UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea	

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Geometrie și Trigonometrie M2A

VARIANTA A

1. Aflați $\cos^2 x$, știind că $\sin x = \frac{\sqrt{3}}{2}$. (5 pct.)

a)
$$\frac{3}{4}$$
; b) $\frac{1}{3}$; c) 0; d) 1; e) $\frac{1}{4}$; f) $\frac{1}{2}$.

2. Fie vectorii: $\vec{u} = 3\vec{i} - 4\vec{j}$, $\vec{v} = \vec{i} + \vec{j}$, $\vec{w} = 5\vec{i} - 2\vec{j}$. Determinați $a \in \mathbb{R}$ astfel încât $\vec{u} + a\vec{v} = \vec{w}$. (5 pct.)

a) 0; b) 1; c)
$$-2$$
; d) 3; e) 2; f) -1 .

3. Calculați aria unui triunghi dreptunghic isoscel de ipotenuză egală cu $\sqrt{2}$. (5 pct.)

a) 2; b) 1; c)
$$\frac{1}{2}$$
; d) $\sqrt{5}$; e) $\sqrt{2}$; f) $\frac{1}{\sqrt{2}}$.

4. Se dau vectorii: $\vec{u} = 2\vec{i} + 3\vec{j}$ și $\vec{v} = 3\vec{i} + m\vec{j}$. Calculați valoarea parametrului real m pentru care \vec{u} și \vec{v} sunt perpendiculari. (5 pct.)

5. Să se calculeze $E = \frac{\operatorname{tg} 45^{\circ} \cdot \cos 90^{\circ}}{\sin 30^{\circ}}$. (5 pct.)

a)
$$-\frac{1}{2}$$
; b) 0; c) $\frac{1}{2}$; d) 1; e) -1; f) $\frac{\sqrt{3}}{2}$.

6. Calculați a^4 , unde $a = \frac{1+i}{\sqrt{2}}$. (5 pct.)

a) 1; b)
$$i$$
; c) $1-4i$; d) $1+4i$; e) -1 ; f) $4-i$.

7. Valoarea lui sin 120° este: (5 pct.)

a)
$$\frac{\sqrt{2}}{2}$$
; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{3}}{2}$; d) $\frac{1}{2}$; e) $-\frac{1}{2}$; f) $-\frac{\sqrt{2}}{2}$.

8. Soluțiile ecuației $\sin x + \cos^2 x = 1$ din intervalul $\left[0, \frac{\pi}{2}\right]$ sunt: (5 pct.)

a)
$$\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}$$
; b) $\left\{\frac{\pi}{3}, \frac{\pi}{2}\right\}$; c) $\left\{0, \frac{\pi}{4}\right\}$; d) $\left\{0, \frac{\pi}{2}\right\}$; e) $\left\{0, \frac{\pi}{6}\right\}$; f) $\left\{0, \frac{\pi}{3}\right\}$.

- 9. Dacă $\vec{u} = \vec{i} + \vec{j}$ și $\vec{v} = \vec{i} \vec{j}$, atunci $||\vec{u} + 3\vec{v}||$ este: (5 pct.)
 - a) $\sqrt{5}$ -1; b) 2 + $\sqrt{5}$; c) 1 + $\sqrt{5}$; d) 2 $\sqrt{5}$; e) 2; f) $\sqrt{5}$.
- 10. Aflați tg x știind că $\sin x 4\cos x = 0$. (5 pct.)
 - a) -2; b) -1; c) -4; d) 2; e) 1; f) 4.
- 11. Să se calculeze partea reală a numărului complex $z = i + i^3 + i^5$. (5 pct.)
 - a) 3; b) 1; c) -1; d) 0; e) -2; f) 2.
- 12. Dacă z=1+i, atunci valoarea expresiei $E=z\cdot\overline{z}$ este: (5 pct.)
 - a) 1; b) -i; c) 0; d) -1; e) i; f) 2.
- 13. Dreapta care trece prin punctele A(1,3), B(2,4) are ecuația: (5 pct.)
 - a) x-y-1=0; b) x-y=0; c) x-y+2=0; d) x+y=0; e) x-y-2=0; f) x-y+1=0.
- 14. Se consideră triunghiul ABC cu laturile AB = 3, BC = 4, CA = 5. Aflați $\cos A$. (5 pct.)
 - a) $\frac{1}{5}$; b) $\frac{2}{5}$; c) $\frac{4}{5}$; d) $\frac{3}{5}$; e) 1; f) 0.
- 15. Calculați distanța de la punctul A(1,1) la dreapta de ecuație x+y-1=0. (5 pct.)
 - a) 1; b) 2; c) $\sqrt{2}$; d) $\sqrt{3}$; e) $\frac{1}{\sqrt{2}}$; f) $\frac{1}{\sqrt{3}}$.
- 16. Aflați valoarea lui $m \in \mathbb{R}$ pentru care punctul A(m,2) aparține dreptei de ecuație x-y-1=0. (5 pct.)
 - a) 2; b) -2; c) 1; d) -3; e) 3; f) -1.
- 17. Ecuațiile tangentelor duse din punctul $A(\sqrt{2},0)$ la cercul de ecuație $x^2 + y^2 = 1$ sunt: (5 pct.)
 - a) $y-x+\sqrt{2}=0$, y=0; b) $y+x-\sqrt{2}=0$, y=0; c) $y+x-\sqrt{2}=0$, x=0; d) $y-x+\sqrt{2}=0$, x=0;
 - e) x = 0, y = 0; f) $y + x \sqrt{2} = 0$, $y x + \sqrt{2} = 0$.
- 18. Determinați aria triunghiului de vârfuri A(0,1), B(1,0), C(-1,0). (5 pct.)
 - a) 4; b) 1; c) $\frac{3}{2}$; d) 2; e) $\frac{1}{2}$; f) $\frac{1}{4}$.