

Polar™ HiPERFET **Power MOSFET**

IXFR200N10P

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated

5

g

$V_{\scriptscriptstyle \sf DSS}$	=	100V
I _{D25}	=	120A
$R_{DS(on)}$	<u><</u>	$9 \text{m} \Omega$

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C$ to $175^{\circ}C$	100	V	
V_{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 175°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	100	V	
V _{GSS}	Continuous	±20	V	
$V_{\rm GSM}$	Transient	±30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	120 400	A A	
I _A E _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	60 4	A J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	10	V/ns	
$\overline{P_{D}}$	T _c = 25°C	300	W	
T		-55+175	°C	
T_{JM}		175	°C	
T _{stg}		-55+175	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~	
F _c	Mounting Force	20120/4.527	N/lb	

V _{DSS}	T _J = 25°C to 175°C	100	V
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	120 400	A A
I _A E _{AS}	T _c = 25°C T _c = 25°C	60 4	A J
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	10	V/ns
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C = 25°C	300	W
T _J		-55+175	°C
T _{JM}		175	°C
T _{stg}		-55+175	°C
T,	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
V	50/60 Hz 1 Minute	2500	V-

Symbol (T, = 25°C, U	Test Conditions Jnless Otherwise Specified)	Chara Min.	_	c Value ∣ Max.	es
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	100			V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 8mA$	2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			25 500	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, Note 1$ $V_{GS} = 15V, I_{D} = 400A, Note 1$		6	9	mΩ

G = Gate D = Drain S = Source

Features

- Silicon chip on Direct-Copper Bond (DCB) Substrate
 - UL Recognized Package
 - Isolated Mounting Surface
 - 2500V~ Electrical Isolation
- Low R_{DS(on)} and Q_G
 Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Coverters
- Battery Chargers
- · Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC and DC Motor Drives
- Uninterrupted Power Supplies
- High Speed Power Switching Applications

Weight

Symbol (T _J = 25°C,	Test Conditions unless otherwise specified)	Characteristic Values Min. Typ. Max.		
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	60	97	S
C _{iss}			7600	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2900	pF
C _{rss}			860	pF
t _{d(on)}	Resistive Switching Times		30	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 60A$		35	ns
t _{d(off)}	$R_{\rm e} = 3.3\Omega$ (External)		150	ns
t _f	$H_{G} = 3.352$ (External)		90	ns
Q _{g(on)}			235	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A$		50	nC
Q_{gd}			135	nC
R _{thJC}				0.50 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

Symbol			tic Values
$(T_J = 25^{\circ}C,$	unless otherwise specified) Min.	Тур.	Max.
Is	$V_{GS} = 0V$		200 A
I _{SM}	Repetitive, pulse width limited by $T_{_{\rm JM}}$		400 A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5 V
t _{rr} RM QRM	$I_{_{F}}=25A,-di/dt=100A/\mu s,$ $V_{_{R}}=50V,V_{_{GS}}=0V$	6.0 0.4	150 ns Α μC

Note: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

