

Word representation

1

Word representation

V = [a, aaron, ..., zulu, <UNK>]

1-hot representation

Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orang (6257)
[0] 0 0 0 :: 1 :: 0	0 0 0 0 0 :: 1 ::	0 0 0 :: 1 :: 0	[0] 0 0 0 0 : 1 :	[0] :: 1 :: 0 0 0 0	[0] 0 0 0 0 :: 1 ::
r()1	r()1	r() J	r()1	г() л	r() i

I want a glass of orange _____.

I want a glass of apple_____.

Andrew Ng

T , , 1	, , •	7	1 11.
Haatiiriaad	ranragantation	MANAXX	amhadding
reaturized	representation:	WULU	chibedunig

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
			-0.95	0.97	0.00	0.01
			0.93	0.95	-0.01	0.00
			0.7	0.69	0.03	-0.02
			0.02	0.01	0.95	0.97
I want a glass of orange I want a glass of apple Andrew Ng						

3

Visualizing word embeddings

[van der Maaten and Hinton., 2008. Visualizing data using t-SNE]

Andrew Ng

Using word embeddings

5

Transfer learning and word embeddings

- Learn word embeddings from large text corpus. (1-100B words)
 (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set. (say, 100k words)
- 3. Optional: Continue to finetune the word embeddings with new data.

Andrew Ng

7

Relation to face encoding

[Taigman et. al., 2014. DeepFace: Closing the gap to human level performance]

Andrew Ng

Properties of word embeddings

9

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97

 $[Mikolov\ et.\ al.,\ 2013,\ Linguistic\ regularities\ in\ continuous\ space\ word\ representations]$

Andrew Ng

Analogies using word vectors

$$e_{man} - e_{woman} \approx e_{king} - e_?$$

Andrew Ng

11

Cosine similarity

$$sim(e_w,e_{king}-e_{man}+e_{woman})$$

Man:Woman as Boy:Girl Ottawa:Canada as Nairobi:Kenya Big:Bigger as Tall:Taller Yen:Japan as Ruble:Russia

Andrew Ng

Embedding matrix

13

Embedding matrix

In practice, use specialized function to look up an embedding.

Andrew Ng

Learning word embeddings

15

Neural language model of Ι glass want a orange 4343 9665 3852 6163 6257 Ι Е o_{4343} e_{4343} want 09665 e_{9665} o_1 e_1 a glass o_{3852} e_{3852} Е of e_{6163} o_{6163} orange o_{6257} e_{6257} [Bengio et. al., 2003, A neural probabilistic language model] Andrew Ng

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Nearby 1 word

Andrew Ng

17

NLP and Word Embeddings

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

 $[{\rm Mikolov}\ et.\ al.,\ 2013.\ Efficient\ estimation\ of\ word\ representations\ in\ vector\ space.]$

Andrew Ng

19

Model

Vocab size = 10,000k

Andrew Ng

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

How to sample the context c?

Andrew Ng

21

NLP and Word Embeddings

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

[Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality]

Andrew Ng

23

Model

Softmax: $p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$

<u>context</u>	<u>word</u>	target?
orange	juice	1
orange	king	0
orange	book	0
orange	the	0
orange	of	0

Andrew Ng

Selecting negative examples

<u>context</u>	$\underline{\text{word}}$	target?
orange	juice	1
orange	king	0
orange	book	0
orange	$_{ m the}$	0
orange	of	0

Andrew Ng

25

NLP and Word Embeddings

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

[Pennington et. al., 2014. GloVe: Global vectors for word representation]

Andrew Ng

27

Model

Andrew Ng

A note on the featurization view of word embeddings

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)
Gender	-1	1	-0.95	0.97
Royal	0.01	0.02	0.93	0.95
Age	0.03	0.02	0.70	0.69
Food	0.09	0.01	0.02	0.01

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

Andrew Ng

29

NLP and Word Embeddings

Sentiment classification

Sentiment classification problem

 χ

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Andrew Ng

31

Simple sentiment classification model

The dessert is excellent

8928 2468 4694 3180

The $o_{8928} \longrightarrow E \longrightarrow e_{8928}$

desert $o_{2468} \longrightarrow E \longrightarrow e_{2468}$

is $o_{4694} \longrightarrow E \longrightarrow e_{4694}$

excellent $o_{3180} \longrightarrow E \longrightarrow e_{3180}$

"Completely lacking in good taste, good service, and good ambience."

Andrew Ng

33

NLP and Word Embeddings

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman: Homemaker

Father: Doctor as Mother: Nurse

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings]

Andrew Ng

35

Addressing bias in word embeddings

1. Identify bias direction.

- 2. Neutralize: For every word that is not definitional, project to get rid of bias.
- 3. Equalize pairs.

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings]

Andrew Ng