Midterm II

2022-10-26

Your name:

Questions

$\mathbf{Q}\mathbf{1}$

Given below are the monthly deaths from bronchitis, emphysema and asthma in the UK from 1974 to 1979.

knitr::kable(mydata)

year	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	$\overline{\operatorname{dec}}$
1974	3035	1721	2933	1607	2787	1489	3102	1498	2815	1529	3084	1461
1975	2552	1524	2889	1545	3891	1300	2294	1361	3137	1366	2605	1354
1976	2704	1596	2938	1396	3179	1356	2385	1346	2679	1357	2573	1333
1977	2554	2074	2497	1787	2011	1653	2444	1564	1969	1570	2143	1492
1978	2014	2199	1870	2076	1636	2013	1748	1640	1870	1535	1693	1781
1979	1655	2512	1726	2837	1580	2823	1554	2293	1633	2491	1504	1915

a.

Write a for loop that will return a vector of the ratio of the mean value to the median value for columns 2-13 in mydata (shown above).

```
store_ratio <- rep(NA, 12)
for (i in 1:12){
   store_ratio[i] <- mean(mydata[[i+1]])/median(mydata[[i+1]])
}
store_ratio
## [1] 0.9475127 1.0211682 0.9192351 1.1046946 1.0479366 1.1281562 0.9636675
## [8] 1.0561724 1.0114028 1.0713664 0.9614080 1.0538435</pre>
```

b.

Describe what is returned by the code below, including the type of R object produced, the length or dimension of the object, and the information contained in the object.

```
map_dbl(mydata %>% select(-1), mean) %>% mean()
## [1] 2056.625
```

c.

Describe what is returned by the code below, including the type of R object produced, the length or dimension of the object, and the information contained in the object.

```
ratio_fun <- function(x) quantile(x, probs= c(0.25, 0.5, 0.75))
map_dfr(mydata %>% select(-1), ratio_fun, .id = "month")
## # A tibble: 12 x 4
##
      month `25%` `50%`
                         `75%`
##
      <chr> <dbl> <dbl> <dbl> <dbl>
##
    1 jan
            2148. 2553 2666.
##
   2 feb
            1627. 1898. 2168.
##
   3 mar
            2027. 2693 2922
            1560. 1697
##
    4 apr
                         2004.
   5 may
##
            1730. 2399
                        3081
##
    6 jun
            1389. 1571
                        1923
##
   7 jul
            1884. 2340. 2429.
##
    8 aug
            1395. 1531
                        1621
            1895. 2324
##
    9 sep
                        2781
## 10 oct
            1407. 1532
            1806. 2358 2597
## 11 nov
## 12 dec
            1381. 1476. 1709.
```

 \mathbf{d} .

Describe what is returned by the code below, including the type of R object produced, the length or dimension of the object, and the information contained in the object.

```
map_dfc(mydata %>% select(-1), ratio_fun)
## # A tibble: 3 x 12
                                          jan
                                                                            feb
                                                                                                                 mar
                                                                                                                                                      apr
                                                                                                                                                                                          may
                                                                                                                                                                                                                             jun
                                                                                                                                                                                                                                                                   jul
                                                                                                                                                                                                                                                                                                        aug
                                                                                                                                                                                                                                                                                                                                            sep
                                                                                                                                                                                                                                                                                                                                                                                 oct
                               <dbl> 
## 1 2148. 1627. 2027. 1560. 1730. 1389. 1884. 1395. 1895. 1407. 1806. 1381.
                                                                                                                                                                             2399 1571 2340. 1531
## 2 2553 1898. 2693
                                                                                                                                       1697
                                                                                                                                                                                                                                                                                                                               2324
                                                                                                                                                                                                                                                                                                                                                                1532
                                                                                                                                                                                                                                                                                                                                                                                                       2358
## 3 2666. 2168. 2922 2004. 3081 1923 2429. 1621 2781 1561. 2597 1709.
```

e.

Describe what is returned by the code below, including the type of R object produced, the length or dimension of the object, and the information contained in the object.

```
lapply(mydata %>% select(-1), ratio_fun) %>% unlist()
## jan.25% jan.50% jan.75% feb.25% feb.50% feb.75% mar.25% mar.50% mar.75% apr.25%
## 2148.50 2553.00 2666.50 1627.25 1897.50 2167.75 2026.75 2693.00 2922.00 1560.50
## apr.50% apr.75% may.25% may.50% may.75% jun.25% jun.50% jun.75% jul.25% jul.50%
## 1697.00 2003.75 1729.75 2399.00 3081.00 1389.25 1571.00 1923.00 1884.50 2339.50
## jul.75% aug.25% aug.50% aug.75% sep.25% sep.50% sep.75% oct.25% oct.50% oct.75%
## 2429.25 1395.25 1531.00 1621.00 1894.75 2324.00 2781.00 1406.75 1532.00 1561.25
## nov.25% nov.50% nov.75% dec.25% dec.50% dec.75%
## 1805.50 2358.00 2597.00 1380.75 1476.50 1708.75
```

f.

Describe what is done by the code below. What type of R object is mydata_long? What is the length or dimension of the mydata_long?

g.

Write a function that takes the data object from **f** and year as an argument and returns the median deaths for that particular year. Additionally, your function should give a warning if the user enters a year that not in the dataset.

```
iqr_func <- function(data, year){
   if (year >= 1974 & year <= 1979){
     data %>% filter(year == year) %>%
     summarize(med = median(deaths))
   } else {"Please enter a year from 1974 to 1979"}
}
iqr_func(mydata_long, 1975)
## # A tibble: 1 x 1
## med
## <dbl>
## 1 1870
```

$\mathbf{Q2}$

a.

Consider the function below. Give the output produced by myfun(3) and explain how you arrived at your answer.

```
myfun <- function(x) {
  if (x < 3 | x > 3){
   rep("hi", x)
  } else{
   rep("bye", x)
  }
}
```

Q3

Consider the following data frames for this question.

```
df1 = data.frame(Id = c(1:6), Item = c(rep("Lake1", 3), rep("Lake2", 3)))
df2 = data.frame(Id = c(1, 3, 5), PH = c(rep("Acidic", 2), rep("basic", 1)))
df1
##
    Id Item
## 1 1 Lake1
## 2 2 Lake1
## 3 3 Lake1
## 4 4 Lake2
## 5 5 Lake2
## 6 6 Lake2
df2
## Id
## 1 1 Acidic
## 2 3 Acidic
## 3 5 basic
```

What do the following codes do? Provide a sketch of the resulting data frame.

a.

```
semi_join(df1, df2)
## Id Item
## 1 1 Lake1
## 2 3 Lake1
## 3 5 Lake2
```

b.

```
right_join(df1, df2)

## Id Item PH

## 1 1 Lake1 Acidic

## 2 3 Lake1 Acidic

## 3 5 Lake2 basic
```

c.

```
full_join(df1, df2)
## Id Item PH
## 1 1 Lake1 Acidic
## 2 2 Lake1 <NA>
## 3 3 Lake1 Acidic
## 4 4 Lake2 <NA>
## 5 5 Lake2 basic
## 6 6 Lake2 <NA>
```

$\mathbf{Q4}$

Consider the following string:

```
my_string <- "A 5.1 magnitude earthquake strikes near San Jose, US Geological Survey 10 reports"
```

a.

Carefully explain what str_view_all will highlight in x for the given pattern.

```
pattern <- "[\\d?.\\d]"
str_view_all(my_string, pattern)</pre>
```

b.

Explain how you would use regular expression to count the number of words in x. Include the actual commands you would need to accomplish this task.

```
str_replace_all(my_string, pattern = "[\\d?.\\d]", "") %>%
  str_extract_all(pattern = "\\w+") %>%
  unlist() %>%
  length()
## [1] 11
```

 $\mathbf{c}.$

Carefully explain what does the following code chunk will do.

```
pattern <- "[\\d+]"
str_replace_all(my_string, pattern, "X")
## [1] "A X.X magnitude earthquake strikes near San Jose, US Geological Survey XX reports"</pre>
```

d.

Suppose you want to place a periods at the end of the my_string. The replacement attempt below contains one mistake. Write down the correct command that can place a periods at the end of my_string.

```
pattern <- "$"
str_replace_all(my_string, pattern, ".")
## [1] "A 5.1 magnitude earthquake strikes near San Jose, US Geological Survey 10 reports."</pre>
```