Assignment 2 Solution

(COMP3605 - Introduction to Data Analytics, 2022-2023)

Date Available: Sunday, October 23, 2022

Due Date: 11:50 PM, Sunday, November 06, 2022

Total Mark: 100 marks

Solution to Question 1 [46 marks]

- **a.** [34 marks] minsup = 0.3, N = |D| = 10, minsup count $= \lceil 0.3 \times 10 \rceil = \lceil 3 \rceil = 3$ [5 marks]
- 1. Iteration 1: each item is a member of set of candidate 1-itemsets C_1 . Algorithm scans all of transactions to count the number of occurrences of each item A (3), B (5), C (9), E (5), G (5), M (2), O (4). $C_1 = \{\{A\}:3, \{B\}:5, \{C\}:9, \{E\}:5, \{G\}:5, \{M\}:2, \{O\}:4\}$. Remove 1 infrequent 1-itemset $\{M\}:2$ because its support count = $2 < min_sup$ count = 3. [5 marks]
- **2**. Set of frequent 1-itemsets $L_1 = \{\{A\}: 3, \{B\}: 5, \{C\}: 9, \{E\}: 5, \{G\}: 5, \{O\}: 4\}, n = |L_1| = 6.$ [5 marks]
- **3**. To discover set of frequent 2-itemsets L_2 , algorithm uses the join $L_1 \bowtie L_1$ to generate a candidate set of 2-itemsets C_2 . C_2 consists of 10 2-itemsets (C(n, k) = C(6, 2) = 15).
- $C_2 = \{\{A, B\}, \{A, C\}, \{A, E\}, \{A, G\}, \{A, O\}, \{B, C\}, \{B, E\}, \{B, G\}, \{B, O\}, \{C, E\}, \{C, G\}, \{C, O\}, \{E, G\}, \{E, O\}, \{G, O\}\}$
- **4**. Next, transactions in *D* are scanned and support count of each candidate itemset in C_2 is accumulated. $C_2 = \{\{A, B\}:1, \{A, C\}:3, \{A, E\}:1, \{A, G\}:1, \{A, O\}:2, \{B, C\}:4, \{B, E\}:2, \{B, G\}:3, \{B, O\}:3, \{C, E\}:4, \{C, G\}:5, \{C, O\}:3, \{E, G\}:2, \{E, O\}:2, \{G, O\}:1\}$ [5 marks]
- 5. Set of frequent 2-itemsets L_2 is then determined, consisting of those candidate 2-itemsets in C_2 having support count $\geq min_sup$ count = 3.
- Set of frequent 2-itemsets $L_2 = \{\{A, C\}: 3, \{B, C\}: 4, \{B, G\}: 3, \{B, O\}: 3, \{C, E\}: 4, \{C, G\}: 5, \{C, O\}: 3\}.$
- /* removed 8 infrequent 2-itemsets: {A, B}:1, {A, E}:1, {A, G}:1, {A, O}:2, {B, E}:2, {E, G}:2, {E, O}:2, {G, O}:1 */
 [5 marks]
- **6**. $C_3 = L_2 \bowtie L_2 = \{\{B, C, G\}, \{B, C, O\}, \{B, G, O\}, \{C, E, G\}, \{C, E, O\}, \{C, G, O\}\}.$
- If any (k-1)-subset of a candidate k-itemset is not in L_{k-1} (i.e., infrequent), then the candidate cannot be frequent and can be removed from C_k .
- The last 4 candidate 3-itemsets {B, G, O}, {C, E, G}, {C, E, O}, {C, G, O} are removed from C_3 because their 2-subsets {E, G}, {E, O}, and {G, O} are not in L_2 (i.e., the subsets {E, G}, {E, O}, and {G, O} are infrequent).
- $\rightarrow C_3 = \{ \{B, C, G\}, \{B, C, O\} \}.$ /*
- $\{B, G, O\}$ contains $\{G, O\} \notin L_2$, so remove $\{B, G, O\}$ from C_3 .
- $\{C, E, G\}$ contains $\{E, G\} \notin L_2$, so remove $\{C, E, G\}$ from C_3 .
- $\{C, E, O\}$ contains $\{E, O\} \notin L_2$, so remove $\{C, E, O\}$ from C_3 .
- $\{C, G, O\}$ contains $\{G, O\} \notin L_2$, so remove $\{C, G, O\}$ from C_3 .

[5 marks]

7. Transactions are scanned to determine L_3 , consisting of those candidate 3-itemsets in C_3 having support count $\geq min_sup = 3$.

$$C_3 = \{\{B, C, G\}: 3, \{B, C, O\}: 2\}$$

 \rightarrow set of frequent 3-itemsets $L_3 = \{\{B, C, G\}:3\}.$

[2 marks]

8. Algorithm uses $L_3 \bowtie L_3$ to generate a candidate set of 4-itemsets C_4 .

 $C_4 = \emptyset$ because L_3 contains only one 3-itemset {B, C, G}.

Thus, $L_4 = \emptyset$ and the apriori algorithm terminates.

[2 marks]

The set of all frequent itemsets found is

$$L = \{\{A\}:3, \{B\}:5, \{C\}:9, \{E\}:5, \{G\}:5, \{O\}:4, \{A, C\}:3, \{B, C\}:4, \{B, G\}:3, \{B, O\}:3, \{C, E\}:4, \{C, G\}:5, \{C, O\}:3, \{B, C, G\}:3\}$$

b. [12 marks] minconf = 0.75

• For frequent 3-itemset $\ell = \{B, C, G\}$, all nonempty subsets of $\ell = \{B, C, G\}$ are $s = \{B, C\}$, $\{B, G\}$, $\{C, G\}$, $\{B\}$, $\{C\}$, $\{G\}$, we have rules [2 marks]

$$\{B, C\} \rightarrow \{G\}, c(\{B, C\} \rightarrow \{G\}) = \sigma(\{B, C, G\}) / \sigma(\{B, C\}) = 3 / 4 = 0.75 \checkmark$$
[2 marks]

$$\{B, G\} \rightarrow \{C\}, c(\{B, G\} \rightarrow \{C\}) = \sigma(\{B, G, C\}) / \sigma(\{B, G\}) = 3 / 3 = 1.0 \checkmark$$
[2 marks]

$$\{C, G\} \rightarrow \{B\}, c(\{C, G\} \rightarrow \{B\}) = \sigma(\{C, G, B\}) / \sigma(\{C, G\}) = 3 / 5 = 0.6 \times [2 \text{ marks}]$$

$$G \to \{B, C\}, c(G \to \{B, C\}) = \sigma(\{G, B, C\}) / \sigma(\{G\}) = 3/5 = 0.6 \times 10^{-3}$$

[2 marks]
$$C \to \{B, G\}, c(C \to \{B, G\}) = \sigma(\{C, B, G\}) / \sigma(\{C\}) = 3/9 = 0.333 \times 10^{-2}$$

$$B \to \{C, G\}, c(B \to \{C, G\}) = \sigma(\{B, C, G\}) / \sigma(\{B\}) = 3/5 = 0.6 \times 10^{-3}$$

Solution to Question 2 [20 marks]

a. [10 marks] Use the majority voting technique to classify the test example z = 5.0 using 9-NN (i.e., k = 9).

• For k = 9, nearest neighbors are

i	1	2	3	4	5	6	7	8	9
\mathbf{X}_i	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0
y_i	_	ı	+	+	+	ı	ı	+	
d_i	4.5	2	0.5	0.4	0.1	0.2	0.3	0.5	2

$$h(C_1) = I(y_3 = C_1) + I(y_4 = C_1) + I(y_5 = C_1) + I(y_8 = C_1) = 4,$$

$$h(C_2) = I(y_1 = C_2) + I(y_2 = C_2) + I(y_6 = C_2) + I(y_7 = C_2) + I(y_9 = C_2) = 5$$

We have $h(C_1) = 4 < h(C_2) = 5$, the class label of the test instance z is $y' = C_2$ (i.e., class –).

/* or

- 1	01									
	i	2	3	4	5	6	7	8	9	10
	\mathbf{X}_i	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
	y_i	_	+	+	+	_	_	+	_	_
	d_i	2	0.5	0.4	0.1	0.2	0.3	0.5	2	4.5

$$h(C_1) = I(y_3 = C_1) + I(y_4 = C_1) + I(y_5 = C_1) + I(y_8 = C_1) = 4,$$

$$h(C_2) = I(y_2 = C_2) + I(y_6 = C_2) + I(y_7 = C_2) + I(y_9 = C_2) + I(y_{10} = C_2) = 5$$

We have $h(C_1) = 4 < h(C_2) = 5$, the class label of the test instance z is $y' = C_2$ (i.e., class -).

b. [10 marks] Use the distance-weighted voting technique to classify the test example z = 5.0 using 9-NN (i.e., k = 9).

• For k = 9, nearest neighbors are

	or it is, meanest noigheous and								
i	1	2	3	4	5	6	7	8	9
\mathbf{X}_i	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0
y_i	_	_	+	+	+	_	_	+	-
d_i	4.5	2	0.5	0.4	0.1	0.2	0.3	0.5	2
d_i^2	20.25	4	025	0.16	0.01	0.04	0.09	0.25	4
w_i	0.049	0.25	4	6.25	100	25	11.11	4	0.25

$$f(C_1) = w_3 \times I(y_3 = C_1) + w_4 \times I(y_4 = C_1) + w_5 \times I(y_5 = C_1) + w_8 \times I(y_8 = C_1)$$

$$f(C_1) = 4 \times 1 + 6.25 \times 1 + 100 \times 1 + 4 \times 1 = 114.25,$$

$$f(C_2) = w_1 \times I(y_1 = C_2) + w_2 \times I(y_2 = C_2) + w_6 \times I(y_6 = C_2) + w_7 \times I(y_7 = C_2) + w_9 \times I(y_9 = C_2)$$

$$f(C_2) = 0.049 \times 1 + 0.25 \times 1 + 25 \times 1 + 11.11 \times 1 + 0.25 \times 1 = 36.66$$

We have $f(C_1) = 114.25 > f(C_2) = 36.66$, the class label of the test instance z is $y' = C_2$ (i.e., class +).

/* or

i	2	3	4	5	6	7	8	9	10
\mathbf{X}_i	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
y_i	_	+	+	+	_	-	+	-	-
d_i	2	0.5	0.4	0.1	0.2	0.3	0.5	2	4.5
d_i^2	4	025	0.16	0.01	0.04	0.09	0.25	4	20.25
w_i	0.25	4	6.25	100	25	11.11	4	0.25	0.049

$$f(C_1) = w_3 \times I(y_3 = C_1) + w_4 \times I(y_4 = C_1) + w_5 \times I(y_5 = C_1) + w_8 \times I(y_8 = C_1)$$

$$f(C_1) = 4 \times 1 + 6.25 \times 1 + 100 \times 1 + 4 \times 1 = 114.25$$
,

$$f(C_2) = w_2 \times I(y_2 = C_2) + w_6 \times I(y_6 = C_2) + w_7 \times I(y_7 = C_2) + w_9 \times I(y_9 = C_2) + w_{10} \times I(y_{10} = C_2)$$

$$f(C_2) = 0.25 \times 1 + 25 \times 1 + 11.11 \times 1 + 0.25 \times 1 + 0.049 \times 1 = 36.66$$

We have $f(C_1) = 114.25 > f(C_2) = 36.66$, the class label of the test instance z is $y' = C_2$ (i.e., class +).

*/

Solution to Question 3 [34 marks]

• For UPGMA (Unweighted Pair Group Method with Arithmetic mean), we use the formula

group-average linkage:
$$d(C_i, C_j) = \frac{1}{n_i n_j} \sum_{p \in C_i, p' \in C_j} ||p - p'||_2$$

where $||\cdot||_2$ is Euclidean distance (a.k.a. L_2 -norm), $n_i = |C_i|$, $n_j = |C_j|$. $|\{p_1\}| = |\{p_2\}| = |\{p_3\}| = |\{p_4\}| = |\{p_5\}| = |\{p_6\}| = 1$

a. [4 marks]

The distance matrix *M*

	p_1	p_2	p_3	p_4	p_5	p_6
p_1	0.000	0.784	0.858	0.504	0.728	0.842
p_2	0.784	0.000	1.175	0.818	0.787	1.054
p_3	0.858	1.175	0.000	0.398	0.412	0.156
p_4	0.504	0.818	0.398	0.000	0.262	0.343
p_5	0.728	0.787	0.412	0.262	0.000	0.272
p_6	0.842	1.054	0.156	0.343	0.272	0.000
min	0.504	0.787	0.156	0.262	0.272	0.156

b. [30 marks] the **group-average linkage**

[6 marks]

Iteration 1. $n(n-1)/2 = (6 \times 5)/2 = 15$ distances

• The detailed computations are
$$d(\{p_1\}, \{p_2\}) = [(0.1831 - 0.9624)^2 + (0.1085 - 0.1916)^2]^{0.5} = 0.784$$
 $d(\{p_1\}, \{p_3\}) = [(0.1831 - 0.0732)^2 + (0.1085 - 0.9594)^2]^{0.5} = 0.858$ $d(\{p_1\}, \{p_4\}) = [(0.1831 - 0.2572)^2 + (0.1085 - 0.6066)^2]^{0.5} = 0.504$ $d(\{p_1\}, \{p_5\}) = [(0.1831 - 0.4476)^2 + (0.1085 - 0.7871)^2]^{0.5} = 0.728$ $d(\{p_1\}, \{p_6\}) = [(0.1831 - 0.2292)^2 + (0.1085 - 0.9489)^2]^{0.5} = 0.842$ $d(\{p_2\}, \{p_3\}) = [(0.9624 - 0.0732)^2 + (0.1916 - 0.9594)^2]^{0.5} = 1.175$ $d(\{p_2\}, \{p_4\}) = [(0.9624 - 0.2572)^2 + (0.1916 - 0.6066)^2]^{0.5} = 0.818$ $d(\{p_2\}, \{p_5\}) = [(0.9624 - 0.4476)^2 + (0.1916 - 0.7871)^2]^{0.5} = 0.787$ $d(\{p_6\}, \{p_6\}) = [(0.9624 - 0.2292)^2 + (0.1916 - 0.9489)^2]^{0.5} = 1.054$ $d(\{p_3\}, \{p_5\}) = [(0.0732 - 0.2572)^2 + (0.9594 - 0.6066)^2]^{0.5} = 0.398$ $d(\{p_3\}, \{p_5\}) = [(0.0732 - 0.2476)^2 + (0.9594 - 0.7871)^2]^{0.5} = 0.412$ $d(\{p_3\}, \{p_6\}) = [(0.0732 - 0.4476)^2 + (0.9594 - 0.9489)^2]^{0.5} = 0.156$ $d(\{p_4\}, \{p_5\}) = [(0.2572 - 0.4476)^2 + (0.6066 - 0.7871)^2]^{0.5} = 0.262$ $d(\{p_4\}, \{p_6\}) = [(0.2572 - 0.2292)^2 + (0.6066 - 0.9489)^2]^{0.5} = 0.343$ $d(\{p_5\}, \{p_6\}) = [(0.2572 - 0.2292)^2 + (0.6066 - 0.9489)^2]^{0.5} = 0.343$

• Find two closest clusters

```
\min\{d(\{p_1\}, \{p_2\}), d(\{p_1\}, \{p_3\}), d(\{p_1\}, \{p_4\}), d(\{p_1\}, \{p_5\}), d(\{p_1\}, \{p_6\}), d(\{p_2\}, \{p_3\}), d(\{p_2\}, \{p_4\}), d(\{p_2\}, \{p_5\}), d(\{p_2\}, \{p_6\}), d(\{p_3\}, \{p_4\}), d(\{p_3\}, \{p_5\}), d(\{p_3\}, \{p_6\}), d(\{p_4\}, \{p_5\}), d(\{p_4\}, \{p_6\}), d(\{p_5\}, \{p_6\})\} = \min\{0.784, 0.858, 0.504, 0.728, 0.842, 1.175, 0.818, 0.787, 1.054, 0.398, 0.412, \mathbf{0.156}, 0.262, 0.343, 0.272\} = \mathbf{0.156} = d(\{p_3\}, \{p_6\})
```

- The two closest clusters are $\{p_3\}$ and $\{p_6\}$. Merge $\{p_3\}$ and $\{p_6\}$ to obtain $C_1 = \{p_3, p_6\}$.
- The updated distance matrix M after merging the two closest clusters $\{p_3\}$ and $\{p_6\}$ (i.e., $C_1 = \{p_3, p_6\}$) is

	p_1	p_2	C_1	p_4	p_5
p_1	0.000	0.784	0.850	0.504	0.728
p_2	0.784	0.000	1.114	0.818	0.787
C_1	0.850	1.114	0.000	0.371	0.342
p_4	0.504	0.818	0.371	0.000	0.262
p_5	0.728	0.787	0.342	0.262	0.000

min 0.504 0.787 0.342 0.262 **0.262**
$$|\{p_1\}| = |\{p_2\}| = |\{p_4\}| = |\{p_5\}| = 1, |C_1| = |\{p_3, p_6\}| = 2$$

[6 marks]

Iteration 2. $n(n-1)/2 = (5\times4)/2 = 10$ distances

• Find two closest clusters

```
\min\{d(\{p_1\}, \{p_2\}), d(\{p_1\}, \{C_1\}), d(\{p_1\}, \{p_4\}), d(\{p_1\}, \{p_5\}), d(\{p_1\}, \{p_5\}, \{p_5\}, \{p_5\}, d(\{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, d(\{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, d(\{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, \{p_5\}, d(\{p_
d({p_2}, {C_1}), d({p_2}, {p_4}), d({p_2}, {p_5}),
d({C_1}, {p_4}), d({C_1}, {p_5}),
d(\{p_4\}, \{p_5\})
= \min\{0.784, [d(\{p_1\}, \{p_3\}) + d(\{p_1\}, \{p_6\})] / (1\times 2), 0.504, 0.728,
[d(\{p_2\}, \{p_3\}) + d(\{p_2\}, \{p_6\})] / (1 \times 2), 0.818, 0.787,
[d(\{p_3\}, \{p_4\}) + d(\{p_6\}, \{p_4\})] / (2\times1), [d(\{p_3\}, \{p_5\}) + d(\{p_6\}, \{p_5\})] / (2\times1),
0.262
= \min\{0.784, (0.858 + 0.842) / 2, 0.504, 0.728,
(1.175 + 1.054) / 2, 0.818, 0.787,
(0.398 + 0.343) / 2, (0.412 + 0.272) / 2,
0.262}
= \min\{0.784, 0.850, 0.504, 0.728,
1.114, 0.818, 0.787,
0.371, 0.342,
0.262} = 0.262 = d({p_4}, {p_5})
```

• The two closest clusters are $\{p_4\}$ and $\{p_5\}$. Merge $\{p_4\}$ and $\{p_5\}$ to obtain $C_2 = \{p_4, p_5\}$.

• The updated distance matrix M after merging the two closest clusters $\{p_4\}$ and $\{p_5\}$ (i.e., $C_2 =$

 $\{p_4, p_5\}$) is

	p_1	p_2	C_1	C_2
p_1	0.000	0.784	0.850	0.616
p_2	0.784	0.000	1.114	0.803
C_1	0.850	1.114	0.000	0.356
C_2	0.616	0.803	0.356	0.000

$$|\{p_1\}| = |\{p_2\}| = 1, |C_1| = |\{p_3, p_6\}| = 2, |C_2| = |\{p_4, p_5\}| = 2$$

[6 marks]

Iteration 3. $n(n-1)/2 = (4 \times 3)/2 = 6$ distance

• Find two closest clusters

$$\min\{d(\{p_1\}, \{p_2\}), d(\{p_1\}, \{C_1\}), d(\{p_1\}, \{C_2\}), d(\{p_2\}, \{C_1\}), d(\{p_2\}, \{C_2\}), d(\{C_1\}, \{C_2\})\} = \min\{0.784, 0.850, [d(\{p_1\}, \{p_4\}) + d(\{p_1\}, \{p_5\})] / (1\times2),$$

1.114,
$$[d(\{p_2\}, \{p_4\}) + d(\{p_2\}, \{p_5\})] / (1 \times 2)$$
,

$$[d({p_3}, {p_4}) + d({p_3}, {p_5}) + d({p_6}, {p_4}) + d({p_6}, {p_5})] / (2 \times 2)\}$$

 $= \min\{0.784, 0.850, (0.504 + 0.728) / 2,$

1.114, (0.818 + 0.787) / 2,

$$(0.398 + 0.412 + 0.343 + 0.272) / 4$$

$$= \min\{0.784, 0.850, 0.616,$$

1.114, 0.803,

$$0.356$$
} = 0.356 = $d({C_1}, {C_2})$

- The two closest clusters are $\{C_1\}$ and $\{C_2\}$. Merge $\{C_1\}$ and $\{C_2\}$ to obtain $C_3 = \{C_1, C_2\} = \{p_3, C_2\}$ p_6, p_4, p_5 \}.
- The updated distance matrix M after merging the two closest clusters $\{C_1\}$ and $\{C_2\}$ (i.e., $C_3 =$ $\{C_1, C_2\} = \{p_3, p_6, p_4, p_5\})$ is

	p_1	p_2	C_3
p_1	0.000	0.784	0.733
p_2	0.784	0.000	0.959
C_3	0.733	0.959	0.000

$$|\{p_1\}| = |\{p_2\}| = 1, |C_3| = |\{p_3, p_6, p_4, p_5\}| = 4$$

[6 marks]

Iteration 4. $n(n-1)/2 = (3 \times 2)/2 = 3$ distances

• Find two closest clusters

$$\min\{d(\{p_1\}, \{p_2\}), d(\{p_1\}, \{C_3\}), d(\{p_2\}, \{C_3\})\}$$

$$= \min\{0.784, [d(\{p_1\}, \{p_3\}) + d(\{p_1\}, \{p_4\}) + d(\{p_1\}, \{p_5\}) + d(\{p_1\}, \{p_6\})] / (1 \times 4),$$

$$[d(\{p_2\}, \{p_3\}) + d(\{p_2\}, \{p_4\}) + d(\{p_2\}, \{p_5\}) + d(\{p_2\}, \{p_6\})] / (1 \times 4)\}$$

$$= \min\{0.784, (0.858 + 0.504 + 0.728 + 0.842) / 4,$$

$$(1.175 + 0.818 + 0.787 + 1.054) / 4\}$$

$$= \min\{0.784, \mathbf{0.733},$$

$$0.959\} = \mathbf{0.733} = d(\{p_1\}, \{C_3\})$$

- The two closest clusters are $\{p_1\}$ and $\{C_3\}$. Merge $\{p_1\}$ and $\{C_3\}$ to obtain $C_4 = \{p_1, C_3\} = \{p_1, p_3, p_6, p_4, p_5\}$.
- The updated distance matrix M after merging the two closest clusters $\{p_1\}$ and $\{C_3\}$ (i.e., $C_4 = \{p_1, C_3\} = \{p_1, p_3, p_6, p_4, p_5\}$) is

	C_4	p_2
C_4	0.000	0.924
p_2	0.924	0.000

$$|\{p_2\}| = 1, |C_4| = |\{p_1, p_3, p_6, p_4, p_5\}| = 5$$

[6 marks]

Iteration 5. $n(n-1)/2 = (2 \times 1)/2 = 1$ distance

- Find two closest clusters
- $\min\{d(\{p_2\}, \{C_4\}) = \min\{[d(\{p_2\}, \{p_1\}) + d(\{p_2\}, \{p_3\}) + d(\{p_2\}, \{p_4\}) + d(\{p_2\}, \{p_5\}) + d(\{p_2\}, \{p_6\})] / (1 \times 5)\}$
- $= \min\{(0.784 + 1.175 + 0.818 + 0.787 + 1.054) / 5\} = \min\{4.618 / 5\} = \min\{0.924\} = 0.924.$
- The two closest clusters are $\{p_2\}$ and $\{C_4\}$. Merge $\{p_2\}$ and $\{C_4\}$ to obtain $C_5 = \{p_2, C_4\} = \{p_2, p_1, p_3, p_6, p_4, p_5\}$.
- The updated distance matrix M after merging the two closest clusters $\{p_2\}$ and $\{C_4\}$ (i.e., $C_5 = \{p_2, C_4\} = \{p_2, p_1, p_3, p_6, p_4, p_5\}$) is

	C_5
C_5	0.000

$$|C_5| = |\{p_2, p_1, p_3, p_6, p_4, p_5\}| = 6$$

We have 1 cluster, namely $C_5 = \{p_2, p_1, p_3, p_6, p_4, p_5\}$. Stop.

End of Assignment 2 Solution