

Aula 17 - Média Ponderada e Mediana

Ivanovitch Silva Maio, 2019

Agenda

- Média ponderada
- A mediana de distribuições abertas
- Cálculo da mediana
- A mediana como uma estatística de resistência
- A mediana para variáveis ordinais
- Sensitividade a mudanças

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

Introduction

	Order	PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Lot Shape	Mo Sold	Yr Sold	Sale Type	Sale Condition	SalePrice
0	1	526301100	20	RL	141.0	131770	Pave	NaN	0	5	2010	WD	Normal	215000
1	2	526350040	20	RH	80.0	11622	Pave	NaN	0	6	2010	WD	Normal	105000
2	3	526351010	20	RL	81.0	14267	Pave	NaN	12500	6	2010	WD	Normal	172000
3	4	526353030	20	RL	93.0	11160	Pave	NaN	0	4	2010	WD	Normal	244000
4	5	527105010	60	RL	74.0	13830	Pave	NaN	0	3	2010	WD	Normal	189900

Mean Price Houses Sold

Year		
2006	181761.648000	625
2007	185138.207493	694
2008	178841.750804	622
2009	181404.567901	648
2010	172597.598240	341

```
1 mean new = houses per year['Mean Price'].mean()
2 mean_original = houses['SalePrice'].mean()
3 print("SalePrice mean:", mean original)
4 print("Mean Price mean:", mean new)
```

SalePrice mean: 180796.0600682594 Mean Price mean: 179948.75448767154

Different Weights

 $2009: [28\ 700, 142\ 500, 440\ 000, 336\ 860, 207\ 500]$

 $2010: [135\ 000, 139\ 000]$

$$\bar{x} = \frac{\overbrace{(28\,700 + 142\,500 + 440\,000 + 336\,860 + 207\,500)}^{2009} + \overbrace{(135\,000 + 139\,000)}^{2010}}{7}$$

$$\bar{x} = \underbrace{\bar{x} = \underbrace{\frac{2009}{1\,413\,860 + 274\,000}}^{2010}}_{7} = \underbrace{\frac{241122.86}}_{7}$$

Different Weights

$$2009: \ \bar{x} = \frac{28\ 700 + 142\ 500 + 440\ 000 + 336\ 860 + 207\ 500}{5} = 282\ 772$$

$$2010: \ \bar{x} = \frac{135\ 000 + 139\ 000}{2} = 137\ 000$$

 $overall\ mean\ :\ ar{x} = rac{282\ 772 + 137\ 000}{2} igg(209\ 886)$

The Weighted Mean

	Year	Mean Price	Houses Sold	
	2008	178842	622	
	2009	181405	648	
	2010	172598	341	
	Ţ			\supset
17884	2 ···· X 1		622	···· W ₁
18140	5 ···· X 2	n=3	648	$ \left. \begin{array}{l} \cdots W_1 \\ \cdots W_2 \\ \cdots W_3 \end{array} \right\} n = 3 $
17259	8 ···· X 3	,]	341	_{W3}]
		\downarrow		
weigl	hted _	$\frac{X_1 W_1 + X_2 V}{W_1 + W}$	$V_2 + + X_r$	W_n
me	an –	$W_1 + W$	$V_2 + + W_n$	
		1		

When is not possible to compute the mean

```
houses['TotRms AbvGrd'].value counts()
                844
6
                649
5
                586
8
                347
                203
9
                143
                131
   or more
3
                 26
```

Median = the middle value

Computer the median

```
distribution1 = [23, 24, 22, '20 years or lower,', 23, 42, 35]
distribution2 = [55, 38, 123, 40, 71]
distribution3 = [45, 22, 7, '5 books or lower', 32, 65, '100 books or more']
```


Computer the median

```
1 # Sort the values
 2 rooms = houses['TotRms AbvGrd'].copy()
 3 rooms = rooms.replace({'10 or more': 10})
 4 rooms = rooms.astype(int)
 5 rooms sorted = rooms.sort values()
 6
  # Find the median
  middle indices = [int((len(rooms sorted) / 2)),
 9
                      int((len(rooms sorted) / 2 + 1))
10
11 middle values = rooms sorted.iloc[middle indices]
12 median = middle values.mean()
13 print(middle values)
14 print(median)
                           953
                           2264
                           Name: TotRms AbvGrd, dtype: int64
                           6.0
```


The median as a resistant statistic

[20000, 34000, 40000, 45000, 800000]

The median ideal for finding reasonable averages for distributions containing outliers.

The Median for Ordinal Scales

	1 houses['Overall Cond'].value_counts().sort_index()
1 2 3 4 5 6 7 8	7 10 50 101 1654 533 390 144 41	If the overall condition of a house is rated with an 8 (Very good), and another house gets a 4 (Below average), we can't say that the conditions of the former are twice as better than the latter.

Code	Quality				
1	Very poor				
2	Poor				
3	Fair				
4	Below average				
5	Average				
6	Above average				
7	Good				
8	Very good				
9	Excellent				
10	Very excellent				

The Median for Ordinal Scales

Mean: 5.56

Median: 5

The mean seems more representative and more informative because it captures the fact that there are more houses rated above 5 than rated under 5. Because of this, the mean is slightly shifted above 5.

Sensitivity to Changes

Code	Answer
1	Strongly disagree
2	Disagree
3	Neither agree nor disagree
4	Agree
5	Strongly agree

Next Steps

 We continue the discussion about finding averages for ordinal data and also learn new things, like finding the average value for nominal variables.

