Convergence et théorèmes limites

Préliminaires

Notation. Si $u \in \mathbb{R}^d$ on note par $||u||_r$ la norme L^r du vecteur u: $||u||_r = (\sum_{i=1}^d |u_i|^r)^{1/r}$. Comme toutes les normes sont équivalentes dans \mathbb{R}^d on prendra r=1 et on notera $||u|| = ||u||_1 = \sum_{i=1}^r |u_i|$. « iid » est abrégé pour « indépendantes et identiquement distribuées ». On notera $X_1, ..., X_n, ...$ ou $(X_n)_{n\geqslant 1}$ une générique suite (infinie) de v.a.

Lemme 1. (Inégalité de Bienaymé-Tchebychev) Si X est une v.a. réelle telle que $\sigma^2 = \operatorname{Var}(X) < \infty$ et $\mu = \mathbb{E}[X]$ alors pour tout $\varepsilon > 0$ on a que

$$\mathbb{P}(|X - \mu| > \varepsilon) \leq \frac{\mathbb{E}[(X - \mu)^2]}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2}$$

Théorème 2. (Inégalité de Hölder) Soient X et Y deux v.a. réelles définies sur le même espace de proba $(\Omega, \mathcal{A}, \mathbb{P})$. Si r, s > 1 sont tels que $r^{-1} + s^{-1} = 1$ et si $\mathbb{E}[|X|^r] < \infty$ et $\mathbb{E}[|Y|^s] < \infty$ alors

$$\mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^r])^{1/r} (\mathbb{E}[|Y|^s])^{1/s}.$$

Corollaire 3. Soient p>0 et p>q>0. On suppose que $\mathbb{E}[|X|^p]<\infty$ alors $\mathbb{E}[|X|^q]\leqslant (\mathbb{E}[|X|^p])^{p/q}$ et $\mathbb{E}[|X|^q]<\infty$.

Modes de convergence d'une suite de v.a.

Convergence en loi (ou en distribution)

Théorème 4. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. à valeurs dans \mathbb{R}^d et X une v.a. à valeurs dans \mathbb{R}^d . Les conditions suivantes sont équivalentes (c-à-d chacune d'entre elles implique toutes les autres):

- 1. $\lim_{n\to\infty} \phi_{X_n}(t) = \phi_X(t), \quad \forall t \in \mathbb{R}^d$;
- 2. $\lim_{n\to\infty} F_X(x) = F(x)$ pour tout $x \in \mathbb{R}^d$ point de continuité de F_X ;
- 3. $\lim_{n\to\infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$ pour tout fonction $f: \mathbb{R}^d \to \mathbb{R}$ continue et bornée.

Si une de ces conditions est vérifié (et donc toutes) on dit que $(X_n)_{n\geqslant 1}$ converge en loi (ou en distribution) vers X (et l'on note $X_n \xrightarrow{\mathcal{L}} X$).

Rappel. Dans \mathbb{R}^d , $F_X(x) = F_X(x_1, ..., x_d) = \mathbb{P}(X_1 \le x_1, ..., X_d \le x_d)$.

Exemple 5. On considère la suite de v.a. $(X_n)_{n\geqslant 1}$ telle que X_n est une v.a. uniforme discrète à valeurs dans $\{1/n, 2/n, 3/n, ..., (n-1)/n, 1\}$.

$$\phi_{X_n}(t) = \mathbb{E}[e^{itX_n}] = \sum_{k=1}^n \frac{1}{n} e^{itk/n} = \frac{e^{it/n}}{n} \sum_{k=0}^{n-1} e^{itk/n} = \frac{e^{it/n}}{n} \frac{e^{it} - 1}{e^{it/n} - 1}$$

donc

$$\lim_{n\to\infty}\phi_{X_n}(t)=\lim_{n\to\infty}\frac{e^{it/n}}{n}\frac{e^{it}-1}{e^{it/n}-1}=\frac{e^{it}-1}{it}.$$

Si $X \sim \mathcal{U}([0,1])$ alors

$$\phi_X(t) = \int_0^1 e^{itx} dx = \frac{e^{it} - 1}{it}$$

et donc $X_n \xrightarrow{\mathcal{L}} X$.

Exemple 6. Soient $U_1, U_2, ...$ des v.a. iid $\mathcal{U}([0,1])$. On pose $X_n = n \min_{1 \leq k \leq n} U_k$. Montrons que $(X_n)_{n \geq 1}$ converge en loi vers une v.a. $X \sim \mathcal{E}(1)$. Soit $x \in \mathbb{R}$

$$F_{X_n}(x) = \mathbb{P}(n \min_{1 \leqslant k \leqslant n} U_k \leqslant x) = 1 - \mathbb{P}(n \min_{1 \leqslant k \leqslant n} U_k > x) = 1 - [\mathbb{P}(U_1 > x/n)]^n$$
$$= 1 - [1 - \mathbb{P}(U_1 \leqslant x/n)]^n = 1 - [1 - F_{U_1}(x/n)]^n$$

et donc

$$F_{X_n}(x) = \begin{cases} 1 - [1 - (x/n)]^n & \text{si } x/n \in [0, 1] \\ 0 & \text{si } x/n < 0 \\ 1 & \text{si } x/n > 1 \end{cases}$$

Fixons x > 0 et choisissons n suffisamment grand tel que $x/n \in [0,1]$. Alors

$$\lim_{n \to \infty} F_{X_n}(x) = \lim_{n \to \infty} 1 - [1 - (x/n)]^n = 1 - e^{-x}.$$

Donc

$$\lim_{n\to\infty} F_{X_n}(x) = \left\{ \begin{array}{ll} 1-e^{-x} & \quad \text{si } x>0 \\ 0 & \quad \text{si } x\leqslant 0 \end{array} \right. = F_X(x) \qquad \forall x\in\mathbb{R} \,.$$

Exemple 7. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. discrètes telles que $\mathbb{P}(X_n=1/n)=1$. Alors $X_n \stackrel{\mathcal{L}}{\to} X$ ou X est la v.a. identiquement nulle $\mathbb{P}(X=0)=1$. On voit bien que $F_{X_n}(0)=0$ pour tout n mais que $F_X(0)=1$. Donc en générale on ne pourrait pas avoir convergence de $F_{X_n}(t)$ vers $F_X(t)$ dans tous les points $t\in\mathbb{R}$.

Exemple 8. Reprenons l'exemple 5 de convergence vers la loi uniforme dans [0, 1]. Montrons que $X_n \xrightarrow{\mathcal{L}} X$ en utilisant le critère *(iii)* du théorème 6. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et bornée

$$\mathbb{E}[f(X_n)] = \frac{1}{n} \sum_{k=1}^n f(k/n) \underset{n \to \infty}{\longrightarrow} \int_0^1 f(x) dx = \int_{\mathbb{R}} f(x) \mathbb{I}_{0 < x < 1} dx = \mathbb{E}[f(X)].$$

Convergence en probabilité

Définition 9. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. à valeurs dans \mathbb{R}^d et X une v.a. dans \mathbb{R}^d telles que $(X_n)_{n\geqslant 1}$ et X soient définies sur le même espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$. On dit que $(X_n)_{n\geqslant 1}$ converge en probabilité vers X et on note $X_n \xrightarrow{\mathbb{P}} X$ si pour tout $\varepsilon > 0$

$$\lim_{n\to\infty} \mathbb{P}(\|X_n - X\| > \varepsilon) = 0.$$

Exemple 10. Soit $U \sim \mathcal{U}([0,1])$. On définit $X_n = \mathbb{I}_{U \in [0,1/n]}$. Montrons que $X_n \stackrel{\mathbb{P}}{\to} 0$. Soit $\varepsilon > 0$ on doit prouver que $\mathbb{P}(|X_n - 0| > \varepsilon) \to 0$. Mais

$$\mathbb{P}(|X_n| > \varepsilon) = \mathbb{P}(X_n > \varepsilon) = \mathbb{P}(\mathbb{I}_{U < 1/n} > \varepsilon) = \mathbb{P}(U < 1/n) = 1/n \to 0$$

pour $n \to \infty$.

Loi faible des grandes nombres

Définition 11. Soit $(X_1, ..., X_n)$ un vecteur aléatoire. On définit la moyenne empirique des $(X_i)_{1 \le i \le n}$ par $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$.

Exemple 12. Soient les X_i des v.a. iid de loi $\mathcal{N}(0,1)$ alors $\overline{X}_n \sim \mathcal{N}(0,1/n)$. Donc pour tout $\varepsilon > 0$

$$\mathbb{P}(|\overline{X}_n| > \varepsilon) = \mathbb{P}(|Z| > \sqrt{n}\varepsilon) = \mathbb{P}(Z > \sqrt{n}\varepsilon) + \mathbb{P}(Z < -\sqrt{n}\varepsilon) = 2\mathbb{P}(Z < -\sqrt{n}\varepsilon) = 2F_Z(-\sqrt{n}\varepsilon)$$

où $Z \sim \mathcal{N}(0, 1)$. Cette quantité est strictement décroissante en n donc converge vers 0 quand $n \to \infty$. Etant donné que $\varepsilon > 0$ est arbitraire cela implique que $\overline{X}_n \stackrel{\mathbb{P}}{\to} 0$.

Théorème 13. Soit $(X_n)_{n\geqslant 1}$ une suite iid tel que $\mathrm{Var}(X_i)=\sigma^2<+\infty$ et $\mu=\mathbb{E}[X_i]$. On définit $\overline{X}_n=n^{-1}\sum_{i=1}^n X_i$ la moyenne empirique des X_j . Alors $\overline{X}_n\stackrel{\mathbb{P}}{\longrightarrow}\mu$.

Démonstration. On a que

$$\operatorname{Var}(\overline{X}_n) = \frac{1}{n^2} \operatorname{Var}(X_1 + \dots + X_n) = \frac{1}{n^2} [\operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)] = \frac{\operatorname{Var}(X_1)}{n}.$$

Pour tout $\varepsilon > 0$, par l'inégalité de Tchebychev

$$\mathbb{P}(|\overline{X}_n - \mu| > \varepsilon) \leqslant \frac{\operatorname{Var}(\bar{X}_n)}{\varepsilon^2} = \frac{\operatorname{Var}(X_1)}{n\varepsilon^2} \to 0$$

pour $n \to \infty$. Donc $\overline{X}_n \xrightarrow{\mathbb{P}} \mu$.

Exemple 14. Soient les X_i des v.a. iid de loi $\mathcal{G}(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$. $\mathbb{E}[X_i] = \alpha/\beta$ et $\text{Var}(X_i) = \alpha/\beta^2$. Alors $X_1 + \dots + X_n \sim \mathcal{G}(n\alpha, \beta)$ et $\overline{X}_n \sim \mathcal{G}(n\alpha, n\beta)$ et $\overline{X}_n \xrightarrow{\mathbb{P}} \alpha/\beta$.

Convergence presque sûre

Définition 15. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. à valeurs dans \mathbb{R}^d et soit X une v.a. à valeurs dans \mathbb{R}^d , telles que X_n et X sont définies sur le même espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$. On dit que $(X_n)_{n\geqslant 1}$ converge presque sûrement (ou fortement) vers X et on note $X_n \overset{p.s.}{\to} X$ si $\mathbb{P}(\lim_n X_n = X) = 1$. Autrement dit si l'événement $A = \{\omega \in \Omega : \lim_n X_n(\omega) = X(\omega)\}$ est tel que $\mathbb{P}(A) = 1$.

Exemple 16. Soit $X_n \sim \mathcal{B}in(n, p)$. Montrons que X_n/n^2 converge presque sûrement vers 0. En effet l'ensemble $A = \{0 \leq |X_n| \leq n \text{ pour tout } n\}$ est tel que $\mathbb{P}(A) = 1$. Donc pour $\omega \in A$ on a que $0 \leq |X_n(\omega)/n^2| \leq 1/n$ ce qu'implique que $\lim_n X_n(\omega)/n^2 = 0$ pour tout $\omega \in A$ et donc que

$$\mathbb{P}(\lim_{n} X_{n}/n^{2} = 0) \geqslant \mathbb{P}(A) = 1$$

qui montre la convergence presque sure.

Théorème 17. (Loi forte des grandes nombres) Soit $(X_n)_{n\geqslant 1}$ une suite iid telle que les X_i soient intégrables $(c-\grave{a}-d \ \mathbb{E}[|X_i|]<\infty)$. Alors

$$\overline{X}_n \xrightarrow{p.s.} \mathbb{E}[X_1].$$

Exemple 18. Soient $X_1, X_2, ...$ des v.a. iid $\mathcal{E}(\lambda)$ ($\lambda > 0$). X_1 est intégrable ($\mathbb{E}[|X_1|] = 1/\lambda$). Alors

$$\overline{X}_n \xrightarrow{p.s.} 1/\lambda$$
.

Convergence dans L^r (convergence en moyenne d'ordre r)

Définition 19. Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. à valeurs dans \mathbb{R}^d et X une v.a. à valeurs dans \mathbb{R}^d . On suppose que $\mathbb{E}(\|X_n\|^r) < +\infty$ pour tout $n\geqslant 1$ et que $\mathbb{E}[\|X\|^r] < +\infty$. On dit que $(X_n)_{n\geqslant 1}$ converge vers X dans L^r (ou en moyenne d'ordre r), et on note $X_n \xrightarrow{L^r} X$ (ou $X_n \xrightarrow{r} X$)

$$\lim_{n\to\infty} \mathbb{E}[\|X_n - X\|^r] = 0.$$

En particulier: si $d=1, (X_n)_{n\geqslant 1}$ et X sont des v.a. réelles alors $X_n \xrightarrow{L^r} X$ si $\mathbb{E}[|X|^r] < \infty$, $\mathbb{E}[|X_n|^r] < \infty$ et $\mathbb{E}[|X_n - X|^r] \to 0$.

Exemple 20. Soit r > 0. Soit $U \sim \mathcal{U}([0,1])$. On considère $(X_n)_{n \ge 1}$ telle que

$$X_n = n \mathbb{I}_{[0,1/n]}(U)$$

Quelle est la condition sur r pour que $X_n {\stackrel{L^r}{\longrightarrow}} 0$?

$$\mathbb{E}[|X_n - 0|^r] = \mathbb{E}[|X_n|^r] = \mathbb{E}[X_n^r] = \mathbb{E}[n^r \mathbb{I}_{[0, 1/n]}(U)] = n^r \mathbb{P}(U \leqslant 1/n) = n^r/n$$

et n^{r-1} converge vers 0 ssi r < 1.

Quelque propriétés de la convergence L^r .

Proposition 21. Soit r > 0 et 0 < s < r. Alors $X_n \xrightarrow{r} X \Longrightarrow X_n \xrightarrow{s} X$.

Démonstration. Par l'inégalité de Holder on a $\mathbb{E}[|X_n - X|^s] \leq (\mathbb{E}[|X_n - X|^r])^{s/r}$. Donc si $X_n \xrightarrow{r} X$ alors $\mathbb{E}[|X_n - X|^r] \to 0$ et $\mathbb{E}[|X_n - X|^s] \to 0$.

Proposition 22. Si $X_n \xrightarrow{1} X$ alors $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Démonstration. Par hypothèse on a que $\mathbb{E}[|X_n|] < \infty$ $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|X_n - X|] \to 0$. Donc

$$|\mathbb{E}[X] - \mathbb{E}[X_n]| = |\mathbb{E}[X - X_n]| \leqslant \mathbb{E}[|X - X_n|] \to 0.$$

$$\operatorname{car} -|X_n - X| \leqslant X_n - X \leqslant |X_n - X|.$$

Proposition 23. $X_n \stackrel{2}{\rightarrow} a \in \mathbb{R}$ (on di que X_n converge à la constante a en moyenne quadratique) ssi $\mathbb{E}[X_n] \rightarrow a$ et $\operatorname{Var}(X_n) \rightarrow 0$.

Démonstration. Si $X_n \xrightarrow{2} a \in \mathbb{R}$ alors $\mathbb{E}[|X_n - a|^2] \to 0$. Soit $\mu_n = \mathbb{E}[X_n]$

$$\mathbb{E}[|X_n - a|^2] = \mathbb{E}[|X_n - \mu_n + \mu_n - a|^2] = \mathbb{E}[(X_n - \mu_n)^2] + 2\mathbb{E}[(X_n - \mu_n)](\mu_n - a) + (\mu_n - a)^2$$

$$= \operatorname{Var}(X_n) + (\mu_n - a)^2$$

et donc $\operatorname{Var}(X_n) + (\mu_n - a)^2 \to 0$ ce qui entraı̂ne que $\operatorname{Var}(X_n) \to 0$ et que $\mu_n \to a$. Réciproquement si $\operatorname{Var}(X_n) \to 0$ et $\mu_n \to a$ alors $\mathbb{E}[|X_n - a|^2] = \operatorname{Var}(X_n) + (\mu_n - a)^2 \to 0$.

Théorème 24. (de Slusky) Soient $(X_n)_{n\geqslant 1}$, $(A_n)_{n\geqslant 1}$ et $(B_n)_{n\geqslant 1}$ trois suites de v.a.. Soient X une v.a. et $a,b\in\mathbb{R}$. Si $X_n\stackrel{\mathcal{L}}{\longrightarrow} X$, $A_n\stackrel{\mathbb{P}}{\longrightarrow} a$ et $B_n\stackrel{\mathbb{P}}{\longrightarrow} b$ alors

$$A_n X_n + B_n \xrightarrow{\mathcal{L}} aX + b$$

Théorème 25. (de continuité) Soit $g: \mathbb{R}^d \to \mathbb{R}^k$ telle que g est continue

$$i. X_n \xrightarrow{\mathcal{L}} X \Longrightarrow g(X_n) \xrightarrow{\mathcal{L}} g(X)$$

$$ii. \ X_n \xrightarrow{\mathbb{P}} X \Longrightarrow g(X_n) \xrightarrow{\mathbb{P}} g(X)$$

$$iii. X_n \xrightarrow{p.s.} X \Longrightarrow g(X_n) \xrightarrow{p.s.} g(X)$$

Liens entre les modes de convergence

Proposition 26.

i. La convergence presque sûre entraîne la convergence en probabilité:

$$X_n \xrightarrow{p.s.} X \Longrightarrow X_n \xrightarrow{\mathbb{P}} X$$

ii. La convergence en probabilité entraîne la convergence en loi

$$X_n \xrightarrow{\mathbb{P}} X \Longrightarrow X_n \xrightarrow{\mathcal{L}} X$$

$$iii. \ X_n \xrightarrow{\mathcal{L}} X \Longleftrightarrow X_n \xrightarrow{\mathbb{P}} X \ si \ X = c \in \mathbb{R}$$

iv. La convergence dans L^r entraı̂ne la convergence en probabilité

$$X_n \xrightarrow{r} X \Longrightarrow X_n \xrightarrow{\mathbb{P}} X.$$

Exemple 27. $X_n \sim \mathcal{B}in(n, p)$

$$\frac{X_n}{n} \xrightarrow{p.s.} 0 \Longrightarrow \frac{X_n}{n} \xrightarrow{\mathbb{P}} 0 \Longleftrightarrow \frac{X_n}{n} \xrightarrow{\mathcal{L}} 0$$

Le théorème central limite (TCL)

Théorème 28. Soit $(X_n)_{n\geqslant 1}$ une suite iid tel que $Var(X_i) = \sigma^2 < \infty$. Soit $\mu = \mathbb{E}[X_1]$. Alors

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Exemple 29. Soient $X_1, X_2, ...$ des v.a. iid $\sim \mathcal{E}(\lambda)$. $Var(X_1) = 1/\lambda^2$ et $\mu = \mathbb{E}[X_1] = 1/\lambda$. Par le TCL on a

$$\sqrt{n}\frac{\bar{X}_n - 1/\lambda}{1/\lambda} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$
 ou $\sqrt{n}(\bar{X}_n - 1/\lambda) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1/\lambda^2)$.

Théorème 30. Soit $(X_n)_{n\geqslant 1}$ une suite iid à valeurs dans \mathbb{R}^d tels que la matrice de covariance Σ de X_1 est finie (c-à-d si $\Sigma_{ii} < \infty$ pour i = 1, ..., d) alors

$$\sqrt{n}(\overline{X}_n - \mathbb{E}[X_1]) \xrightarrow{\mathcal{L}} \mathcal{N}_d(0, \Sigma).$$

Théorème 31. (La δ -méthode, cas unidimensionnel) Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. réelles. On suppose que $\sqrt{n}(Y_n-\mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$. Si $g: \mathbb{R} \to \mathbb{R}$ est une fonction continûment dérivable au point μ (c-à-d g est C^1 dans un voisinage du point μ) alors

$$\sqrt{n}(g(Y_n) - g(\mu)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, (g'(\mu))^2 \sigma^2).$$

Exemple 32. Soit $(X_n)_{n\geqslant 1}$ une suite iid $\sim \mathcal{E}(\lambda)$. Soit $Y_n = \overline{X}_n$. Par le TCL on a que $\sqrt{n}(\overline{X}_n - 1/\lambda) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1/\lambda^2)$. Soit g(x) = 1/x. $g'(x) = -1/x^2$ et $g'(1/\lambda) = -\lambda^2$. Donc $(g'(1/\lambda))^2 = \lambda^4$ et g est continûment dérivable au point $1/\lambda$. Par la δ -méthode on a que

$$\sqrt{n} \left(\frac{1}{\bar{X}_n} - \lambda \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \lambda^2)$$

Exemple 33. (Normalisation de la variance) Soit $(X_n)_{n\geqslant 1}$ une suite iid \sim Bernoulli(p) (avec $p\in]0, 1[), \sigma^2=\mathrm{Var}(X_1)=p(1-p).$ Par le TCL $\sqrt{n}(\overline{X_n}-p) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, p(1-p)).$ Peut on trouver une application $g\colon]0, 1[\rightarrow \mathbb{R}$ (qui ne dépend pas de p) telle que $\sqrt{n}(g(\overline{X_n})-g(p)) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$?

Supposons que une telle application existe et qu'elle soit continûment dérivable au point p. Par la δ -méthode on doit avoir que $g'(p)^2p(1-p)=1\Longrightarrow g'(p)^2=1/(p(1-p))$ pour tout $p\in]0,1[$. Une solution possible est

$$g'(p) = \frac{1}{\sqrt{p(1-p)}} \Longrightarrow g(p) = 2\arcsin(\sqrt{p})$$

donc on a que

$$2\sqrt{n}(\arcsin(\sqrt{X_n}) - \arcsin(\sqrt{p})) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$