FBX4025 - Sistemas Digitais I

Objetivos

- Apresentação do plano de ensino da disciplina
- Introdução aos sistemas digitais
- Introdução aos sistemas numéricos de representação

FBX4025 – Sistemas Digitais I

Plano de Ensino

FBX4025 - Sistemas Digitais I

<u>Avaliação</u>

$$MH = \frac{10}{\frac{4}{Nota_prova1} + \frac{4}{Nota_prova2} + \frac{2}{Media_atividades}}$$

Media_atividades =
$$\frac{\Sigma(notas de n atividades realizadas)}{\Sigma(notas de n atividades propostas)} * 10$$

Prova substitutiva (N_{PS})

Ao aluno que não obtiver nota final igual ou superior a 6,0 será oferecida uma prova substitutiva, ao final do semestre. A prova substitutiva terá obrigatoriamente o mesmo conteúdo da respectiva prova a ser substituída. A nota da prova substituída apenas incorpora o cálculo da nota final quando for maior que a nota da prova a ser substituída.

FBX4025 - Sistemas Digitais I

Bibliografia básica

SISTEMAS

TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018.

CAPUANO, Francisco Gabriel. **Elementos de eletrônica digital**. 42. São Paulo Erica 2019 1 recurso online ISBN 9788536530390.

 CAPUANO, Francisco Gabriel. Sistemas digitais: circuitos combinacionais e sequenciais. São Paulo Erica 2014 1 recurso online ISBN 9788536520322.

FBX4025 – Sistemas Digitais I

Software

SimulIDE

https://www.simulide.com/p/home.html

SimulIDE-0.4.13-RC2 - PICTimer.simu

Onde encontro sistemas digitais?

Histórico

A era moderna da eletrônica inicia com a criação do transistor bipolar em 1947 por William Shockley, John Bardeen e Walter Brattain na empresa Bell Laboratories.

William Bradford Shockley Jr. 1910 - 1989

<u>John Bardeen</u> 1908 - 1991

Walter Houser Brattain 1902 - 1987

Transistor bipolar de Junção NPN (símbolo)

Histórico

Desenvolvimento pela Intel dos transistores com tecnologia MOS que demorou a ser alcançada por empresas concorrentes.⁽¹⁾

Hoje a tecnologia CMOS domina o mercado de Cl's digitais por ser IS mais rápida e mais adaptada para operação em baixa tensão de alimentação além de consumir menor potência. (2)

Porta lógica

Inversor

Inversor – Circuito eletrônico
Vdd

A

Q

Vcc

Valores lógicos X Valores físicos

5V	HC @4mA,	25°C
Output	VoL	0.26V
	VoH	4.48V
Input	VIL	1V
	VIH	3.5V

NML	0.74V
NM _H	0.98V

Histórico

Microprocessador Intel 4004

1971

Tecnologia nMOS 10µm ~2300 transistores 108 kHz

Microprocessador Intel Pentium 4

Tecnologia CMOS 90nm 180 milhões de transistores >3 GHz

Microprocessador Ryzen 7 5700U

2021

Tecnologia FinFET 7nm > 9 bilhões de transistores >4 GHz

Circuitos digitais

O projeto de sistemas digitais modernos de grande porte (VLSI) normalmente utiliza uma linguagem de descrição de hardware (VHDL, VERILOG, SYSTEM VERILOG).

Essas linguagens permitem que o circuito seja sintetizado e simulado antes de qualquer implementação física.

Analógico X Digital

Analógico: tempo, temperatura, pressão, nível...

Discreto: resultado de um jogo, dia do mês...

Interface entre Sistema Digital ↔ Mundo analógico

Sistemas Númericos

Diversos sistemas numéricos são utilizados no dia a dia:

- Sistema Decimal (base 10): sistema utilizado em quase todas aplicações.
- Sistema Duodecimal (base 12): medida de tempo (2 períodos de 12 horas), comprimento (12 polegadas em 1 pé), medidas como dúzia.
- Base **Sexagesimal (base 60)**: medida de tempo (minutos em hora, segundos em minuto).
- Base binária (base 2): representação de informação em sistemas digitais

<u>Sistemas Numéricos – Valor/Posição</u>

Decimal	Duodecimal	Binário
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9 🐂	9	1001
10	Α	1010
11	В	1011

$$(128,8)_{10} = 1.10^{2} + 2.10^{1} + 8.10^{0} + 8.10^{-1}$$

$$A$$

$$(4A,6)_{12} = 4.12^{1} + 10.12^{0} + 6.12^{-1}$$

$$(4A,6)_{12} = (58,5)_{10}$$

$$(1011,01)_{2} = 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} + 0.2^{-1} + 1.2^{-2}$$

$$(1011,01)_{2} = (11,25)_{10}$$

Exemplo 01

Converta os números abaixo para representação na base decimal.

$$(1001011,0110)_2 = (75,375)_{10}$$

$$(756,25)_8 = (494,328125)_{10}$$

$$(1A5F,BC)_{16} = (6751,734375)_{10}$$

Decimal	Duodecimal	Binário	Octal	Hexadecimal
0	0	0000	0	0
1	1	0001	1	1
2	2	0010	2	2
3	3	0011	3	3
4	4	0100	4	4
5	5	0101	5	5
6	6	0110	6	6
7	7	0111	7	7
8	8	1000	10	8
9	9	1001	11	9
10	Α	1010	12	A
11	В	1011	13	В
12	10	1100	14	C
13	11	1101	15	D
14	12	1110	16	E
15	13	1111	17	F

<u>Sistemas Numéricos – Binário/Octal/Hexadecimal</u>

Binário	Octal	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	10	8
1001	11	9
1010	12	Α
1011	13	В
1100	14	С
1101	15	D
1110	16	E
1111	17	F

Como todos esses sistemas apresentam base com potência de 2, suas conversões são facilmente mapeadas na base binária.

$$(271)_8 = (010 \ 111 \ 001)_2$$
 $2 \ 7 \ 1$
 $(A0E)_{16} = (1010 \ 0000 \ 1110)_2$
A 0 E

Exemplo 02

Converta os números abaixo para representação nas bases indicadas.

$$(1001011)_2 = ()_{16} = (4B)_{16}$$

$$(756)_8 = ()_2 = (111101110)_2$$

$$(1A5F)_{16} = ()_8 = (15137)_8$$

Decimal	Duodecimal	Binário	Octal	Hexadecimal
0	0	0000	0	0
1	1	0001	1	1
2	2	0010	2	2
3	3	0011	3	3
4	4	0100	4	4
5	5	0101	5	5
6	6	0110	6	6
7	7	0111	7	7
8	8	1000	10	8
9	9	1001	11	9
10	Α	1010	12	Α
11	В	1011	13	В
12	10	1100	14	С
13	11	1101	15	D
14	12	1110	16	E
15	13	1111	17	F

Números binários

Com n bits, o maior número representável é 2ⁿ-1

O bit mais à direita é chamado de LSB (*least significant bit*, bit menos significativo)

O bit mais à esquerda é chamado de MSB (*most significant* bit, bit mais significativo)

A sequência de 8 bits é chamada de byte.

A sequência de 4 bits é chamada de nibble.

Decimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Exemplo 03

Quantos bits são necessários para contar até 1 milhão em decimal?

São necessários 20 bits para se representar 1 milhão na contagem decimal.

Conversão Decimal - Binário (Método das divisões sucessivas)

$$(45)_{10} = (101101)_{2}$$

$$45 \quad 2 \\
1 \quad 22 \quad 2 \\
0 \quad 11 \quad 2 \\
1 \quad 2 \quad 2 \\
0 \quad 1 \quad 2 \\
1 \quad 0$$

Exemplo 04

Converta os números abaixo para representação na base binária.

$$(27)_{10} = ()_2 = (11011)_2$$

$$(33)_{10} = ()_2 = (100001)_2$$

$$(135)_{10} = ()_2 = (10000111)_2$$

Conversão Decimal - Binário Fracionários (Método das multiplicações sucessivas)

Multiplica-se a parte fracionária do número por 2, recuperando-se o carry. O primeiro bit produzido é o mais significativo da parte fracionária.

$$(0,3125)_{10} = (0,0101)_{2}$$
 $0,3125 \cdot 2 = 0,625$
 $0,6250 \cdot 2 = 1,25$
 $0,2500 \cdot 2 = 0,5$
 $0,5000 \cdot 2 = 1,0$

LSB Decimal

O zero na parte decimal indica o término do procedimento

Conversão Decimal - Binário Fracionários (Método das multiplicações sucessivas)

Multiplica-se a parte fracionária do número por 2, recuperando-se o carry. O primeiro bit produzido é o mais significativo da parte fracionária.

$$(0,2)_{10} = (0,00110011...)_2$$

Exemplo 05

Converta os números abaixo para representação na base binária.

$$(0,27)_{10} = (0,0100010100011...)_2$$

$$(0.575)_{10} = (0.10010011001...)_2$$

$$(0.389)_{10} = (0.01100011...)_2$$

Referências

- PEDRONI, Volnei Antonio. **Eletrônica digital moderna e VHDL**. Rio de Janeiro: Elsevier, 2010. 619 p. ISBN 9788535234657. Capítulo 1 Introdução.
- TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 2 Sistemas de numeração e códigos.
- UNIVESP. Circuitos Digitais Sistemas Numéricos de Numeração. Disponível em: https://tinyurl.com/ms4h3dzp>. Acesso em: 31 julho 2022