

MÉTHODE DE LAGRANGE: DÉTERMINATION DES POINTS CRITIQUES

MB3 - 2^{ème} année - **A.U.** 2021/2022

Formulation du problème

Formulation du problème

Soit $f,g:\mathbb{R}^2 \to \mathbb{R}$ deux fonctions admettant des dérivées partielles secondes continues.

On considère le problème \mathcal{P} :

$$\mathcal{P}: \begin{cases} \text{minimiser ou maximiser} & f(x,y) \\ \text{sous la contrainte} & g(x,y) = \alpha \end{cases}$$

Formulation du problème

Formulation du problème

Soit $f,g:\mathbb{R}^2 \to \mathbb{R}$ deux fonctions admettant des dérivées partielles secondes continues.

On considère le problème \mathcal{P} :

$$\mathcal{P}: \begin{cases} \text{minimiser ou maximiser} & f(x,y) \\ \text{sous la contrainte} & g(x,y) = \alpha \end{cases}$$

lagrangien

On appelle lagrangien du problème \mathcal{P} la fonction L définie par:

$$L(x, y, \lambda) = f(x, y) - \lambda (g(x, y) - \alpha)$$

avec λ est un réel dit multiplicateur de Lagrange.

Points critiques du lagrangien

Points critiques du Lagrangien L

On appelle point critique du Lagrangien L le triplet (x_0, y_0, λ) vérifiant:

$$\begin{cases} \frac{\partial L}{\partial x}(x_0, y_0, \lambda) &= 0\\ \frac{\partial L}{\partial y}(x_0, y_0, \lambda) &= 0\\ \frac{\partial L}{\partial \lambda}(x_0, y_0, \lambda) &= 0 \end{cases}$$

Le triplet (x_0, y_0, λ) est dit aussi point stationnaire.

Points critiques du lagrangien

Points critiques du Lagrangien L

On appelle point critique du Lagrangien L le triplet (x_0, y_0, λ) vérifiant:

$$\begin{cases} \frac{\partial L}{\partial x}(x_0, y_0, \lambda) &= 0\\ \frac{\partial L}{\partial y}(x_0, y_0, \lambda) &= 0\\ \frac{\partial L}{\partial \lambda}(x_0, y_0, \lambda) &= 0 \end{cases}$$

Le triplet (x_0, y_0, λ) est dit aussi point stationnaire.

Contrainte qualifiée

On dit que la contrainte $g(x,y) = \alpha$ est qualifiée au point (x_0,y_0) si :

1
$$g(x_0, y_0) = \alpha$$

$$(\frac{\partial g}{\partial x}(x_0, y_0), \frac{\partial g}{\partial y}(x_0, y_0)) \neq (0, 0)$$

Définition

On appelle matrice hessienne bordée du Lagrangien L en (x_0, y_0, λ) la matrice $\mathcal{H}_L(x_0, y_0, \lambda)$ définie par:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial y \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial \lambda \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda^{2}}(x_{0}, y_{0}, \lambda) \end{pmatrix}$$

Définition

On appelle matrice hessienne bordée du Lagrangien L en (x_0,y_0,λ) la matrice $\mathcal{H}_L(x_0,y_0,\lambda)$ définie par:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial y \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial \lambda \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda^{2}}(x_{0}, y_{0}, \lambda) \end{pmatrix}$$

Remarques

① La matrice \mathcal{H}_L est symétrique.

Définition

On appelle matrice hessienne bordée du Lagrangien L en (x_0,y_0,λ) la matrice $\mathcal{H}_L(x_0,y_0,\lambda)$ définie par:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial y \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial \lambda \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda^{2}}(x_{0}, y_{0}, \lambda) \end{pmatrix}$$

Remarques

- ① La matrice \mathcal{H}_L est symétrique.
- 2 $\frac{\partial^2 L}{\partial x \partial \lambda}(x_0, y_0, \lambda) = \frac{\partial^2 L}{\partial \lambda \partial x}(x_0, y_0, \lambda) = -\frac{\partial g}{\partial x}(x_0, y_0)$

Définition

On appelle matrice hessienne bordée du Lagrangien L en (x_0, y_0, λ) la matrice $\mathcal{H}_L(x_0, y_0, \lambda)$ définie par:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial y \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial \lambda \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda^{2}}(x_{0}, y_{0}, \lambda) \end{pmatrix}$$

Remarques

- ① La matrice \mathcal{H}_L est symétrique.
- 3 $\frac{\partial^2 L}{\partial y \partial \lambda}(x_0, y_0, \lambda) = \frac{\partial^2 L}{\partial \lambda \partial y}(x_0, y_0, \lambda) = -\frac{\partial g}{\partial y}(x_0, y_0)$

Définition

On appelle matrice hessienne bordée du Lagrangien L en (x_0, y_0, λ) la matrice $\mathcal{H}_L(x_0, y_0, \lambda)$ définie par:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial x \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial y \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial y \partial \lambda}(x_{0}, y_{0}, \lambda) \\ \frac{\partial^{2}L}{\partial \lambda \partial x}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2}L}{\partial \lambda^{2}}(x_{0}, y_{0}, \lambda) \end{pmatrix}$$

Remarques

① La matrice \mathcal{H}_L est symétrique.

2
$$\frac{\partial^2 L}{\partial x \partial \lambda}(x_0, y_0, \lambda) = \frac{\partial^2 L}{\partial \lambda \partial x}(x_0, y_0, \lambda) = -\frac{\partial g}{\partial x}(x_0, y_0)$$

3
$$\frac{\partial^2 L}{\partial y \partial \lambda}(x_0, y_0, \lambda) = \frac{\partial^2 L}{\partial \lambda \partial y}(x_0, y_0, \lambda) = -\frac{\partial g}{\partial y}(x_0, y_0)$$

On en déduit que la matrice la matrice Hessienne bordée du Lagrangien L en (x_0, y_0, λ) s'écrit aussi:

$$\mathcal{H}_{L}(x_{0}, y_{0}, \lambda) = \begin{pmatrix} \frac{\partial^{2} L}{\partial x^{2}}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2} L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & -\frac{\partial g}{\partial x}(x_{0}, y_{0}) \\ \frac{\partial^{2} L}{\partial x \partial y}(x_{0}, y_{0}, \lambda) & \frac{\partial^{2} L}{\partial y^{2}}(x_{0}, y_{0}, \lambda) & -\frac{\partial g}{\partial y}(x_{0}, y_{0}) \\ -\frac{\partial g}{\partial x}(x_{0}, y_{0}) & -\frac{\partial g}{\partial y}(x_{0}, y_{0}) & 0 \end{pmatrix}$$

Nature du point critique

Soit (x_0, y_0, λ) un point critique du Lagrangien L tel que la contrainte $g(x, y) = \alpha$ est qualifiée en (x_0, y_0) . La nature de ce point critique dépend de la signe de:

$$\Delta = \det(\mathcal{H}_L(x_0, y_0, \lambda))$$

Nature du point critique

Soit (x_0, y_0, λ) un point critique du Lagrangien L tel que la contrainte $g(x, y) = \alpha$ est qualifiée en (x_0, y_0) . La nature de ce point critique dépend de la signe de:

$$\Delta = \det(\mathcal{H}_L(x_0, y_0, \lambda))$$

Proposition

Soit (x_0, y_0, λ) un point critique du Lagrangien L tel que la contrainte $g(x, y) = \alpha$ est qualifiée en (x_0, y_0) . On distingue trois cas:

- ① Si $\Delta > 0$, alors le point (x_0, y_0) est un maximum local de f sous la contrainte $g(x,y) = \alpha$.
- ② Si $\Delta < 0$, alors le point (x_0, y_0) est un minimum local de f sous la contrainte $g(x,y) = \alpha$.
- 3 Si $\Delta = 0$, on ne peut pas conclure.

Enoncé:

On considère les deux fonctions f et g:

$$f(x,y) = 5x^2 + 6y^2 - xy$$
 $g(x,y) = x + 2y$

Déterminer les extremas de f sous la contrainte g(x,y)=24.

Enoncé:

On considère les deux fonctions f et g:

$$f(x,y) = 5x^2 + 6y^2 - xy$$
 $g(x,y) = x + 2y$

Déterminer les extremas de f sous la contrainte g(x,y)=24.

Correction:

Enoncé:

On considère les deux fonctions f et g:

$$f(x,y) = 5x^2 + 6y^2 - xy$$
 $g(x,y) = x + 2y$

Déterminer les extremas de f sous la contrainte g(x,y)=24.

Correction:

Probleme d'optimisation de Lagrange

Enoncé:

On considère les deux fonctions f et g:

$$f(x,y) = 5x^2 + 6y^2 - xy$$
 $g(x,y) = x + 2y$

Déterminer les extremas de f sous la contrainte g(x,y)=24.

Correction:

Probleme d'optimisation de Lagrange

$$\Leftrightarrow \begin{cases} 10x - y - \lambda &= 0\\ 12y - x - 2\lambda &= 0 \Leftrightarrow \\ 24 - x - 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} -21x + 14y &= 0\\ \lambda &= 10x - y\\ x + 2y &= 24 \end{cases}$$

$$\Leftrightarrow \begin{cases} 10x - y - \lambda &= 0 \\ 12y - x - 2\lambda &= 0 \Leftrightarrow \\ 24 - x - 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} -21x + 14y &= 0 \\ \lambda &= 10x - y \\ x + 2y &= 24 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x + 2y &= 0\\ \lambda &= 10x - y \Leftrightarrow \begin{cases} 4x &= 24\\ \lambda &= 10x - y\\ y &= \frac{1}{2}(24 - x) \end{cases}$$

$$\Leftrightarrow \begin{cases} 10x - y - \lambda &= 0 \\ 12y - x - 2\lambda &= 0 \Leftrightarrow \\ 24 - x - 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} -21x + 14y &= 0 \\ \lambda &= 10x - y \\ x + 2y &= 24 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x + 2y &= 0\\ \lambda &= 10x - y \Leftrightarrow \begin{cases} 4x &= 24\\ \lambda &= 10x - y\\ y &= \frac{1}{2}(24 - x) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 6 \\ y = 9 \\ \lambda = 51 \end{cases}$$

$$\Leftrightarrow \begin{cases} 10x - y - \lambda &= 0 \\ 12y - x - 2\lambda &= 0 \Leftrightarrow \\ 24 - x - 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} -21x + 14y &= 0 \\ \lambda &= 10x - y \\ x + 2y &= 24 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x + 2y &= 0\\ \lambda &= 10x - y \Leftrightarrow \begin{cases} 4x &= 24\\ \lambda &= 10x - y\\ y &= \frac{1}{2}(24 - x) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 6 \\ y = 9 \\ \lambda = 51 \end{cases}$$

Donc le seul point critique du Lagrangien L est:

$$\Leftrightarrow \begin{cases} 10x - y - \lambda &= 0\\ 12y - x - 2\lambda &= 0 \Leftrightarrow \\ 24 - x - 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} -21x + 14y &= 0\\ \lambda &= 10x - y\\ x + 2y &= 24 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x + 2y &= 0\\ \lambda &= 10x - y \Leftrightarrow \begin{cases} 4x &= 24\\ \lambda &= 10x - y\\ y &= \frac{1}{2}(24 - x) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 6 \\ y = 9 \\ \lambda = 51 \end{cases}$$

Donc le seul point critique du Lagrangien L est: (6, 9, 51).

Etape3: Vérifier que la contrainte est qualifiée en point (x_0, y_0) :

$$g(x_0, y_0) = x_0 + 2y_0 = 6 + 2 \times 9 = 24$$

$$\bullet \left(\frac{\partial g}{\partial x}(x_0, y_0), \frac{\partial g}{\partial y}(x_0, y_0) \right) = (1, 2) \neq (0, 0)$$

Etape3: Vérifier que la contrainte est qualifiée en point (x_0, y_0) :

- $g(x_0, y_0) = x_0 + 2y_0 = 6 + 2 \times 9 = 24$
- $(\frac{\partial g}{\partial x}(x_0, y_0), \frac{\partial g}{\partial y}(x_0, y_0)) = (1, 2) \neq (0, 0)$

Etape4: calculer la matrice hessienne bordée en point stationnaire (x_0, y_0, λ) :

$$\mathcal{H}_{L}(6,9,51) = \begin{pmatrix} \frac{\partial^{2}L}{\partial x^{2}}(6,9,51) & \frac{\partial^{2}L}{\partial x\partial y}(6,9,51) & -\frac{\partial g}{\partial x}(6,9) \\ \frac{\partial^{2}L}{\partial y\partial x}(6,9,51) & \frac{\partial^{2}L}{\partial y^{2}}(6,9,51) & -\frac{\partial g}{\partial y}(6,9) \\ -\frac{\partial g}{\partial x}(6,9) & -\frac{\partial g}{\partial y}(6,9) & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & -1 & -1 \\ -1 & 12 & -2 \\ -1 & -2 & 0 \end{pmatrix}$$

On en déduit que:

$$\Delta = \begin{vmatrix} 10 & -1 & -1 \\ -1 & 12 & -2 \\ -1 & -2 & 0 \end{vmatrix} = -56 < 0$$

On en déduit que:

$$\Delta = \begin{vmatrix} 10 & -1 & -1 \\ -1 & 12 & -2 \\ -1 & -2 & 0 \end{vmatrix} = -56 < 0$$

Donc le point (6,9) est un minimum local de f sous la contrainte x+2y=24.