1 Кратчайшие пути

Длина пути — сумма пометок, написанных на рёбрах графа (весов).

1.1 Графы без циклов отрицательного веса

Вершины на пути с наименьшей длиной не могут повторяться: иначе на пути есть цикл неотрицательного веса, который можно исключить из пути, уменьшив его длину.

Значит, если есть путь из одной вершины в другую, то есть вершинно-простой путь наименьшей длины.

1.2 Графы с циклами отрицательного веса

Если из вершины u есть путь в некоторый цикл отрицательного веса, и при этом есть некоторый путь из вершины на этом цикле в вершину v, то не существует кратчайшего пути из вершины u в v.

Так как по отрицательному циклу можно пройти сколь угодно большое число раз, предъявив путь меньше любого наперёд заданного числа.

Если такая ситуцация невозможна, то существует вершинно-простой путь из u в v.

2 Алгоритм Форда-Беллмана

2.1 Постановка задачи

Алгоритм решает задачу $SSP-Single\ Source\ Shortest\ Paths$, то есть находит кратчайшие пути от выделенной вершины s до всех остальных. Если кратчайшего пути в некоторую вершину v нет, то алгоритм определяет, какая ситуация произошла: путь существует, но на нём есть отрицательный цикл, или же пути из s в v не существует.

2.2 Релаксация ребра

 $\operatorname{dist}[v]$ — длина самого короткого пути из s в v, на данный момент найденная алгоритмом.

Рассмотрим ребро $u \to v$, имеющее вес w. Если $\operatorname{dist}[v] > \operatorname{dist}[u] + w$, то найденное расстояние $u \leadsto v$, равное $\operatorname{dist}[v]$, можно улучшить на путь $s \leadsto u \to v$, проходящий через вершину u.

Чтобы восстановить найденный путь $s \leadsto v$, необходимо запомнить предпоследнюю вершину на пути: $\operatorname{prev}[v] = u$.

2.3 Основной алгоритм

2.3.1 Поиск кратчайших расстояний

Алгоритм Форда-Беллмана (V-1) раз релаксирует все ребра в произвольном порядке.

```
\begin{aligned} & \text{dist} = [+\text{INF}] * \text{vn} \\ & \text{dist} [s] = 0 \\ & \text{for i in range} (\text{vn} - 1) \text{:} \\ & \text{for u, v, w in edges:} \\ & \text{relax\_edge} (\text{u, v, w}) \end{aligned}
```

При дальнейших релаксациях рёбер, расстояние до вершин, до которых существует кратчайшее расстояние, обновляться не будет.

Очевидно, что асимптотическое время работы есть O(VE).

2.3.2 Поиск множества вершин, достижимых из циклов отрицательного веса

После выполнения ещё одной релаксации всех рёбер на каждом отрицательном цикле обновится расстояние хотя бы до одной вершины.

Пометим их и из каждой запустим dfs. До всех вершин, которые пометил dfs, кратчайшего расстояния не существует.

```
updated = [False] * vn
for u, v, w in edges:
   if relax_edge(u, v, w):
       mark[v] = True

used = [False] * vn
for v in range(vn):
   if updated[v]:
      dfs(v)
```

2.3.3 Недостижимые из s вершины

Вершина v не достижима из s, тогда и только тогда, когда после работы алгоритма $\mathrm{dist}[v] = +\infty$.

2.4 Тонкости реализации

- 1. Проверка в релаксации ребра dist[v] > dist[u] + w может сработать, если dist[u] == +INF, при условии, что w < 0. Расстояние до v обновится, и мы будем считать, что есть путь в v.
 - Поэтому релаксировать ребро в графе с отрицательными рёбрами следует при условии: dist[u] < +INF && dist[v] > dist[u] + w.
- 2. Величины в массиве dist могут стать меньше -INF и переполнится. Это приведёт к некорректной работе алгоритма.
 - Поэтому стоит проверять новое значение $\operatorname{dist}[v]$ после релаксации и устанавливать в -INF, если нужно.
- 3. С учётом замечаний, релаксация ребра должна происходить так:

```
def edge_relax(u, v, w):
  if dist[u] < +INF and dist[v] > dist[u] + w:
    dist[v] = max(-INF, dist[u] + w)
    prev[u] = v
    return True
  return False
```

2.5 Доказательство корректности

Если существует кратчайший вершинно-простой путь, то на нём не более V вершин, а значит, не более (V-1) ребра.

 $\mathit{Инвариант\ anropumma}$ — после k релаксаций всех рёбер графа, $\mathrm{dist}[v]$ будет равно длине кратчайшего пути, на котором не более k рёбер.

Докажем это по индукции:

- 1. Очевидно, что это верно до первого шага: все вершины, кроме s, не достижимы по нулю рёбер.
 - После первого шага, мы обновим только расстояние до смежных с s вершин, таким образом найдя кратчайшие расстояния из 1 ребра.
- 2. Кратчайшие пути из не более (k-1) ребра к началу k-ой итерации мы уже нашли.
- 3. Любой путь из k рёбер, это путь из (k-1) ребра и ещё одно ребро. Поскольку для каждой вершины мы релаксируем все входящие в неё рёбра, то после k-ой итерации, найдём кратчайшие пути из не более k рёбер.

3 Алгоритм Флойда-Уоршелла

3.1 Постановка задачи

Алгоритм решает задачу $APSP-All\ Pairs\ Shortest\ Paths,$ то есть находит кратчайшие пути между всеми парами вершин. Если кратчайшего пути между u и v нет, то алгоритм определяет, какая ситуация произошла: путь существует, но на нём есть отрицательный цикл, или же пути из u в v не существует.

3.2 Основной алгоритм

3.2.1 Поиск кратчайших расстояний

Находим кратчайшие расстояния с помощью динамического программирования. Кратчайшие пути вершинно-простые: каждая вершина используется не более одного раза.

 ${
m dist}_k[u][v]$ — длина кратчайшего пути из вершины u в вершину v по вершинам с номерами строго меньше k. Таким образом, состояние динамики — матрица $n\times n.$

Заметим, что матрица ${\rm dist}_0$ — это матрица путей, не использующих промежуточные вершины, то есть просто матрица смежности.

База есть, осталось научиться переходить от матрицы dist_k к $\operatorname{dist}_{k+1}$. Пути dist_k использовали вершины с номерами $0, 1, \ldots (k-1)$. В матрице $\operatorname{dist}_{k+1}$ разрешено использовать вершину с номером k.

Длина кратчайшего пути из u в v, использующего вершину k, равна ${\rm dist}_k[u][k]+{\rm dist}_k[k][v]$, если не использовать, то ${\rm dist}_k[u][v]$. Таким образом:

$$\operatorname{dist}_{k+1}[u][v] = \min\left(\operatorname{dist}_{k}[u][v], \ \operatorname{dist}_{k}[u][k] + \operatorname{dist}_{k}[k][v]\right)$$

Заметим, что можно хранить все величины в одной матрице dist, экономя память. Так как в момент обновления $\operatorname{dist}[u][v] \leqslant \operatorname{dist}_k[u][v]$ (пути покороче нам нравятся ещё больше).

3.2.2 Восстановление ответа

На каждом пути $u \leadsto v$ давайте хранить не только его величину, но и предпоследнюю вершину.

Изначально, при инициализации алгоритма, для каждого ребра $u \to v$ положим prev[u][v] = u, для остальных -1.

Предпоследняя вершина на пути $u \leadsto k \leadsto v$ такая же, как и на пути $k \leadsto v$. Поэтому, если при обновлении расстояния $\mathrm{dist}[u][v]$ можно пересчитать $\mathrm{prev}[u][v] = \mathrm{prev}[k][v]$.

Имея предыдущую вершину на пути, легко восстановить и сам путь:

```
path = []
while v != u:
   path.append(v)
   v = prev[u][v]
path.append(u)
path.reverse()
```

Чтобы путь не переворачивать, можно хранить не prev[u][v], а next[u][v].

3.2.3 Тонкости реализации

Если есть отрицательные рёбра, то необходимо делать проверку: dist[u][k] != +INF and dist[k][v] != +INF (смотри замечания к алг. Форда-Беллмана).

A также стоит следить за тем, чтобы dist[u][v] >= -INF.

3.2.4 Графы с отрицательными рёбрами

Если есть отрицательные циклы и нет кратчайшего пути, то алгоритм находит длину какого-то пути, если он есть.

В этом случае вершины могут использоваться несколько раз (т.к. пути необязательно вершинно-простые), значит, восстановление пути не будет работать для таких путей.

На главной диагонали будут стоять длины не тривиальных циклов $\operatorname{dist}[v][v]$ — длина пути из $v \leadsto v$. Неотрицательное число соответствует длине кратчайшего цикла, содержащего v, отрицательное — длине какого-то цикла отрицательной длины.

Из u в v нет кратчайшего пути тогда и только тогда, когда есть путь $u\leadsto k\leadsto v$, где k лежит на отрицательном цикле. Помечаем все такие пути:

```
\begin{array}{lll} \textbf{for } u & \textbf{in } \textbf{range}(vn) \colon \\ & \textbf{for } v & \textbf{in } \textbf{range}(vn) \colon \\ & \textbf{for } k & \textbf{in } \textbf{range}(vn) \colon \\ & \textbf{if } \operatorname{dist}[k][k] < 0 & \textbf{and } \operatorname{dist}[u][k] < + INF \setminus \\ & \textbf{and } \operatorname{dist}[k][v] < + INF \colon \\ & \operatorname{mark}[u][v] = \operatorname{True} \end{array}
```

Если на таком пути пойти по массиву **prev**, восстанавливая путь, то мы зациклимся на цикле отрицательного веса. Так можно найти какой-то цикл отрицательного веса, если начать с вершины v, такой что $\operatorname{dist}[v][v] < 0$.

4 Алгоритм Дейкстры

Oчевидно! =)