Coding Assignment: Linear Regressor

Due 2014/10/08 23:59:59

- Given a 1D dataset with 200 instances, your assignment is to implement
 - A linear regressor
 - 4 locally weighted linear regressors with $\tau = 0.1, 1, 10, \text{ and } 100 \text{ repestuvely}$

類似knn的k 上課講義02-52頁

We will test your regressor with another dataset and grade your program based on your results and discussions.

- Specification
 - Follow the OOP (Object-Oriented Programming) paradigm in Matlab.
 - Implement a class "LinearRegressor" (in package "model/regression") that has
 - * Public instance properties: \boldsymbol{w}
 - * A static method: train(X, y): handle of a new instance of Linear Regressor
 - $X \in \mathbb{R}^{n \times d}$ is a matrix of training instances, where n is the number of instances and d is the number of features
 - $y \in \mathbb{R}^{n \times 1}$ is the label vector
 - · Returns the handle of a new instance of Linear Regressor with the trained \boldsymbol{w} . Note that the class Linear Regressor should be a handle class.
 - * An instance method: $predict(\boldsymbol{X}): \boldsymbol{y}$
 - · $X \in \mathbb{R}^{r \times d}$ is a matrix of testing instances, where r is the number of instances and d is the number of features
 - · Returns a vector $\boldsymbol{y} \in \mathbb{R}^{r \times 1}$ of the label predictions
 - Implement a class "LinearRegressorLocalWeight" (in package "model/regression") that inherits (is a subclass of) class "LinearRegressor" that simply "remembers" \boldsymbol{X} and \boldsymbol{y} in the training phase and build model right before prediction
 - * Public instance properties: X, y, and τ
 - * A static method: $train(m{X}, m{y})$: $handle\ of\ a\ new\ instance\ of\ LinearRegressorLocalWeight$
 - * An instance method: predict(X, cfg) : y
 - \cdot cfg is a configuration object of type containers. Map (see http://www.mathworks.com/help/matlab/map containers.html) containing at least the key 'tau'

* For more details about Matlab subclasses, please refer to http://www.mathworks.com/help/matlab/matlab subclasses—syntax-and-techniques.html

• Submission Requirements

- A report (README.*) describing
 - * How you implement the regressors
 - * Plot the data and your fitted line of all regressors
 - * Discuss what happens when τ is too small or large
 - * Anything else worth mentioning
- The code
 - $*\ Linear Regressor.m,\ Linear Regressor Local Weight.m$
 - * You have to follow the specs (as described above) strictly
- Pack your work (in a directory named LinearRegressor) with your assignment 1