Aerial Experimentation and Research Platform for Advanced Wireless

UAS Community Testbed Architecture for Advanced Wireless Research with Open-Source SDRs

Vuk Marojevic, Ismail Guvenc, Rudra Dutta, Mihail Sichitiu vuk.marojevic@msstate.edu

NC STATE UNIVERSITY

UAS Providing Advanced Wireless Service

available or open-source parts and software.

By James Spicer, Adrien Perkins, Louis Dressel, Mark James, Yu-Hsuan Chen, Sherman Lo , David S. De Lorenzo and Per Enge, Stanford University

- Hot-spot wireless access
- Post-disaster communications
- Search and rescue
- Situational awareness
- Jammer detection
- **Detection and tracking** of unauthorized UAS

on Friday as flights started to resume following the closing of the airfield due to a

NSF Names Third PAWR Wireless Research Platform in North Carolina's Research Triangle

SEPTEMBER 18, 2019

https://advancedwireless.org/

X Outline

- → AERPAW Team and Objective
- → AERPAW Radios
- → Experimental Flow
- → Research Examples

Mission

Serve as a unique technological enabler for research in advanced wireless with UAS

AERPAW: Aerial Experimentation and Research Platform for Advanced Wireless

Incubation site: develop unique testbed capabilities subsequently deployed at main sites to support corresponding experiments

AERPAW Team

X AERPAW Investigator Team

Ismail Guvenc PI, NC State (SDRs, 4G/5G standards, PHY/MAC)

NC State (SDN, architecture, CentMesh)

Mihail Sichitiu NC State (drones, architecture, CentMesh)

Brian Floyd NC State (mmW circuits, arrays)

Tom Zajkowski NC State (drone operations, FAA permitting)

Vuk Marojevic MSU (security, SDRs, waveforms, CORNET)

Robert Moorhead MSU (drones, FAA ASSURE, visualization)

Gerard Hayes NC State, WRC (wireless and testing)

Partnerships and Users

PARTNERS

USERS

AERPAW: At the Crossroad of Advanced Wireless and UAS Research

5G is unleashing new, transformative applications and services:

- Driverless cars
- Virtual/augmented reality (VR/AR)
- Internet of things (IoT)
- Unmanned aerial systems (UAS)

(Source: ETRI graphic, from ITU-R IMT 2020 requirements)

Advanced Wireless for Autonomous and BVLOS UAS Operations

Beyond visual line of sight (BVLOS)

Image source: Ericsson

X AERPAW: Applications and Use Cases

Radios and Platforms

Platform Equipment Options for Users

Equipment	Fixed Nodes (E.g., at Towers)	Mobile Nodes (E.g., at UAVs)
SDRs	NI USRP X310/N310/mmW	NI USRP B210/mmW
5G NR	5G gNBs from Ericsson	5G UEs from Ericsson
RF Sensors	Keysight N6841A RF Sensor	Keysight Nemo RF Sensors
IoT Devices	SigFox/LoRa Access Point	SigFox/Lora Sensor
UAS Radar	Fortem SkyDome	N/A
UWB	TimeDomain P410/P440 radios	TimeDomain P410/440 radios
WiFi Sniffers	WiFi Pineapple	WiFi Pineapple

Bring your own device (BYOD) experiments will also be supported if they satisfy criteria

X AERPAW SDRs from National Instruments

- → Up to 160 MHz of bandwidth
- → Frequency range: DC to 6 GHz (with daughterboards)
- → 2 Channels
- Kintex-7 FPGA

USRP N310 (fixed nodes)

- Supports 4 channels for MIMO operation
- → Up to 100 MHz of bandwidth/channel
- → Frequency range: 10 MHz to 6 GHz
- → Stand alone (embedded) or hostbased (network streaming) operation
- → Remote management capability

USRP 5G mmW (expected, *fixed* & mobile nodes)

- → Up to 400 MHz bandwidth
- → Expected center frequency: 28 GHz
- → We anticipate payload will be similar to USRP X310 series
- Considered for both at towers and drones

USRP B205mini / B210 (mobile nodes)

- → Up to 56 MHz of bandwidth
- → Frequency range: 70 MHz to 6 GHz
- → B210 supports 2 Channels for MIMO
- → Spartan-6 FPGA

X Custom Millimeter-Wave Extenders for USRPs

- → mmW beamforming for UAS is critical; however, low-cost beamforming solutions which easily interface with USRP are still being brought to market.
- → We plan to develop custom beamforming modules suitable for UAS using a mixture of commercial off-the-shelf (COTS) parts.

Co-PI Brian Floyd, NCSU

X Communications Experiment Software

Software we will integrate and provision to experimenters

- → srsLTE, 4G now, 5G in the future
- → Open air interface (OAI), 4G and 5G software suites

Experiment support software we will develop

- → Waveforms
- → Adapted protocols for supporting research and standardization

Software developed by users

Keysight RF Sensors at Ground/Aerial Nodes

(a) Drone tracking RF N6820E sensor from Keysight, (b) Example use for UAS localization/tracking. Can be used to sense any other fixed/mobile RF source, e.g. for interference localization.

Keysight Technologies Nemo Handy

Fast, Efficient, On-the-Go Network Measurement and Troubleshooting

Nemo

Keysight 4G/5G network measurement solutions for commercial BS coverage experiments at aerial platforms

SigFox IoT and Fortem Radar

SigFox: Major applications in agriculture (Purdue, NCSU), Signals in the Soil, and broadly in UAS based monitoring

Fortem: A NCDOT IPP partner, detection of unauthorized or non-cooperating UAS

Powerful Sensor

- Effective 3D radar sensor that detects and monitors with precision, day or night and in all weather conditions
- Simple intuitive interface and U/I
- Built for air and ground application

Integrated and Compact

- Integrated high-resolution electronicallysteered patch antenna array
- Integrated inertial navigation system (INS) enables clutter rejection in airborne applications

Simple Connectivity

- · Ethernet output (JSON) for streaming detection & track data to other systems
- · Graphical User Interface (GUI) for radar operation and configuration
- APIs for programmatic radar control
- Ethernet provides up to 1 Gbps data transfer

X UWB Transceivers and WiFi Sniffers

WiFi Pineapple

- → Frequency: 2.4 GHz and 5 GHz WiFi
- Can capture probe requests from all WiFi-equipped mobile devices
- → Applications in search and rescue, occupancy monitoring

Time Domain P440 radios

- → Frequency: 3.1 GHz 4.9 GHz
- → 2 GHz of instantaneous bandwidth
- 2 cm ranging precision over 100

X Fixed Nodes

- → Provides the users a programmable fixed node
- → Consists of:
 - Physical Host (workstation)
 - Radios
 - Antennas
 - Tower
- → Optionally, steerable directional antennas
- → The operator loads VM Image to the fixed node physical host through Testbed Backplane

Mobile Nodes Payload

- → Provides the users a programmable mobile node
- → Consists of:
 - Companion Computer + VMs
 - Radios
 - Antennas
 - Autopilot
- → Optionally, steerable directional antennas
- → The operator loads VM Image to the mobile node physical host through Testbed Backplane

Mobile Nodes Payload

- Cellular Link 1 under user control
- → Cellular Link 2 under operator control
 - Start the experiment
 - Normal termination of experiment
 - Abort the experiment
- → RC Receiver under operator control
 - Abort experiment

Mobile Node Payload

- Multicopters
- Fixed wing
- Helikite
- Rover
- Bus

Experiment Preparation

X AERPAW Short & Long Term Research Examples

X Wireless Security Incubation Site @ MSU

- Aerial communications security
 - PHY layer and protocol security
 - Link and system reliability in harsh signaling environment
 - Counter UAS systems
 - Standardization
- Air interface & protocol design
 - Parameter exposure, incl. perform. measurement counters and KPIs
 - Adaptive waveforms and protocols
 - Smart interferers

Research Park, Mississippi Sate/City of Starkville, MS

We want to work with you!

- → Developer
- → User
- → Collaborator
- → Supporter

Students, postdocs, research faculty, ...

vuk.marojevic@msstate.edu