Linear Algebra

Samuel Lindskog

December 19, 2024

1 Fundamentals

Definition 1.1 (Vector space). A vector space V over a field F consists of a set on which two operations are defined so that for all $x, y \in V$ there is a unique element x + y in V, and for each $a \in F$ and $x \in V$ there is a unique element $ax \in V$ such that

- 1. For all $x, y \in V$, x + y = y + x.
- 2. For all $x, y, z \in V$, (x + y) + z = x + (y + z).
- 3. There exists $0 \in V$ such that for all $x \in V$, x + 0 = x.
- 4. For each element $x \in V$ there exists an element $y \in V$ such that x + y = 0.
- 5. For each element $x \in V$, 1x = x.
- 6. For all $a, b \in F$ and for all $x \in V$, (ab)x = a(bx).
- 7. For all $a \in F$ and for all $x, y \in V$, a(x + y) = ax + ay.
- 8. For all $a, b \in F$ and for all $x \in V$, (a + b)x = ax + bx.