	Corrector: Exercia 1 (2) (iii)
	De la solution présenter dans le conigé est fausse, même dans la version 2. Voici donc une correction de la correction de la correction. L'exercice s'avrère plus difficile que prévu : ne vous inquietez pas si vous n'avez
	- L'exercise il ene correction de la correction de la correction.
	pas reusi à le laire! - defliate que prevu : ne vous inquietez pas si vous n'avez
0	Rappel de la madelia ta (1)
	on modelise l'attribution de a boute que Exercice 7 de la fiche de TD 1):
	permutation de [1, n], 6, avec 6011 : la la la la la par une
9	Rappel de la modelisation (la même que l'Exercice 7 de la fiche de TD 1): on modelise l'attribution de n boutes numéroleés dans n une numéroleés par une permutation de [[1,n]], 6, avec 6°(1) = j si la boute (i) est dans l'une 1.
	il existe is ib e la all the que 6 a exactement le pointe fixes:
	£ y=k} revient donc à dire que 6 a exactement k pointe fixes: il existe i, ik ∈ [1, n] tels que 6(in)=in 6(ik)=ik et 6(j) ≠ j pour j ∈ E:= [1, n] Min.···k] Fix (in ib) = 1 = 1 = exact
	$(1=R) = \frac{1}{p!} \sum_{i=1}^{n} F_{ix}(i_1,,i_k) = \frac{1}{p!} F_{ix}(i_1,,i_k) $
	mais and traiters A Permutations de Traite
	le cas n'y a général.
	First, P(Y=k) = 1 [Fix (inik)] = ik et c(j) \neq j \text{ E:=[[4,n]] \lambda inik}] avec n=6, mais nous traiterans le cas n>a général. nombre de permutations de permutations de permutations de n'èlements Pour calculer Fix (inik) , on va s'appuyer sur la ensembles:
	Pour calculer 1 = exact
	Pour calcular Fix (i,-ik) , on va s'appuyer sur livensembles:
	in -ik (mais south)
	Fix (i,ik):= {G \in G \in G'(i) = i, G(ik) = ik} des permutations qui fixent On a done. \(\in
D	On a done: Fix(i,ik) = Fix(i,ik) U { 6 & Fix(i,ik) avec an moins k+1 points fixed} On sait calcular Fix(i,ik) (if exercise 7 TM)
	On oil In
-	On sait calculer Fix(in-ik) (f. exercic 7, TD1): (*)
	il suffit de specifié la permutation des n-k elements de E pour specifié 6 E Fix (i.i.k), donc Fix (i.i.k) = (n-k)!
	donc Fix(i,ik) = (n-k)! = (n-k)!
-	Pour l'autre ensemble, on voit que (*) = U Fix (in-ik+1), mais cette reunion n'est pas disjointe (on ne peut donc pas dire que le cardinal est la somme des cardinaux des chiments chans atte inters. Après, si & appartient à doux termes de ette.
	mest pas disjounte (on ne peut dons on like E
	mais la de montrale attenumion) les aire que le cardinal est la somme des cardinaux
	Après, si & appartient à deux termes de cotte reunion, elle auxa au moins R+2 points fixes, etc. En prenant le cardinal, on obtient avec la formule du crible (ou Poincoré): [Fix (in:ik)] = [Fix(in:ik)] [5] [1] [1] [1] [1] [1] [2] [1]
	fixed , etc. For most be and the little of the reunion, elle awa au mound by a minte
	Fix (in ib) Fix (i)
	$ Fix (i_1i_k) = Fix (i_1i_k) - \left[\sum_{i_{k+1} \in E} Fix (i_1i_{k+1}) + \sum_{i_{k+1} \in E} Fix (i_1i_{k+2}) + \cdots \right]$ $ Fix (i_1i_k) = Fix (i_1i_k) - \left[\sum_{i_{k+1} \in E} Fix (i_1i_{k+1}) + \sum_{i_{k+1} \in E} Fix (i_1i_{k+2}) + \cdots \right]$
	$+ (-1)^{n-k+1} $ $ F_{ix}(\hat{i}i_n) $ $ F_{ix}(\hat{i}i_n) $
	They in EE
	Thank Kin

Donc :

$$= \sum_{j=0}^{n-k} (n-k+j)! \binom{n-k}{j} (-1)^{j} = (n-k)! \sum_{j=0}^{n-k} \frac{(-1)^{j}}{j!}$$

Finalement, on obtient:

$$P(Y=k) = \frac{1}{n!} \sum_{i_1,\dots,i_k \in \mathbb{F}_{i_n}} |Fix(i_1...i_k)|$$

$$= \frac{(n-k)!}{n!} \left(\sum_{j=0}^{n-k} \frac{(-1)^j}{j!} \right) \sum_{1 \leq i_1 < \dots < i_k \leq n} 1$$

$$P(Y=k) = \frac{1}{n} \sum_{j=0}^{n-k} \frac{(-1)^j}{j!} \sum_{1 \leq i_1 < \dots < i_k \leq n} 1$$

$$P(Y=k) = \frac{1}{k!} \sum_{j=0}^{n-k} \frac{(-1)^{j}}{j!}.$$