Set 10: Ordered Dictionary Abstract Data Types: Skip Lists

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

Skip Lists

Motivations Algorithms

Space and Time Analysis

Skip Lists

Motivation

- ▶ A binary search tree built with random insertions has $\Theta(\log n)$ expected height. But we may get non-random insertion!
- ► Can we devise a data structure with randomness built-in?
 - ► Different runs on the same insert sequence yield a different structure
 - ▶ Not one particular bad input, just bad random sequences
- ▶ We wish to perform the binary search on linked list structure

Skip List

Definition

A skip list of height h storing a dictionary/set, D, as a series of sequences S_0, \ldots, S_h such that

- ightharpoonup each S_i stores a subset of D in increasing order by key
- ▶ $-\infty$ and ∞ are in each S_i
- ▶ all of D is in S_0
- ▶ none of D is in S_h
- ▶ S_i contains a random subset of items in S_{i-1}

Comments

- ▶ Nodes in S_i form level i.
- ▶ Each key has a tower associated with it.
- ▶ Root is the top node of tower $-\infty$.
- ► Need to navigate down and right.
- ▶ Randomization is based on coins flipped by the computer.

Searching Algorithm

```
Find(K)

Start at the root node

while not at level 0 do

Drop down a level

while next key on level < K do

Move right on level

end while

end while

return largest node ≤ K
```

Searching Algorithm

 ${\sf Example}$

▶ Find(60)

- ► Framed nodes indicate where we would "drop down"
- ► Solid pointers indicate key comparisons made during search

Insertion Algorithm

```
Insert(K)
FIND(K) yielding node p
Insert tower base after node p
while flipped coin yields Heads do
Add a new level to tower
Add pointer based on "drop down" for this level
end while
```

Insertion Algorithm

Example

▶ Start from 10-4 and Insert(55)

► Coin flip: H, T

Deletion Algorithm

Delete(K)

FIND(K) yielding node p.

Climb the tower from p.

Adjust the "drop down" pointer for each level.

Insertion Algorithm

Example (cont)

▶ Insert(25)

► Coin flip: H, H, H, H, T

Deletion Algorithm

Example

▶ Start from 10-4 and Delete(60)

Deletion Algorithm

Example (cont)

▶ Delete(30)

General Remarks

- ► The Find operator must also return the drop down nodes Stack is appropriate
- ▶ If we use DLLs the drop down nodes can be omitted
 - Ability to navigate Up and Left through structure
 - ► Comes at a cost of extra space
- ightharpoonup Data associated with keys stored only in S_0
- ▶ What should we do if a tower is "too high"?
 - ▶ force $h \le c$, c a constant problems as $n \to \infty$
 - ▶ force $h \le f(n)$, $f(n) = \lceil 3 \log n \rceil$ is good
 - ▶ allow to grow infinitely .. not likely to get too high

Space Analysis

What is the expected number of nodes in the skip list?

▶ First, what are the expected number of keys, $|S_i|$, at level i?

$$\sum_{i=1}^n 1 \cdot \frac{1}{2^i} = \frac{n}{2^i}$$

Summing over all levels yields:

$$\sum_{i=0}^{h} |S_i| = \sum_{i=1}^{h} \frac{n}{2^i} \approx 2n \in O(n)$$

Time Analysis

- ▶ Focus on expected cost of the Find operation, T(n), with n elements in the skip list
 - ▶ Insert and Delete: T(n) + h
- ▶ What is a quick upper bound for T(n) in terms of n and h?

$$O(n+h)$$

Theorem

The expected height of a skip list is $\Theta(\log n)$.

Proof.

At any level h, $E(|S_h|) = \frac{n}{2^h}$. Hence $E(h) \in O(\lg n)$.

Time Analysis (cont')

Theorem

The expected cost for a skip list search is $\Theta(\log n)$.

Proof:

- ► Cost of "dropping down" or "moving right" is 1
- ▶ Imagine the situation backwards: What is the length of the path from the node back to the root?
 Note C(k) the expected path length that rises k levels on its backward trajectory.

$$C(k) = \frac{1}{2}((\text{cost of going back one pointer}) + C(k))$$

$$+ \frac{1}{2}((\text{cost from level } i \text{ to level } i+1) + C(k-1))$$

$$= \frac{1}{2}(1 + C(k)) + \frac{1}{2}(1 + C(k-1)).$$

Summary SkipLists

- ▶ Binary search in chained list is complicated but possible.
- ▶ Randomisation gives log time search and dynamicity.

References:

- ▶ Goodrich and Tamassia: pp. 195-202
- ► Cormen, Leisersen, Rivest, Stein: Not covered.