# Exploring Helmholtz Machine and Deep Belief Net in the Exponential Family Perspective



# **Exploring Helmholtz Machine and Deep Belief Net** in the Exponential Family Perspective

# Yifeng Li 1 Xiaodan Zhu 2

### Abstract

Applications of directed deep generative models are still limited by the data types they can model. Here, we formulate the free energy function of exponential family restricted Boltzmann machine, extend the binary Helmholtz machine and deep belief network to the exponential family, and derive the corresponding wake-sleep learning algorithms. We demonstrate that appealing performance can be achieved by the generalized models.

#### 1. Introduction

Generative models with latent variables concern joint distributions of observable measurements and hidden factors. While generative models, such as restricted Boltzmann machine (RBM) (Smolensky, 1986), are often employed to train deep discriminative models (Bengio et al., 2006), they also allow for addressing many more interesting problems. For example, sampling joint distribution p(x, h) to generate novel data could be useful for a wide variety of problems that may even reach some hard AI tasks, e.g., those involving creativity. A joint distribution also allows us to see association of variables as studied in causality. From the conditional p(h|x), states of hidden variables can be inferred, which are often used in dimensionality reduction, missing value estimation, prediction, and clustering. From p(x|h), effects of hidden factors can be evaluated.

Deep generative neural networks inherit this potential versatility and have the distinctive capacity of modeling phenomenons and systems of high complexity. For example, undirected generative models, e.g., RBM, have been extended to deep networks, e.g., deep Boltzmann machine (DBM) (Salakhutdinov & Hinton, 2009a) and multi-modal

Presented at the ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden, 2018. Copyright 2018 by the author(s).

DBM (MDBM) (Srivastava & Salakhutdinov, 2014), to capture the complex nature of data and association of heterogeneous modalities. Also, directed deep generative models (DGMs), e.g., Helmholtz machine (HM) (Dayan et al., 1995) and deep belief net (DBN) (Hinton et al., 2006; Srivastava & Salakhutdinov, 2012), are used to model complicated (hierarchal or sequential) structures of hidden variables. These DGMs, however, face two major challenges: intractable inference [p(h|x)] and limited forms of distributions. In undirected DGMs, hidden states could be approximated using variational approximation inference. In directed DGMs, hidden states may be obtained through recognition connections. Nevertheless, applications of existing DGMs are, to a large extent, restricted by the data types they can fit. For example, DBN is often applied to pretrain feedforward networks for classification problems when data are binary or can be scaled to the range of [0,1]. Generalizing DGMs to a larger pool of distributions in a united framework is of interest. Thanks to the exponential family RBM (exp-RBM) (Welling et al., 2005), the extension of binary DBM to the exponential family is straightforward. However, the generalization of binary wake-sleep algorithms (Hinton et al., 1995; 2006) for exponential family HM and DBN is nontrivial and remains a puzzle, thus is revisited here.

In summary, this paper addresses three issues: how to generically define deep generative models? how to derive the stochastic gradients in exponential family wake-sleep algorithms? and how to estimate their (lower bounds of) log-likelihoods? The major contributions of this work are threefold: (1) we discover that the free energy function of exp-RBM and the partition function of its base-rate model can be analytically computed, which enables the estimation of partition functions and (lower bounds of) likelihoods of DGMs; (2) inspired by the concepts of exp-RBMs, we formulate the exponential family HM and DBN (exp-HM and exp-DBN); and (3) we derive the update rules in the wake-sleep algorithms by virtue of an important property of exponential family distributions.

# 2. Exponential Family RBM

In addition to pretraining DGMs, the conditional distributions of RBM also play an important role in the modelling

<sup>&</sup>lt;sup>1</sup>Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario, Canada <sup>2</sup>Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada. Correspondence to: Yifeng Li <yifeng.li@nrc-cnrc.gc.ca>.

of directed deep generative models. Prior to presenting our generalization, we briefly discuss key concepts of exponential family RBM, where we propose that (i) the free energy function can be formulated analytically and (ii) the log-partition function of the base-rate model can be computed analytically, enabling the estimation of partition function in exp-RBM using annealed importance sampling (AIS).

The exponential family includes univariate or multivariate distributions with the following natural parametric form:

$$p(\boldsymbol{x}) = h(\boldsymbol{x})e^{\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{s}(\boldsymbol{x}) - A(\boldsymbol{\theta})}, \tag{1}$$

where  $\boldsymbol{x}$  is either a univariate or multivariate random variable,  $\boldsymbol{\theta}$  is a vector (or a scalar) of natural parameters,  $\boldsymbol{s}(\boldsymbol{x})$  is a vector (or a scalar) of sufficient statistics,  $A(\boldsymbol{\theta})$  is the log-partition function, and  $h(\boldsymbol{x})$  is the base measure. It has several interesting properties. First, if Eq. (1) is rewritten to  $p(\boldsymbol{x}) = \frac{1}{Z}e^{\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{s}(\boldsymbol{x}) + \log h(\boldsymbol{x})}$ , one will find that  $\log Z = A(\boldsymbol{\theta})$ , i.e.  $A(\boldsymbol{\theta})$  normalizes the distribution:

$$A(\boldsymbol{\theta}) = \log \left[ \sum_{\boldsymbol{x}} h(\boldsymbol{x}) e^{\boldsymbol{\theta}^{\mathrm{T}} s(\boldsymbol{x})} \right]. \tag{2}$$

This property about  $A(\theta)$  is extremely useful in the estimation of the partition functions of exp-RBMs. Second, the first and second order derivatives of  $A(\theta)$  equal to the mean and covariance of s(x), respectively:

$$\frac{\partial A(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{E}_{p(\boldsymbol{x})}[\boldsymbol{s}(\boldsymbol{x})]; \tag{3}$$

$$\frac{\partial^{2} A(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathrm{T}}} = \operatorname{Cov}_{p(\boldsymbol{x})}[\boldsymbol{s}(\boldsymbol{x})]. \tag{4}$$

 $A(\theta)$  is convex, as the covariance matrix is positive semi-definite. Eq. (3) is extremely useful in deriving stochastic update rules for exp-HMs (see Section 3.2) and exp-DBNs. For the understanding of this article, we selectively provide the natural and standard forms of a range of univariate member of exponential family in Supplemental Table 1.

Exp-RBM (Welling et al., 2005) is generally formulated as

$$p(\boldsymbol{x}, \boldsymbol{h}) = \frac{1}{Z} e^{-E(\boldsymbol{x}, \boldsymbol{h})}, \tag{5}$$

where  $\boldsymbol{x} \in \mathbb{R}^M$  is the vector of visible random variables,  $\boldsymbol{h} \in \mathbb{R}^K$  the vector of hidden random variables,  $E(\boldsymbol{x}, \boldsymbol{h})$  the energy function, and  $Z = \mathcal{D}_{\boldsymbol{x}'} \mathcal{D}_{\boldsymbol{h}'} e^{-E(\boldsymbol{x}', \boldsymbol{h}')}$  the partition function. The design of an exp-RBM requires three key components: (1) base distributions of  $\boldsymbol{x}$  and  $\boldsymbol{h}$ , (2) energy function  $E(\boldsymbol{x}, \boldsymbol{h})$ , and (3) conditional distributions  $p(\boldsymbol{x}|\boldsymbol{h})$  and  $p(\boldsymbol{h}|\boldsymbol{x})$ . They are elaborated below.

First, the base distributions for both x and h in the natural forms of exponential class can be defined as:

$$\begin{cases}
p(\mathbf{x}) = \prod_{m=1}^{M} e^{\mathbf{a}_{m}^{\mathsf{T}} \mathbf{s}_{m} + \log f_{m}(\mathbf{x}_{m}) - A_{m}(\mathbf{a}_{m})} \\
p(\mathbf{h}) = \prod_{k=1}^{K} e^{\mathbf{b}_{k}^{\mathsf{T}} \mathbf{t}_{k} + \log g_{k}(h_{k}) - B_{k}(\mathbf{b}_{k})}.
\end{cases} (6)$$

Here,  $\boldsymbol{a}_m$  and  $\boldsymbol{b}_k$  are vectors/scalars of natural parameters for  $x_m$  and  $h_k$ , respectively;  $\boldsymbol{s}_m$  and  $\boldsymbol{t}_k$  are the corresponding vectors/scalars of sufficient statistics;  $A_m(\boldsymbol{a}_m)$  and  $B_k(\boldsymbol{b}_k)$  are the corresponding log-partition functions;  $f_m(x_m)$  and  $g_k(h_k)$  are the corresponding base measures. For example, if  $p(\boldsymbol{x})$  is Gaussian with unknown mean and precision, then  $\boldsymbol{a}_m = [a_m^{(1)}, a_m^{(2)}]^{\mathrm{T}} = [\mu_m \beta_m, -\frac{\beta_m}{2}]^{\mathrm{T}}$  and  $\boldsymbol{s}_m = [s_m^{(1)}, s_m^{(2)}]^{\mathrm{T}} = [x_m, x_m^2]^{\mathrm{T}}$ . If  $p(\boldsymbol{h})$  is Bernoulli, then  $b_k = \log \frac{p_k}{1-p_k}$  and  $t_k = h_k$  are scalars.

Second, the energy function is defined via combining  $x_m$ and  $h_k$ -related terms in Eq. (6) and (7) (including base measures), and enabling interactions between  $s_m$  and  $t_k$ :

$$E(\boldsymbol{x}, \boldsymbol{h}) = -\sum_{m=1}^{M} \left(\boldsymbol{a}_{m}^{\mathrm{T}} \boldsymbol{s}_{m} + \log f_{m}(\boldsymbol{x}_{m})\right) - \sum_{k=1}^{K} \left(\boldsymbol{b}_{k}^{\mathrm{T}} \boldsymbol{t}_{k} + \log g_{k}(\boldsymbol{h}_{k})\right)$$
$$-\sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{r=1}^{R} \sum_{u=1}^{U} s_{m,r} w_{m,k,r,u} t_{k,u}, \tag{8}$$

where R and U are the numbers of natural parameters for  $p(x_m)$  and  $p(h_k)$ . The interaction strengths are represented by a tensor  $\boldsymbol{W} \in \mathbb{R}^{M \times K \times R \times U}$ . For Gaussian-Bernoulli RBMs (exp-RBMs with Gaussian visible and Bernoulli hidden variables), the weight tensor is of size  $M \times K \times 2$ , including  $\boldsymbol{W}^{(1)}$  for interactions between  $\boldsymbol{x}$  and  $\boldsymbol{h}$ , and  $\boldsymbol{W}^{(2)}$  for  $\boldsymbol{x}^{*2}$  and  $\boldsymbol{h}$ . To reduce model complexity, we may consider dropping off some interactions between the sufficient statistics. For instance, in Gaussian-Bernoulli RBMs, we may decide to disregard  $\boldsymbol{W}^{(2)}$ , reducing the weights in a tensor to a matrix of size  $M \times K$ . In fact, we only considered interactions between  $\boldsymbol{x}$  and  $\boldsymbol{h}$  in practice, reducing the interaction term to  $\boldsymbol{x}^T \boldsymbol{W} \boldsymbol{h}$ .

Third, from the energy function in Eq. (8) and the definition of exponential family in Eq. (1), p(x|h) can be derived as

$$p(\boldsymbol{x}|\boldsymbol{h}) = \frac{p(\boldsymbol{x},\boldsymbol{h})}{p(\boldsymbol{h})} = e^{\sum_{m=1}^{M} \left( (\hat{\boldsymbol{a}}_m)^{\mathrm{T}} \boldsymbol{s}_m + \log f_m(\boldsymbol{x}_m) - A_m(\hat{\boldsymbol{a}}_m) \right)}$$
$$= \prod_{m=1}^{M} p(\boldsymbol{x}_m | \boldsymbol{h}, \boldsymbol{\eta}(\hat{\boldsymbol{a}}_m)), \tag{9}$$

where  $\hat{\boldsymbol{a}}_m = \boldsymbol{a}_m + \sum_{k=1}^K \boldsymbol{W}_{m,k,:,:} \boldsymbol{t}_k$ , and function  $\boldsymbol{\eta}(\hat{\boldsymbol{a}}_m)$  maps the natural parameters in  $\hat{\boldsymbol{a}}_m$  to the standard forms. As shown in Supplemental Table 1, if  $p(x_m|\boldsymbol{h})$  is Gaussian with unknown mean and precision, we then have  $\boldsymbol{\eta}(\hat{\boldsymbol{a}}_m) = [\hat{\mu}_m, \hat{\beta}_m]^{\mathrm{T}} = [-\frac{\hat{a}_m^{(1)}}{2\hat{a}(\hat{\boldsymbol{c}}^2)}, -2\hat{a}_m^{(2)}]^{\mathrm{T}}$ . Similarly, we can obtain

$$p(\boldsymbol{h}|\boldsymbol{x}) = \prod_{k=1}^{K} p(h_k|\boldsymbol{x}, \boldsymbol{\eta}(\hat{\boldsymbol{b}}_k)), \tag{10}$$
 where  $\hat{\boldsymbol{b}}_k = \boldsymbol{b}_k + \sum_{m=1}^{M} (\boldsymbol{W}_{m,k,:,:})^{\mathrm{T}} \boldsymbol{s}_m$  and  $\boldsymbol{\eta}(\hat{\boldsymbol{b}}_k)$  maps

where  $\hat{\boldsymbol{b}}_k = \boldsymbol{b}_k + \sum_{m=1}^M (\boldsymbol{W}_{m,k,:::})^{\mathrm{T}} \boldsymbol{s}_m$  and  $\boldsymbol{\eta}(\hat{\boldsymbol{b}}_k)$  maps the natural parameters in  $\hat{\boldsymbol{b}}_k$  to the standard ones. For example, if  $p(h_k|\boldsymbol{x})$  is Bernoulli, we have  $\eta(\hat{b}_k) = \hat{p}_k = \sigma(\hat{b}_k)$ . Importantly, the conditionals are decomposable and follow the same distributions as the bases, but use posterior parameters to reflect influence of their heterogeneous counterparts.

Stochastic gradient descent can be used to estimate exp-RBMs' parameters which can be represented by  $\boldsymbol{\theta} = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{W}\}$  where  $\boldsymbol{a} = \{\boldsymbol{a}^{(1)}, \cdots, \boldsymbol{a}^{(R)}\}$  and  $\boldsymbol{b} = \{\boldsymbol{b}^{(1)}, \cdots, \boldsymbol{b}^{(U)}\}$  may respectively include several bias vectors, and  $\boldsymbol{W} = \{\boldsymbol{W}^{(1,1)}, \cdots, \boldsymbol{W}^{(r,u)}, \cdots, \boldsymbol{W}^{(R,U)}\}$  (but only interactions between  $\boldsymbol{x}$  and  $\boldsymbol{h}$  are considered in practice). The likelihood  $p(\boldsymbol{x})$  can obtained by marginalizing out  $\boldsymbol{h}$ :

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{h}'} p(\boldsymbol{x}, \boldsymbol{h}') = \frac{1}{Z} e^{-F(\boldsymbol{x})}, \tag{11}$$

where  $F(x) = -\log \oint_{h'} e^{-E(x,h')}$  is the free energy function. The model parameters are estimated by maximizing

$$\log p(\boldsymbol{x}) = -F(\boldsymbol{x}) - \log Z. \tag{12}$$

Given N samples, the gradient is computed as

$$\Delta_{\boldsymbol{\theta}} = \frac{1}{N} \sum_{n=1}^{N} \left( \frac{\partial F(\boldsymbol{x}_{n})}{\partial \boldsymbol{\theta}} - \mathbf{E}_{p(\boldsymbol{x})} \left[ \frac{\partial F(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right] \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left( \mathbf{E}_{p(\boldsymbol{h}|\boldsymbol{x}_{n})} \left[ \frac{\partial E(\boldsymbol{x}_{n}, \boldsymbol{h})}{\partial \boldsymbol{\theta}} \right] - \mathbf{E}_{p(\boldsymbol{x}, \boldsymbol{h})} \left[ \frac{\partial E(\boldsymbol{x}, \boldsymbol{h})}{\partial \boldsymbol{\theta}} \right] \right), \quad (13)$$

where  $\frac{\partial E(\pmb{x},\pmb{h})}{\partial \pmb{\theta}}$  w.r.t.  $\pmb{a},\pmb{b},$  and  $\pmb{W},$  respectively, are:

$$\frac{\partial E(\boldsymbol{x},\boldsymbol{h})}{\partial a_{m}^{(r)}} = -s_{m}^{(r)}; \\ \frac{\partial E(\boldsymbol{x},\boldsymbol{h})}{\partial b_{k}^{(u)}} = -t_{k}^{(u)}; \\ \frac{\partial E(\boldsymbol{x},\boldsymbol{h})}{\partial w_{m,k}^{(r,u)}} = -s_{m}^{(r)}t_{k}^{(u)}. \tag{14}$$

The log-likelihood in Eq. (12) may serve as a measure of learning quality, where  $\log Z$  must be estimated and we propose that F(x) can be computed analytically:

$$F(\boldsymbol{x}) = -\zeta(\boldsymbol{x}) - \sum_{k=1}^{K} \log \sum_{h_k} e^{-\gamma_k(\boldsymbol{x}, h_k)} = -\zeta(\boldsymbol{x}) - \sum_{k=1}^{K} B_k(\hat{\boldsymbol{b}}_k),$$

where  $\hat{b}_k$  and  $B_k(\cdot)$  are respectively the posterior parameter and log-partition function of a hidden variable distribution.

Using the free energy function, the AIS procedure for binary RBM (Salakhutdinov & Murray, 2008) can be generalized to estimate the log-partition function of exp-RBM, where the intermediate distribution for annealing can be defined as

$$p_t(\boldsymbol{x}, \boldsymbol{h}) = \frac{1}{Z_t} e^{(1-\beta_t)E_A(\boldsymbol{x}, \boldsymbol{h}^{(A)}) - \beta_t E_B(\boldsymbol{x}, \boldsymbol{h}^{(B)})}, \quad (16)$$

where  $\beta_t$  gradually changes from 0 to 1:  $0 = \beta_0 < \cdots < \beta_t < \cdots < \beta_T = 1$ , so that  $p_0(\boldsymbol{x}, \boldsymbol{h})$  corresponds to the base-rate model A and  $p_T(\boldsymbol{x}, \boldsymbol{h})$  corresponds to the focused model B. The intermediate marginals can be defined as:

$$p_t(\mathbf{x}) = \frac{1}{Z_t} e^{-F_t(\mathbf{x})} = \frac{1}{Z_t} p_t^*(\mathbf{x}),$$
 (17)

where  $p_t^*(\mathbf{x}) = e^{-F_t(\mathbf{x})}$  and the free energy function is

$$F_t(\boldsymbol{x}) = -(1 - \beta_t)\zeta^{(A)}(\boldsymbol{x}) - \sum_{k=1}^{K_A} B_k \left( (1 - \beta_t) \hat{\boldsymbol{b}}_k^{(A)} \right)$$
$$-\beta_t \zeta^{(B)}(\boldsymbol{x}) - \sum_{k=1}^{K_B} B_k \left( \beta_t \hat{\boldsymbol{b}}_k^{(B)} \right). \tag{18}$$

If model B is  $RBM_B(a, b, W)$ , model A is  $RBM_A(a, b, 0)$ , we unveil that  $\log Z_A$  can be analytically computed as

$$\log Z_A = \sum_{m=1}^{M} A_m(\boldsymbol{a}_m) + \sum_{k=1}^{K} B_k(\boldsymbol{b}_k).$$
 (19)

where  $A_m(\boldsymbol{a}_m)$  and  $B_k(\boldsymbol{b}_k)$  are the log-partition functions of  $x_m$  and  $h_k$ , respectively.

The Markov transition  $T(x_t|x_{t-1})$  can be defined as

$$\begin{cases} p_t \big( (x_t)_m | \boldsymbol{h}_{t-1}^{(A)}, \boldsymbol{h}_{t-1}^{(B)} \big) = p_{\text{vis}} \big( x | \boldsymbol{\eta} ((1 - \beta_t) \boldsymbol{a}_m + \beta_t \hat{\boldsymbol{a}}_m) \big) \\ p_t \big( (h_t^{(A)})_k | \boldsymbol{x}_t \big) = p_{\text{hid}} \big( h | \boldsymbol{\eta} ((1 - \beta_t) \boldsymbol{b}_k) \big) \\ p_t \big( (h_t^{(B)})_k | \boldsymbol{x}_t \big) = p_{\text{hid}} \big( h | \boldsymbol{\eta} (\beta_t \hat{\boldsymbol{b}}_k) \big). \end{cases}$$

Then, we can sample a sequence:  $\{x_t, h_t^{(A)}, h_t^{(B)}\}$  (0  $\leq$   $t \leq T$ -1). Hence, the importance weight is computed by

$$w_s = \frac{p_1^*(\boldsymbol{x}_0)}{p_0^*(\boldsymbol{x}_0)} \cdots \frac{p_T^*(\boldsymbol{x}_{T-1})}{p_{T-1}^*(\boldsymbol{x}_{T-1})} = \prod_{t=0}^{T-1} \frac{p_{t+1}^*(\boldsymbol{x}_t)}{p_t^*(\boldsymbol{x}_t)}.$$
 (20)

Thus, the ratio of partition function can be estimated by  $\frac{Z_B}{Z_A} \approx w_s$ . Using a logarithm version to increase stability (Neal, 2001), we estimate  $\log Z_B$  by

$$\log \hat{Z}_B = \log w_s + \log Z_A,\tag{21}$$

where  $\log w_s = \sum_{t=0}^{T-1} \left( F_t(\boldsymbol{x}_t) - F_{t+1}(\boldsymbol{x}_t) \right)$  and  $\log Z_A$  is computed using Eq. (19). These AIS components for exp-RBMs are summarized in Supplemental Table 3.

#### 3. Exponential Family Helmholtz Machine

#### 3.1. Generic Formulation of Exp-HM

A Helmholtz machine (HM) (Dayan et al., 1995) tackles the intractable inference problem  $p(\boldsymbol{h}|\boldsymbol{x})$  raised in logistic belief nets (Neal, 1992) by introducing corresponding recognition connections to form an efficient approximate posterior distribution  $q(\boldsymbol{h}|\boldsymbol{x})$ . Thus, HM is a multilayer stochastic neural network with both top-down generative connections and bottom-up recognition connections. However, the original HM model only considers binary visible and hidden variables. Here, we extend it to the exponential family HM (exp-HM), so that a range of discrete and continuous data can be properly modelled.

An exp-HM model with L hidden layers can be generally formulated to a product of conditional distributions:

$$p(\boldsymbol{x}, \boldsymbol{h}^{(1)}, \cdots, \boldsymbol{h}^{(L)}) = p(\boldsymbol{x}|\boldsymbol{h}^{(1)}) \prod_{l=1}^{L-1} p(\boldsymbol{h}^{(l)}|\boldsymbol{h}^{(l+1)}) p(\boldsymbol{h}^{(L)}),$$
 (22)

where the conditionals and  $p(\boldsymbol{h}^{(L)})$  are driven by the generative connections and belong to the exponential family. The model parameters include generative parameters  $\boldsymbol{\theta}^{(G)} = \{\boldsymbol{a}^{(G)}, \boldsymbol{b}^{(G,1)}, \cdots, \boldsymbol{b}^{(G,L)}, \boldsymbol{W}^{(G,1)}, \cdots, \boldsymbol{W}^{(G,L)}\}$ 

and recognition parameters  $\boldsymbol{\theta}^{(R)} = \{\boldsymbol{b}^{(R,1)}, \cdots, \boldsymbol{b}^{(R,L)}, \boldsymbol{W}^{(R,1)}, \cdots, \boldsymbol{W}^{(R,L)}\}$ , where  $\boldsymbol{a}^{(G)}$  contains the generative bias parameters over the visible variables,  $\boldsymbol{b}^{(G,l)}(\boldsymbol{b}^{(R,l)})$  contains generative (recognition) bias parameters over the l-th hidden layer, and  $\boldsymbol{W}^{(G,l)}(\boldsymbol{W}^{(R,l)})$  is the generative (recognition) interaction weight matrix connecting the (l-1)-and l-th hidden layers. The recognition component does not need bias parameters on  $\boldsymbol{x}$ , as  $\boldsymbol{x}$  is observed. By convention, we let  $\mathrm{size}(\boldsymbol{W}^{(R,l)}) = \mathrm{size}(\boldsymbol{W}^{(G,l)^{\mathrm{T}}})$ . Merely for the convenience of discussion, we allow  $p(\boldsymbol{x}|\boldsymbol{h}^{(1)})$  to follow any suitable exponential family distribution, and restrict  $p(\boldsymbol{h}^{(l)}|\boldsymbol{h}^{(l+1)})$  and  $p(\boldsymbol{h}^{(L)})$  to be Bernoulli. Writing these distributions in natural forms, we have

$$p(x_m|\mathbf{h}^{(1)}) = e^{\hat{\mathbf{a}}_m^{(G)} \mathbf{T} \mathbf{s}_m(x_m) + \log f_m(x_m) - A_m(\hat{\mathbf{a}}_m^{(G)})}$$
 (23)

$$p(h_k^{(l)}|\mathbf{h}^{(l+1)}) = e^{\hat{b}_k^{(G,l)}h_k^{(l)} + \log g_k^{(l)}(h_k^{(l)}) - B_k^{(l)}(\hat{b}_k^{(G,l)})}$$
(24)

$$p(h_k^{(L)}) = e^{b_k^{(G,L)} h_k^{(L)} + \log g_k^{(L)} (h_k^{(L)}) - B_k^{(L)} (b_k^{(G,L)})},$$
(25)

where  $0 \leq l \leq L-1$ ,  $\hat{\boldsymbol{a}}_{m}^{(G)}$  hosts all the natural parameters of  $p(x_{m}|\boldsymbol{h}^{(1)})$ , and  $\boldsymbol{s}_{m}(x_{m})$  includes all corresponding natural forms of sufficient statistics for  $x_{m}$ . The posterior bias for the r-th sufficient statistic of  $x_{m}$  is computed as  $\hat{\boldsymbol{a}}_{m}^{(G,r)} = a_{m}^{(G,r)} + \boldsymbol{W}_{m,:}^{(G,1)}\boldsymbol{h}^{(1)}$ , if its corresponding sufficient statistic  $s_{m}^{(r)}$  is allowed to interact with  $\boldsymbol{h}^{(1)}$ ; otherwise  $\hat{\boldsymbol{a}}_{m}^{(G,r)} = a_{m}^{(G,r)}$ . Similarly, the posterior bias in  $p(h_{k}^{(l)}|\boldsymbol{h}^{(l+1)})$  is computed as  $\hat{b}_{k}^{(G,l)} = b_{k}^{(G,l)} + \boldsymbol{W}_{k,:}^{(G,l+1)}\boldsymbol{h}^{(l+1)}$ .

The instances of conditional distribution  $p(\boldsymbol{x}|\boldsymbol{h}^{(1)})$  for selected distributions in the exponential family are given in Supplemental Table 4. For example, if it follows a Poisson distribution, it is defined as

$$p(\boldsymbol{x}|\boldsymbol{h}^{(1)}) = \prod_{m=1}^{M} \mathcal{PO}(x_m|e^{\hat{a}_m^{(G)}}), \qquad (26)$$

where  $e^{\hat{a}_m^{(G)}}$  is the mean, and  $\hat{a}_m^{(G)} = a_m^{(G)} + \boldsymbol{W}_{m,:}^{(G,1)}\boldsymbol{h}^{(1)}$ . Conditional  $p(\boldsymbol{h}^{(l)}|\boldsymbol{h}^{(l+1)})$  follow Bernoulli distributions:

$$p(\mathbf{h}^{(l)}|\mathbf{h}^{(l+1)}) = \prod_{k=1}^{K_l} \mathcal{BE}(h_k|\sigma(\hat{b}_k^{(G,l)})), 1 \le l \le L - 1 \quad (27)$$

$$p(\boldsymbol{h}^{(L)}) = \prod_{k=1}^{K_L} \mathcal{B}\mathcal{E}(h_k | \sigma(b_k^{(G,L)})), \tag{28}$$

where  $\sigma(\hat{b}_k^{(G,l)})$  is the success rate.

In HM, the approximation q(h|x) is defined as

$$q(\boldsymbol{h}^{(1)}|\boldsymbol{x}) = \prod_{k=1}^{K_1} \mathcal{B}\mathcal{E}(h_k|\sigma(\hat{b}_k^{(R,1)}))$$
(29)

$$q(\boldsymbol{h}^{(l)}|\boldsymbol{h}^{(l-1)}) = \prod_{k=1}^{K_l} \mathcal{BE}(h_k|\sigma(\hat{b}_k^{(R,l)})), 2 \le l \le L. \quad (30)$$

where 
$$\hat{b}_{k}^{(R,1)} = b_{k}^{(R,1)} + \boldsymbol{W}_{k,:}^{(R,1)} \boldsymbol{x}$$
 and  $\hat{b}_{k}^{(R,l)} = b_{k}^{(R,l)} + \boldsymbol{W}_{k,:}^{(R,l)} \boldsymbol{h}^{(l-1)}$  for  $2 \leq l \leq L$ .

#### 3.2. Wake-Sleep Algorithm for Exp-HM

The wake-sleep algorithm (Hinton et al., 1995), originally proposed to learn binary HM, is generalized for exp-HM in this work. Generally speaking, the wake-sleep algorithm is in fact an expectation-maximization (EM) algorithm (Neal & Hinton, 1998) involving a wake phase and a sleep phase, and considers both generative and recognition capabilities. The wake phase is to improve the model to generate a sample close to the training distribution, and the sleep phase is to improve the capability of this model to recognize a fantasy. In the wake phase, values of hidden units are driven by the recognition parameters, and only the generative parameters are updated. In the sleep phase, values of hidden units and visible units are sampled using the generative (and maybe recognition) parameters, and only the recognition parameters are updated. Our wake-sleep algorithm for exp-HM is derived as follows. Note that q(h|x) [Eq. (29) and (30)] is factorizable and driven by the recognition connections, while  $p(\boldsymbol{h}|\boldsymbol{x}) = \frac{p(\boldsymbol{x},\boldsymbol{h})}{p(\boldsymbol{x})}$  is nonfactorizable, intractable and driven by the generative model. As an objective, an upper bound of the negated log-likelihood is minimized in HM and exp-HM. According to the variational approximation theory, we know that

$$\log p(\boldsymbol{x}) = -j(\boldsymbol{x}) + \text{KL}(q(\boldsymbol{h}|\boldsymbol{x})||p(\boldsymbol{h}|\boldsymbol{x})), \quad (31)$$

where  $j(\boldsymbol{x}) = -l(\boldsymbol{x}) = -\mathrm{KL}\big(p(\boldsymbol{x},\boldsymbol{h})||q(\boldsymbol{h}|\boldsymbol{x})\big) =$   $\mbox{$\not \bot_{\boldsymbol{h}}$ } q(\boldsymbol{h}|\boldsymbol{x})\log\frac{p(\boldsymbol{x},\boldsymbol{h})}{q(\boldsymbol{h}|\boldsymbol{x})}$  is the upper bound of the negated log-likelihood (equivalently  $l(\boldsymbol{x})$  is the variational lower bound of the log-likelihood). The name comes from the fact that  $\log p(x) \geq l(q)$ , due to  $\mathrm{KL}\big(q(\boldsymbol{h}|\boldsymbol{x})||p(\boldsymbol{h}|\boldsymbol{x})\big) \geq 0$ . From this definition of  $j(\boldsymbol{x})$ , we have

$$j(\boldsymbol{x}) = -\sum_{\boldsymbol{h}} q(\boldsymbol{h}|\boldsymbol{x}) \log \frac{p(\boldsymbol{x}, \boldsymbol{h})}{q(\boldsymbol{h}|\boldsymbol{x})}$$

$$= -\sum_{\boldsymbol{h}} q(\boldsymbol{h}|\boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{h}) + \sum_{\boldsymbol{h}} q(\boldsymbol{h}|\boldsymbol{x}) \log q(\boldsymbol{h}|\boldsymbol{x})$$

$$= -\mathrm{E}_{q(\boldsymbol{h}|\boldsymbol{x})} [\log p(\boldsymbol{x}, \boldsymbol{h})] - H(q(\boldsymbol{h}|\boldsymbol{x})). \tag{32}$$

where  $-\log p(\boldsymbol{x},\boldsymbol{h})$  is the description length of  $p(\boldsymbol{x},\boldsymbol{h})$  and  $H(q(\boldsymbol{h}|\boldsymbol{x}))$  is the functional entropy of the approximate distribution. When  $q(\boldsymbol{h}|\boldsymbol{x})$  is decomposable, so is  $H(q(\boldsymbol{h}|\boldsymbol{x}))$ . Hence, computing  $H(q(\boldsymbol{h}|\boldsymbol{x}))$  is technically easy. We can see that minimizing the upper bound  $j(\boldsymbol{x})$  is equivalent to minimizing the expected description length  $-\log p(\boldsymbol{x},\boldsymbol{h})$  (also called expected complete data negated log-likelihood) with respect to the approximate posterior distribution and maximizing the functional entropy of the approximate posterior distribution. In general, if  $p(\boldsymbol{x},\boldsymbol{h}) = \frac{1}{Z'}e^{-E(\boldsymbol{x},\boldsymbol{h})}$  where  $E(\boldsymbol{x},\boldsymbol{h})$  is the internal energy of the system, from a physical perspective, the cost  $j(\boldsymbol{x})$  can also be written as

$$j(\boldsymbol{x}) = F(\boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{h}|\boldsymbol{x})}[E(\boldsymbol{x},\boldsymbol{h})] + \log Z' - H(q).$$
 (33)

Thus, j(x) is called Helmholtz free energy, denoted by F(x) (hence the name of HM). For exp-HM, in the wake phase, j(x) in Eq. (32) is the objective to be minimized.

In the wake phase, the first-order derivative of the objective j(x) [Eq. (32)] w.r.t. the generative parameters is

$$\frac{\partial j(\boldsymbol{x})}{\partial \boldsymbol{\theta}^{(G)}} = -\mathbf{E}_{q(\boldsymbol{h}|\boldsymbol{x})} \left[ \frac{\partial \log p(\boldsymbol{x}, \boldsymbol{h})}{\partial \boldsymbol{\theta}^{(G)}} \right], \tag{34}$$

where h is approximated using q(h|x), and  $\frac{\partial \log p(x,h)}{\partial \theta^{(G)}}$  is crucial. We find that the first-order derivative of  $\log p(x,h)$ w.r.t.  $W_{m,k}^{(G,1)}$  can be computed as

$$\frac{\partial \log p(\mathbf{x}, \mathbf{h})}{\partial W_{m,k}^{(G,1)}} = \frac{\partial \log p(x_m | \mathbf{h}^{(1)})}{\partial W_{m,k}^{(G,1)}} 
= \frac{\partial \log p(x_m | \mathbf{h}^{(1)})}{\partial \hat{a}_m^{(G,r)}} \frac{\partial \hat{a}_m^{(G,r)}}{\partial W_{m,k}^{(G,1)}} 
= (s_m^{(r)} - \mathbf{E}_{p(x_m | \mathbf{h}^{(1)})}[s_m^{(r)}]) h_k^{(1)} 
= (x_m - \langle x_m \rangle) h_k^{(1)},$$
(35)

where in the second line we assume the r-th natural variable interacts with  $h^{(1)}$ ; in the third line we take advantage of the important property of exponential family from Eq. (3); and finally we only practically allow x to interact with  $h^{(1)}$ . Eq. (35) tells us that the gradient to update  $W^{(G,1)}$ equals to the correlation between the observed value of  $x_m$ and hidden state  $h_k^{(1)}$  minus the correlation between the expected  $x_m$  and  $h_k^{(1)}$ . If  $p(x_m|\boldsymbol{h}^{(1)})$  follows a Bernoulli distribution, then  $\langle x_m \rangle = \sigma(\hat{a}_m^{(G)})$ , which is consistent with the logistic belief net (Neal, 1992) and the original HM (Hinton et al., 1995). If  $p(x_m|\boldsymbol{h}^{(1)})$  is Gaussian, then  $\langle x_m \rangle = -\frac{\hat{a}_m^{(G,1)}}{2a_m^{(G,1)}}$ . Likewise, the first order derivative of  $\log p(\boldsymbol{x}, \boldsymbol{h})$  w.r.t.  $a_m^{(G,r)}$  can be computed as

$$\frac{\partial \log p(\boldsymbol{x}, \boldsymbol{h})}{\partial a_m^{(G,r)}} = \frac{\partial \log p(x_m | \boldsymbol{h}^{(1)})}{\partial a_m^{(G,r)}}$$

$$= \frac{\partial \log p(x_m | \boldsymbol{h}^{(1)})}{\partial \hat{a}_m^{(G,r)}} \frac{\partial \hat{a}_m^{(G,r)}}{\partial a_m^{(G,r)}} = s_m^{(r)} - \langle s_m^{(r)} \rangle. \tag{36}$$

Similarly, the derivative of  $\log p(x, h)$  w.r.t.  $W_{k_1, k_2}^{(G,l)}$  (2  $\leq$  $l \leq L$ ) and  $b_k^{(G,l)}$   $(1 \leq l \leq L)$  are respectively computed as

$$\frac{\partial \log p(\boldsymbol{x}, \boldsymbol{h})}{\partial W_{k_1, k_2}^{(G, l)}} = \left(h_{k_1}^{(l-1)} - \langle h_{k_1}^{(l-1)} \rangle\right) h_{k_2}^{(l)}, \ 2 \le l \le L \quad (37)$$

$$\frac{\partial \log p(\boldsymbol{x}, \boldsymbol{h})}{\partial b_k^{(G,l)}} = h_k^{(l)} - \langle h_k^{(l)} \rangle, \quad 1 \le l \le L, \tag{38}$$
where  $\langle h_k^{(l)} \rangle = \sigma(\hat{b}_k^{(G,l)})$  for Bernoulli distributions. In

short, we write the gradients in vector and matrix forms:

$$\Delta_{\boldsymbol{a}^{(G,r)}} = -(\boldsymbol{s}^{(r)} - \langle \boldsymbol{s}^{(r)} \rangle) \tag{39}$$

$$\Delta_{\boldsymbol{W}^{(G,1)}} = -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle) \boldsymbol{h}^{(1)^{\mathrm{T}}}$$
(40)

$$\Delta_{\boldsymbol{W}^{(G,l)}} = -(\boldsymbol{h}^{(l-1)} - \langle \boldsymbol{h}^{(l-1)} \rangle) \boldsymbol{h}^{(l)^{\mathrm{T}}}, 2 \le l \le L \quad (41)$$

$$\Delta_{\boldsymbol{h}^{(G,l)}} = -(\boldsymbol{h}^{(l)} - \langle \boldsymbol{h}^{(l)} \rangle), \quad 1 \le l \le L, \tag{42}$$

where x is an actual training sample, and  $h = \{h^{(1)}, h$  $\cdots$ ,  $h^{(L)}$  are sampled from q(h|x) using the recognition parameters. With these gradients, the generative parameters are updated using rule:  $\theta^{(G)} = \theta^{(G)} - \epsilon \Delta_{\theta^{(G)}}$ .

In the sleep phase, starting from the top layer, a fantasy can be either (i) unbiasedly sampled from the generative distribution  $p(\mathbf{h}^{(L)})$  or (ii) initialized using the states of  $\mathbf{h}^{(L)}$ obtained in the wake phase. Values of downstream units are sampled by the generative component. We thus generate a total fantasy, using which the recognition parameters are updated accordingly. The second method (used in our implementation) connects both objectives and is akin to the contrastive divergence (CD) algorithm (Hinton, 2002; Hinton et al., 2006). To remove sampling bias, Gibbs sampling with multiple alternating top-down and bottom-up passes could be adopted, similar to (persistent) CD-k algorithms (Tieleman, 2008). Since the recognition and generative components are structurally opposite, to derive update rules for the recognition parameters, we just need to swap their roles in the objective function [Eq. (32)], resulting in the corresponding gradients:

$$\Delta_{\boldsymbol{b}^{(R,l)}} = -(\boldsymbol{h}^{(l)} - \langle \boldsymbol{h}^{(l)} \rangle), \quad 1 \le l \le L$$
(43)

$$\Delta_{\boldsymbol{W}^{(R,1)}} = -(\boldsymbol{h}^{(1)} - \langle \boldsymbol{h}^{(1)} \rangle) \boldsymbol{x}^{\mathrm{T}}$$
(44)

$$\Delta_{\boldsymbol{W}^{(R,l)}} = -(\boldsymbol{h}^{(l)} - \langle \boldsymbol{h}^{(l)} \rangle) \boldsymbol{h}^{(l-1)^{\mathrm{T}}}, \quad 2 \leq l \leq L, \quad (45)$$
 where  $\{\boldsymbol{h}^{(L)}, \cdots, \boldsymbol{h}^{(1)}, \boldsymbol{x}\} \sim p(\boldsymbol{x}, \boldsymbol{h}); \langle h_k^{(l)} \rangle = \sigma(\hat{b}_k^{(R,l)}).$ 

In the algorithm, the wake phase and sleep phase alternatingly iterate for a pre-specified steps or until the objective j(x) [Eq. (32)] does not reduce dramatically. The gradients for selected instances of exp-HMs are given in Supplemental Table 4. The wake-sleep algorithm with a random initialization may not perform well for deep exp-HMs. Stacked exp-RBMs can be first applied to provide a warm start.

# 4. Exponential Family DBN

When generating fantasies, one critical issue with HM models is that a point sampled from  $p(\mathbf{h}^{(L)})$  may not represent a meaningful object, hence may eventually generate an abnormal x. To address this issue, DBN adds an RBM on top of an HM, so that a point generated using Gibbs sampling from the RBM is from the domain of interest (Hinton et al., 2006). However, the original DBN was designed for binary variables, limiting its applications in many fields. To overcome it, we generalize it to have visible variables follow any distributions from the exponential family. Although hidden variables can follow any exponential family distributions too, for convenience of derivation, we only discuss Bernoulli hidden variables below. Such an exponential family DBN (exp-DBN) with L hidden layers is defined as

$$p(\mathbf{x}, \mathbf{h}) = p(\mathbf{x} | \mathbf{h}^{(1)}) p(\mathbf{h}^{(1)} | \mathbf{h}^{(2)}) \cdots$$
$$p(\mathbf{h}^{(L-2)} | \mathbf{h}^{(L-1)}) p(\mathbf{h}^{(L-1)}, \mathbf{h}^{(L)}), \qquad (46)$$

where we denote  $h = \{h^{(1)}, \cdots, h^{(L)}\}$  and define

$$p(\boldsymbol{x}|\boldsymbol{h}^{(1)}) = \prod_{m=1}^{M} p(x_m|\boldsymbol{\eta}(\hat{\boldsymbol{a}}_m^{(G)}))$$
(47)

$$p(\mathbf{h}^{(l)}|\mathbf{h}^{(l+1)}) = \prod_{k=1}^{K_l} \mathcal{BE}(h_k|\sigma(\hat{b}_k^{(G,l)})), \ 1 \le l \le L - 2$$
 (48)

$$p(\mathbf{h}^{(L-1)}, \mathbf{h}^{(L)}) = \frac{1}{Z} e^{-E(\mathbf{h}^{(L-1)}, \mathbf{h}^{(L)})}, \tag{49}$$

where  $\hat{a}_m^{(G)}$  and  $\hat{b}_k^{(G,l)}$  are defined as in exp-HM and  $E(\boldsymbol{h}^{(L-1)}, \boldsymbol{h}^{(L)}) = -\boldsymbol{b}^{(G,L-1)^T}\boldsymbol{h}^{(L-1)} - \boldsymbol{b}^{(G,L)^T}\boldsymbol{h}^{(L)} - \boldsymbol{h}^{(G,L-1)^T}\boldsymbol{W}^{(G,L)}\boldsymbol{h}^{(G,L)}$ . The undirected component is formulated by a joint distribution, while the directed component are formulated by conditional distributions. Eq. (47) formulates the exponential family conditional distributions of visible variables. For example, a Bernoulli visible unit has  $p(x_m|\boldsymbol{h}^{(1)}) = \mathcal{BE}(x_m|\sigma(\hat{a}_m^{(G)}))$ , where  $\hat{a}_m^{(G)} = a_m^{(G)} + \boldsymbol{W}_{m,:}^{(G,1)}\boldsymbol{h}^{(1)}$ . Other distributions are given in Supplemental Table 4. Same as in exp-HMs, the conditional over a hidden layer follows a Bernoulli distribution which is parameterized by its prior bias and interactions with its upper layer. The top two layers form a Bernoulli-Bernoulli RBM as associative memory. The inference in DBN is also intractable. Same as in exp-HMs, recognition connections define a factorizable approximate distribution:

$$q(\mathbf{h}^{(1\cdots L-1)}|\mathbf{x}) = q(\mathbf{h}^{(1)}|\mathbf{x})\cdots q(\mathbf{h}^{(L-1)}|\mathbf{h}^{(L-2)}),$$
 (50)

where  $\boldsymbol{h}^{(1\cdots L-1)}=\{\boldsymbol{h}^{(1)},\cdots,\boldsymbol{h}^{(L-1)}\}$ . In summary, the model parameters in exp-DBN include generative parameters  $\boldsymbol{\theta}^{(G)}=\{\boldsymbol{a}^{(G)},\boldsymbol{b}^{(G,1)},\cdots,\boldsymbol{b}^{(G,L-1)},\boldsymbol{b}^{(G,L)},\boldsymbol{W}^{(G,1)},\cdots,\boldsymbol{W}^{(G,L-1)},\boldsymbol{W}^{(G,L)}\}$  and recognition parameters  $\boldsymbol{\theta}^{(R)}=\{\boldsymbol{b}^{(R,1)},\cdots,\boldsymbol{b}^{(R,L-1)},\boldsymbol{W}^{(R,L)},\cdots,\boldsymbol{W}^{(R,L-1)}\}$ .

#### 4.1. Model Learning for Exp-DBN

In the original DBN (Hinton et al., 2006), the model parameters are pretrained using binary RBMs (with  $\theta^{(R)}$  tied with  $\theta^{(G)}$ ) and then fine-tuned using a wake-sleep (up-down) algorithm (with  $\theta^{(R)}$  and  $\theta^{(G)}$  untied). We generalize this procedure to exp-DBN, such that its model parameters can be pretrained using exp-RBMs and then fine-tuned using an exponential family wake-sleep algorithm. In the wake phase of this extended algorithm,  $h^{(1\cdots L-1)}$  are first sampled using the corresponding recognition parameters in the exp-HM component. Then, using  $h^{(L-1)}$  as input, (persistent) CD-k sampling (Tieleman, 2008) can be employed in the top exp-RBM and its parameters are updated using the rules for exp-RBM. After that, generative parameters below the top exp-RBM are updated using the same rules as in exp-HMs. In the sleep phase,  $h^{(L-1)}$  sampled during the wake phase is used to generate states of the subsequent layers driven by generative parameters, and the recognition

parameters are updated as in exp-HMs. The gradients to update the model parameters for various distributions are given in Supplemental Table 4.

# 4.2. Variational Lower Bound of Exp-DBN

As indicated in Eq. (49), the partition function only appears at the top exp-RBM. Inspired by (Salakhutdinov & Murray, 2008), to obtain a variational lower bound of the log-likelihood,  $h^{(L)}$  thus is summed out, leading to

$$p(\boldsymbol{x}, \boldsymbol{h}^{(1\cdots L-1)}) = p(\boldsymbol{x}|\boldsymbol{h}^{(1)}) \cdots p(\boldsymbol{h}^{(L-2)}|\boldsymbol{h}^{(L-1)})$$
$$\times \frac{1}{Z} e^{-F(\boldsymbol{h}^{(L-1)})} = \frac{1}{Z} p^*(\boldsymbol{x}, \boldsymbol{h}^{(1\cdots L-1)}). \tag{51}$$

The variational lower bound is hence computed as

$$l(\boldsymbol{x}) = \mathrm{E}_{q(\boldsymbol{h}^{(1\cdots L-1)}|\boldsymbol{x})}[\log p^*(\boldsymbol{x}, \boldsymbol{h}^{(1\cdots L-1)})]$$
$$-\log Z + H(q(\boldsymbol{h}^{(1\cdots L-1)}|\boldsymbol{x})). \tag{52}$$

The first term can be estimated by Monte Carlo approximation by sampling from  $q(\boldsymbol{h}^{(1\cdots L-1)}|\boldsymbol{x})$  with  $\boldsymbol{x}$  clamped. The second term  $\log Z$  can be estimated using the generalized AIS procedure (Section 2) to the top exp-RBM.

#### 4.3. Applications of Exp-DBN

Certainly, exp-DBN is applicable to pretrain deep discriminative models. More importantly, exp-DBN can be further extended to multi-modal exp-DBNs (see Supplemental Figure 1 for an example) which can be potentially applied in multi-modal learning (Ramachandram & Taylor, 2017; Li et al., 2018) tasks, such as data fusion, integrative classification and clustering, multi-label learning, transfer learning, missing value estimation, information retrieval, machine translation, autonomous navigation, and Internet of things. Our future work will focus on these applications. In our experiments, we designed a two-modal exp-DBN to showcase some potentials of our exponential family generalization.

#### 5. Experiments

### 5.1. Modelling Image Data

To demonstrate the potential of these exponential family models for image generation, we first designed and learned exp-HM, exp-DBN, and two-modal exp-DBN models on the MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017) data sets respectively. Each data set contains 60,000 training and 10,000 test images of size 28×28. Bernoulli and Multinoulli distributions were assumed respectively for the image (pixel intensities in range [0,1]) and class (categories from 0 to 9) modalities in the two-modal exp-DBN. All models were pretrained using exp-RBMs and fine-tuned using our generalized wake-sleep algorithms. The structures of these models and the generated images are



Figure 1. Actual and generated images on MNIST (top) and Fashion-MNIST (bottom) data sets.

given in Figure 1. First, from Figures 1a and 1f, we see that exp-HM did not generate good images using a traditional ancestral sampling, indicating a hidden state sampled from the generative distribution of the top hidden layer is unlikely from the domain of interest when its dimensionality is large. Second, we uncover that exp-HM's capacity of generating fantasies can be improved by a Gibbs sampling using multiple alternating top-down and bottom-up passes (see Figures 1b and 1g). This discovery was not reported before. Third, Figures 1c and 1h corroborate the early finding in (Hinton et al., 2006) that, by adding an undirected network on top of an exp-HM, exp-DBN could generate images of good quality, the majority of which look similar to the actual examples in Figures 1e and 1j. Fourth, as show in Figures 1d and 1i, by fixing the class modality, the two-modal exp-DBN could take attention to generating images of specified classes.

#### 5.2. Modelling Text Data

To further show the importance of proper distribution in modelling, we applied a two-modal exp-DBN on the 20 Newsgroups data (Lang, 1995). The 11,269 training and 7,505 test documents from 20 topics were transformed to word-count profiles. Stop-words and words appear in less than 60 training samples were discarded, leaving 4,031 words for modelling. The network has one modality for word counts with a hidden layer of 500 Bernoulli units, one modality for class labels without any hidden layer, and a joint hidden layer with 520 Bernoulli units. We used

Bernoulli, Poisson, and Multinomial distributions, separately, for word counts, and Multinoulli distribution for class labels. Each profile was normalized to have 1,000 word counts for Poisson and Multinomial models, but binarized for Bernoulli models. For comparison, we extended exp-RBM to a two-modal exp-DBM with same network architecture as the two-modal exp-DBN. Both types of generative models were pretrained using exp-RBMs. The two-modal exp-DBNs were fine-tuned by our generalized wake-sleep algorithms, while the two-modal exp-DBMs were fine-tuned by a modified algorithm originally proposed in (Salakhutdinov & Hinton, 2009a). A multilayer perceptron with same network skeleton but RELU units was also applied as a discriminative model on the tf-idf normalized data.

The log-partition functions and variational lower bounds of these generative models were estimated and shown in Table 1. We see that log-partition functions can be estimated stably with tiny variances in the exponential family framework, and the log-likelihoods of Poisson and Multinomial models are roughly similar (note: we cannot compare their log-likelihoods with these of the Bernoulli models, because they were experimented on different formats of the data). After training, fantasies were drawn using Gibbs sampling from the two-modal exp-DBN with Poisson distribution. The top 15 words and class label of some cherry-picked generations are given in Table 2, which implies that the model learned useful information and generated meaningful samples. In these generative models, class labels of test samples can

be treated as missing data and inferred using a mean-field method. Table 1 also shows the test accuracies after pretraining and after fine-tuning, respectively. First, we find that the Poisson models outperform Multinomoal models which are named replicated softmax models in (Salakhutdinov & Hinton, 2009b). The models based on conventionally used Bernoulli distributions obtained non-competitive results. Second, the two-modal exp-DBNs achieved better accuracies than their two-modal exp-DBM rivals. Moreover, although discriminative models often claim victories over generative models in classification tasks, we find that with appropriate distributions, the directed and undirected generative models under investigation may perform better than them which are less advantageous in handling data types. Of course, classification performance can be further improved if sequential dependency is properly modelled.

Table 1. Log-partition functions, variational lower bounds, and prediction accuracies on 20 Newsgroups dataset. BE: Bernoulli, MU: Multinoulli, PO: Poisson, MN: Multinomial.

|      | Vis. Type  | Data      | $\log Z$ (STD)      | $l(\boldsymbol{x})$ | Acc.<br>pretrain | Acc.<br>fine-tune |
|------|------------|-----------|---------------------|---------------------|------------------|-------------------|
|      | BE+MU      | Train     | 3105.74(±0.35)      | -2691.43            | 35.03%           | 38.81%            |
| -    | DLTMIC     | Test      | $3106.05(\pm0.46)$  | -2694.58            | 33.03 //         | 36.61 //          |
| MDBN | PO+MU      | Train     | $1469.18(\pm 0.44)$ | -3976.12            | 68.46%           | 69,30%            |
| Į    | 1 O I IVIC | Test      | $1468.72(\pm 0.39)$ | -4273.88            | 00.40 /          | 07.50 /6          |
| ~    | MN+MU      | Train     | $1617.29(\pm 0.64)$ | -3897.86            | 66.80 %          | 68.27%            |
|      | IVIIIVIO   | Test      | $1616.88(\pm0.63)$  | -4216.70            | 00.00 %          | 00.2770           |
|      | BE+MU      | Train     | $3028.27(\pm 2.61)$ | -1754.63            | 27.24%           | 40.58%            |
| _    | DLTIVIO    | Test      | $3028.28(\pm 1.43)$ | -1757.03            | 27.2470          | 40.5676           |
| MDBM | PO+MU      | Train     | $2261.53(\pm 1.76)$ | -3772.34            | 67.31%           | 66.84%            |
| l ę  | TOTIVIC    | Test      | $2260.72(\pm 1.76)$ | -4043.79            | 07.5170          | 00.0476           |
| ~    | MN+MU      | Train     | $9761.72(\pm 0.96)$ | -3873.40            | 63.94 %          | 63.96%            |
|      |            | Test      | $9762.22(\pm 0.76)$ | -4108.18            |                  |                   |
|      | Multil     | ayer perc | eptron with RELU u  | nits                | 58.5             | 3%                |

*Table 2.* Top 15 words and classes of samples generated by the Poisson-Multinoulli two-modal exp-DBN.

| x                                                               | y                     |
|-----------------------------------------------------------------|-----------------------|
| government system writes key clipper encryption keys don        | sci.crypt             |
| nsa article escrow secure chip people time                      |                       |
| article writes people killed gun fire apr control country chil- | talk.politics.guns    |
| dren weapons government time guns police                        |                       |
| sale offer university email includes time condition win-        | misc.forsale          |
| dows call contact shipping interested sell computer original    |                       |
| division games toronto boston hockey st team cup pitts-         | rec.sport.hockey      |
| burgh series detroit play chicago game montreal                 |                       |
| card bus motherboard ram controller board isa friend ma-        | comp.sys.mac.hardware |
| chine pc slot scsi work dx cards                                |                       |

#### 6. Conclusion and Discussion

We discuss RBM's free energy function, HM and DBN from the exponential family perspective. We derive the corresponding wake-sleep algorithms in a general framework. Our experiments show that exp-DBN and exp-HM with Gibbs sampling are superior to exp-HM with ancestral sampling in generating samples. With appropriate distributions, the two-modal exp-DBN outperformed the two-modal exp-DBM and a discriminative model on a text data. We clarify that, after finishing this work, we identified that a model, named deep exponential family (DEF), is independently explored in (Ranganath et al., 2015). DEF and our work share similar motivation, but complement each other. The differences are explained below. (1) DEF was a result

of hierarchical chaining of exponential family distributions, while our work was inspired by existing and our new findings of exp-RBMs. In the DEF framework, only means of nodes within current layer are affected by their parents. But in our framework, any parameters of nodes in current layer can be modified by their parents in theory. (2) We generalize the wake-sleep algorithm for directed DGM, which is not trivial because strict derivation of generic update rules requires wise application of several properties of exp-RBM and exponential family distributions. DEF resorts to an algorithm similar to neural variational inference and learning (NVIL) (Mnih & Gregor, 2014), a REINFORCE algorithm. (3) We find that the free energy function of exp-RBM is a linear combination of log-partition functions of hidden variable, and the log-partition function of a base-rate exp-RBM can be beautifully computed as a summation of log-partition functions of individual variables. This discovery enables us to easily estimate log-partition functions of exp-RBM, exp-DBN and exp-DBM using AIS, and thus their (lower bounds of) likelihoods. This is not addressed in DEF.

Current DGMs with inference networks (including ours) are partially united under the umbrella of variational inference, using either separate or joint objectives for generative and recognition components. Specific learning and inference methods, such as wake-sleep algorithms (Bornschein & Bengio, 2015), NVIL based algorithms (Mnih & Gregor, 2014; Ranganath et al., 2015) and variational autoencoder (VAE) based algorithms (Rezende et al., 2014; Kingma & Welling, 2014), mainly differ in how the inference component is trained. However, these methods could be transformable under mild conditions. For example, if we apply mean-field approximation to alternating hidden layers in exp-HM, we would obtain a VAE-like model which uses deterministic networks to regress parameters of stochastic layers. Moreover, level of novelty and quality within generated samples vary among models, depending on how the generative and inference networks coordinate (Burda et al., 2016).

Our investigation indicates that ancestral sampling is not always effective. Association and (or) attention may be needed in both directed and undirected generative networks for novelty generation. While celebrating limited successes in current DGMs [including generative adversarial network (GAN) (Goodfellow et al., 2014)], methodological engineering may only partially solve the puzzle, we thus need to think beyond this niche. From the cognitive science perspective, innovation comes from interaction and combination of cognits, units of any knowledge or concept representation in the cerebral cortex (Fuster, 2003). Many existing DGMs require justification in cognitive neuroscience. Certainly, inspiration from hierarchies of perceptual, associative and executive networks would create a new generation of DGMs which might enhance the statistical foundation and drive us closer towards the long-dreamed strong AI.

#### References

- Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In *Advances in Neural Information Processing Systems*, pp. 153–160, 2006.
- Bornschein, J. and Bengio, Y. Reweighted wake-sleep. In *International Conference on Learning Representations*, 2015.
- Burda, Y., Grosse, R., and Salakhutdinov, R. Importance weighted autoencoders. In *International Conference on Learning Representations*, 2016.
- Dayan, P., Hinton, G.E., Neal, R., and Zemel, R.S. The Helmholtz machine. *Neural Computation*, 7:1022–1037, 1995.
- Fuster, J.M. *Cortex and Mind*. Oxford University Press, 2003.
- Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial networks. In *Advances in Neural Information Processing Systems*, pp. 2672–2680, 2014.
- Hinton, G. Training products of experts by minimizing contrastive divergence. *Neural Computation*, 14(8):1771–1800, 2002.
- Hinton, G., Dayan, P., Frey, B., and Neal, R. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268: 1558–1161, 1995.
- Hinton, G.E., Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets. *Neural Computation*, 18: 1527–1554, 2006.
- Kingma, D.P. and Welling, M. Auto-encoding variational Bayes. In *International Conference on Learning Representations*, 2014.
- Lang, Ken. Newsweeder: Learning to filter netnews. In International Conference on Machine Learning, pp. 331– 339, 1995. http://qwone.com/ jason/20Newsgroups.
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- Li, Y., Wu, F.X., and Ngom, A. A review on machine learning principles for multi-view biological data integration. *Briefings in Bioinformatics*, 29(2):325–340, 2018.
- Mnih, A. and Gregor, K. Neural variational inference and learning in belief networks. In *International Conference on Machine Learning*, pp. II–1791–II–1799, 2014.

- Neal, R. M. and Hinton, G.E. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Jordan, M.I. (ed.), *Learning in Graphical Models*, Adaptive Computation and Machine Learning series, chapter 11, pp. 355–368. MIT, Cambridge, MA, 1998.
- Neal, R.M. Connectionist learning of belief networks. *Artificial Intelligence*, 56:71–113, 1992.
- Neal, R.M. Annealed importance sampling. *Statistics and Computing*, 11:125–139, 2001.
- Ramachandram, D. and Taylor, G.W. Deep multimodal learning: A survey on recent advances and trends. *IEEE Signal Processing Magazine*, 34(6):96–108, 2017.
- Ranganath, R., Tang, L., Charlin, L., and Blei, D.M. Deep exponential families. In *International Conference on Artificial Intelligence and Statistics*, pp. 762–771, 2015.
- Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In *International Conference on Machine Learning*, pp. II–1278–II–1286, 2014.
- Salakhutdinov, R. and Hinton, G. Deep Boltzmann machine. In *International Conference on Artificial Intelligence and Statistics*, pp. 448–455, 2009a.
- Salakhutdinov, R. and Hinton, G. Replicated softmax: An undirected topic model. In *Advances in Neural Information Processing Systems*, pp. 1607–1614, 2009b.
- Salakhutdinov, R. and Murray, I. On the quantitative analysis of deep belief networks. In *International Conference on Machine Learning*, pp. 872–879, 2008.
- Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In Rumelhart, D.E. and McLelland, J.L. (eds.), *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundation*, chapter 6, pp. 194–281. MIT, Cambridge, MA, 1986.
- Srivastava, N. and Salakhutdinov, R. Learning representations for multimodal data with deep belief nets. In *International Conference on Machine Learning Workshop on Representation Learning*, 2012.
- Srivastava, N. and Salakhutdinov, R. Multimodal learning with deep Boltzmann machines. *Journal of Machine Learning Research*, 15:2949–2980, 2014.
- Tieleman, T. Training restricted Boltzmann machines using approximations to the likelihood gradient. In *International Conference on Machine Learning*, pp. 1064–1071, 2008.

# Exploring Helmholtz Machine and Deep Belief Net in the Exponential Family Perspective

Welling, M., Rosen-zvi, M., and Hinton, G. Exponential family harmoniums with an application to information retrieval. In *Advances in Neural Information Processing Systems*, pp. 1481–1488, 2005.

Xiao, Han, Rasul, Kashif, and Vollgraf, Roland. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms, 2017.

# Supplemental Figures and Tables for "Exploring Helmholtz Machine and Deep Belief Net in the Exponential Family Perspective"

Yifeng Li\*1 and Xiaodan Zhu†2

<sup>1</sup>Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada

<sup>2</sup>Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, K7L 3N6 Canada



Figure 1: A schematic example of exponential family multi-modal deep belief net (exp-MDBN). It integrates three modalities/views whose visible layers can respectively follow any types of distributions from the exponential family. Modality 1 has a trivial structure without any hidden layers, and may be used for class labels. The subnetworks of modalities 2 and 3 are exp-HMs. The shared/joint subnetwork is a DBM, functioning as a deep associative memory.

 $<sup>*</sup> Corresponding author. \ E-mail \ address: \ \verb|yifeng.li@nrc-cnrc.gc.ca| yifeng.li.cn@gmail.com|$ 

<sup>†</sup>Email address: xiaodan.zhu@queensu.ca

Table 1: Selected members of the exponential family.

| Distribution                                                  | Standard Form                                                                                                                                                                                     | Natural Form                                                                                                                                                                                                                              | $\theta(n)$                                                                      | n(B)                                                                                       | (x)8                                                 | h(x)                                                          | A(n)                                                           | 4(0)                                               | Sufficient Statistics                                                                                                                                                                         |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gaussian                                                      | $p(x \mu,\lambda^{-1}) = \frac{\sqrt{\lambda}}{\sqrt{2\pi}} e^{-\frac{\lambda}{2}(x-\mu)^2}, \lambda > 0$                                                                                         | $^{1} + \theta_{2} s_{2} - A(\theta), \; \theta_{2} < 0$                                                                                                                                                                                  |                                                                                  | $\begin{bmatrix} -\frac{\theta_1}{2\theta_2} \\ -2\theta_2 \end{bmatrix}$                  |                                                      | 1                                                             | $\frac{1}{2}\log\frac{2\pi}{\lambda} + \frac{\mu^2\lambda}{2}$ |                                                    | $E[x] = \mu = -\frac{\theta_1}{2\theta_2}$ $Var[x] = \frac{1}{\lambda} = -\frac{2\theta_2}{2\theta_2}$ $E[x^2] = \mu^2 + \frac{1}{\lambda} = \frac{\theta^2}{-2\beta} + \frac{1}{-2\delta -}$ |
| Gaussian<br>(fix precision                                    |                                                                                                                                                                                                   | $p(x \theta) = (\frac{\sqrt{\lambda}}{\sqrt{2\pi}} e^{-\frac{\Delta}{2}x^2})_e \theta s - A(\theta)$                                                                                                                                      | щ                                                                                | θ                                                                                          | $\lambda x$                                          | $\frac{\sqrt{\lambda}}{\sqrt{2\pi}}e^{-\frac{\lambda}{2}x^2}$ | $\frac{\mu^2 \lambda}{2}$                                      | $\frac{\theta^2 \lambda}{2}$                       | $\mathbf{E}[x] = \mu = \theta$ $\mathbf{Var}[x] = \frac{1}{\lambda}$ $\mathbf{E}[x^2] = \mu^2 + \frac{1}{\lambda} = \theta^2 + \frac{1}{\lambda}$                                             |
| Gaussian<br>(fix precision<br>λ)                              | $p(x \mu, \lambda^{-1}) = \frac{\sqrt{\lambda}}{\sqrt{2\pi}} e^{-\frac{\Lambda}{2}} (x-\mu)^2, \lambda > 0$                                                                                       | $p(x \theta) = \left(\frac{\sqrt{\lambda}}{\sqrt{2\pi}}e^{-\frac{\lambda}{2}x^2}\right)e^{\theta s - A(\theta)}$                                                                                                                          | μλ                                                                               | θK                                                                                         | 8                                                    | $\frac{\sqrt{\lambda}}{\sqrt{2\pi}}e^{-\frac{\lambda}{2}x^2}$ | $\frac{\mu^2 \lambda}{2}$                                      | $\frac{\theta^2}{2\lambda}$                        | $E[x] = \mu = \frac{\theta}{\lambda}$ $Var[x] = \frac{1}{\lambda}$ $E[x^2] = \mu^2 + \frac{1}{\lambda} = \frac{\theta^2}{\sqrt{2}} + \frac{1}{\lambda}$                                       |
| Poisson                                                       | $p(x \lambda) = \frac{e^{-\lambda}}{x!} \lambda^x, \ \lambda > 0, \ x \ge 0$                                                                                                                      | $p(x \mid \theta) = \frac{1}{x!} e^{\theta s - A(\theta)}$                                                                                                                                                                                | log λ                                                                            | e <sub>θ</sub>                                                                             | 8                                                    | * i                                                           | ~                                                              | θ θ                                                | $E[x] = \lambda = e^{\theta}$ $Var[x] = \lambda = e^{\theta}$                                                                                                                                 |
| Bernoulli                                                     | $p(x p) = p^{x}(1-p)^{1-x}, p \in (0,1), x \in \{0,1\}$                                                                                                                                           | $p(x \theta) = e^{\theta s} - A(\theta)$                                                                                                                                                                                                  | $\log \frac{p}{1-p}$                                                             | $\frac{e^{\theta}}{1+e^{\theta}} = \sigma(\theta)$                                         | s s                                                  | 1                                                             | $-\log(1-p)$                                                   | $-\log(1 - \sigma(\theta)) = \log(1 + e^{\theta})$ |                                                                                                                                                                                               |
| Binomial (fix number of trials n)                             | $p(x n,p) = {n \choose x} p^x (1-p)^{n-x}, p \in (0,1), x \ge 0$                                                                                                                                  |                                                                                                                                                                                                                                           | $\frac{p}{1-p}$                                                                  | $\frac{e^{\theta}}{1+e^{\theta}} = \sigma(\theta)$                                         | s s                                                  | $\frac{n!}{x!(n-x)!}$                                         | $-n\log(1-p)$                                                  | $-n\log(1-\sigma(\theta))$                         | $\begin{aligned} \mathbf{E}[x] &= np = n\sigma(\theta) \\ \mathbf{Var}[x] &= np(1-p) = n\sigma(\theta)(1-\sigma(\theta)) \end{aligned}$                                                       |
| Negative Binomial (fix number of successes k, success rate p) | $p(x k,p) = {x+k-1 \choose k-1} p^k (1-p)^x, \ p \in (0,1), \ x \ge 0$                                                                                                                            | $p(x \theta) = \frac{(x+k-1)!}{(k-1)!x!} e^{\theta s} - A(\theta), \ \theta < 0$                                                                                                                                                          | $\log(1-p)$                                                                      | $1 - e^{\theta}$                                                                           | 8                                                    | $\frac{(x+k-1)!}{(k-1)!x!}$                                   | $-k\log p$                                                     | $-k\log(1-e^{\theta})$                             | $E[x] = k \frac{1 - 2}{1 - \theta} = k \frac{e^{\theta}}{1 - e^{\theta}}$ $Var[x] = k \frac{1}{p^2} = k \frac{e^{\theta}}{(1 - e^{\theta})^2}$                                                |
| Multinoulli                                                   | $p(x_1, \dots, x_M   p_1, \dots, p_M) = p_1^{x_1} \dots p_M^{x_M}, \ p_m \ge 0, \ \sum_{m=1}^M p_m = 1, \ x_m \in \{0, 1\}, \ \sum_{m=1}^M x_m = 1$                                               | $\begin{array}{lll} p(x \theta) & = & e^{\theta} 1^s m + \cdots + ^\theta M^s M^{-\log C}, & \text{where} & C & = \\ \sum_{m=1}^M e^{\theta} m & & & & \end{array}$                                                                       | $\begin{bmatrix} \log p_1 + \log C \\ \vdots \\ \log p_M + \log C \end{bmatrix}$ | $\begin{bmatrix} \frac{e^{\theta_1}}{C} \\ \vdots \\ \frac{e^{\theta_M}}{C} \end{bmatrix}$ | $\begin{bmatrix} x_1 \\ \vdots \\ x_M \end{bmatrix}$ | 1                                                             | $\log C$                                                       | log C                                              | $\mathrm{E}[x_m=1]=p_m=\frac{e^{\theta}m}{C}$ $\mathrm{Var}[x_m=1]=p_m(1-p_m)=\frac{e^{\theta}m}{C-\theta m}$                                                                                 |
| Multinomial (fix number of trials n)                          | $p(x_1, \dots, x_M   n, p_1, \dots, p_M) = \frac{n!}{\prod_{m=1}^{M} x_m!} p_1^{x_1} \dots p_M^{x_M}, p_m \ge 0,$<br>$\sum_{m=1}^{M} p_m = 1, x_m \in \{0, 1, \dots, n\}, \sum_{m=1}^{M} x_m = n$ | $\begin{split} p\left(x\left \theta\right\rangle &= \frac{1}{\prod_{m=1}^{M} x^{1}} e^{\theta \cdot 1 \cdot s_{m} + \dots + \theta \cdot M \cdot s_{m} - n \log C}, \text{ where } \\ C &= \sum_{m=1}^{M} e^{\theta \cdot m} \end{split}$ | $\begin{bmatrix} \log p_1 + \log C \\ \vdots \\ \log p_M + \log C \end{bmatrix}$ | $\begin{bmatrix} \frac{e^{\theta_1}}{C} \\ \vdots \\ \frac{e^{\theta_M}}{C} \end{bmatrix}$ | $\begin{bmatrix} x_1 \\ \vdots \\ x_M \end{bmatrix}$ | $\frac{n!}{\prod_{m=1}^{M} x_m!}$                             | $n\log C$                                                      | $n\log C$                                          | $\mathrm{E}[x_m] = np_m = n\frac{e^{\theta}m}{C}$ $\mathrm{Var}[x] = np_m (1-p_m) = n\frac{e^{\theta}}{C-e^{\theta}}$                                                                         |

Table 2: Selected instances of exp-RBM.

| Model                             | Drowers Drondfor                                                                                                                                                                                                                                                                                                                                   | Complificance                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ianom                             | Dietgy Function                                                                                                                                                                                                                                                                                                                                    | Conditional                                                                                                                                                                                               | ) 3 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bernoulli-Bernoulli               | $E(x,h) = -a^{1}x - b^{1}h - x^{1}Wh$ , where                                                                                                                                                                                                                                                                                                      | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} \mathcal{B}(x_m   \sigma(\hat{a}_m)), \ \hat{a}_m = a_m + W_m; \boldsymbol{h}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | $a = [\log \frac{t+1}{1-p_1}, \cdots, \log \frac{t-M}{1-p_M}]^1,$                                                                                                                                                                                                                                                                                  | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^K \mathcal{B}\mathcal{E}(h_k \sigma(\hat{b}_k)), \ \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^T\boldsymbol{x}$                                              | $\Delta_{m{b}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -m{h}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -m{h}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{pK}{1-p_K}]$                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | $\Delta_{m{W}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -m{x}_n m{h}_n^{ m T}  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -m{x}_s m{h}_s^{ m T}  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gaussian-Bernoulli                | $E(x,h) = -a^{(1)} ^{\mathrm{T}} x - a^{(2)} ^{\mathrm{T}} x^{*2} - b^{\mathrm{T}} h - x^{\mathrm{T}} W h$ , where                                                                                                                                                                                                                                 | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} \mathcal{G}S(x_m  - \frac{\hat{a}_m^{(1)}}{\hat{a}_m^{(2)}}, (-2a_m^{(2)})^{-1}), \ \hat{a}_m^{(1)} = a_m^{(1)} + \boldsymbol{W}_{m,:}\boldsymbol{h}$ | $\Delta_{\sigma(1)} pprox rac{1}{N} \sum_{n=1}^{N} \left(-oldsymbol{x}_n ight) - rac{1}{S} \sum_{s=1}^{S} \left(-oldsymbol{x}_s ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   | $oldsymbol{a}^{(1)} = [\mu_1 \lambda_1, \cdots, \mu_M \lambda_M]^{\mathrm{T}},$                                                                                                                                                                                                                                                                    | $2a_m^{-1}$                                                                                                                                                                                               | $\Delta_{(0)} \approx \frac{1}{4} \sum_{N} N$ , $(-a^{*2}) = \frac{1}{4} \sum_{N} N$ , $(-a^{*2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | $oxed{a^{(2)} = [rac{-\lambda_1}{2}, \cdots, rac{-\lambda_M}{2}]^T, a^{(2)} < 0},$                                                                                                                                                                                                                                                               | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^{n} \mathcal{BE}(h_k \sigma(b_k)), \ b_k = b_k + (\boldsymbol{W}_{:,k})^{\perp} \boldsymbol{x}$                                                           | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | $b = [\log \frac{p_1}{1 - p_1}, \cdots, \log \frac{pK}{1 - p_K}]$                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                           | $egin{aligned} egin{aligned} oldsymbol{\omega}_{b} &\sim N \ \angle n = 1 \ igg( - v_n igg) \$ |
| Gaussian-Bernoulli                | $E(x,h) = -a^{\mathrm{T}}(\lambda * x) - \sum_{m=1}^{M} \left(\log \frac{\sqrt{\lambda_m}}{\sqrt{\beta_m}} - \frac{\lambda_m}{2} x_m^2\right) - b^{\mathrm{T}} h - (\lambda * x)^{\mathrm{T}} W h$ , where                                                                                                                                         | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} \mathcal{G}(x_m \hat{a}_m, \lambda_m), \hat{a}_m = a_m + \boldsymbol{W}_m, h$                                                                         | $\Delta oldsymbol{a} pprox rac{1}{N} \sum_{n=1}^{N} \left( -\lambda * oldsymbol{a}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -\lambda * oldsymbol{a}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| fix precision $\lambda$ , model 1 | $oldsymbol{a} = [\mu_1, \cdots, \mu_M]^{\mathrm{T}},$                                                                                                                                                                                                                                                                                              | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^K \mathcal{BE}(h_k \sigma(\hat{b}_k)), \ \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^{\mathrm{T}}(\boldsymbol{\lambda} * \boldsymbol{x})$                    | $\Delta_{\mathbf{b}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -\mathbf{h}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -\mathbf{h}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{p_K}{1-p_K}]$                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           | $\Delta_{\mathbf{W}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -\left( \lambda * a_{n} \right) h_{n}^{\mathrm{T}}  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -\left( \lambda * a_{s} \right) h_{s}^{\mathrm{T}}  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gaussian-Bernoulli                | $E(x,h) = -a^{\mathrm{T}}x - \sum_{m=1}^{M} \left(\log \frac{\sqrt{\lambda_m}}{\sqrt{2\pi}} - \frac{\lambda_m}{2}x_m^2\right) - b^{\mathrm{T}}h - x^{\mathrm{T}}Wh, \text{ where}$                                                                                                                                                                 | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} g\mathcal{S}(x_m \frac{\hat{a}_m}{\lambda_m}, \lambda_m), \hat{a}_m = a_m + \boldsymbol{W}_m, \boldsymbol{h}$                                         | $\Delta_{m{lpha}}pproxrac{1}{N}\sum_{n=1}^{N}\left(-m{x}_{n} ight)-rac{1}{S}\sum_{s=1}^{S}\left(-m{x}_{s} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nx precision A, model 2           | $a = [\mu_1 \lambda_1, \cdots, \mu_M \lambda_M]^{\mathrm{T}},$                                                                                                                                                                                                                                                                                     | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^{K} \mathcal{BE}(h_k \sigma(\hat{b}_k)), \ \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^{\mathrm{T}}\boldsymbol{x}$                                           | $\Delta_{\mathbf{b}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -\mathbf{h}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -\mathbf{h}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{p_K}{1-p_K}]$                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           | $\Delta_{m{W}}pproxrac{1}{N}\sum_{n=1}^{N}\left(-m{x}_{n}m{h}_{n}^{\mathrm{T}} ight)-rac{1}{S}\sum_{s=1}^{S}\left(-m{x}_{s}m{h}_{s}^{\mathrm{T}} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Poisson-Bernoulli                 | $E(x,h) = -a^{\mathrm{T}}x + \sum_{m=1}^{M} \log(x_m!) - b^{\mathrm{T}}h - x^{\mathrm{T}}Wh$ , where                                                                                                                                                                                                                                               | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} \mathcal{PO}(x_m   e^{\hat{a}m}), \hat{a}_m = a_m + \boldsymbol{W}_m, : \boldsymbol{h}$                                                               | $\Delta oldsymbol{a} pprox rac{1}{N} \sum_{n=1}^{N} \left( -oldsymbol{a}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -oldsymbol{a}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   | $a = [\log \lambda_1, \dots, \log \lambda_M]^{\mathrm{T}}$                                                                                                                                                                                                                                                                                         | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^{K} \mathcal{BE}(h_k \sigma(\hat{b}_k)), \ \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^T\boldsymbol{x}$                                                      | $\Delta_{m{b}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -m{h}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -m{h}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | $b_k = [\log \frac{\mu_1}{1 - p_1}, \cdots, \log \frac{\mu_K}{1 - p_K}]^{1}$                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           | $\Delta oldsymbol{W} pprox rac{1}{N} \sum_{n=1}^{N} \left( -oldsymbol{x}_n oldsymbol{h}_n^{ m T}  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -oldsymbol{x}_s oldsymbol{h}_s^{ m T}  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Poisson-Binomial                  | $E(x,h) = -a^{\mathrm{T}}x + \sum_{m=1}^{M} \log(x_m!) - b^{\mathrm{T}}h - \sum_{k=1}^{K} \log \frac{n!}{h_{L!}(n-h_{L!})} - x^{\mathrm{T}}Wh$ , where                                                                                                                                                                                             | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{m=1}^{M} \mathcal{PO}(x_m e^{\hat{a}m}), \hat{a}_m = a_m + \boldsymbol{W}_{m,:}\boldsymbol{h}$                                                                 | $\Delta oldsymbol{a} pprox rac{1}{N} \sum_{n=1}^{N} \left( -oldsymbol{a}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -oldsymbol{a}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   | $a = [\log \lambda_1, \cdots, \log \lambda_M]^{\mathrm{T}},$                                                                                                                                                                                                                                                                                       | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^{K} \mathcal{BN}(n_k, \sigma(\hat{b}_k)),  \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^{\mathrm{T}} \boldsymbol{x}$                                          | $\Delta_{\mathbf{b}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -\mathbf{h}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -\mathbf{h}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{pK}{1-p_K}]^{\mathrm{T}}$                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           | $\Delta_{m{W}} pprox rac{1}{N} \sum_{n=1}^{N} \left( -m{x}_n m{h}_n^{ m T}  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -m{x}_s m{h}_s^{ m T}  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Negative-Binomial-                | $E(\boldsymbol{a},\boldsymbol{h}) = -\boldsymbol{a}^{\mathrm{T}}\boldsymbol{x} - \sum_{m=1}^{M} \log \frac{(x_m + s_m - 1)!}{(s_m - 1)!x_m!} - \boldsymbol{b}^{\mathrm{T}}\boldsymbol{h} - \boldsymbol{x}^{\mathrm{T}}\boldsymbol{W}\boldsymbol{h}, \text{ where } \boldsymbol{a} = [\log p_1, \cdots, \log p_M]^{\mathrm{T}}, \boldsymbol{a} < 0$ | $p(\boldsymbol{x} \boldsymbol{h}) = \prod_{\tilde{m}=1}^{M} \mathcal{N}\mathcal{B}(x_m s_m, 1 - e^{\hat{a}m}), \ \hat{a}_m = a_m + \boldsymbol{W}_m, \boldsymbol{h} < 0$                                  | $\Delta oldsymbol{a} pprox rac{1}{N} \sum_{n=1}^{N} \left( -oldsymbol{a}_n  ight) - rac{1}{S} \sum_{s=1}^{S} \left( -oldsymbol{a}_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bernoulli                         | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{pK}{1-p_K}]^{\mathrm{T}}$                                                                                                                                                                                                                                                                         | $p(\boldsymbol{h} \boldsymbol{x}) = \prod_{k=1}^{K} \mathcal{BE}(\sigma(\hat{b}_k)), \ \hat{b}_k = b_k + (\boldsymbol{W}_{:,k})^{\mathrm{T}} \boldsymbol{x}$                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           | $\Delta_{m{W}}pproxrac{1}{N}\sum_{n=1}^{N}\left(-m{x}_nm{h}_n^{ m T} ight)-rac{1}{S}\sum_{s=1}^{S}\left(-m{x}_sm{h}_s^{ m T} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Multinoulli-                      | $E(\boldsymbol{x}, \boldsymbol{h}) = -\sum_{m=1}^{M} \boldsymbol{a}^{\left(m\right)} \boldsymbol{T}^{\mathbf{x}}(m) - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{h} - \sum_{m=1}^{M} (\boldsymbol{x}^{\left(m\right)})^{\mathrm{T}} \boldsymbol{W}(m) \boldsymbol{h}, \text{ where}$                                                                  | $\mathcal{M}\mathcal{U}(oldsymbol{x}^{(m)} \dot{oldsymbol{r}}$                                                                                                                                            | $\Delta_{m{a}(m)} pprox rac{1}{N} \sum_{n=1}^{N} \left(-m{x}_n^{(m)} ight) - rac{1}{S} \sum_{s=1}^{S} \left(-m{x}_s^{(m)} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bernoulli                         | $\mathbf{a}^{(m)} = [\log p_1^{(m)} + \log C^{(m)}, \dots, \log p_{C_m}^{(m)} + \log C^{(m)}]^{\mathrm{T}}, C_m = \operatorname{size}(\mathbf{a}^{(m)}), C^{(m)} = \sum_{c'=1}^{C_m} \exp(a_{c'}^{(m)}),$                                                                                                                                          | $(\exp(\hat{a}_1^{(m)}))$ $\exp(\hat{a}_{Cm}^{(m)})$ ] T                                                                                                                                                  | $\Delta_{\mathbf{b}} \approx \frac{1}{N} \sum_{n=1}^{N} \left( -\mathbf{h}_n \right) - \frac{1}{S} \sum_{s=1}^{S} \left( -\mathbf{h}_s \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | $b = [\log \frac{p_1}{1-p_1}, \cdots, \log \frac{pK}{1-p_K}]^{\mathrm{T}},$                                                                                                                                                                                                                                                                        | εξ,, [ε <sub>σ</sub>                                                                                                                                                                                      | $\Delta_{m{W}}(m) pprox rac{1}{N} \sum_{n=1}^{N} \left(-m{x}_n^{(m)}m{h}_n^{ m T} ight) - rac{1}{S} \sum_{s=1}^{S} \left(-m{x}_s^{(m)}m{h}_s^{ m T} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | $W^{(m)} \in \mathbb{R}^{Cm \times K}$                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Multinomial-                      | $E(x,h) = -a^{\mathrm{T}}x - \log \frac{n!}{\prod M} \frac{n!}{\sqrt{xm!}} - b^{\mathrm{T}}h - x^{\mathrm{T}}Wh$ , where                                                                                                                                                                                                                           | $p(\boldsymbol{x} \boldsymbol{h}) = \mathcal{MN}(\boldsymbol{x} n,\hat{\boldsymbol{p}}), \ \hat{a}_m = a_m + \boldsymbol{W}_m; \boldsymbol{h}, \ \hat{p}_m = \frac{e^{\hat{a}_m}}{\sim M}$                | $\Delta a pprox rac{1}{N} \sum_{n=1}^{N} \left(-a_n ight) - rac{1}{S} \sum_{s=1}^{S} \left(-a_s ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dellouin                          | $\boldsymbol{a} = [\log p_1 + \log C, \cdots, \log p_M + \log C]^T,$ $\boldsymbol{a} = [\log p_1 + \log C, \cdots, \log p_M + \log C]^T,$                                                                                                                                                                                                          |                                                                                                                                                                                                           | $\Delta_{\mathbf{b}} pprox \frac{1}{N} \sum_{n=1}^{N} \left( -h_n \right) - \frac{1}{S} \sum_{s=1}^{S} \left( -h_s \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   | $o = \log \frac{1-p_1}{1-p_1}, \dots, \log \frac{1-p_K}{1-p_K}]^-$                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           | $\Delta W \sim N \; \angle n = 1 \left( - w_n v_n  ight) - S \; \angle s = 1 \left( - w_s v_s  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 3: Estimatation of log-partition functions of exp-RBMs.

| Model                                           | F(x)                                                                                                                                                                                                                                                                                 | $F_t(x)$ in $p_t(x)$                                                                                                                                                                                                                                                                                                                                                    | $T(x_t x_{t-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\log Z_A$                                                                                                                           |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Bernoulli-Bernoulli                             | $\begin{array}{l} -\mathbf{a^T} \mathbf{x} \\ -\sum_{k=1}^K \log(1+e^b k + \mathbf{W^T}_{k,:} \mathbf{x}) \end{array}$                                                                                                                                                               | $-a^{\mathbf{T}x} \\ -\sum_{k=1}^{K} \left(\log(1+e^{(1-\beta_t)b_k}) + \log(1+e^{\beta_t(b_k+\mathbf{W}^{\mathbf{T}}_{k,:}x)})\right)$                                                                                                                                                                                                                                 | $\begin{array}{l} (a_1, h_t^{(B)}) = \mathcal{BE}(x_m   \sigma((1-\beta_t)a_m + \beta_t(a_m + \mathbf{W}_m, h_t^{(B)}))) \\ (a_t) = \mathcal{BE}((h_t^{(A)})_k   \sigma((1-\beta_t)b_k)) \\ (a_t) = \mathcal{BE}((h_t^{(B)})_k   \sigma(\beta_t(b_k + \mathbf{W}^T_{K_*}; x_t))) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sum_{m=1}^{M} \log(1 + e^{a_m}) + \sum_{k=1}^{K} \log(1 + e^{b_k})$                                                                |
| Gaussian-Bernoulli                              | $\begin{aligned} & -\boldsymbol{a}(1)^{\mathrm{T}}\boldsymbol{x} - \boldsymbol{a}(2)^{\mathrm{T}}\boldsymbol{x}^{*2} \\ & - \sum_{k=1}^{K} \log(1 + e^{b_k} + \boldsymbol{W}^{\mathrm{T}}_{k,:}\boldsymbol{x}) \end{aligned}$                                                        | $\begin{aligned} & -a(1)^{\mathrm{T}}\boldsymbol{x} - a(2)^{\mathrm{T}}\boldsymbol{x}^{*2} \\ & - \sum_{k=1}^{K} \left( \log(1 + e^{(1-\beta_t)b_k}) + \log(1 + e^{\beta_t(b_k + \boldsymbol{W}^{\mathrm{T}}_{k,:}\boldsymbol{x})}) \right) \end{aligned}$                                                                                                              | $\begin{aligned} p_t((x_t)_m   h_{t-1}^{(A)}, h_{t-1}^{(B)}) &= \mathcal{G}S\Big((x_t)_m   -\frac{(1-\beta_t)a_m^{(1)} + \beta_t(a_m^{(1)} + \mathbf{W}_m, : h_{t-1}^{(B)})}{a_m}, (-2a_m^{(2)})^{-1}\Big) \\ p_t((h_t^{(A)})_k   a_t) &= \mathcal{B}\mathcal{E}((h_t^{(A)})_k   \sigma((1-\beta_t)b_k)) \\ p_t((h_t^{(B)})_k   a_t) &= \mathcal{B}\mathcal{E}((h_t^{(B)})_k   \sigma(\beta_t(b_k + \mathbf{W}^T_k, : x_t))) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                | $\sum_{m=1}^{M} \left( \frac{1}{2} \log \frac{\pi}{-a_m} - \frac{a_m^{(1)}^2}{4a_m^{(2)}} \right) + \sum_{k=1}^{K} \log (1 + e^b k)$ |
| Gaussian-Bernoulli<br>fix precision,<br>model 1 | $-\mathbf{a}^{\mathrm{T}}(\boldsymbol{\lambda} * \boldsymbol{x}) - \sum_{m=1}^{M} \left(\log \frac{\sqrt{\lambda_m}}{\sqrt{2\pi}} - \frac{\lambda_m}{2} x_m^2\right) \\ - \sum_{k=1}^{K} \log(1 + e^b k + \boldsymbol{W}^{\mathrm{T}}_{k,:}(\boldsymbol{\lambda} * \boldsymbol{x}))$ | $\begin{aligned} &-\mathbf{a}^{\mathrm{T}}(\boldsymbol{\lambda}*\boldsymbol{x}) - \sum_{m=1}^{M} \left(\log \frac{\sqrt{\lambda_m}}{\sqrt{2\pi}} - \frac{\lambda_m}{2} x_m^2\right) \\ &- \sum_{k=1}^{K} \left(\log(1 + e^{(1-\beta_t)b_k}) + \log(1 + e^{\beta_t(b_k + \boldsymbol{W}^{\mathrm{T}}_{k,:}(\boldsymbol{\lambda}*\boldsymbol{x}))})\right) \end{aligned}$ | $\begin{aligned} p_t((x_t^A)_m   \mathbf{h}_{t-1}^{(A)}, \mathbf{h}_{t-1}^{(B)}) &= \mathcal{GS}\left((x_t)_m   (1-\beta_t)a_m + \beta_t(a_m + \mathbf{W}_m; \mathbf{h}_{t-1}^{(B)}), \lambda_m\right) \\ p_t((h_t^{(A)})_k   \mathbf{x}_t) &= \mathcal{BS}((h_t^{(A)})_k   \sigma((1-\beta_t)b_k)) \\ p_t((h_t^{(B)})_k   \mathbf{x}_t) &= \mathcal{BS}\left((h_t^{(B)})_k   \sigma(\beta_t(b_k + \mathbf{W}^T_{k;}(\mathbf{\lambda} * \mathbf{x}_t)))\right) \end{aligned}$                                                                                                                                                                                                                                                                                                                                              | $\sum_{m=1}^{M} \left( \frac{\lambda_m}{2} a_m^2 \right) + \sum_{k=1}^{K} \log(1 + e^b k)$                                           |
| Gaussian-Bernoulli<br>fix precision,<br>model 2 | $\begin{aligned} &-\sigma^{\mathrm{T}}x - \sum_{m=1}^{M} \left(\log\frac{\sqrt{\lambda_m}}{\sqrt{2\pi}} - \frac{\lambda_m^2}{2}x_m^2\right) \\ &- \sum_{k=1}^{K} \log\left(1 + e^b k + \boldsymbol{W}^{\mathrm{T}}_{k,:}x\right) \end{aligned}$                                      | $\begin{aligned} &-a^{\mathrm{T}}x - \sum_{m=1}^{M} \left(\log \frac{\sqrt{\lambda_m}}{\sqrt{2\pi}} - \frac{\lambda_m}{2}x_m^2\right) \\ &- \sum_{k=1}^{K} \left(\log(1 + e^{(1-\beta_t)b}k) + \log(1 + e^{\beta_t(b_k + \boldsymbol{W}^{\mathrm{T}}_{k,:}x)})\right) \end{aligned}$                                                                                    | $\begin{aligned} p_t((x_t)_m   \boldsymbol{h}_{t-1}^{(A)}, \boldsymbol{h}_{t-1}^{(B)}) &= \mathcal{GS}\Big((x_t)_m   \frac{(1-\beta_t)_a m + \beta_t (a_m + \boldsymbol{W}_m, : \boldsymbol{h}_{t-1}^{(B)})}{\lambda}, \lambda_m\Big) \\ p_t((\boldsymbol{h}_t^{(A)})_k   \boldsymbol{x}_t) &= \mathcal{BE}((\boldsymbol{h}_t^{(A)})_k   \boldsymbol{\sigma}((1-\beta_t)b_k)) \\ p_t((\boldsymbol{h}_t^{(B)})_k   \boldsymbol{x}_t) &= \mathcal{BE}(((\boldsymbol{h}_t^{(B)})_k   \boldsymbol{\sigma}(\beta_t (b_k + \boldsymbol{W}^T_k, : \boldsymbol{x}_t))) \end{aligned}$                                                                                                                                                                                                                                              | $\sum_{m=1}^{M} \left( \frac{a_m^2}{2^{\lambda}m} \right) + \sum_{k=1}^{K} \log(1 + e^{b_k})$                                        |
| Poisson-Bernoulli                               | $\begin{aligned} &-\mathbf{a}^{\mathrm{T}}\boldsymbol{x} + \sum_{m=1}^{M}\log(x_{m}!) \\ &-\sum_{k=1}^{K}\log(1+e^{b_{k}}+\boldsymbol{W}^{\mathrm{T}}_{k};\boldsymbol{x}) \end{aligned}$                                                                                             | $\begin{aligned} &-\mathbf{a}^{\mathrm{T}}\boldsymbol{x} + \sum_{m=1}^{M} \log \left(x_{m}!\right) \\ &-\sum_{k=1}^{K} \left(\log(1+e^{(1-\beta_{t})b_{k}}) + \log(1+e^{\beta_{t}(b_{k} + \boldsymbol{W}^{\mathrm{T}}_{k,:}\boldsymbol{x})})\right) \end{aligned}$                                                                                                      | $\begin{array}{l} p_t((x_t)_m \mathbf{h}_t^{(L)}),  h_t^{(L)}) = \mathcal{PO}((x_t)_m e^{(1-\beta_t)a_m} + \beta_t(a_m + \mathbf{W}_m; \mathbf{h}_{t-1})) \\ p_t((h_t^{(A)})_k a_t) = \mathcal{BE}((h_t^{(A)})_k a((1-\beta_t)b_k)) \\ p_t((h_t^{(B)})_k a_t) = \mathcal{BE}((h_t^{(B)})_k a(\beta_t(b_t + \mathbf{W}^T_k; a_t))) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sum_{m=1}^{M} e^{a_m} + \sum_{k=1}^{K} \log(1 + e^{b_k})$                                                                          |
| Poisson-Binomial                                | $\begin{aligned} &-\alpha^{\mathrm{T}} \boldsymbol{x} + \sum_{m=1}^{M} \log(x^m!) \\ &-\sum_{k=1}^{K} n_k \log(1 + e^b k + \boldsymbol{W}^{\mathrm{T}}_{k,:\boldsymbol{x}}) \end{aligned}$                                                                                           | $-\alpha^{\mathrm{T}} x + \sum_{m=1}^{M} \log (x m^{t}) \\ -\sum_{k=1}^{K} \left( n_{k} \log (1 + e^{(1-\beta t)} b^{k}) + n_{k} \log (1 + e^{\beta t} (b_{k} + \boldsymbol{W}^{\mathrm{T}}_{k,:} \boldsymbol{x})) \right)$                                                                                                                                             | $\begin{array}{l} p_t(x_t)m h_t^{(J)},h_t^{(B)}  = \mathcal{PO}((x_t)m e^{(1-\beta_t)a}m+\beta_t(am+W_m,:h_{t-1})) \\ p_t((h_t^{(A)})_k a_t) = \mathcal{BN}((h_t^{(A)})_k n_k \cdot \sigma((1-\beta_t)b_k)) \\ p_t((h_t^{(B)})_k a_t) = \mathcal{BN}((h_t^{(B)})_k n_k \cdot \sigma(\beta_t(b_k+W^T_{k::a_t}))) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sum_{m=1}^{M} e^{am} + \sum_{k=1}^{K} n_k \log(1 + e^{b_k})$                                                                       |
| Negative-Binomial-<br>Bernoulli                 | $-\mathbf{a}^{\mathrm{T}}\mathbf{x} - \sum_{m=1}^{M} \log \frac{(x_m + s_m - 1)!}{(s_m - 1)!x_m!} \\ - \sum_{k=1}^{K} \log (1 + e^b k + \mathbf{W}^{\mathrm{T}} k, : \mathbf{x})$                                                                                                    | $\begin{aligned} -\mathbf{a}^{\mathrm{T}}\mathbf{x} - \sum_{m=1}^{M} \log \frac{(x_m + s_m - 1)!)}{(s_m - 1)!x_m!} \\ - \sum_{k=1}^{K} \left( \log(1 + e^{(1 - \beta_t)b_k}) + \log(1 + e^{\beta_t(b_k + \mathbf{W}^{\mathrm{T}}_{k}; \boldsymbol{x})}) \right) \end{aligned}$                                                                                          | $\begin{aligned} p_t((x_t)_m   \mathbf{h}_{t-1}^{(A)}, \mathbf{h}_{t-1}^{(B)}) &= \mathcal{N}\mathcal{B}((x_t)_m   s_m, 1 - e^{(1-\beta t)a_m + \beta t(a_m + \mathbf{W}_{m,:} \mathbf{h}_{t-1})}) \\ p_t((h_t^{(A)})_k   \mathbf{w}_t) &= \mathcal{B}\mathcal{E}((h_t^{(A)})_k   \sigma((1-\beta_t)b_k)) \\ p_t((h_t^{(B)})_k   \mathbf{w}_t) &= \mathcal{B}\mathcal{E}((h_t^{(B)})_k   \sigma(\beta_t(b_k + \mathbf{W}^T \mathbf{k}_{;, \mathbf{x}_t}))) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                  | $\sum_{m=1}^{M} -s_m \log(1 - e^{a_m}) + \sum_{k=1}^{K} \log(1 + e^{b_k})$                                                           |
| Multinoulli-<br>Bernoulli                       | $\begin{split} & - \sum_{m=1}^{M} \boldsymbol{a}^{(m)} \boldsymbol{T}_{\boldsymbol{a}^{(m)}} \\ & - \sum_{k=1}^{K} \log(1 + e^{b_k} + \sum_{m=1}^{M} (\boldsymbol{W}^{(m)}^{\mathrm{T}})_{k,:,\boldsymbol{a}^{(m)}}) \end{split}$                                                    | $\begin{split} & - \sum_{m=1}^{M} \boldsymbol{a}(m)^{\mathrm{T}} \boldsymbol{a}(m) \\ & - \sum_{k=1}^{K} \left( \log(1 + e^{(1 - \beta_{t})b_{k}}) + \log(1 + e^{\beta_{t}} (b_{k} + \sum_{m=1}^{M} (\boldsymbol{W}^{(m)})^{\mathrm{T}})_{k,:\boldsymbol{x}}(m) \right) \right) \end{split}$                                                                            | $\begin{aligned} &p_{t}(\boldsymbol{x}_{t}^{(m)} \boldsymbol{h}_{t-1}^{(A)},\boldsymbol{h}_{t-1}^{(B)}) = \mathcal{M}\mathcal{U}\Big(\boldsymbol{x}_{t}^{(m)} \Big[\frac{e^{(1-\beta_{t})a_{c}^{(m)}+\beta_{t}(a_{c}^{(m)}+\boldsymbol{W}_{c,::}^{(m)}\boldsymbol{h}_{t-1})}}{\sum_{c'=1}^{C_{m}}e^{(1-\beta_{t})a_{c'}^{(m)}+\beta_{t}(a_{c'}^{(m)}+\boldsymbol{W}_{c,::}^{(m)}\boldsymbol{h}_{t-1})}\Big]\Big)\\ &p_{t}((\boldsymbol{h}_{t}^{(A)})_{k} \boldsymbol{x}_{t}) = \mathcal{B}\mathcal{E}((\boldsymbol{h}_{t}^{(A)})_{k} \boldsymbol{\sigma}((1-\beta_{t})b_{k}))\\ &p_{t}((\boldsymbol{h}_{t}^{(B)})_{k} \boldsymbol{x}_{t}) = \mathcal{B}\mathcal{E}((\boldsymbol{h}_{t}^{(A)})_{k} \boldsymbol{\sigma}(\beta_{t}(b_{k}+\sum_{m=1}^{M}(\boldsymbol{W}^{(m)}T)_{k::\boldsymbol{x}_{t}^{(m)}})))\end{aligned}$ | $\sum_{m=1}^{M} \log \sum_{c'=1}^{C_m} e^{a_c''} + \sum_{k=1}^{K} \log(1 + e^{b_k})$                                                 |
| Multinomial-<br>Bernoulli                       | $-\mathbf{a}^{\mathrm{T}}\mathbf{x} - \log \overline{\prod_{m=1}^{M} x^{n!}} \\ - \sum_{k=1}^{K} \log (1 + e^{b}k + \mathbf{W}^{\mathrm{T}}k,:\mathbf{x})$                                                                                                                           | $-\mathbf{a}^{\mathrm{T}}\mathbf{x} - \log \frac{\prod_{m=1}^{M} x^{n!}}{\prod_{m=1}^{M} (1 - \beta_t)^b k} - \sum_{k=1}^{K} \left( \log(1 + e^{(1-\beta_t)^b k}) + \log(1 + e^{\beta_t (b_k + \mathbf{W}^{\mathrm{T}}_{k,::\mathbf{x}})}) \right)$                                                                                                                     | $\begin{array}{l} p_{t}(x_{t} h_{t-1}^{(A)},h_{t-1}^{(B)}) = \mathcal{MN}\Big(x_{t} n,\Big[\frac{e^{(1-\beta_{t})a_{m}+\beta_{t}(a_{m}+W_{m,:}h_{t-1})}}{\sum_{m'=1}^{M}e^{(1-\beta_{t})a_{m'}+\beta_{t}(a_{m'}+W_{m',:}h_{t-1})}}\Big]\Big)\\ p_{t}((h_{t}^{(A)})_{k} x_{t}) = \mathcal{BE}((h_{t}^{(A)})_{k} \sigma((1-\beta_{t})b_{k}))\\ p_{t}((h_{t}^{(B)})_{k} x_{t}) = \mathcal{BE}((h_{t}^{(B)})_{k} \sigma(\beta_{t}(b_{k}+W_{T_{k,:}x_{t}}))) \end{array}$                                                                                                                                                                                                                                                                                                                                                       | $n\log \sum_{m=1}^{M} e^{am} + \sum_{k=1}^{K} \log (1 + e^{bk})$                                                                     |

Table 4: Selected instances of exp-HM and exp-DBN.

|                       | (1)                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model<br>Bernoulli-   | $\prod_{m=1}^{p(\boldsymbol{x} \boldsymbol{h}^{(s)})} \mathcal{B}\mathcal{E}(x_m \sigma(\hat{a}_m)),  \hat{a}_m^{(G)} = a_m^{(G)} +$     | Gradient for Exp-HMs $\Delta_{(G)} \approx -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle), \ \langle \boldsymbol{x} \rangle = \sigma(\hat{\boldsymbol{a}}(G)), \ \hat{\boldsymbol{a}}(G) = \boldsymbol{a}(G) + \boldsymbol{W}(G,1)\boldsymbol{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gradient for Exp-DBNs $\Delta_{(G)} \approx -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle), \langle \boldsymbol{x} \rangle = \sigma(\hat{\boldsymbol{a}}(G)),  \hat{\boldsymbol{a}}(G) = \boldsymbol{a}(G) + \boldsymbol{W}(G,1)\boldsymbol{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bernoulli             |                                                                                                                                          | $ \Delta_{\mathbf{L}(G,I)} = \langle \mathbf{h}^{(l)} - \langle \mathbf{h}^{(l)} \rangle \rangle, \ \langle \mathbf{h}^{(l)} \rangle = \sigma(\hat{\mathbf{b}}(G,l)), \ \hat{\mathbf{b}}(G,l) = b_{\mathbf{b}}^{(G,l)} + \mathbf{W}(G,l+1)\mathbf{h}^{(l+1)}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\mathbf{h}^{(l)} - \langle \mathbf{h}^{(l)} \rangle), \langle \mathbf{h}^{(l)} \rangle = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                                                                                          | $\Delta_{\boldsymbol{b}(G,L)} \approx -(\boldsymbol{h}^{(L)} - \langle \boldsymbol{h}^{(L)} \rangle),  \langle \boldsymbol{h}^{(L)} \rangle = \sigma(\boldsymbol{b}^{(G,L)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta_{oldsymbol{W}(G,1)} pprox - (oldsymbol{x} - \langle oldsymbol{x} - \langle oldsymbol{x}  angle) oldsymbol{h}^{(1)} \mathrm{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                                                                                          | $\Delta_{m{W}(G,1)} pprox -(m{x}-\langlem{x} angle)m{h}^{(1)}$ T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Delta_{\boldsymbol{W}(G,l)} \approx -(\boldsymbol{h}^{(l-1)} - (\boldsymbol{h}^{(l-1)}))\boldsymbol{h}^{(l)} ^{\mathrm{T}}, \ 2 \leq l \leq L-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                                                                                          | $\Delta_{\boldsymbol{W}(G,l)} \approx -(\boldsymbol{h}^{(l-1)} - \langle \boldsymbol{h}^{(l-1)} \rangle) \boldsymbol{h}^{(l)\mathrm{T}}, \ 2 \leq l \leq L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (10) (110) (10) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (1                                                                                                                                                                                    |
|                       |                                                                                                                                          | (1) (1), (1), (1), (1) (10 1),(10 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta_{\mathbf{b}(G,L-1)} \approx -(\mathbf{h}(G,L-1) - \mathbf{h}(G,L-1), \{\mathbf{h}(G,L-1), \mathbf{h}(G,L)\} \sim p(\mathbf{h}(G,L-1), \mathbf{h}(G,L))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta_{\mathbf{b}(G,L)} \approx -(\mathbf{h}^{(G,L)} - \mathbf{h}^{(G,L)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _                     |                                                                                                                                          | $\frac{\Delta_{\mathbf{b}}(\mathbf{R}, \mathbf{l})}{\Delta_{\mathbf{b}}(\mathbf{R}, \mathbf{l})} \approx -(\mathbf{h}^{(1)} - (\mathbf{h}^{(1)})) \mathbf{a}^{\mathrm{T}}$ $\Delta_{\mathbf{b}}(\mathbf{R}, \mathbf{l}) \approx -(\mathbf{h}^{(1)} - (\mathbf{h}^{(1)})) \mathbf{a}^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta_{m{W}(G,L)} pprox = (m{n} \wedge m{\omega} - m{v} \wedge m{n} \wedge m{\omega}) - m{n} \wedge m{\omega} + m{n} \wedge m{\omega} + m{v} \wedge m{\omega}) + m{v} \wedge m{\omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                     |                                                                                                                                          | $egin{align*} egin{align*} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma(\hat{b}^{(R,1)}), \ \hat{b}^{(R,1)} = b^{(R,1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                                                                                                                          | T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2 \le l \le L - 1$<br>$\lambda$ $= - \langle h(1) - \langle h(1) \rangle_{\lambda \lambda} T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{\mathbf{W}(R,1)} \simeq -\langle \mathbf{h}^{(s)} \rangle - \langle \mathbf{h}^{(s)} \rangle \eta x$<br>$\Delta_{\mathbf{v},\mathbf{r}(R,1)} \approx -\langle \mathbf{h}^{(l)} - \langle \mathbf{h}^{(l)} \rangle ) \mathbf{h}^{(l-1)} \mathrm{T}, \ 2 \leq l \leq L-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Gaussian-             | $\prod_{m=1}^{M} \mathcal{G}S(x_m \mid -\frac{\hat{a}_m^{(G,1)}}{(G,2)}, (-2a_m^{(2)})^{-1}),$                                           | △                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta_{\boldsymbol{\alpha}(G,1)} \approx -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle),  \langle \boldsymbol{x} \rangle = -\frac{\hat{\boldsymbol{a}}(G,1)}{\hat{\boldsymbol{\alpha}}(G,2)},  \hat{\boldsymbol{a}}(G,1) = \boldsymbol{a}(G,1) + \boldsymbol{W}(G,1)\boldsymbol{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bernoulli             | $2am^{-1}$ (G 1) (G 1) (1)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (z, z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | $\hat{a}_{m}^{(C,1)} = a_{m}^{(C,1)} + W_{m,:}^{(C,1)} h^{(1)}$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{m{a}(G,2)} pprox -(x^{*z} - \langle x^{*z} \rangle), \langle x^{*z}  angle = rac{\sqrt{x}}{4(m{a}(G,2))^2} - rac{1}{2m{a}(G,2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \Delta_{oldsymbol{W}(G,1)} pprox - (oldsymbol{x} - (oldsymbol{x} - (oldsymbol{x}))oldsymbol{h}(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                                                                                                          | $\Delta_{\boldsymbol{b}(R,1)} \approx -(\boldsymbol{h}^{(1)} - \langle \boldsymbol{h}^{(1)} \rangle), \ \langle \boldsymbol{h}^{(1)} \rangle = \sigma(\hat{\boldsymbol{b}}^{(R,1)}), \ \hat{\boldsymbol{b}}^{(R,1)} = \boldsymbol{b}^{(R,1)} + \boldsymbol{W}^{(R,1)} \boldsymbol{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left  \begin{array}{l} \Delta_{\boldsymbol{b}(R,1)} \approx -(\boldsymbol{h}^{(1)} - \langle \boldsymbol{h}^{(1)} \rangle),  \langle \boldsymbol{h}^{(1)} \rangle = \sigma(\hat{\boldsymbol{b}}^{(R,1)}),  \hat{\boldsymbol{b}}^{(R,1)} = \boldsymbol{b}^{(R,1)} + \boldsymbol{W}^{(R,1)} \boldsymbol{x} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                                                                                          | $\Delta_{f W(R,1)} pprox - (h(1) - \langle h(1)  angle) {f x}^{ m T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta_{oldsymbol{W}(R,1)} pprox - (oldsymbol{h}(1) - \langle oldsymbol{h}(1)  angle) \mathbf{x}^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | (9)                                                                                                                                      | $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$ | one resolution as in Defined in                                                                                                                                                                                      |
| Poisson-<br>Bernoulli | $\prod_{\mathbf{u}} \prod_{\mathbf{v}} \mathbb{P}(S(x_m   e^{u_m}), \hat{a}_m = a_m^{-1} + \mathbf{u}(G, 1)_{\mathbf{L}}(1)$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | ,, m,: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                            | $\Delta_{f W(G,1)} pprox -(x-(x))h^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta_{m{W}(G,1)} pprox -(x-(x))h^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                                                                                                                          | $\Delta_{\mathbf{b}(R,1)} \approx -(\mathbf{h}^{(1)} - \langle \mathbf{h}^{(1)} \rangle, \langle \mathbf{h}^{(1)} \rangle = \sigma(\mathbf{b}^{(1),1}), \mathbf{b}^{(1),1} \rangle, \mathbf{b}^{(1),1} \rangle + W^{(1),1} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta_{m{b}(R,1)} pprox -(m{h}^{(1)}-(m{h}^{(1)}), (m{h}^{(1)}) = \sigma(m{b}^{(1)},i), m{b}^{(1)},i) = b^{(1),1} + W^{(1),1} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                                                                                          | $\Delta_{\mathbf{W}(R,1)} \approx -(h^{(1)}) \cdot h^{2}$ the rest is the same as in Bernoulli-Bernoulli HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta_{\mathbf{W}(R,1)} \approx -(h^{(1)}) - (h^{(1)})) \mathfrak{a}^{\perp}$ the rest is the same as in Bernoulli-Bernoulli DBN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Negative-             | $\prod_{\substack{m=1\\m=1}}^{M} \mathcal{B}(x_m   s_m, 1 - e^{\hat{a}_m^{(G)}}),  \hat{a}_m^{(G)} = a_m^{(G)} +$                        | $\Delta_{\boldsymbol{a}(G)} \approx -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle),  \langle \boldsymbol{x} \rangle = s_{m} \frac{e\hat{\boldsymbol{a}}(G)}{1 - a\hat{\boldsymbol{a}}(G)},  \hat{\boldsymbol{a}}(G) = \boldsymbol{a}(G) + \boldsymbol{W}(G,1)\boldsymbol{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Delta_{\boldsymbol{a}(G)} \approx -(\boldsymbol{x} - \langle \boldsymbol{x} \rangle),  \langle \boldsymbol{x} \rangle = s_{m} \frac{e\hat{\boldsymbol{a}}(G)}{1 - a\hat{\boldsymbol{a}}(G)},  \hat{\boldsymbol{a}}(G) = \boldsymbol{a}(G) + \boldsymbol{W}(G, 1)\boldsymbol{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bernoulli             | $m{W}_{m,:}^{(G,1)}m{h}^{(1)} < 0$                                                                                                       | $\Delta_{rrr}(G,1) \approx -(x-\langle x \rangle) h(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta_{rrr}(G_{1}) pprox -(oldsymbol{x}-\langleoldsymbol{x}-\langleoldsymbol{x} angle)oldsymbol{h}(1)\mathrm{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                                                                                          | $ \Delta_{\mathbf{k}(R,1)} \approx -(\mathbf{h}^{(1)} - \langle \mathbf{h}^{(1)} \rangle), \ \langle \mathbf{h}^{(1)} \rangle = \sigma(\hat{b}^{(R,1)}), \ \hat{b}^{(R,1)} = b^{(R,1)} + \mathbf{W}^{(R,1)} x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{\mathbf{k}(R,1)} \approx -(\mathbf{h}^{(1)} - \langle \mathbf{h}^{(1)} \rangle), \ \langle \mathbf{h}^{(1)} \rangle = \sigma(\hat{b}(R,1)), \ \hat{b}(R,1) = b(R,1) + \mathbf{W}(R,1)x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                     |                                                                                                                                          | $\Delta_{\mathbf{W}(R,1)} \approx -(h^{(1)} - \langle h^{(1)} \rangle) x^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta_{oldsymbol{W}(R,1)}^{\Delta}pprox -(h^{(1)}-\langle h^{(1)} angle)x^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Multinoulli-          | $p(\boldsymbol{x}(m) \boldsymbol{h}^{(1)}) = \mathcal{M}\mathcal{U}(\boldsymbol{x}(m) \hat{\boldsymbol{p}}^{(m)}),$                      | the rest is the same as in Definduni-Definding In. $\Delta_{\sigma}(G,m) \approx -(\mathbf{a}^{(m)} - (\mathbf{a}^{(m)})), \ (\mathbf{a}^{(m)}) = \hat{p}^{(G,m)}), \ \hat{\mathbf{a}}^{(G,m)} = \mathbf{a}^{(G,m)} + \mathbf{W}^{(G,1,m)}\mathbf{h}^{(1)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the test is the same as in Deriouni-Demonin Dbn $\Delta_{\bullet}(G,m) \approx -(\boldsymbol{x}^{(m)} - (\boldsymbol{x}^{(m)})), \ (\boldsymbol{x}^{(m)}) = \hat{\boldsymbol{p}}^{(G,m)}), \ \hat{\boldsymbol{a}}^{(G,m)} = \boldsymbol{a}^{(G,m)} + \boldsymbol{W}(G,1,m)\boldsymbol{h}^{(1)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bernoulli             | $\hat{a}_c^{(G,m)} = a_c^{(G,m)} + W_{c,:}^{(G,m)} h_{(1)}, \hat{p}_c^{(m)} =$                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(m)$ , $\exp(\hat{\mathfrak{a}}_1(G,m))$ $\exp(\hat{\mathfrak{a}}_{G,m}^{(G,m)})$ $\mp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | $(\operatorname{exp}(\hat{a}_1^{(G,m)}), \operatorname{exp}(\hat{a}_{C,m}^{(G,m)}))$                                                     | $egin{align*} oldsymbol{p}^{(m)} &= \left[\sum_{c'=1}^{Cm} \exp(\hat{a}^{(f)}_{c'}, m)\right], \cdots, \sum_{c'=1}^{Cm} \exp(\hat{a}^{(f)}_{c'}, m)\right]. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $n$ ,, $\Sigma_{o}^{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                                                                                                                                          | $\Delta_{oldsymbol{W}(G,1,m)} pprox -(oldsymbol{x}(m) - \langle oldsymbol{x}(m)  angle))oldsymbol{h}(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta_{oldsymbol{W}(G,1,m)} pprox -(oldsymbol{x}(m) - \langle oldsymbol{x}(m)  angle) oldsymbol{h}(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                                                                                                          | $\Delta_{b(R,1)} \approx -(h^{(1)} - \langle h^{(1)} \rangle), \ \langle h^{(1)} \rangle = \sigma(b^{(R,1)}), \ b^{(R,1)} = b^{(R,1)} + \sum_{m'=1}^{M} W^{(R,1,m')} x^{(m')}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta_{\mathbf{b}(R,1)} \approx -(\mathbf{h}^{(1)} - \langle \mathbf{h}^{(1)} \rangle), \langle \mathbf{h}^{(1)} \rangle = \sigma(\hat{\mathbf{b}}(R,1)), \hat{\mathbf{b}}(R,1) = \mathbf{b}(R,1) + \sum_{m'=1}^{M} \mathbf{W}(R,1,m') \mathbf{x}(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                                                                                                                          | $\Delta_{oldsymbol{W}(R,1,m)} pprox -(oldsymbol{h}(1)-\langleoldsymbol{h}(1) angle)oldsymbol{x}^{(m)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta_{m{W}(R,1,m)} pprox - (m{h}(1) - \langlem{h}(1) angle)m{x}^{(m)\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Multinomial-          | $\mathcal{MN}(\boldsymbol{x} n,\hat{\boldsymbol{p}}),\hat{a}_{m}^{(G)}=a_{m}+\boldsymbol{W}_{m}^{(G)}\boldsymbol{h}^{(1)},\hat{p}_{m}=0$ | the rest is the same as in Bernoulli-Bernoulli HM $\Delta_{(C)} \approx -(x - (x)),  (x) = n\hat{p},  \hat{a}(G) = a(G) + W(G,1)\hat{h}(1),  \hat{p} = a(G) + W(G,1)\hat{h}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the rest is the same as in Bernoulli-Bernoulli DBN $ \Delta_{(C)} \approx -(x - \langle x \rangle),  \langle x \rangle = n\hat{p},  \hat{a}(G) = a(G) + W(G,1)h(1),  \hat{p} = a(G) + W(G,1)h(1),  \hat{p} = a(G) + W(G,1)h(1),  \hat{p} = a(G,1) + W(G,1)h(1),  \hat{p} = a(G,1)h(1),  \hat{p} $ |
| Bernoulli             | $\exp(\hat{a}_{m}^{(G)})$                                                                                                                | $\operatorname{vn}(\hat{a}(G))$ $\operatorname{exp}(\hat{a}(G))$ $=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _                     | $\sum_{m'=1}^{M} \exp(\hat{a}_{m'}^{(G)})$                                                                                               | $\overline{\Sigma}_{j}$ ,, $\overline{\Sigma}_{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\frac{a_j}{a_j}), \dots, \sum_{i=1}^{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _                     |                                                                                                                                          | $\Delta_{m{W}(G,1)} pprox -(m{x}-(m{x}))h(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Delta_{m{W}(G,1)} pprox -(m{x}-(m{x}-(m{x}))m{h}(1)^{\mathrm{T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                                                                                          | $\Delta_{\mathbf{b}(R,1)} \approx -(h^{(1)} - \langle h^{(1)} \rangle), \ \langle h^{(1)} \rangle = \sigma(b^{(R,1)}), \ b^{(R,1)} = b^{(R,1)} + W^{(R,1)}x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} \Delta_{\mathbf{b}(R,1)} \approx -(h^{(1)} - \langle h^{(1)} \rangle), \ \langle h^{(1)} \rangle = \sigma(b^{(R,1)}), \ b^{(R,1)} = b^{(R,1)} + \mathbf{W}^{(R,1)} x \\ & \wedge & -(h^{(1)} - \langle h^{(1)} \rangle), \\ & \wedge & - & - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                                                                                                                                          | $\Delta_{m{W}(R,1)} \approx -(\kappa \cdot )/3 x$<br>the rest is the same as in Bernoulli-Bernoulli HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta_{m{W}(R,1)} \approx -(m{n} \cdot ) \cdot m{n}$<br>the rest is the same as in Bernoulli-Bernoulli DBN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |