# Summary of Halmos' Naive Set Theory

Robin Adams

August 23, 2023

# Contents

| 1 | Prir                                    | mitive Terms and Axioms              | 2         |
|---|-----------------------------------------|--------------------------------------|-----------|
| 2 | Basic Properties and Operations on Sets |                                      |           |
|   | 2.1                                     | The Subset Relation                  | 3         |
|   | 2.2                                     | Comprehension Notation               | 3         |
|   | 2.3                                     | The Empty Set                        | 4         |
|   | 2.4                                     | Unordered Pairs                      | 4         |
|   | 2.5                                     | Unions                               | 4         |
|   | 2.6                                     | Intersections                        | 5         |
|   | 2.7                                     | Unordered Triples                    | 6         |
|   | 2.8                                     | Relative Complements                 | 6         |
|   | 2.9                                     | Symmetric Difference                 | 9         |
|   | 2.10                                    | Power Sets                           | 10        |
| 3 | Relations and Functions                 |                                      |           |
|   | 3.1                                     | Ordered Pairs                        | 12        |
|   | 3.2                                     | Relations                            | 13        |
|   | 3.3                                     | Composition                          | 14        |
|   | 3.4                                     | Inverses                             | 14        |
|   | 3.5                                     | Equivalence Relations                | 15        |
|   | 3.6                                     | Functions                            | 15        |
|   | 3.7                                     | Families                             | 17        |
|   | 3.8                                     | Inverses and Composites of Functions | 18        |
| 4 | Equivalence 21                          |                                      | <b>21</b> |
| 5 | Ord                                     | er                                   | <b>22</b> |
| 6 | Natural Numbers                         |                                      |           |
|   | 6.1                                     | Natural Numbers                      | 24        |
|   | 6.2                                     | Arithmetic                           | 28        |
|   | 6.3                                     | Order on the Natural Numbers         | 33        |
|   | 6.4                                     | Finite Sets                          |           |

# Chapter 1

# Primitive Terms and Axioms

Let there be *sets*. We assume that everything is a set.

Let there be a binary relation of membership,  $\in$ . If  $x \in A$  we say that x belongs to A, x is an element of A, or x is contained in A. If this does not hold we write  $x \notin A$ .

**Axiom 1.1** (Axiom of Extensionality). Two sets are equal if and only if they have the same elements.

**Axiom 1.2** (Axiom of Comprehension, Aussonderungsaxiom). To every set A and to every condition S(x) there corresponds a set B whose elements are exactly those elements x of A for which S(x) holds.

**Axiom 1.3** (Axiom of Pairing). For any two sets, there exists a set that they both belong to.

**Axiom 1.4** (Union Axiom). For every set A, there exists a set that contains all the elements that belong to at least one element of A.

**Definition 1.5** (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write  $A \subseteq B$  or  $B \supseteq A$ , iff every element of A is an element of B.

**Axiom 1.6** (Power Set Axiom). For any set A, there exists a set that contains all the subsets of A.

**Axiom 1.7** (Axiom of Infinity). There exists a set I such that:

- I has an element that has no elements
- for all  $x \in I$ , there exists  $y \in I$  such that the elements of y are exactly x and the elements of x.

# Chapter 2

# Basic Properties and Operations on Sets

### 2.1 The Subset Relation

**Theorem 2.1.** For any set A, we have  $A \subseteq A$ .

PROOF: Every element of A is an element of A.  $\square$ 

**Theorem 2.2.** For any sets A, B and C, if  $A \subseteq B$  and  $B \subseteq C$  then  $A \subseteq C$ .

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C.  $\Box$ 

**Theorem 2.3.** For any sets A and B, if  $A \subseteq B$  and  $B \subseteq A$  then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extensionality.  $\square$ 

**Definition 2.4** (Proper Subset). Let A and B be sets. We say that A is a *proper* subset of B, or B properly includes A, and write  $A \subseteq B$  or  $B \supseteq A$ , iff  $A \subseteq B$  and  $A \neq B$ .

# 2.2 Comprehension Notation

**Definition 2.5.** Given a set A and a condition S(x), we write  $\{x \in A : S(x)\}$  for the set whose elements are exactly those elements x of A for which S(x) holds.

PROOF: This exists by the Axiom of Comprehension and is unique by the Axiom of Extensionality.  $\Box$ 

**Theorem 2.6.** There is no set that contains every set.

#### Proof:

 $\langle 1 \rangle 1$ . Let: A be a set.

PROVE: There exists a set B such that  $B \notin A$ .

- $\langle 1 \rangle 2$ . Let:  $B = \{x \in A : x \notin x\}$
- $\langle 1 \rangle 3$ . If  $B \in A$  then we have  $B \in B$  if and only if  $B \notin B$ .
- $\langle 1 \rangle 4. \ B \notin A$

# 2.3 The Empty Set

**Theorem 2.7.** There exists a set with no elements.

PROOF: Immediate from the Axiom of Infinity.  $\Box$ 

**Definition 2.8** (Empty Set). The *empty set*  $\emptyset$  is the set with no elements.

**Theorem 2.9.** For any set A we have  $\emptyset \subset A$ .

Proof: Vacuous.

### 2.4 Unordered Pairs

**Definition 2.10** ((Unordered) Pair). For any sets a and b, the (unordered) pair  $\{a,b\}$  is the set whose elements are just a and b.

PROOF: This exists by the Axioms of Pairing and Comprehension, and is unique by the Axiom of Extensionality.  $\Box$ 

**Definition 2.11** (Singleton). For any set a, the *singleton*  $\{a\}$  is defined to be  $\{a, a\}$ .

### 2.5 Unions

**Definition 2.12** (Union). For any set  $\mathcal{C}$ , the *union* of  $\mathcal{C}$ ,  $\bigcup \mathcal{C}$ , is the set whose elements are the elements of the elements of  $\mathcal{C}$ .

We write  $\bigcup_{X \in \mathcal{A}} t[X]$  for  $\bigcup \{t[X] \mid X \in \mathcal{A}\}.$ 

PROOF: This exists by the Union Axiom and Comprehension Axiom, and is unique by the Axiom of Extensionality.  $\Box$ 

Proposition 2.13.

$$\bigcup \varnothing = \varnothing$$

PROOF: There is no set that is an element of an element of  $\emptyset$ .  $\square$ 

**Proposition 2.14.** For any set A, we have  $\bigcup \{A\} = A$ .

PROOF: For any x, we have x is an element of an element of  $\{A\}$  if and only if x is an element of A.  $\square$ 

**Definition 2.15.** We write  $A \cup B$  for  $\bigcup \{A, B\}$ .

**Proposition 2.16.** For any set A, we have  $A \cup \emptyset = A$ .

PROOF:  $x \in A \cup \emptyset$  iff  $x \in A$  or  $x \in \emptyset$ , iff  $x \in A$ .  $\square$ 

**Proposition 2.17** (Idempotence). For any set A, we have  $A \cup A = A$ .

PROOF:  $x \in A$  or  $x \in A$  is equivalent to  $x \in A$ .  $\square$ 

**Proposition 2.18.** For any sets A and B, we have  $A \subseteq B$  if and only if  $A \cup B = B$ .

PROOF: For any x, the statement "if  $x \in A$  then  $x \in B$ " is equivalent to " $x \in A$  or  $x \in B$  if and only if  $x \in B$ ".  $\square$ 

**Proposition 2.19.** For any sets a and b, we have  $\{a\} \cup \{b\} = \{a,b\}$ .

PROOF: Immediate from definitions.

### 2.6 Intersections

**Definition 2.20** (Intersection). For any sets A and B, the intersection  $A \cap B$  is defined to be  $\{x \in A : x \in B\}$ .

**Proposition 2.21.** For any set A, we have  $A \cap \emptyset = \emptyset$ .

PROOF: There is no x such that  $x \in A$  and  $x \in \emptyset$ .  $\square$ 

**Proposition 2.22.** For any set A, we have

$$A \cap A = A$$
.

PROOF: We have  $x \in A$  and  $x \in A$  if and only if  $x \in A$ .  $\square$ 

**Proposition 2.23.** For any sets A and B, we have  $A \subseteq B$  if and only if  $A \cap B = A$ .

PROOF: For any x, the statement "if  $x \in A$  then  $x \in B$ " is equivalent to " $x \in A$  and  $x \in B$  if and only if  $x \in A$ ".  $\square$ 

**Proposition 2.24.** For any sets A, B and C, we have  $C \subseteq A$  if and only if  $(A \cap B) \cup C = A \cap (B \cup C)$ .

PROOF: The statement "if  $x \in C$  then  $x \in A$ " is equivalent to the statement " $((x \in A \land x \in B) \lor x \in C) \Leftrightarrow (x \in A \land (x \in B \lor x \in C))$ ".  $\square$ 

**Definition 2.25** (Disjoint). Two sets A and B are disjoint if and only if  $A \cap B = \emptyset$ .

**Definition 2.26** (Pairwise Disjoint). Let A be a set. We say the elements of A are pairwise disjoint if and only if, for all  $x, y \in A$ , if  $x \cap y \neq \emptyset$  then x = y.

**Definition 2.27** (Intersection). For any nonempty set C, the *intersection* of C,  $\cap C$ , is the set that contains exactly those sets that belong to every element of C.

We write  $\bigcap_{X \in \mathcal{A}} t[X]$  for  $\bigcap \{t[X] \mid X \in \mathcal{A}\}.$ 

Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{C}$  be a nonempty set.
- $\langle 1 \rangle 2$ . There exists a set I whose elements are exactly the sets that belong to every element of C.

PROOF: Pick  $A \in \mathcal{C}$ , and take  $I = \{x \in A : \forall X \in \mathcal{C}.x \in X\}$ .

 $\langle 1 \rangle 3$ . For any sets I, J, if the elements of I and J are exactly the sets that belong to every element of C then I = J.

PROOF: Axiom of Extensionality.

# 2.7 Unordered Triples

**Definition 2.28** ((Unordered) Triple). Given sets  $a_1, \ldots, a_n$ , define the (unordered) n-tuple  $\{a_1, \ldots, a_n\}$  to be

$$\{a_1,\ldots,a_n\} := \{a_1\} \cup \cdots \cup \{a_n\}$$
.

# 2.8 Relative Complements

**Definition 2.29** (Relative Complement). For any sets A and B, the difference or relative complement A - B is defined to be

$$A - B := \{x \in A : x \notin B\} .$$

**Proposition 2.30.** For any sets A and E, we have  $A \subseteq E$  if and only if

$$E - (E - A) = A$$

Proof:

 $\langle 1 \rangle 1$ . Let: A and E be sets.

 $\langle 1 \rangle 2$ . If  $A \subseteq E$  then E - (E - A) = A

 $\langle 2 \rangle 1$ . Assume:  $A \subseteq E$ 

 $\langle 2 \rangle 2$ .  $E - (E - A) \subseteq A$ 

PROOF: If  $x \in E$  and  $x \notin E - A$  then  $x \in A$ .

 $\langle 2 \rangle 3$ .  $A \subseteq E - (E - A)$ 

PROOF: If  $x \in A$  then  $x \in E$  and  $x \notin E - A$ .

 $\langle 1 \rangle 3$ . If E - (E - A) = A then  $A \subseteq E$ .

PROOF: Since  $E - (E - A) \subseteq E$ .

**Proposition 2.31.** For any set E we have

$$E - \varnothing = E$$

PROOF:  $x \in E$  if and only if  $x \in E$  and  $x \notin \emptyset$ .  $\square$ 

**Proposition 2.32.** For any set E we have

$$E - E = \emptyset$$
.

PROOF: There is no x such that  $x \in E$  and  $x \notin E$ .  $\square$ 

**Proposition 2.33.** For any sets A and E, we have

$$A \cap (E - A) = \emptyset$$
.

PROOF: There is no x such that  $x \in A$  and  $x \in E - A$ .  $\square$ 

**Proposition 2.34.** Let A and E be sets. Then  $A \subseteq E$  if and only if

$$A \cup (E - A) = E$$
.

Proof:

 $\langle 1 \rangle 1$ . Let: A and E be sets.

 $\langle 1 \rangle 2$ . If  $A \subseteq E$  then  $A \cup (E - A) = E$ .

 $\langle 2 \rangle 1$ . Assume:  $A \subseteq E$ 

 $\langle 2 \rangle 2$ .  $A \cup (E - A) \subseteq E$ 

PROOF: If  $x \in A$  or  $x \in E - A$  then  $x \in E$ .

 $\langle 2 \rangle 3$ .  $E \subseteq A \cup (E - A)$ 

PROOF: If  $x \in E$  then either  $x \in A$  or  $x \notin A$ . In the latter case,  $x \in E - A$ .

 $\langle 1 \rangle 3$ . If  $A \cup (E - A) = E$  then  $A \subseteq E$ 

PROOF: Since  $A \subseteq A \cup (E - A)$ .

П

**Proposition 2.35.** Let A, B and E be sets. Then:

1. If  $A \subseteq B$  then  $E - B \subseteq E - A$ .

2. If  $A \subseteq E$  and  $E - B \subseteq E - A$  then  $A \subseteq B$ .

Proof:

 $\langle 1 \rangle 1$ . Let: A, B and E be sets.

 $\langle 1 \rangle 2$ . If  $A \subseteq B$  then  $E - B \subseteq E - A$ .

PROOF: If  $A \subseteq B$ ,  $x \in E$  and  $x \notin B$ , then we have  $x \in E$  and  $x \notin A$ .

 $\langle 1 \rangle 3$ . If  $A \subseteq E$  and  $E - B \subseteq E - A$  then  $A \subseteq B$ .

 $\langle 2 \rangle 1$ . Assume:  $A \subseteq E$ 

 $\langle 2 \rangle 2$ . Assume:  $E - B \subseteq E - A$ 

 $\langle 2 \rangle 3$ . Let:  $x \in A$ 

 $\langle 2 \rangle 4. \ x \in E$ 

$$\langle 2 \rangle$$
5.  $x \notin E - A$   
 $\langle 2 \rangle$ 6.  $x \notin E - B$   
 $\langle 2 \rangle$ 7.  $x \in B$ 

**Example 2.36.** We cannot remove the hypothesis  $A \subseteq E$  in item 2 above. Let  $E = \emptyset$ ,  $A = \{\emptyset\}$  and  $B = \emptyset$ . Then  $E - B = E - A = \emptyset$  but  $A \nsubseteq B$ .

**Proposition 2.37** (De Morgan's Law). For any sets A, B and E, we have  $E - (A \cup B) = (E - A) \cap (E - B)$ .

PROOF:  $(x \in E \land \neg (x \in A \lor x \in B)) \Leftrightarrow (x \in E \land x \notin A \land x \in E \land x \notin B)$ .  $\square$ 

**Proposition 2.38** (De Morgan's Law). For any sets A, B and E, we have  $E - (A \cap B) = (E - A) \cup (E - B)$ .

PROOF:  $(x \in E \lor \neg (x \in A \land x \in B)) \Leftrightarrow (x \in E \land x \notin A) \lor (x \in E \land x \notin B)$ .  $\square$ 

**Proposition 2.39.** For any sets A, B and E, if  $A \subseteq E$  then

$$A - B = A \cap (E - B) .$$

PROOF: If  $A \subseteq E$  then we have  $(x \in A \land x \notin B) \Leftrightarrow (x \in A \land x \in E \land x \notin B)$ .  $\square$ 

**Proposition 2.40.** For any sets A and B, we have  $A \subseteq B$  if and only if  $A - B = \emptyset$ .

PROOF: Both are equivalent to the statement that there is no x such that  $x \in A$  and  $x \notin B$ .  $\square$ 

**Proposition 2.41.** For any sets A and B, we have

$$A - (A - B) = A \cap B .$$

PROOF:  $(x \in A \land \neg (x \in A \land x \notin B)) \Leftrightarrow x \in A \land x \in B$ .  $\square$ 

**Proposition 2.42.** For any sets A, B and C, we have

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$
.

PROOF:  $(x \in A \land x \in B \land x \notin C) \Leftrightarrow (x \in A \land x \in B \land \neg (x \in A \land x \in C))$ .

**Proposition 2.43.** For any sets A, B, C and E, if  $(A \cap B) - C \subseteq E$  then we have

$$A \cap B \subseteq (A \cap C) \cup (B \cap (E - C))$$
.

PROOF:

 $\langle 1 \rangle 1$ . Let:  $x \in A \cap B$ 

PROVE:  $x \in (A \cap C) \cup (B \cap (E - C))$ 

 $\langle 1 \rangle 2$ . Case:  $x \in C$ 

PROOF: Then  $x \in A \cap C$ .

 $\langle 1 \rangle 3$ . Case:  $x \notin C$ 

PROOF: Then  $x \in E$  and so  $x \in B \cap (E - C)$ .

Proposition 2.44. For any sets A, B, C and E, we have

$$(A \cup C) \cap (B \cup (E - C)) \subseteq A \cup B$$
.

PROOF: The statement  $(x \in A \lor x \in C) \land (x \in B \lor (x \in E \land x \notin C))$  implies  $x \in A \lor x \in B$ .  $\square$ 

**Proposition 2.45** (De Morgan's Law). Let E be a set and  $\mathcal C$  a nonempty set. Then

$$E - \bigcup \mathcal{C} = \bigcap_{X \in \mathcal{C}} (E - X) .$$

Proof: Easy.  $\square$ 

**Proposition 2.46** (De Morgan's Law). Let E be a set and  $\mathcal C$  a nonempty set. Then

$$E - \bigcap \mathcal{C} = \bigcup_{X \in \mathcal{C}} (E - X) .$$

Proof: Easy.  $\square$ 

# 2.9 Symmetric Difference

**Definition 2.47** (Symmetric Difference). For any sets A and B, the *symmetric difference* A+B is defined to be

$$A + B := (A - B) \cup (B - A) .$$

**Proposition 2.48.** For any sets A and B, we have

$$A + B = B + A$$

PROOF: From the commutativity of union.

**Proposition 2.49.** For any sets A, B and C, we have

$$A + (B + C) = (A + B) + C$$
.

PROOF: Each is the set of all x that belong to either exactly one or all three of A, B and C.  $\square$ 

**Proposition 2.50.** For any set A, we have

$$A + \emptyset = A$$
.

Proof:

$$A + \emptyset = (A - \emptyset) \cup (\emptyset - A)$$
$$= A \cup \emptyset$$
$$= A$$

**Proposition 2.51.** For any set A we have

$$A + A = \emptyset$$
.

Proof:

$$A + A = (A - A) \cup (A - A)$$
$$= \emptyset \cup \emptyset$$
$$= \emptyset$$

# 2.10 Power Sets

**Definition 2.52** (Power Set). For any set A, the *power set* of A,  $\mathcal{P}A$ , is the set whose elements are exactly the subsets of A.

PROOF: This exists by the Power Set Axiom and Axiom of Comprehension, and is unique by the Axiom of Extensionality.  $\Box$ 

Proposition 2.53.

$$\mathcal{P}\emptyset = \{\emptyset\}$$

PROOF: The only subset of  $\emptyset$  is  $\emptyset$ .  $\square$ 

Proposition 2.54. For any set a, we have

$$\mathcal{P}\{a\} = \{\emptyset, \{a\}\} .$$

PROOF: The only subsets of  $\{a\}$  are  $\emptyset$  and  $\{a\}$ .  $\square$ 

**Proposition 2.55.** For any sets a and b, we have

$$\mathcal{P}{a,b} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$
.

PROOF: The only subsets of  $\{a,b\}$  are  $\emptyset$ ,  $\{a\}$ ,  $\{b\}$  and  $\{a,b\}$ .  $\square$ 

**Proposition 2.56.** For any nonempty set C we have

$$\bigcap_{X \in \mathcal{C}} \mathcal{P}X = \mathcal{P}\left(\bigcap \mathcal{C}\right) .$$

Proof:

$$x \in \bigcup_{X \in \mathcal{C}} \mathcal{P}X \Leftrightarrow \forall X \in \mathcal{C}.x \subseteq X$$

$$\Leftrightarrow \forall X \in \mathcal{C}.\forall y \in x.y \in X$$

$$\Leftrightarrow \forall y \in x.\forall X \in mathcalC.y \in X$$

$$\Leftrightarrow x \subseteq \bigcap \mathcal{C}$$

**Proposition 2.57.** For any set C we have

$$\bigcup_{X \in \mathcal{C}} \mathcal{P}X \subseteq \mathcal{P} \bigcup \mathcal{C} .$$

PROOF: If there exists  $X \in \mathcal{C}$  such that  $x \subseteq X$  then  $x \subseteq \bigcup \mathcal{C}$ .  $\square$ 

**Proposition 2.58.** For any set E, we have

$$\bigcap \mathcal{P}E = \varnothing \ .$$

PROOF: Since  $\emptyset \in \mathcal{P}E$ .  $\square$ 

**Proposition 2.59.** For any sets E and F, if  $E \subseteq F$  then  $\mathcal{P}E \subseteq \mathcal{P}F$ .

PROOF: If  $E \subseteq F$  and  $X \subseteq E$  then  $X \subseteq F$ .  $\square$ 

# Chapter 3

# Relations and Functions

## 3.1 Ordered Pairs

**Definition 3.1** (Ordered Pair). For any sets a and b, the *ordered pair* (a,b) is defined by

$$(a,b) := \{\{a\}, \{a,b\}\}\$$
.

**Proposition 3.2.** For any sets a, b, x and y, if (a,b) = (x,y) then a = x and b = y.

```
Proof:
```

```
⟨1⟩1. Let: a, b, x and y be sets.

⟨1⟩2. Assume: (a,b) = (x,y)

⟨1⟩3. a = x

Proof: \{a\} = \bigcap (a,b) = \bigcap (x,y) = \{x\}.

⟨1⟩4. \{a,b\} = \{x,y\}

⟨1⟩5. Case: a = b

⟨2⟩1. x = y

Proof: Since \{x,y\} = \{a,b\} is a singleton.

⟨2⟩2. b = y

Proof: b = a = x = y

⟨1⟩6. Case: a \neq b

⟨2⟩1. x \neq y

Proof: Since \{x,y\} = \{a,b\} is not a singleton.

⟨2⟩2. b = y

Proof: \{x,y\} = \{a,b\} is not a singleton.

⟨2⟩2. b = y

Proof: \{b\} = \{a,b\} - \{a\} = \{x,y\} - \{x\} = \{y\}.
```

**Definition 3.3** (Cartesian Product). For any sets A and B, the Cartesian product  $A \times B$  is

$$A \times B := \{ p \in \mathcal{PP}(A \cup B) : \exists a \in A. \exists b \in B. p = (a, b) \}$$
.

**Proposition 3.4.** For any sets A, B and X, we have

$$(A - B) \times X = (A \times X) - (B \times X) .$$

Proof: Easy.  $\square$ 

**Proposition 3.5.** For any sets A and B, we have  $A \times B = \emptyset$  if and only if  $A = \emptyset$  or  $B = \emptyset$ .

Proof: Easy.

**Proposition 3.6.** For any sets A, B, X and Y, if  $A \subseteq X$  and  $B \subseteq Y$  then  $A \times B \subseteq X \times Y$ . The converse holds assuming  $A \neq \emptyset$  and  $B \neq \emptyset$ .

Proof: Easy.

### 3.2 Relations

**Definition 3.7** (Relation). A relation is a set of ordered pairs.

If R is a relation, we write xRy for  $(x, y) \in R$ .

Given sets X and Y, a relation between X and Y is a subset of  $X \times Y$ .

Given a set X, a relation on X is a relation between X and X.

**Definition 3.8** (Domain). The *domain* of a relation R is the set

$$dom R := \left\{ x \in \bigcup \bigcup R : \exists y . (x, y) \in R \right\} .$$

**Definition 3.9** (Range). The range of a relation R is the set

$$\operatorname{ran} R := \left\{ y \in \bigcup \bigcup R : \exists x. (x, y) \in R \right\} .$$

**Definition 3.10** (Reflexive). Let R be a relation on X. Then R is *reflexive* iff, for all  $x \in X$ , we have xRx.

**Definition 3.11** (Symmetric). Let R be a relation on X. Then R is *symmetric* iff, whenever xRy, then yRx.

**Definition 3.12** (Antisymmetric). A relation R is antisymmetric iff, whenever xRy and yRx, then x = y.

**Definition 3.13** (Transitive). Let R be a relation on X. Then R is transitive iff, whenever xRy and yRz, then xRz.

**Definition 3.14** (Identity Relation). For any set X, the *identity relation*  $I_X$  on X is

$$I_X = \{(x, x) : x \in X\}$$
.

# 3.3 Composition

**Definition 3.15** (Composition). Let R be a relation between X and Y, and S a relation between Y and Z. The *composite* or *relative product*  $S \circ R = SR$  is the relation between X and Z defined by

$$x(S \circ R)z \Leftrightarrow \exists y \in Y(xRy \land ySz)$$
.

**Proposition 3.16.** Let R be a relation between X and Y, S a relation between Y and Z, and T a relation between Z and W. Then

$$T(SR) = (TS)R$$
.

Proof: Easy.

**Example 3.17.** Composition of relations is not commutative in general. Let  $X = \{a, b\}$  where  $a \neq b$ . Let  $R = \{(a, a), (b, a)\}$  and  $S = \{(a, b), (b, b)\}$ . Then SR = S but  $RS = R \neq S$ .

**Proposition 3.18.** A relation R is transitive if and only if  $RR \subseteq R$ .

Proof: Easy.

# 3.4 Inverses

**Definition 3.19** (Inverse). Let R be a relation between X and Y. The *inverse* or *converse*  $R^{-1}$  is the relation between Y and X defined by

$$yR^{-1}x \Leftrightarrow xRy$$
 .

**Proposition 3.20.** For any relation R, we have

$$dom R^{-1} = ran R .$$

Proof: Easy.

**Proposition 3.21.** For any relation R, we have

$$ran R^{-1} = dom R ...$$

Proof: Easy.

**Proposition 3.22.** Let R be a relation between X and Y, and S a relation between Y and Z. Then

$$(SR)^{-1} = R^{-1}S^{-1}$$
.

Proof: Easy.

**Proposition 3.23.** A relation R is symmetric if and only if  $R \subseteq R^{-1}$ .

Proof: Easy.  $\square$ 

**Proposition 3.24.** Let R be a relation between X and Y. Then

$$I_Y R = R I_X = R$$
.

Proof: Easy.  $\square$ 

**Proposition 3.25.** A relation R on a set X is reflexive if and only if  $I_X \subseteq R$ .

Proof: Easy.

**Proposition 3.26.** Let R be a relation on a set X. Then R is antisymmetric iff  $R \cap R^{-1} \subseteq I_X$ .

Proof: Easy.  $\square$ 

# 3.5 Equivalence Relations

**Definition 3.27** (Equivalence Relation). Let R be a relation on X. Then R is an *equivalence relation* iff it is reflexive, symmetric and transitive.

**Definition 3.28** (Partition). Let X be a set. A partition of X is a pairwise disjoint set of nonempty subsets of X whose union is X.

**Definition 3.29** (Equivalence Class). Let R be an equivalence relation on X. Let  $x \in X$ . The *equivalence class* of x with respect to R is

$$x/R := \{ y \in X : xRy \} .$$

We write X/R for the set of all equivalence classes with respect to R.

**Definition 3.30** (Induced). Let P be a partition of X. The relation *induced* by P is X/P where x(X/P)y iff there exists  $X \in P$  such that  $x \in X$  and  $y \in X$ .

**Theorem 3.31.** Let R be an equivalence relation on X. Then X/R is a partition of X that induces the relation R.

Proof: Easy.

**Theorem 3.32.** Let P be a partition of X. Then X/P is an equivalence relation on X, and P = X/(X/P).

Proof: Easy.  $\square$ 

### 3.6 Functions

**Definition 3.33** (Function). Let X and Y be sets. A function, map, mapping, transformation or operator f from X to Y,  $f: X \to Y$ , is a relation f between X and Y such that, for all  $x \in X$ , there exists a unique  $f(x) \in Y$ , called the value of f at the argument x, such that  $(x, f(x)) \in f$ .

**Definition 3.34** (Onto). Let  $f: X \to Y$ . We say f maps X onto Y iff ran f = Y.

**Definition 3.35** (Image). Let  $f: X \to Y$  and  $A \subseteq X$ . The *image* of A under f is

$$f(A) := \{ f(x) : x \in A \}$$
.

**Definition 3.36** (Inclusion Map). Let Y be a set and  $X \subseteq Y$ . Then the inclusion map  $i: X \hookrightarrow Y$  is the function defined by i(x) = x for all  $x \in X$ .

**Proposition 3.37.** For any set X, the identity relation  $I_X$  is a function  $X \to X$ .

Proof: Easy.

**Definition 3.38** (Restriction). Let  $f: Y \to Z$  and  $X \subseteq Y$ . The restriction of f to X is the function  $f \upharpoonright X: X \to Z$  defined by

$$(f \upharpoonright X)(x) = f(x) \qquad (x \in X) .$$

Given sets X, Y and Z with  $X \subseteq Y$ , if  $f: X \to Z$  and  $g: Y \to Z$ , we say g is an extension of f to Y iff  $f = g \upharpoonright X$ .

**Definition 3.39** (Projection). Given sets X and Y, the *projection* maps  $\pi_1: X \times Y \to X$  and  $\pi_2: X \times Y \to Y$  are defined by

$$\pi_1(x,y) = x, \qquad \pi_2(x,y) = y \qquad (x \in X, y \in Y) .$$

**Definition 3.40** (Canonical Map). Let X be a set and R an equivalence relation on X. The *canonical map*  $\pi: X \to X/R$  is the map defined by  $\pi(x) = x/R$ .

**Definition 3.41** (One-to-One). A function  $f: X \to Y$  is one-to-one, or a one-to-one correspondence, iff, for all  $x, y \in X$ , if f(x) = f(y) then x = y.

**Proposition 3.42.** Let  $f: X \to Y$ . Then the following are equivalent:

- 1. f is one-to-one.
- 2. For all  $A, B \subseteq X$ , we have  $f(A \cap B) = f(A) \cap f(B)$ .
- 3. For all  $A \subseteq X$ , we have  $f(X A) \subseteq Y f(A)$ .

Proof: Easy.  $\square$ 

**Proposition 3.43.** *Let*  $f: X \to Y$ . *Then* f *maps* X *onto* Y *if and only if, for all*  $A \subseteq X$ , *we have*  $Y - f(A) \subseteq f(X - A)$ .

Proof: Easy.

# 3.7 Families

**Definition 3.44** (Family). Let I and X be sets. A family of elements of X indexed by I is a function  $a: I \to X$ . We write  $a_i$  for a(i), and  $\{a_i\}_{i\in I}$  for a.

**Proposition 3.45** (Generalized Associative Law for Unions). Let  $\{I_j\}_{j\in J}$  be a family of sets. Let  $K = \bigcup_{j\in J} I_j$ . Let  $\{A_k\}_{k\in K}$  be a family of sets indexed by K. Then

$$\bigcup_{k \in K} A_k = \bigcup_{j \in J} \bigcup_{i \in I_j} A_i .$$

Proof: Easy.

**Proposition 3.46** (Generalized Commutative Law for Unions). Let  $\{I_j\}_{j\in J}$  be a family of sets. Let  $f: J \to J$  be a one-to-one correspondence from J onto J. Then

$$\bigcup_{j \in J} I_j = \bigcup_{j \in J} I_{f(j)} .$$

Proof: Easy.  $\square$ 

**Proposition 3.47** (Generalized Associative Law for Intersections). Let  $\{I_j\}_{j\in J}$  be a nonempty family of nonempty sets. Let  $K = \bigcup_{j\in J} I_j$ . Let  $\{A_k\}_{k\in K}$  be a family of sets indexed by K. Then

$$\bigcap_{k \in K} A_k = \bigcap_{j \in J} \bigcap_{i \in I_j} A_i .$$

PROOF: Easy.

**Proposition 3.48** (Generalized Commutative Law for Intersections). Let  $\{I_j\}_{j\in J}$  be a nonempty family of sets. Let  $f: J \to J$  be a one-to-one correspondence from J onto J. Then

$$\bigcap_{j \in J} I_j = \bigcap_{j \in J} I_{f(j)} .$$

Proof: Easy.

**Proposition 3.49.** Let B be a set and  $\{A_i\}_{i\in I}$  a family of sets. Then

$$B \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \cap A_i)$$

Proof: Easy.

**Proposition 3.50.** Let B be a set and  $\{A_i\}_{i\in I}$  a nonempty family of sets. Then

$$B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$$

Proof: Easy.  $\square$ 

**Definition 3.51** (Cartesian Product of a Family of Sets). Let  $\{A_i\}_{i\in I}$  be a family of sets. The *Cartesian product*  $\times_{i\in I} A_i$  is the set of all families  $\{a_i\}_{i\in I}$  such that  $\forall i\in I.a_i\in A_i$ .

We write  $A^I$  for  $\times_{i \in I} A$ .

**Definition 3.52** (Projection). Let  $\{A_i\}_{i\in I}$  be a family of sets and  $i\in I$ . The projection function  $\pi_i: \times_{i\in I} A_i \to A_i$  is defined by  $\pi_i(a) = a_i$ .

**Proposition 3.53.** Let  $\{A_i\}_{i\in I}$  and  $\{B_j\}_{j\in J}$  be families of sets. Then

$$\left(\bigcup_{i\in I} A_i\right) \times \left(\bigcup_{i\in J} B_j\right) = \bigcup_{i\in I} \bigcup_{j\in J} (A_i \times B_j) \ .$$

Proof: Easy.  $\square$ 

**Proposition 3.54.** Let  $\{A_i\}_{i\in I}$  and  $\{B_j\}_{j\in J}$  be nonempty families of sets. Then

$$\left(\bigcap_{i\in I} A_i\right) \times \left(\bigcap_{j\in J} B_j\right) = \bigcap_{i\in I} \bigcap_{j\in J} (A_i \times B_j) .$$

Proof: Easy.

**Proposition 3.55.** Let  $f: X \to Y$ . Let  $\{A_i\}_{i \in I}$  be a family of subsets of X. Then

 $f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f(A_i)$ .

Proof: Easy.  $\square$ 

**Example 3.56.** It is not true in general that, if  $f: X \to Y$  and  $\{A_i\}_{i \in I}$  is a nonempty family of subsets of X, then  $f(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} f(A_i)$ .

Take  $X = \{a, b\}$  and  $Y = \{c\}$  where  $a \neq b$ . Take  $I = \{i, j\}$  with  $i \neq j$ . Let  $A_i = \{a\}$  and  $A_j = \{b\}$ . Let f be the unique function  $X \to Y$ . Then  $f(\bigcap_{i \in I} A_i) = f(\emptyset) = \emptyset$  but  $\bigcap_{i \in I} f(A_i) = \{c\}$ .

# 3.8 Inverses and Composites of Functions

**Definition 3.57** (Inverse). Given a function  $f: X \to Y$ , the *inverse* of f is the function  $f^{-1}: \mathcal{P}Y \to \mathcal{P}X$  defined by

$$f^{-1}(B) = \{ x \in X : f(x) \in B \} .$$

We call  $f^{-1}(B)$  the inverse image of B under f.

**Proposition 3.58.** Let  $f: X \to Y$ . Then f maps X onto Y if and only if the inverse image of any nonempty subset of Y is nonempty.

Proof: Easy.  $\square$ 

**Proposition 3.59.** Let  $f: X \to Y$ . Then f is one-to-one if and only if the inverse image of any singleton subset of Y is a singleton.

Proof: Easy.

**Proposition 3.60.** Let  $f: X \to Y$ . Let  $B \subseteq Y$ . Then

$$f(f^{-1}(B)) \subseteq B$$
.

Proof: Easy.  $\square$ 

**Proposition 3.61.** *Let*  $f: X \to Y$ . *Let*  $A \subseteq X$ . *Then* 

$$A \subseteq f^{-1}(f(A))$$
.

Equality holds if f is one-to-one.

Proof: Easy.

**Proposition 3.62.** Let  $f: X \to Y$ . Let  $\{B_i\}_{i \in I}$  be a family of subsets of Y. Then

$$f^{-1}\left(\bigcup_{i\in I}B_i\right)=\bigcup_{i\in I}f^{-1}(B_i)$$
.

Proof: Easy.

**Proposition 3.63.** Let  $f: X \to Y$ . Let  $\{B_i\}_{i \in I}$  be a nonempty family of subsets of Y. Then

$$f^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} f^{-1}(B_i) .$$

Proof: Easy.

**Proposition 3.64.** Let  $f: X \to Y$  and  $B \subseteq Y$ . Then  $f^{-1}(Y - B) = X - f^{-1}(B)$ .

Proof: Easy.  $\square$ 

**Proposition 3.65.** Let  $f: X \to Y$  be one-to-one. Then the inverse of f as a relation,  $f^{-1}$ , is a function  $f^{-1}: \operatorname{ran} f \to X$ , and for all  $y \in \operatorname{ran} f$ , we have  $f^{-1}(y)$  is the unique x such that f(x) = y.

Proof: Easy.

**Proposition 3.66.** Let  $f: X \to Y$  and  $g: Y \to Z$ . Then  $gf: X \to Z$  and, for all  $x \in X$ , we have

$$(q \circ f)(x) = q(f(x))$$
.

Proof: Easy.

**Example 3.67.** Example 3.17 shows that function composition is not commutative in general.

**Proposition 3.68.** Let  $f: X \to Y$  and  $g: Y \to Z$ . Then

$$(gf)^{-1} = f^{-1}g^{-1} : \mathcal{P}Z \to \mathcal{P}X$$
.

Proof: Easy.  $\square$ 

**Proposition 3.69.** Let  $f: X \to Y$  and  $g: Y \to X$ . If  $gf = I_X$  then f is one-to-one and g maps Y onto X.

Proof: Easy.  $\square$ 

# Chapter 4

# Equivalence

**Definition 4.1** (Equivalent). Sets E and F are equivalent,  $E \sim F$ , iff there exists a one-to-one correspondence between them.

**Proposition 4.2.** For any set X, equivalence is an equivalence relation on  $\mathcal{P}X$ .

PROOF: Easy.

# Chapter 5

# Order

**Definition 5.1** (Partial Order). A partial order on a set X is a relation on X that is reflexive, antisymmetric and transitive.

A partially ordered set or poset is a pair  $(X, \leq)$  such that  $\leq$  is a partial order on X. We write X for the poset  $(X, \leq)$ .

Given a partial order  $\leq$ , we write  $\geq$  for the inverse of  $\leq$ .

We write x < y or y > x for  $x \le y \land x \ne y$ . When this holds, we say x is less than y, smaller than y, or a predecessor of y; and y is greater than x, larger than x, or a successor of x.

**Proposition 5.2.** For any set X, the relation  $\subseteq$  is a partial order on  $\mathcal{P}X$ .

Proof: Easy.

**Proposition 5.3.** In a poset, we never have x < y and y < x.

PROOF: We would then have  $x \leq y$  and  $y \leq x$  hence x = y by antisymmetry. But if x < y or y < x then  $x \neq y$ .  $\square$ 

**Proposition 5.4.** The relation < is transitive.

#### PROOF

```
\langle 1 \rangle 1. Assume: x < y and y < z \langle 1 \rangle 2. x \leqslant y and y \leqslant z \langle 1 \rangle 3. x \leqslant z Proof: Since \leqslant is transitive. \langle 1 \rangle 4. x \neq z Proof: By Proposition 5.3.
```

**Proposition 5.5.** Let < be a transitive relation on X such that we never have x < y and y < x. Define  $\le$  by:  $x \le y$  iff x < y or x = y. Then  $\le$  is a partial order on X.

Proof:

 $\langle 1 \rangle 1. \leq \text{is reflexive.}$ 

PROOF: By definition.

 $\langle 1 \rangle 2. \leq \text{is asymmetric.}$ 

PROOF: If  $x \le y$  and  $y \le x$ , we must have x = y, because otherwise we would have x < y and y < x.

- $\langle 1 \rangle 3. \leq \text{is transitive.}$ 
  - $\langle 2 \rangle 1$ . Let:  $x \leq y$  and  $y \leq z$
  - $\langle 2 \rangle 2$ . Case: x = y

PROOF: We have  $y \le z$  so  $x \le z$ .

 $\langle 2 \rangle 3$ . Case: y = z

PROOF: We have  $x \leq y$  so  $x \leq z$ .

 $\langle 2 \rangle 4$ . Case: x < y and y < z

PROOF: We have x < z by transitivity, so  $x \le z$ .

**Definition 5.6** ((Strict) Initial Segment). Let X be a poset and  $a \in X$ . The *(strict) initial segment* determined by a is

$$s(a) := \{x \in X : x < a\}$$
.

**Definition 5.7** (Weak Initial Segment). Let X be a poset and  $a \in X$ . The weak initial segment determined by a is

$$\overline{s}(a) := \{ x \in X : x \leqslant a \} .$$

**Definition 5.8** (Immediate Successor). Let X be a poset and  $x, y \in X$ . Then y is the *immediate successor* of x, and x is the *immediate predecessor* of y, iff x < y and there is no z such that x < z < y.

**Definition 5.9** (Total Order). A partial order  $\leq$  on a set X is a *total order*, simple order or linear order iff, for all  $x, y \in X$ , either  $x \leq y$  or  $y \leq x$ . We then call the poset  $(X, \leq)$  a linearly ordered set or a chain.

**Proposition 5.10.** Let R be a partial order on X. Then R is total if and only if  $X^2 \subseteq R \cup R^{-1}$ .

Proof: Easy.

**Proposition 5.11.** For any set X, the relation  $\subseteq$  is a total order on X iff X is either  $\emptyset$  or a singleton.

Proof: Easy.

# Chapter 6

# Natural Numbers

# 6.1 Natural Numbers

**Definition 6.1** (Successor). The successor of a set x,  $x^+$ , is defined by

$$x^+ := x \cup \{x\} .$$

**Definition 6.2.** We define

$$0 = \emptyset$$

$$1 = 0^{+}$$

$$2 = 1^{+}$$

etc.

**Definition 6.3** (Characteristic Function). Let X be a set and  $A \subseteq X$ . The characteristic function of A is the function  $\chi_A : X \to 2$  defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

**Theorem 6.4.** Let X be a set. The function  $\chi : \mathcal{P}X \to 2^X$  that maps a subset A of X to  $\chi_A$  is a one-to-one correspondence.

Proof: Easy.

**Definition 6.5.** The set  $\omega$  of natural numbers is the set such that:

- $0 \in \omega$
- For all  $n \in \omega$  we have  $n^+ \in \omega$
- For any set X, if  $0 \in X$  and  $\forall n \in X.n^+ \in X$  then  $\omega \subseteq X$

PROOF: To show this exists, pick a set A such that  $0 \in A$  and  $\forall n \in A.n^+ \in A$ (by the Axiom of Infinity), and let  $\omega = \bigcap \{X \in \mathcal{P}A : 0 \in X \land \forall n \in X.n^+ \in X\}.$ 

**Definition 6.6** (Sequence). A *finite sequence* is a family whose index set is a natural number. An *infinite sequence* is a family whose index set is  $\omega$ .

Given a finite sequence of sets  $\{A_i\}_{i\in n^+}$ , we write  $\bigcup_{i=0}^n A_i$  for  $\bigcup_{i\in n^+} A_i$ . Given an infinite sequence of sets  $\{A_i\}_{i\in\omega}$ , we write  $\bigcup_{i=0}^{\infty} A_i$  for  $\bigcup_{i\in\omega} A_i$ .

We make similar definitions for  $\bigcap$  and  $\times$ .

**Proposition 6.7.** For any natural numbers m and n, if  $m \in n$  then  $m^+ \in n^+$ .

```
Proof:
```

```
\langle 1 \rangle 1. Let: P(n) be the property \forall m \in n.m^+ \in n^+
\langle 1 \rangle 2. P(0)
   Proof: Vacuous.
\langle 1 \rangle 3. For any natural number n, if P(n) then P(n^+).
   \langle 2 \rangle 1. Let: n be a natural number.
   \langle 2 \rangle 2. Assume: P(n)
```

 $\langle 2 \rangle 3$ . Let:  $m \in n^+$ 

 $\langle 2 \rangle 4$ .  $m \in n$  or m = n

 $\langle 2 \rangle 5. \ m^+ \in n^+ \text{ or } m^+ = n^+$ 

Proof:  $\langle 2 \rangle 2$ 

 $\langle 2 \rangle 6$ . Case:  $m^+ \in n^{++}$ 

**Theorem 6.8** (Principle of Mathematical Induction). For any subset S of  $\omega$ , if  $0 \in S$  and  $\forall n \in S.n^+ \in S$ , then  $S = \omega$ .

PROOF: From the definition of  $\omega$ .

#### Proposition 6.9.

 $\forall n \in \omega. \forall x \in n. n \nsubseteq x$ 

#### PROOF:

 $\langle 1 \rangle 1. \ \forall x \in 0.0 \subseteq x$ 

PROOF: Vacuous.

- $\langle 1 \rangle 2$ . For any natural number n, if  $\forall x \in n.n \subseteq x$  then  $\forall x \in n^+.n^+ \subseteq x$ .
  - $\langle 2 \rangle$ 1. Let: n be a natural number.
  - $\langle 2 \rangle 2$ . Assume:  $\forall x \in n.n \subseteq x$
  - $\langle 2 \rangle 3$ . Let:  $x \in n^+$
  - $\langle 2 \rangle 4$ . Assume: for a contradiction  $n^+ \subseteq x$
  - $\langle 2 \rangle 5$ .  $x \in n$  or x = n
  - $\langle 2 \rangle 6$ . Case:  $x \in n$

PROOF: Then we have  $n \subseteq n^+ \subseteq x$  contradicting  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle 7$ . Case: x = n

PROOF: Then we have  $n \in n^+ \subseteq x = n$  and  $n \subseteq n$  contradicting  $\langle 2 \rangle 2$ .

**Corollary 6.9.1.** For any natural number n we have  $n \notin n$ .

Corollary 6.9.2. For any natural number n we have  $n \neq n^+$ .

**Definition 6.10** (Transitive Set). A set E is a *transitive* set iff, whenever  $x \in y \in E$ , then  $x \in E$ .

**Proposition 6.11.** Every natural number is a transitive set.

#### PROOF:

 $\langle 1 \rangle 1$ . 0 is a transitive set.

PROOF: Vacuously, if  $x \in y \in 0$  then  $x \in 0$ .

- $\langle 1 \rangle 2$ . For any natural number n, if n is a transitive set, then  $n^+$  is a transitive set.
  - $\langle 2 \rangle 1$ . Let: n be a natural number.
  - $\langle 2 \rangle 2$ . Assume: *n* is a transitive set.
  - $\langle 2 \rangle 3$ . Let:  $x \in y \in n^+$
  - $\langle 2 \rangle 4. \ y \in n \text{ or } y = n$
  - $\langle 2 \rangle 5$ . Case:  $y \in n$ 
    - $\langle 3 \rangle 1. \ x \in n$

Proof:  $\langle 2 \rangle 2$ ,  $\langle 2 \rangle 3$ ,  $\langle 2 \rangle 5$ .

- $\langle 3 \rangle 2. \ x \in n^+$
- $\langle 2 \rangle 6$ . Case: y = n
  - $\langle 3 \rangle 1. \ x \in n$

Proof:  $\langle 2 \rangle 3, \langle 2 \rangle 6$ 

 $\langle 3 \rangle 2. \ x \in n^+$ 

**Proposition 6.12.** For any natural numbers m and n, if  $m^+ = n^+$  then m = n.

#### Proof:

П

- $\langle 1 \rangle 1$ . Let: m and n be natural numbers.
- $\langle 1 \rangle 2$ . Assume:  $m^+ = n^+$
- $\langle 1 \rangle 3. \ m \in m^+ = n^+$
- $\langle 1 \rangle 4$ .  $m \in n$  or m = n
- $\langle 1 \rangle 5$ .  $n \in n^+ = m^+$
- $\langle 1 \rangle 6. \ n \in m \text{ or } n = m$
- $\langle 1 \rangle$ 7. We cannot have  $m \in n$  and  $n \in m$ 
  - $\langle 2 \rangle 1$ . Assume: for a contradiction  $m \in n$  and  $n \in m$
  - $\langle 2 \rangle 2$ .  $m \in m$

PROOF: Since m is a transitive set (Proposition 6.11).

 $\langle 2 \rangle 3$ . Q.E.D.

Proof: This contradicts Proposition 6.9.

 $\langle 1 \rangle 8. \ m = n$ 

**Theorem 6.13** (Recursion Theorem). Let X be a set. Let  $a \in X$ . Let  $f: X \to X$ . There exists a function  $u: \omega \to X$  such that u(0) = a and, for all  $n \in \omega$ , we have  $u(n^+) = f(u(n))$ .

```
Proof:
\langle 1 \rangle 1. Let: \mathcal{C} = \{ A \in \mathcal{P}(\omega \times X) : (0,a) \in A \land \forall n \in \omega . \forall x \in X . (n,x) \in A \Rightarrow A \}
                  (n^+, f(x)) \in A
\langle 1 \rangle 2. \ \mathcal{C} \neq \emptyset
   Proof: \omega \times X \in \mathcal{C}
\langle 1 \rangle 3. Let: u = \bigcap \mathcal{C}
\langle 1 \rangle 4. \ u \in \mathcal{C}
\langle 1 \rangle 5. u is a function.
    \langle 2 \rangle 1. Let: P(n) be the property: \forall x, y \in X . (n, x) \in u \land (n, y) \in u \Rightarrow x = y
   \langle 2 \rangle 2. P(0)
       \langle 3 \rangle 1. \ \forall x \in X.(0,x) \in u \Rightarrow x = a
          PROOF: If (0, x) \in u and x \neq a then u - \{(0, x)\} \in \mathcal{C} and so u - \{(0, x)\} \subseteq u,
          which is impossible.
   \langle 2 \rangle 3. For every natural number n, if P(n) then P(n^+).
       \langle 3 \rangle 1. Let: n be a natural number.
       \langle 3 \rangle 2. Assume: P(n)
       \langle 3 \rangle 3. Let: x, y \in X
       ⟨3⟩4. ASSUME: (n^+, x), (n^+, y) \in u
       \langle 3 \rangle 5. PICK x', y' \in X such that (n, x') \in u, (n, y') \in u and f(x') = x and
                f(y') = y
          PROOF: If no such x' exists then u-\{(n^+,x)\}\in\mathcal{C} and so u-\{(n^+,x)\}\subseteq u
          which is impossible. Similarly for y'.
       \langle 3 \rangle 6. \ x' = y'
          Proof: \langle 3 \rangle 2
       \langle 3 \rangle 7. x = y
П
Proposition 6.14. For any natural number n, either n = 0 or there exists a
natural number m such that n = m^+.
Proof: Easy induction on n. \square
Proposition 6.15. \omega is a transitive set.
\langle 1 \rangle 1. Let: P(n) be the property \forall x \in n.x \in \omega
\langle 1 \rangle 2. P(0)
   Proof: Vacuous.
\langle 1 \rangle 3. For any natural number n, if P(n) then P(n^+).
   \langle 2 \rangle1. Let: n be a natural number.
   \langle 2 \rangle 2. Assume: P(n)
   \langle 2 \rangle 3. Let: x \in n^+
   \langle 2 \rangle 4. x \in n or x = n
   \langle 2 \rangle5. Case: x \in n
       PROOF: Then x \in \omega by \langle 2 \rangle 2.
```

 $\langle 2 \rangle 6$ . Case: x = n

PROOF: Then  $x \in \omega$  by  $\langle 2 \rangle 1$ .

**Proposition 6.16.** For any natural number n and any nonempty subset  $E \subseteq n$ , there exists  $k \in E$  such that  $\forall m \in E.k = m \lor k \in m$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let: P(n) be the property: for any nonempty subset  $E \subseteq n$ , there exists  $k \in E$  such that  $\forall m \in E. k = m \lor k \in m$
- $\langle 1 \rangle 2$ . P(0)

PROOF: Vacuous as there is no nonempty subset of 0.

- $\langle 1 \rangle 3$ . For any natural number n, if P(n) then  $P(n^+)$ .
  - $\langle 2 \rangle 1$ . Let: *n* be a natural number.
  - $\langle 2 \rangle 2$ . Assume: P(n)
  - $\langle 2 \rangle 3$ . Let: E be a nonempty subset of  $n^+$
  - $\langle 2 \rangle 4$ . Case:  $E \{n\} = \emptyset$

PROOF: Then  $E = \{n\}$  so take k = n.

- $\langle 2 \rangle$ 5. Case:  $E \{n\} \neq \emptyset$ 
  - $\langle 3 \rangle 1.$  Pick  $k \in E \{n\}$  such that  $\forall m \in E \{n\}. k = m \vee k \in m$

Proof: By  $\langle 2 \rangle 2$ .

 $\langle 3 \rangle 2$ .  $\forall m \in E.k = m \lor k \in m$ 

PROOF: Since  $k \in n$ .

#### 6.2 Arithmetic

**Definition 6.17** (Addition). Define addition + on  $\omega$  by recursion thus:

$$m + 0 = m$$
$$m + n^+ = (m+n)^+$$

**Proposition 6.18.** For all  $m, n, p \in \omega$  we have

$$m + (n + p) = (m + n) + p$$
.

Proof:

- $\langle 1 \rangle 1$ . Let: P(p) be the property  $\forall m, n \in \omega.m + (n+p) = (m+n) + p$
- $\frac{1}{2}$   $\frac{2}{2}$   $\frac{2}{2}$

PROOF: m + (n + 0) = m + n = (m + n) + 0.

- $\langle 1 \rangle 3. \ \forall p \in \omega. P(p) \Rightarrow P(p^+)$ 
  - $\langle 2 \rangle 1$ . Let:  $p \in \omega$
  - $\langle 2 \rangle 2$ . Assume: P(p)
  - $\langle 2 \rangle 3$ . Let:  $m, n \in \omega$
  - $\langle 2 \rangle 4. \ m + (n+p^+) = (m+n) + p^+$

Proof:

$$m + (n + p^{+}) = m + (n + p)^{+}$$
$$= (m + (n + p))^{+}$$
$$= ((m + n) + p)^{+}$$
$$= (m + n) + p^{+}$$

**Proposition 6.19.** For all  $m, n \in \omega$ , we have

$$m+n=n+m .$$

Proof:

- $\langle 1 \rangle 1$ . Let: P(m) be the property  $\forall n \in \omega . m + n = n + m$
- $\langle 1 \rangle 2$ . P(0)
  - $\langle 2 \rangle 1$ . Let: Q(n) be the property 0 + n = n + 0
  - $\langle 2 \rangle 2$ . Q(0)

PROOF: Trivial.

- $\langle 2 \rangle 3. \ \forall n \in \omega. Q(n) \Rightarrow Q(n^+)$ 
  - $\langle 3 \rangle 1$ . Let:  $n \in \omega$
  - $\langle 3 \rangle 2$ . Assume: Q(n)
  - $\langle 3 \rangle 3. \ 0 + n^+ = n^+ + 0$

Proof:

$$0 + n^{+} = (0 + n)^{+}$$

$$= (n + 0)^{+}$$

$$= n^{+}$$

$$= n^{+} + 0$$
(\langle 3 \rangle 2)

- $\langle 1 \rangle 3. \ \forall m \in \omega. P(m) \Rightarrow P(m^+)$ 
  - $\langle 2 \rangle 1$ . Let:  $m \in \omega$
  - $\langle 2 \rangle 2$ . Assume: P(m)
  - $\langle 2 \rangle 3$ . Let: Q(n) be the property  $m^+ + n = n + m^+$
  - $\langle 2 \rangle 4. \ Q(0)$

Proof:  $\langle 1 \rangle 2$ 

- $\langle 2 \rangle 5. \ \forall n \in \omega. Q(n) \Rightarrow Q(n^+)$ 
  - $\langle 3 \rangle 1$ . Let:  $n \in \omega$
  - $\langle 3 \rangle 2$ . Assume: Q(n)
  - $\langle 3 \rangle 3. \ Q(n^+)$

Proof:

$$m^{+} + n^{+} = (m^{+} + n)^{+}$$

$$= (n + m^{+})^{+} \qquad (\langle 3 \rangle 2)$$

$$= (n + m)^{++}$$

$$= (m + n)^{++} \qquad (\langle 2 \rangle 2)$$

$$= (m^{+} + m)^{+}$$

$$= (n^{+} + m)^{+} \qquad (\langle 2 \rangle 2)$$

$$= n^{+} + m^{+}$$

**Definition 6.20** (Multiplication). Define multiplication  $\cdot$  on  $\omega$  by

$$m0 = 0$$
$$mn^+ = mn + m$$

**Proposition 6.21.** For all  $m, n, p \in \omega$ , we have

$$m(n+p) = mn + mp .$$

Proof:

 $\langle 1 \rangle 1.$  Let: P(p) be the statement  $\forall m,n \in \omega.m(n+p) = mn + mp \ \langle 1 \rangle 2.$  P(0)

Proof:

$$m(n+0) = mn$$
$$= mn + 0$$
$$= mn + m0$$

 $\langle 1 \rangle 3. \ \forall p \in \omega. P(p) \Rightarrow P(p^+)$ 

 $\langle 2 \rangle 1$ . Let:  $p \in \omega$ 

 $\langle 2 \rangle 2$ . Assume: P(p)

 $\langle 2 \rangle 3$ . Let:  $m, n \in \omega$ 

 $\langle 2 \rangle 4$ .  $m(n+p^+) = mn + mp^+$ 

Proof:

$$m(n+p^{+}) = m(n+p)^{+}$$

$$= m(n+p) + m$$

$$= (mn + mp) + m \qquad (\langle 2 \rangle 2)$$

$$= mn + (mp + m) \qquad (Proposition 6.18)$$

$$= mn + mp^{+}$$

**Proposition 6.22.** For all  $m, n, p \in \omega$  we have

$$m(np) = (mn)p$$
.

Proof:

```
\langle 1 \rangle 1. Let: P(p) be the statement \forall m, n \in \omega . m(np) = (mn)p
\langle 1 \rangle 2. P(0)
   PROOF:
                                                 m(n0) = m0
                                                            = 0
                                                            =(mn)0
\langle 1 \rangle 3. \ \forall p \in \omega. P(p) \Rightarrow P(p^+)
    \langle 2 \rangle 1. Let: p \in \omega
   \langle 2 \rangle 2. Assume: P(p)
   \langle 2 \rangle 3. Let: m, n \in \omega
   \langle 2 \rangle 4. m(np^+) = (mn)p^+
       Proof:
                       m(np^+) = m(np+n)
                                     = m(np) + mn
                                                                           (Proposition 6.21)
                                     =(mn)p+mn
                                                                                              (\langle 2 \rangle 2)
                                     =(mn)p^+
Proposition 6.23. For all m, n \in \omega, we have
                                                   mn = nm.
Proof:
\langle 1 \rangle 1. Let: P(m) be the statement \forall n \in \omega.mn = nm
\langle 1 \rangle 2. P(0)
    \langle 2 \rangle 1. Let: Q(n) be the statement 0n = n0
   \langle 2 \rangle 2. Q(0)
       PROOF: Trivial.
   \langle 2 \rangle 3. \ \forall n \in \omega. Q(n) \Rightarrow Q(n^+)
       \langle 3 \rangle 1. Let: n \in \omega
       \langle 3 \rangle 2. Assume: Q(n)
       \langle 3 \rangle 3. Q(n^+)
          Proof:
                                     0n^+ = 0n + 0
                                            =0n
                                            = n0
                                                                                    (\langle 3 \rangle 2)
                                            = 0
                                            = n^{+}0
\langle 1 \rangle 3. \ \forall m \in \omega. P(m) \Rightarrow P(m^+)
    \langle 2 \rangle 1. Let: m \in \omega
   \langle 2 \rangle 2. Assume: P(m)
   \langle 2 \rangle 3. Let: Q(n) be the statement m^+ n = nm^+
   \langle 2 \rangle 4. \ Q(0)
```

Proof:  $\langle 1 \rangle 2$ 

**Definition 6.24** (Exponentiation). Define *exponentiation* on  $\omega$  by recursion:

$$m^0 = 1$$
$$m^{n^+} = m^n m$$

**Proposition 6.25.** For all  $m, n, p \in \omega$  we have

$$m^{n+p} = m^n m^p .$$

Proof:

$$\langle 1 \rangle 1. \ m^{n+0} = m^n m^0$$

Proof:

$$m^{n+0} = m^n$$
$$= m^n 1$$
$$= m^n m^0$$

 $\langle 1 \rangle 2$ . If  $m^{n+p} = m^n m^p$  then  $m^{n+p^+} = m^n m^{p^+}$ 

Proof:

$$m^{n+p^+} = m^{n+p}m$$
$$= m^n m^p m$$
$$= m^n m^{p^+}$$

П

**Proposition 6.26.** For all  $m, n, p \in \omega$  we have

$$(m^n)^p = m^{np} .$$

Proof:

```
\langle 1 \rangle 1. (m^n)^0 = m^{n0}

PROOF: Both are equal to 1.

\langle 1 \rangle 2. If (m^n)^p = m^{np} then (m^n)^{p^+} = m^{np^+}

PROOF:

(m^n)^{p^+} = (m^n)^p m^n
= m^{np} m^n
= m^{np+n}
= m^{np+n}
(Proposition 6.25)
= m^{np^+}
```

### 6.3 Order on the Natural Numbers

**Definition 6.27.** Given natural numbers m and n, we write m < n iff  $m \in n$ . We write  $m \le n$  iff  $m < n \lor m = n$ .

**Proposition 6.28.** The relation  $\leq$  is a total order on  $\omega$ .

```
Proof:
```

```
\langle 1 \rangle 1. \leq \text{is a partial order on } \omega.
```

 $\langle 2 \rangle 1$ . < is transitive.

Proof: Proposition 6.11.

 $\langle 2 \rangle 2$ . We never have m < n and n < m.

PROOF: If m < n and n < m then m < m by Proposition 6.11, contradicting Corollary 6.9.1.

 $\langle 2 \rangle 3$ . Q.E.D.

```
\langle 1 \rangle 2. For all m, n \in \omega, either m \leq n or n \leq m.
```

- $\langle 2 \rangle 1$ . Let: P(n) be the statement:  $\forall m \in \omega . m \leq n \vee n \leq m$
- $\langle 2 \rangle 2$ . P(0)
  - $\langle 3 \rangle 1$ . Let: Q(m) be the statement:  $0 \leq m$
  - $\langle 3 \rangle 2. \ Q(0)$

PROOF: Since  $0 \le 0$ .

 $\langle 3 \rangle 3. \ \forall m \in \omega. Q(m) \Rightarrow Q(m+1)$ 

PROOF: If  $0 \le m$  then 0 < m + 1 by transitivity.

- $\langle 2 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)$ 
  - $\langle 3 \rangle 1$ . Let:  $n \in \omega$
  - $\langle 3 \rangle 2$ . Assume: P(n)
  - $\langle 3 \rangle 3. \ P(n+1)$ 
    - $\langle 4 \rangle 1$ . Let: Q(m) be the property  $m \leqslant n+1 \lor n+1 \leqslant m$
    - $\langle 4 \rangle 2. \ Q(0)$

Proof:  $\langle 2 \rangle 2$ 

- $\langle 4 \rangle 3. \ \forall m \in \omega. Q(m) \Rightarrow Q(m+1)$ 
  - $\langle 5 \rangle 1$ . Let:  $m \in \omega$
  - $\langle 5 \rangle 2$ . Assume: Q(m)
  - $\langle 5 \rangle 3$ . Case:  $m \leq n$

PROOF: Then m < n + 1

```
\langle 5 \rangle4. Case: n < m
PROOF: Then n+1 < m+1 by Proposition 6.7, so n+1 \leqslant m.
\langle 5 \rangle5. Case: n=m
PROOF: Then n+1=m+1.
```

**Proposition 6.29.** For any natural numbers m and n, we have  $m \in n$  if and only if  $m \subseteq n$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let: m and n be natural numbers.
- $\langle 1 \rangle 2$ . If  $m \in n$  then  $m \subsetneq n$ .

PROOF: Since n is a transitive set, and  $m \neq n$  by Corollary 6.9.1.

- $\langle 1 \rangle 3$ . If  $m \subseteq n$  then  $m \in n$ .
  - $\langle 2 \rangle 1$ . Assume:  $m \subsetneq n$
  - $\langle 2 \rangle 2$ .  $n \notin m$

PROOF: Proposition 6.9.

- $\langle 2 \rangle 3. \ m \neq n$
- $\langle 2 \rangle 4. \ m \in n$

PROOF: Trichotomy.

**Proposition 6.30.** For natural numbers m, n and k, if m < n then m + k < n + k.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $m, n \in \omega$
- $\langle 1 \rangle 2$ . Assume: m < n
- $\langle 1 \rangle 3$ . m + 0 < n + 0
- $\langle 1 \rangle 4. \ \forall k \in \omega.m + k < n + k \Rightarrow m + k^+ < n + k^+$

PROOF: By Proposition 6.7.

**Proposition 6.31.** For natural numbers m, n and k, if m < n and  $k \neq 0$  then mk < nk.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $m, n \in \omega$
- $\langle 1 \rangle 2$ . Assume: m < n
- $\langle 1 \rangle 3$ . m1 < n1
- $\langle 1 \rangle 4$ . For all  $k \in \omega$ , if  $k \neq 0$  and mk < nk then m(k+1) < n(k+1) PROOF:

$$m(k+1) = mk + m$$
  
 $< mk + n$  (Proposition 6.30)  
 $< nk + n$  (Proposition 6.30)  
 $= n(k+1)$ 

**Proposition 6.32.** For any nonempty set of natural numbers E, there exists  $k \in E$  such that  $\forall m \in E.k \leq m$ .

```
PROOF:
\langle 1 \rangle 1. Let: E \subseteq \omega
\langle 1 \rangle 2. Assume: there is no k \in E such that \forall m \in E.k \leq m.
        Prove: E = \emptyset
\langle 1 \rangle 3. \ \forall n \in \omega.n \notin E
   \langle 2 \rangle 1. Let: P(n) be the property: \forall m < n.m \notin E
   \langle 2 \rangle 2. P(0)
      Proof: Vacuous.
   \langle 2 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
       \langle 3 \rangle 1. Let: n \in \omega
      \langle 3 \rangle 2. Assume: \forall m < n.m \notin E
      \langle 3 \rangle 3. n \notin E
          PROOF: From \langle 1 \rangle 2.
      \langle 3 \rangle 4. \ \forall m < n+1.m \notin E
Proposition 6.33. Let n be a natural number. Let X be a proper subset of n.
Then there exists m < n such that X \sim m.
\langle 1 \rangle 1. Let: P(n) be the property: for every proper subset X \subseteq n, there exists
                 m < n such that X \sim m.
\langle 1 \rangle 2. P(0)
   Proof: Vacuous.
\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
   \langle 2 \rangle 1. Let: n \in \omega
   \langle 2 \rangle 2. Assume: P(n)
   \langle 2 \rangle 3. Let: X be a proper subset of n+1
   \langle 2 \rangle 4. Case: X - \{n\} = n
      PROOF: Then X = n so X \sim n < n + 1.
   \langle 2 \rangle 5. Case: X - \{n\} \subsetneq n
      \langle 3 \rangle 1. Pick m < n such that X - \{n\} \sim m
      \langle 3 \rangle 2. X \sim m or X \sim m+1
          PROOF: If n \in X then X \sim m + 1. If n \notin X then X \sim m.
П
Proposition 6.34. For every natural number n, we have n is not equivalent to
a proper subset of n.
\langle 1 \rangle 1. Let: P(n) be the property: every one-to-one function n \to n is onto.
\langle 1 \rangle 2. P(0)
   PROOF: The only function 0 \to 0 is \emptyset.
\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
```

 $\langle 2 \rangle 1$ . Let:  $n \in \omega$ 

```
\langle 2 \rangle 2. Assume: P(n)
\langle 2 \rangle 3. Assume: f: n+1 \rightarrow n+1 is one-to-one.
\langle 2 \rangle 4. Let: g: n \to n be the function
                                         g(k) = \begin{cases} f(k) & \text{if } f(k) < n \\ f(n) & \text{if } f(k) = n \end{cases}
   PROOF: If k < n and f(k) = n then f(n) < n since f is one-to-one.
\langle 2 \rangle 5. g is one-to-one.
   \langle 3 \rangle 1. Let: k, l < n
   \langle 3 \rangle 2. Assume: g(k) = g(l)
   \langle 3 \rangle 3. Case: f(k) < n and f(l) < n
      PROOF: Then f(k) = g(k) = g(l) = f(l) so k = l since f is one-to-one.
   \langle 3 \rangle 4. Case: f(k) < n and f(l) = n
      PROOF: Then f(k) = g(k) = g(l) = f(n) contradicting the fact that f is
      one-to-one.
   \langle 3 \rangle 5. Case: f(k) = n and f(l) < n
      Proof: Similar.
   \langle 3 \rangle 6. Case: f(k) = n and f(l) = n
      PROOF: Then k = l since f is one-to-one.
\langle 2 \rangle 6. q maps n onto n.
   Proof: \langle 2 \rangle 2
\langle 2 \rangle 7. f maps n+1 onto n+1.
   \langle 3 \rangle 1. Let: l < n+1
   \langle 3 \rangle 2. Case: l < n
      \langle 4 \rangle 1. PICK k < n such that g(k) = l
      \langle 4 \rangle 2. f(k) = l or f(n) = l
   \langle 3 \rangle 3. Case: l = n
      \langle 4 \rangle 1. Case: f(n) = n
         PROOF: Then l \in \operatorname{ran} f as required.
      \langle 4 \rangle 2. Case: f(n) < n
         \langle 5 \rangle 1. PICK k < n such that g(k) = f(n)
         \langle 5 \rangle 2. f(k) = n
```

Corollary 6.34.1. Equivalent natural numbers are equal.

### 6.4 Finite Sets

**Definition 6.35** (Finite). A set is *finite* iff it is equivalent to a natural number; otherwise, it is *infinite*.

**Proposition 6.36.** No finite set is equivalent to one of its proper subsets.

PROOF: From Proposition 6.34.

**Proposition 6.37.**  $\omega$  is infinite.

PROOF: Since the function that maps n to n+1 is a one-to-one correspondence between  $\omega$  and  $\omega - \{0\}$ .  $\square$ 

Proposition 6.38. Every subset of a finite set is finite.

PROOF: Proposition 6.33.

**Definition 6.39** (Number of Elements). For any finite set E, the number of elements in E,  $\sharp(E)$ , is the unique natural number such that  $E \sim \sharp(E)$ .

**Proposition 6.40.** Let E and F be finite sets. If  $E \subseteq F$  then  $\sharp(E) \leqslant \sharp(F)$ .

Proof: Proposition 6.33.  $\square$ 

**Proposition 6.41.** Let E and F be disjoint finite sets. Then  $E \cup F$  is finite and  $\sharp(E \cup F) = \sharp(E) \cup \sharp(F)$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let: P(n) be the statement:  $n \in \omega$  and for any  $m \in \omega$ , if  $E \sim m$ ,  $F \sim n$  and  $E \cap F = \emptyset$ , then  $E \cup F \sim m + n$
- $\langle 1 \rangle 2$ . P(0)
  - $\langle 2 \rangle 1$ . Let:  $m \in \omega$
  - $\langle 2 \rangle 2$ . Let:  $E \sim m$  and  $F \sim 0$
  - $\langle 2 \rangle 3. \ F = \emptyset$
  - $\langle 2 \rangle 4$ .  $E \cup F = E \sim m = m + 0$
- $\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)$ 
  - $\langle 2 \rangle 1$ . Let:  $n \in \omega$
  - $\langle 2 \rangle 2$ . Assume: P(n)
  - $\langle 2 \rangle 3$ . Let:  $m \in \omega$
  - $\langle 2 \rangle 4$ . Let:  $E \sim m$  and  $F \sim n+1$
  - $\langle 2 \rangle$ 5. Assume:  $E \cap F = \emptyset$
  - $\langle 2 \rangle 6$ . Pick  $f \in F$
  - $\langle 2 \rangle 7$ .  $F \{f\} \sim n$
  - $\langle 2 \rangle 8. \ E \cap (F \{f\}) = \emptyset$
  - $\langle 2 \rangle 9$ .  $E \cup (F \{f\}) \sim m + n$

Proof:  $\langle 2 \rangle 2$ 

 $(2)10. E \cup F \sim m+n+1$ 

Corollary 6.41.1. The union of two finite sets is finite.

PROOF: Since, if E and F are finite, then  $E \cup F = (E - F) \cup (E \cap F) \cup (F - E)$  and these are finite and disjoint.  $\square$ 

**Proposition 6.42.** If E and F are finite sets then  $E \times F$  is finite and  $\sharp(E \times F) = \sharp(E)\sharp(F)$ .

#### Proof:

 $\langle 1 \rangle 1$ . Let: P(n) be the statement:  $n \in \omega$  and for all  $m \in \omega$ , if  $E \sim m$  and  $F \sim n$  then  $E \times F \sim mn$ 

```
PROOF: If F \sim 0 then F = \emptyset so E \times F = \emptyset \sim 0.
\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
    \langle 2 \rangle 1. Let: n \in \omega
    \langle 2 \rangle 2. Assume: P(n)
    \langle 2 \rangle 3. Let: m \in \omega
    \langle 2 \rangle 4. Assume: E \sim m and F \sim n+1
    \langle 2 \rangle 5. Pick f \in F
    \langle 2 \rangle 6. F - \{f\} \sim n
    \langle 2 \rangle 7. E \times (F - \{f\}) \sim mn
   \langle 2 \rangle 8. \ E \times F = (E \times (F - \{f\})) \cup (E \times \{f\})
   \langle 2 \rangle 9. E \times \{f\} \sim m
   \langle 2 \rangle 10. E \times F \sim mn + m
       Proof: Proposition 6.41.
Proposition 6.43. For any finite sets E and F, we have E^F is finite and
\sharp(E^F) = \sharp(E)^{\sharp(F)}.
Proof:
\langle 1 \rangle 1. Let: P(n) be the property: n \in \omega and for all m \in \omega, if E \sim m and F \sim n
                   then E^F \sim m^n
\langle 1 \rangle 2. P(0)
   Proof: Since E^{\emptyset} = \{\emptyset\} \sim 1
\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
    \langle 2 \rangle 1. Let: n \in \omega
   \langle 2 \rangle 2. Assume: P(n)
    \langle 2 \rangle 3. Let: m \in \omega
    \langle 2 \rangle 4. Let: E \sim m and F \sim n+1
    \langle 2 \rangle5. Pick f \in F
    \langle 2 \rangle 6. F - \{f\} \sim n
   \langle 2 \rangle7. Let: \phi: E^F \to E^{F-\{f\}} \times E be the function \phi(g) = (g \upharpoonright (F - \{f\}), g(f))
   \langle 2 \rangle 8. \phi is a one-to-one correspondence
   \langle 2 \rangle 9. \ \sharp (E^F) = m^{n+1}
       Proof:
                         \sharp(E^F) = \sharp(E^{F - \{f\}} \times E)
                                    = \sharp (E^{F - \{f\}}) \sharp (E)
                                                                                (Proposition 6.42)
                                    = m^n m
                                                                                             (\langle 2 \rangle 2, \langle 2 \rangle 4)
                                    =m^{n+1}
```

Corollary 6.43.1. If E is finite then PE is finite and  $\sharp(PE) = 2^{\sharp(E)}$ .

**Proposition 6.44.** The union of a finite set of finite sets is finite.

PROOF:

 $\langle 1 \rangle 2$ . P(0)

```
\langle 1 \rangle 1. Let: P(n) be the property: for any set E, if E \sim n and every element of
                  E is finite, then \bigcup E is finite.
\langle 1 \rangle 2. P(0)
   PROOF: Since \bigcup \emptyset = \emptyset is finite.
\langle 1 \rangle 3. \ \forall n \in \omega. P(n) \Rightarrow P(n+1)
   \langle 2 \rangle 1. Let: n be a natural number.
   \langle 2 \rangle 2. Assume: P(n)
   \langle 2 \rangle 3. Let: E \sim n+1
   \langle 2 \rangle 4. Pick X \in E
   \langle 2 \rangle 5. E - \{X\} \sim n
   \langle 2 \rangle 6. \bigcup (E - \{X\}) is finite.
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 7. \bigcup E = \bigcup (E - \{X\}) \cup X
   \langle 2 \rangle 8. \bigcup E is finite.
      Proof: Corollary 6.41.1.
Proposition 6.45. Every nonempty finite set of natural numbers has a greatest
element.
Proof:
\langle 1 \rangle 1. Let: P(n) be the property: for every E \subseteq \mathbb{N}, if E \sim n then E has a
                  greatest element.
   PROOF: Since k is the greatest element of \{k\}.
\langle 1 \rangle 3. \ \forall n \geqslant 1.P(n) \Rightarrow P(n+1)
   \langle 2 \rangle 1. Let: n \geqslant 1
   \langle 2 \rangle 2. Assume: P(n)
   \langle 2 \rangle 3. Assume: E \subseteq \omega and E \sim n+1
   \langle 2 \rangle 4. Pick k \in E
   \langle 2 \rangle5. Let: l be the greatest element of E - \{k\}
   \langle 2 \rangle6. Either k or l is greatest in E.
```