Расчетно-графическая работа по математическому анализу Вариант 6

Егор Федоров Даниил Горляков

Университет ИТМО

Декабрь 2023

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2.
Поток
векторного поля

Задание 3. Конформные отображения

Вывод

Задание 1. Потенциал векторного поля

Дано векторное поле $H = (e^x; -e^y)$. План:

- 1. Убедитесь, что поле потенциально
- 2. Найдите уравнения векторных линий
- 3. Изобразите векторные линии на рисунке
- 4. Найдите потенциал поля при помощи криволинейного интеграла
- 5. Изобразите линии уровня потенциала (эквипотенциальные линии). Проиллюстрируйте ортогональность линий уровня и векторных линий.
- 6. Зафиксируйте точки A и B на какой-либо векторной линии. Вычислите работу поля вдоль этой линии.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3.
Конформные отображения

Вывод

Потенциальность поля

Необходимое условие потенциальности поля

Пусть H – векторное поле. Тогда, если в некотором шаре выполняется условие $\frac{\partial H_x}{\partial y} = \frac{\partial H_y}{\partial x}$, то поле H потенциально в этом шаре [2, ст. 270, 272].

$$\frac{\partial H_x}{\partial y} = \frac{\partial (e^x)}{\partial y} = 0 \qquad \frac{\partial H_y}{\partial x} = \frac{\partial (-e^y)}{\partial x} = 0$$

Очевидно, что необходимое условие выполняется на \mathbb{R}^2 , а значит поле H потенциально на \mathbb{R}^2 .

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Конформны отображени:

Вывод

Уравнения векторных линий

Для нахождения уравнений векторных линий решим дифференциальное уравнение:

$$\frac{dx}{e^x} = \frac{dy}{-e^y}$$

Проинтегрируем полученное уравнение:

$$\int e^{-x} dx = \int -e^{-y} dy$$

Интегрируя, получаем:

$$-e^{-x} + C_1 = e^{-y} + C_2$$

 $e^{-y} + e^{-x} = C$

Перенесем e^{-x} в правую часть и прологарифмируем:

$$y = -\ln(C - e^{-x}), \qquad C - e^{-x} > 0 \iff x > -\ln(C), C > 0$$
 (1)

РГР по матанализу Федоров.

Горляков

Задание 1. Потенциал векторного поля

> адание 2. оток екторного поля

ображения

ывод

Векторные линии

На рис. 1 черным цветом нарисованы векторные линии (1) для $C \in \{e^1, e^2, \dots, e^9\}$, синим - векторное поле в данных точках.

 $\mathsf{Puc.}\ 1$: Векторные линии поля $oldsymbol{H}$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Потенциал векторного поля

Пусть U(R) – потенциал поля H.

$$U(R) = \int_{\widehat{AR}} \mathbf{H} \, d\mathbf{r} + C \tag{2}$$

Возьмем в качестве A точку (0;0). Так как интеграл (2) не зависит от пути интегрирования, то разобьем его на две линии (0;0)-(x;0)-(x;y).

Рис. 2: Путь интегрирования

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Потенциал векторного поля: интегрирование

$$U(x,y) = \int_{(0;0)}^{(x;0)} (e^{x} dx + (-e^{y} dy)) + \int_{(x;0)}^{(x;y)} (e^{x} dx + (-e^{y} dy)) + C =$$

$$= \int_{0}^{x} e^{x} dx - \int_{0}^{y} e^{y} dy + C = e^{x} - e^{y} + C$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Потенциал векторного поля: проверка

По определению потенциала векторного поля [2, ст. 269], grad $U={m H}$. Проверим это.

grad
$$U = \left(\frac{\partial U}{\partial x}; \frac{\partial U}{\partial y}\right) = (e^x; -e^y) = H$$

Таким образом, $U(x,y)=e^x-e^y$ – потенциал векторного поля $oldsymbol{H}$.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Линии уровня потенциала

Определение

Эквипотенциальная линия – совокупность точек поля, имеющих один и тот же потенциал.

Для нахождения уравнения линий уровня потенциала зафиксируем уровень потенциала C и выразим y через x

$$U(x,y) = e^x - e^y = C \iff e^y = e^x - C$$

Прологарифмируем уравнение с обеих сторон и получим

$$y = \ln(e^x - C) \qquad e^x > C \Rightarrow x > \ln(C) \tag{3}$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Линии уровня потенциала

На рис. 3 представлены графики функций (1) черным цветом и (3) разными цветами для $C=e^1,e^2\ldots,e^9$

Рис. 3: Линии уровня потенциала поля $oldsymbol{H}$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Работа поля вдоль линии

Зафиксируем точки A = (-5; 10) и B = (5; -5). Найдем работу поля H вдоль векторной линии, проходящей через эти точки. Тогда работа поля вдоль линии будет равна:

$$\int_{AB} \mathbf{H} \, ds = U(B) - U(A) = (e^{B_x} - e^{B_y}) - (e^{A_x} - e^{A_y}) =$$

$$= (e^5 - e^{-5}) - (e^{-5} - e^{10}) = e^5 - 2e^{-5} + e^{10} =$$

$$\approx 22174.86548$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Вывод по задаче

- ightharpoonup Установили, что H потенциально
- ▶ Нашли уравнения векторных линий
- Нашли потенциал поля
- Нашли уравнение линий уровня потенциала
- ▶ Изобразили векторные линии и линии уровня потенциала графически
- ▶ Нашли работу поля вдоль векторной линии

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3.
Конформные отображения

Вывод

Задание 2. Поток векторного поля

Дано тело T, ограниченное следующими поверхностями:

$$y + \sqrt{x^2 + z^2} = 0$$
 $x^2 + z^2 = 1$ $x^2 + y + z^2 = 2$

Рис. 4: Сечение тела T координатной плоскостью Oyz

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Задание 2. Поток векторного поля

Дано тело T, ограниченное следующими поверхностями:

$$y + \sqrt{x^2 + z^2} = 0$$
 $x^2 + z^2 = 1$ $x^2 + y + z^2 = 2$

- ightharpoonup Изобразите тело T на графике в пространстве.
- Вычислите поток поля

$$a = (\sin zy^2)i + \sqrt{2}xj + (\sqrt{2+y} - 3z)k$$

через боковую поверхность тела T, образованную вращением дуги AFEDC вокруг оси Oy, в направлении внешней нормали поверхности тела T.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Тело T на графике в пространстве

 $\mathsf{Puc.}\ \mathsf{5}$: Тело T в пространстве

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Для нахождения потока поля

$$a = (\sin zy^2)i + \sqrt{2}xj + (\sqrt{2+y} - 3z)k$$

через боковую поверхность тела T, образованную вращением дуги AFEDC вокруг оси Oy, в направлении внешней нормали поверхности тела T Воспользуемся теоремой Oстроградского — Γ аусса:

$$\iint\limits_{\Sigma} (oldsymbol{a}, oldsymbol{n}) \; d\sigma = \iiint\limits_{V} \operatorname{div} oldsymbol{a} \; dx dy dz$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Найдем дивергенцию:

$$\operatorname{div} \mathbf{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} = 0 + 0 - 3 = -3$$

Поскольку $x^2+z^2=1$ — это цилиндр, а $x^2+y+z^2=2$ — параболоид, нам удобно перейти к цилиндрическим координатам:

$$\begin{cases} x = r \cdot \cos \theta \\ y = y \\ z = r \cdot \sin \theta \end{cases}$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Расставим пределы интегрирования:

$$r \in [0,1], \ \theta \in [0,2\pi], \ y = 2 - x^2 - z^2 = 2 - r^2$$

Тогда

$$egin{align} arPhi_{ exttt{вращения}} &= igoplus_{\Sigma} \left(a,n
ight) d\sigma = igoplus_{V} - 3 dV \ &= -3 \int\limits_{0}^{2\pi} d heta \int\limits_{0}^{1} r \ dr \int\limits_{0}^{2-r^2} dy = -3 \int\limits_{0}^{2\pi} d heta \int\limits_{0}^{1} (2-r^2) r \ dr \ &= -3 \cdot 2\pi \cdot (1-rac{1}{4}) = -rac{9}{2}\pi \ \end{pmatrix}$$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Расставим пределы интегрирования для конусовидного дна тела:

$$r \in [0, 1] \ \theta \in [0, 2\pi] \ y = -\sqrt{x^2 + z^2} = -\sqrt{r}$$

Тогда

$$\Phi_{ exttt{дна}} = igoplus_D (a,n) \, d\sigma = igoplus_D -3 dD$$
 $= -3 \int\limits_0^{2\pi} d heta \int\limits_0^1 r \, dr \int\limits_{-\sqrt{r}}^0 dy = -3 \int\limits_0^{2\pi} d heta \int\limits_0^1 r^{rac{3}{2}} \, dr = -3 \cdot 2\pi \cdot rac{2}{3} = -4\pi$ $\Phi = \Phi_{ exttt{вращения}} - \Phi_{ exttt{дна}} = -rac{9}{2}\pi - (-6\pi) = rac{3}{2}\pi$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Вывод по задаче

- ightharpoonup Изобразили тело T на графике в трехмерном пространстве.
- ightharpoonup Нашли дивергенцию векторного поля div a=-3.
- lacktriangle Вычислили поток векторного поля через боковую поверхность тела $arPhi = -rac{9}{2}\pi$

РГР по матанализу

Федоров, Горляков

Потенциал векторного поля Задание 2.

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Задание 3. Конформные отображения

$$w(z) = \frac{z-1}{z+1} = 1 - \frac{2}{z+1}$$

План выполнения работы:

- 1. Рассмотреть конформное отображение. Определить особые точки отображения (при наличии) и указать их вид.
- 2. Изобразить на комплексной плоскости отображение области виртуального пространства в область физического пространства с помощью заданного преобразования.
- 3. Выделить действительную и мнимую части отображения для построения искривленной координатной сетки в физическом пространстве.
- 4. Взять обратное преобразование к заданному и проанализировать его
- 5. Рассчитать профиль показателя преломления используя конформное отображение

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Особые точки

Отображение имеет две особые точки $z_1=1$ и $z_2=-1$. Определим их вид. Для этого найдем производную w'(z).

$$w'(z) = \frac{2}{(z+1)^2}$$
 $w(z_1) = w(1) = 0$ $w'(z_1) = w'(1) \neq 0$

Значит точка $z_1=1$ является простым нулем. Определим вид точки $z_2=-1$.

$$\lim_{z \to -1} \frac{z - 1}{z + 1} = \infty$$

Для функции $g(z)=1/w(z)=rac{z+1}{z-1}$ точка $z_2=-1$ является простым нулем. Значит точка $z_2=-1$ является для функции w(z) полюсом первого порядка.

Таким образом, отображение является конформным за исключением точки z=-1

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

> адание 2. оток екторного поля

Задание 3. Конформные отображения

Зывод

$\operatorname{Im} w(z)$ и $\operatorname{Re} w(z)$

Для дальнейшего изучения отображения найдем ${\rm Im}(w(z))$ и ${\rm Re}(w(z))$. Пусть z=u+iv. Тогда:

$$w(z) = w(u+iv) = 1 - \frac{2}{(u+1)+iv} = 1 - \frac{2((u+1)-iv)}{((u+1)+iv)((u+1)-iv)} = 1 - \frac{2(u+1-iv)}{(u+1)^2+v^2} = 1 - \frac{2u+2-2iv}{u^2+2u+v^2+1} = 1 - \frac{2u+2}{u^2+2u+v^2+1} - i\frac{2v}{u^2+2u+v^2+1} = 1 - \frac{2v}{u^2+2u+v^2+1} - i\frac{2v}{u^2+2u+v^2+1} = 1 - \frac{2v}{u^2+2u+v^2+1} - i\frac{2v}{u^2+2u+v^2+1} = 1 - \frac{2v}{u^2+2u+v^2+1} - i\frac{2v}{u^2+2u+v^2+1}$$

Значит $\operatorname{Re}(w(z)) = \frac{u^2 + v^2 - 1}{u^2 + 2u + v^2 + 1}$, $\operatorname{Im}(w(z)) = -\frac{2v}{u^2 + 2u + v^2 + 1}$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Зывод

Координатная сетка

Изучим, как под действием отображения изменяется координатная сетка:

- 1. Построим в виртуальном пространстве множество точек v=C горизонтальные прямые и u=C вертикальные прямые
- 2. Применим к этим точкам преобразование
- 3. Изобразим получившиеся точки в физическом пространстве

В приведенных на следующих слайдах графиках константа $C \in \{-2, -1, -0.5, 0, 0.5, 1, 2\}$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Координатная сетка (горизонтальные прямые)

Рис. 6: Координатная сетка (горизонтальные прямые)

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Координатная сетка (вертикальные прямые)

Рис. 7: Координатная сетка (вертикальные прямые)

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Координатная сетка

Рис. 8: Координатная сетка

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

задание 2. Тоток зекторного поля

Задание 3. Конформные отображения

Вывод

Влияение отображения на геометрические фигуры

Изучим, как меняются геометрические фигуры под действием отображения. Как и в прошлом пункте, будем строить фигуры в виртуальном пространстве, применять к точкам, лежащим на этих фигурах отображение и строить получившиеся точки в физическом пространстве. РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Отрезок u = v, $u \in [-10, 10]$

Видно, что отрезок переходит в часть окружности, незамкнутую в окрестности точки w=1. При дальнейшем увеличении отрезка окрестность будет уменьшаться.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Парабола $v = u^2$

Рис. 9: Парабола $v = u^2$

РГР по матанализу

Федоров. Горляков

Задание 3. Конформные отображения

выколотая точка w = 1

-1.0 -0.5 0.0 0.5 1.0

Окружность $(v-1)^2 + u^2 = 2$

Рис. 10: Окружность $(v-1)^2 + u^2 = 2$

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Обратное преобразование

Найдем для данного преобразования обратное. Для этого выразим z(w)

$$w(z) = \frac{z-1}{z+1}$$
 $z(w) = \frac{1+w}{1-w} = 1 + \frac{2w}{1-w}$

Видно, что обратное преобразование конформно за исключением простого полюса w=1. Простым нулем обратного преобразования является точка w=-1.

Полюс w=1 и объясняет наличие выколотой точки w=1 на предыщих графиках.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Зывод

Профиль показателя преломления

Для расчета профиля показателя в физическом пространстве воспользуемся формулой:

$$n_z = \left| \frac{dw}{dz} \right| n_w = \frac{2}{(x+1)^2 + y^2}$$
 (4)

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2. Поток векторного поля

Задание 3. Конформные отображения

Вывод

Профиль показателя преломления

Рис. 11: Профиль показателя преломления

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Вывод по задаче

- ▶ Определили особые точки отображения
- Изобразили действие отображения на разные кривые
- Проанализировали обратное преобразование
- Рассчитали профиль показателя преобразования, построили его график

РГР по матанализу

Федоров. Горляков

Задание 3. Конформные отображения

Вывод

- Изучили понятие потенциала векторного поля, способ его нахождения и применение
- Изучили понятие потока векторного поля через боковую поверхность тела, теорему Остроградского-Гаусса и ее применение
- Изучили применение ТФКП для конформных отображений, изучили, во что переходят разные фигуры, научились рассчитывать профиль показателя преобразования.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения

Вывод

Список литературы

- [1] G.A. Korn M. Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. 1968. ISBN: 9780486411477.
- [2] В. А. Зорич. *Математический анализ, часть II*. 9-е изд. МЦНМО, 2019. ISBN: 978-5-4439-1305-6.

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Бадание 2.
Поток
векторного поля

Конформные отображения

Вывод