	Problem on Trains		
Q.No	Answer		
Q.i. to	Type I – Basic Questions		
1	15 m/s		
2	216 Km/h		
_	Type II- Train is crossing standing man/pole		
1	Answer: Option 'C'		
	Length = Speed × time		
	Speed = L/T		
	S = 400/20		
	S = 20 M/Sec		
	Speed= 20×18/5 (To convert M/Sec in to Kmph multiply by 18/5)		
	Speed = 72 Kmph		
2	Answer: Option 'B'		
	L=SxT		
	$L = 72 \text{ Kmph} \times 20 \text{Sec}$		
	$L = 72 \times 5/18 \times 20$ $L = 400m$		
3	Answer: Option 'B'		
-	L=SxT		
	L = 108 Kmph x 28Sec		
	$L = 108 \times 5/18 \times 28$ $L = 840m$		
	Type III- Train is crossing bridge/tunnel/platform/another stationary train		
1	Answer: Option 'A'		
	270 m		
2	Answer: Option 'B'		
	Speed of the train = (Train length + Bridge Length) / time taken to cross the bridge		
	=> 90 * (5/18)= (130 + Bridge Length) / 21		
	=> 25 =(130 + Bridge Length) / 21		
	=> 130 +Bridge Length = 21 x 25		
	=>130 +Bridge Length =525		
	=> Bridge Length = 525 - 130		
	=>Bridge Length = 395 m		
3	Answer: Option 'C'		
	Given, Length of train =360 m		
	Length of bridge =140 m		
	Speed of train = 45 km/hr> Converting into meter/ second		
	$= 45 \times (5/18) \text{ m/sec}$		
	= 12.5 m/sec		
	=>Speed of train =12.5 m/sec		
	Required Time =(Length of train + Length of bridge) /Speed of train		
	= (360 + 140) / 12.5		
	= 500 / 12.5		
	= 40 sec =>Required Time =40 sec		
4	Answer: Option 'C'		
	Given, time taken by train to pass the man = 20 sec		
	Speed of the train = 54 km/hr		
	> Converting into meter/sec		
	=> Speed of train =54 * (5/18) m/sec = 15 m/sec		
	W.K.T: Speed of train = Length of train/ Time taken by train to pass the man		
	=> 15 = Length of train / 20		
	=>Length of train = 15 * 20		
	=>Length of train = 300 metre.		
	Given, A train passes a station platform in 36 seconds.		
	=>Speed of train = (Length of train + Length of platform) / Time taken by train to pass the platform		
	=> 15 = (300 + Length of platform) / 36		
	=> 15 * 36 = (300+Length of platform)		
	=> 540 =300+Length of platform Thus Length of platform 240 mater		
<i>E</i>	=> 540 - 300 =Length of platform Thus, Length of platform = 240 meter.		
5	Answer: Option D		
	Explanation:		
	Let the length of the train be x metres and its speed by y m/sec.		

	Then, $\frac{x}{y} = 8 \implies x = 8y$		
	Now, $\frac{x + 264}{20} = y$		
	$\Rightarrow 8y + 264 = 20y$		
	\Rightarrow y = 22.		
	: Speed = 22 m/sec = $\left(22 \times \frac{18}{5}\right)$ km/hr = 79.2 km/hr.		
	•• Speed = 22 m/sec = $\left(\frac{22 \text{ x}}{5}\right)$ km/nr = 79.2 km/nr.		
	Type IV- Train is crossing another moving object (Both are going in same direction)		
1	Answer: Option 'C'		
	Relative speed = $(40 - 20) \text{ km/hr} = (20 \times 5/18) \text{ m/sec} = (50/9) \text{ m/sec}$		
2	Therefore, Length of faster train = (50/9 x 5) m = 250/9 m = 27 (7/9) m. Answer: Option 'B'		
	4.5 km/hr = (4.5 x 5/18) m/sec = 5/4 m/sec = 1.25 m/sec, and		
	$5.4 \text{ km/hr} = (5.4 \times 5/18) \text{ m/sec} = 3/2 \text{ m/sec}, \text{ and}$		
	Let the speed of the train be x m/sec.		
	Then, $(x - 1.25) \times 8.4 = (x - 1.5) \times 8.5$		
	=> 8.4x - 10.5 = 8.5x - 12.75		
	=> 0.1x = 2.25		
	=> X = 22.5 Therefore Speed of the train = (22.5 × 19/5) km/hr = 91 km/hr		
3	Therefore Speed of the train = (22.5 x 18/5) km/hr = 81 km/hr. Answer: Option 'B'		
3	Length of the two trains = 600m + 400m		
	Speed of the first train = X		
	Speed of the second train= 48 Kmph		
	1000/X - 48 = 180		
	1000/x - 48 * 5/18 = 180		
4	50 = 9X - 120 X = 68 Kmph		
4	Answer: Option B Explanation:		
	(5) 5		
	$2 \text{ kmph} = \left 2 \times \frac{3}{18} \right \text{ m/sec} = \frac{3}{9} \text{ m/sec}.$		
	5 5 10		
	$2 \text{ kmph} = \left(2 \times \frac{5}{18}\right) \text{ m/sec} = \frac{5}{9} \text{ m/sec.}$ $4 \text{ kmph} = \left(4 \times \frac{5}{18}\right) \text{ m/sec} = \frac{10}{9} \text{ m/sec.}$		
	Let the length of the train be <i>x</i> metres and its speed by <i>y</i> m/sec.		
	(x) (x)		
	Then, $\begin{vmatrix} \frac{1}{3} \\ \frac{1}{5} \end{vmatrix} = 9$ and $\begin{vmatrix} \frac{1}{3} \\ \frac{1}{3} \end{vmatrix} = 10$.		
	Then, $\left(\frac{x}{y-\frac{5}{9}}\right) = 9$ and $\left(\frac{x}{y-\frac{10}{9}}\right) = 10$.		
	9y - 5 = x and $10(9y - 10) = 9x9y - x = 5$ and $90y - 9x = 100$.		
	On solving, we get: $x = 50$.		
	Length of the train is 50 m.		
5	Correct Option: E		
	According to the question,		
	$(60-35) \times \frac{5}{18} = \frac{D}{54}$		
	D = 375 m		
	Length of the faster train = 375m,		
	Length of the slower train =		
	$375 \times \frac{4}{5} = 300 \text{ m}$		
	Hence, option E is correct.		
1	Type V- Train is crossing another moving object (Both are going in opposite direction) Answer: Option 'C'		
'	L = SxT		
	$L = 90 \times 5/18 \times 30$		
	L = 750m		
	Length of second train= total length - Length of first train		
	= 750 - 250 = 500m		

	Answer: Option 'B'	
	Speed of the first train = (120 /10) m/sec = 12 m/sec.	
	Speed of the second train = (120 / 15) m/sec = 8 m/sec.	
	Relative speed = $(12 + 8) = 20$ m/sec.	
	Therefore Required time = [(120+ 120/ 20)] sec = 12 sec.	
	Answer: Option C	
	Explanation:	
	Relative speed = (60+ 90) km/hr	
	Relative speed = $(60+90)$ km/hr $= \left(150 \times \frac{5}{18}\right)_{\text{m/sec}}$ $= \left(\frac{125}{3}\right)_{\text{m/sec}}$	
	$= \frac{150 \times 18}{18} _{m/soc}$	
	(125)	
	$=\left\lceil \frac{125}{2}\right\rceil$	
	- (3) _{m/sec.}	
	Distance covered = $(1.10 + 0.9)$ km = 2 km = 2000 m.	
	(3)	
	Required time = $\begin{vmatrix} 2000 \text{ x} & \frac{1}{425} \end{vmatrix}$	
	Distance covered = $(1.10 + 0.9)$ km = 2 km = 2000 m. Required time = $\left(2000 \times \frac{3}{125}\right)_{\text{sec} = 48 \text{ sec.}}$	
4	Answer: Option C	
	Explanation:	
	Let the speed of the slower train be <i>x</i> m/sec.	
	Then, speed of the faster train = $2x$ m/sec.	
	Relative speed = $(x + 2x)$ m/sec = $3x$ m/sec.	
	. (100 + 100)	
	$\therefore \frac{(100 + 100)}{8} = 3x$	
	\Rightarrow 24x = 200	
	$\Rightarrow x = \frac{25}{3}$.	
	3	
	So, speed of the faster train = $\frac{50}{3}$ m/sec	
	3	
	$= \left(\frac{50}{3} \times \frac{18}{5}\right)_{\text{km/hr}}$	
	$= \begin{bmatrix} 3 & x & 5 \end{bmatrix}_{km/hr}$	
	= 60 km/hr.	
<u> </u>	Type VI – Ratio of length/Logical Questions	
1 Answer: Option 'B'		
	Formula Used:- If two trains start at the same time from points A and B towards each other and after crossing	
	they take a and b hours in reaching B and A respectively, then:	
	Ratio of their speeds is(A's speed) : (B's speed) = $(\sqrt{b} : \sqrt{a})$	
	Let us name the trains as X and Y. Then,	
	a = 9 hours	
	b = 16 hours	
	Ratio of their speeds = (A's speed) : (B's speed) = \sqrt{b} : \sqrt{a} = $\sqrt{16}$: $\sqrt{9}$ = 4 : 3.	
	Answer: Option B	
	Explanation:	
	Suppose they meet x hours after 7 a.m.	
	Distance covered by A in x hours = $20x$ km.	
	Distance covered by B in $(x - 1)$ hours = $25(x - 1)$ km.	
	20x + 25(x - 1) = 110	
i l	$\Rightarrow 45x = 135$	
	$\Rightarrow x = 3.$ So, they meet at 10 a.m.	


```
(125/3)
\Rightarrow a = (375 - 180) = 195 \text{ m.}
8

Answer: Option E

Explanation:

Time taken by train to cross a man = \frac{\text{Length of train}}{\text{Speed of train}} \Rightarrow \text{Speed} = \frac{l}{9} \dots \text{(i)}

Time taken by train to cross a platform = \frac{\text{Length of platform}}{\text{Length of platform}} \Rightarrow \text{Speed} = \frac{l + 240}{24} \dots \text{(ii)}

From (i) and (ii), we get \frac{l}{9} = \frac{l + 240}{24}.

Thus, l can be obtained. So both I and II are necessary to get the answer.

The correct answer is (E).
```