Contactless Detection of Physiological Signal using a 4-Transmitter Phased Array Ultrasound System

Presenter: Ming-Feng Hsin (辛明峯)

Advisor: Men-Tzung Lo (羅孟宗)、Chen Lin (林澂)

Introduction

• Medical need: heart rate monitor, continuous monitor, sleep

apnea

- Traditional method(contact)
 - 1) ECG
 - 2) PPG
 - 3) Nose flow detector
- Non-contact method
 - 1) Ultrasound

- 2) Radar
- 3) camera

Desired specification

Axial and lateral resolution:

- > Axial : displacement error around 1mm
- ➤ Lateral: phase error around 0.05 radian (3°)

Phased array antenna

Phased array antenna

N = 16

Elements spacing $d = \lambda/2$

Delay and sum

Delay and sum

$$\Delta \phi = \frac{2\pi \, d \sin \theta}{\lambda} \quad (2\pi = \lambda) \quad \longleftarrow$$

$$\theta = \sin^{-1} \left(\frac{\Delta \phi \lambda}{2\pi d} \right)$$

$$\Delta \phi = 2\pi f \Delta t$$

$$\theta = \sin^{-1}\left(\frac{2\pi f \Delta t \lambda}{2\pi d}\right)$$

Radiation pattern

 $d = 0.5\lambda$ vs $d = 1.15\lambda$

Simulation

Block diagram: phased array system

Experiment

15cm

30cm

15cm

30cm

- Move the object at 1Hz
- Angle & distance

Imaging result

Conclusion

What we have done:

- ✓ Object Localization
- ✓ Grating lobe detection
- ✓ Off-line object imaging

Ultimate goal:

- ? Axial: 1mm Lateral: 0.05 radian
- ? Physiological signal monitor

Future works

How do we improve:

✓ Axial: 1mm Lateral: 0.05 radian

Linear array 3D pattern

Multi-dimensional array geometry

Future works

How do we improve:

✓ Physiological signal monitor

Simulate human breathing pattern with the slide rail

Rotation and steering angle

Pulse waveform (axial resolution)

Beam width(lateral resolution)

N = 4d = 9.8 mm $\lambda = 8.5$ mm

$$\theta_B \approx \frac{0.886 \cdot \lambda}{N \, \mathrm{d} \cos \theta}$$

