Watson gives Sherlock an array of integers. Given the endpoints of an integer range, for all M in that inclusive range, determine the minimum(abs(arr[i]-M) for all $1 \le i \le |arr|$)). Once that has been determined for all integers in the range, return the M which generated the maximum of those values. If there are multiple M's that result in that value, return the lowest one.

For example, your array arr = [3, 5, 7, 9] and your range is from p = 6 to q = 8 inclusive.

M	arr[1]-M	arr[2]-M	arr[3]-M	arr[4]-M	Min
6	3	1	1	3	1
7	4	2	0	2	0
8	5	3	1	1	1

We look at the Min column and see the maximum of those three values is ${\bf 1}$. Two ${\bf M}$'s result in that answer so we choose the lower value, ${\bf 6}$.

Function Description

Complete the *sherlockAndMinimax* function in the editor below. It should return an integer as described.

sherlockAndMinimax has the following parameters:

- arr: an array of integers
- p: an integer that represents the lowest value of the range for M
- q: an integer that represents the highest value of the range for $m{M}$

Input Format

The first line contains an integer n, the number of elements in arr.

The next line contains n space-separated integers arr[i].

The third line contains two space-separated integers \boldsymbol{p} and \boldsymbol{q} , the inclusive endpoints for the range of \boldsymbol{M} .

Constraints

$$1 \le n \le 10^2$$

 $1 \le arr[i] \le 10^9$
 $1 \le p \le q \le 10^9$

Output Format

Print the value of M on a line.

Sample Input

3 5 8 14 4 9

Sample Output

4

Explanation

$$arr = [5, 8, 14], range = [4 - 9]$$

M	arr[1]-M	arr[2]-M	arr[3]-M	Min
4	1	4	10	1
5	0	3	9	0
6	1	2	8	1
7	2	1	7	1
8	3	Θ	6	0
9	4	1	5	1

For M=4,6,7, or 9, the result is 1. Since we have to output the smallest of the multiple solutions, we print 4.

