

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Algorithms for Graph Partitioning

Author: Shahrokh Shahi

Supervisor: Dr. Mahdi Cheraghchi Bashi Astaneh

Abstract

Graph partitioning is a fundamental algorithmic problem in combinatorics motivated by applications such as clustering and community detection in social networks as well as theoretical importance in particular in spectral methods and the Unique Games Conjecture in computational complexity.

The main theme in this problem is the following: Given a graph consisting of a collection of loosely connected dense subgraphs, design an efficient algorithm to detect, either exactly or approximately, the underlying dense subgraphs. There are many variations of the problem, ranging from information theoretic possibility of discovering the communities to efficient algorithms for doing so as well as local walk and distributed models for the algorithmic task.

In this research, a systematic study of the major techniques and discoveries in this area has been conducted with an emphasis on the methods based on the spectral graph theory. In the last years, spectral graph partitioning approaches have become very popular and there has been a growing interest in their applications, mainly on account of their efficiency and mathematical elegance. Therefore, the main concepts of the spectral partitioning algorithms are comprehensively discussed in this research and some novel applications of these methods have been concluded at the end.

Contents

1	Introduction			1
	1.1	Motiva	ation and Objectives	1
	1.2	Graph	Partitioning Applications	2
		1.2.1	Parallel Processing	2
		1.2.2	Complex Networks	2
		1.2.3	Image Processing	3
		1.2.4	VLSI Physical Design	4
		1.2.5	Clustering	4
		1.2.6	Community Detection	5
	1.3	Repor	t Outline	6
2	Prel	iminar	ies	7
	2.1	Overv	iew	7
	2.2	A Revi	iew of Graph Theory	7
		2.2.1	Basic Concepts	7
		2.2.2	Subgraphs	8
		2.2.3	Walk, Path, Trail, Circuit, and Circle	8
		2.2.4	Connected Graphs	9
		2.2.5	Specific Classes of Graphs	9
		2.2.6	Graph Matrices	10
2.3 A Review of Linear Algebra		iew of Linear Algebra	10	
		2.3.1	Basic Definitions	10
		2.3.2	Eigenvalues and Eigenvectors	10
		2.3.3	Orthogonality	11
		2.3.4	Spectral Theorem for Real Symmetric Matrices	11

		2.3.5	Graph Spectrum	12
		2.3.6	Complete Graph	12
		2.3.7	Bipartite Graph	12
		2.3.8	Positive Semidefinite Matrix	13
		2.3.9	Connectedness	13
3	Gra j	ph Part	itioning Approaches	15
	3.1	Overv	iew	15
	3.2	Graph	Partitioning Problem	15
		3.2.1	Definition	15
		3.2.2	Problem Complexity	16
	3.3	Global	l Algorithms	16
		3.3.1	Exact Algorithms	16
		3.3.2	Spectral Partitioning	17
		3.3.3	Graph Growing	17
		3.3.4	Flows	17
		3.3.5	Geometric Partitioning	18
		3.3.6	Stream Graph Partitioning	19
	3.4	Impro	ved Heuristic Methods	19
		3.4.1	Node-swapping Local Search	20
		3.4.2	Extension to k-way Local Search	21
		3.4.3	Tabu Search	22
		3.4.4	Flow Based Improvement	23
		3.4.5	Bubble Framework	23
		3.4.6	Random Walks and Diffusion	25
	3.5	Multil	evel Graph Partitioning	25
		3.5.1	Coarsening Approaches	27
	3.6	Summ	lary	28

4	Spe	ctral Gr	aph Partitioning	29
	4.1	Overvi	ew	29
	4.2	Definit	ions	30
	4.3	Scope		32
	4.4	The La	placian Matrix	32
	4.5	Graph Partitioning as Constrained Quadratic Optimization		
	4.6	Bound	s on the Weight of a Bisection	34
		4.6.1	Rayleigh Quotient	34
	4.7	Spectr	al Graph Partitioning	36
		4.7.1	The Relaxed Optimization Problem	36
		4.7.2	The Spectral Partitioning Algorithm without Vertex Masses	37
		4.7.3	Vertex Masses	38
		4.7.4	The Spectral Partitioning Algorithm with Vertex Masses	39
	4.8	Unbala	anced Cuts	39
		4.8.1	Bounds on the Weight of an Unbalanced Cut	40
	4.9	Cheeg	er's Inequality	40
		4.9.1	Normalized Matrices	40
		4.9.2	The Theorem (Cheeger's Inequality)	41
		4.9.3	Notes on the Cheeger's Inequality	43
	4.10	Maxim	num Cut Problem	44
		4.10.1	Last Eigenvalue	44
		4.10.2	Maximum Cut	44
		4.10.3	Theorem (Trevisan)	45
		4.10.4	Approximation Algorithm	45
	4.11	More I	Eigenvalues	46
		4.11.1	Small-set Expansion	46
		4.11.2	Multi-Partitioning	47
	4.12	k-way	Partitioning	52
			Vector Partitioning	52
		4.12.2	k-Subgraph Partitions	54
	4.13	Summ	ary	55

5	Spe	ctral Graph Clustering	57		
	5.1	Overview	57		
	5.2	Graph Cut and Problems	57		
		5.2.1 Minimum Cut Problem	57		
		5.2.2 Minimum Ratio Cut Problem	58		
		5.2.3 Minimum Normalized Cut Problem	58		
		5.2.4 Min-max Cut Problem	59		
		5.2.5 Modularity Maximization Problem	59		
	5.3	Spectral Clustering Algorithms	60		
		5.3.1 Two-way Partitioning Algorithms	60		
		5.3.2 <i>k</i> -way Partitioning Algorithms	61		
	5.4	Summary	64		
6	Prac	ractical Application: Group Testing			
	6.1	Overview	65		
	6.2 Graph-Constrained Group Testing		65		
		6.2.1 Network Tomography	65		
		6.2.2 Problem Statement	66		
	6.3	Expander Graphs			
	6.4	Partitioning into Expanders	68		
		6.4.1 Definitions	68		
		6.4.2 Theorems	69		
	6.5	Extension to the Group Testing Scheme	69		
	6.6	Summary	71		
7	Prog	Programming and Visualization			
	7.1	Overview	73		
	7.2	Available Packages			
	7.3	3 MATLAB Implementation			
		7.3.1 Generating Random Graphs	76		
		7.3.2 MATLAB Toolbox	78		
	7.4	Evaluation	79		
		7.4.1 Example1: Bisection Problem	79		

8	3 Conclusions and Future Work			
	8.1	Summary of Achievements	83	
	8.2	Future Work	84	
Bil	Bibliography			
Appendices				
	A	Notations and Symbols	95	
	В	User Guide	97	