

Introduction to Data Mining

Data Preprocessing

- Data cleaning
- Data integration
- Data reduction
 - Reduce data objects
- Dimensionality reduction
 - Reduce dimensions and attributes

Data Reduction

- Data reduction
 - Obtain a reduced representation of the data set
 - Why? Complex analysis may take a very long time to run on the complete data set
- Methods for data reduction
 - Regression and Log-Linear Models
 - Histograms, Clustering, Sampling
 - Data normalization

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values
 - of a dependent variable (also called response variable or measurement): Y
 - and of one or more independent variables (also known as **explanatory** variables or **predictors**): $X_1, X_2, ... X_n$
- Parameters are estimated to give a "best fit" of the data
 - Data: (x_1, y_1)
 - Fit of the data: (x_1, y_1')
 - Ex. $y_1' = x_1 + 1$

Regression Analysis

 Most commonly the best fit is evaluated by using the least square method, but other criteria have also been used

min
$$g = \sum_{i=1}^{n} (y_i - y'_i)^2$$
, where $y'_i = f(x_i, \beta)$

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Set up $y = f(x) = \beta_1 x + \beta_2$ Learn β by minimizing the least square error

Linear Regression

- Linear regression: Y = wX + b
 - Data modeled to fit a straight line
 - Often uses the least-square method to fit the line
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand

Nonlinear Regression

- Nonlinear regression:
 - Data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables

Log-Linear Model

- Log-linear model
 - A math model that takes the form of a function whose logarithm is a linear combination of the parameters of the model

Multiple Regression

- Multiple regression: $Y = b_o + b_1 X_1 + b_2 X_2$
 - Allows a response variable Y to be modeled as a linear function of multidimensional feature vector
 - Many nonlinear functions can be transformed into the above

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- One popular partitioning rules Equal-width: equal bucket range

(10,000 , 10,001] = 10,001

to

(10,000 , 11,000] (11,000 , 12,000]

. . .

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew

Simple random sampling:

Equal probability of selecting any particular item

Sampling without replacement:

Once an object is selected, it is removed from the population

Sampling with replacement:

A selected object is not removed from the population

Stratified Sampling

Stratified sampling

 Partition (or cluster) the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)

Recall: Data Reduction

- Methods for data reduction
 - Regression and Log-Linear Models
 - Histograms, Clustering, Sampling
 - Data normalization

Parametric vs. Non-Parametric Data Reduction Methods

- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]
 - Then \$73,600 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Normalization

• **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let
$$\mu$$
 = 54,000, σ = 16,000. Then $\frac{73,600-54,000}{16,000}$ = 1.225

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

Normalization

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$

Where j is the smallest integer such that Max(|v'|) < 1

Data Preprocessing

- Data cleaning
- Data integration
- Data reduction
- Dimensionality reduction

Dimensionality Reduction

- Curse of dimensionality
 - When dimensionality increases, data becomes increasingly sparse
 - Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
 - The possible combinations of subspaces will grow exponentially
- Dimensionality reduction
 - Reducing the number of random variables under consideration, via obtaining a set of principal variables
- Advantages of dimensionality reduction
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization

Dimensionality Reduction Techniques

- Dimensionality reduction methodologies
 - Feature selection (FS): Find a subset of the original variables (or features, attributes)
 - Feature extraction (FE): Transform the data in the high-dimensional space to a space of fewer dimensions
- Some typical dimensionality methods
 - FE: Principal Component Analysis
 - FS: Attribute Subset Selection = Attribute Selection

Principal Component Analysis (PCA)

- PCA: A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called *principal components*
- The original data are projected onto a **much smaller space**, resulting in dimensionality reduction (e.g., n=3 to k=2)

PCA (cont.)

Given N data vectors from n-dimensions, find k ≤ n
 orthogonal vectors (principal components) best used to
 represent data

PCA (cont.)

- Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors (principal components) best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components normalized eigenvector
- Each input data (vector) is a linear combination of the k principal component vectors

Eigenvectors (cont.)

- For a square matrix A (n*n), find the eigenvector x (n*1).
 - A represents the linear transformation (from n to n)
- Matrix A acts by stretching the vector x, not changing its direction, so x is an eigenvector of A.

Eigenvectors (cont.)

Which vectors are eigenvectors?

- Red
- Orange
- Yellow

What are the eigenvalues?

Which vectors are eigenvectors?

- Red
- Blue

PCA and Eigenvectors

- For *Square Matrix*: Data matrix to Covariance matrix
- The principal components are sorted in order of decreasing "significance" or strength
- From n to k: Since the components are sorted, the size of the data can be reduced by eliminating the weak components (i.e., using the strongest principal components, to reconstruct a good approximation of the original data)

PCA and Eigenvectors (cont.)

Method: Find the eigenvectors of covariance (square)
 matrix, and these eigenvectors define the new space

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \iff \mathbf{A}\mathbf{x} - \lambda\mathbf{x} = \mathbf{0}$$

 $\Leftrightarrow \mathbf{A}\mathbf{x} - \lambda\mathbf{I}\mathbf{x} = \mathbf{0}$
 $\Leftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0}.$

The equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ has nonzero solutions for the vector x if and only if the matrix $\mathbf{A} - \lambda \mathbf{I}$ has zero determinant.

Example: Find the eigenvalues of the matrix
$$\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix}$$
.

Ex. Eigenvalues

Example: Find the eigenvalues of the matrix $\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix}$.

The eigenvalues are those λ for which $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$. Now

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\left(\begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right)$$

$$= \begin{vmatrix} 2 - \lambda & 2 \\ 5 & -1 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)(-1 - \lambda) - 10$$

$$= \lambda^2 - \lambda - 12.$$

The eigenvalues of **A** are the solutions of the quadratic equation $\lambda^2 - \lambda - 12 = 0$, namely $\lambda_1 = -3$ and $\lambda_2 = 4$.

Ex. Eigenvectors

First, we work with $\lambda = -3$. The equation $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ becomes $\mathbf{A}\mathbf{x} = -3\mathbf{x}$. Writing

$$x = \left[egin{array}{c} x_1 \\ x_2 \end{array}
ight]$$

and using the matrix **A** from above, we have

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 2x_2 \\ 5x_1 - x_2 \end{bmatrix},$$

while

$$-3\mathbf{x} = \left[\begin{array}{c} -3x_1 \\ -3x_2 \end{array} \right].$$

Setting these equal, we get

$$\begin{bmatrix} 2x_1 + 2x_2 \\ 5x_1 - x_2 \end{bmatrix} = \begin{bmatrix} -3x_1 \\ -3x_2 \end{bmatrix} \Rightarrow 2x_1 + 2x_2 = -3x_1 \quad \text{and} \quad 5x_1 - x_2 = -3x_2$$

$$\Rightarrow 5x_1 = -2x_2$$

$$\Rightarrow x_1 = -\frac{2}{5}x_2.$$

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

Ex. Eigenvectors (cont.)

Similarly, we can find eigenvectors associated with the eigenvalue $\lambda = 4$ by solving $\mathbf{A}\mathbf{x} = 4\mathbf{x}$:

$$\begin{bmatrix} 2x_1 + 2x_2 \\ 5x_1 - x_2 \end{bmatrix} = \begin{bmatrix} 4x_1 \\ 4x_2 \end{bmatrix} \Rightarrow 2x_1 + 2x_2 = 4x_1 \quad \text{and} \quad 5x_1 - x_2 = 4x_2$$
$$\Rightarrow x_1 = x_2.$$

Hence the set of eigenvectors associated with $\lambda = 4$ is spanned by

$$\mathbf{u_2} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Ex. Eigenvalues (cont.)

Example: Find the eigenvalues and associated eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}.$$

First we compute $\det(\mathbf{A} - \lambda \mathbf{I})$ via a cofactor expansion along the second column:

$$\begin{vmatrix} 7-\lambda & 0 & -3 \\ -9 & -2-\lambda & 3 \\ 18 & 0 & -8-\lambda \end{vmatrix} = (-2-\lambda)(-1)^4 \begin{vmatrix} 7-\lambda & -3 \\ 18 & -8-\lambda \end{vmatrix}$$
$$= -(2+\lambda)[(7-\lambda)(-8-\lambda) + 54]$$
$$= -(\lambda+2)(\lambda^2+\lambda-2)$$
$$= -(\lambda+2)^2(\lambda-1).$$

Thus **A** has two distinct eigenvalues, $\lambda_1 = -2$ and $\lambda_3 = 1$. (Note that we might say $\lambda_2 = -2$, since, as a root, -2 has multiplicity two. This is why we labelled the eigenvalue 1 as λ_3 .)

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - Ex. A student's ID is often irrelevant to the task of predicting his/her GPA

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Correlation analysis: Chi-Square test, Covariance
- Data reduction and data transformation
 - Normalization: Z-score normalization
- Dimensionality reduction
 - PCA, Heuristic Search in Attribute Selection

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. <u>Mining Database Structure</u>; Or, How to Build a Data Quality Browser. SIGMOD'02
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. *IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4*
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995