Data-Driven Feature Tracking for Aerial Imagery

Github: https://github.com/xxender13/DL Final Project Team6/tree/main

Group 6

Team Members:

- Michael Brady
- Harshil Sharma
- Harsh Patel
- Vinay Chaudhari

Introduction

Brief Explanation:

- Topic: Feature tracking in aerial imagery using event cameras.
- Relevance:
 - Aerial navigation and mapping demand accurate and efficient feature detection.
 - Traditional methods struggle with latency and noise; event cameras offer a robust alternative.
- Objective:
 - Leverage event cameras to enhance feature tracking for 3D reconstruction and pose estimation.

Main Points

1. Dataset Overview:

- MultiFlow for asynchronous event streams.
- EDS dataset for pose fine-tuning.
- Augmented lab dataset for noise testing.

2. Key Contributions:

- Generated flows using events and RGB data.
- Integrated COLMAP for pose refinement.
- Evaluated model performance under various noise conditions.

Problem Statement and Methodology

Problem Statement:

- **Challenge**: Existing feature tracking methods are inefficient for high-speed aerial imagery.
- **Solution**: Develop a deep learning model leveraging event-driven data.

Methodology:

- 1. **Data Pipeline**:
 - Event and RGB-based flow generation.
 - Preprocessing with CSV packages.
- 2. Model Architecture:
 - Spatio-temporal feature extraction.
 - Pose refinement using COLMAP.
- 3. **Evaluation**:
 - Tested with augmented noise datasets.

Results and Conclusion

Results:

Key Metrics:

Condition	Feature Age	Expected Feature Age
Original Tracks	0.0529	0.149
Defocus Blur Tracks	0.0521	0.146
EDS Tracks	0.576	0.472

Visualization:

Predictions on original and blurred tracks.

Conclusion:

- Event cameras significantly enhance feature tracking robustness.
- Future Work:
 - Real-time implementation.
 - Advanced noise-handling techniques.

