AIFA A* Analysis

15/01/2024

Koustav Rudra

Algorithm A*

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[1(5)]	1(5)	N	[2(7),3(25)]	[1(5)]
[2(7),3(25)]	2(7)	N	[3(25),4(9)]	[1(5),2(7)]
[3(25),4(9)]	4(9)	N	[3(25),5(11)]	[1(5),2(7),4(9)]
[3(25),5(11)]	5(11)	N	[3(25),6(28)]	[1(5),2(7),4(9),5(11)]
[3(25),6(28)]	3(25)	N	[6(28),4(7)]	[1(5),2(7),4 (9) ,5(11),3(2 5)]

Algorithm A*

SELECT	GOAL	EXPANDED	CLOSED
3(25)	N	[6(28),4(7)]	[1(5),2(7),4 (9) ,5(11),3(2 5)]
4(7)	N	[6(28),5(9)]	[1(5),2(7),4(9),5(11),3(2 5),4(7)]
5(9)	N	[6(26)]	[1(5),2(7), 4(9),5(11) ,3(2 5),4(7),5(9)]
6(26)	Y		// (// () 1
	3(25) 4(7) 5(9)	3(25) N 4(7) N 5(9) N	3(25) N [6(28),4(7)] 4(7) N [6(28),5(9)] 5(9) N [6(26)]

Node Re-Expansion

• Is it possible in searches involving heuristic function?

Monotone Heuristics

- An admissible heuristic function, h(), is monotonic if for every successor m of n:
 - $h(n) h(m) \le C(n, m)$

Algorithm A*

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[1(25)]	1(25)	N	[3(25),2(7)]	[1(25)]
L \ /3			[3(25),2(25)]	
[3(25),2(25)]	3(25)	N	[2(25),4(7)]	[1(25),3(25)]
[3(23),2(23)]			[2(25),4(25)]	
[2(25),4(25)]	2(25)	N	[4(25)]	[1(25),3(25),2(25)]
	4(25)	N	[5(9)]	[1(25),3(25),2(25),4(25)]
[4(25)]			[5(25)]	
[5(25)]	5(25)	N	[6(26)]	[1(25),3(25),2(25),4(25), 5(25)]
[6(25)]	6(25)	Y		

Monotone Heuristics

- An admissible heuristic function, h(), is monotonic if for every successor m of n:
 - $h(n) h(m) \le C(n, m)$
- If the monotone heuristic is satisfied, then A* has already found an optimal path to the state it selects for expansion

Monotone Heuristics

- An admissible heuristic function, h(), is monotonic if for every successor m of n:
 - $h(n) h(m) \le C(n, m)$
- If the monotone heuristic is satisfied, then A* has already found an optimal path to the state it selects for expansion
- How to convert a non-monotonic heuristic to monotonic one?

Pathmax

- Converts a non-monotonic heuristic to a monotonic one
 - During generation of the successor, m, of n we set:
 - $h'(m) = \max\{h(m), h(n) C(n, m)\}$
 - Use h'(m) as heuristic at m

A*: Result

- Heuristic Function is weak
 - ?

- Heuristic function is overestimating
 - Less number of states to explore
 - Does that always help?

A*: Result

When to go for overestimating?

Inadmissible Heuristic

- Advantages
 - In many cases, inadmissible heuristics can cause better pruning, and
 - Significantly reduce the search time
- Drawbacks
 - ?

Iterative Deepening A* (IDA*)

• Set C = f(s)

- Perform DFBB with cut-off C
 - Expand a state, n, only if its f-value is less than or equal to C
 - If a goal is selected for expansion then return C and terminate

• Go to Step 2

Iterative Deepening A* (IDA*)

- In the worst case, only one new state is expanded in each iteration
 - If A* expands N states, then IDA* can expand:
 - $O(N^2)$
- Space Complexity:
 - Linear
- IDA* is asymptotically optimal

Thank You