

ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Circuitos Electrónicos

L3 - Inversor CMOS

Autores:

Docente:

Manuel Soares: 96267 $\hookrightarrow mail@tecnico.ulisboa.pt$

João Francisco Marafuz Gaspar

João Gonçalves : 99995

 \hookrightarrow jrazevedogoncalves@tecnico.ulisboa.pt

4. Simulação

4.1 Análise do ponto de funcionamento em repouso do circuito

Tab. 1: Tensão de saída no PFR

	$\mathbf{V_I} = \mathbf{0V}$	$V_{I}=V_{DD}/2$	$V_{I} = V_{DD} \\$
V_{O}	$5.000\mathrm{V}$	$4.607\mathrm{V}$	$5.529\mathrm{nV}$

Fig. 1: Esquema LTspice (R) do circuito no ponto de funcionamento em repouso (PFR) para $v_I \in \{0, 2.5, 5\}$ V.

4.2 Gráfico de $i_D(v_I)$ e valor máximo da corrente i_D

Fig. 2: Gráfico de $i_D(v_I)$ e $(i_D)_{\text{max}}$

A simulação em LTspice®, efetuada com a diretiva .dc VI 0 5 0.001, resultou na Fig. 2.

O valor $(i_D)_{\text{max}} = 135.984 \mu\text{A}$ é obtido para a tensão de entrada $v_I \equiv 2.577 \text{V}$. Este resultado é congruente com a análise teórica uma vez que o valor da tensão de entrada que maximiza a corrente se aproxima do midpoint (V_M) calculado, onde os transístores complementares, M_1 e M_2 , se encontram simultaneamente em saturação.

Nota: Erro relativo(%) = $\frac{2.577 - 2.566}{2.566} \cdot 100 \approx 0.43\%$

4.3 Característica de transferência $v_O(v_I)$, derivada e margens de ruído

Com o mesmo varrimento DC: .dc VI 0 5 0.001, foi possível adquirir os dados da característica $v_O(v_I)$ do inversor CMOS simulado, e respetiva derivada dv_O/dv_I , para posterior análise computacional[†].

Os valores resultantes (apresentados na Fig. 3) são:

$$\begin{vmatrix} V_{IH} = 2.749 \text{V} & V_{OH} = 5 \text{V} \\ V_{IL} = 2.362 \text{V} & V_{OL} = 0 \text{V} \end{vmatrix} \implies \begin{cases} \text{NM}_{\text{H}} \approx 2.251 \text{V} \\ \text{NM}_{\text{L}} \approx 2.362 \text{V} \end{cases}$$

Conforme a convenção, tomam-se V_{IH} e V_{IL} como os valores de v_I para os quais $v_O(v_I)$ apresenta declive -1. Fig. 3: Característica de transferência do inversor

[†]O processamento de dados e análise da simulação concebida em LTspice® foi efetuado em MATLAB®.

4.4 Determinação dos tempos de atraso de propagação

Fig. 4: Atrasos de propagação, $C_L = 470 \text{pF}$

A análise do funcionamento dinâmico do inversor foi realizada com: um sinal de entrada retangular com níveis 0V e 5V, frequência 200kHz e tempos de subida e descida de 1ns; e uma capacidade de saída $C_L = 470$ pF.

Com recurso a $[.tran\ 0\ 7.5u\ 0\ 0.01u]$, foi capturado um período e meio das tensões de entrada e saída, de modo a visualizar as transições $L \to H$ e $H \to L$ sobre o nível de passagem médio (50%).

As incongruências entre os tempos de propagação devem-se ao facto dos transístores não serem perfeitamente adaptados na tecnologia CMOS simulada.

Registam-se os seguintes atrasos de propagação:

$$\begin{cases} t_{pLH} = 2.5 \mu \text{s} - 2.923 \mu \text{s} = 423 \text{ns} \\ t_{pHL} = 5.0 \mu \text{s} - 5.392 \mu \text{s} = 392 \text{ns} \end{cases} \Longrightarrow \boxed{t_p = \frac{t_{pHL} + t_{pLH}}{2} = \textbf{407.5} \text{ns}}$$

5. Trabalho experimental

A Fig. 5 apresenta uma representação concisa do circuito montado numa breadboard. Esta representação fornece uma referência prática para a montagem e disposição do circuito.

Fig. 5: Referência para a implementação física do inversor CMOS com o circuito integrado CA4007

5.3 Resultados no ponto de funcionamento em repouso

Os valores detalhados pelo voltímetro encontram-se nas tabelas seguintes:

Alimentação
$\mathbf{V_{SS}}$
$-000.36\mathrm{mV}$

5.4 Gráficos em função do tempo e característica de transferência

Com o sinal de entrada $v_I = \frac{V_{DD}}{2} + \frac{V_{DD}}{2} \cos(\omega t)$ foi possível realizar um primeiro estudo sobre o funcionamento do inversor. Note-se que quando v_I está acima de um certo valor de tensão, o PMOS encontra-se no estado "OFF" (desligado), e o NMOS no estado "ON" (ligado); o inverso é aplicado para quando v_I se encontra abaixo de um certo valor inferior (o comportamento

dos transístores troca). Entre estas regiões os transístores não se comportam puramente como interruptores, como é aparente nas Fig. 6(a) e 6(b) (a visualização da característica de transferência em modo XY torna mais claro este comportamento).

Fig. 6: Gráficos em função do tempo e característica de transferência

5.5 Determinação de V_{OL}, V_{OH}, V_{IL}, V_{IH}, NM_L e NM_H

De modo a adquirir resultados mais fidedignos e complementar a discussão da alínea anterior, foram exportados os dados da característica de transferência—em modo de aquisição de **alta resolução**—para se obter os níveis de tensão e margens de ruído do inversor CMOS. O resultado da análise computacional—explicitada no Apêndice A—culmina em:

$$\begin{vmatrix} V_{IH} = 2.801 \text{V} & V_{OH} = 4.970 \text{V} \\ V_{IL} = 2.079 \text{V} & V_{OL} = -0.013 \text{V} \end{vmatrix} \implies \begin{cases} \text{NM}_{\text{H}} \approx 2.169 \text{V} \\ \text{NM}_{\text{L}} \approx 2.092 \text{V} \end{cases}$$

5.6 Tempos de atraso de propagação (com e sem carga capacitiva)

A dinâmica do inversor foi estudada através de uma onda quadrada de frequência 200kHz, com extremos em 0V e V_{DD} . Realizaram-se ensaios na presença¹ e ausência de uma carga capacitiva ($C_L = 470 \mathrm{pF}$). Os resultados encontram-se nas figuras subsequentes:

Fig. 7: Gráficos temporais de v_I e v_O e atrasos temporais (sobre o nível de passagem médio)

¹O uso do condensador replica condições de carga realistas (e.g., saída ligada a outras portas lógicas).

Sem carga capacitiva	Com carga capacitiva		
$t_{pLH} = 87 \text{ns} \land t_{pHL} = 63 \text{ns}$	$t_{pLH} = 345 \text{ns} \land t_{pHL} = 240 \text{ns}$		
$t_p = \frac{t_{pLH} + t_{pHL}}{2} = 75 \text{ns}$	$t_p = \frac{t_{pLH} + t_{pHL}}{2} = 292.5$ ns		

6. Análise de resultados e Comentários

De modo a complementar a discussão das secções anteriores, sumariza-se na tabela seguinte², em forma de erro relativo, as incongruências entre as modalidades da atividade laboratorial.

	Teórico Simulação		Experimental			
	Valor	Valor	Erro sim/teo (%)	Valor	Erro \exp/teo (%)	Erro \exp/\sin (%)
V_{OH}	5 V	5 V	0.000	4.970 V	0.600	0.600
V_{OL}	0 V	0 V	_	$-0.013\mathrm{V}$	_	_
V_{IH}	2.73 V	2.749 V	0.696	2.801 V	2.601	1.892
V_{IL}	2.38 V	2.362 V	0.756	$2.079 m{V}$	12.647	11.981
NM_H	2.27 V	2.251 V	0.837	$2.169 m{V}$	4.449	3.643
NM_L	2.38 V	2.362 V	0.756	$2.092 m{V}$	12.101	11.431
t_{pHL}	$426.7\mathrm{ns}$	$392\mathrm{ns}$	8.122	$240\mathrm{ns}$	43.748	38.776
t_{pLH}	463.1 ns	423 ns	8.668	$345\mathrm{ns}$	25.509	18.440
t_p	$444.9\mathrm{ns}$	$407.5\mathrm{ns}$	8.406	$292.5\mathrm{ns}$	34.255	28.221

- Analisando os níveis de tensão, há uma sintonia interessante entre os valores obtidos teoricamente, os simulados e os experimentais. Salienta-se que, os níveis de tensão representam uma característica crítica do comportamento do inversor CMOS [1, 2].
- As margens de ruído experimentais mostraram-se, tal como previsto, inferiores às obtidas através das simulações e cálculos teóricos. Este facto é consequência direta do ambiente laboratorial onde, contrariamente ao ambiente virtual das simulações e à idealidade das suposições teóricas, o ruído é uma variável de difícil controlo inerente às qualidades não ideias dos componentes da montagem (como a breadboard, cabos e conectores...). Não obstante, as margens de erro provaram-se bastante aceitáveis.
- Em relação aos tempos de propagação, nota-se que os valores experimentais foram consistentemente inferiores aos teoricamente previstos e simulados. Este resultado intrigante indica que o comportamento na prática é muito mais rápido do que os cálculos e as simulações sugerem, levantando a possibilidade de fenómenos físicos não contemplados—como por exemplo, o efeito de túnel—poderem estar a acelerar a transição de estados no circuito inversor CMOS.
- Aprofundando a análise dos tempos de propagação, constata-se que t_{pLH} excede sempre t_{pHL} , em todas as modalidades. Esta observação reforça a assimetria inerente à estrutura do CMOS, onde o processo de carga, sujeito a uma maior dificuldade de movimentação de cargas, revela-se invariavelmente mais lento quando comparado com o processo de descarga.
- A presença do condensador de saída na configuração experimental demonstrou ser de grande relevância, ao permitir a replicação de condições de carga mais verosímeis. Naturalmente, a ausência do condensador conduziu a tempos de propagação inferiores.
- ★ A análise do comportamento do inversor CMOS, nas várias situações propostas, reforçou a sua relevância como bloco base na construção de circuitos lógicos digitais. Mesmo perante as discrepâncias entre a teoria, a simulação e a prática, a concordância dos resultados reitera a fiabilidade do modelo teórico e sublinha a importância de considerar as condições reais durante a projeção de circuitos—acrescentando uma camada de complexidade à compreensão dos princípios fundamentais do design de circuitos CMOS.

Apresentam-se os resultados dos cálculos teóricos para uma carga capacitiva de $C_L = 470 \text{pF}$, de modo a permitir uma comparação mais conveniente com os resultados da simulação e da montagem laboratorial.

Referências

- [1] M. Silva. Circuitos com Transistores Bipolares e MOS. Fundação Calouste Gulbenkian, 6th edition, 2016.
- [2] A. S. Sedra and K. C. Smith. Microelectronic Circuits. Oxford University Press, 7th edition, 2015.

Apêndice A: Análise da Função de Transferência

Neste apêndice, apresentamos uma análise aprofundada da característica de transferência do inversor CMOS realizado laboratorialmente. Os dados experimentais foram adquiridos através de um osciloscópio DSO-X 2024A (aquisição high res com 25MSa/s) e exportados em formato CSV para posterior análise em MATLAB®. A Fig. A1 ilustra o resultado da análise realizada.

Fig. A1: Resultado da análise dos dados experimentais adquiridos

O algoritmo exposto na **L.A1**. descreve a abordagem que leva à transformação dos dados experimentais numa representação gráfica detalhada—e robusta—da característica $v_O(v_I)$.

```
L.A1.: Análise, em MATLAB®, dos dados da característica de transferêcia obtida em ambiente laboratorial
    function analyze_transfer_function(data)
        figure: set(gcf. 'Position', [100, 100, 660, 3401):
        x = data\{:,2\}; y = data\{:,3\}; % x -> vI, y -> v0
        % calculate VOL and VOH as the mean of the bottom and top 25% of y values respectively
        sorted_y = sort(y);
        n = round(0.25 * length(y)); % calculate the top/bottom 25%
        VOL = mean(sorted_y(1:n)); VOH = mean(sorted_y(end-n+1:end));
        % begin plotting
        hold on; grid on, grid minor;
        plot_VOL_VOH(VOH, VOL); % add dashed lines at y = VOL and y = VOH
                    .', 'Color', [0.0 0.24 0.33], 'LineWidth', 1.75); % plot transfer function
        % split the data into two halves based on x values
        half_x_value = 2.5;
        indices_below_half
                            = find(x(1:end-1) < half_x_value); % first half of the data
18
        indices\_above\_half = find(x(1:end-1) > half\_x\_value); % second half of the data
         calculate the function slopes
        slopes = diff(y) ./ diff(x);
        % find the index where the slope is closest to -1 for each half
        [~, index1] = min(abs(slopes(indices_below_half) + 1)); % min value in the first half
        [-, index2] = min(abs(slopes(indices_above_half) + 1)); % min value in the second half
        % correct indexes
        index1 = indices_below_half(index1);
26
        index2 = indices_above_half(index2);
        % mark the points (VIL = x(index1), VIH = x(index2)) and plot lines with -1 slope
        plot_VIL_VIH(x, y, index1, index2); hold off;
30
        % customize the axis
        ax = gca; xlim([0 5]); ylim([-1 6]);
        customise_axis_labels(ax, 'latex',
        % add annotations (current axis, name, value, unit)
        add\_annotation(ax, \ `\$V_{0L}\$', \ V0L, \ `V');\\
        add_annotation(ax, '$V_{0H}$', VOH, 'V');
        add\_annotation(ax, \ '\$V_{\{IL\}}\$', \ x(index1),
        add_annotation(ax, ^{\$}V_{IH}, x(index2), ^{\$}V');
    end
```