Résolution analytique d'équations hyperboliques non linéaires en 1D

Corrigé de la séance 11

14 Février 2006

Exercice 1. Solution classique

La condition initiale $u_0(x) = x$ est croissante et \mathcal{C}^1 sur \mathbb{R} . La méthode des caractéristiques permet de construire une solution classique du problème de Cauchy pour tout t > 0.

1.1 - Pour Bürgers a(u) = u.

Les droites caractéristiques sont d'équations

$$x_{\xi}(t) = a(u_0(\xi))t + \xi = \xi t + \xi.$$

La solution u est constante le long des caractéristiques,

$$u(x_{\xi}(t), t) = u_0(\xi) = \xi$$
.

Soit $(x,t) \in \mathbb{R} \times \mathbb{R}^{+*}$. Il existe une unique caractéristique passant par (x,t). Le pied de cette caractéristique est $\xi = \frac{x}{1+t}$. Finalement (cf. figure 1),

$$u(x,t) = \frac{x}{1+t} \,.$$

Exercice 2. Construction de l'onde de détente

La condition initiale:

$$u_0(x) = \begin{cases} 0 & \text{si } x \le 0 \\ x/\alpha & \text{si } 0 \le x \le \alpha \\ 1 & \text{si } x \ge \alpha \end{cases}$$

est \mathcal{C}^1 par morceaux et continue. La méthode des caractéristiques permet de construire une fonction u continue et \mathcal{C}^1 par morceaux vérifiant l'équation de Bürgers point par point dans tout ouvert où elle est \mathcal{C}^1 . C'est une solution faible du problème.

Fig. 1 – Droites caractéristiques (à gauche) et allure de la solution pour différents temps (à droite).

2.1 - La droite caractéristique issue de ξ a pour équation (cf. figure 2 à gauche)

$$\begin{cases} x = \xi & \text{si } \xi \le 0 & \text{soit } x \le 0 \\ x = \xi + \frac{\xi}{\alpha}t & \text{si } 0 \le \xi \le \alpha & \text{soit } 0 \le x \le t + \alpha \\ x = \xi + t & \text{si } \xi \ge \alpha & \text{soit } x \ge t + \alpha \end{cases}$$

La solution u est constante le long des caractéristiques

$$u(x_{\xi}, t) = u_0(\xi) ,$$

soit (cf. figure 2 à droite)

$$u(x,t) = \begin{cases} 0 & \text{si } \xi \le 0\\ \frac{x}{\alpha + t} & \text{si } 0 \le x \le t + \alpha\\ 1 & \text{si } x \ge t + \alpha \end{cases}$$

Fig. 2 – Droites caractéristiques (à gauche) et allure de la solution pour différents temps (à droite).

- **2.2** La solution n'est pas une solution classique puisqu'elle n'est pas \mathcal{C}^1 .
- 2.3 Lorsque $\alpha \longrightarrow 0$, la condition initiale tend vers un échelon (fonction discontinue). Pour résoudre le problème il faut rajouter des "caractéristiques virtuelles" d'équation $\frac{x}{t}$. La soltion obtenue est continue pour t > 0 (cf. Problème de Riemann à 2 états).

Exercice 3. Problème de Riemann à 2 et 3 états

3.1 - Problème de Riemann à 2 états

- 1. $u_g < u_d$. La condition initiale est croissante mais n'est pas continue.
 - La première solution qui vient à l'esprit est la solution entropique (détente). Les droites caractéristiques ont pour équation

$$\begin{cases} x = u_g t + \xi & \text{si } \xi < 0 \text{ soit } \frac{x}{t} \le u_g \text{ zone } 1\\ x = u_d t + \xi & \text{si } \xi > 0 \text{ soit } \frac{x}{t} > u_d \text{ zone } 2 \end{cases}$$

On introduit des caractéristiques "pour combler l'espace entre les zones 1 et 2. Ces caractéristiques virtuelles ont pour équation $\frac{x}{t} = c$ pour $u_g \le c \le u_d$ (cf. figure 3 à gauche).

La solution est donnée par (cf. figure 3 à droite)

$$u(x,t) = \begin{cases} u_g & \text{si } x \le u_g t \\ \frac{x}{t} & \text{si } u_g t < x \le u_d t \\ u_d & \text{si } x > u_d t \end{cases}$$

Fig. 3 – Droites caractéristiques (à gauche) et allure de la solution pour t > 0 (à droite).

– Une autre solution est d'introduire un choc dans la zone où il n'y a pas de caractéristiques "naturelles". La ligne de choc vérifie Rankine-Hugoniot (RH), soit dans notre cas $\sigma'(t) = \frac{1}{2}(u_g + u_d)$. On obtient, en intégrant, $\sigma(t) = \frac{1}{2}(u_g + u_d)t$ puisque la ligne de choc passe par le point (0,0) (cf. figure 4 à gauche). La solution obtenue vaut alors (cf. figure 4 à droite)

$$u(x,t) = \begin{cases} u_g & \text{si } x < \frac{1}{2}(u_g + u_d)t \\ u_d & \text{si } x > \frac{1}{2}(u_g + u_d)t \end{cases}.$$

Fig. 4 – Droites caractéristiques (à gauche) et allure de la solution pout un temps t > 0 (à droite).

Remarquons que la solution n'est pas entropique puisque $u^- = u_q < u_d = u^+$.

- On pourrait introduire plusieurs lignes de choc

- 2. $u_q = u_d$.
 - La solution classique est $u(x,t) = u_d = u_q$.
 - On peut construire d'autres solutions en introduisant des chocs. Par contre pour pouvoir appliquer RH, il faut rajouter un nombre impaire ≥ 3 de lignes de choc. En effet, si l'on met une ligne de choc, ça n'a pas d'intérêt puisque la solution vaut $u_g = u_d$ de part et d'autre du choc! Si l'on considère 2 lignes de choc, la solution vaut u_g à gauche, u_1 entre les deux zones et u_g à droite. Les équations des deux lignes de choc sont toutes les $2 \sigma(t) = \frac{1}{2}(u_g + u_1)t$; par conséquence la zone entre les deux chocs n'existe pas. La solution est $u(x,t) = u_g$. Considérons donc 3 lignes de chocs l_1, l_2, l_3 . La solution vaut u_g à gauche, u_1 entre l_1 et l_2 , u_2 entre l_2 et l_3 et u_g à droite. RH nous impose que l_1 est d'équation $\sigma(t) = \frac{1}{2}(u_g + u_1)t$, l_2 est d'équation $\sigma(t) = \frac{1}{2}(u_g + u_1)t$ (cf. figure 5 à gauche). L'ordre des zones impose $u_g < u_2$ et $u_1 < u_g$. Il suffit alors de choisir u_1 et u_2 véfiant les deux conditions (cf. figure 5 à droite)!
- 3. $u_q > u_d$.
 - Les droites caractéristiques se coupent pour $t > t^* = 0$. On introduit une ligne de choc vérifiant RH d'équation $\sigma(t) = \frac{1}{2}(u_g + u_d)t$ (cf. figure 6 à gauche). A gauche

Fig. 5 – Droites caractéristiques (à gauche) et allure de la solution pour un temps t > 0 (à droite).

de la ligne de choc la solution vaut u_g et à droite elle vaut u_d (cf. figure 6 à droite).

Fig. 6 – Droites caractéristiques (à gauche) et allure de la solution pour un temps t > 0 (à droite).

– On peut rajouter d'autres lignes de choc

3.2 - Problème de Riemann à 3 états

3.2-(a) Pour une condition initiale croissante, ie $u_1 \leq u_2 \leq u_3$ on peut appliquer la méthode des caractéristiques et il existe une unique solution C^0 .

3.2-(b) La condition initiale vérifie $u_1 = 0$, $u_2 = 1$ et $u_3 = 0$, elle n'est pas croissante. Il y a trois zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone 1 pour

 $\xi \leq 0$, zone 2 pour $0 < \xi \leq 1$ et zone 3 pour $\xi > 1$

$$\begin{cases} x = \xi & \text{si } \xi < 0 & \text{soit } x \le 0 \\ x = \xi + t & \text{si } 0 < \xi < 1 & \text{soit } t < x \le t + 1 & \text{zone2} \\ x = \xi & \text{si } \xi > 1 & \text{soit } x > 1 & \text{zone3} \end{cases}$$

Les caractéristiques des zones 2 et 3 se croisent pour $t > t^* = 0$, il y a naissance d'un choc. L'équation de la ligne de choc est $\sigma(t) = \frac{1}{2}t + 1$.

Il existe une zone, notée 1-2, entre les zones 1 et 2 et qui n'est pas couverte par les caractéristiques. On introduit donc les caractéristiques d'équation $\frac{x}{t} = c$ pour $0 < c \le 1$ pour la zone 1-2.

La droite de discontinuité d'équation $\sigma(t)=\frac{1}{2}t+1$ intercepte la zone 1-2 pour $t\geq t^{**},$ où t^{**} est donné par

$$\frac{1}{2}t^{**} + 1 = t^{**}$$

ie $t^{**}=2$. La ligne de choc entre les zones 1-2 et 3 démarrant au point $(x^{**}=2,t^{**}=2)$ est construite par RH

$$\sigma'(t)[u] = [f(u)]$$

$$\sigma'(t) \left(0 - \frac{\sigma(t)}{t}\right) = \frac{1}{2} \left(0^2 - \frac{\sigma(t)^2}{t^2}\right)$$

$$\sigma'(t) = \frac{1}{2} \frac{\sigma(t)}{t}$$

$$\sigma(t) = \sqrt{2t}.$$

Pour $t > t^{**}$, il y a trois zones : 1,1-2 et 3 ; la zone 2 a disparu. Les caractéristiques sont données figure 7.

La solution est (cf. figure 8):

- pour $t < t^{**} = 2$,

$$u(x,t) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{x}{t} & \text{si } 0 < x < t\\ 1 & \text{si } t \le x < \frac{1}{2}t + 1\\ 0 & \text{si } x > \frac{1}{2}t + 1 \end{cases}$$

Il y a une ligne de choc entre les zones 2 et 3. L'amplitude du choc vaut $\Delta u = -1$ et le choc se déplace à la vitesse $\frac{1}{2}$.

- pour $t > t^{**} = 2$

$$u(x,t) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{x}{t} & \text{si } 0 < x < \sqrt{2t}\\ 0 & \text{si } x > \sqrt{2t} \end{cases}$$

Il y a une ligne de choc entre les zones 1-2 et 3. L'amplitude du choc vaut $\Delta u = -\sqrt{\frac{2}{t}}$ et le choc se déplace à la vitesse $\sqrt{\frac{1}{2t}}$.

Fig. 7 – Droites caractéristiques et lignes de choc

Par conséquent, pour t tendant vers l'infini, l'amplitude et la vitesse du choc tendent vers 0.

3.2-(c) La condition initiale vérifie $u_1 = 2$, $u_2 = 1$, $u_3 = 0$, elle est décroissante. Il y a trois zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone 1 pour $\xi \leq 0$, zone 2 pour $0 < \xi \leq 1$ et zone 3 pour $\xi > 1$,

$$\begin{cases} x = \xi + 2t & \text{si} \quad \xi \leq 0 \\ \text{soit} & x \leq 2t & \text{zone1} \\ x = \xi + t & \text{si} \quad 0 < \xi \leq 1 \\ \text{soit} & t < x \leq t + 1 & \text{zone2} \\ x = \xi & \text{si} \quad \xi > 1 & \text{soit} & x > 1 & \text{zone3} \end{cases} .$$

Les caractéristiques des zones 1 et 2 se croisent pour $t > t^* = 0$, il y a naissance d'un choc. L'équation de la ligne de choc entre les zones 1 et 2 est $\sigma(t) = \frac{3}{2}t$.

Les caractéristiques des zones 2 et 3 se croisent pour $t > t^* = 0$, il y a naissance d'un choc. L'équation de la ligne de choc est $\sigma(t) = \frac{1}{2}t + 1$.

Comme le choc entre les zones 2 et 3 se déplace plus vite que celui entre les zones 1 et 2, les deux lignes de choc vont se croiser pour $t=t^{**}$ avec $\frac{3}{2}t^{**}=\frac{1}{2}t^{**}+1$, soit $t^{**}=1$ et $x^{**}=3/2$. Pour $t>t^{**}$, il n'y a plus que 2 zones : zone 1 et zone 3. La ligne de choc séparant les zones 1 et 3 commence au point $(x^{**}=3/2,t^{**}=1)$ et a pour équation $\sigma(t)=t+\frac{1}{2}$. Les caractéristiques sont données figure 9.

La solution est (cf. figure 10):

- pour
$$t < t^{**} = 1$$
,

$$u(x,t) = \begin{cases} 2 & \text{si } x < \frac{3}{2}t \\ 1 & \text{si } \frac{3}{2}t < x < \frac{1}{2}t + 1 \\ 0 & \text{si } x > \frac{1}{2}t + 1 \end{cases}$$

 $Fig.\ 8-Solution\ pour\ différents\ temps$

Fig. 9 – Droites caractéristiques et lignes de choc

– pour
$$t > t^{**} = 1$$

$$u(x,t) = \begin{cases} 2 & \text{si} \quad x < t+1/2 \\ 0 & \text{si} \quad x > t+1/2 \end{cases}$$

Fig. 10 – Solution pour différents temps

Exercice 4. Equation de Bürgers avec terme d'ordre 0

4.1 - On considère les courbes caractéristiques d'équation $\begin{cases} \frac{dx_{\xi}}{dt} &= u(x_{\xi}(t),t) \\ x_{\xi}(0) = \xi \end{cases}$ Le long de ces courbes, u décroit de manière exponentielle. En effet,

$$\frac{d}{dt}u(x_{\xi}(t),t) = \frac{\partial u}{\partial t}(x_{\xi}(t),t) + \frac{\partial u}{\partial x}u(x_{\xi}(t),t)\frac{dx_{\xi}}{dt}(t) = -\beta u(x_{\xi}(t),t).$$

Par conséquent

$$u(x_{\xi}(t), t) = u(x_{\xi}(0), 0) \exp(-\beta t) = u_0(\xi) \exp(-\beta t).$$

En utilisant l'expression de u, on peut déterminer les caractéristiques

$$\frac{dx_{\xi}}{dt} = u(x_{\xi}(t), t) = u_0(\xi) \exp(-\beta t),$$

avec $x_{\xi}(0) = \xi$. En intégrant par rapport au temps, on obtient

$$x_{\xi}(t) = u_0(\xi) \frac{1 - \exp(-\beta t)}{\beta} + \xi.$$

Les caractéristiques sont des courbes exponentielles. Quand β tend vers 0 on retrouve les droites caractéristiques de Bürgers d'équation $x_{\xi}(t) = u_0(\xi)t + \xi$.

Soit (x, t) un point du plan. Pour u_0 continue et croissante, il existe une et une seule caractéristique passant par (x, t). En effet, considérons la fonction g définie par

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $\xi \longmapsto u_0(\xi) \frac{1-\exp(-\beta t)}{\beta} + \xi - x$

g est une fonction strictement croissante et $\lim_{\xi \to -\infty} g(\xi) = -\infty$ et $\lim_{\xi \to +\infty} g(\xi) = +\infty$. Par conséquent g est une bijection de $\mathbb R$ dans $\mathbb R$.

Pour ce couple (x,t), il existe donc un unique $\xi = g^{-1}(0)$ et $u(x,t) = u_0(\xi) \exp(-\beta t)$.

4.2 - La condition initiale $u_0(x) = \begin{cases} u_g & si \quad x \leq 0 \\ u_g + \frac{u_d - u_g}{\alpha} x & si \quad 0 < x \leq \alpha \\ u_d & si \quad x > \alpha \end{cases}$, est continue et crois-

sante. On peut appliquer directement les résultats établis à la question précédente. La courbe caractéristique issue de ξ a pour équation (cf. figure 11 en haut)

$$\left\{ \begin{array}{lll} x = u_g \frac{1 - \exp(-\beta t)}{\beta} + \xi & \text{si} & \xi \leq 0 & \text{soit} & x \leq u_g \frac{1 - \exp(-\beta t)}{\beta} \\ x = \left(u_g + \frac{u_d - u_g}{\alpha} \xi\right) \frac{1 - \exp(-\beta t)}{\beta} + \xi & \text{si} & 0 < \xi \leq \alpha & \text{soit} & u_g \frac{1 - \exp(-\beta t)}{\beta} < x \leq u_d \frac{1 - \exp(-\beta t)}{\beta} + \alpha \\ x = u_d \frac{1 - \exp(-\beta t)}{\beta} + \xi & \text{si} & \xi \geq \alpha & \text{soit} & x > u_d \frac{1 - \exp(-\beta t)}{\beta} + \alpha \end{array} \right. .$$

La solution u(x,t) vaut alors (cf. figure 11 en bas)

$$u(x,t) = \begin{cases} u_g \exp(-\beta t) & \text{si } x \leq u_g \frac{1 - \exp(-\beta t)}{\beta} \\ \frac{\beta x}{1 - \exp(-\beta t)} \exp(-\beta t) & \text{si } u_g \frac{1 - \exp(-\beta t)}{\beta} < x \leq u_d \frac{1 - \exp(-\beta t)}{\beta} + \alpha \\ u_d \exp(-\beta t) & \text{si } x > u_d \frac{1 - \exp(-\beta t)}{\beta} + \alpha \end{cases}.$$

4.3 - La condition initiale $u_0(x) = \begin{cases} u_g & si & x \leq 0 \\ u_d & si & x > 0 \end{cases}$, (avec $u_d \geq u_g$), est croissante mais n'est plus continue. Les caractéristiques construites à la question 1 sont

$$\begin{cases} x = u_g \frac{1 - \exp(-\beta t)}{\beta} + \xi & \text{si } \xi \le 0 \text{ soit } x \le u_g \frac{1 - \exp(-\beta t)}{\beta} \\ x = u_d \frac{1 - \exp(-\beta t)}{\beta} + \xi & \text{si } \xi > \alpha \text{ soit } x < u_d \frac{1 - \exp(-\beta t)}{\beta} \end{cases}$$

Il y a une zone du plan qui n'est pas balayée par des caractéristiques. Pour pallier à ce problème, on rajoute des caractéristiques "virtuelles" d'équations

$$\frac{\beta x}{1 - \exp(-\beta t)} = cste \,,$$

Fig. 11 – Courbes caractéristiques (en haut) et allure de la solution pour t=0 et t>0 (en bas)

pour *cste* comprise entre u_g et u_d (cf. figure 12 en haut). Le long de ces courbes, u décroit exponentiellement, ie $\frac{\beta x}{1 - \exp(-\beta t)} \exp(-\beta t)$ est solution. Finalement, la solution u(x,t) est donnée par (cf. figure 12 en bas)

$$u(x,t) = \begin{cases} u_g \exp(-\beta t) & \text{si } x < u_g \frac{1 - \exp(-\beta t)}{\beta} \\ \frac{\beta x}{1 - \exp(-\beta t)} \exp(-\beta t) & \text{si } u_g \frac{1 - \exp(-\beta t)}{\beta} \le x < u_d \frac{1 - \exp(-\beta t)}{\beta} \\ u_d \exp(-\beta t) & \text{si } x \ge u_d \frac{1 - \exp(-\beta t)}{\beta} \end{cases}$$

ce qui correspond à la limite quand α tend vers 0 de la solution de la question précédente.

FIG. 12 – Courbes caractéristiques (en haut) et allure de la solution pour t=0 et t>0 (en bas)