Содержание

1	Определение кватерниона, кватернионные единицы	1
2	Сложение и умножение кватернионов, некоммутативность умножения	2
3	Сопряженные кватернионы, модуль кватерниона	4
4	Группа единичных кватернионов	4
5	Скалярная и векторная часть кватернионов	4
6	Скалярное и векторное произведение в пространстве кватер векторов	нионов- 5
7	Описание вращения трехмерного пространства с помощью кватернионов	6
8	Отображение множества единичных кватернионов на груп- пу матриц вращения	7
9	Композиция двух вращений	9

1 Определение кватерниона, кватернионные единицы

Естественным расширением поля \mathbb{R} , при котором удается сохранить все свойства введенных в \mathbb{R} арифметических операций (сложение и умножение), служит поле \mathbb{C} комплексных чисел: $\mathbb{R} \subset \mathbb{C}$, dim $\mathbb{R} = 1$, dim $\mathbb{C} = 2$. Расширением же поля \mathbb{C} являются кватернионы. Множество всех кватернионов обозначается как $H \colon \mathbb{C} \subset H$, dim $\mathbb{C} = 2$, dim H = 4. На множестве H вводятся операции сложения и умножения, при этом удается сохранить все привычные свойства этих операций (за исключением коммутативности умножения). Кроме того, на H вводится операция умножения на вещественные числа, причем H в результате становится четырехмерным векторным пространством

Другие существующие обобщения понятия числа, так называемые гиперкомплексные числа, приводят к структурам, в которых не выполняется ассоциативность умножения, а также появляются делители нуля, то есть такие числа a и b, что $a \neq 0, b \neq 0$ и $a \cdot b = 0$. Пример такого рода умножения дает операция векторного произведения в \mathbb{R}^3 : она не является ни коммутативной, ни ассоциативной и для нее имеются делители нуля.

Определение

Кватернионом g называется запись следующего вида $g=t+x_i+y_j+z_k$, где $t,x,y,z\in\mathbb{R}$, а i,j,k — базисные кватернионы, называемые кватерниоными единицами.

При записи кватернионов используют следующие соглашения:

- а) Коэффициенты x, y, z, равные единицы, не пишутся;
- b) Коэффициенты, равные нулю, приводят к записи следующего вида:

$$\begin{aligned} 1 + 0 \cdot i + 0 \cdot j + 0 \cdot k &\equiv 1, \\ 0 + 1 \cdot i + 0 \cdot j + 0 \cdot k &\equiv i, \\ 0 + 0 \cdot i + 1 \cdot j + 0 \cdot k &\equiv j, \\ 0 + 0 \cdot i + 0 \cdot j + 1 \cdot k &\equiv k \end{aligned}$$

и т.д.;

с) Кватернионы вида $t + 0 \cdot i + 0 \cdot j + 0 \cdot k$ отождествляются с вещественными числами.

2 Сложение и умножение кватернионов, некоммутативность умножения

Определение

Суммой двух кватернионов $g = t_1 + x_1 i + y_1 j + z_1 k$ и $h = t_2 + x_2 i + y_2 j + z_2 k$ называется кватернион $f = (t_1 + t_2) + (x_1 + x_2)i + (y_1 + y_2)j + (z_1 + z_2)k$.

Чтобы определить произведение кватернионов q и h, используется

$$1 \cdot i = i$$
 $1 \cdot j = j$ $1 \cdot k = k$ $1 \cdot 1 = 1$ $i \cdot 1 = i$ $j \cdot 1 = j$ $k \cdot 1 = k$ следующая таблица умножения $i^2 = i \cdot i = -1$ $j^2 = j \cdot j = -1$ $k^2 = k \cdot k = -1$ $i \cdot j = k$ $j \cdot k = i$ $k \cdot i = j$ $j \cdot i = -k$ $k \cdot j = -i$ $i \cdot k = -j$

Если записать (координатные) кватернионные единицы в виде последовательности i j k, то произведение двух последовательных единиц в этой записи равно единице, сразу за ними следующей. Запись следует повторить циклически.

Определение

Произведением кватернионов g и h называется кватернион: $f=(t_1t_2-t_2)$ $x_1x_2 - y_1y_2 - z_1z_2) + (t_1x_2 + x_1t_2 + y_1z_2 - z_1y_2)i + (t_1y_2 + y_1t_2 + z_1x_2 - x_1z_2)j +$ $(t_1z_2+z_1t_2+x_1y_2-y_1x_2)k.$

Чтобы умножить кватернион g на вещественное число $\lambda \in \mathbb{R}$, надо умножить на λ каждую координату: $\lambda \cdot g = (\lambda t_1) + (\lambda x_1)i + (\lambda y_1)j + (\lambda z_1)k$.

Относительно операции сложения и умножения на вещественное число H представляет собой четырехмерное вещественное пространство, в котором базис образуют кватернионные единицы 1, $i, j, k. H \sim \mathbb{R}^n$,

котором базис образуют кватернионные единицы 1,
$$i, j, k.$$
 $H \sim \mathbb{R}^n$, $t+xi+yj+zk \Leftrightarrow \begin{bmatrix} t \\ x \\ y \\ z \end{bmatrix}$. Но в H дополнительно имеется операция умно-
жения $\begin{bmatrix} t_1 \\ x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} t_2 \\ x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} t_1t_2-x_1x_2-y_1y_2-z_1z_2 \\ t_1x_2+x_1t_2+y_1z_2-z_1y_2 \\ t_1y_2+y_1t_2+z_1x_2-x_1z_2 \\ t_1z_2+z_1t_2+x_1y_2-y_1x_2 \end{bmatrix}$.

- 1. g + h = h + g (коммутативность сложения);
- 2. (g+h) + f = g + (h+f) (ассоциативность сложения);
- 3. $(g \cdot h) \cdot f = g \cdot (h \cdot f)$ (ассоциативность умножения);
- 4. $f \cdot (q+h) = f \cdot q + f \cdot h$ (Дистрибутивность);
- 5. $(q+h) \cdot f = q \cdot f + h \cdot f$.

Ho: $f \cdot g \neq g \cdot f$. $\Pi pumep. \ i \cdot j = k, \ j \cdot i = -k$.

3 Сопряженные кватернионы, модуль кватерниона

Определение

Сопряженным к кватерниону g=t+xi+yj+zk называется кватернион $t-xi-yj-zk=\overline{g}.$ При этом $g\overline{g}=t^2+x^2+y^2+z^2.$

Определение

Модулем кватерниона g называется величина $|g| = \sqrt{g\overline{g}} = \sqrt{t^2 + x^2 + y^2 + z^2}.$

4 Группа единичных кватернионов

Лемма

Кватернионы, модуль которых равен единице, образуют группу по умножению: $H_1 = \{g \in H | |g| = 1\}.$

Базисные кватернионы 1, i, j, k принадлежат H_1 . Множество H_1 представляет собой сферу радиуса 1 в \mathbb{R}^n .

5 Скалярная и векторная часть кватернионов

Определение

Скалярной частью кватерниона g=t+xi+yj+zk называется число t. Справедливо равенство $t=\frac{1}{2}(g+\overline{g}).$

Определение

Векторной частью кватерниона g=t+xi+yj+zk называется кватернион u=xi+yj+zk. Справедливы равенства $u=\frac{1}{2}(g-\overline{g}), g=t+u$.

6 Скалярное и векторное произведение в пространстве кватернионов—векторов

Определение

Кватернионы вида u = xi + yj + zk называются векторами, то есть кватернион-вектор \Leftrightarrow его скалярная часть — 0. Критерии: g — вектор $\Leftrightarrow \overline{g} = -g$.

Кватернионы—векторы образуют трехмерное пространство $H_0 = \{u = xi + yj + zk\} \sim \mathbb{R}^3$. Базис в H_0 образуют кватернионные единицы i,j,k. По определению, этот базис полагается ортонормированным и положительно ориентированным. Это позволяет ввести в H_0 скалярное произведение: $u = x_1i + y_1j + z_1k$, $v = x_2i + y_2j + z_2k \Rightarrow \langle u,v \rangle = x_1x_2 + y_1y_2 + z_1z_2 \in \mathbb{R}$. Все свойства скалярного произведения выполнены.

Определение

Векторным произведением $u \times v$ называется следующий кватернионвектор $u \times v = (y_1 z_2 - z_1 y_2)i + (z_1 x_2 - x_1 z_2)j + (x_1 y_2 - y_1 x_2)k$ или: $u \times v =$

$$egin{bmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix}$$
. Например $i \times j = k, \ j \times k = i.$

Для любых двух $u \in H_0$ и $v \in H_0$ справедливо равенство

$$u \cdot v = -\langle u, v \rangle + u \times v, \tag{(*)}$$

где $u \cdot v$ — произведение в H, $\langle u, v \rangle$ — скалярное произведение в H_0 , $u \times v$ — векторное произведение в H_0 . Равенство (*) следует из определений соответствующих произведений. Критерий: $u \in H_0$, $v \in H_0$. Тогда $u \cdot v \in H_0 \Leftrightarrow u \perp v$.

Лемма

 $\forall g, h \in H$ справедливо

- a) $|g \cdot h| = |g| \cdot |h|$;
- b) $\overline{g \cdot h} = \overline{h} \cdot \overline{g}$;
- c) $\overline{\overline{g}} = g$;

d) $\forall g \in H, g \neq 0 \ \exists ! g^{-1} \colon gg^{-1} = g^{-1}g = 1$ (обратный элемент $g^{-1} = g^{-1}g = 1$

Описание вращения трехмерного простран-7 ства с помощью кватернионов

Любому кватерниону $g \in H_1$ сопоставляется матрица Q размера 3 на 3 и с коэффициентами из поля \mathbb{R} : $g \in H_1 \mapsto Q = T(g)$.

Приведем формулу, которая позволяет построить матрицу Q по из-

Приведем формулу, которая позволяет построить матрицу вестному
$$g=s+ai+bj+ck$$
: $Q=\begin{bmatrix}q_{11}&q_{12}&q_{13}\\q_{21}&q_{22}&q_{23}\\q_{31}&q_{32}&q_{33}\end{bmatrix}$; $q_{ij}\in\mathbb{R}$, где

$$q_{11} = s^{2} + a^{2} - b^{2} - c^{2},$$

$$q_{12} = 2ab - 2sc,$$

$$q_{13} = 2ac - 2sb,$$

$$q_{21} = 2ab + 2sc,$$

$$q_{22} = s^{2} - a^{2} + b^{2} - c^{2},$$

$$q_{23} = 2bc - 2sa,$$

$$q_{31} = 2ac - 2sb,$$

$$q_{32} = 2bc + 2sa,$$

$$q_{33} = s^{2} - a^{2} - b^{2} + c^{2}.$$

Поясним, как именно эти формулы получаются. Пусть есть g = s +ai + bj + ck, причем $|g|^2 = s^2 + a^2 + b^2 + c^2 = 1$. Возьмем производный x кватернион $\overrightarrow{x} = xi + yj + zk \Leftrightarrow \overrightarrow{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$. Образуем произведение $\overrightarrow{x'}=g\cdot\overrightarrow{x}\cdot\overline{g}$. Тогда $|\overrightarrow{x'}|=?$ $\overline{\overrightarrow{x'}}=\overline{g\cdot\overrightarrow{x}\cdot\overline{g}}=\overline{\overline{g}}\cdot\overline{\overrightarrow{x}}\cdot\overline{g}=g\cdot(-\overrightarrow{x})\cdot\overline{g}=$ $-g\cdot\overrightarrow{x}\cdot\overline{g}=-\overrightarrow{x'}$. Таким образом, $\overrightarrow{\overline{x'}}\in H_0\Rightarrow\overrightarrow{x'}=x'i+y'j+z'k$. Из определения произведения кватернионов получаем

$$x' = q_{11}x + q_{12}y + q_{13}z,$$

$$y' = q_{21}x + q_{22}y + q_{23}z,$$

$$z' = q_{31}x + q_{32}y + q_{33}z,$$

где q, i, j, k — вещественные числа.

В матричном виде эти соотношения записываются следующим обра-

зом:
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \overrightarrow{x'} = Q \overrightarrow{x'}$$
. Следовательно, каждому

единичному кватерниону соответствует некоторое линейное отображение пространства \mathbb{R}^3 в себя. Матрица этого отображения — это определенная выше матрица Q. Будем писать Q=T(g). Исследуем поподробнее свойства матрицы Q.

- 1. Пусть $\overrightarrow{x'}=g\cdot\overrightarrow{x}\cdot\overline{g}$, где $g\in H_1$. Тогда $|\overrightarrow{x'}|=|g|\cdot|\overrightarrow{x}|\cdot|\overline{g}|=1$ $1\cdot|\overrightarrow{x}|\cdot|\overline{g}|=|\overrightarrow{x}|$. Следовательно, преобразование $Q\cdot\begin{bmatrix}x\\y\\z\end{bmatrix}$ переводит вектор (x,y,z) заданной длины в вектор такой же длины;
- 2. Покажем, что $\det Q=1$. Пользуясь определением матрицы Q, получаем следующие равенства $Q^*\cdot Q=(s^2+a^2+b^2+c^2)^2\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$; где Q^* транспонированная матрица. Следовательно, $(\det Q^*)\cdot (\det Q)=(S^2+a^2+b^2+c^2)^6$, но $\det Q^*=\det Q$ и поэтому $\det Q=(s^2+a^2+b^2+c^2)^3$ (знак + выбран опять из-за определения матрицы Q). Таким образом, если |g|=1, то есть $s^2+a^2+b^2+c^2$, то $\det Q=+1$.

Определение

Множество матриц Q, обладающих свойствами 1 и 2, обозначаются через SO(3) и называются группой матриц вращения.

8 Отображение множества единичных кватернионов на группу матриц вращения

Поясним смысл термина матрица вращения, точнее установим, что геометрически действие матрицы Q на вектор из \mathbb{R}^3 сводится к вращению всего пространства \mathbb{R}^3 вокруг некоторой оси, проходящей через начало координат, на некоторый угол $w, 0 \leq w \leq 2\pi$.

Пусть $g=s+ai+bj+ck\in H_1$ и $\overrightarrow{a}=ai+bj+ck$, то есть $g=s+\overrightarrow{a}$. Если $\overrightarrow{a}=0,\ g=\pm 1,$ то $Q=\begin{bmatrix}1&0\\0&1&0\\0&0&1\end{bmatrix}$ и T(g) можно рассматривать как

тождественное преобразование \mathbb{R}^3 в себя. Пусть $\overrightarrow{a} \neq 0$, тогда полагаем $\overrightarrow{n} = \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$. Ясно, что $|\overrightarrow{n}| = 1$ и $\overrightarrow{a} = |\overrightarrow{a}| \cdot \overrightarrow{n}$, поэтому $g = s + \overrightarrow{a} = s + |\overrightarrow{a}| \cdot \overrightarrow{n}$. При этом $|g|^2 = s^2 + |\overrightarrow{a}|^2 = 1$. В силу этого равенства $\exists w \in (0, 2\pi) \colon s = \cos\left(\frac{w}{2}\right)$ и $|\overrightarrow{a}| = \sin\left(\frac{w}{2}\right)$. Следовательно, $g = \cos\left(\frac{w}{2}\right) + \sin\left(\frac{w}{2}\right) \cdot \overrightarrow{n}$, где $\overrightarrow{n} \in H_0$, $|\overrightarrow{n}| = 1$ и $0 \leq w \leq 2\pi$.

Теорема

Геометрически умножение вектора $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ из \mathbb{R}^3 на матрицу Q означает

поворот $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ вокруг оси с направляющим вектором \overrightarrow{n} на угол w.

Доказательство

Дополним вектор \overrightarrow{n} до ортонормированного и положительно ориентированного базиса \overrightarrow{n} , \overrightarrow{n} , \overrightarrow{v} пространства \mathbb{R}^3 . Покажем, что матрица Q обладает свойствами:

$$\begin{cases}
Q \overrightarrow{n} = \overrightarrow{n}, \\
Q \overrightarrow{n} = \cos(w) \cdot \overrightarrow{n} + \sin(w) \cdot \overrightarrow{v}, \\
Q \overrightarrow{v} = -\sin(w) \cdot \overrightarrow{n} + \cos(w) \cdot \overrightarrow{v}.
\end{cases} \tag{(Q_1)}$$

Иными словами, преобразование Q=T(g) оставляет на месте вектор \overrightarrow{n} и поворачивает на угол w плоскость, натянутую на векторы \overrightarrow{u} и \overrightarrow{v} , то есть вращает \mathbb{R}^3 вокруг оси, проходящей через вектор \overrightarrow{n} на угол w. Таким образом установив равенство (Q_1) , мы докажем теорему.

Для вывода формул (Q_1) нам понадобится правило перемножения векторов \overrightarrow{n} , \overrightarrow{n} , \overrightarrow{v} из H_0 друг на друга. Чтобы эти правила получить, воспользуемся равенством $\overrightarrow{x} \cdot \overrightarrow{y} = -\langle \overrightarrow{x}, \overrightarrow{y} \rangle + \overrightarrow{x} \times \overrightarrow{y} \Rightarrow \overrightarrow{n} \cdot \overrightarrow{n} = -1;$ $\overrightarrow{v} \cdot \overrightarrow{v} = -1;$ $\overrightarrow{n} \cdot \overrightarrow{v} = \overrightarrow{v};$ $\overrightarrow{v} \cdot \overrightarrow{v} = \overrightarrow{n};$ $\overrightarrow{v} \cdot \overrightarrow{n} = \overrightarrow{u}$. Таким образом, любая тройка ортонормированных положительно ориентированных

векторов из H_0 перемножается по тем же правилам, что и кватернионные единицы: . . . , \overrightarrow{n} , \overrightarrow{v} ,

С учетом этого получаем для $g \in H_1$, $g = \cos\left(\frac{w}{2}\right) + \sin\left(\frac{w}{2}\right)\overrightarrow{n}$, |g| = 1: $g \cdot \overrightarrow{n} = \overrightarrow{n} \cdot g \Rightarrow g \cdot \overrightarrow{n} \cdot \overline{g} = \overrightarrow{n} \cdot g \cdot \overline{g} = \overrightarrow{n} \cdot |g|^2 = \overrightarrow{n}$, то есть $Q(\overrightarrow{n}) = \overrightarrow{n}$. Далее, $g \cdot \overrightarrow{u} \cdot \overline{g} = \left[\cos\left(\frac{w}{2}\right) + \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] \cdot \overrightarrow{u} \cdot \left[\cos\left(\frac{w}{2}\right) - \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] = \left[\cos\left(\frac{w}{2}\right) \cdot \overrightarrow{u} + \sin\left(\frac{w}{2}\right) \quad \overrightarrow{v}\right] \cdot \left[\cos\left(\frac{w}{2}\right) - \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] = \left[\cos^2\left(\frac{w}{2}\right) - \sin^2\left(\frac{w}{2}\right)\right] \cdot \overrightarrow{u} + 2\sin\left(\frac{w}{2}\right)\cos\left(\frac{w}{2}\right) \cdot \overrightarrow{v} = \cos\left(w\right) \cdot \overrightarrow{u} + \sin\left(w\right) \cdot \overrightarrow{v}$, то есть второе из равенств Q_1 имеет место.

Далее $g \cdot \overrightarrow{v} \cdot \overline{g} = \left[\cos\left(\frac{w}{2}\right) + \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] \cdot \overrightarrow{v} \cdot \left[\cos\left(\frac{w}{2}\right) - \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] = \left[\cos\left(\frac{w}{2}\right) \cdot \overrightarrow{v} - \sin\left(\frac{w}{2}\right) \cdot \overrightarrow{u}\right] \cdot \left[\cos\left(\frac{w}{2}\right) - \sin\left(\frac{w}{2}\right) \quad \overrightarrow{n}\right] = -2\sin\left(\frac{w}{2}\right)\cos\left(\frac{w}{2}\right) \cdot \overrightarrow{u} + \left[\cos^2\left(\frac{w}{2}\right) - \sin^2\left(\frac{w}{2}\right)\right] \cdot \overrightarrow{v}$. То есть и третье из равенств (Q_1) также выполнено — теорема доказана. \square

9 Композиция двух вращений

Покажем, что построенное отображение $T\colon H_1\to SO(3)$ переводит H_1 на все SO(3). Для этого воспользуемся известным утверждением, что любая матрица Q из SO(3) задает вращение вокруг некоторого единичного вектора \overrightarrow{n} , $|\overrightarrow{n}|=1$, на некоторый угол w. Взяв для этой матрицы Q кватернион $g=\cos\left(\frac{w}{2}\right)+\sin\left(\frac{w}{2}\right)\cdot\overrightarrow{n}$, получим Q=T(g), что и требовалось.

Отметим, что $T: H_1 \to SO(3)$ не является взаимно однозначным, так как T(g) = T(-g). Однако, если $g_1 \in H_1$ и при этом $T(g_1) = T(g)$, то обязательно $g_1 = +g$ или $g_1 = -g$

Пусть $g_1 \in H_1$ и $g_2 \in H_1$. Тогда справедлива формула

$$T(g_2 \cdot g_1) = T(g_2) \cdot T(g_1).$$
 ((Q₂))

 $T(g_1)$ определяет следующее линейное преобразование \mathbb{R}^3 : $\overrightarrow{x'} = g_1 \cdot \overrightarrow{x} \cdot \overline{g_1}$, $T(g_2) \to \overrightarrow{x''} = g_2 \cdot \overrightarrow{x'} \cdot \overline{g_2}$. Поэтому $T(g_2) \cdot T(g_1) \Rightarrow \overrightarrow{x''} = g_2 \cdot (g_1 \cdot \overrightarrow{x} \cdot \overline{g_1}) \cdot \overline{g_2} = (g_2 \cdot g_1) \cdot \overrightarrow{x} \cdot (\overline{g_1} \cdot \overline{g_2}) = (g_2 \cdot g_1) \cdot \overrightarrow{x} \cdot (g_2 \cdot g_1)$, то есть $T(g_2) \cdot T(g_1)$ совпадает с $T(g_2 \cdot g_1)$.

Как уже установлено, преобразование $T(g_2 \cdot g_1)$ представляет собой вращение вокруг оси, проходящей через вектор \overrightarrow{a} на некоторый угол w. Пользуясь формулой (Q_2) , выразим вектор \overrightarrow{a} и угол w через s_1 , a_1 , s_2 , a_2 , соответствующие в (Q_2) сомножителям

$$g_1 = s_1 + \overrightarrow{a_1}$$
 Π $g_2 = s_2 + \overrightarrow{a_2}$, $s_1 = \cos\left(\frac{w_1}{2}\right)$ Π $s_2 = \cos\left(\frac{w_2}{2}\right)$.

Пусть $g_2 \cdot g_1 = g = s + \overrightarrow{a}$, где $s = \cos\left(\frac{w}{2}\right)$. Тогда $g_2 \cdot g_1 = \left[s_2 + \overrightarrow{a_2}\right] \cdot \left[s_1 + \overrightarrow{a_1}\right] = s_2 \cdot s_1 + s_2 \cdot \overrightarrow{a_2} + s_1 \cdot \overrightarrow{a_2} + \overrightarrow{a_2} \cdot \overrightarrow{a_1} = \left[s_1 \cdot s_2 - \langle \overrightarrow{a_1}, \overrightarrow{a_2} \rangle\right] + s_2 \cdot \overrightarrow{a_1} + s_1 \cdot \overrightarrow{a_2} + \overrightarrow{a_2} \times \overrightarrow{a_1}$. Таким образом, $T(g_2 \cdot g_1)$ производит вращение на угол w, определенный из соотношения $\cos\left(\frac{w}{2}\right) = s_1 \cdot s_2 - \langle \overrightarrow{a_1}, \overrightarrow{a_2} \rangle$. Вращение происходит вокруг вектора $\overrightarrow{d} = s_2 \cdot \overrightarrow{a_1} + s_1 \cdot \overrightarrow{a_2} - \overrightarrow{a_1} \times \overrightarrow{a_2}$.