THE 3 Solutions

Answer 1

Assume $p-1 \equiv k \pmod{y}$. It follows that p-1 = by + k. Also, $x^{p-1} = (x^y)^b x^k \equiv x^k \pmod{p}$ since $x^y \equiv 1 \pmod{p}$ given in the question. Fermat's Little Theorem states that $x^{p-1} \equiv 1 \pmod{p}$, so $x^k \equiv 1 \pmod{p}$.

We have $x^y \equiv 1 \pmod{p}$ and $x^k \equiv 1 \pmod{p}$ where y is the smallest positive integer satisfying the condition and $0 \le k < y$, so k should be 0. It follows that, p - 1 = by + k = by + 0 = by. Hence $y \mid (p - 1)$.

Answer 2

See that

$$2n^2 + 10n - 7 = 2n^2 + 10n - 72 + 65 = (2n - 8)(n + 9) + 65 = 2(n - 4)(n + 9) + 65.$$

13 | $(2n^2 + 10n - 7)$ if and only if 13 | 2(n - 4)(n + 9). Hence, if $13 \nmid 2(n - 4)(n + 9)$ then 13 and 169 (since $169 = 13 \times 13$) don't divide $2n^2 + 10n - 7$.

Assume that $13 \mid 2(n-4)(n+9)$. Then it follows that $13 \mid (n-4)$ or $13 \mid (n+9)$. For 2(n-4)(n+9) to be divisible by 169, 13 must divide both (n+9) and (n-4). Since $n+9 \equiv n-4 \pmod{13}$, it follows that $169 \mid 2(n-4)(n+9)$ for some positive integer n. However, $169 \nmid 65$. Thus, $169 \nmid (2n^2+10n-7)=2(n-4)(n+9)+65$.

Answer 3

 $a \equiv b \pmod{m}$ implies $m \mid (a-b)$. Therefore, there exists a positive integer x such that mx = a-b. Similarly, there exists another positive integer y such that ny = a - b. So, a - b = mx = ny. Since gcd(m,n) = 1, $m \nmid n$. However $m \mid mx = ny$. Thus, we get $m \mid y$ and y = mz for some positive integer z. By replacing y, we get nmz = (nm)z = a - b. Hence $a \equiv b \pmod{m \times n}$.

Answer 4

$$P(n,k): \sum_{j=1}^{n} j(j+1)(j+2)....(j+k-1) = \frac{n(n+1)(n+2)....(n+k)}{k+1}$$

To show that this proposition is true,

a) We should show that P(1, k) is true for all positive integers k.

$$P(1,k): 1(1+1)(1+2)....(1+k-1) = \frac{1(1+1)(1+2)....(1+k)}{k+1}$$
$$1.2.3.....k = \frac{1.2.3.....k.(k+1)}{(k+1)} \qquad (k+1>0)$$

$$1.2.3...k = 1.2.3...k$$

So P(1,k) is true.

b) We should show that $P(n,k) \to P(n+1,k)$ is true for all positive integers n and k. We assume the following is true:

$$P(n,k): \sum_{j=1}^{n} j(j+1)(j+2)....(j+k-1) = \frac{n(n+1)(n+2)....(n+k)}{k+1}$$
(*)

Now we should show that P(n+1,k) is also true.

$$P(n+1,k): \sum_{j=1}^{n+1} j(j+1)(j+2)...(j+k-1) \stackrel{?}{=} \frac{(n+1)(n+2)(n+3)..(n+1+k)}{k+1}$$

To get P(n+1,k), we should add (n+1)(n+2)(n+3)...(n+1+k-1) to the both sides of the equation (*) denoted above, that is:

$$\sum_{i=1}^{n} [j(j+1)...(j+k-1)] + (n+1)(n+2)..(n+1+k-1) = \frac{n(n+1)....(n+k)}{k+1} + (n+1)(n+2)..(n+1+k-1)$$

Then the left hand side becomes as we desired (P(n+1,k)):

$$P(n+1,k) : \sum_{j=1}^{n+1} j(j+1)(j+2)...(j+k-1) = \frac{n(n+1)....(n+k) + (k+1)[(n+1)(n+2)..(n+1+k-1)]}{k+1}$$

$$= \frac{[(n+1)(n+2)..(n+k)](n+1+k)}{k+1}$$

$$= \frac{(n+1)(n+2)(n+3)...(n+k)(n+1+k)}{k+1}$$

So $P(n,k) \to P(n+1,k)$ is true for all positive integers n and k.

As a result, from part a and part b we say:

$$P(n,k): \sum_{j=1}^{n} j(j+1)(j+2)....(j+k-1) = \frac{n(n+1)(n+2)....(n+k)}{k+1}$$
 is true for all positive integers k and n.

Answer 5

Basis STEP: We must show the statement is true for n = 0 which is the smallest value of n for this inequality.

 $H_n \leq 7^n$ must be satisfied for n=0.

 $H_0 \leq 7^0$ is true since H_0 is given as 1. Same as H_1 and H_2 :

 $H_1 = 3 < 7^1$

$$H_2 = 5 \le 7^2$$

This finishes the basis step of induction.

Inductive STEP: Assume that $H_j \leq 7^j$ for $0 \leq j \leq k$ where $k \geq 2$. We must show that $H_{k+1} \leq 7^{k+1}$ to prove it is true for all values of n. We will use the defined equation as follows:

$$H_{k+1} = 5H_k + 5H_{k-1} + 63H_{k-2}$$
 (*)

Since we assumed that it is true for all values of $H_j(where 0 \le j \le k)$, $H_k \le 7^k$, $H_{k-1} \le 7^{k-1}$ and $H_{k-2} \le 7^{k-2}$. Now to show $H_{k+1} \le 7^{k+1}$ we will substitute H_{k+1} with the equation (*) defined above. Thus if we prove $5H_k + 5H_{k-1} + 63H_{k-2} \le 7^{k+1}$, we can finish the induction.

$$5H_k + 5H_{k-1} + 63H_{k-2} \le 5 \times 7^k + 5 \times 7^{k-1} + 63 \times 7^{k-2}$$
$$5H_k + 5H_{k-1} + 63H_{k-2} \le 7^{k-2}(5 \times 7^2 + 5 \times 7 + 63)$$
$$5H_k + 5H_{k-1} + 63H_{k-2} \le 7^{k-2}(343)$$

Since $343 = 7^3$:

$$5H_k + 5H_{k-1} + 63H_{k-2} \le 7^{k+1}$$

Now using the equation (*) again :

$$H_{k+1} \le 7^{k+1}$$

So $H_n \leq 7^n$ for any value of n > 0. Thus this finishes the induction.