

Lines and Angles Ex 8.4 Q22

Answer:

The figure is given as follows:

We have $\angle BCD = 115^{\circ}$ and $\angle ADC = 65^{\circ}$

Clearly,

$$\angle BCD + \angle ADC = 115^{\circ} + 65^{\circ}$$

$$\angle BCD + \angle ADC = 180^{\circ}$$

These are the pair of consecutive interior angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Thus, $AD \parallel BC$

Similarly, we have $\angle DAB = 115^{\circ}$ and $\angle ADC = 65^{\circ}$

Clearly,

$$\angle DAB + \angle ADC = 115^{\circ} + 65^{\circ}$$

$$\angle DAB + \angle ADC = 180^{\circ}$$

These are the pair of consecutive interior angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Thus, $AB \parallel CD$

Hence the lines which are parallel are as follows:

 $oxed{AD \parallel BC}$ and $oxed{AB \parallel CD}$

Lines and Angles Ex 8.4 Q23

Answer:

The figure can be drawn as follows:

Here, $l \parallel m$ and $n \perp l$

We need to prove that $n \perp m$

It is given that $n \perp l$, therefore,

$$\angle 1 = 90^{\circ}$$
 (i

We have $I \parallel m$, thus, $\angle 1$ and $\angle 2$ are the corresponding angles. Therefore, these must be equal. That is,

$$\angle 1 = \angle 2$$

From equation (i), we get:

$$\angle 2 = 90^{\circ}$$

Therefore, $n \perp m$.

Hence proved.

********* END ********