

Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Ciência da Computação IA - Inteligência Artificial Gabriela Salvador Thumé

Projeto I

O LABIRINTO DAS ENCHENTES

Problema do labirinto: encontrar um caminho para um bombeiro ir da posição inicial (1,1) até a posição final (16,16).

O algoritmo que demonstrou melhor desempenho para esse problema foi o A*, por considerar o custo tanto em relação à posição inicial quanto estimando o que faltava até seu objetivo. Mostrou também eficiência em relação aos outros algoritmos por sempre encontrar o melhor caminho e num tempo razoavelmente menor.

O algoritmo que encontrou o pior caminho foi o busca cega em profundidade e a busca iterativa tem um custo de tempo muito grande.

A seguir são apresentadas as saídas dos algoritmos desenvolvidos para encontrar o caminho do labirinto das enchentes, contando com uma breve explicação sobre cada um e o mapa da saída.

Busca em Profundidade

Uso: \$ ghci

Prelude > : load labirinto_das_enchentes(busca_profundidade).hs

*LABIRINTO> inicio

Saida:

BUSCA EM PROFUNDIDADE

O algoritmo começa num nó raiz e explora tanto quanto possível cada um dos seus ramos, antes de retroceder.

```
[(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10),
(1,11), (1,12), (1,13), (1,14), (1,15), (1,16), (2,16), (2,15), (2,14),
 (2,13), (2,12), (2,11), (2,10), (2,9), (2,8), (2,7), (2,6),
                                                               (2,5), (2,4),
        (2,2),
                (2,1), (3,1), (4,1), (5,1), (6,1), (7,1),
 (2,3),
                                                               (8,1), (8,2),
 (8,3),
        (8,4),
                (8,5),
                        (8,6),
                                (8,7), (8,8), (8,9), (8,10), (8,11), (8,12),
 (8,13), (8,14), (8,15), (8,16), (9,16), (9,15), (9,14), (9,13), (9,12),
 (9,11), (9,10), (9,9), (9,8), (9,7), (9,6), (9,5), (9,4),
                                                               (9,3), (9,2),
        (10,1), (10,2), (10,3), (10,4), (10,5), (10,6), (11,6), (11,7),
 (11,8), (11,9), (11,10), (12,10), (12,9), (12,8), (12,7), (12,6), (12,5),
 (12,4), (12,3), (12,2), (12,1), (13,1), (13,2), (13,3), (13,4), (13,5),
 (13,6), (14,6), (14,5), (14,4), (14,3), (14,2), (14,1), (15,1), (15,2),
 (15,3), (15,4), (15,5), (15,6), (15,7), (15,8), (15,9), (15,10), (15,11),
 (15,12),(15,13),(15,14),(15,15),(15,16),(16,16)
```


Х	Х	X	Х	X	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X
X	X	X	X	X	X	X	X	Х	Х	X	X	X	Х	X	X
X	11111				11111										
X															
Х-	-				11111					-	$\Pi\Pi$	111111	$\Pi\Pi\Pi$	$\Pi\Pi\Pi$	$\Pi\Pi\Pi\Pi$
X					11111										
X	111111	$\Pi\Pi$	\square												
X	X	X	X	X	Х	X	X	X	X	X	X	X	Х	Х	X
X	X	X	X	X	Х	X	X	X	X	X	X	X	Х	Х	X
Х	X	X	X	X	Х	$\Pi\Pi$	$ \; \; \; \; \; \; \; \; \; \;$	$\Pi\Pi\Pi$							
					Х	X	X	Х	Х	-					
X	X	X	X	X	Х	X	X	X	X						
X	X	Х	X	X	Х										
X	X	Х	X	X	Х	$\Pi\Pi$	$\prod \prod \prod$	$\Pi\Pi\Pi$							
Х	X	X	X	X	Х	X	X	Х	Х	Х	Х	X	Х	Х	X
															X

Custo total da travessia:159

Busca em largura

Uso: \$ ghci

Prelude> :load labirinto_das_enchentes(busca_largura).hs

*LABIRINTO> inicio

Saida:

BUSCA EM LARGURA

Faz uma busca em largura, expandindo cada nivel antes de expandir os nós do proximo nível.

```
[(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,1), (9,1), (10,1), (11,1), (12,1), (13,1), (14,1), (15,1), (15,2), (15,3), (15,4), (15,5), (15,6), (15,7), (15,8), (15,9), (15,10), (15,11), (15,12), (15,13), (15,14), (15,15), (15,16), (16,16)]
```

```
Х
Х
X |||||
            11111
X | | | | |
            11111
--X--|||||
            X |||||
            \Pi\Pi\Pi\Pi
X |||||||||||||
X
X
               Х
Х
                         ||||
Х
                         11111
X
                         11111
Х
               Х --Х--
                  X
          Х
             X
               Х
                     X
                       X
                          X
                             X
                                  X
                                       Х
                                       Х
```


Busca com custo uniforme

Uso: \$ ghci

Prelude> :load labirinto_das_enchentes(custo_uniforme).hs

*LABIRINTO> inicio

Saida:

BUSCA COM CUSTO UNIFORME

Faz uma busca em largura, porem expande primeiro o no com menor custo (de acordo com a distancia de manhattan) em relacao a raiz e garante assim que a primeira solucao encontrada eh a melhor solucao em relacao a origem. Cuidando que o custo do no seja maior que do pai.

[(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,1), (8,2), (8,3), (8,4), (8,5), (9,5), (10,5), (11,5), (12,5), (13,5), (14,5), (15,5), (15,6), (15,7), (15,8), (15,9), (15,10), (15,11), (15,12), (15,13), (15,14), (15,15), (15,16), (16,16)]

Х															
X															
Х	11111			11											
Х				11											
X-	-			11						\square	$\Pi\Pi\Pi$	$\Pi\Pi\Pi$	$\Pi\Pi$	Ш	$\Pi\Pi\Pi$
Х				11											
X			\square	111111											
Х	Х	Х -	-X	X											
		- X													
		- X		11111			$\Pi\Pi\Pi$								
		- X						-						-	
		- X													
		- X													
		- X		11111			$\Pi\Pi\Pi$								
		- X	Х	X	X	X	X	Х	X	X	X	X	X		
		_											X		

Busca com aprofundamento iterativo

Uso: \$ ghci

Prelude> :load labirinto_das_enchentes(aprofundamento_iterativo).hs

*LABIRINTO> inicio

Saida:

BUSCA COM APROFUNDAMENTO ITERATIVO

A solucao por busca com aprofundamento iterativo eh demorada pois os nos do nivel inferior d sao geradas uma vez e os filhos da raiz sao gerados d vezes! (considere o fato de que a primeira solucao estah na profundidade 30). Nesse problema de caminhos em um labirinto, temos ciclos, assim cada nó teve de ser identificado com o numero de sua profundidade tambem, garantindo nao ter estados repetidos, mas podendo passar por lugares jah antes visitados, porem por caminhos diferentes.

Realiza o aprofundamento até um limite i com passos de tamanho n.

Resultado usando passos de tamanho = 1:

Х	Х	X	X	X	X	Х	Х	X	X						
							Х								
	11111				\square				X						
	11111				11111				Х						
	-				\square				X-	-	$\Pi\Pi$	11111		1111	
	\square				$\Pi\Pi\Pi$				X	X	X	Х	X	Х	Х
		11111	\square	\square											X
													X		
													Х		
				111	11111	11111	$\Pi\Pi\Pi\Pi$	111111	1				Х		
								1111					X		
								1111					Х		
								1111					Х		
				111		$\Pi\Pi\Pi$	$\Pi\Pi\Pi\Pi$						Х		
													Х		
													X		

Resultado usando passos de tamanho = 5:

Х	X	X	Х	Х	Х	Х	Х	X	X						
							X								
	$\Pi\Pi\Pi$				11111				X						
	11111				11111				X						
	-11111				11111				X-	-	$\Pi\Pi\Pi$	11111	111111	1111	11111
	11111				11111				X	X	X	Х	X	X	Х
	11111	11111		$\Pi\Pi\Pi\Pi$	11111										Х
													X		
													Х		
				111	11111	$\Pi\Pi\Pi$	$\Pi\Pi\Pi\Pi$	11111	П				Х		
								111					X	-	
								111	П				Х		
								111	П				Х		
				111	11111	$\Pi\Pi\Pi$	$\Pi\Pi\Pi\Pi$		П				X		
													X		
													Х		

Resultado usando passos de tamanho = 10:

X	Х	X	X	X	X	X	X X	X	X						
							Λ		Х						
				- 1					Х						
	-			- 1	-				-X-	-	111111		$\Pi\Pi\Pi$		\square
				1					Х		X	X	X	X	X
															Х
		-							-				Х		
		-							_				Х		
		-		1111			111111	$\Pi\Pi\Pi$					X		
		-						\square					X-	_	
		-											X		
		-											X		
		-		1111				$\Pi\Pi\Pi$					X		
		-											Х		
													X		

Os resultados foram iguais porque ele sempre encontra um resultado na profundidade = 30. A diferença ficou no tempo de execução.

Busca A*

Uso: \$ ghci

Prelude> :load labirinto_das_enchentes(A_estrela).hs

*LABIRINTO> inicio

Saida:

BUSCA A*

Faz uma busca em largura, porem expande primeiro o no com menor custo (de acordo com a distancia de manhattan) em relacao a raiz + em relacao ao destino, e garante assim que a primeira solucao encontrada eh a melhor solucao em relacao a origem e ao destino. Cuidando que a ordenacao seja pelo maior custo entre a raiz e o destino entre o no e o seu pai.

```
[(1,1), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (3,7), (4,7), (5,7), (6,7), (7,7), (8,7), (9,7), (9,6), (10,6), (11,6), (12,6), (13,6), (14,6), (15,6), (16,6), (16,7), (16,8), (16,9), (16,10), (16,11), (16,12), (16,13), (16,14), (16,15), (16,16)]
```


Custo total da travessia:37

POSICIONANDO UM MÍNIMO DE OVELHAS NUM CAMPO

Problema das ovelhas: encontrar um número mínimo de ovelhas num campo com obstáculos, seguindo as regras do cavalo do xadrez, e as configurações possíveis.

Foi utilizada uma busca exaustiva para encontrar o número mínimo de ovelhas suficientes para cobrir todo o campo. Esse número encontrado foi igual a 5.

Assim, os algoritmos de otimização posicionaram essas ovelhas no campo de forma a gerar uma configuração aceitável (de forma que nenhuma ovelha ataque a outra e todo o campo esteja coberto).

O melhor algoritmo de otimização foi o Simulated Annealing, com uma maior eficiência em tempo.

Busca Exaustiva

Uso: \$ gci

Prelude> :load ovelhas_no_campo(busca).hs

*OVELHAS> numero_de_ovelhas

Saída: MINIMIZAÇÃO DE OVELHAS

Partindo de um campo com obstáculos e gramas sem ninguém para cuidar, o algoritmo tenta preencher com o mínimo de ovelhas possíveis o campo. Começando com uma ovelha, testa todas as configurações possíveis e parte para o número de ovelhas mais um.

Número de ovelhas: 5

Subida de Encosta

Uso: \$ ghci

Prelude> :load ovelhas_no_campo(subida-a-encosta).hs

*OVELHAS> otimiza

Saída:

OTIMIZAÇÃO COM HILL CLIMBING

Procura uma configuração aceitável de 5 ovelhas no tabuleiro. Gera uma solução aleatória de início, e a cada nova interação, calcula uma solução vizinha (troca um de seus elementos aleatoriamente) e escolhe sempre o de menor custo (calculado por quantas ovelhas estão em conflito ou gramas em branco).

Configuração: [(1,5),(4,3),(1,1),(3,3),(5,3)]

Simulated Annealing

Uso: \$ ghci

Prelude> :load ovelhas_no_campo(simulated-annealing).hs

*OVELHAS> otimiza

Saída:

*OVELHAS> otimiza

OTIMIZAÇÃO COM SIMULATED ANNEALING

Procura uma configuração aceitável de 5 ovelhas no tabuleiro.

Gera uma solução aleatória de início, e a cada nova interação, calcula uma solução vizinha (troca um de seus elementos aleatoriamente) e escolhe o de menor custo (calculado por quantas ovelhas estão em conflito ou gramas em branco) OU o de pior custo de acordo com a probabilidade obtida por (e^(-maiorCusto-menorCusto)/temperatura).

Configuração: [(3,4),(3,2),(2,2),(3,5),(3,3)]