Aplicação das radiações em biologia e medicina

capítulo 7 do livro da Okuno

Aplicações em biologia e medicina

- Introdução
- Aplicações na biologia
- Radioterapia
- Radiologia Diagnóstica
- Medicina nuclear

Introdução

- Maiores aplicações: biologia e medicina
- Biologia: pesquisa básica em Genética, Fisiologia, Botânica, etc...
- Medicina: Radiologia, que compreende radioterapia, radiologia diagnóstica e medicina nuclear

Introdução

- Radioterapia: destruir tumores cacerígenos por transferência de energia da radiação
- Radiologia diagnóstica: radiografia comumente utilizada para observar fraturas ósseas
- Tomografia computadorizada: faz parte da radiologia diagnóstica, seus inventores ganham o prêmio Nobel em 1979

Introdução

- Medicina Nuclear: usa materiais radioativos e técnicas de física nuclear
- Exemplo: radioisótopos usados como marcadores

Aplicações na biologia

- Transporte em plantas: injeta-se ¹⁴C que passa a fluir pelo sistema das plantas até ser utilizado na formação dos carbohidratos
- Após a exposição, remove-se as folhas e caules das plantas e coloca-se entre placas de raio X
- O ¹⁴C irá então sensibilizar a placa

Divisão de cromossomos

- Timidina marcada com trítio (³H)
- As células absorvem e a timidina é incorporada no cromossom.
- Na placa de radiografia, pode-se então determinar a forma e o número de cromossomos

Radioterapia

- Teleterapia: fonte radioativa é colocada a distância (muitos centímetros) da região a ser tratada
- Baixa penetração: usado em câncer de pele, artrite, artrose, bursite, etc...
- Média penetração: 4 a 5 cm de profundidade, usados em pulmão, bexiga, próstata, útero, laringe, esôfago, etc...
- Radioisótopos utilizados: ⁶⁰Co, ¹³⁷Cs, ²²⁶Ra

Braquiterapia

- Fonte radioativia em contato com a pele ou implantado
- Materiais radioativos (⁶⁰Co, ¹³⁷Cs, ²²⁶Ra, ¹⁹⁸Au, ¹⁹²Ir) podem ser usados selados em recipientes: tubos, sementes, agulhas, etc...
- Vantagens: dose alta em estruturas internas com dose baixa nas regiões vizinhas

Radioterapia

- Outras fontes radioativias:
- Elétrons energéticos: usados em doenças de pele como micose, câncer de mama e após a mastectomia
- Nêutrons: câncer de forma geral

Radiologia diagnóstica

- Faz incidir um feixe em partes do corpo e mede o feixe transmitido
- Diferentes estrturas do corpo (gordura, óssos, músculo, água) absorvem de forma diferente
- Atenuação: redução da intensidade do feixe transmitido devido a absorção e espalhamento do feixe incidente

Radiologia diagnóstica

- Seja $I = intensidade transmitida, I_0 = intensidade incidente e <math>x = espessura do material$
- $I = I_0 e^{-\mu x}$
- µ = coeficiente de atenuação linear, que depende do material e da energia de l
- Pode-se usar constraste para aumentar a absorção de raio X (ar, iodo, bário).

Radiologia diagnóstica

- DO = $log l_0/l$ = densidade óptica
- Para uma boa radiografia, 0,2 < DO < 0,4

Tomografia

- Na radiografia normal, a imagem dos diferentes órgãos é superposta em um plano apenas, perdendo muitos detalhes
- Na tomografia pode-se visualizar um plano apenas, observando variações de 0,5% de absorção de raios X
- Antiga: a medida da transmissão é feita variando o ângulo de I grau, girando no total de 180 graus

Tomografia

Tomografia

- Tomografia moderna: a medida é feita no corpo inteiro girando o emissor e detector de raio X em volta do corpo
- Um computador guarda e analisa todas as imagens e reconstrói a imagem da fatia do corpo

Medicina Nuclear

- Em 1927 H. Blumgar e S. Weiss injetaram um radioisótopo na veia de um braço do paciente e detectaram o mesmo no outro braço
- Isso permitiu medir a velocidade do fluxo sanguíneo
- Em 1948 foi obtido o primeiro radiocardiograma, usando sódio 24

Medicina Nuclear

- Com o passar do tempo, inúmeros radioisótopos foram obtidos
- Estudos in vivo: o paciente ingere os materiais que são detectados ao longo de seu corpo (mapeamento hepático com tecnécio 99)
- Estudos in vitro: o paicente ingere e depois o material é detectado em fezes, urina ou amostra de sangue.

Medicina Nuclear

- Diferentes radiofármacos tem diferentes funções, de acordo com suas propriedades bioquímicas
- A função cardíaca pode ser estudada com albumina marcada com tecnécio 99
- Drogas em geral podem ser marcadas para se determinar as propriedades dessa droga

Isótopo	Forma química	Uso
⁹⁹ Tc ^m	Pertecnetato (Na ⁹⁹ Tc ^M O ₄)	Estudos dinâmicos cardíaco e cerebral
		Imagens de { cérebro placenta tireóide
⁹⁹ Tc ^m	Soro de albumina humana	Estudo dinâmico cardíaco
	vitate chivatern e situo e eup ior	Imagens da
⁹⁹ Tc ^m	Microesferas de albumina	.32
BELL - THE RESERVE	Macroagregados de albumina	Imagens dos pulmões
⁹⁹ Tc ^m	Colóide de enxofre	Imagens de { medula óssea fígado baço

⁹⁹ Tc ^m	Fosfatos	Imagens do osso
⁹⁵ Se	Selenometionina	Imagens do pâncreas
13 _N	Nitrogênio gasoso	Estudos de perfusão e ventilação pulmonares
13 _N	Amônia (¹³ NH ₄)	Detecção de enfartes cardíacos
111 In se sup short lat	111 InCl ₃ , albumina, globulina	Imagens de { cérebro tecidos moles
¹²³	Na ¹²³ I	Imagens da tireóide
¹¹ C	¹¹ CO	Imagens da placenta
¹¹ C	¹¹ CO ₂	Estudo dinâmico dos shunts cardíacos e dos pulmões
201 TI	Cloreto	Imagem do miocárdio