Python For Data Analysis Introduction/Numpy

Imen Ouled Dlala

imen.ouled_dlala@devinci.fr

September 8, 2022

Teachers

- ► Managing Teacher:
 - ► Imen OULED DLALA
 - ► Email: imen.ouled_dlala@devinci.fr
- ▶ Teachers:
 - Abdellah Sabry
 - Email: sabry.abdellah@gmail.com
 - Yann Kervella
 - Email: yann.kervella.pro@gmail.com

Imen Ouled Dlala imen.ouled_dlala@devinci.fr

Schedule

- ▶ 6 face to face lectures of 1h30
- ▶ Pratical Works (PW) of 1h30 (10 online and 8 face to face) Following sequence:
 - Lecture1, PW1
 - Lecture 2, PWO1, PW2
 - Lecture 3, PWO2, PWO3, PWO4, PW3
 - Lecture 4. PWO5. PW4
 - Lecture 5, PWO6, PW5
 - ► Lecture 6, PWO7, PW6, PW08, PW7, PW09, PW8, PW010

Imen Ouled Dlala imen.ouled_dlala@devinci.fr 3 / 26

General Plan

- 1. Introduction
- 2. Numpy library
- 3. Pandas library
- 4. Data analysis and visualization
 - Seaborn, Matplotlib, Bokeh
- 5. Webscrapping
- 6. Machine learning and Datasets
 - Scikit-learn
- 7. API Django / Flask

Imen Ouled Diala

Overview

- 1 Introduction
 - What is data analysis?
 - Data Analysis Tools
 - Why Python for Data Analysis?
 - The data analysis process
 - Development Environment :Jupyter
- 2 Introduction to Numpy
 - Dimensions and shapes
 - Indexing and Slicing
 - Boolean Indexing
 - Statistics/Mathematical functions

Imen Ouled Diala

Overview

- Introduction
 - What is data analysis?
 - Data Analysis Tools
 - Why Python for Data Analysis?
 - The data analysis process
 - Development Environment : Jupyter
- 2 Introduction to Numpy

Imen Ouled Diala

What is data analysis?

A process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making.

Definition by Wikipedia

What is data analysis?

A process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making. Definition by Wikipedia

What is data analysis?

A process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making. Definition by Wikipedia

Data Analysis Tools

Auto-managed closed tools

Programming languages

Data Analysis Tools

Auto-managed closed tools Programming languages

Why Python for Data Analysis? why would we choose python over R or Julia?

- Very simple and intuitive to learn
- "correct" language
- powerful libraries (not just for data analysis)
- ► free and open source
- amazing community, docs and conferences

Imen Ouled Dlala imen.ouled_dlala@devinci.fr 12 / 26

When to choose R? Python, sadly, is not always the answer

- ▶ When R studio is needed
- ► When dealing with advanced statistical methods
- ► When extreme performance is needed

Imen Ouled Dlala imen.ouled_dlala@devinci.fr 13 / 26

The data analysis process **Data Extraction** Data Cleaning Data Wrangling **Analysis** Action SQL Missing values and Hierarchical Data Exploration **Building Machine** Scrapping empty data Handling categorical Building statistical Learning Models File Formats Data imputation data models Feature Engineering

- o CSV
- JSON
- o XML
- Consulting APIs
- **Buying Data**
- Distributed Databases

- Incorrect types
- Incorrect or invalid values
- Outliers and non relevant data
- Statistical sanitization

- Reshaping and transforming structures
- Indexing data for quick access
- · Merging, combining and joining data

- Visualization and representations
- Correlation vs Causation analysis Hypothesis testing
- Statistical analysis
- Reporting

- Moving ML into production
- Building ETL pipelines
- Live dashboard and reporting

14 / 26

Decision making

How to use jupyter notebooks

Sign in to Ana

Overview

- Introduction
- 2 Introduction to Numpy
 - Dimensions and shapes
 - Indexing and Slicing
 - Boolean Indexing
 - Statistics/Mathematical functions

Imen Ouled Dlala imen.ouled_dlala@devinci.fr

Numpy: Numeric computing library

NumPy (Numerical Python) is one of the core packages for numerical computing in Python. Pandas, Matplotlib, Statmodels and many other Scientific libraries rely on NumPy..

It is a library that provides a high-performance multidimensional array object, and tools for working with these arrays.

ND Array

1Darray

ndarray is much faster and better for scientific calculation.

2Darray

4	Α	В	C	D
1	Segment	Country	Product	Discount Band
3	Government	Canada	Carretera	None
4	Government	Germany	Carretera	None
5	Midmarket	France	Carretera	None
6	Midmarket	Germany	Carretera	None
7	Midmarket	Mexico	Carretera	None
8	Government	Germany	Carretera	None
9	Midmarket	Germany	Montana	None
10	Channel Partners	Canada	Montana	None
11	Government	France	Montana	None
12	Channel Partners	Germany	Montana	None
13	Midmarket	Mexico	Montana	None
14	Enterprise	Canada	Montana	None
10	Conall Dunings	Mandag	Montono	Mone

3Darray

Dimensions and shapes

ndarray.shape

$$\text{ndim} = 1 \\
 \text{shape} = (2,)$$

$$ndim = 3$$
 $shape = (3, 3, 3)$

shape is a tuple!

shape[0]=2 shape[1]=4

Indexing and Slicing

A[line,column]

A[0,0]

A[2,1]

Indexing and Slicing

A[start:end,start:end]

A[:,0]

A[0:2,0:2]

A[:,1:] A[:,-2:]

Indexing and Slicing

 $A[\underline{\mathsf{start}}.\underline{\mathsf{end}}.\underline{\mathsf{step}},\underline{\mathsf{start}}.\underline{\mathsf{end}}.\underline{\mathsf{step}}]$

A[::2,::2]

Boolean Indexing

Λ	
Δ	
$\overline{}$	

5	4	5
4	4	4
5	4	5

$$A < 5 \rightarrow$$

F	Т	F
Т	Т	Т
F	Т	F

$$\mathsf{A}[\mathsf{A}<\mathsf{5}]=\mathsf{10}\to$$

5	10	5
10	10	10
5	10	5

Statistics/Mathematical functions

Statistics:

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.statistics.html

Mathematical functions:

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.math.html

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < 回 る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ < □ る の ○ □ <

End

Good Lecture!

Imen Ouled Dlala