Inteligência Artificial

Thiago Henrique Leite da Silva, RA: 139920

AULA2: Exercício teórico agentes

1. Preencha o PEAS para os agentes a seguir:

Tipo de Agente	Medida de Desempenho	Ambiente	Atuadores	Sensores
Sistema de diagnóstico médico	Assertividade do diagnóstico, paciente saudável, remédios receitados corretamente, rapidez, diminuir custos	Hospitais, clínicas, pacientes, médicos, enfermeiros, equipamentos disponíveis	Medir temperatura, perguntas ao paciente sobre os sintomas, testar a saturação, media pressão, indicar o tratamento adequado	Termômetro, raio x, coletor de sangue, respostas do paciente, aparelho de medir pressão arterial
Sistema de análise de imagens de satélite	Definição e qualidade da imagem capturada, identificação dos objetos representados na imagem	Satélite que captura a imagem, dispositivo que irá receber a imagem e analisá-la	Aprimorar imagem, interpretar, comparar com uma base de dados, definir objetos capturados	Aplicativo para eliminar ruídos da imagem, interpretador de pixels
Robô de seleção de peças	Peças corretas, integridade da peça, tempo, diminuição de custos	Fábrica, esteira por onde chegam as peças, local onde as peças selecionadas serão despejadas	Braço robótico, sinal ao despejar a peça, direção do movimento	Sensores de fim- de-curso e sensibilidade, motor para movimentar o braço
Controlador de refinaria	Pressão e temperatura adequada, pureza e qualidade do produto final, reduzir contaminação do ar	Planta, operários, instrumentos, tanques de armazenamento, transporte	Contralar pressão, adequar temperatura, impedir contaminação do produto, controlar vazão	Sensores para controlar a vazão das válvulas, termômetro, sensor de pureza, controlador de pressão
Instrutor de inglês interativo	Nível de fluência do aluno, melhora na escrita e oralidade, melhora nas notas em provas e atividades	Alunos, plataforma na qual a aula será ministrada	Exibição de explicações teóricas, conversação, exercícios, testes (oral e teórico)	Entrada de áudio, entrada de vídeo, teclado, mouse

2. Preencha a tabela a seguir considerando o ambiente de tarefas:

Ambiente de Tarefa	Observável	Agentes	Determinístico	Episódico	Estático	Discreto
Jogo das palavras cruzadas	Completamente	Único	Determinístico	Sequencial	Estático	Discreto
Xadrez com um relógio	Completamente	Multi	Determinístico	Sequencial	Semi	Discreto
Pôquer	Parcialmente	Multi	Estocástico	Sequencial	Estático	Discreto
Gamão	Completamente	Multi	Estocástico	Sequencial	Estático	Discreto
Direção de táxi	Parcialmente	Multi	Estocástico	Sequencial	Dinâmico	Contínuo
Diagnóstico médico	Parcialmente	Único	Estocástico	Episódico	Dinâmico	Contínuo
Análise de imagens	Completamente	Único	Determinístico	Episódico	Semi	Contínuo
Robô de seleção de peças	Parcialmente	Único	Estocástico	Episódico	Dinâmico	Contínuo
Controlador de refinaria	Parcialmente	Único	Estocástico	Sequencial	Dinâmico	Contínuo
Instrutor interativo de inglês	Parcialmente	Multi	Estocástico	Sequencial	Dinâmico	Discreto

3. Pense em um jogo que você gosta e um agente inteligente para jogá-lo. Apresente a descrição PEAS do ambiente da tarefa e caracterize-o em termos das propriedades do ambiente.

Tipo de Agente	Medida de Desempenho	Ambiente	Atuadores	Sensores
Fifa 21 (Jogo de Futebol)	Gols, posse de bola, finalizações no alvo, passes certos, chutes defendidos, não sofrer gols, não ficar em impedimento, dribles completos, vitórias	Campo de futebol e suas subdivisões (grande área, pequena área, meio de campo, etc)	Direção do jogador, chutar, passar, cruzar, dar o bote, defender	Linha de visão dos jogadores e detector de onde está a bola

Ambiente de Tarefa	Observável	Agentes	Determinístico	Episódico	Estático	Discreto
Fifa 21 (Jogo de Futebol)	Completamente	Multi	Determinístico	Episódico	Dinâmico	Contínuo

No jogo de Fifa, nosso ambiente de tarefas é multiagente, já que no jogo de futebol sempre teremos um oponente do outro lado, seja ele controlado por uma IA ou por outro jogador humano. É completamente observável pois a partir dos sensores dos jogadores e do detector da bola, sempre

saberemos onde a bola está, assim como nossos adversários. Ele é determinístico, pois só precisamos saber onde a bola está no momento atual para tomar alguma ação, por este motivo também é episódico, não precisamos das decisões anteriores para tomar a próxima, mas precisamos a todo instante verificar a posição atual de nossos companheiros de equipe. Como o ambiente do jogo muda a todo instante, a bola cada hora está em um lugar, os jogadores são substituídos, cansam, se machucam, temos um ambiente dinâmico.

- 4. Para cada uma das seguintes afirmações, diga se é verdadeiro ou falso e justifique com exemplos a sua resposta ou com contra exemplos se for o caso.
- a. Um agente que detecta apenas informações parciais sobre o estado não podem ser perfeitamente racionais.

Solução: Verdadeiro. Um exemplo é um jogo de xadrez, se o agente não souber exatamente qual foi a jogada anterior, não conseguirá ou terá dificuldades para realizar a próxima de modo a eliminar uma peça do adversário ou se defender. Ou seja, em ambientes estocásticos os agentes não serão completamente racionais.

b. Existem ambientes de tarefa nos quais nenhum agente reativo puro pode comportar-se racionalmente.

Solução: Verdadeiro. O pior cenário possível, até o momento, seria se tivéssemos um ambiente de tarefa multiagente, parcialmente observável, sequencial, dinâmico, contínuo, com um ambiente desconhecido.

c. Existe um ambiente de tarefa em que todo agente é racional.

Solução: Falso. Os agentes são projetados de acordo com seu ambiente, este por sua vez possui propriedades, que são levadas em conta na hora de se definir uma medida de desempenho, por exemplo, assim, não temos um ambiente que torne todos os agentes racionais, já que a racionalidade é a capacidade do agente se desenvolver no ambiente, e os agentes são desenvolvidos para ambientes específicos.

d. A entrada para o programa de agente é a mesma que a entrada para a função de agente.

Solução: Falso. O Livro Inteligência Artificial do Russel e Norvig nos mostra que a entrada para a função de agente é uma sequência qualquer de percepções específicas de uma ação, logo é mais abstrata, diferentemente, o programa de agente já é algo mais concreto, pois sua entrada combina os componentes específicos de maneiras específicas para que se produza uma ação.

e. Toda função de agente é implementável por uma combinação de programa/máquina.

Solução: Verdadeiro. Nossos agentes podem ser softwares ou máquinas, e quem implementa estes somos nós, o que o software ou a máquina farão a partir daí é aprender por si só, ou seja, encontrar meios de melhorar seu desempenho, e somos nós quem definimos quais parâmetros ela utilizará para aprender, sendo assim, ao menos por enquanto, toda função do agente é implementável.

f. Suponha que um agente selecione sua ação uniformemente ao acaso do conjunto de ações possíveis. Existe um ambiente de tarefa determinista em que esse agente é racional.

Solução: Verdadeiro. Existe um algoritmo de busca de subida de encosta que escolhe aleatoriamente um conjunto de melhores sucessores, dentre as opções disponíveis, caso exista mais de uma. Esse algoritmo basicamente é um laço que irá se mover no sentido do valor crescente (encosta acima). E termina quando nenhum de seus vizinhos tiver valor mais alto. Portanto, o algoritmo está decidindo

por um sucessor aleatório, mas dentre os melhores, o que faz com que o agente que o utilize seja racional. A teoria dos jogos aborda o tema de que, para alguns casos, a aleatoriedade na verdade é mais eficiente.

g. É possível para um dado agente ser perfeitamente racional em dois ambientes de tarefa distintos.

Solução: Falso. Essa é uma ideia muito abordada na ficção, agentes especialistas em diversas tarefas, algo que atualmente ainda não é possível, pelo menos não perfeitamente racional em ambientes distintos, o foco atualmente é termos agentes especialistas em um ambiente, para posteriormente conseguimos criar um multitarefa.

h. Todo agente é racional em um ambiente não observável.

Solução: Falso, na realidade um ambiente inobservável dificulta o agente de ser racional, já que não temos noção do estado atual de nosso ambiente pois não tem sensores.

i. Um agente jogador de pôquer perfeitamente racional nunca perde.

Solução: Falso. Pois o pôquer é um jogo que envolve sorte, o agente pode saber todas as possibilidades possíveis do seu jogo de acordo com as cartas que viram na mesa, mas não tem controle sobre seu adversário que sai com a mão melhor. Logo, pelo fato do jogo ter o fator sorte, eventualmente o agente poderá perder.

5) O Mundo de Wumpus é um jogo antigo de computador considerado um domínio (ambiente) artificial que fornece grande motivação para o raciocínio lógico. Baseado em um agente que explora uma caverna, o ambiente consiste de compartimentos conectados por passagens sendo que em um desses compartimentos está o Wumpus: um monstro que devora qualquer um que entrar em seu compartimento. Para piorar a situação, alguns dos compartimentos possuem abismos que engolem qualquer um que entrar neles, menos o Wumpus que é muito grande para cair. A única motivação para o agente permanecer nesse ambiente é a caçada pelo ouro. O Wumpus pode ser morto pelo agente por uma flecha, mas este possui somente uma chance de atirar. O agente sempre começa localizado no compartimento [1,1]. A tarefa do agente é a de encontrar o ouro e retornar para a posição [1,1] para conseguir escalar a saída da caverna.

O interessante desse domínio é a possibilidade de simulação da percepção do agente inteligente e dos efeitos de suas múltiplas ações:

- No compartimento que contém o Wumpus e nos compartimentos adjacentes (não na diagonal) o agente perceberá um cheiro ruim;
- Nos compartimentos adjacentes a um abismo o agente perceberá uma brisa;
- No compartimento onde o ouro está o agente perceberá um brilho;
- Quando o agente tromba com uma parede ele percebe um choque;
- Quando o Wumpus é morto ele dá um grito que pode ser percebido pelo agente de qualquer lugar da caverna;
- O agente só se locomove para frente. Desta maneira ele deve ser capaz de virar para direita ou para esquerda para se posicionar na direção em que ele pretende se mover ou em que ele pretende atirar para matar o Wumpus;
- Ações que o agente pode executar: vira_para_direita, vira_para_esquerda, move_para_frente, segura, atira e escala-caverna

- O agente morre se ele entra em um compartimento que contenha um abismo ou um Wumpus vivo;
- O objetivo do agente é o de carregar o ouro para a entrada da caverna o mais rápido possível, sem ser morto. Ele ganha 100 pontos por escalar a caverna para fora carregando o ouro com 1 ponto a menos para cada ação que ele executou e 10000 pontos negativos por ser morto.

Fonte: https://www.ime.usp.br/~leliane/IAcurso2000/Wumpus.html

a. Descreva o PEAS do mundo de Wumpus.

Tipo de Agente	Medida de Desempenho	Ambiente	Atuadores	Sensores
Mundo de Wumpus	+100 pontos por escalar a caverna com o ouro, -1 ponto para cada ação executada, -1000 pontos por ser morto	O ambiente é dado pelo mundo de Wumpus, que contém abismos, Wumpus, flecha, brisa, mal cheiro, porém o agente não conhece o ambiente	Mover para frente, virar à direita, virar à esquerda, segurar o objeto, atirar, escalar a caverna	Olfato para sentir o mal cheiro, visão para ver o brilho do ouro, brisa, choque ao encostar na parede e audição para ouvir o grito do Wumpus se ele morrer

b. Descreva o caminho racional que o caçador deve fazer para resgatar o tesouro.

Ex: Início [1,1] -> não há nada então pode seguir para [2,1] ou [1,2]

[1,2] -> Brisa então há poço em [2,2], [1,3] ou ambos

[1,1] -> [2,1]

[2,1] -> fedor, há Wumpus em

Solução:

Adotaremos o seguinte critério para seguir no jogo:

- (A) Quando não estivermos em situação de risco (sentindo mal cheiro ou brisa) seguimos em frente.
- (B) Se chegarmos a uma zona de perigo, viramos à esquerda (pois começamos no canto inferior esquerdo) e continuamos em frente.

- (C) Caso em algum momento do jogo o agente dê um giro de 180º, a ação acima é invertida, ao invés de virarmos à esquerda, viramos à direita.
- (D) Se ao realizar alguma das ações anteriores nos depararmos com uma parede, viramos novamente a esquerda e seguimos em frente.
- (E) Ao encontrar o ouro, o seguramos, viramos duas vezes a direita (giro de 180º) e segue em frente para voltarmos pelo caminho que viemos.
- (F) Caso haja a opção de ir para [1,1], se o agente tiver com o ouro ele sempre escolherá por esta opção.
- (G) Se chegarmos novamente ao ponto [1,1] com o ouro, escalamos a caverna.

Início [1,1] -> não há nada então pode seguir para [2,1] ou [1,2]

Sabemos que [2,1] e [1,2] são seguros por não estarmos sentindo cheiro nem brisa, logo, com base em (A), o agente segue em frente pois virar o faria perder ponto por uma ação desnecessária.

[1,2] -> Brisa então há poço em [2,2], [1,3] ou ambos

Com base em (B), viramos à esquerda e seguimos em frente em direção a [2,2].

[2,2] -> não há nada então pode seguir para [2,1], [3,2] ou [2,3]

Com base em (A), seguimos em frente rumo a [3,2].

[3,2] -> Maravilha, percebemos o brilho, achamos o ouro, mas sentimos o mal cheiro, tem Wumpus na área. O agente pode seguir para [3,1], [4,2], [3,3] ou [2,2].

Com base em (E), a agente segura o ouro, vira duas vezes a direita e segue em frente. (Lembrando que demos o giro de 180º)

[2,2] -> não há nada então pode seguir para [1.2], [2,1] ou [2,3],

Com base em (A), seguimos em frente rumo a [1,2].

[1,2] -> Brisa então há poço em [1,1], [1,3]

Por (C), pelo fato de ter dado um giro de 180º, viraríamos à direita e seguiríamos a [1,1] novamente. Ou também podemos se utilizar da regra (F), pois já estamos com o ouro e [1,1] é uma das opções disponíveis, logo será escolhida.

[1,1] -> Retornamos ao início

Por (G), escalamos a caverna e finalizamos o jogo.

Esta lógica e caminho toma 12 ações e sobe a caverna com o ouro, resultando em 88 pontos.

Ações:

Seguir em frente: 6xVirar à esquerda: 1x

Virar à direita: 3xSegurar: 1x

- '

Escalar a caverna: 1x