- **Pumping lemma** for CFL: Suppose *G* is a CFG, and $w \in L(G)$ s.t. the depth to the derivation tree of *G* on *w* is > |G|, then *w* can be partitioned into five parts w = sxyzt, where $|x| + |z| \ge 1$, and $sx^nyz^nt \in L(G)$ for every $n \ge 0$.
- **Pumping lemma** for CFL: Suppose M is the maximum of all the |w|'s that appear on the right hand side of the rules in R, i.e., $M = \max_{A \to w \in R} |w|$. Then, for every $u \in L(G)$ such that $|u| \ge M^{|R|} + 1$, u can be partitioned into u = sxyzt, where $|x| + |z| \ge 1$, and $sx^iyz^it \in L(G)$ for every $i \ge 0$.
- *Pumping lemma* is used to prove that a language is not context-free.
- Proof $L = \{a^n b^n c^n | n \ge 0\}$ is not context-free:
 - Suppose *L* is CFL. However, there is no a partition of u = sxyzt s.t. $sx^iyz^it \in L(G)$ for every $i \ge 0$, which is a contradiction.
 - Remark: $L = \{a^n b^m c^m | n, m \ge 0\}$, $L = \{a^n b^n c^m | n, m \ge 0\}$ are context-free. However, their intersection $L = \{a^n b^n c^n | n \ge 0\}$ is not.
- A push-down automaton (PDA) is a system A = ⟨Σ, Γ, Q, q₀, F, δ⟩ defined on Σ the input alphabet, Γ the stack alphabet, Q a finite set of states, q₀ ∈ Q the initial state, F ⊆ Q the set of final states, δ a set of transition functions: (p,x,pop(y)) → (q,push(z)), where p, q ∈ Q, x ∈ Σ ∪ {ε}, y,z ∈ Γ ∪ {ε}.
- Consider a PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, where $\Sigma = \{a, b\}$, $\Gamma = \{a, b\}$, $Q = \{q_0\}$, q_0 is the initial state, $F = \{q_0\}$, and $\delta = \{(q_0, a, pop(\epsilon)) \rightarrow (q_0, push(a)), (q_0, b, pop(a)) \rightarrow (q_0, push(b))\}$. Test if aaabba and b are in L(A).
- A **configuration** of a PDA is a pair $(q, v) \in (Q \times \Gamma^*)$. A **run** of a PDA on w is $(q_0v_0) \vdash_{c_1} (q_1v_1) \vdash_{c_2} ... \vdash (q_nv_n)$. It is an accepting run if $q_n \in F$.
- Given a PDA A, there is an integer M s.t. for every word w, consider the run of A on w, the stack always contains $\leq M$ symbol. What is L(A)?