

ANÁLISE DE ROBUSTEZ DO MÉTODO DE INTEGRAÇÃO DE DADOS NERI

Aluno: João Carlos Pandolfi Santana

Orientador: Prof. Dr. Sérgio Nery Simões

Serra - ES, Julho de 2017

- 1. Visão geral
- 2. Fundamentos conceituais
- 3. Metodologia proposta
- 4. Desenvolvimento e Resultados
- 5. Conclusão
- 6. Trabalhos futuros

Introdução

 Doenças complexas são poligênicas e multifatoriais, ou seja, além de serem causadas por mutação de mais de um gene, também são afetadas por fatores externos.

Motivação

- Dificuldade do estudo de doenças complexas.
- Método NERI apresenta bons resultados de replicabilidade, mas falta avaliar sua robustez em relação aos genes sementes.

1. Visão Geral - Problema

O Quão dependente é o método NERI dos genes sementes?

Objetivo Geral

 Analisar robustez do método NERI avaliando o impacto da retirada de alguns genes sementes.

2. Fundamentos conceituais – Grafo e medidas de centralidade

2. Fundamentos conceituais – Redes complexas

- Surge com o estudo de problemas do mundo real.
- Não são modelos simples (ex: regulares nem aleatórios).
- Podem ser modeladas em grafos.

2. Fundamentos conceituais – Redes PPI

- Fornecem informações biológicas sobre potenciais interações entre proteínas.
- São estáticas, atemporais, genéricas e não fornecem informações de causalidade.
- Podem ser modeladas em grafos.

2. Fundamentos conceituais - Método NERI

2. Fundamentos conceituais - Método NERI

- 2. Fundamentos conceituais Avaliação de Classificadores
 - Leave-one-out Cross-validation
 - Repeated K-Fold Cross-validation

3. Metodologia - Geral

3. Metodologia – Estratégia utilizada para análise de robustez

- Remoção de um único gene semente (LOO 30x)
- Remoção de vário genes sementes (Rep. Kfold 50x {3,6,9,12})
- Estudo do impacto causado no resultado (escores X e Δ') em relação ao resultado original

3. Metodologia – Estratégia utilizada para análise de robustez

Tabela 4.1 – Medidas de centralidade dos genes sementes utilizados no experimento

GENE	Degree	Betweenness	Closeness	Clustering	Brokering	Bridgeness
TP53	333	1017443.366745	0.401408	0.027968	0.034839	135.635614
AKT1	138	260150.217669	0.374562	0.044219	0.014196	206.018081
DISC1	91	131642.895006	0.333142	0.016606	0.009632	130.539882
FEZ1	43	39961.948306	0.315902	0.024363	0.004515	196.253855
ERBB4	40	21172.397911	0.325737	0.144872	0.003682	188.374839
GRIN2B	33	23614.446663	0.317337	0.090909	0.003229	362.909288
APOE	29	19099.496744	0.318884	0.088670	0.002845	346.398103
HP	21	22059.197543	0.324588	0.047619	0.002153	519.171834
DRD2	17	15283.833355	0.301050	0.014706	0.001803	580.045729
HTR2A	16	5847.333317	0.292464	0.008333	0.001708	212.879317
IL1B	10	8530.925938	0.304214	0.066667	0.001005	1381.703074
RGS4	10	2039.400569	0.292253	0.066667	0.001005	463.743523
GAD1	10	7993.469172	0.317012	0.222222	0.000837	888.443883
DRD1	8	9964.681533	0.282170	0.071429	0.000800	827.421927
PPP3CC	8	10512.488952	0.289196	0.035714	0.000830	985.201738
NRG1	7	349.958475	0.272072	0.238095	0.000574	126.388843
COMT	5	3676.951004	0.273329	0.000000	0.000538	1028.239964
SLC6A4	5	565.928439	0.283911	0.000000	0.000538	197.019715
DRD4	5	2814.994398	0.298228	0.000000	0.000538	1209.842385
PLXNA2	4	9316.180826	0.264610	0.000000	0.000431	1746.023442
TPH1	4	574.162877	0.312481	0.333333	0.000287	7943.713227
RELN	4	43.733810	0.240987	0.333333	0.000287	13.904311
GRM3	4	248.812705	0.284468	0.000000	0.000431	597.497122
GABRB2	4	555.585080	0.261145	0.000000	0.000431	288.445351
DAO	3	768.669783	0.283496	0.000000	0.000323	676.604177
OPCML	1	0.000000	0.253044	0.000000	0.000108	0.000000
ZNF804A	1	0.000000	0.258773	0.000000	0.000108	0.000000
MTHFR	1	0.000000	0.238457	0.000000	0.000108	0.000000
RPGRIP1L	1	0.000000	0.270930	0.000000	0.000108	0.000000
GRIK4	1	0.000000	0.229498	0.000000	0.000108	0.000000

4. Resultados – Remoção de um único gene - Score X

Diferença(%) ou Impacto = (100 – intersecção%)

4. Resultados – Remoção de um único gene - Score X

4. Resultados – Remoção de um único gene - Score Δ'

4. Resultados – Remoção de um único gene - Score Δ'

4. Resultados – Remoção de um único gene – Score Δ' x Score X

4. Resultados – Remoção de mais de um gene - Score X

Intersecção = Overlap

4. Resultados – Remoção de mais de um gene - Score X

4. Resultados – Remoção de mais de um gene - Score Δ'

4. Resultados – Remoção de mais de um gene - Score Δ'

4. Resultados – Remoção de mais de um gene – Score Δ' x Score X

5. Conclusão

- O método apresentou-se robusto em relação aos genes sementes
- Quanto maior a lista comparada, menor é a variância das interseções com o experimento original
- A métrica X é mais robusta que a métrica Δ'
- O Grau do gene semente não está diretamente relacionado com o impacto

6. Trabalhos futuros

- 1. Analisar a robustez -- em relação as sementes -- de outros métodos, tais como: Random Walk with Restart e comparar com os resultados obtidos neste trabalho
- 2. Pesquisar como integrar novas fontes de dados ao sistema, tais como: dados de epigenética, dados clínicos, etc.
- Concluir interface gráfica adicionando documentação com tutorial de utilização.
- 4. Disponibilização do código fonte na web, e possivelmente uma publicação em um *Application Notes*.
- 5. Criar um serviço web para utilização do método NERI.

Muito obrigado!