TABLE 4.1
Special symbols

Function	Notation	
Rectangle	$\Pi(x) = \begin{cases} 1 & x < \frac{1}{2} \\ 0 & x > \frac{1}{2} \end{cases}$	
Triangle	$\Lambda(x) = \begin{cases} 1 - x & x < 1 \\ 0 & x > 1 \end{cases}$	
Heaviside unit step	$H(x) = \begin{cases} 0 & x > 0 \\ 0 & x < 0 \end{cases}$	
Sign (signum)	$\operatorname{sgn} x = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$	
Impulse symbol*	$\delta(x)$	
Sampling or replicating symbol*	$\mathrm{III}(x) = \sum_{-\infty}^{\infty} \delta(x-n)$	
Even impulse pair	$\Pi(x) = \frac{1}{2}\delta(x + \frac{1}{2}) + \frac{1}{2}\delta(x - \frac{1}{2})$	
Odd impulse pair	$I_{\mathbf{I}}(x) = \frac{1}{2}\delta(x + \frac{1}{2}) - \frac{1}{2}\delta(x - \frac{1}{2})$	
Filtering or interpolating	$\operatorname{sinc} x = \frac{\sin \pi x}{\pi x}$	
Jinc function	$\operatorname{jinc} x = \frac{J_1(\pi x)}{2x}$	
Asterisk notation for convolution	$f(x) * g(x) \triangleq \int_{-\infty}^{\infty} f(u)g(x-u) du$	(p. 24)
Asterisk notation for serial products	$\{f_i\} * \{g_i\} \triangleq \sum_j f_j g_{i-j}$	(p. 31)
Pentagram notation	$f(x) \star g(x) \triangleq \int_{-\infty}^{\infty} f(u)g(x+u) du$	(p. 40)
Various two-dimensional functions	${}^{2}\Pi(x,y) = \Pi(x)\Pi(y)$ ${}^{2}\delta(x,y) = \delta(x)\delta(y)$ ${}^{2}\text{III}(x,y) = \text{III}(x)\text{III}(y)$ ${}^{2}\text{sinc } (x,y) = \text{sinc } x \text{ sinc } y$	

^{*}See Chapter 5.

Sometimes a complex function may be shown to advantage by plotting its modulus and phase, as in Fig. 4.19. Another method is to show a three-dimensional diagram (see Fig. 4.20), and a third method is to show a locus on the complex plane (see Fig. 4.21).

SUMMARY OF SPECIAL SYMBOLS

A small number of special symbols which are used extensively throughout this work are summarized in Table 4.1 and in Fig. 4.22 for reference.

Fig. 4.22 Summary of special symbols.

BIBLIOGRAPHY

Woodward, P. M.: "Probability and Information Theory with Applications to Radar," McGraw-Hill Book Company, New York, 1953.