(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年8 月15 日 (15.08.2002)

PCT

(10) 国際公開番号 WO 02/063300 A1

(51) 国際特許分類7: 37/00, C12N 15/00, C12M 1/00 G01N 33/53,

(21) 国際出願番号:

PCT/JP02/01147

(22) 国際出願日:

2002年2月12日(12.02.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-034556 2001年2月9日(09.02.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 有限会社 ユニテック (UNITEC CO., LTD.) [JP/JP]; 〒270-0025 千葉県 松戸市 中和倉341番地1 Chiba (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 田島 秀二

(TAJIMA, Hideji) [JP/JP]; 〒270-0025 千葉県 松戸市 中和倉341番地1有限会社ユニテック内 Chiba (JP).

(74) 代理人: 土橋 皓 (DOBASHI, Akira); 〒105-0001 東京 都港区虎ノ門1丁目17番3号第12森ビル6階

(81) 指定国 (国内): AU, CA, CN, JP, KR, NO, NZ, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

添付公開書類:

国際調査報告書

Tokyo (JP).

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: EQUIPMENT AND METHOD FOR MEASURING STORAGE REACTION

(54) 発明の名称: 収容反応測定装置および収容反応測定方法

(57) Abstract: An equipment and a method for measuring storage reaction in which a reaction can be processed, measured and identified efficiently and quickly. The equipment for measuring storage reaction comprises a translucent storage section having an inlet/outlet of fluid, being fixed to each fixing position where a plurality of substances to be detected, each having a specified chemical structure, are arranged at a specified interval, and being capable of storing a basic member while allowing each chemical structure to correspond to each fixing position, a section for sucking/delivering the fluid from/into the containing section through the inlet/outlet, and a measuring equipment for receiving the light from the storage basic material at the outside of the storing section under a state corresponding to the fixing position.

(57) 要約:

¥

収容反応測定装置および収容反応測定方法に関し、その反応処理、測定および識別についても効率的、迅速に行うことができる収容反応測定装置および収容反応測定方法を提供することである。

本発明は、所定の化学構造をもつ複数種の検出用物質が所定間隔で配置された各固定位置に固定され、各化学構造とその各固定位置とが対応付けられた基礎部材を収容可能であって流体の入出口を有する透光性の収容部と、その収容部に対して前記入出口を介して前記流体を吸引しかつ吐出可能とする吸引吐出部と、収容された前記基礎部材からの光を前記収容部の外部で前記固定位置と対応付けた状態で受光可能とする測定機とを有するように構成する。

明細書

収容反応測定装置および収容反応測定方法

5 技術分野

本発明は、収容反応測定装置および収容反応測定方法に関する。本発明は、 遺伝子、免疫系、アミノ酸、タンパク質、糖等の生体高分子、生体低分子の扱いが要求される分野、例えば、工学分野、食品、農産、水産加工等の農学分野、薬学分野、衛生、保健、免疫、疾病、遺伝等の医学分野、化学もしくは生物学等の理学分野等、あらゆる分野に関係するものである。

本発明は、特に、遺伝子の変異解析、多型解析、マッピング、塩基配列解析 、発現解析等において適した収容反応測定装置および収容反応測定方法に関す る。

15 背景技術

10

20

従来、遺伝子の塩基配列の決定を行うに際してDNAチップを用いるものがあった。

DNAチップは、半導体膜や、スライドグラス等の平板の表面上に、既知の多数種類のオリゴヌレオチドを各々微小量の懸濁液が点状となるように、アレイ状に配列して固定したものである。DNAチップは、その狭い表面上に多数のオリゴヌレオチドアレイを形成するためには、ピペット装置を用いて、1点1点微少量のオリゴヌレオチド懸濁液を一定の間隔を空けて混入防止を図りながら、分注して製造されたものである。このDNAチップを用いて、遺伝子に関する各種の分析や解析等を行う。

25 例えば、未知の目的遺伝子の塩基配列を決定しようとするには、従来では、 使用者は、発光物質で標識化された目的遺伝物質が懸濁した液を、前記DNA チップ上に分注する。一定の反応時間を置いた後に、洗浄によって余分の懸濁 液を除去する。次に、DNAチップからの発光の検出を行うことによって、発 光が検出された位置から塩基配列を決定しようとするものであった。

ところで、DNAチップを製造するためには、狭い領域に平面状に高密度に多数種類のオリゴヌレオチドを配列しようとすればするほど、相互に接近するので、クロスコンタミネーションが生じやすくなるのみならず、各固定位置でのオリゴヌクレオチドがよりいっそう少量化することになる。特に、各固定位置でのオリゴヌレオチドが少量化すると、その発光位置を定めることは、誤差が生じやすく正確さにおいて問題点を有していた。

また、従来、各オリゴヌクレオチド等の物質を、例えば、約 2.6 cm×7.6 cm程度の大きさのプレパラート状のガラス板等の平面に固定したDNAチップを用いていた。該平面の各固定位置にあるオリゴヌクレオチド等の物質に液体を供給するには、数 10μ リットル程度の液体を該平面上に分注した後、手作業で前記平面上にガラス板またはフィルムをサンドイッチ状に載置することによって、均一な薄液層を形成して各固定位置に均等に微小液体を供給する方法をとっていた。この方法ではフィルム等を載置する工程が必要であるために作業自動化の障害となっていた。また、フィルム等を載置することによって液体を供給するため、供給すべき液体を流動化させることが困難であり、また、少量化によって、ますます目的物質との遭遇性や反応性が低くなり処理に時間がかかり、また処理のために高濃度の液体が必要となるという問題点を有していた。

10

15

20

25

また、平面状にサンプルを配置するものであるために、高密度になればなるほどその扱いや自動化がより一層難しくなる。したがって、DNAチップの製造は、非常に多くの手間と時間を要することとなり高価になっていた。特に、膨大な量の塩基配列を含む未知の目的物質の構造の解析、分析や決定を行うには、大量のDNAチップの解析、分析等が必要であった。そのため、本出願人は、この問題を解決するために特許出願(特願 2000-7763、特願 2000-37273、特願 2000-77144、出願時点では未公開)を行い、1 または 2 以上の糸状、紐状、テープ状、または棒状等の細長形状に形成された基礎部材と、その基礎部材の長手方向に並んで固定された所定の化学構造をもつ各種の検出用物質とを有し、前記基礎部材は、巻かれ、積層され、または整列され、各種検出用物質の固定位置とその各化学構造とが対応付けられた集積支持体について開示し

ている。

5

15

25

しかしながら、このような集積支持体の製造が容易で価格が低いとしても、 この集積支持体を用いた反応、測定、識別についても、効率的、迅速に行うこ とができなければ、集積支持体の利点が十分に発揮されないという問題点を有 していた。

そこで、本発明は以上の問題点を解決するためになされたものであり、その第1の目的は、前述した集積支持体のみならず、DNA チップ等をも含めて、その反応、測定および識別についても効率的、迅速に行うことができる収容反応測定装置および収容反応測定方法を提供することである。

10 第2の目的は、反応、測定、および検出用物質または結合性物質の識別について一貫して、自動的に行うことができる収容反応測定装置および収容反応測定方法を提供することを目的としてなされたものである。

第3の目的は、標識化された結合性物質が懸濁する微少量の液を用いて、反応、測定、識別を行うことができる、扱いの容易な収容反応測定装置および収容反応測定方法を提供することである。

第4の目的は、検出用物質または結合性物質の識別を確実に行うことができる信頼性の高い収容反応測定装置および収容反応測定方法を提供することである。

第5の目的は、より一層反応、測定、識別が容易な集積支持体を提供するこ 20 とである。

発明の開示

以上の技術的課題を解決するために、第1の発明は、所定の化学構造をもつ 複数種の検出用物質が、長手方向に沿って所定間隔で固定され、各化学構造と その固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状の 基礎部材を有し、該基礎部材は前記固定位置が外方から測定可能な状態で巻か れ、積層され、または整列されて集積化された集積支持体である。

ここで、「検出用物質」とは、特定の結合性物質により認識、結合され得る化 学物質であって、例えば、核酸、蛋白質、アミノ酸、糖、ペプチド等の生体高 分子又は低分子を含む化学物質である。核酸としては、二本鎖DNAまたは一 本鎖DNAがある。結合性物質は、前記検出用物質に結合性を有する化学物質 であって、例えば、核酸、蛋白質、糖、ペプチド等の生体高分子又は生体低分 子等の化学物質である。検出用物質または結合性物質は、天然分子であっても 人工分子であっても良い。本発明において、検出用物質と当該検出用物質に結 合性を有する結合性物質の接触表面特性は、相互に相補的である。目的物質の 構造の決定や、種々の分析や、解析を行うために使用される。例えば、オリゴ ヌクレオチド等の遺伝物質、免疫物質であり、遺伝物質には、核酸(ポリヌク レオチド)、その分解生成物のオリゴヌクレオチド、ヌクレオチド等を含む。こ こでは、「基礎部材」は、可撓性の材料または非可撓性の材料で形成される。こ れらの材料は例えば、ポリエチレン、ポリスチレン、ポリプロピレン、ウレタ ン等の有機材、ガラス繊維、セラミックス、金属等の無機材、または有機材の フィルムやテープに微細なセラミックス粒子を敷き詰めたような有機材と無機 材とを組み合わせた材料等であっても良い。なお、有機材には、人工素材のみ ならず、絹、綿等の天然繊維等の天然素材をも含む。また、基礎部材は少なく とも各固定位置においては、種々の多孔性材、発泡性材、繊維性材、凹凸性材 で形成されるのが好ましい。

5

10

15

20

25

本発明では、「固定位置を外方から測定可能な状態で巻かれ、積層されまたは整列され」る。そのためには、例えば、該基礎部材を立体形状として測定できるように構成する。これによって、検出用物質の測定可能面積を増加させて、外部からの測定を確実に行い、信頼性を高めることができる。例えば、基礎部材が不透明または半透明の場合には、基礎部材の最外表面だけでなく、基礎部材の側面をも測定可能とするように、基礎部材の長手方向に垂直となる方向に沿って周方向に周囲を囲むように固定を行うとともに、基礎部材間の間隔を開けて巻き、積層し、または整列する。これによって、基礎部材が捩れて巻かれ、積層され、または整列されても固定位置が外方から測定可能である。また、透明または半透明の基礎部材に固定を行うようにするのが好ましい。さらに、2の異なる位置で、異なる方向で受光できるように受光部を設けて立体視によって、各固定位置を立体的に測定するようにしても良い。また、前記基礎部材は

、通常、1層のみ集積化されるのが好ましいが、透明または半透明の基礎部材 を立体視で測定する場合には複数層に集積化することができる。

該集積支持体には、前記基礎部材が巻かれ、積層され、整列されるべき支持体を設けるようにしても良い。これによって、基礎部材が可撓性の素材の場合には、位置決めを容易で確実に行うことができる。しかし、基礎部材が非可撓性の素材であるならば、必ずしも支持体を必要としない。

また、「化学構造」とは、前記検出用物質または結合性物質の分子構造であって、例えば、前記検出用物質または結合性物質が遺伝物質の場合には、塩基配列である。「集積化された基礎部材」は、たとえば、支持体を設け、該支持体に設けた隙間に基礎部材の各端を挟み込んで摩擦力で固定すること等によって結束して支持されるのが好ましい。

10

15

20

25

さらに、集積支持体は、後述する収容部に収容した際に、収容部の内壁との間で液体がスムーズに通過可能となるような隙間が形成されるような構造をもつのが好ましい。これによって、液体を吸引した際に、液体と検出用物質または結合性物質との接触を確実に行わせ、かつ、吐出の際には集積支持体と内壁との間に液体が残留することなくスムーズに通過させることができる。

また、該集積支持体または基礎部材を前記収容部に収容する際に、該収容部の 移動によって、該集積支持体及び基礎部材が該収容部内で移動しないように収 容部内で位置が固定される必要がある。

このような構造としては、例えば、集積支持体に、基礎部材が巻かれ、積層、整列される支持体(例えば、円筒状、角柱状)を設けるようにする。前記集積支持体を収容する容器(後述する収容部も含む)内壁と前記基礎部材との接触を防止する保護部を前記支持体に設けることによって実現するのが好ましい。この保護部としては、例えば、支持体(例えば、円筒状、角柱状等)の適当な部位(例えば、両縁部、両端部等)に、巻装された基礎部材の厚さを超える高さをもち、かつその先端が前記容器内壁と接触する突起部を支持体の表面から突出させて(例えば、半径方向に)設けたものが好ましい。

また、その保護部の前記容器内壁との接触点はできるだけ小さい面積をもつように形成するのが好ましい。これは、接触点の面積が大きいと液体の残留量

25

が増加するおそれがあるからである。その保護部の形状は、前記収容部内での 流体の流れが、その保護部の存在によって不可能にならないように形成する。 例えば、環状に形成した突起部に切欠部を設けたり、ピン状の突起部を設ける ことによって防止される。この保護部によって集積支持体の収容部内での位置 決めをも行うことができることになる。

また、前記支持体は、微少量の液体を扱う場合には中実に形成するのが好ましい。また、前記基礎部材と前記容器の内壁との距離はできるだけ狭い方が好ましい。一方、比較的大きな量の液体を扱う場合には前記支持体は中空または/および多孔性の部材で形成するのが好ましい。

10 また、前記基礎部材が巻かれ、積層され、または整列される支持体の表面に 凹凸や、螺旋状等の溝、筋を設け、該凹凸や溝や筋に沿ってまたは、該凹凸や 溝や筋を横切るように、前記基礎部材を巻き、積層し、整列させることによっ て、基礎部材間に間隔を空けたり、支持体と基礎部材間に間隔を設けて、流体 が流通しやすくするようにしても良い。

15 第1の発明によれば、基礎部材の各固定位置が外方から測定可能な状態で、 巻かれ装されているので外部から、標識化された固定位置の標識の検出または 測定を容易かつ確実に行うことができる。したがって、該集積化支持体を用い れば反応のみならず測定を行うに際し、取り扱いが容易であり、一貫した処理 を行うことができる。

20 「所定間隔」とは、隣接する検出用物質間の接触を避ける必要がある分析や解析の場合には、各検出用物質の固定量とその広がりを考慮して、その広がりを超える距離であり、隣接する検出用物質間の接触を避ける必要がないような分析や解析の場合には、前記広がりが重なるような距離であっても良い。

第2の発明は、所定の化学構造をもつ複数種の検出用物質を所定間隔で配置 した各固定位置に固定され、各化学構造とその各固定位置とが対応付けられた 基礎部材を収容可能であって流体の入出口を有する透光性の収容部と、その収 容部に対して前記入出口を介して前記流体を吸引しかつ吐出可能とする吸引吐 出部と、収容された前記基礎部材からの光を前記収容部の外部で前記固定位置 と対応付けた状態で受光可能とする測定機とを有する収容反応測定装置である 前記収容部は、流体の入出口を持つのであるから、該収容部には、前記基礎 部材のみならず流体も収容可能である。これでよって、基礎部材の前記検出用 物質と液体に含有する結合性物質との反応が前記収容部内で可能になる。なお 、収容部は前記基礎部材を収容する収容口を有することになる。この収容口は 、例えば、吸引吐出部との接続に用いるものであっても良い。

ここでは、前記基礎部材は、必ずしも細長形状である必要はなく、また、集積支持体に巻装された細長形状の基礎部材であっても良い。さらに、例えば、平面状の DNA チップのようなものであっても良い。「(所定間隔で)配置され」とは、例えば、前記基礎部材が細長形状の場合には、前記基礎部材の長手方向に沿って並べて配置する状態であり、平面状の場合には、マトリクス状に配置する状態である。

10

15

20

25

また、収容部の形状または大きさを、前記基礎部材(または集積支持体)の形状または大きさに基づいて、前記基礎部材(または集積支持体)の形状または大きさに接近する形状または大きさとなるように形成することによって、収容部内壁と基礎部材との間の隙間を狭く形成して微少量に対応できるようにしても良い。また、基礎部材は、たとえ、糸状、紐状等の細長形状であっても、可撓性をもつ素材である必要はなく、針金または棒のような非可撓性の素材であっても良く。また、非可撓性の基礎部材がコイル状に形成されているものであっても良い。

第2の発明によれば、基礎部材を収容部に収容したままで必要な試薬等の液体を収容部に対して吸引しまた吐出することを同一の若しくは異なる液体に対して行うことによって反応や洗浄を行い、その状態で、測定をも行うことができる。したがって、反応、測定等の処理を迅速かつ簡単な操作で効率的にかつ一貫して行うことができる。また、前記収容部に収容したままで各種の処理を行うことができるので、クロスコンタミネーションを防止し信頼性が高い。さらに、前記収容部の形状または大きさを、基礎部材の形状または大きさに基づいて定めることによって、微少量の液体によっても処理を行うことができる。

第3の発明は、前記測定機は、前記基礎部材からの光を受光する受光部と、

該受光部または前記収容部を相対的に移動して前記基礎部材の各固定位置を走査する走査部とを有する収容反応測定装置である。走査部は、受光部を移動させても良いし、収容部の方を移動させるようにしても良い。

第3の発明によれば、基礎部材を走査することによって、基礎部材からの光 を漏れなく、受光することができるので、測定結果の信頼性が高い。

第4の発明は、前記収容部は、前記吸引吐出部に設けられたノズル部に着脱 自在に装着された収容反応測定装置である。

第4の発明によれば、前記液体や基礎部材と接触する前記収容部は着脱自在に装着されるようにしているので、収容部ごと交換することによって、クロスコンタミネーションを確実に防止することができる。また、磁力手段を収容部の外部に設けることによって、または、磁力手段を設けかつ磁性粒子を内壁に吸着することによって分離を可能とするピペット部と交換することによって、磁性粒子を扱う装置と兼用することができるので、多種類の処理をさらに効率的に、かつ一貫して行うことができる。

10

20

25

15 第5の発明は、前記入出口と外部に設けた容器等が載置された処理領域との間 を相対的に移動可能とする移動部をさらに有する収容反応測定装置である。

第5の発明によれば、前記収容部の入出口と処理領域との間を相対的に移動する移動部を設けることによって、前記基礎部材を収容部に収容したままで基礎部材を移動させることによって、処理を自動化しかつ一貫して行うことができる。

第6の発明は、前記検出用物質と結合の可能性がある標識物質で標識化された 結合性物質が検出用物質と結合することによって形成された前記基礎部材の全 固定位置を含む領域を前記測定機によって相対的に走査して、各固定位置にお ける前記標識物質に関する定性的及び定量的情報を得て、前記結合性物質また は検出用物質に関する識別を行う識別部をさらに有する収容反応測定装置であ る。

ここで、「前記標識物質に関する定性的及び定量的情報」とは、反応の結果生じた前記標識物質に関する情報であって、例えば、標識物質の種類、その量、または量比等である。各固定位置の認識は、例えば、前記基礎部材に、例えば

、一定周期的に設けたマーク(発光物質、色彩等)によって行う。該マークは 、発光強度の標準強度を示すように構成しても良い。これによって、定量的情報を確実に得ることができる。なお、標識部として、その得られた情報または 識別内容を画面に表示する表示部を設けるようにしても良い。

第6の発明によれば、基礎部材を走査することによって、基礎部材からの光 を漏れなく、受光することができるので、測定結果の信頼性が高い。

第7の発明は、前記基礎部材が糸状、紐状、またはテープ状等の細長形状に 形成されたものであって、複数種の検出用物質がその長手方向に沿って所定間 隔で固定され、該基礎部材を直線状に伸長させた状態で収容する場合には、前 記収容部は細管であり、前記基礎部材の長手方向は、その細管の軸方向に沿っ て収容され、その細管の大きさおよび形状は、その基礎部材の大きさおよび形 状に基づいて定まるものであり、前記測定機は前記細管の軸方向に沿って相対 的に走査することによって測定する収容反応測定装置である。

10

15

20

25

ここで、「細管」は、吸引吐出部に対して、着脱可能に設けられた使い捨ての ものであっても良い。

第7の発明によれば、前記基礎部材を伸長した状態で収容しているので、各 固定位置を特定するのが容易でかつ確実である。

第8の発明は、前記基礎部材が、所定の化学構造をもつ複数種の検出用物質が長手方向に沿って所定間隔で固定され、各化学構造とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状であって、該基礎部材が集積支持体を形成する場合には、前記収容部は、前記集積支持体を収容する太径部および先端に入出口を有し外部の容器に挿入可能な細径部からなり、前記吸引吐出部は、前記入出口を介して前記流体を前記太径部に対して吸引しかつ吐出するものであり、前記収容部の大きさおよび形状は、前記集積支持体の大きさおよび形状に基づいて定められ、前記測定機はその太径部の外部で基礎部材からの光を受光するものである収容反応測定装置である。

第8の発明によれば、集積支持体の大きさや形状に基づいて収容部の大きさや形状を定めることによって、集積支持体と収容部の内壁との間の間隙を狭めることによって、微少量の液体でも反応等の処理を行うことができるので扱い

やすい。また、本発明では、前記基礎部材を集積支持体として集積化して収容 しているので、多数の固定位置に関して測定を行うことができるので、複雑な 構造の解析をも効率的に行うことができる。

第9の発明は、前記測定機の受光部は、遮光用ボックスの中に設けられ、該 遮光用ボックスは、ボックス本体と、前記ボックス本体の開口部を覆うように 設けられた蓋体とを有し、前記蓋体には、前記収容部を前記ボックス本体に挿 入するために前記収容部が通過可能な孔が設けられるとともに、前記収容部が ボックス本体内に挿入された状態で、前記孔が塞がれて閉鎖空間が形成される 閉鎖手段を有する収容反応測定装置である。なお、受光部の他に、照射部も遮 光用ボックス内に設けても良い。また、前記遮光ボックス内に設けられている 受光部は、受光素子だけの場合、または、それに付属する電気回路もしくは測 定機本体を含む場合であっても良い。

10

15

25

第9の発明によれば、受光は遮光用ボックスの中で行われるため、外部からの光のノイズを遮断するとともに、外部に光を漏らさないので、他の測定に悪影響を及ぼさず信頼性の高い測定を行うことができるとともに、複数の測定を並行して集積した状態で行うことができるのでより一層効率が高いといえる。

第10の発明は、前記集積支持体は、前記基礎部材が、前記収容部の内壁面と接触しないように位置決めされた状態で、収容されている収容反応測定装置である。

20 このためには、例えば、前記集積支持体に、前述した保護部を設けることによって行えばよい。

第10の発明によれば、前記基礎部材が収容部の内壁面と接触しないように 位置決めされている。したがって、基礎部材と液体とを十分接触させることが できるとともに、液体が吐出の際に、基礎部材との隙間に残留する事態を防止 し、また、位置決めされているので、信頼性のある測定を行うことができる。

第11の発明は、所定の化学構造をもつ複数種の検出用物質が、長手方向に 沿って所定間隔で固定され、各化学構造とその固定位置とが対応付けられた糸 状、紐状、またはテープ状等の細長形状の基礎部材を、透光性のある収容部内 に収容する収容工程と、前記収容部内に標識化された結合性物質が懸濁する液

体を吸引して前記基礎部材を液体に浸して前記結合性物質と前記検出用物質とを反応させる反応工程と、反応に寄与しなかった結合性物質および前記液体を除去する測定準備工程と、前記収容部内に収容された基礎部材からの光を測定する測定工程とを有する収容反応測定方法である。「測定準備工程」における「除去」は、例えば、洗浄液による洗浄によって行う。洗浄は洗浄液について、吸引吐出を繰り返しまたは攪拌を行うことによってより効果的に行われる。また、測定の準備のために、前記収容部内を完全に乾燥させるか、または、後述するように測定用の液を吸引することによって行う。

第11の発明によれば、基礎部材を収容部に収容したままで必要な液体を収容部に対して吸引しまた吐出することを同一の若しくは異なる液体に対して行うことによって反応や洗浄を行い、その状態で、測定をも行うことができる。したがって、反応、測定等の処理を迅速かつ簡単な操作で効率的にかつ一貫して行うことができる。また、前記収容部に収容したままで各種の処理を行うことができるので、クロスコンタミネーションを防止し信頼性が高い。さらに、前記収容部の形状または大きさを、基礎部材の形状または大きさに基づいて定めることによって、微少量の液体によっても処理を行うことができる。

第12の発明は、前記測定工程は、前記収容部または受光位置を相対的に移動させることによって、前記基礎部材の全固定位置を走査する収容反応測定方法である。

20 第12の発明によれば、基礎部材を走査することによって、基礎部材からの 光を漏れなく、受光することができるので、測定結果の信頼性が高い。

第13の発明は、前記測定準備工程において、反応に寄与しなかった結合性物質およびそれが懸濁する液体を除去した後、測定用の液体を吸引する工程を含み、前記測定工程は測定用液体に前記基礎部材を浸した状態で測定する収容反応測定方法である。ここで、「測定用の液体」とは、例えば、蒸留水、または収容部を構成する材質の屈折率に近い屈折率を持つ液体を用いるのが好ましい。これによって、測定を妨害する不用な光の散乱を防止することができる。

25

第13の発明によれば、反応に寄与しなかった結合性物質およびそれが懸濁 する液体を除去した代わりに測定用の液体を吸引して前記基礎部材を浸すよう にしている。したがって、収容部と基礎部材との間を、例えば、前記収容部を 形成する物質の屈折率に近い所定の屈折率を持つ液体で満たすことによって、 収容部と空気との界面で生ずる反射や屈折や歪みを防止して明瞭で確実な測定 を行うことができる。

第14の発明は、前記反応工程にあっては、前記収容部または該収容部に吸引された液体を振盪させまたは、液体の吸引吐出を繰り返す収容反応測定方法である。また、この振盪もしくは吸引吐出動作とともに、または該振盪もしくは吸引吐出動作に換えて、恒温装置によって所定温度に保たれた定温状態の液体が収容されている容器から、該定温状態の液体を前記収容部に吸引し、また、収容部に対する吸引吐出動作を繰り返すことによって、収容部内の温度制御を前記反応工程で行うようにしても良い。

5

10

15

20

25

第14の発明によれば、収容部または該収容部に収容された液体を振盪させたり、液体を吸引吐出を繰り返すことによって、液体に懸濁する結合性物質と基礎部材の検出用物質との間の遭遇性を高め、反応を促進することができる。

第15の発明は、前記収容部に収容されている基礎部材は、集積化されて集積支持体を形成し、前記測定機は、前記集積支持体からの光を受光する受光部と、前記集積支持体または該集積支持体を収容する収容部をその軸心に対して回転させる走査部とを有する収容反応測定装置である。

ここで、前記受光部は、例えば、前記収容部の外側に、前記ノズル部の軸方 向に平行に沿って光センサを設け、前記集積支持体からの光を受光可能とする ものである。また、前記受光部の収容部側の端部に光学的フィルターを設ける ようにしても良い。

本発明によれば、測定機本体を移動させて走査するのではなく、収容部側を 回転させるようにしている。したがって、並進移動と回転移動の対象を収容部 側に限定し、測定機本体を固定して設けることによって、全体の装置構成及び 制御を簡単化し、効率化を図ることができる。また、最小限の動作で走査を行 うことができる。

第16の発明は、前記収容部は前記吸引吐出部が有するノズル部に着脱自在 に装着されるとともに、前記走査部は、前記ノズル部をその軸心に対して回転

させることによって収容部を回転させる収容反応測定装置である。

第16の発明によれば、回転駆動されるノズル部に収容部を着脱自在に装着 するようにしているので、収容部の構造を簡単化するとともに、第4の発明で 説明したものと同様な効果を奏する。

第17の発明は、前記入出口と、外部に設けた容器等が載置された処理領域 または前記受光部との間を相対的に移動可能とする移動部をさらに有する収容 反応測定装置である。

第17の発明によれば、第5の発明で説明したものと同様な効果を奏する。

第18の発明は、前記検出用物質と結合の可能性があり、標識物質で標識化 2 された結合性物質を、前記検出用物質に結合させることによって形成された集 積支持体を収容した前記収容部を回転させることによって、前記全固定位置を 含む領域を前記測定機によって走査して、各固定位置における前記標識物質に 関する定性的及び定量的情報を得て、前記結合性物質または検出用物質に関す る識別を行う識別部をさらに有する収容反応測定装置である。

15 前記標識部として、その得られた情報または識別内容を画面に表示する表示 部を設けるようにしても良い。

20

25

第18の発明によれば、第6の発明で説明したものと同様な効果を奏する。

第19の発明は、前記集積支持体は、所定の検出用物質が長手方向に沿って 所定間隔で固定され、各検出用物質とその固定位置とが対応付けられた糸状、 紐状、またはテープ状等の細長形状の基礎部材と、その基礎部材が巻装される 円筒状支持体とを有し、前記収容部は、前記集積支持体を収容する太径部及び 先端に入出口を有し外部の容器に挿入可能な細径部からなり、前記吸引吐出部 は、前記入出口を介して前記流体を前記太径部に対して吸引しかつ吐出するも のであり、前記収容部の大きさ及び形状は、前記集積支持体の大きさおよび形 状に基づいて定められ、前記測定機は、その太径部の外部で基礎部材からの光 を受光するものである収容反応測定装置である。ここで、「円筒状支持体」は、 中実の場合、中空の場合がある。また、該円筒状支持体に溝、凹凸、縦筋を設 けて、流体が通過可能となるようにしても良い。「巻装」は、例えば、該円筒状 支持体の軸方向に略垂直となるように行われる。本発明によれば、第8の発明

で説明したものと同様な効果を奏する。また、円筒状支持体に巻装しているので、固定位置が円筒状に配列され、測定しやすい。

第20の発明は、前記円筒状支持体の軸心は、前記ノズル部の軸心と一致するように前記収容部に収容された収容反応測定装置である。これによって、回転による光強度が異なったり、ゆらいだりすることがない安定した正確なデータを得ることができる。

第21の発明は、前記測定機は、前記受光部が受光しようとする集積支持体の領域に、所定の光を照射する照射部をさらに設けた収容反応測定装置である。 これによって、発光に励起用の光を必要とする、蛍光物質等の標識物質を用

10 いることができる。

15

20

25

第22の発明は、前記受光部または照射部は、多数の光ファイバと、該光ファイバを束ねて支持する光ファイバ支持部とを有し、前記各光ファイバの先端部は前記ノズル部の軸方向に沿って縦列状に配列されている収容反応測定装置である。

ここで、「縦列状」とは、1列の場合のみならず、複数列の場合も含む。本発明によれば、一度に、軸方向に沿った多数の固定位置を検出することができるので、効率性が高い。

第23の発明は、前記受光部または前記照射部は、ファイバグラスと、ファイバグラスを支持するファイバグラス支持部とを有し、該ファイバグラスの収容部側面は、前記ノズルの軸方向に沿って縦長状に形成したことを有する収容反応測定装置である。本発明によれば、一度に、軸方向に沿った多数の固定位置を検出することができるので、効率性が高い。

第24の発明は、前記収容部の内側面または外側面の少なくとも一方にはその全周に渡って、前記収容部外方に設けた前記受光部の端部に前記集積支持体からの光を収束させるための多数の収束用光学系を配列形成した収容反応測定装置である。ここで、該「収束用光学系」は、例えば、装着した前記ノズル部の軸方向に平行な母線をもち、母線に垂直な平面において屈折作用を有するシリンドリカルレンズである。なお、シリンドリカルレンズは、前記収容部と一体に形成するのが好ましい。本発明によれば、強度の高い発光を測定すること

ができる。

10

20

25

第25の発明は、所定の化学構造をもつ複数種の検出用物質が、長手方向に沿って所定の間隔で固定され、各化学構造とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状の基礎部材が外方から測定可能な状態で支持体に巻かれた集積支持体を、透光性のある収容部内に収容する収容工程と、前記収容部内に標識化された前記検出用物質と結合の可能性がある結合性物質が懸濁する液体を吸引して前記集積支持体を液体に浸して前記結合性物質と前記検出用物質とを反応させる反応工程と、反応に寄与しなかった前記結合性物質および前記液体を除去する測定準備工程と、前記収容部内に収容された基礎部材からの光を測定する測定工程とを有する収容反応測定方法である。

本発明によれば、集積支持体に対して、第2の発明または第11の発明で説明したものと同様な効果を奏する。

第26の発明は、前記測定工程は、前記収容部またはノズル部を回転させることによって、前記集積支持体の全固定位置を走査する収容反応測定方法である。ここで、「収容部を回転させる」には、例えば、該収容部自体、または該収容部が着脱可能に装着されるノズル部を回転させることによって行う。なお、該収容部には、前記集積支持体が該回転に忠実に従うように収容部またはノズル部に固定されている必要がある。

本発明によれば、並進移動のみらず回転移動の対象を収容部(またはノズル部)側に限定することによって、全体の装置構成および制御を簡単化、かつ効率化することができる。また、最小限の動作で走査を行うことができる。

第27の発明は、前記測定準備工程において、反応に寄与しなかった前記結合性物質およびそれが懸濁する液体を除去した後、測定用の液体を吸引する工程を含み、前記測定工程は測定用液体に前記集積支持体を浸した状態で測定する収容反応測定方法である。本発明によれば、第13の発明で説明したものと同様な効果を奏する。

第28の発明は、前記反応工程にあっては、前記収容部または該収容部に吸引された液体を振盪させまたは、液体を吸引吐出を繰り返す収容反応測定方法である。また、この振盪もしくは吸引吐出動作とともに、または該振盪もしく

は吸引吐出動作に換えて、恒温装置によって所定温度に保たれた定温状態の液体が収容されている容器から、該定温状態の液体を前記収容部に吸引し、また、収容部に対する吸引吐出動作を繰り返すことによって、収容部内の温度制御を前記反応工程で行うようにしても良い。本発明によれば、第14の発明で説明したものと同様な効果を奏する。

第29の発明は、軸心に対し回転可能に設けたノズル部と、該ノズル部に着脱可能に装着され、複数種の検出用物質を所定間隔で固定した集積支持体を内部に収容可能であり、かつ先端に流体の入出口を有する透光性の収容部と、該収容部の外側に、前記ノズル部の軸方向に平行に沿って設け、前記集積支持体からの光を受光する受光部とを有する集積支持体の収容反応装置を、光学的測定装置を用いて、収容反応測定を行う方法であって、前記集積支持体を収容した前記収容部の入出口を介して、前記検出用物質と結合の可能性がある結合性物質が懸濁する液体を吸引して前記集積支持体を液体に浸して、前記結合性物質が懸濁する液体を吸引して前記集積支持体を液体に浸して、前記結合性物質と前記検出用物質とを反応させる反応工程と、反応に寄与しなかった前記結合性物質及び前記液体を除去し、かつ、測定用試薬を吸引して前記収容部に吸引する測定準備工程と、前記ノズル部を回転させる間に、収容部の外部から前記受光部によって、集積支持体上の発光を検出する測定工程とを有する集積支持体の収容反応測定方法である。

本発明によれば、第26の発明で説明したものと同様な効果を奏する。

20 第30の発明は、前記反応工程は、該当する試薬を収容する容器位置に前記 収容部を装着したノズル部を移動して、その試薬を吸引することによって行い、 前記測定工程は、前記受光部が設けられている位置にまで、前記ノズル部を移 動することによって行う集積支持体の収容反応測定方法である。

本発明によれば、前記ノズル部を移動することだけでも種々の処理を行うこ 25 とができるので、制御が簡単で、制御を効率化することができる。

図面の簡単な説明

10

15

第1図は、本発明の第1の実施の形態に係る収容反応測定装置の概略図であ り、第2図は、本発明の第2の実施の形態に係る収容反応測定装置の概略図で 10

15

20

あり、第3図は、本発明の第3および第4の実施の形態に係る収容反応測定装 置の概略図であり、第4図は、本発明の第3および第4の実施の形態に係る収 容反応測定装置の識別パターンの例を示す図であり、第5図は、本発明の第5 の実施の形態に係る収容反応測定装置の概略図であり、第6図は、本発明の第 6の実施の形態に係る収容反応測定装置の概略図であり、第7図は、本発明の 第7の実施の形態に係る収容反応測定装置の概略斜視図であり、第8図は、本 発明の第7の実施の形態に係るピペット部および照射部を示す図であり、第9 図は、本発明の第7の実施の形態に係るピペット部および受光部を示す図であ り、第10図は、本発明の第8の実施の形態に係るピペット部を示す図であり 、第11図は、本発明の第8の実施の形態に係るピペット部と照射部および受 光部との位置関係を示す図であり、第12図は、本発明の第9の実施の形態に 係る収容反応測定装置を示す図であり、第13図は、本発明の第10の実施の 形態に係る収容反応測定装置を示す正面図であり、第14図は、本発明の第1 0の実施の形態に係る収容反応測定装置を示す断面側面図であり、第15図は 、第13図のAA線視断面図であり、第16図は、第13図の一部拡大断面図 である。

発明を実施する為の最良の形態

本発明の実施の形態に係る微小物識別装置および微小物識別方法について、 図面に基づいて説明する。本実施の形態の説明は、特に指定のない限り、本発明を制限するものと解釈してはならない。

図1 (a) は、第1の実施の形態に係る収容反応測定装置10を示すものである。

本実施の形態に係る収容反応測定装置10は、前記収容部としての、流体の 25 入出口12を有する透光性の細管11と、該細管11と接続し、該細管11に 対して液体を吸引し吐出するための吸引吐出部としてのポンプ13と、測定機 の受光照射部14とを有するものである。前記細管11内には、液体、および 、その液体に浸される状態で、基礎部材15を収容可能である。

前記基礎部材15は、細長形状に形成されたものであって、例えば、既知の

種々の塩基配列をもつオリゴヌクレオチド等の検出用物質が、その長手方向に 沿って所定間隔で並ぶように配置されている。前記基礎部材15は前記細管1 1に付着するようにして伸長して保持された状態で前記細管11内に収容され ている。ここで、符号16は、前記検出用物質に標識化された目的物質である 結合性物質が結合することによって、その固定位置が標識化されていることを 示すものである。この標識化された固定位置を解析することによって、目的物 質の未知の化学構造を決定することができることになる。

5

10

20

前記ポンプ13は、前記細管11と連通し弾性体で形成されたチューブ17と、それを押圧して圧縮するための押圧部18と、図示しない切換弁とを有し、前記収容反応測定装置10の外部に設けられた容器19に収容された液体20を前記細管11に対して吸引しまたは吐出するものである。該液体20には、図示しない蛍光物質等で標識化された目的物質としての結合性物質が懸濁しているものとする。

前記受光照射部14は、前記蛍光物質を励起させるための励起用光ビームを 15 照射しながら、発生する蛍光を受光するものであって、前記細管11に沿って、 、走査するように移動する図示しない走査部が設けられている。

前記細管11の形状および大きさは、前記基礎部材15の形状および大きさに基づいて定まるものであり、該基礎部材15が前記細管11内に容易に収容可能な余裕を持つが、細管11の内壁と前記基礎部材15の表面との間に生ずる隙間が、微少量の液体で浸され易い程度に接近した大きさおよび形状をもつことが好ましい。図1(b)に示すように、このような条件を満たすには、前記細管11の径の大きさは、前記基礎部材15の幅または径の大きさの約2倍が適当であって、例えば、基礎部材15の径が約0.1mmの場合には、細管11の径は、例えば、約0.2mmが好ましい。

25 続いて、図2に、第2の実施の形態に係る収容反応測定装置を示す。

図2(a)は、前記基礎部材15をその表面に巻装して支持するための棒状または円筒状の支持体としてのコア21を示すものである。図2(b)は、前記基礎部材15が巻装された集積支持体22を示すものである。ここで、コア21の径は例えば、約2から約4mmであり、基礎部材15の太さは約0.05

mmから約0.2mmであり、基礎部材15の長さは、例えば、約500mmから約3000mmである。図2(c)は、第2の実施の形態に係る収容反応測定装置23および収容反応測定方法を示すものである。

該収容反応測定装置23は、前記収容部としてのピペット部24と、該ピペット部24に対して吸引および吐出を行うための吸引吐出部25と、前記ピペット部24の外部に設けられた測定機の受光照射部26とを有する。前記吸引吐出部25には、シリンダ27と、シリンダ27とパイプを通して連通するノズル部28が設けられている。

5

10

15

20

25

前記ピペット部24は、前記ノズル部28に対してO-リング30を介して着脱自在に装着される装着部29と、先端に1個の入出口33を有し該収容反応測定装置23の外部の容器19に挿入可能な細径部31と、該細径部31と該装着部29との間に設けられ前記細径部31よりも大きい径をもち前記集積支持体22が収容される太径部32とを有する。この装着部29の開口部が、前記集積支持体22を挿入して収容するための収容口になる。

この太径部32の形状および大きさは、前記集積支持体22の形状および大きさによって定まる。この太径部32の大きさおよび形状は、前記集積支持体22が、前記太径部32内に容易に収容可能な余裕を持つ大きさでありかつ、太径部32の内壁と前記集積支持体22の基礎部材15の表面との間に生ずる隙間が、微少量の液体で浸され易くかつその基礎部材15が前記太径部32の内壁に付着しない程度に接近した大きさおよび形状をもつことが好ましい。ここで、前記液体の量は例えば約100μリットルである。

前記吸引吐出部25は、前記入出口33を介して前記液体20を前記太径部32に対して吸引しかつ吐出するものである。また、本実施の形態では、図示しないが、前記入出口33と、外部に設けた容器19,34,38,39との間を相対的に移動可能な移動機構とを有するものとする。

また、測定機の前記受光照射部26は、例えば、光ファイバを用いて励起光の照射および蛍光の受光を行うものであって、前記ピペット部24の太径部32の外部において、上下方向に走査可能であるとともに、該太径部32の周囲を360度回転するように移動可能なものである。

なお、本実施の形態に係る収容反応測定装置23にあっては、前記ピペット 部24は前記ノズル部28に着脱自在に装着されている。したがって、前記ノ ズル部28に装着可能な他の同一構造のピペット部と交換する場合のみならず 、外部に磁力手段を設けることにより磁場が及ぼされることによって、内壁に 磁性粒子を吸着して分離することができるピペットを着脱自在に装着すること が可能である。

これによって、磁性粒子を分離することができるので、例えば、遺伝物質の 抽出、分離をも含めて、より一層広い範囲の処理を一貫して行うことができる 。したがって、本実施の形態によれば、同一の吸引吐出部を兼用することによ って、磁性粒子を用いた各種の処理と、基礎部材を用いた各種の処理を一貫し て自動的に行うことができる。

10

20

25

続いて、本実施の形態に係る収容反応測定装置23を用いて、目的物質である結合性物質の解析の塩基配列を決定する方法について、図2に基づいて説明する。

15 図 2 (c) において、最初、ステップS1において前記容器19内には、予め 、未知の塩基配列を決定しようとするDNA断片からなる目的物質が蛍光で標 識化されたものが懸濁する液体20を収容しておく。

また、前記収容部としてのピペット部24の前記太径部32内には、既知の各種のオリゴヌレオチドが、その塩基配列とその各固定位置とが対応付けられた基礎部材15がコア21に巻装された集積支持体22を収容し、その後、前記ピペット部24を前記ノズル部28に装着する。

ステップS1で、ペルチェ素子が設けられた恒温槽34において、蛍光物質等で標識化された前記目的物質が懸濁する液に所定の試薬を混合させたプローブ溶液を予め約95℃で数分間熱した後、電流の向きを変えることによって、例えば、常温、必要ならば、常温と異なる温度に保った状態で冷却して、ハイブリダイズしやすい形に前記溶液を調整する。なお、DNA断片の未知の塩基配列の決定を行うには、ハイブリダイゼーション(hybridization)の他に、前提として、DNA断片の一本鎖化(denaturation)等の処理が必要であることはいうまでもない。

ステップ S 2 で、前記ピペット部 2 4 の細径部 3 1 を、前記容器 1 9 に移動して挿入し、容器 1 9 を、恒温槽 3 4 で、例えば、常温、必要ならば、常温と異なる温度に保った状態で約数分~数時間かけてインキュベーションを行い反応させる。

5 ステップS3で、反応終了後、室温で、第1の洗浄液36が収容された容器 35に、前記ピペット部24の細径部31を移動させて挿入し、振盪を加えて 洗浄し、余分な前記目的物質等が懸濁したプローブ溶液を除去する。

ステップS4で、第1の洗浄の後、未使用の第2の洗浄液38が収容された容器37に前記ピペット部24の細径部31を移動させて挿入し、振盪を加えて再び洗浄し、さらに残っているプローブ溶液を除去する。

10

ステップS5で、洗浄の終了した前記集積支持体に外部から前記測定機の受光 照射部26を前記走査部によって、前記太径部32の周囲を上下方向および、 その360度回転走査することによって、測定する。

続いて、図3に基づいて、第3の実施の形態に係る収容反応測定装置40に 15 ついて説明する。

図3(a)は、第3の実施の形態に係る収容反応測定装置40を示すものである。この装置40は、他の集積支持体42を使用するものである。該集積支持体42は、図3(a)に示すように、支持体としてのコア41に前記基礎部材15が巻装されたものである。

20 図3 (b) に示すように、このコア41の両縁部には前記保護部として環状突起部41aが各々設けられている。この保護部によって前記基礎部材15が支持体であるコア41から外れないように束ね、後述する収容部としてのピペット部44の内壁と前記基礎部材15との接触を防止して基礎部材15表面を通る液体の流れをスムーズに行うとともに、集積支持体42の収容部内での位置25 決めを行って正確な測定を可能とする。したがって、前記コア41は全体として糸巻き状に形成されている。

その環状突起部41 a には、流体が通過可能となるように複数の切欠部43 が設けられているとともに、環状突起部41aの先端の前記内壁との接触部分は 、楔状に形成されて内壁との接触面積を小さくしている。これによって、流体 10

15

20

25

の残留を防止し、処理を円滑に行うことができる。この環状突起部41aの高さは、巻装された前記基礎部材15の厚さを超える高さに形成することによって、基礎部材15が内壁に接触または密着することを防止している。

また、環状突起部41aの代わりに、図3(b)に示すような保護部142を設けても良い。この保護部142では、半径方向に突出する複数の突起部142aが設けられ、この突起部の高さは、前記基礎部材15の厚さを超えるように設定する。

該集積支持体42を使用する前記収容反応測定装置40は、前記収容部としてのピペット部44と、該ピペット部44に対して吸引および吐出を行うための吸引吐出部(48)と、前記ピペット部44の外部に設けられたライン状受光照射部50とを有する。符号48は、前記吸引吐出部に設けられたノズル部を表す。

前記ライン状受光照射部50は、多数の光ファイバの先端部がライン状に並べられて棒状の支持部材に取り付けられたものであり、各ファイバは、前記標 職化に用いられた蛍光物質を励起する励起用光を照射する光源および受光素子と接続されている。これによって励起した蛍光を同時に受光することができるものである。

または、前記ライン状受光照射部50は、直接受光素子がライン状に並びかつ励起用光を照射する光源が設けられているものであっても良い。このライン状受光照射部50は、図示しない走査部によって前記太径部45の周囲を360度回転可能に設けられている。または前記ピペット部44を含む装置部分が、そのピペット部44の軸心の周囲に360度回転可能とするように設けられていても良い。このライン状受光照射部50は、前記測定機に相当するものである。

前記ピペット部44は、前記ノズル部48と Oーリング49を介して嵌合して着脱自在に装着されるとともに、前記集積支持体42が収容される太径部45と、先端が入出口47を有し該収容反応測定装置40の外部の容器に挿入可能な細径部46とを有する。ここで、前記太径部45の径は例えば、内径約4mmである。前記太径部45の開口部が、前記集積支持体を挿入して収容する

収容口になる。

5

10

15

20

25

ここで、前記集積支持体42の前記環状突起部41aは、前記太径部45の内壁と接触する大きさに形成されるのが好ましい。この集積支持体42の外径は例えば、約3.8mmである。

図3 (c)には、第4の実施の形態に係る収容反応測定装置51を示すものである。この収容反応測定装置51は、測定機として、前記ライン状に形成された前記ライン状受光照射部50に換えて環状受光照射部52を用いたものである。この環状受光照射部52には、多数の光ファイバ53の先端部が環状に並べられて環状の支持部材に取り付けられたものである。この光ファイバ53は、励起用光を照射し、同時に蛍光を受光するものである。

前記光ファイバ53の他端は、ライン状に並べられた受光素子からなるラインセンサ54に接続されている。また、光ファイバ53の他端を面状のCCD素子と接続するようにしても良い。また、この環状受光照射部52は、図示しない走査部によって、上下方向に移動可能となるように設けられている。または、ピペット部44を含む装置部分が、前記走査部によって、上下方向に移動可能に設けられていても良い。

図4は、前記測定機によって、測定された、固定位置と、各固定位置における定性的及び定量的情報を平面として表示した一例の識別パターン55を示すものである。ここで、符号56は、基礎部材15のイメージ上の位置を示すものである。57は予め前記基礎部材15の固定位置を特定するための基準となるように標識化された基準点を表し、符号58が、標識化された目的物質が結合した固定位置を示すものである。本例によれば、各標識化された固定位置の測定結果を、平面情報として処理することができる。

続いて、第5の実施の形態に係る収容反応測定装置60について図5に基づいて説明する。図5(a),(b)に示すように、本実施の形態に係る収容反応測定装置60は、前記収容部としてのピペット部64と、該ピペット部64に対して吸引および吐出を行うための吸引吐出部65と、前記ピペット部64の外部に設けられた受光照射部66とを有する。前記吸引吐出部65には、シリンダ67と、シリンダ67とパイプを通して連通するノズル部68が設けられ

ている。

10

20

25

前記ピペット部64は、前記ノズル部68とO-リング70を介して嵌合して 着脱自在に装着される装着部69と、先端が入出口73を有し該収容反応測定 装置60の外部の容器に挿入可能な細径部71と、該細径部71と該装着部6 9との間に設けられ前記細径部71よりも大きい径をもち集積支持体62が収 容される太径部72とを有する。

前記集積支持体62は、コア61に前記基礎部材15が巻装されたものである。このコア61の両端には、前記基礎部材15がコア61から外れないようにするとともに、基礎部材15が内壁に接触しないように保護するとともに、液体のスムーズな流れを確保し、かつ位置決めを行うための前記保護部として環状突起部61aが設けられ、コア61は全体として、糸巻き状に形成され、その環状突起部61aには、流体が通過可能となるように複数の切欠部43が設けられている。

ここで、前記集積支持体62の前記環状突起部61aは、前記太径部72の内 15 壁と接触する大きさに形成されるのが好ましい。

前記吸引吐出部65は、前記入出口73を介して前記流体を前記太径部72 に対して吸引しかつ吐出するものである。また、本実施の形態では、図示しないが、前記入出口73を、外部に設けた容器、および後述する遮光ボックス7 4等の様々な処理領域、処理位置との間を相対的に移動可能とする移動機構とを有するものとする。

本実施の形態では、前記測定機の受光照射部66は、遮光ボックス74に設けられている。遮光ボックス74は、前記集積支持体62が発する蛍光の測定の際に、外部からのまたは内部から発する余分な光のノイズを遮断するために用いるものである。該遮光ボックス74は、前記測定機の受光照射部66が設けられ、前記ピペット部64が内部に挿入されるボックス本体75と、該ボックス本体75の開口部に設けられた蓋体76と、を有する。該蓋体76の中央には、前記ピペット部64が挿入可能な孔部77が穿設されている。さらに、前記孔部77の周囲を囲んで、間に環状の溝を形成するように2重環状壁部78が上部に突出するように設けられている。

10

20

25

一方、前記ノズル部68の上部の周囲からは側方に向かって前記孔部77を 覆うための環状の覆い板79が突出するように設けられている。該覆い板79 の下側には、前記2重環状壁部78によって形成された溝に挿入されて、内部 に閉鎖空間を形成する環状突部80が下方に突出するように設けられている。

ここで、前記覆い板79、2重環状壁部78および環状突部80は前記閉鎖手 段に相当する。

さらに、本実施の形態に係る収容反応測定装置60では、前記ピペット部64を含む部分がそのピペット部64の軸心に関して全周を走査可能とする、前記走査部として、図示しない回転部が設けられている。この回転部の回転によって、前記環状突部80は、前記2重環状壁部78に形成された溝内を摺動することになる。これによって、完全な光の遮蔽が実現され前記太径部72内に収容された集積支持体62に設けられた全固定位置を走査して、漏れなく光を受光することができる。

なお、図5(a)は、前記ピペット部64を、前記遮光ボックス74内に、 挿入するために、図示しない移動部によって、ピペット部64を下方に移動す る状態を示すものであり、同図(b)は、ピペット部64の、前記遮光ボックス 74内への挿入が完了し、測定を行っている状態を示すものである。

なお、受光照射部66以外の測定機部分は、前記遮光ボックス74の内に設ける場合と外に設ける場合がある。後者の場合には、遮光ボックス74を小さく形成することができる。

続いて、図6に基づいて、第6の実施の形態に係る収容反応測定装置81について説明する。

本実施の形態に係る収容反応測定装置81は、図6(a)(b)に示すように、前記収容部としてのピペット部85と、該ピペット部85に対して吸引および吐出を行うための吸引吐出部86と、前記ピペット部85の外部に設けられた受光照射部87とを有する。前記吸引吐出部86には、シリンダ88と、シリンダ88とパイプを通して連通するノズル部89が設けられている。

前記ピペット部85は、前記ノズル部89とO-リング91を介して嵌合して 着脱自在に装着される装着部90と、先端に入出口93を有し該収容反応測定 装置81の外部の容器19に挿入可能な細径部92と、該細径部92と該装着部90との間に設けられ前記細径部92よりも大きい径をもち集積支持体82が収容される太径部94とを有する。この太径部94の開口部が前記集積支持体を挿入して収容する収容口になる。

前記集積支持体82は、前記基礎部材15を中心にあるコア83に平面内で 渦巻きのように巻いた領域84を有するものであり、前述したように、円筒状 に基礎部材15を1層分だけ巻装した前記集積支持体42,62とは相違する。

5

10

さらに、本実施の形態に係る収容反応測定装置81にあっては、前記装着部90の下部には、円筒状の雄螺子部96が設けられ、その外表面には、螺子山98が設けられている。一方、前記太径部94の上部には、円筒状の雌螺子部95が設けられ、その内表面には螺子山97が設けられている。また、前記雄螺子部96と雌螺子部95との間には、O-リング99が設けられ、水密性を高めている。

これによって、本実施の形態では、前記雄螺子部96と雌螺子部95とを外 すことによって、前記装着部90の径よりも大きな集積支持体82を容易に収 容することができる。なお、前記雄螺子部96の下側に、所定長さのパイプ9 9aを突出するようにして設けることによって、前記集積支持体82の浮き上 がりを防止し、集積支持体82を所定位置に固定して収容することができるよ うにしても良い。

20 また、以上説明したように、太径部と装着部との間を螺子によって開閉可能に設けることによって、収容部に対し基礎部材(または DNA チップもしくは集積支持体)等を収容または取出し可能に設ける場合の他、太径部に前記基礎部材等を収容した後に、前記装着部と太径部との間を超音波溶着等によって溶着して封入するようにしても良い。この場合には、最初から基礎部材等が収容部に収容されているので、クロスコンタミネーションを確実の防止することができる。

図7は、第7の実施の形態に係る収容反応測定装置100を示すものである

本実施の形態に係る収容反応測定装置100は、前記収容部としてのピペッ

ト部101と、該ピペット部101に対して吸引吐出を行うための吸引吐出部と、前記ピペット部101の外部に設けられ、前記ピペット部101からの光を、発光位置と対応付けた状態で受光可能とする測定機とを有する。

前記ピペット部101は、前記吸引吐出部のノズル部103にO-リングを 介して着脱自在に装着される装着部104と、先端に1個の入出口105を有 し該収容反応測定装置100の外部の容器に挿入可能な細径部106と、該細 径部106と前記装着部104との間に設けられ前記細径部106よりも大き い径をもち、集積支持体107が収容可能な透光性の太径部108とを有する

10 この装着部 1 0 4 の開口部を通り、前記集積支持体 1 0 7 を前記太径部 1 0 8 に挿入して収容するための収容口である。

この太径部108の形状および大きさは、前記集積支持体107の形状および大きさによって定まる。この太径部108の大きさおよび形状は、前記集積支持体107が、前記太径部108内に容易に収容可能な余裕を持つ大きさでありかつ、太径部108の内壁と前記集積支持体107の表面との間に生ずる隙間が、微少量の液体で浸され易くかつその表面が前記太径部108の内壁に付着しない程度に接近した大きさおよび形状をもつことが好ましい。ここで、前記液体の量は例えば約100μリットルである。

15

20

25

前記吸引吐出部は、前記入出口105を介して液体を前記太径部108に対して吸引しかつ吐出するものである。また、本実施の形態では、図示しないが、前記入出口105と、外部に設けた容器との間を相対的に移動可能な移動機構とを有するものとする。

また、前記ピペット部101内に収容された集積支持体107は複数種の検出用物質109を間隔を開けた状態で配置した各固定位置に固定した基礎部材110が図示しない円筒状のコアに巻装されたものである。該集積支持体107は、前記支持体の上端および下端に複数の切欠き部111a,112aをもった前記太径部108の内壁に密着する形状をもつ環状突起部111、112を有し、該太径部108内にそれらによって挟まれるように固定されている。前記切欠き部111a、111bは、上下方向に流体が通過する為のものであ

る。これによって、前記集積支持体107は前記太径部108内で、液体に浸される状態で固定して収容されることとなる。

なお、符号113は、前記ノズル部103と装着部104との間に設けて、 水密性を保つための0リングである。

5

10

15

前記集積支持体107は、複数種の検出用物質109、例えば、既知の種々の塩基配.列をもつオリゴヌクレオチド等、を間隔を空けた状態で配置して固定したものであって、各検出用物質109とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状に形成された基礎部材110と、その基礎部材110が巻かれた支持体であるコアとを有するものである。なお、前記検出用物質109は、標識化された目的物質である結合性物質が結合することによって、その固定位置が標識化されていることを示すものである。この標識化された固定位置を解析することによって目的物質の未知の化学構造を決定することができることになる。

前記吸引吐出部は、前記ノズル部103の他、該ノズル部103と連通する 図示しないポンプ等を有している。

前記測定機は、前記蛍光物質を励起させるための励起用光ビームを照射する 照射する照射部114および照射により励起された蛍光を受光する受光部11 5を有する測定機本体102と、前記ノズル部103を回転駆動して前記集積 支持体107を走査する走査部(図示せず)とを有する。

20 前記照射部114は、多数の光ファイバを有する光ファイバ東116と、トリガー光を発する光源117と、前記太径部108の外側面に接近し、前記ノズル部103、したがってピペット部101の軸方向に沿って縦列状に配列され、光ファイバ先端部118を支持した光ファイバ支持部119とを有する。前記光ファイバの先端部の配列は、例えば、10列×3000行のように行列状に配列する。また、各光ファイバの先端部には、レンズ機能をもたせるようにしても良い。

前記受光部115は、多数の光ファイバを有する光ファイバ東120と、前記太径部108の外側面に接近し、前記ノズル部103、したがってピペット部101の軸方向に沿って縦列状に配列され、光ファイバの先端部121を支

持した光ファイバ支持部122と、光ファイバ東120の他端側に設けられたライン状光センサまたはCCDカメラからなる受光機123とを有する。

図8(a)は、図7に示したピペット部101と前記測定機本体102との位置関係を詳細に示すものである。同図に示すように、光ファイバ東116の先端部118が、前記太径部108に収容されている集積支持体107の全長にわたって、配置されている。また、同図(b)には、他の例に係る照射部124を示すものである。該照射部124は、光ファイバ東を用いる代わりに、ファイバーガラス125を用いたものである。該ファイバーガラス125の後側面を光源126で照射することによって、前記太径部108に収容されている前記集積支持体107に均質な光を照射することができる。

図9(a)は、図7に示したピペット部101と前記受光部115との位置 関係を詳細に示すものである。同図に示すように、光ファイバ東120の先端 部が121が、前記太径部108に収容された集積支持体107の全長にわた って配置されている。ここで、符号127は、光を感知するラインセンサであ る。また、ラインセンサ127を設ける代わりに、CCDカメラを設けるよう にしても良い。

図9(b)は、他の例に係る受光部128を示す。該受光部128は、フィルター用の蒸着層129と、焦点の調節を行うための固定ガラス層130と、ファイバーグラス131と、CCDカメラまたはラインセンサ132とを有している。

図10は、第8の実施の形態に係るピペット部を示す。

10

15

20

25

図10(a)に示すピペット部133は、前述したピペット部101と同様に、前記ノズル部にOーリングを介して着脱自在に装着される装着部134と、先端に1個の入出口135を有し、該収容反応測定装置の外部の容器に挿入可能な細径部136と、該細径部136と前記装着部134との間に設けられ前記細径部136よりも大きい径を持ち、集積支持体が収容可能な透光性の太径部137とを有する。この太径部137の外側面には、軸方向に平行な母線をもつ多数のシリンドリカルレンズ138が設けられている。各シリンドリカルレンズ138は、母線を含む平面では屈折作用はないが、母線に垂直な平面

では、通常のレンズと同様な屈折作用を有する。

10

15

20

25

図10(b)には、第8の実施の形態に係るピペット部139の他の例を示すものであり、該ピペット部139は、太径部140を除き、前記ピペット部133と同様である。該太径部140では、その内側面に、軸方向に平行な母線を持つ多数のシリンドリカルレンズ141が設けられている。各シリンドリカルレンズ141は、母線を含む平面では屈折作用はないが、母線に垂直な平面では、通常のレンズと同様な屈折作用を有する。

図11は、前記収容反応測定装置100のピペット部101と測定機本体1 02の照射部114及び受光部115との位置関係を示す図である。ここで、 符号142は、前記集積支持体107のコアを表す。該ピペット部101は、 前記測定機本体102に対して、X軸、Y軸、およびZ軸方向に沿って並進運 動が可能であり、測定を行う際には、前記照射部114及び受光部115の先 端部が配置された測定機本体102の半円柱状の凹部102aに、並進運動に よって、前記太径部108に収容された前記集積支持体107の側面に位置さ せる。次に、前記ノズル部103を回転させることによって、各固定位置及び その固定位置の定性的及び定量的情報を得ることができる。その測定結果を平 面上に表せば、例えば、図11(b)に示すような像143になる。このよう な像143は、図示しない測定機本体102に接続された出力部として、表示 部に表示させ、またはプリントアウト、さらには、記憶部に格納するようにし ても良い。前記像143にある発光位置を測定することによって、目的物質の 構造等を解析することができる。なお、符号109aは、固定位置を認識する 為に用いる、発光物質等によるマークである。該マークは、定量的情報の標準 強度をも表すように設定されている。

続いて、図12に基づいて、第9の実施の形態に係る収容反応測定装置14 4を説明する。該収容反応測定装置144は、同図に示すように、照射部として、前記ピペット部101の太径部108の軸方向に沿った縦方向(図12の 紙面に垂直方向)に沿ったラインをもつライン状ビームを出力する、照射部と してのレーザー装置145を有し、該レーザー装置145から照射されたレー ザービームは、例えば、蛍光物質を励起するのに必要な励起光以外の波長を除 15

20

25

去するためのフィルタ146を通過する。次に、かまぼこ型のシリンドリカルレンズ147によって、紙面に平行な平面方向(横方向)に収束させ、ハーフミラー148,149により、太径部108内に収容された集積支持体107上に縦方向に所定の長さをもつレーザー光を照射する。照射された該レーザー光によって生じた縦方向に所定の長さをもつライン状の蛍光を含む光は、ハーフミラー149を透過しシリンドリカルレンズ150によって、平行光にされ、フィルター151を通過させ、さらにシリンドリカルレンズ152によって横方向に収束し、受光部153によって受光される。

続いて、図13,14,15,16に基づいて、第10の実施例に係る、複 10 数連(この例では、6連)の収容部であるピペット部を持つ収容反応測定装置 155を詳細に説明する。

図13に正面から示すように、本実施の形態に係る収容反応測定装置155 は、6連のピペット部156と、該ピペット部156が装着され、回転可能に 設けられている6連のノズル部157と、6連の該ノズル部157に対して各 々6連の円管158を介してその圧力を調整することによって、前記ピペット 部156に対する流体の吸引及び吐出を行わせる吸引吐出部159とを有する

前記各ピペット部156は、前記ノズル部157に着脱自在に装着される装着部160と、先端に1個の入出口161を有し該収容反応測定装置155の外部の容器(図示せず)に挿入可能な細径部162と、該細径部162と該装着部160との間に設けられ前記細径部162よりも大きい径をもち前記集積支持体が収容される太径部163とを有している。

また、前記吸引吐出部159は、6連の前記ノズル部157と6連の前記円管158を介して連通する6連のシリンダを有するシリンダブロック164aと、該各シリンダブロック164a内にある各シリンダロッド(ピストン)164と接続され、該6連のシリンダロッド164を一斉に上下方向に摺動させるボールねじ165と、該ボールねじ165を結合器166を介して回転駆動するモータ167とを有している。なお、符号168は、前記ノズル部157を回転させる回転機構が収容されている測定機の前記走査部に相当するもので

ある。

20

25

図14は、図13に示す収容反応測定装置155を側面からの断面図を示す ものである。前記走査部168には、モータ収容部170に収容されている後 述するモータ178の回転軸に設けられた歯付プーリ169による回転を前記 ノズル部157に伝達する片面に歯が付いたベルト171が、前記歯付プーリ 5 169と前記ノズル部157に設けた歯付プーリ172との間に掛け渡されて いる。該ノズル部157全体は、前記回転機構によって回転可能であるととも に、上下方向に所定距離 d だけ移動可能に前記枠体 175 に支持されている。 しかし、前記ノズル部157の上端部173と枠体175との間に設けられた バネ部材174によって常に下方向に付勢されている。符号176は、光セン 10 サであって、該ノズル部157に装着されているピペット部156の先端の入 出口161が、外部の物体に接触して力を受けると、該ノズル部157全体が 上方向に移動し、その上端部173に設けた遮蔽部173aが、前記着底セン サ176の受光素子176 aを遮ることによって、ピペット部156の先端の 着底を検知することができる。なお、符号177は前記走査部168の回転機 15 構を収容する回転機構収容部である。

図15は、前記回転機構収容部177内を示すものである。この例では、ベルト機構によって前記ノズル部157に前記モータ収容部170内に収容されたモータ178の動力を伝達するものである。前記歯付プーリ169は、該モータ178の回転軸に設けられている。前記ベルト171は、前記歯付プーリ169と6連の前記ノズル部157に設けた歯付プーリ172との間に、7個のローラー179と2個の歯付プーリ180を介して掛け渡されている。なお、該回転機構は、前記ベルト機構の変りに、歯車の組み合わせによって構成するようにしても良い。

図16は、前記ノズル部157の上端部173の断面を詳細に示すものである。該上端部173は、前記ノズル部157よりも半径方向に突出する縁を有する端部182と、前記ノズル部157内を縦方向に伸びる縦空洞183と連通して横方向に伸びる横空洞184と、該横空洞184の開口部を通る周に沿って環状に設けられた環状溝185とを有している。この環状溝185は、前

記円管158を通って、前記シリンダから空気を円滑に通過させるために設けたものである。前記ノズル部157の上端部173では、該ノズル部157の外径は、他の領域の外径よりやや細く形成され、軸受187,188を介して、円管158を支持する円管支持部189に対して回転可能に支持されている。なお、該円管支持部189は、該ノズル部157の回転に伴って回転することはないが、該ノズル部157の上下方向の移動に伴って移動する。符号190、191は、Oーリングである。

次に、本実施の形態に係る装置の動作について説明する。

10

15

20

25

6連の前記各ピペット部156には、各々図示しない集積支持体が収容され ている。該ピペット部156を含む該収容反応測定装置155は、全体として 、X,Y,Z軸方向に移動が可能であり、所定の試薬が収容されている複数の 容器に移動し、前記ピペット部156の細径部162を容器に挿入し、収容さ れている試薬等の液体について、前記吸引吐出部159の前記モータ167の 回転が結合器166を介してボールねじ165を回転させ、ボールねじ165 に螺合するナット部に取り付けられ、前記シリンダブロック164a内に収容 されたシリンダロッド164を上下動させ、前記円管158、横空洞184、 環状溝185、縦空洞183を通じて、空気がピペット部156に対して流入 し、かつ流出し、前記入出口161を介して液体の吸引吐出が行われる。する と、太径部163に収容されている集積支持体と液体を接触させ、反応処理を 行う。前記細径部162を容器に挿入する際には、前記入出口161が容器の 底に当り、前記ピペット部156したがって、該ピペット部156が装着され ているノズル部157が微小距離d移動すると、前記着底センサ176によっ て、着底が検出され、前記移動部による下方向の移動が停止し、前記吸引吐出 動作が行われることになる。

必要な処理が終了し、前記集積支持体で生じた標識化物質である蛍光物質による発光をとらえる測定を行う場合には、前記収容反応測定装置155の前記ピペット部156を測定機本体の受光部及び照射部の所定位置にまで移動し、前記走査部168により、前記ノズル部157を回転させて、駆動し測定のための走査を行う。この走査部168による走査は、モータ178を回転駆動し

PCT/JP02/01147 WO 02/063300

、該モータ178の回転軸に設けられた歯付プーリ169が回転し、該歯付プ ーリ169及び歯付プーリ172等に掛け渡されたベルト171によって、6 連の各ノズル部157を各々回転駆動する。同時に、前記照射部から励起用光 を前記集積支持体に照射し、発生した蛍光を測定する。

以上説明した各実施の形態は、本発明をより良く理解させるために具体的に 説明したものであって、別形態を制限するものではない。したがって、発明の 主旨を変更しない範囲で変更可能である。例えば、各実施の形態では、検出用 物質としてオリゴヌクレオチドを用いた場合のみについて説明したが、該場合 に限られず、例えば、他の遺伝物質のみならず、免疫物質や、アミノ酸、タン パク質,糖等であっても良い。また、第1の実施の形態では、吸引吐出部として 、ポンプを用いた場合について説明したが、この場合に限られることなく、例 えば、シリンダおよびシリンダロッドによって構成しても良い。

10

15

20

25

また、以上の説明では、測定機として、蛍光を測定する場合について説明し たが、化学発光の場合や、種々の波長の電磁波を測定するものであっても良い 。例えば、電磁波として可視光以外の赤外線、紫外線、X線、電波等の電磁波 の波長範囲を測定する場合であっても良い。

さらに、以上の説明では、各ピペット部や細管は1連または6連の場合につ いてのみ説明したが、この場合に限られることなく、他の連数のピペット部や 、細管が並設されている場合であっても良い。また、以上の説明で用いた数値 は、例示に過ぎず、これに限定されるものでないことはいうまでもない。さら に、各実施の形態で説明した前記収容反応測定装置を構成する各要素は、任意 に選択して適当な変更を加えて組み合わせることによって新たな収容反応測定 装置を構成することができる。なお、前記レーザー装置からのレーザービーム を、ポリゴンミラーを用いて、縦方向に前記集積支持体に走査するように照射 して、受光するようにしても良い。

また、測定機本体に、異なる方向から光を受光する2つの受光部を異なる位 置に設けることによって、立体視が可能である。これによって、固定位置を立 体的にとらえることができるので、より正確で、多層に集積化された高密度の 集積支持体についても測定が可能である。この場合は、各受光部間の距離、及

び各受光部の測定方向の角度によって、その奥行き方向の距離の相違を検知することができる。

さらに、前記収容部を回転させて測定を行う場合に、回転ぶれを防止するため測定位置決め部として、、例えば、前記収容部 (ピペット部)の外周面、例えば、太径部や細径部の外周面を、1箇所で接触し、または複数箇所で挟むように接触し、または全周で接触するようにして、回転を案内するガイド部材を測定位置近傍、たとえば、凹部102aに設けるようにしても良い。または、該収容部自体と結合して該収容部を回転駆動するような機構を設けるようにしても良い。

請求の範囲

- 1. 所定の化学構造をもつ複数種の検出用物質が、長手方向に沿って所定間隔で固定され、各化学構造とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状の基礎部材を有し、該基礎部材は前記固定位置が外方から測定可能な状態で巻かれ、積層され、または整列されて集積化されたことを特徴とする集積支持体。
- 2. 所定の化学構造をもつ複数種の検出用物質を所定間隔で配置した各固定位置に固定され、各化学構造とその各固定位置とが対応付けられた基礎部材を収容可能であって流体の入出口を有する透光性の収容部と、その収容部に対して前記入出口を介して前記流体を吸引しかつ吐出可能とする吸引吐出部と、収容された前記基礎部材からの光を前記収容部の外部で前記固定位置と対応付けた状態で受光可能とする測定機とを有することを特徴とする収容反応測定装置。

10

15

- 3. 前記測定機は、前記基礎部材からの光を受光する受光部と、該受光 部または前記収容部を相対的に移動して前記基礎部材の各固定位置を走査する 走査部とを有することを特徴とする請求項2に記載の収容反応測定装置。
 - 4. 前記収容部は、前記吸引吐出部に設けられたノズル部に着脱自在に装着されたことを特徴とする請求項2に記載の収容反応測定装置。
- 20 5. 前記入出口と、外部に設けた容器等が載置された処理領域または前 記受光部との間を相対的に移動可能とする移動部をさらに有することを特徴と する請求項2または請求項3のいずれかに記載の収容反応測定装置。
 - 6. 前記検出用物質と結合の可能性がある標識物質で標識化された結合性物質が検出用物質と結合することによって形成された前記基礎部材の全固定位置を含む領域を前記測定機によって相対的に走査して、各固定位置における前記標識物質に関する定性的及び定量的情報を得て、前記結合性物質または検出用物質の識別を行う識別部をさらに有することを特徴とする請求項2に記載の収容反応測定装置。
 - 7. 前記基礎部材が糸状、紐状、またはテープ状等の細長形状に形成さ

れたものであって、複数種の検出用物質がその長手方向に沿って所定間隔で固定され、該基礎部材を直線状に伸長させた状態で収容する場合には、前記収容部は細管であり、前記基礎部材の長手方向は、その細管の軸方向に沿って収容され、その細管の大きさおよび形状は、その基礎部材の大きさおよび形状に基づいて定まるものであり、前記測定機は前記細管の軸方向に沿って相対的に走査することによって測定することを特徴とする請求項2に記載の収容反応測定装置。

8. 前記基礎部材が、所定の化学構造をもつ各種複数種の検出用物質が長手方向に沿って所定間隔で固定され、各化学構造とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状であって、該基礎部材が集積支持体を形成する場合には、前記収容部は、前記集積支持体を収容する太径部および先端に入出口を有し外部の容器に挿入可能な細径部からなり、前記吸引吐出部は、前記入出口を介して前記流体を前記太径部に対して吸引しかつ吐出するものであり、前記収容部の大きさおよび形状は、前記集積支持体の大きさおよび形状に基づいて定められ、前記測定機はその太径部の外部で基礎部材からの光を受光するものであることを特徴とする請求項2に記載の収容反応測定装置。

10

15

- 9. 前記測定機の受光部は、遮光用ボックスの中に設けられ、該遮光用ボックスは、ボックス本体と、前記ボックス本体の開口部を覆うように設けられた蓋体とを有し、前記蓋体には前記収容部を前記ボックス本体に挿入するために前記収容部が通過可能な孔が設けられるとともに、前記収容部がボックス本体内に挿入された状態で、前記孔が塞がれて閉鎖空間が形成される閉鎖手段を有することを特徴とする請求項4に記載の収容反応測定装置。
- 10. 前記集積支持体は、前記基礎部材が、前記収容部の内壁面と接触 25 しないように位置決めされた状態で収容されていることを特徴とする請求項8 に記載の収容反応測定装置。
 - 11. 所定の化学構造をもつ複数種の検出用物質が、長手方向に沿って 所定間隔で固定され、各化学構造とその固定位置とが対応付けられた糸状、紐 状、またはテープ状等の細長形状の基礎部材を、透光性のある収容部内に収容

する収容工程と、

15

25

前記収容部内に標識化された結合性物質が懸濁する液体を吸引して前記基礎部材を液体に浸して前記結合性物質と前記検出用物質とを反応させる反応工程と、

5 反応に寄与しなかった結合性物質および前記液体を除去する測定準備工程と

前記収容部内に収容された基礎部材からの光を測定する測定工程とを有する ことを特徴とする収容反応測定方法。

- 12. 前記測定工程は、前記収容部または受光位置を相対的に移動させ 10 ることによって、前記基礎部材の全固定位置を走査することを特徴とする請求 項11に記載の収容反応測定方法。
 - 13. 前記測定準備工程において、反応に寄与しなかった結合性物質およびそれが懸濁する液体を除去した後、測定用の液体を吸引する工程を含み、前記測定工程は測定用液体に前記基礎部材を浸した状態で測定することを特徴とする請求項11に記載の収容反応測定方法。
 - 14. 前記反応工程にあっては、前記収容部または該収容部に吸引された液体を振盪させまたは、液体の吸引吐出を繰り返すことを特徴とする請求項11に記載の収容反応測定方法。
- 15. 前記収容部に収容されている基礎部材は、集積化されて集積支持 20 体を形成し、前記測定機は、前記集積支持体からの光を受光する受光部と、前 記集積支持体または該集積支持体を収容する収容部をその軸心に対して回転さ せる走査部とを有することを特徴とする請求項2に記載の収容反応測定装置。
 - 16. 前記収容部は前記吸引吐出部が有するノズル部に着脱自在に装着されるとともに、前記走査部は、前記ノズル部をその軸心に対して回転させることによって収容部を回転させることを特徴とする請求項15に記載の収容反応測定装置。
 - 17. 前記入出口を、外部に設けた容器または前記測定機との間を相対 的に移動可能とする移動部をさらに有することを特徴とする請求項15または 請求項16いずれかに記載の収容反応測定装置。

18. 前記検出用物質と結合の可能性があり、標識物質で標識化された結合性物質を、前記検出用物質に結合させることによって形成された集積支持体を収容した前記収容部を回転させることによって、前記全固定位置を含む領域を前記測定機によって走査して、各固定位置における前記標識物質に関する定性的及び定量的情報を得て、前記結合性物質または検出用物質に関する識別を行う識別部をさらに有することを特徴とする請求項15乃至請求項17のいずれかに記載の収容反応測定装置。

19. 前記集積支持体は、所定の検出用物質が長手方向に沿って所定間隔で固定され、各検出用物質とその固定位置とが対応付けられた糸状、紐状、またはテープ状等の細長形状の基礎部材と、その基礎部材が巻装される円筒状支持体とを有し、前記収容部は、前記集積支持体を収容する太径部及び先端に入出口を有し外部の容器に挿入可能な細径部からなり、前記吸引吐出部は、前記入出口を介して前記流体を前記太径部に対して吸引しかつ吐出するものであり、前記収容部の大きさ及び形状は、前記集積支持体の大きさおよび形状に基づいて定められ、前記測定機は、その太径部の外部で基礎部材からの光を受光するものであることを特徴とする請求項18に記載の収容反応測定装置。

- 20. 前記円筒状支持体の軸心は、前記ノズル部の軸心と一致するように前記収容部に収容されたことを特徴とする請求項19に記載の収容反応測定装置。
- 20 21. 前記測定機は、前記受光部が受光しようとする集積支持体の領域 に、所定の光を照射する照射部をさらに設けたことを特徴とする請求項15な いし請求項20のいずれかに記載の収容反応測定装置。
 - 22. 前記受光部または照射部は、多数の光ファイバと、該光ファイバを東ねて支持する光ファイバ支持部とを有し、前記各光ファイバの先端部は前記ノズル部の軸方向に沿って縦列状に配列されていることを特徴とする請求項15ないし請求項21に記載の収容反応測定装置。
 - 23. 前記受光部または前記照射部は、ファイバグラスと、ファイバグラスを支持するファイバグラス支持部とを有し、該ファイバグラスの収容部側面は、前記ノズル部の軸方向に沿って縦長状に形成したことを有することを特

徴とする請求項15ないし請求項21のいずれかに記載の収容反応測定装置。

24. 前記収容部の内側面または外側面の少なくとも一方にはその全周に渡って、前記収容部外方に設けた前記受光部の端部に前記集積支持体からの光を収束させるための多数の光学系を配列形成したことを特徴とする請求項1 5万至請求項23のいずれかに記載の収容反応測定装置。

5

- 25. 所定の化学構造をもつ複数種の検出用物質が、長手方向に沿って間隔を開けて固定され、各化学構造とその固定位置とが対応付けられた糸状、 紐状、またはテープ状等の細長形状の基礎部材が外方から測定可能な状態で支 持体に巻かれた集積支持体を、透光性のある収容部内に収容する収容工程と、
- 10 前記収容部内に標識化された前記検出用物質と結合の可能性がある結合性物質が懸濁する液体を吸引して前記集積支持体を液体に浸して前記結合性物質と前記検出用物質とを反応させる反応工程と、

反応に寄与しなかった前記結合性物質および前記液体を除去する測定準備工程と、

- 15 前記収容部内に収容された基礎部材からの光を測定する測定工程とを有する ことを特徴とする収容反応測定方法。
 - 26. 前記測定工程は、前記収容部を回転させることによって、前記集 積支持体の全固定位置を走査することを特徴とする請求項25に記載の収容反 応測定方法。
- 27. 前記測定準備工程において、反応に寄与しなかった前記結合性物質およびそれが懸濁する液体を除去した後、測定用の液体を吸引する工程を含み、前記測定工程は測定用液体に前記集積支持体を浸した状態で測定することを特徴とする請求項25に記載の収容反応測定方法。
- 28. 前記反応工程にあっては、前記収容部または該収容部に吸引され 25 た液体を振盪させまたは、液体を吸引吐出を繰り返すことを特徴とする請求項 25に記載の収容反応測定方法。
 - 29. 軸心に対し回転可能に設けたノズル部と、該ノズル部に着脱可能に装着され、複数種の検出用物質を所定間隔で固定した集積支持体を内部に収容可能であり、かつ先端に流体の入出口を有する透光性の収容部と、該収容部

PCT/JP02/01147

の外側に、前記ノズル部の軸方向に平行に沿って設け、前記集積支持体からの 光を受光する受光部とを有する集積支持体の収容反応装置を、光学的測定装置 を用いて、収容反応測定を行う方法であって、

前記集積支持体を収容した前記収容部の入出口を介して、前記検出用物質と 結合の可能性がある結合性物質が懸濁する液体を吸引して前記集積支持体を液 体に浸して、前記結合性物質と前記検出用物質とを反応させる反応工程と、

反応に寄与しなかった前記結合性物質及び前記液体を除去し、かつ、測定用 試薬を吸引して前記収容部に吸引する測定準備工程と、前記ノズル部を回転さ せる間に、収容部の外部から前記受光部によって、集積支持体上の発光を検出 する測定工程とを有することを特徴とする集積支持体の収容反応測定方法。

30. 前記反応工程は、該当する試薬を収容する容器位置に前記収容部を装着したノズル部を移動して、その試薬を吸引することによって行い、前記測定工程は、前記受光部が設けられている位置にまで、前記ノズルを移動することによって行うことを特徴とする請求項27に記載の集積支持体の収容反応測定方法。

20

15

5

10

第1図

第4図

4 /17

第5図

第6図

第7図

第8図

第9図

第10図

第11図

第12図

13/17

第14図

第15図

第16図

- 10、23、40、51、60、81、100、155…収容反応測定装置
- 11…細管(収容部)
- 24、44、64、85、101、156…ピペット部(収容部)
- 14、26、50、52、66、87…受光照射部(測定機)
- 102…測定機本体(測定機)
- 114、124…照射部(測定機)
- 115、128、153…受光部(測定機)
- 145…レーザー装置 (照射部)
- 168…走查部(測定機)
- 15、110…基礎部材
- 22、42、62、82、107…集積支持体

INTERNATIONAL SEARCH REPORT

Form PCT/ISA MIN (second sheet) (Inly 1008)

International application No.
PCT/JP02/01147

A. CLASS	SIFICATION OF SUBJECT MATTER Cl ⁷ G01N33/53, G01N37/00, C12N	N15/00, C12M1/00	,	
According t	o International Patent Classification (IPC) or to both na	ational classification and IPC		
	S SEARCHED			
	ocumentation searched (classification system followed C1 G01N33/53, G01N37/00, C12N			
	, , , ,			
	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Koka:	i Jitsuyo Shinan Koho 1971-2002		o 1996–2002	
Electronic d	lata base consulted during the international search (name	ne of data base and, where practicable, sea	rch terms used)	
		· · · · · · · · · · · · · · · · · · ·		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
A	JP, 11-326339, A (Wako Pure Ltd.),	Chemical Industries,	1-30	
	26 November, 1999 (26.11.99)	,		
	(Family: none)			
A	JP, 11-125637, A (Olympus Op	otical Co., Ltd.),	2-30	
	11 May, 1999 (11.05.99), (Family: none)			
A	JP, 10-150975, A (Becton Dic	ckinson and Co.),	2-30	
	09 June, 1998 (09.06.98), & AU 9739275 A & BI	R 9704709 A		
	& CA 2215561 A & MX	K 9706649 A		
À	JP, 57-171266, A (Sunstar Ki	15-24		
	21 October, 1982 (21.10.82), (Family: none)			
	_			
P,A	JP, 2001-83158, A (Fuji Phot 30 March, 2001 (30.03.01),	o Film Co., Ltd.),	2-30	
	(Family: none)			
Further documents are listed in the continuation of Box C. See patent family annex.				
* Specia "A" docum	l categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with t	ernational filing date or he application but cited to	
conside	ered to be of particular relevance document but published on or after the international filing	understand the principle or theory und "X" document of particular relevance; the	lerlying the invention	
date	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	ered to involve an inventive e	
cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is		
means		combined with one or more other such combination being obvious to a person	n skilled in the art	
than th	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent		
	actual completion of the international search april, 2002 (08.04.02)	Date of mailing of the international sear 16 April, 2002 (16.		
Name and -	nailing address of the ISA/	Authorized officer		
	nese Patent Office			
Facsimile N		Telephone No.		

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl⁷ G01N33/53 G01N37/00 C12N15/00 C12M 1/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl7 G01N33/53 G01N37/00 C12N15/00 C12M 1/00 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 A JP 11-326339 A(和光純薬工業株式会社)1999.11.26. 1 - 30(ファミリーなし) IP 11-125637 A(オリンパス光学工業株式会社) 1999.05.11、 A 2-30 (ファミリーなし) JP 10-150975 A(ベクトン・ディッキンソン・アンド・カンパニー) A 2-30 1998. 06. 09, & AU 9739275 A & BR 9704709 A & CA 2215561 A & MX 9706649 A 区欄の続きにも文献が列挙されている。 │ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの・ 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 16.04.02 08.04.02 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2 J 9407 日本国特許庁(ISA/JP) 宮澤 浩 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3252

	四尔则且怀口	国际山殿银写 PUI/JPU			
C (続き) 関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	、その関連する箇所の表示	- 関連する 請求の範囲の番号		
A	JP 57-171266 A(サンスター金属株式会社) (ファミリーなし)	1982. 10. 21,	15-24		
P, A	JP 2001- 83158 A(富士写真フィルム株式会(ファミリーなし)	陰社) 2001. 03. 30,	2-30 .		
:	·				
			,		
		•			
			_		