CLAIMS

What is claimed is:

1	1. An actuating device for a vehicle clutch, said actuating device
2	comprising:
3	a cylinder;
4	a stop which is fixed in relation to the cylinder;
5	a piston which can execute a working movement in said cylinder as a
6	function of a supply of pressure medium, said piston having a working travel limiting
7	surface; and
8	a damping device arranged between the stop and the working travel
9	limiting surface.
1	2. An actuating device as in claim 1 wherein the damping device
2	comprises a resilient body.
1	3. An actuating device as in claim 2 further comprising a guide sleeve
2	on which said piston is mounted for movement and a guide ring which centers said
3	piston on said guide sleeve, said guide ring forming said damping device.
1	4. An actuating device as in claim 2 further comprising a guide sleeve
2	on which said piston is mounted for movement and a seal which seals said piston in
3	relation to said guide sleeve, said seal forming said damping device.
J	Totation to said guide sieeve, said seal forming said damping device.

5. An actuating device as in claim 1 wherein the piston has an annular step comprising an axial surface which forms said working travel limiting surface and a 2 3 circumferential surface which is oriented toward a circumferential surface of the stop.

1

1

2

3

4

1

2

1

2

3

- 1 6. An actuating device as in claim 1 wherein the stop and the piston 2 form a compression space having a volume which is dependent on the position of the 3 piston.
- 1 7. An actuating device as in claim 6 wherein the stop forms a part of 2 the compression space into which the piston can move.
 - 8. An actuating device as in claim 5 wherein said annular step forms part of a compression space having a volume which is dependent on the position of the piston, the actuating device further comprising a seal which is effective between the circumferential surface of the piston and the circumferential surface of the stop.
 - 9. An actuating device as in claim 6 further comprising a throttle orifice communicating with said compression space.
 - 10. An actuating device as in claim 9 comprising a plurality of throttle orifices communicating with said compression space, said orifices being blocked as a function of the position of the piston.
- 1 11. An actuating device as in claim 5 wherein said circumferential 2 surfaces are conical surfaces.

- 1 12. An actuating device as in claim 11 further comprising an elastomeric ring between the conical surface of the piston and the conical surface of the stop.
- 1 13. An actuating device as in claim 1 further comprising a groove in which the stop is mounted, the stop comprising a radially elastic ring which is mounted in the groove with radial play.