ITU AI/ML in 5G challenge: ITU-ML5G-PS-004

Presentation Title: Depth Map Estimation in 6G mmWave systems

Team Name: SixG_ISAC

Team Github Repo: <u>ITU-AI-ML-in-5G-Challenge</u>/<u>ML5G-PS-004-Depth-map-estimation-in-6G-mmWave-systems</u>

Team Members:

- Shubham Khunteta
- Yeswanth Reddy Guddeti
- Avani Agrawal
- Ashok Kumar Reddy Chavva

Affiliation: Beyond 5G Team, Samsung R&D Institute India, Bengaluru.

Problem Organizer: NIST, USA.

Reuse spectrum, devices and protocols to perform both communication and sensing.

Extra processing required to acquire multidimensional data • **Setup** : One fixed transmitter

ML Model :

Challenge: Estimate the depth map of the environment at each receiver position, using mm-wave signals + ML.

Solution: At each RX location

- Transform bi-static RF data to mono-static format.
- Train ML model by fitting it to similarly structured LiDAR ground truth.

Delay $T_s \frac{1}{1.76} ns \iff Distance resolution of 0.17 m.$

Horz.Ant 8 ⇔ Azimuth resolution of 22.5 ° (Avg.)

Transforms Communication data to Sensing framework

- Higher Power
- Lower Delay
- Tighter Beamwidth

Remove LOS from H_{beam} & Store LOS parameters

Remove effect of TX by projecting AOD to Delay

Calculate
$$\frac{r_2}{r_1} = \frac{\sin(\Delta\Theta_{AoA})}{\sin(\Delta\Theta_{AoD})}$$

Remove effect of TX by projecting AOD to Delay

Rescale to get monostatic power

Input and Output for ML Model Training

Solution: Why is it difficult?

	Pre-processed RF data	LIDAR Data
Range resolution	0.17 m	10^-6 m
Angle resolution	Low (~ 22.5 °)	High
I/O Dimension	6400x1	2,62,000 voxels (voxel grid: 128x128x16)
Location of the Tx and Rx is unknown		

Solution is novel and first of its kind.

From Pre-processing step:

Training parameters

Custom Loss function: binary cross entropy with weights where $w_1 = 10$ and $w_0 = 1$.

- As the output voxel grid is sparse, training is skewed towards the label '1'.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{w_1} * y_i \log(p(y_i)) + \mathbf{w_0} (1 - y_i) \log(1 - p(y_i)) \right)$$

~ 13k voxels are 1 out of: 128 x 128 x 16 voxels

Dataset:

- Total training samples : 3400 samples
 - Area 1 : 2400 samples
 - Area 3: 1000 samples
- Validation samples : 350 (consisting of both the areas)
- Test data: 529 samples of Area 2

Optimizer:

- Adam with learning rate of 0.0005
- Decay rate: 0.9 every 10000 steps
- Epochs =100, batch size : 32.

- The ML model **proposed** returns **LIDAR-like high resolution** point clouds
- Change in perception, is nicely captured even though the Tx and Rx locations are unknown.

Chamfer Distance

measures discrepancies between point clouds.

LIDAR PCD: S_1

Predicted PCD: S_2

Evaluation: Error Analysis on Testing Data

- Average Chamfer distance = 2 m² which is good for the room of size ~16 m x 16 m x 4 m
- Average Chamfer distance = $1 m^2$ for the samples which are closer to the Tx.

Chamfer distance for Training data

- Average Chamfer distance = $1.5 m^2$ for voxel-size=0.25 m
- Average Chamfer distance = 2.2 m^2 for voxel-size=0.5 m

Test data: 529 locations

Chamfer distance

Conclusion and Future work...

Observations:

- The ML model **proposed** returns **LIDAR-like high resolution** point clouds.
- Change in perception of room across locations, is nicely captured in the predictions.
- Average Chamfer distance = $2 m^2$ which is good for the room of size ~16 m x 16 m x 4 m
- Average Chamfer distance = $1 m^2$ for the samples which are closer to the Tx.

Future Work:

- Train the network with higher resolution input data.
- Experiment with the Voxel grid size
- Global training inclusive of all the locations
- Train using Tx perspective along with Rx perspective

Thank you. Questions?

We thank the NIST, USA and ITU challenge team for providing this exciting problem.