Module 04: Surface Water Hydraulics Unit 02: Gradually Varied Flow-Implicit Approach

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Learning Objective

 To solve gradually varied flow problem for open channels using implicit methods.

Problem Definition to Solution

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \Psi(x,y) \quad \text{with} \quad \Psi(x,y) = \frac{S_0 - S_f}{1 - Fr^2} = \frac{S_0 - \frac{n^2 Q^2}{R^{4/3} A^2}}{1 - \frac{Q^2 T}{aA^3}}$$

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \Psi(x,y) \quad \text{with} \quad \Psi(x,y) = \frac{S_0 - S_f}{1 - Fr^2} = \frac{S_0 - \frac{n^2 Q^2}{R^{4/3} A^2}}{1 - \frac{Q^2 T}{qA^3}}$$

Initial Condition:

$$y|_{x=0} = y_0$$

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \Psi(x,y) \quad \text{with} \quad \Psi(x,y) = \frac{S_0 - S_f}{1 - Fr^2} = \frac{S_0 - \frac{n^2 Q^2}{R^{4/3} A^2}}{1 - \frac{Q^2 T}{qA^3}}$$

Initial Condition:

$$y|_{x=0} = y_0$$

where

 $\begin{array}{ll} y= \text{ depth of flow} & x= \text{ coordinate direction} \\ S_f= \text{ friction slope } \left(=\frac{n^2Q^2}{R^{4/3}A^2}\right) & Fr= \text{ Froude number } \left(=\sqrt{\frac{Q^2T}{gA^3}}\right) \\ S_0= \text{ bed slope} & Q= \text{ discharge} \\ T= \text{ top width} & g= \text{ acceleration due to gravity} \\ R= \text{ hydraulic radius} & A= \text{ cross-sectional area} \end{array}$

Given

Channel Cross-Section Type: Rectangular

Given

Channel Cross-Section Type: Rectangular

$$y_0 = 0.8m$$

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

Given

Channel Cross-Section Type: Rectangular

$$y_0 = 0.8m$$

$$B = 15m$$

$$g = 9.81m/s^2$$

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

 $g = 9.81m/s^2$

 $S_0 = 0.0008$

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

 $g = 9.81m/s^2$

 $S_0 = 0.0008$ n = 0.015

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

 $g = 9.81m/s^2$

 $S_0 = 0.0008$

n = 0.015 $L_x = 200m$

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

 $g = 9.81m/s^2$

 $S_0 = 0.0008$ n = 0.015

 $L_x = 200m$

 $Q = 20m^3/s$

Required

Identify the type of GVF Profile: ?

Given

Channel Cross-Section Type: Rectangular

 $y_0 = 0.8m$

B = 15m

 $g = 9.81m/s^2$

 $S_0 = 0.0008$ n = 0.015

 $L_x = 200m$

 $Q = 20m^3/s$

Required

Identify the type of GVF Profile: ?

Plot of the GVF Profile.

Rectangular Cross-section

$$A = By$$

$$P = B + 2y$$

$$A$$

$$R = \frac{A}{P}$$

$$T = B$$

Problem Definition Critical Depth

For critical depth, Fr = 1

$$Fr = \sqrt{\frac{Q^2T}{gA^3}} = 1$$

In case of rectangular channel, A = By and T = B

$$\sqrt{\frac{Q^2T}{gA^3}} = 1$$

$$\sqrt{\frac{Q^2T}{gA^3}} = 1$$
$$y_c = \left(\frac{Q^2}{gB^2}\right)^{\frac{1}{3}}$$

Normal Depth

Normal depth can be calculated from Manning's equation (uniform flow),

$$Q = \frac{1}{n} R^{\frac{2}{3}} S_0^{\frac{1}{2}} A$$

In case of rectangular channel, $A = By_n$ and $P = B + 2y_n$

$$Q = \frac{1}{n} \left(\frac{By_n}{B + 2y_n} \right)^{\frac{2}{3}} S_0^{\frac{1}{2}} By_n$$

In function form,

$$G(y_n) = \frac{S_0^{\frac{1}{2}} B^{\frac{5}{3}}}{n} \left(\frac{y_n}{B + 2y_n}\right)^{\frac{2}{3}} y_n - Q = 0$$

Normal Depth

From Newton-Raphson method,

$$y_n|^{(p)} = y_n|^{(p-1)} - \frac{G(y_n|^{(p-1)})}{G'(y_n|^{(p-1)})}$$

where

$$G'(y_n) = \frac{S_0^{\frac{1}{2}} B^{\frac{5}{3}}}{3n} \frac{y_n^{\frac{2}{3}} (5B + 6y_n)}{(B + 2y_n)^{\frac{5}{3}}}$$

Implicit Runge-Kutta Methods

The Runge-Kutta method is defined as weighted assembly of increments by,

$$y_{n+1}=y_n+\sum_{j=1}^mW_jK_j$$
 with
$$K_i=\Delta x\Psi\left(x_n+c_i^x\Delta x,y_n+\sum_{j=1}^ic_{ij}^yK_j\right)$$

Implicit Runge-Kutta Methods

The Runge-Kutta method is defined as weighted assembly of increments by,

$$y_{n+1}=y_n+\sum_{j=1}^mW_jK_j$$
 with
$$K_i=\Delta x\Psi\left(x_n+c_i^x\Delta x,y_n+\sum_{j=1}^ic_{ij}^yK_j\right)$$

Complete Butcher Tableau (Butcher, 2008) can be expressed as

Implicit Runge-Kutta Methods

The Runge-Kutta method is defined as weighted assembly of increments by,

$$y_{n+1}=y_n+\sum_{j=1}^mW_jK_j$$
 with
$$K_i=\Delta x\Psi\left(x_n+c_i^x\Delta x,y_n+\sum_{j=1}^ic_{ij}^yK_j\right)$$

Complete Butcher Tableau (Butcher, 2008) can be expressed as

In reduced matrix form

Considering Butcher Tableau as

Considering Butcher Tableau as

Backward Euler Method

$$y_{n+1} = y_n + \Delta x \Psi(x_{n+1}, y_{n+1})$$

Considering Butcher Tableau as

Backward Euler Method

$$y_{n+1} = y_n + \Delta x \Psi(x_{n+1}, y_{n+1})$$

Order of Backward Euler method: $\mathcal{O}(\Delta x)$

Considering Butcher Tableau as

Backward Euler Method

$$y_{n+1} = y_n + \Delta x \Psi(x_{n+1}, y_{n+1})$$

Order of Backward Euler method: $\mathcal{O}(\Delta x)$

In function form,

$$F(y_{n+1}) = y_{n+1} - \Delta x \Psi(x_{n+1}, y_{n+1}) - y_n = 0$$

From Newton-Raphson method,

$$y_{n+1}|^{(p)} = y_{n+1}|^{(p-1)} - \frac{F(y_{n+1}|^{(p-1)})}{F'(y_{n+1}|^{(p-1)})}$$

where

$$\begin{split} F'\left(y_{n+1}\right) &= 1 - \Delta x \Bigg[\left(1 - \frac{Q^2}{B^2 g y_{n+1}^3}\right)^{-1} \Bigg[\left(\frac{2n^2 Q^2}{B^2 y_{n+1}^3}\right) \left(\frac{B y_{n+1}}{B + 2 y_{n+1}}\right)^{-\frac{4}{3}} + \\ & \left(\frac{4n^2 Q^2}{3B^2 y_{n+1}^2}\right) \left(\frac{B y_{n+1}}{B + 2 y_{n+1}}\right)^{-\frac{7}{3}} \left(\frac{B}{B + 2 y_{n+1}} - \frac{2B y_{n+1}}{(B + 2 y_{n+1})^2}\right) \Bigg] - \\ & \left(\frac{3Q^2}{B^2 g y_{n+1}^4}\right) \left(1 - \frac{Q^2}{B^2 g y_{n+1}^3}\right)^{-2} \Bigg[S_0 - \left(\frac{n^2 Q^2}{B^2 y_{n+1}^2}\right) \left(\frac{B y_{n+1}}{B + 2 y_{n+1}}\right)^{-\frac{4}{3}} \Bigg] \Bigg] \end{split}$$

Implicit Runge-Kutta

Increments can be written as

$$K_i = \Delta x \Psi \left(x_n + c_i^x \Delta x, y_n + \sum_{j=1}^i c_{ij}^y K_j \right)$$
$$= \Delta x \Psi \left(x_n + c_i^x \Delta x, y_n + \sum_{j=1}^{i-1} c_{ij}^y K_j + c_{ii}^y K_i \right)$$
$$= \Delta x \Psi \left(x_n + \delta_x, y_n + \delta_y + c_{ii}^y K_i \right)$$

13 / 20

Implicit Runge-Kutta

Increments can be written as

$$\begin{split} K_i &= \Delta x \Psi \left(x_n + c_i^x \Delta x, y_n + \sum_{j=1}^i c_{ij}^y K_j \right) \\ &= \Delta x \Psi \left(x_n + c_i^x \Delta x, y_n + \sum_{j=1}^{i-1} c_{ij}^y K_j + c_{ii}^y K_i \right) \\ &= \Delta x \Psi \left(x_n + \delta_x, y_n + \delta_y + c_{ii}^y K_i \right) \\ &= \Delta x \Psi \left(x_n + \delta_x, y_n + \delta_y + c_{ii}^y K_i \right) \end{split}$$
 with $\delta_x = c_i^x \Delta x$ and $\delta_y = \sum_{i=1}^{i-1} c_{ij}^y K_i$

The the multivariate function $\Psi()$ can be expanded as

$$\Psi\left(x_{n}+\delta_{x},y_{n}+\delta_{y}+c_{ii}^{y}K_{i}\right)=\Psi\left(x_{n}+\delta_{x},y_{n}+\delta_{y}\right)+c_{ii}^{y}\Psi'\left(x_{n}+\delta_{x},y_{n}+\delta_{y}\right)K_{i}$$

Implicit Runge-Kutta

By combining all the expressions

$$K_{i} = \Delta x \left[\Psi \left(x_{n} + \delta_{x}, y_{n} + \delta_{y} \right) + c_{ii}^{y} \Psi' \left(x_{n} + \delta_{x}, y_{n} + \delta_{y} \right) K_{i} \right]$$

Implicit Runge-Kutta

By combining all the expressions

$$K_{i} = \Delta x \left[\Psi \left(x_{n} + \delta_{x}, y_{n} + \delta_{y} \right) + c_{ii}^{y} \Psi' \left(x_{n} + \delta_{x}, y_{n} + \delta_{y} \right) K_{i} \right]$$

In implicit compact form it can be written as

$$K_i = \Delta x \left[1 - c_{ii}^y \Delta x \Psi' \left(x_n + \delta_x, y_n + \delta_y \right) \right]^{-1} \Psi \left(x_n + \delta_x, y_n + \delta_y \right)$$

where

$$\begin{split} \Psi'\left(x,y\right) &= \left(1 - \frac{Q^2}{B^2 g y^3}\right)^{-1} \left[\left(\frac{2n^2 Q^2}{B^2 y^3}\right) \left(\frac{By}{B+2y}\right)^{-\frac{4}{3}} + \\ &\left(\frac{4n^2 Q^2}{3B^2 y^2}\right) \left(\frac{By}{B+2y}\right)^{-\frac{7}{3}} \left(\frac{B}{B+2y} - \frac{2By}{(B+2y)^2}\right) \right] - \\ &\left(\frac{3Q^2}{B^2 g y^4}\right) \left(1 - \frac{Q^2}{B^2 g y^3}\right)^{-2} \left[S_0 - \left(\frac{n^2 Q^2}{B^2 y^2}\right) \left(\frac{By}{B+2y}\right)^{-\frac{4}{3}} \right] \end{split}$$

Considering Butcher Tableau as

Considering Butcher Tableau as

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

RK2

$$y_{n+1}=y_n+K_1$$
 with
$$K_1=\Delta x\Psi\left(x_n+\frac{1}{2}\Delta x,y_n+\frac{1}{2}K_1\right)$$

Considering Butcher Tableau as

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

RK2

$$y_{n+1}=y_n+K_1$$
 with
$$K_1=\Delta x\Psi\left(x_n+\frac{1}{2}\Delta x,y_n+\frac{1}{2}K_1\right)$$

Order of RK2 method: $\mathcal{O}(\Delta x^2)$

Considering Butcher Tableau as

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

RK₂

$$y_{n+1}=y_n+K_1$$
 with
$$K_1=\Delta x\Psi\left(x_n+\frac{1}{2}\Delta x,y_n+\frac{1}{2}K_1\right)$$

Order of RK2 method: $\mathcal{O}(\Delta x^2)$

Semi-Implicit Equation can be written as

$$K_1 = \Delta x \left[1 - \frac{1}{2} \Delta x \Psi' \left(x_n + \frac{1}{2} \Delta x, y_n\right)\right]^{-1} \Psi \left(x_n + \frac{1}{2} \Delta x, y_n\right)$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Considering Butcher Tableau as

$$\begin{array}{c|ccccc} \frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\ \frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} + \frac{\sqrt{3}}{6} & \frac{1}{4} \\ & \frac{1}{2} & \frac{1}{2} \end{array}$$

Considering Butcher Tableau as

RK4

$$y_{n+1} = y_n + \frac{1}{2}K_1 + \frac{1}{2}K_2$$
 with
$$K_1 = \Delta x \Psi \left(x_n + c_1^x \Delta x, y_n + c_{11}^y K_1 + c_{12}^y K_2 \right)$$
$$K_2 = \Delta x \Psi \left(x_n + c_2^x \Delta x, y_n + c_{21}^y K_1 + c_{22}^y K_2 \right)$$

Considering Butcher Tableau as

RK4

$$y_{n+1} = y_n + \frac{1}{2}K_1 + \frac{1}{2}K_2$$
 with
$$K_1 = \Delta x \Psi \left(x_n + c_1^x \Delta x, y_n + c_{11}^y K_1 + c_{12}^y K_2 \right)$$
$$K_2 = \Delta x \Psi \left(x_n + c_2^x \Delta x, y_n + c_{21}^y K_1 + c_{22}^y K_2 \right)$$

Order of RK4 method: $\mathcal{O}(\Delta x^4)$

Expanded form of the increment equations can be written as

$$\begin{split} K_1 &= \Delta x \left[\Psi \left(x_n + c_1^x \Delta x, y_n \right) + (c_{11}^y K_1 + c_{12}^y K_2) \Psi' \left(x_n + c_1^x \Delta x, y_n \right) \right] \\ K_2 &= \Delta x \left[\Psi \left(x_n + c_2^x \Delta x, y_n \right) + (c_{21}^y K_1 + c_{22}^y K_2) \Psi' \left(x_n + c_2^x \Delta x, y_n \right) \right] \end{split}$$

Expanded form of the increment equations can be written as

$$\begin{split} K_1 &= \Delta x \left[\Psi \left(x_n + c_1^x \Delta x, y_n \right) + \left(c_{11}^y K_1 + c_{12}^y K_2 \right) \Psi' \left(x_n + c_1^x \Delta x, y_n \right) \right] \\ K_2 &= \Delta x \left[\Psi \left(x_n + c_2^x \Delta x, y_n \right) + \left(c_{21}^y K_1 + c_{22}^y K_2 \right) \Psi' \left(x_n + c_2^x \Delta x, y_n \right) \right] \end{split}$$

By rearranging the expressions

$$\begin{bmatrix} 1 - \Delta x c_{11}^y \Psi'\left(x_n + c_1^x \Delta x, y_n\right) & -\Delta x c_{12}^y \Psi'\left(x_n + c_1^x \Delta x, y_n\right) \\ -\Delta x c_{21}^y \Psi'\left(x_n + c_2^x \Delta x, y_n\right) & 1 - \Delta x c_{22}^y \Psi'\left(x_n + c_2^x \Delta x, y_n\right) \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \end{bmatrix}$$

$$= \begin{bmatrix} \Delta x \Psi\left(x_n + c_1^x \Delta x, y_n\right) \\ \Delta x \Psi\left(x_n + c_2^x \Delta x, y_n\right) \end{bmatrix}$$

List of Source Codes

Gradually Varied Flow-Implicit Approach

- Backward Euler approach
 - backward_euler.sci
- RK2 approach
 - RK2_implicit.sci
- RK4 approach
 - RK4_implicit.sci

Thank You

References

Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, West Sussex, England.