МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» (ПГУ)

Л. Д. Романова, Т. А. Шаркунова, Т. В. Елисеева

ИНТЕГРАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ

Учебное пособие

Пенза Издательство ПГУ 2015

Рецензенты:

доктор физико-математических наук, профессор кафедры «Физика» Пензенского государственного университета $A. \ E. \ \Gamma pyhuh;$

кандидат физико-математических наук, доцент, заведующий кафедрой «Прикладная математика и исследование операций в экономике» Пензенского государственного технологического университета А. В. Моисеев

Романова, Л. Д.

Р69 Интегральные преобразования : учеб. пособие / Л. Д. Романова, Т. А. Шаркунова, Т. В. Елисеева. – Пенза : Изд-во ПГУ, 2015. – 80 с.

ISBN 978-5-906796-98-1

Рассматриваются вопросы применения рядов Фурье, а также интегральных преобразований Фурье и Лапласа. Даны задачи для самостоятельного решения.

Издание подготовлено на кафедре «Высшая и прикладная математика» Пензенского государственного университета и предназначено для студентов направлений подготовки «Прикладная математика», «Физика».

УДК 517.44

Предисловие

Интегральные преобразования имеют широкое применение при решении задач математической физики, при решении задач, возникающих в гравиразведке и т.д. и являются мощным математическим аппаратом. Они широко используются в научно-исследовательской работе и входят в состав математических курсов, изучаемых в вузах.

Предлагаемое учебное пособие содержит основные сведения об интегральных преобразованиях Фурье и Лапласа.

Первый раздел посвящен теории рядов Фурье.

Во втором разделе определяется интеграл Фурье, рассматриваются преобразование Фурье и его свойства.

Третий раздел содержит теорию о преобразовании Лапласа. Здесь рассматривается связь интеграла Лапласа с интегралом Фурье. Показано применение операционного исчисления к решению дифференциальных уравнений и их систем.

В четвертом разделе приводится применение интегральных преобразований к решению интегральных уравнений.

В конце каждого раздела приводятся примеры решения задач и набор упражнений для самостоятельного решения.

1. Ряды Фурье

Определение. Тригонометрическим рядом называется ряд вида

$$\frac{a_0}{2} + (a_1 \cos x + b_1 \sin x) + (a_2 \cos 2x + b_2 \sin 2x) + \dots + (a_n \cos nx + b_n \sin nx) + \dots =$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Действительные числа a_n , b_n называются коэффициентами ряда.

Если тригонометрический ряд сходится, то его сумма представляет собой периодическую функцию с периодом 2π , так как функции $\sin nx$ и $\cos nx$ являются периодическими функциями с периодом 2π .

Если f(x)— периодическая функция периода 2π , непрерывная на отрезке $[-\pi; \pi]$ или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx; \quad n = 1, 2, ...;$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \quad n = 1, 2, ...$$

существуют и называются коэффициентами Фурье для функции f(x).

Определение. *Рядом Фурье* для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье сходится к функции f(x) во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Достаточные признаки разложимости в ряд Фурье

Теорема (Теорема Дирихле). Если функция f(x) имеет период 2π и на отрезке $[-\pi;\pi]$ непрерывна или имеет конечное число точек разрыва первого рода, и отрезок $[-\pi;\pi]$ можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях x, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна $\frac{f(x-0)+f(x+0)}{2}$, т.е. среднему арифметическому предельных значений слева и справа.

Функция f(x), для которой выполняются условия теоремы Дирихле, называется *кусочно-монотонной* на отрезке $[-\pi;\pi]$.

Теорема. Если функция f(x) имеет период 2π , кроме того, f(x) и ее производная f'(x) — непрерывные функции на отрезке $[-\pi;\pi]$ или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях x, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна $\frac{f(x-0)+f(x+0)}{2}$. Функция, удовлетворяющая условиям этой теоремы, называется **кусочно-гладкой** на отрезке $[-\pi;\pi]$.

1.1. Ряд Фурье для четных и нечетных функций

Отметим следующие свойства четных и нечетных функций:

1)
$$\int_{-a}^{a} f(x)dx = \begin{cases} 0, & \text{если } f(x) - \text{нечетная;} \\ 2 \int_{0}^{a} f(x)dx, & \text{если } f(x) - \text{четная.} \end{cases}$$

- 2) Произведение двух четных или двух нечетных функций является четной функцией.
 - 3) Произведение четной и нечетной функций нечетная функция.

Справедливость этих свойств может быть легко доказана исходя из определения четности и нечетности функций.

Если f(x) — четная периодическая функция с периодом 2π , удовлетворяющая условиям разложимости в ряд Фурье, то можно записать:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx; \qquad n = 1, 2, ...;$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = 0, \qquad n = 1, 2, ...$$

Таким образом, для четной функции ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$
 (1.1)

где
$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$
, $n = 0, 1, 2, ...$

Ряд (1.1) называется *рядом косинусов* или разложением функции по косинусам кратных дуг.

Если f(x) — нечетная периодическая функция с периодом 2π , удовлетворяющая условиям разложимости в ряд Фурье, то

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0, \quad n = 0, 1, 2, ...,$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx, \qquad n = 1, 2, ...$$

и разложение в ряд Фурье для нечетной функции имеет вид

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx.$$
 (1.2)

Ряд (1.2) называется *рядом синусов* или разложением функции по синусам кратных дуг.

1.2. Ряды Фурье для функций произвольного периода

Ряд Фурье для функции f(x) периода T = 2l, непрерывной или имеющей конечное число точек разрыва первого рода на отрезке [-l;l], имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi n x}{l} + b_n \sin \frac{\pi n x}{l} \right),$$
 (1.3)

где
$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$
; $a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx$, $n = 1, 2, ...$;

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx, \quad n = 1, 2, ...$$

Для четной функции произвольного периода разложение в ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{l};$$
 (1.4)

где
$$a_0 = \frac{2}{l} \int_0^l f(x) dx$$
; $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{\pi nx}{l} dx$, $n = 1, 2, ...$

Для нечетной функции:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi nx}{l}$$
, где $b_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi nx}{l} dx$, $n = 1, 2, ...$ (1.5)

1.3. Разложение в ряд Фурье непериодической функции

Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.

Допустим, функция f(x) задана на отрезке [a;b] и является на этом отрезке кусочно-монотонной. Рассмотрим произвольную периодическую кусочно-монотонную функцию $f_1(x)$ с периодом $2T \ge |b-a|$, совпадающую с функцией f(x) на отрезке [a;b].

Таким образом, функция f(x) была дополнена. Теперь функция $f_1(x)$ может быть разложена в ряд Фурье. Сумма этого ряда во всех точках отрезка [a;b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a;b].

Продолжение заданной функции на отрезок (интервал) длиной 2T может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a;b] (рис. 1.1).

1.4. Примеры разложения функций в ряд Фурье

Пример 1. Разложить функцию $f(x) = \cos \frac{x}{2}$ в ряд Фурье на отрезке $-\pi;\pi$.

Решение. Заданная функция четная, поэтому ряд Фурье будет иметь вид (1.1) и коэффициенты будем искать по формулам $a_0 = \frac{2}{\pi} \int_0^\pi f(x) dx \ \text{и} \ a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos nx dx, \quad n = 1, 2, \dots;$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \cos \frac{x}{2} dx = \frac{2}{\pi} \cdot \frac{2}{1} \sin \frac{x}{2} \Big|_0^{\pi} = \frac{4}{\pi} \left(\sin \frac{\pi}{2} - \sin \right) = \frac{4}{\pi}.$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} \cos \frac{x}{2} \cdot \cos nx dx = \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} \left(\cos \left(\frac{x}{2} + nx \right) + \cos \left(\frac{x}{2} - nx \right) \right) dx =$$

$$= \frac{1}{\pi} \int_0^{\pi} \left(\cos \left(\frac{1}{2} + n \right) x + \cos \left(\frac{1}{2} - n \right) x \right) dx =$$

$$= \frac{1}{\pi} \left(\frac{1}{0.5 + n} \sin 0.5 + n \ x \Big|_0^{\pi} + \frac{1}{0.5 - n} \sin 0.5 - n \ x \Big|_0^{\pi} \right) =$$

$$= \frac{1}{\pi} \left(\frac{1}{n + 0.5} \sin 0.5 + n \ \pi - \frac{1}{n + 0.5} \sin 0 - \frac{1}{n - 0.5} \sin 0.5 - n \ \pi + \frac{1}{n - 0.5} \sin 0 \right) =$$

$$= \frac{1}{\pi} \left(\frac{1}{n + 0.5} \sin \left(\frac{\pi}{2} + n\pi \right) - \frac{1}{n - 0.5} \sin \left(\frac{\pi}{2} - n\pi \right) \right) = \frac{1}{\pi} \left(\frac{1}{n + 0.5} \cos n\pi - \frac{1}{n - 0.5} \cos n\pi \right) =$$

$$= \frac{\cos n\pi}{\pi} \left(\frac{1}{n + 0.5} - \frac{1}{n - 0.5} \right) = \cos n\pi = (-1)^n = \frac{(-1)^{n+1}}{\pi} \cdot \frac{1}{n^2 - 0.25}, \quad n = 1, 2, \dots$$

Подставляя найденные коэффициенты в ряд Фурье, получаем

$$\cos\frac{x}{2} = \frac{2}{\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 - 0.25} \cos nx.$$

Пример 2. Разложить функцию $f(x) = x^3$ в ряд Фурье на отрезке $[-\pi;\pi]$.

Решение. Заданная функция является нечетной, следовательно, ряд Фурье будет иметь вид (1.2) и коэффициенты ищем в виде $b_n =$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, ...):$$

$$\begin{split} b_n &= \frac{2}{\pi} \int_0^\pi x^3 \sin nx dx = \begin{cases} u = x^3; & dv = \sin nx dx; \\ du = 3x^2 dx; & v = -\frac{\cos nx}{n} \end{cases} = \frac{2}{\pi} \left(-\frac{x^3 \cos nx}{n} \Big|_0^\pi + \frac{3}{n} \int_0^\pi x^2 \cos nx dx \right) = \\ &= \begin{cases} u = x^2; & dv = \cos nx dx; \\ du = 2x dx; & v = \frac{\sin nx}{n} \end{cases} = \frac{2}{\pi} \left(-\frac{\pi^3 \cos \pi n}{n} + \frac{3}{n} \left[\frac{x^2 \sin nx}{n} \Big|_0^\pi - \int_0^\pi \frac{2x \sin nx}{n} dx \right] \right) = \\ &= \frac{2}{\pi} \left(-\frac{\pi^3 \cos \pi n}{n} - \frac{6}{n^2} \int_0^\pi x \sin nx dx \right) = \begin{cases} u = x; & dv = \sin nx dx; \\ du = dx; & v = -\frac{\cos nx}{n} \end{cases} = \\ &= \frac{2}{\pi} \left(-\frac{\pi^3 \cos \pi n}{n} - \frac{6}{n^2} \left(-\frac{x \cos nx}{n} \Big|_0^\pi + \int_0^\pi \frac{\cos nx}{n} dx \right) \right) = \\ &= \frac{2}{\pi} \left(-\frac{\pi^3 \cos \pi n}{n} + \frac{6\pi \cos \pi}{n^3} - \frac{6}{n^3} \left(\frac{\sin nx}{n} \Big|_0^\pi \right) \right) = -\frac{2\pi^2 \cos \pi n}{n} + \frac{12 \cos \pi n}{n^3} = \\ &= (-1)^n \left(\frac{12}{n^3} - \frac{2\pi^2}{n} \right), \text{ Tak kak } \cos n\pi = (-1)^n, \sin n\pi = 0. \end{split}$$

В итоге получаем:

$$x^{3} = \sum_{n=1}^{\infty} b_{n} \sin nx = \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{12}{n^{3}} - \frac{2\pi^{2}}{n} \right) \sin nx.$$

Пример 3. Функцию $f(x) = \begin{cases} 2x+1 & \text{при } 0 < x < 1; \\ 3 & \text{при } 1 \le x < 2 \end{cases}$ разложить в ряд косинусов на интервале (0,2).

Решение. Доопределим заданную функцию на (-2; 0) четным образом. Тогда период функции T=4, следовательно, l=2 и разложение в ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi n x}{2},$$
 где $a_0 = \frac{2}{2} \int_0^2 f(x) dx = \int_0^2 f(x) dx; \quad a_n = \frac{2}{2} \int_0^2 f(x) \cos \frac{\pi n x}{2} dx, \quad n = 1, 2, \dots$

Вычислим

$$a_{0} = \int_{0}^{2} f(x)dx = \int_{0}^{1} (2x+1)dx + \int_{1}^{2} 3dx = x^{2} + x \Big|_{0}^{1} + 3x\Big|_{1}^{2} = 2 + 6 - 3 = 5;$$

$$a_{n} = \frac{2}{2} \int_{0}^{2} f(x)\cos\frac{\pi nx}{2}dx = \int_{0}^{1} (2x+1)\cdot\cos\frac{\pi nx}{2}dx + \int_{1}^{2} 3\cdot\cos\frac{\pi nx}{2}dx =$$

$$= \begin{cases} u = 2x+1; & dv = \cos\frac{\pi nx}{2}dx; \\ du = 2dx; & v = \frac{2}{\pi n}\sin\frac{\pi nx}{2} \end{cases} = (2x+1)\frac{2}{\pi n}\sin\frac{\pi nx}{2}\Big|_{0}^{1} - \int_{0}^{1} \frac{2}{\pi n}\sin\frac{\pi nx}{2} \cdot 2dx +$$

$$+ \frac{6}{\pi n}\sin\frac{\pi nx}{2}\Big|_{1}^{2} = \frac{6}{\pi n}\sin\frac{\pi n}{2} + \frac{4}{\pi n}\cdot\frac{2}{\pi n}\cos\frac{\pi nx}{2}\Big|_{0}^{1} + \frac{6}{\pi n}\sin\pi n - \frac{6}{\pi n}\sin\frac{\pi n}{2} =$$

$$= \frac{8}{(\pi n)^{2}}\cos\frac{\pi n}{2} - \frac{8}{(\pi n)^{2}}.$$

В результате получаем

$$f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} \left(\frac{8}{(\pi n)^2} \cos \frac{\pi n}{2} - \frac{8}{(\pi n)^2} \right) \cos \frac{\pi n x}{2} = \frac{3}{2} + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\cos \frac{\pi n}{2} - 1 \right) \cos \frac{\pi n x}{2}.$$

График суммы ряда имеет вид как на рис. 1.2

Пример 4. Разложить в ряд Фурье функцию, заданную графически (рис. 1.3).

Рис. 1.3

Решение. Запишем аналитическое выражение данной функции:

$$f(x) = \begin{cases} -1 & \text{при } -2 < x < -1, \\ x & \text{при } -1 \le x \le 1, \\ 1 & \text{при } 1 \le x < 2, \end{cases}$$
 период которой равен 4.

Заметим, что график функции на интервале (-2; 2) симметричен относительно начала координат, следовательно, на этом интервале функция является нечетной и поэтому ряд Фурье будет иметь вид (1.5). В силу того, что T=2l=4 и, следовательно, l=2, коэффициенты ряда будут вычисляться по формуле

$$b_{n} = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi nx}{l} dx = \frac{2}{2} \int_{0}^{2} f(x) \sin \frac{\pi nx}{2} dx = \int_{0}^{1} x \cdot \sin \frac{\pi nx}{2} dx + \int_{0}^{1} \sin \frac{\pi nx}{2} dx =$$

$$= \begin{cases} u = x; & dv = \sin \frac{\pi nx}{2} dx \\ du = dx; & v = -\frac{2}{\pi n} \cos \frac{\pi nx}{2} \end{cases} = -x \cdot \frac{2}{\pi n} \cos \frac{\pi nx}{2} \Big|_{0}^{1} - \int_{0}^{1} -\frac{2}{\pi n} \cos \frac{\pi nx}{2} dx -$$

$$-\frac{2}{\pi n} \cos \frac{\pi nx}{2} \Big|_{1}^{2} = -\frac{2}{\pi n} \cos \frac{\pi n}{2} + \left(\frac{2}{\pi n}\right)^{2} \sin \frac{\pi nx}{2} \Big|_{0}^{1} - \frac{2}{\pi n} \cos \pi n + \frac{2}{\pi n} \cos \frac{\pi n}{2} =$$

$$= \frac{4}{\pi^{2} n^{2}} \sin \frac{\pi n}{2} - \frac{2}{\pi n} (-1)^{n}.$$

Искомый ряд Фурье имеет вид

$$f(x) = \sum_{n=1}^{\infty} \left(\frac{4}{\pi^2 n^2} \sin \frac{\pi n}{2} - \frac{2}{\pi n} (-1)^n \right) \sin \frac{\pi n x}{2}.$$

1.5. Задачи для самостоятельного решения

- **1.1.** Разложить в ряд Фурье функцию $f(x) = \begin{cases} -x & \text{при } -\pi < x < 0; \\ \pi & \text{при } 0 \le x < \pi \end{cases}$ в интервале $(-\pi; \pi)$.
- **1.2.** Разложить в ряд Фурье функцию $f(x) = \begin{cases} x & \text{при } -1 < x < 0; \\ -1 & \text{при } 0 \le x < 1 \end{cases}$ в интервале (-1; 1).
- **1.3.** Разложить в ряд Фурье функцию $f(x) = \begin{cases} x+1 & \text{при } -1 < x < 0; \\ 1 & \text{при } 0 \le x < 1 \end{cases}$ в интервале (-1; 1).

- **1.4.** Разложить в ряд Фурье функцию $f(x) = \begin{cases} 2x & \text{при } -2 < x < 0; \\ 0 & \text{при } 0 \le x < 2 \end{cases}$ в интервале (-2; 2).
- **1.5.** Разложить в ряд Фурье функцию $f(x) = \begin{cases} x+2 & \text{при } -2 < x < 0; \\ x-2 & \text{при } 0 \le x < 2 \end{cases}$ в интервале (-2; 2).
- **1.6.** Разложить в ряд Фурье функцию f(x) = |x| в интервале (-3; 3).
- **1.7.** Функцию f(x) = 2 x в интервале (0, 2) разложить: а) в ряд косинусов; б) в ряд синусов. Построить графики сумм соответствующих рядов.
- **1.8.** Функцию f(x) = x 3 в интервале (0, 3) разложить: а) в ряд косинусов; б) в ряд синусов. Построить графики сумм соответствующих рядов.
- **1.9.** Функцию $f(x) = \pi x$ в интервале $(0, \pi)$ разложить: а) в ряд косинусов; б) в ряд синусов. Построить графики сумм соответствующих рядов.
- **1.10.** Функцию $f(x) = x^2$ в интервале (0, 2) разложить в ряд косинусов.
- **1.11.** Функцию f(x) = 2x 1 в интервале (0,1) разложить: а) в ряд косинусов; б) в ряд синусов. Построить графики сумм соответствующих рядов.

Разложить в ряд Фурье функции, заданные графически (задачи 1.12–1.20).

2. Интеграл Фурье

В электротехнике, автоматике и особенно в радиотехнике и технике связи довольно часто встречаются электрические напряжения, токи, магнитные потоки и другие величины, изменяющиеся во времени по несинусоидальному непериодическому закону. В этих случаях для исследования процессов, протекающих в электро- и радиотехнических устройствах, прибегают к разложению таких функций в интеграл Фурье.

Пусть функция f(x) — непрерывная, 2l — периодическая функция, удовлетворяющая условиям, при которых ее можно разложить в ряд Фурье с периодом 2l, тогда

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right), \tag{2.1}$$

где
$$a_0 = \frac{1}{l} \int_{-l}^{l} f(t) dt$$
, $a_n = \frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{n\pi t}{l} dt$, $b_n = \frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{n\pi t}{l} dt$.

Сумма ряда (2.1) есть 2l — периодическая функция, совпадающая на всей числовой оси с данной функцией f(x). Если f(x) не является 2l — периодической функцией, но удовлетворяет условиям, при которых ее можно разложить в ряд Фурье с периодом 2l, то сумма ряда Фурье вне (-l,l) не будет совпадать с f(x).

Для того, чтобы и в этом случае получить представление f(x) в виде (2.1), справедливое для всех x, предположим, что в любом конечном промежутке (-l,l) функция f(x) является кусочногладкой и абсолютно интегрируемой на всей числовой оси, т.е.

интеграл
$$\int_{-\infty}^{+\infty} |f(x)| dx = I$$
 сходится.

Найдем предел выражения, стоящего в правой части равенства (2.1) при $l \to +\infty$. Подставив значения a_0 , a_n , b_n в правую часть равенства (2.1), получим

$$f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{n=1}^{\infty} \int_{-l}^{l} f(t) \left(\cos \frac{n\pi x}{l} \cos \frac{n\pi t}{l} + \sin \frac{n\pi x}{l} \sin \frac{n\pi t}{l} \right) dt =$$

$$= \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{n=1}^{\infty} \int_{-l}^{l} f(t) \left(\cos \frac{n\pi}{l} (x - t) \right) dt.$$
 (2.2)

Покажем, что первое слагаемое в правой части этого равенства стремится к нулю при $l \to +\infty$:

$$\left| \frac{1}{2l} \int_{-l}^{l} f(t) dt \right| = \frac{1}{2l} \left| \int_{-l}^{l} f(t) dt \right| \le \frac{1}{2l} \int_{-l}^{l} |f(t)| dt \le \frac{1}{2l} \int_{-\infty}^{+\infty} |f(t)| dt = \frac{1}{2l} \cdot I \to 0.$$

Рассмотрим второе слагаемое в равенстве (2.2). Обозначим $\frac{\pi}{l} = \omega_1, \ \frac{2\pi}{l} = \omega_2, ..., \frac{n\pi}{l} = \omega_n, ..., \$ при этом $\Delta \omega_n = \omega_n - \omega_{n-1} = \frac{\pi}{l} \to 0$ при $l \to +\infty$.

Тогда

$$\frac{1}{l} \sum_{n=1}^{\infty} \int_{-l}^{l} f(t) \left(\cos \frac{n\pi}{l} (x-t) \right) dt = \frac{1}{\pi} \sum_{n=1}^{\infty} \int_{-l}^{l} f(t) \left(\cos \frac{n\pi}{l} (x-t) \right) \frac{\pi}{l} dt =$$

$$= \frac{1}{\pi} \sum_{n=1}^{\infty} \int_{-l}^{l} (f(t) \cdot \cos \omega_n (x-t) dt) \Delta \omega_n.$$

Переходя к пределу в равенстве (2.2) при $l \to +\infty$, получим

$$f(x) = \frac{1}{\pi} \lim_{l \to +\infty} \sum_{n=1}^{\infty} \left(\int_{-l}^{+l} f(t) \cos \omega_n(x-t) dt \right) \Delta \omega_n = \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt.$$

Таким образом,

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega (x - t) dt.$$
 (2.3)

Выражение (2.3) называется *интегралом Фурье* для функции f(x). Формулу (2.3) можно преобразовать следующим образом:

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t)(\cos\omega t \cdot \cos\omega x + \sin\omega t \cdot \sin\omega x) dt =$$

$$= \int_{0}^{+\infty} \left(\left(\frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos\omega t \, dt \right) \cos\omega x + \left(\frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin\omega t \, dt \right) \sin\omega x \right) d\omega.$$

Обозначим

$$a(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos \omega t dt, \ b(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin \omega t dt,$$
 (2.4)

тогда

$$f(x) = \int_{0}^{+\infty} (a(\omega)\cos\omega x + b(\omega)\sin\omega x)d\omega$$
 (2.5)

ИЛИ

$$f(x) = \int_{0}^{+\infty} (K(\omega)\sin(\omega x - \delta(\omega))d\omega, \qquad (2.6)$$

где

$$K(\omega) = \sqrt{a^2(\omega) + b^2(\omega)}, \quad \delta(\omega) = \operatorname{arctg} \frac{b(\omega)}{a(\omega)}.$$

Из формулы (2.6) следует, что функция f(x) представляется интегралом Фурье в виде «суммы» гармоник с амплитудами $K(\omega)$ и начальными фазами $\delta(\omega)$, круговые частоты которых ω изменяются непрерывно в интервале $[0;+\infty)$.

Примечания: 1. Известно, что в ряд Фурье можно раскладывать и функции, имеющие в некоторых точках разрывы первого рода. Сумма ряда Фурье в указанных точках равна $\frac{1}{2}(f(x-0)+f(x+0))$, где f(x-0) и f(x+0) левый и правый пределы функции f(x).

При разложении функции f(x) в интеграл Фурье также допускается наличие точек разрыва первого рода, поэтому в левых частях формул (2.5) и (2.6) вместо f(x) в общем виде пишут $\frac{f(x-0)+f(x+0)}{2}$.

Если
$$f(x)$$
 в точке x непрерывна, то, очевидно, $\frac{f(x-0)+f(x+0)}{2}=f(x)$.

2. Нетрудно заметить аналогию между интегральным представлением функции f(x) и ее разложением в ряд Фурье в интервале $(-\pi;\pi)$:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Знак \sum преобразовался в \int , символ n заменился на непрерывно изменяющийся аргумент ω ; вместо суммирования по индексу n имеем интегрирование по ω ; вместо коэффициентов Фурье, зависящих от n, имеем функции от ω , определяемые формулами (2.4).

2.1. Интеграл Фурье для четных и нечетных функций

1. Пусть f(x) – четная функция.

В таком случае $f(x)\cos \omega x$ также четная функция, а $f(x)\sin \omega x$ нечетная функция x. Тогда

$$a(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos \omega t dt = \frac{2}{\pi} \int_{-\infty}^{\infty} f(t) \cos \omega t dt;$$

$$b(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin \omega t dt = 0$$

и, следовательно, из формулы имеем

$$f(x) = \int_{0}^{\infty} a(\omega) \cos \omega x d\omega = \frac{2}{\pi} \int_{0}^{\infty} \left(\int_{0}^{\infty} f(t) \cos \omega t dt \right) \cos \omega x d\omega.$$
 (2.7)

2. Пусть f(x) — нечетная функция.

Тогда $f(x)\cos \omega x$ — нечетная, а $f(x)\sin \omega x$ — четная функция x. В этом случае

$$a(\omega) = 0$$
, $b(\omega) = \frac{2}{\pi} \int_{0}^{+\infty} f(t) \sin \omega t dt$

и, следовательно,

$$f(x) = \int_{-\infty}^{+\infty} b(\omega) \sin \omega x d\omega = \frac{2}{\pi} \int_{0}^{+\infty} \left(\int_{0}^{+\infty} f(t) \sin \omega t \, dt \right) \sin \omega x d\omega. \tag{2.8}$$

3. Пусть f(x) задана лишь на интервале $[0; +\infty]$.

Доопределим ее в ($-\infty$;0) с помощью функции $\phi(x)$. Получим функцию

$$F(x) = \begin{cases} \varphi(x) & \text{при } x < 0; \\ f(x) & \text{при } x \ge 0, \end{cases}$$

заданную на интервале $(-\infty; +\infty)$.

Интеграл Фурье для функции F(x) будет иметь вид

$$F(x) = \frac{F(x-0) + F(x+0)}{2} = \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} F(t) \cos \omega (x-t) dt =$$

$$1 + \infty \quad 0$$

$$1 + \infty \quad +\infty$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{0} \varphi(t) \cos \omega(x-t) dt + \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{0}^{+\infty} f(t) \cos \omega(x-t) dt$$

где

$$F(x) = \frac{F(x-0) + F(x+0)}{2} = \begin{cases} \varphi(x-0) + \varphi(x+0) & \text{при } x < 0, \\ \varphi(-0) + f(+0) & \text{при } x = 0, \\ f(x-0) + f(x+0) & \text{при } x > 0. \end{cases}$$

Если $\varphi(x)$ выбрать так, чтобы F(x) стала четной или нечетной, то формула примет вид (2.7) или (2.8) соответственно.

2.2. Комплексная форма интеграла Фурье

Пусть f(x) абсолютно интегрируема на всей числовой оси. Так

как
$$|f(t)\sin\omega(x-t)| \le |f(t)|$$
, то $\int_{-\infty}^{+\infty} f(t)\sin\omega(x-t)dt$ сходится

(абсолютно и равномерно) и представляет собой непрерывную функцию ω . Очевидно, при замене ω на $(-\omega)$ эта функция меняет лишь знак, т.е. является нечетной функцией ω . Тогда $\int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \sin \omega (x-t) dt = 0.$

Аналогично получаем, что $\int\limits_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt$ является непрерывной и четной функцией ω .Следовательно,

$$\int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt = 2 \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt,$$

при этом

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt + \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cos \omega(x-t) dt$$

$$+\frac{1}{2\pi} i \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \sin \omega(x-t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \times (\cos \omega(x-t) + i \sin \omega(x-t)) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) e^{i\omega(x-t)} dt.$$

В результате интеграл Фурье можно записать в виде

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{+\infty} f(t) \cdot e^{i\omega(x-t)} dt$$
 (2.9)

либо с помощью однократного интеграла:

$$f(x) = \int_{-\infty}^{+\infty} C(\omega)e^{i\omega x}d\omega, \qquad (2.10)$$

где
$$C(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$$
.

Формулы (2.9) и (2.10) представляют комплексную форму интеграла Фурье.

2.3. Преобразования Фурье

1. Пусть функция f(x), определенная на всей числовой оси, является кусочно-гладкой в каждом конечном интервале и абсолютно интегрируема в промежутке $(-\infty; +\infty)$. Тогда она представима формулой (2.9).

Перепишем ее в виде

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt \right] e^{i\omega x} d\omega.$$

Рассмотрим функцию
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$$
, (2.11)

тогда

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\omega) e^{i\omega x} d\omega.$$
 (2.12)

Функция $F(\omega)$ называется *преобразованием* **Фурье** для функции f(x), а формула (2.12) называется *обратным преобразованием* **Фурье** для $F(\omega)$.

При этом в силу физических соображений функция $F(\omega)$ называется также спектральной характеристикой (или спектральной плотностью) функции f(x), ее модуль $|F(\omega)|$ — амплитудным спектром функции f(x), а ее аргумент $\arg F(\omega)$ — фазовым спектром функции f(x).

2. Пусть функция f(x) — четная, перепишем равенство (2.7) в виде

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \left[\sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} f(t) \cos \omega t dt \right] \cos \omega x d\omega.$$

Положим здесь

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \cos \omega t dt. \qquad (2.13)$$

Тогда

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F_c(\omega) \cos \omega x d\omega.$$
 (2.14)

Функция $F_c(\omega)$ называется косинус-преобразованием функции f(t).

3. Пусть теперь функция f(x) — нечетная; перепишем равенство (2.8) в виде

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \left[\sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} f(t) \sin \omega t dt \right] \sin \omega x d\omega.$$

Положим здесь

$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \sin \omega t dt, \qquad (2.15)$$

тогда

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F_s(\omega) \sin \omega x d\omega.$$
 (2.16)

Функция $F_s(\omega)$ называется *синус-преобразованием* **Фурье** функции f(x) .

Пары формул (2.13) и (2.14), (2.15) и (2.16) устанавливают закон взаимности: если $F_c(x)$ — косинус-преобразование Фурье четной

функции f(x), то f(x) есть косинус-преобразование Фурье функции $F_c(x)$; аналогично, если $F_s(x)$ есть синус-преобразование Фурье нечетной функции f(x), то f(x) есть синус-преобразование Фурье функции $F_s(x)$.

Заметим, что равенства (2.11), (2.13) и (2.15) можно рассматривать как интегральные уравнения относительно неизвестной функции f(t), тогда равенства (2.12), (2.14), (2.16) соответственно дают решения этих уравнений.

Примечание. В интегральных формулах Фурье все интегралы вида $\int\limits_{-\infty}^{+\infty} f(u)du$ понимаются в смысле главного значения, т.е. $\int\limits_{-\infty}^{+\infty} f(u)du = \lim\limits_{n \to +\infty} \int\limits_{-n}^{n} f(u)du.$

2.4. Примеры разложения функций в интеграл Фурье

Пример 1. Функцию $f(x) = \begin{cases} 0 \text{ при } |x| > 1, \\ 1 \text{ при } 0 < x < 1, \\ -1 \text{ при } -1 < x < 0 \end{cases}$

интегралом Фурье. Использовать результат для вычисления интеграла $\int\limits_0^\infty \frac{\sin^3 t}{t} dt$.

Решение. Функция f(x) является нечетной, поэтому $a(\omega) = 0$

$$\text{ и } b(\omega) = \frac{2}{\pi} \int\limits_{0}^{\infty} f(t) \sin \omega t dt = \frac{2}{\pi} \int\limits_{0}^{1} \sin \omega t dt = -\frac{2}{\pi} \frac{\cos \omega t}{\omega} \bigg|_{0}^{1} = \frac{2}{\pi} \cdot \frac{1 - \cos \omega}{\omega}.$$

Интеграл Фурье для данной функции имеет вид

$$f(x) = \int_{0}^{\infty} b(\omega) \sin \omega x d\omega = \frac{2}{\pi} \int_{0}^{\infty} \frac{1 - \cos \omega}{\omega} \sin \omega x d\omega = \frac{4}{\pi} \int_{0}^{\infty} \sin^{2} \frac{\omega}{2} \sin \omega x \frac{d\omega}{\omega}. \quad (2.17)$$

Вычислим теперь $\int\limits_0^\infty \frac{\sin^3 t}{t} dt$. Из (2.17) имеем

$$\int_{0}^{\infty} \sin^{2} \frac{\omega}{2} \sin \omega x \frac{d\omega}{\omega} = \frac{\pi}{4} \cdot f(x).$$

Положим здесь $x = \frac{1}{2}$. Учитывая, что $f\left(\frac{1}{2}\right) = 1$, получим

$$\int_{0}^{\infty} \frac{\sin^{3} \frac{\omega}{2}}{\omega} d\omega = \frac{\pi}{4}.$$

Полагая теперь $\frac{\omega}{2} = t$, получаем окончательно $\int\limits_0^\infty \frac{\sin^3 t}{t} dt = \frac{\pi}{4}$.

Пример 2. Разложить в интеграл Фурье функцию

$$f(x) = \begin{cases} h & \text{при } \alpha \le x \le \alpha + \Delta; \\ 0 & \text{при } x < \alpha; x > \alpha + \Delta. \end{cases}$$

График функции изображен на рис. 2.1 (прямоугольный импульс).

Решение. Очевидно, эта функция абсолютно интегрируема и кусочно-гладкая на интервале $(-\infty; +\infty)$, поэтому интеграл Фурье будет сходиться при всех x. Найдем коэффициенты $a(\omega)$ и $b(\omega)$:

$$\begin{split} a(\omega) &= \frac{1}{\pi} \int\limits_{-\infty}^{+\infty} f(t) \cos \omega t dt = \frac{h}{\pi} \int\limits_{\alpha}^{\alpha + \Delta} \cos \omega t dt = \frac{h}{\pi} \cdot \frac{1}{\omega} \sin \omega t \bigg|_{\alpha}^{\alpha + \Delta} = \\ &= \frac{h}{\pi \omega} (\sin \omega (\alpha + \Delta) - \sin \omega \alpha) = \frac{2h}{\pi \omega} \sin \frac{\omega \alpha + \omega \Delta - \omega \alpha}{2} \cdot \cos \frac{\omega \alpha + \omega \Delta + \omega \alpha}{2} = \\ &= \frac{2h}{\pi \omega} \cos \omega \bigg(\alpha + \frac{\Delta}{2} \bigg) \cdot \sin \frac{\omega \Delta}{2}. \end{split}$$

Аналогично находится

$$b(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin \omega t dt = \frac{h}{\pi} \int_{\alpha}^{\alpha + \Delta} \sin \omega t dt = \frac{2h}{\pi \omega} \sin \omega \left(\alpha + \frac{\Delta}{2}\right) \sin \frac{\omega \Delta}{2}.$$

Интеграл Фурье для заданной функции f(x) примет вид

$$f(x) = \int_{0}^{+\infty} (a(\omega)\cos\omega x + b(\omega)\sin\omega x)d\omega =$$

$$= \frac{2h}{\pi} \int_{0}^{+\infty} \left(\cos\omega x \cos\omega \left(\alpha + \frac{\Delta}{2}\right) + \sin\omega x \sin\omega \left(\alpha + \frac{\Delta}{2}\right)\right) \frac{\sin\frac{\omega\Delta}{2}}{\omega} d\omega =$$

$$= \frac{2h}{\pi} \int_{0}^{+\infty} \frac{\sin\frac{\omega\Delta}{2}}{\omega} \cos\left(x - \omega - \frac{\Delta}{2}\right) d\omega. \tag{2.18}$$

Несобственный интеграл (2.18) сходится при всех x и совпадает с функцией f(x) во всех точках ее непрерывности. В точках $x_1 = \alpha$ и $x_2 = \alpha + \Delta$ значение интеграла равно $\frac{h}{2}$.

Пример 3. Представить интегралом Фурье функцию

$$f(x) = \begin{cases} 1 & \text{при } |x| < 1; \\ \frac{1}{2} & \text{при } |x| = 1; \\ 0 & \text{при } |x| > 1. \end{cases}$$

Решение. Функция f(x) — четная, следовательно, на основании формулы (2.5) имеем:

$$f(x) = \int_{-\infty}^{+\infty} a(\omega) \cos \omega x d\omega,$$
 где $a(\omega) = \frac{2}{\pi} \int_{-\infty}^{+\infty} f(t) \cos \omega t dt = \frac{2}{\pi} \int_{0}^{1} \cos \omega t dt = \frac{2}{\pi} \cdot \frac{\sin \omega t}{\omega} \Big|_{0}^{1} = \frac{2 \sin \omega}{\pi \omega},$ поэтому $f(x) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin \omega}{\omega} \cos \omega x d\omega.$

Таким образом,

$$\frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin \omega}{\omega} \cos \omega x d\omega = \begin{cases} 1 & \text{при } |x| < 1; \\ \frac{1}{2} & \text{при } |x| = 1; \\ 0 & \text{при } |x| > 1. \end{cases}$$

Пример 4. Функцию $f(x) = \begin{cases} 1 & \text{при } |x| < 1, \\ 0 & \text{при } |x| > 1 \end{cases}$ представить

интегралом Фурье в комплексной форме.

Решение. Воспользуемся формулой (2.10):

$$f(x) = \int_{-\infty}^{+\infty} C(\omega) e^{i\omega x} d\omega,$$

где

$$C(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt = \frac{1}{2\pi} \int_{-1}^{+1} e^{-i\omega t}dt = \frac{1}{2\pi} \cdot \frac{1}{-i\omega} \cdot e^{-i\omega t} \Big|_{-1}^{1} = \frac{1}{2\pi} \left(\frac{e^{i\omega} - e^{-i\omega}}{i\omega}\right) = \frac{1}{\pi\omega} \sin\omega.$$

Следовательно, $f(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin \omega}{\omega} e^{i\omega x} d\omega$.

Пример 5. Разложить в интеграл Фурье функ-

цию
$$f(x) = \begin{cases} h \left| 1 - \frac{2}{\Delta} |x| \right| & \text{при } |x| \le \frac{\Delta}{2}; \\ 0 & \text{при } |x| > \frac{\Delta}{2}, \end{cases}$$

 $\begin{array}{c|c}
 & y \\
 & h \\
\hline
 & -\frac{\Delta}{2} & 0 \\
\hline
 & \frac{\Delta}{2}
\end{array}$

график которой изображен на рис. 2.2 (треугольный импульс).

Рис. 2.2

Решение. Функция f(x) – четная, поэтому можно применить формулу (2.7). Найдем косинус-преобразование f(x):

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} f(t) \cos \omega t dt = h \sqrt{\frac{2}{\pi}} \int_{0}^{\frac{\Delta}{2}} \left(1 - \frac{2t}{\Delta}\right) \cos \omega t dt.$$

Интегрируя по частям, получим

$$=h\sqrt{\frac{2}{\pi}}\int_{0}^{\frac{\Delta}{2}} \left(1-\frac{2t}{\Delta}\right)\cos\omega t dt = h\sqrt{\frac{2}{\pi}}\left(1-\frac{2t}{\Delta}\right)\cdot\frac{1}{\omega}\sin\omega t\Big|_{0}^{\frac{\Delta}{2}}-\int_{0}^{\frac{\Delta}{2}}\frac{1}{\omega}\sin\omega t\left(-\frac{2}{\Delta}\right) dt\Big) = h\sqrt{\frac{2}{\pi}}\left(-\frac{2}{\Delta\omega^{2}}\cos\omega t\Big|_{0}^{\frac{\Delta}{2}}\right) = h\sqrt{\frac{2}{\pi}}\cdot\frac{2}{\Delta\omega^{2}}\left(1-\cos\frac{\omega\Delta}{2}\right) = h\sqrt{\frac{2}{\pi}}\cdot\frac{4}{\Delta\omega^{2}}\cdot\sin^{2}\frac{\omega\Delta}{4},$$

откуда следует, что $F_c(\omega) = h\sqrt{\frac{2}{\pi}} \left(\frac{\sin\frac{\omega\Delta}{4}}{\frac{\omega\Delta}{4}}\right)^2 \frac{\Delta}{4}$, и тогда

$$F(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F(\omega) \cos \omega x d\omega = \frac{h\Delta}{2\pi} \int_{0}^{+\infty} \left(\frac{\sin \frac{\omega \Delta}{4}}{\frac{\omega \Delta}{4}} \right)^{2} \cos \omega x d\omega.$$

Так как функция f(x) непрерывна, то интеграл Фурье при всех x совпадает с f(x).

Пример 6. Разложить в интеграл Фурье функцию $f(x) = e^{-\alpha x}$ $(\alpha > 0, x \ge 0)$.

Решение. Здесь можно воспользоваться либо формулой (2.7), либо формулой (2.8), предварительно доопределив f(x) в интервале $(-\infty;0)$ соответственно четным или нечетным образом. Найдем

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} e^{-\alpha t} \cos \omega t dt.$$

Применяя известную формулу для $\int e^{ax} \cos bx dx$, получим

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \cdot \frac{e^{-\alpha t}}{\omega^2 + \alpha^2} (\omega \sin \omega t - \alpha \cos \omega t) \Big|_0^{+\infty} = \sqrt{\frac{2}{\pi}} \cdot \frac{\alpha}{\omega^2 + \alpha^2}. \quad (2.19)$$

Тогда по формуле (2.14) найдем

$$e^{-\alpha x} = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F_c(\omega) \cos \omega d\omega = \frac{2\alpha}{\pi} \int_{0}^{+\infty} \frac{\cos \omega x}{\omega^2 + \alpha^2} d\omega \qquad (0 < x < +\infty). \tag{2.20}$$

Вычислим

$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\alpha t} \sin \omega t dt.$$

Применяя формулу для $\int e^{ax} \sin bx dx$, найдем

$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \cdot \frac{\omega}{\omega^2 + \alpha^2}$$
.

Тогда по формуле (2.16) имеем

$$e^{-\alpha x} = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \frac{\omega \sin \omega x}{\omega^2 + \alpha^2} d\omega \qquad (0 < x < +\infty).$$
 (2.21)

Несобственные интегралы в формулах (2.20) и (2.21) сходятся при всех x. Их графики изображены соответственно на рис. 2.3 и 2.4.

Как видим, интеграл (2.20) при x = 0 равен 1, а интеграл (2.21) при x = 0 равен 0. \blacksquare

Пример 7. Разложить в интеграл Фурье на положительной полуоси функцию $f(x) = \begin{cases} \sin x & \text{при } 0 < x < \pi; \\ 0 & \text{при } x \ge \pi, \end{cases}$ график которой изображен на рис. 2.5.

Решение. Как и в примере 6, определим значения $F_c(\omega)$ и $F_s(\omega)$:

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{\pi} \sin t \cos \omega t dt = \frac{1}{\sqrt{2\pi}} \int_0^{\pi} (\sin(1+\omega)t + \sin(1-\omega)t) dt =$$

$$= \frac{1}{\sqrt{2\pi}} \left(-\frac{\cos(1+\omega)t}{1+\omega} - \frac{\cos(1-\omega)t}{1-\omega} \right) \Big|_{0}^{\pi} = \frac{1}{\sqrt{2\pi}} \left(\frac{2}{1-\omega^{2}} - \frac{\cos(1+\omega)\pi}{1+\omega} - \frac{\cos(1-\omega)\pi}{1-\omega} \right) = \frac{2}{\sqrt{2\pi}} \cdot \frac{1+\cos\omega\pi}{1-\omega^{2}} = \sqrt{\frac{2}{\pi}} \cdot \frac{1+\cos\omega\pi}{1-\omega^{2}}.$$

$$F_{s}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \sin t \sin\omega t dt = \sqrt{\frac{2}{\pi}} \cdot \frac{\sin\omega\pi}{1-\omega^{2}}.$$

Рис. 2.5

Рис. 2.6

Рис. 2.7

Тогда

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F_{\mathcal{C}}(\omega) \cos \omega x d\omega = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1 + \cos \omega \pi}{1 - \omega^{2}} \cos \omega x d\omega \quad (x \ge 0) \quad (2.22)$$

ИЛИ

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F_s(\omega) \sin \omega x \, d\omega = \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin \omega \pi}{1 - \omega^2} \sin \omega x \, d\omega \quad (x \ge 0). \quad (2.23)$$

Интегралы (2.22) и (2.23) сходятся и при отрицательных x. Их графики изображены соответственно на рис. 2.6 и 2.7.

2.5. Задачи для самостоятельного решения

Следующие функции представить интегралом Фурье:

2.1.
$$f(x) = \begin{cases} -x - 2 & \text{при} \quad -2 < x < -1; \\ x & \text{при} \quad -1 < x < 1; \\ -x + 2 & \text{при} \quad 1 < x < 2; \\ 0 & \text{при} \quad |x| > 2. \end{cases}$$
2.2.
$$f(x) = \begin{cases} 1 & \text{при} \quad -1 < x < 0; \\ 0,5 & \text{при} \quad x = -1; 0; 1; \\ x & \text{при} \quad 0 < x < 1; \\ 0 & \text{при} \quad |x| > 1. \end{cases}$$

2.3.
$$f(x) = e^{-x}$$
.

2.4.
$$f(x) = \frac{1}{a^2 + x^2}$$
, $a > 0$.

2.5.
$$f(x) = \frac{x}{a^2 + x^2}$$
, $a > 0$.

2.6.
$$f(x) = \begin{cases} \cos x & \text{при } |x| \le \frac{\pi}{2}; \\ 0 & \text{при } |x| > \frac{\pi}{2}. \end{cases}$$

2.7. Представить функцию
$$f(x) = \begin{cases} 1 & \text{при } |x| < 1; \\ 0.5 & \text{при } x = 1; \\ 0 & \text{при } |x| > 1 \end{cases}$$

Фурье.

Результат использовать для вычисления интеграла $\int\limits_0^\infty \frac{\sin t}{t} dt$.

- **2.8.** Функцию $f(x) = e^{-x}$, $0 < x < \infty$, представить интегралом Фурье, продолжая ее: а) четным образом, б) нечетным образом.
- **2.9.** Записать интеграл Фурье в комплексной, а затем в действительной форме для функций

a)
$$f(x) = e^{-a|x|}$$
, $a > 0$; 6) $f(x) = xe^{-a|x|}$, $a > 0$.

Найти преобразование Фурье следующих функций:

2.10.
$$f(x) = \begin{cases} 1 & \text{при} & |x| \le 1; \\ 0 & \text{при} & |x| > 1. \end{cases}$$

2.11.
$$f(x) = \begin{cases} x & \text{при} & |x| \le 1; \\ 0 & \text{при} & |x| > 1. \end{cases}$$

2.12.
$$f(x) = \begin{cases} x^2 & \text{при} & |x| \le 1; \\ 1 & \text{при} & 1 < x \le 2; \\ 0 & \text{при} & |x| > 2. \end{cases}$$

2.13.
$$f(x) = e^{-|x|}$$
.

2.14.
$$f(x) = x \cdot e^{-|x|}$$
.

2.15.
$$f(x) = e^{-|x|} \cos x$$
.

2.16.
$$f(x) = e^{-|x|} \sin x$$
.

Указание. В задачах 2.15 и 2.16 применить формулы Эйлера.

2.17.
$$f(x) = \begin{cases} x+1 & \text{при } -1 \le x \le -\frac{1}{2}; \\ 1 & \text{при } |x| < \frac{1}{2}; \\ -x+1 & \text{при } \frac{1}{2} \le x \le 1; \\ 0 & \text{при } x > 1. \end{cases}$$

2.18.
$$f(x) = \begin{cases} \cos \frac{x}{2} & \text{при} \quad |x| \le \pi; \\ 0 & \text{при} \quad |x| > \pi. \end{cases}$$

2.19.
$$f(x) = \begin{cases} -e^{-x} & \text{при } -1 \le x < 0; \\ e^{-x} & \text{при } 0 \le x \le 1; \\ 0 & \text{при } |x| > 1. \end{cases}$$

Найти косинус и синус-преобразования Фурье функций:

2.20.
$$f(x) = \begin{cases} 1 & \text{при } 0 \le x \le a \\ \frac{1}{2} & \text{при } x = a; \\ 0 & \text{при } x > a. \end{cases}$$

2.21.
$$f(x) = \begin{cases} -1 & \text{при } -1 \le x \le -\frac{1}{2}; \\ 0 & \text{при } -\frac{1}{2} \le x \le \frac{1}{2}; \\ 1 & \text{при } \frac{1}{2} \le x \le 1. \end{cases}$$

2.22.
$$f(x) = \begin{cases} \cos x & \text{при } 0 \le x \le \pi; \\ 0 & \text{при } x > \pi. \end{cases}$$

2.23. Найти синус-преобразование Фурье функции

$$f(x) = \begin{cases} 4x - 1 & \text{при} \quad 0 \le x \le \frac{1}{4}; \\ 0 & \text{при} \quad x > \frac{1}{4}. \end{cases}$$

- **2.24.** Найти косинус-преобразование Фурье функции $f(x) = 2^{-x}, x \ge 0.$
 - 2.25. Найти синус-преобразование Фурье функции

$$f(x) = a^{-x}, x \ge 0, a > 0.$$

2.26. Решить интегральные уравнения

a)
$$\int_{0}^{\infty} f(t)\cos\omega t dt = \frac{1}{1+\omega^{2}}; \, 6) \int_{0}^{\infty} \psi(t)\sin xy dy = e^{-x}, \, x > 0.$$

3. Преобразование Лапласа

Пусть f(t) – действительная функция действительного переменного t .

Определение. Функция f(t) называется *оригиналом*, если она удовлетворяет условиям:

- 1) $f(t) \equiv 0$ при t < 0;
- 2) f(t) кусочно-непрерывная функция при $t \ge 0$, т.е. она непрерывная или в любом конечном интервале имеет конечное число точек разрыва первого рода;
- 3) существуют такие числа M>0 и $s_0\geq 0$, что для всех t выполняется условие $|f(t)|\leq M\cdot e^{s_0t}$. Число s_0 называется показателем роста f(t).

Определение. Изображением оригинала f(t) называется функция F(p) комплексного переменного $p = s + i\sigma$, определяемая интегралом

$$F(p) = \int_{0}^{\infty} f(t) \cdot e^{-pt} dt.$$
 (3.1)

Интеграл в формуле (3.1) называется *интегралом Лапласа*, а операцию перехода от оригинала f(t) к изображению F(p) – npeo6- paзованием Лапласа. Соответствие между оригиналом и изображением записывается в виде $f(t) \leftarrow F(p)$ или f(t) = F(p).

3.1. Свойства изображений

1. Теорема единственности.

Если два изображения F(p) и $\Phi(p)$ совпадают, то совпадают междй собой и соответствующие оригиналы во всех точках, за исключением, быть может, точек разрыва, т.е. если $f(t) \leftarrow F(p)$ и $\phi(t) \leftarrow \Phi(p)$ и при этом $F(p) = \Phi(p)$, то $f(t) \equiv \phi(t)$ во всех точках непрерывности.

2. Теорема об аналитичности изображения.

Всякое изображение F(p) в полуплоскости $\operatorname{Re} p = s > s_0$, где s_0 – показатель роста функции f(t), является аналитической функци-

ей, т.е. может быть разложено в степенной ряд и, следовательно, дифференцируемо и интегрируемо в области сходимости ряда.

3. Свойство линейности.

Так как интеграл от суммы функций равен сумме интегралов, то линейной комбинации оригиналов соответствует линейная комбинация изображений, т.е. если $f_1(t) \leftarrow F_1(p)$, $f_2(t) \leftarrow F_2(p)$, c_1 и c_2 – постоянные числа, то $c_1 \cdot f_1(t) + c_2 \cdot f_2(t) \leftarrow c_1 \cdot F_1(p) + c_2 \cdot F_2(p)$.

4. Всякое изображение F(p) функции f(t) при $p \to \infty$ стремится к нулю, т.е. $\lim_{p \to \infty} F(p) = 0$.

Доказательство. В силу свойства 3 оригинала будем иметь:

$$\begin{aligned} |F(p)| &= \left| \int_{0}^{\infty} f(t) e^{-pt} dt \right| \leq \int_{0}^{\infty} |f(t)| \cdot \left| e^{-pt} \right| dt \leq M \int_{0}^{\infty} e^{s_0 t} \cdot e^{-st} dt = M \int_{0}^{\infty} e^{-(s-s_0)t} dt = \\ &= -\frac{M}{s-s_0} e^{-(s-s_0)t} \Big|_{0}^{\infty} = \frac{M}{s-s_0} \to 0 \text{ при } \operatorname{Re} p = s \to \infty, \end{aligned}$$

так как

$$\left| e^{-pt} \right| = \left| e^{-(s+i\sigma)t} \right| = \left| e^{-st} \cdot e^{-i\sigma t} \right| = e^{-st} \cdot \left| e^{-i\sigma t} \right| = e^{-st} \cdot \left| \cos \sigma t - i \sin \sigma t \right| = e^{-st} \cdot \sqrt{\cos^2 \sigma t + \sin^2 \sigma t} = e^{-st}.$$

Следовательно, $\lim_{p\to\infty} F(p) = 0$.

Из этой теоремы, в частности, следует, что константы и многочлены с положительными степенями не могут быть изображениями.

3.2. Изображения некоторых элементарных функций

1. Изображение единичной функции Хевисайда $\eta(t) = \begin{cases} 1, & t \ge 0; \\ 0, & t < 0, \end{cases}$

$$\eta(t) \stackrel{\sim}{\longleftrightarrow} \int_{0}^{\infty} e^{-pt} dt = -\frac{1}{p} e^{-pt} \Big|_{0}^{\infty} = \frac{1}{p}, \quad \text{Re } p > 0.$$

2. Изображения показательных функций:

$$e^{-at} \stackrel{\sim}{\longleftrightarrow} \int_{0}^{\infty} e^{-at} \cdot e^{-pt} dt = \int_{0}^{\infty} e^{-(p+a)t} dt = -\frac{e^{-(p+a)t}}{p+a} \Big|_{0}^{\infty} = \frac{1}{p+a},$$

$$e^{at} \stackrel{\sim}{\longleftrightarrow} \int_{0}^{\infty} e^{at} \cdot e^{-pt} dt = \int_{0}^{\infty} e^{-(p-a)t} dt = -\frac{e^{-(p-a)t}}{p-a} \Big|_{0}^{\infty} = \frac{1}{p-a}, \quad \text{Re } p > a.$$

$$1 - e^{-at} \stackrel{\sim}{\longleftrightarrow} \frac{1}{p} - \frac{1}{p+a} = \frac{p+a-p}{p(p+a)} = \frac{a}{p(p+a)}.$$

3. Изображения гиперболических функций

$$\operatorname{ch} at = \frac{1}{2} (e^{at} + e^{-at}) \stackrel{\cdot}{\leftarrow} \frac{1}{2} \left(\frac{1}{p-a} + \frac{1}{p+a} \right) = \frac{p+a+p-a}{2(p^2-a^2)} = \frac{p}{p^2-a^2};$$

$$\operatorname{sh} at = \frac{1}{2} (e^{at} - e^{-at}) \stackrel{\cdot}{\leftarrow} \frac{1}{2} \left(\frac{1}{p-a} - \frac{1}{p+a} \right) = \frac{p+a-p+a}{2(p^2-a^2)} = \frac{a}{p^2-a^2};$$

4. Изображения тригонометрических функций:

$$\cos \omega t = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t}) \leftarrow \frac{1}{2} \left(\frac{1}{p - i\omega} + \frac{1}{p + i\omega} \right) = \frac{p}{p^2 - (i\omega)^2} = \frac{p}{p^2 + \omega^2};$$

$$\sin \omega t = \frac{1}{2i} (e^{i\omega t} - e^{-i\omega t}) \leftarrow \frac{1}{2i} \left(\frac{1}{p - i\omega} - \frac{1}{p + i\omega} \right) = \frac{\omega}{p^2 + \omega^2}.$$

3.3. Теоремы подобия, смещения, запаздывания

1. Теорема подобия. Если $f(t) \stackrel{.}{\longleftarrow} F(p)$ и число $\alpha > 0$, то

$$f(\alpha t) \stackrel{\cdot}{\leftarrow} \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right).$$
 (3.2)

Доказательство.

$$f(\alpha t) \leftarrow \int_{0}^{\infty} f(\alpha t) e^{-pt} dt = \begin{cases} \alpha t = \tau \\ dt = \frac{1}{\alpha} d\tau \end{cases} = \frac{1}{\alpha} \int_{0}^{\infty} f(\tau) e^{-\frac{p\tau}{\alpha}} d\tau =$$

2. Теорема смещения. Если $f(t) \leftarrow F(p)$ и $\alpha = \text{const}$, то

$$f(t)e^{-\alpha t} \stackrel{\cdot}{\longleftarrow} F(p+\alpha)$$
. (3.3)

Доказательство.

$$f(t)e^{-\alpha t} \leftarrow \int_{0}^{\infty} f(t)e^{-\alpha t} \cdot e^{-pt}dt = \int_{0}^{\infty} f(t)e^{-(\alpha+p)t}dt = F(p+\alpha).$$

Из теоремы смещения вытекают изображения затухающих колебаний:

$$e^{-\alpha t}\sin\omega t \leftrightarrow \frac{\omega}{(p+\alpha)^2+\omega^2}$$
; $e^{-\alpha t}\cos\omega t \leftrightarrow \frac{p+\alpha}{(p+\alpha)^2+\omega^2}$.

3. Теорема запаздывания. Если $f(t) \leftarrow F(p)$ и $\tau > 0$, то

$$f(t-\tau)\eta(t-\tau) \stackrel{\cdot}{\longleftarrow} e^{-p\tau} F(p). \tag{3.4}$$

Доказательство. Так как $\eta(t) \equiv 0$ при t < 0, то $\eta(t - \tau) \equiv 0$ при $t < \tau$. Следовательно

$$f(t-\tau)\eta(t-\tau) \leftarrow \int_{\tau}^{\infty} f(t-\tau)e^{-pt}dt = \begin{cases} t-\tau=\theta, \ d\theta=dt; \\ t=\tau \rightarrow \theta=0 \end{cases} = \int_{0}^{\infty} f(\theta) \cdot e^{-(\theta+\tau)p}d\theta = \begin{cases} t-\tau=\theta, \ d\theta=dt; \\ t=\tau \rightarrow \theta=0 \end{cases}$$

$$= \int_{0}^{\infty} f(\theta) \cdot e^{-p\theta} \cdot e^{-p\tau} d\theta = e^{-p\tau} \int_{0}^{\infty} f(\theta) \cdot e^{-p\theta} d\theta = e^{-p\tau} F(p).$$

Геометрический смысл запаздывания таков: функции f(t) и $f(t-\tau)$ имеют одинаковые графики (они описывают один и тот же процесс), но график функции $f(t-\tau)$ сдвинут на τ единиц вправо (процесс для этой функции начинается на τ единиц позже, чем для функции f(t)), что и показано на рис. 3.1.

Рис. 3.1

Пример 1. Найти изображение функции

$$f(t) = \begin{cases} h & \text{при} & 1 < t < 3; \\ 0 & \text{при} & t < 1 \text{ и } t > 3. \end{cases}$$

Решение. Запишем функцию f(t) в виде запаздывающей функции: $f(t) = h\eta(t-1) - h\eta(t-3)$. Тогда в силу (3.4)

$$F(p) = \frac{h}{p}e^{-p} - \frac{h}{p}e^{-3p} = \frac{h}{p}e^{-p} - e^{-3p}$$
.

Пример 2. Найти изображение функции (рис.3.2):

$$f(t) = \begin{cases} t^2 & \text{при} & 1 < t < 2, \\ 0 & \text{при} & t < 1 \text{ и } t > 2. \end{cases}$$

Рис. 3.2

Решение. Представим оригинал f(t) в виде запаздывающей функции $f(t)=((t-1)^2-2(t-1)+1)\eta(t-1)-(t-2)^2-4(t-2)+4)\eta(t-2)$. Тогда

$$F(p) = \left(\frac{2}{p^3} + \frac{2}{p^2} + \frac{1}{p}\right)e^{-p} - \left(\frac{2}{p^3} + \frac{4}{p^2} + \frac{4}{p}\right)e^{-2p}.$$

3.4. Изображение кусочно-линейной функции

Примерный вид кусочно-линейной функции представлен на рис. 3.3.

Рис. 3.3

Обозначим: τ_k — точки разрыва функции f(t) или f'(t); $\alpha_k = a_k - b_k$ — скачки функции в точках τ_k ; $\beta_k = \lg \gamma_k - \lg \delta_k$ — скачки

производной f'(t) в точках τ_k . Тогда изображение кусочно-линейной функции имеет вид

$$F(p) = \sum_{k=1}^{n} e^{-p\tau_k} \left(\frac{\alpha_k}{p} + \frac{\beta_k}{p^2} \right). \tag{3.5}$$

Пример 3. Найти изображение функции, представленной на рис. 3.4.

Рис. 3.4

Решение. В данном примере точками разрыва функции и производной являются точки $\tau_1 = 0$, $\tau_2 = 1$, $\tau_3 = 2$, $\tau_4 = 4$.

В точке $\tau_1 = 0$: $\alpha_0 = 1$, $\beta_0 = -2$. В точке $\tau_2 = 1$: $\alpha_1 = 2$, $\beta_1 = 2$.

В точке $\tau_3 = 2$: $\alpha_3 = 0$, $\beta_3 = -1$. В точке $\tau_4 = 4$: $\alpha_4 = 1$, $\beta_4 = 1$.

Следовательно, в силу формулы (3.5) изображение данного оригинала будет иметь вид

$$F(p) = \left(\frac{1}{p} - \frac{2}{p^2}\right) + \left(\frac{2}{p} + \frac{2}{p^2}\right)e^{-p} + \left(-\frac{1}{p^2}\right)e^{-2p} + \left(\frac{1}{p} + \frac{1}{p^2}\right)e^{-4p}. \blacksquare$$

3.5. Изображение периодической функции

Пусть f(t) – периодическая функция с периодом T, т.е. f(t-T) = f(t), тогда

$$f(t) \stackrel{\cdot}{\longleftarrow} F(p) = \frac{F_0(p)}{1 - e^{-pT}},$$

где $F_0(p)$ — изображение оригинала на первом периоде, $F_0(p) = \int\limits_0^T f(t) e^{-pt} dt \, .$

$$F_0(p) = \int_0^T f(t)e^{-pt}dt.$$

Доказательство.

$$\begin{split} F(p) &= \int\limits_{0}^{\infty} f(t) e^{-pt} dt = \int\limits_{0}^{T} f(t) e^{-pt} dt + \int\limits_{T}^{\infty} f(t) e^{-pt} dt = F_{0}(p) + \int\limits_{0}^{\infty} f(\tau + T) e^{-p(\tau + T)} d\tau = \\ &= F_{0}(p) + e^{-pT} \int\limits_{0}^{\infty} f(\tau) e^{-p\tau} d\tau = F_{0}(p) + e^{-pT} F(p) \,. \end{split}$$

Решая полученное уравнение, находим изображение $F(p) = \frac{F_0(p)}{1 - e^{-pT}} \, .$

Пример 4. Найти изображение периодической функции, представленной на рис. 3.5.

Рис. 3.5

Решение. Очевидно, что период заданной функции T=2. Уравнение оригинала на периоде $f(t) = \begin{cases} -t & \text{при} & 0 < t < 1, \\ -1 & \text{при} & 1 \le t < 2. \end{cases}$

Найдем $F_0(p)$:

$$\begin{split} F_0(p) &= \int\limits_0^1 -te^{-pt}dt + \int\limits_1^2 -1 \cdot e^{-pt}dt = -\left(\frac{t}{-p}e^{-pt}\bigg|_0^1 - \frac{1}{-p}\int\limits_0^1 e^{-pt}dt\right) + \frac{-1}{-p}e^{-pt}\bigg|_1^2 = \\ &= \frac{1}{p}e^{-p} - \frac{1}{p}\left(\frac{1}{-p}e^{-pt}\bigg|_0^1\right) + \frac{1}{p}e^{-2p} - \frac{1}{p}e^{-p} = \frac{1}{p^2}e^{-p} - \frac{1}{p^2} + \frac{1}{p}e^{-2p} \,. \end{split}$$

Следовательно, изображение заданной периодической функции имеет вид

$$F(p) = \frac{\frac{1}{p^2}e^{-p} - \frac{1}{p^2} + \frac{1}{p}e^{-2p}}{1 - e^{-2p}} = \frac{e^{-p} - 1 + pe^{-2p}}{p^2 \cdot 1 - e^{-2p}}. \blacksquare$$

3.6. Дифференцирование оригиналов и изображений

1. Теорема о дифференцировании оригинала. Пусть оригинал f(t) и его производная f'(t) имеют одинаковый показатель роста s_0 , тогда, если $f(t) \leftarrow F(p)$, то

$$f'(t) \leftarrow pF(p) - f(0). \tag{3.6}$$

Доказательство.

$$f'(t) \stackrel{\cdot}{\longleftrightarrow} \int_0^\infty e^{-pt} f'(t) dt = \begin{cases} u = e^{-pt}, & du = -pe^{-pt} dt; \\ dv = f'(t) dt, & v = f(t) \end{cases} =$$

$$= f(t)e^{-pt} \Big|_0^\infty - \int_0^\infty f(t)(-pe^{-pt}) dt = -f(0) + p \int_0^\infty f(t)e^{-pt} dt = pF(p) - f(0),$$

$$F(p)$$

в силу того, что $Re \ p = s > s_0$ и $\lim_{t \to \infty} f(t)e^{-pt} = 0$.

Найдем изображение f''(t) по формуле (3.6):

$$f''(t) \stackrel{\cdot}{\longleftrightarrow} p(pF(p) - f(0)) - f'(0) = p^2 \cdot F(p) - p \cdot f(0) - f'(0)$$
. (3.7)

Переходя к производным высших порядков, получаем общую формулу

$$f^{(n)}(t) \stackrel{\cdot}{\longleftarrow} = p^n \cdot F(p) - p^{n-1} \cdot f(0) - p^{n-2} \cdot f'(0) - \dots - f^{(n-1)}(0)$$
. (3.8)

При нулевых условиях, т.е. при $f(0) = f'(0) = f''(0) = \dots =$ $= f^{(n-1)}(0) = 0$ формулы (3.6)–(3.8) выглядят особенно просто:

$$f'(t) \stackrel{\cdot}{\longleftarrow} pF(p); \quad f''(t) \stackrel{\cdot}{\longleftarrow} p^2F(p); ...; \quad f^{(n)}(t) \stackrel{\cdot}{\longleftarrow} p^nF(p).$$

2. Теорема о дифференцировании изображения. Дифференцирование изображения приводит к оригиналу, который отличается от исходного оригинала только множителем -t, т.е. если $f(t) \leftarrow F(p)$, то

$$F'(p) \xrightarrow{\cdot} -t \cdot f(t). \tag{3.9}$$

К формуле (3.9) приводит дифференцирование по p левой и правой части равенства (3.1). Повторные дифференцирования дают формулу

$$F^{(n)}(p) \xrightarrow{\cdot} (-1)^n t^n f(t). \tag{3.10}$$

Пример 5. Найти изображение для оригиналов $t \sin at$, $t \cos at$, $t e^{at}$. Решение. Так как $\sin at$ умножается на t, то достаточно продифференцировать его изображение:

$$t\sin\omega t \stackrel{\cdot}{\longleftarrow} - \left(\frac{\omega}{p^2 + \omega^2}\right)' = \frac{2\omega p}{(p^2 + \omega^2)^2}, \text{ аналогично,}$$

$$t\cos\omega t \stackrel{\cdot}{\longleftarrow} - \left(\frac{p}{p^2 + \omega^2}\right)' = -\frac{p^2 + \omega^2 - 2p^2}{(p^2 + \omega^2)^2} = \frac{p^2 - \omega^2}{(p^2 + \omega^2)^2},$$

$$te^{at} \stackrel{\cdot}{\longleftarrow} - \left(\frac{1}{p - a}\right)' = \frac{1}{(p - a)^2}. \blacksquare$$

3.7. Интегрирование оригиналов и изображений

1. Теорема об интегрировании оригинала. Интегрирование оригинала приводит к делению изображения на параметр p.

$$\int_{0}^{t} f(\tau)d\tau \stackrel{\cdot}{\leftarrow} \frac{1}{p}F(p). \tag{3.11}$$

Доказательство.

Пусть $\int_{0}^{t} f(\tau)d\tau = \varphi(t)$, функция удовлетворяет всем трем усло-

виям, определяющим оригинал. Очевидно, $\varphi'(t) = \begin{pmatrix} t \\ 0 \end{pmatrix} f(\tau) d\tau \end{pmatrix}_t' = f(t)$. Пусть теперь $f(t) \rightleftharpoons F(p)$ и $\varphi(t) \rightleftharpoons \Phi(p)$. Так как $f(t) = \varphi'(t) \rightleftharpoons p\Phi(p) - \varphi(0)$, следовательно, $F(p) = p\Phi(p) - \varphi(0)$. Однако $\varphi(0) = \int_0^0 f(\tau) d\tau = 0$ и поэтому $F(p) = p\Phi(p)$. Откуда следует, что $\Phi(p) \rightleftharpoons \frac{1}{p} F(p)$.

Пример 6. Найти изображение для $f(t) = t^n$. Решение.

$$\int_{0}^{t} \eta(t)dt = \int_{0}^{t} dt = t \leftrightarrow \frac{1}{p} \cdot \frac{1}{p} = \frac{1}{p^{2}}; \int_{0}^{t} t dt = \frac{t^{2}}{2} \leftrightarrow \frac{1}{p} \cdot \frac{1}{p^{2}} = \frac{1}{p^{3}};$$

$$\int_{0}^{t} \frac{t^{2}}{2} dt = \frac{t^{3}}{3!} \leftrightarrow \frac{1}{p} \cdot \frac{1}{p^{3}} = \frac{1}{p^{4}}; \int_{0}^{t} \frac{t^{n-1}}{(n-1)!} dt = \frac{t^{n}}{n!} \leftrightarrow \frac{1}{p} \cdot \frac{1}{p^{n}} = \frac{1}{p^{n+1}}.$$

В результате получим формулу $t^n \leftarrow \frac{n!}{p^{n+1}}.41$

2. Теорема об интегрировании изображения. Если $\frac{f(t)}{t}$ является оригиналом и $f(t) \stackrel{.}{\longleftarrow} F(p)$, то

$$\int_{p}^{\infty} F(z)dz \stackrel{\cdot}{\longleftarrow} \frac{f(t)}{t}.$$
 (3.12)

Доказательство.

Обозначим $\frac{f(t)}{t} = \varphi(t)$ и пусть $\varphi(t) \leftrightarrow \Phi(p)$. Очевидно, $f(t) = t \cdot \varphi(t)$ и в соответствии с формулой (3.9) $t \cdot \varphi(t) \leftrightarrow -\Phi'(p)$. По теореме единственности $F(p) = -\Phi'(p)$. Проинтегрируем последнее равенство

$$\int\limits_p^q F(z)dz=-\int\limits_p^q \Phi'(z)dz=-\Phi(q)+\Phi(p)\,.$$
 При $q\to\infty$ $\Phi(q)\to0$ и в силу этого

При $q \to \infty$ $\Phi(q) \to 0$ и в силу этого получаем $\int\limits_{p}^{\infty} F(z) dz = \Phi(p) \stackrel{\centerdot}{\longleftarrow} \frac{f(t)}{t}.$

Пример 7. Найти изображение функции $\frac{\sin t}{t}$.

Решение. Так как $\sin t \leftarrow \frac{1}{p^2+1}$, то в силу (3.12) получим

$$\frac{\sin t}{t} \leftarrow \int_{p}^{\infty} \frac{1}{z^2 + 1} dz = \operatorname{arctg} z \Big|_{p}^{\infty} = \frac{\pi}{2} - \operatorname{arctg} p. \blacksquare$$

3. Теорема умножения изображений (теорема о свертке).

Определение. Интеграл
$$\int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau = \int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d\tau$$

называется *сверткой* функций $f_1(t)$ и $f_2(t)$ и обозначается $f_1(t)^* f_2(t)$.

Если $f_1(t)$ и $f_2(t)$ – оригиналы, то свертка их также является оригиналом. Найдем соответствующее изображение:

$$f_1(t)^* f_2(t) \leftarrow \int_0^\infty \int_0^t \int_0^t f_1(\tau) \cdot f_2(t-\tau) d\tau e^{-pt} dt$$
.

Меняя порядок интегрирования, получаем

$$f_{1}(t)f_{2}(t) \leftarrow \int_{0}^{\infty} f_{1}(\tau)d\tau \int_{\tau}^{\infty} f_{2}(t-\tau)e^{-pt}dt = \begin{vmatrix} t-\tau = \theta, & t = \tau + \theta; \\ dt = d\theta; \\ t = \tau \Rightarrow \theta = 0 \end{vmatrix} =$$

$$= \int_{0}^{\infty} f_{1}(\tau) d\tau \int_{0}^{\infty} f_{2}(\theta) e^{-p(\tau+\theta)} d\theta = \int_{0}^{\infty} f_{1}(\tau) e^{-p\tau} d\tau \int_{0}^{\infty} f_{2}(\theta) e^{-p\theta} d\theta = F_{1}(p) F_{2}(p).$$

Следовательно,

$$f_1(t)^* f_2(t) \stackrel{\cdot}{\leftarrow} F_1(p) F_2(p).$$
 (3.13)

Пример 8. Применяя теорему умножения, найти оригинал изображения $F(p) = \frac{p}{(p^2+1)^2}$.

Решение.
$$F(p) = \frac{p}{(p^2+1)^2} = \frac{p}{p^2+1} \cdot \frac{1}{p^2+1}$$
, поэтому $F_1(p) = \frac{p}{p^2+1} \leftrightarrow \cos t = f_1(t)$, $F_2(p) = \frac{1}{p^2+1} \leftrightarrow \sin t = f_2(t)$, $\frac{p}{(p^2+1)^2} = \frac{p}{p^2+1} \cdot \frac{1}{p^2+1} \leftrightarrow \cos t \sin t = \int_0^t \cos \tau \cdot \sin(t-\tau) d\tau = \frac{1}{2} \int_0^t (\sin(t-\tau) + \sin(t-\tau)) d\tau = \frac{1}{2} \int_0^t (\sin(t-\tau) + \sin(t-\tau)) d\tau = \frac{1}{2} \left(\frac{1}{2} \cos(t-2\tau) + \tau \sin t \right) \Big|_0^t = \frac{1}{2} \left(\frac{1}{2} \cos(t-2\tau) + t \sin t - \frac{1}{2} \cos t \right) = \frac{1}{2} t \sin t$.

Интеграл Дюамеля (Дюамель (1797–1872) – французский математик).

Если $F(p) \xrightarrow{\cdot \cdot} f(t)$; $\Phi(p) \xrightarrow{\cdot \cdot} \varphi(t)$, то верно равенство

$$pF(p)\Phi(p) \xrightarrow{\cdot\cdot} f(t)\varphi(0) + \int_0^t f(\tau)\varphi'(t-\tau)d\tau = \varphi(t)f(0) + \int_0^t \varphi(\tau)f'(t-\tau)d\tau.$$

Пример 9. Найти оригинал изображения $H(p) = \frac{p^2}{(p^2+4)^2}$.

Решение.
$$H(p) = \frac{p^2}{(p^2+4)^2} = p \cdot \frac{p}{p^2+4} \cdot \frac{1}{p^2+4}$$
,

$$F(p) = \frac{p}{p^2 + 4} \stackrel{\cdot}{\longleftrightarrow} \cos 2t = f(t), \qquad \Phi(p) = \frac{1}{p^2 + 4} \stackrel{\cdot}{\longleftrightarrow} \frac{1}{2} \sin 2t = \varphi(t),$$

$$\varphi(0) = 0$$
, $\varphi'(t) = \left(\frac{1}{2}\sin 2t\right)' = \cos 2t$,

следовательно,
$$p \cdot \frac{p}{p^2 + 4} \cdot \frac{1}{p^2 + 4} \xrightarrow{t} \cos 2\tau \cdot \cos(2(t - \tau))d\tau =$$

$$= \frac{1}{2} \int_{0}^{t} \cos(2\tau + 2t - 2\tau) + \cos(2\tau - 2t + 2\tau) d\tau = \frac{1}{2} \int_{0}^{t} (\cos 2t + \cos(4\tau - 2t)) d\tau =$$

$$= \frac{1}{2} \left(\tau \cos 2t + \frac{1}{4} \sin(4\tau - 2t) \right) \Big|_{0}^{t} = \frac{1}{2} \left(t \cos 2t + \frac{1}{4} \sin 2t - \frac{1}{4} \sin(-2t) \right) =$$

$$= \frac{1}{2} t \cos 2t + \frac{1}{4} \sin 2t.$$

3.8. Таблица изображений некоторых функций

No	f(t)	F(p)	№	f(t)	F(p)
1	2	3	1	2	3
1	1	$\frac{1}{p}$	3	$\cos \omega t$	$\frac{p}{p^2 + \omega^2}$
2	$\sin \omega t$	$\frac{\omega}{p^2 + \omega^2}$	4	$e^{-\alpha t}$	$\frac{1}{p+\alpha}$

1	2	3	1	2	3
5	$\operatorname{sh} \alpha t$	$\frac{\alpha}{p^2 - \alpha^2}$	11	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{p^n}$
6	ch \alpha t	$\frac{p}{p^2 - \alpha^2}$	12	$t\sin\omega t$	$\frac{2p\omega}{(p^2+\omega^2)^2}$
7	$e^{-\alpha t}\sin\omega t$	$\frac{\omega}{\left(p+\alpha\right)^2+\omega^2}$	13	$t\cos\omega t$	$\frac{p^2 - \omega^2}{(p^2 + \omega^2)^2}$
8	$e^{-\alpha t}\cos\omega t$	$\frac{p+\alpha}{\left(p+\alpha\right)^2+\omega^2}$	14	$\frac{\sin \omega t - \omega t \cos \omega t}{2\omega^3}$	$\frac{1}{(p^2 + \omega^2)^2}$
9	t^n	$\frac{n!}{p^{n+1}}$	15	$\frac{\sinh \alpha t - \alpha t \cosh \alpha t}{2\alpha^3}$	$\frac{1}{(p^2 - \alpha^2)^2}$
10	$t^n e^{-\alpha t}$	$\frac{n!}{\left(p+\alpha\right)^{n+1}}$	16	$\frac{\sin \omega t}{t}$	$\frac{\pi}{2}$ - arctg $\frac{p}{\omega}$

3.9. Отыскание оригинала по изображению

Рассмотрим теоремы, называемые *теоремами разложения*, позволяющие по заданному изображению F(p) находить соответствующий ему оригинал f(t).

1-я теорема разложения.

Если функция F(p) в окрестности точки $p=\infty$ разложена в ряд Лорана

$$F(p) = \sum_{n=0}^{\infty} \frac{a_n}{p^{n+1}} = \frac{a_0}{p} + \frac{a_1}{p^2} + \frac{a_2}{p^3} + \dots,$$
 (3.14)

то функция

$$f(t) = \sum_{n=0}^{\infty} a_n \cdot \frac{t^n}{n!} = a_0 + a_1 t + \dots$$
 (3.15)

является оригиналом, имеющим изображение F(p).

Пример 10. Найти оригинал функции f(t) функции $F(p) = \ln \left(1 - \frac{2}{p} \right)$.

Решение. Разложим F(p) в степенной ряд, пользуясь разложением $\ln(1-x)$ в ряд:

$$F(p) = \ln\left(1 - \frac{2}{p}\right) = -\frac{2}{p} - \frac{2^2}{2p^2} - \dots - \frac{2^n}{np^n} - \dots = -\sum_{n=1}^{\infty} \frac{2^n}{np^n}.$$

В соответствии с (3.15) получим

$$f(t) = -\sum_{n=1}^{\infty} \frac{2^n}{n} \cdot \frac{t^{n-1}}{(n-1)!} = -\frac{1}{t} \sum_{n=1}^{\infty} \frac{(2t)^n}{n!} = -\frac{1}{t} \cdot (e^{2t} - 1) = \frac{1 - e^{2t}}{t}. \blacksquare$$

2-я теорема разложения.

Если изображение является дробно-рациональной функцией $F(p)=\frac{A_m(p)}{B_n(p)},$ где m< n , то, как известно, всякую правильную рациональную дробь можно разложить на сумму простейших дробей вида $\frac{A}{(p-p_i)}, \ \frac{B}{(p-p_j)^k}, \ \frac{M_p+N}{p^2+at+b}$ ($D=a^2-4b<0$). По таблице оригиналов и изображений находим

$$\frac{A}{(p-p_i)} \xrightarrow{:} Ae^{p_i t}, \frac{B}{(p-p_j)^k} \xrightarrow{:} Be^{p_j t} \frac{t^{n-1}}{(n-1)!},$$

$$\frac{Mp+N}{p^2+at+b} = \frac{M\left(p+\frac{a}{2}\right) - \frac{Ma}{2} + N}{\left(p+\frac{a}{2}\right)^2 - \frac{a^2}{4} + b} = M\frac{p+\frac{a}{2}}{\left(p+\frac{a}{2}\right)^2 + \omega^2} + \frac{N-\frac{Ma}{2}}{\omega} \times \frac{1}{2} \times \frac{\omega}{\left(p+\frac{a}{2}\right)^2 + \omega^2} \xrightarrow{:} f(t) = Me^{-\frac{a}{2}t}\cos\omega t + \frac{N-\frac{Ma}{2}}{\omega}e^{-\frac{a}{2}t}\sin\omega t,$$

в силу того, что $D = a^2 - 4b < 0 \implies -\frac{a^2}{4} + b > 0$ и $-\frac{a^2}{4} + b = \omega^2$.

Пример 11. Найти оригинал функции $F(p) = \frac{p}{p^2 - 2p + 5}$.

Решение.

$$\frac{p}{p^2 - 2p + 5} = \frac{(p-1)+1}{(p-1)^2 + 4} = \frac{(p-1)}{(p-1)^2 + 4} + \frac{1}{2} \frac{2}{(p-1)^2 + 4} \Longrightarrow$$

$$\Rightarrow f(t) = e^t \cos 2t + \frac{1}{2} e^t \sin 2t . \blacksquare$$

Пример 12. Найти оригинал функции $F(p) = \frac{1}{p^3 - 8}$.

Решение.
$$\frac{1}{p^3 - 8} = \frac{1}{(p - 2)(p^2 + 2p + 4)} = \frac{A}{(p - 2)} + \frac{Bp + C}{(p^2 + 2p + 4)} = \frac{A}{(p - 2)(p^2 + 2p +$$

$$=\frac{A(p^2+2p+4)+(p-2)(Bp+C)}{(p-2)(p^2+2p+4)}=\frac{p^2(A+B)+p(2A-2B+C)+4A-2C}{(p-2)(p^2+2p+4)}.$$

Находим А, В, С методом неопределенных коэффициентов:

$$p^{2} \mid A+B=0;$$

$$p \mid 2A-2B+C=0 \Rightarrow A=1/12, B=-1/12, C=-1/3;$$

$$p^{0} \mid 4A-2C=1,$$

$$\frac{1}{p^{3}-8} = \frac{1}{12} \frac{1}{(p-2)} - \frac{1}{12} \frac{p+4}{(p^{2}+2p+4)} = \frac{1}{12} \frac{1}{(p-2)} - \frac{1}{12} \frac{p+4}{(p+1)^{2} + (\sqrt{3})^{2}} =$$

$$= \frac{1}{12} \frac{1}{(p-2)} - \frac{1}{12} \frac{p+1}{(p+1)^{2} + (\sqrt{3})^{2}} - \frac{\sqrt{3}}{12} \frac{\sqrt{3}}{(p+1)^{2} + (\sqrt{3})^{2}} \stackrel{\cdot}{\longrightarrow}$$

Следствие. Если $F(p) = \frac{A(p)}{B(p)}$ — правильная рациональная дробь, знаменатель которой B(p) имеет лишь простые нули $p_1, p_2, ..., p_n$, то функция

$$f(t) = \sum_{k=1}^{n} \frac{A(p_k)}{B'(p_k)} \cdot e^{p_k t}$$
 (3.16)

является оригиналом, имеющим изображение F(p).

Пример 13. Найти оригинал функции $F(p) = \frac{p+1}{p(p-1)(p-2)(p-3)}$.

Решение. Вычислим производную знаменателя

$$B'(p) = (p(p-1)(p-2)(p-3))' = (p-1)(p-2)(p-3) + p(p-2)(p-3) + p(p-1)(p-3) + p(p-1)(p-3) + p(p-1)(p-2)$$

и находим ее значения в нулях знаменателя: B'(0) = -6, B'(1) = 2, B'(2) = -2, B'(3) = 6. Значения числителя в этих точках A(0) = 1, A(1) = 3, A(2) = 3, A(3) = 4. Следовательно, в силу формулы (3.16)

$$f(t) = -\frac{1}{6}e^{0 \cdot t} + \frac{3}{2}e^{t} - \frac{3}{2}e^{2t} + \frac{4}{6}e^{3t} = -\frac{1}{6} + \frac{3}{2}e^{t} - \frac{3}{2}e^{2t} + \frac{2}{3}e^{3t}. \blacksquare$$

Связь интеграла Лапласа с интегралом Фурье.

Формула обращения. Если функция f(t) удовлетворяет требованиям, предъявляемым к оригиналу, т.е. она абсолютно интегрируема при всех $t \in (-\infty; +\infty)$ и, кроме того, имеет лишь конечное число в каждом промежутке, то для нее можно записать интеграл Фурье, причем имеют место формулы (2.10):

$$\frac{f(t+0)+f(t-0)}{2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}C(\omega)e^{i\omega t}d\omega,$$

где
$$C(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt$$
.

Учитывая, что в интеграле Лапласа параметр $p=s+i\sigma$ и $f(t)\big|_{t<0}\equiv 0$, можно записать

$$F(p) = F(s+i\sigma) = \int_{0}^{\infty} f(t)e^{-pt}dt = \int_{-\infty}^{+\infty} f(t)e^{-st}e^{-i\sigma t}dt.$$

Сравнивая записанный интеграл Лапласа с преобразованием Фурье, становится ясно, что изображение $F(p) = F(s+i\sigma)$ есть прямое преобразование Фурье для функции $\phi(t) = f(t)e^{-st}$, т.е. $F(p) = \int\limits_{-\infty}^{+\infty} \phi(t) \cdot e^{-i\sigma t} dt$. Этот факт используют для отыскания по известному изображению функции $\phi(t)$, а затем и оригинала f(t). Очевидно,

$$\frac{f(t+0) + f(t-0)}{2}e^{-st} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(s+i\sigma)e^{i\sigma t} d\sigma.$$
 (3.17)

Заменяя переменную интегрирования σ на переменную p по формуле $p=s+i\sigma$, получим $i\sigma=p-s$, $\sigma=\frac{1}{i}(p-s)$, $d\sigma=\frac{1}{i}dp$. Пределами интегрирования будут $s-i\infty$ и $s+i\infty$, учитывая тот факт, что переменная p проходит все комплексные значения c действительной частью s и всеми возможными мнимыми частями. В таком случае формула (3.17) примет вид

$$\frac{f(t+0)+f(t-0)}{2}e^{-st} = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} F(p)e^{pt}e^{-st}dp,$$

и, следовательно,

$$\frac{f(t+0) + f(t-0)}{2} = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} F(p)e^{pt} dp.$$
 (3.18)

Интегрирование ведется вдоль прямой s = const, параллельной мнимой оси. Формула (3.18) определяет обратное преобразование Лапласа и называется формулой обращения Римана—Меллина.

Из формулы (3.18) следует

3-я теорема. Если изображение $F(p) = \frac{A(p)}{B(p)}$ является дробно-

рациональной функцией и $p_1, p_2,..., p_n$ – простые или кратные полюса этой функции, то оригинал f(t) определяется формулой

$$f(t) = \sum_{k=1}^{n} \operatorname{Res}_{p=p_k} \left(\frac{A(p)}{B(p)} \cdot e^{pt} \right).$$
 (3.19)

3.10. Применение операционного исчисления к решению дифференциальных уравнений и их систем

Пусть дано линейное дифференциальное уравнение с постоянными коэффициентами

$$a_n x^{(n)}(t) + \dots + a_1 x'(t) + a_0 x(t) = f(t).$$
 (3.20)

Требуется найти решение этого дифференциального уравнения, удовлетворяющее начальным условиям:

$$x(0) = x_0; \quad x'(0) = x_0'; \quad \dots; \quad x^{(n-1)}(0) = x_0^{(n-1)}.$$
 (3.21)

Если функция x(t) является решением этого дифференциального уравнения, то оно обращает исходное уравнение в тождество, значит функция, стоящая в левой части уравнения, и функция f(t) имеют (по теореме единственности) одно и то же изображение Лапласа.

Пусть x(t), f(t) являются оригиналами, изображения которого обозначим X(p) и F(p), т.е. $x(t) \leftarrow X(p)$ и $f(t) \leftarrow F(p)$, тогда по теореме дифференцирования оригинала будем иметь

$$x'(t) \stackrel{\cdot}{\longleftarrow} pX(p) - x(0), \quad x''(t) \stackrel{\cdot}{\longleftarrow} p^2X(p) - px(0) - x'(0), \dots;$$

 $x^{(n)}(t) \stackrel{\cdot}{\longleftarrow} p^nX(p) - p^{n-1}x(0) - p^{n-2}x'(0) - \dots - x^{(n-1)}(0).$

Применяя к обеим частям уравнения (3.20) преобразование Лапласа, получим вместо дифференциального уравнения с начальными условиями (3.21) *операторное уравнение*

$$\begin{split} X(p)[a_np^n + a_{n-1}p^{n-1} + \ldots + a_1p + a_0] &= a_n[p^{n-1}x_0 + p^{n-2}x_0' + \ldots + x_0^{(n-1)}] + \\ &+ a_{n-1}[p^{n-2}x_0 + p^{n-3}x_0' + \ldots + x_0^{(n-2)}] + \ldots + a_2[px_0 + x_0'] + a_1x_0 + F(p). \end{split}$$

Решая это алгебраическое уравнение, получаем изображение X(p), а по нему и искомую функцию x(t).

Изображение получаем в виде
$$X(p) = \frac{F(p)}{R_n(p)} + \frac{\Psi_{n-1}(p)}{R_n(p)},$$
 где $R_n(p) = a_n p^n + a_{n-1} p^{n-1} + ... + a_1 p + a_0;$
$$\Psi_{n-1}(p) = a_1 x_0 + a_2 (p x_0 + x_0') + a_3 (p^2 x_0 + p x_0' + x_0'') + ... + a_n (p^{n-1} x_0 + p^{n-2} x_0^{'} + p x_0^{(n-2)} + x_0^{(n-1)}).$$

Многочлен $\Psi_{n-1}(p)$ зависит от начальных условий. Если эти условия нулевые, то многочлен равен нулю, и формула принимает вид

$$X(p) = \frac{F(p)}{R_n(p)}.$$

Рассмотрим применение этого метода на примерах.

Пример 14. Решить дифференциальное уравнение $x'' + 6x' + 9x = 9e^{3t}$ при нулевых начальных условиях x(0) = x'(0) = 0.

Решение. Пусть
$$x(t) \stackrel{.}{\longleftarrow} X(p)$$
, $x'(t) \stackrel{.}{\longleftarrow} pX(p)$, $x''(t) \stackrel{.}{\longleftarrow} pX(p)$, $x''(t) \stackrel{.}{\longleftarrow} p^2X(p)$, $9e^{3t} \stackrel{.}{\longleftarrow} \frac{9}{p-3}$. В этом случае операторное уравнение имеет вид

$$p^{2}X(p) + 6pX(p) + 9X(p) = \frac{9}{p-3}$$

или

$$X(p)(p^2+6p+9) = \frac{9}{p-3},$$

откуда получаем изображение $X(p) = \frac{9}{(p-3)(p+3)^2}$. Находим ори-

гинал, т.е. искомую функцию x(t), воспользовавшись теоремой 3 и формулой (3.19). В данном случае $p_1 = 3$ – простой полюс и $p_2 = -3$ – полюс второго порядка:

$$x(t) = \operatorname{Res} \frac{9e^{pt}}{(p-3)(p+3)^2} + \operatorname{Res} \frac{9e^{pt}}{p=-3(p-3)(p+3)^2}.$$

Вычислим

Res
$$\frac{9e^{pt}}{(p-3)(p+3)^2} = \lim_{p \to 3} \frac{9e^{pt}}{(p-3)(p+3)^2} \cdot (p-3) = \lim_{p \to 3} \frac{9e^{pt}}{(p+3)^2} = \frac{9e^{3t}}{36} = \frac{e^{3t}}{4}.$$

Res $\frac{9e^{pt}}{(p-3)(p+3)^2} = \lim_{p \to -3} \frac{d}{dp} \left(\frac{9e^{pt}}{(p-3)(p+3)^2} \cdot (p+3)^2 \right) = \lim_{p \to -3} \frac{d}{dp} \left(\frac{9e^{pt}}{(p-3)} \right) = \lim_{p \to -3} \left(\frac{9te^{pt}(p-3) - 9e^{pt}}{(p-3)^2} \right) = -\frac{3}{2}te^{-3t} - \frac{1}{4}e^{-3t}.$

В итоге $x(t) = \frac{1}{4}e^{3t} - \frac{1}{4}e^{-3t} - \frac{3}{2}te^{-3t}.$

Пример 15. Решить уравнение x''' - 6x'' + 11x' - 6x = 0 при условиях x(0) = 0; x'(0) = 1; x''(0) = 0.

Решение. Пусть $x(t) \leftarrow X(p)$, $x'(t) \leftarrow pX(p) - x(0) = pX(p)$,

$$x''(t) \leftarrow p^2 X(p) - px(0) - x'(0) = p^2 X(p) - 1,$$

$$x'''(t) \leftarrow p^3 X(p) - p^2 x(0) - px'(0) - x''(0) = p^3 X(p) - p$$
.

Подставив в исходное уравнение вместо искомой функции x(t) и ее производных соответствующие изображения, получим операторное уравнение

$$p^{3}X(p)-p-6(p^{2}X(p)-1)+11pX(p)-6X(p)=0$$

$$X(p)(p^3-6p^2+11p-6)=p-6$$
.

Отсюда находим изображение искомой функции

$$X(p) = \frac{p-6}{p^3 - 6p^2 + 11p - 6} = \frac{p-6}{(p-1)(p-2)(p-3)}.$$

Знаменатель дроби имеет только простые нули, поэтому на основании формулы (3.16) находим решение заданного уравнения:

$$x(t) = \frac{p-6}{(p^3 - 6p^2 + 11p - 6)'} e^{pt} \bigg|_{p=1} + \frac{p-6}{(p^3 - 6p^2 + 11p - 6)'} e^{pt} \bigg|_{p=2} + \frac{p-6}{(p^3 - 6p^2 + 11p - 6)'} e^{pt} \bigg|_{p=3} + \frac{p-6}{3p^2 - 12p + 11} e^{pt} \bigg|_{p=1} + \frac{p-6}{3p^2 - 12p + 11} e^{pt} \bigg|_{p=2} + \frac{p-6}{3p^2 - 12p + 11} e^{pt} \bigg|_{p=2}$$

$$\left. + \frac{p-6}{3p^2 - 12p + 11} e^{pt} \right|_{p=3} = \frac{-5}{2} e^t + \frac{-4}{-1} e^{2t} + \frac{-3}{2} e^{3t} = -\frac{5}{2} e^t + 4e^{2t} - \frac{3}{2} e^{3t}. \blacksquare$$

Пример 16. Найти решение уравнения $y'' + y' = x^2 + 2x$, удовлетворяющее условиям y(0) = 0, y'(0) = -2.

Решение. Пусть $y(x) \leftarrow Y(p) = Y$, тогда

$$y'(x) \stackrel{\cdot}{\longleftarrow} p \cdot Y(p) - y(0) = pY,$$

$$y''(x) \stackrel{\cdot}{\longleftarrow} p^2 \cdot Y(p) - p \cdot y(0) - y'(0) = p^2Y - (-2) = p^2Y + 2 \quad \text{M}$$

$$x^2 + 2x \stackrel{\cdot}{\longleftarrow} \frac{2}{p^3} + 2 \cdot \frac{1}{p^2}.$$

Подставляя эти выражения в дифференциальное уравнение, получим операторное уравнение

$$p^{2}Y + 2 + pY = \frac{2}{p^{3}} + \frac{2}{p^{2}}; \quad Y(p^{2} + p) = \frac{2}{p^{3}} + \frac{2}{p^{2}} - 2;$$
$$Y(p^{2} + p) = \frac{2(1+p)}{p^{3}} - 2.$$

Отсюда

$$Y = \frac{2(1+p)}{p^{3}(p^{2}+p)} - \frac{2}{(p^{2}+p)} = \frac{2(1+p)}{p^{4}(p+1)} - \frac{2}{p(p+1)} = \frac{2}{p^{4}} - \frac{2}{p} + \frac{2}{p+1}$$

(применили разложение дроби $\frac{2}{p(p+1)}$ на сумму простейших дробей, т.е. $\frac{2}{p(p+1)} = \frac{2}{p} - \frac{2}{p+1}$), затем находим оригинал, воспользовавшись табличными формулами (9), (1) и (4): (см. с. 42) $Y \stackrel{.}{\Longrightarrow} 2 \cdot \frac{t^3}{3!} - 2 + 2e^{-t}$. Следовательно, частное решение исходного дифференциального уравнения, удовлетворяющее заданным начальным условиям, имеет вид

$$y(x) = \frac{x^3}{3} - 2 + 2e^{-x}$$
.

Проверим выполнение начальных условий: $y(0) = 0 - 2 + 2e^0 = 0$ = -2 + 2 = 0 – верно и $y'(x) = \frac{3x^2}{3} - 2e^{-x}$; $y'(0) = 0 - 2e^0 = -2$ – верно.

Приемы операционного исчисления можно также использовать для решения систем дифференциальных уравнений. Отличие от решения дифференциальных уравнений состоит лишь в том, что вместо одного операторного уравнения получается система линейных алгебраических уравнений относительно изображений искомых функций. Рассмотрим решения систем на примерах.

Пример 17. Решить систему однородных дифференциальных уравнений операционным методом: $\begin{cases} x' = 3x + 4y; \\ y' = 4x - 3y. \end{cases} x(0) = y(0) = 1.$

Решение. Обозначим $x(t) \stackrel{.}{\longleftarrow} X(p) = X$; $y(t) \stackrel{.}{\longleftarrow} Y(p) = Y$, то-гда $x'(t) \stackrel{.}{\longleftarrow} p \cdot X(p) - x(0) = pX - 1$; $y'(t) \stackrel{.}{\longleftarrow} p \cdot Y(p) - y(0) = pY - 1$.

Подставим в исходную систему и получим операторные уравнения:

$$\begin{cases} pX(p) - 1 = 3X(p) + 4Y(p); \\ pY(p) - 1 = 4X(p) - 3Y(p) \end{cases}$$
 или в упрощенном виде
$$\begin{cases} pX - 1 = 3X + 4Y; \\ pY - 1 = 4X - 3Y. \end{cases}$$

Решим полученную систему алгебраических уравнений:

$$\begin{cases} X(p-3) - 4Y = 1; \\ -4X + Y(p+3) = 1 \end{cases}$$

методом Крамера:

$$\Delta = \begin{vmatrix} p-3 & -4 \\ -4 & p+3 \end{vmatrix} = (p-3)(p+3) - 16 = p^2 - 25;$$

$$\Delta_X = \begin{vmatrix} 1 & -4 \\ 1 & p+3 \end{vmatrix} = p+3+4=p+7; \qquad \Delta_Y = \begin{vmatrix} p-3 & 1 \\ -4 & 1 \end{vmatrix} = p-3+4=p+1,$$

тогда

$$X = \frac{p+7}{p^2 - 25} = \frac{p}{p^2 - 25} + \frac{7}{5} \cdot \frac{5}{p^2 - 25} \xrightarrow{\cdot \cdot} \operatorname{ch} 5t + \frac{7}{5} \operatorname{sh} 5t,$$

$$X = \frac{p+1}{p^2 - 25} = \frac{p}{p^2 - 25} + \frac{1}{5} \cdot \frac{5}{p^2 - 25} \xrightarrow{\cdot \cdot} \operatorname{ch} 5t + \frac{1}{5} \operatorname{sh} 5t.$$

Если применить к полученным результатам формулы

$$ch t = \frac{e^t + e^{-t}}{2}; \quad sh t = \frac{e^t - e^{-t}}{2},$$

то ответ можно представить в виде

$$\begin{cases} x = \frac{6}{5}e^{5t} - \frac{1}{5}e^{-5t}; \\ y = \frac{3}{5}e^{5t} + \frac{2}{5}e^{-5t}. \end{cases}$$

Как видно, гиперболические функции в ответе могут быть легко заменены на показательные.

Пример 18. Решить систему неоднородных дифференциальных уравнений

$$\begin{cases} x'(t) = 3x + 5y + 2; \\ y'(t) = 3x + y + 1 \end{cases} \quad x(0) = 0; \quad y(0) = 2.$$

Решение. Пусть $x(t) \stackrel{\cdot}{\longleftarrow} X(p) = X$; $y(t) \stackrel{\cdot}{\longleftarrow} Y(p) = Y$, тогда $x'(t) \stackrel{\cdot}{\longleftarrow} p \cdot X(p) - x(0) = pX$; $y'(t) \stackrel{\cdot}{\longleftarrow} p \cdot Y(p) - y(0) = pY - 2$.

Подставляя эти выражения в систему выше, получим систему операторных уравнений:

$$\begin{cases} pX = 3X + 5Y + \frac{2}{p}; \\ pY - 2 = 3X + Y + \frac{1}{p}. \end{cases}$$

После несложных преобразований получим алгебраическую систему двух линейных уравнений с двумя переменными:

$$\begin{cases} (p-3)X - 5Y = \frac{2}{p}, \\ -3X + (p-1)Y = \frac{1}{p} + 2, \end{cases}$$
 решая которую, находим изображения

Х и У по формулам

$$X = \frac{\Delta_X}{\Delta}; \quad Y = \frac{\Delta_Y}{\Delta},$$
где $\Delta = \begin{vmatrix} p-3 & -5 \\ -3 & p-1 \end{vmatrix} = (p-3)(p-1)-15 = p^2-4p-12 = (p-6)(p+2);$

$$\Delta_X = \begin{vmatrix} \frac{2}{p} & -5 \\ \frac{1}{p}+2 & p-1 \end{vmatrix} = \frac{2(p-1)}{p}+5\left(\frac{1}{p}+2\right) = \frac{2p-2+5+10p}{p} = \frac{12p+3}{p};$$

$$\Delta_Y = \begin{vmatrix} p-3 & \frac{2}{p} \\ -3 & \frac{1}{p}+2 \end{vmatrix} = \frac{p-3}{p} + 2p - 6 + \frac{6}{p} = \frac{p+3}{p} + 2p - 6 = \frac{2p^2 - 5p + 3}{p}.$$

Следовательно, $X=\frac{12p+3}{p(p-6)(p+2)}; Y=\frac{2p^2-5p+3}{p(p-6)(p+2)}.$ Далее находим оригиналы x(t) и y(t). Можно разбить каждую дробь на сумму простейших дробей $X(p)=\frac{A}{p}+\frac{B}{p-6}+\frac{C}{p+2}$, но так как корни знаменателя $p_1=0,\ p_2=6,\ p_3=-2$ – простые, то удобнее воспользоваться формулой (3.16), в которой A(p)=12p+3, B'(p)=(p-6)(p+2)+p(p+2)+p(p-6), значит, $x(t)=\frac{3}{(0-6)(0+2)}e^{0t}+\frac{12\cdot 6+3}{6\cdot (6+2)}e^{6t}+\frac{12\cdot (-2)+3}{(-2)(-2-6)}e^{-2t}=\frac{3}{12}+\frac{75}{48}e^{6t}-\frac{21}{16}e^{-2t}=\frac{1}{4}+\frac{25}{16}e^{6t}-\frac{21}{16}e^{-2t}$

Проверим выполнение начального условия x(0) = 0. Найдем

$$x(0) = -\frac{1}{4} + \frac{25}{16}e^0 - \frac{21}{16}e^0 = -\frac{4}{16} + \frac{25}{16} - \frac{21}{16} = 0$$
 — верно.

Аналогично находим оригинал y(t). В этом случае

$$A(p) = 2p^2 - 5p + 3$$
, $B'(p) = (p-6)(p+2) + p(p+2) + p(p-6)$

И

$$y(t) = \frac{3}{(0-6)(0+2)}e^{0\cdot t} + \frac{2\cdot 6^2 - 5\cdot 6 + 3}{6\cdot (6+2)} \cdot e^{6t} + \frac{2\cdot (-2)^2 - 5\cdot (-2) + 3}{(-2)(-2-6)} \cdot e^{-2t} =$$

$$= -\frac{3}{12} + \frac{72 - 30 + 3}{48}e^{6t} + \frac{8 + 10 + 3}{16}e^{-2t} = -\frac{1}{4} + \frac{15}{16}e^{6t} + \frac{21}{16}e^{-2t}.$$

Проверим выполнение начального условия y(0) = 2. Найдем

$$y(0) = -\frac{1}{4} + \frac{15}{16}e^0 + \frac{21}{16}e^0 = -\frac{4}{16} + \frac{15}{16} + \frac{21}{16} = \frac{32}{16} = 2$$
 – верно.

Итак, решением системы дифференциальных уравнений явля-

ются функции
$$\begin{cases} x(t) = -\frac{1}{4} + \frac{25}{16}e^{6t} - \frac{21}{16}e^{-2t}; \\ y(t) = -\frac{1}{4} + \frac{15}{16}e^{6t} + \frac{21}{16}e^{-2t}. \end{cases}$$

Отметим, что операторный способ решения систем дифференциальных уравнений применим к системам порядка выше первого, что очень важно, так как в этом случае применение других способов крайне затруднительно.

3.11. Задачи для самостоятельного решения

Найти изображения следующих функций:

3.1.
$$f(t) = \sin^2 t$$
.

3.2.
$$f(t) = \sin 2t \cdot \cos 3t$$
.

3.3.
$$f(t) = \cos^3 t$$
.

3.4.
$$f(t) = \cos mt \cdot \cos nt$$
.

3.5.
$$f(t) = \sin^4 t$$
.

3.6.
$$f(t) = t \cos \omega t$$
.

3.7.
$$f(t) = te^t$$
.

3.8.
$$f(t) = t^2 \cos t$$
.

3.9.
$$f(t) = te^t \cosh t$$
.

3.10.
$$f(t) = (t+1)\sin 2t$$
.

- **3.11.** $f(t) = t \cdot \sinh 3t$.
- **3.12.** $f(t) = \int_{0}^{t} \sin \tau d\tau$.
- **3.13.** $f(t) = \int_{0}^{t} (\tau + 1) \cos \omega \tau d\tau$.
- **3.14.** $f(t) = \int_{0}^{t} \tau \sinh 2\tau d\tau$.
- **3.15.** $f(t) = \int_{0}^{t} \cos^{2} \omega \tau d\tau$.
- **3.16.** $f(t) = \int_{0}^{t} \cosh \omega \tau d\tau$.
- **3.17.** $f(t) = \int_{0}^{t} \tau^{2} e^{-\tau} d\tau$.
- **3.18.** $f(t) = \frac{e^t 1}{t}$.
- **3.19.** $f(t) = \frac{1 e^{-t}}{t}$.
- **3.20.** $f(t) = \frac{\sin^2 t}{t}$.
- **3.21.** $f(t) = \frac{1 \cos t}{t}$.
- **3.22.** $f(t) = \frac{\cos t \cos 2t}{t}$.
- **3.23.** $f(t) = \frac{e^t 1 t}{t}$.
- **3.24.** $f(t) = \frac{e^t e^{-t}}{t}$.
- **3.25.** $f(t) = e^{2t} \sin t$.
- **3.26.** $f(t) = e^t \cos nt$.
- **3.27.** $f(t) = e^{-t}t^3$.
- **3.28.** $f(t) = e^{-t} \operatorname{sh} t$.
- **3.29.** $f(t) = te^t \cos t$.

3.30.
$$f(t) = e^{3t} \sin^2 t$$
.

3.31.
$$f(t) = e^{-\alpha t} \cos^2 \beta t$$
.

3.32.
$$f(t) = \sin(t-b)\eta(t-b)$$
.

3.33.
$$f(t) = \cos^2(t-b)\eta(t-b)$$
.

3.34.
$$f(t) = e^{t-2}\eta(t-2)$$
.

3.35.
$$f(t) = \int_{0}^{t} e^{t-\tau} \sin \tau d\tau$$
.

3.36.
$$f(t) = \int_{0}^{t} \cos(t - \tau) e^{2\tau} d\tau$$
.

3.37.
$$f(t) = \int_{0}^{t} (t - \tau)^{2} \operatorname{ch} \tau d\tau$$
.

3.38.
$$f(t) = \int_{0}^{t} (t - \tau)^{n} f(\tau) d\tau$$
.

3.39.
$$f(t) = \int_{0}^{t} e^{2(\tau - t)} \tau^{2} d\tau$$
.

Найти оригиналы для заданных изображений:

3.40.
$$F(p) = \frac{2e^{-p}}{p^3}$$
.

3.41.
$$F(p) = \frac{e^{-2p}}{p^2}$$
.

3.42.
$$F(p) = \frac{e^{-2p}}{p-1}$$
.

3.43.
$$F(p) = \frac{e^{-3p}}{p+3}$$
.

3.44.
$$F(p) = \frac{1}{p^2 + 4p + 5}$$
.

3.45.
$$F(p) = \frac{1}{p^2 + 4p + 3}$$
.

3.46.
$$F(p) = \frac{1}{(p^2+1)^2}$$
.

3.47.
$$F(p) = \frac{p}{(p^2+1)^2}$$
.

3.48.
$$F(p) = \frac{1}{p+2p^2+p^3}$$
.

3.49.
$$F(p) = \frac{1}{7 - p + p^2}$$
.

3.50.
$$F(p) = \frac{2p^3 + p^2 + 2p + 2}{p^5 + 2p^4 + 2p^3}$$
.

3.51.
$$F(p) = \frac{1}{p^2(p^2+1)}$$
.

3.52.
$$F(p) = \frac{p+2}{(p+1)(p-2)(p^2+4)}$$
.

3.53.
$$F(p) = \frac{p^2 + 2p - 1}{p^3 + 3p^2 + 3p + 1}$$
.

3.54.
$$F(p) = \frac{p}{p^3 + 1}$$
.

3.55.
$$F(p) = \frac{2p+3}{p^3+4p^2+5p}$$
.

3.56.
$$F(p) = \frac{e^{-3p}}{(p+1)^2}$$
.

3.57.
$$F(p) = \frac{e^{-p}}{p(p-1)}$$
.

3.58.
$$F(p) = \frac{1}{(p^2+1)} (e^{-2p} + 2e^{-3p} + 3e^{-4p}).$$

3.59.
$$F(p) = \frac{e^{-p}}{(p^2 - 1)} + \frac{pe^{-2p}}{(p^2 - 4)}$$
.

3.60.
$$F(p) = \frac{e^{-\frac{p}{2}}}{p(p+1)(p^2+4)}$$
.

3.61.
$$F(p) = \frac{e^{-p}}{p^2} + \frac{2e^{-2p}}{p^3} + \frac{6e^{-3p}}{p^4}$$
.

3.62.
$$F(p) = \frac{e^{-3p}}{p(p^2+1)}$$
.

Решить дифференциальные уравнения при заданных начальных условиях:

3.63.
$$x'' + 3x' = e^t$$
, $x(0) = 0$, $x'(0) = -1$.

3.64.
$$x'' - 2x' = e^{2t}$$
, $x(0) = x'(0) = 0$.

3.65.
$$x'' + 2x' - 3x = e^{-t}$$
, $x(0) = 0$, $x'(0) = 1$.

3.66.
$$x''' + x' = 1$$
, $x(0) = x'(0) = x''(0) = 0$.

3.67.
$$x'' + 2x' = t \sin t$$
, $x(0) = x'(0) = 0$.

3.68.
$$x'' + 2x' + x = \sin t$$
, $x(0) = 0$, $x'(0) = -1$.

3.69.
$$x''' - x'' = \sin t$$
, $x(0) = x'(0) = x''(0) = 0$.

3.70.
$$x'' - 2x' + x = e^t$$
, $x(0) = 0$, $x'(0) = 1$.

3.71.
$$x''' + 2x'' + 5x' = 0$$
, $x(0) = -1$, $x'(0) = 2$, $x''(0) = 0$.
3.72. $x'' - 2x' + 2x = 1$, $x(0) = x'(0) = 0$.

3.72.
$$x'' - 2x' + 2x = 1$$
, $x(0) = x'(0) = 0$

3.73.
$$x'' + x' = \cos t$$
, $x(0) = 2$, $x'(0) = 0$.

3.74.
$$x'' + 2x' + x = t^2$$
, $x(0) = 1$, $x'(0) = 0$.

3.75.
$$x''' + x'' = \sin t$$
, $x(0) = x'(0) = 1$, $x''(0) = 0$.

3.76.
$$x'' + x = \cos t$$
, $x(0) = -1$, $x'(0) = 1$.

3.77.
$$x''' + x'' = t$$
, $x(0) = -3$, $x'(0) = 1$, $x''(0) = 0$.

3.78.
$$x'' + 2x' + 5x = 3$$
, $x(0) = 1$, $x'(0) = 0$.

3.79.
$$x^{IV} - x'' = \cos t$$
, $x(0) = 0$, $x'(0) = -1$, $x''(0) = x'''(0) = 0$.

3.80.
$$x'' + x = 1$$
, $x(0) = -1$, $x'(0) = 0$.

3.81.
$$x'' + 2x' + 2x = 1$$
, $x(0) = x'(0) = 0$.

3.82.
$$x'' + 4x = t$$
, $x(0) = 1$, $x'(0) = 0$.

3.83.
$$x'' - 2x' + 5x = 1 - t$$
, $x(0) = x'(0) = 0$.

3.84.
$$x''' + x = 0$$
, $x(0) = 0$, $x'(0) = -1$, $x''(0) = 2$.

3.85.
$$x''' + x'' = \cos t$$
, $x(0) = -2$, $x'(0) = x''(0) = 0$.

3.86.
$$x''' + x' = e^t$$
, $x(0) = 0$, $x'(0) = 2$, $x''(0) = 0$.

3.87.
$$x^{IV} - x'' = 1$$
, $x(0) = x'(0) = x''(0) = x'''(0) = 0$.

3.88.
$$x'' + x' = \cos t$$
, $x(0) = 2$, $x'(0) = 0$.

3.89.
$$x'' + x' = te^t$$
, $x(0) = x'(0) = 0$.

3.90.
$$x''' + x' = \cos t$$
, $x(0) = 0$, $x'(0) = -2$, $x''(0) = 0$.

3.91.
$$x'' + 2x' + x = t$$
, $x(0) = x'(0) = 0$.

3.92.
$$x'' - x' + x = e^{-t}$$
, $x(0) = -1$, $x'(0) = 0$.

3.93.
$$x'' - x = \sin t$$
, $x(0) = -1$, $x'(0) = 0$.

3.94.
$$x''' + x = e^t$$
, $x(0) = 0$, $x'(0) = 2$, $x''(0) = 0$.

3.95.
$$x'' + x = 2\sin t$$
, $x(0) = 1$, $x'(0) = -1$.

3.96.
$$x'' - 2x' + x = t - \sin t$$
, $x(0) = x'(0) = 0$.

3.97.
$$x'' + 2x' + x = 2\cos^2 t$$
, $x(0) = x'(0) = 0$.

3.98.
$$x'' + 4x = 2\cos t \cdot \cos 3t$$
, $x(0) = x'(0) = 0$.

3.99.
$$x'' + x = te^t + 4\sin t$$
, $x(0) = x'(0) = 0$.

3.100.
$$x'' - x' = te^t$$
, $x(0) = 1$, $x'(0) = 0$.

3.101.
$$x'' + x' = 4\sin^2 t$$
, $x(0) = 0$, $x'(0) = -1$.

3.102.
$$x''' - 2x'' + x' = 4$$
, $x(0) = 1$, $x'(0) = 2$, $x''(0) = -2$.

3.103.
$$x'' - 3x' + 2x = e^t$$
, $x(0) = x'(0) = 0$.

3.104.
$$x'' - x' = t^2$$
, $x(0) = 0$, $x'(0) = 1$.

3.105.
$$x''' + x = \frac{1}{2}t^2e^t$$
, $x(0) = x'(0) = x''(0) = 0$.

3.106.
$$x'' + x = t \cos 2t$$
, $x(0) = x'(0) = 0$.

3.107.
$$x'' + n^2 x = a \sin nt + \alpha$$
, $x(0) = x'(0) = 0$.

3.108.
$$x''' + 6x'' + 11x' + 6x = 1 + t + t^2$$
, $x(0) = x'(0) = x''(0) = 0$.

3.109.
$$x^{IV} + 2x'' + x = t \sin t$$
, $x(0) = x'(0) = x''(0) = x'''(0) = 0$.

3.110.
$$x'' - 2\alpha x' + (\alpha^2 + \beta^2)x = 0$$
, $x(0) = 0$, $x'(0) = 1$.

3.111.
$$x'' + 4x = \sin t$$
, $x(0) = x'(0) = 0$.

3.112.
$$x''' + x' = e^{2t}$$
, $x(0) = x'(0) = x''(0) = 0$.

3.113.
$$x^{IV} + x''' = \cos t$$
, $x(0) = x'(0) = x''(0) = 0$, $x'''(0) = \gamma$.

3.114.
$$x'' - 4x = \sin \frac{3}{2}t \cdot \sin \frac{1}{2}t$$
, $x(0) = 1$, $x'(0) = 0$.

3.115.
$$x'' - 5x'' + 10x' - 6x = 0$$
, $x(0) = 1$, $x'(0) = 0$, $x''(0) = 6$, $x'''(0) = -14$.

3.116.
$$x'' + x' + x = te^t$$
, $x(0) = x'(0) = 0$.

3.117.
$$x'' + x = t \cos t$$
, $x(0) = x'(0) = 0$.

3.118.
$$x''' + 3x'' - 4x = 0$$
, $x(0) = x'(0) = 0$, $x''(0) = 2$.

3.119.
$$x''' + 3x'' + 3x' + x = 1$$
, $x(0) = x'(0) = x''(0) = 0$.

3.120.
$$x''' + x = 1$$
, $x(0) = x'(0) = x''(0) = 0$.

Решить системы дифференциальных уравнений при заданных начальных условиях:

3.121.
$$\begin{cases} x'+y=0; \\ y'+x=0, \end{cases} x(0)=1, y(0)=-1.$$

3.122.
$$\begin{cases} x' + x = y + e^t; \\ y' + y = x + e^t, \end{cases} x(0) = y(0) = 1$$

3.123.
$$\begin{cases} x'-y'-2x+2y=1-2t; \\ x''+2y'+x=0, \end{cases} x(0) = y(0) = x'(0) = 0$$

3.124.
$$\begin{cases} x'' - 3x' + 2x + y' - y = 0; \\ y'' - 5y' + 4y - x' + x = 0, \end{cases} x(0) = x'(0) = y'(0) = 0, y(0) = 1$$

3.125.
$$\begin{cases} x' = -y; \\ y' = 2x + 2y, \end{cases} x(0) = y(0) = 1.$$

3.126.
$$\begin{cases} 2x'' - x' + 9x - y'' - y' - 3y = 0; \\ 2x'' + x' + 7x - y'' + y' - 5y = 0, \end{cases} x(0) = x'(0) = 1, \quad y(0) = y'(0) = 0.$$

3.127.
$$\begin{cases} x' + y' - y = e^t; \\ 2x' + y' + 2y = \cos t, \end{cases} x(0) = y(0) = 0$$

3.121.
$$\begin{cases} x' + y = 0; \\ y' + x = 0, \end{cases} x(0) = 1, \ y(0) = -1. \end{cases}$$
3.122.
$$\begin{cases} x' + x = y + e^t; \\ y' + y = x + e^t, \end{cases} x(0) = y(0) = 1. \end{cases}$$
3.123.
$$\begin{cases} x' - y' - 2x + 2y = 1 - 2t; \\ x'' + 2y' + x = 0, \end{cases} x(0) = x'(0) = y'(0) = 0. \end{cases}$$
3.124.
$$\begin{cases} x'' - 3x' + 2x + y' - y = 0; \\ y'' - 5y' + 4y - x' + x = 0, \end{cases} x(0) = x'(0) = y'(0) = 0, \ y(0) = 1. \end{cases}$$
3.125.
$$\begin{cases} x' = -y; \\ y' = 2x + 2y, \end{cases} x(0) = y(0) = 1. \end{cases}$$
3.126.
$$\begin{cases} 2x'' - x' + 9x - y'' - y' - 3y = 0; \\ 2x'' + x' + 7x - y'' + y' - 5y = 0, \end{cases} x(0) = x'(0) = 1, \ y(0) = y'(0) = 0. \end{cases}$$
3.127.
$$\begin{cases} x' + y' - y = e^t; \\ 2x' + y' + 2y = \cos t, \end{cases} x(0) = y(0) = 0. \end{cases}$$
3.128.
$$\begin{cases} x' = -y - z; \\ y' = -x - z; \\ x' = y + z; \end{cases} x(0) = -1, \ y(0) = 0, \ z(0) = 1. \end{cases}$$
3.129.
$$\begin{cases} x' = 2x - y + z; \\ y' = 3x + z; \\ z' = 3x + y, \end{cases}$$
3.130.
$$\begin{cases} x' = 2x - y + z; \\ y' = x + z; \\ z' = -3x + y - 2z, \end{cases} x(0) = 1, \ z(0) = 0. \end{cases}$$

3.129.
$$\begin{cases} x' = y + z; \\ y' = 3x + z; \\ z' = 3x + y, \end{cases} x(0) = 0, \quad y(0) = 1, \quad z(0) = 1.$$

3.130.
$$\begin{cases} x' = 2x - y + z; \\ y' = x + z; \\ z' = -3x + y - 2z, \end{cases} x(0) = 1, y(0) = 1, z(0) = 0$$

4. Применение интегральных преобразований к решению интегральных уравнений

Многие задачи математической физики приводят к интегральным уравнениям, в которых ядро зависит от разности аргументов

$$K(x,\xi) = K(x-\xi)$$
.

Например, к интегральному уравнению с разностным ядром приводят задачи гравиразведки полезных ископаемых. Пусть в слое $z \ge h$, где z — глубина под поверхностью Земли, расположены источники аномального гравитационного поля, при 0 < z < h их нет. И пусть V(x) — потенциал гравитационного поля при z = h; x — горизонтальная координата. Тогда потенциал поля u(x,z) в области 0 < z < h является гармонической функцией:

$$\Delta u(x,z) = 0,$$

$$u(x,h) = V(x),$$

$$(0 < z < h, -\infty < x < +\infty).$$

Решение такой задачи дается интегральной формулой Пуассона

$$u(x,z) = \frac{h}{\pi} \int_{-\infty}^{+\infty} \frac{V(\xi) d\xi}{(x-\xi)^2 + (z-h)^2}.$$

На поверхности Земли, т.е. при z=0, величина u(x,0) может быть измерена: u(x,0)=f(x). Тогда для определения V(x) получаем уравнение Фредгольма I рода

$$\frac{h}{\pi} \int_{-\infty}^{+\infty} \frac{V(\xi) d\xi}{(x-\xi)^2 + h^2} = f(x).$$

При решении таких уравнений часто бывает целесообразно использовать преобразования Лапласа и Фурье.

Для функции f(x), удовлетворяющей условиям Дирихле на любом конечном интервале и абсолютно интегрируемой на всей числовой оси, имеют место

$$F(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\lambda x}dx$$
 – прямое преобразование Фурье,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\lambda)e^{i\lambda x}d\lambda - \phi$$
ормула обращения Фурье.

Пусть функции $f_1(x)$ и $f_2(x)$ определены и непрерывны при всех x.

Функция

$$(f_1^* f_2)(x) = \int_{-\infty}^{+\infty} f_1(x - \xi) f_2(\xi) d\xi, \quad -\infty < x < +\infty,$$

называется ${\it cверткой}$ функций $f_1(x)$ и $f_2(x)$.

Теорема 1 (о свертке). Пусть $F_1(\lambda)$ и $F_2(\lambda)$ — преобразования Фурье функций $f_1(x)$ и $f_2(x)$ соответственно. Тогда

$$\Im[f_1^* f_2](\lambda) = \sqrt{2\pi} \cdot F_1(\lambda) F_2(\lambda),$$

где $\Im[f]$ – прямое преобразование Фурье функции f.

Пусть f(x) принадлежит к классу функций, для которых интеграл $\int\limits_0^\infty |f(t)| e^{-\eta t} dt$ сходится, если η выбрано достаточно большим положительным. Имеют место

$$F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt$$
 — прямое преобразование Лапласа,

$$f(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} F(p)e^{pt}dp$$
 — обратное преобразование Лапласа.

Для функций — оригиналов $f_1(t)$ и $f_2(t)$ операция свертки всегда выполнима, причем

$$(f_1^* f_2)(t) = \int_0^t f_1(t-\tau) f_2(\tau) d\tau.$$

Теорема 2 (о свертке). Пусть $F_1(p)$ и $F_2(p)$ – изображения по Лапласу функций $f_1(t)$ и $f_2(t)$ соответственно. Тогда

$$L[f_1^*f_2](p) = F_1(p)F_2(p),$$

где L[f] – прямое преобразование Лапласа функции f.

4.1. Уравнение Вольтерра с разностным ядром

Уравнение

$$\alpha u(x) + \int_{a}^{x} K(x - \xi)u(\xi)d\xi = f(x) \quad (\alpha = \text{const})$$
(4.1)

(при $\alpha \neq 0$ получается уравнение II рода, при $\alpha = 0$ – уравнение I рода) можно решить с помощью преобразования Лапласа. Запишем уравнение (4.1) в образах Лапласа:

$$\alpha U(p) + \tilde{K}(p)U(p) = F(p)$$
.

Выразим U(p):

$$U(p) = \frac{F(p)}{\alpha + K(p)}. (4.2)$$

Применив обратное преобразование Лапласа, получим решение уравнения (4.1) – функцию u(x).

Так как функции F(p) и $\tilde{K}(p)$ аналитичны в некоторой полуплоскости $Re\ p > {\rm const}$ и стремятся там к нулю при $p \to \infty$, то при $\alpha \neq 0$ функция U(p) удовлетворяет условию обратимости.

Если $\alpha = 0$, т.е. рассматривается уравнение I рода, то стремление правой части уравнения (4.2) к нулю при $p \to \infty$, $Re \ p > const$ приходится дополнительно потребовать.

Если уравнение (4.1) решается лишь на конечном интервале $0 \le x \le x_0$, то можно функции K(x)и F(x) вне этого интервала продолжить произвольным образом, например, положить их равными нулю, после чего уже проводить преобразование Лапласа.

4.2. Уравнение Фредгольма с разностным ядром на оси

Уравнение имеет вид

$$u(x) = \lambda \int_{-\infty}^{+\infty} K(x - \xi)u(\xi)d\xi + f(x). \tag{4.3}$$

Предполагаем, что все функции в уравнении (4.3) абсолютно интегрируемы на действительной оси. Запишем уравнение в образах Фурье:

$$\tilde{u}(k) = 2\pi\lambda \tilde{K}(k)\tilde{u}(k) + \tilde{f}(k);$$

$$\tilde{u}(k) = \frac{\tilde{f}(k)}{1 - 2\pi\lambda \tilde{K}(k)}.$$

Применив обратное преобразование Фурье, получим решение

уравнения (4.3) — функцию u(x). Если $1-2\pi\lambda \tilde{K}(k)$ имеет нули при действительных k, то уравнение (4.3) не имеет абсолютно интегрируемого на всей действительной оси x решения.

Описанный метод можно применить и к уравнению I рода

$$\int_{-\infty}^{+\infty} K(x-\xi)u(\xi)d\xi = f(x).$$

В образах Фурье оно примет вид

$$2\pi \tilde{K}(k)\tilde{u}(k) = \tilde{f}(k);$$

$$\tilde{u}(k) = \frac{1}{2\pi} \cdot \frac{\tilde{f}(k)}{\tilde{K}(k)}.$$

Нужно дополнительно требовать, чтобы выражение $\frac{f(k)}{\tilde{K}(k)}$ допускало обратное преобразование Фурье, т.е. чтобы оно было абсолютно интегрируемым на всей оси k.

Пример 1. Решить интегральное уравнение

$$u(x) = x - \int_0^x (x - \xi)u(\xi)d\xi.$$

Решение. Интеграл $\int_0^x (x-\xi)u(\xi)d\xi$ представляет собой свертку функций x и u(x). Интегральное уравнение перепишем в виде u(x)=x-xu(x). Применим к уравнению преобразование Лапласа. Образ функции u(x) обозначим U(p), образом функции x является функция $\frac{1}{n^2}$.

В образах Лапласа интегральное уравнение принимает вид

$$U(p) = \frac{1}{p^2} - \frac{1}{p^2}U(p).$$

Выразим функцию U(p):

$$U(p) = \frac{1}{p^2 + 1} \rightarrow \sin x.$$

Получили искомое решение интегрального уравнения $u(x) = \sin x$.

Пример 2. Решить интегральное уравнение

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} u(\xi) e^{-\frac{(x-\xi)^2}{4}} d\xi = e^{-\frac{x^2}{8}}.$$

Решение. Интеграл $\frac{1}{\sqrt{\pi}}\int\limits_{-\infty}^{+\infty}u(\xi)e^{-\frac{(x-\xi)^2}{4}}d\xi$ представляет собой

свертку функций $\frac{1}{\sqrt{\pi}}e^{-\frac{x^2}{4}}$ и u(x). Интегральное уравнение перепи-

шем в виде $\frac{1}{\sqrt{\pi}}e^{-\frac{x^2}{4}}u(\xi)=e^{-\frac{x^2}{8}}$. Применим к уравнению преобразование Фурье. Образ функции u(x) обозначим $U(\lambda)$, образом функции

$$\frac{1}{\sqrt{\pi}}e^{-\frac{x^2}{4}}$$
 является функция $\sqrt{\frac{2}{\pi}}e^{-\lambda^2}$. Образом Фурье функции $e^{-\frac{x^2}{8}}$ является функция $2e^{-2\lambda^2}$.

В образах Фурье интегральное уравнение принимает вид

$$\sqrt{2\pi} \cdot \sqrt{\frac{2}{\pi}} e^{-\lambda^2} \cdot U(\lambda) = 2e^{-2\lambda^2}$$
.

Выразим функцию $U(\lambda)$

$$U(\lambda) = e^{-\lambda^2}$$
.

Применяя обратное преобразование Фурье, получим, что $u(x) = \frac{1}{\sqrt{2}} e^{-\frac{x^2}{4}}$. Это искомое решение интегрального уравнения.

4.3. Задачи для самостоятельного решения

Решить интегральные уравнения с разностным ядром:

4.1.
$$u(x) = 1 + \int_{0}^{x} (\xi - x)u(\xi)d\xi$$
.

4.2.
$$u(x) = -2\cos x + x + 2 + \int_{0}^{x} (\xi - x)u(\xi)d\xi$$
.

4.3.
$$u(x) = 29 + 6x + \int_{0}^{x} (6x - 6\xi + 5)u(\xi)d\xi$$
.

4.4.
$$u(x) = f(x) + \lambda \int_{-\infty}^{+\infty} e^{-|x-\xi|} u(\xi) d\xi \left(\lambda < \frac{1}{2}\right)$$
, где $f(x) = \begin{cases} e^{-x}, & x > 0; \\ 0, & x < 0. \end{cases}$

4.5.
$$u(x) = e^x - \int_0^x e^{x-\xi} u(\xi) d\xi$$
.

4.6.
$$u(x) = \cos x - \int_{0}^{x} (x - \xi) \cos(x - \xi) u(\xi) d\xi$$
.

4.7.
$$u(x) = e^x - \int_0^x e^{x-\xi} (x-\xi)u(\xi)d\xi$$
.

Ответы

Ряды Фурье

1.1.
$$f(x) = \frac{3}{4}\pi + \sum_{k=1}^{\infty} \frac{2}{\pi(2k-1)} \cos(2k-1) + \frac{1}{2k-1} \sin(2k-1)$$
.

1.2.
$$f(x) = -\frac{3}{4} + \sum_{k=1}^{\infty} \frac{2}{(2k-1)\pi^2} \cos(2k-1)\pi x - \frac{1}{(2k-1)\pi} \sin(2k-1)\pi x$$
.

1.3.
$$f(x) = \frac{3}{4} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{2\cos(2k-1)\pi x}{\pi (2k-1)^2} + \frac{\sin(2k-1)\pi x}{2k-1}$$
.

1.4.
$$f(x) = -1 + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{\pi \cos(2k-1)\pi x}{2k-1} + \frac{2\sin(2k-1)\pi x}{(2k-1)^2}$$
.

1.5.
$$f(x) = -\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi x}{2}}{n}$$
.

1.6.
$$f(x) = \frac{3}{2} - \frac{12}{\pi^2} \sum_{k=1}^{\infty} \frac{\cos \frac{(2k-1)\pi x}{3}}{(2k-1)^2}$$
.

1.7. a)
$$f(x) = 1 + \frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{\cos \frac{(2k-1)\pi x}{2}}{(2k-1)^2}$$
; б) $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi x}{2}}{n}$.

1.8. a)
$$f(x) = -\frac{3}{2} - \frac{12}{\pi^2} \sum_{k=1}^{\infty} \frac{\cos \frac{(2k-1)\pi x}{3}}{(2k-1)^2}$$
; б) $f(x) = -\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi x}{3}}{n}$.

1.9.
$$f(x) = 2\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
.

1.10.
$$f(x) = \frac{4}{3} + \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{n\pi x}{2}$$
.

1.11. a)
$$f(x) = -\frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{\cos(2k-1)\pi x}{(2k-1)^2}$$
; 6) $f(x) = -\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin 2k\pi x}{k}$.

1.12.
$$f(x) = \frac{1}{2} + \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n} \cos \frac{n\pi x}{2}$$
.

1.13.
$$f(x) = -\frac{3}{4} + \sum_{n=1}^{\infty} \frac{(1 - (-1)^n)}{n^2 \pi^2} \cos n\pi x + \frac{1}{n\pi} \sin n\pi x$$
.

1.14.
$$f(x) = -\frac{3}{4} + \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n^2 \pi^2} \cos n\pi x - \frac{1}{n\pi} \sin n\pi x$$
.

1.15.
$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n} - \frac{2}{n^2 \pi} \sin \frac{n\pi}{2} \right) \sin \frac{n\pi x}{2} \frac{1}{2}$$
.

1.16.
$$f(x) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\left(\cos \frac{n\pi}{2} - 1\right)}{n^2} \cos \frac{n\pi x}{2}$$
.

1.17.
$$\frac{1}{2} + \frac{2}{3\pi^2} \sum_{n=1}^{\infty} \frac{4 - (3 + (-1)^n)\cos\frac{n\pi}{2}}{n^2} \cos\frac{n\pi x}{2} + \frac{(3 - (-1)^n)\sin\frac{n\pi}{2}}{n^2} \sin\frac{n\pi x}{2}.$$

1.18.
$$f(x) = -\frac{2}{3} + \frac{3}{2\pi^2} \sum_{n=1}^{\infty} \frac{\left(1 - (-1)^n \cos \frac{n\pi}{3}\right)}{n^2} \cos \frac{n\pi x}{3} + \frac{3(-1)^{n+1} \sin \frac{n\pi}{3}}{n^2} \sin \frac{n\pi x}{3}.$$

1.19.
$$f(x) = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{3} \cos \frac{n\pi x}{3} + \frac{2(-1)^n}{n\pi} \left(\cos \frac{n\pi}{3} - \frac{3}{2n\pi} \sin \frac{n\pi}{3} \right) \sin \frac{n\pi x}{3}.$$

1.20.
$$f(x) = \frac{13}{6} + \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{(\cos n\pi - 1)(1 + (-1)^n)}{n^2} \cos \frac{n\pi x}{3}$$
.

Интеграл Фурье

- **2.1.** $\frac{4}{\pi} \int_{0}^{\infty} \frac{(1 \cos \omega) \sin \omega}{\omega^2} \sin \omega x d\omega.$
- **2.2.** $\frac{1}{\pi} \int_{-\infty}^{\infty} \left[\frac{2\omega \sin \omega + \cos \omega 1}{\omega^2} \cos \omega x + \frac{\sin \omega \omega}{\omega^2} \sin \omega x \right] d\omega.$
- $2.3. \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \omega x}{1 + \omega^2} d\omega.$
- **2.4.** $\frac{1}{\omega} \int_{0}^{\infty} e^{-a\omega} \cos \omega x d\omega.$
- **2.5.** $\int_{0}^{\infty} e^{-a\omega} \sin \omega x d\omega.$
- $2.6. \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \frac{\omega \pi}{2}}{1-\omega^2} \cos \omega x d\omega.$

2.7.
$$\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \omega}{\omega} \cos \omega x d\omega; \int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

2.9. a)
$$\frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega x}}{a^2 + \omega^2} d\omega = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \omega x}{a^2 + \omega^2} d\omega$$
;

$$6) - \frac{2ai}{\pi} \int_{-\infty}^{\infty} \frac{\omega e^{i\omega x}}{(a^2 + \omega^2)^2} d\omega = \frac{4a}{\pi} \int_{0}^{\infty} \frac{\omega \sin \omega x d\omega}{(a^2 + \omega^2)^2} d\omega.$$

2.10.
$$\sqrt{\frac{2}{\pi}} \cdot \frac{\sin \omega}{\omega}$$
.

2.11.
$$-\sqrt{\frac{2}{\pi}} \cdot \frac{e^{i\omega}}{i}$$
.

2.12.
$$\frac{1}{\sqrt{2\pi}} \left[\frac{2(\sin 2\omega - \sin \omega)}{\omega} + \frac{4\cos \omega}{\omega^2} + \left(\frac{2}{\omega} - \frac{4}{\omega^2} \right) \sin \omega \right].$$

2.13.
$$F(\omega) = \frac{2\sqrt{2\pi}}{\omega^2 + 1}$$
.

2.14.
$$F(\omega) = -\frac{4\sqrt{2\pi}}{(\omega^2 + 1)^2}$$
.

2.15.
$$F(\omega) = \sqrt{2\pi} \left[\frac{1}{1 + (\omega + 1)^2} + \frac{1}{1 + (\omega - 1)^2} \right].$$

2.16.
$$F(\omega) = \sqrt{2\pi} \left[\frac{1}{1 + (\omega + 1)^2} + \frac{1}{1 + (\omega - 1)^2} \right].$$

2.17.
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \left(-\frac{2\cos\omega}{\omega^2} + \frac{\sin\frac{\omega}{2}}{\omega} + \frac{2\cos\frac{\omega}{2}}{\omega^2} \right).$$

2.18.
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \cdot \frac{4}{1 - 4\omega^2} \cos \pi \omega$$
.

2.19.
$$F(\omega) = \frac{2i}{\sqrt{2\pi}} \cdot \frac{\omega e - \sin \omega - \omega \cos \omega}{e(1 + \omega^2)}$$
.

2.20.
$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \cdot \frac{\sin a\omega}{\omega}; \quad F_s(\omega) = \sqrt{\frac{2}{\pi}} \cdot \frac{1 - \cos a\omega}{\omega}.$$

2.21.
$$F_c(\omega) = \frac{\sin \omega - \sin \frac{\omega}{2}}{\omega} \cdot \sqrt{\frac{2}{\pi}}; \quad F_s(\omega) = \frac{\cos \frac{\omega}{2} - \cos \omega}{\omega} \cdot \sqrt{\frac{2}{\pi}}.$$

2.22.
$$F(\omega) = \sqrt{\frac{2}{\pi}} \frac{\omega \sin \pi \omega}{1 - \omega^2}$$

2.23.
$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \cdot \left(\frac{1}{\omega} - \frac{4\sin\frac{\omega}{4}}{\omega^2} \right).$$

2.24.
$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \frac{\ln 2}{(\ln^2 2 + \omega^2)}$$
.

2.25.
$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \frac{\ln a}{(\ln^2 a + \omega^2)}$$
.

2.26. a)
$$e^{-x}$$
, $x \ge 0$; б) $\frac{2}{\pi} \cdot \frac{y}{1+y^2}$, $y \ge 0$.

Преобразование Лапласа

3.1.
$$\frac{2}{p(p^2+4)}$$
.

3.2.
$$\frac{2p^2-10}{(p^2+25)(p^2+1)}$$
.

3.3.
$$\frac{p^2+7p}{(p^2+9)(p^2+1)}$$
.

3.4.
$$\frac{p(p^2+m^2-n^2)}{(p^2+m^2+n^2)^2-4m^2n^2}.$$

3.5.
$$\frac{3(4-p^2)}{2p(p^2+16)(p^2+1)}$$
.

3.6.
$$\frac{p^2 - \omega^2}{(p^2 + \omega^2)^2}$$
.

3.7.
$$\frac{1}{(p-1)^2}$$
.

$$3.8. \ \frac{2p^3 - 6p}{(p^2 + 1)^3}.$$

3.9.
$$\frac{2(p^2+p+1)}{(p^2-1)^2}$$
.

3.10.
$$\frac{2p^2+4p+8}{(p^2+4)^2}.$$

3.11.
$$\frac{6p}{(p^2-1)^2}$$
.

3.12.
$$\frac{1}{p(p^2+1)}$$
.

3.13.
$$\frac{p^3 + p^2 + \omega^2 p - \omega^2}{p(p^2 + \omega^2)^2}.$$

3.14.
$$\frac{4}{(p^2-1)^4}$$
.

3.15.
$$\frac{p^2 + 2\omega^2}{p^2(p^2 + 4\omega^2)}.$$

3.16.
$$\frac{p^2 + 2\omega^2}{p^2(p^2 + 4\omega^2)}.$$

3.17.
$$\frac{2}{p(p+1)^3}$$
.

3.18.
$$\ln \frac{p}{p-1}$$
.

3.19.
$$\ln \frac{p+1}{p}$$
.

3.20.
$$\frac{1}{2} \ln \frac{\sqrt{p^2 + 4}}{p}$$
.

3.21.
$$\ln \frac{\sqrt{p^2+1}}{p}$$
.

3.22.
$$\frac{1}{2} \ln \frac{p^2 + 4}{p^2 + 1}$$
.

3.23.
$$\ln \frac{p}{p-1}$$
.

3.24.
$$\ln \frac{p+1}{p-1}$$
.

3.25.
$$\frac{1}{(p-2)^2+1}$$
.

3.26.
$$\frac{p-m}{(p-2)^2+1}$$
.

3.27.
$$\frac{3!}{(p+1)^4}$$
.

3.28.
$$\frac{1}{(p-1)^2+1}$$
.

3.29.
$$\frac{p^2-2p}{(p^2-2p+2)^2}$$
.

3.30.
$$\frac{1}{2(p-3)} - \frac{1}{2} \frac{p-3}{(p-3)^2 + 4}$$
.

3.31.
$$\frac{1}{2(p+\alpha)} + \frac{p+\alpha}{2((p+\alpha)^2 + 4\beta^2)}$$
.

3.32.
$$\frac{e^{-bp}}{p^2+1}$$
.

3.33.
$$\frac{e^{-bp}}{2p} + \frac{pe^{-bp}}{2(p^2+4)}$$
.

3.34.
$$\frac{e^{-2p}}{p-1}$$
.

3.35.
$$\frac{1}{(p-1)(p^2+1)}$$
.

3.36.
$$\frac{p}{(p-2)(p^2+1)}$$
.

3.37.
$$\frac{2}{p^2(p^2-1)}$$
.

3.38.
$$\frac{n!F(p)}{p^{n+1}}$$
.

3.39.
$$\frac{2}{p^3(p+2)}$$
.

3.40.
$$(t-1)^2$$
.

3.42.
$$e^{t-2}$$
.

3.43.
$$e^{-3(t-3)}$$

3.44.
$$e^{-2t} \sin t$$
.

3.45.
$$\frac{1}{2}(e^{-t}-e^{-3t}).$$

3.46.
$$\frac{1}{2}(\sin t - t \cos t)$$
.

3.47.
$$\frac{1}{2}t\sin t$$
.

3.48.
$$1-e^{-t}-te^{-t}$$
.

3.49.
$$\frac{2\sqrt{3}}{9}e^{\frac{t}{2}}\sin\frac{3\sqrt{3}}{2}t$$
.

3.50.
$$\frac{t^2}{2} + 2e^{-t}\sin t$$
.

3.51.
$$t - \sin t$$
.

3.52.
$$\frac{1}{6}e^{2t} - \frac{1}{15}e^{-t} - \frac{1}{10}\cos 2t - \frac{1}{5}\sin 2t$$
.

3.53.
$$e^{-t}(1-t^2)$$
.

3.54.
$$\frac{1}{3}e^{\frac{t}{2}}\left(\cos\frac{\sqrt{3}}{2}t + \sqrt{3}\sin\frac{\sqrt{3}}{2}t\right) - \frac{1}{3}e^{-t}$$
.

3.55.
$$\frac{3}{5} + \frac{e^{-2t}}{5} (4\sin t - 3\cos t)$$
.

3.56.
$$(t-3)e^{-(t-3)}$$
.

3.57.
$$e^{t-1}-1$$
.

3.58.
$$\sin(t-2) + 2\sin(t-3) + 3\sin(t-4)$$
.

3.59.
$$sh(t-1) + ch 2(t-2)$$
.

3.60.
$$\frac{1}{4} - \frac{1}{5}e^{-\left(t - \frac{1}{2}\right)} - \frac{1}{20}\cos 2\left(t - \frac{1}{2}\right) - \frac{1}{10}\sin 2\left(t - \frac{1}{2}\right)$$
.

3.61.
$$(t-1)+(t-2)^2+(t-3)^3$$
.

3.62.
$$1 - \cos\left(t - \frac{1}{3}\right)$$
.

3.63.
$$\frac{1}{4}e^t + \frac{5}{12}e^{-3t} - \frac{2}{3}$$
.

3.64.
$$\frac{1}{4}(1-e^{2t}+2te^{2t}).$$

3.65.
$$\frac{1}{8}(3e^t - e^{-3t} - 2e^{-t}).$$

3.66.
$$t - \sin t$$
.

3.67.
$$\frac{2}{25}e^{-2t} - \frac{2}{25}\cos t + \frac{14}{25}\sin t - \frac{1}{5}t\sin t - \frac{2}{5}t\cos t$$
.

3.68.
$$\frac{1}{2}(e^{-t}-te^{-t}-\cos t)$$
.

3.69.
$$\frac{1}{2}e^t - t - 1 + \frac{1}{2}(\cos t + \sin t)$$
.

3.70.
$$\frac{1}{2}t^2e^t + te^t$$
.

3.71.
$$\frac{3}{5}e^{-t}\sin 2t - \frac{4}{5}e^{-t}\cos 2t - \frac{1}{5}$$
.

3.72.
$$\frac{1}{2}(1-e^t\cos t + e^t\sin t)$$
.

3.73.
$$2 + \frac{1}{2}(e^{-t} - \cos t + \sin t)$$
.

3.74.
$$t^2 - 4t + 6 - 5e^{-t} - te^{-t}$$
.

3.75.
$$2t + \frac{1}{2}(e^{-t} + \cos t - \sin t)$$
.

3.76.
$$\frac{1}{2}t\sin t - \cos t + \sin t$$
.

3.77.
$$\frac{1}{6}t^3 - \frac{1}{2}t^2 + 2t - 4 + e^{-t}$$
.

3.78.
$$\frac{2}{5}e^{-t}\cos 2t + \frac{1}{5}e^{-t}\sin 2t + \frac{3}{5}$$
.

3.79.
$$\frac{1}{2}(\cos t + \cosh t) - t - 1$$
.

3.80.
$$1-2\cos t$$
.

3.81.
$$\frac{1}{2}(1-e^{-t}\cos t - e^t\sin t)$$
.

3.82.
$$\frac{1}{4}t - \frac{1}{8}\sin 2t + \cos 2t$$
.

3.83.
$$\frac{3}{25} - \frac{t}{5} - \frac{4}{25}e^t \sin 2t - \frac{3}{5}e^t \cos 2t$$
.

3.84.
$$e^{-t} + e^{\frac{t}{2}} \left(-\cos \frac{\sqrt{3}}{2} t + \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t \right)$$
.

3.85.
$$-1 - \frac{1}{2}(e^{-t} + \cos t + \sin t)$$
.

3.86.
$$\frac{e^t + 3\sin t}{2} + \frac{1}{2}\cos t - 1$$
.

3.87.
$$\operatorname{ch} t - \frac{1}{2}t^2 - 1$$
.

3.88.
$$2 + \frac{1}{2}(e^t - \cos t + \sin t)$$
.

3.89.
$$-1 + e^t \left(1 - t + \frac{1}{2}t^2\right)$$
.

3.90.
$$-\frac{3}{2}\sin t - \frac{1}{2}t\cos t$$
.

3.91.
$$2e^{-t} + te^{-t} + t - 2$$
.

3.92.
$$\frac{1}{3}e^{-t} - \frac{1}{3}e^{\frac{t}{2}} \left(\cos\frac{\sqrt{3}}{2}t - 3\sqrt{3}\sin\frac{\sqrt{3}}{2}t\right)$$
.

3.93.
$$-\frac{1}{4}e^t - \frac{3}{4}e^{-t} - \frac{1}{2}\sin t$$
.

3.94.
$$\frac{1}{2}e^t - \frac{5}{6}e^{-t} + \frac{1}{3}e^{\frac{t}{2}}\left(\cos\frac{\sqrt{3}}{2}t + \sqrt{3}\sin\frac{\sqrt{3}}{2}t\right)$$
.

3.95.
$$\cos t - t \cos t$$
.

3.96.
$$2+t-\frac{1}{2}\cos t+\frac{1}{2}te^t-\frac{3}{2}e^t$$
.

3.97.
$$1 - \frac{22}{25}e^{-t} - \frac{6}{5}te^{-t} - \frac{3}{25}\cos 2t + \frac{4}{25}\sin 2t$$
.

3.98.
$$\frac{1}{12}(\cos 2t - \cos 4t) + \frac{t}{4}\sin 2t$$
.

3.99.
$$e^t(t-1) + \cos t + 2\sin t - 2t\cos t$$
.

3.100.
$$e^t \left(\frac{1}{2} t^2 - t + 1 \right)$$
.

3.101.
$$2t-3+3e^{-t}-\frac{1}{5}(\sin 2t-2\cos 2t+2e^{-t})$$
.

3.102.
$$4t+3-2e^t$$
.

3.103.
$$e^{2t} - e^t - te^t$$
.

3.104.
$$3e^t - 3 - 2t - t^2 - \frac{1}{3}t^3$$
.

3.105.
$$\frac{1}{3}e^{\frac{t}{2}}\left(-\cos\frac{\sqrt{3}}{2}t + \sqrt{3}\sin\frac{\sqrt{3}}{2}t\right) - \frac{1}{24}e^{-t} + \frac{1}{4}e^{t}\left(t^{2} - 3t + \frac{3}{2}\right).$$

3.106.
$$\frac{4}{9}\sin 2t - \frac{5}{9}\sin t - \frac{1}{3}t\cos 2t$$
.

3.107.
$$\frac{a}{2n^2}(\sin nt\cos\alpha - nt\cos(nt + \alpha)).$$

3.108.
$$\frac{1}{6}t^2 - \frac{4}{9}t + \frac{35}{54} - e^{-t} + \frac{1}{2}e^{-2t} - \frac{4}{27}e^{-3t}$$
.

3.109.
$$-\frac{t}{24}(3t\cos t + (t^2 - 3)\sin t)$$
.

3.110.
$$\frac{1}{\beta}e^{\alpha t}\sin\beta t.$$

3.111.
$$\frac{1}{3}\sin t - \frac{1}{6}\sin 2t$$
.

3.112.
$$\frac{1}{10}e^{2t} - \frac{1}{2} + \frac{2}{5}\cos t - \frac{1}{5}\sin t$$
.

3.113.
$$\frac{\gamma}{2}t^2 + (1-\gamma)t + (\gamma-1) + (\frac{1}{2}-\gamma)e^{-t} + \frac{1}{2}(\cos t - \sin t)$$
.

3.114.
$$\frac{83}{80}$$
ch $2t - \frac{1}{10}$ cos $t + \frac{1}{16}$ cos $2t$.

3.115.
$$\frac{1}{2}e^{-3t} + e^t \left(\cos t + \sin t - \frac{1}{2}\right)$$
.

3.116.
$$\frac{1}{3}e^{-\frac{t}{2}}\left(\cos\frac{\sqrt{3}}{2}t + \frac{1}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}t\right) + \frac{1}{3}(t-1)e^{t}.$$

3.117.
$$\frac{1}{4}(t^2\sin t + t\cos t - \sin t)$$
.

3.118.
$$\frac{2}{9}(e^t - e^{-2t}(3t+1))$$
.

3.119.
$$1 - e^{-t} \left(\frac{1}{2} t^2 + t + 1 \right)$$
.

3.120.
$$1 - \frac{1}{3}e^{-t} - \frac{2}{3}e^{\frac{t}{2}}\cos{\frac{\sqrt{3}}{2}t}$$
.

3.121.
$$x(t) = e^t$$
, $y(t) = -e^t$.

3.122.
$$x(t) = e^t$$
, $y(t) = e^t$.

3.123.
$$x(t) = 2(1 - e^{-t} - te^{-t}), y(t) = 2 - t - 2e^{-t} - 2te^{-t}$$
.

3.124.
$$x(t) = \frac{1}{4}(e^t - e^{3t} + 2te^{3t}), \ y(t) = \frac{1}{4}(5e^t - e^{3t} - 2te^{3t}).$$

3.125.
$$x(t) = e^t(\cos t - 2\sin t), \ y(t) = e^t(\cos t + 3\sin t).$$

3.126.
$$x(t) = \frac{1}{3}(e^t + 2\cos 2t + \sin 2t), \ y(t) = \frac{2}{3}\left(e^t - \cos 2t - \frac{1}{2}\sin 2t\right).$$

3.127.
$$x(t) = e^t - \frac{11}{34}e^{4t} - \frac{3}{17}\cos t + \frac{5}{17}\sin t - \frac{1}{2}$$

$$y(t) = -\frac{2}{3}e^t + \frac{22}{51}e^{4t} + \frac{4}{17}\cos t - \frac{1}{17}\sin t.$$

3.128.
$$x(t) = -e^t$$
, $y(t) = 0$, $z(t) = e^t$.

3.129.
$$x(t) = \frac{2}{5}(e^{3t} - e^{-2t}), \quad y(t) = z(t) = \frac{1}{5}(3e^{3t} + 2e^{-2t}).$$

3.130.
$$x(t) = 2 - e^{-t}$$
, $y(t) = 2 - e^{-t}$, $z(t) = 2e^{-t} - 2$.

Список литературы

- 1. Фихтенгольц, Γ . Н. Курс дифференциального и интегрального исчисления / Γ . Н. Фихтенгольц. М., 1966. Т. 1, 2.
- 2. Высшая математика. Специальные главы / под ред. П. И. Чинаева. Киев : Вища школа, 1981.
- 3. Кручкович, Γ . И. Сборник задач и упражнений по специальным главам высшей математики / Γ . И. Кручкович. М. : Высш. шк., 1971.
- 4. Шмелев, П. А. Теория рядов в задачах и упражнениях / П. А. Шмелев. М. : Высш. шк., 1983.
- 5. Васильева, А. Б. Интегральные уравнения / А. Б. Васильева. М.: Физматлит, 2002.
- 6. Интегральные уравнения. Справочная математическая библиотека / под ред. П. П. Забрейко [и др.]. М.: Наука. 1968.

Содержание

Предисловие	3
1. Ряды Фурье	
1.1. Ряд Фурье для четных и нечетных функций	5
1.2. Ряды Фурье для функций произвольного периода	6
1.3. Разложение в ряд Фурье непериодической функции	
1.4. Примеры разложения функций в ряд Фурье	7
1.5. Задачи для самостоятельного решения	11
2. Интеграл Фурье	14
2.1. Интеграл Фурье для четных и нечетных функций	17
2.2. Комплексная форма интеграла Фурье	18
2.3. Преобразования Фурье	19
2.4. Примеры разложения функций в интеграл Фурье	21
2.5. Задачи для самостоятельного решения	28
3. Преобразование Лапласа	31
3.1. Свойства изображений	31
3.2. Изображения некоторых элементарных функций	32
3.3. Теоремы подобия, смещения, запаздывания	33
3.4. Изображение кусочно-линейной функции	35
3.5. Изображение периодической функции	36
3.6. Дифференцирование оригиналов и изображений	38
3.7. Интегрирование оригиналов и изображений	
3.8. Таблица изображений некоторых функций	42
3.9. Отыскание оригинала по изображению	43
3.10. Применение операционного исчисления	
к решению дифференциальных уравнений и их систем	47
3.11. Задачи для самостоятельного решения	54
4. Применение интегральных преобразований	
к решению интегральных уравнений	61
4.1. Уравнение Вольтерра с разностным ядром	62
4.2. Уравнение Фредгольма с разностным ядром на оси	63
4.3. Задачи для самостоятельного решения	
Ответы	67
Список питературы	78

Учебное издание

Романова Людмила Дмитриевна, **Шаркунова** Татьяна Алексеевна, **Елисеева** Татьяна Владимировна

ИНТЕГРАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ

Редактор *Т. В. Веденеева* Компьютерная верстка *Ю. В. Ануровой* Дизайн обложки *А. А. Стаценко*

Подписано в печать 21.09.2015. Формат $60\times84^1/_{16}$. Усл. печ. л. 4,65. Заказ № 733. Тираж 33.

Пенза, Красная, 40, Издательство ПГУ

Тел./факс: (8412) 56-47-33; e-mail: iic@pnzgu.ru