Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Лекция L6 Язык программирования для вычислимых функционалов

Вадим Пузаренко

21 октября 2021 г.

Мотивация

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Бестиповое λ -исчисление достаточно выразительно: к примеру, все вычислимые функции здесь можно сымитировать. Однако отсутствуют возможности в данном исчислении для верификации программ, поскольку отсутствует надлежащая семантика, а вместе с ней и простая модель для описания процессов. Простое типизированное исчисление имеет естественные модели, однако оно маловыразительно. В его рамках могут быть представлены только простейшие функции такие, как полиномы. Для того, чтобы появилась возможность в представлении вычислимых функций, здесь следует добавить константы.

Синтаксис РСБ

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

РСБ-типы

РСГ — простой язык типов с двумя атомарными типами:

 ω — тип натуральных чисел $\{0;1;2;\ldots\};$

 β — булев тип $\{\text{true, false}\}.$

Типы в РСF определяются, как и в простом типизированном исчислении, индуктивно по построению:

- $oldsymbol{\omega}$ и eta PCF-типы;
- ullet если σ , au PCF-типы, то и $(\sigma o au)$ PCF-тип.

Синтаксис РСБ

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Сначала для каждого типа σ возьмём счетное количество переменных v_0^σ , v_1^σ , ..., v_n^σ , ... данного типа. Далее, зададим следующие константы (σ — произвольный тип):

k_n : ω	для каждого $n\in\omega$
TRUE	две булевы константы
FALSE	
$\mathit{ISNULL}: (\omega o eta)$	
$SUCC:(\omega ightarrow\omega)$	
$PRED: (\omega ightarrow \omega)$	
$COND_{\sigma}:(eta ightarrow(\sigma ightarrow(\sigma ightarrow\sigma)))$	
$Y_{\sigma}: ((\sigma o \sigma) o \sigma)$	

Будем использовать буквы c, d для обозначения данных констант.

Синтаксис PCF

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Определение.

РСГ-термы определяются индукцией по построению:

- ullet переменные x^{σ} и константа c^{σ} являются PCF-термами типа σ ;
- $oldsymbol{0}$ если M PCF—терм типа $(\sigma o au)$ и N PCF—терм типа σ , то (MN) PCF—терм типа au;
- ullet если x^{σ} переменная и M PCF—терм типа au, то $\lambda x^{\sigma}.M$ PCF—терм типа $(\sigma o au)$.

Синтаксис PCF

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Примеры.

- Если $M:\beta$, $N:\sigma$ и $P:\sigma$ PCF—термы, то можно построить PCF—терм $(((COND_{\sigma}M)N)P)$. Для этого терма также используется запись **If M then N else P**.
- $(ISNULLk_n): \beta;$
- $(SUCCk_n) : \omega$;
- $(PREDk_n) : \omega$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Правила редукции

$(\mathit{ISNULLk}_0) o \mathit{TRUE}$	$(ISNULLk_{n+1}) \rightarrow FALSE$
$(SUCCk_n) o k_{n+1}$	$(PREDk_{n+1}) o k_n$
$(\lambda x.MN) \rightarrow [M]_N^{\times}$	$(YM) \rightarrow (M(YM))$
$((COND\ TRUE)N)P) \rightarrow N$	$((COND\ FALSE)N)P) \rightarrow P$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Правила редукции

$(\mathit{ISNULLk}_0) o \mathit{TRUE}$	$(\mathit{ISNULLk}_{n+1}) o \mathit{FALSE}$
$(SUCCk_n) o k_{n+1}$	$(PREDk_{n+1}) o k_n$
$(\lambda x.MN) \rightarrow [M]_N^{\times}$	$(YM) \rightarrow (M(YM))$
$((COND\ TRUE)N)P) \to N$	$((COND\ FALSE)N)P) \rightarrow P$

Правила контекста

$$\frac{M \to M'}{(MN) \to (M'N)} \qquad \frac{M \to M'}{(cM) \to (cM')}$$

(здесь $c \in \{SUCC, PRED, COND, ISNULL\}$).

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Правила редукции

$(\mathit{ISNULLk}_0) o \mathit{TRUE}$	$(\mathit{ISNULLk}_{n+1}) o \mathit{FALSE}$
$(SUCCk_n) o k_{n+1}$	$(PREDk_{n+1}) o k_n$
$(\lambda x.MN) \rightarrow [M]_N^{\times}$	$(YM) \rightarrow (M(YM))$
$((COND\ TRUE)N)P) \to N$	$((COND\ FALSE)N)P) \rightarrow P$

Правила контекста

$$\frac{M \to M'}{(MN) \to (M'N)} \quad \frac{M \to M'}{(cM) \to (cM')}$$

(здесь $c \in \{SUCC, PRED, COND, ISNULL\}$).

Пусть \to^* — транзитивное рефлексивное замыкание отношения \to : справедливо отношение $M \to^* N$, если найдётся последовательность термов $M = M_0, M_1, \ldots, M_n = N$ такая, что $M_i \to M_{i+1}$ для всех $i=0,1,\ldots,n-1$.

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Замечание.

- ullet Тип λ -терма сохраняется при редукции.
- Правило редукции применяется детерминированно, например, $(Y_{\omega}\lambda x^{\omega}.SUCC\,x) \to (\lambda x^{\omega}.SUCC\,x(Y_{\omega}\lambda x^{\omega}.SUCC\,x)) \to (SUCC(Y_{\omega}\lambda x^{\omega}.SUCC\,x)).$
- Невозможно применить редукцию к следующим РСГ-термам:
 - переменные x^{σ} и константы c;
 - РСF-термы вида (COND $_{\sigma}$ TRUE), (COND $_{\sigma}$ FALSE), ((COND $_{\sigma}$ TRUE)M), ((COND $_{\sigma}$ FALSE)M);
 - все PCF-термы, которые начинаются с переменной;
 - все PCF-термы вида $\lambda x^{\sigma}.M$.

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Для произвольного λ -терма M определим

$$\operatorname{eval}(M) = egin{cases} N, & \operatorname{если} M o^* N \text{ и к } N \text{ невозможно применить} \\ & \operatorname{редукцию} ; \\ \uparrow, & \operatorname{если редукционная цепь не обрывается.} \end{cases}$$

Прежде всего нас интересуют замкнутые λ -термы типов ω и β .

$$\operatorname{eval}(M) = egin{cases} c \in \{k_n, \operatorname{TRUE}, \operatorname{FALSE}\}, & \text{если цепь редукций} \\ & \text{для } M \text{ обрывается;} \\ \uparrow & \text{в противном случае.} \end{cases}$$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Наивная попытка

 $D_\omega=\mathbb{N},\ D_\beta=\mathbb{B},\ D_{(\sigma o au)}=(D_\sigma o D_ au).$ Пусть arrho — означивание переменных. Тогда

$\llbracket x^\sigma rbracket_arrho = arrho(x^\sigma)$	$\llbracket k_n \rrbracket_{\varrho} = n$
$[\![TRUE]\!]_{\varrho} = true$	$[FALSE]_{\varrho} = false$
$\llbracket \mathrm{ISNULL} \rrbracket_\varrho : \mathbb{N} \to \mathbb{B}$	$n \mapsto egin{cases} ext{true}, & ext{ecли } n = 0; \ ext{false}, & ext{ecли } n eq 0. \end{cases}$
$\llbracket \mathrm{SUCC} \rrbracket_{\varrho} : \mathbb{N} \to \mathbb{N}$	$n\mapsto n+1$
$\llbracket \text{COND}_{\sigma} \rrbracket : \mathbb{B} \times D_{\sigma} \times D_{\sigma} \to D_{\sigma}$	$(w,a,b)\mapsto egin{cases} a, & ext{если } w= ext{true}; \ b, & ext{если } w= ext{false}. \end{cases}$

$$[(M^{(\sigma \to \tau)}N^{\sigma})]_{\varrho} = [M^{(\sigma \to \tau)}]_{\varrho}([N^{\sigma}]_{\varrho}) \in D_{\tau}$$
$$[\lambda x^{\sigma}.M^{\tau}]_{\varrho} = (a \mapsto [M^{\tau}]_{\varrho[x^{\sigma} \mapsto a]} : D_{\sigma} \to D_{\tau}$$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Наивная попытка

А что делать с PRED и Y?

В случае с PRED ситуация не настолько серьезная, но имеет определённые препятствия:

pred :
$$\mathbb{N} \to \mathbb{N}$$
, $n \mapsto n-1$

является частичной функцией, которая не определена в нуле. Однако интерпретация может быть только всюду определенной функцией. Какие варианты?

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

<u>Наи</u>вная попытка

А что делать с PRED и Y?

В случае с PRED ситуация не настолько серьезная, но имеет определённые препятствия:

pred :
$$\mathbb{N} \to \mathbb{N}$$
, $n \mapsto n-1$

является частичной функцией, которая не определена в нуле. Однако интерпретация может быть только всюду определенной функцией. Какие варианты?

•
$$pred(0) = 0$$
;

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Наивная попытка

А что делать с PRED и Y?

В случае с PRED ситуация не настолько серьезная, но имеет определённые препятствия:

$$\mathrm{pred}: \mathbb{N} \to \mathbb{N}, \; n \mapsto n-1$$

является частичной функцией, которая не определена в нуле. Однако интерпретация может быть только всюду определенной функцией. Какие варианты?

- pred(0) = 0;
- другой вариант допустить использование частичных функций (см. препятствие выше).

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Новая попытка

Выход из дилеммы заключается в присоединении символа \perp для "не определено" и расширении семантических областей:

$$\mathbb{N}_{\perp} = \mathbb{N} \cup \{\perp\}, \ \mathbb{B}_{\perp} = \mathbb{B} \cup \{\perp\}.$$

Вадим Пузаренко

Новая попытка

Выход из дилеммы заключается в присоединении символа \perp для "не определено" и расширении семантических областей:

$$\mathbb{N}_{\perp} = \mathbb{N} \cup \{\perp\}, \ \mathbb{B}_{\perp} = \mathbb{B} \cup \{\perp\}.$$

Для каждой частичной функции $f:\mathbb{N}\to\mathbb{N}$ с областью задания $D_f\subseteq\mathbb{N}$ можем использовать всюду определённую функцию

$$ilde{f}(x) = egin{cases} f(x), & ext{ если } x \in D_f; \ ot & ext{в противном случае.} \end{cases}$$

В частности, имеется адекватная интерпретация для PRED: $\llbracket PRED \rrbracket_{\varrho} = \operatorname{pred}$, где

$$\operatorname{pred}(x) = egin{cases} x-1, & \operatorname{если} \ 0
eq x \in \mathbb{N}; \ & \\ \bot & \operatorname{в противном случае}. \end{cases}$$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

> > Если функция частичная, то ее можно доопределить до всюду определённой на \mathbb{N}_{\perp} . А что делать с функциями вида

$$g(x) = egin{cases} ot, & ext{если } x \in \mathbb{N}; \ 4, & ext{если } x = ot. \end{cases}$$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

> > Если функция частичная, то ее можно доопределить до всюду определённой на \mathbb{N}_{\perp} . А что делать с функциями вида

$$g(x) = egin{cases} ot, & ext{если } x \in \mathbb{N}; \ 4, & ext{если } x = ot. \end{cases}$$

Ограничиваемся рассмотрением только "правильных" функций.

К интерпретации Ү

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Так как $Y_\omega:((\omega\to\omega)\to\omega)$, должно выполняться $[\![Y_\omega]\!]:D_{(\omega\to\omega)}\to D_\omega$. Кроме того, $[\![Y_\omega]\!]([\![M]\!])=[\![M]\!]([\![Y_\omega]\!]([\![M]\!])$. Пусть $f=[\![M]\!]:D_\omega\to D_\omega$; тогда $[\![Y_\omega]\!](f)=f([\![Y_\omega]\!](f))$ и $[\![Y_\omega]\!](f)$ — неподвижная точка для f. Однако многие функции из $\mathbb{N}_\perp\to\mathbb{N}_\perp$ не имеют неподвижных точек. Выделим класс функций, имеющих "каноническую" неподвижную точку.

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Интерпретация типов

Атомарные типы ω и β интерпретируются низкими областями \mathbb{N}_{\perp} и \mathbb{B}_{\perp} соответственно; остальные типы $D_{(\sigma \to \tau)}$ — непрерывными функциями $f:D_{\sigma} \to D_{\tau} \in [D_{\sigma} \to D_{\tau}].$

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Интерпретация типов

Атомарные типы ω и β интерпретируются низкими областями \mathbb{N}_{\perp} и \mathbb{B}_{\perp} соответственно; остальные типы $D_{(\sigma \to \tau)}$ — непрерывными функциями $f:D_{\sigma}\to D_{\tau}\in [D_{\sigma}\to D_{\tau}].$

Интерпретации констант

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Интерпретации констант

$$\llbracket \mathbf{Y}_{\sigma} \rrbracket = \mathbb{Y}_{\sigma} : [D_{\sigma} \to D_{\sigma}] \to D_{\sigma} \qquad \qquad \mathbb{Y}_{\sigma}(f) = \bigsqcup_{n \in \mathbb{N}} f^{n}(\bot);$$

$$\llbracket \mathbf{ISNULL} \rrbracket = \mathbf{isnull} : \mathbb{N}_{\bot} \to \mathbb{B}_{\bot} \quad \mathbf{isnull}(x) = \begin{cases} \mathbf{true}, & \mathbf{echu} \ x = 0; \\ \mathbf{false}, & \mathbf{echu} \ x \in \mathbb{N} \setminus \{0\}; \\ \bot, & \mathbf{echu} \ x = \bot. \end{cases}$$

$$\llbracket \mathbf{COND}_{\sigma} \rrbracket = \mathbf{cond}_{\sigma} : \mathbb{B}_{\bot} \times D_{\sigma} \times D_{\sigma} \to D_{\sigma}$$

$$\mathbf{y}, \quad \mathbf{echu} \ x = \mathbf{true};$$

$$\mathbf{z}, \quad \mathbf{echu} \ x = \mathbf{false};$$

$$\bot, \quad \mathbf{echu} \ x = \bot.$$

Все функции, интерпретирующие константы, непрерывны.

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Интерпретация термов

- РСF-константы C интерпретируются, как указано выше. Если x^{σ} переменная, то $[\![x^{\sigma}]\!]_{\varrho} = \varrho(x^{\sigma})$.
- ② Если $M \equiv (N^{(\sigma \to \tau)} P^{\sigma})$ и уже заданы интерпретации $[\![N^{(\sigma \to \tau)}]\!]_{\varrho} \in D_{(\sigma \to \tau)} = [\![D_{\sigma} \to D_{\tau}]\!]$ и $[\![P^{\sigma}]\!]_{\varrho} \in D_{\sigma}$, то $[\![M]\!]_{\varrho} = [\![N]\!]_{\varrho} = [\![N]\!]_{\varrho} ([\![P]\!]_{\varrho}) \in D_{\tau}$.
- **②** Если $M \equiv \lambda x^{\sigma}.N^{\tau}$ и уже задана интерпретация $[\![N]\!]_{\varrho}$ для произвольного ϱ , то $[\![M]\!]_{\varrho} = [\![\lambda x.N]\!]_{\varrho} = (a \mapsto [\![N]\!]_{\varrho[x\mapsto a]} : D_{\sigma} \to D_{\tau})$ (позже будет доказано, что эта функция также непрерывна).

Лекция L6 Язык программирования для вычислимых функционалов

> Вадим Пузаренко

Спасибо за внимание.