1.

- a. I=4 treatments, J=10
- b. Ho: $u_1=u_2=u_3=u_4$ vs Ha: Ho is false u_i is the true average Fe percentage for the iron formation type i
- c. Analysis of Variance for Fe

Source	DF	SS	MS	F	Р
formation	3	509.1	169.7	10.85	<0.0001
Error	36	563.1	15.6		
Total	39	1072.3			

d. Since the p-value is small than 0.01, we reject the Ho and conclude the average Fe percentages are not all the same for the four iron formations.

e.

(1) The plot of residuals versus fitted values suggests that the treatment variance is larger when the response is low or high. There is evidence that variance is not constant across treatments.

Or:

If you know the rule of thumb, the max deviation / min deviation < 4, no violation of equal variance. (If you are comfortable with coding, you can run the Levene's test to check the p-value = 0.7229 >0.01, fail to reject the assumption of equal variance.)

(2) The normal probability plot shows a nonlinear pattern (concave up, then concave down). This indicates the violation of normality.

2.

a.

•						
	Source	Df	SS	MS	F	P-Value
	Treatment	2	0.1336	0.0668	4.42	0.027
	Error	18	0.2718	0.0151		
	Total	20	0.4054			

get p-value by R command 1-pf(4.42, 2, 18)

b.
$$\alpha$$
 = .05, I = 3, J = 4, I(J-1) = 18
$$Q_{(0.05, \, 3, \, 18)}$$
 = 3.609, w = 3.609 * sqrt (0.0151/7) = 0.1676 The Tukey's interval

$$u_1$$
- u_2 (21.714—21.525) ± 0.1676 = (0.0214, 0.3566) *

$$u_2$$
- u_3 (21.525 – 21.750) ± 0.1676 = (-0.3926, -0.0574) *

$$u_1-u_3$$
 (21.714-21.750) ± 0.1676 = (-0.2036, 0.1316)

- * Differed means, no zero within the interval
- c. The T-methods of underscoring List left to right, min -> max

 $21.525 + w = 21.6926 < 21.714 \rightarrow \text{ no underline } x_2 \text{ and } x_1$

21.714 + w = 21.8816 > 21.750 \rightarrow underline x_3 and x_1 Stop as reach the end