МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА" Кафедра систем штучного інтелекту Лабораторна робота №1 з дисципліни «Дискретна математика» Львів - 2019 р. Виконав студент групи КН-115: Вагін Микита Викладач: Мельникова Н.І.

джэячсмитьбюйцукенгшщзхъфыв апролджэячсмитьбюйцукенгшщзх ъфывапролджэячсмитьбюйцукенгшщзхъфывапролджэячсмить бюйцукенгшщзхъфывапролджэячсмить митьбюйцукенгшшзхъфывапролджэячс

Тема роботи: Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Закон асоціативності						
(P Q) R = P (Q R)	(P&&Q)&&R = P&&(Q&&R)					
Закон де Моргана						
!(P Q) = !P && !Q	!(P&&Q) = !P !Q					
Закон поглинання						
(P Q)&&P = P	(P&&Q) P=P					
Закон дистрибутивності						
P (Q&&R) = (P Q) && (P R)	P&&(Q R) = (P&&Q) (P&&R)					

Завдання Додаток 1

- 1. Формалізувати речення. Заперечення диз'юнкції двох висловлювань еквівалентно кон'юнкції заперечень кожного з цих висловлювань.
- 2. Побудувати таблицю істинності для висловлювань: $(!x\Leftrightarrow !y) = >(((y\Leftrightarrow z) = >(z\Leftrightarrow x) = >(x||z));$
- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям: $!((p \rightarrow q)||(q \rightarrow r))&&(p||!r);$
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $(((p\&\&q) \rightarrow !p)\&\&((q\&\&!r) \rightarrow r)) \rightarrow (p\rightarrow r);$
- 5. Довести, що формули еквівалентні: $p \rightarrow (q||r)$ та $(p \rightarrow q)||(p \rightarrow r)$;

Розв'язок Додаток 1

1. $(!(x||y))\Leftrightarrow (!x\&\&!y);$

2. $1(!x \Leftrightarrow !y)7 => ((2(y \Leftrightarrow z)5 => 3(z \Leftrightarrow x)6 => 4(x||z))$

X	y	Z	1	2	3	4	5	6	7
0	0	0	1	1	1	0	1	0	0
0	0	1	1	0	0	1	1	1	1
0	1	0	0	0	1	0	1	0	1
0	1	1	0	1	0	1	0	1	1
1	0	0	0	1	0	1	0	1	1
1	0	1	0	0	1	1	1	1	1
1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1	1	1

3.

 $4!((1p \rightarrow q)3|(2q \rightarrow r))6\&\&(p5||!r)$

p	q	r	!r	1	2	3	4	5	6
0	0	0	1	1	1	1	0	1	0
0	0	1	0	1	1	1	0	0	0
0	1	0	1	1	0	1	0	1	0
0	1	1	0	1	1	1	0	0	0
1	0	0	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	0
1	1	0	1	1	0	1	0	1	0
1	1	1	0	1	1	1	0	1	0

Дане висловлювання ϵ протиріччям. Тому що висловлювання прийма ϵ у всіх інтерпретаціях False.

```
4.(((p&&q)→!p)&&((q&&!r)→r))=>(p→r);

p→r = False → Можливо тільки коли: 1=>0 = False;

p = True; r = False;

(((p&&q)→!p)&&((q&&!r)→r))=T;

(T&&q)→F=T; (T&&F)→F=T; F→F=T; q=F;

F&&T→F=T;
```

Дане висловлювання ϵ тавтологією. Тому що нема ϵ таких значень, які б зробили хоч одну інтерпретацію хибною.

$5.p \rightarrow (q||r)$

p	q	r	1	2
0	0	0	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

 $(p \rightarrow q) || (p \rightarrow r)$

1 1/1/1	/				
p	q	r	1	2	3
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Дані формули ϵ еквівалентними тому, що вони ϵ нейтральними і приймають значення False тільки в одній інтерпретації.

Додаток 2. Завдання

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

$$(!x \Leftrightarrow !y) \rightarrow (((y\Leftrightarrow z)\rightarrow (z\Leftrightarrow x)\rightarrow (x||z));$$

Додаток 2. Розв'язок

```
Файл Правка Вид Проект Сборка Отладка Тест Анализ Средства Расширения Окно Справка 🛂 Во весь экран
                                                                                                                            🖻 🗗 Поиск в Visual Studio (Ctrl+Q) 👂 🕕
 Discrete Math (Lab1)

    (Глобальная область)

                                                                                                       #include <iostream>
           using namespace std;
          ∃int main() {
               short x, y, z, res;
              cout << "Write x, y, z: ";</pre>
        П
              res = (!x && !y) && (x || y) || (!y && !z) || (y && z) && (z || x) && (!z || !x) || (x || z); // Випереджена нормальна форма формули
        þ
              if ((x, y, z) != 0 && (x, y, z) != 1) { // Перевірка на неправильні введені данні
    10
                  cout << "Wrong data!";</pre>
    11
    12
               else { // Програма будує одну інтерпретацію, залежно від введенних данних
    13
                  cout << "| " << "x" << " | " << "y" << " | " << "z" << " | " << "l" " << "l" " << "ly" << " | "; cout << "l" << "" | " << "2" << " | " << "3" << " | " << "4" << " | " << "5" << " | " << "6" << " | " << "6" << " | " << "7" << " | \n";
     14
    15
                  16
    17
    19
                  cout << ((!((y && z) || (!y && !z))) || ((z && x) || (!z && !x)));
                  20
    21
    22
    23
    24
               return 0;
    25
    26
                                                                                                                     Активация Windows
        О Пробл
```


Висновок

На цій лабораторній роботі я навчився використовувати закони логіки висловлювань, створив свою першу програму яка будує таблицю істинності, зробив свій перший звіт.