Asymmetric Cryptography

Lecture 4

RSA cryptosystem

- Let p, q be two different primes and n = pq and $\varphi = \varphi(n) = (p-1)(q-1)$;
- Let e, d be to integers such that ed mod $\varphi = 1$.
- \forall m \in {0, 1, ..., n-1}, if c = m^e mod n then m = c^d mod n, and vice versa.

Discrete Logarithm Problem – DLP

• $F_p, p \in \mathcal{D}$ is a field with a prime number of elements, finite field.

Proposition. Let $p \in \mathcal{D}$, $\exists g \in F_p, n \in \mathbb{N}$: $\forall x \in F_p, x \equiv g^n \pmod{p}$. g is called a primitive element or a generator.

Definition (DLP). Let g be a primitive root for F_p and let h be a nonzero element of F_p . The DLP is the problem of finding an exponent x such that $g^x \equiv h \pmod{p}$.

 Remark. The number x is called the discrete logarithm of h to the base g, denoted x = log_g(h), or index, ind_q(h).

Diffie-Hellman key exchange

Public Parameter Creation

A trusted party chooses and publishes a (large) prime p and an integer g having large prime order in F_p^{\ast}

Private Computations

Alice Bob

Choose a secret integer a. Choose a secret integer b.

Compute $A \equiv g^a \pmod{p}$. Compute $B \equiv g^b \pmod{p}$.

Public Exchange of Values

Alice sends A to Bob → A

B ← Bob sends to Alice

Further Private Computations

Compute the number $K \equiv B^a \pmod{p}$ Compute the number $K \equiv A^b \pmod{p}$

ElGamal public key cryptosystem

It is just a variation of Diffie-Hellman key-exchange protocol for encryption data

Paillier Cryptosystems

- $\lambda = \text{lcm}(p-1,q-1); n = pq; g \in Z_n^2.$
- $\mu = (L(g^{\lambda} \mod n^2)^{-1} \pmod n)$, where L(u)=(u-1)/n
- Public key: (n, g)
- Private key: (λ, μ)
- Encryption: $c = g^m r^n \mod n^2$.
- Decryption: $m = L(c^{\lambda} \mod n^2)\mu \mod n$.

Encrypted computing

- Computing without decryption.
- Using homomorphism property of cryptosystems if they have.
- Let G and H be groups. A function ϕ : G \rightarrow H is called a (group) homomorphism if it satisfies $\phi(g_1^*g_2) = \phi(g_1)^\circ \phi(g_2), \ \forall g_1, g_2 \in G.$

Homomorphism cryptosystems

- RSA: if $c_1=m_1^e \mod n$, $c_2=m_2^e \mod n$. Let $c=c_1c_2=m_1^em_2^e=(m_1m_2)^e \mod n$, then $c=c_1c_2$ is cipher text of m_1m_2 .
- Elgamal: if $(g_1^r, m_1 g_1^{xr})$, $(g_2^r, m_2 g_2^{xr})$. Let $(g_1^r g_2^r, m_1 g_1^{xr} m_2 g_2^{xr}) = (g_1^r g_2^r, m_1 g_2^{xr} g_1^{xr})$.
- Paillier:

```
E(m_1+m_2, r_1r_2)
=g_1^{m_1+m_2}(r_1r_2)^n = (g_1^{m_1}r_1^n)(g_2^{m_2}r_2^n) = E(m_1, r_1)E(m_2, r_2)
```