

안면인식 시스템을 통한 졸음운전 감지

김동민⁰, 위형준⁰, 김진하, 신현철 한양대학교 전자통신공학과

qoqnfmssj@gmail.com, whj2837@gmail.com, jhkim@dslab.hanyang.ac.kr, shin@hanyang.ac.kr

Drowsy Driving Detection Using Facial Recognition System

Dongmin Kim⁰, Hyeongjun Wi⁰, Jinha Kim, Hyunchul Shin School of Electronic Communication Engineering, Hanyang University

요 약

본 논문에서는 카메라로부터 영상을 인식 받아 운전자의 졸음여부를 판단하고 이에 따른 경보를 발생시킴으로써 졸음운전으로 인한 사고율을 줄이는 것을 목표로 한다. 얼굴을 인식함에 있어 상태기반인식을 바탕으로 Adaboost 알고리즘을 적용하였고 labeling 및 RGB간의 색차를 이용하여 눈 후보 영역에서 특정 부위를 검출하였다. 이진화를 통해서 눈의 개폐여부를 판단하고 이를 통해 운전자의 졸음을 판별하도록 하였다[1]. 또한 주간/야간 상황에서 운전자가 안경을 썼을 때와 쓰지 않았을 때를 구분하여 눈 영역 및 눈 깜빡임 인식률 실험을 하였고 그에 따른 결과 및 개선점을 제시하였다.

1. 서론

해마다 교통사고는 증가하고 있다. 교통사고의 대부분 은 운전자의 전방주시태만과 졸음운전이 원인인 것으로 판명 되었으며, 그 치사율은 졸음운전의 경우가 다른 교통사고에 비해 2배에 달한다. 도로교통공단의 최근 5년간(2009~2013년) 통계를 분석하면, 나른한 날씨와 춘곤증으로 인한 졸음운전 발생률이 높은 봄철(3~5월)에 사고율이 높은 편으로 집계된다. 통계적으로 이 시기에 매년 645건의 사고가 발생해 30명이 사망하고 1만2272명이 부상당하는 것으로 나타났다. 이 가운데 매일 7건의 졸음운전사고가 발생해 14명의 사상자가 발생하고 있었다. 이와 같은 문제를 해결하기 위한 방안이 대두되고 있는 가운데. 최근 영상처리 기술이 발전함에 따라서 졸음운전을 예방하기 위한 방법이 제시되고 있다. 그 중 하나로 기존의 맥박, 심박 수 측정에서는 운전자 신체에 직접적인 접촉이 불가피 했으나 영상을 통한 인식을 활용하면 직접적인 접촉 없이도 운전자의 실시간 상태를 체크해 거부감 없이 졸음여부를 확인할 수 있다. 본 논문에서는 얼굴 부위 중에서도 눈 영역을 기준으로 졸음운전 검출 시스템을 제안하였으며 여러 가지 운전 상황을 고려하기 위하여

주간 및 야간 기준 운전자의 안경 착용 여부를 구분하여 인식률 실험하고 그에 따른 결과 및 개선점을 제시한다.

2. 눈 깜빡임 패턴을 통한 졸음검출

2.1 졸음검출 흐름도

먼저 영상을 인식 받아 얼굴 영역을 검출한 다음 얼굴 영역 내에서 눈 후보영역을 찾는다. 그 다음 눈 영역의 특징을 검출해 눈 영역을 찾고 깜박임을 검출하여 졸음을 판별한다. 아래 그림1은 이와 같은 졸음운전 검출 과정 알고리즘이다.

그림1. 졸음운전 검출 과정 알고리즘

2.2 얼굴 영역 검출

실시간 얼굴영역 검출은 CCD카메라에서 입력받은 영상에 Open CV 라이브러리를 사용하였다. 물체를 검출하는 데에는 그 기반에 따라 특징 기반, 템플릿기반, 지식 기반, 상태 기반이 있으며 본 논문에서는 상태 기반 방법을 사용하였다. 이 방법은 Adaboost 패턴인식 알고리즘을 이용하여 학습된 분류기를 이용하여 얼굴을 검출하는 방법이다[2].

흔히 얼굴인식에서 사용하는 특징은 Haar-like feature 이다. Haar-like feature는 Haar-like filter 에 의해 계산되며, positive 혹은 negative값을 반환한다. Haar-like feature는 이미지에서 관심영역 sub-window를 일정크기로 정하여 이미지 스캔하고 sub-window 크기를 계속 키워나가면서 검출 한다. 여기서 Haar-like 웨이블릿을 비교하여 흰 부분과 검은 부분의 차이로 그 차이가 일정 임계값 이상일 경우 특징으로 추출한다. Haar-like filter의 형태는 무수히 많이 존재할 수 있으며, 각각은 물체 분류를 위한 분류기로서 사용될 수 있다. 하지만 일반적으로 하나의 Haar-like feature만으로 정확하게 물체를 분류하는 것은 불가능하며 이를 해결하기 위해 Adaboost 알고리즘을 사용한다. Adaboost는 무수히 많은 Haar-like Filter들 중 가장 효과적인 것들만을 선택하며 필터(약 분류기)들을 선형 조합하여 최종 분류기(강 분류기)를 구성한다. 이러한 분류기 중 Open CV의 haarcasdcade를 이용하여 그림2와 같이 얼굴영역을 검출하였다.

그림2. 얼굴영역 검출

2.3 눈 영역 검출

앞서 검출한 얼굴영역을 그레이 변환 한다. 그 다음에 모폴로지 연산을 수행하여 조명 조건이나 카메라 해상도로 인하여 발생하는 노이즈를 줄였다. 다음 반복적인 labeling 작업을 통하여 binary 영상으로부터 연결된 구성성분을 모두 찾는다. 이때 연결된 성분들이 두 눈인지 아닌지를 결정하기 위하여 각각의 R,G,B 채널간의 색차를 구한다[3]. 일반적으로 눈 영역은 피부영역에 비하여 R,G,B 간 색차가 적다. 따라서 색차의 합이 가장 적은 영역을 그림3과 같이 눈의 영역으로 검출하였다.

그림3. 얼굴영역 내의 눈 영역 검출

2.4 눈 개폐 상태 판단

영상으로부터 추출한 눈 후보영역을 바탕으로 눈 개폐상태를 판단하기 위해 이진화 방법을 사용하였다. 눈을 감은 영상과 뜬 영상을 비교해 보았을 때 어두운 영역과 밝은 영역이 차지하는 비중이 차이가 나기 때문에 일정한 임계값 (threshold) 을 잡고 영상을 이진화 했을때 검은색, 즉 '0'값으로 표현 되는 부분이 차이가 나게되며 이는 눈 개폐여부를 판단하는 척도가 된다. 그림4와그림5는 앞서 추출한 눈 후보영역에 이진화 방법을적용한 결과이다. 눈을 완전히 뜬 경우 black pixel의 개수는 178개로 평균적으로 130개 이상이며 눈을 완전히 감은 경우의 black pixel의 개수는 83개 이다. 눈을 감았을 때와 떴을 때 black pixel의 개수가 확연히 차이나므로 '0'으로 표현된 픽셀 수를 세어 눈 개폐상태를 판단한다[4].

그림4. 눈을 떴을 때의 이진화

그림5. 눈을 감았을 때의 이진화

3. 실험 및 결과

주간/야간으로 구별하여 운전자가 안경을 착용 했을 때와 착용하지 않았을 때를 기준으로 눈 영역 인식률을 측정한다. 이 때 카메라와 운전자 사이의 거리는 약 60-70cm 정도로 실제 운전석에 카메라를 설치했을 때의 거리이다. 인식률의 기준은 카메라에서 영상을 받았을 때 단위 분당 눈 영역이 인식된 횟수로 판단하였다. 먼저 주간일 경우에 운전자가 안경을 착용하지 않았을 경우 인식률은 96.3% 이고 운전자가 안경을 썼을 때 인식률은 71.7%이다. 운전자가 안경을 착용하였을 경우 특히 안경이 검은색일 경우에 눈동자와 안경을 구별하지 못하는 상황이 종종 발생하였다. 그림6은 야간 상황에서 안경을 착용 하였을 때 눈 영역 인식률 실험 그림이다. 야간의 경우에는 주간보다 인식률이 조금씩 떨어졌는데 각각 93.4%, 68.3%를 나타냈으며 실험 결과는 표1과 같다. 다음으로 위의 눈 영역 인식률 실험과 같은 조건에서 주간/야간 안경착용 여부에 따른 눈 깜빡임 인식률 실험을 진행하였으며 그 결과는 표2와 같다.

그림6. 안경 착용 시 눈 영역 감지 테스트

표 1. 눈 영역 감지 테스트 결과

안경착용여부	주간	야간
안경 미착용	924/960	897/960
안경 착용	688/960	656/960

단위 = 인식된 눈 영역의 수/총 눈 영역의 갯수(960개)

표 2. 눈 깜빡임 감지 테스트 결과

안경착용여부	주간	야간
안경 미착용	48/50	47/50
안경 착용	36/50	34/50

단위 = 눈 깜박임 인식 횟수/깜박임 횟수(50회)

4. 결론

본 논문은 눈 영역 내의 이진화를 통해서 눈 깜박임을 검출하는 방법을 제시하였다. 안경을 착용했을 경우 눈 영역과 안경 영역이 인접하게 연결되어 눈 영역을 검출함에 있어서 인식률이 떨어진다. 또한 야간에는 이미지의 전체적인 픽셀 값이 낮아지게 되어 RGB색차를 사용하는데 있어서 평균값이 낮아지며 주간에 비해인식률이 떨어진다. 이러한 인식률은 영상 얼굴을 3D모델링함으로써 눈의 윤곽을 좀 더 뚜렷이 하면 좋아질 수 있을 것 이라고 생각한다. 또한 앞으로 실제환경에서의 머리 움직임, 졸음 형태 등과 관련된 추가적인 연구들이 요구된다.

5. Acknowledgement

본 연구는 한양대 IDEC 캠퍼스의 장비/tool 지원을 받았음

6. 참고 문헌

[1] Qiang Ji; Zhiwei Zhu; Lan, P., "Real-time nonintrusive monitoring and prediction of driver fatigue," Vehicular Technology, IEEE Transactions on , Vol.53, No.4, pp. 1052-1068, July 2004

[2] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple feature," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.12, pp. 511-518, 2001.

[3] 이주현, "졸음 운전 방지를 위한 눈 개폐 상태 판단방법의 개발", 울산대학교, 석사학위논문집, 11, 2014

[4] Danisman, T.; Bilasco, I.M.; Djeraba, C.; Ihaddadene, N., "Drowsy driver detection system using eye blink patterns,", Machine and Web Intelligence (ICMWI) 2010 International Conference on, 2010