Clase nº7

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

6 de Septiembre 2021

Clase anterior

Ejemplo 28

Integrar por medio de sustituciones trigonométricas

$$\int \frac{2e^{4x}}{\sqrt{10-e^{4x}}} \cdot dx$$

Objetivo de la clase

Integrar una función racional por medio de fracciones simples o parciales.

$$\int \frac{5x - 4}{x^2 - x - 2} dx = \int \frac{2}{x - 2} dx + \int \frac{3}{x + 1} dx$$
$$= 2 \ln|x - 2| + 3 \ln|x + 1| + C$$

Definición 9

Una función racional R(x) es un cociente de polinomios, $R(x) = \frac{P(x)}{O(x)}$.

Idea

Para integrar R(x) estudiaremos la descomposición de R(x) en fracciones parciales simples.

Descomposición de un polinomio en factores

Consideremos el polinomio Q(x) de grado n, este polinomio se puede descomponer en factores lineales para las raíces reales y de factores cuadráticos no reducible en \mathbb{R} para las raíces complejas conjugadas. Es decir,

$$Q(x) = (x - r_1)^{n_1} ... (x - r_j)^{n_j} (a_1 x^2 + b_1 x + c_1)^{m_1} ... (a_k x^2 + b_k x + c_k)^{m_k},$$

donde, $n_1 + ... + n_j + m_1 + ... + m_k = n$, y $a_k x^2 + b_k x + c_k$ son polinomios irreducibles en \mathbb{R}

Ejemplo 30

a) $x^2 - 10x + 21 =$

a)
$$x^2 - 10x + 21 = (x - 3)(x - 7)$$

- a) $x^2 10x + 21 = (x 3)(x 7)$
- b) $x^2 + 1$, es irreducible en \mathbb{R} , pues sus raíces son i y -i.

- a) $x^2 10x + 21 = (x 3)(x 7)$
- b) $x^2 + 1$, es irreducible en \mathbb{R} , pues sus raíces son i y -i.
- c) $x^4 1 =$

- a) $x^2 10x + 21 = (x 3)(x 7)$
- b) $x^2 + 1$, es irreducible en \mathbb{R} , pues sus raíces son i y -i.
- c) $x^4 1 = (x^2 1)(x^2 + 1)$

- a) $x^2 10x + 21 = (x 3)(x 7)$
- b) $x^2 + 1$, es irreducible en \mathbb{R} , pues sus raíces son i y -i.
- c) $x^4 1 = (x^2 1)(x^2 + 1) = (x 1)(x + 1)(x^2 + 1)$.
- d) $x^3 + 4x^2 + 4x + 3 =$

Descomposición de una función racional en fracciones simples

Sea $R(x) = \frac{P(x)}{Q(x)}$, con P(x) y Q(x) polinomios. Si el grado del numerador es igual o mayor que el denominador, entonces realizando la división de polinomios obtenemos:

$$\frac{P(x)}{Q(x)} = F(x) + \frac{G(x)}{Q(x)},$$

donde F(x) y G(x) son polinomios tal que el grado de G(x) es menor que el grado de Q(x).

a)
$$\frac{x^2 + 9x + 18}{x + 3} =$$

a)
$$\frac{x^2 + 9x + 18}{x + 3} = x + 6$$
. En este caso $F(x) = x + 6$ y $G(x) = 0$.

a)
$$\frac{x^2 + 9x + 18}{x + 3} = x + 6$$
. En este caso $F(x) = x + 6$ y $G(x) = 0$.

b)
$$\frac{8x^3 + 5x^2 - 3x + 5}{x^2 - 1} =$$

a)
$$\frac{x^2 + 9x + 18}{x + 3} = x + 6$$
. En este caso $F(x) = x + 6$ y $G(x) = 0$.

b)
$$\frac{8x^3 + 5x^2 - 3x + 5}{x^2 - 1} = 8x + 5 + \frac{5x + 10}{x^2 - 1}$$
. En este caso $F(x) = 8x + 5$ y $G(x) = 5x + 10$.

Teorema 10

Sea $R(x) = \frac{P(x)}{Q(x)}$ una función racional con P(x) y Q(x) polinomios con coeficientes reales y tales que

a) Q(x) puede descomponerse de la forma

$$Q(x) = (x-r_1)^{n_1}...(x-r_j)^{n_j}(a_1x^2+b_1x+c_1)^{m_1}...(a_kx^2+b_kx+c_k)^{m_k},$$

- b) P(x) y Q(x) no tienen factores comunes,
- c) el grado del numerador es menor que el del denominador.

Entonces R(x) puede escribirse de la forma:

Teorema 10

$$R(x) = \frac{A}{(x - r_1)^{n_1}} + \frac{B}{(x - r_1)^{n_1 - 1}} + \dots + \frac{C}{(x - r_1)}$$

$$+ \frac{D}{(x - r_2)^{n_2}} + \frac{E}{(x - r_2)^{n_2 - 1}} + \dots + \frac{F}{(x - r_2)}$$

$$+ \dots +$$

$$+ \frac{Gx + H}{(a_1 x^2 + b_1 x + c_1)^{m_1}} + \frac{Ix + K}{(a_2 x^2 + b_2 x + c_2)^{m_1 - 1}} + \dots$$

$$+ \frac{Lx + M}{(a_1 x^2 + b_1 x + c_1)} + \dots +$$

$$+ \frac{Nx + P}{(a_k x^2 + b_k x + c_k)^{m_k}} + \frac{Qx + R}{(a_k x^2 + b_k x + c_k)^{m_k - 1}} + \dots$$

$$+ \frac{Sx + T}{(a_k x^2 + b_k x + c_k)}$$

para todo x tal que $Q(x) \neq 0$; y donde A, B, C, ..., son constantes reales.

Observación

Para encontrar las constantes A, B, C, ..., (del teorema anterior) se debe realizar la suma de fracciones del segundo miembro cuyo mínimo común denominador es Q(x), y se obtiene que:

$$\frac{P(x)}{Q(x)} = \frac{S(x)}{Q(x)},\tag{1}$$

donde S(x) involucra los coeficientes desconocidos A, B, C, ...De la ecuación (3) se obtiene

$$P(x) = S(x)$$
.

Recordamos y utilizamos el hecho de que dos polinomios son iguales si sus respectivos coeficientes de las potencias de x son iguales, se obtienen las ecuaciones cuyas soluciones dan los valores de A,B,C,...

Ejemplo 32
$$\frac{5x-4}{(x-2)(x+1)} =$$

Ejemplo 32	

Ejemplo 33 $\frac{x^2 + 2x + 3}{(x-1)^2(x^2+1)} =$

Ejemplo 33		

Integración de funciones Racionales

Desarrollando una función racional en fracciones simples o parciales, la integral de dicha función se transforma en una suma de integrales del tipo:

1.
$$\int \frac{A}{x-a} dx,$$

$$2. \int \frac{A}{(x-a)^n dx}, \ n \neq -1,$$

3.
$$\int \frac{Ax+B}{(ax^2+bx+c)^n} dx$$
, cuando ax^2+bx+c no tiene raíces reales.

$$\int \frac{3x-5}{x^2-4x+3} \, dx =$$

Ejercicio propuesto

$$\int \frac{x^5 + 8x^2 - x + 1}{x^3 - 4x^2 + x + 6} \, dx =$$

$$\int \frac{x^2 + 2x + 3}{(x - 1)^2(x^2 + 1)} \, dx =$$

Ejemplo 35		

$$\int \frac{3x-2}{x^2+x+1} \, dx =$$

Ejemplo 36		

Ejemplo 36		

Observación

Podemos notar que:

1.
$$\int \frac{A}{x-a} dx = A \ln|x-a| + C,$$

2.
$$\int \frac{A}{(x-a)^n} dx = \frac{-A}{(n-1)(x-a)^{n-1}} + C, \ n \neq -1, a > 0.$$

Observación

Para calcular $\int \frac{Ax + B}{(ax^2 + bx + c)^n} dx$, donde $ax^2 + bx + c$ no tiene raíces reales, podemos:

a) Completar el cuadrado del binomio en el denominador

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right]$$
$$= a \left(x + \frac{b}{2a} \right)^{2} + \frac{4ac - b^{2}}{4a}$$

(2)

Observación

b) Consideramos z una variable que cumple con:

$$a\left(x+\frac{b}{2a}\right)^2 = \frac{4ac-b^2}{4a}z^2\tag{3}$$

Despejando nos quedaremos con:

$$x = -\frac{b}{2a} + \frac{\sqrt{ac - b^2}}{2a}z; a > 0$$
 (4)

Observación

c) Utilizando (2) y (3) se obtiene que

$$ax^{2} + bx + c = \left[\frac{4ac - b^{2}}{4a}\right](z^{2} + 1)$$

Observación

d) Utilizando (4) se obtiene que

$$\int \frac{Ax+B}{(ax^2+bx+c)^n} dx = \int \frac{Cz+D}{(z^2+1)^n} dz$$

$$= C \int \frac{z}{(z^2+1)^n} dz + D \int \frac{1}{(z^2+1)^n} dx;$$
donde A,B,C,D son constantes.

Ejercicio Propuesto

$$\int \frac{x+1}{3x^2+6x+9} dx = I \text{ Para resolver } I:$$

- a) ¿Puedo utilizar algo similar a los ejemplos anteriores?
- b) ¿Qué problemas surgen al intentar resolver esta integral?
- c) ¿Qué diferencia hay entre los polinomios Q(x) de los ejemplos anteriores y el polinomio $3x^2 + 6x + 9$?

Ejercicio Propuesto

a)
$$\int \frac{x^3 + 3x}{(x+2)(x-1)} dx$$

b)
$$\int \frac{1}{(x-3)(x+4)(x-5)} dx$$

c)
$$\int \frac{x^5}{(x^2+1)(x-1)} dx$$

d)
$$\int \frac{x^3+1}{(x^2+1)^2} dx$$

Bibliografía

		Autor	Título	Editorial	Año
1	1	1 Stewart, James	Cálculo de varias variables:	México: Cengage	2021
	1		trascendentes tempranas	Learning	2021
Ī	2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	2	Juan de	de una variable	Hill	1994
Ī	2	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
	5		con Aplicaciones	THOMSON	2001
	4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.