Discussion 5

CUNY MSDS DATA 605

Duubar Villalobos Jimenez

February 28, 2018

5 † Page 13

Book: Grinstead: Introduction to Probability

Exercise

Consider the bet that all three dice will turn up sixes at least once in n rolls of three dice. Calculate f(n), the probability of at least one triple-six when three dice are rolled n times. Determine the smallest value of n necessary for a favorable bet that a triple-six will occur when three dice are rolled n times.

(DeMoivre would say it should be about $216 \cdot log(2) = 149.7$ and so would answer 150—see Exercise 1.2.17. Do you agree with him?)

Solution

For this, we could approach it in two different forms.

• The probability of wining by having one six in one dice is as follows:

For this, let's say X will be the action of rolling the dice.

Probability of Wining =
$$P(X = 6) = \frac{1}{6}$$

OR

Probability of Wining = 1 - Probability of loosing.

Probability of Wining =
$$1 - P(X \neq 6) = 1 - \frac{5}{6}$$

From here, we can deduct as follows:

• The probability of wining by having three sixes in one roll is as follows:

$$P(X_1 = 6) = \frac{1}{6}$$
 and

$$P(X_2 = 6) = \frac{1}{6}$$
 and

$$P(X_3 = 6) = \frac{1}{6}$$

This means as follows:

$$P(X_1 = 6 \cap X_2 = 6 \cap X_2 = 6) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6^3}$$

OR

$$1 - P(X_1 \neq 6) = 1 - \frac{5}{6}$$
 and

$$1 - P(X_2 \neq 6) = 1 - \frac{5}{6}$$
 and

$$1 - P(X_3 \neq 6) = 1 - \frac{5}{6}$$

From here we can also deduct that the probability of winning can be as follows:

```
Probability of wining = (1 - P(X_1 \neq 6)) \cdot (1 - P(X_2 \neq 6)) \cdot (1 - P(X_3 \neq 6))

Probability of wining = (1 - \frac{5}{6}) \cdot (1 - \frac{5}{6}) \cdot (1 - \frac{5}{6})

Probability of wining = (1 - \frac{5}{6})^3

Probability of wining = (\frac{6}{6} - \frac{5}{6})^3

Probability of wining = (\frac{1}{6})^3
```

Probability of wining $=\frac{1}{6^3}$

By creating a table of rolls, we can deduct as follows:

```
n_roll pX1 pX2 pX3 pXWin3_6 pCumXWin3_6
## 1
          1 1/6 1/6 1/6
                             1/6^3
                                         1 /6^3
## 2
                                         2 /6^3
          2 1/6 1/6 1/6
                             1/6^3
## 3
          3 1/6 1/6 1/6
                                         3 /6^3
                             1/6^3
          4 1/6 1/6 1/6
                             1/6^3
                                         4 /6^3
## 5
          5 1/6 1/6 1/6
                             1/6^3
                                         5 /6^3
          6 1/6 1/6 1/6
                             1/6^3
                                         6 /6^3
## 6
## 7
        ... 1/6 1/6 1/6
                             1/6^3
                             1/6^3
                                          n/6<sup>3</sup>
          n 1/6 1/6 1/6
```

Based on the above table our probability of winning function will be as follows:

$$f(n) = \frac{n}{6^3}$$

And we want to know for which n, $f(n) > \frac{1}{2}$?

for this, we solve the inequation as follows:

$$\frac{n}{6^3} > \frac{1}{2}$$

$$n>\frac{6^3}{2}$$

n > 108

Based on that; the smallest value of n necessary for a favorable bet that a triple-six will occur when three dice are rolled n times will be 109 times.

Programing in R

```
f <- function(n){
  f <- n / (6 ^ 3)
  return(f)
}</pre>
```

Let's generate a table of probabilities

```
p <- function(n){
    n_roll <- c()
    fn <- c()
    for (i in 1:n) {
        n_roll[i] <- i
        fn[i] <- f(i)
}</pre>
```

```
fn <- data.frame(n_roll, fn)</pre>
  return(fn)
}
Let's see our table for n = 109
n <- 109
pn \leftarrow p(n)
pn[n,]
##
       n_roll
                      fn
## 109 109 0.5046296
Table of probabilities:
pn
##
       n_roll
                        fn
            1 0.004629630
## 1
## 2
            2 0.009259259
## 3
            3 0.013888889
## 4
            4 0.018518519
## 5
            5 0.023148148
## 6
            6 0.027777778
## 7
            7 0.032407407
## 8
           8 0.037037037
## 9
            9 0.041666667
## 10
           10 0.046296296
## 11
           11 0.050925926
## 12
           12 0.05555556
## 13
           13 0.060185185
## 14
           14 0.064814815
## 15
           15 0.069444444
## 16
           16 0.074074074
## 17
           17 0.078703704
## 18
           18 0.083333333
## 19
           19 0.087962963
## 20
           20 0.092592593
## 21
           21 0.097222222
## 22
           22 0.101851852
## 23
           23 0.106481481
## 24
           24 0.111111111
## 25
           25 0.115740741
## 26
           26 0.120370370
## 27
           27 0.125000000
## 28
           28 0.129629630
## 29
           29 0.134259259
## 30
           30 0.138888889
## 31
           31 0.143518519
## 32
           32 0.148148148
## 33
           33 0.152777778
## 34
           34 0.157407407
## 35
           35 0.162037037
## 36
           36 0.16666667
## 37
           37 0.171296296
## 38
           38 0.175925926
```

```
## 39
           39 0.18055556
## 40
           40 0.185185185
           41 0.189814815
## 41
## 42
           42 0.19444444
## 43
           43 0.199074074
## 44
           44 0.203703704
## 45
           45 0.208333333
           46 0.212962963
## 46
## 47
           47 0.217592593
## 48
           48 0.22222222
## 49
           49 0.226851852
## 50
           50 0.231481481
## 51
           51 0.236111111
## 52
           52 0.240740741
## 53
           53 0.245370370
## 54
           54 0.250000000
## 55
           55 0.254629630
## 56
           56 0.259259259
## 57
           57 0.263888889
## 58
           58 0.268518519
## 59
           59 0.273148148
## 60
           60 0.27777778
## 61
           61 0.282407407
## 62
           62 0.287037037
## 63
           63 0.291666667
## 64
           64 0.296296296
## 65
           65 0.300925926
##
           66 0.30555556
   66
## 67
           67 0.310185185
## 68
           68 0.314814815
## 69
           69 0.31944444
## 70
           70 0.324074074
## 71
           71 0.328703704
## 72
           72 0.333333333
## 73
           73 0.337962963
## 74
           74 0.342592593
## 75
           75 0.34722222
## 76
           76 0.351851852
## 77
           77 0.356481481
## 78
           78 0.361111111
  79
           79 0.365740741
## 80
           80 0.370370370
## 81
           81 0.375000000
## 82
           82 0.379629630
## 83
           83 0.384259259
## 84
           84 0.38888889
## 85
           85 0.393518519
## 86
           86 0.398148148
## 87
           87 0.402777778
## 88
           88 0.407407407
## 89
           89 0.412037037
## 90
           90 0.416666667
## 91
           91 0.421296296
## 92
           92 0.425925926
```

```
## 93
           93 0.430555556
## 94
           94 0.435185185
           95 0.439814815
## 95
## 96
           96 0.44444444
## 97
           97 0.449074074
## 98
           98 0.453703704
           99 0.458333333
## 99
## 100
          100 0.462962963
## 101
          101 0.467592593
## 102
          102 0.472222222
## 103
          103 0.476851852
## 104
          104 0.481481481
## 105
          105 0.486111111
          106 0.490740741
## 106
## 107
          107 0.495370370
## 108
          108 0.500000000
## 109
          109 0.504629630
```

Just for fun

Let's generate random picks for 3 dice 100000 times and see if at least one of those rolls get three sixes on the same "roll" before the 109 roll.

```
n <- 109 # Minimum n required to get 3 sixes on the same roll
roll_3_dice <- function(n){</pre>
  n_roll <- c()
  X1 \leftarrow c()
  X2 \leftarrow c()
  X3 \leftarrow c()
  pXWin3_6 \leftarrow c()
  Win \leftarrow c()
  for (i in 1:n){
     n_roll[i] <- i
     X1[i] <- as.numeric(round(runif(1, 1, 6),0))</pre>
     X2[i] <- as.numeric(round(runif(1, 1, 6),0))</pre>
     X3[i] <- as.numeric(round(runif(1, 1, 6),0))</pre>
     pXWin3_6[i] <- as.numeric(X1[i]) + as.numeric(X2[i]) + as.numeric(X3[i]) # Maximum addition will b
     if (pXWin3_6[i] == as.numeric(18)) {
         Win[i] <- "YES"</pre>
     }
     else {
        Win[i] <- "NO"
     }
  pTable <- data.frame(n_roll, X1, X2, X3, pXWin3_6, Win)
  return(pTable)
}
```

Rolling 3 dice 100000 times.

```
results <- roll_3_dice(100000)
subset(results, Win == "YES")

##     n_roll X1 X2 X3 pXWin3_6 Win</pre>
```

##	73	73	6	6	6	18	YES
##	2405	2405	6	6	6	18	YES
##	3236	3236	6	6	6	18	YES
##	4436	4436	6	6	6	18	YES
##	4838	4838	6	6	6	18	YES
##	5390	5390	6	6	6	18	YES
##	7735	7735	6	6	6	18	YES
##	9197	9197	6	6	6	18	YES
##	9228	9228	6	6	6	18	YES
##	9954	9954	6	6	6	18	YES
##	10452	10452	6	6	6	18	YES
##	11827	11827	6	6	6	18	YES
##	12663	12663	6	6	6	18	YES
##	12721	12721	6	6	6	18	YES
##	13638	13638	6	6	6	18	YES
##	14295	14295	6	6	6	18	YES
##	14552	14552	6	6	6	18	YES
##	16808	16808	6	6	6	18	YES
##	17600	17600	6	6	6	18	YES
##	18855	18855	6	6	6	18	YES
##	19874	19874	6	6	6	18	YES
##	20615	20615	6	6	6	18	YES
##	21061	21061	6	6	6	18	YES
##	23586	23586	6	6	6	18	YES
##	24709	24709	6	6	6	18	YES
##	25482	25482	6	6	6	18	YES
##	27073	27073	6	6	6	18	YES
##	27389	27389	6	6	6	18	YES
##	28691	28691	6	6	6	18	YES
##	30881	30881	6	6	6	18	YES
##	30891	30891	6	6	6	18	YES
##	32031	32031	6	6	6	18	YES
##	32302	32302	6	6	6	18	YES
##	33850	33850	6	6	6	18	YES
##	34294	34294	6	6	6	18	YES
##	35185	35185	6	6	6	18	YES
##	38648	38648	6	6	6	18	YES
##	38666	38666	6	6	6		YES
##	39179	39179	6	6	6	18	YES
##	40079	40079	6	6	6	18	YES
##	40383	40383	6	6	6	18	YES
##	40607	40607	6	6	6	18	YES
##	43507	43507	6	6	6	18	YES
##	46145	46145	6	6	6	18	YES
##	47351	47351	6	6	6	18	YES
##	50739	50739	6	6	6	18	YES
##	51001	51001	6	6	6	18	YES
##	51608	51608	6	6	6	18	YES
##	51897	51897	6	6	6	18	YES
##	52613	52613	6	6	6	18	YES
##	53198	53198	6	6	6	18	YES
##	53403	53403	6	6	6	18	YES
##	54432	54432	6	6	6	18	YES
##	54668	54668	6	6	6	18	YES
	2 - 2 0 0	0 - 0 0 0	•	_	Ü	-0	

шш	EE016	EE016	c	c	c	10	VEC
##	55216 56322	55216 56322	6 6	6 6	6 6	18 18	YES YES
##	57022	57022	6	6	6	18	YES
##	58904	58904	6	6	6	18	YES
##	60002	60002	6				
##	61067	61067	6	6 6	6 6	18 18	YES YES
##	61086	61086	6	6	6	18	YES
##	62232	62232	6	6	6	18	YES
##	63007	63007	6	6	6	18	YES
##	64288	64288	6	6	6	18	YES
##	68868	68868	6	6	6	18	YES
##	70781	70781	6	6	6	18	YES
##	73255	73255	6	6	6	18	YES
##	75052	75052	6	6	6	18	YES
##	75345	75345	6	6	6	18	YES
##	75636	75636	6	6	6	18	YES
##	76401	76401	6	6	6	18	YES
##	77405	77405	6	6	6	18	YES
##	77600	77600	6	6	6	18	YES
##	77819	77819	6	6	6	18	YES
##	78822	78822	6	6	6	18	YES
##	79020	79020	6	6	6	18	YES
##	79123	79123	6	6	6	18	YES
##	81051	81051	6	6	6	18	YES
##	81792	81792	6	6	6	18	YES
##	83084	83084	6	6	6	18	YES
##	83235	83235	6	6	6	18	YES
##	83879	83879	6	6	6	18	YES
##	84720	84720	6	6	6	18	YES
##	85949	85949	6	6	6	18	YES
##	85982	85982	6	6	6	18	YES
##	88053	88053	6	6	6	18	YES
##	89650	89650	6	6	6	18	YES
##	90965	90965	6	6	6	18	YES
##	91592	91592	6	6	6	18	YES
##	91765	91765	6	6	6	18	YES
##	92458	92458	6	6	6	18	YES
##	94529	94529	6	6	6	18	YES
##	95083	95083	6	6	6	18	YES
##	95760	95760	6	6	6	18	YES
##	96720	96720	6	6	6	18	YES
##	99492	99492	6	6	6	18	YES

Let me know what you think.