

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 1月11日

出 願 番 号

Application Number:

特願2002-005387

[ST.10/C]:

[JP2002-005387]

出 願 人 Applicant(s):

ダイセル化学工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2003年 2月18日

特許庁長官 Commissioner, Japan Patent Office

特2002-005387

【書類名】

特許願

【整理番号】

004097

【提出日】

平成14年 1月11日

【あて先】

特許庁長官殿

【国際特許分類】

C08G 63/78

C08G 63/60

【発明者】

【住所又は居所】

広島県大竹市玖波4丁目13-5

【氏名】

渡部 淳

【特許出願人】

【識別番号】

000002901

【氏名又は名称】

ダイセル化学工業株式会社

【代理人】

【識別番号】

100090491

【弁理士】

【氏名又は名称】

三浦 良和

【手数料の表示】

【予納台帳番号】

026033

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

9402017

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ポリエステル系ポリマーの連続製造方法

【特許請求の範囲】

【請求項1】 スタティックミキサーを備えた連続反応装置に、水酸基および /またはエステル結合を有するポリマー(A)と1種以上の環状エステル類(B)を連続的に供給し、ポリマー(A)に環状エステル類(B)を開環重合させて 共重合体(C)を得る製造方法であって、連続反応装置が少なくとも反応初期に 用いるスタティックミキサー(SM(i))、及び、SM(i)に直列に結合され且つSM(i)と種類が異なる反応終期に用いるスタティックミキサー(SM(e))からなり、SM(i)とSM(e)のそれぞれの圧力損失比ZiとZe、及びそれぞれの内径DiとDeより下記式(1)により求められる値X(i:e)が4以上であることを特徴とするポリエステル系ポリマーの連続製造方法。

$$X (i:e) = (Z i \times D e^{4}) / (Z e \times D i^{4})$$
 (1)

【請求項2】 X(i:e)が10以上である請求項1に記載の連続製造方法

【請求項3】 SM(i)の圧力損失比Z(i)とミキサー長さL(i)と内径D(i)から下記式(2)より求められる値Y(i)が200 \sim 2,000であることを特徴とする請求項1又は2に記載の連続製造方法。

$$Y (i) = Z (i) \times L (i) / D (i)$$
 (2)

【請求項4】 Y(i)が500~1,000である請求項3に記載の連続製造方法。

【請求項 5】 SM(i) ESM(e) の間に、必要に応じて、反応中期に用いるスタティックミキサー(SM(m))が設けられる請求項 $1\sim 4$ のいずれかに記載の連続製造方法。

【請求項6】 SM(i)、必要に応じて設けられるSM(m)、及びSM(e)の一つ以上ないし全てが、複数のスタティックミキサーからなる請求項1~5のいずれかに記載の連続製造方法。

【請求項7】 SM(i)、必要に応じて設けられるSM(m)、及びSM(e) を構成する合計n個のスタティックミキサー(SM(r)、($r=1\sim n$)

)について(2)式と同様に求められるYrの合計(即ち、 ΣY r= ΣZ r $\times L$ r/Dr、(Σ の合計範囲はr=1 \sim n Σ))が、5,000以下である、請求項1 \sim 6のいずれかに記載の連続製造方法。

【請求項8】 ポリマー(A)が結晶性芳香族ポリエステルである請求項1~7のいずれかに記載の連続製造方法。

【請求項9】 環状エステル類(B)が、ラクトン類である請求項1~8のいずれかに記載の連続製造方法。

【請求項10】 ラクトン類が ε ーカプロラクトンであることを特徴とする請求項9に記載の連続製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、直列に結合された異なるスタティックミキサーを反応器に使用して、水酸基および/またはエステル結合を有するポリマー(A)に1種以上の環状エステル類(B)を開環重合させる共重合体(C)の連続製造方法に関する。

[0002]

【従来の技術】

ヒドロキシ酸の2分子間脱水環状エステルであるジラクタイドまたはジグリコライドをモノマーとして使用したホモポリマー、1分子内環状エステルであるラクトンをモノマーとして使用したホモポリマー、及びこれらのモノマーの共重合体(以下、これらを単にポリエステル系ポリマーと云う)は、光、熱、酵素等によって分解され、自然への還元サイクルに取り込まれるため、安全性並びに環境汚染防止の観点から、生分解性ポリマー材料として多くの研究が為されている。

ジラクタイドまたはジグリコライドのホモポリマーの製造方法に関しては、従来から大別して2通りの製造方法が知られている。即ち、対応するヒドロキシカルボン酸から直接、脱水重縮合してポリマーを製造する方法と、一旦ヒドロキシ酸の脱水環状エステルを合成し、これを開環重合してポリマーを製造する方法である。

前者の直接重縮合法によると、分子量4,000以上のポリマーを得る事は難

しく(C. H. Halten著、"Lactic Acid"226頁、Veriag Chemie, 1971)、反応操作条件の検討により高分子量化を図っても、特公平2-52930号公報に見られるように分子量20,000程度が限界であった。このため、更なる高分子量ポリマーの製造が必要とされる場合には、後者の環状エステル化物の開環重合法が用いられてきた。

[0003]

また、これらラクタイド類またはラクトン類を使用したポリエステル系ポリマーの連続製造方法に関しては、芳香族ポリエステルとラクトン類を使用した連続製造方法が特開昭61-281124、61-283619、61-287922号公報、並びに特開平2-302433号公報に開示されている。

これらは、いずれもニーダーまたはエクストルーダーのようなスクリューまたはパドル型の攪拌翼を反応器内部に有し、動的攪拌機による攪拌により、反応系を攪拌し、かつ内容物のポリマーを順次原料仕込口から製品取り出し口に移送するものである。これらの技術は、短時間に反応を終了させることが可能であることを開示している。しかしながら、このような動的攪拌機による混合操作は、高粘度化した反応終期の剪断発熱による温度上昇を防止しえず、逆にこれを回避するために攪拌速度を低下させる場合には初期の混合不良が懸念される。加えて、ここに記載されたような短時間で反応を終了させるためには、必然的に反応温度を上げたり、触媒量を増やす等の操作が必要であるので、同様の問題に加えて、ポリエステル系ポリマーの耐水性に悪影響を与える。さらには、加熱あるいはせん断発熱により揮発する環状エステル類の系外への漏洩等を防止するために、攪拌軸部分のシール性を高めたり、あるいは樹脂自身によるシール性を高めるために極度にせん断応力の高い部分を設けたりする必要があり、好適な製造方法とは言えない。

[0004]

またラクタイド類からのポリエステル系ポリマーの連続製造方法に関しては、 特開平5-93050号公報には、複数の攪拌槽を直列につなぎ、これに反応原料を連続的に供給することによって最初の反応槽から最終反応槽までの滞留時間を反応時間とする連続重合を行う、いわゆるCSTR連続製造法が開示されてい る。しかしながらこれらはいずれも動的攪拌機を用いる反応装置であり、ラクタイド類またはラクトン類から高分子量のポリエステル系ポリマーを連続的に製造する際に問題となる反応物の高粘度化に起因する均一攪拌の困難さ及び除熱の困難さに関しては、解決策を開示もしくは示唆するものではなかった。

[0005]

即ち、前記各技術に開示されているラクタイド類からのポリエステル系ポリマーの製造方法を追試しても、生成ポリマーの分子量の増大にともない、ポリマー 粘度は1万~数10万ポイズと非常な高粘度領域まで上昇し、通常の攪拌器では 攪拌が困難となるばかりか、反応内容物を取り出すことさえ困難となる。また強力な攪拌器を用い、かつ攪拌翼を工夫して反応系を攪拌しても、反応内容物は攪拌翼の回転に従った層流に近い動きとなり、系内全体を均一に混合することは困難である。

また環状エステルの開環重合は発熱を伴うため、高粘度化に伴う均一攪拌の困難さによって反応槽内の温度コントロールが困難になり、反応が暴走したり、ポリマー中に温度分布が生じ、局所加熱による品質の劣化が起こる。

[0006]

特開平7-26001および特開平7-149878号公報に記載されているように、これらの問題点を解決する為、動的攪拌機のないスタティックミキサー (SM)が使われ始めてきたが、管内に固定された可動しないミキシング・エレメントにより、流れを分割・転換・反転を繰り返す構造の為、流体自身への抵抗が非常に大きい。すなわち、反応系の圧力損失が非常に大きくなり、反応器やポンプ等の設計が難しくなる。しかも、この吐出圧の上限により生産能力の低下が発生する。

また、SMの場合、混合すなわち剪断力をコントロールすべき可動部がない為、ある特定の運転条件のみにしか最適設計ができず、これ以外の場合、すなわち殆どの運転条件では、混合のコントロールができない為、常に一定以上の混合不良、熱分布を持ったまま運転せざるを得ない。

さらに、高い圧力損失を低下させる為に、SMの内径すなわち流体が通る断面 積を大きくした場合、この混合不良及び熱分布は極めて大きくなる。混合不良は 運転開始から排出される製品の物性が安定するまでにかかる時間、目的の反応率 に到達させるための滞留時間を長期化させ、製品の性状が安定しない原因となる

[0007]

これを回避する為、SMをループ式連続反応装置として使う場合があるが、ループを増せば混合効果は増すが、その分だけ反応器内の滞留時間分布が大きくなり、長時間の受熱によるポリマーの分解・着色の品質劣化は避けられない。特に水酸基および/またはエステル結合を有するポリマーと環状エステル類との共重合体の製造においては分子量分布が広がり、さらにはエステル交換反応等の進行により各ブロックのセグメント長の均一性が低下し、これはDSCによる結晶ピークをブロードにする等の悪影響を与える。又、ループ部の流量が増える為、設備が巨大化し、設備費が非常に高くなり実用的ではない。

[0008]

一方、初期の混合に関する問題を回避するために、溶剤等を用いて予め均一な溶液を用意するか、あるいは攪拌機を有する攪拌式反応槽による予備重合する方法が提案されているが、固体、あるいは取り扱い温度において高粘性液体であるポリマー原料と環状エステル類を混合する場合、加熱状態において長時間処理する必要があり、反応の進行により前述のループ式連続反応装置と同様の問題を回避し得ない。

[0009]

特にこれらの環状エステルから製造されるポリエステル系ポリマーは、生分解性に優れるという特性を有する反面、酸、アルカリ、あるいは水による加水分解を受け易く、熱によっても容易に分子量の低下をきたす性質を有している。例えば、GUPTAM, C, Colloid Polym. Sol. (DEU) 260(3)308-311,1982には、空気中に於ける昇温熱重量分析により、ジラクタイドのホモポリマーの熱分解速度の研究例が報告されているが、密封された反応容器内においてさえ、250℃以上の高温下では加速された分子量の低下が起こる。

加えて、このジラクタイドのホモポリマー及びコポリマーは、高温暴露により

着色が進行するという性質をも有している。即ち、これらの環状エステルを使用した従来の製造方法では、ポリマーの高分子量化に伴う高粘度化の為に、均一な混合が妨げられ、その結果として局部加熱による部分変質を生じ、品質の低下を来す問題点があり、小規模な研究室での実験ではともかくも、大規模な工業生産にはより好ましい製造方法が求められていた。

[0010]

このように、ポリエステル系ポリマーを製造する際、反応系が高粘度になるために均一攪拌が困難になり熱分解、着色等が発生したり、生成ポリマーの品質低下や高い圧力損失による生産能力の低下などが起こることがあった。また原料である水酸基および/またはエステル結合を有するポリマーと環状エステル類との反応初期における混合が困難であるために、経済的に不利なプロセスを余儀なくされていた。

[0011]

【発明が解決しようとする課題】

本発明は、高分子量のポリエステル系ポリマーを工業的に製造する際に問題となる反応物の高粘度化に起因する均一混合の困難さ、高粘性原料と低粘性原料の均一混合の困難さ、除熱の困難さ及び高圧力損失による生産性の低下を解決し、優れた品質のポリエステル系ポリマーを連続的に製造する方法を提供する。

[0012]

【課題を解決するための手段】

本発明者等は、上述した問題点に鑑み、水酸基および/またはエステル結合を有するポリマー、環状エステル類、およびこれらの反応生成物であるポリエステル系ポリマーの攪拌・混合方法、圧力損失を低下させる方法、更にその連続製造方法について鋭意検討した結果、少なくとも2種以上の異なるスタティックミキサーを直列に結合した連続反応装置を用いることにより、重合液の粘度が高くても、反応内容物の良好な混合が可能で、効率的に重合熱を除去でき、低い圧力損失で安定な運転が可能となり、分解や着色の無い高分子量のポリマーを高品質、高効率、かつ、高生産性で得られる事を見出して本発明を完成するに至った。

[0013]

すなわち本発明の第1は、スタティックミキサーを備えた連続反応装置に、水酸基および/またはエステル結合を有するポリマー(A)と1種以上の環状エステル(B)を連続的に供給し、ポリマー(A)に環状エステル類(B)を開環重合させて共重合体(C)を得る製造方法であって、連続反応装置が少なくとも反応初期に用いるスタティックミキサー(SM(i))、及び、SM(i)に直列に結合され且つSM(i)と種類が異なる反応終期に用いるスタティックミキサー(SM(e))からなり、SM(i)とSM(e)のそれぞれの圧力損失比乙iとZe、及びそれぞれの内径DiとDeより下記式(1)により求められる値X(i:e)が4以上であることを特徴とするポリエステル系ポリマーの連続製造方法を提供する。

$$X (i:e) = (Z i \times D e^4) / (Z e \times D i^4)$$
 (1)

本発明の第2は、X(i:e)が10以上である請求項1に記載の連続製造方法を提供する。

本発明の第3は、SM(i)の圧力損失比Z(i)とミキサー長さL(i)と内径D(i)から下記式(2)より求められる値Y(i)が200 \sim 2,000であることを特徴とする請求項1又は2に記載の連続製造方法を提供する。

$$Y(i) = Z(i) \times L(i) / D(i)$$
 (2)

本発明の第4は、Y(i)が500~1,000である本発明の第3に記載の連続製造方法を提供する。

本発明の第5は、SM(i)とSM(e)の間に、必要に応じて、反応中期に 用いるスタティックミキサー(SM(m))が設けられる本発明の第1~4のい ずれかに記載の連続製造方法を提供する。

本発明の第6は、SM(i)、必要に応じて設けられるSM(m)、及びSM(e)の一つ以上ないし全てが、複数のスタティックミキサーからなる本発明の第1~5のいずれかに記載の連続製造方法を提供する。

本発明の第7は、SM(i)、必要に応じて設けられるSM(m)、及びSM(e)を構成する合計n個のスタティックミキサー(SM(r)、($r=1\sim n$))について(2)式と同様に求められるYrの合計(即ち、 $\Sigma Yr = \Sigma Zr \times Lr/Dr$ 、(Σ の合計範囲は $r=1\sim n$ 迄))が、5,000以下である、本

発明の第1~6のいずれかに記載の連続製造方法を提供する。

本発明の第8は、ポリマー(A)が結晶性芳香族ポリエステルである本発明の 第1~7のいずれかに記載の連続製造方法を提供する。

本発明の第9は、環状エステル類(B)が、ラクトン類である本発明の第1~8のいずれかに記載の連続製造方法を提供する。

本発明の第10は、ラクトン類が ε ーカプロラクトンであることを特徴とする 本発明の第9に記載の連続製造方法を提供する。

[0014]

【発明の実施の形態】

本発明では、共重合体(C)をポリエステル系ポリマー(C)又は単にポリマー(C)ともいう。

始めに本発明で用いられる連続反応装置について説明する。本発明で言うスタティックミキサーとは、動的攪拌機を有する混合装置に対して、可動部分の無い、即ち動的攪拌機のない静的混合装置のことを言う。より具体的には、スタティックミキサーは、通常、管と管内に固定された可動部分の無いミキシング・エレメントからなり、これにより、流れを分割し、かつ流れ方向を転換または反転させ、流れを縦方向、横方向に分割・転換・反転を繰り返すことにより流体を混合する混合装置のことである。スタティックミキサーの種類によっては、管外周部に熱交換の為のジャケットが備えられているものもあり、またミキシング・エレメント自体に熱媒体を通す熱交換の為のチューブが備えられているものもある。

本発明においては、原料液をポンプ等によってこのスタティックミキサーに供給し、スタティックミキサーを反応装置として用いる他、原料もしくは生成ポリマーの混合の為にも用いる。

[0015]

熱分解性を有するポリエステル系ポリマー(C)の製造においては、樹脂粘度が10,000ポイズを超えるような高粘度領域では、重合熱はもとより、攪拌剪断応力により発生する攪拌熱の発生が激しく、動的攪拌ではその攪拌部に於ける局所的発熱が著しくなる為、剪断応力が小さく、しかも均一に作用するスタティックミキサーの使用が特に好ましい。

本発明では少なくとも2つ以上のスタティックミキサーを直列に連結して使用する。これにより、不活性ガス雰囲気下で原料仕込み口から原料を連続的に供給し、反応物がスタティックミキサー内を連続的に移動することにより、反応を連続的に、しかも外部大気に全く触れることなく行うことができる。従って、原料仕込みから、反応、ポリマーの脱低沸による未反応モノマー(B)やそのオリゴマーや必要に応じて用いられる溶剤の回収、及びポリマーのペレット化までを連続的に行なうことが出来る。

これは従来のバッチ式反応装置による製造では得られない利点であり、特に酸素、水分、あるいはポリマーによっては更に光により分解する分解性ポリマーの製造に極めて適した製造方法である。即ち、動的攪拌では、高粘度ポリマーの均一混合性を上げるべく攪拌動力を増せば増すほど攪拌熱も増加し、ポリマーの分解が進行する結果となるが、本発明は特定の条件を備えた静的混合(スタティック・ミキシング)の使用により、この問題が解決された。

[0016]

またスタティックミキサーは、管外部に熱交換器を設けて、反応器内の温度を 制御することができる。また更に内部のミキシングエレメント自体に媒体を流し 、より広い熱交換面積を得ることにより、より効率的に反応装置内の温度を制御 することができる。

本発明に用いられるスタティックミキサーは、具体的には、例えばスルザー(Sulzer)式スタティックミキサー、ケニックス(Kenics)式スタティックミキサー、東レ式スタティックミキサー等が好ましく用いられる。重合発熱量の高いポリマーの製造や特に高粘度になる生分解性ポリエステル系ポリマーの製造には、スタティックミキサーのミキシング・エレメント自体に、熱交換の為の媒体流路を組み込んだスルザー式のSMRタイプが特に好ましい。

[0017]

また混合効率は流体の線速度に比例する。十分な混合効果を得る為のミキシング・エレメントの数は、反応液の粘度により決定され、その場合、スタティックミキサー中の反応液のレイノルズ数 $Re=DU\rho/\mu$ (D: 管内径 (cm)、U: 管内流速 (cm/sec)、 $\rho:$ 密度 (g/cm^3)、 $\mu:$ 粘度 (g/cm.

sec))が、一般的な粘度では 10^3 以上であることが好ましい。

しかしながら、本発明は極めて高粘度の重合反応であるので、むしろスタティックミキサーによる流れの反転ないしは方向の転換の効果が重要となり、スタティックミキサー中のミキシング・エレメントの数は、必ずしもRe数10³以上の条件により設定する必要はなく、用いるスタティックミキサーの形式によって異なる。それ故、本発明に用いるスタティックミキサーはミキシング・エレメントを組み合わせて構成し、ミキシング・エレメントの総数nは、特に限定する必要はないが、一般に5~40ユニット、多くの場合10~25ユニットである。

[0018]

本発明で使用する連続反応装置は、本質的にスタティックミキサーのみにより 構成される。スタティックミキサー自身は移送能力を持たないので、原料の仕込 みや、必要に応じて反応途中、反応後の反応混合物、ポリエステル系ポリマーの 移送にはポンプ類や押出機が使用される。ポンプ類としては、ギヤポンプ、プラ ンジャーポンプ等が挙げられ、加熱溶融する機能をも有する1軸あるいは2軸以 上の攪拌軸を有する押出機は原料が固体のポリマーの仕込み用に用いられる。

[0019]

攪拌式反応槽と、これに連結したスタティックミキサーにより構成される回分 ー連続反応装置や、ループ状に連結したスタティックミキサーを備えた循環式連 続反応装置は、ポリマー(A)と環状エステル類(B)について十分な混合状態 を得るためには加熱状態において長時間を必要とし、反応の進行による高粘度化 や滞留時間分布の広がりによる均一性の低下がより顕著に表れるため好ましくな い。

[0020]

本発明において、スタティックミキサーの種類が異なるものとは、ミキシング エレメントと称される静的攪拌翼の形状が異なるもの、または同様の形状であっ ても内径Dが異なるものを言う。従って、反応初期のスタティックミキサーと反 応終期のスタティックミキサーとして、同様の攪拌翼形状で、且つ、同じ径のス タティックミキサーのみを直列に2以上使用した連続重合装置による方法は、本 発明の方法ではない。 なお、同じ反応期のスタティックミキサーを構成する個々のスタティックミキサー、例えば $SM(i_1)$ 、 $SM(i_2)$ 、・・等は互いに同じ種類でも、異なる種類でもよいが、全て同じ種類、即ち静的撹拌翼の形状が同じで且つ内径も同じであるものも使用できる。

また、各反応期のスタティックミキサーを構成する個々のスタティックミキサーが、SM(i)から、SM(m)、SM(e)へと、内径のみを順番に一様に変化させるようにすることもできる。

[0021]

これら異なるスタティックミキサーの種類は、実際にポリマー(A)と環状エステル類(B)とが別々に供給される反応初期と、環状エステル類(B)の一定の反応率を達成し、反応生成物である共重合体(C)を取り出すかあるいはこれに続く環状エステル類(B)の開環重合以外を主目的とした工程に移送される直前の反応終期と、この2種類のスタティックミキサー間に必要に応じて設置される反応中期とに、大別される。

本発明において、上記反応初期に用いるスタティックミキサーSM(i)と反応終期に用いるスタティックミキサーSM(e)では、それぞれの圧力損失比乙iとZe、及びそれぞれの内径DiとDeの4乗の値とより求められる値X(i:e)が4以上であることが必要であり、10以上であることが好ましい。

$$X (i:e) = (Z i \times D e^4) / (Z e \times D i^4)$$
 (1)

X(i:e)が4未満であると初期混合の向上と圧力損失の低減を両立させることが困難となって好ましくない。X(i:e)の最大値は特に制限はないが、100を超えるような場合にはそれぞれのスタティックミキサーの外観上の形状が大きく異なるため、設計上注意を要し、また混合する原料の物性によっては全体の圧力損失が上昇する。従って100以下、より好ましくは50以下である。

[0022]

本発明において、必要に応じて反応中期に用いられるスタティックミキサーSM(m)は、SM(i)とSM(e)の間に設置され、上記式(1)中の前後関係を等しくして同様に求められるX(i:m)及びX(m:e)が何れも1以上であればよい。

$$X (i : m) = (Z i \times Dm^4) / (Z m \times D i^4)$$

 $X (m : e) = (Z m \times D e^4) / (Z e \times Dm^4)$
[0023]

$$X (i_i: e_k) = (Z i_i \times D e_k^4) / (Z e_k \times Z i_i^4)$$
 (1')

また、必要に応じて反応中期にスタティックミキサーSM(m)が設けられた場合にも同様の関係にある。そして、複数のSM(m)、即ちSM(m_1)、SM(m_2)、・・が設けられる場合も、各々は同様の関係にある。

[0024]

本発明においては、反応初期に用いるスタティックミキサーSM(i)の圧力 損失比Z(i)とミキサー長さL(i)と内径D(i)から下記式(2)より求 められる値Y(i)が200以上、好ましくは500以上である。最大値は特に 制限はないが、通常2,000以下、好ましくは1,000以下である。この値 が高いと圧力損失への影響が懸念され、ポンプ等の移送機器を本スタティックミ キサーSM(i)又はSM(m)等の出口以降に設置する等の設計上の工夫が必 要となる。一方、Y(i)が200より低い場合には、反応初期の混合が十分に 行なわれない可能性があり、安定性に悪影響を与えるため、反応初期に用いるス タティックミキサーSM(i)に引き続き連結されるスタティックミキサー(S M(m)またはSM(e)の設計には、より早期の均一混合を考慮した設計が必 要となる。

$$Y (i) = Z (i) \times L (i) / D (i)$$
 (2) [0025]

本発明においては、SM(i)、SM(e)及びSM(m)を構成するn個のスタティックミキサー(SM(r)、(r=1~n))の全てについて同様に求められるYrの合計(即ち、 ΣY r= ΣZ r $\times L$ r/Dr、(Σ の合計範囲はr

=1~n迄))が、5,000以下、さらには2,500以下であることが好ましい。この値Yrが高いと圧力損失への影響が懸念され、ポンプ等の移送機器を各スタティックミキサーの出口付近に設置する等の設計上の工夫が必要となる。

なお、本発明においては、各反応期のスタティックミキサー間に、移送を目的 としたポンプ等の機器を設置しても差し支えない。

[0026]

本発明において、各反応期のスタティックミキサーあるいはそれを構成する個々のスタティックミキサーの圧力損失比Zは、そのスタティックミキサー固有の数値であり、スタティックミキサーの圧力損失値 ΔP_m とそれと同じ内径を持つ空管に同じ流量条件で同じ流体を流した場合における圧力損失値 ΔP_0 との比 $\Delta P_m/\Delta P_0$ をもって求められる(N. Harnby/編,髙橋幸司/訳,液体混合技術,日刊工業新聞社)。

従って、現在圧力損失比が知られていないスタティックミキサーについても同様の方法により圧力損失比を求めることができる。例えばケニックス式スタティックミキサーの圧力損失比は7、スルーザー社SMXの圧力損失比は38、同SMXLの圧力損失比は7.8、東レ式スタティックミキサーの圧力損失比は38である。

本発明で使用するスタティックミキサーの圧力損失比には、特に制限はなく、 例えば5~300、より一般的には7~40である。圧力損失比が大きいものは 反応初期に、低いものは反応終期に使用し得る。

内径Dは、通常管状で用いられるスタティックミキサーにおいて、実際にミキサーエレメントが設置され、実液が移送されるスタティックミキサー配管の内径である。

ミキサー長さしは、スタティックミキサー内のエレメント部分の長さである。

[0027]

次に本発明で用いられるポリエステル系ポリマー (C) の重合成分について説明する。

本発明で用いられる環状エステル類(B)としては、ヒドロキシカルボン酸の 分子間環状エステルとラクトン類が挙げられる。 ラクトンとは、分子内環状エステル構造を有するものを言い、具体的には、 ε ーカプロラクトン、 α , α ージメチルー β ープロピオラクトン、ドデカノラクトン、 β ープロピオラクトン、ブチロラクトン、バレロラクトン、3ーアルキルバレロラクトン、 β , β ージアルキルバレロラクトン、ヒドロキシシクロヘキサンカルボン酸のラクトン、イソクマリン、クマリン、ヒドロキシクマリン、フタライド等である。これらの内、 ε ーカプロラクトンが好ましく用いられる。

本発明では、環状エステル類(B)と同様にラクタム類も使用可能であり、環状エステル類(B)とラクタム類の混合物も使用可能である。

ラクタム類とは、分子内環状アミド構造を有するものを言い、具体的には、 ε ーカプロラクタム、 δ ーバレロラクタム、 γ ーブチロラクタム、 β ープロピオラクタム等が挙げられる。これらの内、 ε ーカプロラクタム、 γ ーブチロラクタム 等が好ましく用いられる。

環状エステル類(B)やラクタム類は単独で開環重合させ、ポリエステル系ポリマーを製造させることができるが、1種以上のヒドロキシカルボン酸の分子間環状エステルと共重合させることも出来る。その場合、分子間環状エステルとラクトンの重合比率は、目的とするポリマーにより種々変えることができるが、分子間環状エステルとラクトンの組み合わせを種々選定することによって、互いに好ましい性質を付加させることができる。重合後の環状エステル類の結晶性を低下させ、調整するのに特に有用である。

[0028]

ヒドロキシカルボン酸の分子間環状エステルとは、同一又は異なる種類の二分子のヒドロキシカルボン酸が分子間で脱水環状エステル化したものである。代表的なものは、例えば下記一般式1で表される。

[0029]

【化1】

一般式1

$$\begin{array}{c|c}
 & O \\
 & R^{3} \\
 & O \\
 & R^{4} \\
 & O
\end{array}$$

[0030]

(式中、 R^1 、 R^2 、 R^3 、 R^4 は互いに同一又は異なっていてもよく、各々水素原子、メチル基又はエチル基を表す。)

[0031]

ヒドロキシカルボン酸としては、乳酸、グリコール酸、エチルグリコール酸、ジメチルグリコール酸、 α ーヒドロキシ吉草酸、 α ーヒドロキシイソ吉草酸、 α ーヒドロキシカプロン酸、 α ーヒドロキシイソカプロン酸、 α ーヒドロキシー β ーメチル吉草酸、 α ーヒドロキシヘプタン酸、 α ーヒドロキシオクタン酸、 α ーヒドロキシデカン酸、 α ーヒドロキシミリスチン酸、 α ーヒドロキシステアリン酸等が挙げられる。

同一ヒドロキシカルボン酸の二分子環状エステルとしては、例えば、ジグリコライド(即ち、1,4ージオキサーシクロヘキサンー2,5ージオン、単にグリコライドともいう。)、ジラクタイド(即ち、1,4ージオキサー3,6ージメチルシクロヘキサンー2,5ージオン、単にラクタイドともいう。)、ジ(エチルグリコライド)、ジ(ジメチルグリコライド)、またLー乳酸またはDー乳酸が各々、分子間で環状エステル化したLージラクタイド、Dージラクタイド、D,Lー乳酸の二分子が環状エステル化したD,Lージラクタイド、Lー乳酸またはDー乳酸の一分子ずつが環状エステル化したMESOージラクタイド等のジラクタイド類が挙げられる。

異なるヒドロキシカルボン酸の二分子環状エステルとしては、例えば、メチルグリコライド、α, αージメチルグリコライド、トリメチルグリコライド等が挙げられる。

本発明に用いられる分子間環状エステルは目的とするポリマーの特性により選

定され、かつ2種以上組み合わせて用いることが出来る。例えば、ジラクタイドとジグリコライドのコポリマーとしてジラクタイドを用いる場合であっても、単にジラクタイドとしてLージラクタイドまたはDージラクタイドのみを用いるのではなく、Lージラクタイド、Dージラクタイド、D, Lージラクタイド、MESOージラクタイドから選ばれる2種以上のジラクタイドをジグリコライドに組み合わせることによって、樹脂の結晶性の観点から成形性や透明性、耐熱性において、より好ましい樹脂特性を実現できる。

[0032]

環状エステル類(B)の仕込み方法としては、液状であれば室温以上、固体であれば液化する温度にまで加熱溶融し、プランジャーポンプ、ギヤポンプ等を用いて反応器へ移送される。

環状エステル類(B)の加熱は予め加熱が可能なタンク内にて行なわれてもよいし、一般的に用いられうる熱交換器等を用いてもよい。例えばポリマー(A)が融点もしくは軟化温度を有する場合にはその温度以上に加熱することが好ましいが、溶解性が良好であり、ポリマーの固化が発生しない場合において、ポリマーの融点に対して30℃低い温度以上で実施し得る。具体的には125~300℃、より好ましくは150~250℃である。

このように加熱された環状エステル類(B)は、反応初期を含む2ヶ所以上のスタティックミキサーや配管などを使用して分散して仕込んでも差し支えない。

環状エステル類中の酸素、水分量は、乾燥状態に維持または低減させることが 好ましく、減圧、不活性ガスパージ、蒸留、吸着等の通常用いられる方法で低減 させることができる。

[0033]

本発明に用いられる、水酸基および/またはエステル結合を有するポリマー(A)とは、少なくとも水酸基を有するポリマー又は少なくともエステル結合を有するポリマーである。

水酸基を有するポリマーとしては、例えばポリビニルアルコール、澱粉、セルロース、セルロースエーテルが挙げられ、これらを用いた場合はグラフト系重合に近い重合体が得られ易く、ポリオキシアルキレンエーテルではブロック系重合

に近い重合体が得られ易い。

またエステル結合を有し、水酸基を有しないポリマーとしては、ポリ酢酸ビニル、酢酸ビニル/エチレン共重合体、ポリアクリレート、ポリアクリレート系共重合体、ポリカーボネート等が挙げられる。

エステル結合を有し、水酸基を有しないで、末端にカルボキシル基を有するポリマーとしては、ポリエステルアミド、脂肪族ポリエステル、脂環族ポリエステル、結晶性芳香族ポリエステル、結晶性芳香族を主成分とするポリエステル系エラストマー等が挙げられる。

末端水酸基が存在しない場合、反応速度が非常に遅いため、エステルの一部を加水分解せしめるための微量の水分もしくは促進剤としての添加物(アルコール等)の添加が好ましい(このような添加物としては後述の分子量調整剤が使用できる)。

水酸基及びエステル結合を有するポリマーとしては、部分エステル化セルロースエステル、ポリエステルアミド、脂肪族ポリエステル、脂環族ポリエステル、結晶性芳香族ポリエステル、結晶性芳香族を主成分とするポリエステル系エラストマー等が挙げられる。

これらは2種以上混合して使用することができる。この中で特に結晶性芳香族 ポリエステルが好ましい。

結晶性芳香族ポリエステルとは、主にテレフタル酸、イソフタル酸、2,6~ナフタレンジカルボン酸等から1種以上選択される芳香族ジカルボン酸、及び/又は4-ヒドロキシ安息香酸もしくは6-ヒドロキシ-2-ナフトエ酸、とエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、水添ピスフェノールA、キシリレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ジブタンジオール、ポリテトラメチレングリコール等のポリアルキレングリコールから1種以上選択される脂肪族ジオールとから構成される。少量成分として、4-アミノ安息香酸等が含まれていてもよい。

結晶性芳香族ポリエステルは、融点または軟化点が180℃以上であることが

好ましい。具体的にはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、これらを中心に構成されるポリエステル系エラストマーが挙げられる。

またジカルボン酸成分として、全ジカルボン酸成分中のモル分率として10モル%を超えない範囲で、こはく酸、アジピン酸、アゼライン酸、セバシン酸、ブラシル酸、シクロヘキサンジカルボン酸、ダイマー酸から選択される脂肪族ジカルボン酸を用いてもよい。

このような結晶性芳香族ポリエステルは、環状エステル類や溶剤類への溶解が 困難であり、均一溶液を調製するためには特に長時間、高温下で加熱する必要が あり、本発明の方法を用いることにより改善されうる。

本発明に係るポリマー (A) としては、これらのポリマーまたはこれらの2種 以上の混合物を特に制限なく用いることができる。

ポリマー(A)の重量平均分子量(Mw)は、好ましくは5,000~300,000、更に好ましくは10,000~200,000である。特に、仕込み混合条件における溶融粘度が2,000ポイズを超えるような高粘度である場合は、環状エステル類との混合がより困難であり、且つ重合の結果得られるポリエステル系ポリマーの溶融粘度も高くなるため本発明の効果をより顕著に発現し得、好適である。

[0034]

ポリマー(A)の溶融粘度としては、さらに仕込み混合条件(温度、剪断速度等)において5,000~500,000ポイズ、より好ましくは10,000~200,000ポイズである。

セルロースエステルでは、相溶性の点から、含有水酸基の43~65%がエステル化されているものが好ましい。

結晶性芳香族ポリエステル末端等に存在する水酸基量、カルボン酸量、又は分子量は得られる共重合体のブロック性に影響を与える。しかし、開環重合とエステル交換反応は何れも末端水酸基の量に影響を受け、それぞれの反応の温度依存性、末端水酸基次数等が近いため、むしろ開環重合に大きな影響を与える環状エステル濃度を反応の初期および終期で調整する方法や、触媒種等により調整する

[0035]

本発明は、重合触媒の存在下でも実施し得る。重合触媒としては、塩化チタン、チタン酸テトラブチル、チタン酸テトラプロピル、チタン酸テトラエチル等のチタン系化合物;塩化第1スズ、臭化第1スズ、ヨウ化第1スズ、2-エチルへキサン酸スズ等のスズ系化合物;塩化亜鉛、酢酸亜鉛、ステアリン酸亜鉛、酸化亜鉛、炭酸亜鉛、塩基性炭酸亜鉛、ジエチル亜鉛等の亜鉛化合物;アルミニウム化合物;マグネシウム化合物;バリウム化合物;ジルコニウム化合物;ゲルマニウム化合物等であり、これらは単独或いは組み合わせて用いることができ、その添加量は、ポリマー(A)と環状エステル類(B)の合計に対して重量比率で、通常0.001~1.0%であり、更に好ましくは、0.01~0.1%の範囲である。

[0036]

ポリマー(A)の反応器への仕込み方法は特に制限されない。仕込み温度は、 反応温度付近、特に固体状ポリマーの場合には融点もしくは軟化温度から融点も しくは軟化温度より50℃高い温度までの温度範囲、より好ましくは融点より5 ℃高い温度から20℃高い温度までの温度範囲から選択される温度、具体的には 、125~300℃、より好ましくは180℃~260℃である。

装置としては1軸、或いは2軸以上の攪拌軸を有し、加熱、移送することが可能な装置である、押出機等が用いられる。さらに仕込み精度を向上させるために押出機出口にギヤポンプ等を設置してもよい。また、別途ポリマー(A)の重合反応直後に、溶融状態を保ったまま、反応器へ移送し用いてもよい。

原料ポリマー(A)は、通常用いられる乾燥機等を用い、減圧または通気下にて樹脂中の水分量を少なくとも1,000ppm以下、好ましくは100ppm以下に低減させ、さらに必要であれば窒素等不活性ガスによる置換を行い酸素濃度を低減させると同時に水分の再吸着を防止することが好ましい。

[0037]

本発明による効果は、ポリマー(A)/環状エステル類(B)の仕込み混合条件における粘度比が100,000を超える場合、特に1,000,000を超

える場合に顕著に発現する。一般にこの粘度比が大きいと混合がより困難となり、また得られるポリエステル系ポリマー(C)の粘度も高粘度となる傾向があるため、実質的に混合効率の向上と圧力損失の低減とを両立しがたい。仕込み混合条件における粘度比は、せん断速度、温度等を考慮し、反応初期のそれぞれの粘度から求められる。

[0038]

ポリマー(A)と環状エステル類(B)の仕込み比率は、目的とする共重合ポリマーの性質によって異なるが、環状エステル類(B)とポリマー(A)の共重合において環状エステル類(B)/ポリマー(A)の重量比率は、通常は、99/1~1/99、好ましくは5/95~75/25、更に好ましくは10/90~50/50である。

重合反応温度は、用いる原料により異なるが、環状エステル類(B)が2分子環状エステルを含む場合には125~200℃、より好ましくは150~190℃である。環状エステルがラクトン類のみにより構成される場合には、150~300℃、より好ましくは180~250℃である。また、ポリマー(A)の融点もしくは軟化温度より15℃低い温度~50℃高い温度、より好ましくは軟化温度もしくは融点~20℃高い温度である。具体的には125~300℃、より好ましくは150~260℃である。特に、結晶性芳香族ポリエステルを用いる場合には180~300℃、より好ましくは225~260℃である。

[0039]

環状エステル類(B)の反応率は任意に設定し得るが、該反応率が高い場合には環状エステル類(B)の重合速度が低下する一方でエステル交換等の反応が進行するため、特に結晶性芳香族ポリエステルをポリマー(A)として使用する場合には融点低下等の変化に注意する必要がある。好ましい反応率は75~99モル%であり、より好ましくは90~97.5モル%である。

滞留時間(反応時間)は、用いる原料および比率、反応温度、目標とする反応率により変化するが、一般に 0.2~10時間、より好ましくは 0.5~5時間、さらには 0.5~2時間である。

系内の最大反応圧力は2~200kg/c m^2 、好ましくは2~50kg/c

 m^2 さらに好ましくは、2~20kg/c m^2 である。

また、本発明において、特に反応初期に用いられるスタティックミキサー通過 後において、好ましい環状エステル類の反応率は75モル%以下である。より好 ましくは50モル%以下、さらに好ましくは30モル%以下である。反応率が高 いと、反応初期に用いられるスタティックミキサーにおける圧力損失により、装 置運転上問題となる。

[0040]

本発明において使用する重合原料は、生分解性または加水分解性を有するので、酸素または水分による重合原料の分解を抑える為、乾燥させた重合原料を窒素ガス等の不活性ガスを流しながら、おのおの異なった方法にてスタティックミキサーを備えた連続反応装置に供給する。

なお、予め何れかの原料の融点以上の加熱状態で溶融混合あるいは溶剤等を用いて均一溶液とした後、反応させる方法は、ポリマー(A)と環状エステル類(B)の混合は容易に短時間でできるものではなく、長時間を必要とし且つ通常加熱状態を必要とするため、経済的に不利であるばかりか、溶解中の反応の進行を完全には防ぎ得ないため、製品性状が安定しない原因となる。連続的な方法を適用し、溶解時の反応の進行度合いを一定に保つように工夫したとしても、回分型の攪拌式反応槽による長時間の溶解工程は滞留時間分布を広げるため好ましくない。

[0041]

本発明では、ポリマー(A)と環状エステル類(B)を溶剤の非存在下に塊状重合することができるが、反応液の粘度を調整する目的で、重合反応に悪影響を与えない溶剤の存在下に反応を行うこともできる。

溶剤を加えると、反応系の粘度を低下させることができる為、剪断応力の低下による均一混合の一層の向上が図れ、また反応装置中に用いるミキシング・エレメントの数を減らすことができて、混合に必要な流速を得る為の圧力を低下できるので、反応装置全体の耐圧を低く抑えることができる。

反応系に添加できる溶剤は、重合原料及び生成ポリマーと反応せず、重合原料 及び生成ポリマーに対する溶解性が良く、かつ回収・再使用が容易な溶剤であれ ばよい。具体的例としては、トルエン、キシレン、エチルベンゼン等が好ましく 用いられる。

反応系に加える溶剤量は、連続反応での定常状態では、重合原料100重量部に対して20重量部以下で用いることが好ましく、全反応期を通じての反応液の最高粘度を50,000ポイズ以下に調整することが好ましい。この範囲の溶剤量であれば、反応速度は大きな影響を受けることはなく、得られる生成ポリマーの分子量が低下することもない。

但し、連続反応での非定常状態、例えば連続反応開始時では、反応系に加える 溶剤量は、重合原料のモノマー及び/またはポリマーから成る重合成分100重 量部に対して20重量部以上の量で用いられる。これは急激な重合反応が起こら ないように、溶剤で反応系を希釈して反応を開始し、以後、様子を見ながら徐々 に重合成分の比率、反応温度を高めて行き、重合反応を開始する。

溶剤の添加時期は、原料仕込の段階であってもよいし、またスタティックミキサーの混合能力は極めて良好で、高粘度の溶液と溶剤も容易に均一に混合できるので、反応途中の発熱量が著しい重合段階で、冷却を目的に反応系に加えることもできる。

また重合後期で高分子量化した生成ポリマーにより反応液の粘度が極めて増加した時点で、反応系に添加することもできる。また反応途中で反応系中に溶剤を添加する場合には、添加する溶剤に更に重合原料のモノマー及び/またはポリマーを溶解させて、反応系に加えることもできるし、その他の添加剤、例えば、分子量調節剤、可塑剤、酸化防止剤等を溶剤に溶解させて、反応系に加えることもできる。

溶剤を加えた場合の重合反応系内の圧力は、用いる重合原料により異なるが、一般に $2\sim15\,\mathrm{k}\,\mathrm{g/c\,m^2}$ 、通常は $10\,\mathrm{k}\,\mathrm{g/c\,m^2}$ 以下、重合反応系での滞留時間 (反応時間) は一般に $0.2\sim10$ 時間である。

[0042]

本発明において、連続反応装置のモノマー(B)の反応率は75モル%以上であればよく、それ以外の未反応モノマーは脱低沸装置等によって回収し、再度原料として使用する。回収原料モノマーは連続的に原料仕込槽に戻すこともできる

し、一旦クッションタンクに貯蔵し、原料モノマーとタンク内で混合してから反応に用いることもできる。

反応率が75モル%以上のものであっても、残存モノマーは反応性であり、製品ポリマー中に残存すると貯蔵安定性に影響を与え、またヒトに対する安全性や 臭気の面からも残存モノマー、オリゴマーは好ましくない為、除去することが望ましい。

[0043]

それ故、本発明では、未反応モノマーの回収・再利用と併せて、ポリマー物性 の改質を図る為に、連続反応装置でポリエステル系ポリマーを重合させた後、連 続反応装置に接続した脱低沸装置に於いて生成ポリマー中の残留モノマー、オリ ゴマーまたは溶剤を分離・回収する。回収された溶剤は回収モノマーと分離され 、貯蔵タンクに貯蔵され、必要に応じて再使用される。

脱低沸方法としては重合反応終了後の生成ポリマーを加熱下、減圧状態もしく はガス流通下に保つことができ、気層部より低沸分を系外に取り出すことができ る方法であれば特に制限は無く、具体的な脱低沸方法としては、重合反応終了後 の生成ポリマーを、連続反応装置に接続したプレヒーターにおいて、まずポリマ ーに十分な流動性を与えることと低沸物の蒸発熱を与えることを目的に、加熱溶 融させる。この際、熱交換器として、竪型多管式熱交換器や熱交換器を備えたス タティックミキサーを用いることもできる。

本発明では脱低沸装置として、単なるフラッシュ・タンクや縦型の脱低沸装置を用いて、一段階で脱低沸を行い、残存モノマー及び/または溶剤を脱低沸させることができる。しかしながら本発明では、二段階の脱低沸槽の組合せにより脱低沸を行なうことがより好ましい。即ち、第一段目の脱低沸装置内では真空度20~150mmHgで脱低沸を行ない、第二段目の脱低沸装置内で更に高い真空度、例えば、0.1~20mmHgで、脱低沸し、未反応モノマーを分離・回収する。真空装置は通常のものを使用できる。例えば第一段目にフラッシュ式脱低沸装置を用い、第二段目に薄膜式脱低沸装置を用いることができる。

[0044]

脱低沸後、ポリマーを脱低沸装置の底部からギアポンプ等により抜き出し、ペ

レット化することもできるし、またベント式押出機によって、ポリマーを直径 0 . 3~3mmの口径を有する複数の線状ポリマーとして押し出し、脱低沸装置内 に連続的に供給してさらに脱低沸することもできる。

脱低沸が終了したポリマーは、ギアポンプにて抜き出し、そのままペレット化することもできるし、必要に応じて添加剤をエクストルーダー、スタテックミキサー等により混合した後、ペレット化することもできる。

[0045]

未反応モノマーは更にコンデンサーにより冷却、回収し、再度、新規原料モノ マーとともに反応に供することができる。

回収された未反応モノマーは連続反応が定常状態に達した後は、連続的に原料 仕込槽にリサイクルされ、連続的に反応に使用される。また分離・回収された溶 剤はコンデンサーにより冷却・回収後は、溶剤タンク内に貯蔵され、必要に応じ て、再使用される。

原料ポリマー(A)に関しては、未反応ポリマー(A)が生成ポリエステル系ポリマー(C)中に混入することを防ぐ為に、原料モノマー(B)の原料ポリマー(A)に対する仕込み比を多くすることが好ましく、未反応モノマー(B)は回収、再使用すればよい。連続的にこれらの脱低沸装置を用いることによって、ポリエステル系ポリマー(C)中の残存モノマー含量を1重量%以下にすることができる。

[0046]

得られるポリマー(C)は、原料ポリマーの重量平均分子量および原料の構成 比率に依存するが、重量平均分子量5,000~500,000、より好ましく は10,000~300,000である。特に、重量平均分子量が20,000 を超える場合には、圧力損失が上昇する問題がより顕著に表れるために、本発明 の効果が顕著となる。ポリマー(C)の操作条件(温度、剪断速度)における溶 融粘度は、5,000~500,000ポイズ、より好ましくは10,000~ 200,000ポイズである。

[0047]

また本発明では、目的に応じ、水、乳酸、グリコール酸及び他のアルコールま

たはカルボン酸等の分子量調節剤(連鎖移動剤)、官能基としてカルボキシル基 、水酸基および他のエステル形成性基より選択される官能基を3以上有する化合 物を用い低分子量のポリマーを得ることもできる。

更に、本発明には一般に用いられる他のポリマー添加剤である酸化防止剤、紫 外線吸収剤、可塑剤等についても、特に制約無く、添加することができ、これら は反応途中で溶剤に溶解させて反応系に添加することができる。

また、本発明における連続反応の間、先に述べた共重合可能な成分はもとより、イソシアネート類、酸無水物、エポキシ化合物等を更に追加添加することも可能であり、ポリマーの性能を改質することができる。

[0048]

本発明は、2種類以上のスタティックミキサーを直列に結合してなる連続反応装置に、環状エステル類(B)およびポリマー(A)を連続的に供給し、溶剤の存在下または非存在下に、反応物が大気中の酸素、水分に全く触れない状態で、環状エステル類(B)のワンパス反応率75モル%以上で連続的に反応させ、次いで脱低沸により残存モノマー及び溶剤を除去・回収し再使用する、溶融粘度500,000ポイズ以下、重量平均分子量10,000以上のポリエステル系ポリマーの連続製造方法である。

本発明は、特に2種以上のポリマー成分より構成されるブロック、グラフト共 重合体の製造に適している。本発明により製造されるポリマーは相溶化剤、接着 剤、エラストマー、形状記憶性樹脂、各種成形用樹脂として使用されうる多くの 用途に用いられる。

[0049]

【実施例】

以下に実施例及び比較例を示して本発明を具体的に説明するが、本発明は、これらに限定されるものではない。

なお%及び部は、特に記載しない限り全て重量%および重量部を表す。

[0050]

使用した分析、物性測定条件を下記に示す。

(1)融点

示差走査熱量測定装置 (DSC) により、JIS K 7121に従って、融解ピーク温度 (Tpm); 融解開始温度 (Tim)と溶融終了温度 (Tem)を、それぞれ融点; 融点分散として求めた。実施例および比較例に記載されたそれぞれの重合後の樹脂では、ポリカプロラクトンホモポリマー又はポリカプロラクトンのブロック部分に由来する低融点ピークは全く観測されなかった。

(2) 未反応ラクトン量

島津製作所製ガスクロマトグラフGC-14Aを用い、内径3.2mm、長さ2.1mのガラス製カラムに、PEG20Mの10%/ユニポートHPSを充填したものを使用した。サンプル0.5gと内部標準物質としてジフェニルエーテル0.1gを正確に量り取り、HFIP(ヘキサフルオロイソプロパノール)20gに溶解させた。180℃一定温度にて、窒素をキャリアーとして測定し得られた結果は内部標準法により計算し、未反応ラクトン量(重量%)を求めた。

(3) 重量平均分子量

GPCにより、標準PMMA換算により求めた。GPC測定は、カラムに昭和電工株式会社製Shodex GPC HFIP-800P、HFIP-805P、HFIP-804P、HFIP-803Pを用い、検出器に島津製作所製RID-6Aを用い、溶離液にはHFIPを使用し、カラム温度50℃、流速1.0ml/minにて行った。(なお、表ではMwとMnの数値は1000単位で表示してあり、例えば実施例1のMwの欄で112とはMw112000のことである。Mnについても同様である。)

[0051]

(実施例1)

反応初期のスタティックミキサーとしてスルザー社SMX(圧力損失比38)、内径1/2インチ(1.27cm)、長さ68cm(37cmと31cmのユニットを直列に結合して使用した)、反応終期のスタティックミキサーとして、ケニックス式スタティックミキサー(圧力損失比7)、内径3/4インチ(1.91cm)、長さ100cm(50cmのユニットを2本直列に結合して使用した)を直列に連結して、連続重合装置とした。

これらの実際の内径を用いて計算されたX(反応初期:反応終期)は16.9 、Y(反応初期)は1,600、すべてのスタティックミキサーのYの合計値は 1,930であった。以下、表1ではX(反応初期:反応終期)をX、Y(反応初期)をYと表わす。

ポリマー(A)としてのポリブチレンテレフタレート(ポリプラスチックス社製、240℃、10/秒での溶融粘度25,000ポイズ)をホッパードライヤー(露点が-40℃のエアー使用)にて水分濃度40ppm以下に乾燥した後、直径30mmの1軸押出機およびギヤポンプを用いて樹脂温度240℃にて反応初期スタティックミキサーへ連続的に供給した。

一方環状エステル類(B)としての ε −カプロラクトンをプランジャーポンプを用いて送液し、熱交換器により液温 2 1 0 ℃に加熱して反応初期スタティックミキサーへ連続的に供給した。

原料の仕込み比率はポリブチレンテレフタレート300g/時間、ε-カプロラクトン200g/時間であり、触媒は原料ポリブチレンテレフタレート中に含まれるもの以外は用いなかった。反応温度230℃で連続的に塊状重合させた。連続重合装置の出口に設けられたダイス付近の樹脂温度は230~231℃で安定していた。

次に、得られたポリエステル系ポリマーを、ダイスからストランド状で排出し、水冷後ペレット化した。ペレットについて各種の性状や分析、物性測定を行った。結果を表2に示す。

尚、反応初期はεーカプロラクトンの供給量を想定量の1/10で開始し、ついでεーカプロラクトンを所定量に合わせた後、ポリブチレンテレフタレートを所定量に合わせた後、しばらくすると、ダイスから排出されたポリマーはストランド状にてカットすることが可能となり、以降ポリマー中の残存モノマー濃度を分析しながらこれが誤差10%の範囲で安定するまでの時間を安定化時間としたところ、1.3時間後に残存モノマー濃度2.0 wt%で安定することを確認した。ポリブチレンテレフタレートを所定量供給してから3時間経過した時点より、30分毎に5回サンプリングを行い、それぞれのモノマー濃度の平均値を残存モノマー濃度とし、最大と最小の値を示した。

. [0052]

(実施例2~10、比較例1~2)

表1に示すスタティックミキサーを反応初期、反応中期及び反応終期にそれぞれに使用した以外は、実施例1と同様にして重合を行ない、得られたポリマーについて各種測定を行った。結果を表2に示す。

各反応期のスタティックミキサーの組み合わせは、各反応期の滞留時間の合計がほぼ等しくなるよう、容積を調整している。表1中に記載した各反応期のスタティックミキサーの長さは実施例1と同様に、構成するスタティックミキサーの合計を示している。

尚、比較例2は、ポリブチレンテレフタレートを所定量に設定した後、徐々に 圧力損失が上昇したため運転を中止せざるを得なかった。

[0053]

(比較例3)

ポリブチレンテレフタレートは乾燥後、スクリュー式フィーダーを用いて4.8 kg/時間にて供給した。その後εーカプロラクトンはプランジャーポンプを使用し、ベントロより3.2 kg/時間にて供給した。

スクリューアレンジメントは、ポリプチレンテレフタレート供給口の直ぐ後方にニーディングディスクパドルを配し、ついでεーカプロラクトン供給ベントロ付近はスクリューパドル、その後方にさらにニーディングディスクパドルを配し、最後にスクリューパドルを配した。

加熱温度は供給口に近い方から190℃、220℃とし、残りのシリンダーはすべて230℃とし、スクリュー回転数100rpmで付加反応を行なった。カーボンブラック添加着色により観測された平均滞留時間は7分であった。ダイス付近の樹脂温度は253℃にまで上昇していた。次にダイスからポリエステル系ポリマーをストランド状で排出し、水冷後ペッレット化した。結果を表2に示す

ε-カプロラクトンを所定量供給後、残存モノマー濃度を分析しながらこれが 誤差10%の範囲で安定するまでの時間を安定化時間としたところ、0.2時間 後に残存モノマー濃度8.8重量%で安定することを確認した。

ε - カプロラクトンを所定量供給してから 1 時間経過した時点より、3 0 分毎に5回サンプリングを行い、それぞれのモノマー濃度の平均値をモノマー濃度とし、最大と最小の値を示した。

[0054]

(比較例4)

スクリュー回転数を50rpm、加熱温度を供給口に近いほうから190℃、 230℃とした以外は、比較例3と同様にして行なった。滞留時間は10分、ダ イス付近の樹脂温度は238℃であった。結果を表2に示す。

[0055]

*									
	风风	反応初期	风砂	反応中期	反応	反応終期		•	
	種類	長さ	種類	単な	種類	東な	Xの値	Yの値	Y合計
		(cm)		(cm)		(c m)		•	
実施例1	A	8 9	1	1	В	100	16.9	1600	1930
実施例2	Ą	3.7	ပ	30	В	100	16.9	870	1330
実施例3	ď.	3.1	ပ	3 0	В	100	16.9	7 3 0	1190
実施例4	¥	19	၁	3 0	В	001	16.9	450	910
実施例 5	Ą	13	S	4 5	В	100	16.9	310	830
実施例6	Ą	7	၁	4 5	В	100	16.9	170	690
実施例7	4	8 9	Ó	3 0	Q	0 9	8.3	1600	2430
実施例8	A	8 9	I	1	E	100	14.1	1600	1980
実施例9	দৈ	5 0	O	30	a .	100	8. 1	. 280	730
実施例10	ĹŢĄ	2 5	·	4.5	В	100	8. 1	140	099
比較例1	ပ	0 9	_	Į	В	100	3. 1	260	590
比較例2	Ą	8 9	7	ı	Ð	93	2.6	1600	3330

慧

[0056]

スタティックミキサーの種類

A:SMX、1/2インチ径

B:ケニックス式、3/4インチ径

C:ケニックス式、1/2インチ径

D:SMX、1インチ径

E:SMXL、3/4インチ径

F:ケニックス式、3/8インチ径

G:SMX、3/4インチ径

[0057]

【表2】

			_													
融点分散	Tem-Tim	(၃)	19	20	19	20	20	20	19	20	21	2 2	. 24	1	18	•
强点	Tpm	(၃)	206	205	206	206	206	207	206	206	206	206	207	1	215	7
Mw		$(\times 1000)$	112	114	112	113	111	112	115	111	113	112	113	1	105	7
Mn		(×1000)	53	54	53	5.4	8 9	1 2	8 9	2 3	5 1	5 1	4 9	1	4.2	•
残存機度	最大値	(w t %)	2.1	2.0	2.2	2.2	2.4	2.7	2. 1	2.2	2.6	2.8	4.3	1	6 . 6	,
残存禮度	最小值	(w t %)	1.9	1.9	1.9	2.0	1.8	2.2	1.9.	1.9	2. 1	2. 2	2.9	ļ	8.0	,
残存瀓度	平均值	(w t %)	2.0	1.9	2.0	2. 1	2. 2	2.4	2.0	2. 1	2. 4	2.5	3.5	1	8.8	,
安定化	時間	(Hr)	1.3	1. 2	1.3	1.4	1.5	1.6	1.3	1.3	1.5	1.7	2.2	·I	0.2	,
			実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7	実施例8	実施例9	実施例10	比較例1	比較例2	比較例3	1

斑2

[0058]

【発明の効果】

本発明によれば、水酸基および/またはエステル結合を有するポリマー(A)

と1種以上の環状エステル類(B)を連続的に重合させて高分子量のポリエステル系ポリマーを製造する際に、反応物の高粘度化に起因する均一混合の困難さ及び除熱の困難さ、且つ圧力損失の上昇が解決され、安定して、優れた品質のポリエステル系ポリマーが連続的に製造できる。

【書類名】 要約書

、【要約】

【課題】 高分子量、高粘性のポリエステル系ポリマーを、均一混合及び除熱 における問題を解決し、優れた品質のポリエステル系ポリマーを連続的に得る。

【解決手段】 スタティックミキサーを備えた連続反応装置に、水酸基および /またはエステル結合を有するポリマーと環状エステルを連続的に供給して、共 重合体を得る方法であって、連続反応装置が反応初期に用いるスタティックミキサー (SM(i))、及び、SM(i)に直列に結合され且つSM(i)と種類 が異なる反応終期に用いるスタティックミキサー (SM(e))からなり、SM(i)とSM(e)のそれぞれの圧力損失比乙iと乙e、及びそれぞれの内径DiとDeより下記式(1)により求められる値X(i:e)が4以上である。

$$X (i:e) = (Zi \times De^{4}) / (Ze \times Di^{4})$$
 (1)

【選択図】 なし

出願人履歴情報

識別番号

[000002901]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府堺市鉄砲町1番地 氏 名 ダイセル化学工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.