CSCE 411: Design and Analysis of Algorithms

Lecture 12: Graph Algorithms: DFS

Date: February 27 Nate Veldt, updated by Samson Zhou

1 Depth First Search Algorithm

Unlike in a BFS, a depth-first search (DFS):

- Explores the most recently discovered vertex before backtracking and exploring other previously discovered vertices
- All nodes in the graph are explored (rather than just a DFS for a single node s)
- We keep track of a global *time*, and each node is associated with two timestamps for when it is *discovered* and *explored*.

Each node $u \in V$ is associated with the following attributes

Attribute	Explanation	Initialization
u.status	tells us whether a node has been undiscovered,	u.status = U
	discovered, and explored	
u.D	timestamp when u is first discovered	NIL
u.F	timestamp when u is finished being explored	NIL
u.parent	predecessor/"discoverer" of u	NIL

```
DFS(G)
                                    DFS-VISIT(G, u)
for v \in V do
                                      time = time + 1
   v.parent = NIL
                                      u.D = time
   v.status = U
                                      u.status = D
end for
                                      for v \in Adj[u] do
time = 0
                                         if v.status == U then
for u \in V do
                                            v.parent = u
   if u.status == U then
                                            DFS-VISIT(G, v)
      DFS-VISIT(G, u)
                                         end if
                                      end for
   end if
end for
                                      u.status = E
                                      time = time + 1
                                      u.F = time
```

1.1 Runtime Analysis

Question 1. What is the runtime of a depth first search, assuming that we store the graph in an adjacency list, and assuming that $|E| = \Omega(|V|)$?

- O(|V|)
- O(|E|)
- $O(|V| \times |E|)$
- $O(|V|^2)$
- $O(|E|^2)$

1.2 Properties of DFS

Theorem 1.1. In any depth-first search of a graph G = (V, E), for any pair of vertices u and v, exactly one of the following conditions holds:

- \bullet [u.D, u.F] and [v.D, v.F] are disjoint;
- ullet [v.D, v.F] contains [u.D, u.F] and $_$
- ullet [u.D,u.F] contains [v.D,v.F] and $_$

We will not prove this, but we'll give a quick illustration

Page 3

1	1	2	3	4	5	6	7	8	9	10	11	12
2	1	2	3	4	5	6	7	8	9	10	11	12
3	1	2	3	4	5	6	7	8	9	10	11	12
4	1	2	3	4	5	6	7	8	9	10	11	12
(5)	1	2	3	4	5	6	7	8	9	10	11	12
6	1	2	3	4	5	6	7	8	9	10	11	12

Corollary 1.2. v is a descendant of $u \iff$

1.3 Classification of Edges

Given a graph G=(V,E) performing a DFS on G produces a graph $\hat{G}=(V,\hat{E})$ where

$$\hat{E} = \{(u.\mathsf{parent}, u) \colon v \in V \text{ and } v.\mathsf{parent} \neq NIL\}$$

This is called a depth-first forest of G.

Given any edge $(u, v) \in E$, we can classify it based on the status of node v when we are performing the DFS:

Edge	Explanation	How to tell when exploring (u, v) ?
Tree edge	edge in \hat{E}	
Back edge	connects u to ancestor v	
Forward edge	connects vertex u to descendant v	and $u.D < v.D$
Cross edge	either (a) connects two different trees or (b)	and $u.D > v.D$
	crosses between siblings/cousins in same tree	

1.4 Practice

 ${\bf Question~2.~} \textit{How many of the above graphs were directed acyclic graphs?}$

- A
- **B** 6
- C
- D 4
- **E** none of them

2 Application 1: Checking if G is a DAG

Theorem 2.1. G is a DAG \iff a DFS yields no back edges. Equivalently:

Proof First, (\Longrightarrow) we show that if DFS yields a back edge, G is not a DAG.

Next (\Leftarrow) we show that if G is not a DAG there will be a back edge.

3 Application 2: Topological Sort

Given a directed acyclic graph G=(V,E), a topological sort of G is an ordering of nodes such that for any $(u,v)\in E,\,u$ comes before v in the ordering.

We can use the following procedure to solve the topological sort problem:

1.

2.

Theorem 3.1. Ordering nodes in a directed acyclic graph $G = (V, E)$ by reversed finish times will produce a topological sort of G .
Proof. 1. Let (u, v) be an edge in G
2. Our goal is to show that
3. When (u, v) is explored, there are three different possibilities for the status of v :
• Case 1: v .status == U . This means v becomes a descendant of u .
Thus, $v.F < u.F$. Reason:
• Case 2: $v.status == E$, then we also have $v.F < u.F$.
Reason:
• Case 3: v .status == D , this means that v is an ancestor of u , so (u, v) is a back edge.
But this is impossible. Reason:
4. In all cases that are possible,