CS 435: Introduction to Cryptography

2020 Spring

Final Exam

Professor Somesh Jha

May 8, 2020

- 1. (20 points) Prove that RSA is insecure against a chosen ciphertext attack. In particular, given a ciphertext y, describe how to chose a ciphertext $y' \neq y$, such that knowledge of the plaintext $x' = D_k(y')$ allows $x = D_k(y)$ to be computed.
- 2. (10 points) Let N be a positive integer, and m and m_1 be two positive integers in Z_N^{\star} . Show how to obtain a $m_2 \in Z_N^{\star}$ such that $m \equiv m_1 \cdot m_2 \pmod{N}$.
- 3. (40 points) Complete the following parts:
 - i. Describe the RSA-signature scheme.
 - ii. Describe how CRT can be used to speed up the signing step in the RSA-signature scheme.
 - iii. Describe two attacks on the scheme given above (i.e., no-message attack and multiplicative attack).
 - iv. Briefly describe how "Hash-then-Sign" paradigm addresses the attacks shown previously.
- 4. (10 points) Describe in detail the man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a different key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong. Briefly describe a fix for this attack.
- 5. (10 points) In class we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.
- 6. (10 points) Consider the system of equations given below:

$$x \equiv 2 \pmod{3}$$

$$3x \equiv 3 \pmod{5}$$

$$2x \equiv 2 \pmod{7}$$

Transform the above system of equations so that CRT theorem applies, and then solve it.