

Enhancing Synergy Effects Between The Electrification Of Agricultural Machines And Renewable Energy Deployment With Semi-Stationary Energy Storage In Rural Grids

IRES 2018, Session B2 Applications and Case Studies, 27 March 2018 Michael Stöhr, Bastian Hackenberg

Motivation for electrifying agricultural machines

- higher working precision
 -> saves fertilizer and chemical plant protection products can even be done mechanically
- automation of agricultural production possible
- silent operation -> operations 24 hours per day
- higher efficiency, higher power
- abundant potential for renewable electric energy generation can be used on site
- synergy between PV generation and agricultural machine operation

Two ways of electrification

- 1. on-board battery
 - -> only for small machines, mainly cattle breeding
- 2. connection to grid via 1-5 km long cable
 - -> even higher power possible than with diesel engines, for cultivation

Model topology "scenario 1" of cable-powered agricultural machine

"unlimited" residual generator

"unlimited" residual consumer

Parameters characterising different situations

- 1. Base electric energy demand in rural local grid (MWh/yr)
- 2. PV saturation rate: factor by which a grid connection just meeting the peak base load needs to be reinforced to allow for complete feed-in of PV electricity not consumed locally (e.g. 234% corresponds to 100% net PV supply of local base load)

Specific annual fixed grid and storage costs

grid			energy storage		
specific investment costs	500	€/kW	spe cific investment costs	300	€/kWh
annual cost de cre ase	-	-	annual cost decrease	10%	1/a
financial life time	50	a	financial life time	5	а
financial period considered	50	a	financial period considered	50	a
number of investments	1		number of investments	10	
weighted average cost of capital	5.0%		weighted average cost of capital	5.0%	
annuity	27.39	€/kW	annuity	30.57	€/kWh
fixed operational costs	10.00	€/kW	fixed operational costs	6.00	€/kWh
fixed annual costs	37.39	€/kW	fixed annual costs	36.57	€/kWh

Further parameters

- income from primary balancing power provision:
 13 weeks * 3,000 €/week/MW -> 31.2 €/kWh
- rate of electric energy lost in the grid: 6.85 %
- cost of electricity lost in the grid, storage or by curtailment:
 65 €/MWh

Optimisation

- Minimizing total annual costs of electricity needed by the system
 - annuity of grid and energy storage system;
 - fixed annual costs (2 % of initial investment costs);
 - variable annual costs (energy lost by grid transmission, storage or curtailment of PV generation.
- Implementation in Open Energy System Modelling Framework
 - OEMOF, https://oemof.org/; free ware; python;
 - collection of modules for modelling energy systems.

Energy storage capacity

without agricultural machine

with agricultural machine

Transmission capacity of up-stream grid

without agricultural machine

with agricultural machine

PR provision [weeks]

with agricultural machine, PR provision variable, wacc = 5%, grid loss rate = 6,85%, costs of electricity = 6.5 ct/kWh

1.000

IRES 2018, Session B2 Applications and Case Studies, 14 March 2018 - M. Stöhr, B. Hackenberg

with agricultural machine, 13 weeks PR, wacc = variabel, grid loss rate = 6,85%, costs of electricity = 6.5 ct/kWh

Summary

- 1) If the stationary energy storage is used for primary reserve (PR) provision for at least 10 weeks per year, its use is always cost-effective, with and without a cable-led agricultural machine.
- 2) Operating a cable-led agricultural machine in small and medium-size local grids usually requires a grid reinforcement.
- 3) The optimum size of the optimum stationary energy storage very sensibly depends on the income from secondary use such as PR, and on the weighted average cost of capital (wacc).

Financial support

IRES 2018, Session B2 Applications and Case Studies, 14 March 2018 – M. Stöhr, B. Hackenberg