Cálculo I-C

Slides de apoio às aulas

Integrais impróprios e Transformadas de Laplace

Departamento de Matemática Universidade Aveiro

Slides com ligeiras adaptações de outros já existentes fortemente baseados nos textos da Prof.

Doutora Virgínia Santos e do Prof. Alexandre Almeida (indicados na bibliografia).

Extensão do conceito de integral de Riemann

A definição de integral de Riemann exige que a função integranda, f, seja limitada e esteja definida num intervalo fechado e limitado I.

Neste capítulo, vamos estender o conceito de integral de Riemann para o caso em que o intervalo I é ilimitado, considerando uma função f que é integrável em qualquer subintervalo fechado e limitado de I. Passaremos, então, ao estudo do que chamamos de **integrais impróprios de 1^a espécie**.

Exemplos de integrais impróprios de 1^a espécie:

$$\int_{1}^{+\infty} \frac{1}{x^{3}} dx$$

$$\int_{-\infty}^{0} \frac{1}{1+x^{2}} dx$$

$$\int_{-\infty}^{+\infty} \arctan(x) dx$$

Definição (Integral impróprio de 1.ª espécie no limite superior de integração):

Seja $f: [a, +\infty[\to \mathbb{R} \text{ uma função integrável em } [a, t], \text{ para todo o } t > a.$ Se existe e é finito o limite

$$\lim_{t \to +\infty} \int_{a}^{t} f(x) \, dx,$$

então o integral impróprio $\int_{a}^{+\infty} f(x) dx$ diz-se convergente e escreve-se

$$\int_{a}^{+\infty} f(x) dx = \lim_{t \to +\infty} \int_{a}^{t} f(x) dx.$$

Caso contrário, o integral em causa diz-se divergente.

UA 2024/2025 Cálculo I-C Slides 3 3 / 38

Exemplo: Uma vez que

$$\lim_{t \to +\infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to +\infty} \left[\operatorname{arctg}(x) \right]_0^t$$
$$= \lim_{t \to +\infty} \operatorname{arctg} t$$
$$= \frac{\pi}{2},$$

o integral impróprio $\int_0^{+\infty} \frac{1}{1+x^2} dx$ é convergente e

$$\int_0^{+\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2}.$$

Exercícios:

- ① Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:
 - (a) $\int_{\pi}^{+\infty} \cos(x) dx$ (b) $\int_{2}^{+\infty} \frac{1}{(x+2)^2} dx$ (c) $\int_{1}^{+\infty} \frac{(\ln x)^3}{x} dx$
- 2 Prove que o integral impróprio $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ é:
 - (a) divergente se $\alpha \leq 1$;
 - (b) convergente se $\alpha > 1$ e, neste caso, $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \frac{1}{\alpha 1}$.
- 3 Prove que o integral impróprio $\int_0^{+\infty} e^{\beta x} dx$ é:
 - (a) divergente se $\beta \geq 0$;
 - (b) convergente se $\beta < 0$ e, neste caso, $\int_0^{+\infty} e^{\beta x} dx = -\frac{1}{\beta}$.

UA 2024/2025 Cálculo I-C Slides 3 5 / 38

Definição (Integral impróprio de 1.ª espécie no limite inferior de integração):

Seja $f:]-\infty, a] \to \mathbb{R}$ uma função integrável em [t, a], para todo o t < a. Se existe e é finito o limite

$$\lim_{t \to -\infty} \int_{t}^{a} f(x) \, dx,$$

então o integral impróprio

$$\int_{-\infty}^{a} f(x) \, dx$$

diz-se convergente e escreve-se

$$\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx.$$

Caso contrário, o integral em causa diz-se divergente.

6/38

Exemplo: Como

$$\lim_{t \to -\infty} \int_{t}^{1} \frac{1}{1+x^{2}} dx = \lim_{t \to -\infty} \left[\operatorname{arctg}(x) \right]_{t}^{1}$$
$$= \lim_{t \to -\infty} \left(\frac{\pi}{4} - \operatorname{arctg} t \right)$$
$$= \frac{3\pi}{4},$$

o integral impróprio $\int_{-\infty}^{1} \frac{1}{1+x^2} dx$ é convergente e

$$\int_{-\infty}^{1} \frac{1}{1+x^2} \, dx = \frac{3\pi}{4}.$$

UA 2024/2025 Cálculo I-C Slides 3 7 / 38

Exercícios:

① Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:

(a)
$$\int_{-\infty}^{0} xe^{-x^2} dx$$

$$\text{(b)} \int_{-\infty}^{2} \frac{1}{4-x} \, dx$$

(c)
$$\int_{-\infty}^{0} \frac{4}{1 + (x+1)^2} \, dx$$

② Estude a natureza do seguinte integral impróprio em função do parâmetro $a \in \mathbb{R}^+ \setminus \{1\}$

$$\int_{-\infty}^{0} a^{x} dx.$$

8/38

Proposição (Propriedades dos integrais impróprios de 1.ª Espécie): Sejam $f: [a, +\infty[\to \mathbb{R} \text{ e } g: [a, +\infty[\to \mathbb{R} \text{ funções integráveis em } [a, t], \forall t > a.$ Então verificam-se as seguintes condições:

- ① Se $\int_{a}^{+\infty} f(x) dx$ e $\int_{a}^{+\infty} g(x) dx$ são convergentes, então para todos os $\alpha, \beta \in \mathbb{R}, \int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx$ é convergente e $\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{+\infty} f(x) dx + \beta \int_{a}^{+\infty} g(x) dx.$
- ② Se $\int_{a}^{+\infty} f(x) dx$ é divergente, então para todo o $\alpha \in \mathbb{R} \setminus \{0\}$, $\int_{a}^{+\infty} \alpha f(x) dx$ é divergente.

Observação: Resultado análogo é válido para integrais impróprios de 1.ª espécie no limite inferior de integração.

9/38

Proposição (Propriedades dos integrais impróprios de 1.ª Espécie): Sejam $f: [a, +\infty[\to \mathbb{R} \text{ uma função integrável em } [a, t], \forall t > a, e b > a$. Então os integrais impróprios

$$\int_{a}^{+\infty} f(x) dx \quad e \quad \int_{b}^{+\infty} f(x) dx$$

têm a mesma natureza (*i.e.*, ou são ambos convergentes ou ambos divergentes). Em caso de convergência, tem-se que

$$\int_{a}^{+\infty} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{+\infty} f(x) dx.$$

Observação: Resultado análogo, com as devidas adaptações, é válido para integrais impróprios de 1.ª espécie no limite inferior de integração.

UA 2024/2025 Cálculo I-C Slides 3 10 / 38

Exemplos:

1 Pelo Exercício 2 da página 5 tem-se que

$$\int_{1}^{+\infty} \frac{1}{x^3} dx \text{ converge e que } \int_{1}^{+\infty} \frac{1}{x^3} dx = \frac{1}{2}.$$

Portanto

$$\int_{\frac{1}{2}}^{+\infty} \frac{1}{x^3} dx = \int_{\frac{1}{2}}^{1} \frac{1}{x^3} dx + \int_{1}^{+\infty} \frac{1}{x^3} dx = \frac{3}{2} + \frac{1}{2} = 2.$$

2 Como, atendendo ao Exercício 2 da página 5, o integral impróprio

$$\int_{1}^{+\infty} x^{2} dx$$
 é divergente, então o integral impróprio
$$\int_{2}^{+\infty} x^{2} dx$$
 também é divergente.

Definição(Integral impróprio de 1.ª espécie em ambos os limites de integração):

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função integrável em $[\alpha, \beta]$ para todos os $\alpha, \beta \in \mathbb{R}$ tais que $\alpha < \beta$.

① Se, para algum $a \in \mathbb{R}$, os integrais impróprios

$$\int_{-\infty}^{a} f(x) dx \quad \text{e} \quad \int_{a}^{+\infty} f(x) dx \text{ são ambos convergentes dizemos que}$$
o integral impróprio
$$\int_{-\infty}^{+\infty} f(x) dx \text{ é convergente e escrevemos}$$

o integral impróprio
$$\int_{-\infty}^{\infty} f(x) dx$$
 é convergente e escrevemos

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{+\infty} f(x) \, dx.$$

UA 2024/2025 Cálculo I-C Slides 3 12/38

② Se, para algum $a \in \mathbb{R}$, pelo menos um dos integrais impróprios

$$\int_{-\infty}^{a} f(x) dx \quad \text{ou} \quad \int_{a}^{+\infty} f(x) dx$$

é divergente dizemos que o integral impróprio $\int_{-\infty}^{+\infty} f(x) dx$ é divergente.

Exercício: Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:

(a)
$$\int_{-\infty}^{+\infty} x \, dx$$
 (b) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx$ (c) $\int_{-\infty}^{+\infty} 2^x \, dx$

UA 2024/2025 Cálculo I-C Slides 3 13 / 38

Proposição (Critério de Comparação): Sejam f e g duas funções definidas em $[a,+\infty[$, integráveis em [a,t], para todo o t>a, tais que

$$0 \le f(x) \le g(x),$$

para todo o $x \in [a, +\infty[$. Então:

- (i) se $\int_{a}^{+\infty} g(x) dx$ é convergente, então $\int_{a}^{+\infty} f(x) dx$ é convergente;
- (ii) se $\int_{a}^{+\infty} f(x) dx$ é divergente, então $\int_{a}^{+\infty} g(x) dx$ é divergente.

Observação: Com ligeiras adaptações, pode enunciar-se o mesmo critério para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

UA 2024/2025 Cálculo I-C Slides 3 14 / 38

Exemplo: Usando o Critério de Comparação estudar a natureza do integral

$$\int_{1}^{+\infty} \sin \frac{1}{x^2} dx.$$

Notar que, para todo o $x \in [1, +\infty[$ temos

$$0 \le \operatorname{sen} \frac{1}{x^2} \le \frac{1}{x^2} \cdot (\mathbf{justifique!}) \tag{1}$$

Uma vez que o integral impróprio $\int_1^{+\infty} \frac{1}{x^2} dx$ é convergente e que a desigualdade (1) se verifica, pelo Critério de Comparação, o integral impróprio $\int_1^{+\infty} \sin \frac{1}{x^2} dx$ é convergente.

UA 2024/2025 Cálculo I-C Slides 3 15 / 38

Proposição (Critério do Limite): Sejam f e g duas funções definidas em $[a, +\infty[$ e integráveis em [a, t], para todo o t > a, tais que $f(x) \ge 0$ e g(x) > 0, $\forall x \in [a, +\infty[$. Seja

$$L = \lim_{x \to +\infty} \frac{f(x)}{g(x)} .$$

Então:

- (i) Se $L \in \mathbb{R}^+$, então $\int_a^{+\infty} f(x) dx$ e $\int_a^{+\infty} g(x) dx$ têm a mesma natureza.
- (ii) Se L=0 e $\int_a^{+\infty} g(x) dx$ é convergente, então $\int_a^{+\infty} f(x) dx$ é convergente.
- (iii) Se $L=+\infty$ e $\int_a^{+\infty}g(x)\,dx$ é divergente, então $\int_a^{+\infty}f(x)\,dx$ é divergente.

UA 2024/2025 Cálculo I-C Slides 3 16 / 38

Exemplo: Usando o Critério do Limite estudar a natureza do integral

$$\int_1^{+\infty} \sin \frac{1}{x^2} \, dx \, .$$

Notar que, para todo o $x \in [1, +\infty[$, sen $\frac{1}{x^2} \ge 0$ e $\frac{1}{x^2} > 0$. Além disso

$$L = \lim_{x \to +\infty} \frac{\operatorname{sen} \frac{1}{x^2}}{\frac{1}{x^2}} = 1.$$

Uma vez que $L \in \mathbb{R}^+$ e que $\int_1^{+\infty} \frac{1}{x^2} dx$ é convergente, pelo Critério do Limite, o integral impróprio $\int_1^{+\infty} \sin \frac{1}{x^2} dx$ é convergente.

UA 2024/2025 Cálculo I-C Slides 3 17 / 38

Observação: Com ligeiras adaptações, pode enunciar-se o Critério do Limite para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

Exemplo: Estude a natureza do integral impróprio $\int_{-\infty}^{0} \frac{e^{x}}{(x-1)^{2}} dx$. Observe-se que, $\frac{e^{x}}{(x-1)^{2}} > 0$ e $\frac{1}{(x-1)^{2}} > 0$, $\forall x \in]-\infty, 0]$.

Uma vez que

$$L = \lim_{x \to -\infty} \frac{\frac{e^{x}}{(x-1)^{2}}}{\frac{1}{(x-1)^{2}}} = \lim_{x \to -\infty} e^{x} = 0$$

e que $\int_{-\infty}^{0} \frac{1}{(x-1)^2} dx$ é convergente (**verifique!**), concluímos, pelo Critério do Limite, que $\int_{-\infty}^{0} \frac{e^x}{(x-1)^2} dx$ é convergente.

UA 2024/2025 Cálculo I-C Slides 3 18 / 38

Exercícios: Estude, utilizando o critério de comparação ou o critério do limite, a natureza dos seguintes integrais impróprios:

$$\int_0^{+\infty} e^{x^2} dx$$

$$\int_{1}^{+\infty} \frac{\cos^{2}(\frac{1}{x})}{x^{7} + 2x + 1} \, dx$$

UA 2024/2025 Cálculo I-C Slides 3 19 / 38

Definição (Convergência absoluta): Seja $f: [a, +\infty[\to \mathbb{R} \text{ integrável em } [a, t],$ para todo o t > a. Dizemos que o integral impróprio

$$\int_{a}^{+\infty} f(x) \, dx$$

é absolutamente convergente, se o integral impróprio

$$\int_{a}^{+\infty} |f(x)| \, dx$$

é convergente.

Proposição: Seja $f: [a, +\infty[\to \mathbb{R} \text{ integrável em } [a, t], \text{ para todo o } t > a.$ Se o integral impróprio

$$\int_{a}^{+\infty} f(x) \, dx$$

é absolutamente convergente, então também é convergente.

UA 2024/2025 Cálculo I-C Slides 3 20 / 38

Observação: Com ligeiras adaptações, pode definir-se convergência absoluta e enunciar-se a mesma proposição para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

Exercício: Verifique se os seguintes integrais impróprios são absolutamente convergentes:

(a)
$$\int_{1}^{+\infty} \frac{\sin x}{x^2} \, dx$$

(b)
$$\int_{2}^{+\infty} \frac{(-1)^{n}}{1 + 2x^{4}} dx$$
, para todo o $n \in \mathbb{N}$

UA 2024/2025 Cálculo I-C Slides 3 21 / 38

Transformada de Laplace

Seguidamente, iremos apresentar uma ferramenta que se revela bastante útil na resolução de certos problemas envolvendo equações diferenciais (que iremos estudar no capítulo seguinte). Trata-se de uma 'transformação' que consiste em converter uma dada função noutra através de um integral impróprio apropriado.

Definição: Seja $f:[0,+\infty[\to\mathbb{R}$ uma função. Chama-se transformada de Laplace de f à função $\mathcal{L}\{f\}$ definida por

$$\mathcal{L}{f}(s) = \int_0^{+\infty} e^{-st} f(t) dt$$

nos pontos $s \in \mathbb{R}$ em que este integral impróprio é convergente.

Observação: Podemos escrever $\mathcal{L}\{f(t)\}(s)$ para indicar a transformada de Laplace de f. Ao escrever-se desta forma salienta-se o facto da função inicial f depender de t, enquanto que a transformada $\mathcal{L}\{f\}$ é calculada em s. **Observação:** É habitual escrever-se F(s) para denotar $\mathcal{L}\{f\}(s)$.

UA 2024/2025 Cálculo I-C Slides 3 22 / 38

Transformada de Laplace

Exemplo: Seja $f:[0,+\infty[\to\mathbb{R} \text{ tal que } f(t)=1.$ Por definição,

$$\mathcal{L}\{1\}(s) = \int_0^{+\infty} e^{-st} \, dt$$

para $s \in \mathbb{R}$ em que este integral impróprio é convergente. Ora, estudando a convergência do integral conclui-se que

$$\int_0^{+\infty} e^{-st} dt = \frac{1}{s}, \text{ para } s > 0$$

(para $s \le 0$ este integral diverge). Assim,

$$\mathcal{L}\{1\}(s) = \frac{1}{s}, \text{ para } s > 0.$$

UA 2024/2025 Cálculo I-C Slides 3 23 / 38

Transformada de Laplace

Exemplos:

•
$$g: [0, +\infty[\rightarrow \mathbb{R} \text{ dada por } g(t) =$$

$$\begin{cases}
1 & \text{se} \quad t \neq 1, \ t \neq 2, \\
2 & \text{se} \quad t = 1, \\
0 & \text{se} \quad t = 2.
\end{cases}$$

$$\mathcal{L}\lbrace g\rbrace(s)=rac{1}{s},\quad s>0.$$
 [Verifique!]

$$\bullet \ \mathcal{L}\lbrace e^{at}\rbrace(s) = \frac{1}{s-a}, \ s>a, \quad (a\in\mathbb{R})$$

$$\bullet \ \mathcal{L}\lbrace t^n\rbrace(s)=\frac{n!}{s^{n+1}}\,,\ s>0,\quad (n\in\mathbb{N}_0)$$

•
$$\mathcal{L}\{\operatorname{sen}(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0, \ (a \in \mathbb{R})$$

•
$$\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \quad s > 0, \quad (a \in \mathbb{R}).$$

UA 2024/2025 Cálculo I-C Slides 3 24 / 38

Linearidade da Transformada de Laplace

Proposição: Sejam $\alpha \in \mathbb{R}$ e $f, g : [0, +\infty[\rightarrow \mathbb{R}$. Suponha-se que existem $\mathcal{L}\{f\}(s)$ e $\mathcal{L}\{g\}(s)$ para $s > s_f$ e $s > s_g$, respetivamente. Então:

(i)
$$\mathcal{L}\lbrace f+g\rbrace(s)=\mathcal{L}\lbrace f\rbrace(s)+\mathcal{L}\lbrace g\rbrace(s), \quad s>\max\{s_f,s_g\};$$

(ii)
$$\mathcal{L}\{\alpha f\}(s) = \alpha \mathcal{L}\{f\}(s), \quad s > s_f.$$

Exemplos de aplicação:

①
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\left\{\frac{e^{at} + e^{-at}}{2}\right\}(s)$$

$$= \frac{1}{2}\mathcal{L}\left\{e^{at}\right\}(s) + \frac{1}{2}\mathcal{L}\left\{e^{-at}\right\}(s)$$

$$= \frac{1}{2}\frac{1}{s-a} + \frac{1}{2}\frac{1}{s+a}, \quad s > a \text{ e } s > -a$$

$$= \frac{s}{s^2 - a^2}, \quad s > |a|, \quad (a \in \mathbb{R})$$

 $\mathcal{L}\{\operatorname{senh}(at)\}(s) = \frac{a}{s^2-a^2}, \quad s>|a|, \quad (a\in\mathbb{R}) \quad \text{verifique!}$

UA 2024/2025 Cálculo I-C Slides 3 25 / 38

Existência da Transformada de Laplace

Observação: Nem toda a função admite transformada de Laplace. Por exemplo, $f(t) = e^{t^2}$ não tem transformada de Laplace, uma vez que o integral impróprio $\int_0^{+\infty} e^{-st} e^{t^2} dt$ diverge para qualquer $s \in \mathbb{R}$. [Verifique!]

Questão: Que propriedades da função f poderão garantir a existência de $\mathcal{L}\{f\}(s)$, com $s>s_0$, para algum $s_0\in\mathbb{R}$?

UA 2024/2025 Cálculo I-C Slides 3 26 / 38

Funções de ordem exponencial

Definição: Sejam $f: [0, +\infty[\to \mathbb{R} \text{ e } k \in \mathbb{R}. f \text{ diz-se uma função de ordem exponencial } k (à direita) se existem constantes <math>M > 0$, T > 0 tais que

$$|f(t)| \leq M e^{kt}, \quad \forall t \geq T.$$

Exemplos de funções de ordem exponencial:

- ¶ Funções polinomiais;
- 2 Funções limitadas;
- 3 Funções do tipo $f(t) = t^n e^{at} cos(bt)$, com $n \in \mathbb{N}_0$, $a, b \in \mathbb{R}$;
- **④** Funções do tipo $f(t) = t^n e^{at} sen(bt)$, com $n ∈ \mathbb{N}_0$, $a, b ∈ \mathbb{R}$.

Observação: Se f é uma função de ordem exponencial k, então

$$\lim_{t \to +\infty} e^{-st} f(t) = 0, \quad \text{ para todo } s > k.$$

UA 2024/2025 Cálculo I-C Slides 3 27 / 38

Condição suficiente de existência de Transformada de Laplace

Definição: Uma função $f:[a,b] \to \mathbb{R}$ diz-se seccionalmente contínua se existe uma partição $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ do intervalo [a,b] tal que

- ① f é contínua em $]x_{i-1}, x_i[$, para todo o i = 1, 2, ..., n;
- ② os limites laterais nas extremidades de cada subintervalo existem e são finitos.

Definição: Seja I um subintervalo ilimitado de \mathbb{R} . Uma função $f:I\to\mathbb{R}$ diz-se seccionalmente contínua se f é seccionalmente contínua em todo o subintervalo [a,b] de I.

Teorema: Se $f: [0, +\infty[\to \mathbb{R} \text{ \'e uma função seccionalmente contínua e } f \text{ \'e de ordem exponencial } k \text{ (para algum } k \in \mathbb{R}), \text{ então } \mathcal{L}\{f\}(s) \text{ existe para } s > k.$

UA 2024/2025 Cálculo I-C Slides 3 28 / 38

Propriedades da Transformada de Laplace

① Deslocamento na transformada Seiam $f: [0, +\infty[\rightarrow \mathbb{R}]$ integrável em tod

Sejam $f: [0, +\infty[\to \mathbb{R} \text{ integrável em todo o intervalo } [0, b], b > 0, e$ $\lambda \in \mathbb{R}$. Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então

$$\mathcal{L}\lbrace e^{\lambda t}f(t)\rbrace(s)=F(s-\lambda), \text{ para } s>\lambda+s_f.$$

2 Transformada da expansão/contração

Sejam $f: [0, +\infty[\to \mathbb{R} \text{ integrável em todo o intervalo } [0, b], b > 0.$ Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então, para todo o $a \in \mathbb{R}^+$,

$$\mathcal{L}{f(at)}(s) = \frac{1}{a}F\left(\frac{s}{a}\right)$$
, para $s > a s_f$.

Propriedades da Transformada de Laplace (cont.)

② Derivada da transformada

Seja $f: [0, +\infty[\to \mathbb{R}]$ integrável em todo o intervalo [0, b], com b > 0. Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então, para todo $n \in \mathbb{N}$, $\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s)$, para $s > s_f$,

onde $F^{(n)}$ denota a derivada de ordem n da função F.

4 Transformada da derivada

Suponha-se que $f, f', f'', \ldots, f^{(n-1)}$ $(n \in \mathbb{N})$ são funções ordem exponencial s_0 , para algum $s_0 \in \mathbb{R}$ e que $f^{(n)}$ existe e é seccionalmente contínua em $[0, +\infty[$. Então existe $\mathcal{L}\{f^{(n)}(t)\}(s)$, para $s > s_0$, e

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace(s) = s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

Propriedades da Transformada de Laplace (cont.)

Transformada do deslocamento

Sejam $f: \mathbb{R} \to \mathbb{R}$ integrável em todo o intervalo $[0, b], b > 0, H_a(t)$ a função degrau unitário em t = a.

Se
$$\mathcal{L}{f}(s) = F(s)$$
 existe para $s > s_f$, então, para todo $a \in \mathbb{R}^+$, $\mathcal{L}{H_a(t)f(t-a)}(s) = e^{-as}F(s)$, para $s > s_f$.

UA 2024/2025 Cálculo I-C Slides 3 31 / 38

 $^{^1}$ Função de domínio $\mathbb R$ tal que $H_a(t)=\left\{egin{array}{ll} 0 & ext{se } t < a \\ 1 & ext{se } t \geq a \end{array}
ight.$, também designada por função de Heaviside (quando a=0).

Propriedades da Transformada de Laplace (cont.)

Transformada da convolução

O produto de convolução de duas funções f e g, caso o integral exista, define-se como

$$(f * g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau, \ t \ge 0.$$

Se f e g são funções de ordem exponencial s_0 , para algum $s_0 \in \mathbb{R}$, e seccionalmente contínuas em $[0, +\infty[$, então

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s)G(s), \text{ para } s > s_0,$$

($F \in G$ são as transformadas de Laplace de $f \in g$, respetivamente.)

UA 2024/2025 Cálculo I-C Slides 3 32 / 38

Exemplo

Cálculo de $\mathcal{L}\{\cos^2 t\}$ usando a transformada da derivada:

Como $(\cos^2 t)' = -\sin(2t)$, então

$$-\mathcal{L}\{\operatorname{sen}(2t)\} = \mathcal{L}\left\{\left(\cos^2 t\right)'\right\}$$

$$= s\mathcal{L}\{\cos^2 t\} - \cos^2(0)$$

$$= s\mathcal{L}\{\cos^2 t\} - 1, \quad \operatorname{para} s > 0.$$

Por outro lado, $\mathcal{L}\{\text{sen}(2t)\}=\frac{2}{s^2+4}$ e, portanto,

$$\mathcal{L}\{\cos^2 t\} = \frac{1}{s} (1 - \mathcal{L}\{ \sin(2t) \})$$
$$= \frac{s^2 + 2}{s(s^2 + 4)}, \ s > 0.$$

UA 2024/2025 Cálculo I-C Slides 3 33 / 38

Transformada de Laplace inversa

Observação: Em muitas aplicações práticas, como, por exemplo, na resolução de problemas de valores iniciais (que iremos estudar no capítulo seguinte), é importante determinar a Transformada de Laplace inversa de uma dada função F(s).

Em geral, dada F(s), interessa determinar "a" função f (definida em \mathbb{R}_0^+) tal que $\mathcal{L}\{f(t)\} = F(s)$. Tal f, caso exista, chama-se transformada de Laplace inversa de F e escreve-se

$$f = \mathcal{L}^{-1}{F}$$
 ou $f(t) = \mathcal{L}^{-1}{F(s)}(t)$.

Questão: Será esta função única, existirá? Nem sempre existe, mas, caso existam funções nessas condições, a unicidade pode garantir-se escolhendo aquela que é contínua (ver teorema da página seguinte).

UA 2024/2025 Cálculo I-C Slides 3 34 / 38

Transformada de Laplace Inversa (unicidade)

Teorema: Sejam f e g duas funções seccionalmente contínuas em $[0, +\infty[$ tais que

$$\mathcal{L}{f}(s) = F(s) = \mathcal{L}{g}(s), \text{ para } s > \alpha \quad (\alpha \in \mathbb{R}).$$

Se f e g são contínuas no ponto $t \in \mathbb{R}^+$, então f(t) = g(t).

Definição: Se F(s) é transformada de Laplace de uma função contínua $f: [0, +\infty[\to \mathbb{R}, \text{define-se}]$

$$\mathcal{L}^{-1}\{F(s)\}(t) = f(t).$$

Observação: Cada propriedade da Transformada de Laplace dá origem a uma propriedade da Transformada de Laplace inversa (basta ler a tabela das propriedades das Transformadas de Laplace em "sentido inverso").

UA 2024/2025 Cálculo I-C Slides 3 35 / 38

Algumas propriedades da Transformada de Laplace Inversa

1 Linearidade da Transformada de Laplace inversa Suponha-se que F e G admitem transformada de Laplace in

Suponha-se que F e G admitem transformada de Laplace inversa. Então as funções F+G e αF ($\alpha \in \mathbb{R}$) também admitem tansformada inversa e

- (i) $\mathcal{L}^{-1}{F+G} = \mathcal{L}^{-1}{F} + \mathcal{L}^{-1}{G};$
- (ii) $\mathcal{L}^{-1}\{\alpha F\} = \alpha \mathcal{L}^{-1}\{F\}.$
- Transformada inversa do deslocamento

Se F admite transformada de Laplace inversa, então $F(s-\lambda)$ também admite transformada inversa para todo $\lambda \in \mathbb{R}$ e

$$\mathcal{L}^{-1}\{F(s-\lambda)\} = e^{\lambda t} \mathcal{L}^{-1}\{F(s)\}$$

Transformada inversa do produto

Se F e G admitem transformada de Laplace inversa, então FG também admite transformada inversa e

$$\mathcal{L}^{-1}\{FG\} = \mathcal{L}^{-1}\{F\} * \mathcal{L}^{-1}\{G\}$$

UA 2024/2025 Cálculo I-C Slides 3 36 / 38

Exemplos:

$$\mathcal{L}^{-1} \left\{ \frac{3}{(s-2)^3} \right\} = \frac{3}{2} \mathcal{L}^{-1} \left\{ \frac{2}{(s-2)^3} \right\} s > 2$$

$$= \frac{3}{2} e^{2t} \mathcal{L}^{-1} \left\{ \frac{2}{s^3} \right\}$$

$$= \frac{3}{2} e^{2t} t^2, \quad t \ge 0$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+1)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s}\frac{1}{s^2+1}\right\} s > 0$$

$$= \mathcal{L}^{-1}\left\{\frac{1}{s}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s^2+1}\right\}$$

$$= (1 * sen)(t) \quad t \ge 0$$

$$= \int_0^t sen(\tau) d\tau$$

$$= -\cos(t) + 1$$

UA 2024/2025 Cálculo I-C Slides 3 37 / 38

Formulário de Transformadas de Laplace

	Função	Transformada	Função	Transformada	Função	Transformada
	$t^n \\ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	$(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ sen (at) (a \in \mathbb{R}) $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
Ī	$ cos(at) (a \in \mathbb{R}) $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$senh (at) (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da Transformada de Laplace

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \text{com } s > s_f \quad \text{e} \quad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \text{com } s > s_g$$

$$\mathcal{L}\lbrace f(t) + g(t)\rbrace(s) = F(s) + G(s), \ s > \max\{s_f, s_g\}$$

$$\mathcal{L}\lbrace \alpha f(t)\rbrace(s) = \alpha F(s), \ s > s_f \ e \ \alpha \in \mathbb{R}$$

$$\mathcal{L}\lbrace e^{\lambda t} f(t)\rbrace(s) = F(s - \lambda), \ s > s_f + \lambda \ e \ \lambda \in \mathbb{R}$$

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n F^{(n)}(s), \ s > s_f \ e \ n \in \mathbb{N}$$

$$\mathcal{L}\lbrace H_a(t) \cdot f(t - a)\rbrace(s) = e^{-as} F(s), \ s > s_f \ e \ a > 0$$

$$\mathcal{L}\lbrace f(at)\rbrace(s) = \frac{1}{a} F\left(\frac{s}{a}\right), \ s > as_f \ e \ a > 0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\operatorname{com} s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s) \cdot G(s), \text{ onde } (f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau, \ t \ge 0$$