

Web Based Terrain Modeller

MSc in Computational and Software Techniques in Engineering Digital Signal and Image Processing

Miguel Marques

Supervisor: Dr. Peter Sherar

22nd July 2016

www.cranfield.ac.uk

Outline

- 1 Problem
- 2 Relevant Background
- 3 Methodology
- **4** Software
- **5** Demonstration
- 6 Benchmarks
- **7** Conclusion & Further Work

Functional Requirements

- Procedurally generate detailed terrains
- Use a CAD surface as a base

Technical Requirements

- Web-based
- Based on fractal geometry

Additional Requirements

Real-time editing

Fractals

in Weisstein, Eric W. "Koch Snowflake." From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/KochSnowflake.html

in Weisstein, Eric W. "Menger Sponge." From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/MengerSponge.html

Fractional Brownian Motion (fBm)

$$D_f = D_E + 1 - H$$

D_f Fractal dimension

D_E Euclidean dimension

H Hurst Exponent

$$H = 0.0$$

$$H = 1.0$$

in http://paulbourke.net/fractals/noise/

Terrain Representation

Height Map

- Two dimensional array
- Each position saves an altitude value
- Can be saved as a grayscale image

Example of height map

Terrain Representation

Regular Grid

- Wireframe processing
- Rendering

in http://wtlab.iis.u-tokyo.ac.jp/ wataru/lecture/rsgis/rsnote/cp6/cp6-10.htm

- Poisson Faulting
- Subdivision Methods
- Fourier Filtering
- Noise Synthesis

- Poisson Faulting
- Subdivision Methods
- Fourier Filtering
- Noise Synthesis

in http://paulbourke.net/fractals/noise/

- Poisson Faulting
- Subdivision Methods
- Fourier Filtering
- Noise Synthesis

in http://paulbourke.net/fractals/noise/

Terrain Generation Methods

- Poisson Faulting
- Subdivision Methods
- Fourier Filtering
- Noise Synthesis

$$\beta = 1 + 2\mathbf{H} \Leftrightarrow \mathbf{H} = \frac{\beta - 1}{2}$$

$$D_f = D_E + 1 - H = D_E + \frac{3-\beta}{2}$$

O_f Fractal dimension

D_E Euclidean dimension

H Hurst Exponent

 β Filter Power

- Poisson Faulting
- Subdivision Methods
- Fourier Filtering
- Noise Synthesis

Perlin Noise Synthesis with 1, 2, 4 and 8 octaves

Overview

CAD Modelling

Example output from CAD Modelling Phase

Random Surface Generation - Fourier Filtering

Random Surface Generation - Noise Synthesis

$$\frac{\sum_{i=0}^{O-1} \textit{noise}(\textit{x} \times \textit{L}^{i} + \textit{B}, \textit{y} \times \textit{L}^{i} + \textit{B}) \times \textit{P}^{i}}{\sum_{i=0}^{O-1} \textit{P}^{i}}$$

O octaves Number of frequencies

L lacunarity Gap between successive frequencies

P persistence Contribution gap between successive octaves

B base Frequency displacement

noise Noise function (eg. Perlin or Simplex)

Blending Process

Blending Process - Base Mapping

Blending Process - Detail Extraction

Blending Process - Combine Operation

Software

Technologies

GPU Computations

Technical Details

- WebGL 2
- Render to Texture
- Floating-point textures

Features

- FFT and IFFT
- Element-wise operations
- Matrix Normalization

Demonstration

Benchmarks

Conclusion & Further Work

What has been done

- Hybrid Process for terrain modelling
- Web-based implementation
- WebGL 2 used for computations

Future Work

- Different detail extraction methods
- Real world data