Package 'sGBJ'

October 14, 2022

Description Implements an extension of the Generalized Berk-Jones (GBJ) statistic for

```
survival data, sGBJ. It computes the sGBJ statistic and its p-value for testing
     the association between a gene set and a time-to-event outcome with possible
     adjustment on additional covariates. Detailed method is available at Villain L, Ferte T,
     Thiebaut R and Hejblum BP (2021) <doi:10.1101/2021.09.07.459329>.
License GPL (>= 3)
Depends R (>= 3.5.0)
Imports GBJ, stats, survival
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
URL https://github.com/lauravillain/sGBJ
BugReports https://github.com/lauravillain/sGBJ/issues
NeedsCompilation no
Author Laura Villain [aut, cre],
     Thomas Ferte [aut],
```

Rodolphe Thiebault [aut], Boris P. Hejblum [aut]

Date/Publication 2021-09-15 18:30:02 UTC

Repository CRAN

Maintainer Laura Villain < villain.laura@gmail.com>

Title Survival Extension of the Generalized Berk-Jones Test

Type Package

Version 0.1.0

2 .epsilon_matrix

R topics documented:

	.epsilon_matrix	
	.survival_scores	
	ls_test_results	
	sGBJ	3
	sGBJ_scores	
	surv_calc_scores_stats	5
Index		7

.epsilon_matrix

.epsilon_matrix

Description

Compute the epsilon matrix by permutation for the sGBJ_scores() function.

Usage

```
.epsilon_matrix(Z, nperm, surv, factor_matrix, covariates = NULL, dat)
```

Arguments

Z the score vector returned by .survival_scores() function.

nperm number of permutations performed to estimate the epsilon matrix. Default is

300.

surv a Surv object of length n

factor_matrix anxpdata.frame of the expression for the particular gene set of interest being

tested

covariates a n x 1 matrix of the covariates to adjust upon. Default is NULL

data used to fit survival model returned by .survival_scores() function.

Value

The epsilon matrix.

.survival_scores 3

	. 7
.survival_scores	.survival scores

Description

Compute the survival score

Usage

```
.survival_scores(factor_matrix, covariates = NULL, surv)
```

Arguments

factor_matrix anxpdata.frame of the expression for the particular gene set of interest being

testec

covariates a matrix nxl of the covariates to adjust. Default is NULL

surv a Surv object of length n

Value

A list of length 3 with the updated factor_matrix (same as factor_matrix but removing columns for which survival model failed to converge), the Z matrix and the data used to fit survival model.

ls_test_results	A data file used for testing sGBJ	

Description

A data file used for testing sGBJ

sGBJ	Compute the sGBJ statistic and its p-value quantifying a gene set expression association with survival

Description

This function is the main function of the sGBJ package to perform Gene Set Analysis in the context of time-to-event outcome.

Usage

```
sGBJ(surv, factor_matrix, covariates = NULL, nperm = 300)
```

sGBJ_scores

Arguments

surv a Surv object of length n

factor_matrix a n x p data. frame of the expression for the particular gene set of interest being

tested

covariates a n x 1 matrix of the covariates to adjust upon. Default is NULL

nperm number of permutations performed to estimate the epsilon matrix. Default is

300.

Value

The sGBJ statistic and its associated p-value associated

Examples

sGBJ_scores

Compute the sGBJ statistic along with its p-value quantifying the association between a gene set and survival outcome

Description

Compute the sGBJ statistic along with its p-value quantifying the association between a gene set and survival outcome

Usage

```
sGBJ_scores(surv, factor_matrix, covariates = NULL, nperm = 300)
```

Arguments

surv a Surv object of length n

factor_matrix anx pdata.frame of the expression for the particular gene set of interest being

tested

covariates a n x 1 matrix of the covariates to adjust upon. Default is NULL

nperm number of permutations performed to estimate the epsilon matrix. Default is

300.

surv_calc_scores_stats 5

Value

a list containing the sGBJ statistic estimation and its associated p-value

Examples

```
surv_calc_scores_stats
surv_calc_scores_stats
```

Description

An adaptation of GBJ::calc_scores_stats() to survival context. Wrapper of sGBJ_scores() function.

Usage

```
surv_calc_scores_stats(null_model, factor_matrix, nperm = 300)
```

Arguments

null_model An R cox model fitted with survival::coxph().

factor_matrix An n x p matrix with each factor as one column. There should be no missing

data.

nperm Number of permutations (default is 300)

Value

A list with the elements:

test_stats The p score test statistics.

cor_mat The p x p matrix giving the pairwise correlation of every test statistic pairs.

Examples

Index

```
* data
    ls_test_results, 3
.epsilon_matrix, 2
.survival_scores, 3

ls_test_results, 3

sGBJ, 3
sGBJ_scores, 4
Surv, 2-4
surv_calc_scores_stats, 5
```