

SG2002 Preliminary Datasheet

Version: 1.0-alpha Release date: 2023-12-15

© 2023 SOPHGO

Revision History

Revision	Date	Description
1.0	2023/12/15	Preliminary release 1.0-alpha

Contents

R	evis	ion H	listory	2
1	Pro	duct	Overview	8
	1.1	Overvi	ew	8
	1.2	Archite	ecture	9
		1.2.1	Overview	9
		1.2.2	Processor Core	9
		1.2.3	TPU	10
		1.2.4	Video Codec	10
		1.2.5	Video Interface (SG2002)	10
		1.2.6	ISP and Image Processing	11
		1.2.7	CV Hardware Acceleration Engine	12
		1.2.8	Audio Codec (SG2002)	12
		1.2.9	Network Interface	12
		1.2.10	Security System Module	12
		1.2.11	Intelligent Secure Operating Environment	12
		1.2.12	Peripheral Interface (SG2002)	13
		1.2.13	External Memory Interface	13
		1.2.14	SDK	14
		1.2.15	Chip Physical Specifications	14
	1.3	Boot ar	nd Upgrade Modes	14
		1.3.1	Overview	14
		1.3.2	Boot Mode and Corresponding Signal Latch	Value
			Relationship	14
		1.3.3	Image Burning Mode	15
		1.3.4	Secure Boot	
	1.4	Addres	s Space Mapping	16
2	Ha	rdwa	re Characteristics	
	2.1	Packag	e and Pin Distribution	20
		2.1.1	Package SG2002	20
		2.1.2	Pin Distribution SG2002	21
	2.2	Pin Inf	ormation Description	21
	2.3	Weldin	g Process Suggestions	22
	2.4		re Sensitivity Parameters	
		2.4.1	Moisture Barrier Packaging for SOPHGO Products	
	2.5	Electric	cal Performance Parameters	

	2.5.1	Power Consumption Parameters	26
	2.5.2	Temperature and Thermal Resistance Parameters (SG2002)	.26
	2.5.3	Destructive Voltage	.27
	2.5.4	Power Up/Down Sequence (SG2002)	.27
	2.5.5	Power Supply DC/AC Electrical Parameters	.30
	2.5.6	1.8V IO Electrical Parameters	.32
	2.5.7	18OD33 IO (VDDIO=1.8V) Electrical Parameters	.32
	2.5.8	18OD33 IO (VDDIO=3.0V) Electrical Parameters	.33
	2.5.9	Audio GPIO Electrical Parameters	.35
	2.5.10	ETH GPIO Electrical Parameters	.35
	2.5.11	MIPI Rx Electrical Parameters	.35
	2.5.12	Sub-LVDS Electrical Parameters	.37
	2.5.13	HiSPi Electrical Parameters	.37
	2.5.14	MIPI /LVDS Tx Electrical Parameters	.38
	2.5.15	SDIO Electrical Parameters	.39
	2.5.16	VI RAW/BT.601/BT.656/BT.1120 Electrical Parameters	.39
	2.5.17	BT.601/BT.656/8080 Electrical Parameters in VO (Video Ou	t)
			.40
	2.5.18	AUDIO CODEC Electrical Parameters	.40
2.6	Timing		.41
	2.6.1	SPI NOR Timing	.41
	2.6.2	SPI NAND Timing	.42
	2.6.3	VI Timing	.44
	2.6.4	VO Timing	.44
	2.6.5	AIAO (I2S/PCM) Timing	.46
	2.6.6	I2C Timing	.48
	2.6.7	SPI Timing	.49
	2.6.8	MIPI Rx Timing	.50
	2.6.9	Sub-LVDS Timing	.51
	2.6.10	HiSPi Timing	.52
	2.6.11	MIPI Tx Timing	.53
	2.6.12	SDIO/MMC Timing	

List of Figures

Figure1-1SG2002ArchitectureDiagram9	
Figure 2-1 SG2002 Package Dimensions, Top View20)
Figure 2-2 SG2002 Package External Dimensions, Bottom View21	-
Figure2-3SG2002PinDistribution21	-
Figure 2-4 Lead-Free Reflow Soldering Process Curve22)
Figure 2-5 Vacuum Drying Packaging Information23	}
Figure 2-6 Desiccant Packs, Humidity Indicator Card, Chip and Tray24	F
Figure 2-7 SPINOR Timing Diagram41	-
Figure 2-8 SPI NAND Input Timing Diagram42)
Figure 2-9 SPI NAND Output Timing Diagram42)
Figure2-10VITimingDiagram44	F
Figure2-11VOTimingDiagram44	F
Figure2-12BT.656TimingDiagram45	,
Figure2-13BT.601TimingDiagram45	;
Figure2-14BT.1120TimingDiagram45	
Figure2-158080TimingDiagram46	;
Figure 2-16 I2S & PCM Rx Timing Diagram46	;
Figure 2-17 I2S & PCM Tx Timing Diagram47	,
Figure2-18I2CTimingDiagram48	}
Figure2-19SPITimingDiagram49)
Figure 2-20 Timing Diagram of MIPI Rx Clock when 0.08Gbps ≤ Data Rate ≤	
1.5Gbps	50
Figure 2-21 Sub-LVDS Clock Data Timing Diagram51	-
Figure 2-22 HiSPi Clock Data Timing Diagram52) _
Figure 2-23 MIPITX Data-to-Clock Timing Diagram53	}
Figure 2-24TX EYE Diagram Specification54	F
Figure 2-25 Transmitter Eye Diagram Validation Setup54	F
Figure 2-26 SDIO/MMC Single-Edge (SDR) Data Input/Output Timing	
Diagram	55
Figure 2-27 SDIO/MMC Double Edge DDR50 Mode Data Input/Output Timing	
Diagram	56
Figure 2-28 SDIO/MMC HS200 and SDR104 Mode Data Command	
Input/OutputTimingDiagram57	,

List of Tables

Table Error: Reference source not found-1 Lead-Free Reflow Soldering	_
Coverameters	
Table 2-2 Humidity Classification and Floor Life2	
Table 2-3 Baking Temperature and Time Table2	
Table 2-4 Thermal Resistance Parameters for SG20022	
Table2-5Temperature-RelatedParameters2	6
Table 2-6 Destructive Voltage Parameters (SG2002)2	
Table 2-7 The Power Supply Electrical Parameters of the SG200	
(Recommended Operating Conditions)	
Table 2-81.8VIO Electrical Parameters3	
Table 2-9 18OD33 IO (VDDIO=1.8V) Electrical Parameters3	
Table 2-1018OD33 IO (VDDIO=3.0V) Electrical Parameters3	
Table 2-11 Audio GPIO Electrical Parameters3	
Table 2-12 ETH GPIO Electrical Parameters3	5
Table 2-13 MIPI D-PHY High Speed (MISH) Differential DC Electrical	
Parameters	36
Table 2-14 MIPI D-PHY High Speed (MIHS) Differential AC Electrical	
Parameters	36
Table 2-15 MIPI D-PHY Low Power (MILP) Differential DC Electrical	
Parameters	36
Table 2-16 MIPI D-PHY Low Power (MILP) Differential AC Electrical	
Parameters	
Table 2-17 Sub-LVDS(SL) Differential DC Electrical Parameters3	
Table 2-18 Sub-LVDS(SL) Differential AC Electrical Parameters3	
Table 2-19 HiSPi Differential DC Electrical Parameters3	
Table 2-20 HiSPi Differential AC Electrical Parameters3	
Table 2-21 MIPI HS Transmitter DC Specifications3	8
Table 2-22 MIPI HS Transmitter AC Specifications3	
Table 2-23 MIPILP Transmitter DC Specifications3	9
Table 2-24 MIPI LP Transmitter AC Specifications3	
Table 2-25LVDSTransmitterDC/ACSpecifications3	9
Table 2-26 Audio CODEC Overall Indicator Table4	0:
Table 2-27 Audio DAC Electrical Parameters4	0:
Table 2-28 Audio ADC Electrical Parameters4	0:
Table 2-29 SPI_NOR Timing Parameter Table4	1
Table 2-30 SPINAND Input Timing4	2
Table 2-31 SPI NAND Output Timing4	3
Table 2-32 VI Timing Parameter Table4	4

Table 2-33 VO Timing Parameter Table45
Table 2-34 I2S/PCM Timing Parameter Table47
Table 2-35 I2CTiming Parameter Table48
Table 2-36 SPI Timing Parameter Table49
Table 2-37 Timing Parameter of MIPI Rx at 0.08Gbps ≤ Data Rate ≤ 1.5Gbps50
Table 2-38 Sub-LVDS Timing Parameter Table51
Table 2-39 HiSPi Timing Parameters Table52
Table 2-40 Data-Clock Timing Specifications for ≥ 0.08Gbps and ≤ 1 Gbps53
Table 2-41 Data-Clock Timing Specifications for > 1Gbps and ≤ 1.5 Gbps53
Table 2-42 Data-Clock Timing Specifications for > 1.5Gbps and ≤ 2.5 Gbps53
Table 2-43 Transmitter Eye Diagram Specification54
Table 2-44 SDIO/MMC Single Edge DS (Default Speed) Mode Timing
Parametefable55
Table-45 SDIO/MMC Single Edge HS (High speed) Mode Timing Parameter
Table56
Table 2-46 SDIO/MMC Double Edge DDR50 Mode Timing Parameter Table57
Table 2-47 SDIO/MMC HS200 and SDR104 Mode Output Parameters Table58
Table 2-48 SDIO/MMC HS200 and SDR104 Mode Input Timing Parameter
Table58

1 **Product Overview**

1.1 Overview

SG2002 is a high-performance, low-power chip for edge intelligent surveillance IP cameras, smart cat-eye door locks, visual doorbells, home intelligence and many other product areas, integrating H.264 video compression codec, H.265 video compression encoder and ISP; support for HDR Wide Dynamics, 3D noise reduction, demisting, lens aberration correction, and other image enhancement and correction algorithms, providing customers with professional-grade video image quality. customers with professional-grade video image quality.

The chip also integrates a self-developed TPU that provides 1.0 TOPS of arithmetic power at 8-bit integer operations. The specially designed TPU scheduling engine efficiently provides extremely high bandwidth data streams to all tensor processor cores. A powerful deep learning model compiler and software SDK development kit are also provided for users. Mainstream deep learning frameworks, such as Caffe and Tensorflow, can be easily ported to its platform.

In addition, it also provides secure boot, secure update, secure encryption, etc. It provides a series of security solutions for users from development, mass production, and product application.

The chip integrates an 8-bit MCU subsystem, which can replace the general external MCU to achieve the purpose of saving BOM cost and power consumption.

1.2 Architecture

1.2.1 Overview

FigureError: Reference source not found-1 SG2002 architecture diagram

1.2.2 Processor Core

- Main Processor RISCV C906 @ 1.0Ghz
 - o 32KB I-cache, 64KB D-Cache
 - o Integrated Vector and floating-point unit (FPU)
- Main Processor ARM Cortex-A53 @ 1.0GHz
 - o 32KB I-cache, 32KB D-Cache
 - o 128KB L2 cache
 - o Support for Neon and floating-point unit (FPU)
- Coprocessor RISCV C906 @ 700Mhz
 - o Integrated floating-point unit (FPU)

The main processor RISCV C906 @ 1.0Ghz and the main processor ARM Cortex-A53 @ 1.0GHz can be switched via pin GPIO_RTX__EPHY_RTX (as shown below) with the switching logic:

Low-----ARM Cortex-A53 @ 1.0GHz

1.2.3 TPU

- **■** Built-in TPU, with ~1.0TOPS INT8
- Support for major neural network architectures: Caffe, Pytorch, TensorFlow (Lite), ONNX and MXNet
- ✓ It can realize Pedestrian Detection, Face Detection, Face recognition, Face anti-spoofing and other video structuring applications.

1.2.4 Video Codec

- ₱ H.264/H.265 both support I-frame and P-frame
- MJPEG/JPEG baseline
- H.264 codec maximum resolution: 2880×1620 (5M)
- ₱ H.265 encoding maximum resolution: 2880×1620 (5M)
- **♂** H.264 codec performance
 - ② 2880×1620@30fps+720×576@30fps
 - 1920×1080@30fps encoding + 1920×1080@30fps Decoding
- - ② 2880×1620@30fps+720×576@30fps
- **▼** JPEG maximum codec performance
 - ② 2880×1620@30fps
- Supports multiple bit rate control modes such as CBR/VBR/FIXQP.
- Support Region of Interest (ROI) coding

1.2.5 Video Interface (SG2002)

◄ Input

- Supports two simultaneous video inputs (mipi 2L+1L)
- Support MIPI, Sub-LVDS, HiSPI and other serial interfaces
- Support 8/10/12 bit RGB Bayer video input
- Support BT.656

SOPHON

- Support AHD Multi-Mix BT format
- © Support SONY, OnSemi, OmniVision and other HD CMOS sensors
- Provides a programmable frequency output for the sensor as a reference clock
- Support a maximum width of 2880 and a maximum resolution of 5M (2688×1944, 2880×1620)

Output

- Support a wide range of serial and parallel display specifications
- Support serial interfaces such as MIPI
- Support BT656, BT601(8bit), BT1120, 8080 and other parallel interfaces
- Support SPI output interface

1.2.6 ISP and Image Processing

- Support image or video rotation by 90, 180, or 270 degrees
- Support horizontal (Flip) or vertical (Mirror) flipping of image or video
- Support overlaying two layers of OSD (On-Screen Display) on the video
- Support video scaling down to 1/32 or up to 32 times
- Support 3A algorithm: automatic exposure (AE), automatic white balance (AWB), and automatic autofocus (AF)
- Support fixed-mode noise reduction and bad pixel correction
- Support correction of lens shading, distortion, and purple fringing
- Support direction-adaptive demosaic algorithm that selects the best demosaic algorithm based on the image orientation
- Support Gamma correction, dynamic contrast enhancement, and color management algorithms
- Support regional adaptive defogging
- Support Bayer denoising, 3D denoising, detail enhancement, and

Specifications are subject to change without notice

- sharpening enhancement
- Support local Tone mapping
- Support sensor with wide dynamic range and 2-frame wide dynamic range
- Support two-axis digital image stabilization
- Support lens distortion correction
- Provide PC-side ISP tuning tools

1.2.7 CV Hardware Acceleration Engine

- → Hardware/software mixed mode support for some OpenCV libraries
- → Hardware/Software Mixed Mode support for some IVE libraries

1.2.8 Audio Codec (SG2002)

- Integrated Audio CODEC, supports 16-bit audio/voice input and output
- **▼** Integrated mono microphone input
- ✓ Integrated mono output. (Requires external amplifier to drive speakers)
- ★ An internal microphone is integrated for direct connection to the output channel, making it easy to implement AEC
- **♂** Software audio codec protocols (G.711, G.726, ADPCM)

1.2.9 Network Interface

- → The Ethernet module provides one Ethernet MAC for receiving and sending network data
- Ethernet MAC with built-in 10/100Mbps Fast Ethernet Transceiver can work in 10/100Mbps full duplex or half duplex mode

1.2.10 Security System Module

- → Hardware implementation of multiple encryption and decryption algorithms such as AES/DES/SM4
- → Hardware implementation of HASH (SHA1/SHA256) hash algorithm

- → Hardware implementation of a random number generator
- ✓ Internally integrated 2Kbit eFuse logical space

1.2.11 Intelligent Secure Operating Environment

- Support the establishment of a trust chain: provide the basis for a secure environment, which is the foundation of a trusted environment, such as hardware security settings, root of trust, etc.
- Support secure boot, provides secure hardware and software protection functions
- Support data encryption security: data encryption program, computing core encryption
- Support software and firmware validation process: confirms software trustworthiness and integrity, including boot and load the signature verification program
- Support secure storage and transmission: protects external data storage and exchange
- Support security updates

1.2.12 Peripheral Interface (SG2002)

- **煮** Integrated POR, Power sequence
- 4 single-ended ADCs (3 no die domain)
- 6 I2C (1 no die domain)
- **≈** 3 SPI
- 5 groups of UART (1 no die domain)
- **♂** 4 groups (15 channels) PWM
- 2 SDIO interfaces

One supports 3V to connect to SD 3.0 Card (supporting a maximum capacity

of SDXC 2TB, supported speed is UHS-I)

One supports 1.8V/3.0V to connect other SDIO 3.0 devices. (Supported speed $\,$

is UHS-I)

- 66 GPIO Interface (14 no die domain)
- ✓ Integrated keyscan and Wiegand

- ✓ Integrated MAC PHY supports 10/100Mbps full-duplex or half-duplex mode.
- One USB Host / device interface

1.2.13 External Memory Interface

- Built-in DRAM
 - SG2002 DDR3 16bitx1, maximum rate up to 1866Mbps, capacity 2Gbit (256MB)
- **尽** SPI NOR flash interface (1.8V/3.0V)
 - Support 1, 2, 4-wire modes
 - Maximum support for 256MByte
- **♂** SPI Nand flash interface (1.8V/3.0V)
 - Support 1KB/2KB/4KB page (corresponding maximum capacity 16GB/32GB/64GB)
 - Uses the built-in ECC module of the device
- eMMC 4.5 interface (1.8V/3.0V) SD0 EMMC co-power supply. Because of SD card default 3V, it is not suitable to connect 1.8V eMMC with SD card
 - 4-bit interface
 - Support HS200
 - Maximum Supported Capacity 2TB

1.2.14 SDK

■ Linux-5.10-based SDK

1.2.15 Chip Physical Specifications

- Power Consumption
 - 1080P + Video encode + AI: ~ 500mW
 - Other Scenarios: TBD
- Operating voltage
 - © Core voltage: 0.9V
 - O IO voltage: 1.8V and 3.0V
 - The DDR voltage is shown in the table below.
 - SG2002 = 1.35V
- Package

Using QFN package, the package size is 9mm×9mm×0.9mm. The pin pitch is 0.35mm, and the total number of pins is 88

1.3 Boot and Upgrade Modes

1.3.1 Overview

The chip is booted by the built-in ROM (BOOTROM). When the chip is reset, it detects whether there is a weak pull-up or weak pull-down on two pins (EMMC_DAT3, EMMC_DAT0) to determine the type of memory device currently in use.

Secure boot chips are signed during boot-up and chip upgrades to ensure that the software being executed or upgraded is secure.

1.3.2 Boot Mode and Corresponding Signal Latch Value Relationship

- Support booting from SPI Nor Flash (EMMC_DAT3 pull down, EMMC_DAT0 pull up)
- Support booting from SPI Nand Flash (EMMC_DAT3 pull down, EMMC DAT0 pull down)
- Support booting from eMMC (EMMC_DAT3 pull up, EMMC_DAT0 pull up)

Notes: SG2002 does not support eMMC because SD0 and eMMC domain share IO power. Since the SD card defaults to 3.0V and eMMC is mostly 1.8V, it basically does not support eMMC unless SD0 does not connect to the SD card.

1.3.3 Image Burning Mode

- Supports burning image through SD card
- Supports burning image through USB device mode
- If the image already exists in flash, software supports upgrading through the network

SG2002 Preliminary Datasheet

1.3.4 Secure Boot

- Supports secure boot and upgrade
- AES/DES/SM4 hardware encryption and decryption
- SHA/TRNG/Secure eFuse security hardware

1.4 Address Space Mapping

Specifications are subject to change without notice

0x030D3000	0x030DFFFF	reserve	
0x030E0000	0x030EFFFF	TEMPSEN control register	64K
0x030F0000	0x030FFFFF	SARADC control register	64K
0x04000000	0x0400FFFF	I2C0 control register	64K
0x04010000	0x0401FFFF	I2C1 control register	64K
0x04020000	0x0401FFFF	I2C2 control register	64K
0x04030000	0x0403FFFF	I2C3 control register	64K
0x04030000	0x0403FFFF	I2C4 control register	64K
0x04050000	0x0404FFFF	reserve	04K
	0x0405FFFF	1111	64K
0x04060000		SPI_NAND control register	04K
0x04070000	0x0407FFFF	ETH0 control register	
0x04080000	0x040FFFFF	reserve	CATZ
0x04100000	0x04107FFF	I2S0 control register	64K
0x04108000	0x0410FFFF	I2S Global control register	64K
0x04110000	0x0411FFFF	I2S1 control register	64K
0x04120000	0x0412FFFF	I2S2 control register	64K
0x04130000	0x0413FFFF	I2S3 control register	64K
0x04140000	0x0414FFFF	UART0 control register	64K
0x04150000	0x0415FFFF	UART1 control register	64K
0x04160000	0x0416FFFF	UART2 control register	64K
0x04170000	0x0417FFFF	UART3 control register	64K
0x04180000	0x0418FFFF	SPI0 control register	64K
0x04190000	0x0419FFFF	SPI1 control register	64K
0x041A0000	0x041AFFFF	SPI2 control register	64K
0x041B0000	0x041BFFFF	SPI3 control register	64K
0x041C0000	0x041CFFFF	UART4 control register	64K
0x041D0000	0x041DFFFF	AUDSRC control register	64K
0x041E0000	0x042FFFFF	reserve	
0x04300000	0x0430FFFF	eMMC control register	64K
0x04310000	0x0431FFFF	SD0 control register	64K
0x04320000	0x0432FFFF	SD1 control register	
0x04330000	0x0433FFFF	DMA control register	64K
0x04340000	0x0434FFFF	USB control register	64K
0x04350000	0x043FFFFF	reserve	
0x04400000	0x0441FFFF	ROM memory space	128K
0x04420000	0x04FFFFFF	reserve	
0x05000000	0x05000FFF	reserve	4KB
0x05020000	0x05020FFF	RTCSYS_Timer control register	4KB
0x05021000	0x05021FFF	RTCSYS_GPIO control register	4KB
0x05022000	0x05022FFF	RTCSYS_UART control register	4KB
0x05023000	0x05023FFF	RTCSYS_INTR control register	4KB
0x05024000	0x05024FFF	RTCSYS_MBOX control register	4KB
0x05025000	0x05025FFF	RTCSYS_CTRL control register	4KB
0x05026000	0x05026FFF	RTCSYS_CORE	4KB
0x05027000	0x05027FFF	RTCSYS_IO control register	4KB

Specifications are subject to change without notice

0x05028000	0x05028FFF	RTCSYS_OSC control register	4KB
0x05029000	0x05029FFF	reserve	4KB
0x0502A000	0x0502AFFF	RTCSYS_32kless control register	4KB
0x0502B000	0x0502BFFF	RTCSYS_I2C control register	4KB
0x0502C000	0x0502CFFF	RTCSYS_SAR control register	4KB
0x0502D000	0x0502DFFF	RTCSYS_WDT control register	4KB
0x0502E000	0x0502EFFF	RTCSYS_IRRX control register	4KB
0x05200000	0x053FFFFF	RTCSYS_SRAM	8KB
0x05400000	0x057FFFFF	RTCSYS_SPINOR	4MB
0x08000000	0x08001FFF	reserve	8K
0x08004000	0x08005FFF	DDR Controller control register	8K
0x08006000	0x08007FFF	reserve	8K
0x08008000	0x08009FFF	DDR AXI Monitor control register	8K
0x0800A000	0x0800BFFF	DDR Global control register	8K
0x08010000	0x08011FFF	reserve	8K
0x08012000	0x08013FFF	reserve	8K
0x08014000	0x09FFFFFF	reserve	
0x0A000000	0x0A07FFFF	ISP control register	512K
0x0A080000	0x0A0803FF	sc_top control register	1K
0x0A080400	0x0A080BFF	reserve	2K
0x0A080C00	0x0A080CFF	osd enc control register	256B
0x0A080D00	0x0A080FFF	reserve	768B
0x0A081000	0x0A081FFF	reserve	4K
0x0A082000	0x0A082FFF	img_v control register	4K
0x0A083000	0x0A083FFF	img_d control register	4K
0x0A084000	0x0A084FFF	sc_d control register	4K
0x0A085000	0x0A085FFF	sc_v1 control register	4K
0x0A086000	0x0A086FFF	sc_v2 control register	4K
0x0A087000	0x0A087FFF	sc_v3 control register	4K
0x0A088000	0x0A088FFF	DISP control register	4K
0x0A089000	0x0A089FFF	reserve	4K
0x0A08A000	0x0A08AFFF	dsi_mac control register	4K
0x0A08B000	0x0A08BFFF	cmdq control register	4K
0x0A08C000	0x0A08CFFF	reserve	4K
0x0A08D000	0x0A08DFFF	reserve	4K
0x0A08E000	0x0A09FFFF	reserve	72K
0x0A0A0000	0x0A0AFFFF	IVE control register	64K
0x0A0A0000	0x0A0BFFFF	reserve	64K
0x0A0C0000	0x0A0C1FFF	ldc control register	8K
0x0A0C2000	0x0A0C3FFF	VI0/MIPI_RX0 control register	8K
0x0A0C4000	0x0A0C5FFF	VI1/MIPI_RX1 control register	8K
0x0A0C6000	0x0A0C7FFF	VI2/MIPI_RX2 control register	8K
0.6:		TITROTTO I I	8K
0x0A0C8000	0x0A0C9FFF	VIPSYS control register	on
0x0A0C8000 0x0A0CA000	0x0A0C9FFF 0x0A0CFFFF	reserve	24K

0x0A0D1000	0x0A0D1FFF	DSI_PHY control register	4K
0x0A0D2000	0x0AFFFFFF	reserve	
0x0B000000	0x0B00FFFF	JPEG codec control register	64K
0x0B010000	0x0B01FFFF	H.264 codec control register	64K
0x0B020000	0x0B02FFFF	H.265 codec control register	64K
0x0B030000	0x0BFFFFFF	reserve	
0x0C000000	0x0FFFFFFF	reserve	
0x10000000	0x1FFFFFFF	SPI_NOR memory space	256M
0x30000000	0x7FFFFFFF	reserve	
0x80000000	0xFFFFFFF	DDR memory space	2G

^{*}Read and write operations to reserved address space may produce unintended results.

2 Hardware Characteristics

2.1 Package and Pin Distribution

2.1.1 Package SG2002

SG2002 uses QFN package with dimensions of 9mm×9mm×0.9mm. The pin pitch is 0.35mm. The total number of pins is 88. Please refer to the figure below for more detailed package dimensions.

Figure Error: Reference source not found-2 SG2002 package dimensions, top view

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		Α	0.8	0.85	0.9
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.7	
L/F THICKNESS		A3	0.152 REF		
LEAD WIDTH		b	0.13	0.18	0.23
BODY SIZE	X	D		9 BSC	
BOD1 SIZE	Υ	E	9 BSC		
LEAD PITCH		е	0.35 BSC		
EP SIZE	Х	J	7.6	7.7	7.8
EF SIZE	Υ	K	7.6	7.7	7.8
LEAD LENGTH		L	0.35	0.4	0.45
PACKAGE EDGE TOLE	RANCE	aaa	0.1		
MOLD FLATNESS		bbb	0.1		
COPLANARITY		ccc	0.08		
LEAD OFFSET		ddd	0.1		
EXPOSED PAD OFFSE	T	eee	0.1		

Figure Error: Reference source not found-3 SG2002 Package external dimensions, bottom view

2.1.2 Pin Distribution SG2002

Figure Error: Reference source not found-4 SG2002 pin distribution

2.2 Pin Information Description

Please refer to SG2002 PINOUT CN.xlsx

2.3 Welding Process Suggestions

Please refer to Figure Error: Reference source not found-5 for the lead-free reflow soldering process curve.

SG2002 Please refer to Pure Sn.

Recommended Reflow Profile for Lead-free Solder Paste

Figure Error: Reference source not found-5 Lead-free reflow soldering process curve

Please refer to Table Error: Reference source not found-1 for the parameters of lead-free reflow soldering process.

The following parameters are only recommended values for reference. Clients need to make relative adjustments according to the actual production conditions.

Table Error: Reference source not found-1 Lead-free reflow soldering cover parameters

1~4°C/sec

SOPHON

(Tmax~Tamb)

Area	Time	Heating Rate	Peak Temperature	Cooling Rate
preheat zone (40~150°C)	60~120se c	1~2°C/sec		
Soak zone (150~200°C)	60~90sec	< 1°C/sec		
reflow zone (>melting point 20~30°C)	40~60sec	2~3°C/sec	Sn/Ag/Cu 237~247°C Sn/Cu 247~257°C Pure Sn 252~262°C	
cooling Zone				1 /10C/222

Due to environmental protection considerations, the parameters for leaded reflow soldering are not provided currently.

2.4 Moisture Sensitivity Parameters

2.4.1 Moisture Barrier Packaging for SOPHGO Products

This section establishes the principles for the storage and use of chips (moisture sensitive products) during welding. The relevant terms are as follows:

- Floor life: refers to the maximum allowable time between opening the moisture barrier packaging and reflow, in an environment with temperature < 30°C/60% RH.
- Shelf life: refers to the normal storage time after the moisture barrier packaging has been sealed.

2.4.1.1 Packaging Information

The moisture-proof vacuum bag containing (1) chip and tray. (2) desiccant Pack (3) Humidity Indicator Card (HIC)

Figure Error: Reference source not found-6 Vacuum drying packaging information

Figure Error: Reference source not found-7 Desiccant packs, humidity indicator card, chip and tray

2.4.1.2 Moisture-Sensitive Product Incoming Inspection

After opening the vacuum moisture-proof bag before SMT, inspect the humidity indicator card. There are many different styles of humidity indicator cards, but if it shows that it has been exposed to moisture, it must be baked before SMT use. The relevant time and temperature parameters for baking are

SG2002 Preliminary Datasheet

shown in TableError: Reference source not found-2.

If re-packaging after opening, and it has not been exposed for more than 2 hours in an environment of <30°C/60% RH, it can be vacuum dried and packaged by only replacing the drying bag. If it exceeds 2 hours, it is recommended to re-bake, replace the drying bag, and then reseal the package.

2.4.1.3 Storage and Use (Refer to JEDEC J-STD-033)

Shelf life:

The sealed vacuum moisture-proof bag can be stored for at least 12 months in an environment of 40°C/90% RH.

Floor life:

Before SMT, if the humidity card indicates that the components have not been exposed to moisture after opening in an environment of 30°C/60% RH, it can be used directly without baking. The time for Level 3 (the floor life classification of this chip is Level 3) is shown in.

TableError: Reference source not found-1 Humidity classification and floor life

Moisture classification level and floor life

Level	Floor Life (out of bag) at factory ambient ≤ 30 °C/60% RH or as stated
1	Unlimited at ≤ 30 °C/85%RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label

2.4.1.4 Rebaking

If found to have been exposed to moisture after opening, before SMT or before being resealed in vacuum packaging, they should be baked first. Baking temperature and time can be referred to inTableError: Reference source not found-2.

After baking, shelf life can be recalculated after being sealed in moisture-proof packaging.

If not sealed in moisture-proof packaging after baking, the storage time should refer to the floor life.

TableError: Reference source not found-2 Baking temperature and time table

Package		Bake @ 125 °C	Bake @
Thickness	Level		40 °C ≤ 5% RH
≤ 1.4 mm	2a	4 h.	5 days
	3	7 h.	11 days
	4	9 h.	13 days
	5	10 h.	14 days
	5a	14 h.	19 days
≤ 2.0 mm	2a	18 h.	21 days
	3	24 h.	33 days
	4	31 h.	43 days
	5	37 h.	52 days
	5a	48 h.	68 days
≤ 4.0 mm	2a	48 h.	67 days
	3	48 h.	67 days
	4	48 h.	68 days
	5	48 h.	68 days
	5a	48 h.	68 days

SG2002 Preliminary Datasheet

2.5 Electrical Performance Parameters

2.5.1 Power Consumption Parameters

Typical scenario: 1080P + Video Encode + AI ~500mW

Other scenarios: TBD

2.5.2 Temperature and Thermal Resistance Parameters (SG2002)

Thermal resistance values ThetaJA, JB, JC of the chip. The results of the actual test conducted on the JEDEC 2s2p PCB are shown inTable Error: Reference source not found-3.

Table Error: Reference source not found-3 Thermal resistance parameters for SG2002

PCB Package		Theta JA (C/W)		Doi It	Thata IC	Theta	
Conditio n	Size(mm)	0 m/s	1 m/s	2 m/s	Psi Jt (C/W)	Theta JC (C/W)	JB (C/W)
JEDEC 2s2p PCB	9×9	20.3	15.9	14.8	0.17	6.9	5.32

The temperature-related parameters of the chip are shown in Table Error: Reference source not found-4.

Table Error: Reference source not found-4 Temperature-related parameters

	Min	Max	Note
Working environment temperature Tamb	-30°C	70°C	1
Recommended value for the junction temperature	-30°C	85°C ~ 105°C	2

	Min	Max	Note
(Tjunc) of chip			
Destructive junction	-40°C	+125°C	3, 4
temperature	- 1 0 C	123 C	3, 4

- 1. The maximum operating temperature in the working environment depends on the power consumption and heat dissipation conditions of the scenario, without violating the premise of junction temperature.
- 2. The recommended range of junction temperature is mainly considered to avoid thermal runaway caused by poor heat dissipation conditions at high temperatures, which may lead to uncontrolled temperature entering the destructive junction temperature range and damaging the chip. In addition, long-term operation at high temperatures may slightly accelerate chip aging and reduce its service life.
- 3. The DRAM used guarantees a junction temperature of only -40°C to 115°C. Content inside the DRAM cannot be guaranteed to remain intact beyond this range.
- 4. When the chip operates at the destructive junction temperature, it may cause irreversible physical damage to the chip.

2.5.3 Destructive Voltage

The destructive voltage parameters are shown in Table Error: Reference source not found-5. When working above destructive voltage, it may cause irreversible physical damage.

TableError: Reference source not found-5 Destructive voltage parameters (SG2002)

Parameter		Max	Unit
VDDC	Core power	1.05V	v
VDDC_RTC	Core power for RTC domain (comes with LDO)	1.05 V	V
VDD18A_AUD	Analog power for Audio ADC/DAC	1.98	V
vdd18a_usb_pll_et h	Analog power for USB, PLL, ETH, eFuse	1.98	V
VDD18A_MIPI	18A_MIPI Analog power for MIPI		V
VDD33A_ETH_USB	DD33A_ETH_USB Analog power for Ethernet PHY, USB PHY		V
VDDIO_SD0_EMMC	IO power for EMMC & SD0 domain	3.465	V
VDDIO_SD1	IO power for SD1 domain	3.465	V
VDDIO_RTC	IO power for RTC domain (backup power)	1.98	V
VDDQ VDDQ_DRAM	IO & DRAM Power for DDR2/DDR3L/DDR3	1.65	V

2.5.4 Power Up/Down Sequence (SG2002)

In principle, chips can be divided into the following groups. The same group of power domains can be powered up/down at the same time. For different groups, the power up/down time is separated according to the following conditions.

- Always on domain
- Core power domain
 - VDDC
- **■** 1.8V IO domain
 - VDD18A_AUD (analog)
 - VDD18A_USB_PLL_ETH (analog)
 - VDD18A MIPI (analog)
- **⊘** 180D33 IO domain (1.8V domain / 3V domain depending on voltage)
 - VDDIO_SD1 (also no die domain)
- **♂** 3V domain
 - VDDIO SD0 EMMC
- DDR IO & DRAM domain
 - VDDQ
 - VDDQ_DRAM

In principle, 0.9V power domain and 1.8V power domain can be powered up at the same time, or power-up the 0.9V power domain prior to 1.8V power domain. However, the 3V power domain must be powered on after the establishment of 1.8V power domain. Violations may cause irreversible damage to the chip. The power down sequence is the reverse of the power up sequence.

Possible risky power-up and power-down behaviors include:

- 1. During power-up, if VDD3 > 2V while VDD18 has not reached 1.8V-10%, it may damage the 3V circuit.
- 2. During power-down, if VDD3 < 2V while VDD18 has already dropped below 1.8V-10%.
- 3. During power-up, if VDD18 > 0.7V while VDD09 is still below 0.5V, it may cause eFuse misoperation.
- 4. During power-down, if VDD09 < 0.5V while VDD18 is still > 0.7V, it may also cause eFuse misoperation.

The chip provides two pins, PWR_SEQ1 and PWR_SEQ2, to co-control the power supply (VDDIO_RTC domain) switch. SEQ1 is preset to 0.9V and 1.8V, while SEQ2 controls 3V. Some plug-in systems may use RC to determine the switch for both 0.9V and 1.8V, but it is important that the chip's 3V still needs to be controlled by SEQ2 to prevent damage.

SEQ1 -> SEQ2 at power-up SEQ2 -> SEQ1 on power off

PWR_VBAT_DET is used to detect the status of the main power supply. If the voltage is low, the software will receive an interrupt first (such as stopping writing flash to prevent damage to the file system). If the voltage continues to drop, the RTC module will actively start the power-down program. PWR_VBAT_DET also needs to be logic high to start up.

In practice. The following four conditions can be subdivided. The recommendations are as follows.

Power	Control	Plug-in Applications (1) Ext RTC/no RTC	Plug-in Applications (2) 32Kless
Main 0.9V	Always on	VDDC	VDDC
Main 1.8V	Always on	VDD18A_AUD vdd18a_usb_pll_eth VDD18A_MIPI VDDIO_SD1 VDDIO_RTC	VDD18A_AUD vdd18a_usb_pll_eth VDD18A_MIPI
Main 3.0V	SEQ2	VDD33A_ETH_USB VDDIO_SD0_EMMC VDDIO_SD1	VDD33A_ETH_USB VDDIO_SD0_EMMC
Main VDDQ	always on	VDDQ VDDQ_DRAM	VDDQ VDDQ_DRAM
VDDBACKU P	Coin Batt	For external RTC	
V18RTC (low iddq LDO)	Always on, from Coin batt	No need	VDDIO_RTC VDDIO_SD1

Power	Control	Battery Applications (3) Ext RTC/no RTC	Battery Applications (4) 32Kless
Main 0.9V	SEQ1	VDDC	VDDC
Main 1.8V	SEQ1	VDD18A_AUD vdd18a_usb_pll_eth VDD18A_MIPI	VDD18A_AUD vdd18a_usb_pll_eth VDD18A_MIPI
Main 3.0V	SEQ2	VDD33A_ETH_USB VDDIO_SD0_EMMC	VDD33A_ETH_USB VDDIO_SD0_EMMC
Main VDDQ	SEQ2 or 3	VDDQ	VDDQ

Power	Control	Battery Applications (3) Ext RTC/no RTC	Battery Applications (4) 32Kless
		VDDQ_DRAM	VDDQ_DRAM
VDDBACKU P	Coin Batt	For external RTC	
V18RTC (low iddq LDO)	Always on, from Coin batt	No need	VDDIO_RTC
VAO18	from Main batt	WIFI other AO device VDDIO_RTC VDDIO_SD1	WIFI other AO device VDDIO_SD1
VAO33	from Main batt	WIFI other AO device	WIFI other AO device

2.5.5 Power Supply DC/AC Electrical Parameters

Table Error: Reference source not found-6 The power supply electrical parameters of the SG2002 (Recommended OPERATING conditions)

Parameter		Min	Тур	Max	Unit
VDDC	Core power	0.81	0.9	0.99	V
VDDC_RTC	Core power for RTC domain (Internal LDO, Caponly)	0.81	0.9	0.99	V
VDD18A_AUD	Analog power for Audio ADC/DAC	1.62	1.8	1.98	V
vdd18a_usb_pll_eth	Analog power for Ethernet PHY, USB PHY, PLL	1.62	1.8	1.98	V
VDD18A_MIPI	Analog power for MIPI	1.62	1.8	1.98	V
VDD33A_ETH_USB	Analog power for Ethernet PHY, USB PHY	2.97	3.3	3.465	V
					V
VDDIO_SD0_EMMC	IO power for SD0 & EMMC domain	1.71 2.85	1.8 3.0/3.3	1.89 3.15/3.46 5	V
VDDIO_SD1	IO power for SD1 domain	1.71 2.85	1.8 3.0/3.3	1.89 3.465	V
VDDIO_RTC	IO power for RTC domain IO & LDO	1.3V	1.8	+10%	V
VDDQ	IO & DRAM Power for DDR3L	1.283	1.35	1.417	
VDDQ_DRAM	IO & DRAM Power for DDR3 IO & DRAM Power for DDR2	1.425 1.425	1.50 1.50	1.575 1.575	V

Parameter		Min	Тур	Max	Unit
Tjunc	Junction Temperature (Max reduce from 125C due to DRAM)	-40	25	115 (note)	°C

Note: The operating junction temperature of the DRAM used is guaranteed to be only between -40°C to 115°C. Contents inside the DRAM cannot be guaranteed to be intact beyond this temperature range.

2.5.6 1.8V IO Electrical Parameters

For domain (VDDIO18_0, VDDIO18_1, VDDIO18_RM0, VDDIO_RTC)

Table Error: Reference source not found-7 1.8V IO Electrical Parameters

Parameter		Min	Тур	Max	Unit
V _{IL}	Input Low voltage	-0.3		0.35xVDDIO	V
V _{IH}	Input High voltage	0.65*VDDIO		1.98	V
V _T (no pull)	Threehold realts as sub as CT[1,0] = 00	0.75	0.91	1.09	
$\mathbf{V}_{\mathtt{T_PU}}$	Threshold voltage when ST[1:0] = 00 (no schmit trigger)	0.74	0.90	1.08	V
$\mathbf{V}_{\mathbf{T_PD}}$	(110 scrittit (rigger)	0.76	0.92	1.10	
V_{T^+}		0.82	0.97	1.13	
$\mathbf{V}_{\mathbf{T}}$		0.72	0.85	1.02	
$V_{T^+_PU}$	Threshold voltage when ST[1:0] = 01	0.81	0.96	1.12	V
$\mathbf{V}_{\text{T-}_{ ext{PU}}}$	Threshold voltage when 31[1.0] - 01	0.71	0.84	1.01	v
$\mathbf{V}_{\mathbf{T}^{+}_\mathbf{PD}}$		0.82	0.98	1.14	
V _{TPD}		0.73	0.86	1.03	
$\mathbf{V}_{\mathbf{T}^+}$		0.87	1.04	1.19	
$\mathbf{V}_{\text{T-}}$		0.69	0.80	0.95	
$\mathbf{V}_{\mathbf{T}^+_\mathbf{PU}}$	Threshold voltage when ST[1:0] = 1X	0.86	1.03	1.18	V
$\mathbf{V}_{\mathbf{T-PU}}$	Threshold voltage when of [1.0] Th	0.68	0.79	0.94	'
$\mathbf{V}_{\mathbf{T}^+_\mathbf{PD}}$		0.88	1.05	1.20	
V_{T-PD}		0.69	0.81	0.96	
I_1	Input leakage (V _I = 1.8V or 0V)			+/-10u	A
I_{oz}	Tri-state output leakage current (V _o =1.8V or 0V)			+/-10u	A
R _{PU}	Pull up resistor	55k	79k	121k	Ω
R _{PD}	Pull down resistor	51k	87k	169k	Ω
V _{oL}	Output low voltage			0.45	V
V _{OH}	Output high voltage	1.35			V
	Low level output current @ V _{oL} (max)				
	DS[1:0] = 00	7.6	12.8	18.0	mA
I_{OL}	DS[1:0] = 01	15.2	25.3	35.5	mA
	DS[1:0] = 10	22.6	37.4	52.2	mA
	DS[1:0] = 11	29.7	49	67.9	mA
	High level output current @ V _{OH} (max)				
	DS[1:0] = 00	4.8	10.8	18.9	mA
\mathbf{I}_{OH}	DS[1:0] = 01	9.5	21.5	37.4	mA
	DS[1:0] = 10	14.3	32.1	55.9	mA
	DS[1:0] = 11	18.9	42.4	73.9	mA

2.5.7 18OD33 IO (VDDIO=1.8V) Electrical Parameters

For domain (VDDIO_EMMC, VDDIO_SD0)

Table Error: Reference source not found-8 180D33 IO (VDDIO=1.8V)
Electrical Parameters

Specifications are subject to change without notice

Parameter		Min	Тур	Max	Unit
V _{IL}	Input Low voltage	-0.3		0.58	V
V _{IH}	Input High voltage	1.27		2.00	V
V _T (no pull)	m 1 11 1 m 2 m 2	0.91	0.97	1.03	
$\mathbf{V}_{\mathbf{T}_{-}\mathbf{P}\mathbf{U}}$	Threshold voltage when ST = 0	0.90	0.96	1.02	V
$\mathbf{V}_{T,PD}$	(no schmit trigger)	0.91	0.97	1.06	
V _{T+} (no					
pull)		1.03	1.07	1.12	
V _{T-} (no		0.75	0.83	0.91	
pull)	Threshold voltage when ST = 1	1.02	1.06	1.11	V
$\mathbf{V}_{\mathbf{T}^+ \mathbf{P} \mathbf{U}}$	Threshold voltage when S1 = 1	0.74	0.82	0.90	V
$\mathbf{V}_{\text{T-}_{\mathbf{PU}}}$		1.03	1.08	1.13	
$\mathbf{V}_{\mathbf{T}^+_\mathbf{PD}}$		0.75	0.83	0.92	
$\mathbf{V}_{\text{T-}_{\mathbf{PD}}}$					
$\mathbf{I}_{\mathbf{l}}$	Input leakage (V _I = 1.8V or 0V)			+/-10u	A
I_{oz}	Tri-state output leakage current (V_0 =1.8V or 0V)			+/-10u	A
$\mathbf{R}_{ ext{PU}}$	Pull up resistor	33k	60k	92k	Ω
R _{PD}	Pull down resistor	34k	61k	158k	Ω
V _{OL}	Output low voltage			0.45	V
V _{OH}	Output high voltage	1.40			V
	Low level output current @ V _{OL} (max)				
	DS[2:0] = 000	4.9	7.8	11.1	mA
	DS[2:0] = 001	7.4	11.7	16.4	mA
	DS[2:0] = 010	9.8	15.5	21.7	mA
I_{OL}	DS[2:0] = 011	12.2	19.2	26.7	mA
	DS[2:0] = 100	14.6	23.0	31.9	mA
	DS[2:0] = 101	17.0	26.6	36.8	mA
	DS[2:0] = 110	19.4	30.2	41.6	mA
	DS[2:0] = 111	21.7	33.7	46.2	mA
	High level output current @ V _{OH} (max)				
	DS[2:0] = 000	3.6	6.2	9.5	mA
	DS[2:0] = 001	5.4	9.3	14.3	mA
	DS[2:0] = 010	7.2	12.4	19.1	mA
I_{OH}	DS[2:0] = 011	9.0	15.4	23.8	mA
	DS[2:0] = 100	10.8	18.5	28.5	mA
	DS[2:0] = 101	12.6	21.6	33.1	mA
	DS[2:0] = 110	14.4	24.6	37.8	mA
	DS[2:0] = 111	16.2	27.7	42.5	mA

2.5.8 18OD33 IO (VDDIO=3.0V) Electrical Parameters

For domain (VDDIO_EMMC, VDDIO_SD0)

Table Error: Reference source not found-9 180D33 IO (VDDIO=3.0V) Electrical Parameters

Parameter		Min	Тур	Max	Unit
V _{IL}	Input Low voltage	-0.3		0.25*VDDIO	V

Specifications are subject to change without notice

Parameter		Min	Тур	Max	Unit
V _{IH}	Input High voltage	0.625*VDDIO		3.3	V
V _T (no pull)	Threshold voltage when ST = 0	0.82	0.95	1.11	
$\mathbf{V}_{\mathrm{T_PU}}$	(no schmit trigger)	0.81	0.93	1.09	V
$\mathbf{V}_{\mathtt{T_PD}}$	(no scrinin trigger)	0.83	0.96	1.13	
V _{T+} (no					
pull)		1.00	1.10	1.23	
V _T . (no		0.75	0.90	1.08	
pull)	Threshold voltage when ST = 1	1.00	1.09	1.21	V
$\mathbf{V}_{\mathbf{T^+}_{-\mathbf{PU}}}$	Threshold voltage when 31 - 1	0.73	0.88	1.05	v
$\mathbf{V}_{ extbf{T-}_{-} extbf{PU}}$		1.01	1.11	1.25	
$V_{T^+_PD}$		0.75	0.91	1.09	
V_{T-PD}					
I_1	Input leakage (V _I = 3.0V or 0V)			+/-10u	A
I_{oz}	Tri-state output leakage current (V_0 =3.0V or 0V)			+/-10u	A
R _{PU}	Pull up resistor	33k	60k	93k	Ω
R _{PD}	Pull down resistor	34k	62k	285k	Ω
V _{oL}	Output low voltage			0.125*VDDIO	V
V _{OH}	Output high voltage	0.75*VDDIO			V
	Low level output current @ V _{OL} (max)				
	DS[2:0] = 000	3.1	5.5	8.6	mA
	DS[2:0] = 001	4.7	8.2	12.7	mA
	DS[2:0] = 010	6.2	10.8	16.9	mA
I_{OL}	DS[2:0] = 011	7.7	13.4	20.8	mA
	DS[2:0] = 100	9.3	16.1	24.9	mA
	DS[2:0] = 101	10.8	18.7	28.8	mA
	DS[2:0] = 110	12.3	21.2	32.6	mA
	DS[2:0] = 111	13.8	23.7	36.3	mA
	High level output current @ V _{OH} (max)				
	DS[2:0] = 000	5.0	7.5	10.5	mA
	DS[2:0] = 001	7.5	11.2	15.7	mA
	DS[2:0] = 010	10.1	14.9	21.0	mA
I_{OH}	DS[2:0] = 011	12.6	18.6	26.2	mA
	DS[2:0] = 100	15.1	22.3	31.4	mA
	DS[2:0] = 101	17.6	26.0	36.5	mA
	DS[2:0] = 110	20.1	29.8	41.8	mA
	DS[2:0] = 111	22.6	33.4	46.9	mA

2.5.9 Audio GPIO Electrical Parameters

Table Error: Reference source not found-10 Audio GPIO Electrical Parameters

Parameter		Min	Тур	Max	Unit
$V_{\rm IL}$	Input Low voltage	-0.3		0.55	V
V _{IH}	Input High voltage	1.2		1.98	V
$egin{array}{c} oldsymbol{V_{T^+}} \ oldsymbol{V_{T^-}} \end{array}$	Threshold voltage with schmitt trigger	0.8 0.65	0.95 0.82	1.1 0.99	V
I ₁	Input leakage (V _I = 1.8V or 0V)			+/-4u	A
I _{oz}	Tri-state output leakage current (V_0 =1.8V or 0V)			+/-4u	A
V _{OL}	Output low voltage			0.4	V
V _{OH}	Output high voltage	1.4			V
I _{OL}	Low level output current @ V _{oL} (max)	4.9	9.9	18.4	mA
Іон	High level output current @ V _{OH} (max)	11.3	17.1	26.1	mA

2.5.10 ETH GPIO Electrical Parameters

Table Error: Reference source not found11 ETH GPIO Electrical Parameters

Parameter		Min	Тур	Max	Unit
$V_{\rm IL}$	Input Low voltage	-0.3		0.3*VDD18A	V
V _{IH}	Input High voltage	0.7*VDD18A		1.98	V
V _{T+}	Threshold voltage with schmitt trigger	0.84	0.99	1.14	V
V _{T-}	Threshold voltage with schiller trigger	0.66	0.83	1.01	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\mathbf{I}_1	Input leakage (V _I = 1.8V or 0V)			+/-1.3u	A
Ioz	Tri-state output leakage current (V ₀ =1.8V or			+/-1.3u	A
102	0V)			1/-1.3u	A
\mathbf{V}_{OL}	Output low voltage			0.4	V
V _{OH}	Output high voltage	VDD18A-0.4			V
т	Low level output current @ V _{OL} (max) DS=0	8.8	15.7	27.3	mA
IOL	I_{OL} Low level output current @ V_{OL} (max) DS=1		17.8	30.5	IIIA
I _{OH}	High level output current @ V _{OH} (max) DS=0	4.0	5.3	7.4	mA
■ OH	High level output current @ V _{OH} (max) DS=1	4.7	6.2	8.5	піл

2.5.11 MIPI Rx Electrical Parameters

MIPI D-PHY High Speed (MIHS) electrical parameters are shown in Table 2-13 and Table Error: Reference source not found-13.

SG2002 Preliminary Datasheet

MIPI D-PHY Low Power (MILP) electrical parameters are shown in Table Error: Reference source not found-14 and Table Error: Reference source not found-15.

Table Error: Reference source not found-12 MIPI D-PHY High Speed (MISH) Differential DC Electrical Parameters

Parameter	Symbol	Data Rate	Min	Тур	Max	Unit
Common Mode	VCM(MIHS)	≤1.5Gbps	70	200	330	\/
Voltage Range (VP+VM)/2		>1.5Gbps	70	200		mV
Internal Termination Resister Value	ZID(MIHS)	≤1.5Gbps	80	100	125	ohm
		>1.5Gbps		100		
Single-ended		≤1.5Gbps			450	
threshold for HS termination enable	VTERM-EN(MIHS)	>1.5Gbps			450	mV

Table Error: Reference source not found-13 MIPI D-PHY High Speed (MIHS) Differential AC Electrical Parameters

Parameter	Symbol	Data Rate	Min	Тур	Max	Unit
Differential Input		≤1.5Gbps	-70		70	
Threshold Voltage (VP — VM)	VIDTH(MIHS)	>1.5Gbps	-40		40	mV
Single-ended Input	duran en la company	≤1.5Gbps	10000000		100000000	
Voltage VP,VM	VIS(MIHS)	>1.5Gbps	-40		460	mV
Common-mode	ΔVCMRX	≤1.5Gbps				
interface		>1 EChns			100	mV
beyond 450MHz		>1.5Gbps				
Common-mode		≤1.5Gbps	-50		50	
interface 50MHz-450MHz	ΔVCMRX(LF)	>1.5Gbps	-25		25	mV
Single-ended		≤1.5Gbps				
threshold for HS	VTERM-EN				450	mV
termination enable		>1.5Gbps				
Common-mode	ССМ	≤1.5Gbps			60	pF
termination	CCIVI	>1.5Gbps			60	þr

TableError: Reference source not found-14 MIPI D-PHY Low Power (MILP)

Differential DC Electrical Parameters

SOPHON
SOPHON

Parameter	Symbol	Min	Тур	Max	Unit
Logic 1 input voltage	VIHLP	740			mV
Logic 0 input voltage	VILLP			550	mV
Input hysteresis	VHYST	25			mV

Table Error: Reference source not found-15 MIPI D-PHY Low Power (MILP) Differential AC Electrical Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Input pulse rejection	eSPIKE			300	V·ps
Minimum pulse width response	TMIN-RX	20			ns
Peak interference amplitude	VINT			200	mV
Interference frequency	fINT	450			MHz

2.5.12 Sub-LVDS Electrical Parameters

The electrical parameters are shown in Table Error: Reference source not found-16 and Table Error: Reference source not found-17.

TableError: Reference source not found-16 Sub-LVDS(SL) Differential DC Electrical Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Common Mode Voltage Range (VP+VM)/2	VCM(SL)	600	900	1200	mV
Internal Termination Resister Value	ZID(SL)	80	100	120	mV

TableError: Reference source not found-17 Sub-LVDS(SL) Differential AC Electrical Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Differential Input Threshold Voltage (VP – VM)	VIDTH(SL)	-70		70	mV
Single-ended Input Voltage VP,VM	VIS(SL)	400		1400	mV

Specifications are subject to change without notice

2.5.13 HiSPi Electrical Parameters

HiSPi is divided into SLVS (HSSL) and HiVCM (HSHI). The electrical parameters are shown in Table Error: Reference source not found-18 and .

Table Error: Reference source not found-18 HiSPi Differential DC Electrical Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Common Mode Voltage Range	VCM(HSSL)	50	200	350	\/
(VP+VM)/2	VCM(HSHI)	660	900	1170	mV
Internal Termination Resister Value	ZID(HSSL)	80	100	125	\/
Internal Termination Resister Value	ZID(HSHI)	80	100	125	mV

Table Error: Reference source not found19 HiSPi Differential AC Electrical Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Differential Input Threshold Voltage	VIDTH(HSSL)	-70		70	m\/
(VP-VM)	VIDTH(HSHI)	-100		100	mV
Single-ended Input Voltage	VIS(HSSL)	-40		490	\/
VP,VM	VIS(HSHI)	550		1350	mV

2.5.14 MIPI /LVDS Tx Electrical Parameters

Table Error: Reference source not found20 MIPI HS Transmitter DC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
$\mathbf{V}_{\mathrm{CMTX}}$	HS transmit static common-mode voltage	150	200	250	mV	
\Delta V_{CMTX(1,0)}	VCMTX mismatch when output is Differential-1 or Differential-0	-	-	5	mV	
V _{OD}	HS transmit differential voltage	140	200	270	mV	
$ \Delta V_{0D} $	VOD mismatch when output is Differential-1 or Differential-0	-	-	14	mV	
V _{OHHS}	HS output high voltage	-	-	360	mV	
Zos	Single ended output impedance	40	50	62.5	Ω	
ΔZ_{os}	Single ended output impedance mismatch	-	-	20	%	

Table Error: Reference source not found21 MIPI HS Transmitter AC Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
$\Delta V_{\text{CMTX(HF)}}$	Common-level variations above 450MHz		-	15	mV_{RMS}	
$\Delta V_{\text{CMTX(LF)}}$	Common-level variation between 50-450MHz	-	-	25	mV_{PEAK}	
t _R and t _F	20%-80% rise time and fall time	-	-	0.3	UI	1, 2
		-	-	0.35	UI	1, 3
		100	-	-	ps	4

Note:

- 1. UI is unit interval. Example: 1UI = 1ns for 1Gbps speed.
- 2. Applicable when supporting maximum HS bit rates ≤ 1 Gbps (UI ≥ 1 ns).
- 3. Applicable when supporting maximum HS bit rates > 1 Gbps (UI \leq 1 ns) but \leq 1.5 Gbps (UI \geq 0.667 ns).
- 4. Applicable when supporting maximum HS bit rates ≤ 1.5 Gbps. However, to avoid excessive radiation, bit

rates < 1 Gbps (UI \geq 1 ns), should not use values below 150 ps.

TableError: Reference source not found22 MIPI LP Transmitter DC Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{OH}	Thevenin output high level	1.1	1.2	1.3	V	1
		0.95	_	1.3	V	2
V _{OL}	Thevenin output low level	-50	-	50	mV	_
$\mathbf{Z}_{\mathtt{OLP}}$	Output impedance of LP transmitter	110	-	_	Ω	

Note:

- 1. Applicable in normal Low Power mode when the supported data rate \leq 1.5 Gbps.
- 2. Applicable in normal Low Power mode when the supported data rate > 1.5 Gbps.

Table Error: Reference source not found23 MIPI LP Transmitter AC Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
$T_{\rm RLP}/T_{\rm FLP}$	15%-85% rise time and fall time	-	-	25	ns	
$T_{ m REOT}$	30%-85% rise time and fall time	-	-	35	ns	
T _{LP-PULSE-TX}	Minimum pulse width	20	-	-	ns	
$\delta V/\delta t_{SR}$	Slew rate @ CLOAD = 0 to 70pF (Falling Edge Only)	30	-	300	mV/ns	1
		25	-	300	mV/ns	2
$\mathbf{C}_{ extsf{LOAD}}$	Load capacitance	0	_	70	pF	

Note:

- 1. Applicable in normal Low Power mode when the supported data rate \leq 1.5 Gbps.
- 2. Applicable in normal Low Power mode when the supported data rate > 1.5 Gbps.

Table Error: Reference source not found24 LVDS Transmitter DC/AC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vos	LVDS common mode offset voltage	1.125	1.25	1.375	V	
$ \Delta V_{\rm OS(1,0)} $	VOS mismatch when output is Differential-1 or Differential-0	-			mV	
V _{od}	LVDS transmit differential voltage	247	350	454	mV	
$ \Delta V_{\text{od}} $	VOD mismatch when output is Differential-1 or Differential-0	-	-	50	mV	
T_{RLP}/T_{FLP}	15%-85% rise time and fall time (DUT side)		-	0.3UI	ns	

2.5.15 SDIO Electrical Parameters

EMMC / SD0 / SD1 Refer to 2.5.7 and 2.5.8

2.5.16 VI RAW/BT.601/BT.656/BT.1120 Electrical Parameters

Please refer to 2.5.7 and 2.5.8 according to the domain of IO.

2.5.17 BT.601/BT.656/8080 Electrical Parameters in VO (Video Out)

Please refer to 2.5.7 and 2.5.8 according to the domain of IO.

2.5.18 AUDIO CODEC Electrical Parameters

Table Error: Reference source not found25 Audio CODEC Overall Indicator Table

Parameters	Min	Тур	Max	Unit	Description
Analog Power AVDD	1.62	1.8	1.98	V	
VREF		1.4/1.8 *VDD		V	

Table Error: Reference source not found26 Audio DAC Electrical Parameters

Parameters	Min	Тур	Max	Unit	Description
Full Output		1.55		Vnn	Maximum output
Amplitude		1.33		Vpp	signal swing

Table Error: Reference source not found27 Audio ADC Electrical Parameters

Specifications are subject to change without notice

Parameters	Min	Тур	Max	Unit	Description
Maximum Input Amplitude		1.75		Vpp	Maximum input signal swing

2.6 Timing

2.6.1 SPI NOR Timing

FigureError: Reference source not found-8 SPI NOR Timing Diagram

Table Error: Reference source not found28 SPI_NOR Timing Parameter
Table

Symbol	Description	Min	Gen	Max	Unit
T_{css}	Time of CS negative edge to the first clock edge	13.4	-	-	ns
T_{clk}	Clock Cycle	13.4	-	-	ns
T_{su}	Input Signal Setup Time Requirements	3.5	_	-	ns
T_{hd}	Input Signal Hold Time Requirements	0	_	-	ns
Tov	Output Signal Delay	-	-	2.6	ns
Tox	Output Signal Hold Time	-1.5	_	-	ns

^{*}IO input timing / IO output timing refers to the IO timing for SPI_NOR CMD/DATA transmission under 1xI/O, 2xI/O, 4xI/O, which includes SPINOR_SDI, SPINOR_SDO, SPINOR_HOLD_X, SPINOR_WP_X.

2.6.2 SPI NAND Timing

FigureError: Reference source not found-9 SPI NAND Input Timing Diagram

Table Error: Reference source not found-29 SPI NAND Input Timing

Parame	ters			Symb ol	Min	Тур	Max	Unit
Clock Cy	ycle			Tck	10.66		170.56	ns
Input Require	Signal ments	Setup	Time	Td_su	2.00			ns
Input Require	Signal ments	Hold	Time	Td_hd	1.20			ns

Figure Error: Reference source not found-10 SPI NAND Output Timing Diagram

SG2002 Preliminary Datasheet

Table Error: Reference source not found30 SPI NAND Output Timing

Parameters	Symbo 1	Min	Тур	Max	Unit
Clock Cycle	Tck	10.66		170.56	ns
Clock High Level Period	Tck_h	5.33		85.28	ns
Clock Low Level Period	Tck_l	5.33		85.28	ns
Output CS Setup time	Tcs_su	10.66			ns
Output CS Hold Time	Tcs_hd	10.66			ns
Output Signal Delay	Tq_vld	-1.00		2.00	ns

2.6.3 VI Timing

The VI timing is shown in Figure Error: Reference source not found-11.

FigureError: Reference source not found-11 VI Timing Diagram

The VI timing parameters are shown in Table Error: Reference source not found-31.

Table Error: Reference source not found-31 VI Timing Parameter Table

	Symbol	Min	Тур	Max	Unit
VICLK clock cycle	T	6.73			ns
VIDATA setup time	Tsu	1.9			ns
VIDATA hold time	Thd	0.8			ns

2.6.4 VO Timing

The VO timing is shown in Figure Error: Reference source not found-12.

FigureError: Reference source not found-12 VO Timing Diagram

The VO timing parameters are shown in.

SG2002 Preliminary Datasheet

Table Error: Reference source not found32 VO Timing Parameter Table

	Symb ol	Min	Тур	Max	Unit
VOCLK clock cycle	T		6.73		ns
VODATA delay	Tov	T/2-		T/	no
time	100	1.5		2+1.5	ns

Figure Error: Reference source not found-13 BT.656 Timing Diagram

Figure Error: Reference source not found-14 BT.601 Timing Diagram

Figure Error: Reference source not found-15 BT.1120 Timing Diagram

FigureError: Reference source not found-16 8080 Timing Diagram

2.6.5 AIAO (I2S/PCM) Timing

The RX timing diagram of I2S and PCM modes for connecting with external Audio Codec is shown in Figure Error: Reference source not found-17.

FigureError: Reference source not found-17 I2S & PCM Rx Timing Diagram

The Tx timing diagram of I2S and PCM modes is shown in Figure Error:

Reference source not found-18.

Figure Error: Reference source not found-18 I2S & PCM Tx Timing
Diagram

The timing parameters are shown in Table Error: Reference source not found-33.

Table Error: Reference source not found-33 I2S/PCM Timing Parameter Table

Symbol	Parameters	Min	Тур	Max	Unit
T_{BL}	BCLK low pulse width (master and slave modes)	40	-	-	ns
Твн	BCLK high pulse width (master and slave modes)	40	-	-	ns
T _{LS}	LRCK setup time to BCLK rising (slave mode)	10	-	-	ns
T _{LH}	LRCK hold time from BCLK rising (slave mode)	10	-	-	ns
Tss	SDI setup time to BCLK rising (master and slave modes)	10	-	-	ns
T _{SH}	SDI hold time from BCLK rising (master and slave modes)	10	-	-	ns
T _{TS}	BCLK falling to LRCK timing skew (master mode)	0	-	10	ns
T _{SOD}	SDO delay time from BCLK falling (master	0	-	10	ns

SG2002 Preliminary Datasheet

I	Symbol	Parameters	Min	Тур	Max	Unit
1		and slave modes)				

2.6.6 I2C Timing

FigureError: Reference source not found-19 I2C Timing Diagram

Table Error: Reference source not found34 I2C Timing Parameter Table

DADAMETER	OVERDOL	STAND	ARD-MODE	FAST-N	MODE	ш
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	4.0	-	0.6	-	μs
LOW period of the SCL clock	t _{LOW}	4.7	-	1.3	-	μs
HIGH period of the SCL clock	t _{HIGH}	4.0	-	0.6	-	μs
Set-up time for a repeated START condition	t _{SU;STA}	4.7	-	0.6	-	μs
Data hold time: for CBUS compatible masters (see NOTE, Section 10.1.3) for I ² C-bus devices	t _{HD;DAT}	5.0 0 ⁽²⁾	- 3.45 ⁽³⁾	_ 0 ⁽²⁾	- 0.9 ⁽³⁾	μs μs
Data set-up time	t _{SU;DAT}	250	_	100(4)	77.2	ns
Rise time of both SDA and SCL signals	t _r	-	1000	20 + 0.1C _b ⁽⁵⁾	300	ns
Fall time of both SDA and SCL signals	t _f	-	300	20 + 0.1C _b ⁽⁵⁾	300	ns
Set-up time for STOP condition	t _{SU;STO}	4.0	_	0.6	-	μs
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	1.3	-	μs
Capacitive load for each bus line	Cb	-	400	-	400	pF
Noise margin at the LOW level for each connected device (including hysteresis)	V _{nL}	0.1V _{DD}	-	0.1V _{DD}	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{nH}	0.2V _{DD}	_	0.2V _{DD}	_	V

2.6.7 SPI Timing

FigureError: Reference source not found-20 SPI Timing Diagram TableError: Reference source not found35 SPI Timing Parameter Table

Symbol	Parameters	Min	Тур	Max	Unit
$\mathbf{F}_{\mathrm{clk}}$	SCK Frequency		-	46.8	MHz
T _{css}	Time of CS negative edge to the first clock edge	21.4	-	-	ns
T _{clk}	Clock cycle	21.4	-	-	ns
T_{su}	Input Signal Setup Time Requirements	9.5	-	-	ns
T_{hd}	Input Signal Hold Time Requirements	0	-	-	ns
Tov	Output Signal delay	-	-	3	ns
Tox	Output Signal hold time	-3	-	-	ns

2.6.8 MIPI Rx Timing

The speed range of MIPI Rx is: 0.08Gbps ≤ Data Rate ≤ 1.5Gbps

$A.0.08Gbps \le Data Rate \le 1.5Gbps$

The timing diagram is shown in Figure Error: Reference source not found-21 and the timing parameters are shown in Table Error: Reference source not found 36.

Figure Error: Reference source not found-21 Timing Diagram of MIPI Rx Clock when $0.08Gbps \le Data Rate \le 1.5Gbps$

Table Error: Reference source not found36 Timing Parameter of MIPI Rx at 0.08Gbps ≤ Data Rate ≤ 1.5Gbps

	SOPHON
Specific	ations are subje

Parameter	Symbol	Data Rate	Min	Тур	Max	Unit
		0.08G≤Data Rate≤1G	0.08		1	Chns
Data Rate	Data Rate	1G <data rate≤1.5g<="" td=""><td>1</td><td></td><td>1.5</td><td>Gbps</td></data>	1		1.5	Gbps
		0.08G≤Data Rate≤1G	2		25	
Differential Clock Period	Tclk	1G <data rate≤1.5g<="" td=""><td>1.33</td><td></td><td>2</td><td>ns</td></data>	1.33		2	ns
		0.08G≤Data Rate≤1G	-0.15		0.15	LILLIC *
TX Data to Clock Skew	T _{SKEW}	1G <data rate≤1.5g<="" td=""><td>-0.2</td><td></td><td>0.2</td><td>UIHS *</td></data>	-0.2		0.2	UIHS *
		0.08G≤Data Rate≤1G	0.15			LIILIE
RX Data to Clock Setup Time Tolerance	T _{SETUP}	1G <data rate≤1.5g<="" td=""><td>0.2</td><td></td><td></td><td>UIHS</td></data>	0.2			UIHS
		0.08G≤Data Rate≤1G	0.15			LIILIC
RX Data to Clock Hold Time Tolerance	T _{HOLD}	1G <data rate≤1.5g<="" td=""><td>0.2</td><td></td><td></td><td>UIHS</td></data>	0.2			UIHS
* UIHS= 1/(Data Rate) = Tclk/2						

2.6.9 Sub-LVDS Timing

The Sub-LVDS clock data timing diagram is shown in Figure Error: Reference source not found-22 and the timing parameters are shown in Table Error: Reference source not found 37.

FigureError: Reference source not found-22 Sub-LVDS Clock Data Timing

Diagram

Table Error: Reference source not found37 Sub-LVDS Timing Parameter Table

Parameter	Symbol	Min	Тур	Max	Unit
Data Rate	Data Rate			1.5	Gbps
Unit Interval	UI	666.6			ns
Differential Clock Period	Tclk	1333.3			ns
RX Data to Clock Setup Time Tolerance	T _{SETUP}	0.15			UI
RX Data to Clock Hold Time Tolerance	T _{HOLD}	0.15			UI
Differential Input Threshold Voltage (VP-VM)	VIDTH(SL)	-70		70	mV
					1
* UI= 1/(Data Rate) = Tclk/2					

2.6.10 HiSPi Timing

The HiSPi clock data timing diagram is shown in Figure Error: Reference source not found-23 and the timing parameters are shown in Table Error: Reference source not found 38.

FigureError: Reference source not found-23 HiSPi Clock Data Timing Diagram

Table Error: Reference source not found38 HiSPi Timing Parameters
Table

Parameter	Symbol	Min	Тур	Max	Unit	
Data Rate	Data Rate			1.5	Gbps	
Unit Interval	UI	666.6			ns	
Differential Clock Period	Tclk	1333.3			ns	
RX Data to Clock Setup Time Tolerance	T _{SETUP}	0.15			UI	
RX Data to Clock Hold Time Tolerance	T _{HOLD}	0.15			UI	
Differential Input Threshold Voltage	VIDTH(HSSL)	-70		70		
(VP-VM)	VIDTH(HSHI)	-100		100	mV	
* UI= 1/(Data Rate) = Tclk/2						

2.6.11 MIPI Tx Timing

Figure Error: Reference source not found-24 MIPI TX Data-to-Clock
Timing Diagram

TableError: Reference source not found-39 Data-Clock Timing Specifications for ≥ 0.08 Gbps and ≤ 1 Gbps

	Symbol	Description	Min	Nom	Max	Units	Notes
Ï	T _{SKEW[TX]}	TX Data to Clock Skew	-0.15		0.15	UI _{HS}	

Table Error: Reference source not found 40 Data-Clock Timing Specifications for > 1Gbps and \leq 1.5 Gbps

	Symbol	Description	Min	Nom	Max	Units	Notes
Ï	T _{SKEW[TX]}	TX Data to Clock Skew	-0.2		0.2	UI _{HS}	

TableError: Reference source not found-41 Data-Clock Timing Specifications for > 1.5Gbps and ≤ 2.5 Gbps

Symbol	Description	Min	Nom	Max	Units	Notes
T _{SKEW[TX]}	TX Data to Clock Skew	-0.2		0.2	UI_{HS}	
TJ_{TX}	TX Data to Clock Total Jitter			0.3	UI_{HS}	
$\mathbf{D}\mathbf{J}_{TX}$	TX Data to Clock Deterministic Jitter			0.2	UI_{HS}	
RJ_{TX}	TX Data to Clock Random Jitter			0.1	UI_{HS}	

FigureError: Reference source not found-25 TX EYE Diagram Specification

Table Error: Reference source not found42 Transmitter Eye Diagram Specification

Bit Error Rate	TEYE_TX	VDIF_TX
10 ⁻¹²	0.5UI	40mV
10 ⁻⁶ (Prorated for Validation)	0.53UI	47mV

Figure Error: Reference source not found-26 Transmitter Eye Diagram Validation Setup

2.6.12 SDIO/MMC Timing

The data input/output timing for a single edge is shown in Figure Error: Reference source not found-27.

FigureError: Reference source not found-27 SDIO/MMC single-edge (SDR) data input/output timing diagram

Table Error: Reference source not found-43 SDIO/MMC Single Edge DS (default speed) Mode Timing Parameter Table

Parameters	Symbo 1	Mi n	Тур	Ma x	Unit	Note					
Clock CLK	Clock CLK										
Clock frequency Data transfer Mode	fPP	0	-	26	MHz	fpp=1/ tpp CL≤30p F					
Clock frequency Identification Mode	fOD	0	-	400	KHz	CL≤30p F					
Clock high time	tWH	10	-	-	ns	CL≤30p F					
Clock low time	tWL	10	-	-	ns	CL≤30p F					
Clock rise time	tTLH	-	-	10	ns	CL≤30p F					
Clock fall time	tTHL	-	-	10	ns	CL≤30p F					
Inputs CMD, DAT (referred	to CL	K)		-						
Input set-up time	tISU	6	-	-	ns	CL≤30p F					
Input hold time	tIH	8.3	-	-	ns	CL≤30p F					
Outputs CMD, DAT	Outputs CMD, DAT (referenced to CLK)										
Output set-up time	tOSU	5	-	-	ns	CL≤30p F					
Output hold time	tOH	5	-	-	ns	CL≤30p F					

TableError: Reference source not found-45 SDIO/MMC Single Edge HS (High speed) Mode Timing Parameter Table

Parameters	Symbol	Min	Тур	Max	Unit	Note				
Clock CLK										
Clock frequency						fpp=1/				
Data transfer	fpp	0	-	52	MHz	tpp				
Mode						CL≤30pF				
Clock high time	tWH	6.5	-	-	ns	CL≤30pF				
Clock low time	tWL	6.5	-	-	ns	CL≤30pF				
Clock rise time	tTLH	-	-	3	ns	CL≤30pF				
Clock fall time	tTHL	-	-	3	ns	CL≤30pF				
Inputs CMD, DAT (r	eferred t	o CLK)		•						
Input set-up time	tISU	6	-	-	ns	CL≤30pF				
Input hold time	tIH	2.5	-	-	ns	CL≤30pF				
Outputs CMD, DAT (referenced to CLK)										
Output set-up time	tOSU	6	-	-	ns	CL≤30pF				
Output hold time	tOH	3	-	-	ns	CL≤30pF				

The timing of double edge data input/output is shown inFigureError: Reference source not found-28.

SG2002 Preliminary Datasheet

FigureError: Reference source not found-28 SDIO/MMC double edge DDR50 mode data input/output timing diagram

TableError: Reference source not found-44 SDIO/MMC Double Edge DDR50 Mode Timing Parameter Table

Parameters	Symb ol	Min	Тур	Max	Unit	Note						
Clock CLK												
Clock												
frequency						fnn-1/tnn						
Data	fP	0	-	52	MHz	fpp=1/tpp CL≤30pF						
transfer								CL = 30pi				
Mode												
Inputs DAT (r	eference	d to C	LK)									
Input delay												
time during	tIDLYd	1.5	1.5	1.5	1.5	1.5	1.5	1.5	_	7	ns	CL≤20pF
data	dr								1.5	1.5	1.5	_
transfer												
Outputs DAT	Outputs DAT (referenced to CLK)											
Output set- up time	tOSU	3	-	-	ns	CL≤20pF						
Output hold time	tOH	2.5	-	-	ns	CL≤20pF						

The timing diagram of HS200 and SDR104 data input/output is shown in Figure Error: Reference source not found-29 .

FigureError: Reference source not found-29 SDIO/MMC HS200 and SDR104 mode data command input/output timing diagram

TableError: Reference source not found45 SDIO/MMC HS200 and SDR104 Mode Output Parameters Table

Parameters	Symbo 1	Min	Тур	Max	Unit	Note
Output set-up time	tOSU	1.4	-	-	ns	C _{DEVICE} ≤6pF
Output hold time	tOH	0.8	-	-	ns	

Table Error: Reference source not found46 SDIO/MMC HS200 and SDR104 Mode Input Timing Parameter Table

Parameters	Symb ol	Min	Тур	Max	Unit	Note
Phase difference between device TX CMD/DAT and RX CLK	tPH	0	-	2	UI	Unit Interval (UI) is one-bit nominal time. For 200Mhz, UI=5ns
Input valid data window	tVW	0.57 5	-	-	UI	TVW=2.88ns at 200MHz