[문제]

[예제]

[문제]

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-03-05
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

4. $M \neq A(-2, 4), B(3,3), C(0,1)$ $= \frac{4}{3}$

5. 두 점 A(8,2) B(2,1)과 x축에 있는 점 P(a,0)

p+q의 값은? (단, p, q는 서로소)

에 대해서 $\overline{AP}=\overline{BP}$ 만족할 때, $a=\frac{q}{p}$ 라고 하면

② 22

(4) 24

6. AP(a,b)가 y=2x+2위에 있다. AP(a,b)

B(7,6)에 대해서 $\overline{AP} = \overline{BP}$ 만족 할 때, a+b의 값

② 5

4 9

하는 삼각형 ABC는 어떤 삼각형인가?

① $\angle A = 90$ ° 인 직각이등변삼각형

② ∠*B* = 90° 인 직각이등변삼각형

③ $\angle C = 90$ ° 인 직각이등변삼각형

④ $\overline{BC} = \overline{CA}$ 인 이등변삼각형

⑤ $\overline{AB} = \overline{CA}$ 인 이등변삼각형

개념check /

[수직선 위의 두 점 사이의 거리]

수직선 위의 두 점 $A(x_1), B(x_2)$ 사이의 거리

$$\overline{AB} = |x_2 - x_1| = |x_1 - x_2|$$

[좌표평면 위의 두 점 사이의 거리]

좌표평면 위의 두 점 $A(x_1,y_1), B(x_2,y_2)$ 사이의 거리

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

<참고> 원점 O와 점 $A(x_1,y_1)$ 사이의 거리

$$\overline{OA} = \sqrt{{x_1}^2 + {y_1}^2}$$

기본문제

[문제]

- **1.** 점 A(3), B(a), C(6)에 대해서 선분 BC가 선분 AB의 길이의 2배일 때, 양수 a의 값을 구하면?
 - 1) 2

2 4

- 3 6
- **(4)** 8
- **⑤** 10

[문제]

- **2.** 두 점 A(1,4), B(7,6) 사이의 거리는?
 - ① $4\sqrt{2}$
- ② $\sqrt{34}$
- ③ 6
- (4) $\sqrt{38}$
- ⑤ $2\sqrt{10}$

- [예제]
- **3.** 세 점 A(2,6), B(5,2), C(5,a)을 꼭짓점으로 하는 삼각형 ABC가 선분 AB를 빗변으로 하는 직각 삼각형일 때, a의 값은?
 - ① 2
- 2 4
- 3 6

- **4** 8
- **⑤** 10

- 7. $\overline{AB}=5$, $\overline{BC}=4$, $\overline{CA}=7$ 인 삼각형 ABC에서 변 BC의 중점을 M이라 할 때, \overline{AM} 의 길이는?
 - ① $\sqrt{33}$

① 21

③ 23

(5) 25

은?

① 3

3 7

(5) 11

- ② $\sqrt{34}$
- $\sqrt{35}$
- **4** 6
- (5) $\sqrt{37}$

[문제]

8. 다음은 직사각형 ABCD와 점 P가 같은 평면 위에 있을 때, $\overline{PA}^2 + \overline{PC}^2 = \overline{PB}^2 + \overline{PD}^2$ 이 성립함을 설명하는 과정이다. (가)~(마)에 들어갈 내용으로 옳지 않은 것은?

다음 그림과 같이 $\mathbf{A}(0,b)$, $\mathbf{B}(0,0)$, $\mathbf{C}(a,0)$, $\mathbf{D}(a,b)$, $\mathbf{P}(p,q)$ 로 놓으면

 $\overline{\text{PA}} = \sqrt{p^2 + (q - b)^2}$, $\overline{\text{PB}} = \boxed{(7)}$, $\overline{\text{PC}} = \boxed{(1)}$, $\overline{\text{PD}} = \sqrt{(p - a)^2 + (q - b)^2}$

따라서 $\overline{\mathrm{PA}}^2 + \overline{\mathrm{PC}}^2 = \left\{p^2 + (q-b)^2\right\} + \left\{\boxed{(다)}^2 + q^2\right\}$ $= \boxed{(라)} + \left\{(p-a)^2 + (q-b)^2\right\}$ $= \boxed{(마)}$

- ② $\sqrt{(p-a)^2+q^2}$
- \bigcirc p-b
- (4) $p^2 + q^2$
- $\boxed{5} \quad \overline{PB}^2 + \overline{PD}^2$

평가문제

[중단원 마무리]

- **9.** 수직선 위의 두 점 A(1), B(t)의 거리가 3이 되도록 하는 t의 값의 합은?
 - 1) 2
- 2 4
- 3 6
- 4) 8
- **⑤** 10

[중단원 마무리]

- 10. 두 AA(2,1) B(5,2)에서 점 C(x+1,x)에 대해 $2\overline{AC} = \overline{BC}$ 를 만족할 때, 이를 만족하는 모든 x의 값의 합은?
 - ① $\frac{1}{3}$
- $2 \frac{1}{2}$
- $3 \frac{2}{3}$
- **4** 1
- ⑤ $\frac{4}{3}$

- [중단원 마무리]
- **11.** 세 점 A(1, a), B(-3,1), C(3,3)를 꼭짓점으로 하는 삼각형 ABC가 ∠A=90°인 직각삼각형일 때, 음수 a의 값은?
 - $\bigcirc -1$
- $\bigcirc -2$
- 3 3
- \bigcirc 4

[중단원 마무리]

- **12.** 두 점 A(1,4), B(-2,3)에 대해 x축 위의 점 P(a,0)에 대해 $\overline{AP} = \overline{BP}$ 를 만족할 때, $a = \frac{q}{p}$ 라고 하면 p+q의 값은? (단, p, q는 서로소)
 - ① 1
- ② 2

- 3 3
- **(4)** 4
- (5) 5

[중단원 마무리]

- **13.** 두 점 A(-1, 2), B(3,0)와 임의의 점 P(11,a)에 대해 $\overline{BP} = 2\overline{AB}$ 가 성립할 때, 음수 a의 값은?
 - $\bigcirc -1$
- $\bigcirc 2 2$
- (3) 3
- (4) -4
- (5) -5

- [중단원 마무리]
- **14.** 세 점 A(-3, 2), B(4, 3), C(3, 10)을 꼭짓점으로 하는 삼각형 ABC의 외심의 좌표를 구하면?
 - \bigcirc (-1, 6)
- (0, 7)
- (3) (-1, 5)
- (4) (1, 7)
- (0, 6)

[중단원 마무리]

- **15.** 4개의 점 A(2,2), B(1,4), C(3,8), D(a,b)에 대해 사각형 ABCD가 평행사변형을 이룰 때, a+b의 값을 구하면? (단, a, b는 정수)
 - \bigcirc 2

② 4

3 6

- **4** 8
- **⑤** 10

[중단원 마무리]

16. 다음 그림과 같이 지점 \bigcirc 에서 수직으로 만나는 직선 도로가 있다. 서로 다른 도로에 있는 슬기와 현지가 지점 \bigcirc 에서 각각 $150\,\mathrm{m}$ 떨어진 곳에서 각각 $1분에 30\,\mathrm{m}$, $40\,\mathrm{m}$ 의 일정한 속력으로 지점 \bigcirc 를 향하여 직진하였다. 두 사람이 동시에 출발할 때, 두 사람 사이의 거리가 가장 가까워지는 것은 출발한 지 몇 분 후인가?.

- ① 4분
- ② 8.2분
- ③ 4.2분
- ④ 8.4분
- ⑤ 4.4분

- [대단원 마무리]
- **17.** 두 점 (4,1), (3,a) 사이의 거리가 $\sqrt{5}$ 이하일 때, 만족하는 정수 a의 개수는?
 - ① 1개
- ② 2개
- ③ 3개
- ④ 47 H
- ⑤ 5개

- [대단원 마무리]
- **18.** 두 점 A(2,4)와 B(3,-2), y축 위의 점 P(0,y)에 대해서 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값을 구하면?
 - ① 29
- ② 30
- 3 31
- 4 33
- (5) 34

- 유사문제
- **19.** 좌표평면 위의 두 점 A(1, 5), B(-2, 3)에 대하여 선분 AB의 길이는?
 - ① 3

- ② $\sqrt{10}$
- $\sqrt{11}$
- (4) $2\sqrt{3}$
- $\sqrt{13}$
- **20.** 두 점 A(-1, 1), B(5, 5)에서 같은 거리에 있고, x축 위에 있는 점 P의 좌표는 (a, b)이다. b-a의 값은?
 - \bigcirc -4
- 30

(4) 2

- (5) 4
- **21.** 세 점 A(1,5), B(-1,1), C(a,0)을 꼭짓점으로 하는 삼각형 ABC가 이등변삼각형이 되도록 하는 실수 a값의 개수는?
 - ① 1
- ② 2
- 3 3
- 4
- **⑤** 5

정답 및 해설

1) [정답] ②

[해설] 선분
$$AB = |a-3|$$
, 선분 $BC = |6-a|$ $2|a-3| = |6-a|$ $4(a-3)^2 = (6-a)^2$ 에서 $3a^2 - 12a = a^2 - 4a = 0$ 따라서 $a > 0$ 이므로 $a = 4$

2) [정답] ⑤

[해설] 점
$$A(1,4)$$
, $B(7,6)$ 에서 $\overline{AB} = \sqrt{(7-1)^2 + (6-4)^2}$ $= \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$

3) [정답] ③

[해설]
$$\triangle ABC$$
의 세 변의 길이를 각각 구하면
$$\overline{AB} = \sqrt{(5-2)^2 + (2-6)^2} = 5$$

$$\overline{BC} = \sqrt{(5-5)^2 + (a-2)^2}$$

$$\overline{CA} = \sqrt{(5-2)^2 + (a-6)^2}$$

$$\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2$$
에서
$$25 = (a-2)^2 + 9 + (a-6)^2$$

$$2a^2 - 16a + 24 = 2(a-2)(a-6) = 0$$
 이때 $a = 2$ 이면 $B = C$ 이므로 따라서 a 의 값은 6이다.

4) [정답] ③

[해설]
$$\triangle ABC$$
의 세 변의 길이를 각각 구하면
$$\overline{AB} = \sqrt{(3+2)^2 + (3-4)^2} = \sqrt{26}$$

$$\overline{BC} = \sqrt{(0-3)^2 + (1-3)^2} = \sqrt{13}$$

$$\overline{CA} = \sqrt{(-2-0)^2 + (4-1)^2} = \sqrt{13}$$
 따라서 $\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2$ 이므로 피타고라스 정리에 의하여
$$\triangle ABC \vdash \angle C = 90^\circ$$
 인 직각이등변삼각형이다.

5) [정답] ⑤

[해설]
$$A(8,2)$$
, $B(2,1)$, $P(a,0)$
$$\overline{AP} = \overline{BP}$$
이므로
$$\overline{AP} = \sqrt{(a-8)^2 + 4}$$
, $\overline{BP} = \sqrt{(a-2)^2 + 1}$ 에서
$$(a-8)^2 + 4 = (a-2)^2 + 1$$
 그러므로 $a^2 - 16a + 68 = a^2 - 4a + 5$, $12a = 63$ 따라서 $a = \frac{21}{4}$ 그러므로 $p = 4$, $q = 21$ 이므로 $p + q = 25$

6) [정답] ⑤

[해설]
$$b=2a+2$$
이므로 점 $P(a,2a+2)$ $A(1,4)$, $B(7,6)$, $P(a,2a+2)$ $\overline{AP}=\overline{BP}$ 이므로 $\overline{AP}=\sqrt{(a-1)^2+(2a-2)^2}$ $\overline{BP}=\sqrt{(a-7)^2+(2a-4)^2}$ 에서

$$(a-1)^2+(2a-2)^2=(a-7)^2+(2a-4)^2$$

그러므로 $5a^2-10a+5=5a^2-30a+65$, $20a=60$
따라서 $a=3$, $b=8$ 이므로 $a+b=11$

7) [정답] ①

[해설] 삼각형 ABC에서 변 BC의 중점이 M이므로
$$\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$$
 즉 $5^2 + 7^2 = 2(\overline{AM}^2 + 2^2)$ $74 = 2(\overline{AM}^2 + 4)$ $\overline{AM}^2 = 33$, $\overline{AM} > 0$ 이므로 $\overline{AM} = \sqrt{33}$

8) [정답] ③

[해설] 다음 그림과 같이
$$\mathrm{A}(0,b),\ \mathrm{B}(0,0),\ \mathrm{C}(a,0),$$
 $\mathrm{D}(a,b),\ \mathrm{P}(p,q)$ 로 놓으면

$$\overline{{\rm PA}} = \sqrt{p^2 + (q - b)^2}$$
, $\overline{{\rm PB}} = \sqrt{p^2 + q^2}$, $\overline{{\rm PC}} = \sqrt{(p - a)^2 + q^2}$, $\overline{{\rm PD}} = \sqrt{(p - a)^2 + (q - b)^2}$ 따라서 $\overline{{\rm PA}}^2 + \overline{{\rm PC}}^2 = \{p^2 + (q - b)^2\} + \{(p - a)^2 + q^2\}$ $= (p^2 + q^2) + \{(p - a)^2 + (q - b)^2\}$ $= \overline{{\rm PB}}^2 + \overline{{\rm PD}}^2$

9) [정답] ①

[해설]
$$\overline{AB} = |t-1| = 3$$
이므로 $t=4$ 또는 $t=-2$ 따라서 $4+(-2)=2$

10) [정답] ③

[해설]
$$A(2,1)$$
, $B(5,2)$, $C(x+1,x)$ $2\overline{AC} = \overline{BC}$ 이므로 $\overline{AC} = \sqrt{(x+1-2)^2 + (x-1)^2}$ $\overline{BC} = \sqrt{(x-4)^2 + (x-2)^2}$ 에서 $4\{(x-1)^2 + (x-1)^2\} = (x-4)^2 + (x-2)^2$ 그러므로 $4(2x^2 - 4x + 2) = 2x^2 - 12x + 20$ $3x^2 - 2x - 6 = 0$ 따라서 모든 x 의 값의 합은 $\frac{-(-2)}{3} = \frac{2}{3}$

11) [정답] ①

[해설]
$$\overline{BC}^2 = \overline{AB}^2 + \overline{CA}^2$$
이므로 $A(1, a), B(-3,1), C(3,3)$ 에서 $40 = 16 + (a-1)^2 + 4 + (3-a)^2$ $2a^2 - 8a - 10 = 2(a-5)(a+1) = 0$ 따라서 $a < 0$ 이므로 $a = -1$

12) [정답] ⑤

[해설]
$$\overline{AP} = \overline{BP}$$
이므로 $\overline{AP}^2 = \overline{BP}^2$ $A(1,4)$, $B(-2,3)$ $P(a,0)$ 에서 $(a-1)^2 + 16 = (a+2)^2 + 9$ $a^2 - 2a + 17 = a^2 + 4a + 13$, $6a = 4$ 따라서 $a = \frac{2}{3}$ 이고 $p = 3$, $q = 2$ 이므로 $p + q = 5$

13) [정답] ④

[해설]
$$\overline{BP} = 2\overline{AB}$$
이므로 $\overline{BP}^2 = 4\overline{AB}^2$
A(-1, 2), B(3,0), $P(11,a)$ 에서 $64 + a^2 = 4(16 + 4)$, $a^2 = 16$
따라서 $a = +4$

14) [정답] ⑤

[해설]
$$\triangle ABC$$
의 외심을 $P(x, y)$ 라고 하면 $\overline{AP} = \overline{BP} = \overline{CP}$ 이므로 $\overline{AP}^2 = \overline{BP}^2 = \overline{CP}^2$ $\overline{AP}^2 = \overline{BP}^2$ 에서 $7x + y = 6$ …① $\overline{BP}^2 = \overline{CP}^2$ 에서 $x - 7y = -42$ …② \bigcirc , \bigcirc 을 연립하여 풀면 $x = 0, y = 6$ 따라서 $\triangle ABC$ 의 외심의 좌표는 $(0, 6)$

15) [정답] ⑤

16) [정답] ③

[해설] 지점
$$O$$
를 원점으로 하는 좌표평면을 생각하면 출발한 지 t 분 후의 슬기와 영수의 위치는 각각 $(150-40t,0), \ (0,150-30t)$ 으로 나타낼 수 있으므로 두 사람 사이의 거리는 $\sqrt{(150-40t)^2+(150-30t)^2}$ = $\sqrt{2500x^2-21000x+45000}$ 따라서 두 사람 사이의 거리가 가장 가까워지는 것은 출발한 지 4.2 분 후이다.

17) [정답] ⑤

[해설] 두 점
$$(4,1)$$
, $(3,a)$ 사이의 거리는 $\sqrt{(4-3)^2+(1-a)^2}=\sqrt{a^2-2a+2}$

그러므로
$$\sqrt{a^2-2a+2} \le \sqrt{5}$$
 에서
$$a^2-2a-3=(a-3)(a+1)\le 0$$
 따라서 $-1\le a\le 3$ 이므로 정수 a 의 총 개수는 5

18) [정답] ③

[해설]
$$A(2,4)$$
와 $B(3,-2)$, $P(0,y)$ 에서
$$\overline{AP} = \sqrt{(-2)^2 + (y-4)^2}$$

$$\overline{BP} = \sqrt{(-3)^2 + (y+2)^2}$$
이므로
$$\overline{AP}^2 + \overline{BP}^2 = (-2)^2 + (y-4)^2 + (-3)^2 + (y+2)^2$$

$$= 2y^2 - 4y + 33 = 2(y-1)^2 + 31$$
 따라서 $\overline{AP}^2 + \overline{BP}^2$ 의 최숙자은 31

19) [정답] ⑤

[해설]
$$\sqrt{(-2-1)^2+(3-5)^2}=\sqrt{13}$$

20) [정답] ①

[해설] 점
$$P$$
가 x 축 위의 점이므로 $b=0$ 이고
$$\overline{AP}^2 = \overline{BP}^2$$
이므로 $(a+1)^2+1=(a-5)^2+5^2$ 따라서 $a=4$ 이므로 $b-a=-4$ 이다.

21) [정답] ③

[해설]
$$\overline{AB}^2 = 2^2 + 4^2 = 20$$
, $\overline{BC}^2 = (a+1)^2 + 1$
 $\overline{AC}^2 = (a-1)^2 + 25$
(i) $\overline{AB} = \overline{BC}$ 인 경우
 $20 = a^2 + 2a + 2$
 $a^2 + 2a - 18 = 0$
 $a = -1 \pm \sqrt{19}$
따라서 실수 $a = 2$ 개다.
(ii) $\overline{AB} = \overline{AC}$ 인 경우
 $20 = a^2 - 2a + 26$
 $a^2 - 2a + 6 = 0$
 $\frac{D}{4} = 1 - 6 < 0$
따라서 실수 $a = \overline{AC}$ 인 경우
 $a = -1 \pm \sqrt{19}$
따라서 실수 $a = \overline{AC}$ 인 경우
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$
 $a^2 + 2a + 2 = a^2 - 2a + 26$