UM 204 (WINTER 2024) - WEEK 7

We were in the midst of showing that:

 $\limsup_{n\to\infty} x_n$ is the unique element α in $\overline{\mathbb{R}}$ satisfying

- (2) $\alpha \in E$, where *E* is the set of subsequential limits of $\{X_n\}_{\mathbb{N}}$,
- (3) for any $x > \alpha$, there is an $N \in \mathbb{N}$ such that $x_n < x$ for all $n \ge N$.

Suppose (3) does not hold. Then, for every $k \in \mathbb{N}$, there is some $m(k) \ge k$ such that $x_{m(k)} \ge x$. Choose $n_0 = n(0)$ and $n_k = m(n_{k-1})$, $k \ge 1$. Then, $\{x_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence bounded below by x, and any of its subsequential limits will be $\ge x > \sup E$, which is a contradiction because subsequential limits of subsequences are themselves subsequential limits.

For uniqueness, suppose y < z in $\overline{\mathbb{R}}$ such that $y, z \in E$ and both satisfy (3), i.e., if x > y, then there is an $N \in \mathbb{N}$ such that $x_n < x$ for all $n \ge N$ (and the analogous statement, if x > z). Let

$$x = \begin{cases} z - 1, & \text{if } y = -\infty, \ z \in \mathbb{R}, \\ 0, & \text{if } y = -\infty, \ z = +\infty, \\ y + (z - y)/2, & \text{if } y, z \in \mathbb{R}, \\ y + 1, & \text{if } y \in \mathbb{R}, \ z = +\infty. \end{cases}$$

Note that in all cases, x < z. Then, there is some $N \in \mathbb{N}$ such that $x_n < x$ for all $n \ge N$. Thus, all subsequential limits are < z, so $z \notin E$, which is a contradiction.

We now give an alternate characterization of lim sup and liminf.

Theorem 0.1. Let $\{x_n\}_{n\in\mathbb{N}}$ be a real sequence. Then, the sequences

$$y_n = \sup\{x_k : k \ge n\},$$

 $z_n = \inf\{x_k : k \ge n\},$

have limits in $\overline{\mathbb{R}}$. Moreover,

$$\begin{aligned} &\limsup_{n\to\infty} x_n &= &\lim_{n\to\infty} y_n = \inf_{n\geq 0} \sup_{k\geq n} \{x_k\}, \\ &\liminf_{n\to\infty} x_n &= &\lim_{n\to\infty} z_n = \sup_{n\geq 0} \inf_{k\geq n} \{x_k\}. \end{aligned}$$

where the limits are in $\overline{\mathbb{R}}$.

Proof. Note that y_n and z_n are clearly montonically (decreasing and increasing, respectively) sequences. Monotone sequences always admit limits in $\overline{\mathbb{R}}$.

Let $y = \lim_{n \to \infty} y_n$. We will show that y satisfies (2) and (3) of the above theorem. Let k > 0. Then, there is some $N(k) \in \mathbb{N}$ such that

$$y \le y_n = \sup\{x_k : k \ge n\} < y + \frac{1}{k}, \quad \forall n \ge N(k).$$

By the ε -characterization of suprema, for each $n \ge N(k)$, there is some $m(k, n) \ge n$ such that

$$y - \frac{1}{k} \le y_n - \frac{1}{k} < x_{m(k,n)} \le y_n < y + \frac{1}{k}.$$

Choose $n_1 = m(1, N(1))$. Choose $n_2 = m(2, \max\{N(2), n_1\})$. In general, choose $n_k = m(k, \max\{N(k), n_{k-1}\})$. Then, $\{x_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence satisfying

$$|x_{n_k} - y| \le \frac{1}{k}.$$

Thus, *y* is a subsequential limit.

Now, assume x > y. WLOG, assume $x, y \in \mathbb{R}$. Let $\varepsilon = \frac{x-y}{2}$. Then, there is some $N \in \mathbb{N}$ such that

$$y_n \le y + \frac{x - y}{2} < x, \quad \forall n \ge N.$$

But $x_n \le y_n$ for all $n \in \mathbb{N}$. Thus, (3) holds for y.

Remark. There is a notion of \limsup and \liminf of sequences of sets $A = \{A_j\}_{j \in \mathbb{N}}$.

$$\limsup_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{k \ge n} A_k,$$
$$\liminf_{n \to \infty} A_n = \bigcup_{n=0}^{\infty} \bigcap_{k \ge n} A_k.$$

The former set is the set of those elements that occur in infinitely many A_j 's, while the latter set consists of elements that are in all but finitely many A_j 's.

Examples. (1)
$$\{\sin(n\pi/6)\}_{n\in\mathbb{N}} = 0, 1/2, \sqrt{3}/2, 1, \sqrt{3}/2, 1/2, 0, -1/2, -\sqrt{3}/2, -1, -\sqrt{3}/2, -1/2, 0,$$
 Thus, $\limsup_{n\to\infty} \sin(n\pi/6) = \lim_{n\to\infty} \sup\{x_k : k \ge n\} = \lim_{n\to\infty} \sqrt{3}/2 = \sqrt{3}/2,$ $\liminf_{n\to\infty} \sin(n\pi/6) = \lim_{n\to\infty} \inf\{x_k : k \ge n\} = \lim_{n\to\infty} -\sqrt{3}/2 = -\sqrt{3}/2.$

END OF LECTURE 18