Алгебра 3 Кузнецов

1 Листок 1. Нётеровы кольца

1. R нёторово. Покажем, что R[[x]] тоже нётерово. Пусть J — идеал в R[[x]]. Пусть $\mathfrak{a}(n) = \{a_n \in R : \exists p = a_n x^n + a_{n+1} x^{n+1} + \ldots \in J\}$. Ясно, что $\mathfrak{a}(0) \subseteq \mathfrak{a}(1) \subseteq \mathfrak{a}(2) \subseteq \ldots$ — идеалы в R. Поэтому из нётеровости R следует, что при некотором $d \in \mathbb{N}$ имеет место

$$\mathfrak{a}(n) = \mathfrak{a}(d) \ \forall n \ge d.$$

Найдём образующие каждого идеала $\mathfrak{a}(n)$ при $n \leq d$ и выберем соответствующие степенные ряды в R[[x]] для каждой образующей (для $a \in \mathfrak{a}(n)$ выбираем степенной ряд вида $a_n x^n + \ldots$). Вся эта совокупность образующих и порождает идеал J. Если степенной ряд в J начинается со степени меньше d, то вычитаниями приводим его к начинающемуся со степени не меньше d. А для ряда, начинающегося со степени не меньше d, проводим аналог деления с остатком на степенные ряды, соответствующие образующим $\mathfrak{a}(d)$. Только в отличие от деления многочленов этот процесс бесконечный. В результате такого деления получаем представление степенного ряда в виде суммы произведений некоторых степенных рядов на степенные ряды, соответствующие образующим $\mathfrak{a}(d)$.

- 2. Конечно порождённый модуль над нётеровым кольцом нётеров. Пусть R нётерово кольцо, M нётеров модуль над R. Если M не нётеров, то существует бесконечная последовательность b_1, b_2, \ldots элементов M, такая, что ни один из b_k не выражается как линейная комбинация с коэффициентами из R предыдущих b_i . Записывая b_k как линейные комбинации образующих модуля M a_1, \ldots, a_N , получаем, что есть бесконечная последовательность векторов из R^N , такая, что ни один из них не является линейной комбинацией предыдущих с коэффициентами из R. Индукцией по N показываем, что это не так.
- 3. M нётеров R-модуль. $\mathfrak a$ аннигиляционный идеал в R. Покажем, что $R/\mathfrak a$ нётерово кольцо.

 R/\mathfrak{a} действует на M так, что ни один его элемент кроме нуля не действует на M нулём.

Можно считать сразу, что R действует на M так, что ни один элемент, кроме нуля, не действует нулём, и показывать, что R — нётерово кольцо.

Пусть m_1, \ldots, m_n — порождают M над R. Допустим, M не нёторово. Тогда есть идеал I в R, который не конечно порождён.

Выбираем последовательность i_1, i_2, \ldots, i_k , такую, что i_{k+1} не содержится в идеале, порождённом i_1, \ldots, i_k , для любого k. Рассматриваем векторы в M^n :

$$\begin{pmatrix} i_1 m_1 \\ \vdots \\ i_1 m_n \end{pmatrix}, \dots, \begin{pmatrix} i_k m_1 \\ \vdots \\ i_k m_n \end{pmatrix}, \dots$$

Лемма 1.1. Если M — нётеров R-модуль, то в любой последовательности векторов из M^n какой-то вектор будет линейной комбинацией предыдущих. Иначе говоря, M^n — нётеров модуль.

Эта лемма следует из следующей.

Лемма 1.2. Если M и N — нётеровы R-модули, то $M \times N$ — нётеров R-модуль.

Proof. Если это не так, то существует бесконечная последовательность

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix}, \dots$$

в которой каждый элемент не является линейной комбинацией (с коэффициентами из R) предыдущих. Сначала за счёт нётеровости обнулим первую компоненту, затем вторую.

Применяя лемму к нашей ситуации, получаем при некотором k равенство

$$\begin{pmatrix} i_k m_1 \\ \vdots \\ i_k m_n \end{pmatrix} = r_1 \begin{pmatrix} i_1 m_1 \\ \vdots \\ i_1 m_n \end{pmatrix} + \ldots + r_{k-1} \begin{pmatrix} i_{k-1} m_1 \\ \vdots \\ i_{k-1} m_n \end{pmatrix}.$$

А отсюда получаем, что $i_k - r_1 i_1 - \ldots - r_{k-1} i_{k-1}$ действует нулём на M. Значит, это 0. Противоречие.

- 4. а) Нуль на всех координатных плоскостях. Образующая xyz. Если содержатся члены, которые не содержат одну из переменных, например, z, то p(x,y) + zq(x,y) на плоскости z=0 не тождественный ноль.
 - б) Нуль на всех координатных прямых. Координатные прямые:

$$x = y = 0, x = z = 0, y = z = 0.$$

xy,yz,zx — образующие. Как только есть члены, зависящие только от одной переменной, например p(x), то мы получаем не тождественный ноль на y=z=0.

в) Нуль на t^2, t^3, t^4 . $z-x^2, y^2-x^3$. Допустим, многочлен обращается в 0 на (t^2, t^3, t^4) . Тогда его можно представить в виде

$$(z - x^2)p(x, y) + q(x, y),$$

и при этом q(x,y) обращается в ноль на (t^2,t^3) . А это ровно когда $y^2=x^3$. Делим на y^2-x^3 , получаем в остатке многочлен степени не выше 1 по y. Это многочлен вида yr(x)+u(x), причём он обращается в 0 когда $y^2=x^3$. Заменяем y на -y, и он уже не обращается в 0, если не был нулевым тождественно.

 Γ

5. а) Кольцо полиномов, инвариантных относительно действия группы диэдра D_n . Положим z=x+iy и будем рассматривать полиномы $p(z,\overline{z})$. Наш полином должен быть инвариантен относительно сопряжения и умножения z на $e^{2\pi i/n}$. Инвариантами должны быть и его однородные компоненты. Из

$$\frac{1}{n} \sum_{k=0}^{n} p(e^{2\pi i} z, \overline{e^{2\pi i} z}) = p(z, \overline{z})$$

получаем, что $z^k\overline{z}^l$ не усредняется в 0 только при k-l делящемся на n. Из инвариантности относительно сопряжения получаем, что наш многочлен представляется в виде суммы членов вида $a(z^k\overline{z}^l+z^l\overline{z}^k)$ с k-l делящимся на n. Значит, образующие $z\overline{z}$ и $z^n+\overline{z}^n$.

Есть ли между этими образующими какие-либо соотношения? Допустим, $p(z\overline{z},z^n+\overline{z}^n)=0$. Представим себе p как многочлен h от $z^n+\overline{z}^n$ с коэффициентами-многочленами от $z\overline{z}$. Старший член

$$q_m(z\overline{z})(z^n+\overline{z}^n)^m$$
.

Возьмём $z=re^{i\phi}$. Получаем, что многочлен $h(r^{2n})$ имеет бесконечно много корней (вида $2r^ncos(n\phi)$). Значит, этот многочлен нулевой при всех r. А значит, его старший коэффициент нулевой как многочлен от $z\overline{z}$.

б) Кольцо полиномов, инвариантных относительно действия группы вращений правильного n-угольника.

Как и в предыдущем пункте, получаем, что наш многочлен представляется в виде суммы членов вида $az^k\overline{z}^l$ с k-l делящимся на n. Образующие $1, z\overline{z}, z^n, \overline{z}^n$. Соотношение: $(z\overline{z})^n = z^n\overline{z}^n$. Почему нет других соотношений?

6. а) Идеал в $\mathbb{C}[x_1,x_2,x_3]^{\mathbb{S}_3}$, состоящий из функций, обращающихся в 0 при $x_1=x_2$.

Пусть $p(x_1, x_2, x_3)$ принадлежит идеалу. Разделим с остатком p на x_1-x_2 как многочлены от x_1 . Получим равенство

$$p(x_1, x_2, x_3) = (x_1 - x_2)q(x_1, x_2, x_3) + r(x_2, x_3).$$

Получается, $r(x_2,x_3)$ обращается в 0 при $x_1=x_2$. Значит, он тождественно нулевой. Разделим q на x_1-x_2 с остатком. Получим

$$p(x_1, x_2, x_3) = (x_1 - x_2)^2 q_1(x_1, x_2, x_3) + (x_1 - x_2)r_1(x_2, x_3).$$

Перестановка x_1 и x_2 не меняет многочлена. Поэтому

$$(x_1 - x_2)^2 q_1(x_1, x_2, x_3) + (x_1 - x_2)r_1(x_2, x_3) = (x_1 - x_2)^2 q_1(x_2, x_1, x_3) + (x_2 - x_1)r_1(x_1, x_3).$$

Переносим члены в другие части, получаем:

$$(x_1-x_2)^2(q_1(x_1,x_2,x_3)-q_1(x_2,x_1,x_3))=(x_2-x_1)(r_1(x_1,x_3)+r_1(x_2,x_3)).$$

Сокращаем на $x_1 - x_2$:

$$(x_2 - x_1)(q_1(x_1, x_2, x_3) - q_1(x_2, x_1, x_3)) = r_1(x_1, x_3) + r_1(x_2, x_3).$$

Подставляя $x_1 = x_2$, получаем $r_1 = 0$. Итак,

$$p(x_1, x_2, x_3) = (x_1 - x_2)^2 q_1(x_1, x_2, x_3).$$

Аналогично, p делится на $(x_2-x_3)^2$ и на $(x_1-x_3)^2$. Значит, он делится на $(x_1-x_2)^2(x_2-x_3)^2(x_1-x_3)^2$. Это и есть порождающий элемент идеала.

2 Листок 2. Факториальные кольца

1. в) Пусть g(x) = f(x+m). Тогда g — тоже многочлен с целыми коэффициентами.

$$g\left(\frac{p}{q} - m\right) = f\left(\frac{p}{q}\right) = 0.$$

Значит, $\frac{p-mq}{q}$ — корень g. Кроме того, g(0)=f(m). Из пункта а) получаем нужное.

- 2. Определитель неприводим. Допустим, мы представили наш определитель как произведение двух скобок. Рассмотрим произвольный элемент матрицы x_{ij} . Рассматривая наши многочлены как многочлены от x_{ij} (с коэффициентами из большего кольца), получаем, что x_{ij} содержится ровно в одной из скобок (иначе у нас будет некоторая большая степень x_{ij}), причём содержится в первой степени. x_{ij} и $x_{i'j}$, $i \neq i'$ находятся в одной скобке, иначе бы в определитель входило их произведение. Итак, каждый столбец входит целиком в одну скобку. Но так же и каждая строчка. А такого быть не может, ибо тогда все переменные входили бы в одну скобку.
- 3. а) Надо взять в роли p в критерии Эйзенштейна $x \alpha \in \mathbb{C}[x]$, где α некратный корень $x^3 + px + q$. Поскольку $x^3 + px + q$ не имеет вид $(x u)^3$, то у него есть некратный корень.
 - б) Рассматриваем как многочлен от $y xy^3 + (1-x)y + (x^2-1)$ и применяем критерий Эйзенштейна с x-1 в роли p.
 - в) Что-то неверное.
- 4. а) Пусть h_1, h_2, \ldots, h_k однородные порождающие идеала \mathfrak{a} . f некоторый элемент идеала. $f = g_1h_1 + \ldots + g_kh_k, g_i \in \mathbb{C}[x_1, \ldots, x_n]$. Представляя g_i в виде суммы однородных компонент и группируя слагаемые одинаковых степеней, получаем представление f в виде суммы однородных полиномов, лежащих в идеале.

- 5. Если множеством нулей идеала \mathfrak{a} является начало координат, то по теореме Гильберта о нулях каждый x_1, \ldots, x_n в какой-то степени лежит в идеале. Поэтому там лежат все однородные многочлены достаточно высокой степени.
 - В другую сторону: в идеале лежат x_1^N,\dots,x_n^N при достаточно большом N, а множество их общих нулей только начало координат. Поскольку идеал не единичный, есть хотя бы один общий ноль. Значит, это начало координат.
- 6. а) Ясно из лекции, что факториально.
 - б) $\mathbb{Q}[x,y]/(x^3-2)=\mathbb{Q}[\sqrt[3]{2}][y]$. Заметим, что в $\mathbb{Q}[\sqrt[3]{2}]$ все элементы кроме нуля обратимы, т.е. это поле. Действительно, пусть $\alpha\in\mathbb{Q}[\sqrt[3]{2}]$. Тогда $\alpha,\alpha^2,\alpha^3,\ldots$ всё элементы этого кольца, и они линейно зависимы над полем \mathbb{Q} , поскольку наше кольцо имеет базис $(1,\sqrt[3]{2},\sqrt[3]{4})$ над \mathbb{Q} . А тогда

$$u_0\alpha^k + u_1\alpha^{k+1} + \ldots + u_n\alpha^{k+n} = 0, k \ge 1, u_i \in \mathbb{Q}, u_0 \ne 0, u_n \ne 0.$$

Отсюда

$$u_0 + u_1 \alpha + \ldots + u_n \alpha^n = 0,$$

$$\alpha(u_1 + \ldots + u_n \alpha^{n-1}) = -u_0,$$

и α обратим. Значит, $\mathbb{Q}[\sqrt[3]{2}]$ — поле, и $\mathbb{Q}[\sqrt[3]{2}][y]$ факториально.

- в) Пусть p_1, \ldots, p_r все простые множители N. Обратимые (единицы) в рассматриваемом кольце это все вида $p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_r^{\alpha_r}, \alpha_i \in \mathbb{Z}$. Неприводимыми элементами будут все остальные (кроме p_1, \ldots, p_r) простые числа. Ясно, что кольцо факториально.
- г) В \mathbb{Z}_p неприводимые это p. Любой элемент однозначно раскладывается на произведение нескольких p и обратимый элемент вида $\sum\limits_{k=0}^{\infty}a_kp^k, a_0\neq 0, 0\leq a_i\leq p-1.$
- д) Кольцо $\mathbb{Z}[\sqrt{-1}]$. Факториально, поскольку в нём есть алгоритм Евклида. Мы можем делить с остатком одно число на другое, а именно, если у нас есть x,y из кольца и $0<\|y\|<\|x\|$, то одно из чисел y,-y,iy,-iy образует на комплексной плоскости угол с x меньше 45 градусов (а значит, меньше 60 градусов). Отсюда следует, что (обозначив это число через y_1)

$$||x - y_1|| < ||x||.$$

Действительно, в треугольнике, образованном векторами $x, y_1, x-y_1$ угол против стороны $x-y_1$ меньше 60 градусов. Значит, угол против большей из двух других сторон (а это x) больше 60 градусов. Значит, и выполнено неравенство $\|x-y_1\|<\|x\|$ (против большей стороны лежит больший угол).

е) $\mathbb{Z}[\sqrt{-3}]$. Имеем, как на лекции:

$$4 = 2 \times 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

3 Листок 3

- 1. Для n=1 легко (у многочлена от одной переменной не может быть слишком много корней), а дальше индукция. Рассматриваем многочлен как многочлен от x_n , есть набор чисел, при которых его старший коэффициент ненулевой. Подставляем эти числа. Тогда при некотором x_n многочлен ненулевой (случай n=1).
- 2. а) Однородный неприводимый многочлен второй степени в $\mathbb{C}[x,y]$. Не существует. Если это многочлен $f(x,y)=ax^2+2bxy+cy^2$, то, рассматривая отдельно случаи a=0 и c=0, имеем

$$f(x,y) = cx^{2}h\left(\frac{y}{x}\right) = cx^{2}\left(\frac{y}{x} - \alpha_{1}\right)\left(\frac{y}{x} - \alpha_{2}\right) = c(y - \alpha_{1}x)(y - \alpha_{2}x).$$

б) Многочлен $x^2 + y^2 + z^2$ неприводим. Допустим,

$$x^{2} + y^{2} + z^{2} = (\alpha_{1}x + \beta_{1}y + \gamma_{1}z)(\alpha_{2}x + \beta_{2}y + \gamma_{2}z).$$

Тогда $\alpha_1\alpha_2=\beta_1\beta_2=\gamma_1\gamma_2=1$. Можно считать $\alpha_1=1$. Тогда имеем разложение

$$x^{2} + y^{2} + z^{2} = (x + \beta y + \gamma z) \left(x + \frac{1}{\beta} y + \frac{1}{\gamma} z \right).$$

Из этого разложения получаем $\beta+1/\beta=0, \gamma+1/\gamma=0, \beta/\gamma+\gamma/\beta=0.$ Отсюда $\beta=\pm i, \gamma=\pm i,$ а тогда равенство $\beta/\gamma+\gamma/\beta=0$ не может выполняться.

3.

4. a)

$$\begin{cases} xy = 0, \\ y^3 + y^2 = 0; \end{cases}$$

$$\begin{cases} xy = 0, \\ y^3 + y^2 = 0; \end{cases}$$

$$\begin{cases} xy = 0, \\ y^2(y+1) = 0; \end{cases}$$

Имеем два варианта: либо y=0, либо x=0,y=-1. Это и есть неприводимые компоненты. Осталось найти радикал идеала. Это многочлены, зануляющиеся на y=0 и в точке x=0,y=-1. На y=0 зануляются все из идеала (y) и только они, то есть наш многочлень должен делиться на y. В точке x=0,y=-1 зануляются многочлены из идеала (x,y+1). Наш радикал — это идеал (xy,y(y+1)).

5. Доказываем индукцией по n. База индукции: n=2. $I\subseteq \mathfrak{a}_1\cup \mathfrak{a}_2$. Допустим, I не содержится ни в \mathfrak{a}_1 , ни в \mathfrak{a}_2 . Тогда существует элемент $x\in I$, такой, что $x\notin \mathfrak{a}_2$. Тогда $x\in \mathfrak{a}_1$. Также существует $y\in I$, такой,

что $y \notin \mathfrak{a}_1$. Тогда $y \in \mathfrak{a}_2$. Рассмотрим элемент x + y. Он лежит в I, но он не может лежать ни в \mathfrak{a}_1 , ни в \mathfrak{a}_2 . Противоречие.

Индукционный переход. Будем следовать указанию. Предположим, что для меньших n чисел утверждение выполнено, а в нашем случае — нет. Тогда каждое \mathfrak{a}_i не лежит в объединении остальных \mathfrak{a}_k , и существуют $a_i \in I, i=1,\ldots,n$, такие, что $a_i \notin \mathfrak{a}_j$ при $i \neq j$. Если бы такое a_i при некотором i не существовало, то мы бы могли выбросить \mathfrak{a}_i , обойтись меньшим числом идеалов \mathfrak{a}_k и применить предположение индукции.

Рассмотрим теперь элемент $x=a_1\dots a_{n-1}+a_n$. Он лежит в идеале I. Значит, он лежит в некотором идеале \mathfrak{a}_k . Если k< n, то $a_n\in \mathfrak{a}_k$ — противоречие. Значит, $x\in \mathfrak{a}_n$. Но тогда $a_1\dots a_{n-1}\in \mathfrak{a}_n$. А это противоречит простоте идеала \mathfrak{a}_n , ведь ни один из множителей в нём не лежит.

4 Листок 4

- 1. Минимальные многочлены.
 - а) 5+3i над \mathbb{R} . Имеем

$$(x - (5+3i))(x - (5-3i)) = x^2 - 10x + 34.$$

Ясно, что меньшей степени быть не может, т.к. меньше только степень $1,\, {\rm a}\,\, 5+3i$ не является действительным числом.

 $6)\sqrt{3}+\sqrt{5}$ над \mathbb{Q} . Имеем

$$(x - (\sqrt{5} + \sqrt{3}))(x + (\sqrt{5} + \sqrt{3}))(x - (\sqrt{5} - \sqrt{3}))(x + (\sqrt{5} - \sqrt{3})) =$$

$$= (x^2 - (\sqrt{5} + \sqrt{3})^2)(x^2 - (\sqrt{5} - \sqrt{3})^2) = (x^2 - 8 - 2\sqrt{15})(x^2 - 8 + 2\sqrt{15}) =$$

$$= (x^2 - 8)^2 - 60.$$

5 Листок 5