Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website		vii	
Ac	know	ledgments	viii
No	otatio	n	xi
1	Intro	oduction Who Should Read This Book?	1 8
	1.2	Historical Trends in Deep Learning	11
Ι	Appl	lied Math and Machine Learning Basics	29
2	Line	ar Algebra	31
	2.1	Scalars, Vectors, Matrices and Tensors	31
	2.2	Multiplying Matrices and Vectors	34
	2.3	Identity and Inverse Matrices	36
	2.4	Linear Dependence and Span	37
	2.5	Norms	39
	2.6	Special Kinds of Matrices and Vectors	40
	2.7	Eigendecomposition	42
	2.8	Singular Value Decomposition	44
	2.9	The Moore-Penrose Pseudoinverse	45
	2.10	The Trace Operator	46
	2.11	The Determinant	47
	2.12	Example: Principal Components Analysis	48
3	Prob	pability and Information Theory	53
	3.1	Why Probability?	54

	3.2	Random Variables	56
	3.3	Probability Distributions	56
	3.4	Marginal Probability	58
	3.5	Conditional Probability	
	3.6	The Chain Rule of Conditional Probabilities	59
	3.7	Independence and Conditional Independence	60
	3.8	Expectation, Variance and Covariance	60
	3.9	Common Probability Distributions	62
	3.10	Useful Properties of Common Functions	67
	3.11	Bayes' Rule	
	3.12	Technical Details of Continuous Variables	
	3.13	Information Theory	73
	3.14	Structured Probabilistic Models	75
4	Nun	nerical Computation	80
	4.1	Overflow and Underflow	80
	4.2	Poor Conditioning	
	4.3	Gradient-Based Optimization	
	4.4	Constrained Optimization	93
	4.5	Example: Linear Least Squares	
5	Mac	hine Learning Basics	98
	5.1	Learning Algorithms	99
	5.2	Capacity, Overfitting and Underfitting	
	5.3	Hyperparameters and Validation Sets	
	5.4	Estimators, Bias and Variance	
	5.5	Maximum Likelihood Estimation	131
	5.6	Bayesian Statistics	
	5.7	Supervised Learning Algorithms	
	5.8	Unsupervised Learning Algorithms	
	5.9	Stochastic Gradient Descent	151
	5.10	Building a Machine Learning Algorithm	
	5.11	Challenges Motivating Deep Learning	155
II	Dee	p Networks: Modern Practices	166
6		p Feedforward Networks	168
	6.1	Example: Learning XOR	
	6.2	Gradient-Based Learning	177

	6.3	Hidden Units	191	
	6.4	Architecture Design	197	
	6.5	Back-Propagation and Other Differentiation Algorithms	204	
	6.6	Historical Notes	224	
7	Regi	ularization for Deep Learning	228	
	7.1	Parameter Norm Penalties	230	
	7.2	Norm Penalties as Constrained Optimization	237	
	7.3	Regularization and Under-Constrained Problems	239	
	7.4	Dataset Augmentation	240	
	7.5	Noise Robustness	242	
	7.6	Semi-Supervised Learning	243	
	7.7	Multi-Task Learning		
	7.8	Early Stopping	246	
	7.9	Parameter Tying and Parameter Sharing		
	7.10	Sparse Representations	254	
	7.11	Bagging and Other Ensemble Methods		
	7.12	Dropout		
	7.13	Adversarial Training		
	7.14	Tangent Distance, Tangent Prop, and Manifold Tangent Classifier	270	
8	Optimization for Training Deep Models 274			
	8.1	How Learning Differs from Pure Optimization	275	
	8.2	Challenges in Neural Network Optimization	282	
	8.3	Basic Algorithms	294	
	8.4	Parameter Initialization Strategies	301	
	8.5	Algorithms with Adaptive Learning Rates	306	
	8.6	Approximate Second-Order Methods		
	8.7	Optimization Strategies and Meta-Algorithms	317	
9	Convolutional Networks 330			
	9.1	The Convolution Operation	331	
	9.2	Motivation	335	
	9.3	Pooling	339	
	9.4	Convolution and Pooling as an Infinitely Strong Prior	345	
	9.5	Variants of the Basic Convolution Function	347	
	9.6	Structured Outputs	358	
	9.7	Data Types	360	
	9.8	Efficient Convolution Algorithms	362	
	9.9	Random or Unsupervised Features	363	

	9.10	The Neuroscientific Basis for Convolutional Networks	364
	9.11	Convolutional Networks and the History of Deep Learning $\ . \ . \ .$	371
10	Sequ	ence Modeling: Recurrent and Recursive Nets	373
	10.1	Unfolding Computational Graphs	375
	10.2	Recurrent Neural Networks	378
	10.3	Bidirectional RNNs	394
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	396
	10.5	Deep Recurrent Networks	398
	10.6	Recursive Neural Networks	400
	10.7	The Challenge of Long-Term Dependencies	401
	10.8	Echo State Networks	404
	10.9	Leaky Units and Other Strategies for Multiple Time Scales	406
	10.10	The Long Short-Term Memory and Other Gated RNNs	408
	10.11	Optimization for Long-Term Dependencies	
	10.12	Explicit Memory	416
11	Pract	tical Methodology	421
	11.1	Performance Metrics	422
	11.2	Default Baseline Models	425
	11.3	Determining Whether to Gather More Data	
	11.4	Selecting Hyperparameters	
	11.5	Debugging Strategies	436
	11.6	Example: Multi-Digit Number Recognition	440
12	Applications 443		
	12.1	Large-Scale Deep Learning	443
	12.2	Computer Vision	452
	12.3	Speech Recognition	458
	12.4	Natural Language Processing	461
	12.5	Other Applications	478
III	Dog	ep Learning Research	486
111	Dec	p bearing research	100
13		ar Factor Models	489
	13.1	Probabilistic PCA and Factor Analysis	
	13.2	Independent Component Analysis (ICA)	
	13.3	Slow Feature Analysis	
	13.4	Sparse Coding	496

	13.5	Manifold Interpretation of PCA	499
14	Auto	pencoders	502
	14.1	Undercomplete Autoencoders	503
	14.2	Regularized Autoencoders	504
	14.3	Representational Power, Layer Size and Depth	508
	14.4	Stochastic Encoders and Decoders	509
	14.5	Denoising Autoencoders	510
	14.6	Learning Manifolds with Autoencoders	515
	14.7	Contractive Autoencoders	521
	14.8	Predictive Sparse Decomposition	523
	14.9	Applications of Autoencoders	524
15	Rep	resentation Learning	526
	15.1	Greedy Layer-Wise Unsupervised Pretraining	528
	15.2	Transfer Learning and Domain Adaptation	536
	15.3	Semi-Supervised Disentangling of Causal Factors	541
	15.4	Distributed Representation	546
	15.5	Exponential Gains from Depth	
	15.6	Providing Clues to Discover Underlying Causes	554
16	Structured Probabilistic Models for Deep Learning 558		
	16.1	The Challenge of Unstructured Modeling	559
	16.2	Using Graphs to Describe Model Structure	563
	16.3	Sampling from Graphical Models	580
	16.4	Advantages of Structured Modeling	582
	16.5	Learning about Dependencies	582
	16.6	Inference and Approximate Inference	584
	16.7	The Deep Learning Approach to Structured Probabilistic Models	585
17	Monte Carlo Methods 59		590
	17.1	Sampling and Monte Carlo Methods	590
	17.2	Importance Sampling	592
	17.3	Markov Chain Monte Carlo Methods	595
	17.4	Gibbs Sampling	599
	17.5	The Challenge of Mixing between Separated Modes	599
18	Conf	fronting the Partition Function	605
	18.1	The Log-Likelihood Gradient	
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	607

	18.3	Pseudolikelihood	615
	18.4	Score Matching and Ratio Matching	617
	18.5	Denoising Score Matching	619
	18.6	Noise-Contrastive Estimation	620
	18.7	Estimating the Partition Function	
19	Appr	oximate Inference	631
	19.1	Inference as Optimization	633
	19.2	Expectation Maximization	634
	19.3	MAP Inference and Sparse Coding	635
	19.4	Variational Inference and Learning	638
	19.5	Learned Approximate Inference	
20	Deep	Generative Models	654
	20.1	Boltzmann Machines	654
	20.2	Restricted Boltzmann Machines	656
	20.3	Deep Belief Networks	660
	20.4	Deep Boltzmann Machines	663
	20.5	Boltzmann Machines for Real-Valued Data	676
	20.6	Convolutional Boltzmann Machines	683
	20.7	Boltzmann Machines for Structured or Sequential Outputs	685
	20.8	Other Boltzmann Machines	686
	20.9	Back-Propagation through Random Operations	687
	20.10	Directed Generative Nets	692
		Drawing Samples from Autoencoders	
		Generative Stochastic Networks	
	20.13	Other Generation Schemes	716
		Evaluating Generative Models	
	20.15	Conclusion	720
Bil	oliogra	aphy	72 1
Inc	Index 7		

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.