BEST AVAILABLE COPY

URZĄD PATENTOWY RZECZYPOSPOLITEJ POLSKIEJ

22/01

PCT/PL04/00053

ZAŚWIADCZENIE

REC'D **1 4 DEC 2004**WIPO PCT

ABB Sp. z o.o.

Warszawa, Polska

złożyła w Urzędzie Patentowym Rzeczypospolitej Polskiej dnia 17 lipca 2003 r. podanie o udzielenie patentu na wynalazek pt.: "Układ zabezpieczający dla przekładników napięciowych średniego napięcia."

Dołączone do niniejszego zaświadczenia opis wynalazku, zastrzeżenia patentowe i rysunki są wierną kopią dokumentów złożonych przy podaniu w dniu 17 lipca 2003 r.

Podanie złożono za numerem P-361320

Warszawa, dnia 02 grudnia 2004 r.

z upoważnienia Prezesa

inż. Barbara Zabczyk

Naczelnik

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Układ zabezpieczający dla przekładników napięciowych średniego napięcia

Przedmiotem wynalazku jest układ zabezpieczający dla przekładników napięciowych średniego napięcia, znajdujący zastosowanie do tłumienia stanów ferrorezonansowych występujących w co najmniej jednym z trzech przekładników napięciowych zabezpieczających trójfazową sieć średniego napięcia.

Zazwyczaj do tłumienia stanów ferrorezonansowych w urządzeniach elektrycznych, a zwłaszcza w przekładnikach napięciowych stosuje się rezystor zabezpieczający o określonej rezystancji rzędu kilkudziesięciu omów, który połączony jest z trzema wtórnymi uzwojeniami dodatkowymi trzech przekładników jednofazowych, tworzącymi układ otwartego trójkąta. Takie proste konstrukcyjnie rozwiązanie posiada jednak istotne wady. W przypadku wystąpienia długotrwałych asymetrii w sieci zasilającej, mała wartość rezystancji rezystora zabezpieczającego, wymagana ze względu na skuteczność tłumienia ferrorezonansowych, oscylacii powoduie niebezpieczeństwo uszkodzenia cieplnego przekładnika bądź samego rezystora. W praktyce stosuje się rezystory tłumiące o mocach rzędu kilkuset wat i o znacznych gabarytach.

Do ochrony urządzeń elektrycznych przed uszkodzeniem cieplnym, spowodowanym przykładowo przeciążeniem ponadnapięciowym powszechnie stosuje się rezystory PTC, wyłączniki bimetaliczne lub bezpieczniki termiczne.

Przykładowo z niemieckiego zgłoszenia patentowego nr 3621200 znany jest moduł zabezpieczający instalację telekomunikacyjną, który składa się z termistora PTC włączonego szeregowo do uzwojenia linii subskrybenta oraz z diody tyrystorowej, która jest włączona jest równolegle pomiędzy uzwojenie linii subskrybenta a ziemię. Jeżeli w linii subskrybenta pojawi się niepożądane

napięcie, to wówczas prąd przepływający przez diodę tyrystorową powoduje jej rozgrzanie, a ponieważ dioda ta jest termicznie połączona z termistorem PTC, również rozgrzanie tego termistora. W konsekwencji rezystancja termistora wzrasta, a zjawisko przeciążenia ponadnapięciowego jest ograniczone.

Istotą układu zabezpieczającego dla przekładników napięciowych średniego napięcia zawierającego rezystor tłumiący włączony w układ otwartego trójkąta trzech wtórnych uzwojeń dodatkowych trzech przekładników jednofazowych, jest to, że pomiędzy rezystor tłumiący a wyjście wtórnego uzwojenia dodatkowego jednego z przekładników jednofazowych włączony jest szeregowo element o progowej charakterystyce napięciowo - prądowej oraz bezpiecznik termiczny.

Korzystnie bezpiecznik termiczny ma postać wyłącznika bimetalicznego, a element o progowej charakterystyce napięciowo-prądowej ma postać dwóch diod Zenera, połączonych ze sobą przeciwsobnie.

Alternatywnie bezpiecznik termiczny ma postać rezystora PTC, a element o progowej charakterystyce ma postać dwóch diod Zenera, połączonych ze sobą przeciwsobnie.

Korzystnie bezpiecznikiem termicznym jest rezystor PTC, a elementem o progowej charakterystyce napięciowo-prądowej jest warystor.

Alternatywnie bezpiecznikiem termicznym jest wyłącznik bimetaliczny, a elementem o progowej charakterystyce napięciowo-prądowej jest warystor.

Zaletą układu według wynalazku jest zapewnienie tłumienia oscylacji ferrorezonansowej przy jednoczesnej niewrażliwości na niewielkie wartości składowej zerowej napięcia, występujące w przypadku niewielkich asymetrii w sieci trójfazowej. W przypadku długotrwale utrzymującej się składowej zerowej napięcia, przykładowo powstałej w wyniku zwarcia doziemnego jednej z faz, zastosowanie bezpiecznika termicznego powoduje dodatkowe zabezpieczenie przekładników oraz elementów układu zabezpieczającego przed ich zniszczeniem. Zastosowanie zabezpieczenia termicznego umożliwia zmniejszenie mocy cieplnej rezystora tłumiącego w stosunku do znanych wcześniej rozwiązań. W związku z tym układ według wynalazku jest skuteczny, a jego gabaryty są niewielkie w porównaniu z istniejącymi urządzeniami zabezpieczającymi.

Przedmiot wynalazku jest uwidoczniony w przykładzie wykonania na rysunku, na którym fig. 1 przedstawia układ przekładników napięciowych połączony z układem zabezpieczającym, fig. 2 - pierwszą odmianę wykonania układu zabezpieczającego FDC1, fig. 3 – drugą odmianę wykonania układu zabezpieczającego FDC2, fig. 3 – trzecia odmianę wykonania układu zabezpieczającego FDC3, a fig. 4 – czwartą odmianę wykonania układu zabezpieczającego FDC4.

Uzwojenia dodatkowe trzech jednofazowych przekładników napięciowych VT1, VT2, VT3 połączone są ze sobą w układ otwartego trójkąta. Uzwojenia pierwotne A-N poszczególnych przekładników połączone są bezpośrednio z siecią trójfazowa RST oraz z uziemieniem. Zaciski uzwojeń wtórnych a-n poszczególnych przekładników są wyjściami roboczymi tych przekładników. Zaciski wtórnych uzwojeń dodatkowych da oraz dn przekładników połączone są do zacisku da wtórnego dodatkowego uzwojenia ze sobą w ten sposób, że przekładnika VT1 przyłączone jest wejście układu zabezpieczającego FDC, którego wyjście połączone jest z zaciskiem dn wtórnego dodatkowego uzwojenia trzeciego przekładnika VT3, a którego zacisk da połączony jest z zaciskiem dn wtórnego dodatkowego uzwojenia drugiego przekładnika VT2. Z kolei zacisk da drugiego przekładnika <u>VT2</u> połączony jest z zaciskiem <u>dn</u> pierwszego przekładnika <u>VT1</u>. Pomiędzy zaciskiem da pierwszego przekładnika VT1 a zaciskiem dn trzeciego przekładnika VT3 pojawia się podczas pracy napięcie U0, które doprowadzone jest do zacisków układu zabezpieczającego FDC.

Układ zabezpieczający <u>FDC</u> zawiera równolegle ze sobą połączone gałęzie, przy czym w pierwszej <u>FDC1</u> odmianie wykonania układu, jedna gałąź zawiera z połączone ze sobą szeregowo: rezystor tłumiący <u>R1</u>, dwie diody Zenera <u>D1,D2</u> połączone ze sobą przeciwsobnie oraz wyłącznik bimetaliczny <u>TF1</u>. Dwie diody Zenera połączone przeciwsobnie mogą być zastąpione jedną dwukierunkową diodą Zenera, co nie jest uwidocznione na rysunku. Druga gałąź układu zawiera rezystor <u>R2</u>.

鏄

W drugiej <u>FDC2</u> odmianie wykonania układu, jedna gałąź zawiera z połączone ze sobą szeregowo: rezystor <u>R1</u>, dwie diody Zenera <u>D1,D2</u> połączone ze sobą przeciwsobnie oraz rezystor PTC. Dwie diody Zenera połączone przeciwsobnie mogą być zastąpione jedną dwukierunkową diodą Zenera, co nie jest uwidocznione na rysunku. Druga gałąź układu zawiera rezystor <u>R2</u>.

W trzeciej <u>FDC3</u> odmlanie wykonania układu, jedna gałąź zawiera połączone ze sobą szeregowo: rezystor <u>R1</u>, warystor oraz rezystor <u>PTC</u>. Druga gałąź układu zawiera rezystor <u>R2</u>.

W czwartej <u>FDC4</u> odmianie wykonania układu, jedna gałąź zawiera z połączone ze sobą szeregowo: rezystor <u>R1</u>, warystor oraz wyłącznik bimetaliczny <u>TF1</u>. Druga gałąź układu zawiera rezystor <u>R2</u>.

We wszystkich odmianach wykonania wynalazku rezystor <u>R2</u> ma wartość znacznie większą od rezystancji od rezystora <u>R1</u>.

Działanie układu według wynalazku jest następujące.

W przypadku pełnej symetrii w sieci trójfazowej składowe zerowa napięcia, Uo ma wartość 0 i przez układ zabezpieczający <u>FDC</u> nie płynie prąd.

W przypadku niewielkich asymetrii w sieci trójfazowej napięcie \underline{U}_0 ma wartość niezerową, lecz mniejszą niż wartość napięcia progowego elementu o progowej charakterystyce napięciowo-prądowej. W takim przypadku przez układ zabezpieczający <u>FDC</u> płynie prąd o wartości $\underline{U}_0/R2$. Ponieważ rezystancja rezystora $\underline{R2}$ ma dużą wartość ($\underline{R2} >> \underline{R1}$), prąd płynący przez układ zabezpieczający <u>FDC</u> ma wartość niewielką. Zatem również moc cieplna wydzielana w układzie zabezpieczającym <u>FDC</u> jest w takim przypadku niewielka. Przykładowo: Jeśli $\underline{R2}$ ma wartość 200 Ohm, to przy wartości \underline{U}_0 =10V, moc cieplna wydzielona w układzie <u>FDC</u> ma wartość 0.5W.

W przypadku wystąpienia w sieci trójfazowej stanu ferrorezonansowego, napięcie <u>U</u>₀ może mieć wartość znacznie przewyższającą napięcie progowe elementu o progowej charakterystyce napięciowo-prądowej. Wówczas przez rezystor <u>R1</u> przepływa prąd. Ze względu na niewielką wartość rezystora <u>R1</u> następuje bardzo szybkie wytłumienie oscylacji ferrorezonansowych. Ze wzglądu na krótki czas działania gałęzi z rezystorem <u>R1</u> energia cieplna wydzielona w tej gałęzi ma wartość niewielką. Nie następuje zatem ani przegrzanie elementów gałęzi ani zadziałanie bezpiecznika termicznego.

W przypadku wystąpienia w sieci trójfazowej dużej długotrwałej asymetrii spowodowanej np. zwarciem doziemnym jednego z przewodów fazowych napięcie Uo ma również wartość większą od napięcia progowego elementu o progowej charakterystyce napięciowo-prądowej. Przez gałąź z rezystorem R1 przepływa zatem prąd o dużym natężeniu. Ponieważ jednak stan taki nie wymaga działania

rezystora tłumiącego, bezpiecznik termiczny w postaci bezpiecznika bimetalicznego lub rezystora PTC powoduje w krótkim czasie duży wzrost rezystancji wypadkowej gałęzi zawierającej rezystor R1, bądź jej całkowite odłączenie. Przez gałąź tą nie płynie wówczas prąd, lub też płynie prąd o niewielkim natężeniu. Po ustąpieniu przyczyny asymetrii i wystygnięciu bezpiecznika termicznego układ powraca do stanu wyjściowego.

A B B Sp. z. o. o.
UI. Bitwy Warszawskiej 1920r, nr 18
02-366 Warszawa
P E Ł NO MO C N I K

Rzecznik Patentowy

mgr in: Krystyna Chochorowska-Winiarska

Zastrzeżenia patentowe

- 1. Układ zabezpieczający dla przekładników napięciowych średniego napięcia zawierający rezystor tłumiący włączony w układ otwartego trójkąta trzech wtórnych uzwojeń dodatkowych trzech przekładników jednofazowych, znamienny tym, że pomiędzy rezystor tłumiący (R1) a wyjście wtórnego uzwojenia dodatkowego jednego z przekładników jednofazowych włączony jest szeregowo element o progowej charakterystyce napięciowo-prądowej (1) oraz bezpiecznik termiczny (2).
- 2. Układ według zastrz. 1, **znamienny tym, że** bezpiecznik termiczny (<u>2</u>) ma postać wyłącznika bimetalicznego (<u>TF1</u>), a element o progowej charakterystyce napięciowo-prądowej ma postać dwóch diod Zenera (<u>D1,D2</u>), połączonych ze sobą przeciwsobnie.
- 3. Układ według zastrz. 1, **znamienny tym, że** bezpiecznik termiczny (<u>2</u>) ma postać rezystora PTC, a element o progowej charakterystyce napięciowoprądowej ma postać dwóch diod Zenera, połączonych ze sobą przeciwsobnie.
- 4. Układ według zastrz. 1, **znamienny tym, że** bezpiecznikiem termicznym (2) jest rezystor PTC, a elementem o progowej charakterystyce napięciowo-prądowej jest warystor.
- 5. Układ według zastrz. 1, **znamienny tym, że** bezpiecznikiem termicznym (2) jest wyłącznik bimetaliczny (TF1), a elementem o progowej charakterystyce napięciowo-prądowej jest warystor.

A B B Sp. z. o. o.
UI. Bitwy Warszawskiej 1920r, nr 18
02-366 Warszawa
P E Ł NO M O C N I K

Rzecznik Patentowy

ABB Sp. z o.o. ul. Eximy Warezanetkiej 1920 r. ft 18 02-398 Warezane

