AD-A134 847

RIA-83-U538

DRSMC-LEP-L(R)

AD A-134847

US Army Armament Research and Development Command Aberdeen Proving Ground, Maryland 21010

TECHNICAL REPORT ARCSL-TR-83058

EFFECT OF VISIBLE LIGHT ON THE DIMERIZATION OF COBALT (II) TETRASULFONATED PHTHALOCYANINE IN WATER

Prepared by

Reginald P. Seiders J. Richard Ward

Research Division

June 1983

Approved for public release; distribution unlimited

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
ARCSL-TR-83058		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
EFFECT OF VISIBLE LIGHT ON	THE	
DIMERIZATION OF COBALT (II)		
TETRASULFONATED PHTHALOC	YANINE IN	6. PERFORMING ORG. REPORT NUMBER
WATER 7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(a)
Reginald P. Seiders		
J. Richard Ward		
9. PERFORMING ORGANIZATION NAME AND ADDRES		10 500000000000000000000000000000000000
Commander/Chemical Systems Lab	7.	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ATTN: DRDAR-CLB-CA	Joratory	1L161101A71A Research
Aberdeen Proving Ground, Mary	land 21010	in Defense Systems
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Commander/Chemical Systems Lat	poratory	June 1983
ATTN: DRDAR-CLJ-IR	1 01010	13. NUMBER OF PAGES
Aberdeen Proving Ground, Mary	nt from Controlling Office)	15. SECURITY CI, ASS. (of this report)
		UNCLASSIFIED
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
		e-
Approved for public release; dis	tribution unlimited	d
17. DISTRIBUTION STATEMENT (of the abstract entered	d in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse alde if necessary a	and Identify by block symbol	
10mm		
Cobalt (II) tetrasulfonated phtha	locyanine I	Dyestuff
Photochemistry	J	JN-VIS spectrometry
Dimerization constants		canton and
		Spulus and the
20. ABSTRACT (Continue en reverse elde H necessary as		
Beelen and coworkers in the Net		
enhanced the rate of selective ox catalyzed by cobalt (II) tetrasulf		
workers speculated that visible is		
ducing more of the catalytically a	man de double, pro	

If Beelen and associates are correct, then it is possible that the values for

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

20. ABSTRACT (continued)

the dimerization constants of CoTSPC are in error, since the values were measured spectrophotometrically in the region of the spectrum where Beelen contends visible light promotes disaggregation. To test whether the dimerization constants are altered by the spectrophotometer the absorbance of a CoTSPC was measured with an HP8450A diodearray UV-VIS spectrophotometer. The HP8450A measures the spectrum from 200 to 800 nm continuously, so by comparing the spectrum of CoTSPC in the UV region with the tungsten lamp active and then inactive, one can see whether the visible light affects aggregation. It turned out that no change was observed in the spectrum of CoTSPC when the tungsten lamp was turned off, so the dimerization constants measured in the visible region of the spectrum are valid and not affected by the spectrophotometer.

PREFACE

This work was performed under Project 1L161101A71A, Research in Defense Sciences.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardward or software. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, Chemical Systems Laboratory, ATTN:
DRDAR-CLJ-IR, Aberdeen Proving Ground, Maryland 21010. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for United States Government purposes.

CONTENTS

]	Page	
1.	INTRODUCTION		7	
2.	EXPERIMENTAL	٠	7	
3.	RESULTS AND DISCUSSION	٠	7	
4.	CONCLUSIONS	٠	12	
	LITERATURE CITED	٠	15	
	DISTRIBUTION LIST	٠	17	
	LIST OF TABLES			
1	Peak Absorbances Measured for a 1.97 x 10 ⁻⁵ M Solution of CoTSPC at Various Temperatures		8	
2	Effect of Tungsten Lamp on Spectrum of 2.05 x 10 ⁻⁵ M CoTSPC Solution	•	11	
3	Best-Fit Values of the Molar Absorbances of Monomeric and Dimeric CoTSPC at 320 nm	٠	13	
4	Computation of Monomer and Dimer Concentration at 20.0° C Assuming Absorbance Ranges from 1.036 to 1.032	•	13	

EFFECT OF VISIBLE LIGHT ON THE DIMERIZATION OF COBALT (II) TETRASULPHONATED PHTHALOCYANINE IN WATER

1. INTRODUCTION

Beelen, daCosta Gomez, and Kuijer¹ recently reported that the rate of selective oxidation of mercaptoethanol by dioxygen, catalyzed by cobalt (II) tetrasulfonated phthalocyanine, is enhanced by a factor of two to four by light in the range 600 to 700 nm. Beelen and coworkers speculated that visible light promotes disaggregation of CoTSPC to form more of the catalytically active monomer. If Beelen and associates are correct, then it is possible that past measurements²-7 of the dimerization constant of CoTSPC are in error, since the dimerization constants were determined from absorbances measured near 660 nm, the region of the spectrum where light promotes disaggregation.

To test the hypothesis that visible light affects aggregation of CoTSPC, we measured the absorbance of CoTSPC with the HP 8450A diode-array spectrophotometer, which continuously measures the spectrum of a sample from 200 to 800 nm. One can monitor the spectrum of CoTSPC in the UV and see whether the UV spectrum changes when only the deuterium lamp is used.

2. EXPERIMENTAL

The CoTSPC was prepared by modifying a published procedure ⁸ as reported by Ward and Seiders. ^{6,7} Solutions of CoTSPC were prepared with distilled, deionized water.

Spectrophotometric measurements were made in 1-cm cells in a Hewlett-Packard HP 8450A UV-VIS spectrophotometer. The HP 8450A is a general-purpose, rapid-scanning instrument with a microcomputer controlling a photodiode array such that full spectra from 200 to 800 nm can be taken in one second. The sample is continuously illuminated by deuterium (UV) and tungsten lamps (visible); thus, one can see whether visible light affects the CoTSPC aggregation by comparing the spectrum in the UV with the tungsten lamp active and then turned off. A recent article discusses the advantages of diode-array spectrometry, 9 while Thomas 10 gives a detailed analysis of the theory and operation of the HP 8450A.

The solutions of CoTSPC were thermostatted with an HP 89100A temperature controller. The spectra were recorded on an HP 7470A plotter while absorbances at particular wavelengths were printed on an HP 2126A1P interactive terminal.

3. RESULTS AND DISCUSSION

In order to see whether visible light affects CoTSPC aggregation by monitoring a change in the UV spectrum, one must first establish that the UV spectrum is sensitive to changes in aggregation. To this end, the first experiment was done with a $1.97 \times 10^{-5} M$ solution of CoTSPC that was

thermostatted at various temperatures from 20°C to 84°C to see whether the UV spectrum changed as more monomer formed as the temperature increased. Figure 1 illustrates the results of this experiment, while table 1 summarizes the temperatures and the peak absorbances. One can see that the peak absorbance near 320 nm increases with monomer concentration, and an isosbestic point appears at 308 nm. It is also clear why past workers preferred to monitor at 660 nm; the change in the visible region is twice as great as in the UV portion.

Table 1. Peak Absorbances Measured for a 1.97 x 10⁻⁵M Solution of CoTSPC at Various Temperatures

Гетр	λmax	Absorbance	λmax	Absorbance
rc	nm		nm	
20.1	320	1.046	660	0.952
30.0	320	1.060	660	1.020
40.0	322	1.080	660	1.104
50.0	323	1.105	662	1.202
30.0	325	1.130	662	1.306
70.0	324	1.159	662	1.405
79.9	325	1.192	662	1.486
84.8	325	1.215	664	1.516

The next experiments compared the UV spectrum with the visible lamp active and then turned off. These experiments were also run at various temperatures in order to monitor the absorbance at the isosbestic point. If visible light only affects the aggregation of CoTSPC, the isosbestic should not change when the tungsten lamp is turned off; thus the isosbestic acts as a check on the precision of the experiments.

Figure 2 illustrates the spectra of CoTSPC at 20, 30, and 40° C with both lamps active and with only the deuterium lamp on. Table 2 lists the measured peak absorbances along with the absorbances at the isosbestic point. One can see that the peak absorbance is 0.002 or 0.003 absorbance unit greater with the tungsten lamp; however, the isosbestic point is 0.003 absorbance unit greater as well. If the peak absorbances are corrected to a common value for the isosbestic point, the peak absorbances are within 0.001 absorbance unit.

Figure 1. Absorption Spectrum of CoTSPC at Various Temperatures

10

Figure 2. Comparison of UV Absorption Spectrum Run With the Deuterium Lamp On and With Both the Deuterium and Tungsten Lamps Active

Table 2. Effect of Tungsten Lamp on Spectrum of 2.05 x 10⁻⁵M CoTSPC Solution

		Deuterium 1	Lamp	De	euterium and Tu	ngsten Lamps
Temp	λ	Absorbance	Absorbance, a Isosbestic	λ	Absorbance	Absorbance, a Isosbestic
°C	nm			nm		
20.0	320	1.033	0.980	319	1.035	0.983
30.0	321	1.049	0.980	321	1.052	0.983
40.0	323	1.071	0.979	322	1.071	0.983

^aIsosbestic point at 308 nm.

The next stage of our analysis attempts to estimate how much change in monomer and dimer concentration accompanies a change in absorbance of 0.001 or 0.002 absorbance unit.

The absorbance of a solution in a 1-cm cell containing only monomer and dimer is

$$A = \epsilon_{\mathbf{M}}[\mathbf{M}] + \epsilon_{\mathbf{D}}[\mathbf{D}]$$
 (1)

where

A = absorbance

 $_{\rm M}$ = molar absorption coefficinet of monomer, ${\rm M}^{-1}{\rm cm}^{-1}$,

 $_{\rm D}$ = molar absorption coefficient of dimer, ${\rm M^{-1}cm^{-1}}$,

M = monomer concentration, M, and

D = dimer concentraion, M.

The equilibrium between monomer and dimer is

$$K = [D]/[M]^2$$
 (2)

where $K = dimerization constant, M^{-1}$.

The total concentration of CoTSPC, [Co], is

$$[Co] = [M] + 2[D]$$
 (3)

Equations (2) and (3) can be combined to give the monomer concentrations in terms of total CoTSPC as

$$[M] = \frac{-1 + \sqrt{1 + 8K [Co]}}{4K}$$
 (4)

With equations (2) and (4), one can rewrite equation (1) in terms of the experimentally accessible [Co] as

$$A = \epsilon_{M} - \left(\frac{-1 + \sqrt{1 + 8K [Co]}}{4K} + \frac{\epsilon_{D}}{2}\right) \left[[Co] - \left(\frac{-1 + \sqrt{1 + 8K [Co]}}{4K}\right) \right]$$
 (5)

A nonlinear, least-squares program was used to find best-fit values of $\epsilon_{\rm M}$ and $\epsilon_{\rm D}$ at λ = 320 nm using absorbances measured at 320 nm at various temperatures. The independent variable in this calculation was the dimerization constant, K. Values of K at the measured temperatures were determined with values of $\Delta \rm H^o$ and $\Delta \rm S^o$ measured earlier. Table 3 summarized these calculations. Measurements were made at 49.9 and 68.8° C with the 2.05 x $10^{-5} \rm M$ CoTSPC solution in order to have additional points for fitting equation (5). As table 3 shows, the best-fit values of $\epsilon_{\rm M}$ and $\epsilon_{\rm D}$ at 320 nm are $58.4 \pm 0.3 \times 10^{3} \rm M^{-1} \ cm^{-1}$ and $85.3 \pm 0.4 \times 10^{3} \rm M^{-1} \ cm^{-1}$, respectively, with error given as the standard deviation of the mean which is an output of the nonlinear, least-squares program. The right hand column in table 3 compares the absorbances calculated with the measured absorbances, which are in reasonable agreement.

Using the best-fit values of $\varepsilon_{\rm M}$ and $\varepsilon_{\rm D}$ and a CoTSPC concentration of 2.05 x 10⁻⁵M, one can calculate how K, M, and D would change with a change in 0.002 absorbance unit from the measured value of 1.034 at 20° C. The results of these calculations are shown in table 4, where one can see that a change in absorbance of 0.002 absorbance unit produces less than 5 percent change in monomer concentration. Thus, one sees that if the visible light made a significant change in the dimerization of CoTSPC, one would have detected a measureable change in absorbance at 320 nm with a 2.05 x 10⁻⁵M CoTSPC solution. At minimum, these results show that earlier determinations were unaffected by visible-light-enhanced disaggregation of CoTSPC.

4. CONCLUSION

There is no evidence that visible light from a spectrophotometer alters the dimerization of CoTSPC. This means that previous determinations of the dimerization constant were unaffected by light from the spectrophotometer, and it raises doubt as to whether visible light enhances disaggregation of CoTSPC as claimed by Dutch workers.

Table 3. Best-Fit Values of the Molar Absorbances of Monomeric and Dimeric CoTSPC at 320 nm

Temp °C	K,M ⁻¹ , x 10 ⁻⁵⁸	A,exp't	A,cal'd ^b
20.0	3.123	1.034	1.033
30.0	1.579	1.051	1.051
49.9	0.461	1.088	1.092
68.8	0.163	1.133	1.131

Table 4. Computation of Monomer and Dimer Concentration at 20.0° C, Assuming Absorbance Ranges from 1.036 to 1.032

$A, \lambda = 320 \text{ nm}$	K,M ⁻¹ , x 10 ⁻⁵⁸	C_{M} , M, \times 10 6	$C_{\rm D}$, M, x 10^6
1.036	2.73	5.29	7.62
1.034 ^b	3.12	4.99	7.78
1.032	3.23	4.92	7.81

^aCalculated with $\epsilon_{\rm M}$ = 5.84·10 ⁴M⁻¹cm⁻¹, $\epsilon_{\rm D}$ = 95.3·10 ⁴M⁻¹cm⁻¹, and [Co]_T = 2.05·10 ⁵M.

^aCalculated with $\Delta H^{\circ} = -12.044$ cal/mole and $\Delta S = -15.943$ cal/mole -K.

^bCalculated with best-fit values of 58.4 ±0.3 x 10 3 M⁻¹ en for $\varepsilon_{\rm M}$ and 95.3 ±0.4 x 10 3 M⁻¹ en for $\varepsilon_{\rm D}$.

bExperimental value at 20.0° C

LITERATURE CITED

- 1. Beelen, T.P.M., daCosta Gomez, C.O. and Kuijer, M., "The Enhancement by Visible Light of the Catalytic Activity of Co(II)-Tetrasulfophthalocyanine on the Oxidation of Mercapto-ethanol," Recueil, J. Royal Netherlands Chem. Soc., 98, 521-522 (1979)/
- 2. Schelly, Z.A., Farina, R.D., and Eyring, E.M., "A Concentration Jump Method Study on the Kinetics of the Dimerization of the Tetrasodium Salt of Aqueous Cobalt(II)-4,4',4",4"'-Tetrasulfophthalocyanine", J.Phys. Chem., 74, 617-620 (1970).
- 3. Schelly, Z.A., Howard, D.J., Hemmer, P., and Exring, E.M., "Bonding in Dye aggregates. Energetics of the Dimerization of Aqueous Cobalt(II) 4,4',4",4"'-Tetrasulfophthalocyanine Ion," J. Phys. Chem., 74, 3040-3042 (1970).
- 4. Gruen, L.C. and Blagrove, R.J., "The Aggregation and Reaction with Oxygen of the Tetrasodium Salt of Cobalt Phthalocyanine-4,4',4",4"'-Tetrasulphonic Acid" Aust. J. Chem., 26, 319-323 (1973).
- 5. Abel, E.W., Pratt, J.M., and Whelan, R., "The Association of Cobalt (II) Tetrasulphophthalocyanine," J. Chem. Soc. (Dalton Trans.), 1976, 509-514.
- 6. Ward, J.R., and Seiders, R.P., "Simultaneous Determination of Molar Absorption Coefficients and Equilibrium Constants for Monomer-Dimer Equilibria," CSL Technical Report 82088, April 1983.
- 7. Ward, J.R., "Aggregation of Cobalt (II) Tetrasulfonated Phthalocyanine in Methanol-Water Solutions," CSL Technical Report, in press.
- 8. Weber, J.H., and Busch, D.H., "Complexes Derived from Strong-Field Legands XIX. Magnetic Properties of Transition Metal Derivatives of 4,4',4",4"'-Tetrasulfophthalocyanine." Inorg. Chem., 4, 468-471 (1965).
- 9. Haas, J.A., Perko, L.J., and Osten, D.E., "Spectroscopy Simplified" Industrial Research/Development, 67-70, May 1977.
- 10. Thomas, H.L., "Interactive UV-Visible Spectrophotometer," <u>Industrial</u> Research/Development, ______, 86-91, July 1979.
- 11. Moore, R.H. and Ziegler, R.K., "The Solution of the General Least-Squares Problem with Special Reference to High-Speed Computers," Los Alamos Scientific Laboratory Report LA-2367, March 1960.

DISTRIBUTION LIST 5

	Names	Copies	Names	Copies
CHEMIC	AL RESEARCH AND DEVELOPMENT	CENTER		
			DEPARTMENT OF THE ARMY	
ATTN:	DRSMC-CLB (A)	1		
ATTN:	DRSMC-CLB-C (A)	1	HQDA	
ATTN:	DRSMC-CLB-P (A)	1	ATTN: DAMO-NCC	1
ATTN:	DRSMC-CLB-PS (A)	1	WASH DC 20310	
ATTN:	DRSMC-CLB-R (A)	ï		
ATTN:	DRSMC-CLB-T (A)	1	HQDA	
ATTN:	DRSMC-CLB-TE (A)	1	Office of the Deputy Chief of Staff for	
ATTN:	DRSMC-CLC-B (A)	1	Research, Development & Acquisition	1
ATTN:	DRSMC-CLC-C (A)	1	ATTN: DAMA-CSS-C	1
ATTN:	DRSMC-CLF (A)	1	Washington, DC 20310	
ATTN:	DRSMC-CLJ-IL (A)	2		
ATTN:	DRSMC-CLJ-IR (A)	1	HQ Sixth US Army	
ATTN:	DRSMC-CLJ-M (A)	1	ATTN: AFKC-OP-NBC	1
ATTN:	DRSMC-CLN (A)	1	Presidio of San Francisco, CA 94129	
ATTN:	DRSMC-CLN-S (A)	1		
ATTN:	DRSMC-CLN-ST (A)	1	Commander	
ATTN:	DRSMC-CLT (A)	1	DARCOM, STITEUR	
ATTN:	DRSMC-CLY-A (A)	1	ATTN: DRXST-STI	1
ATTN:	DRSMC-CLY-R (A)	6	Box 48, APO New York 09710	
COPIES	FOR AUTHOR(S)		Commander	
DR	SMC-CLB-CA (A)	12	USASTCFEO	
RECORD	COPY: DRSMC-CLB-A (A)	1	ATTN: MAJ Mikeworth	1
			APO San Francisco 96328	
DEPART	MENT OF DEFENSE			
			Army Research Office	
Defens	e Technical Information Cen	ter	ATTN: DRXRO-CB (Dr. R. Ghirardelli)	1
ATTN:	DTIC-DDA-2	12	P.O. Box 12211	
Camero	n Station, Building 5		Research Triangle Park, NC 27709	
Alexan	dria, VA 22314			
			OFFICE OF THE SURGEON GENERAL	
Direct	or	•		
	e Intelligence Agency		Commander	
	DB-4G1	1	US Army Medical Bioengineering Research	1
Washing	gton, DC 20301		and Development Laboratory	
		1	ATTN: SGRD-UBD-AL, Bldg 568	1
			Fort Detrick, Frederick, MD 21701	

Commander		Director	
USA Medical Research Institute of		DARCOM Field Safety Activity	
Chemical Defense		ATTN: DRXOS-SE (Mr. Yutmeyer)	1
ATTN: SGRD-UV-L	1	Charlestown, IN 47111	
Aberdeen Proving Ground, MD 21010		,	
, , , , , , , , , , , , , , , , , , , ,		US ARMY ARMAMENT, MUNITIONS AND	
US ARMY MATERIEL DEVELOPMENT AND		CHEMICAL CENTER	
READINESS COMMAND		Osabb at Canad Other and	
MADINESS OFFICE		Commander	
Commander		US Army Armament, Munitions and	
HQ, DARCOM		Chemical Center	
ATTN: DRCED (BG Robinson)	1	ATTN: DRSMC-ASN (R)	1
	Ţ		
5001 Eisenhower Ave		ATTN: DRSMC-IRI-A (R)	1
Alexandria, VA 22333		ATTN: DRSMC-LEP-L (R)	1
		ATTN: DRSMC-SF (R)	1
Commander		Rock Island, IL 61299	
US Army Materiel Development and			
Readiness Command		Commander	
ATTN: DRCSF-P	1	US Army Dugway Proving Ground	
5001 Eisenhower Ave		ATTN: Technical Library (Docu Sect)	1
Alexandria, VA 22333		Dugway, UT 84022	
PM Smoke/Obscurants		US ARMY ARMAMENT RESEARCH AND	
ATTN: DRCPM-SMK-S	3	DEVELOPMENT CENTER	
Aberdeen Proving Ground, MD 21005			
		Commander	
Commander		US Army Armament Research and	
US Army Foreign Science & Technology Cent	er	Development Center	
ATTN: DRXST-MT3	1	ATTN: DRSMC-LCA-L (D)	1
220 Seventh St., NE		ATTN: DRSMC-LCE-C (D)	1
Charlottesville, VA 22901		ATTN: DRSMC-LCU-CE (D)	1
		ATTN: DRSMC-SCA-T (D)	1
Director		ATTN: DRSMC-SCF (D)	1
US Army Materiel Systems Analysis Activit	y	ATTN: DRSMC-SCP (D)	1
ATTN: DRXSY-MP	1	ATTN: DRSMC-SCS (D)	1
ATTN: DRXSY-CR (Mr. Metz)	1	ATTN: DRSMC-TDC (D) (Dr. D. Gyorog)	ī
Aberdeen Proving Ground, MD 21005		ATTN: DRSMC-TSS (D)	2
		ATTN: DRCPM-CAWS-AM (D)	1
Commander		Dover, NJ 07801	
US Army Missile Command			
Redstone Scientific Information Center		US Army Armament Research and	
ATTN: DRSMI-RPR (Documents)	1	Development Center	
Redstone Arsenal, AL 35809		Resident Operations Office	
,		ATTN: DRSMC-TSE-OA (Robert Thresher)	1
		National Space Technology Laboratories	
		NSTL Station, Mississippi 39529	
		note station, mississippi 37327	

Commander AMCCOM ATTN: DRSMC-QAC-E Aberdeen Proving Ground, MD 21010 Director	1	Commander US Army Infantry Center Directorate of Plans & Training ATTN: ATZB-DPT-PO-NBC Fort Benning, GA 31905	1
USA Armament Research and Development Center (BRL) AMCCOM ATTN: DRSMC-TSB-S Aberdeen Proving Ground, MD 21005	1	Commander USA Training and Doctrine Command ATTN: ATCD-N Fort Monroe, VA 23651 Commander	1
US ARMY TRAINING & DOCTRINE COMMAND Commandant US Army Infantry School ATTN: CTDD, CSD, NBC Branch	1	US Army Armor Center ATTN: ATZK-CD-MS ATTN: ATZK-PPT-PO-C Fort Knox, KY 40121	1
Commandant US Army Missile & Munitions Center and School ATTN: ATSK-CM Redstone Arsenal, AL 35809	1	Commander USA Combined Arms Center and Fort Leavenworth ATTN: ATZL-CAM-IM Fort Leavenworth, KS 66027 US ARMY TEST & EVALUATION COMMAND	1
Commander US Army Logistics Center ATTN: ATCL-MG ATTN: DLSIE Fort Lee, VA 23801	1	Commander US Army Test & Evaluation Command ATTN: DRSTE-CM-F ATTN: DRSTE-CT-T Aberdeen Proving Ground, MD 21005	1 1
Commandant US Army Chemical School ATTN: ATZN-CM-C ATTN: ATZN-CM-AFL Fort McClellan, AL 36205 Commander USAAVNC	1 2	Project Manager Theatre Nuclear Warfare Project Office ATTN: PM-23 (Dr. Patton) ATTN: TN-09C Navy Department Washington, DC 20360	1
ATTN: ATZQ-D-MS Fort Rucker, AL 36362 Commander US Army Infantry Center ATTN: ATSH-CD-MS-C Fort Benning, GA 31905	1	Commander Naval Explosive Ordnance Disposal Technology Center ATTN: AC-3 Indian Head, MD 20640	1

Officer-in-Charge	1	USAF TAWC/THL	1
Marine Corps Detachment	1	Eglin AFB, FL 32542	
Naval Explosive Ordnance Disposal		warn aa	
Technology Center		USAF SC	
Indian Head, MD 20640		ATTN: AD/YQ	1
		ATTN: AD/YQO (MAJ Owens)	1
Chief, Bureau of Medicine & Surgery		Eglin AFB, FL 32542	
Department of the Navy		and the same	
ATTN: MED 3C33	1	AD/XRO	1
Washington, DC 20372		Eglin AFB, FL 32542	
Commanding Officer		OUTSIDE AGENCIES	
Naval Weapons Support Center		OULUIDO HOBROLIO	
Applied Sciences Department		Battelle, Columbus Laboratories	
ATTN: Code 50C, Bldg 190	ï	ATTN: TACTEC	1
Crane, IN 47522	*	505 King Avenue	1
orane, in 47522		Columbus, OH 43201	
Commander		Widibus, 011 45201	
Naval Air Development Center		Toxicology Information Center, JH 652	
ATTN: Code 2012 (Dr. Robert Helmbold)	1	National Research Council	1
Warminster, PA 18974		2101 Constitution Ave., NW	1
wallingeer, In 10774		Washington, DC 20418	
US MARINE CORPS		washington, be 20410	
OS TRACINO COMO		ADDITIONAL ADDRESSEES	
Commanding General		ADDITIONAL ADDIGOGLES	
Marine Corps Development and		Commandant	
Education Command		Academy of Health Sciences, US Army	
ATTN: Fire Power Division, DO91	1.	ATTN: HSHA-CDH	1
Quantico, VA 22134	•	ATTN: HSHA-IPM	2
,		Fort Sam Houston, TX 78234	7
DEPARTMENT OF THE AIR FORCE		Total state inducedity and your	
		Commander	
Department of the Air Force		217th Chemical Detachment	
Headquarters Foreign Technology Division		ATIN: AFVL-CD	ī
ATTN: TOTR	1	Fort Knox, KY 40121	
Wright-Patterson AFB, OH 45433		2.57 (2.50)	
		Headquarters	
AFAMRL/TS		US Army Medical Research and	
ATTN: COL Johnson	1	Development Command	
Wright-Patterson AFB, OH 45433		ATTN: SGRD-RMS	1
•		Fort Detrick, MD 21701	
AFWAL/FIEEC (Wendell Banks)	:1	,	
Wright-Patterson AFB, OH 45433		Commander	
,		US Army Environmental Hygiene Agency	
HQ AFSC/SDZ	1	ATTN: Librarian, Bldg 2100	1
ATTN: CPT D. Riediger		Aberdeen Proving Ground, MD 21010	
Andrews AFB, MD 20334		,	

