Shravani Ingle

Roll no. 315

PRN no. : 202201070028

• Fetching data

import pandas as pd
df=pd.read_csv("/content/drive/MyDrive/Automobile.csv")
print(df)

OUTPUT

1		mpg	cylinders	displacement
horsepower 0 chevro 130.0	let chevelle malibu	18.0	8	307.0
1 165.0	buick skylark 320	15.0	8	350.0
2 150.0	plymouth satellite	18.0	8	318.0
3 150.0	amc rebel sst	16.0	8	304.0
4 140.0	ford torino	17.0	8	302.0
	•••	• • •	• • •	• • •
393 86.0	ford mustang gl	27.0	4	140.0
394 52.0	vw pickup	44.0	4	97.0
395 84.0	dodge rampage	32.0	4	135.0
396 79.0	ford ranger	28.0	4	120.0
397 82.0	chevy s-10	31.0	4	119.0

usa	70	12.0	3504	0
usa	70	11.5	3693	1
usa	70	11.0	3436	2
usa	70	12.0	3433	3
usa	70	10.5	3449	4
		• • •		
usa	82	15.6	2790	393
europe	82	24.6	2130	394
usa	82	11.6	2295	395
usa	82	18.6	2625	396
usa	82	19.4	2720	397

Maximum value

df1=pd.read_csv("/content/drive/MyDrive/Automobile.csv",usecols=['di splacement'])

print(df1.max())

Output

displacement 455.0

dtype: float64

Describe()

dfl=pd.read_csv("/content/drive/MyDrive/Automobile.csv",usecols=['di
splacement'])

print(df1.describe())

Output

displacement

count 398.000000
mean 193.425879
std 104.269838
min 68.000000
25% 104.250000

```
50%
        148.500000
75%
         262.000000
         455.000000
max
  Mean()
df1=pd.read_csv("/content/drive/MyDrive/Automobile.csv",usecols=['ac
celeration'])
print(df1.mean())
Output
acceleration
               15.56809
dtype: float64

    Median

df1=pd.read_csv("/content/drive/MyDrive/Automobile.csv",usecols=['cy
linders'])
print(df1.median())
Output
cylinders 4.0
dtype: float64
  • Min()
df1=pd.read_csv("/content/drive/MyDrive/Automobile.csv",usecols=['di
splacement'])
print(df1.min())
Output
displacement
               68.0
dtype: float64
  • corr()
print(df.corr())
```

Output()

mpg cylinde	rs displac	ement horse	power weigh	ıt \
mpg 0.831741	1.000000	-0.775396	-0.804203	-0.778427 -
cylinders 0.896017	-0.775396	1.000000	0.950721	0.842983
displacement 0.932824	-0.804203	0.950721	1.000000	0.897257
horsepower 0.864538	-0.778427	0.842983	0.897257	1.000000
weight 1.000000	-0.831741	0.896017	0.932824	0.864538
acceleration 0.417457	0.420289	-0.505419	-0.543684	-0.689196 -
model_year 0.306564	0.579267	-0.348746	-0.370164	-0.416361 -

	acceleration	model_year
mpg	0.420289	0.579267
cylinders	-0.505419	-0.348746
displacement	-0.543684	-0.370164
horsepower	-0.689196	-0.416361
weight	-0.417457	-0.306564
acceleration	1.000000	0.288137
model year	0.288137	1.000000

• # duplicated rows

print(df.drop_duplicates())

horsepower	name	mpg	cylinders	displacement
0 chevro	olet chevelle malibu	18.0	8	307.0
1 165.0	buick skylark 320	15.0	8	350.0
2 150.0	plymouth satellite	18.0	8	318.0

3 150.	0	amc rebel sst	16.0	8	304.0
4 140.	0	ford torino	17.0	8	302.0
			• • • •	• •	
393 86.0		ford mustang gl	27.0	2	140.0
394 52.0		vw pickup	44.0	4	97.0
395 84.0		dodge rampage	32.0	4	135.0
396 79.0		ford ranger	28.0	4	120.0
397 82.0		chevy s-10	31.0	4	119.0
	weight	acceleration mod	lel_year	origin	
0	3504	12.0	70	usa	
1	3693	11.5	70	usa	
2	3436	11.0	70	usa	
3	3433	12.0	70	usa	
4	3449	10.5	70	usa	
		• • •			
393	2790	15.6	82	usa	
394	2130	24.6	82	europe	
395	2295	11.6	82	usa	
396	2625	18.6	82	usa	
397	2720	19.4	82	usa	

• Cov(): Covariance

print(df.cov())

Output()

 $\verb|mpg| cylinders displacement horsepower | |$

mpg	61.089611	-10.308911	-655.402318	-233.857926
cylinders	-10.308911	2.893415	168.623214	55.348244
displacement	-655.402318	168.623214	10872.199152	3614.033744
horsepower	-233.857926	55.348244	3614.033744	1481.569393
weight	-5505.211745	1290.695575	82368.423240	28265.620231
acceleration	9.058930	-2.370842	-156.332976	-73.186967
model_year	16.741163	-2.193499	-142.717137	-59.036432

	weight	acceleration	model_year
mpg	-5505.211745	9.058930	16.741163
cylinders	1290.695575	-2.370842	-2.193499
displacement	82368.423240	-156.332976	-142.717137
horsepower	28265.620231	-73.186967	-59.036432
weight	717140.990526	-974.899011	-959.946344
acceleration	-974.899011	7.604848	2.938105
model_year	-959.946344	2.938105	13.672443

• Apply multiple aggregation funtions to each group

Output()

mean	max	min	mean m	ax r	min	mean	ma	ЯX		
displac	cement									
68.0 49.0		29.00000	00 29.	0 2	29.0	4.0	4	4	49.00000	0
70.0		20.23333	33 23.	7	18.0	3.0	3	3	95.66666	7
71.0 65.0		31.50000	00 32.	0 3	31.0	4.0	4	4	65.00000	0
72.0 69.0		35.00000	00 35.	0 3	35.0	4.0	4	4	69.00000	0
76.0 52.0		31.00000	00 31.	0 3	31.0	4.0	4	4	52.00000	0

	• • •		• •	• • •		
400.0	13.961538	16.0 11	.0	8.0	8 8	174.769231
429.0 208.0	12.666667	15.0 11	.0	8.0	8 8	201.333333
440.0 215.0	13.500000	14.0 13	.0	8.0	8 8	215.000000
454.0 220.0	14.000000	14.0 14	.0	8.0	8 8	220.000000
455.0 225.0	13.333333	14.0 12	.0	8.0	8 8	225.000000
\		weight		ac	celerat	ion
min	min	mean	max	min	n	nean max
displacement						
68.0 19.5	49.0 18	67.000000	1867	1867	19.500	19.5
70.0 12.5	90.0 22	91.333333	2420	2124	13.166	3667 13.5
71.0 19.0	65.0 18	04.500000	1836	1773	20.000	0000 21.0
72.0 18.0	69.0 16	13.000000	1613	1613	18.000	0000 18.0
76.0 16.5	52.0 16	49.000000	1649	1649	16.500	0000 16.5
	•••			• • •		•••
400.0 9.5	150.0 45	21.230769	5140	3761	11.715	5385 14.0
429.0 10.0	198.0 46	42.00000	4952	4341	10.833	3333 11.5
440.0 8.5	215.0 45	23.500000	4735	4312	9.750	0000 11.0
454.0 9.0	220.0 43	54.000000	4354	4354	9.000	9.0
455.0 10.0	225.0 41	54.000000	4951	3086	10.333	3333 11.0

model_year

mean max min

displacement			
68.0	73.000000	73	73
70.0	75.000000	80	72
71.0	72.500000	74	71
72.0	71.000000	71	71
76.0	74.000000	74	74
400.0	72.923077	77	70
429.0	71.666667	73	70
440.0	71.500000	73	70
454.0	70.000000	70	70
455.0	71.000000	73	70

• Display the record of first 10 automobile

print(df.iloc[1:10])

Output()

name mpg cylinder:	s displacement	horsepowe	r weight	\
1 buick skylark 32 3693	15.0	8	350.0	165.0
2 plymouth satellite 3436	18.0	8	318.0	150.0
3 amc rebel ss:	16.0	8	304.0	150.0
ford toring 3449	17.0	8	302.0	140.0
5 ford galaxie 50	15.0	8	429.0	198.0
6 chevrolet impala 4354	a 14.0	8	454.0	220.0
7 plymouth fury ii: 4312	14.0	8	440.0	215.0

8 pontiac catalina 4425	14.0	8	455.0	225.0
9 amc ambassador dpl 3850	15.0	8	390.0	190.0

	acceleration	model_year	origin
1	11.5	70	usa
2	11.0	70	usa
3	12.0	70	usa
4	10.5	70	usa
5	10.0	70	usa
6	9.0	70	usa
7	8.5	70	usa
8	10.0	70	usa
9	8.5	70	usa

To check missing values in data frame

print(df.isnull())

Output

acce.	name leratio		cylinders	displacement	horsepower	weight
0 False	False e	False	False	False	False	False
1 False	False e	False	False	False	False	False
2 False	False e	False	False	False	False	False
3 False	False e	False	False	False	False	False
4 False	False e	False	False	False	False	False
	• • •	•••	• • •			

393 Fals	False e	False	False	False	False	False
394 Fals	False e	False	False	False	False	False
395 Fals		False	False	False	False	False
396 Fals		False	False	False	False	False
397 Fals		False	False	False	False	False

	model_year	origin
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
393	False	False
394	False	False
395	False	False
396	False	False
397	False	False