

Applied Statistics for Data Scientists with R

Class 18: Correlation and Regression

Types of Relationships

- 1. Categorical vs. Categorical
- 2. Categorical vs. Numeric
- 3. Numeric vs. Numeric

Categorical vs. Numeric

Common Techniques:

• T-test / ANOVA: Compares means across categories.

Visualizations: Boxplot, histogram.

Example:

Do different job roles have different average salaries?

Smoking Status vs. Average Lung Capacity

Study Mode (Online/In-Person) vs. Final Exam Score

Numeric vs. Numeric

Common techniques:

- Correlation (Pearson, Spearman, Kendall).
- Simple Linear Regression: Predicts Y from X.

Visualizations: Scatterplot.

Example:

Is higher BMI associated with increased blood pressure?

Do students who attend more classes perform better?

Categorical vs Categorical

Common Techniques:

- Chi-Square Test of Independence: Checks if two categorical variables are associated.
- Cramer's V: Measures the strength of association between categorical variables.

Visualization: Percent stacked bar plots.

Example:

Does gender influence product preference?

Blood Type vs. Disease Susceptibility

Smoking Status (Smoker/Non-Smoker) vs. Disease Type (Cancer, Diabetes, etc.)

Correlation Analysis

- It measure the **strength** and **direction** of the relationship between two numerical variables.
 - Strength: How strong the relationship is (e.g., weak, moderate, strong).
 - Direction: Positive (both increase together) or Negative (one increases while the other decreases).
- Types of Correlation:
 - Pearson's Correlation (r) Measures linear relationships.
 - Spearman's Rank Correlation (ρ) Measures monotonic relationships (not necessarily linear).
 - Kendall's Tau (τ) Measures ordinal relationships (for ranking data).

Pearson's Correlation

For valid results, these assumptions should be met

- 1. Linearity: The relationship between the two variables should be linear (check using scatterplot).
- 2. Normality: Both variables should be approximately normally distributed (not necessary for Spearman/Kendall).
- 3. No Outliers: Extreme values can distort the correlation coefficient.

Pearson's Correlation: Interpretation

$$r = rac{\sum (X_i - ar{X})(Y_i - ar{Y})}{\sqrt{\sum (X_i - ar{X})^2 \sum (Y_i - ar{Y})^2}}$$

Correlation Coefficient (r)	Interpretation
r=1	Perfect positive correlation
$0.7 \leq r < 1$	Strong positive correlation
$0.5 \leq r < 0.7$	Moderate positive correlation
$0.3 \leq r < 0.5$	Weak positive correlation
r = 0	No correlation
$-0.3 \leq r < 0$	Weak negative correlation
$-0.5 \leq r < -0.3$	Moderate negative correlation
$-0.7 \leq r < -0.5$	Strong negative correlation
r=-1	Perfect negative correlation

Regression Analysis

• To model the relationship between a dependent variable (target) and one or more independent variables (predictors).

$$Y=eta_0+eta_1X+\epsilon$$

$$Y=eta_0+eta_1X_1+eta_2X_2+...+eta_nX_n+\epsilon$$

Regression: Example

House Price =
$$\beta_0 + \beta_1 \times \text{Size}$$
 (sq. ft.) + $\beta_2 \times \text{Bedrooms} + \beta_3 \times \text{Location Score} + \epsilon$
House Price = $50,000 + 250 \times \text{Size} + 15,000 \times \text{Bedrooms} + 20,000 \times \text{Location Score}$

- Intercept ($\beta_0=50{,}000$): When Size = 0, Bedrooms = 0, and Location Score = 0, the baseline house price is \$50,000
- Size $(\beta_1 = 250) \rightarrow$ For every additional 1 sq. ft., the house price increases on average by \$250.
- Bedrooms ($\beta_2 = 15,000$) \rightarrow Each additional bedroom increases house price by \$15,000.
- Location Score $(\beta_3) \rightarrow$ Every 1-point increase in neighborhood quality score increases the price by \$20,000.

Another example

House Price =
$$\beta_0 + \beta_1 \times \text{Size} + \beta_2 \times \text{Bedrooms} + \beta_3 \times \text{Los Angeles} + \beta_4 \times \text{Chicago} + \epsilon$$

- Intercept (β_0) = The base price of a house in New York (reference category).
- Los Angeles (β_3) = Adjusts the price if the house is in Los Angeles (compared to New York).
- Chicago (β_4) = Adjusts the price if the house is in Chicago (compared to New York).

Assumptions

- 1. The relationship between the independent variable(s) and the dependent variable is linear Check: Residual vs Fitted plot should not show any pattern
- 2. Independent variables should not be highly correlated with each other. (No multicollinearity) Check: Variance inflating factors should be ideally less than 5, or at least less than 8
- 3. Constant variance of errors (Homoscedasticity) Check: Residual vs Fitted plot, bp test
- 4. Residuals should be normally distributed Check: QQ plot, histogram, Shapiro wilk test of residuals
- 5. Residuals should not be correlated Check: Dw test

QQ Plot meaning

https://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot