

Analysis of Car Insurance Brokerage Services

Mirna Arivalagan - 220142881 | Descriptive Analytics and Visualisation – MIS771 Trimester 2 2021

Contents

Table of Contents	Error! Bookmark not defined.
Introduction	2
Question 1:	2
Question 2:	3
Question 3:	3
Question 4(A):	4
Question 4(B):	4
Question 5:	4
Conclusion:	5
Annendiy	6

Email:

To: Edmond Kendrick

From: Mirna Arivalagan

Subject: Analysis of car insurance brokerage service

Thank you for your e-mail. I have completed a thorough analysis on the sample data set that has been provided to understand the relationship between insurance premium savings and the customers gender, location, valuation method, vehicle type and broker that has been used. I hope you find the following report useful in helping make some further decisions.

Introduction

Between 2016 and 2021, it is estimated that the value of motor vehicle insurance is around \$2.8 billion dollars in Australia. The motor vehicle insurance is the largest segment in Australia's general insurance market as of March 2021. The motor vehicle insurance market has been on a steady up trend since 2016 till March 2021.

In an ever-growing competitive market, it is important to understand what the impacts are of the increase in brokerage services in recent times to the customers. By understanding, how customers respond to the access to numerous brokerage services, a broker can use these learnings to ensure that the product that they are providing ticks all the consumers boxes, thus helping the broker remain relevant in a competitive market.

This report covers the analysis of about 400 randomly selected customers and types of brokerage services and insurance covers that the customers have used. It is designed to address if there are differences in premium savings across genders, valuation methods, vehicle types and across states in Australia. This report also analyses if there are differences in customer satisfaction depending on the locality and broker used.

Question 1:

In terms of understanding if there are differences in savings across genders, I have run some descriptive and inferential analysis (Table 1). Based on sample data, the overall average savings in premiums for customers under 30 years old is \$317.25. There is some variation in figures when this is split across genders, the average for females were higher than males, \$355.22 compared to \$290.23 (Graph 1). It appears that females tend to save more, however, to prove this, further testing was conducted which is covered below.

I have found that 50% of males saved \$143 or more, and 50% of females saved \$136 or more on premiums. It is also important to note that there is an average spread of \$413.20 from the average savings of \$290.23 for males, and a spread of \$473.19 from the average of \$355.22 for females, thus indicating that there is a wide variation in the sample data set provided. I've also found that the lowest amount of savings across genders is similar, -\$76 for males and -\$74 for females, however the highest amount in savings, there is quite a difference with males saving more at \$1956 compared to \$1603 for females (Table 1).

At a 5% significance level, there is insufficient evidence to conclude that females aged 30 and below saves more on insurance premiums compared to males (Table 2). So even though from the sample data set, it appears that females saved more, this isn't the case, and this could perhaps be attributed to the outliers that are in the data which can be seen in the box plot (Graph 2).

Question 2:

In terms of customer satisfaction across urban and rural areas, from the sample data set given, the proportion of dissatisfied rural customers was 38.95% which was much higher than the proportion of urban customers of 21.64% (Graph 3).

From the tests that were conducted on the sample data set provided, at 5% significance level, there is sufficient evidence to conclude that the true proportion of dissatisfied urban customers is less than rural customers. I am 95% confident that the true proportion of dissatisfied urban customers is between -7.24% to -27.37% less than that of rural customers (Table 3).

Question 3:

By analysing the sample data set by valuation methods to see if there is a difference in average savings between agreed valuations and market valuations, we can see that the overall average savings for all customers in the sample data set is \$235.45. When split out, agreed valuation customers on average saved more than market valuations, with an average of \$360.64 compared to \$219.97 (Graph 4). Overall, 50% of the agreed valuation customers saved \$257.50 or more and for market valuations 50% of customers saved \$105 or more. I've also found something interesting whereby for agreed valuations, the most common amount of savings is \$39, and market valuations, it is \$0, meaning a good amount of market valuation customers do no make a saving.

The minimum values are similar, -\$76 for agreed value compared to -\$87 for market value. There is however a difference in the highest amount of savings, market value customers highest amount is \$1956 compared to \$1651 for agreed valuations (Table 4). Again, there are a few outliers here that could be skewing the averages (Graph 5).

At 5% significance level, I have sufficient evidence to conclude that there is in fact a difference in premium savings between the agreed value valuation and market value valuation. Further to this, with 95% confidence, there is sufficient evidence to conclude that the true average savings across valuation methods differ by \$36.68 to \$244.64 (Table 5).

Question 4(A):

To understand if there is a difference in average savings on premiums between customers based in New South Wales (NSW), Victoria (VIC) and Queensland (QLD), we had to conduct an ANOVA analysis which is an analysis of variances. From the sample data, there was a total of 127 customers based in NSW, 89 in VIC & 61 in QLD. The highest average in savings was seen in NSW with an average of \$266.95, followed by VIC with \$242.34 and the lowest average was seen in QLD with \$240.36 (Graph 6). As with the others, there is also some outliers in this scenario that can be observed in the box plot (Graph 7).

At a 5% significance level, there is insufficient evidence to conclude that there is a significant difference in average savings across the 3 states. There is an 81% chance that the average savings are the same across the 3 states. (Table 6)

Question 4(B):

I have found that the brokerage with the highest number of satisfied customers was VChoose with 83% of their customers rating as highly satisfied, this is followed by UChoose with 76%. YChoose and IChoose had very similar percentages of satisfied customers. IChoose has 73% of their customers satisfied, and YChoose is 72% (Graph 8).

From the test, at a 5% significance level, there is insufficient evidence to conclude that the proportion of satisfied customers is not the same across all insurance brokers. There is a 97.73% chance that the proportion of satisfied customers are equal across all brokerages (Table 7).

Question 5:

As requested, I have run an experiment to understand if there is an interaction between valuation methods and vehicle types that impacts the average savings.

From the analysis done, I have found that at a 5% significance level, there is sufficient evidence to conclude that there is a difference in average savings between valuation methods. From the graph (Table 8), using the sample data set, we can visualize and identify that the average savings of the agreed valuation is higher than that of the market valuation. This is clearly prominent in the line chart, there is a large difference in 4WD & Sports customers, the difference is lowered for Family and Luxury customers (Graph 10).

Further to this, I have also found that at a 5% significance level, that there is a difference in the true average savings across vehicle types. Sports and Luxury had the highest amount of savings, with an average of \$647.90 and \$636.60. Family had the lowest average savings at \$72.40 and 4WD was in the middle with an average of \$364 (Table 8, Graph 9).

Finally, we tested to see if there was an interaction between the vehicle types and valuation methods, at a 5% significance level, we have insufficient evidence to conclude that there is an interaction across valuation methods and vehicle types that are increasing or reducing the average savings on insurance premiums (Table 8, Graph 10).

Conclusion:

To conclude, from the sample data provided, we were not able to find if there is a significant difference in savings across genders for customers aged under 30 years old. There were a few outliers in the data set, perhaps being able to analyse a larger data set would provide a clearer outcome. With 95% confidence, we were able to find that rural customers are on average less satisfied than urban customers.

Further analysis is needed to understand the relationship between savings on insurance premiums and valuation methods as the sample sizes in the data provided was unequal, market valuation had 356 customers which was more prominent than agreed valuation customers at 44. With 95% confidence, we were also able to conclude that the average savings between the states were similar. From the dataset, we have also found that customer satisfaction across the 4 brokerages is similar, with most of the customers rating the services as satisfied, which is a good sign that consumers are happy to use these services.

Finally, we have also found that luxury cars and sports cars that cost a lot more tend to have higher savings on insurance premiums, this is to be expected as the premiums for these cars are much higher compared to a non-luxury car, thus a small % on discount will have a higher dollar value. As highlighted through this report, there are some limitations with the tests that was run, these include outliers being present in the data set, unequal sample sizes, and when analysing the savings by vehicle types, the sample size was smaller than 30, hence we cannot assume that the data is normally distributed.

Through this experiment, we have also gone with the assumption that since the standard deviation is less than double of each other, the variances are then assumed to be equal. Further testing is required to support these assumptions. I would suggest running these tests again with a larger and equally distributed sample set, to support the findings in this report.

Appendix

Question 1:

<u>Table 1:</u>

	ı	
	Male Savings	Female Savings
Mean	\$290.23	\$355.22
Standard Error	57.30	77.79
Median	143.00	136.00
Mode	366.00	#N/A
Standard Deviation	413.20	473.19
Sample Variance	170730.30	223910.12
Kurtosis	7.07	0.52
Skewness	2.43	1.33
Range	2032.00	1677.00
Minimum	-76.00	-74.00
Maximum	1956.00	1603.00
Sum	15092.00	13143.00
Count	52.00	37.00
Q1	34.75	28
Q3	368.75	560
IQR	334	532
Upper fence	869.75	1358
Lower fence	-466.25	-770
Outliers	Yes	Yes

Graph 1:

Graph 2:

<u>Table 2:</u>

U 0 1 7 16 1 20 1	_	_					
Hypothesis Test for μ1 - μ2 (independen	nt, equa	ıl va	rriances)				
Uhmathaasa							
Hypotheses Null Hypothesis			0				
	μ1 - μ2		0				
Alternative Hypothesis	μ1 - μ2	>	U				
Test Type Level of significance			Upper				
Level of significance		_	0.05				
Critical Region		α	0.03				
Degrees of Freedom			87				
Critical Value		\dashv	1.6626				
Ontion Value		\dashv	1.0020				
Sample Results							
Sample 1 Female							
Sample Standard Deviation			473.19				
Sample Mean			355.22				
Sample Size			37				
Sample 2 Male							
Sample Standard Deviation			413.20				
Sample Mean			290.23				
Sample Size			52				
Pooled Variance			192737.50				
Standard Error of the Mean			94.4225				
t Sample Statistic			0.6883				
p-value			0.2466				
Decision							
Fail to reject Null Hypothesis							
H0: Females aged under 30 save less than or		to	males on the				
insurance premiums							
H1: Females aged under 30 saves more than	males	on	the insurance				
premiums							

Question 2:

Graph 3:

<u>Table 3:</u>

Hypothesis Test for π1 - π2						
Hy	ypotheses					
Null Hypothesis	$\Pi_1 - \Pi_2$	2	0%			
Alternative Hypothesis	$\Pi_1 - \Pi_2$	<	0%			
Test Type			Lower			
Level	of significa	ance				
		α	0.05			
Cri	tical Regio	n				
Critical Value			-1.6449			
	ample Data	1				
Sample 1 (Urban)						
Sample Size			305			
Count of 'Successes'			66			
Sample proportion, p ₁			21.64%			
Sample 2 (Rural)						
Sample Size			95			
Count of 'Successes'	37					
Sample proportion, p ₂	38.95%					
Pooled estimate of pro	nortion		25.75%			
Standard Error	ронион		5.14%			
z Sample Statistic	-3.3689					
p-value	0.0004					
p-value 0.0004						
	Decision					
Reject Null Hypothesis						
Ho: The true Proportion of dissatisfied urban customers is equal or greater than the proportion of						
dissatisfied rural customers						
H1: The true Propo customers is less dissatisfie		roportion				

Confidence Interval for π1 - π2							
Level of Confidence							
Level of Confidence	95%						
Sample Results							
Sample 1 Urban							
Sample Size	305						
Count of 'Successes'	66						
Sample proportion, p ₁	21.64%						
Sample 2 Rural							
Sample Size	95						
Count of 'Successes'	37						
Sample proportion, p ₂	38.95%						
Intermediate Calculation	ons						
Pooled estimate of proportion	25.75%						
Standard Error	5.14%						
z value	1.9600						
Confidence Interval for π1 - π2							
Interval Lower Limit	-27.38%						
Interval Upper Limit	-7.24%						

Question 3:

Graph 4:

Table 4:

	Agreed Valu	ie Market Value
Mean	\$360	0.64 \$219.97
Standard Error	63	3.10 16.89
Median	257	7.50 105.00
Mode	39	0.00
Standard Deviation	418	3.59 318.73
Sample Variance	175217	7.82 101590.79
Kurtosis	2	2.13 6.07
Skewness	1	1.53 2.20
Range	1727	7.00 2043.00
Minimum	-76	5.00 -87.00
Maximum	1651	1.00 1956.00
Sum	15868	3.00 78311.00
Count	44	1.00 356.00
Q1	69	9.25 0.00
Q3	494	1.75 342.25
IQR	425	5.50 342.25
Upper fence	1133	3.00 855.63
Lower fence	-569	9.00 -513.38
Outliers	Yes	

Graph 5:

<u>Table 5:</u>

Hypothesis Test for μ1 - μ2 (independent, equal variances)									
Hypotheses									
Null Hypothesis	μ1 - μ2	=	0						
Alternative Hypothesis	ternative Hypothesis								
Test Type									
	Level of significance								
		α	0.05						
	Critica	Region							
Degrees of Freedom			398						
Lower Critical Value			-1.9659						
Upper Critical Value			1.9659						
	Sample	Results							
Sample 1 (Agreed Va	lue)								
Sample Standard Devia	tion		418.59						
Sample Mean			360.63						
Sample Size	44								
Sample 2 (Market Val	ue)								
Sample Standard Devia		318.73							
Sample Mean			219.97						
Sample Size			356						
Pooled Variance			109545.41						
Standard Error of the M	ean		52.8903						
t Sample Statistic			2.6594						
p-value			0.0081						
	Dec	ision							
Reject Null Hypothesis									
H0: The true average savings between both valuation methods is the same									
H1: The true average s	avings be		aluation methods is						

Confidence Interval for μ1 - μ2 (independent, equal variances)						
Level of Confidence						
Level of Confidence	95%					
Sample Results						
Sample 1 (Agreed Value)						
Sample Standard Deviation	418.5902748					
Sample Mean	360.63					
Sample Size	44					
Sample 2 (Market Value)						
Sample Standard Deviation	318.733					
Sample Mean	219.974					
Sample Size	356					
Intermediate Calculations						
Degrees of Freedom	398					
Pooled Variance	109545.41					
Standard Error of the Mean	52.8903					
t value	1.9659					
Confidence Interval for µ1 - µ2	!					
Interval Lower Limit	36.68					
Interval Upper Limit	244.64					

Question 4(A):

Graph 6:

Graph 7:

Table 6:

		NSW	Victoria	Queensland
Mean	\$	266.95	\$ 242.34	\$ 240.36
Standard Error		30.04	35.98	37.81
Median		136.00	147.00	131.00
Mode		0.00	0.00	357.00
Standard Deviation		338.56	339.46	295.30
Sample Variance		114626.25	115231.04	87200.57
Kurtosis		3.11	8.05	1.29
Skewness		1.63	2.43	1.38
Range		1877.00	2043.00	1213.00
Minimum		-78.00	-87.00	-69.00
Maximum		1799.00	1956.00	1144.00
Sum		33903.00	21568.00	14662.00
Count		127.00	89.00	61.00
Q1		27.00	0.00	38.00
Q3		404.00	365.00	357.00
IQR		377.00	365.00	319.00
Upper fence		969.50	912.50	835.50
Lower fence		-538.50	-547.50	-440.50
Outliers	Yes			

Anova: Single Factor SUMMARY Groups NSW Victoria Queensland							
SUMMARY							
Groups	Count	Sum		Average	Variance		
NSW	127	3	33903.00	266.95	114626.25		
Victoria	89	2	21568.00	242.34	115231.04		
Queensland	61	1	14662.00	240.36	87200.57		
ANOVA Source of Variation Between Groups/SSP Within Groups/SSW Total/SST							
Source of Variation	SS	df		MS	F	P-value	F crit
Between Groups/SSP	44578.57		2.00	22289.28	0.20	0.81	3.03
Within Groups/SSW	29815273.67		274.00	108814.87			
Total/SST	29859852.24		276.00				

Question 4(B):

Graph 8:

<u>Table 7:</u>

Chi-Square Test								
Observed Frequencies								
		Column						
Row variable	iChoose	uChoose	vChoose	yChoose	Total			
Satisfied	138	55	35	69	297			
Dissatisfied	52	17	7	27	103			
Total	190	72	42	96	400			
	Expected	l Frequenc						
		Column	variable					
Row variable	iChoose	uChoose	vChoose	yChoose	Total			
Satisfied	141.0750	53.4600	31.1850	71.2800	297			
Dissatisfied	48.9250	18.5400	10.8150	24.7200	103			
Total	190	72	42	96	400			
Data								
Level of Significance	0.05							
Number of Rows	2							
Number of Columns	4							
Degrees of Freedom	3							
Results								
Critical Value	7.8147							
Chi-Square Test Statistic	0.2603							
ρ-Value	96.73%							
Do not reject the null hy	oothesis							
Expected frequency assumption								
is met.								

Question 5:

<u> Table 8:</u>

Anova: Two-Factor With Replication						
·						
SUMMARY	4WD	Family	Luxury	Sports	Total	
Agreed Value						
Count	5.00	5.00	5.00	5.00	20.00	
Sum	2865.00	482.00	3449.00	4418.00	11214.00	
Average	573.00	96.40	689.80	883.60	560.70	
Variance	126076.00	13171.30	51435.70	231554.30	177486.01	
Market Value						
Count	5.00	5.00	5.00	5.00	20.00	
Sum	775.00	242.00	2917.00	2061.00	5995.00	
Average	\$155.00	\$48.40	\$583.40	\$412.20	\$299.75	
Variance	8127.00	1798.80	173689.30	146398.20	116116.41	
Total						
Count	10.00	10.00	10.00	10.00		
Sum	3640.00	724.00	6366.00	6479.00		
Average	\$364.00	\$72.40	\$636.60	\$647.90		
Variance	108180.22	7293.38	103200.27	229706.10		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Sample	680949.03	1.00	680949.03	7.24	0.01	4.15
Columns	2223975.28	3.00	741325.09	7.88	0.00	2.90
Interaction	345468.28	3.00	115156.09	1.22	0.32	2.90
Within	3009002.40	32.00	94031.33			
Total	6259394.98	39.00				

Graph 9:

Graph 10:

