Correction Rattrapage

Exercice 1

A/1/ (2 pts) Soit X une v.a. réelle sur (Ω, \mathcal{F}, P) telle que $E(|X|) < +\infty$. On a que $\forall B \in \mathcal{A}$: $\int_B E(X/\mathcal{A}) dP = \int_B X dP$. Mais $\mathcal{A} = \{\emptyset, \Omega\}$, donc:

Si $B = \Omega$: $\int_{\Omega} E(X/A) dP = \int_{\Omega} X dP = E(X) = E(X)P(\Omega) = E(X)\int_{\Omega} dP = \int_{\Omega} E(X) dP$

Si $B = \emptyset$: $\int_{\emptyset} E(X/A) dP = 0 = \int_{\emptyset} X dP = \int_{\emptyset} E(X) dP$

Donc $\forall B \in \mathcal{A} = \{\emptyset, \Omega\} : \int_B E(X/\mathcal{A}) dP = \int_B E(X) dP$, ainsi $E(X/\mathcal{A}) = E(X)$ p.s.

 $2/Z_n = E(Y/\mathcal{F}_n)$. (0.5 pts) $Z_n = E(Y/\mathcal{F}_n)$ est \mathcal{F}_n -mesurable, ainsi $(Z_n)_n$ est adaptée à la filtration $(\mathcal{F}_n)_n$.

(0.5 pts) On a $E(|Z_n|) = E(|E(Y/\mathcal{F}_n)|) \le E(E(|Y|/\mathcal{F}_n))$ d'après l'inégalité de Jensen et $E(E(|Y|/\mathcal{F}_n)) = E(|Y|) < +\infty$ donc $E(|Z_n|) < +\infty$. D'où Z_n est intégrable $\forall n \ge 1$.

(1 pts) Montrons que: $E(Z_{n+1}/\mathcal{F}_n) = Z_n$. On a $E(Z_{n+1}/\mathcal{F}_n) = E(E(Y/\mathcal{F}_{n+1})/\mathcal{F}_n) = E(Y/\mathcal{F}_n) = Z_n$ car $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Ainsi $Z_n = E(Y/\mathcal{F}_n)$ est une martingale.

 $\mathbf{B}/\ 1/\ (\mathbf{0.5\ pts})\ T_1$ est un temps d'arrêt. Il peut pas deviner le future. Il connait la mise initiale et il peut savoir à n'importe quel instant si sa fortune est égale à la mise initiale de son adversaire.

2/ (0.5 pts) T_2 est un temps d'arrêt. Sachant l'information disponible il peut savoir si l'indice boursier à chuté de 1%.

3/ (0.5 pts) T_3 n'est pas un temps d'arrêt (on ne peut pas savoir dans le future si le processus peut entrer dans l'ensemble]0;22[). (0.5 pts) T_4 est un temps d'arrêt (temps d'entrée d'un processus adapté dans un ensemble $\{0\}$).

C/ (2 pts) $\{S = n\} \in \mathcal{G}_n \subset \mathcal{F}_n$ donc S est un \mathcal{F}_n -temps d'arrêt. $\{T = n\} \in \mathcal{F}_n$ mais $\{T = n\}$ peut ne pas appartenir à \mathcal{G}_n car $\mathcal{F}_n \subset \mathcal{G}_n$. Donc T n'est pas un \mathcal{G}_n -temps d'arrêt.

Exercice 2

1/ (1 pts)
$$P(S_{12} > 120 / S_3 = 60) = P\left(\frac{S_{12}}{S_3} > 2\right) = P(9\mu + \sigma(W_{12} - W_3) > \log 2) = P\left(\frac{W_{12} - W_3}{\sqrt{9}} > \frac{\log 2 - 9\mu}{3\sigma}\right) = 1 - \phi(0.9) = 0.1841.$$

2/(1 pts) Soit M la médiane. $P(S_t \leq M) = 1/2$ et $P(S_t \leq M) = P(S_0 \exp(\mu t + \sigma W_t) < M) = P\left(W_t < \frac{\log M - (\log S_0 + \mu t)}{\sigma}\right) = \phi\left(\frac{\log M - (\log S_0 + \mu t)}{\sqrt{t}\sigma}\right) = 1/2$, donc $\frac{\log M - (\log S_0 + \mu t)}{\sqrt{t}\sigma} = 0$ et on obtient $M = S_0 e^{\mu t}$.

(2 pts) On a $\log S_t \rightsquigarrow \mathcal{N}\left(\log S_0 + \mu t, \sigma^2 t\right)$ donc $E\left(S_t\right) = \exp\left(\log S_0 + \mu t + \frac{\sigma^2 t}{2}\right)$. 3/ (2 pts)

$$E\left[S_{t}/\mathcal{F}_{s}\right] = E\left[S_{0}\exp(\mu s + \sigma W_{s})\exp(\mu(t-s) + \sigma(W_{t} - W_{s}))/\mathcal{F}_{s}\right]$$

$$= E\left[S_{s}\exp(\mu(t-s) + \sigma(W_{t} - W_{s}))/\mathcal{F}_{s}\right] = S_{s}E\left[\exp(\mu(t-s) + \sigma(W_{t} - W_{s}))/\mathcal{F}_{s}\right]$$

$$= S_{s}E\left[\exp(\mu(t-s) + \sigma(W_{t} - W_{s}))/\mathcal{F}_{s}\right] = S_{s}\exp\left[\left(\mu(t-s) + \sigma(W_{t} - W_{s})\right)/\mathcal{F}_{s}\right]$$

4/ (1 pts) On aura $E[S_t/\mathcal{F}_s] = S_s \text{ si } \mu = -\frac{\sigma^2}{2}$.

5/ (1 pts) Si $\mu = -\frac{\sigma^2}{2}$ la médiane $M = S_0 e^{\mu t}$ tend vers 0 exponentiellement quand t tend vers l'infini, donc un inverstissement mauvais dans ce cas.