计数器及其应用

时间:	第周星期第节	课号:			
院系:		座号:	成绩		
姓名: =====		学号:			
1 2 3 二、穿 1 <u>h</u>		漠 N 的方法。 人真查看其功能表。参考网切 duct/sn741s192, 画出进位			索其它公司的)
	实验内容 页目一:用相关芯片设计一	个 №加法计数器。(2 </td <td>N<9)</td> <td></td> <td></td>	N<9)		
乡	区现方式一(反馈清零法): (1)逻辑图:		(2) 状态转移图	₹:	

验证过程: ①检查所使用芯片的好坏。完好【 】损坏【 】, 若持②将结果演示给老师看。课内完成【 】、课外完成【 ③给出你的实验结论(是否实现了项目的功能)。是【	1			
实现方式二(外部反馈置数法): (1)逻辑图:	(2) 状态转移图:			
验证过程:				
①将结果演示给老师看。课内完成【 】、课外完成【 ②给出你的实验结论(是否实现了项目的功能)。是【				
实现方式三(自身反馈置数法): (1)逻辑图:	(2) 状态转移图:			
验证过程: ①将结果演示给老师看。课内完成【 】、课外完成【 ②给出你的实验结论(是否实现了项目的功能)。是【				
项目二:用相关芯片设计一个 N=减法计数器。(2 <n<9)< td=""></n<9)<>				
实现方式一(反馈清零法): (1)逻辑图:	(2) 状态转移图:			

验证过程: ①检查所使用芯片的好坏。完好【 】损坏【 】, 若持②将结果演示给老师看。课内完成【 】、课外完成【 ③给出你的实验结论(是否实现了项目的功能)。是【	1
实现方式二(外部反馈置数法): (1)逻辑图:	(2) 状态转移图:
验证过程: ①将结果演示给老师看。课内完成【 】、课外完成【 ②给出你的实验结论(是否实现了项目的功能)。是【	=
实现方式三(自身反馈置数法): (1)逻辑图:	(2) 状态转移图:
验证过程: ①将结果演示给老师看。课内完成【 】、课外完成【 ②给出你的实验结论(是否实现了项目的功能)。是【	
项目三: 用相关芯片设计一个 N=进制加法计数器	。(10 <n<100)(画出电路图)< td=""></n<100)(画出电路图)<>