שאלה 1.1

 $x \subseteq y$ וקבע אם $x \in y$ וקבע הבאים, הבאים, $x \in y$ וקבע אם בכל אחד מהזוגות

ייתכן ששני היחסים יתקיימו בעת ובעונה אחת, וייתכן גם שאף אחד משניהם לא יתקיים.

בשאלה זו בלבד אין צורך לנמק.

$$(\{l\})$$
 ; $(\{l\})$.

$$\boldsymbol{\kappa}$$
. $\{\{l\}, \emptyset\}$; $\{l\}$ $\boldsymbol{\tau}$.

$$\{\{\emptyset\}\}\ ;\ \{\emptyset,\{l\}\}$$
 .1 $\{\{l\}\}\}\ ;\ \{\emptyset,\ \{l\}\}$...

$$P(\varnothing)$$
 ; $P(\{\varnothing\})$.n \varnothing ; $P(\{1\})$.t

תשובה 1.1

א. שניהם. ב.
$$x \in y$$
 ג. $x \in y$ ד. שניהם

ה. אף אחד מהם ז. שניהם ח. שניהם ה.
$$x \subseteq y$$

1.2 שאלה

נתונות הקבוצות:

$$A_1 = \emptyset$$
 $A_2 = \{\emptyset\}$ $A_3 = \{\text{David}, \emptyset\}$ $A_4 = \{A_2, A_3\}$

 $(1 \le i, j \le 4)$ i,j בכל אחד מן הסעיפים הבאים, מצא את כל

עבורם מתקיים התנאי הנתון באותו סעיף. בשאלה זו בלבד אין צורך לנמק.

$$A_i \subseteq A_i$$
 .N

$$A_i \in A_i$$
 ...

$$A_i \cap A_j = \phi$$
 .T

$$A_i \cap A_j = A_2$$
 ...

תשובה 1.2

 $A_2\subseteq A_3$. כל קבוצה חלקית לעצמה A_1 הלקית לעצמה א.

 A_4 -שימו לב ש- A_3 ו- A_3 ו- A_3 חלקיות ל

.
$$A_2 \not\in A_3$$
 -שימו לב למשל ש- . $A_3 \in A_4$, $A_2 \in A_4$, $A_1 \in A_3$, $A_1 \in A_2$. ב.

$$A_2\cap A_3=A_3\cap A_2=\{\varnothing\}$$
 - פרט ל- עבור כל $i
eq j$ עבור $A_i\cap A_j=\varnothing$ עבור הנתונות, $A_i\cap A_j=\varnothing$ בנוסף כמובן בנוסף כמובן

$$A_1 \cap A_3 = A_3 \cap A_2 = A_2 \cap A_2 = A_2 \quad . \pi$$

שאלה 1.3

 $x \subseteq y$ וקבע אם $x \in y$ הבאים, קבע הם אם מהזוגות $x \in y$ הבאים.

ייתכן ששני היחסים יתקיימו בעת ובעונה אחת, וייתכן גם שאף אחד משניהם לא יתקיים. בשאלה זו בלבד אין צורך לנמק.

ב.

 \emptyset ; {{ \emptyset }}

- $\{\varnothing\}$; $\{\varnothing\}$. \aleph
- $(\mathcal{A}, \mathcal{A}, \mathcal{A$
- $\{\{\varnothing\}\}\ ;\ \{\varnothing,\{l\}\}\ .$
- $P(\varnothing)$; $P(P(\varnothing))$.n $\{\varnothing\}$; $P(\{1\})$.t

תשובה 1.3

- $x\subseteq y$. ד. $x\subseteq y$. א. $x\subseteq y$. ב. $x\subseteq y$.
- ח. שניהם. $x \subseteq y$ ו. אף אחד $x \subseteq y$ ה. $x \subseteq y$

שאלה **1.**4

לכל אחת מהטענות הבאות קבע אם היא נכונה.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

- $Y \cap Z = X$... $X \cup Y = Y$...
- $\mid X \cup Y \cup Z \mid = 4$.1 $X \cup \{Y\} = Y$.7 $\{X\} \cup Y = Y$.7
 - $Y \in P(Y)$.n $Z \subseteq P(Y)$.t

תשובה 1.4

- א. נכון ג. לא נכון
- ד. נכון ו. לא נכון ו. לא נכון
 - ז. נכון ח. נכון

2.1 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך - הבא דוגמא נגדית. לטענות הנכונות - תן הוכחה מסודרת.

$$A-C=B$$
 in $A-B=C$ in .8

$$A - B = \emptyset$$
 and $A \subseteq B$.

$$A \subseteq B$$
 in $A - B = \emptyset$ in ...

.
$$P(A) \subseteq P(B)$$
 אז $A \subseteq B$ אס .ד

תשובה 2.1

. (השלימו) $A = \{1\}$, $B = \{1,2\}$, $C = \emptyset$: א. לא נכון. דוגמא נגדית

. למען העניין, דוגמא נגדית נוספת הא $C=\varnothing$. למען העניין, דוגמא נגדית נוספת

ב. נכון.

 $x \in A - B$ אינה ריקה. יהי אפוא A - B הוכחה: נניח בשלילה ש

 $x \in A, x \notin B$ כלומר, לפי הגדרת הפרש,

 $A\subseteq B$ אד נתון $A\subseteq B$, כלומר מהגדרת קבוצה חלקית, כל איבר של איבר של

. ריקה A-B כאמור למעלה, משמע X כלן לא קיים X כלן לא הראינו על א.

 $x \notin B$ -כך ש- $x \in A$ כלומר קיים $x \in A$ כך ש- A אינה חלקית ל- B. כלומר קיים בשלילה ש-

. $A-B \neq \emptyset$ לכן $x \in A-B$

 $A \subseteq B$ נתון כי $X \subseteq A$ משמע $X \in P(A)$ ד. נכון. תהי

 $X \subset B$ משני אלה ומטרנזיטיביות ההכלה נקבל

 $P(A)\subseteq P(B)$, לכן P(B) , הראינו שכל איבר של איבר של הוא איבר של . $X\in P(B)$ כלומר

שאלה 2.2

הוכח את הטענות הבאות בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר"!

$$A \oplus B = (A \cup B) - (A \cap B)$$
 .N

$$(A - B) \cup (B - C) = (A \cup (B - C)) - (B \cap C)$$
 ...

$$(A-B)\cap (C-D)=(A\cap C)-(B\cup D)$$

תשובה 2.2

$$A \oplus B = (A - B) \cup (B - A)$$
 , \oplus א. מהגדרת

$$(A\cap B')\cup (B\cap A')$$
 נבחר U המכילה את A,B ונרשום

 $=(A\cup B)\cap (A\cup A')\cap (B'\cup B)\cap (B'\cup A')$ בעזרת דיסטריבוטיביות החיתוך מעל האיחוד

 $A \cup A' = B \cup B' = U$ לפי טענה כי

וכעת ניתן לזרוק את $\,U\,$ מהחיתוך.

$$=(A\cup B)\cap (B'\cup A')$$
 נקבל בהמשך לשוויון המקורי, נקבל בהמשך לשוויון המקורי, בעזרת כלל דה-מורגן $=(A\cup B)\cap (B\cap A)'$ ולבסוף,

$$(A-B)\cup(B-C)=(A\cap B')\cup(B\cap C')$$

מכאן בעזרת שימוש חוזר בפילוג של האיחוד מעל החיתוך:

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup B) \cap (B' \cup C')$$

 $B' \cup B$ נימוק רי בצעד דומה בהוכחת סעיף אי למעלה). $B' \cup B$

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup C')$$

שימוש בכלל דה-מורגן בגורם הימני, וכינוס שני האיברים השמאליים בעזרת חוק הפילוג:

$$= (A \cup (B \cap C')) \cap (B \cap C)'$$

$$= (A \cup (B - C)) - (B \cap C)$$

$$(A-B)\cap (C-D)=(A\cap B')\cap (C\cap D')$$

$$=(A\cap C)\cap (B'\cap D')$$
 : בעזרת קיבוץ (אסוציאטיביות) בעזרת חיתוך

$$=(A\cap C)\cap (B\cup D)'$$
 ולפי כלל דה-מורגן:

$$= (A \cap C) - (B \cup D)$$

2.3 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך - הבא דוגמא נגדית.

לטענות הנכונות - תן הוכחה מסודרת.

$$A \cup B = C$$
 או $A \cup B = C$ א. אם

$$A \cup B = C$$
 אז $C - A = B$ ב. אם

: מתקיים A,B,X,Y מתקיים

$$A : X = Y$$
 in $B \cap X = B \cap Y$ -1 $A \cup X = A \cup Y$

.
$$P(A) \subseteq P(B)$$
 אז $A \subseteq B$ ד. אם .ד

$$A \cup B = C$$
 אז $A \subset C$ ווּ $C - A = B$ ה. אם

תשובה 2.3

א. לא נכון. דוגמא נגדית: $A = B = C = \{1\}$ אחרת כלשהי).

. $B = C = \emptyset$, (או קבוצה לא ריקה אחרת כלשהי) $A = \{1\}$ ב. לא נכון. דוגמא נגדית:

$$X = \{1,2\}$$
 , $X = \{2\}$, $B = \{3\}$, $A = \{1\}$: ג. לא נכון. דוגמא נגדית

בכל אחת מהדוגמאות הללו, השלימו בעצמכם את הבדיקה שזו אכן דוגמא נגדית.

$$A \subseteq B$$
 נתון כי $X \subseteq A$ משמע $X \in P(A)$ ד. נכון. תהי

 $X\subseteq B$ משני אלה ומטרנזיטיביות נקבל

. $X \in P(B)$ כלומר

 $P(A) \subseteq P(B)$ לכן , P(B) הראינו שכל איבר של P(A) הוא איבר של

 $A \cup B = A \cup (C - A)$ מהנתון, מהנתון.

 $A \cup C = C$ נקבל, $A \subseteq C$ מכיוון ש- $A \cup (C - A) = A \cup C$

בסהייכ קיבלנו $A \cup B = C$ כמבוקש.

2.4 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך טענה - הבא דוגמא נגדית. לטענות הנכונות - תן הוכחה מסודרת.

- A B = A אם $A \cap B = \emptyset$ אם .א
 - $A \subseteq P(A)$.2
 - $P(A \cap B) = P(A) \cap P(B) \qquad .\lambda$

תשובה 2.4

 $A-B\subseteq A$ היא לכן כללית B-B שאינם שייכים ל-B לכן כללית A-B היא קבוצת כל אברי A שאינם שייכים ל-B לכן אם $A-B=\varnothing$ אז מצד שני, נתון $A-B=\varnothing$, כלומר אין ל-A-B=A משתי ההכלות יחד, A-B=A הוא אינו ב-A-B=A כלומר A-B=A .

. $P(A)=\{\varnothing,A\}$ אז $A=\{x\}$ ותהי (תהי נקח $x\neq\varnothing$ כלשהו, נקח $x\neq\varnothing$ נקח $x\neq\varnothing$ (כי $x\neq A$ שאינו ב- $x\neq\varnothing$ (כי $x\neq A$ שאינו ב- $x\neq\varnothing$ (כי $x\neq\varnothing$ (כי $x\neq\varnothing$). הראינו איבר של $x\in A$ שאינו ב- $x\in A$ לכן $x\in A$ אינה חלקית ל- $x\in A$

 $X\subseteq A\cap B$ שקול, לפי הגדרת קבוצת חזקה, לתנאי $X\in P(A\cap B)$ ג. נכון. התנאי

 $X \subseteq B$ געם $X \subseteq A$

 $X \in P(B)$ וגם $X \in P(A)$ שוב לפי הגדרת קבוצת חזקה, זה שקול ל-

 $X \in P(A) \cap P(B)$ מהגדרת חיתוך, זה שקול ל-

 $,X\in P(A)\cap P(B)$ (אם ורק אם $X\in P(A\cap B)$: קיבלנו קיבלנו אם אם אם אם אם אם אם ולכן שתי הקבוצות שוות.

שאלה 3.1

הוכח את הטענות אי-די. U היא קבוצה אוניברסלית, המכילה את כל הקבוצות שבשאלה.

שים לב: בטענות "אם ורק אם" יש להוכיח שני כיוונים.

X=Y אז $X\oplus A=Y\oplus A$ אז או . כלל הצמצום:

הדרכה: היעזר באסוציאטיביות של ⊕ ובתכונות אחרות שלה.

A=B אם ורק אם $A\oplus B=\emptyset$ ב.

A=B' אם ורק אם $A\oplus B=U$ ג.

 $A \oplus B = \emptyset$ אם ורק אם $A \oplus B = A$.ד

תשובה 3.1

A נניח אינטרי עם הפרש הצע בשני האגפים . $X \oplus A = Y \oplus A$ א. נניח

$$(X \oplus A) \oplus A = (Y \oplus A) \oplus A$$

$$X \oplus (A \oplus A) = Y \oplus (A \oplus A)$$

לפי אסוציאטיביות נקבל

$$X \oplus \emptyset = Y \oplus \emptyset$$

: ולכן קיבלנו , $A \oplus A = \emptyset$ בנוסף

X = Y לכן

 $A \oplus A = \emptyset$: מיידי (A = B ב. כיוון אחד (אם

 $A \oplus A = \emptyset$ כיוון שני : אם $A \oplus B = A \oplus A$ משמע $A \oplus B = \emptyset$ (כי כאמור $A \oplus B = \emptyset$

A : B = A בסעיף אי: מכאן לפי כלל הצמצום משמאל שהוכחנו למעלה בסעיף אי

A=B' ג. אם אם A=B' הוכחנו כבר את כיוון

כיוון שני: נובע מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיף בי:

 $A \oplus A' = U$, גניח של סעיף זה, כאמור בכיוון הראשון הראשון . $A \oplus B = U$

 $A \oplus B = A'$: לכן $A \oplus B = A \oplus A'$ לכן $A \oplus B = A \oplus A'$

ד. כיוון אחד: אם $\varnothing=B$ אז אז B=A אז אם פיוון שני: נובע מהכיוון הראשון בעזרת כלל ה. כיוון אחד: אם אז אם בעזרת כלל הצמצום, בדומה לסעיפים ב, ג.

שאלה 3.2

הוכח את הטענות הבאות בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר". ציין את הזהויות עליהן אתה מסתמך.

$$A \oplus B = (A \cup B) - (A \cap B) \qquad . \aleph$$

$$A \cup B = (A \cap B) \cup (A \oplus B) \qquad . \exists$$

ג. הדרכה: השתמש בחוק הפילוג לא כדי לפלג, אלא בכיוון . ($A \cup B$) – ($A \cup B$) – ג. ההפוך - לצרף את הגורמים.

תשובה 3.2

 \oplus א. מהגדרת

$$A \oplus B = (A - B) \cup (B - A)$$

לפי ההדרכה לשאלה, נבחר U המכילה את A,B ונרשום

$$=(A\cap B')\cup (B\cap A')$$

בעזרת דיסטריבוטיביות החיתוך מעל האיחוד

$$= (A \cup B) \cap (A \cup A') \cap (B' \cup B) \cap (B' \cup A')$$

 $A \cup A' = B \cup B' = U$

ניתן לזרוק את $\,U\,$ מהחיתוך. נקבל בהמשך לשוויון המקורי,

$$=(A\cup B)\cap (B'\cup A')$$

לפי כלל דה-מורגן,

$$=(A\cup B)\cap (B\cap A)'$$

ולבסוף, שוב לפי ההדרכה לשאלה

$$=(A \cup B)-(B \cap A)$$

 $A \oplus B = (A \cup B) - (A \cap B)$ בסעיף הקודם הראינו כי

ידוע כי $A \cap B \subseteq A \cup B$ משני אלה, נובע המבוקש.

ג. לפי חוק הפילוג (דיסטריבוטיביות) של החיתוך מעל האיחוד:

$$(A \cup B) \cap (A \cup B') = A \cup (B \cap B')$$

כאן השתמשנו בחוק הפילוג כדי לכנס איברים, לא כדי לפלג.

 $A\cup B\cap (A\cup B')=A$ נציב זאת ונקבל $A\cup \varnothing=A$. $A\cup \varnothing=A$. $A\cup \varnothing=A$

שאלה 3.3

הוכח את הטענות הבאות בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר".

$$(A \cup B) - C = (A - C) \cup (B - C) \qquad . \aleph$$

$$(A \cap B) \cup (A \cap B') = A$$
 ...

$$(A \oplus B) \oplus (B \oplus C) = A \oplus C$$
 ...

תשובה 3.3

א.

$$(A \cup B) - C = (A \cup B) \cap C'$$

פילוג החיתוך מעל האיחוד

$$= (A \cap C') \cup (B \cap C')$$

$$=(A-C)\cup(B-C)$$

ב. לפי חוק הפילוג (דיסטריבוטיביות) של האיחוד מעל החיתוך:

$$(A \cap B) \cup (A \cap B') = A \cap (B \cup B')$$

כאן השתמשנו בחוק הפילוג כדי לכנס איברים, לא כדי לפלג.

. $A \cap U$ נציב זאת ונקבל . $B \cup B' = U$

אז $A \subseteq U$ מובן ש- בנוסף, אם עבדיון. מכילה את מכילה ש- מובן ש- $A \cap U = A$ מובן ש- $A \cap U = A$

 $(A \cap B) \cup (A \cap B') = A$ קיבלנו כמבוקש

ג. ניעזר בתכונות של הפרש סימטרי.

: מאסוציאטיביות

$$(A \oplus B) \oplus (B \oplus C) = A \oplus (B \oplus (B \oplus C))$$

: ושוב אסוציאטיביות

$$=A\oplus((B\oplus B)\oplus C)$$

$$=A\oplus(\varnothing\oplus C))=A\oplus C$$

שאלה 4.1

 $\mathbf{N} = \{0, 1, 2, ..., \}$ היא קבוצת המספרים הטבעיים: \mathbf{N}

 $A_n=A_{n+1}-A_n$ ותהי $A_n=\left\{x\in \mathbf{N}\mid \ n\leq x\leq 2n-1
ight\}$ לכל , $n\in \mathbf{N}$

- A_0 א. מהי
- ב. חשב את תשובתך). ב. חשב את $\bigcup_{n\in\mathbb{N}}A_n$
 - B_0, B_1 ג. מצא את הקבוצות
- .($n\!\geq\!2$) אבור (עבור B_n) בפתח התרגיל עבור אבור בדומה להגדרת להגדרת התרגיל עבור מפורש
 - $\bigcup_{n\in\mathbb{N}}B_n$ ה. חשב את

תשובה 4.1

$$A_0 = \{x \mid 0 \le x \le -1\} = \emptyset$$
 .N

:
$$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}-\{0\}$$
 נוכיח כי ב.

. היא קבוצה של מספרים טבעיים השונים מאפס. A_n , n קל לראות כי לכל

.
$$\bigcup_{n\in \mathbf{N}} A_n \subseteq \mathbf{N} - \{0\}$$
 לכן

 $1 \le n$ אז $n \in \mathbb{N} - \{0\}$ נראה גם הכלה הפוכה ובכך נוכיח שוויון. יהי אפוא

: (ולכן הוא שייך לאיחוד הנייל) $n \in A_n$ נראה כי

 $n \le 2n-1$ מצד שני, $n \le n$ אםם $n \le n$ אםם $n \le x \le 2n-1$ נבדוק את הערך $n \le x \le 2n-1$ מתקיים אם מתקיים אם $n \ge 1$ לומר אם $n \ge 1$ תנאי זה כאמור מתקיים לפי הנחתנו. בכך הראינו את ההכלה השניה ולכן הקבוצות שוות.

.
$$B_1 = A_2 - A_1 = \{2,3\} - \{1\} = \{2,3\}$$
 . $B_0 = A_1 = \{1\}$. λ

٦.

$$B_{n} = \left\{ x \in \mathbb{N} \mid n+1 \le x \le 2n+1 \right\} - \left\{ x \in \mathbb{N} \mid n \le x \le 2n-1 \right\}$$

$$= \left\{ x \in \mathbb{N} \mid n+1 \le x \le 2n+1 \right\} \cap \left\{ x \in \mathbb{N} \mid n \le x \le 2n-1 \right\}'$$

$$= \left\{ x \in \mathbb{N} \mid n+1 \le x \le 2n+1 \right\} \cap \left(\left\{ x \in \mathbb{N} \mid x < n \right\} \cup \left\{ x \in \mathbb{N} \mid 2n-1 < x \right\} \right)$$

 \varnothing ניעזר בפילוג. אחד התנאים נופל (נותן תרומה לאיחוד) ונקבל

$$= \{x \in \mathbb{N} \mid n+1 \le x \le 2n+1\} \cap \{x \in \mathbb{N} \mid 2n-1 < x\}$$
$$= \{x \in \mathbb{N} \mid 2n-1 < x \le 2n+1\} = \{2n, 2n+1\}$$

 $n+1 \le 2n-1$, $2 \le n$ שעבור העובדה בעזרת בעזרת התנאים נפטרנו

ה. האיחוד המבוקש הוא קבוצה של מספרים טבעיים. קל לראות ש- 0 אינו נמצא באיחוד. $N - \{0\} \ \, ; \ \, N - \{0\} \ \, ; \ \, m , \ \, (ומצא באיחוד הנייל, ולכן האיחוד הוא <math> m = 1,2,3$ עבור m = 1,2,3 ראינו זאת בסעיף ג.

 $m\in B_n$ אם $4\leq m$ כאשר m=2n כאשר m=2n כאשר m=4 והוא זוגי, אז m=2n כאשר m=2n+1 אם $m\in B_n$ והוא אי-זוגי, אז m=2n+1 כאשר m=2n+1 אם m=4 והוא אי-זוגי, אז m=2n+1 כאשר m=4 והוא שייך לאיחוד שלהם.

4.2 שאלה

: נגדיר קבוצת המספרים הטבעיים הגדולים מ- 0. לכל $n \in \mathbf{N}^+$ נגדיר קבוצה תהי

$$B_n = \{ n \cdot k \mid k \in \mathbf{N}^+ \}$$

.($k \in \mathbf{N}^+$ כאשר , $n \cdot k$ קבוצת כל המספרים שצורתם

א. הוכח כי $B_n \cap B_m = B_{c(n,m)}$ כאשר c(n,m) הוא הכפולה המשותפת המינימלית של $B_n \cap B_m = B_{c(n,m)}$ וב-m, m (המספר הטבעי החיובי הקטן ביותר המתחלק ללא שארית ב-m וב-m וב-m מתחלקת בכפולה להסתמך על הטענה כי כל כפולה משותפת של m מתחלקת בכפולה המשותפת המינימלית שלהן.

.
$$\bigcap_{n\in\mathbb{N}^*}B_n=\varnothing$$
 ב.

.(
$$D_3 = B_3 - B_2$$
 , $D_2 = B_2$: נסמן $D_n = B_n - \bigcup_{1 < i < n} B_i$ נסמן $n \geq 2$...

. $\{n\in {\bf N}^*\mid D_n\neq\varnothing\}$ את מצא תכים פל ח קיים ה קיים ח עבור איזה ערכים של אל תשכח להראות שתשובתך כוללת את כל הערכים המקיימים זאת (ייהכלה דו-כיווניתיי).

n משמע, $B_n = \{n \cdot k \mid k \in \mathbf{N}^+\}$ משמע, $B_n = \{n \cdot k \mid k \in \mathbf{N}^+\}$

m-ב והן ב- חוnקים היא אפוא פ- 0, והמתחלקים הטבעיים המספרים המספרים היא אפוא היא $B_n \cap B_m$

$$B_n \cap B_m = \{nk \mid k \in \mathbf{N}^+\} \cap \{ms \mid s \in \mathbf{N}^+\}$$

:משמע: c(n,m)ב מתחלק מתחלק של אבר של שכל נובע נובע שבהדרכה, לפי מכאן, לפי

$$B_n \cap B_m \subseteq B_{c(n,m)}$$

.m- בי והן ב- n הולק הן האי מתחלק הלכן ודאי מתחלק ב- c(n,m) מתחלק מתחלק האבר שני, כל אבר של

$$B_{c(n,m)} \subseteq B_n \cap B_m$$

 $B_n \cap B_m = B_{c(n,m)} :$ משתי ההכלות

את הטענה שבהדרכה (כל כפולה משותפת של m ,n מתחלקת בכפולה המשותפת המינימלית שלהם) ניתן להוכיח למשל בעזרת פירוק של m ,n לגורמים ראשוניים, ובניית למשל בעזרת פירוק זה. נושא זה אינו מענייננו בקורס הנוכחי.

 $m\in {\bf N}^+$ ב. נראה כי לכל m , $m\in {\bf N}^+$ אינו שייך לחיתוך הנ"ל. יהי $m\in {\bf N}^+$ ב. $m\notin B_{m+1}$ כל אברי m גדולים או שווים m מובן אפוא כי $m\in B_m$ לפיכך m אינו שייך לחיתוך כל ה- m-ים.

 $B_n\subseteq B_m$ אז מובן כי $m,k\in {f N}^+$ כך ש- $m,k\in {f N}^+$ אם $n\in {f N}^+$ אז מכך ש- $m,k\in {f N}^+$ ומהגדרת m< n אם m>0 אז מכך ש- m>0 ומהגדרת m< n ומר אוני. m>0 ריקה עבור כל m>0 המתחלק במספר טבעי השונה מ- m>0 ומר m>0 בלומר עבור כל m>0 שאינו ראשוני.

:מצד שני, נראה כי אם n ראשוני, אז אינה ריקה

 $n
otin B_m$ ולכן n , m אינו מתחלק ב- n , ולכן n טבעי המקיים אינו n , $n
otin D_n$ ולכן n אינו מחלק ב- n מאינה ריקה. $n
otin B_n$ אינה המספרים הראשוניים. $n
otin B_n$ היא קבוצת המספרים הראשוניים.

4.3 שאלה

. נסמן ב- \mathbf{N}^+ את קבוצת המספרים הטבעיים הגדולים מאפס

. היא קבוצת המספרים הממשיים. R

$$A_n = \left\{ x \in \mathbf{R} \mid 2 + rac{1}{n} \le x \le 2n
ight\}$$
 תהי , $n \in \mathbf{N}^+$ לכל

.
$$A_2 = \{x \in \mathbf{R} \mid 2.5 \le x \le 4\}$$
 למשל

- $\bigcap_{n\in \mathbf{N}^*}A_n$ ואת A_1 א.
 - . $\bigcap_{1 < n \in \mathbf{N}^*} A_n$ ב. חשב את
 - $\bigcup_{n\in \mathbb{N}^*}A_n$ ג. חשב את
- ד. לכל \mathbf{R}^n נסמן \mathbf{R}^n נסמן \mathbf{R}^n . הראה כי יש רק ערך אחד של \mathbf{R}^n נסמן \mathbf{R}^n נסמן \mathbf{R}^n . הראה כי לכל \mathbf{R}^n היא איחוד של שני קטעים זרים. ציין מיהם הקטעים. **הערה** : \mathbf{R}^n הוא קבוצה מהצורה \mathbf{R}^n , או קבוצה המתקבלת מביטוי זה עייי \mathbf{R}^n החלפת אחד או שני סימני \mathbf{R}^n בסימן \mathbf{R}^n

. למשל, לכל \mathbf{N}^+ למשל, לכל שהוגדרה היא קטע, הקבוצה , $n \in \mathbf{N}^+$

תשובה 4.3

. \varnothing אווה שווה המבוקש שווה לכן גם החיתוך המבוקש שווה $A_1=\{x\in\mathbf{R}\,|\,3\leq x\leq 2\}=\varnothing$ א.

$$2n < 2(n+1)$$
 - כל $2 + \frac{1}{n+1} < 2 + \frac{1}{n}$ מתקיים: $n \in \mathbb{N}^+$ ב.

 $A_n \subseteq A_{n+1}$: מכאן ומהגדרת לכל , A_n לכל , אומהגדרת מכאן ומהגדרת

ג. מהגדרת n טבעי די מצד שני, לכל $x \in A_n$ אז $x \in A_n$ אם $x \in A_n$ ג. מהגדרת $x \in A_n$ אם $x \in A_n$ אונו $x \in A_n$

.
$$\bigcup_{n \in \mathbb{N}^*} A_n = \{x \in \mathbb{R} \mid 2 < x\}$$
 לפיכך

, כאמור, כאמור, מור, מולכן בשאלה. או היא, האור, אולכן ולכן אולכן ולכן $A_1=\varnothing$ היא, היא, אולכן דע פאלה. ד. $A_1=\varnothing$

n > 1 יהי כעת

$$\begin{split} B_n &= \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n+1} \le x \le 2n + 2 \right\} - \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n} \le x \le 2n \right\} \\ &= \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n+1} \le x \le 2n + 2 \right\} \cap \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n} \le x \le 2n \right\} \\ &= \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n+1} \le x \le 2n + 2 \right\} \cap \left\{ \left\{ x \in \mathbf{R} \mid x < 2 + \frac{1}{n} \right\} \cup \left\{ x \in \mathbf{R} \mid 2n < x \right\} \right\} \\ &= \left\{ x \in \mathbf{R} \mid 2 + \frac{1}{n+1} \le x < 2 + \frac{1}{n} \right\} \cup \left\{ x \in \mathbf{R} \mid 2n < x \le 2n + 2 \right\} \end{split}$$

 $(2 + \frac{1}{n+1} < 2n$, n > 1 במעבר האחרון נפטרנו מאחד התנאים בעזרת העובדה שעבור

כל אחת משתי הקבוצות באיחוד זה היא קטע. אך עבור n > 1, n > 1, ולכן כל נקודות כל אחת משתי הקבוצות ממש מכל נקודות הקטע הימני, כלומר הקבוצה היא איחוד שני קטעים זרים, ומובן שקבוצה כזו אינה קטע.

שאלה 4.4 שאלה 4.4

 $A_n=A_{n+1}-A_n$ ותהי $A_n=\left\{x\in N\mid n-1\leq x\leq 2(n-1)
ight\}$ ותהי , $n\in N$

- A_0 א. מהי
- . ב. חשב את תשובתך) ב. $\bigcup_{n\in N}A_n$ את תשובתך
- B_0, B_1, B_2, B_3, B_4 ג. מצא את הקבוצות ...
- . $K = \{0,1,2,3,4\}$ כאשר $\bigcup_{n \in K} B_n$ ד.

תשובה 4.4

$$A_0 = \{x \mid -1 \le x \le -2\} = \emptyset$$
 .

:
$$\bigcup_{n\in\mathbb{N}}A_n=N$$
 ב.

הכלה בכיוון אחד: יהי היה כלומר, מהגדרת מהגדרת היחוד לפחות לאחת הכלה לפחות יהי יהי הכלה בכיוון אחד: יהי הכלה מהגדרת מהגדרת מהגדרת הכלה לפחות לאחת

 $A_n\subseteq N$ לכן . $A_n\subseteq N$, A_n מהגדרת . A_n

שייך לפחות ש- עלינו להראות ש- עלינו הכלה כדי להראות ש- מייך לפחות הכלה כדי יהי הי $m\in N$ יהי יהי הכלה הכלה הכלה הכלה להראות ש-

 $.\,n-1 \leq m \leq 2(n-1)\,$ ים כך טבעי המצוא לאחת כלומר עלינו מלינו . A_n הקבוצות לאחת לאחת

. $m \leq m \leq 2m$ טבעי מתקיים עבור $m \leq m \leq m$, כי לכל א מתקיים עבור

$$m\in igcup_{n\in {f N}} A_n$$
 לכן , $m\in A_n$ -מצאנו n מצאנו n

. $\bigcup_{n\in \mathbf{N}}A_n=\square$ לכן לכן הכלה בשני הכלה הראינו

: נחשב

$$A_5 = \{4,5,6,7,8\} \quad \text{, } A_4 = \{3,4,5,6\} \quad \text{, } A_3 = \{2,3,4\} \quad \text{, } A_2 = \{1,2\} \quad \text{, } \quad A_1 = \{0\} \quad \text{, } \quad A_0 = \varnothing$$

: לכן

$$B_0 = A_1 - A_0 = A_1 - \emptyset = \{0\}$$

,
$$B_1 = A_2 - A_1 = \{1, 2\} - \{0\} = \{1, 2\}$$

$$B_2 = A_3 - A_2 = \{2,3,4\} - \{1,2\} = \{3,4\}$$

$$B_3 = A_4 - A_3 = \{3,4,5,6\} - \{2,3,4\} = \{5,6\}$$

$$B_4 = A_5 - A_4 = \{4,5,6,7,8\} - \{3,4,5,6\} = \{7,8\}$$

 $\{0,1,2,3,4,5,6,7,8\}$ ד. זהו איחוד 5 הקבוצות שמצאנו בסעיף הקודם, והוא שווח

 $\{n \in N \mid 0 \le n \le 8\}$ כלומר