Принятие решений в условиях неопределенности и в условиях риска

Решение — это выбор определённого сочетания цели, действий, направленных на достижение этой цели, и способов использования имеющихся ресурсов.

В узком смысле принятие решений — это заключительный акт анализа вариантов, результат выбора.

В широком смысле — это процесс, протекающий во времени. Это совокупность всех этапов и стадий по подготовке решения, включая этап непосредственного принятия решения.

Классификация решений.

- По степени повторяемости проблемы:
 - Традиционные (неоднократно встречающиеся в практике). Решения здесь выбор из имеющихся альтернатив.
 - Нетипичные (нестандартные). Поиск решений здесь связан с генерацией новых альтернатив.
- По значимости цели:
 - Стратегические (самостоятельные).
 - Тактические (решения используются в качестве средства достижение цели более высокого порядка).

• По сфере воздействия:

- Локальные результат управленческих решений может сказаться на одном или нескольких элементах системы.
- Глобальные решения влияют на функционировании системы в целом.

• По длительности реализации:

- Долгосрочные решение если между принятием решения и завершением его реализации проходит несколько лет.
- Краткосрочные если срок небольшой.

• По прогнозируемым последствиям решений:

- Корректируемые большинство управленческих решений поддаются корректировке в целях устранения отклонений или учета новых факторов.
- Некорректируемые решения, последствия которых необратимы.

- По характеру используемой информации, в зависимости от полноты и достоверности информации:
 - Детерминированные (принимаемые в условиях определенности)
 - Вероятностные (принимаемые в условиях риска и неопределенности). Большинство решений являются вероятностными.
- По методам разработки решения:
 - Формализованные (выполненные с использованием математических методов).
 - Неформализованные (основанные на интуиции и здравом смысле). На практике большинство решений носит комбинированный характер, т.е. применяются попеременно формальные процедуры и неформальные методы.

• По числу критериев выбора:

- Многокритериальные решения если выбранная альтернатива должна удовлетворять нескольким критериям.
- Однокритериальные если критерий один.

• По форме принятия:

- Коллегиальные (такая форма принятия решений снижает оперативность и размывает ответственность, но препятствует грубым ошибкам и злоупотреблениям и повышает обоснованность выбора).
- Единоличные.

• По способу фиксации решений:

- Документированные.
- Недокументированные.

Процесс принятия решений может быть укрупненно подразделен на 2 операции: выработка рекомендаций специалистами по выбору лучшего варианта и принятие окончательного варианта непосредственно лицом, принимающим решение (ЛПР).

Для ЛПР задача принятия решений может быть записана в следующем виде:

$$\langle C, T, P \mid C_{\partial}, \Pi, H, O, A, K, f, A^* \rangle$$

где:

- C исходная проблемная ситуация;
- T время для принятия решения;
- P потребные ресурсы для принятия решения;
- C_{∂} доопределенная проблемная ситуация;
- $\Pi = (\Pi_1, ..., \Pi_n)$ множество предположений о развитии ситуации в будущем;
- $U = (U_1, ..., U_k)$ множество целей, на достижение которых направлено решение;
- $O = (O_1, ..., O_l)$ множество ограничений;
- $A = (A_1, ..., A_m)$ множество альтернативных вариантов решений;
- $K = (K_1, ..., K_p)$ множество критериев выбора наилучшего варианта;
- f функция предпочтения ЛПР (включает объективные критерии К и личные предпочтения ЛПР);
- A^* оптимальное решение.

Содержание задачи принятия решений в социально-экономических системах позволяет сформулировать ее особенности:

- Неизвестные элементы задачи (ситуация, цели, ограничения, варианты решения, предпочтения) имеют содержательный характер и только частично определяются количественными характеристиками. Число неизвестных элементов задачи много больше числа известных.
- Определение неизвестных элементов задачи и нахождение наилучшего решения не всегда может быть формализовано, т.к. нет готовых алгоритмов.
- Часть характеристик может быть измерена субъективно (приоритеты целей, критериев, вариантов решения).
- Часто решать задачи принятия решений приходится в условиях неопределенности, и в таких условиях большое значение имеет интуиция ЛПР.
- Принимаемые решения могут непосредственно затрагивать интересы ЛПР и специалистов-аналитиков, поэтому их личные предпочтения и мотивы могут повлиять на выбор решения.

Последствия принимаемых решений определяются будущим развитием событий, которое может происходить по различным сценариям. Осуществление каждого сценария возможно с некоторой известной (риск) или неизвестной (неопределенность) вероятностью.

- Для формализации таких задач составляется таблица, в которой строкам соответствуют имеющиеся варианты решения, столбцам возможные сценарии развития событий, а на пересечении строк и столбцов проставляют количественные оценки последствий, связанных с принятием данного решения в условиях реализации данного сценария. В качестве таких оценок могут выступать как положительные характеристики (доход, прибыль, полезный эффект, полезность), так и отрицательные (потери, убытки, ошибки).
- Для выбора оптимального решения в условиях риска, когда известны вероятности реализации всех сценариев, определяют вариант действий, связанный с наилучшими возможными результатами. При этом используют стандартную формулу математического ожидания:

$$O$$
жидаемый результат (действие) =
$$= \sum_{\text{сценарии}} \text{результат}(\text{действие, сценарий}) \cdot \text{вероятность}(\text{сценарий})$$

• и выбирают в качестве наилучшего решения тот вариант, который обеспечивает максимум ожидаемого положительного результата или минимум ожидаемого отрицательного результата (критерий оптимальности при принятии решений в условиях риска).

Пример

Владелец небольшого магазина в начале каждого дня закупает для реализации некий скоропортящийся продукт по цене 50 рублей за единицу. Цена реализации этого продукта — 60 рублей за единицу. Из наблюдений известно, что спрос на этот продукт за день может быть равен 1, 2, 3 или 4 единицам. Пусть известно, что на практике спрос 1 наблюдался 15 раз, спрос 2 наблюдался 30 раз, спрос 3 наблюдался 30 раз, спрос 4 наблюдался 25 раз. Если продукт в течение дня не распродан, то в конце дня его всегда покупают по цене 30 рублей за единицу. Сколько единиц этого продукта должен закупать владелец магазина каждый день?

Объем закупки, единиц	Объем закупки, единиц Спрос в течение дня,			ія,
продукта/день	единиц продукта/день			
	1	2	3	4
1	10	10	10	10
2	-10	20	20	20
3	-30	0	30	30
4	-50	-20	10	40

$$p(1) = \frac{15}{15 + 30 + 30 + 25} = 0.15;$$

$$p(2) = \frac{30}{15 + 30 + 30 + 25} = 0.30;$$
$$p(3) = \frac{30}{15 + 30 + 30 + 25} = 0.30;$$

$$p(4) = \frac{25}{15 + 30 + 30 + 25} = 0.25.$$

	Результат, х	Вероятность, р	x·p
Возможное решение 1	10	0,15	10.0,15=1,5
	10	0,30	10.0,30 = 3
	10	0,30	10.0,3 = 3
	10	0,25	10.0,25 = 2,5
	Итого	1,00	10
Возможное решение 2	-10	0,15	-10.0,15 = -1.5
	20	0,30	20.0,30 = 6
	20	0,30	20.0,3 = 6
	20	0,25	20.0,25 = 5
	Итого	1,00	15,5
Возможное решение 3	-30	0,15	-30.0,15 = -4.5
	0	0,30	0.0,30 = 0
	30	0,30	30.0,3 = 9
	30	0,25	30.0,25 = 7,5
	Итого	1,00	12
Возможное решение 4	-50	0,15	-50.0,15 = -7.5
	-20	0,30	-20.0,30 = -6
	10	0,30	10.0,3 = 3
	40	0.25	<i>4</i> 0⋅0 25= 10

КРИТЕРИЙ «МАКСИМАКС»

Объем закупки, единиц	Спрос в течение дня,				max
продукта/день	единиц продукта/день				
	1	2	3	4	
1	2	3	4	5	6
1	10	10	10	10	10
2	-10	20	20	20	20
3	-30	0	30	30	30
4	-50	-20	10	40	40
оптимальное решение	maximax			•	

КРИТЕРИЙ «МАКСИМИН»

Объем закупки, единиц	Спрос в течение дня,				min
продукта/день	единиц продукта/день				
	1	2	3	4	
1	2	3	4	5	6
1	10	10	10	₇ 10	10
2	-10	20	20 /	20	-10
3	-30	0	30/	30	-30
4	-50	-20	10	40	-50
оптимальное решение	maximin				

КРИТЕРИЙ «МИНИМАКС»

Объем закупки, единиц продукта/день	Спрос в течение дня, единиц продукта/день			max	
	1	2	3	4	
1	2	3	4	5	6
1	0	10	20	30	30
2	20	0	10	20	_ 20
3	40	20	0	10/	40
4	60	40	20	Ó	60
оптимальное решение	minimax				

КРИТЕРИЙ ГУРВИЦА

- Критерий Гурвица это компромиссный способ принятия решений. Благодаря предложенному Гурвицем коэффициенту оптимизма-пессимизма, этот критерий позволяет принимать решения в промежуточных случаях между крайним оптимизмом и крайним пессимизмом.
- Пусть α коэффициент оптимизма ЛПР, $0 \le \alpha \le 1$. Это число можно рассматривать как степень уверенности ЛПР в том, что события будут развиваться по наилучшему сценарию. Тогда $1-\alpha$ коэффициент пессимизма, степень уверенности в том, что события будут развиваться по наихудшему сценарию.
- Для каждого возможного решения определяются наилучший и наихудший возможный результат, а затем вычисляется ожидаемый средний результат:

 $\alpha \cdot ($ наилучший результат $) + (1-\alpha) \cdot ($ наихудший результат).

- В качестве наилучшего решения выбирается тот вариант, который обеспечивает максимум ожидаемого положительного результата или минимум ожидаемого отрицательного результата.
- Заметим, что при $\alpha=1$ мы возвращаемся к критерию максимакс, а при $\alpha=0$ к критерию максимин (для случая благоприятных последствий).

Возможные решения	Наилучший результат	Наихудший результат	0,4·(2)	0,6 ·(3)	(4)+(5)		
1	2	3	4	5	6		
1	10	10	4	, 6	10		
2	20	-10	-4	12	8		
3	30	-30	-12	18	6		
4	40	-50	-20	24	4		
	оптимальн	ое решение	решение тах (ожидаемый результат)				

ОЖИДАЕМАЯ СТОИМОСТЬ ПОЛНОЙ ИНФОРМАЦИИ

• Так как известны вероятности различных значений спроса, то можно определить ожидаемый доход в условиях полной информации:

$$0,15\cdot10 + 0,30\cdot20 + 0,30\cdot30 + 0,25\cdot40 = 26,5$$
 py6.

- Лучшее, что мог сделать владелец магазина в условиях отсутствия полной информации (в условиях риска) это с целью максимизации ожидаемого дохода закупать для реализации 2 единицы в день. Тогда его ожидаемый доход был бы равен 15,5 руб. Он имеет возможность увеличить ежедневный доход до 26,5 руб., затратив дополнительную сумму денег (не свыше 26,5 15,5 =11 руб./день) на маркетинговые исследования.
- Разница между ожидаемым доходом в условиях определенности и в условиях риска называется *ожидаемой стоимостью полной информации*. Это максимальный размер средств, которые можно потратить на получение полной информации о рыночной конъюнктуре.