

Metamorphic Testing and Debugging of Tax Preparation Software

Saeid Tizpaz-Niari

Computer Science Department University of Texas at El Paso

Shiva Darian
Information Science Department
University of Colorado Boulder

Verya Monjezi
Computer Science Department
University of Texas at El Paso

Krystia Reed
Psychology Department
University of Texas at El Paso

Morgan Wagner
Psychology Department
University of Texas at El Paso

Ashutosh Trivedi Computer Science Department University of Colorado Boulder "Our new Constitution is now established, and has an appearance that promises permanency; but in this world nothing can be said to be certain, except death and taxes."

— Benjamin Franklin, in a letter to <u>Jean-Baptiste Le Roy</u>, 1789

U.S. Tax 101: Manual Tax Filling

Publication 596 (EITC)

Caution: Figure A is an overview of the tests to claim a qualifying child. For details, see the rest of this chapter.

Relationship	A qualifying child is a child who is your										
	Son, daughter, stepchild, foster child, or a descendant of any of them (for example, your grandchild)										
	OR										
	Brother, sister, half brother, half sister, stepbrother, stepsister, or a descendant of any of them (for example, your										
that you are no	√ Complete the Earned Income Worksheet, later, in these instructions. √ 1040 and 1040-SR filers. Complete line 27; Schedule 2, line 5; Schedule 2, line 6; and Schedule 3, line 11 of your return if they apply to you. √ 1040-NR filers. Complete Schedule 2, line 5; Schedule 2, line 6; and Schedule 3, line 11 of your return if they apply to you. *heet only if you meet each of the lierus discussed under line 3 of Credit Limit Worksheet A, including of filing Form 2555.										
GAUTION	Enter the amount from Schedule 8812, line 12										
2	Number of qualifying children under 17 with the required social security number: × \$1,500. Enter the result. 2										
Schedul	TIP: The number of children you use for this line is the same as the number of children you used for line 4 of Schedule 8812.										
8812	3. Enter your earned income from line 7 of the Earned Income Worksheet.										
Jo	4. Is the amount on line 3 more than \$2,500? No. Leave line 4 blank, enter -0- on line 5, and go to line 6. Yes. Subtract \$2,500 from the amount on line 3. Enter the result.										
	5. Multiply the amount on line 4 by 15% (0.15) and enter the result.										
	 On line 2 of this worksheet, is the amount \$4,500 or more? No. If you are a bona fide resident of Puerto Rico and line 5 above is less than line 1 above, go to line 7. Otherwise, leave lines 7 through 10 blank, enter -0-on line 11, and go to line 12. 										
Re	Yes. If line 5 above is equal to or more than line 1 above, leave lines 7 through 10 blank, enter -0- on line 11, and go to line 12. Otherwise, go to line 7.										
If married filing jointly, include your spoace's amounts with yours when completing lines 7 and 8.	7, If your employer withheld or you paid Additional Medicare Tax or Tier I RRTA taxes, use the Additional Medicare Tax and RRTA Tax. Worksheet to figure the amount to enter; otherwise enter the following amounts. - Social security tax withheld from Form(s) W-2, box 2, and Puerto Rico Form(s) 499R-2/W-2PR, box 21, and - Medicare tax withheld from Form(s) W-2, box 6, and Puerto Rico Form(s) 499R-2/W-2PR, box 3.3.										
	8. Enter the total of any amounts from— • Schedule 1, line 15; • Schedule 2, line 5; • Schedule 2, line 6; and • Schedule 2, line 13.										
	Add lines 7 and 8. Enter the total.										

Metamorphic Testing and Debugging of Tax Preparation Software (ICSE-SEIS 2023)

Tax Preparation Software (US-based)

- 72 million tax returns via software
- 11.2 billion dollars industry
- Free (Open-source) options for low-income

Langley v. Comm'r, T.C. Memo. 2013-22. The misuse of tax preparation software, even if unintentional or accidental, is no defense to accuracy-related penalties under section 6662.

Accountable Tax Software

- Comply with laws, regulations, or public policies as they evolve over time.
- Approaches for Accountability of Software
 - Formal verification to ensure compliance;
 - Methodologies for software design, development, and maintenance; and
 - Specification and reasoning about software compliance and accountability.

Challenges

Absence of Oracle

• Given a taxpayer profile, the ground truth for the tax returns, eligibilities, and credits are not known a prior even for the tax experts;

Lack of Trustworthy Dataset

• Due to obvious privacy and legal concerns; and

Computationally difficult

Finding similar tax profiles is hard (scale, notion of similarity, etc).

Differential Debugging of Tax Software

Observation 1:

- Tax law adheres to the principles of ``common'' law;
- It implements the legal doctrine of precedent; hence,
- Similar cases must follow similar rulings.

Observation 2:

- Horizontal equity in taxation: relation between similarly situated tax-payers;
- Vertical equity in taxation: relation between taxpayers in different income buckets

Equity in Tax Domain Goes Beyond Software

Racial Bias in IRS Tax Audits

Metamorphic Specifications

Validation of software correctness by comparing inputs/outputs

- Example 1: Search Engine
 - $\forall q1, q2. \ q1 \subseteq q2 \Rightarrow Items(q1) \geq Items(q2)$

- Example 2: Numerical Software
 - $\forall \theta_1, \theta_2. \theta_2 = 2 * \pi + \theta_1 \Rightarrow Sin(\theta_1) == Sin(\theta_2)$
- Example 3: Tax Software
 - $\forall x_1, x_2. x_2 \equiv_{age} x_1 \land x1.age \ge x2.age \Rightarrow Return(x_1) \ge Return(x_2)$

TenForty

Research Questions

 RQ1: Are metamorphic relation (MR) useful to capture the legal requirements of tax preparation software?

 RQ2: Can randomized algorithm with Bayesian guarantees be effective in testing tax preparation software against the MR?

• RQ3: Could data-driven fault localization help **pinpoint the root of failures** in the internal and input spaces?

RQ1: Suitability of MR for Tax Law and Policy

Id	Domain	Metamorphic Property
1	Disability	$\forall \mathbf{x}, \mathbf{y}((\mathbf{x} \equiv_{age} \mathbf{y}) \land (\mathbf{x}.age \geq 65) \land (\mathbf{y}.age < 65)) \lor ((\mathbf{x} \equiv_{blind} \mathbf{y}) \land (\mathbf{x}.blind \land \neg \mathbf{y}.blind)) \implies \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$
2	Disability	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \implies \forall \mathbf{y}((\mathbf{x} \equiv_{s_age} \mathbf{y}) \land (\mathbf{x}.s_age \geq 65) \land (\mathbf{y}.s_age < 65)) \lor ((\mathbf{x} \equiv_{s_blind} \mathbf{y}) \land (\mathbf{x}.s_blind \land 1)$
		$\neg \mathbf{y}.s_blind)) \implies \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$
3	EITC	$\forall \mathbf{x}(\mathbf{x}.sts = MFS) \implies \forall \mathbf{y}(\mathbf{x} \equiv_{L27} \mathbf{y} \land \mathbf{x}.L27 > 0.0 \land \mathbf{y}.L27 = 0.0) \implies \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{y})$
4	EITC	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \land (\mathbf{x}.AGI > 56,844) \implies \forall \mathbf{v}(\mathbf{x} \equiv_{L27} \mathbf{v} \land \mathbf{x}.L27 > 0.0 \land \mathbf{v}.L27 = 0.0) \implies \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{v})$
5	EITC	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \Longrightarrow \forall \mathbf{y}(\mathbf{x} \equiv_{AGI} \mathbf{y} \land \mathbf{x}.AGI \leq 56,844 \land \mathbf{y}.AGI > 56,844) \lor (\mathbf{x} \equiv_{L27} \mathbf{y} \land \mathbf{x}.L27 > 0.0 \land \mathbf{y}.L27 = 0.0) \lor$
		$(\mathbf{x} \equiv_{QC} \mathbf{y} \land \mathbf{x}. QC \geq \mathbf{y}. QC) \Longrightarrow \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$
6	EITC	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \land (\mathbf{x}.AGI \leq 56,844) \Longrightarrow \forall \mathbf{y}((\mathbf{x} \equiv_{L27}\mathbf{y}) \land \mathbf{x}.L27 \geq \mathbf{y}.L27) \Longrightarrow \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$
7	CTC	$\forall \mathbf{x}(\mathbf{x}.sts = MFS) \land (\mathbf{x}.AGI < 200k) \forall \mathbf{y}((\mathbf{x} \equiv_{L19} \mathbf{y}) \land (\mathbf{x}.L19 > \mathbf{y}.L19)) \Longrightarrow \mathcal{F}(\mathbf{x}) > \mathcal{F}(\mathbf{y}))$
8	CTC	$\forall \mathbf{x}, \mathbf{x}'(\mathbf{x}.sts = \mathbf{x}'.sts = MFJ) \land (\mathbf{x}.AGI < 400k) \land (\mathbf{x}'.AGI \ge 400k) \land [\mathbf{x}'.AGI - 400k]_{1k} * 0.05 < \mathbf{x}'.QC * 2k + \mathbf{x}.OD *$
		$0.5k \Longrightarrow \forall \mathbf{y}, \mathbf{y}'(\mathbf{x} \equiv_{\{QC,OD\}} \mathbf{y}) \land (\mathbf{x}' \equiv_{\{QC,OD\}} \mathbf{y}') \land (0 \leq \mathbf{y}.QC \leq \mathbf{x}.QC \leq \mathbf{x}.QC \leq \mathbf{x}'.QC \leq 10) \land (0 \leq \mathbf{y}.OD = \mathbf{y}'.OD \leq \mathbf{y}.QC \leq \mathbf{x}.QC \leq $
		$\mathbf{x}.OD = \mathbf{x}'.OD \leq 10$ $\Longrightarrow (\mathcal{F}(\mathbf{x}) - \mathcal{F}(y)) \geq (\mathcal{F}(x') - \mathcal{F}(y'))$
9	ETC	$\forall \mathbf{x}(\mathbf{x}.sts = MFS) \implies \forall \mathbf{y}(\mathbf{x} \equiv_{L29} \mathbf{y} \land \mathbf{x}.L29 > 0.0 \land \mathbf{y}.L29 = 0.0) \implies \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{y})$
10	ETC	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \land (\mathbf{x}.AGI \ge 180k) \implies \forall \mathbf{y}(\mathbf{x} \equiv_{L29} \mathbf{y} \land \mathbf{x}.L29 > 0.0 \land \mathbf{y}.L29 = 0.0) \Longrightarrow \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{y})$
11	ETC	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \land (\mathbf{x}.AGI \leq 160k) \implies \forall \mathbf{y}(\mathbf{x} \equiv_{L29} \mathbf{y} \land \mathbf{x}.L29 \geq \mathbf{y}.L29) \Longrightarrow \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$
12	ETC	$\forall \mathbf{x}, \mathbf{x}'(\mathbf{x}.sts = \mathbf{x}'.sts = MFJ) \land (\mathbf{x}.AGI \leq 160k) \land (160k < \mathbf{x}'.AGI < 180k) \implies \forall \mathbf{y}, \mathbf{y}'((\mathbf{x} \equiv_{L29} \mathbf{y}) \land (\mathbf{x}' \equiv_{L29} \mathbf{y}') \land (\mathbf{x}' \equiv_{L29} \mathbf{y}'$
		$(\mathbf{x}.L29 = \mathbf{x}'.L29 \ge \mathbf{y}.L29 = \mathbf{y}'.L29)) \Longrightarrow (\mathcal{F}(\mathbf{x}) - \mathcal{F}(y)) \ge (\mathcal{F}(x') - \mathcal{F}(y'))$
13	ID	$\forall \mathbf{x}, \mathbf{y}(\mathbf{x} \equiv_{MDE} \mathbf{y}) \land (\mathbf{x}.MDE \leq \mathbf{x}.AGI * 7.5\%) \land (\mathbf{y}.MDE = 0.0) \implies \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{y})$
14	ID	$\forall \mathbf{x}(\neg \mathbf{x}.iz) \implies \forall \mathbf{y}(\mathbf{x} \equiv_{MDE} \mathbf{y} \land \mathbf{x}.MDE > 0.0 \land \mathbf{y}.MDE = 0.0) \implies \mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{y})$
15	ID	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \Longrightarrow \forall \mathbf{y}((\mathbf{x} \equiv_{iz,L12} \mathbf{y}) \land (\mathbf{x}.iz \land \neg \mathbf{y}.iz) \land (\mathbf{x}.L12 \leq 24.8k \land \mathbf{y}.L12 = 0.0)) \Longrightarrow \mathcal{F}(\mathbf{x}) \leq \mathcal{F}(\mathbf{y})$
16	ID	$\forall \mathbf{x}(\mathbf{x}.sts = MFJ) \Longrightarrow \forall \mathbf{y}((\mathbf{x} \equiv_{iz,L12} \mathbf{y}) \land (\mathbf{x}.iz \land \neg \mathbf{y}.iz) \land (\mathbf{x}.L12 > 24.8k \land \mathbf{y}.L12 = 0.0)) \Longrightarrow \mathcal{F}(\mathbf{x}) \geq \mathcal{F}(\mathbf{y})$

RQ1: Suitability of MR for Tax Law and Policy

Id	Year 2018	Year 2019	Year 2021
1,2	No Change	No Change	No Change
3	No Change	No Change	$\mathcal{F}(\mathbf{x}){\geq}\mathcal{F}(\mathbf{y})$
4	$\mathbf{x}.AGI > 54,884$	$\mathbf{x}.AGI > 55,952$	$\mathbf{x}.AGI > 57,414$

Answer RQ1:

- Metamorphic relations are suitable to specify the correctness requirements in tax software.
- ❖ These relations allow us to update the requirements as the tax policies evolve over time.

14	Not Possible	Not Possible	No Change
15	$\mathbf{x}.L8 \leq 24.0k \implies$	$\mathbf{x}.L9 \leq 24.4k \implies$	$\mathbf{x}.L12 \leq 25.1k \implies$
	$\mathcal{F}(\mathbf{x}) {=} \mathcal{F}(\mathbf{y})$	$\mathcal{F}(\mathbf{x}) {=} \mathcal{F}(\mathbf{y})$	$\mathcal{F}(\mathbf{x}) {\leq} \mathcal{F}(\mathbf{y})$
16	x.L8>24.0k	$\mathbf{x}.L9>24.4k$	$\mathbf{x}.L12>25.1k$

RQ2: Testing Software against MR requirements

Property ID	OpenTaxSolver 2018			OpenTaxSolver 2019			OpenTaxSolver 2020				OpenTaxSolver 2021					
1 Toperty ID	#test cases	#fail	#pass	$T_F(s)$	#test cases	#fail	#pass	$T_F(s)$	#test cases	#fail	#pass	$T_F(s)$	#test cases	#fail	#pass	$T_F(s)$
Disability (1)	36,558	0	36,558	N/A	35,970	0	35,970	N/A	36,255	0	36,255	N/A	32,456	0	32,456	N/A
Disability (2)	<u> 3</u> 6. 369	0	36.369	N/A	36.780	0	36.780	N/A	35.790	0	35.790	N/A	32.355	0	32.355	N/A
EITC (3)	3														32,343	N/A
EITC (4)	$ \ 3 $														0	0.05
EITC (5)	3 Anguer DO2.												32,883	N/A		
EITC (6)	3 Answer RQ2:													32,962	N/A	
CTC (7)	¹ ❖ Updated software is no longer satisfying the correctness requirements.												32,388	N/A		
CTC (8)	1 1	puai	eu soi	twar	e is no i	Juge	Saus	rymg	the con	recun	ess requ	uiren	ients.		16,346	N/A
ETC (9)	3 *	1+:,	میر ما	مالم	cc aroac	rala	ta ta n	a a rri c	d filing	cono	rataly	+2+116			1,102	0.05
ETC (10)	3 🐪 1	viuitiļ	ne we	aknes	ss areas	reia	te to n	name	ea ming	sepa	racery S	tatus	•		34	0.05
ETC (11)	1														16,459	29.02
ETC (12)	1														14,636	N/A
ID (13)	36,801	U	36,801	N/A	36,210	0	36, 210	N/A	36, 160	15	36, 145	70.09	27, 348	5,508	21,840	0.06
ID (14)	—	_	_	_	—		_		36,405	0	36,405	N/A	31,916	0	31,916	N/A
ID (15)	36,926	0	36,926	N/A	36,630	0	36,630	N/A	36,315	0	36, 315	N/A	32,793	0	32,793	N/A
ID (16)	36,846	0	36,846	N/A	36,570	0	36,570	N/A	36,235	10	36,225	46.02	32,363	8	32,355	44.34

RQ3: Data-Driven Root Cause Identification

Answer RQ3:

- Decision trees are useful artifacts to explain failing circumstances.
- ❖ Our experiences show that the software might completely miss an eligibility condition.
- Our results also showed unexpected errors due to finite precision in the computation.

Forensic DNA Software

- New York City's Office of Chief Medical Examiner (OCME) for thousands of criminal cases between 2011 and 2017
- Undisclosed data dropping method CheckFrequencyForRemoval()
- Falsely skew results toward false inclusion for individuals whose DNA was not present.

"Do I Qualify?" Screening Software

- Poverty management systems in Pennsylvania (Check Eligibility)
- Comparative implementation of benefit eligibility handbook
- Errors in the eligibility checking: Exclude the most vulnerable families from receiving the essential aids