

MSc Business Analytics

STATISTICS AND ECONOMETRICS

Mock Exam

Instructions

Answer all FOUR questions.

You are supplied with a formula sheet.

College approved calculators can be used.

Question 1 (20 Marks)

Answer the following questions. Be concise and to the point.

- (a) What does \mathbb{R}^2 measure? Is a regression useless if its \mathbb{R}^2 is low? Explain.
- (b) Suppose the true return to education model is $wage = \beta_0 + \beta_1 exper + \beta_2 exper^2 + u$. What is the consequence, if we estimate the model without the quadratic term $exper^2$?
- (c) Explain in words the difference between a population regression function and an OLS regression line?
- (d) What is unbiasedness and why is it a desirable property of the OLS estimators?

Question 2 (30 Marks)

Suppose you have tested a model of rent rates and student population in a college town

$$log(rent) = 1.39 + .066 log(pop) + .507 log(avginc) + .0056 pctstu + u$$
(.844) (.039) (.081) (.0017)
 $n = 264$, $R^2 = .458$

where rent is the average monthly rent paid on rental units in a college town, pop denotes the total city population, avginc denotes the average city income, and pctstu denotes the student population as a percentage of the total population.

- (a) Suppose you want to test H_0 : $\beta_{\log(avginc)} = 0.5$ against H_1 : $\beta_{\log(avginc)} \neq 0.5$. Construct the 95% confidence interval for the parameter $\beta_{\log(avginc)}$. (The 5% critical value for a two-tailed test is 1.96)
- (b) Test the hypothesis in part (a) using the calculated confidence interval for $\beta_{\log(avginc)}$.
- (c) Define $\theta = \beta_{\log(pop)} 2\beta_{pctstu}$. If you want to test H_0 : $\theta = 0$ against H_1 : $\theta \neq 0$. Rewrite the regression model appropriately, so that you can directly obtain $\hat{\theta}$ and the standard error $se(\hat{\theta})$.
- (d) Test the joint significance of $\beta_{\log(pop)}$, β_{pctstu} and $\beta_{\log(avginc)}$ at the 5% level. That is, test H_0 : $\beta_{\log(pop)} = 0$, $\beta_{pctstu} = 0$, and $\beta_{\log(avginc)} = 0$. (The 5% $F_{3,260}$ critical value is c = 2.60.)

Question 3 (30 Marks)

Consider the housing price model:

$$\log(price) = \beta_0 + \beta_1 \log(nox) + \beta_2 rooms + \beta_3 rooms^2 + u$$

where *price* is the median housing price in a community, *nox* denotes the amount of nitrogen dioxide in the air in the community, in parts per million, and rooms is the average number of rooms in houses in the community.

- (a) What is the effect of rooms on price in this model?
- (b) Suppose the estimated equation is:

$$log(price) = 13.39 - .902 log(nox) - .545 rooms + .062 rooms^{2}$$

(.57) (.115) (.165) (.013)

n = 506, $R^2 = .603$.

Based on your answer in part (a), what is the predicted difference in median housing prices for a community with rooms = 5 and a community with rooms = 6?

- (c) You want to test the joint hypothesis H_0 : $\beta_1 = 0$, $\beta_2 = 0$, $\beta_3 = 0$ at the 5% level. The p-value associated with the F statistic for that test is 0.0234? What would you conclude?
- (d) Is $\widehat{\beta_1}$ economically significant? Explain.

Question 4 (20 Marks)

Consider the following fixed-effects model for a panel dataset

$$y_{it} = \rho y_{i,t-1} + \beta x_{it} + \delta_i + u_{it},$$

where y_{it} is a continuous variable, x_{it} is an explanatory variable, δ_i is the fixed effect, u_{it} is the idiosyncratic error. $y_{i,t-1}$ is the lagged dependent variable, which is also used as an explanatory variable in the model.

- (a) (10 Marks) Explain how to estimate the model using the first-differenced approach as discussed in the class.
- (b) (10 Marks) Discuss why the first-differenced estimator always yields biased estimates for this model.