a. The boxplot indicates a very slight positive skew, with no outliers. The data appears to

center near 438.

- **b.** Based on a normal probability plot, it is reasonable to assume the sample observations came from a normal distribution.
- **c.** With df = n 1 = 16, the critical value for a 95% CI is $t_{.025,16} = 2.120$, and the interval is $438.29 \pm (2.120) \left(\frac{15.14}{\sqrt{17}}\right) = 438.29 \pm 7.785 = (430.51,446.08)$. Since 440 is within the interval, 440 is a plausible value for the true mean. 450, however, is not, since it lies outside the interval.

7.34

$$n = 14$$
, $\bar{x} = 8.48$, $s = .79$; $t_{.0513} = 1.771$

A 95% lower confidence bound: $8.48 - 1.771 \left(\frac{.79}{\sqrt{14}} \right) = 8.48 - .37 = 8.11$. With 95%

confidence, the value of the true mean proportional limit stress of all such joints is greater than 8.11 MPa. We must assume that the sample observations were taken from a normally distributed population.

8.16

- a. $\alpha = P(T \ge 3.733 \text{ when } T \text{ has a } t \text{ distribution with } 15 \text{ df}) = .001.$
- b. df = $n 1 = 23 \Rightarrow \alpha = P(T_{23} \le -2.500) = .01$.
- c. $df = 30 \Rightarrow \alpha = P(T_{30} \ge 1.697 \text{ or } T_{30} \le -1.697) = .05 + .05 = .10.$

2.

a. H_0 : $\mu = 5.5$ v. H_a : $\mu \neq 5.5$; for a level .01 test, (not specified in the problem description), reject H_0 if either $z \ge 2.58$ or $z \le -2.58$. Since $z = \frac{5.25 - 5.5}{.075} = -3.33 \le -2.58$, reject H_0 .

b.
$$1 - \beta(5.6) = 1 - \Phi(2.58 + \frac{(-.1)}{.075}) + \Phi(-2.58 + \frac{(-.1)}{.075}) = 1 - \Phi(1.25) + \Phi(-3.91) = .105$$
.

c.
$$n = \left[\frac{.3(2.58 + 2.33)}{-.1} \right]^2 = 216.97$$
, so use $n = 217$.

8.26

Reject H_0 if $z \ge 1.645$; $\frac{s}{\sqrt{n}} = .7155$, so $z = \frac{52.7 - 50}{.7155} = 3.77$. Since 3.77 is ≥ 1.645 , reject H_0 at level .05 and conclude that true average penetration exceeds 50 mils.

8.29

a. The hypotheses are H_0 : $\mu = 200$ versus H_a : $\mu > 200$. H_0 will be rejected at level $\alpha = .05$ if $t \ge t_{.05,12-1} = t_{.05,11} = 1.796$. With the data provided, $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{249.7 - 200}{145.1 / \sqrt{12}} = 1.19$. Since 1.19 < 1.796, H_0 is not rejected at the $\alpha = .05$ level. We have insufficient evidence to conclude that the true average repair time exceeds 200 minutes.

8.37

- a. The parameter of interest is p = the proportion of the population of female workers that have BMIs of at least 30 (and, hence, are obese). The hypotheses are H_0 : p = .20 versus H_a : p > .20. With n = 541, np_0 = 541(.2) = 108.2 \geq 10 and $n(1-p_0)$ = 541(.8) = 432.8 \geq 10, so the "large-sample" z procedure is applicable. Hence, we will reject H_0 if $z \geq z_{.05}$ = 1.645. From the data provided, $\hat{p} = \frac{120}{541}$ = .2218, so $z = \frac{\hat{p} p_0}{\sqrt{p_0(1-p_0)/n}} = \frac{.2218 .20}{\sqrt{.20(.80)/541}} = 1.27$. Since 1.27 < 1.645, we fail to reject H_0 at the α = .05 level. We do not have sufficient evidence to conclude that more than 20% of the population of female workers is obese.
- **b.** A Type I error would be to incorrectly conclude that more than 20% of the population of female workers is obese, when the true percentage is 20%. A Type II error would be to fail to recognize that more than 20% of the population of female workers is obese when that's actually true.
- **c.** The question is asking for the chance of committing a Type II error when the true value of p is .25, i.e. β (.25). Using the textbook formula,

$$\beta(.25) = \Phi\left[\frac{.20 - .25 + 1.645\sqrt{.20(.80)/541}}{\sqrt{.25(.75)/541}}\right] = \Phi(-1.166) \approx .121.$$

3. Use Table A.8.

a.
$$P(t > 2.0)$$
 at 8df = .040.

b.
$$P(t < -2.4)$$
 at $11df = .018$.

c.
$$2P(t < -1.6)$$
 at $15df = 2(.065) = .130$.

d. by symmetry,
$$P(t > -.4) = 1 - P(t > .4)$$
 at $19df = 1 - .347 = .653$.

e.
$$P(t > 5.0)$$
 at 5df < .005.

f.
$$2P(t < -4.8)$$
 at $40\text{df} < 2(.000) = .000$ to three decimal places.

8.55

Here we might be concerned with departures above as well as below the specified weight of 5.0, so the relevant hypotheses are H_0 : $\mu = 5.0$ v. H_a : $\mu \neq 5.0$. Since $\frac{s}{\sqrt{n}} = .035$,

$$z = \frac{-.13}{.035} = -3.71$$
. Because 3.71 is "off" the z-table, *P*-value < 2(.0002) = .0004, so H_0 should be rejected.

8.58

 μ = the true average percentage of organic matter in this type of soil, and the hypotheses are H_0 : μ = 3 v. H_a : $\mu \neq$ 3. With n = 30, and assuming normality, we use the t test:

$$t = \frac{\overline{x} - 3}{s / \sqrt{n}} = \frac{2.481 - 3}{.295} = \frac{-.519}{.295} = -1.759$$
. The *P*-value = 2[*P*(*t* > 1.759)] = 2(.041) = .082. At

significance level .10, since .082 \leq .10, we would reject H_0 and conclude that the true average percentage of organic matter in this type of soil is something other than 3. At significance level .05, we would not have rejected H_0 .