Ion Beam Techniques:

Rutherford Backscatering and Nuclear Reaction Analysis

Eduardo Alves

Instituto Superior Técnico (IST)- Universidade de Lisboa Instituto de Plasmas e Fusão Nuclear and LATR Estrada Nacional N° 10, km 139,7 2695-066 Bobadela, Portugal

Summary

- Introduction
- Rutherford backscattering : *Aim* and *concepts*
- Rutherford Backscattering Spectrometry (RBS)
 - Scattering cross section Quantity
 - Kinematic factor Chemical species
 - Electronic stopping *Thickness*
 - eEnergy straggling- Depth resolution
- NRA/PIGE
 - Theoretical aspects
 - Cross sections

....Long time ago!

• (Ernest) Rutherford Atomic Model (Phil. Magazine 21, 669-688 (1911)

• First gas detector, Rutherford-Geiger (Geiger – Müller tube)

Rutherford experiment

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

• First artificial nuclear reaction (Phil. Magazine 6, 537-587 (1919)

....again Ernest Rutherford (1919)

- First electrostatic accelerator, Cockcroft e Walton, 1932
- The secrets of the nucleus were ready to be unveil.

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Ion beam -Matter Interactions

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Ion-Atom Interactions

Ion Beam Analysis

- scattering : RBS (MEIS, LEIS, ISS,...)
- nuclear reactions, e.g. $^{14}N(d,a)^{12}C$ $^{18}O(p,a)^{15}N$
- Electronic excitaion: X-ray emission: PIXE :Ligh: Ionoluminescence
- Recoils: ERDA

sputtering : SIMS
 depth profiling (AES, XPS)
 (negligible in RBS – high E, low Z)

Ion Beam Laboratory portrait

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Accelerators-Van de Graaff

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Cesium

Accelerators-Tandem

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Reservoir

SNICS II Schematic Diagram

Relevant Characteristics of IBA

Technique	Acronym	Scattering I = ion S = Sample	Sample information	Typical Elemental sensitivity
Particle Induced X-ray Emission	PIXE	S(I,x-ray)S	Trace and major elements in top 10- 20 mm of sample	10 to 100 ppm
Rutherford Backscattering Spectrometry	RBS	S(I,I)S	Surface depth profile (up to 2000 nm)	1%
Nuclear Reaction Analysis	NRA	S(I,I')S'	Light elements in heavy matrix	Down to few ppb
Elastic Recoil Detection Analysis	ERDA	S(I,S)I	Light elements in surface μm	0.1%
Particle Induced X-ray Emission	PIGE	S(I,γ-ray)S'	Light elements in heavy matrix	1% or better
Ion-induced Electron Microscopy	IEM	S(I,e)S	Surface topography	Low
Channeling Contrast Microscopy	ССМ	<s>(I,I)<s></s></s>	Crystallinity, orientation, substitutionality of heavy elements in light matrix	1 %
Scanning Transmission Ion Microscopy	STIM	S(I,I)S	Areal density of samples thin enough to transmit the beam (up to 50 μm)	n.a.
Channeling Scanning Transmission Ion Microscopy	CSTIM	<s>(I,I)<s></s></s>	Crystallinity, beam damage in samples thin enough to transmit the beam (up to about 50 μm)	n.a.
Ion Microtomography	IMT	S(I,I)S	3D structure and density of samples up to 50 μm thick	10 %
Ionoluminescence	IL	S(I,light)S	Oxidation state of transition metals, presence of trace rare earths, radiative defects and other properties of the band gap	Can be ppb

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Rutherford backscattering

Strength of RBS

- RBS is a reliable and accurate method for *directly* and *non-destructively* determining the composition of an alloy as a function of depth.
- The analysis relies on *absolute calculations*, without the need for *standards* for quantification.
- No influence of *chemical*, *electronic*, *magnetic*, *optical* and *structural properties* of the sample (hence no modelling required).

Basic concepts of backscattering

qualitative/quantitative information of a (thin film) sample

based on : - the *Rutherford atomic model* (electron cloud surrounding the nucleus)

- classical scattering in a *central force* field : *Coulomb repulsion*
- energy transfer during the collision of M₁ and M₂ identity of the target atoms
 (kinematic factor)
- 2. cross section in central force field **concentration** of target atoms (scattering cross section)
- 3. energy loss of particle (stopping cross section) depth profiles

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Rutherford backscattering: Concepts

$$\begin{bmatrix} & & \\ \end{bmatrix}^{2}$$

How much?

Where?

$$\Delta E/\Delta t = K \cdot \frac{dE}{dt} \bigg|_{E_0} + \frac{dE}{dt} \bigg|_{E_0'} / |\cos\phi|$$

Kinematic factor

$$\mathbf{E}_1 = \mathbf{K}\mathbf{E}_0$$

$$\mathbf{K} = \left(\frac{\mathbf{M}_{1} \cos \theta \pm \sqrt{\mathbf{M}_{2}^{2} - \mathbf{M}_{1}^{2} \sin^{2} \theta}}{\mathbf{M}_{2} + \mathbf{M}_{1}}\right)^{2}$$

measure $E_1 \rightarrow$ determine mass M_2

Scattering cross section

$$\sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

based on (unscreened!) Coulomb repulsion

Rutherford Cross Section

$$\Delta p = 2M_1 v \sin \frac{\theta}{2}$$
. Conservação Momento Linear

$$\sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4 \theta/2}.$$

Conservação Momento Angular

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Caso geral

$$\tan \theta = \frac{\sin \theta_c}{\cos \theta_c + M_1/M_2},$$

$$\sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{4}{\sin^4 \theta} \frac{\left(\left(1 - \left[\left(M_1/M_2\right) \sin \theta\right]^2\right)^{1/2} + \cos \theta\right)^2}{\left(1 - \left[\left(M_1/M_2\right) \sin \theta\right]^2\right)^{1/2}},$$

$$\sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \left[\sin^{-4} \frac{\theta}{2} - 2\left(\frac{M_1}{M_2}\right)^2 + \cdots\right]$$

Scattering cross section

Large scattering cross section for:

$$\sigma(\theta) = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

- heavy *ions* (Li in stead of He)
- heavy target atoms
- low energy
- small scattering angle

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Non-Rutherford scattering

Sharp resonance at E = 3.045 MeV

Collisions with target lons and Electrons

→ Total Energy loss

Nuclear Interactions: — Elastic collisions with nucleus → Nuclear energy loss

Electronic interactions − Inelastic collisions with electrons (excitation, ionization) → Electronic energy loss

Total energy loss:

$$-\frac{dE}{dx} = -\frac{dE}{dx}\bigg|_{nucl} + -\frac{dE}{dx}\bigg|_{elect} \qquad S = -\frac{1}{N}\frac{dE}{dx}$$

(energy loss due nuclear reactions and elastic collisions with bound electrons are ignored)

Energy loss in RBS

nuclear versus electronic stopping

elastic collisions with nuclei

large discrete energy losses
significant angular deflection
[responsible for generation of displaced atoms]

backscattering

(in)elastic collisions with electrons
 much smaller energy losses per collision
 negligible deflection
 negligible damage

slowing down

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Interaction Potential

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \chi(r)$$

$$a_0 < r < r_0$$

Thomas-Fermi model: Screening function

$$\frac{d\chi^2}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}} \text{ com } r = xa_{TF} \text{ e } a_{TF}^{3/2} = \frac{3\pi\hbar^3}{4(2m_e)^{3/2}e^3Z_{eff}^{1/2}}$$

Nuclear stopping cross section

Large energy losses and trajectory changes: Defect production (Collision cascades, $\tau \sim 10^{-14}$... 10^{-13} s)

$S_{nucl} = \frac{\ln(1+1.1383\,\varepsilon)}{2(\varepsilon+0.01321\,\varepsilon^{0.261226}+0.19593\,\varepsilon^{0.5})}$

para $\varepsilon \leq 30$

$$S_{nucl} = \frac{\ln(\varepsilon)}{2\varepsilon}$$
 para $\varepsilon > 30$

$$com, \varepsilon = \frac{M_2 a}{(M_1 + M_2) Z_1 Z_2 e^2} E$$

Potencial Universal ZBL

J. F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press(1985)

Electronic stopping cross section

Small energy losses: trajectory changes

$$S_e = k\sqrt{\varepsilon}$$
 with $V < V_0 Z^{2/3}$

$$S_e(E) = \frac{4\pi Z_p^2 e^4 n_e}{N m_e v^2} ln \frac{2m_e v^2}{I}$$

with $V > V_o Z^{2/3}$

E. Alves, IST-LATR (ealves@ctn.ist.utl.pt)

Energy vs. depth resolution

• $\Delta t = \Delta E / [S],$

where [S] is the effective stopping power, that is the effective energy loss per unit length, defined as

$$[S] = \{ K \frac{dE}{dt} \middle|_{E_0} + \frac{dE}{dt} \middle|_{E'_0} / \cos\phi_{\text{scatt}} \} / \cos(\alpha_{\text{inc}})$$

For a given energy resolution, the depth resolution is better for grazing angle of incidence.

(for the poor people limited to 15 keV Si SB detectors and He beams)

Depth resolution

Limit : energy loss = detector resolution ≈15 keV ≈100 Å

High Resolution RBS vs TEM

We can say that:

- Analysis of simple spectra is straightforward and based on first principles Physics + stopping powers
- Almost all analysis is made with the aid of computer simulations
- Analysis of many real-life spectra requires capability of simulating Physics beyond single scattering of homogeneous-energy beams in flat layers
- This capability mostly exists

Literature:

*Ion-Solid Interactions: Fundamentals and Applications*Michael Nastasi, James Mayer, James Hirvonen
Cambridge Solid State Sciences 2004

Backscatering Spectrometry Wei Kan Chu, James Mayer, Marc-A. Nicolet

Academic Press, 1978

Fundamentals of Surface and Thin Film Analysis

Leonard Feldman, James Mayer Elsevier Science Publishing, 1986

Materials Characterization Using ion Beams J. P. Thomas, A.Cachard, Plenum press 1976