Analysis and Design of Algorithms

Chapter 7: Transform and Conquer

School of Software Engineering © Yaping Zhu

Transform and Conquer

- This group of techniques solves a problem based on transformation.
 - Two stages:
 - ▶ 第一步:变。把问题的实例变得更容易。
 - ▶ 第二步:治。对实例进行求解。

Transform and Conquer

- Three variations of Transform and Conquer tech.
 - Differ by what we transform a given instance to:
 - → instance simplification (实例化简):
 to a simpler/more convenient instance of the same problem
 - → representation change (改变表现):
 to a different representation of the same instance
 - → problem reduction (问题化简):
 to a different problem for which an algorithm is already available

Transform and Conquer

- **Three variations of Transform and Conquer tech.**
 - → 变治法策略:

Presorting --- Instance simplification

- Checking if all elements are distinct (element uniqueness)
- Computing a mode
- Searching

Element Uniqueness with presorting

- → Element Uniqueness problem --a brute-force method
- compare all pairs of the array's elements until either two equal elements found or no more pairs left

$$C_{worst}(n) = \frac{n(n-1)}{2} \in \Theta(n^2)$$

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

Element Uniqueness with presorting

- Element Uniqueness problem --Presorting-based method
- Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
- Stage 2: scan array to check pairs of adjacent elements

```
ALGORITHM PresortElementUniqueness (A[0..n-1]) //Solves the element uniqueness problem by sorting the array first //Input: An array A[0..n-1] of orderable elements //Output: Returns "true" if A has no equal elements, "false" otherwise sort the array A for i \leftarrow 0 to n-2 do if A[i] = A[i+1] return false return true
```

Presorting - Instance simplification

- → 常见排序算法的时间效率:
- Selection Sort : $\Theta(n^2)$
- Bubble Sort : Θ (n²)
- Insertion Sort : $C_{worst}(n) \in \Theta(n^2)$

 $C_{best}(n) \in \Theta(n)$ $C_{avo}(n) \in \Theta(n^2)$

• Mergesort : $C_{worst}(n) \in \Theta$ (n log n)

• Quicksort : $C_{worst}(n) \in \Theta$ (n^2) $C_{best}(n) \in \Theta$ ($n \log n$) $C_{avg}(n) \in O(n \log n)$

没有一种基于比较的普通算法,在最坏情况下的效率能够超过n log n,平均效率也是。

Element Uniqueness with presorting

Element Uniqueness problem --Presorting-based method

Efficiency Analysis:

- time spent on sorting : at least n log n comparisons
- time spent on checking consecutive elements: no more than n-1 comparisons
- use a good sorting alg.

$$C(n)=C_{sort}(n)+C_{scan}(n)=\Theta(n log n)+\Theta(n)=\Theta(n log n)$$

If
$$t_1(n) \in O(g_1(n))$$
 and $t_2(n) \in O(g_2(n))$, then
$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Computing a mode

Mode: a value that occurs most often in a given list of numbers

e.g. For {5, 1, 5, 7, 6, 5, 7} mode is 5

- Brute-force method
 - Idea:
 - Scan the list, compute the frequency of all its distinct values
 - find the value with the largest frequency

Computing a mode

- Brute-force method ('cont)
 - implementation:
- Store the values already encountered, along with their frequencies, in an auxiliary list (the values in this auxiliary list are all distinct);
- On each iteration, the *i*th element of the original list is compared with the values already encountered by traversing this an auxiliary list;
- If a matching value is found, its frequency is incremented;
- otherwise, the current element is added to the auxiliary list with frequency of 1.

Computing a mode

Brute-force method ('cont)

Worst case analysis

- When a list with no equal elements, the *i*th element is compared with *i*-1 elements of the auxiliary list.
- number of comparisons in creating the frequency auxiliary list

$$C(n) = \sum_{i=1}^{n} (i-1) = \frac{(n-1)n}{2} \in \theta(n^2)$$

- number of comparisons to find the largest frequency in the auxiliary list: n-1
- The overall time efficiency: Θ(n²)

Computing a mode

Computing a mode with presorting

Idea:

- sort the input firstly, then all equal values will be adjacent
- find the longest run of the adjacent equal values in the sorted array

Computing a mode with presorting

```
ALGORITHM PresortMode(A[0..n-1])
    //Computes the mode of an array by sorting it first
    //Input: An array A[0..n-1] of orderable elements
    //Output: The array's mode
    sort the array A
                               //current run begins at position i
    i \leftarrow 0
    modefrequency \leftarrow 0 //highest frequency seen so far
    while i \leq n-1 do
         runlength \leftarrow 1; \quad runvalue \leftarrow A[i]
         while i + runlength \le n - 1 and A[i + runlength] = runvalue
             runlength \leftarrow runlength + 1
         if runlength > modef requency
             modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
         i \leftarrow i + runlength
    return modevalue
```

Computing a mode

- Efficiency analysis:
- time spent on sorting : at least **n** log **n** comparisons –determine the overall efficiency
- time spent on checking longest run of the adjacent : linear
 - Conclusion: using a good sorting algorithm $\in \Theta(n \log n)$

Searching problem

- --- Search for a given K in A[0..n-1]
 - Brute-force method
 - sequential search :

$$T_{\text{worst}}(n) = n$$
 $T_{\text{best}}(n) = 1$

$$T_{avg}(n) = \frac{p(n+1)}{2} + n(1-p)$$

Searching problem

- Searching with presorting
- time spent on sorting: at least n log n comparisons
- time spent on binary search:

$$C_{worst}(n) = \lfloor \log_2 n \rfloor + 1 = \Theta (\log n);$$
 $C_{best}(n) = 1$
 $C_{avg}(n) = \Theta (\log n);$

如果在查找问题中,预先对数组进行排序,那么算法效率为:

$$C(n)=C_{sort}(n)+C_{search}(n)=\Theta(n\log n)+\Theta(\log n)=\Theta(n\log n)$$

比顺序查找还要差

如果要在同一个列表中进行多次查找,可以考虑对列表进行预排序。(思考:为了使预排序的花费有价值,最少需要进行多少次查找?)

Presorting - Instance simplification

- → 实例化简应用 --预排序 (presorting)
 - Benefit from presorting :
 - ★ the benefits of a sorted list should be more than compensate for the time spent on sorting
- ☆ generally comparison-based sorting alg. worst case, at least n log n

■ 实例化简 --高斯消去法(Gaussian Elimination)

Problem: Given: a system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Idea:

Stage1: Elementary operations (初等变换): Transform to an equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

$$a_{1,1}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{22}x_2 + \dots + a_{2n}x_n = b_2$

$$a_{nn}x_n=b_n$$

Gaussian Elimination What's Elementary operations

To change from a system with an arbitrary coefficient matrix to an equivalent system with an upper triangular coefficient matrix by

- exchanging two equations of the system
- replacing an equation with its nonzero multiple
- replacing an equation with a sum or difference of this equation and some multiple of the former

Gaussian Elimination What's Elementary operations Specifically:

- Use a_{11} as a pivot to make all x_1 coefficients zeros in the equations below the first one;
- Replace the second equation with the difference between it and **the first** equation multiplied by a_{21}/a_{11} to get an equation with zero coefficient for $x_{1;}$
- Doing the same for the third, fourth, and finally nth equation with the multiples a_{31}/a_{11} , a_{41}/a_{11} , a_{n1}/a_{11} of the first equation.

Gaussian Elimination

Stage2: Solve the latter by **backward substitutions** starting with the last equation and moving up to the first one.

Specifically:

- ① Find the value of x_n from the last equation immediately;
- ② Substitute this value into the next to last equation to get x_{n-1} ;
- 3 And so on, until we substitute the known values of the last n-1 variables into the first equation, to find the value of x_1 .

Gaussian Elimination

Solve
$$2x_1 - x_2 + x_3 = 1$$
$$4x_1 + x_2 - x_3 = 5$$
$$x_1 + x_2 + x_3 = 0$$

Gaussian elimination:

Backward substitution:

$$x_3 = (-2) / 2 = -1$$

 $x_2 = (3 - (-3) x_3) / 3 = 0$
 $x_1 = (1 - x_3 - (-1) x_2)/2 = 1$

Gaussian Elimination

Stage1: Elementary operations

--前向消去法(forward elimination)

```
ALGORITHM
                ForwardElimination(A[1..n, 1..n], b[1..n])
    //Applies Gaussian elimination to matrix A of a system's coefficients,
    //augmented with vector b of the system's right-hand side values
    //Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
    //Output: An equivalent upper-triangular matrix in place of A with the
    //corresponding right-hand side values in the (n + 1)st column
    for i \leftarrow 1 to n do A[i, n+1] \leftarrow b[i] //augments the matrix
    for i \leftarrow 1 to n-1 do
         for j \leftarrow i + 1 to n do
             for k \leftarrow i to n+1 do
                  A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]
```

Gaussian Elimination

Two considerations

1. If A[i, i] = 0

- \rightarrow exchange the *i*th row with some row below it with a nonzero coefficient in the *i*th column.
- 2. If A[i, i] is so small that consequently the scaling factor A[j, i]/A[i, i] so large that new A[j, k] might distorted by a round-off error caused by a subtraction of two numbers of greatly different magnitudes.
 - → look for a row in the largest absolute value of the coefficient in the *i*th column, exchange it with the *i*th row --- partial pivoting (保证比例因子的绝对值永远不会大于1)

Gaussian Elimination

Stage1: Better Forward Elimination (改进之后)

```
ALGORITHM
                  BetterForwardElimination(A[1..n, 1..n], b[1..n])
    //Implements Gaussian elimination with partial pivoting
    //Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
    //Output: An equivalent upper-triangular matrix in place of A and the
    //corresponding right-hand side values in place of the (n + 1)st column
    for i \leftarrow 1 to n do A[i, n+1] \leftarrow b[i] //appends b to A as the last column
    for i \leftarrow 1 to n-1 do
         pivotrow \leftarrow i
         for j \leftarrow i + 1 to n do
              if |A[j,i]| > |A[pivotrow, i]| pivotrow \leftarrow j
         for k \leftarrow i to n+1 do
              swap(A[i, k], A[pivotrow, k])
         for i \leftarrow i + 1 to n do
              temp \leftarrow A[j, i] / A[i, i]
              for k \leftarrow i to n+1 do
                   A[j,k] \leftarrow A[j,k] - A[i,k] * temp
```

Gaussian Elimination

Time Efficiency:

最内层循环:
$$A[j,k] \leftarrow A[j,k] - A[i,k] * temp$$

Basic operation: multiplication

$$C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=i}^{n+1} 1 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (n+1-i+1) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (n+2-i)$$

$$= \sum_{i=1}^{n-1} (n+2-i)(n-(i+1)+1) = \sum_{i=1}^{n-1} (n+2-i)(n-i)$$

$$= (n+1)(n-1) + n(n-2) + \dots + 3 \cdot 1$$

$$= \sum_{j=1}^{n-1} (j+2)j = \sum_{j=1}^{n-1} j^2 + \sum_{j=1}^{n-1} 2j = \frac{(n-1)n(2n-1)}{6} + 2\frac{(n-1)n}{2}$$

$$= \frac{n(n-1)(2n+5)}{6} \approx \frac{1}{3}n^3 \in \Theta(n^3).$$

Gaussian Elimination

Stage2: Backward substitution $\in \Theta(n^2)$

```
for j \leftarrow n downto 1 do

t \leftarrow 0

for k \leftarrow j + 1 to n do

t \leftarrow t + A[j, k] * x[k]

x[j] \leftarrow (A[j, n+1] - t) / A[j, j]
```

28

Gaussian Elimination

- Efficiency analysis
 - stage 1: Elementary operations $\Theta(n^3)$
- stage2: Backward substitution $\Theta(n^2)$

Efficiency:
$$\Theta(n^3) + \Theta(n^2) = \Theta(n^3)$$

Some discussions

- ☆ Gaussian Elimination either yields an exact solution to a system of linear equations when the system has a unique solution;
- ☆ or discovers that no such solution exists, in this case, the system will have either no solutions or infinitely many of them;
- ☆ the principal difficulty lies in preventing the accumulation of round-off error.

Gaussian Elimination

Applications of Gaussian Elimination

- → LU decomposition
- Computing a matrix inverse
- Computing a determinant

- 实例化简 --堆排序
- **Heaps**
 - Heap is suitable for implementing priority queues.

 maintaining a set S of elements, each with an associated value called a key/priority. It supports the following operations:
 - Finding an item with the highest priority
 - Deleting an item with the highest priority
 - Adding a new item to the multiset

Heaps

- Notion of the Heap
 - A binary tree with keys assigned to its nodes, one key per node
 - <u>Shape requirement:</u> the binary tree is <u>essentially complete</u>, i.e. all its levels are full except possibly the last level, where only some rightmost leaves may missing.
 - Parental dominance requirement: for max-heap:
 key at each node ≥ keys at its children

Heaps

e.g.

- Heap's elements are ordered top down (a sequence of values along any path down from its root is decreasing or non-increasing if equal keys are allowed)
- ☆ but they are not ordered left to right

Heaps

- Properties of Heaps
- There exits exactly one essentially <u>complete binary tree</u> with n nodes, its height is \[\log_2 n \].
- <u>Height of a node</u>: the number of edges on the longest simple downward path from the node to a leaf.
- Height of a tree: the height of its root.
- <u>level of a node</u>: A node's level + its height = h, the tree's height.

Heaps

- Properties of Heaps
- The root of a heap always has the largest key (for a max-heap).
- A node of a heap considered with all its descendants is also a heap (The subtree rooted at any node of a heap is also a heap)
- <u>Max-heap</u> property and <u>min-heap</u> property
 - Max-heap: for every node other than root, A[PARENT(i)] >= A(i)
 - Min-heap: for every node other than root, A[PARENT(i)] <= A(i)

Heaps

- Properties of Heaps
- It is more efficient to implement a heap as an array, by storing the heap's elements in top-down left-to-right order.
- Parental nodes are represented in the first \[\ln/2 \rcdright] locations of the array.
- Leaf keys occupy the last \[n/2 \] locations.

H Heaps

- Properties of Heaps
- Relationships between indexes of parents and children :

The children of a key in the array's parental position i $(1 \le i \le \lfloor n/2 \rfloor)$ will be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i $(2 \le i \le n)$ will be in position $\lfloor i/2 \rfloor$.

Heaps Construction

How to construct a heap with the given list of keys?

- Bottom-up Heap construction
- Build an essentially complete binary tree by inserting n keys in the given order.
- Heapify the tree.
- Starting with the last (rightmost) parental node, heapify/fix the subtree rooted at it; if the parental dominance condition does not hold for the key at this node:
 - exchange its key K with the key of its larger child
 - Heapify/fix the subtree rooted at the K's new position
 - until the parental dominance requirement for K is satisfied
- Proceed to do the same for the node's immediate predecessor.
- Stops after this is done for the tree's root.

- Bottom-up Heap construction('cont)
 - Example 1: Construct a heap for the list 2, 9, 7, 6, 5, 8

Heaps Construction

- Bottom-up Heap construction('cont)
 - *Example 2:* Construct a heap for the list 4 1 3 2 16 9 10 14 8 7

• *Result* : 16 14 10 8 7 9 3 2 4 1

Heaps Construction-Bottom-up Heap construction (A Recursive version)

```
ALGORITHM HeapBottomUp(H[1..n])
     //Constructs a heap from elements of a given array
     // by the bottom-up algorithm
     //Input: An array H[1..n] of orderable items
     //Output: A heap H[1..n]
     for i \leftarrow \lfloor n/2 \rfloor downto 1 do
          k \leftarrow i; \quad v \leftarrow H[k]
          heap \leftarrow false
          while not heap and 2 * k \le n do
               i \leftarrow 2 * k
               if j < n //there are two children
                    if H[i] < H[i+1] i \leftarrow i+1
               if v \geq H[j]
                    heap \leftarrow true
               else H[k] \leftarrow H[j]; \quad k \leftarrow j
          H[k] \leftarrow v
```

最后的父 母节点

- Worst-Case Efficiency for Bottom-up
 - assume n = 2^k-1, so the heap is full, the maximum number of nodes occurs on each level
 - Worst case: each key on level i will travel to the leaf level h
 - height of the tree $h = \lfloor \log_2 n \rfloor$
 - moving to the level down needs two comparisons
 - one to find the larger child
 - one to determine whether the exchange is required
 - number of key comparisons for a key on level i: 2(h-i)

$$C_{worst}(n) = \sum_{i=0}^{h-1} \sum_{\text{nodes at level i}} 2(h-i) = \sum_{i=0}^{h-1} 2(h-i)2^{i} = 2(n-\log_{2}(n+1))$$

$$= O(n)$$

- Top-down Heap Construction
- Successive insertions of new key into a previously constructed heap
 - Insertion of a new key K
 - Insert the new node with key K at the last position in heap, i.e.
 after the last leaf of the existing heap
 - Sift K up to its appropriate position

- Top-down Heap Construction
- sift K up to its appropriate position
 - Compare with its parent, and exchange them if it violates the parental dominance condition.
 - Continue comparing the element with its new parent, until K is not greater than its last parent or it reaches the root

- Efficiency for Top-down
 - height of a heap with n node: $h = \lfloor \log_2 n \rfloor$
 - Inserting one new element to a heap with n-1 nodes requires no more comparisons than the heap's height
 - Time efficiency for Top-down insertion is O(log n)

- Root Deletion
 - swap the root with the last leaf K
 - Decrease the heap's size by 1
 - Heapify the smaller tree by sifting K down the tree, in exactly the same way in Bottom-up Heap construction
 - verify the parental dominance for K,
 - if it holds, we done.
 - if not, swap K with the larger of its children and repeat this operation until parental dominance holds for K in its new position.

Heaps Construction

→ Root Deletion

- Efficiency for Root Deletion
 - It can't make key comparison more than twice the heap's height
 - Efficiency: Θ(log n)

Heapsort

- Steps of Heapsort
- Stage 1: Bottom-up heap construction (构造堆)
- Stage 2: Root deletion, Repeat n-1 times until heap contains just one node (删除最大键,假设构造的是最大堆)
 - 最终结果是按照降序删除了数组的元素。

Heapsort

- Stage 1: heap construction (构造堆)
- Stage 2: Root deletion (删除最大键)

Stage 1 (heap construction)

2 9 **7** 6 5 8

2 **9** 8 6 5 7

2 9 8 6 5 7

9 **2** 8 6 5 7

9 6 8 2 5 7

Stage 2 (maximum deletions)

9 6 8 2 5 7

7 6 8 2 5 I **9**

8 6 7 2 5

5 6 7 2 1 8

7 6 5 2

2 6 5 I **7**

6 2 5

5 2 1 6

5 2

2 | 5

2 51

Analysis of Heapsort

- Stage 1: 构造堆, C₁(n) = O(n)
- Stage 2: 把堆的规模从n消减到2的过程中,为了删除根所需的键值比较次数记为C(n)

$$C_2(n) \le 2 \lfloor \log_2(n-1) \rfloor + 2 \lfloor \log_2(n-2) \rfloor + \dots + 2 \lfloor \log_2 1 \rfloor \le 2 \sum_{i=1}^{n-1} \log_2 i$$

$$\leq 2\sum_{i=1}^{n-1}\log_2(n-1) = 2(n-1)\log_2(n-1) \leq 2n\log_2 n \in O(n\log n)$$

- Analysis shows that $C_1(n)+C_2(n)=O(n\log n)$, in both the worst and average cases, the same class as mergesort
- But not require extra storage _---implemented with arrays
- Experiments show that heapsort runs more slowly than quicksort but competitive with mergesort

- **改变表现 --Horner's Rule For Polynomial Evaluation** 霍纳 法则
 - Polynomial Evaluation: Compute the value of a polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ (1)
 - Two brute-force algorithms

```
p \leftarrow 0
for i \leftarrow n downto 0 do
power \leftarrow 1
for j \leftarrow 1 to i do
power \leftarrow power * x
p \leftarrow p + a_i * power
return p
```

Horner's Rule For Polynomial Evaluation

- → Horner's Rule --Representation change
- Obtained from (1), successively taking x as a common factor in the remaining polynomials of diminishing degrees

$$p(x) = (\dots (a_n x + a_{n-1}) x + \dots) x + a_0$$
 (2)

e.g.

$$p(x) = 2x^{4} - x^{3} + 3x^{2} + x - 5$$

$$= x(2x^{3} - x^{2} + 3x + 1) - 5$$

$$= x(x(2x^{2} - x + 3) + 1) - 5$$

$$= x(x(x(2x - 1) + 3) + 1) - 5$$

Horner's Rule For Polynomial Evaluation

→ Horner's Rule --Representation change

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
$$= x(x(x(2x - 1) + 3) + 1) - 5$$

To evaluate p(x) at x=3:

coefficients	2	-1	3	1	-5
<i>x</i> =3	2	3*2+(-1)= 5	3*5+ 3 =18	3*18+1=55	3*55+(-5)=160
	$\uparrow x$	$\uparrow x$	$\uparrow x$	$\uparrow x$	

Horner's Rule For Polynomial Evaluation

$$p(x) = (\dots (a_n x + a_{n-1}) x + \dots) x + a_0$$

```
ALGORITHM Horner(P[0..n], x)

//Evaluates a polynomial at a given point by Horner's rule

//Input: An array P[0..n] of coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at x

p \leftarrow P[n]

for i \leftarrow n - 1 downto 0 do

p \leftarrow x * p + P[i]

return p
```

The number of multiplications and additions are given by the same sum: $\underline{n-1}$

$$M(n) = A(n) = \sum_{i=0}^{n} 1 = n.$$

黜 Problem Reduction (问题化简)

 To solve a problem, reduce it to another problem that you know how to solve

Two points:

- finding a problem to which the problem at hand should be reduced
- reduction-based algorithm to be more efficient than solving the original problem directly

Example

In analytical geometry, for three arbitrary points in the plane, $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$, $p_3 = (x_3, y_3)$, the determinant is positive if and only if the point p_3 is to the left of the directed line through points p_1 p_2

$$\det \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = x_1 y_2 + x_2 y_3 + x_3 y_1 - x_3 y_2 - x_2 y_1 - x_1 y_3$$

i.e. we <u>reduce</u> a geometric problem about the relative locations of three points to a problem about the sign of a determinant. (把关于三个点的相对位置的几何问题转化成关于行列式符号的问题。)

The entire idea of analytical geometry is based on reducing geometric problems to algebra ones.

- 问题化简--线性规划 (Linear programming)
 - Linear programming:
 - a problem of optimizing a linear function of several variables subject to constraints in the form of linear equations and linear inequalities.

Maximize(or minimize):
$$c_1x_1 + ... c_nx_n$$

Subject to: $a_{i1}x_1 + ... + a_{in}x_n \le (\text{or } \ge \text{or } =) \ b_i$, for $i = 1...n$
 $x_1 \ge 0, ..., x_n \ge 0$

Linear programming

- Algorithms for Linear programming:
 - Simplex method: worst-case efficiency is to be exponential
 - Ellipsoid algorithm: polynomial time.
 - Interior-point methods: polynomial time
 - Karmarkar's algorithm: polynomial worst-case efficiency

Linear programming

- Algorithms for Linear programming:
 - Integer Linear programming: the variables of a Linear programming problem are required to be integers.
 - e.g., 0-1 knapsack problem
 - no known polynomial-time algorithm (NP-hard)
 - branch-and-bound method for solving Integer Linear programming

Linear programming

Investment Problem:

Scenario:

- A university endowment needs to invest \$100 million
- Three types of investment:
 - Stocks (expected interest: 10%)
 - Bonds (expected interest: 7%)
 - Cash (expected interest: 3%)

· Constraints:

- The investment in stocks is no more than 1/3 of the money invested in bonds
- At least 25% of the total amount invested in stocks and bonds must be invested in cash

Objective:

An investment that maximizes the return

Linear programming

- Investment Problem: ('cont)
 - mathematical model

Maximize
$$0.10x + 0.07y + 0.03z$$
Subject to
$$x + y + z = 100$$

$$x \le (1/3)y$$

$$z \ge 0.25(x + y)$$

$$x \ge 0, y \ge 0, z \ge 0$$

optimal decision making problem ---- > linear programming problem

Linear programming

Knapsack Problem (Discrete Version)

Scenario

- Given n items:
 - weights: W_1 W_2 ... W_n
 - *values*: *v*₁ *v*₂ ... *v*_n
 - a knapsack of capacity W

 an item can either be put into the knapsack in its entirely or not be put into the knapsack.

Objective:

Find the most valuable subset of the items

Linear programming

- Knapsack Problem (Discrete Version) ('cont)
 - mathematical model

Maximize
$$\sum_{i=1}^{n} v_i x_i$$

$$\sum_{i=1}^{n} w_i x_i \le W$$

$$x_i \in \{0,1\}$$

for
$$i = 1,...,n$$

Linear programming

Knapsack Problem (Continuous/Fraction Version):

Scenario

- Given n items:
 - weights: W_1 W_2 ... W_n
 - *values: v*₁ *v*₂ ... *v*_n
 - a knapsack of capacity W

Constraints

- Any fraction of any item can be put into the knapsack, x_i
- Objective:
 - Find the most valuable subset of the items

Linear programming

- Knapsack Problem (Continuous/Fraction Version): ('cont)
 - mathematical model

Maximize
$$\sum_{i=1}^{n} v_i x_i$$
 subject to
$$\sum_{i=1}^{n} w_i x_i \leq W$$

$$0 \leq x_i \leq 1 \quad \text{for } i = 1, ..., n$$

Reduction to Graph

- many problems can be solved by reduction to one of the standard graph problems
- state-space graph: vertices of a graph represent possible states of the problem, edges indicate permitted transitions among such states
- one of the graph's vertices represents the initial state, another represents a goal state of the problem
- puzzles and games
- not always a straightforward task

problem ---- > a path from the initial-state vertex to a goal-state vertex

Reduction to Graph

River-crossing puzzle

- **Problem**: The wolf, goat and bag of cabbage puzzle.
- A peasant must transport a wolf, goat and bag of cabbage from one side of a river to another using a boat,
- the boat can only hold one item in addition to the peasant,
- subject to the constraints that the wolf cannot be left alone with the goat, and the goat cannot be left alone with the cabbage.

Reduction to Graph

- River-crossing puzzle
 - state-space graph

Summary

- 1. 变治法是一种基于变换思想,把问题变换成一种更容易解决的类型。
- 2. 变治法的三种类型:实例化简,改变表现,和问题化简
- 3. 变治法三种类型对应的算法举例
- 4. 堆的概念,堆排序的思想:在排列好堆中的数组元素后,再 从剩余堆中连续删除最大的元素。在最差以及平均情况下, 该算法都属于在位的排序算法,时间复杂度⊙(nlogn)
- 5. 高斯消去法
- 6. 霍纳法则
- 7. 线性规划及整数线性规划