

MERGESORT

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	108
10^1	Os	Os	0s	0.00201s	0.02699s	0.27099s	3.00003s	32.405s
10^2	Os	Os	0s	0.00200s	0.02809s	0.29325s	3.21219s	34.703s
10^{3}	Os	Os	Os	0.00300s	0.02899s	0.30120s	3.29710s	35.495s
10^4	Os	Os	Os	0.00307s	0.03099s	0.31620s	3.41299s	36.678s
10 ⁵	Os	Os	Os	0.00300s	0.03199s	0.32600s	3.56166s	38.319s
10 ⁶	Os	Os	Os	0.00310s	0.03000s	0.32955s	3.68171s	39.320s
10 ⁷	Os	Os	Os	0.00317s	0.03099s	0.33623s	3.70210s	40.216s
10 ⁸	Os	Os	Os	0.00315s	0.03199s	0.33399s	3.72815s	41.023s

MERGESORT

- Mergesort-ul se arata ca fiind o metoda destul de buna pentru sortarea numerelor, acesta scotand un timp de sub 0.3 secunde pentru sortarea a 1.000.000 de numere.
- Pentru **10.000.000** de numere timpul de sortare este aproximativ de **3 secunde**.
- Sortarea deja devine mult mai lenta, scotand un timp de sortare in jur de 40 de secunde pentru 100.000.000 de elemente.

RADIXSORT (BAZA 2¹⁶)

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	Os	0s	0.00099s	0.01300s	0.12811s	1.30228s
10 ²	Os	0s	Os	0s	0.00120s	0.01400s	0.13200s	1.31899s
10^{3}	Os	0s	Os	0s	0.00199s	0.01398s	0.13099s	1.34503s
10^4	Os	0s	Os	0s	0.00199s	0.01500s	0.15100s	1.70739s
10 ⁵	Os	0s	Os	0s	0.00199s	0.02600s	0.26980s	2.98209s
10^6	Os	0s	Os	0s	0.00299s	0.02799s	0.26899s	3.06421s
10 ⁷	Os	0s	Os	0s	0.00299s	0.02699s	0.27510s	3.09494s
10 ⁸	Os	Os	Os	Os	0.00299s	0.02700s	0.27899s	3.18122s

RADIXSORT (BAZA 2¹⁶)

- Radixsort reprezinta o metoda buna de sortare, din punct de vedere al timpului de sortare, putand sorta pana la 10.000.000 de numere sub 0.3 secunde.
- In cazul sortarii a 100.000.000 numere, radixsort scoate un timp impresionant din intervalul 1 secunda 3 secunde, depinzand de valoarea numerelor (in acest caz valoarea maxima pe care o pot avea numerele pentru a scorta in 1 secunda fiind 10.000, iar pentru 3 secunde 100.000.000).

RADIXSORT (BAZA 10)

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	Os	0s	0.00099s	0.01500s	0.15316s	1.44619s
10 ²	Os	0s	Os	0s	0.00300s	0.02800s	0.26409s	2.59448s
10 ³	Os	0s	Os	0s	0.00400s	0.03900s	0.38600s	3.81504s
10^4	Os	Os	Os	Os	0.00599s	0.51466s	0.51466s	4.97681s
10 ⁵	Os	0s	Os	0s	0.00599s	0.06400s	0.62220s	6.14699s
10 ⁶	Os	0s	Os	0s	0.00799s	0.07500s	0.76151s	7.34878s
10 ⁷	Os	Os	Os	0s	0.00899s	0.08999s	0.86157s	8.59516s
10 ⁸	Os	Os	Os	Os	0.01000s	0.09800s	0.96102s	9.58609s

RADIXSORT (BAZA 10)

- Radixsort in baza 10, de asemenea, scoate un timp de sortare bun, sortand pana la **1.000.000** numere sub **0.1 secunde**.
- Pentru **10.000.000** numere timpul incepe sa creasca si sa fluctueze in functie de valorile pe care le pot lua numerele ce vor fi sortate timpul crescand de la **0.15 secunde** pentru valoarea maxima a numerelor: **10**, la **1 secunda** pentru valoarea maxima a numerelor: **100.000.000**.
- Aceeasi poveste este valabila si pentru sortarea a **100.000.000** numere: pentru numere cu valoarea maxima **10** timpul de sortare este **1.5 secunde**, iar pentru numere cu valoarea maxim **100.000.000** timpul de sortare este **9.6 secunde**.

Radixsort (baza 2¹⁶)

- Timpii sunt identici pentru sortarea a pana la 10.000 numere (in cazurile cu valori maxime de la 10 la 100.000.000)
- Diferenta apare de la sortarea a 100.000 numere pana la 100.000.000 numere (in cazurile cu valori maxime de la 10 la 100.000.000), radixsort in baza 2¹⁶ avand timpii de, intre 2-5 ori, mai mici decat radixsort in baza 10.

Radixsort (baza 10)

- Diferenta nu este, insa, una imensa in toate cazurile, deoarece majoritatea cazurilor sorteaza sub 1 secunda.
- In cazurile in care sortarea se face in mai multe secunde intervine diferenta notabila (de exemplu radixsort (10) sorteaza 100.000.000 numere cu valori pana la 100.000.000 in 10 secunde, pe cand radixsort(2¹⁶) sorteaza in 3 secunde).

SHELLSORT

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	0s	0.00100s	0.01100s	0.14099s	1.61551s	18.556s
10 ²	0s	0s	Os	0.00201s	0.01800s	0.20599s	2.26224s	27.028s
10^3	0s	Os	Os	0.00200s	0.02399s	0.30500s	3.47109s	38.851s
10^4	0s	Os	Os	0.00200s	0.02799s	0.34918s	4.82862s	59.456s
10 ⁵	0s	Os	Os	0.00200s	0.03011s	0.41999s	5.68828s	84.801s
10 ⁶	Os	0s	Os	0.00199s	0.02899s	0.41699s	6.21055s	90.861s
10 ⁷	0s	Os	Os	0.00201s	0.02999s	0.43798s	6.09241s	89.855s
10 ⁸	0s	Os	Os	0.00200s	0.02900s	0.42741s	6.09723s	92.375s

SHELLSORT

- Timpul de sortare al shellsort-ului este de sub 0.5 secunde pentru tablouri cu pana la 1.000.000 de numere.
- Pentru 10.000.000 de numere timpul este decent, variind intre 1.6 secunde pentru elemente mai mici ca 10 si 6 secunde pentru elemente mai mici ca 100.000.000.
- Deja la 100.000.000 de elemente timpul de sortare se mareste considerabil, pentru elemente mai mici ca 10 este 18.6 secunde, iar pentru elemente mai mici ca 100.000.000 este de 92.5 secunde.

SHELLSORT KNUTH

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	Os	0s	0.00100s	0.00899s	0.09600s	1.08100s	12.061s
10 ²	0s	Os	Os	0.00099s	0.01499s	0.16400s	1.71941s	19.234s
10 ³	Os	Os	Os	0.00200s	0.02099s	0.25199s	3.15562s	33.204s
10 ⁴	Os	Os	Os	0.00200s	0.02400s	0.33326s	4.57960s	56.662s
10 ⁵	0s	Os	Os	0.00100s	0.02600s	0.36599s	5.25790s	81.643s
10 ⁶	0s	Os	Os	0.00189s	0.02699s	0.37800s	5.82372s	90.388s
10 ⁷	0s	Os	Os	0.00201s	0.02499s	0.37264s	5.87666s	89.679s
10 ⁸	Os	Os	0s	0.00200s	0.02700s	0.40101s	5.95665s	91.216s

SHELLSORT KNUTH

- Folosind secventa lui Knuth pentru shellsort, am obtinut niste timpi de sortare rapizi, de sub **0.5 secunde** pentru tablouri cu pana la **1.000.000** de numere.
- Pentru 10.000.000 de numere timpul este decent, fiind cuprins intre 1 secunda pentru elemente mai mici ca 10 si 6 secunde pentru elemente mai mici ca 100.000.000.
- Deja la 100.000.000 de elemente timpul de sortare se mareste considerabil, pentru elemente mai mici ca 10 este 12 secunde, iar pentru elemente mai mici ca 100.000.000 este de 91.2 secunde.

Shellsort

- Timpii sunt aproximativ egali pentru sortarea a pana la 1.000.000 numere (in cazurile cu valori maxime de la 10 la 100.000.000).
- Diferenta vizibila incepe sa apara de la sortarea a 10.000.000 numere (in cazurile cu valori maxime de la 10 la 100.000.000), shellsort knuth avand un timp mai rapid decat shellsort cu o mica diferenta de intre 0.1 secunde 0.6 secunde.

Shellsort Knuth

In cazul sortarii a 100.000.000
 elemente (in cazurile cu valori
 maxime de la 10 la 100.000.000)
 shellsort knuth are un timp de
 sortare mai rapid ca shellsort,
 diferenta masurandu-se in secunde
 (intre 1 secunda – 8 secunde).

QUICKSORT (CU PIVOT ULTIMUL ELEMENT)

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	0s	0.01200s	1.10938s	-	-	-
10 ²	Os	Os	Os	0.00200s	0.13211s	-	-	-
10 ³	Os	Os	Os	0.00100s	0.02499s	1.42069s	-	-
10 ⁴	Os	Os	Os	0.00101s	0.01599s	0.27022s	14.7075s	-
10 ⁵	Os	0s	Os	0.00100s	0.01599s	0.18299s	3.02119s	149.712s
10 ⁶	Os	0s	Os	0.00200s	0.01600s	0.18299s	2.16918s	33.439s
10 ⁷	Os	Os	Os	0.00101s	0.01700s	0.19000s	2.18434s	24.196s
10 ⁸	Os	0s	Os	0.00099s	0.01801s	0.19300s	2.17543s	24.4606s

QUICKSORT (CU PIVOT ULTIMUL ELEMENT)

- Quicksort cu pivot ultimul element functioneaza mult mai rapid pe elemente cat mai diferite.
- Pentru elemente cu valoarea maxima **10** programul cedeaza cand are de sortat mai mult de **100.000** numere.
- Diferenta data de valoarea numerelor ce vor fi sortate este notabila, timpul de sortare trecand de la **150 de secunde** pentru **100.000.000** de numere cu valoarea maxima **100.000** la **33 de secunde** pentru **100.000.000** de numere cu valoarea maxima **1.000.000**.

QUICKSORT CU MEDIANA DIN 3

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	0s	0s	0.00882s	0.10399s	1.16499s	13.268s
10^2	0s	0s	0s	0.00099s	0.01000s	0.11299s	1.24173s	13.879s
10^3	0s	Os	Os	0.00099s	0.01099s	0.12099s	1.33100s	14.939s
10^4	0s	Os	0.00099s	0.00100s	0.01299s	0.13000s	1.40121s	15.473s
10 ⁵	0s	Os	0.00100s	0.00100s	0.01499s	0.14333s	1.52268s	16.298s
10^6	0s	Os	Os	0.00100s	0.01300s	0.15300s	1.65052s	17.472s
10 ⁷	0s	Os	Os	0.00100s	0.01400s	0.14900s	1.68200s	18.566s
10 ⁸	Os	0s	Os	0.00100s	0.01400s	0.14800s	1.69676s	19.039s

QUICKSORT CU MEDIANA DIN 3

- Quicksort cu mediana din 3 are niste timpi foarte buni de sortare,
 indiferent de valoarea numerelor sortate.
- Pentru pana la 1.000.000 numere, timpii de sortare sunt apropiati pentru numerele cu valoarea maxima 10 si cele cu valoare maxima 100.000.000, fiind sortate in sub 0.15 secunde.
- Pentru 10.000.000 de numere timpul de sortare este in jur de 1.5 secunde, iar pentru 100.000.000 de numere oscileaza intre 13-19 secunde.

Quicksort (cu pivot ultimul element)

 Diferenta intre cele 2 variante de quicksort este semnificativa, un prim aspect fiind faptul ca quicksort cu pivot ultimul element nu poate sorta in anumite cazuri de combinatii dintre valoare maxima si numar elemente, in timp ce quicksort cu mediana din 3 nu prezinta aceasta problema.

Quicksort cu mediana din 3

- In cazurile in care poate sorta,
 quicksort (mediana 3) are timpii de
 sortare mult mai buni decat
 quicksort (last), de exemplu 16
 secunde versus 150 de secunde.
- Pentru anumite combinatii dintre valoare maxima si numar elemente quicksort (last) are timpi relativ similari cu quicksort (mediana 3).

COUNTSORT

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	0s	0s	0s	0s	0.00099s	0.00800s	0.08099s	0.78823s
10^2	0s	0s	Os	0s	0.00099s	0.00800s	0.07899s	0.80700s
10^3	0s	0s	Os	0s	0.00099s	0.00900s	0.08100s	0.79056s
10^4	0s	0s	Os	Os	0.00099s	0.00899s	0.08299s	0.80221s
10 ⁵	0.00199s	0.00200s	0.00101s	0.00200s	0.00299s	0.00999s	0.08600s	0.83158s
10^6	0.01200s	0.01110s	0.01201s	0.01301s	0.01500s	0.03100s	0.11299s	0.94215s
10 ⁷	0.09100s	0.11900s	0.11900s	0.11900s	0.12799s	0.15700s	0.42308s	2.36225s
10 ⁸	1.09148s	1.13312s	1.11618s	1.12342s	1.14120s	1.24501s	1.59937s	4.5243s

COUNTSORT

- Countsort are cei mai buni timpi de sortare de pana acum, sortand sub 1 secunda pana la 100.000.000 numere cu valoarea maxima de la 10 la 1.000.000 si pana la 10.000.000 numere cu valoarea maxima 10.000.000.
- In rest pana la **10.000.000** numere cu valoarea maxima **100.000.000** sunt sortate in jur de **1 secunda**, singurele cazuri de sortare cu mai mult de **1 secunda** fiind:
 - 100.000.000 numere cu valoare 10.000.000 in 2.3 secunde
 - 100.000.000 numere cu valoare 100.000.000 in 4.5 secunde

NATIVESORT

Numar de elemente Valoare maxima	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸
10 ¹	Os	0s	0s	0.00099s	0.01299s	0.15017s	1.74051s	20.106s
10^2	Os	Os	0s	0.00100s	0.01400s	0.15599s	1.81535s	20.992s
10^{3}	Os	Os	Os	0.00199s	0.01500s	0.17000s	1.94344s	21.913s
10^4	Os	Os	Os	0.00199s	0.01699s	0.17700s	2.01366s	22.741s
10 ⁵	Os	Os	Os	0.00207s	0.01900s	0.19399s	2.06387s	23.261s
10^6	Os	Os	Os	0.00203s	0.01800s	0.21099s	2.27463s	24.145s
10 ⁷	Os	Os	Os	0.00199s	0.01899s	0.22124s	2.39116s	26.031s
10 ⁸	Os	Os	Os	0.00107s	0.01800s	0.20799s	2.38015s	27.140s

NATIVESORT

- Nativesort sorteaza pana la 1.000.000 numere cu valori de la 10 la 100.000.000 sub 0.2 secunde.
- Timpul ramane decent la sortarea a 10.000.000 numere cu valori de la 10 la 100.000.000, acesta fiind in jur de 2 secunde.
- Insa la sortarea a **100.000.000** numere cu valori de la **10** la **100.000.000** timpul sare la un interval mult mai mare, de **20-27 de secunde**.

ANALIZA TIMPULUI MEDIU

- Graficul a fost creat luand in calcul timpii de sortare a
 100.000.000 elemente de catre algoritmii de sortare, sortand pe rand elemente cu valoare maxima 10, 100, ..., 100.000.000.
- Quicksort(last) a fost descalificat, deoarece nu poate sorta atatea elemente, decat daca pot avea valoarea maxima de la 10.000 in sus.
- Se pot observa diferentele dintre algoritmi, countsort-ul avand cea mai buna medie a timpului de sortare.
- Se poate observa si diferenta dintre cele 2 variante de radixsort, cea in baza 2^{16} , fiind mai rapida ca cea in baza 10.
- De asemenea, quicksort(mediana 3) surclaseaza quicksort(last), in primul rand pentru ca poate sorta toate testele propuse, iar apoi datorita timpului mediu (a fost o instanta cand quicksort(last) a sortat un test in 146 de secunde).
- Cele 2 variante de shellsort sunt cele mai lente, aflandu-se la o diferenta notabila fata de celelalte sortari.

100.000.000 ELEMENTE

ANALIZA PERFORMANTA

- Graficul analizeaza evolutia tuturor algoritmilor de la sortarea a 10 elemente la sortarea a 100.000.000 elemente (cu valoarea maxima 100.000.000).
- Dupa cum se observa algoritmii cu rezultatele
 cele mai bune sunt radixsort (2¹⁶) si countsort.
- Nativesort are o evolutie destul de buna, ultimul test facand diferenta la timpul de sortare.

CONCLUZII

- Potrivit timpilor de sortare si comparatiilor dintre acestia, countsort si radixsort(2¹⁶) sunt sortarile cu cele mai bune performante.
- Cand vine vorba de sortarea unui numar considerabil de elemente cu valori mari, este importanta alegerea unui algoritm rapid.
- In cazul in care avem mai putine elemente, algoritmii prezinta un timp similar de sortare, fiind folositoare utilizarea lor.

