This Assignment is aimed at comparing the performance of several algorithm models for different programming languages such as Scala and Python on Spark ML.

• PC Features:

- -Windows 10 Pro 64 bits
- -Processor: Intel(R) Core(TM) i5-4460 CPU @ 3.2 GHz 3.2 GHz
- -16 Gb RAM
- -Hard Drive SSD 500 Gb
- -Java JDK 1.8.0_161
- -Spark 2.3.0
- -IDE Jetbrains Pycharm 2018.1
- -IDE Intellij 2018.1
- -Scala version 2.11.12

For this, we have created a Dataset to train the different algorithms models with a generator of data program in python for clustering and Classification test time and performance.

Results of the test:

• Computing Time Based on Bisecting-K-means Algorithm.

	Clustering Algorithm		
Nº Cores	Bisecting-K-means		
	Scala Time	Python Time	Difference Time (%)
1	194	209	7%
2	108	121	11%
3	81	95	15%
4	68	87	22%

Average Performance Scala-Python

14%

• Computing Time Based on K-means Algorithm.

	Clustering Algorithm		
Nº Cores	Kmeans		
	Scala Time	Python Time	Difference Time (%)
1	53	70	24%
2	39	43	9%
3	30	34	12%
4	26	28	7%

Average Performance Scala-Python

• Computing Time Based on LogisticRegression Algorithm.

	Classification Algorithm		
Nº Cores	LogisticRegression		
	Scala Time	Python Time	Difference Time (%)
1	62	76	18%
2	39	41	5%
3	30	30	0%
4	23	30	23%

Average Performance Scala-Python

12%

• Computing Time Based on DecisionTree Algorithm.

	Classification Algorithm		
Nº Cores	DecisionTree		
	Scala Time	Python Time	Difference Time (%)
1	214	270	21%
2	126	161	22%
3	103	126	18%
4	81	115	30%

Average Performance Scala-Python

23%

• Computing Time Based on RandomForest Algorithm.

	Classification Algorithm		
Nº Cores	RandomForest		
	Scala Time	Python Time	Difference Time (%)
1	207	283	27%
2	139	158	12%
3	106	110	4%
4	81	104	22%

Average Performance Scala-Python

16%

• Computing Time Based on Graphs.

Execution Time Test Scala-Python BisectingKmeans

Execution Time Test Scala-Python Kmeans

Execution Time Test Scala-Python Logistic

Execution Time Test Scala-Python DecisionTree

Execution Time Test Scala-Python RandomForest

Analysis of the test:

Analysis of the computing Time on Boxplot Graph by Algorithms Models.

Model

 Analysis of the computing Time on Boxplot Graph by Cores (it take account of all models.)

Test of Wilcoxon:

The **Wilcoxon signed-rank test** is a <u>non-parametric</u> <u>statistical hypothesis test</u> used to compare two related samples, matched samples, or repeated measurements on a single sample to assess whether their population mean ranks differ (i.e. it is a <u>paired difference test</u>). It can be used as an alternative to the <u>paired Student's t-test</u>, t-test for matched pairs, or the t-test for dependent samples when the population cannot be assumed to be <u>normally distributed</u>. A Wilcoxon signed-rank test is a nonparametric test that can be used to determine whether two dependent samples were selected from populations having the same distribution.

Reference: http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

Hypothesis:

H₀: **Median** Scala-Times ≥ **Median** Python-Times.

H₁: **Median** Scala-Times < **Median** Python-Times.

Value of p:

P = 0.00013 < 0.05 Therefore, the Hypothesis null is refused.

Conclusion:

We can say that the performance with Programming_Language Scala is better than Programming_Language Python.

NOTE: You can see the code in WilcoxonTest.py

Final Conclusion:

Afterwards, we can do some observations:

- 1. In general, Scala has about a 15% better global Average performance than Python.
- 2. Classification DecisionTree Algorithm model has obtained the best performance with a 23% less of time.
- 3. Classification LogisticRegression Algorithm model has obtained the worst performance with a 12% less of time.
- 4. It's better to use programming_Language Scala to train whatever model and especially for DecisionTree and RandomForest. (you look at boxplot Analysis of the computing Time on Boxplot Graph by Algorithms Models).
- 5. The performance of Programming_Language Scala (15% time-saving) regard to Programming_Language Python is independent of the hardware.