Concept

$$C_{\Upsilon(24)} \xrightarrow{\downarrow} 1S^{2}, 2S^{2}, 2P^{6}, 3S^{2}, 3P^{6}, 3d^{5}, 4s1$$

$$A = \sqrt{6(6+2)} = \sqrt{48} \text{ B·M},$$

$$M_{\Pi}(2s) = 1S^{2}, 2S^{2}, 2P^{6}, 3S^{2}, 3P^{6}, 3d^{5}, 4s^{2}$$

$$A = \sqrt{6(6+2)} = \sqrt{48} \text{ B·M},$$

$$A = \sqrt{6(6+2)} = \sqrt{48} \text{ B·M},$$

$$A = \sqrt{5(5+2)} = \sqrt{3}s \text{ B·M}.$$

Fe⁺³ Fe⁽²⁶⁾ = [Ar],
$$3d^6$$
; $4s^6$

Fe⁺³ = [Ar], $3d^5$; $4s^6$

[1]1]1]1

 $n = 5$
 $u = \sqrt{5(5+2)}$ B·M

= $\sqrt{35}$ B·M.

Mole Concept Ex. it. Fetx has u = 4.92 B.m then find

Value of x and No of unpavied electrons?

1) No of unpaired electrons. = 4

Fe (26)
$$\rightarrow$$
 [Ar], $3d^{6}$, $4s^{2}$

SOME IMPORTANT DEFINITIONS

Ex. the magnetic momentic moment of mn+x is 1 3.89 B.M find no of unpaired electrons and value of x.

soln No of unpaved electrons = 3

 $Mn(25) = [Ar], 3d^5, 4s^2$

total electron must be removed to

get 3 unpavied elections = 4

$$19n^{+4}$$
, $x = +4$

Mole Concept

- · Reason / Explanation for exceptional electronic Configuration
- · Half filled and fully filled orbitals are more stable than partially filled orbital

· Half fulled and full filled stablished du to exange of electrons with same spin electron.

- · Each exchange releases some amount of energy called exchange energy.
- · Stability & Exchange energy
- · Exchange energy & No of exchange.
- No of exchanges = n(n-1)
- n is No of electrons having some som

Mole Concept

Exceptions.

	n=1	n=2		n=3			n=4				n=5				n=6
Element Z	1 s	2s	2p	3s	3р	3d	4s	4р	4d	4f	5s	5р	5d	5f	6s
Chromium(Cr-24)	2	2	6	2	6	5	1		5						
Copper(Cu -29)	2	2	6	2	6	10	1			- 9					
Niobium(Nb-41)	2	2	6	2	6	10	2	6	4		1				
Molybdenum(Mo-42)	2	2	6	2	6	10	2	6	5	- 0	1				
Ruthenium(Ru -44)	2	2	6	2	6	10	2	6	7	8	1				
Rhodium(Rh -45)	2	2	6	2	6	10	2	6	8		1				
Palladium(Pd -46)	2	2	6	2	6	10	2	6	10			9			
Silver(Ag -47)	2	2	6	2	6	10	2	6	10		1				
Lanthanum(La -57)	2	2	6	2	6	10	2	6	10		2	6	1		1
Cerium(Ce -58)	2	2	6	2	6	10	2	6	10	1	2	6	1		2
Gadolinium(Gd -64)	2	2	6	2	6	10	2	6	10	7	2	6	1		2
Platinum(Pt -78)	2	2	6	2	6	10	2	6	10	14	2	6	9		1
Gold (Au-79)	2	2	6	2	6	10	2	6	10	14	2	6	10		1

Mole Concept

of electrone in co having s=+1

$$max \cdot = 9 + 6 = 15$$
 $min = 9 + 0 = 9$

```
\[
\begin{align*} \text{HW → Each Question Either example or Excise in module. \\
\text{BB-4}
\end{align*}
Race-4
partice sheet-02
practice sheet 03
```

ATOMIC STRUCTURE

RULES FOR FILLING OF ELECTRONS

(a)
$$Cr \rightarrow 1s^2, 2s^22p^6, 3s^23p^6, 4s^1, 3d^5$$

valence shell

(b)
$$Cr^+ \rightarrow 1s^2, 2s^22p^6, 3s^23p^63d^5$$
 $Cr^{+2} \rightarrow 1s^2, 2s^22p^63s^23p^63d^4$ $Cr^{+3} \rightarrow 1s^2, 2s^22p^6, 3s^23p^63d^3$

Fe⁺²: Fe \rightarrow 1s², 2s²2p⁶, 3s²3p⁶4s²3d⁶ Fe⁺² \rightarrow 1s², 2s²2p⁶, 3s²3p⁶3d⁶

Mole Concept

Illustration 5. A sample of K_2SO_4 . $Al_2(SO_4)_3$.24 H_2O contains 6.4 kg oxygen then calculate mass of sulphur (in gm) in same sample?

Solution.
$$K_2SO_4.Al_2(SO_4)_3.24H_2O$$
 6.4 kg oxygen [moles of substance \times 40] i

[moles of substance \times 40] number of oxygen

$$40 \times x \times 16 = 6400 \text{ gram}$$

 $x = 10 \text{ moles}$

number of moles of $s = 4 \times 10$ moles = 40 moles weight of sulphur = 1280 gm

macs = 0.04 x 32 =

$$V(23) = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 3d^{3}, 4s^{2}$$

$$V^{+3} = [Ar], 3d^{2}, 4s^{6}$$

$$1 | 1 | 1 | 1$$

$$1 = 2$$

$$U = \sqrt{2(2+2)} B \cdot M$$

$$= \sqrt{8} B \cdot M$$

$$u^* = 1s^2$$
; 2s¹, 2p³ (E·s)

$$S = n(\pm 1)$$

$$= 3(\pm \frac{1}{2}) = \pm \frac{3}{2}$$
Spin multiplicity = 2 (51+1 =)

$$K, L, 6,$$
 $28 M$
 $1s^2 2s^2 3s^2$
 $2pc 3pf$