Due at 11:59PM February 7, 2024

What to submit: Submit a PDF to CatCourses. You can use the provided .tex and put your answers in solution sections bellow. Select all choices that apply for multi-choices problems.

Student Name:

Part I: Linear Algebra

- 1. Which of the following vectors are in the span of the vectors $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$?
 - (a) $\begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$
 - $(b) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
 - $(d) \begin{bmatrix} 7 \\ -1 \\ 8 \end{bmatrix}$

Solution:

2. Let

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

Find the inverse of AB^T .

Solution:

- 3. Which of the following statement is always true?
 - (a) If A is a 3×5 matrix and B is a 5×4 matrix, then $(AB)^T$ is a 3×4 matrix.
 - (b) If $A = A^T$, then the diagonal entries of A must be either 0 or 1's.
 - (c) If $AB = A^T B^T$, then A and B must be of the same size.
 - (d) $AA^T = A^T A$

Solution:

Assignment 1 Page 2 of 3

4. Show that the following vectors form a linearly dependent set in \mathbb{R}^4 by expressing \mathbf{v}_2 as a linear combination of the other two.

$$oldsymbol{v}_1 = egin{bmatrix} 6 \ 0 \ 5 \ 1 \end{bmatrix}, oldsymbol{v}_2 = egin{bmatrix} 0 \ 3 \ 1 \ -1 \end{bmatrix}, oldsymbol{v}_3 = egin{bmatrix} 4 \ -7 \ 1 \ 3 \end{bmatrix}$$

Solution:

Part II: Probability

5. Suppose that $P(A \cap B) = 0.4$ and P(B) = 0.9. Find P(A|B).

Solution:

6. A random variable, X, has the probability distribution table as shown.

X	-2	-1	0	1	2
P(X=x)			0.4	0.1	0.1

Assume that P(X = -2) = P(X = -1). Compute the expectation and variance of X. Solution:

7. A motor insurance company insures drivers in age group A, B and C. 40% of the customers are in group A, 25% are in B, and 35% are in group C. The company's record shows that each year, 2% of customers in age group A, 1% in group B and 1.5% in group C made a claim. Given that a driver made a claim, what is the probability that the driver is from age group C?

Solution:

Part III: Neural Network

8. Which of the followings would you consider to be valid activation functions?

(a)
$$f(x) = -min(2, x)$$

(b)
$$f(x) = 0.9x + 1$$

(c)
$$f(x) = \begin{cases} min(x, 0.1x) & \text{if } x \ge 0 \\ min(x, 0.1x) & \text{if } x < 0 \end{cases}$$

(d)
$$f(x) = \begin{cases} max(x, 0.1x) & \text{if } x \ge 0 \\ min(x, 0.1x) & \text{if } x < 0 \end{cases}$$

Solution:

9. Which of the following indicates overfitting?

Assignment 1 Page 3 of 3

- (a) High training error, high test error
- (b) Low training error, low test error
- (c) Low training error, high test error
- (d) High training error, low test error

Solution:

10. Suppose we are training a simple neural network with two layers for regression. The network takes two-dimensional input $[x_1, x_2]$ and gives a scalar \bar{y} . The first layer is a linear layer followed by ReLU. The second layer is also a linear layer followed by ReLU.

First layer: $h_1 = ReLU(ax_1 + bx_2 + c)$

Second layer: $\bar{y} = ReLU(dh_1 + e)$

Loss: $L = (y - \bar{y})^2$

The network parameters are initialized as follows,

$$a = 2, b = 3, c = 1, d = 2, e = -5$$
 (1)

- (a) Given one training data point $[x_1, x_2] = [1, 0]$ and its ground truth y = 3, compute h_1, \bar{y}, L in the forward pass.
- (b) Compute the gradient of the loss w.r.t. network paraters a,b,c,d,e respectively.
- (c) If the learning rate is set as 0.1, compute the updated value of a,b,c,d,and e after one iteration of gradient descent.

Solution: