Open Policy Analysis: Principles and Applications

Fernando Hoces de la Guardia¹

¹UC Berkeley: Berkeley Initiative for Transparency in the Social Sciences

> GiveWell August 23rd, 2018

What is Policy Analysis?

Cynical view:

 $\label{eq:policy} \mbox{Policy Analysis} = \mbox{Research} - \mbox{Novelty} - \mbox{Rigor}$

What is Policy Analysis?

Cynical view:

 $\label{eq:Policy Analysis} Policy\ Analysis = Research - Novelty - Rigor$

Optimists view:

 $\label{eq:policy} \textit{Policy Analysis} = \textit{Research} - \textit{Novelty} + \textit{Relevance} - \textit{Rigor}$

What is Policy Analysis?

Cynical view:

 $\label{eq:Policy Analysis} \textbf{Policy Analysis} = \textbf{Research} - \textbf{Novelty} - \textbf{Rigor}$

Optimists view:

 $\label{eq:policy} \textit{Policy Analysis} = \textit{Research} - \textit{Novelty} + \textit{Relevance} - \textit{Rigor}$

Our proposal:

Open Policy Analysis = Research - Novelty + Relevance

Why We Need Open Policy Analysis

Fernando Hoces de la Guardia¹ Sean Grant² Edward Miguel¹

¹UC Berkeley: Berkeley Initiative for Transparency in the Social Sciences ²RAND

> GiveWell August 23rd, 2018

Policy Analysis And The Evidence-Based Policy Movement

Evidence-Based movement is growing.

- "The golden age of evidence-based policy" (Haskins 2017).
- Credible causal evidence (Angrist & Pischke, 2010)
- Transparency and reproducibility of research (Miguel et al. 2014).
- Commission on Evidence-Based Policymaking (CEBP, 2017)

Policy Analysis is a fundamental link.

- As many definitions as textbooks (Dunn, 2015; Weimer & Vining, 2017; Williams, 1971)
- Common denominator: client-oriented empirical analysis meant to inform a specific policy debate
- Aspires at scientific rigor. (Wildavsky 1979),

Policy Analysis And The Evidence-Based Policy Movement

Evidence-Based movement is growing.

- "The golden age of evidence-based policy" (Haskins 2017).
- Credible causal evidence (Angrist & Pischke, 2010)
- Transparency and reproducibility of research (Miguel et al. 2014).
- Commission on Evidence-Based Policymaking (CEBP, 2017)

Policy Analysis is a fundamental link.

- As many definitions as textbooks (Dunn, 2015; Weimer & Vining, 2017; Williams, 1971)
- Common denominator: client-oriented empirical analysis meant to inform a specific policy debate
- Aspires at scientific rigor. (Wildavsky 1979),

One Ideal Evidence-Based Policy Link

Reproducibility Crisis In Empirical Research

- Large magnitude of publication bias (Franco et al 2014).
- Evidence of extensive p-hacking across social science disciplines (Gerber et al 2008, Brodeur et al 2016).
- Replication rates are low (Collaboration et al, 2015, Camerer et al, 2016).
- Computational reproducibility is also low (Stodden et al 2016, Chang and Li 2015, Gertler et al 2018).

The Open Science Movement

- Definition of principles of Open Science/Research Transparency (Miguel et al 2014)
- Development of guidelines to operationalize principles of Open Science (Nosek et al 2015)
- Journals and funders: Journals (Science + 5k other journals),
 Registries (AEA), Funders (NIH, NSF and multiple donors)

Credibility Crisis Of Policy Analysis

- Incredible Certitudes (Manski, 2013)
- Report wars (Wesselink et al, 2013)

How This Affects The Evidence Based Policy Link?

How This Affects The Evidence Based Policy Link?

Relevance

Main consequences of policy analysis that lacks openness:

- Cherry picking evidence.
- Challenging to automate and Improve systematically recurring reports.
- Oifficulty understanding how research informs policy analysis.

Cherry Picking Evidence

"When I was director of the CBO, I was very frustrated when we would write a policy report [saying] a certain policy would have these two advantages and these two disadvantages, and the advocates would quote only the part about the advantages, and the opponents would quote only the part about the disadvantages. That encourages the view that there are simple answers. There aren't generally simple answers. There are trade-offs."

Douglas Elmendorf (Director of CBO, 2009-2015)
 Harvard Magazine, 2016

Cherry Picking Evidence

"When I was director of the CBO, I was very frustrated when we would write a policy report [saying] a certain policy would have these two advantages and these two disadvantages, and the advocates would quote only the part about the advantages, and the opponents would quote only the part about the disadvantages. That encourages the view that there are simple answers. There aren't generally simple answers. There are trade-offs."

Douglas Elmendorf (Director of CBO, 2009-2015)
 Harvard Magazine, 2016

Open Policy Analysis

	Empirical	Policy
	Research	Analysis
Problems	Reproducibility	Credibility
	Crisis	Crisis
Solutions	Open Science	
	Principles, Guidelines,	
	Applications	

Open Policy Analysis

	Empirical	Policy
	Research	Analysis
Problems	Reproducibility	Credibility
	Crisis	Crisis
Solutions	Open Science	Open Policy Analysis
	Principles, Guidelines,	Principles
	Applications	

The Process of Policy Analysis

Principles for Open Policy Analysis

Proposed principles:

- Computational Reproducibility
- Analytic Transparency
- Output Transparency

Principle 1

Computational Reproducibility

- Literate Programming
- Version control
- File structure
- Label sources

Principle 2

Analytic Transparency

- Open code
- Open data
- Report as Dynamic Document

Principle 3

Output Transparency

- Pre-committed output display
- Assumptionsoutput link

Suggestions

Suggestions:

- Policy Analysts: Just Post It. Things are moving in this direction. Play a leading role in a credibility revolution for policy analysis.
- Policy Analysis Organizations: Open by Default Boost in credibility, lower costs in the long run. Examples: GiveWell, and AEI.
- Government Agencies and Funders: Support Open Policy Analysis Examples: Require contracted policy analysis to be fully open. Support training and adoption of new tools (VC and DD). Inject resources for the transition.

Suggestions

Suggestions:

- Policy Analysts: Just Post It. Things are moving in this direction. Play a leading role in a credibility revolution for policy analysis.
- Policy Analysis Organizations: Open by Default Boost in credibility, lower costs in the long run. Examples: GiveWell, and AEI.
- Government Agencies and Funders: Support Open Policy Analysis Examples: Require contracted policy analysis to be fully open. Support training and adoption of new tools (VC and DD). Inject resources for the transition.

Suggestions

Suggestions:

- Policy Analysts: Just Post It. Things are moving in this direction. Play a leading role in a credibility revolution for policy analysis.
- Policy Analysis Organizations: Open by Default Boost in credibility, lower costs in the long run. Examples: GiveWell, and AEI.
- Government Agencies and Funders: Support Open Policy Analysis Examples: Require contracted policy analysis to be fully open. Support training and adoption of new tools (VC and DD). Inject resources for the transition.

Summing Up: Where We Are

Summing Up: Where Should We Go

Open Policy Analysis: A Case Study of the Minimum Wage Policy Estimate

Fernando Hoces de la Guardia¹

¹UC Berkeley: Berkeley Initiative for Transparency in the Social Sciences

Congressional Budget Office March 29th, 2018

Motivation 1: Gap On How to Conduct OPA

	Empirical	Policy
	Research	Analysis
Problems	Reproducibility	Credibility
	Crisis	Crisis
Solutions	Open Science	Open Policy Analysis
	Principles, Guidelines,	Principles
	Applications	

Motivation 1: Gap On How to Conduct OPA

	Empirical	Policy
	Research	Analysis
Problems	Reproducibility	Credibility
	Crisis	Crisis
Solutions	Open Science	Open Policy Analysis
	Principles, Guidelines,	Principles, Guidelines,
	Applications	Applications

Description of Case Study

"The Effects of a Minimum-Wage Increase on Employment and Family Income" Congressional Budget Office (2014)

Description: CBO estimated the effects of a raise in the federal minimum wage from \$7.25/hr to \$10.10/hr.

Main policy estimates:

- 500,000 jobs would be lost.
- 16.5 million workers would receive a salary increase.
- Distributional effects: below poverty line (PL) +\$5billion; between one and three PL +\$12billion; between three and six PL +\$2billion; above six PL -\$17billion

Key research estimate: Elasticity of labor demand for teenagers in the labor force.

Reasons for Selecting the Case Study

Scalable

Feasible

Recurrent

Relevant:

Figure: Google Search Intensity of "Minimum Wage"

Summary of Adapted Guidelines

Standar	d Level 0	Level 1	Level 2	Level 3
Workflow	v Policy estimates vaguely described	All the inputs, and their corresponding sources, used in the calculations are listed	Lvl 1 + Policy estimates are listed, in same unit if possible	Lvl 2 + all the components can be modified with little effort
Data	Report says nothing	Clearly stated whether all, some components, or none of the data is available, with instructions for access when possible.	Lvl 1 + report and data are in same place	Lvl 2 + Report has specific lines of code that call the data and changes in the data produce traceable changes in the report
Methods & Code	Key assumption are listed	Methods are described in prose. Large amount of work is required to reproduce qualitatively similar estimates	Methods and described in prose, with detailed formulas, and code is provided as supplementary material	Lvl 2 + All is in the same document where changes in the code affect the output automatically

From TOP guidelines (Nosek et al 2015) v1.0.1 •

24/36

Summary of Adapted Guidelines

Standard	d Level 0	Level 1	Level 2	Level 3
Workflov	v Policy estimates vaguely described	All the inputs, and their corresponding sources, used in the calculations are listed	Lvl 1 + Policy estimates are listed, in same unit if possible	Lvl 2 + all the components can be modified with little effort
Data	Report says nothing	Clearly stated whether all, some components, or none of the data is available, with instructions for access when possible.	Lvl 1 + report and data are in same place	Lvl 2 + Report has specific lines of code that call the data and changes in the data produce traceable changes in the report
Methods & Code	Key assumption are listed	Methods are described in prose. Large amount of work is required to reproduce qualitatively similar estimates	Methods and described in prose, with detailed formulas, and code is provided as supplementary material	Lvl 2 + All is in the same document where changes in the code affect the output automatically

From TOP guidelines (Nosek et al 2015) v1.0.1 •

24/36

Summary of Adapted Guidelines

Standard	d Level 0	Level 1	Level 2	Level 3
Workflow	v Policy estimates vaguely described	All the inputs, and their corresponding sources, used in the calculations are listed	Lvl 1 + Policy estimates are listed, in same unit if possible	Lvl 2 + all the components can be modified with little effort
Data	Report says nothing	Clearly stated whether all, some components, or none of the data is available, with instructions for access when possible.	Lvl 1 + report and data are in same place	Lvl 2 + Report has specific lines of code that call the data and changes in the data produce traceable changes in the report
Methods & Code	Key assumption are listed	Methods are described in prose. Large amount of work is required to reproduce qualitatively similar estimates	Methods and described in prose, with detailed formulas, and code is provided as supplementary material	Lvl 2 + All is in the same document where changes in the code affect the output automatically

From TOP guidelines (Nosek et al 2015) v1.0.1 •

24/36

Summary of Adapted Guidelines

Standard Level 0		Level 1	Level 2	Level 3
Workflow	w Policy estimates vaguely described	All the inputs, and their corresponding sources, used in the calculations are listed	Lvl 1 + Policy estimates are listed, in same unit if possible	Lvl 2 + all the components can be modified with little effort
Data	Report says nothing	Clearly stated whether all, some components, or none of the data is available, with instructions for access when possible.	Lvl 1 + report and data are in same place	Lvl 2 + Report has specific lines of code that call the data and changes in the data produce traceable changes in the report
Methods & Code	s Key assumption are listed	Methods are described in prose. Large amount of work is required to reproduce qualitatively similar estimates	Methods and described in prose, with detailed formulas, and code is provided as supplementary material	LvI 2 + All is in the same document where changes in the code affect the output automatically

From TOP guidelines (Nosek et al 2015) v1.0.1 •

24/36

Applying Guidelines to Build an Open Report

<u>DEMO</u>.

Map the complete policy analysis

All in One Output 1/3

Figure: Gains and losses. Different Units

All in One Output 2/3

Figure: Gains and losses. Different Denominator

All in One Output 3/3

Figure: Gains and losses. Same units and denominator

Sensitivity Analysis: Status Quo

Figure: Default settings

SA: Change in Elasticity of Labor Demand

Figure: From
$$\eta_{lit}^{teens} = -0.1$$
 to $\eta_{lit}^{teens} = -0.01(\Delta^-90\%)$

OPA - Minimum Wage 30/36

Sensitivity Analysis: Status Quo

Figure: Default settings

SA: Change in Distribution of Balance Loses

Figure: From $(1PL, 6PL) \sim (1\%, 29\%, 70\%)$ to (20%, 40%, 40%)

Sensitivity Analysis For Multiple Parameters

Table: $\%\Delta W$ for a $\%\Delta$ in inputs. Two sample policy makers.

		Re-distributional Preferences				
		Dislikes $(\rho = -0.1)$		Likes ($\rho = 0.1$)		
Source	Input	10%Δ+	10%Δ-	10%Δ+	10%Δ-	
Data						
	Annual wage growth (g_w)	-3%	2%	-2%	1%	
	Annual growth in N	0.8%	-0.9%	0.5%	-0.5%	
Researc	Research					
	η_{teen}	-4%	4%	-2%	2%	
	Ripple Scope (8.7, 11.5)	37%	-24%	21%	-14%	
	Ripple Intensity $(50\%\Delta w)$	5%	-5%	3%	-3%	
Guess W	Guess Work					
	Extrapolation factor (F_{ex})	-3%	2%	-1%	1%	
	Non compliance (α_1)	-7%	7%	-4%	4%	
	Substitution factor (F_{sub})		20%		-8%	
	Net benefits	-5%	5%	2%	-2%	
	Distribution of balance losses		•		•	
	Current: (1%, 29%, 70%)					
	(1%, 4%, 95%)		22%		13%	
(5%, 35%, 60%)		-17%		-9%		
1/N		-129%		-73%		

Limitations

- There is additional scope for reproducibility.
- Complete case study requires extensive institutional knowledge.
- Guidelines need to be build based on consensus of practitioners.

Discussion

Let's assume this becomes the new status quo.

- Costs of producing the next report on effects of minimum wage will be very small.
- Every additional effort will imply improvements on the "state of the art" report (e. g. dBL; η(MW), α₁(MW))
- Learning about one parameter (QALYs, DWL) will update estimates across reports.
- Much easier to have a substantive and normative policy debate.
 Pilot example: Shiny App!.

Possibilities for Collaboration

- CBO is a leader in policy analysis. Leading OPA would shield its credibility and encourage others (ala Journal Science for Empirical Research).
- What can BITSS offer:
 - Technical support next case study (funded through August 2018).
 - Training on research transparency methods.
- Join a group of experts to develop and publish guidelines (APPAM 2018 convening).

An Aspiration

"Democracy Thrives In Sunlight"

The Work Times

Washington DC

VOL.III... No.14 MARCH 29, 2020 THREE DOLLARS

CBO Publishes Open Report on Minimum Wage

Results Will Be Published Separately in Two Weeks

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, connibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Bipartisan Support for CBO Methodology

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non iusto. Nam lacus libero. viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum.

36/36

Let's work together!

Thank you.

Pre-prints: Why OPA OPA Case Study

Slides at github.com/fhoces/CBO2018

fhoces@berkeley.edu

Back-up slides

Steps taken to verify the analysis & employment variation $(\widehat{\Delta E} \times 1000)$ at each line¹

- ① Find an elasticity: -0.1 (page 25): $\widehat{\Delta E} \approx 300$
- igcup Q What about adults? $\eta^{adults}=rac{1}{3}\eta^{teens}$ (page 28): $\Delta Epprox 100$
- What about the adjustment? $\eta_{W \leq MW}^g = \frac{\eta_W^g}{p_{W \leq MW}^g} \times \frac{\%\Delta MW}{\%\Delta w^g}$ (page 26-28 + 2 papers): $\Delta F \sim 1.100$
- The adjustment factors $\frac{1}{p_{w \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta w^g} = F_{adj}^g$ are not computed from the data (3.2 teens, 19.5 adults). Instead:

Steps 2-4 took several days of work!

¹Assuming target population \approx 22 million, $\overline{\Delta w_{w \leq MW'}} \approx$ 14%, and non-compliance \approx 15%

Steps taken to verify the analysis & employment variation $(\widehat{\Delta E} \times 1000)$ at each line¹

- Find an elasticity: -0.1 (page 25): $\widehat{\Delta E} \approx 300$
- ② What about adults? $\eta^{adults} = \frac{1}{3}\eta^{teens}$ (page 28): $\widehat{\Delta E} \approx 100$
- What about the adjustment? $\eta_{W \leq MW}^g = \frac{\eta_{W}^g}{\rho_{W \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta W^g}$ (page 26-28 + 2 papers): $\sqrt{F} \approx 1.100$
- The adjustment factors $\frac{1}{\rho_{w \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta w^g} = F_{adj}^g$ are not computed from the data (3.2 teens, 19.5 adults). Instead: $F_{adj}^{teen} = F_{adj}^{adult} = 4.5$ (page 28) $\Delta E \approx 500$

Steps 2-4 took several days of work!

¹Assuming target population \approx 22 million, $\overline{\Delta w_{w \leq MW'}} \approx$ 14%, and non-compliance \approx 15%

Steps taken to verify the analysis & employment variation $(\widehat{\Delta E} \times 1000)$ at each line¹

- Find an elasticity: -0.1 (page 25): $\widehat{\Delta E} \approx 300$
- ② What about adults? $\eta^{adults} = \frac{1}{3}\eta^{teens}$ (page 28): $\widehat{\Delta E} \approx 100$
- What about the adjustment? $\eta_{W \leq MW}^{g} = \frac{\eta_{lit}^{g}}{p_{W \leq MW}^{g}} \times \frac{\% \Delta MW}{\% \Delta W^{g}}$ (page 26-28 + 2 papers): $\Lambda F \simeq 1,100$
- The adjustment factors $\frac{1}{p_{w \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta w^g} = F_{adj}^g$ are not computed from the data (3.2 teens, 19.5 adults). Instead: $F_{adj}^{teen} = F_{adj}^{adult} = 4.5$ (page 28) $\Delta E \approx 500$

Steps 2-4 took several days of work!

OPA - Minimum Wage 37/36

¹Assuming target population \approx 22 million, $\overline{\Delta w_{w \leq MM'}} \approx$ 14%, and non-compliance \approx 15%

Steps taken to verify the analysis & employment variation $(\widehat{\Delta E} \times 1000)$ at each line¹

- Find an elasticity: -0.1 (page 25): $\widehat{\Delta E} \approx 300$
- ② What about adults? $\eta^{adults} = \frac{1}{3}\eta^{teens}$ (page 28): $\widehat{\Delta E} \approx 100$
- **3** What about the adjustment? $\eta_{W \leq MW}^{g} = \frac{\eta_{lit}^{g}}{p_{W \leq MW}^{g}} \times \frac{\%\Delta MW}{\%\Delta w^{g}}$ (page 26-28 + 2 papers): $\widehat{\Delta E} \approx 1,100$
- 1 The adjustment factors $\frac{1}{p_{w \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta w^g} = F_{adj}^g$ are not computed from the data (3.2 teens, 19.5 adults). Instead: $F_{adj}^{teen} = F_{adj}^{adult} = 4.5$ (page 28) $\widehat{\Delta E} \approx 500$

Steps 2-4 took several days of work!

OPA - Minimum Wage 37/36

¹Assuming target population \approx 22 million, $\overline{\Delta w_{w\leq MW'}}\approx$ 14%, and non-compliance \approx 15%

Steps taken to verify the analysis & employment variation $(\widehat{\Delta E} \times 1000)$ at each line¹

- Find an elasticity: -0.1 (page 25): $\widehat{\Delta E} \approx 300$
- ② What about adults? $\eta^{adults} = \frac{1}{3}\eta^{teens}$ (page 28): $\widehat{\Delta E} \approx 100$
- What about the adjustment? $\eta_{W \leq MW}^{g} = \frac{\eta_{lit}^{g}}{p_{W \leq MW}^{g}} \times \frac{\%\Delta MW}{\%\Delta W^{g}}$ (page 26-28 + 2 papers): $\widehat{\Delta E} \approx 1,100$
- The adjustment factors $\frac{1}{p_{w \leq MW}^g} \times \frac{\% \Delta MW}{\% \Delta w^g} = F_{adj}^g$ are not computed from the data (3.2 teens, 19.5 adults). Instead: $F_{adj}^{teen} = F_{adj}^{adult} = 4.5$ (page 28) $\widehat{\Delta E} \approx 500$

Steps 2-4 took several days of work!

OPA - Minimum Wage 37/36

¹Assuming target population \approx 22 million, $\overline{\Delta w_{w\leq MW'}}\approx$ 14%, and non-compliance \approx 15%

Equations from Model in DD

$$\widehat{\Delta E} = N \times \eta \times \% \Delta w + \text{Other factors}$$
 (1)

$$\widehat{N_{\text{final}}^s} = g_N(\hat{t}'|t) \times \hat{N_t^s} \times P(\hat{w}' \leq MW^{\text{new}}|s) \times (1 - \hat{\alpha_1^s} - \hat{\alpha_2^s}) \qquad s = \{\text{teens}\}$$
(2)

The elasticity for adults from the literature is define as the one for teenagers with an extrapolation factor.

$$\eta_{lit}^{adults} = \eta_{lit}^{teens} \times F_{extrapolation}$$
(3)

Adjustments to the elasticity of labor demand

Following Neumark and Wascher (2008), Brown (1999). First:

$$\eta_{\mathit{lit}}^{\mathit{s}} = p_{w \leq \mathit{MW}}^{\mathit{s}} \eta_{w \leq \mathit{MW}}^{\mathit{s}} + (1 - p_{w \leq \mathit{MW}}^{\mathit{s}}) \eta_{w > \mathit{MW}}^{\mathit{s}} \qquad \mathit{s} = \{\mathit{teens}, \, \mathit{adults}\}$$

Second, assume $\eta_{W \leq MW}^s = 0$:

$$\eta_{w \leq MW}^{s} = \frac{\eta_{lit}^{s}}{p_{w \leq MW}^{s}} \qquad s = \{teens, adults\}$$

And third, adjust for the effective average wage variation for each group $(\sqrt[8]{\Delta w^s})$:

$$\widetilde{\eta_{w \leq MW}^{s}} = \frac{\eta_{\mathit{lit}}^{s}}{p_{w < MW}^{s}} \times \frac{\% \Delta MW}{\frac{\% \Delta W^{s}}{\% \Delta w^{s}}} = \eta_{\mathit{lit}}^{s} \times \mathit{F}_{\mathit{adjs}}^{s} \qquad \mathit{s} = \{\mathit{teens}, \, \mathit{adults}\}$$

(4)

•Final Effect on Employment

$$\widehat{\Delta E} = \sum_{g \in \{A, T\}} \left(\widehat{N_g^{final}} \times \widehat{\eta_{w \le MW}^g} \times \overline{\% \Delta w^g} \right) - \widehat{OF}$$
 (5)

Effect on Wages

$$w'' = \begin{cases} w' & \text{if} \quad w \in U[0,1] < \alpha_1 \\ w^{\text{new}} & o/w \end{cases}$$
 (6)

$$w^{\text{new}} = \begin{cases} w'/2 & \text{if} \quad w \in U[0,1] < \alpha_{\text{aux}} \\ \widetilde{w^{\text{new}}} & o/w \end{cases}$$
 (7)

Ripple Effects

$$\widetilde{w^{\text{new}}} = \begin{cases}
MW' & \text{if } w' < R_{lb} \\
MW' + R^{l}(w' - R_{lb}^{s}) & \text{if } w' \in [R_{lb}, MW') \\
w' + R^{l}(R_{ub}^{s} - w') & \text{if } w' \in [MW', R_{ub}) \\
w' = o/w
\end{cases} (8)$$

41/30

Computing Income

$$y'_{i,h} = \sum_{i \in N_h} (g_{nw}(t'|t)nw_i + w'_i) / N_h$$

$$y''_{i,h} = \sum_{i \in N_h} (g_{nw}(t'|t)nw_i + w''_i) / N_h$$
(9)

Final Policy Estimates

$$WG_{i} = (y_{i}'' - y_{i}') \mathbf{I} (y_{i}'' > y_{i}')$$
(10)

$$WL_i = \left(y_i' - y_i'' \right) \mathbf{I} \left(y_i'' < y_i' \right) \tag{11}$$

$$BL = \sum_{i} WG_{i} - F_{sub} \sum_{i} WL_{i}; \quad BL_{i} = BL \times dBL$$
 (12)

$$\overline{\textit{WG}_{\textit{Q}}} = \frac{\sum_{i \in \textit{Q}} \textit{WG}_i}{\textit{N}_{\textit{pop}}/5} \quad \overline{\textit{WL}_{\textit{Q}}} = \frac{\sum_{i \in \textit{Q}} \textit{WL}_i}{\textit{N}_{\textit{pop}}/5}$$

$$\overline{BL_Q} = \frac{\sum_{i \in Q} BL_i}{N_{pop}/5} \tag{13}$$

► 4 D ► 4 E ► 4 E ► -E = *) Q (* 42/36

1 Introduction

2 Employment effects

- 2.1 Data, wages, and forecast
- 2.2 Get the N
- 2.3 Get the $\eta \times \Delta w$
- 2.4 Other factors
- 2.5 Computing effects on employment

3 Distributional effects

- 3.1 Computing Family income
- 3.2 Imputing policy effects
- 3.3 Computing family income under status quo and minimum wage increase
- 3.4 Other considerations

4 Results

Reader Companion for CBO report on Min Wage (Preliminary Version. Do Not Circulate)

Fernando Hoces de la Guardia + (hopefully) a lot more people Last edit: 2016-10-16

1 Introduction

The role of policy analysis is to connect research with policy, Because of heavy time constrains, policy analyses are typically ambiguous regarding the details of how the analysis was carried out. This creates three problems: (i) is than do understand the connection between research and policy, (ii) allows policy makers to cherry pick policy reports, and (iii) hinders systematic improvement and/or automation of parts of the analysis. In this document we demonstrate the use of a reproducible workflow to reduce the ambiguity in policy analysis.

Here we attempt to contribute to the policy discussion of the minimum wage. The minimum wage is a contentious policy issue in the US. Increasing it has positive and negative effects that different policymakers value differently. We aim to add clarity on what those effects are, how much do we know about them, and how those effects vary when elements of the analysis change. We select the most up-to-date, non-partisan, policy analysis of the effects of raising the minimum wage, and build an open-source reproducible analysis on too of it.

In 2014 the Congressional Budget Office published the report titled "The Effects of a Minimum-Wage Increase on Employment and Family Income". The report receive wide attention from key stakeholders and has been used extensible as an input in the debate around the minimum wage! To this date we consider the CBO report to be the best non-partisan estimation of the effects of raising the minimum wage at the federal level. Although there was disagreement among experts around some technical issues, this disagreement has been mainly circumscribed around one of the many inputs used in the analysis, and we can fit the opposing positions in to our framework.

Our purposes are twofold: First, promote the technical discussion around a recurrent policy issue (minimum wage) by making explicit and visible all the components and key assumptions of its most up-to-date official policy analysis. Second, demonstrate how new scientific practices of transparency and reproducibility (T & R) can be applied to policy analysis. We encourage the reader to collaborate in this document and help develop an ever-improving version of the important policy estimates? (relatorduced here.

Introduction

Employment effects

2.1 Data, wages, and forecast

2.2 Get the N

2.3 Get the $\eta \times \Delta w$ 2.4 Other factors

2.5 Computing effects on

nployment

Distributional effects
3.1 Computing Family income

3.2 Imputing policy effects

3.3 Computing family income under atus quo and minimum wage increase

3.4 Other considerations

Results

2 Employment effects

At a general level the effects on employment $\widehat{(\Delta E)}$ will be calculated using a more detailed version of the following equation:

$$\widehat{\Delta E} = N \times \eta \times \% \Delta w + \text{Other factors}$$

Where N represents the relevant population, η the elasticity of labor demand, Δw the relevant percentual variation in wages, and the *Other factors* will encapsulate effects on employment through an increase in the aggregate demand.

To describe the methodology behind each of those four components we first describe the data used, the wage variable choose, and the procedure used to forecast the wage and population distribution of 2016 using data from 2013.

2.1 Data, wages, and forecast

To simulate the policy effects we need the distribution of wages and employment under the status quo. From the perspective of 2013, this implies forecasting to 2016 data on employment and wages.

2.1.1 Data

The Current Population Survey (CPS) was used to compute the effects on employment. From the analysis in the section on distributional effects we can deduce that the data corresponds to the Outgoing Rotation Group (ORG). CPS is a monthly cross sectional survey. The same individual is interviewed eight times over a period of 12 months. The interviews take place in the first and last 4 months of that period. By the 4th and 12th interview, individuals are asked detailed information on earnings. The CPS ORG file contains the information on this interviews for a given year. We analyze the data for 2013.

Currently three versions of these data sets can be found online: CPS raw files, ORG NBER and ORG CEPR. The analysis will be performed using the CPER ORG data base.

The weights used in our analysis will be orgwgt/12

2.1.1.1 Code to load the data

R Ctata

Stata

Employment effects

2.1 Data, wages, and forecast

- 2.2 Get the N
- 2.3 Get the $\eta imes \Delta w$
- 2.4 Other factors
- 2.5 Computing effects on nployment

Distributional effects

- 3.1 Computing Family income
- 3.2 Imputing policy effects
- 3.3 Computing family income under atus guo and minimum wage increase
- .
- 3.4 Other considerations

Results

performed using the CPER ORG data base.

The weights used in our analysis will be orgwgt/12

2.1.1.1 Code to load the data

```
call.cps.org.data <- function(){
 data use <- "CPER ORG"
 # Using CEPR ORG data
 if (data use == "CPER ORG") {
 # Checking if working directory contains data, download if not.
   if ( !("cepr_org_2013.dta" %in% dir()) ) {
       # create name of file to store data
       tf <- "cepr org 2013.zip"
       # download the CPS repwats zipped file to the local computer
       download.file(url = "http://ceprdata.org/wp-content/cps/data/cepr org 2013.zip", tf , mode
= "wb" )
       # unzip the file's contents and store the file name within the temporary directory
       fn <- unzip( zipfile = tf , overwrite = T )
   df <- read.dta("cepr_org_2013.dta")
  # Using NBER ORG data
  if (data_use == "NBER_ORG") {
   # Checking if working directory contains data, download if not.
   if ( !("morgl3.dta" %in% dir()) ) {
     # Downloading data 53mb
     df <- read.dta("http://www.nber.org/morg/annual/morg13.dta")</pre>
   df <- read.dta("morg13.dta")
```


es, and

 $\times \Delta w$ COLS

effects on

Leffects g Family

policy effects g family itus quo and ncrease siderations

2.5 Computing effects on employment

Putting all elements together we get:

$$\widehat{\Delta E} = \sum_{g \in \{A,T\}} \left(\widehat{N_g^{final}} \times \widehat{\eta_{w \leq MW}^g} \times \overline{\% \Delta w^g} \right) - \widehat{OF}$$

2.5.1 Code to compute each component

Stata

	Adult	Teen
η_{lit}	-0.03	-0.10
$\eta_{w \leq MW'}$	-0.23	-0.13
F_{adj}	4.50	4.50
$F_{adj} = \frac{1}{\% \Delta w}$	13.81	16.65
$\widetilde{\eta_{w \leq MW}}$	-0.15	-0.45

Using all the components described above we get $\widehat{\Delta^-E}=$ -478 thousand jobs. The report however computes F^g_{adis} in a different fashion and gets a value of 4.5 (when computing the values of F^g_{adjs} from the table below - as oppose to using historical values - we get $\widehat{\Delta^- E} = -321$ thousand jobs).

3 Distributional effects

In the first step towards obtaining the policy estimates presented in the introduction we concluded with

Comparison of 2013 and 2016 under the status quo

	2013	2016: status quo		
Salary workers	122,593,557	129,545,571		
Modian was	17 70	20 54	2"	

Clear connection between sources and inputs

Source	Input *	
Data		
CPS ORG 2013 (CEPR version)	Number of salary workers in 2013 $(\widehat{N_{mal}^{l}} \ g \in \{teen, adult\})$; Fraction of workers below the new minimum wage $(P_{\hat{w} \leq MW^{\dagger} g})$; Average wage variation for those below the new min wage $(\% \Delta w^g)$; Non-compliance rate (α_1^g)	
CPS ASEC 2012 (CEPR version) State level Min. Wage (DOL) 10-year economic forecast (CBO)	Wages and Non-Wage Income distribution (dF_w, dF_{nw}) ; Household size (N_h) ; Hours/weeks worked (\hat{w}, \hat{h}) Trends in state min. wage (MW_t^s) Predicted worker growth by 2016 (in 2013) $(\hat{g_N})$; Wage growth in by 2016 $(\hat{g_{nw}})$; Non-wage growth by 2016 $(\hat{g_{nw}})$	
Research		
Elasticity of labor demand for	$\eta_{teen}^{lit} = -0.1$	
teenagers		
Ripple effects	From $R_{lb} = \$8.7$ to $R_{ub} = \$11.5$ with a "ripple" intensity of $R_{I} = 50\%$	
Guess Work		
Extrapolation factor from teenagers to adults	$F_{ex} = 1/3$	
Net benefits	$\hat{NB} = \$2billion$	
Adjustment to account for effective wage variation and affected population	$F_{adj} = 4.5$	
Aggregate consumption effects on employment	$\hat{OF} = 40,000$ new jobs	
Distribution of balance loses	$dBL = (1\%, 29\%, 70\%)$ if income $\in [0, 1PL, 6PL, +)$	
Fract. of wage loses used to pay wage gains	$F_{subs} = 1$	
Job killing process: fraction of jobs	Cut wages in half for twice the number of jobs destroyed	

Fully specified model

Model	Policy estimate	
	(per quintile)	
Predicted household income with and without min wage increase. Depends on: $\widehat{N_{final}^g}$, $P_{\hat{w} \leq MW^1 g}$, $\overline{{}^g}_{N}$, α_1^g , α_1^g , α_1^g , α_2^g , $\alpha_2^$	Average gain in per capita income due to net wage increase. $(\overline{WG_q})$	
Predicted household income with and without min wage increase.	Average loss in per capita income due	
Depends on : $\widehat{N_{final}^g}$, $P_{\hat{w} \leq MW^1 g}$, $\overline{\%\Delta w^g}$, α_1^g , dF_w , dF_{nw} , N_h , \hat{w} , \hat{h} , MW_t^s , \hat{g}_N , \hat{g}_w , \hat{g}_{nw} , η_{teen}^{lit} , F_{ex} , F_{adj} , \hat{OF}	to net wage decrease. $(\overline{WL_q})$	
Distribution of balance loses	Average loss in per	
Depends on: $\overline{WG_a}(\cdot), \overline{WL_a}(\cdot), \hat{NB}$	capita income to	
F_{subs} , dBL	balance wage	
· Subs, all	_	
	gains. $(\overline{BL_q})$	
Equations; Back		

Comparing the Trade-offs: A Toy Example

Model for the normative comparison made by a policy maker (welfare function):

$$W(\rho) = \sum_{i \in N} \left(\omega_{wg} wg_i + \omega_{wl} wl_i + \omega_{bl} bl_i \right) \omega_i^d(Q_i, \rho)$$

with:

$$\omega_i^{\textit{d}}(\textit{Q}_i,\rho) = \frac{(1-\rho(\textit{Q}_i-\textit{Q}_{\textit{median}}))}{\sum_i \omega_i^{\textit{d}}(\textit{Q}_i)} \textit{Q}_{\textit{max}} \quad \text{for } \rho \in \left(-\frac{1}{2},\frac{1}{2}\right)$$

ho>0 represents positive valuation of progressive redistribution. ho<0 represents positive valuation of regressive redistribution.

Redistribiutional Preferences Toy W (\$bns) 9.7 -0.2 0.1 Redistribution pref. (ρ) -5.7

Motivation 2: An Academic Concern in 2013

"I worry that someday sooner or later the existing social contract to take CBO scores at face value will break down. Conventional Certitudes that lack foundation cannot last indefinitely."

> — Charles Manski Public Policy in an Uncertain World, 2013

Motivation 2: A Reality In 2017

Challenges And Suggestions

Challenges:

- Policymakers may not want analyses to be open.
- Analysts may wish to keep policy analyses "closed".
- For policy analysis contracted out to third parties: Opening methods will prevent them form reselling extensions.
- Initially reproducibility represents an additional layer of work.
- Limits to sharing sensitivity of information, requires resources for adequate de-identification if open data is expected