O'REILLY® Artificial Intelligence Conference

Using deep learning and time-series forecasting to reduce transit delays

theaiconf.com
OReillyAl

Introduction

- Use a publicly available dataset on streetcar delays to create a model to predict and prevent delays
- Apply time series forecasting to understand the seasonal nature of delays and deep learning to predict delays
- Example of:
 - Applying deep learning to a raw dataset in structured tabular format
 - Transforming ill-formed address information into map visualizations
 - Combining multiple data types (continuous, categorical and text) in a single deep learning model that incorporates embeddings

The problem: streetcar delays

- Toronto has the biggest network streetcar network in North America
- Advantages: greener / lower labour cost than buses; cheaper than subways
- Major disadvantage: delays trigger gridlock
- Prevent gridlock by predicting and preventing delays

The dataset

- ~70 k records with details of all streetcar delays since January 2014
- No error checking on data entry = messy data:
 - Invalid routes, vehicles, and direction of travel
 - Locations are free-form, inconsistent descriptions
- Interesting, real-world dataset that demands serious effort to prepare for machine learning

1	Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	Vehicle
2	2014-12-01	510	1:28:00 AM	Monday	Spadina and Oxford	Emergency Services	77	87	B/W	4124
3	2014-12-01	306	3:59:00 AM	Monday	Gerrard and Kingsmount Park Rd.	Investigation	41	71	W/B	4044
4	2014-12-01	512	5:02:00 AM	Monday	Exhibition Loop	Late Leaving Garage	8	16	W/B	4171
5	2014-12-01	504	5:36:00 AM	Monday	Queen and Roncesvalles	Late Leaving Garage	6	12	E/B	4233
6	2014-12-01	506	5:52:00 AM	Monday	Coxwell and Gerrard	Mechanical	4	8	E/B	4077

The dataset: locations

Dundas West stnt to Broadview stn Fleet St. and Strachan Ave. Queen St. West

Roncesvalles

Lake Shore Blvd.

and Superior St.

Roncy to Neville

Ave.

Park

Clean custom code Location dundas west

dundas west stationt to broadview station

fleet st. and strachan

queen st. west and roncesvalles

lake shore blvd. and superior st.

roncesvalles to neville park

0.000000 0.000000 43.636298 -79.409635 43.645335 -79.413184 Geocode Geocode API 0.000000 0.000000

latitude

longitude

The dataset: transformations

Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction
2016-01-01 00:00:00	511	02:14:00	Friday	fleet st. and strachan	Mechanical	10.0	20.0	e
2016-01-01 00:00:00	301	02:22:00	Friday	queen st. west and roncesvalles	Mechanical	9.0	18.0	W
2016-01-01 00:00:00	301	03:28:00	Friday	lake shore blvd. and superior st.	Mechanical	20.0	40.0	e
2016-01-01 00:00:00	505	15:42:00	Friday	broadview station loop	Investigation	4.0	10.0	w
2016-01-01 00:00:00	504	15:54:00	Friday	broadview and queen	Mechanical	6.0	12.0	е

Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	 longitude	X	у	z
2017-09-04 00:00:00	13	18:52:00	1	old weston road and st.clair	[1]	27.0	54.0	5	 -79.463024	0.925917	1.065716	0.942998
2016-07-01 00:00:00	4	21:18:00	0	connaught and queen	[1]	8.0	16.0	5	 -79.322360	1.085382	0.939566	0.968273
2016-03-24 00:00:00	7	06:48:00	4	boustead and roncesvalles	[1]	6.0	12.0	4	 -79.451723	0.933501	1.049577	1.002038
2015-08-10 00:00:00	13	13:56:00	1	roncesvalles yard	[5, 6, 7]	4.0	8.0	2	 -79.449050	0.934383	1.044788	1.023267
2017-10-04 00:00:00	5	10:42:00	6	queen and river	[1]	10.0	20.0	5	 -79.356530	1.045211	0.968827	0.990846

- Replace categorical values with numeric IDs
- Tokenize text values
- Replace latitude and longitude values with x, y, z normalizations

The model: layers by category

- Categorize columns in the dataset:
 - Continuous: length of delay
 - Categorical: route, vehicle, direction, time of day, day of week
 - Text: description of incident
 - Spatial: location
- Automatically build a simple Keras model:
 - Build model by iterating through columns by type
 - layers for each column type have distinct characteristics (e.g. GNU for text, embeddings for text and categorical columns)
 - As long as columns are categorized correctly, the model automatically adapts to new schemas / additional columns

The model: layers by category

Categorical

Text

Exploring Time Series

Delay duration averages

Delay count averages

Exploring Time Series

Delay duration seasonability

Delay count seasonability

Code and data for this example

Repo with code and associated material:

<u> https://github.com/ryanmark1867/ai_conference_june_2019</u>

Original data source: https://www.toronto.ca/city-government/data-

research-maps/open-data/open-data-catalogue/#e8f359f0-2f47-3058-

bf64-6ec488de52da

