Lamport Algorithm

For Mutual Exclusion

What is Mutual Exclusion?

Ensures only one process can access a shared resource (critical section) at a time.

Prevents data corruption and inconsistencies in concurrent access scenarios.

Challenges of Distributed Mutual Exclusion

No central coordinator

Decisions must be made based on local information exchange.

Clock synchronization

Maintaining consistent time across distributed processes can be complex.

Message delays

Communication between processes can be slow and unreliable.

Lamport's Algorithm -Core Idea

- Uses logical clocks and timestamps to order requests.
- Processes maintain request queues to manage incoming access requests.

Lamport Algo with Example

Performance

- · 3(n-1) messages Per cs in vocation
- · (m-1) Reply
- · (n-1) Reguest · (n-1) Release

The difference between Ricart-Agrawala and Lamport algorithm?

Lamport's algorithm requires between 3(N - 1) and 2(N - 1) messages per CS execution. The Ricart-Agrawala algorithm assumes the communication channels are FIFO

Advantages & Disadvantages of Lamport's Algorithm for Mutual Exclusion in Distributed System

Advantages

- Simplicity
- Fairness
- Scalability
- Compatibility

Disadvantages

- Message Overhead
- Delayed Execution
- Limited Performance
- No Fault Tolerance

Conclusion

IT solutions are the future of hospital management and dialogue between policymakers and hospital administrators.

