MEEN 10060 – Design Lab Analysis of Simply Supported Beams – Assignment

Instructions:

- For each of the problems given, please enter the relevant values into the blank spaces provided on the Answer Sheet.
- Return the completed answer sheet to the School Office.
- For some of the variables used in the calculation, the value is based on numbers selected from your 8 digit student ID number (including leading zero's if relevant).
- To determine which element of your Student ID number to use, each digit is referenced as 'a' to 'h' as shown in the text box below.
- Assignment deadline submission by 12 noon Friday 5th April.

Student Name:

Student Number:

а	b	С	d	е	f	g	h

Example – use of Student ID in calculating input variables

Student Number:

0	1	2	3	4	5	6	7
а	b	С	d	е	f	g	h

Value =
$$(a+b+c) = (0+1+2) = 3$$

Value =
$$(e*f) = (4*5) = 20$$

Value =
$$(c/d) = (2/3) = 0.667$$

$$L = 1 + (b/10) + (c/100) m = 1.12 m$$

$$W = (b+c) * 1000 N = 3,000 N$$

Questions have been defined in order to minimise the chance of:

- (a) defining values that result in dividing by zero.
- (b) defining values that are zero.

If either of these scenarios should happen, please use '1' instead of '0' for the relevant Student ID digit. For example:

Value =
$$(b/a) = (1/0) = \infty$$
! - use a = 1: Value = $(1/1) = 1$ instead Value = $(a/10) = (0/10) = 0$ - use a=1: Value = $(1/10) = 0.1$ instead.

Problem 1: Concentrated Loads

Figure 1: Simply supported beam subjected to 2 point loads

For the simply supported beam shown above, the distance between the supports is 6m. The magnitude of load W1 is (a+b) kN and it is applied at mid-span. The magnitude of load W2 is (c) kN and it is applied one metre from support 2. Calculate R1, R2 and the magnitude of the maximum bending moment M.

Problem 2: Second Moment of Area (I) calculation

Three identical plates (d \times 4d) are bonded together to make beams of cross-sections shown in Figure 2 (a) and 2 (b) above.

Figure 2: I-beams of different orientation constructed from component parts using beams of dimension (d x 4d)

Using your student ID number as defined above to give you the value for d (cm), what is the second moment of area (I) for each cross-section about the neutral axis (illustrated in red)?

Problem 3: Second Moment of Area (I) Calculation

Figure 3: Tubular cross-section

For the circular tube of cross-section shown in Figure 3, calculate the second moment of area (I) about the axis illustrated in red, where:

$$D_o = ((g + h)/10) m$$
 and $D_i = 0.8*D_o m$

Problem 4: Bending Stress Calculation

Using the value for the maximum bending moment calculated for the simply supported beam under four-point bending load in Problem 1, calculate the maximum bending stress if the beam has a rectangular cross-section (W \times H). The dimensions are calculated by:

Width =
$$(e + f)/10 cm$$

Height = $3 \times (e + f)/10 cm$

MEEN10060 – Design & Materials Individual Assignment Answer Sheet

Student Name:								
Student Number:								
	а	b	С	d	e	f	ф	h

Question 1: Answers:

	R1 (kN)	R2 (kN)	M (kNm)
Q1			

Question 2: Answers:

	I (cm ⁴)
Q2 (a)	
Q2 (b)	

Question 3: Answer:

	I (m ⁴)
Q3	

Question 4: Answer

Question 117 1110 11 C.					
	σ (N/mm ²)				
Q4					