

Diego Bertolini

diegobertolini@utfpr.edu.br
http://www.inf.ufpr.br/diegob/

Aula 010

- Aula Anterior:
 - Aprendizagem Supervisionada Decision Trees
- Aula de Hoje:
 - Aprendizagem Supervisionada Support Vector Machine

Objetivo

O que vocês devem saber ao final da aula:

Conceitos básicos do SVM;

Formas de Aprendizado

Aprendizado Supervisionado

- K-Nearest Neighbor (KNN). (ok)
- Árvores de Decisão. (ok)
- Support Vector Machines (SVM).
- Redes Neurais.

Aprendizado Não-Supervisionado

K-means (ok)

Aprendizado Por Reforço

Aprendizado Supervisionado

 Observa-se alguns pares de exemplos de entrada e saída, de forma a aprender uma função que mapeia a entrada para a saída.

- Damos ao sistema a resposta correta durante o processo de treinamento.
- É eficiente pois o sistema pode trabalhar diretamente com informações corretas.

- Proposto em 1995 pelo russo Vladimir Vapnik.
- Consiste em um método de aprendizado que tenta encontrar a maior margem para separar diferentes classes de dados.
- Pertence à classe de algoritmos de aprendizado supervisionado.
- A essência do SVM é a construção de um hiperplano ótimo, de modo que ele possa separar diferentes classes de dados com a maior margem possível.

 Como separar essas duas classes?

- Como separar essas duas classes?
 - Existem diversas retas que podem ser traçadas para separar os dados.
- Qual delas é a melhor opção?

- Como separar essas duas classes?
 - Existem diversas retas que podem ser traçadas para separar os dados.
- Qual delas é a melhor opção?
 - Hiperplano ótimo!

Vetores de Suporte

- Servem para definir qual será o hiperplano.
- São encontrados durante a fase de treinamento.
- Os vetores de suporte são os exemplos de treinamento realmente importantes. Os outros exemplos podem ser ignorados.

- Hiperplano:
 - Espaço 1D = Ponto

– Espaço 3D = Plano

Espaço 2D = Reta

- A aplicação de um método puramente linear para classificar um conjunto de dados pode sofrer com dois problemas bastante comuns:
 - Outliers
 - Exemplos rotulados erroneamente
- Mesmo assim o SVM ainda assim pode ser aplicado através do uso do parâmetro C (soft margin - variáveis de folga)

Soft Margin

• Em alguns problemas não é possível separar as classes linearmente mesmo utilizando a margem de folga.

 Na realidade, a grande maioria dos problemas reais não são separáveis linearmente.

O que fazer?

Problemas Não Lineares

- Os problemas reais geralmente não são linearmente separáveis.
- Para utilizar máquinas lineares, é necessário que os dados sejam projetados em um dimensão onde os mesmos sejam linearmente separáveis.

Kernel Trick

- A função que projeta o espaço de entrada no espaço de características é conhecida com Kernel;
- Baseado no teorema de Cover
 - Dados no espaço de entrada são transformados para o espaço de características, onde são linearmente separáveis.

SVM Não-Linear

O que fazer quando os dados não são linearmente separáveis?

 A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior:

SVM Não-Linear

 O espaço de atributos original pode ser mapeado em um espaço de atributos de dimensão maior onde o conjunto de treinamento é linearmente separável:

Exemplo

$$\phi: \Re^2 \longrightarrow \Re^3$$

$$(x_1, x_2) \longmapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

SVM Não-Linear Exemplo

• Considerando o seguinte conjunto de exemplos de treinamento que não são linearmente separáveis:

• Elevando para uma dimensão linearmente separável ($R^1 \rightarrow R^2$):

• **Kernel:** $\phi(x) = (x, x^2)$

SVM Não-Linear Exemplo

- A mesma metodologia pode ser aplicada em um espaço 2D de características $(R^2 \rightarrow R^3)$.
- A única diferença é a necessidade de uma nova função de kernel. Um exemplo de função de kernel aplicável nesse caso seria:

Funções de Kernel

Kernel	Função $\phi(x_i, x_j)$
Polinomial	$(\delta(x_i \cdot x_j) + k)^d$
Gaussiano	$\exp(-\sigma \ x_i - x_j\ ^2)$
Sigmoidal	$\tanh(\delta(x_i \cdot x_j) + k)$

- O SVM foi originalmente concebido para lidar com classificações binárias.
- Entretanto, a maior parte dos problemas reais requerem múltiplas classes.
- Para se utilizar uma SVM para classificar múltiplas classes é necessário transformar o problema multiclasse em vários problemas da classes binárias
 - -Um contra todos.
 - -Pairwise.

Aplicação

 Antes de aplicar uma SVM para classificar um conjunto de dados é necessário responder algumas questões:

Quais funções de kernel utilizar?

Qual o valor do parâmetro C (Soft Margin)?

Validações cruzadas (cross-validations).

Vantagens e Desvantagens

Vantagens:

- Consegue lidar bem com grandes conjuntos de exemplos.
- Trata bem dados de alta dimensão.
- O processo de classificação é rápido.

Desvantagens:

- É necessário definir um bom Kernel.
- O tempo de treinamento pode ser bem longo dependendo do número de exemplos e dimensionalidade dos dados.

Aplicações

- Categorização de texto
 - Filtragem de email
 - Web-searching
 - Classificação/Indexação de documento
 - GED.

Aplicações

Imagens

- Indexação de imagens
- Aplicações médicas
- Recuperação de imagens (Image Retrieval)

Aplicações

- Reconhecimento da escrita.
 - Geralmente com resultados melhores que outros tipos de classificadores.
- Bio-Informática
 - Categorização automática de genes em DNA.
 - Seqüências de aminoácidos.
 - Classificação de proteínas.

Bibliografia e Materiais.

Estes slides foram adaptados do Livro:

Adaptado das Aulas do Professor Ederley – PUC-RIO

Livro: Duda, R., Hart, P., Stork, D., Pattern Classification, John

Wiley & Sons, 2000