03 Bayesian Linear Regression

June 25, 2021

Information: Basic concepts and simple examples of Bayesian linear regression

Written by: Zihao Xu

Last update date: 06.25.2021

1 Maximum Likelihood Estimation

1.1 Motivation

In the chapter talking about *Generalization and Regularization*, the concepts of parameter estimation, bias and variance are used to formally characterize notions of generalization, underfitting and overfitting. Here are some important remarks.

• View the parameter estimator $\hat{\theta}$ as a function of the sampled training dataset

$$\hat{\boldsymbol{\theta}} = g\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(m)}\right)$$

- The datasets (training, testing and probably validation) are generated by a **i.i.d.** probability distribution over datasets called the **data-generating process** (i.i.d. assumptions can be applied to almost all the common tasks)
- Assume that the true parameter value heta is fixed but unknown
- Since the **data** is drawn from a **random process**, any function of the data is random, which means the parameter estimator $\hat{\theta}$ is a **random variable**

The concepts of **bias** and **variance** are used to measure the performance of a parameter estimator. However, **for obtaining a good estimator**, it's not a good idea to guess that some function might make a good estimator and then to analyze its bias and variance. This motivated some principles from which specific functions that are good estimators for different models can be derived.

1.2 Definition

- Consider a set of m examples $\mathcal{D} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(m)}\}$ drawn independently from the true but unknown data-generating distribution $p_{\text{data}}(\mathbf{x})$. Let $p_{\text{model}}(\mathbf{x}|\boldsymbol{\theta})$ be a parametric family of probability distributions over the same space indexed by $\boldsymbol{\theta}$
 - That is to say, p_{model} maps any configuration \mathbf{x} to a real number estimating the true probability $p_{\text{data}}(\mathbf{x})$

 Particularly, focus on the likelihood which is first introduced in the prerequisite chapter Probability Theory

$$\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)} \mid \boldsymbol{\theta} \sim p_{\text{model}} \left(\mathbf{x}^{(1:m)} \mid \boldsymbol{\theta} \right)$$

As a fast review, the likelihood tells us how plausible it is to observe $\mathbf{x}^{(1:m)}$ if we know the model parameters are θ

Since the examples are assumed to be drawn independently, the likelihood can be factorized

$$p_{\text{model}}\left(\mathbf{x}^{(1:m)} \mid \boldsymbol{\theta}\right) = \prod_{i=1}^{m} p_{\text{model}}\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$$

Then **maximum likelihood** estimator for θ is then defined as

$$oldsymbol{ heta}_{ ext{ML}} = rg \max_{oldsymbol{ heta}} \prod_{i=1}^m p_{ ext{model}} \left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)$$

• While this simple production may lead to a lot of inconveniences such as **numerical underflow**, taking the **logarithm** of the likelihood does not change the location for maximum (arg max) but does conveniently transform a product into a sum

$$oldsymbol{ heta}_{ ext{ML}} = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \mathrm{log} p_{ ext{model}} \left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)$$

• Obviously, rescaling the likelihood does not change the location for maximum (arg max), we can divide by m to obtain a version of the criterion that is expressed as an expectation with respect to the empirical distribution \hat{p}_{data} defined by the training data

$$\boldsymbol{\theta}_{\mathrm{ML}} = \underset{\boldsymbol{\theta}}{\mathrm{arg\ max}} \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\mathrm{data}}} \left[\mathrm{log} p_{\mathrm{model}} \left(\mathbf{x} \mid \boldsymbol{\theta} \right) \right]$$

1.3 KL divergence

• Maximum likelihood estimation can be viewed as minimizing the dissimilarity between the empirical distribution \hat{p}_{data} , defined by the training set and the model distribution, with the degree of dissimilarity between the two measure by the **KL divergence**

$$D_{\mathrm{KL}}\left(\hat{p}_{\mathrm{data}} \left\| p_{\mathrm{model}} \right.\right) = \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\mathrm{data}}}\left[\mathrm{log} \hat{p}_{\mathrm{data}} \left. \left(\mathbf{x} \right) - \mathrm{log} p_{\mathrm{model}} \left. \left(\mathbf{x} \right| \right. \boldsymbol{\theta} \right.\right)\right]$$

The term on the left is a function only of the data-generating process, not the model. This means when we train the model to minimize the KL divergence, we need only minimize

$$-\mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} \left[\text{log} p_{\text{model}} \left(\mathbf{x} \, | \, \boldsymbol{\theta} \, \right) \right]$$

• Minimizing this KL divergence corresponds exactly to minimizing the cross-entropy between the distributions. By definition, any loss consisting a negative log-likelihood is a **cross-entropy** between the **empirical distribution** defined by the training set (\hat{p}_{data}) , and the **probability distribution** defined by the model (p_{model})

1.4 Least squares

- Least squares minimizing the mean square error is **equal** to maximum likelihood estimation when the likelihood is assigned to be **Gaussian**
- Assume the model is $\hat{y} = f(\mathbf{x}; \boldsymbol{\theta})$ with the dataset

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \cdots & \mathbf{x}^{(m)} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y^{(1)} & y^{(2)} & \cdots & y^{(m)} \end{bmatrix}$$

The solution for θ via least squares would be

$$\boldsymbol{\theta} = \underset{\boldsymbol{\theta}}{\operatorname{arg min}} \|\mathbf{y} - f(\mathbf{X}; \boldsymbol{\theta})\|_{2}^{2}$$

1.5 Supervised Learning

- The mathematical representations for applying the concept of maximum likelihood estimation to supervised learning tasks are quite similar but worth listing. Consider a set of m examples $\mathcal{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \cdots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$ drawn independently from the true but unknown data-generating distribution $p_{\text{data}}(\mathbf{x}, \mathbf{y})$
- In supervised learning, factorize the data-generating process

$$p_{\text{data}}(\mathbf{x}, \mathbf{y}) = p_{\text{data}}(\mathbf{y} \mid \mathbf{x}) p_{\text{data}}(\mathbf{x})$$

Let $p_{\text{model}}(\mathbf{x}, \mathbf{y}|\boldsymbol{\theta})$ be a parametric family of probability distributions over the same space indexed by $\boldsymbol{\theta}$. It also can be factorized

$$p_{\text{model}}(\mathbf{x}, \mathbf{y} | \boldsymbol{\theta}) = p_{\text{model}}(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) p_{\text{data}}(\mathbf{x})$$

• Notice that the later part $p_{\text{data}}(\mathbf{x})$ is fixed and not controlled by the parameter $\boldsymbol{\theta}$, the maximum likelihood estimation is going to focus on

$$p_{\text{model}}(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})$$

The maximum likelihood estimator is

$$\boldsymbol{\theta}_{\mathrm{ML}} = \arg\max_{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\mathrm{model}} \left(\mathbf{y}^{(i)} \;\middle|\; \mathbf{x}^{(i)}, \boldsymbol{\theta} \right)$$

• Similarly, this optimization problem is usually converted into a minimization problem by the **negative logarithm** operation