Курсовая работа

Детекция объектов по нескольким примерам без дообучения

Выполнили:

Студенты группы мФТиАД21 Подчезерцев Алексей Евгеньевич Самоделкина Мария Владимировна

Руководитель:

Приглашенный преподаватель Озерин Алексей Юрьевич

СОДЕРЖАНИЕ

Актуальность, постановка задачи

Основные понятия

Детекция объектов по произвольному запросу

Демонстрационные материалы

Задача регрессии ключевых точек

Актуальность

Пайплайн обучения детекционной модели

Сбор датасета

Разметка датасета

Обучение модели

- Затраты на сбор датасета
- Удешевление и улучшение эффективности пайплайна

Постановка задачи

Разработка подхода к детекции объектов по произвольному текстовому запросу

- реализация предлагаемого подхода и выбор наиболее оптимальных моделей
- демонстрация результатов работы и улучшение результатов выдачи
- решение задачи регрессии ключевых точек с дообучением по нескольким примерам

Основные понятия

Задача детекции объектов на изображении

- определение прямоугольной области, ограничивающей объект
- классификация выделенной области
- нахождение ключевых точек

Основные понятия - YOLO

Источник: You Only Look Once: Unified, Real-Time Object Detection by Joseph Redmon et al.

Основные понятия - CLIP

(2) Create dataset classifier from label text

Основные понятия - ViLD

Подход к детекции объектов по произвольному запросу

Пайплайн детекции

- 1) получение регионов для всего доступного множества изображений
 - YOLO, VilD
 - модифицированный NMS
- 2) вычисление векторного представления регионов и текстового запроса
 - CLIP, ViLD
- 3) поиск ближайших регионов к текстовому запросу
 - HNSW, Annoy, ScaNN

АР в разрезе классов и меры

$$AP = \sum_{t} (R_t - R_{t-1}) P_t$$

Результаты экспериментов

Демо

Page:

Query text Cat

Query demo

Улучшение результатов выдачи

- Разметка пользователем результатов работы алгоритма
- Формирование датасета, пригодного для обучения модели YOLO
- Дообучение модели на пользовательском датасете

Задача регрессии ключевых точек

Задача регрессии ключевых точек

- получение карты признаков с помощью предобученной модели (YOLO)
- обучение нескольких моделей линейной регрессии для нахождения каждой ключевой точки

Проведение экспериментов

- Количество компонент РСА
- Отклонение от центрального вектора карты признаков
- Типы и кол-во аугментаций
 - о Цвет, яркость, поворот, кадрирование
- Кол-во изображений в обучающей выборке

(a) Зависимость RMSE от количества компонент PCA

(b) Зависимость \mathbb{R}^2 от количества компонент PCA

Результаты экспериментов

Наилучшее качество по метрикам RMSE и R2

- отсутствие аугментаций
- отклонение от центрального вектора 1
- минимальный размер обучающей выборки 6

Эксперимент с типами аугментаций

Эксперимент	Медиана РСА	RMSE на обучении	RMSE на тесте	\mathbb{R}^2 на обучении	R^2 на тесте
Без аугментаций	9	40±29	84±22	0,81±0,19	0,46±0,20
Аугментации	7	42±28	84±22	0,80±0,19	0,45±0,20
цвета и яркости					
Аугментации цвета,	12	39±26	85±22	$0,83\pm0,17$	0,44±0,22
яркости и поворота					
Аугментации цвета,					
яркости, поворота	12	40±24	86±21	$0,82\pm0,17$	$0,44\pm0,19$
и кадрирования					

Подведение итогов

Выводы

- Быстрый поиск по текстовым описаниям на большим объеме изображений
- Дообучение модели на пользовательской разметке
- Использование модифицированного алгоритма NMS
- Не удалось качественно решить задачу регрессии ключевых точек
- Подготовлены демонстрационные материалы

Сложности исследования

- Предобработка изображения YOLO
- Итоговое качество зависит от метрик ANN

Результаты

- Реализован прототип для дешевого и быстрого:
 - Сбора датасета для обучения моделей
 - Дообучения модели на полученной разметке
- Проведены эксперименты по регрессии ключевых точек
 - Не удалось добиться заметного успеха

Вклад в работу

Подчезерцев Алексей, aepodchezertsev@edu.hse.ru

- Проведение экспериментов к решению задачи детекции
- Создание демонстрационных материалов: сайт и jupyter-notebook

Самоделкина Мария, mvsamodelkina@edu.hse.ru

- Разработка пайплайна к решению задачи детекции
- Решение задачи регрессии ключевых точек и проведение экспериментов

github.com/AsciiShell/hse-fsod

