Skin Cancer classification using Deep Learning CNN Models

A PROJECT REPORT

for

Artificial Intelligence

in

B.Tech (IT)

by

Kavali Venkata Sai Sankar Kumar (19BIT0030)

Amartya Sharma (19BIT0021)

Winter Semester, 2021

Under the Guidance of

Dr. R.Subhashini

SITE

Code Link: https://github.com/kvssankar/ai-j-comp

School of Information Technology and Engineering

NOV, 2021

DECLARATION BY THE CANDIDATE

We here by declare that the project report entitled **Skin Cancer classification** using **Deep Learning CNN Models** submitted by us to Vellore Institute of Technology University, Vellore in partial fulfilment of the requirement for the award of the course **Artificial Intelligence (ITE2010)** is a record of bonafide project work carried out by us under the guidance of DR. **R SUBHASHINI.** We further declare that the work reported in this project has not been submitted and will not be submitted, either in part or in full, for the award of any other course.

Place : Vellore Signature

Date: 29-Nov-2021

School of Information Technology & Engineering [SITE]

CERTIFICATE

This is to certify that the project report entitled **Skin Cancer classification using Deep Learning CNN Models** submitted by **Kavali Venkata Sai Sankar Kumar(19BIT0030), Amartya Sharma(19BIT0021)** to Vellore Institute of Technology University, Vellore in partial fulfilment of the requirement for the award of the course **Artificial Intelligence (ITE2010)** is a record of bonafide work carried out by them under my guidance.

DR.R SUBHASHINI

GUIDE

SITE

Skin Cancer classification using Deep Learning

Classification of Skin cancer Using TensorFlow backend and pre-trained CNN algorithms in a organized pipeline fashion

Kvs. Sankar Kumar, Amartya Sharma

1,2 Department of Information Technology, VIT University, Vellore, Tamil Nadu, India

Name	Individual Contribution	
Kvs. Sankar Kumar	5 literature surveys, Introduction,	
	Abstract, Proposed algorithm, Code	
	Implementation	
Amartya Sharma	5 literature surveys, Background,	
	Architecture, Code Implementation	

<u>Ultimate Utility value</u>

Skin lesion detection as well as classification is tedious and costly procedure overall. The early diagnosis of skin cancer and accurate classification would facilitate the subsequent clinical management of patients, it will also provide a boost to the healthcare domain. The importance of multi class classification of skin cancer patients into high and low risk groups has already been in research and development area. This project would help the researches to dig deep and figure further approaches in efficient treatment of disease patients. In addition,

the ability of AI tools to detect key features from complex datasets reveals importance.

Abstract

Skin cancer refers to a condition where there exists abnormal growth of skin cells, mostly occurs on skin exposed to the sun. There are several types of skin cancer, where the most common types include basal cell carcinoma, squamous cell carcinoma, and melanoma. Without proper treatment, skin cancer, particularly in the melanoma form, can lead to deaths. Fortunately, early detection and classification of skin cancer are highly effective in preventing serious damages from skin cancer. In this paper, Human Against Machine (HAM) 10000 dataset is used to demonstrate skin cancer classification strategy, RESNET52, InceptionV3, Deep CNN proposed in this paper are implemented, trained, and evaluated. The dataset pre-processing steps and methodology are illustrated, and the network parameters and training process are explained. The performance of all three networks is compared in terms of the average overall accuracy and loss. Detailed performance by group is also visualised in graphs.

I. INTRODUCTION

Skin cancer is one of the most commonly occurring cancers, caused by excessive sunlight exposure to human skin. There are several types of skin cancer, where the most common types include basal cell carcinoma, squamous cell carcinoma, and melanoma. Like other types of cancer, untreatable skin cancer can cause deaths. Fortunately, early detection and classification of skin cancer can effectively increase the survival rate of people suffering from this disease. Additionally, with the rapid development of machine learning algorithms, early detection of skin cancer can be made out of possible. In the literature, several methods for skin cancer classification have been designed.

The study by reveals that color, texture, and shape features of melanoma are useful for skin cancer classification. Specifically, the authors of this study compare the classification results of some skin cancer classification methods built upon six different classifiers in combination with seven features.

II. BACKGROUND

MobileNet is a class of CNN that was open-sourced by Google, and therefore, this gives us an excellent starting point for training our classifiers that are insanely small and insanely fast. They belong to a family of *mobile-first* computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application.

MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings, and segmentation.

RESNET52

A residual network, or ResNet for short, is an artificial neural network that helps to build deeper neural network by utilizing *skip connections* or *shortcuts* to

jump over some layers. You'll see how skipping helps build deeper network layers without falling into the problem of vanishing gradients

Inception V3

Inception v3 mainly focuses on burning less computational power by modifying the previous Inception architectures. If any changes are to be made to an Inception Network, care needs to be taken to make sure that the computational advantages aren't lost. Thus, the adaptation of an Inception network for different use cases turns out to be a problem due to the uncertainty of the new network's efficiency.

Architecture diagram

- Import Keras Packages and Libraries
- Initializing the CNN
- > Adding the Convolution Layer
- > Adding the Pooling layer

- > Adding Flattening to the layer
- Adding the Fully Connected layer
- Compiling the CNN
- > Fitting the different CNN models to image dataset

III. Literature Survey Sample:

In research paper [1] it is explained how Skin cancer detection done using Svm which is basically defined as the process of detecting the presence of cancerous cells in image. Skin cancer detection in this paper is implemented by using GLCM and Support Vector Machine (SVM). Gray Level Co-occurrence Matrix (GLCM) is used to extract features from an image that can be used for classification.

The authors in [2] Used vector-based SURF approach for the recognition of lesion pattern. The features found are classified using multi SVM classifier to classify the type of lesion .This system provided 86.37% accuracy, 86.53% sensitivity and 96.42% specificity rates. 611 data images were used which has 4 types of skin lesion classes. [16] proposed computerized method which is fully automatic for skin lesion classification. In this research they pre trained three models ResNet-18, AlexNet, and VGG16 as feature generators. Support Vector Machines are then trained using these extracted features. In the last stage, these classifier outputs are fused to obtain classification. They used 150 images from ISIC 2017, yielding a performance of 83.83% for melanoma and 97.55% for seborrheic keratosis classification.

[3] The author has used U-net algorithm of CNN for segmentation process. They used, Edge Histogram (EH), Local Binary Pattern (LBP), Gabor method and Histogram of Oriented Gradients (HOG), to extract the features from the

segmented images. Features that are extracted from the above-mentioned methods were fed into the Support Vector Machine (SVM), and also K-Nearest Neighbour (KNN), Naïve Bayes (NB) and Random Forest (RF)classifiers, to diagnose whether it is benign or Melanoma. This experiment is carried out with 900 dermoscopic images. International Skin Imaging Collaboration (ISIC) is used for images .10% of the 900 segmented images are used as test data and the remaining 90% of the 900 images are used as training data for classification.

[4]In this proposed model the authors uses technologies such as image processing and data mining for the diagnosis of the disease of the skin. The image of skin disease is taken and it must be subjected to various pre-processing for noise eliminating and enhancement of the image. This image is immediately segmentation of images using threshold values. Finally data mining techniques are used to identify the skin disease and to suggest medical treatments or advice for users. This expert system exhibits disease identification accuracy of 85% for Eczema, 95% for Impetigo and 85% for Melanoma. A useful inference which was derived by authors in [5] was how deep Learning processing of dermoscopic images followed by sonification results in an accurate diagnostic output for SMP, implying that the quality of the dermoscope is not the major factor influencing DL diagnosis of skin cancer.

The article proposed by author in [6] talks about the analysis of more than 24,000 skin cancer images by convolutional neural network (ConvNet) model applying with three architectures (InceptionV3, ResNet, and VGG19) with many parameters to identify the best architectures in the classification of these images and getting extremely acceptable results.

Authors in [7] presented a fully automated method for segmenting the skin melanoma at its earliest stage by employing a deep-learning based approach, namely faster region-based convolutional neural networks (RCNN) along with fuzzy k-means clustering (FKM).

[8]They proposed new prediction model novel regularizer technique that classifies a given lesion into either benign or malignant. So, this is a binary classifier. The data set is taken from ISIC,5600 images are used for training CNN, and 2400 images for validation. This proposed model achieved an accuracy of 97.49% in determining benign vs malignant. The performance of CNN in terms of AUC-ROC is calculated for different cases with an embedded novel regularizer.

Tri Cong Pham , Van Dung Hoang [9] Proposed deep CNN, that solves the underfitting problem and avoids overfitting. Their proposed best model selection method with increase in Youden Index (YI) on both test-10 and MClass-D datasets also outperforms traditional methods. Moreover, their solution effectively outperformed 153 out of 157 dermatologists, which surpasses the current state-of-the-art solution by 17 dermatologists.

Khushbakht Iqtidar [10] Determined the area of interest of the lesion part, dermoscopic skin lesion images are first segmented using k-means clustering. Next, extensive feature extraction is performed on segmented images by using feature descriptors: local binary patterns (LBP), histogram of oriented gradients (HOG), and bag of visual words (BoVW). These features are evaluated on a wide range of classification methodologies. Experimental analysis revealed that BoVW features with support vector machines yield the highest results in terms of 99.8% accuracy, 100% sensitivity, and 99.5% specificity.

Sno	Algorithm	Advantages	Disadvantages
1	Support Vector	Accuracy of	GLCM works
	Machine and	proposed system	only on gray level
			image matrix to

	GLCM for	is 95% using this	capture most
	feature extraction	algorithms.	common feature
			such as contrast,
			mean, energy,
			homogeneity
2	SVM classifier	This system	No visible issues
	and vector-based	provided 86.37%	could be
	SURF approach	accuracy, 86.53%	identified.
	for the	sensitivity and	
	recognition of	96.42%	
	lesion pattern.	specificity rates.	
3	U-net algorithm	The accuracy	No visible issues
	of CNN, Support	produced was	could be
	Vector Machine	85.19%,using	identified.
	(SVM), K-	SVM classifier.	
	Nearest	The experimental	
	Neighbour	results of	
	(KNN), Naïve	classification	
	Bayes (NB) and	methods for the	
	Random Forest	extracted	
	(RF)classifiers	features. SVM	
		predicts Recall of	
		(50%), accuracy	
		of (85.19%) and	
		F1_scoreof (46%)	
		and Naïve Bays	
		classification	

		predicts Precision	
		of (45.62%).	
4	AdaBoost,	The accuracy	Only for three
	BayesNet, J48,	achieved was	skin diseases are
	MLP,	above 85% and	taken care of they
	NaiveBayes	use of Multi-	are Eczema,
		Layer Perceptron	Impetigo and
		(MLP) and J48	Melanoma
		are main	Also while
		classifiers used in	capturing the
		achieving this	image the camera
		accuracy.	lens need to be
			adjusted.
5	A convolutional	Results in a	Visual inspection
	neural network	sound ROC AUC	of the raw sound
	architecture based	of 0.81. Applying	files derived from
	on the Inception	a twice extra	SMP does not
	V2 network was	weight to	distinguish
	utilized.	sensitivity upon	between benign,
	And K-means	positive	dysplastic nevus
	clustering	predictive value	and MM (Fig. 3
	algorithm	derives a 92%	c). Consequently,
		sensitivity and a	a secondary
		42% specificity	machine learning
			was applied to the
			raw sound files in

			order to diagnose malignancy.
6	Convolutional	The InceptionV3	VGG19
	neural network	architecture has	performance with
	(InceptionV3,	achieved a	adam as learning
	ResNet, and	diagnostic	algorithm was
	VGG19) and	accuracy of	worst among
	learning	approximately	three, with an
	algorithms as	86.90%, precision	accuracy of
	Gradient descent,	of 87.47%,	73.11%
	RMSProp, Adam	sensitivity of	
		86.14%, and the	
		specificity of	
		87.66%	
7	Convolutional	The presented	The first issue is
	neural networks	method attains an	the exact location
	(RCNN) along	average accuracy	of the multiple
	with fuzzy k-	of 95.40, 93.1,	objects and the
	means clustering	and 95.6% on the	other issue is the
	(FKM)	ISIC-2016, ISIC-	category of each
		2017, and PH2	object.
		datasets	
8	Deep	The proposed	, when the
	convolutional	model achieved	dimensionality is
	neural networks	an average	very high and the
		accuracy of	number of

	(CNNs) with	97.49%, which in	instances is very
	novel regulazier	turns showed its	low, the use of
		superiority over	these
		other state-of-the-	regularizations is
		art methods. The	pointless
		performance of	
		the CNN in terms	
		of AUC-ROC	
		with an	
		embedded novel	
		regularizer is	
		tested on multiple	
		use cases	
9	CNN architecture	significant	With the limited
	with binary skin	solution for the	resources and
	cancer	architecture	timeframe, only
	classification	designing and	conducted our
	system	imbalance data	experiment on
		issue in binary	one customized
		melanoma image	fully connected
		classification.	layer of two
			hidden layers
10	k-means	BoVW features	Complex
	clustering for the	with support	classification
	extraction of the	vector machines	tasks are
	region of interest	classifier yield	effectively
	in the image.	the highest results	handled by SVM
	Feature extraction	in terms of 99.8%	eats a lot of time

performed over a	accuracy, 100%	
range of feature	sensitivity, and	
descriptors	99.5% specificity.	
namely LBP,		
HOG, and BoVW		

IV. PROPOSED ALGORITHM

- 1. We start with an input image. In our case, we would use a single image from our dataset of 1000 images and later we would loop the function over the other images.
- 2. We apply filters or feature maps to the input image, which gives us a convolutional layer.
- 3. We then break up the linearity of that image using the rectifier function.
- 4. The image becomes ready for pooling, the purpose of which is to provide our CNN with "spatial invariance". After pooling, we end up with a pooled feature map.
- 5. We then flatten our pooled feature map before inserting into an artificial neural network.

Throughout this entire process, the network's building blocks, like the weights and the feature maps, are trained and repeatedly altered in order for the network to reach the optimal performance that will make it able to classify images and objects as accurately as possible.

Building the Pipeline

Initializing the CNN
 Preparing the base models:

- 1. MobileNet
- 2. RESNET52
- 3. InceptionV3
- 2. Preprocessing the image using ImageDataGenerator from keras api
- 3. Defining a function for flow from dataframe
- 4. Building the CNN Model
 - 1. Create base for pretrained models
 - 2. Input into the layers
 - 3. Applying batch normalization on the layers
 - 4. Using Gaussian Noise class to mitigate the overfitting
 - 5. Flatenning the layers
 - 6. Adding pooling layer
 - 7. Compiling the model

V. EXPERIMENTS RESULTS

Dateset after preprocessing

Imbalance in classes

Binary loss and accuracy

MobileNet

Resnet

InceptionV3

Detailed performance by group

Mobilenet

Resnet

InceptionV3

Class-level ROC curves

Mobilenet

Resnet

InceptionV3

Results

Metric	MobileNet	Resnet	InceptionV3
Binary Loss	1.12	1.62	1.75
Accuracy	64.6	51.3	56.6
AOC	83	82.6	77.2

New Learning experience gained

We have learnt how to implement multi-class classification. We learnt new technologies like flask, fast-api, docker to deploy it as a web app.

Future Goals

In this project work, we proposed a model for multiclass classification of various

types of skin cancers with pre-trained CNN algorithms in an organised pipeline fashion on HAM 1000 dataset. This project also consists of real time skin lesion classification with the help of web application.

In future we could also come up with new models with ensembled approach to tackle the outliers and increase the accuracy significantly.

In future we are going to deploy this in AWS and implement distributed systems to increase the pre-processing speed.

REFERENCES

1]Ansari, Uzma and Tanuja K. Sarode. "Skin Cancer Detection Using Image Processing." (2017).

[2]Thompson F, Jeyakumar MK. Vector based classification of dermoscopic images using SURF. IJAER. 2017;12:1758–64.

[3]Seeja R.D., Suresh A. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM) Asian Pac. J. Cancer Prev. 2019;20:1555–1561. doi: 10.31557/APJCP.2019.20.5.1555

[4]Amarathunga, A., Ellawala, E.P., Abeysekara, G., & Amalraj, C.R. (2015). Expert System For Diagnosis Of Skin Diseases. *International Journal of Scientific & Technology Research*, *4*, 174-178.

- [5] Dascalu, A., & David, E. O. (2019). Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine. doi:10.1016/j.ebiom.2019.04.055
- [6]Mijwil, Maad. (2021). Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications. 80. 10.1007/s11042-021-10952-7.
- [7]Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R. A., Rehman, A., Iqbal, M., & Saba, T. (2021). Skin cancer detection from dermoscopic images using deep learning and fuzzy k -means clustering. Microscopy Research and Technique. doi:10.1002/jemt.23908
- [8] Albahar, M. A. (2019). Skin Lesion Classification using Convolution Neural Network with Novel Regularizer. IEEE Access, 1–1. doi:10.1109/access.2019.2906241
- [9] Pham, T. C., Tran, C. T., Luu, M. S. K., Mai, D. A., Doucet, A., & Luong, C. M. (2020, October). Improving binary skin cancer classification based on best model selection method combined with optimizing full connected layers of Deep CNN. In 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) (pp. 1-6). IEEE.
- [10] Iqtidar, K., Iqtidar, A., Ali, W., Aziz, S., & Khan, M. U. (2020, November). Image Pattern Analysis towards Classification of Skin Cancer through Dermoscopic Images. In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH) (pp. 208-213). IEEE.