5.10 Lagrange-metoden

Metode for å maksimere/minimere skalarfunksjoner $f(x_{i,...,x_m})$ under en eller flere bibetingelser av typen

$$g(x_1,...,x_m) = 0$$

Teorem (Lagrange)

Anta at A = R apen, og at

f, q: A -> 1R har kontinuerlige partiellderiverte.

Hvis a er et lokalt ekstreunalpunkt for f på A under bibetingelsen $g(x_1,...,x_m)=0$, og vi har $\nabla_g(\vec{a}) \neq \vec{0}$, så fins et konstant tall $\lambda \in \mathbb{R}$ slik at

$$\nabla f(\vec{a}) = \lambda \cdot \nabla_q(\vec{a})$$

Intuitive forklaring i hilfellet the variable

eks. 1 Skal skjøre ut bjelke med rektangulært tverrsnitt fra en tømmerstokk med radius 10 cm.

Hvordan skal B og H velges

Ca at bielkon skal få støret

Huordan skal B og H velges for at bjelken skal få størst mulig Everrsnittareal?

Losn. Lager koordinatsystem:

Skal maksimere

$$f(x,y) = 2x \cdot 2y = 4xy$$

under bibetingelsen
 $g(x,y) = x^2 + y^2 - 100 = 0$

Lagrange:
$$\nabla f = \lambda \cdot \nabla g$$
 gir
$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} \end{pmatrix} = \lambda \cdot \begin{pmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{pmatrix} \quad \text{dvs.} \quad \begin{pmatrix} q_y \\ q_x \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

Vi for dermed:

$$\begin{cases} 4y = \lambda \cdot 2x & I \\ 4x = \lambda \cdot 2y & II \\ x^2 + y^2 = 100 & III \end{cases}$$

Kan auto
$$x, y > 0$$

I gir
$$\frac{y}{x} = \frac{\lambda}{2}$$
 alts $\frac{y}{x} = \frac{x}{y}$, $y^2 = x^2$, dur. $x = y$
If gir $\frac{x}{y} = \frac{\lambda}{2}$

III gir da
$$2x^2 = 100$$
, des. $x = \sqrt{50} = y$.

Ved ekstremalverdisetningen vet vi at f har et globalt maksimum på kurven g(x,y)=0, siden kurven er lukket og begrønset. Ved Lagrange følger at delk moksimumet må være

$$f(50, 50) = 4.50 \cdot 50 = 4.50 = 200$$

eks. 2 Skal finne maksverdien for f(x, y, z) = xyzunder bibetingelsen $x^2 + \frac{y^2}{u} + \frac{z^2}{u} = 1$

Løsn. Døper $g(x,y,z) = x^2 + \frac{y^2}{4} + \frac{z^2}{4} - 1$

Biberingelse: g(x, y, z) = 0.

Lagrange: $\nabla f = \lambda \nabla g$ gir

$$\begin{pmatrix} y_{\xi} \\ x_{\xi} \\ xy \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2x \\ \frac{1}{2}y \\ \frac{1}{2}\xi \end{pmatrix} \quad \text{dvs.} \quad \begin{cases} y_{\xi} = \lambda \cdot 2x & \mathbf{I} \\ x_{\xi} = \lambda \cdot \frac{1}{2}y & \mathbf{II} \\ xy = \lambda \cdot \frac{1}{2}\xi & \mathbf{II} \end{cases}$$

Har også $x^2 + \frac{y^2}{4} + \frac{z^2}{2} = 1$

Vi kan anta x, y, z > 0, fordi f(x,y,z) = xyz appenbart har positive funksjonsverdier under den gitte bebetingelsen.

II gir
$$\frac{x^2}{y} = \frac{\lambda}{2}$$

$$\int \int \int \frac{x^2}{y} = \frac{\lambda}{2} \int \int \int \frac{x^2}{y} = \frac{xy}{2}, \quad x^2 = xy^2, \text{ dus. } y = 2.$$
III gir $\frac{xy}{2} = \frac{\lambda}{2}$

I gir da
$$\frac{y^2}{2x} = \lambda$$
 $\begin{cases} s_n^2 & \frac{y^2}{2x} = 2x, \ dvs. \ y^2 = 4x^2 \\ y = 2x \end{cases}$
If gir da $2x = \lambda$

$$y = 2 = 2x$$
 innsatt i IV gir så $x^{2} + x^{2} + x^{2} = 1$, $x = \frac{1}{\sqrt{3}}$
Så $y = 2 = \frac{2}{\sqrt{3}}$. Vi har $f(\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}) = \frac{4}{3\sqrt{3}}$

Bibetingelsen beskriver en ellipsoide i rommet, og denne er lukket og begrenset. Ved ekstremalverdisetningen vil derfor f ha et globalt maksimumspunkt under bibetingelsen (f kontinuerlig). Delte betyr at globalt maksimum for f appras i punket ($\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$). Maksimumsverdi: $\frac{4}{3\sqrt{3}}$

Lagrange-metoden med flere bibetingelser: Se 5.10.5

Finne maks/minpunkt a for f(x,,..., xm) under bibetingelser

$$\begin{cases} g_1(x_1,...,x_m) = 0 \\ \vdots \\ g_k(x_1,...,x_m) = 0 \end{cases}$$

Enken er da $\nabla g_i(\vec{a}),...,\nabla g_k(\vec{a})$ lineært auhengige, eller så fins konstanter $\lambda_i,...,\lambda_k$ slik at

$$\nabla f(\vec{a}) = \lambda_1 \nabla g_1(\vec{a}) + ... + \lambda_k \nabla g_k(\vec{a})$$

(se eksempel 5.10.6).

Bevis for Lagrange-metoden (en bibetingelse)

La $A \subseteq \mathbb{R}^m$ være åpen, og la $f, g: A \to \mathbb{R}$ ha kontinuerlige partiellder iverte. Anta at \vec{a} er et lokalt ekstremalpunkt for f på A under bibetingelsen $g(x_1,...,x_m) = 0$, og anta at $\nabla g(\vec{a}) \neq \vec{0}$. $\forall i$ antar $\frac{\partial g}{\partial x_m}(\vec{a}) \neq 0$.

Ved implisit funksjonsteoremet fins en omegn U om $(a_1,...,a_{m-1})$ i \mathbb{R}^{m-1} og $h: U \to \mathbb{R}$ slik at $g(x_1,...,x_{m-1},h(x_1,...,x_{m-1})) = 0$ for alle $(x_1,...,x_{m-1}) \in U$. $h(a_1,...,a_{m-1}) = a_m$

Definerer $\phi: \mathcal{U} \to \mathbb{R}$ og $\psi: \mathcal{U} \to \mathbb{R}$ vel $\phi(x_{1},...,x_{m-1}) = f(x_{1},...,x_{m-1}, h(x_{1},...,x_{m-1}))$ $\psi(x_{1},...,x_{m-1}) = q(x_{1},...,x_{m-1}, h(x_{1},...,x_{m-1}))$

Da må (a,,..., a,...) være et lokalt ekstremalpunkt for ø, så kjerneregelen gir

$$O = \frac{\partial x_{j}}{\partial \phi} (a_{1,j...,j} a_{m-1}) = \frac{\partial x_{j}}{\partial f} (\vec{a}) + \frac{\partial x_{m}}{\partial f} (\vec{a}) \cdot \boxed{\frac{\partial x_{j}}{\partial x_{j}} (a_{1,j...,j} a_{m-1})}$$

for 1 \le j \le m-1. Videre er \tau = 0 på hele \tau, så vi har også

$$O = \frac{\partial x_{j}}{\partial x_{j}} \left(\alpha_{i_{1}...,i_{m-1}} \alpha_{m-1} \right) = \frac{\partial y_{j}}{\partial x_{j}} \left(\vec{a}_{i_{1}} \right) + \frac{\partial y_{m}}{\partial y_{m}} \left(\vec{a}_{i_{2}} \right) \cdot \left[\frac{\partial x_{j}}{\partial x_{j}} \left(\alpha_{i_{1}...,i_{m-1}} \alpha_{m-1} \right) \right]$$

Løser vi nhp. ____ i begge disse og selfer utfrykkene lik hverandre, for vi for 1 \le j \le m-1

$$\frac{\frac{\partial x}{\partial x}}{\frac{\partial x}{\partial t}} \begin{pmatrix} \frac{1}{x} \end{pmatrix} = \frac{\frac{\partial x}{\partial y}}{\frac{\partial x}{\partial y}} \begin{pmatrix} \frac{1}{x} \end{pmatrix}$$

$$\frac{\frac{\partial x}{\partial x}}{\frac{\partial x}{\partial t}} \begin{pmatrix} \frac{1}{x} \end{pmatrix}$$

$$\frac{\frac{\partial x}{\partial t}}{\frac{\partial x}{\partial t}} \begin{pmatrix} \frac{1}{x} \end{pmatrix}$$

dur.
$$\frac{\partial x_{i}}{\partial f}(\vec{a}) = \lambda \cdot \frac{\partial x_{i}}{\partial g}(\vec{a}), \quad \text{der} \quad \lambda = \frac{\frac{\partial x_{i}}{\partial g}(\vec{a})}{\frac{\partial x_{i}}{\partial g}(\vec{a})}$$

for 1 ≤ j ≤ m. □

Gradientmetoden (S.11)

Giff $f: \mathbb{R}^m \to \mathbb{R}$, vil finne minimum av $f(\vec{x})$ ved ikrasjonen $\vec{x}_{n+1} = \vec{x}_n - \nabla f(\vec{x}_n) \cdot t$

der t>0 er minste positive løsning av

$$\nabla f(\vec{x}_n - \nabla f(\vec{x}_n) \cdot t) \cdot \nabla f(\vec{x}_n) = 0$$
Skalarprodukt

Prenget er at t tilsvarer et punkt der det autokelig ikke or lurt å gålenger samme vei.

$$\nabla f(\vec{x}_n - \nabla f(\vec{x}_n) \cdot t)$$

$$\vec{x}_n - \nabla f(\vec{x}_n) \cdot t \qquad (t \approx 2 \text{ her } ?)$$