Applications

- Brushed Motor drive applications
- BLDC Motor drive applications
- PWM Inverterized topologies
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters

HEXFET® Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	$\mathbf{3.0m}\Omega$
max.	3.9m Ω
I _D (Silicon Limited)	120A①
I _D (Package Limited)	56A

G	D	S
Gate	Drain	Source

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and dl/dt Capability
- Lead-Free

Ordering Information

Oracining innormation				
Orderable part number	Package Type	Standard Pa	Complete Part Number	
		Form Quantity		Complete Part Number
IRFR7446PBF	D-PAK	Tube/Bulk	75	IRFR7446PBF
IRFR7446TRPBF	D-PAK	Tape and Reel	2000	IRFR7446TRPBF

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	120①	
I _D @ T _C = 100°C	D _D @ T _C = 100°C Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)		_
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	56	Α
I _{DM}	Pulsed Drain Current ②	520	
P _D @T _C = 25°C	Maximum Power Dissipation	98	W
	Linear Derating Factor	0.66	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range	-55 10 + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	125	m l
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ®	251	mJ
I _{AR} Avalanche Current ②		Coo Fig 15 16 000 00h	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 15,16, 23a, 23b	mJ

Thermal Resistance

Symbol	Symbol Parameter		Max.	Units
R _{euc}	Junction-to-Case ®		1.52	
$R_{\Theta JA}$	Junction-to-Ambient (PCB Mount) ®		50	°C/W
R _{eJA}	Junction-to-Ambient ®		110	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$ ②
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		26		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.0	3.9	mΩ	V _{GS} = 10V, I _D = 56A ⑤
			4.4		mΩ	$V_{GS} = 6.0V, I_D = 28A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 40V, V_{GS} = 0V$
				150		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R_{G}	Internal Gate Resistance		1.5		Ω	

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:limited_system} \begin{tabular}{ll} \hline \& Limited by T_{Jmax}, starting $T_J=25^\circ$C, $L=0.08mH$\\ $R_G=50\Omega$, $I_{AS}=56A$, $V_{GS}=10V$. \end{tabular}$
- $\textcircled{4} \quad I_{SD} \leq 100 A, \ di/dt \leq 1306 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 175^{\circ}C.$

- $^{\circ}$ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- \mathfrak{D} R_θ is measured at T_J approximately 90°C.
- @ Limited by T_{Jmax} starting T_{J} = 25°C, L= 1mH, R_{G} = 50 $\!\Omega,\,I_{AS}$ = 22A, V_{GS} =10V.
- * L_D and L_S are Internal Drain Inductance and Internal Source Inductance

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	170			S	$V_{DS} = 10V, I_{D} = 56A$
Q_g	Total Gate Charge		65	130	nC	I _D =56A
Q_{gs}	Gate-to-Source Charge		18			V _{DS} =20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		22			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		43			$I_D = 56A, V_{DS} = 0V, V_{GS} = 10V$
$t_{d(on)}$	Turn-On Delay Time		9.8		ns	$V_{DD} = 20V$
t _r	Rise Time		13			$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		32			$R_G = 2.7\Omega$
t _f	Fall Time		20			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		3150		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		480			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		330			f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		570			$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V \odot See Fig. 12
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		680			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			120①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			480	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.9	1.3	V	$T_J = 25^{\circ}C$, $I_S = 56A$, $V_{GS} = 0V$
dv/dt	Peak Diode Recovery ④		4.8		V/ns	$T_J = 175$ °C, $I_S = 56A$, $V_{DS} = 40V$ $\$$
t _{rr}	Reverse Recovery Time		20		ns	$T_J = 25^{\circ}C$ $V_R = 34V$,
			21			$T_J = 125^{\circ}C$ $I_F = 56A$
Q_{rr}	Reverse Recovery Charge		13		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $\textcircled{5}$
			13			$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.8		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) *					

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical C_{OSS} Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

tav (sec)

Fig 15. Typical Avalanche Current vs.Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

 $D = Duty cycle in avalanche = t_{av} \cdot f$

 $Z_{th,IC}(D, t_{av})$ = Transient thermal resistance, see Figures 14)

$$\begin{split} P_{D~(ave)} = 1/2~(~1.3 \cdot BV \cdot I_{aV}) &= \triangle T/~Z_{thJC} \\ I_{av} = 2\triangle T/~[1.3 \cdot BV \cdot Z_{th}] \\ E_{AS~(AR)} &= P_{D~(ave)} \cdot t_{av} \end{split}$$

Fig 17. Threshold Voltage vs. Temperature

Fig. 19 - Typical Recovery Current vs. dif/dt

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig. 21 - Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 24a. Switching Time Test Circuit

Fig 25a. Gate Charge Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24b. Switching Time Waveforms

Fig 25b. Gate Charge Waveform

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

LEAD TIP

VIEW A-A

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- 3. LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- &- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M			N		
B	MILLIM	ETERS	INC	HES	0
0 L	MIN.	MAX.	MIN.	MAX.	E S
Α	2.18	2.39	.086	.094	
A1	_	0.13	_	.005	
b	0.64	0.89	.025	.035	
b1	0.64	0.79	.025	.031	7
ь2	0.76	1,14	.030	.045	
Ь3	4.95	5.46	.195	.215	4
С	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0.46	0.89	,018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	_	4
E	6.35	6.73	.250	,265	6
E1	4.32	-	.170	_	4
е	2.29	BSC	.090	BSC	
Н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1,14	1.52	.045	.060	3
Ø	0*	10*	0*	10*	
ø1	0*	15*	0*	15*	
ø2	25°	35°	25°	35°	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER
- 4. COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Industrial ^{††}			
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)			
Moisture Sensitivity Level	D-PAK	MS L 1		
Moisture Sensitivity Level	D-I AK	(per JEDEC J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment
	 Updated E_{AS (L=1mH)} = 251mJ on page 2 Updated note 10 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 22A, V_{GS} =10V". on page 2
	Updated package outline on page 9.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.