Technical Documentation – Social Buzz Content Analysis

Overview

This technical documentation provides a detailed walkthrough of how the **Social Buzz Content Analysis** report was developed in **Power BI**. It includes data preparation steps, data modeling logic, DAX measures, and advanced interactive features.

The analysis was conducted as part of the **Accenture Job Simulation Program**, and the objective was to analyze user-generated content and reactions to identify top-performing **content categories**, **sentiments**, and **reaction types**.

I was the **sole contributor**, responsible for handling the complete analytics pipeline from data ingestion to report design.

Process Workflow

CSV Dataset \rightarrow Power Query (Cleaning) \rightarrow Data Modeling \rightarrow DAX Calculations \rightarrow Interactive Visual Design \rightarrow Publishing

Data Preparation (Power Query)

Key Steps:

- Removed unnecessary columns: Index, User ID (to maintain anonymity), and URL from the **Contents** table.
- Standardized data formats across all columns.
- Renamed columns using **user-friendly naming conventions**.
- Removed null values from the Reaction Type column.
- Separated Reaction DateTime into individual **Date** and **Time** columns for model efficiency.
- Merged Reactions (Left Table) and Reaction Type (Right Table) using Left Outer Join on the common key Reaction Type.
- **Disabled query load** for Reaction Type table after merge to optimize performance.

Data Modeling

The data model consists of **three main tables**:

1. Content (Dimension Table)

- Content ID: Unique identifier.
- Content Type: Photo, Video, GIF, Audio.
- Content Category: Animals, Science, Food, Technology, etc.

2. Reactions (Fact Table)

- Content ID: Foreign key from Content.
- Reaction Type.
- Reaction Date and Reaction Time.
- Sentiment: Positive, Negative, Neutral.
- Score: Reaction rating.
- Start of Hour: Created using Grouping feature on Reaction Time (used for hourly trend analysis).

3. Calendar (Calculated Dimension Table)

Created using the following expression:

Date = CALENDAR(MIN(Reactions[Reaction Date]), MAX(Reactions[Reaction Date]))

Additional calculated columns:

- Month = FORMAT('Calendar'[Date], "mmm")
- Month ID = MONTH('Calendar'[Date]) + IF(MONTH('Calendar'[Date]) > 5, -5, 7)
 (Assuming FY starts in June 2020)
- Weekday = FORMAT('Calendar'[Date], "ddd")
- Weekday ID = WEEKDAY('Calendar'[Date], 2)

Additional Modeling Details:

- Relationship Cardinality:
 - o Content and Calendar are **Dimension Tables.**
 - Reactions is the Fact Table.

o All relationships are **One-to-Many** with **Single Cross-filter direction**.

• Sorted Columns:

- o Month sorted by Month ID.
- o Weekday sorted by Weekday ID.

Hidden Fields:

Content ID (from both tables), Reaction Date, Month ID, Weekday ID — hidden from report view.

Hierarchies Created:

- o Date Hierarchy: Month → Weekday.
- o Content Hierarchy: Content Type → Category.
- Sentiment Hierarchy: Sentiment → Reaction Type.

DAX Measures

Here are the key measures used in the report:

```
1. Highlighting Top 5 Categories (Bar Chart Color Logic)
Reaction by Content Category =
VAR All_Category = ALL('Content'[Content Category])
RETURN
  SWITCH(TRUE(),
           RANKX(All_Category, [Reactions], , DESC, Dense) <= 5, "Top 5",
           RANKX(All_Category, [Reactions], , ASC, Dense) <= 5, "Bottom 5",
          "Others")
2. Highlighting Top 5 Reaction Types
Reactions by Reaction Type =
VAR All_Reaction_Type = ALL(Reactions[Reaction Type])
RETURN
  SWITCH(TRUE(),
          RANKX(All_Reaction_Type, [Reactions], , DESC, Dense) <= 5, "Top 5",
          RANKX(All_Reaction_Type, [Reactions], , ASC, Dense) <= 5, "Bottom 5",
          "Others")
3. Highlighting Top Sentiment
Reactions by Sentiment =
SWITCH(TRUE(),
        RANKX(ALL(Reactions[Sentiment]), [Reactions], , DESC, Dense) = 1,
       "Top Sentiment",
       "Others")
```

```
4. Dynamic Detail Page Title (Drill-through Visual)
Detail Page Title =
VAR Content_Type = SELECTEDVALUE('Content'[Content Type])
VAR Content_Category = SELECTEDVALUE('Content'[Content Category])
VAR Sentiment = SELECTEDVALUE(Reactions[Sentiment])
RETURN
  SWITCH(TRUE(),
          HASONEVALUE('Content'[Content Type]), Content_Type,
          HASONEVALUE('Content'[Content Category]), Content_Category,
          HASONEVALUE(Reactions[Sentiment]), Sentiment,
          "All")
5-9. Core Metrics
Zero Reaction Contents = DIVIDE([Contents] - DISTINCTCOUNT(Reactions[Content
ID]), [Contents])
Contents = COUNTROWS('Content')
Reactions = COUNTROWS(Reactions)
Avg Score = AVERAGE(Reactions[Score])
Total Score = SUM(Reactions[Score])
Note: The first three measures above are used strictly for highlighting (e.g., colored bars for
Top/Bottom visuals).
```

Interactive Features & Visual Experience

Implemented Interactions:

- **Bookmark Toggle**: Switch between Top 5 and Bottom 5 categories using **bookmark buttons**.
- **Drill-through Pages**: Right-click on any content type, category, or sentiment to go to a detail page.
- **Drill-down Navigation**: Line chart allows user to explore by **Month** → **Weekday**.
- **Tooltips**: Include Avg Score, Reaction Count, Sentiment.
- Slicers:
 - Content Category
 - Content Type
 - Sentiment
 - Reaction Type

Testing and Quality Assurance

- Verified calculations and cross-filtering by manually slicing and filtering visuals.
- Tested bookmark states and toggle functionality.
- Ensured **drill-through targets** reflect accurate context.
- Validated sentiment and zero-reaction calculations by comparing measure outputs to table views.