CUDA 2025 HW4

Dot Product with Multi-GPU using CUDA

Result Summary

The following table shows the GPU execution time, CPU execution time, and speed-up ratio for different configurations of threads per block (TPB) and blocks per grid (GRID), tested with vector size $N=40,960,000\,$ using 2 GPUs.

TPB	GRID	GPU Time (ms)	CPU Time (ms)	Speedup (×)
64	64	1.800	98.006	55.60
64	128	0.900	101.318	109.92
64	256	0.580	100.875	182.66
64	512	0.400	100.255	275.62
64	1024	0.300	101.862	354.26
128	64	0.900	102.020	111.96
128	128	0.500	100.334	186.52
128	256	0.400	93.477	262.70
128	512	0.300	104.689	364.90
128	1024	0.300	89.094	314.56
256	64	0.500	105.061	200.14
256	128	0.300	97.935	289.72
256	256	0.300	97.736	344.54
256	512	0.300	104.135	367.96
256	1024	0.300	93.125	326.42
512	64	0.300	105.055	317.38
512	128	0.440	106.225	320.10
512	256	0.300	102.751	359.86
512	512	0.300	100.949	355.68
512	1024	0.380	99.817	305.80
1024	64	0.300	101.917	353.42
1024	128	0.300	97.711	338.74
1024	256	0.300	101.423	349.82
			1 / 4	

	ТРВ	GRID	GPU Time (ms)	CPU Time (ms)	Speedup (×)
•	1024	512	0.300	87.570	295.92
	1024	1024	0.300	101.483	343.18

Trend Observations

1. GPU Execution Time

• GPU time significantly improves (decreases) as the number of blocks increases.

• GPU time plateaus at 0.3 ms for most configurations once the grid size is large enough, showing the limit of computation-bound performance.

2. Speed-up

- Speed-up increases with larger grid sizes, peaking around 367× at 256 TPB and 512 GRID.
- All configurations show a consistent >50× acceleration compared to CPU baseline, highlighting the effectiveness of multi-GPU acceleration.
- For configurations like TPB=256 and GRID=512, we achieve near-optimal balance in workload distribution and memory usage.

Conclusion

- **Best Config**: TPB = 256, GRID = 512 yields the best speedup (367.96×).
- Increasing both TPB and GRID improves performance until saturation, at which point extra resources no longer significantly reduce GPU time.
- This multi-GPU approach with proper workload partitioning leads to substantial acceleration for large vector dot-product tasks.

Environment

- OS: Ubuntu 22.04.3 LTS
- CPU: Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz
- GPUs: 2× NVIDIA GeForce RTX 2080 Ti

Usage

1. Source File

• hw4.cu

2. Compile

nvcc hw4.cu -o hw4

3. **Run**

./hw4 <n_gpus> <threadsPerBlock> <blocksPerGrid>

4. Automation

 A Python or shell script can be used to automate runs across different block/grid configurations for benchmarking.

python3 driver.py