Санкт-Петербургский государственный университет Математико-механический факультет Информационно-аналитические системы

Ким Юния Александровна 18.Б07-мм

Вычислительный практикум

Отчёт по заданию №14

Преподаватель: Евдокимова Т.О.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

Содержание

1.	Ссылка на код
2.	Постановка задачи
3.	Теоретическая часть
	3.1. Градиентный спуск
	3.2. Метод Нестерова
4.	Численный эксперимент
	4.1. Описание
	4.2. Результаты
	4.3 Анализ

1. Ссылка на код

https://github.com/yuniyakim/MethodsOfComputation/pull/22

2. Постановка задачи

Задача – реализация двух методов нахождения минимума сильно выпуклой функции: градиентного спуска и метода Нестерова, а также сравнение количества итераций.

3. Теоретическая часть

Пусть $f: H \mapsto \mathbb{R}$, где H – Гильбертово, f – сильно выпуклая функция, обладающая следующим свойством: $\forall x, y \in H \exists L > 0 : ||\nabla f(x) - \nabla f(y)|| \le L||x - y||.$

Исходная задача — нахождение минимума заданной функции f.

3.1. Градиентный спуск

- 1. Выбираем начальное приближение $\theta_0 \in H$, коэффициент скорости обучения λ и параметр ϵ .
- 2. $\theta_{n+1} = \theta_n \lambda \nabla_f(\theta_n)$.
- 3. Повторяем пункт 2 до тех пор, пока $||\theta_{n+1} \theta_n|| > \epsilon$ или пока не достигнется максимальное количество итераций.

3.2. Метод Нестерова

- 1. Выбираем начальное приближение $y_0 \in H$ и точку $z \in H : x \neq y_0$ и $\nabla_f(y_0) \neq \nabla_f(z)$.
- 2. Полагаем:
 - $a_0 = 1$,

 - $\bullet \ a_{-1} = \frac{||y_0 z||}{||\nabla_f(y_0) \nabla_f(z)||}.$
- 3. На k-ом шаге метода:
 - (a) Выбираем наименьший индекс $i: f(y_k) f(y_k 2^{-i}a_{k-1}\nabla_f(y_k)) \geqq 2^{-1-i}a_{k-1}||\nabla_f(y_k)||^2$.
 - (b) Полагаем:
 - $a_k = 2^{-i} a_{k-1}$,
 - $\bullet \ x_k = y_k a_k \nabla_f(y_k),$

 - $a_{k+1} = \frac{1+\sqrt{4a_k^2+1}}{2}$, $y_{k+1} = x_k + \frac{(a_k-1)(x_k-x_{k-1})}{a_{k+1}}$.
- 4. Повторяем пункт 3 до тех пор, пока $||y_{k+1} y_k|| > \epsilon$ или пока не достигнется максимальное количество итераций.

3

4. Численный эксперимент

4.1. Описание

Для численного эксперимента бралась функция $g(x)=4x+11,\ N=100$ равноотстоящих точек $x_1,..,x_{100}$ на отрезке [-10;10], функции $y_1=g(x_1),..,y_{100}=g(x_{100}),$ а также квадратичная функция потерь $L(a,b)=\frac{1}{2}\sum\limits_{i=1}^N(ax_i+b-y_i)^2.$

Ставилась задача минимизации функции потерь L(a,b), т.е. восстановления по N точкам параметров исходной функции g(x).

4.2. Результаты

На рис. 4.1 представлены результаты работы градиентного спуска и метода Нестерова для данной функции, на рис. 4.2 — результаты работы метода Нестерова. Показаны значения параметров λ и ϵ , количество итераций, точность приближения коэффициентов функции g(x) и значения функции потерь в получившейся точке минимума.

···Lambda· ···Epsilon· ···Amount of iterations· ····· a_ε-a · ······ b_ε-b · ······Loss·
0.01 0.01 5.53423e+09 0.01 5.10562e+22
· · · 0.01 · · · · · · 0.0001 · · · · · · · · · · · · · · · · · ·
· · · 0.01 · · · · · 1e-06 · · · · · · · · · · · · · · · · · ·
· · · 0.0001 · · · · 0.01 · · · · · · · · · · · · · · · · · ·
· · · 0.0001 · · · · 0.0001 · · · · · · · · · · · · · · · · · ·
· · · 0.0001 · · · · 1e-06 · · · · · · · · · · · · · · · · · ·
· · 1e-06 · · · 0.01 · · · · · · · · · · · · · · · · · 0 · 2.86216 · · · · · · · 10.6761 · · · · · 19049.3 · · · · · ·
· · · 1e-06 · · · · · 0.0001 · · · · · · · · · · · · · · · · 2000 · · 0.0323557 · · · · · · · · 8.61853 · · · · · · 3712.91 · · · · · ·
1e-06 1e-06 2530.34

Рисунок 4.1. Результаты работы градиентного спуска

···Epsilon· ···Amount·of·iterations· ···· a_ε-a · ···· b_ε-b · ······Loss·
0.01 42101.7
0.0001- 0.833796
· · · 1e-06 · · · · · · · · · · · · · · · · · ·
1e-08 1.10915e-09-

Рисунок 4.2. Результаты работы метода Нестерова

Для сравнения функцию g(x) «зашумели», добавив к ней N(0,25) нормально распределённых точек, после чего минимизировали L(a,b) с новыми значениями. На рис. 4.3, 4.4 и 4.5 представлены результаты работы градиентного спуска, на рис. 4.6 и 4.7 — результаты работы метода Нестерова. Точки красного цвета соответсвуют начальным точкам (x_i, y_i) , синего — точкам получившейся прямой. Показаны значения параметров ϵ и λ , количество итераций и значения функции потерь.

Рисунок 4.3. Результаты работы градиентного спуска с параметром $\lambda = 0.01$

Рисунок 4.4. Результаты работы градиентного спуска с параметром $\lambda = 10^{-4}$

Рисунок 4.5. Результаты работы градиентного спуска с параметром $\lambda = 10^{-6}$

Рисунок 4.6. Результаты работы метода Нестерова

Рисунок 4.7. Результаты работы метода Нестерова

4.3. Анализ

В результате экспериментов было выявлено, что для данных функций потерь градиентный спуск:

- при $\lambda = 0.01$ расходится $\forall \epsilon$,
- при $\lambda=10^{-4}$ лучшая точность достигаеся при $\epsilon=10^{-6},$
- при $\lambda = 10^{-6}$ сходится медленно.

Метод Нестерова расходится только при $\epsilon=0.01$. При этом, однако, он способен достигать большей точности за меньшее количество итераций.