Symmetric Spaces

Mathieu Wydra

1 (Locally) Symmetric Spaces

Definition 1.1. A Riemann symmetric space is a Riemannian manifold (M,g) such that $\forall p \in M$ there exists a isometry $s_p : M \to M$ satisfying $s_p(p)$ and $ds_p|_p = -\mathrm{id}$.

Remark. A Riemannian manifold M does not have isometries in general.

A few examples:

Example. • On \mathbb{R}^n , $s_p(p+v) = p-v$.

- $S^n \subset \mathbb{R}^n$ given w.l.o.g at $p = (0, 0, \dots, 0, 1)$ as $s_p(x_1, \dots, x_{n+1}) = (-x_1, \dots, -x_n, x_{n+1})$.
- \mathbb{H}^n as the Poincare disc model (D^n, g_{hyp}) by $s_0(v) = -v$.

Definition 1.2. A Riemannian manifold (M, g) is called a **locally symmetric** space if $\forall p \in M$ there exists a neighbourhood $\mathcal{U}_p \ni p$ and an isometry $s_p : \mathcal{U}_p \to \mathcal{U}_p$ of $(\mathcal{U}_p, g|_{\mathcal{U}_p})$ such that $ds_p|_p = -id$.

Note that a diffeomorphism with the same properties (no necessarily an isometry) always exists.

Theorem 1.1. Let (M,g) be a Riemannian manifol, then the following are equal.

- 1. M is a locally symmetric space.
- 2. The curvature tensor is parallel, i.e. $\nabla_X R(Y,Z)T \equiv 0, \forall X,Y,Z,T \in V(M)$.

Proof. Take some s_p as definite at $p \in M$. Given $X, Y, Z, T \in V(M)$ when we have

$$\begin{split} -\nabla_X R(Y,Z) T(p) &= d(s_p)|_p (\nabla_X R(Y,Z) T)(p) = \nabla_{d(s_p)|_p} (R(Y,Z) T) = \\ &= \nabla_{d(s_p)|_p} R(d(s_p) Y, d(s_p) Z) d(s_p) T = (-1)^4 \nabla_X R(Y,Z) T(p). \end{split}$$

Conversely, follows from the following theorem as follows: Since M as parallel curvature tensor and $-\mathrm{Id}: T_pM \to T_pM$ is a linear isometry preserving the curvature tensor, then for $p \in M$ we can find neighbourhoods $\mathcal{U} \ni p$ and isometry $s_p: \mathcal{U} \to \mathcal{U}$ such that $d(s_p)|_p = -\mathrm{Id}$.

Theorem 1.2. Let (M, g^M) , (N, g^N) be Riemannian manifolds with parallel curvature tensor. Let $m \in M$, $n \in N$ then for any linear isometry $\phi : T_mM \to T_nN$ preserving curvature tensors $(\phi(R^M(X,Y),Z) = R^N(\phi(X),\phi(Y))\phi(Z), \forall X,Y,Z \in T_mM)$, and for any normal neighbourhood $\mathcal{U} = \exp_m(W)$ of m such that $\exp_m|_W$ is a diffeomorphism, there is a normal neighbourhood \mathcal{V} of n and a local isometry $f: \mathcal{U} \to \mathcal{V}$ such that f(m) = n and $df|_m = \phi$.

Proof. We want to show $f := \exp_m \circ \phi \circ \exp_m^{-1} | \mathcal{U} : \mathcal{U} \to N$ is a local isometry. We already know that f is an isometry at m.

Given $x \in \mathcal{U}$, $w \in T_xM$ we need to show that $\|df_xw\|_{g^N} = \|w\|_{g^M}$.

Let $v \in T_m M$ such that $\exp_m(v) = x$ and denote $w' = d(\exp_m)^{-1}(w) \in T_m M$. Consider the Jacobi field J along $\exp_m(tv)$ with J(0) = 0, J'(0) = w' (i.e. $J(t) = d(\exp_m)|_{tv}(tw')$. Let $e_1 = v, (e_2, \dots, e_n)$ an orthonormal basis of $e_1^{\perp} \subset T_m M$ and $e_i(t)$ the parallel transport of e_i along $c(t) := \exp_m(tv)$, hence $(e_1(t), \dots e_n(t))$ is orthogonal basis of $T_{\exp_m(tv)}M$.

Then there are $y_i(t) \in C^{\infty}([0,1])$ such that $J(t) = \sum_{i=1}^n y_i(t)e_i(t)$. Let $(\epsilon_1(t), \ldots, \epsilon_n(t))$ be the parallel transport of $(\phi(e_1), \ldots, \phi(e_n))$ along $\gamma(t) :=$ $\exp_n(t\phi(e_1))$ (hence $\epsilon_1(t) = \gamma'(t)$). Define $I(t) := \sum_{i=1}^n y_i(t)\epsilon_i(t)$, and we claim that I is a Jacobi field along γ , with I(0) = 0 and $I'(0) = \phi(w')$. For any $i = 1, \ldots, n, t \in [0, 1],$

$$\begin{split} g^N_{\gamma(t)} \left(I'' + R^N(\gamma', I) \gamma', \epsilon_i \right) &= g^N_{\gamma(t)} \left(\sum y_i \epsilon_i, \epsilon_i \right) + g^N_{\gamma(t)} \left(R^N(\gamma', \sum y_i \epsilon_i) \gamma', \epsilon \right) \\ &= y''_i + \sum y_i g^N_{\gamma(t)} (R^N(\epsilon_1(t), \epsilon_j(t)) \epsilon_1(t), \epsilon_i(t)) \\ &= y''_i + \sum y_i(t) g^N_{\gamma(0)} (R^N(\epsilon_1(0), \epsilon_j(0)) \epsilon_1(0), \epsilon_i(0)) \\ &= y''_i + \sum y_i(t) g^N_{c(0)} (R^N(e_1(0), e_j(0)) e_1(0), e_i(0)) \\ &= y''_i + \sum y_i g^N_{c(t)} (R^N(e_1(t), e_j(t)) e_1(t), e_i(t)) \\ &= 0 \end{split}$$

So $I'' + R^N(\gamma', I)\gamma' = 0$ and I is a Jacobi field. Moreover $I'(0) = \sum y_i'(0)\epsilon_i(0) = \sum y_i'(0)\epsilon_i(0)$ $\sum y_i'(0)\phi(e_1(0)) = \phi(J'(0)) = \phi(w').$ By definition

$$df|_x(w) = df_{\exp_m(v)}(d\exp_m|_v(w')) = d\exp_m|_{\phi(v)}(\phi(w'))$$

so $df_x(J(1)) = I(1)$ but

$$||J(1)||_{g^M}^2 = ||v||_{g^M}^2 |y_1(t)|^2 + \sum_{i=2}^n |y_i(1)|^2$$
$$= ||\phi(v)||_{g^N}^2 |y_1(1)|^2 + \sum_{i=2}^n |y_i(1)|^2 = ||I(1)||_{g^N}^2$$

Thus f is a local isometry.

Corollary 1.3. Let M, N be complete locally symmetric spaces with M simply connected with non-positive sectional curvature. For any curvature tensor preserving linear isometry $\phi: T_mM \to T_nN$ that preserves the curvature tensor, then there exists a Riemannian covering $f: M \to N$ with f(m) = n and $df|_m = \phi.$

Proof. By Cartan-Hadamard, $\exp_m: T_m M \to M$ is a diffeomorphism. Thus we get a local isometry $f: M \to N$ with f(m) = n and $df|_m = \phi$. Since M is complete, this guarantees that f is a Riemannian covering.

Theorem 1.4. Let M, N be complete locally symmetric spaces with M simply connected. For any curvature tensor preserving linear isometry $\phi: T_mM \to$ T_nN that preserves the curvature tensor, then there exists a Riemannian covering $f: M \to N$ with f(m) = n and $df|_m = \phi$.

Corollary 1.5. Let M be a complete locally symmetric space. Then the Riemannian universal cover \tilde{M} of M is a symmetric space.

Proof. The universal cover of a complete Riemannian manifold is complete. We claim that \tilde{M} is a locally symmetric space: $\pi: \tilde{M} \to M$ be the covering map, which is a local isometry, then

$$\pi(\nabla_X R^{\tilde{M}}(Y,Z),T) = \nabla_{d\pi(X)} d\pi(R^{\tilde{M}}(Y,Z),T) =$$

$$= \nabla_{d\pi(X)} R^{M}(d\pi(Y),d\pi(Z)) d\pi T = 0$$

Since $d\pi|_p$ is an isomorphism, $\nabla_X R^{\tilde{M}}(Y,Z)T=0$ if and only if \tilde{M} is locally symmetric.

Given $p \in \tilde{M}$, $\mathrm{Id}_{T_p\tilde{M}}$ is a linear isometry and preserves the curvature tensor. Then by a previous corollary, there exists $s_p : \tilde{M} \to \tilde{M}$ a covering such that $s_p(p) = p$ and $ds_p|_p = -\mathrm{id}_{T_p\tilde{M}}$. As every smooth covering of a simply connected space is a diffeomorphism, this implies that s_p is a diffeomorphism (and a local isometry), so s_p is an isometry.

Example. Let $M = S^n$, $N = \mathbb{R}P^n$ with natural metric (with sectional curvature = 1), then M, N are complete locally symmetric spaces. In this case there are many linear isometries that preserve the curvature tensor (in fact they identify with O(n)).

Theorem. (Idea). Such an f should be defined such that

$$T_m M \xrightarrow{\phi} T_n N$$

$$\downarrow^{\exp_m} \qquad \downarrow^{\exp_n}$$

$$M \xrightarrow{f} N$$

The issue is that in general this is not well defined i.e. there can exist $v, w \in T_m M$ such that $\exp_m v \exp_m w$.

We solve this by extending f along paths and show that the extension is independent of the chosen path.

Remark. Recall that $\mathcal{U} \subset M$ is a normal neighbourhood if $\mathcal{U} = \exp_p(W)$ for a star-shaped neighbourhood of $0, W \subset T_pM$ and diffeomorphism $\exp_p|_W : W \to \mathcal{U}$.

If additionally $\mathcal{U} = B_r(p)$ $(W = B_r(0))$ then \mathcal{U} is called a normal ball.

We also need the following two observations

1. Let M, N be complete locally symmetric spaces $B_r(p)$, $B_\ell(p) \subset M$ normal balls with $\ell > r$ and $f: B_r(p) \subset M \to V \subset N$ is a local isometry, then $\hat{f} := \exp^N_{f(p)} \circ df_p \circ (\exp^M_p)^{-1} : B_\ell(p) \to B_\ell(f(p))$ is a local isometry extending f.

Note that it follows from a previous theorem that \hat{f} is a local isometry with $\hat{f}(p) = f(p)$, $d\hat{f}|_{p} = df|_{p}$.

Recall that two isometries are equal if they and their differentials are equal at p.

2. For any $p \in M$, $\exists r > 0$ such that $B_r(q)$ is a normal ball for any $q \in B_r(p)$.

Lemma 1.6. Let M, N be complete locally symmetric spaces, $m \in M$, $m \in \mathcal{U}$ a normal neighbourhood, $f: \mathcal{U} \to N$ a local isometry and $\sigma: [0,1] \to M$ a smooth curve with $\sigma(0) = m$. Then f can be continued along σ i.e. $\forall t \in [0,1]$, there exist \mathcal{U}_t neighbourhood of $\sigma(t)$ such that $f_t: \mathcal{U}_t \to N$ is an isometry, and $\exists \epsilon > 0$ such that $|t-s| < \epsilon \implies \mathcal{U}_t \cap \mathcal{U}_s \neq \emptyset$ and $f_t|_{\mathcal{U}_t \cap \mathcal{U}_s} = f_t s|_{\mathcal{U}_t \cap \mathcal{U}_s}$.

Proof. Define $I = \{t \in [0,1] \mid f \text{ can be continued along } \sigma|_{[0,t)}\}$. I is non-empty (contains t such that $\sigma([0,t]) \subset \mathcal{U}$) and open (If $t_0 \in I$ choose ϵ small enough such that $\sigma(t_0 - \epsilon, t_0 + \epsilon) \subset \mathcal{U}_{t_0}$ and set $\mathcal{U}_t = \mathcal{U}_{t_0}$, $f_t = f_{t_0}$ for $t \in (t_0 - \epsilon, t_0 + \epsilon)$). We show that I is closed. Let q be an accumulation point of $f_t(\sigma(t))$ for $t \to T := \sup I$. Such a point always exists as N is complete and $f_t(\sigma(t)) \subset \overline{B_{L(\sigma)}(f(\sigma(0)))}$ (since f_t is an isometry and $f_t = f_s$ on $\mathcal{U}_t \cap \mathcal{U}_s$).

Choose r > 0 such that it satisfied (2) for q, $\sigma(T)$. Then by construction there exists $t_0 < T$ such that $\sigma(t_0) \in B_r(\sigma(T))$ and $F_t(\sigma(t_0)) \in B_r(q)$. By (1) we can then extend f_{t_0} on $B_r(\sigma(t_0))$. Setting $f_t = f_{t_0}$ and $\mathcal{U}_t = B_r(\sigma(t_0))$ on $(t_0 - \epsilon, t_0 + \epsilon)$ for ϵ small enough, we can extend f around $\sigma(T)$ thus I is closed. Hence I = [0, 1].

The second part follows from the compactness of I - we can find finitely many t_i such that \mathcal{U}_{t_i} cover I and chose $\mathcal{U}_t = \mathcal{U}_{t_i}$ for t_i minimal such that $t \in \mathcal{U}_{t_i}$ and $f_t = f_{t_i}$.

Lemma 1.7. The continuation of f along σ is unique in the sense that if $\{U_t, f_t\}, \{V_t, \bar{f}_t\}$ are two different continuations and A_t is the connected component of $U_t \cap V_t$ containing $\sigma(t)$ then $f_t|_{A_t} = \bar{f}_t|_{A_t}$.

Proof. $I\{t \in [0,1] \mid f_t(\sigma(t)) = \bar{f}_t(\sigma(t)), df_t|_{\sigma(t)} = d\bar{f}_t|_{\sigma(t)}\}$, then I is open, closed and non-empty $\Longrightarrow I = [0,1]$. This holds because isometries are uniquely defined by their value at a point and the differential at the point. For the same reason $f_t|_{A_T} = \bar{f}_t|_{A_T}$

Lemma 1.8. Let M, N be complete locally symmetric spaces \mathcal{U} a normal neighbourhood of m, $f: \mathcal{U} \to N$ a local isometry. Let $\sigma, \tau: [0,1] \to M$ smooth curves with $\sigma(0) = \tau(0) = m$, $\tau(1) = \sigma(1)$, curves being homotopic rel ∂I .

Proof. Let H be the homotopy between σ , τ rel ∂I . Fix s and let f^s be the continuation of f along the path $t \mapsto H(t,s)$. Let

$$I = \{ s \in [0,1] \mid \forall r \le s \, f^r(\sigma(1)) = f^\sigma(\sigma(1)) \text{ and } df^r|_{\sigma(1)} = df^\sigma|_{\sigma(1)} \}.$$

I is non-empty as $0 \in I$ and open as follows: given $s_0 \in I$ we find $\epsilon > 0$ such that for all $s' \in (s_0 - \epsilon, s_0 + \epsilon)$, $H(t, s') \in \mathcal{U}_t$. By (2) and compactness, there exists r > 0 such that $B_r(\sigma(t))$ is a normal ball. Assume then that $B_r(H(s_0, t)) \subset \mathcal{U}_t$ (as H is smooth). Setting $\mathcal{U}_t^s = \mathcal{U}_t^{s_0}$ and $f_t^{s'} = f_t^{s_0}$ gives continuation along H(s') thus $(s_0 - \epsilon, s_0 + \epsilon) \subset I$ (by construction) and I is open.

For I closed, let $A = \sup I$ and as before $\exists r > 0$ such that $B_r(H(t,A))$ is a normal ball for all $t \in [0,1]$ and $B_r(f^A(H(t,A)))$ is a normal ball. As before $\exists \epsilon > 0$ such that $\forall s : |A-s| < \epsilon, H(t,s) \in B_r(H(t,A))$ so f^A is a continuation of f along H(s) for $s \in (A-\epsilon,A)$ where $f^A(\sigma(1)) = f^s(\sigma(1)) = f^\sigma(\sigma(1))$ and $df^A_{\sigma(1)} = df^s_{\sigma(1)}$ thus $A \in I \implies I = [0,1]$.

Back to the theorem we are trying to prove

Proof. Theorem Since M, N are complete, exp is defined everywhere. Define f (locally) though the relation $f(\exp_m(v)) = \exp_n(\phi(v))$ - this is indeed well defined on a normal neighbourhood \mathcal{U} of m.

Set $\bar{f} = f|_{\mathcal{U}}$, and define f on $\exp_m(v)$ via continuation of \bar{f} along $\sigma(t) := \exp_m(tv)$. If there exists $v, w \in T_m M$ such that $\exp_m(v) = \exp_n(v)$ then the paths $\sigma(t) = \exp_m(tv)$ and $\tau(t) = \exp_m(tw)$ are homotopic rel ∂I due to M being simply-connected. Then be the previous lemmma, it is well defined as $f(\exp_m(v)) = f(\exp_m(w))$. As f is a continuation along paths it is a local isometry. M being complete implies that f is a smooth covering (+ localisation) by a previous lemma. Hence this is Riemann covering.

Theorem 1.9. Let M be a complete, simply-connected Riemannian manifold then the following are equal.

- 1. M is a symmetric space.
- 2. M is a locally symmetric space.
- 3. Any curvature preserving linear isometry $\phi: T_xM \to T_yM$ is induced by a (unique) linear isometry $f: M \to M$ such that f(x) = y, $df_x = \phi$.

Proof. $1 \implies 2$ is trivial, $2 \implies 3$ hold by the previous theorem. For $3 \implies 1$, we apply 3 to $-\mathrm{Id}: T_pM \to T_pM$.

Remark. Not all symmetric spaces are simply-connected.

Example. • $\mathbb{R}P^n$ is a non-simply-connected symmetric space.

• $T^n = (S^1)^n$ is a symmetric space (obviously not 1-connected).

Proposition 1.10. Let M be a symmetric space, the M is complete.

Proof.

Definition 1.3. Let M be a smooth manifold. We say that a group action $G \curvearrowright M$ is transitive if $\forall p, q$ there exists $g \in G$ such that g(p) = q.

Proposition 1.11. Let M be a symmetric space. Then Iso(M) acts transitively.

Proof. \Box

Definition 1.4. An isometry $f: M \to M$ is called a transvection if there exists $p \in M$ and geodesic $\gamma: [0,1] \to M$ with $\gamma(0) = p$, $\gamma(1) = f(p)$ such that f realises parallel transport along γ .

Remark. If M is not flat, then parallel transport really depends on the curve (or geodesic)

Proposition 1.12. Let M be a symmetric space. For any $p, q \in M$ and any geodesic $\gamma : [0,1] \to M$ with $\gamma(0) = p$, $\gamma(1) = q$, there exists an transvection realising parallel transport along γ .

Proof.

Proposition 1.13. Let M be a Riemannian manifold with action $Iso(M) \curvearrowright M$ that is transitive and $\exists p \in M$ and $s_p : M \to M$ an isometry with s(p) = p and $ds_p|_p = -Id_{T_pM}$. Then M is a symmetric space.

Proof.

Example (Hyperbolic space). Let $q(x) = x_1^2 + \ldots + x_n^2 - x_{n+1}^2$ e a quadratic form of sign (n,1). Define $\mathbb{H}^n := \{x \in \mathbb{R}^{n+1} | q(x) = -1, x_{n+1} > 0\}$ together with Riemannian metric $g_x^{\mathbb{H}^n} = q|_{x^\perp}$ using $T_x\mathbb{H}^n \cong x^\perp$.

The subgroup of $O(n,1) = \{A \in GL_{n+1}(\mathbb{R}) | q(Ax) = q(x) \forall x \in \mathbb{R}^{n+1} \}$ preserving \mathbb{H}^n acts transitively by isometries on \mathbb{H}^n . Consider $e_{n+1} = (0,\ldots,1) \in \mathbb{H}^n$ and $A = \begin{pmatrix} -\mathrm{Id}_n \\ 1 \end{pmatrix} \in O(n,1)$. Then $Ae_{n+1} = e_{n+1}$ and $A|_{e_{k+1}^{\perp}} = -\mathrm{Id}$. Hence \mathbb{H}^n is a symmetric space.

Example (Grassmanians). Consider the grassmanian $Gr_k(\mathbb{R}^n)$.

The topology on the space is: let $Y \subset (\mathbb{R}^n)^k \subset \mathbb{R}^{nk}$ be a set of linearly independent k-tuples in \mathbb{R}^n . Then there is a natural projection $\pi: Y \to \operatorname{Gr}_k(\mathbb{R}^n)$, $\pi(x_1,\ldots,x_k) := \operatorname{Span}(x_1,\ldots,x_n)$. Equip Y with the subspace topology and $Gr_k(\mathbb{R}^n)$ with the quotient topology.

Manifold structure. Let $V \in \operatorname{Gr}_{n-k}(\mathbb{R}^n)$. Consider then $\mathcal{U}_V := \{\mathcal{U} \in \operatorname{Gr}_k(\mathbb{R}^n) \mid$ $\mathcal{U} \cap V = \{0\}\}$. Fix $\mathcal{U}_0 \in \mathcal{U}_V$. There is a natural bijection $\phi_{V,\mathcal{U}_0} : \mathcal{U}_V \to \mathcal{U}_V$ $\operatorname{Hom}(\mathcal{U}_0, V) \simeq \mathbb{R}^{k(n-k)}$:

Since $\mathcal{U} \oplus \mathbb{R}^n$, $\mathcal{U} \in \mathcal{U}_V$, $a \in \mathcal{U}_0 \implies a = u + v$, $u \in \mathcal{U}$, $v \in V$ $\varphi_{\mathcal{U}}(a) := v$ (it is easy to check that $\varphi_{\mathcal{U}} \in \text{Hom}(\mathcal{U}_0, V)$).

 ϕ_V, \mathcal{U}_0 is injective (Show) and surjective (Show). Moreover $\phi_{\mathcal{U}_0, V'} \circ \phi_{\mathcal{U}_0, V}$ is smooth (Show).

<u>Riemmanian metric</u>. Let \langle , \rangle be the inner porduct on \mathbb{R}^n . Let \mathcal{U}^{\perp} be the orthogonal complement with respect to this inner product, then $\mathcal{U}^{\perp} \in \operatorname{Gr}_{n-k}(\mathbb{R}^n)$. $d\phi_{\mathcal{U},\mathcal{U}^{\perp}}$ gives identification

$$T_{\mathcal{U}}\mathrm{Gr}_k(\mathbb{R}^n) \simeq T_0\mathrm{Hom}(\mathcal{U},\mathcal{U}^\perp) \simeq \mathrm{Hom}(\mathcal{U},\mathcal{U}^\perp) \simeq \mathcal{U}^* \otimes \mathcal{U}^\perp$$

Identifying \mathcal{U}^* with \mathcal{U} via \langle,\rangle gives an inner product over \mathcal{U}^* . Define $g_{\mathcal{U}}(u'\otimes$ $(v, u'' \otimes w) = \langle u', u'' \rangle \langle v, w \rangle$ and extend this linearly to $\mathcal{U}^* \otimes \mathcal{U}^{\perp}$ thus $g_{\mathcal{U}}$ defines an inner product on $\mathcal{U}^* \otimes \mathcal{U}^{\perp}$ and further is a Riemannian metric..

O(k) action. We claim first that $O(n) := \{AA \in \operatorname{GL}_k(\mathbb{R}) \mid \langle x, y \rangle = \langle Ax, Ay \rangle \, \forall x, y \}$ $\overline{\text{act transitively}}$ and by isometries on $Gr_n(\mathbb{R}^n)$.

First take $A \in GL_k(\mathbb{R})$. If $\varphi \in Hom(\mathcal{U}, \mathcal{U}^{\perp})$, then $dA\varphi \in Hom(A \cdot \mathcal{U}, A \cdot \mathcal{U}^{\perp})$ is given by $dA(\varphi)[Au] = A \cdot \varphi(u)$. Thus if $A \in O(k)$, hence $dA(u \otimes v) =$ $(Au) \otimes (Av) \implies g_{\mathcal{U}}(u' \otimes v, u'' \otimes w) = g_{A\mathcal{U}}(dA(u' \otimes v), dA(u'' \otimes w)) \text{ i.e } O(k)$ acts by isometries.

Next, let $\mathcal{U}, \mathcal{V} \in Gr_k(\mathbb{R}^n)$ pick an orthonomal bases of $(\mathcal{U}, \langle, \rangle|_{\mathcal{U}}), u_1, \ldots, u_k$ and extend this to an orthonormal basis (u_1,\ldots,u_k) of \mathbb{R}^n . In the same way define (v_1,\ldots,v_n) . Then there exists $A\in O(k)$ such that $Au_i=v_i\implies A\mathcal{U}=\mathcal{V}$.

Remark. To check smoothness of metric g it is enough to observe that on a neighbourhood W of $\mathcal{U} \in \operatorname{Gr}_k(\mathbb{R}^n)$ there is a map $h: W \mapsto O(k)$ such that for $X \in \mathfrak{X}(W)$, $h_p(X(p)) \in T_{\mathcal{U}}Gr_k(\mathbb{R}^n)$ is smooth, then $p \mapsto g_p(X,Y) =$ $g_{\mathcal{U}}(h_p(X(p)), h_p(Y(p)))$ and the latter is smooth.

Finally, take (e_1, \ldots, e_n) such that for $x = (x_1, \ldots, x_n)$ in that bases $\langle x, x \rangle = x_1^2 + \ldots + x_n^2$. Let $\mathcal{U}_0 = \operatorname{Span}(e_1, \ldots, e_k)$ and $A = \begin{pmatrix} \operatorname{Id}_k & \\ & -\operatorname{Id}_{n-k} \end{pmatrix} \in O(\mathcal{U})$, then $A \cdot \mathcal{U}_0 = U_0$ and $dA_{\mathcal{U}_0}(u \otimes v) = -u \otimes v$ for $u \in \mathcal{U}^*$, $v \in \mathcal{U}^{\perp}$ i.e. $dA_{\mathcal{U}_0} = U_0$ $-\mathrm{Id}_{Tu_0\mathrm{Gr}_k(\mathbb{R}^n)}$

Combining all the above we have	
Proposition 1.14. $Gr_k(\mathbb{R}^n)$ with the metric above is a symmetric space.	
Proposition 1.15. $Gr_k(\mathbb{R}^n)$ is compact.	
Proof.	