PRAKTIKUM ANALGO	No Date
WORKSHEET 3	
$1 T(n) = 2 + 4 + 6 + 8 + \cdots + n^2$	6 a sumlah perbandingan
$= \sum_{i=1}^{n^2} 2i = n^2(n^2 + 1)$	$P = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 = n(n-1)$
$= n^4 + n^2$	b Maksimum Pertukaran
n > 1, maka n² ≤ n² sehingga	sama dengan sumlah operasi
n4, n2 & n4+n4 = 2n9, n3,7	perbandingan = n(n-1)
$\therefore 7(n) = 2 + 4 + 6 + 8 + \dots + n^2 = O(n^4)$	O .
c > 2, n,=1,f(n)=2n4	c Kompleksitas Wottu
	0 - 1 > 0 , 6 < 1
2 T(n) = Pn2+qn+1	$n^2 - n \le C n^2$
$0.9n^2 + nn + r \leq (p+q+r)n^2, n > 1$	$T(n) = O(n^2)$
$O_{p} n^{2} + qn + r \le (p + q + r)n^{2}, n \ge 1$ $T(n) = O(n^{2})$	Ω → n > 0, 0 < C ≤ 1
2, Pn2+qn+r > pn2, n>0	$n^2-n > C n^2$
dengan C>P dan No=1,	$T(n) = \Omega(n^2)$
dengan $C \gg P$ dan $N_0 = 1$, $T(n) = \Omega(n^2)$	@ > karena O(n²) dans (n²)
6, Q(n2) dan Q(n2) maka	:
$T(n) = \Theta(n^2)$	111 11-11- Implies C
- 10	7 Karena tidak diketahui konstunta C
$3 T(n) = \sum_{k=1}^{n} \sum_{j=1}^{n} 1 = n^3$	yang digunahan kita tidak bisa
	mengetahui mono yang lebih ceput.
$T(n) = O(n^s) = \Omega(n^s) = O(n^s)$	tapi secara asimptotik menorut yang diketahui, algorit ma A Paling Cepet
	Jengan O(log n)
4 for ic1 to n do	dengin Octogny
for 3 = 1 to n do sum [i][5] = a[i][5] + b[i][5]	8 Lowdelegas P
Sum Lillag - Octigios i Belistas	p(x)=((((anx + 7
$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = n^2$	driv t
1(1) = = = = = = = = = = = = = = = = = = =	a water +
$T(n) = O(n^2) = \Omega(n^2) = O(n^2)$: h penambahai
16.00 (1.1) 42(1.1)	al)x+ n perhation
5 for i = 1 to n do	00)x+
b[i] = a[i]	ao
	→n+n of tag
$T(n) = \sum_{i=1}^{n} 1 = n$	Waktu as uptotik Pz
$T(n) = O(n) = \Omega(n) = \Theta(n)$	T(n)=n+n -> O(n) de; C7, 2, No=(Kompleksitas Kedua algoritma soma.