# Gradients of Neural Nets and Products of Random Matrices Boris Hanin\* and Mihai Nica\*\*



<sup>\*</sup>Texas A&M University and \*\*University of Toronto

#### **Abstract**

We prove that, on initialization, the **norm of the gradient** of a fully connected neural net with d layers of widths  $n_0, n_1, \ldots n_d$ , is approximately **log-normal** with variance:

$$\beta = \sum_{i=1}^{d} \frac{5}{n_i}$$

The result holds when the network is initialization with a large class of **symmetric random weights** and a **ReLu non-linearity**. This provides an explanation why very deep networks can suffer from the vanishing and exploding gradient problem. The proof goes by a connection to certain products of random matrices.

## Definition: Fully Connected Neural Nets with ReLU

- Fix depth  $d \in \mathbb{N}$  and layer widths  $\{n_0, n_1, \dots, n_d\} \in \mathbb{N}^d$ .
- For each  $1 \le i \le d$ :
  - ▶ Let  $W^{(i)} \in \mathbb{R}^{n_{i-1} \times n_i}$  be a matrix of random weights with
    - **\* iid entries**,  $\mathbf{E}\left[W_{\mathbf{a},\mathbf{b}}^{(i)}\right]=0$ ,  $\mathbf{Var}\left[W_{\mathbf{a},\mathbf{b}}^{(i)}\right]=1$ , finite higher moments.
  - ▶ Let  $B^{(i)} \in \mathbb{R}^{n_i}$  be a random bias vector with
    - **\* iid entries**,  $\mathbf{E}\left[B_a^{(i)}\right]=0$ ,  $\mathbf{Var}\left[B_a^{(i)}\right]=1$ , finite higher moments.
  - Assume also the bias and weights are symmetric and have no atoms
- Let  $Act^{(0)} \in \mathbb{R}^{n_0}$  be some fixed input vector.
- ullet For each  $1 \leq i \leq d$ , recursively define the **activations**  $Act^{(i)} \in \mathbb{R}^{n_i}$  by:

$$Act^{(i)} := \sigma_{ReLU} \left( \sqrt{\frac{2}{n_i}} W^{(i)} Act^{(i-1)} + \sqrt{\frac{2}{n_i}} B^{(i)} \right)$$

▶ Note  $\sigma_{ReLU}(x) = x1_{\{x>0\}}$ . It is applied **entry-wise** 

## Definition: Gradient

• The Jacobian matrix  $J^{(i)} \in \mathbb{R}^{n_i \times n_0}$  is the gradient of the *i*-th layer with respect to the input:

$$J_{a,b}^{(i)} := \frac{\mathsf{d}Act_a^{(i)}}{\mathsf{d}Act_b^{(0)}}$$

It can be recursivly defined by:

$$J^{(i)} = Diag\left(\sigma'_{ReLU}\left(W^{(i)}Act^{(i-1)} + B^{(i)}\right)\right)\left(\sqrt{\frac{2}{n_i}}W^{(i)}\right)J^{(i-1)}$$

▶ Note  $\sigma'_{Rel,U}(x) = 1_{\{x>0\}}$ . It is applied **entry-wise** 

## Connection To Products of Random Matrices

## Proposition

Let  $p \in (0,1)$ . Let  $D_p^{(i)} \in \mathbb{R}^{n_i \times n_i}$  be the diagonal random matrix whose entries are iid  $\{0,1\}$  valued Bernoulli(p) random variables:

$$D_p^{(i)} = Diag\left(\xi_1^{(i)}, \dots, \xi_{n_i}^{(i)}\right)$$

If the weights  $W^{(i)}$  and biases  $B^{(i)}$  are symmetrically distributed, then, for any vector  $\vec{u} \in \mathbb{R}^{n_0}$  we have:

$$\left\| J^{(i)} \vec{u} \right\|^2 \stackrel{d}{=} \left\| \left( \prod_{j=1}^i D_{\frac{1}{2}}^{(i)} \sqrt{\frac{2}{n_i}} W^{(i)} \right) \vec{u} \right\|^2$$

### Limit Theorem - Moments

#### Theorem

For any vector  $\vec{u} \in \mathbb{R}^{n_0} \|\vec{u}\|^2 = 1$ , the moments of the  $\|J^{(i)}\vec{u}\|^2$  are approximatly log-normal:

$$\mathsf{E}\left[\left\|J^{(i)}\vec{u}\right\|^{2k}\right] = \mathsf{E}\left[\exp\left\{\sqrt{\beta}G - \frac{1}{2}\beta\right\}^{k}\right](1+\epsilon)^{k}$$

where  $G \sim \mathcal{N}(0,1)$  is a standard Gaussian and:

$$\beta := \sum_{i=1}^{d} \frac{5}{n_i}$$

$$\epsilon = O\left(\frac{\sum_{i=1}^{d} n_i^{-2}}{\left(\sum_{i=1}^{d} n_i^{-1}\right)^2}\right)$$

## Limit Theorem: Kolmogorov-Smirnov Distance

#### **Theorem**

For any vector  $\vec{u} \in \mathbb{R}^{n_0} \|\vec{u}\|^2 = 1$ , the distribution of  $\ln \|J^{(i)}\vec{u}\|^2$  is approximatly normal:

$$\sup_{t \in \mathbb{R}} \left| \mathsf{P} \left( \frac{\ln \left( \left\| J^{(i)} \vec{u} \right\|^2 \right) - \frac{1}{2} \beta}{\sqrt{\beta}} \le t \right) - \mathsf{P} \left( G \le t \right) \right| \le \epsilon^{1/5}$$

where  $G \sim \mathcal{N}(0,1)$  is a standard Gaussian and:

$$\beta := \sum_{i=1}^{d} \frac{5}{n_i}$$

$$\epsilon = O\left(\frac{\sum_{i=1}^{d} n_i^{-2}}{\left(\sum_{i=1}^{d} n_i^{-1}\right)^2}\right)$$

## Random Matrix Limits

#### Theorem

Let  $(p_1, \ldots, p_d) \in (0, 1)^d$ . The same log-normal results hold for the norm of the random matrix product:

$$\left\| \left( \prod_{j=1}^{i} D_{p_i}^{(i)} \sqrt{\frac{1}{p_i n_i}} W^{(i)} \right) \vec{u} \right\|^2$$

The parameter  $\beta$  is now:

$$\beta := \sum_{i=1}^d \left(\frac{3}{p_i} - 1\right) n_i^{-1}$$

## Proof Ideas

Path counting along the net to get moments. Martingale CLT on the moment formulas to bound the KS distance.

