

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE TELEINFORMÁTICA

SEMESTRE 2025.1

Relatório dos Homeworks de Álgebra Multilinear

ALUNO: Ruan Pereira Alves

MATRÍCULA: 569551

Homework 00

Para o item A Geramos aleatoriamente A e B em uma simulação de monte carlo com 1000 etapas. Por conta do custo computacional, foi necessário fazer adaptações a simulação, mais especificamente limitando no item A n a $n \in \{2,4,8,16\}$ e no item B k a $k \in \{2,4,6\}$.

Porém, foi visível no item A a diferença no tempo de compilação entre o método 1 e o método 2, sendo o método 2 muito mais eficiente computacionalmente, por conta do uso da função de inversão em matrizes de dimensão muito menor(a inversão acontece em $N \times N$) do que no método 1(matriz total com dimensão $N^2 \times N^2$)

Para o item a:

Figura 1: Tempo de compilação de acordo com N para cada um dos métodos

Para o item b:

Figura 2: Tempo de compilação de acordo com K para um dos métodos

Para o segundo problema, precisamos encontrar uma forma de mostrar que, se λ é eig(A) e μ é eig(B), então o produto $\lambda\mu$ deve ser equivalente a $eig(A\otimes B)$.

Considerando que λ seja um autovalor de A, ele terá um autovetor, que chamaremos de v. Assim, teremos que:

$$A\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

Da mesma forma, para B, seja μ um autovalor de B, com \mathbf{w} sendo seu autovetor. Temos:

$$B\mathbf{w} = \mu \mathbf{w} \tag{2}$$

Supomos então que o autovetor para $A \otimes B$ seja o produto de Kronecker dos autovetores individuais, ou seja, o vetor $\mathbf{v} \otimes \mathbf{w}$.

Multiplicando ambos, temos:

$$(A \otimes B)(\mathbf{v} \otimes \mathbf{w}) \tag{3}$$

Dai, pelo produto misto:

$$(A \otimes B)(\mathbf{v} \otimes \mathbf{w}) = (A\mathbf{v}) \otimes (B\mathbf{w}) \tag{4}$$

Substituindo a partir da relação encontrada em (1) e (2) no lado direito:

$$(\lambda \mathbf{v}) \otimes (\mu \mathbf{w}) \tag{5}$$

Podemos então retirar os escalares de dentro do produto de Kronecker por propriedade:

$$\lambda \mu(\mathbf{v} \otimes \mathbf{w}) \tag{6}$$

Por fim, temos:

$$(A \otimes B)(\mathbf{v} \otimes \mathbf{w}) = (\lambda \mu)(\mathbf{v} \otimes \mathbf{w}) \tag{7}$$

o que satisfaz as condições.

Homework 01