

SOUTENANCE DE LICENCE PROFESIONNELLE IOT

Mise en place d'une plateforme graphique de simulation de réseau corporel (BAN)

Par Suzy LANDOU-DUSSAINT
IUT Villetaneuse
Promotion 2020-2021

Tuteur pédagogique:

Monsieur Aomar Osmani

Tuteurs de stage : **Monsieur Massinissa Hamidi Monsieur Alim**

Plan

- I. Introduction
- II. Réalisations
- III. Conclusion
- IV. Questions

. Introduction

1. Définition du projet:

Qu'est-ce qu'un réseau corporel ou BAN

- Réseau sans fil
- Radio-fréquences
- Capteurs, autonomie, courants de très faible puissance

I. Introduction

- But des réseaux corporels (BAN)
 - Domaine médical

I. Introduction

- But des réseaux corporels (BAN)
 - Domaine du sport
 - Mesurer en temps réel les performances et l'activité des sportifs
 - Lecture de la fréquence cardiaque
 - Température
 - > Flux respiratoire

Domaine des jeux vidéos

I. Introduction

- But des réseaux corporels (BAN)
 - Domaine du spectacle

- Collecte des données (flux de chaleur, mouvement en temps réel, température de la peau)
- Variation ambiance lumineuse et musicale de la salle de spectacle

Introduction

2. Contexte du projet:

- Projet divisé en 2 sous projet;
- Géré par 2 équipes de 2 étudiants
- Suivi par 2 enseignants chercheurs

3. Mes Tâches

- Collecter les modules;
- Drawflow;
- Castalia;

1. Collecter les modules

- Visites de plusieurs sites internet
- Collecte des spécifications des modules
- Regroupement et normalisation des spécifications

1. Collecter les modules

	A
1	Module Bluetooth 2.1 + EDR classe 2 RN-42, profil SPP
2	Module Bluetooth 4.1, 4.2 Silicon Labs 8dBm
3	Module Bluetooth 4 Panasonic 0dBm
4	Module Bluetooth Schneider Electric
5	Module Bluetooth 4.1 Cypress Semiconductor 3dBm
6	Module Bluetooth 4 Laird Connectivity 7dBm
7	Module Bluetooth 4.1 STMicroelectronics 4dBm
8	Module ZigBee Digi International XB8-DMUS-002 +12dBm - 106dBm GPIO, SPI, UART, USB Pan, RS232, RS485 1.33 x 22 x
9	Module ZigBee Silicon Labs MGM111A256V2
10	CC2620 SimpleLink™ ZigBee® RF4CE Wireless MCU
11	

1. Collecter les modules

4	А	В	С	D	E	F	G	Н	1	J	K
1	Module	1	2	3	4	5	6	7	8	9	10
2	type de protocole	Bluetooth	Bluetooth	Bluetooth	Bluetooth	Bluetooth	Bluetooth	Bluetooth	Xbee	ZigBee	IEEE 802.15.
3	Puissance de sortie maximum	4dBm	8dBm	0dBm	6dBm	3 dBm	7dBm	4dBm	+12dBm	+10dBm	
4	Sensibilité du récepteur	-80dBm	-91 dBm	-96dBm	-92dBm	-87dBm	-89dBm	-88dBm	-106dBm	-99 dBm	+5 dBm
5	Interfaces bus supportées	SPI, UART	I2C, SPI, UART	USART	UART	I2C, SPI, UAF	GPIO, 12S, PC	SPI	GPIO, SPI, U	GPIO, SPI, U	ART, USB
6	Interfaces E/S supportées	USB	Série	USB		Série	Série	IRQ, RESET,	Pan, RS232,	RS485	
7	Tension d'alimentation	+3,0 V à +3,6 V	+2,4 à +3,8 V	+2 à +3,6 V		+1,8 V à +5,5	1.8 V to 3.6 V	1,7 à 3,6 V	2.7 à 3.6 V	1.85 à 3.8 V	1.8 to 3.8 V
8	Dimensions	13.4 x 25.8 x 2 mm	15 x 13 x 2.2 mm	14.5 x 8.2 x 3	mm	10 x 10 x 1.8	13 x 8.5 x 1.6	13.5*11.5*2	1.33 x 22 x 0	12,9*15*2,2	mm
9	Hauteur	2 mm	2.2 mm	3 mm		1.8 mm	1.6 mm	2 mm	2.03mm	2.2 mm	
10	Longueur	25.8 mm	15 mm	14.5 mm		10 mm	13 mm	13.5 mm	22mm	12.9 mm	
11	Température d'utilisation max	+85 °C	+85 °C	+85 °C	-40 à +85 °C	+85 °C	+ 85 C	+85 °C	+85 °C	+85 °C	+85 °C
12	Température de fonctionnement min	-40 °C	-40 °C	-40 °C		-40 °C	- 30 C	-40 °C	-40 °C	-40 °C	-40 °C
13	Largeur	13.4 mm	13 mm	8.2 mm		10 mm	8.5 mm	11.5 mm	33.78mm	15 mm	
14	Constructeur	Microchip	Silicon Labs	Panasonic	Schneider Ele	Cypress Semi	Laird Connec	STMicroelec	Digi Internat	Silicon Labs	Texas instrur
15	liens	RN42-I/RM630 Mo	BGM111A256V1 N	PAN1721-BR	SR2BTC01 - 2	CYBLE-22200	BT830-SA-01	Very low pov	Module ZigB	Module ZigB	Fiche technic
16	fréquence RF	2,480 GHz	2,4 GHz	26 MHz		2 482 MHz	2.48 GHz	2480 MHz	870 MHz	2 483 MHz	2,4 GHz
17	Portée	10 m	200 m		10 m				4 km		
18	Vitesse de transmission		100 kb/s			1 Mbit/s	3 Mb/s		80 kb/s	250 kb/s	
19	Vitesse de transmission SPP	300 Kbs/s									
20	Vitesse de transmission HCI	3 Mbits/s									
21	Communication de l'hôte	UART série avec cor	UART série avec cor	USB (PAN172	UART	UART	UART		UART, SPI sé	UART/SPI	UART/I2C
22	Communication série		deux SPI et deux I ² C	,		I ² C, SPI					

- 2. Travail au niveau du Drawflow
 - Forker le drawflow en local
 - Maquette du Drawflow

2. Travail au niveau du Drawflow

2. Travail au niveau du Drawflow

- Faire la liaison entre le Drawflow et la base de données
- Début de développement d'une barre de recherche automatique
- Langage Javascript

- 3. Travail au niveau de Castalia
 - Installation des logiciels
 - Etude du fonctionnement du logiciel

III. Conclusion

- Objectifs atteints
- Difficulté rencontré
 - Pas de maitrise de Castalia
 - Difficultés de trouver des informations
- Ce qui a bien marché:
 - Collectes des données
 - Normalisation des specifications
 - Travail au niveau du drawflow
- Ce qui n'a pas bien marché et pourquoi
 - Jonction entre le drawflow et Castalia

