PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 06/07/2005 – TRACCIA A

(Tempo a disposizione: 2 ore e 15 minuti)

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x e due linee di uscita z_1z_0 . Ad ogni colpo di clock t, R riceve un bit sulla linea x, denotato nel seguito da b(t). Ogni quattro colpi di clock, R restituisce sulle due linee di uscita i due bit meno significativi del prodotto dei numeri di due bit ricevuti in ingresso sulla linea x, vale a dire dei numeri b(t-3)b(t-2) e b(t-1)b(t). Dopo aver ricevuto due coppie di bit la rete dimentica gli ingressi passati e ricomincia il suo funzionamento dal principio.

Segue un possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x(t):	0	0	0	1	1	1	1	1	0	1	0	0	1	1	1	0
$z_1(t)$:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
z ₀ (t):	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Ad esempio, all'istante t=15 la rete restituisce in uscita la coppia di bit z_1z_0 =10 poiché ha ricevuto in ingresso durante gli ultimi quattro colpi di clock le coppie di bit b(12)b(13)=11 e b(14)b(15)=10, il cui prodotto è pari a 110.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione INTERLEAVE1 X. Nelle locazioni M[X], M[X+1] e M[X+2] della RAM, sono memorizzati rispettivamente i tre indirizzi I1, I2 e I3, i quali individuano rispettivamente tre vettori V1, V2 e V3. I vettori V1 e V2 hanno entrambi lunghezza L, il cui valore è memorizzato nell'accumulatore. L'operazione deve costruire il vettore V3, avente lunghezza 2L, utilizzando gli elementi dei vettori V1 e V2 come segue: V3[2i]=V1[i]+V2[i] e V3[2i+1]=2*V2[i], per $0 \le i \le L-1$.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 26/04/2005 – TRACCIA A

(Tempo a disposizione: 30 minuti)

PARTE I

DOMANDA 1:

Si descriva il funzionamento di un transcoder.

DOMANDA 2:

Si descriva la struttura ed il funzionamento della memoria RAM.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 06/07/2005 – TRACCIA B

(Tempo a disposizione: 2 ore e 15 minuti)

PARTE II

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso x e due linee di uscita z_1z_0 . Ad ogni colpo di clock t, R riceve un bit sulla linea x, denotato nel seguito da b(t). Ogni quattro colpi di clock, R restituisce sulle due linee di uscita i due bit più significativi del prodotto, rappresentato su 4 bit, dei numeri di due bit ricevuti in ingresso sulla linea x, vale a dire dei numeri b(t-3)b(t-2) e b(t-1)b(t). Dopo aver ricevuto due coppie di bit la rete dimentica gli ingressi passati e ricomincia il suo funzionamento dal principio.

Segue un possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x(t):	0	0	0	1	1	1	1	1	0	1	0	0	1	1	0	1
$z_1(t)$:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$z_0(t)$:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ad esempio, all'istante t=15 la rete restituisce in uscita la coppia di bit $z_1z_0=00$ poiché ha ricevuto in ingresso durante gli ultimi quattro colpi di clock le coppie di bit b(12)b(13)=11 e b(14)b(15)=01, il cui prodotto rappresentato su quattro bit è pari a 0011.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione INTERLEAVE2 X. Nelle locazioni M[X], M[X+1] e M[X+2] della RAM, sono memorizzati rispettivamente i tre indirizzi I1, I2 e I3, i quali individuano rispettivamente tre vettori V1, V2 e V3. I vettori V1 e V2 hanno entrambi lunghezza L, il cui valore è memorizzato nell'accumulatore. L'operazione deve costruire il vettore V3, avente lunghezza 2L, utilizzando gli elementi dei vettori V1 e V2 come segue: V3[2i]=V2[i]/2 e V3[2i+1]=V1[i]-V2[i], per $0 \le i \le L-1$.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 26/04/2005 – TRACCIA B

(Tempo a disposizione: 30 minuti)

PARTE I

DOMANDA 1:

Si descriva il funzionamento di un mux/demux.

DOMANDA 2:

Si descriva la struttura ed il funzionamento di un flip-flop FAc.