

WARNING! READ CAREFULLY!

The following document has not been checked for mistakes, and although every effort possible has been made to ensure that the information in this document is correct, it might still contain some mistakes. The following document is given "as is", without any warranty whatsoever.

Kapitel 5

Differential rechnung auf \mathbb{R}

5.1 Differential (Ableitung), Elementare Eigenschaften

Definition 5.1

Sei $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}$, und $x_0 \in \Omega$

1. f heisst differenzierbar an der Stelle x_0 , falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser Grenzwert wird dann mit $f'(x_0)$ oder $\frac{df}{dx}(x_0)$ bezeichnet. Die Zahl $f'(x_0)$ heisst die Ableitung oder das Differential von f an der Stelle x_0 .

2. f heisst in Ω differenzierbar, falls sie an jeder Stelle $x_0 \in \Omega$ differenzierbar ist. In diesem Fall, nennt sich die Funktion $x \to f'(x)$ Ableitung von f.

Bemerkung 5.2

In der Definition 5.1 verlangen wir also, dass für jede in $\Omega \setminus \{x_0\}$ enthaltene Folge $(x_n)_{n>1}$ mit Grenzwert x_0 , der Limes

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$$

Bemerkung 5.3

Sei f differenzierbar in x_0

Dann ist

$$\frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}$$

die Steigung der Geraden durch die Punkte $(x_0, f(x_0))$ und (x, f(x)).

Geometrisch ist also $f'(x_0)$ die Steigung der Tangenten am Graphen von f im Punkt $(x_0, f(x_0))$. Diese Tangente hat die Gleichung

$$T(x) = f'(x_0)(x - x_0) + f(x_0)$$

Sei

$$f(x) = f'(x_0)(x - x_0) + f(x_0) + R_{x_0}(x) = T(x) + R_{x_0}(x)$$

$$\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} = \frac{f'(x_0)(x - x_0)}{x - x_0} + \frac{R(x)}{x - x_0}$$

Dann folgt

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{R\left(x\right)}{x - x_0} = 0$$

Die lineare Funktion $f(x_0) + f'(x_0)(x - x_0)$ stellt eine gute Approximation der Funktion f(x) dar:

Es gilt

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R_{x_0}(x)$$

 $_{
m mit}$

$$\lim_{x \to x_0} \frac{R(x)}{x - x_0} = 0$$

$$T(x) = f'(x_0)(x - x_0) + f(x)$$

Beispiel 5.4

1.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to mx + b$$

ist überall differenzierbar mit $f'(x) = m, \forall x \in \mathbb{R}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)} = m(x - x_0)$$

2. $f\left(x\right)=\left|x\right|$ ist für alle $x_{0}\neq0$ differenzierbar, aber nicht für $x_{0}=0$

$$f(x) - f(0) = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x \le 0 \end{cases}$$

Also ist

$$\frac{f\left(x\right)-f\left(0\right)}{x-0}=\left\{ \begin{array}{ll} 1 & \text{ fur } x>0 \\ -1 & \text{ fur } x<0 \end{array} \right.$$

und besitzt also keinen Grenzwert für $x \to 0, x \neq 0$

3. exp : $\mathbb{R} \to \mathbb{R}$ ist überall auf \mathbb{R} differenzierbar und exp' $(x) = \exp(x)$. Sei $x_0 \in \mathbb{R}, x_0 \neq x = x_0 + h \in \mathbb{R}$

$$\exp(x_0 + h) - \exp(x_0) = \exp(x_0) (\exp(h) - 1)$$
$$\exp(h) - 1 = h + \frac{h^2}{2!} + \dots$$
$$\Rightarrow \frac{\exp(h) - 1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{3!} + \dots$$

Also

$$\left| \frac{\exp(h) - 1}{h} - 1 \right| \le |h| \left[\frac{1}{2!} + \frac{|h|}{3!} + \frac{|h|^2}{4!} + \dots \right]$$

$$\le |h| \left[1 + |h| + \frac{|h|^2}{2!} + \dots \right]$$

$$\le |h| \exp(h)$$

Woraus

$$\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\exp(h) - 1}{h} = 1$$

und somit

$$\exp'(x_0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\exp(x_0 + h) - \exp(x_0)}{h}$$
$$= \lim_{\substack{h \to 0}} \exp(x_0) \left(\frac{\exp(h) - 1}{h}\right)$$
$$= \exp(x_0)$$

folgt

4. $\sin(x)$ und $\cos(x)$ sind überall differenzierbar und

$$\sin' = \cos$$

 $\cos' = -\sin$

Mit den Additionsgesetzen:

$$\sin(x+h) - \sin(x) = \sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)$$
$$= \sin(x)(\cos(h) - 1) + \cos(x)\sin(h)$$

Nun ist

$$\lim_{h \to 0} \frac{\sin\left(h\right)}{h} = 1$$

und

$$\frac{\cos(h) - 1}{h} = \frac{\cos^2(h) - 1}{h(\cos(h) + 1)} = \frac{\sin^2(h)}{h(\cos(h) + 1)}$$
$$= \frac{1}{\cos(h) + 1} \cdot \frac{\sin^2(h)}{h}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \frac{1}{2} \qquad \qquad 0$$

There is a $\sin h/h$ which doesn't seem to belong anywhere, page 188 bottom right corner

$$\frac{\sin(x+h) - \sin(x)}{h} = \sin(x) \left(\frac{\cos(h) - 1}{h}\right) + \cos(x) \frac{\sin(h)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim\left(\sin(x) \lim_{h \to 0} \left(\frac{\cos(h) - 1}{h}\right)\right)$$

$$+ \cos(x) \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)$$

$$= \sin(x) \lim\left(\frac{\cos(h) - 1}{h}\right)$$

$$+ \cos(x) \lim\left(\frac{\sin(h)}{h}\right)$$

$$= (\sin(x)) \cdot 0 + (\cos(x)) \cdot 1 = \cos(x)$$

Analog

$$\cos(x+h) - \cos(x) = \cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)$$
$$= \cos(x)(\cos(h) - 1) + \sin(x)\sin(h)$$

Da wie oben $\frac{\cos(h)-1}{h} \to 0$, $\frac{\sin(h)}{(h)} \to 1$, folgt $\cos' = -\sin(h)$

Der Zusammenhang zwischen Differenzierbarkeit und Sstetigkeit ist:

Satz 5.5

Sei $\Omega \subseteq \mathbb{R}$, $x_0 \in \Omega$ und $f: \Omega \to \mathbb{R}$ in x_0 differenzierbar. Dann ist f in x_0 stetig. (Also ist "Differenzierbarkeit" ist mehr als "Stetigkeit")

Beweis

f differenzierbar in x_0 . Sei

$$T: \Omega \setminus \{x_0\} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$$

Da f differenzierbar in x_0 ist, hat T ein Grenzwert in x_0 , und

$$\lim_{x \to x_0} T(x) = f'(x)$$

Für $x \neq x_0$

$$f(x) = T(x)(x - x_0) + f(x_0)$$

f(x) ist die Summe von zwei Funktionen $T(x)(x-x_0)$ und $f(x_0) = \text{konstant}$.

Da beide Funktionen einen Grenzwert an der Stelle x_0 besitzen, hat auch f einen Grenzwert in x_0 und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (T(x)) \lim_{x \to x_0} (x - x_0) + \lim_{x \to x_0} f(x_0)$$
$$= f'(x) \cdot 0 + f(x_0) = f(x_0)$$

 \Rightarrow ist stetig in x_0 .

Bemerkung

Die Umkehrung von Satz 5.5 (s. 5) gilt nicht, z.B. f(x) = |x| ist stetig in x = 0 aber nicht differenzierbar.

Beispiel 5.6

Das folgende Beispiel zeigt, dass es stetige Funktionen $f: \mathbb{R} \to \mathbb{R}$ gibt, die an keiner Stelle $x_0 \in \mathbb{R}$ differenzierbar sind. (Von der Waerden (1930))

Sei für $x \in \mathbb{R}$

$$< x > =$$
 Distanz von x zur nächsten ganzen Zahl
$$= \min \{|x-m| : m \in \mathbb{Z} \}$$

Der Graph von $\langle x \rangle$ sieht so aus

Graph von $\frac{10x}{10}$

Sei

$$f(x) := \langle x \rangle + \frac{\langle 10x \rangle}{10} + \frac{\langle 10^2 x \rangle}{100} + \dots$$

Da

$$0 \le <10^n x > \le \frac{1}{2}$$

folgt absolute Konvergenz. Ausserdem sei

$$f_k(x) = \sum_{n=0}^{k} \frac{\langle 10^n x \rangle}{10^n}$$

Dann ist

$$|f(x) - f_k(x)| = \left| \sum_{n=k+1}^{\infty} \frac{\langle 10^n x \rangle}{10^n} \right| \le \frac{1}{2} \left| \sum_{n=k+1}^{\infty} \frac{1}{10^n} \right| = \frac{1}{2} \cdot \frac{10^{-k}}{9}$$

 $\forall k \geq 1 \text{ ist } f_k : \mathbb{R} \to \mathbb{R} \text{ stetig.}$

Da die Folge $(f_k)_{k\geq 1}$ gleichmässig gegen f konvergiert, ist f stetig. Man kann zeigen, dass f in keinem Punkt von $\mathbb R$ differenzierbar ist.

Satz 5.7

Seien $f, g: \Omega \to \mathbb{R}$ Funktionen, $x_0 \in \mathbb{R}$. Wir nehmen an, dass f und g in x_0 differenzierbar sind. Dann sind f + g, $f \cdot g$ und falls $g(x_0) \neq 0$ auch f/g an der Stelle x_0 differenzierbar. Es gelten dann folgende Formeln:

1.
$$(af + bg)'(x_0) = af'(x_0) + bf'(x_0) \quad \forall a, b \in \mathbb{R}$$

2.
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

3.
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

Beweis

1. Für $x \neq x_0$

$$\frac{\left(af+bg\right)\left(x\right)-\left(af+bg\right)\left(x_{0}\right)}{x-x_{0}}=a\left(\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\right)+b\left(\frac{g\left(x\right)-g\left(x_{0}\right)}{x-x_{0}}\right)$$

Da f und g in x_0 differenzierbar sind, folgt, dass af + bg in x_0 differenzierbar ist und

$$(af + bq)(x_0) = af'(x_0) + bf'(x_0)$$

End of beweis is put here, I think it is better if it stays up when the bsp begins. Page 192 middle

Is this supposed to be a fraction?? page 192 bottom; limenet: yes, function f over function σ

2.

$$f(x)g(x) - f(x_0)g(x_0) = g(x)[f(x) - f(x_0)] + f(x_0)[g(x) - g(x_0)]$$

Durch $(x - x_0)$ dividient

$$\frac{f(x) g(x) - f(x_0) g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{(x - x_0)} \cdot g(x_0) + \frac{g(x) - g(x_0)}{(x - x_0)} \cdot f(x_0)$$

Da g in x_0 differenzierbar ist, ist g in x_0 stetig und (Satz 5.5, s. 5)

$$\lim_{x \to x_0} g\left(x\right) = g\left(x_0\right)$$

Die Formel folgt dann aus der Differenzierbarkeit von f und g in x_0

3.

$$\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)}$$

$$= \frac{[f(x) - f(x_0)]g(x_0) - f(x_0)[g(x) - g(x_0)]}{g(x)g(x_0)}$$

Man dividiere duch $x-x_0$ und benutze die Stetigkeit von g in x_0

Beispiel 5.8

1. $n \in \mathbb{N}$, $f_n(x) = x^n$ ist überall differenzierbar und $f_n'(x) = nx^{n-1}$

Beweis

Induktion: $f_0(x) = 1 \ \forall x$

$$f_0'(x) = 0 (= 0 \cdot x^{-1})$$

- $f_1(x) = x, \forall x$
- $f_1'(x) = 1 = 1 \cdot x^{1-1} \checkmark$

Sei $n \geq 2$. Wir nehmen an, dass die Formel für n-1 gilt, i.e.

$$f'_{n-1}(x) = (x^{n-1})' = (n-1)x^{n-2}$$

 $f_n(x) = x^n = x \cdot x^{n-1} = x \cdot f_{n-1}(x)$

Nach 2., Satz 5.7 (s. 6)

$$f'_{n}(x) = (x)' f_{n-1}(x) + x f'_{n-1}(x)$$

$$= f_{n-1}(x) + x (n-1) x^{n-2}$$

$$= x^{n-1} + (n-1) x^{n-1} = nx^{n-1}$$

2.

z.B.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$p'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + a_1$$

Insbesondere ist die Ableitung eines Polynoms von Grad n ein Polynom von Grad $(n-1), n \ge 1$.

3. Sei $R(x) = \frac{p(x)}{q(x)}$, wobei p, q Polynome bezeichnen. R(x) ist eine sogenannte rationale Funktion mit Definitionsbereich

$$\Omega = \{x \in \mathbb{R} : q(x) \neq 0\}$$

$$R'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{q^2(x)}$$

$$R(x) = \frac{x^3 + 1}{x - 1}$$

$$R(x) = \frac{(3x^2)(x - 1) - (x^3 + 1)}{(x - 1)^2}$$

$$= \frac{3x^3 - 3x^2 - x^3 - 1}{(x - 1)^2}$$

$$= \frac{2x^3 - 3x^2 - 1}{(x - 1)^2}$$

Die nächste Rechenregel wird uns erlauben, Funktionen wie z.B. $\exp(x^3 + 1)$ und $\sin(x^2)$ abzuleiten

Satz 5.9 (Kettenregel)

Seien $f: \Omega \to \mathbb{R}$, $g: T \to \mathbb{R}$ Funktionen mit $f(\Omega) \subset T$, und $x_0 \in \Omega$. Wir nehmen an, dass f an der Stelle x_0 und g an der Stelle $f(x_0)$, differenzierbar sind. Dann ist $g \circ f: \Omega \to \mathbb{R}$ an der Stelle x_0 differenzierbar und

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0)$$

Bemerkung

f ist differenzierbar in x_0 , falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert, d.h. für jede in $\Omega \setminus \{x_0\}$ enthaltene Folge $(x_n)_{n \geq 1}$ mit Grenzwert x_0 , existiert der Limes

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

Beweis

Sei $(x_n)_{n>1}$ mit $\lim x_n = x_0, x_n \neq x_0$. Dann gilt

$$\lim f\left(x_n\right) = f\left(x_0\right)$$

(Nach Satz 5.5, s. 5, f differenzierbar \Rightarrow f stetig (in x_0)).

Sei $y_n := f(x_n)$ $(y_0 := f(x_0))$. Wir nehmen an, dass $y_n \neq f(x_0)$, $\forall n$. Dann folgt

$$\frac{(g \circ f)(x_n) - (g \circ f)(x_0)}{x_n - x_0} = \frac{g(f(x_n)) - g(f(x_0))}{x - x_0}
= \left(\frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)}\right) \cdot \left(\frac{f(x_n) - f(x_0)}{x - x_0}\right)
= \left(\frac{g(y_n) - g(x_0)}{y_n - y_0}\right) \cdot \left(\frac{f(x_n) - f(x_0)}{x - x_0}\right)
\downarrow \lim_{n \to \infty} \qquad \downarrow \lim_{n \to \infty}
g'(y_0) \qquad f'(x_0)$$

$$\stackrel{n \to \infty}{=} g'(f(x_0)) f'(x_0)$$

Beispiel 5.10

1. Berechne die Ableitung von $\exp(x^3 + 1)$

$$g(x) = \exp(x)$$
 $f(x) = x^3 + 1$
 $g'(x) = \exp(x)$ $f'(x) = 3x^2$

$$(g \circ f)(x) = \exp(x^3 + 1)$$

 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = [\exp(x^3 + 1)] \cdot 3x^2$

2.

3.

mit

$$(\sin(x^2))' = (g \circ f)'(x)$$

$$g(x) = \sin(x) \qquad f(x) = x^2$$

$$g'(x) = \cos(x) \qquad f'(x) = 2x$$

$$(\sin(x^2))' = \cos(x^2) \cdot 2x$$

(19.7)

$$\left(\left(3x^7 + 11x^6 + 5 \right)^2 \right)' = 2 \left(3x^7 + 11x^6 + 5 \right) \cdot \left(21x^6 + 66x^5 \right)$$

4. Sei $g: \mathbb{R} \to \mathbb{R}$ differenzierbar und $n \in \mathbb{N}$

$$f\left(x\right) = q\left(x\right)^{n}$$

Dann ist

$$f'(x) = ng(x)^{n-1} \cdot g'(x)$$

5.

$$\exp(\exp(x)) = e^{e^x}$$
$$\left(e^{e^x}\right)' = e^{(e^x)} \cdot e^x$$

Der Mittelwertsatz und Folgerungen 5.2

Wichtige Informationen über eine Funktion f lassen sich leicht aus der Ableitung schliessen. Dies geschieht mittels dem Mittelwertsatz . Ein Spezialfalls der Mittelwertsatz ist

Satz 5.12

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Sei $z_+\in[a,b]$ mit $f(z_+)=$ $\max\{f(x):x\in[a,b]\}$. Wir nehmen an, dass $z_+\in(a,b)$. Dann gilt $f'(z_+)=0$ Eine analoge Aussage gilt für z_{-} .

Bemerkung 5.13

- 1. z_+, z_- existieren nach Satz 4.9
- 2. Die Voraussetzung $z_+ \in (a, b)$ ist wichtig, z.B. Sei $f : [0, 1] \to \mathbb{R}, f(x) = x$. Dann ist $z_+ = 1$ und $f'(x) = 1 \neq 0 \ (\forall x \in (a, b))$

Beweis

Sei $z_+ \in (a, b)$. Da $(a, z_+) \neq \emptyset$ und $(z_+, b) \neq \emptyset$, gibt es

$$(x_n)_{n>1} \subset (a,z_+)$$

sowie

$$(y_n)_{n\geq 1}\subset (z_+,b)$$

mit

$$\lim_{n \to \infty} x_n = z_+ = \lim_{n \to \infty} y_n$$

(z.B.
$$x_n = z_+ - \frac{1}{n}, y_n = z_+ + \frac{1}{n}$$
)

Für $n \ge 1$ folgt

$$f'(z_{+}) = \lim_{n \to \infty} \frac{\overbrace{f(x_{n}) - f(z_{+})}^{<0}}{\underbrace{x_{n} - z_{+}}_{<0}} \ge 0$$

$$f(z_{\perp}) = \max\{f(x)\}\$$

$$f(z_{+}) = \max\{f(x)\}\$$

$$f'(z_{+}) = \lim_{n \to \infty} \underbrace{\frac{\int_{0}^{0} (y_{n}) - f(z_{+})}{\underbrace{y_{n} - z_{+}}_{>0}}}_{\leq 0} \leq 0$$

Woraus

$$f'\left(z_{+}\right) = 0$$

folgt.

Satz 5.14 (Mittelwertsatz)

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar, $a\neq b$. Dann gibt es $x_0\in(a,b)$ mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Beweis

Die Idee lässt sich auf den Fall f(a)=f(b)=0 züruckführen und dann den Satz 5.12 (s. 10) anwenden. Die Gleichung für die Sekante durch die Punkte $(a,f(a)),\,(b,f(b))$ ist

$$S(x) = (x - a) \left(\frac{f(b) - f(a)}{b - a}\right) + f(a)$$

Sei nun g(x) = f(x) - S(x). Dann ist g(a) = 0 = g(b)

<u>Fall 1:</u> g ist identisch = 0. Also ist f(x) = S(x) eine Gerade und die Aussage stimmt $\forall x_0 \in (a,b)$

Fall 2: $g \neq 0$. Also ist entweder

$$\max_{x} g(x) > 0 \ \left(\text{oder } \min_{x} g(x) < 0 \right)$$

Im "max"-Fall sei z_{+} mit

$$g(z_{+}) = \max \{g(x) : x \in [a, b]\}$$

Dann ist $z_+ \in (a,b)$ (Da g(a)=g(b)=0, und $g(z_+)>0$) und nach Satz 5.12 (s. 10) $g'(z_+)=0$, d.h.

$$g(z_{+}) = f'(z_{+}) - S'(z_{+}) = 0$$

 $\Rightarrow f'(z_{+}) = S'(z_{+}) = \frac{f(b) - f(a)}{b - a}$

Der "min"-Fall ist analog.

Als erste Anwendung haben wir

Korollar 5.15

Sei $f:[a,b] \to \mathbb{R}$ wie im Satz 5.14 (s. 11)

1. Falls f'(x) = 0, $\forall x \in (a, b)$ folgt, dass f konstant ist.

2. Falls $f'(x) \ge 0$, $\forall x \in (a, b)$ so ist f monoton wachsend.

3. Falls f'(x) > 0, $\forall x \in (a, b)$ so ist f streng monoton wachsend.

4. Falls $f'(x) \leq 0$, $\forall x \in (a, b)$ so ist f monoton fallend.

5. Falls f'(x) < 0, $\forall x \in (a, b)$ so ist f streng monoton fallend.

Beweis

1. Seien $a \le x < y \le b$ beliebig und sei (nach Mittelwertsatz) $x_0 \in (x, y)$ mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0)$$

da $f'(x_0)$ folgt $f(y) = f(x) \Rightarrow f$ ist konstant

2. Seien $a \leq x < y \leq b$ beliebig und $x_0 \in (x, y)$ mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0 > 0)$$

woraus folgt $f(y) \ge f(x)$ folgt $\Rightarrow f$ monoton wachsend.

- 3. Analog
- 4. Analog

V - 12

Beispiel 5.16

1. Bestimme alle differenzierbare Funktionen $f:\mathbb{R}\to\mathbb{R}$ mit $f'=\lambda f$. Offensichtlich erfüllt $t\to e^{\lambda t}$ diese Gleichung

$$f(t) = e^{\lambda t}$$

$$f'(t) = \lambda e^{\lambda t} = \lambda f(t)$$

Betrachten wir

$$\begin{split} g\left(t\right) &= e^{-\lambda t} f\left(t\right) \\ g'\left(t\right) &= -\lambda e^{-\lambda t} f\left(t\right) + e^{-\lambda t} f'\left(t\right) \\ &= e^{-\lambda t} \left(-\lambda f\left(t\right) + f'\left(t\right)\right) \\ &= e^{-\lambda t} \left(0\right) \forall t \\ &= 0 \end{split}$$

Also folgt, dass g konstant ist, d.h.

$$g(t) = C \Rightarrow f(t) = Ce^{\lambda t}$$

Anders gesagt: Die Menge der Lösungen von $f'=\lambda f$ ist ein 1-dimensionaler Vektorraum

$$V = \{ f : \mathbb{R} \to \mathbb{R} \mid f' = \lambda f \} = \{ Ce^{\lambda t} \mid c \in \mathbb{R} \}$$

2.

$$f(x) = \frac{2x}{1+x^2}$$

$$f'(x) = \frac{2(1+x^2) - (2x)(2x)}{(1+x^2)^2}$$

$$= \frac{2-2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f'(x) < 0$$
 für $|x| > 1$
 $f'(\pm 1) = 0$
 $f'(x) > 0$ für $|x| < 1$

x	x < -1	-1 < x < 0	0 < x < 1	x > 1
f'(x)	_	+	+	_
$f\left(x\right)$	¥	7	7	¥

Korollar 5.17 (Bernoulli, L'Hôpital)

Seien $f, g: [a, b] \to \mathbb{R}$ stetig differenzierbar in (a, b) mit $g'(x) \neq 0, \forall x \in (a, b)$. Wir nehmen an, dass

(i)
$$f(a) = 0 = g(a)$$

(ii)
$$\lim_{x \searrow a} \frac{f'(x)}{g'(x)} = A$$

Dann ist $g(x) \neq 0$, $\forall x > a$ und $\lim_{x \searrow a} \frac{f(x)}{g(x)} = A$

Beweis

Falls es $x_1 > a$ gibt mit $g(x_1) = 0$, dann folgt die Existenz von $x_0 \in (a, x_1)$ mit $g'(x_0) = 0$ (MWS.)

Wiederspruch zur Annahme $g'(x) \neq 0$, $\forall x \in (a,b)$. Also $g(x) \neq 0$, $\forall x > a$. Nun sei a < s < b beliebig, und

$$h(x) := \frac{f(s)}{g(s)} \cdot g(x) - f(x) \qquad x \in [a, s]$$

Dann gilt, h(a) = 0 und h(s) = 0, es gibt also $x_s \in (a, s)$ mit $h'(x_s) = 0$, d.h.

$$0 = h'(x_s) = \frac{f(s)}{g(s)} \cdot g'(x_s) - f'(x_s)$$

$$\Rightarrow \frac{f'(x_s)}{g'(x_s)} = \frac{f(s)}{g(s)}$$

Sei nun $s_n \in (a,b)$ beliebig mit $\lim s_n = a$. Da $a < x_{s_n} < s_n$ folgt, $\lim x_{s_n} = a$, und aus (*)

$$\lim \frac{f(s_n)}{g(s_n)} = \lim \frac{f'(x_{s_n})}{g'(x_{s_n})} = A$$

Bemerkung 5.18

- 1. Es gibt die selbe Version für $\lim_{x \nearrow b}$
- 2. (Limes von links und rechts zusammen). Seien $f,g:[a,b]\to\mathbb{R}$ stetig. Sei a< c< b, wir nehmen an, f,g sind in $(a,c)\cup(c,b)$ differenzierbar, $g'(x)\neq 0, \, \forall x\in(a,c)\cup(c,b)$ und
 - (i) f(c) = g(c) = 0

(ii)
$$\lim_{\begin{subarray}{c} x \to c \\ x \neq c \end{subarray}} \frac{f'(x)}{g'(x)} = A$$

Dann ist
$$g(x) \neq 0$$
, $\forall x \in (a,c) \cup (c,b)$ und $\lim_{\substack{x \to c \\ x \neq c}} \frac{f(x)}{g(x)} = A$

Beispiel 5.19

1.
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{3x^2}{2x} = \frac{3}{2}$$

2.
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

3.
$$\lim_{x \to 0} \frac{\sin(x^2)}{x^2} = \lim_{x \to 0} \frac{2x\cos(x^2)}{2x} = \lim_{x \to 0} \cos(x^2) = 1$$

4.
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = -\frac{1}{2}$$

5.
$$\lim_{x \to 0} \frac{\left(e^x - 1 - x - \frac{x^2}{2!}\right)}{x^3} = \lim_{x \to 0} \left(\frac{e^x - 1 - x}{3x^2}\right) = \lim_{x \to 0} \frac{e^x - 1}{6x} = \lim_{x \to 0} \frac{e^x}{6} = \frac{1}{6}$$

Die nächste Anwendung des Mittelwertsatzes ist der sogenannte "Umkehrsatz"

Fundamentale Frage

Sei $f:\mathbb{R}\to\mathbb{R}$ differenzierbar und bijektiv und sei $g:\mathbb{R}\to\mathbb{R}$ die inverse Funktion. Ist dann g auch differenzierbar?

Beispiel

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^3$$

ist überall differenzierbar und bijektiv. Die "Umkehrfunktion"

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \to x^{\frac{1}{3}}$$

ist aber in 0 nicht differenzierbar

$$\frac{g(h) - g(0)}{h} = \frac{h^{\frac{1}{3}}}{h} = h^{-\frac{2}{3}} \to \infty$$
V-15

Man kann folgendes bemerken: Falls $f: \mathbb{R} \to \mathbb{R}$ bijektiv und die Umkehrfunktion $g: \mathbb{R} \to \mathbb{R}$ auch differenzierbar ist, dann folgt aus $(f \circ g)(x) = x$, $\forall x$ und der Kettenregel, dass:

$$f'(g(x))g'(x) = 1 \quad \forall x$$

Insbesondere $f'(x) \neq 0$ $(g'(x) \neq 0)$, $\forall x$. Dies ist also eine notwendige Bedingung zur Existenz der Ableitung von f^{-1}

Satz 5.20 (Umkehrsatz)

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar mit $f'(x)>0, \forall x\in(a,b)$. Seien $c=\inf_x f(x),$ $d=\sup_x f(x)$. Dann ist $f:(a,b)\to(c,d)$ bijektiv und die Umkehrfunktion $f^{-1}:(c,d)\to(a,b)$ ist differenzierbar mit

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \forall x \in (a, b)$$

d.h.

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad \forall y \in (c, d)$$

Beweis

Sei $f'(x) > 0 \Rightarrow f$ streng monoton Wachsend. Da f streng monoton wachsend ist, folgt die erste Behauptung aus dem Zwischenwertsatz für monotone Funktionen (d.h. $f:(a,b)\to(c,d)$ bijektive).

Nun zeigen wir: f^{-1} ist differenzierbar. Sei $y_0 \in (c,d)$, und $(y_k)_{k\geq 1}$ eine Folge in (c,d) lim

$$\lim x_k = y_0 \quad y_k \neq y_0 \quad \forall k \ge 1$$

Dann gibt es eindeutig bestimmte $(x_k)_{k\geq 1}$ in (a,b) mit $f(x_k)=y_k$ (f bijektiv) und $x_0\in (a,b)$ mit $f(x_0)=y_0$. Also ist

$$\frac{f^{-1}(y_k) - f^{-1}(y_0)}{y_k - y_0} = \frac{x_k - x_0}{f(x_k) - f(x_0)}$$

Beachte, dass $x_k \neq x_0$, $\forall k \geq 1$ und dass die Stetigkeit (Satz 4.21) von f^{-1} , $\lim x_k = x_0$ impliziert

$$\begin{pmatrix} f(x_k) = y_k & \Rightarrow & x_k & = & f^{-1}(y_k) \\ & \lim x_k & = & f^{-1}(\lim y_k) \\ & = & f^{-1}(y_0) \\ & = & x_0 \end{pmatrix}$$

Nun ist

$$\frac{x_k - x_0}{f(x_k) - f(x_0)} = \frac{1}{\frac{f(x_k) - f(x_0)}{x_k - x_0}} \to \frac{1}{f'(x_0)}$$

 $\mathrm{da}\ f'\left(x_0\right) \neq 0$

Korollar 5.21

Die Funktion $\log:(0,\infty)\to\mathbb{K}$ ist differenzierbar und $\log'(x)=\frac{1}{x}, \forall x\in(0,\infty)$

Beweis

 $\exp:\mathbb{R}\to (0,\infty)$ erfüllt alle Bedingungen von Satz 5.20 (s. 16)
($\exp'=\exp>0).$ Wir haben also

$$\log (\exp(x)) = x$$

$$\log' \underbrace{(\exp(x))}_{y} \underbrace{(\exp(x))}_{y} = 1$$

$$\log'(y) = \frac{1}{y}$$

Wir definieren mittels "exp" die verallgemeinerte Potenzfunktion $x \to x^{\alpha}$. Sei $\alpha \in \mathbb{R}$: zunächst bemerken wir für $n \in \mathbb{N}$ und x > 0: $x^n = e^{n \log x}$. Wir definieren also für x > 0

$$x^{\alpha} := e^{\alpha \log x}$$

Dann gilt

Korollar 5.22

 $\alpha \in \mathbb{R},\, x \to x^\alpha$ ist differenzierbar und $\left(x^\alpha\right)' = \alpha x^{\alpha-1}$

Exkurs

Die Exponentialfunktion wächst schneller als jedes Polynom

$$e^x > \frac{x^n}{n!} \quad x \ge 0$$

Insbesondere $e^x>x,\,\forall x\geq 0.$ Die log Funktion ist strikt monoton wachsend, Also $e^x>x\Rightarrow x\geq \log(x),\,\forall x>0.$

Für $a>0, x^a>\log(x^a)=a\log(x)$. Also $\log(x)<\frac{x^a}{a}$. Die \log – Funktion wächst also langsamer als jede positive Potenz.

5.3 Die Trigonometrischen und Hyperbolischen Funktionen

 $1. \sin(x)$

 $\sin'(x)=\cos(x)$; d.h. $\sin'(x)>0, \forall x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ und besitzt daher eine differenzierbare Umkehrfunktion

$$\arcsin: (-1,1) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

deren Ableitung wie folgt berechnet wird

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))}$$

Falls $\alpha = \arcsin(x), -\frac{\pi}{2} < \alpha < \frac{\pi}{2}$. So ist

$$\cos^{2}(\alpha) + \sin^{2}(\alpha) = 1$$
$$\cos^{2}(\alpha) + x^{2} = 1$$

d.h. $\cos^2{(\alpha)}=1-x^2$. Da nun $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ folgt aus $\cos{(\alpha)}>0\Rightarrow\cos{(\alpha)}=\sqrt{1-x^2}$. Daraus ergibt sich

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

Analog haben wir

2. $\cos, \mathbb{R} \to \mathbb{R}$

$$\cos:(0,\pi)\to(-1,1)$$

bijektiv und

$$\arccos: (-1,1) \to (0,\pi)$$

ist die inverse Funktion und

$$\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

3.
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $\quad \text{und} \quad$

$$\arctan'(x) = \frac{1}{1+x^2}$$

4. Hyperbelfunktionen

$$\tanh(x) := \frac{\sinh(x)}{\cosh(x)}$$

Dann ist sinh: $\mathbb{R} \to \mathbb{R}$ bijektiv und differenzierbar mit $\sinh'(x) = \cosh(x)$ und somit monotone steigend und $\arcsinh: \mathbb{R} \to \mathbb{R}$ die Inverse

- $\cosh: [0, \infty) \to [1, \infty)$ bijektiv. Inverse: $\operatorname{arccosh}: (1, \infty) \to (0, \infty)$
- $\tanh : \mathbb{R} \to (-1,1)$ ist bijektiv. Inverse: $\operatorname{arctanh} : (-1,1) \to \mathbb{R}$

Dann gilt:

$$\sinh'(x) = \cosh(x)$$
$$\cosh'(x) = \sinh(x)$$
$$\tanh'(x) = \frac{1}{\cosh^2(x)}$$

mit der Beziehung $\cosh^2 + \sinh^2 + 1$ folgt

$$\operatorname{arcsinh}'(x) = \frac{1}{\sqrt{1+x^2}}$$
$$\operatorname{arccosh}'(x) = \frac{1}{\sqrt{x^2-1}}$$
$$\operatorname{arctanh}'(x) = \frac{1}{1-x^2}$$

5.4 Funktionen der Klasse C^m

Sei $\Omega\subset\mathbb{R},\,f:\Omega\to\mathbb{R}$ differenzierbar

Definition 5.23

 $f:\Omega\to\mathbb{R}$ heisst C^1 (von der Klasse C^1), falls f auf Ω differenzierbar ist und $x\to f'(x)$ auf Ω stetig ist.

Notation: $C^{1}(\Omega) = \text{Vektorraum der auf } \Omega C^{1} - \text{Funktionen}$

Beispiel 5.24

1. $\exp, \cos, \sin, \text{Polynom} \in C^1(\mathbb{R})$

2. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

 $\forall x \in \mathbb{R} \backslash \{0\}$

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

In 0:

$$\frac{f(h) - f(0)}{h} = \frac{h^2 \sin\left(\frac{1}{h}\right) - 0}{h} = h \sin\left(\frac{1}{h}\right)$$

Is this "In 0" or

 $\lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0$

Also f'(0) = 0, f ist differenzierbar in $x_0 = 0$. Aber f' ist in 0 nicht stetig. Für $x_n = \frac{1}{n\pi}$ ist

$$f'(x_n) = \frac{2\sin(n\pi)}{n\pi} + (-1)^{n+1} = (-1)^{n+1}$$

 $\lim x_n = 0$, $\lim f'(x_n)$ (insbesondere $\neq f'(0)$) nicht existiert.

Wir haben einen Konvergenzbegriff auf $C^{0}\left(\Omega\right)$ gesehen: Gleichmässige Konvergenz

$$f_n \stackrel{\text{glm.}}{\to} f \text{ falls } \sup_{x \in \Omega} ||f_n - f|| \to 0$$

Falls alle f_n stetig sind, folgt, dass f stetig ist. Für $C^1\left(\Omega\right)$ haben wir

Satz 5.26

Sei $(f_n)_{n\geq 1}$ eine Folge in $C^1(\Omega)$. Wir nehmen an, dass $f_n \stackrel{\text{glm.}}{\to} f$ und $f'_n \stackrel{\text{glm.}}{\to} g$. Dann gilt $f \in C^1(\Omega)$ und g = f'

Beweis

Da $f_n \stackrel{\text{glm.}}{\to} f$ und $f'_n \stackrel{\text{glm.}}{\to} g$, sind f und g stetig Zu Zeigen: f ist differenzierbar und f' = g.

Seien $x \neq x_0$ in Ω . Aus $f_n \stackrel{\text{glm.}}{\longrightarrow} f$ folgt, $\lim_{n \to \infty} f_n\left(x\right) = f\left(x\right)$ und $\lim_{n \to \infty} f_n\left(x_0\right) = f\left(x_0\right)$ $\left| \frac{f\left(x\right) - f\left(x_0\right)}{x - x_0} - g\left(x_0\right) \right| = \lim_{n \to \infty} \left| \frac{f_n\left(x\right) - f_n\left(x_0\right)}{x - x_0} - g\left(x_0\right) \right|$

Mittelwertsatz: $\exists \xi_n$ zwischen x und x_0 , so dass

$$\frac{f_n(x) - f_n(x_0)}{x - x_0} = f'_n(\xi_n)$$

Nun

$$|f'_{n}\left(\xi_{n}\right)-g\left(x_{0}\right)| \leq |f'_{n}\left(\xi_{n}\right)-g\left(\xi_{n}\right)| + |g\left(\xi_{n}\right)-g\left(x_{0}\right)|$$

$$\leq \sup_{\xi \in \Omega} |f'_{n}\left(\xi\right)-g\left(\xi\right)| + |g\left(\xi_{n}\right)-g\left(x_{0}\right)|$$

$$\downarrow \operatorname{Da} f'_{n} \to g \qquad \downarrow \quad \underset{\left(\xi_{n} \to x_{0}\right)}{\operatorname{falls}} \xrightarrow{x \to x_{0}}$$

$$0 \qquad \qquad 0 \qquad (\operatorname{Stet. von} g)$$

Folglich

$$\lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| = 0 \Rightarrow f' = g$$

Beispiel 5.28

Die gleichmässige Konvergenz von $f_n' \to g$ ist notwendig: Sei

$$f_n(x) = \sqrt{\left(\frac{1}{n}\right)^2 + x^2}, x \in (-1, 1)$$

Behauptung

$$f_n(x) \stackrel{\text{glm.}}{\to} f = |x| \text{ für } |x| < 1$$

Beweis

$$|f_n(x) - |x|| = \left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} - |x| \right|$$

$$= \left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} - |x| \right| \cdot \frac{\left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} + |x|}{\left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} + |x| \right|}$$

$$= \frac{\left(\frac{1}{n}\right)^2 + x^2 - (|x|)^2}{\left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} + |x| \right|} = \frac{\left(\frac{1}{n}\right)^2}{\left| \sqrt{\left(\frac{1}{n}\right)^2 + x^2} + |x| \right|} \le \frac{\left(\frac{1}{n}\right)^2}{\left(\frac{1}{n}\right)} \xrightarrow{n \to \infty} 0$$

d.h. $f_n(x) \stackrel{\text{glm.}}{\rightarrow} |x|$

Nun: |x| ist stetig aber nicht differenzierbar

$$f'_{n}(x) = \frac{x}{\sqrt{\left(\frac{1}{n}\right)^{2} + |x|^{2}}} \xrightarrow[n \to \infty]{} \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$g(x) = \begin{cases} 1 & x > 1 \\ 0 & x = 0 \\ -1 & x < 1 \end{cases}$$

 $f'_n(x) \to g(x)$ konvergiert nicht gleichmässig (g nicht stetig in x=0)

Eine sehr wichtige Anwendung von Satz 5.26 (s. 21) ist auf die Eigenschaften von Funktionen, die Summe von Potenzreihen sind. Sei $(a_n)_{n\geq 0}\in\mathbb{R}$. Wir nehmen an

$$\rho:=\frac{1}{\limsup\sqrt[n]{|a_n|}}>0$$

Satz 5.29

Sei $x \in (-\rho, \rho) = \Omega$

$$f\left(x\right) = \sum_{n=0}^{\infty} a_n x^n$$

die Summe der absolut konvergenten Potenzreihe. Dann ist $f \in C^{1}(\Omega)$ und

$$f'(x) = \sum_{n=0}^{\infty} na_n x^{n-1}$$

mit dem selben Konvergenzradius

Beweis

Sei

$$f_k(x) = \sum_{n=0}^{\infty} a_n x^n$$

Sei $0 < r < \rho$. Dann gilt, $\forall x \in (-r, r)$:

$$|f_k(x) - f(x)| \le \sum_{n=k+1}^{\infty} |a_n| r^n \stackrel{n \to \infty}{\to} 0$$

Also $f_k \to f$ gleichmässig auf (-r, r). Da

$$\limsup \sqrt[n]{|na_n|} = \limsup \left(\sqrt[n]{n} \cdot \sqrt[n]{|a_n|} \right)$$
 (Da $\lim \sqrt[n]{n} = 1$) = $\limsup \sqrt[n]{|a_n|} = \rho$

konvergiert

$$\sum_{n=0}^{\infty} n a_n x^{n-1} =: g\left(x\right)$$

absolut $\forall x \in (-\rho, \rho)$. Nun ist

$$f_k'(x) = \sum_{n=0}^k na_n x^{n-1}$$

und es folgt wie oben $f_n'(x) \stackrel{\text{glm.}}{\to} g$. Nach Satz 5.26 (s. 21) folgt, dass f,g stetig und g = f', auf $(-\rho, \rho)$.

Beispiel 5.30

1.

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

$$\exp'(x) = \sum_{n=0}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=0}^{\infty} \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{k=0}^{\infty} \frac{x^k}{k!} = \exp(x)$$

2.

$$f(x) = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad |x| < 1$$

Daraus folgt

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$
eine
nicht
WHAT
Identität

Can't understand word, page 230 very bottom

3.

$$\frac{2}{(1-x)^3} = \sum_{n=2}^{\infty} n(n-1) \cdot x^{n-2}, \quad |x| < 1$$

Definition 5.31

1. $f:\Omega\to\mathbb{R}$ ist m-mal differenzierbar, falls $\underbrace{\left(\left(f'\right)'\ldots\right)'}_{m-\text{mal}}$ existiert. Die

m—te iterierte Ableitung wird mit

$$f^{(m)} = \frac{\partial^m f}{\partial x^m} : \Omega \to \mathbb{R}$$

bezeichnet. Es gilt: $\forall k,l \geq 0, \, f^{(k+l)} = \left(f^{(k)}\right)^{(l)}$

- 2. f ist in $C^m(\Omega)$, falls f m—mal differenzierbar ist, und alle Funktionen $f=f^{(0)},f',f^{(2)},\ldots,f^{(m)}$ sind stetig
- 3. f ist in $C^{\infty}(\Omega)$, falls $f \in C^m(\Omega)$, $\forall m \geq 0$

Korollar 5.32

Unter den Voraussetzungen von Satz 5.29 ist $f(x) = \sum_{n=0}^{\infty} a_n x^n$ in $C^{\infty}(-\rho, \rho)$ Add reference und die Ableitungen von f erhält man durch gliedweises differenzieren.

Formel

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, x \in (-\rho, \rho)$$

$$f'(x) = \sum_{n=0}^{\infty} n a_n x^n$$

$$\vdots$$

$$f^{(k)}(x) = \sum_{n=0}^{\infty} a_n (n) \cdot (n-1) \dots (n-k+1) \cdot x^{n-k}$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n \frac{n!}{(n-k)!} x^{n-k}$$

5.5 Taylorformel

Wir beginnen, als Motivation, mit Polynomen. Sei

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

ein Polynom, grad $P \leq n$. Durch x = (x - a) + a und Umordnen nach Potenzen von (x - a) erhalten wir

$$p(x) = b_0 + b_1(x-a) + b_2(x-a)^2 + \dots + b_n(x-a)^n$$

Beispiel

$$p(x) = x^{3} + x + 1. \text{ Sei } a = 1:$$

$$p(x) = ((x - 1) + 1)^{3} + (x - 1) + 1 + 1$$

$$= (x - 1)^{3} + 3(x - 1)^{2} + (x - 1) + 1 + (x - 1) + 2$$

$$= (x - 1)^{3} + 3(x - 1)^{2} + 4(x - 1) + 3$$

Wir bestimmen jetzt die Koeffizienten b:

$$p(a) = b_0$$

$$p'(x) = b_1 + 2b_2(x - a) + \dots + nb_n(x - a) \Rightarrow p'(a) = b_1$$

$$p''(x) = 2b_2 + 6b_3(x - a) + \dots + n(n - 1)(x - a)^{n-2} \Rightarrow p''(a) = 2b_2$$

Rekursiv: $p^{(j)}(a) = j!b_j$ mit der Konvention $b_j = 0$ für $j \ge n+1$ da $p^{(n+1)} = 0$. Es folgt:

$$p(x) = p(a) + p'(a)(x - a) + \frac{p''(a)}{2!}(x - a)^2 + \dots + \frac{p^{(n)}(a)}{n!}(x - a)^n$$

Beispiel

$$p(x) = x^{3} + x + 1 p(1) = 3$$

$$p'(x) = 3x^{2} + 1 p'(1) = 4$$

$$p''(x) = 6x p''(1) = 6, \frac{p''(1)}{2!} = 3$$

$$p'''(x) = 6 p'''(1) = 6, \frac{p'''(1)}{3!} = 1$$

$$p(x) = 3 + 4(x - 1) + 3(x - 1)^{2} + (x - 1)^{3}$$

Folgendes ist dann naheliegend

Satz 5.33

Sei $[a,b] \subset \Omega \subset \mathbb{R}$ und $f \in C^{m-1}(\Omega)$, m-mal differenzierbar auf Ω . Dann gibt es $c \in (a,b)$:

$$f(b) = f(a) + f'(a)(b-a) + \dots + f^{m-1}(a)\frac{(b-a)^{m-1}}{(m-1)!} + \frac{f^m(c)}{m!}(b-a)^m$$

Beweis

Wir betrachten die Funktion

$$g(x) = f(x) + f'(x)(b-x) + \dots + \frac{f^{m-1}(x)(b-x)^{m-1}}{(m-1)!} + \frac{K(b-x)^m}{m!} - f(b)$$

die auf Ω differenzierbar ist. Dann ist g(b) = 0. Wähle K so dass g(a) = 0. Dann gibt es $c \in (a, b)$ mit g'(c) = 0. Wir berechnen jetzt g'(x):

$$g'(x) = f'(x) + \dots \left(\frac{f^{(j)}(x)(b-x)^j}{j!}\right)' + \dots + K \frac{m(b-x)^{m-1}}{m!}$$

Nun ist

$$\left(\frac{f^{(j)}(x)(b-x)^j}{j!}\right)' = \frac{f^{(j)}(b-x)^{j-1}}{(j-1)!}(-1) + \frac{f^{(j+1)}(x)(b-x)^j}{j!}$$

Woraus folgt:

$$\begin{split} g'(x) = & f'(x) \\ & + \left\{ -f'(x) + \frac{f^{(2)}(x)(b-x)}{1!} \right\} \\ & + \left\{ -\frac{f^{(2)}(x)(b-x)}{1!} + \frac{f^{(3)}(x)(b-x)^2}{2!} \right\} \\ & \vdots \\ & + \left\{ -\frac{f^{(m-1)}(x)(b-x)^{(m-2)}}{(m-2)!} + \frac{f^{(m)}(x)(b-x)^{m-1}}{(m-1)!} \right\} \\ & - K \frac{(b-x)^{m-1}}{(m-1)!} \end{split}$$

Also:

$$g'(x) = \left[f^{(m)}(x) - K \right] \frac{(b-x)^{m-1}}{(m-1)!}$$

Aus g'(c) = 0 folgt $f^m(c) = K$ und g(a) = 0 nimmt folgende Form an:

$$g(a) = 0 = f(a) + f'(a)(b-a) + \dots + \frac{f^{m-1}(c)(b-a)^{m-1}}{(m-1)!} + \frac{f^m(c)}{m!}(b-a)^m - f(b)$$

Korollar 5.34

Sei $f:(c,d)\to\mathbb{R}$ m-mal differenzierbar, seien $x_0,x\in(c,d)$. Dann gibt es $\xi\in(x_0,x)$ mit

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

$$\vdots$$

$$+ f^{m-1}(x_0) \frac{(x - x_0)^{m-1}}{(m-1)!}$$

$$+ \frac{f^m(\xi)(x - x_0)^m}{m!}$$

Wir führen folgende Terminologie ein:

$$T_m f(x; x_0) = f(x_0) + \dots + f^{(m)}(x_0) \frac{(x - x_0)^m}{m!}$$

ist das Taylor Polynom n-ter Ordnung. $(f \in \mathbb{C}^m)$ und

$$R_m f(x; x_0) := f(x) - T_m f(x; x_0)$$

ist der Restterm.

Falls f(m+1)-mal differenzierbar in Ω ist, so ist

$$R_m f(x; x_0) = f^{(m+1)}(\xi) \frac{(x - x_0)^{m+1}}{(m+1)!}, \xi \in (x_0, x_0)$$

Bemerkung

Bei der Differenzierbarkeit haben wir gesehen, dass die lineare Funktion f'(a) + f'(a)(x - a) im folgenden Sinne eine gute Approximation der Funktion f(x) darstellt: Es gilt

$$f(x) = f(c) + f'(a)(x - a) + R_1 f(x; a) = T_1 f(x; a) + R_1 f(x; a)$$

und

$$\lim_{x \to a} \frac{R_1 f(x; a)}{x - a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$

Die Taylorformel gibt nun an, wie mann diese Approximation noch verbessern kann.

$$f(x) = \underbrace{T_m f(x; a)}_{\text{Approximation}} + \underbrace{R_m f(x; a)}_{\text{fehler}}$$

Für diesen Fehler gilt:

$$\lim_{x \to a} \frac{R_m f(x; a)}{(x - a)^m} = 0$$

Das bedeutet, dass wenn x nahe bei a ist, $R_m f(x;a)$ klein ist im Vergleich zu der schon sehr kleinen Grösse $(x-a)^m$.

$$f(x) = f(a) + \dots + \frac{f^{m-1}(a)(x-a)^{m-1}}{(m-1)!} + \frac{f^m(\xi)(x-a)^m}{(m)!}$$

$$f(x) + \frac{f^m(a)(x-a)^m}{(m)!} = T_m f(x;a) + \frac{f^m(\xi)(x-a)^m}{(m)!}$$

$$\Rightarrow f(x) - T_m f(x;a) = \frac{f^m(\xi) - f^m(a)}{m!} (x-a)^m$$

Für den Restterm $R_m f(x; a)$, haben wir somit die Abschätzung

$$R_m f(x; a) = f(x) - T_m f(x; a) = [f^m(\xi) - f^m(a)] \frac{(x-a)^m}{m!}$$

$$|R_m f(x;a)| < \sup_{a < \xi < x} |f^{(m)}(\xi) - f^m(a)| \frac{(x-a)^m}{m!}$$

Falls $f \in C^{m+1},$ können wir denn Mittelwertsatz anwenden. Dann folgt:

$$|R_m f(x;a)| \le \left(\sup_{a < \xi < x} \left| f^{(m+1)}(\xi) \right| \right) |x - a| \frac{(x - a)^m}{m!}$$

$$\le M \frac{(x - a)^{m+1}}{m!}$$

$$\Rightarrow \left| \frac{R_m f(x - a)}{(x - a)^m} \right| \to 0, x \to a$$

Beispiel 5.35

$$f(x) = \sin(x) x_0 = 0$$

$$f'(x) = \cos(x) f'(0) = 1$$

$$f''(x) = -\sin(x) f''(0) = 0$$

$$f'''(x) = -\cos(x) f'''(0) = -1$$

$$f^4(x) = \sin(x) f^4(0) = 0$$

$$f^5(x) = \cos(x) ^5(0) = 1$$

Also

$$\sin x = x - \frac{x^3}{3!} + \frac{\cos(\xi)}{5!} x^5$$

$$T_1(x) = x = T_2(x)$$

$$T_3(x) = x - \frac{x^3}{3} = T_4(x)$$

Insbesondere

$$\left|\sin(x) - x + \frac{x^3}{3}\right| \le \frac{x^5}{5!}$$

liefert für ein kleines |x| eine sehr gute Approximation von, zum Beispiel, $x=\frac{1}{10}$

$$\left| \sin \left(\frac{1}{10} \right) - \frac{1}{10} + \frac{1}{1000} \right| < \frac{1}{10^5 \cdot 5!}$$

$$\sin \left(\frac{1}{10} \right) \approx \frac{1}{10} - \frac{1}{1000} = 0.1 - 0.001 = 0.099$$

Lokale Extrema

Wir haben den folgenden Satz schon gesehen:

Satz 5.12

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Sei $z_+\in(a,b)$ mit $f(z_+)=\max\{f(x):x\in[a,b]\}$. Dann gilt $f'(z_+)=0$

Mittels Taylorformel können wir lokale Extrema (Maxima und Minima) diskutieren.

Sei $\Omega \subseteq \mathbb{R}, f: \Omega \to \mathbb{R}, x_0 \in \Omega$

Definition 5.38

- 1. $x_0 \in \Omega \subset \mathbb{R}$ heisst lokale Maximalstelle (bzw. Minimalstelle) von f, falls es r > 0 gibt s.d. $\forall x \in B_r(x_0), f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0), \forall x \in B_r(x_0)$).
- 2. Die lokale Minimalstelle (bzw. Maximalstelle) heisst strikt, falls $f(x) > f(x_0)$ (bzw. $f(x) < f(x_0)$)
- 3. Eine lokale Extremalstelle ist entweder lokale Minimalstelle oder Maximalstelle.

Falls fan einer lokalen Minimalstelle x_0 differenzierbar ist, so folgt wie im Beweis von Satz $5.12\,$

Maybe add a reference?

$$0 \le \lim_{x \downarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Also $f'(x_0) = 0$. Allgemein gilt:

Satz 5.39

Sei $\Omega \subset \mathbb{R}$, $f : \Omega \to \mathbb{R}$, $f \in C^{\infty}(\Omega)$, $x_0 \in \Omega$. Dann tritt einer der folgenden Fälle ein

1.
$$f^{j}(x_{0}) = 0, \forall j \geq 1$$

- 2. $m := 1 + \max\{j : f^i(x_0) = 0, 1 \le i \le j\} < +\infty$, d.h. $f^m(x_0) \ne 0$, und $f^{(1)}(x_0) = 0 = f^{(2)}(x_0) = \cdots = f^{(n-1)}(x_0) =$
 - (2.1) m ist ungerade, dann ist x_0 kein Extremalstelle.
 - (2.2) m ist gerade und $f^m(x_0) > 0$, dann ist x_0 eine strikte lokale Minimalstelle
 - (2.3) mist gerade und $f^m(x_0)<0,$ dann ist x_0 eine strikte lokale Maximalstelle

Beweis

Chopped content, page

244 top

Falls (1.) nicht eintritt, so tritt (2.) ein. Also sei

$$f^{(1)}(x_0) = f^{(2)}(x_0) = \dots = f^{(m-1)}(x_0) = 0$$
 und $f^{(m)}(x_0) \neq 0$

Jetzt wenden wir Taylorformel an

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{m-1}(x_0)}{m!}(x - x_0)^m + \frac{f^m(\xi)}{m!}(x - x_0)^m$$

für ein $\xi \in (x, x_0)$. Aus $f'(0) = \dots = f^{m-1}(x_0) = 0$ folgt

$$f(x) = f(x_0) + f^m(\xi) \frac{(x - x_0)^m}{m!}, \xi \in (x, x_0)$$

(2.1) m ist ungerade: Falls f an yx_0 ein lokales Minimum hat, so folgt

$$f^{m}(x_{0})^{f^{m}} \stackrel{\text{stetig}}{=} \lim_{\xi \to x_{0}} f^{m}(\xi) = \lim_{\xi \to x_{0}} \frac{f(x) - f(x_{0})}{(x - x_{0})^{m}} \cdot m!$$

Da m ungerade ist

$$(x - x_0)^m > 0, x > x_0 (x - x_0)^m < 0, x < x_0 = \begin{cases} \lim_{x \downarrow x_0} \frac{f(x) - f(x_0)}{(x - x_0)^m} \cdot m! & \ge 0 \\ \lim_{x \uparrow x_0} \frac{f(x) - f(x_0)}{(x - x_0)^m} \cdot m! & \le 0 \end{cases}$$

 $\Rightarrow f^m(x_0)=0$. Widerspruch zur $f^m(x_0)\neq 0.$ Analog für x_0 lokale Maximalstelle

(2.2) Falls m gerade ist, und $f^m(x_0) > 0$ dann folgt aus

$$0 < f^{m}(x_{0}) = \lim_{\xi \to x_{0}} \frac{f(x) - f(x_{0})}{(x - x_{0})^{m}} \cdot m!$$

dass für $x \in (x_0 - \epsilon, x_0 + \epsilon), x \neq x_0, f(x) - f(x_0) > 0 \Rightarrow f(x) > f(x_0), x_0$ ein lokales Minimum.

(2.3) m ist gerade, $f^m(x_0) < 0$, analog.

Graphen

$(2.1) \ m = 3$

 $(2.2) \ m=2$

$$f(x) = (x - x_0)^2 + c$$

$$f'(x) = 2(x - x_0)$$

$$f''(x) = 2 > 0$$

 $(2.3) \ m=2$

$$f(x) = 1 - (x - x_0)^2$$

$$f'(x) = 2(x_0 - x)$$

$$f''(x) = -2 < 0$$

Für mungerade ≥ 3 spricht man von einem Wendepunkt.

Beispiel 5.40

1. Der Fall (1.) tritt man ein z.B. $f(x)=e^{-\frac{1}{x^2}},~x\in\mathbb{R}$ ist auf ganz \mathbb{R} C^∞ und $f^{(j)}(0)=0,~\forall j\geq 1$

2.

$$\begin{split} f(x) &= x^4 - x^2 + 1 \qquad f\left(\pm\frac{1}{\sqrt{2}}\right) = \frac{1}{4} - \frac{1}{2} + 1 = \frac{3}{4} \\ f'(x) &= 4x^3 - 2x = 2x(2x^2 - 1) = 0 \Leftrightarrow x \in \left\{\pm\frac{1}{\sqrt{2}}, 0\right\} \\ f''(x) &= 12x^2 - 2 \\ f'''(0) &= -2 < 0 \Rightarrow x_0 = 0 \text{ Lokale Maximalstelle} \\ f''''\left(\pm\frac{1}{\sqrt{2}}\right) &= 4 > 0 \Rightarrow x_0 = \pm\frac{1}{\sqrt{2}} \text{ Lokale Minimalstelle} \end{split}$$

3. Minimierungseigenschaft des arithmetischen Mittels: Seien $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Wir suchen $x_0 \in \mathbb{R}$, so dass

$$f(x_0) = \sum_{i=1}^{n} (x_0 - a_i)^2$$

minimal ist. Sei

$$f(x) = \sum_{i=1}^{n} (x - a_i)^2 = nx^2 - 2Ax + B$$

wobei

$$A = \sum_{i=1}^{n} a_i \qquad B = \sum_{i=1}^{n} a_i^2$$

 $f(x) \to \infty$ für $|x| \to \infty$. Also gibt es $x_0 \in \mathbb{R}$ mit $f(x_0) = \min f$. Sei x_0 eine solche. Dann folgt $f'(x_0) = 0$ d.h.

$$\sum_{i=1}^{n} 2(x_0 - a_i) = 0 = 2\sum_{i=1}^{n} x_j - \sum_{i=1}^{n} a_i$$

d.h.

$$nx_0 = \sum_{i=1}^n a_i \Rightarrow x_0 = \frac{1}{n} \sum a_i$$

Nun ist f''(x) = 2n > 0, folglich ist $\frac{1}{n} \sum_{i=1}^{n} a_i = x_0$ die gesuchte Minimalstelle.

Konvexe Funtionen

Eine einfache und geometrische Eigenschaften einer Funktion ist Konvexität: Für \mathbb{C}^2 Funktionen kann Konvexität mittels der zweiten Ableitung getestet werden

Definition 5.41

 $f:(a,b)\to\mathbb{R}$ ist konvex, falls $\forall x_0\leq x_1$ und $t\in[0,1]$

$$f(tx_0 + (1-t)x_1) \le tf(x_0) + (1-t)f(x_1)$$

Der Graph der Funktion f liegt unterhalb jeder Verbindungsstrecke zweier seiner Punkte.

Satz 5.42

Sei $f:(a,b)\to\mathbb{R}$ der Klasse C^2 , mit $f''(x_0)\geq 0, \forall x\in(a,b)$. Dann ist f konvex.

Beweis

Seien $x_0 < x_1$ in (a, b)

Wir betrachten

$$g: [0,1] \to \mathbb{R}$$

 $t \mapsto f(tx_0 + (1-t)x_1) = tf(x_0) - (1-t)f(x_1)$

Dann gilt g(0) = g(1) = 0 und

$$g''(t) = f(tx_0 + (1-t)x_1)(x_0 - x_1)^2 \ge 0$$

(Wir möchten beweisen, dass $g \leq 0$). Falls es t gibt mit g(t)>0, dann ist $\max_{t \in [0,1]} g(t)>0$

Sei t_0 so dass

$$g(t_0) = \max_{t \in [0,1]} g(t) > 0$$

Offensichtlich ist $g'(t_0) = 0$. Nun betrachten wir die lineare Taylor entwicklung von g im Punkte t_0 , es gibt $\xi \in (t_0, 1)$ mit

$$0 = g(1) = g(t_0) + g'(t_0)(1 - t_0) + \underbrace{g''(\xi)}_{2!} \underbrace{(1 - t_0)}_{2!} \ge g(t_0) > 0$$

Ein Wiederspruch. Also ist $g(t) < 0, \forall t \in [0,1]$ und f ist konvex

Beispiel 5.43

1. exp ist konvex in \mathbb{R} , $f''(x) = \exp x > 0$

2.
$$f(x) = -\ln x$$
, $x > 0$. $f'(x) = -\frac{1}{x}$, $f''(x) = \frac{1}{x^2} > 0$

3.
$$f(x) = x \ln x, x > 0$$
. $f'(x) = \ln x + 1$, $f''(x) = \frac{1}{x}$

4.
$$f(x) = x^{\alpha}, f'(x) = \alpha x^{\alpha - 1}, x > 0.$$
 $f''(x) = \alpha(\alpha - 1)x^{\alpha - 2} > 0 \Leftrightarrow \alpha > 1$

Satz 5.44

Sei $f:(a,b)\to\mathbb{R}$ konvex. Für alle $x_1,\ldots,x_n\in(a,b)$ und $t_1,\ldots,t_n\in[0,1]$ mit $\sum_{i=1}^n t_i=1$ gilt

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f(x_i)$$

Korollar 5.45

Seien $x_1,\ldots,x_n\in(0,\infty),\,\alpha_1,\ldots,\alpha_n\in[0,1]$ mit $\sum\alpha_i=1.$ Dann gilt

$$\prod_{i=1}^{n} x_i^{\alpha_i} \le \sum_{i=1}^{n} \alpha_i x_i$$

Insbesondere $(\alpha_i = \frac{1}{n}, i \le r \le n)$

$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} x_i$$

Add as an appendix or something page 253.1

Beweis

Die Funktion exp ist konvex. Nun schreiben wir

$$\prod_{i=1}^{n} x_i^{\alpha_i} = \prod_{i=1}^{n} \exp(\alpha_i \ln x_i)$$

$$= \exp\left(\sum_{i=1}^{n} \alpha_i \ln x_i\right)$$

$$\leq \sum_{i=1}^{n} \alpha_i \exp\left(\ln x_i\right)$$

$$= \sum_{i=1}^{n} \alpha_i x_i$$

Beweis 5.44

Induktion über $n \geq 1$.

- Für n = 1 steht $f(1 \cdot x_1) \le 1 \cdot f(x_1)$
- \bullet Für n=2 ist es die Definition der Konvexität.
- Sei nun $n \geq 3$. Wir können annehmen dass $t_1 \neq 1$. (Ansonsten sind alle $t_1 = 0, \forall i \geq 2$ und die Ungleichung ist trivial). Nun schreiben wir

$$\sum_{k=1}^{n} t_k x_k = t_1 x_1 + (1 - t_1) \cdot \left(\frac{\sum_{k=2}^{n} t_k x_k}{1 - t_1} \right)$$

Aus Konvexität folgt dann

$$f\left(\sum t_k x_k\right) \le t_1 f(x_1) + (1 - t_1) \cdot f\left(\sum_{k=2}^n \frac{t_k x_k}{1 - t_1}\right)$$

Nun sind $x_2, x_3, \ldots, x_n, (n-1)$ Punkte. Die Koeffizienten $\frac{t_2}{1-t_1}, \frac{t_3}{1-t_1}, \ldots, \frac{t_n}{1-t_1}$ sind alle ≥ 0 , und deren Summe

$$\sum_{k=2}^{n} \frac{t_k}{1 - t_1} = \frac{1}{1 - t_1} \sum_{k=2}^{n} t_k = \frac{1 - t_1}{1 - t_1} = 1$$

Jetzt kann man die Induktionsannahme anwenden

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \le t_1 f(x_1) + (1 - t_1) \cdot f\left(\sum_{k=2}^{n} \frac{t_k}{1 - t_1} x_k\right)$$

$$\le t_1 f(x_1) + (1 - t_1) \cdot \sum_{k=2}^{n} \left(\frac{t_k}{1 - t_1}\right) \cdot f(x_k)$$

$$= t_1 f(x_1) + \sum_{k=2}^{n} t_k f(x_k)$$

V - 36

Appendix A: Vergleich von arithmetischen und geometrischen Mittel

Arithmetic Geometric Mean (AGM) n = 2:

$$\frac{x_1 + x_2}{2} \ge \sqrt{x_1 \cdot x_2}$$
$$\Rightarrow 2(x_1 + x_2) \ge 4\sqrt{x_1 \cdot x_2}$$

Ein Rechteck mit dem Seiten x_1 und x_2 hat den Gesamtumfang $2x_1+2x_2$. Ein Quadrat mit dem gleichen Flächeninhalt hat den Umfang $4\sqrt{x_1\cdot x_2}$

AGM sagt, dass unter allen Rechtecken mit gleichem Inhalt $A=x_1\cdot x_2$, das Quadrat den kleinsten Umfang hat.