Análise e Projeto de Desenvolvimento de Software EAJ6009

Prof. Dr. Josenalde Barbosa de Oliveira

josenalde.oliveira@ufrn.br

Aulas: 35M45

https://github.com/josenalde/apds

Relembrando 2022.1

Programação Orientada a Objetos, Classes e Objetos, Métodos, Construtores Encapsulamento, Composição e Agregação, Herança, Polimorfismo, Classes Abstratas, Interfaces, Tratamento de Exceções

Ementa

- 1. Análise e Projeto Orientados a Objetos
 - 1. Introdução ao Processo de Desenvolvimento de Software (pds)
 - a. Principais atividades, participantes do processo, fases do PDS, Levantamento de Requisitos, Tipos de requisitos, Documento de requisitos, Estratégias para levantamento dos requisitos
 - 2. Análise Orientada a Objetos
 - a. Modelagem de casos de uso,
 - b. Modelagem de classes conceituais (diagrama de classes e diagrama de objetos)
 - 3. Projeto Orientado a Objetos
 - a. Arquitetura do sistema
 - b. Modelagem de classes de projeto

Datas planejadas avaliações

- No paradigma estruturado, tem-se a execução sequencial de instruções, com variáveis alocadas em determinadas posições de memória, com instruções de atribuição de valores a estas variáveis
- Pode-se ver um programa como uma hierarquia de "subprogramas", tendo cada subprograma funções e variáveis que juntamente resolvem o problema global
- Descreve-se as ações para se chegar à resposta:

Exemplo: cálculo do volume de um **cilindro** circular numa determinada **janela** de interação com o usuário

- 1. Ler altura (h)
- 2. Ler raio da base (r)
- 3. Calcular volume
- 4. Exibir volume

■ Instrumentos/Ferramentas comuns à análise estruturada de software: **Diagrama de Fluxo de Dados (DFD),** Diagrama de Entidade Relacionamento (DER), Dicionário de Dados (DD)

■ Instrumentos/Ferramentas comuns à análise estruturada de software: Diagrama de Fluxo de Dados (DFD), **Diagrama de Entidade Relacionamento (DER)**. Dicionário de Características da Viagem

■ Instrumentos/Ferramentas comuns à análise estruturada de software: Diagrama de Fluxo de Dados (DFD), Diagrama de Entidade Relacionamento (DER), **Dicionário de Dados (DD)**

Feição: Arvore				
Representação: Pont	to			
•				
Atributo	Tipo de dado	Descrição		
ID arvore	Alfanumerico	Chave de identificação da árvore		
Nome_pop	Texto (80)	Nomes populares pela qual a espécie é conhecida		
Nome cient	Texto (30)	Nome científico atribuído a espécie		
Família	Texto (20)	Família a qual a espécie pertence		
Morfo	Texto (100)	Descrição morfológica da espécie (altura, espessura do tronco,		
	' '	folhas, ramos, época de floração e frutificação)		
Ramificação	Boolean	Tipo? Simpodial/monopodial		
CoordX	Real/Double	Valor da coordenada E (Sistema UTM)		
CoordY	Real/Double	Valor da coordenada N (Sistema UTM)		
Logradouro	Texto (lista)	Nome completo do Logradouro, com abreviação somente no		
Ĭ		tipo (Ex: R., Av., Trav., Rod.)		
Calcada	Real/Double	Largura da calçada em metros		
Uso_lote	Texto (lista)	Uso do lote em frente a amostra (desocupado, comercial,		
		residencial, religioso, industrial, escolar, hospitalar, cultural,		
		outros serviços)		
DAP	Real/Double	Valor em centíme tros		
Fuste	Boolean	Boas condições? Sim/Não		
Copa	Boolean	Boas condições? Sim/Não		
Sujeira	Boolean	Produz muita sujeira? Sim/Não		
FitoSanit	Texto (30)	Tipo de condições fitossanitárias e informações dicionais (se o		
		ataque é de inseto qual o tipo ou doença)		
Fios eletricos	Boolean	Interfere? Sim/Não		
Poste iluminação	Boolean	Interfere? Sim/Não		
Terço_inferior	Boolean	Interfere? Sim/Não		
Poda_apar	Boolean	A árvore apresenta poda aparente? Sim/Não		
Raiz	Texto (lista)	Calçada alterada com raiz aparente, calçada alterada sem raiz		
		aparente, calçada intacta		
Raiz_obs	Texto	Qualquer outra observação que queira incluir a respeito da raiz		

Entidade: Cliente						
Atributo	Classe	Domínio	Tamanho	Descrição		
Codigo_cliente	Determinante	Numérico				
Nome	Simples	Texto	50			
Telefone	Multivalorado	Texto	50	Valores sem as máscaras de entrada		
Cidade	Simples	Texto	50			
data_nascimento	Simples	Data		Formato dd/mm/aaaa		

■ Retornando ao problema do volume do cilindro, no paradigma Orientado a Objetos, o foco está em a) identificar os objetos, b) suas propriedades/atributos e métodos (ações que podem ser executadas sobre e com os objetos), c) como se dá a interação entre os objetos

CILINDRO JANELA

Objetos

CILINDRO: armazena e manipula altura e raio calcula o volume

JANELA: recebe altura e raio e envia ao cilindro solicita volume ao cilindro para exibir

No paradigma Orientado a Objetos, a análise e projeto basea-se em artefatos definidos em Linguagem Unificada de Modelagem (UML), sendo dois diagramas mais comuns o Diagrama de Casos de Uso e o Diagrama de Classes

Só para ter uma ideia do conjunto de ferramentas da UML (1997..., OMG)

■ Relembrando composições, associações e composições, que podem ser mapeadas em diagramas de classes

Composição: partes só existem se Todo (Banco) existir. Se banco for destruído, os outros são em cascata...No caso de bancos de dados relacionais, regras de integridade!

- O desenvolvimento de um software é visto como um projeto de engenharia
 - REQUISITOS, METODOLOGIA (ETAPAS, RESPONSÁVEIS), ENTREGAS, ACOMPANHAMENTO, FERRAMENTAS, DOCUMENTAÇÃO, TESTES
- Perguntas comuns são:
 - Por que o Sistema vai ser desenvolvido, o que pretende resolver (why?)
 - O que vai/deve ser feito (what)?
 - Quando vai ser feito (when)?
 - Quem é o responsável (who)?
 - Onde as responsabilidades estão localizadas (where)?
 - Como vai ser feito (how)?
 - Quanto vai custar (how much)?

PDS: sequência de atividades, normalmente agrupadas em fases e tarefas, executadas de forma sistemática e uniformizada, realizadas por pessoas com responsabilidades bem definidas e que, a partir de um conjunto de entradas produzem um conjunto de saídas

ETAPAS

- CONCEPÇÃO (análise): análise inclui a identificação detalhada das funcionalidades do sistema (levantamento de requisitos) e a respectiva descrição (especificação do sistema) de modo que os mesmos requisitos possam ser validados pelos usuários finais. A análise MODELA o PROBLEMA e COMPREENDE o problema. Responde: o que deve ser feito?
- IMPLEMENTAÇÃO (projeto (modelo da solução)), desenvolvimento, testes de integração, instalação): na etapa de projeto tem-se a definição detalhada da arquitetura global da solução (módulos, tabelas, interface etc.) para que no desenvolvimento haja a codificação dos diversos components do sistema. Os testes são cruciais para verificação global dos objetivos e crítica pelos usuários/clientes. Na fase de instalação, denomina-se colocar o Sistema EM PRODUÇÃO. Responde: como pode ser feito?
- MANUTENÇÃO: com a operação do Sistema faz-se necessário manter, seja pelo monitoramento e correção de bugs, seja pela inserção de novas funcionalidades

MODELO E MODELAGEM

- Um modelo é um plano, desenho ou abstração que materializa a compreensão sobre um determinado contexto, problema ou situação; é representação (por vezes simplificada) da realidade; é o resultado do processo de modelagem
- Exemplo: construção de um prédio: profissionais (eng. Civis, arquitetos etc.) farão vistoria no terreno, análise do solo etc. Estes documentos servem para planejar a moradia; segue-se depois a planta, para os operários começarem o trabalho. Onde haverá uma parede? Qual o tamanho dos cômodos? A planta informará. Modelos refletem um planejamento.

- MODELO E MODELAGEM
- Em geral, a modelagem de sistemas tem alguns objetivos claros:
 - Diminuição dos custos de produção e manutenção
 - Aumento da escalabilidade e confiabilidade
 - Retorno (financeiro, pessoal etc.) obtido pelo uso do Sistema pelo cliente
- MODELOS devem:
 - Ajudar a visualizer o Sistema como ele é ou como nós gostaríamos que ele fosse
 - Permitir especificar a estrutura ou o comportamento
 - Fornecer um guia para a construção
 - Documentar as decisões que tomamos

