Image Processing 실습 6주차

안 준 혁

Department of Computer Science and Engineering

Chungnam National University, Korea

실습 소개

• 과목 홈페이지

- 충남대학교 사이버 캠퍼스 (http://e-learn.cnu.ac.kr)

• TA 연락처

- 공대 5호관 531호 컴퓨터비전 연구실
- 과제 질문은 [IP]를 제목에 붙여 메일로 주세요.
- 00반
 - 안준혁
 - ajh99345@gmail.com
- 01반
 - 신동헌
 - doghon85@naver.com

목차

• 실습

- Sobel filter
- 식으로 Derivative of Gaussian (DoG) 필터 만들어보기

• 과제

- Filtering으로 Derivative of Gaussian (DoG) 필터 만들어보기
- Image resizing
 - Bilinear Interpolation Pixel(1x1 area)

1 2 1

Sobel filter x vertical

Blurring

1D derivative filter (x-direction)

-1	-2	-1
0	0	0
1	2	1

0 1

Sobel filter y horizontal

1D derivative filter (y-direction)

Blurring

• Example

Python 시각화 코드를 통한 display

Example

Python 시각화 코드를 통한 display

• Example

Example

• Example

Python 시각화 코드를 통한 display

- Magnitude f_x : Vertical Sobel filtering된 이미지
 - Image gradient: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$

 f_{v} : Horizontal Sobel filtering된 이미지

– Magnitude (edge strength):
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$M = \sqrt{f_x^2 + f_y^2}$$

Example

Python 시각화 코드를 통한 display

Lena.png

Original

Gradient magnitude

x-direction derivative

y-direction derivative

- noise_Lena.png
 - Noise가 낀 이미지에 대해 Sobel filter 적용해보기

noise_Lena.png

Original

Gradient magnitude

x-direction derivative

y-direction derivative

Derivative of Gaussian (DoG)

noise_Lena.png

Original

Sobel

DoG (Equation)

실습2 DoG_practice.py

• 식으로 DoG filter 만들어보기

$$-G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$-\nabla G(x,y) = \left[\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right]$$

$$-\frac{\partial G}{\partial x} = ?$$

$$-\frac{\partial G}{\partial y} = ?$$

실습2 DoG_practice.py

실습2 DoG_practice.py

noise_Lena.png

Original

Sobel

DoG (Equation)

• Filtering으로 DoG filter 만들어보기

Gaussian filter

noise_Lena.png

Original

DoG (Equation)

Sobel

DoG (Filtering)

- Resize 3x3 → 6x8
 - Image upsampling

- Resize $3x3 \rightarrow 6x8$
 - 1. Create new image
 - (6,8)의 빈 배열 만들기 (0으로 채우기)

6x8 image (New)

• Resize $3x3 \rightarrow 6x8$

- 2. Match up coordinates
 - 픽셀의 영역

3x3 image (Point)

• Resize $3x3 \rightarrow 6x8$

- 2. Match up coordinates (Pixel: 1x1 Area)
 - $y_{old} = a_y y_{new} + b_y$
 - $x_{old} = a_x y_{new} + b_x$
 - Old image 좌측 상단 좌표 \leftrightarrow New image 좌측 상단 좌표 (-0.5, -0.5) \leftrightarrow (-0.5, -0.5)
 - Old image 우측 하단 좌표 ↔ New image 우측 하단 좌표 (2.5, 2.5) ↔ (5.5, 7.5)

(-0.5, -0.5)

$$\begin{cases} -0.5 \cdot a_y + b_y = -0.5 \\ 5.5 \cdot a_y + b_y = 2.5 \end{cases}, \quad a_y = \frac{1}{2}, \quad b_y = -\frac{1}{4}, \quad \therefore y_{old} = \frac{1}{2}y_{new} - \frac{1}{4} \\ \begin{cases} -0.5 \cdot a_x + b_x = -0.5 \\ 7.5 \cdot a_x + b_x = 2.5 \end{cases}, \quad a_x = \frac{3}{8}, \quad b_x = -\frac{5}{16}, \quad \therefore x_{old} = \frac{3}{8}x_{new} - \frac{5}{16} \end{cases}$$

• Resize $3x3 \rightarrow 6x8$

- 3. Iterate over new points
 - $y_{old} = \frac{1}{2}y_{new} \frac{1}{4}$
 - $x_{old} = \frac{3}{8}x_{new} \frac{5}{16}$
 - Mapping new coordinate to old coordinate

1.
$$(0,0) \rightarrow (-\frac{1}{4}, -\frac{5}{16})$$

2.
$$(4,1) \rightarrow (\frac{7}{4}, \frac{1}{16})$$

3.
$$(5,5) \rightarrow (\frac{9}{4}, \frac{25}{16})$$

Resize 3x3 → 6x8

- 3. Iterate over new points
 - $y_{old} = \frac{1}{2}y_{new} \frac{1}{4}$
 - $x_{old} = \frac{3}{8}x_{new} \frac{5}{16}$
 - Mapping new coordinate to old coordinate

1.
$$(0,0) \rightarrow (-\frac{1}{4}, -\frac{5}{16})$$

2.
$$(4,1) \rightarrow (\frac{7}{4}, \frac{1}{16})$$

3.
$$(5,5) \rightarrow (\frac{9}{4}, \frac{25}{16})$$

- Resize 3x3 → 6x8
 - 3. Iterate over new points
 - 4 Case

1. 네점사이 (float, float)

2. 두 점 사이 (float, int) or (int, float)

3. 점과 일치 (int, int)

4. Out of bounds 예시(float, float) (float, int)

Resize 3x3 → 6x8

4. Case 1 – Bilinear interpolation

•
$$f_{new}(\mathbf{x}_{new}) = \sum_{i=1}^{4} w_i f_{old}(\mathbf{x}_i)$$

 $-\mathbf{x}_{old} = (x, y)$
 $-\mathbf{x}_1 = (\lfloor x \rfloor, \lfloor y \rfloor)$
 $-\mathbf{x}_2 = (\lfloor x + 1 \rfloor, \lfloor y \rfloor)$
 $-\mathbf{x}_3 = (\lfloor x \rfloor, \lfloor y + 1 \rfloor)$
 $-\mathbf{x}_4 = (\lfloor x + 1 \rfloor, \lfloor y + 1 \rfloor)$
 $-\mathbf{w}_1 = (\lfloor x + 1 \rfloor - x)(\lfloor y + 1 \rfloor - y)$
 $-\mathbf{w}_2 = (x - \lfloor x \rfloor)(\lfloor y + 1 \rfloor - y)$
 $-\mathbf{w}_3 = (x - \lfloor x \rfloor)(\lfloor y + 1 \rfloor - y)$
 $-\mathbf{w}_4 = (x - \lfloor x \rfloor)(y - \lfloor y \rfloor)$

1. 네 점 사이

- Resize 3x3 → 6x8
 - 4. Case 2 Linear interpolation

•
$$f_{new}(\mathbf{x}_{new}) = \sum_{i=1}^{2} w_i f_{old}(\mathbf{x}_i)$$

• $\mathbf{x}_1 = (\lfloor x \rfloor, \lfloor y \rfloor)$
• $\mathbf{x}_2 = (\lfloor x + 1 \rfloor, \lfloor y \rfloor)$
• $w_1 = (\lfloor x + 1 \rfloor - x)$
• $w_2 = (x - \lfloor x \rfloor)$

2. 두 점 사이 (float, int)

- Resize 3x3 → 6x8
 - 4. Case 2 Linear interpolation

•
$$f_{new}(\mathbf{x}_{new}) = \sum_{i=1}^{2} w_i f_{old}(\mathbf{x}_i)$$

- $\mathbf{x}_1 = (\lfloor x \rfloor, \lfloor y \rfloor)$
- $\mathbf{x}_2 = (\lfloor x \rfloor, \lfloor y + 1 \rfloor)$
- $w_1 = (\lfloor y + 1 \rfloor - y)$
- $w_2 = (y - \lfloor y \rfloor)$

2. 두 점 사이 (float, int)

- Resize 3x3 → 6x8
 - 4. Case 3
 - $f_{new}(\mathbf{x}_{new}) = f_{old}(\mathbf{x}_{old})$

3. 점과 일치 (int, int)

• Resize $3x3 \rightarrow 6x8$

- 4. Case 4
 - 1) y 좌표가 float:

$$1: y = max(y, 0)$$

- 2: y = min(y, h 1)
- 2) x 좌표가 float:

$$1: y = min(y, h - 1)$$

$$2: f(x) = f(min(x, w - 1))$$

3) x 좌표와 y 좌표 모두 float:

$$1: f(x) = f(max(x, 0))$$

$$f(y) = f(max(y, 0))$$

$$2: f(x) = f(min(x, w - 1))$$

$$f(y) = f(max(y, h - 1))$$

4. Out of bounds (int, int)

match_up_coordinates()

$$-y_{old} = a_y y_{new} + b_y$$

$$-x_{old} = a_x x_{new} + b_x$$

- Old image 좌측 상단 좌표 ↔ New image 좌측 상단 좌표 (-0.5, -0.5) ↔ (-0.5, -0.5)
- Old image 우측 하단 좌표 \leftrightarrow New image 우측 하단 좌표 $-(h_{old}-0.5,w_{old}-0.5) \leftrightarrow (h_{new}-0.5,w_{new}-0.5)$

$$\begin{cases} -0.5a_x + b_x = -0.5\\ (h_{new} - 0.5)a_x + b_x = h_{old} - 0.5 \end{cases}$$

$$a_y = \frac{h_{old}}{h_{new}}, \qquad b_y = 0.5(1 - a_y)$$

$$a_{x} = \frac{w_{old}}{w_{new}}, \qquad b_{x} = 0.5(1 - a_{x})$$

과제

• 보고서

- 내용
 - 학과, 학번, 이름
 - 구현 코드: 구현한 코드에 대한 간단한 설명
 - 이미지: 언급한 이미지 모두 첨부
 - 느낀 점: 구현 결과를 보고 느낀 점, 혹은 어려운 점 등
 - 과제 난이도: 개인적으로 느낀 난이도 및 이유(과제가 쉽다, 어렵다 등)
- .pdf 파일로 제출(이외의 파일 형식일 경우 감점)
- 보고서 명
 - [IP]20xxxxxxx_이름_x주차_과제.pdf

과제

• 과제 안내

- 채점 기준
 - 구현을 못하거나 잘못 구현한 경우
 - 보고서 내용이 빠진 경우
 - 다른 사람의 코드 copy 적발시 보여준 사람, copy한 사람 둘 다 0점
 - 내장 함수 사용시 감점(내장 함수를 사용해도 된다고 한 것 제외)
- 제출 파일
 - 아래의 파일을 압축해서 [IP]20XXXXXXX 이름_X주차_과제.zip 으로 제출
 - .py 파일
 - .pdf 보고서 파일
- 제출 기한
 - 2024년 4월 25일 23시 59분까지

Q & A

