Exercici 13. Demostreu que no hi ha cap nombre primer de la forma $n=a^4-b^4$, amb $a, b \in \mathbb{Z}$

Solució 13. Primer de tot, val a dir que no considero ± 1 nombre primer.

Aleshores, resolc per reducció a l'absurd: suposo que existeix un $n = a^4 - b^4$, amb n

Puc suposar que $n = a^4 - b^4 = (a^2 + b^2)(a^2 - b^2)$, i per tant: $a^2 + b^2 = \pm 1$ o bé, $a^2 - b^2 = \pm 1$, llavors per casos tinc:

Cas $a^2 - b^2 = \pm 1$:

- Si $a^2 b^2 = +1 \Leftrightarrow (a+b)(a-b) = 1$ i com $a, b \in \mathbb{Z}$ llavors $a = \pm 1, b = 0$ i en conseqüència n = 1. Contradicció!, ja que 1 no és primer.
- Si $a^2 b^2 = -1 \Leftrightarrow (a+b)(a-b) = -1 \Leftrightarrow (a+b)$ i (a-b), tenen signe different i el seu valor absolut val 1, ja que $a, b \in \mathbb{Z}$, per tant $b = \pm 1$ i n = -1. Contradicció!, -1 no és primer.

Cas $a^2 + b^2 = 1$:

Com $a^2, b^2 \ge 0$ i $a^2, b^2 \in \mathbb{Z}$, ja que $a, b \in \mathbb{Z}$, tinc que: o bé $a^2 = 1$, $b^2 = 0$ o bé $a^2 = 0$ i $b^2 = 1$. En el primer cas, $a = \pm 1 \Rightarrow n = 1$, d'altra banda, si $b^2 = 1 \Rightarrow b = \pm 1 \Rightarrow n = -1$, i en totes dues situacions hi ha una contradicció, ja que ni 1 és primer ni -1, tampoc.

El cas $a^2 + b^2 = -1$, no és possible ja que $a^2, b^2 > 0 \Rightarrow a^2 + b^2 > 0$.

En conclusió, he vist que no hi ha cap $n = a^4 - b^4$ primer, amb $a, b \in \mathbb{Z}$