

SCHOOL OF COMPUTING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Academic Year 2020-21: Winter Semester

1151CS118 - MICROPROCESSORS AND CONTROLLERS

Dr. Angeline Lydia
Associate Professor
Department of CSE

Slot No : G1,S4,S5

COURSE CONTENT

UNIT I- THE 8086 MICROPROCESSOR (9)

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT II 8086 SYSTEM BUS STRUCTURE (9)

8086 signals – Basic configurations – System bus timing –System design using 8086 – IO programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, closely coupled and loosely Coupled configurations – Introduction to Pentium family processors.

UNIT III 8051 ARCHITECTURE (9)

Architecture – memory organization –I/O ports and circuits-Timers - Interrupts –serial communication – Addressing modes –Instruction set.

UNIT IV PERIPHERAL DEVICES (10)

Parallel peripheral Interface (8255) - Timer / Counter (8253) - Keyboard and Display Controller (8279) - USART (8251) - Interrupt Controller (8259)- DMA Controller (8237).

UNITYMICROCONTROLLER APPLICATIONS & ADVANCED PROCESSOR (8)

Temperature control system - Motor speed control system - Traffic light System - Elevator system - Introduction to architecture of PIC, ARM, ATMEGA processors

Total: 45 Periods

UNIT II 8086 SYSTEM BUS STRUCTURE (9)

8086 signals – Basic configurations – System bus timing –System design using 8086 – IO programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, closely coupled and loosely Coupled configurations – Introduction to Pentium family processors.

Pins and Signals

8086 Pin Diagram

8086 Signals Power supply and frequency signals

- •V_{CC} pin 40
- V_{SS} pin 1 and 20 Ground

Clock signal

- •Pin-19.
- •Frequency 5MHz, 8MHz and 10MHz.

Address/data bus

- •AD0-AD15
- •16 address/data bus.
- AD0-AD7 low order byte data
- AD8 AD15 higher order byte data.
- First clock cycle 16-bit address
- •16-bit data.

Address/status bus

- •A16-A19/S3-S6.
- •4 address/status buses.
- •First clock cycle 4-bit address
- carries status signals.

S7/BHE

- •BHE -Bus High Enable.
- •pin 34
- Transfer of data using data bus D8-D15.
- •Low first clock cycle, thereafter it is active.

Read(RD)

- •pin 32
- read signal -Read operation.

Minimum Mode & Maximum Mode

- Minimum Mode
 - One Processor
- Maximum Mode
 - Multiple Processors

Block Diagram for Minimum Mode

- •What is Multiplexing? Advantages of Multiplexing?
- Demulti plexing the addressing and data bus
- Memory Banking
 - Odd Banking
 - Higher Bank(BHE)
 - Even Banking
 - Lower Bank(A0)

Minimum Mode

S4	S 3	SEGMENT
0	0	EXTRA SEGMENT
0	1	STACK SEGMENT
1	0	CODE SEGMENT
1	1	DATA SEGMENT

MINIMUM MODE

S7 -> RESERVED

Data Trans – Receiver

- •8286 Data Trans receiver
- •DEN Data Enable
- Actively Low signal
- •Active when 0

DEN	DT/R	Action
1	X	
0	1	Transmits the data
0	0	Receives the data

Decoder

- •Decoder 74138
- •Input output ratio 3:8

000	Y0
001	Y1
010	Y2
011	Y3
100	Y4
101	Y5
110	Y6
111	Y7

Control Bus

Table 2.5 Read write cycle

MIO	RD	WR	Transfer Type
0	0	1	VO read
0	1	0	VO write
1	0	1	Memory read
1	1	0	Memory write

Clock

- ■8284 Clock generator
- ■33% duty cycle

Timing Diagram

Maximum Mode Signals

Multiple Processors connected to 8086

Dr. Angeline Lydia Associate Professor/CSE, Vel Tech

15/01/2021

Bus transfer from one processor to another

Lock

Lock MOV CX, [5000H]

LOCK =0

REP- Repeating the String instructions

Status Signals

S2	S1	S0	Operation
0	0	0	INTA
0	0	1	IOREAD
0	1	0	IOWRITE
0	1	1	HALT
1	0	0	INSTRUCTION FETCH
1	0	1	MEMORY READ
1	1	0	MEMORY WRITE
1	1	1	IDLE

Co Processor Configuration

QS,	QS ₀	8087 Operation
0	0	NOP
0	1	8087 removes Opcode from Queue and compares 5 MSB bits with 11011.
1	٥	8087 clases its migua

8087 removes operand if earlier comparison with Opcode is successful.

- Multiple Processors Execute the instructions simultaneously And communicate with each other
- Maximum mode of 8086
 - 1. Coprocessor (8087) Configuration
 - 2. Closely Coupled (8089) Configuration
 - 3. Loosely Coupled (Multibus) Configuration

Coprocessor and closely coupled Processor

- Coprocessor and Closely Coupled Processor
 - Both similar
 - External Processor shares
 - Memory
 - •I/O devices
 - Bus
 - Bus control Logic
 - Clock generator

Loosely Coupled Configuration

Pentium, Family of microprocessors developed by Intel Corp.

- Introduced in 1993 as the successor to Intel's
- •The Pentium quickly became the processor of choice for personal computers.
- •It was superseded by ever faster and more powerful processors, the Pentium Pro (1995), the Pentium II (1997), the Pentium III (1999), and the Pentium 4 (2000).

Thank You