TEST REPORT

FCC ID: 2ACMLTIX6-GW

Applicant

: Condeco Ltd

Address

8th Floor, Exchange Tower, 2 Harbour Exchange Square

London E14 9GE UK

Equipment under Test (EUT):

Name	:	Sense Gateway
Model	:	TIX6-GW
Trademark	:	CONDECO

Standards: FCC PART 15, SUBPART C: 2014 (Section 15.247)

ANSI C63.10:2013

Report No. : C1850476 05

Date of Test: November 12, 2015- January 17, 2016

Date of Issue: January 19, 2016

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above Authorized Signature

(Mark Zhu) Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

TABLE OF CONTENT

Des	scripti	on	Page
1 G	enera	l Information	4
	1.1	Description of Device (EUT)	
	1.2	Description of Test Facility	
2 E	MC E	equipment List	5
		· · · rocedure	
4	Sum	mary of Measurement	7
	4.1	Summary of test result	7
	4.2	Test connection	7
	4.3	Assistant equipment used for test	8
	4.4	Test mode	8
	4.5	Channel list	
	4.6	Test Conditions	
	4.7	Measurement Uncertainty (95% confidence levels, k=2)	
5	Spui	ious Emission	
	5.1	Radiation Emission	
		Radiation Emission Limits(15.209)	
		Test Setup	
		Test Procedure	
	5.1.4	Test Equipment Setting For emission test Result	12
		Test Condition	_
_		Test Result	
6		/ER LINE CONDUCTED EMISSION	
	6.1	Conducted Emission Limits(15.207)	
	6.2	Test Setup Test Procedure	
	6.3	Test Results	
7	6.4	ducted Maximum Output Powerducted Maximum Output Power	
7	7.1	Test limit	
	7.1	Test Procedure	_
	7.2	Test Setup	
	7.3 7.4	Test Results	
8	,	K POWER SPECTRAL DENSITY	
•	8.1	Test limit	31
	8.2	Method of measurement	
	8.3	Test Setup	
	8.4	Test Results	
9		dwidth	
	9.1	Test limit	
	9.2	Method of measurement	38
	9.3	Test Setup	38
	9.4	Test Results	
10	Band	d Edge Check	
	10.1	Test limit	
	10.2	Test Procedure	45

	10.3	Test Setup	- 45
		Test Result	
11	Ante	nna Requirement	-55
	11.1	Standard Requirement	- 55
		Antenna Connected Construction	
	11.3	Result	- 55
127	Test s	etup photo	-56
		Photos of Radiated emission	
	12.2	Photos of Conducted Emission test	- 57

1 General Information

1.1 Description of Device (EUT)

Trade Name : CONDECO

EUT : Sense Gateway

Model No. TIX6-GW

DIFF : N/A

Antenna Type : Rod Antenna, Maximum Gain is 2dBi for WLAN

Operation : IEEE 802.11b/g: 2412MHz-2462MHz Frequency : IEEE 802.11n HT20: 2412MHz-2462MHz

Channel number: EEE 802.11b/g:11Channels

IEEE 802.11n HT20: 11 Channels

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

Modulation type: IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n :OFDM(64QAM, 16QAM, QPSK, BPSK)

Power Supply : DC 3.7V from battery or DC 12V from adapter.

Applicant : Condeco Ltd

Address : 8th Floor, Exchange Tower, 2 Harbour Exchange Square, London E14 9GE UK

Manufacturer NOTE Electronics (Dongguan) Ltd

Address 6 Lindong Third Road, Lincun Industrial Center, Tangxia, Dongguan 523710, P. R.

China

1.2 Description of Test Facility

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China FCC Registered No.:197647

2 EMC Equipment List

2 Livic Equipment List					
Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2015.01.19	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2015.01.19	1Year
Receiver	R&S	ESCI	1166.5950K03-1 011	2015.01.19	1Year
Receiver	R&S	ESCI	101202	2015.01.19	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2015.01.21	1Year
Horn Antenna	EMCO	3115	640201028-06	2015.01.21	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2015.01.21	1Year
Cable	Resenberger	N/A	No.1	2015.01.19	1Year
Cable	SCHWARZBECK	N/A	No.2	2015.01.19	1Year
Cable	SCHWARZBECK	N/A	No.3	2015.01.19	1Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2015.01.19	1Year
Pre-amplifier	R&S	AFS33-18002650 -30-8P-44	SEL0080	2015.01.19	1Year
Base station	Agilent	E5515C	GB44300243	2015.01.19	1 Year
Temperature controller	Terchy	MHQ	120	2015.01.19	1Year
Power divider	Anritsu	K240C	020346	2015.01.19	1 Year
Signal Generator	HP	83732B	VS3449051	2015.01.19	1 Year

FCC ID: 2ACMLTIX6-GW

Power Meter	Anritsu	ML2487A	6K00001491	2015.01.19	1Year
Power sensor	Anritsu	ML2491A	32516	2015.01.19	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.01.19	1 Year
L.I.S.N.#2	R&S	ENV216	101043	2016.01.19	1 Year

3 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The test procedure used was ANSI Standard ANSI C63.4:2014 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10 kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25°C with a humidity of 58%.

RADIATION INTERFERENCE: The test procedure used was ANSI Standard ANSI C63.4:2014 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25°C with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading. Example:

Freq (MHz) METER READING + ACF + CABLE = FS 33.20 dBuV + 10.36 dB + 0.9 dB = 44.46 dBuV/m @ 3m

ANSI STANDARD ANSI C63.4:2014 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

4 Summary of Measurement

4.1 Summary of test result

Test Item	Test Requirement	Standards Paragraph	Result
Spurious Emission	FCC PART 15:2014	Section 15.247	Compliance
Conduction Emission	FCC PART 15:2014	Section 15.207	Compliance
Bandwidth Test	FCC PART 15:2014	Section 15.247	Compliance
Peak Power	FCC PART 15:2014	Section 15.247	Compliance
Power Density	FCC PART 15:2014	Section 15.247	Compliance
Band Edge	FCC PART 15:2014	Section 15.247	Compliance
Antenna Requirement	FCC PART 15:2014	Section 15.203	Compliance

Note: The EUT has been tested as an independent unit, and continuously transmit with maximum power (The adapter be used during Test).

4.2 Test connection

4.3 Assistant equipment used for test

Description	:	Test PC, Notebook			
Manufacturer	:	Dell			
Model No.	:	D430			
FCC DOC approved					

4.4 Test mode

Duty cycle :100%								
Keeping TX	Keeping TX							
Mode	data rate	Channel	Frequency					
	(Mpbs)(see Note)		(MHz)					
	1	Low:CH1	2412					
IEEE 802.11b	1	Middle: CH6	2437					
	1	High: CH11	2462					
	6	Low:CH1	2412					
IEEE 802.11g	6	Middle: CH6	2437					
	6	High: CH11	2462					
IEEE 900 11	6.5	Low:CH1	2412					
IEEE 802.11 n/HT20 with 2.4G	6.5	Middle: CH6	2437					
11/11120 WIUI 2.40	6.5	High: CH11	2462					

Note: According exploratory test, EUT will have maximum output power in those data rate. so those data rate were used for all test.

4.5 Channel list

	For IEEE 802.11b/g and IEEE 802.11n/HT20 with 2.4G						
Channel	Frequency	Channel	Frequency	Channel	Frequency		
	(MHz)		(MHz)		(MHz)		
CH1	2412	CH5	2432	CH9	2452		
CH2	2417	CH6	2437	CH10	2457		
CH3	2422	CH7	2442	CH11	2462		
CH4	2427	CH8	2447				

4.6 Test Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

4.7 Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2 °C	
Uncertainty for humidity	1%	_
Uncertainty for DC and low frequency voltages	0.06%	

5 Spurious Emission

5.1 Radiation Emission

5.1.1 Radiation Emission Limits(15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dBuV/m)=20log Emission Level(uv/m)

5.1.2 Test Setup

See the next page

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

5.1.3 Test Procedure

- a) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m,Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range.
 Significant Peaks are then marked. and then Quasi Peak Detector mode premeasured
- d) If Peak value complies with QP limit below 1 GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.

5.1.4 Test Equipment Setting For emission test Result

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHZ~1GHz	RBW 120KHz	VBW 300KHz

FCC ID: 2ACMLTIX6-GW

Above 1GHz RBW 1MHz VBW 3MHz

5.1.5 Test Condition

Continuously transmit with maximum power.

5.1.6 Test Result

We have scanned the 9 kHz from 25GHz to the EUT. Detailed information please see the following page.

From 9 kHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

From 1G-25GHz

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

IEEE 802.11b

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)		Kenan
1125	V	51.41	-	-11.24	40.17	-	74.00	54.00	-13.83	Peak
1745	V	50.82		-9.53	41.29		74.00	54.00	-12.71	Peak
2289	V	49.68		-8.07	41.61		74.00	54.00	-12.39	Peak
4824	V	41.88		0.64	42.52		74.00	54.00	-11.48	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kilkik
1290	Н	50.35		-10.96	39.39		74.00	54.00	-14.61	Peak
1932	Н	50.33		-8.86	41.47		74.00	54.00	-12.53	Peak
2915	Н	46.54		-5.95	40.59		74.00	54.00	-13.41	Peak
4824	Н	40.71		0.64	41.35		74.00	54.00	-12.65	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellalk
1289	V	51.10		-10.96	40.14		74.00	54.00	-13.86	Peak
2042	V	49.87		-8.58	41.29		74.00	54.00	-12.71	Peak
2953	V	46.81		-5.86	40.95		74.00	54.00	-13.05	Peak
4874	V	40.76		0.76	41.52		74.00	54.00	- 12.48	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kemark
1245	Н	50.20		-11.52	38.68		74.00	54.00	-15.32	Peak
1959	Н	49.53		-8.64	40.89		74.00	54.00	-13.11	Peak
3452	Н	46.30		-4.95	41.35		74.00	54.00	-12.65	Peak
4874	Н	41.41		0.76	42.17		74.00	54.00	- 11.83	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellalk
1397	V	50.02		-10.43	39.59		74.00	54.00	-14.41	Peak
2273	V	48.39		-8.07	40.32		74.00	54.00	-13.68	Peak
3115	V	47.10		-5.63	41.47		74.00	54.00	-12.53	Peak
4924	V	42.09		0.87	42.96		74.00	54.00	-11.04	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` /	(dBuV/m)		Kemark
1344	Н	50.59		-10.84	39.75		74.00	54.00	-14.25	Peak
2387	Н	48.42		-7.59	40.83		74.00	54.00	-13.17	Peak
3704	Н	45.43		-4.24	41.19		74.00	54.00	-12.81	Peak
4924	Н	41.34		0.87	42.21		74.00	54.00	-11.79	Peak

IEEE 802.11 g:

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellialk
1145	V	52.81		-11.24	41.57		74.00	54.00	-12.43	Peak
2586	V	48.06		-7.13	40.93		74.00	54.00	-13.07	Peak
3062	V	46.90		-5.74	41.16		74.00	54.00	-12.84	Peak
4824	V	41.78		0.64	42.42		74.00	54.00	-11.58	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)		Kilkilk
1294	Н	51.24	-	-10.96	40.28		74.00	54.00	-13.72	Peak
2038	Н	49.44		-8.58	40.86		74.00	54.00	-13.14	Peak
3483	Н	46.38		-4.95	41.43		74.00	54.00	-12.57	Peak
4824	Н	42.30		0.64	42.94		74.00	54.00	-11.06	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	l Actual Es l		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellark
1374	V	50.00		-10.43	39.57		74.00	54.00	-14.43	Peak
2589	V	48.29		-7.13	41.16		74.00	54.00	-12.84	Peak
3365	V	48.61		-5.18	43.43		74.00	54.00	-10.57	Peak
4874	V	44.95		0.76	45.71		74.00	54.00	-8.29	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Es		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Keniaik
1321	Н	50.48		-10.84	39.64		74.00	54.00	-14.36	Peak
2314	Н	48.35		-7.46	40.89	-	74.00	54.00	-13.11	Peak
3577	Н	45.91		-4.76	41.15		74.00	54.00	-12.85	Peak
4874	Н	41.17		0.76	41.93		74.00	54.00	-12.07	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellialk
1302	V	51.08		-10.84	40.24		74.00	54.00	-13.76	Peak
2982	V	48.21		-5.86	42.35		74.00	54.00	-11.65	Peak
3831	V	44.79		-3.96	40.83		74.00	54.00	-13.17	Peak
4924	V	40.66		0.87	41.53		74.00	54.00	-12.47	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Keniaik
1446	Н	50.07		-10.29	39.78		74.00	54.00	-14.22	Peak
2198	Н	48.43		-8.24	40.19		74.00	54.00	-13.81	Peak
3905	Н	44.72		-3.68	41.04		74.00	54.00	-12.96	Peak
4924	Н	41.24		0.87	42.11		74.00	54.00	-11.89	Peak

IEEE 802.11n/HT20

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` /	(dBuV/m)		Terrai K
1492	V	50.91		-10.27	40.64	-	74.00	54.00	-13.36	Peak
2671	V	49.49		-6.94	42.55		74.00	54.00	-11.45	Peak
3948	V	45.61		-3.68	41.93		74.00	54.00	-12.07	Peak
4824	V	43.68		0.64	44.32		74.00	54.00	-9.68	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Low		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kemark
1451	Н	50.35		-10.27	40.08		74.00	54.00	-13.92	Peak
2839	Н	48.69		-6.17	42.52		74.00	54.00	-11.48	Peak
3607	Н	48.10		-4.52	43.58		74.00	54.00	-10.42	Peak
4824	Н	45.07		0.64	45.71		74.00	54.00	-8.29	Peak
N/A										

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Kellal K
1262	V	50.24		-10.96	39.28		74.00	54.00	-14.72	Peak
2013	V	49.22		-8.58	40.64		74.00	54.00	-13.36	Peak
3798	V	45.49		-4.07	41.42		74.00	54.00	-12.58	Peak
4874	V	41.20		0.76	41.96		74.00	54.00	-12.04	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX Mid		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Keniaik
1511	Н	50.58		-10.14	40.44		74.00	54.00	-13.56	Peak
2353	Н	49.38		-7.59	41.79		74.00	54.00	-12.21	Peak
3266	Н	47.48		-5.39	42.09		74.00	54.00	-11.91	Peak
4874	Н	43.51		0.76	44.27		74.00	54.00	-9.73	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` /	(dBuV/m)		Keniaik
1477	V	50.32		-10.27	40.05		74.00	54.00	-13.95	Peak
2703	V	47.97		-6.43	41.54		74.00	54.00	-12.46	Peak
3561	V	47.18		-4.76	42.42		74.00	54.00	-11.58	Peak
4924	V	42.30		0.87	43.17		74.00	54.00	-10.83	Peak

EUT	Sense Gateway	Model Name	TIX6-GW
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 12V from adapter
Test Mode	TX High		

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` ′	(dBuV/m)		Keniaik
1503	Н	49.21		-10.14	39.07		74.00	54.00	-14.93	Peak
3588	Н	46.12		-4.96	41.16		74.00	54.00	-12.84	Peak
4153	Н	45.13		-2.48	42.65		74.00	54.00	-11.35	Peak
4924	Н	44.86		0.87	45.73		74.00	54.00	-8.27	Peak

6 POWER LINE CONDUCTED EMISSION

6.1 Conducted Emission Limits(15.207)

Frequency	Limits dB(μV)				
MHz	Quasi-peak Level	Average Level			
0.15 -0.50	66 -56*	56 - 46*			
0.50 -5.00	56	46			
5.00 -30.00	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

6.2 Test Setup

6.3 Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4:2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCI) is set at 9 kHz.

6.4 Test Results

Worse case is reported only

PASS

Detailed information please see the following page.

EUI

Model No

Test Mode : Power : AC 120V/60Hz

Test Engineer: Remark

Item	Freq	Read	LISN Factor	Preamp Factor		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.162	38.53	0.03	-9.52	0.10	48.18	65.34	-17.16	Peak
2	0.213	35.69	0.03	-9.52	0.10	45.34	63.10	-17.76	Peak
3	0.310	34.37	0.03	-9.56	0.10	44.06	59.97	-15.91	Peak
4	0.735	28.64	0.04	-9.59	0.10	38.37	56.00	-17.63	Peak
5	1.010	28.06	0.04	-9.63	0.10	37.83	56.00	-18.17	Peak
6	1.839	25.82	0.05	-9.70	0.10	35.67	56.00	-20.33	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Condition : FCC PART 15 B QP

Model No :

Test Mode : Power : AC 120V/60Hz

Test Engineer: Remark

Iter	n Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.169	38.67	0.03	-9.52	0.10	48.32	64.99	-16.67	Peak
2	0.300	32.99	0.03	-9.56	0.10	42.68	60.24	-17.56	Peak
3	0.535	30.87	0.03	-9.58	0.10	40.58	56.00	-15.42	Peak
4	0.953	28.59	0.04	-9.63	0.10	38.36	56.00	-17.64	Peak
5	2.622	21.25	0.06	-9.76	0.11	31.18	56.00	-24.82	Peak
6	10.342	16.16	0.20	-9.93	0.21	26.50	60.00	-33.50	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

7 Conducted Maximum Output Power

7.1 Test limit

Please refer section 15.247.

7.2 Test Procedure

Details see the KDB558074 Meas Guidance V03

- 7.2.1 Place the EUT on the table and set it in transmitting mode.
- 7.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset. Details see the KDB558074 DTS Meas Guidance V03

7.3 Test Setup

7.4 Test Results

PASS

Detailed information please see the following page.

EUT: Sense Gateway	M/N: TIX6	i-GW					
Test date: 2015-12-17	7 Test site	: RF site	Tested by: Eric Huang				
Mode	Frequency (MHz)	PK Output power(dBm)	Limit (dBm)	Margin (dB)			
	CH1: 2412	18.78	30	11.22			
IEEE 802.11 b	СН6: 2437	18.96	30	11.04			
	CH11: 2462	19.06	30	10.94			
	CH1: 2412	22.11	30	7.89			
IEEE 802.11 g	СН6: 2437	22.35	30	7.65			
	CH11: 2462	22.47	30	7.53			
	CH1: 2412	22.34	30	7.66			
IEEE 802.11 n/HT20 with 2.4G	СН6: 2437	22.27	30	7.73			
	CH11: 2462	22.36	30	7.64			
Conclusion: PASS							

8 PEAK POWER SPECTRAL DENSITY

8.1 Test limit

- 8.1.1 Please refer section 15.247.
- 8.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 8.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

8.2 Method of measurement

Details see the KDB558074 DTS Meas Guidance V03

- 8.2.1 Place the EUT on the table and set it in transmitting mode.
- 8.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 8.2.3 Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, span=5-30%EBW, detail see the test plot.
- 8.2.4 Record the max reading.
- 8.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

8.3 Test Setup

8.4 Test Results

PASS.
Detailed information please see the following page.

EUT: Sense Gateway	M/N: TIX6-	M/N: TIX6-GW					
Test date: 2015-12-1	7 Test site:	Test site: RF site Tested by: Eric Huang					
Mode	Frequency (MHz)	PK Output power(dBm)	Limit (dBm)	Result			
	CH1: 2412	-9.772	8	PASS			
IEEE 802.11 b	СН6: 2437	-9.226	8	PASS			
	CH11: 2462	-8.014	8	PASS			
	CH1: 2412	-11.959	8	PASS			
IEEE 802.11 g	CH6: 2437	-12.591	8	PASS			
	CH11: 2462	-12.932	8	PASS			
HDDD 000 11	CH1: 2412	-11.369	8	PASS			
IEEE 802.11 n/HT20 with 2.4G	CH6: 2437	-11.969	8	PASS			
11/11120 With 2.40	CH11: 2462	-11.102	8	PASS			
Conclusion: PASS							

FCC ID: 2ACMLTIX6-GW

IEEE 802.11b:

CH Low:

CH Mid:

CH High:

IEEE 802.11g:

CH Low:

CH Mid:

CH High:

IEEE 802.11n/HT20:

CH Low:

CH Mid:

CH High:

9 Bandwidth

9.1 Test limit

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

9.2 Method of measurement

Details see the KDB558074 D01 Meas Guidance

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 1-5 % EBW, VBW≥3RBW, Sweep time set auto, detail see the test plot.

9.3 Test Setup

9.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result
IEEE 802.	11b:				
Low	2412	9.574	/	0.5	PASS
Mid	2437	9.599	/	0.5	PASS
High	2462	10.04	/	0.5	PASS
IEEE 802.	11g				
Low	2412	15.14	/	0.5	PASS
Mid	2437	14.72	/	0.5	PASS
High	2462	15.33	/	0.5	PASS
IEEE 802.	11n/HT20:				
Low	2412	15.16	/	0.5	PASS
Mid	2437	15.67	/	0.5	PASS
High	2462	15.13	/	0.5	PASS

IEEE 802.11b:

CH Low:

CH Mid:

CH High:

IEEE 802.11g:

CH Low:

CH Mid:

CH High:

IEEE 802.11 n/HT20:

CH Low:

CH Mid:

CH High:

10 Band Edge Check

10.1 Test limit

Please refer section RSS-GEN&15.247.

10.2 Test Procedure

- 12.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 12.2.2 Check the spurious emissions out of band.
- 12.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

10.3 Test Setup

Same as 5.2.2.

10.4 Test Result

PASS.

Detailed information please see the following page.

Radiated Method:

802.11b

			Band Ed	ige Test	result			
EUT: Sense (Gateway	M/N: TIX6-GW						
Power: DC 5	V From ada	pter						
Test date: 201	15-12-17	Test site	: 3m Cl	namber	Tested by	: Eric Huang		
Test mode: T	x Low							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	42.16	27.62	3.92	34.97	38.73	74	35.27	PK
2390		27.62	3.94	34.97		54		AV
Antenna Pola	rity: Horizo	ontal						
2390	42.29	27.62	3.92	34.97	38.86	74	35.14	PK
2390		27.62	3.94	34.97		54		AV
Notae								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: Sense C	Gateway		M/N	N: TIX6	-GW			
Power: DC 5	V From ada	pter						
Test date: 2015-12-17 Test site: 3m Chamber Tested by: Eric Huang								
Test mode: T	x High							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	42.29	27.89	4	34.97	39.21	74	34.79	PK
2483.5		-	1			54		AV
Antenna Pola	rity: Horizo	ontal						
2483.5	43.77	27.89	4	34.97	40.69	74	33.31	PK
2483.5						54		AV

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11g

			Dana L	age rest	Tobuit			
EUT: Sense (Gateway		M/N	N: TIX6	-GW			
Power: DC 5	V From ada	pter						
Test date: 20	15-12-17	Test site	: 3m Cl	namber	Tested by	: Eric Huang		
Test mode: T	x Low							
Antenna pola	rity: Vertic	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	1	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	48.76	27.62	3.92	34.97	45.33	74	28.67	PK
2390		27.62	3.94	34.97		54		AV
Antenna Pola	rity: Horizo	ontal						
2390	49.13	27.62	3.92	34.97	45.7	74	28.3	PK
2390		27.62	3.94	34.97		54		AV
Note:								

Band Edge Test result

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

		Band Ed	dge Test	result				
EUT: Sense Gateway M/N: TIX6-GW								
V From ada	pter							
Test date: 2015-12-17 Test site: 3m Chamber Tested by: Eric Huang								
x High								
rity: Vertica	al							
Read Level (dBuV/m)	Factor	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
45.36	27.89	4	34.97	42.28	74	31.72	PK	
		1			54		AV	
rity: Horizo	ntal							
46.18	27.89	4	34.97	43.1	74	30.9	PK	
					54		AV	
	V From ada 15-12-17 x High rity: Vertica Read Level (dBuV/m) 45.36	V From adapter 15-12-17 Test site x High rity: Vertical Read Antenna Level Factor (dBuV/m) (dB/m) 45.36 27.89 rity: Horizontal	Gateway M/N V From adapter US-12-17 Test site: 3m Chax High rity: Vertical Read Antenna Cable Level Factor loss(d (dBuV/m) (dB/m) B) 45.36 27.89 4 rity: Horizontal	Gateway M/N: TIX6 V From adapter 15-12-17 Test site: 3m Chamber X High rity: Vertical Read Antenna Cable Amp Factor (dBuV/m) (dB/m) B) (dB) 45.36 27.89 4 34.97 rity: Horizontal	V From adapter 15-12-17 Test site: 3m Chamber Tested by X High	M/N: TIX6-GW W From adapter S-12-17 Test site: 3m Chamber Tested by: Eric Huang X High Tested T	M/N: TIX6-GW	

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11n20

			Band Ed	dge Test	result			
EUT: Sense	Gateway		M/N	N: TIX6	-GW			
Power: DC 5	V From ada	ıpter						
Test date: 20		-	: 3m Cl	namber	Tested by	: Eric Huang		
Test mode: T	'x Low				-			
Antenna pola	rity: Vertic	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	43.29	27.62	3.92	34.97	39.86	74	34.14	PK
2390		27.62	3.94	34.97		54		AV
Antenna Pola	rity: Horizo	ontal						
2390	45.17	27.62	3.92	34.97	41.74	74	32.26	PK
2390		27.62	3.94	34.97		54		AV
Noto:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: Sense Gateway M/N				N: TIX6	-GW			
Power: DC 5	V From ada	pter						
Test date: 201	15-12-17	Test site	: 3m Cl	namber	Tested by	: Eric Huang		
Test mode: T	x High							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	46.12	27.89	4	34.97	43.04	74	30.96	PK
2483.5			1			54		AV
Antenna Pola	rity: Horizo	ontal						
2483.5	46.74	27.89	4	34.97	43.66	74	30.34	PK
2483.5			1			54		AV
N.T								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted Method:

802.11b

802.11g

802.11n HT20

11 Antenna Requirement

11.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

11.3 Result

It complies with the standard requirement.

12Test setup photo

12.1 Photos of Radiated emission

12.2Photos of Conducted Emission test

-----END OF THE REPORT-----