A Comprehensive Comparative Study of Clustering-based

Unsupervised Defect Prediction Models

Zhou Xu^a, Li Li^b, Meng Yan^{a,*}, Jin Liu^{c,*}, Xiapu Luo^d, John Grundy^b, Yifeng Zhang^c and Xiaohong Zhang^a

In this work, we use the Wilcoxon signed-rank test with Cliffs Delta for performance analysis between the unsupervised model with the best overall performance and the supervised classifiers. The p-value of Wilcoxon test lower than 0.05 means that the two compared methods have the significant difference in prediction performance. Cliff's delta is a non-parameter effect size measure that quantifiers the amount of difference between the performance values of two methods. Table 1-Table 12 report the corresponding results as follows:

Table 1 The p-value and cliff's delta results for F-measure between CLA and supervised models on defect data with code complexity features

							• • • • • • • • • • • • • • • • • • • •					
Project	CLA v	s. NB	CLA v	s. LR	CLA v	s. NN	CLA vs.	CART	CLA vs.	RIPPER	CLA v	s. RF
rioject	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta
JDT	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	0.99(L)	3.90e-18	1.0(L)
PDE	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
EQ	3.90e-18	1.0(L)	4.27e-18	0.97(L)	4.14e-18	0.96(L)	1.48e-13	0.63(L)	1.43e-06	0.37(M)	4.06e-15	0.77(L)
LC	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	4.01e-18	0.99(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
ML	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
ant-1.3	4.36e-16	0.77(L)	4.02e-18	0.96(L)	1.90e-17	0.88(L)	7.55e-18	0.91(L)	1.05e-17	0.89(L)	8.52e-18	0.93(L)
ant-1.4	9.30e-01	-0.14(N)	3.89e-18	1.0(L)	4.47e-17	0.83(L)	3.84e-18	1.0(L)	3.83e-18	1.0(L)	3.90e-18	1.0(L)
ant-1.5	1.08e-13	0.6(L)	5.94e-18	0.91(L)	4.98e-17	0.89(L)	7.78e-17	0.84(L)	3.49e-08	0.43(M)	8.74e-17	0.88(L)
ant-1.6	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	1.11e-17	0.84(L)	3.90e-18	0.88(L)	3.90e-18	0.99(L)
camel-1.0	1.85e-02	0.14(N)	2.00e-17	0.84(L)	4.64e-18	0.97(L)	3.74e-18	1.0(L)	3.76e-18	1.0(L)	3.80e-18	1.0(L)
camel-1.2	3.90e-18	1.0(L)	3.90e-18	1.0(L)	8.58e-14	0.69(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
camel-1.4	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
camel-1.6	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
ivy-2.0	5.27e-18	0.95(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.88e-18	1.0(L)	3.89e-18	1.0(L)	3.90e-18	1.0(L)
jedit-3.2	3.47e-16	0.78(L)	3.14e-17	0.84(L)	1.23e-15	0.81(L)	2.14e-10	0.52(L)	7.87e-09	0.42(M)	1.02e-12	0.54(L)
jedit-4.0	3.90e-18	0.99(L)	3.90e-18	1.0(L)	6.35e-17	0.84(L)	1.96e-17	0.82(L)	3.75e-17	0.77(L)	4.02e-18	0.97(L)
jedit-4.1	3.90e-18	1.0(L)	3.90e-18	0.94(L)	4.02e-18	0.93(L)	3.90e-18	0.92(L)	3.90e-18	0.92(L)	3.90e-18	0.97(L)

^aSchool of Big Data and Software Engineering, Chongqing University, Chongqing, China

^bFaculty of Information Technology, Monash University, Australia

^cSchool of Computer Science, Wuhan University, Wuhan, China

^dDepartment of Computing, The Hong Kong Polytechnic University, Hong Kong

jedit-4.2	4.02e-18	0.99(L)	4.02e-18	1.0(L)	4.02e-18	1.0(L)	3.90e-18	1.0(L)	4.53e-18	0.97(L)	3.90e-18	1.0(L)
jedit-4.3	1.91e-01	-0.12(N)	3.35e-16	0.73(L)	1.48e-17	0.84(L)	3.84e-18	1.0(L)	6.05e-18	0.92(L)	8.97e-14	0.72(L)
log4j-1.0	8.57e-10	0.44(M)	1.90e-12	0.62(L)	2.09e-17	0.87(L)	4.42e-17	0.79(L)	2.02e-17	0.87(L)	9.26e-17	0.8(L)
poi-2.0	4.27e-18	0.95(L)	4.40e-18	0.97(L)	1.14e-14	0.73(L)	4.01e-18	0.96(L)	4.14e-18	0.95(L)	5.27e-18	0.95(L)
synapse-1.0	1.26e-09	0.47(L)	1.29e-17	0.91(L)	1.20e-14	0.7(L)	3.98e-18	0.98(L)	4.21e-18	0.97(L)	6.12e-18	0.95(L)
synapse-1.1	7.54e-17	0.77(L)	5.11e-18	0.92(L)	4.62e-01	-0.04(N)	7.62e-04	0.21(S)	5.24e-08	0.43(M)	6.75e-05	0.3(S)
synapse-1.2	4.02e-18	0.97(L)	3.90e-18	1.0(L)	1.08e-17	0.93(L)	1.45e-14	0.7(L)	1.08e-13	0.54(L)	1.54e-15	0.74(L)
velocity-1.6	3.90e-18	1.0(L)	3.90e-18	1.0(L)	5.33e-17	0.85(L)	5.27e-18	0.94(L)	9.85e-18	0.94(L)	4.53e-18	0.96(L)
xerces-1.2	3.90e-18	0.94(L)	3.89e-18	1.0(L)	4.09e-07	0.41(M)	3.33e-17	0.87(L)	7.33e-18	0.95(L)	2.43e-11	0.61(L)
xerces-1.3	3.90e-18	1.0(L)	3.90e-18	1.0(L)	6.89e-09	0.45(M)	9.60e-18	0.89(L)	1.11e-17	0.93(L)	9.04e-18	0.91(L)

Table 2 The p-value and cliff's delta results for EAF-measure between CLA and supervised models on defect data with code complexity features

	CLA v	s. NB	CLA	vs. LR	CLA v	vs. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	vs. RF
Project	p-value	delta										
JDT	1.18e-04	0.35(M)	4.65e-02	0.19(S)	5.77e-18	-0.92(L)	3.06e-10	-0.56(L)	5.19e-15	-0.76(L)	2.48e-17	-0.9(L)
PDE	3.56e-09	0.57(L)	1.32e-09	0.58(L)	3.17e-15	-0.79(L)	5.77e-08	0.48(L)	3.84e-08	0.48(L)	8.43e-02	0.16(S)
EQ	5.11e-18	0.98(L)	3.63e-03	0.27(S)	4.17e-02	-0.18(S)	7.05e-01	0.03(N)	2.12e-02	0.23(S)	1.24e-03	-0.23(S)
LC	6.46e-09	0.53(L)	3.47e-03	0.25(S)	3.92e-03	0.23(S)	1.09e-02	0.26(S)	4.76e-03	0.26(S)	1.61e-02	0.23(S)
ML	3.89e-16	0.82(L)	2.17e-08	0.49(L)	1.06e-05	-0.38(M)	8.14e-05	0.28(S)	7.37e-10	0.49(L)	8.99e-01	-0.02(N)
ant-1.3	1.60e-01	-0.21(S)	3.42e-05	-0.42(M)	4.98e-07	-0.5(L)	1.62e-02	-0.27(S)	7.45e-01	-0.04(N)	1.83e-04	-0.38(M)
ant-1.4	8.06e-04	0.28(S)	5.85e-04	-0.45(M)	3.13e-08	-0.5(L)	5.31e-13	-0.73(L)	7.07e-11	-0.7(L)	7.38e-07	-0.52(L)
ant-1.5	2.62e-14	-0.77(L)	1.28e-10	-0.63(L)	1.22e-12	-0.68(L)	4.96e-09	-0.51(L)	1.13e-15	-0.8(L)	1.68e-10	-0.56(L)
ant-1.6	1.91e-04	0.29(S)	1.74e-09	-0.56(L)	1.56e-09	-0.47(M)	9.00e-12	-0.53(L)	1.37e-13	-0.69(L)	1.84e-11	-0.6(L)
camel-1.0	1.32e-09	0.61(L)	3.90e-18	0.99(L)	4.96e-18	0.98(L)	4.26e-18	0.99(L)	3.90e-18	0.99(L)	4.67e-18	0.99(L)
camel-1.2	1.34e-15	0.94(L)	6.32e-04	0.53(L)	8.01e-17	-0.96(L)	7.96e-06	-0.13(N)	2.35e-02	0.11(N)	3.63e-03	-0.23(S)
camel-1.4	2.47e-16	0.84(L)	2.79e-04	0.31(S)	1.58e-01	0.14(N)	4.81e-01	-0.09(N)	3.79e-01	-0.12(N)	7.26e-01	-0.0(N)
camel-1.6	7.79e-18	0.9(L)	2.79e-04	-0.43(M)	3.56e-08	-0.48(L)	8.01e-04	-0.32(S)	2.73e-02	-0.3(S)	1.76e-01	-0.16(S)
ivy-2.0	4.43e-01	0.06(N)	7.05e-05	0.35(M)	2.12e-01	0.11(N)	4.25e-14	0.69(L)	5.72e-12	0.6(L)	1.31e-10	0.54(L)
jedit-3.2	1.21e-15	0.73(L)	1.98e-01	0.05(N)	7.47e-01	-0.03(N)	9.22e-01	0.01(N)	4.33e-02	0.14(N)	4.82e-02	-0.09(N)
jedit-4.0	7.12e-18	0.89(L)	1.56e-13	0.64(L)	5.22e-04	-0.23(S)	1.36e-01	0.12(N)	1.73e-01	0.1(N)	2.57e-04	0.27(S)
jedit-4.1	7.56e-18	0.68(L)	7.32e-02	-0.07(N)	1.19e-04	-0.23(S)	5.24e-03	0.18(S)	2.13e-04	0.2(S)	1.09e-01	0.1(N)
jedit-4.2	1.50e-12	0.7(L)	2.29e-10	0.63(L)	1.60e-09	0.55(L)	3.67e-16	0.78(L)	9.66e-10	0.53(L)	1.64e-13	0.74(L)
jedit-4.3	3.34e-15	-0.73(L)	2.53e-04	-0.25(S)	1.41e-02	-0.09(N)	1.08e-05	-0.2(S)	1.83e-03	-0.11(N)	7.11e-05	-0.19(S)
log4j-1.0	3.97e-17	-0.9(L)	3.53e-17	-0.89(L)	2.77e-06	-0.46(M)	1.02e-07	-0.53(L)	4.14e-04	-0.34(M)	1.41e-07	-0.54(L)
poi-2.0	8.94e-02	-0.13(N)	2.62e-10	-0.56(L)	2.14e-17	-0.88(L)	7.93e-14	-0.69(L)	2.84e-14	-0.73(L)	4.09e-16	-0.84(L)
synapse-1.0	1.05e-15	-0.87(L)	4.26e-10	-0.53(L)	1.91e-15	-0.75(L)	1.81e-02	-0.19(S)	3.03e-03	-0.21(S)	7.35e-08	-0.35(M)
synapse-1.1	1.23e-04	-0.37(M)	8.03e-10	-0.53(L)	4.96e-18	-0.98(L)	1.49e-14	-0.79(L)	2.23e-13	-0.67(L)	1.74e-17	-0.94(L)
synapse-1.2	3.32e-05	0.32(S)	9.82e-02	0.15(S)	9.03e-01	-0.02(N)	8.15e-01	-0.03(N)	5.72e-02	0.07(N)	1.62e-05	-0.33(M)
velocity-1.6	6.64e-18	0.97(L)	3.33e-17	0.8(L)	3.10e-01	0.06(N)	1.68e-12	0.58(L)	5.73e-13	0.57(L)	5.22e-11	0.43(M)
xerces-1.2	2.69e-15	0.87(L)	1.30e-02	-0.12(N)	6.12e-16	-0.84(L)	1.23e-11	-0.6(L)	3.73e-13	-0.67(L)	2.61e-15	-0.81(L)
xerces-1.3	3.90e-18	1.0(L)	4.27e-18	0.99(L)	1.15e-05	-0.37(M)	4.56e-09	0.49(L)	1.98e-10	0.54(L)	1.41e-06	0.37(M)

Table 3 The p-value and cliff's delta results for Popt between CLA and supervised models on defect data with code complexity features

	CLA vs. NB CLA vs. LR					catures	Gr. i	GARE	ar i	DIDDED	er i	
Project	CLA	vs. NB	CLA	s. LR	CLA	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	/s. RF
	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta
JDT	3.90e-18	1.0(L)	4.67e-18	0.95(L)	6.35e-09	0.57(L)	1.56e-12	0.67(L)	7.24e-11	0.63(L)	8.58e-12	0.7(L)
PDE	3.35e-15	0.82(L)	4.96e-18	-0.97(L)	4.14e-18	-1.0(L)	4.27e-18	-0.99(L)	6.91e-18	-0.96(L)	4.27e-18	-0.99(L)
EQ	4.81e-18	0.99(L)	1.17e-07	0.46(M)	4.71e-04	-0.35(M)	2.69e-03	-0.27(S)	3.71e-01	0.09(N)	5.47e-03	-0.24(S)
LC	1.00e-03	-0.28(S)	4.27e-18	-0.99(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)
ML	8.96e-08	-0.48(L)	1.10e-15	-0.81(L)	4.67e-18	-0.97(L)	9.60e-18	-0.92(L)	9.26e-17	-0.86(L)	5.60e-18	-0.97(L)
ant-1.3	1.36e-06	0.44(M)	5.56e-04	0.29(S)	1.78e-01	0.12(N)	2.34e-04	0.34(M)	7.84e-08	0.49(L)	2.37e-03	0.26(S)
ant-1.4	4.10e-05	-0.32(S)	1.29e-17	-0.94(L)	7.56e-18	-0.93(L)	8.27e-18	-0.96(L)	6.12e-18	-0.93(L)	5.27e-18	-0.97(L)
ant-1.5	1.33e-01	-0.11(N)	1.11e-14	-0.73(L)	1.46e-06	-0.4(M)	1.02e-07	-0.49(L)	5.62e-16	-0.78(L)	4.07e-11	-0.62(L)
ant-1.6	4.02e-18	0.97(L)	1.38e-11	0.55(L)	2.05e-10	0.5(L)	1.79e-10	0.43(M)	2.54e-13	0.57(L)	1.64e-12	0.53(L)
camel-1.0	1.13e-03	0.29(S)	4.43e-02	0.15(S)	7.70e-06	0.39(M)	4.50e-02	0.06(N)	1.23e-02	0.11(N)	2.54e-02	0.14(N)
camel-1.2	6.73e-17	-0.97(L)	3.24e-17	-0.98(L)	7.12e-18	-0.98(L)	5.77e-18	-0.97(L)	6.73e-17	-0.89(L)	4.10e-17	-0.98(L)
camel-1.4	3.67e-07	-0.47(M)	4.67e-18	-0.96(L)	3.90e-18	-0.99(L)	4.27e-18	-0.94(L)	8.74e-17	-0.86(L)	4.02e-18	-0.99(L)
camel-1.6	6.12e-18	-0.97(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-0.99(L)	3.90e-18	-1.0(L)
ivy-2.0	2.06e-14	0.78(L)	1.14e-11	0.66(L)	1.12e-10	0.62(L)	1.26e-05	0.41(M)	4.02e-13	0.71(L)	2.28e-15	0.78(L)
jedit-3.2	1.28e-12	0.63(L)	7.22e-06	-0.36(M)	7.84e-08	-0.44(M)	9.96e-11	-0.6(L)	1.75e-05	-0.34(M)	3.04e-13	-0.66(L)
jedit-4.0	2.93e-16	0.82(L)	6.27e-03	0.21(S)	5.25e-01	-0.02(N)	9.19e-06	0.4(M)	6.56e-06	0.39(M)	1.03e-06	0.49(L)
jedit-4.1	1.22e-17	0.91(L)	3.02e-06	0.38(M)	4.66e-09	0.47(M)	4.00e-16	0.78(L)	5.49e-17	0.79(L)	3.35e-15	0.79(L)
jedit-4.2	4.14e-18	0.96(L)	3.51e-14	0.72(L)	4.81e-18	0.94(L)	2.88e-17	0.85(L)	5.27e-18	0.91(L)	3.90e-18	0.98(L)
jedit-4.3	5.79e-14	-0.78(L)	2.12e-13	-0.77(L)	8.94e-15	-0.8(L)	3.75e-17	-0.9(L)	1.85e-16	-0.88(L)	2.54e-16	-0.87(L)
log4j-1.0	4.16e-12	-0.57(L)	8.50e-11	-0.58(L)	5.16e-01	0.09(N)	3.30e-02	-0.17(S)	5.61e-01	0.07(N)	3.34e-01	-0.1(N)
poi-2.0	2.84e-16	-0.85(L)	1.20e-16	-0.86(L)	3.90e-18	-0.97(L)	5.77e-18	-0.96(L)	1.26e-17	-0.94(L)	4.53e-18	-0.98(L)
synapse-1.0	6.77e-01	0.05(N)	4.04e-02	0.17(S)	6.21e-01	-0.04(N)	3.66e-10	0.58(L)	1.64e-08	0.51(L)	4.36e-04	0.31(S)
synapse-1.1	8.27e-18	-0.9(L)	3.90e-18	-0.99(L)	3.90e-18	-1.0(L)	6.31e-18	-0.96(L)	9.60e-18	-0.91(L)	4.53e-18	-0.99(L)
synapse-1.2	1.06e-05	0.35(M)	8.23e-01	-0.04(N)	2.21e-05	-0.37(M)	2.80e-02	-0.17(S)	7.17e-03	0.19(S)	5.19e-05	-0.35(M)
velocity-1.6	2.84e-15	0.77(L)	8.37e-01	-0.0(N)	3.41e-09	-0.48(L)	3.53e-01	0.0(N)	5.87e-01	0.21(S)	4.96e-04	-0.18(S)
xerces-1.2	1.31e-07	-0.43(M)	4.14e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)
xerces-1.3	4.27e-18	0.97(L)	9.66e-05	-0.36(M)	4.27e-18	-0.97(L)	1.59e-17	-0.83(L)	2.61e-13	-0.68(L)	9.04e-18	-0.88(L)

Table 4 The p-value and cliff's delta results for F-measure between CLA and supervised models on defect data with process features

Project	CLA	vs. NB	CLA v	s. LR	CLA v	s. NN	CLA vs.	CART	CLA vs.	RIPPER	CLA v	s. RF
rioject	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta
JDT	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	0.98(L)	3.90e-18	0.99(L)	3.90e-18	1.0(L)
PDE	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
EQ	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	5.65e-17	0.81(L)	6.31e-18	0.91(L)	4.14e-18	0.98(L)
LC	3.77e-01	-0.12(N)	3.90e-18	0.99(L)	3.90e-18	0.98(L)	4.14e-18	0.93(L)	1.29e-17	0.9(L)	3.90e-18	0.98(L)
ML	8.34e-16	0.75(L)	3.90e-18	1.0(L)								
ant-1.3	1.05e-12	0.61(L)	8.74e-17	0.84(L)	7.56e-17	0.89(L)	1.24e-16	0.84(L)	2.91e-16	0.84(L)	4.83e-17	0.91(L)

ant-1.4	4.78e-02	0.2(S)	4.40e-18	0.95(L)	6.35e-09	0.52(L)	5.48e-15	0.75(L)	4.96e-18	0.96(L)	1.24e-16	0.82(L)
ant-1.5	5.89e-08	-0.41(M)	4.96e-18	0.95(L)	2.02e-17	0.91(L)	4.26e-18	0.98(L)	4.95e-18	0.97(L)	3.89e-18	1.0(L)
ant-1.6	4.02e-18	0.92(L)	3.90e-18	1.0(L)	3.90e-18	0.99(L)	1.05e-17	0.88(L)	3.89e-16	0.79(L)	4.27e-18	0.96(L)
camel-1.0	9.70e-15	-0.71(L)	1.47e-04	0.31(S)	3.98e-16	0.77(L)	1.46e-16	0.85(L)	5.46e-15	0.78(L)	3.41e-17	0.86(L)
camel-1.2	8.31e-08	0.48(L)	3.90e-18	1.0(L)	3.90e-18	0.99(L)	3.90e-18	0.99(L)	3.90e-18	0.95(L)	3.90e-18	0.98(L)
camel-1.4	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)
camel-1.6	2.26e-12	0.86(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.89e-18	1.0(L)	3.89e-18	1.0(L)	3.90e-18	1.0(L)
ivy-2.0	3.89e-16	0.78(L)	3.90e-18	0.99(L)	3.90e-18	0.99(L)	3.89e-18	0.99(L)	4.02e-18	0.99(L)	3.90e-18	1.0(L)
jedit-3.2	7.40e-15	0.71(L)	1.69e-17	0.84(L)	3.17e-07	0.64(L)	2.22e-07	0.52(L)	8.35e-06	0.58(L)	9.34e-06	0.64(L)
jedit-4.0	4.27e-18	0.98(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	0.99(L)	5.27e-18	0.97(L)	3.90e-18	1.0(L)
jedit-4.1	5.18e-17	0.74(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	0.98(L)	3.90e-18	0.95(L)	3.90e-18	1.0(L)
jedit-4.2	1.62e-04	-0.23(S)	1.23e-15	0.79(L)	2.20e-07	0.49(L)	7.05e-10	0.48(L)	2.84e-03	0.21(S)	5.82e-03	0.2(S)
jedit-4.3	9.12e-05	0.31(S)	6.41e-15	0.84(L)	3.93e-14	0.9(L)	2.97e-18	1.0(L)	4.50e-18	0.98(L)	6.24e-17	0.94(L)
log4j-1.0	3.89e-18	0.99(L)	4.14e-18	0.98(L)	3.89e-18	1.0(L)	4.26e-18	0.98(L)	4.39e-18	0.95(L)	3.89e-18	1.0(L)
poi-2.0	3.86e-01	-0.05(N)	6.91e-18	0.9(L)	2.79e-17	0.83(L)	2.08e-16	0.75(L)	1.17e-16	0.83(L)	9.81e-17	0.85(L)
synapse-1.0	6.25e-04	-0.22(S)	3.43e-17	0.83(L)	1.38e-11	0.59(L)	1.01e-16	0.84(L)	3.72e-17	0.84(L)	5.27e-17	0.88(L)
synapse-1.1	5.43e-18	0.92(L)	3.90e-18	1.0(L)	4.27e-18	0.97(L)	3.85e-18	1.0(L)	3.83e-18	1.0(L)	3.90e-18	1.0(L)
synapse-1.2	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	1.85e-17	0.92(L)	5.43e-18	0.96(L)	3.90e-18	1.0(L)
velocity-1.6	3.90e-18	1.0(L)	3.90e-18	1.0(L)	4.27e-18	0.99(L)	7.56e-18	0.91(L)	2.43e-17	0.89(L)	8.78e-18	0.94(L)
xerces-1.2	3.63e-15	0.72(L)	3.90e-18	1.0(L)	4.53e-18	0.95(L)	4.01e-18	0.99(L)	6.12e-18	0.96(L)	3.90e-18	0.99(L)
xerces-1.3	3.90e-18	0.99(L)	3.90e-18	1.0(L)								

Table 5 The p-value and cliff's delta results for EAF-measure between CLA and supervised models on defect data with process features

Duningt	CLA v	s. NB	CLA v	s. LR	CLA v	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	vs. RF
Project	p-value	delta										
JDT	5.73e-01	0.05(N)	1.71e-10	-0.56(L)	9.19e-15	-0.79(L)	1.01e-02	-0.23(S)	1.08e-05	-0.35(M)	1.09e-10	-0.56(L)
PDE	3.12e-13	-0.7(L)	3.75e-17	0.89(L)	9.67e-12	0.66(L)	5.94e-18	0.93(L)	3.05e-16	0.83(L)	4.60e-17	0.89(L)
EQ	3.90e-18	1.0(L)	1.41e-17	0.91(L)	4.00e-16	0.76(L)	1.54e-15	0.63(L)	2.35e-14	0.62(L)	1.42e-14	0.69(L)
LC	8.71e-15	-0.68(L)	1.04e-09	0.53(L)	8.79e-12	0.61(L)	1.15e-07	0.47(M)	1.83e-05	0.4(M)	1.04e-09	0.48(L)
ML	1.44e-02	-0.25(S)	5.55e-07	0.4(M)	2.65e-09	-0.55(L)	2.69e-05	-0.36(M)	6.01e-05	-0.42(M)	2.43e-06	-0.46(M)
ant-1.3	2.24e-04	-0.31(S)	2.22e-04	-0.32(S)	1.41e-06	-0.38(M)	1.11e-03	-0.28(S)	2.67e-01	-0.07(N)	6.85e-02	-0.13(N)
ant-1.4	9.66e-02	0.16(S)	4.05e-02	0.13(N)	8.15e-08	-0.5(L)	4.47e-01	-0.04(N)	4.90e-01	0.08(N)	5.12e-02	-0.18(S)
ant-1.5	1.15e-17	-0.93(L)	5.19e-05	-0.33(S)	9.13e-07	-0.4(M)	3.60e-01	-0.04(N)	3.81e-02	-0.14(N)	9.81e-01	-0.03(N)
ant-1.6	2.93e-16	-0.74(L)	1.77e-01	0.11(N)	4.18e-02	-0.15(S)	6.04e-06	-0.41(M)	7.95e-09	-0.48(L)	5.75e-11	-0.54(L)
camel-1.0	2.63e-07	-0.3(S)	4.97e-10	0.61(L)	5.49e-17	0.84(L)	4.53e-15	0.8(L)	3.64e-15	0.78(L)	4.22e-17	0.82(L)
camel-1.2	7.66e-16	0.75(L)	1.34e-14	0.76(L)	5.82e-17	0.88(L)	2.55e-14	0.77(L)	5.08e-08	0.59(L)	2.27e-17	0.84(L)
camel-1.4	3.90e-18	0.99(L)	3.90e-18	0.95(L)	5.27e-18	0.94(L)	7.79e-18	0.81(L)	9.89e-18	0.78(L)	4.67e-18	0.88(L)
camel-1.6	8.79e-08	0.41(M)	3.90e-18	-1.0(L)	7.33e-18	-0.89(L)	3.90e-18	-1.0(L)	4.96e-18	-0.96(L)	3.90e-18	-0.98(L)
ivy-2.0	4.08e-02	0.15(N)	1.32e-02	-0.24(S)	2.22e-08	0.51(L)	1.64e-10	0.55(L)	9.32e-12	0.58(L)	9.12e-05	0.37(M)
jedit-3.2	9.02e-13	0.63(L)	4.22e-17	0.75(L)	1.64e-02	0.19(S)	8.48e-06	0.3(S)	2.17e-05	0.28(S)	1.45e-03	0.18(S)
jedit-4.0	1.77e-15	0.71(L)	8.02e-18	0.82(L)	2.62e-14	0.6(L)	5.99e-17	0.75(L)	2.17e-14	0.61(L)	6.17e-17	0.69(L)
jedit-4.1	5.77e-08	0.45(M)	2.48e-14	0.62(L)	4.20e-09	0.4(M)	7.93e-14	0.62(L)	6.86e-08	0.43(M)	1.93e-07	0.36(M)

jedit-4.2	3.54e-11	-0.54(L)	3.37e-16	-0.8(L)	4.67e-18	-0.95(L)	3.17e-15	-0.74(L)	3.33e-17	-0.84(L)	5.11e-18	-0.94(L)
jedit-4.3	2.71e-02	-0.14(N)	8.30e-11	0.66(L)	2.69e-15	0.83(L)	3.90e-18	0.89(L)	4.02e-18	0.89(L)	3.90e-18	0.9(L)
log4j-1.0	3.23e-07	0.5(L)	4.32e-08	0.58(L)	5.85e-13	0.61(L)	5.57e-10	0.53(L)	4.43e-08	0.49(L)	2.24e-10	0.57(L)
poi-2.0	6.67e-13	-0.61(L)	4.76e-03	-0.22(S)	3.51e-05	-0.3(S)	2.69e-07	-0.43(M)	2.43e-06	-0.38(M)	5.04e-08	-0.45(M)
synapse-1.0	3.86e-17	-0.9(L)	2.28e-05	-0.26(S)	1.99e-12	-0.59(L)	1.40e-01	0.02(N)	1.07e-01	0.05(N)	3.32e-03	-0.09(N)
synapse-1.1	2.76e-15	0.78(L)	8.06e-07	0.52(L)	9.39e-05	0.32(S)	9.61e-02	-0.16(S)	5.42e-05	-0.35(M)	2.40e-01	0.14(N)
synapse-1.2	6.31e-18	0.93(L)	4.96e-18	0.98(L)	6.16e-11	0.61(L)	8.49e-17	0.81(L)	1.20e-15	0.79(L)	4.22e-14	0.66(L)
velocity-1.6	4.00e-16	0.63(L)	2.71e-17	0.68(L)	3.87e-12	0.49(L)	4.26e-12	0.48(L)	9.35e-16	0.51(L)	5.23e-05	0.26(S)
xerces-1.2	1.64e-10	0.56(L)	1.64e-04	0.21(S)	6.14e-02	-0.21(S)	4.01e-02	-0.35(M)	3.55e-03	-0.34(M)	4.59e-04	-0.4(M)
xerces-1.3	4.02e-18	0.98(L)	4.27e-18	0.97(L)	3.90e-18	0.99(L)	3.90e-18	0.96(L)	4.27e-18	0.96(L)	3.90e-18	0.98(L)

Table 6 The p-value and cliff's delta results for Popt between CLA and supervised models on defect data with process features

	CLA v	s. NB	CLA	vs. LR	CLA v	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	vs. RF
Project	p-value	delta										
JDT	3.90e-18	1.0(L)	1.20e-16	0.84(L)	1.28e-04	0.39(M)	6.31e-18	0.94(L)	4.53e-18	0.95(L)	1.18e-17	0.94(L)
PDE	3.35e-07	0.42(M)	1.55e-08	-0.51(L)	2.64e-01	0.09(N)	2.62e-12	-0.67(L)	2.75e-04	-0.31(S)	5.48e-06	-0.4(M)
EQ	3.90e-18	1.0(L)	5.43e-18	0.97(L)	8.52e-18	0.93(L)	3.28e-16	0.75(L)	9.04e-18	0.87(L)	5.60e-18	0.96(L)
LC	2.37e-03	0.17(S)	5.77e-02	0.11(N)	2.34e-09	0.41(M)	2.10e-04	0.24(S)	3.98e-05	0.26(S)	3.27e-05	0.25(S)
ML	4.14e-18	-0.98(L)	3.37e-16	-0.82(L)	3.90e-18	-0.99(L)	4.27e-18	-0.97(L)	3.90e-18	-0.98(L)	3.90e-18	-1.0(L)
ant-1.3	4.81e-01	0.06(N)	4.50e-02	0.16(S)	6.13e-01	0.04(N)	7.10e-01	0.02(N)	1.39e-01	0.09(N)	1.23e-01	0.11(N)
ant-1.4	3.37e-01	-0.04(N)	2.00e-12	-0.63(L)	2.63e-17	-0.89(L)	1.62e-14	-0.73(L)	1.62e-14	-0.7(L)	3.47e-16	-0.82(L)
ant-1.5	7.21e-10	-0.56(L)	5.70e-01	0.07(N)	1.28e-02	0.16(S)	1.32e-03	0.23(S)	3.69e-05	0.33(S)	4.75e-05	0.33(M)
ant-1.6	2.07e-02	-0.13(N)	8.82e-16	0.7(L)	1.22e-08	0.39(M)	6.14e-02	0.1(N)	4.15e-02	0.13(N)	2.50e-02	0.13(N)
camel-1.0	7.20e-15	-0.71(L)	5.85e-06	-0.39(M)	4.51e-03	-0.22(S)	4.71e-03	-0.23(S)	4.25e-04	-0.29(S)	2.68e-04	-0.29(S)
camel-1.2	5.64e-01	-0.03(N)	3.90e-18	-0.91(L)	9.89e-18	-0.88(L)	1.85e-16	-0.7(L)	6.61e-10	-0.43(M)	3.57e-16	-0.72(L)
camel-1.4	5.11e-18	0.92(L)	1.03e-06	-0.36(M)	6.29e-02	-0.12(N)	4.69e-14	-0.7(L)	8.79e-13	-0.71(L)	2.32e-11	-0.56(L)
camel-1.6	4.96e-18	-0.88(L)	3.90e-18	-1.0(L)								
ivy-2.0	3.78e-16	0.8(L)	6.45e-11	0.5(L)	1.11e-17	0.9(L)	4.24e-16	0.73(L)	5.49e-17	0.79(L)	2.09e-15	0.69(L)
jedit-3.2	1.02e-04	0.24(S)	1.10e-12	0.67(L)	1.81e-05	0.37(M)	3.26e-07	0.4(M)	3.90e-14	0.68(L)	1.52e-03	0.25(S)
jedit-4.0	4.27e-18	0.99(L)	4.02e-18	0.93(L)	4.14e-18	0.94(L)	5.77e-18	0.92(L)	7.12e-18	0.9(L)	5.43e-18	0.91(L)
jedit-4.1	1.09e-11	0.64(L)	9.82e-17	0.79(L)	5.43e-18	0.94(L)	4.00e-16	0.74(L)	1.20e-16	0.73(L)	9.82e-17	0.79(L)
jedit-4.2	1.08e-01	-0.22(S)	7.81e-01	0.01(N)	6.74e-03	-0.18(S)	5.18e-03	-0.17(S)	6.88e-06	-0.29(S)	9.71e-13	-0.56(L)
jedit-4.3	4.14e-18	0.86(L)	3.90e-18	0.89(L)	3.90e-18	0.91(L)	3.90e-18	0.86(L)	3.90e-18	0.89(L)	3.90e-18	0.86(L)
log4j-1.0	1.59e-17	0.91(L)	2.63e-17	0.93(L)	5.11e-18	0.95(L)	4.40e-18	0.94(L)	3.05e-17	0.9(L)	6.91e-18	0.93(L)
poi-2.0	3.27e-10	-0.52(L)	7.43e-12	-0.56(L)	4.12e-13	-0.64(L)	1.85e-14	-0.69(L)	9.47e-13	-0.64(L)	9.27e-14	-0.7(L)
synapse-1.0	1.61e-08	-0.44(M)	1.78e-09	0.51(L)	1.80e-03	0.25(S)	1.09e-09	0.55(L)	7.43e-12	0.58(L)	5.65e-07	0.47(M)
synapse-1.1	4.54e-01	-0.02(N)	1.75e-02	-0.35(M)	7.86e-03	-0.39(M)	1.31e-10	-0.48(L)	1.76e-12	-0.54(L)	2.04e-05	-0.44(M)
synapse-1.2	4.14e-18	0.9(L)	5.27e-18	0.9(L)	1.11e-04	0.28(S)	8.63e-09	0.48(L)	3.35e-08	0.44(M)	1.35e-16	0.65(L)
velocity-1.6	2.04e-15	0.76(L)	8.45e-09	0.59(L)	1.55e-08	0.53(L)	1.90e-14	0.75(L)	3.14e-17	0.85(L)	1.19e-12	0.68(L)
xerces-1.2	7.12e-18	-0.85(L)	3.90e-18	-0.98(L)	3.90e-18	-0.99(L)	4.02e-18	-0.97(L)	3.90e-18	-0.96(L)	3.90e-18	-0.99(L)
xerces-1.3	7.36e-05	-0.23(S)	9.64e-04	-0.2(S)	1.29e-01	-0.12(N)	2.17e-05	-0.27(S)	1.22e-05	-0.33(S)	4.22e-05	-0.29(S)

Table 7 The p-value and cliff's delta results for F-measure between CLA and supervised models on defect data with network features

D : .	CLA v	s. NB	CLA v	s. LR	CLA v	s. NN	CLA vs.	. CART	CLA vs.	RIPPER	CLA v	s. RF
Project	p-value	delta										
JDT	4.02e-18	0.98(L)	3.90e-18	1.0(L)								
PDE	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.89e-18	1.0(L)	3.90e-18	1.0(L)
EQ	3.90e-18	0.98(L)	4.81e-18	0.97(L)	4.27e-18	0.99(L)	2.31e-12	0.59(L)	4.11e-14	0.7(L)	1.02e-17	0.94(L)
LC	1.70e-09	0.51(L)	3.90e-18	1.0(L)	4.02e-18	0.99(L)	3.90e-18	0.98(L)	4.67e-18	0.97(L)	3.90e-18	1.0(L)
ML	3.90e-18	1.0(L)										
ant-1.3	2.62e-04	0.23(S)	1.27e-16	0.85(L)	1.85e-16	0.83(L)	4.39e-18	0.92(L)	3.87e-18	0.97(L)	3.90e-18	0.99(L)
ant-1.4	6.64e-18	-0.91(L)	5.38e-09	0.54(L)	3.40e-03	0.23(S)	8.45e-09	0.51(L)	7.68e-16	0.83(L)	2.56e-17	0.89(L)
ant-1.5	3.24e-13	0.7(L)	3.05e-17	0.9(L)	8.73e-17	0.84(L)	2.83e-17	0.87(L)	7.45e-16	0.78(L)	4.27e-18	0.98(L)
ant-1.6	3.05e-17	0.81(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	4.53e-18	0.97(L)	4.02e-18	0.98(L)	3.90e-18	1.0(L)
camel-1.0	1.68e-02	0.15(S)	1.54e-15	0.75(L)	6.16e-17	0.89(L)	1.04e-17	0.92(L)	3.97e-18	0.98(L)	7.50e-18	0.95(L)
camel-1.2	1.85e-17	0.88(L)	8.63e-04	0.25(S)	5.35e-04	0.26(S)	1.14e-01	0.06(N)	2.71e-01	-0.22(S)	6.35e-06	0.4(M)
camel-1.4	4.02e-18	0.97(L)	3.90e-18	1.0(L)								
camel-1.6	5.11e-18	0.94(L)	3.90e-18	0.99(L)	3.90e-18	1.0(L)	4.27e-18	0.96(L)	7.56e-18	0.92(L)	3.90e-18	1.0(L)
ivy-2.0	3.12e-13	0.61(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.89e-18	1.0(L)	3.89e-18	1.0(L)	3.90e-18	0.99(L)
jedit-3.2	1.73e-13	0.59(L)	5.30e-03	-0.23(S)	9.08e-01	-0.03(N)	2.07e-02	-0.23(S)	4.82e-05	-0.32(S)	4.05e-02	-0.13(N)
jedit-4.0	3.90e-18	0.96(L)	3.90e-18	0.99(L)	3.90e-18	1.0(L)	4.02e-18	0.99(L)	9.89e-18	0.93(L)	3.90e-18	0.99(L)
jedit-4.1	4.14e-18	0.97(L)	3.90e-18	1.0(L)	3.90e-18	0.98(L)	6.70e-18	0.94(L)	8.78e-18	0.9(L)	4.40e-18	0.98(L)
jedit-4.2	6.12e-18	0.93(L)	4.02e-18	0.99(L)	3.90e-18	1.0(L)	6.91e-18	0.96(L)	1.22e-17	0.88(L)	3.90e-18	1.0(L)
jedit-4.3	6.45e-01	0.02(N)	3.18e-06	0.36(M)	1.26e-11	-0.67(L)	3.87e-18	1.0(L)	1.01e-17	0.84(L)	7.40e-12	-0.69(L)
log4j-1.0	3.89e-18	0.99(L)	3.90e-18	0.98(L)	4.27e-18	0.98(L)	4.14e-18	0.97(L)	6.31e-18	0.95(L)	1.29e-17	0.92(L)
poi-2.0	4.40e-18	0.96(L)	9.04e-18	0.94(L)	4.40e-18	0.98(L)	3.89e-18	0.99(L)	3.89e-18	1.0(L)	3.90e-18	1.0(L)
synapse-1.0	1.81e-01	0.09(N)	7.37e-08	0.46(M)	2.64e-06	0.42(M)	2.33e-15	0.77(L)	1.53e-17	0.9(L)	1.36e-14	0.78(L)
synapse-1.1	1.14e-02	0.19(S)	4.14e-18	0.98(L)	1.39e-16	0.83(L)	4.88e-17	0.81(L)	2.76e-15	0.74(L)	3.14e-17	0.9(L)
synapse-1.2	7.93e-11	0.48(L)	5.03e-17	0.9(L)	5.18e-17	0.89(L)	3.14e-17	0.89(L)	5.70e-18	0.98(L)	5.94e-18	0.97(L)
velocity-1.6	3.28e-16	0.75(L)	3.90e-18	0.99(L)	4.81e-18	0.94(L)	1.27e-15	0.77(L)	9.33e-16	0.72(L)	8.27e-18	0.94(L)
xerces-1.2	3.14e-17	0.89(L)	1.89e-02	0.22(S)	6.06e-01	-0.09(N)	3.64e-05	0.3(S)	3.64e-01	0.06(N)	4.95e-08	0.46(M)
xerces-1.3	6.12e-18	0.95(L)	3.67e-16	0.82(L)	3.73e-13	0.58(L)	7.78e-17	0.81(L)	1.79e-17	0.91(L)	6.31e-18	0.95(L)

Table 8 The p-value and cliff's delta results for EAF-measure between CLA and supervised models on defect data with network features

Project	CLA v	s. NB	CLA	vs. LR	CLA v	vs. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	s. RF
Project	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta
JDT	1.41e-13	-0.63(L)	9.96e-11	-0.6(L)	1.24e-16	-0.88(L)	1.62e-04	-0.3(S)	2.04e-05	-0.32(S)	1.78e-09	-0.5(L)
PDE	4.36e-16	0.79(L)	8.14e-14	0.68(L)	1.18e-04	-0.32(S)	4.47e-12	0.61(L)	4.22e-14	0.73(L)	5.84e-12	0.62(L)
EQ	4.27e-18	0.93(L)	8.23e-17	0.78(L)	9.97e-15	0.74(L)	5.95e-10	0.51(L)	1.81e-09	0.46(M)	1.24e-14	0.74(L)
LC	1.06e-02	-0.16(S)	1.31e-07	0.43(M)	5.22e-06	0.36(M)	1.08e-03	0.25(S)	7.68e-05	0.32(S)	1.26e-07	0.43(M)
ML	1.23e-01	0.14(N)	4.00e-16	0.78(L)	6.14e-02	-0.15(N)	2.92e-15	0.7(L)	5.95e-15	0.71(L)	1.73e-13	0.67(L)
ant-1.3	4.53e-01	0.12(N)	3.29e-03	-0.26(S)	6.49e-08	-0.45(M)	2.82e-01	-0.1(N)	3.43e-03	0.26(S)	1.34e-02	0.2(S)

ant-1.4	4.09e-16	-0.74(L)	1.93e-03	-0.27(S)	2.27e-10	-0.54(L)	1.23e-04	-0.33(S)	1.70e-01	-0.14(N)	1.00e-01	-0.14(N)
ant-1.5	3.33e-04	0.32(S)	5.11e-05	-0.29(S)	2.53e-12	-0.63(L)	2.78e-06	-0.32(S)	3.12e-07	-0.41(M)	1.20e-05	-0.32(S)
ant-1.6	5.18e-08	0.43(M)	3.79e-11	0.61(L)	4.29e-06	0.34(M)	1.22e-08	0.44(M)	2.74e-07	0.44(M)	2.76e-08	0.45(M)
camel-1.0	7.55e-18	0.85(L)	4.14e-18	0.92(L)	3.90e-18	0.94(L)	3.90e-18	0.95(L)	3.90e-18	0.96(L)	3.89e-18	0.95(L)
camel-1.2	5.64e-01	-0.12(N)	3.90e-18	-0.99(L)	3.90e-18	-0.98(L)	1.33e-17	-0.87(L)	6.31e-18	-0.91(L)	4.02e-18	-1.0(L)
camel-1.4	3.73e-13	0.71(L)	2.93e-02	0.22(S)	1.46e-02	0.24(S)	2.42e-01	0.14(N)	1.50e-01	0.18(S)	1.48e-05	0.4(M)
camel-1.6	7.01e-15	0.77(L)	1.48e-13	-0.68(L)	1.10e-06	-0.42(M)	1.88e-04	-0.27(S)	1.57e-10	-0.55(L)	9.29e-08	-0.42(M)
ivy-2.0	3.56e-08	-0.35(M)	5.76e-03	0.2(S)	7.54e-01	-0.04(N)	1.67e-11	0.53(L)	2.01e-08	0.5(L)	4.41e-04	0.31(S)
jedit-3.2	1.97e-08	0.49(L)	2.69e-16	-0.5(L)	9.71e-13	-0.46(M)	4.07e-11	-0.45(M)	2.01e-14	-0.55(L)	1.42e-15	-0.52(L)
jedit-4.0	1.69e-17	0.86(L)	5.31e-13	0.59(L)	2.18e-13	0.57(L)	4.37e-12	0.6(L)	2.33e-11	0.51(L)	7.19e-13	0.57(L)
jedit-4.1	6.31e-17	0.84(L)	1.95e-12	0.57(L)	7.81e-01	0.02(N)	3.51e-06	0.42(M)	8.88e-03	0.18(S)	2.03e-01	0.11(N)
jedit-4.2	8.06e-07	0.49(L)	1.44e-01	0.1(N)	1.28e-04	-0.34(M)	3.63e-03	0.2(S)	6.23e-01	-0.1(N)	1.51e-02	0.18(S)
jedit-4.3	5.49e-13	-0.69(L)	3.25e-06	-0.45(M)	9.79e-05	-0.41(M)	8.15e-03	-0.33(S)	8.32e-03	-0.32(S)	1.60e-02	-0.31(S)
log4j-1.0	3.52e-01	-0.07(N)	2.12e-07	0.4(M)	1.14e-01	0.1(N)	2.61e-01	0.13(N)	9.78e-01	0.03(N)	1.86e-03	-0.23(S)
poi-2.0	6.65e-05	-0.37(M)	6.60e-11	-0.61(L)	1.38e-07	-0.47(M)	4.58e-02	-0.21(S)	3.43e-01	-0.12(N)	8.97e-03	-0.27(S)
synapse-1.0	1.42e-05	-0.32(S)	3.86e-07	-0.38(M)	9.78e-08	-0.37(M)	7.17e-01	0.23(S)	1.12e-03	0.42(M)	2.22e-01	0.04(N)
synapse-1.1	6.17e-17	0.8(L)	6.75e-09	0.52(L)	2.33e-01	-0.07(N)	2.73e-01	-0.07(N)	2.09e-01	-0.07(N)	1.60e-03	-0.26(S)
synapse-1.2	2.03e-05	0.31(S)	4.58e-06	-0.35(M)	1.95e-07	-0.45(M)	3.14e-04	0.26(S)	3.11e-03	0.2(S)	8.37e-05	-0.32(S)
velocity-1.6	1.75e-15	0.62(L)	4.27e-18	0.85(L)	1.45e-12	0.49(L)	4.37e-12	0.49(L)	9.24e-13	0.52(L)	1.20e-14	0.57(L)
xerces-1.2	6.01e-05	0.42(M)	3.29e-08	-0.44(M)	1.46e-10	-0.53(L)	2.43e-06	-0.33(S)	3.81e-07	-0.4(M)	1.60e-05	-0.29(S)
xerces-1.3	2.22e-11	0.66(L)	5.05e-01	-0.03(N)	1.01e-05	-0.33(M)	8.69e-01	0.04(N)	1.57e-01	0.14(N)	2.57e-01	0.11(N)

Table 9 The p-value and cliff's delta results for Popt between CLA and supervised models on defect data with network features

Duoinat	CLA v	vs. NB	CLA	vs. LR	CLA v	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA v	s. RF
Project	p-value	delta										
JDT	2.24e-09	0.46(M)	6.98e-01	-0.02(N)	3.22e-01	0.09(N)	7.22e-06	0.35(M)	8.95e-10	0.53(L)	7.25e-05	0.31(S)
PDE	4.00e-08	-0.5(L)	3.90e-18	-0.98(L)	4.02e-18	-0.94(L)	4.02e-18	-0.96(L)	3.90e-18	-0.97(L)	4.40e-18	-0.98(L)
EQ	3.90e-18	0.94(L)	1.14e-13	0.61(L)	2.96e-13	0.64(L)	1.31e-06	0.44(M)	2.12e-07	0.36(M)	1.38e-14	0.68(L)
LC	2.10e-09	-0.35(M)	3.35e-07	-0.31(S)	9.11e-07	-0.32(S)	3.20e-09	-0.41(M)	4.56e-09	-0.37(M)	2.50e-07	-0.33(S)
ML	1.15e-02	-0.11(N)	1.90e-12	-0.46(M)	1.21e-09	-0.3(S)	2.02e-13	-0.53(L)	4.46e-10	-0.41(M)	1.63e-11	-0.4(M)
ant-1.3	2.14e-03	0.2(S)	1.19e-03	0.27(S)	2.49e-01	0.11(N)	7.47e-05	0.28(S)	4.49e-08	0.45(M)	1.88e-06	0.4(M)
ant-1.4	4.02e-18	-0.97(L)	3.35e-15	-0.77(L)	2.02e-17	-0.89(L)	3.10e-16	-0.84(L)	3.86e-17	-0.84(L)	8.01e-17	-0.86(L)
ant-1.5	2.55e-08	0.38(M)	7.53e-04	0.26(S)	3.10e-01	0.07(N)	3.85e-02	0.16(S)	4.70e-01	0.06(N)	6.29e-02	0.14(N)
ant-1.6	1.65e-03	0.24(S)	1.06e-13	0.72(L)	4.06e-12	0.61(L)	2.77e-09	0.44(M)	3.48e-09	0.41(M)	2.39e-09	0.51(L)
camel-1.0	4.18e-03	0.19(S)	1.96e-10	0.43(M)	8.35e-06	0.29(S)	6.55e-05	0.24(S)	3.88e-07	0.31(S)	1.18e-05	0.28(S)
camel-1.2	3.90e-18	-1.0(L)										
camel-1.4	3.53e-05	-0.33(M)	9.04e-18	-0.92(L)	3.70e-14	-0.71(L)	1.07e-15	-0.82(L)	2.14e-17	-0.9(L)	1.90e-17	-0.88(L)
camel-1.6	9.32e-18	-0.89(L)	3.90e-18	-1.0(L)								
ivy-2.0	2.06e-01	0.06(N)	8.62e-06	0.33(S)	5.22e-01	0.06(N)	8.12e-01	-0.03(N)	7.44e-01	0.03(N)	2.20e-02	-0.18(S)
jedit-3.2	1.06e-08	0.5(L)	4.82e-14	-0.62(L)	6.43e-14	-0.74(L)	5.16e-16	-0.77(L)	4.96e-18	-0.91(L)	1.26e-17	-0.87(L)
jedit-4.0	3.33e-17	0.87(L)	3.77e-08	0.48(L)	8.25e-02	0.1(N)	1.27e-01	0.11(N)	6.13e-01	0.01(N)	2.34e-01	0.06(N)
jedit-4.1	1.26e-17	0.92(L)	5.73e-09	0.45(M)	1.23e-04	0.29(S)	7.66e-02	0.11(N)	2.58e-01	-0.13(N)	1.29e-01	-0.15(S)

jedit-4.2	4.53e-18	0.96(L)	7.33e-18	0.92(L)	6.28e-12	0.56(L)	6.11e-15	0.73(L)	4.53e-15	0.66(L)	4.61e-16().78(L)
jedit-4.3	2.57e-04	-0.34(M)	1.82e-03	-0.28(S)	3.34e-06	-0.45(M)	6.45e-11	-0.6(L)	1.85e-08	-0.54(L)	5.50e-09 -	0.55(L)
log4j-1.0	6.12e-16	0.79(L)	2.02e-17	0.87(L)	9.07e-16	0.78(L)	5.95e-16	0.81(L)	9.60e-16	0.78(L)	5.05e-12().63(L)
poi-2.0	4.33e-14	-0.74(L)	3.43e-17	-0.88(L)	5.02e-16	-0.81(L)	1.42e-14	-0.76(L)	1.93e-15	-0.79(L)	5.79e-15 -	0.77(L)
synapse-1.0	1.37e-01	-0.12(N)	1.07e-02	-0.2(S)	1.71e-03	-0.24(S)	5.64e-01	0.03(N)	1.53e-02	0.14(N)	2.98e-02 -	0.17(S)
synapse-1.1	6.84e-13	0.63(L)	2.95e-07	0.44(M)	8.43e-02	-0.1(N)	9.25e-05	-0.25(S)	2.13e-08	-0.38(M)	1.31e-06 -0).39(M)
synapse-1.2	2.94e-11	-0.52(L)	1.64e-10	-0.55(L)	2.02e-13	-0.65(L)	2.74e-11	-0.52(L)	1.18e-09	-0.43(M)	9.44e-15 -	0.74(L)
velocity-1.6	1.35e-03	0.11(N)	4.29e-09	0.39(M)	7.49e-01	0.0(N)	1.18e-01	-0.14(N)	7.05e-01	-0.07(N)	5.42e-02 -0	0.15(N)
xerces-1.2	4.64e-01	0.09(N)	1.82e-15	-0.81(L)	6.54e-17	-0.79(L)	6.12e-18	-0.91(L)	4.10e-17	-0.89(L)	3.24e-17 -	0.88(L)
xerces-1.3	2.89e-09	0.49(L)	3.39e-01	0.09(N)	2.61e-02	-0.13(N)	1.52e-03	-0.24(S)	1.39e-05	-0.37(M)	2.40e-10 -	0.51(L)

Table 10 The p-value and cliff's delta results for F-measure between CLA and supervised models on defect data with combined features

	CLA v	s. NB	CLA v	s. LR	CLA v	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA	vs. RF
Project	p-value	delta										
JDT	3.90e-18	0.98(L)	4.02e-18	0.96(L)	3.90e-18	1.0(L)	3.90e-18	0.97(L)	3.90e-18	0.95(L)	3.90e-18	1.0(L)
PDE	3.90e-18	1.0(L)										
EQ	3.90e-18	1.0(L)	5.94e-18	0.94(L)	3.90e-18	1.0(L)	2.08e-17	0.89(L)	2.69e-14	0.73(L)	4.88e-16	0.8(L)
LC	2.63e-03	0.18(S)	4.81e-18	0.92(L)	4.02e-18	0.99(L)	2.14e-17	0.86(L)	1.69e-17	0.89(L)	3.90e-18	0.98(L)
ML	3.90e-18	0.99(L)	3.90e-18	1.0(L)								
ant-1.3	7.00e-17	0.84(L)	9.85e-18	0.95(L)	4.27e-18	0.98(L)	5.17e-17	0.88(L)	1.80e-16	0.84(L)	5.69e-18	0.99(L)
ant-1.4	1.05e-14	-0.75(L)	1.08e-02	0.22(S)	8.08e-06	0.39(M)	3.81e-07	0.45(M)	1.18e-17	0.95(L)	4.48e-16	0.86(L)
ant-1.5	4.52e-08	0.49(L)	5.31e-16	0.78(L)	1.11e-17	0.88(L)	2.00e-12	0.6(L)	1.48e-11	0.63(L)	6.91e-18	0.96(L)
ant-1.6	1.46e-17	0.87(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	6.31e-18	0.92(L)	3.18e-12	0.57(L)	4.02e-18	0.98(L)
camel-1.0	2.37e-01	-0.07(N)	8.16e-03	0.2(S)	1.57e-16	0.82(L)	2.86e-17	0.87(L)	7.42e-16	0.79(L)	3.96e-18	0.99(L)
camel-1.2	5.77e-18	0.94(L)	5.47e-01	-0.06(N)	7.78e-01	-0.04(N)	2.31e-08	0.43(M)	1.17e-01	0.06(N)	9.82e-03	0.16(S)
camel-1.4	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	3.90e-18	0.98(L)	3.90e-18	1.0(L)
camel-1.6	4.02e-18	0.98(L)	4.02e-18	0.97(L)	9.94e-07	0.39(M)	6.47e-16	0.81(L)	6.12e-16	0.69(L)	4.40e-18	0.97(L)
ivy-2.0	3.00e-15	0.69(L)	4.02e-18	0.98(L)	3.90e-18	1.0(L)	3.90e-18	1.0(L)	4.02e-18	0.99(L)	3.90e-18	1.0(L)
jedit-3.2	1.77e-15	0.71(L)	1.02e-14	0.71(L)	3.67e-16	0.78(L)	1.37e-10	0.53(L)	4.41e-05	0.28(S)	2.51e-03	0.2(S)
jedit-4.0	3.90e-18	0.98(L)	4.02e-18	0.99(L)	4.02e-18	0.99(L)	3.90e-18	0.98(L)	3.90e-18	0.99(L)	3.90e-18	0.99(L)
jedit-4.1	3.90e-18	1.0(L)	4.02e-18	0.99(L)	4.02e-18	1.0(L)	4.02e-18	0.99(L)	3.90e-18	0.99(L)	3.90e-18	1.0(L)
jedit-4.2	2.96e-17	0.85(L)	4.27e-18	0.98(L)	6.70e-18	0.93(L)	4.22e-17	0.92(L)	5.60e-18	0.9(L)	6.70e-18	0.94(L)
jedit-4.3	2.33e-02	0.25(S)	4.08e-02	-0.08(N)	5.23e-03	-0.32(S)	4.37e-18	0.92(L)	4.77e-15	0.69(L)	3.18e-04	-0.43(M)
log4j-1.0	5.45e-16	0.71(L)	3.90e-18	0.99(L)	8.02e-18	0.91(L)	7.56e-18	0.92(L)	6.91e-18	0.83(L)	5.43e-18	0.87(L)
poi-2.0	9.70e-15	0.65(L)	3.96e-11	0.59(L)	6.70e-18	0.92(L)	1.31e-16	0.81(L)	3.90e-18	0.95(L)	3.90e-18	1.0(L)
synapse-1.0	2.11e-03	0.28(S)	1.60e-11	0.56(L)	3.48e-16	0.82(L)	5.79e-15	0.75(L)	6.47e-16	0.82(L)	5.26e-18	0.98(L)
synapse-1.1	1.63e-02	-0.27(S)	1.17e-11	0.57(L)	7.05e-06	0.35(M)	5.31e-06	0.36(M)	2.01e-10	0.53(L)	1.88e-11	0.58(L)
synapse-1.2	1.15e-17	0.89(L)	1.15e-17	0.9(L)	7.56e-18	0.92(L)	2.28e-15	0.76(L)	7.37e-13	0.58(L)	2.20e-16	0.83(L)
velocity-1.6	6.12e-18	0.9(L)	4.14e-18	0.99(L)	9.04e-18	0.88(L)	1.31e-16	0.83(L)	6.50e-17	0.81(L)	3.45e-13	0.64(L)
xerces-1.2	7.88e-16	0.69(L)	1.63e-15	-0.79(L)	6.12e-18	-0.98(L)	3.00e-15	-0.83(L)	2.18e-13	-0.73(L)	4.16e-12	-0.7(L)
xerces-1.3	4.53e-18	0.98(L)	1.25e-12	0.63(L)	4.82e-05	0.33(M)	4.95e-08	0.43(M)	6.28e-15	0.7(L)	9.32e-18	0.91(L)

Table 11 The p-value and cliff's delta results for EAF-measure between CLA and supervised models on defect data with combined features

D : .	CLA v	s. NB	CLA	vs. LR	CLA v	s. NN	CLA vs	. CART	CLA vs.	RIPPER	CLA	vs. RF
Project	p-value	delta										
JDT	3.36e-13	-0.64(L)	4.40e-18	-0.97(L)	5.60e-18	-0.93(L)	1.64e-17	-0.85(L)	1.14e-11	-0.64(L)	3.90e-18	-0.91(L)
PDE	1.27e-01	0.14(N)	4.16e-05	-0.32(S)	4.47e-17	-0.91(L)	7.91e-05	-0.31(S)	6.29e-02	0.18(S)	2.35e-08	0.47(M)
EQ	6.70e-18	0.96(L)	1.77e-08	0.44(M)	2.21e-13	0.63(L)	7.96e-06	0.33(M)	1.76e-01	0.1(N)	1.44e-01	0.09(N)
LC	5.77e-18	-0.88(L)	1.86e-03	0.3(S)	4.56e-09	0.52(L)	2.92e-02	0.19(S)	5.25e-02	0.2(S)	2.60e-09	0.46(M)
ML	1.94e-02	0.23(S)	8.25e-17	0.89(L)	4.96e-09	-0.48(L)	1.48e-01	0.09(N)	2.20e-07	0.41(M)	5.07e-03	-0.25(S)
ant-1.3	1.74e-01	0.13(N)	4.76e-01	0.01(N)	3.79e-01	-0.12(N)	2.00e-01	-0.14(N)	2.79e-01	0.05(N)	5.79e-02	0.21(S)
ant-1.4	1.42e-15	-0.74(L)	2.25e-11	-0.59(L)	5.17e-09	-0.49(L)	8.60e-07	-0.45(M)	2.55e-01	-0.09(N)	1.01e-04	-0.28(S)
ant-1.5	1.83e-06	-0.27(S)	1.77e-13	-0.68(L)	7.25e-16	-0.74(L)	1.11e-15	-0.8(L)	2.14e-16	-0.78(L)	1.06e-09	-0.53(L)
ant-1.6	2.52e-02	-0.16(S)	2.75e-03	0.26(S)	1.35e-01	-0.13(N)	2.16e-01	-0.07(N)	7.78e-07	-0.32(S)	3.16e-02	-0.12(N)
camel-1.0	2.54e-10	0.6(L)	6.74e-14	0.75(L)	4.14e-18	0.97(L)	1.22e-17	0.93(L)	7.56e-18	0.96(L)	3.90e-18	0.99(L)
camel-1.2	2.09e-15	0.75(L)	4.02e-18	-0.99(L)	3.90e-18	-0.99(L)	1.96e-17	-0.84(L)	9.82e-17	-0.84(L)	3.90e-18	-0.99(L)
camel-1.4	4.40e-18	0.94(L)	4.53e-04	-0.29(S)	2.54e-03	-0.2(S)	1.29e-02	-0.2(S)	5.56e-04	-0.27(S)	3.56e-08	0.54(L)
camel-1.6	1.18e-17	0.95(L)	2.04e-15	-0.8(L)	3.90e-18	-1.0(L)	3.17e-15	-0.8(L)	5.27e-18	-0.89(L)	1.63e-15	-0.78(L)
ivy-2.0	1.41e-02	0.21(S)	1.28e-02	0.2(S)	8.94e-15	0.71(L)	3.45e-13	0.65(L)	3.60e-14	0.67(L)	2.29e-13	0.64(L)
jedit-3.2	3.70e-08	0.52(L)	1.18e-02	-0.1(N)	6.64e-10	-0.31(S)	3.58e-04	-0.17(S)	9.44e-07	-0.26(S)	6.43e-14	-0.4(M)
jedit-4.0	2.61e-16	0.74(L)	9.00e-12	0.47(M)	9.39e-05	0.24(S)	3.13e-10	0.45(M)	6.56e-11	0.47(M)	2.19e-09	0.39(M)
jedit-4.1	4.81e-18	0.89(L)	2.55e-11	0.42(M)	1.25e-10	0.44(M)	4.29e-15	0.57(L)	9.59e-16	0.58(L)	2.41e-13	0.49(L)
jedit-4.2	7.49e-02	-0.14(N)	5.09e-01	-0.04(N)	1.90e-06	-0.41(M)	1.52e-07	-0.46(M)	1.31e-06	-0.46(M)	1.14e-04	-0.37(M)
jedit-4.3	3.97e-11	-0.6(L)	3.37e-09	-0.51(L)	2.19e-03	-0.2(S)	9.82e-03	-0.16(S)	9.53e-03	-0.14(N)	9.82e-03	-0.14(N)
log4j-1.0	2.17e-16	-0.76(L)	1.64e-12	0.63(L)	7.34e-01	0.05(N)	1.28e-02	0.26(S)	7.46e-01	0.07(N)	1.36e-07	-0.45(M)
poi-2.0	1.58e-07	-0.47(L)	1.02e-14	-0.75(L)	5.75e-11	-0.62(L)	7.41e-11	-0.59(L)	8.80e-09	-0.53(L)	8.95e-07	-0.45(M)
synapse-1.0	7.61e-15	-0.65(L)	1.58e-12	-0.69(L)	2.00e-12	-0.58(L)	4.85e-07	-0.36(M)	4.69e-03	-0.13(N)	2.96e-02	-0.07(N)
synapse-1.1	1.13e-02	-0.17(S)	7.25e-12	-0.61(L)	2.79e-17	-0.87(L)	9.27e-14	-0.72(L)	3.03e-12	-0.67(L)	6.47e-16	-0.83(L)
synapse-1.2	1.27e-01	0.18(S)	1.27e-06	-0.44(M)	1.92e-02	-0.17(S)	2.07e-08	-0.48(L)	1.55e-01	0.18(S)	9.41e-04	-0.3(S)
velocity-1.6	7.86e-10	0.39(M)	2.29e-14	0.59(L)	9.95e-06	0.25(S)	3.94e-08	0.38(M)	1.92e-13	0.54(L)	8.53e-03	0.15(S)
xerces-1.2	2.73e-06	0.41(M)	7.79e-18	-0.95(L)	4.14e-18	-0.97(L)	1.85e-17	-0.93(L)	2.96e-17	-0.91(L)	1.50e-17	-0.92(L)
xerces-1.3	6.12e-18	0.98(L)	3.30e-02	0.17(S)	2.10e-04	-0.34(M)	9.64e-01	-0.05(N)	5.86e-07	0.44(M)	3.18e-12	0.64(L)

Table 12 The p-value and cliff's delta results for Popt between CLA and supervised models on defect data with combined features

Project	CLA vs. NB		CLA vs. LR		CLA vs. NN		CLA vs. CART		CLA vs. RIPPER		CLA vs. RF	
Project	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta	p-value	delta
JDT	3.90e-18	0.97(L)	7.44e-01	0.04(N)	3.14e-01	-0.12(N)	6.16e-04	0.3(S)	4.26e-12	0.66(L)	4.12e-13	0.66(L)
PDE	1.35e-16	0.88(L)	6.73e-17	-0.87(L)	4.02e-18	-0.98(L)	4.36e-16	-0.74(L)	2.69e-14	-0.77(L)	2.21e-17	-0.93(L)
EQ	3.90e-18	1.0(L)	1.53e-09	0.53(L)	1.04e-15	0.75(L)	3.88e-07	0.39(M)	3.88e-04	0.31(S)	6.19e-10	0.52(L)
LC	5.66e-06	0.37(M)	4.96e-04	-0.26(S)	2.83e-01	-0.03(N)	1.97e-01	-0.06(N)	4.43e-02	-0.14(N)	7.25e-07	-0.29(S)
ML	8.80e-14	0.73(L)	2.02e-16	0.85(L)	8.35e-07	-0.25(S)	3.94e-02	0.12(N)	3.45e-02	0.17(S)	2.28e-07	-0.32(S)
ant-1.3	1.81e-09	0.53(L)	1.32e-11	0.68(L)	4.07e-11	0.6(L)	1.57e-10	0.61(L)	2.62e-12	0.67(L)	1.41e-12	0.69(L)

ant-1.4	1.37e-17 -0.97(L	2.02e-16	-0.8(L)	1.15e-17	-0.92(L)	2.84e-16	-0.81(L)	2.40e-16	-0.83(L)	4.96e-18	-0.96(L)
ant-1.5	6.40e-03 -0.19(S	2.29e-03	-0.28(S)	2.20e-06	-0.37(M)	8.57e-10	-0.51(L)	1.76e-06	-0.41(M)	4.41e-03	-0.25(S)
ant-1.6	2.54e-13 0.66(L)	6.35e-17	0.78(L)	3.20e-09	0.47(M)	7.73e-14	0.64(L)	3.17e-15	0.66(L)	1.04e-16	0.68(L)
camel-1.0	5.42e-04 0.3(S)	2.86e-05	0.32(S)	3.82e-10	0.46(M)	2.41e-13	0.54(L)	3.20e-09	0.44(M)	1.87e-13	0.52(L)
camel-1.2	5.33e-17 -0.86(L	3.90e-18	-1.0(L)								
camel-1.4	2.26e-16 0.85(L)	9.89e-18	-0.9(L)	7.56e-18	-0.93(L)	3.64e-17	-0.87(L)	4.40e-18	-0.96(L)	7.33e-18	-0.95(L)
camel-1.6	3.37e-16 -0.8(L)	3.90e-18	-1.0(L)								
ivy-2.0	7.33e-14 0.75(L)	5.17e-12	0.63(L)	4.53e-18	0.94(L)	5.95e-16	0.79(L)	2.04e-15	0.8(L)	2.40e-16	0.81(L)
jedit-3.2	2.10e-09 0.5(L)	8.97e-03	0.22(S)	8.75e-02	-0.15(S)	1.86e-04	-0.27(S)	8.21e-10	-0.5(L)	8.14e-14	-0.59(L)
jedit-4.0	3.90e-18 0.97(L	1.09e-11	0.59(L)	1.34e-06	0.3(S)	1.92e-13	0.59(L)	7.95e-13	0.64(L)	6.90e-10	0.45(M)
jedit-4.1	3.90e-18 1.0(L)	4.22e-17	0.74(L)	5.11e-18	0.96(L)	5.60e-18	0.87(L)	1.26e-17	0.82(L)	3.64e-17	0.76(L)
jedit-4.2	1.55e-17 0.91(L	1.05e-17	0.91(L)	1.46e-15	0.75(L)	1.28e-10	0.5(L)	1.52e-13	0.67(L)	5.56e-12	0.59(L)
jedit-4.3	8.53e-03 -0.23(S	1.24e-09	-0.6(L)	8.79e-13	-0.68(L)	7.20e-15	-0.77(L)	2.67e-13	-0.72(L)	6.82e-15	-0.77(L)
log4j-1.0	2.71e-01 0.07(N	1.41e-17	0.91(L)	6.82e-15	0.72(L)	1.63e-15	0.8(L)	5.35e-14	0.68(L)	1.13e-09	0.53(L)
poi-2.0	5.31e-10 -0.56(L	2.61e-16	-0.87(L)	1.47e-16	-0.84(L)	6.54e-17	-0.85(L)	6.11e-15	-0.79(L)	1.90e-17	-0.91(L)
synapse-1.0	1.02e-02 -0.18(S	2.64e-01	0.06(N)	1.76e-06	0.41(M)	4.40e-07	0.42(M)	2.09e-08	0.52(L)	5.35e-08	0.48(L)
synapse-1.1	3.24e-14 -0.65(L	5.65e-17	-0.88(L)	4.02e-18	-0.98(L)	8.27e-18	-0.94(L)	1.70e-16	-0.91(L)	5.11e-18	-0.98(L)
synapse-1.2	2.19e-04 0.32(S)	9.27e-07	-0.45(M)	1.73e-02	-0.17(S)	1.92e-06	-0.41(M)	2.21e-05	0.38(M)	3.64e-01	-0.06(N)
velocity-1.6	1.17e-13 0.67(L	4.07e-01	-0.1(N)	2.39e-09	0.51(L)	1.82e-08	0.5(L)	3.46e-11	0.59(L)	2.71e-09	0.5(L)
xerces-1.2	3.31e-04 -0.24(S	4.27e-18	-0.99(L)	3.90e-18	-1.0(L)	4.02e-18	-1.0(L)	3.90e-18	-1.0(L)	3.90e-18	-1.0(L)
xerces-1.3	7.12e-18 0.94(L	3.84e-08	-0.44(M)	6.54e-17	-0.79(L)	2.02e-11	-0.57(L)	1.41e-07	-0.45(M)	2.54e-15	-0.67(L)