19 BUNDESREPUBLIK DEUTSCHLAND

(1) DE 44 25 144 A 1

C 07 D 249/14 C 07 D 401/12 C 07 D 401/14 C 07 D 403/12 A 61 K 31/41 // C07D 521/00 (C07D 249/12,211:08 211:70,213:24,239:24, 251:12,253:02)

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 25 144.0

Anmeldetag:

15. 7.94

® Offenlegungsschrift

Offenlegungstag:

18. 1.96

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(74) Vertreter:

Kinzebach und Kollegen, 81679 München

② Erfinder:

followed an Australia de vom Anmelder einenseichten Unterlanen antenmmen

Hellendahl, Beate, Dr., 67105 Schifferstadt, DE; Lansky, Annegret, Dr., 64297 Darmstadt, DE; Munschauer, Rainer, Dr., 67434 Neustadt, DE; Bialojan, Siegfried, Dr., 68723 Oftersheim, DE; Unger, Liliane, Dr., 67065 Ludwigshafen, DE; Teschendorf, Hans-Jürgen, Dr.med., 67373 Dudenhofen, DE; Wicke, Carsten, Dr., 67112 Altrip, DE; Drescher, Karla, Dr., 69221 Dossenheim, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Triazolverbindungen und deren Verwendung
- Die vorllegende Erfindung betrifft Triazolverbindungen der folgenden Formel:

worin R1, R2, A, B und Ar die in der Beschreibung angegebenen Bedeutungen besitzen. Die erfindungsgemä-Ben Verbindungen besitzen eine hohe Affinität zum Dopamin-D3-Rezeptor und sind daher zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D3-Liganden ansprechen.

Verbindungen der hier in Rede stehenden Art mit physiologischer Aktivität sind bereits bekannt. Die US-A-4,338,453; 4,408,049 und 4,577,020 beschreiben entsprechende Triazolverbindungen, welche anti-allergische Akti-

vität besitzen.

Überraschenderweise wurde nun gefunden, daß die erfindungsgemäßen Verbindungen eine hohe Affinität zum Dopamin-D3-Rezeptor und eine nur geringe Affinität zum D2-Rezeptor aufweisen. Es handelt sich somit um selektive D3-Liganden.

Gegenstand der vorliegenden Erfindung sind daher Triazolverbindungen der Formel I:

worin A für eine geradkettige oder verzweigte $C_l - C_{ls}$ -Alkylengruppe steht, die gegebenenfalls wenigstens eine Gruppe umfassen kann, die ausgewählt ist unter O, S, NR3, CONR3, NR3CO, COO, OCO, oder einer Doppeloder Dreifachbindung,

B für einen Rest der Formel steht:

R¹ für H, CO₂R³, NR³R⁴, OR⁴ oder C₁ - C₈-Alkyl, das gegebenenfalls durch OH, OC₁ - C₈-Alkyl oder Halogen substituiert ist, steht;

R²die für R¹ angegebenen Bedeutungen besitzt oder für CF3, SR3, Halogen oder CN steht;

R3 für Hoder C1-C8-Alkyl, das gegebenenfalls durch OH, OC1-C8-Alkyl oder Halogen substituiert ist, steht;

R⁴ die für R³ angegebenen Bedeutungen besitzt oder für COR³ oder CO₂R³ steht;

Ar für Phenyl, Pyridyl, Pyrimidyl oder Triazinyl steht, wobei Ar gegebenenfalls einen oder zwei Substituenten (X und/oder Y) aufweisen kann, die unabhängig voneinander ausgewählt sind unter OR4, C1-C8-Alkyl, Halogen, CN, CO₂R³, NO₂, SO₂R³, SO₃R³, NR³R⁴, SO₂NR³R⁴, SR³, CF₃, CHF₂, einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 bis 3 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der carbocyclische oder heterocyclische Ring gegebenenfalls substituiert sein kann durch C1-C8-Alkyl, Halogen, OC1-C8-Alkyl, OH, NO2 oder CF3 und wobei Ar gegebenenfalls auch mit einem carbocyclischen oder beterocyclischen Ring der oben definierten Art kondensiert sein kann, sowie deren Salze mit physiologisch verträglichen Säuren.

Bei den erfindungsgemäßen Verbindungen handelt es sich um selektive Dopamin-D3-Rezeptor-Liganden, die regioselektiv im limbischen System angreifen und aufgrund ihrer geringen Affinität zum D2-Rezeptor nebenwirkungsärmer als klassische Neuroleptika sind bei denen es sich um D2-Rezeptorantagonisten handelt. Die Verbindungen sind daher zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D3-Rezeptorantagonisten bzw. agonisten ansprechen, z. B. zur Behandlung von Erkrankungen des zentralen Nervensystems, insbesondere Schizophrenie, Depressionen, Neurosen, und Psychosen. Außerdem sind sie zur Behandlung von Schlafstörungen und Übelkeit und als Autihistaminika brauchbar.

Im Rahmen der vorliegenden Erfindung besitzen die nachfolgenden Ausdrücke die anschließend angegebenen Bedeutungen:

Alkyl (auch in Resten wie Alkoxy, Alkylamino etc.) bedeutet eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 8 Kohlenstoffatomen, vorzugsweise 1 bis 6 Kohlenstoffatomen und insbesondere 1 bis 4 Kohlenstoffatomen. Die Alkylgruppe kann einen oder mehrere Substituenten aufweisen, die unabhängig voneinander ausgewählt sind unter OH und OC1 - C8-Alkyl

Beispiele für eine Alkylgruppe sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, t-Butyl etc.

Alkylen steht für geradkettige oder verzweigte Reste mit vorzugsweise 2 bis 15 Kohlenstoffatomen, besonders bevorzugt 3 bis 10 Kohlenstoffatomen.

Die Alkylengruppen können gegebenenfalls wenigstens eine der oben angegebenen Gruppen umfassen. Diese kann - ebenso wie die erwähnte Doppel- oder Dreifachbindung - in der Alkylenkette an beliebiger Stelle oder an dem Ende der Kette angeordnet sein so, daß sie die Kette mit dem Triazolrest verbindet. Letzteres ist bevorzugt. Wenn die Alkylengruppe eine Doppel- oder Dreifachbindung umfaßt, besitzt sie mindestens drei Kohlenstoffatome in der Kette.

Halogen bedeutet F, Cl, Br, I und insbesondere Cl, Br, L

65

Vorzugsweise stehen R¹ und R² unabhängig voneinander für H, C₁ – C₆-Alkyl oder NR³R⁴, OR⁴.

Vorzugsweise sind x und Y ausgewählt unter Cl, Br, I, CF₃, CHF₂, NR³R⁴, OR⁴, NO₂, C₁-C₈-Alkyl, SR³und CN, wobei R3 und R4 die oben angegebenen Bedeutungen besitzen.

Ar weist vorzugsweise mindestens einen Substituenten auf und steht insbesondere für

E 44 25 144 A1

worin D¹, D² und D³ unabhängig voneinander für CH oder N stehen und X und Y für H oder die oben bzw. nachfolgend angegebenen Bedeutungen stehen.

Vorzugsweise stehen D1, D2 und D3 für CH oder D1 für N und D2 und D3 für CH.

Wenn X oder Y für einen 5- oder 6-gliedrigen heterocyclischen Ring stehen, so handelt es sich beispielsweise um einen Pyrrolidin-, Piperidin-, Morpholin-, Piperazin-, Pyridin-, Pyrimidin-, Triazin-, Pyrrol-, Thiophen-, Thiazol-, Imidazol-, Oxazol-, Isoxazol-, Oder Thiadiazolrest.

Wenn X und/oder Y für einen carbocyclischen Rest stehen, handelt es sich insbesondere um einen Phenyl-, Cyclopentyl- oder Cyclohexylrest.

Wenn Ar mit einem carbocyclischen oder heterocyclischen Rest kondensiert ist, steht Ar insbesondere für einen Naphthalin-, Di- oder Tetrahydronaphthalin-, Chinolin-, Di- oder Tetrahydrochinolin, Indol-, Dihydroin-dol-, Benzothiazol-, Benzothiadiazol-, Benzothiadia

Eine bevorzugte Ausführungsform sind die Verbindungen der Formel I, worin A für C₃—C₁₀-Alkylen steht, das ein Sauerstoff- oder Schwefelatom umfassen kann.

Eine weitere bevorzugte Ausführungsform sind die Verbindungen der Formel I, worin

 R^1 für H oder $C_1 - C_8$ -Alkyl, das gegebenenfalls substituiert ist durch OH, OC₁ - C₈-Alkyl oder Halogen, steht; R^2 für H, $C_1 - C_8$ -Alkyl, das gegebenenfalls substituiert ist durch OH, OC₁ - C₈-Alkyl oder Halogen, NR³R⁴, wobei R³ und R⁴ unabhängig voneinander für H oder C₁ - C₈-Alkyl stehen, OR⁴, wobei R⁴ für H oder C₁ - C₈-Alkyl steht, oder CF₃ steht;

A für C1 - C8-Alkylen steht, das gegebenenfalls ein Schwefelatom umfaßt;

Ar für Phenyl steht;

X und Y unabhängig voneinander für H, C_1-C_8 -Alkyl, das gegebenenfalls durch OH, OC₁-C₈-Alkyl oder Halogen substituiert ist, CN, CHF₂ oder CF₃ stehen.

Besonders bevorzugt sind dabei die Verbindungen der Formel I, worin

A für SC₁ -- C₈-Alkylen steht;

R1 für Hoder C1-C8-Alkyl steht;

R² für H, C₁ - C₈-Alkyl, NH₂, OH oder CF₃ steht;

B für

__N__ oder __N___

steht;

Ar für Phenyl steht und

X und Y sich in 3-Stellung bzw. 5-Stellung der Phenylgruppe befinden und unabhängig voneinander für H, C₁-C₈-Alkyl, CN, CHF₂ oder CF₃ stehen.

Insbesondere bevorzugt steht X für CF₃, CHF₂ oder $C_1 - C_6$ -Alkyl, insbesondere $C_2 - C_4$ -Alkyl und Y für H oder $C_1 - C_6$ -Alkyl, insbesondere $C_2 - C_4$ -Alkyl

Wenn X und/oder Y für C₁—C₈-Alkyl stehen, ist ein verzweigter Rest, insbesondere die Isopropyl- oder t-Butyl-Gruppe bevorzugt.

Die Erfindung umfaßt auch die Säureadditionssalze der Verbindungen der Formel I, mit physiologisch verträglichen Säuren. Als physiologisch verträgliche organische und anorganische Säuren kommen beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Oxaisäure, Maleinsäure, Fumarsäure, Milchsäure, Weinsäure, Adipinsäure oder Benzoesäure in Betracht.

Weitere brauchbare Säuren sind in Fortschritte der Arzneimittelforschung, Band 10, Seiten 224 ff, Birkhäuser Verlag, Basel und Stuttgart, 1966, beschrieben.

Die Verbindungen der Formeln I können ein oder mehrere Asymmetriezentren aufweisen. Zur Erfindung zählen daher nicht nur die Racemate, sondern auch die betreffenden Enantiomere und Diastereomere. Auch die jeweiligen tautomeren Formen zählen zur Erfindung.

Die Herstellung der Verbindungen der Formeln I kann analog zu dem eingangs erwähnten Stand der Technik erfolgen, und zwar dadurch, daß man

i) eine Verbindung der allgemeinen Formel II:

$$R^{2} \bigwedge_{\substack{N-N \\ R^{1}}}^{N-N} A-Y^{1}$$

10

30

35

40

\$ · · · · · ·

65

YI für eine übliche Abgangsgruppe steht, mit einer Verbindung der allgemeinen Formel III

H-B-Ar

umsetzt:

10

15

20

25

30

35

40

45

50

ii) zur Herstellung einer Verbindung der Formel I, worin A ein Sauerstoff- oder Schwefelatom oder NR3 umfaßt:

a) eine Verbindung der allgemeinen Formel IV:

worin Z1 für O, S oder NR3 steht und A1 für C0-C18-Alkylen steht, mit einer Verbindung der allgemeinen Formel VI

$$Y^1-A^2-B-Ar$$

worin Y1 die oben angegebenen Bedeutungen besitzt und A2 für C1-C18-Alkylen steht, wobei A1 und A² zusammen 1 bis 18 Kohlenstoffatome aufweisen, umsetzt;

iii) zur Herstellung einer Verbindung der Formel I, worin A die Gruppe COO oder CONR3 umfaßt a) eine Verbindung der allgemeinen Formel VII:

worin Y2 für OH, OC1 — C4-Alkyl, Cl oder zusammen mit CO für eine aktivierte Carboxylgruppe steht, und A1 die oben angegebenen Bedeutungen besitzt, mit einer Verbindung der Formel VIII:

$$Z^1 - A^2 - B - Ar$$

worin A² die oben angegebenen Bedeutungen besitzt, und Z¹ für OH oder NHR³ steht, umsetzt, iv) zur Herstellung einer Verbindung der Formel I, worin A die Gruppe OCO oder NR3CO umfaßt: a) eine Verbindung der Formel IV

worin Z1 für O oder NR3 steht, mit einer Verbindung der Formel X:

worin B und Y2 die oben angegebenen Bedeutungen besitzen, umsetzt, wobei R1, R2, A, B und Ar die oben angegebenen Bedeutungen besitzen.

Die oben beschriebenen Umsetzungen erfolgen im allgemeinen in einem Lösungsmittel bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des verwendeten Lösungsmittels. Brauchbare Lösungsmittel sind beispielsweise Ethylacetat, Tetrahydrofuran, Dimethylformamid, Dimethoxyethan, Toluol, Xylol oder ein Keton, wie Aceton oder Methylethylketon.

Gewünschtenfalls arbeitet man in Gegenwart eines säurebindenden Mittels. Geeignete säurebindende Mittel sind anorganische Basen, wie Natrium- oder Kaliumcarbonat, Natriummethylat, Natriumethylat, Natriumhydrid oder organische Basen, wie Triethylamin oder Pyridin. Letztere können gleichzeitig als Lösungsmittel dienen.

Die Isolierung des Rohprodukts erfolgt in üblicher Weise, beispielsweise durch Filtration, Abdestillieren des Lösungsmittels oder Extraktion aus dem Reaktionsgemisch etc. Die Reinigung der erhaltenen Verbindung kann in üblicher Weise erfolgen, beispielsweise durch Umkristallisieren aus einem Lösungsmittel, Chromatographie oder Überführen in eine Säureadditionsverbindung.

Die Säureadditionssalze werden in üblicher Weise durch Mischen der freien Base mit der entsprechenden Säure, gegebenenfalls in Lösung in einem organischen Lösungsmittel, beispielweise einem niedrigen Alkohol, wie Methanol, Ethanol oder Propanol, einem Ether, wie Methyl-t-butylether, einem Keton, wie Aceton oder

10

20

25

30

50

60

A1

Methylethylketon oder einem Ester, wie Essigsäureethylester, hergestellt.

Die oben erwähnten Ausgangsmaterialien sind literaturbekannt oder können nach bekannten Verfahren hergestellt werden.

Zur Behandlung der oben erwähnten Erkrankungen werden die erfindungsgemäßen Verbindungen in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabreicht. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachen-Raum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis etwa 10 bis 1000 mg pro Patient und Tag bei oraler Gabe und etwa 1 bis 500 mg pro Patient und Tag bei parenteraler Gabe.

Die Erfindung betrifft auch pharmazeutische Mittel, die die erfindungsgemäßen Verbindungen enthalten. Diese Mittel liegen in den üblichen galenischen Applikationsformen in fester oder flüssiger Form vor, beispielsweise als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen oder Sprays. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln, wie Tablettenbindemitteln, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließregulierungsmitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al., Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 1 bis 99 Gew-%.

Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung, ohne sie zu begrenzen.

4-Methyl-3-[3-(4-[3-trifluormethylphenyl]piperazinyl)-propylmercapto]-4H-1,2,4-triazol

a) 1-(3-Chlorpropyl)-4-(3-trifluormethylphenyl)piperazin

30 g (0,13 mol) m-Trifluormethylphenylpiperazin, 23 g (0,146 mol) 1,3-Bromchlorpropan und 15 g (0,148 mol) Triethylamin wurden in 200 ml THF 4 Stunden unter Rückfluß erhitzt. Nach Abkühlen wurde abgesaugt und eingeengt. Der zähflüssige Rückstand wurde mit Essigester aufgenommen, mit Wasser gewaschen, über MgSO4 getrocknet und anschließend eingeengt. Als Rückstand erhielt man 39 g Produkt als gelbliches Öl (quantitative Ausbeute).

b) 4-Methyl-3-[3-(4-[3-trifluormethylphenyl|piperazinyl)-propylmercapto]-4H-1,2,4-triazol

1,15 g (10 mmol) 3-Mercapto-4-methyl-4H-1,2,4-triazol, 3,1 g (10,1 mmol) 1-(3-Chlorpropyl)-4-(3-trifluormethylphenyl)piperazin und 1,5 g (15 mmol) Triethylamin wurden in 5 ml DMF 1 Stunde bei 100°C gerührt. Anschließend wurde auf 5%ige Salzsäure gegossen und mit Essigester extrahiert. Nach Alkalisieren der wäßrigen Phase mit Natronlauge wurde wieder mit Essigester extrahiert, die organische Phase über MgSO4 getrocknet und eingeengt. Der Rückstand wurde chromatographisch gereinigt (Laufmittel CH2Cl2/CH3OH = 95/5). Es wurden 2,1 g Produkt als gelbliches Öl erhalten (= 55% Ausbeute). H-NMR [δ, ppm]: 2,02(2H); 2,55(2H); 2,61(4H); 3,23(6H); 3,33(2H); 3,61(3H); 7,06(3H); 7,33(1H); 8,12(1H)

Beispiel 2

4-Methyl-3-[5-(4-[3-trifluormethylphenyl]piperazinyl)-pentylmercapto]-4H-1,2,4-triazol

a) 3-(5-Chlorpentylmercapto)-4-methyl-4H-1,24-triazol

2.88 g (25 mmol) 3-Mercapto-4-methyl-4H-1,2,4-triazol, 4,64 g (25 mmol) 1,5-Bromchlorpentan und 5,58 g (25,5 mmol) Triethylamin wurden in 100 ml THF 4 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wurde abgesaugt, eingeengt und der Rückstand chromatographisch gereinigt (Laufmittel CH2Cl2/CH3OH = 95/5). Man erhielt 1,9 g Produkt (= 35% Ausbeute).

b) 4-Methyl-3-[5-(4-[3-trifluormethylphenyl]piperazinyl)-pentylmercapto]-4H-1.2,4-triazol

1.9 g (8,66 mmol) Produkt aus 2a), 2,19 g (9,52 mmol) m-Trifluormethylphenylpiperazin und 0,96 g (9,52 mmol) Triethylamin wurden in 5 ml DMF 5 Stunden bei 90°C gerührt. Anschließend wurde auf Wasser gegossen und dreimal mit CH₂Cl₂ extrahiert, über MgSO₄ getrocknet und eingeengt. Der Rückstand wurde mit Methyl-t-butylether versetzt, abgesaugt und die Mutterlauge eingeengt. Nach chromatographischer Reinigung (Laufmittel: CH₂Cl₂/CH₃OH = 95/5) erhielt man 2,1 g Produkt (= 59% Ausbeute)

Analog wurden folgende Verbindungen hergestellt:

15	Nr.	Beispiel	physikalische Daten, H-NMR (6,ppm) Smp. [°C]
20 25	3	H ₂ N—N S N CF 3	1,83(2H);2,45(6H);3,0(2H); 3,27(4H);6,0(2H);7,05(1H); 7,15(1H);7,2(1H);7,4(1H); 11,95(1H)
30 35	4	H ₃ C N-N CF ₃	1,85(2H);2,3(3H);2,45(2H); 2,5(4H);3,1(2H);3,2(4H); 5,8(2H);7,05(1H);7,15(1H); 7,2(1H);7,4(1H)
40	5	N-N SVN N-CF 3	2,1(2H);2,7(6H);3,22(2H); 3,42(4H);7,1{3H};7,38(1H); 7,92(1H)
45 50	6 .	F ₃ C N-N CF ₃	200 - 205
55 60	7	F ₃ C N-N S N N-N CF ₃	2,05(2H);2,55(2H);2,6(4H); 3,23(4H);3,4(2H);3,65(3H); 7,08(3H);7,35(1H)

65

tO

	_
2,0(2H);2,53(2H);2,6(4H);	
3,13(2H);3,25(7H);7,08(3H);	
7,35(1H);9,88(1H)	5

3D

CF ₃	
HN-H O CH ₃ CF ₃	1,5(6H);1,98(2H);2,55(2H); 2,62(4H);3,15(2H);3,22(4H); 4,32(1H);7,08(3H);7,35(1H); 10,0(1H)
H ₂ N N N CF ₃	1,95(2H);2,5(2H);2,58(4H); 3,1(2H);3,22(4H);3,4(3H); 4,4(2H);7,08(3H);7,35(1H)
H ₂ N N N N N CF ₅	2,52(4H);3,0(2H);3,22(4H); 3,4(3H);3,64(2H);4,96(2H); 5,62(1H);5,72(1H);7,05(3H); 7,3(1H)
H ₂ N N N CHF ₂	1,95(2H);2,52(2H);2,6(4H); 3,12(2H);3,22(4H);3,4(3H); 4,2(2H);6,6(1H);7,0(3H); 7,35(1H)

1,15(6H);1,75(2H);

6,55(2H)

2,45(10H);2,9(2H);3,08(4H); 3,3(3H);5,95(2H);6,45(1H);

5	14	H ₂ N N N N N N N N N N N N N N N N N N N	166 - 171
15 20 25	15	H ₂ N—N CH ₃	1.25(18H); 1,75 (2H); 2,4(2H); 2,45(4H); 2,9(2H); 3,1 (4H); 3,35(3H); 5,95(2H); 6,75(2H); 6,88 (1H)

Beispiele für galenische Applikationsformen

A) Tabletten

Auf einer Tablettenpresse werden in üblicher Weise Tabletten folgender Zusammensetzung gepreßt:

40 mg Substanz des Beispiels 1

120 mg Maisstärke

30

40

55

13,5 mg Gelatine

45 mg Milchzucker

2,25 mg Aerosil® (chemisch reine Kieselsäure in submikroskopisch feiner Verteilung)

6,75 mg Kartoffelstärke (als 6%iger Kleister)

B) Dragees

20 mg Substanz des Beispiels 4

60 mg Kernmasse

45 70 mg Verzuckerungsmasse

Die Kernmasse besteht aus 9 Teilen Maisstärke, 3 Teilen Milchzucker und 1 Teil vinylpyrrolidon-Vinylacetat-Mischpolymerisat 60:40. Die Verzuckerungsmasse besteht aus 5 Teilen Rohrzucker, 2 Teilen Maisstärke, 2 Teilen Calciumcarbonat und 1 Teil Kalk. Die so hergestellten Dragees werden anschließend mit einem magensaftresistenten Überzug versehen.

Biologische Untersuchungen

Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane D3-Rezeptor-exprimierende CCL 1,3 Mäusefibroblasten, erhältlich bei Res. Biochemicals Internat. One Strathmore Rd., Natick, MA 01760-2418 USA, eingesetzt.

Zellpräparation

Die D3 exprimierenden Zellen wurden in RPMI-1640 mit 10% fötalem Kälberserum (GIBCO Nr. 041-32400 N); 100 E/ml Penicillin und 0,2% Streptomycin (GIBCO BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05% trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei 300 xg gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit Lysispuffer (5 mM Tris-HCl, pH 7,4 mit 10% Glycerin) gewaschen und danach in einer Konzentration von 107-Zellen /ml Lysispuffer 30 min bei 4°C inkubiert. Die Zellen wurden bei 200 xg 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

Bindungstests

Für den D3-Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 10 µM Quinolinol, 0,1% Ascorbinsäure und 0,1% BSA) in einer Konzentration von ca. 106 Zellen/250 µl Testansatz suspendiert und bei 30°C mit 0,1 nM 125 Jodsulprid in Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10⁻⁶ M Spiperon bestimmt.

Nach 60 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Die Bestimmung der Ki-Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND. Die erfindungsgemäßen Verbindungen zeigen in diesem Test sehr gute Affinitäten zum D3-Rezeptor bei guten Selektivitäten gegenüber dem D2-Rezeptor.

Patentansprüche

15

20

30

35

1. Triazolverbindungen der Formel I:

worin

A für eine geradkettige oder verzweigte $C_1 - C_{18}$ -Alkylengruppe steht, die gegebenenfalls wenigstens eine Gruppe umfassen kann, die ausgewählt ist unter O, S, NR3, CONR3, NR3CO, COO, OCO, oder einer Doppeloder Dreifachbindung,

B für einen Rest der Formel steht:

R1 für H, CO₂R3, NR3R4, OR4 oder C₁-C₈-Alkyl, das gegebenenfalls durch OH, OC₁-C₈-Alkyl oder Halogen substituiert ist, steht;

R² die für R¹ angegebenen Bedeutungen besitzt oder für CF₃, SR³, Halogen oder CN steht;

R³ für H oder C_t - C₈-Alkyl, das gegebenenfalls durch OH, OC_t - C₈-Alkyl oder Halogen substituiert ist,

R⁴ die für R³ angegebenen Bedeutungen besitzt oder für COR³ oder CO₂R³ steht;

Ar für Phenyl, Pyridyl, Pyrimidyl oder Triazinyl steht, wobei Ar ggf. einen oder zwei Substituenten (X und/oder Y) aufweisen kann, die unabhängig voneinander ausgewählt sind unten OR⁴, C₁—C₈-Alkyl, Halogen, CN, CO₂R³, NO₂, SO₂R³, SO₃R⁵, NR³R⁴, SO₂NR³R⁴, SR³, CF₃, CHF₂, einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen heterocyclischen aromatischen oder nicht-aromatischen Ring mit O bis 3 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der carbocyclische oder heterocyclische Ring gegebenenfalls substituiert ist durch C₁ — C₈-Alkyl, Halogen, OC₁ —C₈-Alkyl, OH, NO₂ oder CF₃, und wobei Ar gegebenenfalls auch mit einem carbocyclischen oder heterocyclischen Ring der obea definierten Art kondensiert sein kann, sowie deren Salze mit physiologisch verträglichen Säuren.

2. Verbindungen nach Anspruch 1 der Formel I, worin A für C1-C8-Alkylen steht, das gegebenenfalls ein Sauerstoff- oder Schwefelatom umfaßt.

3. Verbindungen nach Anspruch 1 oder 2 der Formel I, worin Ar für

55 60

D¹, D², und D³ unabhängig voneinander für CH oder N stehen und X und Y unabhängig voneinander für ein 65 Wasserstoffatom oder eine der in Anspruch 1 angegebenen Bedeutungen stehen. Verbindungen nach einem der Ansprüche 1 bis 3 der Formel I, worin R¹ für H oder C₁—C₈-Alkyl, das

gegebenenfalls substituiert ist durch OH, OC1 - C8-Alkyl oder Halogen, steht;

R² für H, C₁ - C₆-Alkyl, das gegebenenfalls substituiert ist durch OH, OC₁ - C₆-Alkyl oder Halogen, NR³R⁴, wobei R³ und R⁴ unabhängig voneinander für H oder C₁-C₈-Alkyl stehen, OR⁴, wobei R⁴ für H oder C1-C5-Alkyl steht, oder CF3 steht;

A für C₁ -- C₁₀-Alkylen steht, das gegebenenfalls ein Schwefelatom umfaßt;

Ar für Phenyl steht:

X und Y unabhängig voneinander für H, CN, SR 3 , C $_1$ —C $_6$ -Alkyl, das gegebenenfalls durch OH, OC $_1$ —C $_6$ -AlkYl oder Halogen substituiert ist, OR4, NO2, NR3R4, CHF2 oder CF3 steht, wobei R3 und R4 die angegebenen Bedeutungen besitzen.

5. Verbindungen nach Anspruch 4 der Formel I. worin

A für Sc3-C10-Alkylen steht; 10

R1 für Hoder C1 - C8-Alkyl steht;

R2 für H, C1-C8-Alkyl, NH2 OH oder CF3 steht;

5

15

20

25

30

35

40

45

50

55

60

65

steht:

Ar für Phenyl oder Pyridyl steht und

X und Y sich in 3-Stellung bzw.5-Stellung der Phenylgruppe befinden und unabhängig voneinander für H—

C₁-C₈-Alkyl, CHF₂, CF₃ oder CN stehen. 6. Verbindungen nach Anspruch 5, wobei

X für CF₃, CHF₂ oder C₁ - C₈-Alkyl steht und Y für H oder C₁ - C₈-Alkyl steht.

7. Verfahren zur Herstellung der Verbindungen nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, daß man

i) eine Verbindung der allgemeinen Formel II:

Y für eine übliche Abgangsgruppe steht, mit einer Verbindung der allgemeinen Formel III

umsetzt;

ii) zur Herstellung einer Verbindung der Formel I, worin A ein Sauerstoff- oder Schwefelatom oder

a) eine Verbindung der allgemeinen Formel IV:

worin Z^{1} für O, S oder NR 3 steht und A 1 für C $_{0}$ —C $_{18}$ -Alkylen steht, mit einer Verbindung der allgemeinen Formel VI

$$Y^1-A^2-B-Ar$$

worin Y^1 , die oben angegebenen Bedeutungen besitzt und A^2 für $C_1 - C_{18}$ -Alkylen steht, wobei A^1 und A2 zusammen 1 bis 18 Kohlenstoffatome aufweisen, umsetzt;

iii) zur Herstellung einer Verbindung der Formel L worin A die Gruppe COO oder CONR3 umfaßt:

a) eine Verbindung der allgemeinen Formel VII:

worin Y2 für OH, OC1-C4-Alkyl, Cl oder zusammen mit CO für eine aktivierte Carboxylgruppe

steht, und A¹ die oben angegebenen Bedeutungen besitzt, mit einer Verbindung der Formel VIII:

Z1-A2-B-Ar

worin A² die oben angegebenen Bedeutungen besitzt, und Z¹ für OH oder NHR³ steht, umsetzt, iv) zur Herstellung einer Verbindung der Formel I, worin A die Gruppe OCO oder NR³CO umfaßt:
a) eine Verbindung der Formet IV

worin Z1 für O oder NR3 steht, mit einer Verbindung der Formel X:

Y2CO-A2-B-Ar

worin A² und Y² die oben angegebenen Bedeutungen besitzen, umsetzt, wobei in den obigen Formein R¹, R², A, Bund Ar die in Anspruch 1 angegebenen Bedeutungen besitzen.

8. Pharmazeutisches Mittel, enthaltend mindestens eine Verbindung der Formel I nach einem der Ansprüche 1 bis 6, gegebenenfalls zusammen mit physiologisch akzeptablen Trägern und/oder Hilfsstoffen.

9. Verwendung wenigstens einer Verbindung der Formel I nach einem der Ansprüche 1 bis 16 zur Herstellung eines pharmazeutischen Mittels zur Behandlung von Erkrankungen des zentralen Nervensystems, oder zur Herstellung eines Antihistaminikums.

- Leerseite -

Claims

1. Triazole compounds of formula I:

$$R^{2}$$
 $N-N$
 $A-B-A$

in which

A stands for a straight-chained or ramified C_1 - C_{18} alkylene group which may optionally contain at least one group chosen from among O, S, NR³, CONR³, NR³CO, COO, OCO, or a double or triple bond,

B stands for a radical of the formula:

$$-N$$
 or $-N$

 R^1 stands for H, CO_2R^3 , NR^3R^4 , OR^4 or C_1 - C_8 alkyl optionally substituted by OH, OC_1 - C_8 alkyl or halogen;

 R^2 has the meanings given for R^1 or stands for CF_3 , SR^3 , halogen or CN; R^3 stands for H or C_1 - C_8 alkyl that is optionally substituted by OH, OC_1 - C_8 alkyl or halogen;

R⁴ has the meanings given for R³ or stands for CO₂R³:

Ar stands for phenyl, pyridyl, pyrimidyl or triazinyl, Ar optionally having one or two substituents (X and/or Y) independently chosen from among OR^4 , C_1 - C_8 alkyl, halogen, CN, CO_2R^3 , NO_2 , SO_2R^3 , SO_3R^5 , NR^3R^4 , $SO_2NR^3R^4$, SR^3 , CF_3 , CHF_2 , a 5 or 6-member carbocyclic, aromatic or non-aromatic ring and a 5 or 6-member heterocyclic aromatic or non-aromatic ring with 0 to 3 heteroatoms chosen from among O, S and N, the carbocylic or heterocyclic ring being optionally substituted by C_1 - C_8 alkyl, halogen, OC_1 - C_8 alkyl, OH, NO_2 or CF_3 and Ar also being optionally condensed with a carbocyclic or heterocyclic ring of the kind defined above, as well as their salts with physiologically compatible acids.

- 2. Compounds according to Claim 1 of formula 1, in which A stands for C_1 - C_8 alkylene that optionally comprises an oxygen or sulfur atom.
- 3. Compounds according to Claim 1 or 2, in which Ar stands for

4. Compounds of formula I according to any of Claims 1 through 3, in which R^1 stands for H or C_1 - C_8 alkyl which is optionally substituted by OH, OC_1 - C_8 alkyl or halogen; R^2 stands for H, C_1 - C_8 alkyl that is optionally substituted by OH, OC_1 - C_8 alkyl or halogen, NR^3R^4 , R^3 and R^4 independently standing for H or C_1 - C_8 alkyl, OR^4 , R^4 standing for H or C_1 - C_8 alkyl, or CF_3 ;

A stands for C_1 - C_{10} alkylene that optionally includes a sulfur atom; Ar stands for phenyl:

X and Y independently stand for H, CN, SR³, C₁-C₈ alkyl which is optionally substituted by OH, OC₁-C₈ alkyl or halogen, OR⁴, NO₂, NR³R⁴, CHF₂ or CF₃, with R³ and R⁴ having the meanings indicated.

5. Compounds according to Claim 4 of formula 1, in which A stands for Sc_3 - C_{10} alkylene; R^1 stands for H or C_1 - C_8 alkyl; R^2 stands for H, C_1 - C_8 alkyl, NH_2 or CF_3 ; B stands for

Ar stands for phenyl or pyridyl and

X and Y are located in the 3 and 5 position respectively of the phenyl group and independently stand for H, C_1 - C_8 alkyl, CHF_2 , CF_3 or CN.

- 6. Compounds according to Claim 5, in which X stands for CF₃, CHF₂ or C₁-C₈ alkyl and Y stands for H or C₁-C₈ alkyl.
- 7. Method of producing the compounds according to any of the above Claims, characterized in that
 - i) a compound of general formula II:

$$R^{2} \bigvee_{\substack{N \\ R \\ 1}}^{N-N} A-Y^{1}$$

in which

Y¹ stands for a conventional starting group, is reacted with a compound of general formula III

H - B - Ar:

ii) to produce a compound of formula I in which A comprises an oxygen or sulfur atom or NR³.

a) a compound of general formula IV:

$$R^{2} \underset{R}{\overset{N-N}{\underset{1}{\bigvee}}} A^{1} - Z^{1} H$$

in which Z^1 stands for O, S or NR³ and A stands for C₀-C₁₈ alkylene is reacted with a compound of general formula VI

in which Y^1 has the meanings given above and A^2 stands for C_1 - C_{18} alkylene with A^1 and A^2 together having 1 to 18 carbon atoms;

iii) to produce a compound of formula I in which A comprises the group COO or CONR³:

a) a compound of general formula VII:

in which Y^2 stands for OH, OC₁-C₄ alkyl, CI or, together with CO, stands for an activated carboxyl group, and A^1 has the meanings given above, is reacted with a compound of formula VIII:

$$Z^{1} - A^{2} - B - Ar$$

in which A² has the meanings given above and Z¹ stands for OH or NHR³,

iv) to produce a compound of formula I in which A comprises the group OCO or $\mathsf{NR}^3\mathsf{CO}$:

a) a compound of formula IV

$$R^{2} \xrightarrow[R]{N-N} A^{1} - Z^{1} H$$

in which Z¹ stands for O or NR³ is reacted with a compound of formula X:

in which A^2 and Y^2 have the meanings given above, with R^1 , R^2 , A, B and Ar have the meanings given in Claim 1 in the above formulas.

- 8. Pharmaceutical agents containing at least one compound of formula I according to any of Claims 1 through 6, optionally with physiologically acceptable vehicles and/or adjuvants.
- 9. Use of at least one compound of formula I according to Claims 1 through 6 to produce a pharmaceutical agent for treating diseases of the central nervous system or to produce an antihistaminic agent.