Ajuste a una linea recta

A. Zellner, J. Abellán 14 de febrero de 2018

Sigo el libro de Arnold Zellner, An Introduction to Bayesian Inference in Econometrics, epígrafe 3.1.2, página 60

El modelo: la linea recta

El modelo es bien sencillo y conocido

$$y = \beta_1 + \beta_2 * x$$

Datos

Utilizaremos como ejemplo datos generados al azar de acuerdo con el modelo

$$y_i = \beta_1 + \beta_2 * x_i + \epsilon_i , i = 1, 2, \dots, N_d$$

donde $\epsilon \sim N(0,\sigma)$ sigue una normal de media cero y desviación σ

```
# los datos
Nd <- 10
#variable de control
x \leftarrow 1 : Nd
#simulación del ruido experimental
sigma <- .1
#ordenada en el origen verdadera
y0 <- .45
#pendiente verdadera
pendiente <- .13
# datos generados
y <- y0 + pendiente * x + rnorm( Nd, 0, sigma )
\#Nd \leftarrow length(x)
# los estadísticos
xm \leftarrow mean(x)
ym <- mean( y )
x2m \leftarrow mean(x^2)
sx2 \leftarrow var(x)
sxy <- cov( x, y )</pre>
```

```
sy2 <- var( y )
sy \leftarrow sd(y)
# la pendiente óptima
b2op <- sxy / sx2
b2opr <- round( b2op, 3 )
#la ordenada en el origen óptima
b1op \leftarrow ym - b2op * xm
blopr <- round( blop, 3 )
# suma de los cuadrados de los residuos
Qmin \leftarrow sum((y - b1op - b2op * x)^2)
# rango de los parámetros
rangoY <- abs( max( y ) - min( y ) )</pre>
rangoP <- max( y ) - min( x )</pre>
b1min <- b1op - rangoY ; b1max <- b1op + rangoY</pre>
b2min \leftarrow b2op - rangoP / 4; b2max \leftarrow b2op + rangoP / 4
smin <- sy / 100 ; smax <- sy * 1.2
# discretización del espacio de parámetros
n <- 200
B1 <- seq( b1min, b1max, len = n ); dB1 <- ( <math>b1max - b1min ) / ( n - 1 )
B2 \leftarrow seq(b2min, b2max, len = n); dB2 \leftarrow (b2max - b2min) / (n - 1)
SGM \leftarrow seq(smin, smax, len = n); dSGM \leftarrow (smax - smin) / (n - 1)
# Solución teórica según Bayes:
# Véase epígrafe '4.2.1 Incertidumbre en el eje Y' del fichero
# ResumenProbabilidad2018.pdf
pB1 <- ( 1 + ( Nd / Qmin ) * ( sx2 / x2m ) * ( B1 - b1op )^2 )^(- ( Nd - 1 ) / 2 )
pB2 <- (1 + (Nd / Qmin) * sx2 * (B2 - b2op)^2)^(- (Nd - 1) / 2)
pSGM \leftarrow SGM^{(-(Nd-1))} * exp(-Qmin/(2 * SGM^2))
# sgm más probable
sgm0 <- sqrt( Qmin / ( Nd - 1 ) )</pre>
# Normalizamos las funciones de distribución
pB1 <- pB1 / sum( pB1 * dB1)
pB2 <- pB2 / sum( pB2 * dB2)
```

```
pSGM <- pSGM / sum( pSGM * dSGM)
# función para calcular intervalos creíbles
IC <- function( B, pB, alfa ) {</pre>
    # indice que maximiza pB
    io <- which.max( pB )</pre>
    area <- i <- 0
    while ( area < alfa ) {</pre>
        i <- i + 1
         # ensanchamos el intervalo simétricamente
        imin <- io - i; imax <- io + i</pre>
        area <- sum( pB[ imin : imax ] * dB1 )</pre>
    }
    icB <- ( B[ imax ] - B[ imin ] ) / 2</pre>
    #icB <- round( icB, 3 )
}
# intervalos del 68% (aproximadamente)
deltaB1 <- IC( B1, pB1, 0.68 )
deltaB2 <- IC( B2, pB2, 0.68 )</pre>
```

Funciones de distribución

b1 = 0.273 + -0.054

b2 = 0.153 + -0.002

sgm = 0.07

El ajuste a los datos

y = 0.273 + 0.153 * x

Si no somos capaces de obtener las soluciones analíticas de las diferentes funciones de distribución, siempre podemos recurrir al cálculo numérico y calcular la función $Q(\beta_1, \beta_2)$ y a partir de aquí $p(\beta_1, \beta_2)$

```
# funciones de distribución

Q <- matrix( 0, nrow = n, ncol = n )

# Cálculo de los elementos de Q
for (i in seq( along = B1 ) ) {

   for (j in seq( along = B2 ) ) {

     yteorica <- B1[ i ] + B2[ j ] * x

     Q[ i, j ] <- sum( ( y - yteorica )^2 )

}

}

# Cálculo del mínimo de Q
Qminn <- min( Q )

#curvas de nivel de la función Q
contour( B1, B2, Q,

     xlab = "b1: ordenada en el origen",
     ylab = "b2: pendiente",</pre>
```

```
main = "Q( b1, b2 )"

)
abline( v = b1op, h = b2op, col = 2 )
```

Q(b1, b2)

b1: ordenada en el origen

b1: ordenada en el origen