Classification

Classification

- Elle permet de prédire si un élément est membre d'un groupe ou d'une catégorie donné.
- Classes
 - Identification de groupes avec des profils particuliers
 - Possibilité de décider de l'appartenance d'une entité à une classe
- Caractéristiques
 - Apprentissage supervisé : classes connues à l'avance
 - Pb : qualité de la classification (taux d'erreur)
 - Ex : établir un diagnostic (si erreur !!!)

Classification - Applications

Comprendre les critères prépondérants pour l'achat d'u produit ou d'un service

Isoler les critères explicatifs d'un comportement d'achat

Analyse de risque: détecter les facteurs prédisant un comportement de non paiement

Détecter les causes de réclamation

Processus à deux étapes

Etape 1:

Construction du modèle à partir de l'ensemble d'apprentissage (training set)

Etape 2:

Utilisation du modèle : tester la précision du modèle et l'utiliser dans la classification de nouvelles données

Construction du modèle

Chaque instance est supposée appartenir à une classe prédéfinie

La classe d'une instance est déterminée par l'attribut "classe"

L'ensemble des instances d'apprentissage est utilisé dans la construction du modèle

Le modèle est représenté par des règles de classification, arbres de décision, formules mathématiques, ...

Utilisation du modèle

Classification de nouvelles instances ou instances inconnues

Estimer le taux d'erreur du modèle

- la classe connue d'une instance test est comparée avec le résultat du modèle
- Taux d'erreur = pourcentage de tests incorrectement classés par le modèle

Validation de la Classification (accuracy)

Estimation des taux d'erreurs :

Partitionnement : apprentissage et test (ensemble de données important)

• Utiliser 2 ensembles indépendents, e.g., ensemble d'apprentissage (2/3), ensemble test (1/3)

Apprentissage D_t

Validation D\D₁

Validation de la Classification (accuracy)

Validation croisée (ensemble de données modéré)

- Diviser les données en k sous-ensembles
- Utiliser k-1 sous-ensembles comme données d'apprentissage et un sous-ensemble comme données test

Bootstrapping : n instances test aléatoires (ensemble de données réduit)

Exemple: Construction du modèle

Exemple : Utilisation du modèle

Taux d'erreur du modèle?

Exemple : Utilisation du modèle

Evaluation des méthodes de classification

Taux d'erreur (Accuracy)

Temps d'exécution (construction, utilisation)

Robustesse (bruit, données manquantes,...)

Extensibilité

Interprétabilité

Simplicité

Méthodes de Classification

- Méthode K-NN (plus proche voisin)
- Arbres de décision
- Réseaux de neurones
- Classification bayésienne
- Caractéristiques
 - Apprentissage supervisé (classes connues)

Méthode des plus proches voisins

Méthode dédiée à la classification (k-NN : nearest Neighbors).

Méthode de raisonnement à partir de cas : prendre des décisions en recherchant un ou des cas similaires déjà résolus.

Pas d'étape d 'apprentissage : construction d 'un modèle à partir d'un échantillon d 'apprentissage (réseaux de neurones, arbres de décision, ...).

Modèle = échantillon d'apprentissage + fonction de distance + fonction de choix de la classe en fonction des classes des voisins les plus proches.

Algorithme kNN (K-nearest neighbors)

Objectif : affecter une classe à une nouvelle instance

donnée : un échantillon de m enregistrements classés (x, c(x))

entrée : un enregistrement y

- 1. Déterminer les k plus proches enregistrements de y
- 2. combiner les classes de ces k exemples en une classe c

sortie : la classe de y est c(y)=c

Algorithme kNN : sélection de la classe

Basé sur l'apprentissage par analogie

Basée sur une notion de distance et Similarité

Solution simple : rechercher le cas le plus proche et prendre la même décision (Méthode 1-NN).

Combinaison des k classes :

- Heuristique : k = nombre d 'attributs + 1
- Vote majoritaire : prendre la classe majoritaire.
- Vote majoritaire pondéré : chaque classe est pondérée. Le poids de c(xi) est inversement proportionnel à la distance d(y,xi).

Confiance : Définir une confiance dans la classe attribuée = rapport entre les votes gagnants et le total des votes.

Algorithme k-NN

```
Class (X) {
// Training collection T = {X1, X2, ... Xn}
// Predefined classes C ={C1,C2, ...Cm}
// Compute similarities
For i=1..N similar[i] = Max - distance(X,Xi);
SortDescending(similar[]);
kNN=Select k nearest neighbors with highest similarity;
// Calculer les scores des classes
score[Ci] = f(Ci, kNN);
Class(X) = Class Cj with highest score;
```

Exemple

8 plus proches voisins

Retour sur KNN: Exemple (1)

Customer	Age	Income	No. credit cards	Loyal
John 🧣	35	35K	3	No
Rachel 1	22	50K	2	Yes
Hannah 🎉	63	200K	1	No
Tom	59	170K	1	No
Nellie 🐾	25	40K	4	Yes
David	37	50K	2	?

Retour sur KNN : Exemple (2)

K = 3

Customer	Age	Income	No. credit cards	Loyal
John 🦺	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah A	63	200K	1	No
Tom 🧗	59	170K	1	No
Nellie	25	40K	4	Yes
David 👸	37	50K	2	Yes

Distance from David
sqrt [(35-37) ² +(35-50) ² +(3-2) ²]= 15.16
sqrt [(22-37) ² +(50-50) ² +(2-2) ²]= 15
sqrt [(63-37) ² +(200- 50) ² +(1-2) ²]= 152.2 3
sqrt [(59-37) ² +(170- 50) ² +(1-2) ²]= 122
sqrt [(25-37) ² +(40-50) ² +(4-2) ²]= 15.74

Forces et faiblesses

Les attributs ont le même poids

- centrer et réduire pour éviter les biais
- certains peuvent être moins classant que d'autres

Apprentissage paresseux

- rien n'est préparé avant le classement
- tous les calculs sont fait lors du classement
- nécessité de technique d'indexation pour large BD

Calcul du score d'une classe

peut changer les résultats; variantes possibles

ARBRES DE DÉCISION

3. Arbres de décision

Définition

- Arbre permettant de classer des enregistrements par division hiérarchiques en sous-classes
 - un nœud représente une classe de plus en plus fine depuis la racine
 - un arc représente un prédicat de partitionnement de la classe source
- Un attribut sert d'étiquette de classe (attribut cible à prédire), les autres permettant de partitionner

Arbres de décision

- Génération d'arbres de décision à partir des données
- Arbre = Représentation graphique d'une procédure de classification

Accord d'un prêt bancaire

Un arbre de décision est un arbre où :

Branche d'un noeud = un test sur un attribut

Feuilles = classe donnée

Génération de l'arbre

Objectif:

- obtenir des classes homogènes
- couvrir au mieux les données

Comment choisir les attributs (Ai)?

Comment isoler les valeurs discriminantes (vj)?

Arbre de décision - Exemple

Ensemble d'apprentissage

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Arbre de décision - Exemple

Exemple – Jouer au tennis?

L. Jourdan – Aide à la décision

Arbres de décision – Exemple

Risque - Assurances

	Tid	Age	Car Type	Class		
	0	23	Family	High		
	1	17	Sports	High		
	2	43	Sports	High		
	3	68	Family	Low		
	4	32	Truck	Low		
	5	20	Family	High		
1	Numérique		Enumér	Enumératif		

Age=40, CarType=Family
$$\Rightarrow$$
 Class=Low

Des arbres de décision aux règles

- 1) Age $< 27.5 \Rightarrow High$
- 2) Age >= 27.5 and CarType = Sports ⇒ High
- 3) Age >= 27.5 and CarType ≠ Sports ⇒ Low

Arbres de décision – Exemple Détection de fraudes fiscales

énumératif énumératif numérique classe

ld	Ristourne	Situation famille	Impôt revenu	Fraude
1	Oui	Célibat.	125K	Non
2	Non	Marié	100K	Non
3	Non	Célibat.	70K	Non
4	Oui	Marié	120K	Non
5	Non	Divorcé	95K	Oui
6	Non	Marié	60K	Non
7	Oui	Divorcé	220K	Non
8	Non	Célibat.	85K	Oui
9	Non	Marié	75K	Non
10	Non	Célibat.	90K	Oui

- L'attribut significatif à un noeud est déterminé en se basant sur l'indice Gini.
- Pour classer une instance : descendre dans l'arbre selon les réponses aux différents tests. Ex = (Ristourne=Non, Situation=Divorcé, Impôt=100K) → Oui

De l'arbre de décision aux règles de classification

Une règle est générée pour chaque chemin de l'arbre (de la racine à une feuille)

Les paires attribut-valeur d'un chemin forment une conjonction

Le nœud terminal représente la classe prédite

Les règles sont généralement plus faciles à comprendre que les arbres

Si outlook=sunny
Et humidity=normal
Alors play tennis

Des arbres de décision aux règles

Arbre de décision = Système de règles exhaustives et mutuellement exclusives

- 1) Ristourne = Oui ⇒ Non
- 2) Ristourne = Non etSituation in {Célibat., Divorcé}et Impôt < 80K ⇒ Non
- 3) Ristourne = Non etSituation in {Célibat., Divorcé}et Impôt >= 80K ⇒ Oui
- 4) Ristourne = Non et Situation in {Marié} ⇒ Non

Des arbres de décision aux règles

- R₁: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No
- R₂: If (Outlook=Sunny) ∧ (Humidity=Normal) Then PlayTennis=Yes
- R₃: If (Outlook=Overcast) Then PlayTennis=Yes
- R₄: If (Outlook=Rain) ∧ (Wind=Strong) Then PlayTennis=No
- R_5 : If (Outlook=Rain) \land (Wind=Weak) Then PlayTennis=Yes

Génération de l'arbre de décision

Deux phases dans la génération de l'arbre :

- 1. Construction de l'arbre
 - Arbre peut atteindre une taille élevée
- 2. Elaguer l'arbre (Pruning)
 - Identifier et supprimer les branches qui représentent du "bruit" → Améliorer le taux d'erreur

Procédure de construction (1)

recherche à chaque niveau de l'attribut le plus discriminant

Partition (nœud P)

- si (tous les éléments de P sont dans la même classe) alors retour;
- pour chaque attribut A faire
 - évaluer la qualité du partitionnement sur A;
- utiliser le meilleur partitionnement pour diviser P en P1, P2, ...Pn
- pour i = 1 à n faire Partition(Pi);

Procédure de Construction (2)

Processus récursif

- L'arbre commence à un nœud représentant toutes les données
- Si les objets sont de la même classe, alors le nœud devient une feuille étiqueté par le nom de la classe.
- Sinon, sélectionner les attributs qui séparent le mieux les objets en classes homogènes => Fonction de qualité

Atr=?

La récursion s'arrête quand:

- Les objets sont assignés à une classe homogène
- Il n'y a plus d'attributs pour diviser,
- Il n'y a pas d'objet avec la valeur d'attribut

Choix de l'attribut de division

Différentes mesures introduites

- il s'agit d'ordonner le désordre
- des indicateurs basés sur la théorie de l'information

Choix des meilleurs attributs et valeurs

les meilleurs tests

Possibilité de retour arrière

- élaguer les arbres résultants (classes inutiles)
- revoir certains partitionnements (zoom, réduire)

Mesure de qualité

La mesure est appelé fonction de qualité

Goodness Function en anglais

Varie selon l'algorithme :

- Gain d'information (ID3/C4.5)
 - Suppose des attributs nominaux (discrets)
 - Peut-être étendu à des attributs continus
- Gini Index
 - Suppose des attributs continus
 - Suppose plusieurs valeurs de division pour chaque attribut
 - Peut-être étendu pour des attributs nominaux

Exemple: Jouer au tennis?

Ensemble d'apprentissage

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Algorithmes pour les arbres de décision

Algorithme de base

- Construction récursive d'un arbre de manière "diviser-pour-régner" descendante
- Attributs considérés énumératifs
- Glouton (piégé par les optima locaux)

Plusieurs variantes: ID3, C4.5, CART, CHAID

- Différence principale : mesure de sélection d'un attribut critère de branchement (split)
- Ex : CART : 2 partitions par nœuds

Bonne sélection et branchement ?

Gain d'information

Sélectionner l'attribut avec le plus grand gain d'information

Soient P et N deux classes et S un ensemble d'instances avec p éléments de P et n éléments de N

L'information nécessaire pour déterminer si une instance prise au hasard fait partie de P ou N est (entropie) :

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Entropie

Ex : var. booléenne X=1 Avec probabilité p

S est l'ensemble d'apprentissage p+ est la proportion d'exemples positifs (P) p- est la proportion d'exemples négatifs (N) Entropie mesure l'impureté de S

Entropie(S) = -p + log2 p + - p - log2 p -

L. Jourdan – Aide à la décision

Gain d'information

Soient les ensembles $\{S_1, S_2, ..., S_v\}$ formant une partition de l'ensemble S, en utilisant l'attribut A

Toute partition Si contient pi instances de P et ni instances de N

L'entropie, ou l'information nécessaire pour classifier les instances dans les sous-arbres Si est (entropie conditionnelle classe/attribut A):

 $E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$

Le gain d'information par rapport au branchement sur A est

$$Gain(A) = I(p,n) - E(A)$$

Choisir l'attribut qui maximise le gain → besoin d'information minimal (recherche "greedy" – gloutonne)

Exemple: Partitions de boules (1)

Partition selon A1 (densité)

Indice d'impureté :

- $i(N) = \sum_{i}^{k} \sum_{j}^{k} \{ pi * pj \}$ avec $i \neq j$
- Pi est la proportion d'individus de la classe i dans N.

Entropie d'un segment s :

• $E(N) = -\sum_{i} pi \log_2(pi)$

Proportion	C1	C2	C3	Sigma
Vert	0,67	0,25	0,00	
Bleu	0,33	0,50	0,00	
Rouge	0,00	0,25	1,00	
Entropie	0,92	1,00	0,00	0,75
N2 log2(N2)	-0,39	-0,50	0,00	
N3 log2(N3)	-0,53	-0,50	0,00	
N4 log2(N4)	0,00	0,00	0,00	
Impureté	0,4444444	0,625	0	0,43

Exemple: Partitions de boules (2)

Partition selon A2

 Position et 4 au plus par partition

Proportion	C1	C2	C3	Sigma
Vert	0,75	0,00	0,00	
Bleu	0,25	0,67	0,00	
Rouge	0,00	0,33	1,00	
Entropie	0,81	0,39	0,00	0,49
N2 log2(N2)	-0,31	0,00	0,00	
N3 log2(N3)	-0,50	-0,39	0,00	
N4 log2(N4)	0,00	0,00	0,00	
Impureté	0,375	0,4444444	0	0,31

Exemple: Partitions de boules (3)

Partition selon A3

Poids

	1			
Proportion	C1	C2	Sigma	
Vert	0,60	0,00		
Bleu	0,40	0,25		
Rouge	0,00	0,75		
Entropie	0,97	0,50	0,76	
N2 log2(N2)	-0,44	0,00		
N3 log2(N3)	-0,53	-0,50		
N4 log2(N4)	0,00	0,00		
Impureté	0,48	0,375	0,43	
L. J	purdan –	Aide à la	aecisior	

Gain d'information - Exemple

Hypothèses:

Classe P : jouer_tennis = "oui"

Classe N : jouer_tennis = "non"

Information nécessaire pour classer un exemple donné est :

$$I(p,n) = I(9,5) = 0.940$$

Gain d'information - Exemple

Calculer l'entropie pour

l'attribut outlook:

outlook	p _i	n _i	I(p _i , n _i)
sunny	2	3	0,971
overcast	4	0	0
rain	3	2	0,971

On a
$$E(outlook) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

Alors
$$Gain(outlook) = I(9,5) - E(outlook) = 0.246$$

De manière similaire
$$Gain(temperature) = 0.029$$

 $Gain(humidity) = 0.151$

$$Gain(windy) = 0.048$$

Quel Attribut est "meilleur"?

Gain d'information - Exemple

Gain(S,A): réduction attendue de l'entropie dûe au branchement de S sur l'attribut A

Gain(S,A)=Entropie(S) -
$$\sum_{v \in values(A)} |S_v|/|S|$$
 Entropie(S_v)

Entropie([29+,35-]) = -29/64 $\log_2 29/64 - 35/64 \log_2 35/64$
= 0.99

L. Jourdan – Aide à la décision

Gain d'information - Exemple

```
Entropie([18+,33-]) = 0.94
Entropie([21+,5-]) = 0.71
                                       Entropie([11+,2-]) = 0.62
Entropie([8+,30-]) = 0.74
                                       Gain(S,A_2)=Entropie(S)
Gain(S,A_1)=Entropie(S)
                                          -51/64*Entropie([18+,33-])
   -26/64*Entropie([21+,5-])
                                          -13/64*Entropie([11+,2-])
   -38/64*Entropie([8+,30-])
                                         =0.12
  =0.27
 [29+,35-] A_1=?
                                                          [29+,35-]
                                                        False
          True
                    False
                                             True
                                        [18+, 33-]
                                                          [11+, 2-]
                       [8+, 30-]
     [21+, 5-]
```

Exemple d'apprentissage

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Sélection de l'attribut suivant

Sélection de l'attribut suivant

$$S = [9+,5-]$$

$$E = 0.940$$
Outlook
$$[2+, 3-]$$

$$E = 0.971$$

$$E = 0.0$$

$$Gain(S,Outlook)$$

$$= 0.940-(5/14)*0.971$$

$$-(4/14)*0.0 - (5/14)*0.0971$$

$$= 0.247$$

L. Jourgan – Alge a la gecision

Algorithme ID3

```
[D1,D2,...,D14]
                                 Outlook
               [9+,5-]
                     Sunny
                                Overcast
                                              Rain
S<sub>sunny</sub>=[D1,D2,D8,D9,D11] [D3,D7,D12,D13] [D4,D5,D6,D10,D14]
                                [4+,0-]
                                                   [3+,2-]
         [2+,3-]
                                   Yes
Gain(S_{sunny}, Humidity) = 0.970 - (3/5)0.0 - 2/5(0.0) = 0.970
Gain(S_{sunny}, Temp.) = 0.970 - (2/5)0.0 - 2/5(1.0) - (1/5)0.0 = 0.570
Gain(S_{sunnv}, Wind) = 0.970 = -(2/5)1.0 - 3/5(0.918) = 0.019
```

L. Jourdan – Aide à la décision

Algorithme ID3

Problème des attributs continus

Certains attributs sont continus

- exemple : salaire
- découper en sous-ensembles ordonnés (e.g.,déciles)
- utiliser moyenne, médiane, ... pour représenter minimiser la variance, une mesure de dispersion ...

division en segments [a0,a1[, [a1,a2[,, [an-1,an]

- investiguer différents cas et retenir le meilleur
 - exemple : 2, 4, 8, etc. par découpe d'intervalles en 2 successivement

Indice Gini

Utiliser l'indice Gini pour un partitionnement pur

$$Gini(S) = 1 - \sum_{i=1}^{c} p_i^2$$

$$Gini(S_1, S_2) = \frac{n_1}{n} Gini(S_1) + \frac{n_2}{n} Gini(S_2)$$

pi est la fréquence relative de la classe c dans S

Si S est pur (classe unique), Gini(S) = 0

Gini(S1,S2) = Gini pour une partition de S en deux sous-ensembles S1 et S2 selon un test donné.

Trouver le branchement (split-point) qui minimise l'indice Gini

Nécessite seulement les distributions de classes

Indice Gini - Exemple

Calcul de Gini nécessite une Matrice de dénombrement

	Non	Oui
<80K	14	9
>80K	1	18

$$Gini(split) = 0.31$$

	Non	Oui
М	5	23
F	10	4

$$Gini(split) = 0.34$$

Attributs énumératifs – indice GINI

	CarType								
	{Sports, Luxury}	{Family}							
C1	3	1							
C2	2	4							
Gini	0.400								

Partage en plusieurs classes

		CarType									
	Family	Sports	Luxury								
C1	1	2	1								
C2	4	1	1								
Gini		0.393									

- Pour chaque valeur distincte, calculer le nombre d'instances de chaque classe
- Utiliser la matrice de dénombrement pour la prise de décision

Partage en deux "classes" (trouver la meilleure partition de valeurs)

	CarType							
	{Sports}	{Family, Luxury}						
C1	2	2						
C2	1	5						
Gini	0.419							

Attributs numériques – indice GINI

calcul efficace : pour chaque attribut,

- Trier les instances selon la valeur de l'attribut
- Entre chaque valeur de cette liste : un test possible (split)
- Evaluation de Gini pour chacun des test
- Choisir le split qui minimise l'indice gini

	Fraude		No		No)	No		Yes		Yes Yes		s	No		No		No			No		
			Revenu imposable																				
Valeurs triée	es		60 70 75						85	,	90)	9	5	10	00 120			125			220	
Positions Split		5	5	6	65 72		8	80 8		7	92		97		110		0 12		17	72	23	0	
		<=	>	<=	>	\=	>	<=	>	\=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	0.400 0.375		375	75 0.343		0.343 0.4		0.400		.400 <u>0.300</u>		0.34		0.3	375	0.400		0.420	

Indice de Gini

$$I = 1 - \sum_{i}^{n} f_i^2$$

- N = nombre de classes à prédire
- Fi = fréquence de la classe i dans le nœud

Plus l'indice de Gini est bas, plus le nœud est pure

Problèmes des arbres trop étoffés

- Complexité de l'arbre, trop de règles
- Trop spécifique aux données d'apprentissage
 - Règles non reproductibles (« surapprentissage »)
- Trop peu d'individus dans les feuilles (aucune signification réelle)
 - minimum conseillé : 20-30 individus

Solution → Élagage

Processus d'élagage de CART

- Création de l'arbre maximum
 - Toutes les feuilles des extrémités sont pures
- Élagages successifs de l'arbre
- Retient l'arbre élagué pour lequel le taux d'erreur estimé mesuré sur un échantillon test est le plus bas possible

Avantages

Résultats explicites

- Arbre
- Règles de décisions simples
- Modèle facilement programmable pour affecter de nouveaux individus

Peu de perturbation des individus extrêmes

Isolés dans des petites feuilles

Peu sensible au bruit des variables non discriminantes

Non introduites dans le modèle

Exemple:

Ainsi,

- En séparant 1 nœud en 2 nœuds fils on cherche la plus grande hausse de la pureté
- La variable la plus discriminante doit maximiser :

IG(avant sep.)-[IG(fils1)+IG(fils2)]

Répartition des individus dans les nœuds

- Quand l'arbre est construit : critères de division connus
- On affecte chaque individu selon les règles obtenues → remplissage des feuilles
 - Pour chaque feuille : plusieurs classes C
 - Pc = Proportion d'individus de la feuille appartenant à la classe
 c
 - On affecte à la feuille la classe pour laquelle Pc est la plus grande

Vivants 2 Décédés 0

P(vivants)=1

P(décédés)=0

→ Feuille « vivants »

Taux d'erreur feuille= 0

Vivants 4 Décédés 6

P(vivants)=0,4

P(décédés)=0,6

→ Feuille « Décédés »

Taux d'erreur feuille= 0,4

Taux d'erreur global de l'arbre = somme pondérée des taux d'erreur des feuilles

Pondération = proba qu'un individu soit dans la feuille (= taille de la feuille)

Problèmes des arbres trop étoffés

- Complexité de l'arbre, trop de règles
- Trop spécifique aux données d'apprentissage
 - Règles non reproductibles (« surapprentissage »)
- Trop peu d'individus dans les feuilles (aucune signification réelle)
 - minimum conseillé : 20-30 individus

Solution → Élagage

Méthodes à base d'arbres de décision

CART (BFO'80 - Classification and regression trees, variables numériques, Gini, Elagage ascendant)

C5 (Quinlan'93 - dernière version ID3 et C4.5, attributs d'arité quelconque, entropie et gain d'information)

SLIQ (EDBT'96 — Mehta et al. IBM)

SPRINT (VLDB'96—J. Shafer et al. IBM)

PUBLIC (VLDB'98 — Rastogi & Shim)

RainForest (VLDB'98 — Gehrke, Ramakrishnan & Ganti)

CHAID (Chi-square Automation Interaction Detection – variables discrètes)

Arbres de décision - Avantages

- Compréhensible pour tout utilisateur (lisibilité du résultat règles arbre)
- Justification de la classification d'une instance (racine → feuille)
- Tout type de données
- Robuste au bruit et aux valeurs manquantes
- Attributs apparaissent dans l'ordre de pertinence > tâche de pré-traitement (sélection d'attributs)
- Classification rapide (parcours d'un chemin dans un arbre)
- Outils disponibles dans la plupart des environnements de data mining

Arbres de décision - Inconvénients

Sensibles au nombre de classes : performances se dégradent

Evolutivité dans le temps : si les données évoluent dans le temps, il est nécessaire de relancer la phase d'apprentissage

Construction du modèle plus ou moins coûteuse

RÉSEAUX BAYESIENS

Classification bayésienne : Pourquoi ? (1)

Apprentissage probabiliste:

- calcul explicite de probabilités sur des hypothèses
- Approche pratique pour certains types de problèmes d'apprentissage

Incrémental:

- Chaque instance d'apprentissage peut de façon incrémentale augmenter/diminuer la probabilité qu'une hypothèse est correcte
- Des connaissances a priori peuvent être combinées avec les données observées.

Classification bayésienne : Pourquoi ? (2)

Prédiction Probabiliste :

 Prédit des hypothèses multiples, pondérées par leurs probabilités.

Référence en terme d'évaluation :

 Même si les méthodes bayésiennes sont coûteuses en temps d'exécution, elles peuvent fournir des solutions optimales à partir desquelles les autres méthodes peuvent être évaluées.

Classification bayésienne

Le problème de classification peut être formulé en utilisant les probabilités a-posteriori :

- P(C|X) = probabilité que le tuple (instance)
- X=<x1,...,xk> est dans la classe C

Par exemple

• P(classe=N | outlook=sunny,windy=true,...)

Idée : affecter à une instance X la classe C telle que P(C|X) est maximale

Estimation des probabilités a-posteriori

Théorème de Bayes :

• $P(C|X) = P(X|C) \cdot P(C) / P(X)$

P(X) est une constante pour toutes les classes

P(C) = fréquence relative des instances de la classe C

C tel que P(C|X) est maximal = C tel que $P(X|C) \cdot P(C)$ est maximal

Problème : calculer P(X|C) est non faisable !

Classification bayésienne naive

Hypothèse Naïve : indépendance des attributs

$$P(x_1,...,x_k|C) = P(x_1|C) \cdot ... \cdot P(x_k|C)$$

P(x_i|C) est estimée comme la fréquence relative des instances possédant la valeur xi (i-ème attribut) dans la classe C

Non coûteux à calculer dans les deux cas

Exemple de problème

Faut-il effectuer un contrôle fiscal?

Échantillon de contrôlés

Salaire	Impôts	Etudiant	Contrôle
20	0	oui	négatif
30	0	non	positif
40	5	oui	positif
40	10	non	négatif
60	10	non	positif

Faut-il contrôler un nouvel arrivant?

35	2	oui	???

Les classes nominales

Calcul de Probabilités

Il s'agit de choisir Ci maximisant P(Ci/X) :

- P(Positif/X) = P(X/Positif)P(Positif)/P(X)
- P(Négatif/X) = P(X/Négatif)P(Négatif)/P(X)
- P(X) est supposé constant

Donc, choisir le plus grand de {P(X/Positif)P(Positif), P(X/Négatif)P(Négatif)}

- P(X/Positif) = Π_k P(Xk/Positif) =P(sal30..50/Positif)*
 P(impots<20%/Positif)*P(Etudiant/Positif) = 2/3*1*1/3=2/9;
 P(Positif) = 3/5 → Produit = 0.13
- P(X/Négatif) = Π_k P(Xk/Négatif) = P(sal30..50/Négatif)*
 P(impots<20%/Négatif)*P(Etudiant/Négatif) = 1/2*1/2*1/2=1/8;
 P(Négatif) = 2/5 → Produit = 0.05

On effectuera donc un contrôle!

Classification bayésienne – Exemple (1)

Estimation de $P(x_i|C)$

P(p) = 9/14P(n) = 5/14

Outlook			
P(sunny p) = 2/9	P(sunny n) = 3/5		
P(overcast p) = 4/9	P(overcast n) = 0		
P(rain p) = 3/9	P(rain n) = 2/5		
Temperature			
P(hot p) = 2/9	P(hot n) = 2/5		
P(mild p) = 4/9	P(mild n) = 2/5		
P(cool p) = 3/9	P(cool n) = 1/5		

Humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	$P(normal \mid n) = 1/5$	
Windy		
$P(\text{true} \mid p) = 3/9$	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5	

Classification bayésienne – Exemple (1)

Classification de X:

- Une instance inconnue X = <rain, hot, high, false>
- P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 3/9· 2/9· 3/9· 6/9· 9/14 =
 0.010582
- $P(X|n) \cdot P(n) = P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$
- Instance X est classifiée dans la classe n (ne pas jouer)

Réseau Bayésien

Nœuds = Variables aléatoires

Structure

- Graphe direct acyclique de dépendance
- X→ Y signifie que X est un parent de Y
- X→→Y signifie que X est un descendant de Y
- Les variables non liées sont indépendantes

Classes à déterminer

Nœuds singuliers du réseau

Probabilités connues

à priori et conditionnelles (arcs)

Autre exemple

Classification de pannes d'ordinateurs

- Couleur de voyant (Rouge, Vert)
- Équipement défaillant (UC,MC,PE)

Envoie d'un dépanneur selon la classe

Calcul de probabilités sur le training set

P(Couleur/Panne)	Rouge	Vert	P(Panne)
UC	0,70	0,30	0,20
MC	0,40	0,60	0,10
PE	0,20	0,80	0,70
P(Couleur)	O,32	0,68	1,00

Exemple de réseau

Classification bayésienne – l'hypothèse d'indépendance

- ... fait que le calcul est possible
- ... trouve un modèle de classification optimal si hypothèse satisfaite
- ... mais est rarement satisfaite en pratique, étant donné que les attributs (variables) sont souvent corrélés.

Pour éliminer cette limitation :

- Réseaux bayésiens, qui combinent le raisonnement bayésien et la relation causale entre attributs
- Arbres de décision, qui traitent un attribut à la fois, considérant les attributs les plus importants en premier

Autres méthodes de classification

Réseaux bayésiens

Algorithmes génétiques

Case-based reasoning

Ensembles flous

Rough set

Analyse discriminante (Discriminant linéaire de Fisher, Algorithme Closest Class Mean - CCM-)

Chaînes de Markov cachées

Classification - Résumé

La classification est un problème largement étudié

La classification, avec ses nombreuses extensions, est probablement la technique la plus répandue

Modèles

- Arbres de décision
- Règles d'induction
- Modèles de régression
- Réseaux de neurones

↑ Facile à comprendre

Difficile à comprendre

Classification - Résumé

L'extensibilité reste une issue importante pour les applications

Directions de recherche : classification de données non relationnels, e.x., texte, spatiales et données multimédia

Classification - Références

- J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984.
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.
- D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning internal representation by error propagation. In D. E. Rumelhart and J. L. McClelland (eds.) Parallel Distributed Processing. The MIT Press, 1986