Big-Oh notation

William Hendrix

Today

- Review: Big-Oh
- Big-Omega, Big-Theta
- Big-Oh Properties

Big-Oh notation

- Describes asymptotic growth rate of functions
 - Ignores coefficients
 - Ignores behavior for small n
- Big-Oh: O(f(n))
 - Most common descriptor
 - Analogous to "at most" or "≤"
 - Good for worst-case analysis
 - Formal definition:

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.

$$-f(n) = O(g(n)), \text{ not } f(n) \in O(g(n))$$

Back to our example...

```
data: an array of integers to find the min
n: the number of values in data
```

Min algorithm:

```
min = 1
for i = 2 to n

if data[i] < data[min]
min = i
min = i
end
end
return min</pre>
```

Worst case: O(n)

Don't need to count instructions!

Other algorithm: $O(n\lg(n))$

Conclusion: Our algorithm is better for sufficiently large *n*.

Ops per line Times executed

•••

Total ops: $\leq 8(n-1) + 3 = 8n - 5$

Question: is this better or worse than an algorithm that takes at most $2n \ln n - 5n + 10$ ops?

Better unless n < 658

Big-Omega

Lower bound ("at least")

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

Example

- Prove that $7n^2 + 19n - 4444 = \Omega(n)$.

Proof. If $n \geq 4444$,

$$7n^{2} + 19n - 4444 \ge 19n - 4444$$
$$\ge 19n - n$$
$$= 18n$$

Therefore, there exist positive constants c = 19 and $n_0 = 4444$ such that $7n^2 + 19n - 4444 \ge cn^2$ for all $n \ge n_0$.

Big-Theta

• Upper *and* lower bound ("same rate as")

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

Example

- Prove that $7n^2 + 19n - 4444 = \Theta(n^2)$.

Proof. If
$$n \ge 4444$$
,

$$7n^2 + 19n - 4444 \ge 7n^2 + 19n - n$$

$$= 7n^2 + 18n$$

$$\ge 7n^2$$

$$7n^2 + 19n - 4444 \le 7n^2 + 19n$$

$$\le 7n^2 + n^2$$

$$= 8n^2$$

Therefore, there exist positive constants $c_1 = 7$, $c_2 = 8$, and $n_0 = 4444$ such that $c_1 n^2 \le 7n^2 + 19n - 4444 \le c_2 n^2$ for all $n \ge n_0$. \square

Proof advice

- General proof strategy: find values of c and n_o
- Finding smallest c or n_o isn't necessary
 - Choosing well can make your life easier, though
- Small powers of *n* are bounded above by larger powers
- Functions with negative coefficients are bounded above by zero
- Large coefficients are bounded above by *n*
 - With sufficiently large n_o

Big-Oh example

• Prove that $n = O(n^2)$.

Goal:
$$n \leq (\underline{\hspace{1cm}}) n^2, \forall n \geq (\underline{\hspace{1cm}})$$

Big-Oh example

• Prove that $n = O(n^2)$.

$$1 \le n, \forall n \ge 1$$

$$n \le n^2, \forall n \ge 1$$

$$n \le (1)n^2, \forall n \ge (1)$$

$$Goal: n \le (\underline{\hspace{1cm}})n^2, \forall n \ge (\underline{\hspace{1cm}})$$

Obviously true!

Divide by n on both sides

Hypothesis: $c = 1, n_0 = 1$

Proof. Note that $1 \leq n$ for all $n \geq 1$.

Since $n \ge 1$, we can multiply both sides by n: $n \le n^2$, for all $n \ge 1$.

Let c = 1 and $n_0 = 1$.

So, $n \le cn^2$, for all $n \ge n_0$.

Since there are positive constants c and n_0 such that $n \le cn^2$ for all $n \ge n_0$, $n = O(n^2)$.

Big-Oh exercises

• Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:

1.
$$\frac{n(n+1)}{2} = O(n^2)$$

2. If
$$f(n) = O(g(n)), g(n) = \Omega(f(n)).$$

3. If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.

Big-Oh exercises

- Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:
- 1. Proof. If $n \ge 1$, $n \le n^2$, so

$$\frac{n(n+1)}{2} \le n(n+1)$$

$$= n^2 + n$$

$$\le n^2 + n^2$$

$$= 2n^2$$

Hence, there exist constants c=2 and $n_0=1$ such that $\frac{n(n+1)}{2} \le cn^2$ for all $n \ge n_0$, so $\frac{n(n+1)}{2} = O(n^2)$.

Big-Oh exercises

- Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:
- 2. Proof. If f(n) = O(g(n)), there exist positive constants c_1 and n_0 such that $f(n) \leq c_1 g(n)$ for all $n \geq n_0$. Since $c_1 > 0$, we can multiply both sides of this expression by $\frac{1}{c}$, yielding $\left(\frac{1}{c}\right) f(n) \leq g(n)$ for all $n \geq n_0$. Thus, there exist positive constants $c_2 = \frac{1}{c}$ and $n_2 = n_0$ such that $g(n) \geq c_2 f(n)$ for all $n \geq n_2$, so $g(n) = \Omega(f(n))$.
- 3. Proof. If f(n) = O(g(n)) and g(n) = O(h(n)), there exist positive constants c_1, c_2, n_0 , and n_1 such that $f(n) \le c_1 g(n)$ for all $n \ge n_0$ and $g(n) \le c_2 h(n)$ for all $n \ge n_1$. In particular, if we let $n_2 = \max\{n_0, n_1\}, f(n) \le c_1 g(n)$ and $g(n) \le c_2 h(n)$ for all $n \ge n_2$, so $f(n) \le c_1 (c_2 h(n))$. Thus, there exist constants $c_3 = c_1 c_2$ and $n_2 = \max\{n_0, n_1\}$ such that $f(n) \le c_3 h(n)$ for all $n \ge n_2$, so f(n) = O(h(n)).

Observations on Big-Oh

- Big-Oh can be larger than needed
 - $n^3 = O(n^3), O(n^4), O(n^5) \dots$
- Big-Omega can be smaller than needed
- *Analogy*: Big-Oh "acts like" ≤, Big-Omega ≥, and Big-Theta =
- We will generally look for tight upper bounds (O(f(n))) in this class
- Most algorithms we discuss will belong to the following classes:

$$O(1) \ll O(\lg n) \ll O(n) \ll O(n \lg n) \ll O(n^2) \ll O(n^3) \ll O(2^n) \ll O(n!)$$

- Constant, logarithmic, linear, n log n (or "linearithmic"), quadratic, cubic, exponential, or factorial

Connection to calculus

• You can also determine O, Ω , and Θ by limits:

$$g \text{ grows faster} \longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \to f(n) = O(g(n))$$

Same growth rate
$$\longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0,\infty) \to f(n) = \Theta(g(n))$$

$$g \text{ grows slower} \longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \longrightarrow f(n) = \Omega(g(n))$$

- Standard rules for taking limits apply
 - Including L'Hôpital's Rule

Coming up

- Big-Oh properties
- Big-Oh practice
- **Homework 3** is due tomorrow
- Homework 4 is due Friday
- Recommended readings: Sections 2.3 and 2.4
- **Practice problems:** 2-7, 2-8, 2-10, 2-17, 2-18, 2-23 (pp. 58-60)