端侧视频画质增强的软硬件设计 方法研究

路航

(副研究员、中科院青促会成员、计算所新百星)

移动端对视频画质增强的需求

"5G市场,高清拍照和高清视频是用户的核心需求"。毫无疑问,未来用户在拥有更好的网络下,手机的使用需求才会进一步提高,也将改变用户对社交网络上使用的图片、视频质量要求更高。这与OPPO一直主打的影像概念是一致的。

移动端对视频画质增强的算法要求

视频任务的需求

视频处理任务的需求

实时性

直播、会议等任务

占用计算资源少

降低延迟,提升用户体验

通用性

实际场景比较复杂, 图像的退化因素多 种多样

适用移动设备

移动终端的普及

移动端视频画质增强

移动端视频画质增强

端-边侧部署AI模型的痛点问题

训练结果:

指标	量化前	Int8量化后	Uint8量化后 (参数未融合)
参数量	116 KB	116 KB	458 KB
计算量	6.345 G	6.345 G	106 G
PSNR	31.03 db	30.96 db	28.93 db
SSIM	0.9188	0.9176	0.8522

原视频

int8

uint8

量化训练时间: 8块V100, 3天!

■ 通用性不好

- ▶ 支持模型种类单一, 换场景就要换平台 ⊗
- ⊌ 位宽范围小,大多(u)int8。fp32/16无法满足帧率要求 ⊗

- ・支持数据位竞——定点数: 1~24bit, 浮点数: fp32/16, bfloat16
- ・在同一个计算引擎中实现混合精度计算
- ・自动识别并充分利用比特级稀疏性进行加速
- ፟●通用性
 - ・定点、浮点加速集成于同一计算引擎,无需设计额外硬件支持所有AI场景
- У 搭载硬件剪枝

MICRO'21 | Oct 18-22nd, 体系结构领域顶会! 清北中科院, 天 津大学与腾讯上榜!

原创 CS Conferences CS Conferences 2021-10-13 10:30

收录干话题

#近期顶会

66个 >

→动动大拇指→ 🧖 🥭 🖠

炽炽关注哦~↑

讨论微体系结构、编译器、硬件/软件接口以及高级计算和通信系统设计的主要论坛。MICRO是CCF A类会议,H5指数45, Impact Score高达6.76, 在体系结构领域具有极高的评价。MICRO的目标是将 微体系结构、编译器和系统领域的研究人员聚集在一起进行技术交流。

፟ 技术特点:

■ MAC计算整体输出结果,无中间结果;利用bit中暴露的大量稀疏性加速

■ 峰值算力比较:

₱ fp32: <u>0.36TFLOPs/W</u>; INT8: <u>1.3TOPs/W</u> @TSMC 28nm

	Accelerator ASICs				GPUs				
Chip	Eyeriss [14]	SCNN [32]	Stripes [22]	Laconic [36]	Bitlet (Ours)		Titan V	Titan Xp	Tegra X2
PEs/Cores	168	64	4096	192	32		5120	3840	256
Precision	16b	16b	1~16b	1~16b	fp32/16, 1~24b		fp32/16, 8b	fp32, 8b	fp32/16
Technology	65nm TSMC	16nm TSMC	65nm TSMC	65nm TSMC	28nm TSMC	65nm TSMC	12nm TSMC	16nm TSMC	16nm TSMC
Freq. (MHz)	250	1000	980	1000	1000		1455	1582	854
PEAK Performance (GOPs)	23.1	2000	_	_	204.8 (fp32) 372.35 (16b) 744.7 (8b)		14900 (fp32) 29800 (fp16)	12150 (fp32)	750.1(fp32) 1330 (fp16)
Power	278mW	_	_	_	570mW(fp32) 432mW(16b) 366mW(8b)	1829mW(fp32) 1390mW(16b) 1199mW(8b)	250W	250W	15W
PEAK Power Efficiency (GOPs/W)	83.09	_	_	441 (16b) 805 (8b)	359.15 (fp32) 667.97(16b) 1335.93 (8b)	111.97 (fp32) 267.87 (16b) 621.10 (8b)	59.6(fp32) 119.2(fp16)	48.6 (fp32)	50.0 (fp32) 88.7(fp16)
Area (mm ²)	12.25	7.9	122.1	1.59	1.54	5.80	_	_	_

■ FPGA上,本IP和赛灵思浮点数IP计算时间比较(<u>64个浮点MAC</u>):

资源消耗	本IP	赛灵思浮点乘法IP v12.0			
LUT	2558	35,773	34,083	33,270	33,419
FF	2040	8505	21,217	35,462	41,674
最大频率	300MHz	100MHz	200MHz	300MHz	400MHz
延迟	40	6	24	48	73

模型	指标	不剪枝	硬件剪枝		
ResNet-50	Top-1 (%)	76.13	76.01		
MobileNetV2	Top-1 (%)	71.88	71.29		
YoloV3	mAP 0.5:0.95	0.336	0.338		
Multi-Pose	mAP 0.5:0.95	0.59	0.57		
lapSRN	PSNR	31.65	31.44		
	SSIM	0.90	0.89		
DCPDNet	SSIM	0.78	0.78		
DenseNet-161	Top-1 (%)	77.14	77.14		
FCOS	mAP 0.5:0.95	0.38	0.38		
CartoonGAN	下一页直接比较视觉效果				
Transformer	BLEU4	40.83	40.92		
C3D	Top-1 (%)	97.31	97.27		
D3DNet	PSNR	36.05	36.04		
	SSIM	0.94	0.94		

■ 直接效果比较(CartoonGAN):

Original Images w/o Cartoon Style Transfer

抖音爆火漫画脸教程,看看你的手机支持吗?

■ 直接效果比较(LapSRN):

Original Image **不剪枝 硬件剪枝**

■ 硬件剪枝的速度提升 (64个浮点MAC的cycle数):

模型	不剪枝	硬件剪枝	速度提升
ResNet-50	62.5	58.88	6%
MobileNetV2	72.5	63.19	13%
YoloV3	81.76	67.71	17%
Multi-Pose	74.29	66.64	10%
lapSRN	85.09	76.59	10%
DCPDNet	71.92	62.00	14%
DenseNet-161	56.5	55.06	3%
FCOS	77.58	68.62	12%
CartoonGAN	63.38	58.81	7%
Transformer	61.34	41.02	33%
C3D	64.41	56.31	13%
D3DNet	69.58	63.0	9%

- ■云-边-端通用的加速方法 (即将推出IP)
 - ▶ Features: 一个硬件加速IP, 云-边-端多场景使用。
 - · 通用性 (General Purpose) ——平衡能效和通用性,多种精度支持集成于同一个加速引擎,高度灵活可配置,无额外硬件设计开销。
 - · 多精度支持 (multi-precision support) ——支持浮点数 (fp32/16, bfloat16) ,定点数 (1~24bit位宽) ,实现混合精度计算; 使用本IP在浮点数模式下的推理时间与普通加速IP的int8推理时间相当;
 - · 硬件剪枝进一步提升推理性能——业界还没有带硬件剪枝技术的NPU!

感谢各位聆听!

路航

(副研究员、中科院青促会成员、计算所新百星)

