PROOF. (i) Trivial.

(iii)
$$\mathfrak{M} \models \omega$$
-rule $\Rightarrow \mathfrak{M}^0 \models \omega$
 $\Rightarrow \mathfrak{M}^0 \models \omega^0$
 $\Rightarrow \mathfrak{M} \models \omega^0$ -rule
 $\Rightarrow \mathfrak{M} \models \omega$ -rule by the proof of theorem 4.1.15(i). \square

52.22. PROPOSITION. Let \Im be a λ -theory and R one of the rules. Then

$$\mathfrak{T} \vdash \mathbf{R} \Leftrightarrow \mathfrak{M}(\mathfrak{T}) \vDash \mathbf{R}\text{-rule}$$
$$\Leftrightarrow \mathfrak{M}(\mathfrak{T}) \vDash \mathbf{R}\text{-ax}.$$

PROOF. Let $\mathbf{R} = R_1 \Rightarrow R_2$ and suppose $\mathfrak{T} \models \mathbf{R}$. Then

$$\mathfrak{M}(\mathfrak{T}) \vDash R_1 \Rightarrow \mathfrak{T} \vdash R_1$$
, by theorem 5.2.12(ii),
 $\Rightarrow \mathfrak{T} \vdash R_2$, by assumption,
 $\Rightarrow \mathfrak{M}(\mathfrak{T}) \vDash R_2$.

Therefore $\mathfrak{M}(\mathfrak{T}) \models \mathbf{R}$ -rule. Similarly one shows $\mathfrak{M}(\mathfrak{T}) \models \mathbf{R}$ -rule $\Rightarrow \mathfrak{T} \vdash \mathbf{R}$. To show that $\mathfrak{M}(\mathfrak{T}) \models \mathbf{R}$ -rule iff $\mathfrak{M}(\mathfrak{T}) \models \mathbf{R}$ -ax is similar to the proof of fact 5.2.20(ii). \square

5.2.23. COROLLARY. (i) If \mathcal{T} is an extensional λ -theory, then $\mathfrak{M}(\mathcal{T})$ is an extensional λ -model.

(ii) If $\mathfrak{I} \vdash \omega$, then $\mathfrak{M}^0(\mathfrak{I})$ is an extensional λ -model.

Proof. By propositions 5.2.21 and 5.2.22. □

5.3. Syntactical models

In this section a syntactical description of the λ -algebras and λ -models will be given, which is equivalent to the first order description in § 5.2. For some models, in particular the filter model of Barendregt et al. [1983], this syntactical description is more convenient than the first order one. The method is due to Hindley and Longo [1980].

- 5.3.1. Definition. Let $\mathfrak{M} = \langle X, \cdot \rangle$ be an applicative structure.
 - (i) Val(M) is the set of valuations in M.
- (ii) A syntactical interpretation in \mathfrak{M} is a map $I: \Lambda(\mathfrak{M}) \times \mathrm{Val}(\mathfrak{M}) \to X$ satisfying the following conditions; $I(M, \rho)$ is written as $[M]_{\rho}$.

- (1) $[x]_{\rho} = \rho(x)$,

- $(2) \begin{bmatrix} c_a \end{bmatrix}_{\rho} = a,$ $(3) \begin{bmatrix} PQ \end{bmatrix}_{\rho} = \begin{bmatrix} P \end{bmatrix}_{\rho} \cdot \begin{bmatrix} Q \end{bmatrix}_{\rho},$ $(4) \begin{bmatrix} \lambda x. P \end{bmatrix}_{\rho} \cdot a = \begin{bmatrix} P \end{bmatrix}_{\rho(x:=a)},$ $(5) \rho \upharpoonright FV(M) = \rho' \upharpoonright FV(M) \implies \begin{bmatrix} M \end{bmatrix}_{\rho} = \begin{bmatrix} M \end{bmatrix}_{\rho'}.$

Note that by the variable convention, (4) implies that for $y \notin FV(M(x))$ one has

$$(4') [\![M(x)]\!]_{\rho(x:=a)} = [\![\lambda x. M(x)]\!]_{\rho} a = [\![\lambda y. M(y)]\!]_{\rho} a = [\![M(y)]\!]_{\rho(y:=a)}.$$

- (iii) A syntactical applicative structure is of the form $\mathfrak{M} = \langle X, \cdot, [\![\]\!] \rangle$ where \[\] is a syntactical interpretation in \(\mathbb{M} \).
- 5.3.2. DEFINITION. Let \mathfrak{M} be a syntactical applicative structure.
 - (i) The notion of satisfaction in M is defined as usual:

$$\mathfrak{M}, \rho \vDash M = N \iff \llbracket M \rrbracket_{\rho} = \llbracket N \rrbracket_{\rho}$$
$$\mathfrak{M} \vDash M = N \iff \forall \rho \ \mathfrak{M}, \rho \vDash M = N$$

and this is extended to arbitrary first order formulas over the λ -calculus.

(ii) \mathfrak{M} is a syntactical λ -algebra if

$$\lambda \vdash M = N \implies \mathfrak{M} \vDash M = N.$$

(iii) M is a syntactical λ-model if

$$(\xi) \qquad \mathfrak{M} \vDash \forall x (M = N) \rightarrow \lambda x. M = \lambda x. N,$$

i.e.

$$\forall a \, \llbracket M \rrbracket_{\rho(x;=a)} = \llbracket N \rrbracket_{\rho(x;=a)} \Rightarrow \llbracket \lambda x. M \rrbracket_{\rho} = \llbracket \lambda x. N \rrbracket_{\rho}.$$

5.3.3. LEMMA. Let \mathfrak{M} be a syntactical λ -model. Consider the statement

$$\varphi(M,N) \equiv \forall \rho \llbracket M [x:=N] \rrbracket_{\rho} = \llbracket M \rrbracket_{\rho(x:=\lceil N \rceil_{-})}.$$

Then for $M, N \in \Lambda(\mathfrak{M})$

- (i) $z \notin FV(M) \Rightarrow \varphi(M, z)$;
- (ii) $\varphi(M, N) \Rightarrow \varphi(\lambda \nu, M, N)$;
- (iii) $\varphi(M, N)$.

PROOF. (i) Write $M \equiv M(x)$. Then

$$[\![M(z)]\!]_{\rho} = [\![M(z)]\!]_{\rho(z:=\rho(z))} = [\![M(x)]\!]_{\rho(x:=\rho(z))}$$
 by (4').

(ii) First assume $x \notin FV(N)$. By the variable convention $y \not\equiv x$, $y \notin FV(N)$. Then for $\rho^* = \rho(x := [N]_{\rho})$ and arbitrary $a \in \mathfrak{M}$

(note that $[N]_{\rho} = [N]_{\rho(\gamma = a)}$). Therefore by (ξ)

$$[\![\lambda y.M[x:=N]]\!]_{\rho^*} = [\![\lambda y.M]\!]_{\rho^*}$$

and hence

$$[\![\lambda y.M[x:=N]\!]\!]_{\rho} = [\![\lambda y.M[x:=N]\!]\!]_{\rho^*} = [\![\lambda y.M]\!]_{\rho(x:=[\![N]\!]_{\rho})}.$$

If $x \in FV(N)$, then let z be a fresh variable. We have for $\tilde{M} = \lambda y$, M

$$\begin{split} \llbracket \tilde{M} [x:=N] \rrbracket_{\rho} &= \llbracket \tilde{M} [x:=z] [z:=N] \rrbracket_{\rho} \\ &= \llbracket \tilde{M} [x:=z] \rrbracket_{\rho(z:=\llbracket N \rrbracket_{\rho})} \\ &= \llbracket \tilde{M} \rrbracket_{\rho(z:=\llbracket N \rrbracket_{\rho})(x:=\llbracket N \rrbracket_{\rho})}, \quad \text{by (i)}, \\ &= \llbracket \tilde{M} \rrbracket_{\rho(x:=\llbracket N \rrbracket_{\nu})}. \end{split}$$

(iii) Now $\varphi(M, N)$ follows by a simple induction on the structure of M

5.3.4. THEOREM. Let M be a syntactical λ-model. Then

$$\lambda \vdash M = N \implies \mathfrak{M} \vDash M = N$$

i.e. M is a syntactical λ-algebra,

PROOF. By induction on the length of proof.

The axiom $(\lambda x. M)N = M[x:=N]$ is sound:

$$[(\lambda x.M)N]_{\rho} = [\lambda x.M]_{\rho}[N]_{\rho}, \quad \text{by (3)},$$

$$= [M]_{\rho(x:=[N]_{\rho})}, \quad \text{by (4)},$$

$$= [M[x:=N]]_{\rho}, \quad \text{by lemma 5.3.3(iii)}.$$

Soundness of the rule $M = N \implies \lambda x. M = \lambda x. N$ follows from (ξ). The other rules are trivial. \square

5.3.5. DEFINITION. A homomorphism between syntactical λ -algebras is a map $\varphi: \mathfrak{M}_1 \to \mathfrak{M}_2$ such that for all $M \in \Lambda(\mathfrak{M})$ one has

$$\varphi[M]_{\rho}^{1} = [\varphi(M)]_{\varphi \circ \rho}^{2}$$

where in $\varphi(M)$ the c_a are replaced by $c_{\varphi(a)}$.

5.3.6. Theorem. The category of syntactical λ -algebras and homomorphisms and that of λ -algebras and homomorphisms are isomorphic. Moreover syntactical λ -models correspond exactly to λ -models under this isomorphism.

PROOF. Easy. For a syntactical λ -algebra $\mathfrak{M} = \langle X, \cdot, [\![\mathbb{I}]\!] \rangle$ define $F\mathfrak{M} = \langle X, \cdot, [\![K]\!], [\![S]\!] \rangle$; for $\varphi \colon \mathfrak{M}_1 \to \mathfrak{M}_2$ let $F\varphi = \varphi \colon F\mathfrak{M}_1 \to F\mathfrak{M}_2$. Then one has $[\![M]\!]_{\rho}^{F\mathfrak{M}} = [\![M]\!]_{\rho}^{\mathfrak{M}}$ for $M \in \Lambda(\mathfrak{M})$. Conversely for a λ -algebra $\mathfrak{A} = \langle X, \cdot, k, s \rangle$ define $G\mathfrak{A} = \langle X, \cdot, [\![]\!]^{\mathfrak{M}} \rangle$ and $G\varphi = \varphi$ as above. Then F, with inverse G, is the required isomorphism. \square

- 5.3.7. REMARK. In view of theorem 5.3.6 we say that $\mathfrak{M} = (X, \cdot, [\![]\!])$ is a λ -algebra (λ -model) if \mathfrak{M} is a syntactical λ -algebra (λ -model).
- 5.3.8. Convention. When working inside a λ -algebra \mathfrak{M} , we write equations valid in \mathfrak{M} informally, e.g. for $a \in \mathfrak{M}$ one writes

$$(\lambda x.xx)a = aa$$

rather than the formal $[(\lambda x.xx)y]_{\rho(y:=a)} = [yy]_{\rho(y:=a)}$ or $[\lambda x.xx]a = aa$.

5.4. Models in concrete cartesian closed categories

In this section the framework will be explained in which Scott constructed his non-syntactical λ -models. We will use the category of cpo's. But the method works for arbitrary concrete cartesian closed categories.

Recall that if D is a cpo, then $[D \rightarrow D]$ is the set of continuous maps considered as cpo by pointwise ordering.

5.4.1. DEFINITION. A cpo D is called *reflexive* if $[D \rightarrow D]$ is a retract of D, i.e. there are continuous maps

$$F: D \to [D \to D], \quad G: [D \to D] \to D$$

such that $F \circ G = id_{[D \to D]}$.