Evaluation and Methodology

CSCI-P556 Applied Machine Learning Lecture 6

D.S. Williamson

Agenda and Learning Outcomes

Today's Topics

- Topics:
 - Handling Categorical data (e.g. Data cleaning)
 - Feature scaling
 - Measures of performance for classification
 - N-Fold Cross Validation (and some variants)

Converting to Numerical Values

 Data often contains non-numerical attributes. Machine Learning, however, requires numerical values in order to learn. Hence, must modify categorical attributes.

- Two categorical data types:
 - Ordinal: values can be sorted or ordered (e.g. shirt size: XL > L > M).
 - Nominal: text values without a order (e.g. shirt color: red, blue, black,...)

Converting to Numerical Values

• We can transform the values using Scikit-Learn's OrdinalEncoder, which

assigns a numeric value to each class

```
from sklearn.preprocessing import OrdinalEncoder
except ImportError:
    from future_encoders import OrdinalEncoder # Scikit-Learn < 0.20</pre>
```

```
ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded[:10]
```

```
array([[0.],
[0.],
[4.],
[1.],
[0.],
[0.],
[0.],
[0.],
[0.],
```

Category	Value
<1H OCEAN	0
INLAND	1
ISLAND	2
NEAR BAY	3
NEAR OCEAN	4 4

housing_cat = housing[['ocean_proximity']]
housing_cat.head(10)

	ocean_proximity
17606	<1H OCEAN
18632	<1H OCEAN
14650	NEAR OCEAN
3230	INLAND
3555	<1H OCEAN
19480	INLAND
8879	<1H OCEAN
13685	INLAND
4937	<1H OCEAN
4861	<1H OCEAN

Converting to Numerical Values

• We can transform the values using Scikit-Learn's OrdinalEncoder, which

assigns a numeric value to each class

```
try:
    from sklearn.preprocessing import OrdinalEncoder
except ImportError:
    from future_encoders import OrdinalEncoder # Scikit-Learn < 0.20</pre>
```

```
ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded[:10]
```

```
array([[0.],
[0.],
[4.],
[1.],
[0.],
[1.],
[0.],
[0.],
[0.]])
```

Category	Value
<1H OCEAN	0
INLAND	1
ISLAND	2
NEAR BAY	3
NEAR OCEAN	4 4

housing_cat =	housing[['ocean_proximity']]
housing_cat.he	ad(10)

One-hot Encoding

 To fix this, create one binary attribute per category (e.g. a binary vector), where only one non-zero value exists, based on the category

Category	Vector Value
<1H OCEAN	0
INLAND	0
ISLAND	0
NEAR BAY	0
NEAR OCEAN	1

Category	Vector Value
<1H OCEAN	1
INLAND	0
ISLAND	0
NEAR BAY	0
NEAR OCEAN	0 5

- This is called a <u>one-hot encoding</u>, because only one value will be 1 (hot), which the others are 0 (cold).
- Avoids issues with ordering and similarity

One-hot Encoding

One-hot encoding can be accomplished with Scikit-Learn using

dtype=object)]

OneHotEncoder

- Create instance of encoder
- Apply encoding to categorical data
- Shows what position in vector implies (e.g. which category)

[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],</pre>

Feature Scaling

Two approaches

- Machine learning algorithms do not perform well when the features/attributes have very different numerical scales
 - Total rooms varies from 2 to 39320
 - Median ages varies from 1 to 52
- *Feature scaling*, modify the range of values while maintaining relative information, is needed. Two common approaches:
 - Min-max scaling (aka normalization)
 - Standardization

housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553
std	2.003532	2.135952	12.585558	2181.615252	421.385070
min	-124.350000	32.540000	1.000000	2.000000	1.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000

Feature Scaling

Min-max scaling (or normalization)

- Min-max scaling (or normalization) involves:
 - Computing the min and max values of the attribute/feature
 - Subtract the min value from each instance of this attribute
 - Divide the result by the difference between the max and min values.
- Results in attributes/features that range from 0 to 1.

housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000
mear	-119.569704	35.631861	28.639486	2635.763081	537.870553
sto	2.003532	2.135952	12.585558	2181.615252	421.385070
mir	-124.350000	32.540000	1.000000	2.000000	1.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
housing_rooms = housing[["total_rooms"]]
housing_rooms_scaled = scaler.fit_transform(housing_rooms)
print("Min: ", min(housing_rooms_scaled), "Max: ", max(housing_rooms_scaled))
```

Min: [0.] Max: [1.]

Feature Scaling

Standardization

- Steps for standardizing features:
 - Compute mean (or average) and standard deviation of feature/attribute
 - Subtract the mean value from each instance of this attribute
 - Divide the result by the standard deviation.
- Resulting attributes/features are zero mean and unit variance, but not bound to specific range.
- See StandardScaler in Scikit-Learn for a built-in function for accomplishing this.

Evaluation and Cross Validation

Why Evaluation?

- When a learning system is deployed in the real world, we need to be able to quantify the performance of the system
 - How accurate will the classifier be? How big is the regression error?
 - When is it wrong? Why is it wrong?
- Evaluation is also needed during training/development for the same reasons
- This is very important as it is useful to decide which classifier/regressor to use in which situations

Evaluating ML Algorithms

Often done empirically (e.g. running experiments)

- Empirical Studies
 - Correctness on novel examples
 - Time spent learning
 - Time needed to apply result learned
 - Speedup after learning (explanation-based learning)
 - Space required
- Basic idea: repeatedly use train/test sets to estimate future performance

Proper Experimental Methodology Can Have a Huge Impact!

 A 2002 paper in Nature (a major, major journal) needed to be corrected due to "training on the testing set"

Most important "thou shall not"

- Original report: 95% accuracy (5% error rate)
- Corrected report (which still is buggy): 73% accuracy (27% error rate)
- Error rate increased over 400%!!!

Recall: Training and Test Sets

Split data into two sets

Split the available data into a training set and a test set

- Train the ML algorithm on the training set and evaluate it on the testing set
- Assume already performed data pre-processing
- Now want to train and evaluate a classifier (e.g. Linear Regression Don't worry about understanding what this is at this point)

Classifier Accuracy

- The accuracy of a classifier on a given test set is the percentage of test set examples that are correctly classified by the classifier
 - Accuracy = (# correct classifications)/ (Total # of examples)
 - Error rate is the opposite of accuracy
 - Error rate = 1 Accuracy

Some Typical ML Experiements

Empirical Learning

Some Typical ML Experiments

"Lesion" Studies

	Testset Performance	
Full System	80%	
Without Module A	75%	
Without Module B	62%	

False Positive and False Negatives

- Sometimes accuracy is not sufficient
- If 98% of examples are negative (for a disease), the classifying everyone as negative can get an accuracy of 98%
- When is the model wrong?
 - False positives and false negatives
- Often there is a cost associated with false positives and false negatives
 - Diagnosis of diseases
 - Sometimes better safe than sorry

Confusion Matrix

- Is a device used to illustrate how a model is performing in terms of false positives and false negatives
- It gives us more information than a single accuracy figure
- It allows us to think about the cost of mistakes
- It can be extended to any number of classes

Confusion Matrix

- True positive is the count (or percentage) of instances where the model predicted class A, and class A is the true label (or result)
- False Negative is the count of instances where the model predicts class B, even though the true label is class A.
- False Positive is the count of instances where the model predicated class A, given that Class B is the true label
- True Negative is the count of instances where the model predicted class B given that class B is the true label.

Confusion Matrix

- Can obviously be extended to more than two-class problems. Think about how?
- Ideally, the highest counts are along the main diagonal

Accuracy Measures

Four common metrics for assessing classification performance

Predicted result			
Class A Class B			
True	False	Class A	
Positive	Negative	(e.g.	True
False True		Class B	Result
Positive	Negative	(e.g. do	

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$True Positive Rate (sensitivity) = \frac{TP}{TP + FN}$$

$$Misclassification Rate = \frac{FP + FN}{TP + FP + TN + FN}$$

True Negative Rate (specificity) =
$$\frac{TN}{TN + FP}$$

Accuracy Measures

Two more measures

Notice you get <u>no</u> credit for filtering out <u>ir</u>relevant items

Predicte	ed result		
Class A	Class B		
True	False	Class A	
Positive	Negative	(e.g.	True
False	True	Class B	Result
Positive	Negative	(e.g. do	

Learning from Examples

Standard Methodology for Evaluation

- Start with a dataset of labeled examples
- Randomly (or Stratified) partition into N groups
- N times, combine N- 1 groups into a training set
- Provide training set to learning system
- Measure accuracy on "left out" group (the testing set)
- Repeat until all combinations are evaluated

train test train train

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
   clone_clf = clone(sgd_clf)
   X_train_folds = X_train[train_index]
   y_train_folds = (y_train_5[train_index])
   X_test_fold = X_train[test_index]
   y_test_fold = (y_train_5[test_index])
   clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
   n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
   clone_clf = clone(sgd_clf)
   X_train_folds = X_train[train_index]
   y_train_folds = (y_train_5[train_index])
   X_test_fold = X_train[test_index]
   y_test_fold = (y_train_5[test_index])
   clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
   n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

N=3 Stratified folds for cross validation

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
                                                                         N=3 Stratified folds for
                                                                            cross validation
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone_clf = clone(sgd_clf)
                                                                                Train and test over the
   X_train_folds = X_train[train_index]
                                                                                    different folds
    y_train_folds = (y_train_5[train_index])
                                                                                      iteratively
   X_test_fold = X_train[test_index]
    y_test_fold = (y_train_5[test_index])
    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
                                                                        N=3 Stratified folds for
                                                                            cross validation
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone_clf = clone(sgd_clf)
                                                                               Train and test over the
   X_train_folds = X_train[train_index]
                                                                                    different folds
    y_train_folds = (y_train_5[train_index])
                                                                                      iteratively
   X_test_fold = X_train[test_index]
    y_test_fold = (y_train_5[test_index])
    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
                                                                                    Compute accuracy
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

Using Tuning Sets

Refining N-fold Cross Validation

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning

Better method

- Set aside part of the training set, called a "tuning" or "development" set
- Measure performance on this "tuning" data to estimate future performance for a given set of parameters
- Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

Experimental Methodology

A Pictorial Overview

collection of classified examples

Parameter Setting

- Notice that each train/test fold may get different parameter settings!
 - That's fine (and proper)

• I.e., a "parameterless"* algorithm internally sets parameters for each data set it gets

 * Usually, through, some parameters have to be externally fixed (e.g. knowledge of the data, range of parameter settings to try, etc.)

Using Multiple Tuning Sets

- Using a single tuning set can be unreliable predictor, plus some data "wasted."
- Hence, often the following is done:
 - For each possible set of parameters
 - Divide training data into train' and tune sets, using N-fold cross validation
 - Score this set of parameter values: average tune set accuracy over the N folds
 - Use best set of parameter settings and all (train' + tune) examples
 - Apply resulting model to test set

Next Class

Finish metrics for classification

Go over metrics for regression