Parcial 1. 1. La distancia media entre dos senales periodicas X1(t) E R,C y X2(t) E R,C, SP puede expressor a partir de las potencia media de la diferencia entre ellas. $d^{2}(X_{1}, X_{2}) = \bar{P}_{X_{1}-X_{2}} = \lim_{t \to \infty} \frac{1}{T} \left\{ \left| X_{1}(t) - X_{2}(t) \right|^{2} dt \right\}$ Jeg X7(t) yx(e) dos retales definidos como: $W_0 = \frac{2\pi}{T}$ $X_7(t) = A e^{-j n wot}$ $X_1(t) = B e^{j m wot}$ deferminar la disfancia entre las dos señales S/0 X1(t)- x2(t) = A e jowet - B e jourst (X,(E)-X,(E)12= | A e inwot - Be inwo -Z*=Aeinhot - Rejoulot 1x2-X212 = (Ae invot Be invot)(Ae invot Be invot = AZ-ABEJONOTE JONOS - ABEJONOS + BZ = A2+B2-AB(e)(ntm)wot + e)(ntm)wot) = A2 + B2 - 2AB cos ((0+m) Wot) d= 1 (AL+BL-ZABCOS((O+M)WOL) d's AtB= 2AB (cor (ntm) Wat dt

2. W1=1000TT F,=70008/2TV = 500H2 $w_2 = 3000 \, \text{T}$ $F_2 = 3000 \, \text{K/2} \, \text{K} = 1500 \, \text{Kz}$ W3=17000TT F3=17000X/2X = 6500H2 f, = 5 kH = 5000 Hz Segon Nyquist - for > 2 Frox 27 max = 77000 1/2 7 fs = 5000 /12 No comple Nyquist -fe=|f-kf=1 fe=15500 x2 - 5000 /1 = 500 M2 x[n]=3cos(2T. 500 n)+5 Jen(2T. 1500 n) +10 cos(210 000 n) =3 cas (0,211)n + 5 sen (0,611n) + 10 eos (2,211) 10 cos (0,2tr) X[0]=13cos(0,2TO) + 5500(0,6 TO) Applitud = 13 +5 = 18 para 4 bits the 16 niveles

3.
$$C_0 = \frac{1}{(t_1^2 - t_1^2)\Omega^2 N_0^2} \int_{t_1}^{t_2^2} \frac{x^2(t)e^{inNot}}{x^2(t)} dt$$

Expandicalo.

 $x(t) = \sum_{n=1}^{\infty} C_n e^{inNot}$
 $x^2(t) = \frac{N}{n} \left(\sum_{n=1}^{\infty} C_n e^{inNot}\right) = \sum_{n=1}^{\infty} C_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \frac{N}{n} \left(\sum_{n=1}^{\infty} C_n e^{inNot}\right) = \sum_{n=1}^{\infty} C_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \frac{N}{n} \left(\sum_{n=1}^{\infty} C_n e^{inNot}\right) = \sum_{n=1}^{\infty} C_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \frac{N}{n} \left(\sum_{n=1}^{\infty} C_n e^{inNot}\right) = \sum_{n=1}^{\infty} C_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 \left(\sum_{n=1}^{\infty} c_n e^{inNot}\right) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 \left(\sum_{n=1}^{\infty} c_n e^{inNot}\right) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$
 $x^2(t) = \sum_{n=1}^{\infty} c_n \left(j_n N_0\right)^2 e^{j_n N_0 t}$

x(=) einwot of = = = (x(t) cos(nvot) de x(e)cost (ke) dt A (20-t) cos(+1) dt At 605 (Kt) dt tcos(At) dt u=t dy = cos (kt) t cos(kt)dt = t sin(kt) + 1 cos(kt) + c $I_1 = A \left[a \sin(ka) + \frac{1}{k^2} (\cos(ka) - 1) \right]$ 4-29-1 dys cor(kt)+C 10 - £ 1005 (+ £) dt = sin(tt) = 1 cos(tt)+c - 9 sin(ka) + 1 (cos(ka) - cos(2ka))

do = - 12 2. A.] (2005(ta)-005(2ka)-7) = - ZA (2 cos(ka) - cos(2ka) - 7) 2 cos 0 - cos 20 - 7= 4 cos & sin (9) 0 = nwoq dn = - 8A cos (nwoa) sin (nwoa) nto 0=0 (dal = 8/A/ 1 cos (nuoa) / sinz (nuoa) 0,70 d, <0 100 = 1 T indefinida do =0 como d= da - 0= 12,3,4,5 0=0 do = _ 87 (05 (80) 510 (80)

kaggle

CERTIFICATE OF COMPLETION

erodriguezda

HAS SUCCESSFULLY COMPLETED THE COURSE

Intro to Programming

ON SEPTEMBER 14, 2025

ALEXIS COOK, HEAD OF KAGGLE LEARN

CERTIFICATE OF COMPLETION

erodriguezda

HAS SUCCESSFULLY COMPLETED THE COURSE

Python

ON OCTOBER 5, 2025

COLIN MORRIS, KAGGLE INSTRUCTOR

ALEXIS COOK, HEAD OF KAGGLE LEARN