

Waves

- Continuous disturbance that transfers energy without any net displacement of the medium particles is called wave.
- Different types of waves on the basis of their production are mechanical wave, electromagnetic wave and matter wave.
- Different types of mechanical waves on the basis of their propagation transverse wave and longitudinal waves.
- Mechanical waves need a medium for its propagation.

• Representation of a sinusoidal wave travelling along the positive x-axis is

$$y(x, t) = a \sin(kx - \omega t + \Phi)$$

The equation can also be represented as linear combination of sine and cosine function.

$$y(x, t) = A \sin(kx - \omega t) + B \cos(kx - \omega t)$$
, where $a = \sqrt{A^2 + B^2}$ and $\Phi = \tan^{-1}\left(\frac{B}{A}\right)$

• Relation between velocity, frequency, and wavelength of a wave:

$$v = \nu \lambda$$

• Speed of transverse waves in a stretched string is given by,

$$v = \sqrt{\frac{T}{\mu}}$$

Speed of longitudinal wave in a solid bar is given by,

$$v = \sqrt{\frac{Y}{\rho}}$$

 $ho
ightarrow extsf{Density}$ of the material of the bar

 $Y \rightarrow$ Young's modulus of elasticity

· Velocity of longitudinal wave in a liquid is given by,

$$v = \sqrt{\frac{B}{\rho}}$$

 $B \rightarrow Bulk modulus of elasticity$

• Newton's Formula: The velocity of sound waves in air is given by,

$$v = \sqrt{\frac{P}{\rho}}$$

 $extit{P}
ightarrow ext{Pressure},
ho
ightarrow ext{Density of air}$

 Laplace corrected the formula for velocity of sound waves in air or gas. According to Laplace's formula, the velocity of sound waves in air or gas is given by

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

Where, γ is the ratio of two specific heats, $\mathrm{C_p/C_v}$

Factors affecting velocity of sound:

- Velocity of sound in a gas is directly proportional to the square root of absolute temperature.
- Velocity of sound in moist air is greater than velocity of sound in dry air.
- It is inversely proportional to the square root of density of gas.
- It is independent of pressure, provided temperature is constant.

• Superposition Principle: The net displacement is the vector sum of the displacements

caused by individual waves at that point.

$$Y = Y_1 + Y_2 + ... + Y_n$$
 (For wave grouping)

- **Interference** is the redistribution of energy when two waves with a constant phase difference interact.
 - Constructive interference: Net displacement is maximum.
 - Destructive interference: Net displacement is minimum.

Reflection of Wave

- A wave, whether transverse or longitudinal, while travelling in a certain medium undergoes a change in phase when it is incident on the boundary of another medium.
- A wave travelling in a rarer medium suffers a change in phase by π radians when it is incident on the boundary of a denser medium.
- For a wave travelling in a denser medium like water, there is practically no resistance when it is incident on the boundary of a rarer medium like air.
- Quincke's tube experiment provides a good laboratory method of measuring the velocity of sound in air.
- The fundamental frequency of the vibrations in a stretched string,

$$f=rac{1}{2L}\,\sqrt{rac{T}{\mu}}$$
 .

· Law of Length

The frequency of a vibration produced by a stretched string is inversely proportional to its length.

Thus,
$$f \propto \frac{1}{l}$$
.

Law of Tension

The frequency of a vibration is directly proportional to the square root of the tension in a stretched string.

Thus,
$$f \propto \sqrt{T}$$
.

Law of Mass

The frequency of a vibration is inversely proportional to the square root of the mass per unit length of the stretched string.

Thus,
$$f = \frac{1}{\sqrt{M}}$$
.

- **Node** is a point on the vibrating string, which has the maximum tension and the least displacement.
- Anti-node is the point where the displacement is maximum and tension zero.
- Stationary Waves

In strings, stationary waves produce frequencies in multiples of $\left(\frac{v}{2l}\right)$ or harmonics of $\left(\frac{v}{2l}\right)$ i.e $v=\frac{n\nu}{2l}=\frac{n}{2l}\,\sqrt{\frac{T}{\mu}}$

• Stationary waves: In strings, stationary waves produce frequencies multiple of harmonics of $(\frac{v}{2l})$, i.e.

$$v = \frac{nv}{2l} = \frac{n}{2l} \sqrt{\frac{T}{\mu}}$$

- Closed pipe: In closed pipes, only odd harmonics are produced, i.e $v = \frac{(2n+1)v}{4l}$, with fundamental frequency of $\frac{v}{4l}$.
- **Open pipe:** In open pipes, all harmonics with fundamental or first harmonic $\sqrt{2l}$ are produced, i.e. $v = \frac{nv}{2l}$, where v is the velocity of sound.
- **Beats:** Beats arise when two waves with slightly different frequencies, n_1 and n_2 , and comparable amplitudes, are superposed. The beat frequency is $v_{\text{locat}} = |v_1 v_2|$.

End correction

• The end correction is numerically expressed as *e* =0.3 *a*.

Cause of end correction

• The cause of end correction is that the air particles in the plane of the open end of the tube are not free to move in all directions.

Calculation of End Correction

When a pipe is closed at one end:

$$e = \frac{(n_1 l_1 - n_2 l_2)}{(n_1 - n_2)}$$

When a pipe is open at both ends:

$$e=rac{(n_1l_1-n_2l_2)}{2(n_1-n_2)}$$

Limitations of End Correction

- Inner diameter of the tube must be uniform throughout the length.
- Effects of air outside, and that of the temperature of the air outside, are to be neglected.
- The tuning fork must be held in such a way that the tip of its prong must be horizontal, at the centre and at a small distance above the open end of the tube.

Doppler Effect

 Doppler Effect: It is the change in pitch of a sound when there is relative motion between the sound source and the observer.

$$u = \left(\frac{V \pm V_0}{V \pm V_s}\right) \nu_0$$

- $+V_0$ if observer approaches the source
- V_0 if observer recedes from the source
- V_s if observer approaches the observer
- $+V_s$ if observer recedes from the observer

Applications of Doppler's effect:

- Doppler's effect is used to measure the velocities of moving objects in diverse areas such as military, medical science, astrophysics, etc.
- It is also used by police to check over-speeding of vehicles.
- Doppler shift, an application of Doppler's effect, is used at airports to guide aircraft and in the military to detect enemy aircraft.
- In astrophysics, Doppler's effect is used to measure the velocities of stars and also in determining the speed gases in sun.
- Doctors use it to study heart beat and blood flow in different parts of the body.

Limitations of Doppler's effect in sound

- It is applicable when the velocities of the sources of sound and observer are much lower than the velocity of sound
- The source and the observer must move in the same direction.
- The medium must be in rest; otherwise, the formula has to be modified.