

"小夕,小夕,你关注的任务sota又被刷新了!"

ቃ 前言 ቃ

"什么?!" 还在跑实验的小夕默默流下了辛酸泪

不得不说nlp领域的发展真的太快了,炼丹师们不光要时刻关注前沿热点,还要快速做出实 验,高强度堪比996: 导师,臣妾真的做不到啊(っㅠ ̄ ﹏ ̄mc)

稀记得头一次听说word2vec还在三年前。这么古老的东西还有人在研究吗?现在不都是XX-BERT、XX-transformer的时代了吗? 今天让我们一起来看看,到底是咋回事。

正巧,小编我最近看到一篇研究词向量 word2vec 的论文,中了今年的EMNLP。What?! 依

论文标题: Analyzing the Surprising Variability in Word Embedding Stability Across

Languages 论文链接: https://arxiv.org/abs/2004.14876

词向量稳定性

在介绍论文之前,先让我们来了解下词向量的稳定性。词向量的稳定性指的是一个词在不同的

向量空间中的最近邻的重叠程度,常用来衡量由数据集、算法和词的属性特征的变化引起的词

向量的变化。

这时候一定有小伙伴要问了,都1202年了,还有研究静态词向量的必要吗? No, no, no, 如 果这么想,格局就小了,我们常用的BERT、GPT这些模型都是建立在大规模语料上预训练得 到的,如果面对的是**小语种**,没有像汉语、英语这么**丰富的语料库**,是很难喂饱预训练语言模 型的,另外,为了某些小语种专门花费大量的资源训练预训练模型,从工业的角度来看,成本

也是非常高的。这时,自然而然就会想到利用上下文无关的静态词向量来解决这类问题。

举个栗子,下面的图展示的是词"rock"在三个向量空间下最近的10个邻居词,粗体表示向量空 间重叠的词,可以看到Model 1和Model 2有6个邻居是重叠的,Model 1、Model 3和 $Model\ 2$ 、 $Model\ 3$ 分别有7个词重叠,那么词"rock"在这三个向量空间的稳定性就是这三个值 的均值(0.667)。

Model 1: indie, punk, progressive, pop, roll, band,

blues, brass, class, alternative

Model 2: punk, indie, alternative, progressive, band, sedimentary, bands, psychedelic, climbing, pop Model 3: punk, pop, indie, alternative, band, roll, **progressive**, folk, *climbing*, metal

作者采用的是Wikipedia和Bible两个数据集,其中,Wikipedia包含40种语言,Bible包含97

种语言,以及世界语言结构图谱(World Atlas of Language Structures, WALS),包含了

🥖 实验 🥖

数据集下采样 为减小不同语言数据量对词向量稳定性的影响,论文对原始的数据集做了下采样处理,具体方

数据集

近两千种语言属性知识。

10°

 10^{-2}

不重复下采样方法的原因。

数据集上的稳定性

Standard German

French

Italian

0.8% **—** 2.1%

0.87%

____ 2.34%

words scale)

% of (log s

words scale)

% of (log s

100

100

0.68%

1.15%

0.85%

1.38%

--- 0.8%

© 10^{−1}

 10^{-2}

 10^{2}

VC,

M

L

CS

VC

NC

NC

M

No Gender Grouping:

· Number of Genders: None

Purpose Clauses: Balanced

VO and Prepositions

Prepositions Grouping:

· Systems of Gender Assignment: No gender;

Voicing and Gaps in Plosive Systems: Other

· Sex-based and Non-sex-based Gender Systems: No gender;

Prefixing vs. Suffixing in Inflectional Morphology: Little affixation

'Want' Complement Subjects: Subject is expressed overtly

·Order of Adposition and Noun Phrase: **Prepositions**;

Order of Demonstrative and Noun: Noun-Demonstrative

stability, and positive weights correspond with high stability.

WALS Category

解释性更高,对词向量的应用有不小的贡献。

少卡党狂喜bushi)

Simple Clauses (SC)

Position of Case Affixes: No case affixes or adpositional clitics

The Morphological Imperative: No second-person imperatives

· Gender Distinctions in Independent Personal Pronouns: **No gender distinctions**;

·Relationship between the Order of Object and Verb and the Order of Adposition and Noun Phrase:

Table 3: Weights with the highest magnitude in the regression model. Negative weights correspond with low

Num.

30

Features

25

50

% Stability (bucketed)

75

(a) German

▲不同bible译本的稳定性分布(德语)

100

法和数据对词向量稳定性的影响,总共三种情况:

1. 由五个下采样的数据集训练得到的GloVe词向量的稳定性

3. 由一个下采样的数据集随机五次训练得到的word2ve词向量的稳定性

Greek

Croatian

Korean

-- 0.4%

--- 0.33%

0.65%

0.94%

0.76%

— 2.37%

— 2.63%

20

法是对数据集**不重复地**下采样(downsampling without replacement)。 为研究不同的下采样方法对稳定性的影响,用作者的话来说,希望通过下采样得到跨语言且有 可比性的稳定性结果。为此,作者专门对比了可重复采样和不可重复采样两种下采样方法对稳 定性的影响。

 10^{2} 10% % of words (log scale) 40% 10^{1} 60%

40

(b) Sampling without replacement, varying sample size.

没有区分度,而不可重复采样的方法得到的数据集有较为明显的稳定性区分,这也是作者选择

作者针对Wikipedia和Bible两个数据集重叠的26种语言,研究了不同语言,不同词向量生成算

% Stability (bucketed)

60

80

100

Finnish

Indonesian

Malay

0.73%

— 2.29%

1.1%

— 2.36%

0.47%

--- 0.86%

--- 0.9%

1.56%

0.77%

2. 由五个下采样的数据集训练得到的word2ve词向量的稳定性

由于Bible数据集过小,因此,只对Bible数据集研究了情况3下稳定性的分布 Standard Arabic Bulgarian Czech Danish % of words (log scale) 0.65% - 0.47% 0.65% 1.12% 1.06% 0.76% 1.08% 0.82% 0.97% 0.83% 0.83% 0.88% **—** 1.69% — 1.85% — 2.28%

0.85%

1.39%

English

Hungarian

Lithuanian

0.84%

0.86%

— 2.27%

— 1.39%

- 0.79%

0.52%

0.5%

Pattloch

Schlacter

Tafelbibel

Textbibel

Zuercher

Bonnet

Darby

Crampon

David Martin

Weight

 0.05 ± 0.0

 0.06 ± 0.0

 0.07 ± 0.0

 0.11 ± 0.0

Avg.

0.019

Magnitude

0.81%

1,34%

1			
Nominal Syntax (NS)	2	0.021	
Other (O)	2	0.023	
Complex Sentences (CS)	11	0.028	
Morphology (M)	18	0.031	
Word Order (WO)	32	0.031	
Phonology (P)	21	0.032	
Nominal Categories (NC)	40	0.036	
Verbal Categories (VC)	27	0.036	
Lexicon (L)	6	0.039	
tude of weights in the regression model for different WALS categories. Grouped features are included in each category that they cover.			
与常见的在某个任务上提模型、刷sota不同,这篇论文着眼于词向量在不同语言之间的差异的			
研究,本质上更像是数据分析。文章从数据采样方式	入手,分别码	开究了数据集、训练算》	去对不

▲狂喜

后台回复关键词【入群】

同语言的稳定性的分布和走势的影响,并使用岭回归模型拟合了语言的属性特征对稳定性的贡

献程度,分析不同属性特征对稳定性的影响。相比提出一个新的模型刷sota而言,可复现性和

当然,这篇文章研究的是经典的静态词向量,和主流的transformer架构相比,确实显得有点

"out",但文章**投了七次才中**,不也证明了只要是金子都会发光吗?小编认为,谁说nlp一定要

追快打新,只要是真正有益于nlp领域发展的研究工作,都值得发表,都值得中。(无卡党和

