第六次实验报告

NAT的配置

郭裕彬 2114052 物联网工程

实验要求

1. 仿真环境下的NAT服务器配置

在仿真环境下完成NAT服务器的配置实验,要求如下:

- a. 学习路由器的NAT配置过程。
- b. 组建由NAT连接的内网和外网。
- c. 测试网络的连通性, 观察网络地址映射表。
- d. 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析。
- 2. 在仿真环境下完成如下实验

将内部网络中放置一台Web服务器,请设置NAT服务器,使外部主机能够顺利使用该Web服务。

实验设计

要求1网络拓扑

要求2网络拓扑

实验过程

仿真环境下的NAT服务器配置

- 通过课程PPT和相关实验视频,学习路由器NAT配置过程
- 按照实验设计的网络拓扑图,配置各个设备的网络环境

• 各个主机和服务器的IP地址配置方法如之前的实验,在Desktop选项中的 IP Configuration应用中进行配置,不再过多叙述

• 路由器的IP地址配置

按照实验设计分配,需要在一个设备上配置多个接口,因此在路由器的 CLI中使用如下命令进行配置:

```
enable
                             //特权模式
config terminal
                             //全局配置模式
interface gig0/0
                             //接口gig0/0
ip address 192.0.0.1 255.0.0.0
                             //配置该接口IP地址为
192.0.0.1, 子网掩码为255.0.0.0
no shutdown
                             //开启接口
exit
                             //返回上一级
interface gig0/1
                             //接口gig0/1
ip address 202.113.25.1 255.255.255.0 //配置该接口IP
地址为202.113.25.1,子网掩码为255.255.255.0
no shutdown
                             //开启接口
exit
                             //返回上一级
```

• 配置NAT服务器

在路由器的CLI中使用如下命令:

```
enable //特权模式
config terminal //全局配置模式
//定义IP地址池,限定内网访问外网时可以使用的IP范围
```

```
//开放的IP为202.113.25.1~202.113.25.10,使用的子网掩码为
255.255.255.0,对应10个IP地址
ip nat pool myNATPool 202.113.25.1 202.113.25.10
netmask 255.255.255.0
//划定内部网络使用的IP范围,定义允许通过的标准访问列表"6"
access-list 6 permit 192.0.0.0 0.255.255.255
//将该访问列表与外网IP地址进行绑定,即列表6映射到定义的
myNATPool中202.113.25.1~202.113.25.100
ip nat inside source list 6 pool myNATPool overload
//指定连接内网和外网的接口
interface gig0/0
ip nat inside
exit
interface gig0/1
in nat outside
exit
```

- 对连通性进行测试,观察网络地址映射表
 - 内网主机PC0 Ping 外网主机PC2

第一个Ping包时设备需要对端的物理地址进行探测,因此会超过设定的时限,完成之后的Ping操作能够正常通信

• 内网主机PC1 tracert 外网主机PC2

数据包从PC1出发后,经过路由器与内网相连的接口,即默认网关,最后到达主机PC2。

- 内网主机访问外网服务器
 - 开启服务器的HTTP服务,确保其可用

• 内网主机成功访问外网服务器

• 观察网络地址映射表

在特权模式下使用命令 show ip nat statistics 命令查看NAT统计信息,使用命令 show ip nat translations 命令查看转换表

```
Router#show ip nat s
 Router#show ip nat statistics
 Total translations: 11 (0 static, 11 dynamic, 11 extended)
 Outside Interfaces: GigabitEthernet0/1
 Inside Interfaces: GigabitEthernet0/0
Hits: 133 Misses: 18
Expired translations: 7
Dynamic mappings:
  -- Inside Source
 access-list 6 pool myNATPool refCount 11
   pool myNATPool: netmask 255.255.255.0
                      start 202.113.25.1 end 202.113.25.10
                       type generic, total addresses 10 , allocated 1 (10%), misses 0
 Router#show ip nat tr
 Router#show ip nat translations
tcp 202.113.25.1:1025 192.0.0.2:1025 202.113.25 100 tcp 202.113.25 1:1026
                                                                                                                                                                                               Outside global
tcp 202.113.25.1:1025 192.0.0.2:1025 202.113.25.100:80 202.113.25.1:1026 192.0.0.2:1026 202.113.25.100:80 202.113.25.1:1027 202.113.25.1:1027 202.113.25.1:1028 192.0.0.2:1027 202.113.25.1:1028 192.0.0.2:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 202.113.25.1:1028 20
tcp 202.113.25.1:1029 192.0.02:1029 202.113.25.100:80 202.113.25.100:80 tcp 202.113.25.1:1030 192.0.02:1030 202.113.25.100:80 202.113.25.100:80
tcp 202.113.25.1:1033 192.0.0.2:1033 tcp 202.113.25.1:1034 192.0.0.2:1034
                                                                                                                               202.113.25.100:80 202.113.25.100:80 202.113.25.100:80 202.113.25.100:80
 tcp 202.113.25.1:1035 192.0.0.2:1035
                                                                                                                             202.113.25.100:80 202.113.25.100:80
```

通过统计信息可以看出,NAT服务器的相关设置情况与设计一致,在转换表中,IP地址为192.0.0.2的PC0使用多个端口来访问IP地址为202.113.25.100的服务器的80端口,NAT服务将这些端口转换成外网IP地址池中的202.113.25.1的端口,使其能够与处在外网的服务器进行通信。

- 使用"模拟"方式观察IP数据报的传递过程
 - 切换Cisco Packet Tracer到Simulation模式,使用PC0 Ping PC2,得到数据包转发过程如下:

Vis.	Time(sec)	Last Device	At Device	Туре
	0.000	-	PC0	ICMP
	0.001	PC0	Switch0	ICMP
	0.002	Switch0	Router1	ICMP
	0.003	Router1	Switch1	ICMP
	0.004	Switch1	Server0	ICMP
	0.004	Switch1	PC2	ICMP
	0.005	PC2	Switch1	ICMP
	0.006	Switch1	Router1	ICMP
	0.007	Router1	Switch0	ICMP
	0.008	Switch0	PC0	ICMP

数据包从PCO出发,经过交换机SwitchO,到达Router1,Router1将其进行NAT地址转换后发给Switch1,第一次发送Switch1需要学习与PC2的连接,因此会发给与之相连的ServerO和PC2,PC2收到后原路返回,在Router1再进行一次NAT地址转换。

可以看到,PC0发给PC2的包在Router1上被重新封装,将源IP地址改成了设定好的NAT后的外网地址202.113.25.1,并由路由器记录转换前后的对应关系,将包发出;

同理,PC2返回的包在Router1上也经历了这一过程,目的地址公网 IP202.113.25.101被Router1查询转换表后更改为管理的实际内网地址 192.0.0.2并发出。

仿真环境下的内网服务器设置

● 按照实验设计的网络拓扑图,配置各个设备的网络环境,具体实现同上述实验过程,不再叙述。

• 在路由器的CLI特权和全局配置模式中使用命令ip nat inside source tcp 192.0.0.4 80 202.113.25.80 80将内网上IP地址为192.0.0.4的服务器的80端口 在尝试建立TCP连接时通过路由器进行转换,映射到外网上的指定地址和端口 202.113.25.80:80。修改后外网在浏览器应用中通过访问202.113.25.80和缺省的80端口就可以访问到内网的Web服务器。

