Invariance par rotation dans les modèles DL

Julien Bergerot, Théau Blanchard, Paule Grangette & Jeanne Salle

Jeudi 23 Juin 2022

Problème

- Réseau à convolution invariant par translation
- Pas forcément equivariant
 - Pas nécessaire pour des images réelles où l'orientation est pertinente
 - Pour le domaine du médical, la façon dont on regarde la peau ne doit pas changer le diagnostique

Identification du problème

- Données histopathologiques

- Segmentation des contours
 - Unet model

- Beaucoup de différences

Score = Count(4)*2 + Count(3)

Ici: 0.63

Histogram of the error in the number of nucleis for several rotations

Améliorations : Augmentation de données

 Ajout de rotations aléatoires lors de l'entraînement

- Augmenter les performances et robustesse

- Beaucoup moins de différences

Score = Count(4)*2 + Count(3)

Ici: 0.91

Améliorations : Augmentation de données

 Ajout de rotations de +- 90° et réflexions aléatoires lors de l'entraînement

- Augmenter les performances et robustesse

Histogram of the error in the number of nucleis for several rotations

Approche SE2CNN

Article : Roto-Translation Equivariant Convolutional Networks

- Méthode sans data augmentation
- <u>Principe</u>: remplacer les convolutions dans R² par des group convolutions utilisant des représentations du groupe SE(2) (des roto-translations) pour encoder explicitement l'orientation des features apprises → assure équivariance
- Résout les problèmes liés au coût de l'apprentissage de comportements géométriques à l'intérieur des images, assure, par construction l'invariance par rotation et garantie grâce à l'équivariance locale de chaque couche, l'équivariance globale
- Performance meilleure qu'avec augmentation des données

Approche des G-CNN

Test sur le dataset MNIST

- Score de différence
 - 0.60 +- 0.05 vs 0.89 +- 0.04
- Dice score
 - Première prédiction
 - Vote strictement majoritaire
 - Vote majoritaire
 - Concaténation

	Sans augmentation	Avec augmentation
Prédiction 1	0.73 +- 0.05	0.81 +- 0.05
Prédiction 2	0.62 +- 0.04	0.77+- 0.03
Prédiction 3	0.75 +- 0.04	0.84 +- 0.04
Prédiction 4	0.8 +- 0.02	0.89 +- 0.04

- Erreur absolue moyenne sans stratégie:
 - 2.21 vs 1.63
- Erreur absolue moyenne:
 - Moyenne
 - Médiane
 - Min
 - Max

	Sans augmentation	Avec augmentation
Moyenne	1.6762279	1.3960426
Médiane	1.81727	1.4674456
Minimum	2.086739	1.2822441
Maximum	2.744995	2.177107

Conclusion

- Augmentation de données améliore les performances et la robustesse
- D'autres méthodes plus complexes existent : SE2CNN et Harmonic Networks