Probabilistic Inference & Learning

Exercise Sheet #4

Parametric Regression

1. **Least-Squares Estimation** The parametric regression model from Lectures 4 and 5 used the Gaussian likelihood and prior (for $y = [y_1, \ldots, y_n] \in \mathbb{R}^n, X = [x_1, \ldots, x_n] \in \mathbb{X}^n, \phi_X = [\phi(x_1), \ldots, \phi(x_n)] \in \mathbb{R}^{F \times n}$ and $w \in \mathbb{R}^F$, $\sigma \in \mathbb{R}$, $\mu \in \mathbb{R}^F$, $\Sigma \in \mathbb{R}^{F \times F}$)

$$p(y \mid X, w) = \mathcal{N}(y; \phi_{x}^{\mathsf{T}} w, \sigma^{2} I_{p})$$
 $p(w) = \mathcal{N}(w; \mu, \Sigma).$

(a) Show that the **maximum likelihood estimator** for *w* is given by the **ordinary least-squares** estimate

$$W_{\rm ML} = (\phi_X \phi_X^{\mathsf{T}})^{-1} \phi_X y.$$

To do so, use the explicit form of the Gaussian pdf to write out $\log p(y \mid X, w)$, take the gradient with respect to the elements $[w]_i$ of the vector w and set it to zero. If you find it difficult to do this in vector notation, it may be helpful to write out $\phi_X^\intercal w = \sum_i w_i [\phi_X]_{i:}$ where $[\phi_X]_{i:}$ is the i-th column of ϕ_X . Calculate the derivative of $\log p(y \mid X, w)$ with respect to w_i , which is scalar. Setting that to zero, you can bring it to a form $v^\intercal [\phi_X]_{i:} = 0$ for some vector v(w) that is identical for all i, and thus, stacking up the columns of ϕ_X again, we have $v^\intercal \phi_X = 0$. Solving that equation for w yields the desired result.

(b) By an analogous computation on the posterior $p(w \mid y, X)$, show that the **maximum a-posteriori** estimator is identical to the posterior mean

$$W_{\text{MAP}} = \mathbb{E}_{p(w|y,X)}(w) = (\Sigma^{-1} + \sigma^{-2}\phi_X\phi_X^{\mathsf{T}})^{-1}(\Sigma^{-1}\mu + \sigma^{-2}\phi_Xy).$$

This result shows that, for the particular choice $\mu = 0, \Sigma = I_F$, the posterior mean is the ℓ_2 -regularized least-squares estimator $w_{\text{MAP}} = (\sigma^2 I_F + \phi_X \phi_X^{\mathsf{T}})^{-1} \phi_X y$.

- 2. **Type-II maximum likelihood** Lecture 5 introduced hierarchical Bayesian inference (hyperparameter optimization) for general linear regression. Download **Gaussian_Linear_Regression.ipynb** from the "code" folder on Ilias and open it in jupyter lab. Uncomment the line in the second cell to load the toy dataset "nlindata.mat". Pick any set of features $\phi(x)$ you like (e.g. the ones listed in the final cell of the notebook, or any other), as long as $\phi(x) \in \mathbb{R}^F$ with $F \geq 3$.
 - (a) add a line at the end of the cell to compute the log marginal likelihood (log evidence)

$$\log p(y \mid \phi) = \log \mathcal{N}(y; \phi_X^{\mathsf{T}} \mu, \phi_X^{\mathsf{T}} \Sigma \phi_X + \sigma^2 l)$$

(note that the mean and the Cholesky decomposition of the covariance are already computed elsewhere in the script as the variables **M** and **G**; use these for efficiency). 10 points

(b) Identify at least 3 hyperparameters $\theta \in \mathbb{R}^3$ in your choice $\phi_{\theta}(x)$ (see slide 5 in Lecture 5 for an example). Using the results from slide 13 in the lecture, implement the gradient

$$\nabla_{\theta}(-2\log p(y\mid \phi)).$$

You can make your task easier by choosing (as is done in the notebook) $\mu = 0$, in which case the gradient elements can be computed using $K := \phi_X^T \Sigma \phi_X$, $G := K + \sigma^2 I$, $\Gamma := G^{-1} Y$, as

$$-2\frac{\partial \log p(y\mid \phi_{\theta})}{\partial \theta_{i}} = -\Gamma^{\mathsf{T}} \frac{\partial K}{\partial \theta_{i}} \Gamma + \operatorname{tr}\left(G^{-1} \frac{\partial K}{\partial \theta_{i}}\right) \text{ with } \frac{\partial K}{\partial \theta_{i}} = \left(\frac{\partial \phi_{\mathsf{X}}}{\partial \theta_{i}}\right)^{\mathsf{T}} \Sigma \phi_{\mathsf{X}} + \phi_{\mathsf{X}}^{\mathsf{T}} \Sigma \left(\frac{\partial \phi_{\mathsf{X}}}{\partial \theta_{i}}\right),$$

and $\partial \phi_X/\partial \theta_i$ is the matrix of element-wise derivatives of your(!) choice of ϕ_X with respect to θ_i . Using this gradient and **scipy.optimize.minimize** (check its documentation), optimize the evidence term from 2.(a) for your features, and make a plot of the posterior on f arising from the optimal (in this sense) choice of θ .

40 points