

Real Time Freshness Detection for Plant Harvesting

Final Project Presentation

Group 1

Kanaga Shanmugi S

Priyadharshini Ganesan

Date: 30 September 2024

Introduction	
Hardware Setup	
Workflow	
Machine Learning Model Architecture	
Dataset, Training and Evaluation Results	
Demonstration and Detection Result	
Problems Faced & Foreword Prospect	

Introduction

- ➤ **PROBLEM STATEMENT:** Freshness of a Plant before harvesting is essential for agricultural and food supply chain quality control, but the traditional methods are inefficient and time consuming.
- SOLUTION: Hereby we propose a solution with ML based Edge Computing system to increase production quality, quantity and move towards zero-wastage. Edge computing provides an ideal solution by enabling local, on-device image classification without relying on internet connectivity and are highly scalable.
- > PLANT SELECTION: MINT PLANT

UN's Sustainable Development Goals (SDG):

Zero Hunger: The proposed solution contributes to improving food security by ensuring that agricultural products (like mint leaves) are monitored for freshness. This could help reduce food waste, ensure timely harvesting, and enhance food quality, all of which support sustainable agricultural practices and food availability.

Responsible Consumption and Production: The proposed solution promotes efficient resource use by preventing the spoilage of leaves and other agricultural products. By ensuring leaves are consumed or used at their freshest and also dry leaves packaging, helping to minimize waste, which is a key aspect of responsible consumption and sustainable production

Hardware setup

Fig 1: Setup Block Diagram

Fig 2: Hardware Setup

Workflow

Fig 3: Workflow (Training)

Fig 4: Workflow (Detection)

Machine Learning Model

Fig 5: Model architecture of a Typical Convolution Layer

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 96, 96, 8)	224
batch_normalization (BatchNormalization)	(None, 96, 96, 8)	32
max_pooling2d (MaxPooling2D)	(None, 48, 48, 8)	6
conv2d_1 (Conv2D)	(None, 48, 48, 16)	1,168
max_pooling2d_1 (MaxPooling2D)	(None, 24, 24, 16)	(
conv2d_2 (Conv2D)	(None, 24, 24, 32)	4,646
max_pooling2d_2 (MaxPooling2D)	(None, 12, 12, 32)	(
flatten (Flatten)	(None, 4608)	147,488
dense (Dense)	(None, 32)	
dropout (Dropout)	(None, 32)	6
dense_1 (Dense)	(None, 32)	1,056
dropout_1 (Dropout)	(None, 32)	
dense_2 (Dense)	(None, 4)	132

Fig 6: Convolution Model Summary used in this application

Dataset

	Fresh	Dried	Spoiled	Unknown
Training	1699	1699	1699	1699
Testing	170	170	170	170
Validation	170	170	170	170

Fig 7: Dataset Details for Training, Test & Validation for each category

Performance Metrics		
Accuracy	0.9105	
Precision	0.9269	
Recall	0.9105	
F1 Score	0.9115	

Fig 9: Performance Matrix based on Confusion Matrix

Fig 8: Confusion Matrix

Training and Evaluation Results

Fig 10: Data Augmented input images with Label

Fig 11: Sample Predictions using the generated Model

Training and Evaluation Results

Fig 12: Plot showing Train vs Validation accuracy for corresponding epoch

Fig 13: Plot showing Train vs Validation loss for corresponding epoch

Device Demonstration & Detection Result

fresh score: 0%, dried score: 0%, spoiled score: 0%, unknown score: 0% fresh score: 43%, dried score: 12%, spoiled score: 12%, unknown score: 12% fresh score: 2%, dried score: 92%, spoiled score: 5%, unknown score: 5% fresh score: 2%, dried score: 93%, spoiled score: 5%, unknown score: 5% fresh score: 7%, dried score: 79%, spoiled score: 13%, unknown score: 13% fresh score: 11%, dried score: 71%, spoiled score: 15%, unknown score: 15% fresh score: 8%, dried score: 67%, spoiled score: 11%, unknown score: 11% fresh score: 10%, dried score: 60%, spoiled score: 10%, unknown score: 10% fresh score: 0%. dried score: 0%. spoiled score: 0%. unknown score: 0%

Detection: Fresh

Detection: Dried

Detection: Spoiled

Detection: Unknown

Serial Port Output

Fig 14: Detection Result of Mint leaves for various categories on LCD and serial port

Problems Faced & Foreword Prospect

- ➤ **MACHINE LEARNING MODEL:** Simpler Model architecture to support hardware the accuracy of the model not so great Dataset variety and quantity
- ➤ **DATASET**: some amount of false positive were observed more in Dried and Spoiled specimen
- ➤ **INDOOR DETECTION:** Since indoor environmental conditions are controlled, the dataset trained for indoor environment was not complex as when compared with outdoor
- ➤ **ONLY ONE POINT DETECTION:** Because of the Field of View of the camera the detection is happening at only one particular point instead of whole plant

Foreword Prospect

- Expansion to Other Crops or other vegetables, fruits and flesh
- Extending the application for Household appliances zero-wastage
- ➤ Improved Machine Learning Models
- ➤ Connecting Multiple machine Learning Devices
- Expanding the idea on to real field application

References

- JETIR: IoT-based Smart Plant Monitoring System Using Nodemcu
- Design of an Artificial Intelligence of Things Based Indoor Planting Model for Mentha Spicata (Hao-Hsiang Ku 1, Cheng-Hsuan Liu and Wen-Cheng Wang)

