Insper

Camada Física da Computação

Aula 21 - Amplificador Operacional

Rafael C e Eduardo M.

Objetivos

- Relembrar o funcionamento de um AMPOP
- Como um AMPOP é construído
- Resolver circuitos com AMP OP
- Analisar os pólos
- Analisar circuitos CMOS

• V₊ : non-inverting input

• V_{-} : inverting input

• Vout : output

• V_{S+} : positive power supply

ullet $V_{\mathrm{S-}}$: negative power supply

História

- 1941 : Primeiro AMPOP valvulado
- (bells lab)

_

- 1961: AMPOP em um chip!
- 1968 : Primeira versão do LM741

-

Por que usar AMPOPS ?

- São muito próximos de um circuito amplificador **IDEAL.**

- São estáveis e fáceis de trabalhar

- Seu custo não é elevado

Por que usar AMPOPS ?

- Operam de forma diferencial
- Possuem um ganho elevadíssimo
 - na cada de 1.000.000

- Impedância de entrada muito alta
 - TeraOhms

- Operam por realimentação !
 - lembram de modCom?

Aonde é utilizado?

- Buffer de tensão
 - (para isolar uma entrada/saída)
- Em comparadores
- Em filtros
 - (passa baixa,...)
- Em retificadores
 - (Diodo ideal)
- Em conversores analógico/digital
-

Relembrando (amplificador inversor)

Gain = -Rf/Rin

Amplificador (não inversor)

$$Gain = 1 + Rf/R2$$

AmpOp

Ideal:

- A = ∞
- Rin = ∞
- Rout = 0

Não ideal:

- A < ∞
- Rin < ∞
- Rout > 0

AmpOp

Saturação: A muito elevado!

Interno Im741

Aplicações: Somador

Devido ao terra virtual, cada entrada é tratada de forma independente!

Conversor Digital Analógico R/2R

Insper

www.insper.edu.b