

Differential expression analysis

Mary Piper
Bioinformatics Consultant and Trainer

Home Install Help

Home » Bioconductor 3.6 » Software Packages » DESeq2

DESeq2

DOI: 10.18129/B9.bioc.DESeq2

Differential gene expression analysis based on the negative binomial distribution

Bioconductor version: Release (3.6)

Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.

Author: Michael Love, Simon Anders, Wolfgang Huber

Maintainer: Michael Love <michaelisaiahlove at gmail.com>

Citation (from within R, enter citation("DESeq2")):

Love MI, Huber W and Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." *Genome Biology*, **15**, pp. 550. doi: <u>10.1186/s13059-014-0550-8</u>.

Differential expression analysis: DESeq2 vignette

vignette(DESeq2)

Analyzing RNA-seq data with DESeq2

Michael I. Love, Simon Anders, and Wolfgang Huber 11 November 2017

Abstract

A basic task in the analysis of count data from RNA-seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of sequence fragments that have been assigned to each gene. Analogous data also arise for other assay types, including comparative ChIP-Seq, HiC, shRNA screening, mass spectrometry. An important analysis question is the quantification and statistical inference of systematic changes between conditions, as compared to within-condition variability. The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models; the estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions This vignette explains the use of the package and demonstrates typical workflows. An RNA-seq workflow on the Bioconductor website covers similar material to this vignette but at a slower pace, including the generation of count matrices from FASTQ files. DESeq2 package version: 1.18.1

- Standard workflow
 - Quick start
 - How to get help for DESeg2
 - Input data
 - Why un-normalized counts?
 - The DESegDataSet

How to get help for DESeq2

Any and all DESeq2 questions should be posted to the **Bioconductor support site**, which serves as a searchable knowledge base of questions and answers:

https://support.bioconductor.org

Posting a question and tagging with "DESeq2" will automatically send an alert to the package authors to respond on the support site. See the first question in the list of Frequently Asked Questions (FAQ) for information about how to construct an informative post.

You should **not** email your question to the package authors, as we will just reply that the question should be posted to the **Bioconductor support site**.

Input data

Why up normalized counte?

Bringing in data for DESeq2

```
# Read in raw counts
wt_rawcounts <- read.csv("fibrosis_wt_rawcounts.csv")
View(wt_rawcounts)</pre>
```

^	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1	wt_fibrosis2 [‡]	wt_fibrosis3 [‡]	wt_fibrosis4 ‡
ENSMUSG00000102693	0	0	0	0	0	0	0
ENSMUSG00000064842	0	0	0	0	0	0	0
ENSMUSG00000051951	3	1	1	42	52	16	35
ENSMUSG00000102851	0	0	0	0	0	0	0
ENSMUSG00000103377	0	0	0	0	0	0	0
ENSMUSG00000104017	0	0	0	0	0	0	0
ENSMUSG00000103025	0	0	0	1	0	0	0
ENSMUSG00000089699	0	0	0	0	0	0	0
ENSMUSG00000103201	0	0	0	0	0	0	0
ENSMUSG00000103147	0	0	0	0	1	1	1
		_	•	•	_	•	

Bringing in data for DESeq2: metadata

```
# Read in metadata
wt_metadata <- read.csv("fibrosis_wt_metadata_unordered.csv")
View(wt_metadata)</pre>
```

_	genotype [‡]	condition
wt_normal3	wt	normal
wt_fibrosis3	wt	fibrosis
wt_normal1	wt	normal
wt_fibrosis2	wt	fibrosis
wt_normal2	wt	normal
wt_fibrosis4	wt	fibrosis
wt_fibrosis1	wt	fibrosis

Let's practice!

Organizing the data for DESeq2

Mary Piper
Bioinformatics Consultant and Trainer

Bringing in data for DESeq2: sample order

Metadata

Raw counts

^	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 $^{\hat{+}}$	wt_fibrosis1 [‡]	wt_fibrosis2	wt_fibrosis3 [‡]	wt_fibrosis4 🗦
ENSMUSG00000102693	0	0	0	0	0	0	0
ENSMUSG00000064842	0	0	0	0	0	0	0
ENSMUSG00000051951	3	1	1	42	52	16	35
ENSMUSG00000102851	0	0	0	0	0	0	0
ENSMUSG00000103377	0	0	0	0	0	0	0
ENSMUSG00000104017	0	0	0	0	0	0	0
ENSMUSG00000103025	0	0	0	1	0	0	0

Bringing in data for DESeq2: sample order

```
rownames(wt metadata)
                       "smoc2 fibrosis2" "wt fibrosis3"
    "wt normal3"
 [4] "smoc2 fibrosis3" "smoc2 normal3"
                                         "wt normal1"
 [7] "smoc2 normal4"
                       "wt fibrosis2"
                                         "wt normal2"
                       "smoc2 fibrosis1" "smoc2 fibrosis4"
[10] "smoc2 normal1"
[13] "wt fi\overline{b}rosis4"
                       "wt fibrosis1"
colnames(wt rawcounts)
                       "wt normal2"
                                         "wt normal3"
    "wt normal1"
                                         "wt fibrosis3"
                      "wt fibrosis2"
    "wt fibrosis1"
                                          "smoc2 normal3"
    "wt fibrosis4"
                      "smoc2 normal1"
    "smoc2 normal4"
                       "smoc2 fibrosis1" "smoc2 fibrosis2"
[13] "smoc2 fibrosis3" "smoc2 fibrosis4"
```


Bringing in data for DESeq2: sample order

```
all(rownames(wt_metadata) == colnames(wt_rawcounts))
[1] FALSE
```


Matching order between vectors

Using the match () function:

```
match(vector1, vector2)
```

vector1: vector of values with the desired order

vector2: vector of values to reorder

output: the indices for how to rearrange vector2 to be in the same order as vector1

```
match(colnames(wt_rawcounts), rownames(wt_metadata)

[1] 6 9 1 14 8 3

[7] 13 10 5 7 11 2

[13] 4 12
```


Reordering with the match() function

Reordering using match() output:

```
idx <- match(colnames(wt_rawcounts), rownames(wt_metadata))
reordered_wt_metadata <- wt_metadata[idx, ]
View(reordered_wt_metadata)</pre>
```

_	genotype [‡]	condition [‡]
wt_normal1	wt	normal
wt_normal2	wt	normal
wt_normal3	wt	normal
wt_fibrosis1	wt	fibrosis
wt_fibrosis2	wt	fibrosis
wt_fibrosis3	wt	fibrosis
wt_fibrosis4	wt	fibrosis

Checking the order

```
all(rownames(reordered_wt_metadata) == colnames(wt_rawcounts))
[1] TRUE
```

_	genotype [‡]	condition [‡]
wt_normal1	wt	normal
wt_normal2	wt	normal
wt_normal3	wt	normal
wt_fibrosis1	wt	fibrosis
wt_fibrosis2	wt	fibrosis
wt_fibrosis3	wt	fibrosis
wt_fibrosis4	wt	fibrosis

*	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1 [‡]	wt_fibrosis2 [‡]	wt_fibrosis3 [‡]	wt_fibrosis4 [‡]
ENSMUSG00000102693	0	0	0	0	0	0	0
ENSMUSG00000064842	0	0	0	0	0	0	0
ENSMUSG00000051951	3	1	1	42	52	16	35
ENSMUSG00000102851	0	0	0	0	0	0	0
ENSMUSG00000103377	0	0	0	0	0	0	0
ENSMUSG00000104017	0	0	0	0	0	0	0
ENSMUSG00000103025	0	0	0	1	0	0	0
ENSMUSG00000089699	0	0	0	0	0	0	0
ENSMUSG00000103201	0	0	0	0	0	0	0
FNSMIISCOOOOO103147	0	0	n	n	1	1	1

Creating the DESeq2 object

Let's practice!

Count normalization

Mary Piper

Bioinformatics Consultant and Trainer

Count normalization

Library depth normalization

Sample A Reads

Sample B Reads

Library composition effect

DESeq2 normalization

Normalized counts: calculation

```
dds_wt <- estimateSizeFactors(dds_wt)
sizeFactors(dds_wt)</pre>
```

```
wt_normal1 wt_normal2 wt_normal3 wt_fibrosis1 wt_fibrosis2 wt_fibrosis3 wt_fibrosis4
0.9131884 0.7250234 1.0441118 1.1346070 1.2059020 1.1731687 0.9418653
```


Normalized counts: extraction

```
normalized_wt_counts <- counts(dds_wt, normalized=TRUE)</pre>
```

View(normalized_wt_counts)

^	wt_normal1 +	wt_normal2 $^{\scriptsize \scriptsize 0}$	wt_normal3 $^{\scriptsize \scriptsize 0}$	wt_fibrosis1 +	wt_fibrosis2 $^{\circ}$	wt_fibrosis3 $^{\scriptsize \scriptsize +}$	wt_fibrosis4 +
ENSMUSG00000102693	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000064842	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000051951	3.285193	1.379266	9.577519e-01	37.0172230	43.1212477	13.6382769	37.160301
ENSMUSG00000102851	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103377	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000104017	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103025	0.000000	0.000000	0.000000e+00	0.8813625	0.0000000	0.0000000	0.000000
ENSMUSG00000089699	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103201	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103147	0.000000	0.000000	0.000000e+00	0.0000000	0.8292548	0.8523923	1.061723
ENSMUSG00000103161	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000102331	1.095064	0.000000	0.000000e+00	5.2881747	6.6340381	8.5239231	7.432060

Let's practice!

Unsupervised clustering analyses

Mary Piper Instructor

Unsupervised clustering analyses: log transformation

```
vsd_wt <- vst(dds_wt, blind=TRUE)</pre>
```


Hierarchical clustering with correlation heatmaps

```
# Extract the vst matrix from the object
vsd_mat_wt <- assay(vsd_wt)

# Compute pairwise correlation values
vsd_cor_wt <- cor(vsd_mat_wt)

View(vsd_cor_wt)</pre>
```

•	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1 [‡]	wt_fibrosis2	wt_fibrosis3 [‡]	wt_fibrosis4 [‡]
wt_normal1	1.0000000	0.9934287	0.9945298	0.9616998	0.9708459	0.9626185	0.9696097
wt_normal2	0.9934287	1.0000000	0.9930148	0.9629644	0.9713154	0.9639685	0.9704541
wt_normal3	0.9945298	0.9930148	1.0000000	0.9678018	0.9758950	0.9683519	0.9750891
wt_fibrosis1	0.9616998	0.9629644	0.9678018	1.0000000	0.9930090	0.9939055	0.9926560
wt_fibrosis2	0.9708459	0.9713154	0.9758950	0.9930090	1.0000000	0.9931793	0.9939010
wt_fibrosis3	0.9626185	0.9639685	0.9683519	0.9939055	0.9931793	1.0000000	0.9922991
wt_fibrosis4	0.9696097	0.9704541	0.9750891	0.9926560	0.9939010	0.9922991	1.0000000

Hierarchical clustering with correlation heatmaps

```
# Load pheatmap libraries
library(pheatmap)

# Plot heatmap
pheatmap(vsd_cor_wt, annotation = select(wt_metadata, condition))
```


Hierarchical clustering with correlation heatmaps

Let's practice!

Principal Component Analysis (PCA)

Mary Piper
Bioinformatics Consultant and Trainer

	Sample 1	Sample 2
Gene A	4	5
Gene B	1	4
Gene C	8	8
Gene D	5	7

Sample 1

	Sample 1	Sample 2	Influence on PC1	Influence on PC2
Gene A	4	5	-2	0.5
Gene B	1	4	-10	1
Gene C	8	8	8	-5
Gene D	5	7	1	6

	Sample 1	Sample 2	Influence on PC1	Influence on PC2
Gene A	4	5	-2	0.5
Gene B	1	4	-10	1
Gene C	8	8	8	-5
Gene D	5	7	1	6

```
Sample1 PC1 score = (4 * -2) + (1 * -10) + (8 * 8) + (5 * 1) = 51

Sample1 PC2 score = (4 * 0.5) + (1 * 1) + (8 * -5) + (5 * 6) = -7

Sample2 PC1 score = (5 * -2) + (4 * -10) + (8 * 8) + (7 * 1) = 21

Sample2 PC2 score = (5 * 0.5) + (4 * 1) + (8 * -5) + (7 * 6) = 8.5
```


	PC1	PC2
Sample1	51	-7
Sample2	21	8.5

PC₁


```
# Plot PCA
plotPCA(vsd_wt, intgroup="condition")
```


Let's practice!