1. Differenze tra cellula PROCARIOTE e cellula EUCARIOTE

CELLULA PROCARIOTE

- E' provvista di PARETE
- · Non ci sono organuli
- Esistono RIBOSOMI dispersi
- E' tipica di due gruppi di microorganismi: Batteri e Archaea

CELLULA EUCARIOTE

- La parete non è una struttura fondamentale (è presente in piante terrestri, alghe e funghi)
- Nucleo
- Mitocondri
- Tubuli
- Ribosomi ADDENSATI su un sistema di membrane (RER)

2. Origine endosimbiontica di MITOCONDRI e CLOROPLASTI

3. Caratteristiche generali delle cellule EUCARIOTICHE

4. I principali LEGAMI CHIMICI

Sono FORZE ATTRATTIVE che tengono UNITI ATOMI all'interno di molecole

5. Il pH

Definizione di neutralità, acidità e basicità

La definizione di neutralità, acidità o basicità nell'acqua è riferita alle differenze tra [H⁺] e [OH⁻]; il concetto è valido per qualsiasi soluzione acquosa; in particolare:

[H⁺] = [OH⁻] soluzione neutra

[H⁺] > [OH⁻] soluzione acida

[H⁺] < [OH⁻] soluzione basica

Se poi la temperatura è di 25°C risulta che:

soluzione neutra; $[H^+] = 1,0.10^{-7} \text{ M}$: pH = 7

soluzione acida; $[H^+] > 1,0 \cdot 10^{-7} \text{ M: pH} < 7$

soluzione basica; $[H^+] < 1,0 \cdot 10^{-7} \text{ M: pH} > 7$

6. La sintesi delle macromolecole biologiche

FIGURA 2.15 Sintesi delle macromolecole biologiche. Semplici precursori inorganici (a sinistra) reagiscono formando piccole molecole organiche (al centro), che sono i monomeri utilizzati nelle sintesi di macromolecole (a destra), che costituiscono la maggior parte delle strutture cellulari.

7. Le principali macromolecole

Le principali macromolecole

8. I Carboidrati

CARBOIDRATI

I carboidrati, detti anche glucidi (dal greco "glucos" = dolce) sono sostanze formate da carbonio ed acqua. Hanno forma molecolare $C_n(H_2O)_n$ e sono contenuti principalmente negli alimenti di origine vegetale. Sono la classe di composti organici più abbondante.

9. I Lipidi: trigliceridi, fosfolipidi e steroidi

I **lipidi** sono insolubili in acqua e oleosi al tatto perché sono molecole apolari. Hanno dimensioni, composizione e funzioni molto varie, ma tutti sono composti prevalentemente da carbonio e idrogeno.

I **trigliceridi** contengono una molecola di glicerolo unita per condensazione a tre acidi grassi saturi (solo legami singoli C-C) o insaturi (uno o più legami doppi C=C).

Sono ottime riserve energetiche a lungo termine e isolanti termici.

I **fosfolipidi** possiedono un'estremità idrofila e due lunghe code idrofobiche; formano un doppio strato che costituisce le membrane cellulari.

10. Le proteine

Gli amminoacidi

Carbonio α

R

Catena laterale

Gruppo
amminico

Gruppo
carbossilico

• gruppo amminico

(NH₃⁺)

• gruppo carbossilico

(coo-)

Le strutture proteiche.....

La sequenza di amminoacidi nella catena polipeptidica costituisce la **struttura primaria** di una proteina.

I gruppi funzionali di due amminoacidi reagiscono tra loro dando origine a un legame peptidico.

L'ossatura di una catena polipeptidica è formata dalla successione regolare di

-N-C-C-N-. ZANICHELLI

La **struttura quaternaria** è il risultato del modo in cui le subunità polipeptidiche si legano insieme e interagiscono fra loro.

La **struttura terziaria** produce una macromolecola con una precisa forma tridimensionale, la cui superficie esterna presenta gruppi funzionali capaci di svolgere particolari reazioni chimiche con altre molecole specifiche.

I responsabili della struttura terziaria sono le interazioni tra i gruppi R.

11. Gli acidi nucleici

Gli acidi nucleici sono polimeri formati da **nucleotidi**.

L'informazione genetica contenuta nel DNA risiede nella sequenza dei nucleotidi che costituiscono la doppia elica.

Esistono due tipi di acidi nucleici: il DNA e l'RNA.

I monomeri: le basi azotate

I polimeri: DNA e RNA

12. La doppia elica del DNA

Prima Regola di Chargaff: Considerando la coppia di filamenti Numero A = Numero T

A T
T A
G C
C G
C C
A T
C G

13. La duplicazione del DNA

DUPLICAZONE SEMICONSERVATIVA

14. La compattazione del DNA

15. Genes

- I geni contengono le informazioni necessarie per generare un organismo e per consentirne un'interazione favorevole con il suo ambiente
- I geni codificano per polipeptidi
- Le attività di proteine determinano la struttura e la funzione delle cellule

Figure 4-7 Molecular Biology of the Cell 6e (© Garland Science 2015)

16. The code of Life

17. Transcription

- RNA Polymerase II catalyzes the synthesis of mRNA at a fixed rate of ~ 30-40 nucleotides per second.
- The rate of synthesis (transcription) is constant, and the number of polymerases that simultaneously synthesize RNA from a given gene determine the absolute transcription rate.
- Specific transcription factors modulate the number of RNA polymerase molecules actively synthesizing RNA

18. Transcription factors

- Transcription factors are proteins that have a modular design consisting of at least two distinct domains:
 - DNA-binding domain consists of the structural motif that recognizes specific DNA sequences (DNA binding)
 - Transcription-activating
 domain contacts the
 transcriptional machinery
 and accelerates the rate of
 transcription initiation by
 accelerating the assembly
 of the general
 transcription factors at the
 promoter site
 (transcription activating)

Different types of DNA-binding domains

19. mRNA maturation

 Gene transcription produces an RNA that is larger than the mRNA found in the cytoplasm for translation. This larger RNA is called the primary transcript and contains segments of transcribed introns

RNA polymerase II

polyadenylation

factors

DNA

PPPP

splicing

20. Alternative splicing = different proteins

- Alternative splicing can give rise to different proteins from the same gene.
- In most cases, the splicing patterns are regulated by the cell so that different forms of the protein are produced at different times and in different tissues

21. Translation

- A large number of components are required for the synthesis of a protein:
- amino acids
- mRNA to be translated
- transfer RNA (tRNA)
- functional ribosomes
- energy sources
- Enzymes and protein factors
 needed for initiation,
 elongation, and termination of
 the polypeptide chain.

22. Phases of Translation

Translation is divided into three phases: initiation (1), elongation (2), and termination (3)

23. Modulation of protein function: post-translational modifications

24. Protein degradation

- Proteosome: The 26S proteosome is a large complex (made up of about 60 protein subunits) and resembles a large cylinder. It contains a central core (20S) and a 19S regulatory particle at either end:
 - 19S particle contains several ATPases and other enzymes and is important for recognition and binding of polyubiquitinated proteins, removal of ubiquitin, unfolding the protein substrate, and translocation into the central core.
 - Proteins are then **hydrolyzed within** the **central core** into **smaller peptides**, which are **further degraded by cytosolic peptidases**.
 - The ATP-dependent pathway involves the protein ubiquitin, a highly conserved protein containing 76 amino acids which, as the name suggests, is ubiquitous in the eukaryotic kingdom. Proteins destined for destruction are tagged by multiple covalent attachment of ubiquitin
 (→polyubiquitination) through the enzimatic action of highly specific enzymes.

33. Intracellular RECEPTORS

 Some Extracellular Signal Molecules Cross the Plasma Membrane and Bind to Intracellular Receptors

