Факультет Программной Инженерии и Компьютерной техники

Моделирование

Лабораторная работа №2 «Марковские модели систем массового обслуживания» Вариант 46/54/102

Выполнили: Тюрин И.Н. Сосновцев Г.А. Группа Р34102

Цель работы	2
Ход работы	2
Анализ исходных данных	
Система 1	
Система 2	8
Сравнение характеристик систем	10
Вывод	

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

Ход работы

Анализ исходных данных

Таблица 1 - Параметры структурной и функциональной организации

Вариант 1	СИСТЕМА_1		Вариант 2	СИСТЕ	MA_2	Критерий
	П	ЕН		П	ЕН	эффективности
46	3	3	54	2(E3)	2	(r)

СИСТЕМА_1. В системе содержится 3 прибора с общим накопителем ёмкостью 3.

СИСТЕМА_2. В системе содержится 2 прибора, в одном из которых длительность обслуживания заявок распределена по закону эрланга 3-го порядка; перед приборами находится один общий накопитель ёмкостью 2.

Критерий эффективности:

г) минимальное время пребывания в системе заявок;

Таблица 2 - Параметры нагрузки

Номер варианта	Интенс. потока	Ср.длит. обслуж.	Вероятности занятия прибора		ора
(группы)	λ, c ⁻¹	b, c	П1	П2	П3
102	1,0	2	0,6	0,25	0,15

Интенсивность обслуживания $\mu = \frac{1}{b} = 0.5 \, (c^{-1}).$

Вероятности занятия приборов в СИСТЕМА_1:

$$p_1 = 0,6; \ p_2 = 0,25; \ p_3 = 0,15.$$

Вероятности занятия приборов в СИСТЕМА_2:

$$p_1 = 0, 6; p_2 = 0, 4.$$

Рисунок 1 - Схема СИСТЕМА 1

Рисунок 2 - Схема СИСТЕМА_2

Для данных систем определили состояния как упорядоченные наборы значений:

- 1. для первой системы ((Π_1 , Π_2 , Π_3), H_1) обозначает состояние (занятость) первого прибора Π_1 , состояние (занятость) второго прибора Π_2 , состояние (занятость) третьего прибора Π_3 и количество заявок в очереди (накопителе) H_1
- 2. для второй системы ((Π_1 , E_2), H) обозначает состояние (занятость) первого прибора Π_1 , состояние второго (с эрланговским распределением 3-порядка) прибора E_2 (Где 0 свободное, 1 занят один псевдо прибор, 2 занято 2 псевдоприбора, 3 занято три псевдоприбора), и количество заявок в очереди (накопителе) Н

Таблица 3 - Состояния Марковского процесса (СИСТЕМА 1 и СИСТЕМА 2)

Номер состояния	СИСТЕМА_1	СИСТЕМА_2
	$((\Pi_{1}, \Pi_{2}, \Pi_{3}), H)$	$((\Pi_{1}, E_{2}), H)$
S0	((0,0,0),0)	((0, 0), 0)
S1	((1,0,0),0)	((0, 1), 0)
S2	((0,1,0),0)	((0, 2), 0)
S3	((1,1,0),0)	((0, 3), 0)

S4	((0,0,1),0)	((1, 0), 0)
S5	((1,0,1),0)	((1, 1), 0)
S6	((0,1,1),0)	((1, 1), 1)
S7	((1,1,1),0)	((1, 1), 2)
S8	((1,1,1),1)	((1, 2), 0)
S9	((1,1,1),2)	((1, 2), 1)
S10	((1,1,1),3)	((1, 2), 2)
S11		((1, 3), 0)
S12		((1, 3), 1)
S13		((1, 3), 2)

Система 1

Граф переходов Системы 1

Интенсивности перехода между состояниями с несколькими занятыми приборами рассчитываются в соответствии с вероятностями выбора этих приборов в текущем состоянии.

Важно обратить внимание, что интенсивности переходов в состояниях с всеми занятыми приборам кратно увеличены в направлении опустошения очереди. Это связано с тем, что каждый прибор независимо дает свою интенсивность перехода в состояние с меньшим размером очереди равной интенсивности обслуживания.

Матрица переходов Системы 1

Filtered Transition Rate Matrix

Из матрицы интенсивностей переходов можно получить вероятности нахождения в состояниях в стационарном режиме решив систему линейных уравнений полученную умножением строки вероятностей на столбцы интенсивностей и приравняв их к 0, с уравнением описывающим условие, что сумма вероятностей равна 1.

Номер	Состояние	Вероятность, p_{i}
	$((\Pi_{1}, \Pi_{2}, \Pi_{3}), H)$	
0	((0,0,0),0)	0.121805
1	((0, 0, 1), 0)	0.058393
2	((0, 1, 0), 0)	0.074159
3	((0, 1, 1), 0)	0.056605

4	((1, 0, 0), 0)	0.111057
5	((1, 0, 1), 0)	0.082034
6	((1, 1, 0), 0)	0.104970
7	((1, 1, 1), 0)	0.162406
8	((1, 1, 1), 1)	0.108271
9	((1, 1, 1), 2)	0.072180
10	((1, 1, 1), 3)	0.048120

Характеристика	Прибор	Расчетная формула	СИСТЕМА_1
Нагрузка	П1	$y_1 = \lambda_1/\mu = p_1\lambda b = p_1y$	1.2
	П2	$y_2 = \lambda_2/\mu = P_2\lambda b = p_2 y$	0.5
	ПЗ	$y_3 = \lambda_3/\mu = p_3\lambda b = p_3 y$	0.3
	Система	$y = y_1 + y_2 + y_3 = \lambda/\mu$	2.0
Загрузка	П1	$\rho_1 = p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10}$	0.68903839
	П2	$\rho_2 = p_2 + p_3 + p_6 + p_7 + p_8 + p_9 + p_{10}$	0.62671152
	П3	$\rho_1 = p_1 + p_3 + p_5 + p_7 + p_8 + p_9 + p_{10}$	0.5880095
	Сумма	$\Sigma \rho = \rho_1 + \rho_2 + \rho_3$	1.90375940
	Система	$\rho = avg(\rho) = \Sigma \rho/3$	0.63458647
Длина очереди	Н	$l = p_8 + 2 p_9 + 3 p_{10}$	0.39699248
Число заявок	Система	$m = \Sigma(p_i(\Pi_1 + \Pi_2 + \Pi_3 + H)) = l + \Sigma\rho$	2.30075188
Вероятность потери	Н	$\pi_n = p_{10}$	0.04812030
Производительность	П1	$\lambda'_{1} = \lambda_{1} \cdot (1 - \pi_{n})$	0.57112782
	П2	$\lambda'_2 = \lambda_2 \cdot (1 - \pi_n)$	0.23796992
	П3	$\lambda'_{3} = \lambda_{3} \cdot (1 - \pi_{n})$	0.14278195

	Система	$\lambda' = \lambda'_1 + \lambda'_2 + \lambda'_3$	0.95187970
Время ожидания	Н	$w = l/\lambda'$	0.41706161
Время пребывания	Система	$u = m/\lambda'$	2.41706161

Система 2

Граф переходов Системы 2

Матрица переходов Системы 2

Номер	Состояние	Вероятность
	$((\Pi_1, E_2), H)$	
0	((0, 0), 0)	0.2202
1	((0, 1), 0)	0.06185
2	((0, 2), 0)	0.06172
3	((0, 3), 0)	0.06022
4	((1, 0), 0)	0.2598
5	((1, 1), 0)	0.08361
6	((1, 1), 1)	0.02323
7	((1, 1), 2)	0.004646

8	((1, 2), 0)	0.07367
9	((1, 2), 1)	0.02872
10	((1, 2), 2)	0.009229
11	((1, 3), 0)	0.06777
12	((1, 3), 1)	0.03202
13	((1, 3), 2)	0.01333

Харктеристика	Прибор	Расчетная формула	СИСТЕМА_2
Нагрузка	П1	$y_1 = \lambda/\mu$	1.2
	E2	$y_2 = \lambda/\mu$	0.8
	Сумма	$y = y_1 + y_2$	2.0
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_1 + p_2 + p_3)$	0.59594
	E2	$\rho_2 = 1 - (p_0 + p_4)$	0.5200
	Сумма	$\rho = \rho_1 + \rho_2$	1.11601
Длина очереди	Н	$l = (p_6 + p_9 + p_{12}) + 2 \cdot (p_7 + p_{10} + p_{13})$	0.13837825
Число заявок	П1	$m_1 = l_1 + \rho_1$	0.73436766
	E2	$m_2 = l_2 + \rho_2$	0.65840316
	Сумма	$m = m_1 + m_2 + m_3$	1.392770
Вероятность потери	Н	$\pi_n = p_7 + p_{10} + p_{13}$	0,027175
Производительн ость	П1	$\lambda'_{1} = \lambda_{1} \cdot (1 - \pi_{n})$	0.58367906
	E2	$\lambda'_2 = \lambda_2 \cdot (1 - \pi_n)$	0.38911937
	Сумма	$\lambda' = \lambda'_1 + \lambda'_2$	0.9727984317

Время ожидания	Н	$w = l/\lambda$	0.21145
Время пребывания	П1	$u_1 = m_1/\lambda$	1.2581703
	E2	$u_2 = m_2/\lambda$	1.69203389
	Сумма	$u = (u_1 + u_2)/2$	1.43171573

Сравнение характеристик систем

Собрали данные таблиц в одну.

Название	Система 1	Система 2
Нагрузка	2.0000	2.0000
Загрузка	1.9037	1.9160
Длина очереди	0.3969	0.6770
Число заявок	2.3008	1.3927
Время ожидания	0.417	0.7844
Время пребывания	2.417	2.7004
Вероятность потери	0.0481	0.0672
Производительность	0.9518	0.9727

Вывод

По таблице видно, что по целевому критерию эффективности, а именно *времени пребывания* в системе, Система 1 является более предпочтительной.