Automorphisms and Logical Equivalences of Linear Groups

Lectures by Elena Bunina
Summary by Ari Feiglin (ari.feiglin@gmail.com)

Contents

1 Linear Groups

1

1 Linear Groups

Let R be a ring and V a free R-module with rank n (meaning it has a basis, and all its basis have cardinality n). We define the general linear group of V to be GL(V), the group of invertible R-linear endomorphisms over V. This is contained within the group $\operatorname{End}(V)$, the group of all R-linear endomorphisms over V.

By fixing a basis of V, we can identify GL(V) with $GL_n(R)$, the group of invertible $n \times n$ R-matrices. We define the special linear group $\mathrm{SL}_n(R)$ to be the group of all invertible $n \times n$ R-matrices with a determinant of 1.

1.1 Definition

Let $I = I_n$ be the $n \times n$ identity matrix, $E_i j$ to be the standard unit matrix (i.e. $(E_{ij})_{\ell k} = 1$ iff $i = \ell, j = k$ otherwise zero). Then define the **elementary transvection matrix** to be $t_{ij}(\lambda) = I + \lambda E_{ij}$ for $i \neq j$ and

Notice that

$$t_{ij}(\lambda)t_{ij}(\delta) = I + \lambda E_{ij} + \delta E_{ij} + \lambda \delta E_{ij}^2 = I + (\lambda + \delta)E_{ij} = t_{ij}(\lambda + \delta)$$

If we define $X_{ij} = \{t_{ij}(\lambda) \mid \lambda \in R\}$ then X_{ij} is an Abelian subgroup of $SL_n(R)$.

Define $E_n(R)$ to be the group generated by all elementary transvection matrices, called the elementary linear group. $E_n(R)$ contains the following set of automorphisms which are called *standard*:

- (1) Let S/R be a (suitable; i.e. the following definition is well-defined) ring extension, and $g \in GL_n(S)$, then define ι_g to be the inner automorphism generated by $g: a \mapsto g^{-1}a$ This is of course an inner automorphism, if $g \in GL_n(R)$ then this is a strict inner automorphism.
- (2) If $\delta: R \longrightarrow R$ is an R-automorphism, then $\bar{\delta}$ defined by

$$\bar{\delta}:(a_{ij})\mapsto(\delta(a_{ij}))$$

is a an automorphism in $E_n(R)$. In the case that $A = t_{ij}(\lambda)$ notice that $\bar{\delta}(t_{ij}(\lambda)) = t_{ij}(\delta\lambda)$.

(3) If $e \in R$ is idempotent, meaning $e^2 = e$, then

$$\Lambda_e: A \mapsto (A^\top)^{-1}e + A(1-e)$$

is also in $E_n(R)$. In the case that R has no idempotents other than the identity, then we simply write $\Lambda: A \mapsto (A^\top)^{-1}$.

Compositions of automorphisms of the above forms (1) - (3) are called *standard* in $E_n(R)$. Beyone these automorphisms, $GL_n(R)$ and $SL_n(R)$ have another form of automorphism:

(4) If γ is some homomorphism from $SL_n(R)$ or $GL_n(R)$ to the center of the group, then

$$\Gamma_{\gamma}: A \mapsto \gamma(A)A$$

is an automorphism.

A composition of automorphisms of the form (1) - (4) is called *standard* in $GL_n(R)$ or $SL_n(R)$.

1.2 Theorem

All automorphisms of $E_n(R)$ for $n \geq 4$ and R commutative are standard. If $2 \in R^{\times}$ then all the automorphisms phisms of $E_3(R)$ are also standard.

1.3 Theorem

All automorphisms of $\mathrm{GL}_n(R)$ and $\mathrm{SL}_n(R)$ for $n \geq 4$ and R commutative are standard. If $2 \in R^{\times}$ then all automorphisms of $GL_3(R)$ and $SL_3(R)$ are also standard.