Structural-Pattern Databases

Michael Katz and Carmel Domshlak

Faculty of Industrial Engineering and Management Technion - Israel Institute of Technology

Introduction

omplexity

valuation

Classical Planning

Planning task is 5-tuple $\langle V, A, \mathcal{C}, s^0, G \rangle$:

- V: finite set of finite-domain state variables
- A: finite set of actions of form \(\rangle \text{pre}, \text{eff} \) \(\rangle \text{preconditions/effects; partial variable assignments} \)
- \bullet $\mathcal{C}: A \mapsto \mathbb{R}^{0+}$ captures action cost
- s^0 : initial state (variable assignment)
- G: goal description (partial variable assignment)

Introduction

Explicit Abstractions Implicit Abstractions Preliminary Evaluation

Complexity

valuation

Cost-Optimal Planning

Given: planning task $\Pi = \langle V, A, C, s^0, G \rangle$

Find: action sequence $a_1 \dots a_n \in A^*$

transforming s^0 into some state $s_n \supseteq G$,

while minimizing $\sum_{i=1}^{n} C(a_i)$

Approach: A* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Admissible \equiv underestimate goal distance

Introduction

Abstraction Implicit Abstraction Preliminary

Complexity

Evaluation

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S^\prime

Examples

Explicit: Projection (pattern database) heuristics

M&S (merge & shrink aka HHH aka FA) heuristics

Implicit: Structural-pattern heuristics

Introduction

Abstractions Implicit Abstractions Preliminary

Complexity

Evaluation

Explicit Abstractions

Abstract space is maintained explicitly

PDB: Projection of the original space on variables $V' \subseteq V$

M&S: More flexible contraction of original states

Problems

Abstract spaces are searched exhaustively →

O(1) bound on the number of abstract states \sim (sometimes) price in heuristic accuracy in long-run

Explicit Abstractions

Implicit Abstractions

Structural Pattern Heuristics: Main Idea (K & Domshlak, 2008)

Abstract the task in hand into instances of provably tractable fragments of optimal planning

guarantee abstract space can be searched (implicitly) in poly-time

Introduction

Explicit Abstractions Implicit Abstractions Preliminary

Complexity

Evaluation

Fork Decomposition

(K & Domshlak, ICAPS08)

Introduction

Explicit Abstractions Implicit Abstractions Preliminary

Complexity

Evaluation

Summary

+ ensuring proper action cost partitioning

Planning / Logistics-00 Expanded nodes

#	h^*	MS_{10^5}		h	F
		nodes time		nodes	time
:	:	:		:	:
12	44	49	4.94	1689	13.03
13	31	32	6.9	32	0.53
14	44	45	7.21	45	0.86
15	36	37	9.46	37	0.7
16	30	31	9.43	31	0.64
17	45	668834	29.73	46	3.08
18	42	1457130	43	43	2.86
19	48	701106	37.42	697	37.13
20	60			21959	951.18
21	42	775996	43.56	43	3.77
22	68	2222340	87.47	106534	4690.29
:	÷	:	:	:	:

Introduction

Explicit Abstraction Implicit Abstraction Preliminary Evaluation

Complexity

Evaluation

Planning / Logistics-00

Expanded nodes and Time

#	h^*	MS_{10^5}		h	F	
		nodes	time	nodes	time	
:	:	:	:	:	:	
12	44	49	4.94	1689	13.03	
13	31	32	6.9	32	0.53	
14	44	45	7.21	45	0.86	
15	36	37	9.46	37	0.7	
16	30	31	9.43	31	0.64	
17	45	668834	29.73	46	3.08	
18	42	1457130	43	43	2.86	
19	48	701106	37.42	697	37.13	
20	60			21959	951.18	
21	42	775996	43.56	43	3.77	
22	68	2222340	87.47	106534	4690.29	
:	:	:	i	:	:	

Introduction

Explicit Abstractions Implicit Abstractions Preliminary Evaluation

Complexity

Evaluation

$$\{h(s)|s\in S'\subseteq S\}$$

Introduction

h-partition
Abstraction

Evaluation

$$\{h(s)|s \in S' \subseteq S\}$$

$$\downarrow \downarrow$$

$$O(X + |S'| \cdot Y)$$

Introduction

h-partition Abstractions

Evaluation

$$\{h(s)|s \in S' \subseteq S\}$$

$$\downarrow \downarrow$$

$$O(X + |S'| \cdot Y)$$

Pre-Search (offline)

Explicit: Build abstract space, compute distances in it

Implicit: Build abstract tasks

Introduction

h-partition Abstractions

Evaluation

$$\{h(s)|s\in S'\subseteq S\}$$

$$\downarrow \downarrow$$

$$O(X+|S'|\cdot Y)$$

$$\swarrow$$

Pre-Search (offline)

Explicit: Build abstract space, compute distances in it

Implicit: Build abstract tasks

Per-Node (online)

Explicit: Lookup

Implicit : Actual heuristic calculations

introduction

h-partition Abstractions

Evaluation

Heuristics Complexity - Abstractions

$$S^lpha$$
 - abstract state space,

$$D = \sum_{v} |Dom(v)|$$

$$d = \max_{v} |Dom(v)|$$

	$Pre ext{-}Search\;(X)$	Per-Node (Y)
Projection	$ S^{\alpha} \cdot (\log(S^{\alpha}) + A)$	1
M&S	$ V \cdot S^{\alpha} \cdot (\log(S^{\alpha}) + A)$	V
Forks	$D \cdot \Pi $	$D \cdot (d^3 \cdot V + A)$

Introduction

h-partition Abstractions

Cumman,

Heuristics Complexity - Abstractions

 S^lpha - abstract state space,

$$D = \sum_{v} |Dom(v)|$$

$$d = \max_{v} |Dom(v)|$$

	$Pre ext{-}Search\;(X)$	Per-Node (Y)	
Projection	$ S^{\alpha} \cdot (\log(S^{\alpha}) + A)$	1	
M&S	$ V \cdot S^{\alpha} \cdot (\log(S^{\alpha}) + A)$	V	
Forks	$D\cdot \Pi $	$D \cdot (d^3 \cdot V + A)$	
ForksDB	$D \cdot (\Pi + d^3 \cdot V + A)$	$D \cdot d \cdot V $	

Introduction

h-partition Abstractions

valuation

Planning / Logistics-00

Expanded nodes and Time

#	h^*	MS_{10^5}		$^*\parallel MS_{10^5}\parallel h^{\mathfrak{F}}\parallel$		$h^{\mathcal{F}-DB}$	l
		nodes	time	nodes	time	time	
	:	:	:	:	:	i i	
12	44	49	4.94	1689	13.03	0.07	
13	31	32	6.9	32	0.53	0	Ì
14	44	45	7.21	45	0.86	0	
15	36	37	9.46	37	0.7	0.01	Ì
16	30	31	9.43	31	0.64	0.01	Ì
17	45	668834	29.73	46	3.08	0.02	Ì
18	42	1457130	43	43	2.86	0.01	
19	48	701106	37.42	697	37.13	0.09	Ì
20	60			21959	951.18	2.13	Ì
21	42	775996	43.56	43	3.77	0.02	Ì
22	68	2222340	87.47	106534	4690.29	11.08	Ì
:	:	:	:	:	:	:	

Introduction
Complexity
Evaluation
Logistics
Cross-domain

Solved Instances

MS_{10^4}	\mid MS $_{10^5}\mid$	$h^{\mathfrak{F}}$
16	16	11
18	20	18
7	4	2
12	12	8
5	1	8
2	2	1 5
7		5
4	5	4
16	21	21
54	55	45
21	12	17
16	12	16
7	7	7
3	4	4
20	12	8
13	7	6
50	50	47
6	7	5
6	6	6
22	1	40
6	6	5
6	5	5
11	11	8
328	283	292
	18 7 12 5 2 7 4 16 54 21 16 7 3 20 13 50 6 6 22 6 6 11	16 16 16 18 20 7 4 112 112 12 5 1 1 2 2 2 7 7 7 4 5 16 221 12 16 12 7 7 7 3 4 20 12 13 7 7 50 50 6 7 6 6 6 6 6 22 1 6 6 6 6 5 5 11 11

Introductio

Complexit

Evaluation Logistics Cross-domain

Solved Instances

Domain	MS_{10^4}	MS_{10^5}	$h^{\mathfrak{F}}$	$h^{\mathfrak{F}\text{-}DB}$
airport-ipc4	16	16	11	20
blocks-ipc2	18	20	18	21
depots-ipc3	7	4	2	7
driverlog-ipc3	12	12	8	12
freecell-ipc3	5	1	3	5
grid-ipc1	2	2	1	2
gripper-ipc1	7	7	5	7
logistics-ipc1	4	5	4	6
logistics-ipc2	16	21	21	22
miconic-strips-ipc2	54	55	45	51
mprime-ipc1	21	12	17	23
mystery-ipc1	16	12	16	20
openstacks-ipc5	7	7	7	7
pathways-ipc5	3	4	4	4
pipesworld-notankage-ipc4	20	12	8	16
pipesworld-tankage-ipc4	13	7	6	10
psr-small-ipc4	50	50	47	49
rovers-ipc5	6	7	5	6
satellite-ipc4	6	6	6	6
schedule-strips	22	1	40	46
tpp-ipc5	6	6	5	6
trucks-ipc5	6	5	5	6
zenotravel-ipc3	11	11	8	11
Total	328	283	292	363

Introductio

omplexity

Evaluation Logistics Cross-domain

Solved Instances

Domain	MS_{10^4}	MS_{10^5}	$h^{\mathcal{F}}$	$h^{\mathfrak{F} ext{-}DB}$	blind	GAMER
airport-ipc4	16	16	11	20	17	11
blocks-ipc2	18	20	18	21	18	30
depots-ipc3	7	4	2	7	4	4
driverlog-ipc3	12	12	8	12	7	11
freecell-ipc3	5	1	3	5	4	2
grid-ipc1	2	2	1	2	1	2
gripper-ipc1	7	7	5	7	7	20
logistics-ipc1	4	5	4	6	2	6
logistics-ipc2	16	21	21	22	10	20
miconic-strips-ipc2	54	55	45	51	50	85
mprime-ipc1	21	12	17	23	19	9
mystery-ipc1	16	12	16	20	17	8
openstacks-ipc5	7	7	7	7	7	7
pathways-ipc5	3	4	4	4	4	4
pipesworld-notankage-ipc4	20	12	8	16	14	11
pipesworld-tankage-ipc4	13	7	6	10	10	6
psr-small-ipc4	50	50	47	49	48	47
rovers-ipc5	6	7	5	6	5	5
satellite-ipc4	6	6	6	6	4	6
schedule-strips	22	1	40	46	29	3
tpp-ipc5	6	6	5	6	5	5
trucks-ipc5	6	5	5	6	5	3
zenotravel-ipc3	11	11	8	11	7	10
Total	328	283	292	363	294	315

Introduction

omplexity

Evaluation Logistics Cross-domain

Summary

Contributions

- "Databasing" can be feasible even for exponential size abstract spaces
- Structural Patterns + "Databasing" = State of the art admissible heuristics

Introduction
