C++

Обзор. Стандартная библиотека. Нововведения стандартов C++11 и C++14 Черновик

Кафедра ИВТ и ПМ

2021

```
План
   Основы С++
      Типы данных
         Указатели и ссылки
         Массивы
         Составные типы данных
      Операторы
      Функции
      Модули
      Операторы управления динамической памятью
   Компиляция в командной строке
   Пространства имён
   Синонимы
   static
   Обработка исключительных ситуаций
   Нововведения С++11,14...
      Определение типа
      Ссылки на правосторонние значения
      Лямбда-функции
                                           ◆□▶◆圖▶◆圖▶◆圖▶ 圖
   Создание программ с GUI
```

Outline Основы С++

Типы данных

Указатели и ссылки

Массивы

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Си позволяет легко выстрелить себе в ногу; с С++ это сделать сложнее, но, когда вы это делаете, вы отстреливаете себе ногу целиком.

Ограничение возможностей языка с целью предотвращения программистских ошибок в лучшем случае опасно.

Б. Страуструп^а

aСоздатель языка С++

1 1 C 12.57% -4.41	
1 12.57 // 44.41	%
2 3 ^ Python 11.86% +2.17	7%
3 2 • Java 10.43% -4.00	%
4 4 C++ 7.36% +0.52	2%
5 5 C# 5.14% +0.46	6%
6 6 VB Visual Basic 4.67% +0.00	1%
7 7 JS JavaScript 2.95% +0.07	7%
8 9 • PHP 2.19% -0.05	%
9 14 Asm Assembly language 2.03% +0.99	9%
10 10 SQL 1.47% +0.02	2%

- Общего назначения
- Компилируемый
- Статическая типизация
- ▶ Объектно-ориентированный¹
- Без сборщика мусора

 $^{^1}$ поддерживаются и другие парадигмы программирования $_{ ext{ iny 2}}$

- ▶ Большая часть кода Microsoft Windows написана на С++
- ▶ Часть кода Apple OS X C++ код
- Adobe Photoshop
- MySQL Server
- Autodesk Maya
- Mozilla Firefox
- ▶ Многие библиотеки для Python
- ...

IDE

Qt Creator
 Кроссплатформенный, лаконичный, свободный, устанавливается вместе с фреимворком Qt²

▶ Visual Studio

- youtube.com/watch?v=kpgG9imQ2fU- Самые вкусные возможности Visual Studio 2019
- youtube.com/watch?v=JhxC-K-Eehg

▶ JetBrains CLion

Кроссплатформеный, есть версия для студентов, нет бесплатной версии

- youtube.com/watch?v=Srnw1dl1iAA
- ► jupyter.org/try C++ (компилятор Clang) в Jupyter. подходит для экспериментов: работает как интерпретатор

 $^{^2}$ путь к папке с установкой должен содержать только латиницу (без пробелов)

Библиотеки

Стандартная библиотека C++ содержит многое, что необходимо для хранения и обработки данных (динамический массив, список, и т.д.), для работы с файлами, сетью, потоками и др. Модули для создания приложений с GUI в состав библиотеки не входят.

В отличии от Python вместе к компилятором С++ не поставляется средств для автоматической установки дополнительных библиотек. Библиотеки необходимо скачивать вручную, компилировать (при необходимости) и устанавливать в систему или размещать в каталогах проекта

Библиотеки

Набор библиотек **boost** поставляется отдельно и представляет больший набор возможностей чем стандартная библиотека. Boost содержит в том числе математические модули, например посвященные линейной алгебре, работе с графами и для статистической обработки данных.

Структура программы

Далее рассматривается шаблон простого приложения на С++.

Эти шаблоны могут немного отличаться в зависимости от используемой среды программирования и типа проекта, который создаётся.

Приведённый на следующем слайде шаблон был создан в Qt Creator: создать проект ... > проект без Qt > приложение на языке C++

Структура программы

```
// подключение модулей. Имя модуля (заголовочного файла) в угловых ско
// он в известных компилятору местах (например модуль стандартной библ
#include <iostream> // модуль для ввода\вывода (в консоль)
// подключение заголовочного файла расположенного в том же каталоге
// где и основной файл исходных кодов. вместо угловых скобок - кавычки
#include "my file.h"
// стандартная библиотека содержится в пространстве имён std
// чтобы каждый раз не использовать std:: при обращении к содержимому
// этой библиотеки сделаем содержимое std доступным непосредственно
using namespace std:
// переменные, константы, типы и функции можно объявлять здесь
// основная программа:
int main(int argc, char* argv[])
//допускается и такой заголовок: int main()
    // здесь тоже можно объявлять переменные, константы и типы
    cout << "Hello< World!" << endl;</pre>
    return 0;
                                            4□ > 4個 > 4 = > 4 = > = 900
```

Структура программы

Пояснения

- #include директива компилятора помещающая содержимое указанного файла исходных кодов в текущий файл
- main функция вызываемая при запуске программыint main(int argc, char* argv[])
 - ▶ int возвращаемый функцией тип данных
 - для каждого параметра функции тоже указывается тип данных
 - ▶ argc число аргументов командной строки
 - ► char* argv[] массив из аргументов (первый аргумент полное имя исполняемого файла)
- ightharpoonup { } операторные скобки 3
- return 0. по договорённости программа должна возвратить 0 если она завершилась без сбоев. Этот код возврата может использоваться другими программами, которые вызывают данную.

Далее на слайдах не будет приводится заголовок функции main и иногда подключение модулей для сокращения кода

³объединяют несколько операторов в блок команд. В Python для этих же целей служат отступы

13/123

Прошлые темы

- Что такое литерал?
- Что такое идентификатор?
- Что такое объявление?
- Что такое определение?
- Что такое тип данных?

Outline Ochoba C++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Подробнее о простых типах: ru.cppreference.com/w/cpp/language/types

Data Type	Size (bytes)	Size (bits)	Value Range
unsigned char	1	8	0 to 255
signed char	1	8	-128 to 127
char	1	8	either
unsigned short	2	16	0 to 65,535
short	2	16	-32,768 to 32,767
unsigned int	4	32	0 to 4,294,967,295
int	4	32	-2,147,483,648 to 2,147,483,647
unsigned long	8	64	0 to 18,446,744,073,709,551,616
long	8	64	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
unsigned long long	8	64	0 to 18,446,744,073,709,551,616
long long	8	64	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
float	4	32	3.4E +/- 38 (7 digits)
double	8	64	1.7E +/- 308 (15 digits)
long double	8	64	1.7E +/- 308 (15 digits)
bool	1	8	false or true

Для определения размера переменной или типа используется оператор sizeof. Он возвращает размер в байтах. Haпример sizeof(double) https://en.cppreference.com/w/cpp/language/sizeof

Объявление переменных и констант

- ▶ В С++ нет специального раздела программы для определения или объявления переменных
- При объявлении:
 - сначала указывается тип данных ⁴
 - потом идентификатор переменной
 - наконец присваивается значение (если необходимо)

```
int n; // можно не задавать значение float x = -47.039; // можно задавать... float y,z; const short N = 24; // константе задавать значение обязательн char str1[] = "qwerty"; // строка как массив символов // string - тоже строка, но лучше. string str2 = "qwerty"; // нужно подключить модуль string n = N; N = n; // Ошибка! Константу поменять нельзя a = 42; // Ошибка! Переменная a = 42;
```

⁴в отличии от Python переменная не может менять свой <u>т</u>ип данных ▶ 🚊 🤊 ५००

Вывод данных

Пример

```
#include <iostream>
using namespace std;
cout << "Hello, World!";</pre>
// endl - вывод символа конца строки и очистка буфера вывода
cout << "Hello, World!" << endl;</pre>
// Вывод переменной
float x:
cout << x << endl;
// Вывод данных нужно подписывать
cout << "x = " << x << endl;
```

Вывод данных

- cout << "qwerty" << 3.14 << 42;На экране появится: qwerty3.1442
- cout объект предназначенный для вывода на стандартный вывод
- <- оператор вывода данных данных.
 Левый операнд объект cout;
 Правый операнд выводимые данные.
- cout объявлен в заголовочном файле iostream, пространстве имён std;

Подробнее: mycpp.ru/cpp/book/c20.html

Вывод данных

```
#include <iostream> // std::cout. std::fixed
#include <iomanip>
                       // std::setprecision
// Установка формата вывода:
// (без использования экспоненциальной формы)
// установка 2 знаков после запятой
cout << fixed << setprecision(2);</pre>
// Вывод строки и перменной одновременно
cout << "X = " << x << endl;
```

Ввод данных

cin - объект предназначенный для чтения данных с клавиатуры.

>> - оператор чтения данных с клавиатуры. Левый операнд - объект cin; Правый операнд - переменная.

cin >> x;

cin объявлен в заголовочном файле iostream, пространстве имён std;

Ввод данных

```
#include <iostream>
using namespace std;

float x;
cout << "Введите число ";
cin >> x;
```

Производные типы

- Указатель (pointer)
- Ссылка
- ▶ Массив⁵
- Структура
- Класс
- Перечисление

Указатели и ссылки

Указатель (pointer) – переменная, диапазон значений которой состоит из адресов ячеек памяти или специального значения — нулевого адреса.

При объявлении указателя после типа данных, на который он должен указывать, ставится *

```
// объявление указателя на тип int
int * ip;

// объявление указателя на тип float
// здесь сразу в записывается адрес
// nullptr - это пустой указатель,
// таким образом указатель fp в данный момент
// ни на что не указывает
float *fp = nullptr;
```

Указатели и ссылки

Основные операции используемые при работе с указателями

- взятие адреса. оператор & используется при записи адреса переменной в указатель
- ▶ разыменование. оператор *
 доступ к значению, адрес которого записан в указателе

 // объявление указателя на тип int

```
int * ip;
int i = 42;
// в указатель можно записать адрес переменной
// для этого используется оператор взятия адреса &
ip = \&i;
// теперь можно обращаться к переменной і через указатель
// чтобы обратится не к адресу, который записан в указателе
// а к значению, на которое он указывает нужно использовать
// оператор разыменования *
```

// i = 100

```
Указатели и ссылки
   // объявление указателя на тип int
   int * ip;
   int i = 42;
   ip = \&i;
   *ip = 8; // переменная і теперь содержит 8
   int *ip2;
   // конечно можно записывать в один указатель другой
   // если типы данных, на которые они ссылаются совпадают
   ip2 = ip;
   // *ip2 = 8
   // *ip = 8
   // i = 8
   *ip2 = 100;
   // *ip = 100
```

Указатели и ссылки

Ссылки похожи на указатели, только с разницей

- Ссылка не может менять своё значение
- Следовательно при объявлении ссылки она обязательно инициализируется
- При обращении к значению по ссылке оператор * не требуется

Про ссылку можно думать как про другое имя для объекта

```
int i = 42:
// при объявлении ссылки используется &
// здесь не стоит путать с оператором взятия адреса,
// хотя для их обозначения используется один и тот же символ
int &il = i;
// оператор разыменования не требуется
int n = il;
il = 100:
// i = 100; n = 42
```

Массивы

```
// массив из 128 целых чисел
int a[128];

// обращение к элементу по его индексу
a[0] = 42; // нумерация с нуля

// рекомендуется хранить размер массива в переменной или
unsigned const n = 128;
float b[n];
n[n-1] = 36.6; // последний элемент массива
```

Пример заполнения массива в цикле приведён на слайде 38

Динамические массивы

delete[] a;

```
const unsigned n = 128;
// для работы с динамическими массивами используются ука
// запишем в указатель адрес памяти выделенной для 128 з
// оператор new выделяет память в куче
int *a = new int[n];
// обращение к элементам такое же как и для статического
a[0] = 42;
int x = a[2];
// после окончания работы
// нужно освободить память, которую он занимает
```

В большинстве случаев использование класса vector из стандартной библиотеки (см. C++. part2.pdf) предпочтительнее использования динамических массивов. vector предоставляет удобный для программиста способ работы с динамическими массивами.

Перечисления

Составные типы данных

Для представления составных типов данных в C++ используются

- Структуры struct
- ▶ Объединения⁶ union
- Классы clss

```
// Определение нового типа данных
    struct Point{
        float x, y;
   };
    Point p; // объявление переменной типа Point
    // обращение к полям
    p.x = 10;
    float a = p.y;
    // можно задавать значения полей при объявлении
    Point p1 = \{10, 2\};
    a = p1.x; // a = 10
```

Outline Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Управляющие операторы

Условный оператор

Если требуется выполнить несколько операторов вместо оператор1 или оператор2 то используются операторные скобки $\{\}$

Управляющие операторы

Условный оператор. Пример.

Определение максимального из двух чисел.

cout << "Максимальное число: " << max;

```
float x, y, max;

// ...
cout << "Определение максимального из двух чисел: "
cout << x << " и " << y << endl;
if ( x > y )
    max = x;
else
    max = y;
```

Цикл со счётчиком

```
for (действие до цикла;
        условие;
        действия в конце итерации) {
        onepatop1
        onepatop2
        ...
        onepatopN
}
```

Тело цикла выполняется пока *условие* истинно

Цикл со счётчиком. Примеры.

Печать чисел от 0 до 10

```
for (int i = 0; i<11; i++) {
    cout << i << endl; }</pre>
```

Заполнение массива случайными целыми числами

```
const int N = 10;
int a[N];
for (int i = 0; i<N; i++) {
    a[i] = rand(); }</pre>
```

ru.cppreference.com/w/cpp/numeric/random/rand

Цикл со счётчиком. Примеры.

Печать элементов массива

```
const int N = 10;
int a[N]
cout << "Набор чисел: ";
for (int i = 0; i<N; i++) {
  cout << a[i] << " "; }
```

Цикл с предусловием

Цикл с предусловием. Пример.

Печать строки посимвольно

```
char s[] = "Print Me!";
unsigned i = 0;
while (s[i]!=0){
    cout << s[i];
    i++;}</pre>
```

В С++ каждая строка заканчивается символом с нулевым кодом.

Цикл с постусловием

```
do {
     Tело цикла;
}
while (Условие)
```

Цикл с постусловием. Пример.

```
Koнтpoль входных данных
float x;
do {
   cout << "Введите положительное число > " << endl;
   cin >> x;
}
while ( x <= 0);</pre>
```

Совместный цикл

```
for (type item : set) {
// тело цикла
//использование item
}
```

В начале каждой итерации цикла в переменную item будет записано значение из последовательности set.

set - массив или любым другим типом имеющим итератор (например list), т.е. тип должен допускать перебор элементов.

Совместный цикл. Примеры

```
int my array[5] = \{1, 2, 3, 4, 5\};
for(int x : my array)
    cout << x << " ":
// в X записывается только значение.
// Этот цикл ничего не изменит в vec1
for (auto x: vec1) x *= 2;
// а этот изменит
for (auto\& x: vec1) x *= 2;
```

auto используется вместо указания типа, см. определение типа.

Outline Ochobu C++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Общий вид определения (definition) функции.

```
// Возврат значения из функции

float foo( int x ) {
    return rand()/x; }

// Функция не возвращающая ничего

void bar( int x) {
    cout << x*rand() << endl; }
```

```
void print array(int *a, unsigned n){
    for (int i = 0; i<n; i++)
        cout << a[i] << " ";
}
int main(){
    const unsigned M = 4;
    int b1[M] = \{1, 2, 3, 4\};
    int b2[M] = \{10, 20, 30, 40\}:
    cout << "Набор чисел #1:" << endl;
    print array(b1,M);
    cout << endl:
    cout << "Набор чисел #2:" << endl;
    print array(b2,M);
    cout << endl;
```

Принцип единственной ответственности?

Параметры-ссылки и параметры-значения

Функции. Параметры-ссылки и параметры-значения

Для фактического параметра переданного "*по значению*" внутри функции создаётся локальная копия. Изменение этой копии (формального параметра) не влияет на фактический параметр.

```
int a = 42;
// x - формальный параметр-переменная
void foo ( int x ) { x = 123; }

foo( a ); // a - фактический параметр
cout << a; // 42
// переменная а не изменилась</pre>
```

Функции. Параметры-ссылки и параметры-значения

Для фактического параметра переданного в функцию "*no ссылке*", на самом деле передаётся его *адрес*. Значит изменения формального параметра внутри функции означают изменения фактического параметра.

```
int a = 42;
// x - формальный параметр-ссылка
void foo ( int &x ) { x = 123; }

foo( a ); // a - фактический параметр
cout << a; // 123
// переменная а изменилась</pre>
```

Значения параметров по умолчанию

Функции. Значения параметров по умолчанию

Когда параметр необходим, но функция часто вызывается с определённым его значением, то можно задать для него значение по умолчанию.

Формальные параметры со значению по умолчанию должны быть последними.

Функции. Значения параметров по умолчанию

- Используйте для аргументов, значения которых часто принимают одно и то же значение
- Приводите эти аргументы в последнюю очередь
- Не используйте неожиданных значений по умолчанию

Перегрузка Overloading

Функции. Перегрузка

Функциям выполняющие одинаковую работу с разными по типу наборами данных можно давать одинаковые имена. Компилятор определит по набору фактических параметров, какая функция должна быть вызвана.

```
void foo(int x){ cout << "1";}

void foo(float x){ cout << "2";}

void foo(int x, int y){ cout << "3";}

foo(20);  // 1
foo(20.0);  // 2
foo(1, 2);  // 3
foo(1, 2.0)  // 3</pre>
```

Функции. Перегрузка

- Функциям выполняющим одинаковую работу с разными данными можно давать одинаковые имена
- Перегруженные функции должны отличатся по типу и количеству параметров
- Перегруженные функции не отличаются по типу возвращаемого значения
- При компиляции перегруженным функциям даются разные имена.
- Какая из перегруженных функций будет вызвана также определяется на этапе компиляции

Переменное число параметров функции variadic arguments

- Документация: en.cppreference.com/w/cpp/language/variadic_arguments
- Описание и примеры: ravesli.com/urok-111-ellipsis-pochemu-ego-ne-sleduetispolzovat/

Выводы

- Функции делают возможным алгоритмическую декомпозицию
- Функции делают возможным повторное использование кода

Выводы

- Для того чтобы пользоваться функцией не нужно обладать минимальными знаниями о её внутреннем устройстве
- Легче повторно использовать функцию служащую одной цели
- Следует стремится к чистоте функций
- Стоит избегать использования глобальных переменных в функциях
- Параметры, которые дорого копировать следует передавать по ссылке
- ▶ Параметры, переданные по ссылке, но не изменяющиеся в теле функции нужно делать константными.

Ссылки на функции

Outline Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

- ▶ В С++ полноценные модули добавили в стандарте С++20.⁷
- ► На данный момент (осень 2021) поддержка модулей не полностью реализована в компиляторах⁸
- ▶ В С++ исходный код можно приводить в отдельных файлах, которые подключать в основной
- Под модулем в C++ можно понимать отдельный файл исходных кодов
- Подключение модуля = включение содержимого модуля в другой файл исходных кодов
- Обычно объявления переменных, типов данный, функций приводится в заголовочном файле (header file) который имеет расширение . h (или . hpp)
- Определения же приводятся в файлах с расширением . срр

⁷Стандарт C++20: обзор новых возможностей C++. Часть 1 «Модули и краткая история C++»

⁸en.cppreference.com/w/cpp/compiler support

- Можно говорить, что модуль состоит из двух файлов: заголовочного (см. wikipedia) и срр файла. Имена этих файлов (с точностью до расширения) рекомендуется выбирать одинаковыми
 - например my_module.h и my_module.cpp
- ▶ Подключать рекомендуется только заголовочные файлы
- При этом с каждом заголовочном файле должна быть защита от повторного подключения (см. Include guard)

- ▶ В С++ исходный код можно приводить в отдельных файлах, которые подключать в основной
- Обычно объявления переменных, типов данный, функций приводится в заголовочном файле (header file) который имеет расширение . h (или . hpp)
- Определения же приводятся в файлах с расширением . срр
- Можно говорить, что модуль состоит из двух файлов: заголовочного (см. wikipedia) и срр файла. Имена этих файлов (с точностью до расширения) рекомендуется выбирать одинаковыми
 - например my_module.h и my_module.cpp
- Подключать рекомендуется только заголовочные файлы.
 Сначала из стандартной библиотеки, потом собственные.
- Имена срр файлов передаются компилятору
- При этом с каждом заголовочном файле должна быть защита от повторного подключения (см. Include guard)

```
Пример
my_module.h
  #ifndef MY MODULE H
  #define MY MODULE H
  // глобальная переменная
  extern int A:
  struct Point{
      float x, y; };
  // объявление функции
  float distance(const Point &p1,
          const Point &p2);
  #endif // MY_MODULE_H
    main.cpp
    #include <iostream>
    #include "my module.h"
    using namespace std;
    int main(){
        Point p1 = \{0, 0\};
        Point p2 = \{3,4\};
        float d = distance(p1,p2);
        cout << d;}
```

Outline Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Устройство памяти программы

- Стек (stack): локальные переменные, адреса вызова функций
- Куча (heap): динамические (созданные во время работы программы, оператором new) переменные
- Сегмент данных (data segment): глобальные и статические переменные
- Скомпилированный код программы (executable code)

Операторы управления динамической памятью

- new выделяет память в куче (Неар), адрес выделенной памяти записывается в указатель.
- delete освобождает память.

Если память была выделена динамически (с помощью оператора new), то она обязательно должна быть освобождена вызовом delete во избежание утечки памяти.

см. примеры использования на слайде 29

Операторы управления динамической памятью

Пример

```
struct Point{
    float x,y;
};
// выделенную в функции память можно использовать и вне это фу
Point* random point(){
    Point* p = new Point;
    // оператор -> используется вместо . при работе с указател
    // на структуру
    p->x = float(rand()) / RAND MAX;
    p->y = float(rand()) / RAND MAX;
    return p; // возвращается указатель на выделенную память
    }
int main(){
    Point *p = random point();
    delete p;
```

Устройство памяти программы

```
class Person {
public:
    Person(string const& m name);
    // imagine other methods here
private:
    string m name;
    int m socialInsuranceNumber;
    int m age;
};
// ...
Person stackPerson("John");
Person* heapPerson = new Person("Jack");
```

Устройство памяти программы

Пример: стек и куча

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

g++ main.cpp -o my_progr

Будет создан исполняемый файл с именем my_progr

дсс должен быть доступен непосредственно (добавлен в переменную РАТН). Иначе потребутеся указать полный путь к компилятору, например:

 $C:\Qt\Tools\mingw530_32\bin\g++.exe$

Далее будут приведены примеры команд для ОС семейства linux - Debian. Стоит отметить, что в linux для указания пути используется прямой слеш /, а в windows обратный \setminus

Несколько файлов

Если исходный код расположен в нескольких файлах, то для компиляции в параметры g++ должны быть переданы имена всех срр файлов

Например код содержится в файлах: main.cpp, module.cpp, module.h.

module.h подключается в module.cpp и main.cpp.

g++ main.cpp module.cpp -o my_progr

Создание статической библиотеки

- Файлы модулей можно скомпилировать отдельно в статическую библиотеку
- Потом, при компиляции основной программы указать путь к полученной статической библиотеке
- Код статической библиотеки будет добавлен к программе и помещён внутрь исполняемого файла
- Такой подход может сократить время компиляции, если в библиотеку изменения вносятся относительно редко, поэтому нет необходимости компилировать её повторно, вместе с остальными файлами

Создание статической библиотеки

- Создание объектного файла из исходного кода g++ -c module.cpp -o lib/my_lib.o
 будет создан объектный файл module.o в заранее созданной папке lib
- Создание статической библиотеки из объектного файла ar rvs lib/my_lib.a module.o
 Здесь полученный файл библиотеки my_lib.a сохраняется в папку lib
- Компиляция программы с использованием статической библиотеки⁹
 g++ main.cpp lib/my lib.a -o my proq

 $^{^9}$ стоит отметить, что заголовочный файл module.h по прежнему необходим, не смотря на то, что он не указывается нигде при компиляции

Создание shared library

- Код из статической библиотеки полностью включается в исполняемый файл программы
- Если код такой библиотеки был обновлён всю программу придётся перекомпилировать
- К тому же одну и ту же библиотеку могут использовать несколько программ
- Тогда нужно использовать общего пользования (shared library)
- Таки библиотеки используются как отдельные файлы вместе с исполняемым файлом программы
- ▶ в linux эти файлы имеют расширение so, в Windows dll
- gernotklingler.com/blog/creating-using-shared-librariesdifferent-compilers-different-operating-systems/

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Пространство имён (namespace) — некоторое множество, под которым подразумевается абстрактное хранилище или окружение, созданное для логической группировки уникальных идентификаторов (то есть имён).

В пространство имён обычно объединяют несколько связанных между собой функций, классов, типов данных.

Как правило на практике пространство имён это именованная область кода, например в модуле.

```
Пример пространства имён
namespace my_functions {
void foo() {...}
void bar() {...}
void baz() {...}
int main(){
// при использование идентификатора указывается его пространст
my functions::foo();
foo(); // ошибка: идентификатор foo не найден
```

cout << d; }

```
Пример
    Приведём пример со слайда 68 только использовав пространства имён для
    модуля
                                     my module.cpp
  my module.h
  extern int A;
                                     int A = 42:
  namespace points{
  struct Point{
                                     namespace points {
                                     float distance(const Point &p1,
      float x, y;};
  float distance(const Point &p1,
                                                     const Point &p2){
                                         return pow( pow(p1.x - p2.x, 2)
          const Point &p2);
                                           + pow(p1.y - p2.y, 2), 0.5);
  #endif // MY_MODULE_H
    main.cpp
    int main(){
       A = 100;
        points::Point p1 = \{0, 0\};
       using points::Point;
        Point p2 = \{3,4\}; // теперь можно так
        using namespace points; // для примера подключим всё
        float d = distance(p1,p2);
```

85/123

- Пространства имён можно дополнять определяя его в разных файлах
- Что на самом деле и происходит при объявлении пространства имён в заголовочном и срр файле
- Но можно не ограничиваться только одним модулем (парой файлов: h и срр). Одно пространство имён может объединять и несколько модулей.
- ► Так устроена стандартная библиотека C++. В каждом из файлов (iostream, fstream, string, ...) определена часть пространства имён std.

Пространства имён Дополнительно

▶ Поиск имён в иерархии пространстве имён

► Безымянное пространство имён stepik.org/lesson/53370/step/10?unit=31458

Основы С++

Типы данных

Указатели и ссылки

Массивы

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

компиляция в команднои строке

Пространства имён

Синонимы

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Синонимы

 Если имя какого-то пространства имен кажется нам слишком длинным, можно ввести для него короткий синоним:

```
namespace новое_имя = старое_имя;
```

То же самое можно сделать и для любого имени:

```
using новое_имя = старое_имя;
using uint = unsigned int;
```

// объявление переменной uint x;

 Никогда не следует пользоваться директивой using в заголовочных файлах, потому что это приведет к тому, что эта директива будет действовать во всех тех файлах, в которые этот файл будет включаться.

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

static внутри функции

```
void foo(){
    static int x;
}
```

Локальная переменная объявленная с использованием static:

- Хранится как глобальная переменная.
- •
- Но доступна только локально.
- Инициализируется один раз при первом входе в область видимости.

См. пример с подсчётом числа вызовов функции.

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Обработка исключений

Обработка исключительных ситуаций (exception handling) — механизм языков программирования, предназначенный для описания реакции программы на ошибки времени выполнения и другие возможные проблемы (исключения), которые могут возникнуть при выполнении программы и приводят к невозможности (бессмысленности) дальнейшей отработки программой её базового алгоритма.

- Не выполнено предусловие
 например функция ожидает в параметре положительное
 вещественное число, но передано отрицательное
- Невозможно создать объект (завершить выполнение конструктора)
- Ошибки типа "индекс вне диапазона"
- Невозможно получить ресурс например нет доступа к файлу (файл удалён или не хватает прав доступа)

Использование кодов возврата

Исключительные ситуации можно обрабатывать используя коды возврата из функции:

```
int foo(float x){
    if (x < 0) // проверка предусловий
        return 1; // если возникла искл. ситуация возвратим 1
    // do something
    return 0; // если всё хорошо, возвращаем 0
//...
int main(){
    float x;
    // ...
    int res = foo(x);
    if ( res != 0 ){
        cout << "Ошибка!";
   // ...
```

Использование кодов возврата

Использование кодов возврата не всегда возможно или оправдано

 Если функция должна возвращать другие данные тогда нужно либо менять возвращаемый тип либо предусмотреть другой способ сообщения об исключительной ситуации внутри функции - например через параметр

Использование кодов возврата

Использование кодов возврата не всегда возможно или оправдано

 Если обработать ошибку нужно не в той функции которая вызывает другую

```
int foo(float x){
    // тут может возникнуть исключение
void bar(){
   //...
    foo();
   //...
void baz(){
    //...
    bar();
    // обработка искл. ситуации должна быть здесь
   //...
```

Обработка исключительных ситуаций

```
Общая структура кода
```

```
try {
    // это защищенный блок кода
    // ... тут может возникнуть исключение ...
    // ... в любом месте ...
    // ... любого вида ...
catch (тип переменная) {
    // обработчик исключения
    // код обрабатывающий исключение
catch (тип2 переменная) {
    // обработка остальных исключений
}
catch (тип3 переменная) {
    // обработка остальных исключений
catch (...) {
    // Поймать все исключения
   остальной код
```

Обработка исключительных ситуаций

```
Пример
    void foo(float x){
        if ( /* проверка предусловий */)
            // если предусловия не выполнены
            throw 1;
        // ...
        if ( /* ещё какая-нибудь проверка */ )
            // если всё плохо...
            throw 2:
        //...
    int main(){
        float x;
        // ...
        try{
            foo(x);
        catch (int e){
            switch (e) {
                        // справляемся с исключительной ситуацией 1
            case 1:
                break:
            case 2: // справляемся с исключительной ситуацией 2
                break;
                                                 4 中 2 4 周 2 4 3 2 4 3 2 8 3 3 3
```

Пример

```
struct Exception{
   int code:
    string message; };
const Exception InvalidArgument = {-1, "Invalid Argument"};
const Exception EmptyArray = {-2, "Empty Array"};
float bmi(float m, float h){
    if (m>0 && h>0) { return m/h/h; }
              else { throw InvalidArgument;}
float print_array(float *a, unsigned n){
    if (a != nullptr && n != 0){
        ١١...
    else throw EmptyArray;
int main(){
   try { bmi(0,2);
            print array(nullptr, 3);
    } catch (Exception e) {
        if (e.code == InvalidArgument.code) {
           //...
       } else if (e.code == EmptyArray.code) {
           //...
                                           ◆□▶◆圖▶◆夏▶◆夏▶○夏
```

fail-fast

- Forgive! подход: приложение продолжает выполняться и старается минимизировать последствия ошибки.
- Fail Fast! подход: приложение немедленно прекращает работу и сообщает об ошибке.
- Поход Fail Fast предпочтительнее: желательно, чтобы ошибка автоматически выявлялась на этапе компиляции или, как можно проще и быстрее, в процессе выполнения.

Основы С++

Типы данных

Указатели и ссылки

Массивы

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимы

static

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Стандарты языка

- 1. 1983 г. появление языка.
- 2. С++89/99 (С++ версии 2.0)
- 3. C++98
- **4**. C++03
- 5. C++11
- 6. С++14 (небольшие изменения)
- 7. C++17
- 8. С++20 (модули и др.)

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Определение типа во время компиляции

Указание **auto** вместо типа заставляет компилятор самостоятельно подставить тип ориентируясь на задаваемое значение.

Определение типа во время компиляции

decltype объявляет тип, беря тип другой переменной или выражения.

```
int my_v;
decltype(my_v) v = 100; // v имеет тип int
```

Информация о типе

cplusplus.com: type info

```
#include <typeinfo>
auto y = 123.8;
cout << typeid(x).name() << endl; // печатает т

typeid(x) == typeid(xx); // типы можно сравнива</pre>
```

Основы С++

Типы данных

Указатели и ссылки

Массивы

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

компиляция в команднои строке

Пространства имён

Синонимы

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

rvalue и lvalue - правосторонние и левосторонние значений

Выражения, которым можно присваивать, называются **lvalue** (left value, т. е. слева от знака равенства). Остальные выражения называются **rvalue**.

Ссылки на rvalue и rvalue

rvalue references – ссылки на правосторонние значения.

Синтаксис

Тип &&

Outline

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторь

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Лямбда-функции

```
[захват](параметры) mutable исключения атрибуты -> возвращаемый_тип {тело}
```

Захват - глобальные переменные используемые функцией (по умолчанию не доступны),

параметры - параметры функции; описываются как для любой функции,

mutable - указывается, если нужно поменять захваченные переменные,

исключения - которые может генерировать функция, **атрибуты** - те же что и для обычных функций.

```
Возведение аргумента в квадрат
[](auto x) {return x*x;}

Сумма двух аргументов
[](auto x, auto y) {return x + y;}
```

Возведение аргумента в квадрат

```
[](auto x) {return x*x;}
Сумма двух аргументов
[](auto x, auto y) {return x + y;}
Вывод в консоль числа и его квадрата
\lceil (float \ x) \ \{cout << x << " " << x*x << endl: \}
Тело лямбда-функции описывается также как и обычной
функции
[](int x) { if (x % 2) cout << "H"; else cout << "4"
```

Использование захвата.

- = захватить все переменные.
- захватить переменную по ссылке.

Чтобы изменять переменную захваченную по ссылке нужно добавить *mutable* к определению функции.

```
float k = 1.2;
float t = 20;

[k](float x) {return k*x;}

[k,&c](float x) mutable {if (k*x > 0) c = 0; else c
```

Когда использовать лямбда функции?

Когда не требуется объявлять функцию заранее.

Функция очень короткая.

Функция нужна один раз.

Функцию лучше всего описать там, где она должна использоваться.

C++20

youtube.com/watch?v=5s4CFEMARtU – Яндекс Практикум: Обзор основных нововведений стандарта C++20

Статья по вебинару Хабр: Стандарт C++20: обзор новых возможностей C++. Часть 1 «Модули и краткая история C++»

```
Outline
   OCHOBЫ C++
```

Создание программ с GUI

118/123

Создание программ с GUI

Для создания приложений с GUI используются сторонние фреимворки, не входящие в стандартную библиотеку C++.

Некоторые из них:

Для Windows

Windows Presentation Foundation (WPF)¹⁰

Кроссплатформенные

- Ot
- ▶ GTK+
- wxWidgets

¹⁰входит в состав .NET Framework

Outline

Основы С++

Типы данных

Указатели и ссылки

Массивь

Составные типы данных

Операторы

Функции

Модули

Операторы управления динамической памятью

Компиляция в командной строке

Пространства имён

Синонимь

statio

Обработка исключительных ситуаций

Нововведения С++11,14...

Определение типа

Ссылки на правосторонние значения

Лямбда-функции

Создание программ с GUI

Ссылки и литература

- 1. Stepik: Программирование на языке С++
- 2. **Б. Страуструп Язык программирования С++.** 2013. 350 страниц. Учебник по языку. Шаблоны. ООП. Проектирование.
- 3. MSDN: Справочник по языку C++
- 4. Эффективный и современный C++: 42 рекомендации по использованию C++ 11 и C++14. 2016. 300 страниц. Просмотреть. Изучить. Использовать как справочник. Неформальный стиль. Много примеров. Хорошее знание C++.
- 5. stackowerflow.com система вопросов и ответов

Ссылки и литература

Документация по языку:

- ► ru.cppreference.com информация по языку и стандартной библиотеке C++. Есть примеры.
- Zeal (zealdocs.org) офлайн документация по языкам программирования и фреймворкам при первом запуске программы требуется скачать необходимую документацию

Дополнительно:

habr.com/company/pvs-studio/ Блог компании PVS-Studio.
 Примеры ошибок в C++ (и не только) коде найденных статическим анализатором кода PVS-Studio.

Ссылки и литература

Ссылка на слайды github.com/VetrovSV/ООР