```
In [230]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import sklearn as sk
   from sklearn.preprocessing import OneHotEncoder
   from sklearn.compose import make_column_transformer
   from sklearn.model_selection import cross_val_score
   from sklearn.pipeline import make_pipeline
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn import metrics
```

In [231]: train_df = pd.read_csv('C:/Users/Dell/Desktop/Titanic/train.csv')
test_df = pd.read_csv('C:/Users/Dell/Desktop/Titanic/test.csv')

In [232]: test_df.head()

Out[232]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	(
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	\$
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	(
3	895	3	Wirz, Mr. Albert	male	27.0	o	0	315154	8.6625	NaN	:
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	ş

In [255]: test_df.shape

Out[255]: (418, 11)

In [233]: train_df.head()

Out[233]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	o	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na

localhost:8888/notebooks/Untitled.ipynb?kernel_name=python3#

In [234]: train_df.tail()

Out[234]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148
890	891	0	3	Dooley, Mr. Patrick	male	32.0	o	o	370376	7.75	NaN
4											•

In [235]: train_df.describe()

Out[235]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [236]: train_df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
           #
               Column
                             Non-Null Count
                                             Dtype
                             -----
           0
               PassengerId 891 non-null
                                             int64
               Survived
                             891 non-null
           1
                                             int64
               Pclass
           2
                             891 non-null
                                             int64
           3
               Name
                             891 non-null
                                             object
           4
                                             object
               Sex
                             891 non-null
           5
               Age
                             714 non-null
                                             float64
           6
               SibSp
                             891 non-null
                                             int64
           7
               Parch
                             891 non-null
                                             int64
           8
               Ticket
                             891 non-null
                                             object
           9
                             891 non-null
                                             float64
               Fare
           10 Cabin
                             204 non-null
                                             object
           11 Embarked
                             889 non-null
                                             object
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.7+ KB
In [237]: train_df.isnull().sum()
Out[237]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                          177
          Age
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
                            2
          dtype: int64
In [238]: | train_df = train_df.dropna(axis=0, subset=['Embarked'])
In [239]: X = train_df[['Pclass','Sex','Embarked']]
          y = train df.Survived
In [240]: | X.shape
Out[240]: (889, 3)
In [241]: y.shape
Out[241]: (889,)
```

```
In [242]: X.head()
```

Out[242]:

	Pclass	Sex	Embarked
0	3	male	S
1	1	female	С
2	3	female	s
3	1	female	s
4	3	male	s

```
In [243]: y_test = test_df[['Pclass','Sex','Embarked']]
          column trans test = make column transformer((OneHotEncoder(), ['Sex', 'Embarked']
          column_trans_test.fit_transform(y_test)
Out[243]: array([[0., 1., 0., 1., 0., 3.],
                  [1., 0., 0., 0., 1., 3.],
                  [0., 1., 0., 1., 0., 2.],
                  [0., 1., 0., 0., 1., 3.],
                  [0., 1., 0., 0., 1., 3.],
                  [0., 1., 1., 0., 0., 3.]]
In [244]: column_trans = make_column_transformer((OneHotEncoder(), ['Sex', 'Embarked']), re
In [245]: | column trans.fit transform(X)
Out[245]: array([[0., 1., 0., 0., 1., 3.],
                  [1., 0., 1., 0., 0., 1.],
                  [1., 0., 0., 0., 1., 3.],
                  [1., 0., 0., 0., 1., 3.],
                  [0., 1., 1., 0., 0., 1.],
                  [0., 1., 0., 1., 0., 3.]]
In [246]: knn = KNeighborsClassifier(n neighbors = 5)
In [247]: | pipe = make_pipeline(column_trans, knn)
In [248]: | cross_val_score(pipe, X, y, cv = 10, scoring='accuracy').mean()
```

Out[248]: 0.7997063329928498

```
In [249]: k_range = list(range(1,31))
k_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors = k)
    pipe = make_pipeline(column_trans, knn)
    scores_mean = cross_val_score(pipe, X, y, cv = 10, scoring='accuracy').mean()
    k_scores.append(scores_mean)
    print(k_scores)
```

[0.7514300306435138, 0.7671859039836569, 0.7974846782431052, 0.801991828396322 9, 0.7997063329928498, 0.7985827374872317, 0.7761108273748722, 0.79749744637385 09, 0.7941521961184883, 0.8008937691521961, 0.7963993871297241, 0.7997701736465 78, 0.7930286006128702, 0.8008937691521961, 0.7952757916241062, 0.7952757916241 062, 0.7952757916241062, 0.8008937691521961, 0.799770173646578, 0.8042645556690 5, 0.7986465781409601, 0.8008937691521961, 0.80

```
In [250]: plt.plot(k_range, k_scores)
    plt.xlabel('Value of K for KNN')
    plt.ylabel('Cross-Validated Accuracy')
```



```
In [251]: knn = KNeighborsClassifier(n_neighbors = 30)
pipe = make_pipeline(column_trans, knn)
cross_val_score(pipe, X, y, cv = 10, scoring='accuracy').mean()
```

Out[251]: 0.8110061287027579

```
In [252]: pipe.fit(X,y)
Out[252]: Pipeline(steps=[('columntransformer',
                          ColumnTransformer(remainder='passthrough',
                                           transformers=[('onehotencoder',
                                                          OneHotEncoder(),
                                                          ['Sex', 'Embarked'])])),
                         ('kneighborsclassifier', KNeighborsClassifier(n_neighbors=3
          0))])
In [258]: |y_test_pred = pipe.predict(y test)
          y_test_pred
Out[258]: array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
                 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
                 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
                 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0,
                 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,
               dtype=int64)
In [260]: y_test_pred.shape
Out[260]: (418,)
In [264]:
          outcome = pd.DataFrame(y_test_pred)
          pass id = pd.read csv('test.csv')[['PassengerId']]
          result = pd.concat([pass id,outcome], axis=1)
          result.columns = ['PassengerId','Survived']
          result.to csv('result.csv',encoding='utf-8', columns=['PassengerId','Survived'],
```