DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 5

Due. 27 September 2021

Lecture 11

Finitely Generated Groups

Motivation: In linear algebra, to describe every vector in \mathbb{R}^2 , you only need 2 basis vectors along with a scalar (e.g. we can write $\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix} = a \vec{e_1} + b \vec{e_2}$.

For a group G, we can sometimes find a finite subset $\{x_2,\ldots,x_n\}\subseteq G$ such that $\forall g\in G,\ \exists \{x_{i_1},\ldots,x_{i_k}\}\subseteq \{x_1,\ldots,x_n\}$ and $n_1,\ldots,n_k\in\mathbb{Z}$ such that $g=x_{i_1}^{n_1}x_{i_2}^{n_2}\cdots x_{i_k}^{n_k}$. In this case, we say G is **finitely generated** and that $\{x_1,\ldots,x_n\}$ is a set of **generators** of G and we write

In this case, we say G is **finitely generated** and that $\{x_1, ..., x_n\}$ is a set of **generators** of G and we write $G = \langle x_1, ..., x_n \rangle$.

If *G* is Abelian and we're using additive notation, then we write elements of $G = \langle x_1, \dots, x_n \rangle$ as $g = n_1 x_{i_1} + \dots + n_k x_{i_k}$.

<u>WARNING</u>: The analogy between bases for a vector space and generators for a group is not perfect. Notions of linear independence, scalar multiples, and dimension do not make sense for groups in general.

Examples of Finitely Generated Groups

- 1. The abstract cyclic group of order 2: $G = \{e, \tau\}$ is finitely generated. We have $G = \langle \tau \rangle$ because $\tau = \tau^1$ and $e = \tau^0 = \tau^2$.
- 2. The Klein 4-group $V = \{e, a, b, c\}$ is finitely generated. We have $G = \langle a, b \rangle$ because $e = a^0 = b^0$, $a = a^1$, $b = b^1$, and $c = a^1b^1$.
- 3. Any finite group *G* is finitely generated because $G = \langle G \rangle$.

Remark. If $|G| = \infty$, then it can be finitely generated.

- 4. The group $(\mathbb{Z}, +, 0)$ is finitely generated. We have $\mathbb{Z} = \langle 1 \rangle$ because $\forall n \in \mathbb{Z}, n = n \cdot 1$. (Note that $\mathbb{Z} = \langle -1 \rangle$ also!)
- 5. The group \mathbb{Z}/n is finitely generated. Just like for \mathbb{Z} , we have $\mathbb{Z}/n = \langle [1] \rangle$.

Proposition (11.1). Let n > 1. Then $\mathbb{Z}/n = \langle [a] \rangle$ iff gcd(a, n) = 1. Particularly, the elements of the group of units $(\mathbb{Z}/n)^{\times}$ are precisely the set of all possible generators!

Example (Non-Abelian Example). Let $S_3 := \{f : 1, 2, 3 \to 1, 2, 3 | f \text{ is bijective}\}$ where the group operation is function composition. We can write $f \in S_3$ as a table:

$$f = \begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix}$$

with the 6 elements of S_3 being:

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}.$$

One can check that $S_3 = \langle \sigma, \tau \rangle$, where $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$. Indeed, $S_3 = \{e = \sigma^0 \tau^0, \sigma, \sigma^2, \tau, \sigma \circ \tau, \sigma^2 \circ \tau\}$.

Example (Non-Example). Any group that is not finitely generated must be infinite.

Proposition (11.2). The group $(\mathbb{Q}, +, 0)$ is NOT finitely generated.

Lecture 12

Cyclic Groups

i.e. groups that can be generated by 1 element.

Lemma (12.1).

- 1. Let *G* be a subgroup and $a \in G$. Then $\forall k, l \in \mathbb{Z}$, $a^k \cdot a^l = a^{k+l}$.
- 2. Let (G, +, 0) be an Abelian group and let $a \in G$. Then
 - i. $\forall k, l \in \mathbb{Z}$, ka + la = (k + l)a and
 - ii. $\forall k, l \in \mathbb{Z}$, l(ka) = lka.

Proposition (12.2). Let *G* be a group and $a \in G$.

- 1. The subset $\langle a \rangle := \{a^k | k \in \mathbb{Z}\} = \{\dots, a^{-1}, a^0, a^1, \dots\}$ is a subgroup of G called the **cyclic subgroup** generated by a.
- 2. If $H \le G$ is any subgroup of G containing $a \in H$, then $\langle a \rangle \le H$. That is, a is the "smallest" subgroup of G containing a.

Definition (12.3). A group is **cyclic** iff $a \in G$ such that $G = \langle a \rangle$.

Examples of Cyclic Groups/Subgroups

- 1. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ is cyclic.
- 2. Let n > 1. $n\mathbb{Z} := \{nk | k \in \mathbb{Z}\} = \langle n \rangle$ is a cyclic subgroup of \mathbb{Z} .
- 3. The trivial group $\{e\} = \langle e \rangle$ is cyclic.
- 4. The abstract cyclic group $G = \{e, \tau\} = \langle \tau \rangle$ is obviously cyclic.
- 5. $\mathbb{Z}/n = \langle [1] \rangle$.
- 6. Let $\mathbb{R}^{\times} := (\mathbb{R} \{0\}, \cdot, 1)$. Let $H = \{1, -1\}$. Then $H = \langle 1 \rangle$.
- 7. Let $\mathbb{C}^{\times} := (\mathbb{C} \{0\}, \cdot, 1)$ and let $H = \{1, i, -1, -i\}$. Then $H = \langle i \rangle$.

Definition (12.4). Let *G* be a group, $a \in G$. The <u>order of a, |a|, is the smallest positive integer such that $a^n = e$. If no such integer exists, then $|a| = \infty$.</u>

Proposition (12.5). Let *G* be a group, $a \in G$. If |a| = n, then $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$. In particular, $|\langle a \rangle| = |a|$.

Corollary (12.6). Let G be a finite group. Then...

- 1. Every element of *G* has finite order and
- 2. $\forall a \in G$, |a| |G|.

Lecture 13

In-class assistance for Problem Set 3; Alex was a big help:)