Operations Research

05. Convex Sets & Functions

Affine Set

- line through x_1, x_2 : all points of the form $x = \theta x_1 + (1 \theta)x_2$, $\theta \in \mathbb{R}$
- affine set contains the line through any two distinct points in the set
- e.g. solution set of linear equations $\{x \mid Ax = b\}$; every affine set can be expressed as solution set of system of linear equations

Convex Set

- line segment through x_1, x_2 : all points of the form $x = \theta x_1 + (1 \theta)x_2, 0 \le \theta \le 1$
- **convex set** contains the line segment between any two distinct points in the set:

$$x_1, x_2 \in S \implies \forall \ 0 \leqslant \theta \leqslant 1, \ \theta x_1 + (1 - \theta) x_2 \in S$$

Convex Combination, Convex Hull

- convex combination of $x_1, x_2, ..., x_k$: any point x of the form $x = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ with $\theta_1 + \theta_2 + \cdots + \theta_k = 1, \ \theta_i \geqslant 0$
- convex hull conv S: sets of all convex combinations of points in S

Convex Cone

- conic (nonnegative) combination of x_1 and x_2 : any point x of the form $x = \theta_1 x_1 + \theta_2 x_2$ with $\theta_i \ge 0$
- **convex cone** set that contains all conic combinations of points in the set

Hyperplane, Halfspace

- hyperplane: set of the form $\{x \mid a^{\top}x = b\}$ with $a \neq 0$
- halfspace: set of the form $\{x \mid a^{\top}x \leq b\}$ with $a \neq 0$
- a: normal vector hyperplanes are affine and convex, halfspaces are convex

Euclidean Ball, Ellipsoid

- (Euclidean) ball with center x_c and radius r: $B(x_c, r) = \{x \mid ||x x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$
- ellipsoid: set of the form $\{x \mid (x-x_c)^\top P^{-1}(x-x_c) \leqslant 1\}$ with $P \in \mathsf{S}^n_{++}$ (P symmetric positive definite), or $\{x_c + A \, u \mid \|u\|_2 \leqslant 1\}$ with nonsingular A

Norm Ball, Norm Cone

- **norm**: a function $\|\cdot\|$ that satisfies
 - $-\|x\| \geqslant 0; \|x\| = 0 \iff x = 0$
 - $\|tx\| = |t| \|x\|, \ \forall \ t \in \mathbb{R}$
 - $\|x + y\| \leqslant \|x\| + \|y\|$
- norm ball with center x_c and radius r: $\{x \, | \, \|x x_c\| \leqslant r\}$
- norm cone: $\{(x,t) | ||x|| \le t\}$
- norm balls and norm cones are convex
- notation for different norms: $\|\cdot\|_2$, $\|\cdot\|_{\text{symb}}$

Polyhedra

- **polyhedron**: solution set of finitely many linear equalities and inequalities $\{x \mid A \ x \leq b, \ C \ x = d\}$, where $A \in \mathbb{R}^{m \times n}, \ C \in \mathbb{R}^{p \times n}$, \leq is componentwise inequality
- intersection of finite number of halfspaces and hyperplanes

Positive Semidefinite Cone

- S^n : set of symmetric $n \times n$ matrices
- $\mathsf{S}^n_+ = \{X \in \mathsf{S}^n \mid X \succcurlyeq 0\}$: set of positive semidefinite (symmetric) $n \times n$ matrices; $X \in \mathsf{S}^n_+ \iff z^\top X z \geqslant 0 \ \forall z$; a convex cone, the **positive semidefinite cone**; Below: $\begin{pmatrix} x & y \\ y & z \end{pmatrix} \in \mathsf{S}^2_+$
- $S_{++}^n = \{X \in S^n \mid X \succ 0\}$: set of positive definite (symmetric) $n \times n$ matrices

Showing a Set is Convex

- apply definition: $x_1, x_2 \in S \implies \theta x_1 + (1-\theta)x_2 \in S, \forall 0 \leqslant \theta \leqslant 1$ recommended only for simple sets
- use convex functions (later)
- show that the set is obtained from other simple convex sets (e.g. hyperplanes, halfspaces, norm balls) by operations that preserve convexity:
 - intersection
 - affine mapping
 - perspective mapping
 - linear-fractional mapping
- mostly using last two

Intersection

- intersection of (any number of) convex sets is convex
- e.g. $S = \left\{ x \in \mathbb{R}^m \ \middle| \ |p(t)| \leqslant 1 \ \forall \ |t| \leqslant \frac{\pi}{3} \right\}, \ p(t) = \sum_{k=1}^m x_k \cos kt$ is convex by $S = \bigcap_{|t| \leqslant \frac{\pi}{3}} \left\{ x \ |\ |p(t)| \leqslant 1 \right\};$ intersection of convex slabs. Below: m = 2.

Affine Mappings

• suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is **affine**, i.e.

$$f(x) = Ax + b$$
 with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

• the **image** of a convex set under f is convex:

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

• the **inverse image** of a convex set under f is convex:

$$C\subseteq \mathbb{R}^m$$
 convex $\Longrightarrow f^{-1}(C)=\{x\in \mathbb{R}^n\,|\, f(x)\in C\}$ convex

- e.g. scaling $aS + b = \{ax + b \mid x \in S\}, a, b \in \mathbb{R}$ is convex
- e.g. projection $\operatorname{proj}(S) = \{x \mid (x, y) \in S\}$ is convex

Perspective and Linear-Fractional Function

• perspective function $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$p(x,t) = \frac{x}{t}$$
 dom $p = \{(x,t) | t > 0\}$

• linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^{\top}x + d}$$
 dom $f = \{x \mid c^{\top}x + d > 0\}$

• images and inverse images of convex sets under perspective and linear-fractional functions are all convex

Separating Hyperplane Theorem

- if C, D are nonempty disjoint $(C \cap D = \emptyset)$ convex sets, $\exists a \neq 0$, b s.t. $a^{\top}x \leq b$ for $x \in C$, $a^{\top}x \geq b$ for $x \in D$
- the hyperplane $\{x \mid a^{\top}x = b\}$ separates C and D
- strict separating requires additional assumptions (e.g. C is closed; D is a singleton)

Supporting Hyperplane Theorem

- suppose x_0 is a boundary point of $C \subseteq \mathbb{R}^n$
- supporting hyperplane to C at x_0 : $\{x \mid a^\top x = a^\top x_0\}$, where $a \neq 0$ and $a^\top x \leqslant a^\top x_0 \ \forall \ x \in C$.
- if C is convex, then there exists a supporting hyperplane at every boundary point of C

Convex Function

- $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if dom f is convex and $\forall x, y \in \text{dom } f$, $0 \le \theta \le 1$, $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- $f: \mathbb{R}^n \to \mathbb{R}$ is **strictly convex** if dom f is convex and $\forall x, y \in \text{dom } f, x \neq y, 0 < \theta < 1, f(\theta x + (1 \theta)y) < \theta f(x) + (1 \theta)f(y)$
- f is **concave** if -f is convex

Example Functions on \mathbb{R}

- convex functions
 - affine: $ax + b, \forall a, b \in \mathbb{R}$
 - exponential: e^{ax} , $\forall a \in \mathbb{R}$
 - power: x^{α} on x > 0, $\forall \alpha \ge 1 \lor \alpha \le 0$
 - power of absolute value: $|x|^{\alpha}$, $\forall \alpha \geqslant 1$
 - positive part (relu): $\max\{x,0\}$
- concave functions
 - affine: $ax + b, \forall a, b \in \mathbb{R}$
 - power: x^{α} on x > 0, $\forall 0 \leq \alpha \leq 1$
 - $-\log x \text{ on } x > 0$
 - entropy: $-x \log x$ on x > 0
 - negative part: $\min\{x,0\}$

Example Convex Functions on \mathbb{R}^n

- affine: $a^{\mathsf{T}}x + b$
- any norm

$$\begin{aligned} &- \|x\|_p = \left(|x_1|^p + |x_2|^p + \dots + |x_n|^p\right)^{\frac{1}{p}}, \ \forall \ p > 1 \\ &- \|x\|_{\infty} = \max\left\{|x_1|, |x_2|, \ \dots, |x_n|\right\} \end{aligned}$$

- sum of squares: $||x||_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$
- max function: $\max(x) = \max\{x_1, x_2, \dots, x_n\}$
- softmax / log-sum-exp: $\log (e^{x_1} + e^{x_2} + \dots + e^{x_n})$

Example Functions on $\mathbb{R}^{m \times n}$

- Let $X \in \mathbb{R}^{m \times n}$ be the variable
- general affine function

$$f(X) = \operatorname{tr}(A^{\top}X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b, \quad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}$$

• spectral norm (maximum singular value) is convex:

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^\intercal X)}$$

• log determinant is concave:

$$f(X) = \log \det X, \quad X \in S_{++}^n$$

Extended-Value Extension

- suppose f is convex on \mathbb{R}^n
- its extended-value extension $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is defined as

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

• this often simplifies notation; e.g. the condition

$$0\leqslant \theta\leqslant 1 \implies \tilde{f}(\theta x + (1-\theta)y)\leqslant \theta \tilde{f}(x) + (1-\theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions combine

- $-\operatorname{dom} f$ is convex
- $-x, y \in \text{dom } f, \ 0 \le \theta \le 1 \Longrightarrow f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$

Restriction of a Convex Function to a Line

• $f: \mathbb{R}^n \to \mathbb{R}$ is convex (concave) $\iff g: \mathbb{R} \to R$,

$$g(t) = f(x+tv), \quad \operatorname{dom} g = \{t \,|\, x+tv \in \operatorname{dom} f\}$$

is convex (concave) in t for all $x \in \text{dom } f$ and $v \in \mathbb{R}^n$

• useful for checking convexity / concavity of multivariate f; e.g. to check the concavity of log determinant: Let $X \in S_{++}^n$, $V \in S_{++}^n$,

$$\begin{split} g(t) &= f(X+t\,V) = \log \det(X+t\,V) \\ &= \log \det \big(X^{\frac{1}{2}} \big(I+t\,X^{-\frac{1}{2}}VX^{-\frac{1}{2}}\big)X^{\frac{1}{2}}\big) \\ &= \log \det X + \log \det \big(I+t\,X^{-\frac{1}{2}}VX^{-\frac{1}{2}}\big) \\ &= \log \det X + \sum_{i=1}^n \log(1+t\lambda_i) \end{split}$$

where λ_i are the eigenvalues of $X^{-\frac{1}{2}}VX^{-\frac{1}{2}}$; g is concave in t

First-Order Condition

- $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable if dom f is open and the gradient ∇f exists at each $x \in \text{dom } f$.
- first-order condition differentiable f with convex domain is convex $\iff f(y) \geqslant f(x) + \nabla f(x)^{\top} (y-x), \ \forall \, x, \, y \in \text{dom } f$
- first order Taylor approximation of convex f is a **global underestimator** of f

Second-Order Condition

• $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** if dom f is open and the Hessian matrix $\nabla^2 f \in \mathsf{S}^n$ exists at each $x \in \mathrm{dom}\, f$:

$$\left\{ \nabla^2 f(x) \right\}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

- **second-order condition** for twice differentiable *f* with convex domain is convex:
 - -f is convex $\iff \nabla^2 f \succcurlyeq 0, \ \forall \ x \in \mathrm{dom} \ f$
 - $-\nabla^2 f \succ 0, \ \forall \ x \in \text{dom} \ f \implies f \text{ is strictly convex}$

Examples

• quadratic function: $f(x) = \frac{1}{2}x^{\top}Px + q^{\top}x + r$ with $P \in S^n$

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$
 convex if $P \succcurlyeq 0$ (concave if $P \preccurlyeq 0$)

• least-squares objective: $f(x) = ||Ax - b||^2$

$$\nabla f(x) = 2A^\top (A\,x - b), \quad \nabla^2 f(x) = 2A^\top A$$
 any A

convex for any A

• quadratic-over-linear function: $f(x,y) = \frac{x^2}{y}, y > 0$

$$\nabla f(x,y) = \begin{pmatrix} \frac{2x}{y} & -\frac{x^2}{y^2} \end{pmatrix}, \quad \nabla^2 f(x,y) = \frac{2}{y^3} \begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix}$$

convex for y > 0

Figure 1: Graph of quadratic-over-linear function $f(x,y) = \frac{x^2}{y}, y > 0$

• log-sum-exp function: $f(x) = \log \left(\sum_{k=1}^{\infty} e^{x_k} \right)$ is convex:

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^\top z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^\top z)^2} z z^\top, \quad z_k = e^{x_k}$$

• to show that $\nabla^2 f(x) \geq 0$, one must verify $v^\top \nabla^2 f(x) v \geq 0 \ \forall v$:

$$v^{\top} \nabla^2 f(x) \, v = \frac{\big(\sum_k z_k v_k^2\big)\big(\sum_k z_k\big) - \big(\sum_k v_k z_k\big)^2}{\big(\sum_k z_k\big)^2} \geqslant 0$$

by Cauchy-Schwarz inequality $(\sum_k z_k v_k^2)(\sum_k z_k) \geqslant (\sum_k v_k z_k)^2$

• geometric-mean function: $f(x) = \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}}$ on x > 0 is concave

Epigraph, Sublevel Set

- α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$: $C_{\alpha} = \{x \in \text{dom } f \, | \, f(x) \leqslant \alpha \}$
- sublevel sets of convex functions are convex sets
- epigraph of $f: \mathbb{R}^n \to \mathbb{R}$: epi $f = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leqslant t\}$
- f is convex \iff epi f is a convex set

Jensen's Inequality

• basic form: if f is convex, then for $x, y \in \text{dom } f, 0 \leq \theta \leq 1$

$$f(\theta x + (1-\theta)y) \leqslant \theta f(x) + (1-\theta)f(y)$$

• extension: if f is convex and z is a random variable on dom f,

$$f\big(\operatorname{E} z\,\big)\leqslant\operatorname{E} f(z)$$

basic form is special case with discrete distribution

$$P\{z=x\} = \theta, \quad P\{z=y\} = 1 - \theta$$

• e.g. for $z \sim N(\mu, \sigma^2)$, let $f(x) = e^x$, then

$$f\big(\operatorname{E} z\big) = f(\mu) = e^{\mu} \leqslant e^{\mu + \frac{\sigma^2}{2}} = \operatorname{E} f(z)$$

Showing Convexity of a Function

- apply definition (often simplified by restricting to a line)
- for twice differentiable functions, show $\nabla^2 f(x) \geq 0$
- show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative multiple, sum, integral
 - composition with affine function
 - pointwise maximum and supremum
 - partial minimization
 - composition
 - perspective

Nonnegative Multiple, Sum, Integral

- nonnegative multiple: αf is convex if f is convex and $\alpha \geqslant 0$
- sum: $f_1 + f_2$ is convex if f_1 , f_2 is convex
- infinite sum: if each of f_i is convex, then $\sum_{i=1}^{\infty} f_i$ is convex
- integral: if $f(x,\alpha)$ is convex in x for each $\alpha \in \mathcal{A}$, then

$$\int_{\alpha \in \mathcal{A}} f(x, \alpha) \, \mathrm{d}\alpha$$

is convex

analogous rules for concave functions

Composition with Affine Function

- f(Ax + b) is convex if f is convex
- e.g.
 - log barrier for linear inequalities

$$\begin{split} f(x) &= -\sum_{i=1}^m \log \left(b_i - a_i^\top x\right) \\ \operatorname{dom} f &= \{x \,|\, a_i^\top x < b_i, \ i = 1, 2, \dots, m\} \end{split}$$

- norm approximation error (any norm)

$$f(x) = ||Ax - b||$$

Pointwise Maximum

- $f(x) = \max \{f_1(x), f_2(x), \dots, f_m(x)\}$ is convex if each f_i is convex vex
- e.g.
 - piecewise linear function

$$f(x) = \max_{i} \left(a_i^\top x + b_i \right)$$

- sum of r largest components of $x \in \mathbb{R}^n$

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

where $x_{[i]}$ is i-th largest component of x. Note that

$$f(x) = \max \left\{ x_{i_1} + x_{i_2} + \dots + x_{i_r} \, \middle| \, 1 \leqslant i_1 < i_2 < \dots < i_r \leqslant n \right\}$$

Pointwise Supremum

- $g(x) = \sup_{y \in \mathcal{A}} f(x, y)$ is convex if f(x, y) is convex in x for each $y \in \mathcal{A}$
- e.g.
 - distance to farthest point in a set C

$$f(x) = \sup_{y \in C} \|x - y\|$$

- maximum eigenvalue of symmetric matrix

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^\top X \, y, \quad X \in \mathsf{S}^n$$

- support function of a set C

$$S_C(x) = \sup_{y \in C} \, y^\top x$$

Partial Minimization

- the function $g(x) = \inf_{y \in C} f(x,y)$ is called the **partial minimization** of f w.r.t. y
- if f(x,y) is convex in (x,y) and C is a convex set, then partial minimization g is convex
- e.g.

- let
$$f(x,y) = x^{\top} A x + 2x^{\top} B y + y^{\top} C y$$
 with $\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix} \geq 0$, $C > 0$; minimizing over y gives

$$g(x) = \inf_{y \in C} f(x, y) = x^{\top} (A - BC^{-1}B^{\top}) x$$

g is convex, hence Schur complement $A - BC^{-1}B^{\top} \succcurlyeq 0$

- distance to a convex set S

$$\operatorname{dist}(x,S) = \inf_{y \in S} \, \|x - y\|$$

Composition with Scalar Functions

- composition of $g:\mathbb{R}^n\to\mathbb{R}$ and $h:\mathbb{R}^n\to\mathbb{R}$ is f(x)=h(g(x)) $(f=h\circ g)$
- composition f is convex if
 - -g convex, h convex, \tilde{h} nondecreasing; or
 - g concave, h convex, \tilde{h} nonincreasing
- proof for n = 1, differentiable q, h

$$f''(x) = h''(g(x))\,g'(x)^2 + h'(g(x))\,g''(x)$$

- e.g.
 - $-f(x) = e^{g(x)}$ is convex if g is convex
 - $-f(x) = \frac{1}{g(x)}$ is convex if g is concave and positive

Composition: General

- composition of $g:\mathbb{R}^n\to\mathbb{R}^k$ and $h:\mathbb{R}^n\to\mathbb{R}$ is $f(x)=h(g_1(x),g_2(x),\dots,g_k(x))$
- composition f is convex if h is convex and for each i, one of the following holds:
 - $-g_i$ convex, \tilde{h} nondecreasing in its *i*-th argument
 - g_i concave, \tilde{h} nonincreasing in its i-th argument
 - $-g_i$ affine
- e.g.
 - $-\log\left(\sum_{i=1}^{m}e^{g_{i}(x)}\right)$ is convex if each g_{i} is convex
 - $-\frac{p(x)^2}{q(x)}$ is convex if p is nonnegative and convex and q is positive and concave

Perspective

• perspective of $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g(x,t): \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ defined as

$$g(x,t) = t \, f\Big(\frac{x}{t}\Big), \quad \operatorname{dom} g = \Big\{(x,t) \; \Big| \; \frac{x}{t} \in \operatorname{dom} f, \; t > 0 \Big\}$$

- g is convex if f is convex
- e.g.
 - $-f(x) = x^{\top}x$ is convex, so $g(x,t) = \frac{x^{\top}x}{t}$ is convex if t > 0
 - $-f(x) = -\log x$ is convex, so the **relative entropy**

$$g(x,t) = t \log t - t \log x$$

is convex on x > 0, t > 0

Convexity Verification: An Example

- test the convexity of $f(x,y) = \frac{(x-y)^2}{1-\max(x,y)}$, x < 1, y < 1
- x, y, and 1 are affine
- $\max(x, y)$ is convex; x y is affine
- $1 \max(x, y)$ is concave
- $\frac{u^2}{v}$ is convex, monontone decreasing in v for v > 0
- f is composition of $\frac{u^2}{v}$ with $u=x-y,\,v=1-\max(x,y),$ hence convex

Convexity Verification: A Caveat

- test the convexity of $f(x) = \sqrt{1+x^2}$
- $\sqrt{\cdot}$ is concave
- 1, x^2 are convex
- $\sqrt{1+x^2}$ is ... indefinite?
- but, note that $\|\cdot\|_2$ is convex
- $\sqrt{1+x^2}$ can be represented as the 2-norm of vector (1,x) $\|(1,x)\|_2$, hence is convex
- The general composition rules are only sufficient, not necessary