Step	Algorithm: $[\alpha] := \text{SAPDOT_UNB_VAR1}(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\{ \qquad \alpha = x_0^T y_0 + \widehat{\alpha} $
8	$\alpha := \chi_1 \times \psi_1 + \widehat{\alpha}$
7	$\{ \qquad \alpha = x_0^T y_0 + \chi_1 \times \psi_1 + \widehat{\alpha} $ \rightarrow
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} \right. $
	endwhile
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge \neg (m(x_T) < m(x)) \right\}$
1b	$\left\{ \alpha = x^T y + \widehat{\alpha} \right\}$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	{
4	where
2	{
3	while do
2,3	{ ^
5a	where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	{

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha}\}$
4	where
2	{
3	while do
2,3	{
5a	where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	$\{\alpha = x^T y + \widehat{\alpha} $ }

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$	
1a	$\{\alpha = \widehat{\alpha}\}$	}
4	where	
2	$\{\alpha = x_T^T y_T + \widehat{\alpha}$	}
3	while do	
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \land \right.$	}
5a	where	
6	{	}
8		
7	{	}
5b		
2	$\left\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} \right.$	}
	endwhile	
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg ($	}
1b	$\{\alpha = x^T y + \widehat{\alpha}$	}

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	where
2	$\{\alpha = x_T^T y_T + \widehat{\alpha} $
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	where
6	{
8	
7	{
5b	
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} $ \rightarrow \rightarrow
	endwhile
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge \neg (m(x_T) < m(x)) \right\}$
1b	$\left \left\{ \alpha = x^T y + \widehat{\alpha} \right\} \right $

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	where
6	{
8	
7	{
5b	
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} $
	endwhile
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg (m(x_T) < m(x))\}$
1b	$\left\{ \alpha = x^T y + \widehat{\alpha} \right\}$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\{\alpha = x_T^T y_T + \widehat{\alpha} \}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	{ }
8	
7	{
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} $
	endwhile
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg (m(x_T) < m(x))\}$
1b	$\{\alpha = x^T y + \widehat{\alpha} $

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\{\alpha = x_T^T y_T + \widehat{\alpha} $
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\left\{ \alpha = x_0^T y_0 + \widehat{\alpha} \right\}$
8	
7	{
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} $
	endwhile
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg (m(x_T) < m(x))\}$
1b	$\{\alpha = x^T y + \widehat{\alpha} $ }

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$	
1a	$\{\alpha = \widehat{\alpha}$	}
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows	
2	$\{\alpha = x_T^T y_T + \widehat{\alpha}$	}
3	while $m(x_T) < m(x)$ do	
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$	}
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row	
6	$\{ \qquad \alpha = x_0^T y_0 + \widehat{\alpha}$	}
8		
7	$\{ \qquad \alpha = x_0^T y_0 + \chi_1 \times \psi_1 + \widehat{\alpha}$	}
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$	
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha}$	}
	endwhile	
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg (m(x_T) < m(x))\}$	}
1b	$\{\alpha = x^T y + \widehat{\alpha}$	}

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\{\alpha = \widehat{\alpha} \}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\{\alpha = x_T^T y_T + \widehat{\alpha} $
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \alpha = x_T^T y_T + \widehat{\alpha} \wedge m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\{ \alpha = x_0^T y_0 + \widehat{\alpha} $
8	$\alpha := \chi_1 \times \psi_1 + \widehat{\alpha}$
7	$\{ \qquad \alpha = x_0^T y_0 + \chi_1 \times \psi_1 + \widehat{\alpha} $ \rightarrow \rightarrow
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\{ \qquad \alpha = x_T^T y_T + \widehat{\alpha} $
	endwhile
2,3	$\{\alpha = x_T^T y_T + \widehat{\alpha} \land \neg (m(x_T) < m(x))\}$
1b	$\{\alpha = x^T y + \widehat{\alpha} $

Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
while $m(x_T) < m(x)$ do
$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
$\alpha := \chi_1 \times \psi_1 + \widehat{\alpha}$
$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
endwhile

 $\textbf{Algorithm:} \ [\alpha] := \texttt{SAPDOT_UNB_VAR1}(x,y,\alpha)$

$$x o \left(\frac{x_T}{x_B}\right), y o \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right)$$

where χ_1 has 1 row, ψ_1 has 1 row

$$\alpha := \chi_1 \times \psi_1 + \widehat{\alpha}$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$$

endwhile