Fundamentos de los Lenguajes Informáticos

Grado en Ingeniería Informática (GII)

Doble Grado en Ingeniería Informática y Matemáticas (DGIIM)

PELLIDOS, NOMBRE:			
NI/NIE:		GRADO:	
Cada respuesta correcta va	ecta, escríbela en el cuadrado	-	
1. Dada la gramática indepe	ndiente del contexto G defin	ida por el siguiente conjunto de produccione	es,
$\begin{array}{ccc} S & \longrightarrow & bA \mid aB \\ A & \longrightarrow & a \mid aS \mid bAA \end{array}$	(a) L(c) (b) L(c)	$G(G) = L((a+b)^*).$ $G(G) = L((ab+ba+aa+bb)^*).$	
$\begin{array}{ccc} B & \longrightarrow & b \mid bS \mid aBB \\ \hline \end{array}$	(c) las	dos afirmaciones anteriores son falsas.	
2. Si M es un ϵ -AFN con 4 ϵ	,		
-	ivalentes a M pero todos ello $'$ con no más de 16 estados ϵ anteriores son falsas.		
3. Si $L = L(a^*)$,			
(a) el AFD mínimo que	reconoce L tiene 1 estado.		
• /	reconoce L tiene 2 estados. reconoce L puede tener 1 o 2	estados.	
	otra más a la derecha; entonde G es ambigua. Le G no es ambigua.	pemos que la palabra ab admite dos derivacion \cos ,	nes
5. Sea $L_{ab} = \{a^n b^m \mid n, m \text{ alfabeto es regular?} $	$\in \mathbb{N}, n \neq m \} \subset \{a, b\}^*.$ ¿C	uál de los siguientes lenguajes sobre el mis	smo
(a) $L(a^*b^*) \cap L_{ab}$	(b) $L_{ab} \cup \overline{L_{ab}}$	(c) $L(a^*b^*) \setminus L_{ab}$	
		estado inicial y también final, z_0 es el símb $=\{(q,z_0)\},$ y sea $w=aa.$ Entonces	ool
	do final pero no por pila vac		
(c) las dos afirmaciones	vacía pero no por estado fir anteriores son falsas.	aı.	

	(a) asociativa y conmutativa.(b) asociativa pero no conmutativa.(c) conmutativa pero no asociativa.				
8.	El resultado de simplificar todo lo posible la expresión regular $(\epsilon + aa)(\epsilon + aa)^*(ab + b) + (b + aa)^*(ab + b)$	ab) es			
	(a) $(\epsilon + aa)^*(ab + b)$. (b) $(aa)^*(b + ab)$. (c) $(\epsilon + aa)^+(ab + b)^2$.				
9.	Dada la gramática independiente del contexto G definida por el siguiente conjunto de producciones,				
	$S \longrightarrow aB \mid aaB \mid AB$ $A \longrightarrow \epsilon$ $B \longrightarrow bA \mid \epsilon$ (a) $L(G) = \{a, b\}^*$. (b) $L(G) = \{a, aa, ab, b, aab, \epsilon\}$. (c) $L(G) \subset \{a, aa, ab\}^*$.				
10.	¿Cuál de las siguientes afirmaciones es falsa?				
	 (a) Si L ⊆ L' y L' es un lenguaje regular, entonces L es regular. (b) Para todo lenguaje L existe un sublenguaje L' ⊆ L tal que L' es regular. (c) Si L es un lenguaje regular, entonces L es regular. 				
11.	Si una gramática independiente del contexto G es ambigua, ¿es el lenguaje $L(G)$ inherente ambiguo?	mente			
	(a) Siempre.(b) Nunca.(c) A veces.				
12.	Si M_1 y M_2 son autómatas finitos equivalentes, siendo M_1 un AFD y M_2 un AFN, entonces				
	(a) como son equivalentes, los dos tendrán el mismo número de estados.				
	(b) por ser M_1 determinista, tendrá un número de estados mayor que el de M_2 . (c) no hay ninguna relación entre el número de estados de ambos.				
13.	¿Puede un autómata con pila determinista tener transiciones ϵ ?				
	(a) No, porque no sería determinista.				
	(b) Sí, porque esto no afecta al determinismo.(c) Sí, pero no en cualquier situación.				
14.	Sea M un AFD mínimo para el lenguaje $L(a^* + b^* + c^*)$; entonces,				
	(a) M tiene 5 estados.				
	(b) M tiene 4 estados.(c) M tiene menos de 4 estados.				
15.	Supongamos que $\epsilon \in L$ y que el autómata finito M reconoce el lenguaje L . ¿Cuál de las siguafirmaciones es falsa? (q_0 representa el estado inicial y F el conjunto de estados de aceptación)	ientes			
	(a) Si M es un AFD, necesariamente $q_0 \in F$. (b) Si M es un AFN, necesariamente $q_0 \in F$.				
	(b) Si M es un ϵ -AFN, necesariamente $q_0 \in F$. (c) Si M es un ϵ -AFN, necesariamente $q_0 \in F$.				

7. La operación de concatenación, tanto sobre cadenas como sobre lenguajes, es

16.	Si un AFD M tiene un conjunto de estados Q tal que $ Q >1$ y $F=Q$, entonces	
	 (a) M no puede ser un AFD mínimo. (b) M puede ser un AFD mínimo. (c) El cardinal de Q no tiene ninguna relación con que M sea mínimo. 	
17.	¿Cuál es el tipo de autómata más sencillo (es decir, menos general) capaz de reconocer el lenguaje $\{0^n1^{3n}\mid n\in\mathbb{N}\}$?	
	(a) Un autómata finito. (b) Un autómata con pila determinista. (c) Un autómata con pila.	
18.	Sea L un lenguaje definido a partir de un alfabeto unitario (es decir, $ \Sigma = 1$); entonces,	
	 (a) L es necesariamente regular. (b) L es necesariamente independiente del contexto. (c) Ninguna de las anteriores afirmaciones es cierta. 	
19. Dada la gramática independiente del contexto G definida por el siguiente conjunto de pr		
	$S \longrightarrow SS \mid 01 \mid 10$ (a) $L(G) = \{x \in \{0, 1\}^* \mid x _0 = x _1\}.$ (b) $L(G) = \{x \in \{0, 1\}^+ \mid x _0 = x _1\}.$ (c) $L(G) = \{01, 10\}^+.$	
20.	Para $L = \{x \in \{a, b, c\}^* \mid \exists j, k \in \mathbb{N} : x = a^j b^k c^k, \text{ con } j \geq 3\}$, ¿qué cadena convendrá elegir para aplicar el lema de iteración o bombeo para demostrar que L no es regular, donde N es la constante dada por dicho lema? (a) $a^N b^N c^N$.	
	(b) $aaab^Nc^N$. (c) $a^jb^kc^k$.	