Learning to Compare: Relation Network for Few-Shot Learning

作者	Flood Sung et al. 主页 https://github.com/floodsung / 序 Pytorch
问题	Few-Shot Learning: reagnise new classes given few examples. exists model: Drequire complex inference mechanisms.
描述	E complex RNN architectures. 3 fine-tuning target problems.
解	O decompose training into auxiliary * References
决	meta-leaming. (Embedding module) 考 [36.39].
思	2 learn a transferrable deep metric & LNNs: [39,32,29]
路	for compore relations. (Relation module) B Fine-tuning:[29, 10]
	① During meta-learning, learn a deep $Y_{i,j} = g_{\varphi}(C(f_{\varphi}(x_i), f_{\varphi_j}))$.
概	metric to compare a small number $ i = 1, 2, \dots, C$.
念	of images with episodes. * Sample: Xi: Query: Xj.
理	② Classify new class by computing 第 10000 MSE
解	remoon somes between guily and the
	sample images of each class. accuracy.
程	I. Pre-processing: O load train, val, test 10 load_folders():
序	folders. @ load images and labels. @ to Tensor, @ Task(); @ get_data_loader(); I. Training: Oget folders. @ define and Oget_folders();
分	load networks. ③ Start to train and yal. 列 ② net(); ③ train(): Testing: ② initial datas and nets. 表 ① init(); ② load();
块	型 load the weights ② colculate results. ③ test();
存	O The results are distinctly difference among the two datasets, Omniglut (28x28x1) and miniImagenet (84×84x3).
在	The more samples, the better accuracy, how about amount of samples?
问	·
题	3 When I use RN to train my own datas with Ioo,000 episodes,
, 45	it got 83% and 89% accuracy for start and final respectively, does it works?
文	献 CVPR
	年 2018 卷 期 页 1199-1208

