1. A memory has **2048 cells** with **16 bits** stored for each cell.

How many bits can the memory hold?

2048 cells X 16 bits/cell = <u>32 768 bits</u> total

How big does the **memory address** have to be?

2¹¹ = 2048 combinations, so the address must be 11 bits long

- 2. Show how the **decimal number "1000"** would be stored as a **16-bit binary number at memory address 24**. Assume that the memory holds 8 bits in each cell and uses Little Endian byte ordering:
 - $\bullet \quad 1000 = 512 + 256 + 128 + 64 + 32 + 8$
 - multibyte number starts at given address and includes as many following cells as necessary
 - Little Endian means low-order byte goes first

As a 16-bit binary number:

- 3. (a) **Fill in the parity bits** for the codeword at right so that each row and column has an even parity sum.
 - (b) What is the Hamming Distance of this codeword?
 - 3 (if a data bit changes, two parity bits must also change)
 - (c) What is the maximum number of error bits that this code could **correct**?

1 (2^n+1 = Hamming Dist to correct "n" bits, and $2^1+1=3$)

4. **Create a valid Hamming codeword** for the 9 data bits shown in question 1. Assume that the 9 data bits are arranged as follows:

5. **Which bit is bad** in the following Hamming Codeword?

Parity bits 1 and 4 are bad, therefore the bad bit is: 1+4 = bit 5

6. **What is the average access time** for a system with a 3-level cache that has the following characteristics::

Level	Access Time	Hit Rate	Miss Rate	% reads this level
1	0.25ns	75%	25%	100%
2	3ns	95%	5%	25% x 100% = 25%
3	40ns	100%	0%	5% x 25% = 1.25%

0.25ns x 1 = 0.25ns 3ns x 0.25 = 0.75ns 40ns x .0125 = 0.5ns

0.25ns + 0.75ns + 0.5ns = 1.5ns average access time

7. Draw the **algebraic** and **logic diagramming symbols** for the following types of Boolean operations:

Boolean Operator	Algebraic Symbol	Logic Diagramming Symbol
AND	•	
OR	+	
NAND	•	
NOT		
XOR	0	

8. **Draw a truth table** to show the result of the following expression for all possible input combinations of A, B and C:

A + (B · C)

A	В	С	Ā	в •С	A + (B•C)
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	1
	- 1			ı	

9. **Complete** the following Boolean **identities**:

$$A \cdot 0 = 0$$
 $A \cdot 1 = A$ $A \cdot \overline{A} = 0$
 $A + 0 = A$ $A + 1 = 1$ $A + \overline{A} = 1$

10. Write a Boolean expression in 'Sum of Products" form for three inputs, A, B and C. The expression must produce a TRUE output whenever the A and B inputs are different from each other and the C input is also TRUE. You don't need to simplify the expression.

Α	В	С	Result
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1 → Ā·B·C
1	0	0	0
1	0	1	1 → A•B•C
1	1	0	0
1	1	1	$0 \qquad \left((\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) \right)$

11. **Draw a Boolean logic circuit** for your 'Product of Sums' expression for the above question.

(Note – NOT gate from the C input is not really necessary since "Not-C" isn't used anywhere)