Soundness of the Quasi-Synchronous Abstraction

Guillaume Baudart and Timothy Bourke

Contents

1	Adı	ministrative Lemmas	2
2	Preamble		
	2.1	Global definitions	4
	2.2	Quasi-periodic system	5
	2.3	Happened before	8
	2.4	The set of predecessors	13
3	Нар	opened Before and Real-Time	17
4	Uni	tary Discretization	18
	4.1	Discretization function	18
	4.2	Central lemma UC is equivalent to UD	20
		4.2.1 UD implies UC	20
		4.2.2 UC implies UD	20
	4.3	Discretizing two nodes systems	23
		4.3.1 Soundness	23
		4.3.2 Weakest condition	24
	4.4	Discretizing general systems	27
5	Qua	asi-synchronous Abstraction	29
	5.1	Soundness	29
	5.2	Weakest condition	32
6	Qua	asi-Synchrony on Relaxed Communication	35
	6.1	Relaxed communication	35
	6.2	Soundness	36
	6.3	Weakest condition	38

1 Administrative Lemmas

We prove here general lemmas that will be needed in the following.

```
lemma ntimes-suc-dist [simp]:
  fixes T :: real
  \mathbf{shows}\ (Suc\ j)\ *\ T\ =\ j\ *\ T\ +\ T
  by (simp add: comm-semiring-class.distrib real-of-nat-Suc)
lemma ntimes-nzero-min [intro]:
  fixes T :: real and k :: nat
  shows [\![ \theta \leq T; \theta < k ]\!] \Longrightarrow T \leq k * T
  \mathbf{by}\ (\textit{metis Suc-leI monoid-mult-class.mult.right-neutral}
  mult.commute mult-left-mono real-of-nat-le-iff real-of-nat-one)
lemma ntimes-bound:
  fixes C :: real
  assumes C > \theta
  shows \exists k :: nat. k * C > D
  using assms by (simp add: reals-Archimedean3)
lemma card1-x:
  assumes card S = 1
  and x \in S
  shows S = \{x\}
  proof -
    from \langle card \ S = 1 \rangle \ \langle x \in S \rangle have card \ (S - \{x\}) = 0
     \mathbf{by}\ (\mathit{metis}\ \mathit{One-nat-def}\ \mathit{card-Diff-singleton}\ \mathit{card-infinite}\ \mathit{diff-Suc-1}\ \mathit{zero-neq-one})
    moreover from \langle card \ S = 1 \rangle have finite S
     by (metis One-nat-def Suc-not-Zero card-infinite)
    ultimately have S - \{x\} = \{\} by simp
    thus ?thesis
      using \langle x \in S \rangle by (metis insert-Diff-single insert-absorb)
  qed
lemma card2-xyz:
  assumes card S = 2
  and x \in S
  and y \in S
  and z \in S
  and x \neq z
  and y \neq z
  shows x = y
  proof -
    from \langle card \ S = 2 \rangle \ \langle x \in S \rangle have card \ (S - \{x\}) = 1
     by (metis Suc-1 Suc-not-Zero card-Diff-singleton card-infinite diff-Suc-1)
    moreover from \langle z \in S \rangle \langle x \neq z \rangle have z \in S - \{x\}
     by simp
    ultimately have S - \{x\} = \{z\}
     by (simp \ add: \ card1-x)
    moreover from \langle x \in S \rangle have S = \{x\} \cup (S - \{x\})
     by auto
    ultimately have S = \{x, z\}
```

```
by auto
    thus ?thesis
      using \langle y \in S \rangle \langle y \neq z \rangle by simp
  \mathbf{qed}
lemma finite-max:
  fixes f :: - \Rightarrow nat
  assumes finite A
  and A \neq \{\}
  shows \exists x \in A. fx = Max \{fy \mid y. y \in A\}
  using assms(1-2) proof (induct)
  case insert
    fix x F
    assume finite F
    and x \notin F
    and F \neq \{\} \Longrightarrow \exists x \in F. f = Max \{f \mid y \mid y. y \in F\}
    and insert x F \neq \{\}
    thus \exists z \in insert \ x \ F. \ f \ z = Max \ \{f \ y \ | y. \ y \in insert \ x \ F\}
    proof (cases\ F = \{\})
      assume F = \{\}
      hence Max \{f \mid y \mid y. y \in insert \ x \ F\} = Max \{f \mid y \mid y. y \in \{x\}\}\
      hence Max \{f y \mid y. y \in insert x F\} = f x
        by simp
      moreover have x \in insert \ x \ F
        by simp
      ultimately have f x = Max \{ f y \mid y. y \in insert x F \}
        by simp
      thus ?thesis by simp
     \mathbf{assume} \neg F = \{\}
     with \langle (F \neq \{\}) \Longrightarrow \exists x \in F. \ f \ x = Max \ \{f \ y \ | y. \ y \in F\} \rangle \rangle
     obtain z
     where z \in F
     and f z = Max \{ f y \mid y. y \in F \}
       by auto
     thus ?thesis
     proof (cases f x > f z)
       assume f x > f z
       \mathbf{with} \ \langle f \ z = \mathit{Max} \ \{f \ y \ | y. \ y \in \mathit{F} \} \rangle
         have f x = max (f x) (Max \{f y | y. y \in F\})
           by simp
       also have ... = Max (insert (f x) \{f y | y. y \in F\})
         proof (rule Max-insert [symmetric])
           from \langle finite \ F \rangle show finite \ \{f \ y \ | y. \ y \in F\}
             by simp
           from \langle \neg F = \{ \} \rangle show \{ f \mid y \mid y. \mid y \in F \} \neq \{ \}
             by simp
         \mathbf{qed}
       also have \dots = Max (f 'insert x F)
         by simp (metis Collect-mem-eq image-Collect)
       finally have f x = Max (f 'insert x F).
```

```
thus \exists z \in insert \ x \ F. \ f \ z = Max \ \{f \ y \ | y. \ y \in insert \ x \ F\}
       by (metis Collect-mem-eq image-Collect insertI1)
   next
     assume \neg f x > f z
     with \langle f z = Max \ \{ f y \ | y. \ y \in F \} \rangle
       have f z = max (f x) (Max \{f y | y. y \in F\})
          by simp
     also have ... = Max (insert (f x) \{f y | y. y \in F\})
       proof (rule Max-insert [symmetric])
          from \langle finite \ F \rangle show finite \ \{f \ y \ | y. \ y \in F\}
            by simp
       \mathbf{next}
          from \langle \neg F = \{ \} \rangle show \{ f \mid y \mid y. y \in F \} \neq \{ \}
            by simp
     also have \dots = Max (f 'insert x F)
       by simp (metis Collect-mem-eq image-Collect)
     finally have f z = Max (f 'insert x F).
     thus \exists z \in insert \ x \ F. \ f \ z = Max \ \{f \ y \ | y. \ y \in insert \ x \ F\}
       \mathbf{using} \ \langle z \in \mathit{F} \rangle \ \mathbf{by} \ (\mathit{metis} \ \mathit{Collect-mem-eq} \ \mathit{image-Collect} \ \mathit{insert-iff})
   qed
 qed
qed (simp)
```

2 Preamble

In this section, we give the definitions of quasi-periodic systems and formalize the happened before relation. Then we prove general lemmas on this relation.

2.1 Global definitions

```
type-synonym time = real
type-synonym delay = real
type-synonym communication = node \Rightarrow node \Rightarrow bool

record event =
node :: node
act :: nat

syntax
-event :: [node, nat] \Rightarrow event (--- [1000, 1000] 1000)
translations
-event \ n \ i \rightleftharpoons (| node = n, act = i |)

record tevent =
date :: time
trans :: delay

type-synonym trace = event \Rightarrow tevent
```

```
fun arrival :: tevent \Rightarrow time
  where arrival te = date \ te + trans \ te
fun step :: event \Rightarrow event
  where step \ e = e(|act| = act \ e + 1)
inductive hb1 :: trace \Rightarrow event \Rightarrow event \Rightarrow bool
  \mathbf{for}\ t :: trace
  where
    hb-subsequent: \bigwedge A \ B \ i \ j. \llbracket A = B; \ i < j \ \rrbracket \Longrightarrow hb1 \ t \ A \cdot i \ B \cdot j
                     \bigwedge e1\ e2. \llbracket \ arrival\ (t\ e1) \le date\ (t\ e2)\ \rrbracket \Longrightarrow hb1\ t\ e1\ e2
  | hb-arrival:
lemmas hb1.cases [cases del]
lemma hb1-cases [elim!]:
  hb1\ t\ A \cdot i\ B \cdot j \Longrightarrow
   (A = B \Longrightarrow i < j \Longrightarrow P) \Longrightarrow
   (\mathit{arrival}\ (t\ A\boldsymbol{\cdot} i) \leq \mathit{date}\ (t\ B\boldsymbol{\cdot} j) \Longrightarrow P) \Longrightarrow P
  by (erule hb1.cases) auto
syntax
  -hb1 :: [event, trace, event] \Rightarrow bool (- \mapsto - [100, 100, 100] 100)
translations
  -hb1\ e1\ t\ e2 \rightleftharpoons (CONST\ hb1\ t\ e1\ e2)
syntax
  -hb :: [event, trace, event] \Rightarrow bool (- \rightarrow - - [100, 100, 100] 100)
translations
  -hb e1 t e2 \rightleftharpoons (CONST hb1 t) ^++ e1 e2
definition concur :: trace \Rightarrow event \Rightarrow event \Rightarrow bool
  where concur t e1 e2 \equiv \neg (e1 \rightarrow t \ e2) \land \neg (e2 \rightarrow t \ e1)
syntax
  -concur :: [event, trace, event] \Rightarrow bool (- || - - [100, 100, 100] 100)
translations
  -concur e1 t e2 \rightleftharpoons (CONST concur t e1 e2)
2.2
         Quasi-periodic system
locale \ quasiperiodic-system =
  \mathbf{fixes}\ nodes::node\ set
  and T_{min} :: time
  and T_{max} :: time
  and \tau_{min} :: time
  and \tau_{max} :: time
  and com :: communication
  assumes finnode: finite nodes
  and node\text{-}coherent: \forall e:: event. node e \in nodes
  and Tminpos: \theta < T_{min}
  and Thounds: T_{min} \leq T_{max}
  and tauminpos: \theta < \tau_{min}
```

```
and taubounds: \tau_{min} \leq \tau_{max}
 and com-refl: \forall N. com N N
begin
lemma Tminpos': 0 \leq T_{min}
 using Tminpos by simp
lemma Tmaxpos: \theta < T_{max}
  using Thounds Tminpos by simp
lemma Tmaxpos': 0 \leq T_{max}
 using Thounds Tminpos' by simp
lemma tauminpos': 0 \le \tau_{min}
 using tauminpos by simp
lemma taumaxpos: \theta < \tau_{max}
 using taubounds tauminpos by simp
lemma taumaxpos': 0 \leq \tau_{max}
  using taubounds tauminpos' by simp
definition quasiperiodic :: trace <math>\Rightarrow bool
 where quasiperiodic t = (\forall e).
     0 \leq date(t e)
   \land T_{min} \leq date (t (step e)) - date (t e)
   \land date (t (step e)) - date (t e) \leq T_{max}
   \wedge \tau_{min} \leq trans \ (t \ e) \wedge trans \ (t \ e) \leq \tau_{max}
lemma qp-step:
 assumes quasiperiodic t
 shows T_{min} \leq date (t (step e)) - date (t e)
        \land date (t (step e)) - date (t e) \leq T_{max}
 using assms unfolding quasiperiodic-def by (rule all E [where x=e]) simp
lemma qp-suc:
 assumes quasiperiodic t
 shows T_{min} \leq date (t A \cdot (Suc i)) - date (t A \cdot i)
        \land date (t A \cdot (Suc i)) - date (t A \cdot i) \leq T_{max}
 using qp-step [OF assms, where e=A \cdot i] by simp
lemmas qp-suc-min = <math>qp-suc [THEN conjunct1]
   and qp-suc-max = qp-suc [THEN conjunct2]
lemma qp-trans:
 assumes quasiperiodic\ t
 shows \tau_{min} \leq trans \ (t \ e) \wedge trans \ (t \ e) \leq \tau_{max}
 using assms unfolding quasiperiodic-def by (rule all E [where x=e]) simp
lemma qp-cone-lower:
 assumes quasiperiodic t
 shows k * T_{min} \le date (t A \cdot (i + k)) - date (t A \cdot i)
```

```
proof (induct k)
   assume k * T_{min} \le date (t A \cdot (i + k)) - date (t A \cdot i) (is - \le ?fnik - ?fni)
   with \langle quasiperiodic t \rangle
     have T_{min} + k * T_{min} \leq date (t A \cdot (Suc (i + k))) - ?fnik + (?fnik - ?fni)
       by (rule add-mono [OF qp-suc-min])
   thus (Suc \ k) * T_{min} \le date \ (t \ A \cdot (i + Suc \ k)) - date \ (t \ A \cdot i)
      by (subst ntimes-suc-dist) simp
 qed (simp)
lemma qp-cone-lower-tmin:
 assumes qp: quasiperiodic t
 and i < j
 shows date (t A \cdot i) + T_{min} \leq date (t A \cdot j)
 proof -
   from \langle i < j \rangle obtain k
   where j = i + k
   and \theta < k
     by (metis less-imp-add-positive)
   from this(2) have T_{min} \leq k * T_{min}
     by (rule ntimes-nzero-min [OF Tminpos'])
   hence date (t A \cdot i) + T_{min} \leq date (t A \cdot i) + k * T_{min}
     by (rule add-left-mono)
   also have date\ (t\ A\cdot i) + k * T_{min} \leq date\ (t\ A\cdot (i+k))
     using qp-cone-lower [OF \ qp, where k=k and i=i and A=A] by auto
   finally show date (t A \cdot i) + T_{min} \leq date (t A \cdot j)
     using \langle j = i + k \rangle by simp
 qed
lemma qp-cone-upper:
 assumes quasiperiodic\ t
 shows date (t A \cdot (i + k)) - date (t A \cdot i) \le k * T_{max}
 proof (induct k)
   \mathbf{fix} \ k
   assume date (t \land (i + k)) - date (t \land (i)) \le k * T_{max} (is ?fnik - ?fni \le -)
   with \langle quasiperiodic t \rangle
     have date (t \land (Suc (i + k))) - ?fnik + (?fnik - ?fni) \le T_{max} + k * T_{max}
       by (rule add-mono [OF qp-suc-max])
   thus date (t A \cdot (i + Suc k)) - date (t A \cdot i) \le (Suc k) * T_{max}
     by (subst ntimes-suc-dist) simp
 qed (simp)
lemma qp-cone:
 assumes qp:quasiperiodic t
 and i \leq j
 shows (j - i) * T_{min} \le date (t A \cdot j) - date (t A \cdot i)
        \land date (t A \cdot j) - date (t A \cdot i) \leq (j - i) * T_{max}
 proof -
   from \langle i \leq j \rangle have i + (j - i) = j
     by simp
   from \langle i \leq j \rangle obtain k
   where k \geq \theta
   and k = j - i
```

```
by simp
    from qp \langle k \geq 0 \rangle have k * T_{min} \leq date (t A \cdot (i+k)) - date (t A \cdot i)
      by (metis qp-cone-lower)
    with \langle i + (j - i) = j \rangle have (j - i) * T_{min} \leq date (t A \cdot j) - date (t A \cdot i)
      using \langle k = j - i \rangle by simp
    moreover from qp \langle k \geq 0 \rangle have date(t \land A \cdot (i+k)) - date(t \land A \cdot i) \leq k * T_{max}
      by (metis qp-cone-upper)
    with (i + (j - i) = j) have date (t \land i) - date(t \land i) \le (j - i) * T_{max}
      using \langle k = j - i \rangle by simp
    ultimately show ?thesis
      using \langle i \leq j \rangle by (simp\ add:real-of-nat-diff)
  qed
lemma qp-date-ij:
  assumes qp: quasiperiodic t
  and i \neq j
  and date (t A \cdot i) \leq date (t A \cdot j)
  shows i < j
  proof (rule ccontr)
    assume \neg i < j
    hence i \geq j
      by simp
    hence i > j
     using \langle i \neq j \rangle by simp
    hence date (t A \cdot i) > date (t A \cdot j)
      proof -
        from qp \langle i > j \rangle have date(t A \cdot j) + T_{min} \leq date(t A \cdot i)
         by (rule qp-cone-lower-tmin)
        with Tminpos show ?thesis
          by simp
      \mathbf{qed}
    thus False
      using \langle date\ (t\ A\cdot i) < date\ (t\ A\cdot j) \rangle by auto
  qed
2.3
        Happened before
lemma hb1-reasonable:
  assumes qp: quasiperiodic t
  and e1 \mapsto t \ e2
  shows date(t \ e1) < date(t \ e2)
  using assms(2) proof induct
    \mathbf{fix} \ A \ B :: node
    and i j :: nat
    assume A = B
    and i < j
    thus date (t A \cdot i) < date(t B \cdot j)
      proof -
        from qp \langle i < j \rangle \langle A = B \rangle have date(t A \cdot i) + T_{min} \leq date(t B \cdot j)
```

by (simp add: qp-cone-lower-tmin)

using Tminpos by simp

thus ?thesis

qed

```
next
    fix e1 e2
    assume arrival (t \ e1) \leq date \ (t \ e2)
    hence date(t \ e1) + trans(t \ e1) \le date(t \ e2)
      by simp
    moreover have \tau_{min} \leq trans(t \ e1)
      using qp qp-trans by simp
    ultimately show date(t e1) < date(t e2)
      using tauminpos by simp
  qed
lemma hb-reasonable:
  assumes qp: quasiperiodic t
  and e1 \rightarrow t \ e2
  shows date(t \ e1) < date(t \ e2)
  using assms(2) proof induct
    \mathbf{fix} \ y
    assume e1 \mapsto ty
   thus date(t e1) < date(t y)
      using qp by (simp add: hb1-reasonable)
  \mathbf{next}
  fix y z
  assume e1 \rightarrow t y
   and y \mapsto t z
   and date (t \ e1) < date \ (t \ y)
   thus date(t e1) < date(t z)
     using qp by (metis dual-order.strict-trans hb1-reasonable)
  \mathbf{qed}
lemma hb-hb1-same:
  {\bf assumes}\ qp{:}quasiperiodic\ t
  and A \cdot i \rightarrow t A \cdot j
  shows A \cdot i \mapsto t A \cdot j
  proof -
  \mathbf{from} \ qp \ \langle A\boldsymbol{\cdot} i \ {\rightarrow} t \ A\boldsymbol{\cdot} j \rangle \ \mathbf{have} \ date \ (t \ A\boldsymbol{\cdot} i) < \ date \ (t \ A\boldsymbol{\cdot} j)
   by (rule hb-reasonable)
  with qp have i < j
   by (metis hb1-reasonable hb-subsequent less-asym linorder-neqE-nat)
  thus ?thesis
    by (simp add: hb-subsequent)
  qed
lemma hb-A-ij:
  assumes qp:quasiperiodic t
  and A \cdot i \rightarrow t A \cdot j
  shows i < j
  proof (rule ccontr)
    assume h: \neg i < j
    from assms have date (t A \cdot i) < date (t A \cdot j)
      by (rule hb-reasonable)
    {f show}\ \mathit{False}
    proof (cases i = j)
      assume i = j
```

```
hence date (t A \cdot i) = date (t A \cdot j)
        by simp
      thus False
        using \langle date\ (t\ A\cdot i) < date\ (t\ A\cdot j) \rangle by simp
    next
      assume \neg i = j
      with h have i > j by simp
      with qp have date (t A \cdot i) > date (t A \cdot j)
        by (simp add: hb1-reasonable hb-subsequent)
        using \langle date\ (t\ A\cdot i) < date\ (t\ A\cdot j) \rangle by simp
    qed
  qed
lemma hb-node:
  assumes node \ x = node \ y
  and x \neq y
  \mathbf{shows} \neg x \parallel t y
  proof -
    \mathbf{from} \ \langle node \ x = node \ y \rangle \ \mathbf{obtain} \ A \ i \ j
    where x = A \cdot i
    and y = A \cdot j
      by (metis (full-types) event.surjective unit.exhaust)
    with \langle x \neq y \rangle have i \neq j
      by simp
    thus ?thesis
    proof (cases \ i < j)
      assume i < j
      with \langle x = A \cdot i \rangle \langle y = A \cdot j \rangle have x \to t y
        by (simp add: hb-subsequent tranclp.r-into-trancl)
     thus ?thesis
       using concur-def by simp
    next
      assume \neg i < j
      with \langle i \neq j \rangle have i > j
        by simp
      with \langle x = A \cdot i \rangle \langle y = A \cdot j \rangle have y \to t x
        by (simp add: hb-subsequent tranclp.r-into-trancl)
      thus ?thesis
        using concur-def by simp
    qed
  qed
lemma hb-concur-nodes:
  assumes (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z)
  shows node \ x \neq node \ z \land node \ y \neq node \ z
  proof (rule ccontr)
    assume h:\neg (node \ x \neq node \ z \land node \ y \neq node \ z)
    thus False
    proof (cases node x \neq node z)
      assume node \ x \neq node \ z
      with h have node y = node z
        by simp
```

```
from assms have y \parallel t z
       by simp
     show ?thesis
     proof (cases \ y = z)
       assume y = z
       moreover from assms have x \rightarrow t y
         by simp
       ultimately show ?thesis
         using assms concur-def by simp
     \mathbf{next}
       assume \neg y = z
       with \langle node \ y = node \ z \rangle have \neg \ y \parallel t \ z
         by (rule hb-node)
       with \langle y \mid | t | z \rangle show ?thesis
         by simp
     \mathbf{qed}
   \mathbf{next}
     assume \neg node \ x \neq node \ z
     hence node x = node z
       by simp
     from assms have x \parallel t z
       by simp
     show ?thesis
     proof (cases x = z)
       assume x = z
       moreover from assms have x \rightarrow t y
         by simp
       ultimately show ?thesis
         using assms concur-def by simp
     \mathbf{next}
       assume \neg x = z
       with \langle node \ x = node \ z \rangle have \neg \ x \parallel t \ z
         by (rule hb-node)
       with \langle x || t \rangle show ?thesis
         \mathbf{by} \ simp
     qed
   qed
 qed
lemma hb-trans-arrival:
 assumes qp: quasiperiodic t
 and e1 \rightarrow t \ e2
 shows node \ e1 = node \ e2 \ \lor
     (\exists e. node e = node e1)
        \land date (t \ e) \ge date \ (t \ e1)
        \land arrival(t e) \leq date(t e2)
 using assms(2) proof (induct)
 {\bf case}\ base
  \mathbf{fix} \ y
  assume e1 \mapsto ty
    thus node \ e1 = node \ y \lor
          (\exists e. node \ e = node \ e1
```

```
\land date (t \ e1) \leq date \ (t \ e)
          \land \ arrival \ (t \ e) \leq date \ (t \ y))
   proof (cases \ node \ e1 = node \ y)
     assume node \ e1 = node \ y
     thus ?thesis
      by simp
   next
     assume \neg node \ e1 = node \ y
     hence arrival(t \ e1) \leq date(t \ y)
       using \langle e1 \mapsto t \ y \rangle by (metis\ event.select-convs(1)\ hb1.cases)
     moreover have node\ e1 \neq node\ y
      using \langle \neg node \ e1 = node \ y \rangle by simp
     ultimately show ?thesis
      by auto
   \mathbf{qed}
\mathbf{next}
  case step
  fix y z
  assume e1 \rightarrow ty
  and y \mapsto t z
  and e1y:node\ e1=node\ y\ \lor
           (\exists e. node \ e = node \ e1
           \land date (t \ e1) \leq date \ (t \ e)
           \land \ arrival \ (t \ e) \leq date \ (t \ y))
  thus e1z:node e1 = node z \lor
           (\exists e. node \ e = node \ e1
             \land date (t \ e1) \leq date \ (t \ e)
             \land \ arrival \ (t \ e) \leq date \ (t \ z))
  proof (cases node e1 = node y)
   assume \neg node \ e1 = node \ y
   then obtain e
   where arrival (t e) \leq date(t y)
      using e1y by auto
   moreover have date(t y) < date(t z)
      using \langle y \mapsto t z \rangle qp by (simp add: hb1-reasonable)
   ultimately show ?thesis
      using \langle node\ e1 \neq node\ y \rangle by (metis\ dual\text{-}order.trans\ e1y\ linear\ not\text{-}less)
  next
   assume node\ e1 = node\ y
   thus ?thesis
   proof (cases \neg node z = node y)
      \mathbf{assume} \neg \ node \ z = node \ y
      hence arrival(t y) \leq date(t z)
        using \langle y \mapsto t \ z \rangle qp by (metis event.select-convs(1) hb1.cases)
      moreover have date(t e1) < date(t y)
        using \langle e1 \rightarrow t y \rangle qp by (simp add: hb-reasonable)
      ultimately show ?thesis
        using \langle node \ e1 = node \ y \rangle by auto
   next
      assume \neg \neg node z = node y
      thus ?thesis
        using \langle node \ e1 = node \ y \rangle by simp
   qed
```

```
\begin{array}{c} \operatorname{qed} \\ \operatorname{qed} \end{array}
```

```
lemma hb-trans:
  assumes qp:quasiperiodic t
  and A \cdot i \rightarrow t B \cdot j
  and \neg A \cdot i \mapsto t B \cdot j
  shows \exists k>i. A\cdot k \mapsto t B\cdot j
  proof -
    from assms(2-3) have A \neq B
      by (metis hb-hb1-same qp)
    then obtain e
    where node \ e = A
    and date (t \ e) \ge date \ (t \ A \cdot i)
    and arrival (t e) \leq date (t B \cdot j)
       using assms by (metis\ event.select-convs(1)\ hb-trans-arrival)
    from \langle node \ e = A \rangle obtain k
    where e = A \cdot k
      by (metis (full-types) event.surjective unit.exhaust)
    hence A \cdot k \mapsto t B \cdot j
      using \langle arrival\ (t\ e) \leq date\ (t\ B \cdot j) \rangle by (simp\ add:\ hb\text{-}arrival)
    from qp \langle \neg A \cdot i \mapsto t B \cdot j \rangle \langle A \cdot k \mapsto t B \cdot j \rangle have i \neq k
      by auto
    moreover have date (t A \cdot k) \geq date (t A \cdot i)
      using \langle e = A \cdot k \rangle \langle date(t e) \geq date(t A \cdot i) \rangle by simp
    ultimately have k>i
       using qp by (simp add: qp-date-ij)
    thus ?thesis
       using \langle A \cdot k \mapsto t \ B \cdot j \rangle by metis
  qed
```

2.4 The set of predecessors

We prove here that the set of predecessors of an event with respect to the relation happened before is finite.

```
lemma fin-Ai:
   assumes qp:quasiperiodic\ t
   shows finite \{A\cdot i\mid i.\ 0\leq i\wedge date\ (t\ A\cdot i)< D\}
   proof —
   from qp have \forall\ i.\ i*\ T_{min}\leq date\ (t\ A\cdot i) — date\ (t\ A\cdot 0)
   by (metis\ monoid\text{-}add\text{-}class.add.left\text{-}neutral\ qp\text{-}cone\text{-}lower})
   moreover from qp have date\ (t\ A\cdot 0)\geq 0
   using quasiperiodic\text{-}def by simp
   hence \forall\ i.\ date\ (t\ A\cdot i) — date\ (t\ A\cdot 0)\leq date\ (t\ A\cdot i)
   by simp
   ultimately have \forall\ i.\ i*\ T_{min}\leq date\ (t\ A\cdot i)
   by (metis\ dual\text{-}order.trans)
   from Tminpos\ obtain k::\ nat
   where k*\ T_{min}>D
   using ntimes-bound by auto
   with \langle\forall\ i.\ i*\ T_{min}\leq date\ (t\ A\cdot i)\rangle have k*\ T_{min}\leq date\ (t\ A\cdot k)
```

```
by simp
   with \langle k * T_{min} > D \rangle have date (t A \cdot k) > D
   hence \{A \cdot i \mid i. \ 0 \le i \land date \ (t \ A \cdot i) < D\} \subseteq \{A \cdot i \mid i. \ i < k\}
   proof -
     assume D < date (t A \cdot k)
     show \{A \cdot i \mid i. \ 0 \le i \land date \ (t \ A \cdot i) < D\} \subseteq \{A \cdot i \mid i. \ i < k\}
     proof
       \mathbf{fix} \ e
       assume e \in \{A \cdot i \mid i. \ 0 \le i \land date \ (t \ A \cdot i) < D\}
       then obtain j
       where 0 \le j
       and date (t A \cdot j) < D
       and e = A \cdot j
         by auto
       with \langle D < date\ (t\ A \cdot k) \rangle have date (t\ A \cdot j) < date\ (t\ A \cdot k)
       hence date (t A \cdot j) \leq date (t A \cdot k)
        by simp
       moreover have j \neq k
       proof
         assume j = k
         hence j = k
           by simp
         hence date (t A \cdot j) = date (t A \cdot k)
           by simp
         thus False
           using \langle date\ (t\ A\cdot j) < date\ (t\ A\cdot k) \rangle by simp
       qed
       ultimately have j < k
         using qp by (simp add: qp-date-ij)
       with \langle e = A \cdot j \rangle show e \in \{A \cdot i \mid i. \ i < k\}
         by simp
     qed
   qed
   moreover have finite \{A \cdot i \mid i. i < k\}
     by simp
   ultimately show ?thesis
     by (simp add: finite-subset)
  qed
lemma fin-node-date:
  assumes qp:quasiperiodic\ t
  shows finite \{e. node \ e = A \land date \ (t \ e) < D\}
  proof -
    have \{e. \ node \ e = A \land date \ (t \ e) < D\} \subseteq \{A \cdot i \mid i. \ 0 \le i \land date \ (t \ A \cdot i) < D\}
    proof
      \mathbf{fix} \ e
      assume e \in \{e. \ node \ e = A \land date \ (t \ e) < D\}
      hence node \ e = A
      and date (t e) < D
        by auto
```

```
then obtain j
     where \theta < j
     and e = A \cdot j
       by (metis (full-types) event.surjective le0 unit.exhaust)
     with \langle date\ (t\ e) < D \rangle have date\ (t\ A \cdot j) < D
     with \langle 0 \leq j \rangle \langle e = A \cdot j \rangle show e \in \{A \cdot i \mid i. \ 0 \leq i \land date \ (t \ A \cdot i) < D\}
       by simp
    qed
    moreover have finite \{A \cdot i \mid i. \ 0 \le i \land date \ (t \ A \cdot i) < D\}
     using fin-Ai qp by simp
   ultimately show ?thesis
     by (metis (lifting, no-types) finite-subset)
 qed
lemma fin-date:
 assumes qp: quasiperiodic t
 shows finite \{e. \ date \ (t \ e) < D\}
 proof -
  from qp have \forall A. finite \{e. node <math>e = A \land date (t e) < D\}
    by (simp add: fin-node-date)
   with finnode have finite (\bigcup A \in nodes. \{e. node \ e = A \land date \ (t \ e) < D\})
    by simp
   moreover have (\bigcup A \in nodes. \{e. node \ e = A \land date \ (t \ e) < D\}) = \{e. \ date \ (t \ e) < D\}
   proof
    show \{e.\ date\ (t\ e) < D\} \subseteq (\bigcup A \in nodes.\ \{e.\ node\ e = A \land date\ (t\ e) < D\})
    proof
      \mathbf{fix} \ e
      assume e \in \{e. \ date \ (t \ e) < D\}
      moreover from qp obtain A i
      where A \in nodes
      and e = A \cdot i
        by (metis event.cases event.select-convs(1) node-coherent)
      ultimately have e \in \{e. \ node \ e = A \land date \ (t \ e) < D\}
      thus e \in (\bigcup A \in nodes. \{e. node \ e = A \land date \ (t \ e) < D\})
        using \langle A \in nodes \rangle by simp
     qed
      show (\bigcup A \in nodes. \{e. node \ e = A \land date \ (t \ e) < D\}) \subseteq \{e. date \ (t \ e) < D\}
      proof
        \mathbf{fix} \ e
        assume e \in (\bigcup A \in nodes. \{e. node \ e = A \land date \ (t \ e) < D\})
        hence date (t e) < D
          by simp
        moreover have e \in \{e\}
          by simp
        ultimately show e \in \{e. \ date \ (t \ e) < D\}
          by simp
      qed
   qed
   ultimately show ?thesis
```

```
by simp
  qed
lemma hb-finite:
  assumes qp: quasiperiodic t
  shows finite \{x. \ x \to t \ y\}
  proof -
    from qp have \forall x \in \{x. \ x \to t \ y\}. date(t \ x) < date(t \ y)
      by (simp add:hb-reasonable)
    hence \{x. \ x \to t \ y\} \subseteq \{x. \ date \ (t \ x) < date \ (t \ y)\}
      by auto
    moreover with qp have finite \{x.\ date\ (t\ x) < date\ (t\ y)\}
      by (simp add: fin-date)
    ultimately show ?thesis
      by (rule finite-subset)
  qed
lemma hb-decr:
  assumes qp:quasiperiodic t
  and x \to t y
  shows \{z.\ z \to t\ x\} \subset \{x.\ x \to t\ y\}
  proof
    show \{z.\ z \to t\ x\} \subseteq \{x.\ x \to t\ y\}
    proof
      fix z
      assume z \in \{z. \ z \to t \ x\}
      with \langle x \rightarrow t y \rangle have z \rightarrow t y
        by simp
      thus z \in \{x. \ x \rightarrow t \ y\}
        \mathbf{by} \ simp
    qed
  next
    show \{z.\ z \rightarrow t\ x\} \neq \{x.\ x \rightarrow t\ y\}
    proof -
      have \neg x \rightarrow t x
      proof
        assume x \to t x
        with qp have date (t x) < date (t x)
          by (rule hb-reasonable)
        thus False
          by simp
      qed
      hence x \notin \{z. \ z \rightarrow t \ x\}
        by simp
      with \langle x \rightarrow t y \rangle show \{z. \ z \rightarrow t \ x\} \neq \{x. \ x \rightarrow t \ y\}
    \mathbf{qed}
  qed
```

3 Happened Before and Real-Time

The following lemmas link the relation happened before and the real-time dates of events.

```
lemma not-hb-realtime:
  assumes quasiperiodic t
  and \neg (e1 \rightarrow t \ e2)
  and node\ e1 \neq node\ e2
  shows arrival (t \ e1) > date \ (t \ e2)
  using assms by (metis hb-arrival leI tranclp.simps)
lemma hb-realtime-A:
  assumes qp:quasiperiodic t
  and A \cdot i \rightarrow t A \cdot j
  shows (j - i) * T_{min} \le date (t A \cdot j) - date (t A \cdot i)
         \land date \ (t \ A \cdot j) - date \ (t \ A \cdot i) \leq (j - i) * T_{max}
  proof -
    from qp \langle A \cdot i \rightarrow t A \cdot j \rangle have i < j
      by (metis\ hb-A-ij)
    hence i \leq j
      by simp
    thus ?thesis
      using qp by (simp add: qp-cone)
  qed
lemma message-inversion:
  assumes qp:quasiperiodic t
  and T_{min} + \tau_{min} > \tau_{max}
  shows \forall C p q. p < q \longrightarrow arrival (t C \cdot p) < arrival (t C \cdot q)
  proof (rule ccontr)
    assume \neg (\forall C p q. p < q \longrightarrow arrival (t C \cdot p) < arrival (t C \cdot q))
    then obtain A i j
    where i < j
    and \neg (arrival\ (t\ A \cdot i) < arrival\ (t\ A \cdot j))
    hence h: arrival\ (t\ A \cdot i) \ge arrival\ (t\ A \cdot j)
      by simp
    from qp obtain transmin: \tau_{min} \leq trans \ (t \ A \cdot j)
    and transmax: trans (t A \cdot i) \leq \tau_{max}
      using quasiperiodic-def by simp
    from transmin have arj:date (t A \cdot j) + \tau_{min} \leq arrival (t A \cdot j)
    from transmax have ari:date (t A \cdot i) + \tau_{max} \ge arrival (t A \cdot i)
      by simp
    from qp \langle i < j \rangle have subs:date (t A \cdot i) + T_{min} \leq date (t A \cdot j)
      by (rule qp-cone-lower-tmin)
    from arj h have date (t A \cdot j) + \tau_{min} \leq arrival (t A \cdot i)
      by simp
    with ari have date (t A \cdot j) + \tau_{min} \leq date (t A \cdot i) + \tau_{max}
    moreover from subs arj have date (t A \cdot i) + T_{min} + \tau_{min} \leq date (t A \cdot j) + \tau_{min}
      by simp
    ultimately have T_{min} + \tau_{min} \leq \tau_{max}
```

```
by simp
    thus False
       using assms(2) by simp
  qed
lemma hb-realtime:
  assumes qp: quasiperiodic t
  and mi: \forall C p q. p < q \longrightarrow arrival (t C \cdot p) < arrival (t C \cdot q)
  shows arrival (t \ A \cdot i) \leq date \ (t \ B \cdot j) \longleftrightarrow A \cdot i \to t \ B \cdot j
  proof
    assume A \cdot i \rightarrow t B \cdot j
    show arrival (t A \cdot i) \leq date (t B \cdot j)
    proof (rule ccontr)
      assume h: \neg arrival (t A \cdot i) \leq date (t B \cdot j)
      hence \neg A \cdot i \mapsto t B \cdot j
         using \langle A \neq B \rangle by (metis hb1-cases)
      then obtain k
       where i < k
      and A \cdot k \mapsto t B \cdot j
         using qp \langle A \neq B \rangle \langle A \cdot i \rightarrow t B \cdot j \rangle by (metis\ hb\text{-}trans)
      hence arrival (t A \cdot k) \leq date (t B \cdot j)
        using \langle A \neq B \rangle qp by (metis hb1-cases)
      hence arrival (t A \cdot i) \geq arrival (t A \cdot k)
         using h by simp
       with \langle i < k \rangle have \exists C p q. p < q \land arrival (t C \cdot p) \geq arrival (t C \cdot q)
         by auto
       thus False
         using mi by (metis not-less)
    qed
  next
    assume arrival (t A \cdot i) < date(t B \cdot j)
    with assms show A \cdot i \rightarrow t B \cdot j
      by (metis hb-arrival tranclp.r-into-trancl)
  qed
```

4 Unitary Discretization

In this section we define the notion of unitary discretization and prove the central lemma, namely the existence of a unitary discretization is equivalent to a simple condition involving three events.

4.1 Discretization function

```
definition discretization :: (event \Rightarrow nat) \Rightarrow (event \Rightarrow tevent) \Rightarrow bool where discretization f t = (\forall x y. (x \rightarrow t y) \longleftrightarrow f x < f y)

function discr :: trace \Rightarrow event \Rightarrow nat where discr t y = (Max (insert \ 0 \ (Suc \ 'discr \ t \ '\{x. \ x \rightarrow t \ y \land quasiperiodic \ t\}))) by auto
```

```
termination
  proof (relation measure (\lambda(t, y)). card \{x. x \to t \ y \land quasiperiodic \ t\}))
    \mathbf{fix} \ t \ y \ x
    assume x \in \{x. \ x \to t \ y \land quasiperiodic \ t\}
    hence quasiperiodic t
    and x \to t y
     by auto
    from hb-finite [OF this(1)] hb-decr [OF this]
    have card \{z. z \rightarrow t x\} < card \{x. x \rightarrow t y\}
      by (rule psubset-card-mono)
    thus ((t, x), (t, y)) \in measure (\lambda(t, y), card \{x. x \to t y \land quasiperiodic t\})
      using \langle quasiperiodic\ t\rangle by simp
  qed simp
declare discr.simps [simp del]
lemma qp-discr:
  assumes quasiperiodic t
  shows discr t y = (Max (insert \ 0 \ (Suc \ 'discr \ t \ ' \{x. \ x \to t \ y\})))
  using assms by (simp add: discr.simps)
lemma case-discr [simp]:
  \mathbf{assumes}\ qp\colon quasiperiodic\ t
  shows discr t y = (if \{x. \ x \rightarrow t \ y\} = \{\} \ then \ \theta
                      else Max (\{discr\ t\ x\mid x.\ x\to t\ y\})+1)
  proof (cases \{x. \ x \rightarrow t \ y\} = \{\})
    \mathbf{assume}\ \{x.\ x\to t\ y\}=\{\}
    moreover then have discr t y = 0
      using qp-discr [OF qp] by simp
    ultimately show ?thesis
      \mathbf{by} \ simp
    assume notempty: \{x.\ x \to t\ y\} \neq \{\}
    from hb-finite [OF qp] have finite (discr t '\{x. x \rightarrow t y\})
      by simp
    moreover have discr t '\{x. x \rightarrow t y\} = \{discr t x | x. x \rightarrow t y\}
      by auto
    ultimately have finite {discr t \ x \ | x. \ x \rightarrow t \ y}
      by simp
    from qp have discr t y = (Max (insert \ 0 \ (Suc \ 'discr \ t \ ' \{x. \ x \to t \ y\})))
      by (rule qp-discr)
    also from \langle finite \{ discr \ t \ x \mid x. \ x \rightarrow t \ y \} \rangle notempty
    have ... = Max (Suc ` \{discr t x | x. x \rightarrow t y\})
      by (auto simp add: image-Collect)
    also from mono-Suc \langle finite \{ discr \ t \ x \ | x. \ x \rightarrow t \ y \} \rangle notempty
    have ... = Suc\ (Max\ \{discr\ t\ x\ | x.\ x \to t\ y\})
      by (subst mono-Max-commute [where f=Suc]) simp-all
    finally show ?thesis
      using notempty by simp
  qed
```

4.2 Central lemma UC is equivalent to UD

4.2.1 UD implies UC

```
lemma UD-concur:
  assumes UD: discretization f t
  and x \parallel t y
  \mathbf{shows}\ f\ x = f\ y
  proof (rule ccontr)
    assume \neg f x = f y
    hence x \to t \ y \lor y \to t \ x
    proof (cases f x < f y)
      assume f x < f y
      with UD show ?thesis
        using discretization-def by simp
    next
      assume \neg f x < f y
      with \langle \neg f x = f y \rangle have f x > f y
        by simp
      with UD show ?thesis
        using discretization-def by simp
    with \langle x \mid | t \mid y \rangle show False
      using concur-def by simp
  qed
lemma UDUC:
  assumes UD: discretization f t
  shows UC: \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
  proof
  assume (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
   then obtain x y z
   where x \to t y
   and x \parallel t z
   and y \parallel t z
     by auto
   with UD have f x < f y
     using discretization-def by simp
   moreover from \langle x \mid | t | z \rangle have f | x = f | z \rangle
     using assms by (simp add: UD-concur)
   moreover from \langle y \mid | t | z \rangle have f | y = f | z \rangle
     using assms by (simp add: UD-concur)
   ultimately show False
     by simp
  qed
4.2.2
           UC implies UD
lemma UCUD:
  assumes qp: quasiperiodic t
  and UC: \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
  shows UD:\exists f. discretization f t
  proof -
    \operatorname{\mathbf{def}} f == \lambda \ x. \ discr \ t \ x
```

```
\{ \mathbf{fix} \ x \ y \}
  assume x \to t y
  have f x < f y
  proof (rule ccontr)
    assume \neg f x < f y
    with qp have finite \{x. x \rightarrow t y\}
        by (simp add: hb-finite)
    hence finite \{f \ x \mid x. \ x \to t \ y\}
      by simp
    from \langle x \to t y \rangle have f x \in \{f x \mid x. x \to t y\}
      by auto
    with \langle finite \ \{f \ x \mid x. \ x \rightarrow t \ y\} \rangle have f \ x \leq Max \ \{f \ x::nat \mid x. \ x \rightarrow t \ y\}
    hence f x < Max \{f x :: nat | x. x \rightarrow t y\} + 1
       by auto
    from \langle x \rightarrow t y \rangle have \{x. \ x \rightarrow t y\} \neq \{\}
       by auto
    with qp \ f-def have f \ y = Max \ \{f \ x | \ x. \ x \rightarrow t \ y\} + 1
      by simp
    with \langle f | x < Max | \{ f | x | x | x \rightarrow t \} \} + 1 \rangle have f | x < f | y
      bv simp
    with \langle \neg f x < f y \rangle show False
      by auto
  qed
}
moreover
\{ \mathbf{fix} \ x \ y \}
  assume f y < f x
  have f-hb1:\neg (x \to t y)
  proof
    assume (x \to t y)
    hence x \to t y
      by auto
    hence f x < f y
      by (rule \langle \bigwedge ya \ xa. \ xa \rightarrow t \ ya \Longrightarrow f \ xa < f \ ya \rangle)
    with \langle f y < f x \rangle show False
      \mathbf{by} \ simp
  qed
}
moreover
\{ \mathbf{fix} \ x \ y \ z \}
  assume f y = f z + 1
  and f x < f y
  have \neg z \rightarrow t x
  proof
    assume z \to t x
    hence f z < f x
       by (rule \langle \bigwedge ya \ xa. \ xa \rightarrow t \ ya \Longrightarrow f \ xa < f \ ya \rangle)
    \mathbf{moreover} \ \mathbf{from} \ \langle f \ y = f \ z \ + \ 1 \rangle \ \langle f \ x < f \ y \rangle \ \mathbf{have} \ f \ x \leq f \ z
      by simp
```

```
ultimately have f z \ge f x
      by simp
    thus False
      using \langle f z < f x \rangle by simp
 qed
}
moreover
{ fix y
  assume f y > \theta
  have \exists z. z \rightarrow t y \land f y = f z + 1
   proof -
    have \{x. \ x \rightarrow t \ y\} \neq \{\}
    proof
      assume \{x. \ x \rightarrow t \ y\} = \{\}
       hence \{x. \ x \to t \ y\} = \{\}
        by simp
      with qp f-def have f y = 0
        by simp
      thus False
        using \langle f y > \theta \rangle by simp
    qed
    moreover with qp f-def have fy = Max \{fx | x. x \rightarrow ty\} + 1
    moreover from qp have finite \{x. x \rightarrow t y\}
      by (simp add: hb-finite)
    ultimately have \exists x \in \{x. \ x \rightarrow t \ y\}. \ f \ x = Max \ \{f \ x \ | x. \ x \in \{x. \ x \rightarrow t \ y\}\}
      by (metis (mono-tags) finite-max)
    moreover have \{x.\ x \in \{x.\ x \rightarrow t\ y\}\} = \{x.\ x \rightarrow t\ y\}
      by simp
    ultimately obtain z
    where z \in \{x. \ x \rightarrow t \ y\}
    and f z = Max\{f x \mid x. x \rightarrow t y\}
      by auto
    with \langle f y = Max \{ f x | x. x \rightarrow t y \} + 1 \rangle have f y = f z + 1
      by simp
    from \langle z \in \{x. \ x \rightarrow t \ y\} \rangle have z \rightarrow t \ y
      by simp
    with \langle f y = f z + 1 \rangle show ?thesis
      by auto
 \mathbf{qed}
}
moreover
\{ \mathbf{fix} \ x \ y \}
  assume f x < f y
  have x \to t y
  proof (rule ccontr)
    assume \neg x \rightarrow t y
    from \langle f | x < f | y \rangle have \neg | y \rightarrow t | x
      by (rule \land \bigwedge ya \ xa. \ f \ ya < f \ xa \Longrightarrow \neg \ xa \to t \ ya))
    with \langle \neg x \rightarrow t y \rangle have x \parallel t y
      using concur-def by simp
```

```
from \langle f x < f y \rangle have f y > 0
            by simp
         with f-def obtain z
         where z \rightarrow t y
         and f y = f z + 1
           by (metis \langle \bigwedge ya. \ 0 < f \ ya \Longrightarrow \exists \ z. \ z \to t \ ya \land f \ ya = f \ z + 1 \rangle)
         from \langle \neg x \rightarrow t y \rangle \langle z \rightarrow t y \rangle have \neg x \rightarrow t z
           by (metis tranclp-trans)
         moreover from \langle f | y = f | z + 1 \rangle \langle f | x < f | y \rangle have \neg | z \rightarrow t | x
            by (rule \langle \bigwedge z \ ya \ xa. \ [f \ ya = f \ z + 1; f \ xa < f \ ya] \Longrightarrow \neg z \to t \ xa \rangle)
         ultimately have z \parallel t x
            using concur-def by simp
         from \langle z \rightarrow t y \rangle \langle x \parallel t y \rangle \langle z \parallel t x \rangle UC show False
            using concur-def by auto
      \mathbf{qed}
    ultimately show ?thesis
       using discretization-def by metis
  qed
theorem concur-discretization:
   assumes qp:quasiperiodic t
   shows (\exists f. \ discretization \ f \ t) \longleftrightarrow
           (\neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z)))
        assume \exists f.\ discretization\ f\ t
        thus \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
          by (metis UDUC)
       assume \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
       with qp show \exists f. discretization f t
         by (rule UCUD)
   qed
```

4.3 Discretizing two nodes systems

In this section we give the weakest condition to ensure that a systems of two quasi-periodic nodes is unitary discretizable.

4.3.1 Soundness

```
lemma discretization-2-sound: assumes qp:quasiperiodic\ t and card\ nodes=2 and T_{min}\geq 2*\tau_{max} shows \neg\ (\exists\ x\ y\ z.\ (x\to t\ y)\land (x\ \|t\ z)\land (y\ \|t\ z)) proof assume (\exists\ x\ y\ z.\ (x\to t\ y)\land (x\ \|t\ z)\land (y\ \|t\ z)) then obtain x\ y\ z where x\to t\ y and x\ \|t\ z
```

```
and y \parallel t z
      by auto
    with qp have node x \neq node\ z and node y \neq node\ z
      by (simp-all add: hb-concur-nodes)
    with \langle card \ nodes = 2 \rangle have node \ x = node \ y
      by (metis card2-xyz node-coherent)
    from \langle node \ x = node \ y \rangle \langle node \ x \neq node \ z \rangle obtain A \ B \ i \ j \ k
    where A \neq B
    and x = A \cdot i
    and y = A \cdot j
    and z = B \cdot k
      by (metis (full-types) event.surjective unit.exhaust)
    with \langle x \mid | t | z \rangle \langle y \mid | t | z \rangle have h:(A \cdot i \mid | t | B \cdot k) \wedge (A \cdot j \mid | t | B \cdot k)
    from \langle x \rightarrow t y \rangle \langle x = A \cdot i \rangle \langle y = A \cdot j \rangle have A \cdot i \rightarrow t A \cdot j
      by simp
    with \langle A \cdot i \rightarrow t \ A \cdot j \rangle qp have i < j
      by (simp \ add: hb-A-ij)
    from qp obtain transmin: \tau_{min} \leq trans \ (t \ A \cdot j)
    and transmax-A: trans (t A \cdot i) \leq \tau_{max}
    and transmax-B: trans (t B \cdot k) \leq \tau_{max}
      using quasiperiodic-def by simp
    from qp \langle i < j \rangle have date(t A \cdot i) + T_{min} \leq date(t A \cdot j)
      by (rule qp-cone-lower-tmin)
    moreover from h have \neg (A \cdot i \rightarrow t B \cdot k)
      using concur-def by simp
    hence date (t B \cdot k) < arrival (t A \cdot i)
      using qp \langle A \neq B \rangle by (metis\ event.select-convs(1)\ not-hb-real time)
    hence date (t B \cdot k) < date(t A \cdot i) + \tau_{max}
       using transmax-A by simp
    moreover from h have \neg (B \cdot k \rightarrow t A \cdot j)
      using concur-def by simp
    hence date (t A \cdot i) < arrival (t B \cdot k)
      using qp \langle A \neq B \rangle by (metis event.select-convs(1) not-hb-realtime)
    hence date (t A \cdot j) < date(t B \cdot k) + \tau_{max}
      using transmax-B by simp
    ultimately have date (t A \cdot i) + T_{min} < date (t A \cdot i) + \tau_{max} + \tau_{max}
      by simp
    moreover have \tau_{max} + \tau_{max} = 2 * \tau_{max}
      by (simp add: numerals)
    ultimately have date (t A \cdot i) + T_{min} < date (t A \cdot i) + 2 * \tau_{max}
      by simp
    thus False
      using \langle 2 * \tau_{max} \leq T_{min} \rangle by simp
  qed
4.3.2
           Weakest condition
\mathbf{lemma}\ \textit{discretization-2-eg}\colon
  assumes card \ nodes = 2
  and T_{min} < 2 * \tau_{max}
  shows \exists t. (quasiperiodic t) \land (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
  proof -
```

```
from \langle card \ nodes = 2 \rangle finnode obtain A
where A \in nodes
  using node-coherent by auto
with \langle card \ nodes = 2 \rangle finnode have card \ (nodes - \{A\}) = 1
 by simp
then obtain B
where B \in nodes - \{A\}
 by (metis card-empty equals0I zero-neq-one)
from (A \in nodes) (B \in nodes - \{A\}) have abnodes: A \in nodes \ B \in nodes \ A \neq B
 by auto
from \langle T_{min} < 2 * \tau_{max} \rangle obtain \varepsilon
where \varepsilon/2 > 0
and \varepsilon = 2 * \tau_{max} - T_{min}
 by simp
hence \tau_{max} - \varepsilon/2 = T_{min}/2
 by linarith
moreover with Tminpos have \tau_{max} - \varepsilon/2 > 0
 by simp
ultimately have \tau_{max} - \varepsilon/2 < \tau_{max}
 using taumaxpos \langle \theta < \varepsilon / 2 \rangle by simp
\mathbf{def}\ eg == \lambda e :: event.
           if node e=A then (| date = act e*T_{min}, trans = \tau_{max} |)
      else if node e = B then (date = \tau_{max} - \varepsilon/2 + act \ e * T_{min}, trans = \tau_{max})
      else (| date = act \ e * T_{min}, trans = \tau_{max})
have \forall e. trans (eg e) = \tau_{max}
  using eg-def by simp
hence \forall e. \tau_{min} \leq trans (eg \ e) \wedge trans (eg \ e) \leq \tau_{max}
  using eg-def taubounds by simp
moreover have \forall e. date (eg\ (step\ e)) - date\ (eg\ e) = T_{min}
  using eg-def by simp
hence \forall e. T_{min} \leq date (eg (step e)) - date (eg e)
         \land date (eg (step e)) - date (eg e) \leq T_{max}
 using Thounds by simp
moreover have \forall e. 0 \leq date(eg e)
 using eg-def Tminpos \langle \tau_{max} - \varepsilon/2 > 0 \rangle by simp
ultimately have qp:quasiperiodic eg
 using quasiperiodic-def by simp
have mi: \forall N p q. p < q \longrightarrow arrival (eg N \cdot p) < arrival (eg N \cdot q)
using eg-def Tminpos by (simp add: \forall e. tevent.trans (eg e) = \tau_{max})
have a\theta : eg \ A \cdot \theta = (| \ date = \theta, \ trans = \tau_{max} |)
and b\theta : eg \ B \cdot \theta = (|date = \tau_{max} - \varepsilon/2, trans = \tau_{max})
and a1:eg \ A \cdot 1 = (|date = T_{min}, trans = \tau_{max}|)
 using abnodes eg-def by simp-all
have A \cdot \theta \rightarrow eg A \cdot 1 \land A \cdot \theta \parallel eg B \cdot \theta \land B \cdot \theta \parallel eg A \cdot 1
proof -
 have A \cdot \theta \rightarrow eg A \cdot 1
    by (simp add: hb-subsequent tranclp.r-into-trancl)
```

```
moreover
       { from a0 b0 \langle \tau_{max} - \varepsilon/2 < \tau_{max} \rangle have date (eg B·0) < arrival (eg A·0)
         with qp \ mi \ (A \neq B) have \neg A \cdot \theta \rightarrow eg \ B \cdot \theta
           by (metis hb-realtime not-le)
         moreover from \langle \tau_{max} - \varepsilon/2 > 0 \rangle taumaxpos this a0 b0
         have date (eg A \cdot \theta) < arrival (eg B \cdot \theta)
           by simp
         hence \neg B \cdot \theta \rightarrow eg A \cdot \theta
           using \langle A \neq B \rangle mi qp by (metis hb-realtime not-le)
         ultimately have A \cdot \theta \parallel eg B \cdot \theta
           using concur-def by simp
      }
      moreover
      { from b0 a1 Tmaxpos \langle \tau_{max} - \varepsilon/2 = T_{min}/2 \rangle Tminpos have date (eg B·0) < date (eg A·1)
         moreover with a1 taumaxpos have arrival(eg A \cdot 1) > date(eg A \cdot 1)
           by auto
         ultimately have date (eg B \cdot \theta) < arrival (eg A \cdot 1)
           by simp
         hence \neg A \cdot 1 \rightarrow eq B \cdot \theta
           using \langle A \neq B \rangle mi qp by (metis hb-realtime not-le)
         moreover from b\theta \langle \tau_{max} - \varepsilon / 2 = T_{min} / 2 \rangle have arrival(eg B \cdot \theta) = \tau_{max} + T_{min} / 2
           by simp
         hence date (eg A \cdot 1) < arrival (eg B \cdot \theta)
           using a1 \langle \tau_{max} - \varepsilon / 2 < \tau_{max} \rangle \langle \tau_{max} - \varepsilon / 2 = T_{min} / 2 \rangle by simp
         hence \neg B \cdot \theta \rightarrow eg A \cdot 1
           using \langle A \neq B \rangle mi qp by (metis hb-realtime not-le)
         ultimately have b0a1:B\cdot 0 \parallel eg A\cdot 1
           using concur-def by simp
      ultimately show ?thesis
         by simp
    qed
    with qp show ?thesis
       using concur-def by auto
\mathbf{lemma}\ discretization \hbox{-} 2\hbox{-} weakest\colon
  assumes card \ nodes = 2
  and \forall t. (quasiperiodic \ t) \longrightarrow \neg (\exists \ x \ y \ z. \ (x \to t \ y) \land (x \ || t \ z) \land (y \ || t \ z))
  shows T_{min} \geq 2 * \tau_{max}
  {f proof}\ (\mathit{rule}\ \mathit{ccontr})
    assume \neg T_{min} \ge 2 * \tau_{max}
    hence T_{min} < 2 * \tau_{max}
      by simp
    with \langle card \ nodes = 2 \rangle
    have \exists t. (quasiperiodic t) \land (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
      by (rule discretization-2-eg)
    thus False
      using assms(2) by auto
```

```
qed
```

```
theorem discretization-2:
  assumes card \ nodes = 2
  and quasiperiodic t
  shows (\forall t. \ quasiperiodic \ t \longrightarrow (\exists f. \ discretization \ f \ t)) \longleftrightarrow (T_{min} \geq 2 * \tau_{max})
  proof -
    have \forall t. \ quasiperiodic \ t \longrightarrow
           (\exists f. \ discretization \ f \ t) \longleftrightarrow \neg \ (\exists \ x \ y \ z. \ (x \to t \ y) \land (x \parallel t \ z) \land (y \parallel t \ z))
    by (simp add: concur-discretization)
     moreover have (\forall t. \ quasiperiodic \ t \longrightarrow \neg \ (\exists \ x \ y \ z. \ (x \to t \ y) \land (x \ \|t \ z) \land (y \ \|t \ z)))
                         \longleftrightarrow (T_{min} \ge 2 * \tau_{max})
    proof
       assume \forall t. quasiperiodic t \longrightarrow \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
       with \langle card \ nodes = 2 \rangle show T_{min} \geq 2 * \tau_{max}
          by (rule discretization-2-weakest)
       assume T_{min} \geq 2 * \tau_{max}
       show \forall t. quasiperiodic t \longrightarrow \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
       proof
          \mathbf{fix} t
          show quasiperiodic t \longrightarrow \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
          proof
            assume qp: quasiperiodic t
            thus \neg (\exists x y z. (x \rightarrow t y) \land (x \parallel t z) \land (y \parallel t z))
               \mathbf{using} \ \langle T_{min} \geq \textit{2} * \tau_{max} \rangle \ \langle \textit{card nodes} = \textit{2} \rangle \ \mathbf{by} \ (\textit{metis discretization-2-sound})
          qed
       qed
    qed
     ultimately show ?thesis
       by simp
  qed
```

4.4 Discretizing general systems

We prove here that general quasi-periodic systems of more than two nodes are not unitary discretizable.

```
lemma discretization-eg:
   assumes 2 < card \ nodes
   shows \exists t \ x \ y \ z. \ quasiperiodic \ t \land x \to t \ y \land x \ \| t \ z \land y \ \| t \ z
   proof -
   from assms(1) finnode obtain A
   where A \in nodes
   by (metis \ all-not-in-conv \ card-eq-0-iff \ less-nat-zero-code)
   moreover with assms finnode obtain B
   where B \in nodes - \{A\}
   by (metis \ Suc-1 \ Suc-leI \ card-0-eq \ card-Suc-Diff1 \ finite.cases
   finite-Diff \ insertI1 \ less-le-trans \ not-less-iff-gr-or-eq \ zero-less-Suc)
   ultimately obtain C
   where C \in nodes - \{A, B\}
   using assms finnode by (metis \ Diff-insert2 \ One-nat-def \ Suc-1 \ Suc-leI \ all-not-in-conv \ card.insert-remove \ card-empty finite.emptyI insert-Diff-single
```

```
insert-absorb lessI not-le)
\mathbf{from} \ \langle A \in nodes \rangle \ \langle B \in nodes - \{A\} \rangle \ \langle C \in nodes - \{A, B\} \rangle
have abcnodes: A \in nodes \ B \in nodes \ C \in nodes \ A \neq B \ B \neq C \ C \neq A
  by auto
\mathbf{def}\ eg == \lambda e :: event.
              if node e = A then (date = act \ e * T_{max}, trans = \tau_{max})
        else if node e = B then \{ date = \tau_{max} + act \ e * T_{max}, trans = \tau_{max} \}
        else if node e = C then (| date = \tau_{max} / 2 + act e * T_{max}, trans = \tau_{max})
        else (| date = act \ e * T_{max}, trans = \tau_{max})
have \forall e. trans (eg e) = \tau_{max}
  using eg-def by simp
hence \forall e. \tau_{min} \leq trans (eg e) \wedge trans (eg e) \leq \tau_{max}
  using eg-def taubounds by simp
moreover have \forall e. date (eg\ (step\ e)) - date\ (eg\ e) = T_{max}
  using eg-def by simp
hence \forall e. T_{min} \leq date (eg (step e)) - date (eg e)
         \land date (eg (step e)) - date (eg e) \leq T_{max}
  using Thounds by simp
moreover have \forall e. 0 \leq date(eg e)
  using eg-def Tmaxpos taumaxpos' by simp
ultimately have qp:quasiperiodic eq
  using quasiperiodic-def by simp
have mi: \forall N p q. p < q \longrightarrow arrival (eg N \cdot p) < arrival (eg N \cdot q)
using eg-def Tmaxpos by (simp add: \forall e. tevent.trans (eg e) = \tau_{max})
from abcnodes
have a\theta : eg \ A \cdot \theta = (| \ date = \theta, \ trans = \tau_{max} |)
and b\theta : eg \ B \cdot \theta = (|date = \tau_{max}, trans = \tau_{max})
and c\theta : eg \ C \cdot \theta = (| \ date = \tau_{max} \ / \ 2, \ trans = \tau_{max} \ )
  using eq-def by simp-all
have A \cdot \theta \rightarrow eg B \cdot \theta \wedge A \cdot \theta \parallel eg C \cdot \theta \wedge B \cdot \theta \parallel eg C \cdot \theta
proof -
  { from a0 b0 have arrival (eg A \cdot \theta) \leq date (eg B \cdot \theta)
      by simp
    hence A \cdot \theta \rightarrow eg B \cdot \theta
      using qp a0 b0 \langle A \neq B \rangle not\text{-}hb\text{-}realtime by fastforce
  }
  moreover
  { from taumax pos have \tau_{max}/2 < \tau_{max}
      bv simp
    from this a0 c0 tauminpos have date (eg C \cdot \theta) < arrival (eg A \cdot \theta)
      by simp
    with qp \ mi \ \langle C \neq A \rangle have \neg A \cdot \theta \rightarrow eg \ C \cdot \theta
      by (metis hb-realtime not-le)
    moreover from taumaxpos have 0 < \tau_{max}/2 + \tau_{max}
    from this a0 c0 have date (eg A \cdot \theta) < arrival (eg C \cdot \theta)
      by simp
```

```
hence \neg C \cdot \theta \rightarrow eg A \cdot \theta
           using \langle C \neq A \rangle mi qp by (metis hb-realtime not-le)
        ultimately have A \cdot \theta \parallel eg \ C \cdot \theta
           using concur-def by simp
      }
      moreover
      { from taumax pos have \tau_{max}/2 < \tau_{max} + \tau_{max}
        from this b0 c0 tauminpos have date (eg C \cdot \theta) < arrival (eg B \cdot \theta)
           by simp
        hence \neg B \cdot \theta \rightarrow eg C \cdot \theta
           using \langle B \neq C \rangle mi qp by (metis hb-realtime not-le)
        moreover from taumaxpos have \tau_{max} < \tau_{max}/2 + \tau_{max}
        with b\theta c\theta have date (eg B \cdot \theta) < arrival (eg C \cdot \theta)
           by simp
        hence \neg C \cdot \theta \rightarrow eg B \cdot \theta
           using \langle B \neq C \rangle mi qp by (metis hb-realtime not-le)
        ultimately have B \cdot \theta \parallel eg \ C \cdot \theta
           using concur-def by simp
      }
      ultimately show ?thesis
        by simp
    qed
    with qp show ?thesis
      by auto
 qed
theorem discretization:
 assumes 2 < card \ nodes
 shows \exists t. \ quasiperiodic \ t \land \neg (\exists f. \ discretization \ f \ t)
 proof -
    have (\exists t. \ quasiperiodic \ t \land \neg (\exists f. \ discretization \ f \ t))
            \longleftrightarrow (\exists t \ x \ y \ z. \ quasiperiodic \ t \land (x \rightarrow t \ y) \land (x \parallel t \ z) \land (y \parallel t \ z))
    by (metis concur-discretization)
    with \langle 2 < card \ nodes \rangle show ?thesis
      by (metis discretization-eg)
 qed
```

5 Quasi-synchronous Abstraction

In this section we link the quasi-synchronous abstraction of Caspi with quasi-periodic system of two nodes.

5.1 Soundness

```
 \begin{array}{l} \textbf{lemma} \ not\mbox{-}quasi-synchrony\mbox{-}sound\mbox{-}case1\colon\\ \textbf{assumes} \ qp\mbox{:}quasiperiodic\ t\\ \textbf{and} \ A\neq B \end{array}
```

```
and T_{min} \geq 2 * \tau_{max}
  and n > \theta
  and (\neg A \cdot i \rightarrow t B \cdot i)
  and (A \cdot (i+n) \rightarrow t B \cdot (j+1))
  shows n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
  proof –
    from \langle T_{min} \geq 2 * \tau_{max} \rangle taumaxpos' tauminpos have T_{min} + \tau_{min} > \tau_{max}
      by simp
    with qp have mi: \forall C p q. p < q \longrightarrow arrival (t C \cdot p) < arrival (t C \cdot q)
      by (rule message-inversion)
    from qp obtain transmin: \tau_{min} \leq trans \ (t \ A \cdot (i+n))
    and transmax: trans (t A \cdot i) \leq \tau_{max}
      using quasiperiodic-def by auto
    from qp \ \langle A \neq B \rangle \ \langle \neg A \cdot i \rightarrow t B \cdot j \rangle have arrival (t A \cdot i) > date \ (t B \cdot j)
      by (metis event.select-convs(1) not-hb-realtime)
    hence date (t B \cdot j) < date(t A \cdot i) + \tau_{max}
      using transmax by simp
    moreover from qp \langle A \neq B \rangle mi \langle A \cdot (i+n) \rightarrow t B \cdot (j+1) \rangle
    have date (t B \cdot (j+1)) \ge arrival (t A \cdot (i+n))
      by (metis hb-realtime)
    hence date (t B \cdot (j+1)) \ge date (t A \cdot (i+n)) + \tau_{min}
      using transmin by simp
    moreover from qp have date(t B \cdot (j+1)) - date(t B \cdot j) \leq T_{max}
      by (metis Suc-eq-plus1 qp-suc)
    hence date (t B \cdot (j+1)) \leq date (t B \cdot j) + T_{max}
      by simp
    moreover have n * T_{min} \leq date (t A \cdot (i+n)) - date (t A \cdot i)
      using qp \langle n > 0 \rangle by (simp \ add: \ qp\text{-}cone\text{-}lower)
    ultimately show n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
      by simp
  \mathbf{qed}
lemma not-quasi-synchrony-sound-case2:
  assumes qp: quasiperiodic t
  and A \neq B
  and T_{min} \geq 2 * \tau_{max}
  and n > \theta
  and (\neg A \cdot i \rightarrow t B \cdot j)
  and (\neg B \cdot (j+1) \rightarrow t A \cdot (i+n))
  shows n * T_{min} < T_{max} + 2*\tau_{max}
  proof -
    from \langle T_{min} \geq 2 * \tau_{max} \rangle tauminpos taumaxpos' have mi: T_{min} + \tau_{min} > \tau_{max}
      by simp
    from qp obtain transmaxb: trans (t B \cdot (j+1)) \le \tau_{max}
    and transmaxa: trans (t A \cdot i) \leq \tau_{max}
      using quasiperiodic-def by auto
    from qp \ \langle A \neq B \rangle \ \langle \neg A \cdot i \rightarrow t \ B \cdot j \rangle have arrival \ (t \ A \cdot i) > date \ (t \ B \cdot j)
      by (metis\ event.select-convs(1)\ not-hb-realtime)
    hence date (t B \cdot j) < date(t A \cdot i) + \tau_{max}
      using transmaxa by simp
    moreover from qp \langle A \neq B \rangle \langle \neg B \cdot (j+1) \rightarrow t A \cdot (i+n) \rangle
    have date (t \ A \cdot (i+n)) < arrival \ (t \ B \cdot (j+1))
```

```
by (metis event.select-convs(1) not-hb-realtime)
    hence date (t \ A \cdot (i+n)) < date \ (t \ B \cdot (j+1)) + \tau_{max}
      using transmaxb by simp
    moreover from qp have date (t B \cdot (j+1)) - date (t B \cdot j) \leq T_{max}
      by (metis Suc-eq-plus1 qp-suc)
    hence date (t B \cdot (j+1)) \leq date (t B \cdot j) + T_{max}
      by simp
    moreover have n * T_{min} \leq date (t A \cdot (i+n)) - date (t A \cdot i)
      using qp \langle n > 0 \rangle by (simp \ add: qp\text{-}cone\text{-}lower)
    ultimately show n * T_{min} < T_{max} + 2 * \tau_{max}
      by simp
 qed
lemma quasi-synchrony-sound:
 assumes discretization f t
 and qp: quasiperiodic t
 and A \neq B
 and T_{min} \geq 2 * \tau_{max}
 and n > \theta
 and n * T_{min} \geq T_{max} + 2 * \tau_{max}
 shows \neg (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
 proof
    assume (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
    hence f B \cdot j \leq f A \cdot i
    and f A \cdot (i+n) \le f B \cdot (j+1)
      by simp-all
    moreover from \langle n * T_{min} \geq T_{max} + 2 * \tau_{max} \rangle taumaxpos' tauminpos'
    have n * T_{min} + \tau_{min} \ge T_{max} + \tau_{max}
      by simp
    ultimately show False
    proof (cases f A \cdot (i+n) = f B \cdot (j+1))
      assume f A \cdot (i+n) = f B \cdot (i+1)
      with assms(1) have \neg B \cdot (j+1) \rightarrow t A \cdot (i+n)
        using discretization-def by simp
      moreover from assms(1) \langle f B \cdot j \leq f A \cdot i \rangle have \neg A \cdot i \rightarrow t B \cdot j
        using discretization-def by simp
      ultimately have n * T_{min} < T_{max} + 2*\tau_{max}
        using assms(2-5) by (simp \ add: not\text{-}quasi\text{-}synchrony\text{-}sound\text{-}case2)
      thus False
        using \langle n * T_{min} \geq T_{max} + 2 * \tau_{max} \rangle by simp
      assume \neg f A \cdot (i+n) = f B \cdot (j+1)
      with \langle f A \cdot (i+n) \leq f B \cdot (j+1) \rangle have f A \cdot (i+n) < f B \cdot (j+1)
        by simp
      with assms(1) have A \cdot (i+n) \rightarrow t B \cdot (j+1)
        using discretization-def by simp
      moreover from assms(1) \ \langle f B \cdot j \leq f A \cdot i \rangle have \neg A \cdot i \rightarrow t B \cdot j
        using discretization-def by simp
      ultimately have n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
        using assms(2-5) by (simp \ add: not\text{-}quasi\text{-}synchrony\text{-}sound\text{-}case1)
      thus False
        using \langle n * T_{min} + \tau_{min} \geq T_{max} + \tau_{max} \rangle by simp
```

```
\begin{array}{c} \operatorname{qed} \\ \operatorname{qed} \end{array}
```

5.2 Weakest condition

```
lemma quasi-synchrony-eg:
  assumes A \neq B
  and T_{min} \geq 2 * \tau_{max}
  and n > \theta
  and \neg (\exists t \ i \ j. \ quasiperiodic \ t
          \wedge (\neg A \cdot i \to t B \cdot j) \wedge (\neg B \cdot (j+1) \to t A \cdot (i+n)))
  shows n * T_{min} \ge T_{max} + 2 * \tau_{max}
  proof (rule ccontr)
    assume \neg n * T_{min} \ge T_{max} + 2 * \tau_{max}
    hence \exists t \ i \ j. quasiperiodic t
            \land \quad (\neg \ A \cdot i \ \rightarrow t \ B \cdot j) \ \land \ (\neg \ B \cdot (j+1) \ \rightarrow t \ A \cdot (i+n))
    proof -
      \textbf{from} \ \langle T_{min} \geq \textit{2} * \tau_{max} \rangle \ \ \textit{tauminpos taumaxpos have mit:} T_{min} + \tau_{min} > \tau_{max}
      from \langle \neg \ n * \ T_{min} \geq T_{max} + 2 {*} \tau_{max} \rangleobtain \varepsilon
      where \varepsilon/2 > 0
      and \varepsilon = T_{max} + 2 * \tau_{max} - n * T_{min}
        by simp
      \mathbf{def}\ eg == \lambda e :: event.
                  if node e = A \wedge act \ e = 0 \ then \ (| date = \varepsilon/2, trans = \tau_{max} |)
             else if node e = B then (date = \tau_{max} + act \ e * T_{max}, trans = \tau_{max})
             else (| date = \varepsilon/2 + act e * T_{min}, trans = \tau_{max} )
      have \forall e. trans (eg e) = \tau_{max}
         using eq-def by simp
      hence \forall e. \tau_{min} \leq trans (eg \ e) \wedge trans (eg \ e) \leq \tau_{max}
         using eg-def taubounds by simp
      moreover have \forall e. date (eg (step e)) - date (eg e) = T_{min}
               \vee date (eg (step e)) - date (eg e) = T_{max}
         using eg\text{-}def \langle A \neq B \rangle by simp
      hence \forall e. T_{min} \leq date (eg (step e)) - date (eg e)
                \land date (eg (step e)) - date (eg e) \leq T_{max}
         using Thounds by auto
      moreover have \forall e. 0 \leq date(eg \ e)
         using eg-def Tmaxpos Tminpos taumaxpos' \langle \varepsilon/2 > 0 \rangle by simp
      ultimately have qp:quasiperiodic eg
         using quasiperiodic-def by simp
      have a\theta:arrival (eg A \cdot \theta) = \tau_{max} + \varepsilon/2
      and b\theta: date (eg B \cdot \theta) = \tau_{max}
      and b1:arrival (eg B \cdot 1) = T_{max} + 2 * \tau_{max}
      and an:date (eg A \cdot n) = \varepsilon/2 + n * T_{min}
         using eg-def \langle A \neq B \rangle by simp-all
      from qp mit have mi: \forall C p q. p < q \longrightarrow arrival (eg C \cdot p) < arrival (eg C \cdot q)
         by (rule message-inversion)
```

```
\mathbf{from} \ \langle \varepsilon = T_{max} + 2*\tau_{max} - n*T_{min} \rangle \ \langle \varepsilon/2 > 0 \rangle \ \mathbf{have} \ \varepsilon/2 + n*T_{min} < T_{max} + 2*\tau_{max} + 2*\tau_{max
               with an b1 have date (eg A \cdot n) < arrival (eg B \cdot 1)
                   by simp
              with qp \ mi \ \langle A \neq B \rangle have \neg B \cdot 1 \rightarrow eg \ A \cdot n
                   by (metis hb-realtime not-le)
              moreover from a0 b0 \langle \varepsilon/2 > 0 \rangle taumaxpos have date (eg B·0) < arrival (eg A·0)
                  by auto
               with qp \ mi \ \langle A \neq B \rangle have \neg A \cdot \theta \rightarrow eg \ B \cdot \theta
                  by (metis hb-realtime not-le)
               ultimately have (\neg A \cdot \theta \rightarrow eg B \cdot \theta) \land (\neg B \cdot \theta \rightarrow eg A \cdot \eta)
                   by simp
              thus ?thesis
                   using qp by fastforce
          qed
          with assms(4) show False
              by auto
     qed
lemma quasi-synchrony-weakest:
     assumes card \ nodes = 2
     and A \neq B
     and T_{min} \geq 2 * \tau_{max}
     and n > 0
     and \neg (\exists t i j f.
                        quasiperiodic\ t\ \land
                        discretization f t \land
                        (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)))
     shows n * T_{min} \ge T_{max} + 2*\tau_{max}
     proof (rule ccontr)
          assume \neg n * T_{min} \ge T_{max} + 2 * \tau_{max}
          with assms(2-4)
          have \exists t i j f.
                             quasiperiodic\ t\ \land
                             (\neg A \cdot i \rightarrow t B \cdot j) \land (\neg B \cdot (j+1) \rightarrow t A \cdot (i+n))
              by (metis quasi-synchrony-eg)
          then obtain t i j
          where qp:quasiperiodic t
          and (\neg A \cdot i \rightarrow t B \cdot j)
          and (\neg B \cdot (j+1) \rightarrow t A \cdot (i+n))
              by auto
          moreover from assms(1) assms(3) qp obtain f
          where f-discretization f t
              by (metis discretization-2)
          moreover have (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
          proof -
              from f-discr \langle (\neg A \cdot i \rightarrow t B \cdot j) \rangle have f B \cdot j \leq f A \cdot i
                   using discretization-def by simp
              moreover from f-discr \langle (\neg B \cdot (j+1) \rightarrow t A \cdot (i+n)) \rangle
              have f A \cdot (i+n) \le f B \cdot (j+1)
                   using discretization-def by simp
              ultimately show (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
```

```
by simp
    ultimately have \exists t \ i \ j \ f. quasiperiodic t
                   \land \ discretization \ f \ t
                   \land (f B \cdot j \leq f A \cdot i \land f A \cdot (i+n) \leq f B \cdot (j+1))
      by auto
    thus False
      using assms(5) by simp
theorem quasi-synchrony:
  assumes card \ nodes = 2
  and A \neq B
  and T_{min} \geq 2 * \tau_{max}
  and n > \theta
  shows \neg (\exists t i j f.
             quasiperiodic\ t\ \land
             discretization f t \wedge
             (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)))
       \longleftrightarrow n * T_{min} \ge T_{max} + 2 * \tau_{max}
  proof
    assume \neg (\exists t i j f.
                quasiperiodic\ t\ \land
                discretization f t \wedge
                (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)))
    with assms show n * T_{min} \ge T_{max} + 2*\tau_{max}
      by (rule quasi-synchrony-weakest)
  next
    assume n * T_{min} \ge T_{max} + 2*\tau_{max}
    show \neg (\exists t i j f.
              quasiperiodic\ t\ \land
              discretization f t \wedge
              (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)))
    proof
      assume (\exists t i j f.
              quasiperiodic\ t\ \land
              discretization f t \land
              (f B \cdot j \le f A \cdot i \land f A \cdot (i + n) \le f B \cdot (j + 1)))
      then obtain t i j f
      where qp:quasiperiodic t
      and discretization f t
      and (f B \cdot j \le f A \cdot i \land f A \cdot (i + n) \le f B \cdot (j + 1))
        by auto
      from (discretization \ f \ t) \ qp \ assms(2-4) \ (n * T_{min} \ge T_{max} + 2*\tau_{max})
      have \neg (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
        by (rule quasi-synchrony-sound)
      with \langle (f B \cdot j \leq f A \cdot i \land f A \cdot (i + n) \leq f B \cdot (j + 1)) \rangle show False
        by simp
    \mathbf{qed}
  qed
```

6 Quasi-Synchrony on Relaxed Communication

In this section we link the quasi-synchronous abstraction with quasi-periodic systems of, possibly, more than two nodes, assuming that there is no forbidden topologies in the communication graph.

6.1 Relaxed communication

We define here the notion of relaxed unitary discretization that only constrains events occurring on communicating nodes.

Now the happened-before relation only involves events that occur on communicating nodes.

```
definition chb (-\hookrightarrow--[100, 100] 100)
  where x \hookrightarrow t \ y == com \ (node \ x) \ (node \ y) \land x \to t \ y
definition relax-discr ::
  (event \Rightarrow nat) \Rightarrow (event \Rightarrow tevent) \Rightarrow bool
  where relax-discr f t = (\forall x y. f x < f y \longleftrightarrow x \hookrightarrow t y)
lemma f-relax-nhb:
  assumes relax-discr f t
  and com\ A\ B
  and f B \cdot j \leq f A \cdot i
  shows \neg A \cdot i \hookrightarrow t B \cdot j
  proof
     assume A \cdot i \hookrightarrow t B \cdot j
     with \langle com \ A \ B \rangle \langle relax\text{-}discr \ f \ t \rangle have f \ A \cdot i < f \ B \cdot j
       using relax-discr-def chb-def by auto
     thus False
       using \langle f B \cdot j \leq f A \cdot i \rangle by simp
  \mathbf{qed}
lemma nhb-f-reflax:
  assumes relax-discr f t
  and com A B
  and \neg A \cdot i \hookrightarrow t B \cdot j
  shows f B \cdot j \leq f A \cdot i
  proof (rule ccontr)
     assume \neg f B \cdot j \leq f A \cdot i
     hence f B \cdot j > f A \cdot i
       by simp
     with \langle com \ A \ B \rangle \ assms(1) have A \cdot i \hookrightarrow t \ B \cdot i
       using relax-discr-def chb-def by simp
     thus False
       using \langle \neg A \cdot i \hookrightarrow t B \cdot j \rangle by simp
  qed
definition tight-discr ::
  (event \Rightarrow nat) \Rightarrow (event \Rightarrow tevent) \Rightarrow bool
  where tight-discr f t =
```

This is the most concise discretization. This property comes from the proof of the theorem on forbidden topologies (admitted here). If this discretization is not possible there exists an event $C \cdot k$ such that

```
f B \cdot j < f C \cdot k \le f A \cdot i, that is, B \cdot j \to 1 C \cdot k \to 0 A \cdot i, or f B \cdot j \le f C \cdot k < f A \cdot i, that is, B \cdot j \to 0 C \cdot k \to 1 A \cdot i.
```

In both cases we get communication pattern C_0 . In the following we assume that assumptions of the theorem on forbidden topologies holds. Hence for all quasi-periodic trace, there exists a tight discretization.

```
lemma f-tight:
assumes tight-discr f t
and com A B
and A \neq B
and f B \cdot j \leq f A \cdot i
and f A \cdot i < f B \cdot (j+1)
shows f A \cdot i = f B \cdot j
using assms using tight-discr-def relax-discr-def by simp
```

6.2 Soundness

```
lemma not-qs-relax-sound-case1:
  assumes qp:quasiperiodic t
  and \forall C p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
  and A \neq B
  and com\ A\ B
  and n > 0
  and (\neg A \cdot i \hookrightarrow t B \cdot j)
  and (A \cdot (i+n) \hookrightarrow t B \cdot (j+1))
  shows n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
  proof -
    from qp obtain transmin: \tau_{min} \leq trans \ (t \ A \cdot (i+n))
    and transmax: trans (t A \cdot i) \leq \tau_{max}
      using quasiperiodic-def by auto
    from qp \ \langle A \neq B \rangle \ \langle com \ A \ B \rangle \ \langle \neg \ A \cdot i \hookrightarrow t \ B \cdot j \rangle have arrival \ (t \ A \cdot i) > date \ (t \ B \cdot j)
      using chb-def not-hb-realtime by simp
    hence date (t B \cdot j) < date (t A \cdot i) + \tau_{max}
      using transmax by simp
    moreover from qp \ \langle A \neq B \rangle \ \langle com \ A \ B \rangle \ assms(2) \ \langle A \cdot (i+n) \hookrightarrow t \ B \cdot (j+1) \rangle
    have date (t B \cdot (j+1)) \ge arrival (t A \cdot (i+n))
       using chb-def hb-realtime by simp
    hence date (t B \cdot (j+1)) \ge date (t A \cdot (i+n)) + \tau_{min}
      using transmin by simp
    moreover from qp have date (t B \cdot (j+1)) - date (t B \cdot j) \leq T_{max}
      using Suc-eq-plus1 qp-suc by simp
    hence date (t B \cdot (j+1)) \leq date (t B \cdot j) + T_{max}
      by simp
```

```
moreover have n * T_{min} \leq date (t A \cdot (i+n)) - date (t A \cdot i)
      using qp \langle n > 0 \rangle by (simp \ add: qp\text{-}cone\text{-}lower)
    ultimately show n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
      by simp
  qed
lemma not-qs-relax-sound-case2:
  assumes qp: quasiperiodic t
  and \forall t \ C \ p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
  and A \neq B
  and com\ A\ B
  and n > \theta
  and (\neg A \cdot i \hookrightarrow t B \cdot i)
  and (A \cdot (i+n) \hookrightarrow t B \cdot (j+2))
  shows n * T_{min} + \tau_{min} < 2 * T_{max} + \tau_{max}
    from qp obtain transmin: \tau_{min} \leq trans \ (t \ A \cdot (i+n))
    and transmax: trans (t A \cdot i) \leq \tau_{max}
      using quasiperiodic-def by auto
    from qp \ \langle A \neq B \rangle \ \langle com \ A \ B \rangle \ \langle \neg \ A \cdot i \hookrightarrow t \ B \cdot j \rangle have arrival \ (t \ A \cdot i) > date \ (t \ B \cdot j)
      using chb-def not-hb-realtime by simp
    hence date (t B \cdot j) < date(t A \cdot i) + \tau_{max}
      using transmax by simp
    moreover from qp \ \langle A \neq B \rangle \ \langle com \ A \ B \rangle \ assms(2) \ \langle A \cdot (i+n) \hookrightarrow t \ B \cdot (j+2) \rangle
    have date (t B \cdot (j+2)) \ge arrival (t A \cdot (i+n))
      using chb-def hb-realtime by simp
    hence date (t B \cdot (j+2)) \ge date (t A \cdot (i+n)) + \tau_{min}
      using transmin by simp
    moreover from qp have date (t B \cdot (j+2)) - date (t B \cdot j) \le (j+2-j) * T_{max}
      by (metis Suc-eq-plus1 add.assoc add.commute add-diff-cancel-right' qp-cone-upper)
    hence date (t B \cdot (j+2)) - date (t B \cdot j) \leq 2 * T_{max}
      by simp
    hence date (t B \cdot (j+2)) \le 2 * T_{max} + date (t B \cdot j)
      by simp
    moreover have n * T_{min} \leq date (t A \cdot (i+n)) - date (t A \cdot i)
      using qp \langle n > 0 \rangle by (simp add: qp-cone-lower)
    ultimately show n * T_{min} + \tau_{min} < 2 * T_{max} + \tau_{max}
      by simp
  qed
lemma qs-relax-sound:
  assumes qp:quasiperiodic t
  and \forall t \ C \ p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
  and relax-discr f t
  and com\ A\ B
  and A \neq B
  and n > \theta
  and n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
  shows \neg (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
  proof
    assume (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
```

```
hence f B \cdot j \leq f A \cdot i
  and f A \cdot (i+n) \leq f B \cdot (j+1)
    by simp-all
  moreover from \langle n * T_{min} + \tau_{min} \geq 2 * T_{max} + \tau_{max} \rangle Tmaxpos'
  have n * T_{min} + \tau_{min} \ge T_{max} + \tau_{max}
    by simp
  ultimately show False
  proof (cases f A \cdot (i+n) = f B \cdot (j+1))
    assume f A \cdot (i+n) = f B \cdot (j+1)
    have B \cdot (j+1) \to t B \cdot (j+2)
       by (metis Suc-eq-plus1 add.commute add.left-commute hb1.simps
       lessI one-add-one tranclp.r-into-trancl)
     with \langle relax\text{-}discr\ f\ t \rangle have f\ B \cdot (j+1) < f\ B \cdot (j+2)
       using relax-discr-def com-refl chb-def by simp
     with \langle f A \cdot (i+n) = f B \cdot (j+1) \rangle have f A \cdot (i+n) < f B \cdot (j+2)
       by simp
     with \langle relax\text{-}discr\ f\ t \rangle \langle com\ A\ B \rangle have A \cdot (i+n) \hookrightarrow t\ B \cdot (j+2)
       using relax-discr-def chb-def by simp
    moreover from \langle com\ A\ B \rangle \langle relax-discr\ f\ t \rangle \langle f\ B \cdot j \leq f\ A \cdot i \rangle have \neg\ A \cdot i \hookrightarrow t\ B \cdot j
       by (simp add: f-relax-nhb)
    ultimately have n * T_{min} + \tau_{min} < 2 * T_{max} + \tau_{max}
       using assms by (simp add: not-qs-relax-sound-case2)
    thus False
       using \langle n * T_{min} + \tau_{min} \geq 2 * T_{max} + \tau_{max} \rangle by simp
    assume \neg f A \cdot (i+n) = f B \cdot (j+1)
    with \langle f A \cdot (i+n) \leq f B \cdot (j+1) \rangle have f A \cdot (i+n) < f B \cdot (j+1)
       by simp
     with \langle relax\text{-}discr\ f\ t \rangle \langle com\ A\ B \rangle have A \cdot (i+n) \hookrightarrow t\ B \cdot (j+1)
       using relax-discr-def chb-def by simp
    \mathbf{moreover} \ \mathbf{from} \ \langle \mathit{com} \ A \ B \rangle \ \langle \mathit{relax-discr} \ f \ t \rangle \ \langle f \ B \boldsymbol{\cdot} j \leq f \ A \boldsymbol{\cdot} i \rangle \ \mathbf{have} \ \neg \ A \boldsymbol{\cdot} i \hookrightarrow t \ B \boldsymbol{\cdot} j
       by (simp add: f-relax-nhb)
    ultimately have n * T_{min} + \tau_{min} < T_{max} + \tau_{max}
       using assms by (simp add: not-gs-relax-sound-case1)
    thus False
       using \langle n * T_{min} + \tau_{min} \geq T_{max} + \tau_{max} \rangle by simp
  qed
qed
```

6.3 Weakest condition

```
lemma qs\text{-}relax\text{-}eg:

assumes \forall \ t \ C \ p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
and A \neq B
and com \ A \ B
and n > 0
and \neg \ (\exists \ t \ i \ j. \ quasiperiodic \ t
 \land \ (\neg \ A \cdot i \hookrightarrow t \ B \cdot j) \land (\neg \ A \cdot (i+n) \hookrightarrow t \ B \cdot (j+1)) \land (A \cdot (i+n) \hookrightarrow t \ B \cdot (j+2)))
shows n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
proof (rule \ ccontr)
assume \neg \ n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
hence \exists \ t \ i \ j. \ quasiperiodic \ t
 \land \ (\neg \ A \cdot i \hookrightarrow t \ B \cdot j) \land (\neg \ A \cdot (i+n) \hookrightarrow t \ B \cdot (j+1)) \land (A \cdot (i+n) \hookrightarrow t \ B \cdot (j+2))
```

```
proof -
  from \langle \neg n * T_{min} + \tau_{min} \geq 2 * T_{max} + \tau_{max} \rangle obtain \varepsilon
    where \varepsilon > \theta
    and \varepsilon = 2*T_{max} + \tau_{max} - (n*T_{min} + \tau_{min})
      by simp
  \mathbf{def}\ eg == \lambda e :: event.
              if node e = A \wedge act \ e = 0 \ then \ (date = \varepsilon, trans = \tau_{max})
         else if node e = B then (| date = \tau_{max} + act \ e * T_{max}, trans = \tau_{max})
         else (| date = \varepsilon + act \ e * T_{min}, trans = \tau_{min} )
  have \forall e. trans (eg\ e) = \tau_{min} \lor trans\ (eg\ e) = \tau_{max}
    using eg-def by simp
  hence \forall e. \tau_{min} \leq trans (eg \ e) \wedge trans (eg \ e) \leq \tau_{max}
    using eg-def taubounds by simp
  moreover have \forall e. date (eg (step e)) - date (eg e) = T_{min}
           \vee date (eg (step e)) - date (eg e) = T_{max}
    using eg-def \langle A \neq B \rangle by simp
  hence \forall e. T_{min} \leq date (eg (step e)) - date (eg e)
            \land date (eg (step e)) - date (eg e) \leq T_{max}
    using Thounds by auto
  moreover have \forall e. 0 < date(eq e)
    using eq-def Tmaxpos Tminpos taumaxpos' \langle \varepsilon \rangle \langle \theta \rangle by simp
  ultimately have qp:quasiperiodic eq
    using quasiperiodic-def by simp
  have b\theta: date (eg B \cdot \theta) = \tau_{max}
  and b1:date\ (eg\ B\cdot 1)=T_{max}+\tau_{max}
  and b2:date\ (eg\ B\cdot 2)=2*T_{max}+\tau_{max}
  and a\theta:arrival (eg A \cdot \theta) = \tau_{max} + \varepsilon
  and an:arrival (eg A \cdot n) = \varepsilon + n * T_{min} + \tau_{min}
    using eg\text{-}def\ \langle A \neq B \rangle\ \langle n > \theta \rangle\ \mathbf{by}\ simp\text{-}all
  from \langle \varepsilon = 2 * T_{max} + \tau_{max} - (n * T_{min} + \tau_{min}) \rangle
  have h:\varepsilon + n * T_{min} + \tau_{min} = 2*T_{max} + \tau_{max}
    by simp
  from h an b2 have arrival (eg A \cdot n) \leq date (eg B \cdot 2)
    by simp
  hence A \cdot n \hookrightarrow eg B \cdot 2
    using chb-def \langle com \ A \ B \rangle \ hb-arrival by auto
  moreover from h an b1 Tmaxpos have arrival (eg A \cdot n) > date (eg B \cdot 1)
    \mathbf{by} \ simp
  with qp \ assms(1) \ \langle A \neq B \rangle \ \langle com \ A \ B \rangle \ have \neg A \cdot n \hookrightarrow eg \ B \cdot 1
    using chb-def by (metis hb-realtime not-le)
  moreover from a0 b0 \langle \varepsilon > 0 \rangle taumaxpos have date (eq B \cdot \theta) < arrival (eq A \cdot \theta)
    by simp
  with qp \ assms(1) \ \langle A \neq B \rangle have \neg A \cdot \theta \hookrightarrow eq B \cdot \theta
    using hb-realtime by force
  ultimately have (\neg A \cdot \theta \hookrightarrow eg B \cdot \theta) \land (\neg A \cdot n \hookrightarrow eg B \cdot \theta) \land (A \cdot n \hookrightarrow eg B \cdot \theta)
    by simp
  thus ?thesis
    using qp by (metis monoid-add-class.add.left-neutral)
```

```
qed
    with assms(5) show False
       by auto
  qed
lemma qs-relax-weakest:
  assumes \forall t. quasiperiodic t \longrightarrow (\exists f. tight-discr f t)
  and \forall t \ C \ p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
  and com A B
  and A \neq B
  and n > 0
  and \neg (\exists t \ i \ j \ f.
           quasiperiodic\ t\ \land
           relax-discr f t \wedge
           (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)))
  shows n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
  proof (rule ccontr)
    assume \neg n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
    with assms(2-5)
    have \exists t i j.
              quasiperiodic\ t\ \land
              (\neg A \cdot i \hookrightarrow t B \cdot j) \land (\neg A \cdot (i+n) \hookrightarrow t B \cdot (j+1)) \land (A \cdot (i+n) \hookrightarrow t B \cdot (j+2))
       by (metis qs-relax-eq)
     then obtain t i j
     where qp:quasiperiodic t
    and (\neg A \cdot i \hookrightarrow t B \cdot j)
    and (\neg A \cdot (i+n) \hookrightarrow t B \cdot (j+1))
    and (A \cdot (i+n) \hookrightarrow t B \cdot (j+2))
       by auto
    from qp \ assms(1) obtain f
     where tight-discr f t
       by auto
    hence f-discr:relax-discr f t
       using tight-discr-def by simp
    have f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1)
     proof -
       from f-discr \langle (A \cdot (i+n) \hookrightarrow t \ B \cdot (j+2)) \rangle \langle com \ A \ B \rangle have f \ A \cdot (i+n) < f \ B \cdot (j+2)
         using relax-discr-def chb-def by auto
       moreover from f-discr \langle com \ A \ B \rangle \langle \neg (A \cdot (i+n) \hookrightarrow t \ B \cdot (j+1)) \rangle
       have f A \cdot (i+n) \ge f B \cdot (j+1)
         using nhb-f-reflax by simp
       moreover have B \cdot (j+1) \hookrightarrow t B \cdot (j+2)
         using chb-def hb-subsequent com-reft by (simp add:tranclp.r-into-trancl)
       with f-discr have f B \cdot (j+1) < f B \cdot (j+2)
         using relax-discr-def chb-def com-refl by auto
       ultimately have f A \cdot (i+n) = f B \cdot (j+1)
         using f-tight \langle tight-discr f t \rangle \langle A \neq B \rangle \langle com A B \rangle by simp
       moreover from f-discr \langle com\ A\ B \rangle \langle (\neg\ A \cdot i \hookrightarrow t\ B \cdot j) \rangle have f\ B \cdot j \leq f\ A \cdot i
         by (rule nhb-f-reflax)
       ultimately show (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
         by simp
    qed
```

```
with qp \ f-discr have \exists \ t \ i \ j \ f. quasiperiodic \ t
                    \land relax-discr f t
                    \land (f B \cdot j \leq f A \cdot i \land f A \cdot (i+n) \leq f B \cdot (j+1))
      by auto
    thus False
      using assms(6) by auto
 qed
theorem qs-relax:
 assumes \forall t. quasiperiodic t \longrightarrow (\exists f. tight-discr f t)
 and \forall t \ C \ p \ q. \ p < q \longrightarrow arrival \ (t \ C \cdot p) < arrival \ (t \ C \cdot q)
 and com\ A\ B
 and A \neq B
 and n > \theta
 shows (\neg (\exists t \ i \ j \ f. \ quasiperiodic \ t \land )
            relax-discr f t \wedge
            (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))))
        \longleftrightarrow n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
 proof
    assume \neg (\exists t \ i \ j \ f. quasiperiodic t
                \land relax-discr f t
                \wedge (f B \cdot j \le f A \cdot i \wedge f A \cdot (i+n) \le f B \cdot (j+1)))
    with assms show n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
      by (rule qs-relax-weakest)
 next
    assume n * T_{min} + \tau_{min} \ge 2 * T_{max} + \tau_{max}
    show \neg (\exists t \ i \ j \ f. quasiperiodic t
              \wedge relax-discr f t
              \wedge (f B \cdot j \le f A \cdot i \wedge f A \cdot (i+n) \le f B \cdot (j+1)))
    proof
    assume (\exists t \ i \ j \ f. \ quasiperiodic \ t
                   \wedge relax-discr f t
                   \land (f B \cdot j \leq f A \cdot i \land f A \cdot (i+n) \leq f B \cdot (j+1)))
    then obtain t i j f
    where qp:quasiperiodic t
    and relax-discr f t
    and (f B \cdot j \le f A \cdot i \land f A \cdot (i + n) \le f B \cdot (j + 1))
      by auto
    with \langle relax-discr f t \rangle \ qp \ assms(2-5) \ \langle n*T_{min} + \tau_{min} \geq 2*T_{max} + \tau_{max} \rangle
    have \neg (f B \cdot j \le f A \cdot i \land f A \cdot (i+n) \le f B \cdot (j+1))
      using qs-relax-sound by auto
    with \langle (f B \cdot j \leq f A \cdot i \land f A \cdot (i + n) \leq f B \cdot (j + 1)) \rangle show False
      by simp
    qed
 qed
```

end