Relations

 $A = \{1, 5, 7, 9, 10\}$: Domain

B = {prime, not prime}: Co-domain

Is $a \in A$ prime or not?

Is $a \in A$ prime or not?

 $R = \{(1, Not prime),$ (5, prime), (7, prime), (9, Not prime), (10, Not prime)}

A binary relation associates elements of one set called domain, with element of another set called co-domain

"Is prime/ not" relation R

Notation:

1 R not prime R(1, not prime)

Images under R

R(1) = {not prime}

A binary relation from set A (Domain) to B (Co-domain) is a subset of A \times B

A relation on a set A is a relation from A to A.

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a \text{ divides } b\}$?

```
A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}
```

```
R = {
```

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a \text{ less equal } b\}$?

```
A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}
```

```
R = {
```

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a = b\}$?

```
A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}
```

Properties of Relations

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

R3 = $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4), (5, 5)\}$, is a relation on $A = \{1, 2, 3, 4, 5\}$

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

R3 = $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4), (5, 5)\}$, is a relation on $A = \{1, 2, 3, 4, 5\}$

- $(1, 1) \in \mathbb{R}$
- $(2,2) \in \mathbb{R}$
- $(3,3) \in \mathbb{R}$
- $(4,4) \in \mathbb{R}$
- $(5,5) \in \mathbb{R}$

reflexive relation

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

```
(1, 1) \in \mathbb{R}
```

$$(2,2) \in \mathbb{R}$$

$$(3,3) \notin \mathbb{R}$$

Not a reflexive relation

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, a)
(1, 1)	
(1, 2)	
(2, 1)	
(2, 2)	
(3, 4)	
(4, 1)	
(4, 4)	

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, a)
(1, 1)	(1, 1)
(1, 2)	(2, 1)
(2, 1)	(1, 2)
(2, 2)	(2, 2)
(3, 4)	(4, 3)
(4, 1)	
(4, 4)	

_	
\in	R
\in	R
\in	R
∉	R

 $\in \mathbb{R}$

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

Not symmetric

R2 = $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4), (5, 5)\}$, is a relation on $A = \{1, 2, 3, 4, 5\}$

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all a, b $\in A$.

A relation R on a set A such that for all a, b \in A, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, a)
(1, 1)	
(1, 2)	
(2, 1)	
(2, 2)	
(3, 4)	
(4, 1)	
(4, 4)	

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, a)
(1, 1)	
(1, 2)	(2, 1)
(2, 1)	
(2, 2)	
(3, 4)	
(4, 1)	
(4, 4)	

pass ∈ R

Not antisymmetric

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

R2 = $\{(1, 1), (1, 2), (1, 4), (2, 2), (3, 3), (4, 4), (5, 5)\}$, is a relation on $A = \{1, 2, 3, 4, 5\}$

(a, b)	(b, a)
(1, 1)	
(1, 2)	(2, 1)
(1, 4)	(4, 1)
(2, 2)	
(3, 3)	
(4, 4)	
(5, 5)	

pass ∉ R ∉ R pass pass pass pass

antisymmetric

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

A relation R on a set A is called transitive

if whenever (a, b) C D and (b, c) C

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)		

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	
	(1,2)	

$$(1, 1) \rightarrow (a, b)$$

a = 1, b = 1

Find the (b, c)s -> find those tuples that start with 1s

A relation R on a set A is called transitive

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	(1,1)
	(1,2)	(1,2)

A relation R on a set A is called transitive

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	(1,1)
	(1,2)	(1,2)

 $\in R$

 $\in R$

A relation R on a set A is called transitive

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	(1,1)
	(1,2)	(1,2)
(1,2)	(2,1)	(1, 1)
	(2,2)	(1, 2)

 $\in \mathbb{R}$

 $\in R$

 $\in \mathbb{R}$

A relation R on a set A is called transitive

if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	(1,1)
	(1,2)	(1,2)
(1,2)	(2,1)	(1, 1)
	(2,2)	(1, 2)

 $\in \mathbb{R}$

 $\in R$

 $\in \mathbb{R}$

R1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ is a relation on $A = \{1, 2, 3, 4\}$

(a, b)	(b, c)	(a, c)
(1, 1)	(1, 1)	(1,1)
	(1,2)	(1,2)
(1,2)	(2,1)	(1, 1)
	(2,2)	(1, 2)
(2,1)	(1,1)	(2,1)
	(1,2)	(2,1)

\in	R
\in	R

(a, b)	(b, c)	(a, c)
(2, 2)	(2, 1)	(2,1)
	(2,2)	(2,2)
(3,4)	(4,1)	(3, 1)
	(4,4)	(1, 2)

∈ R ∈ R ∉ R

...0.

Is the "divides" relation on the set of positive integers reflexive?

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Is the "divides" relation on the set of positive integers symmetric?

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

Is the "divides" relation on the set of positive integers anti-symmetric?

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

Is the "divides" relation on the set of positive integers transitive?

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all a, b, $c \in A$.