Logistic Regression Explained

James Taylor

Suppose we have training data (x_{α}, y_{α}) for $\alpha = 1, ..., n$ where $x_{\alpha} = (1, x_{\alpha 1}, ..., x_{\alpha p})$ is a vector of observed values for our predictors, and $y_{\alpha} \in \{0, 1\}$ is its corresponding qualitative response.

We begin by assuming that $p(X) := p(Y = 1 \mid X)$ can be well approximated by the logistic function

$$f_{\beta}(X) = \frac{1}{1 + e^{-\beta^T X}}$$
 $f_{\beta} : \text{dom}(X) \to [0, 1]$

for some value of β . We consider the optimal value of β to be that which maximizes the likelihood function

$$L(\beta) = \prod_{\alpha=1}^{n} f_{\beta}(x_{\alpha})^{y_{\alpha}} (1 - f_{\beta}(x_{\alpha}))^{1-y_{\alpha}}$$

or equivalently, which maximizes the log-likelihood function

$$\ell(\beta) = \log \left(\prod_{\alpha=1}^{n} f_{\beta}(x_{\alpha})^{y_{\alpha}} (1 - f_{\beta}(x_{\alpha}))^{1-y_{\alpha}} \right)$$
$$= \sum_{\alpha=1}^{n} \left(y_{\alpha} \log f_{\beta}(x_{\alpha}) + (1 - y_{\alpha}) \log(1 - f_{\beta}(x_{\alpha})) \right)$$

There does not exist a closed-form expression for the β which maximizes this likelihood, so we're going to use gradient ascent to estimate β . As such, we're going to need to compute the partial derivatives of ℓ .

Our first step will be to compute the jth partial of f_{β} . Observe that $g(z) = 1/(1 + e^{-z})$ has $g'(z) = e^{-z}/(1 + e^{-z})^2 = g(z)(1 - g(z))$. Thus

$$\frac{\partial}{\partial \beta_j} f_{\beta}(x_{\alpha}) = \frac{\partial}{\partial \beta_j} g(\beta^T x_{\alpha})$$

$$= g(\beta^T x_{\alpha}) (1 - g(\beta^T x_{\alpha})) \frac{\partial}{\partial \beta_j} (\beta^T x_{\alpha})$$

$$= g(\beta^T x_{\alpha}) (1 - g(\beta^T x_{\alpha})) x_{\alpha j}$$

$$= f_{\beta}(x_{\alpha}) (1 - f_{\beta}(x_{\alpha})) x_{\alpha j}$$

It follows that the jth partial derivative of $\ell(\beta)$ is

$$\frac{\partial}{\partial \beta_{j}} \ell(\beta) = \sum_{\alpha=1}^{n} \left(\frac{y_{\alpha}}{f_{\beta}(x_{\alpha})} - \frac{1 - y_{\alpha}}{1 - f_{\beta}(x_{\alpha})} \right) \frac{\partial}{\partial \beta_{j}} f_{\beta}(x_{\alpha})$$

$$= \sum_{\alpha=1}^{n} \left(\frac{y_{\alpha}}{f_{\beta}(x_{\alpha})} - \frac{1 - y_{\alpha}}{1 - f_{\beta}(x_{\alpha})} \right) f_{\beta}(x_{\alpha}) (1 - f_{\beta}(x_{\alpha})) x_{\alpha j}$$

$$= \sum_{\alpha=1}^{n} \left(y_{\alpha} (1 - f_{\beta}(x_{\alpha})) - (1 - y_{\alpha}) f_{\beta}(x_{\alpha}) \right) x_{\alpha j}$$

$$= \sum_{\alpha=1}^{n} \left(y_{\alpha} - f_{\beta}(x_{\alpha}) \right) x_{\alpha j}$$

Therefore, if X is the $n \times (p+1)$ matrix with α th row $x_{\alpha} = (1, x_{\alpha 1}, \dots, x_{\alpha p})$, and Y is the $n \times 1$ matrix of observed responses, we have

$$\frac{\partial}{\partial \beta_i} \ell(\beta) = (Y - f_{\beta}(X)) \cdot X_{*j}$$

where X_{*j} denotes the jth column of X. Thus,

$$\nabla \ell(\beta) = (Y - f_{\beta}(X))^T X$$

The Algorithm (Gradient Ascent).

The basic (and oversimplified) idea is that we first choose an initial value for β and a learning rate $\delta > 0$. We then continually update β via the algorithm:

- 1) $\beta_{new} = \beta_{old} + \delta \nabla (\ell(\beta_{old}))$
- 2) $\beta_{old} = \beta_{new}$
- 3) Repeat until some stopping criterion is met.

As I said, this is really oversimplified. In reality, we only want to update β if our last step actually increased the function we want to maximize (that is, only if $\ell(\beta_{new}) > \ell(\beta_{old})$). If it didn't then apparently we took too big of a step in the direction of the gradient, meaning we need to decrease our learning rate δ until we find a value that works. On the other hand, if our last update to β did "work", then we update β and increase δ to hopefully speed up convergence.

Logistic Regression with L2 Regularization.

To limit overfitting, we can penalize large values of β_i . One of the more common ways of doing this is via L2 regularization, in which we seek the value of β that maximizes

$$\ell(\beta) - \lambda \sum_{i>0} \beta_i^2$$

where $\lambda \geq 0$ is some user-supplied constant. Note that the partial derivative $\partial \ell/\partial \beta_0$ is the same as before, but for $j \neq 0$ we now have

$$\frac{\partial}{\partial \beta_j} \left(\ell(\beta) - \lambda \sum_{i>0} \beta_i^2 \right) = -2\lambda \beta_j + \sum_{\alpha=1}^n \left(y_\alpha - f_\beta(x_\alpha) \right) x_{\alpha j}$$

Thus,

$$\nabla \left(\ell(\beta) - \lambda \sum_{i>0} \beta_i^2 \right) = (Y - f_{\beta}(X))^T X - 2\lambda(0, \beta_1, \dots, \beta_p)$$

Note that if $\lambda = 0$ then this reduces to regular logistic regression.