uiznum8 Name:	+ Linc	isey	Perm	Numb	er: 030	123	, 2	
TA: Trevor	Daniel 🗀	Jeremy	Day: T	R□	Time: 8□	5 🗆	6□ 7 ⁸	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the height of the ball at 2 seconds.
2) 35 is the height of the ball at 1 second.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

P = Exit + 600m

uiznum Name:		Calo	<u> </u>	Perm	Number:	600	G030-2	2
TA	: Trevor 🗹	Daniel 🗌	Jeremy 🗌	Day: T 🗹	R□ Ti	me: 8 🗆	5□ 6□	7 🗹

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the Meight of the ball at 2 seconds.
2) 35 is the Meight of the ball at 1 second.

uiznum								
Name:	Brandi	rading		Perm	Number:	6565	634	
TA:	Trevor	Daniel 🗌	Jeremy 🗌	Day: T	R□ Ti	me: 8 🗌 5 🗍	6□ 7[×
				Onia 9				

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the \(\frac{\lambda \lambda \lambda

uiznum Name:	8 Zihu	Zhu	Perm Number:	5381462
TA	: Trevor Danie	el 🗌 Jeremy 🗀	Day: T ☑ R □ Ti	me: 8 5 6 7 7
			Quiz 8	

$$P = \frac{2000}{L} + 5L$$

uiznum Name:	s Sebo	stiam	Avia	Perm	Number:	597628	20	
						me: 8 🗌 5 🗍		
				\circ				

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

of the ball at 2 seconds.

2) 35 is the

height

of the ball at 1 second.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

A=L·W P=L+L+W+W

1000m2 = L.W W=1000m2 2L+2000 - P

uiznum [8					~	-	-		
Name:	Ain	Turning.	Ca	Perm	Numbe	er: 59603	3/5			
$\mathbf{T}\mathbf{A}$:	Trevor $\boxed{\square}$	Daniel 🗆	Jeremy 🗌	Day: T	R□	Time: 8	5□ 6	3 🗆	7 🗀	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$P = \int_{\mathcal{O}_{10}} \frac{10,000}{5w}$$

Name: Wily WNM	Perm Number:	5622949
TA: Trevor ☐ Daniel ☐ Jeremy ☐	Day: T R C	ne: 8 5 5 6 7 X
	Quiz 8	

- 1) 20 is the vero city of the ball at 2 seconds.
 2) 35 is the speed of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

uiznum Name:	8 Stephane Mita	Perm Number: 803848)
		Day: T R R Time: 8 5 6 7 7
		O:- 0

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the Vergot of the ball at 2 seconds.
2) 35 is the Neight of the ball at 1 second.

$$P = 2w + 5L$$
 $A = L \cdot W$
 $W = \frac{1000}{L} \quad P = 2(\frac{1000}{L}) + 5L$
 $P = \frac{2000}{L} \quad P = \frac{2000}{L} \quad P$

uiznum Name:	8 Annalise Evans	Perm Number:	5301023
$\mathbf{T}\mathbf{A}$: Trevor Daniel Deremy D	Day: T R R	me: 8 5 6 7 X
		Quiz 8	

1) 20 is the Velocity of the ball at 2 seconds.
2) 35 is the Neight of the ball at 1 second.

A=W·L
$$P = 5L + 2W$$

 $1000 = W \cdot L$ $P = 5L + 2(\frac{1000}{L})$
 $\frac{1000}{L} = W$ $P = 5L + \frac{2000}{L}$

name: Crystat M	endoza	Perm Number:	4138483
TA: Trevor Daniel	☐ Jeremy ☐ Da	y:T/Z R Tir	me: 8
	C)uiz 8	
In the following problems, the ground at t seconds. For $h'(2) = 20$ and $h(1) = 35$.	e function $h(t) = 40^{\circ}$ the first two problems	$t-5t^2$ describes the s, fill in the blank with	height (in meters) of a ball above the appropriate word, given that
1) 20 is the //////	fy of t	ne ball at 2 seconds.	
2) 35 is the height	of t	he ball at 1 second.	
3) A rectangular field is surfences all parallel to one side expression only using L .	rounded by a fence. To the field. The field	The fence is divided in must have an area of	to 4 equal parts by 3 more dividing 1000 m^2 . Write the perimeter as an
N=1000 N=	72	1000 m 2 1000 m	\$=1000-2W L=1000-ZW
22 2000 200		$P = \begin{vmatrix} 5000 - 10 \\ 2 - 10 \end{vmatrix}$	OL + 1000-2L

_ uiznum	8	
Name:	Anahi Pimentel Perm Number:	420 66 8 8
TA	Trevor Daniel Jeremy Day: T R R Tin	me: 8□ 5□ 6□ 7២
	Ouiz 8	

$$P = \begin{pmatrix} 2000 \\ 2000 \end{pmatrix} + 5(4)$$

Quiznum <u>8</u>							3
Name: Erick Castille		Perm	Number	: 29008	357		-
TA: Trevor 🗹 Daniel 🗌	Jeremy 🗌	Day: T	R□ I	ime: 8] 5 🗆	6☑ 7□	
		Quiz 8					
In the following problems, the f the ground at t seconds. For the h'(2) = 20 and $h(1) = 35$.	unction $h(t) = \frac{1}{2}$ first two problems.	$40t - 5t^2$ dems, fill in t	he blank w $ u$	vith the ap 2)=2(opropriate $h($	s) of a ball e word, give i)=404	en that
1) 20 is the height	C	of the ball at		i)=35 ·			
2) 35 is the Speed	(of the ball at	1 second.				
3) A rectangular field is surrou fences all parallel to one side of the surrous and the surrous fences are surrous for the surrous fences and the surrous fences are surrous for the surrous fences and the surrous fences are surrous for the surrous fences and the surrous fences are surrous for the surrous fences and the surrous fences are surrous fences are surrous fences are surrous fences are surrous fences and the surrous fences are surrous fences for the surrous fences are surrous fences fences for the surrous fences fences fences for the surrous fences fences fences for the surrous fences fe	he field. The fi	eld must hav	e an area (into 4 equ of 1000 m ²	al parts l . Write t	by 3 more of he perimete	lividing er as an
expression only using L .	70 10	•	U \		16	W 2	
us L	*30×~	0 12	o a	,.s O	15	00m² = 130 =	80
					P:	= BO	15 G

$$P = L(2) + 80$$

				;
-	Name: Max. Levih	Perm Number:	4984896	
3	TA: Trevor Daniel Jeremy Da	y: T 🗌 R 🔲 Tin	me: 8 🗌 5 🗍 6 🗖 7 🗍	
dy		uiz 8		
	In the following problems, the function $h(t) = 40t$ the ground at t seconds. For the first two problems $h'(2) = 20$ and $h(1) = 35$.	$t - 5t^2$ describes the s, fill in the blank with	height (in meters) of a ball above th the appropriate word, given that	
		ne ball at 2 seconds.		
	2) 35 is the height of the	ne ball at 1 second.		
	3) A rectangular field is surrounded by a fence. T fences all parallel to one side of the field. The field expression only using L .	The fence is divided in must have an area of	nto 4 equal parts by 3 more dividing 1000 m ² . Write the perimeter as an	
	A-1000m2	3 4	5 56+2	~=P
	P= 2L+2w 4	- w	$\frac{1}{\sqrt{3}} P SL = \frac{P^{-1}}{\sqrt{3}}$ $L = \frac{P^{-1}}{\sqrt{3}}$	
	H=(L)(m)		·.	5
	P-26-2W		2 / - /-	
	2-2w-?	L L	- PAW ??	
) _		4	/ 2 1)	
	P=ALIZA	$P = \left(\mathcal{L} \mathcal{L} \right) \mathcal{L}$	561	

uiznum Name:		Hernan	det	- 1	Perm'.	Numbe	er:	571	4902		
TA:	Trevor 🔀	Daniel 🗌	Jeremy 🗌	Day:	тØ	R□	Tin	ne: 8 🗌	5□ 6□	₫ 7□	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the neight of the ball at 2 seconds.
2) 35 is the height of the ball at 1 second.

$$P = \int L + \frac{2600 \text{m}^2}{L}$$

- 1) 20 is the derivitive of the ball at 2 seconds.

 (0(1) = S(1)
 (10 = S(1))

 (10 = S(1))
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using \underline{L} .

$$1000 = V \cdot m$$
 $V = 1000$
 $V = 1000$

$$5L + 2w = 5L + 2(1000) = 5L + 2(1000)$$

$$5(1000) + 2(1000) = 5L + 2(1000)$$

$$5L + 2000$$

$$5L + 2000$$

$$5L + 2000$$

uiznum						
Name.	Alvaro	Marquer	Perm	Number:	059	6506
TA:	: Trevor 🛈 Dan	iel 🗌 Jeremy 🗀	Day: T	R□ T	'ime: 8 □ 5 □	6 ☑ 7 □
	1		Quiz 8			
the ground	owing problems, d at t seconds. Find $h(1) = 35$.	the function $h(t)$ or the first two pro	$= 40t - 5t^2 d$ blems, fill in t	escribes th he blank w	e height (in met rith the appropri	ers) of a ball above ate word, given that
1) 20 is t	the AS	Ean C	of the ball at	2 seconds.		
2) 35 is t	the SR	e D	of the ball at	1 second.		
fences all	tangular field is a parallel to one side only using L .	urrounded by a fen le of the field. The	nce. The fence field must hav	is divided e an area c	into 4 equal part of 1000 m ² . Write	s by 3 more dividing e the perimeter as an
				A CONTRACTOR OF THE CONTRACTOR		
			VIZ.			
	0 0	1 30 7	W -		1000mg	
	P= 2			<i>!</i>		100 × 2
	P=2	(+ 2(1000)			A CAN E	
	·	2000		(, جر)	1000N	

P = 2 1 + 2000

uiznum Name:	8 Toha	Hossain	Perm Nu	ımber:	5757	406
		iel 🗌 Jeremy 🗀				
			\circ . \circ			

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

cleriontive of the ball at 2 seconds. 1) 20 is the of the ball at 1 second. 2) 35 is the

Name: Oddy Ordiz	Perm Number: 6065556
TA: Trevor Daniel Deremy	Day: T \square R \square Time: 8 \square 5 \square 6 \square 7 \square
	Quiz 8

1) 20 is the

of the ball at 2 seconds.

2) 35 is the

of the ball at 1 second.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L.

TXN=1000

uiznum Name:	8 Mariah	Cal	Perm Number	6144893
į				Fime: 8 □ 5 □ 6 □ 7 □

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the distance of the ball at 2 seconds.
2) 35 is the Neight of the ball at 1 second.

$$P = 5 + \frac{2000}{L}$$

uiznum Name:		Andam	Pann	Perm Nu	mber:	6120	50 E		
TA	: Trevor <table-cell></table-cell>	Daniel 🗌	Jeremy 🗆	Day: T A R	Tin	ne: 8□	5 🗌 6	□ 7□	
				0 . 0					

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

A-LW
1000-LW
W-1000
P-5L+2(100)

$$P = \int_{0}^{\infty} \int_{0}^{\infty}$$

Name: Colin Gallivan	Perm Number:	5862735
TA: Trevor Daniel Jeremy Da		

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L.

A=1000 1000=4W W= 1000

$$P = \begin{bmatrix} 5 \\ + \end{bmatrix}$$

uiznum Name:	2004- Formine Moody	Perm Number:	0 4564137
TA	: Trevor Daniel Jeremy I	— Day: T□ R□ Tii	me: 8
		Quiz 8	

$$P = \int_{\mathcal{F}} L + 2\left(\frac{1000}{L}\right)$$

Name: Hidei Syanke	Perm Number: 5958625	
TA: Trevor 🖾 Daniel 🗌 Jeremy 🗍 🛚 I	Day: T □ R □ Time: 8 □ 5 □ 6 □ 7 □	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

- 1) 20 is the Velocity of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

total L to

P=2L+2W

$$P = 2l + \frac{2000}{l}$$

uiznuiilo						
Name:	Natasha	Gavnloff	Perm Number:	677311	3	
TA : '	Trevor Dan	iel 🗌 Jeremy 🔲 D	Pay: T R□ Ti	me: 8□ 5□ 6×	T *	
			Quiz 8			
the ground	wing problems, at t seconds. For and $h(1) = 35$.	the function $h(t) = 4$ or the first two problem	$0t - 5t^2$ describes the ns, fill in the blank wi	th the appropriate we	ord, given that	
				6 0 -	20:607	20 war
1) 20 is th	ne and	W velocity of	the ball at 2 seconds.	30- 20:40(2))-5(2) =	000
2) 35 is th	ne Cattle	speed of	the ball at 1 second.	39=40(1) 35=39		
fences all p	angular field is sarallel to one side only using L .	urrounded by a fence. de of the field. The field	The fence is divided in a must have an area of	nto 4 equal parts by $3 \cdot 1000 \text{ m}^2$. Write the-	3 more dividing perimeter as an	Į.
					al length fence	
	5L +	2(1000)	,,		L L	
		·)		<u>LU</u>	U = 1000	

$$P = 5L + 2\left(\frac{1000}{L}\right)$$

uiznum							Г			
Name:	Kellen	beck	. 4. 1	-	Përm l	Number	::	479 466	- 5	",
TA	: Trevor 🗹	Daniel 🗌	Jeremy 🗌	Day	: T 🗹	R 🗆 T	∟ Γin	ne: 8 5 5	6 2 7 🗆	
				Qı	ıiz 8					

- 1) 20 is the VC10City of the ball at 2 seconds.
 2) 35 is the VC10City of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L.

$$P = 5L + 2\left(\frac{1000}{L}\right)$$

- 1) 20 is the Speed of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$l \cdot W = 1000 \quad W = \frac{1000}{2}$$

$$P = 50 + 2W$$

$$P = 51 + 2\left(\frac{1000}{L}\right) \implies 51 + \frac{2000}{L}$$

$$P = \int L + \frac{2000}{L}$$

uiznum Name:	de	waart	Perm	Number	51775	530			
	 		Day: T 🖸	R□ 1	'ime: 8□	5□ 6	Ø	7 🗆	•

In the following problems, the function $h(t) = 40t - 5t^2$ describes the <u>height</u> (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

- 1) 20 is the Speed of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$P = \int \int L + \frac{2000}{L}$$

uiznum <u>8</u>		
Name:	Tac (the	Perm Number: 5808563
TA: Tre	evor Daniel Jeremy D	Day: $T \square$ R Time: $8 \square$ 5 6 \square 7 \square
		Quiz 8
In the following the ground at $h'(2) = 20$ and	t seconds. For the first two pro	= $40t - 5t^2$ describes the height (in meters) of a ball above oblems, fill in the blank with the appropriate word, given that $\gamma(+) = 40 + 5 + 7$
1) 20 is the	speed	of the ball at 2 seconds.
2) 35 is the	height	of the ball at 1 second.
3) A rectang fences all para expression on	llel to one side of the field. The	Ince. The fence is divided into 4 equal parts by 3 more dividing the field must have an area of 1000 m ² . Write the perimeter as an
		P= 2W + 41
		1000 = 2 W + 4L -4L
	7=2(500	1000-4L=2W
	2w = 1000 -	4L W=500-2L
	$\frac{2}{5}$ $\frac{2}{2}$ $(v = 600 -)$	$\frac{2}{2L} = \frac{2(500-2L)}{1000-4L} + \frac{11L}{11L}$
		P = 2(500-11) - 42

Name: CIKA Zalvedi	Perm Number:	3947280
TA: Trevor Daniel Deremy	Day: T R Ti	me: 8 5 5 6 7 7
	Ouiz 8	

1) 20 is the average speed of the ball at 2 seconds.
2) 35 is the height of the ball at 1 second.

$$P = \begin{array}{|c|c|c|} L + 2000 \\ L \end{array}$$

niznum8		·····		
Name: Aiden	Afresiali.	Perm Number:	52299	69
TA: Trevo	Afresiasi Daniel□ Jeremy□ D	ay: TAR Ti	me: 8 🗆 🔎	7 🗆
		Quiz 8		
in the following problem the ground at t seconds. $h'(2) = 20$ and $h(1) = 35$	as, the function $h(t) = 40$. For the first two problem 5.	$0t - 5t^2$ describes the as, fill in the blank with	height (in meters th the appropriate) of a ball above word, given that
1) 20 is the half	sht (m) of t	the ball at 2 seconds.		
2) 35 is the \(\lambda_{\alpha \cdot \cdo	of t	the ball at 1 second.		
B) A rectangular field in the control of the contro	is surrounded by a fence. I side of the field. The field L.	The fence is divided in must have an area of	to 4 equal parts b 1000 m^2 . Write th	y 3 more dividing ne perimeter as an XX W =1000
	L			= 1000 52+2w
Sl+	200			
Slx	2w = 1000	A.		
/	A COLUMN	,		

$$P = 5l + 2\left(\frac{1000}{2}\right)$$

uiznum8		
Name: Taylor Iden	Perm Number:	5709415
TA: Trevor Daniel Deremy Da	y: T R Time	:: 8 □ 5 ☑ 6 □ 7 □
()uiz 8	
In the following problems, the function $h(t) = 40$ the ground at t seconds. For the first two problem $h'(2) = 20$ and $h(1) = 35$.	$t-5t^2$ describes the hes, fill in the blank with	ight (in meters) of a ball above the appropriate word, given that
1) 20 is the Derivitive of t	ne ball at 2 seconds.	
2) 35 is the height of t	he ball at 1 second.	
3) A rectangular field is surrounded by a fence. The field is surrounded by a fence. The field expression only using L .	The fence is divided into must have an area of 10	00 m ² . Write the perimeter as an
		10 50 V
•	(C 6	P=26+2h
P=		, 0
56		
256		
		For All Pencing
	$P = \begin{bmatrix} 25 \end{bmatrix}$	

uiznum						Г		_
Name:	Lan	Hua	19		Perm Numb	er:	3926409	
ТА	: Trevor 🗹	Daniel 🗌	Jeremy 🗌	Day	y: TUR	Tin	ne: 8 🗆 5 🖸 6 🗀 7 🗆	
				Q	uiz 8			

uiznum Name:	8 Amji	zhao	-	Perm N	\mathbf{umber} :	X 307060	
TA	: Trevor 🗸	Daniel 🗌	Jeremy 🗌	Day: T R	. Tir	me: 8 ☑ 5 □	6□ 7□
				Quiz 8			

1) 20 is the change height

2) 35 is the height

of the ball at 2 seconds.

of the ball at 1 second.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L.

total length of fence

$$P = \int \int L + \frac{1000}{L}$$

uiznum Name:		e Espin	ora .	Per	m Numl	oer:	4736211	
	L			Day: T[□R□	Tir	me: 8□ 5☑ 6□ 7□	
				Quiz	8			

- 1) 20 is the PATE of the ball at 2 seconds.
 2) 35 is the Height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

 $area = 1000 \text{ m}^2$ $W = \frac{1000 \text{ m}^2}{L}$

 $P = \left| 5L + 2 \right|$

uiznum <u>8</u>					
Name:	sily Cla	YK	Perm Numbe	er: 5155	317
TA: Trev	vor Daniel J	eremy 🗌 🏻 Da	y: T 🗌 R 🗌	Time : 8 □ 5	□ 6□ 7□
		C	Juiz 8		
In the following the ground at t h'(2) = 20 and	seconds. For the firs	tion $h(t) = 40$ st two problems	$t-5t^2$ describes s, fill in the blank	the height (in n with the appro	neters) of a ball above priate word, given that
1) 20 is the	rate	of the	ne ball at 2 second	ds.	
2) 35 is the	heigh	t of the	he ball at 1 second	d.	
3) A rectangue fences all paral expression only	lel to one side of the	ed by a fence. T field. The field	The fence is divide must have an area	ed into 4 equal p a of 1000 m ² . W	arts by 3 more dividing rite the perimeter as a
)=51+2		21/2	W CI	54	5L 2W
1 = L o V 100 = L o W = L	W 000		- /	2000)
					•

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

1) 20 is the Speed 0.
2) 35 is the height o

of the ball at 2 seconds.

of the ball at 1 second.

3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

 $1000 = W \cdot L$ P = 2W + 5L $P = 2(\frac{1000}{L}) + 5L$ $P = 2\frac{1000}{L} + 5L$

$$P = \frac{2000}{L} + 5L$$

Name: Zee Albornoz	Ferm Number:	6497796
TA: Trevor ☑ Daniel ☐ Jeremy ☐ :	□ Day: T R □ Tin	ne: 8□ 5 6□ 7□
	Quiz 8	

- 1) 20 is the Speech of the ball at 2 seconds.
 2) 35 is the Wight of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$A = LW = 1000$$

$$W = \frac{1000}{L}$$

$$P = 2L + 2W \rightarrow 5L + 2\left(\frac{1000}{L}\right)$$

$$\Rightarrow 5L + 2W \rightarrow 5L^{2} + 2000$$

$$\Rightarrow 5L + \frac{2000}{L} \rightarrow \frac{5L^{2} + 2000}{L}$$

$$P = 5L + \frac{2000}{L}$$

Name: JOHNE Haddad Perm Number: 4700282
TA: Trevor Daniel Jeremy Day: T R Time: 8 5 6 7 7
Ouiz 8

$$\frac{1000 \, \text{m}^2 = L \cdot \text{W}}{5L + 2W^2} = \frac{L \cdot \text{W}}{L}$$

$$5L + \frac{2000}{L}$$

$$P = \int_{L} + \frac{2000}{L}$$

uiznum Name:		Li	terresis de la companya de la compan	Perm Numb	er:	3996188	
TA:	Trevor 🗹	Daniel 🗌	Jeremy D	oay: T⊠ R□	Tir	me: 8 🗆 5 🗹 6 🗆 7 🗆	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

Name: Harper Gordano	Perm Number:	5884150					
TA: Trevor Daniel Jeremy Day: TR RD Time: 8 5 6 7 0							
(Quiz 8						

- 1) 20 is the Speech of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$1000 = L(W)$$
 $W = 1000$
 L
 $P = 2L + 2(1000) + 3L$

$$P = \int \int + 2000$$

uiznum <u>a</u>		 1		<u></u>			
Name: May	e Nunez	Perm	Númber:	800	(2103		
TA: Trevor	Daniel Jeremy	Day: T 🏻	R□ Ti	ime: 8 🗌 🗆	5□ 6□	7 🗆 🛂 🦓	30367
		Quiz 8					
In the following protection the ground at t second $h'(2) = 20$ and $h(1)$	oblems, the function $h(t) = 0$ onds. For the first two probes $= 35$.	$=40t-5t^2$ d blems, fill in t	escribes the he blank wi	e height (in ith the appro	meters) of a opriate word	ball above , given that	
1) 20 is the ϵ	speed.	of the ball at	2 seconds.				
2) 35 is the	distance	of the ball at	1 second.				
fences all parallel to expression only us		ce. The fence field must hav	is divided i re an area of	nto 4 equal ; f 1000 m ² . V	parts by 3 m Vrite the per	ore dividing imeter as an	
100,50° 250° 150° 100°	200 J P L				A = 1	000m ⁻²	1 2
A=L·W	1000 = 6	· W	WE	1000 L			
P= 2W+5)	2(1000) = Z	200 <u>0</u> L			
P= 2000-1		•					

$$P = \begin{bmatrix} 200 \\ L \end{bmatrix} + 5L$$

Name: Ela Schulz	Perm Number: 6895183
TA: Trevor Daniel Deremy De	ay: T R R Time: 8 5 6 7

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

$$P = \begin{bmatrix} 5L + 2(\frac{1000}{L}) \end{bmatrix}$$

uiznum				 1		
Name:	CON	VELL T	PÁINOR	Perm	Number:	6872899
TA	: Trevor 🗹	Daniel 🗌	Jeremy 🗌 🏻 I	— Day: T⊠	R□ T	ime: 8□ 5☑ 6□ 7□

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

- 1) 20 is the Speed (M/s) of the ball at 2 seconds.
 2) 35 is the height (m) of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

total ferce

$$P = 5L + \frac{2000}{L}$$

uiznum <u>8</u>	,
Name: Mathan Starkowa	Perm Number: 446
TA: Trevor ☑ Daniel ☐ Jeremy ☐	Day : T ☒ R ☐ Time : 8 ☐ 5 ☒ 6 ☐ 7 ☐
	Quiz 8.
In the following problems, the function $h(t)$ = the ground at t seconds. For the first two problems, $h'(2) = 20$ and $h(1) = 35$.	= $40t - 5t^2$ describes the height (in meters) of a ball above blems, fill in the blank with the appropriate word, given that
1) 20 is the SNOA	of the ball at 2 seconds.
2) 35 is the \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	of the ball at 1 second.
3) A rectangular field is surrounded by a fen- fences all parallel to one side of the field. The expression only using L .	ce. The fence is divided into 4 equal parts by 3 more dividing field must have an area of 1000 m ² . Write the perimeter as an
	W
L.W = WO	
P-Zwtbl	
P=2000+51	-

 $P = \begin{bmatrix} 2000 \\ 1 \\ 1 \end{bmatrix}$

uiznum <u>8</u>				٦			
Name:	WIV	Mag	CVVO	Perm Numbe	r: 621	6446	
TA: Tre		1	0	ay: TM R 🗆 '	Time: 8 ∑ 5	□ 6□ 7□	
			(Quiz 8			
he ground at	t seconds.	For the fu	ction $h(t) = 40$ rst two problem	$t-5t^2$ describes ts, fill in the blank	the height (in r with the appro	neters) of a ball al priate word, given	bove that
a'(2) = 20 and	h(1) = 35	i.			04+1		
				·	-80×W=	62	
1) 20 is the	Fal	\	l l	he ball at 2 second			
2) 35 is the	Nois	WH	of t	he ball at 1 second	. dramas North, of 11	ne beall obuye th	ę
3) A rectang fences all para expression on	allel to one	side of the	ed by a tence	i ne ience is divided	i into 4 <u>equal p</u>	arts by 3 more divinite the perimeter a	
WWW	tung p		24	V= 21+21 A-1° V	1	200 (250) 1 500 12	2

$$P = \frac{500}{2} + 22$$

uiznum			
Name:	Isabella Agrusa	Perm Number:	3962537
TA	: Trevor Daniel Jeremy L	 Day: T∕⊠_R□ Tir	me: 8 5 6 7 7

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

$$P = \frac{2}{T} \left(\frac{1000}{L} \right) + SL$$

$$P = \frac{2000}{L} + SL$$

$$P = \frac{2000}{L} + 5L$$

uiznum Name.	8 Fleurette Juda	Perm Number:	5279 35t
	: Trevor Daniel Deremy Da	ay: T R C Tin	me: 8 5 6 7 7
	Ç	Quiz 8	

- 1) 20 is the Speed of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

$$P = \int L + \frac{2000}{U}$$

$$P = \left(\frac{2000}{L} + 5L \right)$$

uiznum	8					<u></u>				
Name:	Victor	ia Mi	cnabb	Perm	Number:	5171	380			Na.
TA	: Trevor 🗵	Daniel 🗌	Jeremy 🗌	Day: T	R□ T	ime: 8.20	5 🗆	6 □	7 🗆	

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35. $-\infty$ 1 Seconds, beau = 35 m.

1) 20 is the

Slope

of the ball at 2 seconds.

2) 35 is the

height

of the ball at 1 second.

$$P = 5L + \frac{2000}{L}$$

uiznum <u>8</u>					
Name: KO	it Brydson	Ferm Nu	imber: 5/	POSOS	
TA: Trev	or 🗹 Daniel 🗌 Jeremy	Day: TV R	☐ Time: 8 🗹	5 6 7	
		Quiz 8	K(H=4	0-10+ /	
In the following the ground at t $h'(2) = 20$ and $h''(2) = 20$	problems, the function h seconds. For the first two $h(1) = 35$.	$h(t) = 40t - 5t^2$ description problems, fill in the b	ibes the height (i	in meters) of a sall abo propriate work, given	ove
1) 20 is the	velocity	of the ball at 2 s	econds.	2	CE. 100
2) 35 is the	height	of the ball at 1 s	econd.	tine	
3) A rectangu fences all parall expression only	lar field is surrounded by el to one side of the field. v using L .	a fence. The fence is d The field must have ar	ivided into 4 equa 1 area of 1000 m ² .	al parts by 3 more divid Write the perimeter as	ing an
[/" [K] V	W= 1000 m² .	2/100g+	ext x	1+2+	-(
, , ,	W=1000	Z (1000).	+5-6		
2009 L	2	$P = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	2000		

Name: May COOKS	Perm Number: (039,273()
	\square Day: T \square R \square Time: 8- \square 5 \square 6 \square 7 \square

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

uiznum Name:	8 LUCIÃ	CAPCA	.MO	Perm	Numb	er:	6185995		
TA	: Trevor 🗖	Daniel 🗌	Jeremy 🗌	Day: T	R□	Tim	ıe: 8 💋 5 🗆 6 🗆	7 🗌	
				Ouiz 8					

1) 20 is the VELOCITY of the ball at 2 seconds.
2) 35 is the HEIGHT of the ball at 1 second.

$$P = \begin{bmatrix} 2000 & 51 \\ 1 & 51 \end{bmatrix}$$

uiznum8	
Name: Mustpha Saced	Perm Number: 47447/5
TA: Trevor Daniel Jeremy Da	y: T

In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that h'(2) = 20 and h(1) = 35.

- 1) 20 is the Slope of the ball at 2 seconds.
 2) 35 is the height of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

 $=\frac{5L^2+200c}{1}$

$$P = 5L + \frac{2000}{L}$$

uiznum <u>8</u>		***				
Name: Bryan Vinh	- ·	Perm Numb	er: 5/3	3777		,
TA: Trevor Daniel	Jeremy □ Da	zy: T Ø R □	Time: 8	5 6 6	7 🗌	
		Duiz 8				

- 1) 20 is the Sope of the ball at 2 seconds.
 2) 35 is the Leight of the ball at 1 second.
- 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L.

1.w=1000

000m2 L x 2 L 1000 1000 1000 1000 1000 1000 1000	uiznum8			_		
Quiz 8 In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that $h'(2) = 20$ and $h(1) = 35$. 1) 20 is the derivative of the ball at 2 seconds. 2) 35 is the height of the ball at 1 second. 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m ² . Write the perimeter as an expression only using L. 20 M = 24 M = 2	Name:	Justin Jose	*. **.	Perm Number:	5345780	
In the following problems, the function $h(t) = 40t - 5t^2$ describes the height (in meters) of a ball above the ground at t seconds. For the first two problems, fill in the blank with the appropriate word, given that $h'(2) = 20$ and $h(1) = 35$. 40 - $10(2)$ 40 - $20 = 20$ 1) 20 is the derivative of the ball at 2 seconds. 2) 35 is the height of the ball at 1 second. 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m^2 . Write the perimeter as an expression only using L. $1000000000000000000000000000000000000$	TA: Tr	evor 🛭 Daniel	☐ Jeremy ☐ D	ay: T 🂢 R 🗌 🛮 Ti	me: 8 🛛 5 🗌 6 🛭	
The ground as seconds. The form of the first two problems, fill in the blank with the appropriate word, given that $h'(2) = 20$ and $h(1) = 35$. 1) 20 is the derivative of the ball at 2 seconds. 2) 35 is the height of the ball at 1 second. 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m ² . Write the perimeter as an expression only using L . 200 200 200 1000 1			(Quiz 8		
1) 20 is the derivative of the ball at 2 seconds. 2) 35 is the height of the ball at 1 second. 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L. 200 200 200 200 200 200 200 2	me ground at	t seconds. For t	e function $h(t) = 40$ the first two problem	$t-5t^2$ describes the s, fill in the blank with	th the appropriate w	ord, given that
of the ball at 2 seconds. 2) 35 is the height of the ball at 1 second. 3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m². Write the perimeter as an expression only using L. 20 M² = L × W W = 21 C OCOM² = L × U 1000 1					*	
3) A rectangular field is surrounded by a fence. The fence is divided into 4 equal parts by 3 more dividing fences all parallel to one side of the field. The field must have an area of 1000 m ² . Write the perimeter as an expression only using L.	1) 20 is the	derivative	of the	he ball at 2 seconds.	40-20	'= 20
expression only using L. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	2) 35 is the	height	of tl	he ball at 1 second.		
$2U = 2U $ $W = 2U $ $W = 2U $ $00000^{2} = L \times 2U $ $10000 $ $10000 $ $10000 $ $10000 $ $10000 $ $10000 $	roncoo um punt.	ner to one side of	ounded by a fence. T f the field. The field	The fence is divided in must have an area of I	to 4 equal parts by 31000 m^2 . Write the p	more dividing perimeter as an
$2L = 2L $ $2L = 200$ $4L = 200$ $000m^{2} = L \times 2L $ $1000m^{2} = L \times 4L $, and 11.				
$200^{2} = L \times w$ $W = 24$ $000m^{2} = L \times 2L$ $100m^{2} = L \times 4L$ 1000 $1000m^{2} = L \times 2L$ 10000 $1000 = 1000$ $1000 = 1000$		Ī				
$200^{2} = L \times w$ $W = 24$ $000m^{2} = L \times 2L$ $100m^{2} = L \times 4L$ 1000 $1000m^{2} = L \times 2L$ 10000 $1000 = 1000$ $1000 = 1000$						
$2L \qquad 2L \qquad 3/1000$ $W = 24L \qquad 4L \qquad 4L \qquad 200$ $000m^{2} = L \times 2L \qquad 1000 \qquad 1000$ $\frac{1000m^{2}}{5} \qquad \frac{1}{5} \qquad 1000$		\mathcal{L}_{4}		E		
$2L \qquad 2L \qquad 3/1000$ $W = 24L \qquad 4L \qquad 4L \qquad 200$ $000m^{2} = L \times 2L \qquad 1000 \qquad 1000$ $\frac{1000m^{2}}{5} \qquad \frac{1}{5} \qquad 1000$					Į.	
$2L \qquad 2L \qquad 3/1000$ $W = 24L \qquad 4L \qquad 4L \qquad 200$ $000m^{2} = L \times 2L \qquad 1000 \qquad 1000$ $\frac{1000m^{2}}{5} \qquad \frac{1}{5} \qquad 1000$		ŧ				700
$70m^{2} = L \times w$ $W = 24L$ $000m^{2} = L \times 2L$ $1000m^{2} = L \times 4L$ $1000m^{2} = L \times 2L$ $1000m^{2} = L \times 2L$ $1000m^{2} = L \times 4L$			F /			5/1000
$W = 24C$ $000m^{2} = L \times 2L$ $1000m^{2} = L \times 4C$ $\frac{200}{5}$ $\frac{1000m^{2}}{5}$ $\frac{1000m^{2}}{5}$ $\frac{1000}{5}$ $\frac{1000m^{2}}{5}$	n 0		20	2	L	
$W = 24C$ $000 \text{ m}^{2} = L \times 2L$ $1000 \text{ m}^{2} = L \times 4C$	Pom' = L	XW				
000m ² L x 2L 1000m ² 5L 1000 1000 4(200) 500 + 8				4 6		
000m ² L x 2L 1000m ² 5L 1000 1000 4(200) 500 + 8		Want.				
000 m ² L x 2 L 1000 m ² 5 L 1000 (200)		40			200	
1000m 5L 1000m 5L 1000m 5L 1000 1000 1000 1000 1000 1000			180 = L	× 41	Y. Same	100%
1000m 5L 4 (200) 500+8	000m2= L	×21-	1 1097) 2		Service of the Service September 1	
	,				1000	
			1000m= 5	_		. h
			The second second	er en		4 (200)
			4.	·		
			The state of the s			900160
						1/-
, , , , , , , , , , , , , , , , , , , ,						
$200_{\text{m}} = \begin{pmatrix} P = 2600 \text{ m} \end{pmatrix}$		~77F) — Land	D	N. 1157	
$\frac{200n}{1000} = \frac{2600}{1000} = \frac{1}{1000}$		200	m	260	C m	
					ν,	