У-Ответы. Математический анализ, 1 курс, д семестр, 2006/2007 г. Вариант (71)

1.4
$$df(1,0) = \frac{1}{3}dy$$
; $d^2f(1,0) = -\frac{2}{3}dx dy - \frac{1}{9}(dy)^2$.

- 2.3 $\frac{1}{2} \ln 3$.
- 3.4 Дифференцируема.
- **4.③**) Сходится.
 - **5.** а) $2 < \alpha < 18$. б) $\alpha \leqslant 1$ расходится, $1 < \alpha \leqslant 2$ сходится условно, $\alpha > 2$ сходится абсолютно. 3
- **6.** а) $f(x) = \frac{1}{x}$. На (0,1) сходится неравномерно, на $(1,+\infty)$ сходится равномерно. б) На (0,1) сходится равномерно, на $(1,+\infty)$ сходится неравномерно.

7.4
$$f(x) = \frac{\pi}{2} + \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{4n+2}}{4^n (4n+2)}, \ R = \sqrt{2}.$$

8.4 Het.

Ответы. Математический анализ, 1 курс, 1 семестр, 2006/2007 г. Вариант (72)

1.4
$$df\left(1, \frac{\pi}{2}\right) = -\ln 3\left(\frac{\pi}{2}dx + dy\right);$$

$$d^2f\left(1, \frac{\pi}{2}\right) = \ln^2 3\left(\frac{\pi^2}{4}(dx)^2 + (dy)^2 + \left(\pi - \frac{2}{\ln 3}\right)dx\,dy\right).$$

- 2.3) $\frac{\pi}{2}(2\sqrt{5} + \ln(2 + \sqrt{5}))$.
 - 3.4 Не дифференцируема.
 - **4.③** Сходится.
 - **5.** а) $3 < \alpha < 10$. б) $\alpha \leqslant \frac{1}{2}$ расходится, $\frac{1}{2} < \alpha \leqslant \frac{3}{2}$ сходится условно, $\alpha > \frac{3}{2}$ сходится абсолютно.
 - **6.** а) $f(x) = \arcsin \frac{1}{6}$. На (0,1) сходится неравномерно, на $(1,+\infty)$ сходится равномерно. б) На (0,1) сходится равномерно, на $(1,+\infty)$ сходится неравномерно.

7.4
$$f(x) = \ln \sqrt{3} + \sum_{n=0}^{\infty} C_{-1/2}^n \frac{2 \cdot x^{4n+2}}{\sqrt{3} \cdot 3^n (4n+2)}, \ R = \sqrt[4]{3}.$$

8.4 Het.

Ответы. Математический анализ, 1 курс, дсеместр, 2006/2007 г. Вариант (73)

1.4)
$$df(0,1) = \frac{1}{2}dx$$
; $d^2f(0,1) = -\frac{1}{4}(dx)^2 - dx dy$.

2.3
$$1 + \frac{1}{2} \ln \frac{3}{2}$$
.

- 3.4 Дифференцируема.
- **4.③** Расходится.
 - **5.** а) $-\frac{3}{8} < \alpha < \frac{3}{5}$. б) $\alpha < 0$ расходится, $\alpha = 0$ сходится условно, $\alpha > 0$ сходится абсолютно.
 - **6.** а) f(x) = x. На (0,1) сходится равномерно, на $(1,+\infty)$ сходится неравномерно. б) На (0,1) сходится равномерно, на $(1,+\infty)$ сходится неравномерно.

7.4
$$f(x) = \frac{\pi}{2} - \sum_{n=0}^{\infty} C_{-1/2}^n \frac{3}{2} \frac{x^{6n+3}}{4^n(6n+3)}, R = \sqrt[3]{2}.$$

8.4 Het.

Ответы. Математический анализ, 1 курс, 1 семестр, 2006/2007 г. Вариант (74)

1.4
$$df\left(\frac{\pi}{2},1\right) = -\ln 2\left(dx + \frac{\pi}{2}dy\right);$$

$$d^2f\left(\frac{\pi}{2},1\right) = \ln^2 2\left((dx)^2 + \frac{\pi^2}{4}(dy)^2 + \left(\pi - \frac{2}{\ln 2}\right)dx\,dy\right).$$

- **2.**(3) $2\pi + \pi\sqrt{2}\ln(1+\sqrt{2})$.
- 3.4 Не дифференцируема.
- 4.3 Расходится.
 - **5.** а) $\frac{1}{8} < \alpha < \frac{1}{2}$. б) $\alpha \geqslant 2$ расходится, $1 \leqslant \alpha < 2$ сходится условно, $\alpha < 1$ сходится абсолютно.
 - **6.** а) f(x) = 1. На (0,1) сходится неравномерно, на $(1,+\infty)$ сходится равномерно. 6) На (0,1) сходится неравномерно, на $(1,+\infty)$ сходится равномерно.

7.4
$$f(x) = -\frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{4^{4n+2}}{2^{4n+1}(4n+2)}, \ R = 2.$$

8.4 Het.