### Vision-Language-Action Models for Embodied AI

A Deep Dive into the 2024 Survey

Mohibkhan Pathan CMPE 258 - Deep Learning Professor Vijay Eranti





| 01 | What is Embodied AI?               | 06 | Low-Level Control            |
|----|------------------------------------|----|------------------------------|
| 02 | Why Do We Need VLA Models?         | 07 | High-Level Task Planners     |
| 03 | What Are VLA Models?               | 08 | Training Data and Benchmarks |
|    |                                    | 09 | Challenges                   |
| 04 | The Three Main Parts of VLA Models | 10 | The Future of VLAs           |
| 05 | <b>Key Components</b>              | 11 | References                   |



- AI that lives in the real world, not just on a screen
- Can see, understand, and take actions
- Example: A robot that follows the command "bring me a cup"
- It combines vision, language, and movement
- Not like ChatGPT or CLIP they don't interact with the physical world



## Why Do We Need VLA Models?

- Real-world tasks are complex and multi-step
- Robots must understand what to do, what they see, and how to act
- One model for just vision or just language is not enough
- VLA models let robots follow natural commands like humans
- Helps in homes, hospitals, factories, and more

### What Are VLA Models?

- Real-world tasks are complex and multi-step
- Robots must understand what to do, what they see, and how to act
- One model for just vision or just language is not enough
- VLA models let robots follow natural commands like humans
- Helps in homes, hospitals, factories, and more





#### What Are VLA Models?

- VLA models have 3 main parts:
  - Components visual/language encoders and world models
  - 2. Low-Level Control small step actions (e.g. move, pick)
  - High-Level Planners break big tasks into small steps
- This structure helps models plan and act better
- Like a team: planner = brain, controller = hands





## **Key Components**

- Vision Encoder helps robot "see" (e.g. CLIP, R3M, MVP)
- Language Encoder understands commands (e.g. BERT, GPT)
- Dynamics Model learns how actions change the world
- World Model predicts what will happen next (like a mini-simulator)
- These parts work together to help the robot think before it moves





#### Low-Level Control

- Low-level control = small actions like pick, move, turn
- Uses info from camera + instruction to act in real-time
- Common methods:
  - FiLM adjusts vision using language
  - Cross-Attention connects vision + language deeply
  - Concatenation joins both inputs together
- Models: CLIPort, BC-Z, RT-1, UniPi
- Some use transformers or even learn from videos





## High-Level Task Planners

- Planner breaks long tasks into smaller actions
- (e.g. "clean room"  $\rightarrow$  pick up toy  $\rightarrow$  wipe table)
- Two common types:
  - Language-based: LLM writes out steps in text
  - Code-based: LLM creates commands using functions like pick() or move()
- Helps robot know what to do next
- Famous examples: SayCan, InnerMonologue, ProgPrompt





## Training Data and Benchmarks

- Real robot data is hard to collect and expensive
- Simulators are used for faster and safer training (e.g. Habitat, AI2-THOR)
- Some models learn from human videos or internet data
- Benchmarks help test models:
  - EmbodiedQA: ask + explore
  - RLBench: robot manipulation
  - EgoPlan / PlanBench: test planning skills
- Important to compare models fairly

| Name                                    | Scenes<br>/Rooms | Objects<br>/Cat     | UI           | Physics<br>Engine  | Task         | Observation                  | Action                    | Agent                                                             | Description                                                        | Related                                                 |
|-----------------------------------------|------------------|---------------------|--------------|--------------------|--------------|------------------------------|---------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|
| Gibson [190]                            | 572/-            | -                   | 121          | Pybullet           | Navi         | RGB, D, N, S                 | ¥                         | 2                                                                 | Navi only                                                          | -                                                       |
| iGibson [189], [191],<br>[192]          | 15/108           | 152/5               | Mouse,<br>VR | Pybullet           | Navi, Mani   | RGB, D, S, N,<br>Flow, LiDAR | Force                     | TurtleBot v2,<br>LoCoBot, etc.                                    | VR, Continuous Extended States.<br>Versions: iGibson 0.5, 1.0, 2.0 | Benchmarks: BEHAVIOR-100<br>[188], BEHAVIOR-1K [193]    |
| SAPIEN [194]                            |                  | 2346/-              | Code         | PhysX              | Navi, Mani   | RGB, D, S                    | Force                     | Franka                                                            | Articulation, Ray Tracing                                          | VoxPoser. Benchmarks: SIMPLER<br>[195]                  |
| AI2-THOR [196]                          | -/120            | 118/118             | Mouse        | Unity              | Navi, Mani   | RGB, D, S, A                 | Force, PD                 | ManipulaTHOR,<br>LoCoBot, etc.                                    | Object States, Task Planning.<br>Versions: [197], [198]            | Benchmarks: ALFRED, RoPOR<br>[199]                      |
| VirtualHome [200]                       | 7/-              | -/509               | Lang         | Unity              | Navi, Mani   | RGB, D, S                    | Force, PD                 | Human                                                             | Object States, Task Planning                                       | LID, Translated (LM), ProgPromp                         |
| TDW [201]                               | 15/120           | 112/50              | VR           | Unity,<br>Flex     | Navi, Mani   | RGB, D, S, A                 | Force                     | Fetch, Sawyer,<br>Baxter                                          | Audio, Fluids                                                      |                                                         |
| RLBench [102]                           | 1/-              | 28/28               | Code         | Bullet             | Mani         | RGB, D, S                    | Force                     | Franka                                                            | Tiered Task Difficulty                                             | Hiveformer, PerAct                                      |
| Meta-World [202]                        | 1/-              | 80/7                | Code         | MuJoCo             | Mani         | Pose                         | Force                     | Sawyer                                                            | Meta-RL                                                            | R3M, VC-1, Vi-PRoM,<br>EmbodiedGPT                      |
| CALVIN [203]                            | 4/-              | 7/5                 | -            | Pybullet           | Mani         | RGB, D                       | Force                     | Franka                                                            | Long-horizon Lang-cond tasks                                       | GR-1, HULC, RoboFlamingo                                |
| Franka Kitchen [204]                    | 1/-              | 10/6                | VR           | MuJoCo             | Mani         | Pose                         | Force                     | Franka                                                            | Extended by R3M with RGB                                           | R3M, Voltron, Vi-PRoM,<br>Diffusion Policy, EmbodiedGPT |
| abitat [205], [206] Matterport + Gibson |                  | Mouse               | Bullet       | Navi               | RGB, D, S, A | Force                        | Fetch, Franka,<br>AlienGO | Fast, Navi only. Versions:<br>Rearrangement [207], Habitat<br>2.0 | VC-1, PACT; OVMM [208]                                             |                                                         |
| ALFRED [209]                            | -/120            | 84/84               | -            | Unity              | Navi, Mani   | RGB, D, S                    | PD                        | Human                                                             | Diverse long-horizon tasks                                         | (SL)3, LLM-Planner                                      |
| DMC [210]                               | 1/-              | 4/4                 | Code         | MuJoCo             | Control      | RGB, D                       | Force                     | 2                                                                 | Continuous RL                                                      | VC-1, SMART                                             |
| OpenAI Gym [211]                        | 1/-              | 4/4                 | Code         | MuJoCo             | Control      | RGB                          | Force                     | 8                                                                 | Single agent RL environments                                       |                                                         |
| Genesis [212] (Rig<br>liqui             |                  | deformable,<br>tc.) | Code         | (Propri-<br>etary) | Navi, Mani   | RGB, D, S, N                 | Force                     | Franka, Unitree,<br>etc.                                          | High-speed comprehensive<br>physics simulation                     | (#)                                                     |





# Challenges

- Real data is hard to get robot demos take time
- Models are slow need to act faster in real life
- System is complex many parts must work together
- Struggle with new tasks not good at generalizing
- No standard tests hard to compare different models
- Safety is important robots must be trusted by people



### The Future of VLA Models

- Smarter planning with better world models
- Faster and smaller models for real-time use
- Se in homes, hospitals, factories, and more
- Safer and more human-friendly robot behavior
- Learn from the world just like humans do

### Resources

Ma, Y., Song, Z., Zhuang, Y., Hao, J., & King, I. (2024).

A Survey on Vision-Language-Action Models for Embodied AI. arXiv preprint arXiv:2408.14496.

https://arxiv.org/abs/2408.14496