# **CHAPTER 16**

### Section 16.1

- 1. All ten values of the quality statistic are between the two control limits, so no out-of-control signal is generated.
- 2. All ten values are between the two control limits. However, it is readily verified that all but one plotted point fall below the center line (at height .04975). Thus even though no single point generates an out-of-control signal, taken together, the observed values do suggest that there may be a decrease in the average value of the quality statistic. Such a "small" change is more easily detected by a CUSUM procedure (see section 16.5) than by an ordinary chart.
- P(10 successive points inside the limits) =  $P(1^{st} \text{ inside}) \times P(2^{nd} \text{ inside}) \times ... \times P(10^{th} \text{ inside}) = (.998)^{10} = .9802$ . P(25 successive points inside the limits) =  $(.998)^{25} = .9512$ .  $(.998)^{52} = .9011$ , but  $(.998)^{53} = .8993$ , so for 53 successive points the probability that at least one will fall outside the control limits when the process is in control is 1 .8993 = .1007 > .10.

### Section 16.2

- 4. For Z, a standard normal random variable,  $P(-c \le Z \le c) = .995$  implies that  $\Phi(c) = P(Z \le c) = .995 + \frac{.005}{2} = .9975$ . Table A.3 then gives c = 2.81. The appropriate control limits are therefore  $m \pm 2.81s$ .
- 5.
- **a.** P(point falls outside the limits when  $\mathbf{m} = \mathbf{m}_0 + .5\mathbf{s}$ )

$$= 1 - P \left( \mathbf{m}_0 - \frac{3\mathbf{s}}{\sqrt{n}} < \overline{X} < \mathbf{m}_0 + \frac{3\mathbf{s}}{\sqrt{n}} \text{ when } \mathbf{m} = \mathbf{m}_0 + .5\mathbf{s} \right)$$

$$= 1 - P \left( -3 - .5\sqrt{n} < Z < 3 - .5\sqrt{n} \right)$$

$$= 1 - P \left( -4.12 < Z < 1.882 \right) = 1 - .9699 = .0301.$$

**b.** 
$$1 - P\left(\mathbf{m}_0 - \frac{3\mathbf{s}}{\sqrt{n}} < \overline{X} < \mathbf{m}_0 + \frac{3\mathbf{s}}{\sqrt{n}} \text{ when } \mathbf{m} = \mathbf{m}_0 - \mathbf{s}\right)$$
  
=  $1 - P\left(-3 + \sqrt{n} < Z < 3 + \sqrt{n}\right) = 1 - P\left(-.76 < Z < 5.24\right) = .2236$ 

c. 
$$1 - P(-3 - 2\sqrt{n} < Z < 3 - 2\sqrt{n}) = 1 - P(-7.47 < Z < -1.47) = .6808$$

- 6. The limits are  $13.00 \pm \frac{(3)(.6)}{\sqrt{5}} = 13.00 \pm .80$ , from which LCL = 12.20 and UCL = 13.80. Every one of the 22  $\bar{x}$  values is well within these limits, so the process appears to be in control with respect to location.
- 7.  $\overline{\overline{x}} = 12.95$  and  $\overline{s} = .526$ , so with  $a_5 = .940$ , the control limits are  $12.95 \pm 3 \frac{.526}{.940\sqrt{5}} = 12.95 \pm .75 = 12.20,13.70$ . Again, every point  $(\overline{x})$  is between these limits, so there is no evidence of an out-of-control process.
- 8.  $\overline{r}=1.336$  and  $b_5=2.325$ , yielding the control limits  $12.95\pm 3\frac{1.336}{2.325\sqrt{5}}=12.95\pm .77=12.18,13.72$ . All points are between these limits, so the process again appears to be in control with respect to location.
- 9.  $\overline{\overline{x}} = \frac{2317.07}{24} = 96.54$ ,  $\overline{s} = 1.264$ , and  $a_6 = .952$ , giving the control limits  $96.54 \pm 3 \frac{1.264}{.952\sqrt{6}} = 96.54 \pm 1.63 = 94.91,98.17$ . The value of  $\overline{x}$  on the  $22^{\text{nd}}$  day lies above the UCL, so the process appears to be out of control at that time.
- 10. Now  $\overline{\overline{x}} = \frac{2317.07 98.34}{23} = 96.47$  and  $\overline{s} = \frac{30.34 1.60}{23} = 1.250$ , giving the limits  $96.47 \pm 3 \frac{1.250}{.952\sqrt{6}} = 96.47 \pm 1.61 = 94.86,98.08$ . All 23 remaining  $\overline{x}$  values are between these limits, so no further out-of-control signals are generated.
- 11. a.  $P\left(\mathbf{m}_{0} - \frac{2.81\mathbf{s}}{\sqrt{n}} < \overline{X} < \mathbf{m}_{0} + \frac{2.81\mathbf{s}}{\sqrt{n}} \text{ when } \mathbf{m} = \mathbf{m}_{0}\right)$  = P(-2.81 < Z < 2.81) = .995 , so the probability that a point falls outside the limitsis .005 and  $ARL = \frac{1}{.005} = 200$ .

**b.** P = P(a point is outside the limits)

$$= 1 - P\left(\mathbf{m}_{0} - \frac{2.81\mathbf{s}}{\sqrt{n}} < \overline{X} < \mathbf{m}_{0} + \frac{2.81\mathbf{s}}{\sqrt{n}} \text{ when } \mathbf{m} = \mathbf{m}_{0} + \mathbf{s}\right)$$

$$= 1 - P\left(-2.81 - \sqrt{n} < Z < 2.81 - \sqrt{n}\right)$$

$$= 1 - P\left(-4.81 < Z < .81\right) = 1 - .791 = .209 \text{ Thus } ARL = \frac{1}{.209} = 4.78$$

c. 
$$1 - .9974 = .0026$$
 so  $ARL = \frac{1}{.0026} = 385$  for an in-control process, and when  $\mathbf{m} = \mathbf{m}_0 + \mathbf{s}$ , the probability of an out-of-control point is  $1 - P(-3 - 2 < Z < 1)$   $= 1 - P(Z < 1) = .1587$ , so  $ARL = \frac{1}{1587} = 6.30$ .

12.



The 3-sigma control limits are from problem 7. The 2-sigma limits are  $12.95\pm.50=12.45$ , 13.45, and the 1-sigma limits are  $12.95\pm.25=12.70$ , 13.20. No points fall outside the 2-sigma limits, and only two points fall outside the 1-sigma limits. There are also no runs of eight on the same side of the center line – the longest run on the same side of the center line is four (the points at times 10, 11, 12, 13). No out-of-control signals result from application of the supplemental rules.

13. 
$$\overline{\overline{x}} = 12.95$$
, IQR = .4273,  $k_5 = .990$ . The control limits are 
$$12.95 \pm 3 \frac{.4273}{.990\sqrt{5}} = 12.45, 13.45 = 12.37, 13.53$$
.

# Section 16.3

14.  $\Sigma s_i = 4.895$  and  $\overline{s} = \frac{4.895}{24} = .2040$ . With  $a_5 = .940$ , the lower control limit is zero and the upper limit is  $.2040 + \frac{3(.2040)\sqrt{1 - (.940)^2}}{.940} = .2040 + .2221 = .4261$ . Every  $s_1$  is between these limits, so the process appears to be in control with respect to variability.

15.

a. 
$$\overline{r} = \frac{85.2}{30} = 2.84$$
,  $b_4 = 2.058$ , and  $c_4 = .880$ . Since n = 4, LCL = 0 and UCL  $= 2.84 + \frac{3(.880)(2.84)}{2.058} = 2.84 + 3.64 = 6.48$ .

**b.** 
$$\overline{r} = 3.54$$
,  $b_8 = 2.844$ , and  $c_8 = .820$ , and the control limits are  $= 3.54 \pm \frac{3(.820)(3.54)}{2.844} = 3.54 \pm 3.06 = .48,6.60$ .

16. 
$$\overline{s} = .5172$$
,  $a_5 = .940$ , LCL = 0 (since n = 5) and UCL = 
$$.5172 + \frac{3(.5172)\sqrt{1 - (.940)^2}}{.940} = .5172 + .5632 = 1.0804$$
. The largest  $s_1$  is  $s_9 = .963$ , so all points fall between the control limits.

17.  $\overline{s} = 1.2642$ ,  $a_6 = .952$ , and the control limits are  $1.2642 \pm \frac{3(1.2642)\sqrt{1 - (.952)^2}}{.952} = 1.2642 \pm 1.2194 = .045, 2.484$ . The smallest  $s_1$  is  $s_{20} = .75$ , and the largest is  $s_{12} = 1.65$ , so every value is between .045 and 2.434. The process appears to be in control with respect to variability.

18. 
$$\Sigma s_i^2 = 39.9944$$
 and  $\overline{s}^2 = \frac{39.9944}{24} = 1.6664$ , so LCL =  $\frac{(1.6664)(.210)}{5} = .070$ , and UCL =  $\frac{(1.6664)(20.515)}{5} = 6.837$ . The smallest  $s^2$  value is  $s_{20}^2 = (.75)^2 = .5625$  and the largest is  $s_{12}^2 = (1.65)^2 = 2.723$ , so all  $s_i^2$ 's are between the control limits.

## Section 16.4

19. 
$$\overline{p} = \Sigma \frac{\hat{p}_i}{k}$$
 where  $\Sigma \hat{p}_i = \frac{x_1}{n} + ... + \frac{x_k}{n} = \frac{x_1 + ... + x_k}{n} = \frac{578}{100} = 5.78$ . Thus  $\overline{p} = \frac{5.78}{25} = .231$ .

- **a.** The control limits are  $.231 \pm 3\sqrt{\frac{(.231)(.769)}{100}} = .231 \pm .126 = .105,.357$ .
- **b.**  $\frac{13}{100} = .130$ , which is between the limits, but  $\frac{39}{100} = .390$ , which exceeds the upper control limit and therefore generates an out-of-control signal.

20. 
$$\Sigma x_i = 567$$
, from which  $\overline{p} = \frac{\Sigma x_i}{nk} = \frac{567}{(200)(30)} = .0945$ . The control limits are  $.0945 \pm 3\sqrt{\frac{(.0945)(.9055)}{200}} = .0945 \pm .0621 = .0324,.1566$ . The smallest  $x_i$  is  $x_7 = 7$ , with  $\hat{p}_7 = \frac{7}{200} = .0350$ . This (barely) exceeds the LCL. The largest  $x_i$  is  $x_5 = 37$ , with  $\hat{p}_5 = \frac{37}{200} = .185$ . Thus  $\hat{p}_5 > UCL = .1566$ , so an out-of-control signal is generated. This is the only such signal, since the next largest  $x_i$  is  $x_{25} = 30$ , with  $\hat{p}_{25} = \frac{30}{200} = .1500 < UCL$ .

21. LCL > 0 when 
$$\overline{p} > 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$
, i.e. (after squaring both sides)  $50\overline{p}^2 > 3\overline{p}(1-\overline{p})$ , i.e.  $50\overline{p} > 3(1-\overline{p})$ , i.e.  $53\overline{p} > 3 \Rightarrow \overline{p} = \frac{3}{53} = .0566$ .

The suggested transformation is 
$$Y = h(X) = \sin^{-1}\left(\sqrt{\frac{x_i}{n}}\right)$$
, with approximate mean value  $\sin^{-1}\left(\sqrt{p}\right)$  and approximate variance  $\frac{1}{4n}$ .  $\sin^{-1}\left(\sqrt{\frac{x_i}{n}}\right) = \sin^{-1}\left(\sqrt{.050}\right) = .2255$  (in radians), and the values of  $y_i = \sin^{-1}\left(\sqrt{\frac{x_i}{n}}\right)$  for  $i = 1, 2, 3, ..., 30$  are

These give  $\Sigma y_i = 9.2437$  and  $\overline{y} = .3081$ . The control limits are  $\overline{y} \pm 3\sqrt{\frac{1}{4n}} = .3081 \pm 3\sqrt{\frac{1}{800}} = .3081 \pm .1091 = .2020,.4142$  . In contrast of the result of exercise 20, there I snow one point below the LCL (.1882 < .2020) as well as one point above the UCL.

- $\Sigma x_i = 102$ ,  $\bar{x} = 4.08$ , and  $\bar{x} \pm 3\sqrt{\bar{x}} = 4.08 \pm 6.06 \approx (-2.0,10.1)$ . Thus LCL = 0 and 23. UCL = 10.1. Because no  $x_i$  exceeds 10.1, the process is judged to be in control.
- $\overline{x} 3\sqrt{\overline{x}} < 0$  is equivalent to  $\sqrt{\overline{x}} < 3$ , i.e.  $\overline{x} < 9$ . 24.

**25.** With 
$$u_i = \frac{x_i}{g_i}$$
, the  $u_i$ 's are 3.75, 3.33, 3.75, 2.50, 5.00, 5.00, 12.50, 12.00, 6.67, 3.33, 1.67,

3.75, 6.25, 4.00, 6.00, 12.00, 3.75, 5.00, 8.33, and 1.67 for I = 1, ..., 20, giving  $\overline{u} = 5.5125$  .

For 
$$g_i = .6$$
,  $\overline{u} \pm 3\sqrt{\frac{\overline{u}}{g_i}} = 5.5125 \pm 9.0933$ , LCL = 0, UCL = 14.6. For  $g_i = .8$ ,  $\overline{u} \pm 3\sqrt{\frac{\overline{u}}{g_i}} = 5.5125 \pm 7.857$ , LCL = 0, UCL = 13.4. For  $g_i = 1.0$ ,

$$\overline{u} \pm 3\sqrt{\frac{\overline{u}}{g_i}} = 5.5125 \pm 7.857$$
, LCL = 0, UCL = 13.4. For  $g_i = 1.0$ ,

$$\overline{u} \pm 3\sqrt{\frac{\overline{u}}{g_i}} = 5.5125 \pm 7.0436$$
, LCL = 0, UCL = 12.6. Several  $u_i$ 's are close to the

corresponding UCL's but none exceed them, so the process is judged to be in control.

26.  $y_i = 2\sqrt{x_i}$  and the  $y_i$ 's are 3/46, 5.29, 4.47, 4.00, 2.83, 5.66, 4.00, 3.46, 3.46, 4.90, 5.29, 2.83, 3.46, 2.83, 4.00, 5.29, 3.46, 2.83, 4.00, 4.00, 2.00, 4.47, 4.00, and 4.90 for I = 1, ..., 25, from which  $\Sigma y_i = 98.35$  and  $\overline{y} = 3.934$ . Thus  $\overline{y} \pm 3 = 3.934 \pm 3 = .934,6.934$ . Since every  $y_i$  is well within these limits it appears that the process is in control.

# Section 16.5

**27.** 
$$\mathbf{m}_0 = 16, k = \frac{\Delta}{2} = 0.05, h = .20, d_i = \max(0, d_{i-1} + (\overline{x}_i - 16.05)),$$

$$e_i = \max(0, e_{i-1} + (\overline{x}_i - 15.95)).$$

| i  | $\overline{x}_i - 16.05$ | $d_{i}$ | $\overline{x}_i - 15.95$ | $\boldsymbol{e}_i$ |
|----|--------------------------|---------|--------------------------|--------------------|
| 1  | -0.058                   | 0       | 0.024                    | 0                  |
| 2  | 0.001                    | 0.001   | 0.101                    | 0                  |
| 3  | 0.016                    | 0.017   | 0.116                    | 0                  |
| 4  | -0.138                   | 0       | -0.038                   | 0.038              |
| 5  | -0.020                   | 0       | 0.080                    | 0                  |
| 6  | 0.010                    | 0.010   | 0.110                    | 0                  |
| 7  | -0.068                   | 0       | 0.032                    | 0                  |
| 8  | -0.151                   | 0       | -0.054                   | 0.054              |
| 9  | -0.012                   | 0       | 0.088                    | 0                  |
| 10 | 0.024                    | 0.024   | 0.124                    | 0                  |
| 11 | -0.021                   | 0.003   | 0.079                    | 0                  |
| 12 | -0.115                   | 0       | -0.015                   | 0.015              |
| 13 | -0.018                   | 0       | 0.082                    | 0                  |
| 14 | -0.090                   | 0       | 0.010                    | 0                  |
| 15 | 0.005                    | 0.005   | 0.105                    | 0                  |
|    |                          |         |                          |                    |

For no time r is it the case that  $d_r > .20$  or that  $e_r > .20$ , so no out-of-control signals are generated.

**28.** 
$$\mathbf{m}_0 = .75$$
,  $k = \frac{\Delta}{2} = 0.001$ ,  $h = .003$ ,  $d_i = \max(0, d_{i-1} + (\overline{x}_i - .751))$ ,  $e_i = \max(0, e_{i-1} + (\overline{x}_i - .749))$ .

| i  | $\overline{x}_i751$ | $d_{i}$ | $\overline{x}_i749$ | $e_{i}$ |
|----|---------------------|---------|---------------------|---------|
| 1  | 0003                | 0       | .0017               | 0       |
| 2  | 0006                | 0       | .0014               | 0       |
| 3  | 0018                | 0       | .0002               | 0       |
| 4  | 0009                | 0       | .0011               | 0       |
| 5  | 0007                | 0       | .0013               | 0       |
| 6  | .0000               | 0       | .0020               | 0       |
| 7  | 0020                | 0       | .0000               | 0       |
| 8  | 0013                | 0       | .0007               | 0       |
| 9  | 0022                | 0       | 0002                | .0002   |
| 10 | 0006                | 0       | .0014               | 0       |
| 11 | .0006               | .0006   | .0026               | 0       |
| 12 | 0038                | 0       | 0018                | .0018   |
| 13 | 0021                | 0       | 0001                | .0019   |
| 14 | 0027                | 0       | 0007                | .0026   |
| 15 | 0039                | 0       | 0019                | .0045*  |
| 16 | 0012                | 0       | .0008               | .0037   |
| 17 | 0050                | 0       | 0030                | .0067   |
| 18 | 0028                | 0       | 0008                | .0075   |
| 19 | 0040                | 0       | 0020                | .0095   |
| 20 | 0017                | 0       | .0003               | .0092   |
| 21 | 0048                | 0       | 0028                | .0120   |
| 22 | 0029                | 0       | 0009                | .0129   |

Clearly  $e_{15}=.0045>.003=h$  , suggesting that the process mean has shifted to a value smaller than the target of .75.

Connecting 600 on the in-control ARL scale to 4 on the out-of-control scale and extending to the k' scale gives k' = .87. Thus  $k' = \frac{\Delta/2}{S/\sqrt{n}} = \frac{.002}{.005/\sqrt{n}}$  from which

 $\sqrt{n}=2.175 \Rightarrow n=4.73=s$  . Then connecting .87 on the k' scale to 600 on the out-of-control ARL scale and extending to h' gives h' = 2.8, so

$$h = \left(\frac{\mathbf{S}}{\sqrt{n}}\right)(2.8) = \left(\frac{.005}{\sqrt{5}}\right)(2.8) = .00626$$
.

30. In control ARL = 250, out-of-control ARL = 4.8, from which

$$k' = .7 = \frac{\Delta/2}{\mathbf{s}/\sqrt{n}} = \frac{\mathbf{s}/2}{\mathbf{s}/\sqrt{n}} = \frac{\sqrt{n}}{2}. \text{ So } \sqrt{n} = 1.4 \Rightarrow n = 1.96 \approx 2. \text{ Then h'} = 2.85,$$
 giving  $h = \left(\frac{\mathbf{s}}{\sqrt{n}}\right)(2.85) = 2.0153\mathbf{s}$ .

### Section 16.6

31. For the binomial calculation, n = 50 and we wish

$$P(X \le 2) = {50 \choose 0} p^0 (1-p)^{50} + {50 \choose 1} p^1 (1-p)^{49} + {50 \choose 2} p^2 (1-p)^{48}$$

$$= (1-p)^{50} + 50 p(1-p)^{49} + 1225 p^2 (1-p)^{48} \text{ when p = .01, .02, ..., .10. For the hypergeometric calculation}$$

$$P(X \le 2) = \frac{\binom{M}{0} \binom{500 - M}{50}}{\binom{500}{50}} + \frac{\binom{M}{1} \binom{500 - M}{49}}{\binom{500}{50}} + \frac{\binom{M}{2} \binom{500 - M}{48}}{\binom{500}{50}}, \text{ to be}$$

calculated for M = 5, 10, 15, ..., 50. The resulting probabilities appear in the answer section in the text.

33. 
$$P(X \le 2) = {100 \choose 0} p^{0} (1-p)^{100} + {100 \choose 1} p^{1} (1-p)^{99} + {100 \choose 2} p^{2} (1-p)^{98}$$

$$p \qquad .01 \quad .02 \quad .03 \quad .04 \quad .05 \quad .06 \quad .07 \quad .08 \quad .09 \quad .10$$

$$P(X \le 2) \quad .9206 \quad .6767 \quad .4198 \quad .2321 \quad .1183 \quad .0566 \quad .0258 \quad .0113 \quad .0048 \quad .0019$$

For values of p quite close to 0, the probability of lot acceptance using this plan is larger than that for the previous plan, whereas for larger p this plan is less likely to result in an "accept the lot" decision (the dividing point between "close to zero" and "larger p" is someplace between .01 and .02). In this sense, the current plan is better.

34. 
$$\frac{LTPD}{AQL} = \frac{.07}{.02} = 3.5 \approx 3.55, \text{ which appears in the } \frac{p_1}{p_2} \text{ column in the } c = 5 \text{ row. Then}$$

$$n = \frac{np_1}{p_1} = \frac{2.613}{.02} = 130.65 \approx 131.$$

$$P(X > 5 \text{ when } p = .02) = 1 - \sum_{x=0}^{5} {131 \choose x} .02)^x (.98)^{131-x} = .0487 \approx .05$$

$$P(X \le 5 \text{ when } p = .07) = \sum_{x=0}^{5} {131 \choose x} .07)^x (.93)^{131-x} = .0974 \approx .10$$

- 35. P(accepting the lot) =  $P(X_1 = 0 \text{ or } 1) + P(X_1 = 2, X_2 = 0, 1, 2, \text{ or } 3) + P(X_1 = 3, X_2 = 0, 1, \text{ or } 2)$ =  $P(X_1 = 0 \text{ or } 1) + P(X_1 = 2)P(X_2 = 0, 1, 2, \text{ or } 3) + P(X_1 = 3)P(X_2 = 0, 1, \text{ or } 2)$ . p = .01: = .9106 + (.0756)(.9984) + (.0122)(.9862) = .9981 p = .05: = .2794 + (.2611)(.7604) + (.2199)(.5405) = .5968 p = .10: = .0338 + (.0779)(.2503) + (.1386)(.1117) = .0688
- 36. P(accepting the lot) = P(X<sub>1</sub> = 0 or 1) + P(X<sub>1</sub> = 2, X<sub>2</sub> = 0 or 1) + P(X<sub>1</sub> = 3, X<sub>2</sub> = 0) [since c<sub>2</sub> = r<sub>1</sub> 1 = 3] = P(X<sub>1</sub> = 0 or 1) + P(X<sub>1</sub> = 2)P(X<sub>2</sub> = 0 or 1) + P(X<sub>1</sub> = 3)P(X<sub>2</sub> = 0)  $= \sum_{x=0}^{1} {50 \choose x} p^{x} (1-p)^{50-x} + {50 \choose 2} p^{2} (1-p)^{48} \cdot \sum_{x=0}^{1} {100 \choose x} p^{x} (1-p)^{100-x}$   $= {50 \choose 3} p^{3} (1-p)^{47} \cdot {100 \choose 0} p^{0} (1-p)^{100}.$  p = .02: = .7358 + (.1858)(.4033) + (.0607)(.1326) = .8188 p = .05: = .2794 + (.2611)(.0371) + (.2199)(.0059) = .2904 p = .10: = .0338 + (.0779)(.0003) + (.1386)(.0000) = .0038

**37.** 

a. 
$$AOQ = pP(A) = p[(1-p)^{50} + 50p(1-p)^{49} + 1225p^{2}(1-p)^{48}]$$

- **b.** p = .0447, AOQL = .0447P(A) = .0274
- c. ATI = 50P(A) + 2000(1 P(A))

38.  $AOQ = pP(A) = p[(1-p)^{50} + 50p(1-p)^{49}]$ . Exercise 32 gives P(A), so multiplying each entry in the second row by the corresponding entry in the first row gives AOQ:

| p   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   | .10   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AOQ | .0091 | .0147 | .0167 | .0160 | .0140 | .0114 | .0089 | .0066 | .0048 | .0034 |

ATI = 50P(A) + 2000(1 - P(A))

$$\frac{d}{dp}AOQ = \frac{d}{dp}\left[pP(A) = p\left[(1-p)^{50} + 50p(1-p)^{49}\right]\right] = 0$$
 gives the quadratic

equation 
$$2499 p^2 - 48 p - 1 = 0$$
, from which  $p = \frac{48 + 110.91}{4998} = .0318$ , and

$$AOQL = .0318P(A) \approx .0167$$
.

# **Supplementary Exercises**

39. 
$$n = 6, k = 26, \ \Sigma \overline{x}_i = 10,980, \ \overline{x} = 422.31, \ \Sigma s_i = 402, \ \overline{s} = 15.4615, \ \Sigma r_i = 1074,$$

$$\overline{r} = 41.3077$$
S chart:  $15.4615 \pm \frac{3(15.4615)\sqrt{1 - (.952)^2}}{.952} = 15.4615 \pm 14.9141 \approx .55,30.37$ 
R chart:  $41.31 \pm \frac{3(.848)(41.31)}{2.536} = 41.31 \pm 41.44$ , so LCL = 0, UCL = 82.75
$$\overline{X} \text{ chart based on } \overline{s} : 422.31 \pm \frac{3(15.4615)}{.952\sqrt{6}} = 402.42,442.20$$

$$\overline{X} \text{ chart based on } \overline{r} : 422.31 \pm \frac{3(41.3077)}{2.536\sqrt{6}} = 402.36,442.26$$

40. A c chart is appropriate here.  $\Sigma \overline{x}_i = 92$  so  $\overline{x} = \frac{92}{24} = 3.833$ , and  $\overline{x} \pm 3\sqrt{\overline{x}} = 3.833 \pm 5.874$ , giving LCL = 0 and UCL = 9.7. Because  $x_{22} = 10 >$  UCL, the process appears to have been out of control at the time that the  $22^{\text{nd}}$  plate was obtained.

#### 41.

| i  | $\overline{X}_i$ | $s_{i}$ | $r_i$ |
|----|------------------|---------|-------|
| 1  | 50.83            | 1.172   | 2.2   |
| 2  | 50.10            | .854    | 1.7   |
| 3  | 50.30            | 1.136   | 2.1   |
| 4  | 50.23            | 1.097   | 2.1   |
| 5  | 50.33            | .666    | 1.3   |
| 6  | 51.20            | .854    | 1.7   |
| 7  | 50.17            | .416    | .8    |
| 8  | 50.70            | .964    | 1.8   |
| 9  | 49.93            | 1.159   | 2.1   |
| 10 | 49.97            | .473    | .9    |
| 11 | 50.13            | .698    | .9    |
| 12 | 49.33            | .833    | 1.6   |
| 13 | 50.23            | .839    | 1.5   |
| 14 | 50.33            | .404    | .8    |
| 15 | 49.30            | .265    | .5    |
| 16 | 49.90            | .854    | 1.7   |
| 17 | 50.40            | .781    | 1.4   |
| 18 | 49.37            | .902    | 1.8   |
| 19 | 49.87            | .643    | 1.2   |
| 20 | 50.00            | .794    | 1.5   |
| 21 | 50.80            | 2.931   | 5.6   |
| 22 | 50.43            | .971    | 1.9   |

 $\Sigma s_i = 19.706$ ,  $\overline{s} = .8957$ ,  $\Sigma \overline{x}_i = 1103.85$ ,  $\overline{\overline{x}} = 50.175$ ,  $a_3 = .886$ , from which an s chart has LCL = 0 and UCL =  $.8957 + \frac{3(.8957)\sqrt{1 - (.886)^2}}{.886} = 2.3020$ , and

 $s_{21}=2.931>UCL$ . Since an assignable cause is assumed to have been identified we eliminate the  $21^{\rm st}$  group. Then  $\Sigma s_i=16.775$ ,  $\overline{s}=.7998$ ,  $\overline{\overline{x}}=50.145$ . The resulting UCL for an s chart is 2.0529, and  $s_i<2.0529$  for every remaining i. The  $\overline{x}$  chart based on  $\overline{s}$  has limits  $50.145\pm\frac{3(.7988)}{.886\sqrt{3}}=48.58,51.71$ . All  $\overline{x}_i$  values are between these limits.

**42.**  $\overline{p} = .0608$ , n = 100, so  $UCL = n\overline{p} + 3\sqrt{n\overline{p}(1-\overline{p})} = 6.08 + 3\sqrt{6.08(.9392)}$ = 6.08 + 7.17 = 13.25 and LCL = 0. All points are between these limits, as was the case for the p-chart. The p-chart and np-chart will always give identical results since

$$\overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} < \hat{p}_i < \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \quad \text{iff}$$

$$n\overline{p} - 3\sqrt{n\overline{p}(1-\overline{p})} < n\hat{p}_i = x_i < n\overline{p} + 3\sqrt{n\overline{p}(1-\overline{p})}$$

43.  $\Sigma n_i = 4(16) + (3)(4) = 76$ ,  $\Sigma n_i \overline{x}_i = 32,729.4$ ,  $\overline{\overline{x}} = 430.65$ ,  $s^2 = \frac{\Sigma(n_i - 1)s_i^2}{\Sigma(n_i - 1)} = \frac{27,380.16 - 5661.4}{76 - 20} = 590.0279$ , so s = 24.2905. For variation:

when n = 3, 
$$UCL = 24.2905 + \frac{3(24.2905)\sqrt{1 - (.886)^2}}{.886} = 24.29 + 38.14 = 62.43$$
,

when n = 4, 
$$UCL = 24.2905 + \frac{3(24.2905)\sqrt{1 - (.921)^2}}{.921} = 24.29 + 30.82 = 55.11$$
.

For location: when n = 3,  $430.65 \pm 47.49 = 383.16,478.14$ , and when n = 4,  $430.65 \pm 39.56 = 391.09,470.21$ .

- 44.
- **a.** Provided the  $E(\overline{X}_i) = \mathbf{m}$  for each i,

$$E(W_{t}) = aE(\overline{X}_{t}) + a(1-a)E(\overline{X}_{t-1}) + ... + a(1-a)^{t-1}E(\overline{X}_{1}) + (1-a)^{t} \mathbf{m}$$

$$= \mathbf{m}[\mathbf{a} + \mathbf{a}(1-\mathbf{a}) + ... + \mathbf{a}(1-\mathbf{a})^{t-1} + (1-\mathbf{a})^{t}]$$

$$= \mathbf{m}[\mathbf{a}(1+(1-\mathbf{a}) + ... + (1-\mathbf{a})^{t-1}) + (1-\mathbf{a})^{t}]$$

$$= \mathbf{m}[\mathbf{a}\sum_{i=0}^{\infty} (1-\mathbf{a})^{i} - \mathbf{a}\sum_{i=t}^{\infty} (1-\mathbf{a})^{i} + (1-\mathbf{a})^{t}]$$

$$= \mathbf{m}[\frac{\mathbf{a}}{1-(1-\mathbf{a})} - \mathbf{a}(1-\mathbf{a})^{t} \cdot \frac{1}{1-(1-\mathbf{a})} + (1-\mathbf{a})^{t}] = \mathbf{m}$$

**b.**  $V(W_t) = \mathbf{a}^2 V(\overline{X}_t) + \mathbf{a}^2 (1 - \mathbf{a})^2 V(\overline{X}_{t-1}) + ... + \mathbf{a}^2 (1 - \mathbf{a})^{2(t-1)} V(\overline{X}_1)$   $= \mathbf{a}^2 \left[ 1 + (1 - \mathbf{a})^2 + ... + (1 - \mathbf{a})^{2(t-1)} \right] \cdot V(\overline{X}_1)$   $= \mathbf{a}^2 \left[ 1 + C + ... + C^{t-1} \right] \cdot \frac{\mathbf{s}^2}{n}$  (where  $C = (1 - \mathbf{a})^2$ .)  $= \mathbf{a}^2 \frac{1 - C^t}{1 - C} \cdot \frac{\mathbf{s}^2}{n}$ , which gives the desired expression.

c. From Example 16.8,  $\mathbf{s} = .5$  (or  $\overline{s}$  can be used instead). Suppose that we use  $\mathbf{a} = .6$ (not specified in the problem). Then

$$w_{0} = \mathbf{m}_{0} = 40$$

$$w_{1} = .6\overline{x}_{1} + .4\mathbf{m}_{0} = .6(40.20) + .4(40) = 40.12$$

$$w_{2} = .6\overline{x}_{2} + .4w_{1} = .6(39.72) + .4(40.12) = 39.88$$

$$w_{3} = .6\overline{x}_{3} + .4w_{2} = .6(40.42) + .4(39.88) = 40.20$$

$$w_{4} = 40.07, \ w_{5} = 40.06, \ w_{6} = 39.88, \ w_{7} = 39.74, \ w_{8} = 40.14,$$

$$w_{9} = 40.25, \ w_{10} = 40.00, \ w_{11} = 40.29, \ w_{12} = 40.36, \ w_{13} = 40.51,$$

$$w_{14} = 40.19, \ w_{15} = 40.21, \ w_{16} = 40.29$$

$$\mathbf{s}_{1}^{2} = \frac{.6[1 - (1 - .6)^{2}]}{2 - .6} \cdot \frac{.25}{4} = .0225, \ \mathbf{s}_{1} = .1500,$$

$$\mathbf{s}_{1}^{2} = \frac{.6[1 - (1 - .6)]}{2 - .6} \cdot \frac{.25}{4} = .0225, \, \mathbf{s}_{1} = .1500,$$

$$\mathbf{s}_{2}^{2} = \frac{.6[1 - (1 - .6)^{4}]}{2 - .6} \cdot \frac{.25}{4} = .0261, \, \mathbf{s}_{2} = .1616,$$

$$\mathbf{s}_3 = .1633, \mathbf{s}_4 = .1636, \mathbf{s}_5 = .1637 = \mathbf{s}_6..\mathbf{s}_{16}$$

Control limits are:

For 
$$t = 1$$
,  $40 \pm 3(.1500) = 39.55,40.45$   
For  $t = 2$ ,  $40 \pm 3(.1616) = 39.52,40.48$   
For  $t = 3$ ,  $40 \pm 3(.1633) = 39.51,40.49$ .  
These last limits are also the limits for  $t = 4, ..., 16$ .

Because  $w_{13} = 40.51 > 40.49 = UCL$ , an out-of-control signal is generated.