```
clear all; close all;
confusion_mat=zeros(10,10);
myDir='Final_digits/';
myFiles = dir(fullfile(myDir,'*.mat'));
for i = 1:length(myFiles)
    Tname = myFiles(i).name;
    T_actual=str2num(Tname(1));
    Tname=strcat('Final_digits/',Tname);
    T=load(Tname);
    T=cell2mat(struct2cell(T));
    T=squeeze(T);
    utterances=zeros(299,2);
    uter=0;
    for j=1:length(myFiles)
        uter=uter+1;
        if(i==j)
            uter=uter-1;
            continue;
        end
        Rname = myFiles(j).name;
        R actual=str2num(Rname(1));
        Rname=strcat('Final_digits/',Rname);
        R=load(Rname);
        R=cell2mat(struct2cell(R));
        R=squeeze(R);
        %actual code here
        M=size(T,1);
        N=size(R,1);
        %STEP 1
        S=zeros(M,N);
        for m=1:M
            for n=1:N
                S(m,n)=norm(T(m,:)-R(n,:));
            end
        end
        %STEP 2 & 3 & 4 & 5
        D=zeros(M,N);
        tracking=zeros(M,N);
        for m=1:M
            for n=1:N
                if m==1 && n==1
                     tracking(m,n)=0;
                     D(m,n)=S(m,n);
                elseif m==1 \&\& n\sim=1
                     tracking(m,n)=2;
                     D(m,n)=S(m,n)+D(m,n-1);
                elseif m\sim=1 &&n==1
                     tracking(m,n)=1;
                     D(m,n)=S(m,n)+D(m-1,n);
                else
```

```
[val, tracking(m,n)] = min([D(m-1,n), D(m,n-1), D(m-1,n-1)]);
                    D(m,n)=S(m,n)+val;
                end
            end
        end
        %STEP 6 & 7
        M cur=M;
        N cur=N;
        disim_sum=[];
        path_length=[];
        it=0;
        while true
            if tracking(M_cur,N_cur)==1
                M cur=M cur-1;
            elseif tracking(M_cur,N_cur)==2
                N cur=N cur-1;
            elseif tracking(M_cur,N_cur)==3
                M cur=M cur-1;
                N_cur=N_cur-1;
            elseif tracking(M_cur,N_cur)==0
                break;
            end
            it=it+1;
            %disim_sum=disim_sum+S(M_cur,N_cur);
            %path length=path length+D(M cur, N cur);
            disim_sum(it)=S(M_cur,N_cur);
            path_length(it)=D(M_cur,N_cur);
        end
        disim sum=flip(disim sum);
        path_length=flip(path_length);
        for ind=1:it-1
            path_length(ind+1:end)=path_length(ind+1:end)-
path_length(ind);
        end
        path_sum=sum(path_length);
        for ind=1:it
            disim_sum(ind) = disim_sum(ind) *path_length(ind) / path_sum;
        utterances(uter,1)=sum(disim_sum);
        utterances(uter,2)=R actual;
    end
    utterances=sortrows(utterances);
    utterances=utterances(1:29,:);
    for ut=1:29
        confusion mat(utterances(ut,2)+1,T actual
+1)=confusion_mat(utterances(ut,2)+1,T_actual+1)+1;
end
col_names={'input_0','input_1','input_2','input_3','input_4','input_5','input_6','
row_names={'output_0','output_1','output_2','output_3','output_4','output_5','outp
conf_table=array2table(confusion_mat,'RowNames',row_names,'VariableNames',col_name
```

conf_table =
 10×10 table

			.0 i1						input_4
input_5	$input_{_}$	_6	input_	_7	input_	_8	input_	_9	
	_								
						_		_	
output_)	410		50		188		109	18
	69		13		53		30		
output	1	39		413		3		3	231
44	12		44		9		201		
output	2	197		7		361		151	10
16	78		12		120		41		
output	3	69		6		123		423	8
10	39		15		<i>32</i>		29		
output_	4	0		80		2		3	444
5	5		35		2		0		
output	5	8		24		6		5	15
412	17		99		64		63		
output_	5	82		13		97		68	25
37	394		156		103		10		
output_'	7	5		56		17		22	87
131	203		<i>352</i>		67		128		
output_	3	23		8		29		15	21
82	40		50		412		8		
output_	9	37		213		44		71	11
104	13		94		8		360		

Published with MATLAB® R2019a