

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Musterlösung zu Übungsblatt 05

17.05.21

Aufgabe 1 (Die orthogonale Gruppe)

- a) Es sei (G,\cdot) eine Gruppe, $\varphi\colon G\to G$ ein Gruppenendomorphismus.
 - i) Beweisen Sie, dass

$$H := \{ g \in G \,|\, \varphi(g) = g \}$$

eine Untergruppe von G ist.

ii) Die Gruppe sei nun $G=\mathrm{GL}(n,\mathbb{R})$ mit Matrixmultiplikation. Beweisen Sie, dass die Abbildung

$$\varphi \colon G \to G$$
$$A \mapsto (A^{\top})^{-1}$$

ein Gruppenendomorphismus ist.

- iii) Beweisen Sie unter Verwendung von i) und ii) erneut, dass $\mathcal{O}(n)$ und $\mathcal{SO}(n)$ Gruppen sind.
- b) Es sei V ein unitärer Vektorraum. Beweisen Sie, dass jeder komplexe Eigenwert λ einer linearen Isometrie $\varphi \colon V \to V$ den Betrag $|\lambda| = 1$ hat.

Lösung zu Aufgabe 1

- a) i) Wir überprüfen, dass H eine Untergruppe ist:
 - $e_G \in H$ gilt, da φ ein Endomorphismus ist und deshalb $\varphi(e_G) = e_G$ erfüllt.
 - Für $a, b \in H$ gilt $\varphi(ab) = \varphi(a)\varphi(b) = ab$, also auch $ab \in H$.
 - Für $a \in H$ gilt $\varphi(a) = a$ und somit auch $\varphi(a^{-1}) = \varphi(a)^{-1} = a^{-1}$ und deshalb $a^{-1} \in H$.
 - ii) Für $A \in GL(n, \mathbb{R})$ gilt auch $A^{\top} \in GL(n, \mathbb{R})$, denn aus

$$A^{\top}(A^{-1})^{\top} = (A^{-1}A)^{\top} = \mathbb{1}_n^{\top} = \mathbb{1}_n$$

folgt, dass A^{\top} die Inverse Matrix $(A^{-1})^{\top}$ hat.

Für alle $A, B \in \mathrm{GL}(n, \mathbb{R})$ gilt

$$\varphi(AB) = ((AB)^{\top})^{-1} = (B^{\top}A^{\top})^{-1} = (A^{\top})^{-1}(B^{\top})^{-1} = \varphi(A)\varphi(B)$$

und somit ist φ ein Gruppenhomomorphismus.

Anmerkung: Die Abbildungen $A\mapsto A^{\top}$ und $A\mapsto A^{-1}$ sind alleine keine Homomorphismen, da durch Transponieren und Invertieren jeweils die Reihenfolge der Faktoren vertauscht wird. Dadurch dass hier transponiert und invertiert wird, erhält φ aber wieder die Reihenfolge.

iii) Für den Endomorphismus φ aus ii) ist H gerade die Menge der Matrizen, die $(A^{\top})^{-1} = A$ erfüllen, also ist $H = \mathcal{O}(n)$ nach i) eine Untergruppe von $\mathrm{GL}(n,\mathbb{R})$.

Für alle Matrizen $A \in SL(n, \mathbb{R}) \subseteq GL(n, \mathbb{R})$ gilt $\det((A^{\top})^{-1}) = \frac{1}{\det(A^{\top})} = \frac{1}{\det(A)} = 1$, also $\varphi(SL(n, \mathbb{R})) \subseteq SL(n, \mathbb{R})$.

Daher kann man φ auf $\mathrm{SL}(n,\mathbb{R})$ einschränken und koeinschränken und erhält einen Endomorphismus $\mathrm{SL}(n,\mathbb{R}) \to \mathrm{SL}(n,\mathbb{R})$. Für diesen gilt $H = \{A \in \mathrm{SL}(n,\mathbb{R}) \mid (A^\top)^{-1} = A\}$, also $H = \mathrm{SO}(n)$.

b) Angenommen, v ist ein Eigenvektor zum Eigenwert λ von φ . Da φ eine Isometrie ist, gilt $||v|| = ||\varphi(v)||$. Weiterhin gilt $||v|| = ||\varphi(v)|| = ||\lambda v|| = |\lambda| ||v||$. Wegen $v \neq 0$ kann man durch $||v|| \neq 0$ teilen und erhält direkt $|\lambda| = 1$.

Aufgabe 2 (Reflexionen an Hyperebenen)

Wir betrachten \mathbb{R}^n mit dem Standardskalarprodukt. Für einen Vektor $v \in \mathbb{R}^n$ sei der Endomorphismus

$$\varphi_v \colon \mathbb{R}^n \to \mathbb{R}^n$$
 mit $A_v \coloneqq \mathbb{1}_n - 2 \, v v^\top$

definiert.

Hinweis: vv^{\top} ist eine $n \times n$ -Matrix und **nicht** dasselbe wie $v^{\top}v = \langle v, v \rangle$.

- a) Beweisen Sie, dass φ_v genau dann eine Isometrie von \mathbb{R}^n ist, wenn v ein Einheitsvektor oder der Nullvektor ist.
- b) Beweisen Sie im Fall ||v|| = 1, dass $E_1(\varphi_v) = \{v\}^{\perp}$ gilt und φ_v über \mathbb{R} diagonalisierbar ist.
- c) Nun sei n=3 und wir betrachten zwei Einheitsvektoren $v,w\in\mathbb{R}^3$, die den Winkel $\frac{\pi}{4}$ einschließen. Beweisen Sie, dass es eine geordnete Orthonormalbasis B von \mathbb{R}^3 gibt, bezüglich der

$$M_{\mathrm{BB}}(\varphi_v \circ \varphi_w) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

gilt.

Hinweis: Es gilt $\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.

Zeigen Sie zunächst, dass die Vektoren v und $(\varphi_v \circ \varphi_w)(v)$ ein Orthonormalsystem bilden.

Lösung zu Aufgabe 2

a) Es gilt

$$\langle \varphi_v(x), \varphi_v(y) \rangle = \langle A_v x, A_v y \rangle = (A_v x)^\top A_v y = x^\top A_v^\top A_v y$$

für alle $x, y \in \mathbb{R}^n$. Damit kann φ_v nur dann eine Isometrie sein, wenn $A_v^\top A_v = \mathbbm{1}_n$ gilt, also A_v orthogonal ist.

$$\varphi_{v} \text{ ist Isometrie } \iff A_{v}^{\top}A_{v} = \mathbb{1}_{n}$$

$$\iff (\mathbb{1}_{n} - 2vv^{\top})^{\top}(\mathbb{1}_{n} - 2vv^{\top}) = \mathbb{1}_{n}$$

$$\iff (\mathbb{1}_{n}^{\top} - 2(vv^{\top})^{\top})(\mathbb{1}_{n} - 2vv^{\top}) = \mathbb{1}_{n}$$

$$\iff (\mathbb{1}_{n} - 2vv^{\top})(\mathbb{1}_{n} - 2vv^{\top}) = \mathbb{1}_{n}$$

$$\iff \mathbb{1}_{n}^{2} - 4vv^{\top} + 4vv^{\top}vv^{\top} = \mathbb{1}_{n}$$

$$\iff -vv^{\top} + v\underbrace{(v^{\top}v)}_{=||v||^{2} \in \mathbb{R}}$$

$$\iff (||v||^{2} - 1)vv^{\top} = 0.$$

Falls v=0 gilt, ist diese Gleichung erfüllt und φ_v ist die Identität.

Falls $v \neq 0$ ist, ist vv^{\top} nicht die Nullmatrix (da der (i,i)-te Eintrag von vv^{\top} gerade $(v_i)^2$ ist, ist mindestenstens ein Diagonaleintrag nicht 0). In diesem Fall ist die Gleichung genau dann erfüllt, wenn $(\|v\|^2 - 1) = 0$ also $\|v\| = 1$ gilt.

b) Es sei ||v|| = 1. Wir zeigen die Mengengleichheit $E_1(\varphi_v) = \{v\}^{\perp}$:

$$x \in E_1(\varphi_v) \iff x \in \ker(\mathbb{1}_n - A_v)$$

$$\iff x \in \ker(2vv^\top)$$

$$\iff 2vv^\top x = 0$$

$$\iff 2\langle v, x \rangle v = 0$$

$$\iff \langle v, x \rangle = 0$$

$$\iff x \in \{v\}^\perp$$

Aus der Vorlesung wissen wir, dass $\{v\}^{\perp}$ ein Komplement von $\mathrm{LH}(v)$ ist, also

$$\dim \{v\} = \dim(\mathbb{R}^n) - \dim(\mathrm{LH}(v)) = n - 1$$

gilt. Wir brauchen also noch einen weiteren Eigenvektor. Wir versuchen v selbst:

$$\varphi_v(v) = (\mathbb{1}_n - 2vv^{\top})v = v - 2vv^{\top}v = (1 - 2||v||)v = -v$$

Damit gilt $\mathbb{R}^n = \mathrm{LH}(v) \oplus \mathrm{LH}(v)^{\perp} = E_{-1}(\varphi_v) \oplus E_1(\varphi_v)$ und φ_v ist diagonalisierbar.

c) Es gilt
$$v^{\top}w = w^{\top}v = \langle v, w \rangle = \cos\left(\frac{\pi}{4}\right)\|v\|\|w\| = \frac{\sqrt{2}}{2}$$
 und somit

$$\varphi_{v}(v) = -v$$

$$\varphi_{v}(w) = (\mathbb{1}_{n} - 2vv^{\top})w$$

$$= w - 2vv^{\top}w$$

$$= w - \sqrt{2}v$$

$$\varphi_{w}(v) = (\mathbb{1}_{n} - 2ww^{\top})v$$

$$= v - 2ww^{\top}v$$

$$= v - \sqrt{2}w$$

$$\varphi_{w}(w) = -w$$

$$(\varphi_{v} \circ \varphi_{w})(v) = \varphi_{v}(\varphi_{w}(v))$$

$$= \varphi_{v}(v - \sqrt{2}w)$$

$$= -v - \sqrt{2}(w - \sqrt{2}v)$$

$$= v - \sqrt{2}w$$

Außerdem gilt

$$\|(\varphi_v \circ \varphi_w)(v)\|^2 = \|v - \sqrt{2} w\|^2$$

$$= \|v\|^2 - 2\langle v, \sqrt{2}w \rangle + \|\sqrt{2} w\|^2$$

$$= \|v\|^2 - 2\sqrt{2}\langle v, w \rangle + 2\|w\|^2$$

$$= 1$$

$$\langle v, (\varphi_v \circ \varphi_w)(v) \rangle = \langle v, v - \sqrt{2} w \rangle$$

$$= \langle v, v \rangle - \sqrt{2}\langle v, w \rangle$$

$$= 0$$

Damit haben wir ein Orthonormalsystem $b_1 := v$, $b_2 := (\varphi_v \circ \varphi_w)(v) = v + \sqrt{2} w$, das wir zu einer Orthonormalbasis b_1, b_2, b_3 ergänzen können. Es gilt

$$(\varphi_v \circ \varphi_w)(b_1) = (\varphi_v \circ \varphi_w)(v) = b_2$$

$$(\varphi_v \circ \varphi_w)(b_2) = \varphi_v(\varphi_w(v - \sqrt{2}w))$$

$$= \varphi_v(\varphi_w(v) - \sqrt{2}\varphi_w(w))$$

$$= \varphi_v((v - \sqrt{2}w) + \sqrt{2}w)$$

$$= \varphi_v(v)$$

$$= -v$$

Das bedeutet, bezüglich der Orthonormalbasis B := (b_1, b_2, b_3) hat $M_{BB}(\varphi_v \circ \varphi_w)$ die in der Aufgabenstellung behauptete Form.