Giảng viên ra đề:	(Ngày ra đề)	Người phê duyệt:	(Ngày duyệt đề)
		Chủ nhiệm bộ môn	
Hoàng Hải Hà	13/07/2020	TS. Nguyễn Tiến Dũng	21/07/2020

BK.	THI CUỐI KỲ	Học kỳ/ Năm học		2	2019 - 2020	
TPHCE		Ngày thi/Giờ thi	22/7/20	020	16h	
TRƯỜNG ĐH BÁCH KHOA	Lớp	Chính Quy				
- ĐHQG-HCM	Môn học	Phương pháp tính				
KHOA KHUD	Mã môn học	MT1009				
	Thời lượng	100 phút	Mã đề	201	11	
C14 14 T						

Ghi chú: - Được sử dụng tài liệu, máy tính bỏ túi, không được sử dụng điện thoại và máy tính có chức năng lập trình.

SINH VIÊN ĐOC KỸ CÁC YÊU CẦU DƯỚI ĐÂY:

- Sinh viên ghi đầy đủ Họ, Tên, MSSV và làm bài trực tiếp lên đề thi.
- Đề thi gồm 10 câu (2 mặt trên 1 tờ giấy A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- Gọi m và n là hai chữ số cuối cùng của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \le m, n \le 9$).
- Không ghi đáp án ở dạng phân số.
- Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phẩy thập phân.
- Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

Họ và tên	C CP	Điểm t
MSSV	Chữ ký giám thị 1	Diem t
M	Chữ ký giám thị 2	

toàn bài

Câu hỏi 1. Một vật có khối lượng $m=0.1\mathcal{M}(\mathrm{kg})$ rơi thẳng đứng từ độ cao $s_0=5\mathcal{M}(m)$ trong không khí. Biết phương trình mô tả chuyển động là: $t=\frac{s_0k^2-s(t)k^2+m^2g(1-e^{-kt/m})}{mak}, s(t)$ là độ cao của vật tại thời điểm t(giây), với $g = 9.8 m/s^2$, k = 0.21. Sử dụng phương pháp lặp với 3 lần lặp, tính thời gian vật chạm đất t_3 với t_0 là thời gian bắt đầu rơi. Tính sai số tiên nghiệm của t_3 trên đoạn $[t_3 - 0.5, t_3 + 0.5]$.

Câu hỏi 2. Cho ma trận $A = \begin{pmatrix} 1.2 & 2.3 & 4.5 & 5.6 \\ 3.1 & 4.5 & \mathcal{M} & 4.1 \\ \mathcal{M} & \mathcal{M} & 3.2 & 5.6 \\ 1.4 & 2.2 & 2.4 & 2.5 \end{pmatrix}$. Tính phần tử L_{42} và phần tử U_{23} trong phân tích A = LU

theo Doolittle của ma trận A.

Kết quả: $L_{42} = _$

Câu hỏi 3. Cho hệ $\begin{cases} 15x_1 - x_2 = 1 \\ -\mathcal{M}x_1 + 30x_2 = 2\mathcal{M} \end{cases}$. Biết rằng bằng phương pháp Jacobi, ta thu được vecto lặp thứ hai là $X^{(2)} = \begin{pmatrix} 1 \\ \mathcal{M} \end{pmatrix}$. Hãy xác định vecto ban đầu $X^{(0)}$, và tính sai số tiên nghiệm của vecto $X^{(2)}$ đã cho

với chuẩn vô cùng.

Kết quả: $X^{(0)} =$ _____; $\Delta_{X^{(2)}} =$ _____

Câu hỏi 4. Hàm y = f(x) được cho bởi dữ liệu bảng sau

x_k	1.0	1.5	2.0	2.5	3	3.2	3.5	4.3	5
y_k	\mathcal{M}	5.7	4	3.5	4	4	5	4.5	4

Gọi đường cong $g(x) = A \ln x + B$ nội suy hàm f(x) bằng phương pháp bình phương cực tiểu. Sử dụng g(x) để xấp xỉ giá trị f(2.2) và $f^{-1}(4.6)$.

Kết quả: $f(2.2) = ______; f^{-1}(4.6) = ______;$

Câu hỏi 5. Cho số gần đúng $I_1 = \int_0^{\mathcal{M}} e^{-x^2} \sin x \, dx$ với I_1 được tính bằng công thức hình thang mở rộng với 10 đoạn chia . Làm tròn I_1 đến bốn chữ số sau dấu phẩy thập phân để được I_1' , ước lượng sai số tuyệt đối của I_1' biết $\delta_{I_1} = 0.15\%$.

Kết quả: $I_1'=$ ______; $\Delta_{I_1'}=$ _______

Câu hỏi 6. Đồng hồ đo tốc độ của một xe di chuyển trên đường như sau:

$t(gi\eth)$	1	1.2	1.4	1.6	1.8	2	2.2
v (km/giờ)	$5\mathcal{M}$	7M	9 M	a	$13\mathcal{M}$	$15\mathcal{M}$	$18\mathcal{M}$

Dùng công thức Simson mở rộng, hãy xác định quãng đường xe di chuyển khi $a=10\mathcal{M}$. Nếu quãng đường xe di chuyển được là $200\mathcal{M}$ thì a bằng bao nhiêu?

 Kết quả:
 Quãng đường =

; a =

Câu hỏi 7. Cho bài toán Cauchy $y'(x) = yx^2 + x - y$ với điều kiện đầu y(0) = 0.5. Sử dụng phương pháp Runge-Kutta 4 xấp xỉ nghiệm tại x = 0.2 và x = 0.4 với bước chia h = 0.2.

Kết quả: y(0.2) =

Câu hỏi 8. Cho spline bậc ba nội suy hàm f(x) như sau:

$$S(x) = \begin{cases} 2\mathcal{M} + b_0(x-1) + d_0(x-1)^3 & \text{n\'eu } x \in [1, \mathcal{M}] \\ 3\mathcal{M} + 3(x-\mathcal{M}) + c_1(x-\mathcal{M})^2 + d_1(x-\mathcal{M})^3 & \text{n\'eu } x \in [\mathcal{M}, \mathcal{M}+3] \end{cases}.$$

Biết $f''(\mathcal{M}+3) = 0$. Tìm b_0, d_0, c_1, d_1 .

 $b_0 = _{;d_0} = _{;c_1} = _{;d_1} = _{;c_1}$

Câu hỏi 9. Cho phương trình vi phân cấp 2 điều kiện đầu: $y''(x) + xy'(x) - x^2y(x) = e^x$ với y(1) = 0.1 và y'(1) = 0.5. Sử dụng phương pháp Euler cải tiến, xấp xỉ nghiệm của phương trình tại x = 1.25 và x = 1.5 với bước chia h = 0.25.

Câu hỏi 10. Cho bài toán biên $\begin{cases} \sqrt{x}y''(x) + (x+1)y'(x) - (\sin x)y(x) = \cos x \\ y(0.5) = 2.5, \quad y(1.1) = \mathcal{M} \end{cases}$, dùng phương pháp sai phân hữu hạn tính gần đúng y(0.7), y(0.9) với bước chia h = 0.2.

Kết quả: $y(0.7) = ______; y(0.9) = _____;$