16 de octubre 22

Computation of Maximum likelihood estimate

Maximiza $p(d|\theta)$: $(\theta_1,\ldots,\theta_M)=arg\; max_{\theta_1,\ldots,\theta_M}\;\; p(d|\theta)=arg\; max_{\theta_1,\ldots,\theta_M}\;\; \prod_{i=1}^M \theta_i^{c(w_i,d)}$ Max. log-likelihood

$$p(w_i| heta) = rac{(w_i,d)}{\sum_{i=1}^M (w_i,d)} = rac{c(w_i,d)}{|d|}$$

What does the Topic look like?

d = text mining paper can we get rid of these common words?

Generate d Using two word Distributions

d = text mining papel

where topic choise = $p(heta_d) + p(heta_B) = 1$ dado que $p(heta_d) = 0.5$ y $p(heta_B) = 0.5$

$$p(the) = p(\theta_d) \;\; p(the|\theta_d) + p(\theta_B) \;\; p(the|\theta_B) = 0.5*0.000001 + 0.5*0.03$$
 $p(tex) = p(\theta_d) \;\; p(tex|\theta_d) + p(\theta_B) \;\; p(the|\theta_B) = 0.5*0.04 + 0.5*0.04$

Formally defines the following generative model:

$$w
ightarrow p(w) = p(heta_d) \ \ p(w| heta_d) + p(heta_B) \ \ p(w| heta_B)$$

what if p = 1

Likelihood function:

$$p(d|\Lambda) = \prod_{i=1}^{|d|} p(x_i|\Lambda) = \prod_{i=1}^{|d|} [p(heta_d) \; p(x_i| heta_d) + p(heta_B) \; p(x_i| heta_B)]$$

Ecuacion lineal:

$$0.5 * p(text|\theta_d) + 0.5 * 0.1 = 0.5 * p(the|\theta_d) + 0.5 * 0.9$$

quedando p(text $|\theta_d$) = 0.9 >> the = p(the $|\theta_d$) = 0.1

from $heta_d$ (Z=0) $p(heta_d)$ $p(text| heta_d)$

para calcular si la palabra esta en θ_d o en θ_B usamos una variable Z

 $|\theta_d|\theta_B|$

|--|--|

|z=0|z=1|

 $p(text|\theta_d)$

 $p(text|\theta_B)$

$$p(z=0|w=text) = \; rac{p(heta_d)\; p(text| heta_d)}{p(heta_d)\; p(text| heta_d) + p(heta_B) p(text| heta_B)}$$

The expectation-Maximization (EM) Algoithm

$$p^n = rac{p(heta_d)p^n(w| heta_d)}{p(heta_d)p^{(n)}(w| heta_d) + p(heta_B)p(w| heta_B)} ~
ightarrow E - step$$

how likely w is from θ_d

$$p^{(n+1)}(w| heta_d) = rac{c(w,d)p^{(n)}(z=0|w)}{\sum_{w'\in V}c(w',d)p^{(n)}(z=0|w')} \;\; o M-step$$

Assume $p(\theta_d) = p(\theta_B) = 0.5$ and $p(w|\theta_B)$ is kwnown

	conteos de palabrea de en articulo 2	probabilidad de palabras de fondo	Probabilidad de palabras del tópico					
word	#	$p(w \; heta_B)$	Iteracion 1		Iteracion 2		Iteracion 3	
			$P(w \theta)$	p(z=0 w)	$p(w \theta)$	p(z=0 w)	$p(w \theta)$	p(z=0 w)
The	4	0.5	0.25	0.33	0.20	0.29	0.18	0.26
Paper	2	0.3	0.25	0.45	0.14	0.32	0.10	0.25
Text	4	0.1	0.25	0.71	0.44	0.81	0.50	0.93
Mining	2	0.1	0.25	0.71	0.22	0.69	0.22	0.69
Long- likelihood				-16.96		-16.13		-16.02

Funcion de verosimilitud:

 $log(p(articulo_2|modelo)) = \sum_{i=1}^{|V|}(conteodew_i) + log(p(\theta_B)*p(W_2|\theta_B) + p(\theta_d)*p(w_i|\theta_d) \rightarrow algoritmoEM(troperator)$ Ordenar probabilidades del fondo y del topico e imprimir las primeras 10

```
f = open('articule_lemmatize')
text = f.read()
f.close()

words = nltk.word_tokenize(text)

count = []
```

for voc in vocabulary count