Abgabe der Übung am 30.11.2020

Aufgabe 1 (3 Punkte)

In einer Warteschlage vor einem Einkaufshaus müssen die Kunden aufgrund von Corona-Regelungen einen Abstand von 1.5 m zueinander halten. Eine Videokamera überprüft dies, indem jede Sekunde aus Bilddaten die Personenabstände in der Warteschlange geschätzt werden.

Zu den Zeitpunkten t_1 bis t_8 liegen folgende Abstandsmessungen $(m_1, m_2, m_3, m_4, m_5,$ gemessen in der Einheit Meter) zwischen den Personen A, B, C, D und E vor:

Teil 1, Epoche	m_1	m_2	m_3	m_4	m_5
	2.68				
2	2.73	2.97	3.52	4.81	1.82
3	2.63	3.11	3.16	4.48	1.52
4	3.10	2.91	3.47	4.56	1.72
5	2.78	3.06	3.41	4.66	1.58
6	2.79	3.07	3.42	4.61	1.62
7	2.78	3.11	3.36	4.58	1.56
8	2.80	3.07	3.47	4.56	1.62

Bestimmen Sie mittels sequentieller Ausgleichung die Abstände \overline{AB} , \overline{BC} , \overline{CD} und \overline{DE} sowie deren formelle Fehler zu jeder Epoche unter Einbeziehung der Messungen aller vorangegangen Epochen. Zur Aufstellung des stochastischen Modells nehmen Sie unkorrelierte Beoabachtungen sowie $\sigma_{m_1} = \sigma_{m_2} = \sigma_{m_3} = \sigma_{m_4} = \sigma_{m_5} = 0.1$ m an.

Zu einem anderen Zeipunkt kurz danach werden erneut die Abstände über 8 Epochen gemessen bei dem sich mind. 1 Personen offensichtlich bewegt hat. Bestimmen Sie erneut die Abstände \overline{AB} , \overline{BC} , \overline{CD} und \overline{DE} aus einer sequentiellen Ausgleichung sowie deren formellen Fehler pro Epoche und beurteilen Sie Ihr Ergebnis.

Teil 2, Epoche	m_1	m_2	m_3	m_4	m_5
1	2.81	3.12	3.33	4.61	1.56
2	2.78	3.06	3.38	4.56	1.61
3	2.86	3.03	3.39	4.57	1.72
4	2.80	3.76	4.22	5.31	1.62
5	2.81	3.87	4.08	5.36	1.56
6	2.78	3.81	4.13	5.31	1.61
7	2.86	3.78	4.14	5.32	1.72
8	2.80	3.76	4.22	5.31	1.62

Aufgabe 2 (2 Punkte)

- a) Begründen Sie, ob es möglich ist, eine separate Ausgleichung für jede einzelne Epoche durchzuführen. Wenn ja, warum und welchen Einfluss würde dies auf die formalen Fehler haben?
- b) Finden Sie eine Möglichkeit, die es erlaubt, die zeitliche Veränderung der Parameter aus Aufgabe 1, Teil 2 in der sequentiellen Ausgleichung zu berücksichtigen? Wenn ja, skizzieren Sie Ihren Vorschlag und/oder testen Sie Ihn an dem Datensatz.

Aufgabe 3 (1 Punkt)

Gegeben sei ein lineares Anfangswertproblem der Form

$$y' = t^2 + 2t - y + 1$$
 $y(0) = 0$

Berechnen Sie den Wert der Funktion y(t) and der Stelle t=0.5 mit Hilfe des Runge-Kutta Verfahrens 3. Ordnung und einer Schrittweite h=0.1. Bestimmen Sie danach y(t=0.5) mittels Runge-Kutta Verfahrens 4. Ordnung und einer Schrittweite h=0.1 und vergleichen Sie mit dem zuerst erhaltenen Ergebnis.

Aufgabe 4 (1 Punkt)

Das Runge-Kutta Verfahren 1. Ordnung (vgl. Gleichung (2.13) in den Vorlesungsfolien) ist wie folgt definiert:

$$y_{n+1} = y_n + h f(y_n, t_n).$$

Folgende Differentialgleichung ist durch ein RK-Verfahren erster Ordnung numerisch zu lösen

$$y' = c$$

wobei c ein (beliebiger) konstanter Parameter ist. Finden Sie mittels Fehlerfortpflanzung einen analytischen Ausdruck für die Unsicherheit (Varianz) von y_{n+m} (d.h. Sie benötigen m Schritte von y_n um nach y_{n+m} zu gelangen). Nehmen Sie dabei $\text{Var}(y_n)$ und Var(c) als bekannt und unkorreliert an.

Aufgabe 5 (3 Punkte)

Zur Positionsbestimmung mittels GNSS werden die Orbits der Satelliten zu einem bestimmten Zeitpunkt benötigt. Hierzu werden z.B die Navigation Messages im RINEX Format verwendet. Die Positionsdaten eines GLONASS-Satelliten liegen in der Navigation Message im RINEX Format in regelmäßigen Abständen von 30 min vor. Die Satellitenposition an einem beliebigen Zeitpunkt kann mit Hilfe des Runge-Kutta Verfahrens bestimmt werden.

Das DGL hierfür ergibt sich aus

$$\frac{d}{dt} \begin{bmatrix} x \\ y \\ z \\ v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ w & 0 & 0 & 0 & 2 \cdot OMG & 0 \\ 0 & w & 0 & -2 \cdot OMG & 0 & 0 \\ 0 & 0 & u & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ v_x \\ v_y \\ v_z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ acc_x \\ acc_y \\ acc_z \end{bmatrix}$$

mit

RE = 6378136; (Erdradius, Glonass-Definition)

 $MU = 3.986\,004\,4 \times 10^{14}$; (Gravitationskonstante)

 $J2 = 1.0826257 \times 10^{-3}$; (Earth zonal harmonic coefficients)

 $OMG = 7.292115 \times 10^{-5}$; (Erdrotationsgeschwindigkeit)

$$w = \frac{-MU}{r^3} - A \cdot (1 - B) + OMG^2$$

$$u = \frac{-MU}{r^3} - A \cdot (3 - B)$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$A = 1.5 \cdot J2 \cdot MU \cdot \frac{RE^2}{r^5}$$

$$B = 5 \cdot \frac{z^2}{r^2}$$

Die Position des Satelliten wird mit x, y, z bezeichnet, die Geschwindigkeit mit v_x, v_y, v_z und die Beschleunigung mit acc_x, acc_y, acc_z .

Gegeben sind die Ephemeriden für ein Glonass-Satellit zu dem Zeitpunkt $t_1=1000$ Sekunden:

Ep1	Position [m]	Geschwindigkeit [m/s]	Beschleunigung [m/s ²]
X	1.900041699219e+07	-3.696823120117e+01	0.00000000000000000000000000000000000
У	1.696980371094e+07	-2.619514465332e+02	0.0000000000000e+00
\mathbf{Z}	-1.411637695313e+06	-3.568358421326e+03	9.313225746155e-07

und die Ephemeriden zu dem Zeitpunkt $t_2=2800$ Sekunden:

Ep2	Position [m]	Geschwindigkeit [m/s]	Beschleunigung $[m/s^2]$
X	1.826071386719e + 07	-8.006420135498e + 02	-9.313225746155e-07
У	1.605853173828e + 07	-7.120389938354e + 02	0.0000000000000e+00
${f z}$	-7.697145507813e+06	-3.370163917542e + 03	9.313225746155e-07

Bestimmen Sie die Koordinaten des Satelliten zum Zeitpunkt $t_i = 1900$ Sekunden indem Sie:

- a) vom Startpunkt t_1 in 100-Sekunden-Schritten (h) vorwärts integrieren.
- b) vom Endpunkt t_2 in 100-Sekunden-Schritten rückwärts integrieren.
- c) Wiederholen Sie a) und b), aber diesmal mit 1-Sekunden-Schritten.
- d)Führen Sie a), b), c) erneut aus, aber diesmal mit dem Runge-Kutta Verfahren 2. Ordnung.
- e) Beurteilen Sie Ihr Ergebnis hinsichtlich der Genauigkeit. Kommt die Vorwärts- und Rückwärtsintegration auf die gleiche Position für t_i ? Wie groß ist die Differenz zwischen den erhaltenen Koordinaten, wenn Sie die Schrittweite h variieren? Wie beurteilen Sie das Ergebnis wenn Sie Runge-Kutta 2. Ordnung verwenden?

Das Runge-Kutta Verfahren 4. Ordnung ist wie folgt definiert:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})$$

$$k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2})$$

$$k_4 = f(y_n + hk_3, t_n + h)$$

Das Runge-Kutta Verfahren 2. Ordnung ist wie folgt definiert:

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$$

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + hk_1, t_n + h)$$