3/34/	
	Assignment 3
	Title: Subnetting
	Problem Statement: Write a program in Java/Python to demonstrate subnetting and find the
	subnet masks.
	Requirements: Fedora 20 with Pentium IV and above, 1 GB RAM, 120 G.B HDD, Monitor,
	Keyboard, Mouse Modelio, Eclipse, CDT, Python interpreter, Pydev, J2SE
	Learning objective: To understand network, IP addressing and subnetting and need for
	subnetting.
	Learning outcome:
	Students will be able to:
	· Demonstrate subnetting in a particular programming language
	· Find how many hosts per subnet are available
	· Find how many subnets does the chosen subnet mask produce
	Concepts related theory:
	1. Subletting
	Subletting is when you enter a lease with someone else, known as a subtenant, for an
	apartment or other property which you already rent. Subletting is usually used when you're
	renting a property and need to leave the property before the lease is up and don't want to
	spend the money to continue renting the property which you don't inhabit. Subletting lets you
	essentially act as a sort of mini-landlord for the property you were renting to keep yourself
	from paying for something you're not using.
	2. Netmask
	A netmask is a 32-bit mask used to divide an IP address into subnets and specify the
	network's available hosts. In a netmask, two bits are always automatically assigned. For
	example, in 255.255.225.0, "0" is the assigned network address. In 255.255.255.255, "255" is

3/34/	
2233	
	particular subnet. This is easier to see if we show the IP address in binary format.
	The full address is:
	1001 0110 1101 0111 0001 0001 0000 1001
	The Class B network part is:
	_100 10110 1101 0111
	The host address is:
	If this network is divided into 14 subnets, however, then the first 4 bits of the host address
	(000l) are reserved for identifying the subnet. The subnet mask is the network address plus
	the bits reserved for identifying the subnetwork by convention, the bits for the network
	address are all set to 1, though it would also work if the bits were set exactly as in the
	network address. In this case, therefore, the subnet mask would be
	identify the subnet to which an IP address belongs by performing a bitwise AND operation on
	_the mask and the IP address. The result is the subnetwork address:
	Subnet Mask 255.255.240.000
	IP Address 150.215.017.009 001 0110 1101 0111 0001 0001 0
	Subnet Address 150.215.016.000 001 0110 1101 0111 0001 0000 0000 0000
	The subnet address, therefore, is 150.215.016.000.
	Outcomes:
	The output will be the subnet mask of the given IP address of the host.