

Queve structure. Since visits all immediate neighbors first then moves to next level and so on.

C- Common properties are small overage path length (16 degrees of separation), the power law distribution and a high clustering coefficient

d-The dianet of a graph is the length of the largest shortest path between any two nodes in the 3 rgph.

e- with n as # of nodes

min edges spanning tree = n-1

so (m-(n-1) edges must be removed

terms of my areing is

2) a)
$$a \rightarrow c = 3$$
 $a \rightarrow b = 4$
 $b) (a \rightarrow b = 4)$
 $a \rightarrow c \rightarrow b = 5$
 $a \rightarrow c \rightarrow b = 5$
 $a \rightarrow c \rightarrow b = 5$
 $a \rightarrow c \rightarrow b = 6$
 $a \rightarrow c \rightarrow c = 6$
 $a \rightarrow c \rightarrow c = 9$

c)
$$a, c, d = 10$$

 $a, b, d = 9$
 $a, b, d = 9$
 $a, c, d = 6$
 $a, c, e = 9$

This shortest peth between a and 2
is ancoded re ng nz which costs 16,

$$G_{1}(v_{1}) = 2 \times (\frac{1}{2}) = (\frac{1}{2})$$

$$G(v_2) = 2 \times (1/2) = 1$$

b) for non central vertex in a wheel graph

When n ≥ 6, is one because the two

other nonescentral nodes are the only one using the node

which is just 1/2 since central is also used.

5)
$$d_{in}(A) = 2$$

 $d_{in}(B) = 0$
 $d_{in}(C) = 3$
 $d_{in}(E) = 0$
 $d_{in}(D) = 2$

X	A	1 B	1 c 1	0	IE
P(Vx)	2/7	0	3/2	2/_	5

6) a) status = 20 surior, 50 Junior, [20,50]

H(status) =
$$-(\frac{2}{7})\log(\frac{2}{7}) - (\frac{5}{7})\log(\frac{5}{7}) = 0.86$$

Edept sola =
$$[15, 70](0) - [20]$$

Systas = $[0, 70]$, $E = 0.98$
markey = $[5, 10]$, $E = 0$
Ga'n = $0.86 - [37]$ 0.96 1201

$$6a'n = 0.86 - (37)0.98 - (20)0 - (50)0.92 = 0.17$$

8) first clusters,
$$Z_1 = A_1 = (2,10)$$

 $Z_2 = B_1 = (5,8)$
 $Z_3 = C_1 = (1,2)$

$$A_1=(2,10)$$
, $d_{21}=0$, $d_{22}=3+2$, $d_{23}=1+8$

$$A_2=(25)$$
, $d_{21}=0+5$, $d_{22}=3+3$ $d_{23}=1+3$

$$A_3 = (8,4)$$
, $d_{21} = 6+6$ $d_{22} = 3+4$ $d_{23} = 7+2$

$$B_1 = (5.0)$$
 $d_{71} = 3+2$ $d_{72} = 9+6$

$$B_{2} = (7,5)$$
 $d_{21} = 5+5$ $d_{22} = 2+3$ $d_{23} = 6+3$ $d_{23} = 6+3$

$$B_3 = (6, 4)$$
 $C_2 = 5 + 5$
 $C_{22} = 2 + 3$
 $C_{23} = 6 + 3$
 $C_4 = (1, 2)$
 $C_{23} = 5 + 2$
 $C_5 = (1, 2)$
 $C_{23} = 5 + 2$

$$C_1 = (1, 2)$$
 $d_{21} = 1+8$ $d_{22} = 4+6$ $d_{33} = 4+6$

$$C_2 = (4, 9)$$
 $d_{21} = 1+8$ $d_{22} = 4+6$ $d_{23} = 0$

After one $C_2 = (4, 9)$ $d_{23} = 3+7$

after one round

7, cluster has { A, 3 Zz cluste has { A3, B, B2, B3, C23 23 cluster has {Az, G3

2 cluster center =
$$A_1 = (2, 10)$$

$$Z_3$$
 cluster cate = $(3/2, 7/2) = (46)$

9)-a) False n b) True c) True d) Fole ~ c) Tre - f) False 3) False h) True wi) Folse 3) True