Layer 2 redundancy – Spanning Tree Protocol

Lecture 4

Table of Contents

- 1. Spanning tree protocol (STP)
- 2. Rapid STP (RSTP)
- 3. Per-VLAN STP plus (PVST+)

What is the Spanning Tree Protocol?

- It addresses a problem which switches can not handle alone: the broadcast storms
- Without STP, a L2 loop will:
 - Overload the links
 - Affect the end devices
 - Cause MAC table instability
 - ...never stop

What is the Spanning Tree Protocol? (2)

- All STP enabled switches "talk" to each other
- The management information that they exchange is in the form of BPDUs (Bridge Protocol Data Units)
- The goal is to logically block one or more ports to prevent from loops

Why STP is needed?

- In this topology STP is NOT needed
- ...but there is no redundancy

Why STP is needed? (2)

- Now there is a redundancy
- ...but there is also the loop problem!

The STP algorithm

- 1. Elect the Root switch (Root bridge)
 - This is the switch with the <u>lowest</u> BID (Bridge ID)
 - BID = Switch Priority and MAC
- 2. Select the root ports
 - They have the best cost (lowest) to the Root
 - Selected <u>per switch</u>
- 3. Select the designated ports
 - They have the best cost (lowest) to the Root
 - Selected <u>per segment</u> (connection)
- 4. All other ports go to blocking state

STP tie-breakers

- If there is a tie situation the same path cost via different paths, use the following tie-breakers:
 - When selecting Root port or Designated port, chose the neighboring switch which has the lowest Bridge ID
 - If the Bridge ID is the same, select the lowest Port ID (PID)
- Port ID = Port priority and port number

Link costs (path cost)

Data rate	STP Cost (802.1D-1998)	RSTP Cost (802.1W-2001)
4 Mbit/s	250	5,000,000
10 Mbit/s	100	2,000,000
16 Mbit/s	62	1,250,000
100 Mbit/s	19	200,000
1 Gbit/s	4	20,000
2 Gbit/s	3	10,000
10 Gbit/s	2	2,000

- Higher port speed -> lower cost
- The values can be changed by administrator

STP Priority

- A number between 0 and 61440
- Must be configured in increments of 4096
- Default is 32768 (+ the VLAN ID)
- The switch with the <u>lowest</u> priority will become the Root
- If equal values -> lowest MAC address wins
 (BID = Priority and MAC)

STP Priority (2)

- 16 bits reserved for bridge priority initially
- Only the first 4 are now used for priority and the other 12 are for VLAN

STP Priority (3)

Extended system ID is the reason for the 4096 increments

STP Example 1

All links have the same cost

STP Example 2

Find the Root, the RP, the DP and the Blocking ports

Note: All links are with the same cost

STP Example 3

Find the Root, the RP, the DP and the Blocking ports

Note: All links are with the same cost

Spanning Tree Protocol – Main Flavors

- STP Spanning Tree Protocol, IEEE 802.1D
- RSTP Rapid STP, IEEE 802.1W
- MSTP Multiple STP, IEEE 802.1S (802.1Q-2005)
- PVST+ Per-VLAN STP, Cisco proprietary

STP (the good old Spanning Tree)

- Spanning Tree Protocol
- The industry standard name is IEEE 802.1D
- Slow convergence
- Port states:
 - Disabled
 - Blocking (up to 20 sec)
 - Listening (up to 15 sec)
 - Learning (up to 15 sec)
 - Forwarding

RSTP (the faster STP)

- Rapid STP
- The industry standard name is IEEE 802.1W
- Much faster convergence than STP
- Introducing Edge port a port which is connected to an end device
- RSTP uses the same algorithm as STP
- Port states:
 - Discarding
 - Learning
 - Forwarding

PVST+

- Per-VLAN Spanning Tree is Cisco protocol
- Why? It has a similar idea as MSTP to distribute the load
- Creates a spanning tree topology for each VLAN
- PortFast in PVST+ is like Edge port in STP/RSTP

PVST+ (2)

PVST+ (3)

The good and the bad about PVST+

PVST+ advantages:

- triggers STP calculation only if there is a potential loop in a particular VLAN
- detailed "look" of the network does not block ports when there is no loop on the trunks for a given VLAN
- PVST+ disadvantages
 - generates a lot of overhead in the network
 - proprietary protocol

Summary

- 1. Spanning tree protocol (STP)
- 2. Rapid STP (RSTP)
- 3. Per-VLAN STP plus (PVST+)

