FaST-LMM & epistasis: Variance on the coefficients

Ava Khamseh¹

¹MRC Human Genetics Units, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom. (Dated: 25/04/2021)

This document details the derivation of the fixed effect coefficients variance in a Linear Mixed Model. For consistency, we use the notation outlined in the supplementary material of the original FaST-LMM paper.

I. VARIANCE ON THE ESTIMATED $\hat{\beta}$ COEFFICIENTS

Let ϵ be normally distributed as $\mathcal{N}\left(0; \sigma_q^2 \mathbf{K} + \sigma_e^2 \mathbf{I}\right)$, so that

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times d} \boldsymbol{\beta}_{d\times 1} + \boldsymbol{\epsilon}_{n\times 1}. \tag{1}$$

Also, for notational convenience, let \mathcal{Z} denote:

$$\mathcal{Z}_{d\times n} = \left(\left(\mathbf{U}^T \mathbf{X} \right)^T \right)_{d\times n} (\mathbf{S} + \delta \mathbb{1})_{n\times n}^{-1} \left(\mathbf{U}^T \right)_{n\times n}.$$
 (2)

Then,

$$\hat{\boldsymbol{\beta}}_{d\times 1} = \left[\left(\mathbf{U}^T \mathbf{X} \right)^T \left(\mathbf{S} + \delta \mathbb{1} \right)^{-1} \left(\mathbf{U}^T \mathbf{X} \right) \right]_{d\times d}^{-1} \left[\left(\mathbf{U}^T \mathbf{X} \right)^T \left(\mathbf{S} + \delta \mathbb{1} \right)^{-1} \left(\mathbf{U}^T \mathbf{y} \right) \right]_{d\times 1}$$
(3)

can be written in a concise form:

$$\hat{\boldsymbol{\beta}} = \left[\mathcal{Z} \mathbf{X} \right]^{-1} \left[\mathcal{Z} \mathbf{y} \right] = \left[\mathcal{Z} \mathbf{X} \right]^{-1} \left[\mathcal{Z} (\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}) \right]$$

$$= \boldsymbol{\beta} + \left(\mathcal{Z} \mathbf{X} \right)^{-1} \left(\mathcal{Z} \boldsymbol{\epsilon} \right).$$
(4)

Hence it can be clearly observed that when \mathcal{Z} and \mathbf{X} are not stochastic and using $\mathbb{E}[\hat{\epsilon}] = 0$, we have $\mathbb{E}[\hat{\beta}] = \beta$, as required. In other words, if the ground truth data is generated from the LMM in Eq. 1, then the estimator $\hat{\beta}$ of β is unbiased. The variance on each of the coefficients in $\hat{\beta}$ can now be derived as the diagonal elements of the following equation:

$$\operatorname{Cov}[\hat{\boldsymbol{\beta}}] = \mathbb{E}\left[\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)^{T}\right] = \mathbb{E}\left[\left(\left(\mathcal{Z}\mathbf{X}\right)^{-1} \mathcal{Z}\boldsymbol{\epsilon}\right) \left(\left(\mathcal{Z}\mathbf{X}\right)^{-1} \mathcal{Z}\boldsymbol{\epsilon}\right)^{T}\right]$$

$$= (\mathcal{Z}\mathbf{X})^{-1} \underbrace{\mathcal{Z} \mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{T}] \mathcal{Z}^{T}}_{\text{expand}} \left(\left(\mathcal{Z}\mathbf{X}\right)^{-1}\right)^{T}$$

$$= \sigma_{g}^{2} (\mathcal{Z}\mathbf{X})^{-1} \left(\mathbf{U}^{T}\mathbf{X}\right)^{T} (\mathbf{S} + \delta \mathbb{1})^{-1} \mathbf{U}^{T} \mathbf{U} (\mathbf{S} + \delta \mathbb{1}) \mathbf{U}^{T} \mathbf{U} (\mathbf{S} + \delta \mathbb{1})^{-1} \mathbf{U}^{T} \mathbf{X} \left(\left(\mathcal{Z}\mathbf{X}\right)^{-1}\right)^{T}$$

$$= \sigma_{g}^{2} (\mathcal{Z}\mathbf{X})^{-1} \underbrace{\left(\mathbf{U}^{T}\mathbf{X}\right)^{T} (\mathbf{S} + \delta \mathbb{1})^{-1} \mathbf{U}^{T}}_{\mathcal{Z}} \mathbf{X} \left(\left(\mathcal{Z}\mathbf{X}\right)^{-1}\right)^{T}$$

$$= \sigma_{g}^{2} \left(\left(\mathcal{Z}\mathbf{X}\right)^{-1}\right)^{T} = \sigma_{g}^{2} (\mathcal{Z}\mathbf{X})^{-1}.$$

$$(5)$$

In the last equality, we have used the relation $(A^{-1})^T = (A^T)^{-1}$ and the fact that the matrix $\mathcal{Z}\mathbf{X}$ is symmetric, i.e., $(\mathcal{Z}\mathbf{X})^T = \mathcal{Z}\mathbf{X}$. Therefore, the variance on the estimate $\hat{\boldsymbol{\beta}}_j$ of $\boldsymbol{\beta}_j$ is given by the (j,j)-th diagonal entry of the covariance matrix $\text{Cov}[\hat{\boldsymbol{\beta}}]$, i.e.,

$$\operatorname{Var}[\hat{\boldsymbol{\beta}}_j] = \sigma_g^2 \left[\left(\left(\mathbf{U}^T \mathbf{X} \right)^T \left(\mathbf{S} + \delta \mathbb{1} \right)^{-1} \left(\mathbf{U}^T \mathbf{X} \right) \right)^{-1} \right]_{j,j}$$
 (6)

for each of the j = 1, 2, ..., d coefficients.

Remark

As a sanity check, we can compare Eq. 6 with the variance on coefficients in a simple OLS, where $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2)$:

$$Cov[\hat{\boldsymbol{\beta}}]_{OLS} = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1} , \ \hat{\sigma}^2 = \frac{\hat{\boldsymbol{\varepsilon}}^T\hat{\boldsymbol{\varepsilon}}}{n}.$$
 (7)

Indeed, we observe that the form of Eq. 6 is similar to Eq. 7, apart from the transformation via U. Notice also, that σ_q^2 together with $(\mathbf{S} + \delta \mathbb{1})$ play the role of σ^2 in Eq. 7, *i.e.*, the covariance of the noise term.