

FINAL	
\$2 APRIL	1996

FY95 LIMITED ENERGY STUDY AREA B NITRIC ACID PRODUCTION FACILITIES

HOLSTON ARMY AMMUNITION PLANT KINGSPORT, TENNESSEE

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT

CONTRACT NO.: DACA01-94-D-0007 DELIVERY ORDER NO.: 004

AESE PROJECT NO.: 95094-00

Prepared By:

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, FL 32608 (352) 376-5500 (352) 375-3479 - FAX

DISTRIBUTION STATEMENT A

Approved for public colours

Distribution Unification

Ann Arbor, Michigan Chapel Hill, North Carolina Columbus, Indiana Gainesville, Florida Madison, Wisconsin Seattle, Washington Walnut Creek, California

Affiliated Engineers, Inc.

3300 S.W. Archer Road Gainesville, FL 32608 (352) 376-5500 (352) 375-3479 (FAX)

625 North Segoe Road P.O. Box 5039 Madison, WI 53705-0039 (608) 238-2616 (608) 238-2614 (FAX)

442 Fifth Street P.O. Box 2206 Columbus, IN 47202 (812) 376-0885 (812) 377-6459 (FAX)

1646 North Carolina Boulevard Suite 210 Walnut Creek, CA 94596 (510) 933-8400 (510) 933-8401 (FAX)

Westlake Center 1601 Fifth Avenue Suite 750 Seattle, WA 98101 (206) 624-7588 (206) 624-5242 (FAX)

110 Banks Drive, Suite 203 Chapel Hill, NC 27514 (919) 967-5364 (919) 967-5365 (FAX)

Suite 2, Room 3 771 Airport Boulevard Ann Arbor, MI 48108 (313) 669-0434 (313) 669-0445 (FAX)

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

FY95 LIMITED ENERGY STUDY AREA B NITRIC ACID PRODUCTION FACILITIES

HOLSTON ARMY AMMUNITION PLANT KINGSPORT, TENNESSEE

CONTRACT NO. DACA01-94-D-0007
DELIVERY ORDER NO. 004

DTIC QUALITY INSPECTED 2

Prepared For:

Mobile District
U.S. Army Corps of Engineers
Mobile, Alabama

Prepared By:

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, FL 32608 (352) 376-5500 (352) 375-3479 - FAX

Table of Contents

	PAG	E
EXECUTIVE SUMMARY	1	
HISTORY	6	
PROBLEM STATEMENT	8	
PURPOSE OF THE STUDY	10	
STUDY APPROACH	11	
PROCESS ENERGY INVENTORY	12	
ASSUMPTIONS	14	
ENERGY CONSERVATION OPPORTUNITIES	15	
CALCULATIONS	30	
COST DATA	42	
CONCLUSION	56	
ABBREVIATIONS	57	
APPENDICES	59	58/

Executive Summary

Introduction

In June 1995, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District U.S. Army Corps of Engineers to perform a Limited Energy Study for Holston Army Ammunition Plant, Kingsport, Tennessee.

The field survey of existing conditions was completed in July 1995. The results of this field survey were subsequently tabulated and used to generate single line process flow diagrams on Autocad. A subsequent one day field survey was conducted in August 1995.

This report summarizes the results obtained from field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO's).

ECO's were analyzed for suitability for the Energy Conservation Investment Program (ECIP) using the government's software package called Life Cycle Cost in Design (LCCID).

Scope of Work

The Scope of Work developed by the U.S. Army Corps of Engineers gave the following tasks:

- 1. Perform a field survey to gather information on existing operating conditions and equipment at Holston Army Ammunition Plant, Area "B", Building 302 Nitric Acid Production Facilities.
- 2. Analyze the following ECO's:
 - a. Since 300 psig steam is available, revise air compressor turbine drive to steam. There may be variations on this ECO, such as using 300 psig steam exclusively (which might require a different turbine) or using steam (at 300 psig or at a reduced pressure) in the existing turbine to assist the electric motor.

- b. Use the product gas leaving the Air Preheater to generate steam. Depending on the pressure of the steam generated, the gas could be cooled to perhaps as low as 400° F. The steam thus generated could be used to drive (or assist in driving) the air compressor, or it could be used to vaporize ammonia, or for heating at the 302-B tank farm.
- c. Identify and evaluate the possibility of water conservation at the cascade coolers and at other points in the process.
- 3. Suggest and analyze any additional ECO's representing savings potential as selected by A/E.
- 4. Provide recommendations for implementation of ECO's into projects by SIR priority.
- 5. Prepare a report to document the work performed, results, and recommendations.
- 6. Provide documentation in the form of Project Development Brochures (PDB's) and DD Form 1391.

Building 302-B houses the processing facilities examined for ECO's.

Descriptions of ECO's

ECO No. 1 - Central Plant steam at 300 psig and 525°F is applied to a new 1200 hp compressor drive condensing single stage, Curtis type turbine. Exhaust steam at approximately 2.0 inches mercury vacuum is condensed in a new steam surface condenser using river water for heat rejection. The steam condensate from the condenser is returned to the central plant through condenser hotwell pumps.

Using projected operation of 1152 hours per year (4 days per month, 24 hours per day, 12 months per year), an annual electrical energy savings of 681,000 kWh/yr (2,324.97 mil. b/yr) and annual electrical demand charge savings of \$13,050 will be realized. However, 10,583 MMBtu/yr of increased steam energy from the existing steam plant will be required.

The life cycle cost analysis using the governments LCCID program indicates an increased owning and operating cost will result from this ECO. It does not qualify for energy conservation funding.

ECO No. 2 - A closed loop high temperature heat transfer fluid system is utilized to recover heat from product gas and convert the recovered heat to 100 psig saturated steam for use within the ammonia oxidation process (AOP) process, with excess steam delivered to existing distribution piping to offset steam produced at the central plant.

At projected operation of 1,152 hrs/yr, the calculated 3,446 MMBtu/yr steam savings, at the expense of 25,900 kWh/yr (885 MMBtu/yr) and associated increased demand charges, when used in the LCIDD program, produce total net discounted savings of \$13,175 for an estimated \$214,000 investment, and results in Savings to Investment Ratio (SIR) of 0.06. This ECO does not qualify for funding.

ECO No. 3 - Cooling water is presently used in the AOP process and then released to drain; this ECO provides reuse of the cooling water by returning it to a cooling tower where heat from the process will be rejected. The LCCID program results show \$71,024 discounted savings for a probable investment of \$43,708. The calculated SIR is 1.62.

ECO No. 4 - Uninsulated process vessels containing high temperature process fluid flows are to be insulated with jacketed calcium silicate pipe insulation. The \$5,408 probable cost of insulation will save about 135,000 kWh/yr of electricity at 1,152 hr/yr operation. The LCCID results show \$111,758 discounted savings and SIR = 20.67.

ECO No. 5 - As an adjunct to ECO No. 4, heat will be reclaimed from compressor drive turbines exhaust to produce 30 psig steam for use in ammonia vaporizers.

The probable investment cost of \$35,513 will save 664 MMBtu/yr of steam energy and 135,000 kWh/yr electrical energy during 1,152 hr/yr of operation. With associated annual electrical demand cost savings of \$2,585 per year, the LCCID program shows \$147,972 net discounted savings and SIR of 4.17.

ECO No. 6 - It was proposed to use the pure water condensed out of the compressed air and/or steam condensate from the ammonia vaporizers to increase mass flow through the

turbine and increase horsepower output. Although in theory this concept is viable for gas turbine engines, it was found to be infeasible for the uncontrolled turbine inlet conditions encountered in the AOP process.

ECO No. 7A - Recovered saturated steam at ±60 psig is to be injected into the tailgas flow from the absorption column to increase mass flow through the tailgas heater and turbine which will in turn increase power output from the turbine and offset electrical energy consumed by the compressor motor. The recovery equipment will not require "cutting-in" to the highly corrosive product gas system. The incorporation of a heat exchange at this location, constructed of stainless steel, was determined not to be cost effective (see LCCID output for ECO 7).

The proposed modifications will save more than 200,000 kWh/yr of electrical energy and \$3,835 per year in electrical demand charges. The modifications render the process more independent from exterior energy sources. LCCID program results show \$157,657 net discounted savings and SIR of 1.54 on total investment of \$102,545.

Present Energy Consumption

There are four AOP lines at Building 302, each rated to produce 50 tons per day of 61 percent dilute nitric acid. To accommodate the present day demand for nitric acid in manufacturing explosives, intermittent operation of the production lines is employed. Production runs during each month constitute an aggregate single-line operation duration of ±1152 hours per year.

During production, electrical energy and thermal energy (steam from the central plant) are consumed, and filtered water from the central water treatment facilities is used. Process operations at current production rates use this energy as follows:

Electricity -

457,053 kWh/yr

1,560 MMBtu/yr \$15,990 per year

Steam @ -

823 MMBtu/yr

Ammonia Vaporizer

\$3,208 per year

Cooling Water -

2.2 million gallons per year

Technically Feasible ECO's

The results of the life cycle analysis of technically feasible ECO's, prioritized by descending savings-to-investment ratio, are as follows:

Priority	ECO No.	SIR	Total Investment	Simple Payback
1	4	20.67	\$ 5,408	0.74
2	5	4.17	35,513	3.64
3	3	1.62	43,708	9.00
4	7	1.54	102,545	9.97
5	2	0.06	214,388	150.00
6	1	-0.23	177,197	-42.03

Synergistic Considerations

ECO No. 1 may be incorporated simultaneously with ECO No. 2 and/or ECO No. 3. ECO No. 1 is incompatible with ECO No. 5 and No. 7 since energy recovery in ECO No. 5 and No. 7 is primarily obtained from gas turbine exhaust gases which, in ECO No. 1, are not available. Combining ECO No. 1 with ECO No. 4 would negate the benefits from ECO No. 4 alone, and would increase the required heat rejection quantity at the cascade cooler.

ECO No. 2 is additionally compatible with either or both ECO No. 3 and ECO No. 4. Similarly, it is incompatible with ECO No. 5 and No. 7 for the same reasons stated above.

ECO No. 3 can technically be incorporated with any combination of the other ECO's.

ECO No. 4 can technically be incorporated with any combination of the other ECO's, and is an Integral part of ECO's 5 and 7.

Recommendations

Implementation of heat exchanger insulation should be completed immediately. The modest cost involved should be available from operation and maintenance funds. Both qualifying ECO's No. 5 and No. 7 include this insulation. Because ECO No. 7 provides greater independence from off-site utilities, it is recommended over ECO No. 5 which is economically more attractive.

Implementation of ECO No. 3 is also recommended, since it is economically attractive.

History

Holston Army Ammunition Plant (HAAP) in Kingsport, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area "A" and Area "B".

At Area "B", Nitric Acid production facilities located in Building 302 include energy intensive AOP lines from which dilute nitric acid is obtained. The original chemical and mechanical equipment was placed in service in 1942, employing a process invented in 1935. Significant modifications have occurred over the extended life of the systems, and the current configuration is shown schematically in Figure 1.

AMMONIA OXIDATION PROC

EXISTING 8)

Problem Statement

Demand by the military for explosives has declined in recent years, and continued progressively decreasing demand is forecast. Because plant mobilization to accommodate any increased military demand (i.e., renewed global conflict involving or supported by the United States) may be required on short notice, the production facilities must be maintained in a ready status.

Todays production demands are met by operating one or two of the four 50 ton/day oxidation process lines in Building 302 four continuous 24-hour days, with monthly equivalent single line operation totaling 96 hours.

Equipment providing heat rejection at the cascade cooler and the water chiller employs technology inconsistent with todays emphasis on energy efficiency. Insulation on piping and pressure vessels containing fluids at elevated temperatures is essentially non-existent. Photographs included as Figure 2 show some of these conditions. All of the steam delivered to the process equipment is discharged to drain as steam condensate. Most of the filtered river water used for process heat rejection is discharged to drain after circuiting the heat exchange equipment.

Figure 2

Purpose of the Study

The purpose of this study is to identify and evaluate the technical and economic feasibility of process or equipment modifications pursuant to conservation of energy and reduction of water consumption at the Ammonia Oxidation Process Facilities in Building 302, Area "B". An adjunct requirement is to avoid proposed modifications which would impose additional maintenance and operation requirements.

The following ECO's specifically identified by scope documents, were investigated:

- Convert air compressor drive turbine from tailgas to steam or to steam augmentation.
- 2. Recover heat from product gas leaving the air preheater to produce steam.
- Water conservation.

Additional ECO's selected by the A/E to be studied include the following:

- 1. Insulate heat exchangers and tailgas piping.
- 2. Install preformed plate heat exchangers inside insulation on air preheater and tailgas heater vessels for heat recovery to a 30 psig steam system.
- Inject air compressor intercooler and aftercooler condensate and steam condensate from the ammonia vaporizer into tailgas entering compressor drive turbine for increased power.

Study Approach

Observations of the installation were made during field surveys conducted July 5, 1995 through July 7, 1995 and again on August 18, 1995. To further establish the A/E's understanding of the chemical processes involved, and the energy associated with the chemical reactions, two reports prepared by other consultants were reviewed. From the final report titled Limited Energy Studies by EMC Engineers, Inc. dated August 1992, a "Process Energy Inventory" tabulation for Nitric Acid Manufacturing, Building 302-B, apparently excerpted from Technical Report No. HDC-39-77 was obtained. The table is presented in the appendix under "Reference Material". The formulae for essential chemical reactions for the production of Nitric Acid by the oxidation of ammonia were obtained from Working Summary Report prepared by AAI Corporation dated December 1992.

The schematic of the AOP process included in the project Detailed Scope of Work was reconstructed to reflect existing system configuration confirmed during field surveys.

It was noted that data contained in the schematic of the AOP process from the scope documents and the previously referenced Process Energy Inventory from Technical Report No. HDC-39-77 apparently represented the system prior to installation in 1991 of four new air compressors manufactured by Joy Manufacturing Co., prior to installation in 1982 of the extended absorption columns, and prior to the installation in 1979 of the refrigerated water system (water chiller).

Process Energy Inventory

A molal analysis of the chemical reactions was performed to determine constituents of the tailgas and to establish water vapor (and liquid) quantities required to be condensed and used as diluent for the product nitric acid. From this calculation and source material from compressor and turbine manufacturers literature, an "Existing System Process Energy Inventory" was developed. The manufacturer's literature is presented in the Appendix under "Reference Material" also included in "Reference Material" are tables, formulae, charts and excerpts from various documents used in the development of the energy and chemical analysis. Table 1 shows the inventory data, which was used to prepare the Ammonia Oxidation Process Flow Diagram/Existing System presented as Figure 1 herein. All ECO's were evaluated using this data for baseline comparison.

TABLE 1. EXISTING SYSTEM PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	þe	Hea	Heat Lost	
Equipment	MBH	Source	МВН	Source	Destination	МВН	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond.	Drain				149.2	Drain	
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			2211.4	Prod. Gas	TG & Atmos	2001.5	Prod. Gas	Tailgas	209.9	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2846.2	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				2846.2	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	2018.2	Elect. Mtr	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	793 hp
Tailgas Turbine	768.2	Heat Recovered	2097.4	Turbine Exhaust	Atmos.	768.2			1329.2	Exh to Atmosph	302 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			673.9						673.9	-	
TOTAL	16724.2		16724.2			4974.5			11749.7		

Assumptions

The following assumptions have been made:

- 1. A Molar products table based on a hydrocarbon fuel composition of $(CH_2)_n$ will yield suitable results for the products of combustion of NH_3 (ammonia), provided that the percentage of theoretical air is the same composition for the ammonia as the hydrocarbon. (Gas tables by Kennan and Kaye are sufficiently accurate).
- 2. Air temperature entering the mixer is automatically controlled at 625°F by mixing nominal 100°F, 115 psig air from the aftercooler with uncontrolled air leaving the air preheater.
- 3. Existing tailgas heater materials of high chrome iron are compatible with high temperature heat transfer fluids substituted for the tailgas.
- 4. Existing turbines operating on tailgas flow streams will have similar efficiency when operating on steam.

Energy Conservation Opportunities

ECO No. 1: Turbine Conversion to Steam

The existing turbines, manufactured by Dresser-Rand Steam Turbine and Motor Division, used to augment the electric motors driving the air compressors, were basically designed as steam turbines but are currently employed as gas turbines for recovery of energy contained in process tailgas. Based on energy balance documents furnished by the government, calculated shaft output with 15,450 lb/hr, 58 psig, 435°F gas at the turbine inlet is 347 hp with turbine exhaust to atmosphere. At conditions determined independently as work of this report, the calculated turbine output is 302 hp. Inlet temperatures are limited to 750°F maximum.

Replacement of the turbines with new 1,200 hp condensing type units to operate on the Thermodynamic Rankine Cycle with steam/water as the working fluid is proposed. Steam at 300 psig and 525°F from the central plant will be directed to the steam turbine. Turbine exhaust at 2.0 inch Hg vacuum will be condensed in a steam surface condenser using river water as the condensing medium. From the condenser, the condensate will be returned to the central plant by condenser hotwell pumps.

Performance of the Rankine Cycle System in the AOP process is indicated schematically in Figure 3 herein. Shaft energy produced will displace electric motor energy required to drive air compressors. Table 2 shows the energy inventory associated with ECO No. 1.

ECO No. 2: Steam Produced from Product Gas

Introduction of liquid Dowtherm A heat transfer fluid into the existing tailgas heater vessel (liquid in place of tailgas) is proposed to recover heat from the product gas prior to its introduction to the cascade heater. The fluid, the eutectic mixture of diphenyl oxide and diphenyl, would then be pumped through a closed system in which the fluid would release heat in an unfired steam boiler vessel to produce steam at 100 psig and 30°F for use in AOP process equipment or for offsetting steam production in the central plant.

STEAM

TABLE 2. ECO NO. 1 PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	pe	Heat	Heat Lost	
Equipment	MBH	Source	MBH	Source	Destination	МВН	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			704.0	Prod. Gas	TG & Atmos				704.0	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	4163.4	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				4163.4	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	2786.8	Turbine	2750.6	H ₂ O Vapor Condens.	Atmos. River Water				2750.6	Atmos. Drain	
Steam Turbine	10525.0	Steam from Steam Plant	13312.0	Turbine Exhaust	Condens. & River Water	526.5	Stm. Cond.	Stm. Pint	12785.5	Stm Surf. Cond.	12840 #/hr Steam Rqd. @ 300 psi @ 525°F - 1095 hp
Final Bleacher			118.7	Product	Product	18.7	Product	Product			
Stack Loss			95.8	Tailgas	Atmos.				95.8	Atmos.	
Unaccounted Losses			89.1						89.1		
TOTAL	27259.6		27259.6			2731.3			24528.3		

This ECO would eliminate the availability of high energy tailgas use in the existing air compressor gas turbine. Release of the low temperature tailgas to atmosphere (from 58 psig) will be a source of objectional noise. It integrates ideally into the proposed system in ECO No. 1. Table 3 shows the energy inventory associated with ECO No. 2, and Figure 4 represents the AOP process with ECO No. 2 incorporated.

ECO No. 3: Water Conservation at Chiller and Cascade Coolers

Filtered river water discharged to drain, is 20°F to 80°F above river water temperature. No contaminants are introduced into the flow streams at Building 302. It is proposed to evaporatively cool the water in an induced draft cooling tower and return it to the heat rejection equipment so that costs at the Central Water Treatment Plant can be reduced. Primarily, savings will be derived from reduced demand for aluminum sulfate and hydrated lime in the flocculation process of the filter plant.

Table 4 and Figure 5 represent the AOP process with proposed ECO No. 3 water conservation incorporated.

ECO No. 4: Insulate Heat Exchangers

Heat is released to the atmosphere by radiation and convection from the dull bare metal surface of the nominal 18 inch diameter pressure vessels and 6 inch diameter tailgas piping. Standard high temperature calcium silicate pipe insulation with protective metal jacket is to be installed to increase recovered energy used in the air compressor gas turbine drive unit. Proposed insulation thickness is 1 inch.

AOP process parameters with proposed insulation are indicated in Table 5 and in Figure 6 herein.

ECO No. 5: Insulated Heater Surfaces with Low Pressure Steam Recovery

This ECO is an adjunct to ECO No. 4 - Insulate Heat Exchangers. Plant steam will still be required for production and process startup, but approximately 80% of steam used in the ammonia vaporizer will be derived from recovered energy.

A new 30 psig steam/condensate system, is proposed. The 30 psig steam is produced in a waste heat steam generator (WHSG) to extract heat from the 480°F turbine exhaust gas. Exhaust gas (tailgas) exiting the WHSG is discharged to atmosphere.

TABLE 3. ECO NO. 2 PROCESS ENERGY INVENTORY

	He.	Heat Gain		Heat Rejected			Heat Recovered	þ	Heat	Heat Lost	
										Waste	
Equipment	MBH	Source	MBH	Source	Destination	МВН	Source	Recipient	МВН	Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
	178.8	Air									
Mixer	(177.9)	I.									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
											±2690 #/hr
											saturated steam
		10% HNO ₃			Dowtherm &						produced @ 100
Dowtherm Heater	608.7	Reaction	3234.6	Prod. Gas	Atmos.	2990.8	Prod. Gas	Dowtherm	243.8	Atmosph.	psig
					River Water						
		70% HNO ₃		Prod. Gas & H2O	Drain &						
Cascade Cooler	4260.5	Reaction	1949.4	Vapor Condens.	Atmos				1949.4	Drain	
		20% HNO ₃		Prod. Gas & H ₂ O							
Absorption Columns	1217.3	Reaction	86.5	Vapor Condens.	River Water				86.5	Drain	
				H ₂ O Vapor							
Air Compressor	2786.8	Elect. Meter	2750.6	Condens.	River Water				2750.6	Atmos. Drain	1095 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Stack Loss			92.8	Tailgas	Atmos.				95.8	Atmos.	
Unaccounted											
Losses			2549.3						2549.3		
TOTAL	16724.4		16724.4			5195.6			11528.8		

AMMONIA OXIDA

DOWT

TABLE 4. ECO NO. 3 PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	pa	Hea	Heat Lost	
										Waste	
Equipment	MBH	Source	МВН	Source	Destination	MBH	Source	Recipient	MBH	Stream	Remarks
										Cooling	
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Tower	
	178.8	Air									
Mixer	(177.9)	NH ₃									
										Cooling	
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Tower	
Air Preheater			2902.9	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	816.8	Atmosph.	
Tailgas Heater			2211.4	Prod. Gas	TG & Atmos	2001.5	Prod. Gas	Tailgas	209.9	Atmosph.	
		-			River Water						
		80% HNO3		Prod. Gas & H2O	Drain &					Cooling	
Cascade Cooler	4869.4	Reaction	2846.2	Vapor Condens.	Atmos				2846.2	Tower	
		20% HNO ₃		Prod. Gas & H2O						Cooling	
Absorption Columns	1217.3	Reaction	86.5	Vapor Condens.	River Water				86.5	Tower	
				H ₂ O Vapor						Cooling	
Air Compressor	2018.2	Elect. Meter	2750.6	Condens.	River Water				2750.6	Tower	793 hp
										Exh. to	
Tailgas Turbine	768.2		2097.4			768.2			1329.2	Atmosph	302 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted											
Losses			673.9						673.9		
TOTAL	16724.2		16724.2			4974.5			11749.7		

FY95 LIMITED ENERGY STUDY

AMMONIA

INCORPORATE COOLING TOWER

TABLE 5. ECO NO. 4 PROCESS ENERGY INVENTORY

	He	Heat Gain		Heat Rejected			Heat Recovered	pa	Heat	Heat Lost	
Equipment	МВН	Source	МВН	Source	Destination	МВН	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	Stm. Syst.	149.2	Stm. Cond. to Drain					149.2	Drain	
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
Tailgas Heater			2496.7	Prod. Gas	TG & Atmos	2473.6	Prod. Gas	Tailgas	23.1	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2092.1	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				2092.1	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	1618.6	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	636 hp
Tailgas Turbine	1168.2	Recovered Heater	2582.1	Tailgas	Atmos.	1168.2			1413.9	Exh. to Atmosph	459 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			1432.5						1432.5		
TOTAL	16724.6		16724.6			5846.6			10878.0	-	

AMMONIA O

Results of integrating this ECO into the AOP process are shown in Table 6 and Figure 7.

ECO No. 6: Water Injection at Gas Turbine Not developed.

ECO No. 7: Recovered Steam Injected at Tailgas Turbine Inlet

Recovery of relatively pure water obtained from air compressor intercoolers and aftercoolers and from steam trap discharge at the ammonia vaporizer, all of which is presently discharged to waste, will be utilized for makeup to a waste heat steam generating system (WHSG) consisting of two recovery sections, one located in product gas stream leaving the platinum filter and the other in the wet gas stream leaving the turbine, and a steam separator vessel.

Additional boiler water makeup (approximately 10%) from the steam plant will augment the recovered water. Steam from the WHSG will be introduced into the hot tailgas from the tailgas heater to increase turbine output and offset electrical load of the compressor drive motor, and will be discharged to atmosphere along with the tailgas.

Introduction of the steam into the tailgas will be made at a sufficient distance upstream of the turbine inlet, in the existing 6 inch diameter standard black iron piping. The WHSG section in the product gas stream will be constructed of high chromium stainless steel (400 series) for surfaces in contact with product gas. The wet gas WHSG section will be standard steel construction as offered by Clayton Industries, El Monte, CA.

AOP process parameters with the proposed steam injection system, incorporated with the insulation evaluated in ECO #4, are shown in Table 7 and Figure 8 herein.

TABLE 6. ECO NO. 5 PROCESS ENERGY INVENTORY

	Hea	Heat Gain		Heat Rejected			Heat Recovered	pe	Heat	Heat Lost	
Equipment	MBH	Source	MBH	Source	Destination	МВН	Source	Recipient	МВН	Waste Stream	Remarks
Ammonia Vaporizer	714.1	L.P. Steam	149.2	Steam Cond.	Drain	149.2	Steam Cond.	LP Steam			
Mixer	178.8 (177.9)	Air NH ₃									
Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
Tailgas Heater			2496.7	Prod. Gas	TG & Atmos & L.P. Stm	2473.6	Prod. Gas Prod. Gas	Tailgas L.P. Stm Syst.	23.1	Atmosph.	
Cascade Cooler	4869.4	80% HNO ₃ Reaction	2092.1	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				2092.1	Drain	
Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens.	River Water				86.5	Drain	
Air Compressor	1618.6	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	636 hp
Tailgas Turbine	1168.2	Recovered Heat	2582.1	Turb. Exh.	Stack	1758.3	Stack	L.P. Stm Syst.	823.8	Exh. to Atmosph	459 hp
Final Bleacher			118.7	Product	Product	118.7	Product	Product			
Unaccounted Losses			1432.5						1432.5		
TOTAL	16724.6		16724.6			6585.9			10138.7		

TABLE 7. ECO NO. 7 PROCESS ENERGY INVENTORY

MBH Source MBH Source Recipient MBH 714.1 L.P. Steam 149.2 Steam Cond. Tailgas 149.2 Air 42.7 Air 42.7 Air 42.7 Air 42.7 Air 42.7 Air 42.7 Air Air 42.7 Air		Hea	Heat Gain		Heat Rejected			Heat Recovered	þí	Heat	Heat Lost	
714.1 L.P. Steam 149.2 Steam Cond. Taligas 149.2 Steam Cond. Taligas Air 178.8 Air	Equipment	МВН	Source	МВН	Source	Destination	MBH	Source	Recipient	МВН	Waste Stream	Remarks
rife Afr. Reaction Reaction River Water Afr. & Atmos 2006.1 Prod. Gas Afr. & Atmos 2007.1 Afr. & Atmos	Ammonia Vaporizer	714.1	L.P. Steam	149.2	Steam Cond.	Tailgas	149.2	Steam Cond.	Tailgas			
7136.1 Reaction 2887.4 Reaction Reaction 2887.4 Reaction 2887.4 Air & Atmos 2086.1 Prod. Gas Air & Atmos 2473.1 Prod. Gas Air & Atmos Air & At	Mixer	178.8 (177.9)	Air NH ₃									
40% HNO ₃ 2128.B Prod. Gas & H ₂ O Air & Atmos 2080.1 Prod. Gas Air & Atmos 2473.1 Prod. Gas Air & Atmos 2473.1 Prod. Gas Air Atmos Air	Converter	7136.1	Reaction	2887.4	Reaction	River Water				2887.4	Drain	
40% HNO ₃ Prod. Gas & H ₂ O TG & Atmos 2473.1 Prod. Gas Taligas 23.1 608.7 Reaction 816.9 Prod. Gas LP Steam 816.9 Prod. Gas LP Steam 837.9 Turb Exh. LP Steam 956.6 1826.0 Reaction 1275.2 Vapor Condens. Atmos Atmos 1275.2 River Water River Water <td>Air Preheater</td> <td></td> <td></td> <td>2128.8</td> <td>Prod. Gas</td> <td>Air & Atmos</td> <td>2086.1</td> <td>Prod. Gas</td> <td>Air</td> <td>42.7</td> <td>Atmosph.</td> <td></td>	Air Preheater			2128.8	Prod. Gas	Air & Atmos	2086.1	Prod. Gas	Air	42.7	Atmosph.	
608.7 Hoaction 816.9 Prod. Gas LP Steam 816.9 Prod. Gas LP Steam 956.6 1826.0 Reaction 1275.2 Vapor Condens. River Water River Bases Air 1361.6 Heat 118.7 Product Product Product Product River Bases Air River Bases Air	Tailgas Heater	2434.7	40% HNO ₃ Reaction	2496.7	Prod. Gas & H ₂ O Vapor Condens.	TG & Atmos	2473.1	Prod. Gas	Tailgas	23.1	Atmosph.	
1826.0 30% HNO ₃ 1275.2 Vapor Condens. A mass 1217.3 Reaction 1275.2 Vapor Condens. A mass 1217.3 Reaction 1275.2 Prod. Gas & H ₂ O Drain & Atmos 1217.3 Reaction 86.5 Reaction River Water 1361.6 Heat 2750.6 Condens. Mat Gas 1361.6 Heat 118.7 Product 118.7 Reaction Recov. Bir 1361.6 Met Gas Air Recovered 1361.6 Reco	Prod. Gas Recov. Boiler	608.7	10% HNO ₃ Reaction	816.9	Prod. Gas	LP Steam	816.9	Prod. Gas	LP Steam			765 #/hr Steam
1826.0 Reaction Lates Prod. Gas & H ₂ O Drain & Atmos River Water Atmos Recovered Atmos River Water Atmos Recov. Bir Atmos River Water Atmos Recov. Bir Atmos	Wet Gas Boiler						837.9	Turb Exh.	L.P. Steam	956.6	Stack	786 #/hr Steam
on Columns 1217.3 Reaction 86.5 Reaction Prod. Gas & H ₂ O River Water River River River	Cascade Cooler	1826.0	30% HNO ₃ Reaction	1275.2	Prod. Gas & H ₂ O Vapor Condens.	River Water Drain & Atmos				1275.2	Drain	
pressor 1425.2 Elect. Meter 2750.6 Condens. River Water River Water River Water River Water River Water River Water 2750.6 2750.6 2750.6 Turbine 1361.6 Heat 3156.1 Turbine Exhaust Recov. Bir 1361.6 Wet Gas Air Air eacher asacher 118.7 Product Product Product Product Product unted 859.0 859.0 8881.1	Absorption Columns	1217.3	20% HNO ₃ Reaction	86.5	Prod. Gas & H ₂ O Vapor Condens. & Reaction	River Water				86.5	Drain	
Turbine Heat 3156.1 Turbine Exhaust Wet Gas Air eacher 1361.6 Heat 3156.1 Turbine Exhaust Product Product Product nuted 859.0 859.0 7843.5 8843	Air Compressor	1425.2	Elect. Meter	2750.6	H ₂ O Vapor Condens.	River Water				2750.6	Drain	560 hp
eacher 118.7 Product Product Product unted 859.0 859.0 859.0 8639.0	Tailgas Turbine	1361.6	Recovered Heat	3156.1	Turbine Exhaust	Wet Gas Recov. Blr	1361.6	Wet Gas	Air			535 hp
unted 859.0	Final Bleacher			118.7	Product	Product	118.7	Product	Product			
10701 F 7843 5	Unaccounted Losses			859.0						859.0		
10/24.0	TOTAL	16724.6		16724.6			7843.5			8881.1		

HOLSTON NITRIC ACID PRODUCTION FACILITY

AMMONIA O

17,644#/HR

STEAM/WAT HEATERS

ECO NO. 7
STEAM/WATER INJECTION AT TAILGAS, INSULATE
HEATERS AND ADD WASTE HEAT RECOVERY

Calculations

Calculations for energy inventories throughout the product gas and tailgas flow streams were made using published data where available. Heat release from the exothermic reaction in the product gas stream, as indicated on flow diagrams and tables in the material furnished by the government and the operating contractor, was adjusted by application of principles and chemical values from several engineering handbooks. Excerpts from these handbooks are presented in the Appendix, section Reference Material.

Thermodynamic properties of Steam and water vapor in air were obtained from "Thermodynamic Properties of Steam"; thermodynamic properties of air were obtained from "Gas Tables". Specific heat data for various gases and liquids were obtained from "Marks' Standard Handbook for Mechanical Engineers" and additional textbooks. Heat loss for bare and insulated pipes was obtained from insulation manufacturers catalogs. Thermodynamic properties of Dowtherm A heat transfer fluid were obtained from "Marks' Handbook" and from tabular data in Platecoil Catalog, Tranter, Inc. In general, where data was obtained from graphically presented material, the diagram is included in the Appendix with the detailed calculations.

Basic formulae, definitions, numerical values and results of calculations for process chemical and thermal parameters are presented in this section.

Detailed calculation sheets are included in Appendix.

Calculations For: Pound Moles per Hour Delivered to Process

$$NH_3$$
: lbs/hr = 1088 lbs/hr = 63.88 #-mol/hr
mol. wt 17.0307

Specific Humidity of Air/Vapor Mixture:

$$W = \frac{P \vee R\alpha}{(Pm - P \vee) R \vee}$$

Where: Pv = Vapor pressure of water @ 100°F dewpoint

Pm = Air/vapor mixture pressure

 $R\alpha$ = Universal gas constant/mol. wt. of air R_{\lor} = Universal gas constant/mol. wt. of $H_{2}O$

$$W = \frac{(0.9492 \text{ psia}) (1544/28.9644)}{(129.97 \text{ psia} - 0.9492 \text{ psia}) (1544/18.016)} = 0.0046 \text{ #vapor/#dry air}$$

Air/Vapor Mixture Mass Flow = 16556 lbs/hr

$$H_2O:$$
 $\frac{16556 \text{ lbs/hr}}{1 + \frac{1}{0.0046 \text{ lbs/# dry air}}} = 75.81 \text{ lbs/hr}$

$$\frac{\text{lbs/hr}}{\text{mol. wt}} = \frac{75.81 \text{ lbs/hr}}{18.016} = 4.21 \text{ #-mol/hr}$$

Dry Air Mass Flow = 16556 lbs/hr - 75.81 lbs/hr = 16480.19 lbs/hr

$$N_2$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.78084) = 444.28 #-mol/hr mol. wt. air 28.9644

$$O_2$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.20948) = 119.19 #-mol/hr mol. wt. air 28.9644

$$A_R$$
: lbs/hr x mol. fract = 16480.19 lbs/hr (0.00934) = 5.31 #-mol/hr mol. wt. air 28.9644

THOTE, FIUE GAS ANALYSIS BY ORSAT, IF CO IS PRESENT IN FIUE GASES, A CARBON BALANCE IS USED TO DETERMINE DISTRIBUTION OF C. 11703.

ALL C IN FUEL — C IN FUE GAS CONSTITUENTS + C IN REFUSE, MOLES C IN FUEL — TO G BY ORSAT + TO CO, + CO BY ORSAT.

"ALL C IN FUEL — C IN FUEL — C IN FUEL GAS CONSTITUENTS + C IN FUEL — MOLES C IN FUEL — TO GAS CO, BY ORSAT + TO CO, + CO BY ORSAT.

* 18.084 = 3.7 102 = 20.948 = 3.7

		14/jan	· .		· · · · · · · · · · · · · · · · · · ·		 	-:	· · · · · · · · · · · · · · · · · · ·
CONDITIONS—ASSIGNED OR OBSERVED AND ANSCELLANEOUS DATE January 4, 1996 FUEL N Gas SOURCE 2 Air FUEL UNIT 31.65 Moles, gaseous	(f) % 8Y WI OR VOL	. Available Oxygen: 02Avail = 119.19 #-mol/hr-55.8"- = 63.39 #-mol/hr		O1 (L AIR (T.A.) LINES (,	00 28. UNE 9 394 CU FI	18 FUEL 0.0 %		TEMP, #1-110 NES (0 × q), #1- GAS DRY FIL	$\frac{367.55}{5.045} = 0.0074$
	FLUE GAS (F.G.) COMPOSITION MOLES PER FUEL UNIT (AF)	NO ₂ O ₁ H ₁ H ₁ O CO	0 0	0	0 000		204.22	3.4	OTAL $[63.29]$ () $ 304.26 2.31$ () MOLES $ 269.76 $ REHUMIDITY, $\frac{\lambda}{8-\lambda} = 0.0212$ IS OFTEN USED AS STANDARD. $\frac{0.9}{139.97}$
COMBUSTION CALCULATIONS—MOLAL BASIS N ₂ + 20 ₂ → 2N0 ₂	FUEL O, AND AIR PER UTIL OF FUEL	PER L FUEL UENT UNIT,	N TO NO 2 28 31.65 A (53.29 6 C TO CO C UNBURNED.	32		12 SUM O ₁ AND AIR, MOLES FOR TOTAL AIR 100% (SEE LINE d AT RICHT) 13 O ₂ (THEO) REQD = O ₂ , LINE 12 (23.37)	O ₁ (EXCESS) = $\frac{1.A100}{100} \times O_1$, UNE 12 O ₂ (TOTAL) SUPPLED = UNES 13 ± 14 N ₂ SUPPLIED = (3.73 × O ₂) HNE-15	17 AIR (DRY) SUPPLIED = 01 + N1 101HL - 271.20 18 H ₁ O IN AIR = MOLES DRY AIR $\times \frac{A}{B} = \frac{A}{A} = $	FIUE GAS CONSTITUENTS = LINES 1 TO 18, TO NOTE FOR AIR AT 80 F AND 60% RELATIVE

PHOTE FIVE GAS ANALYSIS BY ORSAT, IF CO IS PRESENT IN THE GASES, A CARBON BALANCE IS USED TO DETERMINE DISTRIBUTION OF C, THUS:

"THOTE FIVE GAS ANALYSIS BY ORSAT, IF CO IS PRESENT IN REFUSE, MOLES C IN THE - TO CD ANAL, H 17.

"THOTE FIVE GAS ANALYSIS BY ORSAT, IF CO IS PRESENT IN THE CO. IN THE CO. IN THE CO. IN THE CAS CONSTITUTED IN THE CO. IN TH

33

...

Calculations For: Theoretical Pound Moles per Hour Product Gas

 NO_2 : 31.94 #-mol/hr + 63.29 #-mol/hr = 95.23 #mol/hr

 N_2 : 208.37 #-mol/hr + 204.26 #-mol/hr = 412.63 #mol/hr

H₂O: 25.92 #-mol/hr + 2.21 #-mol/hr = 28.13 #-mol/hr

From Sheet 1:

 A_R : <u>lbs/hr x mol. fract</u> = <u>16480.19 lbs/hr (0.00934)</u> = 5.31 #-mol/hr

mol. wt. air 28.9644

Other: $\frac{|bs/hr \times mol. fract}{|bs/hr \times mol. fract} = \frac{16480.19 |bs/hr (0.00034)}{|bs/hr \times mol. fract} = \frac{0.19}{|bs/hr \times mol. fract}$

mol. wt. air 28.9644

TOTAL = 541.49 #-mol/hr

 NO_2 Percent by Volume = $\frac{95.23 \text{ #-mol/hr (100)}}{541.49 \text{ #-mol/hr}}$ = 17.59%

 N_2 Percent by Volume = $\frac{412.63}{541.49}$ = 76.20%

 H_2O Percent by Volume = $\frac{28.13}{541.72}$ = 5.20%

 A_R Percent by Volume = $\underline{5.31}$ = 0.98% 541.49

Other Percent by Volume = $\frac{0.19}{541.72}$ = $\frac{0.04\%}{541.72}$

TOTAL 100.01

Calculations For: Product Gas Specific Heat at Constant Pressure

$$C_{PPRG} = \frac{W_{n2}C_{Pn2} + W_{ar}C_{Par} + W_{NO2}C_{PNO2} + W_{H2O}C_{PH2O}}{W_{PR.G.}}$$
 $W_{N2} = 412.63 \text{ #moles/hr } (28.013) = 11559.00 \text{ #/hr}$
 $W_{AR} = 5.31 \text{ #moles/hr } (39.948) = 212.12 \text{ #/hr}$
 $W_{NO2} = 95.23 \text{ #moles/hr } (46.005) = 4381.06 \text{ #/hr}$
 $W_{H2O} = 28.16 \text{ #moles/hr } (18.015) = \frac{506.26 \text{ #/hr}}{16658.94 \text{ #/hr}}$

From Gas Table @ 1460°R

$$C_{PN2}$$
 = $\frac{\varnothing}{\ln T}$ = $\frac{52.867}{\ln 1460}$ = $7.2558^B/\#-mol\ °F$
 C_{PAR} = $\frac{\varnothing}{\ln T}$ = $\frac{41.9242}{\ln 1460}$ = $5.7539^B/\#-mol\ °F$
 $^*C_{PNO2}$ = $\frac{\varnothing}{\ln T}$ = $\frac{61.639}{\ln 1460}$ = $8.4597^B/\#-mol\ °F$
 C_{PH2O} = $\frac{\varnothing}{\ln T}$ = $\frac{58.556}{\ln 1460}$ = $7.3503^B/\#-mol\ °F$
 $C_{PPR.G.}$ = $\frac{412.63\ (7.2558) + 5.31\ (5.7539) + 95.23\ (7.2558) + 28.13\ (7.3503)}{(541.49 - 0.19)}$

*Assume specific heat of NO₂ (MW = 46) is essentially the same as CO₂ (MW = 44).

 $= 7.2460 \, ^{B}/\#-mol \, ^{\circ}F$

Calculations For: Dewpoint of Product Gas

 $P_V = H_2O$ mol. fract. $x P_{PG}$.

Where:

Pv = vapor pressure of water.

 P_{PG} = product gas pressure.

 $P_{V} = 0.0520 (102 \text{ psig}) = 5.304 \text{ psig or } 20.0 \text{ psia}$

Saturation pressure of H₂O @ 20 psia = 227.96° F

Dewpoint = 227.96° F

Mass Flow of Product Gas Constituents

 NO_2 = (#-mol/hr) (#/#-mol) = 95.23 (46.008) = 4381.34 #/hr

 N_2 = (#-mol/hr) (#/#-mol) = 416.63 (28.016) = 11672.31 #/hr

 $H_2O = (\#-mol/hr) (\#/\#-mol) = 28.13 (18.016) = 506.79 \#/hr$

 A_{R} = (#-mol/hr) (#/#-mol) = 5.31 (39.95) = 16772.57 #/hr

Unaccounted = 17644 - 16773 = 871 #/hr

Apparent Mol. Wt. = $\frac{17644 \text{ #/hr}}{541.49 \text{ #-mol/hr}}$ = 32.58 #/#-mol

 $C_P = \frac{7.2460 \text{ }^B/\text{\#-mol} \text{ }^\circ\text{F}}{32.58 \text{ } \text{\#/mol}} = 0.2224 \text{ }^B/\text{\#} \text{ }^\circ\text{F}$

Calculations For: Recoverable Heat

$$Q_{REC} = W C_{p} (T_{IN} - T_{OUT}) = 17644 (0.222) (800 - 400)/1000 = 1570 MBH$$

Assume feedwater entering boiler is 300°F and 65 psig

$$W_{STM} = 1570000 = 1570000 = 1740 \#/hr$$
 $\Delta h = 183.1 - 282 @ 65 psig$

Volumetric Analysis - Product Gas/Bleaching Air:

Constituent	# Moles/Hr in Blchng Air	# Moles/Hr in Pr. Gas Entg.	# Moles/Hr in New Pr. Gas	% By Volume
N ₂	74.93	416.63	491.56	76.57
Α	0.90	5.31	6.21	0.97
O ₂	20.10	0*	20.10	3.13
NO ₂	0	95.23	95.23	14.83
H ₂ O	0.71	28.13	28.84	4.49
			641.94	99.99

Bleaching Air: 2779 #DA/hr + 15.45 # H_2 O/hr = 2794.45 #/hr # moles DA/hr = 2779/28.96 = 95.96

*Assume all available ${\rm O_2}$ combines with available ${\rm N_2}$:

$$N_2 + 2O_2 ----> 2NO_2$$

Calculations For: Absorption Column Spray Water and Tailgas

Spray Water Required = 40.6 + 3.8 + 31.74 - 28.84 = 47.3 # mol/hr

or
$$\frac{47.3 \text{ # mol/hr } (18.016 \text{ #/#mol})}{8.33 \text{ #/g } (60 \text{ m/hr})} = 1.70 \text{ gpm}$$

or 47.3 # mol/hr (18.016 #/#mol) = 855 #/hr

Tail Gas	# Moles/Hr	Mol. Wt.	#/Hr
O ₂	20.1	32	643.2
N ₂	491.6	28.016	13772.7
NO	31.72	30.008	954.1
H ₂ O	3.8	18.016	68.5
A _R	6.21	39.948	248.1
Other	0.19	42.09	8.0
	553.62		15694.6

Apparent Mol. Wt. = $\frac{15694.6}{553.62}$ = 28.349

Calculations For: 50 Tons/Day of 61% Acid by Volume (66.124 #-mol/hr HNO₃) & Tailgas

Constituent	# Moles Ent. Col	# Moles in Product	# Moles in Tailgas
N ₂	491.56	0	491.56
A _R	6.21	0	6.21
O ₂	20.10	0	20.10
H ₂ O	28.84	40.6	3.8
HNO ₃	0	63.48	. 0
NO	0	0	31.74
Reaction: 3NO ₂ + H	₂ O> 2 HNO ₃ + NO		

Water in Tailgas ---->
$$P \lor R_{TG} = 0.5959 (1544/30) = 0.0045 \#DTG$$
 (Saturated @ 85°F) $(P_m - P \lor) R \lor (80 - 0.5959) (1544/18.016)$

$$= 4732 \#/hr$$

%
$$HNO_3$$
 = $63.48 (100)$ = 60.98 by Volume 104.1

%
$$HNO_3 = 63.48 (63.013) (100) = 84.5$$
 by Weight 4732

Calculations For: Product and Tailgas (By Molal Analysis)

Absorption Column Mass Balance:

$$W_{IN}$$
 = 491.56 (28.014) + 6.21 (39.948) + 95.23 (46.01) + 28.84 (18.016) + 855 + 20.1 (32)

= 20418 #/hr

$$W_{OUT}$$
 = 491.56 (28.014) + 6.21 (39.948) + 3.8 (18.016) + 31.74 (30.01) + 20.1 (32) + 4732

= 20415 #/hr

Tailgas = 20415 - 4732 = 15680 #/hr

Calculations For: Tailgas (By Molal Analysis)

$$C_{PTG} = \frac{W_{N2} C_{PN2} + W_{AR} C_{PAR} + W_{NO} C_{PNO} + W_{H2O} C_{PH2O} + W_{O2} C_{PO2}}{W_{TG}}$$

 $W_{N2} = 491.56 \text{ #-Mol/hr}$

 $W_{AB} = 6.21 \text{ #-Mol/hr}$

 $W_{NO} = 31.74 \text{ #-Mol/hr}$

 $W_{H2O} = 3.8 \#-Mol/hr$

 $W_{02} = 20.1/553.41 \text{ #-Mol/hr}$

Calculate C_P @ 350°F (810°R) - Value of \varnothing from gas tables

$$C_{P}O_{2} = \frac{\emptyset}{InT} = \frac{51.911}{In 810} = 7.751 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PN2} = \frac{\emptyset}{InT} = \frac{48.61}{In 810} = 7.2584 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PAR} = \underline{\varnothing} = \underline{38.9994} = 5.8234 \text{ B/#-Mol}^{\circ}\text{F}$$
In T

$${}^{\star}C_{PNO} = \frac{\emptyset}{InT} = \frac{50.146}{In 810} = 7.4878 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PH20} = \frac{\emptyset}{InT} = \frac{48.419}{In 810} = 7.2299 \text{ B/#-Mol}^{\circ}\text{F}$$

$$C_{PTG} = \frac{491.56 (7.2584) + 6.21 (5.8234) + 31.74 (7.4878) + 3.8 (7.2299) + 20.1 (7.7513)}{553.41}$$

7.2732 B/#-Mol°F

or

Cost Data

"Means Mechanical Cost Data", 19th Annual Edition, 1996 was used for unit price data for the majority of line items entered on estimating forms. Pipe fittings and accessories were entered as ± 80 percent of run-of-pipe cost. Major equipment pricing, where not included in "Means", was developed from published cost of similar devices tempered by engineering judgement.

ECO costs were developed for a single process line, including equipment shown on the Process Flow Diagrams. Provisions for "Crossover" to permit any one of the five air compressors, for instance, is not included, nor is the provision to interconnect any other new device in one process line with its companion device in an adjacent process line. Additional expenditures to implement similar changes on a second line will not produce additional savings at the present production rate.

Cost estimate analysis sheets for each ECO are included in this section, followed by Life Cycle Analysis Summary sheets from the LCIDD computer program.

Cost analysis rough worksheets are presented in Appendix.

2007 5		TE A	NIAL VC				DATE PR	EPARED:	11/14/95
COST ES	SIIMA	IL A	NALYS	115			ESTIM	ATOR: F	DL JDL
PROJECT: HOLSTON AAP AI	REA B I	NITRIC	ACID		LOCA	TION: I	KINGSP	ORT, TE	NNESSEE
TASK DESCRIPTION	QUAN	1TITY		LABOR	EQU	IPMENT	٨	MATERIAL	
ECO NO. 1	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
STEAM PIPING:									
6" Ø Sch.40 Undrgr.	250	LF	16.55	4138	1.28	320	31.00	7750	\$12,208.00
3" Ø Sch. 80 Undrgr.	250	LF	17.65	4413	1.28	320	19.50	4875	9608.00
4" Ø Sch. 40	150	LF	11.70	1755	1.40	210	10.60	1590	3555.00
2" ø Sch. 80	150	LF	7.75	1163	.86	129	5.50	837	2129.00
Pipe Insul.	300	LF		2000				1000	3000.00
Turbin Mod. Cost		LS		10000				10000	20000.00
15000#/Hr. Stm. Surf. Cndns.	1	EA		10000		2500		30000	42500.00
Cond. Pump	1	EA		300				1500	1800.00
8" Condnsr Wtr. Piping	300	LF	23	6900	1.81	543	31.00	9300	16743.00
Pipe Ftgs & Misc.	1	LOT		10000				25000	35000.00
TOTAL				50669		4022		91852	\$146,543.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AA	P AREA	B NITI	RIC ACI)	LOCA	TION:	KINGSP	ORT, TEN	NESSEE
TASK DESCRIPTION	Q	UANTITY		LABOR	EQ	UIPMENT		MATERIAL	
ECO NO. 2	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
STEAM PIPING:									
8" ø Sch.40 Undrgr.	250	LF	17.40	4350	1.28	320	33.50	8375	\$13,045.00
3" Ø Sch. 80 Undrgr.	250	LF	17.65	4413	1.28	320	19.50	4875	9608.00
8" ø Sch. 40	150	LF	23.00	3450	1.81	272	31.00	4650	8372.00
2" ø Sch. 80	150	LF	7.75	1163	.86	129	5.50	837	2129.00
Pipe Insul.	1	LOT		2500				1200	3700.00
DOWTHERM PIPE:									
2 1/2" Ø Sch. 40	200	LF	9.20	1840	1.12	224	6.40	1280	3344.00
Pipe Insul.	1	LOT		2000				1000	3000.00
Hi Temp Pump (406 GPM)	1	EA		300				3438	3738.00
65 GPM Pump	1	EA		216				1375	1591.00
N ₂ Blnkt. Syst.	1	EA		250				1000	1250.00
Unfired Blr. Vessel	1	EA		5000		2500		75000	82500.00
Misc. Acces. & Fittings	1	LOT		20000				40000	60000.00
TOTAL				45482		3765		143030	\$192,277.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAF	AREA	B NITE	RIC ACIE)	LOCA	TION:	KINGSP	ORT, TE	NNESSEE
TASK DESCRIPTION	QUAN	ITITY	L	ABOR	EQUIP	MENT	MATI	ERIAL	
ECO NO. 3	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
FIBERGLASS COOLING TOV	VER								
600 GPM Ind. Dr.	1	EA		1500		1000		12000	\$14,500.00
Pumps & Piping	1	LOT		3500				7200	10700.00
Elect		LS		3000				5000	8000.00
Sitework/Pads		LS		5000				1000	6000.00
TOTAL				13000		1000		25200	39,200.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

TASK DESCRIPTION	QUANT	ΊΤΥ	LAB	OR	МА	TERIAL	
Insulation ECO NO. 4	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
1" CALCIUM SILICATE:							
18" ø Air Preheater	12	LF	5.40	64.80	9.35	112.20	\$ 177.00
18" ⊘ Tailgas Heater	25	LF	5.40	135.00	9.35	233.75	368.75
8" ø Tailgas Pipe to Turbine	120	LF	3.84	460.80	4.26	511.20	972.00
0.010 S.S. JACKET:							
18" ø Air Preheater	60	SF	4.03	241.80	.93	55.80	297.60
18" ⊘ Tailgas Heater	125	SF	4.03	503.75	.93	116.25	620.00
8" ø Tailgas Pipe to Turbine	315	SF	4.03	1,269.45	.93	292.95	 1,562.40
18" ø Flange Sets (Insulation)	10	SF	13.45	134.50	2.71	27.10	\$161.60
18" ø Flange Sets (Jacket)	10	SF	4.03	40.30	.93	9.30	\$49.60
Subtotal			\$2,850.40			\$1,358.55	\$ 4,208.95
15% Conting							631.35
TOTAL Construction Use							\$ 4,850.00

COST ESTIMATE ANA	ALYSIS
-------------------	--------

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

	QUANT	TTY	LA	BOR	MA	TERIAL	
TASK DESCRIPTION ECO NO. 5	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
18" Semicircular							
Plate Heat Exchanger 14' Long	1	EA		100.00		5,000.00	\$ 5,100.00
Clayton Whsg. Waste							
Heat Steam Generator	1	EA		2,000.00		5,000.00	7,000.00
Condensate Cooler	1	EA		100.00		500.00	600.00
Cond. Rcvr/Pump	1	EA		300.00		1,500.00	1,800.00
1-1/4" ø Insulated							
Pipe & Fittings	1	LOT		7,500.00		5,000.00	\$12,500.00
TOTAL				10,000.00		17,000.00	\$ 27,000.00

DATE PREPARED: 11/14/95

ESTIMATOR: PDL

PROJECT: HOLSTON AAP AREA B NITRIC ACID LOCATION: KINGSPORT, TENNESSEE

THOUSE THE PROPERTY OF THE PRO									
TASK DESCRIPTION	QUA	NITY	LAE	BOR	EQUIP	MENT	M.A	TIERIAL	
ECO NO. 7	NO OF UNITS	UNIT MEAS	UNIT PRICE	COST	UNIT PRICE	COST	UNIT PRICE	COST	TOTAL
Makeup & Fowtr. Pipe - 1" ∅	500	LF	4.65	4138	.57	285	2.89	1445.00	\$4,055.00
Steam Pipe - 1-1/2" ∅	150	LF	5.70	4413	.69	104	3.96	594.00	1,553.00
400 Series St. Stl. Econom.	1	EA		1755		500		185500.00	188,000.00
Waste Ht. Blr. System	1	EA		1,500		150		68600.00	70,250.00
Fdwtr Pump-46 PM/225 TDH	1	EA	72.50	1163			500	500.00	573.00
Temperature Controls	1	SET	150.00	2000			850	850.00	1,000.00
6"ø A3126RTP321 Pipe	40	LF	20.00	10000	1.50	60	60	2400.00	3,260.00
Heater Insulation		LS		300				1360.00	4,210.00
Steam Pipe Insul	150	LF	2.49	6900			2.23	335.00	709.00
Fdwtr Pipe Insul	150	LF	2.42	10000			2.16	324.00	687.00
Surge Tank - 100 Gag	1	EA		25				100.00	\$125.00
Pipe Fittings & Accos.	1	LOT		2000				5500.00	\$7,500.00
Subtotal				13,315			1,099	267508.00	\$281,922.00
**Cost W.O. St. Stl. Sect.									\$93,922.00

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #1 STM. TURB.DRIVE @ AIR COMPR. ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE 1. INVESTMENT 146543. A. CONSTRUCTION COST B. SIOH \$ 14661. 15993. C. DESIGN COST D. TOTAL COST (1A+1B+1C) \$ E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D - 1E - 1F) 177197. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL S DISCOUNT DISCOUNTED

FUEL	\$/MBTU(1)	MBTU/YR(2)	VINGS(3)	FACTOR(4)	VINGS(5)
A. ELECT	\$ 10.25	2325.	\$ 23831.	15.61	\$ 372001.
B. DIST	\$.00	0.	\$ 0.	17.56	\$ 0.
C. RESID	\$.00	0.	\$ 0.	19.97	\$ 0.
D. NAT G	\$.00	0.	\$ 0.	20.96	\$ 0.
E. COAL	\$.00	0.	\$ 0.	17.58	\$ 0.
F. LPG	\$.00	0.	\$ 0.	16.12	\$ 0.
L. OTHER	\$ 3.90	-10538.	\$ -41097.	14.74	\$ -605775.
M. DEMAN	DSAVINGS		\$ 13050.	14.74	\$ 192357.
N. TOTAL		-8213.	\$ -4216.		\$ -41417.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) 14.74 (2) DISCOUNTED SAVING/COST (3A X 3A1)
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	` , ,	•		
	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- 0. d. TOTAL
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ -4216.
- -42.03 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4)
- 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ -41417.
- 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =

(IF < 1 PROJECT DOES NOT QUALIFY)

** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

N/A

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #2 REJCTD HT CNVRTD TO 100# STM

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- 192275. A. CONSTRUCTION COST
- \$ 10576. B. SIOH
- Ŝ 11537. C. DESIGN COST
- D. TOTAL COST (1A+1B+1C) \$ 214388.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE \$
- G. TOTAL INVESTMENT (1D 1E 1F) 214388.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

F	UEL		COST TU(1)	SAVINGS MBTU/YR(2)	NUAL \$ VINGS(3)	DISCOUNT FACTOR(4	 SCOUNTED VINGS(5)
Α	. ELECT	\$ 10	. 25	-885.	\$ -9071.	15.61	\$ -141602.
В	. DIST	\$. 00	0.	\$ 0.	17.56	\$ 0.
С	. RESID	\$. 00	0.	\$ 0.	19.97	\$ 0.
D	. NAT G	\$.00	0.	\$ 0.	20.96	\$ 0.
E	. COAL	\$.00	0.	\$ 0.	17.58	\$ 0.
F	. LPG	\$.00	0.	\$ 0.	16.12	\$ 0.
L	. OTHER	\$ 3	. 90	3445.	\$ 13436.	14.74	\$ 198039.
	. DEMAN	•	INGS		\$ -1855.	14.74	\$ -27343.
N	. TOTAL			2560.	\$ 2509.		\$ 29094.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A) 14.74

 - (2) DISCOUNTED SAVING/COST (3A X 3A1) -15919.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

		SAVINGS(+)	YR	DISCNT	DISCOUNTED
	ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
•		(1)	(2)	(3)	COST(-)(4)

- \$ 0. d. TOTAL
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -15919.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 1429.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

150.00 YEARS

-1080.

- 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
- \$ 13175.
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)=.06 (IF < 1 PROJECT DOES NOT QUALIFY)
- 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

-10.32 %

LIFE CYCLE COST ANALYSIS SUMMARY

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #3 REDUCED WTR CONSUMP W/ CLNG TWR

ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

1. INVESTMENT

A. CONSTRUCTION COST \$ 39200.

B. SIOH \$ 2156.

C. DESIGN COST \$ 2352. D. TOTAL COST (1A+1B+1C) \$ 43708.

E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0

F. PUBLIC UTILITY COMPANY REBATE \$

G. TOTAL INVESTMENT (1D - 1E - 1F) \$ 43708.

2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UNIT COST	SAVINGS	ANN	UAL \$	DISCOUNT	DIS	COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	/INGS(5)
A. ELECT	\$ 10.25	-65.	\$	-666.	15.61	\$	-10400.
B. DIST		0.	\$	0.	17.56	\$	0.
C. RESID	\$.00	0.	\$	0.	19.97	\$	0.
D. NAT C	\$.00	0.	\$	0.	20.96	\$	0.
E. COAL	\$.00	0.	\$	0.	17.58	\$	0.
F. LPG	\$.00	0.	\$	0.	16.12	\$	0.
M. DEMAN	ID SAVINGS		\$	0.	14.74	\$	0.
N. TOTAL		-65.	\$	-666.		\$	-10400.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)

(2) DISCOUNTED SAVING/COST (3A X 3A1)

- 14.74
 - \$ 81424.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

d. TOTAL

\$ 0.

0.

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 81424.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 4858.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

9.00 YEARS

5524.

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ 71024.

7. SAVINGS TO INVESTMENT RATIO

(SIR) = (6 / 1G) =

1.62

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

N/A

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCGID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #4 INSULATE HEAT EXCHANGERS ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

<i>A</i>	A. B. C. C.	SALVAGE VA	ION COST	TING EQUIPMEN TREBATE		O. O.	\$ 54	08.	
			VINGS (+) / (IR 85-3273-X UNIT COST \$/MBTU(1)	USED FOR DIS	ANNUA	L \$	OCT 1993 DISCOUNT FACTOR(4)		
		A. ELECT B. DIST C. RESID D. NAT G E. COAL F. LPG M. DEMANN N. TOTAL	\$.00 \$.00 \$.00 \$.00 \$.00 D SAVINGS	460. 0. 0. 0. 0. 0.	· \$ \$ \$ \$ \$ \$ \$	4718. 0. 0. 0. 0. 0. 2585. 7303.	15.61 17.56 19.97 20.96 17.58 16.12 14.74	99999	73656. 0. 0. 0. 0. 0. 38103. 111758.
) :	3.	NON ENERG	Y SAVINGS(+)	/ COST(-)					
			RECURRING (-				14.74	\$	0.
		(2) D	ISCOUNTED SA	VING/COST (3	A X 3A1	.)		\$	0.
		B. NON RE	CURRING SAVII	SAVINGS(- COST(-	+) YF) 00		R SAV	COUNT INGS (T(-)(+)/
		d. TOTAL		\$ 0				C).
		C. TOTAL	NON ENERGY D	ISCOUNTED SA	VINGS(+	-)/COST(-	-)(3A2+3Bc	14)\$	0.
4	4.	FIRST YEA	R DOLLAR SAV	INGS 2N3+3A+	(3Bd1/	YRS ECO	NOMIC LIFE	Ε))\$	7303.
	5.	SIMPLE PA	YBACK PERIOD	(1G/4)					.74 YEARS
1	6.	TOTAL NET	DISCOUNTED	SAVINGS (2N5	+3C)			\$	111758.
	7.	SAVINGS T	O INVESTMENT	RATIO	(SIE	R)=(6 / 1	1G)=	2	20.67

19.96 %

(IF < 1 PROJECT DOES NOT QUALIFY)

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

STUDY: 95094 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LCCID 1.080 LIFE CYCLE COST ANALYSIS SUMMARY INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #5 INSUL HX S W/ NEW 30# STM SYST ANALYSIS DATE: 12-21-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE 1. INVESTMENT

- A. CONSTRUCTION COST \$ 31850. 1752. \$ B. SIOH \$ 1911. C. DESIGN COST D. TOTAL COST (1A+1B+1C) \$ 35513.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0.
- F. PUBLIC UTILITY COMPANY REBATE \$
- 35513. G. TOTAL INVESTMENT (1D - 1E - 1F)
- 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 IT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED

FUEL	UNIT COST \$/MBTU(1)	MBTU/YR(2)		INGS(3)	FACTOR(4)	SAV	INGS(5)
B. DIST C. RESIG D. NAT C E. COAL F. LPG L. OTHER	G \$.00 \$.00 \$.00 R \$ 3.90 ND SAVINGS	460. 0. 0. 0. 0. 0. 664.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4718. 0. 0. 0. 0. 2589. 2585. 9892.	15.61 17.56 19.97 20.96 17.58 16.12 14.74	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	73656. 0. 0. 0. 0. 0. 38159. 38103. 149918.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - -132. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) 14.74 -1946.
 - (2) DISCOUNTED SAVING/COST (3A X 3A1)

В.	NON RECURRING	SAVINGS(+) / COSTS(- SAVINGS(+)) YR	DISCNT	DISCOUNTED
	ITEM	COST(-) (1)			SAVINGS(+)/ COST(-)(4)

0. \$ Û. d. TOTAL

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -1946.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 9760.
- 3.64 YEARS 5. SIMPLE PAYBACK PERIOD (10/4)
- \$ 147972. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
- 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)=4.17 (IF < 1 PROJECT DOES NOT QUALIFY)
- 10.73 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

LIFE CYCLE COST ANALYSIS SUMMARY LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95094
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCGID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY

FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #7 RECOVERED STM INJECT @ TLGS TURB

ANALYSIS DATE: 12-22-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 281920.
- 4125. B. SIOH
- 4500. C. DESIGN COST
- D. TOTAL COST (1A+1B+1C) \$ 290545.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0.
- F. PUBLIC UTILITY COMPANY REBATE \$
- 290545. G. TOTAL INVESTMENT (1D - 1E - 1F)
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

FUEL	UNIT COST \$/MBTU(1)	SAVINGS MBTU/YR(2)	TUAL \$ 'INGS(3)	DISCOUNT FACTOR(4)	 COUNTED INGS(5)
A. ELECT	\$ 10.25	683.	\$ 7002.	15.61	\$ 109304.
	\$.00	0.	\$ 0.	17.56	\$ 0.
C. RESID	\$.00	0.	\$ 0.	19.97	\$ 0.
D. NAT G		0.	\$ 0.	20.96	\$ 0.
E. COAL	\$.00	0.	\$ Ο.	17.58	\$ 0.
F. LPG	s .00	Ú.	\$ 0.	16.12	\$ 0.
M. DEMAN	*		\$ 3835.	14.74	\$ 56528.
N. TOTAL		683.	\$ 10837.		\$ 165832.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - -412. A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)
 - \$ -6073. (2) DISCOUNTED SAVING/COST (3A X 3Al)
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	
ITEM	COST(-)			SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- \$ 0. d. TOTAL
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Ed1/(YRS ECONOMIC LIFE))\$ 10425.

C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -6073.

- \$ 159759. 6. TOTAL NET DISCOUNTED SAVINGS (285+36)
- . 55 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= (IF < 1 PROJECT DOES NOT QUALIFY)
- 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): .06 %

0.

27.87 YEARS

5. SIMPLE PAYBACK PERIOD (16/4)

STUDY: 95094 LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: HOLSTON ARMY AREGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95094 AREA B NITRIC ACID PRODUCTION FACILITY FISCAL YEAR 1996 DISCRETE PORTION NAME: ECO #74RECOVERED STM INJECT @ TLGS TURB ANALYSIS DATE: 12-22-95 ECONOMIC LIFE 20 YEARS PREPARED BY: LITTLE

1.	INVESTMENT			
Α.	CONSTRUCTION COST	\$	93920.	
В.	SIOH	\$	4125.	
С.	DESIGN COST	\$	4500.	
D.	TOTAL COST (1A+1B+1C)	\$	102545.	
E.	SALVAGE VALUE OF EXIST	ING	EQUIPMENT	\$
	PUBLIC UTILITY COMPANY			\$
	TOTAL INVESTMENT (1D -			

102545.

2. ENERGY SAY DATE OF NIST	VINGS (+) / IR 85-3273-X UNIT COST \$/MBTU(1)	USED FOR DIS	A.	JUAL \$	OCT 1993 DISCOUNT FACTOR(4)		SCOUNTED INGS(5)
A. ELECT B. DIST C. RESID D. NAT G E. COAL F. LPG M. DEMAN N. TOTAL	\$.00 \$.00 \$.00 \$.00 \$.00 D SAVINGS	6/0. 0. 0. 0. 0.		6868. 0. 0. 0. 0. 0. 3835. 10703.	15.61 17.56 19.97 20.96 17.58 16.12 14.74	55555555	107202. 0. 0. 0. 0. 56528. 163730.

0.

3. NON ENERGY SAVINGS(+) / COST(-)

A. ANNUAL RECURRING (+)	- 1		\$	-412.
(1) DISCOUNT FACTOR	(TABLE A)	14.74		6070
(2) DISCOUNTED SAVI	KG/COST (BA K BAl)		Ş	-6073.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	$\mathbb{T}\mathbb{R}$	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

0. \$ (). d. TOTAL

C. TOTAL NON ENERGY DISCOUNTED SATIL (Soft) (3A2+3Bd4)\$ -6073.

4. FIRST YEAR DOLLAR SAVINGS 2003/34/30.1. TALL ECONOMIC LIFE))\$ 10291.

9.97 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4)

\$ 157657. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3/1)

7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 1.54 (IF < 1 PROJECT DOES NOT QUALIFY)

5.34 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

Conclusion

Four of the six ECO's evaluated produce savings to investment ratios greater than 1.25. Not all of these conservation concepts can be accomplished simultaneously. ECO No. 5 is predicated on being incorporated with No. 4, and these two concepts should be considered as one.

Neither ECO No. 1 nor No. 2 is compatible with ECO No. 5, since each of them negates the availability of high energy tailgas on which ECO No. 5 depends.

ECO No. 3 can be incorporated with any combination of other mutually compatible ECO's.

Although integral implementation of ECO's No. 1 and No. 2 could be accomplished, this combination can be eliminated by inspection because No. 1 requires increased steam flow from the central plant at 300 psig, while No. 2 produces excess 100 psig steam to displace central plant steam.

The available groupings of qualifying ECO's do not produce an aggregate cost greater than \$300,000, and therefore cannot be considered for ECIP funding.

We recommend implementation of ECO's No. 7, which at current production rates, will produce calculated electrical savings of 683 x 10⁶ Btu/yr \$3,835 per year in electrical demand costs.

Abbreviations

AESE: Affiliated Engineers SE, Inc.

AOP: Ammonia Oxidation Process

ASME: American Society of Mechanical Engineers

bhp: Boiler Horsepower

ECO: Energy Conservation Opportunity

(ECIP): Energy Conservation Investment Program. This is a federal government program which allocates funds for projects which increase energy efficiency.

HDC: Holston Defense Corporation

HAAP: Holston Army Ammunition Plant

Excess Air: A term used to describe the amount of air that is supplied to fossil fired boilers over and above the amount theoretically required for complete combustion.

hr/yr: hour per year

kWh: kilowatt-hour

lb/hr: pounds per hour

lb/mo: pounds per month

(LCCID): Life Cycle Cost in Design. Government software package used to evaluate projects for ECIP funding.

MBtu/hr: thousand British thermal units per hour

MMBtu/yr: million British thermal units per year

pounds per square inch gauge

SIR: Savings to Investment Ratio

Appendices

DETAILED CALCULATIONS

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 PDL
 95094-00

 Checked By:
 Date:
 Sheet No:

 I of
 I

Calculations For:

VOLUMETRIC ANALYSIS OF PRODUCT GAS

	Co	MP2	۰ خ /	76	N,	02	E C	ULA	R 4	UIE,	6H 7	7 2	,F	AII	۽ ع	2	8.7	96 (FR	eм	M	AR	Ės	Ηю	DBK	
)ry											:	:			1	:		:	1	-	:					•••
														<u>.</u>		: :	<u>.</u>		<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>				
An	иm	ه ره	41		Su	Pf	341	cl	<i>=</i> د	-	108	8 <u>8</u> 7. 0	32	1R #/4	mo	L5	-	6.	3. 8	38	#.	mo	(o`5	HR		
A	mn	\0 x	4/ ل	}	0,	<1.	D A	7 7	10	کم .	•															
			:			:			1				N		i	<u>.</u>	İ	<u>:</u>								
	G P.E	AR	ه ځ	١٢.		9D	D	171	0	A	Ž	N_{2}		\mathcal{D}_{X}	12). A	7 (٥٨	:						 	
			/	٧ <u>,</u>	+		2	0	 2		>	2	NC) 2						√	<u> </u>	FR	oм Н	N M	ARK BK	5 '
	C_7	⟨У с	عي ه	٨١	5	ce	0,0	L 16	D	= ((5	68	154	, T	mo	/	НГ	د)(<u>~</u>	100	90) =	11	9.10) # M	
	C	a l	150	š £		Α	100	%:	2x1	E•A	TIE	~	OF	الم	/ ₃ =	Ú	63.	88	±M:		YR/	74)=	11,	1.79	±.
	C	、 `a	U	50	D		M		رلا	یم	X.(DF	7.12	2	_	113	7.10	o -		1.7	'9 :	7	3.	1 =	_M01	
								1						1											25/H	
:	<u></u>	Na		Š	σZ	: :	<i>!</i>	! ! !	N_{z}	C	2 X <i>ć</i>	DA	710	K)	_	7.	3 <i>[</i> 2	- =	£	3,6	6	* /	n D C	, ₆ 5	/HR.	
														J											THE	
:	:	Ha	<i>0</i> :	//	<i>‡</i>	Al	R :	<u>-</u> 6	0.6	203	55		5.0	DA 15 [±] /	(16)	46	<u> </u>	/HA	7		5.	0	3 [#]	- Nu	165/H	£

Made By: PDL	Date: 12-1-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

VOLUMETRIC ANALYSIS OF PRODUCT GAS

om MARKS HNDBK-	+/	4£ 4		
	# NOLES/HR	T-MOLOS/	# MOLES/HR	90 BY VOL
CONSTITUENT	₩		wofIN PROD GAS	DRY GAS
N2 56854	(7808) 2443,94	(3,66)	440.28	85.20
ARGONSON	54.00934)-5.31	0	5.31	1.03
	7 9,7			
NO ₂	0	0	71.19	13.78
<u>,, </u>		DRY	EAS = 5	16.78 # MOLOS/HR
H ₂ O	5.03	95.82	100.85	<i>2770</i>
03	119.10			
ا ح	, , , , ,			
			617.63	
Wa GAS				
7 8 V	c L			
71,29				
R = 0.86	PARTI	al Pressure	PHD = (0.1633	(102 T/TK)
10 = 11.53			A Comment	
			= 16.66	6 PSIG
1 ₅ 0 = 16.33)			
	Δ	Bancusa F	R. = 16.6.6+14.97	= 31.63 PSIA.
SATURATIO	1	= 40@ 316	3751A= 253.	3.7° = → >+ wire
	~ 13/111.01	عادات کا ال		
		e emineral de la Company	am - n nim - 11 + 11 .	
				· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·				4
		s		
		· · · · · · · · · · · · · · · · · · ·		•

Made By: PDL	Date: 12-1-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

PRODUCT GAS

	1. PR	6.	_	И	/N3	$\mathcal{C}_{\mathcal{P}_{\!\!N}}$	+	И	AR.	CPA	7. 7	· u)ves	C_{R}	o+	u	142	, (т _{Рн.}	o				
	1. -P _{PR}			_						W	pr,	G.												
	u)		=				c, ±	t m	0 6	5/	. 7	28	013	- \	-				3	50	, 1	-//·	2	
	:					:					1				}						1			
<u>i</u>	u'.	4	Ξ		:	:			:			:		:		1	:		-		ュ .		į	
	LL	No	,	-		71. ₁	19	#1	noc	e / #	R (4	6.6	20	ر5	=	٤	32	75	, ·	12	#/	HR	
		1450		 - -	/	00.	25	, ±	m	ودفا	s/ _H i	t)(18.	01.	s)	=		18	116	۶. ٤	3,5	#/	4R	
		,,,														: :				:	. 65			
																			<u>.</u>	.i	. 6 .	, /	77	
	SPN.	· •	Ξ(2	2) :	7-/	0.0	00	٠٥٠	ə9;	2 (1	26	0)	=	0.	26	4	<i>B</i> /±	یره یا	=	:			<u> </u>
	CP,			4.	97	,2,	/20				: : :			=	0	. /	24	y Ē	/#	•=				Вu
																			: : : :	 	>		· · · e	,L 6
	Cŕ	NOS	=	4	1.9	72	/40	0.0	06					=	C),	10	8	8/3	#	F.,)		Bu sc 6
	C.	! ! !! ~		0	.4	33	+ 0	2.0	00	c/	is 6	(15) 60			:			·	:				
		7,0									:							/	,	- : :				!
	($^{2}P_{\tilde{p}}$	X.G.		12	33	3,5	6 (0	ين شرر	<i>;</i> }≁	21_	د،.د	(0.	124	\ <u>+</u>	32	75,	12(0.1	08)	+18	16.	85.	0.45
	: :	-												76	37	7, Cc	<i>.</i> 5		······································			•••		
: •	<u></u>				= 2	2.5	5,	3	Ē	3/#	c=													
							:																	
	i	. :												,		:						-		•

Made By:	Date: 12-1-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For:

RECOVERABLE HEAT

Proc =	w Cp (T, w-	Tour)= 17631	3 (6.25 3) (800	-400)/1000
	_ 1785.0 M			
Assumo F	TO DWATER	EN76RING BC	olór 15 30	00°F\$65A
W ₅₇₄ = -	178 50 00 B70 Ah	1183.1	000 = 1980 282 @6:	#/HR. 5 PSIG.
//	ANALYSIS. # MOLGE/HR IN BLCHNGAIR		MMOLDS/AR	OG AIR:
No 95.96(.7828		440.28 5.31	515.21 6.21	72.05
02 95.96 (.2094)	3)=20.10	0	20.10	2.81
NOS HOS 1545 18.013		71,76 100,85	71.76	14.23
BLGACHIII #MOLGE	NG AIR: 277 UNAR= 2779/286	9 = DA/ ₁₋₁₂ + 15.9 96 = 95.9 6	715 03 15#4.5/HR = 27	94,45
ASSUME	$+2C_2 \longrightarrow 2$	EF Oz Con	ABINGS W/ A	VAILABE
9	♂	•	•	

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

PRODUCT & TAILGAS

CONST	TUENT	# MOL65 ENT. COL	#MOLG:	5 #	MOLS 5	
		- EN, 22	IN PROD	111	TAILGAS,	
Na	515.21	- 20.10 _ 505.71	6 0		505.16	
A		6.21	0		6.21	
03	,	0	O		0	
NO:	71.76-	+ 20.10 = 91.86	, , , , , ,		0	
Ho	2	101.7.	5 66.3	9LIQUID	4.74 JAPOR	
HN:	03 91.8	(de) = 0	.6/	24	0	
		1.86 = 0		2	30,62	
			127	,63	546.73	
Κέ	ACT/E	- O				
,	3 NG	+ 1420 -	→ 2 HNO3	; + NO		
WATOR	IN Ró	Астор -	91.86 _	30.62	#MOLOS/HR	
WATER	7 الما ج	AILGAS ->	15450 #/HI (1.00-0.0	R (0.005)	5#H.DG) = 6×18.015)	4.74 #MOLO
		→ 61.24 ,	•			,
TROB	u <i>C</i> /		H (6921313 14 M		.si /HE/03	
		= 50.55#	• • • • • • • • • • • • • • • • • • • •			
07	4nv =	- 61,24(1cc) 127.63	= 47.98 B	Y VOLUME	<u></u>	
	3	127.63 - 61.24(63.0	(13) - 7/	1 211 BY	WEGHT	
%	HNO3	- 61.24 Cos.	-, 16	D-27 -1	W1001	

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 PDL
 11-9-95
 95094-00

 Checked By:
 Date:
 Sheet No:

 of
 Of

Calculations For:

ABSORPTION COLUMN OUTLOT FLOWS (RATED PRODUCTION)

. 62			50 TPI	(2000#1)	- / c/コ - <u>#</u> /.	
6110	DILUTO	# <i>ND</i> ₃ =	24 4/1	5 (.61)	= 6830 [#] /4	/
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<i>₩</i> ₹30.			
	HNO.	= (0.61)	(4167)	- 40.34	#moc6/HR	
		63,	016			
	H.0	= (0.39) (446Z)	147.8	35 # moco/	HR
		18	.016	//		
1 1		4 4 4				- QUANTITY
			1 1 1		SATURA.	FOD AIR
(d	9 60 P51	G AND .	85 F.			
			#/ /.	\\	_	
	$H_{\bullet}D$	= 0.005	5 /# (15	5450/HE)= 85 [#] /H	(R
	# ^	NOCES/HR	= 85	4 ~a		
			18.016	, - 7, / 4		
			14	7.85	11.94	140.63 = 49.27# MO
	>PRAY	WATER X	(ab = 97	0,20+4.7	12 - 4275	= 4774 /
		0R 7	40.63 # au/	12 (18.016	HMOLE) -	5.06 CPM
			8.3	3#/6 (60"	M/HR)	5.06 GPM 2530#/HR
		++ n1	0165/ HR	and the second second	n i neimani and i	
· · · · · · · · · · · · · · · · · · ·	TAILGA			MOLS WT.	200	
		12		32	0.38	MOL.WT = 498-
	N_2	435	•			MOL. W. 17.7
	NO		5,82		7.53	= 28.12
	$H_{a}O$		72	18.016	0.26	
		49	8.29		17.72	

Æ

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Jo

 PD □
 12-4-95
 9

 Checked By:
 Date:
 Sh

Job No: 95094-00 Sheet No:

Sheet No.

Calculations For:

PRODUCT AND TAILGAS (BY MOLAL ANALYSIS

SPRAY WATER ADDOD = 0.3 GPM (8.35 */CAL) (60 */HE) = 150.3 #/HR TOTAL PRODUCT = 5205 THR ABSORPTION COLUMN MASS BALACO: W, N = 505.16(28.014)+621(39.948)+91.86(46.01)+101.75(18.013)+150 = 20609 #/HR Wout 505.16(28.014)+ 6.21(39.948)+4.74(18.013)+30.62(30.01)+5205 = 20610 #/HR TAILGAS = 20610 - 5205 = 15405 #/HR PRODUCT 70 HNO3 = 61.24 (100) = 45.0476 BY VOL 127,63+ 1502/8.013 SHEET PRINCES HOLENGE PRODUCT % HNC3 = 61.24(63.013 XICO) 74.14 % BY WT. 5205 CALCULATE ADDITIONAL EPILAYWATER REQUIRED TO PR DUCE 61% HNO BY WIGGHT: .61 (5205+W) = 61.24 (63.013) TOTAL PRODUCT = 5205+1121 W = 11211 HR = 6326 #/HR SPRAY WATER = (1121.4 150.3) = 2.5 GPM

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By: Date:

11-9-95

Job No: 95094-00

Date:

Sheet No:

of _____

Calculations For:

ENERGY INVENTORY AT AIR PREHERTER

Checked By:

EXISTING SYSTOM	
HEAT LOSS FROM BARE PIPE:	
REF. SCHULLOR HOAT TRANSFOR TABLES 18 4 @ 1200°F PIPE OPER TOTHE - BARE - DULL	
18 Q @ 1200 F PIPE OPOR 16MP - BARE - Duce	
Q = 54455 BTUH/FT (15 FT) = 980.2 MB H	
1000 = 780.2 MB B	
HOAT TRANSFORROD TO AIR:	
$Q = W C_P \Delta T = 16556 (0.24)(625-100)$	
= 2086.1 MBH	
HOAT ROMOVOD FROM PRODUCT GAS:	
0- 600 2 + 2 201 3 MBH	
Q= 980,2+2086.1= 3066.3 MBH	
HEAT TRANSFORRED TO WATER @ CONJUNETER:	
Q = 500 (GPM) (AT) = 500 (77) (140-65)	
= 2887.5 MBH	
and a management of the control of the dimension of the control of	

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 FAX (904) 375-3479 Made By:
PDL
Checked By:

Date: 11-12-95
Date:

Job No: 95094-00

of

Sheet No:

Calculations For:

COOLING WATER AT CASCADE COOLER

EXIS	TING	SYST	BM	,=,,,=			
Q = Q	TING S LBS EVAR	15E)(9	(50) + (18820 - ,	LBS 50AF)	(100°-75°)
		,					
	GVAP/ HR						
4018,7	7 (1000) =	650	1,1,,	15045	5) - 25	12)	
39/317	, (1600) -	750	W 7 /			~	
w =	4018 3413.700	フ - より	ic 125 icco	399	27 4/4	(P	
	4018 3473.700 90	7 5		- 20	(a) ///	^	
DRAL	N = 15	445-	3927	= 115	20 T/HR		
							. <u></u>
							:
		<u> </u>	: :				,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			h + -				
		2					
			ļ	<u></u>			
				‡ <u></u>		.1	
	1						
							1
	•						

Made By:	Date: 11-9-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For.

ENERGY INVENTORY AT ABSORPTION COLUMNS

EXISTING SYSTOM
ADDITIONAL WAITE CONDENSED:
H30 = (0.0065#HD/# DRY GAS)(19900#/HR) - 85#/H
= 44.35 [±] /HR
HEAT REMOVED = 44.35(hfg) = 44.35(873) = 38.7 MBH
APPROX. HEAT REMOVED FROM GAS:
Q=WCp&T = 15450(0.25)(105-85)
= 115.9 MBH
FROM TECHNICAL REPORT No. HDC-39-77,
APPARENT ACID CHEMICAL HEAT LEADING
THE COLUMN IS 112.5 MBH (SEE REFEREN MATERIAL IN
RG. D. COOLING WATER: APPENDIX
CH WIR. GPHI = (38.7+ 115.9) = 15.5 DR 7750#/HR (2)500.45-35)
CW 57M = 38,74 115.9 = 30.9 OR 15 445 \$/HR

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 FAX (904) 375-3479

Made By: Date: Checked By:

Job No:

11-12-95

Date:

95094-00 Sheet No:

Calculations For:

WATOR CHILLER

ASSUM	& HOA	T ROJOC	TOD IN	6 X 7 6 NO 6 D	
				CF THE	
TOTAL FO	OR BOTH	cozum	WS.		
A550	ME CHI	LER STE	AM ROL	PULROMONI	\$
ARE 6	22.5 THR	ST GAM	POR TON	OF ROTRIG.	
Ton =	(1159+	38.7)MBH	_ / ///		
, 2,03	(2) 12,	38,7)MBH 000 MBH/TON	- 6.77	7005	: :
			1 1 1 1 1		
ST5An	1 - 6.44	x225 =	145 1/4R		
		PONDENSE			
452	47 (7AIN)	= 145 (hca)=145(10	45.8) *Asso	imo
,,,,,,		77			
		= 151640	BTUH	TET	MP,
					. i
1 · · · · · · · · · · · · · · · · · · ·	AT :=				
6	PM = 15	16:0	15 00	2-22 #/15	
	50	20 (20)	15 02	7580 THR	
		i			A
					·
	3			· · · · · ·	

FAX (904) 375-3479

PDL 12 -: Checked By: Date:

Made By:

Date: Job No: 12-5-95 9509

oto:

95094-00 Sheet No: _7__ of ____

Calculations For:

TAILGAS (BY MOLAL ANALYSIS)

CPTG = WNS CPNS + WAR CPAR + WNO EPNO + WHOC CPHOO
w_{76}
W) = 505.16(28.013) = 14151.05
WAR = 6.21 (39,948) = 248.08
$W_{N_0} = 30.62(30.01) = 918.91$
WN0- 25.29
$\dot{w}_{4,0} = 4.74(18.015) = \frac{85.39}{15403.43}$
CALCUCATE Cp @ 350°F (810°R)
CPN = 0.257 + 0.0000292(810)=0.251
CPAR = 4.9.72/29.948 = 0.124
ipx = 4,972/30,01 = 0.177
CF = 0.432+ 5.0000 No 6 (8/2) = 0.446
CP76 = 14151.05(.251)+248.08(0.124)+918.91(0.177)+85.39(0.1446)
15463.45
=0.246 8/407
¥ 7856 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
PROP. GAS A A A PROP. GAS
1070° F
Cp = c.253 P/4 ;=
en en la companya de br>La companya de la co

Made By:	Date:	Job No:
PDL	/ス-5-95	95094-00
Checked By:	Date:	Sheet No:

Calculations For: _

TAILGAS HEATER

CALCULATO	HEATOR	BrFGCT11	พธร	USING	EXIS	57126	
systom F	PARAM575	rs:					
EEE -	7 .	7 .	70 F -	<i>P</i> <			
<i>471 -</i>	Tr.G.OUT -		1070 -	- 85	0.71	1	<u> </u>
	1P.G. 1N -	17.6. IN					
		,					
USING CAL	CULATOD	Err, Di	76RM	120	PROCE	55 •	
PARAMETO	KS OF	7 AB 10.	SUCAI	60 S	45/6 N	1 •	
17.6.007 =	$7_{TC} + 0.7$	711 (TP.6.IN.	- TIGIN)= 85	+0.71	1 (1205.	-85)
	881°F						
	1.1 0 17	· `	رسرا – \	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ر م	1001 _ 1	25
YRECEU. =	Wie CARCE (Ti	COUT TOIN) - 124	(0).45	ן שני ביי	(801 - 8	ردع
	= 3,017,4	150 BTU	Н				
			1		2460		
1 F.G. CUT	= TRG IN -	W. Cer	= 1205	5 - <u>201</u> 176	7930 37.65(6	7.253)	
		γω, τ, γω,					
	= 529 1	7					
		1			12	135 -	85)/2 26
QEXISTA	· = Wic C1	TG. (TGOUT	T.G.IN)) = 1540	343 (
		6,235 B7					
	3017450	of the second second					
* A = CUS DQ	SHOUL:	D BE AF	PPROXI	MATOCY	6Q	UAL 7	-0
THE RODU	CTION IN	PIPE LOS	ss To	ATMOS	BY	4 DDING	INSUL.
QINSUL SU	= 980220 E = 116912	- 41900+ 55	4300 -	34900 =	1,457	7,700 B	Tu H
To ERRO		15-1457700	(x100) =	13.87	2		

Made By:	Date:	Job No:
PDL	12-5-95	95094-00
Checked By:	Date:	Sheet No:

Calculations For:

TAILGAS PIPING

CA	ء کے د	u.	LA:	TE	7	TA 1	'LC	- A :	s '	Vo	LOC	17	y) N	f	7.P	، لدر	G.	10	7	Tu :	e B	الكؤ	5. <u>*</u>	
					:			1		1	:				:			: :		:		:	2/		
		50	: H	. /	U _o	, =	/	00	0	P	15	5				•									
		ρ	=	90	P.	ا ک	G	a	ع (300	°F	-												:	
											/														
			5c	₩. 4	No	-	<u>'</u>	12	० (85	90)	=	7												
l	15	z	ζ,	Scl	461	su c	-م	1	03	<u> </u>	>	Z	_ D	=	6.	35	5 7	11	J.						
·												1.					.7		_				<u>!</u> :		
	P R	<u>ッ-</u> 7,			R	γ Τ <u>.</u>			:																
. 5						:		1															51 ž	t/ _{PT} *	
	٦	بر 2	-	1 <u>e</u>	1.6	96 51	18	7	765 (9	70 7	14	160 169	°R)	<u> </u>		4.	4 5	5 7	, F	=7)	#				
		٧	= /	15	40	3.	43	*//F	1R 1	(4. 1.7	45 MŽ	7/14	T.	1/# 1/5)		51	19:	7	Ff	PM				
 Pif	œ		Dō	Vö	10	Põ.	D	Lċ	ملہ	74	′ <u>=</u>	7.	5	FI	• .					•		• •• •	••••		
 U:	SĒ	· · · · ·	50	þа	IV.	AC	ちょ	57	-	ō۸	ל באל	rH	=	75	<i>5 (</i> -	1,3	3) =	. /	00	o`P	7			

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By: PD L	Date: 12-5-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

TAILGAS PIPING

NRE = VDP - 5197 F/min (6:357 IN) (60 MIN/HR) 12 "M/FT (4.457 FT3/#) (0.081 =/FT-HR)
12 MFT (4.457 F1/#) (0.081 7/FT-HR)
= 457,559
$\triangle P = 3.4 \times 10^{6} + 1 \text{ W} = 3.4 \times 10^{6} (0.008) (100) (15403.4.4)$ $= (6.357)^{5} (1/4.457).$
35 + (6.35/) ³ (1/4.457)
= 0.28 PSI
MSSUNING TAILGAS PROSSURO LOAUING TAILGAS
HEATER 15 60 PSIG, CALCULATE STEAM PRODUCTION
CAPABILITY OF HEAT RECOVERY BOILER ASSUMING
PRODUCT GAS TOMPORATURE LEAVING THE BOILER
OF 400°F, FEEDWATER ECONOMITEER OUTLET (BOILER
INLET) TOMPERATURE OF 300°F, AND 50°F SUPETENFAT.
WPG CPG (TPGIN-TPG.OUT) 17637.65(0,253)(529-400)
W= WFG. CPG (TPGIN-TPG.OUT) = 17637.65(0,253)(529-400) STM (hstmout hstmout h
= 619 #/HR @ 360 F & 78 PSIA
WET GAS = WTG + WSTM = 15403.43 + 619 = 16022 HR
VSTM = 6.045 FT/H FROM KEENANG KOYES
WET GAS = 6.045(619) + 4.457(15.403.43) = 4.5/8 FT/#

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

TABLE /

Ammor	SIA VAPON	C17072 6					:
	QGAINSME	94 #HR (1	273 ⁸ /# - 24	149#)= 7	14 126	B/4 [7	
	SIA VAPON QGAINSON QLESS	694#/HR((1 8/4°F)(2	75° - 60°)	= 149212) B7UH	
MIXE	z:						1
	GTRANSAA	(R) = 165.	56 THR (0.2	247#°F)(6	.25-580°)]= 178 80 Y E	Tu H
	Q.TEMSE(A	JH3)= 108.	Λ [±] /HR (0,5	4 ⁴ 47)(58	ó-275°)=	- 177,876 b	TUH
CONVE	RIORS						
CLNG. WTR	RTOR : GREST =	38499 [#] /	HR (1 = =================================	(140-65):	= 2.887,4	⊋5 BTα H	
	QREACTIO	, v = 7/30	6. / BTUH	- See	NOXT SHE	56T	
AIR	PREHEATO.						
		AIR > = 10	0556 #HR	(0.248/10)X	(025-100) :	= 2,086,056	, 87e
	OPET	(ATMOS) = ~	4455 BTU 1	V=T(15F)	HT. TRAN = 81682	SBRICH	
·	TALOUT	= TPG,N-	QROTAR+ ORO	TATH 1470 - 20860	86+816825_ 1410.253\	819.7	
IAILO	AS HEAT	5R.	FF (Town	-7- N=9	85+6711(81	(9.7 – 85)=60	274
	TGOUT	WCOAT =	15450 6,29	18×607.4 - 8	85) = 2001	528 B74 H	. [
	Onci	= 999	7(21) = 21	9937			:
	TPGO	TEIN	-(Qra+C	REJAT) = 8	19.7 - (2001	528+ 209937)	-324
CAS	CAMP (10)	DIER D	1 1 1				.
	() PE	= W00	2p DT = 1	7092(0.2	53 1407 607	4105)	İ
	·	~ ⊕ ∧s : :		2172,516	DE BTUH		
:	Q _R ,	5J=				X7 PAGE	
			•				
	(GR	EACT = 0.8	C (100001))=4,869,4	10001111		

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

REACTION HEAT

	$70_2 \rightarrow 400_2$		< V A
CONSTITUENT	COMBUSTION	LBS/HR	SYSTEM NOT HEAT
NH3	11633/#	1088	(1,265,344 BTU
03	_	<u> </u>	
	1 37 600 -981	\ 10-0	
NO ₂ (1443,74	(1) 33. XID TMOL (9.48X10 98/1	1287	(4,242,963 BT
H ₂ 0	68278/4(LIG		(1,858,042BTU 11,784,767 BTO
	ng-h=1856,0-313,8=1		2,717,665B70
		XIA.I	
		No.	= 7,136,082
3 NO2 + H	1,0 → 2HN0,7		- 7,136,082
3 NO2 + H	1,0 → 2HNO37 HEAT OF COMBUSTION	' NO	- 7,136,082 ≤ystom Not HoAT
20NS717N&N7	HEAT OF COMBUSTION	CONSTITUENT LBS/HR	SYSTEM NET HEAT
30NST/TUENT NO2	H5AT OF COMBUSTION (1443.78/#)	NO CONSTITUENT LBS/HR 4226	SYSTEM NET HEAT 6,101,076
20NSTITUENT NO2 H30	H5AT OF COMBUSTION (1443.7 8/#) 6827 8/#(LIQUI	(NO CONSTITUENT LBS/HR 4226	SYSTEM NET HEAT 6,101,076 (3768504874
20NSTITUE NT NO2 H30	H5AT OF COMBUSTION (1443.7 8/#) 6827 8/#(LIQUI	"NO CONSTITUENT LBS/HR 4226 10) 552 25	SYSTOM NOT HOAT 6,101,076 (3768504BTA (673716BTA
20NSTITUENT NO2 H30 HNO3	H5AT OF CONIBUSTION (1443.7 8/#) 6827 8/#(LIQUI -h4=1530,3-309.8 = 1220 1190 8/# (LIQUI	"NO CONSTITUENT LBS/HR 4226 10) 552 25	SYSTEM NOT HOTAT 6,101,076 (3768504874 (673716874 4,789,750874
20NSTITUENT NO2 H30 HNO3	HEAT OF COMBUSTION (1443.7 8/#) 6827 8/#(LIQUI -h4=1530,3-309.8 = 1220 1190 8/# (LIQUI -h4=206 8/#	(NO CONSTITUENT LBS/HR 4226 10) 552 25 10) 4025	System Not Hoat 6,101,076 (3768504878 (673716878 4,789,750878 829 150
20NSTITUENT NO2 H30 HNO3	H5AT OF CONIBUSTION (1443.7 8/#) 6827 8/#(LIQUI -h4=1530,3-309.8 = 1220 1190 8/# (LIQUI	"NO CONSTITUENT LBS/HR 4226 10) 552 25	SYSTEM NOT HOTAT 6,101,076 (3768504874 (673716874 4,789,750874

4	
	_
	Ï

 Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For.

	Duc	:						: :			/						:	·	. 		· ·	
	50 Lu	TIE	در	_	1.	98.	٦	<i>I</i> I.,	no.	Cō.	5/1	48	· 1.	•		٠	ļ :	:. • : :	<u>.i</u>		<u>.</u>	: :
	HNC	3		-		61.	2	TT.	M	OL	ō'S,	/H	R									
	Ro Fo	s RE	νc	0	H	6 A	7	0	F	\mathcal{D}_{l}	LL	c 7	101	U	0.	F	A	Ċ/Į)S	7	AB	5
	7)		198	,2 - 61. i	6/, 2	2	=	2,	2													
	Þ.) =	S	95:	Σ C	راده.	1 110	ι =	,	23	3 5,	/. / .	ક	Jo:	ں دد	=/n	40L		:			
Z	ēšT.	c=	DI	_u T (رم در در در	=	/_2	35,	ن 1.1	<u>ه</u> څ	pa (t	- Tuw	c (, 61.	J.	# A	100	F/H	E.	(9.4	8 × n	-4E
						· 			:									·	<u>.</u>	<u></u> <u> </u>		· · · · · · · · · · · · · · · · · · ·
He	5A7	AE	30 U	ر ج	4 m	B1 6	5 N) 7	-			:							·			
	6	} =	w	Cp	٥7	: : : : : :	6	83	30 I	HR	(0.	.64	B/#	°F,)(8	7-	60	5				
			: //	80	حد	B	TU	Н					!						÷			
ABSOR				_LE 1L L As					176	-96	2 (C	. 25	(ئ	(10	5	-8.	5)					
				= 8	86,	48	5	B7	uH													
		_	•	 C&ND <u>=</u>		· ,	~			١		رخ	. 1 1	F-1	مخر	AT	01	Š	11	J		

Æ

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

 TURBINO:
From KEENAN & KAYE @ 324°F (784°R): Pr,=5.144, h,=187.92
$P_{r_3} = P_{R_1} \left(\frac{P_1}{P_1} \right) = 5.144 \left(\frac{15}{73} \right) = 1.057$
hather = 119.4
 $h_2 = h_1 - E_{\text{TUAB}}(h_1 - h_{278600}) = 187.92 - 0.725 (187.92 - 119.4)$
= 138.2 B/#
T2 = 578°R OR 118°F
$W_{70RB} = \frac{\omega_{76} \Delta h}{2545} = \frac{15450(187.92 - 138.2)}{2545} = \frac{301.814P}{2545}$
 Q _{TURB} = 301.8(2545)= 768174 BTUH
QROJATM = W (PDT = 15450 (0.248) (118-60) = 222233 BTUH
QREJEXH = WCPOT = 15450 (0.248) (607.4-60) = 2097418
AIR COMPRESSORS
 TROM JOY MFR. CO. 155T PERFORMANCE
 CURVE EXTRAPOCATED TO 4195 SCFM DELIVERY - USE 1095 HP
 <u>dan adama para da ambana da amangga da amangga da amangga da da amangga da amangga da da da da da da da da da</u>
 $Q_{MTR} = (1095 - 302)(2545) = 2018.2 \text{ MBH}$
 tari kanalan dan bermalah dan kembanan dan bermalah dan bermalah dan bermalah dan bermalah dan bermalah dan be Semerah dan bermalah dan bermal Bermalah dan bermalah dan bermal
 er er en som er men er fram er er er <mark>ut min</mark> er ege er er er er er er er er er er er er er

Made By: PD L	Date: 11-12-95	Job No: 95095
Checked By:	Date:	Sheet No: of

Calculations For TURBING DRIVE FOR AIR COMPRESSEOR ECO#1

Using 1	F16.4 (ATTAC	KOZ) FROM	MARK'S HANDBOOK:
	E CONCER = (
		14.7	
HP= 6	69(41975cFM)(,	1440)(1.03/2)	- 859
	106	HV	7882A N= 81
FREM	Maurier Di	ACRAM:	17 859 A 11521
<u>ah</u>	= 127/ ^路 / -	1054 2 # = 8	117 129 B/#
	ni RQD. @		
L)	0 = 859 AP	(2545 THP) =	13132 #/HR 12730 #/HR
	I'i ok For		
- Cc	んむ。 ̄ールドニ	101°F @ 2	" HG
For	95% GUAG	-174 STEAN	(5
	= h+ 7(h3		
	= 1053.9	·	······································
Reco	0 = 10 30 (10) 1000	525-69D=7	2536 MEX
			880
	WTR = Wern 500 (AT	D - 12536x100	= 880 = 835GPM

 $\Sigma_{dng} = 227[(1.08R_c)^{0.203} - 1]$ $\sum_{dny} = 0.0456 \ \overline{mc_v} \ \Delta t$, where c_v is the specific heat at stant volume and Δt is the isentropic temperature rise. A tiplier of 0.147 applied to the above Σ values gives the bhp 100 ft³/min at 14.4 psia and 60°F. Figure 4 illustrates a ular empirical solution for Σ , wherein an arbitrary refficiency of 68 percent is applied at $1.5R_c$, 78 \mathbb{R}_c , and 87 percent at $4R_c$. Mechanical efficiency of percent is widely accepted, which includes loss allowances percent for piston-ring friction and piston-rod packing 3 percent for gearing friction of the crosshead, slipper les, connecting-rod pins, and crankshaft bearings. The r losses are dissipated by convectional air circulation in ie sizes under 300 hp and into the lubricant system in er sizes. The ring and packing losses are mostly absorbed he jacket-water system. Where the cylinder power is less 100 hp, these losses should be doubled.

perature Rise

on compression is essentially an adiabatic function, espey when referred to the internal cylinder conditions. The pression-temperature rise follows the equation

$$T_2 = T_1(KR_c)^{\sigma/\eta} \tag{5}$$

re η represents the heat leak factor applied in a manner istent with the thermal efficiency. These factors are less 1.05 for normal water-jacket cylinders, 1.09 for dryet cylinders, 1.11 for forced-air-cooled cylinders with fins, 1.15 for high-velocity water-jacket cooling and the expancycle, curve CFD on Fig. 1. There was a time when water injected into the suction of air compressors to reduce the targe temperature; when the speed of machinery was ased and the clearance volume reduced, the practice was s hazardous. The temperature drop was substan-1.75. The scheme is still applied in chemical esses to wash out unsaturated gums and to suppress the harge temperature of exothermic gases. The liquid is Ilv a light solvent of the same character as the gas and is ized into the suction line. A short, 10-s blast of steam 2 or 4 h can usually clear the gums from a cylinder. ne temperature behavior is only consistent below $4R_c$; nd this, the cylinder cooling effect is perceptible because e reduced mass flow at higher Rc operation. European ice of process sizing includes a warm-up factor, which imes the gas is heated 20 to 40°F in passing through the wlinder and suction valves. Such a correction comples the volumetric efficiency by a judgment factor of 0.95 20. Thermocouple probes in the suction valve and in the stream show no such evidence at the ambient-temperarange. American practice has always disregarded such ctions. The warm-up factor also allows for valve and 1-ring leakage. If such leakage is perceptible, the temperrise is usually cumulative and readily detectable by ometry.

ression Efficiency

pression efficiency is an approximate method of accountor all the power losses that occur between stagnant on and discharge pressures. It presumes that all valve approximate method of accountor all the power losses that occur between stagnant on and discharge pressures. It presumes that all valve approximate method of accountor all the power losses that occur between stagnant or channels offer equal resistance and that the residual resistance and that the residual resistance and character of the gas are inconsequential.

Fig. 4 Approximate horsepower to compress air or gas. If single-stage, multiply cubic feet actual capacity of free gas per minute by 1,440 to obtain capacity in millions of cubic feet per 24 h. Then capacity in 24 h times horsepower per million as obtained from the chart will give the total horsepower. If two-stage, take the square root of the total number of compressions. Read the horsepower from the chart for this ratio, multiplying the same for the two stages, to which add 3 percent for cooler loss. Note that horsepower is for 14.4 psia intake. If horsepower based on capacity at 14.7 psia, add 2 percent to horsepower.

(= 5 4 HF = 65 (+147 (100))

JOY MANUFACTURING-CO. BUFFALO N.

Made By:	Date:	Job No:
PDL	11-13-95	95094-00
Checked By:	Date:	Sheet No:
	1.	of

Calculations For:

Eco No.1

INACTIVE HEATOR LOSS TO ATMOS:
Q=2/FT(33526BT4)=T)= 704,0 MBH
B = WCPAT
APPARENT PRODUCT GAS CP FROM EXISTG. SYST. CALCS.
Q = 1895,400 = 17644 (Cp) (1070 - 785)
Cpx = 0.377 B/# ==
704000 = 17644 (0.377) (1070- TLUG)
True = 1010 - 70-500 - 964°F
CASCADO CASLATO DRAINE
Q=(THRFO)hfg+(15445+7HK-7HR))IT
G=WCPAT=17640 (0.377) (965-105)
= 5720.5 MBH
TAR EVAT = 57205008/AR - (15445/4)(155-75°)
950 - 25
= 5767 HR DRAIN= 15445-5767 = 9678 / OR 196PM
DRAID= 15445 T 5/6/ - 16/0/5 ER 1/0/

4	
	-
	-

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For: ECO No./

77	716	م ی	1 - 5	R	56	.67	ಗಿ ಽ	9	7	0	A,	M	0 =	۾	H.										
, ,	5	_	ω	Cp	Z	7	_	15	54	5c)(c	,2	18)	(8.	5 -	6	0)	10	00						
		=	9	75,	8 1	иΕ	ιН														<u>.</u>		i		
ć	ELE	5 - 7	· ;:	<i>1</i> 0.0	A: (49	3	AU	۱/ <i>۱</i> ۷	69	5														
			135	ξ ί ,	1 /	n B 16	14 (C.)	<u>(11</u>	52	H/	yr) -	= 1	5	క	ð	MΙ	LL	101	٠ ك	737	cı/ş	æ		
	ŶÞ:	C17	10	νΑ	٤	S	75	H) n	\ /	С a	Q D	,=	. /3		32.			128	5-	-110	·5·7) <i>B</i> /3	be (1	(52 ¹	*
												=	- 6	יר)	74	<i>P</i>);	Ċi	c	<i>د</i>) .	きっ	ı (/	1/12		j	
											r							} ••••••• ••••••			· · · · · · · · · · · · · · · · · · ·				
																						 !	:		
										:								: : : : : : :		<u>.</u>					
	1				: : :			: :				: : :			:			: :	; ; ;	: I		ļ			
				! !		· · · · · · · · · · · · · · · · · · ·										,			:						
					· · · · · · · · · · · · · · · · · · ·																				

Made By:	Date:	Job No:
PDC	12.18.95	95094-00
Checked By:	Date:	Sheet No:
		of

Calculations For:

AMMONI	A V	4 PORI	ZOR,	m	1 X & K	≥, cc	ころし	ER T	OR	AI	ပစ	A1	R	
PROHE		: '	: :	4 1				1 :						1
CALC	5.												<u>:</u>	
TAILG	A -	11-0		n										
1 4160	75 /	(187	ROF,	, Scн1	LLEK	. HT.	TRA	35F.	7AE	sco.				
Q _{RO}	ier o	335e	36 (a	り:	70	404	6 Z	7U:	H:			•		
∆T _{P6}	= 70 170	040	<u>46</u> 2.253)=	157	7,7								
	= 10;													
CASCA														
	€I GAS				- = /	709.	2 (0	, 2 5,	3)(9	/2-	105)=:	3,489,	691
Φ,	RE J _{CO} N	9EX1 2	= 67,	3700	O BTU	H —	Sa.	МБ	AS	ZAZ	3 <i>(5</i>	1		
	&ACT	:	1 1	: :	1		- 1				:			:
ABSOR	PTIER	1 C	seu n	ωs.	٥									
		:	А			345	1							
5707	AM T	URB	NO	0										
	QGAIA	u = 10	195 HI	ိ(25	457	HP) =	2,7	86,	775	BTU	Н	· · · · · · · · · · · · · · · · · · ·		
	WSTA	1 = . <u></u>	DOA!	N	. = 2	1221	105	<u> </u>	12,	842	#/	HR		
		_ = 1	一八Sī Uz	MA		1280	12(11	05.7	-69	.1) =	13.	3120	0177	BTILL
	URE.	Jeene	= 12	842 (stiy .1)(11	0-6	>)=	520	0.5	, i y = -				
	Q _{Rē}	c= 1	NEON	CPCD.	ΔT	=12	842	(1X	101-	60):	= 58	265	22 7	37U+
	QLC												٠.	

\mathbf{A}	
<i>—</i>	Ĭ

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

	:	:	i	:	:	:		:		:		:	:		<u> </u>	:	-		:		-	:	1	:	,	:		
			ρ		<u></u>	<u></u>					ļ		<u>.</u>			ļ		<u>.</u>	<u></u>		÷	<u>.</u>		. <u></u>			ļ	
			rk	C 1	Du	د 7			51	111	<u>ت</u>	À) <u>S</u>		ΑŒ	3 LE	5 /	<u></u>						i		: 		2
			<u></u>			ļ				<u></u>	ļ					·····			ļ								÷	
			S	71	10	۷	20	25	ς '	<u> </u>				ļ				ļ	<u></u>		<u>.</u>	<u></u>		.i		: -[} ?	i
			<u></u>	ļ		<u>.</u>					ļ					ļ		<u>.</u>		ļ		į		ļ			: :	:
			<u>.</u>			R	6.7	=	ω		p 4	47	=	15	45	00	0.	248	3)(8	'5-	60)					<u>.</u>	<u></u>
	<u></u>	ļ		ļ			ļ	<u>.</u>				ļ			<u>.</u>		<u>.</u>	ļ		<u>.</u>	ļ		<u>.</u>			<u>.</u>		: !
		<u>.</u>		: :			ļ	=	9	57	90	2 ;	37	ut	{		<u>.</u>	<u>.</u>		į			<u>.</u>	<u>.</u>		ļ ķ		1
					ļ		ļ	<u>.</u>		ļ		ļ	į		<u>.</u>		.ļ			ļ	<u>.</u>	<u></u>	<u>.</u>	<u>.i</u>	<u>.</u>			:
	į		İ	: : : :	ļ		ļ		<u>.</u>			į	ļ		<u>:</u>			<u>.</u>	<u></u>					: 	i i	!		
				: : : :							: :		: :	: :					: :	<u>.</u>		į į	: :			: !		
		<u></u>						<u>.</u>		:			: :	: :	: :		: :	: :	: :	i I	<u>.</u>	: 		: :				
		ļ				<u>.</u>			<u>.</u>			<u>.</u>		:			į	: !	:						1			:
					! !														:									
																	:		:					:	:			
																					:	:		:	:	; :		
					:															:			: :					
	:							:				:						;				:	: :					
	!																	:			:		; :	:			·	
																	j						:	:	:			
· · · · · · · ·	•		:												:				,									
										:													;	:	· · · · · · · · · · · · · · · · · · ·			
******										······································							••••••• • •							f		· · · · ·	:	-
*****										···· ····· :								··· · · · · · · · · · · · · · · · · ·				••••••	9 v				:	
																	,	:						· · · · · · · · · · · · · · · · · · ·				
••••					:				 						,			:						· · · · · · · · · · · · · · · · · · ·				
3				:			·;		: · :												:							

		:																				***						
				,					:			·· ····.	;				,											
		: 		;	0	:			:																			
							·· ·· .									٠.		٠.										
:																												
				:																								

Made By:

PDC

Checked By:

Date: 10-12-95

Job No: 950 94-00

Date:

Sheet No:

Calculations For:

ECO No.2

Hē	<i>4</i> 7		7	25	5 S		,	ĸo	n!		\mathcal{B}_{i}	4 R	ō_	5,	Æ,	***************************************	0 0						
/	8',	\$	f	' / F	, L	æ	2	73	35	°,=	= _	Po	æ.	a	M	ρ,	\mathcal{D}	ce	در	*			
	:		. :		5ء		;		- 1					:						:	:	1.3	
Ľ,	57)	<u> </u>	7,	- R 19	ん	عر ڪ	je j	· Ke s	ري.	i	- <u>C</u>	Ţ	.`c; c	۲۲	616		ĸĹ	,					
F	Ri	n	E	x	15	7/	ر)،	S	Ş	У:	۲2	· &	n		Ci	4 ۷	C	5	•				
]
	1	⊃ ∧ (څخ∓،	N7		PR	ع ع	ک ، د	A و	5	5	- F&									: :		
		C	f :	= (13 76	५१ ५५	10 -	0 HP	<u>)</u> (k	27		75	(د	_	0.	26	>7	P/#	ٰ;				
۵		<i>ن</i> د:	Í:	•	<u>17</u>	ن ا ا	/ <u>.</u>	= /		(0	ي.	·7 ² ,	ý, °;	-)([10	772	? _	4	00	う			
			: : : :		= =	51 E	56	B	M	B	Н			:								· • · · · · · · · · · · · · · · · · · ·	
Th		برت		<u>-</u>	χ	A.	£	7	ا ارست است		rj 7	j 1 1 j	^ = 7	<u> </u>	C p	. ,				: :		· · · · · ·	 :
:	4) =	u	ر ر	Cp	2	<u> </u>			/ <u></u>	54	5	2	0.	24	8)	(8	· :	- G	<u>ح</u> ک	·)		
											. /	00	0										

Calculations For:

ECO No. 2

					:						:	:	:			:				:	:	:		-	
	Do	(1)	7/4	~~ <i>K</i>	<u>ڪ</u> س	ξ	PA	e,	AM	67	ا شي آ	E 5	c 0			:	:		:	\$!		 			:
	<u>.</u>		<u>.</u>								· 	<u>.</u>						: :	:			· · · · · · · · · · · · · · · · · · ·		···········	· · · · · · · · · · · · · · · · · · ·
	Pu	143	F	50	267	10	と	7	E 73	رہ	-	5	TM	7	071	104	Pr	i.G	AS.	Lu	s. 70	3 M	ρ		
		<u></u>													·	:		······							å.
			<u></u>						· · · · · · · · · · · · · · · · · · ·			_	3	3 8	? /	40	9.0	=	30	9	F			i.	
																÷									
	زر:	€5	,	72.	5 <i>°</i> 7	_	50	Vīc	r æ	10	G	Во	دے	æ	<u></u>	! !							ļ	 	
	1		:	:			- 1	:			:	1				- 	٠/ ٨	10	S	7	 7 a C	- A	P	F	
		<u> </u>	<i>y</i>			<u>_</u> ,	. 	- ,			· !	<u>/\</u>	c F		, , <u>, , , , , , , , , , , , , , , , , </u>	- - - -	7 M	1	TA	RA	UT.	sr.	C,	• •7 <i>A</i>	46
																: 	:	: : :	:						
		u) =		31	<u>56</u>	30	<u>, C</u>	ET.	u H			9)		./	6	12	0	#/	y R	<u>.</u>				
		i		(0.3	5 5	7#	e=\)(_?	,25	> -	36	9)			: 	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				: : :	<u></u>		
		ļ				71	ر مر	i o	4/1	ĸ(7.4	8 6/	فشرع) .	 <u>.</u>	41) /	~ P	M		: :	ļ !			
			٣٠	'ሶኅ			50	2 = 7	15	٤(۷	00	m/F	ور 1R			10		7 •			: : :				
		<u>.</u>	:								· †	: ;				: : :					ļ	: :			
			<u> </u>			: ::: :							,			·		i				· •		:	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		i !	İ			;	à.	:			:		:		·	· ·····					:				: :
						······		:				:			· · · · · · · · · · · · · · · · · · ·						:		······································		· · · · .
<u>:</u> :											!	: :			ļ.,									:	:
						!	i.					·											: 		
	<u></u>	•	:					:																	
						:																			
	: :: :																	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
			Dese e es	, ,:	i		:																:		
			:			\$																			
	:		:	. :																				•	
			·········					* *																	

Made By:	Date:	Job No: 95094-00
TPL	12.18.12	75077-00
Checked By:	Date:	Sheet No:
		of

Calculations For:

AM Pa	MO	12/A 5/A T	VA	POR	2/2	~ X	, //	7 / K	61	R ,	C	o No	07	۲۲ ا ا	- 1C	A	, W)	2	RI	R	i	: ?		:
16	₽H.	OA!	101	<u>د</u> .		> /4	M	<i>G</i>	71	>	/ /	75	(0							ļ ļ		1	······	: :
Z	bw	7 H Ė	, en	, /	5	972	re.	6 6	(F	roi) <i>,</i> (SAS	· C	00.	ديتري	2	70	4	00	" =	- :	500	- 5	 >c
		(D)	= Lı) C	، م	스 7		. /:	7 les	741	10.0	2.53	3 X	107	D -	40	00)	, =	2	99	08	34	ر اھ'	w
		~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T _	7	0 -	<u>.</u>	RE	FS	5cH	ull	6 R	47	7 R	N5	F. 7	AE	36	·	,		, -		IJ	
		Que.	55. 735	<u>,</u> (_'	920	·2 -	. 99	77)(00)+ 5	99	<u>7</u> /(.15	۲7,	1 =	2	4 =	3,7	74	: 5	,	; 1	: : · · · · · ·
CA		A De							· · · · · · · · · · · · · · · · · ·															} :
		1		:	- 1			- :				1.		(Tex.						- C	<i>y</i> 1		
	۲)	Pos	GAS	= 0	ميح ل	C_1	(2 م	/ =	. /	10	92	(0	, 2 5	رد	(44		-10	Sį	- /	ر د	13	<i>0</i> 0	!	
		RE	-		_	•	5,	9m	5	A	5	7	ΑZ	ιĒ	1	=	6	73	70	٥ - ا	27 <i>0</i>	rН	: : :	
		1 10	*CCK)DSX	`=		 		<u>.</u>	<u>:</u>				:									:	
\mathcal{X}	ಕ್ಷ	ORF	מו ל	نه	Co.	L.U	MA	ఎ౭	•	ر ر <u>ت</u> ځ	AM	ĕ	A	=5	7	AZ	يع ج	5	1			<u>.</u>	:	
	Δ	- /	7							: : :			ļ	<u></u>					: <u>i</u>		:			
/	7 / /	< (۱۱ O ر	1 <i>P1</i> > -	م خ ک	? 5	9 (a 5	5 Y	<u> </u>	_	٦	18.	<u> </u>		,					······			
		۶ (4	5 N		<u>.</u>			t 	ل. حد		:			,					 :				,
		: : :	4	2	=	5	AA	45	·	A S		7 %	2(5	/									
j	-//	۸۸۷					•••••											<u>.</u> 			:			
	· · · · · · · · · · · · · · · · · · ·					:											:					*** **		
<u>.</u>	27.7	ACK	L	05	S S	<u> </u>		: 						~ _∕	05		Λ.	4	وا	79	70	274	CH	 (
	· ·····: :		Ré																, <i>U</i>		U	·•		
	57 <i>2</i>	AN	•	w :	=	9	Re e	: 					_	2	69	0	#/	IR.						
						2	h			(11.	89-	16	8)											

Made By: I Checked By: I

Date: Job No: 11-14-95 9509

Date:

Sheet No: ____ of ___

Calculations For:

FILTERED WATER COST - ECO 3

												<u> </u>					:				1		:	:		
	l	lNI	,	C	<u> </u>	5.7	-	c ī	<u>+</u>	FI	47	oR	έL	u) A 7	60	و	FR	om		5 7	51	M	: : :		
	(-C =	5.4	_	C	A		5	Į	34	_	T.	\mathcal{B}_{i}	20	C	با ا	رير	U	11) /	ηA	RC	+,	199		
		# 1	110			72 										(<u> </u>	S	36		Al	>ρ	ダイ	<u>ح</u> د	ſχ	····
		/:	7.C.	!	0	,_	: / 1 \	י בי	ے یا ک	~	ے	, 40	_0	~	⊃.	 !		R	51	-6 T &	R	5 N	CO	.) 	:	
																			:	TE				1 D /	<u>.</u>	
	PR	ë Sa	512	7	PÎ	NΑ	Jα	RL	<u>_</u>	ολ) ≤ u	eu.	£7/6	2.N	<u> </u>	540	CAL	(6	0	HR)(1	15	a '	1/	1 R)
											: : :		<u>.</u>		:	1	÷		Ė			:	:			
	,									<u>.</u>				Ξ	3;	7,=	324	1, 8	OC	5	146	///	R		<u> </u>	:
	÷) A I	Λ) <i>(</i>	ι Δ	,	<u></u>	- ·		$\not\!\!E_{j}$	UØ		٠/٠	マフ ラ	<u>ک</u> ک	101	75)	#	ر ا مر	- ~	<i>i i</i>		
						7.0	,,,	~		رے	/ د		-	7.6	، ب	100	373	50	7.0.5		=	5 '	⊃ ~	4/	YR	<u>.</u>
										·							:					! !		: 		
	u/A	7.5°7<	, ,	5 <i>r</i>) U	<u> </u>	=	۽ ک	10	cP	Μ-	- J.	7-	- 1/,	5	=	53	2,	8	2 P	jΝ					: -
					: : :				: :							i						:			······;	;··· ····
													·			 [:					:		·······: :	: :	
																· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·
																: : • · · · · · · · · · · · · · · ·								·		
														:								:				
											•		· ,			: : :	:									
												- 	,	: :: :		: : :		:	:				· · · · · · · ·			
										:				··· ··· ;		:										
	. :						:	:		:						:										
			:	- 1			:																			
· · · · · · · · · · · · · · · · · · ·																·										
				:				:			 :															
			:		:	:				:							٠.									
					,			:																		
	 !	··· ··· ›··										****														

Made By:	Date: 11-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For: £ CO No. 3

EQUIPT	CLNG. WATER FLOW	LWT
CONVERTER	276PM	140°F
CASCADE CLR	24GPM	100°F
AIR COMPR	156 GPM 109 GPM	104°F 104°F
	174 GFM 540 GAM @ M.	101°F 1x02 T5AIP = 108°F
AIR COMF	R. BALANCOD FOR	85°F EWT
· CONVERTO	E SHOULD BO TK	AY W/ 160° FLWT
Constant Towards	INCREASING FLOO FOR 4° DT RATH	W @ KESORPTION ER THAN 10° DT.
eΡM	= 115900 ziu4 = 5	8GPM - 28988 #/HR
CASCADE	CRR DRAIN:	
Q=	W (950) + ((58)(8,33)((00)-W)(100-89)
ω = .	3940=1/KC	
Dra	ter en en en en en en en en en en en en en	940 /HIZ = 25050 #/HR O GPM @ 100° F

 Made By:
 Date:
 Job No:

 PDL
 //-/3-95
 95094-00

 Checked By:
 Date:
 Sheet No:

of

Calculations For:

ECO No. 3

Towor Sococons	
566 GPM	
158° F & WT 25° F LWT	
76° F W.B.	
MARCEY NC 3011	
1 85000 CFAI	
15 HP FAN	
15/2 BLOWSOUN - 5.7 GPM	
272 MAKEUL- 11.5 5 FM	
Assume FAN CPSKFTSE 85 % JE TAGE	
ANNUAC TAL - 12 + 1 = 15 HP (0.8) (1152 //2) =	18481 KWH/YR
ASSUME PUMPING BNORGY FOR CON	120
JYSTEM OFFS6 5 THE SAVINGS	r N
FUMPING ENERGY AT PUMP YOUSE.	
en de entre generale de mande entre de la companya de la companya de la companya de la companya de la companya Entre de la companya de la companya de la companya de la companya de la companya de la companya de la companya	

```
-, | 45
                                       COST FOR STEAM, 13-200
                 OUT-OF-POCKET
                                  MONTHLY USAGE & PROD. REPORT, BY KEN HARRIS
                       AREA B
   GIVEN:
      Sum of individual boilers steam output = 1,324,620,000 lbs
      Building Steam Output = Sum - Internal consumption (turbines, DA, ctc)
                                                               1,107,382.000 lbs
                               1, 324, 620,000 4.836 =
                                                                 1.107 m Btu
                                                                  (Per HOC wal purch
spec June 1994)
       Steam Coal, 1994 = 64,673 tons
       Btu content of coal =
                                    64,673 tous x 2000 x 14,100
                                    1.824
                                            mm Btu
       Cost of treatment of Sulfuric System backward water = united cost permet
                   50 gpm ave x 60 min x 8760 x $,239/
                                                                E, 500 /gr.
       COST of Filter Water for feed water =
                                          Utilities Cost Report
                 1, 324,620,000 lbs x 0.148.
                                                               24,500/48
             of electricity (motors, precipitators etc)
                                                                 $173,000/gr
                  412,000 KWH (aux) x .035
        cost of fly ash dispisal =
                                         15,000 est
                 cinder removal =
                                         lours est
                   Wdg maintenance = 393, 391 rouhn++ 529,104 magon = 4922, 465
                    water treatment Chemical (See Osmisis Study 1995) +91,000
Out of Acket Steam Cost = Coal + electricity + chemicals + FW
                                                              waste disposal disposal tredutt flyash + Our
                                        bldg steam output
        per Detense fuels,
Geo. Tittsworth $ 2.91 million
                    (45×64,673)+ 173,000+ 491,000+ 24,500+ 6520+ 15,000 + 10,000
       OPSC =
                                   1,107,382.000 /63
                                                            3.75 Kils Counting
                                     2.92
                                              1000 lbs
                                                     91
```

J. Bouchellm, PE

Made By: ←D C	Date: 11-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For:

ECO NO.4

REF. SHULLER 18" PIPE W/ 1" INSUC. & METAL. JACKET
RIR PROHORIGE - 2793 (15FT) = 41,9 MBH@1200° OPOR.TOMP PATMUS 1000
TAILGAS HTA QAMOS = (1345+1928)(21FT) = 34,9MBH@ 900° 2(1000)
AFFREL PROD. CHS CO FROM BXISTING SYST. CALCS: Cp = 5000,500 = 0.434 8/40F 17644 4/4 (1410-1070)
NEW AIR PREHEATER LVG. PROD. GAS TOMP: Q = 2086./ MBH+ 41.9 MBH = WCp DT = 17644 (0.434) (DT
AT = 267.0 T_UG = 1470 - 267.0 = 1203°F
APPARENT PRODUCASCO @ TAILGAS HEATER FROM EXISTG. SYSTEM CALES. Q= WCp DT = 1895,4(1000)
CP = 18.954.00 = 0.377.8/4.0F 17644 (1070-785) ASSUME 800°F NOW T.G. HTK. LUG. PROD. GAS. TEMP:
Q=17644(0,377)(003-800) = 2680.7 MBH 1000 T.G. AT = 2680.7/1000 = 722°F T.VG = 808°F

Æ

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

ECO NO.4

USING 6	AS TABLES	FOR AIR	@ Low Pre==:
1, = 1265 h,= 308			
h,- 300 P= 39.2			
	uditions ce		
	c, (Pa) = 2910:		5.91
	5°R -> 35. = 195,5 5/#		
	= 72,5% F	<u> </u>	ZCACCE
HP=154:	50 [#] /HF (308 ³ /4 - 2545	· 195,5 ² /4),725	= 495
h =	h, - (h, - h)	(172:) = d	726.43/4
T5x4	= 941°R 5	K 480°F	

Calculations For.

1ABIF 5

AMMONIA VAPORIZER, MIXER AND CONVERTER SAME AS TABLE 1.
SAME AS TABLE /.
AIR PROHORTOR:
QREJAIR = SAME AS TABLE / EXTRAPOLATED FROM SCHULER TABLE
OCT = (3000)(15) - 45 00 BTUH
QROJATMOS = (3000)(15) = 45000 BTUH
TLUG = TONT - QAR + QROTATIONS - 1470 - 2086056+ 45000 WCP 17644 (0.253)
= 992.6°F
= 992.6°F REVISE QREJATHOS = 2850(15) = 42750 BTUH
TLUG = 1470 - 2086056+42750 - 993.1°F
TAILGAS HEATERS
Trout = Trom + EFF (TAGIN - Trom) = 85+ 0.711 (993-85)
10001
= 730.6°F
QREJTO WCPDT = 15450(0.248)(730.6-85)
= 2,473,635 B74H
QREJATMOS 1100(21) = 23100 BTUH
TPGOUT = TPGIN - (QROTTG+ QROTATAGE) = 9926-(2473635+23100) N Cp 17644(0.258)
WCp 17644 (0.253)
= 4333°F
REVISE ORGIAINOS = (854+1345)21 = 23090 ->> Tpc = 433.3°
ROVISO CROJATACE 2

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

TABLE 5

								:							:							
CA	SCA	00	5 (200	5R	_:					:											
		a	PET	CAS =	. W	56	د م	<i>ن</i> 7د	= /	70	92	(0	, . .	53 <u>)</u>	(4	33	-/	05	\			
					<u>.</u>													······································			:	
					= /	4 18	36	,3	. ξ	37	u f	4										.:
		/	م م جارکہ	Jeor			5 A	Mö	- /	9 S	7,	4 B	ح)	/ =	: 6	フラ	3 7 c	00				
			-1,100	ZON	551 0	S																
<i>F</i>	1 B S			101					<i>A</i> 1.	۵ د	/-	-,,	۵ د	۷	80	51	CH	OR	-	SA	Mc	3
			45	7	ME	16	/						: : :				· · · ·					
-	TUR	B	we	•								i										:
	_		1.		ı					.0,	- /	. 0	00	\ a	D		777		, .		0 -	:
	-ro	M	Koc	, A4.) & .	KAY	0	سم ابر ا	73	1 7	- (1)	17/	/ K)o	TY	انم 	(<i>)</i> , =) D	η,	-28	7.0	/ · · · /4
		Pr,		P_{γ_i}	$\left(\begin{array}{c} F \\ - \end{array}\right)$	2	۱=	23	3 <i>5</i> [1	5	_	=	4.	80	./ >		i.				:
				;					*,				-:	1	i	:	: 				*.	
	7	THE	OR	. h	= /	84.	72	B/4	¥				···· ::		i ? :	<u>.</u>	·····i			<u></u>		
		L	. 👱	h,	_ <u>′</u> E	Taroz	(h	, -	ha.	-124		<u>.</u>	189	,/-	• •	725	5(2	89.1	-	184	.7)	•
		r_t	~ _	'''		IMAG						<u>-</u>	:		:							
				: 21									<u>:</u>									
		Te	- 5 X H	-	88	7° Ř	\	01	R	2	129	90	F							······· · · · · · · · · · · · · · · ·		* • • • • • • • • • • • • • • • • • • •
			:		: :				- :													
<u> </u>	;s	ω	Kio	¢8 ⁻²		54	<u>5</u>	<u> </u>	12	45	00	28	1.0	<u></u>	<u> </u>	314		= 4	45	9	HP	•
								: i.											:			
		4	RE	c =	45	59 (25	45)) =	11/1	6 8	317	5	B74	u H							
		.: بر	 7	st =	- W	(5	ΔΤ		15	. 45	50(0.:	48)[42	9-6	(00)	; :				·
· ···· · · · · · · · · · · · · · · · ·		ں ۔	K Lo	-	=. /					· • · •		-										
	:	·) '	-10.								_							

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

	_		
11	9 <i>BC</i>	6	5

	18	ζH	=	W.	· /	$C_{P_{a}}$	_ 7	5.T	+	W	C	210		20	000	0	. 5)(4	100)+ 1	154	500	بحره	HX.	53
						Ws	C	e+	w,	CP						20	000	.5)	+	154	50	بد.)	(8)	, : . :	
					<u></u>	<u>.</u>		ļ											<u>.</u>			: :			
				-5		76	<u></u>									<u>.</u>	<u>.</u>								: : :
			_								<u>.</u>	<u>.</u>		: : :					<u>.</u>	<u>.</u>					
		بر ادر		_	U	SI	CP	T 2	JT.	τ.	+ 1	Wc	C_{F}	Δ	76			<u>.</u>				! .	•		:
		<i>.</i>	iuR	В-	•											<u> </u>		<u>.</u>		: : :					:
						: :		1		54		:		<u>.</u>			 			<u>:</u>				: : ::::::::::::::::::::::::::::::::::	
					_	ی	000	0(0	2.5	5/7	31	-40	0)1	- 15	45	0	0.2	48)(731		53:	\$)	:	
													54			:		:			:				:
															:	;				:			:	: ,	
		•••••			_	4	12!	5 /	∤							:	:		:						
									:				: :			: :					:			:	
				• • • • • • • • • • • • • • • • • • • •							<u></u>					: :	ý • • • • • • • • • • • • • • • • • • •		 :		: :	:			· ···;
							 :	 :	: :			:	 : :	:	· · · · · · · · · · · · · · · · · · ·	} }	 :	Ì	: :	: :	ļ	 :	÷		
	.i					:	} !		: !	 !	!·····	:		· · · · · · · · · · · · · · · · · · ·						: :	: [
							:				÷ · · · · · ·		: :]			: *****							
							: 									 :		······		· : :			.i	,	
											ļ				· ·			: :	: :		· !			i	:
	<u> </u>									· ·	i !							i !	: 			· 	· !······		:
						 :				i	·····	:							.		· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	: :	1
ļ	<u> </u>				•••••					ļ	 !									:					
	1									!	:	:						:)		T		:
<u>.</u>			!			• • • • • • • • • • • • • • • • • • • •				: :	i			••••••									: :		
										: : :	: :		:		·····							: :	· 	i	
	<u>.</u> i		÷							· ·				:								· :- ·	· 	i i.	
																						:	:		
			:	:				;							:										
:			:																						
: : i																									
<u> </u>																		•							
	;																•								
		:					٠						•												

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO No. 5

			-		-		-		:	TT 1	: <u></u>		:	:					:	:	:			
	Cuk	250	って	Y	1		96	ec n	۲ ز	(C	N	ر د			<u></u>	:	ļ Ļ							:
	<u>.</u>							į 			.j											: - -	:	:
/	REA	15c	NA	\Z(Ē	Ε	FN	67	269	<i>(</i>	Ri	C	יט ב	R	Υ,	11	=)	M	P	LO	mc	717	6
	(c) /-,	H			0	/	UC.	- 4)	1 =	· · · · · ·	TH	5		D ,	/ F-1	6	بخذا	700	<i>≘e</i> :		Bċ	7W	55
	PR	ö þ	المستمار	7.	た	<i>/</i> -	ير کنر	>	7	£ 1.	6	A5		HO	A	7 Ē	た:	ب م	L	25	5	7	9	
	Ø	M	0 3	PH	É	£	- '	w/	7 H	ع	Í	u	1.7	ع نېتر	p.ce	7-	1	ن :	su	۸	77	01)	
										<u>.</u>	<u></u>							 !	 !		; : :			:
	PK	ia H	÷A.	i i l	2 \$,		98	Ο,	4	-	41.	9		_ •	93	8.	5	mi	= /-{		:		
						:								:	i,		Ì			:	ļ	: [
		Q.Y.L.	(- /	<u>.</u>	<i>,</i> ,	. 25. j			ت د	4.5	_ כ	د -	Υ,		:	-	1		:	1				
									:						/	45	57.	9.	ΜĒ	3 <i>H</i>				:
·	1	, ,		e c								·			~ <u>-</u>				[[: :				
	30			1								1 1												
	7 7	716	GA	5	/ (0	1	O. 1	رت. ر <u>ک</u> :	3//	<u> </u>		کوکیسے 	566	s ac)	15	0	_			κ.	> ,	
	m	ΑX	<i>.</i>	10	m	P.	,		:	i i		: :	:	:		- 	: :	: (************************************		· · !	· ·			!
			1		······	U 5	~	(0	ے ۔		(8	05		74	45) =	2	as	≥.5	M	B	4		
		_	<i>)</i>	†	: بر. :	.ب : :	U	(-)			7.0		·				: : :	: : :						
		0-		<i>~</i> ~	:					ŧ								: :	· ·					
	20	[>] ((:	5/	£ 1	4 74	; :	<i>ا</i> ا) / } /	'	950	_ئے ک	Œ		77	4 <	K			: :				:
t)		4		/:	54	50	(0	` , _	4)	74	82	- a	27	., 5)	=	76	C.	 / ,	'nΞ	: : H				
				! !!!																				
				· ····· ··;							1.		****					•••					•	
	n			i		• :																		
		,	,	: :			- :				÷													

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO No. 5

TURBING OUT PUT T, N = 745°F $P_{r_1} = 24.38 h_1 = 292.58$ $f_{r_2} = 14.7(24.38) = 4.93$ $f_{r_3} = 185.7$ $f_{r_4} = 292.58 - (292.56 - 185.7)(.725)$ $f_{r_5} = 215.09$ $f_{r_5} = 435°F$:		
	77	RBMA	Dur	out				
$R_{r_1} = 24.38 h_1 = 992.58$ $F_{r_2} = \frac{14.7}{72.7} (24.38) = 4.93$ $h_3 = 185.7$ $h_{3KH} = 292.58 - (292.56 - 185.7)(.725)$ $= 215.09$ $76KH = 435°F$ $44P = 15450 (292.58 - 215.09) = 470.4$ 2545								······································
$f_{FC} = \frac{14.7}{72.7} (24.38) = 4.93$ $f_{GSH} = 185.7$ $h_{GSH} = 292.58 - (992.56 - 185.7)(.725)$ $= 215.07$ $7_{GSH} = 435^{\circ}F$ $4.F = 15450 (292.58 - 215.09) = 470.4$ 2545		1 1 1						
$f_{FC} = \frac{14.7}{72.7} (24.38) = 4.93$ $f_{GSH} = 185.7$ $h_{GSH} = 292.58 - (992.56 - 185.7)(.725)$ $= 215.07$ $7_{GSH} = 435^{\circ}F$ $4.F = 15450 (292.58 - 215.09) = 470.4$ 2545		P = 2	4.38 h	1,=292.5	8			
$h_{2} = 185.7$ $h_{EXH} = 292.58 - (292.56 - 185.7)(.725)$ $= 215.09$ $T_{EXH} = 485^{\circ}F$ $4P = 15450 (292.58 - 215.09) = 470.4$ 2545		1 1 1						
$h_{2} = 185.7$ $h_{EXH} = 292.58 - (292.56 - 185.7)(.725)$ $= 215.09$ $T_{EXH} = 485^{\circ}F$ $4P = 15450 (292.58 - 215.09) = 470.4$ 2545		£	14.7 (24	1.38) = 4.	93			
$h_{2} = 185.7$ $h_{EXH} = 292.58 - (292.56 - 185.7)(.725)$ $= 215.09$ $T_{EXH} = 485^{\circ}F$ $4P = 15450 (292.58 - 215.09) = 470.4$ 2545		('5	72,7					
$h_{EXH} = 292.58 - (292.58 - 185.7)(.725)$ $= 215.09$ $T_{EXH} = 435^{\circ}F$ $HP = 15450 (292.58 - 215.09) - 470.4$ 2545								
$= 215.07$ $7_{GXH} = 435^{\circ}F$ $HF = 15.450 (292.58 - 215.09) = 470.4$ 2.545		- د	183.1					
$= 215.07$ $7_{GXH} = 435^{\circ}F$ $HF = 15.450 (292.58 - 215.09) = 470.4$ 2.545		1	26250	692-5-	1057/725			
$\frac{7_{6} \times H}{4} = 435^{\circ} F$ $\frac{47}{2} = 15450 \left(292.58 - 215.09\right) = 470.4$		n _{exh} =	272,28	- (-)	(10311)(.145)	<u>'</u>		<u>.i</u>
$\frac{7_{6} \times H}{4} = 435^{\circ} F$ $\frac{47}{2} = 15450 \left(292.58 - 215.09\right) = 470.4$		_	- 215.25	7				
HP = 15450 (292.58 - 215.09) = 470.4 2545		l						
HP = 15450 (292.58 - 215.09) = 470.4 2545		TEXH	= 435°	F				
		48 =	15450 ((292.58 -	215.09	,,,,		
				25115		= 470.4		
				2343				
						;		
								<u></u>
					.:	· · · · · · · · · · · · · · · · · · ·		<u> </u>
							: :	
								: 1
						· · · · · · · · · · · · · · · · · · ·		
				·····•				
						i		
						:		
in the supplier of the contract of the contrac	:			· · · · · · · · · · · · · · · · · · ·		1 1		
	:		:					
								•
	· · ·			4.4.4				
	1							
	:							

Made By:	Date: 12-18-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

UIAIKINS	For:			•		•			-		-	
	For: TAR	3LE	_(c	2								
Amr	۸ در ۵	UA	PO R	IZOR	MIX	5R (ONUOT	RTOI	e A/	RP	ROHL	ATOR,
CA.	ECA NE		000	F.C	ANC) To	IRRIL	\F:	SAR	15 6	< 7A	BLE 5
	sche u										<i>-</i>	
RE	COVOR	y E	3010	5R	_							
				T. F. C								
	SATU	'eat	100	157	nip (D 3	0 PSI G	. –	275	°F		
		, , , , , , , , , , , , , , , , , , , ,										
	Usi	16	LO	UNTO	RF 10	۵ 4)	ASTE	ΝÓ	A7	30 (L	e. A	ssam à
	OUT	LE 7		FAS	757	MP	(7-	100	UALS	275	FOF	zsam g
							160u	, ,				
	Q	<u>-</u> u	ے ر	7Δ م	_ = /	545	0 (0.5	1481	429.	- 275) = 5	90066
	J 16											
	5161	4 M -	->	w =	0		_ 59	0066	,		بر ہے	ŧ/
					1/2~	-h-	_ 59 5 11	72.4	- 118	4 = :	00	/HK
							· · · · · · · · · · · · · · · · · · ·	.i∓.i. _{\$}		:: /		
	\circ		w)	Co 25	+ = /	505	(0,20	() =	5-60	3 = (2379	74
		57										
											:	
			;	: :								
				ŷ.				:	:			
			:									
							:		:	:	: :	
							:::::::::::::::::::::::::::::::::::::::	:				
				1 1								
		:										
	• ••• •• ••• ••• ••			•								
	;											
		. 4										

Made By:	Date: //-/3-45	Job No: 95094・00
Checked By:	Date:	Sheet No:

Calculations For:

ECO. NO. 6

P - Tev Air Patte	
PROCESS DRY AIR RATO:	
m - m (1 - w) = 19350	55) th 784 18
$M = M_{\omega} (1 - w) = 19350 \frac{4}{HR} (1 - 0.00)$	7937 / 12 / 12/2
= 19243,6 #/HR DR	VAIR
CONVERT MFG. DESIGN CONDENSATE RA	TO TO PROCESS
DRY AIR RATE:	
15 576 CLR = 216.4 (19243.6) =	150 =/HR
27706	
2-2 1, 1 = 264.7(19243.6)	- 184 #/H-R
27706	
AFTERCOCLER = 173 (19243.6)	101 #/.0
	= 121 #/HR
27445	455#/HR
	733//4/
TURBING ENTERING CONDITIONS:	
MASS FLOW = $15450 + 1149 = 16599^{\pm}$	HR
	TMIX ha ERROR
0 - 440 # 1 200 + 1 + 41 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4	325 11892 -1479
Q = 1149 # [TAILX - 207) + hage 25 # (hart- 1181.0]	400 1229.9 - 232.3
the state of the s	316 1184,2 -1377
Q= 15450 HR (0.248 / + =) (435 - TMIX)	11
Tmix = 4566- 0,235 hg	
and the community of th	
NOT ENOUGH HEAT IS AVAIL TAILGAS TO VAPORIZE THE C	ABLE IN
TAILGAS TO VAPORIZE THE C	ONDENSATE

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By: PDL	Date: 11 - 13 - 95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

ECO No.6

EVALUA	TO FOR	INCORPOR	ATION W/ 50	CO No. 4
			3+hg-1181-0_	
	0 (0,248) (8			
	= 953.8-			
<u> 7, n, y</u>	<u>ha</u> 2	TROR		
500	1280.6	155.5		
430°	1330.1	267.4 43.8		
650°	1354.8	- 12.0		
US5 6°		LCAS/WATER D TURBING		
h = 1.5	265,92)	+ 1149(1346,6)	- 340.3 ⁸ /±	
P _Y , =	17.413		= 1.8/	
Pro=	12.413 (14.57) 244° F	1=13.521 - 1 - 6. 7 1	= 1188 = 1084. = 1084.	·
Roc	ALCUCATE		URBINE EXHA	ust HT.

Made By: ₽DL	Date: 9-14-95	Job No: 95094-00		
Checked By:	Date:	Sheet No: of		

Calculations For: ECO No. 6

	1165994/HR
2075	306F@73PSIA W 1149*/HR T h=1181.2
1149=1/48	W 1149 #/HR
h=270	1 1 = 1181.2
1) 20,70	
ļ ,	6599 T/HR
O. ASSUME	100% PLASS CHANGS OF CONDENSATO, W/
TAILGAS T	TAIR LVG. THE HX = 220°F
H:05105 Q = 1149#	1HR (h - h) = 1149 (1181.2-270)=1046969
ON SILE Q = W. Cr	ΔT + Ws Cp ΔT = 15450(0,24) ΔT + 1149(0.5) ΔT
△T = 72	506.20)+ 1149(0.5) = 244.5 -> Towi6- 220. 2445=464.5
154	50(E.28)+ 1149(O.5)
STOAN	TAILGAS MIXTURE CONDITIONS:
	1 500.8
(Y-7 = 1	1149 (hanx - 1181,2) IMIX AMIX BREOR
	700 1380.2 -542
4645	15450 (6-34) 305 (MIX) 400 1231.6 - 196
Tmix	15450 (0.24) (805 - TMIX) 400 1231.6 - 196 = 585.5 - 0.310 hamix 310 1183.8 - 77.5
TNSU	FFICIENT HEAT IN TURBINE
5XH1	AUST GAS TO VAPORIZE
CON	DONSATO
i :	and the second second second second second second second second second second second second second second second

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

Eco No. 6

Co	ND670S	ATE C	ncy.					·
N1 2 7								
* U	SE OR	IFICE	TRAP	FOR C	ONTIN)uou5	DRA	1NAG6
	5							
	TAILGAS		10	6144#/H	'R			
	15450 t/	IR	Ś	8 PSIG				
	15450 th 805°F		ONDENSAT	6/516A	M			
	Cp=0,24		694 #/HI	:			<u>.</u>	
	58 PS16		100 PS10	1 1				
			338°F	4 4 4				
			h= 309					
				ļ			<u> </u>	
13	1450 0121	1)(805-7	m(x) = 69	74 (h	309)			
	:			<u> </u>	:			
	1m1x =	862.8 - E	2.187 how	41×				
				0/-	<u> </u>			
	/MIY	hanix		R(Tmix-c	ACC)			
	750	1405	149.	1				
	650	1355,5		7	; ; ;			
	540	1301.4	(79,					
: :::::::::::::::::::::::::::::::::::::		1330.9	(13.		<u></u>			
	615		<u></u>	· · · · · · · · · · · · · · · · · · ·				
:	· · · · · · · · · · · · · · · · · · ·							

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO No. 6

<u></u>						
			0	>		
	/ur	BING	Process'	a	•	
	- 				, , , , , , , , , , , , , , , , , , ,	
	7/12				VAPOR	
	Pr = /	6.005	h = 259.7		h, = 1338, =	3
					5, = 1,80	
	Prs = 14.	7 (16000)=3,236		5, - ', - '	
	7:	2.7			h2=1183	
	2 = 2	279				
	h = -	64.2			heyn-1838.3-	-(<i>638-3-48</i> 3),72
	17.2					
	<i>k</i> .	= 259.7 -1	359.7-1645)(.725)		=1230.	5
	16×4	- 190 4	\$5°.7-1645)(.725)			0
		- 1,0,0	.C		TGXH = 380)
	TEXH	- 335°				
						· · · · · · · · · · · · · · · · · · ·
	HP=	15450(.:	4X 615-335) 1	-694(13	38,3-1230,5)	
			2545			
				4		
		1127	→ · · · · · · · · · · · · · · · · · · ·			
		437.	5	and the second of the second o		
		TILLE	10NCS IT	T	ABANDONE	\mathcal{D}_{-}
		1 14:1 -			of a first survival and a second	<u></u>
	1 : 1					
		······································	The second secon			
		and a				
		**				

Made By:	Date: 12-12-95	Job No: 95094-00	
Checked By:	Date:	Sheet No:	

Calculations For:

ECO#7 ITERATION #1

WOT C	FAS HEATER - 2000 HAR STOAM + SPRAY
	STEAM SATURATION TENIFOR.
	0.246)(Twan 85) = 2000 (0.50) (324 - Twan)
7wG \frac{1}{N}	2000(25)(324)+15465(.246)(85) = 134.8°F 15485(.246)+2000(.5)(
CPw a:	= 2000(.5)+15466(.246) - 0.275 8/4°F
Two e	117 = Twoin + 0.711 (TPOIN - TWOM) = 134.8 + 0.711 (993-134.8)
	= 745.0°F
Q _a ,	OMPORATOR = WWG CPWG (TWGOUT - 745) = 17405 (0.015) (895.7-745)
	= 721307 BIUH
W_{A7}	TEMPOROR - QATIONERATOR - 7:1307 - 809 THR hog 891.7
TP60	WPG CPPG
	= 1245 - 17405 (0.275)(845.7 - 134.8) + 721370
	17644 (0.253)
	= 227.5°F
	ENDERSATION WILL OCCUR AT 254°F
	DUCT GAS.
Q_{PG}	ECONOMITER = 2000 THR (19/4 =) (240 -150) = 18000 BTUH
W_{PG}	COND. = QPG ECON 180000 = 191 #/HR hfg16 944

Made By: Job No: Date: PDL 12-12-95 Checked By: Date:

95094-00

Sheet No:

TURBINO	
PARTIAL PRESSURE HOD = . 175 (58 7516) = 10.2 PSIG OR 25 PSIA	
5= 1.9764 h= 1404.8	
THEOR. h=xH= 1334 @ 15 PSIA \$ 600°	
$h_{EX} = h_{ST} - 0.705(h_{ST} - 1834) = 1404.8 - 0.705(1404.8 - 1324)$ $= 1353.5 B/H$	
GAS @ 745 F;	
$P_{r_1} = 34.38$ $h_{r_1 ahs} = 292.58 \frac{3}{2} \#$	
$P_{rs} = P_{r}, \left(\frac{P_{s}}{P_{r}}\right) = 24.38 \left(\frac{15}{73}\right) = 5.01$	
THEOR. $h_{as} = 186.46^{8}/\pm$ $h_{as} = 292.58 - 0.725(292.58 - 186.46)$	
= 215.64 ³ /#	
T28x46 = 437° = 15405(0.246)(TEXH - 437) = 2000(0.46)(639-TEXH)	
TEXH= 15405(.246)(437) + 2000 (0.46)(39) = 476.5°F 15405(0,246)+2000(0.46)	

Made By: PDL	Date: 12-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

CPEXH	•	W.	б¥Н	_e C	Pax	46	 -	$\omega_{\scriptscriptstyle s}$	KH:	s7 (Pol	KH 57		15	4050	0.2	46)) <i>† .</i>	2000	00.	46.	<u>) </u>	0,2	71
C PEXH	-	÷—			L	UE	×H	<u></u>				:				·····	174	105	······································					:
	u)K				ω_{ϵ}	÷ X (y	C	Pak	<i>41</i> (174	′s -	- 7,	-	>									
			μαγ	6	<u>.</u>	_			25	5 4 S	5					· ·								
					-	17	40	S	(.:	21	') S # :	(7 5	45	_ 4	176	,,S_)	4	97	'	15		: : :	
		•																						
	<u>u</u>	A S	576	-	H	5 A	7		50 -	160	. 7 <	<u></u>	ļ I						<u></u>		l. :			
	i		/ 5	<i>T</i> A	cK	=	20	54	50	F	_	<u> </u>	X =	5- c	ſ	<i>3</i>	_							
	_					į	i	i	.i			ļ)5	(0.=	263)(5	192	- 24	€ 0)
				· 	.i							:	i								:		·	
		\			1	:		:	:	:	1													
		LC	5	101	a ru			<u>ンマ・</u> ム	きしん	<u>.</u> :	_		06	919	2		= /	119	7/	1	IR			
								' /{	ફ	· · · · · · · · · · · · · · · · · · ·		 	ن دی س. : نسب		(
		<u> </u>				.	\wedge	cl	~ 4			· 	7			_ 6				· ·····	···			
		ت ،		:	•					1			*	714	CA	<u>م</u> <								
			:		_	20	9	TH	R									: :						
					1	19	/		14	(:					!			· · <u>·</u> · · ·		£ /."				-
				: : : ,	2	∂ €	Q		TH	R		·	} ≤:	Sa	Mc	> 70	, i, - (201	00	/+	IR			;;;
		Pal	t T	1 A	Ĺ	Pa	. <u>-</u> -	<u>.</u>	اندة		ç-=	14	00	(P)	, S	7 <i>A</i> C	K:	 •						
			F	=	01	175	(14	1.6	96	>=	2	.5%	77	25/	Α									
· · · · · · · · · · · · · · · · · · ·			7) <i>E</i>	w	Pc	//	57	_ =	· ·	13	6	'F											
:															•	: :	••							
· · · · · · · · · · · · · · · · · · ·																								
		:																						

_		
_	=	
		_

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: .

Calculations For:

ECO#7 ITERATION 2

CA	5 <i>ē</i>	-	A		18	160) #	/н с	2	5	A7	UR	`A7	5°Z	5 7	5A	M (a , c	80 .	PsI	G	てん、	6C70D
								>17	-			i											: : :
									:						- Tu		:						
													. 78	00(. 5)	(32	4)-	+ 1	5 Y 0	o 5 (i	0,248	ş)(8	5)
				:					. i												<u> </u>		
	ب	٣ω٥		-	TO	LP.	w.	W 36	ST	$^{\mathcal{L}} ho_{s}$	<u> </u>	- 1	540	·5 (c	7.248	?) ± ?5	- 18	00 (4	2.5.) <u> </u>	o. 2	74	B/#°F
	7	- w.	cı	T								i.	-	Twa) =	130	6	+0	.711	(99	3./ -	- 130	.6)
						:	1	.8	:		,	:	<u>.</u>							:			
7,	- & C 11	7	=7	FEIN	-	٧	<u>W</u>	ω_{i}	CI PG	re Cep	SA A	x = 9	793.	173	?e5(e	0,27	4Χ. 7 φ (743. 44	, 8 - (0, 0	130. 253	رئ (:	- 7	1024
					=	3	30	e. 3	}`;	-	:												: ;
2	Ec			: ::	261						÷											· · · · · · · · · · · · · · · · · · ·	
							:							:	:			•			:	270	
				Gou	T		rGI	N	V	Pó	CPP	<u> </u>	ئ	≾ (¢,		- <u>-</u>	764	46	ے ',25	: <u>−</u> (3)	. 26 	6 1	0 -
				:			• • • • •																
· · · · · · · · · · · · · · · · · · ·		;		:			:																

ÆEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 Checked By:
 Date:
 Sheet No:

 _____ of _____

Calculations For.

TABLE 7

-				5	•					i	:	:				:	:	:			:	i -	:		
			5/24	: ::		. į		······			:			<u></u>				· · · · · · · · · · · · · · · · · · ·							
	76	RC	ئىر ئى	7	5 7	67	n	! V	By	, U	OL	UU	uō	•				: :						 !	·
			m	OL] -	-	18	00	,	_	0	0 (2					 !	<u></u>					: 	
					s 7		18	3.0	16		7	7. 1									<u>.</u>				
				no	L TG		5	4.0	2.7	3									<u>.</u>	 !	<u>.</u>	<u></u>	: : : :	: :	: : :
						ļ	: 			i	ļ		Ε,	45						ļ	: :		 :		ŧ !
			70		2	46	.7:	3 †	99	9	-		ر ه.م							: : :			:		:
7207		بر ــــ	- A.	,	L,	N						1.25	! ! .	_	150	1 <	(<	81) <u>=</u>	Q	96	1	چ) ہ	·	·
												: :		: 3	<u>.</u>		į				10		. —		
		ļ) 57,	7	: /	40	7.	3			5	ر∷ک	. للم	- /	1,9	8	3.								· · · · · ·
7					Fa	<u> </u>	/ À /	-م			: :		=	_	سے ,	: 	: : : / /	æ.) =	2	4-	7 P	·<1.	4	: -
					:					:							:			<i>~</i> ·]				
	: K.	•	<u>ر</u> ا	Jan 127.7	-		// 8	16.	.₹	· ·			2		1. 5	81	5					:			
		1	h_s	:	}	: :										:				:	: :				
				Ou	÷ 57	<i>べ</i> -	4,	~ 6	· -					-			()				 !		,	 	 :
			151	ou		-	//	0	. V																
TRIER	-		-	1.,	1	لمرية	· 6	<u> </u>	A 7	(<u>(</u>	<u></u>		عَجُ وَ		9-1		4	9			·				
			f)),	= ,	Э y.	ر ٿ	/			4,	= .	29	<u>2</u> .	3.3) 		> (0	9	74	140	F		: :	
			<u> </u>	P	:	P	/	~ P.				n		/ 1	/-						:				
7.50	.		l.6	' Y,	-	<i>/</i> Y	7	F	<u>-</u>):		₹¥,	<u>ح (</u>	(-6	3.7	7)	Ξ.,	5.	93					•	
7140	・ベ		h;	=	19	'5,	71								🗸										
	· · · · · · · · ·		h	_ = (ر دور	3-	0.	フニ	\S(29	Ç, ₹	<u>.</u>	- 19	جرآ	71)) =	6	25	<i>ۇ</i> . د	18,		'			
		··· · ·····	'	-	- 9																				
				َ - ح	/	~ <u>_</u>	 : :إ			•									• •						
<u> </u>		-																							

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

TABLE 7

(0) $(T_{1}, T_{2}, T_{3}, T_{4})$ (0) (T_{2}, T_{3}, T_{4})
WST CPRT (TOXH-TSTOUT) = WCAS CPORE (T2-TOXH) [1800 (0.47) + 15405 (0.248)] TSXH = 15405 (0.248 × 465) + 1800 (0.47) (412)
ToxH = 455.4°F
$h_{1NL} = W_{57} h_{57/N} + W_{6} h_{1} = 1800 (1407.3 + 15405(292.33))$ $W_{57} W_{6} = 1800 + 15405$
= 409.0 ¹³ /#
$h_{c,x+2} = \frac{W_{s,t}}{W_{s,t}} + \frac{W_{o,h_2}}{W_{o,h_2}} - \frac{1800(1247.1) + 15405(222.28)}{1800 + 15405}$
hext = 309.5 = 1 =
$WK_{mag} = \frac{(17205)(469.0 - 329.5)}{2505} = 537.4 \text{ HP}$
Qp. = 537.4 (2545) = 1367,798 ETATI @ TUREING
Spot = WC, CT = 17205 (C, 074) (4554-66) = 1,863,983. BTILLY WASTO HOAT BOILORS
Q = Wst hfg = 1800(891.7) = 1,605,060 B7"H
TSTACK = TOXH - Q = 455.4 - 1605060 = 115°F

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

Calculations For:

ECO#7 ITERATION 3

CA	S.E	8	15	00	#/44	2	50-	P	67 <i>6</i> 7	\ <7	-4-70 w	. 6	80	Psk	ر ح		~~~
						i									:		
		717u.	:		: :		1 :	- ;	: -	FOR	zmu	LAB	OF	- CA	SÕ	اک -	võ.
7,	45	Fo	LLO	wr	బడ	Rō	Su	د7:	s 								. :
11	7-1	GAS	Co	۵دم	1710 F	ر د د											:
	<i>,</i> , , , ,																
		TWG	. =	12	4,2	°F											
		CPWG	=	0.	270	7#	٥F										
		Two.	oT =	: 7	42.0	>°F	<u>;</u>					<u>i</u>					
		TPG	ουΤ		35 a	.2°F	=										
						• :											
	Econ	DOMIZ	-6R	0				i				· · · · · · · · · · · · · · · · · · ·					
	AL	دوم	ou	TLE	7 .		Fo	ONO	SALE 1 5	2 ₀ ス	T0	CC	NTA	/ N	5MI	4 L L	
:		ૄ૮₹૪ે.		1	:		:						1 1	1			
				<u>i</u>									10				
		QFW	= u	F	h=	W_{Pc}	CP_F	Bi A	TPG				· · · · · · · · · · · · · · · · · · ·		ļ)		
		Δh,	=	17	1041	(0		V/2	52.2	- 26	(5)		<i>59</i>	 202	/44		
		$\omega n_{\tilde{r}}$	τ ι :			15		<u>)(</u>	24100		_ لريو	<u>-</u>	S /.	⊃ 7 <u>.</u> :			. :
	<u> </u>	QFU	,	_	4)	CP.	<i>□</i>	<u> </u>	1500	1/1/	324	- 151	s\ = ,	2610	00	B741	-1
	<u> </u>	φ_{F}	3e ⁻ NS		File	-1 F	ω ⁻ 			· / / (
* * *********		,=υ	ر ا	ΞΩ	ul.	1.Z.K	: lui	u :				-05					
		······································	s Tec						ก ^{ระ.ภ} ร	- /5	500(2	31.2	7	=	= 10	13,8	THI
			··············			() . /	f G		00(6 9	÷	200	.i 3 1 5.	^ P7	 LL H	• • .	
			PREC	= 1	FW	ヘクァ	ω -	15		ا الآخ الما ا		ਾ ⊃ ૪ ੋ	ا ل می از				,
: 		· · · · · · · · · · · · · · · · · · ·						·									
	· :	: i			:												

Æ

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

TURBING	<i>z</i>	
Mel	s ₇ = 83,26	
mo	L _{TC} = 546.73	·····
	= 13,22	
PARTIAL PR	= ,1322(58) = 7.67 PS16 - 22,37 PSIA INLET	*****
h.	71N=1413,4 @742F 5571N=1,985	
	(= ,1323 (16) = 2.11 PSIA	
	570UT = 1159 S=1.985	
	15700 - 1403.4725(1403.4 - 1159) = 1226.2	. ,
	T37047 = 367°F	., .
	TIAC TI. = 58-7.67 = 50.3 PSIG OR 65.0 PSIA	
	r1=24.16 h,=291.81 -@ 742°F	
	$P_{r_{0}} = 24.16 \left(\frac{16}{65} \right) = 5.95$	
THORR h		
	$n_2 = 291.81 - 0.725(291.81 - 195.9) = 222.28 \frac{3}{4}$	
	Ta= 465°F hoxH= 311.4 = 1/4	
	TEXH = 449.7 WKTURE = 525 HP	
	hine = 390.4	

_	
	 =
	 ==

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

										<u> </u>		· :	:				:	:	:	:	:		:		·
	WA	5	7	-	Hē	74 7	_	3	01i	ر تع	૯ :	 2			•••••	ļ	: :		·	<u></u>	. <u></u>	· · · · · · · · · · · · · · · · · · ·			
		:										,	············						1	:	:				!
		4	=	(u) E T	_	W,	TEE) /	h+	<u>=</u>	- (15	00 •	-/	43)(8	91	.7)) =	, =	110	03	37 :	37c1 H
												i	<u>.</u>	i;					; ;	ļ	į			::	
		′5	7 A C	K	-	<u>غ</u> /	X.A	·	w	زروح	CF	- v u	=	44	19.	7 -	_	169	05	(0.	<u>`</u> 27'	5) -	- /	87	4°=
										7 F .T		# 7- M								: :	<u>.</u>	: :			· · · · · · · · · · · · · · · · · · ·
												<u>.</u>					••••		<u>.</u> 			 !		:	
						••••												:			} :				· · · · · · · · · · · · · · · · · ·
												· · · · · · · · · · · · · · · · · · ·						i i i		\$: :	; ;			
												ļ							: !		: ! :	: 			
												: :									ļ !				
		•																	: ,. : :	! !	: :		?		
																			:	: 	I	: :			
										· · · · · · · · · · · · · · · · · · ·									:	 		· · · · ·			:
					:															:		:			·
:									- :										:	·			:		
	:				: : :			: 															· · · · ·		
		i			.	: :: :		······································						•••••						· . · · · · · · · · · · · · · · · · · ·					
			:				·· ····· ? :													·					
							:						ا								:				
·		•		:				:																	•••
																	,								
				:																					
		; :																							

_	
	 =
	≅

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For. ECO #7 - ITERATION 4

CASE C	1400 THR STEAM @ 80 PSIG INJECTED @ TAIL
	& WITH PRODUCT GAS LEAVING THE
	HOAT RECOVERY UNIT AT 245°F
11) ()	
WET GAS C	
WTO CPTG (Tw	2c - 85) = W ST CPST (TSAT - TWG)
15405 (0.248	8)+ 1400(0.47)]Tw6=1400(0.47)(324)+15405(0.248)(8
$T_{\omega_G} = 120.1$	
CPWG = WTG	CPTG T WST CPST - 15405 (0.248) + 1400 (0.47) - 0.266 1/2 WTG + WST 15405+1400
	Wr6+Ws7 15405+1400
	Two + EFF(TPG,N-Two) = 120.1 + 0.711 (993.1 - 120.1)
70 - 7	740.0 F - Our + Offit (15405+1400)(0,266)(740.8-120.1)+4
PGoui -	740.8°F PGIN - QWG + QREINTHOS (15405+1400) (0,266) (740.8-120.1) + 4 WFG CPFG 17644 (0.253)
	993.1-635.8 = 362.3°F
Economiza	ER :
QFW=	WPG CFPG ATPG = 17644 (0.253 (362.3-245)
=	523619 = 374.0 B/H
QFWSON	= WFW CFW DTFW=1400(1)(324-\$50) = 243600 BTUH
*	= WFW AhFW - QFNSONS = 1400 (374.0) - 243600 = 314 #/H

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

							: :	: :	
Tuki	3145:								
, , , , ,									
	Mel st :	18.016	= 77 7	,					
		18.016							·
	MOLTG	= 546.7.	3						
	70=.	72.7 546.73+77	,,, = 12 ,,7	,44					
						\	, 17 1	De 1/-	
INCE 7	- ST6 AM	PARTIAL	PESESU	R5= ,	1244 (5	8)= 1	ا کی کھر	- 510	
		= 1402.9							
								;	
OUTLET	STEAM	PARTIAL	PROSSO	1. P.F = .	1244(16)= 1	1.99	PSIA	
TX	LOOR. her	out = 115	1.48/4				:	<u></u>	
	13.6	out = h57,	2006) - 140	3 9 -	725(140	 -9.c
	hsτ	OUT = 1571	N - 0.72-	CISTIN	,,,,,	7 - 7			
		= 123	20.5 3/4	+					
	l	out = 35		<u></u>			 :		
	57	out				· · · · · · · · · · · · · · · · ·	. :		
INLET	GAS PA	ARTIAL PRI	ies. = (5	8-7.2	2=50.	78 PSI			
	P 3.	U 58	1 - 00				01	21201	K
	$P_{Y_1} = 2$	7100	h, = 29	7, 56					
	Pr. = F	TI (16)	= 7.59	; .					
	<u> </u>								
THOO	e h = =	210			: · · · · · · · · · · · · · · · · · · ·	/-0	<u>:</u> :	214	
	h==	h, - EFF(4,-210)	= 291,	56 7	'25(29 :	1,26 -	210)	
		232,4			and the second				

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

1400 (6,47	7)+ 15405 (0.248)	TEXH = 15405(0,248)(506)+1400
TEXH =	483.7°F	
		- 1400 (1402.9) + 15405 (291.56)
763	WST KSTINT WGhI WSTT WE	1406 + 15405
3	= 384.1 %	
$h_{EXH} = 0$	Wathstout + We ha	1400(1220,5) + 15405(232.4)
	W5, + W2	1400 + 15405
	314.7 3/4	
WKTURE	= (1400 +15405)(380 254 5	4.1 - 314.7) = 458 HP
	458 (2545) = 116	
	W W.) h.	=(1400-314) (891.7) = 968386 87
STACK	WOO CPW	= 483.7 - 968386 16805(0.266)
	= 267.1°F	

_	
	=

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

Calculations For:

ECO #7 ITORATION 5

FINAL CASE:				
	LOAUING T			
	WASTE H	FAT BOI	LORSIN	BOTH
	TURBINE	EXH. GAS	& PRODUC	GAS LUG
	TAILGAS			
WOT GAS CO	DISCHOLLINGS: (USING EC	0 4 RES	ucts)
11)- 10- 17	\ _ //	C = (T		
WTG CPTG[17	ro-Two) = Ws	T CPST (SG 1SAT)	
[15405 (0.248]	1500(0.47)	Tw6 = 1500	(0.47)(324)	+ 15405(0.248)
10/07	6			
$T_{WG} = \frac{667.}{888.}$	8 F			
			FRS TURBIN	THULET -
ATTEMPERATOR	L DPRAY.	, N	MAXIMUM MI	702 2
0 = W	Cene (Two -)	745 2150	105+15m)(0.3	no Y 888.8 - 745
= 6	56259 BTW	Ħ		
$\omega_{AT} = \mathcal{L}$	PAT _ 656:	259=7	36 #/HR	· · · · · · · · · · · · · · · · · · ·
h	56 2 59 BTO FAT _ 656: Fg 891.9	7		
				······································
	45 WASTE HE		_	
, ;	50°F FEEDWA	•	and the second s	DUE! GAS
LEAUIN	6 BOILER @	250		250
Que = WPG	CPPG (TPBOUT - 2	2s) = 176	14(0.253)(4	33 ->2 5)
8/	6900			
= 92	6900 8498 w.o.	CONSIDERIA	ic conden	SATON
$W_{e,r_0} = C$	DREE - COTENTHE	2677	- 371 芍	HR

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

					<u> </u>	
TURBING:	- 2 2					
MOL - 1500+736	- 124J					
MOLHO = 1500 + 736						
MOLTO = 546.73						
ay = 724,183.3	13,2 - +85					:
0 = 724,183.3 546,73 + 124.1	- /0.5					<u>.</u>
STEAM PARTIAL PROSSURE	132	(50) -	7.67	PS1/2	INLO T	
JIBAM TARTAL TRESSURE	-0.165	ے رہ	2.11	., _,		.l
14049	= 0.185	(16) =	2.96	. PS/A	OUTCE	····
h 51 N = 7404,8 /# @	745°F	5 ₅₇ ,	N= 1.	974		:
THER 1 STOUT = 1180.7 3/4				<u></u>		
						: :
hstout - hstin - EFFChs	110-1180.	D=141	74.8 –	0.725(1404.8-11	80,7
= 1242,3 3/#				÷		
757047 = 402°F				. i j		
TALLCAS:			· · · · · · · · · · · · · · · · · · ·			
Pr, = 24.38 @ 1205	R	h 761 = 3	92.5	8		
	• •				<u></u>	į
$P_{r_0} = P_{r_1}\left(\frac{16}{70}\right) = 3$	5.:5/					:
THEOR. h = 192.30						
h= h= = FF(h	TO1 - 192,3	= 29	2,58°-	0,725	-82.696).	172
72 4 8/ = 219.9 1 /#			455	°=	: · · · · · · · · · · · · · · · · · · ·	
WKTURE = WSTAh ST +	Washa	= 2534	(1404.8	. 1242.8)	+15405(29	32.58
	5			2545		
535 5382 HP			,			

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

	-:	:	: :	:			:	: :	: :		:	: :					:	. :			
	, , ,				Ξ			,				/		Ð			E	:			
1	I U R	< B	IN	5 4	-	PAL	LS 7	- 1	NA:	57 <i>6</i>		15 A	17	<i>⊃</i> 0	146	R	φ				
	u)	-	Ü	U571	c C	P(Tern	. .	250) + L	ا سلا	Cal	(T.		250 525	5 -	WA	7 T-PAT	-(32)	 -15	رو
		TE	7			<u> </u>	A	7_	1 +	<u></u>	16	76	<u> </u>						-(324	······································	
						~ <i>F</i> #(<i>v</i> –	') - u	۱, د	746	}							250	:		
			_	87	16	5,4	7)(4	102	ر 2:	50 25)	+ 1	540	os (ø. 24	(8)	(45	5 -	250	5) =	7 36(174)
								 نه)	3.74	-150	÷(د	- 8	91.7								
				78	36	# /	/					<u></u>					:	: :	l :	ļ <u>i</u>	
	!		=	8	75	//	4 R						i						i	: :	
							76	16	7	86		15	552			· · · · · · · · · · · · · · · · · · ·					
	10	7 A C	, ,	575	PHI	=	82	247	7 + 8	95	= }	19	46	#/H/	e		: :			: .	
			:	•		- ;		: :		:		1 1								<u>.</u>	
		<u>_u</u>	57	7//	sun	رن 0	-		ΔT 44	REC	<u>:</u>	<u>.</u>									
						:	1 1			:		1 1						······································		<u>.</u>	
44	0 -		7	- LVG	= =		150	0 (440	- p =	(ي:) 				;······		:			
· · · · · · · · · · · · · · · · · · ·								17	16		· · · · · · · · · · · · · · · · · · ·	! 				: !					
				, .	=	2	52	٦	= 4	<u> </u>	U	50	- 7	HI:	5	F	o R	Ŕ	E40	407	24
				L 42																	
: : : : : : : : : : : : : : : : : : :							i			. ;			LOP	ζ ζ	- il j	L	F. 7	/ 	51	17.	·
						 					:		İ		· · · · · · · · · · · · · · · · · · ·		:				
	w_{s}	- C1	e ET	(To	XH.	- 40	02))=	WIG	CP	(4	55	- 70	XH	7					•	
· i	:		: :	6 X l		4	46	0,-	:		: ::			· . · · ·							
				•	•	:						:	i								
				=	WE	Y N			<u>⊿</u> 7			169	905 401	0.2	75	Ya	50	- 6	6		
	С ү									.> ⊾ek	₹ ₩	,, ,	:		٠٠,	/		. •	- /		
1 .			:	=	92	16	,90	ድ													
		×; · · · ·						 	· · · · · ·		V.	16	903			7-4	146	/ a`)= 18	7949	466
: :	4	Re	: 5		We;	z _{H.} C	Pax	+ (EXH	-T _{ST}	*)-	77	640	(0.3	75.)(7	55 .	ر ^ن ھا۔) - 16)	-
<u> </u>																				_	

	Made By: PD C	Date: 12-95	Job No: 95094-00
I	Checked By:	Date:	Sheet No:

Calculations For:

ECO #7A

WST = 1200 #/HR - CLAYTON QUOTATION
$\frac{T\omega_{Go}-T\omega_{GI}}{T\rho_{GI}-T\omega_{GI}}=0.711$
Two2 = Two, + 0.711 (Tpo, -Two,)
WST CPST (TST-Took) = WTO CPTG (TOOK)-TTG)
1200 (0.47) (324-Twa) = 15405 (0,248) (Twa - 85)
TWG= 15405(0.248)(85) + 1200(0.47)(324) = 115.7°F
Two2= (15.7 + 0.711 (993-115.7) = 739.5°F
TPG2= TPC1 - QRECOU - 993 - (1540\$+1200)(0,275)(739.5-115.7) WPG CPPG 17644 (0.258)
TPGD= TPCI - QRECOU - 993 - (1540\$+1200)(0.275)(739.5-115.7 WPG CPPG 17644 (0.258)
= 367.3°F TURBINE:
= 367.3°F TURBINES WG-CODSTITUTE # MOLES/HR No. 505.16 A 6.21
= 367.3°F TURBING & WG-CODSTITUTE T MOLES/HE No 505.16
= 367.3°F TURBING & WG-CODSTITUTE = MOLES/HE No. 505.16 A 6.21 NO. 30.62

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No: of

HO PARTIAL PROSS = $(58+14.7)(.116) = 8.43 \text{ PSIA}$ $h_6 = 1403.5$ @ 739.5° F $S_6 = 2.0667$ THOR. $h_2 = 1255.4$ $h_3 = 1255.4725(1403.5 - 1255.4) = 1296.1$ $T_{EYH} = 517^{\circ}$ $P_{F_1} = 23.94$ $h_{G_1} = 291.05$	
$h_{S} = 1403.5$ @ $739.5^{\circ} =$ $5_{G} = 2.0667$ $THBOR: h_{2} = 1855.4$ $h_{3} = 1255.4725(1403.5 - 1255.4) = 1296.1 TEXH = 517$	
$S_6 = 2.0667$ THEOR. $h_2 = 1255.4$ $h_3 = 1255.4725(1403.5 - 1255.4) = 1296.1$ $EYH = 517$	
THEOR. $h_2 = 1255.4$ $h_3 = 1255.4725(1403.5 - 1255.4) = 1296.1 TeyH = 517$	
h= 1255.4-,725(1403,5-1255.4)=1296.1 TEXH=517	
h==1255.4-,725(1403,5-1255.4)=1296.1 TEXH=517	
	00
$P_{C} = P_{R}, \frac{15}{64.3} = 5.58$	
64.37	
THORK h = 192.3	
$h_{\omega_{62}} = 291.05725(291.05 - 192.3) = 211.34$	
Twa = 420°F	
WKTURE = 1200 (1403.5-1296.1)+15405 (291.05-211.34)	
2545	
= 533 HP	
1200(.47)(517-TwG2)=15405(.275)(TwG2-420)	
$\frac{1}{2}\frac{2}{2}$	
Tue 2 = 432°F	
63°F LESS THAN BASIS FOR	
CLAYTON QUOTATION	
Assume System W.O. PR.GAS RECOVE W/	
STEAM INJECTED IN TAILGAS @ OUTLET OF	
ABSORPTION COLUMN WILL PRODUCE 525 HD.	

Made By:	Date: 12-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No:

Calculations For:

TURBING INCOT/OUTLOT PIPING.

WET GAS LEA	9 VING HEATER	P	
16905	, 1R @ 745°F		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		
DRY GAS = 15	320 #/HR		
HOO VAPOR = .	<i>a</i> -		
HOU VAPOR -	X085 /HR		
CONSTITUENTS	# MOLOS/HR	To BY Vocums	
DRY GAS	1500 541,99	82.4% 80 26 +7.6% 13	6.7
	657,73 625,25	133 7,7	
H.D PARTIAL	TRESSURG = 0	176(58) = 10.2 1	² 516
ر م	(7-1)	1155+440 5.21 7) (1205) = 7,14 1 58-70-2+14.7) DAN & KEYES	T/#
$\mathcal{V}_{G} = \frac{I_{ATM}}{I_{ATM}}$	(Poc) = 14.7(13.0 (Poc) 518.7(58-70-2+14.7)	
V4.0 = 28.64 18.38	FT FROM KEET	NAN & KEYES	
ر بر 15320	(9.14) + 2085	(28.64) = 9.82 1	=13/#
WG	79405 16902		
1/2// = 4	405 \$ 637	=7 / (11/2)	18089
VELECTI 9 - 17	60 M/HE (31.7 IN)	~ 1 /4 (144 /FT) =	13,804 FPM
NRE = VDp	=(72804 F/MIN)(6	.357 IN) (0.07651 7F	73)
	(218×107 #/SEC-1	T) (60 50 6/min) (1:	219/FT)
7947	259 250648		
· · · · · · · · · · · · · · · · · · ·			2,
$\Delta P = 3.4 \times 10$	= (3.4x	10 ⁻⁶)(0.018)(100)(17	7405) (9.72)
d :		(6.35/)	
= 1.5P	·S1		

Made By: PD L	Date: 12-12-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

	:		:		:		;	:		:	:			:	:	:	:	:		:	:	:		·	
! !										١)	ļ	ļ			.i	<u>į</u> į		: : :	 !		: 			 :
	/	ur	BIL	ی د	يا	· <i>}-1</i>	ላ ላ	us	<u> </u>	V	0	Lo	21 ! !!!!	7	60	<u> </u>	.i			: : :					
		ひ。		10	2 7	Pe	۱۵۱	10	135 127	> Fĭ	3/4	1/4	440 750	0=)		2	1.6	8	=	, :	/.			
				-	X1/	ر ن ہے	=\ /	15	. 7	Ρ<	10	20	ű,	Ų,	/ <u>-</u>	.	38	>> £	7		′ /	#			
				10	15+	ا ک	7 (12	, _	1	(/ 1)	ر.	/			· · · · · ·									
		1/-		<u>.</u>	.,,.	_	16	905	ت _	‡/,,	p/	34	68 UG	FIZ	3 \	(14	14	13/E	~ ²		6	, 2	20		PM
		Vδ	100	C / /	<i>y</i> . •	-	<u> </u>	70	20	M/	<u> </u>	11	$\frac{\varphi_{I}}{II}$	73	<u>ک</u> ام ر	(2)		<u>., , , , , , , , , , , , , , , , , , , </u>		=	75	3,6	-1 &	2 =	PM
								4	- U	714	./.	<u> </u>		/ 2		: <u>-/</u> :		<u> </u>			 !		<u> </u>		
											: (: :	 !	 :				 !				 :	 :	.i :		
								: :			: :					: :					ļ :	; ;			
												: :] :	} :] :			ļ !				
											: :										 :	<u></u>			
										· ······;			} :			å : :	! !								
										:	: :			: :::::		:					· !	 :	:		
										···· · · · · : :	:					· ······ ·	:					:	: : : : : : : : : : : : : : : : : : :	:	
:																					. •••••• • •		y		
	· . · · · · · · · · · · · · · · · · · ·	:											: ** * * * .					:	:						
		· ········							:				:							*******					
			:							:			:	٠									:		
		:															· · · · · · · · · · · · · · · · · · ·					:			
		:	:		:										.,										
		:			:					:	•				:	:		:					: ***	•	
																	:		:						
					:		:					:					·	:	:		: :	:			
				1	:	:	:																•		
			1	:			:	:																	İ
			:		:	:								:											
		:																							
	•	:																							
i		•																							
							,										**								
			:					:																	
	:	_	:																						

Made By:	Date: 11-14-95	Job No: 95094-00
Checked By:	Date:	Sheet No: of

Calculations For: ECO SAUINGS

No. 1	#. 26650	/3			
OPERATING HO	ars Por	ISAR =	4 7/ms (247)	D)(12 Myr) =	1152
				52 ^H /YR)= 23	
576AM No. 2	INCREASE DEMA	= 12785 ND = 793	5 110 374(11 (.748) = 5	52 %rD= 10. 93.16KW →	537.79" #13050
				2) _ 885,	
STEARI	CFFS67 =	2990.8	1150) =	344	15.402" # -4970
Øo. 3_	Janaru- 131200		76577	225,90	
104	¥4850				
ELECT.	SACTOCES EMAND = C	= (2018) 193-636	2-1618.6, 1550 (1748)= 11	7.44 -> \$25	85 N
NO. 5	27111 7 4508	sc = 131	850 ···	(1152) = 460	
578AM Stean	PEANT MAI	560 (71 694 ELF= 169	4.1)(1152)= 4-560)(1152)	= 154368±/ _/	3, 8 94 R

_	
	 =

Made By:	Date:	Job No:
Checked By:	Date:	Sheet No:

										. 																
											i		:				1							:		
	1	No.	7	·					÷					,		:	:							:		
	<u> </u>	<u> </u>											<u> </u>	} ³	ļ		······································	<u> </u>	i		÷			÷ · · · · · · · · · · · · · · · · · · ·		
 						ļ			/			.i		<u> </u>		/	1.		ļ	, ,			· /_	:	· · · · · · · · · · · · · · · · · · ·	:
]	EZ	.6C	-7	5/	9 V	/N	65	5 =	- (2	1018	3,0	1 - 1	145	15.5	2) <u>(</u>	11:	52.) =	C	80	ے.	10	6		:	
																10	00								:	
ADDIL	,5.		ne	F	2 4/	.17	- 1	NAL	, 51	·IP) <u> </u>	421	,#/	10 ((11	55	, \ =	- L	10	ર ફ	>46	7 =	±/4	'R		***
117	•	٠.	1	<u> </u>	T.f.1	-					:											<u> </u>			;·····································	
							B				<u>.</u>		į	<u>{</u>	<u> </u>						ļ	:		·		; ;
l							۸.	412	<u> </u>	ANI	Nu	ΑL	R	6CC	ce (214	عد	E	xP.	P	<u>.</u>	:		; ;	<u>.</u>	i
	: :						:			-		: :	1 1	1 1		:			1 1	1		:			:	:
	7) <i>ō1</i>	-14		, <u>=</u>	٠) ا	74	2_	5	·/~/~	\mathcal{I}	745	- جرح	/·	74	2	፟.		#	3,5	ر کر عز	₹	-		. "	
		201	n.a.	NU	1			ر ز	U 1	K.	<u> </u>	4.49		1.5	(71	0	ر	<u>.</u>	[,	<u>.</u>				
						<u>.</u>		ļ	<u>.</u>		·		ļ	ļ:					<u> </u>	<u>.</u>	······	, ,	·:	<u></u>		
		<u>i</u>									:		<u>.</u>	:		: .:		.i		İ	<u>.</u>		: !:	:		. .
					,	:							;	1		:			:	:	:	:	:	: !		:
								:	:	 !			. " ";						:					:		*
l						<u></u>			i: :			ļi				.i i	ļ	ļ		············			:			
						ļ	ļ:	ļi			·				į			: :	:	ii	: • • • .		1 '	;	; ;	
I				<u></u>	<u>.</u> !	ļi	<u> </u>	<u>.</u>	: :				; ;:		: 	<u> </u>	i		į	i :	:		İ		:	
						:					:				:		: :		:		:					
				<u></u>			:	 			Y		:			i	ý · · · · .	. " ")								
					········	 :	i	· · · · · ·		<u></u>	.:					·			,		· .		÷		:	
1				ļ:	<u></u> j			·	:	i :	5	i	; ;;	j		:				;	I		:			
	:	i	ļ.,			i!	:!	1	1	:								:		****			:			***
					:		: :	:		. :		: .	:		:		: :				****		1111			
			· · · · · · · · ·		;	:									: •		·········									
1			·	<u> </u>				·	<u></u>	l	1000						A	<u>:</u>								
1			i		<u>.</u> :	· · · · · ·		i	i ::																	
			:				: :															3				
1				: :	: :			:	*** * *				*******								:					
I		· ;					, i	·		٠											÷	٠.		* *		
:			ļ		·····	, <u>;</u>											·			:					•	
1								1	:	:								***								
i				: :	****												**					**				
1	* **	•	:																							
			l			::	:																			
:								•																		
,	****																									

REFERENCE MATERIAL

FIGURE 16

DATE-1-11-16

5K* 228 6

DRAWN.PB

HOLSTON ARMY AMMUNITION PLANT HOLSTON DEFENSE CORPORATION

JAN 1995

AS BULT

BIDG. 30 PB, WITRIC ACID MFG.

HOLSTON ARMY AMMUNITION PLANT HOLSTON DEFENSE CORPORATION BIDG: 302B, WITRIC ACID MFG. KINGSPORT, TENN. AS-BUILT

APP'0-7% SK# 2286

DRAWN.P

Doudiller-

APRIL 1995

DATE- 2-14.

55 TPD UNIT FIGURE 16

Technical Report No. HDC-39-77

		•	Commente	Basis: 45 TPD production.
			Rate	.2 Spm
	Heat Lost		Source	
	He	1000	Btu/hr Source	4.69
-				
LANT X DING 302	Heat Removed		Source Gal/min	
INVENTOR PINCA BUIL	Hea	1000	Btu/hr	
HOLSTON ARMY ADMUNTION PLANT PROCESS EMERCY INVENTORY NITRIC ACID HANDEACTURING, BUILDING 302-B	ered		Donor Recipient	
HOLSTO PROC NITRIC ACID	Heat Recovered		Donor	
HIT	=	1000	Btu/hr	
			1b/hr	694
	Heat Added		Source	Steam
		1000	Btu/hr	631.9

Ammonia Vaporizer

Equípment

Converter	6280	Reaction	563	Asmonfa	Product	1,740 R.W.		77.5				,		
			2100	Alr	Product Gam									
PRE-Compressor	1536	Elect				3,400 R.W.		329	307	Hachine	H	Mechanical & electrical losses		
YRD-Сошргенког		٠	1082	Tail Gas	Air			ý.	. 09	Exhaust . Gas	Ē,	318.8 hp-hr/hr 75% turbine efficiency.	ú	
Air Prehenter						2,100 Air		16,556*			1			
Tall Gas Heater				•		1,440 1	Tail	15,450*			a.i	*Pounds per hour.	\- -	
Cascade Cooler	4733	Reaction 17,644	41	:		7,963 B	ж.к.	581				70 - 71 - 71	_	
Absorption Toest	1331	Reaction Condensate 1,256 Feed				1,453 R.W.		581	٠			, (3d.), (s.),	· S	<u> </u>
Bleacher									112.5 6	61X 6147 Acid 1b/hr	- 10°	(S	HEET	MC E
Total Process Energy	16,273	15,273 Added or Recovered		•		18,645 Removed or Lost	moved of	r Lost				TEPRINCE = 2X = 00 PIECE	NO LATES	NGIN
Bolston Defense Corporation	lon	·			TABLE 28	• •					Kir	Kingsport, Tennesses	O BY	EERS, PRO
		pheci Sam) hhi	•									OF 10 DATE DATE	INC. JECT <u>=</u>
	.~		i N	7.,	•	• •			•				<u>></u>	

Ä N

JOY MANUFACTURING CO. BUFFALO N. Y.

4-26 THERMAL PROPERTIES OF SUBSTANCES AND THERMODYNAMICS

vapor pressures (p, psia) at various temperatures (t, deg F) are as follows:

i P		300 0.701			500 16.29
t p		650 73.55		800 221.0	

 sures. Table 32 (Badger, Ind. Eng. Chem., Sept., 1937) gives properties of this eutectic.

Pure Hydrocarbons The vapor pressures of various commercially important pure hydrocarbons are shown graphically in Fig. 25.

Ammonia Vapor The properties of saturated and superheated ammonia vapor have been determined accurately by the NBS (Circ. 142, 1923). The principal properties are given in Tables 33 and 34 and Fig. 24. Properties of aqua-ammonia are given in Fig. 26.

In these tables, the entropy s_f and the heat of the liquid b_f are taken as zero at -40° F instead of at 32°F, as is customary in most tables.

Properties of Other Refrigerants Complete and consistent

Fig. 22 Enthalpy-entropy (Mollier) chart for steam. (From "Steam, Its Generation and Use," The Bahcock & Wilcox Co., 1963.)

Thermo-12® Gold

Heat Transfer Tables

Pipe and Block Insulation

Nominal Pipe Size 18" Metal Jacket

Insulation	Pipe (Operati	ng Tem	peratu	re (°F)											
Thickness	20	00	30	10	40	0	50	0	60	90	80	0	10	00	12	00
(inches)	HL*	ST*	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST
Bare	1070	200	2442	300	4309	400	6783	500	9997	600	19265	800	33526	1000	54455	1200
1	157	122	306	153	469	183	651	213	854	245	1345	313	1978	3908	42792	476
1½	123	114	236	137	360	161	497	185	650	209	1018	263	1490	325	2094	394
2	100	107	192	127	291	146	401	165	523	185	814	229	1188	280	1666	338
2½	85	103	163	120	246	136	338	152	440	169	685	207	997	250	1395	300
3	75	100	142	114	215	128	294	143	383	157	594	190	864	228	1208	271
3½	67	98	127	110	191	123	262	135	341	148	528	177	767	210	1071	249
4	59	96	113	106	170	117	232	128	302	139	467	165	677	194	945	228
4½	56	95	106	105	160	115	218	125	283	135	438	159	635	186	886	218
5	52	93	98	102	148	111	202	121	262	130	405	152	587	176	818	20€
5½	48	92	91	100	137	109	187	117	242	126	375	145	542	168	756	194
6	45	91	86	99	129	106	176	114	228	122	352	140	509	161	709	186
6½	43	90	81	97	122	105	166	112	215	119	332	136	481	156	669	178
7	41	90	77	96	115	103	158	110	204	117	315	132	456	151	635	172
7½	39	89	73	95	110	101	150	108	195	114	300	129	434	146	605	166
8	37	88	70	94	105	100	144	106	186	112	287	126	415	142	578	161
8½	36	88	67	94	101	99	138	105	179	111	275	124	398	139	554	157
9	34	88	65	93	97	98	133	103	172	109	265	121	383	136	533	153
9½	33	87	63	92	94	97	128	102	166	107	256	119	369	133	514	149
10	32	87	61	92	91	96	124	101	160	106	247	117	357	130	496	146

Nominal Pipe Size 18" Dull Surface

Insulation	Pipe (Operati	ng Tem	peratu	re (*F)											
Thickness	20	00	30	0	40	00	50	ю	60	ю	80	0	10	00	12	00
(inches)	HL.	ST*	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST	HL	ST
Bare	1070	200	2442	300	4309	400	6783	500	9997	600	19265	800	33526	1000	54455	1200
1	193	105	366	123	554	141	760	160	991	179	1545	219	2257	264	3172	313
1½	144	98	272	112	410	126	561	140	729	154	1130	186	1644	221	2301	26
2	114	94	215	105	323	116	442	127	573	139	886	164	1285	193	1795	220
2½	95	92	179	101	269	110	367	119	476	128	735	150	1065	174	1485	202
3	82	90	155	97	232	105	317	113	410	121	632	140	915	161	1275	18
3½	73	88	137	95	205	102	280	109	362	116	558	132	807	151	1123	17.
4	64	87	120	93	180	98	246	104	318	111	489	124	707	141	984	16
4½	60	87	113	92	169	97	230	102	298	108	458	121	662	136	921	15
5	55	86	104	91	156	95	212	100	274	105	422	117	609	131	847	14
5½	51	85	96	89	143	94	195	98	253	103	389	113	561	126	780	14
6	48	85	90	89	134	92	183	97	237	101	364	110	525	122	730	13
6½	45	84	85	88	127	91	172	95	223	99	343	108	495	119	688	13
7	43	84	80	87	120	91	163	94	211	98	325	106	469	116	651	12
7½ .	41	84	76	87	114	90	155	93	201	96	309	104	446	113	619	12
8	39	84	73	86	109	89	148	92	192	95	295	103	426	111	591	12
8½	37	83	70	86	104	89	142	91	184	94	283	101	408	109	566	11
9	36	83	67	86	100	88	137	91	177	94	271	100	392	108	544	11
9%	35	83	65	85	97	88	132	90	170	93	261	99	377	106	524	11
10	33	83	62	85	93	87	127	90	164	92	252	98	364	105	506	11

HL: Heat Transfer, BTU/hr. per linear ft. ST: Surface Temperature, 'F.

System

The Clayton Waste Heat Recovery System can be used to generate steam or high temperature hot water. Typical combinations of an exhaust gas or waste heat unit with a direct-fired steam generator are shown belowed on the next page. Similar combinations are available thigh temperature hot water production.

A principal feature of the Clayton Waste Heat Steam Generator is its unique coil design. The coil tube is wound in a spiral pattern with planned and closely controlled spacing between the turns. This provides the desired area to control the velocities of the combustion gases.

Various sizes of boiler tubing with relatively small internal volumes are used in the coil. This highly efficient heating surface arrangement minimizes size and weight

requirements. Several sizes of coils are available in standard production.

The Exhaust Gas Steam Generator has a somewhat different construction. Its heating section may differ in diameter, quantity of coils per section and flue gas area. A set of four or six coils and pipe sizes from 1" to 2" are used. Combinations are put together to produce the required steam output. This provides flexibility in matching exhaust gas rates with standard size sections.

In applications where gas temperatures are below 427°C (800°F)—typical of marine diesels—the steam or hot water flow in any section of the unit can be bypassed if one of the spiral coils is damaged. Although the steam or hot water output would be reduced after bypass, complete shutdown is not necessary.

132

STEAM FLOWRATE,

134

LBS/HR

- source sound power level, dB re 1 pW = room volume, ft³

= octave-band center frequency, Hz

= distance from the source to the reference point, ft

tation (1) applies directly to a sinolo cound ...

Gas	Molecular Weight	Specific Heat at Constant Pressure (c_p) , Btu $lb_m^{-1} R^{-1}$ T = Rankine Degrees	Range R	Maximum Deviation from Experimental Data (per cent)
N ₂	28.02	0.227 + 0.0000292T	720–1900	Less than 1
H ₂ O	18.016	0.433 + 0.0000166T	720-1900	
CO ₂	44.00	0.186 + 0.0000625T	720-1900	Less than 3
co	28.00	0.226 + 0.0000321T	720-1900	Less than 1
H ₂	2.016	3.35 + 0.000114T	720-1900	Less than 1
CH4	16.03	0.208 + 0.000561T	720-1900	
$O_2 \dots$	32.00	0.200 + 0.0000353T	720-1900	Less than 1
Air	28.96	0.220 + 0.0000306T	720-1900	Less than 1
$C_bH_{13}\dots$	114.14	0.105 + 0.000486T	720-1900	

*E. S. Taylor, W. A. Leary, and J. R. Diver, Effect of Fuel-Air Ratio, Inlet Temperature and Exhaust Pressure on Detonation, NACA Report No. 699 (1940).

TABLE IIB
HEAT-CAPACITY EQUATIONS*

Gas or Vapor	Equation cp in Btu mole : R - :	Range R	Maximum Error (per cent)
O ₂	$c_p = 11.515 - \frac{172}{\sqrt{T}} + \frac{1530}{T}$	540-5000	1.1
	$=11.515 - \frac{172}{\sqrt{T}} + \frac{1530}{T} + \frac{0.05}{1000} (T - 4000)$	5000-9000	0.3
N_2, \dots	$c_p = 9.47 - \frac{3.47 \times 10^3}{T} + \frac{1.16 \times 10^6}{T^2}$	540-9000	1.7
co	$c_p = 9.46 - \frac{3.29 \times 10^3}{T} + \frac{1.07 \times 10^6}{T^2}$	540-9000	1.1
$H_2 \dots$	$c_p = 5.76 + \frac{0.578}{1000}T + \frac{20}{\sqrt{T}}$	540-4000	0.8
	$=5.76 \pm \frac{0.578}{1000} T \pm \frac{20}{\sqrt{T}} - \frac{0.33}{1000} (T - 4000)$	4000-9000	1.4
H ₂ O	$c_p = 19.86 - \frac{597}{\sqrt{T}} + \frac{7500}{T}$	540-5400	1.8
CO ₂	$c_p = 16.2 - \frac{6.53 \times 10^3}{T} + \frac{1.41 \times 10^6}{T^2}$	540-6300	0.8
CH	$c_p = 4.52 + 0.00737T$	540-1500	1.2
$C_2H_{+\dots}$	$c_p = 4.23 + 0.01177T$	350-1100	1.5
C_2H_6	$c_p = 4.01 + 0.01636T$	400-1100	1.5
C ₈ H ₁₈	$c_p = 7.92 + 0.0601T$	400-1100	Est. 4
$C_{12}H_{26}$.	$c_p = 8.68 + 0.0889T$	400-1100	Est. 4

*R. L. Sweigert and M. W. Beardsley, Empirical Specific Heat Equations Based upon Spectroscopic Data, Georgia School of Technology Bulletin, Vol. 1, No. 3 (June. 1938).

TA Gas-Con

 \mathbf{A}

		Ī
Gas	Chemical Formula	Molect: Weig! M
Acetylene	C ₂ H ₂ NH ₃ A C ₄ H ₁₀ CO ₂ CO C ₁₂ H ₂₆ C ₂ H ₆ C ₂ H ₄ He H ₂ CH ₄ N ₂ C ₆ H ₁₈ O ₂ C ₃ H ₈ SO ₂ H ₄ O	26.0: 28.9: 17.0: 39.9: 58.0: 44.0: 28.0: 170.3 30.0: 28.0: 4.00 2.0: 16.03 28.0: 14.14 32.00 44.0: 64.07 18.0:

6-10 GENERAL PROPERTIES OF MATERIALS

Specific Gravity and Density of Water at Atmospheric Pressure (Weights are in vacuo)

Temp,	Specific	Dens	sity,	Temp,	Specific	Der	sity,
°C	gravity	lb/ft³	kg/m³	°C	gravity	lb/fr³	kg/m³
0	0.99987	62.4183	999.845	40	0.99224	61.9428	992.228
2	0.99997	62.4246	999,946	42	0.99147	61.894	991.447
4	1.00000	62.4266	999,955	44	0.99066	61.844	990.647
6	0.99997	62.4246	999,946	46	0.98982	61.791	989.797
8	0.99988	62.4189	999.854	48	0.98896	61.737	988.931
10	0.99973	62.4096	999.706	50	0.98807	61.682	988.050
12	0.99952	62.3969	999.502	52	0.98715	61.624	987.121
14	0.99927	62.3811	999.272	54	0.98621	61.566	986.192
16	0.99897	62.3623	998.948	56	0.98524	61.505	985.215
18	0.99862	62.3407	998.602	58	0.98425	61.443	984.222
20	0.99823	62.3164	998.213	60	0.98324	61.380	983.213
22	0.99780	62.2894	997,780 .	62	0.98220	61.315	982.172
24	0.99732	62.2598	997.304	64	0.98113	61.249	981.113
26	0.99681	62,2278	996.793	66	0.98005	61.181	980.025
28	0.99626	62.1934	996.242	68	0.97894	61.112	978.920
30	0.99567	62.1568	995,656	70	0.97781	61.041	977.783
32	0.99505	62.1179	995.033	72	0.97666	60.970	976.645
34	0.99+10	62,0770	994.378	74	0.97548	60.896	975.460
36	0.99371	62.03+1	993,691	76	0.97428	60.821	974.259
38	0.99299	61.9893	992.973	78	0.97307	60.745	973.041

PHYSICAL DATA

Average Composition of Air between Sea Level and 90 km Altitude and Dry

Element	Formula	% by vol.	% by mass	Molecular weight
Nitrogen	N ₂	78.084	75.55	28.0134
Oxvgen	O_2	20.948	23.15	31.9988
Argon	Ar	0.934	1.325	39.9 4 8
Carbon dioxide	CO ₂	0.0314	0.0477	44.00995
Neon	Ne	0.00182	0.00127	20.183
Helium	He	0.00052	0.000072	4.0026
Krypton	Kr	0.000114	0.000409	83.80
Methane	CH.	0.0002	0.000111	16.043

From 0.0 to 0.00005 percent by volume of 9 other gases.

Average composite molecular weight of air 28.9644.

Data from "U.S. Standard Atmosphere, 1962," Government Printing Office.

Volume of Water as a Function of Pressure and Temperature

(From "International Critical Tables")

Temp,				Pressu	e in atmo	spheres			
°F (°C)	0	500	1,000	2,000	3,000	4,000	5,000		,
32(0) 68(20) 122(50) 176(80)	1.0000 1.0016 1.0128 1.0287	0.9769 0.9804 0.9915 1.0071	0.9566 0.9619 0.9732 0.9884	0.9223 0.9312 0.9428 0.9568	0.8954 0.9065 0.9183 0.9315	0.8739 0.8855 0.8974 0.9097	0.8565 0.8675 0.8792 0.8913	0.8361 0.8444 0.8562 0.8679	0.8244 0.8369 0.8481

1
1
1
1
-
١
i
1
i
1
1
1
1
ł
1
ŀ
İ
ı
1
1
1
l

The craveled SG	rine;		Spec. Gray.	Spec. Heat	Latent Heat	Vapor Press.	Abs. Visc.	Therm. Cond.
H.O Gringter, H.O. 1 Big Big The Child The C	& 29.92 "Ha	or at note at	S	نَ	γ'	ن. ن	"	3
CHILD: 1045 468 174 461 122 CHILD: 1045 468 174 461 122 CHILD: 1045 468 174 461 122 CHILD: 479 495 187 273 273 286 CHILD: 479 496 188 301 447 CHILD: 479 496 188 310 447 CHILD: 479 496 188 61.5 189 61.5 CHILD: 579 550 188 61.5 189 61.5 CHILD: 570 520 189 183 374 400 376 CHILD: 570 521 183 61.5 183 61.5 CHILD: 570 521 183 61.5 CHILD: 570 61.0	or % in H.C	=		910	Bro			Blu
C.H.O. 1044 468 174 461 1127 C.H.O. 1071 495 1187 002 4.47 C.H.O. 871 1072 495 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 002 4.47 C.H.O. 178 491 1187 6.06 C.H.O. 178 64 509 1151 17.4 2.45 C.H.O. 178 64 509 1181 17.4 189 C.H.O. 178 64 509 1181 17.4 189 C.H.O. 178 64 509 1181 17.4 189 C.H.O. 178 64 509 1181 17.4 189 C.H.O. 178 64 509 1181 179 C.H.O. 178 64 509 1181 179 C.H.O. 178 64 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 178 684 509 1181 179 C.H.O. 188 684 509 1181 179 C.H.O. 188 684 189 189 189 189 189 189 189 189 189 189			0 1	! - - ! -	12	7	ĉ	hr-ft-°F
Chi. Chi.	Acetic acid	0 H U		.468	174	198	1.22	660.
C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 459 C.H. O. B.T. 450 C.H. B.T. 450 C.H. B.T.	Ammonia		- 8	87	m -	7.28	.331	.102
CCH NH; 1022 495 187 002 447 CGCH		0 1	871	459	-		808	770
C.H. (879 406 188 3.01 647 C.H. (1728 814 7 2.027 C.H. (579 550 158 61.5 1.80 C.H. (579 520 158 61.5 1.80 C.H. (579 520 159 11.30 C.H. (579 520 11.30 C.H. (579 520 11.30 C.H. (570 520 11.30 C.	Aniline	CHZHO	1.022	.495	₿	.002	4.47	660
Find Circles 1.128 687 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	Benzene	÷.	879	.406	8	3.01	.6.47	.081
Fig. 1. 19	Brine - 25%	: : :	728	.687			2.67	318
CCC CCC	Butone 20 70) = = = = = = = = = = = = = = = = = = =	570	4 6 8	158	41.4	7.02	.265
Collision Coll	Carbon dioxide	.00	1.101	25.	63.1	1690	60.	0 /0.
CHICL 1584 2201 9318 3.58 958	Carbon disulfide	CS.	1 263	240	157	11.60	.376	.083
Prior CFCI. 1459 4.74 113 6.27 5.36 1.05 CFCI. 2.78 6.22 1.05 1.19 6.22 CFCI. 2.78 6.22 1.05 1.10 1.10 1.25 CFCI. 2.08 1.11 1.25 CFCI. 2.08 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1	Carbon tetrachloride	- (i	1.594	201	93.8	3.58	.958	.061
035 C.H.O. 289 622 168 173 1.19 C.H.O. 283 820 151 174 248 C.H.O. 293 820 151 174 248 E.H.O. 1111 5.70 140 4.11 E.H.O. 1126 5.03 188 1.002 20.09 C.H.O. 289 81.0 279 3.73 C.H.O. 289 81.0 279 3.74 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 289 81.0 288 3.89 C.H.O. 288 81.0 288 3.89 C.H.O. 288 81.0 288 1.44 C.H.O. 288 81.0 288 1.44 C.H.O. 288 81.0 288 1.44 C.H.O. 288 81.0 1050 1058 5.04 C.H.O. 288 81.0 1050 1058 5.04 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 1000 1018 894 1054 7.07 C.H.O. 288 888 1058 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 1054 7.07 C.H.O. 288 888 888 1054 7.07 C.H.O. 288 888 888 1054 7.07 C.H.O. 288 888 888 1054 7.07 C.H.O. 288 888 888 888 1054 7.07 C.H.O. 288 888 888 888 888 888 888 888 888 88	Elbel Action		- C	457	193	6.27	.563	070
075 C.H.O. 233 920 151 1724 245 171 1725 171 1725 1725 1725 1725 1725	Ethyl Alcohol		780	404	148	1.87	2.50	.084
CHILD 708 503 151 17.4 245 Pain CFC1 1.15 57 344 .002 209 Pain CFC1 1.15 57 344 .002 209 Pain CFC1 1.215 253 60.6 153 .46 CHILD 1.25 253 60.6 153 .46 CHILD 1.25 253 60.6 153 .46 CHILD 1.19 6.00 178 .130 .416 CHILD 1.19 6.00 178 .18 CHILD 272 610 499 .378 .388 CHILD 272 610 499 .378 .388 CHILD 272 610 499 .378 .388 CHILD 272 610 499 .378 .388 CHILD 272 610 125 .288 CHILD 272 610 125 .388 CHILD 272 610 125 .388 CHILD 1.27 .388 .388 CHILD 1.27 .313 156 .417 .144 CHILD 1.27 .313 156 .417 .349 CHILD 1.27 .328 .328 .328 CHILD 1.27 .338 .338 .338 CHILD 1.27 .338 .338 .338 CHILD 1.27 .338 .338 .338 CHILD 1.27 .338 .338 .338 CHILD 1.27 .338 .338 .338 CHILD 1.27 .338 .338 .338 .338 CHILD 1.27 .338 .338 .338 .338 .338 .338 .338 .33	4-) O	23.5	920	000	٠.٠		101.
Philate C.HO. 1.115 .57 .344 .002 .20.9 Philate C.C. .1450 .2514 .288 .27.3 .46 String C.C. .1450 .2514 .288 .27.3 .46 String C.HO. .1215 .289 .81.0 .278 .24 C.HO. .288 .289 .398 .284 .388 C.HO. .282 .388 .388 .388 .388 C.HO. .282 .388 .388 .388 .388 C.HO. .282 .388 .388 .388 .388 C.HO. .282 .388 .388 .388 .388 C.HO. .282 .388 .388 .388 .388 C.HO. .282 .384 .388 .388 .388 C.HO. .284 .388 .388 .388 .388 C.HO. .286 .388 .388 .388 .388 C.HO. .286 .388 .388 .388 .388 C.HO. .286 .388 .388 .388 .388 C.HO. .288 .388 .388 .388 .388 C.HO. .288 .388 .388 .388 .388 .388 C.HO. .288 .388 .388 .388 .388 .388 C.HO. .288 .388 .388 .388 .388 .388 .388 C.HO. .288 .388		Cirkino	708	.503	٧	17.4	245	073
Paira CfCit. 1.490 2714 78.9 27.3 46.5 prior CfCit. 1.490 2714 78.9 27.3 46.5 prior CfCit. 1.490 2714 278.9 27.3 46.5 prior CfCit. 1.491 2.598 81.0 279 3.27 cfCit. 68.4 5.98 11.0 279 3.27 cfCit. 68.4 5.98 11.5 prior CfCit. 68.4 5.99 5.37 1.30 4.106.0 cfCit. 68.4 5.37 1.30 4.106.0 cfCit. 68.4 5.37 1.30 4.106.0 cfCit. 68.4 5.37 1.30 4.106.0 cfCit. 68.4 5.38 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	Ethylene glycol	C.H.O.	_	.57	4	.002	20.9	.167
Print CFCI, 1.450	Ethylene glycol-							
Paid CFCI; 1.450 2.14 78.9 27.3 3.46 5.06 side CFCI; 1.215 2.298 81.0 279 3.24 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06	-	1 ;	1.067	Ç,	1		_ ;	.242
CHACO 1 1313 1 298	7		0.450	٠.	5.0		9 ;	.064
C.H.C. (584 573 130 1068 1168 1168 1168 1168 1168 1168 116	1 1		200	0	0.00		۲,۲	0.52
C.H.O. 1261 573 157 130 11069 C.H.O. 659 537 157 130 1416 C.H.O. 933 468 190 668 388 C.H.O. 933 468 190 668 388 C.H.O. 933 468 190 668 388 C.H.O. 933 468 190 668 388 C.H.O. 922 385 172 C.H. 703 523 156 1144 C.H. 703 523 156 1144 C.H. 866 167 168 1006 C.H. C.H. 866 100 1127 C.H. 866 100 11816 1140 C.H. 686 100 11816 11816 1140 C.H. 686 100 11816 11816 11816 1140 C.H. 686 100 11816 1		; ; ;	687	. 0	?		3.5	700.
C.H., (684 508 157 130 316 C.H., (689 537 157 4.96 326 C.H.O. (933 468 190 66.88 388 C.H.O. (933 468 190 66.88 388 C.H.O. (933 468 190 66.88 388 C.H.O. (933 493 127 C.H., (103 192 186 C.H., (103 192 186 C.H., (104 193 136 C.H., (104 194 196) C.H., (104 194 196) C.H., (104 194 196) C.H., (104 194 196) C.H., (104 194 194 194 194 194 194 194 194 194 19	Glycerol	Catto	1 261	1			1069	.162
HMO, 1,059 537 157 4,96 326 HMO, 1,198 60 178 7,378 188 CH,O 792 610 190 668 388 CH,O 792 610 190 668 388 CH,O 792 610 190 668 388 CH,O 792 610 190 668 388 CH,O 792 610 190 668 388 CH,O 792 610 190 668 388 CH,O 1,030 610 190 668 388 CH,O 1,001 120 190 668 CH,O 1,001 134 35 136 CH,O 1,001 134 35 136 CH,O 1,000 1005 1008 304 CH,O 1,000 1005 1008 304 CH,O 1,000 1005 1006 1058 CH,O 1,000 1008 1054 707 1000 CH,O 1,000 1008 1005 288 CH,O 1,000 1005 1008 304 CH,O 1,000 1008 1005 288 CH,O 1,000 1005 1008 304 CH,O 1,000 1008 1005 288 CH,O 1,000 1008 1005 288 CH,O 1,000 1008 1005 288 CH,O 1,000 1008 1005 2998 CH,O 1,000 1008 1005 2998 CH,O 1,000 1008 1005 2998 CH,O 1,000 1008 1005 2992 284	Heptone	C: Kr	6.84	\circ	~	£.	.416	.082
HCI 1198 .60 178 188 .388 .388 .388 .388 .388 .388 .388	Hexane	ت لا لا	454	~	2	c٠.	.326	.088
C.H.O. 933 .468 190 .6.88 .388 CH.O. 993 .468 190 .6.88 .388 CH.O. 972 .410 499 .6.88 .388 CH.O. 972 .410 499 .428 .388 CH.O. 972 .410 499 .428 .414 .183 CH.O. 972 .414 .414 .414 .414 .414 .414 .414 .41	Mydrochloric acid—	Ū.	1 108	٧)		4		757
C.HO. 933 .468 190 66.88 .388 CH.O. 792 .610 499 73.78 .593 CH.O. 792 .610 499 73.78 .593 CH.O. 792 .610 499 73.78 .593 CH.O. 792 .610 499 73.78 .593 CH.O. 703 .523 156 .417 .718 .542 CH.C. 10.00 1.007 1.88 .626 .417 .626 .417 .626 .417 .626 .626 .417 .626 .626 .417 .626 .626 .417 .626 .417 .626 .417 .626 .426 .626 .426 .626 .426 .626 .426 .626 .426 .626 .426 .626 .426 .626 .426 .626 .426 .4	Kerosene	1	.82	50			æ	085
CH.O. 792 610 499 3.78 .593 CH.C. 193 73 156 1144 .183 HNO. 1507 533 156 .417 .342 CHI. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .417 .342 CH. 203 33 156 .405 CH. 203 33 156 .405 CH. 203 33 156 .405 CH. 203 33 156 .405 CH. 203 33 156 .405 CH. 203 33 156 .405 CH. 203 340 .406 CH. 2	Methyl acetate	C.H.O.	.933	.468	180	•	.388	.093
CHICL 972 385 172 144 183 HNO. 1502 93 106 172 144 183 CHIC 913 523 156 417 542 CHIC 924 53 156 417 542 CHIC 1021 561 561 562 CHIC 1021 561 561 562 CHIC 1031 561 156 500 127 CHIC 1031 33 136 500 1127 CHIC 1030 1030 1058 1054 1140 CHIC 1000 1005 1069 1140 CHIC 1000 1005 1058 1054 707 1000 CHIC 1000 1005 1058 1054 707 1000 CHIC 1000 1005 1006 1058 1054 707 1000 CHIC 1000 1006 1005 1059 1059 1059 1059 1059 CHIC 1000 1008 1005 1005 1009 1009 1005 1000 CHIC 1000 1005 1005 1005 1009 1005 1000 1000 1005 1000 1005 1000 1005 1000 1000 1005 1000 1005 1000	Methyl alcohol	CHIO	792	019.	7/001	^	.593	.120
HNO. 502 73 156 177 177 150 150 177	.2	J. H.	. 52	.385	727	₹	.183	.089
C.Hi. 703 150 117 154 15	Mulk Nisis poid	L CNH	283	5	144		66	
C.H.O. 1988 1988 1054 7707 11000 1100 1100 1100 1100 1100 11	Octobe		707	-le	333	414	√ !~	90
C.H.O. (1984) 1.53 133 133 134 135 135 135 135 135 135 135 135 135 135	Oil, draft gage	1	.834) ;	2	•	;	2
C.H.C. 1071 158 200 C.H.C. 1.071 1561 200 C.H.C. 1.071 1561 200 C.H.C. 1.071 1561 200 C.H.C. 1.071 1561 200 C.H.C. 1.071 1361 156 C.H.C. 1.081 136 136 202 C.H.C. 1.081 136 136 202 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1069 200 C.H.C. 1.000 1005 1005 200 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 2000 C.H.C. 1.000 1005 1005 1005 2000 C.H.C. 1.000 1005 1005 1005 1005 1005 1005 10	Oil, linseed	1	941	.53			33	
C:H; (226	Oil, lube. (med.)	1	6.	.45			200	080
C.H.; 626 1527 158 2001 12.7 C.H.; 626 150 258 1.40 C.H.; 626 150 258 1.40 C.H.; 626 150 258 1.40 C.H.; 626 150 258 1.40 C.H.; 626 150 258 1.40 C.H.; 626 1.40 1.40 C.H.; 626 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Oil, olive	ı	7.0				4	109
C.H.O. 1.071 1.561 1.001 1.2.7 C.H.O. 1.071 1.561 1.001 1.2.7 C.H. 1.34 1.35 1.35 1.36 1.37 C.H. 1.34 1.35 1.35 202 2.38 1.4 C.H. 1.866 1.407 1.78 1.870 1.590 C.H.O. 1.000 1.005 1.069 1.40 1.567 C.J. H.O. 1.998 1.054 1.054 1.140 C.J. H.O. 1.998 1.054 1.057 1.000 C.J. H.O. 1.988 1.054 1.057 1.000 C.J. H.O. 1.098 1.054 1.057 1.000 C.J. H.O. 1.006 1.005 1.005 1.000 C.J. H.O. 1.006 1.005 1.000 1.000 1.000	Panlos	٠. ٢	777	40.			40.0	0 7 0
C.H. 585 576 150 258 14 96.5 174 150 258 174 150 150 150 150 174 150 150 150 150 150 150 150 150 150 150	Phenol	, O	1070	5.61		100	12.7	50.
8% H.SO. 1434 35 151 96.5 27 18.36 407 178 202 23.0 C.H. 1866 407 178 870 559 4°C, H.O 1.000 1.005 1069 240 1.567 5°C, H.O .998 998 1054 707 1.000 1°C, H.O .998 998 1054 707 1.000 1°C, H.O .998 998 1054 209 1.000 1°C, H.O .998 998 1054 207 1.000 1°C, H.O .998 998 1054 207 1.000 1°C, H.O .998 998 1054 207 1.000	Propane	O.F.	.585	.576	150	258	7	.075
8% H.SO. 1.836 .336 .202 .23.0 C.H866 .407 178 .870 .590 .590 .370 .370 .370 .370 .370 .370 .370 .37	. 1	50.	1.434	.35	~	96.5	.27	.115
17. 18.0 1.000 1.005 1.006 1.006 1.006 1.000 1.0	۰	H.SO.	1.836	.336	01	,	23.0	.205
4°C) H ₂ O 1.000 1.005 1069 240 1.567 5°C) H ₂ O 899 1.000 1058 504 1.140 1.000 1.005 1058 1054 1.140 1.000 1.006 1058 1053 7.39 8.78 1.000 1.006 1.00	Turnentine	اغ	867	47.	25	0/9.	0,40	9,0
1.C) H.O 998 998 1054 707 1.000 1.C) H.O 998 998 1054 707 1.000 1.C) H.O 988 998 970 29.92 .284 1.00¢C) H.O 988 1.00¢ 970 29.92 .284	Water, 39.2°F (4°C)	Ċ	000	00	? ≺	240	1 547	325
17C) H.O 998 998 1054 707 1.000 10°C) H.O 998 998 1053 739 978 10°C) H.O 988 1.006 970 29.92 .284 1.018 894	Water, 59°F (15°C)	0.	666	000	Š	504	1.140	339
1.C) H;O ;998 ;998 1054 ;707 1,000 1.C) H;O ;958 1,006 970 29:92 ;284 D;O 1,108 1,018 894	Water, 68.7°F	(
7125 [100°C] H.O 1.006 1.006 29.92 284 heavy D.O 1.108 1.018 894	(20.2°C)	00		8000	500	707.	1.000	346
heavy D.O 1.108 1.018 894	Water, 212°F (100°C)	00		1.006	32	29.92	284	393
	Water, heavy	Ç		0.0	c			:

Adapted from the data of N. V. Lange, "Handbook of Chemistry," Handbook Publishers, Inc., Sandusky, Ohio, 1952, Refer to manufacturers, data for exact properties.

TABLE 13	37 - PROPERTIES	S OF SOUDS	
	Density	Specific	Thermal Conductivity
Solid	٠	Co	צ
1	15/69	8tu/lb-°F	Btu-In./hr-f13.ºF
Asbestos	153	.20	1.7
Asbestos—cement board	120	ı	0.4
Ashes	43	.20	C. C
Aspholt	82	1	2.6
Bokelire	98	.33	ı
Borax	601	86.	1 5
Brick, common	120	.22	0.0
Brick, face	130	.72	O.Y
Calcium carbonate	177	61.	14.4
Calcium chlorido	134	9:	Ι:
Carborundum	195	91.	<u>:</u> :
Celluloid	87	.36	₹ .
Cellulose	9.4	.3/	1 7
Cement, loose	76	07.	- 7
Cement, mortar	911	2.20	0.0
Chalk	142	7. 6	2
Charcoal, hardwood	34	07.	}
Cinders, loose	13	e : :	!
Clay, dry	63	77:	
Clay, moist	01-		!
Coal, anth., solid	80	<u>ئ</u> ڊ	!!
Coal, bilum., solld	C 1		
Coke, solid	2.5	07:	۲,
Concrete, cinder	۸.		12.5
Concrete, stone	041	- 7	7.0
Cork	<u>.</u>	<u>:</u> 1	0.3
Corkboard	•	.32	0.4
Cotton	· ;	: :	-
Dry Ice	44	71.	l ;
Earth, moist	78	77	12.0
Ebonite	72	.35 CE:	7.
Fats	58	97.	1 ;
Feldspor	160	.20	16.2
Flannel	1	ì	0.7
Glass, crown	160	91.	5.5
Glass, flint	215	.13	- ;
Glass, pyrex	140	.20	c:/
Granite	165	6.	677
Graphile	66	.20	300
Gypsum, compressed	152	.26	0.6
Gypsum board	20	1	:
Hay, baled	20	.32	

TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the LANGE'S HANDBOOK Elements and Inorganic Compounds (Continued)

LANGES HANDED OF CHEMISTRY 14 TH EDITION McGRAW-HILL

		$\Delta \mathit{Hf}^{ullet},$	Δ <i>G∫</i> ^*,	5°, J⋅deg ⁻¹ .	Ç
Substance	State	. kJ·mol ⁻¹	kJ·mol⁻¹	mol-1	J-deg
Nb ₂ O ₅	С	-1 899.5(42)	-1 765.8	137.3(13)	1324
NbOCl ₃	С	−879.5	−782	159	130
Nitrogen					ě
N_2	g	0	0	191.61(2)	3:
NF ₃	g	-132.1(11)	-90.6	260.8(2)	911
N_2F_2 cis	g	67	109	259.8	41,1
trans	g	81.2	120.5	262.6	514
N ₂ H ₄ hydrazine	lq	50.6(11)	150.1	121.5(4)	N.
$N_2^2H_4$ hydrazine- d_4	g	81.6	150.9	248.86	35.5
$N_2H_5^+$ std. state	aq	-7.5	82.4	151	7A.J
N ₂ H ₅ Br	C	-155.6	-21.8	222.1	_ 3
std. state	aq	-128.9	-21.0	233.1	-71.6
N ₂ H ₅ Cl	c	197.1 174.9	-49.0	207.1	
std. state	aq	-367.4	47.0	207.1	-973
N ₂ H ₅ Cl·HCl	c lq	-307.4 -242.7			,
N ₂ H ₅ OH undissoc; ss	aq	-251.50	-109.2	207.9	72
$N_2H_5NO_3$	C	-251.58	107.2	20115	34
std. state	aq	-215.10	-28.91	297	
$(N_2H_5)_2SO_4$	c	-959.0			:
std. state	aq	-924.7	- 579.9	322	-151
NO	g	90.29(17)	86.60	210.76	35
NOBr	g	82.13	82.42	273.42	45.4
NOCI	gγ	51.71(42)	66.10	261.68(17)	43
NOF	g	-65.7(17)	-50.3	248.02	41.3
NOF,	g	-163	-96	278.40	17.0
NO ₂	g	33.1(8)	51.3	240.03(13)	¥.5
NO ₂ Cl	g	12.1(17)	54	272.19	11.8
NO ₂ F	g	-109.(21)	-66	250.2	А
NO ₃	g	69.41	114.35	252.5	4.5
N ₂ O	g	82.4(4)	104.2	220.0	X
N_2O_2	g	170.37	202.88	287.52	(1,9
$N_2O_2^{2-}$ hyponitrite	aq	-17.2	138.9	27.6	45
N_2O_3	g	82.8(8)	139.7	308.5(21)	الكا
N_2O_4	lq	 19.56	97.52	209.20	72.2
	g	9.08	97.79	304.38	Ü
N_2O_5	g	11.3(18)	118.0	346.5(42)	7.7
Osmium					347
Os	С	0	0	32.6	,40
OsCl ₃	С	-190.4	-121	130	. ** 501
OsCl.	С	-254.8	-159	155	in the
OsO ₄	С	-394.1	-305.0	143.9	*
Oxygen					4
O ₂	g	0	0	205.147(35)	3
O ₃	g	142.7(17)	163.2	238.9	CE
OF ₂	g	24.5(16)	41.8	247.5(4)	G
O ₂ F ₂	g	19.79	61.42	268.11	
	•	-			
Palladium Pd	С	0	0	37.91	
ru	<u> </u>				1

TABLE 1

Combustion Constants

No.	Substance	Formula	Molecu- lar Weight	Lb per Cu Fr	Cu Pr	Sp Gr Air	Blu per Gross	Franco C Cur Fu Net	Heat of Combustion But per Cu Ft But per Lb Gress Net Gross Net (High) 11 one) 11 feb.	er Lb Net	Require	For 100% Total Air Moles per mole of Combustible Cu Ft per Cu Ft of Combustible Required for Combustion Flue Products	For 100% Total Air Moles per mole of Combustible of Total u Ft per Cu Ft of Combustible for Combustion Flue Prod	Combu	stible stible Product		Required	For Lb per for Con	100% T Lb of C bustion	otal omb	Air ustib	For 100% Total Air Lb per Lb of Combustible Required for Combustion Flue Products
							(1.2)	("()")	/mgm/		5	<u>;</u>	AIF	ر0،	0,1		o,	z.	۸ir	.	Ξ	oʻ.
- Car	Carbon•	၁	12.01	:	:		;	:	14 093	14 00 1	-	176	71.1	-		<u>-</u>						
	Hydrogen	#	2.016	0.0053	187.723	9690.0	325	275	61,100	51.623	5.0	88.	38	?	: -	0/.0	2.66	9.30	11.53	3.66	: 3	
	Oxygen	0	32.000	0.0846	11.819	1.1053	:	:			:	3	2	:	?	_	•	0.41	34.34	:	8.94	
	Nitrogen (atm)		28.016	0.0144	13.443	0.9718	:	:			:	:	:	:	:	_		:	:	:	:	
	Carbon monoxide		28.01	0.0740	13.506	0.9672	322	322	4,347	4,347	0.5	1.88	2.38	: <u>0</u>	: :	: 88				: 5	:	
֓֞֞֞֞֞֞֞֟֞֞֝֟֞֞֟֞֝֓֟֟֟ ֓֞	Carbon dioxide	ő	44.01	0.1170	8.548	1.5282	:	:	:	:	:	:	:	: :				?	ř	<u>.</u>	:	
5	erics	;																:	:	:	:	
	Methane	:: C::	16.041	0.0424	23.565	0.5543	1013	913	23,879	21,520	5.0	7.53	9.53	0.1	2.0	7.53	3.99	13.28	17.27	2.74	225	
	ıne	1 :	30.067	0.0803	12.455	1.0488	1792	1641	22,320	20,432	3.5	13.18	16.68	2.0				2.39	6.12	2 9 1	80	
	Propane	CIE.	44.092	0.1196	8.365	1.5617	2590	2385	21,661	19,944	5.0	18.82	23.82	3.0				12.07	2 2	000	3 7	
มีค.น กา	n-Butane	CH	28.	0.1582	6.321	2.0665	3370	3113	21,308	19,680	6.5	24.47	30.97	4.0	5.0 2			16.11	15.49	101		
	Isobutane	ב ב	 	0.1582	6.321	2.0665	3363	3105	21,257	19,629	6.5	24.47	30.97	4.0		_		5	07 5	10.5) ·	
7	n-Pentane	CH:	72.144	0.1904	5.252	2.4872	4016	3709	21,091	19,517	8.0	30.11	38.11	5.0				 	32.51	100	9	
	Isopentane	CH;	72.144	0.1904	5.252	2.4872	4008	3716	21,052	19,478	8.0	30.11	38.11	5.0			1 55		15.15	0.00	00.1	
4	Neopentane	CH	72.144	0.1904	5.252	2.4872	3993	3693	20,970	19,396	8.0	30.11	38	20		_			000	0.0.5	2 :	
IS n-He	n-Hexane	CHE	86.169	0.2274	4,398	2.9704	4762	4412	20,940	19.403	5 6	15.76	45.26	9 9		-		0.1	5.33	3.03	05.	
Oletin series	S								<u>.</u>		;		77:5	9		_	-	4	17.61	3.06	1.46	
	lene	C;H;	28.051	0.0746	13.412	0.9740	1614	1513	21,644	20,295	3.0	11.29	14.29			1 30 1	1 43	90		;		
	Propylene	CH:	42.077	0.1110	9.007	1.4504	2336	2186	21,041	169.61	4.5	16.94	21.44	3.0		_		, e	0.5	÷ ;	67.1	
	n-Butene	ć	56.102	0.1480	6.756	1.9336	3084	2885	20,840	19,496	0.9	22.59	28.59						6.4	* :	67.	
	Isobutene	CII;	56.102	0.1480	6.756	1.9336	3068	2869	20,730	19.382	0.9	22.59	28 50			_		66.17	18:4	4 :	67.1	
20 n-Pc	n-Pentene	C.H.	70.128	0.1852	5.400	2.4190	3836	3586	20,712	19,363	7.5	28.23	35.71			28 21 3		6.5	10.4	4 :	67.1	
Ξ	scries					-					:	ì						ξ.	10.4	3. <u>14</u>	67.1	
	ene	C,H,	78.107	0.2060	4.852	2.6920	3751	3601	18,210	17,480	7.5	28.23	35.73	0.9		78 23 3	3.07	ני טו	91	90, 1		
	ene	ć	92.132	0.2431	4.11.3	3.1760	4:184	4284	18,440	17,620	9.0	33.88	42.88					77.01	2.5	3.30	60.00	
23 Xylene	2	CH₽	106.158	0.2803	3.567	3.6618	5230	4980	18,650	17,760	10.5	39.52	50.02	8.0	5.0	39.52	3.17		2.23	113	0.73	
ដ	ons gases	;																		1	9	
	Acetylene		26.036	0.0697	14.344	0.9107	1499	1448	21,500	20,776	2.5	9.41				9.41	3.07	66.01	טנ נ	31.6	9	
	Naphthalene		128.162	0.3384	2.955	4.4208	5854	5654	17,298	16,708	12.0	45.17	57.17	0.01	Ī	_			200	3.41	60.07	
	Methyl alcohol	CH,OH	32.041	0.0846	11.820	1.1052	868	168	10,259	9.078	5.	5.65				_		-	7 40		0	
27 Ethyl	Ethyl alcohol	C,H,OH	46.067	0.1216	8.221	1.5890	1600	1451	13,161	11.929	3.0	11.29		0 0			200	0.70	9 6	2	<u>:</u>	
	onia	HZ.	17.031	0.0456	21.914	0.5961	441	365	9,668	00.8	0.75	2 87	15.5		2 -	3 33 4		26.95	70.6	1.92	1.17	
													1	: 0		-	١	â	2		<u>د</u>	•
	•	S	32.06	:	:	:	:	:	3,983	3,983	0.1	3.76	4.76					1 20	30	202		
	Hydrogen sulfide		34.076	0.0911	10.979	1.1898	647	965	7,100	6.545	5.1	5.65			: -		141	7.57	67.5	20.7	: 3	
	Sulfur dioxide		64.06	0.1733	5.770	2.2640	:	:	:	. :	: :		!			_		è.	2	90.	.33	
	Water vapor	H;O	910.81	0.0476	21.017	0.6215	:			: :	: :		:				•	•	:	:	:	
33 Air		:	0 % 0	0.0766	13051	0000			:	:	:	:	:	:	:	:	:	:	•	:		
				2		222				_												

*Carbon and sulfur are considered as gases for molal calculations only.

Note: This table is reprinted from Fuel Flue Gases, 1941 Edition, courtesy of American Gas Association.

All gas volumes corrected to 60 F and 30 in. Hg dry.

PHYSICAL PROPERTIES — Liquids and Misc.

Fig. 94-1															
	mol.	sp gr	1p hi	mp	bp	in	. }	4 40	26.7C	49C	710	4.4C	26.7C	490	71C
	w1	60-70F	60f	F	F			40F	80F	120F	160F	40F	80F	120F	160F
Acids	60	1.05	.48	62	245	1751	.095	1.65	1,18	0.85	0.65		1		
cetic acid, 100% cetic acid, 10% any acid — aleic	282	1.01 0.89	.96	13	547		.092							1	
atty acid — palmitic atty acid — stearic	256 284	0.853 0.847	.653 .550	146	520 721	21.8	.083 .078	2.5	1.85	1.42	-,,		1		
Hydrochloric acid 31.5% (muriatic) Hydrochloric acid 10% (muriatic)		1.15 1.05	.6 .75	-53			ł	1.5	1,05	.8	.61				
Nitric acid, 95% Nitric acid, 60%		1.50	.5 .64	-44 9.4	187			14	2.2	ڏن	عَمْد ـ	-			
Nitric acid, 10% Phenol (carbolic acid)	94	1.05	.9	106	346	16.1		145	73	3.9	2.1				
Phosphoric acid, 20% Phosphoric acid, 10%		1.11	.85 .93 .27	92	342		.]	82.0	41.0	22.0	12.2	280	100	55	
Sulfuric acid, 110% (Furning) Sulfuric acid, 98%		1.84 1.50	.35	28.6 - 20	625 282	2151	.15	46.0 8.9	23.0 5.8	11.5	6.4 2.7	118	68	45	37
Sulfuric acid, 60% Sulfuric acid, 20%	<u> </u>	1,14	.84	8	218			2.5	1.4	0.8	0.55				
Water solutions Brine — calcium chloride, 25%		1.23	.689	- 21	221		.28 .24	4,5 3,3	2.1	0.95	0.52 .92				
Brine — sodium chloride, 25% Sea water]	1.19	.786 .94 .78	- 16	221			2500	77.0	26.0	9.5	950	240	84	4
Sodium hydroxide, 50% (caustic soda Sodium hydroxide, 30%	18	1.53 1.33 1.0	.84 1.0	32	212	144	34	1 5 5	9 6 9 8 ¢	4.5 0.56	2.5				
Water Food Products*	"		7.0	J						 		170000	11000	1700	43
Dextrose, corn syrup 40° Baume Dextrose, corn syrup 45° Baume	1	1,38			225 237	<u> </u>						1,,000	2×10*	120000	1 200
Fish, fresh, avg. Fruit, fresh, avg.			.76 .88			101 120 30									
Honey ice		.9	.34 .5 .70			144								,	
ice cream Lard Maple syrup		.92	.64			22 52						10000	450	155	8
Meat, fresh, avg. Milk, 3.5%		1.03	.70 .90			124							10000	2600	
Molasses, primary A Molasses, secondary B			ه.										70000	10000	
Molasses, blackstrap (final) C Storch	1	1.53	,,	10	218			156	41.5	14.5	7.0	500	1	68	
Sucrose, 60% sugar syrup Sucrose, 40% sugar syrup	1	1.29 1.18 1.66	.74 .66	25	214	72		122	5.3	2.5	16				
Sugar, cane & beet Vegetables, fresh, avg. Wines, table and dessert, avg.		1.03	92	7 10 22		130									
Petroleum Products	1					1			86	34	17		400	160	
phalt, RS-1, MS-1, SS-1, emulsion phalt, RC-0, MC-0, SC-0, cut back		1.0	42						80	3-	"		950 40000	340	16
Asphalt, RC-3, MC-3, SC-3, cut back Asphalt, RC-5, MC-5, SC-5, cut back		1.0								ļ			500000 3500 at	1250F	80
Asphalt, 100-120 penetration Asphalt, 40-50 penetration Benzene	78	1.01	.41	42	176	1701	0.087	a	ة ه		0 30		8000 01	250F	
Gasoline No. 1 Fuel Oil (Kerosene)		.6	.53			140"	0.078	3 3	2 1	1.4	0.35	4			
No. 2 Fuel Oil, - PS100 No. 3 Fuel Oil, - PS200		.865 .887	.43				0.08	150	2.6 7.0 24.0	40	1,15 2.9 5.0	8	4 52	41	1
No. 4 Fuel Oil No. 5 Fuel Oil, - P\$300		.901	.42		}		0.073 0.072 0.070	7.5	390.0	75 0 155 0	25.0		1600	370	1
No. 6 Fuel Oil, Bunker C PS400 Transformer oil, light		.956 .898	.40		1		0.075	34.2 89.0	12.1	63	3.9	17 46	0 72	70	
Transformer oil, medium 34° API Mid-continent crude 28° API gas oil		.855 .887	44				0.08 0.078	15	6.5 9.0	3.0 6.0	4.0	13			
Quench and tempering oil SAE -5W (#8 machine lube oil)		.91						110	30	12	7	55 150			
SAE-10W (+10 machine lube oil: SAE-20 (+ 20 machine lube oil)	i	.89						170 580 1200	50 98 700	33 60	14 25	290 500	0 500	170	١,
SAE-30 (* 30 machine lube oil) SAE-40		.89						1,700	400	100	4.5	850 2300	5 1400	380	1
SAE —50 Paraffin, meited Toluene	92	.862	.69	100-13	3660 870 23	70 157	0.084	:	.5 .5	7 45	.36	0			
Miscellaneous	<u> </u>	1	+	<u> </u>	1	2751	096	9.	0.3	2 0.26	0.2	1			
Acetone, 100% Alcohol, ethyl, 95%	58	.789 .81 .82	.514 6 .65	- 137	133	370	11	2 (1.3	.8	0.5	3			
Alcohol, methyl, 90% Ammonia, 100%	17		1.1	- 106	- 27	5891	20	0	0.1	0.08	0.0	٥			.
Ammonia, 26% Aroclor Cotton seed oil		1.44	.28		650		0.057		200	32	10	2000	50	0 95	,
Creasate Dowtherm A	(Se	e coal tar	.63	54	500	123	.08								
Dowtherm C Ethylene glycol	231	1.10	.35·.6	5 70-22		3461	.08 .153	443	19.0	9.0	4.5	16	35 8	6 5:	3
Glue, 2 parts water, 1 part dry glue Glycerol, 100% (glycerin)		1.09	.89 .58	62.		3401		11.	490.0		\$6.0 1.5		00 310	70	٥
Glycerol, 50% Linseed oil		1.13	.44	-6. -5.	0 552	66	.24	72	37.	20	111				
Phthalic anhydride Soybean oil Sulfur — had	141	.92	.237			**			45.	0					
Sulfur, melted Introductivene entine, spirits of	166 136	1.62	215		189	90 1:84	.07	4 1	.9 1.	58 0.4 35 0.9	5 0.7	, I			
on tetrachloride	15		.21	- 95		84				95 0.7	2 0.5	56]			┷

¹ This figure is latent heat of vaporization.
¹sp ht of food products are for above freezing.
Below freezing the values are approx. 60% of those given.

mol wt — molecular weight sp ht — Btu/lb F mp — Melting point, F

bp — Boiling point, F LH — Latent heat of fusion, Btu/lb k — Thermal conductivity, Btu/sq ft hr F/tt

Table 3-37. HEAT OF DILUTION OF ACIDS*

VIVIAN B. PARKER

 ΔH_{diln} , the integral heat of dilution, is the change in enthalpy, per mole of solute, when a solution of concentration m_1 is diluted to a final finite concentration m_2 . When the dilution is carried out by addition of an infinite amount of solvent, so the final solution is infinitely dilute, the enthalpy change is the integral heat of dilution to infinite dilution. Since Φ_L , the relative apparent molal enthalpy, is equal to and opposite in sign to this, only Φ_L is referred to here.

 Φ_L , cal/mol, at 25 deg C (298.15 K)^a

		Φ_L , cal	moi, at 45	deg C (29)	5.15 K)		V		
n	m	HF	HCl	HClO₄	HBr	HI	HNO ₃	CH_2O_2	$C_2H_4O_2$
500,000 100,000 50,000 20,000 10,000	0.00 .000111 .000555 .00111 .00278 .00555	0 300 900 1,300 1,800 2,130	0 5 10 16 25 34	0 5 10 14 22 30	0 5 9 13 22 31	0 5 9 12 20 29	0 5 11 15 23 31	0 9 13 20 23 25	0 40 50 53 55 58
7,000	.00793	2,250	40	35	37	34	36	26	59
5,000	.01110	2,360	47	40	44	41	42	26	61
4,000	.01388	2,450	54	43	49	46	46	27	62
3,000	.01850	2,550	60	47	56	52	51	28	62
2,000	.02775	2,700	74	54	68	63	59	28	63
1,500	.03700	2,812	85	58	77	71	65	29	64
1,110	.05000	2,927	97	62	89	81	73	29	65
1,000	.05551	2,969	102	62	92	84	76	29	65
900	.0617	2,989	107	63	97	88	78	30	66
800	.0694	3,015	113	64	102	92	81	31	67
700 600 555.1 500 400	.0793 .0925 .1000 .1110 .138S	3,037 3,057 3,060 3,077 3,097	120 129 133 140 156	65 65 65 65 64	108 115 119 124 135	96 102 105 108 116	84 88 89 92 97	32 32 32 32 32 33	68 68 69 70 72
300	.1850	3,126	176	61	150	125	103	34	76
277.5	.2000	3,129	182	59	155	128	105	35	79
200	.2775	3,142	212	50	176	140	117	36	82
150	.3700	3,148	242	36	197	154	118	39	88
111.0	.5000	3,156	280	18	225	170	119	42	97
100 75 55.51 50 40	.5551 .7401 1.0000 1.1101 1.3877	3,160 3,167 3,179 3,184 3,192	295 343 405 431 493	+12 -14 -48 -61 -91	235 270 314 331 379	176 194 223 234 260	120 121 121 121 121 121	44 49 54 56 60	101 113 130 147 155
37.00	1.5000	3,194	518	-103	398	269	121	62	162
30	1.8502	3,200	595	-138	455	301	124	65	183
27.75	2.0000	3,203	627	-149	477	315	126	66	192
25	2.2202	3,208	674	-162	510	336	130	67	204
22.20	2.5000	3,211	732	-173	550	365	139	68	218
20	2.7753	3,214	792	-182	590	396	149	69	233
18.50	3.0000	3,216	838	-187	624	427	159	69	245
15.86	3.500	3,221	946	-196	709	503	189	69	268
15	3.7004	3,227	988	-195	743	536	203	69	277
13.88	4.0000	3,234	1,052	-188	796	588	229	69	291
12.33	4.5000	3,246	1,171		887	676	265	69	313
12	4.6255	3,249	1,190		911	700	277	69	318
11.10	5.0000	3,256	1,271		983	764	313	69	333
10	5.5506	3,265	1,396		1,097	855	368	68	353
9.5	5.8427	3,269	1,462		1,156	920	400	68	363
9.251 9.0 8.5 8.0 7.929	6.0000 6.1674 6.5301 6.9383 7.0000	3,272 3,274 3,278 3,282 3,283	1,498 1,535 1,618 1,710 1,725	-72 -40 +4	1,196 1,230 1,313 1,401 1,416	950 980 1,050 1,115 1,130	418 437 480 530 538	67 67 66 65 65	368 373 383 392 394

^{*}One calorie (thermochemical) equals 4.184 joules.

T

*From: NSR 1965.

3.0 2.0

HCI HCIO. HCIO. HCIO. HBr HI HIO. HNO. HCOOH CH.COOH

Substan

NH.4B: NH.4IO; NH.4NO; NH.4NO; NH.CH.4O NH.CNS CH.4NH.CI CH(1);AII N(CH.).4B; N(CH.).4B; N(CH.).4B;

AgClO₄ AgNO₇ AgNO₃

LiOH LiOH·H₁O LiC LiCl-H₁O LiClO₄ LiClO₄-3H₁O LiBr LiBr-H₂O

*25 deg C = .

^{*}From: NSR1 1965.

Table 3-37. HEAT OF DILUTION OF ACIDS (Continued)

te, when a solution n is carried out by ne enthalpy change molal enthalpy, is

 $CH_2O_2 \mid C_2H_4O_2$

 $\frac{204}{218}$

 							/		
 n	m	HF	HCl	HClO₄	HBr	HI	HNO_3	CH2O2	$C_2H_4O_2$
7.5 7.0 6.938 6.5 6.167	7.4008 7.9295 8.0000 8.5394 9.0000	3,286 3,290 3,291 3,296 3,302	1,820 1,942 1,960 2,090 2,202	61 135 146 229 306	1,497 1,608 1,622 1,738 1,845	1,210 1,325 1,340 1,450 1,570	595 661 667 745 805	63 61 61 58 55	402 411 412 420 426
6.0 5.551 5.5 5.0 4.5	9.2510 10.0000 10.0920 11.1012 12.3346	3,305 3,316 3,317 3,335 3,362	2,265 2,447 2,472 2,721 3,025	348 481 499 730 1,144	1,903 2,078 2,102 2,344 2,655	1,630 1,820 1,850 2,100 2,460	840 940 950 1,098 1,270	53 49 49 43 37	429 436 437 445 453
4.0 3.700 3.5 3.25 3.0	13.8765 15.0000 15.8589 17.0788 18.5020	3,400 3,428 3,450 3,483 3,520	3,404 3,680 3,882 4,160 4,460	1,574 1,893 2,150 2,460 2,880	3,089 3,415 3,668 4,005 4,370	2,960 3,350 3,660 4,110 4,630	1,495 1,645 1,770 1,920 2,101	29 26 21 17 13	462 469 473 481 488
$\begin{array}{c} 2.775 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \end{array}$	20.0000 22.2024 27.7530 37.0040 55.506	3,557 3,607 3,712	4,750 5,180 6,260 8,240 10,900	3,300 4,000 5,500	4,760 5,300 6,650 8,530 11,670	5,190 6,000	2,270 2,520 3,060 3,770 4,715	9 +4 -5 -13 +11	496 506 528 532 518
 0.5 0.25	111.012 222.02							77 129	495

^{*}From: NSRDS—NBS 2, "Thermal Properties of Aqueous Uni-univalent Electrolytes", V.B. Parker, National Bureau of Standards, 1965.

Table 3-38. HEATS OF SOLUTION*

VIVIAN B. PARKER

 ΔH_{∞}^{*} 25 deg C for Uni-univalent Electrolytes in $H_{2}O^{a}$

Substance	State	ΔH_{R}°	Substance	State	ΔH ,	Substance	State	ΔH ,
		cal/mole			cal/mole			cal/mole
HF	g	-14,700	LiBr·2H ₂ O	C	-2,250	KCI	e	4,115
HCl		-17.888	LiBrO ₁	c	340	KCiO:	l c	9,890
ICIO ₄	g	-21.215	LiI	c	- 15,130	KC1O ₄	c	12,200
HCIO. H.O	c	-7.875	LiI·H ₁ O	c	-7.090	KBr	c	4.750
HBr	g	-20,350	LiI-2H ₂ O	l c	-3,530	KBrO:	c	9,830
HI	1 2	-19.520	Lil-3H-O	l č	140	KI	l e	4.860
HĪO:	g	2,100	LiNO:	è	-2.630	KIO,	c	6.630
HNO.	li	-7,954	LiNO, HO	c	1,680	KNO.	ě	3.190
нсоон	1 1	-205	Lino	l c	-600	KNO.	è	8.340
СН.СООН	1 1	-360	Linoi		- 000	KC.H.O.	i e	-3,665
Chicoon	1 1	- 300	N. O.	ì	- 10.637			2.800
X777			NaOH	C			c	
NH.	g	-7,290	NaOH·H:O	C	-5,118	KCNO	C	4,840
NH4Cl	c	3,533	NaF	c	218	KCNS	С	5,790
NH4ClO4	C	8,000	NaCl	c	928	KMnO.	c	10.410
NH ₄ Br	l c	4,010	NaClO:	c	80	;	!	
NH4I	c	3,280	NaClO:3H2O	l c	6,830	RbOH	c	-14,900
NH4IO:	c	7,600	NaClO:	c	5.191	RbOH·H₂O	l c	-4.310
NH4NO:	l ē	4,600	NaClO.	c	3.317	RbOH-2H ₂ O	l c	210
NH4NO.	Č	6,140	NaClO+H2O	c	5.380	RbF	l c	-6.240
NH ₄ C ₄ H ₄ O ₄	ě	-570	NaBr	č	-144	RbF·H ₂ O	c	-100
NH ₄ CN NH ₄ CNS	6	4,200	NaBr-2H ₂ O	c	4,454		č	320
NHICNS	6	5,400	NaBrO:	c	6,430		ě	4,130
CH,NH,Cl		1,378	NaI		-1.800	RECIO.	ا د	11,410
(CH.).NHCI	C	350	NaI-2H ₂ O	C	3,855	RbCiO.	6	13.560
N(CH ₂),Cl	C	975	NaIO:	c	4.850	RbBr	c	5,230
N(CH ₁),Br	C			C				11,700
N(CH ₁),I	C	5,800	Na NO:	C	3,320	RbBrO.	c	
M(CH)4I	C	10,055	Na NO:	c	4,900	RbI	c	6,000
AgClO ₄	}		NaC:H:O:	c	-4.140	RbNO:	C	8,720
ARCIO.	C	1,760	NaC:H:0:3H:0	c	4,700	ll	1	
AgNO,	c	8,830	NaCN	C	290	CaOH	C	-17,100
AgNO:	l e	5,400	NaCN-H1O	c	790	CaOH·H ₂ O	C	-4,900
7:0-	1	1	NaCN-2H ₂ O	C	4,440	CsF	C	-8,810
LiOH	l c	-5,632	NaCNO	C	4.590	CaF-H ₂ O	l c	-2.500
LiOH·H ₁ O	l c	-1.600	NaCNS	c	1,632	CoF-11H ₂ O	ء ا	-1,300
LiF	ا	1.130	1 - 1 - 1 - 1 - 1 - 1	1	1	CaCl	١٠	4,250
LiCl	ìě	-8.850	кон	l c	-13.769	CaCIO ₄	١٠	13.250
LiCl·H ₂ O	ا م	-4.560	кон-н-о	6	-3.500	CaBr	١٠	6,210
LiClO.	1 6	-6.345	KOH-11H-O		-2.500	CaBrO:	ا د	12.06
LiClO.3H,O		7,795	KF	C	-4.238	Cabros		7.97
LiBr	c		KF-2H ₂ O	e e		l Caro	l c	
LiBr·H ₁ O	c	-11,670	Kr.2ntO	c	1,666	CaNO ₃	c	9,560
	C	- 5,560	11	1	1	H	ı	1

^{*25} deg C = 298.15 K. One culorie (thermochemical) = 4.184 joules.

^{*}From: NSRDS—NBS 2, "Thermal Properties of Aqueous Uni-univalent Electrolytes", V.B. Parker, National Bureau of Standards, 1965.

cast and their ends cropped; then they are placed in a furnace and heated to a specified temperature. The heated ingot is placed in a press where it is pierced. This hollow cylinder, open at one end, is then descaled and drawn over a mandrel on a horizontal drawbench. The closed end is then burned off, and the hollow forging is chemically descaled. Following this, the forging is straightened, placed in a lathe, and the outer diameter machined to a true dimension. The inside is dressed to remove scale, but no machining is done on the inside.

Code Designations Appropriate ASTM specifications list the physical and chemical properties of materials used in piping systems. The complete compilation of "Steel Piping, Tubing and Fittings" can be purchased from the ASTM, 1916 Race St., Philadelphia, Pa. 19103. The treatment in this section is a brief outline of frequently encountered materials.

Carbon-steel piping is most frequently used as manufactured in accordance with ASTM specifications A106 and A53. The chemical composition of these two materials is identical; both are subjected to physical tests, but those for A106 are more rigorous. For example, the Code for Pressure Piping permits the use of A53 for pressures of 600 lb/in² gage (22,137 N/m²) and less but excludes its use for higher pressures; A106 can be used for pressures not above 2,500 lb/in² gage (92,237 N/m²). A53 and A106 are made in Grades A and B; Grade B has higher strength properties but is less ductile and, for this reason, Grade A is permitted only for cold bending or close coiling. When carbon steel is intended for use in welded construction at temperatures in excess of 775°F (413°C), consideration should be given to the possibility of graphite formation.

Carbon-molybdenum steel piping may be obtained as A204 (electric-fusion-welded), A335 (seamless) or A369 (forged, turned, and bored). This material was developed in past years when steam temperatures were approaching, but not reaching, 1000°F (538°C) under which conditions carbon steel was both unsatisfactory and uneconomical. It has been found that there is a tendency for carbon-molybdenum to show graphitization at temperatures in excess of 800°F (427°C), and its use in welded construction above this value should be with caution.¹

Chromium-molybdenum steel has been used for temperatures up to 1100°F (593°C). In the small diameters, the material is usually available in the seamless construction; because of the inability of the seamless mills to fabricate large-diameter and heavy-walled pipe, it may be necessary to resort to the more expensive hollow-forged or forged-and-bored piping for higher pressures and temperatures. The material for a hightemperature piping system should be selected after a careful review of technical and economic considerations; the following is intended only as being indicative of recent and current practice. For temperatures up to 950°F (510°C), ½ percent Cr-½ percent Mo (A335, Grade P2) is used; for temperatures 950 to 1000°F (510 to 538°C), 1 percent Cr-1/2 percent Mo (A335, Grade P12) is used; for temperatures 1000 to 1050°F (538 to 566°C), 1¼ percent Cr-½ percent Mo (A335, Grade P11) may be used; for temperatures 1050 to 1100°F (566 to 593°C), 21/4 percent Cr-1 percent Mo (A335, Grade P22) is frequently used. When there is a combination of high temperatures and erosive action, 5 percent Cr-1/2 percent Mo (A335, Grade 5) has been found desirable.

¹Modern steel-making practices have reduced significantly the problem of graphitization. However, in pipe installed in the 1940s and early 1950s, there have been many failures.

Stainless-steel piping is available in a variety of compositions, most popular of which are ASTM A213, Grade TP321 (16 percent Cr-8 percent Ni, stabilized with titanium) and ASTM A213, Grade TP347 (18 percent Cr-8 percent Ni, stabilized with columbium). Either of these two materials may be used up to 1200°F (649°C); particular care must be given to choice of welding rod to avoid brittleness in the welds.

Refer to Tables 1 and 2, respectively, for permissible stress values for piping materials at low and elevated temperatures.

Schedule Designations Many years ago piping was designated as standard, extra-strong, and double extra-strong. There was no provision for thin-walled pipe, and no intervening standard thicknesses between the three schedules, which covered too great a spread to be economical without intermediate weights. Table 3 lists piping as a function of the schedule number which is given, approximately, by the following relationship: Schedule no. = $1,000 \times P/SE$, where P is operating pressure, $1b/in^2$ gage, and SE is allowable stress range multiplied by joint efficiency, $1b/in^2$.

Example. Find the required schedule of ASTM A106 Grade B pipe operating at 1,150 lb/in² gage and 600°F.

Table 2 lists SE value as 15,000 lb/in². Substituting, 1,000 (1,150/15,000) = 76.6. Use schedule no. 80, tentatively, but check with Eq. (1), below.

Commercial sizes of wrought-iron and steel pipe are known by their nominal inside diameter (ID) from ½ (0.3175 cm) to 12 in (30.5 cm). Above 12 in ID, pipe is usually known by its outside diameter (OD). All classes of pipe of a given nominal size have the same OD, the extra thickness for different weights being on the inside.

Thickness of Pipe The following notes, covering power piping systems, have been abstracted from Part 2 of the Code for Power Piping (ANSI B31.1.0-1967).

For inspection purposes, the minimum thickness of pipe wall to be used for piping at different pressures and for temperatures not exceeding those for the various materials listed in Tables 1 and 2 shall be determined by the formula

$$t_m = \frac{PD}{2(SE + Py)} + A \tag{1}$$

where t_m = minimum pipe-wall thickness, in, allowable on inspection; P = maximum internal service pressure, lb/in^2 gage (plus water-hammer allowance in case of cast-iron conveying liquids); D = OD of pipe, in: SE = maximum allowable stress in material due to internal pressure and joint efficiency, at the design temperature, lb/in^2 ; values of SE given in Tables 1 and 2 include allowance for joint efficiency; y = a coefficient, values for which are listed in Table 4; A = allowance for threading, mechanical strength, and corrosion, in, with values of A listed in Table 5.

The thickness of cast-iron pipe conveying liquid may be taken from Table 14, using the pressure class next higher than the maximum internal service pressure in pounds per square inch. Where cast-iron pipe is used for steam service, the thickness should be calculated by Eq. (1), using SE values listed in Table 1.

Plain-end pipe includes pipe joined by flared compression couplings, lapped joints, and by welding, i.e., by any method that does not reduce the wall thickness of the pipe at the joint.

Physical and Chemical Properties of Pipes, Tubes, Etc. The design of piping for operation above 750°F (399°C) presents many problems not encountered at lower temperatures.

(Continued) Table 2. Allowable Stress Values for Temperatures 550 to 1200°F (343.4 to 649°C) (ANSI 1836.1.0-1967)

				j	Longitudinal			
PP40411 18CT-RN Peak 75,000 0.85 8 8 1 PP4041 18CT-RN Peak 75,000 0.85 8 8 1 PP4041 18CT-LN RAPES 75,000 0.85 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 1 PP42111 18CT-LN RAPES 75,000 0.85 8 1 PP42111 18CT-LN RAPES 75,000 1 PP42111 18CT-LN RAPES 75,000 1 PP42111 18CT-LN RAPES 75,000 1 PP42111 18CT-LN RAPES 75,000 1 PP42111 18CT-LN RAPES 75,000 1 PP42111 PP421111 PP42111 PP42111 PP42111 PP42111 PP42111 PP421111 PP421111 PP42111 PP42111 PP42111 PP421111 PP42111	spec. No.	Grade	Composition	opec. ruin rensile	efficiency factor	, " / d	6507	7010
P20411 P3C 8 N P	atically							
TP4411 183 1	ed austemtic	1110000	A 100 NO 2011	25,000	28.5	×		12,050
TPATH 18G-12N;Algebb 75,000 0.85 8 TPATH 18G-12N;Algebb 75,000 0.85 8 TPATH 18G-12N;Algebb 75,000 0.85 8 TPATH 18G-10N;T P^2 75,000 0.85 8 S TPATH 18G-10N;T P^2 75,000 0.85 8 S S S S S S S S S	. 7.912	11-03-11	18/23 //37 18/23 //37	25.000		×		8,900
TP4161 18G-12Ni Me ²⁴ 75,000 0.85 8 TP42H1 18G-10Ni-17e ²⁴ 75,000 0.85 8 TP32H1 18G-10Ni-17e ²⁴ 75,000 0.85 8 1792H1 18G-10Ni-17e ²⁴ 75,000 0.85 8 1792H1 18G-10Ni-17e ²⁴ 75,000 0.85 8 1792H1 18G-10Ni-17e ²⁴ 75,000 1.00 1 15,000 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000 1.00 1 15,000		1124441	70701/11/11/11/11/11/11/11/11/11/11/11/11/1	75 000	0.85	x		13,600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HOLD III	18.17.17.17.13.1	75,000	0.85	x		0,600
TP421H I8G1-10NF-1 \mathbb{P}^{d} 73,000 0.85 8		I I C C C . I.	* 1.2. T. 1.7. E. 4.) S. T.	75,000	0.85	x		12,850
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HE3dl.	PC-10N-13	75,000	0.85	æ		10,350
$\frac{N}{N}$ 48,000 1,000 1 15,000 15,000 $\frac{N}{N}$ 48,000 1,000 1,000 1 15,000 15,000 1,000 1 15,000 15,000 1,000 1 15,000 1,000 1,000 1 15,000 1	ss. A53	3		000 81	00 1	_	12,000	11,650
15	on steel	٠, ٢		000,07	60:1	-	15,000	14,350
A. (2000) 1.00 1.00 1.5,000 1.5,000 1.5,000 1.5,000 1.5,000 1.00 1.00 1.00 1.5,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00	•	<u>.</u>		000.00	9.	-	12,000	11,650
005,71 1 00,1	arbon steel	- - -		000.05	99	-	15,000	14,350
		i. ?		20.000	00.1		005,71	16,600

The stress values tabulated include a longitudinal joint stricture factor where applicable transportations. The stress values in this table may be interpolated to distribute values for interpolated to interpolated to distribute values for interpolated to the VNSES individual of which allowable stresses are not tabulated to a beginning the value in the label to the VNSES in the value is also which allowable stresses are not tabulated to a beginning to the value in the value in the value of the value in the v

materials shall be taken from Sections 8 and VIII or the ASM Bullet and Josonic Veset Code and accessive sindicated in the form Sections I and VIII or the ASM Bullet and Josonic Veset Code accesses. The P numbers indicated in this far a feet and property of the property of the property of the property of the property of the ASM Bullet and Presente Veset Code. Qualification of welding procedures wellers and welding table are identical to those adopted by the ASM Bullet and Presente Veset Code (Qualification of welding procedures wellers and welding operators is required and should comply with the ASM Bullet and Presente Veset Code (Switton NA) except as modified by Par. 123.5.

The co-erally pecand grades of material tabulared should not be used at remperature in excess of the maximum temperatures for which the

allowable stress values are indicated.

Thu stress values below 630% which are not rabulated in Table 1, refer to Section 4, Table 1872 C1 of the ASMF Boiler and Pressure

Upon prolonged exposure to temperatures above 35.9%, the cabide phase of carbon seed may be converted to graphite. Vessel Code

Comprolonged exposure to temperatures above about 8754; the earlide phase of carbon-mob lole num steel may be converted to graphite. Comprolonged exposure to temperatures above about 9754; the earlide phase of chrome-mob lole num steel (with chromium under 16.60) may

*A temperature wer 1000F these stress values apply only when the earbon is 0.04 percent or higher.
*In size 8 in and larger and schedule 140 or heavier, the minimum tensile strength may be 30,000 Ilsin? In these sizes and thicknesses, the imdicated allowable stresses should be reduced by the ratio of 70 divided by 75.

For allowable stress values below 2007b, see Table 1.

The values tabulated apply to fredox quality material, these higher stress ratues were established a temperatures where the short-time thereamen the value of the relatively low yield strength of these history, where slightly greater deformation is acceptable. The stress values in this range exceed tensile properties govern to permit the two of these allows are exactly and the properties of the stresses may useful in dimensional changes due to 62% percent but do not exceed 90 percent of the yield strength at temperature. Use of these stresses may useful in dimensional changes due to permit and on the exected 90 percent of the yield strength at temperature. Use of these stresses may useful in dimensional changes due to permit an international deformance of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted priority of the permitted permitted priority of the permitted priority of the permitted permitted priority of the permitted permi can cause leakage or malfunction.

for the properties of steel applicable to high-temperature service (as well as to ordinary service) for pipes, tubes, fittings, bolting material, etc., see Sec. 6. For a discussion of ereep properties, see Sec. 5

Piping of thickness designed in accordance with Eq. (1) may for any combination of pressure and temperature for which SE values are listed in Tables 1 and 2. The following summarizes piping-industry practice. be used

lb/in² (92,237 N/m²) Temperatures not above 1100°F (593°C) For pressures in excess of 100 lb/in2 (3,690 N/m2), the service up to 750°F (399°C), any of the following may be used: Steam Pressures above 250 (9,224 N/m²) and not above steel (A369); or automatic-welded steel (A312). For pressures between 250 and 600 lb/in2 (9,224 and 22,137 N/m2) the pipe electric-fusion-welded steel (A134) or (A139); electric-resispipe may be seamless steel (A106), (A312), (A335), or (A376); steel (A155); electric-resistance-welded steel (A135) or (A53). For pressures of 250 ll/in2 (9,224 N/m2) and lower and for electric-fusion-welded steel (A155); or forged-and-bored may be scamless steel (A106) or (A53); electric-fusion-welded Š

the for services specified may be used for temperatures higher than 750°F (399°C), unless otherwise prohibited, if the SE values of Tables 1 and 2 are used when calculating the or Grade A electric-welded pipe (A53), (A135), or (A139) is used for close coiling or cold bending. Pipe permissirequired wall thickness.

must be of cast or forged steel or of forged or cast nonferrous Malfeable-iron screwed fittings (300 lb MSS SP-31) may be used for pressures not greater than 300 lb/in2 and temperatures not over 500°F. Valves 8 in and larger should have the bypass of at least 3/4 in, commercial size. 1 Welded fittings may be used of the same material and thickness as the pipe with which they Valves and fittings must have flange openings or welded ends, and valves must have external stem threads. Valves material. Forged and cast-steel screwed valves and fittings and pressure from 250 to 400 (400 to 600) [600 to 2,500] lb/in* may be used up to 300 lb/in2 and 500°F for 3 (2) [11/2]

Steam Pressures from 125 to 250 lb/ln² (4,612 to 9,224 N/m³), are to be used.

12,000	14,750
10,800	12,950
000'6	10,700
10,800	12,950
0,000	10,700
	10,200
	12,850
	9,350
	13,450
	8,850
_	12.000
800 850	750
Max allow	
Max allowable stress value, lb/in ⁴ , for metal to 850 900 950 1,00 11,750 11,550 11,400 10,6 8,550 8,300 8,300 8,3 9,000 8,750 8,600 12,30 12,750 12,650 12,600 12,3 9,830 9,600 9,500 9,3	

permissible for this service may be used for temperatures above 450°F (232°C) if the proper SE is used in calculating the (A72), Copper and brass may be used if the temperature does not exceed 406 F. Cast iron may also be used. For close coiling or cold hending, Grade A seamless steel (A53); or Grade A electric-welded steel (A53), (A135), or (A139) is suitable. Pipe Temperature not above 450°F (232°C) Pipe may be electricfusion-welded steel (A134 or A139), electric-resistance-welded steel (A135), seamless or welded steel (A53), or wrought iron pipe-wall thickness.

wal fini dra sior sior shar car

W.C. siz inf

8 in and over must be bypassed. Bodies, bonnets, and yokes Flanged-steel fittings must conform to the 300 lb ANSI Standard 1816.5, if of cast iron, to the 250 lb ANSI Standard Malleable-iron screwed fittings must conform to the 300 lb Valves below 3 in may have inside stem screws. Stop valves B16.2; or, for screwed fittings, to the ANSI Standard B16.4. MSS SP-31 specifications, except that the 150 lb ANSI Standard B16.3 may be used for pressures not greater than 150 lb. are of cast iron, malleable iron, steel, bronze, brass, or Monel. Welded fittings may be used

stil Ξ Ë 7.30

> Steam Pressures from 25 to 125 lb/in., Temperatures not above 450°F Pipe may be of steel, wrought iron, cast iron, copper, or brass; valve bodies of cast iron, malleable iron, steel, or brass. Fittings are of 125 lb or 150 lb American Standard cast iron with screwed or slanged ends, or of malleable iron with screwed ends.

Soft to manage and the same

ä 3.5

> Steam Pressures 25 lb/ln² and less, Temperature up to Ib ANSI Standard B16.2. Screwed fittings are of the 125 ANSI Standard B16.4 or of the 150 Ib ANSI Standard B16.4 for cast iron or malleable iron, respectively, or the B16.15 for 450°F Pipe may be of steel, wrought iron, spiral-riveted steel, brass, copper, or east iron. Flanged fittings conform to the 25

Pipe colls are made from any of the commercial sizes of iron, steel, brass, and copper pipe and tubing. Limiting center-tocenter dimensions, to which pipe coils can be fabricated in sizes 1/4 to 2 in, are given in Table 10. Steel tubing cannot be bronze. Welded fittings may be used

美兰

ranging from 1/4 to 101/4 in in wall thickness from 20 gage to 2 in (0.091 to 5.08 cm), and in standard pipe weights and Scamless mechanical tubing is obtainable in outside diameters bent to the absolute limits of brass or copper.

P.No." 100 110 110 110 110 110 110 1	Pipe: Welded carbon steel, Welded (arbon 8120, Lap-welded A120, Automatically welded austenitic steel, A312	Grade Crade	- •		Longitudinal			Nolle XIV	Alban min			Max allow not success variety		
Colored Colo	Pipe: Welded carbon steel, Uselded carbon steel, Lap-welded A120, Automatically welded austenitic steel, A312	1.P3041 [C*	Nominal composition		joint efficiency factor		1 1 2	200	300	+(N)	450	500	009	650
Third SC-SC State O.85 S. S. S. S. S. S. S. S. S. S. S. S. S.	Lap-welded A120, Automatically welded austenitic steel, A312	1.P30411°					6,500 8,800	6,350 8,600	6,100	5,850 7,800	5,700 7,600			
11921 RC-10N-11 NAME NA		1750411 TP316HF* TP316HF	18Cr-8Ni 18Cr-8Ni 18Cr-1Ni-Mo 18Cr-1Ni-Mo 18Cr-1ONi-Mo	75,000 75,000 75,000 75,000 75,000	0.85 0.85 0.85 0.85	. <u> </u>	15,950 15,950 15,950 15,950 15,950 15,950	14,050 13,600 14,850 13,700 14,300	13,200 11,700 14,350 12,400 13,450 13,600	12,700 10,400 13,850 11,450 13,100		12,350 9,700 13,600 10,700 12,850 11,450	12,200 9,200 13,600 10,100 12,850 10,900	12,150 9,050 13,600 9,850 12,850 10,600
Part Part RC-RN Francisco RA Part RA RA RA RA RA RA RA R	Electric-fusion-	TP3211F	18Cr-10Ni-Ti	7.5,000	6. 5	:						;	91 71	14 300
17.104 RACARS 75.000 1.00 8 18.730 10.00 11.400 11.00 12.00 18.74 17.04 RACARS 75.00 1.00 8 16.00 11.40 11.00 12.00 18.74 17.04 RACARS 75.00 1.00 8 16.00 11.00 12.00 11.00 12.00	welded austenitic			0(3) 32	00.7	œ	18,750	16,550	15,550	14,950		14,550 11,400	0,800	10,650
	A358 Class F. f.	TP304	18CF-87.	75,000	8	oc o	18,750	14,900	14,000	13,450		13,100	9.700 9.700	009's
19 Holy of State 1 (19) 18 (19)	Class II'4"	+0£d.1.	ISC-8Ni	000,27	0.6 0.8 0.8	coc	006'91	14,400	12,400	000 19.300		000'91	000'91	98,900
Triple MCC-12N-No 5,000 0.00 Mag 16,000 15,	Class II ^{rJ}	17936 17936	18Cr-12Ni-Mo	75,000	8.1	oc oc	18,750	16,100	14,600	13,500		12,600	4,400	14,400
18.10 18.70 <th< td=""><td>Class F</td><td>TP316</td><td>18Cr-12Ni-Mo</td><td>75,000</td><td>8 S</td><td>; oc</td><td>16,900</td><td>15,750</td><td>15,200</td><td>14,700</td><td></td><td>11,350</td><td>10,700</td><td>10,450</td></th<>	Class F	TP316	18Cr-12Ni-Mo	75,000	8 S	; oc	16,900	15,750	15,200	14,700		11,350	10,700	10,450
1972 1972 1972-103/571 75,000 1.00 8 16,750 15,150 14,430 14,430 15,160 11,500	Class II''	TP316	18Cr-12Ni-Mo	75,000	06.0	oc o	16,900	16,800	15,850	15,400		25.100	12,800	12,500
The part The part	Class II	TP321	18Cr-10Ni-Ti	75,000	8.8	o oc	18,750	16,550	15,300	14,450		13,600	13,600	13.600
17.21 17.2	Class F	17.617.	18CF-107-17	75,000	0.00	ac t	16,9(x)	15,100	13,750	13,000		12,150	11,500	067,11
10,800 10,000 14,000 1	Class IF	1753.1. 1763.1.	18C:-10N:-Ti	75,000	06.0	æ	10,700	•		900	009 6			
Page Page	Class II					-	10,800	009'01	10,200	000.51	2001	14,500	14,000	13,700
PS SGL-[SAIO-S] GO,RRO LOO S LOO L	A120 carbon steel	;	67.5 12.160	000'09	00.1	· >	15,000	000'51	2,000	15,000		14,500	14,000	3,700
Part Part	A335 ferritic alloy	P5	SC1-25/10-51	000'09	1.00	 4	000,51	15.000	15,000	15,000		14,500	14.350	14,300
TP30411 RCT-RNI 25,000 10,000 15,000	A335 ferring alloy	1.05	5Cr-15Mo	60,000	8.8	~ oc	18,750	16,550	15,550	14,950		11,400	10,800	10,650
TP304 TRG-18 T	A 112 Austenitie	11 P30411	1.8CV.8C	5.000	8 -	æ	18,750	16,000	06/51	001.71		16,000	16,000	200'91
TP916H RGC-12N-NO 25,000 1,00 8 18,730 15,800 14,450 15,800 15,800 14,500 15,800 14,500 15,800 14,500 15,800 14,500 15,800 14,500 14,500 15,800 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 14,500 16,000 10,800 10,800 10,800 15,100 14,500 15,1	Austenitic	TP304H	78.7.87		90	8	18,750	17,500	16,900	13.500		12,600	08:1:	20.5
TP2111 RGC-10N-1-1 75,000 1,00 8 18,750 15,500 14,450 14,450 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550 16,500 16,000 10,800 10,800 10,800 10,800 12,200 16,000 12,200 16,000 12,500 16,000 13,500 14,500 15,100 15,	Austenitica	H9164T			1.00	sc :	18,750	16,100	15,850	15,400		2,100	12,100	12,500
PROPERTY PROPERTY 75,000 1,000 1,000 1,550 14,550 14,550 14,550 14,550 16,800 10,800	Austenitic	11011011	1 /2 1 3	75,000	00.1	æσ	18 750	16,550	15,300	14,450		13,350	14,350	14,300
Figure F	Austendid	TP1711	1805-1075-13	75,000	80 S	cα	18,750	16,550	15,550	14,950		11.400	10,800	10,65
TP304H TRCE-ENT 73,000 10,000 15,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 12,000 12,000 12,000 13,500	and and and and and and and and and and	11F0£d.1.	18C:-8Zi	75.(XX)	8.5	; 00	18,750	16,000	13,750	067,21		16,000	16,000	20.9
PP16ff PRCF-1251 No. PRC	Austenitic	TP304H	フェルミ	000,67 000,67	00.1	oc.	18,750	17,500	600	13,500		12,600	00.1	8 2
TP2111 FGC+10N-1-1 75,000 1 (0) 8 18,750 16,550 15,300 14,450 13,550 13,550 13,550 13,550 13,550 13,550 19,2111 FGC+10N-1-1 75,000 1,000 8 17,500 15,450 13,750 15,750 15,750 15,750 15,750 15,750 15,750 14,500 14,500 14,100 14,100 14,100 14,100 14,100 12,800 14,500 14,100 14,100 12,800 14,500 14,100 14	Austennie	1191141.	oN 7717.81		1.00	oc s	18,750	16.800	15,850	15,400		13,100	12.800	12,50
PRINT PRIN	Austenitic	1153151	-18C2-10Zi-13		8 9	x 00	18,750	16,550	15,300	14.450		13,550	13,350	13,300
FP30411 IRCZ-RN1 ACCAMPA LOS R 17,500 L5,430 L5,730 L5,60	Vustenine	1112891	18Cr-10Vi Li	000,27	3 8	; s c	17,500	15,450	14,500	13,530		11,400	10,800	10,65
FP1411 INCL-EN-Mo T0,000 LOO R I7,500 I4,600 I1,500 I4,10	A430 Austenitic	FP304H	78-108-1	70 000	00.1	œ	17,500	15,450	15,750	15,200		14,950	14,950	\$ \$
	Austenitic	FP30411	18CF-82NF-Mo		1.00	∞ =	17,500	16,100	14,600	13,500		12,600	14.100	14,10
FP32111 1877-1087-11 70,4887 1-500 15,200 15,200 14,800 1-500 FP3211 1877-1087 19 17,500 14,800 15,2	Austenine	FP31611	18Cr 12Ni Mo		8 8	coc	17,500	15,700	14,800	14,350		13,500	12,800	12,50
	Austenia	FP321H	180-137-1		3 8	oc.	17,500	15,700	14,800	066.41				

PROBABLE COST DEVELOPMENT

					-									
COST ESTIMATE ANALYSIS	TE A	NAL	SIS		<u>z</u>	INVITATIO	5./conti	5./CONTRACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREPAR	REPAIN	
					1							1/-//	5 6-61-11	
PROJECT HOLSZIN ARP ARMA B NIZKIC	ARM.	S.	N17 A	~~	Acie C	CI CODE A		В	□ CODE C	DRAWING NO.		SHT	OF.	
LOCATION KINGSPIELL	16	16NN.				П ОТНЕЯ				ESTIMATOR	PDC	снескер	р вү	
TASK DESCRIPTION	QUANTITY			3	LABOR		O3	EQUIPMENT	2	MATERIAL	TOTAL	پر	SHIP	SHIPPING
ECO No. 1	No. of Units	Unit N Meas	MH	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost	•		Unit	Total WI
STEMM PIPING:			-						1					
MDRCR.	256.	7/7		,	16 55	4138	100	320	3/	7750	12208	8		
	256	1.7.		,	730	4413	100	320	19 50	4875	8006	8		
30 HZ P16	150	1 F			1120	1755	37.1	01C	599	1590	3555	55		
3''d. sen	150	- J. J.			778	1163	3)S	129	5,5,7	837	2129	29		
P.Po INSUL.	300	47				2000				1000	3000	Ö		
TUKFIN MOD. Grat		7				10000				10000	20000	00		
1500 THR STAI, SURF, CAWS, 1		G.A				lono		2500		300 B	42500	.00	-	
COND. POINT		4.0				300				1500	1800	2		
8" ENDNSR. WIF. FLING	300	4. F			8 8	6900	18/	543	3/1	9300	16743	m		
FIFE FTGS & MISC.		107				1000				25060	35000	0	-	
				~						}		1		
						699.05		4c3h		91852	146543	8/3		
												_		
									-					
			_											
TOTAL THIS SHEET											·			

					-	T & T !! !!	1100/	Oly TOyotivoo/		T. T. T.	O HO	1		
COST ESTIMATE ANALYSIS	TE AN	I ALY	SIS		<u> </u>		200			DATE PRICING	2	11-14	11-14-95	10
PROJECT HOCESON SAIL ALBA'E	AFE	T. T	Ac G	Ð		CODE A	II CODE	В	CODE C	DRAWING NO.		SHT	OF .	
LOCATION KINGS FIRST	76NA	2				П ОТНЕВ				ESTIMATOR ₽⊅	74	снескер	р ву	
	QUANTITY			3	LABOR		EG	EQUIPMENT		MATERIAL	TOTAL	اِ	SHIF	SHIPPING
ECO KIC, 2.	No. of U	Unit Meas	MH	fotal Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost		!	Unit WT	Total WT
STEAM PHELL				-										
8" Ch SCH. 60 UNTING 250		12				4350	361	320	33 20	8375	13045	5.		
1		r.Fi			5421	8174	100	320	क्ष	4875	8096	80		
5 'Ch SCH. 40 ON HAVE.	150 6	ن ليا			1	3430	àl -	272	<i>V</i> ₁	4650	\$372	ų		
	150	277			7.75	1163	180	6.01	5.50	837	2129	0		
PIPE MEUL	1	1.27				2500					3700	0		
Lrummen Pipe:														
2/2 "J. 5011. 40	200 6	171			350	1840	172	hee	040	1280	3344	4		
PIPE INSUL.	97 /	7 0 7				oauc.				1000	3000	0		
					,									
HI TOATP PURITERSANT		11.33				300				3438	373	38		
65 6PM FUMP	-	S.A.				216				1375	1881	16		
No BLAKT SYST	-	S. A.				13/13				1000	1	20		
UNTIRED BIR. VECTOR	-	E A				5000		2500		75000	82500	023		
	•	- 1												
MISC. ACCES. 8 10000		101				20000				40000	60	60000		
						-4-6-00-00-00-00-00-00-00-00-00-00-00-00-0					<u> </u>			
					5	78hSh		3165		1,3030	192377	17		
									-	•				
TOTAL THIS SHEET														
2														

COST ESTIMATE ANALYSIS	TE A	NAL	YSIS		<u> </u>	INVITATIO	O./CONTRACT NO.	RACT NO.	•	EFFECTIVE PRICING DATE		DATE PREP	REPA	
PROJECT						□ CODE A	п соре	В	CODE C	DRAWING NO.		SHT	OF	
LOCATION						O OTHER				ESTIMATOR		снескер	о ву	
	QUANTITY			5	LABOR		EOI	EQUIPMENT	∑	MATERIAL	TOTAL	ب	SHIPPING	PING
ECO NO. 3	No. of Units	Unit Meas	MH Unit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			V⊓it	Total WT
FBRGL, GING, TONE, FKG.														
GCC C. FNI IND. INE.	-	C, D				1500		0001		19000	14500	0		
FUMPE & PRING	_	LOT				3500				2200	10700	ó		
		\S.				3000				5000	8000	0		
Str & working ANTES		15				Seco				1000	000	3		
			-		w	()				1		
						18000		7001		2,6000	39300	0		
												-		
										•				
TOTAL THIS SHEET														
											L (

	٠.	7.5	OF .	١,	SHIPPING	nit Total T WT																					
	DAIE PREPA	-	SHI	снескер ву	···	Unit WT			7 7	8 75	1			760	10	2 70		160	096	8 95	1	31 25	1				
O HOLO	KICING			PDL	TOTAL				177	368	97.			297	080	1562		101	h	4208		63	!	4850			
T TARRETT	EFFECTIVE PRICING DATE		DRAWING NO.	ESTIMATOR	MATERIAL	Cost			11230	23375	511 20			55 80	11625	29295		27 10	930	1358 55							
		1	l cope c		≩ —	Unit Price			935	935	426			93	2	93		272	83						-		
0.4	ACI NO.		æ	-	EQUIPMENT	Cost																					
drivoo/ of	340./ CONTRACT NO.		3000 E		Eal	Unit Price																					_
			LI CODE A	OTHER _		Cost			08 49	135	46080			24180	50375	126945		13450	4030	285046							
-	<u> </u>		ACID		LABOR	al Unit s Price			540	5 40	386			402	402	403		13 45	403								-
	SIS		NTRICI			MH Total		-																			
	ANALYSIS		W	5	չ	Unit Meas			LF	77	LF			(L)	N T			SF	N T				\ 				
			NRGA	(6NN)	OUA	No. of Units		•	12	75	3,120			60	25	315		9/6	0/:				7	0			
	COST ESTIMATE		HOLSTON ABP	KINGS FORT	TASK DESCRIPTION		TION EW#4		PRHTR.	16AS HTR.	LGS. P.PE TO TURB.		S. JACKOT.		TAIL GAS HTR	1665. Pre		INGE SOTSUNGUE		SUBJOJU L	- 1	CONTING.	- 1	CONST. 1			
)	1	PROJECT 1/6	FOCATION $oldsymbol{\mathcal{F}}$	TASK		INSUCATION	1" CALCIUM	18 DAIR PRHTR	18'4 TAUGAS	8'70 Tess.	+	0,010 5.5.	V P,81	1 P. 81	φ.	·	187 FLANGE	18"6 F.	SUB	7	12.10		10TAL			
													1	50)										 	 	-

COST ESTIMATE		ANALYSIS	SIS		<u> </u>	INVITATIC	JO./CONTRACT NO.	ACT NO.		EFFECTIVE PRICING DATE	RICING	DATE PREP	REP).	
PROJECT						□ CODE A	E CODE	В	O CODE C	DRAWING NO.		SHT	OF.	
LOCATION						🗆 ОТНЕВ 👝				ESTIMATOR		снескер	о ву	
TASK DESCRIPTION	QUANTITY	<u></u>		LABOR	OR		EOL	EQUIPMENT	2	MATERIAL	TOTAL	AL.	SHIF	SHIPPING
ECO NO.5	No. of U	Unit MH Meas	ĬĔ	Total I Hrs P	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost	-		Unit	Total WF
18 SENICIRCULAR												_		
PLATE HT. EXCH. 14 ENG.	7	6.H				100				Sao	2100	0		
· ·					-								-	
CLAYTON WHSG WASTE	_													
HEAT STEAM GOVE MYR	-	6.A				2000				5000	2000	0		
CONDONSATE COLLER	1 6,	6.A				130				500	009	O		
COND, ReVR/PUMP	- 0.	62				300				1500	0081	20		
1/4" DINSULLING														
PIFE & FITTINGE	7 /	LOT				7500				5000	Z 6/	200		
					/						(1		
					7	10000				17000	27000	200		
												-		
									-					
										-				
TOTAL THIS SHEET														

			SHIPPING	Total																				
NATE PREP.	OF	.D BY	₩	Unit																				
	SHT	СНЕСКЕ	TOTAL		4055	1553	00088	70250	573	1000	3260	4210	709	289	125	7500		28/822		13922				
PRICING	NO.	R PDL			*	_										0				0.	 			·
EFFECTIVE PRICING DATE	DRAWING NO.	ESTIMATOR	MATERIAL	Cost	1445	594	185500	03989	500	850	2400	1360	335	324	100	5500	\ 	367508		507				
	ODE C		2	Unit Price	2000	328			500	850	00		223	ه آو						7.		-		
./CONTRACT NO.	DE B 🗆 CODE		EQUIPMENT	Cost	285	104	500	150			09							6601		公公				
./contr	II CODE		EO	Unit Price	57	69					150									0				
INVITATI	CODE A	OTHER		Cost	2325	855	2000	-	73	150	800	2850	374	363	25	2000		133(5		STW				
=	<u></u>		LABOR	Unit	465	5 20			72.50	150	Ş		249	243						9				
	31		٦	Total																				
YSIS	D F			MH	<u> </u>																			
ANA	D /20	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	QUANTITY	f Unit Meas	77	TT	6.71	EA	OA	55.7	77	57	1		67X	LCT								
ATE	C Aci	10 N.) Oo	No. of Units	500				-	,	96		150	150	/				1					
COST ESTIMATE ANALYSIS	PROJECT HOLSTON NITRIC ALID PRED EUC	LOCATION KINGS PORT	TASK DESCRIPTION	ECO NO.7	MAKOUP & FOWNER. P.F. F-10		400 SERIOS SI, SIL, ELLINYAI.	WASTE Hr, Bur Syst		TEMPERATURE CONTRUS	6"4 A3126RIP321 P.PG	HEATOR INSULATION	STEAM PIFE INTELL	Fowth Pire INSUL	SURGE TANK-100CK	P. Po FITTIBOS & ACCOS.			15% CONTINCENT					TOTAL THIS SHEET

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479
 Made By:
 Date:
 Job No:

 PDL
 12-22-95
 95094-00

 Checked By:
 Date:
 Sheet No:

Calculations For:

ECO #7 CosTS

	Assumptions
0	COST OF ST. STZ. FABRICATION 15 PROPORTIONAL TO PUBLISHOO COST MULTIPLIOR FOR 90°
	P, PO OZBOW FROM MOTANS: SCH. 40 12" \$ 31655 90" BCBOW - 1720 MATERIAL
	SCH 40 12 \$ BL, IRON 90° 5280W - \$212 MATERIAL
	MULTIPLIOR = 1720 - 8.1
D	PUMP AND ACCUMULATOR SKIDS AND BACK PRESSURE REGULATOR INCLUDED IN
	CLAYTON QUOTATION WILL SERVE BOTH GENERATORS
(3)	STANDARD GONGRATOR COST 15 1/3 OF TOTAL QUOTED COST.
	ADDOD COST FOR ST. STL. GONORATOR
	WHICH CLAYTON DOCLINGO TO QUOTE: CosT = 468600 (8.1) = 4185522

P.O. BOX 5530, EL MONTE, CALIFORNIA 91734-1530

TEL (818) 443-9381 FAX (818) 442-1701

TO:

Affiliated Engineers SE, Inc.

3300 SW Archer Road

Gainesville, Florida 32608-1731

TERMS: 20% with Order-Balance Net 30 Subject to Credit Approval

ATTN:

Paul Little

(904) 376-5500 -TEL

(904) 375-3479 -FAX

FOB: El Monte, CA - Prepay and Add

APPROX. SHIP DATE: 120 Days

AFTER RECEIPT AND ACCEPTANCE OF ORDER

RE: Clayton Steam Generator

QUANT.	MODEL AND SPECIFICATIONS		UNIT PRICE	TOTAL
1	RGSG-5ECO201 Exhaust Gas Steam Generator Mono-coil, smooth tube, single pass Steam Designed to maintian feedwater inlet temp prevent dewpoint corrosion while maintain efficiency.	eratrue to		
	T gas out: 266 Gas Press Drop: 17.4 Steam Flow: 1,180	°F °F inW.C.		
1	Bottom Inlet/Top Outlet Cones Provide transition pieces from 32 inch O. stack to the EGSG. Includes Soot Blower on Inlet Side.			
1	Pump & Accumulator Skids Includes the following items mounted on a 1 Feed Pump & Electric Motor Accumulator with Level Control & Pressur Control Box Including Starter for Clayto Safety Valve(s) Overflow Steam Trap Necessary piping and wiring with-in skid	re Gauge on Pump		
1	Back Pressure Regulator. For stabilizing steam system during load and operation start-up. TOTAL: HEAT RECOVERY SYSTEM	fluctuation		\$68,610
	NOTE: Freight, Sales Tax, and other fees	may apply.		408,610

THIS QUOTATION EXPIRES 10 DAYE , AND IS SUBJECT TO THE TERMS AND CONDITIONS ON THE FACE AND THE REVERSE SIDE HEREOF. PARAGRAPH 17 OF SUCH TERMS AND CONDITIONS LIMITS ACCEPTANCE OF THIS QUOTATION TO THE TERMS CONTAINED HEREIN, EXCLUDES ANY ADDITIONAL TERMS PROPOSED BY PURCHASER, AND PROVIDES THAT ANY ORDER BY PURCHASER BASED ON THIS QUOTATION [OR ACCEPTANCE BY PURCHASER OF THE GOODS DESCRIBED HEREIN] SHALL CONSTITUTE AN UNCONDITIONAL ACCEPTANCE BY PURCHASER OF EACH AND ALL OF THE TERMS AND CONDITIONS CONTAINED HEREIN, AND A WAIVER BY PURCHASER OF ANY CONFLICTING OR ADDITIONAL PROVISIONS CONTAINED IN ANY OF PURCHASERS DOCUMENTS RELATING TO THIS TRANSACTION.

AC	CEPTANO	<u>.E</u>
c	Ϋ́	
7		

THIS QUOTATION IS ACCEPTED

Sales Engineer - 12/22/95

SIGNATURE

DATE

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, FL 32608 Telephone Conversation

Nick Lo Juono	
Conversation With CLAYTON	95094-00
HOLSTON AAP NITICIE ACIO FAC.	Project Number 12-22-95
Project Name LINGS PORT, IGNN.	Date
Location	Time
FAXED ONE PAGE QUOTE	
CLAYTON DOELINGD TO QUO	TE THO
STAINLESS STEEL SECTION BECAL	ISE OF THE
NITRIC ACID FORMOD.	
	· · · · · · · · · · · · · · · · · · ·

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, Fiorida 32608-1731

(904)376-5500 - Office (904)375-3479 - Fex

FAX TRANSMISSION COVER SHEET

TO: NICK LO JUBNO TIR-90,-2200	FAX# 770 907-0548
COMPANY: CLAYTON INDUSTRIES	ERGUEST # 95094-00
FROM: PAUL LIFTER	PAGES: 3 (Indicover sheet)
DATE TIME: 12-11-95	Hard Copyrio Follow: NO
REMARKS:	
DESIRE BUDGET PR	ICMG &
NOMINAL PERFORMANCE	THAT MIGHT
BE EXPORTED I ANTICIPA	
UNIT WILL PRODUCE IN	EXCESS OF
1000 #/HR SATURATED ST	GAMO
·	

CLAYTON INDUSTRIES HEAT RECOVERY SYSTEM FACT SHEET FOR QUOTATION

(Designed for initial proposal only to establish size and budget estimate for basic equipment)

	DATE 12-11-95
COMPANY: ABSB	o, Fc.
NAME OF CONTACT: PAUL LITTE	Circle appropriate units of measure
PRODUCT GAS UNIT	
Gas Flow Mass Units 17650	17650 (Ibs/hr er Kg/hr)
Standard Volume Units (at 75 °F or	24°C) (SCFM or SM³/hr)
Gas Inlet Temperature	350 (For 0)
Steam Pressure	80 (Psl or bar)
Receiver (Feedwater) Temp. (usually 200 °F or 9	93°C)
OPTION* 1. Gas Outlet Temperature	(F or C)
2. Total Heat Transfer	(Btu/hr or Kcal/hr)
3. Steam Mass Flow Rate	(lbs/hr or k/hr)
"(Indicate "maximum available" (f unknown)	
wable Gas Pressure Drop	
	N.C.)
DEWPOINT=	255°F Cp=0.253 8/40F
Waste Gas Amastics PERCENT BY VOL	umo: No-71.3; NO,-11.5%; HaO-16.4%
Source of Waste Gas (incinerator, oven, turbin	ne, engine, etc.): CHEMICAL PROCESS
Source of Fuel (gas, diesel oil, commercial wa	iste, etc.): NA
Specific Gravity ¹ Temp	Specific Heat³ Temp
	y only, etc.): 24 HRS/DAY
Equipment estimate at job site (size and numb	ber of sections):
Equipment selection Clayton Engineering:	
,	REQUIRES 400 SERIES STAINLESS STEEL GAS
¹ Will use the following figures if not available: 1.0 @ 70°F. ⁸ Will use the following figures if not available: 25 @ 600°F.	STAINLESS STOFL GAS
	- TONDENS
	ATION IS DESIREABLE - NITRIC ACID WILL BE THE RESULT.
	ATTON TO THE RESULT.
	ACID WILL BO ITTO

1219 PO2

157 TEL NO:

DEC-11-, 82 WON 11:18 ID:

ា នៅសំរង់ ម

CLAYTON INDUSTRIES HEAT RECOVERY SYSTEM FACT SHEET FOR QUOTATION

(Designed for Initial proposal only to establish size and budget estimate for basic equipment)

	DATE/S	2-11-95
COMPANY: AESE ADDRESS: GAINESULLE, FC.		
NAME OF CONTACT: PAUL LITTED	Circle appropris	ate units of measure
Gas Flow Mass Units 2000 #/HR Standard Volume Units (at 75°F or 24°C)		(lbs/hr or Kg/hr) (SCFM or SM³/hr)
Gas Inlet Temperature 495°F Steam Pressure 80 PSIG		(Psi or bar)
Receiver (Feedwater) Temp. (usually 200°F or 93°C) OPTION* 1. Gas Outlet Temperature		(F or C)
 Total Heat Transfer Steam Mass Flow Rate 		(Btu/hr or Kcal/hr) (lbs/hr or k/hr)
*(Indicate "maximum available" if unknown) wable Gas Pressure Drop	•	(In W.C. or mm - N.C.)
Waste Gas Properties: PERCENT BY VOLUME:	N80.2; NO-4.	9%: H20-13.9%
Waste Gas Properties: FERCENT BY VOLUMB.	(2 - 0 2/2	28/40=
Source of Waste Gas (Incinerator, oven, turbine, engine, etc.	C.):	J /++ 1
Source of Fuel (gas, diesel oil, commercial waste, etc.):	N.A.	

Specific Gravity' _____ Temp. ____ Specific Heat² _____ Temp. ____

Equipment estimate at job site (size and number of sections):

Equipment selection Clayton Engineering:

Indicate utilization factor, (8 hours/day, 5 days/week; or 24 hrs/day,

Continuous; standby only, etc.):

24 HR/ DAY

¹Will use the following figures if not available: 1.0 @ 70°F.
²Will use the following figures if not available: 25 @ 600°F.

ENERGY RATE SOURCE MATERIAL

```
TECS ( Par
                                                                         7/4/95
                 OUT-OF-POCKET COST FOR STEAM, 13-200
                                  MONTHLY USAGE & PROD. REPORT, BY KEN HARRIS
                 1994 AREAB
    GIVEN:
       Sum of individual boilers steam output = 1,324,620,000 lbs
       Building Steam Output = Sum - Internal consumption (turbines, DA, ctc)
                             = 1,324,620,000 x .836 =
                                                              1,107,382.000 lbs
                                                                 1.107 m Btu
                                                                 (Per Hoc wal purch
spec June 1994)
        Steam Coal, 1994 = 64,673 tons
        Btu content of coal =
                                    64,673 tous x 2000 x 14,100
                                    1.824 mm Btu
       Cost of treatment of Sulfuric System backwark water = unites Cost permot
                   50 gpm ave x 60 min x 8760 x 239/
                                                               E, 500 /gr.
        COST of Filter Water for feed water = Utilities Cost Report
                  1, 324,620,000 lbx x 0.148.
                                                               24,500/yr
                                   1000901
              of electricity (motors, precipitators etc) =
                                                                $ 173,000/yr
                   412,000 KWH (aur) x . 035 # x 12 mo
        Cost of fly ash dispisal =
                                       15,000 est
                  cinder removal =
                                         louvo est
                         maintenavic = 393, 391 rouhn++ 529,104 mgn = 922, 465
                   Wdg
                  water treatment Chemical (See Osmisis Study 1995) $91,000
Out of Archet Steam (ost = Coal + electricity + chemicals + FW + treatment + flyash + Condi
                                       bldg steam output
        per Detense fuels,
Geo. Tittsworths $ 2,91 million
                    (45×64,673)+ 173,000+ 491,000+ 24,500+ 6500+ 15,000+ 10,000
       OPSC =
                                   1,107,382.000 165
                                    2.92
                                             1000 lbs
                          159
```

J. Bouchellon, PE

3/95

1-615-578-2200

HOLSTON ARMY AMM PLANT
POWCSOMORD CONT# OAAAJ9470+C+OSEC
P O RX 745
KINGSPORT IN 37668

3013933300034 0140028750140028757

1995

Please Return This Portion With Your Payment

Meter Types

K - Kilowatt Hour

D - KW Demand A - KVA Demana

R - RKVAH V - KVAR Demand Codes E;; Estimated

C. Meter Change O - Off Peak

147,128.75 SC SAN Account Number: (Please Use When You Call or Write)

Grass Amount

Service Address
HOLSTON ARMY AMM PLANT
CONTR NO WOUTEL HENG 45
KINGSPORT IN

37660

340,028.75

MARCH 1995 Month PART 91 PEE Tanil Office KINGSPURT Service Provious Roadings Present Readings Meter Constant Meterod Usage From CLITTON CHORUM ALL TO BOTH THE COLUMN THE THE COLUMN THE CO 752348 JUL 752348 JUL 744548 JUL 744548 JUL 744548 JUL 7 4000. 4000. XED>XOR 7349 54572 aranju aranju 0.009504 0.00564 0.4445 0.6464 64.38 0530

154,111.36 11,950.19CR 2,132.42CR 140,023.75
ม4₫ , ₫ᢓᢆã.þš~``

KINGSPORT

TARIFF I. P. (Industrial Power)

AVAILABILITY OF SERVICE

Available to industrial and large commercial customers. Customers shall contract for a definite amount of electrical capacity in KW which shall be sufficient to meet normal maximum requirements but in no case shall the capacity contracted for be less than 3,000 KW. Contract capacities will be specified in multiples of 100 KW.

MONTHLY RATE

Tariff Code	Service Voltage	Charge per KW	Charge per KVH	Service Charge	
322	Primary	\$ 8.70	2.302 cents	\$ 240.00	
323	Subtransmission	£ 7.79	2.269 cents	\$ 730.00	
324	Transmission	(\$ 7.60)	2.241 cents	\$1,930.00	HOC

MINIMUM CHARGE

This tariff is subject to a minimum monthly charge equal to the sum of the service charge, the product of the demand charge and the monthly billing demand and the fuel clause adjustment.

FUEL CLAUSE

When the unit cost of fuel in the charges for power purchased from Appalachian Power Company under Federal rgy Regulatory Commission rate schedule No. 23 is above or below a base unit price of 15.8563 mills per KWH, adjusted for losses, the bill for service shall be increased or decreased respectively at a rate per KWH equal to the amount that such cost of fuel is above or below the unit base cost of 15.8563 mills per KWH, adjusted for losses, applied to the KWH measured in the period for which the bill is rendered. The adjustment shall be based on the most recent calendar month for which fuel cost data is available.

PROMPT PAYMENT DISCOUNT

A discount of 1.5 percent will be allowed if account is paid in full within 15 days of date of bill.

DETERMINATION OF DEMAND

The billing demand in KW shall be taken each month as the single highest 30-minute integrated peak in KW as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator, but the monthly billing demand so established shall in no event be less than 60% of the greater of (a) the customer's contract capacity or (b) the customer's highest previously established monthly billing demand during the past 11 months nor less than 3,000 KW.

The reactive demand in KVARS shall be taken each month as the single highest 30-minute integrated peak in KVARS as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator.

METERED VOLTAGE

The rates set forth in this tariff are based upon the delivery and measurement of energy at the same voltage, thus measurement will be made at or compensated to the delivery voltage. At the sole discretion of the Company, such compensation may be achieved through the use of loss compensating equipment, the use of formulas to calculate losses or the application of multipliers to the metered quantities. In such cases, the metered KWH and KW values will be adjusted for billing purposes. If the Company elects to adjust KWH and KW based on multipliers, the adjustments shall be in accordance with the following:

- 1. Measurements taken at the low-side of a customer-owned transformer will be multiplied by 1.01.
- Measurements taken at the high-side of a Company-owned transformer will be multiplied by 0.98.

ued: October 30, 1992

By: Michael J. Holzaepfel, President

Kingsport, Tennessee

Effective: November 3, 1992 Pursuant to an Order in Docket Number 92-04425 SCOPE OF WORK

DEPARTMENT OF THE ARMY MOBILE DISTRICT, CORPS OF ENGINEERS P. O. BOX 2288

MOBILE, ALABAMA 36628-0001

April 4, 1995

RECEIVED

Affiliated Engineers SE, Inc.

APR 1 0 1995

Route to 60 4/5/45

REPLY TO ATTENTION OF:

A-E Contracts Section

Affiliated Engineers SE, Inc. Mr Carl L. Osberg 3300 SW Archer Road Gainesville, FL 32608-1731

Gentlemen:

We have a requirement for a Limited Energy Study for Area B Nitric Acid Production Facilities at Holston AAP, TN, in accordance with the enclosed Scope of Work and as will be further defined at the pre-study conference on April 26 at Holston. It is proposed that this work be accomplished by delivery order under Contract Number DACA01-94-D-0007.

You are requested to submit your proposal for accomplishing this work by May 10, 1995. Your proposal should be addressed as follows:

District Engineer
U. S. Army Engineer District, Mobile
Attention: CESAM-EN-MN/Mr. Dan Mizelle
Post Office Box 2288
Mobile, Alabama 36628-0001

You are cautioned that no services for which an additional cost or fee will be charged should be furnished without the prior written authorization of the Contracting Officer.

Please contact Mr. Roger D. Baer at 205/441-5493 if you have any questions concerning this matter.

1. B. Chr.

Sincerely

O. B. Anderson

Authorized Representative of the Contracting Officer

SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

AREA B NITRIC ACID PRODUCTION FACILITIES

HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

HAOPSOW.doc

SCOPE OF WORK FOR A LIMITED ENERGY STUDY

AREA B NITRIC ACID PRODUCTION FACILITIES HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Non-ECIP Projects
 - 5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Perform a Limited Site Survey
 - 7.2 Evaluate Selected ECOs
 - 7.3 Combine ECOs into Recommended Projects
 - 7.4 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE
- C REQUIRED DD FORM 1391 DATA

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 1.2 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.3 Provide project documentation for recommended ECOs as detailed herein.
- 1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.
- 2.6 The following definitions apply to terms used in this scope of work:
- 2.6.1 "Contracting Officer", "Contracting Officer's Representative", or Government's Representative" refer to the contracting office of the Mobile District, U. S. Army Corps of Engineers.

- 2.6.2 "Installation Commander", or "Installation Representative" refer to the military commander of Holston Army Ammunition Plant.
- 2.6.3 "Plant Manager", Operating Contractor", or "Operating Contractor's Representative" refer to the Holston Defense Corporation, which operates Holston Army Ammunition Plant under contract to the U. S. Army.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or O&M funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.8 Metric Reporting Requirements: In this study, the analyses of the ECOs may be performed using English or Metric units as long as they are consistent throughout the report. The final results of energy savings for individual recommended projects and for the overall study will be reported in units of MegaBTU per year and in MegaWattHours per year. Paragraph 7.4.2 details requirements for the contents of the final submittal.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

3.2 <u>Installation Assistance</u>.

3.2.1. The Installation Commander will designate an individual to coordinate between the AE and the Holston Defense Corporation. This individual will be the Installation Representative, and all correspondence with Holston Army Ammunition Plant will be addressed to his attention.

- 3.2.2. The Plant Manager will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the Operating Contractor's Representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits. Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, delivery order number, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Plant Manager before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:

- a. Schedules.
- b. Names of energy analysts who will be conducting the site survey.
- c. Proposed working hours.
- d. Support requirements from Holston Defense Corporation (HDC).
- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Plant Manager.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. <u>PROJECT DOCUMENTATION</u>. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.
- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:

- 5.2.1. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and also results in energy savings. The criteria are similar to the criteria for ECIP projects, ie, SIR \geq 1.25, and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.
- 5.2.2. Low Cost/No Cost Projects. These are projects which the Plant Manager can perform using his resources. Documentation shall be as required by the Plant Manager.
- 5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6. <u>DETAILED SCOPE OF WORK</u>. The Detailed Scope of Work may be found in Annex A.

7. WORK TO BE ACCOMPLISHED.

- 7.1 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.
- 7.2 Evaluate Selected ECOs. The AE shall analyze the ECOs listed in Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.3 <u>Combine ECOs Into Recommended Projects</u>. During the Interim Review Conference, as outlined in paragraph 7.4.1, the AE will be advised of the Plant Manager's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in

- paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.4.2.
- 7.4 Submittals, Presentations and Reviews. The work accomplished shall be fully documented by a comprehensive report. report shall have a table of contents and shall be indexed. and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to. the Plant Manager, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.4.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:
- a. All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.
- b. All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the Plant Manager to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the

programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

- 7.4.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.5.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA $\mbox{\it Summary Sheets}$).
 - d. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - Cost estimates
 - 4) Computer printouts (where applicable)
 - 5) Scope of Work

ANNEX A

DETAILED SCOPE OF WORK

- 1. The facilities to be studied in this contract are used for the production of nitric acid in Area B at Holston Army Ammunition Plant (HSAAP) in Kingsport, Tennessee. Holston Army Ammunition Plant is a government-owned, contractor-operated (GOCO) facility. The operating contractor is the Holston Defense Corporation (HDC). For reasons of safety and security, access to the plant is controlled. Temporary passes will be required for both personnel and vehicle access.
 - a. A one-week notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
 - b. The AE should submit a list of the equipment and instruments they plan to use prior to their arrival. Because of the nature of HSAAP operations, safety regulations prohibit and restrict the use of some equipment on the installation. Having a list of the equipment to be used beforehand, HSAAP will be better prepared at the entrance interview to address the regulations pertaining to the equipment to be used. This will also facilitate coordination of the inspection and permitting of the equipment.
- 2. The following persons have been designated as points of contact and liaison for all work required under this contract. Mr. Scott Shelton shall be the Installation Representative, and Mr. J. L. Bouchillon shall be the Operating Contractor's Representative.
- 3. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 180 days after Notice to Proceed.

MILESTONE	PERCENT OF CONTRACT AMOUNT AUTHORIZED FOR PAYMENT
Completion of Field Work	25
Receipt of Interim Submittal	75
Completion of Interim Presentation &	Review 85
Receipt of Final Report	100

4. Purpose and Background: The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for the Ammonia Oxidation Process (AOP), which produces weak nitric acid. Figure 16 on page A-2 illustrates the AOP process. The chemical reactions utilized in the AOP are exothermic, producing large quantities of hot gases. Large amounts of cooling water are also used to cool and condense water vapor in the gases. Electrical energy is used to compress air for the process. Some heat and mechanical energy are already recovered

FIGURE 16

DATE-114.76 APP'O-1866

SK* 2286

DRAWN.PB

HOLSTON ARMY AMMUNITION DLANT HOLSTON DEFENSE CORPORATION

JAN 1995

AS BULL

BLDG. 302B, NITRIC ACID MFG.

in the process. However, there appears to be room for improvement in the process or by using recovered heat in nearby facilities. Building 302-B houses four 50-ton/day AOP units. Each AOP unit has an air compressor, which is driven by a 1300 HP electric motor. The motor is assisted by a gas turbine, which is driven by the tail gas from the process. At the present production level, one 50-TPD unit operates four continuous 24-hour days twice per month.

- 5. The AE is encouraged to propose and analyze any ECOs which he believes may save energy, water, or dollars. The AE must become familiar with the process and with the capabilities and limitations of the existing equipment. Due to the limited resources available, proposed ECOs should not impose additional maintenance and operation requirements. In addition to ECOs proposed by the AE, the following ECOs will be evaluated:
 - a. Since 300 psig steam is available, revise air compressor turbine drive to steam. There may be variations on this ECO, such as using 300 psig steam exclusively (which might require a different turbine) or using steam (at 300 psig or at a reduced pressure) in the existing turbine to assist the electric motor.
 - b. Use the product gas leaving the Air Preheater (Fig 16) to generate steam. Depending on the pressure of the steam generated, the gas could be cooled to perhaps as low as 400 degf. The steam thus generated could be used to drive (or assist in driving) the air compressor, or it could be used to vaporize ammonia, or for heating at the 302-B tank farm.
 - c. Identify and evaluate the possibility of water conservation at the cascade coolers and at other points in the process.
 - 6. Government-furnished information. The following documents will be furnished to the AE:
 - a. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994 and the latest revision with current energy prices and discount factors for life cycle cost analysis.
 - b. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development
 - c. TM5-800-2, Cost Estimates, Military Construction.
 - d. Tri-Service Military Construction Program (MCP) Index, dated dav/month/year.
 - e. As-built drawings and process descriptions with quantitative data for the AOP facilities.

8. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.

9. Direct Distribution of Submittals. The AE shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY

EXECUTIVE SUMMARIES REPORTS

FIELD NOTES
CORRESPONDENCE

Holston Army Ammunition Plant ATTN: SMCHO-EN (Mr Shelton) Kingsport, TN 37660-9982	3	3	1**	1
US AMC I & SA ATTN: AMXEN-C (Mr Nache) Rock Island, IL, 61299-7190	1	1	_	-
Commander US Army Corps of Engineers ATTN: CEMP-ET (Mr Gentil) 20 Massachusetts Avenue NW Washington, DC, 20314-1000	1*	-	-	_
USAED, South Atlantic ATTN: CESAD-EN-TE (Mr Baggette) 77 Forsyth Street, SW Atlanta, GA 30335-6801	1	1	-	-
USAED, Mobile ATTN: CESAM-EN-DM (Battaglia) PO Box 2288 Mobile, AL 36628-0001	2	2	1**	1
US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr Keath) New Cumberland Army Depot New Cumberland, PA, 17070 - 5007	1*	-	_	-

- * Receives Executive Summary of final report only.
- ** Field Notes submitted in final form at interim submittal.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, MBTU

Coal - TONS, Dollars, MBTU, MWH
Natural Gas - THERMS, Dollars, MBTU, MWH
Other - QTY, Dollars, MBTU, MWH

- 4. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list) *
 - o Non-ECIP Projects Developed. (Provide list) *
 - o Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 6. Energy and Cost Savings.
 - o Total Potential Energy Savings in MegaBTU per year (and MegaWattHr per year) and first year dollar savings.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

ANNEX C

REOUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
- (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.

- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU (MWH) savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

MINUTES OF MEETINGS

Affiliated Engineers SE, Inc.

3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

and the second of the second o	95094-00		
HOLSTON AREA B ACID FACILITY STUDY Project	Project # December 1, 1995		
KINGSPORT, TN City, State INTERIM REVIEW	Date 1 of 2	MAH Typist	
Type of Meeting 11/30/95	Page PDL Copies	туріят	
Meeting Date	Copies	· · · · · · · · · · · · · · · · · · ·	

Present

Tony Battaglia
Scott Shelton
Jerry Bouchillon
Alex Fancher
Paul Little
Carl Osberg

US Army Corps of Engineers
Holston AAP
HDC
HDC
AESE
AESE

The purpose of this meeting was to review the Interim Report and the following items were discussed.

- 1. Reviewed schematic flow diagram of process. Several corrections were noted.
- 2. AESE to revise energy inventory table and show sample calculations (pages 43-49).
- 3. ECO No. 1 needs to be revised to reflect replacing of the existing tailgas turbine with a steam condensing turbine. Noise will be an issue to review if tail gas is going to be exhausted.
- 4. ECO No. 2 correct steam output from 31,000 to 3,100 lbs/hr and review using steam to assist turbine.
- AESE to create a new ECO utilizing insulated air preheater, tailgas heater and plantnium recovery filter, with a once through steam system to assist the turbines.
- Look at possibility of eliminating/replacing cascade cooler.
- 7. Plantnium filter needs to be located prior to any waste heat boiler and cascade cooler.
- 8. Stainless steel needs to be 400 grade for any metals in contact with product gas. AESE to get price quotes from manufacturers for waste heat boiler.
- 9. Dowtherm A (eutectic mixture of Diphenyl Oxide and Diphenyl) is incompatible with the process if a leak were to occur, and is to be eliminated from consideration for an intermediate heat transfer fluid.
- 10. Utilizing a cooling tower will jeopardize Pollution Permits (ECO No. 3).
- 11. Existing chiller has capacity for operating only (2) units at once.
- 12. Add Conclusions and Recommendations to Executive Summary section of the report.

Project Name: Holston AAP Nitric Acid Production Facility Date: December 22, 1995

Project No.: 95094-00 **Page No.:** 2 of 2

13. Starting turbine without tail gas uses 290 amps of electrical power when tail gas is added to turbine the electrical power drops to 220 amps.

14. AESE to investigate chiller revision from a direct-contact steam condenser to a steam surface condenser from which steam condensate can be recovered. Because chiller operates only 5 months out of year, evaluate production level at which this modification will qualify for ECIP.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

For Carl L. Osberg, P.E. Vice President

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PROD	DUCTION FACILITY	95094-00	
Project HOLSTON, TN	Project # August 22, 1995		95
City, State EXIT INTERVIEW		Date	
		1 of 1	DA
Type of Meeting 08/17/95 (AM)		Page	Typist
Meeting Date	Copies		
Present	Representing		
Scott Shelton	SMCHO EN		

AESE

Scott Shelton SMCHO-EN Alex Francher HDC Carl Osberg **AESE** Paul Little

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

Nitric Acid manufacturing process was observed in operation with absorption column #9 operating. Each of the four air compressors were operating, but only one of the four was being loaded. It was noted that compressed air final stage after cooler does not have dewpoint control or other control strategy. The steam jet refrigerating unit was confirmed to utilize a steam surface condenser.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

Ву,

Paul Little, P.E.

HVAC Project Engineer

3300 SW Archer Road
Gainesville, Florida 32608
(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY	95094-00 Project # July 11, 1995	
Project HOLSTON, TN City, State		
Type of Meeting	Page	Typis
07/07/95	CO	
Meeting Date	Copies	

Present Representing

Scott Shelton Charlie Fowler Robert Barnes SMCHO-EN HDC - Engineering

AESE

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

- 1. Bob Barnes briefly reviewed the scope of work for this project. Some options available for saving energy, water or dollars for this project include:
 - Recover heat to generate steam or hot water to supplement or eliminate steam used to vaporize ammonia.
 - Recover heat to generate steam to be used to reduce existing steam used at chiller.
 - Reduce filtered riverwater used at cascade cooler by storing chilled water in a closed loop configuration.
 - Recover heat to generate steam to run turbine at air compressor to reduce electric motor use.
 - Recover hot condensate from vaporizer and/or chiller to be regenerated to steam with waste heat for use at vaporizer or chiller.
 - Use 300 psig or 150 psig steam from existing steam system to run a turbine at the air compressor to reduce or eliminate the electric motor usage.
- 2. Bob Barnes asked Mr. Fowler if there were any ideas for energy conservation which had been overlooked. Mr. Fowler was not aware of other potential energy saving concepts.
- 3. Mr. Fowler clarified the capacity of the steam jet chiller. The chiller was relocated from another process and is approximately sized to handle 2 AOP process streams and not 4 as originally estimated by AESE.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Robert A. Barnes, P.E. HVAC Project Engineer

3300 SW Archer Road Gainesville, Florida 32608

(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY	95094-00	
Project	Project #	
HOLSTON, TN	July 11, 1995	
City, State	Date	
ENTRY INTERVIEW	1 of 1	MAH
Type of Meeting	Page	Typist
07/05/95	CO	
Meeting Date	Copies	
Present Representing	g	

Scott Shelton SMCHO-EN
Jerry Bouchillon HDC
Alex Fancher HDC
Mike Richarme AESE
Carl Osberg AESE
Robert Barnes AESE

The purpose of this meeting was to have an entry interview and the following items were discussed.

- 1. Mr. Jerry Bouchillon inquired as to the type of data needed to be furnished by HDC. AESE personnel requested information regarding: compressor intercooler water flow: Pump flows; pump curves; motor data; chiller capacity; and chiller steam flow and pressure.
- 2. Alex Fancher stated that manuals were available by Dupont which had technical data on the AOP process which could contain information useful for this project. The manuals would be located during the AESE field investigation to be reviewed for useful information.
- 3. Jerry Bouchillon would provide AESE with the name of the stainless steel fabricator who provided equipment for this facility to be used for pricing and special fabrication information.
- 4. AESE would conduct the field investigation today 07/05/95 instead of the document review listed in the AESE agenda. This would allow Mike Richarme to become familiar with the AOP Facility so he could shorten his field investigation time and depart this evening.
- 5. Jerry Bouchillon advised that mechanical and electrical drawings of the AOP Facility were downstairs in the engineering plan room. AESE personnel were invited to look through the drawings for relevant information for this project.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Robert A. Barnes, P.E. HVAC Project Engineer

183

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP NITRIC ACID PRODUCTION FACILITY		95094-00	95094-00	
Project		Project #		
HOLSTON, TN		May 1, 1995	May 1, 1995	
City, State		Date		
PRE-NEGOTIATIONS		1 of 2	MAH	
Type of Meeting		Page	Typist	
04/26/95		RB		
Meeting Date		Copies		
Present	Representing			
Tony Battaglia	US Army Con	US Army Corps of Engineers		
Jerry Bouchillon	HDC	<u>-</u>		
Scott Shelton	SMCHO-EN			
Bob Lowe	HDC			
Robert Barnes	AESE			
Carl Osberg	AESE			

The purpose of this meeting was to review the project scope and the following items were discussed.

- 1. HDC is investigating purchasing 100 lb steam from Tennessee-Eastman.
- 2. Acid production facility operates only 2 to 4 days/month but runs continuous during the 2 to 4 days. Currently run two units during this period. Investigate running one unit all week vs two units for 2 to 4 days. Staffing of facility needs to be considered.
- 3. A more detailed schematic diagram of the system is needed to better understand the system.
- 4. Steam cost is \$2.94/MBtu at present. Electrical cost is \$.03412/kWH.
- Nitric acid production process was invented in 1935 and has been active at Holston since 1942. A
 newer more efficient process is now available and is also active at Holston. A new 300 ton/day unit is
 presently in use at HDC.
- 6. A waste heat boiler is a possible option to generate steam to run the air compressors to reduce the electric motor energy use.
- 7. Alex Fancher is contact point at acid production facility.
- 8. A steam jet ejector chiller is currently used to cool river water when water temperatures rise in the summer months.
- 9. Jerry Bouchillon to update flow diagram of process, provide P&I drawings of process, and provide air compressor curves. Data on turbines will be made available at entry interview.
- 10. Proposal to Corps may also include ideas/approach to project that is different than scope of work.
- 11. AESE to notify Corps prior to submitting proposal of any special consultants, testing, etc. that is going to be proposed.

Project Name:

Holston AAP Nitric Acid Production Facility

Date:

May 1, 1995

Project No.:

95094-00

Page No.:

2 of 2

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Carl L. Osberg, P.E. Vice President