Z定理を用いたλμ計算の合流性証明

本多 雄樹(名古屋大学)中澤 巧爾(名古屋大学)藤田 憲悦(群馬大学)

成果

- ① λμ計算の合流性を**Z定理**[Dehornoy+08]を用いて証明
 - [Baba+01]の complete development がZ性を満たすことを証明
- **2** λμ計算に外延性規則(μη)を加えた計算体系の合流性を 合成的Z定理[Nakazawa+16] を用いて証明
 - μη簡約とそれ以外の簡約に分割

λμ計算+外延性規則[Parigot92]

 $\lambda\mu$ 計算 = λ 計算+制御オペレータ

簡約規則: $(\beta)(\lambda x. M)N \rightarrow_{\beta} M[x := N]$

 $(S) (\mu \alpha. M) N \to_S M [[\alpha] w := [\alpha](wN)]$

 $(R) \ [\alpha](\mu\beta.M) \to_R M[\beta \coloneqq \alpha]$

 $(\mu\eta) \ \mu\alpha. [\alpha]M \rightarrow_{\mu\eta} M \ (\alpha \notin M)$

簡約の例:

 $(S) (\mu \alpha. [\alpha]([\alpha]xy))z \rightarrow_S \mu \alpha. [\alpha](([\alpha]xyz)z)$

Z定理[Dehornoy+08]

抽象書き換え系 (A, \rightarrow) は,次のZ性を満たすA上の写像fが存在すれば合流する

 λ_{eta} の場合,complete development がZ性を満たす complete development = 見えている redex を全て簡約したもの

合成的Z定理[Nakazawa+16]

抽象書き換え系 (A, \rightarrow) は、 $\rightarrow = \rightarrow_1 U \rightarrow_2$ とするとき、次の性質を満たすA上の写像 f_1 、 f_2 が存在すれば合流する

どこが難しい?

通常の complete development ではZ性を 満たさない

- ightarrow [Baba+01] の complete development を利用 $\left([\alpha] (\mu \beta. M) \vec{N} \right)^* = M^* \left[[\beta] w \coloneqq [\alpha] (w \vec{N}^*) \right]$
- → そのままではまだ**z**性を満たさない

[理由] $\mu\alpha.[\alpha]\left((\mu\beta.M)\vec{N}\right)$ $[\alpha]\left((\mu\beta.[\beta]M)\vec{N}\right)$

赤と青のどちらかを優先処理しなければならない → どちらでもZ性は満たさない

赤を優先した場合の反例:

$$[\alpha] \Big(\mu \beta. \Big((\lambda x. x) \big([\beta] (\mu \gamma. y) \big) \Big) \Big) \xrightarrow{} [\alpha] \Big(\mu \beta. [\beta] (\mu \gamma. y) \Big)$$

complete development

こうやって解決しました

合成的Z定理 [Nakazawa+16] を適用 →1=→μη, →2=→βU→SU→R 赤と青が競合しない!

M*1 の定義

 $\frac{M^{-1} \circ \mathcal{J} \mathcal{L} \oplus \mathcal{I}}{x^{*_1} = x}$ $(\lambda x. M)^{*_1} = \lambda x. M^{*_1}$ $(M_1 M_2)^{*_1} = M_1^{*_1} M_2^{*_1}$ $(\mu \alpha. [\alpha] M)^{*_1} = M^{*_1} (\alpha \notin M)$ $(\mu \alpha. M)^{*_1} = \mu \alpha. M^{*_1} (それ以外)$ $([\alpha] M)^{*_1} = [\alpha] M^{*_1}$

*M**2 の定義

 $x^{*2} = x$ $(\lambda x. M)^{*2} = \lambda x. M^{*2}$ $((\lambda x. M_1) M_2)^{*2} = M_1^{*2} [x := M_2^{*2}]$ $((\mu \alpha. M) \vec{N})^{*2} = \mu \alpha. M^{*2} [[\alpha] w := [\alpha] (w \vec{N}^{*2})]$ $(M_1 M_2)^{*2} = M_1^{*2} M_2^{*2} (それ以外)$ $(\mu \alpha. M)^{*2} = \mu \alpha. M^{*2}$ $([\alpha] (\mu \beta. M) \vec{N})^{*2} = M^{*2} [[\beta] w := [\alpha] (w \vec{N}^{*2})]$ $([\alpha] M)^{*2} = [\alpha] M^{*2} (それ以外)$

 $(\cdot)^{*_1}$, $(\cdot)^{*_2}$ が合成的Z定理の条件を満たすことを証明