

TEST REPORT

ETSI EN 300 328 V2.1.1 (2016-11)

Report Reference No. CTL1906244051-WR01

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Tested by: (position+printed name+signature)

Nice Nong (Test Engineer)

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name...... Beaglebone AI

Model/Type reference Beaglebone AI

List Model(s)..... N/A

Trade Mark N/A

Applicant's name BeagleBoard.org Foundation

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification....:

Standard..... ETSI EN 300 328 V2.1.1 (2016-11)

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of receipt of test item: Jun. 26, 2019

Date of sampling Jun. 26, 2019

Date of Test Date Jun. 26, 2019-Jul. 08, 2019

Data of Issue...... Jul. 09, 2019

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1906244051-WR01	Jul. 09, 2019
	C1L1906244051-WK01	Date of issue

Equipment under Test : Beaglebone Al

Model /Type : Beaglebone AI

Listed Models : N/A

Applicant : BeagleBoard.org Foundation

Address : 4467 Ascot Court Oakland Township, Michigan, US

48306

Manufacturer : Embest Technology Co., Ltd

Address : Tower B 4/F, Shanghai Building, Nanshan Yungu

Innovation Industry Park, Liuxian Ave. No.1183, Taoyuan St., Nanshan District, Shenzhen, Chinas.

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Report No.: CTL1906244051-WR01

Revision	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2019-07-08	CTL1906244051-WR01	Tracy Qi
y ya		0.00		
		- 10		
	40			
		als.		

Contents

1	TEST SUMMARY	5
1.1	1 Test Standards	
1.2	2 TEST DESCRIPTION	
1.3	3 Test Facility	6
1.4	.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2	GENERAL INFORMATION	ε
2.1	1 ENVIRONMENTAL CONDITIONS	8
2.2	2 GENERAL DESCRIPTION OF EUT	8
2.3	3 RECEIVER CATEGORIES	8
2.4	4 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.5		
3	TEST ITEM AND RESULTS	11
3.1	.1 RF OUTPUT POWER	11
3.2	.2 DUTY CYCLE, TX-SEQUENCE, TX-GAP	
3.3	ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND	HOPPING SEQUENCE14
3.4	.4 HOPPING FREQUENCY SEPARATION	20
3.5	.5 MEDIUM UTILISATION (MU) FACTOR	22
3.6	.6 OCCUPIED CHANNEL BANDWIDTH	23
3.7	.7 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOI	MAIN25
3.8	.8 Transmitter unwanted emissions in the spurious domain	٧32
3.9	.9 RECEIVER SPURIOUS EMISSIONS	36
3.2		39
		41
4	TEST SETUP PHOTOS OF THE EUT	44
5	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	45
6	ANNEX E	46

V1.0 Page 5 of 49 Report No.: CTL1906244051-WR01

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

ETSI EN 300 328 V2.1.1 (2016-11)—Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU

1.2 Test Description

ltem	Reference	Result
Maximum transmit power	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.2	PASS
Duty Cycle, Tx-sequence, Tx-gap	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.3	N/A _{note1}
Dwell time, Minimum Frequency Occupation and Hopping Sequence	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.4	PASS
Hopping Frequency Separation	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.5	PASS
Medium Utilisation (MU) factor	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.6	N/A _{note1}
Adaptively	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.7	N/A _{note2}
Occupied Channel Bandwidth	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.8	PASS
Transmitter unwanted emissions in the out-of-band domain	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.9	PASS
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.10	PASS
Receiver spurious emissions	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.11	PASS
Receiver Blocking	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.12	PASS
Geo-location capability	ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.13	N/A _{note3}

Note1: This requirement does not apply to adaptive equipment.

Note2: Which is not applicable to device with a maximum RF Output power level is less than 10 dBm e.i.r.p.

Note3: This equipment without geo-location capability function.

V1.0 Page 6 of 49 Report No.: CTL1906244051-WR01

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9518B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9518B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test Items	Measurement Uncertainty	Notes	
Occupied Channel Bandwidth	±2%	(1)	
Transmitter power conducted	0.57 dB	(1)	
Transmitter power Radiated	2.20 dB	(1)	
Conducted spurious emission	1.60 dB	(1)	
Radiated spurious emission	2.20 dB	(1)	
Temperature	±1℃	(1)	

V1.0

Page 7 of 49

Report No.: CTL1906244051-WR01

Humidity	±3%	(1)
DC and low frequency voltages	±1.5%	(1)
Time	±2%	(1)
Duty cycle	±2%	(1)

Note 1: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

V1.0 Page 8 of 49 Report No.: CTL1906244051-WR01

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	Normal Temperature:	25°C	
Temperature	High Temperature:	55°C	
	Low Temperature:	-20°C	
Voltage	Normal Voltage	5.00V	
	High Voltage	5.75V	
	Low Voltage	4.25V	
Other	Relative Humidity	55 %	
	Air Pressure	101 kPa	

2.2 General Description of EUT

Product Name:	Beaglebone Al
Model/Type reference:	Beaglebone Al
Power supply:	DC 5.0V
Bluetooth	
Supported type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Internal Antenna
Antenna gain:	1.5dBi

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Receiver categories

This device belongs to the receiver categories as the choice box selected:

	Categorization	Note
	Receiver category 1	Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p.
	Receiver category 2	Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p.
100	Receiver category 3	Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p.

2.4 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)		
00	2402		
01	2403		
i	i i		
38	2440		
39	2441		
40	2442		
: 10			
77	2479		
78	2480		

Note: The line display in grey were the channel selected for testing

2.5 Measurement Instruments List

RF ou	RF output power & PSD & OOB & OBW & Hoping & Duty Cycle, Tx-sequence, Tx-gap & Adaptively					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1	Spectrum Analyzer	Agilent	N9020	US46220290	2019/05/24	2020/05/23
2	Signal Generator	Agilent	N5182A	MY47420864	2019/05/24	2020/05/23
3	Signal Generator	Agilent	E4421B	US40051744	2019/05/24	2020/05/23
4	Power Sensor	Agilent	U2021XA	MY5365004	2019/05/24	2020/05/23
5	Power Meter	Agilent	U2531A	TW53323507	2019/05/24	2020/05/23
6	Climate Chamber	ESPEC	EL-10KA	A20120523	2019/05/24	2020/05/23

Trans	Transmitter spurious emissions & Receiver spurious emissions							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date		
1	ULTRA-ROADBA ND ANTENNA	Sunol Sciences Corp.	JB1	A061713	2019/05/24	2020/05/23		
2	Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2019/05/24	2020/05/23		
3	EMI Test Receiver	R&S	ESCI	103710	2019/05/24	2020/05/23		
4	Controller	EM Electronics	Controller EM 1000	N/A	2019/05/24	2020/05/23		
5	Amplifier	Agilent	8349B	3008A02306	2019/05/24	2020/05/23		
6	Amplifier	Agilent	8447D	2944A10176	2019/05/24	2020/05/23		
7	Temperature/Hu midity Meter	Gangxing	CTH-608	02	2019/05/24	2020/05/23		
8	High-Pass Filter	K&L	9SH10-27	N/A	2019/05/24	2020/05/23		

			00/X1275			
	46.		0-O/O		ris.	
	1 20		41H10-13			
9	High-Pass Filter	K&L	75/U1275	N/A	2019/05/24	2020/05/23
			0-O/O	40 1		
10	RF Cable	HUBER+SU	RG214	N/A	2019/05/24	2020/05/23

Report No.: CTL1906244051-WR01

The calibration interval is 1 year.

3 TEST ITEM AND RESULTS

3.1 RF Output Power

Limit

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.2.3

TEST CONDITION	LIMIT
Normal and Extreme	20dBm(e.i.r.p)

Test Procedure

- Step 1: Use a fast power sensor suitable for 2,4 GHz and capable of minimum 1 MS/s. Use the following settings:
 - Sample speed 1 MS/s or faster.
 - The samples shall represent the RMS power of the signal.
 - Measurement duration: For non-adaptive equipment: equal to the observation period. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.

NOTE 1: For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

- Step 2:For conducted measurements on devices with one transmit chain:
 - -Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.

For conducted measurements on devices with multiple transmit chains:

- Connect one power sensor to each transmit port for a synchronous measurement on all transmits ports.
- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.
- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.
- Step 3: Find the start and stop times of each burst in the stored measurement samples.

The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.

NOTE 2: In case of insufficient dynamic range, the value of 30 dB may need to be reduced appropriately.

 Step 4: Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these P_{burst} values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

With 'k' being the total number of samples and 'n' the actual sample number

- Step 5: The highest of all P_{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
- Step 6: Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. If applicable, add the additional beamforming gain "Y" in dB using the formula below:

$$P = A + G + Y$$

Test Results

GFSK Modulation							
Test c	onditions	Measured power	Antenna Gain	EIRP	Limit		
Voltage (V)	Temperature (°C)	(dBm)	(dBi)	(dBm)	(dBm)	Result	
	25	7.67	1.50	9.17			
5.0V	-20	7.42	1.50	8.92	20.00	Pass	
	+55	7.38	1.50	8.88			

π/4DQPSK Modulation							
Test c	onditions	Measured power Gain		EIRP	Limit		
Voltage (V)	Temperature (°C)	(dBm)	(dBi)	(dBm)	(dBm)	Result	
	25	3.51	1.50	5.01	# ac		
5.0V	-20	3.46	1.50	4.96	20.00	Pass	
	+55	3.57	1.50	5.07			

8DPSK Modulation								
Test c	onditions	Measured power	Antenna Gain	EIRP	Limit			
Voltage (V)	Temperature (°C)	(dBm)	(dBi)	(dBm)	(dBm)	Result		
	25	3.81	1.50	5.31				
5.0V	-20	3.72	1.50	5.22	20.00	Pass		
	+55	3.98	1.50	5.48				

- Note 1. Test performed at worst case at DH5, 2DH5, 3DH5 hoping mode separately.
 2. We captured 25 bursts for each mode and recorded the maximum average power.
 3. Measured Power includes the cable loss.

V1.0 Page 13 of 49 Report No.: CTL1906244051-WR01

3.2 Duty Cycle, Tx-sequence, Tx-gap

Limit

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.3.3

- 1. For non-adaptive FHSS equipment, the Duty Cycle shall be equal to or less than the maximum value declared by the supplier. In addition, the maximum Tx -sequence time shall be 5 ms while the minimum Tx-gap time shall be 5 ms.
- 2. For equipment using wide band modulations other than FHSS, the Duty Cycle shall be equal to or less than the maximum value declared by the supplier.
 - The Tx-sequence time shall be equal to or less than 10 ms. The minimum Tx-gap time following a Tx-sequence shall be equal to the duration of that proceeding Tx-sequence with a minimum of 3,5 ms.

Test Procedure

The test procedure, which shall only be performed for non-adaptive systems, shall be as follows:

- Step 1: Use the same stored measurement samples from the procedure described in RF output power measurement
- **Step 2:** Between the saved start and stop times of each individual burst, calculate the TxOn time. Save these TxOn values.
- Step 3: Al TxOn times between the end of the first gap (which is the start of the first burst within the observation period) and the start of the last burst (within this observation period) divided by the observation period.

Step 4:

Identify any TxOff time that is equal to or greater than the minimum Tx-gap time. These are the potential valid gap times to be further considered in this procedure.

Starting from the second identified gap, calculate the time from the start of this gap to the end of the preceding ap. This time is the Tx-sequence time for this transmission. Repeat this procedure until the last identified gap ithin the observation period is reached.

Test Results

Not applicable to this device which was adaptive equipment and cannot operate in a non-adaptive mode.

V1.0 Page 14 of 49 Report No.: CTL1906244051-WR01

3.3 Accumulated Transmit Time, Frequency Occupation and Hopping Sequence

LIMIT

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.4.3.

Limit of Accumulated Transmit Time

TEST CONDITION	LIMIT		
Non-adaptive frequency hopping systems	≥15 ms within 5ms*hopping frequencies (N)		
Adaptive frequency hopping systems	≥0.4s within 0.4s*hopping frequencies (N)		

Note: N means minimum number of hopping frequencies (N) that have to be used.

Limit of Minimum Frequency Occupation

Entite of Minimality Toquency Cocapation				
TEST CONDITION	LIMIT			
Non-adaptive frequency hopping systems Adaptive frequency hopping systems	Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use. Option 2: The occupation probability for each frequency shall be between ((1 / U) × 25 %) and 77 % where U is the number of hopping frequencies in use.			

Hopping Sequence

TEST CONDITION	LIMIT
Non-adaptive frequency hopping systems Adaptive frequency hopping systems	The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater. Adaptive Frequency Hopping equipment shall be capable of operating over a minimum of 70 % of the authorized band.

Remark: This test item is not applicable to DSSS/OFDM system device.

Test Procedure

- 1. The measurement shall be performed on a minimum of 2 hopping frequencies chosen arbitrary from the actual hopping sequence. The results as well as the frequencies on which the test was performed shall be recorded in the test report.
- 2. The analyzer shall be set as follows:

Centre Frequency:	Equal to the hopping frequency being investigated
Frequency Span:	0 Hz
RBW:	~ 50 % of the Occupied Channel Bandwidth
VBW:	≥ RBW
Detector Mode:	RMS
Sweep time:	400 ms × Minimum number of hopping frequencies (N)
Number of sweep points:	30 000
Trace mode:	Clear / Write
Trigger:	Free Run

- 9 Report No.: CTL1906244051-WR01
- 3. Indentify the data points related to the frequency being investigated by applying a threshold.
- 4. Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.
- 5. Record this value as Accumulated Transmit Time in test report.
- 6. Set Sweep time to 4 × Dwell Time × Actual numbers of hopping frequencies in use and repeat 3 and 4 to get Frequency Occupation Time and Number.
- 7. Make the following changes on the analyzer for Hopping Sequence measurement

Centre Frequency:	Equal to the hopping frequency being investigated
Start Frequency:	2 400 MHz
Stop Frequency:	2 483,5 MHz
RBW:	~ 50 % of the Occupied Channel Bandwidth (single hop)
VBW:	≥ RBW
Detector Mode:	RMS
Sweep time:	1 s
Number of sweep points:	30 000
Trace mode:	Max Hold
Trigger:	Free Run

- 8. When the trace has completed, indentify the number of hopping frequencies used by the hopping sequence.
- 9. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope obtained instep 7, it shall be verified whether the system uses 70 % of the authorized band. The result shall be recorded in the test report.

Test Results

Test performed at all modulation type and recorded worst case at DH5, 2DH5, and 3DH5.

♦ Accumulated Transmit Time

The test period: T= 0.4s*hopping frequencies (N)=0.4*15=6s

Channel	Modulation	Accumulated Transmit Time (ms)	Limit (ms)	Result
Page 1	GFSK	53.800	400	Pass
CH00	π/4QPSK	50.800	400	Pass
	8DPSK	59.000	400	Pass
	GFSK	47.600	400	Pass
CH78	π/4QPSK	62.600	400	Pass
	8DPSK	80.200	400	Pass

♦ Frequency Occupation

The test period: T= 4 × Dwell Time × Actual number of hopping frequencies=4*3.75*79=1185ms

Channel	Modulation	Frequency occupation times (ms)	Frequency occupation Number (pcs)	Limit (pcs)	Result
11	GFSK	14.536	5		Pass
CH00	π/4QPSK 8DPSK	5.807	2	. 11 4	Pass
O To		11.574	4	≥1	Pass
1 11	GFSK	5.846	2	21	Pass
CH78	π/4QPSK	20.303 7			Pass
	8DPSK	5.807	2		Pass

♦ Hopping Sequence

Modulation	Number of Hopping Channel	Limit	-20 dB Bandwidth (%)	Limit	Result
GFSK	79	The same	95.49	70 % of the	11 11
π/4QPSK	79	≥15	95.93	band 2400MHz-248	Pass
8DPSK	79		95.93	3.5MHz	_'

Test plot as follows:

Center Fred 2.441750000 GHz

V1.0 Page 20 of 49 Report No.: CTL1906244051-WR01

3.4 Hopping Frequency Separation

Limit

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.5.3

- 1. For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal or greater than the Occupied Channel Bandwidth, with a minimum separation of 100 kHz. For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies.
- 2. For adaptive Frequency Hopping equipment, the minimum Hopping Frequency Separation shall be 100 kHz.

Test Procedure

- Step 1: The output of the transmitter shall be connected to a spectrum analyser
- Step 2: The analyser shall be set as follows:

Centre Frequency:	Centre of the two adjacent hopping frequencies
Span:	Sufficient to see the complete power envelope of both hopping frequencies
Stop Frequency:	2 483,5 MHz
RBW:	1 % of the span
VBW:	3 × RBW
Detector Mode:	RMS
Sweep time:	1 s
Trace mode:	Max Hold

• Step 3: Wait for the trace to stabilize. Use the marker-delta function to determine the Hopping Frequency Separation between the centres of the two adjacent hopping frequencies (e.g. by indentifying peaks or notches at the centre of the power envelope for the two adjacent signals).

Test Results

Modulation	Channel	Channel Separation (MHz)	Limit(kHz)	Result
GFSK	CH39	1.042	≥100	Door
Gran	CH40	1.042	≥100	Pass
π/4QPSK	CH39	1.278	≥100	Pass
II/4QPSK	CH40	1.270	≥100	Pass
8DPSK	CH39	0.009	≥100	Door
	CH40	0.998	≥100	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

π/4QPSK

8DPSK

V1.0 Page 22 of 49 Report No.: CTL1906244051-WR01

3.5 Medium Utilisation (MU) factor

Limit

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.6.3

The maximum Medium Utilisation factor for non-adaptive equipment shall be 10 %.

Definition

The Medium Utilisation (MU) factor is a measure to quantify the amount of resources (Power and Time) used by non-adaptive equipment. The Medium Utilisation factor is defined by the formula:

$MU = (P/100 \text{ mW}) \times DC$

Where: MU is Medium Utilisation factor in %.

P is the RF output power expressed in mW.

DC is the Duty Cycle expressed in %.

NOTE: The equipment may have dynamic behaviour with regard to duty cycle and corresponding power level.

Test Results

Not applicable to this device which cannot operation in a non-adaptive mode.

V1.0 Page 23 of 49 Report No.: CTL1906244051-WR01

3.6 Occupied Channel Bandwidth

<u>Limit</u>

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.8.3

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2.4GHz-2.4835GHz.

Test Procedure

- 1. The measurement shall be performed only on the lowest and the highest frequency within stated frequency range
- 2. The test procedure shall be follows:

Step1: Connect the UUT to the spectrum analyzer and use the following settings

Centre Frequency:	The centre frequency of the channel under test				
Resolution BW:	~ 1% of the span without going below 1 %				
Video BW:	3 × RBW				
Frequency Span:	2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)				
Detector Mode:	RMS				
Trace Mode:	MaxHold				
Sweep time:	1s				

- Step 2: Wait until the trace is completed. Find the peak value of the trace and place the analyzer marker on this peak.
- Step 3: Use the 99 % bandwidth function of the spectrum analyzer to measure the Occupied Channel Bandwidth of the EUT.

Test Result

Mode	Channel	Occupied Channel Bandwidth (MHz)	f _L (MHz)	f _H (MHz)	Limit	Result
GFSK	CH00	0.90584	0404 500 0400 444		I	10
GFSK	CH78	0.90647	2401.528	2480.443		
π/4QPSK	CH00	1.2264	2401.375	2480.608	f _L ≧2.4GHz	Daga
11/4QF3K	CH78	1.2260	2401.373	2400.000	and $f_H \le$ 2.4835GHz	Pass
8DPSK	CH00	1.2294	2401.373	2480.610		
	CH78	1.2272	2401.373	2400.010		

V1.0 Page 25 of 49 Report No.: CTL1906244051-WR01

3.7 Transmitter unwanted emissions in the out-of-band domain

<u>Limit</u>

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.9.3

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.

Figure 1: Transmit mask

Test Procedure

- 1. The measurements shall be performed at both normal environmental conditions and at the extremes of the operating temperature range.
- 2. For conducted measurements on devices with multiple transmit chains using the results for each of the transmit chains for the corresponding 1MHz segments shall be added and compared with the transmit mask limit.
- 3. The analyzer shall be set as follows:

Centre Frequency:	Center of each segments
Frequency Span:	0 Hz
RBW:	1M
VBW:	3M
Filter mode:	Channel filter
Trace Mode:	Clear / Write
Detector Mode:	RMS
Number of sweep points:	5 000
Sweep mode:	Continuous
Trigger:	Video trigger
Sweep Time:	> 120 % of the duration of the longest burst detected

4. Save the value measured of each segments.

Report No.: CTL1906244051-WR01

Test Result

Remark: The datum recorded below represents the worst emission level in each segment and the plot for normal condition.

Test Condit Voltage (V) 5.0	tion Temperature (°ℂ)	OOB Frequency (MHz) 2398.500	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result
5.0	25		-54 11			,	
5.0	25	0000 500	J	0.00	-54.11	-20	PASS
5.0	25	2399.500	-48.63	0.00	-48.63	-10	PASS
		2484.000	-66.64	0.00	-66.64	-10	PASS
		2485.000	-66.14	0.00	-66.14	-20	PASS
		Transmitter unwanted emissions	in the out-of-band domain	I.	I	1.00	
Level [dBm]		2398.00 Freq	2399.00 [MHz]	×	240.00		
			•				
	20-	Turismo umuno umissoris					
		,	(
	Level [dBm]	80 Limit 2337.00	Freq	Transmitter unwanted emissions in the out-of-band domain	Level (dBm)	Transmitter unwanted emissions in the out-of-band domain	Feet Mitral

			GFSK C	H78				
BW (MHz)	Test Condit Voltage (V)	ion Temperature (°C)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result
100			2398.500	-67.12	0.00	-67.12	-20	PASS
0.0064	F 0	25	2399.500	-66.91	0.00	-66.91	-10	PASS
0.9064	5.0	5.0 25	2484.000	-50.70	0.00	-50.70	-10	PASS
			2485.000	-53.31	0.00	-53.31	-20	PASS
			Transmitter unwanted emissions in	the out-of-band domain				
		0-						
		20						T

	π/4QPSK CH00												
BW (MHz)	Test Condi Voltage (V)	tion Temperature (°ℂ)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result					
-			2398.274	-54.97	0.00	-54.97	-20	PASS					
1.2264	5.0	25	2399.500	-49.60	0.00	-49.60	-10	PASS					
1.2204	5.0	25	2484.000	-66.67	0.00	-66.67	-10	PASS					
			2485.453	-66.91	0.00	-66.91	-20	PASS					
	Transmitter unwanted emissions in the out-of-band domain												
		n											

2484.00

	π/4QPSK CH78											
BW (MHz)	Test Condit Voltage (V)	tion Temperature (°ℂ)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result				
-			2398.048	-67.77	0.00	-67.77	-20	PASS				
1.2260	5.0	25	2399.274	-66.94	0.00	-66.94	-10	PASS				
1.2200	5.0	25	2484.000	-52.81	0.00	-52.81	-10	PASS				
			2485.452	-56.15	0.00	-56.15	-20	PASS				
	Transmitter unwanted emissions in the out-of-band domain											

	8DPSK CH00											
BW (MHz)	Test Condit Voltage (V)	tion Temperature (°ℂ)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result				
-			2398.271	-54.27	0.00	-54.27	-20	PASS				
1 2204	F 0	25	2399.500	-49.07	0.00	-49.07	-10	PASS				
1.2294	5.0	25	2484.229	-66.06	0.00	-66.06	-10	PASS				
			2485.459	-65.91	0.00	-65.91	-20	PASS				
	Transmitter unwanted emissions in the out-of-band domain											

8DPSK CH78									
BW (MHz)	Test Condit Voltage (V)	tion Temperature (°ℂ)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result	
100			2398.273	-67.72	0.00	-67.72	-20	PASS	
1.2272	5.0	25	2399.273	-66.64	0.00	-66.64	-10	PASS	
			2484.000	-53.46	0.00	-53.46	-10	PASS	
			2485.227	-55.79	0.00	-55.79	-20	PASS	
Transmitter unwanted emissions in the out-of-band domain									

3.8 Transmitter unwanted emissions in the spurious domain

Limit

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.10.3

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table

Table 1: Transmitter limits for spurious emissions

Frequency Range	Maximum power e.r.p.(.≤1 GHz) e.i.r.p.(>1 GHz)	Bandwidth	
30 MHz to 47 MHz	-36 dBm	100 KHz	
47 MHz to 74 MHz	-54 dBm	100 KHz	
74MHz to 87.5 MHz	-36 dBm	100 KHz	
87.5 MHz to 118 MHz	-54 dBm	100 KHz	
118 MHz to 174 MHz	-36 dBm	100 KHz	
174 MHz to 230 MHz	-54 dBm	100 KHz	
230 MHz to 470 MHz	-36 dBm	100 KHz	
470 MHz to 862 MHz	-54 dBm	100 KHz	
862 MHz to 1 GHz	-36 dBm	100 KHz	
1 GHz to 12.75 GHz	-30 dBm	1 MHz	

Test Procedure

- 1. The measurement performed at the lowest and the highest channel on which the equipment can operate.
- 2. The EUT was placed on a turntable with 1.5m height.
- 3. The test distance between the receiving antenna and the EUT is 3 meter, while the receiving (test) antenna is kept at 1.5 meter height.
- 4. Set EUT in continuous transmitting with maximum output power.
- 5. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 6. Repeat step 3 to 5 for each polarization and channel to find the worst emission level.
- 7. The results obtained are compared to the limits in order to prove compliance with the requirement.

Test Configuration

Effective Radiated Power measurement (30 MHz to 12.75 GHz)

Test Results

Remark: We test all modulation type, and recorded the worst case at GFSK DH5 mode.

3.9 Receiver spurious emissions

LIMIT

ETSI EN 300 328 (V2.1.1) Sub-clause 4.3.1.11.3

The spurious emissions of the receiver shall not exceed the values given below:

Spurious emission limits for receivers

Frequency	Maximum power, e.r.p.	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 KHz
30 MHz to 12.75 GHz	-47 dBm	1 MHz

Test Procedure

The same as clause 3.8

Test Configuration

Effective Radiated Power measurement (30 MHz to 12.75 GHz)

Test Results

Remark: We test all modulation type, and recorded the worst case at GFSK DH5 mode.

V1.0 Page 39 of 49 Report No.: CTL1906244051-WR01

3.10 Adaptivity

Limits

For Requirements and Limits please refer to ETSI EN 300 328 V2.1.1 Sub - clause 4.3.1.7.2.1 & 4.3.1.7.3.2

Test Procedure

- 1. The measurement procedure follows the clause 5.4.6.2.1 of the ETSI EN 300 328 V2.1.1 (2016-03).
- For conducted measurements on device with multiple transmit chains and receive chains. The
 power splitter/combiner shall be used to combine all the transmit/receive chains (antenna outputs)
 into a single test point. The insertion loss of the power splitter/combiner shall be taken into
 account.
- 3. Interference signal shall be a100 % duty cycle interference signal is injected on the current operating channel of the UUT. This interference signal shall meet the requirements as follow: The 99 % bandwidth (the bandwidth containing 99 % of the power) of this inference signal shall be within a range from 120 % to 200 % of the Occupied Channel Bandwidth of the UUT with a minimum of 5 MHz, while the difference between the lowest and highest level within the Occupied Channel Bandwidth of the UUT shall be maximum 4 dB.
- 4. Blocking signal shell be a 100 % duty cycle CW signal, and The frequency and level shell be set as follow:

Equipment Type (LBT / non- LBT)	Wanted signal mean power from companion device	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of interfering signal
LBT	sufficient to maintain the link (see note 2)	2 395 or 2 488,5	-35	CW
Non-LBT	-30 dB	(see note 1)		

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz.

NOTE 2: A typical value which can be used in most cases is-50 dBm/MHz.

5. The test not applicable to none-adaptive equipment and adaptive equipment which maximum RF Output power level is less than 10 dBm e.i.r.p.

Test Configuration

Test Results

Not applicable to this device which maximum RF Output power level is less than 10 dBm e.i.r.p.

V1.0 Page 41 of 49 Report No.: CTL1906244051-WR01

3.11 Receiver Blocking

Limits

While maintaining the minimum performance criteria (The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment), the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in below:

Receiver blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-53	CW
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW

NOTE: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 and/or 4.3.2.11.3 in the absence of any blocking signal.

Receiver blocking parameters receiver category 2 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-57	CW
P _{min} + 6 dB	2 300 2 583,5	-47	CW

NOTE: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 and/or 4.3.2.11.3 in the absence of any blocking signal.

Receiver blocking parameters receiver category 3 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal
P _{min} + 12 dB	2 380 2 503,5	-57	CW
P _{min} + 12 dB	2 300 2 583,5	-47	CW

NOTE: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 and/or 4.3.2.11.3 in the absence of any blocking signal.

Test Configuration

Test Procedure

- 1. For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.
- 2. For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel.
- 3. The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.
- 4. With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device. The variable attenuator is set to a value that achieves the minimum performance criteria with a resolution of at least 1 dB. The resulting level for the wanted signal at the input of the UUT is P_{min}. This value shall be measured and recorded in the test report.
- 5. The signal level is increased by the value provided in the table corresponding to the receiver category and type of equipment.
- 6. The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria is met.
- 7. Repeat step 6 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.
- 8. For non-frequency hopping equipment, repeat step 2 to step 7 with the UUT operating at the highest operating channel.

Test result

Remark:

- 1. According to the Power measurement the device belongs to Receiver category 2.
- 2. With the blocking signal generator switched off, adjust variable attenuator value by 1dB until to communication once cannot maintains. Then replace EUT by a power sensor, measure the power and recorded as P_{min} .

Test Frequency (MHz)	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	PER
	P _{min} + 6dB	2380	-57	3.4%
Hopping mode	P _{min} + 6dB	2503.5	-57	3.2%
	P _{min} + 6dB	2300	-47	3.6%
	P _{min} + 6dB	2583.5	-47	3.3%

Note: P_{min}=-68dBm

V1.0 Page 44 of 49 Report No.: CTL1906244051-WR01

4 Test Setup Photos of the EUT

V1.0 Page 45 of 49 Report No.: CTL1906244051-WR01

5 External and Internal Photos of the EUT

Reference to the	test report No. CTL1906244051-WE	
	**************************************	*****

V1.0 Page 46 of 49 Report No.: CTL1906244051-WR01

6 ANNEX E

inte	ormation as required by EN 300 328 V2.1.1, clause 5.4.1
In a	accordance with EN 300 328, clause 5.4.1, the following information is provided by the supplier.
a)	The type of modulation used by the equipment:
	⊠FHSS
	Other forms of modulation
b)	In case of FHSS modulation:
	In case of non-Adaptive Frequency Hopping equipment:
	The number of Hopping Frequencies:
	In case of Adaptive Frequency Hopping Equipment: The state of Adaptive Frequency Hopping Equipment: The state of Adaptive Frequency Hopping Equipment: The state of Adaptive Frequency Hopping Equipment:
	The maximum number of Hopping Frequencies: 79
	The minimum number of Hopping Frequencies: 15 • The (average) Dwell Time: 3.75ms
c)	Adaptive / non-adaptive equipment:
C)	□ Non-adaptive Equipment
	☑Adaptive Equipment without the possibility to switch to a non-adaptive mode
	Adaptive Equipment which can also operate in a non-adaptive mode
d)	In case of adaptive equipment:
,	The Channel Occupancy Time implemented by the equipment: ms
	☐ The equipment has implemented an LBT based DAA mechanism
	 In case of equipment using modulation different from FHSS:
	☐The equipment is Frame Based equipment
	☐ The equipment is Load Based equipment
	The equipment can switch dynamically between Frame Based and Load Based equipment
	The CCA time implemented by the equipment:
	☐ The equipment has implemented an non-LBT based DAA mechanism
	☐The equipment can operate in more than one adaptive mode
e)	In case of non-adaptive Equipment:
	The maximum RF Output Power (e.i.r.p.): dBm
	The maximum (corresponding) Duty Cycle: %
	Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different
t/	combinations of duty cycle and corresponding power levels to be declared):
f)	The worst case operational mode for each of the following tests:
	RF Output Power DH5,2DH5,3DH5
	Power Spectral Density
	N/A
	Duty cycle, Tx-Sequence, Tx-gap
	N/A
	Dwell time, Minimum Frequency Occupation & Hopping Sequence (only for FHSS equipment)
	DH5,2DH5,3DH5
	Hopping Frequency Separation (only for FHSS equipment) DUE 2015 2015
	DH5,2DH5,3DH5Medium Utilisation
	N/A

Occupied Channel Bandwidth

Adaptivity

Page 47 of 49 Report No.: CTL1906244051-WR01

V1.0 DH5,2DH5,3DH5 Transmitter unwanted emissions in the OOB domain DH5,2DH5,3DH5 Transmitter unwanted emissions in the spurious domain Receiver spurious emissions DH5 Receiver Blocking DH5 The different transmit operating modes (tick all that apply): Operating mode 1: Single Antenna Equipment Equipment with only 1 antenna Equipment with 2 diversity antennas but only 1 antenna active at any moment in time Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1 antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems) Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming Single spatial stream / Standard throughput / (e.g. IEEE 802.11 ™ [i.3] legacy mode) High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2 Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming Single spatial stream / Standard throughput (e.g. IEEE 802.11 ™ [i.3] legacy mode) High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2 In case of Smart Antenna Systems: h) The number of Receive chains: The number of Transmit chains: Symmetrical power distribution Asymmetrical power distribution In case of beam forming, the maximum (additional) beam forming gain: Operating Frequency Range(s) of the equipment: Operating Frequency Range 1: 2402MHz to 2480MHz Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported. Occupied Channel Bandwidth(s): i) Occupied Channel Bandwidth 1: 1 MHz Occupied Channel Bandwidth 2: MHz k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): ⊠Stand-alone Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) Other The extreme operating conditions that apply to the equipment:

ПАС

Combined (or host) equipment

 \bowtie DC

Operating temperature range: -20°C to +55°C Operating voltage range: 4.25V to 5.75V

Details provided are for the: Stand-alone equipment

☐Test jig

m)	m) The intended combination(s) of the radio equipment power settings and of	one or more antenna
	assemblies and their corresponding e.i.r.p levels:	
	Antenna Type:	
	MInternal Antonna	

Internal Antenna			
Antenna Gain: 1.5dBi			
If applicable, additional be	eamforming gain (excluding l	pasic antenna gain):	dB
	or provided		
	ector provided		
☐Dedicated Antennas (e	quipment with antenna conn	ector)	
☐Single power level	with corresponding antenna	(s)	
☐Multiple power sett	tings and corresponding anto	enna(s)	
Number of different P	ower Levels:		
Power Level 1:	dBm		
Power Level 2:	dBm		
Power Level 3:	dBm		

Report No.: CTL1906244051-WR01

n) For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			11 11
2			
3			
4			

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	40.4	A A	
2	B. d.		1
3	1		
4			

Power Level 3: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			40 11 12
2			11 11 11
3			
4			

Report No.: CTL1906244051-WR01

o)	The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined
	(host) equipment or test jig in case of plug-in devices:
	Details provided are for the: Stand-alone equipment Combined (or host) equipment Test jig Supply Voltage AC mains State AC voltage V DC State DC voltage 5.0V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter
	Battery
	Other: DC 5V from PC
p)	Describe the test modes available which can facilitate testing:
q)	The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.):
	Bluetooth®
r)	Geo-location capability supported by the equipment:
	∐Yes
	☐The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user
	⊠No
s)	Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or
	clause 4.3.2.11.3):
	N/A