MATH 2111: Tutorial 2 Echelon Form and Linear Combinations

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

Department of Mathematics, HKUST

Review

- Existence and Uniqueness Theorem (important!!!!!)
- Geometric visualization of linear equation
- Vector equation (sum & scalar multiple & some other algebraic properties) ---> Linear combinations
- The subset spanned by vector $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Existence and Uniqueness Theorem

Suppose
$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 & a & 3 \\ 1 & 1 & b & 4 \end{pmatrix}$$
 is an augumented matrix. Determine a

and b such that the linear system

- (1) is inconsistent,
- (2) has a unique solution,
- (3) has infinite many solutions.

Existence and Uniqueness Theorem

Suppose
$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & a & 3 & 3 \\ 1 & 2 & b & 4 \end{pmatrix}$$
 is an augumented matrix. Determine a

and b such that the linear system

- (1) is inconsistent,
- (2) has a unique solution,
- (3) has infinite many solutions.

Plot the following linear systems:

- (1) Two variables: $\begin{cases} x + y = 0, \\ 2x 6y = 2. \end{cases}$
- (2) Two variables: $\begin{cases} x + y = 0, \\ 2x 2y = 2. \end{cases}$
- (3) Three variables: $\begin{cases} x + y = 0, \\ y + z = 2. \end{cases}$

Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

- (1) Write down the subset of \mathbb{R}^3 spanned by \boldsymbol{u} and \boldsymbol{v} .
- (2) Determine whether vector $\mathbf{w} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ could be spanned by \mathbf{u} and \mathbf{v} .

Let
$$\mathbf{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$.

- (1) Write down the subset of \mathbb{R}^3 spanned by \boldsymbol{u} and \boldsymbol{v} .
- (2) Determine h such that vector $\mathbf{w} = \begin{pmatrix} 2 \\ 2 \\ h \end{pmatrix}$ could be spanned by \mathbf{u} and \mathbf{v} .

Let
$$\mathbf{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$.

- (1) Write down the subset of \mathbb{R}^3 spanned by \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} .
- (2) Determine h such that vector $\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ h \end{pmatrix}$ could be spanned by \mathbf{u} and \mathbf{v} .
- (2) Determine h such that vector $\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ h \end{pmatrix}$ could be spanned by \mathbf{u} and \mathbf{v} , \mathbf{w} .