Displays & Actuators

Some theory

What is an actuator?

- Uses energy
 - Electricity, pressure, heat, light ...
- Produces an effect
 - Movement, heat, light, radio waves ...
- Controlled by a signal
 - Low power
 - Coming from a controller (e.g. ESP32)

Energy sources and effects

Sources

- electricity, pressure, light
- ESP32 GPIO: 40mA / 0.13W
- USB: 500mA / 2.5W

Effects

- Movement, light, heat
- Pressure, flow, sound, vibration

Example

- Source: electric energy
- Effect: water flow

Control signals

- Analog
 - GPIO (on/off)
 - PWM (pulse width modulator)
 - Stepper motor signals
- Digital
 - I2C, SPI, UART
 - Custom
- Bit banging

A note on units

- Power vs Energy
 - 1 W = 1 J/s
 - Power is energy per unit time
 - kW is power, kWh is energy
- How much is a W, kW, MW?
 - LED: 0.05 3W
 - Domestic appliances: ~2 kW
 - Car (Tesla model 3): 366 kW
- Other power units
 - Horsepower (hp, bhp, PS) = 746 W
 - BTU/h = 0.293 W,
 - ton (refrigeration) = 12000 BTU

Examples

LED modules

- RGB (WS2812b)
- Consumes 0-60 ma
- Control 500+ leds with a single GPIO

Character Display

- LCD Display
 - Only Characters / no Graphics
- Sizes: 1x8, 2x10, 2x16, 2x20, 4x40, 2x20
- Control
 - I2C to send characters
 - Backlight on/off

OLED B/W

• Protocol: I2C or SPI

• Types: 128x64, 128x32, 64x32

• Black/White, Black/Blue, Black/Yellow/Blue

Nokia 5110

- Resolution: 84x84
- Very Low Power
- Custom Driver

TFT Display (ILI9341)

- 320x240 px, 15/16 bit color, 2.2" 3.2"
- SPI (5+ wires communication)
- Resistive Touch support (on some models)
- Library: https://github.com/Bodmer/TFT eSPI

Nextion Displays

- Integrated 48–108Mhz CPU
- Protocol: Custom 2 wires
- Size: 2.4", 2.8", 3.5"
- IDE for visual design

E-Ink / E-Paper Displays

• Resolution: 296x128

Power supply: 3,3V

Refresh current: 85mA

Standby power: 0,017mW

• Interface: SPI

• Full refresh: 2 s

• Price: 20\$

1-Color Acer Display

Servo motor

- Rotates and holds
 - +/- 90/180/360 degrees of rotation
- Various torque/power levels
- Control
 - 3 wires (+,- and PWM)
 - PWM width to angle
 - Built it feedback sensor

Stepper (стъпков) Мотор

- Може да се контролира колко точно стъпки да се завърти, например 10 градуса, 20, 30, не се връща сам обратно
- Обичайни стъпки на завъртане 0.9°, 1.8°, 3.6° и 4.5°, най-разпространени 1.8°
- Контролер на стъпков мотор

DC Motor

Controlled by PWM and ESC (Electronic Speed Control)

Linear Actuator

- Motor + gearing
- Position sensors vs Overload tolerant

Peltier Module

- Solid state, active cooling
- One side gets cold and the other gets hot
- Low efficiency, but still useful for temperature control

Relay modules

- Control circuit
 - Rated voltage: 3.3, 5, 12, 220V...
 - Low current/power
- Operating circuit
 - Rated current: 1, 5, 10A ...
 - Rated voltage: 12V, 220V ...
 - AC vs DC (arcing, impedance ...)

Електронни ключове / Solid State Relay

Push/pull solenoid actuators

- On/off position actuator
- Use cases
 - Valve
 - Electric lock
 - Fuel injectors
 - Gearboxes
 - Production lines

Vibration actuators

- Motor or "speaker"
 - Eccentric Rotating Mass (ERM)
 - Linear Resonant Actuators (LRA)
 - Voice Coil (VCA/VCM)
 - Piezoelectric (PA)
- Use cases
 - Haptic feedback to the user
 - Ultrasonic washing
 - Industrial processing
- Controlled by PWM

Exercises