

Figure 48.7: Let V be the pink plane. The vector $u - p_V(u)$ is perpendicular to any $v \in V$.

problem has a solution, but it does! The problem can be restated as follows: Is there some $x \in \mathbb{R}^n$ such that

$$||Ax - b|| = \inf_{y \in \mathbb{R}^n} ||Ay - b||,$$

or equivalently, is there some $z \in \text{Im}(A)$ such that

$$||z - b|| = d(b, \operatorname{Im}(A)),$$

where $\text{Im}(A) = \{Ay \in \mathbb{R}^m \mid y \in \mathbb{R}^n\}$, the image of the linear map induced by A. Since Im(A) is a closed subspace of \mathbb{R}^m , because we are in finite dimension, Proposition 48.7 tells us that there is a unique $z \in \text{Im}(A)$ such that

$$||z - b|| = \inf_{y \in \mathbb{R}^n} ||Ay - b||,$$

and thus the problem always has a solution since $z \in \text{Im}(A)$, and since there is at least some $x \in \mathbb{R}^n$ such that Ax = z (by definition of Im(A)). Note that such an x is not necessarily unique. Furthermore, Proposition 48.7 also tells us that $z \in \text{Im}(A)$ is the solution of the equation

$$\langle z - b, w \rangle = 0$$
 for all $w \in \text{Im}(A)$,

or equivalently, that $x \in \mathbb{R}^n$ is the solution of

$$\langle Ax - b, Ay \rangle = 0$$
 for all $y \in \mathbb{R}^n$,

which is equivalent to

$$\langle A^{\top}(Ax - b), y \rangle = 0$$
 for all $y \in \mathbb{R}^n$,

and thus, since the inner product is positive definite, to $A^{\top}(Ax - b) = 0$, i.e.,

$$A^{\top}Ax = A^{\top}b.$$