Tutorato Algebra Lineare e Geometria (A.A. 2023/24)

Lezione 1

Esercizio 1

Stabilire se i vettori $v_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ sono linearmente indipendenti.

Esercizio 2

Stabilire se i vettori $v_1 = \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$ e $v_2 = \begin{pmatrix} -4 \\ 10 \\ -6 \end{pmatrix}$ sono linearmente indipendenti.

Esercizio 3

Esibire un vettore $v \in \mathbb{R}^3$ linearmente dipendente dal vettore $w = \begin{pmatrix} 1 \\ -9 \\ 0 \end{pmatrix}$

Esercizio 4

Stabilire se i vettori $v_1 = \begin{pmatrix} \pi \\ 5 \\ 8 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ sono linearmente dipendenti.

Take-home message: In generale, cosa si può dire sulla lineare indipendenza del seguente insieme di vettori?

$$\left\{ v_1, v_2, v_3, \dots, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \dots, v_n \right\}, \quad (v_i \in \mathbb{R}^3 \ \forall \ i = 1, 2, \dots, n)$$

Esercizio 5 (più difficile)

Siano $\{v_1, v_2, v_3\}$ tre vettori linearmente indipendenti. Si può concludere che anche i vettori $\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ sono linearmente indipendenti?

Esercizio 6

Nello spazio vettoriale delle funzioni continue da $\mathbb R$ in $\mathbb R$, si considerino le funzioni

$$f_1(x) = \sin x$$
, $f_2(x) = \sin 2x$, $f_3(x) = \sin 3x$

Si dica se esse sono linearmente indipendenti.

Esercizio 7

Verificare se il seguente insieme è un sottospazio vettoriale di \mathbb{R}^4 :

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid x_1 + x_2 \cdot x_3 - x_4 = 0 \right\}$$

Esercizio 8

Verificare se il seguente insieme è un sottospazio vettoriale di \mathbb{R}^3 :

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid -3x + z = 2x + y = 0 \right\}$$