Boolean Logic – Introduction to Computer (計算機概論)

Winston H. Hsu (徐宏民) National Taiwan University, Taipei

September 19/26, 2022

Office: R512, CSIE Building

Communication and Multimedia Lab (通訊與多媒體實驗室) http://winstonhsu.info

Some of the slides are mainly from the reference

Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- Karnaugh Maps
- Combinational Building Blocks

How Computer Operates?

if t>0 then

a = a + 1

else

end

IC, Fall 2022 – Winston Hsu

Introduction

- A logic circuit, processing discrete-valued variables, is composed of:
 - Inputs
 - Outputs

- Functional specification
 - · relationship between inputs and outputs
- Timing specification:
 - · delay between inputs changing and outputs responding

Circuits

- Nodes
 - -Inputs: A, B, C
 - Outputs: Y, Z
 - Internal: n1
- Circuit elements
 - -E1, E2, E3
 - Each a circuit

IC, Fall 2022 – Winston Hsu

Types of Logic Circuits

- Combinational Logic
 - Memoryless
 - Outputs determined by current values of inputs
- Sequential Logic
 - Has memory
 - Outputs determined by previous and current values of inputs

inputs functional spec outputs timing spec

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

7 IC, Fall 2022 – Winston Hsu

Rules of Combinational Composition (More Examples)

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths

Boolean Equations

- Functional specification of outputs in terms of inputs
- $S = F(A, B, C_{in})$ Example: $C_{\text{out}} = F(A, B, C_{\text{in}})$

$$\begin{array}{c|c}
A & \\
B & \\
C_{in}
\end{array}$$
 $\begin{array}{c|c}
C & \\
C_{out}
\end{array}$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

IC, Fall 2022 – Winston Hsu

Truth Table

A truth table is a chart of 1s and 0s arranged to indicate the results (or outputs) of all possible inputs

	(inputs)	(outputs)
a	А	В	С	Υ
=	0	0	0	0
ро	0	0	1	0
SS	0	1	0	0
5	0	1	1	1
е	1	0	0	1
st	1	0	1	0
all possible states	1	1	0	0
es	1	1	1	1

Determining Output Level From a Diagram

IC, Fall 2022 – Winston Hsu

Some Definitions

Complement: variable with a bar over it

 \overline{A} , \overline{B} , \overline{C}

• Literal: variable or its complement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implicant: product of literals

ABC, AC, BC

Minterm: product that includes <u>all</u> input variables

ABC, ABC, ABC

Maxterm: sum that includes <u>all</u> input variables

 $(A+\overline{B}+C)$, $(\overline{A}+B+\overline{C})$, $(\overline{A}+\overline{B}+C)$

Precedence: NOT > AND > OR

Universality of NAND (also NOR) Gates

For implementation matter, NAND is more cost-effective

13 IC, Fall 2022 – Winston Hsu

Universality of NAND (also NOR) Gates

More Examples

15 IC, Fall 2022 – Winston Hsu

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	$A\overline{B}$	m_2
1	1	1	АВ	m_3^{-}

$$Y = F(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

					minterm
	A	В	Y	minterm	name
_	0	0	0	$\overline{A} \ \overline{B}$	m_0
	0	1	1	Ā B	m_1
	1	0	0	\overline{AB}	m_2
	1	1	1	АВ	m_3

$$Y = F(A, B) =$$

17 IC, Fall 2022 – Winston Hsu

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{A}B + AB = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
(1	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3
V-1	$\mathcal{I}(A)$	D) = A	$(A \perp B)(A$	$\pm \overline{P} - \Pi(0)$

 $Y = F(A, B) = (A + B)(A + B) = \Pi(0, 2)$

IC, Fall 2022 – Winston Hsu

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

21 Winston Hsu

IC, Fall 2022 – Winston Hsu

SOP & POS Form

SOP – sum-of-products

0	С	E	minterm
0	0		O C
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		0 C

POS – product-of-sums

_	0	С	Y	maxterm
	0	0		0 + C
	0	1		$O + \overline{C}$
	1	0		O + C
	1	1		$\overline{O} + \overline{C}$

SOP & POS Form

SOP – sum-of-products

0	С	Ε	minterm
0	0	0	<u></u> O C
0	1	0	O C
1	0	1	0 <u>C</u>
1	1	0	0 C

$$Y = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	<u>O</u> + <u>C</u>

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$
$$= \Pi(0, 1, 3)$$

23

IC, Fall 2022 - Winston Hsu

Boolean Algebra

- Goal to simplify Boolean equations
- Axioms and theorems to simplify Boolean equations
 - Axiom are basic definition and can (need?) not be proved
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

25 IC, Fall 2022 – Winston Hsu

T1: Identity Theorem

•
$$\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$$

•
$$\mathbf{B} + \mathbf{0} = \mathbf{B}$$

T1: Identity Theorem

•
$$\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$$

•
$$B + 0 = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 = B

IC, Fall 2022 – Winston Hsu

T2: Null Element Theorem

•
$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

•
$$B + 1 = 1$$

T2: Null Element Theorem

•
$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

•
$$B + 1 = 1$$

IC, Fall 2022 – Winston Hsu

T3: Idempotency Theorem

•
$$\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$$

•
$$B + B = B$$

T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B

IC, Fall 2022 – Winston Hsu

T4: Identity Theorem

•
$$\overline{\overline{\mathbf{B}}} = \mathbf{B}$$

T4: Identity Theorem

•
$$\overline{\overline{B}} = B$$

IC, Fall 2022 – Winston Hsu

T5: Complement Theorem

•
$$\mathbf{B} \cdot \overline{\mathbf{B}} = \mathbf{0}$$

•
$$\mathbf{B} + \overline{\mathbf{B}} = \mathbf{1}$$

T5: Complement Theorem

•
$$\mathbf{B} \cdot \overline{\mathbf{B}} = \mathbf{0}$$

•
$$\mathbf{B} + \overline{\mathbf{B}} = \mathbf{1}$$

$$\frac{B}{B}$$
 $\boxed{}$ $\boxed{}$ $\boxed{}$ 0

$$\frac{B}{B}$$
 $=$ 1

IC, Fall 2022 – Winston Hsu

Boolean Theorems Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Variables

	Theorem		Dual	Name	[
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity	
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity	Why?
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$		_
Т9	$B \bullet (B + C) = B$	T9'	$B+(B\bullet C)=B$	Covering	
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining	
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus	_
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$		
T12	$B_0 \bullet B_1 \bullet B_2 \dots$ $= (B_0 + \overline{B_1} + \overline{B_2} \dots)$	T12'	$B_0 + B_1 + B_2 \dots$ $= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem	

IC, Fall 2022 – Winston Hsu

Simplifying Boolean Equations

Example 1:

$$Y = AB + \overline{A}B$$

Simplifying Boolean Equations

Example 1:

$$Y = AB + \overline{AB}$$

$$= B(A + \overline{A})$$

$$= B(1)$$

$$= B$$

$$= B$$

$$= T1$$

39 IC, Fall 2022 – Winston Hsu

Simplifying Boolean Equations

Example 2:

$$Y = A(AB + ABC)$$

Simplifying Boolean Equations

Example 2:

Y = A(AB + ABC)

= A(AB(1 + C))

T8

=A(AB(1))

T2'

=A(AB)

T1

= (AA)B

T7

= AB

T3

41 IC, Fall 2022 – Winston Hsu

Further Examples

- X· (X+Y)
- (X+Y) ·(X+Y')
- X(X'+Y)
- X + XY
- XY+XY'
- X+X'Y

Further Examples

- X· (X+Y)
 = X·X+X·Y= X+XY=X(1+Y)=X·1=X
- (X+Y) ·(X+Y')
 = XX+XY'+XY+YY' = X+XY'+XY+0=X(1+Y'+Y)=X·1=X
- X(X'+Y)
 XX'+XY = 0 + XY = XY
- X + XY
 = X·1 + XY = X(1+Y) = X·1 = X
- XY+XY'
 = X(Y + Y') = X·1 = X
- X+X'Y
 = X(1+Y) + X'Y = X + XY + X'Y = X + Y (X + X') = X + Y

43 IC, Fall 2022 – Winston Hsu

More Examples

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC}$$

DeMorgan's Theorem

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

45 IC, Fall 2022 – Winston Hsu

Examples

 Using DeMorgan's Theorems to convert the expressions to one that has only single-variable inversions.

$$y = \overline{RST} + \overline{\overline{Q}}$$

$$z = \overline{(A+B) \cdot \overline{C}}$$

$$- y = \overline{A + \overline{B} + \overline{C}D}$$

Bubble Pushing

- Backward:
 - Body changes
 - Adds bubbles to inputs

- Forward:
 - Body changes
 - Adds bubble to output

IC, Fall 2022 – Winston Hsu

Bubble Pushing

• What is the Boolean expression for this circuit?

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

IC, Fall 2022 - Winston Hsu

Bubble Pushing Rules

Why?

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing Example

51 IC, Fall 2022 – Winston Hsu

Bubble Pushing Example

Bubble Pushing Example

53 IC, Fall 2022 – Winston Hsu

Bubble Pushing Example

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + \overline{ABC} + AB\overline{C}$

55 IC, Fall 2022 – Winston Hsu

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

IC, Fall 2022 – Winston Hsu

Multiple-Output Circuits

Example: Priority Circuit

PRIORITY CIRCUIT

 Y_3 Y_2 Y_1 Y_0 Output asserted corresponding to most significant **TRUE** input A_3 A_2 A_1 Y_0

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y ₃	Y_2	Y ₁	Y _o 0 1 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	000000011111111	0 0 0 0 1 1 1 1 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

59 IC, Fall 2022 – Winston Hsu

Priority Circuit Hardware

			_				
A_3	A_2	A_{1}	$A_{\!\scriptscriptstyle O}$	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	000000011111111	0 0 0 0 1 1 1 1 0 0 0 0 0 0	00110000000000000	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_{1}	A_{o}	Y ₃ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1 1	A_2 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1	A ₁ 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1	01010101010101	1	0	0	0
1	1	1	1	1	0	0	0

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_{o}	Y_3	Y_2	Y ₁	Y ₀ 0 1 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	Χ	X	0	1	0	0
1	Χ	Χ	Χ	1	0	0	0

61 IC, Fall 2022 – Winston Hsu

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

Warnings:

- Contention usually indicates a bug.
- X is used for "don't care" and contention look at the context to tell them apart

Logic Levels (in Physical Gates)

IC, Fall 2022 – Winston Hsu

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Busses

- Tristate buffers are commonly used on "busses" that connect multiple chips processor en1
 - Many different drivers
 - Exactly one is active (for write) at once
 - Read can be shared
- Current computers prefer point-to-point links for high speed

IC, Fall 2022 – Winston Hsu

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- PA + PA = P

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Karnaugh Maps (K-Maps)

- Good for the case up to 4 variables
- Bit orders in Gray code: (00, 01, 11, 10) instead of (00, 01, 10, 11)
- Why? Adjust entries that differ only in a single variable
- "Wraps around"
 - The squares on the far right are effectively adjacent to the squares on the far left
 - Also the four corners

https://en.wikipedia.org/wiki/Karnaugh_map

67 IC, Fall 2022 – Winston Hsu

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

3-Input K-Map

Truth Table

_ A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

IC, Fall 2022 – Winston Hsu

3-Input K-Map

Truth Table

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + B\overline{C}$$

K-Map Definitions

• Complement: variable with a bar over it

 \bar{A} , \bar{B} , \bar{C}

• Literal: variable or its complement

 \bar{A} , A, \bar{B} , B, \bar{C} , C

• Implicant: product of literals

ABC, AC, BC

 Prime implicant: implicant corresponding to the largest circle in a K-map

> /1 IC, Fall 2022 – Winston Hsu

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

4-Input K-Map

Α	В	С	D	Y
0	0		0	1
0	0	0	1	1 0
0	0	1	0	1
0	0 0 0 1 1 1	0 0 1 1 0	1 0 1 0	1 1 0
0	1	0	0	0
0	1	0	1 0 1 0	1
0	1	1 1 0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1 1 0	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 1 1	1 1	1 0 1 0 1 0	1 1 1 1 1 0 0 0
1	1	1	1	0

73 IC, Fall 2022 – Winston Hsu

4-Input K-Map

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1 1	0	1 0	0
0 0 0 0 0 0 0 0 1 1 1		1 0 0 1 1 0	1	1
0	1	1	1 0 1 0	1
0	1 0	1	1	1
1	0	0	0	1
1	0	0		1
1	0	1	1 0	1
1	0	1		0
1	1	0	1 0	0
1	0 0 0 1 1	0	1 0	0
1 1 1		1 0 0 1	0	1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1	1	1	1	0

Υ	_			
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0		1	1 0	1
0 0 0	0	1	1	1
0		0	1	0
0 0 0 1 1	1 1 1 1 0	0	1	1
0	1		1 0 1 0	1
0	1	1 1	1	1
1	0	0	0	1
1	0	0	1	1
1	0 0 0	1	1 0	1
1	0	1	1	0
1	1	0	1 0	0
1	1 1 1	0	1 0	1 0 1 1 1 1 1 0 0 0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

75 IC, Fall 2022 – Winston Hsu

Application – Seven-Segment Display Decoder

Figure 2.47 Seven-segment display decoder icon

Table 2.6 Seven-segment display decoder truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1

Application – Seven-Segment Display Decoder

Table 2.6 Seven-segment display decoder truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

77 IC, Fall 2022 – Winston Hsu

Application – Seven-Segment Display Decoder

Table 2.6 Seven-segment display decoder truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_{g}
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

0

10 1

 $S_b = \overline{D}_3 \overline{D}_2 + \overline{D}_2 \overline{D}_1 + \overline{D}_3 D_1 D_0 + \overline{D}_3 \overline{D}_1 \overline{D}_0$

K-Maps with Don't Cares

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1		1
0	1	0	1 0	0
0 0 0 0	1	0		Χ
0	1	1	1 0	1
0		1 0 0 1 1 0 0 1 1 0		1
1	1 0 0	0	1	1
1	0	0	1	1
1	0	1	1	Χ
1 1 1 1	0	1	1	Χ
1	1	0	1 0	Χ
1	1	0	1 0	Χ
1	1	1	0	1 0 1 1 0 X 1 1 1 1 X X X
1	1	1	1	X

79 IC, Fall 2022 – Winston Hsu

K-Maps with Don't Cares

Α	В	С	D	Y
0	0			1
0	0 0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0	1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 0 0 1 1 1 1 1	1	1 1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 X 1 1 1 X X X X X X X X
1	1	1	1	X

Υ	_			
CDA	B 00	01	11	10
00	1	0	Х	1
01	0	X	X	1
11	1	1	X	Х
10	1	1	Х	Х

K-Maps with Don't Cares

Α	В	С	D	Υ
0	0	0	0	1
0	0	0		0
0	0	1	1 0	1
0 0 0 0 0 0 0 0 1 1 1 1 1	0	1 0 0 1 1 0 0 1 1 0	1	1
0	1	0	1 0	0
0	1	0		Χ
0	1	1	1 0	1
0	1	1		1
1	1 0 0	0	1 0 1 0	1
1	0	0	1	1
1	0	1	0	X
1	0	1		X
1	1	0	1 0	Χ
1	1	0	1	X
	1	1	0	1 0 1 0 X 1 1 1 X X X X X
1	1	1	1	X

 $Y = A + \overline{B}\overline{D} + C$

81 IC, Fall 2022 – Winston Hsu

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

S	D_1	D_0	Y	s	Υ
0	0	0	0	0	D_0
0	0	1	1	1	D_1
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

IC, Fall 2022 – Winston Hsu

Multiplexer Implementations

- Logic gates
 - Sum-of-products form

$Y = D_0 \overline{S} + D_1 S$

$$Y = D_0 S + D_1 S$$

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Multiplexer Implementations (4:1)

 S_1

 S_0

Figure 2.57 4:1 multiplexer $\bar{S}_1\bar{S}_0$

Figure 2.58 4:1 multiplexer implementations: (a) twolevel logic, (b) tristates, (c) hierarchical

IC, Fall 2022 – Winston Hsu

Logic using Multiplexers

• Using the mux as a lookup table

Logic using Multiplexers

• Reducing the size of the mux

87 IC, Fall 2022 – Winston Hsu

Logic using Multiplexers (Another Example)

Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

89 IC, Fall 2022 – Winston Hsu

Decoder Implementation

Logic Using Decoders

• OR minterms

91 IC, Fall 2022 – Winston Hsu

Logic Using Decoders (Another Example)

Example: Full adder

$$S(x, y, z) = \Sigma (1,2,4,7)$$

 $C(x, y, z) = \Sigma (3,5,6,7)$

x	у	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

