PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classificati n ⁶:

C03C 13/00

A1

(11) International Publication Number: WO 97/49643

(43) International Publication Date: 31 December 1997 (31.12.97)

(21) International Application Number: PCT/GB97/01667

(22) International Filing Date:

20 June 1997 (20.06.97)

(30) Priority Data:

9613023.2

21 June 1996 (21.06.96)

GB

(71) Applicant (for all designated States except US): THE MOR-GAN CRUCIBLE COMPANY PLC [GB/GB]; Morgan House, Madeira Walk, Windsor, Berkshire SL4 1EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JUBB, Gary, Anthony [GB/GB]; 11 Lawnswood House, Church Avenue, Stourport-on-Severn, Worcestershire DY13 9OX (GB). EATON, Paul, Nigel [GB/GB]; 5 Lisle Avenue, Foley Park, Kidderminster, Worcestershire DY11 7DE (GB). CANTY, Philip, John [GB/GB]; 29 Rectory Lane, Rock, Kidderminster, Worcestershire DY14 9RU (GB). LOWE, Alison, Jane [GB/GB]; 11 Mayfield Close, Ferndale Estate, Kidderminster, Worcestershire DY11 5NG (GB).

(74) Agent: PHILLIPS & LEIGH; 7 Staple Inn, Holborn, London WC1V 70F (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SALINE SOLUBLE INORGANIC FIBRES

(57) Abstract

The use of P_2O_5 and/or B_2O_3 as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO is described. The inorganic fibres have a composition such that SiO₂ + P_2O_5 -(58 + (if MgO > 10, 0.5 x (MgO-10) else 0)) > -2.4 wt.%.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon .	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco .	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM ·	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Beiarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan .	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	, NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•
DE	Germany	. LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
							
l							

300 Rec'd PCT/PTO 21 DEC 1998

SALINE SOLUBLE INORGANIC FIBRES

1

This invention relates to saline soluble inorganic fibres.

Saline soluble inorganic fibres have been described in several patent specifications, see for example WO93/15028. Fibres are required to be soluble in saline solution so that inhaled or ingested fibres dissolve rather than providing a source of irritation or otherwise affecting health. WO93/15028 showed that fibres comprising SiO₂, CaO and MgO and having a silica content of greater than 58% (or greater than 58% plus 0.5 times (wt%MgO - 10) if MgO > 10wt%) had suitable shrinkage characteristics at 800°C and 1000°C to be usable as refractory materials. A further feature of WO93/15028 was the use of the percentage of non-bridging oxygens present to predict the solubility of fibres in physiological saline solution.

Various subsequent applications have described the effect of P_2O_5 and B_2O_3 on solubility - see for example WO95/29135. P_2O_5 is alleged to have a solubilising effect on such fibres.

The German government have proposed a fibre classification which turns on a variable K_I which is defined as:

 $K_I = \Sigma$ (Na,K,B,Ca,Mg,Ba -oxide) - 2* Al-oxide (the amounts of the oxides being expressed as weight %)

According to the proposed fibre classification if K_I is greater than 40 the fibre requires no health warnings. If K_I lies between 30 and 40 the fibre requires health warnings to be made. If K_I is less than 30 more serious marking is required (it is labelled as a carcinogen). It is readily apparent that it is difficult to provide a high K_I fibre ($K_I > 40$) while still providing a refractory fibre like that of WO93/15028 (SiO₂>58wt%), there being a very narrow window of compositions to meet.

As a result of investigating fibre compositions that may meet the fibre classification and yet still be refractory enough to meet the standard of WO93/15028 (shrinkage of less than 3.5% at both 800°C and1000°C) the applicants have found that addition of P₂O₅ to compositions allows a broader range of refractory fibres to be produced than had previously been appreciated. They have also found that B₂O₃, previously thought to be

extremely detrimental to refractoriness, has a similar, although lesser, effect and that both P_2O_5 and B_2O_3 may be used in the fibres of WO93/15028.

The applicants have found that the refractoriness of the P_2O_5 and B_2O_3 containing fibres of the present invention is dependent on the sum of the amounts of SiO_2 and P_2O_5 (expressed in wt%)

It appears that a further factor that may be important in determining the refractoriness of a fibre is the percentage of non-bridging oxygens. If this percentage is 61.4% or more (calculated on the basis of the amounts of the components SiO₂, CaO, MgO, P₂O₅, and B₂O₃) the fibres tend to fail shrinkage tests at 800°C and 1000°C (failure being defined as a shrinkage of 3.5% or more).

Accordingly the present invention provides the use of P_2O_5 and/or B_2O_3 as a component to improve the refractoriness of inorganic fibres comprising SiO_2 , and CaO and/or MgO, the inorganic fibres having a composition such that

$$SiO_2 + P_2O_3 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$$

The invention provides further such fibres in which the percentage of non-bridging oxygens is less than 61.4%.

Further features of the invention are apparent from the claims in the light of the following description.

The percentage of non-bridging oxygens (%N.B.O.) is calculated by converting the weight percentages of SiO₂, CaO, MgO, P₂O₅, and B₂O₃ to molar amounts and inserting these amounts into the equation:-

%N.B.O. =
$$\frac{2*(CaO + MgO + P_2O_5 + B_2O_3)}{(2*SiO_2 + CaO + MgO + 5 \times P_2O_5 + 3 \times B_2O_3)} \times 100$$

The reason the amounts of CaO, MgO, P_2O_5 , and B_2O_3 are doubled in the numerator to this equation is that each contributes two non-bridging oxygens. The reason terms are multiplied in the denominator to this equation is to reflect the number of oxygen atoms each molecular formula possesses.

Table I shows the results of a first set of shrinkage and solubility tests on compositions comprising SiO₂, CaO, MgO, P₂O₅, and B₂O₃ as main

ingredients. In this table the analysed compositions are normalised to 100%. It is clear from these compositions that where the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is greater than 61.4% (those fibres lying above line A of Table I) the fibres fail the shrinkage tests, having shrinkages of greater than 3.5% at either or both of 800°C and 1000°C.

WO93/15028 stressed the importance of alumina content and the fibres lying between lines B and A of Table I show that alumina contents of greater than 1wt% are damaging to the shrinkage properties of fibres.

The applicants have also found that the combined amount of CaO and MgO is important. Those fibres lying between lines C and B have a combined CaO and MgO content of greater than 42wt% and also fail the shrinkage tests:

The fibres below line C have a percentage of non-bridging oxygens less than 61.4%, an alumina content of less than 1wt%, and a combined CaO and MgO content of less than 42wt%. All of these fibres pass the shrinkage tests. These fibres fall within the compositional ranges:-

SiO ₂	52.4 - 57.85wt%
CaO	22.2 - 39.4wt%
MgO	1.96 - 17.4wt%
P_2O_5	0.82 - 7.8wt%
B_2O_3	0 - 1.95wt%
Al ₂ O ₃	<1wt%

The solubility results presented in Table I were obtained by the methods described in WO93/15028 and show a high solubility for all of the fibres produced.

It can be seen that all of the fibres below line C have a K_I of more than 35 and more than half have a K_I of more than 40.

Further testing resulted in the data presented in Table II. The data presented are as in table I but an additional column entitled deviation shows the result of looking to the difference between the sum of the SiO₂ and P₂O₅ contents and the SiO₂ amount predicted to be needed by WO93/15028 for a fibre to be refractory (shrinkage of less than 3.5% at both 800°C and 1000°C. The figure given is found by calculating the sum

$$SiO_2 + P_2O_3 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0))$$

If this is less than -2.4wt% the fibres fail. The fibres that failed are shown in plain text, those that passed in bold text, and those that were difficult to form in italics.

More than 12.5wt% P₂O₅ is undesirable as it causes difficulties in making the fibres.

While the above description and the claims refer to P_2O_5 , B_2O_3 , SiO_2 , CaO and MgO it will be clear to the person skilled in the art that the pure materials need not be used and that provision of these components in combined form (e.g. provision of P_2O_5 in the form of mixed oxide phosphates) is part of the invention.

3			1	Cleaning		Washing Orbi	N. Wei	Weight percent)	9		Γ	K	Shrtnkase	3		Solubility (ppm)	(mag)				% N.B.O.
3 :	[2			Ş	50	1000	2,530	Ş		John Johns	0,000	9	ç	٤	202	Total	CaO+Mac	
1 0	3 8	2 0		1 69		2 2	200		0.17	\$ 00°	L.	40.4	9	9	2 2	8	17.1		328	4 7	68.5%
CTP 9	24.81	99.8	\$ 10	50.42	0.38	0.31	<0.0>		0.17	0.15		43.0	23.9	38.8	\$	113	193		367	43.47	68.1%
LTPII	25.13	19.07	2.51	52.54	0.28	0.25	0.03		0.17	< 0.03	< 0.05	43.9	8.9	39.1	\$	2	124		323	44.20	68.0%
LTP16	31.83	12.27	3.39	\$1.59	0.26	0.42	90:0		0.17	< 0.03	< 0.03	<u>±</u>	49.1		2	26	300		355	±	86.1%
1.TP10	24.48	17.89	2.48	54.46	0.21	0.28	0.03		91.0	< 0.05	< 0.03	42.3	3.62	1.61	\$	8	691		317	42.37	64.7%
LTP 4	24.04	17.78	3.31	53.85	0.31	0.26	0.05		0.15	0.25	< 0.05	41.5	3.71	4.77	26	98	<u>8</u>		331	41.83	64.3%
LTP 5	24.22	17.17	16.4	52.72	0.33	0.30	< 0.05		0.14	0.21	< 0.05	41.0	3.63	5.39	3	901	<u>6</u>		362	41.40	<u>\$</u>
LTP17	38.39	5.54	3.4	\$1.22	6.4	0.42	0.07		0.16	0.38	< 0.03	43.6	45.2	43.8	83	32	161		306	43.94	63.9%
LTP3	38.62	5.56	1.57	52.23	0.34	9.4	0.07		0.15	< 0.05	< 0.05	4.0	42.90		22	2	199		310	44.18	63.7%
LTP14	30.93	10:11	4.90	51.96	0.30	0.45	0.05		0.15	0.25	< 0.05	£ 8.	3.24	3.92	78	8	161		338	41.95	63.0%
LTP13	11.28	27.95	3.26	57.2	< 0.05	0.13	< 0.05		0.17	< 0.05	< 0.05	39.4	5.72	5.26	30	117	88		335	39.23	63.0%
LTP12	30.93	11.35	3.36	53.52	0.32	0.31	90.0		0.15	< 0.05	< 0.05	42.0	2.55	30.1	22	72	207		361	42.27	62.6%
LTP20	31.05	11.35	2.52	54.14	0.32	0.31	9.0		91.0	0.10	< 0.05	42.1	3.38	29.7	\$	17	200		356	42.40	62.6%
1.TP15	36 89	5.70	5.05	51.22	0.31	0.43	0.10		91.0	0.13	< 0.05	43.5	3.41	5.03	88	33	204		327	42.59	62.2%
L.TP 3	12.89	16.69	6.70	52.58	0.25	0.29	< 0.05		0.14	0.46	< 0.05	39.4	23.3	29.5	4	991	141		350	39.58	%6.19
1.TP 7	10.37	27.85	3.29	58.18	< 0.05	0.15	< 0.03		0.16	< 0.05	< 0.05	38.4	10.9	15.5	36	132	132		320	38.23	61.4%
LTPS2	24.9	5.11	4.89	24.8	38	0.28	0.0	<0.05	1.38	<0.05	<0.05	32.6	32.1		72	74	140		286	36.40	\$6.0%
LTPS1	28.7	=	1.62	56.6	1.38	0.29	0.07	<0.03	0.26	<0.05	<0.03	37.3	3.07	1.61	8	69	139		310	39.70	58.4%
1.173	\$ 29	2.09	1.23	55.09	5	0.39	0.12		61.0	0.17	< 0.05	42.0	45.9		76	2	206		292	42.38	\$8.8%
1.TP3	36.62	5.58	2.54	\$4.19	0.39	0.46	0.07		0.15	< 0.05	< 0.05	42.0		35.5	88	7.	208		30	42.20	60.3%
1.TP30	\$ \$	1.96	222	55.25	₹	0.41	0.10		0.21	<0.05	< 0.05	41.0	1.74	2.04	22	Ξ	309		192	41.36	\$7.5%
LTP41	31.36	9.48	0.85	55.63	0.27	0.30	0.07	1.88	0.16	<0.03	< 0.05	42.5	1.20	132	87	3	194	2	361	40.84	%0.09
LTP 6	29.83	10.45	3.34	\$5.65	0.21	0.32	0.03		0.15	< 0.05	< 0.05	40.7	1.89	2.76	\$9	22	172		289	40.28	\$9.0%
LTP34	30.44	9.81	1.68	57.3	0.25	0.31	0.07		0.15	<0.05	< 0.05	£0.1	3	1.79	92	25	88		315	40.25	\$8.0%
LTP43	30.51	89.6	1.68	\$6.19	0.28	0.32	0.07	1.1	0.15	<0.05	< 0.05	4:	0.97	1.84	62	8	187	77	327	40.19	38.8%
LTP42	30.55	9.36	98.0	57.13	0.27	0.33	0.07	1.08	0.13	<0.05	< 0.05	4:1	1.04	<u>8</u> .	2	8	192	2	344	40.12	58.2%
LTP47	22.2	17.4	3.98	55.2	0.31	0.31	0.03	<0.05	0.1	<0.05	<0.05	39.3	1.97	2.14	85	9	197		329	39.60	% • • •
LTP38	34.82	4.73	0.83	57.84	0.31	0.30	80.0	0.94	0.15	<0.0\$	< 0.05	£0.3	1.07	1.40	2	33	173	٥	292	39.56	55.4%
LTP 2	23.35	16.10	4.87	54.25		0.24	< 0.05		9.16	0.58		38.8	2.24	308	\$ 5	8 :	167	7	316	39.45	60.8%
1.TP39	34.35	£23	1.67	57.39		0.30	80.0	8.	* •	Ç0.0>	_))	-	?	7	2 :	3	2		80.65	
LTP 1	23.29	15.66	3.33	57.01	0.24	0.22	90.0		0.14	< 0.03		38.7	<u></u>	1.71	63	6 8	2		327	38.94	28.7%
L.TP48	32	6.87	7.8	52.4	0.52	0.34	0.03	<0.05	0.15	0.18	<0.05	38.2	1.24	1.53	*	48	208		337	38.87	57.7%
LTP40	33.67	4.75	0.86	57.85	0.38	0.31	80.0	1.95	0.15	<0.05	< 0.05	40.0	1.13	2.39	\$	33	26	33	162	38.42	54.5%
LTP26	33.69	4.56	3.73	\$6.95	0.36	0.43	90.0		0.14	0.07	< 0.05	38.0	1.23	. 6	2	78	193		312	38.25	\$4.0%
LTP27		9.33	3.66	57.32	0.22	0.36	0.03		0.14	<0.05	< 0.05	38.2	0.99	1.16	69	4	173		188	38.24	\$5.5%
1.TP46		8.69	2.67	59	0.79	0.33	90.0	<0.05	0.13	<0.05	<0.05	36.9	0.91	0.99	7	ş	173		292	37.09	53.3%

TABLE II (Part 1)

Code			đ	Chemical Composition (XRF	omposit	on (XR		- Weight percent)	(Ju			3	Ø.	Shrtnkage			Solubility (ppm)	y (ppm)				% N.B.O.
LTP	CaO	MgO	P205	Si02	AJ203	Ne.20	8	B203	Fe203	202	SrO		800°C 1000°C Devlation	300°C	eviation	O ₂ O	MgO	SiO2	B203	Total	CaO+MgO	
LTP 8	24.95	19.18	3.41	\$1.69	0.25	0.30	0.03		0.17			43.99	40.00	40.00	-7.49	53	86	177		328	44.14	%5.89
L.TP11	25.13	19.07	2.51	52.54	0.28	0.25	0.05		0.17			43.94	46.80	39.10	-7.48	55	8	174		323	44.20	68.0%
1.TP49	32.35	6.74		50.54	0.57	0.40	0.08	9.17	0.14			47.60	2.65	15.70	-7.46	2	₹	214	129	463	39.09	62.1%
1.TP 9	24.81	18.66	5.10	50.42	. 0.38	0.31			0.17	0.15		43.03	23.90	38.80	18.9	89	115	193		367	43.47	68.1%
1,TP67	15.17	25.18	5.06	54.00	0.19	0.25			0.15			40.22	5.70		6.53						40.35	64.9%
LTP13	11.28	27.95	3.26	57.20	_	0.13			0.17			39.36	5.72	5.26	6.51	30	117	188		335	39.23	63.0%
LTP62	14.99	24.54	2.52	57.24	0.35	0.19	-		91.0			39.02	4.48		-5.51	23	\$	611		210	39.53	62.3%
L.TP 7	10.37	27.85	3.29	58.18		0.15			0.16			38.37	10.90	15.50	-5.46	36	132	152		320	38.23	61.4%
LTP10	24.48	17.89	2.48	54.46	0.21	0.28	0.05		91.0			42.28	3.62	19.10	-5.01	\$8	8	691		317	42.37	64.7%
1.TP 4	24.04	17.78	3.31	53.85	0.31	0.26	0.0		0.15	0.25		41.52	3.71	4.77	£. 4	26	8	180		331	41.83	64.3%
1.TP16	31.83	12.27	3.39	\$1.59	0.26	0.42	90.0		0.17			44.07	49.10		¥. 5	7.0	76	200		. 355	44.11	66.1%
L.TP S	24.22	17.17	4.91	\$2.72	0.33	0.30		-	0.14	0.21		41.04	3.63	\$39	-3.96	65	901	161		362	41.40	64.1%
L.TP59	32.13	10.47	12.93	41.37	2.31	0.56	0.05		0.17	-		38.59	43.20	•	-3.94	42	=	179		292	42.60	69.3%
1.TP50	31.00	10.40		54.50	0.36	0.31	0.08	3.19	91.0			44.26	29.80	-	3.70	79	58	200	30	367	41.40	62.0%
1.TP17	38.39	5.54	3.41	51.22	0.40	0.42	0.07		0.16	0.38		43.62 4	45.20 4	43.80	-3.37	83	32	161		306	43.94	63.9%
L.TP56	34.38	9.46	14.72	40.02	0.72	0.55			91.0	-		42.95	86.6	•	-3.26	9	57	<u>%</u>		313	43.84	70.5%
L.FP23	38.62	5.56	2.57	52.23	0.34	0.46	0.07		0.15			44.03	42.90		-3.20	82	29	18		310	44.18	63.7%
L.TPS7	34.73	9.55	19.83	35.24	0.23	0.26			0.15			44.08	•	•	-2.93					0	44.28	73.0%
1.TP70	24.38	14.20		57.52	2.	81.0	80.0	3.01	0.18			40.97	3.63	7.86	-2.58	75	73	255	7	424	38.58	58.7%
LTP63	14.61	22.87	2.53	59.45	0.27	0.12	\dashv		0.16			37.06	9.57	-	-2.46	17	108	83		208	37.48	58.4%
								A	Above here compositions have deviation of more than 2.4wt%	e compos	itions ha	ve devia	ion of m	ore than	2.4wt%							
TTP54	29.40	8.73	14.55	46.68	20.0	0.44			0.13		-	38.43		-	3.23			-			38.13	60.1%
LTP61	32.46	9.86	14.02	42.67	0.09	0.70	0.05		0.15			42.89	3.44	3.65	-1.31						42.32	67.4%
7. TP60	31.46	9.58	12.64	16.11	0.69	250	0.05	\dashv	0.14		\dashv	40.25	\dashv		-0.45						41.04	64.8%
								₽₽	Above here compositions have P2O5 content	composit	ions hav	5 P205 c	ontent m	ore than	more than 12.5wr%			•				
LTP52	24.93	11.52	4.90	54.88	2.06	0.28	0.03		1.38			32.66	32.10	•	1.02	72	74	5		286	36.45	\$6.1%
LTPSI	28.72	1.01	1.62	56.65	38	67.0	0.07		0.26			37.33	3.07	3.61	-0.24	82	69	139		310	39.73	58.4%
							•		Abov	Above here fibres have AI2O3 content above	res have	AI203 c	ontent ab	-	wt% .	.]						
LTP15	36.89	5.70	\$0.5	51.22	0.31	0.43	0.10		0.16	0.13	Ť	42.50	3.41 5	5.03	-1.72	88	35	204		327	42.59	62.2%
LTP14	30.93	10.11	4.8	SI.96	0.30	0.45	0.05		0.15	0.25		41.85	3.24 3	3.92	-1.65	78	69	161		338	41.95	63.0%
LTPS8	32.93	71.6	12.01	44.34	0.19	0.53	9.03 S.03		0.19			8.3	2.62 2	2.78	-1.65	53	7	223		322	42.70	67.0%
	32.58	9.47	9.65	46.79	28.	0. 46	ş				_				-1.56	77	3	203		328	42.05	65.1%
LTPS3	29.34	9.8	9.58	50.26	0.17	9.56	S S		0.15	0.05		39.45	0.01	0.00	28.1	1	8	777		376	39.18	60.1%
										Above here SiO2 content less than 52wr%	16 SiO2 (Content k	ss then 5	2wt%								-

TABLE II (Part 2)

0		%6.19	62.6%	%8.09	62.6%	60.3%	\$7.7%		61.0%	59.7%	60.2%	58.8%	%0.09	24.9%	57.5%	58.7%	58.8%	\$6.1%	56.3%	52.6%	58.2%	55.4%	54.5%	29.0%	\$6.5%	58.0%	55.2%	\$0.Z	55.5%	Τ
% N.B.O.		L							L	<u>~</u>	<u>ة</u>	~ 	 	ふ	S	<i>₹</i> 8	\$7	**	-X	25	-	55	3	8	%	3 7	<u> </u>	ス	. 55	
	CaO+MgO	39.38	42.40	39.45	42.27	42.20	38.75		39.78	39.22	38.85	42.38	40.84	38.96	41.36	38	40.19	40.16	38.54	37.55	40.12	39.56	38.42	40.28	36.73	40.25	39.08	38.25	38.24	
	Total	330	356	316	361	300	337		359	319	366	292	361	408	192	327	327	275	334	382	344	262	167	289	378	315	287	312	288	
	B203				_							•	20	55	_		12	13	74	\$	12	60	25				16	-		
(bbm)	SiO2	E	200	167	207	208	205		197	161	226	206	194	278	209	175	187	195	28	70.	192	175	194	172	241	88	203	193	173	
Solubility (ppm)	MgO	166	7	*	22	34	48		골	76	88	01	\$	77	11	86	8	30	\$	7	68	32	32	22	28	32	33	38	8	
	ငွ ပ	F	88	8	2	88	2		88	\$	2	76	87	73	77	3	62	37	8	76	75	3	\$	જ	\$	92	32	<u></u>	67	
	1000°C Deviation	10.7	-2.01	-1.93	-1.79	-1.27	2.02	ž	-2.29	-2.05	-1.92	-1.68	1.52	-1.49	-0.53	-0.49	-0.12	90.09	-0.03	20.0	-0.02	0.66	0.71	0.76	0.81	0.98	1.06	1.68	2.99	١
Shrinkage	1)200(29.50	29.70	3.05	30.10	35.50	1.53	less than 55wt%	2.14	3.73	4.16	-	2.32	7	2.04	1.11	<u>=</u>	2.13	2.83	3.80		-	65.2	2.76	88.	62.1	8.	2 .	1.16	, co
8		23.30	3.38 2	2.24	2.55	<u>.</u>	1.24	to less	⊢	3.01	3.80	45.85	1.20	0.59	1.74	<u>-</u>	0.97	.57	88.	<u> </u>	3	1.07	1.15	.89	1 21	8.	1-47	1.22	0.99	
Z	Ц.	<u>r ·</u>	42.13	38.77	42.00	41.95	38.10	it S2wr%	39.52	39.04	38.49	42.03	42.55	41.69 0	2 0.86	38.74	41.13 0	40.99	40.92	40.43	41.06	40.26	1000	40.23 1	36.34	40.13	39.98	38.02	38.21 0	
	Sro		_					2 coater	-			_		_	_	0.05	_	_	_	_	_	_	_	_		_		_	m	
	202	9#0	0.10	85.0			0.18	Above here SiO2 content 52wt% to	-			0.17																0.0	_	
Œ	Fe203	0.14	0.16	0.16	0.15	0.15	0.15	Above	01.0	0.14 	0.14	0.19	0.16	0.14	0.21	0.14	0.15	0.15	0.18	0.13	0.15	0.15	0.15	0.15	0.13	0.15	0.14	0.14	0.14	
- Weight percent)	B203			-			 		\vdash				 88.	3.55	_	_	1.1	1.05	2.69	3.52	89:	0.94	8.		_		9.1			
- 1	K20		90.0		9.0	0.07	0.05		0.05			0.12	0.07	0.09	0.10	0.0	0.0	60.0	0.0	89.	0.0	8	88.	0.05		0.07	80.0	8	0.03	
ia (XRF		0.29	0.31	0.24	0.31	9.	0.34		0.31	97.0	0.24	0.39	0.30	0.20	0.4	0.22	0.32	0.31	0.23	623	0.33	0.30	0.31	ຊ	22.0	ີລ	3	3.	0.36	
mposttle	A1203	0.23	0.32	6. 5.	0.32	0.39	0.52		0.31	0.22			0.27		0.45	0.24	0.28	0.31	0.32	673	0.27	0.31	0.38	0.21	0.31	0.25	0.27	0.36	0.22	
Chemical Composition (XRF	_	\$2.58	24.14	\$4.25	53.52	54.19	\$2.24		55.45		55.92		55.63		55.25	57.01	\$6.19	57.92	57.95	_		57.84	57.85	\$5.65	57.93	57.30	57.39	\$6.95	57.32	
Oper	_	9.70	2.52	£.	3.36	2.54	7.78	-	8		4.55	1.23	0.85		1.11	3.33	1.68			 -	98.0	0.82		3.34	4.68 4.	89.1	1.67		3.66	
	MgO	16.69	1.35	16.10	11.35	5.58	6.85		17.48	18.4	18.77	2.09	9.48	0.65	2.3	15.66	89.6	4.77	3.	0.62	9.56	4.73	4.75	10.45	17.56	18.6	£73	₹	9.33	
		22.89	31.05	23.35	30.93	36.62	31.90		22.30	20.81	20.08	40.29	31.36	38.31	39.40	13.29	30.51	35.40	30.01	36.93	30.55	34.82	33.67	29.83	19.17	30.44	34.35	33.69	18.91	
ğ	I.TP	LTP 3		LTP 2	L.TP12	1.FP21	L.TP48		LTP47 2	LTP64 2	LTP68	LTP29	LTP41	LTP71	LTP30	LTP1	L.TP43	L.TP37	LTP32	LTP33	LTP42			L.TP 6	1.TP69 1	LTP34	LTP39	LTP26	1.TP27	

TABLE II (Part 3)

			Ī	Chemical Composition (XKF)	Om poste	30E (SE		Water percent)	Çes Ces		_	¥	_	Shrinksoe	-		Sohihilitay (mann)	(100)				
170	600		3000		1,000		_				Ī							(Done)				% N.B.O.
	-	ξ	572		SIOZ AIZOS	Ne.N	8	8203	Fe203	202	Š		သို့		000°C Deviation	3	Q X	SiO	ROCA	ا ا	000	
LTP66	15.65	21.16	4.38	58.17	0.24	0.25			0.15			3 %	3,64	250	2	30				$\overline{}$	28E	
TDACE	20.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									_	}		}	3	3	Z	169	_	283	36.81	57.7%
	_	7./4	2.7	2.3		C. 22			0.13			37.72	2.28	2.37	-0.62	4	3	185		100	20 10	/07 63
LTP2	22.67	13.60		59.64	0.37	0.27	90.0	3.25	0.14			39.11	117	91.9	- Y	9	3	3	5		20.10	2/.0%
I TP16	22.72	476		60 40		0 21	9	9	,						2	-	₹	<u> </u>	7	225	36.27	55.0%
				9	07.0	- C-	5	3	<u>?</u>		_	2	29.	3.85	09:0	œ	92	179	52	322	37.48	53 505
	28.30	9.20		58.70		0.29	90.0	3.00	0.18			40.29	3.15	4.88	0,70	16	8	200		707	3.60	
L.TP36	33.37	1.82		\$8.90	0.27	0.30	0.08	2.10	0.15			40 13	5	-	2	:	7		5	è	06.70	33.1%
	20.20	0 0		.00							_	2	3	71.7	2	<u>``</u>	2	8	25	293	38.19	\$6.03
}	2	3		33.03	/7.0	87.5	9	£	0.17		_	40.02	2.16	2.74	1.01	22	\$	193	9	343	39.23	3
LTP44 2	9.05	88.		29.81	0.35	0.36	0.07	3.16	0.13		0.19	38.82	99.1	2.71	1.81	2	7	101	2	360	36.03	
LTP45 2	24.10	11.40		62.48	3.0	0.24	90.0	3	0.15	_		35.76	2.17	312	3,70	5		3	; ;	8 :	33.33	27.7%
P46 2	LTP46 28.52	8.73	2 68	40 24	000	111	96		5		_				2	5	3	100	2	7	35.50	51.3%
			3	24:50		3	3			1	1	37.80	U.91	6.8	3.93	7	46	175		292	37.25	53.3%
				İ				i		Above be	are SiO2	content	Above here SiO2 content 58 wt% or more	or more								
																		ĺ				-

CLAIMS

1. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO, to produce inorganic fibres having a composition having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, the fibres having a composition such that

$$SiO_2 + P_2O_5 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$$

- 2. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 1 in which the percentage of non-bridging oxygens is less than 61.4%.
- 3. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 1 or claim 2 in which the fibres fall within the compositional range:-

SiO ₂	44 or more
CaO	20 - 40wt%
MgO	0 - 18wt%
P_2O_5	0- 12.5wt%
B_2O_3	0 - 4wt%

4. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 3 in which the fibres fall within the compositional range:-

$$SiO_2 \qquad \qquad 52 - <58 wt\% \ [52 - <58 + 0.5'(MgO-10)wt\% \ if \\ \qquad \qquad MgO > 10 wt\%]$$
 CaO
$$22 - 40 wt\%$$
 MgO
$$0 - 17.5 wt\%$$
 MgO + CaO
$$<42 wt\%$$

$$P_2O_5 \qquad 0.5 - 10 wt\%$$

$$B_2O_3 \qquad 0 - 2 wt\%$$

5. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 3 in which the fibres fall within the compositional range:-

CaO	20.36 - 39.4wt%
MgO	0.62 - 21.16wt%
P_2O_5	0 - 12.01wt%
B_2O_3	0 - 3.54wt%

6. Saline soluble inorganic fibres having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, in which:-

$$SiO_2 + P_2O_5 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$$

7. Saline soluble inorganic fibres as claimed in claim 6 comprising:

SiO ₂	44 or more
CaO	20 - 40wt%
MgO	0 - 18wt%
P_2O_5	0-12.5wt%
B_2O_3	0 - 4wt%

8. Saline soluble inorganic fibres as claimed in claim 7 comprising:-SiO₂ 52 - <58wt% [52 - <58+0.5'(MgO-10)wt% if

and in which the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is less than 61.4%.

9. Saline soluble inorganic fibres as claimed in claim 7 comprising:-

 $\begin{array}{lll} SiO_2 & 44.34 - 62.48 \\ CaO & 20.36 - 39.4wt\% \\ MgO & 0.62 - 21.16wt\% \\ P_2O_5 & 0 - 12.01wt\% \\ B_2O_3 & 0 - 3.54wt\% \end{array}$

10. Saline soluble inorganic fibres as claimed in claim 6 in which the fibres have a composition:-

SiO₂ 52.4 - 57.85wt% CaO 22.2 - 39.4wt% MgO 1.96 - 17.4wt% P₂O₅ 0.82 - 7.8wt% B₂O₃ 0 - 1.95wt% Al₂O₃ <1wt%

THIS PAGE BLANK (USPTO)

Internat. Application No PCT/GB 97/01667

•
Relevant to claim No.
1-3,5-7,
9
1-3,6,7
1,2,6
ex.
nal filing date
application but inderlying the
d invention sidered to
t is taken alone d invention
step when the ser such docu-
person skilled
port

1

Interna J Application No
PCT/GB 97/01667

C/C	DOCUMENTS CONTROL OF THE CONTROL OF	PCT/GB 97	/0166/
Category *	cition) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		0-1
Cawgury	change of co-current, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	WO 93 15028 A (MORGAN CRUCIBLE CO) 5 August 1993 cited in the application see page 7, paragraph 4 - page 9, paragraph 3; examples		6,7
X	WO 92 09536 A (PAROC OY AB) 11 June 1992 see example C	•	6
A	WO 96 01793 A (ROCKWOOL AB ;PERANDER MICHAEL (FI); ROENNLOEF BJOERN (FI)) 25 January 1996 see page 5, line 28 - page 7, line 10		1-10
A	WO 95 29135 A (ROCKWOOL INT ; JENSEN SOREN LUND (DK); CHRISTENSEN VERMUND RUST (DK) 2 November 1995 cited in the application see page 3, line 26 - page 7, line 26		1-10
	•		·
,	•		-
İ			
-			
		• .	
			,
	•	÷	

Information on patent family members

Interna. 1 Application No
PCT/GB 97/01667

· · · · · · · · · · · · · · · · · · ·		PCI/GB	3//0100/
Patent document cited in search report	Publication date	. Patent family member(s)	Publication date
WO 9322251 A	11-11-93	FR 2690438 A AU 670439 B AU 4263293 A BR 9305492 A CA 2110998 A CN 1078708 A CZ 9302865 A DE 69312857 D EP 0596088 A HR 930837 A HU 67212 A,B JP 6508600 T NO 934725 A NZ 252695 A SI 9300218 A SK 146893 A ZA 9302874 A	29-10-93 18-07-96 29-11-93 11-10-94 11-11-93 24-11-93 19-10-94 11-05-94 30-04-96 28-03-95 29-09-94 20-12-93 27-08-96 31-12-93 09-11-94 01-06-94
WO 8912032 A	14-12-89	AU 3765789 A CA 1338340 A US 5332699 A	05-01-90 21-05-96 26-07-94
DE 4417230 A	23-11-95	AU 2612895 A CN 1136307 A WO 9531410 A EP 0710220 A FI 960209 A HU 74107 A JP 8511760 T NO 960192 A PL 312574 A SK 4896 A ZA 9503954 A	05-12-95 20-11-96 23-11-95 08-05-96 16-01-96 28-11-96 10-12-96 16-01-96 29-04-96 08-05-96 17-01-96
WO 9315028 A	05-08-93	AT 136874 T AU 663155 B AU 3358493 A AU 5837494 A BR 9305741 A BR 9406117 A	15-05-96 28-09-95 01-09-93 15-08-94 28-01-97 19-03-96

Information on patent family members

Interna J Application No PCT/GB 97/01667

	T		161/48 37/01007	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9315028 A		CA 2154442 A	21-07-94	
		CZ 9501836 A	15-05-96	
		DE 69400154 D	23-05-96	
		DE 69400154 T	28-11-96	
•		EP 0621858 A	02-11-94	
		EP 0679145 A	02-11-95	
	•	EP 0710628 A	08-05-96	
	•	ES 2086248 T	16-06-96	
		FI 943380 A	14-09-94	
		WO 9415883 A	21-07-94	
		GB 2277516 A,B	02 - 11-94	
		GB 2289673 A,B	29-11-95	
		JP 7502969 T	30-03-95	
	,	JP 8506561 T	16-07-96	
		NO 942655 A	14-07-94	
		PL 309954 A	13 - 11-95	
		SK 85694 A	05-01-95	
		ZA 9400236 A	22-08-94	
		AU 2717195 A	28-09-95	
		CA 2127357 A	05-08-93	
		CN 1078218 A	10-11-93	
		CZ 9401700 A GB 2287934 A	14-06-95	
·		GB 2287934 A HU 68033 A	04-10-95 29-05-95	
		NZ 246629 A	29-05-95 27-07-97	
•		ZA 9300311 A	23-08-93	
		ZA 9300311 A	23-00-93	
WO 9209536 A	11-06-92	FI 93346 B	15-12-94	
		AT 117662 T	15-02-95	
		AU 8908791 A	25-06-92	
		DE 69107091 D	09-03-95	
		DE 69107091 T	17-08-95	
		EP 0558548 A	08-09-93	
WO 9601793 A	25-01-96	SE 504288 C	23-12-96	
110 JUUI/ 33 K	73-01-30	AU 2939895 A	23-12-96 09-02-96	
		EP 0768989 A	23-04-97	
		FI 970016 A	06-02-97	
•		NO 965293 A	11-12-96	
•		PL 318055 A	12-05-97	
		Lr 210022 W	12-00-9/	
		•		

Information on patent family members

Intern. al Application No PCT/GB 97/01667

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9601793 A		SE 9402405 A	08-01-96
WO 9529135 A	02-11-95	AU 2446395 A	16-11-95
		AU 6679594 A	08-11-94
		CA 2165081 A	02-11-95
		CZ 9503297 A	12-06-96
		EP 0695206 A	07-02-96
		EP 0703879 A	03-04-96
		FI 955973 A	13-12-95
		PL 312244 A	01-04-96
		SI 9520005 A	31-08-96
		SK 1 57395 A	08-05-96
•		US 5614452 A	25-03-97

THIS PAGE BLANK (USPTO)