

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по домашнему заданию № 1

Название: Метод резолюций в логике предикатов первого порядка

Дисциплина: Математическая логика и теория алгоритмов

Студент	ИУ6-72Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			В.В. Гуренко
		(Подпись, дата)	(И.О. Фамилия)

Предметная область: автомобильные гонки RDS GP

Утверждения:

- 1. Для любого пилота верно утверждение: если он принадлежит к элитной команде или не новичок, то он хорошо подготовлен.
- 2. Для любого автомобиля верно: если он японский или его пилот (у каждого автомобиля есть пилот) принадлежит к элитной команде, то он мощный.
- 3. Существует (хотя бы один) такой пилот, что, если пилот не имеет большого опыта или не состоит в элитной команде, то он не будет допущен до гонки.
- 4. Существует (хотя бы один) такой автомобиль японского производства, что все его пилоты (могут быть запасные пилоты) допущены до гонки.
- 5. Для любого пилота верно: если пилот допущен до гонки и {хорошо подготовлен или его автомобиль мощный}, то пилот займет призовое место.

Факты:

- 1. Автомобиль Nissan Skyline японского производства
- 2. Автомобиль Nissan Silvia японского производства
- 3. Автомобиль Dodge Viper не японского производства
- 4. Автомобиль Dodge Chllenger не японского производства
- 5. Пилот Георгий Чевчян не новичок
- 6. Пилот Аркадий Цареградцев не новичок
- 7. Пилот Леонид Шнайдер новичок
- 8. Пилот Валерия Кама новичок
- 9. Пилот Георгий Чевчян допущен до гонки
- 10. Пилот Аркадий Цареградцев допущен до гонки
- 11. Пилот Леонид Шнайдер допущен до гонки
- 12. Пилот Валерия Кама допущена до гонки
- 13. Пилот Георгий Чевчян не принадлежит к элитной команде
- 14. Пилот Аркадий Цареградцев не принадлежит к элитной команде

- 15. Пилот Леонид Шнайдер принадлежит к элитной команде
- 16. Пилот Валерия Кама принадлежит к элитной команде
- 17. Леонид Шнайдер водитель Nissan Skyline
- 18. Валерия Кама водитель Nissan Silvia
- 19. Георгий Чевчян водитель Dodge Viper
- 20. Аркадий Цареградцев водитель Dodge Chllenger

Заключение:

Существует ли такой пилот, который занял призовое место и чей автомобиль (у любого пилота есть автомобиль) мощный?

Предикаты:

T(x) — «пилот x принадлежит к элитной команде»

O(x) — «пилот x — новичок»

N(x) — «пилот x хорошо подготовлен»

P(y) — «у — мощный автомобиль»

J(у) — «автомобиль у — японского производства»

D(x, y) — «х — водитель у»

S(x) — «пилот x прошел медосмотр»

Q(y) — «автомобиль у прошел техосмотр»

L(x) — «пилот x допущен до гонки»

M(x) — «пилот x занял призовое место»

Области определения предикатов:

Cars = {nissan_skyline, nissan_silvia, dodge_viper, dodge_challenger} Pilots = {георгий_чевчян, аркадий_цареградцев, леонид_шнайдер, валерия_кама} $x \in Cars$ $y \in Pilots$

Формализация типовых фраз:

«Для любого х верно ...» — $\forall x(...)$ «Существует (хотя бы один) х, такой, что...» — $\exists x(...)$ «Если A, то B» — $(A \to B)$ «A(x) верно для пилота х автомобиля у» = «A(x) $\underline{\mathit{U}}$ (х — пилот у)» — $[A(x) \land D(x, y)]$

Формализация утверждений:

- 1. $\forall x < [T(x) \lor \neg O(x)] \rightarrow N(x) >$
- 2. $\forall y < [J(y) \lor \exists x \{D(x,y) \land T(x)\}] \rightarrow P(y) >$
- 3. $\exists x < [\neg T(x) \lor O(x)] \rightarrow \neg L(x) >$
- 4. $\exists y \forall x < J(y) \land D(x, y) \land L(x) >$
- 5. $\forall x < [L(x) \land \{N(x) \lor \exists y (P(y) \land D(x, y))\}] \rightarrow M(x) >$

Формализация фактов:

- 1. J(nissan skyline)
- 2. J(nissan silvia)
- \exists . \neg J(dodge viper)
- 4. $\neg J(dodge challenger)$
- 5. ¬О(георгий_чевчян)
- 6. ¬О(аркадий_цареградцев)
- 7. О(леонид_шнайдер)
- 8. О(валерия_кама)
- 9. L(георгий_чевчян)

- 13. ¬Т(георгий_чевчян)
- 14. ¬Т(аркадий цареградцев)
- 15. Т(леонид_шнайдер)

- 16. Т(валерия кама)
- 17. D(леонид шнайдер, nissan skyline)
- 18. D(валерия кама, nissan silvia)
- 19. D(георгий чевчян, dodge viper)
- 20. D(аркадий_цареградцев, dodge_challenger)

Формализация заключения:

$$G = \exists x \exists y < M(x) \land J(y) \land D(x, y) >$$
$$\neg G = \neg \exists x \exists y < M(x) \land J(y) \land D(x, y) >$$

Преобразуем формулу (1):

- 1 Приведение к ПНФ
- 1.1 Исключение импликаций

$$\forall x < [T(x) \lor \neg O(x)] \rightarrow N(x) >$$

 $\forall x < \neg [T(x) \lor \neg O(x)] \lor N(x) >$

- 1.2 Переименование связанных переменных не требуется
- 1.3 Разделение связанных переменных не требуется
- 1.4 Удаление кванторов, связывающих несуществующие переменные не требуется
- 1.5 Протаскивание отрицаний

$$\forall x < \neg [T(x) \lor \neg O(x)] \lor N(x) >$$
 $\forall x < [\neg T(x) \land O(x)] \lor N(x) >$ — прикладная ПНФ и СНФ

- 1.6 Смещение кванторов влево не требуется
- 2 Сколемизация не требуется (в формуле нет кванторов существования)
- 3 Приведение к клаузальной форме

$$\forall x < [\neg T(x) \land O(x)] \lor N(x) >$$
 $\forall x < [\neg T(x) \lor N(x)] \land [O(x) \lor N(x)] >$ — клаузальная форма

После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$\neg T(x) \lor N(x)$$
$$O(x) \lor N(x)$$

Преобразуем формулу (2):

- 1 Приведение к ПНФ
- 1.1 Исключение импликаций

$$\forall y < [J(y) \lor \exists x \{D(x, y) \land T(x)\}] \rightarrow P(y) >$$

$$\forall y < \neg [J(y) \lor \exists x \{D(x, y) \land T(x)\}] \lor P(y) >$$

- 1.2 Переименование связанных переменных не требуется
- 1.3 Разделение связанных переменных не требуется
- 1.4 Удаление кванторов, связывающих несуществующие переменные не требуется
- 1.5 Протаскивание отрицаний

$$\forall y < \neg [J(y) \lor \exists x \{D(x,y) \land T(x)\}] \lor P(y) >$$

$$\forall y < [\neg J(y) \land \neg \exists x \{D(x,y) \land T(x)\}] \lor P(y) >$$

$$\forall y < [\neg J(y) \land \forall x \neg \{D(x,y) \land T(x)\}] \lor P(y) >$$

$$\forall y < [\neg J(y) \land \forall x \{\neg D(x,y) \lor \neg T(x)\}] \lor P(y) >$$

1.6 Смещение кванторов влево — так как левее квантора $\forall x$ нет вхождений x, протаскиваем этот квантор влево

$$\forall y \forall x \ < [\neg J(y) \land \ \{\neg D(x,y) \lor \neg T(x)\}] \lor \ P(y) > -- прикладная ПНФ и СНФ$$

- 2 Сколемизация не требуется (в формуле нет кванторов существования)
- 3 Приведение к клаузальной форме

$$\forall y \forall x < [\neg J(y) \land \{\neg D(x, y) \lor \neg T(x)\}] \lor P(y) >$$

$$\forall y \forall x < [\neg J(y) \lor P(y)] \land [\neg D(x,y) \lor \neg T(x) \lor P(y)] >$$
— клаузальная

форма

После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$\neg J(y) \lor P(y)$$

$$\neg D(x, y) \lor \neg T(x) \lor P(y)$$

Преобразуем формулу (3):

- 1 Приведение к ПНФ
- 1.1 Исключение импликаций

$$\exists x < [O(x) \lor \neg T(x)] \to \neg L(x) >$$

$$\exists x < \neg [O(x) \lor \neg T(x)] \lor \neg L(x) >$$

- 1.2 Переименование связанных переменных не требуется
- 1.3 Разделение связанных переменных не требуется
- 1.4 Удаление кванторов, связывающих несуществующие переменные не требуется
- 1.5 Протаскивание отрицаний

$$\exists x < \neg [O(x) \lor \neg T(x)] \lor \neg L(x) >$$

 $\exists x < [\neg O(x) \land T(x)] \lor \neg L(x) >$ — прикладная ПНФ

- 1.6 Смещение кванторов влево не требуется
- 2 Сколемизация (по первому правилу Сколема $\{a \, / / \, x\})$

$$\exists x < [\neg O(x) \land T(x)] \lor \neg L(x) >$$

 $< [\neg O(a) \land T(a)] \lor \neg L(a) > --- CH\Phi$

3 Приведение к клаузальной форме

$$<[\neg O(a) \land T(a)] \lor \neg L(a)>$$

 $<[\neg O(a) \lor \neg L(a)] \land [T(a) \lor \neg L(a)]>$ — клаузальная форма

После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$\neg O(a) \lor \neg L(a)$$

 $T(a) \lor \neg L(a)$

Преобразуем формулу (4):

- 1 Приведение к ПНФ не требуется (нет импликаций, кванторы вынесены)
- 2 Сколемизация (по первому правилу Сколема {b // y})

$$\exists y \forall x < J(y) \land D(x,y) \land L(x) >$$
— прикладная ПНФ $\forall x < J(b) \land D(x,b) \land L(x) >$ — СНФ и клаузальная форма

3 Приведение к клаузальной форме — не требуется (матрица формулы в КНФ) После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$J(b)$$

$$D(x,b)$$

$$L(x)$$

Преобразуем формулу (5):

- 1 Приведение к ПНФ
- 1.1 Исключение импликаций

$$\forall x < [L(x) \land \{N(x) \lor \exists y (P(y) \land D(x, y))\}] \rightarrow M(x) >$$

$$\forall x < \neg [L(x) \land \{N(x) \lor \exists y (P(y) \land D(x, y))\}] \lor M(x) >$$

- 1.2 Переименование связанных переменных не требуется
- 1.3 Разделение связанных переменных не требуется
- 1.4 Удаление кванторов, связывающих несуществующие переменные не требуется
- 1.5 Протаскивание отрицаний

$$\forall x < \neg [L(x) \land \{N(x) \lor \exists y (P(y) \land D(x, y))\}] \lor M(x) >$$

$$\forall x < [\neg L(x) \lor \neg \{N(x) \lor \exists y (P(y) \land D(x, y))\}] \lor M(x) >$$

$$\forall x < [\neg L(x) \lor \{\neg N(x) \land \neg \exists y (P(y) \land D(x, y))\}] \lor M(x) >$$

$$\forall x < [\neg L(x) \lor \{\neg N(x) \land \forall y \neg (P(y) \land D(x, y))\}] \lor M(x) >$$

$$\forall x < [\neg L(x) \lor \{\neg N(x) \land \forall y (\neg P(y) \lor \neg D(x, y))\}] \lor M(x) >$$

1.6 Смещение кванторов влево — так как левее квантора $\forall y$ нет вхождений у, протаскиваем этот квантор влево

$$\forall x \ \forall y < [\neg L(x) \ \lor \{\neg N(x) \land \ (\neg P(y) \lor \neg D(x,y))\}] \ \lor \ M(x) > --$$
 прикладная ПНФ и СНФ

- 2 Сколемизация не требуется (в формуле нет кванторов существования)
- 3 Приведение к клаузальной форме

$$\forall x \ \forall y < [\neg L(x) \ \lor \{\neg N(x) \ \land \ (\neg P(y) \lor \neg D(x,y))\}] \ \lor \ M(x) >$$

$$\forall x \ \forall y < [M(x) \lor \neg N(x) \lor \neg L(x)] \land$$

$$\land [M(x) \lor \neg P(y) \lor \neg D(x,y) \lor \neg L(x)] > \text{--- клауз. форма}$$

После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$M(x) \vee \neg N(x) \vee \neg L(x)$$

 $M(x) \vee \neg P(y) \vee \neg D(x, y) \vee \neg L(x)$

Преобразуем заключение (в виде $\neg G$):

- 1 Приведение к ПНФ
- 1.1 Исключение импликаций не требуется
- 1.2 Переименование связанных переменных не требуется
- 1.3 Разделение связанных переменных не требуется
- 1.4 Удаление кванторов, связывающих несуществующие переменные не требуется
- 1.5 Протаскивание отрицаний

$$\neg\exists x\exists y< M(x)\land J(y)\land D(x,y)>$$
 $\forall x\forall y<\neg M(x)\lor \neg J(y)\lor \neg D(x,y)>$ — прикладная ПНФ, СНФ и клаузальная форма

- 1.6 Смещение кванторов влево не требуется
- 2 Сколемизация не требуется
- 3 Приведение к клаузальной форме не требуется (матрица формулы в КНФ)

После элиминации кванторов всеобщности и конъюнкций получим дизъюнкты:

$$\neg M(x) \lor \neg J(y) \lor \neg D(x, y)$$

Применение метода резолюций:

- 1. $\neg T(x) \lor N(x)$
- 2. $O(x) \vee N(x)$
- 3. $\neg J(y) \lor P(y)$
- 4. $\neg D(x, y) \lor \neg T(x) \lor P(y)$
- 5. $\neg O(a) \lor \neg L(a)$
- 6. $T(a) \vee \neg L(a)$
- 7. J(b)
- 8. D(x,b)
- 9. L(x)
- 10. $M(x) \vee \neg N(x) \vee \neg L(x)$
- 11. $M(x) \vee \neg P(y) \vee \neg D(x, y) \vee \neg L(x)$
- 12. $\neg M(x) \lor \neg J(y) \lor \neg D(x, y)$
- 13. J(nissan_skyline)
- 14. J(nissan_silvia)
- 15. \neg J(dodge_viper)
- 16. ¬J(dodge_challenger)
- 17. ¬О(георгий_чевчян)
- 18. ¬О(аркадий_цареградцев)
- 19. О(леонид_шнайдер)
- 20. О(валерия_кама)

- 25. ¬Т(георгий_чевчян)

- 26. ¬Т(аркадий цареградцев)
- 27. Т(леонид_шнайдер)
- 28. Т(валерия кама)
- 29. D(леонид_шнайдер, nissan_skyline)
- 30. D(валерия_кама, nissan_silvia)
- 31. D(георгий чевчян, dodge viper)
- 32. D(аркадий цареградцев, dodge challenger)

33.
$$\neg J(y) \lor \neg P(y) \lor \neg D(x, y) \lor \neg L(x)$$
 (11, 12)

34.
$$\neg T(x) \lor \neg J(y) \lor \neg D(x, y) \lor \neg L(x)$$
 (4, 33)

35.
$$\lambda 1 = \{a // x\}$$
$$(34)\lambda 1 = \neg T(a) \lor \neg J(y) \lor \neg D(a, y) \lor \neg L(a)$$
$$\neg J(y) \lor \neg D(a, y) \lor \neg L(a) \quad (6, 34)\lambda 1$$

36.
$$\lambda 2 = \{b // y\}$$

 $(35)\lambda 2 = \neg J(b) \lor \neg D(a, b) \lor \neg L(a)$
 $\neg D(a, b) \lor \neg L(a)$ (7, 35) $\lambda 2$

37.
$$(9)\lambda 1 = L(a)$$

 $\neg D(a, b) \quad (9, 36)\lambda 1$

38.
$$(8)\lambda 1 = D(a, b)$$

 $\Box (8, 37)\lambda 1$

Достигнут пустой дизьюнкт, следовательно, теорема доказана — заключение следует из исходных утверждений и фактов. То есть, существует такой пилот, который занял призовое место и чей автомобиль — мощный.

Унификатор $\lambda 1 = \{a // x\}$ вводится в формулы 8, 9, 34. Значит L(a) и T(a) должны быть истинны. Это условие выполняется, если а $\{a \in A, a \in A$

Унификатор $\lambda 2 = \{b \ // \ y\}$ вводится в формулу 35. Значит J(b) должно быть истинно. Это условие выполняется, если $b \in \{\text{nissan_skyline}, \text{nissan_silvia}\}$.

Из семантики очевидно, что истинно должно быть D(a, b). Тогда, призовые места заняли Леонид Шнайдер на Nissan Skyline и Валерия Кама на Nissan Silvia.

Ответ: призовые места заняли Леонид Шнайдер на Nissan Skyline и Валерия Кама на Nissan Silvia.