Basic Concepts in Missing Data

William Murrah

A great book to learn about dealing missing data an how to deal with it is *Applied Missing Data Analysis* (Enders 2010), which covers full information maximum likelihood and multiple imputation. Much of the material covered in this repository and accompanying tutorials is based on the book *Flexible Imputation of Missing Data* (Van Buuren 2012), particularly chapters 4-6.

Packages we will use:

```
require(texreg)
require(mice)
require(VIM)

doctype <-
    "pdf"
    # "html"
oreg <- ifelse(doctype == "pdf", texreg, screenreg)</pre>
```

Notation we will use:

- n = number of units (number of cases or people) indexed by i.
- p = number of variables (including outcome and predictors), indexed by j.
- $Y = n \times p$ matrix containing the data values for p variables for n units in the sample.
- R = response indicator, a $n \times p$ matrix with each cell containing either a 0 or a 1, where

$$r_{ij} = \begin{cases} 1 \text{ if } y_{ij} \text{ is observed and,} \\ 0 \text{ if } y_{ij} \text{ is missing.} \end{cases}$$
 (1)

- Y_{obs} = the observed data, collectively (i.e. contains all elements y_{ij} where $r_{ij} = 1$).
- Y_{mis} = the missing data, collectively (i.e. contains all elements y_{ij} where $r_{ij} = 0$).

Missing Data Patterns

print(tp41[4])

A simple data frame with some missing data:

general

Create an R matrix

```
R <- 1 - is.na(general)
```

```
5 1 1 0
6 1 0 1
7 0 0 1
8 0 0 1
```

md.pattern(pattern4)

aggr(general, numbers = TRUE, prop = FALSE)

matrixplot(general, sortby = "A")

	pmA	pmB	pmC
(Intercept)	-23.57	2.47	-3.25
	(278033.04)	(70269.47)	(8.63)
В	0.00		-0.08
	(4322.16)		(0.11)
A		-3.24	0.13
		(7895.50)	(0.18)
\mathbf{C}		2.67	
		(7420.88)	
AIC	4.00	6.00	10.34
BIC	1.39	3.30	9.17
Log Likelihood	-0.00	-0.00	-2.17
Deviance	0.00	0.00	4.34
Num. obs.	2	3	5

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table 1: Statistical models

Predictors of missingness

```
pmA <- glm(is.na(A) ~ B + C, family = binomial, data = general)
pmB <- glm(is.na(B) ~ A + C, family = binomial, data = general)
pmC <- glm(is.na(C) ~ A + B, family = binomial, data = general)
oreg(list(pmA, pmB, pmC), custom.model.names = c("pmA", "pmB", "pmC"))</pre>
```

Session Information

```
R version 3.2.2 (2015-08-14)
```

Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.3 LTS

locale:

- [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
- [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
- [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
 [9] LC_ADDRESS=C LC_TELEPHONE=C
- [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

- [1] grid stats graphics grDevices utils datasets methods
- [8] base

other attached packages:

- [1] VIM_4.4.1 data.table_1.9.6 colorspace_1.2-6 mice_2.22
- [5] Rcpp_0.12.1 texreg_1.35 knitr_1.11 mosaic_0.12
- [9] mosaicData_0.9.1 car_2.1-0 ggplot2_1.0.1 lattice_0.20-33
- [13] dplyr_0.4.3

loaded via a namespace (and not attached):

[4] [7] [10] [13] [16] [19] [22] [25] [28] [31] [34] [37] [40]	zoo_1.7-12 htmltools_0.2.6 chron_2.3-47 DBI_0.3.1 robustbase_0.92-5 munsell_0.4.2 SparseM_1.7 pbkrtest_0.4-2 vcd_1.4-1 scales_0.3.0 gridExtra_2.0.0 tools_3.2.2 ggdendro_0.1-17 assertthat_0.1 R6_2.1.1	reshape2_1.4.1 yaml_2.1.13 e1071_1.6-7 sp_1.2-0 stringr_1.0.0 gtable_0.1.2 lmtest_0.9-34 parallel_3.2.2 DEoptimR_1.0-3 formatR_1.2.1 digest_0.6.8 magrittr_1.5 MASS_7.3-44 minqa_1.2.4 rpart_4_1-10	splines_3.2.2 mgcv_1.8-7 nloptr_1.0.4 plyr_1.8.3 MatrixModels_0.4-1 evaluate_0.8 quantreg_5.19 class_7.3-14 proto_0.3-10 lme4_1.1-10 stringi_0.5-5 randomForest_4.6-12 Matrix_1.2-2 rmarkdown_0.8.1 nnet_7_3-11
[43]	assertthat_0.1 R6_2.1.1 nlme_3.1-122	minqa_1.2.4 rpart_4.1-10	nnet_7.3-11

References

Enders, Craig K. 2010. Applied Missing Data Analysis. Guilford Publications.

Van Buuren, Stef. 2012. Flexible Imputation of Missing Data. CRC press.