Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) Graduação em Ciência da Computação

Informática Teórica (IF689) 1º Semestre de 2022 1ª Prova

1º Prova 10 de Agosto de 2022

Linguagens Regulares Escolha 2(duas) questões

1. (2,5)

- (i) Seja PAR(w) como sendo a cadeia formada a partir dos símbolos nas posições pares da cadeia w. Por exemplo, PAR(1011010) = 011. Se L for regular, $\{PAR(w) \mid w \in L\}$ será regular? Prove sua resposta.
- (ii) Para quaisquer expressões regulares R e S, as linguagens $L(R(SR)^*)$ e $L((RS)^*R)$ são iguais? Explique sua resposta. (Não vale dar apenas uma resposta do tipo SIM/NÃO. É preciso dar uma explicação.)

2. (2,5)

Para cada uma das afirmações abaixo, diga se é Verdadeira ou Falsa, justificando abreviadamente sua resposta:

- (a) Se $A \neq B \neq C$ forem linguagens tais que $A \cap B = C$ e B, C forem ambas regulares, então A também tem que ser regular.
- (b) Se L for regular, então a linguagem $\{xy\mid x\in L, y\notin L\}$ também é regular.
- (c) $b^*a^* \cap a^*b^* = a^* \cup b^*$.

3. (2,5)

Para expressões regulares R e S, defina a ordenação $R \preceq S$ como sendo $L(R) \subseteq L(S)$.

- (a) Mostre que se $R_1 \leq S_1$ e $R_2 \leq S_2$ então $(R_1 \circ R_2) \leq (S_1 \circ S_2)$.
- (b) Mostre que se $R \leq S$ então $(R^*) \leq (S^*)$.
- (c) Suponha que $S \leq T$ e $(R \circ T) \leq T$. Prove por indução sobre n que, para todo $n \geq 0$, $(R^n \circ S) \leq T$ (ou seja, $(R^* \circ S) \leq T$).

4. (2,5)

Considere a linguagem $F = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e se } i = 1 \text{ então } j = k\}.$

(a) Mostre que F não é regular.

- (b) Mostre que F se comporta como uma linguagem regular no lema do bombeamento. Ou seja, tome um comprimento de bombeamento p e mostre que F satisfaz as três condições do lema do bombeamento para esse valor de p.
- (c) Explique por que as partes (a) e (b) não contradizem o lema do bombeamento.

Escolha 2(duas) questões

5. (2,5)

Seja $L = \{w \# x \mid \text{a reversa de } w \text{ \'e uma subcadeia de } x, \text{ onde } w, x \in \{0, 1\}^*\}.$ Mostre que L \'e livre-do-contexto.

6.(2,5)

Seja $L = \{w\#t \mid w \text{ \'e uma subcadeia de } t, \text{ onde } w, t \in \{0,1\}^*\}$. Usando o lema do bombeamento, mostre que L **não** \acute{e} livre-do-contexto.

7. (2,5)

Seja C uma linguagem livre-do-contexto e L uma linguagem regular. Prove que a linguagem $C \cap L$ é livre-do-contexto. Use isso para mostrar que a linguagem $A = \{w \mid w \in \{a,b,c\}^* \text{ e contém o mesmo número de } a\text{'s, } b\text{'s e } c\text{'s}\}$ não é livre-do-contexto.

8. (2,5)

Considere a seguinte GLC G:

$$\begin{array}{ccc} S & \rightarrow & 1S1 \mid T \\ T & \rightarrow & 1X1 \mid X \\ X & \rightarrow & 0X0 \mid 1 \end{array}$$

- (a) Quais são as primeiras 4 cadeias na enumeração lexicográfica de L(G)?
- (b) Dê um exemplo de uma cadeia $w \in \{0,1\}^+$ tal que |w| > 7 e $w \notin L(G)$.
- (c) Mostre que G é ambígua.