Révisions Pâques

I Complexes

Exercice 1. Soit $\mathbb U$ l'ensemble des complexes de module 1.

1. Calculer

$$\inf\left\{ \left| \frac{1}{z} + z \right|, z \in \mathbb{U} \right\}$$

- 2. Pour tout $z \in \mathbb{C}^*$ on note $\alpha(z) = \frac{1}{z} + z$.
 - (a) Calculer le module de $\alpha(z)$ en fonction de celui de z.
 - (b) Montrer que pour tout x > 0 on a : $\frac{1}{x} + x \ge 2$.
 - (c) En déduire

$$\inf\{|\alpha(z)|, z \in \mathbb{C}^*\}$$

Exercice 2. On considère l'équation suivante , d'inconnue $z \in \mathbb{C}$:

$$z^3 + z + 1 = 0 (E)$$

- 1. On note $f: \mathbb{R} \to \mathbb{R}$, la fonciton définie par $f(t) = t^3 + t + 1$. A l'aide de l'étude de f, justifier que l'équation (E) possède une unique solution réelle, que l'on notera r. Montrer que $r \in]-1, \frac{-1}{2}[$.
- 2. On note z_1 et z_2 les deux autres solutions complexes de (E) qu'on ne cherche pas à calculer. Donner une écriture factoriser de P (à l'aide de r, z_1 et z_2) puis en déduire que $z_1 + z_2 = -r$ et $z_1 z_2 = \frac{-1}{r}$.
- 3. Justifier l'encadrement : $\frac{1}{2} < |z_1 + z_2| < 1$. De même montrer que $1 < |z_1 z_2| < 2$.
- 4. Rappeler l'inégalité triangulaire et donner une minoration de |x-y| pour tout $x,y\in\mathbb{C}$.
- 5. En déduire que

$$|z_1 + z_2| > |z_1| - \frac{2}{|z_1|}$$

- 6. Grâce à un raisonnement par l'absurde montrer que $|z_1| < 2$.
- 7. Conclure que toutes les solutions de (E) sont de modules strictement inférieures à 2.

Exercice 3. On considère $S = \{z \in \mathbb{C} \mid |z| = 2\}.$

- 1. Rappeler la nature géométrique de S. Soit $f: \mathbb{C} \to \mathbb{C}$ la fonction définie par $f(z) = \frac{2z+1}{z+1}$. Déterminer D_f le domaine de définition de f. Est elle bien définie pour tous les points de S?
- 2. (a) Mettre $f(z) \frac{7}{3}$ sous la forme d'une fraction.
 - (b) Montrer que pour tout z dans l'ensemble de définition de f,

$$\left| f(z) - \frac{7}{3} \right|^2 = \frac{|z|^2 + 8\Re(z) + 16}{9(|z|^2 + 2\Re(z) + 1)}$$

- (c) On note S_2 le cercle de centre 7/3 et de rayon $r_0 = \frac{2}{3}$. Montrer que $f(S) \subset S_2$
- 3. (a) Soit y = f(z), exprimer z en fonction de y quand cela a un sens.

- (b) Déterminer l'ensemble F tel que $f:D_f\to F$ soit bijective. Déterminer l'expression de f^{-1}
- (c) (Difficile) Montrer que pour tout $y \in S_2$, $f^{-1}(y) \in S$.
- (d) En déduire f(S).

Exercice 4. (Cf DS2) Soit $\omega = e^{\frac{2i\pi}{7}}$. On considère $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$

- 1. Calculer $\frac{1}{\omega}$ en fonction de $\overline{\omega}$
- 2. Montrer que pour tout $k \in [0, 7]$ on a

$$\omega^k = \overline{\omega}^{7-k}$$
.

- 3. En déduire que $\overline{A} = B$.
- 4. Montrer que la partie imaginaire de A est strictement positive. (On pourra montrer que $\sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) > 0$.)
- 5. Rappelons la valeur de la somme d'une suite géométrique : $\forall q \neq 1, \forall n \in \mathbb{N}$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Montrer alors que $\sum_{k=0}^{6} \omega^k = 0$. En déduire que A + B = -1.

- 6. Montrer que AB = 2.
- 7. En déduire la valeur exacte de A.

II Analyse

Exercice 5. 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 3. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. Justifier que la suite est minorée par 0 et majorée par 1.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.

Exercice 6. On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

- 1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a $(\ln(x))^n (\ln(x))^{n+1} > 0$.
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 a l'aide d'une intégration par partie.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $(n+1)I_n \leq e$.

- (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
- (d) Déterminer la valeur de $nI_n + (I_n + I_{n+1})$ et en déduire la limite de nI_n .

Exercice 7. Soit f la fonction définie par

$$f(x) = \frac{e^x}{\ln(x)}$$

- 1. Donner l'ensemble de définition et de dérivation de f.
- 2. Calculer la dérivée de f en déduire que le signe de f' dépend de celui de $g(x) = \ln(x) \frac{1}{x}$
- 3. Donner l'ensemble de définition et de dérivation de g et calculer sa dérivée.
- 4. Montrer qu'il existe un unique $\alpha \in]1, +\infty[$ tel que f'(x) > 0 sur $]\alpha, +\infty[$ et f'(x) < 0 sur $]0, \alpha[\cap D_f]$.
- 5. Donner le tableau de variations complet de f.
- 6. Donner l'équation de la tangente à la courbe représentative de f en e.

Exercice 8. Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t > 0 pour cette question. Prouver que P_t admet une unique racine notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. Montrer que f est strictement décroissante sur $]0, +\infty[$.
- 4. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Déterminer $\lim_{t\to 0^+} f(t)$.
- 6. Déterminer $\lim_{t\to+\infty} f(t)$.
- 7. Montrer que $f(t) \sim_{+\infty} = \frac{1}{t}$
- 8. Justifier que f est la bijection réciproque de $g:]0,1[\rightarrow]0,+\infty[x \mapsto \frac{1-x^5}{x}$
- 9. (a) Justifier que f est dérivale sur $]0, +\infty[$ et exprimer f'(t) en fonction de f(t) pour tout t > 0.
 - (b) En déduire la limite de f'(t) en 0. Calculer la limite de $t^2f'(t)$ en $+\infty$ (Comment noter ce résultat avec le signe équivalent : \sim)