Karatsuba algorithm

- 1. What is the Karatsuba algorithm used for?
 - Sorting arrays
 - Matrix multiplication
 - Exponentiation
 - Fast integer multiplication

Ans: Fast integer multiplication

- 2. Who developed the Karatsuba algorithm?
 - John von Neumann
 - Donald Knuth
 - Anatolii Alexeevitch Karatsuba
 - Edsger Dijkstra

Ans: Anatolii Alexeevitch Karatsuba

- 3. Which mathematical operation does the Karatsuba algorithm optimize?
 - Addition
 - Subtraction
 - Multiplication
 - Division

Ans: Multiplication

- 4. In the Karatsuba algorithm, how are large numbers divided?
 - Into individual digits
 - Into binary digits
 - Into blocks of equal size
 - Into prime factors

Ans: Into binary digits

- 5. What is the key idea behind the Karatsuba algorithm?
 - Divide and conquer
 - Dynamic programming
 - Randomized algorithms
 - Bit manipulation

Ans: Divide and conquer

- 6. Which step of the Karatsuba algorithm involves recursive calls?
 - Addition of partial products
 - Multiplication of the high-order halves
 - Multiplication of the low-order halves
 - Combination of the partial results

Ans: Multiplication of the low-order halves

- 7. Which of the following is NOT a benefit of the Karatsuba algorithm?
 - Improved speed for large numbers
 - Reduced number of multiplications
 - Reduced memory usage
 - Improved accuracy

Ans: Improved accuracy

- 8. Which of the following is NOT a requirement for using the Karatsuba algorithm?
 - The numbers must be positive
 - The numbers must have the same number of digits
 - The numbers must be in binary representation
 - The numbers must be of equal length or differ by at most one digit

Ans: The numbers must be in binary representation

- 9. Which of the following algorithms is commonly used as an improvement over the Karatsuba algorithm?
 - Toom-Cook multiplication
 - Quicksort
 - Dijkstra's algorithm
 - Merge sort

Ans: Toom-Cook multiplication

10.In which scenario would the Karatsuba algorithm be most beneficial?

- Multiplying small numbers
- Multiplying large prime numbers
- Multiplying numbers with highly varying lengths
- Multiplying numbers with many trailing zeros

Ans: Multiplying numbers with highly varying lengths