

Cálculo no \mathbb{R}^n Curso de Verão 2008 IME - USP

Prof. Alexandre Lymberopoulos www.ime.usp.br/ \sim lymber/verao Régis da Silva Santos

Prefácio

Este material foi criado a partir de notas de aula do Curso de Verão 2008 no IME-USP.

 $\acute{\rm E}$ permitida a reprodução total ou parcial deste material desde que indicada a autoria.

Este material foi criado para uso pessoal, portanto, adaptado para tal fim, podendo posteriormente ser adaptado para uso coletivo. E está sujeito a conter erros, portanto, são aceitas sugestões e críticas construtivas para melhoria do mesmo.

Régis da Silva Santos Março de 2008.

Sumário

1	Rev	risão de Cálculo	1
	1.1	Continuidade	1
	1.2	Derivadas	4
	1.3	Regras de Derivação	5
	1.4	A Completude de $\mathbb R$ e suas Conseqüências	8
	1.5	Integral de Riemann	12
	1.6	Funções dadas por Integrais	14
	1.7	Exercícios Resolvidos	16
2	Cál	culo no \mathbb{R}^n	19
	2.1	Curvas no \mathbb{R}^n	19
	2.2	Comprimento de Curvas	23
	2.3	Funções de Várias Variáveis a Valores Reais	26
	2.4	Limite	30
	2.5	Continuidade	34
3	Der	rivadas	37
	3.1	Derivadas Parciais	37
	3.2	Derivadas Direcionais	39
	3.3	Diferenciabilidade de Funções de \mathbb{R}^n em \mathbb{R}	40
	3.4	Espaço Tangente	45
	3.5	Regra da Cadeia	48
	3.6	Teorema da Função Implícita	52
	3.7	Teorema do Valor Médio	59
	3.8	Fórmula de Taylor com Resto de Lagrange	61
		3.8.1 Polinômio de Taylor de Ordem 1	61
4	Má	ximos e Mínimos	65
	4.1	Pontos de Máximo e Pontos de Mínimo	65
	4.2	Formas Quadráticas em \mathbb{R}^2	72
	43	Máximos e Mínimos sobre Conjunto Compacto	76

5	Fun	ições de Várias Variáveis Reais a Valores Vetoriais	83
	5.1	Funções de Várias Variáveis Reais a Valores Vetoriais	83
	5.2	Campo Vetorial	83
	5.3	Rotacional	85
	5.4	Divergente	87
6	Inte	egrais Duplas	89
	6.1	A Integral de Riemann	89
	6.2	Teorema de Fubini	95
	6.3	Integrais de Linha	96
	6.4	Campos Conservativos	100
\mathbf{A}	Ava	aliações 1	L 03
	A.1	Avaliação 01	103
	A.2	Avaliação 02	111

Lista de Figuras

1.1	Bola aberta
1.2	Função de duas sentenç as
1.3	TVI 8
1.4	Integral
1.5	
2.1	Circunferência
2.2	Hélice
2.3	
2.4	Elipse
2.5	Hélice
2.6	Hélice crescente
2.7	Comprimento de curva
2.8	Elipse e elipsóide
2.9	Hiperbolóide e parabolóide hiperbólico
2.10	Domínio de $f(x,y)$
2.11	Curva de nível: conjunto de esferas
	Limite
5.1	f transforma a reta r na circunferência $(r\cos\theta, r\sin\theta)$ 84

Capítulo 1

Revisão de Cálculo

Definição 1.1 Uma bola de centro x_0 e raio r é o conjunto $B_r\left(x_0\right) = \left\{x \in \mathbb{R} : |x - x_0| < r\right\}^1$

Figura 1.1: Bola aberta

Seja S conjunto no domínio de f tal que $f(s) = \{f(x); x \in S\}$.

1.1 Continuidade

Definição 1.2 Seja f uma função. Dizemos que f é contínua em x_0 se para toda bola centrada em $f(x_0)$, F, existe bola centrada em x_0 , B tal que $f(B) \subset F$.

¹http://cr.yp.to/papers/calculus.pdf

Definição 1.3 f é contínua se for contínua em todos os pontos onde está definida.

Exemplo 1.1 f(x) = 3x

Solução:

Seja
$$x_0 \in \mathbb{R}$$
; $f(x_0) = 3x_0$

$$F = B_{\varepsilon}(3x_0)$$

$$B = B_{\varepsilon/3}(x_0) \Rightarrow f(B) \subset F$$

$$B = \{x \in \mathbb{R} : |x - x_0| < \frac{\varepsilon}{3}\}$$

$$|x - x_0| < \frac{\varepsilon}{3} \Rightarrow$$

$$3|x - x_0| < \varepsilon$$

$$|3x - 3x_0| < \varepsilon$$

$$|f(x) - f(x_0)| < \varepsilon$$

$$\Rightarrow f(B) \subset F$$

 $\therefore f$ é contínua.

Exemplo 1.2 $f(x) = \begin{cases} 5, \text{ se } x \geqslant 2\\ 3, \text{ se } x < 2 \end{cases}$

Figura 1.2: Função de duas sentenç as

Solução:

contra-exemplo,
$$F = B_1(f(2))$$
. $\nexists B_r(2)$ tal que $f(B_r(2)) \subset F$.

Teorema 1.4 Sejam f e g funções contínuas tais que f(x) = g(x), para todo $x \neq x_0$, então $f(x_0) = g(x_0)$.

Demonstração:

Vamos provar que $|f(x_0) - g(x_0)| < \varepsilon$, para todo $\varepsilon > 0$.

fé contínua em $x_0\Rightarrow$ dada $F=B_{\varepsilon/2}\left(f\left(x_0\right)\right)\Rightarrow\exists A$ bola centrada em X_0 tal que $f\left(A\right)\subset F.$

g é contínua em $x_0 \Rightarrow$ dada $F = B_{\varepsilon/2}\left(g\left(x_0\right)\right) \Rightarrow \exists B$ bola centrada em X_0 tal que $g\left(B\right) \subset G$.

Existe $x \neq x_0$ tal que $x \in A \cap B$

$$f(x) \in F \in \underbrace{g(x)}_{f(x)} \in F$$

$$|f(x_0) - g(x_0)| = \left| f(x_0) - f(x) + \underbrace{f(x)}_{g(x)} - g(x_0) \right|$$

$$\leqslant |f(x_0) - f(x) + g(x) - g(x_0)|$$

$$\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$|f(x_0) - g(x_0)| < \varepsilon$$

$$\Rightarrow f(x_0) - g(x_0) = 0$$

$$\Rightarrow f(x_0) = g(x_0)$$

Teorema 1.5 Sejam f e g funções contínuas em x_0 , então f + g e f.g são contínuas em x_0 .

Teorema 1.6 Sejam f e g funções contínuas em $g(x_0)$ e x_0 , respectivamente, então $f \circ g$ é contínua em x_0 .

Demonstração:

f é contínua em $g(x_0)$

 \Rightarrow dada $F=B_{\varepsilon}\left(f\left(f\left(x_{0}\right)\right)\right),\exists B$ bola centrada em $g\left(x_{0}\right)$ tal que $f\left(B\right)\subset F.$ gé contínua em x_{0}

 \Rightarrow para B acima $\exists A$ bola centrada em x_0 tal que $g(A) \subset B$.

$$\begin{split} g\left(A\right) \subset B \\ \Rightarrow f\left(g\left(A\right)\right) \subset f\left(B\right) \subset F \\ \Rightarrow \left(f \circ g\right) \left(A\right) \subset F \end{split}$$

 $\Rightarrow f \circ g$ é contínua em x_0 .

Exemplo 1.3 $f(x) = k, k \in \mathbb{R}$

Solução:

dada
$$F = B_{\varepsilon}(k)$$
 escolha $B = B_r(x_0), r > 0$ qualquer $\Rightarrow f(B) \subset F$.

1. Revisão de Cálculo

Exemplo 1.4 f(x) = x

Solução:

dada
$$F = B_{\varepsilon}(k)$$
 escolha $B = F \Rightarrow f(B) \subset F$.

• Conseqüência

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0; n \in \mathbb{Z}^+; a_i \in \mathbb{R}$$

são contínuas.

Exemplo 1.5 f(x) = 1/x é contínua para $x_0 \neq 0$.

Solução:

dada
$$B_{\varepsilon}\left(1/x_{0}\right)$$
 escolha $B=B_{\frac{1+\varepsilon|x_{0}|}{|x_{0}|}}\left(x_{0}\right)$. exercício

• Conseqüência

- 1. se f é contínua e $f\left(x\right)\neq0, \forall x,$ então $\left(\frac{1}{x}\circ f\right)\left(x\right)=\frac{1}{f\left(x\right)}$ é contínua.
- 2. se p(x) e q(x) são contínuas e $q(x) \neq 0, \forall x,$ então $f(x) = \frac{p(x)}{q(x)}$ é contínua.

1.2 Derivadas

Definição 1.7 Seja f uma função definida em x_0 . Dizemos que f é derivável em x_0 se existir f_1 , função contínua em x_0 tal que

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

Definição 1.8 Seja f uma função definida em x_0 . Então f tem derivada $d \in \mathbb{R}$ em x_0 se

$$f(x) = f(x_0) + (x - x_0) f_1(x) e f_1(x_0) = d$$

Exemplo 1.6
$$f(x) = x^2; x_0 = 2$$

Solução:

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

$$x^2 = 2^2 + (x - 2) f_1(x)$$

$$f_1(x) = \frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2} = x + 2$$

$$\therefore f'(2) = f_1(2) = 2 + 2 = 4$$

E ainda, num ponto x_0 qualquer, $\forall x_0$, temos:

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

$$\Rightarrow x^2 = x_0^2 + (x - x_0) f_1(x)$$

$$\Rightarrow f_1(x) = \frac{x^2 - x_0^2}{x - x_0} = x + x_0$$

$$\Rightarrow f'(x_0) = f_1(x_0) = x_0 + x_0 = 2x_0$$

Teorema 1.9 Se f é derivável em x_0 , então f é contínua em x_0 .

Demonstração:

f é derivável em x_0 , então $f(x) = f(x_0) + (x - x_0) f_1(x)$, como $f_1(x)$ é contínua, então, f é contínua em x_0 .

1.3 Regras de Derivação

Teorema 1.10 (Derivada da Soma) Sejam f, g deriváveis em x_0 . Então f + g é derivável em x_0 .

Demonstração:

$$f$$
 é derivável em x_0 , então $f(x) = f(x_0) + (x - x_0) f_1(x)$ e g é derivável em x_0 , então $g(x) = g(x_0) + (x - x_0) g_1(x)$ então, $h(x) = f(x) + g(x)$

$$f(x) + g(x) = f(x_0) + g(x_0) + (x - x_0) (f_1(x) + g_1(x))$$

 $\Rightarrow h(x) = h(x_0) + (x - x_0) h_1(x)$

 h_1 é contínua em x_0 e

$$h'(x) = (f+g)'(x)$$

 $h_1(x_0) = f_1(x_0) + g_1(x_0) = f'(x_0) + g'(x_0)$

Teorema 1.11 (Derivada do Produto) Sejam f, g deriváveis em x_0 . Então h(x) = f(x) g(x) é derivável em $x_0 e(fg)'(x_0) = f'(x_0) g(x_0) + f(x_0) g'(x_0)$.

Demonstração:

fé derivável em $x_0,$ então $f\left(x\right)=f\left(x_0\right)+\left(x-x_0\right)f_1\left(x\right)$ e gé derivável em $x_0,$ então $g\left(x\right)=g\left(x_0\right)+\left(x-x_0\right)g_1\left(x\right)$ então, $h\left(x\right)=f\left(x\right).g\left(x\right)$

$$f(x) g(x) = (f(x_0) + (x - x_0) f_1(x)) (g(x_0) + (x - x_0) g_1(x))$$

$$= f(x_0) g(x_0) + (x - x_0) [f(x_0) g_1(x) + f_1(x) g(x_0) + f_1(x) g_1(x) (x - x_0)]$$

$$= h(x_0) + (x - x_0) h_1(x)$$

$$\Rightarrow (fg)'(x_0) = h_1(x_0) = f(x_0) g_1(x_0) + f_1(x_0) g(x_0)$$

$$= f(x_0) g'(x_0) + f'(x_0) g(x_0)$$

Teorema 1.12 (Regra da Cadeia) Se f é derivável em $g(x_0)$ e g é derivável em x_0 , então $f \circ g$ é derivável em x_0 e $(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0)$.

Demonstração:

Façamos y = g(x) e $y_0 = g(x_0)$ f é derivável em y_0 , então $f(y) = f(y_0) + (y - y_0) f_1(y)$ e g é derivável em x_0 , então $g(x) = g(x_0) + (x - x_0) g_1(x)$

$$f(y) = f(y_0) + \left(g(x_0) + (x - x_0)g_1(x) - \underbrace{y_0}_{g(x_0)}\right) \cdot f_1(y)$$
$$f(g(x)) = f(g(x_0)) + (x - x_0)\underbrace{g_1(x)}_{g(x_0)} f_1(g(x))$$

 $f \circ g$ é derivável em x_0 e

$$(f \circ g)'(x_0) = f_1(g(x_0)).g_1(x_0)$$

= $f'(g(x_0)).g'(x_0)$

Exemplo 1.7

$$f(x) = k$$

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

$$k = k + (x - x_0) f_1(x)$$

$$(x - x_0) f_1(x) = 0 \Rightarrow f_1(x) = 0$$

$$\Rightarrow f'(x_0) = f_1(x_0) = 0$$

Exemplo 1.8

$$\begin{split} f\left(x\right) &= x^{n} \\ f\left(x\right) &= f\left(x_{0}\right) + \left(x - x_{0}\right) f_{1}\left(x\right) \\ x^{n} &= x_{0}^{n} + \left(x - x_{0}\right) f_{1}\left(x\right) \\ f_{1}\left(x\right) &= \frac{x^{n} - x_{0}^{n}}{x - x_{0}} = x^{n-2}x_{0}^{1} + x^{n-3}x_{0}^{2} + \ldots + x^{1}x_{0}^{n-2} + x_{0}^{n-1} \\ \Rightarrow f'\left(x_{0}\right) &= f_{1}\left(x_{0}\right) = nx_{0}^{n-1} \end{split}$$

Exemplo 1.9

$$f(x) = \frac{1}{x}$$

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

$$\frac{1}{x} = \frac{1}{x_0} + (x - x_0) f_1(x)$$

$$f_1(x) = -\frac{1}{x \cdot x_0}$$

$$f'(x_0) = f_1(x_0) = -\frac{1}{x_0^2}$$

Teorema 1.13 (Derivada do Quociente) Sejam f e g deriváveis em x_0 com $g(x_0) \neq 0$, então f/g é derivável em x_0 e

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'\left(x_0\right)g\left(x_0\right) - f\left(x_0\right)g'\left(x_0\right)}{g\left(x_0\right)^2}$$

Demonstração:

$$\left(\frac{f}{g}\right)'(x_0) = \left(f \cdot \frac{1}{g}\right)'(x_0) = f'(x_0) \cdot \frac{1}{g(x_0)} + f(x_0) \cdot - \frac{1}{g(x_0)^2} \cdot g'(x_0) \\
= \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{g(x_0)^2}$$

1.4 A Completude de \mathbb{R} e suas Conseqüências

Definição 1.14 Seja S um conjunto de reais. Um número real c é quota superior de S se $x \leq c, \forall x \in S$.

Exemplo 1.10 Seja $c \geqslant \pi$, c é quota superior para $S = \{3, 3.1, 3.14, 3.141, ...\}$. A menor quota superior é π .

Os números reais são completos: todo $S\subset\mathbb{R},S\neq\emptyset$, com quota superior admite menor quota superior. Essa menor quota superior é o **supremo** de S, sup S.

Exemplo 1.11 $\left\{x\in\mathbb{Q}:x<\sqrt{2}\right\}$ tem quota superior, mas não tem supremo em \mathbb{Q} .

Teorema 1.15 (valor intermediário) Seja f uma função contínua com valores reais. Sejam b, c e y reais tais que $b \le c$ e f definida em [b, c] com $f(b) \le y \le f(c)$.

Então, existe $x \in [b, c]$ tal que f(x) = y.

Figura 1.3: TVI

Demonstração:

Seja $S = \{x \in [b, c] : f(x) \le y\}$

 $S \neq \emptyset$, pois $b \in S(f(b) \leqslant y)$

Stem c como quota superior.

Portanto, S tem supremo: $u = \sup S$.

Vamos provar que f(u) = y.

Suponha f(u) > y, existe D bola aberta centrada em u tal que f(x) > y, $\forall x \in D$. Seja $t \in D$, t < u (f(t) > y), logo t é quota superior para S e t < u. Contradição, achamos quota superior menor que o supremo, logo, $f(u) \leq y$.

Suponha f(u) < y, isto implica que $u \neq c$ e então u < c.

Por continuidade de f existe D bola aberta centrada em u tal que $f\left(x\right) < y, \forall x \in D.$

Seja $x \in D$ tal que u < x < c, mas $x \neq S \Rightarrow f(x) > y$.

Contradição, logo, $f(u) \ge y$.

Portanto, f(u) = y.

Teorema 1.16 Seja f contínua em [b,c] tal que f(b).f(c) < 0. Então existe $x \in [b,c]$ tal que f(x) = 0.

Demonstração:

Faça y = 0 no teorema 1.15.

Teorema 1.17 Seja f função contínua e b, c reais tais que $b \le c$. Então f([b,c]) tem quota superior.

Demonstração:

Seja $S = \{x \in [b, c] : f([b, x])\}$ é limitada.

 $S = \emptyset; b \in S; f([b, b]) = f(b)$ (limitada).

Stem quota superior; $x \leq c, \forall x \in S$. Então, $u = \sup S$.

Vamos provar que u = c.

Pela continuidade de f existe D, bola centrada em u com $f(D) \subset B_1(f(u))$. Seja $t \in D, t < u \Rightarrow \exists x, t < x < u$ tal que f([b, x]) é limitada e $f([x, u]) \subset B_1(f(u))$ é limitada.

Logo, f([b, u]) é limitada.

Suponha $u < c \Rightarrow \exists v \in D$ tal que u < v < c, logo, f([u,v]) é limitada. Então, f([b,v]) é limitada. Contradição.

Logo, $u \geqslant c \Rightarrow u = c$.

Teorema 1.18 (máximo - Weierstrass) Seja f função contínua e b, c reais com $b \le c$. Então existe $z \in [b, c]$ tal que $f(x) \le f(z), \forall x \in [b, c]$.

Demonstração:

f([b,c]) tem quota superior, teorema 1.17, logo existe $M=\sup\{f([b,c])\}$. Seja $S=\{x\in[b,c]:\sup\{f([x,c])\}=M\}$

$$S\neq\emptyset:b\in S.$$

Stem quota superior, então, c é quota. $u = \sup S$.

Suponha f(u) < M.

Continuidade de f dá bola aberta D centrada em u com $f(D) \subset B_{\frac{M-f(u)}{2}}(f(u))$.

Logo, sup $\{f(D)\} < M$.

Seja $t \in D, t < u$ e $x \in D$ com $t < x \le u$.

Então sup $\{f([x,c])\}=M$, pois $x \in S, t < x \leq u$.

Mas sup $\{f([x, u])\} < M$ e então, u < c.

Seja $v \in D$ com u < v < c e sup $\{f([x, v])\} < M$, (pois $[x, v] \subset D$), então, sup $\{f([v, c])\} = M$.

Contradição, logo, $f(u) \ge M \Rightarrow f(u) = M$.

Teorema 1.19 Seja f função contínua e b, c reais com $b \leqslant c$.

Então existe $u \in [b, c]$ tal que $f(u) \leqslant f(x), \forall x \in [b, c]$.

Demonstração:

-fé continua e, pelo teorema 1.18, tem máximo em [b,c],isto é, $\exists u \in [b,c]$ tal que

$$-f(x) \leqslant -f(u), \forall x \in [b, c]$$

$$\Rightarrow f(u) \leqslant f(x), \forall x \in [b, c]$$

Teorema 1.20 (Teorema de Fermat) Seja f uma função derivável em x_0 . Suponha $f(x_0) \ge f(x)$, para todo x numa bola aberta B centrada em x_0 . Então $f'(x_0) = 0$.

Demonstração:

Seja f derivável em x_0 , então

$$f(x) = f(x_0) + (x - x_0) f_1(x)$$

 f_1 é contínua em x_0 .

Suponha $f'(x_0) > 0$.

$$f_1(x_0)$$

Existe D bola centrada em x_0 tal que $f_1(x) > 0, \forall x \in D$.

Seja $x \in B \cap D, x > x_0$

$$f(x_0) \ge f(x) = f(x_0) + \underbrace{(x - x_0)}_{>0} \underbrace{f_1(x)}_{>0} > f(x_0)$$

$$\Rightarrow f(x_0) \geqslant f(x_0)$$

Contradição. Logo, $f'(x_0) \leq 0$.

Analogamente, supondo $f'(x_0) < 0$.

E $x \in B \cap D$, com $x < x_0$, obtemos a mesma contradição. $f'(x_0) \ge 0$.

Portanto,
$$f'(x_0) = 0$$
.

Teorema 1.21 Seja f uma função derivável com $f(x_0) \leq f(x)$, para todo $x \in B$, bola centrada em x_0 . Então, $f'(x_0) = 0$.

Demonstração:

Aplique o Teorema 1.20 para -f.

$$f(x_0) \leqslant f(x) \Rightarrow -f(x_0) \geqslant -f(x)$$

\Rightarrow -f'(x_0) = 0 \Rightarrow f'(x_0) = 0

Teorema 1.22 (Teorema de Rolle) Seja f uma função derivável. Sejam $b < c \in \mathbb{R}$. Se f(b) = f(c), então existe $x \in]b, c[$ tal que $f'(x_0) = 0$.

Demonstração:

f é derivável, portanto, f é contínua.

Portanto, assume máximo em algum $x \in [b, c]$.

Se f(x) > f(b) = f(c), então, $x \neq b$ e $x \neq c$, logo, existe B centrada em x tal que

$$f(x) \geqslant f(t); \forall t \in B \Rightarrow f'(x) = 0$$

Analogamente f assume mínimo em algum $u \in [b,c]$ se f(u) < f(b) = f(c). Então, $u \neq b$ e $u \neq c \Rightarrow f'(u) = 0$.

Por fim, se $f(x) \le f(b) = f(c)$ e $f(u) \ge f(b) = f(c)$, então, f(b) = f(c) é máximo e mínimo simultaneamente, logo, f é constante

$$\Rightarrow f'(x) = 0, \forall x \in [b, c]$$

Régis © 2008

Teorema 1.23 (Teorema do Valor Médio) Seja f derivável e b, c reais com $b \le c$. Então, existe $d \in]b, c[$ tal que $f'(d) = \frac{f(c) - f(b)}{c - b}$.

Demonstração:

Seja

$$g(x) = (c - b) f(x) - (x - b) (f(c) - f(b))$$

$$g(b) = (c - b) f(b)$$

$$g(c) = (c - b) f(c) - (c - b) (f(c) - f(b))$$

$$g(c) = (c - b) f(b)$$

$$\Rightarrow g(b) = g(c)$$

 $g \in \text{deriv}$ ável $\Rightarrow \exists d \in [b, c[\text{ tal que } g'(d) = 0.$

$$g'(x) = (c - b) f'(x) - (f(c) - f(b))$$

$$\Rightarrow 0 = g'(d) = (c - b) f'(d) - (f(c) - f(b))$$

$$\Rightarrow f'(d) = \frac{f(c) - f(b)}{c - b}$$

1.5 Integral de Riemann

Definição 1.24 Seja $[a,b] \subset \mathbb{R}$ um intervalo. Uma partição de [a,b] é a escolha de $\{t_i\}_{i=0}^n \in [a,b]$ tais que $t_0 = a < t_1 < t_2 < ... < t_n = b$ e $P = (t_0,t_1,...,t_n)$. A norma de P é $|P| = \max\{t_i - t_{i-1}; i = 1,...,n\}$.

Definição 1.25 Seja $f:[a,b]\to\mathbb{R}$ função limitada.

A Soma de Riemann de frelativa à partição $P=(t_0,t_1,...,t_n)$ de [a,b] é a escolha $\{c_i\}_{i=1}^n$, $c_i\in[t_{i-1},t_i]$ é

$$S(f, P, \{c_i\}) = \sum_{i=1}^{n} f(c_i) (t_i - t_{i-1})$$

Definição 1.26 Dizemos que f é $Riemann\ Integrável$ se existir

$$\lim_{|P|\to 0} S\left(f, P, \{c_i\}\right)$$

para toda partição P de [a,b] e escolha dos $c_i \in [t_{i-1},t_i]$. Neste caso escrevemos

$$\int_{a}^{b} f(x) dx = \lim_{|P| \to 0} \sum_{i=1}^{n} f(c_i) (t_i - t_{i-1})$$

Exercício

1. Calcule $\int_{0}^{1} x^{2} dx$, usando $P = (t_{i})$, onde $t_{i} = i/n, i = 0, ..., n$ e $c_{i} = t_{i} \left(\sum_{i=1}^{n} f(c_{i}) (t_{i} - t_{i-1}) \right)$.

Definição 1.27 Uma primitiva de f é uma função F tal que F' = f.

Teorema 1.28 (Teorema Fundamental do Cálculo) $Seja\ f:[a,b]\to\mathbb{R}$ função integrável e F sua primitiva. Então

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Demonstração:

Seja $P = (t_0, t_1, ..., t_n)$ partição de [a, b].

$$F(b)-F(a)=F(t_n)-F(t_{n-1})+F(t_{n-1})-F(t_{n-2})+F(t_{n-2})+\dots+F(t_1)-F(t_0)$$

$$=\sum_{i=1}^n F(t_i)-F(t_{i-1})(1)$$

De $\frac{F(t_i) - F(t_{i-1})}{t_i - t_{i-1}} = F'(t_i)$ (Teorema 1.23 do Valor Médio), temos:

(1)
$$= \sum_{i=1}^{n} F'(c_i) (t_i - t_{i-1})$$
$$= \sum_{i=1}^{n} f(c_i) (t_i - t_{i-1})$$

O lado esquerdo independe de $P \in \{c_i\}$

1. Revisão de Cálculo

$$\Rightarrow \int_{a}^{b} f(x) dx = F(b) - F(a)$$

Exemplo 1.12 Seja $f(x) = \begin{cases} 1, \text{ se } x \in \mathbb{Q} \cap [0, 1] \\ 0, \text{ se } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases}$

Solução:

$$P = (t_i), t_i = i/n$$

i) $c_i = \text{algum irracional entre } t_{i-1} \in t_i$

$$\sum_{i=1}^{n} \underbrace{f(c_i)}_{0} (t_i - t_{i-1}) = 0$$

ii) $c_i = \text{algum racional entre } t_{i-1} \in t_i$

$$\sum_{i=1}^{n} \underbrace{f(c_i)}_{1} (t_i - t_{i-1}) = 1 - 0 = 1$$

 $\therefore f$ não é integrável.

1.6 Funções dadas por Integrais

Figura 1.4: Integral

Seja f integrável em [a, b]

$$F(x) = \int_{a}^{b} f(t) dt$$

Teorema 1.29 Seja f integrável em [a, b] e contínua.

Então existe $c \in [a,b]$ tal que $\int_{a}^{b} f(x) dx = f(c)(b-a)$

Figura 1.5

Demonstração:

Seja f contínua em [a, b].

Então, f tem máximo (M) e mínimo (m) em [a,b].

$$\Rightarrow m \leqslant f(x) \leqslant M$$

$$\Rightarrow \int_{a}^{b} m dx \leqslant \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} M dx$$

$$\Rightarrow m (b - a) \leqslant \int_{a}^{b} f(x) dx \leqslant M (b - a)$$

$$\Rightarrow m \leqslant \frac{\int_{a}^{b} f(x) dx}{b - a} \leqslant M$$

Pelo, teorema 1.15 do Valor Intermediário, temos

$$\exists c \in [a, b] \text{tal que } f(c) = \frac{\int\limits_{a}^{b} f(x) \, dx}{b - a}$$

$$\Rightarrow \int\limits_{a}^{b} f(x) \, dx = f(c) \, (b - a)$$

Régis © 2008

Teorema 1.30 Seja f integrável em [a,b], então, $F(x) = \int_{a}^{x} f(t) dt$ é contínua em [a,b].

Demonstração:

Exercício

Teorema 1.31 Seja f contínua em [a,b], então, $F(x) = \int_{a}^{x} f(t) dt$ é derivável em [a,b] e F'(x) = f(x).

1.7 Exercícios Resolvidos

2. Sejam f uma função derivável e a < b números reais tais que f(a) = f(b) = 0 e f'(a)f'(b) > 0. Prove que existe $c \in (a,b)$ tal que f(c) = 0.

Solução:

f'(a) e f'(b) são de mesmo sinal, vamos supor que f'(a) e f'(b) > 0.

Neste caso, a inclinação das retas tangentes em a e b são crescentes. Basta mostrar que existem $x,y\in(a,b)$ tais que f(x)>0 e f(y)<0. A tese sai do Teorema do Valor Intermediário (1.15).

f é derivável em a e f'(a) > 0, então existe f_1 contínua em a tal que $f(x) = f(a) + (x-a)f_1(x)$ e $f_1(a) = f'(a)$.

Como f(a) = 0, então $f(x) = (x - a)f_1(x)$. Como f'(a) > 0, fixe $\varepsilon = \frac{f'(a)}{2} > 0$.

Como f_1 é contínua em a, existe $\delta_1>0$ tal que se $|x-a|<\delta_1$, então

$$\left| f_1(x) - \underbrace{f_1(a)}_{f'(a)} \right| < \varepsilon = \frac{f'(a)}{2}.$$

$$|f_1(x) - f'(a)| < \frac{f'(a)}{2} \Leftrightarrow \frac{-f'(a)}{2} < f_1(x) - f'(a) < f'(a)$$

 $\Leftrightarrow 0 < \frac{f'(a)}{2} < f_1(x) < \frac{3f'(a)}{2}$

Tome
$$x \in (a, a + \delta_1)$$
. Como $f(x) = \underbrace{(x - a)}_{>0} \underbrace{f_1(x)}_{>0}$, então $f(x) > 0$.

f é derivável em b e f'(b) > 0, então existe f_2 contínua em b tal que $f(x) = f(b) + (x - b)f_2(x)$ e $f_2(b) = f'(b)$.

Como
$$f'(b) > 0$$
, fixe $\varepsilon = \frac{f'(b)}{2} > 0$.

Como f'(b)>0, fixe $\varepsilon=\frac{f'(b)}{2}>0$. Como f_2 é contínua em b, existe $\delta_2>0$ tal que se $|x-b|<\delta_2$, então

$$\left| f_2(x) - \underbrace{f_2(b)}_{f'(b)} \right| < \varepsilon = \frac{f'(b)}{2}.$$

$$|f_2(x) - f'(b)| < \frac{f'(b)}{2} \Leftrightarrow \frac{-f'(b)}{2} < f_2(x) - f'(b) < \frac{f'(b)}{2}$$

 $\Leftrightarrow 0 < \frac{f'(b)}{2} < f_2(x) < \frac{3f'(b)}{2}$

Tome
$$y\in (b-\delta_2,b)$$
. Como $f(y)=\underbrace{(y-b)}_{<0}\underbrace{f_2(y)}_{>0}$, então $f(y)<0$. Conclusão: Como f é derivável, f é contínua, portanto, usando o TVI. (1.15),

 $\exists c \in (x, y) \subset (a, b) \text{ tal que } f(c) = 0.$

3. Sejam f uma função derivável em I e a < b números reais em I tais que f'(a)f'(b) < 0. Prove que existe $c \in (a,b)$ tal que f'(c) = 0.

Solução:

Note que f'(a) e f'(b) possuem sinais contrários. Suponhamos f'(a) > 0 e f'(b) < 0, e suponha ainda que $f(a) \neq f(b)$.

Precisamos encontrar $x, y \in (a, b)$ com x < y tal que f(x) = f(y), e a tese sai do Teorema de Rolle (1.22).

Suponha que f é estritamente crescente, isto é, $\forall x, y; x < y \Rightarrow f(x) < f(y)$. Por hipótese, f é derivável em b, então existe f_1 contínua em a tal que $f(x) = f(b) + (x - b)f_1(x) e f_1(b) = f'(b).$

Lembrando que $f'(b) = f_1(b) < 0$, então $\exists \delta$ tal que $\forall y \in (b - \delta, b), f_1(y) < 0$.

1. Revisão de Cálculo

Então, se f é estritamente crescente, $f(y)-f(b)<0 \Rightarrow y-b<0$ $\Rightarrow \frac{f(y)-f(b)}{y-b}>0 \Rightarrow f(y)>0. \text{ Absurdo.}$ Concluímos que f não é estritamente crescente. Então, $\exists x,y\in(a,b)$ com

x < y tal que $f(x) \ge f(y)$.

1ºcaso) f(x) = f(y). É imediato com o Teorema de Rolle.

2º
caso) f(x) > f(y). Se f(a) < f(y), aplique o TVI e concluímos que $\exists z \in (a, x) \text{ tal que } f(z) = f(y).$

Tome z, y: z < y e conclui-se com o Teorema de Rolle (Fig. fig30). Aplicando o TVI encontramos $c \in (x, y)$ tal que f(c) = f(a).

Capítulo 2

Cálculo no \mathbb{R}^n

2.1 Curvas no \mathbb{R}^n

```
Seja \mathbb{R}^n = \{(x_1, x_2, ..., x_n) ; x_i \in \mathbb{R}; 1 \leq i \leq n\}
Escrevemos x = (x_1, x_2, ..., x_n)
```

Definição 2.1 Uma curva em \mathbb{R} é uma função $\gamma: I \subset \mathbb{R} \to \mathbb{R}^n$.

$$\gamma(t) = (x_1(t), x_2(t), ..., x_n(t)) \text{ onde } x_i : I \to \mathbb{R}.$$

 γ é contínua se cada x_i for contínua.

 γ é derivável se cada x_i for derivável e $\gamma'(t) = (x_1'(t), x_2'(t), ..., x_n'(t))$

$$\operatorname{Im} \gamma = \{\gamma(t) : t \in I\} \subset \mathbb{R}^n$$

gráfico $\gamma = \{(t, \gamma(t)) : t \in I\} \subset \mathbb{R} \times \mathbb{R}^n \approx \mathbb{R}^{n+1}$

onde: $\mathbb{R} \times \mathbb{R}^n = (x_0, (x_1, x_2, ..., x_n)) \in \mathbb{R}^{n+1} = (x_0, x_1, ..., x_n).$

Exemplo 2.1 Seja

$$\gamma : \mathbb{R} \to \mathbb{R}^2$$

 $\gamma (t) = (\cos t, \, \text{sen} t); t \in [0, 2\pi]$

Solução:

Note que $\gamma(t) = (x(t), y(t))$

$$\|\gamma(t)\| = \sqrt{\cos^2 t + \sin^2 t} = 1$$

 $\Rightarrow x^2(t) + y^2(t) = 1$

Para ver o ponto inicial basta ver que

para $t = 0 \Rightarrow (1,0)$ e

para $t = 1 \Rightarrow (0, 1)$

Figura 2.1: Circunferência

ou por derivadas $\gamma'(t) = (-\operatorname{sen} t, \cos t)$ em $[0, \pi/2]$ a derivada decresce, então, \boldsymbol{x} tende a 0, portanto, o sentido de rotação é anti-horário.

Então, a Im $\in \mathbb{R}^2$ é uma circunferência de raio unitário. Seu gráfico é $\gamma \subset \mathbb{R}^3$ $\gamma(t) = \{(t, \cos t, \, \operatorname{sen} t); t \in [0, 2\pi]\}$

Figura 2.2: Hélice

Exemplo 2.2 Seja $\gamma(t) = (e^{-t} \cos t, e^{-t} \operatorname{sen} t), t \ge 0$

Solução:

Calculando a norma do vetor podemos ver a região onde t varia.

$$\|\gamma\left(t\right)\| = e^{-t}$$

Calculando a derivada podemos ver o sentido de crescimento da curva.

Régis © 2008

$$\gamma'(t) = \left(-e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t\right)$$
$$= e^{-t}\left(-\cos t - \sin t, -\sin t + \cos t\right)$$

Portanto a $\operatorname{Im} \gamma$ é dada pela figura a seguir.

Figura 2.3

Exemplo 2.3 Seja

$$\gamma(t) = (2\cos t, \, \operatorname{sen} t), t \in [0, 2\pi]$$

Solução:

$$\|\gamma(t)\| = \sqrt{4\cos^2 t + \sin^2 t}$$

$$x^2(t) = 4\cos^2 t \Rightarrow \frac{x^2(t)}{4} = \cos^2 t$$

$$y^2(t) = \sin^2 t$$

$$[\cos^2 t + \sin^2 t = 1]$$

$$\operatorname{Im} \gamma \subset \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + y^2 = 1 \right\}$$

A reta tangente a $\gamma(t)$ em $\gamma(t_0)$ é

$$\begin{split} r: x &= \gamma\left(t_0\right) + s.\gamma'\left(t_0\right) \\ \text{p/}\ t_0 &= {}^{3}\!/_{\!4} \Rightarrow \gamma\left(t_0\right) = \left(2. - \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \left(-\sqrt{2}, \frac{\sqrt{2}}{2}\right) \\ \gamma'\left(t\right) &= \left(-2\operatorname{sen}t, \cos t\right) \\ \gamma'\left(t_0\right) &= \left(-2\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) \\ r: x &= \left(-\sqrt{2}, \frac{\sqrt{2}}{2}\right) + s\left(-\sqrt{2}, -\frac{\sqrt{2}}{2}\right), s \in \mathbb{R} \end{split}$$

2. Cálculo no \mathbb{R}^n

Figura 2.4: Elipse

Exemplo 2.4 Seja

$$\gamma(t) = (t, \cos t, \, \sin t), t \geqslant 0$$

Solução:

$$\gamma'(t) = (1, -\sin t, \cos t)$$
$$y^{2} + z^{2} = 1$$

Figura 2.5: Hélice

Exemplo 2.5 Seja

$$\gamma\left(t\right)=\left(e^{-t}\cos t,e^{-t}\sin t,e^{-t}\right),t\geqslant0$$

Solução:

$$\|\gamma(t)\| = \sqrt{2}e^{-t}$$

 $x^2 + y^2 = (e^{-t})^2 = z^2$

Figura 2.6: Hélice crescente

2.2 Comprimento de Curvas

Definição 2.2 Seja $\gamma:[a,b]\to\mathbb{R}^n$ uma curva com derivada contínua em [a,b]. O comprimento de γ é:

$$L\left(\gamma\right) = \int_{a}^{b} \|\gamma'\left(t\right)\| dt$$

Figura 2.7: Comprimento de curva

2. Cálculo no \mathbb{R}^n

Demonstração:

$$\sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\| = \sum_{i=1}^{n} \|\gamma'(c_i)\| \Delta t_i$$

fazendo $n\to\infty$ temos

$$L\left(\gamma\right) = \int_{a}^{b} \|\gamma'\left(t\right)\| dt$$

Exemplo 2.6 Seja

$$\gamma(t) = (t, \cos t, \, \operatorname{sen} t), t \in [0, 2\pi]$$

Solução:

$$\begin{split} L\left(t\right) &= \int\limits_{0}^{2\pi} \left\|\gamma'\left(t\right)\right\| dt \\ \gamma'\left(t\right) &= (1, -\operatorname{sen}t, \cos t) \\ \left\|\gamma'\left(t\right)\right\| &= \sqrt{2} \\ \Rightarrow L\left(t\right) &= \int\limits_{0}^{2\pi} \sqrt{2} dt = \sqrt{2}t \bigg|_{0}^{2\pi} = 2\pi\sqrt{2} \end{split}$$

Exemplo 2.7 Calcule o comprimento de uma circunferência de raio r.

Solução:

$$x^{2} + y^{2} = r^{2}$$

$$x(t) = r \cos t$$

$$y(t) = r \operatorname{sen} t$$

$$\gamma(t) = r \operatorname{sen} t$$

$$\gamma(t) = \int_{0}^{2\pi} \|\gamma'(t)\| dt$$

$$\gamma'(t) = (-r \operatorname{sen} t, r \cos t)$$

$$\|\gamma'(t)\| = r$$

$$L(\gamma) = \int_{0}^{2\pi} r dt = rt|_{0}^{2\pi} = 2\pi r$$

Exemplo 2.8 Calcule o comprimento de uma elipse.

Solução:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$x(t) = a\cos t$$
$$y(t) = b\operatorname{sent}$$

Não é possível calcular o comprimento de uma elipse apenas com técnicas de integração.

Exemplo 2.9 Calcule o comprimento:

a)
$$\gamma(t) = (t\cos t, t\sin t), 0 \le t \le 2\pi$$

b)
$$\gamma(t) = (\cos 2t, \sin 2t), 0 \leqslant t \leqslant 2\pi$$

2.3 Funções de Várias Variáveis a Valores Reais

Definição 2.3 Seja $A \subset \mathbb{R}^n$ uma função $f: A \to \mathbb{R}$ é uma tripla (f, A, \mathbb{R}) onde f é uma regra que associa a cada ponto de A um único ponto em \mathbb{R} . Notação:

$$f: A \to \mathbb{R}$$

 $x \mapsto f(x)$

A imagem de f é Im $f = \{f(x) : x \in A\} = f(A)$ O gráfico de f é graf $f = \{(x, f(x)) : x \in A\} \subset \mathbb{R}^{n+1}$.

Definição 2.4 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ a hipersuperfície de nível de c de f é $f^{-1}(c) = \{x \in A: f(x) = c\}.$

Observação:

Se n=2 $f^{-1}(c)$ é uma curva em \mathbb{R}^2 . Se n=3 $f^{-1}(c)$ é uma superfície em \mathbb{R}^3 .

Exemplo 2.10 Seja $f(x,y) = 2x^2 + y^2$

Determine o domínio e a imagem, desenhe as curvas de nível e esboce o gráfico.

Solução:

Verifiquemos o valor de f(x,y) quando comparamos com um valor c.

$$\begin{split} c &< 0: f^{-1}\left(c\right) = \emptyset \\ c &= 0: f^{-1}\left(c\right) = \left\{(0,0)\right\} \\ c &> 0: f^{-1}\left(c\right) = \left\{(x,y) \in \mathbb{R}^2: f\left(x,y\right) = c\right\} \Rightarrow 2x^2 + y^2 = c \end{split}$$

Figuras (2.8a) e (2.8b).

Exemplo 2.11 Seja $f(x,y) = x^2 - y^2$

Determine o domínio e a imagem, desenhe as curvas de nível e esboce o gráfico.

Figura 2.8: Elipse e elipsóide

Solução:

$$c < 0: f^{-1}(c) = \{(x, y) \in \mathbb{R}^2 : f(x, y) = c\}$$

$$\Rightarrow x^2 - y^2 = c < 0$$

$$\Rightarrow y^2 - x^2 = -c > 0$$

$$c = 0: f(x, y) = 0$$

$$\Rightarrow x^2 - y^2 = 0$$

$$\Rightarrow x^2 = y^2$$

$$\Rightarrow |x| = |y|$$

$$\Rightarrow y = \pm x$$

$$c > 0: x^2 - y^2 = c > 0$$

Figuras (2.9a) e (2.9b).

 Exemplo 2.12 Seja $f(x,y)=\frac{y}{x-1}$ Determine o domínio e a imagem, desenhe as curvas de nível e esboce o gráfico.

Figura 2.9: Hiperbolóide e parabolóide hiperbólico

Solução:

$$D_f = \{x \in \mathbb{R} : x - 1 \neq 0\}$$

Fazendo

$$\frac{y}{x-1} = c$$

$$y = c(x-1)$$

$$y = cx - c$$

Exemplo 2.13 Seja $f(x, y) = \ln(x - y)$

Determine o domínio e a imagem, desenhe as curvas de nível e esboce o gráfico.

Solução:

$$D_f = \{(x, y) \in \mathbb{R}^2 : x - y > 0\}$$
$$\ln(x - y) = c$$
$$\Rightarrow x - y = e^c$$
$$\Rightarrow y = x - e^c$$

Figura 2.10: Domínio de f(x, y)

Exemplo 2.14 $f(x, y, z) = x^2 + y^2 + z^2$

Solução:

$$c < 0: f^{-1}(c) = \emptyset$$

$$c = 0: f^{-1}(0) = \{(0, 0, 0)\}$$

$$c > 0: x^{2} + y^{2} + z^{2} = c > 0$$

Figura 2.11: Curva de nível: conjunto de esferas.

Obs: Impossível desenhar o gráfico de f(x,y), pois está em \mathbb{R}^4 .

Exemplo 2.15
$$f(x, y, z) = x^2 + 4y^2 + z^2$$

Solução:

$$\begin{aligned} c &< 0: f^{-1}\left(c\right) = \emptyset \\ c &= 0: f^{-1}\left(0\right) = \left\{(0,0,0)\right\} \\ c &> 0: x^2 + 4y^2 + z^2 = c > 0 \end{aligned}$$

Exemplo 2.16 $f(x, y, z) = x^2 - y^2 - z^2$

Régis © 2008

2.4 Limite

Definição 2.5 (Ponto de acumulação) Seja $A \subset \mathbb{R}^n$ e $x_0 \in \mathbb{R}^n$. O ponto $x_0 \in \mathbb{R}^n$ é de acumulação se $B_{\varepsilon}(x_0): \{x_0\} \cap A \neq \emptyset, \forall \varepsilon > 0$.

Exemplo 2.17 Seja A = [0, 1].

1 é ponto de acumulação.

Figura 2.12: Limite

Exemplo 2.18 Seja $A = [0, 1] \cup \{2\}.$

2 não é ponto de acumulação.

Definição 2.6 (Limite) Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ uma função e x_0 ponto de acumulação de A. Dizemos que f tem $limite\ L$ em x_0 se dada uma bola centrada em L, $B_{\varepsilon}(L)$, existe bola centrada em x_0 , $B_{\delta}(x_0)$, tal que $f(B_{\delta}(x_0) \cap A) \subset B_{\varepsilon}(L)$.

Notação: $\lim_{x \to x_0} f(x) = L$

Em outras palavras,

Dado $\varepsilon > 0$, existe $\delta > 0$ tal que $0 < ||x - x_0|| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

Exemplo 2.19 Seja $f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ dado por $f(x,y) = \frac{-x^2 + y^2}{x^2 + y^2}$. Calcule o limite da função quando (x,y) tende a (0,0).

Solução:

Tomando duas retas que passam no ponto (0,0), temos:

$$f(x,0) = -1 e f(0,y) = 1$$

Portanto, o limite não existe em (0,0).

Teorema 2.7 (Função Composta) Seja $A \subset \mathbb{R}^n$ e x_0 ponto de acumulação de $A f : A \subset \mathbb{R}^n \to \mathbb{R}$. Seja ainda γ uma curva contínua tal que $\gamma(t) \in A, \forall t \neq t_0 \ e \ \gamma(t_0) = x_0$.

Se
$$\lim_{x \to x_0} f(x) = L$$
, então $\lim_{t \to t_0} f(\gamma(t)) = L$.

Demonstração:

Sejam

$$\begin{array}{cccc} \gamma & : & \mathbb{R} \to \mathbb{R}^n \\ f & : & \mathbb{R}^n \to \mathbb{R} \\ f \circ \gamma & : & \mathbb{R} \to \mathbb{R} \\ & & t \to f\left(\gamma\left(t\right)\right) \end{array}$$

Hipótese, $\lim_{x\to x_0}f\left(x\right)=L$, então, dada $B_{\varepsilon}\left(L\right)\Rightarrow\exists B_{\delta}\left(x_0\right):f\left(B_{\delta}\left(x_0\right)\cap A\right)\subset B_{\varepsilon}\left(L\right).$

 γ é contínua, então, dada $B_{\delta}\underbrace{(x_{0})}_{\gamma(t_{0})}$, existe $B_{r}\left(t_{0}\right)$ tal que $\gamma\left(B_{r}\left(t_{0}\right)\right)\subset B_{\delta}\left(x_{0}\right)$

$$f\left(\gamma\left(B_{r}\left(t_{0}\right)\right)\right) \subset f\left(B_{\delta}\left(x_{0}\right) \cap A\right) \subset B_{\varepsilon}\left(L\right)$$

$$\Rightarrow \lim_{t \to t_{0}} f\left(\gamma\left(t\right)\right) = L$$

Obs: Se γ_1 e γ_2 são curvas como no teorema e $\lim_{t \to t_0} f(\gamma_1(t)) \neq \lim_{t \to t_0} f(\gamma_2(t))$, então, $\nexists \lim_{x \to x_0} f(x)$.

Exemplo 2.20 No exemplo anterior usamos:

Solução:

$$\gamma_1(t) = (t,0) e \gamma_2(t) = (0,t),$$
então, $f(\gamma_1(t)) = f(t,0) = -1 e f(\gamma_2(t)) = f(0,t) = 1$

Teorema 2.8 (do confronto) Sejam $A \subset \mathbb{R}^n$, x_0 ponto de acumulação de A e f, g, h funções de A em \mathbb{R} tais que $f(x) \leq g(x) \leq h(x)$ para $x \in B_r(x_0) \cap A$ se $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$ então, $\lim_{x \to x_0} h(x) = L$.

Demonstração:

 $\lim_{x\to x_0} f\left(x\right) = L \Rightarrow \text{dada } B_{\varepsilon}\left(L\right) \text{ existe } B_{\delta_1}\left(x_0\right) \text{ tal que } f\left(B_{\delta_1}\left(x_0\right)\cap A\right) \subset B_{\varepsilon}\left(L\right)$

 $\lim_{x\to x_0}h\left(x\right)=L\Rightarrow \mathrm{dada}\ B_{\varepsilon}\left(L\right)\ \mathrm{existe}\ B_{\delta_2}\left(x_0\right)\ \mathrm{tal}\ \mathrm{que}\ h\left(B_{\delta_2}\left(x_0\right)\cap A\right)\subset B_{\varepsilon}\left(L\right)$

Seja
$$z \in B_{\delta_1}(x_0) \cap B_{\delta_2}(x_0) \cap A$$
, então

$$\begin{split} &f\left(z\right)\leqslant g\left(z\right)\leqslant h\left(z\right)\\ &|f\left(z\right)-L|<\varepsilon\Rightarrow\underbrace{-\varepsilon< f\left(z\right)-L}<\varepsilon\\ &|h\left(z\right)-L|<\varepsilon\Rightarrow-\varepsilon<\underbrace{h\left(z\right)-L<\varepsilon}\\ &-\varepsilon< f\left(z\right)-L\leqslant g\left(x\right)-L\leqslant h\left(z\right)-L<\varepsilon\\ &|g\left(x\right)-L|<\varepsilon\\ &\Rightarrow\lim_{x\to x_0}g\left(x\right)=L \end{split}$$

Corolário 2.9 Sejam $A \subset \mathbb{R}^n$, x_0 ponto de acumulação de A e f,g funções de A em \mathbb{R} com |g(x)| < M (limitada), para $x \in B_r(x_0) \cap A$ e $\lim_{x \to x_0} f(x) = 0$. Então, $\lim_{x \to x_0} f(x) g(x) = 0$.

Demonstração:

$$\begin{aligned} &|f\left(x\right)g\left(x\right)| < |f\left(x\right)| \, M \\ &-M \left|f\left(x\right)\right| < f\left(x\right)g\left(x\right) < M \left|f\left(x\right)\right| \\ &\lim_{x \to x_0} \pm M \left|f\left(x\right)\right| = 0 \\ &\Rightarrow \lim_{x \to x_0} f\left(x\right)g\left(x\right) = 0 \end{aligned}$$

Exercícios

Prove que:

4.
$$\lim_{x \to x_0} |f(x)| = 0 \Leftrightarrow \lim_{x \to x_0} f(x) = 0$$

5.
$$\lim_{x \to x_0} f(x) - L = 0 \Leftrightarrow \lim_{x \to x_0} f(x) = L$$

6.
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{h \to 0} f(x_0 + h) = L, (h \in \mathbb{R}^n)$$

7. Se
$$\lim_{x\to x_0} f(x) > 0$$
, então, $\exists B_r(x_0)$ tal que $f(x) > 0, \forall x \in B_r(x_0)$.

Nota: As propriedades de limite são as mesmas das funções de uma variável.

Exemplo 2.21 Calcule
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$$

Solução:

$$\lim_{(x,y)\to(0,0)}\frac{x^3}{x^2+y^2}=\lim_{(x,y)\to(0,0)}x\overbrace{\frac{x^2}{x^2+y^2}}=0$$
 Pois $0\leqslant x^2\leqslant x^2+y^2\Rightarrow 0\leqslant \frac{x^2}{x^2+y^2}\leqslant 1$ é limitada. \qed

Exemplo 2.22 Calcule $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$

Solução:

Tomemos duas curvas:

$$\gamma_{1}(t) = (t,0) \Rightarrow f(\gamma_{1}(t)) = f(t,0) = \frac{t^{2}}{t^{2}+0} = 1 \Rightarrow \lim_{t\to 0} f(\gamma_{1}(t)) = 1$$

$$\gamma_{2}(t) = (0,t) \Rightarrow f(\gamma_{2}(t)) = f(0,t) = \frac{0}{0+t^{2}} = 0 \Rightarrow \lim_{t\to 0} f(\gamma_{2}(t)) = 0$$

$$\therefore \lim_{t\to 0} f(\gamma_{1}(t)) \neq \lim_{t\to 0} f(\gamma_{2}(t))$$

Portanto, o limite não existe em (0,0).

Exemplo 2.23 Calcule $\lim_{(x,y)\to(0,0)} \frac{x^4 \sin(x^2 + y^2)}{x^4 + y^2}$

Solução:

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{x^4 \sec \left(x^2+y^2\right)}{x^4+y^2} = \lim_{\substack{(x,y)\to(0,0)}} \underbrace{\frac{1 \text{imitada}}{x^4}}_{x^4+y^2} \sec \left(x^2+y^2\right) = 0$$

Exemplo 2.24 Calcule $\lim_{(x,y)\to(0,0)} \frac{xy}{2x-y^7}$

Solução:

Se tomarmos $\gamma_1(t) = (t, 0)$ e $\gamma_2(t) = (0, t)$

$$\Rightarrow \lim_{t\to 0} f\left(\gamma_1\left(t\right)\right) = \lim_{t\to 0} f\left(\gamma_2\left(t\right)\right) = 0$$

Mas não é suficiente, pois pode haver infinitas curvas que passem no ponto, então, vamos usar as curvas de nível para ver o comportamento da função.

Curso de Verão IME USP 2008

Curva de nível de f: f(x,y) = c

$$\frac{xy}{2x - y^7} = c \Rightarrow x = \frac{y^7c}{2c - y}$$

$$\gamma(t) = \left(\frac{t^7c}{2c - t}, t\right)$$

$$t = 0 \Rightarrow \gamma(0) = (0, 0)$$

$$f(\gamma(t)) = c \Rightarrow \lim_{t \to 0} f(\gamma(t)) = c$$

O limite de $f(\gamma(t))$ pode assumir qualquer valor. Portanto, o limite de f(x,y) não existe em (0,0).

2.5 Continuidade

Definição 2.10 Sejam $A \subset \mathbb{R}^n$, $x_0 \in A$ ponto de acumulação de A. Dizemos que f é contínua em x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Exemplo 2.25

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Solução:

 $\lim_{(x,y)\to(0,0)} f\left(x,y\right) = \lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2} \text{ não existe, pois, tomando } (t,0) \text{ e} \\ (0,t) \text{ verificamos limites diferentes. Então } f \text{ não é contínua em } (0,0) \text{ mas nos outros pontos ela é.}$

Exemplo 2.26

$$f(x,y) = \begin{cases} \frac{x^4 \operatorname{sen}(x^2 + y^2)}{x^4 + y^2} & \operatorname{se}(x,y) \neq (0,0) \\ 0 & \operatorname{se}(x,y) = (0,0) \end{cases}$$

Solução:

A função é contínua em
$$(0,0)$$
, $\lim_{(x,y)\to(0,0)}f\left(x,y\right)=0=f\left(0\right).$

Exemplo 2.27

$$f(x,y) = \begin{cases} x^2 \sin\left(\frac{x^2 y^8}{y^8 + x^4}\right) & \text{se } (x,y) \neq (0,0) \\ x^2 + y^2 & \text{se } (x,y) = (0,0) \end{cases}$$

Solução: $\frac{x^2}{x^2+y^2} \ \'e \ limitada \ e \ sen \left(\frac{x^2y^8}{y^8+x^4}\right) \ tamb\'em \ \'e \ limitada, mas não resolve a$

equação, mas $\frac{y^8}{y^8+x^4}$ é limitada, então, $\lim_{(x,y)\to(0,0)}\, {\rm sen} x^2=0.$

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 \neq f(0) = 1$$

Portanto, f(x,y) não é contínua em (0,0).

Teorema 2.11 Sejam $A \subset \mathbb{R}^n, B \subset \mathbb{R}$ e funções $f: A \to \mathbb{R}$ e $g: B \to \mathbb{R}$ tal que $f(A) \subset B$. Se f é contínua em x_0 e g é contínua em $f(x_0)$ então, $g \circ f$ é contínua em x_0 .

Demonstração:

Régis © 2008

g é contínua em $f(x_0) \Rightarrow \text{dado } B_{\varepsilon}(g(f(x_0)))$ existe $B_{\delta_1}(f(x_0))$ tal que

$$g\left(B_{\delta_{1}}\left(f\left(x_{0}\right)\right)\cap A\right)\subset B_{\varepsilon}\left(g\left(f\left(x_{0}\right)\right)\right)$$

f é contínua em $x_0 \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$ \Rightarrow para $B_{\delta_1}(f(x_0))$ existe $B_{\delta_2}(x_0)$ tal que

$$f(B_{\delta_2}(x_0) \cap A) \subset B_{\delta_1}(f(x_0))$$

$$g\left(f\left(B_{\delta_{2}}\left(x_{0}\right)\cap A\right)\right)\subset g\left(B_{\delta_{1}}\left(f\left(x_{0}\right)\right)\right)\subset B_{\varepsilon}\left(g\left(f\left(x_{0}\right)\right)\right)$$

$$\Rightarrow\lim_{x\to x_{0}}\left(g\circ f\right)\left(x\right)=g\left(f\left(x_{0}\right)\right)\Rightarrow g\circ f\text{ \'e contínua em }x_{0}.$$

Teorema 2.12 Sejam $A \subset \mathbb{R}^n, I \subset \mathbb{R}, f: A \to \mathbb{R}, \gamma: I \to \mathbb{R}^n, \gamma(I) \subset A$. Se γ é contínua em $t_0 \in I$ e f é contínua em $\gamma(t_0) \in A$ então, $f \circ \gamma$ é contínua em

Curso de Verão IME USP 2008

Capítulo 3

Derivadas

3.1 Derivadas Parciais

Definição 3.1 Seja $A \subset \mathbb{R}^n$ e x_0 ponto interior de A. Definimos a derivada parcial de f em x_0 na direção e_i (base canônica) por

$$\boxed{\frac{\partial f}{\partial x_i}(x_0) = \lim_{h \to 0} \frac{f(x_0 + he_i) - f(x_0)}{h}}$$

Na prática, basta derivar f em relação à variável x_i , considerando as outras como constantes.

Exemplo 3.1 $f(x,y) = \arctan(x^2 + y^2)$

Solução:

$$\begin{split} \frac{\partial f}{\partial x}\left(x,y\right) &= \frac{1}{1+\left(x^2+y^2\right)} 2x \\ \frac{\partial f}{\partial y}\left(x,y\right) &= \frac{1}{1+\left(x^2+y^2\right)} 2y \end{split}$$

Exemplo 3.2 z = f(x, y) é solução da equação $x^2 + y^2 + z^2 = 1$.

Solução:

Note que $z^{2}(x, y)$. Derivando em x, temos:

$$2x + 2z \frac{\partial f}{\partial x} = 0$$
$$\frac{\partial f}{\partial x} = -\frac{x}{f(x, y)}$$
$$\frac{\partial f}{\partial y} = -\frac{y}{f(x, y)}$$

Exemplo 3.3 Suponha f contínua e $\frac{\partial f}{\partial x}$ existe. Então, $\frac{\partial f}{\partial x}=0$.

Solução:

f não varia na direção do eixo x.

Exemplo 3.4 Seja

$$f(x,y) = \begin{cases} \frac{x^3 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Solução:

Nos pontos $(x,y) \neq (0,0)$ podemos aplicar a regra do quociente

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^2(x^2 + y^2) - (x^3 - y^2) 2x}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial x}(x,y) = \frac{x^4 + 3x^2y^2 + 2xy^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{2x^2y(1+x)}{(x^2 + y^2)^2}$$

Em (0,0), temos:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f((0,0) + h(1,0)) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{h - 0}{h} = 1$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{-1 - 0}{h}$$

que não existe.

Interpretação geométrica das derivadas parciais

3.2 Derivadas Direcionais

Definição 3.2 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ e x_0 ponto interior de A e v um vetor unitário de \mathbb{R}^n . Definimos a derivada directional de f em x_0 na direção de v por

$$\boxed{\frac{\partial f}{\partial v}(x_0) = \lim_{h \to 0} \frac{f(x_0 + hv) - f(x_0)}{h}}$$

Exemplo 3.5 Seja

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Calcule $\frac{\partial f}{\partial v}(0,0)$.

Solução:

Seja $v = (a, b) \in \mathbb{R}^2 \text{ com } a^2 + b^2 = 1.$

$$\frac{\partial f}{\partial v}(0,0) = \lim_{h \to 0} \frac{f(0,0) + h(a,b) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{h^4 a b^3}{h^2 (a^2 + h^4 b^6)} - 0$$

$$= 0$$

Então, existe a derivada direcional e é igual a 0 em todas as direções. Vamos ver agora se f é contínua.

Seja $\gamma(t) = (t^3, t)$

$$\lim_{t\to0}f\left(\gamma\left(t\right)\right)=\lim_{t\to0}\frac{t^{6}}{t^{6}+t^{6}}=\frac{1}{2}\left(\neq0=f\left(0,0\right)\right)$$

Portanto, f não é contínua em (0,0).

3.3 Diferenciabilidade de Funções de \mathbb{R}^n em \mathbb{R}

Relembrando Cálculo I, temos: f é derivável em x_0 se

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - hf'(x_0)}{h} = 0$$

$$\Leftrightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{|h|} = 0$$

Onde $f'(x_0)$ é um número real que deve existir e h é um vetor.

Definição 3.3 (Transformação linear) Uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma função tal que

i)
$$T(x+y) = T(x) + T(y), \forall x, y \in \mathbb{R}^n$$

ii)
$$T(\alpha x) = \alpha T(x), \forall x \in \mathbb{R}^n \text{ e } \forall \alpha \in \mathbb{R}$$

Definição 3.4 A matriz de T nas bases canônicas de \mathbb{R}^n e \mathbb{R}^m é $[T] = (a_{ij})_{m \times n}$ onde $a_{ij} = T(e_j)_i$ (i-ésima coordenada de $T(e_j)$, e_j da base canônica de \mathbb{R}^n). Usando isso, temos, $T(x) = [T]_{m \times n} X_{n+1}$.

Quando $n=1,\,f$ ser diferenciável em x_0 é dizer que existe $T_{x_0}:\mathbb{R}\to\mathbb{R}$ tal que

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{|h|} = 0$$

e nesse caso, $[T] = f'(x_0)$.

Definição 3.5 (Função diferenciável) Seja $A \subset \mathbb{R}^n$, x_0 ponto interior de A e $f: A \to \mathbb{R}$. Dizemos que f é diferenciável em x_0 se existir $T_{x_0}: \mathbb{R}^n \to \mathbb{R}$ linear tal que

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{\|h\|} = 0$$
(1)

Onde: ||h|| é a norma do vetor devido ao \mathbb{R}^n e $h \in \mathbb{R}^n$.

Teorema 3.6 Se existe T_{x_0} nas condições acima então ela é única.

Demonstração:

Sejam T_{x_0} e L_{x_0} transformações lineares de \mathbb{R}^n em \mathbb{R} satisfazendo a equação (1), então

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{\|h\|} = 0$$

 \mathbf{e}

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L_{x_0}(h)}{\|h\|} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{T_{x_0}(h) - L_{x_0}(h)}{\|h\|} = 0$$

Escolha $h = h_i e_i$, e_i é da base canônica de \mathbb{R}^n .

$$\lim_{h \to 0} \frac{T_{x_0} (h_i e_i) - L_{x_0} (h_i e_i)}{\|h_i e_i\|} = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{h_i (T_{x_0} (e_i) - L_{x_0} (e_i))}{|h_i|} = 0$$

Como,
$$\lim_{h_i \to 0} \frac{h_i}{|h_i|} = \nexists$$
 não existe

$$\Rightarrow T_{x_0}(e_i) - L_{x_0}(e_i) = 0$$

$$\Rightarrow T_{x_0}(e_i) = L_{x_0}(e_i), \forall i = 1, 2, ..., n$$

$$\Rightarrow L_{x_0} = T_{x_0}$$

Teorema 3.7 Seja $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$, diferenciável em x_0 , então

$$[T_{x_0}] = \left[\begin{array}{ccc} \frac{\partial f}{\partial x_1} \left(x_0 \right) & \frac{\partial f}{\partial x_2} \left(x_0 \right) & \cdots & \frac{\partial f}{\partial x_n} \left(x_0 \right) \end{array} \right]_{1 \times n}$$

Demonstração:

f é diferenciável em x_0 , então

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{\|h\|} = 0$$

Com $h = h_i e_i$, com $h_i \to 0$, temos

$$\begin{split} &\lim_{h_{i}\rightarrow0}\frac{f\left(x_{0}+h_{i}e_{i}\right)-f\left(x_{0}\right)-h_{i}T_{x_{0}}\left(e_{i}\right)}{h_{i}}=0\\ \Rightarrow &\lim_{h_{i}\rightarrow0}\frac{f\left(x_{0}+h_{i}e_{i}\right)-f\left(x_{0}\right)}{h_{i}}-\lim_{h_{i}\rightarrow0}\frac{h_{i}T_{x_{0}}\left(e_{i}\right)}{h_{i}}=0\\ \Rightarrow &\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)-T_{x_{0}}\left(e_{i}\right)=0\\ \Rightarrow &T_{x_{0}}\left(e_{i}\right)=\frac{\partial f}{\partial x_{i}}\left(x_{0}\right),i=1,2,...,n \end{split}$$

Nota: T_{x_0} é a diferencial de f em x_0 .

Teorema 3.8 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ diferenciável em x_0 . Então, f é contínua em x_0 .

Demonstração:

Seja $E(h) = f(x_0 + h) - f(x_0) - T_{x_0}(h)$, f é diferenciável em x_0 , então

$$\lim_{h \to 0} \frac{E\left(h\right)}{\|h\|} = 0$$

 T_{x_0} é contínua

$$\Rightarrow \lim_{h \to 0} T_{x_0}(h) = T(0) = 0$$

$$\lim_{h \to 0} E(h) = \lim_{h \to 0} \widehat{\|h\|} \underbrace{\frac{0}{E(h)}}_{\|h\|} = 0$$

$$0 = \lim_{h \to 0} E(h) = \lim_{h \to 0} (f(x_0 + h) - f(x_0) - T_{x_0}(h))$$

$$0 = \lim_{h \to 0} (f(x_0 + h) - f(x_0)) - \lim_{h \to 0} T_{x_0}(h)$$

$$\lim_{h \to 0} f(x_0 + h) = f(x_0)$$

Portanto, f é contínua em x_0 .

Exemplo 3.6 Seja

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Esta função é diferenciável em (0,0)?

Solução:

f é contínua em (0,0) (tem chance de ser diferenciável, mas o teorema diz o contrário.)

Então, f ser diferenciável em (0,0) $\Rightarrow \exists T_{x_0} : \mathbb{R}^2 \to \mathbb{R}$ tal que

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{\|h\|} = 0$$

Melhorando, para $\mathbb{R}^2 \to \mathbb{R}$ temos

$$\lim_{(h,k)\to(0,0)}\frac{f\left((0,0)+(h,k)\right)-f\left(0,0\right)-T_{(0,0)}\left(h,k\right)}{\|(h,k)\|}=0$$

Se existe $T_{(0,0)}$, ela é única e

$$\left[T_{(0,0)}\right] = \left[\begin{array}{cc} \frac{\partial f}{\partial x} \left(0,0\right) & \frac{\partial f}{\partial y} \left(0,0\right) \end{array}\right]$$

Então,

$$\begin{split} \frac{\partial f}{\partial x}\left(0,0\right) &= \lim_{h \to 0} \underbrace{\frac{\widehat{f\left(h,0\right)} - f\left(0,0\right)}{h}} = 1\\ \frac{\partial f}{\partial y}\left(0,0\right) &= \lim_{h \to 0} \underbrace{\frac{\widehat{f\left(0,h\right)} - f\left(0,0\right)}{h}} = 0\\ \Rightarrow T_{(0,0)}\left(h,k\right) &= \left[T_{(0,0)}\right] \begin{bmatrix} h \\ k \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = h \end{split}$$

$$\lim_{(h,k)\to(0,0)} \frac{f\left(h,k\right) - f\left(0,0\right) - h}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{\frac{h^3}{h^2 + k^2} - 0 - h}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{h^3 - h\left(h^2 + k^2\right)}{\left(h^2 + k^2\right)^{3/2}} = \lim_{(h,k)\to(0,0)} \frac{-hk^2}{\left(h^2 + k^2\right)^{3/2}}$$

Vamos chamar $\frac{-hk^{2}}{\left(h^{2}+k^{2}\right)^{3/\!2}}=g\left(h,k\right)$

Escolhendo $\gamma(t) = (t, t)$, temos:

$$\lim_{t \to 0} g(\gamma(t)) = \lim_{t \to 0} \frac{-t^3}{(2t^2)^{3/2}} = \lim_{t \to 0} \frac{-1}{2\sqrt{2}} \frac{t^3}{|t|^3} = \nexists$$

Logo, f não é diferenciável em (0,0).

Teorema 3.9 Seja $A \subset \mathbb{R}^n$, x_0 interior $a \ A \ e \ f : A \to \mathbb{R}$. Se $\frac{\partial f}{\partial x_i}$ são contínuas em x_0 , então f é diferenciável em x_0 .

Demonstração:

Como A é aberto, existe uma bola aberta B de centro (x_0,y_0) , contida em A. Sejam h e k tais que $(x_0+h,y_0+k)\in B$. Temos

$$f(x_0+h,y_0+k)-f(x_0,y_0) = \underbrace{f\left(x_0+h,y_0+k\right) - f\left(x_0,y_0+k\right)}_{(I)} + \underbrace{f\left(x_0,y_0+k\right) - f\left(x_0,y_0\right)}_{(II)}$$

Fazendo $G\left(x\right)=f\left(x,y_{0}+k\right)$, pelo TVM 1.23 existe $\overline{x},$ entre x_{0} e $x_{0}+h$ tal que

$$(I) = G(x_0 + h) - G(x_0) = G'(\overline{x}) h = \frac{\partial f}{\partial x} (\overline{x}, y_0 + k) h$$

Do mesmo modo, existe \overline{y} , entre y_0 e $y_0 + k$ tal que

$$(II) = \frac{\partial f}{\partial y} (x_0, \overline{y}) k$$

Assim,

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \frac{\partial f}{\partial x} (\overline{x}, y_0 + k) h + \frac{\partial f}{\partial y} (x_0, \overline{y}) k$$

Subtraindo a ambos os membros da igualdade acima $\frac{\partial f}{\partial x}\left(x_0,y_0\right)h + \frac{\partial f}{\partial y}\left(x_0,y_0\right)k$ obtemos:

$$f(x_{0} + h, y_{0} + k) - f(x_{0}, y_{0}) - \frac{\partial f}{\partial x}(x_{0}, y_{0}) h - \frac{\partial f}{\partial y}(x_{0}, y_{0}) k =$$

$$= \left[\frac{\partial f}{\partial x}(\overline{x}, y_{0} + k) - \frac{\partial f}{\partial x}(x_{0}, y_{0}) \right] h + \left[\frac{\partial f}{\partial y}(x_{0}, \overline{y}) - \frac{\partial f}{\partial y}(x_{0}, y_{0}) \right] k$$

Segue que

$$\left| \frac{f(x_0 + h, y_0 + k) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0) h - \frac{\partial f}{\partial y}(x_0, y_0) k}{\|(h, k)\|} \right| \leq \left| \frac{\partial f}{\partial x}(\overline{x}, y_0 + k) - \frac{\partial f}{\partial x}(x_0, y_0) \right| \underbrace{\frac{|h|}{\sqrt{h^2 + k^2}}}_{(III)} + \left| \frac{\partial f}{\partial y}(x_0, \overline{y}) - \frac{\partial f}{\partial y}(x_0, y_0) \right| \frac{|h|}{\sqrt{h^2 + k^2}}}_{(IV)}$$

Pela continuidade de $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em (x_0, y_0) , as expressões (III) e (IV) tendem a zero, quando $(h, k) \to (0, 0)$, e, portanto,

$$\lim_{(h,k)\rightarrow(0,0)}\frac{f\left(x_{0}+h,y_{0}+k\right)-f\left(x_{0},y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right)h-\frac{\partial f}{\partial y}\left(x_{0},y_{0}\right)k}{\left\Vert \left(h,k\right)\right\Vert }=0$$

logo, f é diferenciável em (x_0, y_0) .

3.4 Espaço Tangente

Definição 3.10 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ diferenciável em x_0 :

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - T_{x_0}(h)}{\|h\|} = 0$$

$$\Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0) - T_{x_0}(x - x_0)}{\|x - x_0\|} = 0$$

$$\Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0) - \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_0)(x_i - x_{0_i})}{\|x - x_0\|} = 0$$

Nota: Pode-se escrever, $\frac{\partial f}{\partial x} = f_x$.

Então, seja,
$$T(x) = f(x_0) + \sum_{i=1}^{n} f_{x_i}(x_0) (x_i - x_{0_i})$$

Temos, $E(x) = f(x) - T(x)$

3. Derivadas

Portanto, $\lim_{x \to x_0} \frac{E\left(x\right)}{\|x - x_0\|} = 0$ Então, $T: A \to \mathbb{R}$ é a "melhor" aproximação afim de f em torno de x_0 .

Definição 3.11 Seja $A \subset \mathbb{R}^n$ e $f: A \to \mathbb{R}$ diferenciável em x_0 . O subespaço afim de \mathbb{R}^{n+1} dado por

$$x_{n+1} - f(x_0) = \sum_{i=1}^{n} f_{x_i}(x_0) (x_i - x_{0_i})$$

$$x_{n+1} - f(x_0) = \frac{\partial f}{\partial x_1} (x_0) (x_1 - x_{0_1}) + \dots + \frac{\partial f}{\partial x_n} (x_0) (x_n - x_{0_n})$$

é chamado espaço tangente ao gráfico de f em $(x_0, f(x_0)), T_{(x_0, f(x_0))}$ graf f. **Obs:** dim $T_{(x_0, f(x_0))}$ graf f = n.

A equação para o plano tangente de \mathbb{R}^2 em \mathbb{R} é

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Existe uma direção em \mathbb{R}^{n+1} ortogonal a $T_{(x_0,f(x_0))}$ graf f, também chamado de vetor normal. Sua direção é dada por

$$\overrightarrow{n} = (f_{x_1}(x_0), f_{x_2}(x_0), ..., f_{x_n}(x_0), -1) = (\nabla f(x_0), -1)$$

 $\operatorname{Em} \mathbb{R}^2$ o vetor normal é

$$\overrightarrow{n} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right) = \left(\nabla f\left(x_0, y_0\right), -1\right)$$

A reta normal ao gráfico de f em $(x_0, f(x_0))$ (\mathbb{R}^2) é

$$v = v_0 + t \left(\nabla f(x_0, y_0), -1 \right)$$

$$r: (x, y, z) = (x_0, y_0, f(x_0, y_0)) + t \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1 \right)$$

Exemplo 3.7 Seja $f(x,y) = 3xy^2 - y$. Determine as equações do plano tangente e da reta normal no ponto (2,1).

Solução:

Plano tangente

$$z - f(2,1) = \frac{\partial f}{\partial x}(2,1)(x-2) + \frac{\partial f}{\partial y}(2,1)(y-1)$$
$$\frac{\partial f}{\partial x}(x,y) = 3y^2 \Rightarrow \frac{\partial f}{\partial x}(2,1) = 3$$
$$\frac{\partial f}{\partial y}(x,y) = 6xy - 1 \Rightarrow \frac{\partial f}{\partial y}(2,1) = 11$$
$$f(2,1) = 5$$

A equação do plano tangente é

$$z - 5 = 3(x - 2) + 11(y - 1)$$

Reta normal

$$r:\left(x,y,z\right)=\left(2,1,f\left(2,1\right)\right)+t\left(\frac{\partial f}{\partial x}\left(2,1\right),\frac{\partial f}{\partial y}\left(2,1\right),-1\right),t\in\mathbb{R}$$

ou seja

$$r:(x,y,z)=(2,1,5)+t(3,11,-1)$$

Exemplo 3.8 Seja

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Mostre que o gráfico de f não admite plano tangente em (0, 0, f(0, 0)).

Solução:

f não é contínua, pois f não é diferenciável em (0,0,f(0,0)).

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(x,0)h - f(0,0)}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = 0$$

Equação do plano tangente

$$z - 0 = 0 (x - 0) + 0 (y - 0)$$

 $z = 0$

3. Derivadas

A curva $\gamma(t) = (t, t, f(t, t))$ tem imagem em graf (f) e

$$\gamma'\left(t\right) = \left(1, 1, \frac{d}{dt}f\left(t, t\right)\right) = \left(1, 1, \frac{d}{dt}\left(\frac{t^3}{2t^2}\right)\right) = (1, 1, \frac{1}{2})$$
em particular,
$$\gamma'\left(0\right) = (1, 1, \frac{1}{2}) \notin \pi : z = 0$$

3.5 Regra da Cadeia

Dois casos:

1.
$$\begin{cases} f: A \subset \mathbb{R}^n \to \mathbb{R} \\ \gamma: I \subset \mathbb{R} \to A \end{cases} (f \circ \gamma): I \to \mathbb{R}$$

2.
$$\begin{cases} f: A \subset \mathbb{R}^n \to \mathbb{R} \\ g: B \subset \mathbb{R}^n \to A \end{cases} (f \circ g): B \to \mathbb{R}$$

Caso 1

Lema 3.12 Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}$ e f diferenciável em x_0 . Existe $\varphi:A\to\mathbb{R}$ contínua em x_0 tal que

$$f(x) - f(x_0) = \langle \nabla f(x_0), (x - x_0) \rangle + \varphi(x) \cdot ||x - x_0||$$

Demonstração:

f é diferenciável em x_0 , então

$$f(x) - f(x_0) = T_{x_0}(x - x_0) + E(x) = \langle \nabla f(x_0), (x - x_0) \rangle + E(x)$$

Defina

$$\varphi(x) = \begin{cases} \frac{E(x)}{\|x - x_0\|} & \text{se } x \neq x_0 \\ 0 & \text{se } x = x_0 \end{cases}$$

 φ é contínua, pois

$$\lim_{x \to x_{0}} \varphi\left(x\right) = \lim_{x \to x_{0}} \frac{E\left(x\right)}{\left\|x - x_{0}\right\|} = 0$$

Teorema 3.13 Sejam $f: A \subset \mathbb{R}^n \to \mathbb{R}$, A aberto, $x_0 \in A$ $e \gamma: I \subset \mathbb{R} \to \mathbb{R}^n$ tais que $\gamma(I) \subset A$ $e \gamma(t_0) = x_0$. Se γ é diferenciável em t_0 e f é diferenciável em $x_0 = \gamma(t_0)$, temos:

$$\left. \frac{d}{dt} f \circ \gamma \right|_{t=t_0} = \left\langle \nabla f \left(x_0 \right), \gamma' \left(t_0 \right) \right\rangle$$

Demonstração:

$$f(x) - f(x_0) = \langle \nabla f(x_0), x - x_0 \rangle + \varphi(x) ||x - x_0||$$

Fazendo $x = \gamma(t)$, temos

$$f\left(\gamma\left(t\right)\right) - f\left(\gamma\left(t_{0}\right)\right) = \left\langle\nabla f\left(\gamma\left(t_{0}\right)\right), \gamma\left(t\right) - \gamma\left(t_{0}\right)\right\rangle + \varphi\left(\gamma\left(t\right)\right) \left\|\gamma\left(t\right) - \gamma\left(t_{0}\right)\right\|$$

dividindo ambos os membros por $t-t_0$ e derivando, temos:

$$\lim_{t \to t_0} \frac{d}{dt} f \circ \gamma \Big|_{t=t_0} = \left\langle \nabla f(x_0), \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0} \right\rangle + \lim_{t \to t_0} \varphi(\gamma(t)) \underbrace{\frac{1}{\left\| \gamma\left(t\right) - \gamma\left(t_0\right) \right\|}}_{t - t_0} = \left\langle \nabla f(x_0), \gamma'(t_0) \right\rangle$$

 $\bullet\,$ Se γ é curva de nível c de f

$$\Rightarrow f(\gamma(t)) = c$$

$$\Rightarrow \frac{d}{dt} f \circ \gamma = 0$$

$$\Rightarrow \langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

 $\bullet\,$ Seja uunitário e f diferenciável

$$\gamma\left(t\right) = x_0 + tu$$

$$\frac{d}{dt}f\left(\gamma\left(t\right)\right)\bigg|_{t=0} = \left\langle \nabla f\left(x_{0}\right), u\right\rangle$$

$$\frac{\partial f}{\partial u}\left(x_{0}\right) = \left\langle \nabla f\left(x_{0}\right), u\right\rangle = \left\|\nabla f\left(x_{0}\right)\right\| \cos\theta$$

Lembrando a definição de derivada direcional na seção 3.2 pág. 39.

 $f:A\subset\mathbb{R}^2\to\mathbb{R}$ diferenciável $\gamma:I\subset\mathbb{R}\to A$ curva de nível (diferenciável) Defina

$$(f \circ \gamma)(t) = c$$

$$\frac{d}{dt}(f \circ \gamma)(t) = \frac{d}{dt}c$$

$$\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

$$\Rightarrow \nabla f(\gamma(t)) \perp \gamma'(t)$$

Caso 2

Seja $f: \mathbb{R}^n \to \mathbb{R}$ e $g: \mathbb{R}^n \to \mathbb{R}^n$ se Im $g \subset D_f$, temos, $f \circ g: \mathbb{R}^n \to \mathbb{R}$

$$C^{k}\left(A\right)=\left\{ f:A\rightarrow\mathbb{R}^{n}:\frac{\partial^{\left|\alpha\right|}f}{\partial x^{\alpha}}\text{ \'e contínua}\right\}$$

 α é multi-índice de ordem k.

 $\alpha \in \mathbb{Z}_+^n, \alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ é multi-índice de ordem k se $\sum_{i=1}^n \alpha_i = k$

Exemplo 3.9 $\alpha \in \mathbb{Z}_+^3 \in f : \mathbb{R}^3 \to \mathbb{R}$

$$\alpha = (1, 0, 2)$$
$$\frac{\partial^{|\alpha|} f}{\partial x^{\alpha}} = \frac{\partial^3 f}{\partial x \partial z^2}$$

Exemplo 3.10 $c^0 = \{f : A \to \mathbb{R}^n : f \text{ \'e contínua}\}$

Teorema 3.14 Sejam $f:A\subset\mathbb{R}^2\to\mathbb{R}$ e $g:B\subset\mathbb{R}^2\to\mathbb{R}^2$ funções com A e B abertos e $g(B)\subset A$.

Se $g\left(u,v\right)=\left(g_{1}\left(u,v\right),g_{2}\left(u,v\right)\right)$ e f(x,y) são de classe C^{1} , então, $\left(f\circ g\right)\left(u,v\right)$ é de classe C^{1} .

$$\begin{split} \frac{\partial}{\partial u}\left(f\circ g\right)\left(u,v\right) &= \frac{\partial f}{\partial x}\left(g\left(u,v\right)\right)\frac{\partial g_{1}}{\partial u}\left(u,v\right) + \frac{\partial f}{\partial y}\left(g\left(u,v\right)\right)\frac{\partial g_{2}}{\partial u}\left(u,v\right) \\ \frac{\partial}{\partial v}\left(f\circ g\right)\left(u,v\right) &= \frac{\partial f}{\partial x}\left(g\left(u,v\right)\right)\frac{\partial g_{1}}{\partial v}\left(u,v\right) + \frac{\partial f}{\partial y}\left(g\left(u,v\right)\right)\frac{\partial g_{2}}{\partial v}\left(u,v\right) \end{split}$$

Lembrando que,

$$\begin{bmatrix} f_u & f_v \end{bmatrix} = \nabla f \cdot dg = (f_x, f_y) \begin{bmatrix} g_1 u & g_1 v \\ g_2 u & g_2 v \end{bmatrix}$$

Demonstração:

$$\frac{\partial f}{\partial u}$$
basta "congelar" $v.$ Seja v constante, então, $g\left(u,v_{0}\right)$ dá uma curva em $A.$

$$\begin{split} \frac{\partial}{\partial u} \left(f \circ g \right) \left(u, v_0 \right) &= \left\langle \nabla f \left(g \left(u, v_0 \right) \right), \left(\frac{\partial g_1}{\partial u}, \frac{\partial g_2}{\partial u} \right) \right\rangle \\ &= \frac{\partial f}{\partial x} \left(g \left(u, v_0 \right) \right) \frac{\partial g_1}{\partial u} \left(u, v_0 \right) + \frac{\partial f}{\partial y} \left(g \left(u, v_0 \right) \right) \frac{\partial g_2}{\partial u} \left(u, v_0 \right) \\ \frac{\partial}{\partial v} \left(f \circ g \right) \left(u_0, v \right) &= \left\langle \nabla f \left(g \left(u_0, v \right) \right), \left(\frac{\partial g_1}{\partial v}, \frac{\partial g_2}{\partial v} \right) \right\rangle \\ &= \frac{\partial f}{\partial x} \left(g \left(u_0, v \right) \right) \frac{\partial g_1}{\partial v} \left(u_0, v \right) + \frac{\partial f}{\partial y} \left(g \left(u_0, v \right) \right) \frac{\partial g_2}{\partial v} \left(u_0, v \right) \end{split}$$

Exercício

8. Escreva essas fórmulas para $A, B \subset \mathbb{R}^n$.

Exemplo 3.11 Seja
$$f$$
 de classe C^1 . Defina $z(u,v) = f\left(\underbrace{u^2 + v^2}_x, \underbrace{uv}_y\right)$. Calcule $\frac{\partial z}{\partial u} \in \frac{\partial z}{\partial v}$.

Solução:

Note que
$$g(u, v) = (u^2 + v^2, uv)$$
 e $z = (f \circ g)(u, v)$.

$$\frac{\partial z}{\partial u} = \frac{\partial}{\partial u} f \circ g = f_x (u^2 + v^2, uv) 2u + f_y (u^2 + v^2, uv) v$$

$$\frac{\partial z}{\partial v} = \frac{\partial}{\partial v} f \circ g = f_x (u^2 + v^2, uv) 2v + f_y (u^2 + v^2, uv) u$$

Exemplo 3.12 Sejam $f: \mathbb{R}^3 \to \mathbb{R}$ e $g: \mathbb{R}^3 \to \mathbb{R}$ funções diferenciáveis. Como achar o vetor tangente a interseccção de duas superfícies de nível de f e g?

Solução:

$$\gamma'\bot\nabla f$$
e $\gamma'\bot\nabla g\Rightarrow\gamma'\parallel\nabla f\times\nabla g$
 γ' é paralelo ao produto vetorial entre ∇f e
 $\nabla g.$

Por exemplo, seja
$$f\left(x,y,z\right)=x^2+y^2+z^2 \text{ (nível 2) } g\left(x,y,z\right)=x^2+y^2-z^2 \text{ (nível 0)}$$

$$\gamma\left(t\right)=\left(\cos t,\, \operatorname{sent},\pm 1\right)$$

$$\gamma'\left(t\right)=\left(-\operatorname{sent},\cos t,0\right)$$

$$\gamma'=\nabla f\times\nabla g$$

$$\gamma'=\left(2x,2y,2z\right)\times\left(2x,2y,-2z\right)$$

$$\gamma'=\begin{vmatrix} i & j & k \\ 2x & 2y & 2z \\ 2x & 2y & -2z \end{vmatrix}=\left(-8yz,8xz,0\right)$$

$$\Rightarrow \gamma'\parallel\left(-yz,xz,0\right)$$

Teorema 3.15 (de Schwarz) Seja $F: A \to \mathbb{R}, A \subset \mathbb{R}^n$ aberto. Se $f \notin de$ classe C^2 , então,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

3.6 Teorema da Função Implícita

Definição 3.16 Seja $F:\mathbb{R}^{n+1}\to\mathbb{R}$ uma função. Dizemos que $g:\mathbb{R}^n\to\mathbb{R}$ é dada implicitamente por F se

$$F\left(x, g\left(x\right)\right) = 0, \forall x \in D_{a}$$

Suponha $g:\mathbb{R}^n\to\mathbb{R}$ dada implicitamente por $F:\mathbb{R}^{n+1}\to\mathbb{R}$ e g e Fsão diferenciáveis.

$$\Rightarrow F \underbrace{(x, g(x))}_{(x_1, \dots, x_{n+1})} = 0$$
$$x = (x_1, \dots, x_n)$$

Obtemos $\frac{\partial g}{\partial x_i}$ da seguinte forma:

$$F(x_1, x_2, ..., x_n, g(x_1, ..., x_n)) = 0$$

Aplicando $\frac{\partial}{\partial x_i}$ dos dois lados.

$$\frac{\partial F}{\partial x_i}(x, g(x)) = \frac{\partial}{\partial x_i}.0 = 0$$

$$\sum_{j=1}^n \frac{\partial F}{\partial x_j} \underbrace{\frac{\partial x_j}{\partial x_i}}_{0} + \frac{\partial F}{\partial x_n} \frac{\partial g}{\partial x_i} = 0$$

$$\frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial x_n} \frac{\partial g}{\partial x_i} = 0$$

$$\frac{\partial g}{\partial x_i} = \frac{-\frac{\partial F}{\partial x_i}}{\frac{\partial F}{\partial x_n}}$$

Exemplo 3.13 Seja

$$F: \mathbb{R}^2 \to \mathbb{R}$$
$$F(x,y) = y^3 + xy + x^3 - 3$$

supõe que g(x) tal que $F\left(x, \underbrace{g\left(x\right)}_{y}\right) = 0$ é diferenciável. Calcule $g'\left(x\right)$.

Solução:

$$g'(x) = \frac{-F_x}{F_y}$$

$$\begin{cases} F_x = y + 3x^2 \\ F_y = 3y^2 + x \end{cases}$$

$$\Rightarrow g'(x) = \frac{-(y + 3x^2)}{3y^2 + x} = \frac{-(g(x) + 3x^2)}{3g^2(x) + x}$$

Exemplo 3.14 Seja $F: \mathbb{R}^3 \to \mathbb{R}$ e $z: \mathbb{R}^2 \to \mathbb{R}$ tal que F(x, y, z(x, y)) = 0. Calcule $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$.

Solução:

$$\frac{\partial z}{\partial x} = \frac{-F_x}{F_z} \quad \frac{\partial z}{\partial y} = \frac{-F_y}{F_z}$$

Exemplo 3.15 Sejam $F, G : \mathbb{R}^3 \to \mathbb{R}$ e $y, z : \mathbb{R} \to \mathbb{R}$ dadas implicitamente por:

$$\begin{cases} F\left(x,y\left(x\right),z\left(x\right)\right) = 0\\ F\left(x,y\left(x\right),z\left(x\right)\right) = 0 \end{cases}$$

Calcule $y' \in z'$.

Solução:

$$\begin{cases} F_x + F_y.y' + F_z.z' = 0 \\ G_x + G_y.y' + G_z.z' = 0 \end{cases}$$

$$\begin{cases} F_y.y' + F_z.z' = -F_x \\ G_y.y' + G_z.z' = -G_x \end{cases}$$

tem solução única se, e somente se,

$$\det \left(\begin{array}{cc} F_y & F_z \\ G_y & G_z \end{array} \right) \neq 0$$

se vale isso, então, por Cramer, temos:

$$y' = \frac{\begin{vmatrix} -F_x & F_z \\ -G_x & G_z \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}} \quad z' = \frac{\begin{vmatrix} F_y & -F_x \\ G_y & -G_x \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}}$$

Teorema 3.17 Seja $F: \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{R}$ de classe C^1 e seja $x_0 = (x_{0_1}, x_{0_2}, ..., x_{0_{n-1}}) \in \mathbb{R}^{n-1}$ e $y_0 \in \mathbb{R}$ tal que $F(x_0, y_0) = 0$. Se $\frac{\partial F}{\partial x_n}(x_0, y_0) \neq 0$ então existe abertos $A \subset \mathbb{R}^{n-1}$ e $B \subset \mathbb{R}$ com $x_0 \in A$ e $y_0 \in B$ tais que para cada $x \in A$ existe um único y = g(x) tal que F(x, y) = 0 em $A \times B$. A função g(x) é diferenciável em A e

$$\frac{\partial g}{\partial x_i}\left(x\right) = \frac{-\frac{\partial F}{\partial x_i}\left(x,y\right)}{\frac{\partial F}{\partial x_n}\left(x,y\right)}$$

onde, y = g(x).

Demonstração:

Sem perda de generalidade, façamos n=2.

Suponhamos $\frac{\partial F}{\partial y}(x_0, y_0) > 0$.

F de classe C^1 : $\frac{\partial F}{\partial x}$ e $\frac{\partial F}{\partial y}$ são contínuas, então, F é diferenciável, portanto,

$$F \in \text{continua.}$$

$$\frac{\partial F}{\partial y}(x_0, y_0) > 0 \Rightarrow \exists D = B_{\varepsilon}(x_0, y_0) \subset \mathbb{R}^2 \text{ tal que } \frac{\partial F}{\partial y}(x, y) > 0, \forall (x, y) \in D$$

Para y_1 e y_2 tal que $y_1 < y_0 < y_2$ temos,

$$F(x_0, y_1) < 0 \in F(x_0, y_2) > 0 (1)$$

onde $(x_0, y_1) e(x_0, y_2) \in D$

 $F(x_0, y)$ é crescente em $[y_1, y_2]$.

Seja $B = |y_1, y_2|$. Note que y_0 é o único ponto onde $F(x_0, y)$ se anula.

De (1) e da continuidade de F temos que, existe A (aberto) $\subset \mathbb{R}$, $x_0 \in A$ tal que para $x \in A$ e $(x, y_1), (x, y_2) \in D$ temos $F(x, y_1) < 0$ e $F(x, y_2) > 0$.

Fcontínua em Dimplica $\exists y \in B$ tal que $F\left(x,y\right)=0,$ tal yé único, pois $\frac{\partial f}{\partial y}>0\text{ em }D\text{, implica que, }F\left(x,y\right) \text{ \'e crescente para cada }x\in A\text{ fixado.}$ Logo, $x\mapsto y.$ Defina $y=g\left(x\right) ,g:A\rightarrow B.$

Continuidade de g.

Para cada par (x, g(x)) em $A \times B$, temos F(x, g(x)) = 0 e $\frac{\partial f}{\partial u}(x, g(x)) > 0$, então dados $\overline{y_1}$ e $\overline{y_2}$ com $y_1 < \overline{y_1} < g(x) < \overline{y_2} < y_2$ temos, repetindo o argumento, fazendo $x = x_0$ e $g(x) = y_0$, temos que existe $A_1 \subset A, x \in A$, tal que $\overline{x} \in A$, temos, $g(\overline{x}) \in]\overline{y_1}, \overline{y_2}[\Rightarrow g(A_1) \subset]\overline{y_1}, \overline{y_2}[$, isto implica que g é contínua $\forall x \in A$.

Por hipótese, F é diferenciável, pelo Lema 3.12 pág. 48, temos,

$$F(x,y) = F(x_0, y_0) + \langle \nabla F(x_0, y_0), (x - x_0, y - y_0) \rangle + \varphi(x, y) \|(x, y) - (x_0, y_0)\|$$

$$\varphi$$
 contínua em $(x_{0},y_{0})=(x_{0},g\left(x_{0}\right))$ multiplicando $\varphi\left(x,y\right)\left\|(x,y)-(x_{0},y_{0})\right\|$ por $\frac{\left\|(x,y)-(x_{0},y_{0})\right\|}{\left\|(x,y)-(x_{0},y_{0})\right\|},$ obtemos

$$\varphi(x,y)\|(x,y)-(x_0,y_0)\| = \underbrace{\varphi(x,y)\frac{(x-x_0)}{\|(x,y)-(x_0,y_0)\|}(x-x_0)}_{\varphi_1(x,y)} + \underbrace{\varphi(x,y)\frac{(y-y_0)}{\|(x,y)-(x_0,y_0)\|}(y-y_0)}_{\varphi_2(x,y)}$$

Então,

$$F(x,y) = F(x_0,y_0) + F_x(x_0,y_0)(x-x_0) + F_y(x_0,y_0)(y-y_0) + \varphi_1(x,y)(x-x_0) + \varphi_2(x,y)(y-y_0)$$

3. Derivadas

onde,
$$y = g(x)$$
, $y_0 = g(x_0)$, $F_x = \frac{\partial F}{\partial x}$ e $F_y = \frac{\partial F}{\partial y}$.
Então,

 $0 = 0 + F_x(x_0, g(x_0))(x - x_0) + F_y(x_0, g(x_0))(g(x) - g(x_0)) + \varphi_1(x, g(x))(x - x_0) + \varphi_2(x, g(x))(g(x) - g(x_0))$

Fazendo $x \to x_0, \varphi_1 \to 0, \varphi_2 \to 0$

$$\frac{dg}{dx}(x_0) = g'(x_0) = \frac{-\frac{\partial F}{\partial x}(x_0, g(x_0))}{\frac{\partial F}{\partial y}(x_0, g(x_0))}, \forall x_0 \in A$$

Exemplo 3.16 A equação $y^3 + xy + x^3 = 4$ define uma função diferenciável y(x)? Se sim, quem é y'(x)?

Solução:

$$F(x,y) = y^3 + xy + x^3 - 4 = 0$$
$$x_0 = 0 \Rightarrow F(0, y_0) = y_0^3 - 4 = 0$$
$$\Rightarrow y_0 = \sqrt[3]{4}$$

 $(x_0, y_0) = (0, \sqrt[3]{4})$ é solução de F(x, y) = 0.

$$\begin{split} \frac{\partial F}{\partial y}\left(x,y\right) &= 3y^2 + x\\ \frac{\partial F}{\partial y}\left(0,\sqrt[3]{4}\right) &\neq 0 \Rightarrow \exists A \subset \mathbb{R} \end{split}$$

 $0\in A$ e $B\subset\mathbb{R},\sqrt[3]{4}\in B$ e $g:A\to B$ diferenciável tais que $g\left(0\right)=\sqrt[3]{4}$ e

$$g'(x) = \frac{-F_x(x, g(x))}{F_y(x, g(x))} = \frac{-(3x^2 + g(x))}{x + 3g^2(x)}$$

Exemplo 3.17 Seja $x^2 + y^2 = 1$

Solução:

O ponto (1,0) resolve

$$F(x,y) = x^{2} + y^{2} - 1$$

$$F_{x} = 2x \Rightarrow F_{x}(1,0) = 2 \neq 0$$

$$F_{y} = 2y \Rightarrow F_{y}(1,0) = 0$$

$$\begin{split} x\left(y\right) &= \sqrt{1-y^2} \\ \frac{dx}{dy} &= \frac{-y}{\sqrt{1-y^2}} \\ \frac{dx}{dy} &= \frac{-F_y}{F_x} = \frac{-2y}{2x} = \frac{-y}{\sqrt{1-y^2}} \end{split}$$

Definição 3.18 (Jacobiano) Sejam $f_1, f_2, ..., f_n : \mathbb{R}^m \to \mathbb{R}$ de classe C^1 . Definimos o *Jacobiano* de $f_1, f_2, ..., f_n$ em relação às variáveis $(x_{i1}, x_{i2}, ..., x_{in})$, i = 1, 2, ..., n por

$$\frac{\partial (f_1, f_2, ..., f_n)}{\partial (x_{i_1}, x_{i_2}, ..., x_{i_n})} = \det \begin{pmatrix}
\frac{\partial f_1}{\partial x_{i_1}} & \frac{\partial f_1}{\partial x_{i_2}} & ... & \frac{\partial f_1}{\partial x_{i_n}} \\
\frac{\partial f_2}{\partial x_{i_1}} & \frac{\partial f_2}{\partial x_{i_2}} & ... & \frac{\partial f_2}{\partial x_{i_n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_{i_1}} & \frac{\partial f_n}{\partial x_{i_2}} & ... & \frac{\partial f_n}{\partial x_{i_n}}
\end{pmatrix}$$

Teorema 3.19 Sejam $F, G : \mathbb{R}^3 \to \mathbb{R}$ de classe C^1 e $(x_0, y_0, z_0) \in \mathbb{R}^3$ tal que $F(x_0, y_0, z_0) = G(x_0, y_0, z_0) = 0$. Nessas condições se $\frac{\partial (F, G)}{\partial (y, z)}(x_0, y_0, z_0) \neq 0$ existe $I \subset \mathbb{R}$, intervalo aberto com $x_0 \in I$ e $y, z : I \to \mathbb{R}$ de classe C^1 tais que F(x, y(x), z(x)) = 0 = G(x, y(x), z(x)) com $y(x_0) = y_0$ e $z(x_0) = z_0$. Além disso

$$y'\left(x\right) = \frac{-\frac{\partial\left(F,G\right)}{\partial\left(x,z\right)}}{\frac{\partial\left(F,G\right)}{\partial\left(y,z\right)}} \quad z'\left(x\right) = \frac{-\frac{\partial\left(F,G\right)}{\partial\left(x,y\right)}}{\frac{\partial\left(F,G\right)}{\partial\left(y,z\right)}}$$

Demonstração:

Como F, G são de classe C^1 , então,

$$\frac{\partial \left(F,G\right) }{\partial \left(y,z\right) }=\left| \begin{array}{cc} F_{y} & F_{z} \\ G_{y} & G_{z} \end{array} \right|$$

é continua.

Como $\frac{\partial (F,G)}{\partial (y,z)}(x_0,y_0,z_0) \neq 0$ existe $A \subset \mathbb{R}^3$ aberto, $(x_0,y_0,z_0) \in A$ tal que

$$\begin{split} &\frac{\partial\left(F,G\right)}{\partial\left(y,z\right)}\left(x,y,z\right)\neq0,\forall\left(x,y,z\right)\in A\\ &\frac{\partial\left(F,G\right)}{\partial\left(y,z\right)}\left(x_{0},y_{0},z_{0}\right)\neq0\\ &\Rightarrow F_{y}\left(x_{0},y_{0},z_{0}\right)\neq0\text{ ou }F_{z}\left(x_{0},y_{0},z_{0}\right)\neq0 \end{split}$$

Suponhamos $F_z\left(x_0,y_0,z_0\right)\neq 0$, pelo Teorema 3.19, existem $B\subset\mathbb{R}^2$ aberto e $g:B\to\mathbb{R}$ de classe C^1 tal que $F\left(x,y,g\left(x,y\right)\right)=0, \forall \left(x,y\right)\in B$. Seja $H\left(x,y\right)=G\left(x,y,g\left(x,y\right)\right), H$ é de classe C^1 .

$$\begin{split} H\left(x_{0},y_{0}\right) &= G\left(x_{0},y_{0},g\left(x_{0},y_{0}\right)\right) = 0 \\ H_{y} &= G_{y} + G_{z}\frac{\partial g}{\partial y} \\ H_{y}\left(x_{0},y_{0}\right) &= G_{y}\left(x_{0},y_{0},z_{0}\right) + G_{z}\left(x_{0},y_{0},z_{0}\right)\frac{\partial g}{\partial y}\left(x_{0},y_{0}\right) \neq 0 \\ H_{y}\left(x_{0},y_{0}\right) &= G_{y}\left(x_{0},y_{0},z_{0}\right) + G_{z}\left(x_{0},y_{0},z_{0}\right)\left(\frac{-\frac{\partial F}{\partial y}\left(x_{0},y_{0},z_{0}\right)}{\frac{\partial F}{\partial z}\left(x_{0},y_{0},z_{0}\right)}\right) \end{split}$$

O Teorema da Função Implícita para H diz, $\exists I \subset \mathbb{R}, x_0 \in I$ e $k: I \to \mathbb{R}$ de classe C^1 tal que $H(x, h(x)) = 0, \forall x \in I$.

Então, $y\left(x\right)=h\left(x\right)$ e $z\left(x\right)=g\left(x,h\left(x\right)\right)$ são definidas em I implicitamente por

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

As expressões das derivadas são

$$\begin{cases} F_x + F_y \cdot y' + F_z \cdot z' = 0 \\ G_x + G_y \cdot y' + G_z \cdot z' = 0 \end{cases}$$

$$\begin{cases} F_y \cdot y' + F_z \cdot z' = -F_x \\ G_y \cdot y' + G_z \cdot z' = -G_x \end{cases}$$

$$y' = \frac{\begin{vmatrix} -F_x & F_z \\ -G_x & G_z \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}} \quad z' = \frac{\begin{vmatrix} F_y & -F_x \\ G_y & -G_x \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}}$$

3.7 Teorema do Valor Médio

Lema 3.20 (TVM de Cauchy) Sejam f, g deriváveis e contínuas em]a, b[, onde g não constante e $g(b) \neq g(a)$. Então, existe $c \in [a, b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Demonstração:

Pelo Teorema de Rolle 1.22, temos:

$$h(x) = f(x) - mg(x)$$

$$h(a) = h(b)$$

$$\Rightarrow m = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Novamente, pelo Teorema de Rolle, $\exists c \in [a, b[$ tal que h'(c) = 0

$$h'(x) = f'(x) - \left(\frac{f(b) - f(a)}{g(b) - g(a)}\right)g'(x)$$
$$0 = h'(c) = f'(c) - \left(\frac{f(b) - f(a)}{g(b) - g(a)}\right)g'(c)$$

Proposição 3.21 Se $f:I\to\mathbb{R}$ duas vezes derivável e $x,x_0\in I$. Então, existe \overline{x} entre x e x_0 tal que

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\overline{x})}{2}(x - x_0)^2$$

Demonstração:

Seja
$$E(x) = f(x) - f(x_0) - f'(x_0)(x - x_0)$$

Então, $E(x_0) = 0$ e $E'(x_0) = 0$.
Seja, $h(x) = (x - x_0)^2$

Então,
$$h(x_0) = 0$$
 e $h'(x_0) = 0$.

$$\frac{E\left(x\right)}{h\left(x\right)} = \frac{E\left(x\right) - E\left(x_{0}\right)}{h\left(x\right) - h\left(x_{0}\right)}$$

Usando o Lema anterior 3.20, temos:

$$\frac{E(x) - E(x_0)}{h(x) - h(x_0)} = \frac{E'(x_1)}{h'(x_1)} = \frac{E'(x_1) - E'(x_0)}{h'(x_1) - h(x_0)}$$

Novamente,

$$\frac{E'(x_1) - E'(x_0)}{h'(x_1) - h(x_0)} = \frac{E''(\overline{x})}{h''(\overline{x})}$$

Portanto, $E^{\prime\prime}\left(\overline{x}\right)=f^{\prime\prime}\left(\overline{x}\right)$ e $h^{\prime\prime}\left(\overline{x}\right)=2$ Então,

$$\frac{E''(\overline{x})}{h''(\overline{x})} = \frac{f''(\overline{x})}{2}$$

$$\Rightarrow \frac{E(x)}{h(x)} = \frac{f''(\overline{x})}{2}$$

$$\Rightarrow E(x) = \frac{f''(\overline{x})}{2}(x - x_0)^2$$

$$\Rightarrow f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\overline{x})}{2}(x - x_0)^2$$

Em geral se fé de classe C^{n+1} e $x,x_0\in I.$ Então, existe \overline{x} entre x e x_0 tal que

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3}_{(I)} + \dots + \underbrace{\frac{f^{n+1}(\overline{x})}{(n+1)!}(x - x_0)^{n+1}}_{(I)}$$

Onde: (I) é o Polinômio de Taylor de ordem n em volta de x_0 . (II) é o resto E(x) de ordem n+1.

Teorema 3.22 (Teorema do Valor Médio) Seja $A \subset \mathbb{R}^n$ aberto convexo e $F: A \to \mathbb{R}$ uma função diferenciável. Sejam $x, x_0 \in A$. Então, existe \overline{x} no segmento $\overline{xx_0}$ tal que

$$f(x) - f(x_0) = \langle \nabla f(\overline{x}), x - x_0 \rangle$$

Demonstração:

Seja $g:[0,1] \to \mathbb{R}$ dada por $g(t) = f(x_0 + t(x - x_0))$ $g(0) = f(x_0)$ e g(1) = f(x)g é diferenciável em]0,1[, aplicando TVM para g, temos

differenciavel em
$$]0,1[$$
, aplicando 1 VM para g , temos $rac{g\left(1\right)-g\left(0\right)}{1-0}=g'\left(ar{t}
ight),ar{t}\in\left]0,1[$

$$\Rightarrow f(x) - f(x_0) = g'(\overline{t}) = \langle \nabla f(x_0 + \overline{t}(x - x_0)), x - x_0 \rangle$$

Onde,
$$x_0 + \overline{t}(x - x_0) = \overline{x}$$
 entre $x \in x_0$.

Corolário 3.23 Nas mesmas condições com $u = \frac{x - x_0}{\|x - x_0\|}$, temos

$$\frac{f(x) - f(x_0)}{\|x - x_0\|} = \frac{\partial f}{\partial u}(\overline{x})$$

3.8 Fórmula de Taylor com Resto de Lagrange

3.8.1 Polinômio de Taylor de Ordem 1

Seja $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, A aberto convexo e f de classe C^2 . Sejam ainda $(x_0, y_0) \in A$ e $(h, k) \in \mathbb{R}^2$, $(h, k) \neq (0, 0)$ tal que $(x_0 + h, y_0 + k) \in A$.

Considere $g: [0,1] \to \mathbb{R}, g(t) = f((x_0, y_0) + t(h, k)), t \in [0,1]$

O $Polin\hat{o}mio\ de\ Taylor\ de\ ordem\ 1$ para $g\ em\ volta\ de\ 0$:

$$\begin{split} &P_{1}\left(t\right)=g\left(0\right)+g'\left(0\right)\left(t-0\right)\\ &E\left(t\right)=\frac{g''\left(\overline{t}\right)}{2}\left(t-0\right)^{2},\overline{t}\in\left]0,t\right[\\ &\Rightarrow g\left(1\right)=g\left(0\right)+g'\left(0\right)t+E\left(1\right)\\ &g\left(1\right)=g\left(0\right)+g'\left(0\right)t+\frac{g''\left(\overline{t}\right)}{2}1^{2}\\ &\Rightarrow f\left(x_{0}+h,y_{0}+k\right)=f\left(x_{0},y_{0}\right)+\left\langle \nabla f\left(x_{0},y_{0}\right),\left(h,k\right)\right\rangle +\frac{g''\left(\overline{t}\right)}{2}\end{split}$$

Onde,
$$\langle \nabla f(x_0, y_0), (h, k) \rangle = \frac{\partial f}{\partial x}(x_0, y_0) h + \frac{\partial f}{\partial y}(x_0, y_0) k$$

$$g''\left(\overline{t}\right) = \frac{d}{dt}g'\left(\overline{t}\right)$$

$$= \frac{d}{dt}\left(\frac{\partial f}{\partial x}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)h + \frac{\partial f}{\partial y}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)k\right)$$

$$= f_{xx}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)h^2 + f_{xy}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)hk + f_{yx}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)hk + f_{yy}\left(x_0 + \overline{t}h, y_0 + \overline{t}k\right)k^2$$

$$= f_{xx}h^2 + 2f_{xy}hk + f_{yy}k^2$$

Onde,
$$f_{xx} = \frac{\partial^2 f}{\partial x^2}$$
 e $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$.
Fazendo $(x, y) = (x_0 + h, y_0 + k)$ e $(\overline{x}, \overline{y}) = (x_0 + \overline{t}h, y_0 + \overline{t}k)$, temos

$$f\left(x,y\right) = \underbrace{f\left(x_{0},y_{0}\right) + f_{x}\left(x_{0},y_{0}\right)\left(x-x_{0}\right) + f_{y}\left(x_{0},y_{0}\right)\left(y-y_{0}\right)}_{P_{1} \text{ de Taylor}} + \frac{1}{2} \underbrace{\left[f_{xx}\left(\overline{x},\overline{y}\right)\left(x-x_{0}\right)^{2} + 2f_{xy}\left(\overline{x},\overline{y}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) + f_{yy}\left(\overline{x},\overline{y}\right)\left(y-y_{0}\right)^{2}\right]}_{E\left(x,y\right)}$$

Exemplo 3.18 Seja $f(x,y) = \ln(x+y)$. Determine o polinômio de Taylor de ordem 1 de f em volta de (1/2, 1/2).

Solução:

$$\begin{split} P_1\left(x,y\right) &= f\left(\frac{1}{2},\frac{1}{2}\right) + f_x\left(\frac{1}{2},\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + f_y\left(\frac{1}{2},\frac{1}{2}\right)\left(y - \frac{1}{2}\right) \\ &= 0 + 1\left(x - \frac{1}{2}\right) + 1\left(y - \frac{1}{2}\right) \\ &= x + y - 1 \end{split}$$

$$f_x = \frac{1}{x+y} = f_y$$

$$f_{xx} = \frac{-1}{(x+y)^2} = f_{yy} = f_{xy}$$

$$E(x,y) = \frac{-1}{2(x+y)^2} \left((x-x_0)^2 + 2(x-x_0)(y-y_0) + (y-y_0)^2 \right)$$

Se x + y > 1, então

$$|E(x,y)| \le \frac{1}{2} \left((x-1/2)^2 + 2(x-1/2)(y-1/2) + (y-1/2)^2 \right)$$

Repetindo o argumento acima e calculando o Polinômio de Taylor de ordem 2 para g(t) em volta de t=0 no ponto t=1. (f de classe C^3)

$$g(t) = g(0) + g'(0) + \frac{g''(0)t^2}{2} + \frac{g'''(\bar{t})t^3}{3!}$$

$$g(1) = g(0) + g'(0) + \frac{g''(0)}{2} + \frac{g'''(\bar{t})}{3!}$$

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) +$$

$$+ \frac{1}{2} \left[f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right]$$

Denomina-se Polinômio de Taylor de ordem 2.

$$E\left(x,y\right) = \frac{1}{3!} \left[\sum_{k=0}^{3} \begin{pmatrix} 3 \\ k \end{pmatrix} \frac{\partial^{3} f}{\partial x^{3-k} \partial y^{k}} \left(\overline{x}, \overline{y}\right) \left(x - x_{0}\right)^{3-k} \left(y - y_{0}\right)^{k} \right]$$

Em geral se f é de classe C^{n+1} , A aberto convexo de \mathbb{R}^2 , $(x_0, y_0) \in A$ e $(\overline{x}, \overline{y})$ entre $(x, y) \in A$ e (x_0, y_0) , temos:

$$f(x,y) = f(x_0, y_0) + \sum_{j=1}^{n} \frac{1}{j!} \left(\sum_{k=0}^{j} {j \choose k} \frac{\partial^j f}{\partial x^{j-k} \partial y^k} (x_0, y_0) (x - x_0)^{j-k} (y - y_0)^k \right) + \frac{1}{(n+1)!} \sum_{k=0}^{n+1} \left({n+1 \choose k} \frac{\partial^{n+1} f}{\partial x^{n+1-k} \partial y^k} (\overline{x}, \overline{y}) (x - x_0)^{n+1-k} (y - y_0)^k \right)$$

Capítulo 4

Máximos e Mínimos

4.1 Pontos de Máximo e Pontos de Mínimo

Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}, A$ aberto. f é constante, então, $\nabla f=(0,...,0)$ Se $\nabla f(x)=0, \forall x\in A,$ então, f é constante? Falso: $f:A\to\mathbb{R}, A=\left\{(x,y)\in\mathbb{R}^2:x\neq 0\right\}$

$$f(x,y) = \begin{cases} 1 & \text{se } x > 0 \\ 0 & \text{se } x < 0 \end{cases}$$

 $\nabla f(x,y) = (0,0)$ e f não é constante.

Teorema 4.1 Seja $A \subset \mathbb{R}^n$ aberto conexo por caminhos $e \ f : A \to \mathbb{R}$ tal que $\nabla f|_A \equiv 0$. Então, $f \ \acute{e}$ constante em A.

Demonstração:

A conexo por caminhos, implica que dados $x,y\in A$ existe uma poligonal γ que une x a y, $\operatorname{Im}\gamma\subset A$. Tal poligonal pode ser escrita como união de segmentos $\overline{x_{i-1}x_i}, i=1,2,...,n$ com $x_0=x$ e $x_n=y$. Em cada segmento $\overline{x_{i-1}x_i}$ temos o TVM:

$$f(x_{i}) - f(x_{i-1}) = \langle \nabla f(\overline{x}), x_{i} - x_{i-1} \rangle = 0$$

$$\Rightarrow f(x_{i}) = f(x_{i-1}), i = 1, 2, ..., n$$

$$f(x) = f(x_{0}) = f(x_{1}) = f(x_{2}) = ... = f(x_{n}) = f(y)$$

$$\Rightarrow f(x) = f(y), \forall x, y \in A$$

 $\Rightarrow f$ é constante em A.

Corolário 4.2 Sejam $A \subset \mathbb{R}^n$ aberto, conexo por caminho e $f, g : A \to \mathbb{R}$ tal que $\nabla f(x) = \nabla g(x), \forall x \in A$. Então, existe $k \in \mathbb{R}$ tal que f(x) = g(x) + k.

Demonstração:

Considere a função

$$h(x) = f(x) - g(x)$$

$$\Rightarrow \nabla h(x) = \nabla (f - g)(x)$$

$$\Rightarrow \nabla h(x) = \nabla f(x) - \nabla g(x) = 0$$

$$\Rightarrow h(x) = k$$

$$\Rightarrow f(x) = g(x) + k$$

Exemplo 4.1 Ache $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla f(x,y) = (3x^2y^2 + 4, 2x^3y + y^2)$.

Solução:

$$\frac{\partial f}{\partial x} = 3x^2y^2 + 4 \Rightarrow f(x,y) = x^3y^2 + 4x + g(y) (1)$$
$$\frac{\partial f}{\partial y} = 2x^3y + y^2$$

Derivando $\overbrace{f\left(x,y\right)}^{\left(1\right)}$ em relação a y, temos:

$$\frac{\partial f}{\partial y} = 2x^3y + g'(y)$$

$$\Rightarrow 2x^3y + y^2 = 2x^3y + g'(y)$$

$$\Rightarrow g'(y) = y^2$$

$$\Rightarrow g(y) = \frac{y^3}{3} + k$$

$$\Rightarrow f(x, y) = x^3y^2 + 4x + \frac{y^3}{3} + k$$

Será que sempre existe f dado tal que $\nabla f = (P(x, y), Q(x, y))$?

Proposição 4.3 Sejam $A \subset \mathbb{R}^2$ aberto e $P,Q:A \to \mathbb{R}$ de classe C^1 . Para que exista $f:A \to \mathbb{R}$ tal que $\nabla f = (P,Q)$ é necessário que $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$.

Demonstração:

Se existe f tal que $\nabla f = (P, Q)$, então,

$$\frac{\partial f}{\partial x} = P \quad \frac{\partial f}{\partial y} = Q$$

P, Q são de classe C^1 , então,

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

ambas são contínuas, então, como f é de classe \mathbb{C}^2 , pelo Teorema de Schwarz 3.15, temos,

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Exemplo 4.2 Existe $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla f = \underbrace{\left(\underbrace{xy}_P, \underbrace{y}_Q\right)}_?$

Solução:

$$\frac{\partial P}{\partial y} = x \neq 0 = \frac{\partial Q}{\partial x}$$

Então, não existe $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\nabla f = (xy, y)$.

Exemplo 4.3 Existe $f: \mathbb{R}^2 \setminus \{(0,0)\}$ tal que $\nabla f = \left(\underbrace{\frac{x}{x^2 + y^2}}_{P}, \underbrace{\frac{y}{x^2 + y^2} - e^{-y}}_{Q}\right)$?

Solução:

$$\begin{cases} \frac{\partial P}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2} \\ \frac{\partial Q}{\partial x} = \frac{-2xy}{(x^2 + y^2)^2} \end{cases} \Rightarrow P_y = Q_x$$

tem chance de existir f.

$$f_x = \frac{x}{x^2 + y^2} \Rightarrow f(x, y) = \frac{1}{2} \ln \left(x^2 + y^2 \right) + g(y)$$

$$\Rightarrow \frac{y}{x^2 + y^2} - e^{-y} = f_y = \frac{y}{x^2 + y^2} + g'(y)$$

$$\Rightarrow g'(y) = -e^{-y}$$

$$\Rightarrow g(y) = e^{-y} + k$$

$$\Rightarrow f(x, y) = \frac{1}{2} \ln \left(x^2 + y^2 \right) + e^{-y} + k$$

Será que a condição da proposição é suficiente? Isso depende "mais do domínio" do que das expressões de P e Q.

Exemplo 4.4 Considere o campo $(P,Q) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \text{ em } \mathbb{R}^2 \setminus \{(0,0)\}.$

Solução:

$$\frac{\partial P}{\partial y} = \frac{-\left(x^2 + y^2\right) + 2y^2}{\left(x^2 + y^2\right)^2} = \frac{\partial Q}{\partial x}$$

Porém, não existe $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ tal que $\nabla f = (P,Q)$.

Uma justificativa para tal fato é: Se f é potencial de (P, Q), então,

$$\int_{a}^{b} \left\langle \left(P, Q \right), \gamma' \left(t \right) \right\rangle dt = 0$$

para toda curva fechada γ de classe C^1 . Ser fechada significa que a curva tem $\gamma(a) = \gamma(b)$.

$$\begin{split} &\int\limits_{a}^{b}\left\langle \left(P,Q\right),\gamma'\left(t\right)\right\rangle dt=\int\limits_{a}^{b}\left\langle \nabla f\left(\gamma\left(t\right)\right),\gamma'\left(t\right)\right\rangle dt=\\ &\int\limits_{a}^{b}\frac{d}{dt}\left(f\circ\gamma\right)\left(t\right)dt=\left.\left(f\circ\gamma\right)\right|_{a}^{b}=f\left(\gamma\left(b\right)\right)-f\left(\gamma\left(a\right)\right)=0 \end{split}$$

Então, continuando a resolução do exemplo, temos: Escolhendo $\gamma(t) = (\cos t, \, \mathrm{sen} t)$, $t = [0, 2\pi]$

$$\int\limits_0^{2\pi}\left\langle \left(\frac{-\operatorname{sen}t}{\cos^2t+\,\operatorname{sen}^2t},\frac{\cos t}{\cos^2t+\,\operatorname{sen}^2t}\right),(-\operatorname{sen}t,\cos t)\right\rangle dt=\int\limits_0^{2\pi}1dt=2\pi\neq0$$

Portanto, não existe potencial para (P, Q).

Definição 4.4 (Ponto de Máximo e de Mínimo) Seja $A \subset \mathbb{R}^n$ e $f: A \to \mathbb{R}$ função. $x_0 \in A$ é ponto de máximo local de f se existe $B_{\delta}(x_0)$ tal que $f(x) \leq f(x_0)$, $\forall x \in B_{\delta}(x_0)$ e máximo global se $f(x) \leq f(x_0)$, $\forall x \in A$. Analogamente definimos mínimo local e mínimo global.

Exemplo 4.5 Seja $f(x, y) = x^2 + y^2$

Solução:

$$f(x,y) \geqslant 0 = f(0,0)$$
, então, $(0,0)$ é mínimo global de f .

Exemplo 4.6 Seja f(x,y) = 2x - y definida em $A \subset \mathbb{R}^2$ dada por $x \ge 0, y \ge 0, x + y \le 3$.

Solução:

Temos que, $y \ge x$ e $y \le 3 - x$

Fazendo as curvas de nível de f, temos:

$$2x - y = c$$
$$y = 2x - c$$

Exemplo 4.7

$$f(x,y) = \begin{cases} x^2 + y^2 & \text{se } x^2 + y^2 \le 4\\ 1 - (x-3)^2 - y^2 & \text{se } x^2 + y^2 > 4 \end{cases}$$

Solução:

(0,0) é mínimo local (não global)

3,0) é máximo local (não global)

Os pontos onde $x^2 + y^2 = 4$ são máximo global.

Teorema 4.5 Seja $x_0 \in A, A \subset \mathbb{R}^n$ aberto. Se x_0 é ponto extremo de $f: A \to \mathbb{R}$, f diferenciável, então, $\nabla f(x_0) = 0$.

Demonstração:

Suponha que x_0 é máximo local de f, isto é, existe $B_{\delta}(x_0)$ tal que $f(x) \leq f(x_0), \forall x \in B_{\delta}(x_0)$.

Considere $x = (x_1, ..., x_n)$ e $x_0 = (x_{01}, ..., x_{0n})$

$$g(x_i) = f(x_{01}, x_{02}, ..., x_i, ..., x_{0n})$$

g é uma função real diferenciável, com máximo em x_{0i} , logo

$$0 = g'(x_{0i}) = \frac{\partial f}{\partial x_i}(x_0), i = 1, 2, ..., n$$

$$\Rightarrow \nabla f(x_0) = 0$$

Definição 4.6 Sejam $f: A \subset \mathbb{R}^n \to \mathbb{R}$, A aberto e $x_0 \in A$. Dizemos que x_0 é ponto crítico de f se $\nabla f(x_0) = 0$.

Os candidatos a máximo e mínimo de f são pontos críticos.

Exemplo 4.8 Seja $f(x,y) = x^2 + y^2$

Solução:

$$\nabla f = (2x, 2y) = (0, 0) \Leftrightarrow (x, y) = (0, 0)$$
 e $(0, 0)$ é mínimo global.

Exemplo 4.9 Seja $f(x, y) = x^2 - y^2$

Solução:

$$\nabla f = (2x, -2y) = (0, 0) \Leftrightarrow (x, y) = (0, 0)$$

(0,0) não é máximo, pois $f(x,0) > f(0,0), x \neq 0$.

(0,0) não é mínimo, pois $f\left(0,y\right) < f\left(0,0\right), y \neq 0.$

(0,0) é chamado ponto de "sela".

Exemplo 4.10 Seja $f(x,y) = x^2 + y^2$ em $A = \{x \in \mathbb{R}^2 : ||x|| < 2\}$

Solução:

$$\nabla f = (0,0) \Leftrightarrow (x,y) = (0,0)$$

(0,0) é mínimo global de f.

$$\nabla f(2,0) = (4,0) \neq (0,0)$$

(2,0) é ponto de máximo de f.

Todos os pontos de máximo são max = $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$.

Teorema 4.7 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , A aberto $e \ x_0 \in A$. Se f tem máximo em x_0 , então, $\nabla f(x_0) = 0$ e $\frac{\partial^2 f}{\partial x_i^2}(x_0) \leq 0$.

Demonstração:

Se $x = (x_1, ..., x_n)$ e $x_0 = (x_{01}, ..., x_{0n})$ considere

$$g(x_i) = f(x_{01}, x_{02}, ..., x_i, ..., x_{0n})$$

 x_{0i} é máximo de g, então, $g'(x_{0i}) = 0$ e $g''(x_{0i}) \leqslant 0$

$$0 = g'(x_{0i}) = \frac{\partial f}{\partial x_i}(x_0)$$

$$g'(x_i) = \frac{\partial f}{\partial x_i}(x_{01}, ..., x_i, ..., x_{0n})$$

$$g''(x_i) = \frac{\partial^2 f}{\partial x_i^2}(x_{01}, ..., x_i, ..., x_{0n})$$

$$0 \leqslant g''(x_{0i}) = \frac{\partial^2 f}{\partial x_i^2}(x_0)$$

Exemplo 4.11 Seja $f(x,y) = x^3 + y^3 - 3x - 3y + 4$. Calcule os máximos e mínimos locais de f em \mathbb{R}^2 .

Solução:

$$\nabla f = (0,0)$$

$$\Rightarrow (3x^2 - 3, 3y^2 - 3) = (0,0)$$

$$\Rightarrow (x,y) = \begin{cases} (1,1) \\ (1,-1) \\ (-1,1) \end{cases}$$
pontos críticos
$$\frac{\partial^2 f}{\partial x^2} = 6x$$

$$\frac{\partial^2 f}{\partial y^2} = 6y$$

$$\begin{cases} (1,1) \to \text{ min local} \\ (1,-1) \to \text{ pto de sela} \\ (-1,1) \to \text{ pto de sela} \\ (-1,1) \to \text{ max local} \end{cases}$$

4.2 Formas Quadráticas em \mathbb{R}^2

Definição 4.8 Uma forma quadrática em \mathbb{R}^2 é uma função do tipo $Q(x,y)=ax^2+2bxy+cy^2, a,b,c\in\mathbb{R}$. Associamos a Q a matriz simétrica

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$Q(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} ax & by \\ bx & cy \end{pmatrix}$$

$$= ax^{2} + bxy + bxy + cy^{2}$$

A matriz A simétrica, então, A é diagonalizável, ou seja, existe uma base ortonormal $\{v_1, v_2\}$ de \mathbb{R}^2 na qual A é diagonal.

Auto valores de A são det (A - xI) = 0

$$\det \begin{pmatrix} a-x & b \\ b & c-x \end{pmatrix} = 0$$

$$\Rightarrow x^2 - (a+c)x - b^2 + ac = 0$$

$$\Rightarrow x = \frac{(a+c) \pm \sqrt{(a+c)^2 + 4(b^2 - ac)}}{2}$$

Auto vetores de A são v_i tal que $Av_i = \lambda_i v_i$. Seja $B = \{v_1, v_2\}$ a base de auto vetores de A. Nesta base, A é diagonal

$$A = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

e, portanto,

$$Q(u, v) = \begin{pmatrix} u & v \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$
$$Q(u, v) = u^2 \lambda_1 + v^2 \lambda_2$$

- Se λ_1 e λ_2 são positivos, então, $Q\left(u,v\right)>0, \forall \left(u,v\right)\in\mathbb{R}^2$
- Se λ_1 e λ_2 são negativos, então, $Q(u,v) \leq 0, \forall (u,v) \in \mathbb{R}^2$
- Se $\lambda_1 > 0$ e $\lambda_2 < 0$, existem direções no plano ao longo das quais Q é positiva ou negativa, respectivamente.

Sabemos o sinal de Q para todo vetor $(x, y) \in \mathbb{R}^2$.

 • Se $\lambda_1 > \lambda_2, \, Q$ assume valor máximo (restrito ao círculo unitário) em $v_1, Q(1,0) = \lambda_1$ e mínimo em $v_2, Q(0,1) = \lambda_2$.

Definição 4.9 (Hessiano) Se $f:A\subset\mathbb{R}^2\to\mathbb{R}$ é de classe C^2 definimos o Hessiano de f em (x_0, y_0) por

$$H_{f}(x_{0}, y_{0}) = \begin{pmatrix} f_{xx}(x_{0}, y_{0}) & f_{xy}(x_{0}, y_{0}) \\ f_{xy}(x_{0}, y_{0}) & f_{yy}(x_{0}, y_{0}) \end{pmatrix}$$

Ele define uma forma quadrática em \mathbb{R}^2

$$Q_{f}(x,y) = \begin{pmatrix} x & y \end{pmatrix} H_{f}(x_{0}, y_{0}) \begin{pmatrix} x \\ y \end{pmatrix}$$
$$Q_{f}(x,y) = f_{xx}(x_{0}, y_{0}) x^{2} + 2f_{xy}(x_{0}, y_{0}) xy + f_{yy}(x_{0}, y_{0}) y^{2}$$

Existe base $B = \{v_1, v_2\}$ de \mathbb{R}^2 que diagonaliza Q_f .

$$Q_f(u,v) = \lambda_1 u^2 + \lambda_2 v^2$$

Nesta base, temos

$$H_f(x_0, y_0) = \begin{pmatrix} \lambda_1(x_0, y_0) & 0\\ 0 & \lambda_2(x_0, y_0) \end{pmatrix}$$

 $\lambda_1 > \lambda_2$

 Q_f é máxima na direção v_1 e mínima na direção v_2 . Se (x_0,y_0) é ponto crítico de f, o polinômio de Taylor de ordem 1 em volta de (x_0, y_0) é

$$f(x,y) = f(x_{0}, y_{0}) + \overbrace{f_{x}(x_{0}, y_{0})(x - x_{0})}^{0} + \overbrace{f_{y}(x_{0}, y_{0})(y - y_{0})}^{0} + \underbrace{\frac{1}{2} \left(f_{xx}(\overline{x}, \overline{y})(x - x_{0})^{2} + 2f_{xy}(\overline{x}, \overline{y})(x - x_{0})(y - y_{0}) + f_{yy}(\overline{x}, \overline{y})(y - y_{0})^{2} \right)}^{0}}_{\Rightarrow f(x,y) = f(x_{0}, y_{0}) + \frac{1}{2} \left(f_{xx}(\overline{x}, \overline{y})(x - x_{0})^{2} + 2f_{xy}(\overline{x}, \overline{y})(x - x_{0})(y - y_{0}) + f_{yy}(\overline{x}, \overline{y})(y - y_{0})^{2} \right)}$$

Façamos $(x_0 + h, y_0 + k) = (x, y), (x - x_0)^2 = h^2 e (y - y_0)^2 = k^2.$ Então, considere

$$Q_f(h,k) = f_{xx}(\overline{x}, \overline{y}) h^2 + 2f_{xy}(\overline{x}, \overline{y}) hk + f_{yy}(\overline{x}, \overline{y}) k^2$$
$$\widetilde{Q}_f(h,k) = f_{xx}(x_0, y_0) h^2 + 2f_{xy}(x_0, y_0) hk + f_{yy}(x_0, y_0) k^2$$

O sinal de Q_f é determinado pelos auto valores ou pelos sinais de λ_1 e $\lambda_1\lambda_2$, que são o primeiro elemento e o determinante de $H_f\left(\overline{x},\overline{y}\right)$, respectivamente, nesta base.

4. Máximos e Mínimos

O sinal de \widetilde{Q}_f só depende do sinal de $f_{xx}(x_0, y_0)$ e det $H_f(x_0, y_0)$, e ambas são contínuas, isto implica que $\exists B_{\varepsilon}(x_0, y_0)$ tal que $f_{xx}(x, y)$ e det $H_f(x, y)$ conservam sinal para $(x, y) \in B_{\varepsilon}(x_0, y_0)$.

• Se (h,k) é tal que $(x_0+h,y_0+k)\in B_{\varepsilon}(x_0,y_0)$ o sinal de $\widetilde{Q}_f(h,k)$ e $Q_f(h,k)$ são iguais.

Logo, se $\widetilde{Q}_f(h,k) > 0$, ou seja, $f_{xx}(x_0,y_0) > 0$ e $\det H_f(x_0,y_0) > 0$, temos

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \frac{1}{2} \overbrace{Q_f(h, k)}^{>0} \geqslant f(x_0, y_0)$$

Então, $f(x_0, y_0)$ é mínimo local.

• Se $\widetilde{Q}_f(h,k) < 0$, ou seja, $f_{xx}(x_0,y_0) < 0$ e det $H_f(x_0,y_0) > 0$

$$\det H_f(x_0, y_0) > 0$$

Então, $f(x_0, y_0)$ é máximo local.

- Se $\widetilde{Q}_f(h,k)$ não tem sinal definido, det $H_f(x_0,y_0) < 0$. Então, (x_0,y_0) é ponto de sela.
- Se $\det H_f(x_0, y_0) = 0$, nada a afirmar.

Exemplo 4.12 $f(x,y) = x^3 + y^3 - 3x - 3y + 4$

Solução

Pontos críticos: (1,1); (1,-1); (-1,1); (-1,-1)

$$\begin{cases}
f_{xx} = 6x \\
f_{xy} = 0 \\
f_{yy} = 6y
\end{cases} \Rightarrow \det H_f(x, y) = \begin{vmatrix} 6x & 0 \\ 0 & 6y \end{vmatrix} = 36xy$$

 $(1,1): f_{xx} > 0; \det H_f = 36 > 0 \Rightarrow \min \log 1$

 $(1,-1): f_{xx} > 0$; det $H_f = -36 < 0 \Rightarrow$ ponto de sela

 $(-1,1): f_{xx} < 0; \det H_f = -36 > 0 \Rightarrow$ ponto de sela

 $(-1, -1): f_{xx} < 0; \det H_f = 36 > 0 \Rightarrow \max \log 1$

Exemplo 4.13 $f(x,y) = 3x^4 + 2y^4$

Solução:

$$\nabla f = (0,0) \Leftrightarrow (x,y) = (0,0)$$
$$H_f(0,0) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$

O critério não se aplica, mas $f\left(x,y\right)\geqslant0=f\left(0,0\right)$, portanto, $\left(0,0\right)$ é mínimo local.

Exemplo 4.14 $f(x,y) = x^5 + 2y^5$

Exemplo 4.15 Construa uma caixa sem tampa com volume 1, de custo mínimo sabendo que o material das paredes custa o triplo do usado no fundo.

Solução:

Volume:

$$v = abc = 1 \Rightarrow c = \frac{1}{ab}$$
$$f(a,b) = 3(2bc + 2ac) + ab$$

Custo total:

$$\begin{split} f\left(a,b\right) &= 3\left(\frac{2}{a} + \frac{2}{b}\right) + ab \\ \nabla f &= \left(-\frac{6}{a^2} + b, -\frac{6}{b^2} + a\right) = 0 \\ \Rightarrow \begin{cases} a^2b = 6 \\ ab^2 = 6 \end{cases} \Rightarrow a = b = \sqrt[3]{6} \end{split}$$

 $\sqrt[3]{6}$ é ponto crítico de f.

$$H_f = \begin{pmatrix} f_{aa} & f_{ab} \\ f_{ab} & f_{bb} \end{pmatrix} = \begin{pmatrix} \frac{12}{a^3} & 1 \\ 1 & \frac{12}{b^3} \end{pmatrix}$$

em $(\sqrt[3]{6}, \sqrt[3]{6})$, temos

$$H_f\left(\sqrt[3]{6}, \sqrt[3]{6}\right) = \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}$$
$$\det H_f\left(\sqrt[3]{6}, \sqrt[3]{6}\right) = 3 > 0$$
$$f_{aa}\left(\sqrt[3]{6}, \sqrt[3]{6}\right) = 2 > 0$$

4. Máximos e Mínimos

Portanto,
$$\left(\sqrt[3]{6}, \sqrt[3]{6}\right)$$
 é mínimo de f .
Portanto, as dimensões são $\left(\sqrt[3]{6}, \sqrt[3]{6}, 6^{-2/3}\right)$.

4.3 Máximos e Mínimos sobre Conjunto Compacto

Definição 4.10 $A \subset \mathbb{R}^n$ é *limitado* se existe bola $B_{\varepsilon}(x_0)$ de \mathbb{R}^n tal que $A \subset B_{\varepsilon}(x_0)$.

Definição 4.11 $A \subset \mathbb{R}^n$ é *fechado* se o seu complementar é aberto.

Definição 4.12 $A \subset \mathbb{R}^n$ é compacto se for fechado e limitado.

Teorema 4.13 Sejam $A \subset \mathbb{R}^n$ compacto $e f : A \to \mathbb{R}$ função contínua. Então existem x_1 e x_2 em A tais que

$$f(x_1) \leqslant f(x) \leqslant f(x_2), \forall x \in A$$

Demonstração:

- (i) $A \subset \mathbb{R}^n$ é fechado e x_0 é acumulação de A, então, $x_0 \in A$;
- (ii) Se f é contínua em x_0 , existe $B_{\varepsilon}(x_0)$ tal que $f(B_{\varepsilon}(x_0))$ é limitado;
- (iii) Se $R_i, i \in \mathbb{N}$ é sequência de retângulos encaixantes em \mathbb{R}^n , isto é, $R_1 \supset R_2 \supset \dots$ e volume $R_i \to 0$ se $i \to \infty$, então, $\bigcap_{i=1}^{\infty} R_i = \{x_0\}$, isto é, x_0 é o único ponto em todos R_i .
- (iv) Sejam $A\subset\mathbb{R}^n$ compacto e $f:A\to\mathbb{R}$ contínua. Então, f é limitada em A; (Dica: Suponha f não limitada em $A\cap R_i$)
- (v) Conclua o Teorema.

Exemplo 4.16 $f(x, y, z) = x^3 + y^3 - 3x - 3y$ definida em $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2 \text{ e } |y| \le 2\}.$

Solução:

A compacto e f contínua, implica que f assume máximo e mínimo (globais) em A.

Pontos críticos de f no interior:

$$\nabla f = (0,0) \Rightarrow x = \pm 1, y = \pm 1, x = -1 \notin A$$

Portanto, pontos (1,1); (1,-1) em A.

$$f(1,1) = -4$$
 min local $f(1,-1) = 0$ ponto de sela

Na fronteira de A:

$$A_1 = \{(x,2) : 0 \leqslant x \leqslant 2\} \cup$$

$$A_2 = \{(x,-2) : 0 \leqslant x \leqslant 2\} \cup$$

$$A_3 = \{(0,y) : -2 \leqslant y \leqslant 2\} \cup$$

$$A_4 = \{(2,y) : -2 \leqslant y \leqslant 2\}$$

Em A_1 :

$$\begin{split} g\left(x\right) &= f\left(x,2\right), x \in [0,2] \\ g\left(x\right) &= x^3 - 3x + 2 \\ g'\left(x\right) &= 3x^2 - 3 = 0 \Leftrightarrow x = \pm 1 \Rightarrow x = 1 \text{ \'e ponto cr\'tico} \\ g''\left(x\right) &= 6x \Rightarrow g''\left(1\right) = 6 > 0 \Rightarrow 1 \text{ \'e min local de } g \\ g\left(1\right) &= 0 \text{ min local} \\ g\left(0\right) &= 2 \\ g\left(2\right) &= 4 \text{ max local} \end{split}$$

Repetir para A_2, A_3 e A_4 e comparar os valores de f.

$$(1,1)$$
 e $(1,-2)$ mínimo $(f=-4)$
 $(2,-1)$ e $(2,2)$ máximo $(f=4)$

Exemplo 4.17 $f(x,y) = xy \text{em } A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$

Solução:

No interior:

$$\nabla f = (y, x) = (0, 0) \Leftrightarrow (x, y) = (0, 0)$$

$$f(0, 0) = 0 \text{ sela}$$

Na fronteira:

$$A_1 = \{(x, y) : x^2 + y^2 = 1\}$$

Tome $\gamma(t) = (\cos t, \sin t), t \in [0, 2\pi]$
Parametrize A_1

$$\begin{split} &(f \circ \gamma) = f\left(\gamma\left(t\right)\right) = f\left(\cos t, \, \mathrm{sen}t\right) = \cos t. \, \mathrm{sen}t, t \in [0, 2\pi] \\ &g'\left(t\right) = \cos\left(2t\right) = 0 \Leftrightarrow t = \pi/\!\!/_4 \, \mathrm{e} \, t = {}^{3\pi}\!\!/_4 \\ &g''\left(t\right) = -2 \, \mathrm{sen}\left(2t\right) \\ &g''\left(\pi/\!\!/_4\right) = -2 < 0 \Rightarrow \pi/\!\!/_4 \, \mathrm{e} \, \mathrm{max} \, \mathrm{local} \\ &g''\left(3\pi/\!\!/_4\right) = 2 > 0 \Rightarrow {}^{3\pi}\!\!/_4 \, \mathrm{e} \, \mathrm{min} \, \mathrm{local} \\ &g\left(0\right) = 0 = g\left(2\pi\right) \\ &g\left(\pi/\!\!/_4\right) = 1/\!\!/_2 \\ &g\left(3\pi/\!\!/_4\right) = -1/\!\!/_2 \\ &\left(0,0\right) \, \, \mathrm{sela} \\ &\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \, \, \mathrm{max} \, \, \mathrm{global} \\ &\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \, \, \mathrm{min} \, \, \mathrm{global} \end{split}$$

Se a fronteira de A é mais "complicada"? (Algo como a curva de nível de uma função de classe \mathbb{C}^1).

Teorema 4.14 (Multiplicador de Lagrange) Sejam $A \subset \mathbb{R}^n$ aberto $e B = \{x \in A : g(x) = 0\}$, onde $g : A \to \mathbb{R}$ é de classe C^1 , com $\nabla g \neq 0, \forall x \in B$. Se $f : A \to \mathbb{R}$ é diferenciável e tem extremo em $x_0 \in B$, então existe $\lambda_0 \in \mathbb{R}$ tal que

$$\nabla f\left(x_0\right) = \lambda_0 \nabla g\left(x_0\right)$$

 λ_0 é chamado multiplicador de Lagrange.

Obs: B é fechado, então não necessariamente $\nabla f(x_0) = 0$ se x_0 for extremo de f.

Demonstração:

Faremos n=2.

Suponha que x_0 é máximo de f sobre B, ou seja, existe $B_{\varepsilon}(x_0)$ tal que $f(x) \leq f(x_0)$ para $x \in B_{\varepsilon}(x_0) \cap B$, isto é, $x \in B_{\varepsilon}(x_0)$ e g(x) = 0.

$$\nabla g(x) \neq 0, \forall x \in B$$

Pelo Teorema da Função Implícita 3.6, existe $\gamma: B_{\delta_1}(t_0) \to \mathbb{R}^2$ com $\gamma(t_0) = x_0 \in \gamma'(t_0) \neq 0$ e $\gamma(B_{\delta_1}(t_0)) \subset B$, ou seja, $g(\gamma(B_{\delta_1}(t_0))) = 0$.

 γ é contínua, isto implica que, existe $B_{\delta}\left(t_{0}\right)$ tal que $f\left(\gamma\left(t_{0}\right)\right)\geqslant f\left(\gamma\left(t\right)\right), \forall t\in B_{\delta}\left(t_{0}\right)$.

$$\Rightarrow \frac{d}{dt} f \circ \gamma \Big|_{t=t_0} = 0$$

$$\Rightarrow \left\langle \nabla f \left(\underbrace{\gamma(t_0)}_{x_0} \right), \gamma'(t_0) \right\rangle = 0$$

$$\Rightarrow \nabla f(x_0) \perp \gamma'(t_0) \in \nabla g(x_0) \perp \gamma'(t_0)$$

$$\Rightarrow \nabla f(x_0) \parallel \nabla g(x_0)$$

$$\Rightarrow \nabla f(x_0) = \lambda_0 \nabla g(x_0)$$

Então, o Teorema diz que os extremos de fsobre Bestão entre as soluções do sistema:

$$\begin{cases} \nabla f(x) = \lambda \nabla g(x) \\ g(x) = 0 \end{cases}$$

Exemplo 4.18 Determine máximo e mínimo de $f(x, y) = y + x^3$ sujeito a $y - x^3 = 0$.

Solução:

Seja
$$g(x, y) = y - x^3$$

$$\nabla f = (3x^2, 1)$$

$$\nabla g = (-3x^2, 1)$$

$$\begin{cases} (3x^2, 1) = \lambda (-3x^2, 1) \\ y - x^3 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 3x^2 = -\lambda 3x^2 \\ 1 = \lambda \Rightarrow x = y = 0 \end{cases}$$

A solução do sistema é (x,y)=(0,0), que não é máximo nem mínimo de f sobre g(x,y)=0, pois f(0,0)=0 e $f(x,x^3)=2x^3$ pode ser maior ou menor do que 0.

Exemplo 4.19 Determine a tangente à elipse $x^2 + \frac{y^2}{4} = 1; x \geqslant 0; y \geqslant 0$ que forma um triângulo com os eixos de área máxima.

Solução:

Considere a tangente à elipse no ponto (a, b)

$$r = (a, b) + t (-g_y, g_x)$$
$$r = (a, b) + t (-\frac{b}{2}, 2a)$$
$$g(x, y) = x^2 + \frac{y^2}{4} - 1$$

Área do triângulo: $A\left(a,b\right)=\frac{2}{ab}$

$$\begin{cases} \nabla A = \lambda \nabla g \\ g\left(a,b\right) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \left(\frac{-2}{a^2b}, \frac{-2}{ab^2}\right) = \lambda \left(2a, \frac{b}{2}\right) \\ a^2 + \frac{b^2}{4} = 1 \end{cases}$$

$$\Rightarrow \begin{cases} -2 = 2\lambda a^3 b \\ -4 = \lambda ab^3 \Rightarrow a = \frac{\sqrt{2}}{2} \neq b = \sqrt{2} \end{cases}$$

$$a^2 + \frac{b^2}{4} = 1$$

A equação da reta é $\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{4}y = 1$.

Exemplo 4.20 Determine o ponto do elipsóide $x^2 + 2y^2 + 3z^2 = 1$ cuja soma das coordenadas é máxima.

Solução:

Queremos maximizar f(x, y, z) = x + y + z com a restrição $x^2 + 2y^2 + 3z^2 = 1$.

$$\begin{cases} \nabla f\left(x,y,z\right) = \lambda \nabla g\left(x,y,z\right) \\ g\left(x,y,z\right) = 0 \end{cases} \Rightarrow \begin{cases} \underbrace{\left(1,1,1\right) = \lambda \left(2x,4y,6z\right)}_{g\left(x,y,z\right)} = 0 \end{cases}$$

Como λ deve ser diferente de zero, da 1ª equação tiramos: $x=\frac{1}{2\lambda}, y=\frac{1}{4\lambda}$ e $z=\frac{1}{6\lambda}$. Substituindo na última equação obtemos:

$$\frac{1}{4\lambda^2} + \frac{2}{16\lambda^2} + \frac{3}{36\lambda^2} = 1 \text{ ou } \lambda = \pm \sqrt{\frac{11}{24}}$$

Os candidatos a extremantes são:

$$x_1 = \left(\frac{1}{2}\sqrt{\frac{11}{24}}, \frac{1}{4}\sqrt{\frac{11}{24}}, \frac{1}{6}\sqrt{\frac{11}{24}}\right) e x_2 = \left(-\frac{1}{2}\sqrt{\frac{11}{24}}, -\frac{1}{4}\sqrt{\frac{11}{24}}, -\frac{1}{6}\sqrt{\frac{11}{24}}\right)$$

Da compacidade de B, da continuidade de f e de $f\left(x_{1}\right)>f\left(x_{2}\right)$ segue que o ponto procurado é

$$\left(\frac{1}{2}\sqrt{\frac{11}{24}}, \frac{1}{4}\sqrt{\frac{11}{24}}, \frac{1}{6}\sqrt{\frac{11}{24}}\right)$$

Teorema 4.15 Seja $A \subset \mathbb{R}^3$ aberto $e B = \{(x, y, z) \in A : g(x, y, z) = 0 \ e \ h(x, y, z) = 0\}$ onde $g \ e \ h$ são funções de classe C^1 em A com $\{\nabla g, \nabla h\}$ linearmente independente (L.I.) para todo $x \in B$. Se $x_0 \in B$ é ponto extremo de uma função diferenciável $f : A \to \mathbb{R}$, restrita a B, então existem λ_0, μ_0 reais tais que

$$\nabla f(x_0) = \lambda_0 \nabla g(x_0) + \mu_0 \nabla h(x_0)$$

Demonstração:

Suponhamos que (x_0, y_0, z_0) seja ponto de máximo local de f em B, o que significa que existe uma bola aberta V de centro (x_0, y_0, z_0) tal que, para todo $(x, y, z) \in B \cap V$,

$$f\left(x,y,z\right)\leqslant f\left(x_{0},y_{0},z_{0}\right)$$

(como A é aberto, podemos supor $V \subset A$). Consideremos uma curva diferenciável $\gamma: I \to \mathbb{R}^3$, I intervalo aberto, tal que $\gamma(t_0) = (x_0, y_0, z_0)$, $\gamma'(t_0) \neq \overrightarrow{0}$ e $\gamma(t) \in B$ para todo t em I (a existência de uma tal curva é garantida pelo teorema das funções implícitas). Da continuidade de γ , segue que existe $\delta > 0$ tal que

$$t \in [t_0 - \delta, t_0 + \delta] \Rightarrow \gamma(t) \in B \cap V$$

Assim, para todo $t \in [t_0 - \delta, t_0 + \delta]$ tem-se

$$f(\gamma(t)) \leqslant f(\gamma(t_0))$$

Logo, t_{0} é ponto mínimo de máximo local de $F\left(t\right)=f\left(\gamma\left(t\right)\right)$ e daí $F'\left(t_{0}\right)=0$, ou seja,

$$(1) \nabla f \left(\gamma \left(t_0 \right) \right) . \gamma' \left(t_0 \right) = 0$$

Por outro lado, de $\gamma(t) \in B$ para todo $t \in I$ seque que

4. Máximos e Mínimos

$$g(\gamma(t)) = 0 e h(\gamma(t)) = 0$$

para todo t em I; daí

$$(2) \nabla g (\gamma (t_0)) . \gamma' (t_0) = 0 e \nabla h (\gamma (t_0)) . \gamma' (t_0) = 0$$

De (1) e (2), tendo em vista que $\gamma'\left(t_{0}\right)\neq\overrightarrow{0}$ e $\nabla g\left(\gamma\left(t_{0}\right)\right)\wedge\nabla h\left(\gamma\left(t_{0}\right)\right)\neq\overrightarrow{0}$ resulta que existem reais λ_{0} e μ_{0} tais que

$$\nabla f \left(\gamma \left(t_0 \right) \right) = \lambda_0 \nabla g \left(\gamma \left(t_0 \right) \right) + \mu_0 \nabla h \left(\gamma \left(t_0 \right) \right)$$

Capítulo 5

Funções de Várias Variáveis Reais a Valores Vetoriais

5.1 Funções de Várias Variáveis Reais a Valores Vetoriais

Definição 5.1 Seja $A \subset \mathbb{R}^n$ uma função $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ é uma regra que associa um único vetor f(x) de \mathbb{R}^m a cada vetor x de $A \subset \mathbb{R}^n$ se $x = (x_1, ..., x_n)$ escrevemos

$$f: A \to \mathbb{R}^{m}$$

$$(x_{1}, ..., x_{n}) \to f(x_{1}, ..., x_{n}) = (f^{1}(x_{1}, ..., x_{n}), f^{2}(x_{1}, ..., x_{n}), ..., f^{m}(x_{1}, ..., x_{n}))$$

Exemplo 5.1 $f: \mathbb{R}^n \to \mathbb{R}^m$ dada por $f(x,y) = (x,y,x^2+y^2)$ é uma função com domínio \mathbb{R}^2 e com valores em \mathbb{R}^3 . Esta função transforma o par ordenado (x,y) na terna (x,y,x^2+y^2) . A imagem de f é o conjunto $\{(x,y,x^2+y^2):(x,y)\in\mathbb{R}^2\}$ que é igual a $\{(x,y,z)\in\mathbb{R}^3:z=x^2+y^2,(x,y)\in\mathbb{R}^2\}$. A imagem de f coincide, então, com o gráfico da função dada por $z=x^2+y^2$.

Exemplo 5.2 (Coordenadas polares.) Seja a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $(r,\theta) \mapsto f(r,\theta) = (r\cos\theta, r\sin\theta)$, onde $r\cos\theta = x$ e $r\sin\theta = y$.

5.2 Campo Vetorial

Definição 5.2 Um campo vetorial em $A \subset \mathbb{R}^n$ é uma função $f: A \to \mathbb{R}^n$.

Figura 5.1: f transforma a reta r na circunferência $(r\cos\theta, r\sin\theta)$

Exemplo 5.3 Represente geometricamente o campo vetorial dado por f(x,y) = (x,y).

Solução

 $\|f(x,y)\| = \sqrt{x^2 + y^2}$; segue que a intensidade do campo é a mesma nos pontos de uma mesma circunferência de centro na origem. Observe que a intensidade do campo no ponto (x,y) é igual ao raio da circunferência, de centro na origem, que passa por este ponto.

Definição 5.3 Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ é contínua em x_0 se dada $B_{\varepsilon}(f(x_0))$ existe $B_g(x_0)$ tal que $f(B_g(x_0)) \subset B_{\varepsilon}(f(x_0))$.

Teorema 5.4 Sejam $x_0 \in A \subset \mathbb{R}^n$ e $f: A \to \mathbb{R}^m$, $f(x) = (f^1(x), ..., f^m(x))$. Então, f é contínua em x_0 se, e somente se, f^i é contínua em $x_0, \forall i = 1, ..., m$.

Definição 5.5 Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$, com A aberto. Dizemos que f é diferenciável em $x_0\in A$ se existe $L_{x_0}:\mathbb{R}^n\to\mathbb{R}^m$, aplicação linear tal que

$$\lim_{\|h\| \to 0} \frac{f(x_0 + h) - f(x_0) - L_{x_0}(h)}{\|h\|} = 0$$

Teorema 5.6 Se f é diferenciável em x_0 , então, L_{x_0} é única e sua matriz na base canônica é

$$\left[\frac{\partial f^j}{\partial x_i}\left(x_0\right)\right]_{m\times n}$$

 $com \ i = 1, ..., n \ e \ j = 1, ..., m.$

5.3 Rotacional

Definição 5.7 Seja $A \subset \mathbb{R}^3$ aberto e $f: A \to \mathbb{R}^3$ um campo diferenciável, f(x) = (P(x), Q(x), R(x)). O rotacional de f é dado por

$$\operatorname{rot} f = \left| \begin{array}{ccc} i & j & k \\ \partial x & \partial y & \partial z \\ P & Q & R \end{array} \right| = (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

Obs: Em \mathbb{R}^2 , faça $R(x) \equiv 0$.

Exemplo 5.4 Seja $f(x, y, z) = (xy, yz^2, xyz)$. Calcule rot f.

Solução:

$$\operatorname{rot} f = \left| \begin{array}{ccc} i & j & k \\ \partial x & \partial y & \partial z \\ xy & yz^{2} & xyz \end{array} \right| = (xz - 2yz, 0 - yz, 0 - x)$$

Exemplo 5.5 Seja $f(x,y) = (\cos y, \sin x)$. Calcule rot f.

Solução:

$$\operatorname{rot} f = \begin{vmatrix} i & j & k \\ \partial x & \partial y & \partial z \\ \cos y & \operatorname{sen} x & 0 \end{vmatrix} = (0, 0, \cos x + \operatorname{sen} y)$$

Definição 5.8 Seja $f: A \subset \mathbb{R}^{2,3} \to \mathbb{R}^{2,3}$ é irrotacional se rot $f \equiv 0$.

Exemplo 5.6 Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $(x,y) \mapsto (0,Q(x,y))$ onde $\frac{\partial Q}{\partial x} = 0$. Desenhe um campo satisfazendo as condições dadas e calcule rot f.

Solução:

$$\operatorname{rot} f = \left| \begin{array}{ccc} i & j & k \\ \partial x & \partial y & \partial z \\ 0 & Q & 0 \end{array} \right| = (0, 0, 0)$$

Exemplo 5.7 Se f é o campo de velocidades no escoamento de um fluído em \mathbb{R}^2 para cada y_0 fixado e $x > x_0$ temos, $||f(x_0, y_0)|| \le ||f(x, y_0)||$, então, um disco giraria no sentido anti-horário se Q(x, y) > 0.

Exemplo 5.8 Considere v = (P(x,y), Q(x,y)) de classe C^1 , velocidade de um fluído bidimensional. Sejam $A \in B$ partículas do fluído.

Solução:

$$\begin{split} \delta\left(t\right) &= \|A\left(t\right) - B\left(t\right)\| \Rightarrow \delta\left(0\right) = h \\ A\left(t\right) &= \left(x_{1}\left(t\right), y_{1}\left(t\right)\right); B\left(t\right) = \left(x_{2}\left(t\right), y_{2}\left(t\right)\right) \\ y_{2}\left(t\right) - y_{1}\left(t\right) &= \delta\left(t\right) \, \mathrm{sen}\theta_{h}\left(t\right) \\ y_{2}'\left(t\right) - y_{1}'\left(t\right) &= \delta'\left(t\right) \, \mathrm{sen}\theta_{h}\left(t\right) + \delta\left(t\right) \cos\theta_{h}\left(t\right).\theta_{h}'\left(t\right) \end{split}$$

Em $t = 0, \theta_h(0) = 0, \delta(0) = h$, temos,

$$y'_{2}(0) = Q(x_{0} + h, y_{0})$$

 $y'_{1}(0) = Q(x_{0}, y_{0})$

Então,

$$\theta'_{h}(0) = \frac{Q(x_{0} + h, y_{0}) - Q(x_{0}, y_{0})}{h}$$

$$\lim_{h \to 0} \theta'_{h}(0) = \frac{\partial Q}{\partial x}(x_{0}, y_{0})$$

Se o movimento é rígido e com velocidade angular constante ω , então,

$$\omega = \frac{\partial Q}{\partial x} \left(x_0, y_0 \right)$$

Analogamente, para c(t), com $c(0) = (x_0, y_0 + k)$, temos

$$\omega = \lim_{k \to 0} \varphi_k'(0) = -\frac{\partial P}{\partial y}(x_0, y_0)$$

Então,

$$2\omega = \frac{\partial Q}{\partial x}(x_0, y_0) - \frac{\partial P}{\partial y}(x_0, y_0) = \langle \text{rot } v, e_3 \rangle$$

é o módulo do rotacional.

Exemplo 5.9
$$f(x,y) = \left(\frac{-x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Solução:

 $||f||^2 = \frac{1}{x^2 + y^2}$, que é constante nos círculos. rot f = 0. Tem velocidade angular nula ao longo de retas.

Exemplo 5.10 Seja f(x,y) = (-y,x). Calcule o rotacional.

Solução:

É tangente a circunferência de raio $\sqrt{x^2 + y^2}$. As partículas descrevem essas circunferências

$$rot f = \begin{vmatrix} i & j & k \\ \partial x & \partial y & \partial z \\ -y & x & 0 \end{vmatrix} = (0, 0, 2)$$

$$\Rightarrow \omega = 1$$

5.4 Divergente

Definição 5.9 Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}^n$ um campo diferenciável. O divergente f é dado por

$$\operatorname{div} f = \sum_{i=1}^{n} \frac{\partial f^{i}}{\partial x_{i}} (x) \in \mathbb{R}$$

Obs: Seja $f:A\subset\mathbb{R}^n\to\mathbb{R}$ de classe C^2 . ∇f é um campo diferenciável, então,

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$
 div $(\nabla f) = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = \Delta f$ (Laplaciano)

Definição 5.10 Seja $f: B \to \mathbb{R}^m, B \subset \mathbb{R}^n$ fechado é diferenciável se existem $\Omega \subset \mathbb{R}^n$ aberto, $B \subset \Omega$ e $g_i: \Omega \to \mathbb{R}^m$ diferenciável tal que $g|_B = f$ (g restrito a B).

Exemplo 5.11 Seja $f(x,y) = (0,Q(x,y)), \frac{\partial Q}{\partial y}(x,y) > 0$. Calcule o rotacional e o divergente.

Solução:

$$\label{eq:force_force} \begin{split} \mathrm{rot}\ f &= \frac{\partial Q}{\partial x} \\ \mathrm{div}\ f &= \frac{\partial Q}{\partial y} > 0 \end{split}$$

Exemplo 5.12 f(x,y) = (P(x,y), Q(x,y)) de classe C^{1} .

Solução:

Seja v(t) o volume da figura A(t)B(t)C(t)D(t).

$$v(0) = hk$$

$$v(t) \approx ||A(t) - B(t)|| \cdot ||A(t) - C(t)||$$

$$A(t) \approx (x_0 + tP(x_0, y_0), y_0 + tQ(x_0, y_0))$$

$$B(t) \approx (x_0 + h + tP(x_0 + h, y_0), y_0 + tQ(x_0 + h, y_0))$$

$$C(t) \approx (x_0 + tP(x_0, y_0 + k), y_0 + k + tQ(x_0, y_0 + k))$$

$$P(x_0 + h, y_0) \approx P(x_0, y_0) + hP_x(x_0, y_0)$$

$$Q(x_0 + h, y_0) \approx Q(x_0, y_0) + hQ_x(x_0, y_0)$$

$$P(x_0, y_0 + k) \approx P(x_0, y_0) + kP_y(x_0, y_0)$$

$$Q(x_0, y_0 + k) \approx Q(x_0, y_0) + kQ_y(x_0, y_0)$$

$$v(t) = \left\| \overline{A(t) B(t)} \wedge \overline{A(t) C(t)} \right\| = \dots =$$

$$= hk + hktP_x(x_0, y_0) + hktQ_y(x_0, y_0) + hkt^2(P_xQ_y - P_yQ_x)(x_0, y_0)$$

$$\frac{v(t) - v(0)}{t} = hk(P_x + Q_y + t(P_xQ_y - P_yQ_x))$$

fazendo $t \to 0$, temos:

$$v'(0) = hk (P_x (x_0, y_0) + Q_y (x_0, y_0))$$

= hk .div $f = v(0)$.div f

Capítulo 6

Integrais Duplas

6.1 A Integral de Riemann

Definição 6.1 Seja $R=\left[a_i,b_i\right]^n, i=1,...,n$ um retângulo em \mathbb{R}^n . Uma partição P de R é uma escolha $x^k=\left(x_1^k,...,x_n^k\right), x_i^k\in\left[a_i,b_i\right], x_{i-1}^k< x_i^k$.

$$|P| = \max \text{vol } R_i$$

 $|P| \to 0 = \text{vol } R_i \to 0, \forall i$

Definição 6.2 Seja $f: R \subset \mathbb{R}^n \to \mathbb{R}$ limitada $(|f(x)| < M, \forall x \in \mathbb{R})$. Definimos a soma inferior e soma de Riemann para f relativa a uma partição de P de R por

inferior:
$$s(f, P) = \sum_{R_i} m_i \text{vol } R_i, m_i = \inf f(x), x \in \mathbb{R}_i$$

superior: $S(f, P) = \sum_{R_i} M_i \text{vol } R_i, M_i = \sup f(x), x \in \mathbb{R}_i$

Obs:

- (i) $s(f, P) \leq S(f, P)$
- (ii) se P' é refinamento de P, então,

$$s(f, P) \leqslant s(f, P') \leqslant S(f, P') \leqslant S(f, P)$$

Definição 6.3 Seja $f:R\subset\mathbb{R}^n\to\mathbb{R}$ limitada e P partição de R. Definimos a integral inferior e superior de f sobre R por

$$\int_{-R} f(x) dx = \sup s(f,P), \, P$$
 partição de R

е

$$\int_{R}^{-} f(x)dx = \inf S(f, P), P \text{ partição de } R$$

Dizemos que f é integrável sobre R se $\int_{-R}^{} f(x)dx = \int_{R}^{-} f(x)dx$ e escrevemos $\int_{R}^{} f(x)dx$.

Obs:
$$\int_{-R} f = \int_{R}^{-} f$$
 sempre existem e $\int_{-R} f \leqslant \int_{R}^{-} f$.

Exemplo 6.1 Seja $f: R \subset \mathbb{R}^n \to \mathbb{R}, f(x) = k$.

Seja
$$P$$
 partição de R . $s(f,P) = \sum_{R_i \in P} m_i \text{vol } R_i = k \sum_{R_i \in P} \text{vol} R$

$$\Rightarrow \int_{-} f(x) dx = \sup s(f,P) = k \text{vol} R$$

$$S(f,P) = \sum_{R_i \in P} M_i \text{vol} R_i = k \text{vol} R$$

$$\Rightarrow \int_{R}^{-} f(x) dx = \inf S(f,P) = k \text{vol} R$$

$$\Rightarrow \int_{R}^{-} f(x) dx = k \text{vol} R$$

Exemplo 6.2 Seja $f:[0,1]^2=R\to\mathbb{R}$ tal que

$$f(x,y) = \begin{cases} 0 & \text{, se } (x,y) \in \mathbb{Q}^2 \cap R \\ 1 & \text{, se } (x,y) \notin \mathbb{Q}^2 \cap R \end{cases}$$

Solução:

Seja P partição de $[0,1]^2$.

$$s(f,P) = \sum_{R_i \in P} \oint \text{vol} R_i = 0$$

$$\Rightarrow \int_{-R} f(x) dx = \sup s(f,P) = 0$$

$$S(f,P) = \sum_{R_i \in P} \oint \text{vol} R_i = \text{vol} R = 1$$

$$\Rightarrow \int_{-R}^{-} f(x) dx = \inf S(f,P) = 1$$

$$\Rightarrow \int_{-R}^{-} f(x) dx \neq \int_{-R}^{-} f(x) dx$$

Portanto, f não é Riemann integrável.

Exemplo 6.3 Seja $f:[0,1]^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} 1 & \text{, se } x \neq y \\ 0 & \text{, se } x = y \end{cases}$$

Solução:

Dado $\varepsilon > 0$ considere retângulos de centro (x, x) e lados ε / \sqrt{n} . Seja P uma partição de $[0, 1]^2$ que contém tais retângulos.

$$\begin{split} S(f,P) &= \sum_{R_j \neq R_i} \mathbf{1}^{M_j} \operatorname{vol} R_j + \sum_{R_i} \mathbf{M}_i^{1} \operatorname{vol} R_i \\ &= \sum_{R_j \neq R_i} \operatorname{vol} R_i + n. \frac{\varepsilon^2}{n} \\ &= \sum_{R_j \neq R_i} \operatorname{vol} R_i + \varepsilon^2 \\ s(f,P) &= \sum_{R_j \neq R_i} \mathbf{1}^{m_j} \operatorname{vol} R_j + \sum_{R_i} \mathbf{0}^{m_i} \operatorname{vol} R_i = \sum_{R_j \neq R_i} \operatorname{vol} R_j \end{split}$$

Se P' é refinamento de P, temos:

$$\sum_{R_j \neq R_i} \operatorname{vol} R_j \leqslant s(f, P') \leqslant S(f, P') \leqslant \sum_{R_j \neq R_i} \operatorname{vol} R_j + \varepsilon^2$$

$$\Rightarrow \left| \int_{-}^{-} f - \int_{-}^{-} f \right| < \varepsilon^2, \forall \varepsilon > 0$$

$$\Rightarrow \int_{-}^{-} f = \int_{-}^{-} f = \operatorname{vol} R = 1$$

Definição 6.4 $A \subset \mathbb{R}^n$ tem *conteúdo nulo* se dado $\varepsilon > 0$ existem retângulos R_1, \ldots, R_n tais quem

$$\sum_{i=1}^{n} \operatorname{vol} R_{i} < \varepsilon \qquad e \qquad A \subset \bigcup_{i=1}^{n} R_{i}$$

Teorema 6.5 Sejam $f: R \subset \mathbb{R}^n \to \mathbb{R}$ uma função limitada $D = \{x \in R : f \text{ \'e descont\'e} \text{`ua em } x\}$. Então, f 'e Riemann integr'avel se, e somente se, D tem conteúdo nulo.

Proposição 6.6 Sejam $f, g: R \subset \mathbb{R}^n \to \mathbb{R}$ funções integráveis. Então

a)
$$\int_{R} (f+g) = \int_{R} f + \int_{R} g$$

b)
$$\int_R kf = k \int_R f, k \in \mathbb{R}$$

c)
$$f \geqslant 0 \Rightarrow \int_{R} f \geqslant 0$$

d)
$$f \leqslant g \Rightarrow \int_R f \leqslant \int_R g$$

Demonstração:

Seja P partição de R. $m_i(f) = \inf_{x \in R_i} f(x), R_i \in P$ e $M_i(f) = \sup_{x \in R_i} f(x), R_i \in P$

a) Temos

P.

$$m_{i}(f) + m_{i}(g) \leqslant m_{i}(f+g) \leqslant M_{i}(f+g) \leqslant M_{i}(f) + M_{i}(g)$$

$$\Rightarrow \int_{-}^{} f + \int_{-}^{} g \leqslant \int_{-}^{} (f+g) \leqslant \int_{-}^{}^{} (f+g) \leqslant \int_{-}^{}^{} f + \int_{-}^{}^{} g$$

$$\Rightarrow \int_{-}^{} (f+g) = \int_{-}^{}^{} (f+g) \Rightarrow (f+g) \text{ \'e integr\'avel e } \int (f+g) = \int f + \int g.$$

b)
$$m_i(kf) = km_i(f)$$
 e $M_i(kf) = kM_i(f) \Rightarrow kf$ é integrável e $\int kf = k \int f$.

c)
$$f$$
 integrável $\Rightarrow \int_- f = \int_-^- f$
$$f \geqslant 0 \Rightarrow m_i(f) \geqslant 0 \text{ e } s(f,P) \geqslant 0 \Rightarrow \int_-^- f = \int_-^- f \geqslant 0$$

d) $f \leqslant g \Rightarrow g - f \geqslant 0$

$$(c) \Rightarrow \int (g - f) \ge 0$$

$$(a) \Rightarrow \int g + \int -f$$

$$(b) \Rightarrow \int g - \int f \ge 0$$

$$\Rightarrow \int f \le \int g$$

Definição 6.7 Sejam $B \subset \mathbb{R}^n$ um conjunto limitado e $f: B \to \mathbb{R}$ limitada. Definimos $\int_B f = \int_R f.\mathcal{X}_B$, onde R é o retângulo de $\mathbb{R}^n, B \subset R$ e

$$\mathcal{X}_B(x) = \begin{cases} 1 & \text{, se } x \in B \\ 0 & \text{, se } x \notin B \end{cases}$$

Proposição 6.8 Sejam $B\subset\mathbb{R}^n$ tem conteúdo nulo e $f:B\to\mathbb{R}$ uma função limitada. Então, $\int_B f=0.$

Demonstração:

B tem conteúdo nulo implica que dado $\varepsilon > 0, B \subset \bigcup_{i=1}^n R_i$, com $\sum_{i=1}^n \operatorname{vol} R_i < \varepsilon$. B limitado implica que existe R retângulo de \mathbb{R}^n tal que $B \subset R$.

$$\left| \int_{B} f \right| = \left| \int_{R} f . \mathcal{X}_{B} \right|$$

$$\left| \int_{B} f \right| \leqslant \int_{R} |f| \leqslant 0 + \sup f. \sum_{i=1}^{n} \operatorname{vol} R_{i} \leqslant \sup f. \varepsilon$$

$$\Rightarrow \int_{B} f = 0$$

Corolário 6.9 Sejam $f,g:B\subset\mathbb{R}^n\to\mathbb{R}$ e $D=\{x\in B:f(x)\neq g(x)\}$. Se D tem conteúdo nulo, então $\int_B f=\int_B g.$

Demonstração:

$$\begin{split} &\int_{B} (f-g) = \int_{B \backslash D} \cancel{g} + \int_{D} \cancel{g} = 0 \\ &\Rightarrow \int_{B} f = \int_{B} g \end{split}$$

Definição 6.10 Seja $A \subset \mathbb{R}^n$ um conjunto para o qual $\int_A 1$ exista, então definimos vol $A = \int_A 1$.

Teorema 6.11 (valor intermediário para integral) $Sejam \ B \subset \mathbb{R}^n$ compacto e conexo por caminhos e $f: B \to \mathbb{R}$ contínua e integrável em B. Então existe $x_0 \in B$ tal que $\int_B f = f(x_0)volB$.

Demonstração:

fé contínua e Bé compacto, então existem $x_1,x_2\in B$ tal que $f(x_1)\leqslant f(x)\leqslant f(x_2), \forall x\in B.$

$$\Rightarrow \int_{B} f(x_{1}) \leqslant \int_{B} f(x) \leqslant \int_{B} f(x_{2})$$
$$\Rightarrow f(x_{1}) \text{vol} B \leqslant \int_{B} f(x) \leqslant f(x_{2}) \text{vol} B$$

 $vol B = 0 \Rightarrow \int_B f(x) = 0$ e qualquer $x_0 \in B$ satisfaz o enunciado.

$$\operatorname{vol} B \neq 0 \Rightarrow f(x_1) \leqslant \frac{\int_B f(x)}{\operatorname{vol} B} \leqslant f(x_2)$$

B conexo por caminhos implica que, $\exists \gamma: [a,b] \to B$ contínua com $\gamma(a) = x_1$ e $\gamma(b) = x_2.$

Considere $g(t) = (f \circ \gamma)(t)$. $g: [a, b] \to \mathbb{R}$ é contínua.

$$g(a) = f(x_1) \leqslant \frac{\int_B f(x)}{\operatorname{vol} B} \leqslant f(x_2) = g(b)$$

O Teorema do valor intermediário para g implica que $\exists t_0 \in [a,b]$ tal que $g(t_0) = \frac{\int_B f(x)}{\text{vol}B}$.

$$f\underbrace{(\gamma(t_0))}_{x_0 \in B} = \frac{\int_B f}{\text{volB}}$$

$$\int_{B} f = f(x_0) \text{vol} B, x_0 = \gamma(t_0) \text{ \'e o ponto procurado.}$$

Exemplo 6.4 Como calcular $\int_{B} \frac{x^{2}}{x^{2} + y^{2}}$, onde $B = \{(x, y) \in \mathbb{R}^{2} : 0 < x^{2} + y^{2} \leq 1\}$?

Demonstração:

Note que a integral não é limitada em B.

$$g(x,y) = \begin{cases} f(x,y) & \text{, se } (x,y) \in B \\ 0 & \text{, se } (x,y) = (0,0) \end{cases}$$

 $g:B\cup\{0,0\}\to\mathbb{R}$ é limitada. $D=\{(x,y)\in\mathbb{R}^2:f(x,y)\neq g(x,y)\}.$ $D=\{(0,0)\}$ tem conteúdo nulo.

Portanto,
$$\int_B f = \int_B g$$
.

6.2 Teorema de Fubini

Teorema 6.12 (Fubini) Sejam $A_1 \subset \mathbb{R}^m$ e $A_2 \subset \mathbb{R}^n$ retângulos e $f: A_1 \times A_2 \to \mathbb{R}$ integrável. Sejam ainda, $f_x: A_2 \to \mathbb{R}$ dada por $f_x(y) = f(x,y)$ e $\varphi(x) = \int_{-A_2}^{} f_x$ e $\Psi(x) = \int_{A_2}^{-} f_x$. (Neste caso, f_x não é derivada parcial é fibra de x, ou seja, mantém x fixo e integra y.) Então, $\varphi(x)$ e $\Psi(x)$ são integráveis em A_1 e

$$\int_{A_1} \phi(x) = \int \psi(x) = \int_{A_1 \times A_2} f(x, y)$$

ou seja,

$$\int_{A_1 \times A_2} f = \int_{A_1} \int_{-A_2} f(x, y) = \int_{A_1} \int_{A_2}^{-} f(x, y)$$

Corolário 6.13 Se $f: A_1 \times A_2 \to \mathbb{R}$ é integrável, então

$$\int_{A_1} \int_{A_2}^{-} f = \int_{A_2} \int_{A_1}^{-} f = \int_{A_1 \times A_2} f$$

Corolário 6.14 O teorema de Fubini vale para qualquer $\xi: A_1 \to \mathbb{R}$ tal que $\varphi(x) \leq \xi(x) \leq \Psi(x)$.

Exemplo 6.5 Seja $f:[0,1]^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} 0 & \text{, se } x \neq 1/2 \\ 1 & \text{, se } x = 1/2 \text{ e } y \in \mathbb{Q} \cap [0,1] \\ 0 & \text{, se } x = 1/2 \text{ e } y \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \end{cases}$$

Calcule $\int_{[0,1]^2} f$.

Solução:

O conjunto de descontinuidade $D=\{(x,y)\in R: x=1/2\}$ tem conteúdo nulo, então f é integrável, logo, vale o teorema de Fubini.

$$\int_{[0,1]^2} f = \int_{[0,1]} \left(\int_{-[0,1]} f_x dy \right) dx = 0$$

6.3 Integrais de Linha

Definição 6.15 Sejam $f: \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial contínuo e $\gamma: [a,b] \to \mathbb{R}^n$ uma curva de classe C^1 por partes. Definimos a integral de linha de f sobre γ por

$$\int_{\gamma} f d\gamma = \int_{a}^{b} \langle f(\gamma(t)), \gamma'(t) \rangle dt$$

Definição 6.16 Seja γ_1 e γ_2 duas curvas tais que existe $g:[a,b] \to [c,d]$ de classe C^1 com $\gamma_2(t) = \gamma_1(g(t))$ e $g'(t) \neq 0$. Dizemos que γ_2 é reparametrização de γ_1 se u=g(t), então, $\frac{du}{dt}=g'(t)$

$$\Rightarrow \gamma_2'(t) = \gamma_1'(g(t)).g'(t)$$

Se g'(t) > 0 dizemos que g preserva orientação e g'(t) < 0 troca a orientação.

Exemplo 6.6 Seja $\gamma_1(t) = (\cos t, \, \text{sen} t), t \in [0, 2\pi].$

$$g(s) = -2s, s \in [0, 2\pi]$$

$$\gamma_2(s) = \gamma_2(g(s)) = (\cos(-2s), \sin(-2s))$$

Teorema 6.17 Seja $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ campo contínuo e Ω aberto, $\gamma_1: [a,b] \to \Omega$ e $\gamma_2: [c,d] \to \Omega$, tal que γ_2 é reparametrização de γ_1 .

- (i) Se γ_1 e γ_2 tem mesma orientação, então $\int_{\gamma_1} F d\gamma_1 = \int_{\gamma_2} F d\gamma_2$.
- $(ii) \ \ Se \ \gamma_1 \ \ e \ \gamma_2 \ \ tem \ \ orientações \ \ opostas, \ então \ \int_{\gamma_1} F d\gamma_1 = \int_{\gamma_2} F d\gamma_2.$

Demonstração:

Se γ_2 é reparametrização de γ_1 , então $\exists g : [c,d] \to [a,b]$ de classe $C^1(g'(t) > 0)$ tal que $\gamma_2(t) = \gamma_1(g(t))$. Fazendo u = g(t), temos

$$\int_{\gamma_1} F d\gamma_1 = \int_a^b \langle F \circ \gamma_1, \gamma_1' \rangle dt$$

$$= \int_c^d \langle F \circ \gamma_1(g(t)), \gamma_1'(g(t)) \cdot g'(t) \rangle dt$$

$$= \int_c^d \langle F (\gamma_2(t)), \gamma_2'(t) \rangle dt$$

$$\int_{\gamma_1} F d\gamma_1 = \int_{\gamma_2} F d\gamma_2$$

6. Integrais Duplas

Definição 6.18 Uma curva $\gamma:[a,b] \to \mathbb{R}^n$ é C^1 por partes se existem $t_0=a < t_1 < \ldots < t_n=b$ tal que $\gamma|_{]t_{i-1},t_i[}$ é de classe C^1 .

Nesse caso, definimos $\int_{\gamma} F d\gamma = \sum_{i=1}^n \int_I F d\gamma|_{[t_{i-1},t_i]}$, onde $I = \gamma_{[t_{i-1},t_i]}$.

Exemplo 6.7 Sejam F(x,y) = (-y,x) e γ um triângulo de vértices (0,0),(1,0),(1,1) percorrido no sentido anti-horário. Calcule $\gamma(t)$.

Solução:

$$\begin{split} \gamma_1(t) &= (t,0), t \in [0,1] \\ \gamma_2(t) &= (1,t), t \in [0,1] \\ \gamma_3(t) &= (1,1) + t(-1,-1) = (1-t,1-t) \end{split}$$

$$\begin{split} \int_{\gamma} F d\gamma &= \int_{\gamma_{1}} F d\gamma_{1} + \int_{\gamma_{2}} F d\gamma_{2} + \int_{\gamma_{3}} F d\gamma_{3} \\ &= \int_{0}^{1} \left\langle (0, t), (1, 0) \right\rangle dt + \int_{0}^{1} \left\langle (-t, 1), (0, 1) \right\rangle dt + \int_{0}^{1} \left\langle (t - 1, 1 - t), (-1, -1) \right\rangle dt \\ &= 0 + 1 + 0 = \boxed{1} \end{split}$$

Proposição 6.19 Seja F = (P,Q) campo de classe C^1 e γ um retângulo de lados (0,0),(0,a),(0,b),(a,b). Seja B o retângulo fechado de lados dados por γ . Se γ é percorrido no sentido anti-horário, então

$$\int_{\gamma} P dx + Q dy = \int_{B} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Demonstração:

Para y fixado, temos

$$\int_{B} \frac{\partial Q}{\partial x} dx dy = \int_{0}^{b} \left(\int_{0}^{a} \frac{\partial Q}{\partial x} dx \right) dy = \int_{0}^{b} Q(a, y) - Q(0, y) dy$$

Para y fixado, temos

$$-\int_{B} \frac{\partial P}{\partial y} dx dy - \int_{0}^{a} \left(\int_{0}^{b} \frac{\partial P}{\partial y} dy \right) dx = -\int_{0}^{a} P(x, b) - P(x, 0) dx$$

Por outro lado,

$$\begin{split} \int_{\gamma} Q dy &= \int_{\gamma_1} Q dy + \int_{\gamma_2} Q dy + \int_{\gamma_3} Q dy + \int_{\gamma_4} Q dy \\ &= \int_0^b Q(a,t) dt - \int_0^b Q(0,t) dt \\ &= \int_0^b \left[Q(a,t) - Q(0,t) \right] dt \end{split}$$

Е

$$\int_{\gamma} P dx = \int_{\gamma_{1}} P dx + \int_{\gamma_{2}} P dx + \int_{\gamma_{3}} P dx + \int_{\gamma_{4}} P dx$$

$$= \int_{0}^{a} P(t,0) dt - \int_{0}^{a} P(t,b) dt$$

$$= \int_{0}^{a} [P(t,0) - P(t,b)] dt$$

$$\int_{B}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dxdy=\int_{\gamma}Qdy+\int_{\gamma}Pdx=\int_{B}Pdx+Qdy$$

6.4 Campos Conservativos

Definição 6.20 Um campo $F: \mathbb{R}^n \to \mathbb{R}^n$ é conservativo se existe $\varphi: \mathbb{R}^n \to \mathbb{R}$ tal que $\nabla \varphi = F$.

Teorema 6.21 Sejam n=2,3 e $F:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$ um campo C^1 . Se F é conservativo, então rot $F\equiv 0$ em Ω .

1-Formas diferenciais

Definição 6.22 Uma 1-forma diferencial em \mathbb{R}^n é uma expressão do tipo $\omega = F'dx^1 + F^2dx^2 + \ldots + F^ndx^n$ é associada a um campo $F = (F^1, \ldots, F^n)$ de \mathbb{R}^n em \mathbb{R}^n .

Definição 6.23 Uma 1-forma diferencial é exata se existe $\varphi: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ tal que $\nabla \varphi = F = (F^1, \dots, F^n)$.

Em \mathbb{R}^2 ou \mathbb{R}^3 é necessário que rot $F \equiv 0$ para ω ser exata.

Exemplo 6.8 $\omega = 2xdx + 2ydy$ é exata. De fato, $\varphi(x,y) = x^2 + y^2$.

Exemplo 6.9
$$\omega = \underbrace{y}_{P} dx + \underbrace{2x}_{Q} dy$$
 não é exata. De fato, $2 = \frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y} = 1$.

Sejam $F:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$ campo conservativo (ou ω exata) e $\gamma:[a,b]\to\Omega$ curva de classe C^1 .

$$\int_{\gamma} F d\gamma = \int_{a}^{b} \langle F \circ \gamma, \gamma' \rangle dt$$

$$= \int_{a}^{b} \langle \nabla \varphi \circ \gamma, \gamma' \rangle dt$$

$$= \int_{a}^{b} (\varphi \circ \gamma)'(t) dt$$

$$= \varphi \circ \gamma(b) - \varphi \circ \gamma(a)$$

Exemplo 6.10 Seja $F(x,y)=\left(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}\right)$. γ fechada de classe C^1 em $\mathbb{R}^2\setminus\{(0,0)\}$.

$$\int_{\gamma} F d\gamma = 0$$

$$\varphi(x, y) = \frac{1}{2} \ln(x^2 + y^2)$$

Exemplo 6.11 Seja
$$F(x,y)=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$$
.
$$\gamma(t)=(\cos t,\, \mathrm{sen} t), t\in [0,2\pi]$$

$$\int_{\gamma} F d\gamma = \int_{0}^{2\pi} \underbrace{\langle F\circ\gamma,\gamma'\rangle}_{1} dt = 2\pi$$

Portanto, F não é conservativo.

Teorema 6.24 Seja $\Omega \subset \mathbb{R}^n$ aberto conexo por caminhos e $F: \Omega \to \mathbb{R}^n$ campo contínuo tal que $\int_{\gamma} F d\gamma$ não depende de γ entre dois pontos dados. Para $a, x \in \Omega, \ \varphi(x) = \int_{\overline{ax} = \gamma} F d\gamma$ é um potencial de F.

Teorema 6.25 Seja $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ um campo contínuo em Ω aberto e conexo por caminhos. São equivalentes:

- (i) F é conservativo.
- $\mbox{\it (ii)} \; \int_{\gamma} F d\gamma = 0, \forall \gamma \; \mbox{\it de classe} \; C^1 \; \mbox{\it fechado}.$

6. Integrais Duplas

- (iii) $\int_{\gamma} F d\gamma$ só depende dos extremos de γ .
- (iv) ω definida por F é exata.

Definição 6.26 Seja Ω conexo por caminhos. Ω é simplesmente conexo se para toda curva $\gamma:[a,b]\to\Omega$ contínua e fechada existe $H:[a,b]\times[0,1]\to\Omega$ contínua tal que

$$\begin{cases} H(t,0) = \gamma(t) \\ H(t,1) = \gamma(a) \end{cases}$$

Teorema 6.27 Se $F: \Omega \to \mathbb{R}^n$ tem rot $F \equiv 0$ e Ω é simplesmente conexo, então F é conservativo.

Apêndice A

Avaliações

A.1 Avaliação 01

Grupo 1: Cálculo em uma variável real.

1. Sejam f uma função real derivável, com derivada contínua e a < b números reais tais que f(a) = f(b) = 0 e f'(a)f'(b) > 0. Prove que existe $c \in]a,b[$ tal que f(c) = 0.

Solução:

f'(a)>0e f'(b)>0existe $B_{\delta_1}(a)$ tal que $f'\left(B_{\delta_1}\left(a\right)\right)>0,$ implica que, $f\left(B_{\delta_1}\left(a\right)\cap \left]a,b\right[)>0.$

f'(b) > 0 existe $B_{\delta_2}(b)$ tal que $f'(B_{\delta_2}(b)) > 0$, implica que, $f(B_{\delta_2}(b) \cap]a, b[) < 0$

fderivável, implica que, fé contínua, implica, pelo TVI, que $c\in]a,b[$ tal que f(c)=0.

2. Sejam f uma função real derivável em um intervalo aberto I e a < b números reais tais que f'(a) < 0 e f'(b) > 0. Prove que existe $c \in]a,b[$ tal que f'(c) = 0. (Note que nada se sabe a respeito da continuidade de f'.)

Dica. No caso de f(b) = f(a) o resultado segue do Teorema de Rolle. Se $f(b) \neq f(a)$ considere todas as possíveis ordens entre 0, f'(a), f'(b) e $\frac{f(b) - f(a)}{b - a}$. Em cada caso construa uma função contínua g(x) relacionada com a definição usual de derivada de f tal que g(a)g(b) < 0. Use o Teorema do Valor Intermediário para g. Agora, use o Teorema do Valor Médio para f num intervalo conveniente e conclua o resultado.

Obs: O resultado acima pode ser generalizado: nas mesmas condições, mas com $f'(a) \neq f'(b)$, para cada $d \in [f'(a), f'(b)]$ existe $c \in [a, b]$ tal que f'(c) = d. Admitindo essa generalização conclua que se f'(x) é crescente (ou decrescente) num intervalo, então, f' é contínua nesse intervalo.

Solução:

f derivável em a, implica que

$$f(x) = f(a) + (x - a) f_1(x)$$

 $f'(a) = f_1(a) < 0$

onde $f_1(x)$ é contínua em a.

 $\Rightarrow \exists B_{\delta}(a) \text{ tal que } f_1(B_{\delta}(a)) < 0$

$$x \in B_{\delta}(a) \Rightarrow f(x) < f(a)$$

 $(x > a)$

f derivável em b

$$f(x) = f(b) + (x - b) f_1(x)$$

 $f'(b) = f_1(b) > 0$

onde $f_1(x)$ é contínua em b.

 $\Rightarrow \exists B_{\delta_2}(b) \text{ tal que } f_1(B_{\delta_2}(b)) > 0$

$$x \in B_{\delta_2}(b) \Rightarrow f(x) < f(b)$$

 $(x < b)$

f(a) e f(b) não são mínimos.

f contínua em [a,b], implica, pelo Teorema de Fermat, que f tem mínimo no interior, $c \in [a,b] \Rightarrow f'(c) = 0$.

 $\underline{2^{\underline{a}} \text{ vers}}$ não tenho o enunciado da questão que foi adaptada em sala de aula.

(a) Se $f(b) \neq f(a)$, então

$$0, f'(a), f'(b), \frac{f(b) - f(a)}{b - a}$$

 $f'(a) < 0 < f'(b) < \frac{f(b) - f(a)}{b - a}$

(é uma das possibilidades), analisemos dois casos:

(i)
$$f'(a) < 0 < \frac{f(b) - f(a)}{b - a}$$

(ii)
$$\frac{f(b) - f(a)}{b - a} < 0 < f'(b)$$

Em

(i) Temos

$$g(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{se } x \neq a \\ f'(a) & \text{se } x = a \end{cases}$$

g é contínua, então,

$$g(a) = f'(a) < 0$$
$$g(b) = \frac{f(b) - f(a)}{b - a} > 0$$

Então, $\exists x_1 \in]a, b[$ tal que $g(x_1) = \frac{f(x_1) - f(a)}{x - a} = 0$ Pelo TVM, $c \in]a, b[$ tal que $\frac{f(x_1) - f(a)}{x - a} = f'(c).$

- (ii) Análogo.
- (b) Dado $d \in]f'(a)\,,f'(b)[$ existe $c \in]a,b[$ tal que f'(c)=d. Defina

$$g(x) = f(x) - dx$$

$$g'(x) = f'(x) - d$$

$$g'(a) = f'(a) - d < 0 (d > f'(a))$$

$$g'(b) = f'(b) - d > 0$$

Implica que, $\exists c \in]a, b[$ tal que g'(c) = 0. Então,

$$0 = g'(c) = f'(c) - d$$

$$\Rightarrow f'(c) = d$$

Ainda, f' crescente, implica que, f' é contínua.

Grupo 2: Cálculo em várias variáveis reais.

- 3. Justifique a existência ou não dos limites abaixo. Determine-os, se possível.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ Seja

$$\gamma_{1}(t) = (t,0) \Rightarrow (f \circ \gamma_{1})(t) = \frac{t^{2}0}{t^{4} + 0} = 0$$

$$\lim_{t \to 0} (f \circ \gamma_{1})(t) = 0$$

$$\gamma_{2}(t) = (t, t^{2}) \Rightarrow (f \circ \gamma_{2})(t) = \frac{t^{2}t^{2}}{t^{4} + t^{4}} = \frac{1}{2}$$

$$\lim_{t \to 0} (f \circ \gamma_{2})(t) = \frac{1}{2}$$

Portanto, o limite não existe.

 $\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$

Solução:

$$\lim_{\substack{(x,y)\to(0,0)\\ (x,y)\to(0,0)}} \frac{x^3+y^3}{x^2+y^2}$$

$$\left(\frac{x^3+y^3}{x^2+y^2} = \frac{x^3}{x^2+y^2} + \frac{y^3}{x^2+y^2} = x\frac{x^2}{x^2+y^2} + y\frac{y^2}{x^2+y^2}\right)$$

$$\lim_{\substack{(x,y)\to(0,0)\\ (x,y)\to(0,0)}} \left(x\frac{x^2}{\underbrace{x^2+y^2}} + y\underbrace{\frac{y^2}{x^2+y^2}}\right) = 0$$

$$\lim_{\substack{(x,y)\to(0,0)\\ \text{limitada}}} \frac{x^3+y^3}{x^2+y^2} = x\frac{x^2}{x^2+y^2} + y\frac{y^2}{x^2+y^2}$$

- 4. Sejam $f:\mathbb{R}^3\to\mathbb{R}$ dada por $f(x,y,z)=x^2+y^2-z$ e γ a curva em \mathbb{R}^3 dada pela interseção das superfícies $x^2+y^2=4$ e $z=y^2$.
 - (a) Determine uma parametrização para γ .
 - (b) Determine a derivada de f ao longo do vetor tangente de γ para um certo t_0 , ou seja, calcule $\frac{\partial f}{\partial y'}\left(\gamma\left(t_0\right)\right)$.
 - (c) Determine os pontos de máximo e mínimo de $(f \circ \gamma)(t)$.

Solução:

(a) Note que as superfícies dadas representam um cilindro e uma parábola, respectivamente, então a parametrização de γ é dada por

$$\gamma(t) = (x(t), y(t), z(t))$$

$$x^{2}(t) + y^{2}(t) = 4$$

$$z(t) = y^{2}(t)$$

$$\begin{cases} x(t) = 2\cos t \\ y(t) = 2\sin t & t \in [0, 2\pi] \\ z(t) = 4\sin^{2} t \end{cases}$$

(b) Por definição, poderiamos usar

$$\frac{\partial f}{\partial \gamma'}\left(\gamma\left(t_{0}\right)\right) = \lim_{h \to 0} \frac{f\left(\gamma\left(t_{0}\right) + h\gamma'\left(t_{0}\right)\right) - f\left(\gamma\left(t_{0}\right)\right)}{h}$$

Mas também podemos usar

$$\frac{\partial f}{\partial u}(x_0) = \langle \nabla f(x_0), u \rangle$$

$$\frac{\partial f}{\partial \gamma'}(\gamma(t_0)) = \langle \nabla f(\gamma(t_0)), \gamma'(t_0) \rangle$$

$$\nabla f(x, y, z) = (2x, 2y, -1) \Rightarrow \nabla f(\gamma(t_0)) = (4\cos t, 4\sin t, -1)$$

$$\gamma'(t_0) = (-2\sin t_0, 2\cos t_0, 8\sin t_0\cos t_0)$$

$$\therefore \frac{\partial f}{\partial \gamma'}(\gamma(t_0)) = -8\sin t_0\cos t_0$$

(c) Temos

$$\gamma: [0, 2\pi] \to \mathbb{R}^3$$

$$f: \mathbb{R}^3 \to \mathbb{R}$$

$$f \circ \gamma: [0, 2\pi] \to \mathbb{R}$$

$$\frac{d}{dt} (f \circ \gamma) (t) = 0$$

 1° modo

$$(f \circ \gamma)(t) = 4\cos^2 t + 4\sin^2 t - 4\sin^2 t = 4\cos^2 t$$

$$\frac{d}{dt}(f \circ \gamma)(t) = -8\cos t \operatorname{sen} t$$

$$\Rightarrow -8\cos t \operatorname{sen} t = 0$$

$$\Rightarrow \cos t = 0 \operatorname{e} \operatorname{sen} t = 0$$

$$\therefore t = \frac{\pi}{2}, \frac{3\pi}{2}, 0, \pi$$

Por

$$\frac{d^2}{dt^2} \left(f \circ \gamma \right) \left(t \right) = 8 \operatorname{sen}^2 t - 8 \cos^2 t = 8 \cos 2t$$

Então

$$t = \pi/2 \Rightarrow (f \circ \gamma)''(\pi/2) = -8 \Rightarrow \pi/2 \text{ max local}$$

$$t = 3\pi/2 \Rightarrow (f \circ \gamma)''(3\pi/2) = -8 \Rightarrow 3\pi/2 \text{ max local}$$

$$t = 0 \Rightarrow (f \circ \gamma)''(0) = 8 \Rightarrow 0 \text{ min local}$$

$$t = \pi \Rightarrow (f \circ \gamma)''(\pi) = 8 \Rightarrow \pi \text{ min local}$$

 2° modo

$$\frac{d}{dt} (f \circ \gamma) (t) = \langle \nabla f (\gamma (t)), \gamma' (t) \rangle = -8 \operatorname{sen} t \cos t$$

$$\frac{d}{dt} = 0 \Rightarrow t = \pi/2, 3\pi/2, 0, \pi$$

5. Mostre que

$$f(x,y) = \begin{cases} \frac{x^2(y-1)}{x^2 + (y-1)^2} & \text{se } (x,y) \neq (0,1) \\ 0 & \text{se } (x,y) = (0,1) \end{cases}$$

é contínua em (0,1) e possui todas as derivadas direcionais nesse ponto. A função f é diferenciável em (0,1)? Justifique.

Solução:

$$\lim_{(x,y)\to(0,1)} f(x,y) = \lim_{(x,y)\to(0,1)} \frac{x^2(y-1)}{x^2+(y-1)^2} = \lim_{(x,y)\to(0,1)} \underbrace{\frac{x^2}{x^2+(y-1)^2}}_{\text{limitada}} (y-1) = 0 = f(0,1)$$

Portanto, f é contínua.

Seja u=(a,b) e $a^2+b^2=1$, então, calculando a derivada direcional, temos

$$\frac{\partial f}{\partial u}(0,1) = \lim_{h \to 0} \frac{f((0,1) + h(a,b)) - f(0,1)}{h}$$

$$= \lim_{h \to 0} \frac{f((ha,1 + hb)) - f(0,1)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h^2 a^2 hb}{h^2 a^2 + h^2 b^2} - 0}{h} = \lim_{h \to 0} \frac{\frac{h^3 a^2 b}{h^2}}{h} = a^2 b$$

Para verificar se f é diferenciável em (0,1), façamos

$$\lim_{(h,k)\to(0,0)} \frac{f\left((0,1)+(h,k)\right)-f\left(0,1\right)-f_{x}\left(0,1\right)h-f_{y}\left(0,1\right)k}{\left\|(h,k)\right\|} = \\ = \lim_{(h,k)\to(0,0)} \frac{\frac{h^{2}k}{h^{2}+k^{2}}-0-0h-0k}{\sqrt{h^{2}+k^{2}}} = \\ = \lim_{(h,k)\to(0,0)} \frac{h^{2}k}{(h^{2}+k^{2})\sqrt{h^{2}+k^{2}}}$$

Seja

$$g(h,k) = \frac{h^2k}{(h^2 + k^2)\sqrt{h^2 + k^2}}$$

então

$$\gamma_{1}(t) = (t, t)$$

$$\lim_{t \to 0} (g \circ \gamma)(t) = \lim_{t \to 0} \frac{t^{3}}{2t^{2} (2t^{2})^{1/2}} = \lim_{t \to 0} \frac{t}{2\sqrt{2} |t|}$$

$$\therefore \lim \nexists$$

6. Admita que $T(x,y)=16-2x^2-y^2$ representa uma distribuição de temperatura no plano xy. Determine uma parametrização da trajetória descrita por um ponto P que se desloca a partir do ponto (1,2) sempre na direção e sentido de máximo crescimento da temperatura.

A. Avaliações

Solução:

Seja
$$\gamma(t) = (x(t), y(t)), t \ge 0$$

T cresce mais rápido na direção do vetor gradiente ∇T . Então,

$$\begin{split} \gamma'\left(t\right) &= \nabla T\left(\gamma\left(t\right)\right) \\ \left(x'\left(t\right), y'\left(t\right)\right) &= \left(-4x\left(t\right), -2y\left(t\right)\right) \\ \left\{x'\left(t\right) &= -4x\left(t\right) \\ y'\left(t\right) &= -2y\left(t\right) \end{split}$$

O ponto inicial é x(0) = 1 e y(0) = 2, então

$$x' = -4x$$

$$\Rightarrow \frac{x'}{x} = -4 \Rightarrow \int \frac{x'}{x} dt = \int -4dt$$

$$\Rightarrow \ln|x(t)| = -4t + c_1$$

$$\Rightarrow |x(t)| = e^{-4t}e^{c_1} e^{-t}|y(t)| = e^{-2t}e^{c_2}$$

Quando t=0, x(0)=1 e y(0)=2, então,

$$1 = x(0) = e^{-4.0}e^{c_1} \Rightarrow e^{c_1} = 1 \Rightarrow |x(t)| = e^{-4t}$$
$$2 = y(0) = e^{-2.0}e^{c_2} \Rightarrow e^{c_2} = 2 \Rightarrow |y(t)| = 2e^{-2t}$$

Então,
$$\gamma\left(t\right)=\left(e^{-4t},2e^{-2t}\right),t\geqslant0$$

Note que $x\left(t\right)=\frac{y^{2}\left(t\right)}{4},$ então, a imagem é

A.2 Avaliação 02

Grupo 1: Regra da cadeia.

1. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função harmônica, isto é

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \equiv 0$$

Mostre que $g(u, v) = f(u^2 - v^2, 2uv)$ é harmônica nas variáveis $u \in v$.

Solução:

Exercício

- 2. Suponha que f(x,t), definida em \mathbb{R}^2 , é uma função real de classe C^2 que satisfaz à equação $f_{xx} = f_{tt}$ para todo $(x,t) \in \mathbb{R}^2$.
 - (a) Mostre que g(u, v) = f(u + v, u v) satisfaz $g_{uv} = 0$;
 - (b) Usando o item anterior determine funções f(x,t) tais que $f_{xx} = f_{tt}$. (Dica: se $g_{uv} = 0$ o que podemos dizer sobre g_v ? A partir disso o que podemos concluir sobre g?)

Solução:

(a) g(u,v) = f(u+v,u-v) satisfaz $g_{uv} = 0$, então,

$$\begin{split} g_{u} &= f_{x}.1 + f_{t}.1 \\ g_{uv} &= f_{xx}.1 + \underbrace{f_{xt}(-1)} + \underbrace{f_{tx}.1} + f_{tt}\left(-1\right) \\ g_{uv} &= f_{xx} - f_{tt} = 0 \end{split}$$

(b) $g_{uv} = 0$, então

$$g_{v} = f_{1}(v)$$

$$g = \int f_{1}(v) dv + f_{2}(u)$$

$$g(u, v) = \int f_{1}(v) dv + f_{2}(u)$$

$$g(u, v) = f(u + v, u - v)$$

$$\begin{cases} x = u + v \\ t = u - v \end{cases} \Rightarrow \begin{cases} u = \frac{x + t}{2} \\ v = \frac{x - t}{2} \end{cases}$$

$$\Rightarrow f(x, t) = \int f_{1}\left(\frac{x - t}{2}\right) \frac{dx - dt}{2} + f_{2}\left(\frac{x + t}{2}\right)$$

Solução:

3. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $\gamma: I \subset \mathbb{R} \to \mathbb{R}^{n+1}$ tal que a imagem de γ esteja contida no gráfico de f. Mostre que o vetor $\gamma'(t_0)$ está no espaço tangente ao gráfico de f no ponto $\gamma(t_0)$ para todo $t_0 \in I$.

$$\begin{split} \gamma\left(t\right) &= \left(x_{1}\left(t\right),...,x_{n+1}\left(t\right)\right) \\ p &\in \operatorname{graf} f \Rightarrow \left(x_{1},...,x_{n},f\left(x_{1},...,x_{n}\right)\right) \\ \Rightarrow \gamma\left(t\right) &= \left(x_{1}\left(t\right),...,x_{n}\left(t\right),f\left(x_{1}\left(t\right),...,x_{n}\left(t\right)\right)\right) \\ \overrightarrow{n} &= \left(\nabla f,-1\right) \text{ normal ao espaço tangente} \\ \gamma'\left(t\right) &= \left(x_{1}'\left(t\right),...,x_{n}'\left(t\right),\left\langle\nabla f,\left(x_{1}'\left(t\right),...,x_{n}'\left(t\right)\right)\right\rangle\right) \\ \left\langle \overrightarrow{n},\gamma'\right\rangle &= \left\langle\left(\frac{\partial f}{\partial x_{1}},...,\frac{\partial f}{\partial x_{n}},-1\right),\left(x_{1}',...,x_{n}',\frac{\partial f}{\partial x_{1}}x_{1}'+...+\frac{\partial f}{\partial x_{n}}x_{n}'\right)\right\rangle = 0 \\ \Rightarrow \overrightarrow{n} \perp \gamma' \\ \Rightarrow \gamma' &\in T_{\gamma\left(t_{0}\right)} \text{graf} f \end{split}$$

Grupo 2: Máximos e mínimos.

4. Determine os pontos do hiperbolóide $x^2 - y^2 - z^2 = 1$ que estão mais próximos da origem. Justifique corretamente por que os pontos encontrados são de fato pontos de mínimo.

Solução:

$$d\left(x,y,z\right) = \sqrt{x^2 + y^2 + z^2}$$

Seja $x^2 = 1 + z^2 + y^2$, então

$$d(x, y, z) = \sqrt{x^2 + y^2 + z^2} = \sqrt{1 + 2y^2 + 2z^2}$$

é mínimo se $y=z=0 \Rightarrow x^2=1 \Rightarrow x=\pm 1$

Portanto, (1,0,0) e (-1,0,0).

outro modo: Multiplicador de Lagrange

Minimizar $d^2\left(x,y,z\right)=x^2+y^2+z^2$ sujeito a $x^2-y^2-z^2=1.$ Seja $g\left(x,y,z\right)=x^2-y^2-z^2-1$

$$\begin{cases} \nabla d^2 = \lambda \nabla g \\ g\left(x,y,z\right) = 0 \end{cases}$$

$$\nabla d^2 = (2x,2y,2z)$$

$$\nabla g = (2x,-2y,-2z)$$

$$\begin{cases} 2x = \lambda 2x \\ 2y = -\lambda 2y \\ 2z = -\lambda 2z \\ x^2 - y^2 - z^2 = 1 \end{cases}$$

$$\Rightarrow y = 0 = z$$

$$\Rightarrow x = \pm 1$$

- 5. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = xy\left(4 x^2 y^2\right)$ e considere a região $Q = \left\{(x,y) \in \mathbb{R}^2 : 0 \leqslant x \leqslant 2 \text{ e } 0 \leqslant y \leqslant 2\right\}.$
 - (a) Determine os pontos críticos de f que são interiores à região Q e classifique-os quanto a pontos de máximos locais, mínimos locais ou de sela;
 - (b) Justifique a existência e determine os valores de máximo e mínimo absolutos de f sobre Q.

Solução:

(a) Pontos críticos em Q:

Pointos críticos em
$$Q$$
:
$$\nabla f = (0,0)$$
Seja $f(x,y) = 4xy - yx^3 - xy^3$

$$\nabla f = (4y - 3x^2y - y^3, 4x - x^3 - 3y^2x)$$

$$\begin{cases} 4y - 3x^2y - y^3 = 0\\ 4x - x^3 - 3y^2x = 0 \end{cases}$$

$$\begin{cases} y(4 - 3x^2 - y^2) = 0\\ x(4 - 3y^2 - x^2) = 0 \end{cases}$$

$$\Rightarrow (x,y) = \begin{cases} (0,0)\\ (1,1)\\ (1,-1)\\ (-1,1) \end{cases}$$

$$f_{xx} = -6xy = f_{yy}$$

$$f_{xx}(1,1) = f_{yy}(1,1) = -6 < 0$$

$$\Rightarrow (1,1) \text{ max local}$$

$$\boxed{f(1,1) = 2}$$

- (b) Temos
 - $f(x,0) = 0, x \in [0,2]$

•
$$g(x) = f(x,2) = -2x^3, x \in [0,2]$$

 $g'(x) = -6x^2 = 0 \Rightarrow x = 0$
 $x = 2 \text{ min de } g$
 $\boxed{f(2,2) = -16}$

- $f(0,y) = 0, y \in [0,2]$
- $f(2,y) = -2y^3$ tem min em (2,2).

Portanto, (1,1) max global e (2,2) min global.

Grupo 3: Teorema da função implícita.

6. Considere a função $F: \mathbb{R}^3 \to \mathbb{R}$ dada por

$$F(x, y, z) = z^{3} + 3z + 2x^{4} + y^{2} - x^{2} - 2y$$

- (a) Mostre que a equação F(x,y,z)=0 define uma função z=f(x,y) de classe C^2 em todo o plano;
- (b) Determine os pontos críticos de f;
- (c) Classifique esses pontos críticos quanto a máximos locais, mínimos locais ou selas;
- (d) Escreva o polinômio de Taylor de ordem 1 para f em torno de (1,1).

Solução:

(a) Devemos provar que z é função de (x,y). Fixemos $(x,y)\in\mathbb{R}^2$. Então, $2x^4+y^2-x^2-2y=k\in\mathbb{R}$.

$$z^{3} + 3z + 2x^{4} + y^{2} - x^{2} - 2y = 0$$

$$z^{3} + 3z + k = 0$$

$$g(z) = z^{3} + 3z + k$$

$$g'(z) = 3z^{2} + 3 > 0$$

Portanto, g é crescente e sobrejetora.

Então, $\exists ! z_0 \in \mathbb{R}$ tal que $g(z_0) = 0$.

$$F(x_0, y_0, z_0) = 0$$

$$\frac{\partial F}{\partial z}(x_0, y_0, z_0) = 3z^2 + 3\big|_{z=z_0} = 3z_0^2 + 3 > 0$$

Pelo Teorema da Função Implícita 3.6, $\exists A \subset \mathbb{R}^2 \in B \subset \mathbb{R}$ tal que $(x_0, y_0) \in A$ e $z_0 \in B$ e $F(x, y, z) = 0, \forall (x, y) \in A$ e $z \in B$. z = f(x, y) e é de mesma diferenciabilidade que F.

$$f_x(x,y) = -\frac{F_x}{F_z} = \frac{-(8x^3 - 2x)}{3z^2 + 3}$$
$$f_y(x,y) = -\frac{F_y}{F_z} = \frac{-(2y - 2)}{3z^2 + 3}$$

onde, z = f(x, y).

A. Avaliações

(b) Pontos críticos

$$\nabla f = (0,0)$$

$$\begin{cases} 8x^3 - 2x = 0 \\ 2y - 2 = 0 \end{cases}$$

$$\Rightarrow x = 0, \pm \frac{1}{2} \text{ e } y = 1$$

Pontos críticos: (0,1); (1/2,1); (-1/2,1)

(c) Temos

$$f_{xx} = \frac{-(24x^2 - 2)(3z^2 + 3) + (8x^3 - 2x).6z.z_x}{(3z^2 + 3)^2}$$

$$f_{xy} = \frac{0(3z^2 + 3) + (8x^3 - 2x).6z.z_y}{(3z^2 + 3)^2} = f_{yx} \text{ (T. Schwarz)}$$

$$f_{yy} = \frac{-2(3z^2 + 3) + (2y - 2).6z.z_y}{(3z^2 + 3)^2}$$

$$f(0,1) = z_0 \text{ tal que } z_0^3 + 3z_0 - 1 = 0$$

$$f_{xx}(0,1) > 0$$

$$f_{xy}(0,1) = 0$$

$$f_{yy}(0,1) < 0$$

$$H_f = \begin{pmatrix} f_{xx} & f_{yy} \\ f_{xy} & f_{yy} \end{pmatrix}$$

 $\det H_f(0,1) < 0 \Rightarrow (0,1)$ sela

$$f_{xx}(1/2, 1) > 0$$

 $f_{xy}(1/2, 1) = 0$
 $f_{yy}(1/2, 1) < 0$

 $\det H_f(1/2,1) > 0 \Rightarrow (1/2,1)$ max local

$$f_{xx}(-1/2, 1) > 0$$

 $f_{xy}(-1/2, 1) = 0$
 $f_{yy}(-1/2, 1) < 0$

 $\det H_f\left(\frac{-1}{2},1\right) > 0 \Rightarrow \left(\frac{-1}{2},1\right)$ max local

(d) Temos

$$\begin{array}{lcl} P_{1}\left(x,y\right) & = & f\left(1,1\right) + f_{x}\left(1,1\right)\left(x-1\right) + f_{y}\left(1,1\right)\left(y-1\right) \\ & = & 0 + \left(\frac{-6}{3}\right)\left(x-1\right) + 0\left(y-1\right) \\ P_{1}\left(x,y\right) & = & -2\left(x-1\right) \end{array}$$

O plano tangente ao gráfico é

$$z = -2x - 2$$
$$2x + z + 2 = 0$$

Referências Bibliográficas

- [1] GUIDORIZZI, Hamilton Luiz. Um Curso de Cálculo. Vol 1. $5^{\rm a}$ Ed. LTC, 2001.
- [2] GUIDORIZZI, Hamilton Luiz. Um Curso de Cálculo. Vol 2. 5ª Ed. LTC, 2001.
- [3] GUIDORIZZI, Hamilton Luiz. Um Curso de Cálculo. Vol 3. 5ª Ed. LTC, 2001.