

FCC 15B TEST REPORT No. I19Z62205-EMC01

for

TCL Communication Ltd.

HSUPA/HSDPA/UMTS Quad Bands/GSM Quad Bands/LTE 10 bands

mobile phone

Model Name: T770H

FCC ID: 2ACCJN038

with

Hardware Version: 03

Software Version: 3C24

Issued Date: 2020-03-09

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z62205-EMC01	Rev.0	1 st edition	2020-03-06
I19Z62205-EMC01	Rev.1	Changed FCC ID. Changed LTE bands. Added LTE band 5 idle Radiated Emission test	2020-03-09

CONTENTS

1.	TEST LABORATORY	. 4
1.1.	TESTING LOCATION	. 4
1.2.	TESTING ENVIRONMENT	. 4
1.3.	PROJECT DATA	. 4
1.4.	SIGNATURE	. 4
2.	CLIENT INFORMATION	. 5
2.1.	APPLICANT INFORMATION	. 5
2.2.	MANUFACTURER INFORMATION	. 5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 6
3.1.	ABOUT EUT	. 6
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	. 6
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 6
3.4.	EUT SET-UPS	. 8
4.	REFERENCE DOCUMENTS	. 9
4.1.	REFERENCE DOCUMENTS FOR TESTING	. 9
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	11
7.	TEST EQUIPMENTS UTILIZED	12
ANI	NEX A: MEASUREMENT RESULTS	13
ANI	NEX B: PERSONS INVOLVED IN THIS TESTING	28

1. Test Laboratory

1.1. Testing Location

Location 1: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China 100191

1.2. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2019-12-30 Testing End Date: 2020-03-01

1.4. Signature

An Hui

(Prepared this test report)

Wang Junqing

(Reviewed this test report)

Liu Baodian

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code: /

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code:

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description HSUPA/HSDPA/UMTS Quad Bands/GSM Quad Bands/LTE 10

bands mobile phone

Model Name T770H

FCC ID 2ACCJN038

Power Supply 3.85V DC by Battery

This device contains the receivers which tune and operate between 30MHz-960MHz in the following bands:

GSM850MHz, WCDMA850MHz, LTE band 5.

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	015650000200621	03	3C24

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Note
AE1	Battery	/	TLp038D7
AE2	Battery	/	TLp038D1
AE3	Charger	/	UC13EU
AE4	Charger	/	UC13UK (No test)
AE5	Charger	/	UC13US (No test)
AE6	Charger	/	UC13AU (No test)
AE7	USB Cable	/	CDA0000128C1
AE8	USB Cable	/	CDA0000128C2
AE9	Headset	/	SOCL110WTT-EU

^{*}AE ID: is used to identify the test sample in the lab internally.

AE1

Model TLp038D7

Manufacturer

Capacitance 3860mAh Nominal voltage 3.85V

AE2

Model TLp038D1

Manufacturer

Capacitance 3860mAh Nominal voltage 3.85V

AE3

Model UC13EU

Manufacturer PUAN

Length of cable /

AE4

Model UC13UK
Manufacturer PUAN
Length of cable /

AE5

Model UC13US
Manufacturer PUAN
Length of cable /

AE6

Model UC13AU
Manufacturer PUAN
Length of cable /

AE7

Model CDA0000128C1

Manufacturer Juwei Length of cable /

AE8

Model CDA0000128C2
Manufacturer Shenghua

Length of cable /

AE9

Model SOCL110WTT-EU

Manufacturer TES Length of cable /

*AE ID: is used to identify the test sample in the lab internally.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.2	EUT6 + AE1/AE2 + AE3 + AE7/AE8	Charger
Set.3	EUT6 + AE1/AE2 + AE7 + AE6	USB + FM
Set.4	EUT6 + AE1/AE2 + AE8 + AE6	USB + FM

Note: T770H is a variant model based on T770B,According to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01; all results are cited from the initial model. The report number for initial model is I19Z62229-EMC01.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

•	-	
Reference	Title	Version
FCC Part 15, Subpart B	Radio frequency devices - Unintentional Radiators	10-1-16
		Edition
ANSI C63.4	American National Standard for	2014
	Methods of Measurement of Radio-	
	Noise Emissions from Law Voltage	

Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Note: The test methods have no deviation with standards.

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber SAC-1 (23 meters×17meters×10meters) did not exceed following limits along the EMC testing:

Min. = 15 °C, Max. = 35 °C
Min. = 15 %, Max. = 75 %
0.014MHz - 1MHz, >60dB;
1MHz - 1000MHz, >90dB.
> 2 MΩ
< 4Ω
< ± 4 dB, 3m/10m distance,
from 30 to 1000 MHz
Between 0 and 6 dB, from 1GHz to 18GHz
Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz, >60dB;
	1MHz-1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Р		Pass
Verdict Column	NA	Not applicable
	F	Fail
	BR	Re-use test data from basic model report.

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Radiated Emission	15.109(a)	A.1	BR	1
2	Conducted Emission	15.107(a)	A.2	BR	1

7. Test Equipments Utilized

NO.	Description	TYPE	SERIES NUMBER	MANUFACTURE	CAL DUE DATE	CALIBRATI ON INTERVAL
1	Test Receiver	ESCI 3	100344	Rohde & Schwarz	2020-02-14	1 year
2	LISN	ENV216	101200	Rohde & Schwarz	2020-04-27	1 year
3	EMI Antenna	VULB 9163	9163-1222	Schwarzbeck	2020-03-14	1 year
4	EMI Antenna	3115	00167250	ETS-Lindgren	2020-05-14	1 year
5	Test Receiver	ESU26	100235	Rohde & Schwarz	2020-02-27	1 year
6	PC	OPTIPLEX 380	2X1YV2X	DELL	N/A	N/A
7	Printer	P1606dn	VNC3L52122	HP	N/A	N/A
8	Keyboard	L100	CN0RH6596589 07ATOI40	DELL	N/A	N/A
9	Mouse	M-UAE119	LZ935220ZRC	Lenovo	N/A	N/A

Note:

The Test Receiver which series number is 100344 was before the CAL. DUE DATE when used.

The Test Receiver which series number is 100235 was before the CAL. DUE DATE when used.

Test Item	Test Software and Version	Software Vendor	
Radiated Continuous Emission	EMC32 V9.01.0	R&S	
Conducted Emission	EMC32 V8.52.0	R&S	

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission

Reference

FCC: CFR Part 15.109(a).

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (charging mode and FM mode of MS) at distances of 10 meters(for 30MHz-1GHz) and 3 meters (for above 1GHz) is tested. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 8.3.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3/10 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode:

The MS is operating in the charging mode. During the test MS is connected to a charger in the case of charging mode.

The EUT was tested while operating in licensed band Rx mode. All licensed band receivers that tune in the range of 30MHz-960MHz, as listed in Section 2.2, are investigated. Only the worst case emissions are reported.

All equipment is placed on the test table top and arranged in a typical configuration in accordance with ANSI C63.4-2014 and manipulated to obtain worst case emissions.

A.1.3 Measurement Limit

Frequency range	Field strength limit (μV/m)						
(MHz)	Quasi-peak	Average	Peak				
30-88	100						
88-216	150						
216-960	200						
960-1000	500						
>1000		500	5000				

Note: the above limit is for 3 meters test distance. 10 meters' limit is got by converting.

A.1.4 Test Condition

Frequency range (MHz)	RBW/VBW	Sweep Time (s)	Detector
30-1000	120kHz (IF Bandwidth)	5	Peak/Quasi-peak
Above 1000	1MHz/1MHz	15	Peak, Average

A.1.5 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

Result = $P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

G_A: Antenna factor of receive antenna

G_{PL}: Path Loss

P_{Mea}: Measurement result on receiver.

Measurement uncertainty (worst case): 30MHz-1GHz: 5.16dB, 1GHz-18GHz: 5.44dB, *k*=2.

Measurement results for Set.2:

Charging and GSM850MHz idle QP detector

QuasiPeak	Limit	Margin	Height	Pol	Azimuth
(dB μ V/m)	(dB μ V/m)	(dB)	(cm)		(deg)
14.41	30.00	15.59	106.0	V	300.0
14.83	30.00	15.17	325.0	V	18.0
13.86	30.00	16.14	125.0	V	165.0
10.34	33.50	23.18	105.0	V	21.0
10.85	33.50	22.67	109.0	V	287.0
18.47	36.00	17.55	400.0	V	105.0
	(dB μ V/m) 14.41 14.83 13.86 10.34 10.85	(dB μ V/m) (dB μ V/m) 14.41 30.00 14.83 30.00 13.86 30.00 10.34 33.50 10.85 33.50	(dB μ V/m) (dB μ V/m) (dB) 14.41 30.00 15.59 14.83 30.00 15.17 13.86 30.00 16.14 10.34 33.50 23.18 10.85 33.50 22.67	(dB μ V/m) (dB μ V/m) (dB) (cm) 14.41 30.00 15.59 106.0 14.83 30.00 15.17 325.0 13.86 30.00 16.14 125.0 10.34 33.50 23.18 105.0 10.85 33.50 22.67 109.0	(dB μ V/m) (dB μ V/m) (dB) (cm) 14.41 30.00 15.59 106.0 V 14.83 30.00 15.17 325.0 V 13.86 30.00 16.14 125.0 V 10.34 33.50 23.18 105.0 V 10.85 33.50 22.67 109.0 V

Charging and GSM850MHz idle Average detector

Frequency	Dooult(dD\//m)	G_PL	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	Result(dB _μ V/m)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17900.833	35.2	-18.5	45.6	8.100	54.00	Н
17997.167	35.0	-17.7	45.6	7.100	54.00	Н
17912.733	35.0	-18.5	45.6	7.900	54.00	V
17933.700	35.0	-17.7	45.6	7.100	54.00	Н
17832.833	34.9	-18.5	45.6	7.800	54.00	Н
17898.567	34.8	-18.5	45.6	7.700	54.00	Н

Charging and GSM850MHz idle Peak detector

Frequency	Dooult(dD\//m)	G_PL	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	Result(dB _μ V/m)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17881.000	46.6	-18.5	45.6	19.500	74.00	Н
17955.233	46.4	-17.7	45.6	18.500	74.00	Н
17781.833	46.4	-18.5	45.6	19.300	74.00	V
17979.600	46.3	-17.7	45.6	18.400	74.00	Н
17530.233	46.2	-19.2	45.6	19.800	74.00	Н
17280.900	46.1	-19.5	41.5	24.100	74.00	Н

Measurement results for Set.3:

USB & FM Mode /QP detector

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)
31.806000	23.61	30.00	6.39	113.0	V	262.0
33.441000	22.13	30.00	7.87	105.0	V	-29.0
72.001000	17.53	30.00	12.47	187.0	V	262.0
146.645000	18.19	33.50	15.33	202.0	V	245.0
376.466000	27.05	36.00	8.97	377.0	V	-7.0
527.416000	28.11	36.00	7.91	102.0	V	3.0

USB & FM Mode & FM Mode/Average detector

		9				
Frequency	Result(dBμV	G _{PL} (dB)	G_A	P_{Mea} (dB μ	Limit	Polarity
(MHz)	/m)		(dB/m)	V/m)	(dBµV/m)	
2411.000	50.3	-38.9	27.7	61.500	54.00	Н
2410.433	50.3	-38.9	27.7	61.500	54.00	Н
2409.867	49.9	-38.9	27.7	61.100	54.00	V
2409.300	49.7	-38.9	27.7	60.900	54.00	Н
7205.567	49.3	-29.9	36.3	42.900	54.00	Н
2408.733	48.9	-38.9	27.7	60.100	54.00	Н

USB & FM Mode & FM Mode/Peak detector

Frequency	Result(dBμV/m)	G_{PL}	G_A	$P_{Mea}(dB \mu$	Limit	Polarity
(MHz)	Κεδαιι(αδμν/ιτι)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17959.200	56.2	-17.7	45.6	28.300	74.00	Н
17941.067	56.1	-17.7	45.6	28.200	74.00	Н
17944.467	56.1	-17.7	45.6	28.200	74.00	V
17825.467	56.0	-18.5	45.6	28.900	74.00	Н
17979.600	55.8	-17.7	45.6	27.900	74.00	Н
17956.933	55.7	-17.7	45.6	27.800	74.00	Н

Measurement results for Set.4:

USB & FM Mode QP detector

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)
31.949000	23.92	30.00	6.08	118.0	V	252.0
33.358000	23.33	30.00	6.67	125.0	V	243.0
33.474000	21.41	30.00	8.59	325.0	V	210.0
146.285000	21.23	33.50	12.29	105.0	V	199.0
222.924000	14.21	36.00	21.81	400.0	Н	78.0
365.135000	28.96	36.00	7.06	378.0	V	-16.0

USB & FM Mode Average detector

Frequency	Deput/dD\//m	G_PL	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	Result(dB _μ V/m)	(dB)	(dB/m)	V/m)	(dBµV/m)	
6053.533	46.2	-33.6	35.2	44.600	54.00	Н
17952.400	45.0	-17.7	45.6	17.100	54.00	Н
17962.600	44.8	-17.7	45.6	16.900	54.00	V
2413.833	44.8	-38.9	27.7	56.000	54.00	Н
17937.667	44.8	-17.7	45.6	16.900	54.00	Н
17951.833	44.7	-17.7	45.6	16.800	54.00	Н

USB & FM Mode Peak detector

Frequency	Result(dB _μ V/m)	G _{PL}	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	Κεδαιι(αδμν/ιτι)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17949.567	56.8	-17.7	45.6	28.900	74.00	Н
17960.900	56.4	-17.7	45.6	28.500	74.00	Н
17928.600	56.1	-17.7	45.6	28.200	74.00	V
17954.100	56.0	-17.7	45.6	28.100	74.00	Н
17951.267	55.9	-17.7	45.6	28.000	74.00	Н
17947.300	55.8	-17.7	45.6	27.900	74.00	Н

Measurement results for Set.2:

Charging and WCDMA 850MHz idle QP detector

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)
37.335000	11.92	30.00	18.08	225.0	V	-3.0
60.007500	15.25	30.00	14.75	125.0	V	64.0
97.348750	10.12	33.50	23.40	208.0	V	15.0
207.928750	10.92	33.50	22.60	225.0	V	-24.0
326.331250	13.46	36.00	22.56	103.0	V	60.0
664.256250	19.02	36.00	17.00	225.0	V	61.0

Charging and WCDMA 850MHz idle Average detector

Frequency	Result(dB _μ V/m)	G_{PL}	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	ινεσαιτ(ασμν/ιτι)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17996.033	33.4	-17.7	45.6	5.500	54.00	Н
17946.167	33.2	-17.7	45.6	5.300	54.00	Н
17994.333	33.2	-17.7	45.6	5.300	54.00	V
17935.967	33.1	-17.7	45.6	5.200	54.00	Н
17964.300	33.1	-17.7	45.6	5.200	54.00	Н
17988.100	33.1	-17.7	45.6	5.200	54.00	Н

Charging and WCDMA 850MHz idle Peak detector

Frequency	Result(dBμV/m)	G _{PL}	G_A	P _{Mea} (dB μ	Limit	Polarity
(MHz)	Κεδαιι(αδμν/ιτι)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17962.033	44.9	-17.7	45.6	17.000	74.00	Н
17969.400	44.5	-17.7	45.6	16.600	74.00	Н
17900.833	44.5	-18.5	45.6	17.400	74.00	V
17868.533	44.4	-18.5	45.6	17.300	74.00	Н
17952.967	44.2	-17.7	45.6	16.300	74.00	Н
17950.700	44.1	-17.7	45.6	16.200	74.00	Н

Measurement results for Set.2:

Charging and LTE band 5 idle QP detector

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)
49.818750	10.55	30.00	19.45	186.0	V	60.0
56.183750	13.59	30.00	16.41	125.0	V	-14.0
59.711250	15.67	30.00	14.33	107.0	V	30.0
96.317500	9.81	33.50	23.71	215.0	V	94.0
205.208750	9.81	33.50	23.71	110.0	V	120.0
610.236250	18.55	36.00	17.47	197.0	V	75.0

Charging and LTE band 5 idle Average detector

Frequency	Result(dBμV/m)	G_{PL}	G_A	$P_{Mea}(dB \mu$	Limit	Polarity
(MHz)	Κεδαιτ(αδμν/ιτι)	(dB)	(dB/m)	V/m)	(dBµV/m)	
17950.133	33.4	-17.7	45.6	5.500	54.00	Н
17986.967	33.1	-17.7	45.6	5.200	54.00	Н
17971.667	33.0	-17.7	45.6	5.100	54.00	V
17991.500	33.0	-17.7	45.6	5.100	54.00	Н
17981.867	33.0	-17.7	45.6	5.100	54.00	Н
17999.433	33.0	-17.7	45.6	5.100	54.00	Н

Charging and LTE band 5 idle Peak detector

Frequency (MHz)	Result(dBμV/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dB μ V/m)	Limit (dBµV/m)	Polarity
17998.867	33.1	-17.7	45.6	5.200	74.00	Н
17980.167	33.0	-17.7	45.6	5.100	74.00	Н
17938.233	33.0	-17.7	45.6	5.100	74.00	V
17988.667	33.0	-17.7	45.6	5.100	74.00	Н
17986.400	33.0	-17.7	45.6	5.100	74.00	Н
17951.267	33.0	-17.7	45.6	5.100	74.00	Н

Sample calculation: Peak detector, 17998.867MHz

Result = P_{Mea} (5.20dB μ V)+ G_A (45.6dB/m)+ G_{PL} (-17.7 dB) =33.1dB μ V/m

Charging and GSM850MHz Mode, Set.2

Figure A.1 Radiated Emission from 30MHz to 1GHz

Figure A.2 Radiated Emission from 1GHz to 18GHz

USB & FM Mode, Set.3

Figure A.3 Radiated Emission from 30MHz to 1GHz

Figure A.4 Radiated Emission from 1GHz to 18GHz

USB & FM Mode, Set.4

Figure A.5 Radiated Emission from 30MHz to 1GHz

Figure A.6 Radiated Emission from 1GHz to 18GHz

Charging and WCDMA 850MHz Mode, Set.2

Figure A.1 Radiated Emission from 30MHz to 1GHz

Figure A.2 Radiated Emission from 1GHz to 18GHz

Charging and LTE band 5 Mode, Set.2

Figure A.1 Radiated Emission from 30MHz to 1GHz

Figure A.2 Radiated Emission from 1GHz to 18GHz

A.2 Conducted Emission

Reference

FCC: CFR Part 15.107(a).

A.2.1 Method of measurement

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 7.3.

A.2.2 EUT Operating Mode

The MS is operating in the charging mode. During the test MS is connected to a charger in the case of charging mode.

A.2.3 Measurement Limit

Frequency of emission (MHz)	Conducted limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30 60 50					
*Decreases with the logarithm of the frequency					

A.2.4 Test Condition in charging mode

Voltage (V)	Frequency (Hz)					
120	60					

RBW/IF bandwidth	Sweep Time(s)
9kHz	1

A.2.5 Measurement Results

Measurement uncertainty: *U*=3.08dB, *k*=2.

Charging Mode, Set.2

Figure A.11 Conducted Emission

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.429000	38.9	N	20.0	18.3	57.3
0.541500	44.8	N	20.0	11.2	56.0
0.978000	41.3	L1	19.9	14.7	56.0
1.369500	36.9	L1	20.0	19.1	56.0
3.304500	37.3	L1	20.3	18.7	56.0
4.452000	36.9	L1	20.5	19.1	56.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.217500	37.0	N	20.0	15.9	52.9
0.325500	32.4	N	20.0	17.2	49.6
0.541500	38.0	N	20.0	8.0	46.0
0.978000	32.6	N	19.9	13.4	46.0
1.360500	29.4	N	20.0	16.6	46.0
2.179500	29.3	N	20.0	16.7	46.0

Charging Mode, Set.3

Figure A.12 Conducted Emission

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.424500	40.7	L1	20.0	16.6	57.4
0.474000	45.6	L1	20.0	10.9	56.4
1.176000	40.6	L1	19.9	15.4	56.0
1.383000	41.7	L1	20.0	14.3	56.0
2.130000	40.0	N	20.0	16.0	56.0
3.795000	35.9	N	20.4	20.1	56.0

Final Result 2

Frequency (MHz)	CAverage (dBμV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.429000	37.3	L1	20.0	9.9	47.3
0.469500	42.1	L1	20.0	4.4	46.5
0.784500	31.1	N	20.0	14.9	46.0
1.369500	31.3	L1	20.0	14.7	46.0
17.101500	35.9	N	24.6	14.1	50.0
17.709000	34.0	L1	24.7	16.0	50.0

USB&FM Mode, Set.4

Figure A.13 Conducted Emission

Final Result 1

That Nood T							
	Frequency	QuasiPeak	Line	Corr.	Margin	Limit	
	(MHz)	(dBµV)		(dB)	(dB)	(dBµV)	
	0.429000	39.7	N	20.0	17.5	57.3	
	0.496500	35.1	L1	20.0	21.0	56.1	
	1.032000	38.7	L1	19.9	17.3	56.0	
	1.365000	41.8	L1	20.0	14.2	56.0	
	2.364000	34.8	N	20.1	21.2	56.0	
	4.222500	31.4	N	20.5	24.6	56.0	

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.424500	33.7	L1	20.0	13.6	47.4
0.469500	42.0	N	20.0	4.5	46.5
0.906000	27.8	N	20.0	18.2	46.0
1.360500	32.2	N	20.0	13.8	46.0
2.364000	28.9	N	20.1	17.1	46.0
24.009000	34.2	N	25.5	15.8	50.0

ANNEX B: Persons involved in this testing

Test Item	Tester		
Conducted Continuous Emission	Shi Suolan		
Radiated Continuous Emission	Yan Hanchen, Li Pengfei, Shi Suolan		

^{***}END OF REPORT***