Quantitative Text Analysis

Meeting 5

Dictionaries and Concepts

Dictionaries

Dictionaries

- Rule-based method
- List of words (or phrases) that indicate a category
- Create your own or use/edit existing dictionaries

Use cases for dictionaries

Use cases for dictionaries

- Classification
- Regression
- Search string (form of classification)

Classification vs. Regression

Classification Examples

- Classify texts into:
 - positive/negative
 - populist/non-populist
 - related/unrelated to a certain category

Regression Examples

- "Score" texts on some dimension:
 - Positive/negative
 - Emotional content (anger, sadness, etc.)

Existing vs. Own Dictionaries

Existing vs. Own Dictionaries

Many existing and validated dictionaries:

Search everything... Q

→ Login

2+ Register

Resources *

About

Name	Туре	Country	Query	Total results: 14
ConText Diesner, J et al. (2020)	Tool		Free text search	
DDR Garten, Justin et al. (2017)	Tool			
DICTION Roderick P. Hart (1996)	Tool		Entity Type	
LIWC Pennebaker, J. W. et al. (1999)	Tool		Tool ×	
NLTK NLTK Team (2001)	Tool		Countries	○ and ○ or
Netlytic Gruzd, A. (2016)	Tool			
T-LAB di Lancia Franco	Tool		Channel	
WordStat Provalis Research	Tool			
corpustools Welbers K et al. (2018)	Tool		Languages	or and or
iLCM Andreas Niekler et al. (2018)	Tool			
popdictR Gründl, Johann (2020)	Tool		Used For	○ and ○ or
quanteda Benoit, Kenneth et al. (2018)	Tool		Dictionary Analysis ×	
tidytext De Queiroz, Gabriela et al. (2016)	Tool		Concept Variables	or and or
tm Feinerer, Ingo et al. (2008)	Tool		Programming Languages	○ and ○ or

Existing vs. Own Dictionaries

- Many existing and validated dictionaries:
- Many instances of creating ad-hoc dictionaries:

Table 3 Boolean search strings used for retrieval of migration-related news articles

Country	Language	Search string
Spain	Spanish	asilo* OR inmigra* OR refugiad* OR migrante* OR migratori* OR "sin papeles" OR "campo de desplazados" OR patera* OR emigra* OR "libre circulación" OR "fuga de cerebros"
UK	English	asyl* OR immigrant* OR immigrat* OR migrant* OR migrat* OR refugee* OR foreigner* OR "undocumented worker*" OR "guest worker*" OR "foreign worker*" OR emigrat* OR "freedom of movement" OR "free movement"
Germany	German	asyl* OR immigrant* OR immigriert* OR immigrat* OR migrant* OR migrat* OR flüchtling* OR ausländer* OR zuwander* OR zugewander* OR einwander* OR eingewander* OR gastarbeiter* OR "ausländische arbeitnehmer*" OR emigr* OR auswander* OR ausgewander* OR personenfreizügigkeit* OR arbeitnehmerfreizügigkeit* OR "freier personenverkehr*"

Validation in Dictionary Analysis

Validation in Dictionary Analysis

- Source and data selection determines results and conclusions
- Are the selected data sources and selected data points representative for your target concept or discourse?
 - Relevant?
 - Representative?

Relevance of search string validation

- Sampling based on search strings popular (Stryker et al. 2016) and recommended (Barberá et al., 2021)
- Reviews of search string validation procedures
 - out of 83 content analyses, 39% stated the search terms they used, and only 6% discussed their validity (Stryker et al. 2016)
 - out of 105 content analysis studies, 73.3% stated the search terms they used, only 12.4% reported validity metrics (Mahl et al., 2022)
- Careless application of non-validated search terms may lead to noisy inferences (Mahl et al., 2022)

Key validation approach

- How close is an automated measurement to a more trusted measurement:
 - Human understanding of text

Dictionary validation with manually created baseline

- Code a subset manually (consider intercoder reliability)
- Compare manual decisions with automated classification decisions (via recall, precision, F1)
- Iterative dictionary improvement
- Ideally: manual coding and dictionary development is performed by different persons

Creation of a manual baseline

- Codebook creation
- Who codes manually?
 - Expert coders: Coder recruitment and training sessions
 - Crowdcoders: test questions, majority choice
- Quality assessment: e.g., Inter-coder reliability of involved coders, majority vote
 - How reliable? Consider valid disagreement (Baden et al., 2023)
- Documents selected for baseline should be representative for target discourse (e.g., random selection or artificial week)

Recall, precision, F1

- Metrics frequently used to express the validity of a search string & more generally also of automated classification methods
- Precision (P)
- Recall (R)
- F1 = 2*(P * R)/(P + R)

relevant elements

retrieved elements

How many retrieved items are relevant?

How many relevant items are retrieved?

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

$$F_{\beta} = (1 + \beta^{2}) \times \frac{Precision \times Recall}{\beta^{2} \times Precision + Recall}$$

Dictionary pros vs cons

- Pros
 - Often needed to select data (search strings)
 - High reliability and control
 - High transparency and reproducibility
- Cons
 - Difficulty increases with the latency of the construct
 - Language nuances

Questions?

- How to pronounce?
- /grf/
- /d3If/

- How to pronounce?
- /grf/
- /d3If/
- /JE.gEks/
- /ɹε.dʒεks/

- How to pronounce?
- /gɪf/
- /d3If/
- /JE.gEks/
- /ɹε.dʒεks/

- How to pronounce?
- /grf/
- /d3If/
- /JE.gEks/
- /με.dʒεks/

- How to pronounce?
- /grf/
- /d3If/
- /ɹɛ.gɛks/
- /με.d3εks/

Formal language to specify search strings

- Formal language to specify search strings
- Insanely difficult

- Formal language to specify search strings
- Insanely difficult

- Formal language to specify search strings
- Insanely difficult
- Nobody can remember anything

regex

- Formal language to specify search strings
- Insanely difficult
- Nobody can remember anything
- Different *flavours*

regex

- Formal language to specify search strings
- Insanely difficult
- Nobody can remember anything
- Different *flavours*
- "Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems." Jamie Zawinski

- Disjunctions

${f RE}$	${f Match}$	Example Patterns Matched
[mM] oney	Money or money	"Money"
[abc]	'a', 'b', or 'c'	" $\overline{\text{Investing in Iran}}$ "
		"is dangerous business"
[1234567890]	any digit	"sitting on $$\underline{7}.\underline{5}$$ billion dollars"
		" $\underline{2005}$ and $\underline{2006}$, more than "
		" $$150$ million dollars"
[\.]	A period	"'Run!', he screamed <u>.</u> "
	[mM] oney [abc] [1234567890]	[mM] oney Money or money 'a', 'b', or 'c' [1234567890] any digit

- Ranges

${f RE}$	Match	Example Patterns Matched
[A-Z]	an upper case letter	"Rep. Anthony Weiner
		$(\underline{D}$ - \underline{B} rooklyn & Queens)"
[a-z]	a lower case letter	"ACORN's"
[0-9]	a single digit	"(<u>9</u> th CD)"

Grimmer / Jurafsky Cheat-sheet

- Negations

${f RE}$	Match	Example Patterns Matched
[^A-Z]	not an upper case letter	"ACORN <u>'s</u> "
[^Ss]	neither 'S' nor 's'	"ACORN's"
[^\.]	not a period	"'Run!', he screamed."

- Optional Characters: ?, *, +

${f RE}$	Match	Example Patterns Matched
colou?r	Words with ${\tt u}$ 0 or 1 times	" <u>color</u> " or
		"colour"
oo*h!	Words with \circ 0 or more times	" <u>oh!</u> " or
		" <u>ooh!</u> " or
		" <u>oooh!</u> "
o+h!	Words with o 1 or more times	" <u>oh!</u> " or
		" <u>ooh!</u> " or
		" <u>oooooh!</u> " or

Grimmer / Jurafsky Cheat-sheet

- Start of the line anchor ^, end of the line anchor \$

\mathbf{RE}	Match	Example Patterns Matched
^[A-Z]	Upper case start of line	"Palo Alto"
		"the town of Palo Alto"
^[^A-Z]	Not upper case start of line	"the town of Palo Alto"
		"Palo Alto"
^ .	Start of line	"Palo Alto"
		"the town of Palo Alto"
.\$	Identify character that ends a line	"Wait <u>!</u> "
		"This is the $end_{\underline{\cdot}}$ "

- "Or" | statements, Useful short hand

${f RE}$	Match	Example Patterns Matched
yours mine	Matches "yours" or "mine"	"it's either yours or mine"
$\setminus d$	Any digit	" $\underline{1}$ -Mississip $\overline{\mathrm{pi}}$ "
\ D	Any non-digit	"1-Mississippi"
\setminus s	Any whitespace character	"1 ,_2"
\ S	Any non-whitespace character	"1, $\underline{2}$ "
\setminus w	Any alpha-numeric	" $\overline{1}$ -Mississippi"
\ W	Any non-alpha numeric	"1- $\overline{\text{Mississippi}}$ "

How difficult to regex an email?

How difficult to regex an email?

Rather...

How difficult to regex an email?

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?: \r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?: $(?:\r\n)?[\t])*))*|(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z$ |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n) ?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\?:\ r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n) ?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*) *:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+ |\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r \n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?: $\label{eq:continuous} $$ \r^n)^{[\t]} + \|Z\|(?=[\["()<>0,;:\".\[\]]))\|"(?:[^\"\r\]\|\.\|(?:(?:\r\n)?[\t]) + \|Z\|(?=[\["()<>0,;:\".\[\]]))\|"(?:[^\"\r\]\|\.\|)\| + \|Z\|(?:(?:\r\n)?[\t]) + \|Z\|(?=[\["()<>0,;:\".\[\]]))\|"(?:[^\"\r\]\|)\| + \|Z\|(?:(?:\r\n)?[\t]) + \|Z\|(?=[\["()<>0,;:\".\[\]]))\| + \|Z\|(?:[^\l]\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|(?(\l)\|)\| + \|Z\|($]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(? :\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(? :(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]| \\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<> @,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|" (?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(? $:[^()<>0,;:\\\\".\\[^] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\\\".\\[]$ \]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\ $[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\])$ r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] $\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\".\[\]]))|\[([^\[\])r\\]$ |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\

ar area grandera a variante de variante en variante en la properio variante en ^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\ [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\ r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\] |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 $00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\$.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(? :[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])* $(?:[^()<>0,;:)(".)[] \ 000-\031]+(?:(?:(?:(r)n)?[\t])+|\Z|(?=[\["()<>0,;:)(".)]$ \[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(? :\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+ \Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?: $[^()<>0,;:\\\\".\\[^] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\\\".\\[\]$]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n) ?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[" ()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n) ?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<> @,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[$\t])*(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,$;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)? $(?:[^()<>0,;:)(".)[] \ 000-\031]+(?:(?:(?:(r.)n)?[\t])+|\Z|(?=[\["()<>0,;:)(".)]$ \[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?: $\r\n)?[\t])*(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[$ "()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]) *))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]) +|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\ $.(?:(?:\r\n)?[\t])*(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z$ |(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(

(?:(?:\r\n)?[\t])*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?: \r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?: $(?:\r\n)?[\t])*))*|(?:[^()<>0,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z$ |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n) ?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\?:\ r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n) ?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*) *:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+ |\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r $\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t$]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031 $]+(?:(?:(?:(r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\".\[\]]))|\[([^\[\])r\\]|\\.)*\]($?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(? :\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(? :(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]| \\.\|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<> $0,;:\$ \".\[\]\000-\031]+(?:(?:\r\n)?[\t])+\\Z\(?=[\["()<>0,;:\\".\[\]]))\\" (?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(? :[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000- $031]+(?:(?:(?:(r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|($?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" $\cdot [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+[\Z](?=[\["()<>0,;:\\".\[\]]))[\[([^\[\$]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\ r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] $\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>0,;:\\".\[\]]))|\[([^\[\])r\\]$ |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 $00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\$

Concepts and Data

Concepts and Data

- What do we actually want to measure?
- And where do we find it?

Discovery

- Idea from qualitative research
- A "method" to discover new concepts through descriptive analysis
- Grimmer et at., 2022:
 - I. Context Relevance
 - II. No Ground Truth
 - III. Concept vs. Method
 - IV. Data Separation

- Principle 1: Context relevance.
- Text as data models complement theory and substantive knowledge.
 Contextual knowledge amplifies our ability to make computational discoveries

- Principle 2: No ground truth.
- There is no ground truth conceptualization; only after a concept is fixed can
 we talk meaningfully about it being right or wrong

- Principle 3: Judge the concept, not the method.
- The method you used to arrive at a conceptualization does not matter for assessing the concept's value – its utility does

- Principle 4: Separate data is best.
- Ideally after data is used for discovery it should be discarded in favor of new data for confirming/testing discoveries.

Codebook

- The codebook is the tool you use to code your content
- It is a kind of questionnaire that you use to inquiry the examined texts/photos/ videos
- The codebook should be detailed enough so that
 - you can apply it again in the same way after some time (intracoder reliability)
 - other people (with a little training) can also use it in the same way as you (intercoder reliability)

Codebook

- In automated text analysis:
 - Validation
 - Documentation

Codebook Development

- Iterative process:
 - First draft based on the variables identified in the research question(s)/ hypothesis(s).
 - Tip: take other studies as a model
 - Code material examples using the draft codebook
 - Then refine/edit the codebook

Codebook Function

• Used for dimension reduction (e.g., Egami et al., 2022)

Codebook Function

• Used for dimension reduction (e.g., Egami et al., 2022)

