High throughput phenotyping for the phenomics era

Moritz Lürig*,1, Blake Matthews*

* EAWAG, Department of Aquatic Ecology; 1 ETH Zürich, Center for Adaptation to a Changing Environment (ACE)

Scientific process

Problem description

It is widely acknowledged that the integration of molecular and phenotypic information holds the key to understanding many important biological phenomena. However, while most molecular methods can achieve high throughput ("-omics"), the collection and processing of phenotypic data is still a mostly manual task and thus often painstakingly slow.

Here we present the python package *phenopype*, which builds on other scientific python modules (opency, numpy, pandas,...), creating an integrated environment to process digital images [1] and segment them [2] to extract the desired information [3].

phenopype is available at https://github.com/mluerig/phenopype

Scientific integration nature ecolc Transcorrect Naturalist

Postprocessing and statistics

phenopype

a phenotyping pipeline for python

[1] Pre-processing

Edit image meta-data to make projects comparable and data reproducible.

 Adjust exposure, brightness and colour

[2] Segmentation

Find parts of image that are labels, organisms, arena – core function.

· Otsu- and adaptive binarization

- Movement detection (foregroundbackground subtraction)
- OCR recognition for text using pytesseract

[3] Feature extraction

Save various information to textfiles for further processing and statistics

• Pixel values (HSV, grayscale)

- Morphology (area, shape, landmarks)
- Movement (trajectories, calculate using trackpy)
- Detection of scale and labels

Outlook

Improve data management, e.g. with experimental directory structure (**Exdir**)

Use images to create training data for neural networks, e.g. **Mask R-CNN**

Conclusions

The need for flexibility in the collection of phenotypic data from digital images has led to the development of **phenopype**. The python programming language with its scientifc modules, as well as an extremely active online community has proven extremely useful in the development of this tool. **phenopype** is in alpha stage, but will be developed further to improve user friendlyness while maintaining versatility, which we believe is its key asset.

List of cited python packages (non-standard libraries):

Exdir - Directory structure standard for experimental pipelines https://github.com/CINPLA/exdir Mask R-CNN - object detection and segmentation https://github.com/matterport/Mask RCNN Opencv - Open Source Computer Vision Library https://pypi.org/project/opencv-contrib-python/ Pytesseract - wrapper for Google's Tesseract-OCR https://pypi.org/project/opencv-contrib-python/ Pytesseract - Vrapper for Google's Tesseract - Vrapper for

Moritz Lürig | luerig.net
Twitter / github | mluerig
Doctoral student | ETH Zürich / Eawag
Supervisors | Blake Matthews, Jukka Jokela

