OBJECTIVES:

To impart knowledge on the following Topics

- Construction and performance of salient and non salient type synchronous generators.
- Principle of operation and performance of synchronous motor.
- Construction, principle of operation and performance of induction machines.
- Starting and speed control of three-phase induction motors.
- Construction, principle of operation and performance of single phase induction motors and special machines.

UNIT I SYNCHRONOUS GENERATOR

6+6

Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power- angle characteristics– Two reaction theory –slip test -short circuit transients - Capability Curves

UNIT II SYNCHRONOUS MOTOR

6+6

Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves – Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power developed-Hunting – natural frequency of oscillations – damper windings- synchronous condenser.

UNIT III THREE PHASE INDUCTION MOTOR

6+6

Constructional details – Types of rotors – Principle of operation – Slip –cogging and crawling- Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor.

UNIT IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION 6+6 MOTOR

Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Stardelta starters – Speed control – Voltage control, Frequency control and pole changing – Cascaded connection-V/f control – Slip power recovery scheme-Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking.

UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES 6+6 Constructional details of single phase induction motor – Double field revolving theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors – Capacitor-start capacitor run Induction motor- Shaded pole induction motor - Linear induction motor – Repulsion motor - Hysteresis motor - AC series motor- Servo motors- Stepper motors - introduction to magnetic levitation systems.

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to understand the construction and working principle of Synchronous Generator
- Ability to understand MMF curves and armature windings.
- Ability to acquire knowledge on Synchronous motor.
- Ability to understand the construction and working principle of Three phase Induction
 Motor
- Ability to understand the construction and working principle of Special Machines
- Ability to predetermine the performance characteristics of Synchronous Machines.

TEXT BOOKS:

- 1. A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 2003.
- 2. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.
- 3. Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 2010.

REFERENCES

- **1.** D.P. Kothari and I.J. Nagrath, 'Electric Machines', McGraw Hill Publishing Company Ltd, 2002.
- 2. P.S. Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
- 3. M.N. Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009.
- **4.** B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition ,Reprint 2015.
- 5. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, 2002.
- **6.** Alexander S. Langsdorf, 'Theory of Alternating-Current Machinery', McGraw Hill Publications, 2001.