PixelCNN &

Pixel Recursive Super Resolution

Super Resolution

- Super Resolution is the problem of artificially enlarging a low resolution photograph or image
 - The higher the magnification ratio, the harder it is
- Applications?

Their Data

- Took 32x32 images of faces and blurred them to an 8x8 image
- Then try to recreate original 32x32 image

PixelCNN

- They applied the PixelCNN architecture to super resolution
- The PixelCNN architecture was initially used to fill holes in images
 - Their hole was always the bottom half of the image
- What types of networks would be necessary to accomplish this?

They offered three ideas for how to do it

- Row LSTM runs the three pixels above the current one recursively
- Diagonal Bi-LSTM passes
 bidirectionally from all previous
 pixels
- PixelCNN simply convolves
 the pixels around the current
 one, and masks those from
 ~~the future~~~

Figure 4. Visualization of the input-to-state and state-to-state mappings for the three proposed architectures.

Let's talk about those three architectures

- How do the LSTMs process the sequential data?
- What advantages does each architecture have?
- Is symmetry necessary?
- Why are they all diagonal down and to the left?
- What do we do if the PixelCNN is on the left border?

Figure 4. Visualization of the input-to-state and state-to-state mappings for the three proposed architectures.

Results on the three architectures

- Diagonal Bi-LSTM outperformed on complicated datasets
 - PixelCNN did the worst on complicated datasets
 - What does this tell us about the role of receptive fields?

Back to Pixel Recursive Super Resolution

They chose the PixelCNN architecture

 Why does this one make the most sense for our problem (as opposed to row and diagonal

LSTMs)?

Why a recursive convolutional network?

 Why didn't the researchers simply put the blurry input into a convnet and teach it to predict the true image?

Why a recursive convolutional network?

- Why didn't the researchers simply put the blurry input into a convnet and teach it to predict the true image?
- Because the pixels are not conditionally independent, and a regular convnet has trouble learning that

Problems with a regular convnet

- Basically, image generation needs a model that chooses one mode out of several options, rather than taking their average
 - If drawing an apple, we want green
 or red, not a brown-ish mix of the two
- To prove that PixelCNNs are better for such tasks, the researchers created a dataset of digits in one corner, then trained networks to generate more samples

Problems with a regular convnet

- The regular convolutional network never generated a sample with just one digit
- The PixelCNN only generated samples with one digit

Problems with the PixelCNN

- The PixelCNN, however, doesn't look at the whole low-res image, which we actually have access to (as opposed to the paper where they filled in holes)
- So we want a system that will have access to the whole image but also make distinct decisions while generating
 - What would that look like?

We just add the two together

- How do we take error on the sum?
- How do we separate the partial derivatives?

Error Function

- Ai and Bi are 256 dimensional vectors
 - They contain probability of that color intensity on a scale from 0 to 256
 - Do this for each of the three colors at each pixel
- Softmax is a smooth way of taking the maximum
 - Why does it need to be smooth?
- Do Cross Entropy loss on this p

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

$$p(y_i \mid \mathbf{x}, \mathbf{y}_{\leq i}) = \operatorname{softmax}(A_i(\mathbf{x}) + B_i(\mathbf{y}_{\leq i}))$$
.