The Research Assistant for Maniplexes and Polytopes

0.5

21 July 2021

Gabe Cunningham

Mark Mixer

Gordon Williams

Gabe Cunningham

Email: gabriel.cunningham@umb.edu

Homepage: http://www.gabrielcunningham.com

Address: Gabe Cunningham

Department of Mathematics University of Massachusetts Boston 100 William T. Morrissey Blvd.

Boston MA 02125

Mark Mixer

Email: mixerm@wit.edu

Gordon Williams

Email: giwilliams@alaska.edu

Copyright

© 1997-2021 by Gabe Cunningham, Mark Mixer, and Gordon Williams

RAMP package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1	-	hs for Maniplexes											5
	1.1	Graphs for maniplexes functions			•	•				 ٠	•		5
2	Basics 1								13				
	2.1	Constructors											13
	2.2	Sggis											15
3	Combinatorics and Structure 17												
	3.1	Faces											17
	3.2	Flatness											19
	3.3	Schlafli symbol											19
	3.4	Basics											21
	3.5	Zigzags and holes											22
4	Actions 23							23					
	4.1	Automorphism group acting on faces and chains.											23
	4.2	Number of orbits and transitivity											24
	4.3	Flag orbits											25
	4.4	Faithfulness											26
5	Regular maps 28									28			
	5.1	Bicontactual regular maps											28
		Operators on reflexible maps											29
		Operations on Reflexible and Regular Maps											30
6	Constructions 31									31			
	6.1	Extensions, amalgamations, and quotients											31
	6.2	Duality											32
	6.3	Products											33
7	Databases 36								36				
	7.1	Regular polyhedra											36
8	Families of Polytopes 39												
		Classical Polytopes											39
		Flat and tight polytopes											41
		Tamaida											42

	8.4	Uniform Polyhedra	43
9	Grou	=	47
	9.1	Groups	47
10		ing of Maniplexes Mixing of Maniplexes functions	49
11		oerties Orientability	51 51
12	12.2 12.3 12.4	Poset attributes	53 58 62 63 64
13		ducts of Posets and Digraphs Construction methods	67
14		nparing maniplexes Quotients and covers	70
15		p automatic generated documentation ramp automatic generated documentation of methods	73
16		tified Operations Computational tools	75
17		ty functions Utility functions	78 78
Re	feren	ces	81
Ind	lex		82

Chapter 1

Graphs for Maniplexes

1.1 Graphs for maniplexes functions

1.1.1 DirectedGraphFromListOfEdges (for IsList,IsList)

▷ DirectedGraphFromListOfEdges(list, list)

(operation)

Returns: IsGraph. Note this returns a directed graph.

Given a list of vertices and a list of directed-edges (represented as ordered pairs), this outputs the directed graph with the appropriate vertex and directed-edge set.

Here we have a directed cycle on 3 vertices.

```
Example

gap> g:= DirectedGraphFromListOfEdges([1,2,3],[[1,2],[2,3],[3,1]]);

rec( adjacencies := [ [ 2 ], [ 3 ], [ 1 ] ], group := Group(()),

isGraph := true, names := [ 1, 2, 3 ], order := 3,

representatives := [ 1, 2, 3 ], schreierVector := [ -1, -2, -3 ] )
```

1.1.2 GraphFromListOfEdges (for IsList,IsList)

▷ GraphFromListOfEdges(list, list)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a list of vertices and a list of (directed) edges (represented as ordered pairs), this outputs the simple underlying graph with the appropriate vertex and directed-edge set.

Here we have a simple complete graph on 4 vertices.

```
Example

gap> g:= GraphFromListOfEdges([1,2,3,4],[[1,2],[2,3],[3,1], [1,4], [2,4], [3,4]]);

rec(
   adjacencies := [ [ 2, 3, 4 ], [ 1, 3, 4 ], [ 1, 2, 4 ], [ 1, 2, 3 ] ],
   group := Group(()), isGraph := true, isSimple := true,
   names := [ 1, 2, 3, 4 ], order := 4, representatives := [ 1, 2, 3, 4 ]
   , schreierVector := [ -1, -2, -3, -4 ] )
```

1.1.3 UnlabeledFlagGraph (for IsGroup)

▷ UnlabeledFlagGraph(group)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a group (assumed to be the connection group of a maniplex), this outputs the simple underlying flag graph.

Here we build the flag graph for the cube from its connection group.

```
Example
gap> g:= UnlabeledFlagGraph(ConnectionGroup(Cube(3)));
rec(
adjacencies := [[3, 11, 20], [7, 13, 18], [1, 4, 10],
     [3, 25, 34], [26, 28, 35], [7, 13, 41], [2, 6, 8],
     [7, 27, 32], [28, 33, 35], [3, 20, 45], [1, 14, 23],
     [ 15, 17, 24 ], [ 2, 6, 31 ], [ 11, 25, 44 ], [ 12, 45, 47 ],
     [ 18, 28, 40 ], [ 12, 19, 27 ], [ 2, 16, 21 ], [ 17, 22, 24 ],
     [ 1, 10, 38 ], [ 18, 32, 40 ], [ 19, 41, 48 ], [ 11, 35, 44 ],
     [ 12, 19, 34 ], [ 4, 14, 37 ], [ 5, 38, 42 ], [ 8, 17, 30 ],
     [5, 9, 16], [39, 41, 48], [27, 32, 47], [13, 33, 39],
     [8, 21, 30], [9, 31, 46], [4, 24, 37], [5, 9, 23],
     [ 43, 45, 47 ], [ 25, 34, 48 ], [ 20, 26, 43 ], [ 29, 31, 46 ],
     [ 16, 21, 42 ], [ 6, 22, 29 ], [ 26, 40, 43 ], [ 36, 38, 42 ],
     [ 14, 23, 46 ], [ 10, 15, 36 ], [ 33, 39, 44 ], [ 15, 30, 36 ],
     [ 22, 29, 37 ] ], group := Group(()), isGraph := true,
isSimple := true, names := [ 1 .. 48 ], order := 48,
representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
    31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
    47, 48],
schreierVector := [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
    -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24,
    -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37,
    -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48])
```

This also works with a maniplex input. Here we build the flag graph for the cube.

```
gap> g:= UnlabeledFlagGraph(Cube(3));
```

1.1.4 FlagGraphWithLabels (for IsGroup)

 ${\scriptstyle \rhd} \ {\tt FlagGraphWithLabels}({\it group})$

(operation)

Returns: a triple [IsGraph, IsList, IsList].

Given a group (assumed to be the connection group of a maniplex), this outputs a triple [graph,list,list]. The graph is the unlabeled flag graph of the connection group. The first list gives the undirected edges in the flag graphs. The second list gives the labels for these edges.

Here we again build the flag graph for the cube from its connection group, but this time keep track of labels of the edges.

```
Example

gap> g:= FlagGraphWithLabels(ConnectionGroup(Cube(3)));

[ rec(
    adjacencies := [ [ 3, 11, 20 ], [ 7, 13, 18 ], [ 1, 4, 10 ],
        [ 3, 25, 34 ], [ 26, 28, 35 ], [ 7, 13, 41 ], [ 2, 6, 8 ],
        [ 7, 27, 32 ], [ 28, 33, 35 ], [ 3, 20, 45 ], [ 1, 14, 23 ],
        [ 15, 17, 24 ], [ 2, 6, 31 ], [ 11, 25, 44 ], [ 12, 45, 47 ],
        [ 18, 28, 40 ], [ 12, 19, 27 ], [ 2, 16, 21 ],
        [ 17, 22, 24 ], [ 1, 10, 38 ], [ 18, 32, 40 ],
```

```
[ 19, 41, 48 ], [ 11, 35, 44 ], [ 12, 19, 34 ],
       [4, 14, 37], [5, 38, 42], [8, 17, 30], [5, 9, 16],
       [ 39, 41, 48 ], [ 27, 32, 47 ], [ 13, 33, 39 ],
       [8, 21, 30], [9, 31, 46], [4, 24, 37], [5, 9, 23],
       [ 43, 45, 47 ], [ 25, 34, 48 ], [ 20, 26, 43 ],
       [ 29, 31, 46 ], [ 16, 21, 42 ], [ 6, 22, 29 ],
       [ 26, 40, 43 ], [ 36, 38, 42 ], [ 14, 23, 46 ],
       [ 10, 15, 36 ], [ 33, 39, 44 ], [ 15, 30, 36 ],
       [ 22, 29, 37 ] ], group := Group(()), isGraph := true,
   isSimple := true, names := [ 1 .. 48 ], order := 48,
   representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
       14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
       29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
       44, 45, 46, 47, 48],
   schreierVector := [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
       -12, \ -13, \ -14, \ -15, \ -16, \ -17, \ -18, \ -19, \ -20, \ -21, \ -22, \ -23,
       -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35,
       -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47,
       -48]),
[[1,3],[1,11],[1,20],[2,7],[2,13],[2,18],
   [3, 4], [3, 10], [4, 25], [4, 34], [5, 26], [5, 28],
   [5, 35], [6, 7], [6, 13], [6, 41], [7, 8], [8, 27],
   [8, 32], [9, 28], [9, 33], [9, 35], [10, 20],
   [ 10, 45 ], [ 11, 14 ], [ 11, 23 ], [ 12, 15 ], [ 12, 17 ],
   [ 12, 24 ], [ 13, 31 ], [ 14, 25 ], [ 14, 44 ], [ 15, 45 ],
   [ 15, 47 ], [ 16, 18 ], [ 16, 28 ], [ 16, 40 ], [ 17, 19 ],
   [ 17, 27 ], [ 18, 21 ], [ 19, 22 ], [ 19, 24 ], [ 20, 38 ],
   [21, 32], [21, 40], [22, 41], [22, 48], [23, 35],
   [ 23, 44 ], [ 24, 34 ], [ 25, 37 ], [ 26, 38 ], [ 26, 42 ],
   [ 27, 30 ], [ 29, 39 ], [ 29, 41 ], [ 29, 48 ], [ 30, 32 ],
   [ 30, 47 ], [ 31, 33 ], [ 31, 39 ], [ 33, 46 ], [ 34, 37 ],
   [ 36, 43 ], [ 36, 45 ], [ 36, 47 ], [ 37, 48 ], [ 38, 43 ],
   [ 39, 46 ], [ 40, 42 ], [ 42, 43 ], [ 44, 46 ] ],
[3, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 3, 2, 2, 1, 3, 1, 2, 3,
   3, 2, 3, 1, 2, 3, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 2, 3, 2, 3, 2, 2,
   1, 1, 3, 2, 3, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 1, 3, 3, 3, 2, 3, 1,
   2, 3, 1, 2, 1, 2]
```

This also works with a maniplex input. Here we build the flag graph for the cube.

```
gap> g:= FlagGraphWithLabels(Cube(3));
```

1.1.5 LayerGraph (for IsGroup, IsInt, IsInt)

```
▷ LayerGraph([group, int, int])
```

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a group (assumed to be the connection group of a maniplex), and two integers, this outputs the simple underlying graph given by incidences of faces of those ranks. Note: There are no warnings yet to make sure that i,j are bounded by the rank.

Here we build the graph given by the 6 faces and 12 edges of a cube from its connection group.

```
Example
gap> g:= LayerGraph(ConnectionGroup(Cube(3)),2,1);
rec(
  adjacencies := [ [ 7, 10, 12, 17 ], [ 8, 10, 15, 18 ],
       [ 7, 9, 13, 14 ], [ 8, 11, 13, 16 ], [ 9, 12, 16, 18 ],
       [ 11, 14, 15, 17 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 2 ],
       [ 4, 6 ], [ 1, 5 ], [ 3, 4 ], [ 3, 6 ], [ 2, 6 ], [ 4, 5 ],
       [ 1, 6 ], [ 2, 5 ] ], group := Group(()), isGraph := true,
    isSimple := true, names := [ 1 .. 18 ], order := 18,
    representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
       15, 16, 17, 18 ],
    schreierVector := [ -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
       -12, -13, -14, -15, -16, -17, -18 ] )
```

This also works with a maniplex input. Here we build the graph given by the 6 faces and 12 edges of a cube.

```
gap> g:= LayerGraph(Cube(3),2,1);;
Example
```

1.1.6 Skeleton (for IsManiplex)

▷ Skeleton(maniplex)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a maniplex, this outputs the 0-1 skeleton. The vertices are the 0-faces, and the edges are the 1-faces.

Here we build the skeleton of the dodecahedron.

```
gap> g:= Skeleton(Dodecahedron());;
Example
```

1.1.7 CoSkeleton (for IsManiplex)

▷ CoSkeleton(maniplex)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a maniplex, this outputs the (n-1)-(n-2) skeleton, i.e., the 0-1 skeleton of the dual. The vertices are the (n-1)-faces, and the edges are the (n-2)-faces.

Here we build the co-skeleton of the dodecahedron and verify that it is the skeleton of the icosahedron.

```
gap> g:=CoSkeleton(Dodecahedron());;
gap> h:=Skeleton(Icosahedron());;
gap> g=h;
true
```

1.1.8 Hasse (for IsManiplex)

▷ Hasse(group)

(operation)

Returns: IsGraph. Note this returns a directed graph.

Given a group, assumed to be the connection group of a maniplex, this outputs the Hasse Diagram as a directed graph. Note: The unique minimal and maximal face are assumed.

Here we build the Hasse Diagram of a 3-simplex from its representation as a maniplex.

```
gap> Hasse(Simplex(3));
rec(
adjacencies := [[ ], [ 1 ], [ 1 ], [ 1 ], [ 2, 4 ],
        [ 2, 3 ], [ 3, 5 ], [ 2, 5 ], [ 4, 5 ], [ 3, 4 ], [ 6, 9, 10 ],
        [ 6, 7, 11 ], [ 8, 10, 11 ], [ 7, 8, 9 ], [ 12, 13, 14, 15 ] ],
group := Group(()), isGraph := true, names := [ 1 .. 16 ],
order := 16,
representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
        15, 16 ],
schreierVector := [ -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
        -12, -13, -14, -15, -16 ] )
```

1.1.9 QuotientByLabel (for IsObject,IsList, IsList, IsList)

▷ QuotientByLabel(object, list, list, list)

(operation)

Returns: IsGraph. Note this returns an undirected graph.

Given a graph, its edges, and its edge labels, and a sublist of labels, this creates the underlying simple graph of the quotient identifying vertices connected by labels not in the sublist.

Here we start with the flag graph of the 3-cube (with edge labels 1,2,3), and identify any vertices not connected by edge by edges of label 1. We can then check that this new graph is bipartite.

1.1.10 EdgeLabeledGraphFromEdges (for IsList, IsList, IsList)

▷ EdgeLabeledGraphFromEdges(list, list, list)

(operation)

Returns: IsEdgeLabeledGraph.

Given a list of vertices, a list of edges, and a list of edge labels, this represents the edge labeled (multi)-graph with those parameters. Semi-edges are represented by a singleton in the edge list. Loops are represented by edges [i,i]

Here we have an edge labeled cycle graph with 6 vertices and edges alternating in labels 0,1.

```
Example
V:=[1..6];;
Edges:=[[1,2],[2,3],[3,4],[4,5],[5,6],[6,1]];;
L:=[0,1,0,1,0,1];;
gamma:=EdgeLabeledGraphFromEdges(V,Edges,L);
```

1.1.11 FlagGraph (for IsGroup)

▷ FlagGraph(group)

(operation)

Returns: IsEdgeLabeledGraph.

Given group, assumed to be a connection group, output the labeled flag graph. The input could also be a maniplex, then the connection group is calculated.

Here we have the flag graph of the 3-simplex from its connection group.

```
C:=ConnectionGroup(Simplex(3));;
gamma:=FlagGraph(C);
```

1.1.12 UnlabeledSimpleGraph (for IsEdgeLabeledGraph)

□ UnlabeledSimpleGraph(edge-labeled-graph)

(operation)

Returns: IsGraph.

Given an edge labeled (multi) graph, it returns the underlying simple graph, with semi-edges, loops, and muliple-edges removed.

Here we have underlying simple graph for the flag graph of the cube.

```
gamma:=UnlabeledSimpleGraph(FlagGraph(Cube(3)));
```

1.1.13 EdgeLabelPreservingAutomorphismGroup (for IsEdgeLabeledGraph)

□ EdgeLabelPreservingAutomorphismGroup(edge-labeled-graph)

(operation)

Returns: IsGroup.

Given an edge labeled (multi) graph, it returns automorphism group (preserving the labels). Note, for now the labels are assumed to be [1..n]. Note This tends to be very slow. I would like to look for a way to go back and forth between flag automorphisms and poset automorphisms, as the latter are much faster to compute.

Here we have the automorphism group of the flag graph of the cube.

```
g:=EdgeLabelPreservingAutomorphismGroup(FlagGraph(Cube(3)));;
Size(g);
```

1.1.14 Simple (for IsEdgeLabeledGraph)

▷ Simple(edge-labeled-graph)

(operation)

Returns: IsEdgeLabeledGraph .

Given an edge labeled (multi) graph, it returns another edge labeled graph where semi-edges, loops, and multiple edges are removed. Note only the "first" edge label is retained if there are multiple edges.

1.1.15 ConnectedComponents (for IsEdgeLabeledGraph, IsList)

 ${\scriptstyle \rhd\ Connected Components(\textit{edge-labeled-graph)}}$

(operation)

Returns: IsGraph.

Given an edge labeled (multi) graph and a list of labels, it returns connected components of the graph not using edges in the list of labels. Note if the second argument is not used, it is assumed to be an empty list, and the connected components of the original graph are returned.

Here we see that each connected component of the flag graph of the cube (which has labels 1,2,3) where edges of label 2 are removed, is a 4 cycle.

```
gamma:=ConnectedComponents(FlagGraph(Cube(3)),[2]);
```

1.1.16 PRGraph (for IsGroup)

▷ PRGraph(group)

(operation)

Returns: IsEdgeLabeledGraph .

Given a group, it returns the permutation representation graph for that group. When the group is a string C-group this is also called a CPR graph. The labels of the edges are [1...r] where r is the number of generators of the group.

Here we see the CPR graph of the automorphism group of a cube (acting on its 8 vertices).

```
G:=AutomorphismGroup(Cube(3));
H:=Group(G.2,G.3);
phi:=FactorCosetAction(G,H);
G2:=Range(phi);
gamma:=PRGraph(G2);
```

1.1.17 CPRGraphFromGroups (for IsGroup,IsGroup)

▷ CPRGraphFromGroups(group, subgroup)

(operation)

Returns: IsEdgeLabeledGraph.

Given a group and a subgroup. Returns the graph of the action of the first group on cosets of the subgroup.

1.1.18 AdjacentVertices (for IsEdgeLabeledGraph, IsObject)

▷ AdjacentVertices(EdgeLabeledGraph, vertex)

(operation)

Returns: IsList.

Takes in an edge labeled graph and a vertex, and outputs a list of the adjacent vertices.

1.1.19 LabeledAdjacentVertices (for IsEdgeLabeledGraph, IsObject)

▷ LabeledAdjacentVertices(EdgeLabeledGraph, vertex)

(operation)

Returns: IsList, IsList.

Takes in an edge labeled graph and a vertex, and outputs two lists: the list of adjacent vertices, and the labels of the corresponding edges.

1.1.20 SemiEdges (for IsEdgeLabeledGraph)

▷ SemiEdges(EdgeLabeledGraph)

(operation)

Returns: IsList.

Takes in an edge labeled graph and a vertex, and outputs a list of semiedges

1.1.21 LabeledSemiEdges (for IsEdgeLabeledGraph)

▶ LabeledSemiEdges(EdgeLabeledGraph)

(operation)

Returns: IsList, IsList.

Takes in an edge labeled graph and a vertex, and outputs two lists: SemiEdges and their labels

1.1.22 LabeledDarts (for IsEdgeLabeledGraph)

▷ LabeledDarts(EdgeLabeledGraph)

(operation)

Returns: IsList.

Takes in an edge labeled graph and outputs the labeled darts.

1.1.23 DerivedGraph (for IsList,IsList,IsList)

 \triangleright DerivedGraph(list, list, list)

(operation)

Returns: IsEdgeLabeledGraph.

Given a a pre-maniplex (entered as its vertices and labeled darts) and voltages Return the connected derived graph from a pre-maniplex Careful, the order of our automorphisms. Do we want them on left or right? Does it matter? Can make another version with non-connected results, where the group is also an input

Here we can build the flag graph of a 3-orbit polyhedron.

```
gap> V:=[1,2,3];;
gap> Ed:=[[1],[1],[1,2],[2],[2,3],[3],[3]];;
gap> L:=[1,2,0,2,1,0,2];;
gap> g:=EdgeLabeledGraphFromEdges(V,Ed,L);;
gap> L:=LabeledDarts(g);;
gap> volt:=[(1,2), (3,4), (), (), (3,4), (), (), (4,5), (2,3)];;
gap> D:=DerivedGraph(V,L,volt);
Edge labeled graph with 360 vertices, and edge labels [0, 1, 2]
```

1.1.24 ViewGraph (for IsEdgeLabeledGraph, IsString)

▷ ViewGraph(EdgeLabeledGraph, String)

(operation)

Returns: IsString.

This takes an edge labeled graph and outputs code to view the graph in other software. Currently mathematica and sage are supported.

1.1.25 ViewGraph (for IsObject, IsString)

▷ ViewGraph(Graph, String)

(operation)

Returns: IsString.

This takes a graph and outputs code to view the graph in other software. Currently mathematica and sage are supported.

Chapter 2

Basics

2.1 Constructors

2.1.1 ReflexibleManiplex

In the first form, we are given an Sggi g and we return the reflexible maniplex with that automorphism group, where the privileged generators are those returned by GeneratorsOfGroup(g).

```
gap> g := Group([(1,2), (2,3), (3,4)]);
gap> M := ReflexibleManiplex(g);
gap> M = Simplex(3);
true
```

This function first checks whether g is an Sggi. Use ReflexibleManiplexNC to bypass that check. The second form returns the universal reflexible maniplex with Schlafli symbol sym. If the optional argument relations is given, then we return the reflexible maniplex with the given defining relations. The relations can be given by a list of Tietze words or as a string of relators or relations that involve r0 etc.

```
Example

gap> q := ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3, (r1 r2 r3)^3");;

gap> q = ReflexibleManiplex([4,3,4], "(r0 r1 r2)^3 = (r1 r2 r3)^3 = 1");

true

gap> p := ReflexibleManiplex([infinity], "r0 r1 r0 = r1 r0 r1");;
```

If the option set_schlafli is set, then we set the Schlafli symbol to the one given. This may not be the correct Schlafli symbol, since the relations may cause a collapse, so this should only be used if you know that the Schlafli symbol is correct.

2.1.2 Maniplex (for IsPermGroup)

```
ightharpoonup Maniplex(G) (operation)
```

Returns: IsManiplex

Given a permutation group G on the set [1..N], returns a maniplex with N flags with connection group G. The output may not make sense if G is not an sggi.

```
gap> G := Group([(1,2)(3,4)(5,6), (2,3)(4,5)(1,6)]);;
gap> M := Maniplex(G);
Pgon(3)
gap> c := ConnectionGroup(Cube(3));
<permutation group with 3 generators>
gap> Maniplex(c) = Cube(3);
true
```

2.1.3 Maniplex (for IsReflexibleManiplex, IsGroup)

▷ Maniplex(M, H) (operation)

Returns: IsManiplex

Let M be a reflexible maniplex and let H be a subgroup of AutomorphismGroup(M). This returns the maniplex M/H. This will be reflexible if and only if H is normal. For most purposes, it is probably easier to use QuotientManiplex, which takes a string of relations as input instead of a subgroup. The example below builds the map $\{4,4\}_{(1,0),(0,2)}$.

```
gap> M := ReflexibleManiplex([4,4]);
CubicTiling(2)
gap> G := AutomorphismGroup(M);
<fp group of size infinity on the generators [ r0, r1, r2 ]>
gap> H := Subgroup(G, [G.1*G.2*G.3*G.2, (G.2*G.1*G.2*G.3)^2]);
Group([ r0*r1*r2*r1, (r1*r0*r1*r2)^2 ])
gap> M2 := Maniplex(M, H);
3-maniplex
gap> Size(M2);
16
```

2.1.4 Maniplex (for IsFunction, IsList)

▷ Maniplex(F, inputs)

(operation)

Returns: IsManiplex

Constructs a formal maniplex, represented by an operation F and a list of arguments inputs. By itself, this does not really _do_ anything – it creates a maniplex object that only knows the operation F and the inputs. However, many polytope operations (such as Pyramid(M), Medial(M), etc) use this construction as a base, and then add "attribute computers" that tell the formal maniplex how to compute certain things in terms of properties of the base. See AddAttrComputer for more information.

2.1.5 Maniplex (for IsPoset)

▷ Maniplex(P) (operation)

Returns: IsManiplex

Constructs the maniplex from the given poset *P*. This assumes that P actually defines a maniplex.

2.1.6 IsPolytopal (for IsManiplex)

Returns whether the maniplex M is polytopal; i.e., the flag graph of a polytope.

2.2 Sggis

2.2.1 UniversalSggi

```
▷ UniversalSggi(n) (operation)

▷ UniversalSggi(sym) (operation)
```

Returns: IsFpGroup

In the first form, returns the universal Coxeter Group of rank n. In the second form, returns the Coxeter Group with Schlafli symbol sym.

2.2.2 Sggi (for IsList, IsList)

```
▷ Sggi(symbol[, relations])
```

(operation)

Returns: IsFpGroup

Returns the sggi defined by the given Schlafli symbol and with the given relations. The relations can be given by a list of Tietze words or as a string of relators or relations that involve r0 etc. If no relations are given, then returns the universal sggi with the given Schlafli symbol.

```
Example

gap> g := Sggi([4,3,4], "(r0 r1 r2)^3, (r1 r2 r3)^3");;

gap> h := Sggi([4,4], "r0 = r2");;

gap> k := Sggi([infinity, infinity], [[1,2,1,2,1,2], [2,3,2,3,2,3]]);;

gap> k = Sggi([3,3]);

true
```

2.2.3 IsGgi (for IsGroup)

```
▷ IsGgi(g)
(property)
```

Returns: whether g is generated by involutions. Or more specifically, whether GeneratorsOfGroup(g) all have order 2 or less.

2.2.4 IsStringy (for IsGroup)

```
\triangleright IsStringy(g) (property)
```

Returns: whether every pair of non-adjacent generators of g commute.

2.2.5 IsSggi (for IsGroup)

```
\triangleright IsSggi(g) (property)
```

Returns: whether g is a string group generated by involutions. Equivalent to IsGgi(g) and IsStringy(g).

2.2.6 IsStringC (for IsGroup)

```
\triangleright IsStringC(G) (operation)
```

For an sggi G, returns whether the group is a string C group.

2.2.7 IsStringCPlus (for IsGroup)

```
▷ IsStringCPlus(G) (operation)
```

For a "string rotation group" G, returns whether the group is a string C+ group. It does not check whether G is a string rotation group.

2.2.8 SggiElement (for IsGroup, IsString)

```
\triangleright SggiElement(g, str) (operation)
```

Returns: the element of g with underlying word str.

```
gap> g := Group((1,2),(2,3),(3,4));;
gap> SggiElement(g, "r0 r1");
(1,3,2)
```

For convenience, you can also use a reflexible maniplex M in place of g, in which case AutomorphismGroup(M) is used for g.

2.2.9 SggiFamily (for IsGroup, IsList)

```
⇒ SggiFamily(parent, words) (operation)
```

Given a parent group and a list of strings that represent words in r0, r1, etc, returns a function. That function accepts a list of positive integers L, and returns the quotient of parent by the relations that set the order of each words[i] to L[i].

```
gap> f := SggiFamily(Sggi([4,4]), ["r0 r1 r2 r1"]);
function( orders ) ... end
gap> g := f([3]);
<fp group on the generators [ r0, r1, r2 ]>
gap> Size(g);
72
gap> h := f([6]);
<fp group on the generators [ r0, r1, r2 ]>
gap> IsQuotient(h,g);
true
```

One of the advantages of building an SggiFamily is that testing whether one member of the family is a quotient of another member can be done quite quickly.

Chapter 3

Combinatorics and Structure

3.1 Faces

3.1.1 NumberOfIFaces (for IsManiplex, IsInt)

▷ NumberOfIFaces(M, i)

(operation)

Returns The number of i-faces of M.

3.1.2 NumberOfVertices (for IsManiplex)

▷ NumberOfVertices(M)

(attribute)

Returns the number of vertices of M.

3.1.3 NumberOfEdges (for IsManiplex)

▷ NumberOfEdges(M)

(attribute)

Returns the number of edges of M.

3.1.4 NumberOfFacets (for IsManiplex)

▷ NumberOfFacets(M)

(attribute)

Returns the number of facets of M.

3.1.5 NumberOfRidges (for IsManiplex)

▷ NumberOfRidges(M)

(attribute)

Returns the number of ridges ((n-2)-faces) of M.

3.1.6 Fvector (for IsManiplex)

Returns the f-vector of M.

3.1.7 Section (for IsManiplex, IsInt, IsInt)

$$\triangleright$$
 Section(M, j, i) (operation)

Returns the section F_j / F_i, where F_j is the j-face of the base flag of M and F_i is the i-face of the base flag.

3.1.8 Section (for IsManiplex, IsInt, IsInt, IsInt)

$$\triangleright$$
 Section(M, j, i, k) (operation)

Returns the section F_j / F_i , where F_j is the j-face of flag number k of M and F_i is the i-face of the same flag.

3.1.9 Sections (for IsManiplex, IsInt, IsInt)

$$\triangleright$$
 Sections(M, j, i) (operation)

Returns all sections of type F_j / F_i, where F_j is a j-face and F_i is an incident i-face.

3.1.10 Facets (for IsManiplex)

Returns the facet-types of M (i.e. the maniplexes corresponding to the facets).

3.1.11 Facet (for IsManiplex, IsInt)

$$\triangleright$$
 Facet(M , k) (operation)

Returns the facet of M that contains the flag number k (that is, the maniplex corresponding to the facet).

3.1.12 Facet (for IsManiplex)

Returns the facet of M that contains flag number 1 (that is, the maniplex corresponding to the facet).

3.1.13 VertexFigures (for IsManiplex)

VertexFigures (M) (attribute)

Returns the types of vertex-figures of M (i.e. the maniplexes corresponding to the vertex-figures).

3.1.14 VertexFigure (for IsManiplex, IsInt)

VertexFigure(M, k) (operation)

Returns the vertex-figure of M that contains flag number k.

3.1.15 VertexFigure (for IsManiplex)

VertexFigure (M) (attribute)

Returns the vertex-figure of M that contains the base flag.

3.2 Flatness

3.2.1 IsFlat

Returns: true or false

In the first form, returns true if every vertex of the maniplex M is incident to every facet. In the second form, returns true if every i-face of the maniplex M is incident to every j-face.

3.3 Schlafli symbol

3.3.1 SchlafliSymbol (for IsManiplex)

▷ SchlafliSymbol(M) (attribute)

Returns the Schlafli symbol of the maniplex M. Each entry is either an integer or a set of integers, where entry number i shows the polygons that we obtain as sections of (i+1)-faces over (i-2)-faces.

3.3.2 PseudoSchlafliSymbol (for IsManiplex)

▷ PseudoSchlafliSymbol(M)

(attribute)

Sometimes when we make a maniplex, we know that the Schlafli symbol must be a quotient of some symbol. This most frequently happens because we start with a maniplex with a given Schlafli symbol and then take a quotient of it. In this case, we store the given Schlafli symbol and call it a *pseudo-Schlafli symbol* of M. Note that whenever we compute the actual Schlafli symbol of M, we update the pseudo-Schlafli symbol to match.

3.3.3 IsEquivelar (for IsManiplex)

▷ IsEquivelar(M) (property)

Returns: the the maniplex M is equivelar; i.e., whether its Schlafli Symbol consists of integers at each position (no lists).

3.3.4 IsDegenerate (for IsManiplex)

▷ IsDegenerate(M) (property)

Returns: true or false

Returns whether the maniplex M has any sections that are digons. We may eventually want to include maniplexes with even smaller sections.

3.3.5 IsTight (for IsManiplex)

▷ IsTight(P) (property)

Returns: true or false

Returns whether the polytope P is tight, meaning that it has a Schlafli symbol $\{k_1, ..., k_{n-1}\}$ and has $2 k_1 ... k_{n-1}$ flags, which is the minimum possible. This property doesn't make any sense for non-polytopal maniplexes, which aren't constrained by this lower bound.

3.3.6 EulerCharacteristic (for IsManiplex)

▷ EulerCharacteristic(M)

attribute)

Returns: The Euler characteristic of the maniplex, given by $f_0 - f_1 + f_2 - \cdots + (-1)^{n-1} f_{n-1}$.

3.3.7 Genus (for IsManiplex)

□ Genus (M) (attribute)

Returns: The genus of the given 3-maniplex.

3.3.8 IsSpherical (for IsManiplex)

▷ IsSpherical(M) (property

Returns: Whether the 3-maniplex M is spherical, which is to say, whether the Euler characteristic is equal to 2.

```
gap> IsSpherical(Simplex(3));
true
gap> IsSpherical(AbstractRegularPolytope([4,4],"h2^3"));
false
gap> IsSpherical(Pyramid(5));
true
gap> IsSpherical(CubicTiling(2));
false
```

3.3.9 IsLocallySpherical (for IsManiplex)

```
▷ IsLocallySpherical(M)
```

property)

Returns: Whether the 4-maniplex M is locally spherical, which is to say, whether its facets and vertex-figures are both spherical.

```
gap> IsLocallySpherical(Simplex(4));
true
gap> IsLocallySpherical(AbstractRegularPolytope([4,4,4]));
false
gap> IsLocallySpherical(CubicTiling(3));
true
gap> IsLocallySpherical(Pyramid(Cube(3)));
true
```

3.3.10 IsToroidal (for IsManiplex)

▷ IsToroidal(M) (property)

Returns: Whether the 3-maniplex *M* is toroidal, which is to say, whether the Euler characteristic is equal to 0.

```
gap> IsToroidal(Simplex(3));
false
gap> IsToroidal(AbstractRegularPolytope([4,4],"h2^3"));
true
gap> IsToroidal(Pyramid(5));
false
```

3.3.11 IsLocallyToroidal (for IsManiplex)

▷ IsLocallyToroidal(M)

(property)

Returns: Whether the 4-maniplex M is locally toroidal, which is to say, whether it has at least one toroidal facet or vertex-figure, and all of its facets and vertex-figures are either spherical or toroidal.

```
gap> IsLocallyToroidal(Simplex(4));
false
gap> IsLocallyToroidal(AbstractRegularPolytope([4,4,3],"(r0 r1 r2 r1)^2"));
true
gap> IsLocallyToroidal(AbstractRegularPolytope([4,4,4],"(r0 r1 r2 r1)^2, (r1 r2 r3 r2)^2"));
true
```

3.4 Basics

3.4.1 Size (for IsManiplex)

Returns: The number of flags of the maniplex *M*.

Synonym: NumberOfFlags.

3.4.2 RankManiplex (for IsManiplex)

▷ RankManiplex(M) (attribute)

Returns: The rank of the maniplex *M*.

3.5 Zigzags and holes

3.5.1 ZigzagLength (for IsManiplex, IsInt)

▷ ZigzagLength(M, j)

(operation)

Returns: The lengths of *j*-zigzags of the 3-maniplex M. This corresponds to the lengths of orbits under r0 (r1 r2) $^{-j}$.

3.5.2 ZigzagVector (for IsManiplex)

▷ ZigzagVector(M)

(attribute)

Returns: The lengths of all zigzags of the 3-maniplex M. A rank 3 maniplex of type $\{p, q\}$ has Floor(q/2) distinct zigzag lengths because the j-zigzags are the same as the (q-j)-zigzags.

3.5.3 PetrieLength (for IsManiplex)

▷ PetrieLength(M)

(attribute)

Returns: The length of the petrie polygons of the maniplex M.

3.5.4 HoleLength (for IsManiplex, IsInt)

▷ HoleLength(M, j)

(operation)

Returns: The lengths of *j*-holes of the 3-maniplex *M*. This corresponds to the lengths of orbits under r0 (r1 r2) $^(j-1)$ r2.

3.5.5 HoleVector (for IsManiplex)

▷ HoleVector(M)

(attribute)

Returns: The lengths of all zigzags of the 3-maniplex M. A rank 3 maniplex of type $\{p, q\}$ has Floor(q/2) distinct zigzag lengths because the j-zigzags are the same as the (q-j)-zigzags.

Chapter 4

Actions

4.1 Automorphism group acting on faces and chains

4.1.1 AutomorphismGroupOnChains (for IsManiplex, IsCollection)

(operation)

Returns a permutation group, representing the action of AutomorphismGroup(M) on the chains of M of type I.

4.1.2 AutomorphismGroupOnIFaces (for IsManiplex, IsInt)

(operation)

Returns a permutation group, representing the action of AutomorphismGroup(M) on the *i*-faces of M.

4.1.3 AutomorphismGroupOnVertices (for IsManiplex)

(attribute)

Returns a permutation group, representing the action of AutomorphismGroup(M) on the vertices of M.

4.1.4 AutomorphismGroupOnEdges (for IsManiplex)

▷ AutomorphismGroupOnEdges(M)

(attribute)

Returns a permutation group, representing the action of AutomorphismGroup(M) on the edges of M.

4.1.5 AutomorphismGroupOnFacets (for IsManiplex)

(attribute)

Returns a permutation group, representing the action of AutomorphismGroup(M) on the facets of M.

4.2 Number of orbits and transitivity

4.2.1 NumberOfChainOrbits (for IsManiplex, IsCollection)

▷ NumberOfChainOrbits(M, I)

(operation)

Returns the number of orbits of chains of type *I* under the action of AutomorphismGroup(*M*).

4.2.2 NumberOfIFaceOrbits (for IsManiplex, IsInt)

▷ NumberOfIFaceOrbits(M, i)

(operation)

Returns the number of orbits of *i*-faces under the action of AutomorphismGroup(*M*).

4.2.3 NumberOfVertexOrbits (for IsManiplex)

NumberOfVertexOrbits(M)

(attribute)

Returns the number of orbits of vertices under the action of AutomorphismGroup(M).

4.2.4 NumberOfEdgeOrbits (for IsManiplex)

▷ NumberOfEdgeOrbits(M)

(attribute)

Returns the number of orbits of edges under the action of AutomorphismGroup(*M*).

4.2.5 NumberOfFacetOrbits (for IsManiplex)

▷ NumberOfFacetOrbits(M)

(attribute)

Returns the number of orbits of facets under the action of AutomorphismGroup(*M*).

4.2.6 IsChainTransitive (for IsManiplex, IsCollection)

▷ IsChainTransitive(M, I)

(operation)

Returns whether the action of AutomorphismGroup(M) on chains of type I is transitive.

4.2.7 IsIFaceTransitive (for IsManiplex, IsInt)

▷ IsIFaceTransitive(M, i)

(operation)

Returns whether the action of AutomorphismGroup(M) on i-faces is transitive.

4.2.8 IsVertexTransitive (for IsManiplex)

▷ IsVertexTransitive(M)

(property)

Returns: true or false

Returns whether the action of AutomorphismGroup(M) on vertices is transitive.

4.2.9 IsEdgeTransitive (for IsManiplex)

▷ IsEdgeTransitive(M)

(property)

Returns: true or false

Returns whether the action of AutomorphismGroup(M) on edges is transitive.

4.2.10 IsFacetTransitive (for IsManiplex)

▷ IsFacetTransitive(M)

(property)

Returns: true or false

Returns whether the action of AutomorphismGroup(M) on facets is transitive.

4.2.11 IsFullyTransitive (for IsManiplex)

▷ IsFullyTransitive(M)

(property)

Returns: true or false

Returns whether the action of AutomorphismGroup(M) on i-faces is transitive for every i.

4.3 Flag orbits

4.3.1 SymmetryTypeGraph (for IsManiplex)

⊳ SymmetryTypeGraph(M)

(attribute)

Returns the Symmetry Type Graph of the maniplex M, encoded as a permutation group on Rank(M) generators.

4.3.2 NumberOfFlagOrbits (for IsManiplex)

▷ NumberOfFlagOrbits(M)

(attribute)

Returns the number of orbits of the automorphism group of M on its flags.

4.3.3 FlagOrbitRepresentatives (for IsManiplex)

⊳ FlagOrbitRepresentatives(M)

(attribute)

Returns one flag from each orbit under the action of AutomorphismGroup(M).

4.3.4 FlagOrbitsStabilizer (for IsManiplex)

```
▷ FlagOrbitsStabilizer(M)
```

(attribute)

Returns: g

Returns the subgroup of the connection group that preserves the flag orbits under the action of the automorphism group.

```
gap> m:=Prism(Dodecahedron());
Prism(Dodecahedron())
gap> s:=FlagOrbitsStabilizer(m);
<permutation group of size 207360000 with 12 generators>
gap> IsSubgroup(ConnectionGroup(m),s);
true
gap> AsSet(Orbit(AutomorphismGroupOnFlags(m),1))=AsSet(Orbit(s,1));
true
```

4.3.5 IsReflexible (for IsManiplex)

▷ IsReflexible(M)

(property)

Returns: Whether the maniplex M is reflexible (has one flag orbit).

4.3.6 IsChiral (for IsManiplex)

▷ IsChiral(M)

(property)

Returns: Whether the maniplex *M* is chrial.

4.3.7 IsRotary (for IsManiplex)

▷ IsRotary(M)

(property)

Returns: Whether the maniplex M is rotary; i.e., whether it is either reflexible or chiral.

4.3.8 FlagOrbits (for IsManiplex)

```
▷ FlagOrbits(M)
```

(attribute)

Returns a list of lists of flags, representing the orbits of flags under the action of AutomorphismGroup(M).

4.4 Faithfulness

4.4.1 IsVertexFaithful (for IsReflexibleManiplex)

▷ IsVertexFaithful(M)

(property)

Returns: true or false

Returns whether the reflexible maniplex M is vertex-faithful; i.e., whether the action of the automorphism group on the vertices is faithful.

4.4.2 IsFacetFaithful (for IsReflexibleManiplex)

▷ IsFacetFaithful(M)

(property)

Returns: true or false

Returns whether the reflexible maniplex *M* is facet-faithful; i.e., whether the action of the automorphism group on the facets is faithful.

4.4.3 MaxVertexFaithfulQuotient (for IsReflexibleManiplex)

▷ MaxVertexFaithfulQuotient(M)

(operation)

Returns the maximal vertex-faithful reflexible maniplex covered by M.

Chapter 5

Regular maps

5.1 Bicontactual regular maps

The names for the maps in this section are from S.E. Wilson's paper of the same title (https://doi.org/10.2140/pjm.1985.120.437).

5.1.1 Epsilonk (for IsInt)

 \triangleright Epsilonk(k) (operation)

Returns: maniplex

Given an integer k, gives the map ε_k , which is $\{k,2\}_k$ when k is even, and $\{k,2\}_{2k}$ when k is odd.

```
gap> Epsilonk(5);
AbstractRegularPolytope([ 5, 2 ])
gap> Epsilonk(6);
AbstractRegularPolytope([ 6, 2 ])
```

5.1.2 Deltak (for IsInt)

▷ Deltak(k) (operation)

Returns: maniplex

Given an integer k, gives the map δ_k , which is $\{2k,2\}/2$ when k is even, and $\{2k,2\}_k$ when k is odd.

```
gap> Deltak(5);
AbstractRegularPolytope([ 10, 2 ], "(r0 r1)^5 r2")
gap> Deltak(6);
AbstractRegularPolytope([ 12, 2 ], "(r0 r1)^6 r2")
```

5.1.3 Mk (for IsInt)

ightharpoons Mk(k) (operation)

Returns: maniplex

Given an integer k, gives the map M_k , which is $\{2k, 2k\}_{1,0}$ when k is even, and $\{2k, k\}_2$ when k is odd.

```
Example

gap> Mk(5); Mk(6);

AbstractRegularPolytope([ 10, 5 ], "(r0 r1)^5 r0 = r2")

AbstractRegularPolytope([ 12, 12 ], "(r0 r1)^6 r0 = r2")
```

5.1.4 MkPrime (for IsInt)

▷ MkPrime(k)
(operation)

Returns: maniplex

Given an integer k, gives the map M'_k , which is $\{k,k\}_2$ when k is even, and $\{k,2k\}_2$ when k is odd. MkPrime(k,i) gives the map $M'_{k,i}$.

```
Example

gap> MkPrime(5); MkPrime(6);

ReflexibleManiplex([ 5, 10 ], "(r2*r1*(r0 r2))^5,z1^2")

ReflexibleManiplex([ 6, 6 ], "(r2*r1*(r0 r2))^6,z1^2")
```

5.1.5 Bk2l (for IsInt,IsInt)

 \triangleright Bk21(k, 1) (operation)

Returns: maniplex

Given integers k, 1, gives the map B(k, 2l).

```
gap> Bk2l(4,5);
3-maniplex with 80 flags
```

5.1.6 Bk2lStar (for IsInt,IsInt)

 \triangleright Bk2lStar(k, 1) (operation)

Returns: maniplex

Given integers k, 1, gives the map $B^*(k, 2l)$.

```
gap> Bk2lStar(5,7);
3-maniplex with 140 flags
```

5.2 Operators on reflexible maps

5.2.1 Opp (for IsManiplex)

□ Dpp (map) (operation)

Returns: oppositeMap

Forms the opposite map of the maniplex map.

```
gap> Opp(Bk2lStar(5,7));
Petrial(Dual(Petrial(3-maniplex with 140 flags)))
```

5.2.2 Hole (for IsManiplex,IsInt)

```
\triangleright Hole(map, j) (operation)
```

Returns: newMap

Given map and integer j, will form the map $H_j(map)$. Note that if the action of $[r_0, (r_1r_2)^{j-1}r_1, r_2]$ on the flags forms multiple orbits, then the resulting map will be on just one of those orbits.

```
gap> Hole(Bk2lStar(5,7),2);
3-maniplex with 140 flags
```

5.3 Operations on Reflexible and Regular Maps

The goal would be to implement the operations in BerPisWil17, as well as those suggested in the conclusion.

Chapter 6

Constructions

6.1 Extensions, amalgamations, and quotients

6.1.1 UniversalPolytope (for IsInt)

▷ UniversalPolytope(n)

(operation)

Returns: the universal polytope of rank n.

6.1.2 UniversalExtension (for IsManiplex)

▷ UniversalExtension(M)

(operation)

Returns: the universal extension of M, i.e. the maniplex with facets isomorphic to M that covers all other maniplexes with facets isomorphic to M.

Currently only defined for reflexible maniplexes.

6.1.3 UniversalExtension (for IsManiplex, IsInt)

 \triangleright UniversalExtension(M, k)

(operation)

Returns: the universal extension of M with last entry of Schlafli symbol k. Currently only defined for reflexible maniplexes.

6.1.4 TrivialExtension (for IsManiplex)

▷ TrivialExtension(M)

(operation)

Returns: the trivial extension of M, also known as $\{M, 2\}$.

6.1.5 FlatExtension (for IsManiplex, IsInt)

 \triangleright FlatExtension(M, k)

(operation)

Returns: the flat extension of M with last entry of Schlafli symbol k. (As defined in "Flat Extensions of Abstract Polytopes".)

Currently only defined for reflexible maniplexes.

6.1.6 Amalgamate (for IsManiplex, IsManiplex)

▷ Amalgamate(M1, M2)

operation)

Returns: the amalgamation of M1 and M2. Implicitly assumes that M1 and M2 are compatible. Currently only defined for reflexible maniplexes.

6.1.7 Medial (for IsManiplex)

▶ Medial(M) (operation)

Returns: Given a 3-maniplex M, returns its medial.

6.2 Duality

6.2.1 Dual (for IsManiplex)

Dual(M) (operation)

Returns: The maniplex that is dual to *M*.

6.2.2 IsSelfDual (for IsManiplex)

▷ IsSelfDual(M) (property)

Returns: Whether this maniplex is isomorphic to its dual.

Also works for IsPoset objects.

6.2.3 IsInternallySelfDual (for IsReflexibleManiplex)

▷ IsInternallySelfDual(M[, x])

(property)

Returns: true or false

Returns whether this maniplex is "internally self-dual", as defined by Cunningham and Mixer in [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). That is, if M is self-dual, and the automorphism of AutomorphismGroup(M) that induces the isomorphism between M and its dual is an inner automorphism. If the optional group element X is given, then we first check whether X is a dualizing automorphism of M, and if not, then we search the whole automorphism group of M.

```
gap> IsInternallySelfDual(Simplex(4));
true
gap> IsInternallySelfDual(ARP([4,4], "h2^6"));
false
gap> IsInternallySelfDual(ARP([4,4], "h2^5"));
true
gap> IsInternallySelfDual(Cube(3));
false
gap> M := InternallySelfDualPolyhedron2(10,1);;
gap> g := AutomorphismGroup(M);;
gap> IsInternallySelfDual(M, (g.1*g.3*g.2)^6);
true
```

6.2.4 IsExternallySelfDual (for IsReflexibleManiplex)

▷ IsExternallySelfDual(M)

(property)

Returns: true or false

Returns whether this maniplex is "externally self-dual", as defined by Cunningham and Mixer in [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). That is, if M is self-dual, and the automorphism of AutomorphismGroup(M) that induces the isomorphism between M and its dual is an outer automorphism.

```
gap> IsExternallySelfDual(Simplex(4));
false
gap> IsExternallySelfDual(ARP([4,4], "h2^6"));
true
gap> IsExternallySelfDual(ARP([4,4], "h2^5"));
false
gap> IsExternallySelfDual(Cube(3));
false
```

6.2.5 Petrial (for IsManiplex)

Petrial(M)
 (attribute)

Returns: The Petrial (Petrie dual) of M. Note that this is not necessarily a polytope, even if M is. When Rank(M) > 3, this is the "generalized Petrial" which essentially replaces r_{n-3} with $r_{n-3}r_{n-1}$ in the set of generators.

6.2.6 IsSelfPetrial (for IsManiplex)

▷ IsSelfPetrial(M) (property)

Returns: Whether this maniplex is isomorphic to its Petrial.

6.2.7 DirectDerivates (for IsManiplex)

```
▷ DirectDerivates(M) (operation)
```

Returns a list of the *direct derivates* of M, which are the images of M under duality and Petriality. A 3-maniplex has up to 6 direct derivates, and an n-maniplex with $n \ge 4$ has up to 8. If the option 'polytopal' is set, then only returns those direct derivates that are polytopal.

6.3 Products

6.3.1 Pyramid (for IsManiplex)

▷ Pyramid(M) (operation)

Returns the pyramid over M.

6.3.2 Pyramid (for IsInt)

Pyramid(k) (operation)

Returns the pyramid over a k-gon.

6.3.3 Prism (for IsManiplex)

Prism(M)
 (operation)

Returns the prism over M.

6.3.4 Prism (for IsInt)

Prism(k) (operation)

Returns the prism over a k-gon.

6.3.5 Antiprism (for IsManiplex)

▷ Antiprism(M) (operation)

Returns the antiprism over M.

6.3.6 Antiprism (for IsInt)

▷ Antiprism(k) (operation)

Returns the antiprism over a k-gon.

6.3.7 JoinProduct (for IsManiplex, IsManiplex)

▷ JoinProduct(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the join product. May give weird results if the maniplexes aren't faithfully represented by their posets.

6.3.8 CartesianProduct (for IsManiplex, IsManiplex)

▷ CartesianProduct(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the cartesian product. May give weird results if the maniplexes aren't faithfully represented by their posets.

6.3.9 DirectSumOfManiplexes (for IsManiplex, IsManiplex)

▷ DirectSumOfManiplexes(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the direct sum. May give weird results if the maniplexes aren't faithfully represented by their posets.

6.3.10 TopologicalProduct (for IsManiplex, IsManiplex)

▷ TopologicalProduct(M1, M2)

(operation)

Returns: Maniplex

Given two maniplexes, this forms the direct sum. May give weird results if the maniplexes aren't faithfully represented by their posets.

Chapter 7

Databases

7.1 Regular polyhedra

7.1.1 DegeneratePolyhedra

▷ DegeneratePolyhedra(sizerange)

(function)

Returns all degenerate polyhedra (of type {2, q} and {p, 2}) with sizes in sizerange. Also accepts a single integer maxsize as input to indicate a sizerange of [1..maxsize].

7.1.2 FlatRegularPolyhedra

▷ FlatRegularPolyhedra(sizerange)

(function)

Returns all nondegenerate flat regular polyhedra with sizes in *sizerange*. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize]. Currently supports a maxsize of 4000 or less.

7.1.3 RegularToroidalPolyhedra44

▷ RegularToroidalPolyhedra44(sizerange)

(function)

Returns all regular toroidal polyhedra of type {4,4} with sizes in sizerange. Also accepts a single integer *maxsize* as input to indicate a sizerange of [1..maxsize].

7.1.4 RegularToroidalPolyhedra36

▷ RegularToroidalPolyhedra36(sizerange)

(function)

Returns all regular toroidal polyhedra of type {3,6} with sizes in sizerange. Also accepts a single integer maxsize as input to indicate a sizerange of [1..maxsize].

7.1.5 SmallRegularPolyhedraFromFile

▷ SmallRegularPolyhedraFromFile(sizerange)

(function)

Returns all regular polyhedra with sizes in *sizerange* flags that are stored separately in a file. These are polyhedra that are not part of one of several infinite families that are covered by the other generators. The return value of this function is unstable and may change as more infinite familes of polyhedra are identified and written as separate generators.

7.1.6 SmallRegularPolyhedra

```
▷ SmallRegularPolyhedra(sizerange)
```

(function)

Returns all regular polyhedra with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less. You can also set options "nondegenerate", "nonflat", and "nontoroidal".

```
L1 := SmallRegularPolyhedra(500);;
L2 := SmallRegularPolyhedra(1000 : nondegenerate);;
L3 := SmallRegularPolyhedra(2000 : nondegenerate, nonflat);;
```

7.1.7 SmallDegenerateRegular4Polytopes

```
▷ SmallDegenerateRegular4Polytopes(sizerange)
```

(function)

Returns all degenerate regular 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 8000 or less.

7.1.8 SmallRegular4Polytopes

```
▷ SmallRegular4Polytopes(sizerange)
```

(function)

Returns all regular 4-polytopes with sizes in sizerange flags. Currently supports a maxsize of 4000 or less.

7.1.9 SmallChiralPolyhedra

```
▷ SmallChiralPolyhedra(sizerange)
```

(function)

Returns all chiral polyhedra with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less.

7.1.10 SmallChiral4Polytopes

```
▷ SmallChiral4Polytopes(sizerange)
```

(function)

Returns all chiral 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 4000 or less.

7.1.11 SmallReflexible3Maniplexes

 ${\tt \triangleright} \ {\tt SmallReflexible3Maniplexes} ({\tt sizerange})$

(function)

Returns all regular 4-polytopes with sizes in *sizerange* flags. Currently supports a maxsize of 2000 or less. If the option 'nonpolytopal' is set, only returns maniplexes that are not polyhedra.

Chapter 8

Families of Polytopes

8.1 Classical Polytopes

8.1.1 Vertex

Returns: the universal 0-polytope.

8.1.2 Edge

▷ Edge()
(operation)

Returns: the universal 1-polytope.

8.1.3 Pgon (for IsInt)

 $\triangleright \text{ Pgon}(p)$ (operation)

Returns: the p-gon.

8.1.4 Cube (for IsInt)

▷ Cube (n) (operation)

Returns: the n-cube.

8.1.5 HemiCube (for IsInt)

Returns: the n-hemi-cube.

8.1.6 CrossPolytope (for IsInt)

▷ CrossPolytope(n) (operation)

Returns: the n-cross-polytope.

8.1.7 HemiCrossPolytope (for IsInt)

▷ HemiCrossPolytope(n)

(operation)

Returns: the n-hemi-cross-polytope.

8.1.8 Simplex (for IsInt)

▷ Simplex(n)

(operation)

Returns: the n-simplex.

8.1.9 CubicTiling (for IsInt)

▷ CubicTiling(n)

(operation)

Returns: the rank n+1 polytope; the tiling of E^n by n-cubes.

8.1.10 Dodecahedron

▷ Dodecahedron()

(operation)

Returns: the dodecahedron, {5, 3}.

8.1.11 HemiDodecahedron

▷ HemiDodecahedron()

(operation)

Returns: the hemi-dodecahedron, {5, 3}_5.

8.1.12 Icosahedron

▷ Icosahedron()

(operation)

Returns: the icosahedron, {3, 5}.

8.1.13 Hemilcosahedron

▷ HemiIcosahedron()

(operation)

Returns: the hemi-icosahedron, $\{3, 5\}_5$.

8.1.14 24Cell

▷ 24Cell()

(operation)

Returns: the 24-cell, {3, 4, 3}.

8.1.15 Hemi24Cell

▷ Hemi24Cell()

(operation)

Returns: the hemi-24-cell, {3, 4, 3}_6.

8.1.16 120Cell

▷ 120Cell()

(operation)

Returns: the 120-cell, {5, 3, 3}.

8.1.17 Hemi120Cell

▷ Hemi120Cell() (operation)

Returns: the hemi-120-cell, {5, 3, 3}_15.

8.1.18 600Cell

Returns: the 600-cell, {3, 3, 5}.

8.1.19 Hemi600Cell

→ Hemi600Cell() (operation)

Returns: the hemi-600-cell, {3, 3, 5}_15.

8.1.20 BrucknerSphere

▷ BrucknerSphere()

(operation)

Returns: Bruckner's sphere.

8.1.21 InternallySelfDualPolyhedron1 (for IsInt)

▷ InternallySelfDualPolyhedron1(p)

(operation)

Returns: the internally self-dual polyhedron of type {p, p} described in Theorem 5.3 of [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). p must be at least 7.

8.1.22 InternallySelfDualPolyhedron2 (for IsInt, IsInt)

▷ InternallySelfDualPolyhedron2(p, k)

(operation)

Returns: the internally self-dual polyhedron of type {p, p} described in Theorem 5.8 of [CM17] (https://doi.org/10.11575/cdm.v12i2.62785). p must be even and at least 6, and k must be odd.

8.2 Flat and tight polytopes

8.2.1 FlatOrientablyRegularPolyhedron (for IsInt, IsInt, IsInt, IsInt)

▷ FlatOrientablyRegularPolyhedron(p, q, i, j)

(operation)

Returns: the flat orientably regular polyhedron with automorphism group $[p, q] / (r2 r1 r0 r1 = (r0 r1)^i (r1 r2)^j)$.

This function validates the inputs to make sure that the polyhedron is well-defined. Use FlatOrientablyRegularPolyhedronNC if you do not want this validation.

8.2.2 FlatOrientablyRegularPolyhedraOfType (for IsList)

⊳ FlatOrientablyRegularPolyhedraOfType(sym)

(operation)

Returns: a list of all flat, orientably regular polyhedra with Schlafli symbol sym.

8.2.3 TightOrientablyRegularPolytopesOfType (for IsList)

▷ TightOrientablyRegularPolytopesOfType(sym)

(operation)

Returns: a list of all tight, orientably regular polytopes with Schlafli symbol sym. When sym has length 2, this just calls FlatOrientablyRegularPolyhedraOfType(sym).

8.3 Toroids

8.3.1 ToroidalMap44

 \triangleright ToroidalMap44(u[, v])

(function)

Returns: IsManiplex

Returns the toroidal map $\{4,4\}_{\vec{u},\vec{v}}$. If only u is given, then v is taken to be u rotated 90 degrees, in which case the resulting map is either reflexible or chiral.

```
gap> ToroidalMap44([3,0]) = ARP([4,4], "(r0 r1 r2 r1)^3");
true
gap> M := ToroidalMap44([1,2]);; IsChiral(M);
true
gap> ToroidalMap44([5,0]) = SmallestReflexibleCover(M);
true
gap> M := ToroidalMap44([2,0],[0,3]);; NumberOfFlagOrbits(M);
2
gap> M = ARP([4,4]) / "(r0 r1 r2 r1)^2, (r1 r0 r1 r2)^3";
true
gap> SmallestReflexibleCover(M) = ToroidalMap44([6,0]);
true
gap> ToroidalMap44([2,3],[4,1]) = ToroidalMap44([-3,2],[-1,4]);
true
```

8.3.2 CubicToroid (for IsInt,IsInt,IsInt)

▷ CubicToroid(s, k, n)

(operation)

Returns: IsManiplex

Given IsInt triple s, k, n, will return the regular toroid $\{4,3^{n-2},4\}_{\vec{s}}$ where $\vec{s}=(s^k,0^{n-k})$.

```
gap> m44:=CubicToroid(3,2,2);;
gap> m44=ToroidalMap44([3,3]);
true
```

8.3.3 CubicToroid (for IsInt,IsList)

▷ CubicToroid(n, vecs)

(operation)

Returns: IsManiplex

Given an integer n and a list of vectors *vecs*, returns the cubic toroid that is a quotient of Cubic-Tiling(n) by the translation subgroup generated by the given vectors. The results may be nonsensical if *vecs* does not generate an n-dimensional translation group.

8.3.4 3343Toroid (for IsInt,IsInt)

Returns: IsManiplex

Given IsInt pair s, k, will return the regular toroid $\{3,3,4,3\}_{\vec{s}}$ where $\vec{s} = (s^k, 0^{n-k})$. Note that k must be 0 or 1.

8.3.5 24CellToroid (for IsInt,IsInt)

 \triangleright 24CellToroid(s, k) (operation)

Returns: IsManiplex

Given IsInt pair s, k, will return the regular toroid $\{3,4,3,3\}_{\vec{s}}$ where $\vec{s} = (s^k, 0^{n-k})$. Note that k must be 0 or 1.

8.4 Uniform Polyhedra

Representations of the uniform polyhedra here are from [HW10].

8.4.1 Cuboctahedron

▷ Cuboctahedron() (operation)

Returns: maniplex

Constructs the cuboctahedron.

```
gap> SchlafliSymbol(Cuboctahedron());
[ [ 3, 4 ], 4 ]
```

8.4.2 TruncatedTetrahedron

> TruncatedTetrahedron() (operation)

Returns: maniplex

Constructs the truncated tetrahedron.

```
gap> SchlafliSymbol(TruncatedTetrahedron());
[ [ 3, 6 ], 3 ]
```

8.4.3 TruncatedOctahedron

▷ TruncatedOctahedron() (operation)

Returns: maniplex

Constructs the truncated octahedron.

```
gap> Fvector(TruncatedOctahedron());
[ 24, 36, 14 ]
```

8.4.4 TruncatedCube

▷ TruncatedCube()

(operation)

Returns: maniplex

Constructs the truncated octahedron.

```
gap> Fvector(TruncatedCube());
[ 24, 36, 14 ]
gap> SchlafliSymbol(TruncatedCube());
[ [ 3, 8 ], 3 ]
```

8.4.5 Icosadodecahedron

▷ Icosadodecahedron() (operation)

Returns: maniplex

Constructs the icosadodecahedron.

```
gap> VertexFigure(Icosadodecahedron());
Pgon(4)
gap> Facets(Icosadodecahedron());
[ Pgon(5), Pgon(3) ]
```

8.4.6 TruncatedIcosahedron

> TruncatedIcosahedron()

Returns: maniplex

Constructs the truncated icosahedron.

```
Example _____
```

8.4.7 SmallRhombicuboctahedron

▷ SmallRhombicuboctahedron()

(operation)

(operation)

Returns: maniplex

Constructs the small rhombicuboctahedron.

```
gap> ZigzagVector(SmallRhombicuboctahedron());
[ 12, 8 ]
```

8.4.8 Pseudorhombicuboctahedron

 $\, \triangleright \,\, \texttt{Pseudorhombicuboctahedron()}$

(operation)

Returns: maniplex

Constructs the pseudorhombicuboctahedron.

```
gap> Size(ConnectionGroup(Pseudorhombicuboctahedron()));
16072626615091200
```

8.4.9 SnubCube

▷ SnubCube() (operation)

Returns: maniplex Constructs the snub cube.

```
gap> IsEquivelar(PetrieDual(SnubCube()));
true
gap> SchlafliSymbol(PetrieDual(SnubCube()));
[ 30, 5 ]
gap> Size(ConnectionGroup(PetrieDual(SnubCube())));
3804202857922560
gap> Size(AutomorphismGroup(PetrieDual(SnubCube())));
24
```

8.4.10 SmallRhombicosidodecahedron

▷ SmallRhombicosidodecahedron()

(operation)

Returns: maniplex

Constructs the small rhombicosidodecahedron.

```
gap> Facets(SmallRhombicosidodecahedron());
[ Pgon(5), Pgon(4), Pgon(3) ]
```

8.4.11 GreatRhombicosidodecahedron

▷ GreatRhombicosidodecahedron()

(operation)

Returns: maniplex

Constructs the great rhombicosidodecahedron.

```
gap> Facets(GreatRhombicosidodecahedron());
[ Pgon(10), Pgon(4), Pgon(6) ]
```

8.4.12 SnubDodecahedron

▷ SnubDodecahedron()

(operation)

Returns: maniplex

Constructs the small snub dodecahedron.

```
gap> Facets(SnubDodecahedron());
[ Pgon(5), Pgon(3) ]
gap> IsEquivelar(PetrieDual(SnubDodecahedron()));
true
```

8.4.13 TruncatedDodecahedron

▷ TruncatedDodecahedron()

(operation)

Returns: maniplex

Constructs the truncated dodecahedron.

8.4.14 GreatRhombicuboctahedron

▷ GreatRhombicuboctahedron()

(operation)

Returns: maniplex

Constructs the great rhombicuboctahedron.

Chapter 9

Groups

9.1 Groups

9.1.1 AutomorphismGroup (for IsManiplex)

▷ AutomorphismGroup(M)

(attribute)

Returns the automorphism group of M. This group is not guaranteed to be in any particular form. For particular permutation representations you should consider the various AutomorphismGroupOn... functions.

9.1.2 AutomorphismGroupFpGroup (for IsManiplex)

(attribute)

Returns the automorphism group of M as a finitely presented group.

9.1.3 AutomorphismGroupPermGroup (for IsManiplex)

(attribute)

Returns the automorphism group of M as a permutation group.

9.1.4 AutomorphismGroupOnFlags (for IsManiplex)

(attribute)

Returns the automorphism group of M as a permutation group action on the flags of M.

9.1.5 ConnectionGroup (for IsManiplex)

▷ ConnectionGroup(M)

(attribute)

Returns the connection group of M as a permutation group. We may eventually allow other types of connection groups. Synonym: MonodromyGroup

9.1.6 EvenConnectionGroup (for IsManiplex)

▷ EvenConnectionGroup(M)

(attribute)

Returns the even-word subgroup of the connection group of M as a permutation group.

9.1.7 RotationGroup (for IsManiplex)

▷ RotationGroup(M)

(attribute)

Returns the rotation group of M. This group is not guaranteed to be in any particular form.

9.1.8 ChiralityGroup (for IsRotaryManiplex)

▷ ChiralityGroup(M)

(attribute)

Returns the chirality group of the rotary maniplex M. This is the kernel of the group epimorphism from the rotation group of M to the rotation group of its maximal reflexible quotient. In particular, the chirality group is trivial if and only if M is reflexible.

9.1.9 ExtraRelators (for IsReflexibleManiplex)

▷ ExtraRelators(M)

(attribute)

For a reflexible maniplex M, returns the relators needed to define its automorphism group as a quotient of the string Coxeter group given by its Schlafli symbol. Not particularly robust at the moment.

9.1.10 ExtraRotRelators (for IsRotaryManiplex)

▷ ExtraRotRelators(M)

(attribute)

For a reflexible maniplex M, returns the relators needed to define its rotation group as a quotient of the rotation group of a string Coxeter group given by its Schlafli symbol. Not particularly robust at the moment.

9.1.11 IsManiplexable (for IsPermGroup)

▷ IsManiplexable(permgroup)

(operation)

Returns: Boolean.

Given a permutation group, it asks if the generators could be the connection group of a maniplex That is to say, are each of the generators and their products fixed point free.

Chapter 10

Mixing of Maniplexes

10.1 Mixing of Maniplexes functions

10.1.1 Mix (for IsPermGroup, IsPermGroup)

```
▷ Mix(permgroup, permgroup)
```

(operation)

Returns: IsGroup .

Given two (permutation) groups returns the mix of those groups. Note, also works with FPgroups. Here we build the mix of the connection groups of a 3-cube and an edge.

```
gap> g1:=ConnectionGroup(Cube(3));
<permutation group with 3 generators>
gap> g2:=ConnectionGroup(Edge());
Group([ (1,2) ])
gap> Mix(g1,g2);
<permutation group with 3 generators>
```

10.1.2 Mix (for IsFpGroup, IsFpGroup)

```
▷ Mix(fpgroup, fpgroup)
```

(operation)

Returns the Mix of two Finitely Presented groups gp and gq.

10.1.3 Mix (for IsReflexibleManiplex, IsReflexibleManiplex)

```
▷ Mix(maniplex, maniplex)
```

(operation)

Returns: IsReflexibleManiplex .

Given maniplexes returns the IsReflexibleManiplex from the mix of their connection groups

10.1.4 Mix (for IsManiplex, IsManiplex)

```
▷ Mix(arg1, arg2)
```

(operation)

10.1.5 Comix (for IsFpGroup, IsFpGroup)

▷ Comix(fpgroup, fpgroup)

(operation)

Returns the comix of two Finitely Presented groups gp and gq.

10.1.6 Comix (for IsReflexibleManiplex, IsReflexibleManiplex)

▷ Comix(maniplex, maniplex)

(operation)

Returns: IsReflexibleManiplex .

Given maniplexes returns the IsReflexibleManiplex from the comix of their connection groups

10.1.7 CtoL (for IsInt,IsInt,IsInt,IsInt)

▷ CtoL(int, int, int, int)

(operation)

Returns: IsInteger .

CtoL Returns an integer between 1 and N*M associated with the pair [a,b]. LtoC Returns an ordered pair [a,b] associated with the integer between 1 and N*M. a should range between 1 and N, and b should range between 1 and M N is how many columns (x coordinates), M is how many rows (y coordinates) in a matrix Functions are inverses.

10.1.8 FlagMix (for IsManiplex, IsManiplex)

▷ FlagMix(permgroup, permgroup)

(operation)

Returns: IsManiplex .

Given two (permutation) groups gp, gg this returns the maniplex of the "flag" mix of two maniplexes with connection groups gp and gq.

Chapter 11

Properties

11.1 **Orientability**

IsOrientable (for IsManiplex)

▷ IsOrientable(M)

Returns: true or false

A maniplex is orientable if its flag graph is bipartite.

11.1.2 IsIOrientable (for IsManiplex, IsList)

▷ IsIOrientable(M, I) (operation)

(property)

(property)

For a subset I of {0, ..., n-1}, a maniplex is I-orientable if every closed path in its flag graph contains an even number of edges with colors in I.

11.1.3 IsVertexBipartite (for IsManiplex)

Returns: true or false

▷ IsVertexBipartite(M)

A maniplex is vertex-bipartite if its 1-skeleton is bipartite. This is equivalent to being I-orientable for $I = \{0\}$.

IsFacetBipartite (for IsManiplex)

▷ IsFacetBipartite(M)

(property)

Returns: true or false

A maniplex is facet-bipartite if the 1-skeleton of its dual is bipartite. This is equivalent to being I-orientable for $I = \{n-1\}$.

OrientableCover (for IsManiplex) 11.1.5

▷ OrientableCover(M) (attribute)

Returns the minimal *orientable cover* of the maniplex M.

11.1.6 IOrientableCover (for IsManiplex, IsList)

▷ IOrientableCover(M)

(operation)

Returns the minimal *I-orientable cover* of the maniplex M.

Chapter 12

Posets

12.1 Poset attributes

Posets have many properties we might be interested in. Here's a few. All abstract polytope definitions in use here are from Schulte and McMullen's *Abstract Regular Polytopes* [MS02].

12.1.1 MaximalChains (for IsPoset)

```
▷ MaximalChains(poset)
```

(attribute)

Gives the list of maximal chains in a poset in terms of the elements of the poset. Synonyms are FlagsList and Flags. Tends to work faster (sometimes significantly) if the poset HasPartialOrder.

Synonym is FlagsList.

```
Example
gap> poset:=PosetFromManiplex(HemiCube(3));
A poset using the IsPosetOfFlags representation.
gap> MaximalChains(poset)[1];
[ An element of a poset made of flags, An element of a poset made of flags,
   An element of a poset made of flags, An element of a poset made of flags,
   An element of a poset made of flags ]
gap> List(last,x->RankInPoset(x,poset));
[ -1, 0, 1, 2, 3 ]
```

12.1.2 RankPoset (for IsPoset)

```
▷ RankPoset(poset)
```

(attribute)

If the poset IsP1, ranks are assumed to run from -1 to n, and function will return n. If IsP1(poset)=false, ranks are assumed to run from 1 to n. In RAMP, at least currently, we are assuming that graded/ranked posets are bounded. Note that in general what you *actually* want to do is call Rank(poset). The reason is that Rank will calculate the RankPoset if it isn't set, and then set and store the value in the poset.

12.1.3 ElementsList (for IsPoset)

```
▷ ElementsList(poset)
```

(attribute)

Will recover the list of faces of the poset, format may depend on type of representation of poset.

• We also have FacesList and Faces as synonyms for this command.

12.1.4 OrderingFunction (for IsPoset)

```
▷ OrderingFunction(poset)
```

(attribute)

OrderingFunction is an attribute of a poset which stores a function for ordering elements.

```
gap> p:=PosetFromManiplex(Cube(2));;
gap> p3:=PosetFromElements(RankedFaceListOfPoset(p),PairCompareFlagsList);;
gap> f3:=FacesList(p3);;
gap> OrderingFunction(p3)(ElementObject(f3[2]),ElementObject(f3[1]));
true
gap> OrderingFunction(p3)(ElementObject(f3[1]),ElementObject(f3[2]));
false
```

12.1.5 IsFlaggable (for IsPoset)

```
▷ IsFlaggable(poset)
```

(property)

Returns: true or false

Checks or creates the value of the attribute IsFlaggable for an IsPoset. Point here is to see if the structure of the poset is sufficient to determine the flag graph. For IsPosetOfFlags this is another way of saying that the intersection of the faces (thought of as collections of flags) containing a flag is that selfsame flag. (Might be equivalent to prepolytopal... but Gabe was tired and Gordon hasn't bothered to think about it yet.) Now also works with generic poset element types (not just IsPosetOfFlags).

12.1.6 IsAtomic (for IsPoset)

```
▷ IsAtomic(poset)
```

(property)

Returns: true or false

This checks whether or not the faces of an IsP1 poset may be described uniquely in terms of the posets atoms.

The terminology as used here is approximately that of Ziegler's *Lectures on Polytopes* where a lattice is atomic if every element is the join of atoms.

```
gap> po:=BinaryRelationOnPoints([[2,3],[4,5],[6],[6],[6],[]]);;
gap> po:=ReflexiveClosureBinaryRelation(TransitiveClosureBinaryRelation(po));;
gap> p:=PosetFromPartialOrder(po);; IsAtomic(p);
false
gap> p2:=PosetFromManiplex(Cube(3));; IsAtomic(p2);
true
```

12.1.7 PartialOrder (for IsPoset)

```
▷ PartialOrder(poset)
```

(attribute)

Returns: partial order

HasPartialOrder Checks if *poset* has a declared partial order (binary relation). SetPartialOrder assigns a partial order to the *poset*. In many cases, PartialOrder is able to compute one from structural information.

12.1.8 Lattices

```
▷ IsLattice(poset)

▷ IsAllMeets(arg)

▷ IsAllJoins(arg)

Returns: IsBool

(property)

(property)
```

IsLattice determines whether a poset is a lattice or not. IsAllMeets determines whether all meets in a poset are unique. IsAllJoins determines whether all joins in a poset are unique.

```
gap> poset:=PosetFromManiplex(Cube(3));;
gap> IsLattice(poset);
true
gap> bad:=PosetFromManiplex(HemiCube(3));;
gap> IsLattice(bad);
fail
```

Here's a simple example of when a lattice isn't atomic.

```
Example
gap> 1:=[[2,3,4],[5,7],[5,6],[6,7],[8],[8],[8],[10],[10],[]];;
gap> b:=BinaryRelationOnPoints(1);;
po:=ReflexiveClosureBinaryRelation(TransitiveClosureBinaryRelation(b));;
gap> poset:=PosetFromPartialOrder(po);;
gap> IsLattice(poset);
true
gap> IsAtomic(poset);
false
```

12.1.9 ListIsP1Poset (for IsList)

```
▷ ListIsP1Poset(list)
```

(operation)

(property)

Returns: true or false

Given list, comprised of sublists of faces ordered by rank, each face listing the flags on the face, this function will tell you if the list corresponds to a P1 poset or not.

12.1.10 IsP1 (for IsPoset)

```
▷ IsP1(poset)
```

Returns: true or false

Determines whether a poset has property P1 from ARP. Recall that a poset is P1 if it has a unique least, and a unique maximal element/face.

```
gap> p:=PosetFromElements(AllSubgroups(AlternatingGroup(4)),IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsP1(p);
true
gap> p2:=PosetFromFaceListOfFlags([[[1],[2]],[[1,2]]]);
A poset using the IsPosetOfFlags representation with 3 faces.
gap> IsP1(p2);
false
```

12.1.11 IsP2 (for IsPoset)

```
▷ IsP2(poset) (property)
```

Returns: true or false

Determines whether a poset has property P2 from ARP. Recall that a poset is P2 if each maximal chain in the poset has the same length (for n-polytopes, this means each flag containes n + 2 faces).

```
gap> poset:=PosetFromManiplex(HemiCube(3));
gap> IsP2(poset);
true
```

Another nice example

```
Example
gap> g:=AlternatingGroup(4);; a:=AllSubgroups(g);; poset:=PosetFromElements(a,IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsP2(poset);
false
```

12.1.12 IsP3 (for IsPoset)

```
    ▷ IsP3(poset) (property)
```

Returns: true or false

Determines whether a poset is strongly flag connected (property P3' from ARP). May also be called with command IsStronglyFlagConnected. If you are not working with a pre-polytope, expect this to take a LONG time. This means that given flags Φ and Ψ , not only is there a sequence of flags $\Psi = \Phi_0 = \Phi_1 = \cdots = \Phi_k = \Psi$ such that each Φ_i shares all but once face with Φ_{i+1} , but that each $\Phi_i \supseteq \Phi \cap \Psi$.

Helper for IsP3

12.1.13 IsFlagConnected (for IsPoset)

```
▷ IsFlagConnected(poset)
```

(property)

Returns: true or false

Determines whether a poset is flag connected.

12.1.14 IsP4 (for IsPoset)

```
▷ IsP4(poset) (property)
```

Returns: true or false

Determines whether a poset satisfies the diamond condition. May also be invoked using IsDiamondCondition. Recall that this means that if F, G elements of the poset of ranks i-1 and i+1, respectively, where F less than G, then there are precisely two i-faces H such that F is less than H and H is less than G.

12.1.15 IsPolytope (for IsPoset)

```
▷ IsPolytope(poset) (property)
```

Returns: true or false

Determines whether a poset is an abstract polytope.

```
gap> poset:=PosetFromManiplex(Cube(3));
A poset using the IsPosetOfFlags representation with 28 faces.
gap> IsPolytope(poset);
true
gap> KnownPropertiesOfObject(poset);
[ "IsP1", "IsP2", "IsP3", "IsP4", "IsPolytope" ]
gap> poset2:=PosetFromElements(AllSubgroups(AlternatingGroup(4)),IsSubgroup);
A poset using the IsPosetOfIndices representation
gap> IsPolytope(poset2);
false
gap> KnownPropertiesOfObject(poset2);
[ "IsP1", "IsP2", "IsPolytope" ]
```

12.1.16 IsPrePolytope (for IsPoset)

▷ IsPrePolytope(poset) (property)

Returns: true or false

Determines whether a poset is an abstract pre-polytope.

12.1.17 IsSelfDual (for IsPoset)

```
▷ IsSelfDual(poset) (property)
```

Returns: IsBool

Determines whether a poset is self dual.

```
gap> poset:=PosetFromManiplex(Simplex(5));;
A poset using the IsPosetOfFlags representation.
gap> IsSelfDual(poset);
true
gap> poset2:=PosetFromManiplex(PyramidOver(Cube(3)));;
gap> IsSelfDual(poset2);
false
```

12.2 Poset constructors

I'm in the process of reconciling all of this, but there are going to be a number of ways to define a poset:

- As an IsPosetOfFlags, where the underlying description is an ordered list of length n+2. Each of the n+2 list elements is a list of faces, and the assumption is that these are the faces of rank i-2, where i is the index in the master list (e.g., 1[1][1] would usually correspond to the unique -1 face of a polytope and there won't be an 1[1][2]). Each face is then a list of the flags incident with that face.
- As an IsPosetOfIndices, where the underlying description is a binary relation on a set of indices, which correspond to labels for the elements of the poset.
- If the poset is known to be atomic, then by a description of the faces in terms of the atoms... usually we'll just need the list of the elements of maximal rank, from which all other elements may be obtained.
- As an IsPosetOfElements, where the elements could be anything, and we have a known function determining the partial order on the elements.

Usually, we assume that the poset will have a natural rank function on it. More information on the poset attributes that are important in the study of abstract polytopes and maniplexes is available in [MS02], [MPW14], and [Wil12].

12.2.1 PosetFromFaceListOfFlags (for IsList)

▷ PosetFromFaceListOfFlags(list)

(operation)

Returns: IsPosetOfFlags.

Given a *list* of lists of faces in increasing rank, where each face is described by the incident flags, gives you a IsPosetOfFlags object back. Posets constructed this way are assumed to be IsP1 and IsP2.

Here we have a poset using the IsPosetOfFlags description for the triangle.

12.2.2 PosetFromConnectionGroup (for IsPermGroup)

 \triangleright PosetFromConnectionGroup(g)

(operation)

Returns: IsPosetOfFlags with IsP1=true.

Given a group, returns a poset with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function includes the minimal (empty) face and the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

```
Example

gap> g:=Group([(1,4)(2,3)(5,6),(1,2)(3,6)(4,5)]);

Group([ (1,4)(2,3)(5,6), (1,2)(3,6)(4,5) ])

gap> PosetFromConnectionGroup(g);

A poset using the IsPosetOfFlags representation with 8 faces.
```

12.2.3 PosetFromManiplex (for IsManiplex)

▷ PosetFromManiplex(mani)

(operation)

Returns: IsPosetOfFlags

Given a maniplex, returns a poset of the maniplex with an internal representation as a list of faces ordered by rank, where each face is represented as a list of the flags it contains. Note that this function does include the minimal (empty) face and the maximal face of the maniplex. Note that the i-faces correspond to the i+1 item in the list because of how GAP indexes lists.

```
gap> p:=HemiCube(3);
Regular 3-polytope of type [ 4, 3 ] with 24 flags
gap> PosetFromManiplex(p);
A poset using the IsPosetOfFlags representation with 15 faces.
```

12.2.4 PosetFromPartialOrder (for IsBinaryRelation)

▷ PosetFromPartialOrder(partialOrder)

(operation)

Returns: IsPosetOfIndices

Given a partial order on a finite set of size n, this function will create a partial order on [1..n].

```
gap> 1:=List([[1,1],[1,2],[1,3],[1,4],[2,4],[2,2],[3,3],[4,4]],x->Tuple(x));
gap> r:=BinaryRelationByElements(Domain([1..4]), 1);
<general mapping: Domain([ 1 .. 4 ]) -> Domain([ 1 .. 4 ]) >
gap> poset:=PosetFromPartialOrder(r);
A poset using the IsPosetOfIndices representation
gap> h:=HasseDiagramBinaryRelation(PartialOrder(poset));
<general mapping: Domain([ 1 .. 4 ]) -> Domain([ 1 .. 4 ]) >
gap> Successors(h);
[ [ 2, 3 ], [ 4 ], [ ], [ ] ]
```

Note that what we've accomplished here is the poset containing the elements 1, 2, 3, 4 with partial order determined by whether the first element divides the second. The essential information about the poset can be obtained from the Hasse diagram.

12.2.5 PosetFromAtomicList (for IsList)

▷ PosetFromAtomicList(list)

(operation)

Returns: IsPosetOfAtoms

Given a list of elements, where each element is given as a list of atoms, this function will construct the corresponding poset. Note that this will construct any implied faces as well (i.e., all possible intersections of the listed faces).

```
Example

gap> list:=[[1,2,3],[1,2,4],[1,3,4],[2,3,4]];

[ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 4 ], [ 2, 3, 4 ] ]

gap> poset:=PosetFromAtomicList(list);;

gap> List(Faces(poset),AtomList);

[ [ ], [ 1 ], [ 1, 2 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3 ], [ 1, 3, 4 ], [ 1, 4 ], [ 2 ], [ 2, 3 ], [ 2, 3, 4 ], [ 2, 4 ], [ 3 ], [ 4 ], [ 1 ... 4 ] ]
```

12.2.6 PosetFromElements (for IsList,IsFunction)

▷ PosetFromElements(list_of_faces, func)

(operation)

Group([

Returns: IsPosetOfElements

This is for gathering elements with a known ordering func on two variables into a poset. Also note, the expectation is that func behaves similarly to IsSubset, i.e., func (x,y)=true means y is less than x in the order.

```
gap> g:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> asg:=AllSubgroups(g);
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), Group([ (1,2,3) ]),
gap> poset:=PosetFromElements(asg,IsSubgroup);
A poset on 6 elements using the IsPosetOfIndices representation.
gap> HasseDiagramBinaryRelation(PartialOrder(poset));
<general mapping: Domain([ 1 .. 6 ]) -> Domain([ 1 .. 6 ]) >
gap> Successors(last);
[ [ 2, 3, 4, 5 ], [ 6 ], [ 6 ], [ 6 ], [ 6 ], [ ] ]
gap> List( ElementsList(poset){[2,6]}, ElementObject);
[ Group([ (2,3) ]), Group([ (1,2,3), (2,3) ]) ]
```

12.2.7 PosetFromSuccessorList (for IsList)

▷ PosetFromSuccessorList(successorsList)

(operation)

Returns: poset

Given a list of immediate successors, will construct the poset. A valid list of successors is of the form [[2,3],[3],[3]] where the *i*-th entry is a list of elements that are greater than the *i*-th element in the partial order that determines the poset. If the given list isn't reflexive and transitive, this function will induce those properties from the given list of successors.

```
Example

gap> p:=PosetFromManiplex(HemiCube(3));;

gap> Print(p);

PosetFromSuccessorList([ [ 2, 3, 4, 5 ], [ 6, 7, 9 ], [ 6, 8, 11 ], [ 7, 10, 11 ], [ 8, 9, 10 ], [ 1, 2, 13 ], [ 12, 14 ], [ 12, 14 ], [ 13, 14 ], [ 12, 13 ], [ 13, 14 ], [ 15 ], [ 15 ], [ 15 ], [ ] );
```

12.2.8 Helper functions for special partial orders

The functions PairCompareFlagsList and PairCompareAtomsList are used in poset construction. Function assumes <code>list1</code> and <code>list2</code> are of the form [listOfFlags,i] where listOfFlags is a list of flags in the face and i is the rank of the face. Allows comparison of HasFlagList elements. Function assumes <code>list1</code> and <code>list2</code> are of the form [listOfAtoms,int] where listOfAtoms is a list of flags in the face and int is the rank of the face. Allows comparison of HasAtomList elements.

12.2.9 **DualPoset** (for IsPoset)

Returns: dual

Given a poset, will construct a poset isomorphic to the dual of poset.

```
gap> p:=PosetFromManiplex(Cube(3));; c:=PosetFromManiplex(CrossPolytope(3));;
gap> IsIsomorphicPoset(DualPoset(DualPoset(p)),p);
true
gap> IsIsomorphicPoset(DualPoset(p),c);
true
gap> IsIsomorphicPoset(DualPoset(p),p);
false
```

12.2.10 Section (for IsFace, IsFace, IsPoset)

```
▶ Section(face1, face2, poset) (operation)
Returns: section
Constructs the section of the poset face1/face2.
```

```
gap> poset:=PosetFromManiplex(PyramidOver(Cube(2)));;
gap> faces:=Faces(poset);;List(faces,x->RankInPoset(x,poset));
[ -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3 ]
gap> IsIsomorphicPoset(Section(faces[15],faces[1],poset),PosetFromManiplex(Simplex(2)));
true
gap> IsIsomorphicPoset(Section(faces[16],faces[1],poset),PosetFromManiplex(Cube(2)));
true
gap> IsIsomorphicPoset(Section(faces[20],faces[2],poset),PosetFromManiplex(Cube(2)));
true
```

12.2.11 Cleaving polytopes

```
▷ Cleave(polytope, k) (operation)
▷ PartiallyCleave(arg1, arg2) (operation)

Returns: cleavedPolytope
```

Given a polytope \mathscr{P} , and an integer k, Cleave(polytope,k) will construct the k^{th} -cleaved polytope of \mathscr{P} . Cleaved polytopes were introduced by Daniel Pellicer [Pel18] (https://doi.org/10.1007/s00493-016-3518-3). Given a polytope \mathscr{P} , and an integer k, PartiallyCleave(polytope,k) will construct the k^{th} -partially cleaved polytope of \mathscr{P} .

12.3 Element Constructors

12.3.1 PosetElementWithOrder (for IsObject,IsFunction)

▷ PosetElementWithOrder(obj, func)

(operation)

Returns: IsFace

Creates a face with obj and ordering function func. Note that by convetiontion func(a,b) should return true when $b \le a$.

12.3.2 PosetElementFromListOfFlags (for IsList,IsPoset,IsInt)

▷ PosetElementFromListOfFlags(list, poset, n)

(operation)

Returns: IsPosetElement

This is used to create a face of rank n from a list of flags of poset.

12.3.3 PosetElementFromAtomList (for IsList)

▷ PosetElementFromAtomList(list)

(operation)

Returns: IsFace

Creates a face with *list* of atoms. If you wish to assign ranks or membership in a poset, you must do this separately.

12.3.4 PosetElementFromIndex (for IsObject)

▷ PosetElementFromIndex(obj)

(operation)

Returns: IsFace

Creates a face with index obj at rank n.

12.3.5 PosetElementWithPartialOrder (for IsObject, IsBinaryRelation)

▷ PosetElementWithPartialOrder(obj, order)

(operation)

Returns: IsFace

Creates a face with index obj and BinaryRelation order on obj. Function does not check to make sure order has obj in its domain.

12.3.6 RanksInPosets (for IsPosetElement)

▷ RanksInPosets(posetelement)

(attribute)

Returns: list

Gives the list of posets posetelement is in, and the corresponding rank (if available) as a list of ordered pairs of the form [poset,rank]. #! Note that this attribute is mutable, so if you modify it you may break things.

12.3.7 AddRanksInPosets (for IsPosetElement,IsPoset,IsInt)

▷ AddRanksInPosets(posetelement, poset, int)

(operation)

Returns: null

Adds an entry in the list of RanksInPosets for posetelement corresponding to poset with assigned rank int.

12.3.8 FlagList (for IsPosetElement)

▷ FlagList(posetelement, {face})

(attribute)

Returns: list

Description of posetelement n as a list of incident flags (when present).

12.3.9 AtomList (for IsPosetElement)

▷ AtomList(posetelement, {face})

(attribute)

Returns: list

Description of posetelement n as a list of atoms (when present).

12.4 Element operations

12.4.1 RankInPoset (for IsPosetElement,IsPoset)

PankInPoset([face, poset])

(operation)

Returns: IsInt

Given an element face and a poset poset to which it belongs, will give you the rank of face in poset.

12.4.2 IsSubface (for IsFace, IsFace, IsPoset)

▷ IsSubface([face1, face2, poset])

(operation)

Returns: true or false

face1 and face2 are IsFace or IsPosetElement. IsSubface will check to see if face2 is a subface of face1 in poset. You may drop the argument poset if the faces only belong to one poset in common. Warning: if the elements are made up of atoms, then IsSubface doesn't need to know what poset you are working with.

12.4.3 IsEqualFaces (for IsFace, IsFace, IsPoset)

▷ IsEqualFaces(arg1, arg2, arg3)

(operation)

Determines whether two faces are equal in a poset. Note that \= tests whether they are the identical object or not.

12.4.4 AreIncidentElements (for IsObject,IsObject)

▷ AreIncidentElements(object1, object2)

(operation)

Returns: true or false

Given two poset elements, will tell you if they are incident.

• Synonym function: AreIncidentFaces.

12.4.5 Meet (for IsFace, IsFace, IsPoset)

```
▷ Meet(face1, face2, poset)
```

(operation)

Returns: meet

Finds (when possible) the meet of two elements in a poset.

12.4.6 Join (for IsFace, IsFace, IsPoset)

```
▷ Join(face1, face2, poset)
```

(operation)

Returns: meet

Finds (when possible) the join of two elements in a poset.

12.5 Working with posets

12.5.1 IsIsomorphicPoset (for IsPoset,IsPoset)

▷ IsIsomorphicPoset(poset1, poset2)

(operation)

Returns: true or false

Determines whether poset1 and poset2 are isomorphic by checking to see if their Hasse diagrams are isomorphic.

```
gap> IsIsomorphicPoset( PosetFromManiplex( PyramidOver( Cube(3) ) ), PosetFromManiplex( PrismOver) false
gap> IsIsomorphicPoset( PosetFromManiplex( PyramidOver( Cube(3) ) ), PosetFromManiplex( PyramidOver) true
```

12.5.2 PosetIsomorphism (for IsPoset,IsPoset)

▷ PosetIsomorphism(poset1, poset2)

(operation)

Returns: map on face indices

When poset1 and poset2 are isomorphic, will give you a map from the faces of poset1 to the faces of poset2.

12.5.3 FlagsAsFlagListFaces (for IsPoset)

⊳ FlagsAsFlagListFaces(poset)

(operation)

Returns: IsList

Given a poset, this will give you a version of the list of flags in terms of the proper faces described in the poset; i.e., this gives a list of flags where each face is described in terms of its (enumerated) list of incident flags. Note that the flag list does not include the minimal face or the maximal face if the poset IsP2.

12.5.4 RankedFaceListOfPoset (for IsPoset)

▷ RankedFaceListOfPoset(IsPosetOfFlags)

(operation)

Returns: list

Gives a list of [face,rank] pairs for all the faces of poset. Assumptions here are that faces are lists of incident flags.

12.5.5 AdjacentFlag (for IsPosetOfFlags,IsList,IsInt)

▷ AdjacentFlag(poset, flag, i)

(operation)

Returns: flag(s)

Given a poset, a flag, and a rank, this function will give you the *i*-adjacent flag. Note that adjacencies are listed from ranks 0 to one less than the dimension. You can replace *flag* with the integer corresponding to that flag. Appending true to the arguments will give the position of the flag instead of its description from FlagsAsFlagListFaces.

12.5.6 AdjacentFlags (for IsPoset,IsList,IsInt)

▷ AdjacentFlags(poset, flagaslistoffaces, adjacencyrank)

(operation)

If your poset isn't P4, there may be multiple adjacent maximal chains at a given rank. This function handles that case. May substitute IsInt for flagaslistoffaces corresponding to position of flag in list of maximal chains.

12.5.7 EqualChains (for IsList,IsList)

▷ EqualChains(flag1, flag2)

(operation)

Determines whether two chains are equal.

12.5.8 ConnectionGeneratorOfPoset (for IsPoset,IsInt)

▷ ConnectionGeneratorOfPoset(poset, i)

(operation)

Returns: A permutation on the flags.

Given a *poset* and an integer *i*, this function will give you the associated permutation for the rank *i*-connection.

12.5.9 ConnectionGroup (for IsPoset)

▷ ConnectionGroup(poset)

(attribute)

Returns: IsPermGroup

Given a poset that is IsPrePolytope, this function will give you the connection group.

12.5.10 AutomorphismGroup (for IsPoset)

▷ AutomorphismGroup(poset)

(attribute)

Given a poset, gives the automorphism group of the poset as an action on the maximal chains.

12.5.11 AutomorphismGroupOnElements (for IsPoset)

(attribute)

Given a poset, gives the automorphism group of the poset as an action on the elements.

12.5.12 FaceListOfPoset (for IsPoset)

▷ FaceListOfPoset(poset)

(operation)

Returns: list

Gives a list of faces collected into lists ordered by increasing rank. Suitable as input for PosetFromFaceListOfFlags. Argument must be IsPosetOfFlags.

12.5.13 RankPosetElements (for IsPoset)

▷ RankPosetElements(poset)

(operation)

Assigns to each face of a poset (when possible) the rank of the element in the poset.

12.5.14 FacesByRankOfPoset (for IsPoset)

▷ FacesByRankOfPoset(poset)

(operation)

Returns: list

Gives lists of faces ordered by rank. Also sets the rank for each of the faces.

12.5.15 HasseDiagramOfPoset (for IsPoset)

▷ HasseDiagramOfPoset(poset)

(operation)

Returns: directed graph

12.5.16 AsPosetOfAtoms (for IsPoset)

▷ AsPosetOfAtoms(poset)

(operation)

Returns: posetFromAtoms

If poset is an IsP1 poset admits a description of its elements in terms of its atoms, this function will construct an isomorphic poset whose faces are described using PosetFromAtomList.

```
gap> poset:=PosetFromManiplex(Cube(2));;
gap> p2:=AsPosetOfAtoms(poset);
A poset on 10 elements using the IsPosetOfIndices representation.
gap> IsIsomorphicPoset(poset,p2);
true
```

12.5.17 Max/min faces

▷ MinFace(poset)

(operation)

▷ MaxFace(arg)

(operation)

Returns: face

Gives the minimal/maximal face of a poset when it IsP1 and IsP2.

Chapter 13

Products of Posets and Digraphs

This uses the work of Gleason and Hubard.

13.1 Construction methods

The products documented in this section were defined by Gleason and Hubard in [GH18] (https://doi.org/10.1016/j.jcta.2018.02.002).

13.1.1 JoinProduct (for IsPoset,IsPoset)

```
▷ JoinProduct(poset1, poset2)
```

(operation)

Returns: poset

Given two posets, this forms the join product. If given two partial orders, returns the join product of the partial orders. If given two maniplexes, returns the join product of the maniplexes.

```
gap> p:=PosetFromManiplex(Cube(2));
A poset
gap> rel:=BinaryRelationOnPoints([[1,2],[2]]);
Binary Relation on 2 points
gap> p1:=PosetFromPartialOrder(rel);
A poset using the IsPosetOfIndices representation
gap> j:=JoinProduct(p,p1);
A poset using the IsPosetOfIndices representation
gap> IsIsomorphicPoset(j,PosetFromManiplex(PyramidOver(Cube(2))));
true
```

13.1.2 CartesianProduct (for IsPoset,IsPoset)

```
▷ CartesianProduct(polytope1, polytope2)
```

(operation)

Returns: polytope

Given two polytopes, forms the cartesian product of the polytopes. Should also work if you give it any two posets. If given two maniplexes, returns the join product of the maniplexes.

```
gap> p1:=PosetFromManiplex(Edge());
A poset
Example
```

```
gap> p2:=PosetFromManiplex(Simplex(2));
A poset
gap> c:=CartesianProduct(p1,p2);
A poset using the IsPosetOfIndices representation
gap> IsIsomorphicPoset(c,PosetFromManiplex(PrismOver(Simplex(2))));
true
```

13.1.3 DirectSumOfPosets (for IsPoset,IsPoset)

 $\quad \triangleright \ \, {\tt DirectSumOfPosets}(polytope1,\ polytope2)$

(operation)

Returns: polytope

Given two polytopes, forms the direct sum of the polytopes.

```
gap> p1:=PosetFromManiplex(Cube(2));;p2:=PosetFromManiplex(Edge());;
gap> ds:=DirectSumOfPosets(p1,p2);
A poset using the IsPosetOfIndices representation.
gap> IsIsomorphicPoset(ds,PosetFromManiplex(CrossPolytope(3)));
true
```

13.1.4 TopologicalProduct (for IsPoset,IsPoset)

▷ TopologicalProduct(polytope1, polytope2)

(operation)

Returns: polytope

Given two polytopes, forms the topological product of the polytopes. If given two maniplexes, returns the join product of the maniplexes.

Here we demonstrate that the topological product (as expected) when taking the product of a triangle with itself gives us the torus $\{4,4\}_{(3,0)}$ with 72 flags.

```
gap> p:=PosetFromManiplex(Pgon(3));
A poset using the IsPosetOfFlags representation.
gap> tp:=TopologicalProduct(p,p);
A poset using the IsPosetOfIndices representation.
gap> s0 := (5,6);;
gap> s1 := (1,2)(3,5)(4,6);;
gap> s2 := (2,3);;
gap> poly := Group([s0,s1,s2]);;
gap> torus:=PosetFromManiplex(ReflexibleManiplex(poly));
A poset using the IsPosetOfFlags representation.
gap> IsIsomorphicPoset(p,tp);
false
gap> IsIsomorphicPoset(torus,tp);
true
```

13.1.5 Antiprism (for IsPoset)

▷ Antiprism(polytope)

(operation)

Returns: poset

Given a *polytope* (actually, should work for any poset), will return the antiprism of the *polytope* (poset). If given two maniplexes, returns the join product of the maniplexes.

```
gap> p:=PosetFromManiplex(Pgon(3));;
gap> a:=Antiprism(p);;
gap> IsIsomorphicPoset(a,PosetFromManiplex(CrossPolytope(3)));
true
gap> p:=PosetFromManiplex(Pgon(4));;a:=Antiprism(p);;
gap> d:=DualPoset(p);;ad:=Antiprism(d);;
gap> IsIsomorphicPoset(a,ad);
true
```

Chapter 14

Comparing maniplexes

14.1 Quotients and covers

Many of the quotient operations let you describe some relations in terms of a string. We assume that Sggis have a generating set of $\{r0, r1, ..., r_{n-1}\}$, so these relation strings will look something like " $(r0 r1 r2)^5$, $r2 = (r0 r1)^3$ ". Notice that we can mix relations like " $r2 = (r0 r1)^3$ " with relators like " $(r0 r1 r2)^5$ "; the latter is treated as the relation " $(r0 r1 r2)^5 = 1$ ". For convenience, we also allow relations to contain the following strings: s1, s2, s3, etc, where si is expanded to r(i-1) ri. For example, s2 becomes s1 r2, s2, s3, etc, where s1 is expanded to s3 (s4), where s1 is expanded to s4) it (the "s4) it (the "s4) it (the "s4) is expanded to s4). We note that these strings are all restricted to have s40, s41 in restriction might be changed eventually, but it will require a rewrite of the method ParseStringCRels that underlies many quotient operations.

14.1.1 IsQuotient (for IsManiplex, IsManiplex)

Returns whether M2 is a quotient of M1.

14.1.2 IsQuotient (for IsSggi, IsSggi)

$$\triangleright$$
 IsQuotient(g , h) (operation)

Returns whether h is a quotient of g. That is, whether there is a homomorphism sending each generator of g to the corresponding generator of h.

14.1.3 IsCover (for IsManiplex, IsManiplex)

Returns whether M2 is a cover of M1.

14.1.4 IsIsomorphicManiplex (for IsManiplex, IsManiplex)

```
▷ IsIsomorphicManiplex(M1, M2)
```

(operation)

Returns whether M1 is isomorphic to M2.

14.1.5 SmallestReflexibleCover (for IsManiplex)

```
▷ SmallestReflexibleCover(M)
```

(attribute)

Returns the smallest regular cover of M, which is the maniplex whose automorphism group is isomorphic to the connection group of M.

14.1.6 QuotientManiplex (for IsReflexibleManiplex, IsString)

```
▷ QuotientManiplex(M, relStr)
```

(operation)

Given a reflexible maniplex M, generates the subgroup S of AutomorphismGroup(M) given by relStr, and returns the quotient maniplex M / S. For example, QuotientManiplex(CubicTiling(2), "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2") returns the toroidal map $\{4,4\}_{\{(5,0),(0,2)\}}$. You can also input this as CubicTiling(2) / "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2".

14.1.7 ReflexibleQuotientManiplex (for IsManiplex, IsList)

```
▷ ReflexibleQuotientManiplex(M, rels)
```

(operation)

Given a reflexible maniplex M, generates the normal closure N of the subgroup S of AutomorphismGroup(M) given by relStr, and returns the quotient maniplex M / N, which will be reflexible. For example, QuotientManiplex(CubicTiling(2), "(r0 r1 r2 r1)^5, (r1 r0 r1 r2)^2") returns the toroidal map $\{4,4\}_{\{1,0\}}$, because the normal closure of the group generated by (r0 r1 r2 r1)^5 and (r1 r0 r1 r2)^2 is the group generated by r0 r1 r2 r1 and r1 r0 r1 r2.

14.1.8 QuotientSggi (for IsGroup, IsList)

```
▷ QuotientSggi(g, rels)
```

(operation)

Returns: the quotient of g by rels, which is either a list of Tietze words or a string of relations that is parsed by ParseStringCRels.

```
gap> g := UniversalSggi(3);
<fp group of size infinity on the generators [ r0, r1, r2 ]>
gap> h := QuotientSggi(g, "(r0 r1)^5, (r1 r2)^3, (r0 r1 r2)^5");
<fp group on the generators [ r0, r1, r2 ]>
gap> Size(h);
60
```

14.1.9 QuotientSggiByNormalSubgroup (for IsGroup,IsGroup)

```
{\tt \triangleright \ QuotientSggiByNormalSubgroup(\it g, \it n)}\\
```

(operation)

Returns: g/n

Given an sggi g and a normal subgroup n in g, this function will give you the quotient in a way that respects the generators (i.e., the generators of the quotient will be the images of the generators of the original group).

```
Example

gap> g:=AutomorphismGroup(Cube(3));

<fp group of size 48 on the generators [ r0, r1, r2 ]>

gap> q:=QuotientSggiByNormalSubgroup(g,Group([(g.1*g.2*g.3)^3]));

Group([ (1,2)(3,7)(4,6)(5,10)(8,14)(9,16)(11,18)(12,20)(13,17)(15,23)(19,22)(21,24), (1,3)(2,5)(4,2)

gap> Maniplex(q)=HemiCube(3);

true
```

14.1.10 QuotientManiplexByAutomorphismSubgroup (for IsManiplex,IsPermGroup)

Given a maniplex m, and a subgroup h of the automorphism group on the flags, this function will give you the maniplex in which the orbits of flags under the action of h are identified. Note that this function doesn't do any prechecks, and may break easily when m/h_isn't_ a maniplex or when m/h is of lower rank (sorry!).

```
gap> m:=Cube(3);
Cube(3)
gap> a:=AutomorphismGroupOnFlags(m);
<permutation group with 3 generators>
gap> h:=Group((a.3*a.1*a.2)^3);
Group([ (1,7)(2,3)(4,18)(5,19)(6,20)(8,11)(9,12)(10,13)(14,32)(15,33)(16,34)(17,35)(21,25)(22,26)
gap> q:=QuotientManiplexByAutomorphismSubgroup(m,h);
3-maniplex with 24 flags
gap> last=HemiCube(3);
true
```

Chapter 15

ramp automatic generated documentation

15.1 ramp automatic generated documentation of methods

15.1.1 UniversalRotationGroup (for IsInt)

▷ UniversalRotationGroup(n)

(operation)

Returns the rotation subgroup of the universal Coxeter Group of rank n.

15.1.2 UniversalRotationGroup (for IsList)

▷ UniversalRotationGroup(sym)

(operation)

Returns the rotation subgroup of the Coxeter Group with Schlafli symbol sym.

15.1.3 RotaryManiplex (for IsGroup)

▷ RotaryManiplex(g)

(operation)

Given a group g (which should be a string rotation group), returns the rotary maniplex with that rotation group, where the privileged generators are those returned by GeneratorsOfGroup(g).

15.1.4 RotaryManiplex (for IsList)

▷ RotaryManiplex(sym)

(operation)

Returns the universal rotary maniplex (in fact, regular polytope) with Schlafli symbol sym.

15.1.5 RotaryManiplex (for IsList, IsList)

▷ RotaryManiplex(symbol, relations)

(operation)

Returns the rotary maniplex with the given Schlafli symbol and with the given relations. The relations are given by a string that refers to the generators s1, s2, etc. For example:

```
gap> M := RotaryManiplex([4,4], "(s2^-1 s1)^6");;
```

If the option set_schlafli is set, then we set the Schlafli symbol to the one given. This may not be the correct Schlafli symbol, since the relations may cause a collapse, so this should only be used if you know that the Schlafli symbol is correct.

15.1.6 EnantiomorphicForm (for IsRotaryManiplex)

▷ EnantiomorphicForm(M)

(operation)

The *enantiomorphic form* of a rotary maniplex is the same maniplex, but where we choose the new base flag to be one of the flags that is adjacent to the original base flag. If M is reflexible, then this choice has no effect. Otherwise, if M is chiral, then the enantiomorphic form gives us a different presentation for the rotation group.

15.1.7 DatabaseString (for IsManiplex)

▷ DatabaseString(M)

(operation)

Returns: String

Given a maniplex M, returns a string representation of M suitable for saving in a database for later retrieval.

15.1.8 ManiplexFromDatabaseString (for IsString)

▷ ManiplexFromDatabaseString(maniplexString)

(operation)

Returns: IsManiplex

Given a string maniplexString, representing a maniplex stored in a database, returns the maniplex that is represented.

15.1.9 Tomotope

▷ Tomotope()

(operation)

Returns: maniplex

Constructs the *Tomotope* from [MPW12]

Chapter 16

Stratified Operations

16.1 Computational tools

I should say something more here.

16.1.1 ChunkGeneratedGroup (for IsList, IsGroup)

```
▷ ChunkGeneratedGroup(list, group)
```

(operation)

Returns: element element newList permGroup Description Given a list of generators compatible with the ChunkMultiply operation, this function will construct a representation of the group as a permutation group. Note that generators are of the form [perm, list], and each list is a list of elements from group.

```
gap> p:=Simplex(2); a:=AutomorphismGroup(p);
<fp group of size 6 on the generators [ r0, r1 ]>
gap> e:=One(a);; AssignGeneratorVariables(a);
gap> s0:=[(3,4),[r0,r0,e,e,r0,r0]];
[ (3,4), [ r0, r0, <identity ...>, <identity ...>, r0, r0 ] ]
gap> s1:=[(2,3)(4,5),[r1,e,e,e,e,r1]];
[(2,3)(4,5), [r1, <identity ...>, <identity ...>, <identity ...>, <identity ...>, r1]]
gap> s2:=[(1,2)(5,6),[e,e,r1,r1,e,e]];
[ (1,2)(5,6), [ <identity ... >, <identity ... >, r1, r1, <identity ... >, <identity |... > ] ]
gap> gens:=[s0,s1,s2];;
gap> ChunkMultiply(s0,s1);
[ (2,3,5,4), [ r0*r1, <identity ...>, r0, r0, <identity ...>, r0*r1 ] ]
gap> ChunkMultiply(s0,s0);
[ (), [ r0^2, r0^2, <identity ...>, <identity ...>, r0^2, r0^2 ] ]
gap> SetReducedMultiplication(r1);
gap> ChunkMultiply(s0,s0);
[(), [<identity ...>, <identity ...>, <identity ...>, <identity ...>,
gap> ChunkGeneratedGroup(gens,a);
<permutation group with 3 generators>
gap> Size(last);
1296
```

I should say something more here.

16.1.2 ChunkMultiply (for IsList,IsList)

▷ ChunkMultiply(element1, element2)

(operation)

Returns: element

Elements are ordered pairs of the form [perm, list], where the elements of list are members of a group. Operation performed is consistent with that in defined in [PW18].

16.1.3 ChunkPower (for IsList,IsInt)

▷ ChunkPower(element, integer)

(operation)

Returns: element

Given an element compatible with the ChunkMultiply operation, this function will compute the product of element with itself integer times.

16.1.4 ChunkGeneratedGroupElements (for IsList, IsGroup)

▷ ChunkGeneratedGroupElements(list, group)

(operation)

Returns: newList

Given a list of generators compatible with the ChunkMultiply operation, this function will construct the associated list of group elements in a form suitable for taking ChunkMultiply and ChunkPower.

16.1.5 ChunkGeneratedGroup (for IsList, IsPermGroup)

▷ ChunkGeneratedGroup(list, group)

(operation)

Returns: permGroup

Given a list of generators compatible with the ChunkMultiply operation, this function will construct a representation of the group as a permutation group. Note that generators are of the form [perm, list], and each list is a list of elements from group.

```
gap> p:=Simplex(2); a:=AutomorphismGroup(p);
Pgon(3)
<fp group of size 6 on the generators [ r0, r1 ]>
gap> e:=One(a);; AssignGeneratorVariables(a);
gap> s0:=[(3,4),[r0,r0,e,e,r0,r0]];
[ (3,4), [ r0, r0, <identity ...>, <identity ...>, r0, r0 ] ]
gap> s1:=[(2,3)(4,5),[r1,e,e,e,e,r1]];
[ (2,3)(4,5), [ r1, <identity ...>, <identity ...>, <identity ...>, <identity ...>, r1 ] ]
gap> s2:=[(1,2)(5,6),[e,e,r1,r1,e,e]];
[ (1,2)(5,6), [ <identity ...>, <identity ...>, r1, r1, <identity ...>, <identity |...> ] ]
gap> gens:=[s0,s1,s2];;
gap> ChunkMultiply(s0,s1);
[(2,3,5,4), [r0*r1, <identity ...>, r0, r0, <identity ...>, r0*r1]]
gap> ChunkMultiply(s0,s0);
[ (), [ r0^2, r0^2, <identity ...>, <identity ...>, r0^2, r0^2 ] ]
gap> SetReducedMultiplication(r1);
gap> ChunkMultiply(s0,s0);
[ (), [ <identity ...>, <identity ...>, <identity ...>, <identity ...>,
gap> ChunkGeneratedGroup(gens,a);
<permutation group with 3 generators>
```

```
gap> Size(last);
1296
```

Chapter 17

Utility functions

17.1 Utility functions

17.1.1 InfoRamp

The InfoClass for the Ramp package.

17.1.2 AbstractPolytope

▷ AbstractPolytope(args)

(function)

Calls Maniplex(args) and marks the output as polytopal.

17.1.3 AbstractRegularPolytope

▷ AbstractRegularPolytope(args)

(function)

Calls ReflexibleManiplex(args) and marks the output as polytopal. Also available as ARP(args).

17.1.4 AbstractRotaryPolytope

▷ AbstractRotaryPolytope(args)

(function)

Calls RotaryManiplex(args) and marks the output as polytopal.

17.1.5 TranslatePerm

▷ TranslatePerm(perm, k)

(function)

Returns a new permutation obtained from perm by adding k to each moved point.

17.1.6 MultPerm

```
▷ MultPerm(perm, multiplier, offset) (function)
```

Multiplies together perm, TranslatePerm(perm, offset), TranslatePerm(perm, offset*2), ..., with multiplier terms, and returns the result.

17.1.7 PermFromRange

```
    PermFromRange(perm1, perm2) (function)
```

Returns: Permutation

This attempts to construct a permutation that we would write as perm1 ... perm2. Probably it is clearest to look at some examples:

```
Example

gap> PermFromRange((1,2), (9,10));
(1,2)(3,4)(5,6)(7,8)(9,10)

gap> PermFromRange((1,3), (13,15));
(1,3)(4,6)(7,9)(10,12)(13,15)

gap> PermFromRange((2,3,4), (8,9,10));
(2,3,4)(5,6,7)(8,9,10)
```

17.1.8 ParseStringCRels

```
\triangleright ParseStringCRels(rels, g) (function)
```

Returns: a list of relators

This helper function is used in several maniplex constructors. Given a string rels that represents relations in an sggi, and an sggi g, returns a list of elements in the free group of g represented by rels. These can then be used to form a quotient of g.

```
gap> g := AutomorphismGroup(CubicTiling(2));;
gap> rels := "(r0 r1 r2 r1)^6";;
gap> newrels := ParseStringCRels(rels, g);
[ (r0*r1*r2*r1)^6 ]
gap> newrels[1] in FreeGroupOfFpGroup(g);
true
gap> g2 := FactorGroupFpGroupByRels(g, newrels);
<fp group on the generators [ r0, r1, r2 ]>
```

For convenience, you may use z1, z2, etc and h1, h2, etc in relations, where zj means r0 (r1 r2)^j (the "j-zigzag" word) and hj means r0 (r1 r2)^j-1 r1 (the "j-hole" word).

17.1.9 ParseRotGpRels

```
▷ ParseRotGpRels(rels, g) (function)
```

This helper function is used in several maniplex constructors. It is analogous to ParseStringCRels, but for rotation groups instead.

17.1.10 AddOrAppend

Given a list L and an object x, this calls Append(L, x) if x is a list; otherwise it calls Add(L, x). Note that since strings are internally represented as lists, AddOrAppend(L, "foo") will append the characters 'f', 'o', 'o'.

```
gap> L := [1, 2, 3];;
gap> AddOrAppend(L, 4);
gap> L;
[1, 2, 3, 4]
gap> AddOrAppend(L, [5, 6]);
gap> L;
[1, 2, 3, 4, 5, 6];
```

17.1.11 WrappedPosetOperation

▷ WrappedPosetOperation(posetOp)

(function)

Given a poset operation, creates a bare-bones maniplex operation that delegates to the poset operation.

```
gap> myjoin := WrappedPosetOperation(JoinProduct);
function( arg... ) ... end
gap> M := myjoin(Pgon(4), Vertex());
3-maniplex
gap> M = Pyramid(4);
true
```

Usually, you will want to eventually create a fuller-featured wrapper of the poset operation – one that can infer more information from its arguments. But this method is a good way to quickly test whether a poset operation works on maniplexes the way one expects.

References

- [CM17] Gabe Cunningham and Mark Mixer. Internal and external duality in abstract polytopes. *Contrib. Discrete Math.*, 12(2):187–214, 2017. 32, 33, 41
- [GH18] Ian Gleason and Isabel Hubard. Products of abstract polytopes. *J. Combin. Theory Ser. A*, 157:287–320, 2018. 67
- [HW10] Michael I. Hartley and Gordon I. Williams. Representing the sporadic Archimedean polyhedra as abstract polytopes. *Discrete Math.*, 310(12):1835–1844, 2010. 43
- [MPW12] Barry Monson, Daniel Pellicer, and Gordon I. Williams. The Tomotope. *Ars Math. Contemp.*, 5:355–370, June 2012. 74
- [MPW14] Barry Monson, Daniel Pellicer, and Gordon I. Williams. Mixing and monodromy of abstract polytopes. *Trans. of the AMS*, 366:2651–2681, 2014. 58
- [MS02] Peter McMullen and Egon Schulte. *Abstract Regular Polytopes*. Cambridge University Press, 2002. 53, 58
- [Pel18] Daniel Pellicer. Cleaved abstract polytopes. Combinatorica, 38(3):709–737, 2018. 61
- [PW18] Daniel Pellicer and Gordon Ian Williams. Pyramids over regular 3-tori. *SIAM J. Discrete Math (SIDMA)*, 32(1):249–265, January 2018. 76
- [Wil12] Steve Wilson. Maniplexes: Part 1: maps, polytopes, symmetry and operators. *Symmetry*, 4(2):265–275, 2012. 58

Index

120Cell, 40	${ t Automorphism Group On Edges}$
24Cell, 40	for IsManiplex, 23
24CellToroid	AutomorphismGroupOnElements
for IsInt,IsInt, 43	for IsPoset, 65
3343Toroid	AutomorphismGroupOnFacets
for IsInt,IsInt, 43	for IsManiplex, 23
600Cell, 41	AutomorphismGroupOnFlags
	for IsManiplex, 47
AbstractPolytope, 78	AutomorphismGroupOnIFaces
AbstractRegularPolytope, 78	for IsManiplex, IsInt, 23
AbstractRotaryPolytope, 78	AutomorphismGroupOnVertices
AddOrAppend, 80	for IsManiplex, 23
AddRanksInPosets	AutomorphismGroupPermGroup
for IsPosetElement,IsPoset,IsInt, 62	for IsManiplex, 47
AdjacentFlag	-
for IsPosetOfFlags,IsList,IsInt, 65	Bk21
AdjacentFlags	for IsInt,IsInt, 29
for IsPoset,IsList,IsInt, 65	Bk21Star
AdjacentVertices	for IsInt,IsInt, 29
for IsEdgeLabeledGraph, IsObject, 11	BrucknerSphere, 41
Amalgamate	g
for IsManiplex, IsManiplex, 32	CartesianProduct
Antiprism	for IsManiplex, IsManiplex, 34
for IsInt, 34	for IsPoset, IsPoset, 67
for IsManiplex, 34	ChiralityGroup
for IsPoset, 68	for IsRotaryManiplex, 48
AreIncidentElements	ChunkGeneratedGroup
for IsObject, IsObject, 63	for IsList, IsGroup, 75
AsPosetOfAtoms	for IsList, IsPermGroup, 76
for IsPoset, 66	ChunkGeneratedGroupElements
AtomList	for IsList, IsGroup, 76
for IsPosetElement, 63	ChunkMultiply
AutomorphismGroup	for IsList,IsList, 76
for IsManiplex, 47	ChunkPower
for IsPoset, 65	for IsList,IsInt, 76
AutomorphismGroupFpGroup	Cleave
for IsManiplex, 47	for IsPoset,IsInt, 61
AutomorphismGroupOnChains	Comix
for IsManiplex, IsCollection, 23	for IsFpGroup, IsFpGroup, 50

for IsReflexibleManiplex, IsReflexibleMani-	Edge, 39
plex, 50	EdgeLabeledGraphFromEdges
ConnectedComponents	for IsList, IsList, IsList, 9
for IsEdgeLabeledGraph, IsList, 10	EdgeLabelPreservingAutomorphismGroup
ConnectionGeneratorOfPoset	for IsEdgeLabeledGraph, 10
for IsPoset,IsInt, 65	ElementsList
ConnectionGroup	for IsPoset, 54
for IsManiplex, 47	EnantiomorphicForm
for IsPoset, 65	for IsRotaryManiplex, 74
CoSkeleton	Epsilonk
for IsManiplex, 8	for IsInt, 28
CPRGraphFromGroups	EqualChains
for IsGroup, IsGroup, 11	for IsList, IsList, 65
CrossPolytope	EulerCharacteristic
for IsInt, 39	for IsManiplex, 20
CtoL	EvenConnectionGroup
for IsInt,IsInt,IsInt, 50	for IsManiplex, 48
Cube	ExtraRelators
for IsInt, 39	for IsReflexibleManiplex, 48
CubicTiling	ExtraRotRelators
for IsInt, 40	for IsRotaryManiplex, 48
CubicToroid	
for IsInt,IsInt, 42	FaceListOfPoset
for IsInt,IsList, 42	for IsPoset, 66
Cuboctahedron, 43	FacesByRankOfPoset
	for IsPoset, 66
DatabaseString	Facet
for IsManiplex, 74	for IsManiplex, 18
DegeneratePolyhedra, 36	for IsManiplex, IsInt, 18
Deltak	Facets
for IsInt, 28	for IsManiplex, 18
DerivedGraph	FlagGraph
for IsList,IsList,IsList, 12	for IsGroup, 10
DirectDerivates	FlagGraphWithLabels
for IsManiplex, 33	for IsGroup, 6
DirectedGraphFromListOfEdges	FlagList
for IsList,IsList, 5	for IsPosetElement, 63
DirectSumOfManiplexes	FlagMix
for IsManiplex, IsManiplex, 35	for IsManiplex, IsManiplex, 50
DirectSumOfPosets	FlagOrbitRepresentatives
for IsPoset, IsPoset, 68	for IsManiplex, 25
Dodecahedron, 40	FlagOrbits
Dual Continue 22	for IsManiplex, 26
for IsManiplex, 32	FlagOrbitsStabilizer
DualPoset 61	for IsManiplex, 26
for IsPoset, 61	FlagsAsFlagListFaces
	for IsPoset, 64

FlatExtension	for IsPoset, 55
for IsManiplex, IsInt, 31	IsAllMeets
FlatOrientablyRegularPolyhedraOfType	for IsPoset, 55
for IsList, 41	IsAtomic
FlatOrientablyRegularPolyhedron	for IsPoset, 54
for IsInt, IsInt, IsInt, 41	IsChainTransitive
FlatRegularPolyhedra, 36	for IsManiplex, IsCollection, 24
Fvector	IsChiral
for IsManiplex, 18	for IsManiplex, 26
1 /	IsCover
Genus	for IsManiplex, IsManiplex, 70
for IsManiplex, 20	IsDegenerate
GraphFromListOfEdges	for IsManiplex, 20
for IsList,IsList, 5	IsEdgeTransitive
GreatRhombicosidodecahedron, 45	for IsManiplex, 25
GreatRhombicuboctahedron, 46	IsEqualFaces
	for IsFace, IsFace, IsPoset, 63
Hasse	IsEquivelar
for IsManiplex, 8	for IsManiplex, 20
HasseDiagramOfPoset	IsExternallySelfDual
for IsPoset, 66	for IsReflexibleManiplex, 33
Hemi120Cell, 41	IsFacetBipartite
Hemi24Cell, 40	for IsManiplex, 51
Hemi600Cell, 41	IsFacetFaithful
HemiCrossPolytope	for IsReflexibleManiplex, 27
for IsInt, 40	IsFacetTransitive
HemiCube	for IsManiplex, 25
for IsInt, 39	IsFlagConnected
HemiDodecahedron, 40	for IsPoset, 56
HemiIcosahedron, 40	IsFlaggable
Hole	for IsPoset, 54
for IsManiplex,IsInt, 30	IsFlat
HoleLength	
for IsManiplex, IsInt, 22	for IsManiplex, 19
HoleVector	for IsManiplex, IsInt, IsInt, 19
for IsManiplex, 22	IsFullyTransitive
	for IsManiplex, 25
Icosadodecahedron, 44	IsGgi
Icosahedron, 40	for IsGroup, 15
InfoRamp, 78	IsIFaceTransitive
InternallySelfDualPolyhedron1	for IsManiplex, IsInt, 24
for IsInt, 41	IsInternallySelfDual
InternallySelfDualPolyhedron2	for IsReflexibleManiplex, 32
for IsInt, IsInt, 41	IsIOrientable
IOrientableCover	for IsManiplex, IsList, 51
for IsManiplex, IsList, 52	IsIsomorphicManiplex
IsAllJoins	for IsManiplex, IsManiplex, 71

IsIsomorphicPoset	IsStringy
for IsPoset, IsPoset, 64	for IsGroup, 15
IsLattice	IsSubface
for IsPoset, 55	for IsFace,IsFace,IsPoset, 63
IsLocallySpherical	IsTight
for IsManiplex, 21	for IsManiplex, 20
IsLocallyToroidal	IsToroidal
for IsManiplex, 21	for IsManiplex, 21
IsManiplexable	IsVertexBipartite
for IsPermGroup, 48	for IsManiplex, 51
IsOrientable	IsVertexFaithful
	for IsReflexibleManiplex, 26
for IsManiplex, 51 IsP1	IsVertexTransitive
for IsPoset, 55	for IsManiplex, 25
IsP2	Join
for IsPoset, 56	for IsFace, IsFace, IsPoset, 64
IsP3	JoinProduct
for IsPoset, 56	for IsManiplex, IsManiplex, 34
IsP4	for IsPoset, IsPoset, 67
for IsPoset, 57	101 101 0500,151 0500, 07
IsPolytopal	${\tt LabeledAdjacentVertices}$
for IsManiplex, 14	for IsEdgeLabeledGraph, IsObject, 11
IsPolytope	LabeledDarts
for IsPoset, 57	for IsEdgeLabeledGraph, 12
IsPrePolytope	LabeledSemiEdges
for IsPoset, 57	for IsEdgeLabeledGraph, 12
IsQuotient	LayerGraph
for IsManiplex, IsManiplex, 70	for IsGroup, IsInt, IsInt, 7
for IsSggi, IsSggi, 70	License, 2
IsReflexible	ListIsP1Poset
for IsManiplex, 26	for IsList, 55
IsRotary	
for IsManiplex, 26	Maniplex
IsSelfDual	for IsFunction, IsList, 14
for IsManiplex, 32	for IsPermGroup, 13
for IsPoset, 57	for IsPoset, 14
IsSelfPetrial	for IsReflexibleManiplex, IsGroup, 14
for IsManiplex, 33	${\tt ManiplexFromDatabaseString}$
IsSggi	for IsString, 74
for IsGroup, 15	MaxFace
IsSpherical	for IsPoset, 66
for IsManiplex, 20	MaximalChains
IsStringC	for IsPoset, 53
for IsGroup, 15	${\tt MaxVertexFaithfulQuotient}$
IsStringCPlus	for IsReflexibleManiplex, 27
for IsGroup, 16	Medial

Meet for IsFace, IsPace, IsPoset, 64 MinFace for IsPosct, 66 Mix for IsPGroup, IsFpGroup, 49 for IsReflexibleManiplex, 49 for IsReflexibleManiplex, 19 for IsInt, 28 Mkrime for IsInt, 28 Mkrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, 14 NumberOfEages for IsManiplex, 24 NumberOfFacetDribts for IsManiplex, 24 NumberOfFacetDribts for IsManiplex, 25 NumberOfFacetDribts for IsManiplex, 26 NumberOfFacetDribts for IsManiplex, 27 NumberOfFacetDribts for IsManiplex, 28 NumberOfFacetDribts for IsManiplex, 29 NumberOfFacetDribts for IsManiplex, 26 NumberOfFacetDribts for IsManiplex, 27 NumberOfFacetDribts for IsManiplex, 28 NumberOfFacetDribts for IsManiplex, 29 for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PairCompareNetomsList for IsList, 50 ParseStringCRels, 79 ParselllyCleave for IsPoset,IsInt, 61 PartiallyCleave for IsPoset,IsInt, 62 PosetElementFromList for IsInt, 39 PosetFromAnder, 39 PosetFromElements for IsList, 59 PosetF	for IsManiplex, 32	for IsList,IsList, 60
MinFace for IsPoset, 66 Mix for IsPpGroup, IsFpGroup, 49 for IsManiplex, IsManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeorbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 24 NumberOfFacets for IsManiplex, 25 NumberOfIfaceorbits for IsManiplex, 17 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 17 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 24 NumberOfIfaces for IsManiplex, 18Int, 17 NumberOfIfaces for IsManiplex, 24 NumberOfIfaces for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsInt, 39 PosetElementFromAtomList for IsInt, 39 PosetElementFromListOfFlags for IsList, 180 PosetElementFromListOfFlags for IsList, 180 PosetElementWithOrder for IsObject, 18Int, 62 PosetElementWithOrder for IsDest, 18Int, 17 PosetFromAtomicList for IsList, 159 PosetFromAtomicList for IsList, 159 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, 180 PosetFromBaniplex for IsManiplex for	Meet	PairCompareFlagsList
for IsPoset, 66 Mix for IsFpGroup, IsFpGroup, 49 for IsManiplex, IsManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfFacetOrbits for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 17 NumberOfFacetS for IsManiplex, 17 NumberOfFaceS NumberOfFaceOrbits for IsManiplex, 15 NumberOfFaceOrbits for IsManiplex, 16 NumberOfFaceS for IsManiplex, 17 NumberOfFaceS for IsManiplex, 18Int, 17 NumberOfFaceS for IsManiplex, 18Int, 17 NumberOfVertexOrbits for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Final Drder for IsInt, 29 PermFromRange, 79 PermIs on IsManiplex, 24 Pos	for IsFace, IsFace, IsPoset, 64	for IsList,IsList, 60
Mix for IsFpGroup, IsFpGroup, 49 for IsManiplex, IsManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacets for IsManiplex, 24 NumberOfFacets for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 15 NumberOfFacets for IsManiplex, 15 NumberOfFacets for IsManiplex, 16 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 18Int, 17 NumberOfFacets for IsManiplex, 18Int, 24 NumberOfFacets for IsManiplex, 19 NumberOfFacets for IsManiplex, 19 NumberOfFacets for IsManiplex, 19 NumberOfFacets for IsManiplex, 25 NumberOfFacets for IsManiplex, 25 NumberOfFacets for IsManiplex, 25 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 25 NumberOfFacets for IsManiplex, 26 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromEnements for IsList, 58 PosetFromEnements for IsList, 58 PosetFromManiplex for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, IsPoset, 64 PRGraph for IsPoset, 15 PartialOrder for IsPoset, 15 PartialOrder for IsInt, 39 Petrial for IsManiplex, 33 PetrialOrder for IsInt, 39 PosetElementFromIndex for IsInt, 39 PosetElementFromIndex for IsInt, 39 PosetElementFromIndex for IsInt, 39 PosetFromEnements for IsList, 58 PosetFromManiplex for IsInt, 39 PosetFromManiplex for IsInt, 39 PosetFromManiplex for IsInt, 30 Po	MinFace	ParseRotGpRels, 79
for IsPpGroup, IsPpGroup, 49 for IsManiplex, IsManiplex, 49 for IsReflexibleManiplex, IsReflexibleManiplex, IsReflexibleManipplex, 49 for IsReflexibleManiplex, IsReflexibleManipplex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlaceOrbits for IsManiplex, 25 NumberOfFlaceOrbits for IsManiplex, 25 NumberOfFlaceOrbits for IsManiplex, 17 NumberOfFlaceOrbits for IsManiplex, 18Int, 17 NumberOfFlaceOrbits for IsManiplex, 18Int, 17 NumberOfFlaceOrbits for IsManiplex, 17 NumberOfFlagorbits for IsManiplex, 19 NumberOfFlagorbits for IsManiplex for Is	for IsPoset, 66	ParseStringCRels, 79
for IsManiplex, IsManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacetS for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 26 NumberOfFlagOrbits for IsManiplex, 27 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlaces for IsManiplex, 17 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlagos for IsManiplex, 18Int, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PermFromRange, 79 Petrial for IsPoset, 55 PermFromRange, 79 Petrial for IsManiplex, 33 Petrielength for IsManiplex, 22 PosetElementFromAtomList for IsList, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromListOfFlags for IsList, IsPoset, IsBinaryRelation, 62 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromManiplex for IsList, 59 PosetFromManiplex for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromManiplex for IsList, 59 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsInt, 34	Mix	PartiallyCleave
for IsManiplex, IsManiplex, 49 for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, IsReflexibleManiplex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacetS for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 26 NumberOfFlagOrbits for IsManiplex, 27 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlaces for IsManiplex, 17 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlagos for IsManiplex, 18Int, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PermFromRange, 79 Petrial for IsPoset, 55 PermFromRange, 79 Petrial for IsManiplex, 33 Petrielength for IsManiplex, 22 PosetElementFromAtomList for IsList, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromListOfFlags for IsList, IsPoset, IsBinaryRelation, 62 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromManiplex for IsList, 59 PosetFromManiplex for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromManiplex for IsList, 59 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsInt, 34	for IsFpGroup, IsFpGroup, 49	for IsPoset,IsInt, 61
for IsPermGroup, IsPermGroup, 49 for IsReflexibleManiplex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 MultPerm, 79 MumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacets for IsManiplex, 24 NumberOfFlagOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIfFaceOrbits for IsManiplex, 25 NumberOfIfFaces for IsManiplex, 17 NumberOfFices for IsManiplex, 18Int, 24 NumberOfFices for IsManiplex, 17 NumberOfFices for IsManiplex, 17 NumberOfFices for IsManiplex, 17 NumberOfFices for IsManiplex, 17 NumberOfFices for IsManiplex, 24 NumberOfFices for IsManiplex, 24 NumberOfFices for IsManiplex, 25 NumberOfFices for IsManiplex, 26 NumberOfFices for IsManiplex, 27 NumberOfFices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsInt, 39 PosetElementFromList for IsInt, 39 PosetElementFromIndex for IsIot, 62 PosetElementFromIndex for IsIot, 62 PosetElementWithOrder for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, 58 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsManiplex, 59 PosetFromSuccessorList for IsList, 60 PosetIsmorphism for IsPoset, 18 PosetIsmorphism for IsPoset, 55 PosetIsmorphism for IsPoset, 18 PosetIsmorphism for IsPoset, 55 PosetIsmorphism for		PartialOrder
plex, 49 Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 MumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacetS for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceorbits for IsManiplex, 18Int, 24 NumberOfIFaceorbits for IsManiplex, IsInt, 24 NumberOfFlaces for IsManiplex, IsInt, 24 NumberOfFlaces for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Petrial for IsManiplex, 33 PetrieLength for IsManiplex, 22 Pogon for IsInt, 39 PosetElementFromAtomList for IsInt, 39 PosetElementFromAtomList for IsInt, 40 PosetElementFromIndex for IsObject, 62 PosetElementFromListOfFlags for IsObject, IsPoset, IsInt, 62 PosetElementWithOrder for IsObject, IsBinaryRelation, 62 PosetFromMatmicList for IsList, 59 PosetFromConnectionGroup for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 OrientableCover for IsManiplex, 51 Frism for IsInt, 34		for IsPoset, 55
Mk for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 MultPerm, 79 MumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 17 NumberOfIFaceS for IsManiplex, 18Int, 24 NumberOfFlagOs for IsManiplex, 17 NumberOfFlagOs for IsManiplex, 17 NumberOfFlagOs for IsManiplex, 18Int, 24 NumberOfFlagOs for IsManiplex, 17 NumberOfFlagOs for IsManiplex, 17 NumberOfFlagOs for IsManiplex, 17 NumberOfFlagOs for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PetrieLength for IsManiplex, 22 Pgon for IsInt, 39 PosetElementFromAtomList for IsList, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromIndex for IsObject, IsInt, 62 PosetElementWithPartialOrder for IsObject, IsBinaryRelation, 62 PosetFromElements for IsIst, 59 PosetFromManiplex for IsIst, 58 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsIst, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsMoniplex, 51 Frism for IsInt, 39 PosetElementFromAtomList for IsInt, 39 PosetElementFromIndex for IsIst, 62 PosetElementFromIndex for IsIst, 62 PosetElementFromIndex for IsObject, 62 PosetFromElements for IsIsts, 5	for IsReflexibleManiplex, IsReflexibleMani-	PermFromRange, 79
for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetDrbits for IsManiplex, 24 NumberOfFlagOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaces for IsManiplex, 17 NumberOfFIaces for IsManiplex, 18Int, 24 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlagOrbits for IsManiplex, 18Int, 17 NumberOfFraces for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PestrieLength for IsInt, 39 PosetElementFromList for IsList, 62 PosetElementFromListOfFlags for IsObject, IsBinaryRelation, 62 PosetFlementWithPartialOrder for IsObject, IsBinaryRelation, 62 PosetFromAcomicList for IsInt, 39 PosetFromConnectionGroup for IsInt, 17 PosetFromFaceListOfFlags for IsList, 59 PosetFromFaceListOfFlags for IsList, 58 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, 54 Prism for IsPoset, 54 Prism for IsInt, 34	plex, 49	Petrial
for IsInt, 28 MkPrime for IsInt, 29 MultPerm, 79 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetDrbits for IsManiplex, 24 NumberOfFlagOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaces for IsManiplex, 17 NumberOfFIaces for IsManiplex, 18Int, 24 NumberOfFlaces for IsManiplex, 18Int, 17 NumberOfFlagOrbits for IsManiplex, 18Int, 17 NumberOfFraces for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PestrieLength for IsInt, 39 PosetElementFromList for IsList, 62 PosetElementFromListOfFlags for IsObject, IsBinaryRelation, 62 PosetFlementWithPartialOrder for IsObject, IsBinaryRelation, 62 PosetFromAcomicList for IsInt, 39 PosetFromConnectionGroup for IsInt, 17 PosetFromFaceListOfFlags for IsList, 59 PosetFromFaceListOfFlags for IsList, 58 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, 54 Prism for IsPoset, 54 Prism for IsInt, 34	Mk	for IsManiplex, 33
MkPrime for IsInt, 29 for IsInt, 29 MultPerm, 79 for IsInt, 39 PosetElementFromAtomList for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 17 NumberOfFacetS for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFagOrbits for IsManiplex, 17 NumberOfFagOrbits for IsManiplex, 25 NumberOfIfFacets for IsManiplex, 15 NumberOfIfFaces for IsManiplex, 15 NumberOfIfFaces for IsManiplex, 15 NumberOfIfFaces for IsManiplex, 17 NumberOfFaces for IsManiplex, 17 NumberOfIfFaces for IsManiplex, 18Int, 24 NumberOfIfFaces for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Pagon for IsInt, 39 PosetElementFromAtomList for IsList, IsPoset, IsInt, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromListOfFlags for IsList, IsPonction, 62 PosetFromAtomicList for IsObject, IsBinaryRelation, 62 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsPunction, 60 PosetFromPartialOrder for IsManiplex, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 PRGraph for IsInt, 34	for IsInt, 28	_
for IsInt, 29 MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetUrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 18Int, 24 NumberOfFacets for IsManiplex, 18Int, 24 NumberOfFaces for IsManiplex, IsInt, 24 NumberOfFaces for IsManiplex, IsInt, 24 NumberOfFaces for IsManiplex, IsInt, 24 NumberOfFaces for IsManiplex, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Pegon for IsInt, 39 PosetElementFromAtomList for IsList, IsPoset, IsInt, 62 PosetElementFromListOfFlags for IsList, IsPunction, 62 PosetFromAtomicList for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermElements for IsList, IsPunction, 60 PosetFromFaceListOfFlags for IsList, IsPunction, 60 PosetFromPartialOrder for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromPartialOrder for IsBinaryRelation, 62 PosetFromPartialOrder for IsBinaryRelation, 62 PosetFromPartialOrder for IsBinaryRelation, 62 PosetFromEccessorList for IsIsit, 58 PosetFromPartialOrder for IsBinaryRelation, 62 PosetFromPartialOrder for IsBinaryRelation,	MkPrime	_
MultPerm, 79 NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetorbits for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIfaceOrbits for IsManiplex, 15Int, 24 NumberOfIfaceS for IsManiplex, IsInt, 24 NumberOfRidges for IsManiplex, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51	for IsInt, 29	-
NumberOfChainOrbits for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 18Int, 24 NumberOfIFaces for IsManiplex, IsInt, 24 NumberOfFraces for IsManiplex, IsInt, 17 NumberOfFridges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Topo To IsManiplex, 51 To IsManiplex, 51 To IsIist, 62 PosetElementFromIndex for IsList, 62 PosetElementFromListOfFlags for IsList, IsPunction, 62 PosetElementWithOrder for IsObject, 62 PosetElementFromIndex for IsList, 59 PosetFlementFromListOfFlags for IsList, 59 PosetFromAnomicList for IsObject, 62 PosetElementFromIndex for IsObject, 62 PosetElementFromIndex for IsObject, 62 PosetElementWithOrder for IsObject, 62 PosetFlomManion, 62 PosetFromConnectionGroup for IsPeromConnectionGroup for IsPeromCon	MultPerm, 79	_
for IsManiplex, IsCollection, 24 NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetS for IsManiplex, 24 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceorbits for IsManiplex, 25 NumberOfIFaceorbits for IsManiplex, 25 NumberOfIFaceorbits for IsManiplex, 17 NumberOfIFaces for IsManiplex, 25 NumberOfIFaces for IsManiplex, 17 NumberOfIFaces for IsManiplex, 17 NumberOfIFaces for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 Ior IsList, 62 PosetElementFromListOfFlags for IsList, 15Poset, 15Int, 62 PosetElementWithDrder for IsObject, IsPunction, 62 PosetElementWithDrder for IsObject, IsPunction, 62 PosetFlementWithPartialOrder for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, 159 PosetFromElements for IsList, 159 PosetFromElements for IsList, 159 PosetFromElements for IsList, 150 PosetFromManiplex for IsList, 150 PosetFlementFromListOffFlags for IsList, 150 PosetElementWithOrder for IsObject, IsBinaryRelation, 62 PosetFromEctionGroup for IsPermGroup, 58 PosetFromElements for IsList, 150 PosetFromElements for IsList, 150 PosetFromElements for IsPermGroup, 58 PosetFromElements for IsPermGroup, 58 PosetFromElements for IsList, 150 PosetFromElements for IsList,		PosetElementFromAtomList
NumberOfEdgeOrbits for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacets for IsManiplex, 24 NumberOfFacets for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 25 NumberOfIFaces for IsManiplex, 25 NumberOfIFaces for IsManiplex, 25 NumberOfIFaces for IsManiplex, 17 NumberOfFridges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 27 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetElementWithOrder for IsList, 162 PosetElementWithOrder for IsObject, IsPunction, 62 PosetElementWithOrder for IsObject, IsFunction, 62 PosetElementWithOrder for IsObject, IsPunction, 62 PosetElementWithOrder for IsList, 59 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsPunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetIsmentWithOrder for IsManiplex, 62 PosetElementWithOrder for IsObject, IsBinaryRelation, 62 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, 59 PosetFromElements for IsList, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 Prism for IsInt, 34		for IsList, 62
for IsManiplex, 24 NumberOfEdges for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 18Int, 24 NumberOfIFaceS for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 NomberOfIsInt	•	PosetElementFromIndex
NumberOffEdges for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacetS for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOffEdgorbits for IsManiplex, 17 NumberOffEdgorbits for IsManiplex, 25 NumberOffFaceOrbits for IsManiplex, 25 NumberOffFaceOrbits for IsManiplex, 18Int, 24 NumberOffFaces for IsManiplex, IsInt, 17 NumberOffEdges for IsManiplex, 17 NumberOffVertexOrbits for IsManiplex, 24 NumberOffVertices for IsManiplex, 24 NumberOffVertices for IsManiplex, 24 NumberOffVertices for IsManiplex, 27 NumberOffVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetElementFromListOfFlags for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 OrientableCover for IsManiplex, 51 Prism for IsInt, 34		for IsObject, 62
NumberOffEdges for IsManiplex, 17 NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, 18Int, 24 NumberOfIFaceS for IsManiplex, IsInt, 24 NumberOfIFaceS for IsManiplex, IsInt, 17 NumberOfIFaceS for IsManiplex, IsInt, 17 NumberOfIRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 27 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsInt, 34 PosetFlementWithOrder for IsObject, IsInt, 62 PosetElementWithOrder for IsObject, IsPoset, IsInt, 62 PosetFromAtomicList for IsDetFromConnectionGroup for IsInt, 59 PosetFromElements for IsList, 58 PosetFromElements for IsList, 58 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromSuccessorList for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, 54 OrientableCover for IsPoset, 54 OrientableCover for IsManiplex, 51 Frism for IsInt, 34	-	-
NumberOfFacetOrbits for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsInt, 34	_	G
for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromPartialOrder for IsPoset, 54 OrientableCover for IsManiplex, 39 PosetIsomorphism for IsPoset, 64 PRGraph OrientableCover for IsManiplex, 51 Prism for IsInt, 34	•	PosetElementWithOrder
for IsManiplex, 24 NumberOfFacets for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetElementWithPartialOrder for IsObject, IsBinaryRelation, 62 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, 59 PosetFromElements for IsPermGroup, 58 PosetFromElements for IsPermGroup, 58 PosetFromElements for IsPermGroup, 58 PosetFromElements for IsList, 59 PosetFromElements for IsList, 60 PosetFromElements for IsList, 60 PosetFromElements for IsList, 60 PosetFromElements for IsList, 59 PosetFromElements for IsList, 60 PosetFromElements for IsList, 59 PosetFromElements for IsList, 50 PosetFromElements for IsList, 50 PosetFromElements for IsList, 50 PosetFromElements		for IsObject, IsFunction, 62
for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 FosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, 54 Prism for IsPoset, 19 Prism for IsGroup, 11 Prism for IsInt, 34		
for IsManiplex, 17 NumberOfFlagOrbits for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromAtomicList for IsList, 59 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList,IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 PRGraph for IsGroup, 11 Prism for IsInt, 34		for IsObject, IsBinaryRelation, 62
for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsPoset, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	-	
for IsManiplex, 25 NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromConnectionGroup for IsPermGroup, 58 PosetFromElements for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsPoset, 54 OrientableCover for IsManiplex, 51 Frism for IsInt, 34	_	for IsList, 59
NumberOfIFaceOrbits for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsManiplex, 51 for IsPosetFromElements for IsList, IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph OrientableCover for IsManiplex, 51 Frism for IsInt, 34	•	•
for IsManiplex, IsInt, 24 NumberOfIFaces for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, 54 OrientableCover for IsManiplex, 51 Prism for IsInt, 34		<u>-</u>
for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsManiplex, 51 For IsList,IsFunction, 60 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset,IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	for IsManiplex, IsInt, 24	•
for IsManiplex, IsInt, 17 NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromFaceListOfFlags for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34		for IsList, IsFunction, 60
NumberOfRidges for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsList, 58 PosetFromManiplex for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	-	
for IsManiplex, 17 NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetFromManiplex for IsManiplex, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	_	_
NumberOfVertexOrbits for IsManiplex, 24 NumberOfVertices for IsManiplex, 17 Opp for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 59 PosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset,IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	•	•
NumberOfVertices for IsBinaryRelation, 59 for IsManiplex, 17 Opp for IsManiplex, 29 for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 FosetFromPartialOrder for IsBinaryRelation, 59 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset,IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34		-
for IsManiplex, 17 Opp for IsManiplex, 29 for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsManiplex, 51 For IsManiplex, 51 For IsBinaryRelation, 39 PosetFromSuccessorList for IsList, 60 PosetIsomorphism for IsPoset,IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	for IsManiplex, 24	
for IsManiplex, 17 Opp for IsList, 60 for IsManiplex, 29 OrderingFunction for IsPoset, IsPoset, 64 for IsPoset, 54 OrientableCover for IsManiplex, 51 For IsManiplex, 51 For IsInt, 34	NumberOfVertices	for IsBinaryRelation, 59
Opp for IsList, 60 for IsManiplex, 29 PosetIsomorphism OrderingFunction for IsPoset, IsPoset, 64 for IsPoset, 54 PRGraph OrientableCover for IsGroup, 11 for IsManiplex, 51 Prism for IsInt, 34	for IsManiplex, 17	•
for IsManiplex, 29 OrderingFunction for IsPoset, 54 OrientableCover for IsManiplex, 51 PosetIsomorphism for IsPoset, IsPoset, 64 PRGraph for IsGroup, 11 Prism for IsInt, 34	Onn	
OrderingFunction for IsPoset,IsPoset, 64 for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsManiplex, 51 for IsInt, 34		•
for IsPoset, 54 OrientableCover for IsManiplex, 51 for IsManiplex, 51 PRGraph for IsGroup, 11 Prism for IsInt, 34	-	-
OrientableCover for IsGroup, 11 for IsManiplex, 51 for IsInt, 34	-	
for IsManiplex, 51 Prism for IsInt, 34	•	-
for IsInt, 34		_
	101 ISManipiex, 31	
1 all compared on compute o	PairCompareAtomsList	<i>,</i> -

for IsManiplex, 34	Section
Pseudorhombicuboctahedron, 44	for IsFace, IsFace, IsPoset, 61
PseudoSchlafliSymbol	for IsManiplex, IsInt, IsInt, 18
for IsManiplex, 19	for IsManiplex, IsInt, IsInt, IsInt, 18
Pyramid	Sections
for IsInt, 34	for IsManiplex, IsInt, IsInt, 18
for IsManiplex, 33	SemiEdges
•	for IsEdgeLabeledGraph, 11
QuotientByLabel	Sggi
for IsObject,IsList, IsList, IsList, 9	for IsList, IsList, 15
QuotientManiplex	SggiElement
for IsReflexibleManiplex, IsString, 71	for IsGroup, IsString, 16
${\tt Quotient Maniplex By Automorphism Subgroup}$	SggiFamily
for IsManiplex,IsPermGroup, 72	for IsGroup, IsList, 16
QuotientSggi	Simple
for IsGroup, IsList, 71	for IsEdgeLabeledGraph, 10
QuotientSggiByNormalSubgroup	Simplex
for IsGroup, IsGroup, 71	for IsInt, 40
D 1 17 1 100D	Size
RankedFaceListOfPoset	for IsManiplex, 21
for IsPoset, 64	Skeleton
RankInPoset	for IsManiplex, 8
for IsPosetElement,IsPoset, 63	SmallChiral4Polytopes, 37
RankManiplex	SmallChiralPolyhedra, 37
for IsManiplex, 22	SmallDegenerateRegular4Polytopes, 37
RankPoset	SmallestReflexibleCover
for IsPoset, 53	for IsManiplex, 71
RankPosetElements	SmallReflexible3Maniplexes, 38
for IsPoset, 66	SmallRegular4Polytopes, 37
RanksInPosets	SmallRegularPolyhedra, 37
for IsPosetElement, 62	SmallRegularPolyhedraFromFile, 36
ReflexibleManiplex	SmallRhombicosidodecahedron, 45
for IsGroup, 13	SmallRhombicuboctahedron, 44
for IsList, 13	SnubCube, 45
ReflexibleQuotientManiplex	SnubDodecahedron, 45
for IsManiplex, IsList, 71	SymmetryTypeGraph
RegularToroidalPolyhedra36, 36	for IsManiplex, 25
RegularToroidalPolyhedra44, 36	101 101 1 11111 1111 1111
RotaryManiplex	TightOrientablyRegularPolytopesOfType
for IsGroup, 73	for IsList, 42
for IsList, 73	Tomotope, 74
for IsList, IsList, 73	TopologicalProduct
RotationGroup	for IsManiplex, IsManiplex, 35
for IsManiplex, 48	for IsPoset, IsPoset, 68
Cabla fli Cambal	ToroidalMap44, 42
SchlafliSymbol	TranslatePerm, 78
for IsManiplex, 19	TrivialExtension

for IsManiplex, 31
TruncatedCube, 44
TruncatedDodecahedron, 45
TruncatedIcosahedron, 44
TruncatedOctahedron, 43
TruncatedTetrahedron, 43
UniversalExtension
for IsManiplex, 31
for IsManiplex, 31
UniversalPolytope
for IsInt, 31
UniversalRotationGroup
for IsInt, 73
for IsList, 73
UniversalSggi
for IsInt, 15
for IsList, 15
UnlabeledFlagGraph
for IsGroup, 5
UnlabeledSimpleGraph
for IsEdgeLabeledGraph, 10
Tor is Lage Labeled Graph, To
Vertex, 39
VertexFigure
for IsManiplex, 19
for IsManiplex, IsInt, 19
VertexFigures
for IsManiplex, 19
ViewGraph
for IsEdgeLabeledGraph, IsString, 12
for IsObject, IsString, 12
WrappedPosetOperation, 80
ZigzagLength
for IsManiplex, IsInt, 22
ZigzagVector
for IsManiplex, 22