Overview of Clock and Timing Systems TI Precision Labs – Clocks and Timing

Presented and Prepared by Liam Keese

Clock and timing product functions

Introduction to Clocks

What are clocks?

Clocks provide the "pulse" in electronics.

Why do I need a clock?

- Clocks allow data transmission in a synchronized manner
- Clocks also multiply/divide a source to fan out a specific frequency or frequencies

Crystal Oscillators

- Frequency, PPM accuracy
- Jitter / phase noise
- XO, TCXO, OCXO, VCXO, VCTCXO

Single Ended Or Differential

Real time clocks (RTC) and timers

- RTC in almost any electronic device or system which needs to track time accurately
 - Very low power, low frequency oscillator
 - Frees up system for time critical processing
- Timers wake up the system controller after a predetermined sleep period
 - Internal oscillator and counter
 - Greatly reduces overall system sleep current to < 100 nA

Replacing Crystals and Oscillators

If your system has....

... there are certainly multiple crystals or low frequency oscillators used

...that can be replaced by a clock IC at lower BOM & better reliability

Clock Buffers

- Very low additive jitter
- Low solution cost
- Low output-to-output skew

Clock Buffers

- Very low additive jitter
- Low propagation delay and variation
- Low output-to-output skew

8

Analog PLL clock architectures: Dual and single loop with external VCOs

Clock Distribution

No jitter cleaning lowest power consumption

Single Loop

Good jitter cleaning, lower power consumption

Dual Loop (Jitter Cleaner)

- Best jitter cleaning
- PLL1 narrow loop bandwidth
- PLL2 wide loop bandwidth

When to use Dual/Cascaded Loop

- Noisy reference input, jitter cleaning is required
- When input frequency is low, or does not relate well with output frequency
- Synchronization required between multiple frequency domains

When to use a Network Synchronizer

- Highly stable clocks needed at all times irrespective of whether reference input is present or not
 - Multiple and redundant input references need to be monitored and switched between, based on qualification, in a "hitless" manner
- System time and frequency must be guaranteed accurate at all times
 - Adjustable timing and synchronization required between multiple frequency domains

When to use a Network Synchronizer

- Highly stable clocks needed at all times irrespective of whether reference input is present or not
 - Multiple and redundant input references need to be monitored and switched between, based on qualification, in a "hitless" manner
- System time and frequency must be guaranteed accurate at all times
 - Adjustable timing and synchronization required between multiple frequency domains

To find more technical resources and search products, visit ti.com/clocks

Quiz

- True or false: A crystal oscillator is required for each system frequency domain
- True or false: A clock distribution network may consist of multiplexers, dividers, delay networks and multiple output buffers
- True or false: Skew is a measure of the frequency difference between clock buffer outputs
- True or false: A dual loop PLL architecture is used for a noisy reference input to provide a jitter cleaning function and then multiply up a clean reference
- True or false: A reference input must be applied at all times to provide a frequency and phase accurate frequency output

Quiz

- True or false: A crystal oscillator is required for each system frequency domain
- True or false: A clock distribution network may consist of multiplexers, dividers, delay networks and multiple output buffers
- True or <u>false</u>: Skew is a measure of the frequency difference between clock buffer outputs
- True or false: A dual loop PLL architecture is used for a noisy reference input to provide a jitter cleaning function and then multiply up a clean reference
- True or <u>false</u>: A reference input must be applied at all times to provide a frequency and phase accurate frequency output