

Modules 5: Ensemble Learning

Ensemble learning is a method that combines multiple machine learning models to increase prediction accuracy and stability. Core idea: many weak learners combine to form a stronger learner.

of I. Ensemble Learning Overview

Basic Concepts

Ensemble learning typically uses **Decision Trees** as base models to combine multiple models, thereby increasing accuracy and reducing overfitting.

Two Basic Ensemble Types

Modules 5: Ensemble Learning

Averaging (Regression)

- Applied to regression problems
- · Averages predictions from multiple models
- Goal: Reduce variance

Voting (Classification)

- · Applied to classification problems
- Each model votes → most votes wins
- Goal: Reduce variance & increase stability

Voting Example

Sample	Model 1	Model 2	Model 3	Voting Result
Email E1	Spam	Spam	Not spam	Spam 🗸
Email E2	Not spam	Not spam	Not spam	Not spam 🗸

→ Combining multiple models helps reduce individual model errors.

II. Bagging (Bootstrap Aggregation)

Theory

Bagging = Bootstrap Aggregation

Randomly sample with replacement (bootstrap) to create multiple subsets from original data, train independent models, then combine results.

Process Flow

1. Bootstrap Sampling: Take bootstrap samples from original data (n samples, randomly selected with replacement)

- 2. Independent Training: Train separate models (usually Decision Trees) on each subset
- 3. Aggregation: Combine results (average or majority voting)

Key Formulas

Regression (Averaging):

$$\hat{y} = (1/M) \times \sum f_i(x)$$

Where:

- ŷ: final predicted value
- M: total number of models
- f_i(x): prediction from model i

Classification (Voting):

$$\hat{y} = \text{mode}\{f_1(x), f_2(x), ..., f_m(x)\}$$

Select the class with the most "votes" from all models.

Variance Reduction Formula:

$$Var(\hat{f}) = s^2 \times [(1-\rho)/M + \rho]$$

Where:

- s²: variance of a single model
- ρ: correlation coefficient between models (0 to 1)
- M: number of models

Example 1: Averaging (Regression)

3 models predict for the same point x:

Model	Prediction
Model 1	$f_1(x) = 2.5$
Model 2	$f_2(x) = 3.1$
Model 3	$f_3(x) = 2.8$

Calculate average:

$$\hat{y} = (2.5 + 3.1 + 2.8) / 3 = 8.4 / 3 = 2.8$$

Result: Bagging prediction = 2.8

Example 2: Variance Reduction

Given:

• Single model variance: s² = 4

• Correlation coefficient: $\rho = 0.2$

• Number of models: M = 10

Calculation:

```
Var = 4 \times [(1-0.2)/10 + 0.2]
= 4 \times [0.8/10 + 0.2]
= 4 \times [0.08 + 0.2]
= 4 \times 0.28
= 1.12
```


Variance reduced from 4 (1 tree) to 1.12 (10 trees) = 72% reduction!

Example 3: Out-of-Bag Probability

Probability that a sample is NOT selected in bootstrap:

```
P = (1 - 1/n)^n \approx e^{-1} \approx 0.368
```

 \rightarrow About **36.8%** of samples are not used in 1 tree \rightarrow used to estimate **OOB error**.

Code Example

```
# Train and evaluate
bag.fit(X_train, y_train)
y_pred = bag.predict(X_test)
print("Bagging Accuracy:", accuracy_score(y_test, y_pred))
```

III. Random Forest

Random Forest Classifier

Theory

Random Forest is an improved version of Bagging that adds randomness when selecting features at each tree node.

Goal: reduce correlation between trees, increase accuracy

Process Flow

- 1. Bootstrap Sampling: Create multiple bootstrap samples
- 2. Random Feature Selection: At each tree node:
 - Randomly select **k features** from total d features
 - Find best split among those k features
- 3. **Aggregation**: Aggregate results (Voting or Averaging)

▶ Feature Selection Formula

Classification:

k = √d

(square root of total features)

Regression:

k = d/3

(1/3 of total features)

Example

Assume data has 16 features (d = 16):

```
k = \sqrt{16} = 4
```


Each node only considers 4 random features to find the best split.

Code Example

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(
  n_estimators=100,
  max_features='sqrt', # Use square root
  random_state=42
)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred))
```

🌴 IV. Extra Trees (Extremely Randomized Trees)

Theory

Extra Trees is similar to Random Forest but with **two key differences**:

- 1. No bootstrap trains on entire original dataset
- 2. Random split points no optimization needed
- → Result: Faster, more random, usually reduces overfitting

Q Comparison: Random Forest vs Extra Trees

Criteria	Random Forest	Extra Trees
Data per tree	Bootstrap (with replacement)	Entire original dataset
Split selection	Optimal (best split)	Random
Speed	Slower 💍	Faster 🗲
Bias	Higher	Lower
Variance	Low	Very low

Random Split Selection Example

Feature X has values: {2, 5, 7, 12, 18}

Random Forest 🛦

→ Calculates and selects best split

 \rightarrow Example: **9.5**

Extra Trees 🌴

→ Randomly selects a value

→ Example: **8.1**

→ Extra Trees is faster and more random.

Code Example

```
from sklearn.ensemble import ExtraTreesClassifier
et = ExtraTreesClassifier(
  n_estimators=100,
  random_state=42
)
et.fit(X_train, y_train)
y_pred = et.predict(X_test)
print("Extra Trees Accuracy:", accuracy_score(y_test, y_pred))
```

■ V. Comprehensive Variance Reduction

Comparing 3 Methods

Assumptions:

• Single model variance: s² = 5

• Number of trees: M = 50

· Correlation coefficients:

• Bagging: $\rho = 0.5$

• Random Forest: $\rho = 0.2$

Extra Trees: ρ = 0.1

Formula: $Var(\hat{f}) = s^2 \times [(1-\rho)/M + \rho]$

Method	Calculation	Result	% Reduction
Bagging 🌳	5 × [(1-0.5)/50 + 0.5] = 5 × 0.51	2.55	49%
Random Forest 🌲	5 × [(1-0.2)/50 + 0.2] = 5 × 0.216	1.08	78%
Extra Trees 🌴	5 × [(1-0.1)/50 + 0.1] = 5 × 0.118	0.59	88% 🏆

Winner: Extra Trees achieves the strongest variance reduction (88% vs single model)

III VI. Gini Impurity – Detailed Example

Formula

 $G(t) = 1 - \sum p_k^2$

Where $\mathbf{p}_{\mathbf{k}}$ is the proportion of class k in the node.

■ Calculation Example

Setup: Node has **10 samples** → 6 class A, 4 class B

Step 1: Gini before split

$$G_{root} = 1 - (0.6^{2} + 0.4^{2})$$

= 1 - (0.36 + 0.16)
= 1 - 0.52
= 0.48

Step 2: Gini after split

• **Left** (5 samples, 4A-1B):

$$G_L = 1 - (0.8^2 + 0.2^2) = 1 - 0.68 = 0.32$$

• Right (5 samples, 2A-3B):

$$G_R = 1 - (0.4^2 + 0.6^2) = 1 - 0.52 = 0.48$$

Step 3: Weighted average

$$G_{split} = (5/10) \times 0.32 + (5/10) \times 0.48 = 0.40$$

Step 4: Gini Gain

$$\Delta G = 0.48 - 0.40 = 0.08$$

This split **reduces impurity by 0.08** \Rightarrow selected if ΔG is highest among all possible splits

VII. Summary Comparison

Feature	Bagging 🌳	Random Forest 🌲	Extra Trees 🌴
Data per tree	Bootstrap	Bootstrap	Full sample
Added randomness	Data only	Data + feature	Data + feature + split
Bias reduction	Negligible	Moderate	Significant 🗸
Variance reduction	▼	V	
Speed	Medium	Medium	Fastest 4
When to use	Model overfits	Many features	Need speed & high stability

VIII. Combined Code for 3 Models

```
from sklearn.ensemble import (
  BaggingClassifier,
  RandomForestClassifier,
  ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Load data
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, random_state=42
# Define 3 models
models = {
  "Bagging": BaggingClassifier(
    DecisionTreeClassifier(),
    n_estimators=50,
    random_state=42
  "Random Forest": RandomForestClassifier(
    n_estimators=100,
    random_state=42
  "Extra Trees": ExtraTreesClassifier(
    n_estimators=100,
    random_state=42
  )
}
# Train and evaluate
for name, model in models.items():
  model.fit(X_train, y_train)
  acc = accuracy_score(y_test, model.predict(X_test))
  print(f"{name}: {acc:.3f}")
```

🚀 IX. Boosting Methods

1. Boosting Overview

Sequential Learning: Train models sequentially, where each new model focuses on samples misclassified by previous ones.

Goal: Reduce bias (systematic error)

General formula:

$$F_m(x) = F_{m-1}(x) + \alpha_m \times h_m(x)$$

Where:

• F_m(x): ensemble model after round m

• α_m: weight of model m

• h_m(x): weak learner m

2. AdaBoost (Adaptive Boosting)

Base learner: Decision stump (1-level decision tree) Key idea: Increase weights for misclassified samples

Formulas

Model weight:

$$\alpha_t = 0.5 \times \ln[(1 - \epsilon_t) / \epsilon_t]$$

Where $\boldsymbol{\epsilon_t}$ is the error rate of model t.

Sample weight update:

$$w_i(new) = w_i(old) \times e^{-\alpha_t} \times y_i \times h_t(x_i)$$

Code Example

from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier

base = DecisionTreeClassifier(max_depth=1) ada = AdaBoostClassifier(base_estimator=base, n_estimators=10, learning_rate=1.0

```
ada.fit(X_train, y_train)
print("AdaBoost Accuracy:", accuracy_score(y_test, ada.predict(X_test)))
```

■ Weight Update Example

Sample	Correct/Wrong	Initial Weight	Updated Weight	Change
1	~	0.25	0.25	-
2	~	0.25	0.25	-
3	×	0.25	0.40	+60%
4	~	0.25	0.10	₽

Misclassified samples get increased weights so next model focuses more on them

3. Gradient Boosting

Key concept: Builds models using **gradient descent** on the loss function Each new model learns to correct the **residual errors** of previous models

Formula

$$F_m(x) = F_{m-1}(x) + \alpha \times h_m(x)$$

where $h_m(x)$ learns according to gradient:

$$h_m(x) \approx -\partial L(y, F(x)) / \partial F(x)$$

Common loss functions:

- Regression: L = $0.5 \times (y F(x))^2$
- Classification: Log-loss (binomial deviance)

Code Example

from sklearn.ensemble import GradientBoostingClassifier

```
gb = GradientBoostingClassifier(
   n_estimators=100,
   learning_rate=0.1,
   max_depth=3,
```

```
subsample=0.8,
  random_state=42
)
gb.fit(X_train, y_train)
print("Gradient Boosting Accuracy:",
   accuracy_score(y_test, gb.predict(X_test)))
```

Regression Example: Learning Process

Round	Model Prediction	True Value	Residual	Learning Rate	Update
1	$F_1(x) = 5$	y = 8	r = 3	-	-
2	$h_2(x) = 2.5$	-	-	α = 0.1	$F_2(x) = 5 + 0.1 \times 2.5 = 5.25$
3	-	-	r = 2.75	-	Continue

Model gradually converges to true value through iterative residual learning

X. Stacking (Stacked Generalization)

Theory

Meta-learning approach: Combines multiple different model types Base model predictions become input features for a meta-model

Formula:

```
\hat{y} = f_meta(h_1(x), h_2(x), ..., h_m(x))
```

Where:

- h₁, h₂, ..., h_m: base models (different types)
- f_meta: meta-learner (usually Logistic Regression)

Code Example

from sklearn.ensemble import StackingClassifier, RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC

```
# Define base models
estimators = [
    ('rf', RandomForestClassifier(n_estimators=50, random_state=42)),
    ('svm', SVC(probability=True))
]

# Stacking with meta-learner
clf = StackingClassifier(
    estimators=estimators,
    final_estimator=LogisticRegression()
)

clf.fit(X_train, y_train)
print("Stacking Accuracy:",
    accuracy_score(y_test, clf.predict(X_test)))
```

How Stacking Works

Sample	Model 1 (RF)	Model 2 (SVM)	Meta Input	Meta Output	Final Result
1	0.6	0.7	[0.6, 0.7]	0.65	Class 1 🗸
2	0.3	0.2	[0.3, 0.2]	0.25	Class 0 🔽

Meta model learns how to optimally combine predictions from diverse base models

XI. Comprehensive Method Comparison

Feature	Bagging 🌳	AdaBoost 44	Gradient Boosting	Stacking 1
Mechanism	Parallel	Sequential (weights)	Sequential (residuals)	Meta-learning
Sample reweighting	×	V	√ (via gradient)	×
Main goal	↓ Variance	↓ Bias	↓ Bias	↑ Overall
Outlier sensitivity	Low 🔵	High 🛑	Medium —	Depends on base
Overfitting risk	Low 🔵	Possible —	Easy 🛑	Possible —
Training speed	Fast 4	Medium	Slow 💍	Slow 💍
Typical examples	Random Forest	AdaBoost	XGBoost / LightGBM	AutoML systems

嶐 XII. Key Formula Summary

Quick reference guide for all important formulas

Content	Formula	Meaning
Averaging	$\hat{y} = (1/M) \times \sum f_i(x)$	Average predictions
Voting	$\hat{y} = mode\{f_i(x)\}$	Most frequent class
Variance reduction	$Var = s^2 \times [(1-\rho)/M + \rho]$	Variance reduction formula
OOB Probability	(1 - 1/n) ⁿ ≈ 0.368	Sample not selected probability
Gini Impurity	1 - Σ p _k ²	Impurity measure
Gini Gain	G_parent - avg(G_child)	Impurity reduction
Feature selection (RF)	k = √d or d/3	Features per split

Notation Guide

Symbol	Meaning	Range
s²	Variance of single model	[0, ∞)
ρ	Correlation coefficient	[0, 1]
М	Number of models	Positive integer
p _k	Proportion of class k	[0, 1]
d	Total number of features	Positive integer
k	Selected features per split	[1, d]

Find of Ensemble Learning Guide

This comprehensive guide covers all major ensemble methods from basic concepts to advanced implementations. Practice with the code examples and experiment with different parameters to master these techniques!

Modules 5: Ensemble Learning