CONJUNTOS, APLICACIONES Y RELACIONES

ÁLGEBRA LINEAL Y ESTRUCTURAS MATEMÁTICAS

Ejercicio 1.- Dados los conjuntos:

$$A = \{a, b, c, d, e, f, g\}$$

$$B = \{e, f, g, h, i, j\}$$

$$C = \{a, e, i, o, u\}$$

Determinar los siguientes conjuntos:

$$A \cup B \cup C$$
, $A \cap B \cap C$, $A \setminus B$, $A \setminus (B \cup C)$, $(A \cap B) \cup C$, $C \cap (A \setminus B)$

- **Ejercicio** 2.- Dado el conjunto $X = \{a, b, c, d\}$, determinar el conjunto $\mathcal{P}(X)$.
- **Ejercicio** 3.- Dar un ejemplo de conjuntos X_1, X_2, Y_1, Y_2 verificando

$$(X_1 \times Y_1) \cup (X_2 \times Y_2) \neq (X_1 \cup X_2) \times (Y_1 \cup Y_2).$$

- Ejercicio 4.- Determinar cuáles de las siguientes aplicaciones son inyectivas, sobrevectivas o bivectivas.
 - a) $f: \mathbb{N} \to \mathbb{N}$, $f(n) = n^2$.
 - b) $f: \mathbb{Q} \to \mathbb{R}$, f(x) = 2x.
 - $c) \ \ \mathbf{f}: \mathbb{Z} \to \mathbb{Z}, \ \mathbf{f}(\mathbf{n}) = \mathbf{n} + \mathbf{1}.$
 - d) $f: \mathbb{Q} \to \mathbb{Q}$, $f(x) = \frac{3x+2}{4}$. e) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = +\sqrt{x}$.
- **Ejercicio** 5.- Dadas dos aplicaciones $\varphi: X \to Y \ y \ \psi: Y \to Z$. Demostrar
 - a) Si φ y ψ son inyectivas entonces $\psi \cdot \varphi$ es inyectiva.
 - b) Si $\psi \cdot \varphi$ es inyectiva, entonces φ es inyectiva.
 - c) Si $\psi \cdot \varphi$ es inyectiva y φ sobre, entonces ψ es inyectiva.
 - d) Si φ y ψ son sobrevectivas, entonces $\psi \cdot \varphi$ es sobrevectiva.
 - e) Si $\psi \cdot \varphi$ es sobrevectiva entonces ψ es sobrevectiva.
 - f) Si $\psi \cdot \varphi$ es sobreyectiva y ψ es inyectiva entonces φ es sobreyectiva.
- **Ejercicio** 6.- Sea $\mathbb R$ el conjunto de los números reales. Definimos sobre $\mathbb R$ la siguiente relación:

$$xRy \text{ si } x - y \in \mathbb{Z}.$$

- a) Probar que R es una relación de equivalencia.
- b) Describir el conjunto cociente \mathbb{R}/\mathbb{R} .
- Ejercicio 7.- En el conjunto $\mathbb Q$ de los números racionales se define la siguiente relación

$$xRy \ \mathrm{si} \ \mathrm{existe} \ h \in \mathbb{Z} \ \mathrm{tal} \ \mathrm{que} \ x = \frac{3y+h}{3}.$$

- a) Probar que R es una relación de equivalencia.
- b) ¿ Están $\frac{2}{3}$ y $\frac{4}{5}$ en la misma clase?
- c) Describir el conjunto cociente \mathbb{Q}/\mathbb{R} .
- **Ejercicio** 8.- Sea el conjunto $X = \{1, 2, 3\}$. En el conjunto $\mathcal{P}(X)$ definimos la siguiente relación:

ARB sii la suma de los elementos de A es igual a la suma de los elementos de B.

- a) Probar que R es una relación de equivalencia.
- b) Describir el conjunto cociente $\mathcal{P}(X)/R$.
- **Ejercicio** 9.- Dado el conjunto ordenado $(\mathbb{N}^2, \leq_{\mathfrak{p}})$, calcula los elementos notables de

$$\{(1,0),(0,1),(2,1),(3,1)\}.$$

Ejercicio 10.- Ordena de menor a mayor con el orden lexicográfico los elementos del siguiente conjunto

$$\{(1,1,1),(0,1,1),(0,0,2),(2,3,1),(1,0,4)\}.$$