Capacitores y Dieléctricos

Campos

Campo Polarización

$$\overline{P}(\overline{r}) = \frac{\delta \overline{p}}{\delta V} \left[\frac{c}{m^2} \right]$$

_

Equivalencias

$$\overline{P} = \chi \cdot \epsilon_0 \cdot \overline{E}$$

 $\overline{D} = \epsilon \cdot \overline{E} = \epsilon_0 \cdot \overline{E} + \overline{P} = \epsilon_0 (1 + \chi) \cdot \overline{E} \left[\frac{c}{m^2} \right]$

$$\kappa = 1 + \gamma$$

Campos y Densidad de Carga

Polarización y			
Densidad de	Carga	Polarizada	

$$\overline{P} = \sigma'_{pol}$$

Desplazamiento y Densidad de Carga Libre

$$\overline{D} = \sigma_{libre} = \frac{q_{libre}}{\Delta S}$$

Condiciones de Frontera

Condición de Frontera, Campo \overline{D}

$$D_{n1} = D_{n2}$$

Condición de Frontera, Campo \overline{E}

$$E_{t1} = E_{t2}$$

Capacitor y Dieléctricos en Paralelo

Igualdad de CE	$E_1 = E_2 = E$
Igualdad de ddp	$V_{1} = V_{\parallel} = V = E \cdot d$
Desigualdad de \overline{D}	$D_1 = \epsilon_1 E$ y $D_2 = \epsilon_2 E$
$\overline{D} \ {\rm es\ proporcional\ a\ la\ } q_{llbre}.$	$Q_{L1} = \epsilon_1 E^{\frac{A}{2}}$ y $Q_{L2} = \epsilon_2 E^{\frac{A}{2}}$
Carga Libre Total	$Q_{L} = Q_{L1} + Q_{L2} = \frac{V \cdot A}{2d} \left(\epsilon_{1} + \epsilon_{2} \right)$
Capacidad Total	$C = C_1 + C_2$

Capacitor y Dieléctricos en Serie

Igualdad de CD	$D_1 = D_2 = D$
Desigualdad de \overline{E}	$E_1 = \frac{D}{\epsilon_1}$ y $E_2 = \frac{D}{\epsilon_2}$
DDP Total	$V = V_1 + V_2 = \frac{d}{2} (E_1 + E_2) = \frac{q_{libre} \cdot d}{2A} (\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2})$
Ecuaciones de Carga Polarizada $ \mbox{Teniendo en cuenta que } \sigma_{pol}^{(1)} = \ P_{_1} \mbox{y} $ $ \sigma_{pol}^{(2)} = \ - \ P_{_1} $	$\sigma_{pol}^{(1)} = D - \epsilon_0 E_1 = \sigma_{libre} \left(1 - \frac{\epsilon_0}{\epsilon_1} \right)$ $\sigma_{pol}^{(2)} = D - \epsilon_0 E_2 = \sigma_{libre} \left(1 - \frac{\epsilon_0}{\epsilon_2} \right)$
Carga Polarizada Total Su signo va a depender de cuál de los dos κ sea más grande.	$\sigma_{pol} = \sigma_{pol}^{(1)} + \sigma_{pol}^{(2)} = \sigma_{libre} \left(\frac{1}{\kappa_2} - \frac{1}{\kappa_1} \right)$
Capacidad Total	$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2}$