Course Code	Code Course Title			Т	Р	С
BECE312L	BECE312L Robotics and Automation				0	3
Pre-requisite	NIL	Syllabus version				
			1	.0		

Course Objectives

- 1. To provide basic understanding of robotics and automation.
- 2. To demonstrate the need of various sensors and drives in robotic system.
- 3. To make students understand about the robotic kinematics, path planning and different trajectories.
- 4. To deliver the programming languages to design robots in practice and research for contemporary use.

Course Outcomes

At the end of the course, students will be able to

- 1. Classify robots and summaries their role in diverse applications
- 2. Infer the working of basic electric, electronic, and other types of drives required in robots.
- 3. Distinguish and interpret the sensors for various applications in robotics and automation.
- 4. Determine the mathematical model of robotic systems and analyze their kinematic behavior.
- 5. Design robots for varied working environments encompassing all types of motions across different paths and diverse trajectories.
- 6. Apply the ideas in performing various robotic tasks for contemporary industry standards using suitable programming skills.

Module:1Robotics and Automation5 hoursRobots: Basics, Types-Application, Mobility, DoF, Terrain, components
classification, performance characteristics, Industrial Robots, HRI, Automatic
assembly system.Module:2Drives for Robotics5 hoursDrives: Electric, hydraulic and pneumatic drives.Module:3Sensors for Robots7 hours

Tactile sensors - Proximity and range sensors - Optical Sensor- limit switch sensor- surface array sensor- Acoustic sensors - Vision sensor systems - Vision feedback system - Image processing and analysis - Image data reduction - Segmentation - Feature extraction - Object recognition.

Module:4Robot Kinematics and Dynamics10 hoursKinematics of manipulators, rotational, translation and transformation Homogeneous, Transformations, Denavat – Hartenberg Representation, Inverse Kinematics. Linearization of Robot Dynamics – State variable continuous and discrete models.

Module:5 Path Planning 5 hours Types of trajectories, trajectory planning and avoidance of obstacles, path

planning, skew motion, joint integrated motion and straight line motion.

Module:6Programming of Robots5 hoursRobot programming: ROS1 and ROS2, languages and software packages-MATLAB/Simulink, OpenRDK, Adams.

Module:7 Application of Robots 6 hours

Industrial robots used for welding, painting and assembly, remote controlled robots, robots for nuclear, thermal and chemical plants, industrial automation, typical examples of automated Industries. Humanoid robots. medical robots.

under water robots, drones. Module:8 Contemporary Issues 2 hours								
Мо	Module:8 Contemporary Issues							
		T-(-11(45 1					
		Total Lecture hours:	45 hours					
Tex	ct Book	(s)						
1.		M. Lynch, Frank C. Park, "Modern Robotics- Mechanics, P	lanning, and					
	Control", 2017, Cambridge University Press.							
Ref	Reference Books							
1.	R. K. N	R. K. Mittal, I. J. Nagrath, "Robotics and Control", 2017, McGraw Hill Education,						
	India,							
2.	Ramkı	rumar Gandhinathan, Lentin Joseph, "ROS Robotics Projects-Build and						
	Control Robots Powered by the Robot Operating System, Machine Learning,							
		Virtual Reality", 2019, Packt Publishing.						
3.	Hutchinson, S., Spong, M. W., Vidyasagar, M. "Robot Modeling and Control",							
		Wiley publications, United Kingdom.						
1		Pawlak, A. M. Sensors and Actuators in Mechatronics: Design and						
4.		Applications, 2017, CRC Press, United Kingdom.						
5.		entin Joseph, "Robot Operating System (ROS) for Absolute Beginners -						
5.	Roboti	cs Programming Made Easy, 2018, Apress.						
		valuation: Continuous Assessment Test, Digital Assignn	nent, Quiz and					
Final Assessment Test								

Final Assessment Test

Recommended by Board of Studies	28-02-2023		
Approved by Academic Council	No. 69	Date	16-03-2023