TOSHIBA TA2003P/F

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA2003P, TA2003F

AM/FM RADIO IC

The TA2003P, TA2003F are AM/FM Radio IC (FM F/E + AM / FM IF) which are designed for AM / FM Radios. Combining with the TA7368P (Mono PW IC), a suitable AM/FM Radio System is able to be constituted.

FEATURES

- FM IFT, AM IFT and FM Detector Coil are not needed.
- Pin compatible of TA8164P.
- **Operating Supply Voltage Range** : $V_{CC (opr)} = 1.8 \sim 7V (Ta = 25 °C)$

Weight

: 1.00g (Typ.) : 0.14g (Typ.) DIP16-P-300-2.54A SSOP16-P-225-1.00A

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

■ The products described in this document are subject to the foreign exchange and foreign trade laws.

■ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

■ The information contained herein is subject to change without notice.

TOSHIBA

BLOCK DIAGRAM

EXPLANATION OF TERMINAL

TERMINAL VOLTAGE : Typical DC voltage at Ta = 25° C, $V_{CC} = 3V$ and no signal with Test Circuit 1

PIN	SYMBOL	CONTENTS	INTERNAL CIRCUIT	TERIV VOLTA	IINAL
No.				AM	FM
1	FM RF IN	Input of FM RF Amplifier	FM-RF OUT T GND1 2	0	0.7
2	GND1	GND for RF, OSC and MIX Stage	_	0	0
3	FM MIX	Output of FM MIX	AM / FM SW 3 GND1 22	0.4	1.7
4	AM MIX	Output of AM MIX	VCC 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.6	0
5	AGC	By-pass of AM AGC	IF AGC S AGC RF AGC GND2 9	0	0
6	V _C C	_		3.0	3.0

PIN No.	SYMBOL	CONTENTS	INTERNAL CIRCUIT	TERIV VOLTA	IINAL GE (V)
INO.				AM	FM
7	AM IF IN	Input of AM IF Amplifier	V _{CC} 6 C Z Z Z L Ω Z L	3.0	3.0
8	FM IF IN	Input of FM IF Amplifier	VCC 6 G G G G G G G G G G G G G G G G G G	3.0	3.0
9	GND2	GND for IF stage		0	0
10	QUAD	FM QUAD Detector Ceramic Discriminator is connected. Recommendation CDA10.7MG31 (MURATA MFG.CO., LTD)	VCC 6 GND2 9	2.5	2.2
11	DET OUT	Output of FM/AM Detector	VCC (6 (B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	1.4	1.1
12	AM OSC	AM Local Oscillator Terminal Oscillator Coil is connected.	V _{CC} 6 ALC GND1 2	3.0	3.0

PIN No.	SYMBOL	CONTENTS	INTERNAL CIRCUIT	TERIV VOLTA	GE (V)	
				AM	FM	
13	FM OSC	FM Local Oscillator Terminal Oscillator Coil is connected.	AM/FM SW 14 13 MIX GND1 2	0.9	3.0	
14	AM/FM SW	AM/FM switch connected to Pin [®] V _{CC} →FM mode Pin [®] OPEN→AM mode	© VCC 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.9	3.0	
15	FM RF OUT	FM RF Coil is connected.	cf. PIN①	3.0	3.0	
16	AM RF IN	Input of AM RF Amplifier	(a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	3.0	3.0	

TOSHIBA TA2003P/F

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIS	TIC	SYMBOL	RATING	UNIT	
Supply Voltage		VCC	8	V	
Power Dissipation	DIP-16	D- (Noto)	750	mW	
Fower Dissipation	SSOP-16	P _D (Note)	350		
Operating Temperate	ıre	T _{opr}	- 25∼75	°C	
Storage Temperature	!	T _{stg}	- 55∼150	°C	

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$ for TA2003P and of $2.8mW/^{\circ}C$ for TA2003F.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta = 25°C, V_{CC} = 3V, F/E : f = 98MHz, f_m = 1kHz

FM IF : f = 10.7MHz, Δf = \pm 22.5kHz, f_m = 1kHz

AM : f = 1MHz, MOD = 30%, f_m = 1kHz

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current		I _{CC} (FM)	1	FM mode, V _{in} = 0	_	10.5	16.5	mΑ
Jupp	by Current	ICC (AM)	1	AM mode, V _{in} = 0	— 5.0		8.0	IIIA
	Input Limiting Voltage	Vin (lim)	1	-3dB limiting point	_	12	_	dBμV EMF
F/E	Quiescent Sensitivity	QS	1	S / N = 30dB	_	12	_	dB μ V EMF
[Local OSC Voltage	Vosc	2	f _{OSC} = 108MHz	160	240	320	mV _{rms}
	Local OSC Stop Voltage	V _{stop} (FM)	2	V _{in} = 0	_	1.2	_	<
	Input Limiting Voltage	Vin (lim) IF	1	- 3dB limiting point	42	47	52	dBμV EMF
FM	Recovered Output Voltage	V _{OD}	1	V _{in} = 80dBμV EMF	50	70	90	mV _{rms}
I FIVI	Signal To Noise Ratio	S/N	1	$V_{in} = 80 dB \mu V EMF$		62	_	dB
"	Total Harmonic Distortion	THD	1 V _{in} = 80dBμV EMF		_	0.4	_	%
	AM Rejection Ratio	AMR	1	$V_{in} = 80 dB \mu V EMF$	—	33	_	dB
	Voltage Gain	GV	1	$V_{in} = 27dB\mu V EMF$	15	32	50	mV _{rms}
	Recovered Output Voltage	V _{OD}	1	V _{in} = 60dBμV EMF	35	60	85	mV _{rms}
AM	Signal To Noise Ratio	S/N	1	$V_{in} = 60 dB \mu V EMF$	_	43	_	dB
	Total Harmonic Distortion	THD 1		V _{in} = 60dBμV EMF	_	1.0	_	%
	Local OSC Stop Voltage	V _{stop} (AM)	1	V _{in} = 0	_	1.6	_	V

TOSHIBA

TEST CIRCUIT 1

TEST CIRCUIT 2

COIL DATA (Test circuit)

COIL No.	TEST FREQ.	L	CO	<u>Q</u> Qo	TURNS					WIRE	REFERENCE
COIL NO.	(Hz)	(μH)	oF) (pF)		1-2	2-3	1-3	1-4	4-6	$(mm\phi)$	REFERENCE
L ₁ FM RF	100M			100	_		_	$2\frac{1}{4}$		0.5 UEW	\$0258-000-021
L ₂ FM OSC	100M			100	_		$1\frac{3}{4}$	_		0.5 UEW	\$0258-000-020
L ₃ AM OSC	796k	268		125	14	86	_	_	_	0.06 UEW	\$2157-2239-213A

 $\ensuremath{\mathbb{S}}$: SUMIDA ELECTRIC CO., LTD.

TOSHIBA TA2003P/F

OUTLINE DRAWING DIP16-P-300-2.54A

Unit: mm

Weight: 1.00g (Typ.)

Weight: 0.14g (Typ.)

0.525±0.2