work-008

n次正方行列 Hが $H^T=H$ を満たすとき、H を対称行列という。n次正方行列 Uが $U^T=U^{-1}$ を満たすとき、U を直交行列という。

- 1. H の異なる固有値に属する固有ベクトルは直交することを証明せよ。
- 2. 対称行列 H の正規化した固有ベクトルを列ベクトルとする行列 P は直交行列である事を証明せよ。(ヒント: $U^TU=I$ (I は単位行列))
- 3. 任意の $m{u}\in\mathbb{R}^n$ 対して $\|m{U}m{u}\|=\|m{u}\|$ (直交行列のノルム普遍性) が成り立つことを証明せよ。 ここで、 $\|m{u}\|=\sqrt{m{u}^Tm{u}}$ である。