MAT2500 - Prosjektoppgave

Jonas Folvik

23. november 2018

Når vi tenker på rotasjoner så kan man forestille seg et ark eller en mynt som snurrer flatt på et bord. Dette er eksempler på rotasjoner i to dimensjoner. Vi kan også forestille seg hjulene på en bil i bevegelse eller jorden som går rundt sola, dette er da eksempler på rotasjoner i tre dimensjoner. Hvis arket eller mynten som snurrer står stille på samme sted så blir et punkt, et 0 dimensjonalt objekt, holdt fast. Mens i tre dimensjonale rotasjoner så blir en linje, et 1 dimensjonalt objekt, holdt fast. På grunn av dette kan man finne ut at ved en rotasjon i et n dimensjonalt system, så vil man rotere rundt n-2 dimensjonale objekter. I den fjerde dimensjonen vil man da rotere rundt to dimensjonale objekter, bedre kjent som plan.

Rotasjons matrisen i to dimensjoner kan se slik ut:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne vil da holde fast, fiksere, punktet (0,0), bedre kjent som Origo, mens alle andre punkter og vektorer, i planet, vil rotere med en vinkel θ .

Et eksempel på en rotasjons matrise i tre dimensjoner er:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne vil fiksere linjen som ligger på x_1 -aksen, mens alle andre punkter og vektorer, i rommet, vil rotere med vinkel θ

Teorem 1 Gitt et Euklidisk rom E av dimensjon n, for hver ortogonal lineær transformasjon $f: E \to E$ fins det en ortonormal basis (e_1, \ldots, e_n) slik at matrisen for f med hensyn på denne basisen er en blokk diagonal matrise på formen:

$$\begin{pmatrix} A_1 & \cdots & & \\ & A_2 & \cdots & & \\ \vdots & \vdots & \ddots & \vdots & \\ & & \cdots & A_p \end{pmatrix}$$

slik at hver blokk A_i er enten 1, -1 eller en to-dimensjonal matrise på formen:

$$A_i = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$$

hvor $0 < \theta_i < \pi$. In particular, egenverdiene av $f_{\mathbb{C}}$ er på formen: $\cos \theta_i \pm i \sin \theta_i$, 1, eller -1. [1] Proof. Tilfellet når n=1 er trivielt. Som i beviset for teorem 11.2.9 [1], $f_{\mathbb{C}}$ har en egenverdi $z = \lambda + i\mu$, hvor λ , $\mu \in \mathbb{R}$. Siden $f \circ f^* = f^* \circ f = id$, transformasjonen f er invertibel. Faktisk så har egenverdiene til f en absolutt verdi lik 1, |z| = 1. Hvis $z \in \mathbb{C}$ er en egenverdi for f, og u er en egenvektor for z, har vi:

$$\langle f(u), f(u) \rangle = \langle zu, zu \rangle = z\bar{z}\langle u, u \rangle$$

og

$$\langle f(u), f(u) \rangle = \langle u, (f^* \circ f)(u) \rangle = \langle u, u \rangle$$

fra dette så får vi at:

$$z\bar{z}\langle u,u\rangle=\langle u,u\rangle$$

Siden $u \neq 0$, har vi $z\bar{z} = 1$, som vil si at |z| = 1. Som en konsekvens av dette så er egenverdiene av $f_{\mathbb{C}}$ på formen: $\cos \theta_i \pm i \sin \theta_i$, 1, eller -1.

Et eksempel på en rotasjons matrise i 4 dimensjoner er:

$$R_{\phi,\theta} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 & 0\\ \sin(\phi) & \cos(\phi) & 0 & 0\\ 0 & 0 & \cos(\theta) & -\sin(\theta)\\ 0 & 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne typen rotasjoner blir ofte kalt for en dobbel rotasjon, da man roterer rundt to plan. I dette eksempelet roterer vi om x_1x_2 -planet med vinkel ϕ og vi roterer om x_3x_4 -planet med vinkel θ Hvis $\phi = \theta \neq 0$ i en dobbel rotasjon så kalles det for en isoklinisk rotasjon. Hvis vi setter $\phi = 0$ i dobbel rotasjonen så får vi matrisen for R_{θ} Når vi setter $\phi = 0$ så får vi matrisen:

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos(\theta) & -\sin(\theta)\\ 0 & 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne rotasjonen fikserer x_1x_2 -planet og roterer x_3x_4 -planet med vinkel θ . Dette er et eksempel på en rotasjon som kalles for en enkel rotasjon.

For at en ortogonal operator T skal være en rotasjon, så må den være orienteringsbevarende. Det vil si at: det(T) = 1

Sjekker om det stemmer for en dobbel rotasjon og en enkel rotasjon. Bruker $R_{\phi,\theta}$ og R_{θ} :

$$\det(R_{\phi,\theta}) = \cos(\phi)^{2}(\cos(\theta)^{2} + \sin(\theta)^{2}) + \sin(\phi)^{2}(\cos(\theta)^{2} + \sin(\theta)^{2}) = \cos(\phi)^{2} + \sin(\phi)^{2} = 1$$
$$\det(R_{\theta}) = \cos(\theta)^{2} + \sin(\theta)^{2} = 1$$

Referanser

[1] Jean Gallier. Geometric methods and applications: for computer science and engineering. 2011.