	Typorial #8 Date No.	
57)	P) 1) Homa (& V:, W) = T Hom (V:, W)	
	Define D: Homp (&V:, W) - TT Homp (V:, W) by \$(4)= (8:) who	ere
	i; & V: -> + V? :s canonical inclusion.	
	D DIA) € THOM(Vi, W) (Note it may not be in \$ Hom(VI, W) since	fi: could
	be non-zero for infinite i	
	(2) Group homo: $\overline{\Phi}(f+g) = \{(f+g)i; \} = \{fi; +gi: \} = \{fi; \} + \{gi: \} = \overline{\Phi}(f)$	(p) + J(q)
,	Define of: TH Homa(Vi, W) - Homa(& V: W) by of ((f:))((V:)) = & f:	(W:)
	(v:) & OV: hence finitely many non-zero hence filvi) is finitely many	y non-zero
And the second test	and the sum works	
	の 運車(f)((vi)) = 平((fi:))((vi)) = 至fi:(vi) = f((vi))	
-	@ DZ ((f;))((vi)) = 0(&f(vi)) = 0(&fi(vi)) where f=(fi)	
-	$= \Phi(f(v_i)) = (f_i, (v_i)) = f((v_i)) = ((f_i))(i_i)$	v:))
	Hence \$, \$ are inverses	
	(F) HOMA (V. TI W.) = TI HOM (V. W.)	
	I: Home (V, TW;) → IT Hom (V, W;) where I(8) = (Tisf) where Tist	ITW: - W
	平:TT Hamp(V, W;) - Homp(V, TT W;) where 亚((f;))(V) = (f;(V))	
tent :	Same as above	
58)	B) G is finite group, H&G. K is a field, consider group algebras KG	b, KH
	1) Consider K& as right KH-mod. Let {x1,, xm3 be complete set	- of
	left coset representatives of Hin G. Show KG= @ span x 2x: h: heH3:	Z OKH
	led the same is the Recall KG is a vector space over k u	wth
	basis 2g: gea3. Now we have G= Llx: H = 2g: gea3 home	KG
	is direct sum of subspaces H: = spank {x: h:he+13, that is KG	= OH: .
No.	INTS: H. 2 KH Firstly H is right kH submod of kG, let v	= Ednah
	GH: 1 to = Sbrh'EKH, then v.b = 2: & dhbhi (hh') & H: Now to is iso v: KH - H; , V: (£ahh) = £ahx;h = x; (£ahh)	there
	is iso 4: KH - H; , V: (Eahh) = & ahx:h = x: (Eahh)	
laye I is	O Group homo: 4: (a,b) = oc; ab = 4: (a) . b, other axioms are easy	
	(2) 4:10=0 => x: a=0 => a=0, if oetl: => a= 2dhx:h so 4	e: is by
	Hence HIZKH, and KG= OHIZ OKH	
	(i) Conclude KG is free right kH-mod	
	131 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
	KN is a free mant kill-mod . hence py fx77: DFI 15 a me	The second second
	right kH-mod => KG = +H: is free	

··· → Xn din Xnri din z.
And Axis Axis quies
pr 1 prol dite.
For any left kH-mod V, the kG-mod IndH(V) = kG 8kH V
(ii) For any exact sea 0-ex-+y-+2-+0 of k+1-mods. Prove
(ii) For any exact seg 0-ex-+y-+2-+0 of kH-mods. Prove 0-> Indf(x) -> Indf(y) -> Indf(2) -> 0
Since by @ KG is free right R-mod => by Kor42 KG is flat
KH-mod, hence by [Prop40.1] we get the desired result
(iv) Conclude we have exact covariant functor Indf: KH-mod -+ KG-mod
[Cor4] gives us this since kg KGAH and we get functor
Indf: KH-mod -> KG-mod
don d
59) Q is inj R-mod. Prove that is - + Vnr, - Vn - Vn-1 - is exact choin complex then - + Hom (Vn-1, Q) - Hom (Vn, Q) - Hom (Vn-1, Q) - is exact
then + Hom (Vn-1, Q) on Hom (Vn, Q) - + Hom (Vn+1, Q) - is exact
cochoin complex
[Wis: Im(dn) = ker(dni)] s: dni, odn = (dndni) = 0 since Im(dni) = ker(dn)
hence Imidn') = kerldni)
2: Let & E Kerldner), that is & E Hom(Vn, a) and dner (\$) = \$ dn+1 = 0
WTS: \$ \in Im(dn), that is 3 \tau \in thom(Vn.1, a) s.t. dn (x) = 4dn = 6
Define $\theta: \operatorname{Im}(d_n) \to \mathbb{Q}$ where $\theta(d_n v) = \phi(v)$, this is $\operatorname{Im}(d_n) = c \cdot v_{n-1}$
have \$(v-v')=0 = \$\phi(v) = \phi(v) = \partial v-v' \in \text{Ker}(dn) = \text{Im}(dnu) \text
have \$(v-v')=0=\$(v)-\$(v'). By Ing of Q 34: Vn-1 -> Q Q
s.t. vi=0. Now dn (v)(v) = 4dn(v) = 4idn(v) = Odn(v) = (v) as desired a
(a) D. Old sold Donad Post 11 1 con y day y day y accept
bo) D is flat right R-mod. Prove that is - Vnt, dnn Vn dn Vn-, - is exact then - D &R Vnr1 18 dnn D &R Vn 18 dn Vn-1 - is exact
Take SES 0 - Im (dn+1) i Vn i Im(dn) -0 is exact, hence since
D is flat 0 - D OR Imidnes) 100, DOR Vn 1800, DOR Imidn) -0 is exact
That is kerl1 & dn) = Im/100) = D @ R Im/dnn) = Im/1 & dnn), house chain is exact
THE TO REFER THE COURT OF THE C
61) Let O→x' xy' \$2 →o be SES of complexes. Let a ∈ H'(2°)
a=2 + Im(dn) where 2 € Ker(dn31):2" → 2"+1
(1) show 3y Gym s.t. Baly): 2, and 3! x & Ker (dn+2) (xn+1 s.t. xn+1 (se) = dn+1 (y)
Bn: Y" - 2" is suri by exactness, & y & Y" s.t. Bn(y)=2. We have
dati (Baly)) = Bari (dati ly)) = dati (Z) = 0 => dati (y) & ker(Bari) = Imlani)
hence $3 \times e \times^{n+1}$ s.t. $d_{n+1}(x) = d_{n+1}(y)$, ∞ is unique since x is inj,
and $x \in \ker(dn_{i}^{2})$ since $\ker(dn_{i}^{2}(x)) = dn_{i}^{2}(\operatorname{Kn}_{i}(x)) = dn_{i}^{2}(\operatorname{Kn}_{i}(x)) = 0$
hence by inj of dary dark be) = 0
ests

	Date No.
	i) z + Im(di) = z' + Im(di) , Bn(y) = z, Bn(y') = z', x no (x) = dni (y) , x no (x) = dni (y)
	Show x + Imldnie = x' + Imldnie)
2000	Since 2-2' & Im(di) => 32" & 2" 1 s.t. di (2") = 2-2', since Bris surj
5-14	3 we y'mi sit. Brilw) = 2" we have Brildi (w) - 19-y') = Pr(di (w)) - Pr(y-y')
	= dn Bn=1(w) -(2-2') = dn2(2") - (2-2') = 0 hence dn/(w) - (y-y') & ker(Bn) = Im(xn
	=> 3v ex" s.t. «1v) = dx(w)-(y-y'), hence
\q.	«not (dnit (v)) = dnit (dn (v)) = dnit dn' w - dnit (y-y') = -dnit (y-y') = dnit (x'-x)
	Since ent is ing => dati(v) = x= x = x + dati(v) =
	(ii) Conclude 8n: H7(2) -+ H7'(X) where &(z+ Im(dn)) = >c+ Im(dn+1)
	By O (i) the map is well defined
-> (iv) Prove 8n is group homo
	Let 2,2'E ker(dnri), x,x'E ker (dnr) s.t. Bn(y)=z, Bn(y')=z'
	darilx) = dni, (y), xn+1(z')=dn+(y'). Pn(y+y')= 2+2', xn+1(x+z')=dni (y+y')
	8 (212 L Traddel) - 2 + 7 + Traddel = 8. 12 + Traddel) + 8. (2'+ Traddel)
	$coker(f) = W/Im(f), f:V \rightarrow W \qquad O \rightarrow X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \rightarrow O$ $dilf dilg dilh$
62)	coker(f) = W/Im(f), f:V +W O -X -Y - 2 -O
	gift gift gift
	0 -> X -> Y -> 2 -> 0
	Use LES to prove 0 - Ker(f) = Ker(g) = Ker(h) &= coker(f) = coker(g) = coker(h) +0
	By T17.2] We get LES O-HO(x) +HO(Y) +HO(2) +HO(x) +HO(Y) +HO(2)+
	And H'(x') = 0 since X2 = 0. H°(x') = ker(f), H°(y') = ker(g), H°(z') = ker(h)
_	H'(X)= Kerldy/Im(d1) = X'/Im(f) = aoker(f) similarly for others we get
- / (2)	desired LES
63)	Prove Horse shoe Lemma. Let O-0x x y foz -oo be SES and P: -x , a. +z
	Now we prove by induction on the columns
	Bose Case: 0 - Po Los Po Bao To do -00 Since do is proj fr: Qo-oy st. pr= 80
	Bose Case: 0 - Po Go Po Bao To ao - o Since Qo is proj 3r: Qo - o st. pr = 80 lot the file Let do: Po Bao 14 where plato) = xdola) + r(b) 0 - x = x y P = 2 - o Then it is clear diagram commutes
	0 -> x = x y P = 2 - 0 Then it is clear diagram commutes
	By Snake Lemma we get 0 - Kerldol - Kerldol - kerlso) - cokerldol - cokerldol - cokerldol - cokerldol
	Since do, so one suri => roker(do) = 0 = coker(so) => coker(go)=0 => go is suri
	as decired, and o-kerldol-kerldol-kerldol-terldol+0 is Exact =
	It!: For Kan, Ox is surjection onto Kerl UK-1) C. Pk-2 & QK-2
	0- Kerldk) - Kerl Ok) - Kerl Ek) - D is exact
	0-9 Profit Middle Like Tak

	Date No.
final case :	To - Prime Production and The second row is exact by IH
	dot ant to soit Now Let Y: an - ker(and) be lift of so
	0 - kerldner) in kerldner) This kerldner) -0 pola+6) = in.dola) + r16). By Snake Lemma
	We get 0 - kerldn) - kerløn) - kerløn) - cokerldn) - cokerløn - cokerløn - cokerløn -
1053 L. W.	Now since Kerldni) = Imldn), KerlSnl = ImlEn) by Proj res => cokerldnl=cokerlSnl=c
	=> coker(\$n1=0 => \$n is surj and we get SES o-kelly)-kerlyn)-kerlyn)-kerlyn)-
	as desired.
64)	Let fiver' be R-mod homo, RW. Show that for nzo we have included
	group homo FISIn: Extalv', WI -> Extalv, W). Furthermore if g: V'-EV"
	Flg)n: ExtalV", W) - ExtalV, W) then Flgodin = Flfin o Flgin
	Let P. P. P. be proj Res of V, V'V" resp, by Prop4] we get * , then Honfy
*	P. DIE PO SEV (## O -> Hom(PO,W) -> Hom(P,W) & X gives us ##
	1.t tot tt
	P' P' V' O - Hom (Po', W) dis Hom (P', W) dix Y'
	9:1 90 19 90 19 90 19 0 Hom (Po", W) - Hom (Po", W) - 2°
	Po" A P" AV" O Hom (Po", W) -> Flom (Po", W) -> 2
	Now by [Prop 1] we got induced group homo FIAIn: H^(Y') = Extp(V', W) ->
	H'(X') = Extr(V, W), F(g)n: Extr(V", W) - Extr(V', W) where
	F(SIn(Z) = fr (a) = xfn, F(g)n(B) = gn(B) = Bgn. Similarly omitting middle
	We get Flgodin: Extnov", W) - Extnoviwo where
	$\mathcal{F}(g \circ f)_{n}(\overline{z}) = (g_{n}f_{n})^{*}(\alpha) = f_{n}g_{n}(\alpha) = f_{n}(g_{n}(\alpha)) = f_{n}^{*}(g_{n}^{*}(\overline{\alpha})) = \mathcal{F}(f)_{n}(g_{n}^{*}(\overline{\alpha}))$
	$= \mathcal{F}(f) \cap \mathcal{F}(g) \cap (\mathcal{I})$
	A CONTROL OF THE SECOND
- ×	