

Facoltà di Ingegneria Informatica Università di Roma Tor Vergata

Relazione Ingegneria del Software 2 Machine Learning for Software Engineering

Deliverable 2

Camilli Michela 0286047

Indice

Introduzione

Descrizione del problema

Milestone 1

Reperimento e analisi dei dati Proportional Metriche

Milestone 2

Tecnica di valutazione Tecniche per aumentare l'accuratezza

Risultati ottenuti

Scelte d'analisi

BookKeeper

ZooKeeper

Valori medi metriche

Link GitHub e SonarCloud

Questa Deliverable ha lo scopo di fornire un'analisi di dati, su due repository Apache open-source e di valutare, in base a delle metriche calcolate, se esista una correlazione tra quest'ultime e l'insorgenza di bug nel codice. I progetti presi in cosiderazione sono stati:

- Apache BookKeeper
- Apache ZooKeeper

Tale studio è consistito di due fasi:

- Una prima fase devoluta al corretto reperimento dei dati, all'analisi della buggyness e al calcolo delle metriche necessarie;
- Una seconda fase in cui si è valutata l'accuratezza di alcuni modelli predittivi per la previsione della buggyness, tramite la combinazione di alcune tecniche date.

I dati presi in considerazione sono relativi a progetti open-source Apache e hanno necessitato di un'analisi approfondita per riuscire ad individuare quali classi, all'interno di tali progetti, fossero affette da bug.

Si è preso, dapprima, in considerazione il ciclo di vita di un bug:

Andando, quindi, a reperire i valori necessari per l'analisi di tale life-cycle da Jira o tramite l'ausisilio di Git, qualora nel primo non fossero disponibili.

In particolare, per andare a sopperire alla mancanza di dati relativi all'AV su Jira, si è sfruttato il metodo *Proportional* di tipo Increment, il quale utilizza l'intuizione per cui esiste una proporzione costante tra le versioni che passano tra l'IV e l'OV e tra quelle tra OV e FV (che, al contrario dei primi, sono noti).

Nello specifico, tale proporzione è pari a:

$$P = (FV - IV)/(FV - OV)$$

Tramite cui è stato possibile calcolare il valore di IV predetto uguale a:

$$IV = FV - (FV - OV) * P$$

Per entrambi i progetti, sono state considerate 11 metriche, necessarie per consentire ai classificatori di stimare la presenza o meno di bug per una classe, in una certa release. In particolare sono state selezionate:

- NR: Numero di revisioni;
- NAuth: Numero di autori;
- LOC_added: Somma sulle revisioni di LOC aggiunte (per una release);
- MAX_LOC_added: Massimo sulle revisioni di LOC aggiunte (per una release);
- AVG_LOC_added: Media sulle revisioni di LOC aggiunte (per una release);

- Churn: Somma sulle revisioni di LOC aggiunte rimosse;
- MAX_Churn: Valore massimo di Churn sulle revisioni;
- AVG Churn: Valore medio di Churn sulle revisioni;
- ChgSetSize: Numero di file committati insieme con la classe considerata;
- MAX_ChgSet: Valore massimo di ChgSet sulle revisioni;
- AVG_ChgSet: Valore medio di ChgSet sulle revisioni;

I dati ottenuti sono stati, quindi, inseriti in un apposito file con nome *Project*Dataset.csv.

Tecnica di valutazione

Per lo sviluppo di guesta parte della Deliverable è stato utilizzato il tool weka.

A seguito del calcolo delle metriche nella fase precedente, è stato. quindi, possibile creare dei training e testing set, con i dati contenuti nei file csv. convertiti in file arff.

Sono stati, in particolare, creati validi fold tramite l'utilizzo della tecnica Walk-Forward. Questa consiste nel dividere il data-set in parti, cronologicamente, in modo che, per predire le release successive, i classificatori siano addestrati su quelle, volta per volta. precedenti.

Ad ogni iterazione, infatti, tutti i dati presenti nelle release precedenti al fold da predire, sono usati come training set, mentre i dati relativi alla release attuale sono usati come testing set.

I classificatori considerati nei due progetti sono stati:

- RandomForest
- NaiveBayes
- lbk

Per aumentarne l'accuratezza, misurata in termini di *Precision*, *Recall*, *AUC* e *Kappa*, sono state utilizzate le seguenti tecniche:

- No Selection e Best First come Feature Selection;
- No Sampling, Oversampling, Undersampling e SMOTE come Balancing;
- No Cost Sensitive, Sensitive Threshold e Sensitive Learning come Sensitive Valuation, in cui la matrice dei costi prevede, in entrambi i casi, un peso 10 volte maggiore per un falso negativo rispetto a quello per un falso positivo.

Risultati Ottenuti

Per l'analisi dei risultati ottenuti, è stata graficata, tramite box-plot, l'accuratezza raggiunta con tutte le possibili configurazioni delle tecniche sovraelencate, in modo da capire quali combinazioni hanno portato ai modelli di predizione più accurati per il problema di classificazione considerato.

Risultati Ottenuti BOOKKEEPER-KAPPA

Le migliori configurazioni ottenute per Kappa sono state:

IBK, {No_Sampling, SMOTE}, Best_First

- P IBK, {No_Sampling, SMOTE}, {No_Cost_Sensitive, Sensitive_Learning, Sensitive Threshold}
- Random_Forest, {No_Sampling, SMOTE}, No_Cost_Sensitive

Risultati Ottenuti BOOKKEEPER-RECALL

Le migliori configurazioni ottenute per Recall sono state:

- IBK, {No_Sampling, SMOTE, Under_Sampling}, Best_First
- Random_Forest, {No_Sampling, SMOTE, Under Sampling}, No Features Selection

 Random_Forest, {No_Sampling, SMOTE, Under_Sampling}, {Sensitive_Learning, Sensitive Threshold}

Risultati Ottenuti BOOKKEEPER-ROC AREA

Le migliori configurazioni ottenute per AUC sono state:

- IBK, {No Sampling, SMOTE}, Best First
- IBK, {No_Sampling, SMOTE}, No Features Selection
- Random_Forest, No_Sampling, No Features Selection

- Naive_Bayes, {No_Sampling, SMOTE}, {No_Cost_Sensitive, Sensitive_Learning}
- Random_Forest, {No_Sampling, SMOTE}, {No_Cost_Sensitive, Sensitive_Learning}

Risultati Ottenuti BOOKKEEPER-PRECISION

Le migliori configurazioni ottenute per *Precision* sono state:

IBK, {No_Sampling, SMOTE}, {Best_First, No_Features_Selection}

Random_Forest, {No_Sampling, SMOTE}, {No_Cost_Sensitive}

Dai box-blot precedenti, emergono alcuni risultati:

- Per qualsiasi metrica di accuratezza, il classificatore IBK risulta presente nelle migliori configurazioni, in combinazione con le tecniche considerate;
- Le tecniche di balancing che, prevalentemente, hanno fornito i migliori risultati sono state, in egual misura, SMOTE e No_Sampling;
- La metrica di accuratezza ad aver maggiormente beneficiato delle tecniche di Sensitive Valuation è stata Recall;
- AUC è stata la metrica con il più ampio range interquartile.

Risultati Ottenuti zookeeper-kappa

Le migliori configurazioni ottenute per Kappa sono state:

 IBK, {No_Sampling, SMOTE}, No_Features_Selection

 Random_Forest, {No_Sampling, SMOTE}, No_Cost_Sensitive

Risultati Ottenuti

Le migliori configurazioni ottenute per Recall sono state:

- IBK, Under_Sampling, {Best_First, No Features Selection}
- Random_Forest, Under_Sampling, {Best_First, No_Features_Selection}

- IBK, Under_Sampling, {No_Cost_Sensitive, Sensitive_Learning, Sensitive_Threshold}
- Random_Forest, Under_Sampling, {No_Cost_Sensitive, Sensitive_Learning, Sensitive_Threshold}

Risultati Ottenuti zookeeper-roc area

Le migliori configurazioni ottenute per AUC sono state:

- IBK, {No_Sampling, SMOTE}, {Best_First, No_Features_Selection}
- Random_Forest, {No_Sampling, SMOTE}, {Best_First, No_Features_Selection}

- IBK,{No_Sampling, SMOTE}, {No_Cost_Sensitive, Sensitive_Learning, Sensitive_Threshold}
- Random_Forest, {No_Sampling, SMOTE, Under_Sampling}, {No_Cost_Sensitive, Sensitive_Learning}

Risultati Ottenuti zookeeper-precision

Le migliori configurazioni ottenute per *Precision* sono state:

 IBK, {No_Sampling, SMOTE}, No Features Selection

- IBK,{No_Sampling, SMOTE}, No_Cost_Sensitive
- Random_Forest, {No_Sampling, SMOTE}, No_Cost_Sensitive

Dai box-blot precedenti, emergono alcuni risultati:

- Per qualsiasi metrica di accuratezza, i classificatori IBK e Random_Forest risultano presenti nelle migliori configurazioni, in combinazione con le tecniche considerate;
- Le tecniche di balancing che, prevalentemente, hanno fornito i migliori risultati sono state, in egual misura, SMOTE e No_Sampling;
- La metrica di accuratezza ad aver maggiormente beneficiato delle tecniche di Sensitive Valuation è stata Recall;
- *Precision* è stata la metrica con il più ampio range interquartile.

Risultati Ottenuti Confronto valori medi KAPPA

Si pongono, quindi, a confronto, i valori medi di *Kappa* ottenuti sui diversi fold di dataset utilizzati secondo Walk-Forward per ciascun classificatore, nei due progetti considerati.

Risultati Ottenuti Confronto valori medi PRECISION

Si pongono, quindi, a confronto, i valori medi di *Precision* ottenuti sui diversi fold di dataset utilizzati secondo Walk-Forward per ciascun classificatore, nei due progetti considerati.

Risultati Ottenuti Confronto valori medi RECALL

Si pongono, quindi, a confronto, i valori medi di *Recall* ottenuti sui diversi fold di dataset utilizzati secondo Walk-Forward per ciascun classificatore, nei due progetti considerati.

Risultati Ottenuti Confronto valori medi AUC

Si pongono, quindi, a confronto, i valori medi di *AUC* ottenuti sui diversi fold di dataset utilizzati secondo Walk-Forward per ciascun classificatore, nei due progetti considerati.

Link GitHub e SonarCloud

Di seguito sono riportati i link della repository Github del progetto e dell'analisi dello stesso su SonarCloud.

- Repository GitHub
- Analisi Sonar