Final Study Guide	Your Name:	Class: 9am / 1pm
Calculus III - Ma	ath 2630 - Spring 2013	Instructor: Steven Clontz
Draw a box around	d your answer. Show your	work. Calculators not allowed.

The first 12 questions are based upon the previous four tests, covering Chapters 10-13, based upon three questions from each test. Use these questions (and similar ones from the textbook) as your study guide:

- Ch 10 Test/Study Guide: #5, #6, #10
- Ch 11 Test/Study Guide: #3, #6, #8
- \bullet Ch 12 Test/Study Guide: #3, #5, #8
- Ch 13 Test/Study Guide: #2, #5, #9

The last 4 questions are based upon the Chapter 14 material, and will be based upon some subset of the questions on the following pages.

1. Evaluate

$$\int\limits_C xy^3\,ds$$

where C is the arc on the circle $x^2 + y^2 = 4$ oriented clockwise from (0,2) to $(\sqrt{3},1)$.

2.	Compute the work done by the force
	$ec{F} = \langle y, z, x \rangle$
	over the line segment from $(1,1,2)$ to $(3,-2,1)$.

3.	Compute	the	flow	of	the	vector	field	d
----	---------	-----	-----------------------	----	-----	--------	-------	---

$$\vec{F} = \left\langle 2xy, x^2 - z^2, -2yz \right\rangle$$

through the curve $\vec{r}(t) = \langle t2^t, 3t^3, \cos(\pi t) \rangle$ where $0 \le t \le 1$. (Hint: Use a potential function.)

4. Show that

$$\int_{C} (ye^{xy} - 4yz) \, dx + (xe^{xy} - 4xz) \, dy + (-4xy) \, dz = 0$$

where C is the pentagon in the xz plane with vertices (1,0,0), (2,0,1), (2,0,3), (0,0,2), and (0,0,0) oriented clockwise with respect to the y-axis.

5.	Express	the	outward	flux	of
----	---------	-----	---------	------	----

$$\vec{F} = \left\langle x + y, x^2 + y^2 \right\rangle$$

across the triangle with vertices (0,0), (1,0), and (1,1) as a double iterated integral. **Do not evaluate the integral.**

6. Use spherical coordinates to give a parametrization corresponding to the portion of the surface						
$z^2 = x^2 + y^2$						
between the planes $z = 1$ and $z = 2$.						

7.	Use the cylindrical	coordinate-based parametrization
		$\vec{r}(\theta, z) = \langle 2\cos\theta, 2\sin\theta, z \rangle$

to express the area of the surface $x^2 + y^2 = 4$ between the planes x = 0 and x = 2 as a double iterated integral. **Do not evaluate the integral.**

	8.	Use the	spherical	coordinate-based	parametrization
--	----	---------	-----------	------------------	-----------------

$$\vec{r}(\phi, \theta) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$$

to express the surface integral $\iint_S 3z^2 d\sigma$ as a double iterated integral of ϕ, θ , where S is the upper half of the unit sphere $z = \sqrt{1 - x^2 - y^2}$. Do not evaluate the integral.

Include extra scratch work below:

Include extra scratch work below: