Garbled Circuits

Neil Gong

ML confidentiality/privacy

Model parameter/hyperparameter

Training data

Testing data

Algorithms

Privacy vs. confidentiality

• Confidentiality: broader concept

Privacy: related to sensitive information of human

Training data privacy

- Attacker's goal
 - Membership inference
 - Property inference
 - Training data distribution
 - Training data reconstruction
 - Attribute inference
- Attacker's background knowledge
 - Model parameters
 - Prediction API
- Attacker's capabilities
 - Analyze model parameters
 - Querying the prediction API

Protecting training/testing data privacy

- Statistical approaches
 - Differential privacy
- Cryptographic approaches
 - Fully/partial homomorphic encryption
 - Secure multi-party computation
 - Garbled circuits

Trusted hardware

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit

Truth table:

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

X	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

1: Pick Random Keys For Each Wire

- Next, evaluate one gate securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the outputwire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

 Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

- Bob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1
 - Bob does <u>not</u> tell her intermediate wire keys (why?)

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!