Technische Universität Berlin Fakultät II, Institut für Mathematik

SoSe 2023

Sekretariat MA 6–2, Antje Schulz

Prof. Dr. Michael Joswig

Dr. Frank Lutz, Martin Knaack, Marcel Wack

2. Programmieraufgabe Computerorientierte Mathematik II

Abgabe: 12.5.2023 über den Comajudge bis 17:00 Uhr

Aufgabenstellung

In dieser Programmieraufgabe geht es um eine erste Implementierung von Max-Heaps und Operationen auf diesen. Schreiben Sie hierfür einen Typ MaxHeap mit dem Attribut

• keys (Max-Heap als Vektor paarweise verschiedener ganzer Zahlen)

und implementieren Sie folgende Methoden:

- a) MaxHeap(keys::Vector{Int}) Der Konstruktor soll eine übergebene Liste keys von paarweise verschiedenen, positiven ganzen Zahlen in einen Max-Heap umwandeln.
- b) maximum(h::MaxHeap) Gibt das maximale Element der keys des Max-Heaps zurück.
- c) extractMax(h::MaxHeap) Gibt das maximale Element der keys des Max-Heaps zurück, entfernt dieses aus keys und stellt die Max-Heap-Eigenschaft wieder her.
- d) increaseKey(h::MaxHeap,i::Int,k::Int) Erhöht den Eintrag von keys[i] auf k, falls k größer ist als keys[i], und stellt anschließend die Max-Heap-Eigenschaft wieder her.
- e) insert(h::MaxHeap,k::Int) Fügt ein Element mit dem Schlüssel k in keys ein und stellt anschließend die Max-Heap-Eigenschaft wieder her.
- f) heapSort(h::MaxHeap) Führt Heapsort auf dem Max-Heap durch, so dass keys aufsteigend sortiert wird.