Process Mining - 02269 Lecture 2 Events logs

Andrea Burattin

Slides based on material from Matthias Weidlich and Wil van der Aalst

The Context

Logs as an Information Source

- Logs contain information to answer questions
 - When have process instances been executed?
 - How many instances have been executed?
 - Have there been recurring patterns in the executions of activities?
 - Is it possible to construct process models based on the log data?
 - Which sequences of activities have been executed very frequently?
 - Does a process model contain execution sequences that have never been executed?
- Logs are the basis for evidence-based answers to these questions
 - Not biased by human perception of how a process is conducted
 - Not biased by fragmentation of process knowledge
 - Yet, assuming high data quality

Log Entries

- Example log entries
 - Check of invoice with number 4567 finished on 12.11.2010 at 9:19:57
 - StoreCustomerData("Müller", c1987, "Bad Bentheim") executed on 12.11.2010 at 9:22:24
 - Invoice sent for invoice number 4567 finished on 12.11.2010 at 9:23:18
 - Inserted data (c1987, PromoMailing) into customer database on 12.11.2010 at 9:24:10
 - StoreCustomerData("Miller", c1988, "Osnabrück") executed on 12.11.2010 at 9:26:08
 - Check of invoice with number 4568 finished on 12.11.2010 at 9:26:38

From heterogeneous data sources to process mining

Example of event log

- A process consists of cases
- A case consists of events such that each event relates to precisely one case
- Events within a case are ordered
- Events can have attributes
 - Examples of typical attribute names are activity, time, costs, and resource

Tree structure of an event log

Event log terminology

- We assume the presence of an event log
- An event log is a collection of cases
- A case is a trace (or sequence) of events
- Each event refers to a case (case id), an activity and a point in time
 - As seen, events can have many more attributes

Event data might come from any source and format

- A database system (e.g., patients in a hospital)
- Transaction logs (e.g., a trading system)
- ERP systems (e.g., Oracle, SAP)
- API to social media/websites (e.g., Twitter or Facebook)
- CSV files
- Spreadsheet
- ...

Notions of a case

- The definition of a process instance is not always rigid or defined a priori
- Example scenario: e-mail as an event
- What is a possible mapping of an inbox to an event log? (i.e., which field is the activity name, the case id, etc)
- An e-mail has:
 - A sender ("from")
 - A set of recipients ("to")
 - A subject
 - A timestamp
 - A body
 - Other attributes...

Notion of case for emails

- One of the possible mappings
 - A sender ("from") ↔ resource, activity name
 - A set of recipients ("to") ↔ other attributes

 - A body ↔ other attributes
 - Other attributes...
- Other mappings might be meaningful as well... it depends on the context and on the questions we are answering

Notion of case for student data

- An event is an exam attempt by a student. It contains
 - Student id
 - Student gender
 - Student nationality
 - Couse
 - Exam data
 - Mark
- What is the case id and the activity name?

Standard transactional life-cycle of activities

Image source: W. van der Aalst, "Process Mining", 2nd ed, Springer 2016.

Overlapping activity instances

Not only it is necessary to correlate events to process instance, but events might require
a "secondary correlation", i.e., correlate two events to the same activity

- Solutions: add more information or use heuristics (e.g., first-in-first-out order)
- See also Allen, J. "Maintaining knowledge about temporal intervals". Communications of the ACM. 26 (11): 832–843, 1983. https://doi.org/10.1145%2F182.358434

Possible uses of the attributes

Image source: W. van der Aalst, "Process Mining", 2nd ed, Springer 2016.

XES (eXtensible Event Stream)

- IEEE Standard, https://standards.ieee.org/standard/1849-2016.html
- Supported by most commercial and open source vendors
- There are possibilities to convert from CSV to XES and vice versa
- XML syntax with OpenXES library open source
- More info https://xes-standard.org/

Types of Noise

Logging was temporarily not available

Types of Noise cont.

Consequences of Noise

- Massive impact on discovery, conformance, and enhancement techniques we will get back to this
- Already an issue in the construction of event logs
- Major issue: noise is close to impossible to characterise without domain knowledge

Noise Example

Noise Example (cont.)

Noise Example (cont.)

Log-based Noise Handling

- Rely on frequency analysis to identify noise in event log
- Assumption: noise is rare
 - Very infrequent traces can be considered noise
 - Traces that contain very infrequent transitions can be considered noise
 - Operationalization based on standard data mining techniques association rules mining
- Again, this assumption may be wrong!

Practical Considerations

- Event logs take various different forms and instantiations
- Differences in semantics, e.g., related to
 - Timestamps
 - Total vs. partial order
- Difference in quality, e.g., related to
 - Completeness
 - Noise-level
 - Data richness
- Technical alignment by means of standards
- But: semantic alignment a major issue

