表象理论 (作业: 20230430)

- 1. 希尔伯特空间: 一个量子体系的所有的可能状态构成的空间, 是由全部 状态集合构成的线性空间;
 - (a) 内积: $<\Psi|\Psi>=\int |\Psi|^2 d\tau <\infty$;
 - (b) 施瓦兹不等式: $<\Psi_1|\Psi_2>^2 \le <\Psi_1|\Psi_1><\Psi_2|\Psi_2>$;
- 2. 算符的矩阵表示: 设算符 $\hat{F}(x,\hat{p_x})$ 作用于波函数 $\Psi(x,t)$ 后得到另一个函数 $\Phi(x,t)$, 在坐标表象中记为 $\Phi(x,t) = \hat{F}(x,-i\hbar\frac{\partial}{\partial x})\Psi(x,t)$, 设 $\begin{cases} \Psi(x,t) = \sum_{m} a_m(t)u_m(x) \\ \Phi(x,t) = \sum_{m} b_m(t)u_m(x) \end{cases}$, 定义 $F_{nm} = \int u_m^*(x)\hat{F}(x,-i\hbar\frac{\partial}{\partial x})u_m(x)dx$, 则 $b_n(t) = \sum_{m} b_m(t)u_m(x)$ 则 $b_n(t) = \sum_{m} F_{nm}a_m(t)$, n = 1,2,..., 其中 F_{nm} 是算符 \hat{F} 在 Q 表象中的表示;

(a) 可用矩阵表示:
$$\begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \end{pmatrix} = \begin{pmatrix} F_{11} & F_{12} & \dots \\ F_{21} & F_{22} & \vdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_1(t) \\ a_2(t) \\ \vdots \end{pmatrix}, 其$$
中用 F 表示矩阵 F_{ij} , 即 $\Phi = F\Psi$;

- i. 连续谱的矩阵表示: $F_{q'q''} = \int u_{q'}^*(x)\hat{F}(x, -i\overline{h}\frac{\partial}{\partial x})u_{q''}(x)dx$, 矩 阵元为 $F_{xx'} = \int \delta(x''-x)\hat{F}(x'', -i\overline{h}\frac{\partial}{\partial x})\delta(x''-x')dx'' = \hat{F}(x, -i\overline{h}\frac{\partial}{\partial x})\delta(x-x')$;
- (b) 厄米矩阵: $F_{nm}^* = F_{nm}$, 厄米算符的矩阵都是厄米矩阵;
- (c) 自身表象中的矩阵元: 算符 \hat{Q} 在自身表象中的矩阵元是 $Q_{nm} = \int u_n^* \hat{Q} u_m d\tau = Q_m \delta_{nm}$, 是一个对角矩阵, 它的对角元就是本征值;
- 3. 公式的矩阵表达:
 - (a) 期望: $\langle F \rangle = \Psi^{\dagger} F \Psi$;
 - (b) 本征方程: $F\Psi = \lambda \Psi$, 即 $(F \lambda I)\Psi = 0$;
 - i. 非零解条件: $\det |F \lambda I| = 0$, 或 $\det |F_{mn} \lambda \delta_{mn}| = 0$, 称其为 久期方程;
 - (c) 薛定谔方程: $i\bar{h}\frac{\partial}{\partial t}\Psi = H\Psi$;
- 4. 狄拉克符号: 把态和波函数分开, 且让物理量不依赖于表象;

- (a) 刃矢: 对波函数 Ψ 表示的量子状态, 以 $|\Psi>$ 表示, 称 |> 为刃矢 (或右矢);
 - i. 刁矢: 左矢 < | = | > † , 波函数 Ψ 的复共轭 Ψ^* 可以用 < Ψ | 表示;
- (b) 内积: 左右矢表示不同空间的矢量, 不能进行加法运算, 但可以进行内积 $<\Phi|\Psi>=(\Phi,\Psi)=\int\Phi^*\Psi d\tau;$
 - i. $<\phi|\Psi>^*=<\Psi|\phi>=(\phi,\Psi)^*;$
 - ii. 正交: $<\phi|\Psi>=0$;
 - iii. 归一性: $<\Psi|\Psi>=1$;
- 5. 态矢量的狄拉克符号表示: 设 \hat{F} 的本征方程 $\hat{F}|n>=f_n|n>, < n|n'>=\delta_{nn'},$ 则|n>构成 \hat{F} 表象的希尔伯特空间. 态矢量 $|\Psi>$ 在基矢|n>上的投影集合 $\{a_n\}=\{< n|\Psi>\},$ 其中|n>是希尔伯特空间的基矢

$$|n> = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}$$

- (a) 微观的量子态用抽象的态矢 $|\Psi>$ 描述, 与表象无关. $|\Psi>$ 在某个表象基矢上的投影就是 $|\Psi>$ 在该表象中的波函数;
- (b) 本征矢量的完备性条件 (封闭性): $\sum_n |n> < n| = 1$, 或混合谱 $\sum_n |n> < n| + \int |q> dq < q| = 1;$
- 6. 算符用狄拉克符号表示: 设算符 \hat{F} 作用在右矢 |A> 上得到右矢 |B>, 即 $|B>=\hat{F}|A>$,利用正交归一化条件 $\delta_{mn}=< m|n>$,得到 $< m|B>=\sum_{n}< m|\hat{F}|n>< n|A>$. 其中 $< m|\hat{F}|n>$ 称为 \hat{F} 在 Q 表象下的矩阵元;
 - (a) 坐标表象下的矩阵元: $< x'|\hat{F}|x> = |x'> < x'|\hat{F}|x> < x| = \hat{F}(x', -i\hbar\frac{\partial}{\partial x'})\delta(x-x')$, 即 $< m|\hat{F}|n> = \iint < m|x'> dx'< x'|\hat{F}|x> dx< x|n> = \int < m|x>\hat{F}(x, -i\hbar\frac{\partial}{\partial x})dx< x|n>$;
 - (b) |B> 的共轭: $< B|=< A|\hat{F}^{\dagger},$ 当 \hat{F} 是厄米算符时 $< B|=< A|\hat{F};$

- 7. 常用量子力学公式的狄拉克符号表示: 右矢用于确定态, 左矢用于确定 表象;
 - (a) 算符: $\hat{F}|\Psi>=|\Phi>$, 张量;
 - (b) 薛定谔方程: $i\bar{h}\frac{d}{dt}|\Psi>=\hat{H}|\Psi>$, 本征方程;
 - (c) 定态薛定谔方程: $\hat{H}|n>=E_n|n>$, 本征方程;
 - (d) 态矢量 (波函数): $|\Psi>=\sum\limits_{n}|n>< n|\Psi>$, 矢量;
 - (e) 内积: $\langle n, \Psi \rangle = \int \langle n | x \rangle dx \langle x | \Psi \rangle$, 数量;
 - (f) 正交: $\langle n|m \rangle = \delta_{nm}$, 数量;
- 8. 投影算符: $\hat{P} = |\alpha > < \alpha|$, 本征值 $\lambda = 1,0$;
 - (a) $\hat{P}^2 = \hat{P}, \hat{P}(\hat{P} 1) = 0;$
 - (b) 本征值 $\lambda = 1$ 对应的本征态为 $|\alpha>$;
 - (c) 本征值 $\lambda = 0$ 对应的本征态为一切与 $|\alpha\rangle$ 正交的态 $|\Psi\rangle$;
- 9. 表象变换:
 - (a) 基矢变换: 设 {|n>} 和 { $|\alpha>$ } 是态空间的两组不同的基矢,构成两种不同的表象,分别记为 A 和 B,则 $|\alpha>=\sum_{n}|n><$ $n|\alpha>=\sum_{n}S_{n\alpha}|\alpha>=\sum_{n}(\tilde{S})_{\alpha n}|\alpha>$ (注意两次转置),它的矩阵表示为 $\begin{pmatrix} \phi_{1}(x) \\ \vdots \\ \phi_{n}(x) \end{pmatrix}_{B} = \begin{pmatrix} S_{11} & \dots & S_{1n} \\ \vdots & \ddots & \vdots \\ S_{n1} & \dots & S_{nn} \end{pmatrix} \begin{pmatrix} \psi_{1}(x) \\ \vdots \\ \psi_{n}(x) \end{pmatrix}_{A}$,称 $S=\begin{pmatrix} S_{11} & \dots & S_{nn} \\ \vdots & \ddots & \vdots \\ S_{1n} & \dots & S_{nn} \end{pmatrix}$ (注意下标)为 A 到 B 的表象变换矩阵,基矢
 - i. 表象变换矩阵未必是方阵, 因为不同表象的维数可能不同;
 - ii. S 的厄米共轭矩阵 $S_{n\alpha}^{\dagger} = \langle \alpha | n \rangle$;
 - iii. S 是幺正矩阵: $S^{\dagger} = S^{-1}$ 或 $S^{\dagger}S^{-1} = I$;
 - (b) 态矢变换: 在 A 表象中状态 $|\Psi > \mathbb{E} \Psi_A = (\{ < n | \Psi > \})$, 在表象 B 中 $\Psi_B = (\{ < \alpha | \Psi > \})$, 则 $< \alpha | \Psi > = \sum_n (\tilde{S}^*)_{\alpha n} < n | \Psi >$, 对应 的矩阵 $\Psi_B = S^{\dagger} \Psi_A = S^{-1} \Psi_A$;

- (c) 算符变换: 在 A 表象中 $F_A = (\{ < n | \hat{F} | m > \})$, 在表象 B 中 $F_B = (\{ < \alpha | \hat{F} | \beta > \})$, 则 $< \alpha | \hat{F} | \beta > = \sum_{n} \sum_{m} S_{\alpha n}^{\dagger} F_{nm} S_{m\beta}$, 对应的矩阵 $F_B = S^{\dagger} F_A S$;
- 10. 表象变换是幺正变换,但表象变换未必是厄米变换;
- 11. 幺正变换的性质:
 - (a) 在幺正变换下, 力学量的算符本征值不变;
 - (b) 在幺正变换下,矩阵的迹不变;
 - i. 矩阵迹的交换性: tr(AB) = tr(BA);

ii.
$$trF_B = tr(S^{\dagger}F_AS) = tr(F_ASS^{\dagger}) = trF_A;$$

- (c) 在幺正变换下, 态矢量的模方和内积均不变;
- (d) 在幺正变换下, 力学量算符的期望值都保持不变;
- (e) 在幺正变换下,算符的对易关系,算符方程和量子力学公式的形式 不变;
- 12. 坐标表象: 坐标算符 \hat{x} , 本征值 x, 本征态 |x>, 本征方程 $\hat{x}|x>=x|x>$, 归一完备性条件 $\begin{cases} < x|x'>=\delta(x'-x)\\ \int |x>dx< x|=I \end{cases}$;
 - (a) 态矢量: $|\Psi>=\int dx|x> < x|\Psi>=\int dx|x>\Psi(x), <\Psi|=\int <\Psi|x> dx< x|=\int dx\Psi^*(x)< x|;$
 - (b) 算符: 设 $|\phi>=\hat{x}|\Psi>$, 则 $< x''|\phi>=< x''|\hat{x}|\Psi>=\int < x''|\hat{x}|x'>$ $dx'< x'|\Psi>=\int x'\delta(x'-x'')dx'< x'|\Psi>$;
 - i. 动量算符: $\langle x''|\hat{p_x}|x'\rangle = \frac{\hbar}{i}\frac{\partial}{\partial x''}\delta(x''-x')$,作用在波函数上 $\langle x|\hat{p_x}|\Psi\rangle = \frac{\hbar}{i}\frac{\partial}{\partial x}\Psi(x)$;
 - ii. 动量算符的作用规则: 对本征方程 $\hat{p_x}|p_x>=p_x|p_x>$, 本征态 $|p_x>$ 在坐标表象中的波函数 $< x|p_x>=\frac{e^{i\frac{P_x}{L}x}}{\sqrt{2\pi\hbar}}$, 坐标表象中的动量 $< x|\hat{p_x}|p_x>=-i\hbar\frac{\partial}{\partial x}< x|p_x>$, 坐标表象中的动量算符 $< x|\hat{p_x}|=-i\hbar\frac{\partial}{\partial x}< x|(厄米共轭后 <math>\hat{p_x}|x>=i\hbar\frac{\partial}{\partial x}|x>$);

A. 同理:
$$\begin{cases} < p_x | \hat{x} = i \overline{h} \frac{\partial}{\partial p_x} < p_x | \\ \hat{x} | p_x > = -i \overline{h} \frac{\partial}{\partial p_x} | p_x > \end{cases} ;$$

- (c) 期望: $\langle F \rangle = \langle \Psi | \hat{F} | \Psi \rangle$;
- (d) 力学量矩阵元: $F_{kn} = \langle k|\hat{F}|n \rangle$;
- 13. 态矢量在基矢 |n> 上的展开: $|\Psi>=\sum_n c_n|n>$, 其中 $c_n=< n|\Psi>$;
 - (a) 或 $<\Psi|=\sum\limits_{n}c_{n}^{*}< n|;$
 - (b) 利用投影算符 $\hat{P}_n = |n > < n|$, 则 $c_n^* c_n = < \hat{P}_n >$;
- 14. 离散谱归一化条件: $1 = \langle \Psi | \Psi \rangle = \sum_{n} |c_n|^2$;
- 15. 态矢量内积: 对于 $|A>=\sum_{n}a_{n}|n>$, $B=\sum_{n}b_{n}|n>$, $<A|B>=\sum_{n}a_{n}^{*}b_{n};$
- 16. 角动量表象: 冼 \hat{L}_z 与 \hat{L}^2 的共同本征杰 |lm> 为基矢的表象;
 - (a) 自身表象: $< l'm' |\hat{L}_z| lm > = m \overline{h} \delta_{l'l} \delta_{m'm}, < l'm' |\hat{L}^2| lm > = l(l + 1) \overline{h}^2 \delta_{l'l} \delta_{m'm};$
 - (b) 角动量算符: $\langle l'm'|\hat{L}_x|lm \rangle = \frac{\hbar}{2} \left[\sqrt{(l+m+1)(l-m)} \delta_{m',m+1} + \sqrt{(l-m+1)(l+m)} \delta_{m',m} + \sqrt{(l-m+1)(l+m)} \delta_{m',m} + \sqrt{(l-m+1)(l+m)} \delta_{m',m-1} \right] \delta_{l'l};$
 - i. \hat{L}_x 的矩阵元总是 0 和正实数;
 - ii. \hat{L}_y 的矩阵元总是 0 和纯虚数;

(c) 升降阶算符:
$$\hat{L}_{+} = \begin{pmatrix} 0 & \sqrt{2h} & 0 \\ 0 & 0 & \sqrt{2h} \\ 0 & 0 & 0 \end{pmatrix}, \hat{L}_{-} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2h} & 0 & 0 \\ 0 & \sqrt{2h} & 0 \end{pmatrix};$$

i. $\hat{L}_{T} = \frac{1}{2}(\hat{L}_{+} + \hat{L}_{-}), \hat{L}_{U} = \frac{1}{2}(\hat{L}_{+} - \hat{L}_{-});$

- 17. 占有数 (或粒子数) 表象: 以 |n> 表示 ψ_n 对应的本征态, 即以 |n> 为基矢的表象;
 - (a) 波色子对易关系: $[\hat{a}, \hat{a}^{\dagger}] = 1$;
 - (b) 产生算符 (\hat{a}^{\dagger}) 和湮灭算符 (\hat{a}) : 产生湮灭算符满足波色子对易关系, $[\hat{a},\hat{a}^{\dagger}]=1;$
 - i. 定义: $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0;$
 - ii. $\hat{a}|n>=\sqrt{n}|n-1>, \hat{a}^{\dagger}|n>=\sqrt{n+1}|n+1>, \hat{a}|0>=0;$

- (c) 粒子数算符: $N = \hat{a}^{\dagger} \hat{a}, \hat{N} | n > = n | n > ;$
 - i. 粒子数递推表达式: $|n> = \frac{(a^{\dagger})^n}{\sqrt{n!}}|0>$;
 - ii. 电子考虑自旋的量子数: $\hat{N}=\hat{a}_{\uparrow}^{\dagger}\hat{a}_{\uparrow}+\hat{a}_{\downarrow}^{\dagger}\hat{a}_{\downarrow};$
- (d) $[\hat{a}, (\hat{a}^{\dagger})^n] = n(\hat{a}^{\dagger})^{n-1} \stackrel{\text{de}}{\to} \hat{a}(\hat{a}^{\dagger})^n = (\hat{a}^{\dagger})^n \hat{a} + n(\hat{a}^{\dagger})^{n-1};$
 - i. 推广: $[\hat{a}, f(\hat{a}^{\dagger})] = \frac{\partial f(\hat{a}^{\dagger})}{\partial \hat{a}^{\dagger}};$
- (e) 占有数表象的性质:
 - i. 占有数表象的基矢是归一的: $< m | n > = \delta_{mn}$;
 - ii. 占有数表象的基矢是完备的, $\sum_{n=0}^{\infty} |n> < n| = I$;
 - iii. Fock 空间: 通常将这组基矢张成的空间称为 Fock 空间;
- (f) 占有数表象的矩阵表示: 由 < n|n>=< n-1|n-1>, 有 $n=< n|\hat{a}^{\dagger}\hat{a}|n>$;

i. 湮灭算符的矩阵元:
$$< n-1|\hat{a}|n> = \sqrt{n}, \hat{a} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & \ddots \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

ii. 产生算符的矩阵元:
$$< n+1|\hat{a}^{\dagger}|n> = \sqrt{n+1}, \hat{a}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \end{pmatrix};$$

iii. 粒子数矩阵:
$$N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \ddots \end{pmatrix}$$
;

iv. 哈密顿量:
$$\hat{H} = \overline{h}\omega$$

$$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{3}{2} & 0 & 0 \\ 0 & 0 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & \ddots \end{pmatrix};$$

- (g) 占有数表象下的坐标算符: $|x>=\left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2+\sqrt{\frac{2m\omega}{\hbar}}x\hat{a}^\dagger-\frac{1}{2}(\hat{a}^\dagger)^2}|0>$;
- (h) 占有数表象下的动量算符: $|p> = \left(\frac{1}{\pi \hbar m \omega}\right)^{\frac{1}{4}} e^{-\frac{p^2}{2m\hbar\omega} + i\sqrt{\frac{2}{m\hbar\omega}}p\hat{a}^{\dagger} + \frac{1}{2}(\hat{a}^{\dagger})^2} |0>$;
- (i) 占有数表象下的波函数: $\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} < 0 | e^{\sqrt{\frac{2m\omega}{\hbar}}x\hat{a} \frac{1}{2}\hat{a}^2} | 0 > ;$

- 18. 相干态: 在 Fock 空间中,相干态定义为 $|z>=e^{z\hat{a}^{\dagger}-z^{*}\hat{a}}|0>=e^{-\frac{1}{2}|z|^{2}}e^{z\hat{a}^{\dagger}}|0>$, 其中 $z=\alpha+i\beta$ 为任意复常数;
 - (a) 相干态是湮灭算符 â 的本征态;
 - (b) 可以利用粒子数本征态 |n> 表示相干态 $|z>:|z>=e^{-\frac{1}{2}|z|^2}\sum_{n=0}^{\infty}\frac{z^n}{\sqrt{n!}}|n>;$
 - (c) 相干态 |z| >随时间的演化为: $|z(t)| >= e^{-i\frac{\hat{H}t}{\hbar}}|z| >$, 其中 $\hat{H} = (\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\hbar\omega$ 是谐振子的哈密顿量;
 - (d) 相干态中的能量平均值: $< z(t)|\hat{H}|z(t)> = \frac{1}{2}m\omega^2x_0^2 + \frac{1}{2}\overline{h}\omega;$
 - (e) 相干态具有最小的不确定性: $\Delta x \Delta p = \frac{h}{2}$;
 - (f) 因为 $\begin{cases} \hat{a} = \frac{1}{\sqrt{2m\hbar\omega}}(m\omega\hat{x} + i\hat{p}) \\ \hat{a}|z>=z|z> \\ +i < z|\hat{p}|z>). 即相干态的本征值为 < \hat{x}> 和 < \hat{p}> 的线性叠加; \end{cases}$
 - (g) 相干态的波函数: $< x|z> = Ne^{-\frac{m\omega}{2\hbar}x^2 + \sqrt{\frac{2m\omega}{\hbar}}zx}$, 其中归一化系数 $N = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{1}{2}(z^2+|z|^2)}$;
 - (h) 不同相干态之间的内积: $\langle z_1|z_2\rangle = e^{-\frac{1}{2}(|z_1|^2+|z_2|^2-2z_1^*z_2)};$
- 19. 相干态表象: 相干态全体 z 是完备的, 完备性条件 $\int \frac{d^2z}{\pi}|z> < z| = I$, 其中 $z = \alpha + i\beta$, $d^2z = d\alpha d\beta$;
 - (a) 任何物理态均可用相干态的全体来展开;