安徽大学 2015—2016 学年第二学期

《高等数学 A (二)、B (二)》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	Ξ	四	五.	总 分
得 分						
阅卷人						

一、填空题(每小题2分,共10分)

得分

- 2. 已知 $\triangle ABC$ 的三个顶点分别是 A(1,1,1), B(2,3,4), C(4,1,2),则过点 A 的中线方程是
- 3. 极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \underline{\hspace{1cm}}$
- 4. 已知函数 $f(x,y) = x^y$, x > 0, y > 0, 则 $\frac{\partial^2 f}{\partial x \partial y} = \underline{\hspace{1cm}}$.
- 5. 设f(x) 是周期为2p 的周期函数,它在区间 $\left(-p,p\right]$ 上的定义为:

$$f(x) = \begin{cases} -1, & -p < x \le 0 \\ 1 + x^2, & 0 < x \le p \end{cases}$$

则 f(x) 的傅立叶级数在 x = p 收敛于_____

二、选择题(每小题2分,共10分)

得分

6. 下列方程表示的直线中,与直线 $L: \begin{cases} x+y+z=1 \\ x-y-2z=1 \end{cases}$ 平行的是 ().

(A)
$$\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z}{-2}$$
;

(B)
$$\frac{x-1}{1} = \frac{y-2}{3} = \frac{z}{-2}$$
;

(C)
$$\frac{x-1}{1} = \frac{y-2}{3} = \frac{z}{2}$$
;

(D)
$$\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z}{2}$$
.

- 7. 设函数 z = f(x, y) 在区域 D 上有定义, $P_0(x_0, y_0) \in D$ 是其驻点,则点 P_0 是(
 - (A) 函数 f(x,y) 的极值点;
- (B) 函数 $f(x_0, y)$ 的极值点;
- (C) 函数 $f(x_0, y)$ 的驻点;
- (D) 函数 f(x, y) 在条件 j(x, y) = 0 下的极值点.
- 8. 设V 为空间上有界闭区域,已知函数 f(x,y,z) 在V 上连续且大于 0,则极限 $\lim_{n\to\infty} \sqrt[n]{\iiint\limits_V f(x,y,z)dV} = () .$
 - (A) 1;

(B) $\iiint_{V} f(x, y, z) dV;$

(C) $\max_{v} \{f(x, y, z)\};$

- (D) $\min_{v} \{ f(x, y, z) \}$.
- 9. 若 $u_n > 0$, $u_{n+1} < u_n$ 且 $\lim_{n \to \infty} u_n = a > 0$,则下列级数一定收敛的是(
 - (A) $\sum_{n=1}^{\infty} \left(-1\right)^{n} u_{n};$

(B) $\sum_{n=1}^{\infty} \left(\frac{1}{1+u_n} \right)^n;$

(C) $\sum_{n=1}^{\infty} \frac{1}{1+a^n};$

- (D) $\sum_{n=1}^{\infty} \frac{u_n}{n}$.
- 10. 设 $f = x^2 + y^2 + z^2$, 则 grad f 的散度 **div**(grad f) = ().

 - (A) 6; (B) 2x + 2y + 2z; (C) (2x,2y,2z);
- (D)(2,2,2).

三、计算题(每小题9分,共63分)

得 分

11. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0 \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点 M(1,1,1) 处的切线与法平面方程.

12. 设函数 z = f(x, y) 具有二阶连续偏导数,其中 y 是由方程 x = y + j(y) 确定的二次可微函数,计算 $\frac{d^2z}{dx^2}$.

13. 计算二重积分 $\iint_{D} \left| \sqrt{x^2 + y^2} - 1 \right| dxdy$,其中 D 是由圆 $x^2 + y^2 = 4$ 所围成的区域.

14. 选择常数 a,b,使得 $(2ax^3y^3-3y^2+5)dx+(3x^4y^2-2bxy-4)dy$ 是一个 \mathbf{i}^2 上二元可微函数 U(x,y) 的全微分,并求函数 U(x,y) 的表达式.

15. 计算第一曲面积分 $\iint_S x^2 dS$,其中 S 为锥面 $z = \sqrt{x^2 + y^2}$ 与平面 z = 1 所围成区域的整个边界曲面.

16. 计算第二曲面积分 $\iint_S x dy dz + y dz dx + z dx dy$,其中 S 为上半球面 $x^2 + y^2 + z^2 = R^2$ 的上侧.

17. 将函数 $f(x) = \frac{2x+1}{x^2+x-2}$ 展开成 x-2 的幂级数.

得 分

四、应用题 (每小题 6 分,共 12 分)

豼

18. 求函数 $z = x^2 y (4 - x - y)$ 在 x = 0, y = 0 及 x + y = 6 围成的区域上的最大值及最小值.

19. 已知分段光滑金属丝L为 $x^2+y^2=1$,y=x,及x轴在第一象限所围成的边界,在其上点(x,y)处的线密度是 $r(x,y)=\sqrt{x^2+y^2}$,求该金属丝的质量.

五、证明题(每小题5分,共5分)

得分

20. 已知数列 $\{u_n\}$ 满足: $0 < u_{n+1} < u_n 且 u_n + u_{n+1} = \frac{1}{n}$, $n=1,2,\mathbf{L}$. 证明级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 条件收敛.