

Recursive Algorithms

Recursion

Is when a function makes a call to itself.

We keep defining the problem as simpler versions of itself, until we get to the base case.

It works only if:

- + There is a base case defined.
- + Parameters to the function on successive calls **change** (towards the base case).

Recursive algorithms: a classic example

The factorial function

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1$$

```
FACTORIAL(n)
  if n = 1
    return 1
  else
    return n * FACTORIAL(n-1)
```

- The above is a recursive algorithm implementation of the factorial
 - Repeated calls to FACTORIAL(), each time applied on a smaller number, are nested
 - Until a stopping case (n = 1) is reached

https://freesvg.org/factorial

Recursive algorithms: Binary Search Trees

```
INORDER(node)
  if node != NIL
    INORDER(node.left)
    print node.key
    INORDER(node.right)
```

```
SEARCH(node,key)
  if node==NIL or key==node.key
    return node
  if key < node.key
    return SEARCH(node.left,key)
  else
    return SEARCH(node.right,key)</pre>
```

Recall:

- BSTs are essentially recursive data structures
- · So,
 - The algorithms for operations on them can be defined recursively in a natural way
 - However, recall that alternative iterative implementations exist (and can be more efficient!)

Finally, some real code!

 Let's looks at factorial code in Python (moodle chapter for this topic)

General principles for recursive algorithms

When calling itself, a recursive function makes a <u>clone</u> and calls the clone with appropriate parameters

A recursive algorithm must always

- Rule 1: reduce the size of the input, each time it is recursively called
- Rule 2: provide a stopping case (terminating condition)

When calling itself, a recursive function makes a clone and calls the clone with appropriate parameters

A recursive algorithm must always

- Rule 1: reduce size of data set, or the number its working on, each time it is recursively called
- Rule 2: provide a stopping case (terminating condition)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```

```
SEARCH(node,key)
  if node==NIL or key==node.key
    return node
  if key < node.key
    return SEARCH(node.left,key)
  else
    return SEARCH(node.right,key)</pre>
```

```
INORDER(node)
  if node != NIL
    INORDER(node.left)
    print node.key
    INORDER(node.right)
```

Writing Recursive Functions – Tips

Write the base case first

- For the rest of the cases, work out how to "reduce" them to simpler cases
 - > Arguments/input should "converge" towards the base case
- Think/visualize in terms of small problem sizes (e.g. FACTORIAL(3))
 - Confirm that the base case works
 - Confirm that these specific, small non-base-case cases work
 - "Convince" yourself that generalizing to arbitrary input sizes will work!

```
def factorial(x):
    if x==1:
        return 1  # stop, it's 1
    else:
        return x * factorial(x-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```

- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


- Graphical method to visualise the execution of recursive algorithms
- Drawn as follows:
 - A box for each recursive call
 - An arrow from each caller to callee (in black)
 - An arrow from each callee to caller showing return value (in blue) (we will often omit this)
- Example with FACT(4)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```


LINEAR AND BINARY RECURSION

Linear recursion

- At most one recursive call at each invocation
- The amount of space needed, to keep track of all nested calls, grows linearly (wrt the size of the input)
 - The recursion trace is a visualization of *space requirements*
- Example: FACTORIAL(n)
 - A <u>single</u> recursive call to <u>FACTORIAL(n-1)</u>

```
FACTORIAL(n)
  if n = 1
    return 1
  else
    return n * FACTORIAL(n-1)
```


Another example: summing the elements of an array

- Input: An array A of integers and integer $n \ge 1$, such that A has at least n elements
- Output: The sum of the first n integers in A

LINEAR-SUM(A,n)

Example: sum of array elements

- Input: An array A of integers and integer $n \ge 1$, such that A has at least n elements
- Output: The sum of the first n integers in A

```
LINEAR-SUM(A,n)
  if n = 1 then
    return A[0]
  else
    return LINEAR-SUM(A,n-1) + A[n-1]
```

- Does LINEAR-SUM satisfy our "recursion rules"?
 - Rule 1: input reduced at each recursive call
 - Rule 2: valid terminating condition

Yes: see 2nd return statement

Yes: if statement

Sum of array elements: recursion trace

• Call LINEAR-SUM(A,3) on input A = [1,3,8,6,4,3]

```
LINEAR-SUM(A,n)
  if n = 1 then
    return A[0]
  else
    return LINEAR-SUM(A,n-1) + A[n-1]
```


Binary recursion

Binary recursion

- · When an algorithm makes two recursive calls, we say that it uses binary recursion
 - To solve two halves of some problem
- Classic example: Fibonacci numbers are a sequence of numbers defined by
 - Every number in the sequency is the sum of previous two numbers
 - $F_n = F_{n-1} + F_{n-2}$ for n > 1 with $F_0 = 0$ and $F_1 = 1$
- · In pseudocode

Let's get coding

yeah yeah yeah...

Recursion tree

 Visualising each recursive call in an algorithm using binary recursion results in a (binary) recursion tree

Other BINARY recursive algorithms we have seen already (in the world of Binary Trees)

```
INORDER(node)
  if node != NIL
    INORDER(node.left)
    print node.key
    INORDER(node.right)
```

Because:

 ... a binary tree is a recursive data structure (you can define a binary tree in term of smaller binary trees),

· ...SO:

- ...the algorithms for operations on them can often be defined recursively too

Tail Recursion

Tail recursion

- Recursion is useful tool for designing algorithms with short, elegant definitions
- Recursion has a cost
- Need to use memory to keep track of the state of each recursive call (boxes in recursion traces)
- Overcoming the cost:
 - When memory is of primary concern, useful to be able to derive non-recursive algorithms from recursive ones
 - Using iterations (e.g. for or while loops)
 - In some cases, we can gain memory efficiency by simply using tail recursion
 - Less to store for each recursive call

- An algorithm uses tail recursion when:
 - recursion is linear and
 - recursive call is its very last operation

Why Tail Recursion is "good" (and easy to replace with a loop)

Tail Recursion

https://en.wikipedia.org/wiki/Tail_call

https://www.geeksforgeeks.org/tail-recursion/

Tricks of the trade: Recursion to Iteration, Part 1: The Simple Method, secret features, and accumulators

http://blog.moertel.com/posts/2013-05-11-recursive-to-iterative.html

Why Tail Recursion is "good" (and easy to replace with a loop)

Tail Recursion

https://en.wikipedia.org/wiki/Tail_call

https://www.geeksforgeeks.org/tail-recursion/

Tricks of the trade: Recursion to Iteration, Part 1: The Simple Method, secret features, and accumulators

http://blog.moertel.com/posts/2013-05-11-recursive-to-iterative.html

Example: reversing the elements of an array

- Input: An array A and integer indices $i,j \ge 1$
- · Output: The reversal of the elements in A starting at index i and ending at j

```
REVERSE-ARRAY(A,i,j)
  if i < j then
    SWAP(A[i],A[j])
    REVERSE-ARRAY(A,i+1,j-1)</pre>
```

Recursive call is the last operation

• For REVERSE-ARRAY(A,0,4) with A = [3,4,6,1,0]

```
REVERSE-ARRAY(A,i,j)
  if i < j then
    SWAP(A[i],A[j])
    REVERSE-ARRAY(A,i+1,j-1)</pre>
```


- Note: No operations performed on the blue (return) arrows
 - This is a sign of TAIL RECURSION
 - Because there is no operation on the return path, we can easily replace a tail-recursion with loops

Conversion to non-recursive algorithm

- Non-recursive algorithm are also called iterative
- Algorithms using tail recursion can be converted to a non-recursive algorithm by iterating through repeated operations of functions, rather than calling the function again and again explicitly
- In general, we can always replace recursive algorithm with an iterative one, but often (not always) the recursive solution is shorter and easier to understand
- Example

```
REVERSE-ARRAY(A,i,j)
  if i < j then
    SWAP(A[i],A[j])
    REVERSE-ARRAY(A,i+1,j-1)</pre>
```



```
REVERSE-ARRAY-ITER(A,i,j)
while i < j
SWAP(A[i],A[j])
i := i + 1
j := j - 1</pre>
```


Have you noticed?

- Recall: Recursion in Functions
 - Define a function in terms in a way that it calls itself,
 while every time moving towards a *smaller* problem size
 - Define a *stopping case* where the function is defined directly, without any recursive calls.

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```

Have you noticed?

- Recall: Recursion in Functions
 - Define a function in terms in a way that it calls itself,
 while every time moving towards a *smaller* problem size
 - Define a stopping case where the function is defined directly, without any recursive calls.
- Recall: Sequences defined via Recurrence Relations
 - We specify the first (or first few elements), and then
 - Define a recurrence relation on how to calculate subsequent terms using previous terms.

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```

$$a_n = a_{n-1} + 2$$
 (kecurrence Relation) $a_0 = 0$ (Initial Condition) $\{a_n\} = 0,2,4,6,...$ (Resulting Septences i.e. "Solution")

Have you noticed?

- Recall: Recursion in Functions
 - Define a function in terms in a way that it calls itself,
 while every time moving towards a *smaller* problem size
 - Define a stopping case where the function is defined directly, without any recursive calls.

Recall: Sequences defined via Recurrence Relations

- We specify the first (or first few elements), and then
- Define a recurrence relation on how to calculate subsequent terms using previous terms.

Mathematical Induction:

- Prove something for a base case
- Prove that you can go from a generic case P(k) to its next one, P(k+1)

```
FACT(n)
  if n = 1
    return 1
  else
    return n * FACT(n-1)
```

$$a_n = a_{n-1} + 2$$
 (kecurrence Relation) $a_0 = 0$ (Initial Condition) $\{a_n\} = 0,2,4,6,...$ (Resulting Sequences i.e. "Solution")

To prove that P(n) is true for all positive integers n, we complete these steps

- Basis Step: Show that P(1) is true.
- Inductive Step: Show that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.