www.eenadupratibha.net

BOARD OF INTERMEDIATE EDUCATION (TS)

JUNIOR INTER MATHEMATICS - IA

MODEL PAPER

Time: 3 hours Max. Marks: 75

SECTION - A

- I. i) Very short answer type questions.
 - ii) Answer ALL questions.
 - iii) Each question carries TWO marks.

 $10 \times 2 = 20$

- 1. If f: R $\{\pm 1\}$ \longrightarrow R is defined by $f(x) = log \left| \frac{1+x}{1-x} \right|$ then show that $f\left(\frac{2x}{1+x^2} \right) = 2f(x)$.
- 2. Find the domain of the real valued funtion $f(x) = \frac{1}{(x^2 1)(x + 3)}$.
- 3. If $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$ then find $A + A^T$ and AA^T .
- 4. Find the rank of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- 5. If the position vectors of the points A, B, C are $-2\overline{i} + \overline{j} \overline{k}$; $-4\overline{i} + 2\overline{j} + 2\overline{k}$ and $6\overline{i} 3\overline{j} 13\overline{k}$ respectively in which $\overline{AB} = \lambda \overline{AC}$. Then find λ .
- 6. Find the vector equation of the line passing through the point 2i + 3j + k and parallel to the vector 4i 2j + 3k.
- 7. Find the area of the parallelogram having $\overline{a} = 2\overline{j} \overline{k}$ and $\overline{b} = -\overline{i} + \overline{k}$ as adjacent sides.
- 8. Find the value of $\sin 330^{\circ}\cos 120^{\circ} + \cos 210^{\circ} \sin 300^{\circ}$.
- 9. Find the maximum and minimum values of the function $13 \cos x + 3\sqrt{3} \sin x 4$.
- 10. Show that $\tan h^{-1} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \log_e^3$.

SECTION - B

- II. i) Short answer type questions.
 - ii) Answer any FIVE questions.
 - iii) Each question carries FOUR marks.

 $5 \times 4 = 20$

- 11. If A is non singular matrix then prove that $A^{-1} = \frac{\text{adj } A}{|A|}$.
- 12. If \overline{a} , \overline{b} , \overline{c} are non coplaner then prove that four points $-\overline{a} + 4\overline{b} 3\overline{c}$; $3\overline{a} + 2\overline{b} 5\overline{c}$; $-3\overline{a} + 8\overline{b} 5\overline{c}$ and $-3\overline{a} + 2\overline{b} + \overline{c}$ are coplaner.

www.eenadupratibha.net

- If $\overline{a} = 2\overline{i} + \overline{j} \overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} 4\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$ then find the value of $(\overline{a} \times \overline{b})(\overline{b} \times \overline{c})$.
- Prove that $\cos^2 76^{\circ} \cos^2 16^{\circ} \cos 76^{\circ} \cos 16^{\circ} = \frac{3}{4}$.
- Solve $\sqrt{2}(\sin x + \cos x) = \sqrt{3}$ 15.
- In the triangle ABC, if $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ then show that $\angle c = 60^{\circ}$.

- i) Long answer type questions.
 - ii) Answer any FIVE questions.
 - iii) Each question carries SEVEN marks.

 $5 \times 7 = 35$

- Show that the function $f: Q \to Q$ defined by f(x) = 5x + 4 for all $x \in Q$ is a bijection and find f^{-1} . 18.
- Using mathematical induction prove that $1.2.3 + 2.3.4 + 3.4.5 + \dots$ up to n terms ($n \in N$) 19.

$$= \frac{n(n+1)(n+2)(n+3)}{4}.$$

- Without expanding the determinant prove that $\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}.$ 20.
- Solve 2x y + 3z = 9, x + y + z = 6, x y + z = 2 by using cramer's rule. 21.
- If $\overline{a} = \overline{i} 2\overline{j} 3\overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} \overline{k}$ and $\overline{c} = \overline{i} + 3\overline{j} 2\overline{k}$ verify that $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$. 22.
- If A + B + C = 180° then prove that $\cos A + \cos B \cos C = -1 + 4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$. 23.
- In the triangle ABC prove that $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} \frac{1}{2R}$. www.eenadupr

Writer: B. Eswara rao