Data Mining
Assignment Project Exam Help
Classification:
https://powcoder.com
Decision Tree
Add WeChat powcoder

Sample solutions to in-class exercises

Design record data attributes for students at CityU. Think what attributes you want to choose? What are the possible attribute values for each attribute? Design the attributes to cover nominal, ordinal, interval, and ratio. Assignment Project Exam Help

https://powcoder.com

ID	Name	Year of enrollm ent	Aidda y	WeCh	atitipov	weode	r	
12345	XYZ	2018						

In-class exercise

- Provide a set of integers so that:
 - Its mode is 5
 - Its 10th percentile is 1.
 Assignment Project Exam Help
 Its 50th percentile is 5

 - Its 90th percentile is 8

Add WeChat powcoder

- One possible answer: 1 5 5 5 8
- Any other answer?

Sample solutions to exercises in note2

- Give me an input A such as A's mean = A's median =A's mode e.g. <1,2,3,4,5> <1,1,2,3,4,4>
- ☐ Give me an input A such as A's mean < A's median e.g. <0, Assignment Project Exam Help
- ☐ Give me an inputper/spochcaster's omean > A's median

Review exercises

1. Below is the rounded petal length values for 11 iris flowers

L = <3 4 2 8 4 2 3 1 3 5 2>
Assignment Project Exam Help
Answer the following questions:

Q1: what is the the decomposition of the composition of the compositio

Q2: plot the histogram loft lpo (usedbin width 1)

Q3: what is the 25th, 50th, and 75th percentile of L?

Q4: what is the mean and median of L?

Q5: what is the range of L?

Review exercises

For the following histograms, what is the relationship between mean and median?

22/11/28

Review exercises

For the following distributions, what is the relationship between mean and median?

Assignment Project Exam Help

22/11/28

Classification: Definition (review)

- Given a collection of records (training set)
 - Each record is characterized by a tuple (x,y),
 where x is the attribute set and y is the class label Assignment Project Exam Help
 - x: attributettpredictorcindependent variable, input
 - y: class, response, dependent variable, output Add WeChat powcoder

Task:

Learn a model that maps each attribute set x into one of the predefined class labels y

Examples of Classification Task (review)

Task	Attribute set, x	Class label, y
Categorizing email messages	Features extracted from Assignmentage jedekan and content https://powcoder.com	
Identifying tumor cells	Features extracted from MRIAsean VeChat powcoo	malignant or benign
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

An example image classification problem

General Approach for Building Classification Model (review)

Test Set

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods (concept, prediction using a decision tree, and the training)
 - Nearestspeighbor Project Exam Help
 - Neural Networks Deep Learning

 https://powcoder.com

 - Naïve Bayes and Bayes are Bellef Networks
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

An example of classification using decision tree model

- Reference: Classification and Regression Trees by L. Breiman,
- J. H. Friedman, R. A. Olshen, and C. J. Stone, Chapman & Hall, 1984.
- A Medical Example: predictor, independent

Predict high signment Project Exam Help pressure over the initial 24 hour period > 91? patients who will not survive at least https://powcoder.com no yes. days on the basic of Is age > 62.5High the initial 24-hounded WeChat powcoder risk no data Is sinus tachycardia, 19 variables are present? Low measured during risk (Heart no yes the first 24 hours, rate too high?) including blood High Low

pressure, age etc.

risk

risk

Toy Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

In-class exercise (to submit)

Please scan your solutions to the in-class exercise problem and upload it to Canvas. Please do so right after class. **Don't forget to write your name and ID.**

Problem: Derive a different decision tree using Income as the root.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single A	12561g1	nment	Project Exa <mark>mнHelp</mark>
2	No	Married	100K	No	Owner No
3	No	Single	70K h	ttps://p	owcoder com
4	Yes	Married	120K	No	NO Marst
5	No	Divorced	95K A	ad We	powcodesingle, Divorced Married
6	No	Married	60K	No	Income
7	Yes	Divorced	220K	No	< 80K > 80K
8	No	Single	85K	Yes	
9	No	Married	75K	No	NO
10	No	Single	90K	Yes	

Training Data

Model: Decision Tree

Decision Tree Classification Task

Test Set

How do you define "optimal" decision tree

CONSTRUCTING OPTIMAL BINARY DECISION TREES IS NP-COMPLETE*

Laurent HYAFIL

IRIA - Laboria, 78150 Rocquencourt, France

and

Ronald L. Assignment Project Exam Help

Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Massachusetts 02139, USA

Received 7 November 1973, revised version received 26 January 1976

Add WeChat powcoder
We demonstrate that constructing optimal binary
decision trees is an NP-complete problem, where an op-

timal tree is one which minimizes the expected number of tests required to identify the unknown object.

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART Assignment Project Exam Help
 - ID3, C4.5
 - SLIQ, SPRINT SLIQ, SPRINT SLIQ, SPRINT SLIQ, SPRINT SPRINT SLIQ, SPRINT SPRINT

Add WeChat powcoder

General Structure of Hunt's Algorithm: how to create a node

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains rescribe that ect Exams Holped belong the same class y_t, then tis a leaf node that elegated as y_t are belong to be belong the same class y_t, then tis a leaf node that elegated as y_t are belong to be belong the same class y_t, then the belong the same class y_t are belong to be belong the same class y_t.
 - If D_t contains records that power belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Defaulted borrower: fail to pay back **Marital** Annual Home Defaulted **Status** Income Owner Borrower Yes Single 125K No Married 100K No No No Single 70K No 120K No Divorced 95K Yes No Married 60K No Yes Divorced 220K No 85K No Single Yes Married 75K No No Single 90K Yes \mathbf{D}_{t} e.g. D, contains all records "not home owner"

Marital Home **Annual Defaulted Borrower Owner Status** Income Yes Single 125K No 2 No Married 100K No 3 No Single 70K No Yes Married 120K No Help Divorced 95K Yes No Married 60K No 220K Yes Divorced No No Single 85K Yes No Married 75K No Add WeChat powcoder No Single 90K Yes

Assignment Project Exam

https://powcoder.com

Home Owner	
Yes	lo
Defaulted 110	rital atus
(3,0) Single, Divorced	Married
Defaulted = Yes	Defaulted = No
(1,3)	(3,0)

(c)

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition

 depending on attribute types
 Assignment Project Exam Help
 Measure for evaluating the goodness of a test condition https://powcoder.com

Add WeChat powcoder

- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal Assignment Project Exam Help
 - Ordinal
 - Continuous https://powcoder.com

Add WeChat powcoder

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

Multi-way split:

Use as many partitions as distinct values.

Assignment Project Exam Help
Single Divorced

https://powcoder.com

- Binary split:
 - Divides values del Webathe en coder

Marital

Status

Married

Test Condition for Ordinal Attributes

Multi-way split:

Use as many partitions as distinct values

Assignment Project Exam Melelp Large

Shirt

Binary split:

https://powcoder.com
 Divides values into two
 subsets Add WeChat powcoder

 Preserve order property among attribute values

Shirt Size

Extra Large

Shirt

Size

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic Arepear Chatchescher
- Binary Decision: (A < v) or (A v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the Best Split

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred

Assignment Project Exam Help

Need a measurp of pode impurity:

Add WeChat powcoder

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

High uncertainty

Low uncertainty

Goodness of Split

- The goodness of split is measured by an impurity function defined for each node.
- Intuitively, we want each leaf node to be "pure", that is, one sciass of himself Exam Help

The Impurity Function

- Definition: An impurity function is a function φ defined on the set of all K -tuples of numbers (p₁, ..., pκ) satisfying p_j ≥ 0, j = 1, ..., K, ∑_{j=1}^K p_j = 1 with the project Exam Help
- 1. φ is a maximum/qn/watchecpoint (1/K, 1/K, ..., 1/K)
- Add WeChat powcoder
 φ achieves its minimum only at the points (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1).
- φ is a symmetric function of p₁, ..., p_K, i.e., if you permute p_i, φ remains constant.

22/11/28 Credit: Li, Jia PSU 40

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$
 t is a node
Assignment Project Exam Help

Entropy

https://powcoder.com
$$Entropy(t) = -\sum_{Add} p(j|t) \log_{A} p(j|t)$$
Add WeChat powcoder

Misclassification error

Entropy quantifies uncertainty

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the Best Split

- Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node Assignment Project. Exam Help M is the weighted impurity of children
- 3. Choose the attribute west condition that produces the highest gain powcoder

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)

Finding the Best Split

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j=1}^{n} [p(j|t)]^2$$

Assignment Project Exam Help

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t). https://powcoder.com

- Maximum (14d) Mc When records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j=1}^{n} [p(j|t)]^2$$

Assignment Project Exam Help

(NOTE: p(j|t) is the relative frequency of class j at node t).

- For 2-class problem (p, 1 p):
 - GINI = $1 p^2 (1 p)^2 = 2p (1-p)$

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

 $\begin{array}{l}
\mathbf{O}_{Ass} & P(C1) = 0.6 = 0 \\
\mathbf{O}_{Ass} & P(C2) = 6/6 = 1 \\
\mathbf{O}_{ass} & P(C1) = 0.6 = 0 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 1.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 1
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C1) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6 \\
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6 = 0.6$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6
\end{array}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6
\end{aligned}$ $\begin{array}{l}
\mathbf{O}_{ass} & P(C2) = 0.6
\end{aligned}$

C1	1
C2	5

Apply = Glat pop(c2) =
$$\frac{6}{16}$$
 Gini = 1 - $\frac{1}{6}$ - $\frac{5}{6}$ = 0.278

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

In-class exercise (to submit)

Consider the split of 3 classes in the following nodes. Compute their Gini index values:

co: 5, c1: 5\(\frac{1}{2}\)seigsment Project Exam Help

C0: 0, C1:10, C2h5tps://powcoder.com

C0: 15, C1:0 C2A@dd WeChat powcoder

If we have 20 data items with 4 labels, give a split with minimum and maximum Gini index values

Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{GINI(i)}$$
Assignment Project Exam Help

where,n_i = number of records at child in https://powcoder.com
n = number of records at parent node p.
Add WeChat powcoder

- Choose the attribute that minimizes weighted average Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

p	Parent
C1	7
C2	5
Gini	= 0.486

Gini(N1)

$$= 1 - (5/6)^2 - (1/6)^2$$

= 0.278

Gini(N2)

$$= 1 - (2/6)^2 - (4/6)^2$$

= 0.444

	N1	N2						
C1	5	2						
C2	1	4						
Gini=0.361								

Weighted Gini of N1 N2

$$= 0.361$$

Gain = 0.486 - 0.361 = 0.125

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Assignment Project Exam Help

Multi-way split

https://powcoder.seeppartition of values)

		CarType 🔼 🗘											
	Family	Sports	Luxury										
C1	1	8	1										
C2	3	0	7										
Gini	0.163												

V	eCh	At pGarayor (er {Sports, Luxury} {Family}												
		{Sports, Luxury}	{Family}											
	C1	9	1											
	C2	7	3											
	Gini	0.468												

	CarType									
	{Sports}	{Family, Luxury}								
C1	8	2								
C2	0	10								
Gini	0.167									

Which of these is the best?

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 No
 Number of possible splitting values
 No
 Hel
- Each splitting value has a count matrix associated with it https://powcoder.com
 - Class counts in each of the partitions, A < yand WeChat powcoder
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index Assignment Project Exam Help

https://powcoder.com												
	Cheat No No		No	No	Yes	Yes	Yes Yes		No	No	No	
			Add	We	eCh ₂	+ Annu	al Incom	rler				
Sorted Values	·	60	70	75	85	90	95	100	120	125	220	

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index ASSIGNMENT Project Exam Help

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index ASSIGNMENT Project Exam Help

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index ASSIGNMENT Project Exam Help

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index and Help

https://powcoder.com																							
	Cheat	No No			N	No Ye		s	Yes		Υe	es	s No		No		N	No		No			
·			Add WeChatAnnualincomeler																				
Sorted Values	\longrightarrow	60 70			75			85 9		9(95		10	00 12		20 1:		125		220			
Split Positions		5	5	65		7	72		80		92		2	97		110		122		172		230	
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	0.420 0.400		0.3	0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Measure of Impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Assignment Project Exam Help (NOTE: p(j | t) is the relative frequency of class j at node t).

https://powcoder.com

- Maximum (log n_c) when records are equally distributed among all classes when the properties are equally distributed.

 A second sec
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

Supplementary reading

- Entropy
- There are many materials about entropy if you google it. I found the following is a good one. The author, Dr. Lai, was a project for all Michigan State University.

 https://powcoder.com

Add WeChat powcoder

http://episte.math.ntu.edu.tw/articles/mm/mm_13_3_01/

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

Assignment Project Exam Help

Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

https://powcoder.com

C1	1
C2	5

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Computing Information Gain After Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$
Assignment Project Exam Help

Parent Node, p is split into k partitions; https://powcederecom in partition i

- Add WeChat powcoder
 Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Problem with large number of partitions

Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure

 Customer ID has highest information gain because entropy for all the children is zero

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$
Assignment Project Exam Help

Parent Node, p is split into k partitions n; is the number of records in partition i

- Add WeChat powcoder
 Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$
Assignment Project Exam Help

Parent Node, p is split into k partitions n_i is the number of records in partition i

Add WeChat powcoder

	CarType		
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini	0.163		

$$SplitINFO = 1.52$$

	CarType	
	{Sports, Luxury} {Family}	
C1	9	1
C2	7	3
Gini	0.468	

$$SplitINFO = 0.72$$

	CarType	
	{Sports}	{Family, Luxury}
C1	8	2
C2	0	10
Gini	0.167	

SplitINFO = 0.97

Measure of Impurity: Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$
Assignment Project Exam Help

- Maximum (1httpn://wherrectorestare equally distributed anangyall classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Assignment Project Exam Help

Error = 1 - max (0, 1) = 1 - 1 = 0

https://powcoder.com

AP(C1)
$$\forall$$
 6(6hat pB(C2)) = 15/6 = 1/6 Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Comparison among Impurity Measures

For a 2-class problem:

Misclassification Error vs Gini Index

https://powcoder.com

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

Gini(N2)
=
$$1 - (4/7)^2 - (3/7)^2$$

= 0.489

Add	Wec	'ha t	powcode
C1	3	4	= 3/
C2	0	3	+ 7/
Gini=0.342		= 0.	

powcos fi(Children) = 3/10 * 0 + 7/10 * 0.489 = 0.342

Gini improves but error remains the same!!

Misclassification Error vs Gini Index

https://powcoder.com

	N1	N2
C1	3	4
C2	0	3
Gini=0.342		

N1: 1-max (3/3, 0/3) = 0N2: 1-max (4/7, 3/7) = 0

Weighted sum:

3/10 * 0 + 7/10 * 3/7 = 0.3

	N1	N2
C1	3	4
C2	1	2
Gini=0.416		

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to riolse (especially) when methods to avoid overfitting are employed)
 Can easily handle redundant or irrelevant attributes (unless
- Can easily handle redundant or irrelevant attributes (unless the attributes arginteracting) powcoder

Disadvantages:

- Space of possible decision trees is exponentially large.
 Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

Limitations of single attribute-based decision boundaries

