Hyperbolic PDE

First order convection equation

$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0$$

Second order wave equation

$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2}$$

It can be shown that @ reduces to @

$$\frac{\partial \phi}{\partial t} = -c \frac{\partial \phi}{\partial x} \qquad -3$$

Differentiating both sides with respect to time

$$\frac{\partial \phi}{\partial t} = -c \frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial x} \right) = -c \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial t} \right)$$

switching the

$$= -c \frac{\partial}{\partial x} \left(-c \frac{\partial \phi}{\partial x} \right) \qquad \text{from (3)}$$

$$\frac{\partial^2 \phi}{\partial t^2} = \frac{c^2}{\partial x^2} \frac{\partial^2 \phi}{\partial x^2}$$
 Same as (2)

2 initial conditions:
$$t=0$$
; $\psi=\alpha_1(x)$

2 boundary condition:
$$x=0$$
; $\phi = \beta$, $t>0$
 $x=L$; $\phi = \beta_2$

$$\frac{\partial^2 \phi}{\partial t^2} = \frac{c^2}{\partial x^2}$$

$$\phi_{ij} = \lim_{t \to \infty} \int_{t}^{\infty} \int$$

Solve for \$ inj

$$\frac{\phi_{i+1}}{\phi_{i+1}} = -\frac{\phi_{i+1}}{\Delta x^2} + \frac{c^2 \Delta t^2}{\Delta x^2} \left(\phi_{ij+1} + \phi_{ij+1} \right) + \dots + 2 \left[1 - c^2 \Delta t^2 \right] \phi_{ij}$$

Method is stable as long as
$$1-\frac{c^2\Delta t^2}{\Delta x^2} > 0 \qquad \frac{C\Delta t}{\Delta x} \leq 1$$

Courant Condition

EXAMPLE Consider the wave equation
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

Initial conditions:
$$u(x,0) = \begin{cases} x & 6 \le x \le 0.5 \\ 1 = x & 0.5 < x \le 1 \end{cases}$$

$$\frac{du}{dt}(x,0) = 0$$

Boundary conditions:
$$u(0,t) = u(1,t) = 0$$

Use
$$\Delta x = 0.25$$
 and $\Delta t = 0.1$.

Convent condition
$$C \Delta t = (1)(0.1) = 0.4 < 1$$

$$\Delta x = 0.25$$
Stable!

$$\psi_{i+ij} = -\psi_{i+ij} + (0.4)^{2} \left[\psi_{ij+i} + \psi_{ij-i} \right] \\
 + 2 \left(1 - 0.4^{2} \right) \psi_{ij}$$

$$j=1 \quad U_{21} = -U_{01} + 0.16 \left[U_{12} + U_{10} \right] + 1.68 U_{11}$$

$$U_{21} = -0.25 + 0.16 \left[0.5 + 0 \right] + 1.68 \left(0.25 \right)$$

$$= 0.25$$

$$j = 2$$
 $U_{22} = -U_{02} + 0.16 \left[U_{13} + U_{11} \right] + 1.68 U_{12}$

$$= -0.5 + 0.16 \left[0.25 + 0.25 \right] + 1.68 \left(0.5 \right)$$

$$= 0.42$$

$$j=3$$
 $V_{23} = -V_{03} + 0.16(V_{14} + V_{12}) + 1.68 V_{13}$
= $-0.25 + 0.6(0+0.5) + 1.68 (0.25)$
= 0.25

•	S. WHO	1								
•	j	0	1 -	1 2	1 3	4				
Ċ	EX	O	0.25	0.2	0.42)				
-0	0	* V ₀₆	0.25	0.5 Vol (x) Vol	0.25	0				
→ / ^U	^{ij} 0·1	V ₁₀	0.25	8.5 VIZ	0.25 13	0 4				
i	5 2		U	1 = Vo;						
2	0.2	0	0.12	0.42	0.25	0				
3	0.3	0	0.2372	0.2856	0.2372	0				
4	0.4	6	0.1942	0.1357	0.1942	0				
5	0.5	0	0.1108	010045	0.1108	0				
$\frac{du}{dt} = \frac{U_{i+1}j - U_{ij}}{At} = 0 \Rightarrow U_{i+1}j = U_{ij}$										
	Vij = Voj									

	Soluta	1					
	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	1	(2	, 3	4	
Ċ	tx	0	0.25	0.2	0.45	1	
0	0	0	0.25	0.5	0.25	0	
J	0.1	0	0.25	0.5	0.25	0	
2	0.2	0	0.15	0.42	0.25	0	•
3	0.3	0	0.2372	0.2856	0.2372	0	
4	0.4	6	0.1942	0.1357	0.1942	0	-
5	0.5	0	0.1108	0,0045	0.1108	0	
							•