武汉大学计算机学院

2020-2021 学年第一学期 2019 级《计算机组成与设计》

期末考试试题 A 卷 (闭卷)

	学号		班级 _		姓名		成绩	
	注意:	所有答	题内容必须	「写在答题组	氏上,凡卫	写在试题或	草稿纸上的-	一律无效。
	、单项	选择题	(每小题	2分,共	20 分)			7
1,	组成计算	算机的 5	个经典部件	牛包括:				+
	A. 控制	制器、数	女据通路、7	字储器、输	入、输出			
	B. 控制	制器、接	5口、存储器	器、输入、	输出		.X	
	C. 处:	理器、数	女据通路、7	字储器、输	入、输出	7	KY	
	D. 处:	理器、接	5口、存储器	器、输入、	输出			
2,	计算机位	体系结构	可中的8个种	韦大思想,	除了"面	向摩尔定律	建的设计"、"	使用抽象简化设
	计"、"注	通过并行	提高性能"	'、"通过流	水线提高	性能"、"追	通过预测提高	性能"、"层次化
	的存储	器设计"	,还包括:		X			
	A. "i	通过接口	提高可用性	上"、"加速力	大概率事件	牛"		
	B. "ji	通过冗余	提高可靠性	生"、"加速力	大概率事件	牛"		
	C. "i	通过接口	提高可用性	主"、"指令集	耒精简化'	,		
	D. "说	通过冗余	提高可靠性	生"、"指令集	耒精简化'	,		
3、	指令b	eq 所在I	的地址为0x	x40000000, ²	转移目标	地址为 0x3	FFFFFF0,贝	训此指令中的偏
	移地址	是()						
	A. 0x	0014	B14	C. 0xF	FEC D	0. 0xFFFE	3	
4、	如果J打	省令当前	FPC 值是 0:	x70001000,	机器码为	J 0x080682	200,则转移地	地为()
	A. 0x70	068200	B. 0x70	1A0800	C. 0x0806	58200 I	O. 0x7000100	0
5、	采用8比	、特单符	号位补码计	算(-111)+	(-34) 时,	下列说法	中正确的是() 。
	A . 运算	结果为	0110,1111,	有溢出	B. 运	算结果为1	,0110,1111,	无溢出
	C. 运算	结果为	0,0110,111	1,无溢出	D. ž	运算结果为	1110,1111, 7	有溢出
6,	32 位二	进制补码	马表示的数位	值范围是()		
	A. -2^3	$^{1}\sim 2^{31}$	B2 ³	2 ~ 2^{32} -1	C	$-2^{31}\sim 2^{31}-1$	D2 ³²	$^{2}\sim 2^{32}$
7、	单周期	数据通路	S需要有独立	立的指令存	储器和数	据存储器,	是因为:()

- A. MIPS 中指令与数据的格式是不同的,因此需要不同的存储器
- B. 使用独立的存储器会比较便宜
- C. 因为处理器在一个周期只能操作一个部件一次,不能在一个周期内对一个存储设备进行两次存取。
- D. 以上都不对
- 8、假设取指令 addi \$s0,\$s0,-1 时,PC 的值为 0x7600c000,则分支地址计算部件计算出的分支目标地址是()。

A. 0x7600c000 B. 0x7600c004 C. 0x7600c008 D. 0x7600c00c 9、假定一个磁盘的转速为7200RPM,磁盘的平均寻道时间为8ms,内部数据传输率为4MB/s,不考虑排队等待时间,则读一个512B 扇区的平均时间大约为()。

A. 12.16ms

B. 12.29ms

C. 16.32ms

D. 16.46ms

10、假定主存地址为32位,按字节编址,主存和Cache之间采用直接映射方式,主存块大小为4个字,每字32位,采用回写(Write Back)方式,则能存放4K字数据的Cache的总容量的位数至少是()。

A. 146K

B. 147K

C. 148K

D. 158K

二、性能计算(每小题5分,共10分)

编译程序对一个应用程序在给定处理器上的性能有极大的影响。假定一个应用程序,在 1GHz 的 CPU 上,采用编译程序 A 和 B 分别编译后得到下表所示数据

使用编译程序	生成动态指令数	应用程序执行时间				
A	1.1×10^9	1.1 秒				
В	1.2×10^9	1.5 秒				

- (1) 分别求使用编译程序 A 和使用编译程序 B 得到的应用程序的平均 CPI。
- (2) 假设开发了一种新的编译程序,只用 8×10^8 条指令,平均 CPI 为 1.2,求这种新的编译程序相对于编译程序 A 和 B 的加速比。

三、指令系统(每个空1分,共15分)

1、对如下 C 语言程序:

int fib (int a, int b, int n) { if (n==0)

return 1;

```
else
 return fib (a+b, a, n-1) + fib (b, a-b, n-2);
}
下面的代码是其对应的 MIPS 过程(压栈和出栈略),将空填写完整。
fib:
     add $s0, $a0, $0
    add $s1, $a1, $0
    add $s2, $a2, $0
    addi $v0, $0, ((1))
    ( (2) ) $s2,$0,e1se
    j ((3))
else: add ((4)),$s0, ((5)
     add ((6)), $s0, ((7))
    addi ((8)), ((9)), -1
    jal fib
    add $t0, $v0, $0
    add $a0, $s1, ( (10)
    sub $a1, $s0, ((11)
    addi $a2,
              $s2,
                      (12)
    jal
        fib
                     $v0, ((14))
    add ( (13)
exit: ((15)
```

四、运算器(共10分)

用二进制浮点数加法计算 12.7510+6.510 之值 (保留 7 位精度);并把计算结果转换成 IEEE754 半精度浮点数 (1 位符号位,5 位阶码,10 位尾数)的二进制位模式和对应的十六进制数。

五、CPU(共 23 分)

1、(8分)单周期 CPU 数据通路如下图:

指令: OR Rd, Rs, Rt

- (1) 对该指令而言,上述图中的控制单元将产生哪些控制信号? (4分)
- (2) 对上述指令而言,将用到哪些功能单元? (2分)
- (3)哪些功能单元会产生输出,但输出不会被上述指令用到?对上述指令来说,哪些功能单元不产生输出? (2分)
- 2、(共15分)带转发和阻塞的流水线示意图如下:

第4页共6页

- 1. 阻塞单元的输入和输出分别是什么? (3分)
- 2. 阻塞单元的输出和输入之间的逻辑关系是什么? (4分)
- 3. 转发单元的输入和输出分别是什么? (3分)
- 4. 转发单元的输出 ForwardA 和输入之间的逻辑关系是什么? (5分)

六、(本题 22 分)

1、(每小题 2 分, 共 8 分) 现有一个采用直接映射策略的 cache, 大小为 4KB, 块大小为 64 字节。有如下 C 语言代码:

double array[LEN];

for (int i = 0; i < 1024; i++)

for (int j=0; j<LEN; j+=STRIDE)

array[j] += 1.0;

- 一个 double 占 8 字节。假设系统中没有其他程序在运行, cache 初始时是空的。
- (1) 若 STRIDE 定义为 1, LEN 从 512 变为 1024 时, 性能有明显的下降, 请分析原因。
- (2)在第1问的条件下,若 cache 改为采用 LRU 的全相联映射策略,程序性能会提升吗? 请解释原因。
- (3) 若 STRIDE 定义为 16, LEN 为 512 时, cache 利用率为多少?若 LEN 增加到 1024,程序性能会出现什么变化?此时 cache 利用率为多少?请解释原因。
- (4)在第3问的前提下,若 cache 改为采用 LRU 的全相联映射策略,程序性能会提升吗? 请解释原因。
- 2、(14分)某计算机采用页式虚拟存储管理方式,按字节编址,虚拟地址为32位,物理地址为24位,页大小为8KB; TLB采用全相联映射; Cache数据区大小为64 KB,按2路组相联方式组织,主存块大小为64B。存储访问过程的示意图如下。

部分页表内容:

有效位	虚拟页号	物理页号	<i>y.</i> .
0	0x7F180	0x002	N
1	0x3FFF1	0x035	···/
0	0x02FF3	0x351	/
1	0x03FFF	0x153	

请回答下列问题。

- (1) 图中字段 A~G 的位数各是多少? TLB 标记字段 B 中存放的是什么信息? (8分)
- (2) 虚拟地址 0x07FFF180 所在的页面是否在主存中? 若在主存中,则该虚拟地址对应的物理地址是什么? 将该主存块装入到 Cache 中时,所映射的 Cache 组号是多少? 对应的 H 字段内容是什么? (3分)
- (3) 假定为该机配置一个 4 路组相联的 TLB, 其它不变, TLB 共可存放 8 个页表项, 若 其当前内容如下图所示,则此时虚拟地址 0x00048BAC 所在的页面是否存在主存中?要 求说明理由。(3分)

组	有	标记	物理	有	标记	物理	有	标记	物理	有	标记	物理
号	效		页号	效		页号	效		页号	效		页号
	位			位			位			位		
0	0	1/-	-	1	0x00001	0x015	0	_	_	1	0x00012	0x01F
1	1	0x00013	0x02D	0	-	-	1	0x10008	0x7E	0		