НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "Київський політехнічний інститут"

КОМПЛЕКСНА КОНТРОЛЬНА РОБОТА

з навчальної дисципліни	Моделювання систем
	(назва)
для студентів спеціальності	6.050101 «Комп'ютерні науки»
	(код і назва напряму підготовки)
Студент	Капорін Роман Михайлович
	(прізвище, ім'я та по батькові)
Факультет <u>ІОТ,</u> курс	<u> 4,</u> група <u>IC-32</u>
Початок роботи год	ХВ.
Завершення роботи	год хв.

Контрольне завдання № 5

Розглянемо бізнес процес ремонту та заміни обладнання. Припустимо, що деяка виробнича дільниця має L верстатів, які працюють цілодобово (24 години на добу). Всього в технологічному процесі задіяно M верстатів, що більше або дорівнює L (причому L — власні верстати, а решту орендують для резерву). Будь-який з верстатів може вийти з ладу в будь-який час. Якщо верстат вийшов з ладу, його замінюють іншим, резервним, а зламаний направляють в майстерню для ремонту. Відремонтований верстат повертається вже як резервний.

Для ремонту верстатів у майстерні є три спеціалізовані дільниці. Технологічний цикл ремонту починається на дільниці діагностики, де визначаються причина виходу з ладу обладнання та необхідний вид ремонту. Ремонт виконується на механічних і електронних дільницях. Статистичні дані аналізу виходу верстатів з ладу свідчать, що у 75 % випадків ремонту потребує електронне обладнання верстатів, а у 25 % — механічне. Діагностикою зайнято m_1 робітників, ремонтом механічного обладнання — m_2 , а ремонтом електронного — m_3 робітників.

Заробітна плата робітників у ремонтній майстерні — W гривень за годину, плата за орендовані верстати — S гривень за добу. Погодинний збиток під час використання L верстатів у виробництві становить Q гривень за верстат. Збитки виникають внаслідок зменшення обсягів виробництва.

Практичний досвід експлуатації показує, що тривалість діагностики становить $A_1 \pm B_1$ годин (закон розподілу тривалості діагностики — рівномірний), тривалість ремонту електронного обладнання верстата — $A_2 \pm B_2$ годин (розподіл рівномірний), а механічного — $A_3 \pm B_3$ годин (розподіл також рівномірний). Якщо верстат використовується у виробництві, час напрацювання на відмову має експоненціальний розподіл з параметром T годин. Час, витрачений на перевезення верстатів із цеха в майстерню та у зворотному напрямку, незначний, і його не враховують. Додатковою умовою, яка спрощує постановку задачі, є те, що всі робітники в майстерні, як і верстати, взаємозамінні.

Плата за оренду верстатів не залежить від того, використовують їх чи ні. Керівнику потрібно оптимізувати бізнес процес, тобто визначити, скільки робітників має працювати в майстерні і скільки верстатів має бути орендовано, тобто скільки верстатів треба мати в резерві для заміни тих, що вийшли з ладу.

Дані для моделювання наведені в табл. 1.

Таблиия 1

L	T	$A_1 \pm B_1$	$A_2 \pm B_2$	$A_3 \pm B_3$	H	W	S	Q
55	165	3±2	25±7	47±4	320	7,05	540	125

Необхідно визначити найкращий варіант бізнес процесу ремонту та заміни обладнання для забезпечення мінімальної собівартості виробництва за *H* робочих днів. Зверніть увагу на те, що оцінки параметрів необхідно обчислити для стаціонарного режиму. Для пошуку найкращого варіанту необхідно виконати дії у такій послідовності.

- 1. Побідувати мережу замкненої СМО для виробничої дільниці.
- 2. Використовуючи операційний аналіз мереж СМО необхідно:
 - а. розрахувати середній час ремонту верстатів R за допомогою методів;
 - b. визначити потенційне вузьке місце системи та знайти його;
 - с. збалансувати систему, тобто досягти такого завантаження, при якому середній час ремонту буде приблизно однаковий;
 - d. визначити необхідну кількість орендованих верстатів і число ремонтників на кожній дільниці для проведення моделювання.
- 3. Скористуватися імітаційною програмою kkr.gps для GPSS Word, в яку необхідно внести дані для моделювання із табл. 1. Розробити програму проведення експериментів (файл kkr.txt), попередньо визначивши кількість прогонів моделі для кожної комбінації «кількість робітників-кількість верстатів» із записом вартості витрат у матрицю результатів і скористувавшись процедурою ANOVA.
- 4. Скористатися методом структурної оптимізації для оцінки комбінації «кількість робітників-кількість орендованих верстатів», які мінімізували б щоденні середні витрати на виробництво.
- 5. Використовуючи дисперсійний аналіз ANOVA, провести аналіз результатів моделювання. Звернути увагу на критерій значущості результатів моделювання. Записати результати моделювання у табл. 2.
- 6. Зробити висновки щодо найкращого варіанта бізнес процесу ремонту та заміни обладнання.

Таблиця 2

Комбіна ції	Кількість ремонтників		Кількість верстатів	Середнє значення коефіцієнтів завантаження				Середнє значення вартості	
	m_1	m_2	m_3	L_r	U_0	U_1	U_2	U_3	виробництва

СТРУКТУРНА СХЕМА МОДЕЛІ

Рисунок 1 – Структурна схема роботи підприємства

РОЗРАХУНОК ВАРІАНТІВ ЧИСЛА НАЙМАНИХ РОБІТНИКІВ І ОРЕНДОВАНИХ ВЕРСТАТІВ

Використаємо формулу (1) для обчислення мінімального середнього часу ремонту верстата:

$$R = V_1 + V_2 \cdot 0.75 + V_3 \cdot 0.25,\tag{1}$$

де:

- 1. V_1 тривалість діагностики;
- 2. V_2 тривалість ремонту електронного обладнання верстата;
- 3. V_3 тривалість ремонту механічного обладнання верстата.

Знайдемо мінімальний середній час ремонту верстата:

$$R = 3 + 25 \cdot 0.75 + 47 \cdot 0.25 = 3 + 18.75 + 11.75 = 33$$

Потенційно вузьким місцем систем виявилася дільниця ремонту електронного обладнання верстату, бо займає найбільше часу серед інших операцій. Найменш проблемним місцем виявилося дільниця з діагностики.

3 цього робимо висновок, що кількість робітників на дільниці діагностики повинна бути мінімальною:

$$m_1 = 1$$
.

Система повинна задовольняти наступній умові (2):

$$\frac{V_1 R_1}{m_1} \approx \frac{V_2 R_2}{m_2} \approx \frac{V_3 R_3}{m_3},$$
 (2)

звідки маємо:

$$m_2 = 5$$
, $m_3 = 3$.

Знайдемо процент використання верстату за формулою (3):

$$K = \frac{T}{T + R'} \tag{3}$$

маємо:

$$K = \frac{165}{165 + 33} = 0.83(3).$$

Тоді за формулою (3) для оцінки загального числа циркулюючих в системі верстатів:

$$M = \left| \frac{L}{K} \right|,\tag{4}$$

та отримаємо наступне значення:

$$M = \left| \frac{55}{0.83} \right| = 66.$$

Оцінимо кількість верстатів, як повинні бути в резерві за формулою (5):

$$L_r = M - L, (5)$$

та отримаємо наступне значення:

$$L_r = 66 - 55 = 11.$$

ВИСХІДНИЙ КОД ПРОГРАМИ

```
STANKI
                   ; общее количество станков М, М>L
DIAGN
         STORAGE 1 ; рабочие на участке диагностики - МКУ вмест. m1
ELEK
         STORAGE 5 ; рабочие на участке ремонта электр. поломок - МКУ вмест.
m2
         STORAGE 3 ; рабочие на участке ремонта механ. поломок - МКУ вмест.
MEX
m3
NOWON
         STORAGE 55
                                   ; работающие станки - МКУ вместимости L
(L < M)
        EQU 7.05
                                   ; W, зарплата рабочих В ЧАС
ZRPLTA
ARNDPLTA EQU 540
                                   ; S, плата за арендованный станок В
СУТКИ
UBYTOK
        EQU 125
                                   ; Q, убыток при исп. менее L станков на
1 станок В ЧАС
        EQU 3
DIAGNA
                                   ; A1
DIAGNB
         EOU 2
                                   ; B1
ELEKTRA
         EOU 25
                                   ; A2
         EOU 7
ELEKTRB
                                   ; B2
MECHANA
         EQU 47
                                   ; A3
MECHANB
         EQU 4
                                   : B3
NAOTKAZ
         EQU 165
                                   ; Т, ср. знач. времени наработки на
отказ (В ЧАСАХ)
MDLDNI EOU 320
                                   ; Н, длительность моделирования (В ДНЯХ)
; функция экспоненциального распределения
                        RN1,C24
XPDIS
            FUNCTION
0,0/.100,.104/.200,.222/.300,.355/.400,.509
.500, .690/.600, .915/.700, 1.200/.750, 1.380
.800,1.600/.840,1.830/.880,2.120/.900,2.300
.920,2.520/.940,2.810/.950,2.990/.960,3.200
.970,3.500/.980,3.900/.990,4.600/.995,5.300
.998,6.200/.999,7/1,8
TBLELEK
              TABLE M1,20,50,20
TBLMECH
              TABLE M1,20,50,20
```

```
NOWONCAP VARIABLE R$NOWON+S$NOWON
                                                       ; L
ALLWRKRS FVARIABLE R$DIAGN+S$DIAGN+R$MEX+S$MEX+R$ELEK+S$ELEK ; Oбщее число
всех работников
SUMSTANUBYTOK FVARIABLE (V$NOWONCAP-SA$NOWON) #UBYTOK#24#MDLDNI ; суммарные
потери от исп. менее L станков
SUMARENDPLATA FVARIABLE (STANKI-V$NOWONCAP) #ARNDPLTA#MDLDNI ; суммарная
плата за аренду дополнительных станков
SUMZARPLATA
                    FVARIABLE V$ALLWRKRS#MDLDNI#ZRPLTA#24 ; суммарная
заработная плата всех ремонтников
SUM ZP ARND FVARIABLE V$SUMARENDPLATA+V$SUMZARPLATA ; cymma
SUMARENDPLATA и SUMZARPLATA
SUMVSEPOTERI FVARIABLE V$SUM ZP ARND+V$SUMSTANUBYTOK ; суммаSUM ZP ARND и
SUMSTANUBYTOK - все потери
          GENERATE , , , STANKI
l work
          QUEUE QWORK
          ENTER NOWON
          DEPART QWORK
          ADVANCE NAOTKAZ, FN$XPDIS
          LEAVE NOWON
          TRANSFER , l diagn
l diagn
          OUEUE ODIAGN
          ENTER DIAGN
          DEPART ODIAGN
          ADVANCE DIAGNA, DIAGNB
          LEAVE DIAGN
          TRANSFER .75,1 mech,1 elek
          TABULATE TBLELEK
l elek
          QUEUE QELEK
          ENTER ELEK
          DEPART QELEK
          ADVANCE ELEKTRA, ELEKTRB
          LEAVE ELEK
          TRANSFER , 1 work
          TABULATE TBLMECH
1 mech
          QUEUE QMEX
          ENTER MEX
          DEPART QMEX
          ADVANCE MECHANA, MECHANB
          LEAVE MEX
          TRANSFER , 1 work
          GENERATE (MDLDNI#24)
                                     ; моделировать Н дней (в часах)
          SAVEVALUE XSTANKI, STANKI
          SAVEVALUE XALLWORKERS, V$ALLWRKRS SAVEVALUE UTIL0, (SR$NOWON/1000)
          SAVEVALUE UTIL1, (SR$DIAGN/1000)
          SAVEVALUE UTIL2, (SR$ELEK/1000)
          SAVEVALUE UTIL3, (SR$MEX/1000)
          SAVEVALUE POTERI, V$SUMVSEPOTERI
          TERMINATE 1
INCLUDE "lab.txt"
```

ПЛАН ІМІТАЦІЙНИХ ЕКСПЕРИМЕНТІВ

Таблиця 1 – Зводні данні за експериментами

Комбінації		лькіс онтні		Кількість верстатів	Середнє значення коефіцієнтів завантаження				Середнє значення
Komoinaum	\mathbf{m}_1	\mathbf{m}_2	m ₃	L_r	U_0	U_1	U_2	U_3	вартості виробництва
1.	1	5	3	11	0.787	0.778	0.975	0.972	13609710.781
2.	1	6	4	11	0.908	0.872	0.931	0.823	7335500.134
3.	1	7	4	11	0.902	0.899	0.807	0.864	7721816.746
4.	2	5	3	11	0.768	0.381	0.946	0.973	14665560.288
5.	2	5	4	11	0.769	0.402	0.994	0.758	14698879.505
6.	2	6	3	11	0.807	0.402	0.848	0.991	12679866.767
7.	2	6	4	11	0.919	0.452	0.950	0.828	6815501.142
8.	2	7	3	11	0.807	0.394	0.707	0.990	12746267.763
9.	2	6	5	11	0.912	0.463	0.948	0.725	7226860.038
10.	1	6	5	11	0.888	0.902	0.957	0.649	8487630.297
11.	2	6	4	12	0.916	0.451	0.939	0.870	7142779.263
12.	2	6	4	13	0.913	0.457	0.939	0.918	7486640.098
13.	2	6	4	14	0.918	0.451	0.954	0.879	7416230.241
14.	2	6	4	15	0.938	0.469	0.964	0.905	6516557.812
15.	2	6	4	16	0.939	0.465	0.971	0.887	6626146.781
16.	2	6	4	17	0.933	0.457	0.975	0.845	7144398.067
17.	2	6	4	18	0.935	0.469	0.984	0.849	7200848.128
18.	2	6	4	19	0.910	0.462	0.980	0.862	8690668.278

АНАЛІЗ РЕЗУЛЬТАТІВ

При таких наборах параметрів системи витрати сягають мінімуму (Таблиця 2).

Таблиця 2 – Зводні данні за експериментами

Робітники на ділянці 1	Робітники на ділянці 2	Робітники на ділянці 3	Кількість верстатів
2	6	4	70 – загалом
			(з них 15 - додаткових)

ВИСНОВОК

В даній контрольній роботі я використав імітаційну модель для знаходження оптимальних рішень щодо найму робочої сили та оренди верстатів з метою мінімізації вартості виробництва. В результаті роботи було визначено, що найоптимальнішим рішенням буде найняти 2 робітника на ділянці діагностики, 6 на електричному ремонті і 4 на механічному. Витрати при цьому дорівнюють 6516557, а напруженість верстатів 0.938.