

Moving Beyond Competitions: Extending D-Cube to Seamlessly Benchmark Low-Power Wireless Systems

Markus Schuß, Carlo Alberto Boano, and Kay Römer Institute of Technical Informatics Graz University of Technology, Austria

04/17/2018

Problem Statement

- No standardized methodology to compare the performance of low-power wireless systems
- EWSN Dependability Competition Series
 - Goal: find which low-power wireless protocol perform(s) best in harsh RF environments
 - Created a dedicated competition infrastructure (D-Cube)
- 2016: 1st edition with dense mesh network and point-to-point communication
 - Good accuracy, but no generality of results
 - Later editions became more general by focusing on multiple communication patterns
- From competition infrastructure to benchmarking infrastructure: what's missing?

EWSN Dependability Competition

- Sensing node in (blinking LED)
- Detecting status
- Forwarding them

EWSN Dependability Competition

- Started as a "hackathon" (2 days prep, 1 day evaluation)
- Last iteration was ran remotely over two months (2 weeks evaluation)
- We build D-Cube, our own open, low-cost testbed infrastructure
 - Currently two instances exist, Uppsala (Sweden) and Graz (Austria)

D-Cube's hardware

Benchmarking Requirements

- Automated, seamless and repeatable execution
 - Without modifications to the firmware
- Configurable parameters
 - Traffic pattern: point-to-point, point-to-multipoint,...
 - Traffic load: periodic, irregular, number of msg/s,...
 - System parameters: network density,...
 - Experiment parameters: number of runs, duration,...
 - Environmental parameters: RF interference, temperature,...
- Configurable metrics
 - Latency, jitter, total/peek energy consumption, reliability,...

D-Cube: Architecture

Still far-away from a benchmarking infrastructure

- Application Specification locks traffic pattern to point-to-point
- Traffic load created by a second TelosB
- JamLab integration for interference
- Manual Execution via SSH
- Static Topology

D-Cube: Architecture (first Update)

Does this work for benchmarking now?

- Management Web interface
 - Enables remote execution
 - Enables queuing of experiments
- Nodes can be turned off to simulate sparse network

D-Cube: Architecture (second Update)

Benchmarking Infrastructure

- Multiple traffic pattern in parallel
 - Available on every target node
- Traffic load fully in software now
- ReST API for automation
- Grouping and statistics available for performance metrics

The Problem

- Traffic pattern and node identities intertwined with the specification
 - Can not be changed without access to the source or the developer
 - Node identities are fixed, which may include optimisations based on topology
 - Prevents execution on other testbeds

Our proposed Solution

- Split the traffic pattern and node identities from the specification
 - Define a well-known data structure containing these information
 - Developer provides their memory address
 - Values are replaced according to the parameters
 - Includes the option for user-defined variables

User-defined Variables

- Build a custom firmware from the public source
- Replaced only the user-defined variable crystal_sink_id
- Automatically evaluated the resulting latency

EWSN Dependability Competition 2019?

- In 2018 we compared synchronous transmissions against synchronous transmissions (mostly glossy)
 - While fun, it looks like routing (RPL) based solutions do not care
- Binary events only
 - Would an (emulated) sensor or more complex scenario (e.g. payload and destination via UART) make a difference?
- Aging target node limits solutions
 - Newer hardware lacks/prohibits implementations?

Thank you for your attention!

Questions?