Picard Groups of Abelian Varieties

1 Pullback along group operations

Theorem 1 (Seesaw Theorem). Let A be an abelian variety over \mathbb{k} .

Theorem 2 (Theorem of the cube). Let X, Y, Z be completed varieties over \mathbb{k} and \mathcal{L} a line bundle on $X \times Y \times Z$. Suppose that there exist $x \in X(\mathbb{k}), y \in Y(\mathbb{k}), z \in Z(\mathbb{k})$ such that the restriction $\mathcal{L}|_{\{x\}\times Y\times Z}, \mathcal{L}|_{X\times \{y\}\times Z}$ and $\mathcal{L}|_{X\times Y\times \{z\}}$ are trivial. Then \mathcal{L} is trivial.

Proof. Yang: To be completed.

Remark 3. If we assume the existence of the Picard scheme, then the theorem of the cube can be deduced from the Rigidity Lemma. Yang: To be completed.

Proposition 4. Let A be an abelian variety over \mathbb{k} , $f, g, h: X \to A$ morphisms from a variety X to A and \mathcal{L} a line bundle on A. Then

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof. Yang: To be completed.

Proposition 5. Let A be an abelian variety over \mathbb{k} , $n \in \mathbb{Z}$ and \mathcal{L} a line bundle on A. Then we have

$$[n]_{\mathcal{A}}^*\mathcal{L} \cong \mathcal{L}^{\otimes \frac{1}{2}(n^2+n)} \otimes [-1]_{\mathcal{A}}^*\mathcal{L}^{\otimes \frac{1}{2}(n^2-n)}.$$

Proof. Yang: To be completed.

Theorem 6 (Theorem of the square). Let A be an abelian variety over k, $x, y \in A(k)$ two points and \mathcal{L} a line bundle on A. Then

$$t_{x+y}^* \mathcal{L} \otimes \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L}.$$

Remark 7. We can define a map

$$\Phi_{\mathcal{L}}: A(\Bbbk) \to \operatorname{Pic}(A), \quad x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Then theorem of the square implies that $\Phi_{\mathcal{L}}$ is a homomorphism of groups. When we vary \mathcal{L} , the map

$$\Phi_{\square}: \operatorname{Pic}(A) \to \operatorname{Hom}_{\mathbf{Grp}}(A(\mathbb{k}), \operatorname{Pic}(A)), \quad \mathcal{L} \mapsto \Phi_{\mathcal{L}}$$

is a group homomorphism. For any $x \in A(\mathbb{k})$, we have

$$\Phi_{t_x^*\mathcal{L}} = \Phi_{\mathcal{L}}.$$

In the other words,

$$\Phi_{\mathcal{L}}(x) \in \operatorname{Ker} \Phi_{\square}, \quad \forall \mathcal{L} \in \operatorname{Pic}(A), x \in A(\mathbb{k}).$$

Yang: To be completed.

Date: August 28, 2025, Author: Tianle Yang, My Homepage

If we assume the scheme structure on $\operatorname{Pic}(A)$, then $\Phi_{\mathcal{L}}$ is a morphism of scheme and factors through $\operatorname{Pic}^0(A)$. Let $K(\mathcal{L}) := \operatorname{Ker} \Phi_{\mathcal{L}}$, then $K(\mathcal{L})$ is a subgroup scheme of A. We give another description of $K(\mathcal{L})$. From this point, we can recover the dual abelian variety $A^{\vee} = \operatorname{Pic}^0(A)$ as the quotient $A/K(\mathcal{L})$. Yang: To be completed.

2 Projectivity

Proposition 8. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. Then |2D| is base point free.

Theorem 9. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. TFAE:

- (a) the stabilizer Stab(D) of D is finite;
- (b) the morphism $\Phi_{|2D|}$ induced by the complete linear system |2D| is finite;
- (c) D is ample;
- (d) $K(o_A(D))$ is finite.

Theorem 10. Let A be an abelian variety over \mathbf{k} . Then A is projective.

Proof. Yang: To be completed.

3 Isogenies and finite subgroups

Theorem 11. Let A be an abelian variety of dimension d over k. Then the subgroup A[n] of n torsion points is finite and we have

- (a) if n is coprime to char(\mathbf{k}), then $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2d}$;
- (b) if $n = p^k$ for $p = \operatorname{char}(\mathbf{k}) > 0$

Proof. Yang: To be completed.

Theorem 12. Let A be an abelian variety over \mathbb{k} . There is a bijection between the isogenies from A over \mathbb{k} and the finite subgroup schemes of A.

4 Dual abelian varieties

Theorem 13. Let A be an abelian variety over \mathbf{k} . Then $\operatorname{Pic}^0(A)$ has a natural structure of an abelian variety, called the *dual abelian variety* of A, denoted by A^{V} .

Proposition 14. There exists a unique line bundle \mathcal{P} on $A \times A^{\vee}$ such that for every $y = \mathcal{L} \in A^{\vee} = \operatorname{Pic}^0(A)$, we have $\mathcal{P}|_{A \times \{y\}} \cong \mathcal{L}$.