BRAC UNIVERSITY

Department of Computer Science & Engineering Practice Problem sheet (Week 4) CSE 350: Digital Electronics and Pulse Technique

• Use activation voltage $V_{\gamma}(diode) = 0.6V, V_{\gamma}(transistor) = 0.5V, V_{BE}(forward\ active) = 0.7V, V_{D} = 0.7V \ and \ V_{D}(sat) = 0.8V \ for\ all\ the\ questions.$

Question No. 1

Question No. 1

For the given TTL NAND circuit, assume common emitter current gain, β_F = 25 and reverse common emitter current gain of the transistors β_R = 0.1 . Assume VOH = 3.4 V and VOL = 0.1V and for saturation mode, VEE = 0.8V, VCE = 0.1V.

(a)	Assume no Loads are connected to the driver device. If at least one input is low (0.1 V), find i_1 ,
	i_{B2} , i_2 , i_{Bo} and i_3 in mA.
(b)	Repeat the calculation of (a) if both the inputs are high $(v_X = v_T = 5 V)$
(c)	Find the maximum possible fanout of this TTL circuit.
(d)	Assume all inputs of the Driver circuit are high. (i) Find the maximum fanout if the "other" input of the load , $V_Y = 5V$ (High). (ii) If both inputs of the Load circuits = 0.1 V, then what would be the maximum fanout? Compare and comment on the above two cases to identify which case has better fanout and why?
(d)	Find the power dissipation for all cases [Assume 4 loads are connected to driver's output]

Solution:

(a) Assume no Loads are connected to the driver device. If at least one input is low (0.1V), find i_1 , i_{B2} , i_2 , i_{Bo} and i_3 in mA.

(b) Repeat the calculation of (a) if both the inputs are high $(v_x = v_y = 5 V)$

Here, Vx = 5V and Vy = 5VSo, Q1 in Reverse active, Q2 and Qo in Saturation. Begin calculation from the rightmost BJT Qo. Now, Qo is in Saturation and emitter of Qo, $V_{E0} = 0V$ $V_{BO} = 0 + 0.8 = 0.8V$ and, $V_{CO} = 0 + 0.1 = 0.1V = V_{O}$ Similarly, Q2 is in saturation. $V_{B2} = 0.8 + 0.8 = 1.6V$ and, $V_{C2} = 0.8 + 0.1 = 0.9V$

Now, Q1 is in R.A. mode and collector voltage of Q1, $V_{C1} = V_{B2} = 1.6V$

$$\therefore V_{B1} = 1.6 + 0.7 = 2.3V$$

$$\therefore I_{B1} = I_1 = \frac{5-2.3}{4K\Omega} = 0.675 \text{ mA}$$

Emitter current of Q1,

$$I_{EY} = I_{EX} = \beta R * I_{B1} = (0.1)(0.675) = 0.0675 \text{ mA}$$

$$I_{B2} = I_{C1} = I_{B1} + I_{EX} + I_{EY} = 0.81 \text{ mA}$$

$$\begin{array}{l} \therefore \ I_{B2} = I_{C1} = I_{B1} + I_{EX} + I_{EY} = 0.81 \ mA \\ I_{C2} = I_{2} = \frac{5 - 0.9}{1.6 \kappa \Omega} = 2.5625 \ mA \end{array}$$

$$I_{E2} = I_{B2} + I_{C2} = I_{B2} + I_{2} = 3.3725 \text{ mA}$$

$$I_4 = \frac{0.8 - 0}{1 K\Omega} = 0.8 \text{ mA}$$

$$I_{B0} = I_{E2} - I_4 = 2.5725 \text{ mA}$$

$$I_{CO} = I_3 = \frac{5 - 0.1}{4K\Omega} = 1.225 \text{ mA}$$

Driver:

This calculation is similar to gues (a)

Here, Vx = 0.1V and Vy = 5VSo, Q1 in Saturation, Q2 cutoff, Qo Cutoff. $V_{B1} = 0.1 + 0.8 = 0.9V$ $I_{B1} = I_1 = \frac{5 - 0.9}{4K\Omega} = 1.025 \text{ mA}$

As Qo is cutoff, I₃ flows completely to Load gates. This is the supply current, I_{Supply}.

The output voltage of Driver, Vo will be a High value. For Maximum possible fanout calculation, it will be equal to VoH.

$$\therefore \ I_{Supply} = I_3 = \frac{\text{5-V}_0}{4 \text{K} \Omega} = \ \frac{\text{5-V}_0 \text{H}}{4 \text{K} \Omega} = \frac{\text{5-3.4}}{4 \text{K} \Omega} = 0.4 \ \text{mA}$$

Now.

$$I_{Supply} = I_{Demand}$$
or, $\frac{5-Vo}{4K\Omega} = N*I_{L}$

or, 0.4 = N*(0.0675)

Solving, N = 5.92 Floor (N) = 5

Load:

This calculation is similar to ques (b)

Here, Vx = Vo of Driver = High and Vy = 5V (assume) If we assumed $\underline{Vy} = 0.1V$, there would be no current flow between Load-Driver.

So, Q1 in Reverse active, Q2 and Qo in Saturation.

 $V_{BO} = 0 + 0.8 = 0.8V$

and, $V_{CO} = 0 + 0.1 = 0.1V = V_{O}$

Similarly, Q2 is in saturation.

 $V_{B2} = 0.8 + 0.8 = 1.6V$

and, $V_{C2} = 0.8 + 0.1 = 0.9V$

Now, Q1 is in R.A. mode,

 $V_{B1} = 1.6 + 0.7 = 2.3V$

 $I_{B1} = I_1 = \frac{5-2.3}{4K\Omega} = 0.675 \text{ mA}$

Emitter current of Q1,

 $I_{EY} = I_{EX} = \beta_R * I_{B1} = (0.1) (0.675) = 0.0675 \text{ mA}$

: Individual Load current, IL = IEX = 0.0675 mA

:: Total Demand current = IDemand = N*IL

Driver

This calculation is similar to the Load calculation of previous case. Q1 in Reverse active, Q2 and Qo in Saturation.

$$\begin{array}{l} .. \ V_{CO} = 0 + 0.1 = 0.1V = V_{O} \\ I_{3} = \frac{5 - V_{O}}{4 K \Omega} = \frac{5 - 0.1}{4 K \Omega} = 1.225 \ mA \\ I_{BO} = I_{E2} - I_{4} = 2.5725 \ mA \end{array}$$

Here, $I_{C0} = I_3 + N*I_L$

Now.

For Qo of Driver to remain in Saturation,

$$\frac{Ico}{Ibo} < \beta_{F}$$
or, $\frac{I3+N+I_{L}L}{Ibo} < 25$
or, $\frac{1.225+N+1.025}{2.5725} < 25$
Solving, N = 61.55 Floor (N) = 61

Load:

∴ Total Load current = N*IL = N*(1.025) mA

: Maximum Possible Fanout = min (61,5) = 5

- (d) Assume all inputs of the **Driver** circuit are high.
 - (i) Find the maximum fanout if the "other" input of the load, $V_Y = 5V$ (High).
 - (ii) If **both inputs** of the **Load** circuits = **0.1** V, then what would be the maximum fanout? Compare and comment on the above two cases to identify which case has better fanout and why?

Case (i): "other" input of the load, VY = 5V (High)

D case (i):

This will be exactly same as case 2 of the fanout calculation in ques. (b) when both inputs of Driver were High.

Driver:

Q1 in Reverse active, Q2 and Qo in Saturation.

$$\begin{array}{l} \therefore \ V_{CO} = 0 + 0.1 = 0.1V = V_{O} \\ I_{3} = \frac{5 - Vo}{4 K \Omega} = \frac{5 - 0.1}{4 K \Omega} = 1.225 \ mA \\ I_{BO} = I_{E2} - I_{4} = 2.5725 \ mA \end{array}$$

Here, $I_{C0} = I_3 + N*I_L$

Now,

For Qo of Driver to remain in Saturation,

$$\begin{array}{l} \frac{Ico}{Ibo} < \beta F \\ \underline{Or}_{c} \frac{I3+N+I_L}{Ibo} < 25 \\ \\ Solving, \ N = 61.55 \ \underline{.....} \ Floor \ (N) = 61 \end{array}$$

Load:

Here, Vx = Vo of Driver = 0.1V and \underline{Vy} = 5V [given] So, Q1 in Saturation, Q2 cutoff, Qo Cutoff. As \underline{Vy} =5V, all Load current (I₁) will come to Driver I_{B1} = I₁ = $\frac{5-0.9}{4K\Omega}$ = 1.025 mA

- \therefore Individual Load current, $I_L = I_{EX} = I_1 = 1.025$ mA
- ∴ Total Load current = $N*I_L = N*(1.025)$ mA

Case (ii): "other" input of the load, VY = 0.1V (LOW)

D case (ii): This will be slightly different from Maximum fanout calculation in ques. (b) when both inputs of Driver were High. The Load current will be halved.

Driver:

Q1 in Reverse active, Q2 and Qo in Saturation.

$$\begin{array}{l} .. \ V_{CO} = 0 + 0.1 = 0.1V = V_{O} \\ I_{3} = \frac{5 - V_{O}}{4 K \Omega} = \frac{5 - 0.1}{4 K \Omega} = 1.225 \ mA \\ I_{BO} = I_{E2} - I_{4} = 2.5725 \ mA \end{array}$$

Here, $I_{C0} = I_3 + N*I_L$

Now,

For Qo of Driver to remain in Saturation,

$$\frac{Ico}{Ibo} < \beta_F$$
or, $\frac{I3+N+I_L}{Ibo} < 25$
or, $\frac{1.2255+N+0.5125}{2.5725} < 25$
Solving, N = 123.097 Floor (N) = 123

Load:

Here, Vx = Vo of Driver = 0.1V and $\underline{Vy} = 5V$ [given] So, Q1 in Saturation, Q2 cutoff, Qo Cutoff.

$$I_{B1} = I_1 = \frac{5 - 0.9}{4K\Omega} = 1.025 \text{ mA}$$

As \underline{Vy} =0.1V, half of current I₁ will flow through \underline{Vy} . This half will NOT come to Driver.

- \therefore Individual Load current, $I_L = I_{EX} = I_1 / 2 = 0.5125 \text{ mA}$
- \therefore Total Load current = N*I_L = N*(0.5125) mA

(e) Find the power dissipation in Driver for all cases [Assume 4 loads are connected to driver's output]

This will be similar to calculations in (a) and (c) case 1

Driver:

Here, Vx = 0.1V and \underline{Vy} = 5V So, Q1 in Saturation, Q2 cutoff, Qo Cutoff. $I_{B1}=I_1=\frac{5-0.9}{4K\Omega}=1.025$ mA $I_{EX}=I_{B1}=1.025$ mA As Q2 and Qo are cutoff, $I_{B2}=I_2=I_{B0}=0$ mA.

 I_3 = Total Load current = 4* I_L = 0.27 mA

Now,

$$I_3 = \frac{5 - Vo}{4 K\Omega} = 0.27 \text{ ma} --- \rightarrow \text{ solving, Vo} = 3.92 \text{V} \text{ (Driver)}$$

Load:

Here, Vx = Vo of Driver = High and $\underline{Vy} = 5V$ (assume) So, Q1 in Reverse active, Q2 and Q0 in Saturation.

$$\begin{split} & ... V_{B1} = 2.3 V \\ & ... I_{B1} = I_1 = \frac{5-2.3}{4K\Omega} = 0.675 \text{ mA} \\ & I_{EY} = I_{EX} = \beta_R * I_{B1} = (0.1) \ (0.675) = 0.0675 \text{ mA} \end{split}$$

 \therefore Individual Load current, $I_L = I_{EX} = 0.0675$ mA

 \therefore Total Load current = $4*I_L = 4*I_{EX} = 0.27$ mA

:. Power dissipation =
$$(5 - \sqrt{x})I_1 + (5 - \sqrt{6})I_3$$

= $(5 - 0.1)I_1 + (5 - 3.92)I_3$
= 5.3141 mW

E case (ii):

This will be similar to calculations in (b) and (c) case 2

Driver:

Here, Vx = 5V and $\underline{Vy} = 5V$ So, Q1 in Reverse active, Q2 and Qo in Saturation.

$$\therefore I_{B1} = I_1 = \frac{5-2.3}{4K\Omega} = 0.675 \text{ mA}$$

 $I_{EY} = I_{EX} = \beta R * I_{B1} = (0.1)(0.675) = 0.0675 \text{ mA}$

$$I_{C2} = I_2 = \frac{5 - 0.9}{1.6 K\Omega} = 2.5625 \text{ mA}$$

$$I_3 = \frac{5-0.1}{4K\Omega} = 1.225 \text{ mA}$$

 $I_{CO} = I_3 + 4*I_L = 1.225 + 4.1 = 5.325 \text{ mA}$

Load:

Here, Vx = Vo of Driver = 0.1V and Vy = 5VSo, Q1 in Saturation, Q2 cutoff, Qo Cutoff.

$$\therefore V_{B1} = 0.1 + 0.8 = 0.9V$$

$$I_{B1} = I_1 = \frac{5 - 0.9}{4K\Omega} = 1.025 \text{ mA}$$

 \therefore Individual Load current, $I_L = I_{EX} = I_1 = 1.025$ mA

∴ Total Load current = 4*I_L = 4*(1.025) = 4.1 mA

Question 2.

For the given TTL circuit with totem-pole output, assume common emitter current gain, $\beta_F = 25$ and reverse common emitter current gain of the transistors $\beta_R = 0.1$.

(a)	Find the value of β_{Min} for transistor Q_2 so that Q_2 can remain in saturation when both input is HIGH.			
(b)	Assume inputs of the load devices are not connected to driver device. If at least one input is low			
	$(0.1V)$, find i_1 , i_{B2} , i_2 , i_{B0} and i_3 in mA.			
(c)	Repeat the calculation of (b) if both the inputs are high ($v_x = v_y = 3.6 V$)			
(d)	Find the maximum fanout of this TTL circuit for the case mentioned in (c)			
(e)	Find out the maximum power dissipation of the TTL circuit in mW when no load is connected.			
(f)	Calculate maximum fanout for $Vx = V_Y = 0.1V$. Given that V_{OH} (No load) =3.5V. And, from this			
	calculation prove that T4 is in forward active mode .			

(b) Assume inputs of the load devices are not connected to driver device. If at least one input is low (0.1V), find i_1 , i_{B2} , i_2 , i_{Bo} and i_3 in mA.

$$i_1 = \frac{5 - 0.9}{12K} = 0.3416 \text{ mA}$$

- (c) Repeat the calculation of (b) if both the inputs are high $(v_X = v_Y = 3.6 \text{ V})$
- (d) Find the maximum fanout of this TTL circuit for the case mentioned in (c)

(d) Fanout calculation $Q_0 \Rightarrow i_{C_0} \text{ mosc} = \beta_F \times i_{B0} = 25 \times 0.895$ = 22.375 mA

Individual standoord load coverent,

$$i_L = i_1 = \frac{5 - 0.9}{12K} = 0.3416 \text{ mA}$$

$$for load$$

$$i_{\text{CMax}} = i_{\text{c.nx}} \text{ foal} + Nx \quad i_{\text{L}} = 22.375$$

$$\Rightarrow N = [65.48]$$

$$N = 65$$

(f) Calculate maximum fanout for $Vx = V_Y = 0.1V$. Given that V_{OH} (No load) =3.5V. And, from this calculation prove that T4 is in **forward active mode**.

Question 3.

For the given TTL circuit, given R_1 = 3.0 $k\Omega$, R_2 = 1.3 $k\Omega$, R_3 = 0.55 $k\Omega$ and R_B = 8 $k\Omega$. assume, V_{CC} = 3.5 V, common emitter current gain, β_F = 15 and reverse common emitter current gain of the transistors β_R = 0.8.

(a)	If all inputs are High $(v_X = v_Y = v_Z = 3.5 V)$, find i_{B1} , i_{B2} , i_{B3} , i_{B4} and i_{E3} in mA.
(b)	Assume inputs of the load devices are not connected to the driver device. If at
	least one input is low (0.1 V), find i_{B1} , i_{EX} , i_{B2} and v_o in mA.
(c)	Find out the power dissipation of the TTL circuit in mW for both (a) and (b).
(d)	Find the maximum fanout of this TTL circuit for the case described in (a).
(e)	If at least one input is low $(0.1V)$ and 2 loads are connected to the output, find
	the new value for v_o

(a) If all inputs are High $(v_X = v_Y = v_Z = 3.5 \ V)$, find i_{B1} , i_{B2} , i_{B3} , i_{B4} and i_{E3} in mA.

(a)
$$V_x = V_2 = 3.5 \text{ V}$$
 | So, Q1 will be in 'Reverse - Active' Q2, Q3 will be in 'Saturation'

But, what's the mode of Q4?

As, VBC for Q4 is regulive Q4 will be in forward-active, 3.5 x R.A.

if VBE is positive.

of Q4 (0.9 at base; output note consusted through a resistor having 0.1 V. So, roughly 0.8 V available to turn-on B-E junction)

$$T_{\beta,j} = \frac{V_{c_L} - \lambda \cdot 3}{R_1}$$

$$|I_{C1} - I_{g2}| = |I_{B1} + I_{\epsilon_{x}} + |I_{\epsilon_{y}} + |I_{\epsilon_{z}}|$$

$$= (1 + 3 f_{R}) I_{g1} = 1.36 \text{ m/h}$$

Now,
$$T_{R3} = \frac{0.7 - 0.1}{R_3} = \frac{0.1}{0.55} = 0.182 \text{ mA} = T_{E4} = T_{C3}$$

As
$$Q_4$$
 is in F.A.; $I_{B4} = \frac{I_{E4}}{\beta_{E+1}} = \frac{0.182}{16} = 0.0114 \text{ mA}.$

So,
$$T_{C2} = T_{R2} - T_{84} = \frac{V_{C1} - 0.9}{R_2} - 0.0114 = \frac{3.5 - 0.9}{1.3} - 0.0114$$
 Then,
$$= 1.989 \text{ mA}.$$

and,
$$I_{B3} = I_{f2} - I_{RB}$$

= $3.349 - \frac{0.8 - 0}{R_B} = 3.349 - \frac{0.8}{8} = 3.249 \text{ mA}.$

and, IE3 = IB3 + Ic3 = 3.249 + 0.182 mA = 3.431 mA.

(b)

(b) Assume inputs of the load devices are not connected to the driver device. If at least one input is low (0.1V), find i_{B1} , i_{EX} , i_{B2} and v_o in mA.

Suppose, Vx = Vy = 011 V, V2 = 3.5 V.

so, Q1 will be in 'sorturation'. Q2,Q3 will be in 'Cut-off'.

What is the operating mode of QA?

For the output voltage vo to become HIGH, initially a current flows through Q4 and C.

As Q4 is ON and Vc4 = 3.5 V < VB4

Q4 will be in Forward - Active.

(so, for this circuit, Q4 remains in F.A. in both the cases.)

(ERROR: V_C4 = 3.5 V is actually greater than V_B4;

So $V_C4 = 3.5 V > V_B4$)

As
$$Q_1$$
 in Saturation, $V_{B1} = V_{Ex} + 08 = 0.1 + 0.8 = 0.9V$

$$I_{B1} = \frac{V_{CC} - 0.9}{R_1} = \frac{3.5 - 0.9}{3} = 0.867 \text{ mA}.$$
and $I_{Ex} = I_{Ey} = \frac{I_{B1}}{2} = \frac{0.867}{2} = 0.433 \text{ mA}.$
As, Q_1, Q_3 in cut-off, all of their currents

are 'zero'.

Now, when steady-state approaches (when capacitor is almost fully 3.5 20 charged

$$I_{E4} \rightarrow 0$$
 (I_{E4} approaches 0)

As a result, TB4
$$\rightarrow$$
D
 So, VE4 \rightarrow Vo and, VB4 \rightarrow Vcc

But,
$$(V_{BE})_{Q4} = 0.7$$
 (As, Q4 in F.A)
so, $V_{E4} - V_{E4} = 0.7$
 $\Rightarrow V_{E4} = V_{B4} - 0.7$
 $= 3.5 - 0.7$
 $= 2.8 \text{ V}$
(In steady-state).

$\sqrt{(c)}$ Find out the power dissipation of the TTL circuit in mW for both (a) and (b).

(no other current flows in the stendy-state)

(d) Find the maximum fanout of this TTL circuit for the case described in (a).

As, output of driver is LOW; the load current comes 'towards' the driver circuit.

so, we will use the constraint that 'Qz' must be in saturation.

$$\frac{I_{c3}}{I_{63}} < \beta_F$$
 | $I_{L=} \frac{V_{c1} - 0.9}{R_1} = 0.867 \text{ mA}$

$$\Rightarrow \frac{I_{E4} + NI_L}{I_{B3}} < \beta c$$

$$\downarrow I_{E4} = 0.182 \text{ mA} \cdot \downarrow from$$

$$\downarrow I_{B3} = 3.249 \text{ mA} \cdot \downarrow from$$

$$\Rightarrow \frac{0181 + N \times 0.867}{3.249} < 15$$

$$\Rightarrow N < 56.001$$

$$\therefore N = 56$$

(e)

(e) If at least one input is low (0.1V) and 2 loads are connected to the output, find the new value for v_a

Output of the driver circuit should be logic HIGH.

So, the direction of I should be away from the drawer.

Now, total load current = 2xIL = 2x0.32 = 0.64 mA.

Now, as Q4 in PA;

$$V_{BC} = 0.7 \Rightarrow V_{E4} = V_{B4} - 0.7 = 2.748 \text{ V}$$

and $\frac{V_{E4} - V_0}{R_3} = I_{E4}$ $V_0 = V_{E4} - I_{E4} \times R_3 = 2.748 - 0.64 \times 0.55$
 $V_0 = V_{E4} - I_{E4} \times R_3 = 2.748 - 0.64 \times 0.55$