Lecture 11

Michael Brodskiy

Professor: M. Onabajo

October 7, 2024

- npn Bipolar Junction Transistors
 - The collector "collects" electrons, and causes current to flow through the emitter
- npn Structure without Bias
 - At zero bias $(V_{be} = V_{bc} = 0)$, neither electrons nor holes can overcome this built-in voltage barrier of $\approx .7[V]$ (for Si)

*
$$I_B = I_C = 0$$
 (cutoff)

- npn Structure with Forward-Biased EBJ
 - When $(V_{be} = .65[V], V_c > V_b)$, electrons and holes can overcome the built-in voltage barrier between the base and emitter
 - * $I_b > 0$ and $I_e > I_b$ (due to n^+ emitter doping)
 - If the base region is very thin, the electrons injected by the emitter are collected by the positive voltage applied at V_c
 - * $I_c \approx I_E >> I_B$ (active region)
 - If the base region is too thick, many electrons injected at the emitter are lost by recombining with holes in the base before the voltage applied at V_c can collect them
 - * $I_c < I_E$ (active region with low α and $\beta \to \text{low gain}$)
- Achievement of high β during Fabrication
 - Thin base region
 - * Increases the collection efficiency for injected electrons
 - * Reduces the chance of electron recombination in the base
 - Heavily-doped emitter

- * $I_E/I_B \propto n(\text{emitter})/p(\text{base}) \propto \beta$
- Doping concentrations are difficult to control precisely
 - * Current gain is not uniform among BJTs (exception: when the BJTs are all fabricated on the same integrated circuit → small variations)

• The Early Effect

- As \mathcal{V}_c increases, the depletion width of the B-C junction widens
 - * Base width becomes more narrow
 - * Increased collection efficiency
 - * Finally, I_c/I_b increases (higher β)