Final Project Submission

Please fill out:

- Student name: Abel Otieno Odhiambo
- · Student pace: full time
- · Scheduled project review date/time:
- · Instructor name: Antonny Muiko
- Blog post URL:

Your code here - remember to use markdown cells for comments as well!

MICROSOFT MOVIE STUDIO DATA ANALYSIS PROJECT

1.Business Understanding

In my project Microsoft wants to start a movie studio and my analysis is based on my objectives, which will enable microsoft to come up with a profitable competative movie studio.

Objectives

- Find the top movie genre
- Find the most popular genre
- · Calculate profit and loss for a movie
- · Find Distribution locally and worldwide
- Find which is the best movie and what are the features of the Movie

2.Data Understanding

In my project i need to get data that shows movie categories and sales

Collecting Our Data

```
In [209]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import sqlite3
   %matplotlib inline
   import csv
```

2.1 Loading The data sets to see which datasets suits our project.

2.1.1 bom.movie_gross.csv File

```
In [210]: | df = pd.read_csv('bom.movie_gross.csv')
            df.head()
Out[210]:
                                                title studio
                                                            domestic_gross
                                                                            foreign_gross
             0
                                          Toy Story 3
                                                        BV
                                                                415000000.0
                                                                               652000000
                                                                                          2010
             1
                             Alice in Wonderland (2010)
                                                        BV
                                                                334200000.0
                                                                               691300000 2010
               Harry Potter and the Deathly Hallows Part 1
                                                       WB
                                                                296000000.0
                                                                               664300000 2010
             3
                                            Inception
                                                       WB
                                                                292600000.0
                                                                               535700000 2010
                                                     P/DW
             4
                                   Shrek Forever After
                                                                238700000.0
                                                                               513900000 2010
In [211]: df.shape
Out[211]: (3387, 5)
In [212]: df.isna().sum()
Out[212]: title
                                    0
                                    5
            studio
            domestic gross
                                   28
            foreign_gross
                                 1350
            year
                                    0
            dtype: int64
```

2.1.2 tn.movie_budgets.csv File

```
In [213]: df2 = pd.read_csv('tn.movie_budgets.csv',index_col=0)
    df2.head()
```

Out[213]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross
id					
1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

```
In [214]: # Convert "$" amounts to int64

df2["production_budget"] = df2.production_budget.str.replace('[\$\,]',"").astype(
    df2["domestic_gross"] = df2.domestic_gross.str.replace('[\$\,]',"").astype("int64
    df2["worldwide_gross"] = df2.worldwide_gross.str.replace('[\$\,]',"").astype("int64)
```

In [215]: df2.head()

Out[215]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross
id					
1	Dec 18, 2009	Avatar	425000000	760507625	2776345279
2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875
3	Jun 7, 2019	Dark Phoenix	350000000	42762350	149762350
4	May 1, 2015	Avengers: Age of Ultron	330600000	459005868	1403013963
5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747

In [216]: df2.isna().sum()

Out[216]: release_date 0
movie 0
production_budget 0
domestic_gross 0
worldwide_gross 0
dtype: int64

2.1.3 tmdb.movies.csv File

In [217]: df3 = pd.read_csv('tmdb.movies.csv',index_col=0)
df3.head()

Out[217]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_avera
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	•
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	}
4								

Out[218]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_title	vote_
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	
4								•

```
In [219]: df3.isna().sum()
Out[219]: genre_ids
                                0
          movie_id
                                0
          original_language
                                0
          original_title
                                0
          popularity
          release_date
          movie title
                                0
          vote_average
                                0
                                0
          vote_count
          dtype: int64
```

2.1.4 rt.movie_info.tsv File

Out[220]:

	id	synopsis	rating	genre	director	writer	theater_date	dvd_
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	Se
1	3	New York City, not-too- distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	J
2	5	Illeana Douglas delivers a superb performance	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	Αţ
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	Au
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	
4								•

```
In [221]: df4.isna().sum()
Out[221]: id
                               0
                             62
           synopsis
                               3
           rating
           genre
                               8
                            199
           director
          writer
                            449
           theater date
                            359
           dvd_date
                            359
           currency
                           1220
           box office
                           1220
           runtime
                             30
           studio
                           1066
           dtype: int64
```

2.1.5 im.db File

```
In [222]: conn =sqlite3.connect("im.db")
```

Selected data data files for my analysis.

- tmdb.movies.csv
- tn.movie_budgets.csv
- im.db
- bom.movie_gross.csv

2.2 Cleaning the selected data

2.2.1 cleaning tmdb.movies.csv (df3)

```
In [223]: df3
          df3.isna().sum()
Out[223]: genre ids
                                0
          movie id
                                0
          original_language
                                0
          original_title
                                0
          popularity
          release_date
                                0
          movie title
                                0
          vote_average
                                0
          vote_count
          dtype: int64
```

```
In [224]: df3.tail()
    df3["vote_average"]
    df3.drop(index=df3[df3["vote_average"] == 0.0].index,inplace=True)
    df3.drop(index=df3[df3["vote_count"] < 2].index,inplace=True)
    df3.tail()</pre>
```

Out[224]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_title \
26486	[80, 18, 9648]	564776	en	Driver	0.6	2018-11-20	Driver
26487	[27]	505498	en	Parched	0.6	2018-01-02	Parched
26488	[27]	546914	en	The Crescent Moon Clown	0.6	2018-10-17	The Crescent Moon Clown
26489	[99]	522825	en	The Real Princess Diaries: From Diana to Meghan	0.6	2018-05-07	The Real Princess Diaries: From Diana to Meghan
26492	0	582641	en	Dying Embers	0.6	2018-12-28	Dying Embers
4							•

```
In [225]: df3['release_date'] = pd.to_datetime(df3['release_date'])
    df3['release_year'] = df3['release_date'].dt.year
```

In [226]: df3.head()

Out[226]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_title	vote_
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	
4								+

2.2.2 tn.movie_budgets.csv AS (df2)

```
In [227]: df2.isna().sum()
    df2.tail()
```

Out[227]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross
id					
78	Dec 31, 2018	Red 11	7000	0	0
79	Apr 2, 1999	Following	6000	48482	240495
80	Jul 13, 2005	Return to the Land of Wonders	5000	1338	1338
81	Sep 29, 2015	A Plague So Pleasant	1400	0	0
82	Aug 5, 2005	My Date With Drew	1100	181041	181041

In [228]: df2.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5782 entries, 1 to 82
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	release_date	5782 non-null	object
1	movie	5782 non-null	object
2	production_budget	5782 non-null	int64
3	<pre>domestic_gross</pre>	5782 non-null	int64
4	worldwide_gross	5782 non-null	int64
44	:-+ < 4/3\ -	+ (2)	

dtypes: int64(3), object(2)
memory usage: 271.0+ KB

2.2.3: bom.movie_gross.csv (df)

In [230]: df.head()

Out[230]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000 0	513900000	2010

```
In [231]: df.tail()
```

Out[231]:

	title	studio	domestic_gross	foreign_gross	year
3382	The Quake	Magn.	6200.0	NaN	2018
3383	Edward II (2018 re-release)	FM	4800.0	NaN	2018
3384	El Pacto	Sony	2500.0	NaN	2018
3385	The Swan	Synergetic	2400.0	NaN	2018
3386	An Actor Prepares	Grav.	1700.0	NaN	2018

```
In [232]: df.isna().sum()
Out[232]: title
                               0
          studio
                               5
                               28
          domestic gross
          foreign_gross
                             1350
          year
                                0
          dtype: int64
In [233]: |df['foreign_gross'] = df['foreign_gross'].replace(np.nan, 0)
          df['domestic_gross'] = df['domestic_gross'].replace(np.nan, 0)
          df['studio'] = df['studio'].replace(np.nan, "no studio")
In [234]: # checking for changes made
          df.isna().sum()
Out[234]: title
                             0
                            0
          studio
          domestic_gross
                             0
          foreign_gross
                             0
          year
                             0
          dtype: int64
In [235]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 3387 entries, 0 to 3386
          Data columns (total 5 columns):
           #
               Column
                               Non-Null Count Dtype
               ----
                                -----
           0
               title
                               3387 non-null
                                                object
           1
               studio
                               3387 non-null
                                                object
           2
               domestic gross 3387 non-null
                                                float64
                                                object
           3
               foreign_gross
                               3387 non-null
                               3387 non-null
                                                int64
               year
          dtypes: float64(1), int64(1), object(3)
          memory usage: 132.4+ KB
```

```
In [236]: # changing foreign gross to int64
          # Removing the ","
          df["foreign_gross"] = df['foreign_gross'].str.replace(',',"")
          # Replace "nan" with 0
          df['foreign_gross'] = df['foreign_gross'].replace(np.nan, 0)
          # Change type to float64
          df['foreign gross'] = df['foreign gross'].astype("float64")
```

```
In [237]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	title	3387 non-null	object
1	studio	3387 non-null	object
2	domestic_gross	3387 non-null	float64
3	foreign_gross	3387 non-null	float64
4	year	3387 non-null	int64
dtyp	es: float64(2),	int64(1), object	(2)

memory usage: 132.4+ KB

3.1 Analysing tmdb.movies.csv AS df3

```
In [238]: # Viewing the data once again
          df3.head()
```

Out[238]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_title	vote_
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	
4								•

In [239]: # Describing our data
df3.describe()

Out[239]:

	movie_id	popularity	vote_average	vote_count	release_year
count	19942.000000	19942.000000	19942.000000	19942.000000	19942.000000
mean	272380.082690	3.911647	5.893481	257.928493	2013.878598
std	151327.460944	4.764390	1.458278	1100.708858	3.784668
min	27.000000	0.600000	0.500000	2.000000	1930.000000
25%	128345.750000	0.901000	5.000000	4.000000	2012.000000
50%	284700.000000	1.987000	6.000000	11.000000	2014.000000
75%	397834.750000	5.654750	6.900000	52.000000	2016.000000
max	602754.000000	80.773000	10.000000	22186.000000	2019.000000

In [240]: # view the shape of the data

df3.shape

Out[240]: (19942, 10)

Questions for the data set df3

3.1.1 Which Movies has the highest vote_rating?

In [241]: df3.sort_values(by="vote_average", ascending=False)[:10]

Out[241]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_t
13292	[99]	305019	en	Campaign of Hate: Russia and Gay Propaganda	0.600	2014-06-22	Campaigr Hate: Rus and (Propagar
13302	0	298267	en	Virtus	0.600	2014-07-27	Vir
19615	[18]	397512	en	Last Man Club	0.665	2016-05-27	Last Man C
16535		384518	en	Aubade	0.600	2015-04-10	Auba
19605	[28, 35]	444371	en	The Last Box	0.666	2016-08-02	The Last E
23184	[99]	433073	en	Tell Them We Are Rising: The Story of Black Co	0.600	2017-01-23	Tell Them Are Rising: 7 Story of Blace C
23185	[10402, 99]	433053	en	Give Me Future: Major Lazer in Cuba	0.600	2017-01-21	Give Future: Ma Lazer in Cı
26079	0	564296	en	When Calls the Heart: The Greatest Christmas B	0.754	2018-12-25	When Calls Heart: ∃ Great Christmas
16532	[18, 878, 53]	413367	en	Psychoacoustic	0.600	2015-10-23	Psychoacou
16526		427932	en	l've Always Been Here	0.600	2015-01-25	I've Alwa Been H

```
In [242]: # Does the movie average vote affected by it's popularity?
df3["popularity"].corr(df3["vote_average"])
```

Out[242]: 0.14814062866978023

The relationship is a very week positive correlation, so it doesn't affect.

```
In [243]: # Does the the vote count affect the rating?
df3["vote_count"].corr(df3["vote_average"])
```

Out[243]: 0.14307217931922264

The movie rating of a movie is not affected by vote count

3.1.2: Which movie has the highest popularity?

```
# Finding the most watched movie
             df3.sort_values(by="popularity", ascending=False)[:10]
Out[244]:
                                  movie_id original_language
                                                                 original_title popularity
                                                                                           release_date
                                                                                                          movie_title
                         [12, 28,
                                                                    Avengers:
                                                                                                            Avengers
               23811
                                    299536
                                                                                   80.773
                                                                                              2018-04-27
                                                             en
                             14]
                                                                   Infinity War
                                                                                                           Infinity War
               11019
                         [28, 53]
                                    245891
                                                                    John Wick
                                                                                   78.123
                                                                                              2014-10-24
                                                                                                            John Wick
                                                                                                               Spider-
                         [28, 12,
                                                                  Spider-Man:
                                                                                                             Man: Into
              23812
                         16, 878,
                                    324857
                                                                      Into the
                                                                                   60.534
                                                                                              2018-12-14
                                                             en
                                                                                                           the Spider-
                             35]
                                                                  Spider-Verse
                                                                                                                Vers€
                                                                                                           The Hobbit
                                                                   The Hobbit:
                                                                  The Battle of
                         [28, 12,
                                                                                                            The Battle
               11020
                                    122917
                                                                                   53.783
                                                                                              2014-12-17
                                                             en
                                                                                                            of the Five
                                                                      the Five
                             14]
                                                                       Armies
                                                                                                               Armies
                        [878, 28,
                                                                          The
                                                                                                                  The
                5179
                                      24428
                                                                                   50.289
                                                                                              2012-05-04
                                                             en
                             12]
                                                                     Avengers
                                                                                                             Avengers
                                                                                                            Guardians
                                                                  Guardians of
                        [28, 878,
               11021
                                     118340
                                                                                   49.606
                                                                                              2014-08-01
                                                                                                                of th∈
                                                             en
```

In [245]: df3["vote_count"].corr(df3["vote_average"])

Out[245]: 0.14307217931922264

3.1.3: Which movie has the highest vote count?

In [246]: df3.sort_values(by="vote_count", ascending=False)[:10]

Out[246]:

	genre_ids	movie_id	original_language	original_title	popularity	release_date	movie_title	١
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	
17383	[28, 12, 35]	293660	en	Deadpool	35.067	2016-02-12	Deadpool	
5179	[878, 28, 12]	24428	en	The Avengers	50.289	2012-05-04	The Avengers	
6	[28, 12, 14, 878]	19995	en	Avatar	26.526	2009-12-18	Avatar	
11032	[12, 18, 878]	157336	en	Interstellar	28.440	2014-11-05	Interstellar	
11021	[28, 878, 12]	118340	en	Guardians of the Galaxy	49.606	2014-08-01	Guardians of the Galaxy	
5189	[18, 37]	68718	en	Django Unchained	21.260	2012-12-25	Django Unchained	
5235	[878, 12, 14]	70160	en	The Hunger Games	14.212	2012-03-23	The Hunger Games	
14177	[28, 12, 878]	76341	en	Mad Max: Fury Road	28.099	2015-05-15	Mad Max: Fury Road	
7881	[28, 12, 878]	68721	en	Iron Man 3	32.093	2013-05-03	Iron Man 3	

3.1.4: What is the distribution vote_count and year?

```
In [247]: sns.set(style="whitegrid")
    sns.lineplot(data=df3, x="release_year", y="vote_count", ci=None)
    plt.title("vote count by year",fontsize=18)
    plt.xlabel("year",fontsize=15)
    plt.ylabel("votes",fontsize=15)
    plt.show()
```


3.2: Analysing tmdb.movies.csv (df2)

In [248]: df2.head()

Out[248]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	release_year
id						
1	2009-12-18	Avatar	425000000	760507625	2776345279	2009
2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	2011
3	2019-06-07	Dark Phoenix	350000000	42762350	149762350	2019
4	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	2015
5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	2017

3.2.1: Which movie has the highest Worldwide gross?

```
In [249]: df2.sort_values(by="worldwide_gross", ascending=False)
df2.head()
```

Out[249]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	release_year
id						
1	2009-12-18	Avatar	425000000	760507625	2776345279	2009
2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	2011
3	2019-06-07	Dark Phoenix	350000000	42762350	149762350	2019
4	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	2015
5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	2017

3.2.2: Which movies made the highest gross profit world_wide and locally?

```
In [250]: # Calculating and creating a new column "world_wide_gross_profit"
    df2['world_wide_gross_profit'] = df2['worldwide_gross']-df2['production_budget']
In [251]: # Calculating and creating a new column "worldwide_percentage-profit"
    df2['worldwide_percentage_profit'] = (df2['world_wide_gross_profit']/df2['product']
```

In [252]: # Sorting the data to view the movies with the highest worldwide profit
df2.sort_values(by="worldwide_percentage_profit", ascending=False)[:10]

Out[252]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	release_year
id						
46	1972-06-30	Deep Throat	25000	45000000	45000000	1972
14	1980-03-21	Mad Max	200000	8750000	99750000	1980
93	2009-09-25	Paranormal Activity	450000	107918810	194183034	2009
80	2015-07-10	The Gallows	100000	22764410	41656474	2015
7	1999-07-14	The Blair Witch Project	600000	140539099	248300000	1999
10	2004-05-07	Super Size Me	65000	11529368	22233808	2004

In [254]: # Calculating and creating a new column "domestic_percentage-profit"
df2['domestic_percentage_profit'] = df2['domestic_gross']/df2['production_budget

In [255]: # Sorting the data to view the movies with the highest domestic profit
df2.sort_values(by="domestic_percentage_profit", ascending=False)[:10]

Out[255]:

	release_date movie		production_budget	domestic_gross	worldwide_gross	release_year	٧
id							
46	1972-06-30	Deep Throat	25000	45000000	45000000	1972	
74	1993-02-26	El Mariachi	7000	2040920	2041928	1993	
93	2009-09-25	Paranormal Activity	450000	107918810	194183034	2009	
7	1999-07-14	The Blair Witch Project	600000	140539099	248300000	1999	
80	2015-07-10	The Gallows	100000	22764410	41656474	2015	
16	1995-08-09	The Brothers McMullen	50000	10426506	10426506	1995	
66	1974-10-18	The Texas Chainsaw Massacre	140000	26572439	26572439	1974	
10	2004-05-07	Super Size Me	65000	11529368	22233808	2004	
82	2005-08-05	My Date With Drew	1100	181041	181041	2005	
73	1973-08-11	American Graffiti	777000	115000000	140000000	1973	

3.2.3: What is the relationship between a movie budget and the reception it gets?

In [256]: # Finding the relationship between a movies' production budget and how it sells w df2['production_budget'].corr(df2['world_wide_gross_profit'])

Out[256]: 0.6087521471718846

There is a positive relationship between a movies budget and the reception it gets worldwide. The higher the movie budget the high positive reception it gets.

```
In [257]: # Plotting a scatter plot to visualize
    plt.scatter(df2.world_wide_gross_profit, df2.production_budget)
    plt.title('Production_budget vs world_wide_profit',fontsize=16)
    plt.xlabel("world_wide_gross_profit",fontsize=15)
    plt.ylabel("production_budget",fontsize=15)
    plt.show();
```



```
In [258]: # Finding the relationship between a movies' production budget and how it sells l
df2['production_budget'].corr(df2['domestic_gross_profit'])
```

Out[258]: 0.09974209165512304

We can interprate this to movies with high budget do not do sell domestically

```
In [259]: # Plotting a scatter plot to visualize
    plt.scatter(df2.domestic_gross_profit, df2.production_budget)
    plt.title("Production cost vs local made profit",fontsize=18)
    plt.xlabel("domestic_gross_profit",fontsize=15)
    plt.ylabel("production_budget",fontsize=15)
    plt.show();
```


3.3 Analysing bom.movie_gross.csv AS df

In [260]: df.tail()

Out[260]:

	title	studio	domestic_gross	foreign_gross	year
3382	The Quake	Magn.	6200.0	0.0	2018
3383	Edward II (2018 re-release)	FM	4800.0	0.0	2018
3384	El Pacto	Sony	2500.0	0.0	2018
3385	The Swan	Synergetic	2400.0	0.0	2018
3386	An Actor Prepares	Grav.	1700.0	0.0	2018

In [261]: # How many studios does the data set have?
df['studio'].nunique()

Out[261]: 258

3.3.1: Which studios generates the highest gross?

```
In [262]: # Studio with the heighest Domestic gross
          studio_with_highest_dom_gross = df.groupby(['studio'])["domestic_gross"].sum()
          studio with highest dom gross.sort values(ascending=False)
Out[262]: studio
          BV
                         1.841903e+10
          Uni.
                         1.290239e+10
          WB
                         1.216805e+10
          Fox
                         1.094950e+10
          Sony
                         8.459683e+09
          ALP
                         2.800000e+03
          Synergetic
                         2.400000e+03
          DR
                         8.000000e+02
          PΙ
                         0.000000e+00
          Myr.
                         0.000000e+00
          Name: domestic_gross, Length: 258, dtype: float64
In [263]: # Studio with the heighest foreign gross
          studio with highest for gross = df.groupby(['studio'])["foreign gross"].sum()
          studio_with_highest_for_gross.sort_values(ascending=False)
Out[263]: studio
          BV
                    2.579385e+10
          Fox
                    2.005587e+10
          WB
                    1.866790e+10
          Uni.
                    1.685477e+10
          Sony
                    1.394535e+10
          DLA
                    0.000000e+00
          RME
                    0.000000e+00
          Rel.
                    0.000000e+00
          KS
                    0.000000e+00
          CFilms
                    0.000000e+00
          Name: foreign gross, Length: 258, dtype: float64
```

3.3.2: Whats the gross distribution per year?

```
In [264]: # Finding the years in the dataset
df['year'].unique()

Out[264]: array([2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018], dtype=int64)
```

```
In [265]: # domestic gross
sns.barplot(x="year", y="domestic_gross", data=df, ci=None)
plt.title("domestic_gross_by_year",fontsize=18)
plt.xlabel("year",fontsize=15)
plt.ylabel("domestic_gross",fontsize=15)
plt.show()
```



```
In [266]: # foreign gross
sns.barplot(x="year", y="foreign_gross", data=df, ci=None)
plt.title("foreign_gross_by_year",fontsize=18)
plt.xlabel("year",fontsize=15)
plt.ylabel("foreign_gross",fontsize=15)
plt.show()
```


3.4: Analysing im.db tables


```
In [267]: |conn = sqlite3.connect('im.db')
In [268]: # Selecting the table names
           tables name = """SELECT name
                                  AS 'Table Names'
                                  FROM sqlite master
                                  WHERE type='table';"""
           pd.read_sql(tables_name, conn)
Out[268]:
               Table Names
              movie basics
            0
                  directors
            1
            2
                 known for
            3
                movie_akas
              movie_ratings
            5
                   persons
            6
                  principals
            7
                    writers
In [287]: # Lets see how many genre do we have do we have
           genres = """
              SELECT genres
                FROM movie basics
            GROUP BY genres
           data = pd.read_sql(genres ,conn).dropna()
           data.count()
Out[287]: genres
                      1085
```

3.4.1: Which Are The Top Genres?

dtype: int64

Out[289]:

	genres	average_ratings
0	Comedy, Documentary, Fantasy	9.4
1	Documentary,Family,Musical	9.3
2	History,Sport	9.2
3	Music, Mystery	9.0
4	Game-Show	9.0
919	Crime,Music	2.4
920	History,Sci-Fi,Thriller	2.3
921	Adventure,Crime,Romance	2.3
922	Adult,Horror	2.0
923	Comedy, Musical, Sport	1.4

923 rows × 2 columns

3.4.2: Which are the most viewed genres?

```
In [291]: genre_ratings = """
    SELECT genres, sum(numvotes) AS People_viewed
        FROM movie_basics
        JOIN movie_ratings
        USING(movie_id)
        GROUP BY genres
        ORDER BY people_viewed desc

;
;
;
;
pd.read_sql(genre_ratings, conn).dropna()
```

Out[291]:

	genres	People_viewed
0	Action,Adventure,Sci-Fi	23023248
1	Action,Adventure,Fantasy	9658883
2	Adventure, Animation, Comedy	8687435
3	Drama	8395521
4	Comedy,Drama,Romance	7665463
919	Family,War	5
920	Crime,Western	5
921	Comedy, Documentary, Fantasy	5
922	Action,Documentary,Horror	5
923	Action,Crime,Musical	5

923 rows × 2 columns

3.4.1: Does the numbers of viewers relate with the ratings?

```
In [292]: genre_counts = """
    SELECT genres, sum(numvotes) AS people_viewed, avg(averagerating) as average_r
    FROM movie_basics
    JOIN movie_ratings
    USING(movie_id)
    GROUP BY genres
    HAVING people_viewed between 1000 and 50000
    AND average_rating between 5.5 and 8
    ORDER BY people_viewed desc

;
"""
    pd.read_sql(genre_counts, conn)
    data = pd.read_sql(genre_counts, conn).dropna()
```

```
In [273]: # Find outliers from ratings
data["average_rating"].plot(kind='box',vert=False,showfliers=False);
```



```
In [293]: # find outliers from people viewed
plt.boxplot(x=data['people_viewed'], vert=False, showfliers=False);
plt.semilogy()
```

Out[293]: []


```
In [275]: data["average_rating"].corr(data["people_viewed"])
```

Out[275]: 0.06824764666660994

```
In [294]: plt.scatter(data.people_viewed, data.average_rating)
    plt.xlabel("people_viewed")
    plt.ylabel("average_rating")
    plt.show();
```


There is no relationship between number of people viewing a genre and it's rating

3.4.2: Does a movie length affect its rating?

```
In [295]: movie_length = """
    SELECT movie_id, runtime_minutes AS length, averagerating AS rating
    FROM movie_basics
    JOIN movie_ratings
    USING(movie_id)
    GROUP BY movie_id
    HAVING length < 200
LIMIT 1000</pre>
```

In [278]: data2.describe()

Out[278]:

	length	rating
count	1000.000000	1000.000000
mean	98.485000	6.266500
std	19.809144	1.439396
min	29.000000	1.700000
25%	88.000000	5.400000
50%	96.000000	6.400000
75%	108.000000	7.200000
max	181.000000	10.000000

```
In [296]: # Finding relationship between movie rating and legnth
data = pd.read_sql(movie_length,conn).dropna()
data2["rating"].corr(data2["length"])
```

Out[296]: 0.06685514663923223

```
In [297]: # Plotting a scatter plot
    plt.scatter(data2.length, data2.rating)
    plt.xlabel("length",fontsize=15)
    plt.ylabel("rating",fontsize=15)
    plt.title("Movie_length and Rating",fontsize=20)
```

Out[297]: Text(0.5, 1.0, 'Movie_length and Rating')

A movie legnth does not affect its rating

3.4.3: Who are the best directors?

```
In [298]: # first lets find how many directors we have
          directors_details = """
            SELECT person_id AS director_id, primary_name AS director_name
              FROM directors
              JOIN persons
             USING(person_id)
          GROUP BY person id
          data3 = pd.read_sql(directors_details,conn)
In [299]: data3.count()
Out[299]: director_id
                            109251
          director name
                            109251
          dtype: int64
In [300]: | data3.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 109251 entries, 0 to 109250
          Data columns (total 2 columns):
               Column
                              Non-Null Count
                                                Dtype
          ---
           0
               director id
                              109251 non-null object
               director_name 109251 non-null object
          dtypes: object(2)
          memory usage: 1.7+ MB
```

We have 109,251 directors is our data set.

3.4.4: Out of the Director Movie rated which director has the heighest rating?

```
In [301]: directors_ratings = """
    SELECT person_id AS director_id, primary_name As director_name, COUNT(movie_id)
    FROM directors
LEFT JOIN persons
USING(person_id)
    JOIN movie_ratings
    USING(movie_id)
GROUP BY director_id
HAVING movies_rated > 5
ORDER BY director_movies_average_rating DESC

;
"""
data4 = pd.read_sql(directors_ratings,conn)
```

3.4.5: Out of the Director Movie rated which director has the heighest number of movies?

```
In [304]: rs_ratings = """
    T person_id AS director_id, primary_name As director_name, COUNT(movie_id) AS mov
    M directors
    IN persons
    erson_id)
    N movie_ratings
    NG(movie_id)
    Y director_id
    movies_rated > 5
    Y movies_rated desc

pd.read_sql(directors_ratings,conn)
```

3.4.6: Do we have a relationship between movie ratings and number of movie rated?

```
In [305]: data5["director_movies_average_rating"].corr(data5["movies_rated"])
Out[305]: -0.023868139052040636
```

No relationship between directors_movies_rated and the movies rating

```
In [306]: plt.scatter(data5.movies_rated, data5.director_movies_average_rating)
    plt.xlabel("movies_rated")
    plt.ylabel("average_rating")
```

Out[306]: Text(0, 0.5, 'average_rating')

3.4.7: What is the average movie length?

```
In [307]: movie_durations = """
    SELECT movie_id,avg(runtime_minutes) AS average_runtime,start_year
    FROM movie_basics
    GROUP BY start_year

data7 = pd.read_sql(movie_durations,conn)
    data7.dropna()
```

Out[307]:

	movie_id	average_runtime	start_year
0	tt0146592	85.495694	2010
1	tt0176694	86.410106	2011
2	tt0139613	89.208856	2012
3	tt0063540	84.931670	2013
4	tt0329539	84.541500	2014
5	tt0283440	85.407108	2015
6	tt0315642	84.974249	2016
7	tt0100275	85.732214	2017
8	tt0069049	87.661099	2018
9	tt0066787	90.887358	2019
10	tt0499097	91.280488	2020
11	tt0293429	101.750000	2021
12	tt10042446	109.666667	2022

```
In [308]: # runtime by movies
    plt.hist(data7['average_runtime'],range=(40,200),bins=30)
    plt.title("Movie_runtime",fontsize=20)
    plt.xlabel("movie_length_in_mins",fontsize=15)
    plt.ylabel("number_of_movies",fontsize=15)
```

C:\Users\abel1\anaconda3\envs\learn-env\lib\site-packages\numpy\lib\histograms.
py:839: RuntimeWarning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
C:\Users\abel1\anaconda3\envs\learn-env\lib\site-packages\numpy\lib\histograms.
py:840: RuntimeWarning: invalid value encountered in less_equal
 keep &= (tmp a <= last edge)</pre>

Out[308]: Text(0, 0.5, 'number_of_movies')


```
In [309]: # Create year range of 5 years
runtime_by_year = data7.copy()
```

In [310]: runtime_by_year["start_year"] = ((runtime_by_year['start_year']//5)*5).astype("ir

```
In [311]: # Plotting boxplot to visualize
    sns.boxplot(x="start_year",y="average_runtime",data=runtime_by_year, palette='col
    plt.title("Runtime trend",fontsize=18)
    plt.xlabel('Year in 5 yrs range',fontsize=15)
    plt.ylabel("average_runtime",fontsize=15)
```

Out[311]: Text(0, 0.5, 'average_runtime')


```
In [ ]:
```