ON THE DECONVOLUTIONS OF PROBABILITY DENSITIES

A PREPRINT

November 5, 2024

ABSTRACT

XXX

Keywords deconvolution · characteristic functions

1 XXX

The convolution of two probability densities f,g is the density given by $h(t) = \int_{-\infty}^{\infty} f(u)g(t-u)du$. We shall denote h by f*g. The convolution f*g also corresponds to the density of the sum X+Y of independent random variables X and Y with density f,g, respectively.

Let f_X , f_Y and f_Z be the probability densities with support on \mathbb{R} . In this paper we study under which conditions $f_X * f_Y = f_X * f_Z \implies f_Y = f_Z$. This question is related to the deconvolution problem.

One might ask why this is not always the case. In this regard Feller [1957] provides an illustrating example with characteristic functions.

Example 1.1 (Feller page 502 section XV.2a). Let X be a random variable with density given by

$$f_X(x) = \frac{(1 - \cos(x))}{\pi x^2}, \ x \in \mathbb{R}$$

Then the characteristic function $\varphi_X(t)$ of f(x) is given by:

$$\varphi_X(t) = (1 - |t|) \mathbb{I}_{[-1,1]}(t).$$

Eu não cheguei a fazer a conta na mão, mas está explicitamente mencionado no Feller que esse é o caso. Vou tentar rascunhar a demonstração abaixo: Lembrando que $\sin(x/2)^2 = (1-\cos(x))^2$ e que a densidade é simétrica ao redor de 0 notamos que $E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} \frac{(1-\cos(x))}{\pi x^2} dx = 2 \int_{-\infty}^{\infty} e^{itx} \frac{\sin(\frac{x}{2})^2}{\pi x^2} dx$. Substituindo u = x/2 temos $2 \int_{-\infty}^{\infty} e^{itx} \frac{\sin(\frac{x}{2})^2}{\pi x^2} dx = \int_{-\infty}^{\infty} e^{i2tu} \frac{\sin(u)^2}{\pi u^2} du$. Logo o problema é equivalente a encontrar a transformada de Fourier de $\frac{\sin^2(u)}{u^2}$. O truque mais que considero mais tragável pra calcular isso é notar que $\frac{\sin(t)}{t} = \int_{-1}^{1} e^{itv} dv$. Sendo assim dá pra substituir essa fórmula na integral anterior, aplicar Fubini e resolver a integral em uma ordem conveniente em que aparece esse triângulo.

Now, Pólya criterion (Example 3.b of chapter XV of Feller [1957]) guarantees that any even, convex and continuous function φ_Y with $\varphi_Y(0) = 1$ is the characteristic function of some random variable Y. Therefore it's possible to define two characteristic functions φ_{Y_1} and φ_{Y_2} that coincide in [-1,1] and diverge outside this interval.

In this case:

$$\varphi_X(t)\varphi_{Y_1}(t) = \varphi_X(t)\varphi_{Y_2}(t), \forall t,$$

but $\varphi_{Y_1}(t) \neq \varphi_{Y_2}(t)$ for t outside [-1,1]. Therefore $f_{Y_1} \neq f_{Y_2}$.

The distribution of f_X is very pathologic. It is 0 on an infinite enumerable number of points and it has no finite moments. We ask ourselves what conditions are sufficient for the deconvolution to be possible.

Seguindo o comentário do Feller na página 506, o próximo passo poderia ser:

- 1 Provar que $\mathbf{F}\star G_1=\mathbf{F}\star G_2$ implica que $G_1=G_2$ quando \mathbf{F} é a distribuição Normal.
- 2 Trocar ${\bf F}$ por qualquer F tal que a sua função característica não se anule na reta.
- 3 Quando $\mathbf{H} \star G_1 = \mathbf{H} \star G_2$ implicar que $G_1 = G_2$ então H tem função característica que não se anula na reta.
- 4 Onde entra a condição da função característica ser ou não integrável nos passos acima...?

Acredito que a sugestão de próximos passos pode ser um caminho para o que queremos. Vou verificar. Abraço

References

W. Feller. An Introduction to Probability Theory and Its Applications, Volume 2. Number v. 1-2 in An Introduction to Probability Theory and Its Applications. Wiley, 1957. ISBN 9780471257097. URL https://books.google.com.br/books?id=BsSwAAAAIAAJ.