

หน้า 1 / 9

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์				ภาคการศึกษาที่ปีการศึกษา
รหัสวิชา	010113026	ชื่อวิชา	Digital Laboratory	ตอนเรียนหมายเลขโต๊ะ
รหัสนักศึก	าษา		ชื่อ-นามสกุล	
อาจารย์ผู้	สอน		เวลาที่ทำการทดลอง	าวันที่

การทดลองที่ 2

Combinational and Adder circuit

<u>วัตถุประสงค์</u>

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์จำลองการทำงานของวงจรลอจิกเกทได้
- 2. เพื่อให้เข้าใจความสัมพันธ์ของ วงจรลอจิก ลอจิกฟังก์ชั่น ตารางความจริง และแผนภาพทางเวลา
- 3. เพื่อให้เข้าใจพื้นฐานการทำงานของวงจรแบบ Combination-circuit
- 4. เพื่อให้เข้าใจพื้นฐานการทำงานของวงจร Adder circuit

<u>อุปกรณ์</u>

้. 1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.0 (Student Edition) ขึ้นไป

การทดลองตอนที่ 1

วงจร Combinational: Timing, Truth-table and Logic Function

คำสั่งการทดลอง

1. ให้ น.ศ. สร้างโฟลเดอร์สำหรับเก็บงานโปรเจคไฟล์ ขึ้นใหม่เพื่อเก็บงานที่จะทดลองในการทดลองนี้จากนั้น เขียนวงจรในรูปที่ 1 เพื่อจำลองการทำงานด้วยโปรแกรม Quartus II และให้ใช้ชิพ EP3C10E144C8

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 9

2. จากรูปที่ 1 ให้เขียนสมการ ลอจิกฟังก์ชั่นของเอ้าท์พุท F และ G

 $F(X_4, X_3, X_2, X_1) =$

 $G(X_4, X_3, X_2, X_1) =$

ลดรูปสมการ (ทำ minimization สมการลอจิกฟังก์ชั่น) จะได้เป็น

 $F(X_4, X_3, X_2, X_1) =$ $G(X_4, X_3, X_2, X_1) =$

รูปวงจรลอจิกในระดับ RTL ที่ได้ เมื่อทำการคอมไพล์วงจรในรูปที่ 1 บน Quartus II (**ดูในเมนู T**ools >> Netlist Viewer >> RTL Viewer)

สมการลอจิกของวงจร (RTL)

 $F(X_4, X_3, X_2, X_1) = G(X_4, X_3, X_2, X_1) = G(X_4, X_3, X_2, X_1) = G(X_4, X_3, X_2, X_1)$

ลายเซ็นอาจารย์ผู้ควบคุม...../....../..........

- 3. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ด้วย Vector Waveform Editor Tool ดังรูปที่ 2
 - กำหนดสัญญาณอินพุท $X_4X_3X_2X_1$ ให้มีค่าเริ่มจาก 0000, 0001, ... , 1110, และ 1111 ตามลำดับ
 - กำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงานโดยให้มีค่าดังนี้

End Time = 850 ns (ดูที่เมนู Edit >> End Time)
Grid Size = 1 ns (ดูที่เมนู Edit >> Grid size)

3.1 กำหนดโหมดการจำลองเป็นแบบ Functional mode บันทึกผลกราฟของ F และ G ลงในรูปที่ 2

คำแนะนำ ให้กำหนด X1 มีคาบ (Period) = 100 ns

รูปที่ 2

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 3 / 9

นำค่าสถานะลอจิกของเอ้าท์พุท F และ G ที่ได้จาก**กราฟรูปที่ 2 (Functional mode)** มาเขียนลงในตาราง ความจริงและใช้ k-map ลดรูปสมการของลอจิกฟังก์ชั่น บันทึกผลการคำนวณที่ได้

Time	Т	Input			Output	
Titile		X ₄	X_3	X_2	Χţ	f
at 0 ns	T ₀					
at 50 ns	T₁					
at 100 ns	T ₂					
at 150 ns	T ₃					
at 200 ns	T ₄					
at 250 ns	T ₅					
at 300 ns	T ₆					
at 350 ns	T ₇					
at 400 ns	T ₈					
at 450 ns	T ₉					
at 500 ns	T ₁₀					
at 550 ns	T _{tt}					
at 600 ns	T ₁₂					
at 650 ns	T ₁₃					
at 700 ns	T ₁₄					
at 750 ns	T ₁₅					

==	_	Input				Output
Time	T	X ₄	X ₃	X ₂	X ₁	Ð
at 0 ns	T _o					
at 50 ns	T ₁					
at 100 ns	T ₂					
t 150 ns	T ₃					
at 200 ns	T ₄					
at 250 ns	T ₅					
at 300 ns	T ₆					
at 350 ns	T ₇					
at 400 ns	T ₈					
at 450 ns	T ₉					
at 500 ns	T ₁₀					
at 550 ns	T ₁₁					
at 600 ns	T ₁₂					
at 650 ns	T ₁₃					
at 700 ns	T ₁₄					
at 750 ns	T ₁₅					

\setminus	00	01	11	10
00				
01				
11				
10				

F =

G =

3.2 เปลี่ยนโหมดการจำลองเป็นแบบ Timing mode บันทึกผลกราฟของ F และ G ลงในรูปที่ 3

รูปที่ 3

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4 / 9

จากกราฟแผนภาพทางเวลาในรูปที่ 3
ก) มีปรากฏการณ์ glitch Hazard ขึ้นที่เวลาใดบ้าง ให้ระบุ
11/ AU o 1110 JII 1 1000 GUEET 1 10 ZOI G 10 WINO ON TO THE OF
٧ ۾ ۾ .
ข) ค่าของเวลาหน่วงของ F มีค่ามากที่สุดที่เวลา t =
เมื่อค่าของอินพุทเปลี่ยนสถานะจาก X ₄ X ₃ X ₂ X ₁ =ไปเป็น X ₄ X ₃ X ₂ X ₁ =
ค) ค่าของเวลาหน่วงของ G มีค่ามากที่สุดที่เวลา t =ns น้อยที่สุดที่เวลา t =ns
เมื่อค่าของอินพุทเปลี่ยนสถานะจาก $X_4X_3X_2X_1 = \dots$ ไปเป็น $X_4X_3X_2X_1 = \dots$
ง) การเปลี่ยนสถานะของ $X_4X_3X_2X_1$ ส่งผลอย่างไรต่อค่าเวลาหน่วง (delay time, propagation delay)
ของวงจร
จ) การเกิดค่าเวลาหน่วง (delay time, propagation delay) ของอุปกรณ์แต่ละตัวในวงจรจะส่งผลอย่างไร
ต่อการเกิดปรากฏการณ์ glitch Hazard
การทดลองตอนที่ 2
วงจร Adder: วงจร, ลอจิกฟังก์ชั่น, ผลกระทบของเวลาหน่วง
5. ให้เขียนวงจรเพื่อจำลองการทำงาน Half Adder ในรูปที่ 4 ด้วยโปรแกรม Quartus II ให้ใช้ชิพเบอร์
EP3C10E144C8 (แนะนำให้สร้างโฟลเดอร์ใหม่ ตั้งชื่อโปรเจคและชื่อของไฟล์ชิ้นงานขึ้นใหม่ทั้งหมด)
$x \longrightarrow S$
$y \rightarrow 1$
)—— c
รูปที่ 4
6. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ด้วย Vector Waveform Editor Tool ดังรูปที่ 5
โดย X มีค่าของ period = 100 ns
6.1 กำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงานโดยให้มีค่าดังนี้
End Time = 250 ns (เมนู Edit >> End Time)
Grid Size = 1 ps (1919) Fdit >> Grid size)

หน้า 5 / 9

6.2 กำหนดโหมดการจำลองเป็นแบบ Functional mode บันทึกผลการจำลองที่ได้ลงในรูปที่ 5 6.3 เปลี่ยนโหมดการจำลองเป็นแบบ Timing mode บันทึกผลการจำลองที่ได้ลงในรูปที่ 6

ผลการทดลอง

จากรูปที่ 5 ให้เขียนสมการลอจิกฟังก์ชั่นของเอ้าท์พุท s และ c

a) ผลกราฟ S และ C จากการจำลองแบบ Functional mode

รูปที่ 5

b) ผลกราฟ S และ C จากการจำลองแบบ Timing mode

ที่เวลา t = 100 ns ค่าของ x = 0 \rightarrow 1 และ y = 0 \rightarrow 0 ผลบวกที่ถูกต้องจะเกิดขึ้นช้ากว่าอินพุท = ns

ที่เวลา t = 150 ns ค่าของ x = 0 \rightarrow 1 และ y = 1 \rightarrow 1 ผลบวกที่ถูกต้องจะเกิดขึ้นช้ากว่าอินพุท = ns

ที่เวลา t = 200 ns ค่าของ x = 1 \rightarrow 0 และ y = 1 \rightarrow 0 ผลบวกที่ถูกต้องจะเกิดขึ้นช้ากว่าอินพุท = ns

ที่เวลา t = 250 ns ค่าของ x = 0 \rightarrow 1 และ y = 0 \rightarrow 1 ผลบวกที่ถูกต้องจะเกิดขึ้นช้ากว่าอินพุท = ns

d) ให้พิจารณาค่าของเอ้าท์พุทเมื่อ กรณีที่อินพุท (X,Y) เปลี่ยนแปลงครั้งละหนึ่งสัญญาณ กับกรณีที่เปลี่ยนแปลง พร้อมกันทั้งสองสัญญาณ ทั้งสองกรณีดังกล่าวส่งผลต่อเวลาการเกิดผลลัพธ์ที่ถูกต้องของเอ้าท์พุทอย่างไร

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 6 / 9

- 7. ให้สร้าง (ออกแบบ) วงจร full Adder จากวงจร Half Adder และเขียนวงจรที่สมบูรณ์ลงในรูปที่ 7 (แนะนำให้สร้างโฟลเดอร์ใหม่ ตั้งชื่อโปรเจคและชื่อของไฟล์ชิ้นงานขึ้นใหม่ทั้งหมด)
- 8. ให้จำลองการทำงาน Full Adder ด้วย Quartus II และให้ใช้ชิพเบอร์ **EP3C10E144C8** โดยที่กำหนด ค่าของ c_{in}, X, Y ดังรูปที่ 8 และค่าของ End Time = 250 ns, Grid Size = 1 ns 8.1 ทำการจำลองการทำงานในโหมด Functional Mode บันทึกผลการจำลองที่ได้ลงในรูปที่ 8 8.2 ทำการจำลองการทำงานในโหมด Timing Mode บันทึกผลการจำลองที่ได้ลงในรูปที่ 9

ผลการทดลอง

a) วงจร Full Adder

b) ผลกราฟ S และ Cout จากการจำลองการทำงานในโหมด Functional Mode

รูปที่ 8

c) ผลกราฟ S และ Cout จากการจำลองการทำงานในโหมด Timing Mode

รปที่ 9

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 7 / 9

d) จากรูปที่ 9 สังเกตผลลัพธ์ที่เอ้าทํพุททั้ง S และ Cout เปรียง	มเทียบกับการเปลี่ยนสถานะของอินพุท
ที่ $t = 50$ ns ค่า $x = 0 \rightarrow 1$, $y = 0 \rightarrow 0$, $Cin = 0 \rightarrow 0$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 100$ ns ค่า $x = 1 \rightarrow 0$, $y = 0 \rightarrow 1$, Cin $=0 \rightarrow 0$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 150$ ns ค่า $x = 0 \rightarrow 1$, $y = 1 \rightarrow 1$, Cin $=0 \rightarrow 0$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 200$ ns ค่า $x = 1 \rightarrow 0$, $y = 1 \rightarrow 0$, Cin $= 0 \rightarrow 1$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ t = 250 ns ค่า x = 0 \rightarrow 1, y = 0 \rightarrow 0 , Cin =1 \rightarrow 1	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 300$ ns ค่า $x = 1 \rightarrow 0$, $y = 0 \rightarrow 1$, Cin $=1 \rightarrow 1$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 350$ ns ค่า $x = 0 \rightarrow 1$, $y = 1 \rightarrow 1$, Cin $=1 \rightarrow 1$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 400$ ns ค่า $x = 1 \rightarrow 0$, $y = 1 \rightarrow 0$, Cin $=1 \rightarrow 0$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ที่ $t = 450$ ns ค่า $x = 0 \rightarrow 1$, $y = 0 \rightarrow 1$, Cin $= 0 \rightarrow 1$	ผลบวกที่ถูกต้อง เกิดขึ้นช้า = ns
ให้พิจารณาค่าของเอ้าท์พุท ในกรณีที่อินพุท (X,Y) เปลี่ยนแ <u>สัญญาณ</u> เปลี่ยนแปลงพร้อมกัน <u>สามสัญญาณ</u> ทั้งสามกรณีผ เอ้าท์พุทอย่างไร	้งกล่าวส่งผลต่อเวลาการเกิดผลลัพธ์ที่ถูกต้องของ
ผลการทดลองจากข้อ d การบวกเลขในกรณีที่ X + Y + Ci ถูกต้องช้าที่สุด	n มีรูปแบบการบวกในกรณีใด ที่ทำให้ได้คำตอบที่
ลายเซ็นอาจารย์ผู้ควบคุม	J//

การทดลองตอนที่ 3 วงจร Adder: VHDL

- 9. ให้เขียนภาษา VHDL ดังต่อไปนี้ดังต่อไปนี้เพื่อจำลองการทำงานของโปรแกรมบน Quartus II
 - ให้สร้างโปรเจคขึ้นใหม่ ชื่อ FullAdder (เก็บงาน Designed ของเราไว้ในโฟลเดอร์เดิมก็ได้)
 - ให้สร้างไฟล์ชิ้นงาน (Designed file) ชื่อ FullAdder.VHD ขึ้นมาและเขียนภาษา VHDL ดังรูปที่ 10

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY FullAdder IS
PORT (Cin, X, Y : IN std_logic;
Cout, S : OUT std_logic);
END FullAdder;

ARCHITECTURE rtl OF FullAdder IS
BEGIN
S <= X XOR Y XOR Cin;
Cout <= (X AND Y) OR (Cin AND X) OR (Cin AND Y);
END rtl;
```

รูปที่ 10

ทำการคอมไพล์ และจำลองการทำงานในโหมด Functional Mode กำหนดสัญญาณ Cin , X และ Y ดังใน รูปที่ 11 บันทึกผลการจำลองที่ได้ จากนั้นเปลี่ยนโหมดจำลองเป็น Timing Mode บันทึกผลลงในรูปที่ 12

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโบโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 9

ผลการทดลอง

a) ผลกราฟ S และ Cout จากการจำลองการทำงานในโหมด Functional Mode

รูปที่ 11

b) ผลกราฟ S และ Cout จากการจำลองการทำงานในโหมด Timing Mode

c) จากรปที่ 12 สังเกตผลลัพธ์ ทั้ง S และ Cout

ที่ t = 50 ns ค่าของ x = 0 \rightarrow 1 , y = 0 \rightarrow 0 , Cin =0 \rightarrow 0 ที่ t = 100 ns ค่าของ x = 1 \rightarrow 0 , y = 0 \rightarrow 1 , Cin =0 \rightarrow 0 ที่ t = 150 ns ค่าของ x = 0 \rightarrow 1 , y = 1 \rightarrow 1 , Cin =0 \rightarrow 0 ที่ t = 200 ns ค่าของ x = 1 \rightarrow 0 , y = 1 \rightarrow 0 , Cin =0 \rightarrow 1 ที่ t = 250 ns ค่าของ x = 0 \rightarrow 1 , y = 0 \rightarrow 0 , Cin =1 \rightarrow 1

ที่ t = 300 ns ค่าของ x = 1 \rightarrow 0 , y = 0 \rightarrow 1 , Cin =1 \rightarrow 1 ที่ t = 350 ns ค่าของ x = 0 \rightarrow 1 , y = 1 \rightarrow 1 , Cin =1 \rightarrow 1 ที่ t = 400 ns ค่าของ x = 1 \rightarrow 0 , y = 1 \rightarrow 0 , Cin =1 \rightarrow 0

ที่ t = 450 ns ค่าของ x = 0 → 1 , y = 0 → 1 , Cin =0 → 1

ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns

ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns

ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns **ผลบวกที่ถูกต้อง**เกิดขึ้นช้า = ns

ผลบวกที่ถูกต้องเกิดขึ้นช้า = ns **ผลบวกที่ถูกต้อง**เกิดขึ้นช้า = ns

d) ให้เขียนวงจรลอจิกที่ได้จากความหมายของภาษา VHDL ในรูปที่ 10 (**ดูในเมนู Tools > Netlist Viewer > RTL Viewer**)

หน้า 9 / 9

Grade	
	ผลการทดลองในรูปที่ 12 และข้อ d) แล้วเปรียบเทียบกับรูปที่ 9 ว่ามีความเหมือนหรือแตกต่างกัน นด้านเวลาหน่วง
	า การออกแบบวงจรลอจิกด้วยวิธีที่เขียนวงจร logic diagram เมื่อเปรียบเทียบกับวิธีที่เขียนด้วยภาษา ข้อเด่นข้อด้อยต่างกันอย่างไร
	ลายเซ็นอาจารย์ผู้ควบคุม//
(ให้เขียน 1. ให้อธิ 2. ให้อธิ	เมายท้ายการทดลอง เลงบนกระดาษ A4 ที่มีเส้นบรรทัดและรวมใส่ท้ายเอกสารการทดลอง ส่งอาจารย์ผู้สอนในคราวถัดไป) ริบายคำสั่งต่างๆ ของภาษา VHDL ที่แสดงในรูปที่ 10 อย่างละเอียด ริบายและยกตัวอย่างประกอบ เรื่องความสำคัญของ <mark>เวลาที่ใช้ในการบวกเลขของวงจร ADDER</mark> ถ้าวงจร แลขในรูปที่ 7 ถูกนำไปสร้างเป็นวงจรบวกเลขขนาด 4 บิตหรือมากกว่า