

Home (

Gameboard

Maths

Differentiation: Products 4ii

Differentiation: Products 4ii

Differentiate with respect to x, simplifying your answers where possible.

Part A $\sin x \tan x$

Differentiate $\sin x \tan x$.

The following symbols may be useful: \times

Part B
$$x^2(x+1)^6$$

Differentiate $x^2(x+1)^6$.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Home Game

<u>Gameboard</u>

Maths

Differentiation: Products 2ii

Differentiation: Products 2ii

Given that $y=4x^2\ln x$, answer the following.

Part A First Derivative

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Second Derivative

Find the value of $rac{\mathrm{d}^2 y}{\mathrm{d}x^2}$, when $x=e^2$.

The following symbols may be useful: Derivative(y, x, x), ln(), log(), x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

Home Gamel

Gameboard

Maths

Differentiation: Quotients 2ii

Differentiation: Quotients 2ii

Differentiate with respect to x, simplifying your answers where possible.

Part A Differentiation (a)

$$y = \frac{\ln x}{x}$$

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Differentiation (b)

$$y=rac{x^2}{\ln x}$$

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part C Differentiation (c)

Determine the exact x-coordinate of the stationary point of the curve $y=rac{x^2}{\ln(x)}$.

The following symbols may be useful: e, ln(), x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

Home G

<u>Gameboard</u>

Maths

Differentiation: Quotients 3i

Differentiation: Quotients 3i

A curve has equation $y = \frac{x^2+4}{x+2}$.

Part A Derivative

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), x, y

Part B Normal

Find the equation of the normal to the curve at the point $(1, \frac{5}{3})$, giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

Home Gameboard

Maths

Differentiation: Products 1i

Differentiation: Products 1i

Figure 1 shows the curve with equation

$$x = (y+4)\ln(2y+3).$$

The curve crosses the x-axis at A and the y-axis at B.

Figure 1: The curve $x=(y+4)\ln(2y+3)$.

Part A Derivative

Find an expression for $\frac{\mathrm{d}x}{\mathrm{d}y}$ in terms of y.

The following symbols may be useful: Derivative(x, y), ln(), log(), x, y

Part B Gradients

Find the gradient of the curve at each of the points A and B, giving each answer correct to two decimal places.

Give the gradient at A.

Give the gradient at B.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

<u> Home</u> <u>Gameboard</u>

Maths

Calculus Differentiation

Implicit Differentiation 1

Implicit Differentiation 1

Part A Find $rac{\mathrm{d}y}{\mathrm{d}x}$ if $x^2+y^2=r^2$.

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ if $x^2+y^2=r^2$, giving your answer as a simple function of x and y.

The following symbols may be useful: x, y

Part B Find gradient of tangent to $x^2-xy+y^2=7$

Consider the curve $x^2 - xy + y^2 = 7$.

(i) Find as a function of x and y the gradient of the tangent to the curve $x^2 - xy + y^2 = 7$.

The following symbols may be useful: x, y

(ii) Using the equation for the gradient of the tangent to the curve $x^2 - xy + y^2 = 7$ from part (a) evaluate the slope at the point (-1, 2).

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

<u>Home</u> <u>Gameboard</u>

Maths

Differentiation: Products 4i

Differentiation: Products 4i

The equation of a curve has the form $y=\mathrm{e}^{x^2}ig(ax^2+big)$, where a and b are non-zero constants.

Part A First Derivative

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), a, b, e, ln(), log(), x, y

Second Derivative Part B

Find an expression for $\frac{d^2y}{dx^2}$.

The following symbols may be useful: Derivative(y, x, x), a, b, e, ln(), log(), x, y

\boldsymbol{a} in terms of \boldsymbol{b} Part C

It is given that $rac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ can be expressed in the form $\mathrm{e}^{x^2}(cx^4+d)$, where c and d are non-zero constants. Find an expression for a in terms of b.

The following symbols may be useful: a, b

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

<u>Home</u> <u>Gameboard</u>

Maths

Differentiation: Quotients 2i

Differentiation: Quotients 2i

Part A **Derivative**

Given that $y=rac{4\ln(x)-3}{4\ln(x)+3}$, find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Gradient Part B

Give the exact value of the gradient of the curve $y=rac{4\ln(x)-3}{4\ln(x)+3}$ at the point where it crosses the x-axis.

The following symbols may be useful: Derivative(y, x), e

Figure 1 shows part of the curve with equation

$$y = rac{2}{x^{rac{1}{2}}(4\ln(x)+3)}.$$

The region shaded in the diagram is bounded by the curve and the lines $x=1,\,x=\mathrm{e},$ and y=0. Find the exact value of the integral I where

$$I=\int_{1}^{\mathrm{e}}\pi y^{2}\mathrm{d}x.$$

Figure 1: A diagram showing part of the curve with equation $y=rac{2}{x^{rac{1}{2}}(4\ln(x)+3)}$.

Give the exact value of I.

The following symbols may be useful: I, pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

Home Gameboard

Maths

Calculus: Inverse Trigonometry

Calculus: Inverse Trigonometry

Part A Derivative of $\arcsin x$

Find the derivative of $\arcsin x$

The following symbols may be useful: \times

Part B Implicit differentiation

Given that

$$rcsin 2x + rcsin y = rac{1}{2}\pi$$

find the exact value of $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $x=\frac{1}{4}$.

Adapted with permission from UCLES, A Level, January 2009, Paper 4726, Question.

Gameboard:

STEM SMART Single Maths 30 - The Product Rule & Implicit Differentiation

Home Gameboard

<u>rd</u> Maths

s Calculus

Differentiation

Implicit Differentiation 2

Implicit Differentiation 2

Part A Find $rac{\mathrm{d}p}{\mathrm{d}V}$ for a Van der Waal's gas

One modification to the perfect gas equation of state (pV=RT) which takes account of the finite sizes of the molecules and intermolecular attractions is Van der Waals' equation, given by $\left(p+\frac{a}{V^2}\right)(V-b)=RT$, where a and b are constants.

For a gas obeying Van der Waals' equation, find an expression for $\frac{dp}{dV}$ assuming T is a constant. Give your answer as a function of a, b, R, p and V only.

The following symbols may be useful: R, V, a, b, p

Part B Find $rac{\mathrm{d} V}{\mathrm{d} T}$ for a gas obeying Dieterich's equation

One modification to the perfect gas equation of state (pV=RT) which takes account of the finite sizes of the molecules and intermolecular attractions is Dieterich's equation, given by $p(V-b)=RT\mathrm{e}^{-\frac{a}{RTV}}$, where a and b are constants.

For a gas obeying Dieterich's equation, $p(V-b)=RT\mathrm{e}^{-\frac{a}{RTV}}$. Find an expression for $\frac{\mathrm{d}V}{\mathrm{d}T}$ assuming p is a constant.

The following symbols may be useful: , R, T, V, a, b, e, p

Created for isaacphysics.org by Julia Riley