Setup Data

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data")
abalone = pd.read_csv(url, header=None)
abalone.columns = ["Sex","Length","Diameter","Height","Whole weight","Shucked weight","Viscera weight","Shell weight","Rings",]
abalone.head(3)
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.15	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.07	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.21	9

abalone = abalone.drop('Sex', axis=1)
abalone.head(3)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.15	15
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.07	7
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.21	9

Analisis Exploratorio

```
abalone.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4177 entries, 0 to 4176
     Data columns (total 8 columns):
     # Column
                      Non-Null Count Dtype
     0 Length 4177 non-null float64
1 Diameter 4177 non-null float64
2 Height 4177 non-null float64
3 Whole weight 4177 non-null float64
         Shucked weight 4177 non-null float64
     5 Viscera weight 4177 non-null
                                            float64
      6 Shell weight 4177 non-null float64
      7 Rings
                          4177 non-null int64
     dtypes: float64(7), int64(1)
     memory usage: 261.2 KB
fig, axes = plt.subplots(nrows=8, ncols=1, figsize=(5,10))
data = abalone.select_dtypes(include=['float64', 'int']).columns
for i, colum in enumerate(data):
   sns.histplot(
       data = abalone,
               = colum,
        stat = "count",
              = True,
        color = (list(plt.rcParams['axes.prop_cycle'])*2)[i]["color"],
        line_kws= {'linewidth': 2},
        alpha = 0.3,
               = axes[i]
    axes[i].set_title(colum, fontsize = 10, fontweight = "bold")
    axes[i].tick_params(labelsize = 8)
    axes[i].set_xlabel("")
```

Distribución variables numéricas

abalone.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Sh wei
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005

Al observar la distribucion de las variables, se logra identificar una tendencia a ser una distribucion normal en las variables de Length, Diameter, Height y Rings. Mientras que los pesos ("Weight's") distrubuyen normal positivamente.

Sin embargo, nuestra variable de interes "Rings", tiene una distribucion normal estandar mas marcada, para esto la observaremos mas detalladamente.

Distribucion Variable Interes "Rings"

```
sns.histplot(data=abalone['Rings'])
plt.tight_layout()
plt.show()
```


Comparando los datos obtenidos con el metodo Describe(), se observa claramente que la media esta aproximadamente en 10 rings, y que tambien existe una asimetria positiva en los valores de rings mas elevados.

Correlacion de las variables

```
correlation['Rings']

Length 0.556720
Diameter 0.574660
Height 0.557467
```

correlation = abalone.corr()

 Whole weight
 0.540390

 Shucked weight
 0.420884

 Viscera weight
 0.503819

 Shell weight
 0.627574

 Rings
 1.000000

Name: Rings, dtype: float64

En cuanto a la correlacion de las variables con respuesto a la Variable Respuesta "Rings", se observa una correlacion moderada en la mayoria de las variables que sobrepasan un valor de 0.5. Exceptuando la variable Shucked Weight, que podria ser una candidata a ser descartada, debido a que es la variable con mas baja correlacion respecto a las demas.

Definiendo Distancias

Para observar algunos datos vecinos con algun punto de interes, se definio los valores promedios de todas las variables para observar que datos estan cercanos al promedio.

Determinando vecinos cercanos

```
k = 3
vecinosCercanos = distances.argsort()[:k]
display(vecinosCercanos)
    array([2892, 3833, 1599], dtype=int64)
```

Por ultimo, los datos vecinos que son cercanos a el punto definido anteriormente fueron los siguientes datos:

```
display(abalone.iloc[2892])
display(abalone.iloc[3833])
display(abalone.iloc[1599])
    Length
                      0.5300
    Diameter
                      0.4050
    Height
                     0.1500
    Whole weight 0.8315
Shucked weight 0.3520
    Viscera weight 0.1870
    Shell weight
                      0.2525
                    10.0000
    Rings
    Name: 2892, dtype: float64
    Length
                      0.5350
    Diameter
                     0.4100
                    0.1500
0.8105
    Height
    Whole weight
    Shucked weight 0.3450
    Viscera weight 0.1870
    Viscera weight 0.2400
Shell weight 11.0000
    Name: 3833, dtype: float64
    Length
                      0.5300
    Diameter
                      0.4200
    Height
                      0.1300
    Whole weight
                      0.8365
    Shucked weight 0.3745
    Viscera weight
                      0.1670
    Shell weight
                      0.2490
    Rings
                     11.0000
    Name: 1599, dtype: float64
```