Oppgare 5.10.11 Vi skal innerkeine en toles; ellepsoiden $\frac{\chi^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Sider parallelle med aksene. Anta at (x,y,z) er et av hjørnene; toksen Vi arta at (x,y,z) ligger po ellipsoiden, de andre hypmere i bobsen (±x,±y,±z) Volum= (2x)(2y)(2z) = 8 xyz makeimere $8 \times y = (f(x,y,z))$ where betingelson $g(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Vi skal otsa: Vi nå først finne punkter der $\nabla g = \overline{O}$ $\sqrt[4]{g} = \begin{pmatrix} \frac{2x}{a^2} \\ \frac{2y}{b^2} \\ \frac{2z}{c^2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x = y = z = 0, \text{ men dette opptythe}$ The g(x,y,z) = 1 $\sqrt[4]{g} = \sqrt[4]{g} = \sqrt[4]{g}$ Tyen boundidates now $\sqrt[4]{g} = \sqrt[4]{g}$ $\sqrt[4]{f} = \sqrt[4]{g} = \sqrt[4]{g}$ $\sqrt[4]{g} = \sqrt[4]{g}$ \sqrt Vi ma også se på: Vf = 9 Vg $8 \times y^{2} = 3 + \frac{2x^{2}}{a^{2}}$ $8 \times y^{2} = 3 + \frac{2y^{2}}{b^{2}}$ $8 \times y^{2} = 3 + \frac{2y^{2}}{b^{2}}$ $8 \times y^{2} = 3 + \frac{2y^{2}}{b^{2}} = 3 + \frac{2y^{2}}{b^{2}} = 3 + \frac{2z^{2}}{b^{2}}$ $9 \times y^{2} = 3 + \frac{2z^{2}}{b^{2}}$ $9 \times y^{2} = 3 + \frac{2z^{2}}{b^{2}} = 3 + \frac{2z^{2}}{b^{$ $\Rightarrow x = \frac{\alpha}{\sqrt{3}}, y = \frac{1}{\sqrt{3}}, z = \frac{c}{\sqrt{3}}$ Start mulig colum: $f(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}) = \frac{8abc}{3\%}$

5,10,13

bcm bred, brettes symmetisch

wedet av tvensnittet:

$$xz + 2 \cdot - 1yz = xz + yz = f(x,y,z)$$

$$x + 2/y^2 + 2^2 = 5$$

$$\begin{pmatrix}
2 \\
2 \\
x+y
\end{pmatrix} =
\begin{pmatrix}
2y \\
\hline
\sqrt{y^2+z^2} \\
2z \\
\hline
\sqrt{y^2+z^2}
\end{pmatrix}$$

 $x+y=3y \Rightarrow x=2y$

Lengden av søderennu er Vy2+z2 = 29

Destor by rema

