Local Interpretability of Machine Learning Models

Mateusz Staniak

University of Wrocław

Berlin, 14.12.2017

Joint work with Przemysław Biecek (Technical University of Warsaw)

Example

Crucial questions

- Do we understand the model?
- Do we trust the model?

Possible approaches

Modeling

- Interpretable models only
- GAMs
- Surrogate models
- Model-specific explanations (randomForestExplainer, xgboostExplainer, ...)
- Model-agnostic explanations

Visualization

- Partial dependence plots
- Residual analysis
- Forest floor plots
- Other methods...

Main concepts I

• interpretable representation

local fidelity

local exploration

Formulation

- \bullet $x \in \mathbb{R}^d$ instance being explained
- $x' \in \{0,1\}^{d'}$ interpretable representation
- ullet $g \in G$ a model that belongs to a class of interpretable models
- $\Omega(g)$ measure of complexity of g (penalty term)
- f(x) explained model
- $\pi_x(z)$ measure of closeness of z and x
- ullet $\mathcal{L}(f,g,\pi_{\scriptscriptstyle X}(z))$ measure of unfaithfulness of local approximation

LIME explanation $\xi(x)$ is obtained by

$$\xi(x) = \arg\min_{g \in G} \mathcal{L}(f, g, \pi_{x}(z)) + \Omega(g)$$

LIME: summary

LIME addresses

- **understanding** issue by approximating the complex model with an interpretable model,
- **trust** issue using accompanying sp-LIME algorithm, which picks representative instances and their explanations.

live: Motivation & Explanation

Why?

- LIME for regression problems
- Model visualization in aid of LIME

How?

- Create dataset for local exploration by perturbing the explained instance.
- Use original variables as interpretable inputs.
- Optional variable selection.
- Provide tools for model visualization.
- Focus on interpretable models easy to visualize.

Some good news

- The method finds the right local model.
- The method is pretty stable (similar results for different fake datasets).
- White box predictions are close to black box predictions at and around chosen instance.
- General framework: Shapley values.

- live package: https://www.github.com/MI2DataLab/live
 - lacktriangledown sample_locally ightarrow add_predictions
 - ▶ $fit_explanation \rightarrow plot_explanation$
- Wine quality data.

ŧ	A tibble: 6 x	12					
	fixed_acidity	volatile_acidity	citric_acid :	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	7.4	0.70	0.00	1.9	0.076	11	34
2	7.8	0.88	0.00	2.6	0.098	25	67
3	7.8	0.76	0.04	2.3	0.092	15	54
4	11.2	0.28	0.56	1.9	0.075	17	60
5	7.4	0.66	0.00	1.8	0.075	13	40
6	7.9	0.60	0.06	1.6	0.069	15	59
1	with 5 mon	e variables: den	sity <dbl>, p</dbl>	H <dbl>, sulpha</dbl>	ates <dbl>,</dbl>	alcohol <dbl>, qua</dbl>	lity <int></int>

Challenges

- LIME in high dimensional setting,
- optimal way of generating fake dataset,
- measures of fit,
- visualizing shrinkage methods...

Acknowledgements

References I

- Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones, *mlr: Machine learning in r*, Journal of Machine Learning Research **17** (2016), no. 170, 1–5.
- Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis, *Modeling wine preferences by data mining from physicochemical properties*, Decis. Support Syst. **47** (2009), no. 4, 547–553
- Max Gordon and Thomas Lumley, forestplot: Advanced forest plot using 'grid' graphics, 2017, R package version 1.7.
- Brandon M. Greenwell, pdp: An R Package for Constructing Partial Dependence Plots, The R Journal 9 (2017), no. 1, 421–436.

References II

- S. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, ArXiv e-prints (2017).
- Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis, *Conditional variable importance for random forests*, BMC Bioinformatics **9** (2008), no. 307.
- M. Tulio Ribeiro, S. Singh, and C. Guestrin, *Model-Agnostic Interpretability of Machine Learning*, ArXiv e-prints (2016).
- Hadley Wickham, Dianne Cook, and Heike Hofmann, *Visualizing statistical models: Removing the blindfold*, Statistical Analysis and Data Mining: The ASA Data Science Journal **8** (2015), no. 4, 203–225.