Projeto P2

Sensoriamento Remoto com dados do Sentinel-2 (Product Level 2A)

Sentinel-2

- Satélite de Sensoriamento Remoto da EU
- Dados disponíveis gratuitamente: https://dataspace.copernicus.eu/
- Sensor multiespectral com 12 bandas e 3 resoluções (10, 20 e 60m)

REFLECTANCE SPECTRA: EARTH'S SURFACE MATERIALS

Sentinel-2

Band	Resolution	Central Wavelength	Description
B1	60 m	443 nm	Ultra Blue (Coastal and Aerosol)
B2	10 m	490 nm	Blue
В3	10 m	560 nm	Green
B4	10 m	665 nm	Red
B5	20 m	705 nm	Visible and Near Infrared (VNIR)
В6	20 m	740 nm	Visible and Near Infrared (VNIR)
В7	20 m	783 nm	Visible and Near Infrared (VNIR)
B8	10 m	842 nm	Visible and Near Infrared (VNIR)
B8a	20 m	865 nm	Visible and Near Infrared (VNIR)
В9	60 m	940 nm	Short Wave Infrared (SWIR)
B10	60 m	1375 nm	Short Wave Infrared (SWIR)
B11	20 m	1610 nm	Short Wave Infrared (SWIR)
B12	20 m	2190 nm	Short Wave Infrared (SWIR)

O que é uma imagem digital?

Cores primárias

Sentinel - Banda 04 (vermelho)

Sentinel – Cores naturais (B4, B3, B2)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – Cores infravermelho (B8, B4, B3)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel –Infravermelho Curto (B12, B8A, B4)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – Agricultura (B11, B8, B2)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – Geologia (B12, B11, B2)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – Índice de vegetação (B8-B4)/(B8+B4)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – Índice de Umidade (B8A-B11)/(B8A+B11)

https://gisgeography.com/sentinel-2-bands-combinations/

Sentinel – LSA – Scene Classification Map

https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/scene-classification/
https://sentinels.copernicus.eu/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a

Projeto: classificador de imagens

<u>Objetivo</u>: aplicar os métodos de aprendizagem de máquina para classificar automaticamente o uso do solo da região do Vale do Paraíba, por meio de imagens do satélite Sentinel 2.

Requisitos:

- Identificar as classes: "vegetação", "não vegetação", "água" e "não definida".
- Adotar no mínimo 3 métodos de classificação, sendo um deles baseado em RNAs.

Projeto: classificador de imagens

Relatório:

- Descrição das bandas adotadas e operações de pré-processamento.
- Quantidade de dados no conjunto de treinamento, validação (se for o caso) e teste e a proporção de cada classe.
- Cálculo da Matriz de confusão
- Melhores hiperparâmetros adotados e topologia (no caso da RNA)

Projeto: classificador de imagens

Conjunto de Dados:

- a. Utilizar o conjunto de imagens fornecidas
- Selecionar um subconjunto de pixels para uso no treinamento, validação (se aplicável) e teste.
- c. Dados de entrada (X): valores dos pixels (combinados ou não) de uma ou mais banda espectral de resolução de 20 metros.
- d. Dados de saída (y): classes definidas na imagem de rótulos (Scene Classification Layer)

