Physics 137B Lecture 9

Keshav Balwant Deoskar

February 11, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	Feb	February 5 - Hydrogen Atom		
	1.1	Review of the Hydrogen Atom	2	
	1.2	Degeneracies	3	

1 February 5 - Hydrogen Atom

1.1 Review of the Hydrogen Atom

Super quickly, let's go over what we know about the Hydrogen Atom. If any of this is unfamiliar, refer to a Griffiths Intro to QM Chapter 4 or any other popular textbook.

• Recall that the Hydrogen Atom is an example of a *central potential* i.e. a Potential with Spherical Symmetry

$$V(\vec{r}) = V(r)$$

• In general, when we have central potentials, we can assume *separable solutions*

$$\underbrace{\psi(\vec{r})}_{nlm} = \underbrace{R(r)}_{nl} \underbrace{Y(\theta, \phi)}_{lm}$$

where the Radial Wavefunction is characterized by the quantum numbers n, l while the Spherical Wavefunction is characterized by l, m.

• The Schrodinger Equation then separates into radial and spherical parts

Radial:
$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} R(r) \right) - \frac{2mr^2}{\hbar^2} \left(V(r) - E \right) R(r) = l(l+1)R(r)$$

Spherical: $\frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial}{\partial \theta} Y(\theta, \phi) \right) \frac{1}{\sin^2(\theta)} \frac{\partial^2 Y(\theta, \phi)}{\partial \phi^2} = -l(l+1)Y(\theta, \phi)$

• The solutions to the Spherical Equation are called the *Spherical Harmonics* and are given by

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{(l-m)!(2l+1)}{(l+m)!}} \frac{e^{i\phi m}}{\sqrt{4\pi}} P_l^m(\theta,\phi)$$

where $P_l^m(\theta, \phi)$ is an associated Legendre Polynomial. They have the following Normalizataion condition

$$\int d\Omega Y_{lm}^*(\theta,\phi)Y_{l'm'}(\theta,\phi) = \delta_{l,l'} \cdot \delta_{m,m'}$$

ullet The particular central potential which describes the Hydrogen atom is the $Coulombic\ Potential$

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$

• Solving the Schrodinger Equation, we find the Eigen-energies are given by

$$E_n = -\frac{n}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right) \frac{1}{n^2} = \frac{E_1}{n^2}$$

Notice that the energies only depend on n, so we have degeneracies due to both l and n.

• The natural lengthscale for this problem is the **Bohr Radius**, and we can express the energies in terms of the Bohr Radius, $a = 4\pi\epsilon_0 \hbar^2/(m_e e^2)$ as

$$E_1 = -\frac{\hbar^2}{a^2} \frac{1}{n^2}$$

2

• The general solutions to the Schrodinger Equation with the Coulombic Potential are given by

$$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$

$$m \in [-l,l]$$
 and $0 \leq l < n$

1.2 Degeneracies

We label the state $\psi_{nlm}(r,\theta,\phi)$ as $|nlm\rangle$