Câu 1: Cho phương trình $f(x) = 7x^2 + 2.4x - 1 - 1.2\cos\left(\frac{\pi x}{2}\right) = 0$ có khoảng cách

ly nghiệm [0,1]. Dùng phương pháp lặp Newton, chọn x_0 theo điều kiện Fourier, tính nghiệm gần đúng x_1 và đánh giá sai số Δx_1 theo công thức đánh giá sai số tổng quát

<u>Kết quả:</u> $x_1 = ----- \Delta x_1 = -----$

Câu 2: Cho hệ phương trình $\begin{cases} -25x_1 + 3x_2 = 5 \\ -x_1 + 17x_2 = 13 \end{cases}$. Với $x^{(0)} = [0,0]^T$, hãy tìm vectơ

x⁽³⁾ bằng phương pháp Gauss – Seidel

<u>**Kết quả:**</u> $x_1^{(3)} = \cdots \qquad x_2^{(3)} = \cdots$

Câu 3: Cho $g(x) = \begin{cases} 3.5 - 1.6x + 2.2x^3, & 0 \le x \le 2 \\ A + B(x-2) + C(x-2)^2 + D(x-2)^3, & 2 \le x \le 3 \end{cases}$. Tîm A, B, C,

 $D \stackrel{\circ}{\text{de}} g(x)$ là hàm nội suy spline bậc 3 tự nhiên trên [0,3]

<u>Kết quả:</u> A = ----; B = -----; C = -----; D = ----

Câu 4: Cho hàm spline bậc ba g(x) nội suy bảng số

X	0	1	
у	1.4	2.8	

và thỏa điều kiện g'(0) = g'(1) = 1. Tính giá trị của hàm g(x) và đạo hàm g'(x) tại điểm x = 0.5

<u>Kết quả:</u> $g(0.5) = \dots \qquad g'(0.5) = \dots$

Câu 5: Hàm f(x) cho bởi bảng

Dùng công thức Simpson mở rộng tính gần đúng tích phân $I = \int_{0}^{1} x f^{2}(x) dx$

Kết quả: I = -----

Câu 6: Xét bài toán Cauchy $\begin{cases} y' = x \cos y - x^2 + 1, \ x \ge 1 \\ y(1) = 0.5 \end{cases}$. Sử dụng công thức

Runge – Kutta cấp 4, hãy xấp xỉ giá trị của hàm y(x) tại x = 1.25 với bước h = 0.25

Câu 7: Xét bài toán Cauchy $\begin{cases} x'' = t(x')^2 + x - t^2 + 1, \ t \ge 1 \\ x(1) = 0.5, \ x'(1) = 0.25 \end{cases}$. Thực hiện phép đổi

biến y(t) = x'(t) và sử dụng công thức Euler, hãy xấp xỉ giá trị của hàm x(t) và đạo hàm x'(t) tại t = 1.25 với bước h = 0.25

<u>Kết quả:</u> $x(1.25) = \dots x'(1.25) = \dots$

Câu 8: Xét bài toán biên: $\begin{cases} y'' + xy' - 4y = 4x, \ 1 \le x \le 2 \\ y(1) = 2.7, \ y(2) = 1.2 \end{cases}$

Bằng phương pháp sai phân hữu hạn, hãy xấp xỉ giá trị của hàm y(x) trong đoạn [1,2] với bước h = 0.25

<u>Kết quả:</u> y(1.25) = -----; y(1.5) = -----; y(1.75) = ------;

Câu 9: Xét phương trình Laplace: $\frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = x^2 y + y^2 + 1$ đối với

hàm ẩn 2 biến u(x,y) trong miền chữ nhật $D=\left\{1\leq x\leq 4,3\leq y\leq 6\right\}$ thỏa các điều kiện biên: $\begin{cases} u(1,y)=2.4\,y, & u(4,y)=7.2\,y\\ u(x,3)=4.8\,x+2.4, & u(x,6)=9.6\,x+4.8 \end{cases}.$ Sử dụng phương pháp sai phân hữu hạn,

hãy xấp xỉ giá trị của hàm u(x,y) trong miền D với bước $\Delta_x = \Delta_y = h = 1$

Câu 10: Xét phương trình parabolic $\frac{\partial u}{\partial t}(x,t) - 12 \frac{\partial^2 u}{\partial x^2}(x,t) = 2.3x^2 + 1.2t$ đối với

hàm ẩn 2 biến u(x,t) trong miền D = $\{1 \le x \le 2, t > 0\}$ thỏa các điều kiện:

$$\begin{cases} u(1,t) = 0, & u(2,t) = 0 \\ u(x,0) = x^2 - 3x + 2 \end{cases}$$

Sử dụng sơ đồ ẩn, hãy xấp xỉ giá trị của hàm u(x,t) tại thời điểm t=0.1 với bước không gian $\Delta_x=0.25$ và bước thời gian $\Delta_t=0.1$

<u>Kết quả:</u> u(1.25,0.1) = ----; u(1.5,0.1) = -----; u(1.75,0.1) = -----;