CORRIGE CONTRÔLE CONTINU ALGEBRE 1

Département de Mathématiques

Faculté des Sciences

30/11/2017 Contrôle Continu Algèbres

EXERCICE 1: 7Pts

1) a) L'implication suivante est-elle vraie? Justifier.

 $\exists \alpha \in IR$, $\forall x \in IR$, $\forall y \in IR$, $|x^2 - y^2| \le \alpha |x - y|$ $\rightarrow \exists \alpha \in IR_+^*, \forall x \in IR, x^2 \leq \alpha |x|$

b) Donner la négation de cette assertion.

SOLUTION:

1) a) -----

Soit P: $\exists \alpha \in IR$, $\forall x \in IR$, $\forall y \in IR$, $|x^2 - y^2| \leq \alpha |x - y|$ et soit $Q: \exists \alpha \in IR^*_+, \ \forall x \in IR, \ x^2 \leq \alpha |x|$.

P est supposée vraie pour tout y EIR,

donc en particulier pour y=0. 2pts

 $\triangleright'\circ\dot{\alpha}: \exists \alpha \in IR, \quad \forall x \in IR, \quad |x^2 - 0| \le \alpha |x - 0|$

soit $\exists \alpha \in IR$, $\forall x \in IR$, $x^2 \leq \alpha |x|$.

 $\leq i \quad x \neq 0$, alors $\frac{x^2}{|x|} \leq \alpha$, soit $\alpha \geq |x| > 0$. 0.5 pt

 $\triangleright'\circ \dot{\alpha}: \exists \alpha \in IR_+^*, \ \forall x \in IR, \ x^2 \leq \alpha |x|.$ 0.5 pt

1pt

SI ON MONTRE QUEPEST FAUSSE = 3pts

b) La négation est: P et non(Q) 1pt, soit: $\exists \alpha \in IR, \ \forall x \in IR, \ \ \forall y \in IR, \ \ |x^2 - y^2| \le \alpha |x - y|$ 1pt

 $\forall \alpha \in IR_+^*, \exists x \in IR, \quad x^2 > \alpha |x|.$ 1pt et

3 pts

2) Montrer que : $(\forall \varepsilon > 0 \mid y-1| \leq \varepsilon) \rightarrow y=1$

Raisonnons par contraposition et montrons que:

$$y \neq 1 \rightarrow (\exists \varepsilon > 0 | y - 1 | > \varepsilon)$$
. 0.5 pt

Alors, peut-on trouver $\varepsilon > 0$ tel que

$$|y-1| > \varepsilon$$
 avec $y \neq 1$, soit $y-1 \neq 0$?

La réponse est OUI : choisissons par exemple: $\varepsilon = \frac{|y-1|}{2}$. 0.5 pt 1pt

EXERCICE 2: 5Pts

Montrer par contraposition puis par <u>l'absurde</u> que si 3 divise $x^2 + y^2$ alors 3 divise x et 3 divise y.

SOLUTION:

Par contraposition: Montrons que si

(3 ne dívise pas x) ou (3 ne dívise pas y) alors 3 ne dívise pas $x^2 + y^2$. On saít (cours) que: Sí p dívise n^2 alors p dívise n où p est premier. 3 ne dívise pas x, donc 3 ne dívise pas x^2 ,

soit
$$x^2 = 3k + r$$
, $k \in IN$, $r \in]0,3[$ 1pt

Considérons le « ou » exclusif ET NON le « ou » inclusif:

3 divise y, donc 3 divise y^2 , soit $y^2=3k', k'\in IN$ 1pt D'où $x^2+y^2=3k''+r, k''=k+k'\in IN, r\in]0,3[$ 1pt

soit 3 ne divise pas $x^2 + y^2$.

3pts

Par absurde: Supposons:

(3 dívise x^2+y^2) et [(3 ne dívise pas x) ou (3 ne dívise pas y)]. 1pt Comme dans la contraposition on a :

I(3 ne dívise pas x) ou (3 ne dívise pas y)] nous donne;

$$x^2+y^2=3k''+r,\;\;k''\in \mathit{IN},\;r\in]0,3[\;.\;\;$$
 Cecí contredit le fait que :

 \exists divise $x^2 + y^2$. 1pt

2pts

EXERCICE3: 5 Pts

Soient E, F et G trois parties d'un ensemble X.

1) Montrer que: $(E\Delta F)\Delta G =$

 $(E \cap nF \cap nG) \cup (F \cap nE \cap nG) \cup (G \cap nE \cap nF) \cup (G \cap E \cap F)$

2) Déduire que : $(E\Delta F)\Delta G = (G\Delta F)\Delta E$

nA est le complémentaire de A dans X

SOLUTION:

1)
$$(E \Delta F) \Delta G = ((E \cap nF) \cup (F \cap nE)) \Delta C$$

$$= (((E \cap nF) \cup (F \cap nE)) \cap nG) \cup (G \cap n[(E \cap nF) \cup (F \cap nE)])1pt$$

$$= (E \cap nF \cap nG) \cup (F \cap nE \cap nG) \cup (G \cap ((nE \cap nF) \cup (F \cap E)))1pt$$

$$= (E \cap nF \cap nG) \cup (F \cap nE \cap nG) \cup (G \cap nE \cap nF) \cup (G \cap F \cap E) 1pt$$

3 Pts

2) Dans l'égalité précédente on échange ϵ et ϵ . On remarquera très aisément que $(E\Delta F)\Delta G = (G\Delta F)\Delta E$

$$n \rightarrow (n, (n+1)^2)$$

1) g est-elle injective?

DEFINITION DE L'INJECTION = 1pt

La démonstration ci-dessous = 1pt.

Soient $n1$ et $n2$ deux entiers naturels.

 $g(n1) = g(n2)$ implique $(n1, (n1+1)^2) = (n2, (n2+1)^2)$

EXERCICE4 4 pts Soit $g: IN \rightarrow IN^2$ une application

g(n1)=g(n2) implique (n1, (n1+1)²)= (n2, (n2+1)²)
d'où
$$n1 = n2$$
 et $(n1+1)^2 = (n2+1)^2$, soit
 $n1 = n2$ et [$n1+1=n2+1$ ou $n1+1=-n2-1$]
Soit $n1 = n2$ et [$n1 = n2$ ou $n1 = -n2-2$].
Or $n1 = -n2-2 < 0$ (impossible).

Donc
$$[n1=n2]$$
 ou $n1=-n2-2$] équivaut $n1=n2$, d'où $(n1=n2]$ et $[n1=n2]$ ou $n1=-n2-2$]) équivaut $n1=n2$. g est donc injective.

2) Déterminer l'image réciproque de $\{(1,1)\}$.

L'image réciproque de l'ensemble $\{(1,1)\}$ est l'ensemble des entiers naturels n tel que $(n,(n+1)^2)=(1,1)$. 0.5 pt Soit : n=1 et $(n+1)^2=1$, d'où : n=1 et $n^2+2n=0$. Ce qui est faux. Donc l'image réciproque de l'ensemble $\{(1,1)\}$ est vide. 0.5 pt

- 3) A-t-on $g(IN)=IN^2$? Justifier Le couple $(1,1)\in IN^2$ n'a pas d'antécédent dans IN. Ceci suffit pour dire qu'on a pas $g(IN)=IN^2$. O.5pt
- 4) Que peut-on dire quand à la surjection de g?

 DEFINITION DE LA SURJECTION = 0.5 PT même si la réponse à la question est fausse

D'après 2) g n'est pas surjective. 0.5pt