Visvesvaraya National Institute of Technology Department of Mathematics II sessional Examination-2018 Linear Algebra and Applications (MAL-206)

Time: 1 hour Marks: 15

Answer any five questions.

- Q.1 Let T be the linear operator on \mathbb{R}^3 defined by T(x,y,z)=(x-3y-2z,y-4z,z).
 - (a) Show that T is invertible.
 - (b) Find T^{-1} and T^{-2} .

[1 + 2]

- Q.2 Let T be a linear transformation on the finite dimesional space V and let P be the change-of-basis matrix from a basis \mathcal{B} to a basis \mathcal{B}' . Then show that $[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$.
- Q.3 Suppose the x and y axes in the \mathbb{R}^2 are rotated counterclockwise by the angle $\frac{\pi}{4}$ so that the new x' and y' axes are along the lines y = x and y = -x respectively. Then
 - (a) Find the change of basis matrix.
 - (b) Find the co-ordinate of the point (a, b) under the given rotation.

[1.5 + 1.5]

- Q.4 Let $A = \begin{pmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{pmatrix}$. Recall that A determines a mapping $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(v) = Av, where vectors are written as columns. Find the matrix $[F]_{S,S'}$ that represents the mapping relative to the following bases of \mathbb{R}^3 and \mathbb{R}^2 : $S = \{(1,1,1), (1,1,0), (1,0,0)\}$ and $S' = \{(1,3), (2,5)\}$. [3]
- Q.5 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y) = (7x + 3y, 3x y). Find invertible orthogonal matrix P such that $P^{-1}[T]_{\mathcal{B}}P = D$, where D is a diagonal matrix and \mathcal{B} is standard basis of \mathbb{R}^2 .
- Q.6 Let T be a linear operator on an n-dimensional vector space V. Then show that the characteristic and minimal polynomial for T have the same roots except for multiplicities.
