Optimization and Computational Linear Algebra for Data Science Midterm review problems

Problem 0.1. Let $A, B \in \mathbb{R}^{n \times n}$. For each the following subset of \mathbb{R}^n below, say whether it is a subspace of \mathbb{R}^n and justify your answer:

- 1. $E_1 = \{x \in \mathbb{R}^n \mid Ax = 0\}.$
- 2. $E_2 = \{x \in \mathbb{R}^n \,|\, Ax = Bx\}.$
- 3. $E_3 = \{x \in \mathbb{R}^n \mid Ax = e_1\}.$
- 4. $E_4 = \{x \in \mathbb{R}^n \mid Ax \in \text{Span}(e_1)\}.$

Solution:

- 1. $E_1 = \{x \in \mathbb{R}^n \mid Ax = 0\} = \text{Ker}(A)$ is a subspace of \mathbb{R}^n .
- 2. $E_2 = \{x \in \mathbb{R}^n \mid Ax = Bx\} = \text{Ker}(A B)$ is a subspace of \mathbb{R}^n .
- 3. $E_3 = \{x \in \mathbb{R}^n \mid Ax = e_1\}$ is not a subspace of \mathbb{R}^n since $0 \notin E_3$.
- 4. $E_4 = \{x \in \mathbb{R}^n \mid Ax \in \text{Span}(e_1)\}\$ is a subspace. Indeed,
 - $E_4 \neq \emptyset$, since $A0 = 0 \in \operatorname{Span}(e_1)$: $0 \in E_4$.
 - If $u, v \in E_4$ then $A(u + v) = Au + Av \in Span(e_1)$ because $Au, Av \in Span(e_1)$ and $Span(e_1)$ is a subspace.
 - If $u \in E_4$ and $\lambda \in \mathbb{R}$ then $A(\lambda u) = \lambda Au \in Span(e_1)$ because $Au \in Span(e_1)$ and $Span(e_1)$ is a subspace.

Problem 0.2. True or False: There exists matrices $M \in \mathbb{R}^{2\times 3}$ such that $\dim(\operatorname{Ker}(M)) = 1$ and $\operatorname{rank}(M) = 2$.

Solution: For $M \in \mathbb{R}^{2\times 3}$, the rank-nullity theorem states that

$$rank(M) + dim(Ker(M)) = 2.$$

Hence the statement is False: There does not exist matrices $M \in \mathbb{R}^{2\times 3}$ such that $\dim(\operatorname{Ker}(M)) = 1$ and $\operatorname{rank}(M) = 2$.

Problem 0.3. Let n > m and $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = m$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example)
- 2. Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Solution:

1. $\operatorname{Im}(A) \subset \mathbb{R}^n$ and $\operatorname{dim}(\operatorname{Im}(A)) = m < n$. Hence $\operatorname{Im}(A) \neq \mathbb{R}^n$, so there exists vectors $b \in \mathbb{R}^n$ that does not belong to $\operatorname{Im}(A)$, i.e. for which there exists no x such that Ax = b.

2. The rank-nullity theorem gives that $\dim(\operatorname{Ker}(A)) = m - \operatorname{rank}(A) = 0$. Hence $\operatorname{Ker}(A) = \{0\}$. If Ax = Ax' for some $x, x' \in \mathbb{R}^m$, then $x - x' \in \operatorname{Ker}(A)$ which implies that x - x' = 0: x = x'. Therefore there can not exists two vectors $x \neq x'$ such that Ax = Ax'.

Problem 0.4. Let n < m and $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = n$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example)
- 2. Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Solution:

- 1. $\operatorname{Im}(A) \subset \mathbb{R}^n$ and $\operatorname{dim}(\operatorname{Im}(A)) = n$. Hence $\operatorname{Im}(A) = \mathbb{R}^n$, for all $b \in \mathbb{R}^n$ there exists $x \in \mathbb{R}^m$ such that Ax = b.
- 2. The rank-nullity theorem gives that $\dim(\operatorname{Ker}(A)) = m \operatorname{rank}(A) = m n > 0$. Hence there exists $x \neq 0$ such that Ax = 0 = A0.

Problem 0.5. True or False: There exists a family of k non-zero orthogonal vectors of \mathbb{R}^n , for some k > n.

Solution: An orthogonal family of non-zero vectors if linearly independent. Since there is no linearly independent family of vectors of \mathbb{R}^n that contains strictly more than n vectors, the statement is false.

Problem 0.6. Let $A \in \mathbb{R}^{n \times m}$.

- 1. Prove that $Ker(A^{\mathsf{T}})$ and Im(A) are orthogonal to each other, i.e. that for all $x \in Ker(A^{\mathsf{T}})$ and $y \in Im(A)$ we have $x \perp y$.
- 2. Show that $Ker(A^{\mathsf{T}}) = Im(A)^{\perp}$.

Solution:

1. Let $x \in \text{Ker}(A^{\mathsf{T}})$ and $y \in \text{Im}(A)$. There exists $v \in \mathbb{R}^m$ such that y = Av. Compute now:

$$\langle y, x \rangle = \langle Av, x \rangle = v^{\mathsf{T}} A^{\mathsf{T}} x = 0$$

because $x \in \text{Ker}(A^{\mathsf{T}})$. Hence $x \perp y$.

2. The first question shows that $\operatorname{Ker}(A^{\mathsf{T}}) \subset \operatorname{Im}(A)^{\perp}$. Since we know from the homework that

$$\dim(\operatorname{Im}(A)^{\perp}) = n - \dim(\operatorname{Im}(A)) = n - \dim(\operatorname{Im}(A^{\mathsf{T}})) = \dim(\operatorname{Ker}(A^{\mathsf{T}}))$$

where we used the fact that $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{T}})$ and the rank-nullity Theorem. We conclude that $\operatorname{Ker}(A^{\mathsf{T}}) = \operatorname{Im}(A)^{\perp}$.

Problem 0.7. True or False: The matrix of an orthogonal projection is symmetric.

Solution: True: Let P_S be the matrix of the orthogonal projection onto a subspace S. We know that if V is a matrix whose columns forms an orthonormal basis of S, then $P_S = VV^{\mathsf{T}}$, which is symmetric.

Problem 0.8. True or False: The matrix of an orthogonal projection is orthogonal.

Solution: False. Consider for instance (for $n \ge 1$) the orthogonal projection P onto the subspace $\{0\}$. For all $x \in \mathbb{R}^n$, Px = 0. Hence P is the zero matrix which is not orthogonal.

Problem 0.9. Let S be a subspace of \mathbb{R}^n and let P_S be the orthogonal projection onto S. Show that $\dim(S) = \operatorname{Tr}(P_S)$.

Solution: Let $k = \dim(S)$ and let v_1, \ldots, v_k be an orthonormal basis of S. Let

$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{pmatrix} \in \mathbb{R}^{n \times k}.$$

We know from the lectures that then $P_S = VV^{\mathsf{T}}$. Compute

$$\operatorname{Tr}(P_S) = \operatorname{Tr}(VV^{\mathsf{T}}) = \operatorname{Tr}(V^{\mathsf{T}}V) = \operatorname{Tr}(\operatorname{Id}_k) = k = \dim(S),$$

where $V^{\mathsf{T}}V = \mathrm{Id}_k$ because the columns of V form an orthonormal family.

Problem 0.10. True or False: Let $A, B \in \mathbb{R}^{n \times n}$. Assume that $v \in \mathbb{R}^n$ is an eigenvector of A and B.

- 1. Is v an eigenvector of A + B?
- 2. Is v an eigenvector of AB?

Solution: Since $v \in \mathbb{R}^n$ is an eigenvector of A and B, there exists $\lambda, \lambda' \in \mathbb{R}$ such that $Av = \lambda v$ and $Bv = \lambda' v$.

1. v an eigenvector of A + B because

$$(A+B)v = Av + Bv = \lambda v + \lambda' v = (\lambda + \lambda')v.$$

2. v an eigenvector of AB because

$$ABv = A(\lambda'v) = \lambda'Av = \lambda\lambda'v.$$

Problem 0.11. Let $A \in \mathbb{R}^{n \times n}$ and let $v_1, v_2 \in \mathbb{R}^n$ be two eigenvectors of A, associated with the same eigenvalue λ .

Show that any non-zero eigenvector in $Span(v_1, v_2)$ is an eigenvector of A, associated with λ .

Solution: Let $x \in \text{Span}(v_1, v_2) \setminus \{0\}$. There exists $\alpha, \beta \in \mathbb{R}$ such that $x = \alpha v_1 + \beta v_2$. Compute

$$Ax = A(\alpha v_1 + \beta v_2) = \alpha Av_1 + \beta Av_2 = \alpha \lambda v_1 + \beta \lambda v_2 = \lambda(\alpha v_1 + \beta v_2) = \lambda x.$$

Recall that $x \neq 0$: we conclude that x is an eigenvector of A associated with the eigenvalue λ .

Problem 0.12. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let (v_1, v_2, \ldots, v_n) be an orthonormal family of eigenvectors of A, associated to the eigenvalues $\lambda_1, \ldots, \lambda_n$. Give an orthonormal basis of Ker(A) and Im(A) in terms of the v_i 's.

Solution: Let $I = \{i \in \{1, ..., n\} | \lambda_i = 0\}$ and k = #I.

For $i \in I$, we have $Av_i = 0$. Hence the familiy $(v_i)_{i \in I}$ is a familiy of k linearly independent vectors (because the v_i 's are orthonormal) of Ker(A). Therefore $\dim(Ker(A)) \geq k$.

For $i \notin I$, we have $v_i = \frac{1}{\lambda_i} A v_i \in \text{Im}(A)$. Hence the familiy $(v_i)_{i \notin I}$ is a family of n-k linearly independent vectors (because the v_i 's are orthonormal) of Im(A). Therefore $\dim(\text{Im}(A)) \geq n-k$.

The rank-nullity Theorem gives that $\dim(\operatorname{Ker}(A)) + \dim(\operatorname{Im}(A)) = n$. This implies (together with the two inequalities above) that $\dim(\operatorname{Ker}(A)) = k$ and $\dim(\operatorname{Im}(A)) = n - k$.

Recall that the familiy $(v_i)_{i \in I}$ is a familiy of k linearly independent vectors of $\operatorname{Ker}(A)$: it is therefore a basis of $\operatorname{Ker}(A)$. Recall that the familiy $(v_i)_{i \notin I}$ is a familiy of n-k linearly independent vectors of $\operatorname{Im}(A)$: it is therefore a basis of $\operatorname{Im}(A)$.

Problem 0.13. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, that satisfies $A^2 = \text{Id}$. Show that the matrix

$$M = \frac{1}{2}(A + \mathrm{Id})$$

is the matrix of an orthogonal projection.

Solution: Let λ be an eigenvalue of A and v an associated eigenvector. We have $v = A^2v = \lambda^2 v$, hence $\lambda^2 = 1$, i.e. $\lambda \in \{-1, 1\}$.

Let k be the multiplicity of the eigenvalue 1. A is symmetric, so the spectral theorem gives that there exists an orthogonal matrix V such that

$$A = V \operatorname{Diag}(1, \dots, 1, -1, \dots, -1) V^{\mathsf{T}},$$

with k 1 and n-k -1. Since $VV^{\mathsf{T}} = \mathrm{Id}$, we get that

$$M = \frac{1}{2}(A + \mathrm{Id}) = V \mathrm{Diag}(1, \dots, 1, 0, \dots, 0) V^{\mathsf{T}},$$

with k 1 and n-k 0. Let $V_{(k)}$ be the matrix consisting of the first k column of V. We have

$$M = V \text{Diag}(1, \dots, 1, 0, \dots, 0) V^{\mathsf{T}} = V_{(k)} V_{(k)}^{\mathsf{T}}.$$

V is orthogonal so its column forms an orthonormal family. We conclude that M is the orthogonal projection onto the span of the first k column of V.

Problem 0.14. Let $\rho \in (0,1)$. Let $v_1, \ldots, v_k \in \mathbb{R}^n$ such that

$$||v_i|| = 1$$
 and $\langle v_i, v_j \rangle = \rho$ for all $i \neq j$.

Show that $k \leq n$.

Solution: Let

$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{pmatrix} \in \mathbb{R}^{n \times k}.$$

We have

$$V^{\mathsf{T}}V = \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & & \vdots \\ \vdots & & \ddots & \rho \\ \rho & \dots & \rho & 1 \end{pmatrix} = (1 - \rho)\mathrm{Id}_k + \rho J$$

where $J \in \mathbb{R}^{k \times k}$ is the all-ones matrix. The eigenvalues of J are 0 and k (from the homework) hence the eigenvalues of $V^{\mathsf{T}}V = (1-\rho)\mathrm{Id}_k + \rho J$ are all strictly positive (because $(1-\rho) > 0$). This gives that $\mathrm{rank}(V^{\mathsf{T}}V) = k$, i.e. $\mathrm{Ker}(V^{\mathsf{T}}V) = \{0\}$.

For all $x \in \text{Ker}(V)$ we have $V^{\mathsf{T}}Vx = 0$ so $x \in \text{Ker}(V^{\mathsf{T}}V) = \{0\}$. We get that $\text{Ker}(V) = \{0\}$, hence the rank-nullity theorem gives that rank(V) = k. This means that v_1, \ldots, v_k are k linearly independent vectors of \mathbb{R}^n : $k \leq n$.

