

Qualidade de serviço em redes com comutação de pacotes: controle de fluxo, escalonamento e descarte de pacotes

Modelação e Desempenho de Redes e Serviços Prof. Amaro de Sousa (asou@ua.pt) DETI-UA, 2023/2024

Controlo de fluxos em redes com comutação de pacotes

Considere-se uma rede com comutação de pacotes em que cada ligação tem uma capacidade máxima de transmissão.

Em serviços de dados baseados em transferência de ficheiros:

- o emissor de cada fluxo ambiciona enviar cada ficheiro à taxa de transmissão máxima que a rede lhe permite;
- a taxa de transmissão de cada fluxo pode ser dinâmica ou pode ser atribuída previamente.

<u>Controlo de fluxo</u>: como regular o emissor de forma dinâmica para que a taxa de transmissão seja a taxa máxima que a rede pode suportar em cada instante de tempo.

<u>Controlo de taxa de transmissão</u>: como regular o emissor de forma a que ele não ultrapasse a taxa de transmissão previamente atribuída.

Mecanismos de escalonamento e de descarte de pacotes

Considere-se uma rede com comutação de pacotes em que em cada interface de saída de cada ligação existe uma fila de espera para condicionar temporariamente os pacotes a transmitir pela interface. Em cada interface de saída de cada ligação:

<u>Disciplina de escalonamento</u>: algoritmo que decide a ordem pela qual são transmitidos pela ligação os pacotes de diferentes fluxos que estão na fila de espera

• impõe assim diferentes atrasos médios (average delays) a diferentes fluxos ao definir a ordem de transmissão dos pacotes.

<u>Método de descarte de pacotes</u>: método que decide como os pacotes dos diferentes fluxos são aceites na fila de espera quando a ligação está ocupada com a transmissão de outro pacote

• impõe assim diferentes taxas de perda de pacotes (*packet loss rates*) a diferentes fluxos ao definir que pacotes são descartados.

Sumário do Módulo

Controlo de Fluxos em Redes com Comutação de Pacotes:

Primeira Parte:

- Noções básicas de controlo de fluxos em redes com comutação de pacotes
- Controlo de fluxos de pacotes baseado em janelas extremo-aextremo

Segunda Parte:

- Mecanismos de controlo de taxas de transmissão de fluxos de pacotes
- Atribuição de taxas de transmissão a fluxos de pacotes segundo o princípio de equidade do tipo max-min

Sumário do Módulo

Mecanismos de escalonamento e de descarte de pacotes

Primeira Parte:

Caracterização das disciplinas de escalonamento de pacotes

Segunda Parte:

 Disciplinas de escalonamento de pacotes: FIFO, com prioridades e que funcionam de forma rotativa

Terceira Parte

 Disciplinas de escalonamento de pacotes que funcionam por aproximação ao sistema GPS

Quarta Parte

- Métodos de descarte de pacotes
- Ilustração da combinação de disciplinas de escalonamento com métodos de descarte de pacote na arquitectura DiffServ do IETF.

Controlo de Fluxos em Redes com Comutação de Pacotes

Primeira parte:

- Noções básicas de controlo de fluxos em redes com comutação de pacotes
- Controlo de fluxos de pacotes baseado em janelas extremo-a-extremo

Controlo de fluxo - introdução

O <u>tráfego efetivo</u> reflete a quantidade de serviço suportada por uma rede com comutação de pacotes.

O <u>atraso médio</u> reflete a qualidade de serviço proporcionada por uma rede com comutação de pacotes.

Controlo de fluxo: mecanismo de realimentação que estabelece um compromisso entre o tráfego efetivo e o atraso médio por forma a manter o atraso médio dentro de limites aceitáveis:

 Quando o tráfego oferecido é reduzido, é aceite na sua totalidade pelo algoritmo de controlo de fluxo e, neste caso,

tráfego efetivo = tráfego oferecido

 Quando o tráfego oferecido é excessivo, o algoritmo de controlo de fluxo rejeita parte dele e, neste caso,

tráfego efetivo = tráfego oferecido – tráfego rejeitado

• À medida que o algoritmo de encaminhamento aumenta o atraso médio, o controlo de fluxo reduz o tráfego efetivo.

Controlo de fluxo - introdução

Os algoritmos de controlo de fluxo devem idealmente observar os seguintes requisitos:

- Estabelecer um bom compromisso entre:
 - a quantidade de serviço (o tráfego efetivo, sujeito eventualmente à garantia de uma taxa de transmissão mínima) e
 - a qualidade de serviço (medida, por exemplo, a partir do atraso médio e da taxa de pacotes perdidos)
- Garantir um tratamento equitativo dos diferentes fluxos de pacotes, ao fornecer a qualidade de serviço requerida.

Gestão de recursos: tráfego efetivo vs. equidade

Considere-se o exemplo da figura assumindo que a capacidade de cada ligação é 100.

Tráfego efetivo máximo:

Fluxo
$$1 = 0$$
, Fluxos $2,3,4 = 100$

Tráfego efetivo total = 0+100+100+100 = 300

Partilha equitativa dos recursos:

Fluxo
$$1 = 25$$
, Fluxos $2,3,4 = 75$

Tráfego efetivo total = 25+75+75+75 = 250

Máxima equidade (i.e., mesma taxa de transmissão a todos os fluxos):

Fluxos
$$1,2,3,4 = 50$$

Tráfego efetivo total =
$$50+50+50+50 = 200$$

Controlo de fluxo através de janelas

- Considere um fluxo de pacotes de um emissor A para um recetor B.
- Por cada pacote recebido, o recetor B notifica o emissor A através do envio para A de uma <u>permissão</u>:
 - Uma permissão pode ser transmitida num pacote de controlo dedicado ou pode ser encavalitada (*piggybacked*) num pacote de dados enviado no sentido contrário.
- Quando recebe uma permissão, o emissor A fica autorizado a enviar mais um pacote para o recetor B.
- Um esquema de controlo de fluxos pode ser combinado com um protocolo ARQ (Automatic Repeat Request) de controlo de erros
 - neste caso, os pacotes são numerados (sequence numbers)
 e as permissões indicam o número de pacotes recebidos (acknowledgment numbers) sem erros

Controlo de fluxo através de janelas

- Um fluxo de pacotes entre o emissor A e o recetor B diz-se <u>controlada através de janelas</u> se existir um limite máximo para o número de pacotes que, tendo sido transmitidos por A, não foram ainda notificadas como tendo sido recebidos por B.
- O limite máximo é designado por <u>tamanho da janela</u>, ou simplesmente, janela.
- O emissor e o recetor podem ser dois nós da rede, um terminal e o nó de entrada da rede ou os dois terminais que estão nos extremos do fluxo.

De seguida, considera-se a estratégia de *janelas extremo-a-extremo* (*end-to-end*):

- para cada fluxo de pacotes, o controlo de fluxos é implementado entre o seu emissor e o seu recetor
- estratégia usada pelo TCP nas redes TCP/IP

Janelas extremo-a-extremo

- No controlo de fluxos através de janelas, a taxa de transmissão do emissor é reduzida à medida que as permissões demoram mais tempo a regressar.
- Assim, se o percurso de encaminhamento do fluxo estiver congestionado, a diferença de tempo entre o envio de cada pacote e a receção da sua permissão aumenta o que obriga o emissor a reduzir a sua taxa de transmissão (aliviando o congestionamento do percurso).
- Além disso, o recetor pode atrasar intencionalmente o envio de permissões para reduzir a taxa de transmissão do fluxo com o objetivo de, por exemplo, evitar a sobrecarga do seu buffer de receção.

Janelas extremo-a-extremo

- Considere-se o tamanho da janela dado por W, em número de pacotes (pode ser noutras unidades como por exemplo Bytes no TCP).
 - Cada vez que um pacote é recebido no nó destino, é enviada uma permissão autorizando o envio de um novo pacote.
- Considere-se o atraso de ida-e-volta dado por d e o tempo de transmissão médio de cada pacote dado por X (i.e., o tráfego efetivo máximo disponível na rede é 1/X, em pacotes por segundo):
 - ✓ Se $d \le WX$, a transmissão de W pacotes demora mais que o atraso de ida-e-volta; assim, o emissor pode transmitir à velocidade máxima de 1/X pacotes por segundo.
 - ✓ Se d > WX, o controlo de fluxos está ativo pois o atraso de idae-volta é tão elevado que W pacotes são transmitidos antes da receção da permissão relativa ao primeiro dos pacotes.

Então, o ritmo de transmissão é dado por:

$$r = \min\left\{\frac{1}{X}, \frac{W}{d}\right\}$$

Ilustração das janelas extremo-a-extremo

Considere-se W = 6 pacotes do emissor A para o recetor B.

 $d \le WX$ (a transmissão de 6 pacotes demora mais tempo que o atraso de ida-e-volta d) \to o 7° pacote pode ser transmitido logo após o 6° pacote

Ilustração das janelas extremo-a-extremo

Considere-se W = 6 pacotes do emissor A para o recetor B.

d > WX (a transmissão de 6 pacotes demora menos tempo que o atraso de ida-e-volta d) \rightarrow o 7º pacote só pode ser transmitido quando o emissor A recebe a permissão do 1º pacote

Janelas extremo-a-extremo

Exemplo: X = 1 mseg. e janela W = 5, 10 e 15 pacotes.

$$r = \min\left\{\frac{1}{X}, \frac{W}{d}\right\}$$

- ✓ Para valores $d \le WX$, o emissor transmite ao ritmo máximo $r = 1/10^{-3} = 1000$ (em pacotes/segundo)
- ✓ Para valores d > WX, o controlo de fluxos está ativo e o emissor transmite ao ritmo r = W/d (em pacotes/segundo)

Dimensionamento do tamanho da janela

Existe um compromisso entre tráfego efetivo e atraso:

- por um lado, a janela deve ser pequena para limitar o número de pacotes na rede, evitando assim grandes atrasos e congestão;
- por outro, a janela deve ser grande para permitir a transmissão ao ritmo máximo (i.e., tráfego efetivo máximo) a todos os fluxos em condições de tráfego moderado na rede.

De qualquer modo, é sempre desejável que cada fluxo possa transmitir ao ritmo máximo quando não existe nenhum outro fluxo ativo na rede.

Esta condição impõe um limite inferior ao tamanho da janela. Se $d \le WX$ então o fluxo pode transmitir à velocidade máxima pelo que o tamanho da janela (em número de pacotes) deverá ser dado por

$$W = \left\lceil \frac{d}{X} \right\rceil$$

onde $\lceil z \rceil$ representa o menor inteiro não inferior a z e d deverá ser o menor atraso de ida-e-volta proporcionado pela rede.

Exemplo 1

Considere a rede com comutação de pacotes da figura em que o atraso de propagação de cada ligação é 10 mseg em cada sentido. A rede suporta dois fluxos: A→D com pacotes de tamanho médio 1000 bytes e C→D com pacotes de tamanho médio 500 bytes. A ambos os fluxos é aplicado um mecanismo de controle de fluxos baseado no método das janelas extremo-a-extremo e em ambos os casos, as permissões têm um tamanho fixo de 100 Bytes. Determine o tamanho mínimo (em número de pacotes) das janelas de emissão garantindo que cada fluxo pode emitir ao ritmo máximo quando o outro não está a emitir pacotes.

Exemplo 1 - resolução

A \rightarrow D com pacotes de tamanho médio 1000 bytes C \rightarrow D com pacotes de tamanho médio 500 bytes $W \ge \left\lceil \frac{d}{X} \right\rceil$ A $0 \le \left\lceil \frac{d}{X} \right\rceil$ A $0 \le \left\lceil \frac{d}{X} \right\rceil$ B $0 \le \left\lceil \frac{d}{X$

$$W_{AD} \ge \left\lceil \frac{8 \times 1000}{160000} + 0.01 + \frac{8 \times 1000}{80000} + 0.01 + \frac{8 \times 100}{80000} + 0.01 + \frac{8 \times 100}{160000} + 0.01 \right\rceil = \left\lceil \frac{0.205}{0.1} \right\rceil = 3 \text{ pacotes}$$

$$W_{CD} \ge \left\lceil \frac{\frac{8 \times 500}{80000} + 0.01 + \frac{8 \times 500}{80000} + 0.01 + \frac{8 \times 100}{80000} + 0.01 + \frac{8 \times 100}{80000} + 0.01}{\frac{8 \times 500}{80000}} \right\rceil = \left\lceil \frac{0.16}{0.05} \right\rceil = 4 \text{ pacotes}$$

Limitações do controlo de fluxo baseado em janelas extremo-a-extremo

- Não permite assegurar uma taxa mínima de transmissão. Quantos mais fluxos forem submetidos na rede, menor é o tráfego efetivo que cada fluxo obtém.
- 2. Não fornece um controlo adequado do atraso. Considerem-se n fluxos com controlo de fluxos ativo através de janelas com tamanho fixo $W_1, ..., W_n$. O número total de pacotes e permissões é $\sum_{i=1}^n W_i$

e o número de pacotes é $\sum_{i=1}^{n} \beta_i W_i$ onde β_i é um valor entre 0 e 1.

Pelo teorema de Little, o atraso médio por pacote é

$$T = \frac{\sum_{i=1}^{n} \beta_i W_i}{\lambda}$$

onde λ é o tráfego efetivo de todos os fluxos. À medida que o número de fluxos aumenta, o tráfego efetivo tende para um valor constante (limitado pela capacidade das ligações). Assim, o atraso médio por pacote aumenta aproximadamente de forma proporcional ao número de fluxos.

Controlo de Fluxos em Redes com Comutação de Pacotes

Segunda parte:

- Mecanismos de controlo de taxas de transmissão de fluxos de pacotes
- Atribuição de taxas de transmissão a fluxos de pacotes segundo o princípio de equidade do tipo max-min

Controlo de taxas de transmissão

- A função de controlo de fluxos pode atribuir a cada fluxo uma taxa de transmissão máxima compatível com as suas necessidades.
- Essa taxa pode, por exemplo, ser definida na fase de estabelecimento de um circuito virtual (redes IP com RSVP, redes MPLS).
- De seguida, consideram-se dois métodos para controlar a taxa de transmissão:
 - por janelas
 - através de *leaky bucket* (usado pela arquitetura *Integrated Services* (IntServ) nas redes IP)

Controlo de taxas de transmissão por janelas (I)

- Considere-se que foi atribuída uma taxa de transmissão de r pacotes por segundo a um determinado fluxo (de um emissor para um recetor).
- Uma possibilidade para garantir esta taxa poderia ser aceitar no emissor, quando muito, um pacote em cada 1/r segundos.
- No entanto, este esquema tende a introduzir grandes atrasos quando a fonte que gera os pacotes no emissor é em rajada.
- Neste caso, é preferível aceitar no emissor W pacotes em cada W/r segundos (permite rajadas de W pacotes).

Controlo de taxas de transmissão por janelas (II)

Se foi atribuído a um determinado fluxo: (i) uma taxa de transmissão de *r* pacotes/segundo e (ii) uma janela de *W* pacotes, então:

- 1.O emissor mantém um contador x que indica, em cada instante, o número de pacotes dessa janela que ainda pode ser transmitido (x é inicializado a W).
- 2. Sempre que um pacote é transmitido, o contador x é decrementado e passados W/r segundos é novamente incrementado (exige um temporizador por cada pacote transmitido).
- 3.Os pacotes só são enviados para a rede se x > 0 (o número máximo de temporizadores é W).

Nota: O método do controlo de fluxo por janelas extremo-a-extremo é semelhante a este com a diferença apenas de que o contador é incrementado por cada permissão recebida.

Desvantagem: este método é computacionalmente pesado pois exige W temporizadores simultâneos por cada fluxo.

24

Controlo de taxas de transmissão por leaky bucket

- Neste método, o contador é incrementado periodicamente em cada 1/r segundos, até um máximo de W pacotes.
- O método pode ser visto da seguinte forma (modelo leaky bucket):
 - existe uma fila de espera de pacotes e uma fila de espera de permissões, com capacidade para W permissões;
 - é gerada uma nova permissão em cada 1/r segundos;
 - os pacotes só são transmitidos quando existe uma permissão disponível na fila de espera respetiva.

Vantagem: este método é computacionalmente menos pesado pois exige apenas 1 temporizador por fluxo para definir os instantes de geração de permissões.

permissões à taxa 1/*r*

Atribuição de taxas de transmissão

- Considere a rede da figura em que as ligações têm todas capacidade para 120 pacotes/s.
- Uma solução equilibrada (*fair*) seria atribuir a todos os fluxos uma taxa de $1/3 \times 120 = 40$ pacotes/s.
- No entanto, não faz sentido restringir a taxa do fluxo 5 a 40 pacotes/s, pois este fluxo pode usar 80 pacotes/s sem prejudicar os fluxos 1, 2, 3 e 4.

Equidade do tipo max-min

- Surge assim o conceito de equidade do tipo max-min (*max-min fairness*).
- Segundo este princípio, maximizam-se os recursos atribuídos aos fluxos que podem usar menos recursos.
- Uma forma alternativa de formular este princípio:
 - Maximizam-se as taxas atribuídas a cada fluxo, respeitando a restrição segundo a qual um incremento na atribuição ao fluxo i não conduz a uma diminuição da taxa atribuída a qualquer outro fluxo cuja taxa seja menor ou igual que a de i.

Exemplo 2

Considere a rede com comutação de pacotes da figura.

A rede suporta 5 fluxos de pacotes: de A para B, de A para C, de A para D, de B para D e de B para E.

A rede permite controlar a taxa de transmissão máxima de cada fluxo através de um qualquer mecanismo adequado.

Calcular que taxas de transmissão máxima se devem atribuir a cada fluxo segundo o princípio de equidade do tipo *max-min*.

Exemplo 2 - resolução

5 fluxos de pacotes:

de A para B de A para C

de A para D

de B para D

de B para E

1ª iteração:

- a ligação AB atribui 300/3 = 100 Kbps por fluxo
- a ligação BC atribui 300/2 = 150 Kbps por fluxo
- a ligação BD atribui 240/2 = 120 Kbps por fluxo
- a ligação CE atribui 80/1 = 80 Kbps por fluxo

O menor valor é o da ligação CE: é atribuído 80 Kbps ao fluxo B→E.

2ª iteração:

- a ligação AB atribui 300/3 = 100 Kbps por fluxo
- a ligação BC atribui (300-80)/1 = 220 Kbps por fluxo
- a ligação BD atribui 240/2 = 120 Kbps por fluxo

O menor valor é o da ligação AB: é atribuído 100 Kbps aos fluxos $A \rightarrow B$, $A \rightarrow C$ e $A \rightarrow D$.

3ª iteração:

- a ligação BD atribui (240–100)/1 = 140 Kbps por fluxo

É atribuído 140 Kbps ao fluxo B→D.

Mecanismos de Escalonamento e de Descarte de Pacotes em Redes com Comutação de Pacotes

Primeira parte:

Caracterização das disciplinas de escalonamento de pacotes

Equidade das disciplinas de escalonamento

Quando uma ligação está congestionada (*i.e.*, a sua fila de espera não está vazia), o problema mais básico que se coloca à função de escalonamento é:

divisão de um recurso <u>escasso</u> por fluxos com <u>iguais</u> <u>direitos</u> mas com <u>diferentes necessidades</u> de utilização desse recurso.

Idealmente, a atribuição deve ser feita de acordo com o princípio de equidade *max-min*:

- Os recursos são atribuídos aos fluxos por ordem crescente de necessidade.
- A nenhum fluxo é atribuída uma quantidade de recursos maior do que a sua necessidade.
- A fluxos cuja necessidade não tenha sido satisfeita é atribuída uma igual quantidade de recursos.

Equidade max-min com direitos iguais

Considere-se:

- um conjunto de fluxos 1, 2, ..., n com necessidades $x_1, x_2, ..., x_n$ e ordenados pelas suas necessidades $(x_1 \le x_2 ... \le x_n)$;
- uma ligação com capacidade C.

A atribuição dos recursos da ligação é efetuada do seguinte modo:

- Inicialmente todos os fluxos têm direito a d = C/n
- d é menor que x₁?
 - se sim, atribui-se d a todos os fluxos, i.e., aos fluxos 1, 2, ..., n;
 - se não, atribui-se x_1 ao fluxo 1 e os fluxos 2, 3, ..., n têm direito a $d = d + (d x_1)/(n 1)$
- d é menor que x₂?
 - se sim, atribui-se d aos fluxos 2, 3, ..., n;
 - se não, atribui-se x_2 ao fluxo 2 e os fluxos 3, 4, ..., n têm direito a $d = d + (d x_2)/(n 2)$
- E assim sucessivamente...

Exemplo 1

Considere-se uma ligação com capacidade de 128 Mbps e 4 fluxos de tráfego de 8, 36, 48 e 128 Mbps. Determine que recursos são atribuídos a cada fluxo pelo princípio de equidade max-min quando todos os fluxos têm direitos iguais.

i) O fluxo 1 tem direito a d = 128/4 = 32 Mbps.

Como o fluxo 1 gera menos que 32 Mbps, <u>o fluxo 1</u> fica com 8 Mbps. Sobram 32 - 8 = 24 Mbps.

ii) O fluxo 2 tem direito a d = 32 + 24/3 = 40 Mbps.

Como o fluxo 2 gera menos que 40 Mbps, <u>o fluxo 2</u> fica com 36 Mbps. Sobram 40 - 36 = 4 Mbps.

ii) O fluxo 3 tem direito a d = 40 + 4/2 = 42 Mb/s.

Como o fluxo 3 (e o fluxo 4) geram mais de 42 Mbps, os fluxos 3 e 4 ficam com 42 Mbps.

Equidade max-min com direitos diferentes

São atribuídos pesos aos fluxos proporcionais aos seus direitos. A atribuição de recursos é feita de acordo com o princípio weighted max-min fair.

Neste caso:

- Os recursos são atribuídos aos fluxos por ordem crescente de necessidade, estando esta normalizada em relação ao peso.
- A nenhum fluxo é atribuído uma quantidade de recursos maior do que a sua necessidade.
- A fluxos cuja necessidade não tenha sido satisfeita é atribuída uma quantidade de recursos proporcional ao seu peso.

Exemplo 2

Considere uma ligação com capacidade de 128 Mbps e 4 fluxos de tráfego de 8, 36, 48 e 128 Mbps. Determine que recursos são atribuídos a cada fluxo quando os fluxos têm pesos 1, 1, 3 e 3, respetivamente.

i) Fluxo 1 :
$$1/(1+1+3+3) \times 128 = 16$$
 Mbps

Fluxo 2 : $1/(1+1+3+3) \times 128 = 16$ Mbps

Fluxo 3: $3/(1+1+3+3) \times 128 = 48$ Mbps

Fluxo 4 : $3/(1+1+3+3) \times 128 = 48$ Mbps

Atribui-se 8 Mbps ao fluxo 1 (<16 Mbps) e 48 Mbps ao fluxo 3.

Sobram (16 - 8) + (48 - 48) = 8 Mbps.

ii) Fluxo 2 :
$$16 + 1/(1+3) \times 8 = 18$$
 Mbps

Fluxo 4 : $48 + 3/(1+3) \times 8 = 54$ Mbps

Atribui-se 18 Mbps ao fluxo 2 (<36 Mbps) e 54 Mbps ao fluxo 4 (<128 Mbps).

Comparação dos Exemplos 1 e 2

Capacidade da ligação: 128 Mbps

Fluxos:	1 8	2	3	4
Débito de transmissão (Mbps):		36	48	128
Pesos:	1 8	1	1	1
Atribuição (Mbps):		36	42	42
Pesos:	1	1	3	3
Atribuição (Mbps):	8	18	48	54

- Quando os pesos são todos iguais, os fluxos 1 e 2 conseguem todo o seu débito porque são os fluxos com menor débito de transmissão
- Quando os fluxos 3 e 4 têm 3 vezes maior peso que os fluxos 1 e 2, conseguem maior débito enquanto que o fluxo 2 já não tem todo o seu débito de transmissão.

Proteção nas disciplinas de escalonamento

Idealmente, a função de escalonamento deve procurar proteger os fluxos bem comportados dos fluxos mal comportados.

Um fluxo mal comportado é um fluxo que envia tráfego a uma taxa superior à taxa a que tem direito (de acordo com o princípio de atribuição de recursos em vigor).

Como veremos à frente:

- as disciplina de escalonamento do tipo FIFO ou com prioridades não protegem os fluxos bem comportados dos fluxos mal comportados;
- por exemplo, as disciplinas de escalonamento do tipo round-robin conseguem.

Disciplinas de escalonamento

As disciplinas de escalonamento podem classificar-se em disciplinas com e sem conservação de trabalho (*work conserving*):

- numa disciplina com conservação de trabalho, a ligação só está inativa (i.e., não está a seu usada para transmitir pacotes) se não houver qualquer pacote à espera de ser transmitido;
- numa disciplina sem conservação de trabalho, a ligação pode estar inativa mesmo que haja pacotes na fila de espera.

Todas as disciplinas de escalonamento que iremos abordar são disciplinas com conservação de trabalho e são as seguintes:

- (1) por ordem de chegada (FIFO),
- (2) com base em prioridade estrita,
- (3) de uma forma rotativa (RR, WRR, DRR),
- (4) por aproximação ao sistema GPS (WFQ, SCFQ).

Mecanismos de Escalonamento e de Descarte de Pacotes em Redes com Comutação de Pacotes

Segunda parte:

 Disciplinas de escalonamento de pacotes: FIFO, com prioridades e que funcionam de forma rotativa

First-In-First-Out (FIFO)

- Os pacotes de todos os fluxos são transmitidos pela sua ordem de chegada.
- Não envolve processamento de ordenação nem de classificação de pacotes.
- Não permite diferenciação de qualidade de serviço (o atraso médio na fila de espera é igual para os pacotes de todos os fluxos).
- Quando a fila de espera não está vazia, fluxos com n vezes mais tráfego recebem n vezes mais taxa de serviço pelo que os fluxos bem comportados não são protegidos.

Prioridade máxima Prioridade média Frioridade baixa Prioridade baixa

Prioridade Estrita

- Os pacotes classificados como de maior prioridade são sempre transmitidos antes dos pacotes de menor prioridade (os pacotes com a mesma prioridade são transmitidos com a disciplina FIFO).
- Não envolve processamento de ordenação.
- Envolve classificação dos pacotes de acordo com a prioridade.
- Permite diferenciação da qualidade de serviço (o atraso médio na fila de espera é menor para os pacotes de maior prioridade).
- Fluxos de pacotes de maior prioridade podem impedir que os fluxos de menor prioridade recebam qualquer serviço.

- Existe uma fila por fluxo de pacotes e o algoritmo seleciona um pacote de cada fila n\u00e3o vazia de forma rotativa.
- Não permite diferenciação de qualidade de serviço.
- Ao contrário do FIFO, o RR serve o mesmo número de pacotes de todos os fluxos ativos (i.e. fluxos com pacotes na fila).
- Fluxos de pacotes maiores têm maior taxa de serviço.
- Protege os fluxos bem comportados (os fluxos mal comportados apenas penalizam o seu próprio atraso na fila de espera).

Weighted Round Robin (WRR)

- É atribuído um peso ϕ_i a cada fila de espera proporcional à taxa de serviço a proporcionar a cada fluxo em situação de congestão.
- Em cada ciclo, o WRR serve um número de pacotes de cada fila de espera tal que a soma dos seus tamanhos (em bytes) é proporcional ao peso da fila.
- É necessário conhecer a priori o comprimento médio dos pacotes.
- A ligação pode ficar demasiado tempo a servir cada fluxo de pacotes o que tem um impacto negativo no jitter introduzido pela ligação.

Weighted Round Robin (WRR)

No exemplo da figura, se o comprimento médio (em Bytes) dos pacotes de cada fluxo for:

$$L_1 = 50, L_2 = 500, L_3 = 1500$$

Os pesos normalizados são:

$$\varphi_1 = 0.5/50 = 1/100 = 60/6000$$

$$\varphi_2 = 0.75/500 = 3/2000 = 9/6000$$

$$\varphi_3 = 1/1500 = 4/6000$$

Número de pacotes por ciclo:

$$\Phi_1 = 60, \ \Phi_2 = 9, \ \Phi_3 = 4$$

Deficit Round Robin (DRR)

- Em cada ciclo, o DRR serve uma quantidade de bytes até um valor máximo designado por <u>limiar</u>.
- A diferença entre a quantidade servida e o limiar é contabilizada em forma de <u>crédito</u> para o ciclo seguinte.
- Quando uma fila está vazia, o crédito respetivo é colocado a zero.
- Se se considerarem limiares diferentes para as diferentes filas, a taxa de serviço de cada fluxo é proporcional ao limiar da sua fila de espera.
- Ao contrário do WRR, não é necessário saber o comprimento médio dos pacotes.

Deficit Round Robin (DRR)

limiar = 1000 bytes (para todos os fluxos)

1º Ciclo:

- a) fila 1 não é servida, obtém crédito de 1000
- b) fila 2 é servida, obtém crédito de 200
- c) fila 3 não é servida, obtém crédito de 1000

2º Ciclo:

- a) fila 1 é servida, obtém crédito de 500
- b) fila 2 está vazia, fica com crédito a 0
- c) fila 3 é servida, obtém crédito de 800

Mecanismos de Escalonamento e de Descarte de Pacotes em Redes com Comutação de Pacotes

Terceira parte:

 Disciplinas de escalonamento de pacotes que funcionam por aproximação ao sistema GPS

Generalized Processor Sharing (GPS)

- Algoritmo ideal que proporciona equidade perfeita, baseado num modelo de fluídos, em que o tráfego é considerado infinitamente divisível.
 - Exemplo: num dado instante, 50% da capacidade de uma ligação é utilizada por um fluxo e 50% por outro fluxo.
- Existe uma fila de espera por fluxo e é atribuído um peso ϕ_i a cada fluxo.
- Quando um pacote chega a uma fila, se nenhum outro pacote da mesma fila estiver a ser transmitido, este começa imediatamente a ser transmitido, em paralelo com os pacotes das outras filas, a uma taxa de serviço proporcional ao seu peso.
- É um algoritmo impossível de realizar na prática, mas constitui uma boa base teórica para o desenvolvimento de outros algoritmos.

Exemplo 3

Considere-se uma ligação de 64 Kbps com 2 filas de espera de pesos $\phi_1 = 3$ e $\phi_2 = 1$, em que os 2 fluxos de pacotes são servidos pela disciplina de escalonamento ideal GPS. Chegam a esta ligação os seguintes pacotes:

- pacote 1 à fila 1 com 62 Bytes em t = 0,
- pacote 1 à fila 2 com 32 Bytes em t = 4 ms e
- pacote 2 à fila 1 com 18 Bytes em t = 6 ms.

Determinar os instantes em que os pacotes são servidos (i.e., os instantes de tempo em que termina a transmissão de cada pacote).

Ligação: 64 Kbps

2 filas de espera: $\phi_1 = 3$ e $\phi_2 = 1$

Chegam:

- pacote 1 à fila 1 com 62 Bytes (t = 0),
- pacote 1 à fila 2 com 32 Bytes (t = 4 ms) e
- pacote 2 à fila 1 com 18 Bytes (t = 6 ms).

Resolução do Exemplo 3

- O pacote 1 da fila 1 é servido inicialmente a 64 Kb/s. Em t = 4 ms, foram servidos $(64\text{Kb/s})\times(4\text{ms}) = 256$ bits = 32 Bytes do pacote 1 da fila 1. A partir daqui, a fila 1 é servida a $(3/4)\times64$ Kb/s = 48 Kb/s e a fila 2 a $(1/4)\times64$ Kb/s = 16 Kb/s.
- Com estas taxas, o pacote 1 da fila 1 demora $((62-32)\times8)/(48\text{Kb/s}) = 5 \text{ ms}$ a finalizar a sua transmissão e o pacote 1 da fila 2 demora $(32\times8)/(16\text{Kb/s}) = 16 \text{ ms}$. Assim, <u>o pacote 1 da fila 1 termina a sua transmissão em t = 4 + 5 = 9 ms</u>. Neste instante, inicia-se a transmissão do pacote 2 da fila 1 porque chegou no instante t = 6 ms.
- O pacote 2 da fila 1 demora $(18\times8)/(48\text{Kb/s}) = 3 \text{ ms a ser transmitido. Assim, o pacote 2}$ da fila 1 termina a sua transmissão em t = 9 + 3 = 12 ms.
- A partir de t = 12 ms, o pacote 1 da fila 2 é transmitido a 64 Kb/s. Como até este instante foram transmitidos $(16\text{Kb/s}) \times (8\text{ms}) = 128$ bits = 16 Bytes, os restantes 16 Bytes demoram $(16 \times 8)/(64\text{Kb/s}) = 2$ ms. Assim, o pacote 1 da fila 2 termina a transmissão em t = 12 + 2 = 14 ms.

Weighted Fair Queuing (WFQ)

É uma aproximação ao sistema GPS: o WFQ tenta servir os pacotes pela ordem em que terminariam de ser transmitidos no sistema GPS.

Sempre que chega um pacote a uma fila, é atribuído ao pacote um *Finish Number* (*FN*) que indica a ordem pela qual ele será enviado relativamente aos outros pacotes.

Round Number (RN) é uma variável real que cresce no tempo a uma taxa inversamente proporcional aos pesos dos fluxos ativos.

Num intervalo de tempo $[\tau_i, \tau_{i+1})$ em que o número de fluxos ativos se mantenha constante:

$$RN(\tau_i + t) = RN(\tau_i) + \frac{1}{\sum_{j \text{ ativos}}} t$$
 $t \in [\tau_i, \tau_{i+1})$

O RN é processado sempre que o número de fluxos ativos se altera:

- quando um pacote chega de um fluxo que não tem pacotes no sistema;
- quando um pacote de um fluxo termina de ser transmitido e o fluxo não tem nenhum outro pacote na fila de espera.

Quando o pacote k com comprimento L_k pertencente à fila i chega, é-lhe atribuído o finish number $FN_{i,k}$ dado por:

$$FN_{i,k} = \max(FN_{i,k-1}, RN) + \frac{L_k/C}{\phi_i}$$
51

Self Clock Fair Queuing (SCFQ)

A principal desvantagem do WFQ é o peso computacional do cálculo do *RN*.

Por forma a evitar o cálculo do RN do WFQ, o SCFQ substitui este parâmetro pelo valor do FN do pacote que está a ser transmitido, FN_s , qualquer que seja o fluxo a que pertence.

Assim, quando o pacote k com comprimento L_k pertencente à fila i chega, é-lhe atribuído o *finish number* $FN_{i,k}$ dado por:

$$FN_{i,k} = \max(FN_{i,k-1}, FN_s) + \frac{L_k}{\phi_i}$$

Não se utiliza o valor da capacidade da ligação (*C*), uma vez que não é necessário saber o tempo que o pacote demoraria a ser servido no sistema GPS.

Apesar do SCFQ ser de muito menor complexidade que o WFQ, pode não ser tão justo para pequenos intervalos de tempo (i.e., não se aproxima tão bem ao GPS como o WFQ).

Exemplo 4

Considere-se uma ligação de 64 Kbps com 2 filas de espera de pesos $\phi_1 = 3$ e $\phi_2 = 1$. Chegam a esta ligação os seguintes pacotes:

- pacote 1 à fila 1 com 62 Bytes em t = 0,
- pacote 1 à fila 2 com 32 Bytes em t = 4 ms e
- pacote 2 à fila 1 com 18 Bytes em t = 6 ms.

Determinar os instantes em que os pacotes são servidos (i.e., os instantes de tempo em que termina a transmissão de cada pacote) considerando que os 2 fluxos de pacotes são servidos por uma:

- (a) uma disciplina de escalonamento WFQ
- (b) uma disciplina de escalonamento SCFQ

Exemplo 4 – resolução de (a)

Ligação: 64 Kbps

2 filas de espera: $\phi_1 = 3$ e $\phi_2 = 1$

Chegam:

- pacote 1 à fila 1 com 62 Bytes (t = 0),
- pacote 1 à fila 2 com 32 Bytes (t = 4 ms) e
- pacote 2 à fila 1 com 18 Bytes (t = 6 ms).

- Em t = 0 ms, RN = 0 e $FN_{1,1} = 0 + (62 \times 8)/64000/3 = 2.58 \times 10^{-3}$. O pacote 1 da fila 1 é transmitido em $(62 \times 8)/(64 \text{Kb/s}) = 7.75$ ms. Assim, o pacote 1 da fila 1 termina a sua transmissão em t = 0 + 7.75 = 7.75 ms.
- Em t = 4 ms: $RN = 0 + (4 \times 10^{-3})/3 = 1.33 \times 10^{-3}$ $FN_{2,1} = 1.33 \times 10^{-3} + (32 \times 8)/64000/1 = 5.33 \times 10^{-3}$
- Em t = 6 ms: $RN = 1.33 \times 10^{-3} + (6 \times 10^{-3} 4 \times 10^{-3})/4 = 3.33 \times 10^{-3}$ $FN_{1.2} = \max(2.58 \times 10^{-3}, 3.33 \times 10^{-3}) + (18 \times 8)/64000/3 = 4.08 \times 10^{-3}$
- Em t = 7.75 ms, como $FN_{1,2} < FN_{2,1}$, o pacote 2 da fila 1 começa a ser transmitido. O pacote 2 da fila 1 é transmitido em $(18\times8)/(64\text{Kb/s}) = 2.25$ ms. Assim, <u>o pacote 2 da</u> fila 1 termina a sua transmissão em t = 7.75 + 2.25 = 10 ms.
- Em t = 10 ms, o pacote 1 da fila 2 começa a ser transmitido. O pacote 1 da fila 2 é transmitido em $(32\times8)/(64\text{Kb/s}) = 4$ ms. Assim, o pacote 1 da fila 2 termina a sua transmissão em t = 10 + 4 = 14 ms.

Exemplo 4 – resolução de (b)

 $FN_{i,k} = \max(FN_{i,k-1}, FN_s) + \frac{L_k}{\phi_i}$

Ligação: 64 Kbps

2 filas de espera: $\phi_1 = 3$ e $\phi_2 = 1$

Chegam:

- pacote 1 à fila 1 com 62 Bytes (t = 0),
- pacote 1 à fila 2 com 32 Bytes (t = 4 ms) e
- pacote 2 à fila 1 com 18 Bytes (t = 6 ms).

- Em t = 0 ms, $FN_{1,1} = 0 + (62 \times 8)/3 = 165.3$. O pacote 1 da fila 1 é transmitido em $(62 \times 8)/(64 \text{Kb/s}) = 7.75$ ms. Assim, o pacote 1 da fila 1 termina a sua transmissão em t = 0 + 7.75 = 7.75 ms.
- Em t = 4 ms: $FN_{2.1} = 165.3 + (32 \times 8)/1 = 421.3$
- Em t = 6 ms: $FN_{1.2} = \max(165.3, 165.3) + (18 \times 8)/3 = 213.3$
- Em t = 7.75 ms, como $FN_{1,2} < FN_{2,1}$, o pacote 2 da fila 1 começa a ser transmitido. O pacote 2 da fila 1 é transmitido em $(18\times8)/(64\text{Kb/s}) = 2.25$ ms. Assim, o pacote 2 da fila 1 termina a sua transmissão em t = 7.75 + 2.25 = 10 ms.
- Em t = 10 ms, o pacote 1 da fila 2 começa a ser transmitido. O pacote 1 da fila 2 é transmitido em $(32\times8)/(64\text{Kb/s}) = 4$ ms. Assim, o pacote 1 da fila 2 termina a sua transmissão em t = 10 + 4 = 14 ms.

Desempenho do GPS com controlo de taxa de transmissão por *leaky bucket*

O *Leaky Bucket* é um mecanismo de controlo de taxas de transmissão que permite impor um majorante ao tráfego gerado por um dado fluxo.

Se $A_i(\tau,t)$ representar a quantidade de tráfego (em Bytes) do fluxo i que é submetido à rede no intervalo de tempo $[\tau, t]$, então:

$$A_i(\tau,t) \le \sigma_i + \rho_i(t-\tau)$$

Desempenho do GPS com controlo de taxa de transmissão por *leaky bucket*

Numa disciplina GPS, se designarmos por $S_i(\tau,t)$ o tráfego (em Bytes) de um fluxo i que é servido num intervalo de tempo $[\tau, t)$, então:

$$S_i(\tau,t) \ge r_i(t-\tau)$$
 em que $r_i = \frac{\phi_i}{\sum_i \phi_j} C$

A quantidade máxima de tráfego em espera $Q_{i,\max}(t)$ do fluxo i, desde um instante em que o fluxo não tinha tráfego no sistema ($\tau = 0$) até um qualquer instante t é:

$$Q_{i,\max}(t) = A_{i,\max}(0,t) - S_{i,\min}(0,t)$$

$$= \sigma_i + \rho_i t - r_i t$$

$$\leq \sigma_i \qquad \iff r_i \geq \rho_i$$

O atraso máximo D_i é o tempo necessário para transmitir todo o tráfego em espera, que na pior das hipóteses é servido à taxa mínima de serviço r_i . Assim, se $r_i \geq \rho_i$, o atraso máximo de qualquer pacote do fluxo i é:

$$D_i = \frac{\sigma_i}{r_i}$$

Desempenho do WFQ com controlo de taxa de transmissão por *leaky bucket*

Numa disciplina WFQ, o atraso máximo é maior que no GPS porque a informação é transmitida em pacotes.

Considere um fluxo *i* formatado por um *leaky bucket* com parâmetros σ_i e ρ_i que atravessa *n* ligações:

 C_i - capacidade da ligação j

 r_i - largura de banda reservada para o fluxo i em todas as ligações $(r_i \ge \rho_i)$

 L_i - tamanho máximo dos pacotes do fluxo i

 $L_{
m max}$ - tamanho máximo dos pacotes de todos os fluxos

Prova-se que o atraso máximo (D_i) que os pacotes do fluxo i sofrem é:

$$D_i = \frac{\sigma_i + (n-1)L_i}{r_i} + \sum_{j=1}^n \frac{L_{\text{max}}}{C_j} + \Gamma$$

em que Γ é o atraso total de propagação de todas as ligações.

Exemplo 5

Considere um fluxo de pacotes de comprimento máximo de 200 Bytes formatado por um *leaky bucket* com parâmetros σ = 1000 bytes e ρ = 150 Kbps. O fluxo atravessa 8 ligações todas com capacidade 100 Mbps servidas por uma disciplina WFQ. O comprimento máximo dos pacotes de todos os fluxos é de 1500 bytes. O atraso de propagação total é 2 mseg. Qual a taxa (em Mbps) que é necessário reservar em todas as ligações para este fluxo, por forma a garantir um atraso máximo extremo-a-extremo de 20 mseg?

$$D_i = \frac{\sigma_i + (n-1)L_i}{r_i} + \sum_{j=1}^n \frac{L_{\text{max}}}{C_j} + \Gamma$$

$$0.02 = \frac{1000 \times 8 + 7 \times 200 \times 8}{r} + 8 \times \frac{1500 \times 8}{100 \times 10^{6}} + 0.002$$

$$r = \frac{1000 \times 8 + 7 \times 200 \times 8}{0.018 - 8 \times \frac{1500 \times 8}{100 \times 10^6}} = 1127 \text{ Kbps} = 1.127 \text{ Mbps}$$

Mecanismos de Escalonamento e de Descarte de Pacotes em Redes com Comutação de Pacotes

Quarta parte:

- Métodos de descarte de pacotes
- Ilustração da combinação de disciplinas de escalonamento com métodos de descarte de pacote na arquitectura DiffServ do IETF

Os métodos de descarte de pacotes podem ser classificados quanto a:

- Posição de descarte
- Prioridade de descarte
- Grau de agregação
- Descarte antecipado

Posição de descarte

- <u>Cauda da fila</u> Normalmente usado por omissão; mais simples de implementar (o pacote não chega a entrar na fila).
 - Em muitos casos, a fila tem muitos pacotes pertencentes a poucos fluxos. Se o pacote que chega não pertence a nenhum desses fluxos, a estratégia não é justa.
- Posição aleatória Escolhe-se aleatoriamente um pacote (entre todos os da fila + o novo) para ser eliminado (computacionalmente pesado).
 - Os fluxos com mais pacotes na fila são mais penalizados: estratégia mais justa.
- <u>Cabeça da fila</u> Retira-se o pacote mais antigo da fila e aceitase o que chegou (computacionalmente leve).
 - Tão bom como a posição aleatória em termos de justiça.
 - Útil quando o controle de fluxo é baseado em perdas de pacotes (porquê? relembrar controlo de congestão do TCP!) 62

Prioridades de descarte

- O emissor ou a rede (o policiador de um domínio DiffServ)
 podem marcar alguns pacotes com maior prioridade de
 descarte. Estes, em situação de congestionamento serão os
 primeiros a ser descartados.
- Quando um pacote é fragmentado e um dos fragmentos é descartado, os restantes fragmentos podem (e devem) também ser descartados pois deixam de ter qualquer utilidade.
 - Podia ser usado no protocolo IP? Relembrar utilização da flag 'more fragments' e do campo Fragment Offset.
- Um método de descarte possível consiste em dar maior prioridade de descarte aos pacotes que passaram por menos ligações (*i.e.*, usaram menos recursos).
 - Este método não pode ser implementado no protocolo IP (porquê? relembrar utilização do campo TTL no IPv4)

Grau de agregação

Agregação de fluxos

- O método de descarte pode considerar os fluxos individualmente ou de forma agregada.
 - Na forma agregada, o método é aplicado a cada pacote do agregado, sem tomar em consideração o fluxo a que pertence.
 - Quanto mais fluxos forem agregados, menor a proteção entre os fluxos pertencentes ao mesmo agregado.

Agregação da memória dedicada às filas de espera

- Se existe uma fila de espera por fluxo de pacotes e a memória é partilhada por todas as filas, consegue-se uma atribuição de memória *max-min fair* quando se descarta o último pacote da fila mais longa (*i.e.*, da fila com um maior número de pacotes).
 - Com o WFQ, isto corresponde a descartar o pacote com maior Finish Number de entre todos os fluxos.

Descarte antecipado

Descarte quando a fila de espera está cheia:

 Quando a fila enche por um largo período (a ligação está muito comgestionada), múltiplos pacotes são descartados provocando a reação simultânea de todas as ligações TCP afetadas; o tráfego tende a variar ciclicamente entre períodos de baixo débito e períodos de congestão.

<u>Descarte antecipado (RED - Random Early Discard):</u>

- Quando cada pacote chega à fila, ele é descartado com uma probabilidade proporcional à ocupação da fila; evita-se o sincronismo do controle de congestão das ligações TCP.
- Não proporciona diferenciação de qualidade de serviço.

<u>Descarte antecipado pesado (WRED – Weighted RED):</u>

- Atribuem-se diferentes probabilidades de descarte a pacotes pertencentes a diferentes fluxos (ou agregados de fluxos).
- Quanto menor a probabilidade de descarte, menor é a taxa de perda de pacotes que o fluxo (ou o agregado) sofre.

RED e WRED

No RED:

- <u>Limite Mínimo (m)</u>: quando um pacote chega e a ocupação da fila f é menor que o limite mínimo (f < m), o pacote é sempre aceite na fila.
- <u>Limite Máximo (M)</u>: quando um pacote chega e a ocupação da fila f é maior que o limite máximo (f > M), o pacote é sempre descartado.
- Mark Probability Denominator (MPD):
 quando um pacote chega e a ocupação
 f está entre os limites mínimo e máximo
 (m ≤ f ≤ M), o pacote é descartado com
 probabilidade (f-m)/(M-m)×MPD

No WRFD:

 São atribuídos diferentes valores de m, M e MPD a diferentes fluxos (ou agregados de fluxos)

66

Exemplo – Arquitectura *DiffServ*

Classes de Serviço

- $Default(DE) \rightarrow DSCP = 000000$
 - serviço best-effort com uma única fila de espera do tipo FIFO
- Expedited Forwarding (EF) → DSCP = 101110
 - serviço tipo "linha alugada virtual"
 - disponibiliza controle de perdas, do atraso e da variância do atraso dentro de uma determinada largura de banda máxima
- Assured Forwarding (AF)
 - fornece uma Qualidade de Serviço relativa entre até 4 classes AF
 - em cada classe AF, pode haver até 3 níveis de precedência para descarte de pacotes (em caso de congestionamento)

AF Codepoints	AF1	AF2	AF3	AF4
Low drop precedence	001010	010010	011010	100010
Medium drop precedence	001100	010100	011100	100100
High drop precedence	001110	010110	011110	100110

Possível Esquema de Escalonamento do DiffServ

WRED (Weighted Random Early Discard)

