Live-Abschnittserkennung des TUG-Tests mit Hilfe von IMU-Daten und maschinellem Lernen

Christian Steger, Julius Möller und Hilko Wiards 30. Januar 2019

Zielsetzung und Aufbau

Zielsetzung:

Entwicklung einer Live-Applikation zur Echtzeitauswertung des TUG-Tests.

- Erkennung der Aktivitätsphasen
- Sitzen, Aufstehen, Laufen, Umdrehen, Hinsetzen

Signalerfassung

- 3-Achsen Accelerometer, 3-Achsen Gyroskop, 3-Achsen Magnetometer
- Aufzeichnung der IMU-Daten mit 17 Hz, max. 100 Hz möglich
- Problem: IMU-Daten beziehen sich auf Smartphone-internes Koordinatenreferenzsystem
- $\Rightarrow \ \mathsf{Transformiere} \ \mathsf{Sensordaten} \ \mathsf{in} \ \mathsf{das} \ \mathsf{NED}\text{-}\mathsf{Referenzsystem}$

Figure 2. Gravity vector projection (represented in relation to the NED frame) over the IMU axes with three orthogonal accelerometers.

Signalverarbeitung

- Beschleunigung
 - unveränderte Z-Beschleunigung (Down-Richtung)
 - Betrachte Beschleunigung auf der XY-Ebene (Nord-Ost-Ebene) richtungsunabhängig

$$\rightarrow acc_{xy} = \sqrt{acc_x^2 + acc_y^2}$$

- Rotation
 - Betragsmäßig integrierte Z-Rotation

$$\int |rot_z(t)|dt$$

• Integrierte richtungsunabängige Rotation auf der der XY-Ebene

$$\int \sqrt{rot_x(t)^2 + rot_y(t)^2} dt$$

Machine Learning Setup

• Live Datenverarbeitung durch Sliding-Window-Ansatz

Windowlength	80 (≈ 4s)
Stepsize	1
Overlap	98,75%
Features	4
Shape of input vector	80×4

Tabelle 1: Parameter für Live-Verarbeitung

Labeling

- Live-Aufnahme der Daten mittels Python-Script
 - Speicherung der Rohdaten als .csv-Datei
 - TIMESTAMP; [VALUES]; LABEL
- Labelling der Aktion während der Durchführung
 - \bullet Jeder Messpunkt erhält eine Aktivitätsinformation $\{0,1,2,3,4\}$

Labelling jedes Messpunktes ermöglicht nachträgliche Reduktion der Genauigkeit

Trainingsdaten

- 40 TUG-Tests
- Ein Proband mit Nexus 5-Smartphone
- Separate Aufnahmen von Sitzen

Abbildung 1: Labelvisualisierung auf Rohdaten eines TUG-Tests

Labeling II - Multilabeling

 Aufteilung eines Frames in 10 Unterabschnitte: Jeder Unterabschnitt erhält eigenes Aktivitätslabel

Training

- Sliding Window mit Stepsize von 1
- 31494 Frames mit jeweils 320 Messwerten
- Verschiedene ML-Ansätze:
 - cNN
 - Decision Tree
 - Random Forest
 - kNN

Evaluation

LIVE - Demo

Abschließendes Fazit

- direktes Feedback
- Keine Professionelle Aufsicht nötig
- unkompliziertes Setup durch gängige Technologien
- Keine große Investition nötig

Ausblick

- Mehr Trainingsdaten
 - von verschiedenen Personen
 - mit unterschiedlichem Gesundheitszustand
- Höhere Zahl unterschiedlicher Telefone
- Optimierung der Datenverarbeitung