STATS183 Project 1

Takao Oba

2023-04-10

a. Use http://shiny.stat.ucla.edu:3838/c183c283/ Enter the tickers as follows: ^GSPC,AAPL,IBM,....

Done

b You will download the adjusted close prices for 30 stocks plus the S&P500 in a csv file. Import the data in R and convert the adjusted close prices into returns. (Use the first 5-year data only!)

```
#Read your csv file:
a <- read.csv("/Users/takaooba/STATS 183/stockData.csv", sep=",", header=TRUE)
train <- a[1:60,]
test <- a[61:dim(a)[1],]

#Convert adjusted close prices into returns:
r <- (train[-1,3:ncol(train)]-train[-nrow(train),3:ncol(train)])/train[-nrow(train),3:ncol(train)]</pre>
```

c. Compute the means of the 31 assets, the standard deviations, and the variance covariance matrix.

```
#Compute mean vector:
means <- colMeans(r[-1]) #Without ^GSPC

#Compute variance covariance matrix:
covmat <- cov(r[-1]) #Without ^GSPC

#Compute correlation matrix:
cormat <- cor(r[-1]) #Without ^GSPC

#Compute the vector of variances:
variances <- diag(covmat)

#Compute the vector of standard deviations:</pre>
```

```
# mean vector of SP500
means_sp500 <- mean(r[,1])
stdev_sp500 <- sd(r[,1])</pre>
```

d. Plot the 31 assets on the space expected return against standard deviation.

Mean Expected Return vs Standard Deviation

e. Assume equal allocation portfolio using the 30 stocks. Compute the mean and standard deviation of this portfolio and add it on the plot of question (d).

```
eq = rep(1/30, 30)
sum(eq) # sum is 1 as with the budget constraint
## [1] 1
# mean of this portfolio
r_eq = t(eq) %*% means
r_eq
##
              [,1]
## [1,] 0.01632285
# sd of this portfolio
sd_eq = sqrt(t(eq) %*% covmat %*% eq)
sd_eq
              [,1]
## [1,] 0.03684095
# plotting on question (d)
plot(stdev, m return, main = "Mean Expected Return vs Standard Deviation",
     ylab = "Mean Expected Return", xlab = "Standard Deviation", ,xlim=c(0,0.13))
points(stdev_sp500, means_sp500, col = "blue") # add sp500 point
text(stdev_sp500, means_sp500, "SP500", col = "blue", pos = 3, cex = 0.65)
points(sd_eq, r_eq, col = "red") # equal allocation
text(sd_eq, r_eq, "Eq Weight", col = "red", pos = 3, cex = 0.65)
```

Mean Expected Return vs Standard Deviation

f. Add on the plot the minimum risk portfolio.

$$X = \frac{\Sigma^{-1}1}{1^T \Sigma^{-1}1}$$

```
# We will use formula of minimum risk portfolio
ones <- rep(1,30)
mrp_weights = (solve(covmat) %*% ones) / (as.numeric(t(ones) %*% solve(covmat) %*% ones))
sum(mrp_weights) # Looks good</pre>
```

[1] 1

$$R_p = X^T R$$

$$E(R_p) = \bar{R}_p = X^T \bar{R}$$

We have solved for the weights, thus, plugging back into the equation, we have
mrp_rp <- t(mrp_weights) %*% means
mrp_rp</pre>

```
## [,1]
## [1,] 0.01568397
```

Mean Expected Return vs Standard Deviation

