CMOS Low Power Consumption

◆ Operating Voltage : 0.9V~10.0V

◆ Output Voltage Range: 2.0V~7.0V

◆ Output Voltage Accuracy: ±2.5%

Selectable Oscillator Frequency:

(50kHz, 100kHz, 180kHz)

■ General Description

The XC6371 series is a group of PWM controlled step-up DC/DC converters. The XC6371 series employs CMOS process and laser trimming technologies so as to attain low power and high accuracy. On-chip proprietary phase compensation and slow start-up circuits ensure excellent transient response and improved performance.

Output voltage can be selected from 2.0V to 7.0V in 0.1V increments (accuracy: $\pm 2.5\%$). Oscillator frequency is also selectable from three frequencies; 50, 100, and 180kHz (accuracy: $\pm 15\%$).

Every built-in switching transistor type enables a step-up circuit to be configured using only three external components; a coil, a diode, and a capacitor. External transistor versions are available to accommodate high output current applications.

5-pin packages, which are provided with either a CE (chip enable) function that reduces power consumption during shut-down mode, or a VDD pin (separated power and voltage detect pins) are available. SOT-89 small package.

Applications

- Cellular phones, Pagers
- Palmtops
- Cameras, Video recorders
- Portable products

■ Features

Operating (start-up) voltage range: 0.9V~10V Output voltage range: 2.0V~7.0V in 0.1V increments

Highly accurate: Set-up voltage ±2.5%

Oscillator frequency: 50kHz, 100kHz, 180khz (±15%) selectable Maximum output currents (Tr built-in): Typ.100mA at VIN=3.0,

Vout=5.0VNote(1)

Highly efficient (Tr built-in): Typ.85% at Vin=3.0,

Vout=5.0V.....Note(1)

Built-in switching transistor type and an external Tr type available. Five-lead packaged units offer either Chip Enable or independent Vout pin option.

Phase compensation and slow start-up circuits built-in Small package: SOT-89 mini-power mold (3-pin, 5-pin)

Note(1): Performance depends on external components and PCB layout.

Selection Guide

PART TYPE	OPERATION	PACKAGE	SWITCHING	ADDITIONAL	FEATURES
PARTITE	MODE	FAUNAGE	RELATED	FUNCTION	FEATURES
XC6371A	PWM	SOT-89-3	Built-in Transistor "Lx"lead		 Switching transistor incorporated standard type. Low ripple and highly efficient from low current to high current.
XC6371B	PWM	SOT-89-3	External Transistor "EXT"lead		 External switching transistor standard type. Adding external transistor can improve the output capability up to several hundred mA.
XC6371C	PWM	SOT-89-5	Built-in Transistor "Lx"lead	Chip Enable(CE)	 Stand-by (CE)function added version to the XC6371A. Stand-by current: 0.5μA max.
XC6371D	PWM	SOT-89-5	External Transistor "EXT"lead	Chip Enable(CE)	 Stand-by (CE)function added version to the XC6371B. Stand-by current: 0.5μA max.
XC6371E	PWM	SOT-89-5	Built-in Transistor "Lx"lead	Separated "Vpd"and"Vout"leads	Individual power supply and set-up voltage sensing leads are available
XC6371F	PWM	SOT-89-5	External Transistor "EXT"lead	Separated "Vpd"and"Vout"leads	Individual power supply and set-up voltage sensing leads are available.

■ Pin Configuration

■ Pin Assignment

(XC6371A,XC6371B)

PIN NUMBER		DININIANAE	FUNCTION	
XC6371A	XC6371B	PIN NAME	FUNCTION	
1	1	Vss	Ground	
2	2	Vоит	Output voltage monitor / IC internal power supply	
3		Lx	Switch	
3		EXT	External switch transistor drive	

(XC6371C,XC6371D)

PIN NUMBER		DININIANE	FUNCTION
XC6371C	XC6371D	PIN NAME	FUNCTION
5	5	Vss	Ground
2	2	Vоит	Output voltage monitor / IC internal power supply
4		Lx	Switch
	4	EXT	External switch transistor drive
3	3	CE	Chip Enable
1 1		NC	No Connection

(XC6371E,XC6371F)

PIN NUMBER		DININIANE	FUNCTION	
XC6371E	XC6371F	PIN NAME	FUNCTION	
5	5	Vss	Ground	
2	2	Vdd	IC internal power supply	
4		Lx	Switch	
	4	EXT	External switch transistor drive	
3	3	Vouт	Output voltage monitor	
1	1	NC	No Connection	

■ Block Diagram

XC6371A ~ XC6371D

(The Vout pin is used also for the VDD pin.)

Note: Built-in tr.type units use the LX pin. External tr.type units use the EXT pin. The CE pin is only used with the XC6371C and XC6371D.

XC6371E and XC6371F

Note: The V_{DD} pin is only used with XC6371E and XC6371F.

Built-in tr.type units use the LX pin. External tr.type units use the EXT pin.

■ Absolute Maximum Ratings

Ta=25°C

PARAMETER	SYMBOL	RATINGS	UNITS
Vouт Input Voltage	Vоит	12	V
Lx pin Voltage	VLX	12	V
Lx pin Current	llx	400	mA
EXT pinVoltage	VEXT	Vss-0.3 ~ Vout+0.3	V
EXT pin Current	lext	±50	mA
CE Input Voltage	VCE	12	V
Continuous Total Power Dissipation	Pd	500	mW
VDD Input Voltage	VDD	12	V
Operating Ambient Temperature	Topr	−30 ~ + 80	°C
Storage Temperature	Tstg	−40 ~ +125	°C

■ Electrical Characteristics

XC6371A501PR Vout=5.0V,Fosc=100kHz

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vouт		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10			V
Operation Start-up Voltage	VsT1	External Components Connected. Iouт=1mA.			0.90	V
Oscillation Start-up Voltage	VST2	No external components. Apply voltage to Vout. Lx: 10kΩ pull-up to 5V.			0.80	V
Supply Current 1	loo1	Same as VsT2. Apply output voltageX0.95 to Vout.		80.2	133.8	μΑ
Supply Current 2	IDD2	Same as Vsт2. Apply output voltageX1.1 to Vout.		8.2	16.5	μΑ
Lx Switch-On Resistance	Rswon	Same as IDD 1. VLX=0.4V.		1.4	2.4	Ω
Lx Leakage Current	ILXL	No external components. VouT=VLX=10V.			1.0	μΑ
Oscillator Frequency	Fosc	Same as IDD 1. Measuring of Lx waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD 1. Measuring of Lx waveform.	80	87	92	%
Lx Limit Voltage	VLXLMT	Same as IDD 1. Apply output voltage to Lx. Voltage required to produce FoscX2	0.7		1.3	V
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

Measuring conditions: Unless otherwise specified, Vin=Vout X 0.6, Iout=50mA. See Typical Application Circuits, Fig.1.

■ Electrical Characteristics

XC6371B501PR Vout=5.0V,Fosc=100kHz

Ta=25℃

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vouт		4.875	5.000	5.125	V
Maximum Input Voltage	VIN		10			V
Operation Start-up Voltage	VsT1	External Components Connected.lout=1mA.			0.90	V
Oscillation Start-up Voltage	VsT2	No external components. Apply voltage to Vout.			0.80	V
Supply Current 1	IDD1	Same as Vsт2. Apply output voltageX0.95 to Vouт.		40.0	66.8	μΑ
Supply Current 2	loo2	Same as Vsт2. Apply output voltageX1.1 to Vouт.		8.2	16.5	μΑ
EXT"High" On Resistance	Rехтн	Same as IDD 1. VEXT=-0.4V.		37.5	62.5	Ω
EXT"Low" On Resistance	REXTL	Same as IDD 1. VEXT=0.4V.		30	50	Ω
Oscillator Frequency	Fosc	Same as IDD1. Measuring of EXT waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD1. Measuring of EXT waveform.	80	87	92	%
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

Measuring conditions: Unless otherwise specified, VIN=VOUTX0.6, IOUT=50mA. See Typical Application Circuits, Fig.2.

XC6371C501PR Vout=5.0V,Fosc=100kHz

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vouт		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10			V
Operation Start-up Voltage	VsT1	External Components Connected.IouT=1mA.			0.90	V
Oscillation Start-up Voltage	VsT2	No external components. Apply voltage to Vout. Lx : $10k\Omega$ pull-up to 5V.			0.80	V
Supply Current 1	loo1	Same as Vsт2. Apply output voltage×0.95 to Vouт.		80.2	133.8	μΑ
Supply Current 2	loo2	Same as Vsr2. Apply output voltageX1.1 to Vour.		8.2	16.5	μΑ
Lx Switch-On Resistance	Rswon	Same as IDD 1. VLX=0.4V.		1.4	2.4	Ω
Lx Leakage Current	ILXL	No external components. Vout=VLx=10V.			1.0	μΑ
Osicillator Frequency	Fosc	Same as IDD 1. Measuring of Lx waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD 1. Measuring of Lx waveform.	80	87	92	%
Stand-by Current	Іѕтв	Same as IDD 1.			0.5	μΑ
CE"High"Voltage	Vсен	Same as IDD 1. Existence of Lx Oscillation.	0.75			٧
CE"Low"Voltage	VCEL	Same as IDD 1. Disappearance of Lx Oscillation.			0.20	V
CE"High"Current	Ісен	Same as IDD 1.VCE=VOUTX0.95.			0.25	μΑ
CE"Low"Current	ICEL	Same as IDD 1. VCE=0V.			-0.25	μΑ
Lx Limit Voltage	VLxLMT	Same as IDD 1. Apply output voltage to Lx. Voltage required to produce FoscX2.	0.7		1.3	V
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

 $Measuring\ conditions:\ Unless\ otherwise\ specified,\ connect\ CE\ to\ Vout, Vin=Vout X 0.6,\ lout=50 mA.\ See\ Typical\ Application\ Circuits,\ Fig.3.$

■ Electrical Characteristics

XC6371D501PR Vout=5.0V,Fosc=100kHZ

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vouт		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10			V
Operation Start-up Voltage	VsT1	External Components Connected. Iout=1mA.			0.90	V
Oscillation Start-up Voltage	VsT2	No external components. Apply voltage to Vout.			0.80	V
Supply Current 1	loo1	Same as Vs⊤2. Apply output voltageX0.95 to Vo∪⊤.		40.0	66.8	μА
Supply Current 2	lod2	Same as Vsт2. Apply output voltageX1.1 to Vout.		8.2	16.5	μА
EXT "High" On Resistance	Rехтн	Same as IDD 1. VEXT=-0.4V.		37.5	62.5	Ω
EXT "Low" On Resistance	REXTL	Same as IDD 1. VEXT=0.4V.		30	50	Ω
Oscillator Frequency	Fosc	Same as IDD 1. Measuring of EXT waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD 1. Measuring of EXT waveform.	80	87	92	%
Stand-by Current	Іѕтв	Same as IDD 1.			0.5	μА
CE"High"Voltage	Vсен	Same as IDD 1. Existence of Lx Oscillation.	0.75			V
CE"Low"Voltage	VCEL	Same as IDD 1. Disappearance of Lx Oscillation.			0.20	V
CE"High"Current	Ісен	Same as IDD 1.VCE=VOUTX0.95.			0.25	μΑ
CE"Low"Current	ICEL	Same as IDD 1.VCE=0V.			-0.25	μА
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

Measuring conditions: Unless otherwise specified, connect CE to Vout, Vin=Vout X0.6, Iout=50mA. See Typical Application Circuits, Fig. 4.

XC6371E501PR Vout=5.0V,Fosc=100kHz

Ta=25℃

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vouт		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10			V
Operation Start-up Voltage	VsT1	External Components Connected. Iouт=1mA.			0.90	V
Oscillation Start-up Voltage	VsT2	No external components. Apply voltage to Vout.			0.80	٧
Supply Current 1	loo1	Same as Vsт2. Apply output voltage×0.95 to Vout.		80.2	133.8	μА
Supply Current 2	lod2	Same as Vsr2. Apply output voltage×1.1 to Vour.		8.2	16.5	μΑ
Lx Switch-On Resistance	Rswon	Same as IDD 1. VLX=0.4V.		1.4	2.4	Ω
Lx Leakage Current	ILXL	No external components. Vout=VLx=10V.			1.0	μА
Osicillator Frequency	Fosc	Same as IDD 1. Measuring of Lx waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD 1. Measuring of Lx waveform.	80	87	92	%
Lx Limit Voltage	VLxLMT	Same as IDD 1. Apply output voltage to Lx. Voltage required to produce FoscX2.	0.7		1.3	V
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

Measuring conditions: Unless otherwise specified, connect VDD to Vout, VIN=VOUTX0.6, IOUT=50mA. SeeTypical Application Circuits, Fig.5. Note: When the VDD and VOUT pins are independently used, the voltage range at the VDD pin should be 2.2V to 10V.

The IC operates from VDD=0.8V. However, output voltage and oscillator frequency are properly stabilized when VDD=2.2V or higher.

■ Electrical Characteristics

XC6371F501PR Vout=5.0V,Fosc=100kHz

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vоит		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10			V
Operation Start-up Voltage	Vsт1	External Components Connected. IOUT=1mA.			0.90	V
Oscillation Start-up Voltage	VsT2	No external components. Appply voltage to Vouт.			0.80	V
Supply Current 1	loo1	Same as VsT2. Apply output voltage×0.95 to VouT.		40.0	66.8	μА
Supply Current 2	loo2	Same as Vsт2. Apply output voltageX1.1 to Vouт.		8.2	16.5	μА
EXT "High" On-Resistance	Rехтн	Same as IDD 1. VEXT=-0.4V.		37.5	62.5	Ω
EXT "Low" On-Resistance	REXTL	Same as IDD 1. VEXT=0.4V.		30	50	Ω
Oscillator Frequency	Fosc	Same as IDD 1.Measuring of EXT waveform.	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD 1.Measuring of EXT waveform.	85	87	92	%
Efficiency	EFFI			85		%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

Measuring conditions: Unless otherwise specified, connect Vpb to Vout, Vin=Vout X0.6, lout=50mA. See Typical Application Circuits, Fig.6.

Note: When the VDD and VOUT pins are independently used, the voltage range at the VDD pin should be 2.2V to 10V.

The IC operates from VDD=0.8V. However, output voltage and oscillator frequency are properly stabilized when VDD=2.2V or higher.

■ Typical Application Circuits

L: 100µH (SUMIDA, CD-54)

SD: Diode (Schottky diode; MATSUSHITA, MA735)

CL: 16V 47μF (Tantalum capacitor; NICHICON, F93)

L: 47μH (SUMIDA, CD-54)

SD: MA735 (Schottky diode; MATSUSHITA)

CL: 16V 47µF (Tantalum capacitor; NICHICON, F93)

R_B: $1k\Omega$, C_B:3300pF (FOSC=100kHz)

Tr: 2SC3279, 2SD1628G

Fig.1 XC6371A Application

Fig.2 XC6371B Application

■ Typical Application Circuits

L: 100μH (SUMIDA, CD-54)

SD: Diode (Schottky diode; MATSUSHITA, MA735) CL: 16V 47μF (Tantalum capacitor, NICHICON, F93)

Fig.3 XC6371C Application

L: 47µH (SUMIDA, CD-54)

SD: MA735 (Schottky diode; MATSUSHITA) CL: $16V \ 47\mu F$ (Tantalum capacitor, F93) RB: $1k\Omega$, CB: 3300pF (Fosc=100kHz)

Tr: 2SC3279, 2SD1628G

Fig.4 XC6371D Application

L: 100μH (SUMIDA, CD-54)

SD: Diode (Schottky diode; MATSUSHITA, MA735) CL: 16V 47μF (Tantalum capacitor, NICHICON, F93)

Fig.5 XC6371E Application

L: 47μH (SUMIDA, CD-54)

SD: MÅ735 (Schottky diode; MATSUSHITA) CL: 16V 47 μ F (Tantalum capacitor, F93) RB: 1k Ω ,CB: 3300pF (Fosc=100kHz)

Tr: 2SC3279, 2SD1628G

Fig.6 XC6371F Application

■ Electrical Characteristics XC6371A

(1)OUTPUT VOLTAGE vs. OUTPUT CURRENT

(2)EFFICIENCY vs. OUTPUT CURRENT

(3)NO LOAD, INPUT CURRENT vs. INPUT VOLTAGE

(4) RIPPLE VOLTAGE vs OUTPUT CURRENT

(5) OPERATING START VOLTAGE/RETAIN VOLTAGE vs. OUTPUT CURRENT (6) LOAD TRANSIENT RESPONSE

■ Electrical Characteristics XC6371B (External Tr)

(1) OUTPUT VOLTAGE vs. INPUT CURRENT

300

OUTPUT CURRENT:Iout(mA)

400

500

600

XC6371B501(5V,100kHz)

(2) EFFICIENCY vs. OUTPUT CURRENT XC6371B301(3V,100kHz)

200

100

2.8

2.7

XC6371B501(5V,100kHz)

(3) RIPPLE VOLTAGE vs. OUTPUT CURRENT XC6371B301(3V,100kHz)

XC6371B501(5V,100kHz)

<External components> $C_{IN}=100\mu F$ (Electrolytic), $C_{L}=47\mu F$ (Tantalum) X 2, SD:MA735, Tr:2SD1628G

(4) LOAD TRANSIENT RESPONSE

Time (20msec/div)

(External Components) $C_{IN}=47\mu F$ (Tantalum) $C_L=47\mu F$ (Tantalum) X 2 SD:MA735 Tr:2SD1628G