de Juplication can be implemented	in	various	ways
- hashing			
- sorting			
in any case, it's expensive (need	temp	data	stact)
R By tree access			
Additional Operators			
- Deduplicate (E)			
- R(41 = c)			
- E, Mo Ez = 00			
ϵ_{l} ϵ_{L}			
- E. M Ez			
t natural join			
_			
Same attribute names equal			
*			
ϵ			
-E, -Ez (like universal quantification)		
cosyntactic sugar only			

rinding an optimal query plan infensible =) we look for a	reasonable one
db engine has statistical met relative cost of plans	
rel ⁿ algebra	
generate physical (a) determine physical alaebra	(-5)
Anding all equivalent plans is	undecidable in
- expensive even for conjunctions 13 the join - ordering proble of conditions	the queries
of conditions Tolaas	
find best child join	ordering of the
3) use heuristics simple cost model for disk I/	O, Glime:

uniformity: all possible attrib equally likely
vaiformity: all possible attrib equally likely independence: likelihood of attrib. Loving a value in
a tople does not depend on values of other
altri bute
3) pretty draconian assumptions
b(R):= blocking factor for stored relaR
6(R):= 61-cking factor for stored relaR (describes # of entries in a page on discourse in Bt -tree)
T;
Course Ind
selecting N toples from rela R using primary under has a cost of 2+ 1
-
6(P)
in this use 2 + 100 = 4
Mork) = 100 tiples for PHYS

f= Studen Ind (Shann=100) const Ind (course = t. Conse) Cost = 2+ N = [2] 100 block [/9 operations Come Index () (0,4 (5c(E)) = (1+ Ec) (0,4 (E) Cost (RxS) = cost(R) + [F] cost (S) Cost (KMS) = cost (R) + ds | R1 index join Sort - merge jain cost (RNS) = cost (sort(R)) + cost (sort (S)) (1st(E) + |E| where (soft(E)) = Definition (Sclectivity) sel (Oc(R)) = Toc(R)/ always good: push selections down ON(E) NO EZ) - ON (E) NO ON(EZ)

replace products by	down		
))		