

AOT262L/AOB262L

60V N-Channel MOSFET

General Description

- Trench Power MV MOSFET technology
- Low R_{DS(ON)}
- Low Gate Charge
- Optimized for fast-switching applications

Product Summary

 $\begin{array}{c} V_{DS} & \qquad \qquad 60V \\ I_{D} \; (at \; V_{GS} \!\!=\! 10V) & \qquad 140A \end{array} \label{eq:VDS}$

$$\begin{split} R_{DS(ON)} & (\text{at V}_{GS} = 10\text{V}) & < 3.0 \text{m}\Omega \quad (< 2.8 \text{m}\Omega^*) \\ R_{DS(ON)} & (\text{at V}_{GS} = 6\text{V}) & < 3.2 \text{m}\Omega \quad (< 3.0 \text{m}\Omega^*) \end{split}$$

Applications

Synchronus Rectification in DC/DC and AC/DC Converters

• Industrial and Motor Drive applications

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOT262L	TO-220	Tube	1000
AOB262L	TO-263	Tape & Reel	800

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _C =25°C		140	A	
Current ^G	T _C =100°C		110		
Pulsed Drain Current ^C		I _{DM}	500		
Continuous Drain	T _A =25°C		20		
Current	T _A =70°C	IDSM	16	A	
Avalanche Current ^C		I _{AS} , I _{AR}	115	A	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	661	mJ	
V _{DS} Spike	Spike 10μs		72	V	
Peak diode recovery dv/dt		dv/dt	8	V/ns	
	T _C =25°C	D	333	w	
Power Dissipation ^B	T _C =100°C	P _D	167		
	T _A =25°C	Р	2.1	10/	
Power Dissipation A	T _A =70°C	P _{DSM}	1.3	W	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	12	15	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{\theta JA}$	48	60	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.35	0.45	°C/W	

^{*} Surface mount package TO263

Electrical Characteristics (T_{.I}=25°C unless otherwise noted)

$ \begin{array}{ c c c c } \hline l_{DSS} & Zero \ Gate \ Voltage \ Drain \ Current \\ \hline l_{GSS} & Gate-Body \ leakage \ current \\ \hline V_{DS}=0V, \ V_{DS}=\pm 20V \\ \hline V_{DS}=0V, \ V_{DS}=2V_{DS} \ V_{DS}=2V_{DS} \\ \hline V_{DS}=0V, \ V_{DS}=5V \\ \hline V_{DS}=10V, \ V_{DS}=20V \\ \hline V_{DS}=10V, \ V_{DS}=2V_{DS} \\ \hline V_{DS}=10V, \ V$	ol P	Parameter	Conditions	Min	Тур	Max	Units	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	Drain-Source Breakdown Voltage	$I_D=250\mu A,\ V_{GS}=0V$	60			V	
$\begin{array}{ c c c c c } \hline I_{GSS} & Gate-Body leakage current & V_{DS}=0V, V_{GS}=\pm 20V & 10 \\ \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS}=V_{GS} I_{D}=250\mu A & 2.2 & 2.7 & 3.3 \\ \hline I_{D(DN)} & On state drain current & V_{GS}=10V, V_{DS}=5V & 500 \\ \hline & V_{GS}=10V, V_{DS}=5V & 500 & 2.2 & 3.6 \\ \hline & V_{GS}=10V, I_{D}=20A & 2.2 & 3.6 \\ \hline & V_{GS}=6V, I_{D}=20A & 2.5 & 3.3 \\ \hline & V_{GS}=6V, I_{D}=20A & 2.0 & 2.3 \\ \hline & V_{GS}=6V, I_{D}=20A & 2.0 & 2.3 \\ \hline & V_{GS}=6V, I_{D}=20A & 2.0 & 2.3 \\ \hline & V_{SD} & Diode Forward Voltage & I_{S}=1A, V_{GS}=0V & 0.65 & 1 \\ \hline & I_{S} & Maximum Body-Diode Continuous Current & 3 & 14 \\ \hline & DYNAMIC PARAMETERS & 25 & 32 & 55 \\ \hline & C_{ISS} & Input Capacitance & V_{GS}=0V, V_{DS}=30V, f=1MHz & 0.5 & 1 & 1.5 \\ \hline & SWITCHING PARAMETERS & 29 & Gate resistance & V_{GS}=0V, V_{DS}=30V, I_{D}=20A & 30 \\ \hline & Q_{gG} & Gate Drain Charge & V_{GS}=10V, V_{DS}=30V, R_{L}=1.5\Omega, & 22 \\ \hline & U_{CS}=10V, V_{DS}=30V, R_{L}=1.5\Omega, & 22 \\ \hline & U_{CS}=10$	7.	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V			1	μА	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IDSS Z		T _J =55°C			5		
I _{D(ON)}	G	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA	
I _{D(ON)}	G	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	2.2	2.7	3.2	V	
$R_{DS(ON)} \ \ \text{Static Drain-Source On-Resistance} \ \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		On state drain current	V_{GS} =10V, V_{DS} =5V	500			Α	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} =10V, I _D =20A		2.2	3.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			TO220 T _J =125°C		3.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} =6V, I _D =20A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.	Static Drain-Source On-Resistance	TO220		2.5	3.2	mΩ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{DS(ON)} Static Drain-Source On-Resistance	Static Drain-Source On-Ivesistance	$V_{GS}=10V$, $I_D=20A$				1112.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.0	2.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} =6V, I _D =20A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			TO263		2.3	3.0		
$\begin{array}{ c c c c }\hline I_S & Maximum Body-Diode Continuous Current & & & 14\\ \hline \textbf{DYNAMIC PARAMETERS} \\ \hline C_{iss} & Input Capacitance & V_{GS}=0V, V_{DS}=30V, f=1MHz & 830 & 1040 & 138\\ \hline C_{rss} & Reverse Transfer Capacitance & V_{GS}=0V, V_{DS}=30V, f=1MHz & 0.5 & 1 & 1.8\\ \hline R_g & Gate resistance & V_{GS}=0V, V_{DS}=0V, f=1MHz & 0.5 & 1 & 1.8\\ \hline \textbf{SWITCHING PARAMETERS} \\ \hline Q_g(10V) & Total Gate Charge & V_{GS}=10V, V_{DS}=30V, I_D=20A & 30\\ \hline Q_{gd} & Gate Drain Charge & V_{GS}=10V, V_{DS}=30V, I_D=20A & 30\\ \hline Q_{gd} & Gate Drain Charge & 5\\ \hline t_{D(on)} & Turn-On DelayTime & V_{GS}=10V, V_{DS}=30V, R_L=1.5\Omega, & 22\\ \hline \end{array}$	F	Forward Transconductance	V_{DS} =5V, I_D =20A		80		S	
$ \begin{array}{ c c c c c } \hline \textbf{DYNAMIC PARAMETERS} \\ \hline C_{iss} & Input Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{rss} & Reverse Transfer Capacitance \\ \hline R_g & Gate resistance \\ \hline Q_g(10V) & Total Gate Charge \\ \hline Q_{gs} & Gate Drain Charge \\ \hline t_{D(on)} & Turn-On DelayTime \\ \hline t_r & Turn-On Rise Time \\ \hline \hline C_{iss} & Input Capacitance \\ \hline V_{GS}=0V, V_{DS}=30V, f=1MHz \\ \hline V_{GS}=0V, V_{DS}=30V, f=1MHz \\ \hline 0.5 & 1 & 1.8 \\ \hline $					0.65	1	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	М	Maximum Body-Diode Continuous Current ^G				140	Α	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIC P	PARAMETERS						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	In	nput Capacitance		6500	8140	9800	pF	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz	830	1040	1350	pF	
	R	Reverse Transfer Capacitance		25	32	55	pF	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.5	1	1.5	Ω	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHING	G PARAMETERS						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/) To	Total Gate Charge		75	95	115	nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	Gate Source Charge	V_{GS} =10V, V_{DS} =30V, I_{D} =20A		30		nC	
t_r Turn-On Rise Time V_{GS} =10V, V_{DS} =30V, R_L =1.5 Ω , 22	G	Gate Drain Charge			5		nC	
0 00	Ti	Turn-On DelayTime			27		ns	
D 00	To	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =1.5 Ω ,		22		ns	
$t_{D(off)}$ Turn-Off DelayTime $k_{GEN}=3\Omega$ 47	T	Turn-Off DelayTime	$R_{GEN}=3\Omega$		47		ns	
t _f Turn-Off Fall Time 8	To	Turn-Off Fall Time			8		ns	
t_{rr} Body Diode Reverse Recovery Time I_F =20A, dI/dt =500A/ μ s 21 30 39	В	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	21	30	39	ns	
Q_{rr} Body Diode Reverse Recovery Charge I_F =20A, dI/dt =500A/ μ s 130 185 24	B	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	130	185	240	nC	

A. The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{BJA} and the maximum allowed junction temperature of 150 °C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

 G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.1: June 2024 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

 ${\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{SD} (Volts)
Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.1.1 : June 2024 **www.aosmd.com** Page 4 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Time in avalanche, t_A (μ s) Figure 12: Single Pulse Avalanche capability (Note C)

T_{CASE} (° C)
Figure 13: Power De-rating (Note F)

Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

www.aosmd.com Rev.1.1: June 2024 Page 5 of 6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

