Y

		ϵ	G	C	Т	А	Т	Α	C
	ϵ	0	1	2	3	4	5	6	7
	G	1	0	1	2	3	4	5	6
	C	2	1	0	1	2	3	4	5
X	G	3	2	1	1	2	3	4	5
/ (Т	4	3	2	1	2	2	3	4
	Α	5	4	3	2	1	2	2	3
	Τ	6	5	4	3	2	1	2	3
	G	7	6	5	4	3	2	2	3
	C	8	7	6	5	4	3	3	2

Human transition to transversion ratio (AKA ti/tv) is ~2.1

Human substitution rate ≈ 1 in 1,000

Small-gap rate is ≈ 1 in 3,000

Penalty matrix

	Α	С	G	Т	_
Α	0	4	2	4	8
С	4	0	4	2	8
G	2	4	0	4	8
T	4	2	4	0	8
_	8	8	8	8	

- 2 Transitions (A↔ G, C ↔ T)
- 4 Transversions
- 8 Gaps

$$\mathbf{edist}(\alpha x, \beta y) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha, \beta) + \delta(x, y) \\ \mathbf{edist}(\alpha x, \beta) + 1 \\ \mathbf{edist}(\alpha, \beta y) + 1 \end{array} \right.$$

$$\mathbf{galign}(\alpha \mathbf{x}, \beta \mathbf{y}) = \min \left\{ \begin{array}{l} \mathbf{galign}(\alpha, \beta) + p(\mathbf{x}, \mathbf{y}) \\ \mathbf{galign}(\alpha \mathbf{x}, \beta) + p(\mathbf{x}, \mathbf{y}) \\ \mathbf{galign}(\alpha, \beta \mathbf{y}) + p(\mathbf{-}, \mathbf{y}) \end{array} \right.$$
Use penalty matrix

Global alignment

	ϵ	Т	Α	Т	G	Т	C	Α	Т	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
Т	8	0	8	16	24	32	40	48	56	64	72
Α	16	8	0	8	16	24	32	40	48	56	64
C	24	16	8	2	10	18	24	32	40	48	56
G	32	24	16	10	2	10	18	26	34	40	48
Т	40	32	24	16	10	2	10	18	26	34	42
C	48	40	32	24	18	10	2	10	18	26	34
Α	56	48	40	32	26	18	10	2	10	18	26
G	64	56	48	40	32	26	18	10	6	10	18
C	72	64	56	48	40	34	26	18	12	10	10

	Α	С	G	Т	-
Α	0	4	2	4	8
C	4	0	4	2	8
G	2	4	0	4	8
Т	4	2	4	0	8
_	8	8	8	8	

Global alignment

	ϵ	Т	Α	Т	G	Т	C	Α	Т	G	C
ϵ	9	8	16	24	32	40	48	56	64	72	80
T	8	8	8	16	24	32	40	48	56	64	72
Α	16	8	8	8	16	24	32	40	48	56	64
C	24	16	8	5	10	18	24	32	40	48	56
G	32	24	16	10	3	10	18	26	34	40	48
T	40	32	24	16	10	3	10	18	26	34	42
C	48	40	32	24	18	10	3			26	34
Α	56	48	40	32	26	18	10	15	10	18	26
G	64	56	48	40	32	26	18	10	6	19	18
C	72	64	56	48	40	34	26	18	12	10	

	Α	С	G	Т	_
Α	0	4	2	4	8
C	4	0	4	2	8
G	2	4	0	4	8
Т	4	2	4	0	8
_	8	8	8	8	

Local alignment

Find the most similar pair of substrings from X and Y

Local alignment

Find the most similar *pair of substrings* from X and Y

$$\label{eq:lalign} \begin{aligned} \text{lalign}(\alpha,\beta) + s(x,y) \\ \text{lalign}(\alpha x,\beta) &= \max \left\{ \begin{array}{l} \text{lalign}(\alpha,\beta) + s(x,y) \\ \text{lalign}(\alpha x,\beta) + s(x,-) \\ \text{lalign}(\alpha,\beta y) + s(-,y) \\ 0 \end{array} \right. \end{aligned}$$

Scoring matrix: matches are positive, differences negative

	Α	С	G	Т	1
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Τ	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

Y

		ϵ	Т	Α	Т	Α	Т	G	C	G	G	C	G	Т	Т	Т
	ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
	G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
	Τ	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
	Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
	Τ	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
	G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
	C	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
V	Τ	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
Λ	G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
	G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
	C	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
	G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
	C	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
	Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
	Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6
		·					·									

Y

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (0
G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		9
		U
G 0 0 0 0 0 0 2 0 2 4 0 2 0	0 6	0
T 0 2 0 2 0 2 0 0 0 0 0 4	2 2	2
A 0 0 4 0 4 0 0 0 0 0 0 0 0	0 0	0
T 0 2 0 6 0 0 0 0 0 0 2	2 2	2
G 0 0 0 0 2 0 2 2 2 0 2 0	0 0	0
C 0 0 0 0 0 0 2 10 4 0 4 0 0	0 0	0
T 0 2 0 2 0 2 0 4 6 0 0 2	2 2	2
G 0 0 0 0 0 4 0 6 8 2 2 0	0 0	0
G 0 0 0 0 0 0 2 0 2 3 4 4 0	0 0	0
C 0 0 0 0 0 0 0 4 0 2 10 4 0	0 0	0
G 0 0 0 0 0 0 2 0 6 2 4 2 6	0 0	0
C 0 0 0 0 0 0 0 4 0 2 4 6 8	2 (0
T 0 2 0 2 0 2 0 0 0 0 0 8	10 4	4
A 0 0 4 0 4 0 0 0 0 0 0 0 2	4 (6