSS Height (HAE)	<u>10</u>
<u>22</u>	<u>0</u>	<u>Airborne Position</u>	Rc > 25 m	GNSS Height (HAE)	<u>0</u>

Notes for Table N-11:

- 1. "Baro-Altitude" refers to barometric pressure altitude, relative to a standard pressure of 1013.25 millibars (29.92 in Hg). It does not refer to baro corrected altitude.
- 2. The GNSS height (HAE) defined in Type Codes 20 to 22 is used when baro altitude is not available.
- 3. Rc, is derived from ARINC 429 label 130, which is variously called HIL (Horizontal Integrity Limit) or HPL (Horizontal Protection Level).

Appendix N Page N - 26

N.3.3 Mode Status Reports

Table 2.2.8.2 defines the overall Mode Status Report format and the source for each parameter that is to be reported when the target aircraft/vehicle is broadcasting with Version Two (2) ADS-B Message formats. In a similar fashion, Table N-5 below defines the 1090 MHz ADS-B Message-to-State Vector Report mapping that will be used when the target aircraft/vehicle is broadcasting using Version Zero (0) ADS-B Messages. Note that there are some significant differences in the message parameters available from Version Zero (0) versus Version Two (2) ADS-B Messages. As a result, Mode Status Reports related to target aircraft/vehicles broadcasting Version Zero (0) ADS-B Messages are substantially less complete than Mode Status Reports generated from Version Two (2) ADS-B Messages. The following subparagraphs discuss those Mode Status Report parameters that must be processed and/or mapped differently for Version Zero (0) ADS-B Messages. The remaining Mode Status Report parameters not specifically addressed in the following subparagraphs will be generated as specified in §2.2.8.2 (i.e., using the same mapping as for Version Two (2) ADS-B Messages).

The formats of the Version One (1) 1090 MHz ADS-B Messages are specified in Figure N-8 through Figure N-15.

<u>Table N-12: ADS-B Mode Status Data Elements – Version One (1) Source Data Mapping To Report Structure</u>

	Table 2-88: ADS-B Mode Status Data Elements – Source Data Mapping To Report Structure											
Column	REPORT STRUCTU	<u>RE</u>	MESSAGE STRUCTURE RELEVANT				REPORT STRUCTURE RELEVANT					
<u>#</u>	<u>1</u>	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	8	9	<u>10</u>	<u>11</u>	
<u>Item#</u>	Parameter / Contents	Notes	Received Message Sources	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	<u>Units</u>	Data Structure	Data Byte#	
<u>0a, 0b</u>	Report Type and Structure		<u>N/A</u>	<u>N/A</u> <u>N/A</u>	$\frac{1-5}{1-5}$	<u>24</u>	<u>N/A</u>	<u>N/A</u>	discrete	MddL Mddd ddddddd dddddddL	<u>0 - 2</u>	
<u>0c</u>	Validity Flags		<u>N/A</u>	N/A	<u>N/A</u>	<u>8</u>	N/A	N/A	discrete	ddddddd	<u>3</u>	
1	Participant Address		Airborne Velocity - "AA" - OR - Operational Status - "AA" - OR - Target State & Status - "AA" - OR - Aircraft ID & Category Msg	<u>N/A</u> <u>N/A</u> <u>N/A</u>	$\frac{9-32}{9-32}$ $\frac{9-32}{9-32}$	24242424	<u>N/A</u>	<u>N/A</u>	discrete	Mddddddd ddddddd dddddddL	<u>4 – 6</u>	
			-"AA"	N/A	9 - 32	<u>24</u>						
<u>2</u>	Address Qualifier		Aircraft ID & Category "Emitter Category" All Messages with DF=18 –	<u>6 – 8</u>	38 – 40	<u>8</u>	N/A	N/A	<u>discrete</u>	xxxxxMdL	7	
			<u>"CF"</u>	N/A	<u>6 – 8</u>							
<u>3</u>	Time of Applicability		Operational Status Airborne Position Target State & Status	<u>N/A</u>	<u>N/A</u>	<u>16</u>	<u>511.9921875</u>	<u>0.0078125</u> <u>(1/128)</u>	<u>seconds</u>	Mddddddd ddddddL	<u>8 - 9</u>	
<u>4</u>	ADS-B Version		<u>Operational Status –</u> "Version Number"	41 - 43	<u>73 - 75</u>	<u>8</u>	<u>0 - 7</u>	<u>1</u>	discrete	xxxxMdL	<u>10</u>	
<u>5a</u>	Call Sign		Aircraft ID & Category Msg – "Ident Char."	<u>14 – 56</u>	41 – 88	<u>64</u>	<u>N/A</u>	<u>N/A</u>	Alphanumeric characters	xMdddddL xMdddddL xMdddddL xMdddddL xMdddddL xMdddddL xMdddddL xMdddddL	<u>11 – 18</u>	
<u>5b</u>	Emitter Category		Aircraft ID & Category Msg – "Emitter Category"	<u>6 – 8</u>	<u>38 - 40</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	<u>xxxMdddL</u>	<u>19</u>	
<u>5c</u>	A/V Length and Width Code	4	Operational Status – Subtype=1 – "L/W Code"	<u>21 – 24</u>	<u>53 – 56</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxMddL	<u>20</u>	
<u>6</u>	Emergency/Priority Status		Aircraft Status Message — Subtype 1 – "Emergency / Priority Status" Target State and Status — Subtype 0 - "Emergency / Priority Status"	<u>9 – 11</u> <u>54 - 56</u>	36 - 38 86 - 88	<u>8</u>	<u>N/A</u>	<u>N/A</u>	<u>discrete</u>	<u>xxxxxMdL</u>	<u>21</u>	
<u>7</u>	Capability Class Codes		Operational Status – Subtype=0 – "CC" Target State & Status	9 - 24	<u>41 - 56</u>	<u>24</u>	See Section	Error! Reference found.2.2.8.2.10		ddddddd ddddddd dddddddd	<u>22 - 24</u>	
			"Capability/Mode Codes"	<u>52 - 53</u>	<u>84 - 85</u>	<u>24</u>		10uilu. 2.2.0.2.10		addaddd		

		Table 2-88: ADS-B Mode Status Data Elements – Source Data Mapping To Report Structure										
Column	REPORT STRUCTU	RE	MESSAGE STRUCTURE RELEVANT				REPORT STRUCTURE RELEVANT					
<u>#</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	8	9	<u>10</u>	<u>11</u>	
<u>Item #</u>	Parameter / Contents	Notes	Received Message Sources	"ME" Field Bits	Message Field Bits	# of Bits	Range	Resolution	<u>Units</u>	Data Structure	<u>Data</u> <u>Byte #</u>	
<u>8</u>	Operational Mode		Operational Status – "OM" Target State & Status "Capability/Mode Codes"	<u>25 - 40</u> <u>52 - 53</u>	<u>57 - 72</u> <u>84 - 85</u>	<u>16</u> <u>16</u>	See Section	Error! Reference found.2.2.8.2.11	e source not	ddddddd ddddddd	<u>25 - 26</u>	
<u>9a</u>	SV Quality - NACp		Operational Status – "NAC _P " Target State & Status - "NAC _P "	<u>45 - 48</u> 40 - 43	77 - 80 72 - 75	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxMddL	<u>27</u>	
<u>9b</u>	SV Quality - NAC _v		Airborne Velocity – "NAC _y "	<u>11 - 13</u>	43 - 45	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxxMdL	<u>28</u>	
<u>9c</u>	SV Quality – SIL		Operational Status – "SIL" Target State & Status – "SIL"	<u>51 – 52</u> <u>45 – 46</u>	83 - 84 77 - 78	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxxxML	<u>29</u>	
<u>9d</u>	SV Quality – SIL Supplement		<u>N/A</u>			<u>8</u>	N/A	N/A	discrete	xxxxxLxx	<u>29</u>	
<u>9e</u>	SV Quality – SDA		<u>N/A</u>			8	N/A	N/A	discrete	xxxMLxxx	<u>29</u>	
<u>9f</u>	SV Quality – GVA		<u>N/A</u>			<u>8</u>	<u>N/A</u>	<u>N/A</u>	<u>discrete</u>	<u>xxxxxxxL</u>	<u>30</u>	
<u>9g</u>	SV Quality – NIC _{BARO}		Operational Status – Subtype=0 – "NIC _{BARO} " Target State & Status – "NIC _{BARO} "	<u>53</u> <u>44</u>	85 76	<u>8</u>	<u>N/A</u>	<u>N/A</u>	<u>discrete</u>	xxxxxxL	<u>31</u>	
<u>10a</u>	Track/Heading and Horizontal Reference Direction (HRD)		Operational Status – Subtype=1 – Trk/Hdg & Subtype=0,1 – HRD"	53 -54	<u>85 -86</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxxML	<u>32</u>	
<u>10b</u>	Vertical Rate Type		Airborne Velocity – "Vert. Rate Source"	<u>36</u>	<u>68</u>	<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	xxxxxxL	<u>33</u>	
<u>11</u>	(Reserved for) Flight Mode Specific Data					<u>8</u>	<u>N/A</u>	<u>N/A</u>	discrete	<u>xxxxxMdL</u>	<u>34</u>	
<u>12</u>	Other (Reserved)		Reserved			<u>8</u>		Reserved		<u>ddddddd</u>	<u>35</u>	
		·			-	·		-		TOTAL BYTES:	36	

Notes:

1. In the "Data Structure" column (i.e., column 10), "S" indicates the "sign-bit," "M" indicates the Most Significant Bit of the data field, "d" indicates data bits in the field, "L" indicates the Least Significant Bit of the data field, and "x" indicates "Don't Care" bits in the data field.

- 2. The Report Type and Structure Identifier is used to identify the type of ADS-B Report being generated and the data parameters provided in the report as specified in §Error! Reference source not found.2.2.8.1.1.
- 3. The A/V Length and Width Code parameter is only applicable to Mode Status Reports for aircrafts or vehicles that are on the airport surface.

N.3.3.1 ADS-B Version

The format of the Aircraft Operational Status Message differs between the Version One (1) ADS-B Message format shown in Figure N-14 and the Version Two (2) ADS-B Message format specified in §2.2.3.2.7.3 of these MOPS. There are additional parameters in Version Two (2) Aircraft Operational Status Message that are not contained in Version One (1) messages. A Version Two (2) ADS-B Receiving Subsystem will, as a default, assume the received messages are using Version Zero (0) ADS-B Message format unless, or until, an Aircraft Operational Status Message is received and the Version Number is confirmed to be other than Zero. However, in the case of a Version Two (2) ADS-B Subsystem's reception of an Aircraft Operational Status Message, the ADS-B Receiving Subsystem will decode "ME" bits 41-43 and determine if the target aircraft is broadcasting messages that are ADS-B Version Zero (0), Version One (1) or Version Two (2) or higher and then decode the remainder of the message in accordance with the message format applicable to that Version Number.

Note: The Version Number determined from the decoding of the Version Number subfield of the Aircraft Operational Status message must be retained and associated with the specific target since it is used in determining the applicable formats to be used for the decoding of the other message types.

N.3.3.2 Emitter Category

The ADS-B Report Assembly Function will extract "TYPE" and "ADS-B Emitter Category" from the Aircraft Identification and Category Message (Figure N-10) and encode the "Emitter Category" field of the Mode Status Report as shown in Table 2.2.8.2.7. The Emitter Category conveyed in the Aircraft Identification and Category Message is mapped into the Mode Status Report, Emitter Category field as specified by Table 2.2.8.2.7.

N.3.3.3 A/V Length and Width Code

This parameter is only included in the Mode Status Report when reporting on an aircraft or vehicle that is on the airport surface. When no A/V Length and Wide Code is available, the A/V Length and Wide Code parameter will not be included in the Mode Status Report and its omission so indicated in the Report Type and Structure Parameter using the coding specified in Table N-13.

Width **Upper-Bound Length and Width A/V - L/W Length Code** for Each Length/Width Code Code Code **ME ME ME** ME Length Width **Bit** Bit Bit Bit (Decimal) (meters) (meters) 11.5 28.5 39.5 <u>45</u> 59.5 72.5 <u>80</u>

Table N-13: Version One (1) "Aircraft/Vehicle Length and Width Code" Encoding

N.3.3.4 Emergency/Priority Status

The Emergency/Priority Status conveyed in the Aircraft Status Message (Figure N-13) and the Target State and Status Message (Figure N-15) will be directly mapped into the Mode Status Report, Emergency/Priority Status field.

N.3.3.5 Capability Codes

The ADS-B Report Assembly Function will extract the "Capability Class Codes" data from Aircraft Operational Status Messages and the Target State and Status Messages and provide the Capability Class Codes to the user application in the Mode Status Report in the binary format specified in Table N-12.

Capability Class Codes from the ADS-B Operational Status and the Target State and Status Messages, **shall** be mapped bit for bit into the 3-byte long Capability Class Codes field of the ADS-B Mode Status Report as specified in Table N-14.

When valid "Capability Class" data is not available for a given parameter, then the Capability Class data sent to the user application for that parameter is set to ALL ZEROs.

When a Mode Status Report is generated and when the only received update to the "Capability Class" data has come from a Target State and Status Message, the reported value of all Capability Class parameters are based on the most recently received

Operational Status Message, except updated with the data (i.e., TCAS parameter) received in the subsequent Target State and Status Message.

Table N-14: Capability Code Mapping

	MS F	<u>Report</u>		tatus Message (Airborne)	Operation Message S (Sur	Subtype 1	Target State and Statu Message	
CC	Report Field # Bit #	<u>Parameter</u>	Msg. Bit # (ME field)	Mapping to MS Report	Msg. Bit # (ME field)	Mapping to MS Report	Msg. Bit # (ME field)	Mapping to MS Report
	7		<u>9</u>	<u>Direct</u> <u>Mapping</u>	9	<u>Direct</u> <u>Mapping</u>		
	<u>6</u>	Service	<u>10</u>	<u>Direct</u> <u>Mapping</u>	<u>10</u>	<u>Direct</u> <u>Mapping</u>		
	<u>5</u>	<u>Level</u>	<u>13</u>	<u>Direct</u> <u>Mapping</u>	<u>13</u>	<u>Direct</u> <u>Mapping</u>		
0	<u>4</u>		<u>14</u>	<u>Direct</u> <u>Mapping</u>	<u>14</u>	<u>Direct</u> <u>Mapping</u>		
	<u>3</u>	B2 Low			<u>15</u>	<u>Direct</u> <u>Mapping</u>		
	<u>2</u>	Reserved						
	1	Reserved						
	<u>0</u>	Reserved						
	7	<u>TCAS</u>	<u>11</u>	<u>Inverse</u> <u>Mapping</u>			<u>52</u>	<u>Inverse</u> <u>Mapping</u>
	<u>6</u>	<u>CDTI</u>	<u>12</u>	<u>Direct</u> <u>Mapping</u>	<u>12</u>	<u>Direct</u> <u>Mapping</u>		
	<u>5</u>	ARV	<u>15</u>	<u>Direct</u> <u>Mapping</u>				
<u>1</u>	<u>4</u>	TS Report	<u>16</u>	<u>Direct</u> <u>Mapping</u>				
	<u>3</u>	TC Report	<u>17</u>	<u>Direct</u> <u>Mapping</u>				
	<u>2</u>	<u>1C Report</u>	<u>18</u>	<u>Direct</u> <u>Mapping</u>				
	1	<u>POA</u>			<u>19</u>	<u>Direct</u> <u>Mapping</u>		
	<u>0</u>	Reserved						
	<u>7</u>	Reserved						
	<u>6</u>	Reserved						
	<u>5</u>	Reserved						
<u>2</u>	<u>4</u>	Reserved						
I =	<u>3</u>	Reserved						
	<u>2</u>	Reserved						
	1	Reserved						
	0	Reserved						

Note: Direct Mapping means the message bit state (i.e., 0 or 1) remains the same when mapped into the Mode Status Report. Inverse Mapping means the message bit state is reversed when mapped into the Mode Status Report.

N.3.3.6 Source Integrity Level (SIL)

The Source Integrity Level (SIL) defines the probability of the integrity containment region described by the NIC parameter being exceed for the selected geometric position source, including any external signals used by the source. In Version One (1), the Surveillance Integrity Level parameter represented this probability as well as other elements of integrity. The Surveillance Integrity Level may have also included the reliability of the aircraft systems given by a failure rate corresponding to the equipment design assurance. In Version Two (2), this aspect of integrity is represented by the System Design Assurance parameter. The ADS-B Report Assembly Function will

extract the Surveillance Integrity Level data from Aircraft Operational Status Messages and the Target State and Status Messages and provide the Source Integrity Level to the user application in the Mode Status Report in the binary format.

Note: Applications using Reports from Version One (1) participants may be able to use the Surveillance Integrity Level to derive both Source Integrity Level and System Design Assurance.

N.3.3.7 Track/Heading and Horizontal Reference Direction (HRD)

The ADS-B Report Assembly Function will extract the Track Angle/Heading (§Error! Reference source not found.2.2.3.2.7.2.12) and the Horizontal Reference Direction (HRD) (§Error! Reference source not found.2.2.3.2.7.2.13) flag bits from the Aircraft Operational Status Message (§Error! Reference source not found.2.2.3.2.7.2.) and set the True/Magnetic Heading field in the Mode Status Report in the binary format specified in Table N-12. This item within the Mode Status Report is used to indicate the nature of the Horizontal Direction information being reported in the State Vector Reports and Target State Reports. This applies to the aircraft reported Horizontal Direction (in the State Vector Report). The encoding of bits 0 and 1 of the report True/Magnetic Heading field indicates when Ground Track is being reported (i.e. set to zero) or when Heading is being reported (i.e., set to one). Bit 0 of the True/Magnetic Heading field indicates when Heading based on True North (i.e. set to zero) or when heading based on Magnetic North (i.e. set to one) is being reported.

Table N-15: True/Magnetic Heading Encoding

<u>C</u>	oding	Meaning	
<u>bit 1</u>	<u>bit 0</u>	<u>wearing</u>	
<u>0</u>	<u>0</u>	No Track/Heading or HRD Information Available	
<u>0</u>	<u>1</u>	Ground track being reported	
<u>1</u>	<u>0</u>	Heading relative to true north being reported	
<u>1</u>	<u>1</u>	Heading relative to magnetic north being reported	

Note: Bits 2 through 7 of byte 32 of the True/Magnetic Heading subfield are always set to ZERO (0).

N.3.4 Air Referenced Velocity Reports

The requirements of §2.2.8.3.2 for Air Referenced Velocity (ARV) Reports apply to the ARV Report Assembly requirements when the target aircraft is broadcasting either Version One (1) or Version Two (2) ADS-B Message formats.

N.3.5 Target State Reports

Since the content and use of Target State Reports changed between Version One (1) and Version Two (2), there is no requirement to output Version One (1) Target State Reports.

N.4 Formats for Version Zero (0) and Version One (1) 1090 MHz ADS-B Messages

1090 MHz ADS-B Receiving Subsystems conformant to these MOPS (RTCA DO-260B) are required to receive and decode all Version Two (2) compliant messages plus, for backward compatibility, must receive and decode certain messages types conforming to the previous RTCA DO-260, ADS-B Version Zero (0) formats and RTCA DO-260A, ADS-B Version One (1) formats.

N.7N.4.1 Formats for Version Zero (0) 1090 MHz ADS-B Messages

1090 MHz ADS B Receiving Subsystems conformant to these MOPS (RTCA DO 260A) are required to receive and decode all Version One (1) compliant messages plus, for backward compatibility, must receive and decode certain messages types conforming to the previous RTCA DO 260, ADS B Version Zero (0), formats. The following figures define the format of ADS-B Version Zero (0) Extended Squitter Messages that must be received and decoded and used for the generation of ADS-B reports as defined in N.2.23 through N.2.56.

Notes:

- 1. In some cases, ARINC 429 labels are referenced for specific message fields. These references are only intended to clarify the field content, and are not intended as a requirement to use these ARINC 429 labels as the source for the message field.
- 2. The formats of the Version Zero (0) ADS-B Messages that are not required to be received and used for report generation by a Version One-Two (12) 1090 MHz ADS-B receiving system are not shown in the following figures.

Figure N-1: Extended Squitter Airborne Position Message

i 	
1	
2	
3	FORMAT TYPE CODE
4	(See §N.2.1)
5	
6	SURVEILLANCE STATUS
7	
8	SINGLE ANTENNA FLAG (SAF)
9	
10	
11	ALTITUDE
12	Specified by the Format Type Code
13	
14	(1) the altitude code (AC) as specified
15	in §2.2.13.1.2 of DO-181D but
16	with the M-bit removed
17	(Ref ARINC 429 Label 203), or
18	· ·
19	(2) GNSS height (HAE)
20	(Ref. ARINC 429 Label 370)
21	TIME (T)
22	CPR FORMAT
23	MSB
24	
25	
26	
27	
28	
29	
30	ENCODED LATITUDE
31	
32	(CPR Airborne Format)
33	,
34	
35	
36	
37	
38	
39	LSB
40	MSB
41	
42	
43	
44	
45	
46	
47	ENCODED LONGITUDE
48	
49	(CPR Airborne Format)
50	· ·
51	
52	
53	
54	
55	
56	LSB
OC	LOD

Purpose: To provide accurate airborne position information

Surveillance Status coding

- 0 =no condition information
- 1 = permanent alert (emergency condition)
- 2 = temporary alert (change in Mode A identity code other than emergency condition)
- 3 = SPI condition

Codes 1 and 2 take precedence over code 3.

Note: When horizontal position information is unavailable, but altitude information is available, the airborne position message is transmitted with a Format Type Code of ZERO in bits 1-5 and the barometric pressure altitude in bits 9 to 20. If neither horizontal position nor barometric altitude information is available, then all 56 bits of Register 05₁₆ shall be ZEROed. The ZERO Format Type Code field indicates that latitude and longitude information is unavailable, while the ZERO altitude field indicates that altitude information is unavailable.

Figure N-2: Extended Squitter Surface Position Message

1 2 3 4 5	FORMAT TYPE CODE (See §N.2.1)
6 7 8 9 10 11	MOVEMENT
12	CTLATING C. C. LTL (1. 1.1.0
13	STATUS for Gnd Tk (1 =valid, 0 = not valid) MSB
14 15	M2R
16	GROUND TRACK (7 bits)
17	
18 19	Bosolution - 260/129 dog
20	Resolution = 360/128 deg LSB
21	TIME (T
22	CPR FORMAT (F)
23	MSB
24	
25 26	
27	
28	
29	
30	ENCODED LATITUDE
31 32	(CPR Surface Format)
33	(C) it Surface i Official)
34	
35	
36	
37 38	
39	LSB
40	MSB
41	
42	
43 44	
4 4 45	
46	
47	ENCODED LONGITUDE
48	(ODD Outs as Farmer)
49 50	(CPR Surface Format)
51	
52	
53	
54 55	
55 56	LSB

Purpose: To provide accurate surface position information.

Figure N-3: Extended Squitter Aircraft Identification and Category Message

_	
1 2 3 4 5	FORMAT TYPE CODE (See §N.2.1)
6 7 8	AIRCRAFT CATEGORY
9 10 11 12 13	MSB CHARACTER 1
15 16 17 18 19	LSB MSB CHARACTER 2
20 21 22 23 24 25	MSB CHARACTER 3
26 27 28 29 30 31	MSB CHARACTER 4
32 33 34 35 36 37 38	LSB MSB CHARACTER 5
39 40 41 42 43 44	MSB CHARACTER 6 LSB
45 46 47 48 49 50	MSB CHARACTER 7 LSB
51 52 53 54 55 56	MSB CHARACTER 8 LSB

Purpose: To provide aircraft identification and category.

Type coding:

- 1 = Aircraft identification, category set D
- 2 = Aircraft identification, category set C
- 3 = Aircraft identification, category set B
- 4 = Aircraft identification, category set A

ADS-B Emitter Category coding:

Set A

- 0 = No ADS-B Emitter Category Information
- 1 = Light (< 15 500 lbs.)
- 2 = Small (15 500 to 75 000 lbs.)
- 3 = Large (75 000 to 300 000 lbs.)
- 4 = High Vortex Large (aircraft such as B-757)
- $5 = \text{Heavy} (> 300\ 000\ \text{lbs.})$
- 6 = High Performance (> 5 g acceleration and > 400kts)
- 7 = Rotorcraft

Set B

- 0 = No ADS-B Emitter Category Information
- 1 = Glider/sailplane
- 2 = Lighter-than-Air
- 3 = Parachutist/Skydiver
- 4 = Ultralight/hang-glider/paraglider
- 5 = Reserved
- 6 = Unmanned Aerial Vehicle
- 7 = Space/Trans-atmospheric vehicle

Set C

- 0 = No ADS-B Emitter Category Information
- 1 = Surface Vehicle Emergency Vehicle
- 2 = Surface Vehicle Service Vehicle
- 3 = Fixed Ground or Tethered Obstruction
- 4-7 = Reserved

Set D: Reserved

Aircraft identification coding:

Coding as specified for N.4.4

<u>Figure N-4:</u> Extended Squitter Airborne Velocity Message (Subtypes 1 and 2: Velocity Over Ground)

1	MSB		1	
2	500MAT T)//	DE 00DE 46	0	
3 4	See §N.2.1)	PE CODE = 19) 0 1	
5	LSB		1	
6	SUBTYPE 1	0 8	SUBTYPE 2	0
7		0		1
8	INTENT CHA	1		0
9 10	IFR CAPABIL			
11		UNCERTAIN	TY	
12	CATEGORY -	- VELOCITY		
13	(NUC_R)	DIT (F 14/	la a'ta a (0. F a a	(4)4/()
14 15		BIT for E-W ve		it, 1=West)
16	NORMAL : LS			NIC : LSB =4 knots
17	All zeros = no			no velocity info
18	<u>Value</u>	<u>Velocity</u>	<u>Value</u>	<u>Velocity</u>
19	1 2	0 kts 1 kt	1 2	0 kt 4 kt
20 21	3	2 kt	3	4 Kt 8 kt
22	-	-	-	-
23	1022	1021 kt	1022	4084 kt
24 25		-1021.5 kt BIT for N-S vel	1023	> 4086kt
26	NORTH-SOU	TH VELOCITY	(10 bits)	iii, 1=30uiii)
27	NORMAL : LS	SB = 1 knot		NIC : LSB =4 knots
28	All zeros = no	•		no velocity info
29 30	<u>Value</u> 1	<u>Velocity</u> 0 kts	<u>Value</u> 1	<u>Velocity</u> 0 kt
31	2	1 kt	2	4 kt
32	3	2 kt	3	8 kt
33 34	- 1022	- 1021 kt	1022	- 4084 kt
35	_	1021 kt	1022	> 4086kt
36				0 = Geometric, 1 =
	baro (1 bit)	D. VEDTION I	2475 0	
37 38	VERTICAL R	R VERTICAL I	RATE: 0 = up	, 1 = down
39		vertical rate ir	nformation, LS	SB = 64 ft/min
40	<u>Value</u>		rtical rate	Ref. ARINC 429
44		,) ft/:	<u>labels</u>
41 42	1 2		0 ft/min 4 ft/min	GPS: 165 INS: 365
43	-		-	1110.000
44	510		576 ft/min	
45 46	511	> 32	2608 ft/min	
47	TURN INDICA	ATOR (2 bits)		
48	TBD	` '		
49	DIFFERENCE	E SIGN BIT (0	= above bard	o, 1 = below baro alt)
50	GEOMETRIC bits)	HEIGHT DIFF	FERENCE FR	OM BARO. ALT. (7
51	5110)	All zeros = r	o info; LSB =	25 ft
52	<u>Value</u>	_	fference	
53	1		0 ft	
54 55	2 -		25 ft -	
56	126		3125 ft	
	127	>	3137.5 ft	

Purpose: To provide additional state information for both normal and supersonic flight.

Subtype Coding

Code	<u>Velocity</u> <u>Type</u>				
	As in first edition of	first edition of the			
	ICAO Manual on Mo	AO Manual on Mode S Specific Services			
1	Ground speed	normal			
2		supersonic			
3	Airspeed, heading	normal			
4		supersonic			
5	Not assigned				
6	Not assigned				
7	Not assigned				

IFR Capability Flag coding:

- 0 = Transmitting aircraft has no capability for applications requiring ADS-B equipage class A1S/A1 or above
- 1 = Transmitting aircraft has capability for applications requiring ADS-B equipage class A1S/A1 or above.

Ref. ARINC Labels for Velocity:

East-West	North-South
GPS: 174	GPS: 166
INS: 367	INS: 366

Ref. ARINC Labels

GNSS Height (HAE): GPS: 370 GNSS Altitude (MSL): GPS: 076

Navigation Uncertainty Category:

HFOM _R value		VFOM _R value	NUC _R value
HFOM _R < 0.3 m/s	AND	$VFOM_R < 0.46 \text{ m/s}$	4
(0.984 fps)		(1.5 fps)	
$HFOM_R < 1 \text{ m/s}$	AND	$VFOM_R < 1.5 \text{ m/s}$	3
(3.28 fps)		(5.0 fps)	
$HFOM_R < 3 \text{ m/s}$	AND	$VFOM_R < 4.6 \text{ m/s}$	2
(9.84 fps)		(15.0 fps)	
$HFOM_R < 10 \text{ m/s}$	AND	$VFOM_R < 15.2 \text{ m/s}$	1
(32.8 fps)		(50 fps)	
HFOM _R unknown	OD	VFOM _R unknown	0
<u>or</u>	OR	<u>or</u>	0
HFOM _R ≥10 m/s		$VFOM_R \ge 15.2 \text{ m/s}$	
(32.8 fps)		(50 fps)	

<u>Figure N-5:</u> Extended Squitter Airborne Velocity Message (Subtypes 3 and 4: Airspeed and Heading)

1	MSB		1		
2	FORMAT TYPE CODE = 19		0	Purpose: To provide	
3 4	II		0 1		
5	(See §N.2.1) LSB		1	additional state information	
6	SUBTYPE 3 0	SUBTYPE 4	1	for both normal and	
7	30B11FE 3 0	SUBTIFE 4	0		
8	1		0	supersonic flight based on	
9	INTENT CHANGE FLAG)			airspeed and heading.	
10	IFR CAPABILITY FLAG			-	
11	NAVIGATION UNCERTAINTY			N. C. C	
12	CATEGORY – VELOCITY			Note: This format is only used	
13	(NUC _R)			if velocity over ground	
14	STATUS BIT – 1 = Magnetic heading	available, 0 = not available		is not available	
15	MSB				
16				G d 1 C dd CATTG	
17	S			See the definition of NUC _R in	
18	MAGNETIC HEADING (10 bits)			DO-260 §2.2.3.2.6.1.5.	
19	(§N.4.5.5)			-	
20					
21		Ref. ARINC		Subtype Coding	
22	Basalatian 000/1001	INS	: 320	Code Velocity Type	
23	Resolution = 360/1024 deg			As in first edition of the	
24	LSB			0 ICAO Manual on Mode S	
25	AIRSPEED TYPE: 0 = IAS, 1 = TAS			Specific Services	
26	AIRSPEED (10 bits)	L CURERCONIC - LCR 4	Llocata	Ground normal	
27 28	NORMAL : LSB = 1 knot All zeros = no velocity info	SUPERSONIC : LSB =4		speed	
29	Value Velocity	All zeros = no velocity in Value Velocity		2 supersonic	
30	1 0 kts	1 0 kt		3 Airspeed, normal	
31	2 1 kt	2 4 kt		heading	
32	3 2 kt	3 8 kt		4 supersonic	
33				5 Not assigned	
34	1022 1021 kt	1022 4084 kt		6 Not assigned	
35	1023 >1021.5 kt	1023 > 4086 kt		7 Not assigned	
36	SOURCE BIT FOR VERTICAL RATE:		bit)		
37	SIGN BIT FOR VERTICAL RATE: 0 =	up, 1 = down		IFR Capability Flag coding:	
38	VERTICAL RATE (9 bits)			If K Capability Flag coung.	
39	All zeros – no vertical rate information				
40	LSB = 64 ft/min			0 = Transmitting aircraft has	
41			NC labels	no capability for	
42 43	III -		S: 165 : 365	applications requiring	
43	-	- INS	. 505		
45	510 325	76 ft/min		ADS-B equipage class	
46	II	608 ft/min		A1S/A1 or above	
47	TURN INDICATOR (2 bits)	*			
48	TBD			1 = Transmitting aircraft has	
49	DIFFERENCE SIGN BIT (0 = above baro, 1 = below baro alt))				
50	GEOMETRIC HEIGHT DIFFERENCE FROM BARO. ALT. (7 bits)			capability for applications	
51	All zeros = no	info; LSB = 25 ft		requiring ADS-B equipage	
52	<u>Value</u> <u>Ver</u>		INC 429	class A1S/A1 or above.	
			oels	class reporter of above.	
53	1	0 ft			
54	2	25 ft		Ref. ARINC 429 Labels	
55 56	126	- 3125 ft		for Air Data Source:	
56		3125 π 3137.5 ft		IAS: 206	
<u> </u>	121 > 3	7107.J IL			
				TAS: 210	

<u>Figure N-6:</u> Extended Squitter Aircraft Status Message (Subtype 1: Emergency/Priority Status)

1 2 3 4 5	FORMAT TYPE CODE = 28 (See §N.2.1)
6 7 8	Subtype Code = 1
9 10 11	EMERGENCY/PRIORITY STATUS (3 bits)
12 13 14 15 16	
17 18 19 20 21 22 23 24	
25 26 27 28 29 30 31 32	
33 34 35 36 37 38 39 40	RESERVED
41 42 43 44 45 46 47 48	
49 50 51 52 53 54 55 56	

Purpose. To provide additional information on aircraft status.

Subtype Coding:

0 = No Information

1 = Emergency/Priority Status

2-7 = Reserved

Emergency/Priority Status Coding

<u>Val</u>	<u>ue Meaning</u>
0	No emergency
1	General emergency
2	Lifeguard/medical
3	Minimum fuel
4	No communications
5	Unlawful interference
6	Reserved
7	Reserved
tes:	

Notes.

- 1. Message delivery is accomplished once per second using the event driven protocol.
- 2. Termination of emergency state is detected by coding in the surveillance status field of the airborne position message.

Figure N-7: Aircraft Operational Status Message

1	MSB
2 3	FORMAT TYPE CODE = 31
4	(See §N.2.1)
5	LSB
6	MSB
7	SUBTYPE Code = 0
8	LSB
9	MSB
10 11	En-Route Operational Capabilities (CC-4)
12	LSB
13	MSB Townsied Area Organizational Completition (CC 2)
14 15	Terminal Area Operational Capabilities(CC-3)
16	LSB
17 18	MSB Approach/ Landing Operational Capabilities (CC-2)
19	Approach/ Landing Operational Capabilities (CC-2)
23	LSB
21 22	MSB Surface Operational Capabilities (CC-1)
23	Surface Operational Capabilities (CC-1)
24	LSB
25 26	MSB Enroute Operational Capability Status (OM –4)
27	Emoute operational cupatinty status (OM 1)
28	LSB
29 30	MSB Terminal Area Operational Capability Status (OM-3)
31	
32	LSB MSB
33 34	Approach/ Landing Operational Capability Status (OM-2)
35	
36 37	LSB MSB
38	Surface Operational Capability Status (OM-1)
39	LOD
40	LSB
42	
43 44	
44 45	
46	
47 48	Not Assigned
49	1 tot / toolgriou
50	
51 52	
53	
54	
55 56	
	<u> </u>

Purpose: To provide the Capability Class and Current Operational Mode Of ATC related applications On board the aircraft.

N.4.2 Formats for Version One (1) 1090 MHz ADS-B Messages

Figure N-8: Extended Squitter Airborne Position Message

Figure N-9: Extended Squitter Surface Position Message

Figure N-10: Extended Squitter Aircraft Identification and Category Message

<u>Figure N-11: Extended Squitter Airborne Velocity Message</u> (Subtypes 1 and 2: Velocity Over Ground)

<u>Figure N-12: Extended Squitter Airborne Velocity Message</u>
<u>(Subtypes 3 and 4: Airspeed and Heading)</u>

<u>Figure N-13: Extended Squitter Aircraft Status Message</u>
(Subtype 1: Emergency/Priority Status)

Figure N-14: Aircraft Operational Status Message

Figure N-15: Target State and Status Message (Subtype 0)