Lecture Outline

- Service Economy
- Characteristics of Services
- Service Design Process
- Tools for Service Design
- Waiting Line Analysis for Service Improvement

Service Economy

International Employment by Industry Sector

Characteristics of Services

- Services
 - acts, deeds, or performances
- Goods
 - tangible objects
- Facilitating services
 - accompany almost all purchases of goods
- Facilitating goods
 - accompany almost all service purchases

Continuum From Goods to Services

Characteristics of Services

- Services are intangible
- Service output is variable
- Services have higher customer contact
- Services are perishable
- The service and the service delivery are inseparable
- Services tend to be decentralized and geographically dispersed
- Services are consumed more often than products
- Services can be easily emulated

Service Design Process

Service Design Process

- Service concept
 - purpose of a service; it defines target market and customer experience
- Service package
 - mixture of physical items, sensual benefits, and psychological benefits
- Service specifications
 - performance specifications
 - design specifications
 - · delivery specifications

Service Process Matrix

Design Decision	High-Contact Service	Low-Contact Service
Facility location	Convenient to customer	 Near labor or transportation source
Facility layout	 Must look presentable, accommodate customer needs, and facilitate interaction with customer 	Designed for efficiency

Design Decision	High-Contact Service	Low-Contact Service
Quality control	 More variable since customer is involved in process; customer expectations and perceptions of quality may differ; customer present when defects occur 	 Measured against established standards; testing and rework possible to correct defects
Capacity	 Excess capacity required to handle peaks in demand 	Planned for average demand

Design Decision	High-Contact Service	Low-Contact Service
Worker skills	 Must be able to interact well with customers and use judgment in decision making 	 Technical skills
Scheduling	 Must accommodate customer schedule 	 Customer concerned only with completion date

Design Decision	High-Contact Service	Low-Contact Service
 Service process 	 Mostly front-room activities; service may change during delivery in response to customer 	 Mostly back- room activities; planned and executed with minimal interference
Service package	 Varies with customer; includes environment as well as actual service 	Fixed, less extensive

Tools for Service Design

- Service blueprinting
 - line of influence
 - line of interaction
 - line of visibility
 - line of support
- Front-office/Backoffice activities

- Servicescapes
 - space and function
 - ambient conditions
 - signs, symbols, and artifacts
- Quantitative techniques

Service Blueprinting

Service Blueprinting

Elements of Waiting Line Analysis

- Operating characteristics
 - average values for characteristics that describe performance of waiting line system
- Queue
 - a single waiting line

- Waiting line system
 - consists of arrivals, servers, and waiting line structure
- Calling population
 - source of customers; infinite or finite

Elements of Waiting Line Analysis

- Arrival rate (λ)
 - frequency at which customers arrive at a waiting line according to a probability distribution, usually Poisson
- Service rate (µ)
 - time required to serve a customer, usually described by negative exponential distribution
- Service rate must be higher than arrival rate ($\lambda < \mu$)
- Queue discipline
 - order in which customers are served
- Infinite queue
 - can be of any length; length of a finite queue is limited

Elements of Waiting Line Analysis

Channels

 number of parallel servers for servicing customers

Phases

 number of servers in sequence a customer must go through

Operating Characteristics

 Operating characteristics are assumed to approach a steady state

Notation	Operating Characteristic
L	Average number of customers in the system (waiting and being served)
L_q	Average number of customers in the waiting line
W	Average time a customer spends in the system (waiting and being served)
W_q	Average time a customer spends waiting in line
P_0	Probability of no (i.e., zero) customers in the system
P_n	Probability of <i>n</i> customers in the system
ρ	Utilization rate; the proportion of time the system is in use

Traditional Cost Relationships

As service improves, cost increases

Psychology of Waiting

- Waiting rooms
 - magazines and newspapers
 - televisions
- Bank of America
 - mirrors
- Supermarkets
 - magazines
 - "impulse purchases"

Psychology of Waiting

Preferential treatment

- Grocery stores: express lanes for customers with few purchases
- Airlines/Car rental agencies: special cards available to frequent-users or for an additional fee
- Phone retailers: route calls to more or less experienced salespeople based on customer's sales history
- Critical service providers
 - services of police department, fire department, etc.
 - waiting is unacceptable; cost is not important

Waiting Line Models

- Single-server model
 - simplest, most basic waiting line structure
- Frequent variations (all with Poisson arrival rate)
 - exponential service times
 - general (unknown) distribution of service times
 - constant service times
 - exponential service times with finite queue
 - exponential service times with finite calling population

Common Queuing Systems

A few commercial service systems

Type of System	Customers	Servers
Barber Shop	People	Barber
Bank teller service	People	Teller
Gas station	Cars	Pump
Automobile repair shop	Car Owners	Mechanic
Production System	Jobs	Machine
Maintenance System	Machines	Repair Crew

 Customers and servers in a service system will be domain specific.

 Customers in one domain may be servers in the other domains.

Poisson and Exponential

$$p_{(x)} = \frac{\lambda^x e^{-\lambda}}{x!}$$

Mean = λ

$$f(x) = \lambda e^{-\lambda x}$$
$$p_{(x \ge x_0)} = e^{-\lambda x_0}$$

Mean =
$$1/\lambda$$

Average arrival rate of 3.2 customers per hour.
 The arrival rate can be modelled by a Poisson distribution.

1. What is the probability of 5 customers arriving?

2. Probability of having more than 7 customers?

Average arrival rate of 3.2 customers per hour.
 The arrival rate can be modelled by a Poisson distribution.

1. What is the probability of 5 customers arriving? .1141

Probability of having more than 7 customers?
 .0169

Arrivals at a bank are poisson distributed with a mean of 1.2 customers every minute.

- What is the average time between arrivals?
- and what is the probability that at least 2 minutes will elapse between one arrival and the next arrival?

Arrivals at a bank are poisson distributed with a mean of 1.2 customers every minute.

What is the average time between arrivals?
 .833

 and what is the probability that at least 2 minutes will elapse between one arrival and the next arrival?

0.907

Basic Single-Server Model

- Assumptions
 - Poisson arrival rate
 - exponential service times
 - first-come, first-served queue discipline
 - infinite queue length
 - infinite calling population

- Computations
 - λ = mean arrival rate
 - µ = mean service rate
 - n = number of customers in line

Elements of queuing systems

- Interarrival times
 - The time between consecutive arrivals
 - Most queueing models assume interarrival time to be exponential.
- Service time
 - When a customer enters service, the elapsed time from the beginning to the end of the service is referred to as the service time.
 - Exponential service times are easy to analyse.

Evolution of number of customers

Operating Characteristics

Operating characteristics are assumed to approach a steady state

Notation	Operating Characteristic
L	Average number of customers in the system (waiting and being served)
L_q	Average number of customers in the waiting line
W	Average time a customer spends in the system (waiting and being served)
W_q	Average time a customer spends waiting in line
P_0	Probability of no (i.e., zero) customers in the system
P_n	Probability of <i>n</i> customers in the system
ρ	Utilization rate; the proportion of time the system is in use

Basic Single-Server Model

- probability that no customers are in queuing system
- average number of customers in queuing system

$$P_0 = \left(1 - \frac{\lambda}{\mu}\right)$$

$$L = \frac{\lambda}{u - \lambda}$$

- probability of *n* customers in queuing system
- average number of customers in waiting line

$$P_n = \left(\frac{\lambda}{\mu}\right)^n \cdot P_0 = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right)$$

$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)}$$

Operating Characteristics

 Operating characteristics are assumed to approach a steady state

Notation	Operating Characteristic
L	Average number of customers in the system (waiting and being served)
L_q	Average number of customers in the waiting line
W	Average time a customer spends in the system (waiting and being served)
W_q	Average time a customer spends waiting in line
P_0	Probability of no (i.e., zero) customers in the system
P_n	Probability of <i>n</i> customers in the system
ρ	Utilization rate; the proportion of time the system is in use

Basic Single-Server Model

 average time customer spends in queuing system

$$W = \frac{1}{\mu - \lambda} = \frac{L}{\lambda}$$

 average time customer spends waiting in line

$$W_q = \frac{\lambda}{\mu (\mu - \lambda)}$$

 probability that server is busy and a customer has to wait (utilization factor)

$$\rho = \frac{\lambda}{\mu}$$

 probability that server is idle and customer can be served

$$I = 1 - \rho$$

$$= 1 - \frac{\lambda}{\mu} = P_0$$

$$\lambda = 24$$

$$\mu = 30$$

 $P_0 =$

L=

Lq =

$$\lambda = 24$$

$$\mu = 30$$

$$P_0 = \left(1 - \frac{\lambda}{\mu}\right) = \left(1 - \frac{24}{30}\right)$$

= 0.20 probability of no customers in the system

$$L = \frac{\lambda}{\mu - \lambda} = \frac{24}{30 - 24}$$

= 4 customers on the average in the queuing system

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(24)^2}{30(30 - 24)}$$

= 3.2 customers on the average in the waiting line

```
W =
```

Wq =

 $\rho =$

| =

$$W = \frac{1}{\mu - \lambda} = \frac{1}{30 - 24}$$

0.167 hour (10 minutes) average time in the system per customer

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{24}{30(30 - 24)}$$

= 0.133 hour (8 minutes) average time in the waiting line per customer

$$\rho = \frac{\lambda}{\mu} = \frac{24}{30}$$

= 0.80 probability that the server will be busy and the customer must wait

$$I = 1 - \rho = 1 - 0.80$$

= 0.20 probability that the server will be idle and a customer can be served

Service Improvement Analysis

- Waiting time (8 min.) is too long
 - hire assistant for cashier?
 - increased service rate
 - hire another cashier?
 - reduced arrival rate
- Is improved service worth the cost?

Summary

IMPORTANCE OF QUEUES IN SERVICE DESIGN

ELEMENTS OF QUEUING SYSTEMS AND USUAL MODEL ASSUMPTIONS.

Other measures of performance

Other than averages: worst case scenarios

What will be the maximum number of customers in the system?

What will be the maximum waiting time of customers in the system?

To answer the above, we need to know

Steady-state probability of having exactly n customers in the system.

 $P(W \le t)$: Probability the time spent in the system will be no more than t.

Example of common goals

No more than 5% of customers wait more than 2 hours:

•P(W \leq 2 hours) \geq 0.95

No more than three customers 95% of the time

Summary

Measuring Performance of a queueing system.

Expected measure of performance

Worst case measure of performance

Advanced Single-Server Models

- Constant service times
 - occur most often when automated equipment or machinery performs service
- Finite queue lengths
 - occur when there is a physical limitation to length of waiting line
- Finite calling population
 - number of "customers" that can arrive is limited

Advanced Single-Server Models

