Attorney Docket No. 1082.1061

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Kazunori INOUE, et al.

Application No.:

Group Art Unit:

Filed: July 28, 2003

Examiner:

For:

GAS DISCHARGE PANEL SUBSTRATE ASSEMBLY, PRODUCTION METHOD

THEREFOR AND AC TYPE GAS DISCHARGE PANEL

SUBMISSION OF CERTIFIED COPY OF PRIOR FOREIGN **APPLICATION IN ACCORDANCE** WITH THE REQUIREMENTS OF 37 C.F.R. § 1.55

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 37 C.F.R. § 1.55, the applicant(s) submit(s) herewith a certified copy of the following foreign application:

Japanese Patent Application No(s). 2002-228725

Filed: August 6, 2002

It is respectfully requested that the applicant(s) be given the benefit of the foreign filing date(s) as evidenced by the certified papers attached hereto, in accordance with the requirements of 35 U.S.C. § 119.

Respectfully submitted,

STAAS & HALSEY LLP

Date: July 28, 2003

By:

Paul I. Kravetz

Registration No. 35,230

1201 New York Ave, N.W., Suite 700 Washington, D.C. 20005

Telephone: (202) 434-1500 Facsimile: (202) 434-1501

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 8月 6日

出 願 番 号

Application Number:

特願2002-228725

[ST.10/C]:

[JP2002-228725]

出 願 人
Applicant(s):

富士通株式会社

富士通日立プラズマディスプレイ株式会社

2003年 3月25日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

0295262

【提出日】

平成14年 8月 6日

【あて先】

特許庁長官殿

【国際特許分類】

H01J 17/49

【発明の名称】

ガス放電パネル用基板構体、その製造方法及びAC型ガ

ス放電パネル

【請求項の数】

11

【発明者】

【住所又は居所】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

井上 和則

【発明者】

【住所又は居所】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

笠原 滋雄

【発明者】

【住所又は居所】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

崎田 康一

【発明者】

【住所又は居所】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

豊田 治

【発明者】

【住所又は居所】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

長谷川 実

特2002-228725

【発明者】

【住所又は居所】 神奈川県川崎市高津区坂戸3丁目2番1号 富士通日立

プラズマディスプレイ株式会社内

【氏名】

原田 秀樹

【発明者】

神奈川県川崎市中原区上小田中4丁目1番1号 富士通 【住所又は居所】

株式会社内

【氏名】

別井 圭一

【特許出願人】

【識別番号】 000005223

【氏名又は名称】 富士通株式会社

【特許出願人】

【識別番号】 599132708

【氏名又は名称】 富士通日立プラズマディスプレイ株式会社

【代理人】

【識別番号】

100065248

【弁理士】

【氏名又は名称】 野河 信太郎

【電話番号】

06-6365-0718

【手数料の表示】

【予納台帳番号】 014203

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9705357

【包括委任状番号】 9912514

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ガス放電パネル用基板構体、その製造方法及びAC型ガス放電パネル

【特許請求の範囲】

【請求項1】 基板上に電極と、電極を被覆する誘電体層と、誘電体層を被覆し放電空間に接する保護層とを備え、保護層が、MgOと、Al化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物とを含むことを特徴とするガス放電パネル用基板構体

【請求項2】 保護層が、200nm以下の波長の光を透過しない層からなる請求項1に記載のガス放電パネル用基板構体。

【請求項3】 基板上に電極と、電極を被覆する誘電体層と、誘電体層を被覆する中間層と、中間層を被覆し放電空間に接する保護層とを備え、保護層が、MgOを含み、中間層が、A1化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物とを含むことを特徴とするガス放電パネル用基板構体。

【請求項4】 A1化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物が、6.2 e V以下のバンドギャップを有する化合物である請求項1又は3に記載のガス放電パネル用基板構体。

【請求項5】 中間層が、200nm以下の波長の光を透過しない層からなる請求項3に記載のガス放電パネル用基板構体。

【請求項6】 誘電体層が、低融点ガラス又はCVD-SiO₂を含む請求項1又は3に記載のガス放電パネル用基板構体。

【請求項7】 請求項1又は3に記載された誘電体層を、CVD法、プラズマCVD法で形成するか、又はシート状のフリットガラスを基板上に貼付し焼成する方法で形成することを特徴とするガス放電パネル用基板構体の製造方法。

【請求項8】 請求項3に記載された中間層を、真空蒸着法、CVD法、プラズマCVD法、ゾルゲル法又はバインダ法で形成することを特徴とするガス放

電パネル用基板構体の製造方法。

【請求項9】 請求項3に記載された中間層と誘電体層を、CVD法又はプラズマCVD法で連続的に形成することを特徴とするガス放電パネル用基板構体の製造方法。

【請求項10】 請求項3に記載された中間層と保護層を、真空蒸着法で連続的に形成することを特徴とするガス放電パネル用基板構体の製造方法。

【請求項11】 請求項1~6のいずれかに記載のガス放電パネル用基板構体を前面側のガス放電パネル用基板構体として用いたAC型ガス放電パネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ガス放電パネル用基板構体、その製造方法及びAC型ガス放電パネルに関する。

[0002]

【従来の技術】

ガス放電パネルとして、種々の様式のパネルが報告されているが、その内3電極面放電構造のAC型プラズマディスプレイパネル(PDP)が商品化されている。

図5に商品化されているPDPの概略構造斜視図を示す。PDPは前面ガラス基板1と背面ガラス基板2を貼り合わせた構造をしている。前面ガラス基板1には、透明電極31とバス電極32からなる表示電極3が配置され、表示電極3は誘電体層4で覆われている。誘電体層4の上にさらに2次電子放出係数の高いMgO層からなる保護層5が形成されている。背面ガラス基板2には、表示電極と直交するようにアドレス電極6が配置されている。アドレス電極6間には、発光領域を規定するために隔壁7が設けられ、アドレス電極6上の隔壁7で区分けされた領域には、赤、緑、青の蛍光体8が塗り分けられている。貼り合わせた前面ガラス基板1と背面ガラス基板2の内部には、Ne-Xeガスが封入されている

[0003]

図6に断面から見た放電セルの放電時の様子を示す。 XとYの2本1組からなる表示電極3間に電圧を印加し、放電空間に電界をかけるとXeが励起されガス放電9を生じ、そこから真空紫外線10が放出される。真空紫外線10は蛍光体8に当たり可視光11を出す。セル内部の電界で真空紫外線10を制御することによりディスプレイとして動作する。このとき真空紫外線10は蛍光体8だけでなく前面ガラス基板1にも照射される。前面ガラス基板1上には放電面から順に保護層(MgO層)5と誘電体層4が形成されているが、MgOは真空紫外線10の一部波長(165nm以上)を透過するため真空紫外線10の一部は誘電体層4まで到達している。図6中、参照番号2と6は図5と同義である。

[0004]

PDPの誘電体層の形成方法としては、一般的にフリットガラスを分散させて 形成する方法が知られている。分散前のフリットガラスは、一般に、エチルセル ロース樹脂を主体としたビヒクルにガラス成分を分散させてペースト化したもの である。このフリットガラスを印刷により基板に塗布し、焼成することで、樹脂 分はバーンアウトし、その結果、ガラス成分を主体とする誘電体層が形成される 。また、近年より大量生産に適した誘電体層の形成方法として、フリットガラス をアクリル樹脂等に分散させてシート化したものを貼り合わせ焼成して形成する 方法や、CVD法等の気相成膜による方法も提案されている。

[0005]

【発明が解決しようとする課題】

本発明の発明者等は、誘電体層の形成方法とPDPの色度との関係について検討した。その結果、誘電体層をシート化による方法やPECVD(Plasma Enhanced CVD)法のような気相成膜法により形成した場合には、色度異常が起こることがわかった。具体的には、誘電体層を、表1に示す形成条件でそれぞれ形成し、その後、MgO層からなる保護層を1.0μm蒸着し、通常工程でPDPを形成し、PDPの表示品質試験を行った。

[0006]

【表1】

フリットへ・ースト	シートフリット	PECVD-SiO ₂
カ゚ラス基板上に電極形成後	カ゚ラス基板上に電極形成	ガラス基板上に電極形成後、
、フリットカ・ラスにエチルセルロース系	後、フリットカ・ラスにアクリル系へ	平行平板型PECVD装置にお
パインタ゚を添加しペースト状	゚インタ゚を添加しシート状に	いて、SiH4:900sccm、
に加工したものを印刷し	加工したものを貼付し	N₂0:9000sccm、RF出力
、コンペ7型焼成炉で350℃	、コンペア型焼成炉で350	2.0k₩、400℃、3.0Torrの
120分後→600℃30分焼成	℃240分後→600℃60分	条件で、SiO₂を誘電体層と
により30μmの誘電体層	焼成により30μmの誘電	して5μm成膜した。
を形成した。	体層を形成した。	

[0007]

フリットペーストを用いた誘電体層形成条件でのPDPの白色色度座標はCIE表色系で(0.300,0.300)だが、シートフリットを用いた場合は(0.310,0.285)、PECVD-SiO₂においても(0.320,0.280)となり、どちらも赤っぽい白色となった。この色度の異常は、発明者等による検討の結果、緑の蛍光体が劣化し色度座標がずれたために起こっていることがわかった。

すなわち、表示試験中に起こした放電によりシートフリットにより形成又はPECVDで形成された誘電体層からガス放出が起こり、そのガスが蛍光体を劣化させると推測される。

[0008]

ガス源としては、シートフリットにより形成された誘電体層では、形成前のシート層に有機成分が多く含まれていることから、焼成時にバーンアウトしきれずに層中に残留する炭化水素結合を有する物質が考えられる。また、PECVD法では、成膜時に完全に分解されず一部未反応のまま層中に残留する SiH_4 ガス又は $Si(OC_2H_5)_4$ 等の珪素及び/又は炭素と水素との結合を有する物質が考えられる。そして、これら物質が放電により発生した紫外線によって分解され、炭化水素あるいは水素ガスを放出し、それらのガスがMgO層中を通り抜けて放電空間中に放出されて蛍光体を劣化させていると考えられる。また、これらの

ガスは、放電により活性化され還元性を有することから、保護層(MgO層)を も還元すると考えられる。還元された保護層は、着色するため、透過率が悪化す る。これらの結果によりパネル表示中に輝度が劣化してしまい、色度が変動して しまうと考えられる。

[0009]

【課題を解決するための手段】

本発明は係る点に注目し、蛍光体劣化現象の発生しないガス放電パネル用基板構体、ガス放電パネル及びその製造方法を提案するものである。

かくして本発明によれば、基板上に電極と、電極を被覆する誘電体層と、誘電体層を被覆し放電空間に接する保護層とを備え、保護層が、MgOと、A1化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物とを含むことを特徴とする第1のガス放電パネル用基板構体が提供される。

[0010]

更に、本発明によれば、基板上に電極と、電極を被覆する誘電体層と、誘電体層を被覆する中間層と、中間層を被覆し放電空間に接する保護層とを備え、保護層が、MgOを含み、中間層が、Al化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物とを含むことを特徴とする第2のガス放電パネル用基板構体が提供される。

また、本発明によれば、第1と第2のガス放電パネル用基板構体の誘電体層を、CVD法、プラズマCVD法で形成するか、又はシート状のフリットガラスを基板上に貼付し焼成する方法で形成することを特徴とするガス放電パネル用基板構体の製造方法が提供される。

[0011]

更に、本発明によれば、第2のガス放電パネル用基板構体の中間層を、真空蒸着法、CVD法、プラズマCVD法、ゾルゲル法又はバインダ法で形成することを特徴とするガス放電パネル用基板構体の製造方法が提供される。

また、本発明によれば、第2のガス放電パネル用基板構体の中間層と誘電体層を、CVD法又はプラズマCVD法で連続的に形成することを特徴とするガス放

電パネル用基板構体の製造方法が提供される。

[0012]

更に、本発明によれば、第2のガス放電パネル用基板構体の中間層と保護層を 、真空蒸着法で連続的に形成することを特徴とするガス放電パネル用基板構体の 製造方法が提供される。

また、本発明によれば、上記第1又は第2のガス放電パネル用基板構体を前面 側のガス放電パネル用基板構体として用いたAC型ガス放電パネルが提供される

[0013]

【発明の実施の形態】

本発明は、具体的には、保護層に紫外線遮蔽機能を持たせるか(第1のガス放電パネル用基板構体)、誘電体層と保護層の間に紫外線遮蔽機能を有する中間層を挿入すること(第2のガス放電パネル用基板構体)を特徴の一つとしている。 紫外線遮蔽機能とは、主に200nm以下の紫外光を遮蔽することができる機能を意味する。

まず、第1のガス放電パネル用基板構体において、誘電体層を被覆し、放電空間に接する保護層は、放電電界から誘電体層を保護するためのMgOと、紫外線 遮蔽機能を有するA1化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物とからなる。

[0014]

A1化合物としては、アルミナ、窒化アルミニウム等が挙げられ、Ti化合物としては、チタニア、窒化チタン等が挙げられ、Y化合物としては、酸化イットリウム、窒化イットリウム等が挙げられ、Zn化合物としては、酸化亜鉛、窒化亜鉛、硫化亜鉛等が挙げられ、Zr化合物としては、酸化ジルコニウム、窒化ジルコニウム等が挙げられ、Ta化合物としては、酸化タンタル等が挙げられる。

紫外線遮蔽機能を有する化合物は、 $A1_2O_3$ (アルミナ)、A1N、 TiO_2 (チタニア)、 Y_2O_3 (酸化イットリウム)、ZnO(酸化亜鉛)、 ZrO_2 (酸化ジルコニウム)、 Ta_2O_5 (酸化タンタル)、SiCから選択することがより好ましい。以下の表 2 にこれら化合物のバンドギャップを示す。

[0015]

【表2】

	バンドギャップ (e V)
MgO	8
$A l_2 O_3$	7.4
AlN	3.8
TiO ₂	3. 0
Y 2 O 3	2.43
ZnO	3. 2
ZnS	3. 7
ZrO_2	5.16
T a 2 O 5	4. 2
SiC	3

[0016]

上記化合物のうち、バンドギャップが 6.2 e V以下の化合物が、真空紫外線 (VUV) を遮蔽する効果を奏するためより好ましい。

MgOと、紫外線遮蔽機能を有する化合物との混合割合は、使用する化合物種によっても異なるが、95~85:5~15 (重量比)であることが好ましい。 紫外線遮蔽機能を有する化合物の割合が5より少ない場合、遮蔽効果が少なくなるので好ましくなく、15より多い場合、2次電子放出比が低下するので好ましくない。

保護層の厚さは、所定の機能を果たす限り特に限定されず、 $0.5\sim1.5\,\mu$ mの範囲であることが好ましい。

保護層の形成方法は、特に限定されず、当該分野で公知の方法をいずれも使用することができる。例えば、CVD法、スパッタ法、真空又は常圧の蒸着法等が挙げられ、これら方法の内、真空蒸着法が好ましい。

[0017]

CVD法は、保護層を構成する化合物の原料ガス(例えば、塩化物)を加熱することにより分解し、所望の化合物を基板上に堆積させる方法である。

スパッタ法は、保護層を構成する化合物を不活性ガスでスパッタすることで、 所望の化合物を基板上に堆積させる方法である。

蒸着法は、保護層を構成する化合物を電子ビーム等の加熱手段により加熱して 蒸発させ、所望の化合物を基板上に堆積させる方法である。

[0018]

一方、第2のガス放電パネル用基板構体において、誘電体層と保護層の間に位置する中間層は、紫外線遮蔽機能を有するA1化合物、Ti化合物、Y化合物、Zn化合物、Zr化合物、Ta化合物及びSiCから少なくとも1つ選択される化合物からなる。これら化合物の具体例は、上記第1のガス放電パネル用基板構体と同一の化合物が挙げられる。また、第1の放電パネル用基板構体と同様に、バンドギャップが6.2 e V以下の化合物が好ましい。

中間層の厚さは、所定の機能を果たす限り特に限定されず、 $0.1\sim1~\mu~m$ の範囲であることが好ましい。

中間層の形成方法としては、真空蒸着法、CVD法、プラズマCVD法、ゾルゲル法、バインダ法等が挙げられる。

[0019]

真空蒸着法は、中間層を構成する化合物を、10⁻³~10⁻⁸Torrの真空下で、電子ビーム等の加熱手段により加熱して蒸発させ、所望の化合物を基板上に 堆積させる方法である。

CVD法は、中間層を構成する化合物の原料ガス(例えば、塩化物)を加熱することにより分解し、所望の化合物を基板上に堆積させる方法である。

プラズマCVD法は、中間層を構成する化合物の原料ガス(例えば、塩化物)をプラズマにより分解し、所望の化合物を基板上に堆積させる方法である。

ゾルゲル法は、中間層を構成する化合物の脂肪酸塩又はアルコキシドを含む溶液を基板上に塗布し、塗膜を焼成することで中間層を形成する方法である。

バインダ法は、中間層を構成する化合物を含む溶液又は分散液を基板上に塗布 し、塗膜を焼成することで中間層を形成する方法である。

[0020]

なお、第2のガス放電パネル用基板構体において、中間層上に形成され、放電空間と接する保護層は、MgOが好適に使用され、その厚さは $0.5\sim1.5\mu$ mの範囲であることが好ましい。保護層の形成方法は、第1のガス放電パネル用基板構体と同様の方法を使用することができる。

また、保護層に紫外線遮蔽機能をもたせることで、中間層に紫外線遮蔽機能を もたせる構成と比べて、製造工程数を減らすことができ、その結果タクト向上及 びコストを低減することができる。

上記保護層及び中間層以外のガス放電パネル用基板構体の構成部材は、第1及 び第2のガス放電パネル用基板構体において同一の部材を使用することができる

[0021]

基板としては、特に限定されず、当該分野で公知の基板をいずれも使用することができる。具体的には、ガラス基板、プラスチック基板等の透明基板が挙げられる。

基板上に形成される電極としては、特に限定されず、当該分野で公知の電極をいずれも使用することができる。具体的には、ITO、NESA等からなる透明電極が挙げられる。また、透明電極上に、透明電極の抵抗を下げるためのCr、Cu又はそれらの積層体等からなる金属電極を設けてもよい。電極の構成としては、ガス放電パネルの種類によって異なるが、通常ストライプ状に基板上に設けられる。

[0022]

次に、電極を被覆する誘電体層としては、特に限定されず、当該分野で公知の電極をいずれも使用することができる。具体的には、低融点ガラス、SiO₂等からなる層が挙げられる。

前者の低融点ガラスは、フリットペースト又はシートフリットを用いて形成することができる。フリットペーストは、例えば、低融点ガラス(フリットガラス)にエチルセルロース系バインダと任意に溶媒とを添加することで得ることができる。このフリットペーストは、所定の位置に印刷法等により塗布され、焼成す

ることにより誘電体層となる。シートフリットは、例えば、フリットガラスにアクリル系バインダを添加しシート状にすることで得ることができる。このシートフリットは、基板上に貼付した後、焼成することにより誘電体層となる。低融点ガラスからなる誘電体層は、通常15~35μmの厚さを有している。

[0023]

後者の SiO_2 は、CVD法、PECVD法等により形成することができる。 具体的には、PECVD法の場合、平行平板型プラズマCVD装置を用いて、 Si_2H_6 等のシラン系ガス又はテトラオルソエチルシリケート(TEOS)等のケイ素含有化合物を、RF出力 $1\sim2~kW$ 、温度 $3~0~0\sim4~0~0$ °C、圧力 $1\sim3~T~o~r~r$ の条件下でのプラズマにより分解することで形成することができる。また、常圧CVD法で形成してもよい。 SiO_2 からなる誘電体層は、通常 $5\sim1~5~\mu$ mの厚さを有している。

上記誘電体層の形成方法の内、下記理由及び製造の容易性から、シートフリットを用いて形成する方法及びCVD法、PECVD法等の気相法により形成する方法が好ましい。

[0024]

上記誘電体層のうち、シートフリットにより形成された誘電体層では、形成前のシート層に有機成分が多く含まれていることから、焼成時にバーンアウトしきれずに層中に残留する炭化水素結合を有する物質が存在すると考えられる。また、気相法では、成膜時に完全に分解されず一部未反応のまま層中に残留するSiH4ガス又はSi(〇С2H5)4等の珪素及び/又は炭素と水素との結合を有する物質が存在すると考えられる。そして、これら物質が放電により発生した紫外線によって分解され、炭化水素あるいは水素ガスを放出し、それらのガスがMgO層中を通り抜けて放電空間中に放出されて蛍光体を劣化させていると考えられる。また、これらのガスは、放電により活性化され還元性を有することから、保護層(MgO層)をも還元すると考えられる。還元された保護層は、着色するため、透過率が悪化する。これらの結果によりパネル表示中に輝度が劣化してしまい、色度が変動してしまうと考えられる。本発明において、第1のガス放電パネル用基板構体の保護層及び第2ガス放電パネル用基板構体の中間層は、紫外線遮蔽

機能を有している。そのため、放電空間から生じる紫外線が誘電体層に達することを防ぐことができるので、炭化水素あるいは水素ガスの発生を防ぐことができる。

[0025]

なお、フリットペーストを用いた場合でも、フリットシートほどではないが、 誘電体層に炭化水素結合を有する物質が存在すると考えられることから、本発明 の構成は有用である。

上記保護層、中間層及び誘電体層の形成において、中間層と誘電体層とを、C VD法又はプラズマCVD法で連続的に形成してもよく、中間層と保護層を、真 空蒸着法で連続的に形成してもよい。連続に形成することで、製造時間の短縮と 各層への不純物の混入を防ぐことができる。

以下、本発明の第1のガス放電パネル用基板構体の製造方法の一例を図1 (a) ~ (d) を用いて説明する。図1 (a) ~ (d) は、基板側の表示電極(透明電極、バス電極)形成から保護層形成までの工程を示す概略断面図である。

[0026]

まず、ガラス基板上に透明電極31が形成され(図1(a))、続けてバス電極(例えば、Cr/Cu/Crの3層構造)32が形成され(図1(b))、これによって表示電極(維持電極ともいう)3が形成される。透明電極及びバス電極は公知の方法により形成することができる。

次に、上記表示電極3を被覆する誘電体層4が形成される(図1 (c))。形成方法はフリットガラスを含むフリットペースト又はシートフリットを使用する方法とCVD法等の気相成膜法とがある。

そして最後に紫外線遮蔽機能を有する保護層12を形成する(図1 (d))。 保護層12の形成方法としては、CVD法、真空又は常圧の蒸着法、スパッタ法 等の気相成膜法を用いることができる。

[0027]

次に、本発明の第2のガス放電パネル用基板構体の製造方法の一例を図2(a)~(e)を用いて説明する。図2(a)~(e)は、基板側の表示電極(透明電極、バス電極)形成から保護層形成までの工程を示す概略断面図である。

まず、ガラス基板上に透明電極31が形成され(図2(a))、続けてバス電極32が形成され(図2(b))、これによって表示電極(維持電極ともいう)3が形成される。透明電極及びバス電極は公知の方法により形成することができる。

[0028]

次に、上記表示電極3を被覆する誘電体層4が形成される(図2(c))。形成方法はフリットガラスを含むフリットペースト又はシートフリットを使用する方法とCVD法等の気相成膜法とがある。

次いで、紫外線遮蔽機能を有する中間層13を形成する(図2(d))。形成 方法としては、真空蒸着法、CVD法、ゾルゲル法、あるいは、バインダ法を用 いることができる。

そして最後に保護層5を形成する(図2(e))。保護層5の形成方法としては、蒸着、スパッタ法等の気相成膜法を用いる手法が一般的である。

以下、本発明のガス放電パネル用基板構体を前面側に用いた場合のガス放電パネル (PDP) の構成を図3及び4を用いて説明する。

[0029]

図3及び4のPDPは、3電極AC型面放電PDPである。このPDPは、サブピクセル(放電セル)がストライプ状の隔壁によって形成された場合を例示している。図3のPDPは第1のガス放電パネル用基板構体を、図4のPDPは第2のガス放電パネル用基板構体を使用したPDPである。

図3のPDPは、前面基板と背面基板とから構成される。

まず、前面基板には、上記図1の工程により得られた第1のガス放電パネル用 基板構体をそのまま使用される。

[0030]

次に、背面基板は、一般的に、背面ガラス基板2上に形成された複数本のストライプ状のアドレス電極6、隣接するアドレス電極6間で背面ガラス基板2上に形成された複数本のストライプ状の隔壁7、隔壁7間に壁面を含めて形成された蛍光体8とからなる。図3では、蛍光体8は赤(R)、緑(G)、青(B)の蛍光体からなる。

また、背面ガラス基板2上に、アドレス電極6を被覆するように誘電体層を形成し、誘電体層上に隔壁7を形成してもよい。この誘電体層は、前面基板側の誘電体層と同様にして形成することができる。

図4のPDPは、図3のPDPのように紫外線遮蔽機能を保護層に付与させるのではなく、保護層と誘電体層との間に紫外線遮蔽機能を有する中間層を形成することを特徴の1つとしている。この構成以外は、図3のPDPと同じである。

[0031]

【実施例】

以下、実施例及び比較例により本発明を更に具体的に説明するが、成膜条件、 層厚、材料等はこれらに限定されない。

実施例 1 (誘電体層: PEC VD - SiO $_2$ + 紫外線遮蔽機能を有する保護層: 電子ビーム蒸着 - M g O と、 Z r O $_2$ 、 アルミナ、チタニア、 Y $_2$ O $_3$ 、 Z n S 、 T a $_2$ O $_5$ 又は Si C の同時蒸着)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2O : 9000sccm、RF出力2.0 kW、400 $\mathbb C$ 、3.0Torro条件で、 SiO_2 からなる誘電体層を5μm成膜した。次に、 ZrO_2 及びMgOを電子ビーム蒸着で同時に蒸着することで、厚さ1.0μmの保護層を得た。その後、通常工程で下記に示すスペックのPDPを形成し、PDPの表示品質試験を行った。

[0032]

(PDPのスペック)

画面サイズ:42インチ

ピクセル (画素) 数:852×480 (VGA)

サブピクセル数:2556×480

サブピクセルサイズ: 1080μ m× 390μ m

前面基板の材質:ソーダライムガラス

前面基板の厚さ:3 mm

透明電極の幅:275 μm

バス電極の幅:100μm

特2002-228725

面放電ギャップ:100 μ m

透明電極間の遮光層の幅:350 μ m

隔壁の幅:70μm

隔壁の高さ:140 μm

隔壁ピッチ:360 μ m

蛍光体の種類:PDP標準RGB蛍光体、赤(Y, Gd) BO3:Eu,

緑Zn₂SiO₄:Mn、青BaMgAl₁₀O₁₇:Eu

駆動条件:180Vで、25kHz

[0033]

(表示品質試験)

負荷率10%の白色表示をトプコン社製輝度計BM7にて測定した。

試験の結果、CIE表色系での色度座標は、(0.300,0.301)となり色度異常は抑制された。

また、 ZrO_2 をアルミナ、チタニア、 Y_2O_3 、ZnS、 Ta_2O_5 、SiCにかえること以外は上記と同様にしてPDPを形成した。得られたPDPの色度は、それぞれ(0.301,0.298)、(0.301,0.298)、(0.303,0.298)、(0.302,0.298)、(0.300,0.300)、(0.302,0.298)となり劣化が抑制された。

[0034]

実施例 2 (誘電体層: PECVD-SiO₂+中間層:電子ビーム蒸着-ZrO₂、アルミナ、チタニア、Y₂O₃、ZnS、Ta₂O₅、SiC)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2.0kW、400℃、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、 ZrO_2 層からなる中間層を電子ビーム蒸着で 0.3μ mの厚さに成膜した。そして引き続きMgO層からなる保護層を 1.0μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.302)となり色度異常は抑制された。

また、中間層をアルミナ、チタニア、 Y_2O_3 、ZnS、 Ta_2O_5 、SiCにかえること以外は上記と同様にしてPDPを形成した。得られたPDPの色度は、それぞれ(0.302,0.299)、(0.302,0.299)、(0.300,0.300)、(0.301,0.299)、(0.300,0.300)、(0.301,0.299)となり劣化が抑制された。

[0035]

実施例 3 (誘電体層: $PECVD-SiO_2$ +中間層:チタニアバインダ法ー TiO_2)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2O : 9000sccm、RF出力2. 0kW、400 \mathbb{C} 、3.0Torro条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、平均粒径 0.5μ mのチタニア粉体を、エチルセルロース5wt%とテルピネオール95wt%とからなるバインダに分散させ、印刷法により塗膜を形成後、400 \mathbb{C} 大気中で30分間、塗膜を焼成することにより TiO_2 層からなる 3.0μ mの中間層を形成した。そして引き続きMgO層からなる保護層を 1.0μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.29)

[0036]

実施例4 (誘電体層: PECVD-SiO $_2$ +中間層:チタニアゾルゲル法ー TiO $_2$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2.0 kW、400 $\mathbb C$ 、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、 $Ti(OC_2H_5)_4$ と0.5%希塩酸とをモル比で1:8に混合し30分間反応させた後エタノールで10倍に希釈したものをスピンコート法により塗膜として形成後、400 $\mathbb C$ 大気中で30分間、塗膜を焼成することにより TiO_2 層からなる3.0 μ mの中間層を形成した。そして引き続きMg O層からなる保護層を1.0 μ m蒸着した。その後、実施例1と同様にしてPD

Pを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.300,0.299)となり色度異常は抑制された。

[0037]

実施例 5 (誘電体層:PECVD-SiO $_2$ +中間層:チタニアチタン酸イソプロピルの大気圧CVD-TiO $_2$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2.0kW、400℃、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、常圧CVD装置において $Ti[COH(CH_3)_2]_4$: 100sccmと O_2 : 500sccm、基板温度400℃の条件で、 TiO_2 層からなる1.0 μ mの中間層を形成した。そして引き続きMgO層からなる保護層を1.0 μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.298)となり色度異常は抑制された。

[0038]

実施例 6 (誘電体層: $PECVD-SiO_2$ +中間層:チタニア四塩化チタンの大気圧 $CVD-TiO_2$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2.0kW、400 $\mathbb C$ 、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、常圧CVD装置において $TiCl_4$: 100sccmと O_2 : 500sccm、基板温度400 $\mathbb C$ の条件で、 TiO_2 層からなる0.3 μ m の中間層を形成した。そして引き続きMgO層からなる保護層を1.0 μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.298)となり色度異常は抑制された。

[0039]

実施例 7 (誘電体層: PECVD-SiO $_2$ +中間層: 四塩化ジルコニアの大気圧CVD-ZrO $_2$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2.0kW、400 $^{\circ}$ C、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜した。次いで、常圧CVD装置において $ZrCl_4$: 100sccmと O_2 : 500sccm、基板温度480 $^{\circ}$ Cの条件で、 ZrO_2 層からなる0.3 μ mの中間層を形成した。そして引き続きMgO層からなる保護層を1.0 μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.299)となり色度異常は抑制された。

[0040]

実施例 8 (誘電体層: PECVD-SiO₂+中間層: アルミナのプラズマC VD-Al₂O₃)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2O : 9000sccm、RF出力2.0kW、400℃、3.0Torrの条件で、 SiO_2 を誘電体層として 5μ m成膜し、連続して $2A1C1_3$: 100sccm、 CO_2 : 1000sccm、 H_2 : 500sccm、RF出力2.0kW、400℃、3.0Torrの条件で $A1_2O_3$ 層からなる0.3 μ mの中間層を形成した。そして引き続きMgO層からなる保護層を1.0 μ m蒸着した。その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301,0.300)となり色度異常は抑制された。

[0041]

実施例 9 (誘電体層:シートフリット-低融点ガラス+中間層:電子ビーム蒸着 $- \operatorname{Zr} \operatorname{O}_2$)

前面側の基板上に透明電極及びバス電極形成後、 $PbO-B_2O_5-SiO_2$ からなるフリットガラスにアクリル系バインダを添加しシート状に加工したものを貼付し、コンベア型焼成炉で350C240分 $\rightarrow600C60$ 分焼成することで 30μ mの誘電体層を形成した。次いで、 ZrO_2 層からなる中間層を電子ビーム蒸着で 0.3μ mの厚さに形成した。そして引き続きMgO層からなる保護層

を $1.0 \mu m$ 蒸着した。その後、実施例 1 と同様にして PDP を形成し、その表示品質試験を行った。試験の結果、色度座標は、(0.301, 0.299)となり色度異常は抑制された。

[0042]

実施例 10 (誘電体層: PECVD-SiO $_2$ +中間層:電子ビーム蒸着-ZrO $_2$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、TEOS:800sccm、 O_2 :2000sccm、RF出力1.5kW、350 $^{\circ}$ C、1.0Torrの条件で、SiO2を誘電体層として5 $^{\mu}$ m成膜した。なお、上記と同じ条件でシリコン基板及びソーダライム基板上に形成した誘電体層は、それぞれ $^{\circ}$ 0.7E9dyn/cm $^{\circ}$ 2及び $^{\circ}$ 1.9dyn/cm $^{\circ}$ 2の応力を有していた。次いで、 $^{\circ}$ 2rO2層からなる中間層を電子ビーム蒸着で0.3 $^{\mu}$ mの厚さに形成した。そして、引き続きMgO層からなる保護層を1.0 $^{\mu}$ m蒸着した。

その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。 試験の結果、色度座標は、(0.301,0.299)となり色度異常は抑制された。

[0043]

実施例11 (誘電体層: CVD-SiO₂+中間層:電子ビーム蒸着-ZrO₂)

前面側の基板上に透明電極及びバス電極形成後、常圧CVD装置において、S i H_4 : $1000 \, \mathrm{sccm}$ 、 $N_2 \, \mathrm{O}$: $10000 \, \mathrm{sccm}$ 、 $450 \, \mathrm{C}$ の条件で、S i O_2 を誘電体層として $5 \, \mu$ m成膜した。なお、上記と同じ条件でシリコン基板及びソーダライム基板上に形成した誘電体層は、それぞれ $+4 \, \mathrm{E} \, \mathrm{9dyn} / \mathrm{cm}^2$ 及び +2: $3 \, \mathrm{dyn} / \mathrm{cm}^2$ の応力を有していた。次いで、次いで、 $Z \, \mathrm{rO}_2$ 層からなる中間層を電子ビーム蒸着で 0: $3 \, \mu$ mの厚さに形成した。そして、引き続き $M \, \mathrm{gO}$ 層からなる保護層を 1: $0 \, \mu$ m蒸着した。

その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。 試験の結果、色度座標は、(0.301,0.299)となり色度異常は抑制さ れた。

[0044]

実施例 1 2 (誘電体層: $CVD-SiO_2$ +中間層: 酸化タンタルのプラズマ $CVD-Ta_2O_5$)

前面側の基板上に透明電極及びバス電極形成後、平行平板型プラズマCVD装置において、 SiH_4 : 900sccm、 N_2 O: 9000sccm、RF出力2. 0kW、400C、3. 0Torro条件で、 SiO_2 を誘電体層として 5μ m成膜した。連続して、 $Ta(C_2H_5OH)_5$: 200sccm(気化して直接供給)、 O_2 : 1000sccm、RF出力2. 0kW、400C、4. 0Torro条件で、 Ta_2O_5 膜からなる0. 2μ mの中間層を形成した。その後、引き続きMgO層からなる保護層を1. 0μ m蒸着した。

[0045]

その後、実施例1と同様にしてPDPを形成し、その表示品質試験を行った。 試験の結果、色度座標は、(0.300,0.300)となり色度異常は抑制された。

なお、本発明は上記した実施例に限らず、種々の変形が可能である。例えば、 隔壁、蛍光体層を設けた基板を前面側に配置し、かつ誘電体層、保護層等を設け た基板を背面側に配置した構造にすることも可能である。また、アドレス電極を 誘電体層で覆いその誘電体層上に隔壁と蛍光体層を設けることも可能であり、そ の場合には誘電体層表面を紫外線遮蔽機能膜で覆うのが望ましい。更に2電極A C型対向放電PDPにも適用可能である。

[0046]

【発明の効果】

本発明によれば、保護層自体に紫外線遮蔽機能をもたせるか、あるいは、保護層と誘電体層の間に紫外線遮蔽機能を有する中間層を導入することにより、放電中に発生する真空紫外光の誘電体層への到達を防ぎ、誘電体層内の炭素水素結合等の切断を防止することができる。そのため、切断により生じる水素による蛍光体及び保護層の還元を防ぐことができるので、蛍光体劣化のないガス放電パネルが得られる。

【図面の簡単な説明】

【図1】

本発明のガス放電パネル用基板構体の概略工程断面図である。

【図2】

本発明のガス放電パネル用基板構体の概略工程断面図である。

【図3】

本発明のガス放電パネルの概略断面図である。

【図4】

本発明のガス放電パネルの概略断面図である。

【図5】

従来のPDPの概略斜視図である。

【図6】

ガス放電パネルの放電時の様子を示す概略図である。

【符号の説明】

- 1 前面ガラス基板
- 2 背面ガラス基板
- 3 表示電極
- 31 透明電極
- 32 バス電極
- 4 誘電体層
- 5 保護層
- 6 アドレス電極
- 7 隔壁
- 8 蛍光体
- 9 ガス放電
- 10 真空紫外線
- 11 可視光
- 12 紫外線遮蔽機能を有する保護層
- 13 中間層

XとY 2本1組からなる表示電極

【書類名】

図面

【図1】

本発明のガス放電パネル用基板構体の 概略工程断面図

【図2】

本発明のガス放電パネル用基板構体の 概略工程断面図

【図3】

【図4】

【図5】

従来のPDPの概略斜視図

【図6】

【書類名】 要約書

【要約】

【課題】 誘電体層の紫外線が照射されることにより生じるガスにより、蛍光体や保護層が劣化することを防止することを課題とする。

【解決手段】 基板上に電極と、電極を被覆する誘電体層と、誘電体層を被覆し 放電空間に接する保護層とを備えたガス放電パネル用基板構体において、保護層 又は保護層と誘電体層の間に設けた中間層に紫外線遮蔽機能をもたせることによ り、上記課題を解決する。

【選択図】 図1

特2002-228725

出 願 人 履 歴 情 報

識別番号

[000005223]

1. 変更年月日

1996年 3月26日

[変更理由]

住所変更

住 所

神奈川県川崎市中原区上小田中4丁目1番1号

氏 名

富士通株式会社

出願人履歴情報

識別番号

[599132708]

1. 変更年月日

1999年 9月17日

[変更理由]

新規登録

住所

神奈川県川崎市高津区坂戸3丁目2番1号

氏 名

富士通日立プラズマディスプレイ株式会社