Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра информатики и программирования

Отчет по программированию

Отчет по программированию выполнил: студент 1 курса 141 группы по направлению «Математическое обеспечение и администрирование информационных систем» факультета «Компьютерных наук и информационных технологий» Черногоров Владислав Максимович

Проверил(а):

СОДЕРЖАНИЕ

1.	Базовые элементы языка С++	3
2.	Функции в С++	6
3.	Операторы С++	8
4.	Рекуррентные соотношения	. 19
5.	Вычисление конечных и бесконечных сумм и произведений	. 20
6.	Массивы	. 26
7.	Строки	. 38
8.	Организация файлового ввода/вывода	. 44
9.	Структуры	. 47

Упражнение **I**

Написать программу, которая вычисляет значение выражения:

Задача 20

$$\ln\left|(y-\sqrt{|x|})(x-\frac{y}{x+\frac{x^2}{4}})\right|$$

Код программы

```
#include <iostream>
// Подключение заголовочного файла для поддержки операторов
ввода/вывода
#include <cmath>
// Заголовочный файл, включающий в себя математические функции
// Объявление пространства имен std
using namespace std;
int main()
{
// Объявление переменных
     double x, y;
// Вывод строки в консоль с помощью оператора cout
     cout << "Type X and Y: ";</pre>
// Считывание элементов из консоли с помощью оператора cin
     cin >> x >> y;
//log, abs и pow - математические функции
     cout << "Solution: " << log(abs((y - pow(abs(x), 0.5))*(x - y / abs(x), 0.5))*(x - y / abs(x), 0.5))
     (x + (x*x) / 4))) << endl;
}
```

Ввод	Вывод
Type X and Y: 1 0	Solution: 0
Type X and Y: 2 5	Solution: 0.178366

Упражнение II

Написать программу, которая подсчитывает:

Задача 20

Сумму членов геометрической прогрессии, если известен ее первый член, знаменатель и число членов прогрессии.

Принцип решения

Нам известны все параметры, чтобы подставить их в формулу для нахождения суммы геометрической прогрессии.

$$S_n = \frac{b_1(1 - q^n)}{1 - q}$$

Код программы

```
#include <iostream>
#include <cmath>

using namespace std;

int main()
{
    double b1, q, n;
    cout << "Type b1, devisor and count: ";
    cin >> b1 >> q >> n;
    cout << "Solution: " << (b1*(pow(q, n) - 1) / (q - 1)) << endl;
}</pre>
```

Ввод	Вывод
Type b1, devisor and count: 1 4 3	Solution: 21

Упражнение III

Написать программу, которая определяет:

Задача 20

Является ли треугольник с длинами сторон a, b, c равносторонним.

Код программы

```
#include <iostream>
#include <cmath>

using namespace std;

int main()
{
    int a, b, c;
    cout << "Type a, b, c: ";
    cin >> a >> b >> c;

// Применение тернарной операции
    cout << (a == b && b == c ? "YES" : "NO") << endl;
}</pre>
```

Ввод	Вывод
Type a, b, c: 1 1 1	YES
Type a, b, c: 3 4 2	NO

Задача 20

Разработать функцию $f(x_1, y_1, x_2, y_2)$, которая вычисляет длину отрезка по координатам вершин (x_1, y_1) и (x_2, y_2) , и функцию t(a, b, c), которая проверяет, существует ли треугольник с длинами сторон a, b, c. С помощью данных функций проверить, сколько различных треугольников можно построить по четырем заданным точкам на плоскости.

Принцип решения

В функции f находим длину отрезка между двумя координатами, а в функции t проверяем могут ли три отрезка соединенных тремя вершинами образовывать треугольник.

```
#include <iostream>
#include <cmath>
using namespace std;
// Объявление функции
double f(int x1, int y1, int x2, int y2)
{
     return sqrt((x1 - x2)*(x1 - x2)*1.0 + (y1 - y2)*(y1 - y2)*1.0);
}
bool t(double a, double b, double c)
{
     if (a + b \le c | | a + c \le b | | b + c \le a)
           return false;
     else return true;
}
int main()
{
     int x1, x2, y1, y2, x3, y3, x4, y4, sum = 0;
     cout << "Type 1 coordinates: ";</pre>
     cin >> x1 >> y1;
     cout << "Type 2 coordinates: ";</pre>
     cin >> x2 >> y2;
     cout << "Type 3 coordinates: ";</pre>
     cin >> x3 >> y3;
     cout << "Type 4 coordinates: ";</pre>
     cin >> x4 >> y4;
// Вызов функций
     if (t(f(x1, y1, x2, y2), f(x1, y1, x3, y3), f(x2, y2, x3, y3)))
```

Функции в С++

Ввод	Вывод
Type 1 coordinates: 3 4 Type 1 coordinates: 2 1 Type 1 coordinates: 3 2 Type 1 coordinates: 1 4	4
Type 1 coordinates: 1 1 Type 1 coordinates: -1 1 Type 1 coordinates: -2 1 Type 1 coordinates: 0 -2	3

Упражнение **I**

Дана точка на плоскости с координатами (x, y). Составить программу, которая выдает одно из сообщений «Да», «Нет», «На границе» в зависимости от того, лежит ли точка внутри заштрихованной области, вне заштрихованной области или на ее границе. Области задаются графически следующим образом.

Задача 20

Принцип решения

Проверяем, удовлетворяет ли точка с указанными координатами всем трем условиям нахождения в этой области. Если точка удовлетворяет только одному или двум условиям, значит она лежит на границе. В противном случае точка не принадлежит области.

```
#include <iostream>
#include <cmath>

using namespace std;

int main()
{
    double x1, y1;
    cout << "Type coordinates: ";
    cin >> x1 >> y1;

// Применение логических операций
    if (-23 <= x1 && x1 <= 0 && 0 <= y1 && y1 <= 23 && (y1*1.0 / x1 <= -1.0 || x1 == 0))
        if (x1 == 0 || y1 == 23 || y1*1.0 / x1 == -1.0)
            cout << "On the border" << endl;
    else cout << "Yes" << endl;
    else cout << "No" << endl;
}</pre>
```

Операторы С++

Ввод	Вывод
Type a, b, c: -6 8	Yes
Type a, b, c: -5 5	On the border

Упражнение II

Составить программу.

Задача 5

Дан номер карты k ($6 \le k \le 14$), определить достоинство карты. Определить полное название соответствующей карты в виде «дама пик», «шестерка бубен» и т.д.

Замечание. Названия всех нечисленных карт заменять на «картинка».

```
#include <iostream>
#include <cmath>
using namespace std;
int main()
// Включение распознавания русских символов
     setlocale(LC_ALL, "Russian");
     int n, m;
     cin >> n >> m;
// Вывод зависит от переменной m
     switch (m)
     {
           case 6: cout << "Шестерка "; break; case 7: cout << "Семерка "; break;
           case 8: cout << "Восьмерка "; break;
           case 9: cout << "Девятка "; break;
           case 10: cout << "Десятка "; break;
           case 11: case 12: case 13:
           case 14: cout << "Картинка "; break;
           default: cout << "ERROR "; break;</pre>
// Вывод зависит от переменной п
     switch (n)
     {
           case 1: cout << "пик" << endl; break;
           case 2: cout << "бубен" << endl; break;
           case 3: cout << "τρeφ" << endl; break;</pre>
           case 4: cout << "червей" << endl; break;
           default: cout << "ERROR" << endl; break;</pre>
     }
}
```

Операторы С++

Ввод	Вывод
3 12	Картинка треф

Упражнение III

Вывести на экран:

Замечание. Решите каждую задачу тремя способами: использую операторы цикла while, do while и for.

Задача 20

Все трехзначные числа, в которых хотя бы две цифры повторяются.

Замечание. В циклах while решить задачу в определенных границах, заданных пользователем.

Принцип решения

Проходимся по циклу от 100 до 1000 и проверяем, удовлетворяет ли текущее значения нашему условию. В while эти границы обозначаются вводимыми значениями а и b.

```
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
     for (int i = 100; i < 1000; i++)
           if ((i % 10 == i % 100 / 10 || i % 10 == i / 100 || i % 100
           / 10 == i / 100) && (i / 100>0 && i / 100<10))
                cout << i << ' ';
     }
     cout << endl << "----" << endl;</pre>
           int a, b;
           cin >> a >> b;
           int i = a;
           while (i <= b)
                if ((i % 10 == i % 100 / 10 || i % 10 == i / 100 || i
                % 100 / 10 == i / 100) && (i / 100>0 && i / 100<10))
                     cout << i << ' ';
                i++;
           }
     }
```

```
cout << endl << "-----" << endl;
{
    int a, b;
    cin >> a >> b;
    int i = a;
    do
    {
        if ((i % 10 == i % 100 / 10 || i % 10 == i / 100 || i
            % 100 / 10 == i / 100) && (i / 100>0 && i / 100<10))
            cout << i << ' ';
        i++;
    } while (i <= b);
}</pre>
```

Ввод	Вывод
200 200	200
-50 110	100 101 110

Упражнение IV

Вывести на экран числа в виду следующей таблицы:

Задача 20

Принцип решения

Создаем в цикле длинною 5 два других цикла, которые будут выполнятся до значения, зависимого от шага основого цикла.

Упражнение V

Постройте таблицу значений функции y = f(x) для $x \in [a, b]$ с шагом h. Если в некоторой точке x функция не определена, то выведите на экран сообщение об этом.

Замечание. Для решения задачи использовать вспомогательную функцию.

Задача 20

$$y = \frac{1}{x+7} + \ln(1-|x|)$$

Принцип решения

Создаем функцию f, вычисляющую значение функции в точке. Затем в main создаем цикл, длинную от а до b с шагом h, который будет применять эту функцию к каждому x.

```
#include <iostream>
// Этот заголовочный файл включает в себя функции форматирования
вывода
#include <iomanip>
#include <cmath>
using namespace std;
// Объявление глобальной константы
const double PO = 1e-12;
// Передача параметра у по ссылке
void f(double x, double &y)
     if (abs(x)<1 - P0 && abs(x)>-1 + P0)
           y = 1 / (x + 7) + log(1 - abs(x));
// Выделение знаков после запятой
           cout << setprecision(3) << fixed << x << ": " <<</pre>
           setprecision(20) << fixed << y << endl;</pre>
     }
     else
           cout << setprecision(3) << fixed << x << ": " << "NONE" <</pre>
           endl;
}
int main()
```

```
double y;
double a, b, h;
cout << "Type a,b,h ([a,b]; h- step): ";
cin >> a >> b >> h;
for (double x = a; x <= b + PO; x += h)
{
    f(x, y);
}
cout << endl;
}</pre>
```

Ввод	Вывод
Type a,b,h ([a,b]; h- step): -0.5 0.1 0.05	-0.500: -0.53930102671379143000 -0.450: -0.44516524503042953000 -0.400: -0.35931047225083923000 -0.350: -0.28040697624283034000 -0.300: -0.20742121259544888000 -0.250: -0.13953392430363276000 -0.200: -0.07608472778479807900 -0.150: -0.01653352803792104700 -0.150: 0.03956702057405765700 -0.050: 0.09259159769878035100 -0.000: 0.14285714285714274000 0.050: 0.09055067724365523100 0.100: 0.03548455476470893700
Type a,b,h ([a,b]; h- step): 0.99 1.01 0.01	0.990: -4.48001374043114440000 1.000: NONE 1.010: NONE

Упражнение VI

Постройте таблицу значений функции y = f(x) для $x \in [a, b]$ с шагом h.

Замечание. Для решения задачи использовать вспомогательную функцию.

Задача 20

$$y = egin{cases} \sin(x)\,, & ext{ если } |x| < rac{\pi}{2}; \ \cos(x)\,, & ext{ если } rac{\pi}{2} \leq |x| \leq \pi; \ 0, & ext{ если } |x| > \pi. \end{cases}$$

```
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
const double PI = 3.14159265359;
const double PO = 1e-12;
void f(double i)
      cout << setprecision(3) << fixed << i << ": ";</pre>
      if (PI / 2 - PO \le abs(i) \& abs(i) \le PI + PO)
           cout << setprecision(15) << fixed << cos(i) << endl;</pre>
      else if (abs(i)>PI + PO)
           cout << 0 << endl;</pre>
      else if (abs(i) < PI / 2 - P0)
           cout << setprecision(15) << fixed << sin(i) << endl;</pre>
      else
           cout << "ERROR" << endl;</pre>
}
int main()
{
      double a, b, h;
      cout << "Enter range and step: ";</pre>
      cin >> a >> b >> h;
      for (double i = a; i \leftarrow b + PO; i += h)
           f(i);
      }
}
```

Ввод	Вывод
Enter range and step: 0 3 0.2	0.000: 0.000000000000000000000000000000
Enter range and step: -0.1 0.1 0.1	-0.100: -0.099833416646828 0.000: 0.00000000000000 0.100: 0.099833416646828

Упражнение

Написать программу, вычисляющую первые п элементов заданной последовательности:

Задача 20

$$b_1 = 1, b_2 = 5, b_{2n} = b_{2n-1} + b_{2n-2}, b_{2n+1} = b_{2n} - b_{2n-1}$$

Принцип решения

В начале сразу выводим b_1 и b_2 , так как они нам известны, а затем заходим в цикл и после каждого вывода проверяем, сколько чисел мы уже вывели. Для этого создаем условие выхода внутри цикла.

```
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
const double PI = 3.14159265359;
const double PO = 1e-12;
int main()
{
     int b1 = 1, b2 = 5;
     int n;
     cout << "Enter n: ";</pre>
     cin >> n;
     if (n >= 1)
           cout << b1 << ' ';
           if (n >= 2)
                 cout << b2 << ' ';
     for (int i = 2; i < n; i++)
           b1 = b2 - b1;
           cout << b1 << ' ';
           if (i == n) break;
           b2 = b1 + b2;
           cout << b2 << ' ';
     }
}
```

Упражнение І

Для данного натурального n и действительного x подсчитать следующую сумму:

Задача 20

 $S = \sin x + \sin \sin x + \sin \sin x + ... + \sin \sin \sin ... \sin x$;

Код программы

```
// Убраны лишние заголовочные файлы и константы
#include <iostream>
using namespace std;
const double PI = 3.14159265359;
const double PO = 1e-12;
int main()
{
     double x, sum = 0;
     int n;
     cout << "Enter n and x: ";</pre>
     cin >> n >> x;
     for (int i = 0; i<n; i++)
           x = sin(x);
           sum += x;
     cout << "Sum = " << sum << endl;</pre>
}
```

Ввод	Вывод
Enter n and x: 3 6.1	Sum = -0.543487

Упражнение II

Для заданного натурального k и действительного x подсчитать следующее выражение:

Задача 20

$$P = \prod_{n=0}^{k} \left(1 + \frac{(-1)^{n-1} x^{2n}}{(n+2)(n+1)}\right)$$

Код программы

```
#include <iostream>
using namespace std;
int main()
{
    double x, op = 1;
    int k;
    cout << "Enter k and x: ";
    cin >> k >> x;
    double xp = x;
    for (int n = 0; n <= k; n++)
    {
        xp = 1 + (pow(x, 2 * n)*pow(-1.0, n - 1)) / ((double)(n + 2)*(n + 1));
        op *= xp;
    }
    cout << "Op = " << op << endl;
}</pre>
```

Ввод	Вывод
Enter k and x: 5 1	Op = 0.555666
Enter k and x: 0 246261	Op = 0.5

Упражнение III

Вычислить бесконечную сумму ряда с заданной точностью е (е>0)

Задача 20

$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{3^i}}$$

Замечение. Вывести перед суммой все слагаемые.

Код программы

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
      double e;
      double result = 0;
      double sqrt3 = 1 / sqrt(3.0);
      cout << setprecision(10);</pre>
      cout << "Enter the precision: ";</pre>
      cin >> e;
      while (sqrt3 >= e)
      {
           result += sqrt3;
           sqrt3 *= 1 / sqrt(3.0);
           cout << sqrt3 << endl;</pre>
      cout << "Result with the precision " << e << ": " << result <<</pre>
endl;
}
```

Ввод	Вывод
Enter the precision: 0.1	0.333333333 0.1924500897 0.111111111 0.06415002991 Result with the precision 0.1: 1.214244803

Упражнение IV

Вычислить и вывести на экран значение функции F(x) на отрезке [a,b] с шагом h=0.1 и точностью е. Результат работы программы представить в виде следующей таблицы:

№	Значение х	Значение функции F(x)	Количество слагаемых п
1			
2			

Замечание. При решении задачи использовать вспомогательную функцию.

Задача 20

$$F(x) = \frac{\pi}{2} - \left(x + \frac{x^3}{2 \cdot 3} + \frac{3x^5}{2 \cdot 4 \cdot 5} + \frac{3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \frac{3 \cdot 5 \cdot 7x^9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 9} + \cdots \right),$$

$$x \in [-0.9; 0.9]$$

Принцип решения

Создаем функцию func1ex1 с передачей значения орСпt по ссылке, где орСпt — количество слагаемых. Переменная last является следующим слагаемым нашей суммы, result — это сама сумма. В цикле функции происходит рекуррентное изменение нашего следующего слагаемого и суммы, а также подсчет шагов цикла, пока не достигнется нужная точность.

В main мы сначала запрашиваем пользователя указать точность е, затем выводим шапку таблицы (первую строку). В цикле выполняем нашу функцию, после чего выводим нужные результаты.

```
#include <iostream>
#include <iomanip>

using namespace std;

// Заменение строки рі на константу 3.14159265359

const double lu = 1e-12;

const double pi = 3.14159265359;

// Если вещественное число близко к нулю на 12 и больше знаков, то приравнивает его к 0

#define if_lu(n) (n <= lu && n > 0.0 || n >= lu*(-1.0) && n < 0.0) ?

0.0 : n</pre>
```

```
double func1ex1(double i, double e, int &opCnt)
{
     double last = i;
     double result = i;
     for (int j = 1; abs(last) > e; j++)
           last *= (i * i * (j * 2 - 1)) / ((j * 2 + 1) * (j * 2));
           result += last;
           opCnt++;
     return result;
}
int main()
{
     setlocale(LC_ALL, "Russian");
     double a = -0.9, b = 0.9;
     double h = 0.1;
     double e;
     int j = 1;
     cout << "Enter the precision: ";</pre>
     cin >> e;
// setiosglags(ios::left) - выравнивание по левому краю
// setw(n) - создание поля, в которой будет производиться вывод
     cout << setprecision(10) << setiosflags(ios::left) << setw(6) <<</pre>
"№: " << setw(12) << "Значение x" << setw(24) << "Значение функции
F(x)" << setw(21) << "Кол-во слагаемых n" << endl;
     for (double i = a; i \leftarrow b; i += h, j++)
     {
           int opCnt = 1;
           double func res = func1ex1(i, e, opCnt);
           cout << setw(2) << j << setw(4) << ": " << setw(12) <<</pre>
(if lu(i)) << setw(24) << pi / 2 - (if lu(func res)) << setw(21) <<
opCnt << endl;</pre>
     }
}
```

Ввод	Ввод		Enter	r the precision: 0.001
Вывс	ОД			
NºNº: 1 : 2 : 3 :	Значение х -0.9 -0.8 -0.7	Значение функции 2.60859418 2.464945813 2.332409846	F(x)	Кол-во слагаемых n 5 4 4

4:	-0.6	2.208823641	4	
5:	-0.5	2.09241091	3	
6:	-0.4	1.981718993	3	
7:	-0.3	1.875357077	3	
8:	-0.2	1.77213766	3	
9 :	-0.1	1.670962993	2	
10:	0	1.570796327	1	
11:	0.1	1.47062966	2	
12:	0.2	1.369454993	3	
13:	0.3	1.266235577	3	
14:	0.4	1.15987366	3	
15:	0.5	1.049181743	3	
16:	0.6	0.9327690125	4	
17:	0.7	0.809182808	4	
18:	0.8	0.6766468411	4	
19:	0.9	0.5329984733	5	

Упражнение І

Дана последовательность целых чисел.

Замечание. Задачи из данного пункта решить двумя способами: используя одномерный массив, а затем двумерный.

Задача 20

Вывести на экран положительные элементы с нечетными индексами (для двумерного массива – первый индекс должен быть нечетным).

Замечание. Индексация начинается с 0.

Принцип решения

Если у нас одномерный массив, то создаем цикл от 1 до размера массива с шагом 2, чтобы вывести все элементы на нечетных позициях. В двумерном массиве делаем тоже самое, но при этом пропускаем четные строки с помощью такого-же цикла.

```
#include <iostream>
using namespace std;
// Создание и считывание переменной в укороченной записи
#define ini(type, n) \
     type n; \
     cin >> n;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
int main()
     ini(int, n);
     ini(int, m);
// Инициализация массива
      int mas1[100];
// Инициализация двумерного массива
     int mas2[100][100];
     if (m == 1)
           forn(i, n) cin >> mas1[i];
           for (int i = 1; i < n; i += 2)
                 cout << mas1[i] << ' ';</pre>
           cout << endl;</pre>
      }
```

Массивы

```
else
{
    forn(i, n)
        forn(j, m)
        cin >> mas2[i][j];
    for (int i = 1; i < n; i += 2)
    {
        for (int j = 1; j < m; j += 2)
        {
            cout << mas2[i][j] << ' ';
        }
        cout << endl;
    }
}</pre>
```

Ввод	Вывод
6 1 1 2 3 4 5 6	2 4 6
Enter k and x: 0 246261	Op = 0.5

Упражнение II

Дана последовательность из п действительных чисел.

Замечание. Задачи из данного пункта решить, используя одномерный массив.

Задача 20

Найти количество пар соседних элементов, в которых предыдущий элемент меньше последующего.

Замечание. Использовать считывание из файлового потока.

Принцип решения

Проверяем каждую пару соседних элементов, и если она удовлетворяет нашим условиям, то прибавляем счетчик result и в конце выводим его в файл.

```
#include <iostream>
// Заголовочный файл fstream позволяет производить действия над
файлами
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
// Определение потока для входных данных
ifstream in("input.txt");
// Определение потока для выходных данных
ofstream out("output.txt");
int main()
     double mas2[1000];
     int a;
     int result = 0;
// Считывание с файла
     in >> a;
     forn(i, a)
           in >> mas2[i];
     forn(i, a - 1)
           if (mas2[i] < mas2[i + 1])
                 result++;
// Вывод в файл
     out << result;</pre>
```

Массивы

input.txt	output.txt
5 2 5 2 3 0	2
1 0	0

Упражнение III

Дан массив размером n×n (если не оговорено иначе), элементы которого целые числа.

Задача 20

В каждом столбце найти минимум и заменить его нулем.

Замечание. Использовать динамический массив и считывание из файлового потока.

Принцип решения

Проходимся по каждому столбцу массива и находим в нем минимальный элемент, после чего еще раз проходимся по нему и заменяем все элементы равные минимуму на 0.

```
#include <iostream>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
ofstream out("outfile.txt");
int main()
{
     int a;
     in >> a;
// Объявление динамического массива и выделение памяти для первого
столбца в нем
     int **mas3 = new int*[a];
     forn(i, a)
// Выделение памяти под новую строку в массиве
           mas3[i] = new int[a];
           forn(j, a) in >> mas3[i][j];
     bool sthHappened = false;
     forn(j, a)
           int minj = mas3[0][j];
           int countMin = 0;
           forn(i, a)
                if (minj > mas3[i][j])
```

```
{
                       minj = mas3[i][j];
                       countMin = 1;
                 else if (minj == mas3[i][j])
                       countMin++;
           if (countMin != a)
                 sthHappened = true;
                 forn(i, a) if (minj == mas3[i][j]) mas3[i][j] = 0;
           }
     if (sthHappened) cout << "Success!";</pre>
     else cout << "Nothing changed.";</pre>
     forn(i, a)
     {
           forn(j, a) out << mas3[i][j] << ' ';</pre>
           out << endl;</pre>
// Освобождение памяти, занимаемой массивом
     delete[] mas3;
     in.close();
     out.close();
}
```

infile.txt	outfile.txt
4 4 2 3 1 0 2 -3 5 9 9 9 1 4 0 2	4 0 3 0 0 0 0 5 9 9 9 9 1 4 0 2

Упражнение IV

Дан массив размером n×n (если не оговорено иначе), элементы которого целые числа.

Задача 20

Для каждого столбца найти номер первой пары одинаковых элементов. Данные записать в новый массив.

Замечание. Использовать динамический массив и считывание из файлового потока.

Принцип решения

Проверяем каждый элемент в столбце на наличие похожей пары. Если пара найдена, то выходим из циклов и переходим к следующему столбцу. Таким образом мы находим первую пару похожих элементов и выводим их индексы в массиве. Если в столце пар не найдено, то выводим X.

```
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
ofstream out("outfile.txt");
int main()
{
     int a;
     in >> a;
     int **mas3 = new int*[a];
     int **mas3_1 = new int*[a];
     forn(i, a)
           mas3 1[i] = new int[2];
           mas3[i] = new int[a];
           forn(j, a) in >> mas3[i][j];
     bool sthHappened = false;
     forn(j, a)
           forn(i, a)
           {
                bool check = false:
```

```
for (int k = i + 1; k < a; k++)
                       if (mas3[k][j] == mas3[i][j])
                       {
                             sthHappened = true;
                             \max 3_1[j][0] = i;
                             mas3_1[j][1] = k;
                             check = true;
                             break;
                       }
                 }
                 if (check)
                       break;
           }
     out << setiosflags(ios::left) << setw(16) << "First element: ";</pre>
     forn(i, a)
           if (mas3_1[i][0] >= 0) out << mas3_1[i][0] << ' ';</pre>
           else out << "X ";
     out << endl << setw(16) << "Second element: ";</pre>
     forn(i, a)
           if (mas3 1[i][1] >= 0) out << mas3 1[i][1] << ' ';
           else out << "X ";
     if (sthHappened) cout << "We found something.";</pre>
     else cout << "Pairs not found.";</pre>
     delete[] mas3_1;
     delete[] mas3;
     in.close();
     out.close();
}
```

infile.txt	outfile.txt
4 1 1 3 9 0 2 -3 9 9 1 9 9 1 2 0 9	First element: 0 0 X 0 Second element: 3 2 X 1

Упражнение V

В одномерном массиве, элементы которого – целые числа, произвести следующие действия:

Задача 5

Удалить из массива элементы с номера k1 по номер k2.

Замечание. Использовать динамический массив и считывание из файлового потока.

Принцип решения

Все элементы массива, которые находятся слева от отрезка удаления оставляем, а те, что справа записываем в начало этого отрезка, перекрывая удаляемые элементы. Затем выводим n-|k1-k2| элементов получившегося массива.

```
#include <iostream>
#include <fstream>
// Эта библиотека содержит в себе функции для работы с несколькими
переменными
#include <algorithm>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
ofstream out("outfile.txt");
int main()
{
     int a, k1, k2;
     in \gg a \gg k1 \gg k2;
     int *mas1 = new int[a];
     if (k1 < 0 \mid | k2 < 0 \mid | k2 >= a \mid | k1 >= a)
     {
           cout << "Error";</pre>
           return 0;
     }
     forn(i, a)
           in >> mas1[i];
     int g = 0;
     for (int i = 0; i < a; i++)
     {
```

Массивы

```
// Функции min и max возвращают минимальный и максимальный элемент
cooтветственно
    if ((i < min(k1, k2) && i >= 0) || (i>max(k1, k2) && i <
        a))
    {
        mas1[g] = mas1[i];
        g++;
        }
    }
    a -= abs(k2 - k1) + 1;
    forn(i, a)
        out << mas1[i] << ' ';
    delete[]mas1;
    return 0;
}</pre>
```

infile.txt	outfile.txt
7 2 5 1 2 3 4 5 6 7	1 2 7

Упражнение VI

В двумерном массиве, элементы которого – целые числа, произвести следующие действия:

Задача 5

Вставить строку из нулей после всех строк, в которых нет ни одного нуля.

Принцип решения

Проверяем строку на наличе нуля. Если 0 не найден, то сдвигаем все строчки ниже этой и вставляем новую, заполненную нулями.

```
#include <iostream>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
ofstream out("outfile.txt");
int main()
{
     int a, b;
     bool nonull = true;
     bool sthHappened = false;
     in \gg a \gg b;
     int **mas3 = new int *[2 * a];
     forn(i, a)
     {
           mas3[i] = new int[b];
           forn(j, b)
           {
                 in >> mas3[i][j];
           }
     int *masSPEC = new int[b];
     forn(i, b)
           masSPEC[i] = 0;
     int linesAdded = 0;
     for (int i = 0; i < a + linesAdded; i++)</pre>
           forn(j, b)
                 if (mas3[i][j] == 0)
```

```
nonull = false;
            if (nonull)
                 sthHappened = true;
                 linesAdded++;
                 i++;
                 for (int k = a + linesAdded - 1; k > i; k--)
                       mas3[k] = mas3[k - 1];
                 mas3[i] = masSPEC;
            }
            nonull = true;
      if (sthHappened)
            cout << "Something happened...";</pre>
      else
            cout << "Nothing happened.";</pre>
      forn(i, a + linesAdded)
            forn(j, b)
                 out << mas3[i][j] << ' ';</pre>
            out << endl;</pre>
      delete[]mas3;
      in.close();
      out.close();
}
```

infile.txt	outfile.txt	
3 4	1 3 0 1	
1 3 0 1	0 0 0 0	
0 0 0 0	2 3 5 2	
2 3 5 2	0 0 0 0	

Упражнение II

Простые действия со строками.

Задача 1

В данной строке вставить символ с1 после каждого вхождения символа с2.

Код программы

```
#include <iostream>
// Подключение заголовочного файла, включающего в себя функции для
работы со строками
#include <string>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
#define ini(type, n) \
     type n; \
     cin >> n;
int main() {
     cout << "Enter the string: ";</pre>
     string s;
// Считывание строки до знака переноса
     getline(cin, s);
     cout << "Enter the sensor: ";</pre>
     ini(char, c1);
     cout << "Enter the insert: ";</pre>
     ini(char, c2);
     forn(i, s.size())
           if (s[i] == c1) {
// Вставка элемента в строку
           s.insert(s.begin() + i + 1, c2);
           i++;
           }
     cout << "Result: " << s << endl;</pre>
}
```

Ввод	Вывод
Enter the string: 142df. dvsd Enter the sensor: d Enter the insert: 0	Result: 142d0f. d0vsd0

Упражнение III

Сложные действия со строками.

Замечание. Дано осмысленное текстовое сообщение (т.е. алфавитноцифровая информация, разделенная проблеами и знаками препинания, в конце которого ставится точка.

Задача 20

Удалить из сообщения все повторяющиеся слова.

Принцип решения

При считывании заносим каждое слово, разделяющееся пробелами или знаками препинания, в массив и копию этого слова, но со всеми строчными символами в другой массив. Таким образом при поиске совпадений будут найдены одинаковые слова с разным регистром и удалены из строки. После чего выполняется удаление лишних пробелов в тексте.

```
#include <iostream>
#include <string>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
#define ini(type, n) \
     type n; \
     cin >> n;
string clear_spaces(string s)
     if (s[0] == ' ' \&\& s.find first not of(' ') < s.size())
// Удаление части строки
           s.erase(s.begin(), s.begin() + s.find first not of(' '));
     if (s[s.size() - 1] == ' ' && s.find_last_not_of(' ') < s.size())</pre>
           s.erase(s.begin() + s.find_last_not_of(' ') + 1, s.end());
     if (s.find_first_not_of(' ') >= s.size() && s.find_last_not_of('
') >= s.size())
           return "";
     forn(i, s.size() - 1)
           if (s[i] == s[i + 1] \&\& s[i] == ' ')
                s.erase(s.begin() + i);
```

```
i--;
           }
     forn(i, s.size() - 1)
           if (s[i] == ' ' \& ispunct(s[i + 1]))
                s.erase(s.begin() + i);
     return s;
}
int main()
{
     string mas1[100];
     string real_mas[100];
     string s;
     getline(cin, s, '.');
     int cini = 0;
     int am = 0;
     while (cini < s.size())</pre>
// Проверяем, является ли символ пробелом или знаком-разделителем
           if (ispunct(s[cini]) || (isspace(s[cini])))
                if (cini > 0 && !(ispunct(s[cini - 1]) ||
(isspace(s[cini - 1]))))
                      am++;
           }
           else
                real_mas[am] += s[cini];
// Меняем регистр алфавитного символа на строчный
                mas1[am] += tolower(s[cini]);
           cini++;
     forn(i, am)
           for (int j = i + 1; j <= am; j++)
                if (real_mas[j] == "")
                      break;
                if (mas1[i] == mas1[j])
// Поиск совпадений подстроки в строке s
                      int index = s.find(" " + real_mas[i]);
                      s.erase(s.begin() + index, s.begin() + index +
```

Строки

Ввод	Вывод
Leaves from the vine Falling so slow Like fragile, tiny shells Drifting in the foam Little soldier boy Come marching home Brave soldier boy Comes marching home	Leaves from vine Falling so slow Like fragile, tiny shells Drifting in the foam Little Come Brave soldier boy Comes marching home

Упражнение IV

Преобразование символов в числа.

Залача 20

Дан текст, содержащий вещественные числа. Вывести на экран все вещественные числа, содержащиеся в нем.

Принцип решения

Записываем строки, разделенные пробелами в массив, после чего каждую проверяем на следующие условия: в массиве должна быть одна точка и хотябы одна цифра после точки.

```
#include <iostream>
#include <string>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
#define ini(type, n) \
     type n; \
     cin >> n;
int main()
{
     string s[100];
     int cini = 0;
     while (cin)
           cin >> s[cini++];
// Проверка следующего символа
           if (cin.peek() == '\n')
                 break;
     double digits[100];
     int num digit = 0;
     forn(i, cini)
     {
           bool onepoint = false;
           bool canbe = true;
           forn(j, s[i].size())
                if (isdigit(s[i][j]) || s[i][j] == '.')
                 {
```

```
if (s[i][j] == '.' && (onepoint || j ==
                       s[i].size() - 1))
                             canbe = false;
                             break;
                       }
                       else if (s[i][j] == '.')
                             onepoint = true;
                 }
                 else
                 {
                       canbe = false;
                       break;
                 }
           if (canbe)
                 digits[num_digit] = stod(s[i]);
                 num_digit++;
           }
     cout << "Doubles' found: ";</pre>
      forn(i, num_digit)
           cout << digits[i] << ' ';</pre>
      cout << endl;</pre>
}
```

Ввод	Вывод	
1234 5.6 78 9abc d	Doubles' found: 0.34 5.6 78	

Упражнение І

Работа с текстовыми файлами.

Залача 20

Дан текстовый файл. Переписать в новый файл все его строки, удалив их них символы, стоящие на четных местах.

Код программы

```
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
ofstream out("outfile.txt");
int main() {
     string s;
     while (in.peek() != EOF) {
           string sNew = "";
           getline(in, s);
           forn(i, s.length())
                 if (i \% 2 == 0) sNew += (char)s[i];
           out << sNew << endl;</pre>
     in.close();
     out.close();
}
```

infile.txt	outfile.txt	
Leaves from the vine Falling so slow Like fragile, tiny shells Drifting in the foam Little soldier boy Come marching home Brave soldier boy Comes marching home	Lae rmtevn Fligs lw Lk rgl,tn hls Ditn ntefa Ltl ode o Cm acighm Baeslirby Cmsmrhn oe	

Упражнение II

Работа с текстовыми файлами.

Задача 1

Дан файл f, компонентами которого являются целые числа. Переписать все четные числа в файл g, нечетные – в файл h.

Код программы

```
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("f.txt");
ofstream out("g.txt");
ofstream out2("h.txt");
int main(){
     int cini;
     while (in.peek() != EOF) {
           in >> cini;
           if (cini % 2 == 0)
                 out << cini << ' ';
           else
                 out2 << cini << ' ';
     in.close();
     out.close();
     out2.close();
}
```

f.txt	g.txt
6 4 3 -2 100 0 4 -5 -5 -34 5 2 1 1 4 2 0 5 2 0 0 3 3 6	6 4 -2 100 0 4 -34 2 4 2 0 2 0 0 6 h.txt 3 -5 -5 5 1 1 5 3 3

Упражнение III

Работа с двоичными файлами.

Залача 5

Создать файл из п целых чисел. Вывести на экран все четные числа данного файла.

Код программы

```
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream intxt("infile.txt");
int main(){
     int n;
     intxt >> n;
     int a, b;
//Создание бинарного файла
     ofstream out("datfile.dat", ios::binary);
     forn(i, n){
           intxt >> a;
//Запись в бинарный файл
           out.write((char*)&a, sizeof(int));
     out.close();
     ifstream in("datfile.dat", ios::binary);
     forn(i, n){
// Считывание с бинарного файла
           in.read((char*)&b, sizeof(int));
           if (b % 2 == 0) cout << b << ' ';
     }
     cout << endl;</pre>
     out.close();
     intxt.close();
}
```

infile.txt	Вывод
7 9 8 72 4 0 -2 1	8 72 4 0 -2

Упражнение **I**

Решить задачу, используя структуру point для хранения координат точки:

Замечание. В задачах с четными номерами множество точек задано на плоскости, в задачах с нечетными номерами множество точек задано в пространстве.

Задача 20

Найти три различные точки из заданного множества точек, образующих треугольник наименьшего периметра.

Принцип решения

Создаем функцию, высчитывающую расстояние между двумя точками и структуру, содержащую три координаты. Перебираем все возможные тройки точек и высчитываем периметр треугольника, который они образуют (при этом проверяем, что они не лежат на одной прямой). Таким образом мы найдем минимальный периметр и координаты точек.

```
#include <iostream>
#include <string>
#include <fstream>
#include <algorithm>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
ifstream in("infile.txt");
// Создание структуры
struct point {
     double x;
     double y;
     double z;
};
double funcDistance(int i, int j, point mas1[100]){
     double returned = sqrt((mas1[j].x - mas1[i].x)*(mas1[j].x -
     mas1[i].x) + (mas1[j].y - mas1[i].y)*(mas1[j].y - mas1[i].y) +
     mas1[j].z - mas1[i].z)*(mas1[j].z - mas1[i].z));
     return returned;
}
bool checkPoints(double x, double y, double z){
     if ((x == y + z) || (y == x + z) || (z == x + y))
           return true;
```

```
return false;
}
int main(){
     point mas1[100];
     point thisPoints[3];
     double thisDistances[3];
     int cini = 0;
     while (in.peek() != EOF){
           in >> mas1[cini].x >> mas1[cini].y >> mas1[cini].z;
     int P = 1;
     double minDistance = DBL MAX;
     for (int i = 0 + 0; i < cini; i++){
           for (int j = i + 1; j < cini; j++){
                 for (int l = j + 1; l < cini; l++){}
                      thisDistances[0] = funcDistance(i, j, mas1);
                      thisDistances[1] = funcDistance(j, 1, mas1);
                      thisDistances[2] = funcDistance(1, i, mas1);
                      if (checkPoints(thisDistances[0],
                      thisDistances[1], thisDistances[2])) continue;
                      if (minDistance >= thisDistances[0] +
                      thisDistances[1] + thisDistances[2]){
                            thisPoints[0] = mas1[i];
                            thisPoints[1] = mas1[j];
                            thisPoints[2] = mas1[1];
                            minDistance = thisDistances[0] +
                            thisDistances[1] + thisDistances[2];
                            cout << "P[" << P << "] = " << minDistance</pre>
                            << endl;
                            P++;
                      }
                 }
           }
     }
     cout << endl;</pre>
     cout << "A(" << thisPoints[0].x << ", " << thisPoints[0].y << ",</pre>
     " << thisPoints[0].z << ")\n";
     cout << "B(" << thisPoints[1].x << ", " << thisPoints[1].y << ",</pre>
     " << thisPoints[1].z << ")\n";
     cout << "C(" << thisPoints[2].x << ", " << thisPoints[2].y << ",</pre>
     " << thisPoints[2].z << ")\n";
     cout << "\nP[FINAL] = " << minDistance << endl;</pre>
}
```

Структуры

infile.txt	Вывод
5 5 5 6 6 6 7 7 7 -20 30 10 20 14 17 13 0 -5	P[1] = 73.0482 P[2] = 42.4645 P[3] = 29.8325 A(5, 5, 5) B(6, 6, 6) C(13, 0, -5) P[FINAL] = 29.8325
5 2 9 0 -4 2 0 4 10 3 -2 4 5 3 2 4 5 1 2 0 0 9 9 9 2 5 3	P[1] = 27.279 P[2] = 21.3194 P[3] = 21.1854 P[4] = 20.1742 P[5] = 19.5238 P[6] = 18.1229 P[7] = 13.6047 P[8] = 12.6171 P[9] = 9.01957 A(5, 3, 2) B(4, 5, 1) C(2, 5, 3) P[FINAL] = 9.01957

Упражнение II

Решить задачу, используя структуру, содержащую члены-данные и члены-функции.

Замечание. Во всех задачах данного раздела подразумевается, что исходная информация хранится в текстовом файле input.txt, каждая строка которого содержит полную информацию о некотором объекте, результирующая информация должна быть записана в файл output.txt.

Задача 20

На основе данных входного файла составить список студентов, включающий ФИО, курс, группу, результат забега. Вывести в новый файл список студентов, удалив из него информацию о тех студентах, которые не выполнили норматив по бегу.

Принцип решения

Создаем член-функцию структуры passed, в которой проверяем, является ли результат студента меньше введенного пользователем и только тогда выводим его данные. С помощью цикла считываем информацию о каждом студенте и заносим ее в эту функцию. В результате в выходной файл выводится нужная информация.

```
#include <iostream>
#include <iomanip>
#include <string>
#include <fstream>
using namespace std;
#define forn(i,n) for(unsigned int i = 0; i < n; i++)</pre>
#define ini(type, n) \
     type n; \
     cin >> n;
ifstream in("infile.txt");
ofstream out("outfile.txt");
struct passed {
     string name[3];
     int course;
     int group;
     double result;
     void print(double);
};
```

```
// Член-функция для вывода строки с уловием
void passed::print(double n){
     if (result <= n)</pre>
           out << setiosflags(ios::left) << setw(14) << name[0] + " "</pre>
+ name[1] + " " + name[2] << setw(7) << course << setw(9) << group <<
setw(9) << result << endl;</pre>
}
int main(){
     string s;
     passed stru;
     ini(double, n);
     getline(in, s, '\n');
     out << s << endl;
     while(in.peek() != EOF){
           in >> stru.name[0] >> stru.name[1] >> stru.name[2] >>
stru.course >> stru.group >> stru.result;
           stru.print(n);
     }
}
```

infile.txt				Ввод
student d	course	group	result	4
Aba Caba A	5	105	5.421	
Huhy Jo Di	2	122	2.13	
Ki Noi U	2	132	6.122	
Moi Ga J	1	101	7.1	
Lana Sara Mi	1	201	0.111	
Kio Rio Sio	1	201	9.231	
Los Re Tano	4	444	4	
outfile.txt				
student d	course	group	result	
Huhy Jo Di	2	122	2.13	
Lana Sara Mi	1	201	0.111	
Los Re Tano	4	444	4	