# Weak Convergence of a Metropolis Algorithm for Bimodal Target Distributions

Michaël Lalancette<sup>1</sup> Mylène Bédard<sup>2</sup>

<sup>1</sup>Department of Statistical Sciences, University of Toronto, lalancette@utstat.toronto.edu

<sup>2</sup>Département de Mathématiques et de Statistique, Université de Montréal, bedard@dms.umontreal.ca

June 4, 2018

- Random Walk Metropolis algorithm
- 2 Weak convergence of our algorithm
- Summary and Future work

- Random Walk Metropolis algorithm
  - The Random Walk Metropolis algorithm
  - Optimal scaling
  - The problem with bimodal distributions
  - Solution: A new instrumental distribution
- 2 Weak convergence of our algorithm
- Summary and Future work

#### MCMC in a nutshell

• Probability measure Π

#### MCMC in a nutshell

- Probability measure Π
- Want to estimate (finite) expectation  $\int h d\Pi$

#### MCMC in a nutshell

- Probability measure Π
- Want to estimate (finite) expectation  $\int h d\Pi$
- ullet Idea: create a Markov chain  $X_1, X_2, ...$  that has target distribution  $\Pi$

#### MCMC in a nutshell

- Probability measure Π
- Want to estimate (finite) expectation  $\int h d\Pi$
- Idea: create a Markov chain  $X_1, X_2, ...$  that has target distribution  $\Pi$
- If the chain is well behaved (irreducible, aperiodic, Harris recurrent),

$$\frac{1}{n}\sum_{i=1}^n h(X_i) \longrightarrow \int h \, d\Pi \quad \text{a.s.}$$

#### MCMC in a nutshell

- Probability measure Π
- Want to estimate (finite) expectation  $\int h d\Pi$
- Idea: create a Markov chain  $X_1, X_2, ...$  that has target distribution  $\Pi$
- If the chain is well behaved (irreducible, aperiodic, Harris recurrent),

$$\frac{1}{n}\sum_{i=1}^n h(X_i) \longrightarrow \int h \, d\Pi \quad \text{a.s.}$$

 In general, less efficient than iid sampling, but iid sampling is sometimes unrealizable

# The Random Walk Metropolis algorithm

RWM is a very simple MCMC algorithm

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$
- Initialize X<sub>0</sub>

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$
- Initialize X<sub>0</sub>
- Given  $X_t$ , independently generate Y symmetric around 0

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$
- Initialize X<sub>0</sub>
- Given  $X_t$ , independently generate Y symmetric around 0
- Set

$$\mathbf{X}_{t+1} = egin{cases} \mathbf{X}_t + \mathbf{Y}, & \text{w.p.} & \alpha_t \\ \mathbf{X}_t, & \text{w.p.} & 1 - \alpha_t \end{cases}$$

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$
- Initialize X<sub>0</sub>
- Given  $X_t$ , independently generate Y symmetric around 0
- Set

$$\mathbf{X}_{t+1} = \begin{cases} \mathbf{X}_t + \mathbf{Y}, & \text{w.p.} \quad \alpha_t \\ \mathbf{X}_t, & \text{w.p.} \quad 1 - \alpha_t \end{cases}$$

 $\quad \bullet \ \alpha_t = \min \left\{ 1, \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)} \right\}$ 

- RWM is a very simple MCMC algorithm
- ullet  $\pi$  is a (possibly unnormalized) density on  $\mathbb{R}^d$
- Initialize X<sub>0</sub>
- Given  $X_t$ , independently generate Y symmetric around 0
- Set

$$\mathbf{X}_{t+1} = \begin{cases} \mathbf{X}_t + \mathbf{Y}, & \text{w.p.} \quad \alpha_t \\ \mathbf{X}_t, & \text{w.p.} \quad 1 - \alpha_t \end{cases}$$

- $\alpha_t = \min\left\{1, \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)}\right\}$
- Called accept/reject step

$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

 Under mild conditions on instrumental distribution (distribution of increments Y),

$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

• Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$ 

$$\frac{1}{n}\sum_{t=1}^{n}h(\mathbf{X}_{t})\longrightarrow\frac{\int h(\mathbf{x})\pi(\mathbf{x})\,d\mathbf{x}}{\int \pi(\mathbf{x})\,d\mathbf{x}}\quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$

$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow$  Small steps

$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration

$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration
- And large  $\sigma \Rightarrow \mathbf{X}_t + \mathbf{Y}$  far from the mode



$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration
- And large  $\sigma\Rightarrow \mathbf{X}_t+\mathbf{Y}$  far from the mode  $\Rightarrow \frac{\pi(\mathbf{X}_t+\mathbf{Y})}{\pi(\mathbf{X}_t)}$  small



$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration
- And large  $\sigma \Rightarrow \mathbf{X}_t + \mathbf{Y}$  far from the mode  $\Rightarrow \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)}$  small  $\Rightarrow$  Most steps are rejected



$$\frac{1}{n}\sum_{t=1}^{n}h(\mathbf{X}_{t})\longrightarrow\frac{\int h(\mathbf{x})\pi(\mathbf{x})\,d\mathbf{x}}{\int\pi(\mathbf{x})\,d\mathbf{x}}\quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration
- And large  $\sigma \Rightarrow \mathbf{X}_t + \mathbf{Y}$  far from the mode  $\Rightarrow \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)}$  small  $\Rightarrow$  Most steps are rejected  $\Rightarrow$  Slow exploration



$$\frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}_{t}) \longrightarrow \frac{\int h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}}{\int \pi(\mathbf{x}) d\mathbf{x}} \quad \text{a.s.}$$

- Usually  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- In theory, works for any  $\sigma > 0...$
- But small  $\sigma \Rightarrow \mathsf{Small}$  steps  $\Rightarrow \mathsf{Slow}$  exploration
- And large  $\sigma \Rightarrow \mathbf{X}_t + \mathbf{Y}$  far from the mode  $\Rightarrow \frac{\pi(\mathbf{X}_t + \mathbf{Y})}{\pi(\mathbf{X}_t)}$  small  $\Rightarrow$  Most steps are rejected  $\Rightarrow$  Slow exploration
- Must choose  $\sigma$  carefully



#### Optimal scaling

• [Roberts et al., 1997] proposed optimal scaling (in simplified framework)

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let  $\sigma = \frac{\ell}{\sqrt{d}}$  (Large dimension  $\Rightarrow$  Small steps)

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let  $\sigma = \frac{\ell}{\sqrt{d}}$  (Large dimension  $\Rightarrow$  Small steps)
- Let  $\mathbf{X}^{(d)}(t)$  be Markov chain obtained (with step size depending on dimension d)

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let  $\sigma = \frac{\ell}{\sqrt{d}}$  (Large dimension  $\Rightarrow$  Small steps)
- Let  $\mathbf{X}^{(d)}(t)$  be Markov chain obtained (with step size depending on dimension d)
- And  $X_j^{(d)}(t)$  its j-th component

- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let  $\sigma = \frac{\ell}{\sqrt{d}}$  (Large dimension  $\Rightarrow$  Small steps)
- Let  $\mathbf{X}^{(d)}(t)$  be Markov chain obtained (with step size depending on dimension d)
- And  $X_j^{(d)}(t)$  its j-th component
- Smaller steps  $\Rightarrow$  More steps needed, so accelerate chain:  $Z_i^{(d)}(t) = X_i^{(d)}(|dt|)$



- [Roberts et al., 1997] proposed optimal scaling (in simplified framework)
- Assume  $\pi(x) = \prod_{i=1}^d f(x_i)$
- Let  $\sigma = \frac{\ell}{\sqrt{d}}$  (Large dimension  $\Rightarrow$  Small steps)
- Let  $\mathbf{X}^{(d)}(t)$  be Markov chain obtained (with step size depending on dimension d)
- And  $X_j^{(d)}(t)$  its j-th component
- Smaller steps  $\Rightarrow$  More steps needed, so accelerate chain:  $Z_i^{(d)}(t) = X_i^{(d)}(|dt|)$
- Let  $d \to \infty$



#### Accelerating the Markov chain



Figure: Trace of the accelerated first component of the Markov chain,  $Z_1^{(d)}$ , for different values of d. The target distribution is multivariate standard Gaussian.

• Find that  $Z_j^{(d)}$  converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure  $v(\ell)=2\ell^2\Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$  and stationnary distribution f

- Find that  $Z_j^{(d)}$  converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure  $v(\ell)=2\ell^2\Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$  and stationnary distribution f
- ullet B is unknown parameter of f

- Find that  $Z_j^{(d)}$  converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure  $v(\ell)=2\ell^2\Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$  and stationnary distribution f
- ullet B is unknown parameter of f
- Find a value  $\hat{\ell}$  that maximizes  $v(\ell)$

# Optimal scaling

- Find that  $Z_j^{(d)}$  converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure  $v(\ell)=2\ell^2\Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$  and stationnary distribution f
- ullet B is unknown parameter of f
- Find a value  $\hat{\ell}$  that maximizes  $v(\ell)$
- $\hat{\ell}$  is the only value that makes the asymptotic acceptance probability 0.234 (regardless of B)!

## Optimal scaling

- Find that  $Z_j^{(d)}$  converges (weakly in Skorokhod topology) to Langevin diffusion with speed measure  $v(\ell)=2\ell^2\Phi\left(-\frac{\ell\sqrt{B}}{2}\right)$  and stationnary distribution f
- ullet B is unknown parameter of f
- Find a value  $\hat{\ell}$  that maximizes  $v(\ell)$
- $\hat{\ell}$  is the only value that makes the asymptotic acceptance probability 0.234 (regardless of B)!
- ullet So just simulate a few short runs and tune  $\sigma$  so that acceptance rate is roughly 0.234



The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

### The problem with bimodal distributions

• Suppose the target density  $\pi$  (on  $\mathbb{R}^d$ ) has two distinct modes with a "hole" in between (low density region)

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

- Suppose the target density  $\pi$  (on  $\mathbb{R}^d$ ) has two distinct modes with a "hole" in between (low density region)
- Optimal scaling strategy tends to favor local exploration (Relatively small  $\sigma$ )

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

- Suppose the target density  $\pi$  (on  $\mathbb{R}^d$ ) has two distinct modes with a "hole" in between (low density region)
- Optimal scaling strategy tends to favor local exploration (Relatively small  $\sigma$ )
- Small steps  $\Rightarrow$  Almost impossible to cross the hole in 1 step

- Suppose the target density  $\pi$  (on  $\mathbb{R}^d$ ) has two distinct modes with a "hole" in between (low density region)
- Optimal scaling strategy tends to favor local exploration (Relatively small  $\sigma$ )
- Small steps  $\Rightarrow$  Almost impossible to cross the hole in 1 step
- Almost impossible to accept steps into the hole  $(\frac{\pi(X_t+Y)}{\pi(X_t)}$  very small)

- Suppose the target density  $\pi$  (on  $\mathbb{R}^d$ ) has two distinct modes with a "hole" in between (low density region)
- Optimal scaling strategy tends to favor local exploration (Relatively small  $\sigma$ )
- Small steps  $\Rightarrow$  Almost impossible to cross the hole in 1 step
- Almost impossible to accept steps into the hole  $(\frac{\pi(X_t+Y)}{\pi(X_t)}$  very small)
- Chain gets stuck in a mode and never explores the other one

The Random Walk Metropolis algorithm Optimal scaling The problem with bimodal distributions Solution: A new instrumental distribution

### Solution: A new instrumental distribution

ullet Previously,  $f Y} \sim N_d \left(0, \sigma^2 I_d 
ight)$ 

### Solution: A new instrumental distribution

- Previously,  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- Now, let

$$\mathbf{Y} \sim \begin{cases} \mathsf{N}_d \left( 0, \sigma^2 I_d \right), & \text{w.p.} \quad 1-p \\ \mathcal{D}, & \text{w.p.} \quad p \end{cases} ,$$

where  $\mathcal{D}$  is any distribution on  $\mathbb{R}^d$  symmetric around 0,  $p \in (0,1)$ 

### Solution: A new instrumental distribution

- Previously,  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d\right)$
- Now, let

$$\mathbf{Y} \sim \begin{cases} \mathsf{N}_d \left( 0, \sigma^2 I_d \right), & \text{w.p.} \quad 1-p \\ \mathcal{D}, & \text{w.p.} \quad p \end{cases} ,$$

where  $\mathcal{D}$  is any distribution on  $\mathbb{R}^d$  symmetric around 0,  $p \in (0,1)$ 

ullet In practice, choose  ${\cal D}$  to favor switching modes

### Solution: A new instrumental distribution

- Previously,  $\mathbf{Y} \sim N_d \left(0, \sigma^2 I_d \right)$
- Now, let

$$\mathbf{Y} \sim \begin{cases} \mathsf{N}_d \left( 0, \sigma^2 I_d \right), & \text{w.p.} \quad 1-p \\ \mathcal{D}, & \text{w.p.} \quad p \end{cases} ,$$

where  $\mathcal{D}$  is any distribution on  $\mathbb{R}^d$  symmetric around 0,  $p \in (0,1)$ 

- ullet In practice, choose  ${\mathcal D}$  to favor switching modes
- Turns the "slowly mixing" chain into a "rapidly mixing" chain ([Guan and Krone, 2007])

- Random Walk Metropolis algorithm
- 2 Weak convergence of our algorithm
  - Framework
  - The limiting processes
- Summary and Future work

• Assume  $\pi(x) = f_1(x_1) \prod_{i=2}^{d} f(x_i)$ 

- Assume  $\pi(x) = f_1(x_1) \prod_{i=2}^d f(x_i)$
- Instrumental distribution  $\mathcal{D}$ :  $Y_1 \sim \mathcal{D}_1$ ,  $Y_2, ..., Y_d \sim \mathbb{N}\left(0, \sigma^2\right)$ , all independent

- Assume  $\pi(x) = f_1(x_1) \prod_{i=2}^d f(x_i)$
- Instrumental distribution  $\mathcal{D}$ :  $Y_1 \sim \mathcal{D}_1$ ,  $Y_2, ..., Y_d \sim \mathbb{N}\left(0, \sigma^2\right)$ , all independent
- ullet Scale both  $\sigma=rac{\ell}{\sqrt{d}}$  and  $p=1\wedgerac{eta}{d}$ , but not  $\mathcal{D}_1$

- Assume  $\pi(x) = f_1(x_1) \prod_{i=2}^d f(x_i)$
- Instrumental distribution  $\mathcal{D}\colon Y_1 \sim \mathcal{D}_1, Y_2, ..., Y_d \sim \mathsf{N}\left(0, \sigma^2\right)$ , all independent
- ullet Scale both  $\sigma=rac{\ell}{\sqrt{d}}$  and  $p=1\wedgerac{eta}{d}$ , but not  $\mathcal{D}_1$
- Accelerate the chain by a factor of d (like before)

- Assume  $\pi(x) = f_1(x_1) \prod_{i=2}^d f(x_i)$
- Instrumental distribution  $\mathcal{D}\colon Y_1 \sim \mathcal{D}_1, Y_2, ..., Y_d \sim \mathsf{N}\left(0, \sigma^2\right)$ , all independent
- ullet Scale both  $\sigma=rac{\ell}{\sqrt{d}}$  and  $p=1\wedgerac{eta}{d}$ , but not  $\mathcal{D}_1$
- Accelerate the chain by a factor of d (like before)
- ullet The one-dimensional accelerated processes  $Z_j^{(d)}$  weakly converge

•  $Z_L$  and  $Z_{LM}$  are Langevin diffusions with speed measure  $v(\ell)$  and stationnary distributions f and  $f_1$ 

- $Z_L$  and  $Z_{LM}$  are Langevin diffusions with speed measure  $v(\ell)$  and stationnary distributions f and  $f_1$
- At random times  $T_1, T_2, ...$  generated by a Poisson process of rate  $\beta$ , generate  $Y(T_i) \stackrel{iid}{\sim} \mathcal{D}_1$

- $Z_L$  and  $Z_{LM}$  are Langevin diffusions with speed measure  $v(\ell)$  and stationnary distributions f and  $f_1$
- At random times  $T_1, T_2, ...$  generated by a Poisson process of rate  $\beta$ , generate  $Y(T_i) \stackrel{iid}{\sim} \mathcal{D}_1$
- At time  $T_i$ ,  $Z_{LM}$  jumps by  $Y(T_i)$  with probability  $\alpha(\ell, Z_{LM}(T_i^-), Z_{LM}(T_i^-) + Y(T_i))$

- $Z_L$  and  $Z_{LM}$  are Langevin diffusions with speed measure  $v(\ell)$  and stationnary distributions f and  $f_1$
- At random times  $T_1, T_2, ...$  generated by a Poisson process of rate  $\beta$ , generate  $Y(T_i) \stackrel{iid}{\sim} \mathcal{D}_1$
- At time  $T_i$ ,  $Z_{LM}$  jumps by  $Y(T_i)$  with probability  $\alpha(\ell, Z_{LM}(T_i^-), Z_{LM}(T_i^-) + Y(T_i))$

•

$$\alpha(\ell, x, y) = \Phi\left(\frac{\log\frac{f_1(y)}{f_1(x)} - \frac{\ell^2}{2}B}{\ell\sqrt{B}}\right) + \frac{f_1(y)}{f_1(x)}\Phi\left(\frac{-\log\frac{f_1(y)}{f_1(x)} - \frac{\ell^2}{2}B}{\ell\sqrt{B}}\right)$$

### The limiting processes

#### **Theorem**

If the chain starts at stationnarity  $(\mathbf{X}^{(d)}(0) \sim \pi)$ , then as  $d \to \infty$ ,

$$Z_1^{(d)} \Rightarrow Z_{LM}, \quad \text{and for } j \geq 2, \quad Z_j^{(d)} \Rightarrow Z_L.$$

Here, ⇒ represents weak convergence in the Skorokhod topology.

 $\bullet$  Run classic RWM on  $\pi$  and tune  $\sigma$  so that acceptance rate is roughly 0.234

- $\bullet$  Run classic RWM on  $\pi$  and tune  $\sigma$  so that acceptance rate is roughly 0.234
- Run RWM on  $f_1$  with instrumental distribution  $\mathcal{D}_1$  and acceptance probability  $\alpha(\ell,x,y)$  to estimate acceptance probability of large steps, say  $\lambda$

- $\bullet$  Run classic RWM on  $\pi$  and tune  $\sigma$  so that acceptance rate is roughly 0.234
- Run RWM on  $f_1$  with instrumental distribution  $\mathcal{D}_1$  and acceptance probability  $\alpha(\ell,x,y)$  to estimate acceptance probability of large steps, say  $\lambda$
- Choose p, proportion of accepted large steps will be  $\approx p\lambda$

- $\bullet$  Run classic RWM on  $\pi$  and tune  $\sigma$  so that acceptance rate is roughly 0.234
- Run RWM on  $f_1$  with instrumental distribution  $\mathcal{D}_1$  and acceptance probability  $\alpha(\ell,x,y)$  to estimate acceptance probability of large steps, say  $\lambda$
- Choose p, proportion of accepted large steps will be  $pprox p\lambda$
- Number of times we switch modes  $\approx np\lambda$

- Random Walk Metropolis algorithm
- Weak convergence of our algorithm
- Summary and Future work

Random Walk Metropolis algorithm Weak convergence of our algorithm Summary and Future work

• Can work for much more general target distributions (align modes with rotation)

- Can work for much more general target distributions (align modes with rotation)
- Find objective way to choose p through non-asymptotics

- Can work for much more general target distributions (align modes with rotation)
- Find objective way to choose p through non-asymptotics
- Can replace the large step distribution  $\mathcal D$  by any algorithm ("something-inside-Metropolis")



Guan, Y. and Krone, S. (2007).

Small-world MCMC and convergence to multi-modal distributions: From slow mixing to fast mixing.

Ann. Appl. Probab., 17:284-304.



Roberts, G., Gelman, A., and Gilks, W. (1997).

Weak convergence and optimal scaling of random walk Metropolis algorithms.

Ann. Appl. Probab., 7:110-120.