5) Omitted Variables Bias (OVB)

Vitor Kamada

June 2018

1/15

Vitor Kamada ECO 6100 Econometrics June 2018

Tables, Graphics, and Figures from

Mastering 'Metrics: The Path from Cause to Effect

Angrist & Pischke (2014): Chapter 2

2 / 15

The College Matching Matrix

		-	Private			Public		
Applicant group	Student	Ivy	Leafy	Smart	All State	Tall State	Altered State	1996 earnings
A	1		Reject	Admit		Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
В	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
С	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

Vitor Kamada ECO 6100 Econometrics June 2018 3 / 15

Naive Comparison vs Well-Controlled Comparison

Naive Comparison:

$$E(W|Priv.) = 92K$$

$$E(W|Pub) = 72,5K$$

For Group A:

$$E(W|Smart) = 105K$$

 $E(W|Tall) = 110K$

For Group B:

$$E(W|Ivy) = 60K$$

 $E(W|Altered) = 30K$

Well-Controlled Comparison:

$$(\frac{3}{5}\times -5K) + (\frac{2}{5}\times 30K) = 9K$$

Regression

$$Y_i = \alpha + \beta P_i + \gamma A_i + e_i$$

$$lpha = 40 K$$
 $eta = 10 K$
 $\gamma = 60 K$

5 / 15

Vitor Kamada ECO 6100 Econometrics June 2018

College and Beyond (C&B) Dataset

$$InY_i = \alpha + \beta P_i + \sum\limits_{i=1}^{150} y_j group_{ji} + \delta_1 SAT_i + \delta_2 InPI_i + e_i$$

 Y_i : Earnings

P_i: Private School

PI_i: Parental Income

Barron's rankings: Most Competitive, Highly Competitive, Very Competitive, Competitive, Less Competitive, and Noncompetitive

Private School Effects: Barron's matches

	No s	election o	ontrols	Sel	ection con	trols
	(1)	(2)	(3)	(4)	(5)	(6)
Private school	.135 (.055)	.095 (.052)	.086 (.034)	.007 (.038)	.003 (.039)	.013 (.025)
Own SAT score \div 100		.048 (.009)	.016 (.007)		.033 (.007)	.001 (.007)
Log parental income			.219 (.022)			.190 (.023)
Female			403 (.018)			395 (.021)
Black			.005 (.041)			040 (.042)
Hispanic			.062 (.072)			.032 (.070)
Asian			.170 (.074)			.145 (.068)
Other/missing race			074 (.157)			079 (.156)
High school top 10%			.095 (.027)			.082 (.028)
High school rank missing			.019 (.033)			.015 (.037)
Athlete			.123 (.025)			.115 (.027)
Selectivity-group dummies	No	No	No	Yes	Yes	Yes

Private School Effects: Average SAT Score Controls

	No selection controls			Selection controls		
	(1)	(2)	(3)	(4)	(5)	(6)
Private school	.212 (.060)	.152 (.057)	.139 (.043)	.034 (.062)	.031 (.062)	.037 (.039)
Own SAT score ÷ 100		.051 (.008)	.024 (.006)		.036 (.006)	.009 (.006)
Log parental income			.181 (.026)			.159 (.025)
Average SAT score of schools applied to ÷ 100				.110 (.024)	.082 (.022)	.077 (.012)
Sent two applications				.071 (.013)	.062 (.011)	.058 (.010)
Sent three applications				.093 (.021)	.079 (.019)	.066 (.017)
Sent four or more applications				.139 (.024)	.127 (.023)	.098

Omitted Variables Bias (OVB)

$$Y_{i} = \alpha^{l} + \beta^{l} P_{i} + \gamma A_{i} + e_{i}^{l}$$

$$Y_{i} = \alpha^{s} + \beta^{s} P_{i} + e_{i}^{s}$$

$$A_{i} = \pi_{0} + \pi_{1} P_{i} + u_{i}$$

$$eta^s=eta^I+\pi_1 imes\gamma$$
 $\pi_1 imes\gamma=.1667 imes60K=10K$ $ext{OVB}=eta^s-eta^I=20K-10K$

Summary of Bias in $\tilde{\beta}_1$ when x_2 is Omitted

$$egin{aligned} extit{wage} &= eta_0 + eta_1 extit{educ} + eta_2 extit{abil} + u \end{aligned}$$
 $egin{aligned} extit{wage} &= eta_0 + ilde{eta}_1 ext{educ} + v \end{aligned}$ $egin{aligned} extit{v} &= eta_2 ext{abil} + u \end{aligned}$

	$Corr(x_1,x_2)>0$	$Corr(x_1,x_2)<0$
$\beta_2 > 0$	+	_
$\beta_2 < 0$	_	+

Summary of Functional Forms Involving Logarithms

Model	Dep. Variable	Ind.Variable	Interpretation of β_1
Level-level	У	X	$\Delta y = \beta_1 \Delta x$
Level-log	У	log(x)	$\Delta y = (\beta_1/100)\%\Delta x$
Log-level	log(y)	X	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = \beta_1\%\Delta x$

Vitor Kamada ECO 6100 Econometrics June 2018 11/15

Load Data from Blackburn and Neumark (1992)

Unobserved Ability, Efficiency Wages, and Interindustry Wage Differentials, Quarterly Journal of Economics 107, 1421-1436.

import pandas as pd

 $\label{eq:df} $$df = pd.read_stata('C:\Users\Vitor\Desktop\ECO 6100 Introduction to Econometrics (Fall 2018)\Lectures\5) Omitted Variables Bias\WAGE2.dta')$

df['const'] = 1

import statsmodels.api as sm

12 / 15

df.head()

	wage	hours	IQ	KWW	educ	exper	tenure	age
0	769	40	93	35	12	11	2	31
1	808	50	119	41	18	11	16	37
2	825	40	108	46	14	11	9	33
3	650	40	96	32	12	13	7	32
4	562	40	74	27	11	14	5	34
	urban	sibs	brth	ord	meduc	feduc	lwag	e
0	1	1		2.0	8.0	8.0	6.64509	1
1	1	1		NaN	14.0	14.0	6.69456	2
2	1	1		2.0	14.0	14.0	6.71538	4
3	1	4		3.0	12.0	12.0	6.47697	3
4	1	10		6.0	6.0	11.0	6.33150	2

Vitor Kamada ECO 6100 Econometrics June 2018

Omitted Ability Bias

```
coef std err t P>|t| [0.025 0.975]

const 5.9731 0.081 73.403 0.000 5.813 6.133
educ 0.0598 0.006 10.035 0.000 0.048 0.072
```

coef std err t P>|t| [0.025 0.975]

const	5.6583	0.096	58.793	0.000	5.469	5.847
educ	0.0391	0.007	5.721	0.000	0.026	0.053
IQ	0.0059	0.001	5.875	0.000	0.004	0.008

Vitor Kamada ECO 6100 Econometrics June 2018 14 / 15

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めぬぐ

Omitted Ability Bias

	coef	std err	t	P> t	[0.025	0.975]
const	53.6872	2.623	20.468		48.540	58.835
educ	3.5338	0.192	18.385		3.157	3.911

$$.0598 \cong .0391 + 3.533(.0059)$$

Vitor Kamada ECO 6100 Econometrics June 2018 15 / 15