Ghibli-Style Image Generation

313512039 楊翔士 313512058 邱文揚 109950006 董少鈞 410707001 李彥璋

Outline

- Stable Diffusion Model
- LoRA (Low-Rank Adaptor)
- DDPM/DDIM/CFG
- Implementations and Results

Outline

- Stable Diffusion Model
- LoRA (Low-Rank Adaptor)
- DDPM/DDIM/CFG
- Implementations and Results

What is stable diffusion model

- Text-To-Image Generative
- Training : Picture → Noise
- Generation : Noise ————Picture

Why Do We Need Stable Diffusion?

- Text-to-Image Generation
- Boosts Creative and Design Workflows
- Cuts Costs & Replaces Stock Images
- Highly Controllable AI Tool
- Open Source and Privacy-Friendly
- Driving Innovation and Accessibility

How Stable Diffusion Works

This is divided into three main sections

- Pixel Space
- Laten Space
- conditioning

Stable Diffusion Training Process

- •Step 1: Generate Latent Seed (Noise)
- •Step 2: Encode the Text Prompt
- •Step 3: Conditional Denoising via U-Net
- •Step 4: Scheduler Algorithm
- •Step 5: Decode Latents into Image
- •Step 6: Output Image

Outline

- Stable Diffusion Model
- LoRA (Low-Rank Adaptor)
- DDPM/DDIM/CFG
- Implementations and Results

What is LoRA?

- LoRA = Low-Rank Adaptation
- Efficient fine-tuning technique
- Injects trainable low-rank matrices into frozen layers
- Saves compute and storage

Why Choose LoRA?

Problems with Full Fine-Tuning

- Expensive and inefficient
- High compute cost
- Long training time
- Requires updating all model parameters

Advantages of LoRA

- •Fine-tunes only a few parameters
- •Keeps base model frozen
- •Lower compute and memory cost
- •Maintains original model performance
- •Modular and reusable adapters

How LoRA Works

- •Targets linear layers (e.g. attention, FFN)
- •Adds low-rank matrices A and B: W'=W+A·B
- •Trains only A and B
- •Original weights W are frozen

Where is LoRA Used?

- •Large Language Models: GPT, LLaMA, BERT
 - •Image Generation: Stable Diffusion
 - Multi-task adaptation
 - •Plug-and-play style modules

LoRA Training Process

- •Step 1: Freeze original weights
- •Step 2: Insert low-rank matrices
- •Step 3: Train A and B only
- •Step 4: Merge updates during inference

Experimental Results

- •LoRA tested on multiple NLP benchmarks
- •Comparable or better than full fine-tuning
- •Great tradeoff between performance and efficiency

Model	Average Score	Additional Param.	Training Time (Hour/epoch)
LLaMA-13B + LoRA(2M)	0.648	28M 可训练参数	较9小
LLaMA-7B + LoRA(4M)	0.624	17.9M	11
LLaMA-7B + LoRA(2M)	0.609	17.9M	7
LLaMA-7B + LoRA(0.6M)	0.589	17.9M	5 训练时长不对等
LLaMA-7B + FT(2M)	0.710	-	31
LLaMA-7B + LoRA(4M)	0.686	-	17
LLaMA-7B + FT(2M) + LoRA(math_0.25M)	0.729	17.9M	3
LLaMA-7B + FT(2M) + FT(math_0.25M)	0.738	-	6

Outline

- Stable Diffusion Model
- LoRA (Low-Rank Adaptor)
- DDPM/DDIM/CFG
- Implementations and Results

DDPM (Denoising Diffusion Probabilistic Models)

Forward:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t \; ; \; \sqrt{1-\beta_t}x_{t-1} \; , \; \beta_t I)$$

$$\Rightarrow x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1), \ \bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$$

DDPM (Denoising Diffusion Probabilistic Models)

Backward:

DDIM (Denoising Diffusion Implicit Models)

Goal: Reduce the number of sampling steps

DDPM (Denoising Diffusion Probabilistic Models)

Forward:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t \; ; \; \sqrt{1-\beta_t}x_{t-1} \; , \; \beta_t I)$$

$$\Rightarrow x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1), \ \bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$$

Recall this part, we do have a closed-form solution

DDIM (Denoising Diffusion Implicit Models)

Backward:

DDIM (Denoising Diffusion Implicit Models)

Backward:

$$\begin{cases} x_{t-k} = \sqrt{\bar{\alpha_{t-k}}} x_0 + \sqrt{1 - \bar{\alpha_{t-k}}} \epsilon_\theta \\ x_0 = \frac{1}{\sqrt{\bar{\alpha_t}}} (x_t - \sqrt{1 - \bar{\alpha_t}} \epsilon_\theta(x_t, t)) \end{cases} \Rightarrow x_{t-k} = \sqrt{\bar{\alpha_{t-k}}} (\frac{x_t - \sqrt{1 - \bar{\alpha_t}}}{\sqrt{\bar{\alpha_t}}} \epsilon_\theta(x_t, t)) + \sqrt{1 - \bar{\alpha_{t-k}}} \epsilon_\theta(x_t, t)$$

What we are training

CFG (Classifier-Free Guidance)

Goal: Improve how well the diffusion model aligns with the prompt

Traditionally, an external classifier is required to guide the generation process.

With CFG, we no longer need an additional classifier.

CFG (Classifier-Free Guidance)

Approach: During training, the model is exposed to both conditional and unconditional inputs. At inference time, predictions from both are combined to guide the generation path.

CFG (Classifier-Free Guidance)

$$(x_{t},\,t,\,c=prompt) \qquad (x_{t},\,t,\,c=\emptyset)$$
 Noise Prediction
$$\epsilon(x_{t},\,t,\,c=prompt) \qquad \epsilon(x_{t},\,t,\,c=\emptyset)$$

$$\epsilon(x_{t},\,t,\,c=prompt) \qquad \epsilon(x_{t},\,t,\,c=\emptyset)$$

Outline

- Stable Diffusion Model
- LoRA (Low-Rank Adaptor)
- DDPM/DDIM/CFG
- Implementations and Results

Dataset

Real to Ghibli Image Dataset

32

Data Card Code (5) Discussion (0) Suggestions (0)

About Dataset

* Real to Ghibli Image Dataset (5K High-Quality Images)

Overview

The **Real to Ghibli Image Dataset** is a high-quality collection of **5,000 images** designed for **Al-driven style transfer and artistic transformations**. This dataset is ideal for training **GANs**, **CycleGAN**, **diffusion models**, **and other deep learning applications** in image-to-image translation.

LoRA Fine-Tuning Results on Stable Diffusion

- 90% of data used for LoRA fine-tuning, 10% for FID and loss evaluation
- Results of an un-tuned model (baseline)
- Results of full model fine-tuning
- Fine-tuning results with two different loss functions
 - DDPM & DDIM
- Guidance Scale(1 and 7.5)

Without Fine Tuning

A panda on the top of the train ,Studio Ghibli style

DDPM A girl standing in a greenhouse, Studio Ghibli style

DDPM

DDIM

Results of Full Model Fine-Tuning

```
# 🗹 生成圖片
prompt = "a girl standing in a greenhouse, Studio Ghibli style"
image = pipe(prompt, num inference steps=30, guidance scale=7.5).images[0]
# 💟 顯示與儲存
image.show()
image.save("ghibli_output.png")
                                         30/30 [00:03<00:00, 8.97it/s]
```

```
100% | 2500/2500 [22:05<00:00, 1.89it/s]
Epoch 1 Loss: 1.0126
| 2500/2500 [22:00<00:00, 1.89it/s]
Epoch 2 Loss: 1.0000
100% | 2500/2500 [22:00<00:00, 1.89it/s]
Epoch 3 Loss: 0.9613

₱ Epoch 4/10

100% | 2500/2500 [22:03<00:00, 1.89it/s]
Epoch 4 Loss: 1.0017
100%| 2500/2500 [22:02<00:00, 1.89it/s]
Epoch 5 Loss: 1.0114
100% | 2500/2500 [22:05<00:00, 1.89it/s]
Epoch 6 Loss: 0.9946
100% | 2500/2500 [22:05<00:00, 1.89it/s]
Epoch 7 Loss: 0.1415
100%| 2500/2500 [22:02<00:00, 1.89it/s]

☑ Epoch 8 Loss: 0.0022

100% | 2500/2500 [22:06<00:00, 1.89it/s]
☑ Epoch 9 Loss: 1.0152
2500/2500 [21:59<00:00, 1.90it/s]

☑ Epoch 10 Loss: 0.9994
```

runwayml/stable-diffusion-v1-GhibliDataset 5 (prepare_model_for_kbit_training) LORA RANK = 32 LORA_ALPHA = 64 transforms.Resize(512,512) LORA DROPOUT = 0.1 transforms.Normalize([0.5], [0.5]) train size = 0.9Unet: val size = 0.1["attn1.to_q", "attn1.to_k", text encoder: "attn1.to_v", "attn1.to_out.0", ["q proj", "k proj", "attn2.to_q", "attn2.to_k", "v proj", "out proj"] "attn2.to_v", "attn2.to_out.0"] Train Val DataSet(90%) DataSet(10%) $heta_{t+1} = heta_t - \eta \cdot rac{m_t}{\sqrt{v_t} + \epsilon} - \eta \cdot \lambda \cdot heta_t$ optimizer = torch.optim.AdamW(lr=1e-4) scheduler lr = CosineAnnealingLR(optimizer, T max=EPOCHS) EPOCHS = 10 scheduler = DDPMScheduler(num train timesteps=1000) PATIENCE = 3 scaler = GradScaler() Discussion Guidance LOSS FID

Loss Function of Fine Tuning

- Apply on Unet
- Guidance_scale = 1
 - Code:

```
noise_guided = noise_pred_cond
loss = nn.functional.mse_loss(noise_guided, noise)
```

- Direct MSE loss between predicted and actual noise.
- Typically used for standard denoising.
- Guidance_scale = 7.5
 - Code:

```
noise_guided = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
loss = nn.functional.mse_loss(noise_guided, noise)
```

•Guided noise prediction with conditional information.

LOSS Anomaly

-Unnoticeable decrease in loss

Attempted Approach[But fail]:

- Epoch (10->50)
- RANK(16,32)
- CFG(1 and 7.5)
- Learning Rate(10⁻⁴ -> 10⁻³)
- Dropout ratio (0 and 0.1)

Our speculation

- The pre-trained model's initial loss is near optimal.
- A small dataset leads to rapid model fitting.

FID

- •FID measures the similarity between the distributions of real and generated images.
- •It computes the Fréchet distance between the feature distributions of real and generated images, using Inception V3 for feature extraction.

$$FID(x,g) = \left|\mu_x - \mu_g\right|^2 + Tr\left(\Sigma_x + \Sigma_g - 2\sqrt{\Sigma_x \Sigma_g}\right)$$

Fine Tuning Guidance scale = 1 Results

DDPM, guidance scale=1.

DDPM, guidance scale=7.5

DDIM, guidance scale=1.0

DDIM, guidance scale=7.5

Fine Tuning Guidance scale = 1 Results

DDPM, guidance scale=1.

DDPM, guidance scale=7.5

DDIM, guidance scale=1.0

DDIM, guidance scale=7.5

Fine Tuning Guidance scale = 7.5 Results

DDPM, guidance scale=1.

DDPM, guidance scale=7.5

DDIM, guidance scale=1.0

DDIM, guidance scale=7.5

Fine Tuning Guidance scale = 7.5 Results

DDPM, guidance scale=1

DDPM, guidance scale=7.5

DDIM, guidance scale=1.0

DDIM, guidance scale=7.5

Reference

- 1. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 10684-10695).
- 2. https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2?utm_source=chatgpt.com
- 3. https://github.com/LianjiaTech/BELLE/issues/277
- 4. https://zhuanlan.zhihu.com/p/1896478803016009266
- 5. https://blog.csdn.net/andy20160103/article/details/138357437
- 6. Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020. https://arxiv.org/abs/2006.11239
- 7. Song et al., Denoising Diffusion Implicit Models, ICLR 2021. https://arxiv.org/abs/2010.02502
- 8. Nichol & Dhariwal, GLIDE, arXiv 2021 (Appendix: Classifier-Free Guidance). https://arxiv.org/abs/2112.10741

分工表

姓名	工作
楊翔士	研讀及報告Stable Diffusion Model
邱文揚	引進Stable Diffusion Model 模型程式架構、題目發想、資料集預處理、報告LoRA
董少鈞	引進CFG, DDPM, DDIM、微調訓練過程、尋找資料集、報告 DDPM/DDIM/CFG、組長、協調工作
李彦璋	引進LoRA、程式實作、結果分析、微調訓練過程、提供GPU算力