Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 3 - Mathematik strukturieren

Stoffdidaktik Mathematik

Kapitel 3 - Mathematik strukturieren

- Sie kennen verschiedene Möglichkeiten, Mathematik zu strukturieren.
- Sie können beschreiben, woher die verschiedenen Strukturierungsmöglichkeiten kommen.
- Sie kennen Beispiele für fundamentale Ideen der Mathematik.
- Sie können bei einzelnen Lerngegenständen den Zusammenhang zu zugehörigen fundamentalen Ideen herstellen.

Stoffdidaktische Analyse als Spezifizieren & Strukturieren von Lerngegenständen

Spezifizieren

Strukturieren

formale Ebene

semantische Ebene

Ziel heute: Mathematik verstehen, indem wir Mathematik strukturieren

empirische Ebene

Lerntätigkeit als

Aneignung —

gesellschaftlichen Wissen & Könnens

Mathematik strukturieren

Sachgebiete

Leitideen

Arten mathematischen Wissens

Fundamentale Ideen

Perspektivwechsel vom Formalen (Fachliche Logik) zum Semantischen (Sinn und Bedeutung)

1 Sachgebiete

Arithmetik

9 + 4

Algebra

2x = 8

Geometrie

Analysis

Stochastik

Lin. Algebra / Analytische Geometrie

Leitfaden Arithmetik (Benölken et al., 2018)

Algebra (Weigand et al., 2022)

Didaktik der

Didaktik der Geometrie für die Sekundarstufe I (Weigand et al., 2018)

Didaktik der
Analysis
(Greefrath et al., 2016)

Didaktik der Stochastik für die Sekundarstufe I (Krüger et al., 2015) Didaktik der
Analytischen
Geometrie und
Linearen Algebra
(Henn & Filler, 2015)

Mathematikunterricht in der Sekundarstufe II

(Tietze et al., 2000a, 2000b, 2002)

Grundgesetz BRD

Art. 30 & 70 Kulturhoheit der Länder

Kultusministerkonferenz (KMK)

Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland

Landesverfassung und Schulgesetz Brandenburg

Ihre verbindliche Grundlage zum Unterrichten an Brandenburger Schulen (§10 BbgSchulG)

Grundgesetz BRD

Artikel 7

(1) Das gesamte Schulwesen steht unter der Aufsicht des Staates.

Artikel 30

Kulturhoheit der Länder

Die Ausübung der staatlichen Befugnisse und die Erfüllung der staatlichen Aufgaben ist Sache der Länder, soweit dieses Grundgesetz keine andere Regelung trifft oder zuläßt.

Artikel 79

- (1) Das Grundgesetz kann nur durch ein Gesetz geändert werden, das den Wortlaut des Grundgesetzes ausdrücklich ändert oder ergänzt. [...]
- (2) Ein solches Gesetz bedarf der Zustimmung von zwei Dritteln der Mitglieder des Bundestages und zwei Dritteln der Stimmen des Bundesrates.
- (3) Eine Änderung dieses Grundgesetzes, durch welche die Gliederung des Bundes in Länder, die grundsätzliche Mitwirkung der Länder bei der Gesetzgebung oder die in den Artikeln 1 und 20 niedergelegten Grundsätze berührt werden, ist unzulässig.

Landesverfassung Brandenburg

Artikel 30 (Schulwesen)

- (1) Es besteht allgemeine Schulpflicht.
- (2) Das Schulwesen steht unter der Aufsicht des Landes. Bei der Gestaltung wirken Eltern, Lehrkräfte, Schülerinnen und Schüler sowie ihre Vertretungen und Verbände mit.
- (3) Das Schulwesen muss Offenheit, Durchlässigkeit und Vielfalt der Bildungsgänge gewährleisten.
- (4) Für die Aufnahme in weiterführende Schulen sind neben dem Wunsch der Erziehungsberechtigten Fähigkeiten, Leistungen und Neigungen der Schülerin oder des Schülers maßgebend.
- (5) Das Land und die Träger kommunaler Selbstverwaltung haben die Pflicht, Schulen einzurichten und zu fördern. Für diese Schulen besteht Schulgeldfreiheit. Lern- und Lehrmittelfreiheit sind durch Gesetz zu regeln.
- (6) Das Recht zur Errichtung von Schulen in freier Trägerschaft wird nach Maßgabe von Artikel 7 Absatz 4 des Grundgesetzes gewährleistet. Die Träger haben Anspruch auf einen öffentlichen Finanzierungszuschuss.

Schulgesetz Brandenburg

§ 10 Rahmenlehrpläne

(1) Der Unterricht wird auf der Grundlage von Rahmenlehrplänen erteilt. Die Rahmenlehrpläne bestimmen die verbindlichen Anforderungen und Inhalte (Kerncurriculum) ebenso wie die Gestaltungsfreiräume und Wahlmöglichkeiten im Unterricht der Fächer, Lernbereiche, übergreifenden Themenkomplexe oder Lernfelder.

(2)[...]

- (3) Die Rahmenlehrpläne sind so zu gestalten, dass den unterschiedlichen Fähigkeiten, Leistungen und Neigungen der Schülerinnen und Schüler sowie der pädagogischen Eigenverantwortung der Lehrkräfte entsprochen werden kann und die Schule einen hinreichend großen Entscheidungsraum für die Gestaltung eines eigenen Profils erhält. Sie gewährleisten, dass die Ziele der durch die Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland beschlossenen Bildungsstandards erreicht werden können, insbesondere die dort beschriebenen erwarteten Lernergebnisse, allgemeinen Bildungsziele und Kompetenzen, die die Schülerinnen und Schüler bis zu einer bestimmten Jahrgangsstufe erworben haben sollen.
- (4) In die Erarbeitung der Rahmenlehrpläne sind insbesondere Erfahrungen und Vorschläge aus der Schulpraxis umfassend einzubeziehen. [...]

[...]

(KMK, 2022, S. 8)

Die Schülerinnen und Schüler

- nutzen sinntragende Vorstellungen von rationalen Zahlen, insbesondere von natürlichen, ganzen und gebrochenen Zahlen entsprechend der Verwendungsnotwendigkeit,
- nutzen sinntragende Vorstellungen von reellen Zahlen (z. B. Vollständigkeit der Zahlengerade),
- nutzen sinntragende Vorstellungen von Operationen rationaler Zahlen (z. B. schrittweiser, halbschriftlicher Verfahren),
- untersuchen Zahlen nach ihren Faktoren, in einfachen Fällen ohne digitale Mathematikwerkzeuge,
- stellen Zahlen der Situation angemessen dar, z.B. unter anderem in Zehnerpotenzschreibweise,
- rechnen mit natürlichen, ganzen und rationalen Zahlen, die im täglichen Leben vorkommen, sowohl zur Kontrolle als auch im Kopf und erklären die Bedeutung der Rechenoperationen,
- beschreiben die Notwendigkeit von Zahlbereichserweiterungen von N nach Z und Q sowie von Q nach R an Beispielen,

- erläutern an Beispielen die verschiedenen Vorstellungen zum Bruchbegriff (insbesondere Teile eines oder mehrerer Ganzer, relative Anteile),
- nutzen Rechengesetze (z. B. Kommutativ-, Assoziativ-, Distributivgesetz), auch zum vorteilhaften Rechnen,
- nutzen Überschlagsrechnungen zur Orientierung und zur Kontrolle,
- runden Zahlen dem Sachverhalt entsprechend sinnvoll,
- pr
 üfen und interpretieren Ergebnisse, auch in Sachsituationen,
- erläutern an Beispielen den Zusammenhang zwischen Rechenoperationen und deren Umkehrungen und nutzen diese Zusammenhänge,
- verwenden Prozent- und Zinsrechnung vorstellungsbasiert (z. B. Prozentstreifen) und sachgerecht,
- erläutern Potenzen und Wurzeln und berechnen einfache Potenzen und Wurzeln,

- wenden insbesondere lineare und quadratische Funktionen sowie Exponentialfunktionen bei der Beschreibung und Bearbeitung von Problemen an,
- wählen, beschreiben und bewerten Vorgehensweisen und Verfahren, denen Algorithmen bzw. Kalküle zu Grunde liegen und führen diese aus (z. B. schriftliche Rechenoperationen sowie bei Wurzeln und Potenzen),
- implementieren ein algorithmisches Verfahren (z. B. Heron-Verfahren zur Bestimmung von Quadratwurzeln, Intervallschachtelung) mit digitalen Mathematikwerkzeugen,
- führen in konkreten Situationen systematische Zählprinzipien aus (z. B. Anzahl Händeschütteln, wenn man jeder Person die Hand gibt),
- führen Zahlenfolgen fort, auch unter Verwendung von Variablen als allgemeine Zahl.

(KMK, 2022, S. 15 f.)

liegen.

Leitidee Zahl und

Leitidee umfasst

Vorstellungen und Darstellungen von Zahlen

und Operationen sowie die Nutzung von

Rechengesetzen und Kontrollverfahren.

Dazu gehören die sachgerechte Nutzung

von Prozent- und Zinsrechnung ebenso wie

Verfahren, denen Algorithmen zu Grunde

Sekundarstufe I sind die Arithmetik, Algebra

darauf

Überlegungen

Sachgebiete

sinntragende

bezogenen

der

Operation

kombinatorische

mathematischen

und Stochastik.

Die

3 Arten mathematischen Wissen

Begriffe

Winkel

Funktionen

Zufallsexperimente

Sachverhalte/ Zusammenhänge

Dreiecksungleichung

Teilbarkeitsregeln

Satz des Thales

deklaratives Wissen

Verfahren

Rechnen mit Brüchen

Potenzgesetze

Kurvendiskussion

prozedurales Wissen

metamathem. Wissen

Problemlösen

Modellieren

metakognitives Wissen

(Vollrath & Roth, 2012, S. 48 ff.)

Kenntnisse/Fähigkeiten/Fertigkeiten über ...

Begriffe

- die Bezeichnung des Begriffs kennen
- Beispiele angeben und jeweils begründen können, weshalb es sich um ein Beispiel handelt
- begründen können, weshalb etwas nicht unter den Begriff fällt
- charakteristische Eigenschaften des Begriffs kennen
- Oberbegriffe, Unterbegriffe und Nachbarbegriffe kennen
- mit dem Begriff beim Argumentieren und Problemlösen arbeiten können

Sachverhalte/ Zusammenhänge

- den Sachverhalt angemessen formulieren können
- Beispiele für den Sachverhalt angeben können
- wissen, unter welchen Voraussetzungen der Sachverhalt gilt
- den Sachverhalt begründen können
- Konsequenzen des Sachverhalts kennen
- Anwendungen des Sachverhalts kennen

Verfahren

- wissen, was man damit erreicht
- wissen, wie es geht
- es auf Beispiele anwenden können
- wissen, unter welchen
 Voraussetzungen es funktioniert
- wissen, warum es funktioniert

(Vollrath & Roth, 2012, S. 48 ff.)

Fundamentale Ideen Beispiel: Linearität

Sei $U \subseteq \mathbb{R}^n$ offen, sowie $f: U \to \mathbb{R}^m$.

f heißt in $x_0 \in U$ (total) differenzierbar, wenn es eine **lineare**

Abbildung $A:\mathbb{R}^n \to \mathbb{R}^m$ und eine "Fehlerfunktion"

$$r: \mathbb{R}^n \to \mathbb{R}^m$$
 gibt, so dass

$$f(x_0 + h) = f(x_0) + A(h) + r(h)$$

mit
$$\lim_{h\to 0} \frac{||r(h)||}{||h||} = 0.$$

also eine Matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ mit

$$A(h) = \mathbf{M} \cdot h$$
 für alle $h \in \mathbb{R}^n$

Linearität

»Jedes Kind kann auf jeder Entwicklungsstufe jeder Lehrgegenstand in einer intellektuell ehrlichen Form erfolgreich gelehrt werden.«

(Bruner, 1976, S. 77)

(Krauthausen, 2018, S. 226, © A. Eicks)

$$a \cdot (b_1 + b_2) = a \cdot b_1 + a \cdot b_2$$

$$\begin{vmatrix} 2x + 3y = 11 \\ -4x - 3y = -7 \end{vmatrix}$$

(Danckwerts, 1988)

$$f(x_0 + h) = f(x_0) + \mathbf{M} \cdot h + r(h)$$
mit $\lim_{h \to 0} \frac{\|r(h)\|}{\|h\|} = 0$

Linearität

Anfang 1. Jtsd. n. Chr.

Lineare Interpolation

16. Jh.

systematische Methoden zur Lösung von

linearen Gleichungssystemen

1729

Lösung eines Systems von drei 1715

Gleichungen in drei Unbekannten Taylor: »Linear perspective«

1750

Lösung regulärer linearer Gleichungssysteme in zwei, drei und vier Unbekannten

17./18. Jh.

(m x n)-Schreibweise als abkürzende Schreibweise für eine lineare Substitution

1850

 $(m \times n)$ -Schema als Matrix

18./19. Jh.

Gauß-Algorithmus (Tietze et. al, 2000b, S. 73 ff.; Brückler, 2018, S. 39, 107, 119)

prop. Zuordnungen im Alltag

lineares Fernsehen

Linearität

vertikal

Krauthausen, 2018, S. 226 © A. Eicks

horizontal

$$\begin{vmatrix} 2x + 3y = 11 \\ -4x - 3y = -7 \end{vmatrix}$$

 $\sin(x) \approx x \text{ für } x \approx 0$

historisch

Anfang 1. Jtsd. n. Chr. Lineare Interpolation

1715

Taylor: »Linear perspective«

18./19. Jh.

Gauß-Algorithmus

sinnvoll

fundamental!

Fundamentale Ideen

Eine **Fundamentale Idee** bzgl. eines Gegenstandsbereichs (Wissenschaft, Teilgebiet) ist ein **Denk-, Handlungs-, Beschreibungs- oder Erklärungsschema**, das

- 1. in verschiedenen Gebieten des Bereichs vielfältig anwendbar oder erkennbar ist (Horizontalkriterium),
- 2. auf jedem intellektuellen Niveau aufgezeigt und vermittelt werden kann (Vertikalkriterium),
- 3. in der historischen Entwicklung des Bereichs deutlich wahrnehmbar ist und längerfristig relevant bleibt (**Zeitkriterium**),
- 4. einen Bezug zu Sprache und Denken des Alltags und der Lebenswelt besitzt (Sinnkriterium).

(Schwill, 1994)

Horizontal Vertikal Zeit Sinn

- Approximierung
- Optimierung
- Linearität
- Symmetrie
- Invarianz
- Rekursion
- Vernetzung

(vgl. von der Bank, 2013, S. 103)

- Ordnen
- Strukturierung
- Formalisierung
- Exaktifizierung
- Verallgemeinern
- Idealisieren
- •

- Welche Fundamentalen Ideen liegen hinter den Begriffen, Sätzen und Verfahren?
- Welche Grundvorstellungen und Repräsentationen (graphisch, verbal, numerisch und algebraisch) sind für den Verständnisaufbau entscheidend?
- Wie verhalten sich Ideen und Vorstellungen zueinander und zu früheren und späteren Lerninhalten?
- Wie kann ein Lernpfad angeordnet werden, in dem das Verständnis, zusammen mit den Erkenntnissen der formalen Ebene, aufgebaut wird?

Mathematik strukturieren

Sachgebiete

- Arithmetik
- Algebra
- Geometrie
- Analysis
- Stochastik
- Lineare Algebra/
 Analytische Geometrie

Leitideen

- Zahl und Operation
- Größen und Messen
- Raum und Form
- Strukturen und funktionaler Zusammenhang
- Daten und Zufall

Arten mathematischen Wissens

- Begriffe
- Sachverhalte/ Zusammenhänge
- Verfahren
- metamathematisches Wissen

Fundamentale Ideen

- Approximierung
- Optimierung
- Linearität
- Symmetrie
- Invarianz
- Rekursion
- Vernetzung
- Ordnen
- Strukturierung
- Formalisierung
- Exaktifizierung
- Verallgemeinern
- Idealisieren

-

Literatur

- von der Bank, M.-C. (2013). Fundamentale Ideen, insbesondere Optimierung. In A. Filler & M. Ludwig (Hrsg.), Wege zur Begriffsbildung für den Geometrieunterricht. Ziele und Visionen 2020. Vorträge auf der 29. Herbsttagung des Arbeitskreises Geometrie in der Gesellschaft für Didaktik der Mathematik vom 14. Bis 16. September 2012 in Saarbrücken (S. 83-124). Franzbecker. https://www.math.uni-sb.de/service/lehramt/AKGeometrie/AKGeometrie2012.pdf
- Benölken, R., Gorski, H.-J., & Müller-Philipp, S. (2018). Leitfaden Arithmetik: Für Studierende der Lehrämter. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-22852-1
- Brückler, F. M. (2018). Geschichte der Mathematik kompakt: Das Wichtigste aus Analysis, Wahrscheinlichkeitstheorie, angewandter Mathematik, Topologie und Mengenlehre. Springer Spektrum. https://doi.org/10.1007/978-3-662-55574-3
- Bruner, J. S. (1976). Die Bedeutung der Struktur im Lernprozeß. In A. Holtmann (Hrsg.), Das sozialwissenschaftliche Curriculum in der Schule: Neue Formen und Inhalte (S. 77–90). VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-85275-5
- Danckwerts, R. (1988). Linearität als organisierendes Element zentraler Inhalte der Schulmathematik. Didaktik der Mathematik, 16(2), 149-160.
- Gesetz über die Schulen im Land Brandenburg. https://bravors.brandenburg.de/gesetze/bbgschulg
- Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V., & Weigand, H.-G. (2016). Didaktik der Analysis. Aspekte und Grundvorstellungen zentraler Begriffe (F. Padberg & A. Büchter, Hrsg.; 4. Aufl.). Springer Spektrum. https://doi.org/10.1007/978-3-662-48877-5
- Grundgesetz für die Bundesrepublik Deutschland. https://www.gesetze-im-internet.de/gg/BJNR000010949.html

Literatur

- Henn, H.-W., & Filler, A. (2015). *Didaktik der Analytischen Geometrie und Linearen Algebra: Algebraisch verstehen Geometrisch veranschaulichen und anwenden.* Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43435-2
- Krauthausen, G. (2018). *Einführung in die Mathematikdidaktik* (F. Padberg & A. Büchter, Hrsg.; Mathematik Primarstufe und Sekundarstufe I + II). Springer Spektrum. https://doi.org/10.1007/978-3-662-54692-5
- Krüger, K., Sill, H.-D., & Sikora, C. (2015). *Didaktik der Stochastik in der Sekundarstufe I*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43355-3
- Lompscher, J. (1985). Die Lerntätigkeit als dominierende Tätigkeit des jüngeren Schülers. In J. Lompscher (Hrsg.), Persönlichkeitsentwicklung in der Lerntätigkeit (S. 23-52). Volk und Wissen.
- Ministerium für Bildung, Jugend und Sport des Landes Brandenburg (Hrsg.). (2023). Rahmenlehrplan Brandenburg. Teil C, Mathematik, Jahrgangsstufen 1–10. https://bildungsserver.berlin-brandenburg.de/fileadmin/bbb/unterricht/rahmenlehrplaene/ Rahmenlehrplanprojekt/amtliche_Fassung/getrennt_2023/BB_RLP_2023_Teil_C_Ma_GenF_1.pdf
- Ministerium für Bildung, Jugend und Sport des Landes Brandenburg (Hrsg.). (2022). Rahmenlehrplan für den Unterricht in der gymnasialen Oberstufe im Land Brandenburg. https://bildungsserver.berlin-brandenburg.de/fileadmin/bbb/unterricht/ rahmenlehrplaene/gymnasiale_oberstufe/curricula/2022/Teil_C_RLP_GOST_2022_Mathematik.pdf
- Schwill, A. (1994). Fundamentale Ideen in Mathematik und Informatik. Herbsttagung des Arbeitskreises Mathematikunterricht und Informatik, Wolfenbüttel. http://www.informatikdidaktik.de/didaktik/Forschung/Wolfenbuettel94.pdf

- Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK]. (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife. (Beschluss der Kultusministerkonferenz vom 18.10.2012). https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards- Mathe-Abi.pdf
- Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK]. (2022a). Bildungsstandards für das Fach Mathematik Erster Schulabschluss (ESA) und Mittlerer Schulabschluss (MSA). (Beschluss der Kultusministerkonferenz vom 15.10.2004 und vom 04.12.2003, i.d.F. vom 23.06.2022). https://www.kmk.org/fileadmin/Dateien/ veroeffentlichungen_beschluesse/2022/2022_06_23-Bista-ESA-MSA-Mathe.pdf
- Taylor, B. (1715). Linear perspective. printed for R. Knaplock at the Bishop's-Head in St. Paul's Church-Yard. https://nl.sub.unigoettingen.de/id/0590700700
- Tietze, U.-P., Klika, M., & Wolpers, H. (Hrsg.). (2000a). Mathematikunterricht in der Sekundarstufe II. Band 1: Fachdidaktische Grundfragen, Didaktik der Analysis (2. Aufl.). Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-90568-0
- Tietze, U.-P., Klika, M., & Wolpers, H. (Hrsg.). (2000b). Mathematikunterricht in der Sekundarstufe II. Band 2: Didaktik der Analytischen Geometrie und Linearen Algebra. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86479-6
- Tietze, U.-P., Klika, M., & Wolpers, H. (Hrsg.). (2002). Mathematikunterricht in der Sekundarstufe II. Band 3: Didaktik der Stochastik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-83144-6
- Verfassung des Landes Brandenburg. https://bravors.brandenburg.de/de/gesetze-212792

Literatur

4/4

- Vollrath, H.-J., & Roth, J. (2012). *Grundlagen des Mathematikunterrichts in der Sekundarstufe* (F. Padberg, Hrsg.; 2. Aufl.). Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2855-4
- Weigand, H.-G., Filler, A., Hölzl, R., Kuntze, S., Ludwig, M., Roth, J., Schmidt-Thieme, B., & Wittmann, G. (2018). *Didaktik der Geometrie für die Sekundarstufe I*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56217-8
- Weigand, H.-G., Schüler-Meyer, A., & Pinkernell, G. (2022). *Didaktik der Algebra: Nach der Vorlage von Hans-Joachim Vollrath*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-64660-1