Đề giải tích

Câu 1.

Dãy số (x_n) xác định bởi $x_1=rac{1}{2}, x_{n+1}=rac{1}{2-x_n}\ (n\geq 1).$

- 1. Chứng minh dãy (x_n) là dãy đơn điệu tăng và bị chặn trên bởi 1.
- 2. Tìm $\lim_{n\to+\infty} x_n$.

Câu 1.

Dãy số (x_n) xác định bởi $x_1=rac{1}{2},\,x_{n+1}=rac{1}{2-x_n}\;(n\geq 1).$

- 1. Chứng minh dãy (x_n) đơn điệu tăng và bị chặn trên bởi 1.
- $\bullet~$ Giả sử $x_n < 1.$ Khi đó, $x_{n+1} = \frac{1}{2-x_n} < 1,$ nên (x_n) bị chặn trên bởi 1.
- Xét hiệu $x_{n+1} x_n$:

$$x_{n+1}-x_n=rac{1-x_n(2-x_n)}{2-x_n}=rac{(x_n-1)^2}{2-x_n}\geq 0.$$

- Do đó, (x_n) là dãy đơn điệu tăng.
- 2. Tìm $\lim_{n\to+\infty} x_n$.
- ullet Giả sử $\lim_{n o +\infty} x_n = L.$ Khi đó:

$$L = \frac{1}{2 - L}.$$

- Giải phương trình này, ta được L=1.
- Vậy $\lim_{n\to+\infty}x_n=1.$

Câu 2.

Cho hàm số

$$f:R o R, f(x)=egin{cases} x^2+m & x\geq 0\ rac{1-\cos x}{x^2} & x<0 \end{cases}$$

trong đó m là một tham số thực.

1. Xác định m để f liên tục trên R.

2. Với giá trị m vừa tính, hàm số đã cho có khả vi tại x=0 hay không?

Câu 2.

1. Xác định m để f liên tục trên $\mathbb R$.

Để hàm số f liên tục tại x=0, ta cần có

$$\lim_{x o 0^+} f(x) = f(0) = \lim_{x o 0^-} f(x).$$

- Với $x \ge 0$, ta có f(0) = m.
- Với x < 0, ta có

$$\lim_{x o 0^-} f(x) = \lim_{x o 0^-} rac{1 - \cos x}{x^2} = rac{1}{2}.$$

Để hàm số liên tục tại x=0, ta cần

$$f(0) = \frac{1}{2} \quad \Rightarrow \quad m = \frac{1}{2}.$$

2. Với giá trị m vừa tính, hàm số đã cho có khả vi tại x=0 hay không?

Để hàm số khả vi tại x=0, ta kiểm tra

$$\lim_{h o 0}rac{f(h)-f(0)}{h}.$$

• Khi $h \ge 0$, ta có

$$rac{f(h)-f(0)}{h}=h \quad \Rightarrow \quad \lim_{h o 0^+}rac{f(h)-f(0)}{h}=0.$$

• Khi h < 0, ta có

$$rac{f(h)-f(0)}{h}=0 \quad \Rightarrow \quad \lim_{h o 0^-}rac{f(h)-f(0)}{h}=0.$$

Vậy

$$\lim_{h\to 0}\frac{f(h)-f(0)}{h}=0.$$

Do đó, hàm số khả vi tại x = 0.

Kết luận:

1. Giá trị m để hàm số f liên tục trên $\mathbb R$ là $m=\frac{1}{2}$.

2. Với $m=\frac{1}{2}$, hàm số f khả vi tại x=0.

Câu 3.

Biết rằng khai triển Maclaurin của hàm f(x) đến cấp 2 với phần tử Lagrange có dạng:

$$f(x) = f(0) + f'(0)x + f''(0)rac{x^2}{2!} + f'''(c)rac{x^3}{3!}$$

trong đó c nằm giữa 0 và x. Viết khai triển này cho $f(x)=\cos x$ từ đó suy ra $\cos x \geq 1-\frac{x^2}{2}$ với mọi $-\pi \leq x \leq \pi$.

Câu 3.

1. Tính các đạo hàm của $\cos x$:

• $f(x) = \cos x$, do đó f(0) = 1.

• $f'(x) = -\sin x$, do đó f'(0) = 0.

• $f''(x) = -\cos x$, do đó f''(0) = -1.

• $f'''(x) = \sin x$, do đó $f'''(c) = \sin c$.

2. Khai triển Maclaurin đến cấp 2:

Thay các giá trị vào công thức khai triển, ta có:

$$f(x) = 1 + 0 \cdot x - rac{x^2}{2} + f'''(c) rac{x^3}{6}.$$

3. Áp dụng bất đẳng thức với $-\pi \le x \le \pi$:

• Khi $-\pi \leq x \leq \pi$, ta có $|\sin c| \leq |c| \leq |x|$. Do đó, ta có:

$$|f'''(c)|=|\sin c|\leq |c|\leq |x|.$$

• Vì vậy, phần tử Lagrange $f'''(c)\frac{x^3}{6}$ bị chặn và ta có bất đẳng thức:

$$\cos x \ge 1 - \frac{x^2}{2}.$$

Kết luận:

Với $-\pi \leq x \leq \pi$, ta có bất đẳng thức

$$\cos x \ge 1 - rac{x^2}{2}.$$

Câu 4.

Khảo sát sự hội tụ của tích phân suy rộng $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$.

Câu 4.

Khảo sát sự hội tụ của tích phân $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$:

1. Định lý hội tụ của tích phân:

Để khảo sát sự hội tụ của tích phân, ta xét hành vi của hàm số trong mẫu số khi $x \to +\infty$. Cụ thể, ta cần tìm một hàm đồng biến với $\frac{1}{\sqrt{4x^3+3x+1}}$ khi x lớn và kiểm tra sự hội tụ của tích phân đối với hàm này.

2. Hàm mẫu khi $x \to +\infty$:

Khi $x \to +\infty$, ta có

$$4x^3 + 3x + 1 \sim 4x^3$$
.

Do đó, mẫu số $\sqrt{4x^3+3x+1}\sim \sqrt{4x^3}=2x^{3/2}$ khi x lớn.

3. Tính giới hạn của hàm số:

Khi $x \to +\infty$, ta có:

$$rac{1}{\sqrt{4x^3+3x+1}} \sim rac{1}{2x^{3/2}}.$$

4. Xét sự hội tụ của tích phân:

Để kiểm tra sự hội tụ, ta xét tích phân của hàm $\frac{1}{2x^{3/2}}$ từ 1 đến $+\infty$:

$$\int_1^{+\infty} \frac{dx}{x^{3/2}}.$$

Tính tích phân này:

$$\int_{1}^{+\infty} x^{-3/2} \, dx = \left[-2x^{-1/2}
ight]_{1}^{+\infty} = 2.$$

Vì tích phân của $\frac{1}{x^{3/2}}$ hội tụ, nên tích phân ban đầu cũng hội tụ.

Kết luận:

Tích phân $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$ hội tụ.

Giải

Câu 1.

Dãy số (x_n) xác định bởi $x_1=rac{1}{2},$ $x_{n+1}=rac{1}{2-x_n}$ $(n\geq 1).$

- 1. Chứng minh dãy (x_n) đơn điệu tăng và bị chặn trên bởi 1.
- ullet Giả sử $x_n < 1$. Khi đó, $x_{n+1} = rac{1}{2-x_n} < 1$, nên (x_n) bị chặn trên bởi 1.
- Xét hiệu $x_{n+1} x_n$:

$$x_{n+1}-x_n=rac{1-x_n(2-x_n)}{2-x_n}=rac{(x_n-1)^2}{2-x_n}\geq 0.$$

- Do đó, (x_n) là dãy đơn điệu tăng.
- 2. Tìm $\lim_{n\to+\infty} x_n$.
- Giả sử $\lim_{n \to +\infty} x_n = L$. Khi đó:

$$L = \frac{1}{2 - L}.$$

- Giải phương trình này, ta được L=1.
- Vậy $\lim_{n \to +\infty} x_n = 1$.

Câu 2.

1. Xác định m để f liên tục trên $\mathbb R$.

Để hàm số f liên tục tại x=0, ta cần có

$$\lim_{x o 0^+} f(x) = f(0) = \lim_{x o 0^-} f(x).$$

- Với $x \ge 0$, ta có f(0) = m.
- Với x < 0, ta có

$$\lim_{x o 0^-} f(x) = \lim_{x o 0^-} rac{1-\cos x}{x^2} = rac{1}{2}.$$

Để hàm số liên tục tại x=0, ta cần

$$f(0) = \frac{1}{2} \quad \Rightarrow \quad m = \frac{1}{2}.$$

2. Với giá trị m vừa tính, hàm số đã cho có khả vi tại x=0 hay không?

Để hàm số khả vi tại x=0, ta kiểm tra

$$\lim_{h o 0}rac{f(h)-f(0)}{h}.$$

• Khi $h \ge 0$, ta có

$$rac{f(h)-f(0)}{h}=h \quad \Rightarrow \quad \lim_{h o 0^+}rac{f(h)-f(0)}{h}=0.$$

• Khi h < 0, ta có

$$rac{f(h)-f(0)}{h}=0 \quad \Rightarrow \quad \lim_{h o 0^-}rac{f(h)-f(0)}{h}=0.$$

Vậy

$$\lim_{h o 0}rac{f(h)-f(0)}{h}=0.$$

Do đó, hàm số khả vi tại x = 0.

Kết luận:

- 1. Giá trị m để hàm số f liên tục trên $\mathbb R$ là $m=\frac{1}{2}.$
- 2. Với $m=\frac{1}{2}$, hàm số f khả vi tại x=0.

Câu 3.

1. Tính các đạo hàm của $\cos x$:

- $f(x) = \cos x$, do đó f(0) = 1.
- $f'(x) = -\sin x$, do đó f'(0) = 0.
- $f''(x) = -\cos x$, do đó f''(0) = -1.
- $f'''(x) = \sin x$, do đó $f'''(c) = \sin c$.

2. Khai triển Maclaurin đến cấp 2:

Thay các giá trị vào công thức khai triển, ta có:

$$f(x) = 1 + 0 \cdot x - rac{x^2}{2} + f'''(c) rac{x^3}{6}.$$

- 3. Áp dụng bất đẳng thức với $-\pi \leq x \leq \pi$:
- Khi $-\pi \leq x \leq \pi$, ta có $|\sin c| \leq |c| \leq |x|$. Do đó, ta có:

$$|f'''(c)|=|\sin c|\leq |c|\leq |x|.$$

• Vì vậy, phần tử Lagrange $f'''(c) rac{x^3}{6}$ bị chặn và ta có bất đẳng thức:

$$\cos x \ge 1 - \frac{x^2}{2}.$$

Kết luận:

Với $-\pi \le x \le \pi$, ta có bất đẳng thức

$$\cos x \ge 1 - \frac{x^2}{2}.$$

Câu 4.

Khảo sát sự hội tụ của tích phân $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$:

1. Định lý hội tụ của tích phân:

Để khảo sát sự hội tụ của tích phân, ta xét hành vi của hàm số trong mẫu số khi $x \to +\infty$. Cụ thể, ta cần tìm một hàm đồng biến với $\frac{1}{\sqrt{4x^3+3x+1}}$ khi x lớn và kiểm tra sự hội tụ của tích phân đối với hàm này.

2. Hàm mẫu khi $x \to +\infty$:

Khi $x \to +\infty$, ta có

$$4x^3 + 3x + 1 \sim 4x^3$$
.

Do đó, mẫu số $\sqrt{4x^3+3x+1}\sim \sqrt{4x^3}=2x^{3/2}$ khi x lớn.

3. Tính giới hạn của hàm số:

Khi $x \to +\infty$, ta có:

$$rac{1}{\sqrt{4x^3+3x+1}} \sim rac{1}{2x^{3/2}}.$$

4. Xét sự hội tụ của tích phân:

Để kiểm tra sự hội tụ, ta xét tích phân của hàm $\frac{1}{2x^{3/2}}$ từ 1 đến $+\infty$:

$$\int_1^{+\infty} rac{dx}{x^{3/2}}.$$

Tính tích phân này:

$$\int_{1}^{+\infty} x^{-3/2} \, dx = \left[-2x^{-1/2}
ight]_{1}^{+\infty} = 2.$$

Vì tích phân của $\frac{1}{x^{3/2}}$ hội tụ, nên tích phân ban đầu cũng hội tụ.

Kết luận:

Tích phân $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$ hội tụ.