Asana-Math.otf

Analyse Fonctionnelle Avancée et Applications aux EDP

Méthodes Numériques pour les EDP

Les slides sont disponibles sur

 $\verb|https://github.com/cemosis/unistra.ufr.math|\\$

Analyse Fonctionnelle Avancée et Applications aux EDP

Analyse Fonctionnelle Avancée et Applications

Méthodes Numériques pour les EDP

Objectifs

- Préparation du M2MF 2015-2016
- Acquisition du vocabulaire et des outils mathématiques nécessaires à l'analyse des équations aux dérivées partielles

Objets

Étant donné $\Omega \subset \mathbb{R}^d, d=1,2,3$, les espaces $H^s(\Omega)$

$$H^{s}(\Omega) = \{ u \in L^{2}(\Omega) \mid \forall \alpha \text{ tel que } |\alpha| \leq s, \ D^{\alpha}u \in L^{2}(\Omega) \}$$

Questions

- Propriétés de ces espaces
- Applications aux EDP: cadre fonctionel pour montrer l'existence et unicité de solutions

Méthodes Numériques pour les EDP

Analyse Fonctionnelle Avancée et Applications

Méthodes Numériques pour les EDP

Objectifs

- Étude mathématique et numérique de la méthode des éléments finis qui propose un cadre général pour passer de formulations continues à discrètes
- le cadre théorique est donnée par le cours d'Analyse
 Fonctionnelle Avancée

Questions

- Existence et unicité de solution pour des problèmes elliptiques linéaires coercifs au niveaux continus et discrets
- Construction de fonctions de bases, dites élément fini
- lacksquare Erreur d'interpolation et d'approximation en norme L^2 et H^1
- Implémentation de la méthodes et Vérification numériques des théorèmes