COMP 3511 Operating Systems

Lab 08

Thrashing

- File Systems
 - File
 - Directory Organization
- File System Implementation
 - File System Structure
 - Allocation Methods
 - Free Space Management

Thrashing

- Thrashing → a process is busy swapping pages in and out
 - If a process does not have "enough" pages, the page fault rate is very high
 - very quickly need replaced frame back
- This leads to
 - Low CPU utilization, much time in I/O
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system

Thrashing

How to detect?

Level of

CPU utilization

Vs.

Level of multiprogramming

- How to eliminate?
 - reduce the level of multiprogramming
 - use local replacement algorithm.
 - the number of frames allocated to a process is fixed

- Thrashing
- File Systems
 - File
 - Directory Organization
- File System Implementation
 - File System Structure
 - Allocation Methods
 - Free Space Management

File – Logical Storage Unit

File Properties

- Name, identifier, type, location, size, protection
- Time, date, user identification
- Kept in directory structure, maintained in disk

- File Operation
 - Create, Delete
 - Write, Read, Open, Close, etc.

File Open

- to manage open files:
 - Open-file table: tracks open files
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open – to allow removal of data from open-file table when last process closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

Access Methods

n = relative block number

Sequential Access

```
read next
write next
reset
```

Direct Access

- Thrashing
- File Systems
 - File
 - Directory Organization
- File System Implementation
 - File System Structure
 - Allocation Methods
 - Free Space Management

Goals for directory organization

- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- Grouping logical grouping of files by properties,
 (e.g., all Java programs, all games, ...)

Single-Level directory

All files are kept in the same directory.

- Naming problem
- grouping problem

Two-level Directory

Separate directory for each user

- Enable naming
- Efficient searching
- No grouping capability

Tree-structured Directory

- grouping capability
- No sharing ability

Acyclic-Graph Directory

File sharing enabled

- Thrashing
- File Systems
 - File
 - Directory Organization
- File System Implementation
 - **File System Structure**
 - Allocation Methods
 - Free Space Management

Layered File System

File system implementation

Boot control block

- contains info needed by system to boot OS from that volume
 - Needed if volume contains OS, usually first block of volume
- Volume control block (superblock, master file table)
 - contains volume details
 - Total # of blocks, # of free blocks, block size, free block pointers or array
- File Control Block (FCB)
 - contains many details about the file
 - owner, permissions, size, dates
 - File data blocks or pointers to file data blocks

Virtual file systems

 Separate file-system generic operations from implementation details

- Thrashing
- File Systems
 - File
 - Directory Organization
- File System Implementation
 - File System Structure
 - Allocation Methods
 - Free Space Management

Allocation methods - Contiguous

directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

- Each file a set of contiguous blocks
- Simple
 - Starting block
 - Number of blocks
- Problem
 - External fragmentation

Allocation methods - Linked

Allocation methods - Indexed

- Thrashing
- File Systems
 - File
 - Directory Organization
- File System Implementation
 - File System Structure
 - Allocation Methods
 - Free Space Management

Free-Space Management – Bit Vector

- free-space list to track available blocks/clusters
- Bit vector or bit map (n blocks)

$$bit[i] = \begin{cases} 1 \rightarrow block[i] \text{ free} \\ 0 \rightarrow block[i] \text{ occupied} \end{cases}$$

- Pros:
 - Simple
 - Efficient (in find the first continuous n free blocks)
- Cons:

Free-Space Management

Linked List

