Institutt for fysikk, NTNU

TFY4125 Fysikk Faglærer Magnus B Lilledahl

Regneøving 4

Veiledning 3. februar Innlevering 8. februar.

Stikkord for denne øvingen er bl.a. "arbeid - kinetisk energi" teoremet, arbeid, effekt, og energibevarelse.

Oppgavene er relatert til kapittel 2-8 i Young and Freedman

Oppgave 1. Bevegelsesmengde og ishockey

En ishockeypuck med hastighet $v_1 = 40.0$ m/s treffer en annen ishockeypuck som ligger i ro på isen (med neglisjerbar friksjon). De to puckene har samme masse. Etter støtet observerer vi at den ene pucken beveger ser ut fra kollisjonspunktet i en vinkel $\alpha = 30^{\circ}$ og den andre i en vinkel $\beta = 45^{\circ}$ i forhold til retningen den innkommende pucken beveget seg i før støtet.

- a) Tegn figur!
- b) Hvor stor er farten til hver av de to puckene like etter støtet?
- c) Hvor stor brøkdel av den kinetiske energien går tapt i støtet? (19.6 %)

Oppgave 2. To sammenbundne klosser på skråplanet

To klosser av forskjellig materiale er forbundet med en snor og sklir nedover et skråplan med helningsvinkel θ . Klossen har forskjellig masse, og de kinetiske friskjonskoeffisientene er også forskjellige, med $\mu_2 > \mu_1$.

a) Vis at i dette tilfellet er snoren alltid stram, uansett massenes størrelse, og finn et uttrykk for snordraget *T*. Bruk Python til å

plotte T som en funksjon av forholdet m₁/m₂. Tolk kurven i lys av hva du vil forvente.

b) Vis at akselerasjonen nedover skråplanet er gitt ved

$$a = g(\sin\theta - \frac{\mu_1 m_1 - \mu_2 m_2}{m_1 + m_2}\cos\theta)$$

c) For hvilken vinkel θ sklir massene nedover med konstant hastighet?

Oppgave 3. Her kommer energibetraktninger godt med!

En kloss med masse m_1 ligger på en horisontal bordplate, i avstand l fra bordkanten. Klossen er festet til en annen kloss ved hjelp av en tynn snor og en trinse. Den sist nevnte klossen har masse m_2 og befinner seg i en posisjon med høyde h over gulvet (h < l). Klossen m_2 slippes, og drar med seg m_1 mens den faller.

Se bort fra massen til snora og trinsa, og friksjonen i trinsa. Den kinetiske friksjonskoeffisienten mellom bordplate og massen m_1 er μ , mens tyngdens akselerasjon er g.

- a) Finn klossenes hastighet v_A idet massen m_2 treffer gulvet.
- b) Finn så et uttrykk for hastigheten til m_1 , v_B når (eller: hvis) den når bordkanten.
- c) Sett til slutt inn tallverdier: $m_1 = 1.00 \text{ kg}$, $m_2 = 2.00 \text{ kg}$, h = 1.00 m, l = 2.00 m, $\mu = 0.300 \text{ og } g = 9.81 \text{ m/s}^2$, og finn v_A og v_B numerisk. Kontroller også at uttrykkene du finner gir riktig dimensjon, [v] = m/s.

Oppgave 4. Elastiske støt gir mange slags resultater

To stålkuler, med masser m_1 og m_2 , er hengt opp i samme punkt med tynne snorer, begge med lengde l. Kula med masse m_1 trekkes ut til snora er horisontal (og strukket), og slippes så. Den svinger nedover, treffer kula med masse m_2 («sentralt støt») — og kulene spretter fra hverandre igjen. Anta fullstendig elastisk støt og masseløse snorer. Betrakt kulene som punktmasser. Tyngdens akselerasjon er g.

- a) Finn uttrykk for hastigheten v_{1f} til kula med masse m_1 og strekket S1f i snora som masse m_1 henger i, *like før støtet*.
- b) Finn så uttrykk for hastigheten v_{1e} til kula med masse m_1 og hastigheten v_{2e} til kula med masse m_2 like etter støtet. Bruk Python til å plotte v_{2e} som en funksjon av m_1/m_2 . Sjekk om grensene $m_1 \ll m_2$ og $m_1 \gg m_2$ gir det du forventer.
- c) Finn dernest uttrykk for strekkreftene S_{1e} og S_{2e} like etter støtet.
- d) Sett til slutt inn $m_1 = 10$ g, $m_2 = 20$ g, l = 1 m og g = 9.8 m/s², og finn v_{1f} , v_{1e} , v_{2e} , S_{1f} , S_{1e} og S_{2e} numerisk. Kontroller at uttrykkene dine gir riktige dimensjoner.