Problem Sheet 1

Problems in Part A will be discussed in class. Problems in Part B come with solutions and should be tried at home, they will be discussed in class if time permits.

Part A

- (1.1) Find examples of
 - (a) A function $f \in C^2(\mathbb{R})$ with a strict minimizer x such that f''(x) = 0 (that is, the second derivative is not positive definite).
 - (b) A function $f: \mathbb{R} \to \mathbb{R}$ with a strict minimizer x^* that is not an isolated local minimizer. **Hint:** Consider a rapidly oscillating function that has minima that are arbitrary close together, but not equal.
- (1.2) For this problem you might want to recall some linear algebra.
 - (a) Let $A\in\mathbb{R}^{n\times n}$ by a symmetric matrix, $b\in\mathbb{R}^n$ and $c\in\mathbb{R}$. Show that the quadratic function

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{x} + c \tag{1}$$

with symmetric A is convex if and only if A is positive semidefinite.

(b) Now let $A \in \mathbb{R}^{m \times n}$ by an arbitrary matrix. Show that the function

$$f(\boldsymbol{x}) = \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2$$

is convex (the 2-norm is defined as $||x||_2 = x^\top x$). Moreover, if $m \ge n$ and the matrix A has rank m, then it is strictly convex and the unique minimizer is

$$\boldsymbol{x}^* = (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}.$$

(1.3) A set $S \subseteq \mathbb{R}^n$ is called *convex*, if for any $x, y \in S$ and $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in S$$
.

In words, for any two points in S, the line segment joining them is also in S. Which of the following sets are convex?

- (a) $S = \{ x \in \mathbb{R}^3 : ||x||_2 = 1 \}$ (the unit sphere);
- (b) $S = \{ \boldsymbol{x} \in \mathbb{R}^2 : 1 \le x_1 x_2 < 2 \};$
- (c) $S = \{ \boldsymbol{x} \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le 1 \};$
- (d) $S = \mathcal{S}_{+}^{n} \subset \mathbb{R}^{n \times n}$, the set of symmetric, positive semidefinite matrices.

(1.4) For this problem we generalize the notion of convexity to function not necessarily defined on all of \mathbb{R}^n . Denote by $\mathrm{dom} f$ the *domain* of f, i.e., the set of x on which f(x) attains a finite value. A function f is called *convex*, if $\mathrm{dom} f$ is a convex set and for all $x, y \in \mathrm{dom} f$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Which of the following functions are convex?

- (a) $f(x) = \log(x)$ on \mathbb{R}_{++} (the positive real numbers);
- (b) $f(x) = x^4$ on \mathbb{R} ;
- (c) $f(x) = x_1 x_2$ on \mathbb{R}^2_{++} ;
- (d) $f(\mathbf{x}) = x_1/x_2$ on \mathbb{R}^2_{++} ;
- (e) $f(x) = e^x 1$ on \mathbb{R} ;
- (f) $f(\mathbf{x}) = \max_i x_i$ on \mathbb{R}^n .

Part B

(1.5) In engineering applications¹ one sometimes encounters a problem of the form

minimize
$$||Ax - b||_{\infty}$$
, (2)

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$ is the ∞ -norm.

- (a) Draw the "unit circle" $\{x \in \mathbb{R}^2 : ||x||_{\infty} \le 1\}$.
- (b) Formulate a linear programming problem \mathcal{P} with decision variables (x, t), such that if (x^*, t^*) is the unique minimizer of \mathcal{P} , then x^* is the unique minimizer of (??).

Even though (??) is not a linear programming problem (the objective is not linear), it is *equivalent* to one, in the sense that a minimizer can be read off the solution of a linear programming problem.

(1.6) Using Python or another computing system, compute and plot the sequence of points x_k , starting with $x_0 = (0,0)^{\top}$, for the gradient descent algorithm for the problem

minimize
$$\|Ax - b\|_2^2$$

with data

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 10 \\ -1 \\ 0 \end{pmatrix}.$$

¹For example in the synthesis of linear time-invariant dynamical systems.

(1.7) Consider the **Rosenbrock function** in \mathbb{R}^2 ,

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

Compute the gradient ∇f and the Hessian $\nabla^2 f$. Show that $\boldsymbol{x}^* = (1,1)^{\top}$ is the only local minimizer of this function, and that the Hessian at this point is positive definite.

Using Python or another computing system, draw a contour plot of the Rosenbrock function.