$$\begin{vmatrix} ki & zi(1) \\ 0 & 3 \\ 1 & 1 \\ 2 & 6 \\ 3 & 2 \\ 4 & 7 \\ 5 & 10 \end{vmatrix}$$

Travis Collins ECE578 Lecture 5 Notes October 1, 2012

1 Multiple Encryption

-Double encryption

Keyspace: $|K| = 2^k x 2^k = 2^{2k}$

$$x => encrypt => y => encrypt = y'$$

Meet in the middle attack

$$x => encrypt(k(i)) => z => encrypt(k(j)) => y$$

$$e_{ki}(x) = z_i^1 e_{kj}^{-1}(y) = z_j^{(2)}$$

Input: (x',y'),(x'',y'')

Idea: Compute

$$z_i^1 = e_{ki}(x)$$

$$z_j^2 = e_{kij}^{-1}(y)$$

Problem: Find $z_i^{(1)} = z_j^{(2)}$

Procedure:

1.) Compute lookup table $(z_i^{(1)}, k_i), i = 1, 2, ..., 2^k$

Storage: 2^k , (n+k)bits

2.) Sort according to z_i column (Done typically while building table in step 1)

Values from the first encryption:

$$\begin{vmatrix} k & zi(1) \\ 1 & 1 \\ 3 & 2 \\ 0 & 3 \\ 2 & 6 \\ 4 & 7 \\ 5 & 10 \end{vmatrix}$$

Use quick sort to look through table Binary search: $log 2(2^k) = k$ (iterations), k=keylength

3.) Find matching $z_j^{(2)}$

a.) Compute $e_{kj}^{-1}(y^1) = z_j^{(2)}$

b.) If

$$z_{j}^{(2)}$$

is in lookup table, i.e. $z_i^{(1)}=z_j^{(2)}=>(k_i,k_j)->try(x'',y'')(x''',y''')$ c.) If (k_i,k_j) give matchin encryption return (k_i,k_j) else goto 'a' try different

 k_j

Complexity:

Brute Force: 2^{2k} encryptions (2x per iteration)

Meet in the middle attack: $Time = 2^k(Lookuptablei_values) + 2^k(onlinej_values)$

Triple encrytion:

Attack on first encryption (1)

 $Time = 2^k + 2^{2k}$

 $Space=2^k$

Attack with second encryption (2)

 $Time = 2^{2k} + 2^k$

 $Space=2^{2k}$

Question: How many additional pairs (x",y"), (x"',y"').... etc should we test?

Assume in general we have an encryption system with 'l' subsequence encryptions

Step 1.) In step 1 we found a keypair such that $e_k...e_{kj}(e_{ki}(x')) = y'(lencryptions)$ There are 2^{lk} key combinations

How many possible values do I have for the cyphertext y' is $2^n(n = blocksize)$ One to one mapping x-¿y (2^n possible outputs), $2^{lk}/2^n number of mapping speciphertext$ Number of keys that are found that are incorrect $2^{lk}/2^n-1$

Step 2.) We now use the candiadate key from step 1 and check if $e^{l}(x^{"}) = y^{"}$

If a random key is used, the likelyhood that $e^{l}(x^{"}) = y^{"}$ is $1/2^{n}$

If we check a third pair (x'',y''), under the same random pair the probability will be: $1/2^{2n}$

If we check (t-1) additional pairs then the probability becomes $1/2^{(t-1)n}$

3.) Since there are $2^{lk}/2^n$ candidate keys in 1.) then probability that at least one fullfills all $e^l(x') = y', e^l(x'') = y'', \dots, e^l(x'') = y''$ is

$$(Number of badkeys) 2^{lk}/2^n * 1/2^{(t-1)n} (prob of passing t-1 tests) = 2^{lk-tn}$$

Example: Double encryption with DES

k=56, n=64, l=2

if t=1, $Failure 2^{112}/2^{64} = 2^4 8$