Colloquium zur Masterarbeit

Theoretische und experimentelle Untersuchungen zu Normalbasen für Erweiterungen endlicher Körper

Stefan Hackenberg

4. Februar 2015

1 Grundlagen

Sei $F:= \mathbb{F}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss \bar{F} und $E:= \mathbb{F}_{q^n}$ eine Körpererweiterung von Grad n.

Sei $F:= {\rm IF}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss $\bar F$ und $E:= {\rm IF}_{q^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Sei $F:= {\rm IF}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss $\bar F$ und $E:= {\rm IF}_{q^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Definition (vollständig normales Element)

Sei $F:= {\rm IF}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss $\bar F$ und $E:= {\rm IF}_{q^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Definition (vollständig normales Element)

Sei $F:= {\rm IF}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss $\bar F$ und $E:= {\rm IF}_{q^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Sei $w \in E$ mit F(w) = E. w heißt normal über F, falls

$$\{\gamma(w): \gamma \in \mathsf{Gal}(E \mid F)\}$$

eine F-Basis von E ist.

Definition (vollständig normales Element)

Sei $F:= {\sf IF}_q$ ein endlicher Körper für eine Primzahlpotenz $q=p^r$ mit $r\geq 1$ mit einem fest gewählten algebraischen Abschluss \bar{F} und $E:= {\sf IF}_{q^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Sei $w \in E$ mit F(w) = E. w heißt normal über F, falls

$$\{\gamma(w): \gamma \in \mathsf{Gal}(E \mid F)\} = \{w, \sigma(w), \dots, \sigma^{n-1}(w)\} = \{w, w^q, \dots, w^{q^{n-1}}\}$$

eine F-Basis von E ist. Wobei $\sigma: E \to E, \ v \mapsto v^q$ den Frobenius-Endomorphismus von F notiert.

Definition (vollständig normales Element)

Sei $F := \mathbb{F}_q$ ein endlicher Körper für eine Primzahlpotenz $q = p^r$ mit $r \ge 1$ mit einem fest gewählten algebraischen Abschluss \bar{F} und $E := \mathbb{F}_{a^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Sei $w \in E$ mit F(w) = E. w heißt normal über F, falls

$$\{\gamma(w): \gamma \in \mathsf{Gal}(E \mid F)\} = \{w, \sigma(w), \dots, \sigma^{n-1}(w)\} = \{w, w^q, \dots, w^{q^{n-1}}\}$$

eine F-Basis von E ist. Wobei $\sigma: E \to E, \ v \mapsto v^q$ den Frobenius-Endomorphismus von F notiert.

Definition (vollständig normales Element)

 $w \in E$ heißt vollständig normal, falls w normal über jedem Zwischenkörper $E \mid K \mid F$ ist.

Sei $F := \mathbb{F}_q$ ein endlicher Körper für eine Primzahlpotenz $q = p^r$ mit $r \ge 1$ mit einem fest gewählten algebraischen Abschluss \bar{F} und $E := \mathbb{F}_{a^n}$ eine Körpererweiterung von Grad n.

Definition (normales Element)

Sei $w \in E$ mit F(w) = E. w heißt normal über F, falls

$$\{\gamma(w): \gamma \in \mathsf{Gal}(E \mid F)\} = \{w, \sigma(w), \dots, \sigma^{n-1}(w)\} = \{w, w^q, \dots, w^{q^{n-1}}\}$$

eine F-Basis von E ist. Wobei $\sigma: E \to E, \ v \mapsto v^q$ den Frobenius-Endomorphismus von F notiert.

Definition (vollständig normales Element)

 $w \in E$ heißt vollständig normal, falls w normal über jedem Zwischenkörper $E \mid K \mid F$ ist.

Definition (primitives Element) $= E \setminus \{0\}$

 $w \in E$ heißt primitiv, falls $\langle u \rangle = E^*$, also u ein Erzeuger der multiplikativen Gruppe E^* ist.

Definition (Frobenius-Endomorphismus von F)

$$\sigma: E \to E$$

$$v \mapsto v'$$

heißt der Frobenius-Endomorphismus von F.

Definition (Frobenius-Endomorphismus von F)

$$\sigma: E \to E$$

$$v \mapsto v'$$

heißt der Frobenius-Endomorphismus von F.

Satz

Es gilt:

• σ ist eine F-lineare Abbildung.

Definition (Frobenius-Endomorphismus von F)

$$\sigma: E \rightarrow E$$
 $V \mapsto V'$

heißt der Frobenius-Endomorphismus von F.

Satz

Es gilt:

- σ ist eine *F*-lineare Abbildung.
- $\sigma|_F = \mathrm{id}_F$.

Definition (Frobenius-Endomorphismus von F)

$$\sigma: E \to E$$

$$v \mapsto v'$$

heißt der Frobenius-Endomorphismus von F.

Satz

Es gilt:

- σ ist eine *F*-lineare Abbildung.
- $\sigma|_{E} = \mathrm{id}_{F}$.
- Das Minimalpolynom $\mu_{\sigma}(x)$ (also das Polynom $g(x) \in F[x]$ kleinsten Grades mit $f(\sigma) = 0$) von σ ist

$$\mu_{\sigma}(x)=x^n-1.$$

Idee

Betrachte E als F[x]-Modul durch

$$\begin{array}{cccc} F[x] \times E & \to & E\,, \\ (f(x), v) & \mapsto & f(x) \cdot v \coloneqq f(\sigma)(v)\,. \end{array}$$

Idee

Betrachte E als F[x]-Modul durch

$$\begin{array}{cccc} F[x] \times E & \to & E\,, \\ (f(x), v) & \mapsto & f(x) \cdot v \coloneqq f(\sigma)(v)\,. \end{array}$$

Genauer

Seien $f(x) = f_k x^k + \ldots + f_1 x + f_0$ und $v \in E$, so ist

$$f(x) \cdot v = f(\sigma)(v) =$$

Idee

Betrachte E als F[x]-Modul durch

$$\begin{array}{ccc} F[x] \times E & \to & E \,, \\ (f(x), v) & \mapsto & f(x) \cdot v \coloneqq f(\sigma)(v) \,. \end{array}$$

Genauer

Seien $f(x) = f_k x^k + \ldots + f_1 x + f_0$ und $v \in E$, so ist

$$f(x) \cdot v = f(\sigma)(v) = f_k \sigma^k(v) + \ldots + f_1 \sigma(v) + f_0 \sigma^0(v)$$

Idee

Betrachte E als F[x]-Modul durch

$$\begin{array}{cccc} F[x] \times E & \to & E\,, \\ (f(x), v) & \mapsto & f(x) \cdot v \coloneqq f(\sigma)(v)\,. \end{array}$$

Genauer

Seien $f(x) = f_k x^k + \ldots + f_1 x + f_0$ und $v \in E$, so ist

$$f(x) \cdot v = f(\sigma)(v) = f_k \sigma^k(v) + \ldots + f_1 \sigma(v) + f_0 \sigma^0(v) = f_k v^{q^k} + \ldots + v^q + f_0 v.$$

Sei $v \in E$. Betrachte den F[x]-Modulhomomorphismus

$$\psi_{\nu}: F[x] \to E,$$

$$f(x) \mapsto f(x) \cdot \nu.$$

Sei $v \in E$. Betrachte den F[x]-Modulhomomorphismus

$$\psi_{\nu}: F[x] \rightarrow E,$$
 $f(x) \mapsto f(x) \cdot \nu.$

I | Ist ker $\psi_v = (g(x))$ für ein $g(x) \in F[x]$ normiert, so heißt g(x) die q-Ordnung von v. Schreibe $\operatorname{Ord}_q(v) := g(x)$. Die q-Ordnung ist eindeutig.

Sei $v \in E$. Betrachte den F[x]-Modulhomomorphismus

$$\psi_{\nu}: F[x] \rightarrow E,$$
 $f(x) \mapsto f(x) \cdot \nu.$

- I | Ist ker $\psi_v = (g(x))$ für ein $g(x) \in F[x]$ normiert, so heißt g(x) die q-Ordnung von v. Schreibe $\operatorname{Ord}_q(v) := g(x)$. Die q-Ordnung ist eindeutig.
- $2 \mid F[x] \cdot v := \operatorname{im} \psi_v$ heißt der von v erzeugte F[x]-Teilmodul von E.

Sei $v \in E$. Betrachte den F[x]-Modulhomomorphismus

$$\psi_{\nu}: F[x] \rightarrow E,$$
 $f(x) \mapsto f(x) \cdot \nu.$

- I | Ist ker $\psi_v = (g(x))$ für ein $g(x) \in F[x]$ normiert, so heißt g(x) die q-Ordnung von v. Schreibe $\operatorname{Ord}_q(v) := g(x)$. Die q-Ordnung ist eindeutig.
- $2 \mid F[x] \cdot v := \operatorname{im} \psi_v$ heißt der von v erzeugte F[x]-Teilmodul von E.

Zu $g(x) \mid x^n - 1$ normiert definiere

$$V_g:=\left\{v\in E:\ g(x)\cdot v=0\right\}.$$

Es gilt:

Es gilt:

1 | Für g(x) | x^n – 1 normiert ist V_g ein F[x]-Teilmodul von E.

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- ² Alle F[x]-Teilmoduln von E sind von dieser Form.

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- 2 Alle F[x]-Teilmoduln von E sind von dieser Form.
- 3 | Die Erzeuger von V_g sind genau die Elemente $v \in E$ mit $Ord_q(v) = g(x)$, d.h. für diese gilt $F[x] \cdot v = V_g$.

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- 2 Alle F[x]-Teilmoduln von E sind von dieser Form.
- Die Erzeuger von V_g sind genau die Elemente $v \in E$ mit $Ord_q(v) = g(x)$, d.h. für diese gilt $F[x] \cdot v = V_g$.

Satz

Sei $g(x) \in F[x]$ mit $g(x) \mid x^n - 1$ normiert und $\Delta \subset F[x]$ eine Zerlegung von g(x), d.h. $g(x) = \prod_{\delta \in \Delta} \delta(x)$ mit $\delta \in \Delta$ paarweise teilerfremd, dann gilt

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- 2 Alle F[x]-Teilmoduln von E sind von dieser Form.
- Die Erzeuger von V_g sind genau die Elemente $v \in E$ mit $\operatorname{Ord}_q(v) = g(x)$, d.h. für diese gilt $F[x] \cdot v = V_g$.

Satz

Sei $g(x) \in F[x]$ mit $g(x) \mid x^n - 1$ normiert und $\Delta \subset F[x]$ eine Zerlegung von g(x), d.h. $g(x) = \prod_{\delta \in \Delta} \delta(x)$ mit $\delta \in \Delta$ paarweise teilerfremd, dann gilt

 $1 \mid V_g = \bigoplus_{\delta \in \Delta} V_{\delta}.$

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- 2 Alle F[x]-Teilmoduln von E sind von dieser Form.
- 3 | Die Erzeuger von V_g sind genau die Elemente $v \in E$ mit $Ord_q(v) = g(x)$, d.h. für diese gilt $F[x] \cdot v = V_g$.

Satz

Sei $g(x) \in F[x]$ mit $g(x) \mid x^n - 1$ normiert und $\Delta \subset F[x]$ eine Zerlegung von g(x), d.h. $g(x) = \prod_{\delta \in \Delta} \delta(x)$ mit $\delta \in \Delta$ paarweise teilerfremd, dann gilt

- $_1 \mid V_{\sigma} = \bigoplus_{\delta \in \Delta} V_{\delta}.$
- 2 | Jedes $w \in V_g$ lässt sich eindeutig schreiben als $w = \sum_{\delta \in \Delta} w_\delta$ mit $w_\delta \in V_\delta$. Ferner gilt

$$\operatorname{Ord}_q(w) = \prod_{\delta \in \Lambda} \operatorname{Ord}_q(w_\delta)$$

und $Ord_a(w)$ ist ein normierter Teiler von g(x).

Es gilt:

- 1 | Für $g(x) | x^n 1$ normiert ist V_g ein F[x]-Teilmodul von E.
- 2 Alle F[x]-Teilmoduln von E sind von dieser Form.
- Die Erzeuger von V_g sind genau die Elemente $v \in E$ mit $\operatorname{Ord}_q(v) = g(x)$, d.h. für diese gilt $F[x] \cdot v = V_g$.

Satz

Sei $g(x) \in F[x]$ mit $g(x) \mid x^n - 1$ normiert und $\Delta \subset F[x]$ eine Zerlegung von g(x), d.h. $g(x) = \prod_{\delta \in \Delta} \delta(x)$ mit $\delta \in \Delta$ paarweise teilerfremd, dann gilt

- $_1 \mid V_{\sigma} = \bigoplus_{\delta \in \Delta} V_{\delta}.$
- 2 | Jedes $w \in V_g$ lässt sich eindeutig schreiben als $w = \sum_{\delta \in \Delta} w_\delta$ mit $w_\delta \in V_\delta$. Ferner gilt

$$\operatorname{Ord}_q(w) = \prod_{\delta \in \Delta} \operatorname{Ord}_q(w_\delta)$$

und $Ord_{\sigma}(w)$ ist ein normierter Teiler von g(x).

3 | w | ist ein Erzeuger von $V_g \Leftrightarrow \forall \delta \in \Delta : w_\delta |$ ist Erzeuger von V_δ .

Lemma

Für $v \in E$ gilt:

v ist normal über F

Lemma

Für $v \in E$ gilt:

v ist normal über $F \Leftrightarrow F[x] \cdot v = E$

Lemma

Für $v \in E$ gilt:

$$v$$
 ist normal über $F \Leftrightarrow F[x] \cdot v = E \Leftrightarrow Ord_q(v) = x^n - 1$.

Lemma

Für $v \in E$ gilt:

$$v$$
 ist normal über $F \Leftrightarrow F[x] \cdot v = E \Leftrightarrow Ord_q(v) = x^n - 1$.

Strategie: Arbeite eigenständig auf Teilmoduln

Für eine geeignete Zerlegung Δ von x^n-1 über F finde für jedes $\delta \in \Delta$ ein Element $w_\delta \in E$ mit $\operatorname{Ord}_q(w_\delta) = \delta$. Dann ist

$$\sum_{\delta \in \Delta} w_{\delta}$$

normal über F.

Lemma

Für $v \in E$ gilt:

$$v$$
 ist normal über $F \Leftrightarrow F[x] \cdot v = E \Leftrightarrow Ord_q(v) = x^n - 1$.

Strategie: Arbeite eigenständig auf Teilmoduln

Für eine geeignete Zerlegung Δ von x^n-1 über F finde für jedes $\delta \in \Delta$ ein Element $w_\delta \in E$ mit $\operatorname{Ord}_{\sigma}(w_\delta) = \delta$. Dann ist

$$\sum_{\delta \in \Delta} w_{\delta}$$

normal über F.

Gute Zerlegung:

$$x^{n} - 1 = \prod_{d \mid \bar{n}} \Phi_{d}(x)^{p^{b}}$$

für $n = \bar{n}p^b$ mit $p + \bar{n}$.

3 Vollständig normale Elemente

Vollständig normale Elemente

Definition

 $w \in E$ heißt vollständig normal, falls w normal über jedem Zwischenkörper $E \mid K \mid F$ ist.

Vollständig normale Elemente

Definition

 $w \in E$ heißt vollständig normal, falls w normal über jedem Zwischenkörper $E \mid K \mid F$ ist.

Definition

einfach E über F heißt einfach, falls jedes normale Element von E über F bereits vollständig normal ist.

Vollständig normale Elemente

Definition

 $w \in E$ heißt vollständig normal, falls w normal über jedem Zwischenkörper $E \mid K \mid F$ ist.

Definition

einfach E über F heißt einfach, falls jedes normale Element von E über F bereits vollständig normal ist.

Satz

E über F ist einfach, falls

- n = r oder $n = r^2$ für eine Primzahl r.
- $\bar{n} \mid q-1$, wobei $n = n'p^b$ mit $p \nmid n'$,
- $n = p^b$ für $b \ge 0$.

Definition (verallgemeinertes Kreisteilungspolynom)

Für $k, t \in \mathbb{N}^*$ mit $p \nmid k$ heißt

$$\Phi_{k,t}(x) := \Phi_k(x^t) \in F[x]$$

verallgemeinertes Kreisteilungspolynom.

Definition (verallgemeinertes Kreisteilungspolynom)

Für $k, t \in \mathbb{N}^*$ mit $p \nmid k$ heißt

$$\Phi_{k,t}(x) := \Phi_k(x^t) \in F[x]$$

verallgemeinertes Kreisteilungspolynom.

Definition (verallgemeinerter Kreisteilungsmodul)

Für ein verallgemeinertes Kreisteilungspolynom $\Phi_{k,t}(x)$ heißt

$$C_{k,t} := \{ w \in \overline{F} : \Phi_{k,t}(\sigma)(w) = 0 \}$$

verallgemeinerter Kreisteilungsmodul. Der Modulcharakter von $C_{k,t}$ ist $\frac{kt}{\nu(k)}$.

Definition (verallgemeinertes Kreisteilungspolynom)

Für $k, t \in \mathbb{N}^*$ mit p + k heißt

$$\Phi_{k,t}(x) := \Phi_k(x^t) \in F[x]$$

verallgemeinertes Kreisteilungspolynom.

Definition (verallgemeinerter Kreisteilungsmodul)

Für ein verallgemeinertes Kreisteilungspolynom $\Phi_{k,t}(x)$ heißt

$$C_{k,t} := \{ w \in \overline{F} : \Phi_{k,t}(\sigma)(w) = 0 \}$$

verallgemeinerter Kreisteilungsmodul. Der Modulcharakter von $\mathcal{C}_{k,t}$ ist $\frac{k\,t}{\nu(k)}$.

Definition (vollständiger Erzeuger)

 $w \in \overline{F}$ heißt *vollständiger Erzeuger von* $C_{k,t}$, falls w ein Erzeuger von $C_{k,t}$ als $\operatorname{IF}_{q^d}[x]$ -Modul für alle Teiler d des Modulcharakters ist.

Problem

Bei Erzeugern gilt: Ist Δ eine Zerlegung von x^n-1 und hat man für jedes $\delta \in \Delta$ ein $w_\delta \in E$ mit $\operatorname{Ord}_q(w_\delta) = \delta(x)$, so ist $w = \sum_{\delta \in \Delta} w_\delta$ ein Erzeuger von V_{x^n-1} und $\operatorname{Ord}_q(w) = x^n-1$.

Problem

Bei Erzeugern gilt: Ist Δ eine Zerlegung von x^n-1 und hat man für jedes $\delta \in \Delta$ ein $w_\delta \in E$ mit $\operatorname{Ord}_q(w_\delta) = \delta(x)$, so ist $w = \sum_{\delta \in \Delta} w_\delta$ ein Erzeuger von V_{x^n-1} und $\operatorname{Ord}_q(w) = x^n-1$.

Achtung: Dies gilt bei vollständigen Erzeugern im Allgemeinen nicht mehr und muss gefordert werden.

Problem

Bei Erzeugern gilt: Ist Δ eine Zerlegung von x^n-1 und hat man für jedes $\delta \in \Delta$ ein $w_\delta \in E$ mit $\operatorname{Ord}_q(w_\delta) = \delta(x)$, so ist $w = \sum_{\delta \in \Delta} w_\delta$ ein Erzeuger von V_{x^n-1} und $\operatorname{Ord}_q(w) = x^n-1$.

Achtung: Dies gilt bei vollständigen Erzeugern im Allgemeinen nicht mehr und muss gefordert werden.

Definition (verträgliche Zerlegung)

Sei Δ eine Zerlegung von $\Phi_{k,t}$ in verallgemeinerte Kreisteilungspolynome über \mathbb{F}_q . Dann heißt Δ verträgliche Zerlegung, falls gilt: Für jedes $\Phi_{l,s} \in \Delta$ sei $w_{l,s} \in \overline{\mathbb{F}}_q$ ein vollständiger Erzeuger von $\mathcal{C}_{l,s}$ über \mathbb{F}_q , so ist

$$w = \sum_{\Phi_{I,s} \in \Delta} w_{I,s}$$

ein vollständiger Erzeuger von $C_{k,t}$ über \mathbb{F}_q .

Zerlegungssatz für verallgemeinerte Kreisteilungsmoduln

Satz (Hachenberger 1997)

Sei $\Phi_{k,t}$ ein verallgemeinertes Kreisteilungspolynom über einem endlichen Körper \mathbb{F}_q mit Charakteristik p. Sei r eine Primzahl mit

- r | t,
- $r \neq p$,
- $r \nmid k$.

Dann ist

$$\Delta_r := \{\Phi_{k,\frac{t}{r}}, \Phi_{kr,\frac{t}{r}}\}$$

eine Zerlegung von $\Phi_{k,t}$ in verallgemeinerte Kreisteilungspolynome und diese ist verträglich genau dann, wenn

$$r^a \nmid \operatorname{ord}_{\nu(kt')}(q)$$

mit $a = \max\{b \in \mathbb{N} : r^b \mid t\}$ und $t = t'p^b$ für ggT(t', p) = 1.

Reguläre Kreisteilungsmoduln

Definition (regulär)

Ein verallgemeinerter Kreisteilungsmodul $C_{k,t}$ mit ggT(k,t) = 1 heißt regulär über einem endlichen Körper IF_a der Charakteristik p, falls ord_{$\nu(k\,t')$}(q) und $k\,t$ teilerfremd sind für $t = t'p^b$ mit ggT(t', p) = 1.

Eine Körpererweiterung $\mathbb{F}_{q^m} \mid \mathbb{F}_q$ heißt *regulär*, falls $\mathcal{C}_{1,m}$ regulär ist.

Reguläre Kreisteilungsmoduln

Definition (regulär)

Ein verallgemeinerter Kreisteilungsmodul $\mathcal{C}_{k,t}$ mit $\operatorname{ggT}(k,t)=1$ heißt $\operatorname{regul\"{ar}}$ über einem endlichen Körper IF_q der Charakteristik p, falls $\operatorname{ord}_{\nu(k\,t')}(q)$ und $k\,t$ teilerfremd sind für $t=t'p^b$ mit $\operatorname{ggT}(t',p)=1$.

Eine Körpererweiterung $\mathbb{F}_{q^m} \mid \mathbb{F}_q$ heißt $regul\"{a}r$, falls $\mathcal{C}_{1,m}$ regul $\ddot{a}r$ ist.

Satz (Hachenberger 1997)

Sei \mathbb{F}_q ein endlicher Körper von Charakteristik p. Seien k eine positive ganze Zahl teilerfremd zu q und \mathcal{C}_{k,p^b} ein regulärer verallgemeinerter Kreisteilungsmodul. Dann gilt:

1 | Ist C_{k,p^b} nicht ausfallend, so ist $u \in \overline{\mathbb{F}}_q$ genau dann ein vollständiger Erzeuger von C_{k,p^b} , falls

$$\operatorname{Ord}_{q^{\tau}}(u) = \Phi_{\frac{k}{\tau}, p^b}.$$

2 | Ist \mathcal{C}_{k,p^b} ausfallend, so ist $u \in \overline{\mathbb{F}}_q$ genau dann ein vollständiger Erzeuger von \mathcal{C}_{k,p^b} , falls

$$\operatorname{Ord}_{q^{\tau}}(u) = \Phi_{\frac{k}{\tau}, p^b} \quad \text{und} \quad \operatorname{Ord}_{q^{2\tau}}(u) = \Phi_{\frac{k}{2\tau}, p^b}.$$

Reguläre Kreisteilungsmoduln

Definition (regulär)

Ein verallgemeinerter Kreisteilungsmodul $\mathcal{C}_{k,t}$ mit $\operatorname{ggT}(k,t)=1$ heißt $\operatorname{regul\"{ar}}$ über einem endlichen Körper IF_q der Charakteristik p, falls $\operatorname{ord}_{\nu(k\,t')}(q)$ und $k\,t$ teilerfremd sind für $t=t'p^b$ mit $\operatorname{ggT}(t',p)=1$.

Eine Körpererweiterung $\mathbb{F}_{q^m} \mid \mathbb{F}_q$ heißt *regulär*, falls $\mathcal{C}_{1,m}$ regulär ist.

Satz (Hachenberger 1997)

Sei \mathbb{F}_q ein endlicher Körper von Charakteristik p. Seien k eine positive ganze Zahl teilerfremd zu q und \mathcal{C}_{k,p^b} ein regulärer verallgemeinerter Kreisteilungsmodul. Dann gilt:

1 | Ist C_{k,p^b} nicht ausfallend, so ist $u \in \overline{\mathbb{F}}_q$ genau dann ein vollständiger Erzeuger von C_{k,p^b} , falls

$$\operatorname{Ord}_{q^{\tau}}(u) = \Phi_{\frac{k}{\tau}, p^b}.$$

2 | Ist C_{k,p^b} ausfallend, so ist $u \in \overline{\mathbb{F}}_q$ genau dann ein vollständiger Erzeuger von C_{k,p^b} , falls

$$\operatorname{Ord}_{q^{\tau}}(u) = \Phi_{\frac{k}{\tau}, p^b} \quad \text{und} \quad \operatorname{Ord}_{q^{2\tau}}(u) = \Phi_{\frac{k}{2\tau}, p^b}.$$

Existenz und Enumeration primitiv vollständig normaler Elemente

$$\mathcal{N}(q,n) := |\{u \in \mathbb{F}_{q^n} : u \text{ ist normal "uber } \mathbb{F}_q\}|,$$

```
 \begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^p} : \ u \text{ ist normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^p} : \ u \text{ ist vollständig normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^p} : \ u \text{ ist primitiv und normal "über } \mathsf{IF}_q \right\} \right|, \end{aligned}
```

```
 \begin{split} \mathcal{N}(q,n) &:= |\{u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist normal ""uber $\mathsf{IF}_q$}\}|, \\ \mathcal{C}\mathcal{N}(q,n) &:= |\{u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist vollst""and ig normal ""uber $\mathsf{IF}_q$}\}|, \\ \mathcal{P}\mathcal{N}(q,n) &:= |\{u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist primitiv und normal ""uber $\mathsf{IF}_q$}\}|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= |\{u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist primitiv und vollst"and ig normal ""uber $\mathsf{IF}_q$}\}|, \end{split}
```

```
 \begin{split} \mathcal{N}(q,n) &:= \big| \big\{ u \in \mathsf{IF}_{q^n} : \ u \ \text{ist normal ""uber } \mathsf{IF}_q \big\} \big| \,, \\ \mathcal{C}\mathcal{N}(q,n) &:= \big| \big\{ u \in \mathsf{IF}_{q^n} : \ u \ \text{ist vollst"andig normal ""uber } \mathsf{IF}_q \big\} \big| \,, \\ \mathcal{P}\mathcal{N}(q,n) &:= \big| \big\{ u \in \mathsf{IF}_{q^n} : \ u \ \text{ist primitiv und normal ""uber } \mathsf{IF}_q \big\} \big| \,, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \big| \big\{ u \in \mathsf{IF}_{q^n} : \ u \ \text{ist primitiv und vollst"andig normal ""uber } \mathsf{IF}_q \big\} \big| \,, \\ \mathcal{G} &:= \big\{ n \in \mathsf{IN}^*, n \geq 2 : \ \forall q \ \mathsf{Primzahlpotenz gilt} \ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \big\} \,. \end{split}
```

Definition

```
 \begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} : \ u \text{ ist normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{CN}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} : \ u \text{ ist vollst"andig normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{PN}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} : \ u \text{ ist primitiv und normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{PCN}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} : \ u \text{ ist primitiv und vollst"andig normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathsf{IN}^*, n \geq 2 : \ \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q,n) > 0 \right\}. \end{aligned}
```

Problemstellungen

$$\mathcal{N}(q,n) > 0$$
? $\mathcal{CN}(q,n) > 0$? $\mathcal{PN}(q,n) > 0$? $\mathcal{PCN}(q,n) > 0$?

$$\mathcal{N}(q,n) = ?$$
 $\mathcal{CN}(q,n) = ?$ $\mathcal{PN}(q,n) = ?$ $\mathcal{PCN}(q,n) = ?$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 : \ \forall \, q \text{ Primzahlpotenz gilt } \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$?

$$\mathcal{CN}(q, n) > 0$$
?

$$\mathcal{PN}(q,n) > 0$$
?

$$\mathcal{PCN}(q,n) > 0$$
?

$$\mathcal{N}(q,n) = 0$$

$$\mathcal{CN}(q,n) = 0$$

$$\mathcal{N}(q, n) = ?$$
 $\mathcal{CN}(q, n) = ?$ $\mathcal{PN}(q, n) = ?$ $\mathcal{PCN}(q, n) = ?$

$$\mathcal{PCN}(q,n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{CN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PCN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} : \ u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 : \ \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q,n) > 0 \right\}. \end{split}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q}, n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$?

$$\mathcal{CN}(q, n) > 0$$
?

$$\mathcal{PN}(q,n) > 0$$
?

$$\mathcal{PCN}(q,n) > 0$$
?

$$\mathcal{N}(q,n) = ?$$
 $\mathcal{CN}(q,n) = ?$ $\mathcal{PN}(q,n) = ?$ $\mathcal{PCN}(q,n) = ?$

$$\mathcal{CN}(q,n) = \overline{q}$$

$$\mathcal{PN}(q,n) = ?$$

$$\mathcal{PCN}(q,n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{CN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PCN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 \colon \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
?

$$\mathcal{CN}(q,n) > 0$$
?

$$\mathcal{N}(\mathbf{q},n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$?

$$\mathcal{PCN}(q,n) > 0$$
?

Satz von der Normalbasis Verschärfung des Satzes

von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{N}(q,n) = ?$$
 $\mathcal{C}\mathcal{N}(q,n) = ?$ $\mathcal{P}\mathcal{N}(q,n) = ?$ $\mathcal{P}\mathcal{C}\mathcal{N}(q,n) = ?$

$$\mathcal{CN}(q,n) = \overline{q}$$

$$\mathcal{PN}(q,n) = ?$$

$$\mathcal{PCN}(q,n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist vollständig normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist primitiv und normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathsf{IF}_{q^n} \colon \ u \text{ ist primitiv und vollständig normal "über } \mathsf{IF}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathsf{IN}^*, n \geq 2 \colon \ \forall \, q \text{ Primzahlpotenz gilt } \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
?

Verschärfung des Satzes

von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{N}(q,n) = ?$$

$$\mathcal{N}(q,n) = \phi_{q}(x^{n} - 1)$$

 $\mathcal{CN}(q,n) = ?$ $\mathcal{PN}(q,n) = ?$

$$\mathcal{N}(\mathbf{q}, \mathbf{n}) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q}, \mathbf{n}) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q}, \mathbf{n}) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q}, \mathbf{n}) > 0$?

primitiven Normalbasis (Lenstra, Jr. und Schoof 1987)

$$\mathcal{PN}(q,n) = ?$$

$$\mathcal{PCN}(q, n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 \colon \forall q \text{ Primzahlpotenz gilt } \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
?

$$\mathcal{N}(q,n) = ?$$

$$\mathcal{N}(q,n) = \phi_{\alpha}(x^{n} - 1)$$

$$\mathcal{CN}(q,n) > 0$$
?

Verschärfung des Satzes von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{CN}(q,n) = ?$$

nur bekannt, falls regulär

$$\mathcal{N}(\mathbf{q}, n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$?

$$\mathcal{PN}(q,n) > 0$$
?

primitiven Normalbasis (Lenstra, Jr. und Schoof 1987)

$$\mathcal{PN}(q,n)$$
 =?

$$\mathcal{PCN}(q, n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 \colon \forall q \text{ Primzahlpotenz gilt } \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
?

$$\mathcal{N}(q,n) = ?$$

$$\mathcal{N}(q,n) = \phi_{\alpha}(x^{n} - 1)$$

$$\mathcal{N}(\mathbf{q}, n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$?

Verschärfung des Satzes von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{CN}(q,n) = ?$$
 $\mathcal{PCN}(q,n) = ?$

nur bekannt, falls regulär

$$\mathcal{PN}(a,n) > 0$$
?

primitiven Normalbasis (Lenstra, Jr. und Schoof 1987)

$$PN(q, n) = ?$$

$$\mathcal{PCN}(q, n) = ?$$

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon \ u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon \ u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon \ u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{P}\mathcal{C}\mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon \ u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 \colon \ \forall \, q \text{ Primzahlpotenz gilt } \mathcal{P}\mathcal{C}\mathcal{N}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{q},n) > 0$$
?

$$\mathcal{N}(q,n) = ?$$

$$\mathcal{N}(q,n) = \phi_q(x^n - 1)$$

$$\mathcal{N}(\mathbf{q}, n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q}, n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q}, n) > 0$?

Verschärfung des Satzes von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{CN}(q,n)$$
 =?

nur bekannt, falls regulär

$$PN(a,n) > 0$$
?

primitiven Normalbasis (Lenstra, Jr. und Schoof 1987)

$$PN(q, n) = ?$$

$$\mathcal{PCN}(q,n) = ?$$

nur Abschätzungen und

Definition

$$\begin{split} \mathcal{N}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{CN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{PCN}(q,n) &:= \left| \left\{ u \in \mathbb{F}_{q^n} \colon u \text{ ist primitiv und vollständig normal "über } \mathbb{F}_q \right\} \right|, \\ \mathcal{G} &:= \left\{ n \in \mathbb{N}^*, n \geq 2 \colon \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q,n) > 0 \right\}. \end{aligned}$$

Problemstellungen

$$\mathcal{N}(\mathbf{v},n) > 0$$
?

$$\mathcal{N}(q,n) = ?$$
 $\mathcal{N}(q,n) = \phi_q(x^n - 1)$

$$\mathcal{N}(\mathbf{q},n) > 0$$
? $\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{N}(\mathbf{q},n) > 0$? $\mathcal{P}\mathcal{C}\mathcal{N}(\mathbf{q},n) > 0$?

Verschärfung des Satzes von der Normalbasis (Blessenohl und Johnsen 1986)

$$\mathcal{CN}(q,n)$$
 =?

nur bekannt. falls regulär

$$PN(a,n) > 0$$
?

primitiven Normalbasis (Lenstra, Jr. und Schoof 1987)

$$\mathcal{PN}(q,n) = ?$$

$$\mathcal{PCN}(q,n) > 0$$
?

s. nächste Folie

$$\mathcal{PCN}(q,n) = ?$$

nur Abschätzungen und

Satz (Hachenberger 2001 und 2014)

Seien q eine Primzahlpotenz und $n \in \mathbb{N}^*$, so dass \mathbb{F}_{q^n} über \mathbb{F}_q eine reguläre Erweiterung ist. Dann existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2001 und 2014)

Seien q eine Primzahlpotenz und $n \in \mathbb{N}^*$, so dass \mathbb{F}_{q^n} über \mathbb{F}_q eine reguläre Erweiterung ist. Dann existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2014)

Sei $n \in \mathbb{N}^*$ mit $n \ge 2$. Dann gilt: Für Primzahlpotenzen q mit $q \ge n^4$ existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2001 und 2014)

Seien q eine Primzahlpotenz und $n \in \mathbb{N}^*$, so dass \mathbb{F}_{q^n} über \mathbb{F}_q eine reguläre Erweiterung ist. Dann existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2014)

Sei $n \in \mathbb{N}^*$ mit $n \ge 2$. Dann gilt: Für Primzahlpotenzen q mit $q \ge n^4$ existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Ziele:

Bestimme $\mathcal{CN}(q,n)$ und $\mathcal{PCN}(q,n)$ für möglichst viele Paare (q,n).

Satz (Hachenberger 2001 und 2014)

Seien q eine Primzahlpotenz und $n \in \mathbb{N}^*$, so dass \mathbb{F}_{q^n} über \mathbb{F}_q eine reguläre Erweiterung ist. Dann existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2014)

Sei $n \in \mathbb{N}^*$ mit $n \ge 2$. Dann gilt: Für Primzahlpotenzen q mit $q \ge n^4$ existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Ziele:

- 1 | Bestimme $\mathcal{CN}(q, n)$ und $\mathcal{PCN}(q, n)$ für möglichst viele Paare (q, n).
- ² | Versuche \mathcal{G} möglichst groß werden zu lassen, d.h. finde für möglichst viele n für alle $q < n^4$ ein \mathcal{PCN} -Element in \mathbb{F}_{q^n} über \mathbb{F}_q .

Satz (Hachenberger 2001 und 2014)

Seien q eine Primzahlpotenz und $n \in \mathbb{N}^*$, so dass \mathbb{F}_{q^n} über \mathbb{F}_q eine reguläre Erweiterung ist. Dann existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Satz (Hachenberger 2014)

Sei $n \in \mathbb{N}^*$ mit $n \ge 2$. Dann gilt: Für Primzahlpotenzen q mit $q \ge n^4$ existiert ein primitives Element in \mathbb{F}_{q^n} , das vollständig normal über \mathbb{F}_q ist.

Ziele:

- 1 | Bestimme $\mathcal{CN}(q, n)$ und $\mathcal{PCN}(q, n)$ für möglichst viele Paare (q, n).
- ² | Versuche $\mathcal G$ möglichst groß werden zu lassen, d.h. finde für möglichst viele n für alle $q \stackrel{<}{<} n^4$ ein $\mathcal {PCN}$ -Element in $\mathbb F_{q^n}$ über $\mathbb F_q$.

```
\mathcal{G} := \{n \in \mathbb{N}^*, n \geq 2: \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q, n) > 0\}
```

Implementierung endlicher Körper und Körpererweiterungen

Sei $F := \mathbb{F}_q$ ein endlicher Körper mit $q = p^r$ und $E := \mathbb{F}_{q^n}$ eine Erweiterung von Grad n.

Beschreibung von Elementen endlicher Körper

Beschreibung von Elementen endlicher Körper

• Ist q = p, so nutze

$$F \ \cong \ \mathbb{Z}_p \ = \ \{0,1,\ldots,p-1\} \bmod p \,.$$

Beschreibung von Elementen endlicher Körper

• Ist q = p, so nutze

$$F \cong \mathbb{Z}_p = \{0,1,\ldots,p-1\} \bmod p.$$

Sonst nutze

$$F \cong \mathbb{F}_p[a]/(f(a))$$

für $f(a) \in \mathbb{F}_p[a]$ irreduzibel, normiert von Grad n.

Beschreibung von Elementen endlicher Körper

• Ist q = p, so nutze

$$F \cong \mathbb{Z}_p = \{0,1,\ldots,p-1\} \bmod p.$$

Sonst nutze

$$F \cong \mathbb{F}_p[a]/(f(a))$$

für $f(a) \in \mathbb{F}_p[a]$ irreduzibel, normiert von Grad n.

$$a^{8} + 2a^{6} + a^{2} + 2 \in IF_{3^{10}} = IF_{3}[a]/(a^{10} + 2a^{6} + 2a^{5} + 2a^{4} + a + 2)$$

```
F = GF(3^10,'a')

#F.modulus() == x^10 + 2*x^6 + 2*x^5 + 2*x^4 + x + 2

w = F('a^8+2a^6+a^2+2')

w + w; 2*w; w*w
```

Beispiel

```
F = GF(3^10,'a')

#F.modulus() == x^10 + 2*x^6 + 2*x^5 + 2*x^4 + x + 2

w = F('a^8+2a^6+a^2+2')

w + w; 2*w; w*w
```

Problem: Sage ist zu langsam!

Beispiel

```
F = GF(3^10,'a')

#F.modulus() == x^10 + 2*x^6 + 2*x^5 + 2*x^4 + x + 2

w = F('a^8+2a^6+a^2+2')

w + w; 2*w; w*w
```

Problem: Sage ist zu langsam!

Lösung: Eigenes Library in C für grundlegende Arithmetik erstellen und Sage für übergeordnete Aufgaben (Faktorisierung von Polynomen, Zerlegungssatz,...) nutzen.

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Problem: Zu langsam!

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Problem: Zu langsam!

Gute Idee: Nutze Additions- und Multiplikationstabellen, d.h. int-Arrays, sodass die (a+b)-te Stelle der Additions- und die (a*b)-te Stelle der Multiplikationstabelle gerade das Ergebnis ist.

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Problem: Zu langsam!

Gute Idee: Nutze Additions- und Multiplikationstabellen, d.h. int-Arrays, sodass die (a+b)-te Stelle der Additions- und die (a*b)-te Stelle der Multiplikationstabelle gerade das Ergebnis ist.

Beispiel

Arithmetik in IF₃:

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Problem: Zu langsam!

Gute Idee: Nutze Additions- und Multiplikationstabellen, d.h. int-Arrays, sodass die (a+b)-te Stelle der Additions- und die (a*b)-te Stelle der Multiplikationstabelle gerade das Ergebnis ist.

Beispiel

Arithmetik in IF₃:

Idee: Nutze die C-Funktion %.

D.h. sind $a, b \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$, so addiere bzw. multipliziere durch (a+b) % p und (a*b) % p.

Problem: Zu langsam!

Gute Idee: Nutze Additions- und Multiplikationstabellen, d.h. int-Arrays, sodass die (a+b)-te Stelle der Additions- und die (a*b)-te Stelle der Multiplikationstabelle gerade das Ergebnis ist.

```
Beispiel
                               Länge: 2 \cdot 2(p-1) + 1
Arithmetik in IF<sub>3</sub>:
  int addTableRaw[] = {2, 0, 1, 2, 0, 1, 2, 0, 1};
                                                              addTable[2+1]
  int initialAddShift = 4;
                                                                        // == 0
  int *addTable = addTableRaw+initialAddShift;
                                                              addTable[ 0-2 ]
  int multTableRaw[] = {2, 0, 1, 2, 0, 1, 2, 0, 1};
                                                                       // == 1
  int initialMultShift = 4:
                                                              multTable[ 2*2 ]
  int *multTable = multTableRaw+initialMultShift:
                                                                        // == 1
                                 Länge: 2 \cdot (p-1)^2 + 1
```

Ziel: Schnelle Arithmetik durch int-Arrays

Ziel: Schnelle Arithmetik durch int-Arrays

Elemente endlicher Körper

```
struct FFElem{
   int *el;
   int *idcs;
   int len;
};
```

Ziel: Schnelle Arithmetik durch int-Arrays

Elemente endlicher Körper

```
struct FFElem{
   int *el;
   int *idcs;
   int len;
};
```

$$\hat{=} \quad w := a^8 + 2a^6 + a^2 + 2 \\
\in \mathbb{F}_{3^{10}}$$

Ziel: Schnelle Arithmetik durch int-Arrays

```
Elemente endlicher Körper
  struct FFElem{
    int *el;
    int *idcs;
```

int len;

Beispiel

};

```
struct FFElem *w = malloc(sizeof(struct FFElem));
```

```
\hat{=} \quad w := a^8 + 2a^6 + a^2 + 2 \\ \in \mathsf{IF}_{310}
```

Ziel: Schnelle Arithmetik durch int-Arrays

```
Elemente endlicher Körper
```

```
struct FFElem{
   int *el;
   int *idcs;
   int len;
};
```

```
struct FFElem *w = malloc(sizeof(struct FFElem));

w->el = (int[]) {2, 0, 1, 0, 0, 0, 2, 0, 1, 0};

\stackrel{\triangle}{=} W := a^8 + 2a^6 + a^2 + 2
\stackrel{\triangle}{=} |F_{310}|
```

Ziel: Schnelle Arithmetik durch int-Arrays

```
Elemente endlicher Körper struct FFElem{
```

```
int *el;
int *idcs;
int len;
};
```

```
struct FFElem *w = malloc(sizeof(struct FFElem)); w->el = (int[]) {2, 0, 1, 0, 0, 0, 2, 0, 1, 0}; \hat{v} = (int[]) \{8, 6, 2, 0, 0, 0, 0, 0, 0, 0\}; \hat{v} := a^8 + 2a^6 + a^2 + 2
```

Ziel: Schnelle Arithmetik durch int-Arrays

```
Elemente endlicher Körper struct FFElem{
```

```
int *el;
int *idcs;
int len;
};
```

```
**struct FFElem ** = malloc(sizeof(struct FFElem));  
**w->el = (int[]) {2, 0, 1, 0, 0, 0, 2, 0, 1, 0};  
**w->idcs = (int[]) {8, 6, 2, 0, 0, 0, 0, 0, 0, 0};  

**w:= a^8 + 2a^6 + a^2 + 2 

**e | F<sub>310</sub>
```

Implementiere auf diese Weise effizient folgende Methoden für FFElems:

Addition,

- · Addition,
- Multiplikation,

- · Addition,
- Multiplikation,
- Quadratur,

- · Addition,
- · Multiplikation,
- · Quadratur,
- Potenzieren via Square-and-Multiply,

- · Addition,
- · Multiplikation,
- · Quadratur,
- Potenzieren via Square-and-Multiply,
- Polynome als struct FFElem **poly,

- Addition,
- Multiplikation,
- Quadratur,
- Potenzieren via Square-and-Multiply,
- Polynome als struct FFElem **poly,
- Matrizen und Matrixmultiplikation,

- Addition.
- Multiplikation,
- Quadratur,
- Potenzieren via Square-and-Multiply, Polynome als struct FFElem **poly,
 - Intelligenter Primitivitätstest
- Matrizen und Matrixmultiplikation,

Implementiere auf diese Weise effizient folgende Methoden für FFElems:

- Addition,
- Multiplikation,
- · Quadratur,
- Potenzieren via Square-and-Multiply,
- Polynome als struct FFElem **poly,
- Matrizen und Matrixmultiplikation,

Intelligenter Primitivitätstest

Frobenius-Auswertung und Test auf vollständige Erzeugereigenschaft

Lemma

$$q-1 = p_1^{\nu_1} \cdot \ldots \cdot p_l^{\nu_l}$$

die Primfaktorzerlegung von q-1. Definiere für alle $i=1,\ldots,I$

$$\bar{p}_i := \frac{q-1}{p_i}$$
.

Dann gilt: $u \in \mathbb{F}_q$ ist primitiv genau dann, wenn

$$u^{\bar{p}_i} \neq 1 \quad \forall i = 1, \ldots, I.$$

Lemma (Nutze, was schon berechnet ist!)

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$\bar{p}_i := \frac{q-1}{p_i}$$
,

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.
• $\bar{p}_1 = 2^3 \cdot 11^2 = 968$,
• $\bar{p}_2 = 2^3 \cdot 11 \cdot 61 = 5368$,
• $\bar{p}_3 = 2^2 \cdot 11^2 \cdot 61 = 29524$.

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$\bar{p}_i := \frac{q-1}{p_i}$$
,
• $d := ggT\{\bar{p}_i : i = 1, ..., l\}$,
• $d' := p_1$ falls $l \ge 2$ sonst $d' := 1$

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
, $w := v^{d'}$,

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.
• $\bar{p}_1 = 2^3 \cdot 11^2 = 968$,
• $\bar{p}_2 = 2^3 \cdot 11 \cdot 61 = 5368$.

$$\bar{p}_3 = 2^2 \cdot 11^2 \cdot 61 = 29524$$
.
• $d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44$,
 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
, $w := v^{d'}$,

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

$$\bullet \ \, \overline{n}_1:=2, \quad \, \overline{n}_2:=2, \quad \, \overline{n}_3:=11$$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
. $w := v^{d'}$.

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Sei
$$u \in \mathbb{F}_{3^{10}}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\bar{p}_1 = 2^3 \cdot 11^2 = 968,$$

 $\bar{p}_2 = 2^3 \cdot 11 \cdot 61 = 5368,$
 $\bar{p}_3 = 2^2 \cdot 11^2 \cdot 61 = 29524.$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

•
$$\bar{n}_1 := 2$$
, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$

•
$$u^{\bar{p}_1} = u^{\bar{p}_2} = u^{\bar{p}_3} = u^{\bar{p}_3} = u^{\bar{p}_3}$$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
. $w := v^{d'}$.

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{dd'}$ für $i = 2, \dots, I$,

Sei
$$u \in \mathbb{F}_{3^{10}}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

•
$$\bar{n}_1 := 2$$
, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$

•
$$u^{\bar{p}_1} = v^{\bar{n}_1}$$
,
 $u^{\bar{p}_2} = u^{\bar{p}_3} - u^{\bar{p}_3}$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
. $w := v^{d'}$.

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Sei
$$u \in \mathbb{F}_{3^{10}}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

•
$$\bar{n}_1 := 2$$
, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$

•
$$u^{\bar{p}_1} = v^{\bar{n}_1}$$
,
• $u^{\bar{p}_2} = w^{\bar{n}_2}$:= u_2
• $u^{\bar{p}_3} =$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
, $w := v^{d'}$,

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Beispiel

ııĒ3 —

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.
• $\bar{p}_1 = 2^3 \cdot 11^2 = 968$,
• $\bar{p}_2 = 2^3 \cdot 11 \cdot 61 = 5368$,
• $\bar{p}_3 = 2^2 \cdot 11^2 \cdot 61 = 29524$.
• $d = \operatorname{ggT}\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44$,
• $d' = p_1 = 61$
• $v := u^d = u^{44}$, $w := v^{d'} = v^{61}$
• $\bar{n}_1 := 2$, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$
• $u^{\bar{p}_1} = v^{\bar{n}_1}$,
• $u^{\bar{p}_2} = w^{\bar{n}_2} := u_2 := z_2$.

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
, $w := v^{d'}$,

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Beispiel

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.
• $\bar{p}_1 = 2^3 \cdot 11^2 = 968$,
• $\bar{p}_2 = 2^3 \cdot 11 \cdot 61 = 5368$,
• $\bar{p}_3 = 2^2 \cdot 11^2 \cdot 61 = 29524$.
• $d = \operatorname{ggT}\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44$,
• $d' = p_1 = 61$
• $v := u^d = u^{44}$, $w := v^{d'} = v^{61}$
• $\bar{n}_1 := 2$, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$
• $u^{\bar{p}_1} = v^{\bar{p}_1}$

 $u^{\bar{p}_2} = w^{\bar{n}_2} := u_2$

 $u^{\bar{p}_3} = w^9 \cdot z_2$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
. $w := v^{d'}$.

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

Sei
$$u \in \mathbb{F}_{310}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

$$\bullet \ \, \overline{n}_1:=2, \quad \, \overline{n}_2:=2, \quad \, \overline{n}_3:=11$$

$$\begin{array}{lll} \circ & u^{\bar{p}_1} = v^{\bar{n}_1} \,, \\ u^{\bar{p}_2} = w^{\bar{n}_2} & := u_2 & := z_2 \,, \\ u^{\bar{p}_3} = w^9 \cdot z_2 & := u_3 \cdot z_2 & := z_3 \,. \end{array}$$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v := u^d$$
, $w := v^{d'}$,

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{dd'}$ für $i = 2, \dots, I$,

•
$$u_2 := w^{\overline{n}_2}$$
 und $u_i := w^{\overline{n}_i - \overline{n}_{i-1}}$ für $i = 3, \dots, I$.

•
$$z_i := \prod_{j=2}^i u_j \text{ für } i = 2, ..., I.$$

$$\mathsf{Sei}\ u \in \mathsf{IF}_{\mathbf{3^{10}}}.\ 3^{10} - 1\ =\ 61 \cdot 11^2 \cdot 2^3.$$

$$\begin{split} & \bullet \ \, \bar{p}_1 \, = \, 2^3 \cdot 11^2 \, = \, 968 \, , \\ & \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ & \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{split}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

$$\bullet \ \, \overline{n}_1:=2, \quad \, \overline{n}_2:=2, \quad \, \overline{n}_3:=11$$

$$\begin{array}{lll} \circ & u^{\bar{p}_1} = v^{\bar{n}_1} \,, \\ u^{\bar{p}_2} = w^{\bar{n}_2} & := u_2 & := z_2 \,, \\ u^{\bar{p}_3} = w^9 \cdot z_2 & := u_3 \cdot z_2 := z_3 \,. \end{array}$$

Lemma (Nutze, was schon berechnet ist!)

Sei $q-1=p_1^{\nu_1}\cdot\ldots\cdot p_l^{\nu_l}$ die absteigend sortierte Primfaktorzerlegung von q-1, d.h. $p_1>p_2>\ldots>p_l$. Notiere

•
$$v \coloneqq u^d$$
, $w \coloneqq v^{d'}$,

•
$$\bar{n}_1 := \frac{\bar{p}_1}{d}$$
, $\bar{n}_i := \frac{\bar{p}_i}{d d'}$ für $i = 2, \dots, I$,

•
$$u_2 := w^{\bar{n}_2}$$
 und $u_i := w^{\bar{n}_i - \bar{n}_{i-1}}$ für $i = 3, \dots, I$.

•
$$z_i := \prod_{j=2}^i u_j \text{ für } i = 2, ..., I.$$

Es gilt: $u \in \mathbb{F}_q$ ist genau dann nicht primitiv, falls eine der nachstehenden Bedingungen erfüllt ist:

$$|v| = 1.$$
 $|v| = 1.$ $|v| = 1.$ $|v| = 1.$ $|v| = 1.$ $|u| \cdot z_{i-1} = 1$ für ein $|u| \cdot z_{i-1} = 1$ für ein $|u| \cdot z_{i-1} = 1$

Sei
$$u \in \mathbb{F}_{3^{10}}$$
. $3^{10} - 1 = 61 \cdot 11^2 \cdot 2^3$.

$$\begin{array}{lll} \bullet & \bar{p}_1 \, = \, 2^3 \cdot 11^2 & = \, 968 \, , \\ \bar{p}_2 \, = \, 2^3 \cdot 11 \, \cdot 61 \, = \, 5368 \, , \\ \bar{p}_3 \, = \, 2^2 \cdot 11^2 \cdot 61 \, = \, 29524 \, . \end{array}$$

•
$$d = ggT\{\bar{p}_1, \bar{p}_2, \bar{p}_3\} = 2^2 \cdot 11 = 44,$$

 $d' = p_1 = 61$

•
$$v := u^d = u^{44}$$
, $w := v^{d'} = v^{61}$

•
$$\bar{n}_1 := 2$$
, $\bar{n}_2 := 2$, $\bar{n}_3 := 11$

$$\begin{array}{lll} \circ & u^{\bar{p}_1} = v^{\bar{n}_1} \,, \\ u^{\bar{p}_2} = w^{\bar{n}_2} & := u_2 & := z_2 \,, \\ u^{\bar{p}_3} = w^9 \cdot z_2 & := u_3 \cdot z_2 := z_3 \,. \end{array}$$

Anwendung des Zerlegungssatzes

Anwendung des Zerlegungssatzes

Anwendung des	Wähle das nächs-
Zerlegungssatzes	te Element $u \in E$

Anwendung des Zerlegungssatzes Wähle das nächste Element $u \in E$ u ist vollst. Erzeuger eines Teilmoduls (Nutze einfache und reguläre Erw.)

Anwendung des Zerlegungssatzes Wähle das nächste Element $u \in E$ u ist vollst. Erzeuger eines Teilmoduls (Nutze einfache und reguläre Erw.)

Ergebnisse: $\mathcal{CN}(q, n)$ und $\mathcal{PCN}(q, n)$ berechnet für

Morgan und Mullan (1996),

q	n
2	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
3	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
4	2, 3, 4, 5, 6, 7, 8, 9
5	2, 3, 4, 5, 6, 7, 8
7	2, 3, 4, 5, 6
8	2, 3, 4, 5
9	2, 3, 4, 5

Ergebnisse: $\mathcal{CN}(q,n)$ und $\mathcal{PCN}(q,n)$ berechnet für

```
Morgan und Mullan (1996), SH (2014)
```

```
2
          2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
3
          2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
          2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
          2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
          2, 3, 4, 5, 6, 7, 8, 9, 10, 11
          2, 3, 4, 5, 6, 7, 8, 9
          2, 3, 4, 5, 6, 7, 8, 9
11
          2, 3, 4, 5, 6, 7
13
         2, 3, 4, 5, 6, 7
16
          2, 3, 4, 5, 6, 7
17
          2, 3, 4, 5, 6, 7
19
          2, 3, 4, 5, 6, 7
                                            2. 3. 4. 5. 7. 8. 9. 11. 13. 16. 17. 19. 23. 25. 27. 29. 31. 32. 37. 41.
25
          2, 3, 4, 5, 6
                                            43. 47. 49. 53. 59. 61. 64. 67. 71. 73. 79. 81. 83. 89. 97. 121. 125.
27
          2.3.4
                                            128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961
27
          2, 3, 4, 5, 6, 7
31
          2, 3, 4, 5, 6
                                      4
                                            2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41,
31
          2, 3, 4
                                            43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 121, 125,
37
          2, 3, 4, 5, 6
                                            128, 169, 243
41
          2, 3, 4, 5, 6
                                      6
                                            2. 3. 4. 5. 7. 8. 9. 11. 13. 16. 17. 19. 23. 25. 27. 29. 31. 32. 37. 41.
43
          2, 3, 4, 5, 6
                                            43
121
          2, 3, 4
169
          2.3.4
361
         2,3
529
          2,3
841
          2,3
961
          2.3
1369
          2
1681
          2
          2
1849
```

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Lemma

Sei $n \in \mathbb{N}^*$ Potenz einer beliebigen Primzahl. Dann gilt: n ist regulär über jeder Primzahlpotenz q > 1.

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Lemma

Sei $n \in \mathbb{N}^*$ Potenz einer beliebigen Primzahl. Dann gilt: n ist regulär über jeder Primzahlpotenz q > 1.

Satz

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt $n \in \mathcal{G} := \{n \in \mathbb{N}^*, n \ge 2 : \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q, n) > 0\}.$

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Lemma

Sei $n \in \mathbb{N}^*$ Potenz einer beliebigen Primzahl. Dann gilt: n ist regulär über jeder Primzahlpotenz q > 1.

Satz

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt $n \in \mathcal{G} := \{n \in \mathbb{N}^*, n \ge 2 : \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q, n) > 0\}.$

Vorgehen: Sei $2 \le n \le 33$, so dass n keine Primzahlpotenz ist, also

$$n \in \{6, 12, 14, 15, 18, 21, 22, 24, 26, 28, 30\}$$
.

Gib dann für alle Primzahlpotenzen $q < n^4$ das "kleinste" \mathcal{PCN} -Polynom an, d.h. ein Polynom von Grad n über \mathbb{F}_q , dessen Nullstellen primitiv und vollständig normal sind.

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Lemma

Sei $n \in \mathbb{N}^*$ Potenz einer beliebigen Primzahl. Dann gilt: n ist regulär über jeder Primzahlpotenz q > 1.

Satz

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt $n \in \mathcal{G} := \{n \in \mathbb{N}^*, n \ge 2 : \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q, n) > 0\}.$

Vorgehen: Sei $2 \le n \le 33$, so dass n keine Primzahlpotenz ist, also

bzgl. Anzahl und Position der Koeffizienten
$$\pm$$
 0 und "Größe" der Koeffizienten $n \in \{6, 12, 14, 15, 18, 21, 22, 24, 26, 28, 30\}$.

Gib dann für alle Primzahlpotenzen $q < n^4$ das "kleinste" \mathcal{PCN} -Polynom an, d.h. ein Polynom von Grad n über \mathbb{F}_q , dessen Nullstellen primitiv und vollständig normal sind.

Wissen: $\mathcal{PCN}(q, n)$ -Elemente existieren, falls

- \mathbb{F}_{q^n} regulär über \mathbb{F}_q ,
- $q \ge n^4$.

Lemma

Sei $n \in \mathbb{N}^*$ Potenz einer beliebigen Primzahl. Dann gilt: n ist regulär über jeder Primzahlpotenz q > 1.

Satz

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt $n \in \mathcal{G} := \{n \in \mathbb{N}^*, n \ge 2 : \forall q \text{ Primzahlpotenz gilt } \mathcal{PCN}(q, n) > 0\}.$

Vorgehen: Sei $2 \le n \le 33$, so dass *n* keine Primzahlpotenz ist, also

bzgl. Anzahl und Position der Koeffizienten ± 0 und "Größe" der Koeffizienten

$$n \in \{6, 12, 14, 15, 18, 21, 22, 24, 26, 28, 30\}$$
.

Für n = 30 sind 64902 Polynome anzugeben

Gib dann für alle Primzahlpotenzen $q < n^4$ das "kleinste" \mathcal{PCN} -Polynom an, d.h. ein Polynom von Grad n über \mathbb{F}_q , dessen Nullstellen primitiv und vollständig normal sind.

Lemma

Sei $u \in \mathbb{F}_{q^n}$ über \mathbb{F}_q ein primitiv vollständig normales Element und $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{F}_q[x]$ sein Minimalpolynom. Dann gilt

- $1 \mid a_{n-1} = -\mathsf{Tr}_{\mathbb{F}_{q^n} \mid \mathbb{F}_q}(u) \neq 0 \text{ und}$
- $2 \mid (-1)^n a_0 = \operatorname{Nm}_{\mathbb{F}_{q^n} \mid \mathbb{F}_q}(u)$ ist primitiv in \mathbb{F}_q .

Lemma

Sei $u \in \mathbb{F}_{q^n}$ über \mathbb{F}_q ein primitiv vollständig normales Element und $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{F}_q[x]$ sein Minimalpolynom. Dann gilt

- $1 \mid a_{n-1} = -\mathsf{Tr}_{\mathbb{F}_{a^n} \mid \mathbb{F}_a}(u) \neq 0 \text{ und}$
- $2 \mid (-1)^n a_0 = \operatorname{Nm}_{\mathbb{F}_{q^n} \mid \mathbb{F}_q}(u)$ ist primitiv in \mathbb{F}_q .

Folgerung

Die kleinsten \mathcal{PCN} -Polynome sind Trinome von der Form

$$x^{n} + a_{n-1}x^{n-1} + a_{0}$$
.

Wähle das nächstgrößere Polynom $f(x) \in \mathbb{F}_q[x]$ von Grad n.

Nun bewiesen:

Satz

Für alle $n \in \mathbb{IN}^*$ mit $2 \le n \le 33$ gilt

$$n \in \mathcal{G}$$
 .

Nun bewiesen:

Satz

85 (Stand: 03.02.2015)

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt

 $n \in \mathcal{G}$.

Nun bewiesen:

Satz

85 (Stand: 03.02.2015)

Für alle $n \in \mathbb{N}^*$ mit $2 \le n \le 33$ gilt

 $n \in \mathcal{G}$.

Vermutung

Seien $n \in \mathbb{N}^*$ und $r \in \mathbb{N}^*$ beliebig. Dann existiert ein $P_{n,r} \in \mathbb{N}^*$, so dass für alle Primzahlen $p \ge P_{n,r}$ ein primitiv vollständig normales Trinom von Grad n über \mathbb{F}_{p^r} existiert.

Colloquium zur Masterarbeit

Theoretische und experimentelle Untersuchungen zu Normalbasen für Erweiterungen endlicher Körper

Stefan Hackenberg

4. Februar 2015