

5 Contador de dígitos

(++)

Escreva, em \mathbb{C} , uma função recursiva que seja capaz de determinar a quantidade de dígitos iguais a k, com $k \in \{0, 1, 2, \dots, 8, 9\}$, contidos na representação decimal do número n fornecido como entrada.

Entrada

A primeira linha contém um número natural t, $1 \le t \le 50$, que corrresponde ao número de casos de teste. A segunda linha contém o dígito k. A terceira linha contém os t números naturais separados por um único espaço em branco entre eles.

Saída

Uma única linha contendo o número de ocorrências do dígito k em cada um dos casos de teste, sempre separados por um único espaço em branco entre eles.

Exemplos

Entrada	Saída
2	1 0
9	
192 127	

Entrada	Saída
5	0 0 1 1 2
8	
10 30 48 820 880	

Entrada	Saída
10 1 111 121 717 818 1881 701 818 991 1001 10	3 2 1 1 2 1 1 1 2 1

Observação : Apenas a implementação que utilize <i>recursividade</i> será considerada válida como resposta, ou seja, uma implentação iterativa, mesmo que com todas as saídas corretas, não será aceita.