

	1
เลขที่นั่งสล	าน

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2559

วิชา ENE 341 ระบบควบคุมเชิงเส้น

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันอังคารที่ 28 กุมภาพันธ์ พ.ศ. 2560 เวลา 09:00 -12:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน **ให้ทำทุกข้อ**
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- 3. ไม่อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	25	25	25	25	100
คะแนนที่ได้					

ชื่อ-สกุล	
รหัสประจำตัว	เลขที่นั่งสอบ

รศ.ดร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9056)

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.ราชวดี ศิลาพันธ์)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 1: จงหา Transfer Function Y(s)/R(S) ของ รูปต่อไปนี้

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 2. พิจารณารูปภาพด้านล่าง

กำหนดให้
$$G(s) = \frac{\omega_n^2}{s(s^2+2\varsigma\omega_n s+\omega_n^2} \text{ โดยที่ } \varsigma = 0.707 \text{ และ } \omega_n = 15$$

$$G_1(s) = \frac{k_a}{\tau s+1} \text{ โดยที่ } \tau = 0.15$$

$$T_d(s) = 0$$

จงหาค่าความไวของสมการถ่ายโอนของระบบควบคุมแบบปิดเทียบกับพารามิเตอร์ $k_a^{}$

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 3. พิจารณารูปตามภาพด้านล่าง

จงหาค่า steady state error กำหนดให้ r(t)=(1-t)u(t) โดย u(t) คือ unit step function และ $T_d(s)=0$

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 4. พิจารณารูปภาพด้านล่าง

จงหาค่า K และ k ที่ทำให้ค่า % overshoot เนื่องจาก unit step input มีค่าเท่ากับ 25% และ peak time เท่ากับ 2 วินาที กำหนดให้ J=1

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

"I'm going to need tech support."

Good Luck!!!

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

TABLE OF LAPLACE TRANSFORMS

f(t)	F(s)
$\delta(t)$	1
H(t-a)	$\frac{e^{-as}}{s}$
1	S 1
t^n	$\frac{n!}{s^{n+1}}$
e ^{kt}	$\frac{1}{s-k}$
t ⁿ e ^{kt}	$\frac{n!}{\left(s-k\right)^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{it}\sin(\omega t)$	$\frac{\omega}{\left(s-k\right)^2+\omega^2}$
$e^{it}\cos(\omega t)$	$\frac{(s-k)}{(s-k)^2+\omega^2}$
$sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2-\omega^2}$
$t\sin(\omega t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
$t\cos(\omega t)$	$\frac{s^2-\omega^2}{\left(s^2+\omega^2\right)^2}$