Validierung des thermischen Gebäudemodells in der CARNOT toolbox

Fachhochschule Nordwestschweiz FHNW Hochschule für Architektur, Bau und Geomatik HABG Institut Energie am Bau IEBau St. Jakobs-Strasse 84, CH-4132 Muttenz

Carsten Wemhöner

 $\label{eq:def:Dipl.-Ing.TH} \mbox{Dipl.-Ing. TH, wissenschaftlicher Mitarbeiter, Institut Energie am Bau-FHNW}$

Ralf Dott

Dipl.-Ing. TH, wissenschaftlicher Mitarbeiter, Institut Energie am Bau - FHNW

Thomas Afjei

Prof. Dr. sc. techn. ETH, Leiter Gruppe Gebäudetechnik, Institut Energie am Bau - FHNW

Fon +41 61 467 45 74 Fax +41 61 467 45 43 E-Mail ralf.dott@fhnw.ch Internet http://www.fhnw.ch/habg/iebau

Muttenz, Dezember 2007

0	Zusammenfassung	4
0.1	Summary	4
1	Einleitung	5
2	Test des Gebäudemodells nach dem BESTEST und VDI 6020	6
2.1	Raummodell der CARNOT-Toolbox	6
2.2 2.2.1	Vergleich nach dem BESTEST	
2.2.2 2.2.3	Ergebnisse der Qualifizierungstests Ergebnisse der Diagnosetests	9
2.3 2.3.1	Vergleich mit Testbeispielen nach VDI 6020	
2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8	Beispiel 1: Reaktion Raumlufttemperatur auf konvektive innere Belastung (Typraum S)	18 19 20 21 22
2.4	Zusammenfassung der Tests nach BESTEST & VDI 6020	23
3	Schlussfolgerungen und Ausblick	24
4	Nomenklatur	25
5	Referenzen	26
6	Anhang	27
6.1	Anhang A: Randbedingungen BESTEST	28
6.2	Anhang B: Randbedingungen VDI 6020	32
6.3	Anhang C: Heiz- und Kühlenergie, Heiz- und Kühlleistungen BESTEST	. 34

0 Zusammenfassung

Bei den Standard-Testverfahren wurde die energetische Validierung mit den Tests nach dem BESTEST mit einer Auswertung der Jahresheiz- und Kühlenergie sowie maximalen Heiz- und Kühllasten durchgeführt, und die Raumtemperaturdynamik nach VDI 6020 getestet. Beide Testverfahren bedienen sich eines Benchmarks mit anderen Gebäudesimulationsprogrammen für einfache Testräume.

Das Gebäudemodell der CARNOT - Modellbibliothek konnte mit dem BESTEST erfolgreich für die energetische Wirkung der abgebildeten Komponenten validiert werden. Die Modellierung der Wärmeübertragungs- und Wärmespeichermechanismen von Wand, Decke, Boden, innere Wärmelasten und Ventilation liegen im Rahmen der vom BESTEST zum Vergleich herangezogenen Referenzprogramme. Bei Testfällen mit einem Fenster zeigte sich ein etwas zu geringer Jahres - Kühlenergiebedarf im Raum. Dies lässt auf eine durch das Fenstermodell zu gering berechnete solare Einstrahlung im Raum schliessen, da die Wärmeverluste durch das Fenster und die weiteren Einflussgrössen im Raum in anderen Tests bestätigt wurden. Das implementierte Fenstermodell bildet die wesentlichen Einflüsse richtig ab, weicht jedoch im Betrag der solaren Wärmegewinne ab. Eine Anpassung der im Fenstermodell abgebildeten Strahlungsvorgänge wird empfohlen.

(Anm. von Dott am 14.02.2012: Das Fenstermodell wurde mittlerweile ersetzt und mit den Ergebnissen des IEA SHC Task 34 validiert.)

0.1 Summary

The standard test methods in this report compare for the BESTEST-method annual heating and cooling energies as well as maximum hourly heating and cooling loads and for the VDI 6020 method the dynamic room temperature behaviour. Both methods use a benchmarking method conducted as comparison of single test rooms with common other building simulation tools.

The building model of the CARNOT toolbox could be validated successfully with the BESTEST method for the energetic evaluation of the included components. The modelling of the heat transfer and heat storage mechanisms for walls, floor, roof, inner heat loads and ventilation are in the range of the other simulation tools. Test cases including a window show a slightly too low annual cooling demand in the room. This leads to the conclusion that there are too low solar radiation heat gains in the room since the heat losses have been verified in other test cases. Hence, the window model should be adapted.

(Note of Dott, 14.02.2012: The window model has been replaced meanwhile and validated with the results of the IEA SHC Task 34.)

1 Einleitung

Zum Anderen wird das CARNOT-Gebäudemodell den Standardtestverfahren für Gebäudemodelle des BESTEST [2] und den Tests nach VDI 6020 [3] unterzogen, um eine Validierung des CARNOT-Raummodells für die unterschiedlichen Testfälle durchzuführen. Beim BESTEST und der VDI 6020 handelt es sich um sogenannte Kreuzvalidierungsverfahren, bei denen die Ergebnisse des zu testenden Simulationsprogramms mit Ergebnissen von anderen marktgängigen Gebäudesimulationsprogrammen verglichen werden. Damit wird sichergestellt, dass die Ergebnisse der im CARNOT-Raummodell integrierten Modellierungsansätze in der Bandbreite der Ergebnisse anderer Gebäudesimulationsprogramme liegen.

2 Test des Gebäudemodells nach dem BESTEST und VDI 6020

2.1 Raummodell der CARNOT-Toolbox

In der CARNOT-Toolbox wird für die Modellierung der Wand ein sog. Beukenmodell [4] eingesetzt, das die Wärmeleitung zwischen einzelnen Materialschichten des Wandaufbaus als RC-(Widerstands-Kapazitäten-) Netzwerk analog zur Elektrotechnik beschreibt.

Abbildung 1 zeigt das Beukenmodell für eine zweischichtige Wand. Die Wandtemperaturknoten liegen dabei zwischen den Schichten und auf der Oberfläche. Zur Modellierung des dynamischen Temperaturverhaltens der Wand ist die Verteilung der Material-Kapazitäten wichtig. Eine gute Näherung wird erreicht, wenn die halbe Kapazität der Schicht an die Oberflächentemperaturknoten gekoppelt ist, und die Kapazität des Temperaturknoten in der Wand jeweils an die Hälfte der Kapazitäten der angrenzenden Schichten gekoppelt ist. Die Wärmeübergangswiderstände der jeweiligen Schichten werden im Inneren über den Leitungswiderstand erfasst, der dem Quotienten aus Schichtdicke s und Wärmeleitfähigkeit λ des Materials entspricht. Die Wärmeleistungssymbole, die in Abbildung 1 an den Schicht- und Oberflächenknoten gekoppelt sind, treten nur bei aktivierten Bauteilen, also bei einer aktiven Wandheizung bzw. -kühlung oder einer Betonkernaktivierung, auf, bei der die jeweilige Wandschicht zur Beheizung oder Kühlung von einem Wärmeträgerfluid durchströmt wird.

Die Aussenoberfläche bzw. die Innenoberfläche der Wand ist jeweils an zwei Temperaturknoten gekoppelt, einen Strahlungsknoten und einen Luftknoten.

Abbildung 1: Schichtenmodell einer Wand, das in der CARNOT-Toolbox integriert ist

Auf der Aussenseite entspricht die Temperatur des Luftknotens der Aussenlufttemperatur. Der entsprechende Wärmeübergangswiderstand ist der konvektive Wärmeübergangskoeffizient $\alpha_{\text{kon,a}}$. In der CARNOT-Toolbox wird er abhängig von der Windgeschwindigkeit der Fassadenanströmung modelliert. Der äussere Strahlungsknoten modelliert den Strahlungsaustausch der Aussenwand mit der Umge-

bung. Dafür wird die Näherung getroffen, dass die Einstrahlzahl einer senkrechten Aussenwand mit den Erdboden 0.5 und mit dem Himmel ebenfalls 0.5 beträgt, das heisst die Hälfte des Strahlungs-austausches erfolgt mit dem Himmel und die Hälfte mit dem Erdreich. Die charakteristischen Temperaturen sind die Himmelstemperatur und die Temperatur der Erdreichoberflächen, die als Näherung gleich der Aussenlufttemperatur gesetzt wird. Die Himmelstemperatur hängt vom Bewölkungsgrad ab und ist ebenfalls im Wetterdatensatz für die Simulation enthalten.

Der Wärmeübergangskoeffizient für den Strahlungsaustausch $\alpha_{\text{str,a}}$ wird dabei über einen Koeffizientenvergleich aus dem Stefan-Boltzmann-Gesetz bestimmt, in das die Stefan-Boltzmann Konstante $\sigma = 5.67 \cdot 10^{-8} \, \text{W/(m}^2 \cdot \text{K}^4)$ und der Emissionsgrad ϵ der Wandaussenoberfläche eingehen. Der Emissionsgrad der Aussenwand ist eine Materialeigenschaft. Solare Einstrahlung wird auf der Aussenwandoberfläche reflektiert (Reflexionsgrad ρ_{w}) oder absorbiert (Absorption α_{w}).

Auf der Innenseite wird der Wärmeübergang zwischen Wand und Raumknoten ebenfalls in die Anteile Konvektion und Strahlung unterteilt. Dabei wird ein sogenanntes 2*-Modell angewendet, dass von Feist [5] als bester Kompromiss aus Rechenzeit und Genauigkeit dargestellt wird. Dabei wird der Wärmeaustausch im Raum in zwei Temperaturknoten aufgeteilt, einen konvektiven Knoten und einen Strahlungsknoten.

Der konvektive Knoten beschreibt die Lufttemperatur, die sich aus der Bilanz des konvektiven Wärmeaustauschs mit den Wänden, dem Luftwechsel und konvektiven internen Lasten ergibt. Die Kopplung dieses konvektiven Luftknotens mit der Wand erfolgt über den konvektiven Wärmeübergangskoeffizient $\alpha_{\text{kon,i.}}$, der abhängig von der Flächenanordnung (vertikal, horizontal) konstant modelliert wird.

Der Strahlungswärmeaustausch findet in der Realität zwischen sämtlichen Flächen im Raum über die jeweiligen Einstrahlzahlen statt. Da diese stark von der Raumgeometrie abhängig sind und die Berechnung mit wachsender Anzahl von Teilflächen immer aufwändiger wird, zeigt Feist, dass eine wesentliche Vereinfachung ohne zu grosse Genauigkeitsverluste mit dem Ersatzmodell eines Strahlungsknotens erreicht werden kann, in dem sämtliche Flächen mit einem fiktiven zentralen Strahlungsknoten im Austausch stehen, in dem die Strahlungswärmeströme der Wände und internen strahlenden Lasten bilanziert werden, woraus eine fiktive Strahlungstemperatur resultiert.

Diese Strahlungstemperatur und Lufttemperatur werden gewichtet (als Näherung oft mit jeweils 50%) zu einer sogenannte Empfindungs- oder operativen Temperatur, die Komfortuntersuchungen zugrunde gelegt wird. Über die Empfindungstemperatur können die wärmephysiologischen Eigenschaften von Heizsystemen, etwa der Strahlungsanteil von Radiatoren und Fussbodenheizungen, erfasst und bewertet werden.

Eine weitere Vereinfachung zu einem Einsternmodell (1*-Modell), bei dem der Strahlungs- und Luftknoten zu einem Knoten zusammengefasst werden und die Kopplung zu den Wänden über eine
gesamthaften Wärmeübergangskoeffizienten beschrieben werden, stellt nach Feist jedoch eine zu
grobe Näherung dar. Dies liegt an der Trägheit des Strahlungswärmeaustausches, der hauptsächlich
über die Oberflächentemperaturen der Wände bestimmt wird und mit der Raumlufttemperatur nur
schwach gekoppelt ist. Wird dieser Wärmeaustausch mit dem konvektiven Wärmeübergang vermischt
behandelt, der wesentlich durch den Luftwechsel bestimmt wird und durch die geringe thermische
Kapazität der Luft eine wesentlich kleinere Trägheit aufweist, entsteht daraus eine Temperatur, die
weder der Raumlufttemperatur (wesentlich konvektiv bestimmt) noch einer gewichteten operativen
Temperatur (Empfindungstemperatur) entspricht und auch nicht mit der normalerweise von Sensoren
im Raum gemessenen Temperatur korrespondiert.

Auf der anderen Seite bringt eine weitere Detaillierung des 2*-Modells über eine physikalische Berechnung des Strahlungswärmeaustausches über Einstrahlzahlen aller Wandflächen untereinander dagegen nur eine erstaunlich geringe Verbesserung, die Feist darauf zurückführt, dass der Strahlungsaustausch zwischen den Oberflächen eine sehr starke Kopplung bewirkt. Es liegen fast thermische Kurzschlüsse vor, so dass dadurch die exakte Grösse der thermischen Leitwerte an Einfluss verliert, solange nur die Gesamtankopplung der Fläche an die Strahlung im Raum passend wiedergegeben wird, und dadurch liefert die Gewichtung mit Fläche mal Emissionskoeffizient für den Strahlungswärmeaustausch schon gute Ergebnisse.

2.2 Vergleich nach dem BESTEST

2.2.1 Einleitung

Der BESTEST [2] ist ein Test-, Analyse- und Diagnosewerkzeug für Gebäudesimulationsprogramme, das im Rahmen des Gebäudeprogramms "Energy Conservation in Building and Community Systems (ECBCS)" der Internationalen Energieagentur (IEA) entwickelt wurde.

Methodisch wird ein Programm - Benchmark durchgeführt, bei dem für eine einfache Raumgeometrie die unterschiedlichen physikalischen Effekte durch Testfälle geprüft werden. Die einzelnen Tests sind dabei so strukturiert, dass anhand von aufeinanderfolgenden Tests systematisch die Modellierung der einzelnen physikalischen Eigenschaften getestet werden kann und so anhand der Tests sukzessive Schwachstellen in der Modellierung aufgedeckt und verbessert werden können.

Abbildung 2 zeigt den Raum, der für die Tests zugrunde gelegt wird. Für spezielle Tests wird diese Geometrie zum Beispiel mit Verschattungselementen oder einem Wintergarten erweitert.

Abbildung 2: Testraum für den BESTEST

Der BESTEST gliedert sich in zwei Arten von Tests. Die Grundlage zur Qualifizierung des Simulationsprogramms bilden die Tests 600 ... 650 für ein Gebäude geringer thermischer Trägheit (Leichtbau) und die Test 900 ... 990 für ein Gebäude grosser thermischer Trägheit (Massivbau). Treten bei diesen Test Abweichungen auf, so können für die Diagnose der Abweichungen die Testfälle 195 ... 320 angewandt werden. Zentrale Randbedingung für die Test ist, dass die Innentemperatur durch Heizen und Kühlen innerhalb eines vorgegeben Temperaturbandes gehalten wird. Die Auswertung der Testfälle erfolgt anhand des Jahresheizwärmebedarfs und –kühlbedarfs. Der Test gilt als bestanden, wenn die jeweilige Energie im Bereich der berechneten Energiemengen von Referenzprogrammen liegt. Darüber hinaus können die maximale stündliche Heiz- und Kühlleistung verglichen werden. Die allgemeinen Parameter des Testraums und die spezifischen Parameter der jeweiligen Testfälle sind in Anhang A zusammengefasst dargestellt.

2.2.2 Ergebnisse der Qualifizierungstests

Das Gebäudemodell aus der CARNOT-Toolbox wurde für ein Gebäude in Leichtbauweise mit den Tests der Reihe 600 und für ein Gebäude in Massivbauweise mit den Tests der Reihe 900 überprüft.

In den Varianten 600 und 900 wird das in Abbildung 2 dargestellte Gebäude unter realitätsnahen Randbedingungen mit zwei südorientierten Fenstern auf eine Raum - Solltemperatur von 20°C geheizt und auf 27°C gekühlt. Dazwischen kann die Raumtemperatur frei schwingen.

In den Varianten 620 und 920 werden basierend auf den Fällen 600 und 900 je ein Fenster von der Südfassade auf die Ost- und die Westfassade verschoben. Damit wird die solare Einstrahlung auf den Fassaden Ost und West getestet.

Die Varianten 640 und 940 testen wiederum basierend auf den Fällen 600 und 900 eine nächtliche Raumtemperatur - Absenkung von 20°C auf 10°C von 23 Uhr bis 07 Uhr. Der Kühlbetrieb bleibt unverändert bei einer Solltemperatur von 27°C.

In den Varianten 650 und 950 wird ein reiner Kühlbetrieb, ohne Heizbetrieb, betrachtet. Dabei wird nachts zwischen 18 Uhr und 07 Uhr ein konstanter Luftwechsel eingesetzt und tagsüber von 07 Uhr bis 18 Uhr die aktive Kühlung auf 27°C.

Abbildung 3: Ergebnisse Jahres - Heizenergiebedarf der BESTEST Basistests

Die Ergebnisse für den Jahres – Heizenergiebedarf, dargestellt in Abbildung 3, zeigen für alle untersuchten Basistests eine gute Übereinstimmung mit den Ergebnissen der Referenzprogramme. Dabei liegen die Ergebnisse für den Leichtbau (Reihe 600) tendenziell zwischen dem Median und dem Minimum der Referenzprogramme und die Ergebnisse für den Massivbau (Reihe 900) tendenziell im Bereich des Maximum der Referenzprogramme.

Abbildung 4: Ergebnisse Jahres – Kühlenergiebedarf der BESTEST Basistests

Die Ergebnisse für den Jahres - Kühlenergiebedarf (siehe Abbildung 4) weisen durchgehend, ausgenommen den Fall 950, einen eher zu niedrigen Kühlenergiebedarf aus. Dabei liegen die Ergebnisse für den Massivbau (Reihe 900) im Bereich des Minimums der Referenzprogramme. Die Ergebnisse für den Leichtbau zeigen teilweise einen deutlich geringeren Kühlenergiebedarf als die Referenzprogramme auf. Der Testfall 950 weist abweichend von allen anderen Testfällen einen erhöhten Kühlenergiebedarf aus. Die Abweichungen der Tests für den Kühlenergiebedarf erfordern eine Analyse der Ursache mit den im BESTEST verfügbaren Diagnosetests.

Abbildung 5: Ergebnisse maximale Heizleistung der BESTEST Basistests

Die Ergebnisse für die maximale Heizleistung in stündlichen Mittelwerten (siehe Abbildung 5) weisen für alle Testfälle eine gute Übereinstimmung mit den Ergebnissen der Referenzprogramme auf.

Abbildung 6: Ergebnisse maximale Kühlleistung der BESTEST Basistests

Die Ergebnisse für die maximale Kühlleistung in stündlichen Mittelwerten (siehe Abbildung 6) liegen korrelierend mit den Ergebnissen des Jahres – Kühlenergiebedarfs (siehe Abbildung 4) durchgehend niedriger als die Ergebnisse der Referenzprogramme, ausgenommen Testfall 950.

Die weiteren verfügbaren Diagnosetests wurden nicht durchgeführt, da hierbei die in der CARNOT - Toolbox nicht modellierten Elemente Verschattung der Fenster und Kopplung mit dem Erdreich getestet werden.

2.2.3 Ergebnisse der Diagnosetests

Die Diagnosetests werden mit dem Gebäude geringer thermischer Trägheit durchgeführt. Die Testfälle sind dabei so aufgebaut, dass einzelne Wärmeübertragungsmechanismen separiert untersucht werden können. Abweichend von den Basistests wird das Testgebäude auf die Solltemperatur von 20°C geheizt und gekühlt. Das Gebäudemodell aus der CARNOT-Toolbox wurde für die Testfälle 195, 200, 210, 215, 220, 230, 240, 250, 270 und 320 untersucht.

Der BESTEST 195 dient zur Überprüfung der Wärmeleitung durch die Wände. Daher wird der Testraum aus Abbildung 2 ohne Fenster betrachtet, das heisst die Fensterflächen werden durch die opaken Wandflächen ersetzt. Der Luftwechsel und die internen Wärmegewinne werden ebenfalls auf Null gesetzt. Die Absorptions- und Emissionseigenschaften der Wand sind mit 0.1 stark herabgesetzt. Der Test 200 dient der Überprüfung der Wärmeübergänge an der Aussenwand. Für die Fensterflächen

werden im Test 200 opake Fenster eingesetzt, das heisst mit der höheren Wärmeleitfähigkeit der Fenster gegenüber der Aussenwand, einer geringeren Wärmekapazität und ohne die Strahlungseigenschaften eines Fensters. Das opake Fenster wird in den Testfällen 200, 210, 215, 220, 230, 240 und 250 angewendet.

Die Tests 210, 215 und 220 überprüfen die Absorptions- und Emissionskoeffizienten der Wand. Im Test 210 wird ein externer Emissionskoeffizient von 0.9 anstelle 0.1 angesetzt, im Test 215 ein interner Emissionskoeffizient von 0.9 anstelle 0.1. Der Test 220 kombiniert den Wert von 0.9 für den externen und internen Emissionskoeffizienten. Der Test 220 bildet die Basis für die weiteren Tests mit den Nummern 230 ... 270.

Im Test 230 wird die Berechnung des Luftwechsels mit der Aussenluft getestet und ergänzend zum Testfall 220 ein Luftwechsel von 1 angesetzt.

Im Test 240 wird die Berechnung der internen Wärmegewinne getestet und ergänzend zum Testfall 220 ein interner Wärmegewinn von 200 Watt angesetzt, der jeweils zur Hälfte konvektiv und strahlend eingebracht wird.

Testfall 250 überprüft die externe Absorption der solaren Strahlung und setzt einen Absorptionsgrad von 0.9 für die äusseren Flächen an.

Im Test 270 werden basierend auf Testfall 220 die südorientierten Fensterflächen mit transparenten Fenstern ersetzt. Die solare Einstrahlung durch das Fenstermodell wird hiermit überprüft.

Testfall 320 baut auf dem Testfall 270 auf und ergänzt mit 20°C und 27°C wieder unterschiedliche Solltemperaturen für den Heiz- und Kühlbetrieb und ein Temperaturband, in dem die Raumtemperatur frei schwingen kann.

Abbildung 7: Ergebnisse Jahres - Heizenergiebedarf der BESTEST Diagnosetests

Die Ergebnisse des Jahres - Heizenergiebedarfs in Abbildung 7 weisen für alle Diagnosetests eine gute Übereinstimmung mit den Ergebnissen der Referenzprogramme auf. Dies entspricht den Ergebnissen der Basistests für den Jahres - Heizenergiebedarf aus Abbildung 3.

Abbildung 8: Ergebnisse Jahres – Kühlenergiebedarf der BESTEST Diagnosetests

Die Ergebnisse für den Jahres - Kühlenergiebedarf in Abbildung 8 weisen für die Testfälle 195 bis 250 eine gute Übereinstimmung mit den Ergebnissen der Referenzprogramme auf. In allen diesen Testfällen kommen rein opake Aussenwände zum Einsatz. Demnach werden die Wärmeübertragungsmechanismen opaker Wände korrekt abgebildet. Die Ergebnisse für die Testfälle 270 und 320 zeigen einen geringeren Kühlenergiebedarf als die Referenzprogramme, was mit den Ergebnissen der Basistests aus Abbildung 4 korreliert. Die Ursache für die Abweichung weist der BESTEST somit in der solaren Einstrahlung durch das Fenster aus, welches mit dem Testfall 270 überprüft und auch im Testfall 320 verwendet wird. Der etwas zu geringe Kühlenergiebedarf wird vermutlich durch eine etwas zu gering berechnete solare Einstrahlung verursacht.

Abbildung 9: Ergebnisse maximale Heizleistung der BESTEST Diagnosetests

Die Ergebnisse für die maximale Heizleistung in stündlichen Mittelwerten der Diagnosetest in Abbildung 9 stimmen gut mit den Ergebnissen der Referenzprogramme überein. Dies korreliert mit den Ergebnissen für den Jahres - Heizenergiebedarf aus Abbildung 7 sowie mit den Ergebnissen der Basistests aus Abbildung 3 und Abbildung 5.

Abbildung 10: Ergebnisse maximale Kühlleistung der BESTEST Diagnosetests

Die Ergebnisse für die maximale Kühlleistung in stündlichen Mittelwerten in Abbildung 10 lassen mit der Übereinstimmung der Testfälle 195 bis 250 und der Abweichung der Testfälle 270 und 320 die gleiche Schlussfolgerung zu wie die Ergebnisse des Jahres - Kühlenergiebedarfs in Abbildung 8.

Die weiteren verfügbaren Diagnosetests wurden nicht durchgeführt, da hierbei die nicht modellierte Verschattung der Fenster getestet wird.

2.3 Vergleich mit Testbeispielen nach VDI 6020

2.3.1 Einleitung

Die VDI 6020 [3] ist eine Richtlinie, die Anforderungen an die der Modellierung zugrundeliegenden Rechenverfahren für Gebäudesimulationsprogramme definiert. In der Richtlinie werden gängige Modellierungsansätze für die unterschiedlichen physikalischen Effekte dargestellt und hinsichtlich ihrer Eignung diskutiert. Die dargestellten Verfahren werden vorbehaltlich einer korrekten Implementierung für die Gebäudesimulation empfohlen. Des Weiteren werden ähnlich wie beim BESTEST einzelne Testbeispiele zur Qualifizierung von eigenen Gebäudesimulationsprogrammen gegeben, die sich auf einen Typraum beziehen, der in VDI 2078 für die Kühllastberechnung benutzt wird. Abbildung 11 zeigt den Typraum, der einmal als Leichtbau- und einmal als Massivbauvariante gerechnet wird.

Abbildung 11: Testraum für die VDI 6020 Testfälle

Die ersten 7 Testbeispiele der VDI 6020 dienen zur Prüfung der Raumreaktionen auf innere Belastungen und Sollwertänderungen und eignen sich gut zur Überprüfung der Dynamik der Innentemperatur und damit der Dynamik des Wandmodells, da hier nicht Jahresenergie, sondern Temperaturverläufe an bestimmten Tagen der Simulation verglichen werden. Dabei wird zwischen konvektiven und Strahlungslasten, die im Raum auftreten, unterschieden. Da die energetischen Auswirkungen der Modellierung bereits ausführlich mit dem BESTEST untersucht wurden, beschränkt sich die Anwendung der VDI 6020 auf die Untersuchung der Raumtemperaturdynamik mit den Beispielen 1 - 7. Die Eigenschaften der in den Beispielen der Reihe 1 bis 7 verwendeten Typräume S "schwer" und L "leicht" werden in Anhang B, Tabelle 6.1, beschrieben. Für alle Beispiele der Reihe 1 bis 7 wird das Fenster in Abbildung 11 als opakes Bauteil ohne Strahlungstransmission abgebildet. Die variierten Eingabedaten für die Beispiele 1 bis 7 sind in Anhang B, Tabelle 6.6 & Tabelle 6.7, dargestellt. Die Simulationszeit für die Beispiele beträgt 60 Tage, da bei den gegebenen Räumen und Randbedingungen in dieser Zeit ein stationärer Zustand erreicht wird. Die Darstellung der Ergebnisse erfolgt in der VDI 6020 anhand der Innentemperaturverläufe für die Tage 1, 10 und 60. Für das Beispiel 1 werden darüber hinaus noch der theoretische Einschwingvorgang nach dem Beuken - Modell und die Mittelwerte des Einschwingvorgangs dargestellt.

Als Vergleichsprogramme wurden für die VDI 6020 die Programme DOE-2 Version 2.1E, DS-THERM Version 3.26, GEBSIMU Version 4.32, TAS Version 8.0 und TRNSYS Version 14.2, Update 12/98 verwendet, allerdings ist keine Zuordnung der jeweiligen Verläufe zu den Programmen gegeben.

In den Grafiken sind die Ergebnisse der Referenzprogramme den Ergebnissen des Gebäudemodells aus der CARNOT - Bibliothek hinterlegt. Die Ergebnisse der Abbildung in CARNOT sind mit einer gestrichelten blauen Linie dargestellt.

2.3.2 Beispiel 1: Reaktion Raumlufttemperatur auf konvektive innere Belastung (Typraum S)

In Beispiel 1 nach VDI 6020 wird die Reaktion der Raumlufttemperatur auf eine konvektive innere Belastung für ein schweres Gebäude getestet. Die Temperaturverläufe für Beispiel 1 nach VDI 6020 stimmen für den Tag 1 (Abbildung 12 links) und den Tag 60 (Abbildung 13) mit den Verläufen der Referenzprogramme überein. Der Temperaturverlauf am Tag 10 (Abbildung 12 rechts) liegt um ca. 1 K niedriger als die der Referenzprogramme, bildet jedoch die Dynamik des Temperaturverlaufs richtig ab. Die Modellierung der Wärmeübergänge im Raum und die Wärmespeicherung in den oberen Schichten der Wand, welche wesentlichen Einfluss auf die Kurzzeitdynamik haben, sowie der Wärmeleitwiderstand der Aussenwand, welcher die Temperatur im stationären Endzustand beeinflusst, können voll bestätigt werden. Die Abweichung im Temperaturniveau am Tag 10, welche sich auch im Temperaturverlauf über die 60 Tage in Abbildung 14 zeigt, lässt eine geringfügig zu schnelle Einspeicherung der Wärme in den Wänden vermuten.

Abbildung 12: Beispiel 1 nach VDI 6020 für den Massivbau mit konvektiver Wärmelast (links: Tag 1; rechts: Tag10)

Abbildung 13: Beispiel 1 nach VDI 6020 für den Massivbau mit konvektiver Wärmelast (Tag 60)

Abbildung 14: Einschwingvorgang für Beispiel 1 nach VDI 6020 für den Massivbau mit konvektiver Wärmelast (links: 1h-Werte; rechts: 24h-Mittelwerte; helle blaue Linie zeigt Ergebnis der Berechnung mit CARNOT)

2.3.3 Beispiel 2: Reaktion Raumlufttemperatur auf strahlende innere Belastung (Typraum S)

In Beispiel 2 nach VDI 6020 wird die Reaktion der Raumlufttemperatur auf eine strahlende innere Belastung für ein schweres Gebäude getestet. Die Temperaturverläufe für Beispiel 2 nach VDI 6020 stimmen für den Tag 1 (Abbildung 15 links) und den Tag 60 (Abbildung 16) mit den Verläufen der Referenzprogramme überein. Der Temperaturverlauf am Tag 10 (Abbildung 15 rechts) liegt um ca. 1,5 K niedriger als die der Referenzprogramme, bildet jedoch die Dynamik des Temperaturverlaufs richtig ab. Die Ergebnisse für Beispiel 2 bestätigen die Ergebnisse und Schlussfolgerungen für Beispiel 1

Abbildung 15: Beispiel 2 nach VDI 6020 für den Massivbau mit strahlender Wärmelast (links: Tag 1; rechts: Tag10)

Abbildung 16: Beispiel 2 nach VDI 6020 für den Massivbau mit strahlender Wärmelast (Tag 60)

2.3.4 Beispiel 3: Reaktion Raumlufttemperatur auf konvektive innere Belastung (Typraum L)

In Beispiel 3 nach VDI 6020 wird die Reaktion der Raumlufttemperatur auf eine konvektive innere Belastung für ein leichtes Gebäude getestet. Die Temperaturverläufe für Beispiel 3 nach VDI 6020 stimmen für den Tag 1 (Abbildung 17 links) und den Tag 60 (Abbildung 18) mit den Verläufen der Referenzprogramme überein. Der Temperaturverlauf am Tag 10 (Abbildung 17 rechts) liegt um ca. 1,5 K niedriger als die der Referenzprogramme, bildet jedoch die Dynamik des Temperaturverlaufs richtig ab. Die Ergebnisse für Beispiel 3 bestätigen die Ergebnisse und Schlussfolgerungen von Beispiel 1.

Abbildung 17: Beispiel 3 nach VDI 6020 für den Leichtbau mit konvektiver Wärmelast (links: Tag 1; rechts: Tag10)

Abbildung 18: Beispiel 3 nach VDI 6020 für den Leichtbau mit konvektiver Wärmelast (Tag 60)

2.3.5 Beispiel 4: Reaktion Raumlufttemperatur auf strahlende innere Belastung (Typraum L)

In Beispiel 4 nach VDI 6020 wird die Reaktion der Raumlufttemperatur auf eine strahlende innere Belastung für ein leichtes Gebäude getestet. Die Temperaturverläufe für Beispiel 4 nach VDI 6020 stimmen für den Tag 1 (Abbildung 19 links) und den Tag 60 (Abbildung 20) mit den Verläufen der Referenzprogramme überein. Der Temperaturverlauf am Tag 10 (Abbildung 19 rechts) liegt um ca. 2 K niedriger als die der Referenzprogramme, bildet jedoch die Dynamik des Temperaturverlaufs richtig ab. Die Abweichung an Tag 10 ist verglichen mit den Beispielen 1 bis 3 am höchsten. Die Ergebnisse für Beispiel 4 bestätigen die Ergebnisse und Schlussfolgerungen von Beispiel 1.

Abbildung 19: Beispiel 4 nach VDI 6020 für den Leichtbau mit strahlender Wärmelast (links: Tag 1; rechts: Tag10)

Abbildung 20: Beispiel 4 nach VDI 6020 für den Leichtbau mit strahlender Wärmelast (Tag 60)

2.3.6 Beispiel 5: Reaktion Raumlufttemperatur auf innere & äussere Belastung (Typraum S)

In Beispiel 5 nach VDI 6020 wird die Reaktion der Raumlufttemperatur auf eine strahlende und konvektive innere Belastung und eine strahlende äussere Belastung für ein schweres Gebäude getestet. solare Einstrahlung wird hinter der Scheibe Die dabei als auftretende Strahlungswärmegewinne modelliert. Die Temperaturverläufe für Beispiel 5 nach VDI 6020 stimmen für den Tag 1 (Abbildung 21 links) und den Tag 60 (Abbildung 22) gut mit den Verläufen der Referenzprogramme überein. Die Dynamik in den Stunden 6 bis 9 weicht leicht vom Temperaturverlauf der Referenzprogramme ab. Der Temperaturverlauf am Tag 10 (Abbildung 21 rechts) liegt um ca. 1 K niedriger als die der Referenzprogramme, bildet jedoch die Dynamik des Temperaturverlaufs richtig ab. Die Ergebnisse für Beispiel 5 bestätigen die Ergebnisse und Schlussfolgerungen von Beispiel 1.

Abbildung 21: Beispiel 5 nach VDI 6020 für den Massivbau mit strahlender Wärmelast und solaren Wärmegewinnen (links: Tag 1; rechts: Tag10)

Abbildung 22: Beispiel 5 nach VDI 6020 für den Massivbau mit strahlender Wärmelast und solaren Wärmegewinnen (Tag 60)

2.3.7 Beispiel 6: Reaktion Wärmelast auf Sollwertänderung der Raumlufttemperatur (Typraum S)

In Beispiel 6 nach VDI 6020 wird die Reaktion der Wärmelast auf eine strahlende innere Belastung und eine vorgegebene Sollwertänderung der Raumlufttemperatur für ein schweres Gebäude getestet. Abweichend zu den Beispielen 1 bis 5 wird die Raumlufttemperatur mit einer rein konvektiven Heizung und Kühlung unbegrenzter Leistung zwischen 6 Uhr und 18 Uhr auf 27 °C und in der restlichen Zeit auf 22 °C gehalten. Als Referenz wird der Verlauf der Wärmelast für Tag 10, dargestellt in Abbildung 23, angegeben, welcher mit dem Verlauf der Referenzprogramme übereinstimmt.

Abbildung 23: Beispiel 6 nach VDI 6020 für den Massivbau mit Solltemperatur-Sprung und unbegrenzter Heiz- und Kühlleistung (Tag 10)

2.3.8 Beispiel 7: Reaktion Raumlufttemperatur bei begrenzter Anlagenleistung (Typraum S)

In Beispiel 7 nach VDI 6020 wird die Reaktion der Raumlufttemperatur bei vorgegebener innerer Belastung und begrenzter Anlagenleistung für ein schweres Gebäude getestet. Aufbauend auf Beispiel 6 wird die Anlagenleistung zur Einhaltung der Solltemperaturen begrenzt. Daraus ergibt sich der in Abbildung 24 dargestellte Verlauf der Raumlufttemperatur an Tag 10. Das Ergebnis der Abbildung mit dem CARNOT Gebäudemodell stimmt mit dem Verlauf der Referenzprogramme überein.

Abbildung 24: Beispiel 7 nach VDI 6020 für den Massivbau mit Solltemperatur-Sprung und begrenzter Heiz- und Kühlleistung (Tag 10)

2.4 Zusammenfassung der Tests nach BESTEST & VDI 6020

Die Basistests des BESTEST für ein Gebäude in Massivbauweise und eines in Leichtbauweise zeigten für den Jahres - Heizenergiebedarf eine gute Übereinstimmung mit den Ergebnissen der Referenzprogramme. Der Jahres - Kühlenergiebedarf wurde für fast alle Basistests etwas zu gering berechnet. Demzufolge sind nach Ablaufschema des BESTEST weitere Diagnosetests durchzuführen. Diese Diagnosetests prüfen in einer Abfolge die einzelnen Wärmeübertragungsmechanismen der Wände sowie den Einfluss von inneren Wärmelasten und Ventilation auf den Heiz- und Kühlenergiebedarf im Raum. Dabei wird das Gebäude in Leichtbauweise angewendet, bei dem die in den Basistests vorhandenen Fenster durch opake Bauteile, die sogenannten "high conductance walls", ersetzt werden. In allen diesen Tests wurde die Modellierung des Gebäudes in CARNOT bestätigt.

Erst mit der Einführung der transparenten Eigenschaften des Fensters zeigte sich die schon beschriebene Abweichung, dass der Betrag der solaren Wärmegewinne augenscheinlich zu gering bewertet wird.

Im Rahmen der Tests nach VDI 6020 kann auch die Kurzzeitdynamik der Wand überprüft werden, so dass über die Ergebnisse des BESTEST hinaus auch die Raumlufttemperaturverläufe, die im Rahmen der Regelungstechnik das entscheidende einzuhaltende Kriterium darstellen, überprüft werden. Die Raumlufttemperatur charakterisiert bei den VDI 6020-Tests darüber hinaus auch die Kapazitätseffekte der Wände, die den entscheidenden Einfluss auf die Dynamik der Raumlufttemperatur haben. Die Tests zeigen, dass für konvektive und strahlende Lasten sowohl für den Fall Leichtbau (Typraum L) als auch den Massivbau (Typraum S) die Dynamik der Raumtemperatur und der Wärmelast im Bereich der Referenzprogramme liegt, womit die Wandmodellierung hinsichtlich der Kapazität und Wärmedurchgänge gut bestätigt wird. Die Dynamik der Temperaturverläufe am 10. von 60 Tagen weicht geringfügig ab, was aber die Eignung nicht beeinträchtigt. Auch die Bilanzierung bei internen konvektiven Quellen und Solltemperatursprüngen wird mit den Tests bestätigt.

3 Schlussfolgerungen und Ausblick

Ziel war der Test des in CARNOT integrierten Raummodells nach den Standardverfahren BESTEST [2] und VDI 6020 [3].

Der Schwerpunkt lag auf dem Test des CARNOT-Raummodells im Vergleich mit anderen Simulationsprogrammen nach den standardisierten Verfahren BESTEST und VDI 6020. Aus den Ergebnissen der Validierung nach BESTEST und VDI 6020 lässt sich die Aussage treffen, dass die Gebäudeseite des bestehenden Raummodells aus der CARNOT - Toolbox eine gute Übereinstimmung mit bestehenden Gebäudesimulationsprogrammen liefert und die Modellierung insgesamt bestätigt werden kann. Einzig der Betrag der solaren Wärmegewinne durch das Fenster im Raum wird etwas zu gering berechnet. Die bestehende Modellierung kann also, vor allem wegen der insgesamt guten Übereinstimmung der Raumtemperaturdynamik, für regelungstechnische Untersuchungen verwendet werden. Eine Anpassung der im Fenstermodell abgebildeten Strahlungsvorgänge wird empfohlen.

4 Nomenklatur

Symbole

Symbol	Physikalische Grösse	Einheit
ρ	Dichte	kg/m ³
С	Spezifische Wärmekapazität	J/(kg·K)
λ	Wärmeleitfähigkeit	W/(m·K)
Т	Temperatur	К
S	Schichtdicke	m
α	Wärmeübergangskoeffizient	W/(m ² ·K)
σ	Stefan – Boltzmann Konstante (=5.67·10 ⁻⁸)	W/(m ² ·K ⁴)
3	Emissionsgrad	-
ρω	Reflexionsgrad Wand	-
α_{w}	Absorptionsgrad Wand	-
ġ	Wärmestrom	W

Indizes

Symbol	Bedeutung
а	aussen
i	innen
str	Strahlung
kon	Konventiv

5 Referenzen

- [1] Hafner, B., Wemhöner, C. et al: Conventional And Renewable eNergy Optimisation Toolbox (CARNOT), User manual, Solar-Institut Jülich, Jülich, November 1998, DE
- [2] Judkoff, R, Neymark, J.; Building Energy Simulation Test (BESTEST) and Diagnosis Method; NREL; Colorado; Februar 1995, USA
- [3] VDI 6020 Anforderungen an Rechenverfahren zur Gebäude- und Anlagensimulation Gebäudesimulation, Technische Regel, VDI Verlag, Düsseldorf, Mai 2001, DE
- [4] Beuken, D. L.; Wärmeverluste bei periodisch betriebenen Öfen; Dissertation; Freiburg; 1936, DE
- [5] Feist, W.: Thermische Gebäudesimulation ein kritische Prüfung unterschiedlicher Modellansätze, C.F. Müller Verlag, 1993, DE

6 Anhang

- A Parameter und Randbedingungen BESTEST
- B Parameter und Randbedingungen VDI6020
- C Detaillierte Ergebnisse der Vergleiche nach BESTEST

6.1 Anhang A: Randbedingungen BESTEST

Tabelle 6.1: Wandaufbauten der Varianten Leichtbau im BESTEST

LIQUENE QUE QUE					Mar 13/93				
LIGHTWEIGHT CASE	E: EXTERIOR	WALL (insid	le to outside)					
	k	Thickness	U	R	DENSITY	Ср			
ELEMENT	(W/m*K)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)			
Int Surf Coef (see not	e 2)		8.290	0.121					
Plasterboard	0.160	0.012	13.333	0.075	950.000	840.000			
Fibreglas quilt	0.040	0.066	0.606	1.650	12,000	840.000			
Wood Siding	0.140	0.009	15.556	0.064	530.000	900.000			
Ext Surf Coef			29.300	0.034					
-									
Total air - air			0.514	1.944					
Total surf - surf			0.559	1.789					
LIGHTWEIGHT CASE	: FLOOR (ins	ide to outsid	e)						
	k	Thickness	U	R	DENSITY	Ср			
ELEMENT	(W/m*K)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)			
Int Surf Coef	(11/11/14)	1111	8.290	0.121	(Kg/IIIO)	(orky K)			
Timber flooring	0.140	0.025	5.600	0.121	650 000	1000.000			
Insulation	0.140	1.003			650.000	1200.000			
insulation	0.040	1.003	0.040	25.075					
Total air - air			0.039	25.374					
Total surf - surf			0.040	25.254					
LIGHTWEIGHT CASE	: ROOF (insid	e to outside)						
		Thistoness		-	051017				
ELEMENT .	k (W/m*K)	Thickness	(M/ma*K)	R (mosk/AA)	DENSITY	Cp			
	(AAVIII. IV)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)			
Int Surf Coef			8.290	0.121					
Plasterboard	0.160	0.010	16.000	0.063	950.000	840.000			
Fibreglas quilt	0.040	0.1118	0.358	2.794	12.000	840.000			
Roofdeck	0.140	0.019	7.368	0.136	530.000	900.000			
Ext Surf Coef			29.300	0.034					
Total air - air			0.318	3.147					
Total surf - surf			0.334	2.992					
SUMMARY: LIGHTWE	EIGHT CASE		0.00	2.002	"				
SOMMANT. LIGHT VEIGHT CASE									
COMPONENT	AREA	UA							
144 41	m2	W/K							
Wall	63.600	32.715							
Floor	48.000	1.892							
Roof	48.000	15.253							
S.window	12.000	36.000							
Infiltration		18.440	(see note 1)						
Total UA (wf S.Glass)		104 200							
		104.300							
Total UA (No S.Glass)	ACH	68.300 VOLUME	AL TITUDE						
	ACH	m3							
	0.500	129.600	1609.000						
	0.500	123.000	1003.000						
NOTE 1: Infiltration de	rived from:								
ACH*Volume*(specific		ensity of air	at specified	altitude)					
NOTE 2: The interior fi									
compromise between					inter				
	The same of the sa	1700							

Tabelle 6.2: Wandaufbauten der Varianten Massivbau im BESTEST

					Mar 18/93					
HEAVYWEIGHT CASE	: EXTERIOR	R WALL (insi	de to outside	9)						
	k	Thickness	U	R	DENSITY	Ср				
ELEMENT	(W/m*K)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)				
Int Surf Coef (see note:	2)		8.290	0.121						
Concrete Block	0.510	0.100	5.100	0.196	1400.000	1000.000				
Foam Insulation	0.040	0.0615	0.651	1.537	10.000	1400.000				
Wood Siding	0.140	0.009	15.556	0.064	530.000	900.000				
Ext Surf Coef			29.300	0.034						
		1								
1.1										
Total air - air			0.512	1.952						
Total surf - surf			0,556	1.797						
HEAVYWEIGHT CASE	: FLOOR (in	side to outsi	de)							
	k	Thickness	U	- R	DENSITY	Ср				
ELEMENT	(W/m*K)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)				
Int Surf Coef			8.290	0.121						
Concrete Slab	1.130	0.080	14.125	0.071	1400.000	1000.000				
Insulation	0.040	1.007	0.040	25.175						
Total air - air			0.000	25 266						
Total surf - surf			0.039 0.040	25.366 25.246						
HEAVYWEIGHT CASE	BOOF (inc	de to outside	0.040	25.246						
TIENT THEIGHT OAGE	. Moor (ins	de lo odisidi	-							
	, k	Thickness	U .	R	DENSITY	Ср				
ELEMENT	(W/m*K)	(m)	(W/m2*K)	(m2*K/W)	(kg/m3)	(J/kg*K)				
Int Surf Coef			8.290	0.121						
Plasterboard	0.160	0.010	16.000	0.063	950.000	840.000				
Fibreglas quilt	0.040	0.1118	0.358	2.794	12.000	840.000				
Roofdeck	0.140	0.019	7.368	0.136	530.000	, 900.000				
Ext Surf Coef			29.300	0.034						
		4								
Total air - air			0.318	3.147						
Total surf - surf			0.334	2.992						
HEAVYWEIGHT CASE: SUMMARY										
	AREA	UA								
COMPONENT	m2	W/K								
Wali	63.600	32.580								
Floor	48.000	1.892				,				
Root	48.000	15.253								
S.window	12.000	36.000								
Infiltration		18.440	(see note 1)							
Total UA (wf S.Glass)		104.165								
Total UA (No S.Glass)		68.165								
	ACH	VOLUME	ALTITUDE							
		m:3	m							
	0.500	129.600	1609.000							
NOTE 4. lefterstee 4.			NOTE 1: Infiltration derived from:							
	ved from:	sir domeits et	ensolited alt	itudo)						
NOTE 1: Infiltration derivation derivation of the NOTE 2: The interior film	ved from: neat of air)*(a									

Tabelle 6.3: Randbedingungen für die Diagnosevarianten des BESTEST

SEPONTS MACH CANADE SUFFRE CANADE SUFF	Case A. W.L.						- X						
## HOLY MASS WIGGN MFILTH MINISTRY MSSRPP MSSRPP GLASS ORIENT WINDS MSSRPP MSSRPP GLASS ORIENT WINDS MSSRPP GLASS ORIENT WINDS WAS		SETPOINTS				OPAQUE S	CHEACE	ω L	-	6	_	1	
20,20	* 000	ල _ි	MAGG	(x)	ACH	FMISSIV	EXTIR	5	+			(m) SHADE	
20,20	195	20,20	- MASS	0	0	-	- T		1-	-		S.	Case 195 tests solid conduction
20,20 L 0 0 1 1 1 1 1 0 5 1 1 1 0 5 1 1 1 1 1 1 1 1 1						see note 1	see note 1	see note 4					Management of the second secon
20,20	500	20,20	-	0	0		-	¥			တ	O N	Do cases 200 thru 215 only if you can explicitly adjust Infra-red emissivity in your code. Cases 200, 195 test film convection algorithms. The major portion of the change in results between 200 & 195 will be from the opaque window. Increased differences between codes will be from the different film algorithms.
20,20 L 0 0 9 9 1 NA 1 0 5 NO	210	20,20	_	0	0	τ.	6.	¥ Z	·.		s	Q.	Cases 210,200 test ext ir with int ir off
20,20	215	20,20	7	0	0	o,	-	,,			S	Q.	Cases 220,215 test ext ir with int ir on. Case 215,200 test int ir with ext ir off.
20,20 L 0 1 9 9 NA .1 0 S NO 20,20 L 0 9 9 9 .1 12 S NO 20,20 L 0 9 .9 .9 .1 12 S NO 20,20 L 0 9 .9 .1 12 S NO 20,20 L 0 9 .9 .1 12 S NO 20,20 L 0 9 .9 .1 12 S NO 20,20 L 0 9 .9 .1 12 S 1.0mH 20,20 L 0 9 .9 .1 12 S 1.0mH 20,20 L 0 0 .9 .9 .9 .1 12 S 1.0mH 20,20 L 0 0 .9 .9 <	220	20,20		0	0	6.	6.				ဟ	O	Case 220,210 test int ir with ext ir on. Case 220 is Base for 230 - 270.
20,20 L 200 9 9 9 NA 9 0 S NO 20,20 L 0 9 9 9 1 1 12 S NO 20,20 L 0 0 9 9 1 1 12 S NO 20,20 L 0 0 9 9 1 1 12 S NO 20,20 L 0 0 9 9 9 1 12 S NO 20,20 L 0 0 9 9 9 1 6,6 E,W NO 20,20 L 0 0 9 9 9 1 6,6 E,W NO 31: Cases with 0 glasse area (except case 15& 395) have a "High Conductance Wall" 9 9 9 1 6,6 E,W NO 415 Asses with 0 glasse area (except case 15& 395) have a specified for the light-weight case. 9	230	20,20		0	-	G;	o.			-	S	9	Cases 230,220 test infiltration.
20,20	240	20,20	_	500	0	6,	6,				Ø	ON ON	Cases 240,220 test internal gains.
20,20	250	20,20	J	0	٥	ø;	o,				S	ON ON	Cases 250,220 test exterior solar absorptance/incident solar.
20,20 L 0 9 9 9 9 1 12 S NO 20,20 L 0 9 9 9 9 1 12 S 1.0mHV 20,20 L 0 9 9 9 9 1 6.6 E,W NO 20,20 L 0 9 9 9 1 6.6 E,W NO 20,27 L 0 9 9 9 1 6.6 E,W NO 31: Cases with O glass area (except case 195 & 395) have a 'High Conductance Wall' 1 12 S NO 4: 195 has neither a window, nor a 'High Conductance Wall' 4 1 12 S NO 5: 5 has neither a window, nor a 'High Conductance Wall' 4 9 9 9 1 3 ACH INFILTRES: H=Heating, C=Cooling, V=Venting 5: 5 has neither a window, nor a 'High Conductance Wall' 4 6 6 6 6 6 6 6	270	20,20		0	0	o.	6.				S	ON ON	Cases 270,220 test South solar transmittance/incident solar.
20,20	280	20,20		0	0	6.	e.				S	ON	Cases 280,270 test cavity albedo.
20,20 L 0 0 9 9 9 9 9 9 20,20 L 0 0 0 9 9 9 9 9 9 9 9 9 1:0 20,20 L 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	290	20,20	L	0	0	o,	o;	o,	- ,	12	Ø	1.0mH	Cases 290,270 test south horizontal overhang.
20,20 L 0 0 9 9 9 9 9 9 9 19 20,20 L 0 0 0 0 9 9 9 9 9 9 9 9 9 9 9 15. Cases with 0 glass area (except case 195 & 395) have a "High Conductance Wall" lace of the window and with the same area as the window. The 195 has neither a window, nor a "High Conductance Wall", but sists of 100% normally insulated wall as specified for the light-weight case. PE: The "High Conductance Wall" has the same exterior & interior IR emissivity, and same solar absorptivity as specified for the normal wall in each case. "High Conductance Wall" surface texture is very smooth (like glass).	300	20,20		0	0	6.	o;	6.	T.		E,W	Q.	Cases 300,270 test East & West solar transmittance & incidence.
ace of the window and with the same area as the window. 19 1.9 1.9 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 19 1.9 1.9 10 1.9 1.9 1	310	20,20	_	0	0	o,	ø,	-			E,W	1.0mHV	Cases 310,300 test East & West
	320	20,27	_	0	0	o,	œ.		+-	12	S	9	Cases 320,270 test thermostat deadband.
	Note1: Cas in place of Case 195 t consists of Note2: The the same s	the window a the window a as neither a 100% norma "High Condu olar absorptive Conductance	ss area (ex and with the window, no ully insulatex actance Wall vity as spec Wall surfit Surfit surfit wall surfit surfit surfit wall surfit surfit was spec	cept case 18 same area area area area area area area a	as the windo as the windo noductance W cified for the ame exterior normal wall is	A "High C" N" Fall", but light-weight & interior IR a interior IR h (like class)	onductance case.		Note3: TITLE INTGEN 200 ACH INFILTI SW=ShortW: SHADE=Win HV=combina Vote4: Interio	S: H=Heatir) means a cc R=Air Chang ave, ABSOR Idow shading ation Horizon r short wave	ig, C=Cooling onstant heat jes per Hour RT=Absorp g device, 1.0 ital & Vertice	g.V=Venting input of 200 r Infiltration/l tivity/ORIEN ImbH= 1 meter Il shade	A.=Lightweight, H=Heavyweight W (60% radiant, 40% convective) NT=Interior, EXT=Exterior, EMISSIV=Emissivity T=Orientation, S=South, EW=East&West deep Horizontal shade atter when class area is 0.

Tabelle 6.4: Randbedingungen für die Qualifizierungsvarianten des BESTEST

Cases A wild	SETBOINTS		SECURE AND ADDRESS OF THE PARTY		OPACHIE SHIREANE	HIDEANE	OPACI IS SI IBEACE	IDEACE		470000000000000000000000000000000000000		
, i	9		(A)	ACH	INTIR	EXTIR	INT SW	EXTSW	(m2)		(E)	
395 395	20,27	MASS	N CEN	0	9	PISSIMI 6.	NA	ABSORF!	see note 3	S	SHADE no	COMMEN S (See note 2) Case 395 tests solid conduction
,			Tours.									
400	20,27		0	0	on.	o,	Ψ.	-	_	ري ري	2	Cases 400,395 test surface convection & IR.
410	20,27		0	رن ت	œ,	6.	¥ X	-	0	s	2	Cases 410,400 test infiltration.
420	20,27	د	200	S.	o;	o,	NA A	-	0	v	٤	Cases 420,410 test internal heat generation.
430	20,27		200	κċ	œ,	6,	¥ X	9	0	S	٤	Cases 430,420 test exterior solar absorptance
440	20,27		200	5	o;	œ.	-	9.	2	S	2	& incident solar. Cases 440,600 test interior solar absorptance
009	20,27	_	200	κί	Q.	o.	9:	9.	12	s	01	Cases 600,430 test south solar transmission.
610	20,27		200	κί	Q,	ø.	99	9	12	S	1.0mH	Case 610,600 test south overhang.
620	20,27	۔	200	κύ	o,	οί	. o ʻ	ø.	9'9	E,W	2	Cases 620,600 test East & West
630	20,27	ب	200	κċ	6;	6.	9	9	9'9	E,W	1.0mHV	solar transmittance/incidence. Cases 630,620 test East & West
640	SETBACK		200	κί	نو	o,	9.		12	S	9	overnangs & tins. Cases 640,600 test night setback.
650	27,7	_	200	ιŲ	Qi.	œ.	9.	ه.	12	s	. 2	Case 650,600 test venting.
800	20,27	I	200	κi	6:	o.	¥ N	9	0	S	ou.	Cases 800,430 test thermal mass with
810	20,27	I	200	rč.	6.	6.	-	9.	12	S	2	Cases 810,900 test interior solar absorptance
006	20,27	I	200	25.	6:	6.	9.	9.	12	S	01	Case 900,600 test thermal
910	20,27	I	200	įά	Qi.	o;	9	ø.	12	S	1.0mH	mass & solar interaction. Cases 910,900 test south overhang/
920	20,27	I	200	ĸ;	6,	o,	ω,	ø.	9'9	E.W	2	mass interaction. Cases 920,900 test East & West
930	20,27	I	200	ις	o,	o,	ø,	ø.	9'9	E,W	1.0mHV	transmittance/mass interaction. Cases 930,920 test East & West
940	SETBACK	I	200	ιć	6.	ō.	9.	9.	12	S	2	shading/mass interaction. Cases 940,900 test setback/mass interaction.
950	27,7	I	200	κi	6.	o,	ø.	φ	52	S	2	Cases 950,900 test venting/mass interaction.
096	2ZONE SS	SEE SPEC	220NE SS SEE SPECIFICATION IN TEXT	IN TEXT								960 tests passive solar/interzone heat transfer.
066	GROUND	SEE SPEC	SEE SPECIFICATION IN TEXT	IN TEXT								990 tests ground coupling.
600FF 900FF	NONE	Note1: The the same as	Note1: These cases tabelled FF (Free the same as the non FF cases except	elted FF (Fr	Note1: These cases labelled FF (Free-Float) are exactly the same as the non FF cases except	exactly		Note2: For e	xplanation o	f TITLES se	e Note3 at t	Note2: For explanation of TITLES see Note3 at bottom of TABLE 1-1.
650FF 950FF see note 1	NONE, V NONE, V	there are no Thus the in	there are no mechanical heating or Thus the interior temperatures are allowed to FREE-FLOAT.		cooling systems	ams.		Note3: Case It consists of	395 has nei 100% norm	ither a wind ally insulate	ow, nor an "o d wall as sp	Note3: Case 395 has neither a window, nor an "opaque window". It consists of 100% normally insulated wall as specified for the light-weight case.
					The state of the s	CONTRACTOR OF THE PERSON OF TH		Note4: Case the change i codes will be	ns 400,395 te in results will i from the dif	sst surface c be from the ferent film c	onvection a opaque wir	Note4: Cases 400,395 test surface convection and IR radiation. The major portion of the change in results will be from the opaque window. Increased differences between codes will be from the different film convection & IR algorithms.

6.2 Anhang B: Randbedingungen VDI 6020

Tabelle 6.5: Wandaufbauten Leichtbau und Massivbau für Testbeispiele VDI 6020

Raumtyp L "leicht"

Bauart	Aufbau	Dicke m	λ W/(m K)	$ ho m_{kg/m^3}$	c J/(kg K)
Decke und Fußboden	Estrich Steinwolle Beton Luftschicht Steinwolle Metalldecke	0,03 0,02 0,12 - 0,02 0,001	1,40 0,047 2,035 <i>R</i> = 0,13 m ² K/W 0,047 58,0	2200 75 2100 - 75 7800	1050 840 920 - 840 480
Innenwände	Porenbeton	0,12	0,40	1200	1050
Innentür	Tischlerplatte	0,04	0,14	500	2520
Außenwand	Brettschalung Dämmung Brettschalung	0,01 0,064 0,01	0,14 0,047 0,14	500 75 500	2520 840 2520

Raumtyp S "schwer"

Decke und Fußboden	PVC-Belag	0,002	0,21	1300	1470
	Estrich	0,045	1,40	2200	1050
	Steinwolle	0,012	0,06	50	840
	Beton	0,15	2,035	2400	1050
Innenwände	Hohlblocksteine	0,24	0,56	1300	1050
Innentür	Buche, massiv	0,040	0,21	700	2520
Außenwand	Beton	0,24	2,035	2100	920
	Dämmung	0,062	0,047	75	840
	Fassadenplatte	0,025	0,45	1300	1050

Fenster, Zwei-Scheiben-Verglasung 7,0 m², k = 2,1 W/(m² K) Außenwand

 3.5 m^2 , $k = 0.59 \text{ W/(m}^2 \text{ K})$

mittlere k-Zahl von Außenwand und Fenster: $k_{\rm m} = 1,6~{\rm W/m^2K}$

Tabelle 6.6: Randbedingungen für Testbeispiele VDI 6020

Konstante Parameter

Berechnungszeitraum:

60 Tage (1440 Stunden)

Raumgeometrie	Länge	Breite	Lichte Höhe	Fußboden	Decke	Innenwände	Fenster
	m	m	m	m ²	m²	m ²	m ²
Typraum S (schwer) nach VDI 2078 bzw. Typraum L (leicht) nach VDI 2078	5	3,5	3	17,5	17,5	15/10,5/15	10,5 (Süden)

Bauphysik

	Wäme	Konv. eübergangskoeff.	Absorptions- koeffizienten		Schich	ntdaten	
Opake Bauteile	Innen	Außen		Dicke	Wärmeleit-	Wärmekapazität	Dichte
	W/m ² K	W/m ² K	%	m	fähigkeit W/m ² K	kJ/kgK	kg/m ³
Außenwand	2,7	20	-				
Innenwand	2,7	2,7	-		siaha Ta	abelle A1	
Fußboden	1,67	1,67	-		siene ia	idelle A I	
Decke	1,67	1,67	=				
	Wäme	Konv. eübergangskoeff.	Verglasungstyp		Fenste	erdaten	
Transparente Bauteile	Innen	Außen		k-Wert (Fenster)	g-Wert	Rahmenanteil	Lichttrans-
	W/m ² K	W/m ² K	%	W/m ² K	%	%	mission %
Eigenschaften (thermisch und optisch)	2,7	20	6/12/6 (Klarglas/Luft/ Klarglas)	2,1	75	0	81,7

Nachbarräum	е	
Alle Nachbarräume	°C	adiabat

Tabelle 6.7: Randbedingungen für Testbeispiele VDI 6020

Randbedingung	Einheit	Belsplei 1	Belsplel 2	Belspiel 3	Beispiel 4	Belspiel 5	Belspiel6	Beispiel 7
Äußere Lasten, Wetterdaten								
Außerfemperatur	٥.	22	22	22	22	22	22	22
Kurzwellige Solarstrahlung, hortzontal	W/m²	Kelne	Kelne	Keine	Keine	Tabelle A2	Keine	Kelne
Langwellige Umgebungsstrahlung	W/m²K	Keine	Keine	Keine	Keine		Keine	Kelne
Bodenreflexionsgrad	%	-	-	_	1	_	-	1
Typraum		S	S	٦	Г	s	S	S
Sonnenschutz	EInheit	1 leidsleB	Selsple i 2	€ leidsleB	Beispiel 4	S leispel 5	Beispiel6	Belsplel 7
Einstrahlungsgreinzwerf (Global) für Sonnenschutz = zu	W/m²	-	-	ı	-	100	1	1
b-Wert						0,15		
Innere Wärmequellen	Einheit	Belsple11	Belsple 12	Beispiel 3	Belsple 14	Belspiel 5	Belspiel 6	Belspiel 7
Maschinen, konvektiv	W	1000	_	1000	1	200	-	1
Maschinen, strahlend	W	_	1000	_	1000	_	1000	1000
Maschinenbetriebszeit		6-18 Uhr	6 – 18 Uhr	6-18 Uhr	6-18 Uhr	8-17 Uhr	0 – 24 Uhr	0 – 24 Uhr
Personen, kornæktiv	M	-	-	-	ı	08	1	ı
Personen, strahlend	W	-	-	-	1	99	1	ı
Anwesenheltszeit		-	_	1	-	8 – 17 Uhr	-	1
Kilmatislerung (reine konvektive Lufthelzung)	(Bunzı	Beispiel 1	Belspiel 2	S leidsleB	Belspiel 4	S leigele	Belspiel 6	Belspiel 7
Authenfutwechsel bei Anlagenbetrieb	1/h	0	0	0	0	0	0	0
Außenluftwechsel Nacht/Wochenende	1/h	0	0	0	0	0	0	0
Aniag en betrieb szeit							0 – 24 Uhr	0 – 24 Uhr
Anlagenleistung	W	Kana	Kana	Kelne	Kelne	Kelne	unbegrenzt	500
Soliraumtemperatur max. In Bürozeit		Klimatislerung	Klimatislerung	Klimatslerung	Klimatiserung	Klimatislerung	27	27
Sofraumtemperatur min. In Bürozeit		Temperatur frei	Temperatur frei	Temperatur frei	Temperatur frei	Temperatur frei	27	27
Soliraumtemperatur außerhalb Bürozeit		nii aa ii ii ii aa i	nii Anii in anii anii anii anii anii ani				22	22
Bûrozelt							6 – 18 Uhr	6 – 18 Uhr

Hinweis zu Beispiel 5:

Die aus der VDI 2078 entnommenen Strahlungsdaten gelten hinter Doppelverglasung (Täbelte A2). Die hier aufgeführten Beispiele dienen nicht zum Testen des Fenstemodells oder der Strahlungsberechnung. Aus die ein Grund müssen genau die in der Tabelte A2 angegebenen Werte im Raum arffreten. Sie können auch unter Berticksichtigung des Sonnenschutzes als innere Lasten definiert werden.

Variable Parameter:

6.3 Anhang C: Heiz- und Kühlenergie, Heiz- und Kühlleistungen BESTEST

Abbildung 25: BESTEST 600: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 26: BESTEST 620: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 27: BESTEST 640: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 28: BESTEST 650: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 29: BESTEST 900: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 30: BESTEST 920: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 31: BESTEST 940: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 32: BESTEST 950: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 33: BESTEST 195: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 34: BESTEST 200: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 35: BESTEST 210: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 36: BESTEST 215: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 37: BESTEST 220: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 38: BESTEST 230: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 39: BESTEST 240: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 40: BESTEST 250: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 41: BESTEST 270: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung

Abbildung 42: BESTEST 320: Jahresheizenergie, Jahreskühlenergie, max. Heizleistung, max. Kühlleistung