Методы оптимизации. ДЗ на октябрь.

ПРОХОРОВ ЮРИЙ, 776

1 Conjugate (dual) sets

Опр. Пусть $S \subset \mathbb{R}^n$. Сопряженным или двойственным множеством ко множеству S называется

$$S^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge -1 \ \forall x \in S \}$$

Опр. Пусть $S \subset \mathbb{R}^n$ — конус. Сопряженным конусом называется

$$K^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \ge 0 \ \forall x \in K \}$$

Свойства:

- S^* всегда выпукло, замкнуто и содержит 0.
- $S^* = \bigcap_{x \in S} \{y \mid \langle x, y \rangle \ge -1\}$ пересечение полупространств.
- $S^* = (\overline{S})^*, \quad S^* = (\text{conv}S)^*, \quad S^* = (S \cup \{0\})^*$
- $S^{**} = \overline{\operatorname{conv}(S \cup \{0\})}$
- $\bullet \left(\bigcup_{\alpha} S_{\alpha}\right)^* = \bigcap_{\alpha} S_{\alpha}^*$
- Для конуса K и произвольного множества S: $(S+K)^* = S^* \cup K^*$
- ullet Для конусов $K_1, K_2,$ имеющих внутреннюю точку: $(K_1 \cap K_2)^* = K_1 + K_2$

Теорема. Сопряженным ко множеству

$$S = \operatorname{conv}(x_1, \dots, x_k) + \operatorname{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник)

$$S^* = \left\{ p \mid \langle p, x_i \rangle \ge -1, \ i = \overline{1, k}, \ \langle p, x_j \rangle \ge 0, \ j = \overline{k + 1, m} \right\}$$

Задача 1

Найти сопряженное множество к конусу $S = \text{cone}\{(-3,1),(2,3),(4,5)\}.$

Решение:

Согласно теореме выше, строим перпендикуляры к граням конуса, и тогда сопряженным конусом будет множество между этими перпендикулярами.

На рисунке 1 изображен конус S, а на рисунке 2 — сопряженный к нему конус S^* (см. ниже).

Рис. 1: Конус S

Рис. 2: Конус S (красный), сопряженный конус S^* (синий)

— Найти S^*, S^{**}, S^{***} для

$$S = \left\{ x \mid x_1 + x_2 \ge 0, \ 2x_1 + x_2 \ge -4, \ -2x_1 + x_2 \ge -4 \right\}$$

Решение:

Заметим, что

$$S = \operatorname{conv}\left\{(-4, 4), \left(\frac{4}{3}, -\frac{4}{3}\right)\right\} + \operatorname{cone}\left\{(-1, 2), (1, 2)\right\}$$

Рис. 3: Множество S

Тогда по теореме:

$$S^* = \{2y - x \ge 0\} \cap \{2y + x \ge 0\} \cap \left\{y \le x + \frac{3}{4}\right\} \cap \left\{y \ge x - \frac{1}{4}\right\}$$

Рис. 4: Множество S (красный), множество S^* (синий)

Множества S и S^* выпуклы, замкнуты и содержат 0, поэтому $S^{**}=S,\ S^{***}=S^*.$

Найти сопряженный конус к конусу симметричных положительно полуопределенных матриц \mathbb{S}^n_+ .

Решение:

Источник решения: Stephen Boyd, Convex Optimization, p. 52, example 2.24

В пространстве матриц скалярное произведение задается естественным образом:

$$\langle X, Y \rangle = \sum_{i} \sum_{j} x_{ij} y_{ij} = \operatorname{tr}(X^{T}Y)$$

Покажем, что \mathbb{S}^n_+ — самосопряженный конус, то есть $(\mathbb{S}^n_+)^* = \mathbb{S}^n_+$. Другими словами,

$$Y\succeq 0 \qquad \Longleftrightarrow \qquad \operatorname{tr}(X^TY) \geq 0 \ \, \forall X\succeq 0$$

Покажем два включения.

1. $(\mathbb{S}^n_+)^* \subset \mathbb{S}^n_+$

Пусть $Y \in (\mathbb{S}^n_+)^*$. Допустим, $Y \not\in \mathbb{S}^n_+$. Это означает, что

$$\exists q \in \mathbb{R}^n : \quad q^T Y q = \sum_{i,j=1}^n y_{ij} q_i q_j = \sum_{i,j=1}^n (q q^T)_{ij} y_{ij} = \langle q q^T, Y \rangle < 0 \tag{*}$$

Однако, как известно, матрица $qq^T \in \mathbb{S}^n_+$, значит, так как $Y \in (\mathbb{S}^n_+)^*$:

$$\langle Y, qq^T \rangle \ge 0$$
 — противоречие \Longrightarrow $y \in \mathbb{S}^n_+$

2. $(\mathbb{S}^n_+)^* \supset \mathbb{S}^n_+$

Пусть $X,Y \in \mathbb{S}^n_+$. Надо показать, что $\langle X,Y \rangle \geq 0$. Для любой симметричной матрицы существует ОНБ из собственных векторов, в котором она имеет диагональный вид:

$$X=V\Lambda V^T, ~~\Lambda=\mathrm{diag}(\lambda_1,\dots,\lambda_n)\succeq 0 ~~\Longrightarrow ~~ X=\sum_{i=1}^n \lambda_i v_i v_i^T, ~~v-$$
 столбцы V

Тогда скалярное произведение матриц можно записать в виде (с учетом симметричности матриц):

$$\langle X, Y \rangle = \operatorname{tr}\left(Y \sum_{i=1}^{n} \lambda_i v_i v_i^T\right) = \sum_{i=1}^{n} \lambda_i \operatorname{tr}(Y v_i v_i^T) = \sum_{i=1}^{n} \lambda_i v_i^T Y v_i \ge 0$$

Последнее равенство получается так же, как и цепочка равенств (*). Итак, $Y \in (\mathbb{S}^n_+)^*$.

Задача 4

Найти сопряженный конус для

$$K = \{(x, y, z) \mid y > 0, \ ye^{x/y} \le z\}$$

Решение:

Надо найти такие (a, b, c), что из

$$\left\{ \begin{array}{l} ye^{x/y} \le z \\ y > 0 \end{array} \right. \Longrightarrow ax + by + cz \ge 0$$

Обозначая $u=\frac{x}{y},\ v=\frac{z}{y},$ получаем условие:

$$v > e^u \implies au + b + cv > 0$$

Так как K^* — конус, то достаточно рассмотреть три случая: c = -1, c = 0, c = 1. Остальные случаи получаются умножением на положительную константу.

1. c = 1

Нужно найти такие константы a и b, чтобы область $\{v \geq e^u\}$ лежала внутри области $\{v \geq -au-b\}$

Это произойдет тогда и только тогда, когда синяя прямая на графике выше лежит ниже экспоненты. При a>0 это невозможно. При a=0 получается условие $b\geq 0$. При a<0 найдем условие на касание:

$$\begin{cases} e^u = -au - b \\ e^u = -a \end{cases} \implies b = a(1 - \ln(-a))$$

Итак при
$$c = 1$$
: $a < 0$: $b \ge a(1 - \ln(-a))$

 $a=0: b \ge 0$

a > 0: нет таких b

2. c = 0.

Нужно, чтобы $\{v \geq e^u\} \subset \{au+b \geq 0\}$. Это невозможно ни при каких a и b, так как au+b=0 — вертикальная прямая.

3. c < 0.

Аналогично, условие $\{v \geq e^u\} \subset \{v \leq au + b\}$ не выполнено ни при каких a и b, так как первое множество неограничено сверху при любых u.

Собирая все вместе, имеем

$$K^* = \left\{ \lambda(a,b,1) \; \middle| \; \lambda \geq 0, \; \begin{array}{l} \text{если} \; a=0, \; \text{то} \; b \geq 0 \\ \text{если} \; a<0, \; \text{то} \; b \geq a \big(1-\ln(-a)\big) \end{array} \right\}$$

Найти сопряженное множество для

$$S = \operatorname{conv} \big\{ (-4, -1), (-2, -1), (-2, 1) \big\} + \operatorname{cone} \big\{ (1, 0), (2, 1) \big\}$$

Решение:

Рис. 5: Множество S

По теореме выше, имеем:

$$S^* = \{y+4x \leq 1\} \cap \{y+2x \leq 1\} \cap \{y-2x \geq -1\} \cap \{x \geq 0\} \cap \{y+2x \geq 0\}$$

Рис. 6: Множество S^*

Доказать, что если определить сопряженное множество как

$$S^* = \{ y \mid \langle x, y \rangle \le 1 \ \forall x \in S \},\$$

то $B_1(0) = \{x \mid \langle x, x \rangle \leq 1\}$ — единственное самосопряженное множество.

Решение:

1. Покажем, что $B = B_1(0)$ — самосопряженное множество.

Пусть $y \in B$. Тогда для любого $x \in B$ по неравенству Коши-Буняковского:

$$\langle x, y \rangle \le |\langle x, y \rangle| \le ||x|| ||y|| \le 1 \cdot 1 = 1 \implies y \in B^*$$

Пусть $y\in B^*$. Тогда для любого $x\in B$ выполнено $\langle x,y\rangle\leq 1$. Если y=0, то $y\in B.$ При $y\neq 0$ возьмем $x=\frac{y}{\|y\|}\in B,$ и тогда

$$\langle x,y \rangle = \frac{\langle y,y \rangle}{\|y\|} = \|y\| \le 1 \qquad \Longrightarrow \qquad y \in B$$

2. Покажем, что если $S \subset S^*$, то $S \subset B_1(0)$.

Пусть $x \in S \subset S^*$. Тогда $\forall y \in S^* \ \langle x,y \rangle \leq 1$. При y=x имеем:

$$\langle x, y \rangle = ||x||^2 \le 1 \qquad \Longrightarrow \qquad x \in B_1(0)$$

3. Покажем, что если $S^* \subset S \subset B_1(0)$, то $B_1(0) \subset S$.

Имеем, что если $\langle x,y\rangle$ $\forall x\in S$, то $y\in S$. Покажем, что произвольный $y\in B_1(0)$ удовлетворяет этому условию, учитывая, что $S\subset B_1(0)$. По неравенству Коши-Буняковского для любого $x\in S$:

$$\langle x, y \rangle \le ||x|| ||y|| \le 1 \implies y \in S$$

Из пунктов 1, 2, 3 следует утверждение задачи.

Утв. 1 Пусть A — невырожденная матрица, $S \subset \mathbb{R}^n$. Тогда $(AS)^* = A^{-T}S^*$.

Доказательство. Обозначим P = AS. Тогда

$$P^* = \{q \mid q^T p \ge -1 \ \forall p \in P\} = \{q \mid q^T A x \ge -1 \ \forall x \in S\} = \{q \mid (A^T q)^T x \ge -1 \ \forall x \in S\} = \{A^{-T} y \mid y^T x \ge -1 \ \forall x \in S\} = A^{-T} S^* \quad \Box$$

Задача 7

Найти сопряженное множество к эллипсоиду

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n a_i^2 x_i^2 \le 1 \right\}$$

Решение:

Сделаем преобразование с матрицей

$$A = \operatorname{diag}(a_1, \dots, a_n), \quad a_i > 0$$

Тогда $P = AS = B_1(0)$ — единичный шар. Известно, что это самосопряженное множество, поэтому $P^* = B_1(0)$. С другой стороны, в силу утверждения 1:

$$P^* = A^{-T}S^* \qquad \Longrightarrow \qquad S^* = A^TP^* = AB_1(0) = A\left\{x \mid \sum_{i=1}^n x_i^2 \le 1\right\} = \left\{y \mid \sum_{i=1}^n \frac{y_i^2}{a_i^2} \le 1\right\}$$

Выпишу еще какие-то утверждения, которые я получил, пока решал задачи.

Утв. 2 Пусть L — подпространство евклидового пространства X. Тогда $L^* = L^\perp$, где L^\perp — ортогональное дополнение L.

Доказательство.

По определению, в евклидовом пространстве задано некоторое скалярное произведение $\langle x,y \rangle$. Покажем два включения. Сразу заметим, что L — конус.

1.
$$L^* \subset L^{\perp}$$

Пусть $y \in L^*$. Тогда $\forall x \in L$, так как $(-x) \in L$:

$$\langle x, y \rangle \ge 0, \ \langle -x, y \rangle \ge 0 \implies \langle x, y \rangle = 0 \implies y \in L^{\perp}$$

 $2. L^* \supset L^{\perp}$

Пусть
$$y \in L^{\perp}$$
. Тогда $\forall x \in L$:

$$\langle x, y \rangle = 0 \ge 0 \qquad \Longrightarrow y \in L^*$$

Следствие. Пусть \mathbb{A}_n — множество антисимметричных матриц порядка n. Тогда $(\mathbb{A}_n)^* = \mathbb{S}_n$

Доказательство.

В силу утверждения 2, достаточно показать, что $(\mathbb{A}_n)^{\perp} = \mathbb{S}_n$. Покажем два включения.

1.
$$(\mathbb{A}_n)^{\perp} \subset \mathbb{S}_n$$

Пусть $Y \in (\mathbb{A}_n)^{\perp}$. Тогда возьмем антисимметричную матрицу A такую, что

$$a_{ij} = 0$$
, кроме $a_{kl} = -a_{lk} = 1 \ (k \neq l)$

Тогда

$$\langle Y, A \rangle = y_{kl} - y_{lk} = 0 \implies y_{kl} = y_{lk} \quad \forall k \neq l \implies Y \in \mathbb{S}_n$$

$$2. (\mathbb{A}_n)^{\perp} \supset \mathbb{S}_n$$

Пусть $Y \in \mathbb{S}_n$. Тогда для любой антисимметричной матрицы A:

$$\langle Y, A \rangle = \sum_{i,j=1}^{n} y_{ij} a_{ij} = \sum_{i < j} (y_{ij} a_{ij} - y_{ij} a_{ij}) = 0 \implies Y \in (\mathbb{A}_n)^{\perp}$$

2 Conjugate functions

Опр. Пусть $f: \mathbb{R}^n \to \mathbb{R}$. Сопряженной к функции f функцией называется

$$f^*(y) = \sup_{x \in \mathbb{R}^n} (\langle y, x \rangle - f(x))$$

Областью определения f^* является множество таких y, что супремум в определении выше конечен.

Свойства:

- f^* выпуклая функция;
- $f^{**} = f \iff f$ выпуклая замкнутая функция (*Теорема Фенхеля-Моро*);
- Неравенство Фенхеля-Юнга: $f(x) + f^*(y) \ge \langle y, x \rangle$
- Если $f(x) \le g(x)$, то $f^*(y) \ge g^*(y)$
- Если $f(x,y) = f_1(x) + f_2(y)$ и функции f_1, f_2 выпуклы, то $f^*(p,q) = f^*(p) + f^*(q)$

Как искать сопряженную функцию к дифференцируемой фукнции f(x):

- 1. Положить $g(x,y) = \langle y, x \rangle f(x)$.
- 2. Определить, при каких $y \sup_{x \in \mathbb{R}} g(x,y)$ конечен это область определения f^* .
- 3. Найти максимум g(x,y) по x: $\nabla_x g(x,y) = y \nabla f(x) = 0$. Часто получается (но не всегда), что все значения y, при которых уравнение $y = \nabla f(x)$ разрешимо относительно x, есть область определения f^* .
- 4. Выразить x через y и подставить в g(x,y) это выражение для $f^*(y)$.

Опр. Пусть $(X, \|\cdot\|)$ — линейное нормированное пространство. Сопряженным пространством X^* называется множество всех линейных непрерывных функционалов на X.

Действие функционала $y \in X^*$ на элементе $x \in X$ обозначается $\langle y, x \rangle$.

Опр. Сопряженной нормой (dual norm) на X^* называется функция $\|\cdot\|_*: X^* \to \mathbb{R}$:

$$||y||_* = \sup_{x \neq 0} \frac{\left|\langle y, x \rangle\right|}{||x||} = \sup_{\|x\| \leq 1} \left|\langle y, x \rangle\right|$$

Свойства:

- $(X^*, \|\cdot\|_*)$ линейное нормированное пространство.
- Неравенство Коши-Буняковского-Шварца: $\langle y, x \rangle \leq \|y\|_* \cdot \|x\|$.
- Сопряженным пространством ко множеству столбцов \mathbb{R}^n является множество всех строк \mathbb{R}^n , а $\langle y, x \rangle$ является обычным скалярным произведением.
- Сопряженной нормой к $\|\cdot\|_p$ на \mathbb{R}^n является $\|\cdot\|_q$, где $\frac{1}{n}+\frac{1}{q}=1, \ p>1.$
- Сопряженной нормой к $\|\cdot\|_1$ является $\|\cdot\|_{\infty}$, сопряженной нормой к $\|\cdot\|_{\infty}$ является $\|\cdot\|_1$.
- Норма $\|\cdot\|_2$ самосопряжена.

Сопряженная норма не является сопряженной функцией для f(x) = ||x||. Сопряженной функцией будет

$$f^*(y) = \begin{cases} 0 & , & ||y||_* \le 1; \\ +\infty & , & \text{иначе.} \end{cases}$$

Найти $f^*(y)$, если $f(x) = -\frac{1}{x}, \ x > 0.$

Решение:

$$g(x,y) = yx + \frac{1}{x}.$$

При y > 0: $g(x, y) \to +\infty$ при $x \to +\infty$.

При $y \le 0$: $g(x,y) \to +\infty$ при $x \to +0$.

Поэтому $f^*(y)$ нигде не определена, либо $f^*(y) = +\infty \quad \forall y \in \mathbb{R}.$

Задача 2

Найти $f^*(y)$, если $f(x) = -\frac{1}{2} - \ln x$, x > 0.

Решение:

$$g(x,y) = yx + \frac{1}{2} + \ln x.$$

При $y \ge 0$: $g(x,y) \to +\infty$ при $x \to +\infty$.

При y < 0 найдем максимум: $\nabla_x g(x,y) = y + \frac{1}{x} = 0 \implies x = -\frac{1}{y}$.

$$f^*(y) = -\frac{1}{2} - \ln(-y), \qquad y < 0$$

Задача 3

Найти $f^*(y)$, если $f(x) = \log \sum_{i=1}^n e^{x_i}$.

Решение:

$$g(x,y) = y^T x - \log \sum_{i=1}^n e^{x_i}.$$

$$\nabla g(x,y) = 0 \iff y_k = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}} \quad \forall k = \overline{1,n} \qquad (*$$

Легко видеть, что (*) разрешимо тогда и только тогда, когда

$$y_k > 0 \ \forall k, \qquad y_1 + \ldots + y_n = \mathbf{1}^T y = 1$$

Покажем, что множество таких y (но с нестрогим неравенством: $y_k \ge 0$) будет областью определения f^* :

- Пусть $\exists y_k < 0.$ Тогда $g(x,y) \to +\infty$ при $x_k \to -\infty, \ \ x_i = 0 \ \ (i \neq k).$
- Пусть $y \succeq 0$, но $\mathbf{1}^T y \neq 1$.

Тогда при $x = t\mathbf{1} = (t, \dots, t)$: $g(x, y) = t \cdot \mathbf{1}^T y - t - \log n$

Это выражение стремится к $+\infty$. При $\mathbf{1}^T y < 1$ это происходит при $t \to -\infty$, а при $\mathbf{1}^T y > 1$ — при $t \to +\infty$.

Теперь вычислим саму сопряженную функцию:

$$\bullet \ y \succ 0, \ \mathbf{1}^T y = 1.$$

$$y_k = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}} \implies x_k = \log y_k + \log \sum_{i=1}^n e^{x_i} \implies$$

$$f^*(u) = \sum_{i=1}^n e^{x_i} \qquad f(x) = \sum_{i=1}^n e^{x_i} \log \sum_{i=1}^n e^$$

$$f^*(y) = \sum_{k=1}^n y_k x_k - f(x) = \sum_{k=1}^n y_k \log y_k + \mathbf{1}^T y \cdot \log \sum_{i=1}^n e^{x_i} - \log \sum_{i=1}^n e^{x_i} = \sum_{k=1}^n y_k \log y_k$$

•
$$y_1 = \ldots = y_m = 0$$
 (для определенности), $\mathbf{1}^T y = 1$.

$$g(x,y) = \sum_{k=m+1}^n y_k x_k - f(x)$$
. Это выражение достигает супремума при

$$x_1, \dots, x_m \to -\infty, \quad x_k = \log y_k + \log \sum_{i=m+1}^n e^{x_i}, \quad k = \overline{m+1, n}$$

Итак, если положить $0 \log 0 = 0$, то

$$f^*(y) = \begin{cases} \sum_{k=1}^n y_k \log y_k, & y \succeq 0, \ \mathbf{1}^T y = 1; \\ +\infty, & \text{иначе.} \end{cases}$$

Задача 4

Найти
$$f^*(y)$$
, если $f(x) = -\sqrt{a^2 - x^2}$, $|x| < a$, $a > 0$.

Решение:

$$g(x,y) = yx + \sqrt{a^2 - x^2}.$$

$$\nabla_x g(x,y) = y - \frac{x}{\sqrt{a^2 - x^2}} = 0 \quad \Longrightarrow \quad x = \frac{ay}{\sqrt{1 + y^2}}$$
$$f^*(y) = a\sqrt{1 + y^2}, \quad y \in \mathbb{R}.$$

Задача 5

Найти $f^*(Y)$, если $f(X) = -\log \det X$, $X \in \mathbb{S}_{++}^n$.

Решение:

Будем предполагать, что задача рассматривается в линейном пространстве симметричных матриц со скалярным произведением $\langle X,Y \rangle = \mathbf{tr} XY$.

$$q(X,Y) = \langle Y, X \rangle + \log \det X.$$

$$\nabla_X g(X, Y) = Y + \nabla(\log \det X) = Y + X^{-T} = Y + X^{-1} = 0 \implies X = -Y^{-1}$$

Найдем, при каких Y значение f^* конечно:

• Пусть $Y \neq 0$.

Тогда \exists собственное значение $\lambda \geq 0$ и собственный вектор e (пусть он нормирован на 1). Рассмотрим $X = I + tee^T$. Тогда

$$q(X,Y) = \mathbf{tr}Y + t \cdot \mathbf{tr}(Yee^T) + \log \det(I + tuu^T) = \mathbf{tr}Y + \lambda t||e|| + \log \det(I + tuu^T)$$

Заметим, что матрица ee^T имеет ранг 1 и что ее единственное ненулевое собственное значение равно 1, а соответствующим собственным вектором является e. Поэтому собственные значения матрицы $tee^T - \{t, 0, \dots, 0\}$, а матрицы $I + tee^T - \{1 + t, 1, \dots, 1\}$. Значит, $\det(I + tee^T) = 1 + t$.

$$g(X,Y) = \mathbf{tr}Y + \lambda t + \log(1+t) \to +\infty$$
 при $t \to +\infty$

• Пусть $Y \prec 0$.

Тогда Y невырождена, значит, уравнение $\nabla g(X,Y)=0$ разрешимо относительно $X\colon\ X=-Y^{-1}.$

$$f^*(Y) = \log \det(-Y^{-1}) - n = -\log \det(-Y) - n$$

Итак,

$$f^*(Y) = \begin{cases} -\log \det(-Y) - n &, Y \in -\mathbb{S}^n_{++}; \\ +\infty &, \text{ иначе.} \end{cases}$$

Задача 6

Доказать, что если f(x)=g(Ax), то $f^*(y)=g^*(A^{-T}y)$, где A — невырожденная матрица.

Решение:

Имеем по определению:

$$g^*(q) = \sup_{p \in \mathbb{R}^n} \left(q^T p - g(p) \right)$$

Тогда для функции f(x) = g(Ax):

$$f^*(y) = \sup_{x \in \mathbb{R}^n} (y^T x - g(Ax)) = \left[p = Ax \right] = \sup_{p \in \mathbb{R}^n} (y^T A^{-1} p - g(p)) = g^*(A^{-T} y)$$

3 Subgradient and subdifferential

Опр. Пусть $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^n$. Вектор g называется субградиентом функции f в точке x_0 , если

$$\forall x \in S \rightarrow f(x) - f(x_0) \ge \langle g, x - x_0 \rangle$$

Опр. Множество всех субградиентов f в точке x_0 называется cybduppeehuuanom функции f в точке x_0 и обозначается $\partial f(x_0) \equiv \partial f_S(x_0)$.

Свойства:

- Если $x_0 \in \text{relint}S$, то $\partial f_S(x_0)$ выпуклое компактное множество;
- Выпуклая функция f дифференцируема в $x_0 \iff \partial f(x_0) = \{\nabla f(x_0)\};$
- Если $\forall x \in S \ \partial f_S(x_0) \neq \emptyset$, то f выпукла на S;
- Если $\alpha \geq 0$, то $\partial(\alpha f)(x) = \alpha \partial f(x)$;
- Если f выпукла, то $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$.

Теорема Моро-Рокафеллара.

Пусть $f: E \to \mathbb{R}, g: G \to \mathbb{R}$ — выпуклые функции, $x_0 \in E \cap G, E \cap \mathrm{int}G \neq \emptyset$. Тогда

$$\partial (f+q)(x_0) = \partial f(x_0) + \partial g(x_0)$$

Теорема Дубовицкого-Милютина.

Пусть $f_i: E_i \to \mathbb{R}, \ i = \overline{1,m}$ — выпуклые функции, $x_0 \in \mathrm{int}\Big(\bigcap_{i=1}^m E_i\Big)$, а функция $f:\bigcap_{i=1}^m E_i \to \mathbb{R}$:

$$f(x) = \max \{f_1(x), \dots, f_m(x)\}$$

Тогда

$$\partial f(x_0) = \mathbf{conv} \bigg(\bigcup_{j \in I} \partial f_j(x_0) \bigg), \qquad I = \big\{ j \mid f_j(x_0) = f(x_0) \big\}$$

Теорема о субдифференциале сложной функции.

Пусть $g_i: S \to \mathbb{R}, \ i = \overline{1,m}$ — выпуклые функции, $\varphi: U \to \mathbb{R}$ — неубывающая (по всем переменным) выпуклая функция, причем $U \supset \big(g_1(S), \dots, g_m(S)\big), \ U \subset \mathbb{R}^m$ — открытое множество. Тогда при $f(x) = \varphi\big(g_1(x), \dots, g_m(x)\big)$:

$$\partial f(x) = \bigcup_{p \in \partial \varphi(u)} \left(\sum_{i=1}^{m} p_i \partial g_i(x) \right), \qquad u = \left(g_1(x), \dots, g_m(x) \right)$$

В частности, если φ дифференцируема в точке u, то

$$\partial f(x) = \sum_{i=1}^{m} \frac{\partial \varphi}{\partial u_i}(u) \partial g_i(x)$$

Задача 1

Доказать, что x_0 — точка минимума выпуклой функции f тогда и только тогда, когда $0 \in \partial f(x_0)$.

Решение:

Пусть $f:S\longrightarrow \mathbb{R}$ — выпуклая функция. Тогда $\forall x\in S$:

$$f(x) \ge f(x_0)$$
 \iff $f(x) - f(x_0) \ge \langle 0, x - x_0 \rangle$ \iff $0 \in \partial f(x_0)$

Найти $\partial f(x)$, если $f(x) = \text{ReLU}(x) = \max\{0, x\}$.

Решение:

 $\partial(0)(x) = \{0\}, \ \partial(x)(x) = \{1\}.$ По теореме Дубовицкого-Милютина (обе функции выпуклы):

$$\partial f(x) = \begin{cases} 0 & , x < 0; \\ [0,1] & , x = 0; \\ 1 & , x > 0. \end{cases}$$

Задача 3

Найти $\partial f(x)$, если $f(x) = ||x||_p$.

- (a) p = 1;
- (b) p = 2;
- (c) $p = \infty$;

Решение:

(a)
$$f(x) = ||x||_1 = \sum_{i=1}^{n} |x_i| = \sum_{i=1}^{n} \max\{-x_i, x_i\}.$$

 $\partial(x_i)(x) = \nabla_x(x_i) = (0, \dots, 1, \dots, 0)^T$ — единица на *i*-ом месте. По теореме Дубовицкого-Милютина (все функции выпуклы):

$$\partial |x_i|(x) = \begin{cases} (0, \dots, -1, \dots, 0)^T &, x_i < 0; \\ \{0\} \times \dots \times [-1, 1] \times \dots \times \{0\} &, x_i = 0 \\ (0, \dots, 1, \dots, 0)^T &, x_i > 0. \end{cases}$$

По теореме Моро-Рокафеллара (все функции выпуклы):

$$\partial f(x) = \begin{cases} \left(\mathrm{sign}(x_1), \dots, \mathrm{sign}(x_n)\right)^T &, \text{ все } x_i \neq 0; \\ \prod_{i \in J} \left\{\mathrm{sign}(x_i)\right\} \times \prod_{i \not\in J} [-1, 1] &, x_i \neq 0 \text{ при } i \in J; \\ [-1, 1]^n &, x = 0. \end{cases}$$

(b)
$$f(x) = ||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$
.

При $x \neq 0$ функция f(x) дифференцируема, поэтому $\partial f(x) = \frac{x}{\|x\|}$.

Покажем, что $\partial f(0) = B_1(0)$ — шар радиуса 1:

• Пусть $y \in B_1(0)$. По неравенству Коши-Буняковского:

$$\langle y, x \rangle \le |\langle y, x \rangle| \le ||y|| \cdot ||x|| \le 1 \cdot f(x) \implies y \in \partial f(0)$$

• Пусть $y \in \partial f(0)$. Допустим, ||y|| > 1.

Известно, что норма $\|\cdot\|_2$ является самосопряженной нормой и что сопряженная норма определяется выражением

$$||q||_* = \sup_{\|p\| \le 1} \langle q, p \rangle$$

Тогда имеем

$$||y|| = \sup_{\|x\| \le 1} \langle y, x \rangle > 1 \implies \exists x_0 : (||x_0|| \le 1) \ \langle y, x_0 \rangle > 1 \implies ||x_0|| \le 1 < \langle y, x_0 \rangle$$

Это противоречит тому, что $y \in \partial f(0)$.

$$\partial f(x) = \begin{cases} \frac{x}{\|x\|} &, x \neq 0; \\ B_1(0) &, x = 0. \end{cases}$$

(c) $f(x) = \max_{i} |x_i| = \max_{i} (\max\{-x_i, x_i\}).$

 $\partial |x_i|(x)$ такой же, как и в пункте (а). По теореме Дубовицкого-Милютина (все функции выпуклы):

$$\partial f(x) = \begin{cases} (0,\dots,\operatorname{sign}(x_k),\dots,0)^T &, \ |x_i| < |x_k|, \ i = \overline{1,n}, \ i \neq k; \\ \\ \operatorname{\mathbf{conv}}_{j \in J} \left(\begin{array}{c} \dots \\ \operatorname{sign}(x_j) \\ \dots \end{array} \right) &, \ x \neq 0, \ \operatorname{max} \ \operatorname{достигается} \ \operatorname{ha} \ \operatorname{мh-ве} \ \operatorname{uhдексов} \ J; \\ \\ [-1,1]^n &, \ x = 0. \end{cases}$$

Задача 4

Найти $\partial f(x)$, если $f(x) = ||Ax - b||_1^2$.

Решение:

1. Из задачи 3 мы знаем, что

$$\partial \|x\|_1(x) = \begin{cases} \left(\mathrm{sign}(x_1), \dots, \mathrm{sign}(x_n)\right)^T &, \text{ все } x_i \neq 0; \\ \prod_{i \in J} \left\{\mathrm{sign}(x_i)\right\} \times \prod_{i \not\in J} [-1, 1] &, x_i \neq 0 \text{ при } i \in J; \\ [-1, 1]^n &, x = 0. \end{cases}$$

2. Для функции $\|x\|_1^2 = \varphi(\|x\|_1)$, $\varphi(u) = u^2$ имеем по теореме о субдифференциале композиции:

Для того, чтобы строго применить теорему, положим $\varphi(u) = \begin{cases} u^2 &, u \geq 0 \\ 0 &, u \leq 0 \end{cases}$. Тогда φ монотонно возрастает, выпукла и непрерывно дифференцируема.

$$\partial ||x||_1^2(x) = 2||x||_1 \cdot \partial ||x||_1(x)$$

3. Для функции $f(x) = \|Ax - b\|_1^2 = g(Ax - b), \ g(x) = \|x\|_1^2$ имеем по одному из свойств (функция g выпукла): $\partial f(x) = A^T \partial g(Ax - b) = A^T \cdot 2\|Ax - b\|_1 \cdot \partial \|\cdot\|_1 (Ax - b)$

Итак.

$$\partial f(x) = 2||Ax - b|| \cdot A^T \partial || \cdot ||_1 (Ax - b)$$

Интересно, что функция f оказывается дифференцируемой при Ax=b, так как ее субдифференциал состоит из одной точки.

Утв. 3 Пусть $\|\cdot\|$ — норма на $X, \|\cdot\|_*$ — сопряженная норма на X^* . Тогда

$$\partial \|\cdot\|(x) = \left\{v \in X^* \mid \langle v, x \rangle = \|x\|, \ \|v\|_* \le 1\right\}$$

Доказательство.

Обозначим множество в правой части равенства как V(x).

1. $V(x) \subset \partial \|\cdot\|(x)$

Пусть $y \in X$ — произвольный элемент. Тогда по неравенству Коши-Буняковского:

$$\|x\| + \langle v, y - x \rangle = \|x\| + \langle v, y \rangle - \langle v, x \rangle = \langle v, y \rangle \le \|v\|_* \cdot \|y\| \le 1 \cdot \|y\| \implies v \in \partial \|\cdot\|(x)$$

2. $V(x) \supset \partial \|\cdot\|(x)$

Имеем, что

$$\langle v, y \rangle - ||y|| \le \langle v, x \rangle - ||x|| \qquad \forall y \in X$$

В левой части неравенства перейдем к супремуму по у. Получаем там сопряженную функцию к норме:

$$\sup_{y \in X} \left(\langle v, y \rangle - ||y|| \right) = ||\cdot||^*(v) \le \langle v, x \rangle - ||x|| \tag{*}$$

Как известно, сопряженная функция к норме — "единичный шар" в двойственной норме:

$$\|\cdot\|^*(v) = \begin{cases} 0 & , \|v\|_* \le 1; \\ +\infty & , \text{ иначе.} \end{cases}$$

Правая часть неравенства (*) конечна, поэтому конечна и левая. Значит, $||v||_* \le 1$. При этом (*) принимает вид:

$$\langle v, x \rangle \ge ||x||$$

С другой стороны, по неравенству Коши-Буняковского, $\langle v, x \rangle \leq \|v\|_* \cdot \|x\| \leq \|x\|$. Значит, $\langle v, x \rangle = \|x\|$.

$$\text{Итак}, \|v\|_* < 1, \langle v, x \rangle = \|x\| \implies v \in V(x).$$

Задача 5

Найти $\partial f(x)$, если $f(x) = \exp(\|x\|)$.

Решение:

Будем считать, что $\|\cdot\|$ — произвольная норма на некотором линейном нормированном пространстве X. По теореме о субдифференциале композиции (e^u возрастает и выпукла) и из утверждения 3:

$$\partial f(x) = e^{\|x\|} \cdot \partial \|\cdot\|(x) = e^{\|x\|} \cdot \left\{ v \in X^* \mid \langle v, x \rangle = \|x\|, \ \|v\|_* \le 1 \right\}$$

В частности, если $X=\mathbb{R}^n$, а $\|x\|=\sqrt{x_1^2+\ldots+x_n^2}$ — евклидова норма (она самосопряжена), $X^*=\mathbb{R}^n$. Тогда

$$\partial f(x) = \begin{cases} e^{\|x\|} \frac{x}{\|x\|} &, x \neq 0; \\ B_1(0) &, x = 0. \end{cases}$$