#### Lecture 2

### Chapters R.2-R.4

# **R.2 Discrete Random Variables and Expectations**

Random variable – any variable whose value cannot be predicted exactly.

Discrete random variable – one that has a specific set of possible values.

Continuous random variable – one that can take on a continuous range of values.

**Exercise 1:** Give 3 examples of discrete random variables and 3 examples of continuous random variables.

| Discrete | Continuous |
|----------|------------|
| 1.       | 1.         |
| 2.       | 2.         |
| 3.       | 3.         |

Experiment – any process of observation or measurement.

Outcomes – the mutually exclusive different ways that an experiment can turn out.

Value – the result of an experimental outcome.

Population – the set of all unique values for the random variable.

Probability – the chance with which a specific outcome occurs.

**Exercise 2:** suppose you are playing a game of monopoly. You roll two dice, and the sum tells you how far to move. Fill in the table of possible outcomes.

| Value of X:                                                                                                               |            |           |            |            |             |           |             |           |           |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|------------|-------------|-----------|-------------|-----------|-----------|--|--|
| Frequency:                                                                                                                |            |           |            |            |             |           |             |           |           |  |  |
| Probability:                                                                                                              |            |           |            |            |             |           |             |           |           |  |  |
| Expected valu                                                                                                             | e of a dis | crete rar | ndom var   | iable – th | ne weight   | ed avera  | ge of all i | ts possib | le value. |  |  |
| Formula – Exp                                                                                                             | pected va  | lue of a  | discrete r | andom v    | ariable.    |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
| Exercise 4: Fro                                                                                                           | om the di  | ice exper | iment ab   | ove, wha   | nt is the e | xpected v | value?      |           |           |  |  |
|                                                                                                                           |            | •         |            | ,          |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |
| The expected value of a function of a discrete random variable we simply calculate the function, then the expected value. |            |           |            |            | the         |           |             |           |           |  |  |
| <b>Exercise 5</b> : What is the expected value of $X^2$ from the dice throw?                                              |            |           |            |            |             |           |             |           |           |  |  |
|                                                                                                                           |            |           |            |            |             |           |             |           |           |  |  |

**Exercise 3:** From the table of outcomes, fill each value, its frequency, and its probability.





### **R.3 Continuous Random Variables**

**Exercise 9:** Draw a histogram of the probabilities from the dice throw.



**Exercise 10:** Suppose we want to guess what the temperature in a classroom will be tomorrow. If the classroom is always between 55 and 75 with equal probability, what is the probability that it will be exactly 69?

**Exercise 11:** What is the probability of it being between 59 and 60?

**Exercise 12:** What is the probability of it being between 65 and 70?

Probability density – The height at any point on the graph of probabilities.

Probability density function – A function that represents the probability of a continuous random variable, X/Rules for probability density functions:

- 1. The probability of any point must be between 0 and 1.
- 2. The area of the probability density function must equal 1.

Exercise 13: Draw the probability density and write the probability density function for exercise 12.



# **R.4 Population Covariance and Correlation**

Population covariance – expected value of the product of the deviation of two random variables from their means.

**Formula** – Population covariance:

**Exercise 14:** Plot the points of the random variables and find their covariance.

| Χ | Υ |
|---|---|
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |

**Exercise 15**: Plot the following points and find the covariance.

| Χ | Υ |
|---|---|
| 1 | 3 |
| 2 | 2 |
| 3 | 1 |

### **Exercise 16:** Find the covariance of the following points.

| Х | Υ   |
|---|-----|
| 1 | 300 |
| 2 | 200 |
| 3 | 100 |

Correlation coefficient – a unitless measure of the association of two variables.

Formula – correlation coefficient

**Exercise 17**: Find the correlation coefficient from exercise 15.

Exercise 18: Find the correlation coefficient from exercise 16.

Exercise 19: Label the following plots with their correlation coefficient.

$$(\rho = -1, -1 < \rho < 0, \ \rho = 0, \ 0 < \rho < 1, \ \rho = 1)$$



