НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ "КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ" ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

ЛАБОРАТОРНАЯ РАБОТА №4

Дисциплина: «Специальные разделы программирования»

Тема: «Сценарии обработки многоспектральных спутниковых изображений»

Выполнила

студентка 2 курса группы ФИ-41

Лавягина Ольга Алексеевна

Проверил

Колотий Андрей Всеволодович

1 ДАННЫЕ

Материалы для лабораторной работы были получены на геопортале геологической служды США — USGS [1]. Скачанный архив содержит каналы изображений. Каждое изображение космических аппаратов (КА) серии Landsat имеет уникальный идентификатор, структура которого следующая:

[Идентификатор сенсора и КА (3 символа)] + [Координаты снимка в WRS-2-системе (Path, Row, 6 символов)] + [Год] + [DOY] + [Режим съёмки (5 символов)].

Например, LC81810252015048LGN00 — снимок KA Landsat-8, полученный сенсором OLI/TIRS; координаты снимка в системе WRS-2 — 818 (Path) 102 (Row), съёмка проведена 48-го дня 2015 года, режим съёмки LGN00. Содержание архива с продуктом уровня обработки данного снимка изображено на рисунке 1.1.

Рисунок 1.1 — Архив с продуктом обработки дынных KA Landsat-8 OLI/TIRS уробня обратотки L1T

2 ЗАДАНИЕ

Средствами командной строки операционной чистемы, а также с помощью бинариев библиотеки GDAL разработать автоматический сценарий, который будет совершать обработку данных дистанционного зондирования Земли (ДЗЗ), соответственнос поставленными заданиями.

Задание 1. Распаковка набора архивов с продуктами ДЗЗ в новосозданные папки, названия которых будут соответствовать идентификаторам изображения.

Задание 2. Конкатинация каналов видимого, ближнего и среднего инфракрасного спектрального диапазонов изображения в единственный GEOTIFF файл.

Задание 3. Перепроектирование спутникового изображения в указанную картографическую систему координат.

Задание 4. Конкатинация изображений двух соседних «row» с одинаковым «path».

Задание 5. Обрезка результирующего изображения по заданному векторному контуру.

Ход выполнения работы. Получить архивы с сутниковыми изображениями, и файл с векторным контуром для дальнейшей обрезки. Средствами командной строки операционной системы (без ограничения в выборе ОС) и с использованием бинариев библиотеуи GDAL создать программный сценарий для автоматической обработки спутниковых изображений согласно поставленным заданиям.

3 ВЫПОЛНЕНИЕ ЗАДАНИЯ

3.1 Распаковка каналов изображения

Был использован архиватор tar. Приведённый ниже сценарий (sh-файл) распаковывает все архивы, которые содержатся в текущей папке.

В качестве переменной \$file выступают имена всех файлов формата .tar.gz.

3.2 Конкатинация каналов изображения

В архиве .tar.gz содержатся каналы спутникового изображения в отдельных GEOTIFF-файлах. Для того, чтобы сконкатинировать их, была вызвана следующая команда:

```
gdal merge.py -o concatenated.tif -separate *.TIF,
```

где concatenated.tif — результат конкатинации, *.TIFF — каналы изображений, взятые из соответствующего архива.

3.3 Перепроектирование изображения

Для изменения герграфической проекции использовалась команда gdalwrap:

```
gdalwarp -t srs "epsg:4326" concatenated.tif out.tif,
```

где «epsg:4326» — параметры проекции, в которую совершалось перепроектирование.

3.4 Конкатинация изображений с разными Row

Для конкатинации изображений, которые не совпадают территориально (одинаковые Path и соседние Row), была использована команда gdalwarp:

```
gdalwarp -of GTIFF -ot Uint16 \
LC81800262016108LGN00/concatenated.tif \
LC81800272016108LGN00/concatenated.tif \
concatenated.tif.
```

Значение параметра -of отвечает формату исходящего файла, а значение параметра -ot — его типу.

С помощью gdalwarp можно объединить изображения, которые территориально не перекрываются и имеют разные размеры, однако количество каналов в них обязательно должно быть одинаковым.

3.5 Обрезка растрового изображения по векторному контуру

Команда, которая была использована для совершения обрезки растра по векторному контуру приведена ниже:

```
gdalwarp -q -cutline polygon.shp -crop_to_cutline -of \
GTiff concatenated.tif cropped shape.tif
```

где в файде polygon.shp содержится необходимый векторный контур. Данный контур был нарисован в ГИС-системе QGIS (Quantum GIS) поверх снимка

(был создан новый векторный слой с полигоном).

concatenated.tif и cropped_shape.tif соответственно входящее и обрезанное растровые изображения.

Данное задание также было выполнено с помощью QGIS. Для этого были выбраны растровые данные (concatenated.tif), во вкладке Raster/Ectraction/Clipper путь для исходящего файла (cropped.tif). Во вкладке Mask layer выбран векторный контур, по которому необходимо провести обрезку (polygon.shp). После нажатия на кнопку ОК было создано необходимое обрезанное изображение.

ВЫВОДЫ

GDAL — это библиотека для работы с растровыми географическими форматами файлов данных. Утилиты GDAL предназначены для конвертации растровых данных из одного формата в другой и выполнения над ними различных операций, например, конкатинация каналов снимка, перепроектирование, обрезка по векторному контуру.

QGIS (Quantum GIS) — свободная кроссплатформенная геоинформационная система, которая использует библиотеки GDAL. QGIS имеет много возможностей, были использованы следующие:

- просмотр и накладка друг на друга векторных и растровых данных;
- создание и редактирование shape-файлов и векторных слоёв;
- обрезка растровых данных по векторному контуру.

СПИСОК ЛИТЕРАТУРЫ

1. USGS EarthExplorer. -2016. http://earthexplorer.usgs.gov.