1	(a	a (i) Straight line through origin	B1	
		(ii) Strain (energy) OR elastic (energy)	В1	
	(k	b) Use of $1/2mv^2$ $0.5 \times 2.5 \times v^2 = 0.48$ $v^2 = 0.48/(0.5 \times 2.5)$ OR $v^2 = 0.384$ v = 0.62 m/s	C1 C1 C1 A1	
2	(a	mgh OR $36 \times 10 \times 2.4$ 864 J OR Nm (2 or 3 sig. figs.)	[1] [1]	
	(b)	(P =) E/t in any form, words, symbols or numbers OR 864 / 4.4 196 W OR J/s (2 or 3 sig. figs.)	[1] [1]	
	(c)	evidence that candidate understands the principle of energy conservation, expressed in words or as an equation (e.g. total energy is constant OR initial energy = final energy) of implied by statement accounting for difference	r [1]	
		some energy is dissipated into the surroundings OR difference due to increase in internal energy/heating/thermal energy (of belt, motor, surroundings) owtte note: do not accept kinetic energy / sound / friction if no mention of heating	[1]	
	(d)	increase in potential energy of mass is greater OR work done/energy used (to raise mass) is greater $t = E/P$ OR $P = E/t$ in any form, words or symbols AND power is constant speed reduced / time taken is longer	[1] [1] [1]	
	[Total:			

3	(a str	ain / elastic (potential) (energy)	B1
	(b) (i)	(KE =) $\frac{1}{2}$ m v ² in any form	C1
		1200 J	A 1
	(ii)	(G)PE (gained) = KE (lost) in any form	C1
		(G)PE = mgh OR $h = PE \div mg$ in any form	C1
		1.8 m e.c.f. from (b)(i)	A1
	(iii)	friction with air OR air resistance OR thermal energy / heat produced/lost	B1
	(c) (i)	limit of proportionality	В1
	(ii)	Hooke's law	В1
1	(a kir	etic (energy)	В1
	(b) (i)	(work done =) $F \times x$ in any form: words, symbols, numbers $1.4 \times 10^9 \text{J}$	C1 A1
	(ii)	work done = kinetic energy OR $\frac{1}{2}mv^2$ seen $(v^2 =)2WD \div m$ OR $2 \times 1.4(4) \times 10^9 \div 4.5 \times 10^5$ OR 6400 80 m/s ecf (i)	C1 C1 A1
	(iii)	(work done against) friction/(air) resistance/drag ACCEPT energy converted to thermal energy	В1
	(c) pe	rpendicular (to curved path) OR centripetal OR towards centre (of circle)	В1

[Total: 8]

- 5 (a lines from solar energy to boxes 1 AND 4 only B1
 - lines from natural gas to boxes 2 AND 3 only
 - (b) (relatively) cheap OR widely available OR can be used on a large scale
 OR always available
 B1
 - (c) (i) 2.05×10⁹ N
 - (ii) use of mgh OR weight × h C1 1.03×10^{12} J NOT ecf from (i)
 - (iii) output energy ÷ input energy OR 6.2×10^{11} ÷ 1.2×10^{12} C1 0.52 OR 52%

[Total: 8]

- 6 **(a** (g.p.e.=) mgh OR $75 \times 10 \times 880$ C1 = 6.6×10^5 J/Nm OR 660 kJ/kNm
 - (b) (work =) Fs/Fd OR 220×2800 C1 = 6.2×10^5 J/Nm OR 620 kJ/kNm
 - (ii) answer to (a) answer to (b)(i) C1 e.g. (k.e.=) $6.6 \times 10^5 6.2 \times 10^5 = 4.0 \times 10^4 \text{J OR } 44 \text{kJ}$ OR $6.6 \times 10^5 6.16 \times 10^5 = 4.0 \times 10^4 \text{J OR } 44 \text{kJ}$
 - (c) (to go faster by) reduced air resistance/drag/resistive force OR to lower centre of mass OR increase stability/balance

[Total: 7]