Théorème de Ptolémée

Damien Mégy

14 octobre 2023

Catalogue d'exos sur Ptolémée pour le Club Mathématique de Nancy. Rédaction en cours, ne pas diffuser.

Problème 1. Soit ABC un triangle équilatéral, et P un point de l'arc BC. Montrer que PA = PB + PC.

Problème 2. On place trois carrés comme sur la figure ci-dessous. Leurs aires valent 18, 25 et 32 cm 2 . Calculer la distance entre M et N.

Problème 3. On place un triangle rectangle dans un quart de cercle comme sur la figure ci-dessous. Si AB = 3 et AC = 4, que vaut le rayon du cercle?

Problème 4. (Projection orthogonale)

Dans le triangle rectangle ci-dessous, on a AP = 2 et AC = 3. Le point Q est le projeté orthogonal de P sur la droite (BC). Calculer la longueur AQ.

Problème 5. On place un point sur un quart de cercle de sorte à obtenir les distances marquées sur la figure ci-dessous. Quel est le rayon du cercle?

Problème 6. Dans un cercle de rayon 5, on place deux points A et B à distance 5. De combien de façons peut-on placer un point C sur le cercle de sorte que AC = 6? Calculer la distance BC dans chacun des cas.

Problème 7. On considère un hexagone convexe inscrit dans un cercle. Les côtés sont de mesure 2, 7, 11, 11, 2 et 7. Trouver le diamètre du cercle.

Problème 8. [Formules de trigonométrie] Prouver les formules pour $\sin(a+b)$ et $\sin(a-b)$ avec Ptolémée.

Problème 9. Soient ABC et ABD des triangles directs, rectangles en C et en D, qui vérifient AB = 25, BC = 7 et BD = 15. Calculer la longueur CD.

Problème 10. Dans un pentagone régulier, tous les côtés ont la même longueur a et toutes les diagonales ont la même longueur b. Que vaut $\frac{b}{a}$?

Problème 11. [Carré inscrit] Soit ABCD un carré inscrit dans un cercle, et P un point de l'arc BC. Montrer que

$$\frac{PA + PC}{PB + PD} = \frac{PD}{DA}$$

Problème 12. Soit ABCD un carré. Sur son cercle circonscrit, on place un point P qui vérifie $AP \times CP = 56$ et $BP \times DP = 90$. Quelle est l'aire du carré?

Problème 13. [Carré inscrit] Soit ABCD un carré et P un point de son cercle circonscrit, situé sur l'arc $\stackrel{\frown}{CD}$. Montrer que

$$PA + PC = PB\sqrt{2}$$

Problème 14. Soit ABC un triangle isocèle en C et P un point de son cercle circonscrit, situé sur l'arc \widehat{AB} . Montrer que la quantité $d\frac{PA+PB}{PC}$ ne varie pas, quel que soit l'emplacement de P sur l'arc.

Problème 15. Soit ABC un triangle. La bissectrice de l'angle \widehat{A} recoupe le cercle circonscrit en D. Montrer que

$$AB \times AC \le 2AD$$

Problème 16. Soit ABCD un quadrilatère inscriptible convexe, tel que [AC] soit un diamètre de son cercle circonscrit. Montrer que

$$BD = AC \sin \widehat{BAD}$$

Problème 17. Soit ABC un triangle tel que AB = 7, AC = 8 et BC = 9. La bissectrice de l'angle \widehat{A} recoupe le cercle circonscrit en un point D. Que vaut le rapport $\frac{DA}{DC}$?

Problème 18. [Le théorème d'Appolonius] Soit ABC un triangle de côtés a, b et c, et soit P le milieu du segment [BC]. On note p = AP. Montrer que l'on a

$$2(b^2 + c^2) = a^2 + 4p^2.$$

Problème 19. [Le théorème de Stewart] Soit ABC un triangle de côtés a, b et c, et soit P un point du segment [BC]. On note p = AP, m = BP et n = PC. Montrer que l'on a

$$b^2 m + c^2$$
, = $a(p^2 + mn)$

Problème 20. [Heptagone régulier] Soit ABCDEFG un heptagone régulier. Montrer que $\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AE}$.

Problème 21. Un hexagone est inscrit dans un cercle. On a AB = 31 et BC = CD = DE = EF = FG = GA = 81. Calculer AC + AD + AE.

Problème 22. Soit ABC un triangle isocèle en A. On note \mathscr{C} le cercle circonscrit à ABC, et on place un point D sur l'arc BC ne contenant pas A. Enfin, on note E le pied de la perpendiculaire à (CD) issue de A.

Montrer que BD + CD = 2.DE

Problème 23. Soit *ABC* un triangle équilateral de côté 13, et *D* un point sur son cercle circonscrit, situé entre *A* et *C*, et tel que *DA*, *DB* et *DC* soient des nombres **entiers**. Que peut-on dire de la longueur

$$DA + DB + DC$$
?

Problème 24. [Théorème de Carnot] Soit ABC un triangle de côtés a, b et c, O le centre du cercle circonscrit et R son rayon, r le rayon du cercle inscrit, et d_a , d_b et d_c les distances de O aux côtés du triangle. Montrer que

$$d_a + d_b + d_c = R + r$$

Indication: montrer que $\frac{ad_a + bd_b + cd_c}{a + b + c} = r$.

 $wikipedia\, \verb|https://en.wikipedia.org/wiki/Ptolemy\%27s_theorem|$

 $http://culturemath.ens.fr/histoire \%20 des \%20 maths/htm/Vitrac/grecs9/encart1/encart1. \\ html$

Chercher ptolemy's theorm sur twitter et sur le net.

chercher sur brilliant, cut the knot etc

Exemples simples ici:https://brilliant.org/wiki/ptolemys-theorem/

 $exos \ plus \ ou \ moins \ simples \ avec \ solution \ ici: \\ https://artofproblemsolving.com/wiki/index. \\ php/Ptolemy27s_Theorem$

 $exos\,de\,https://artofproblemsolving.com/community/c1257h990937_ptolemys_theorem_and_some_of_its_applications$

Problème 25. Corde de l'arc moitié. https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Pto1%C3%A9m%C3%A9e. Joli.

Problème 26. On considère un parallélogramme ABCD, deux points P et R sur [AB] et [AD]. Le cercle circonscrit à ARP coupe a diagonale [AC] en Q. Montrer que

$$AQ \cdot AC = AP \cdot AB + AR \cdot AD$$

Problème 27. Soit BAC un triangle direct avec BA = 4 et BC = 3. On place le point D tel que ADC soit équilatéral direct. Quelle est la longueur maximale de BD?

Problème 28. [Second théorème de Ptolémée] Soit *ABCD* un quadrilatère convexe inscriptible. Montrer que

$$\frac{AC}{BD} = \frac{AB \times DA + BC \times CD}{AB \times BC + DA \times CD}$$

Problème 29. [Démonstration de la loi des cosinus (Al-Kashi)] Soit ABC un triangle de côtés a, b et c. Montrer que $a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$.

Problème 30. Une distanec à trouver :

Autres exos de https://brilliant.org/wiki/ptolemys-theorem/etaussihttps://brilliant.org/problems/ptolemys-riddle/

Indications

Exercice ??. Considérer un quadrilatère inscriptible dont une diagonale (ou un côté, pour le second) est un diamètre.

Exercice ??. La droite (AP) coupe le cercle circonscrit en un point D.

Exercice ??. La droite (AP) coupe le cercle circonscrit en un point D.

Exercice ??. À un moment il faut rajouter des termes aux deux membres de l'équation pour réussir à factoriser à gauche par (a + b + c). À droite, il va sortir la quantité mentionnée dans l'indication.

Pour l'indication, penser à des aires.

Et en ce qui concerne Ptolémée, il y a trois petits cercles.

Exercice ??. Construire deux autres quadrilatères inscriptibles ayant les mêmes côtés que ABCD.

Exercice ??. Considérer le symétrique de Cpar rapport à la médiatrice de [AB]. Source : https://publications.azimpremjiuniversity.edu.in/1370/1/13_How%20to%20Prove%20It.pdf

Correction

Correction de l'exercice ??.

En notant a le côté du triangle équilatéral, Ptolémée donne

$$a \times PA = a \times PB + a \times PC$$
.

Comme *a* est non nul, on peut simplifier par *a* dans l'équation.

Correction de l'exercice ??.

Le cercle circonscrit dans le carré d'aire 25 contient aussi le point N. On applique Ptolémée au bon quadrilatère et on trouve une longueur égale à 7.

Source: https://twitter.com/Cshearer41/status/1213375792807370752,

Correction de l'exercice ??.

Déjà, dans le triangle rectangle ABC, on a BC = 5 par Pythagore.

Ensuite, l'important est de voir que le quadrilatère OCAB est inscriptible (deux triangles rectangles), et que [BC] est un diamètre du cercle. On applique Ptolémée dans ce cercle, et on trouve que B est au milieu du rayon, c'est-à-dire BO = R/2. Ensuite on applique Pythagore dans le triangle OBC et on trouve $R = 2\sqrt{5}$.

Correction de l'exercice ??.

n trouve BC = 5 par Pythagore, ensuite PQ = 6/5, QB = 8/5 avec les triangles semblables, puis CQ: 17/5.

Ensuite, on calcule $PC = \sqrt{13}$ avec Pythagore,

Enfin, APQC est inscriptible (deux angles droits opposés) et Ptolémée donne $AQ = \frac{52}{5\sqrt{13}}$.

Correction de l'exercice ??.

On complète le quart de cercle en un demi-cercle :

On applique Ptolémée:

$$R\sqrt{2} \times B'D = R\sqrt{2} + 2R\sqrt{2}$$
.

Donc B'D = 3.

Ensuite on applique Pythagore dans le triangle B'DB ce qui donne $10 = 4R^2$ et donc :

$$R = \frac{\sqrt{5}}{\sqrt{2}}$$

Correction de l'exercice ??.

Il y a deux façons de placer le point, mais une partie ru raisonnement s'applique dans les deuxc cas. Soit M le point opposé à A. On a d'abord OB = 5, puis $MB = 5\sqrt{3}$ avec Pythagore. Toujours avec Pythagore, on a MC = 8. Ensuite on applique Ptolémée, mais il y a deux cas différents.

1. Traitons le premier cas, celui où le point C est le plus proche de B.

Dans cette configuration, Ptolémée donne

$$40 + 10x = 30\sqrt{3} \iff x = 3\sqrt{3} - 4$$

2. Dans le second cas, on a la figure suivante :

Et donc cette fois-ci Ptolémée donne l'équation

$$8 \times 5 + 6 \times 3\sqrt{3} = 10x \iff x = 3\sqrt{3} + 4$$

Correction de l'exercice ??.

Vu les longueurs des côtés, si on note ABCDEF l'hexagone, alors [AD] est un diamètre. On applique Ptolémée dans ABCD, et on exploite aussi deux triangles rectangles.

Plus précisément :

$$x^2 + 4 = d^2$$
$$y^2 + 121 = d^2$$

$$xy = 22 + 7d$$

Les deux premières donnent x et y en fonction de d. Ensuite on remplace dans la troisième après avoir élevé au carré, on trouve

$$(d^2 - 4)(d^2 - 121) = (7d + 22)^2$$

Après simplification, ceci équivaut à

$$d^3 - 174d - 308 = 0.$$

On cherche les racines évidentes, c'est-à-dire rationnelles... on trouve que 14 est la seule racine évidente. Les deux autres racines sont négatives...

Donc d=14 mais c'est un peu chaud, il y a peut-être une autre voie? On peut peut-être obtenir $x=8\sqrt{3}$ ou $y=5\sqrt{3}$ d'une manière plus rapide.

Correction de l'exercice ??.

On a tout d'abord par Pythagore AD = 20 et AC = 24.

(Rq: l'énoncé utilise les triplets pythagoriciens (3,4,5), multiplié par cinq et (7,24,25).)

Ensuite, on applique Ptolémée, ce qui donne

$$15 \times 24 = 25 \times CD + 7 \times 20$$

Autrement dit CD = (360 - 140)/25 = 44/5.

Correction de l'exercice ??.

En oubliant un des sommets du pentagone, on obtient un quadrilatère inscrit dans un cercle, et le théorème de Ptolémée donne

$$a^2 + ab = b^2$$

C'est-à-dire, en divisant par a^2 qui est non nul :

$$1 + \frac{b}{a} = \left(\frac{b}{a}\right)^2$$

Autrement dit, si on note x = b/a, alors x vérifie

$$x^2 - x - 1 = 0$$

Cette équation est équivalente à

$$(x-1/2)^2 = 5/4$$

Et ses solutions sont donc $\frac{1\pm\sqrt{5}}{2}$. Une seule de ces deux solutions est positive et peut donc être une

longueur. Il s'agit de $\frac{1+\sqrt{5}}{2}$. C'est le nombre d'or.

Correction de l'exercice ??.

 $Source: \verb|https://studymath.github.io/assets/docs/An%20Introduction%20to%20Ptolemy%20Theorem.pdf|$

Correction de l'exercice ??.

 $Source: \verb|https://studymath.github.io/assets/docs/An%20Introduction%20to%20Ptolemy% 20Theorem.pdf$

Correction de l'exercice ??.

joli, à la limite lorsque la corde BC est petite on se rapproche du rapport 2.

 $Source: \verb|https://studymath.github.io/assets/docs/An%20Introduction%20to%20Ptolemy%20Theorem.pdf|$

Correction de l'exercice ??.

On écrit $\widehat{BAD} = \widehat{BAC} + \widehat{CAD}$, puis on utilise la formule de trigo sur le sinus d'une somme, puis Ptolémée

 $Source: \verb|https://studymath.github.io/assets/docs/An%20Introduction%20to%20Ptolemy%20Theorem.pdf|$

Correction de l'exercice ??.

On applique Ptolémée dans le quadrilatère *ABDC* puis on utilise deux paires de triangles semblables pour écrire toutes les distances en fonction de *a*, *b*, *c* et *p*.

Il y a aussi une preuve avec la loi des cosinus, à mettre dans l'autre feuille.

Correction de l'exercice ??.

On applique Ptolémée dans le quadrilatère *ABDC* puis on utilise deux paires de triangles semblables pour écrire toutes les distances en fonction de *a*, *b*, *c*, *m*, *n*, *p*.

Il y a aussi une preuve avec la loi des cosinus, à mettre dans l'autre feuille.

Correction de l'exercice ??.

(Attention, angle inscrit et AL-Kashi...)

On commence par Ptolémée : il s'agit donc de montrer que $2DE = \frac{AD \times BC}{AB}$.

Ensuite : Angle inscrit : $\widehat{ABC} = \widehat{ADC} = \alpha$. Ensuite on fait Al-Kashi dans ABC avec l'angle α , puis on écrit le cosinus de cet angle avec le triangle rectangle ADE.

Source: http://www.les-mathematiques.net/phorum/read.php?8,931239,931421

Correction de l'exercice ??.

Avec Ptolémée on obtient que DA + DC = DB, donc la longueur vaut 2DB. Or, DB est entier, il est compris entre 13 (exclu) et $2 \times 13/\sqrt{3} \approx 15,01$, il peut donc valoir 14 ou 15.

S'il vaut 15, vu que c'est presque la limite, on voit que les côtés restants doivent être 7 et 8.

On vérifie que ça marche en caculant les cosinus et sinus avec Al-Kashi et la li des sinus et en vérifiant que l'on a bien la relation $\cos^2 + \sin^2 = 1$. Dans les autre cas, cela e marche pas.

La longueur totale vaut donc 30 mais on a mieux, on a les trois côtés.

Si on appelle *E* l'intersection des diagonales, on a $DE = 2 + \sqrt{3}$.

Correction de l'exercice ??.

Source: An introduction to ptolemy's theorem, Qi Zhu. Pdf en ligne

Correction de l'exercice ??.

La source est https://twitter.com/Caner_KMZ/status/1250086153769934854.

On utilise l'inégalité de Ptolémée, avec égalité en cas de quadrilatère cyclique. Si on note x le côté du triangle équilatéral, et d la distance BD, on obtient

$$3x + 4x \ge dx$$
.

Correction de l'exercice ??.

 $Source: \verb|https://publications.azimpremjiuniversity.edu.in/1370/1/13_How \%20 to \%20 Prove \%20 It.pdf$

Correction de l'exercice ??.

On trouve $AB = \sqrt{7}$. Ensuite il reste trois inconnues. Puis $AD = \sqrt{2}$ et $CD = \sqrt{14}$ avec angle inscrit, Ptolémée, Pythagore, la puissance du point I par rapport au cercle, et un peu de calcul.

Autre solution (Laurent Aubert):

On a cos(BCA) = 3/4. En appliquant Al Kashi à BIC, on obtient $BI = 3/\sqrt{2}$.

Ensuite, en appliquant Al Kashi à ABI, on obtient $cos(ABI) = \sqrt{14}/4$.

On a donc cos(ACD) = sqr t 14/4 et on en déduit facilement CD et AD.

Là aussi, c'est calculatoire et il y a peut être plus simple. Cette méthode a l'air de fonctionner même si *BCI* n'est pas isocèle.