Билеты по математическому анализу для коллоквиума 14 ноября. Часть II

Шишминцев Дмитрий Владимирович

13 ноября 2022 г.

Содержание

1	Свойства точных граней множества	2
2	Принцип вложенных отрезков	2
3	Теоремы о бесконечно больших и бесконечно малых последовательностях	2
4	Сходимость и единственность предела сходящейся последовательности	2
5	Арифметические свойства пределов сходящихся последовательностей	3
6	Теорема о двух миллиционерах	3
7	Теорема Штольца	3
8	Теорема Вейерштрасса	3
9	Теорема Больцано-Вейерштрасса без док-ва	4
10	Критерий Коши о фундаментальности последовательности	4
11	Эквивалентность определений предела по Коши и по Гейне	4
12	Критерий Коши о сходимости функции	4
13	Непрерывность функций над арифметическими операциями с ними	5
14	О непрерывности сложной функции	5
15	Существование односторонних пределов монотонной на отрезке функции	5
16	Монотонность и непрерывность обратной функции	5
17	О локальной ограниченности функции, имеющей конечный предел	6
18	Устойчивость знака непрерывной в точке функции	6
19	Первая теорема Вейерштрасса о непрерывности	6

1 Свойства точных граней множества

Свойство точной верхней грани: Если $b=\sup A$, то $\forall \epsilon>0 \exists a\in A: a>b-\epsilon$

- ▶ Допустим обратное, пусть найдется $\epsilon > 0$: $\forall a \in A \to b a \geqslant \epsilon$. Но тогда $b' = b \epsilon$ является верхней гранью множества A, которая будет меньше, чем b, а это невозможно, поскольку b наименьшая из верхних граней множества A согласно свойству полноты множества вещественных чисел ??

 Свойство точной нижней грани: Если $b = \inf A$, то $\forall \epsilon > 0 \exists a \in A : a < d + \epsilon$
- ▶ Допустим обратное, пусть найдется $\epsilon > 0$: $\forall a \in A \to a d \geqslant \epsilon$. Но тогда $d' = d + \epsilon$ является нижней гранью множества A, которая будет меньше, чем d, а это невозможно, поскольку d наибольшая из нижних граней множества A согласно свойству полноты множества вещественных чисел ?? \blacktriangleleft

2 Принцип вложенных отрезков

ТЕОРЕМА: Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}: \forall n \in \mathbb{N} \to [a_{n+1},b_{n+1}] \subset [a_n,b_n]$ (система вложенных отрезков), тогда $\exists!c \in \mathbb{R}: \forall n \in \mathbb{N} \to c \in [a_n,b_n]$

▶ Обозначим длину отрезка $[a_n,b_n]$ за $d(n)=b_na_n$ Тогда, по скольку $\forall n\in\mathbb{N}\to[a_{n+1},b_{n+1}]\subset[a_n,b_n]$, то $\forall k\in\mathbb{N}\to d(1)>d(k)$ Пусть число $c:=sup_{n\in\mathbb{N}}a_n$, тогда по определению супремума $\forall n\to a_n\leqslant c$ и $c\leqslant b_n$, иначе, если бы $\exists k\in\mathbb{N}:b_k< c$, то нашлось бы число $a_m:b_k< a_m$, что противоречит вложенности отрезков. Итак, $\forall n\to c\leqslant b_n\Rightarrow c\in[a_n,b_n]$. Единственность точки с следует из стремления длин отрезков к нулю. \blacktriangleleft

3 Теоремы о бесконечно больших и бесконечно малых последовательностях

Теорема 4 (ограниченность б.м.п): Если $\{x_n\}$ - б.м.п $\Rightarrow \forall n \in \mathbb{N} \to |x_n| < C$, где $C \in \mathbb{R}_+$

▶ Пусть $\{x_n\}$ - б.м.п, тогда по определению $\forall \epsilon \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n| < \epsilon$. Следовательно $x_{n'} \geqslant \epsilon$, где $n' = 1, n(\epsilon)$. Предположим $C = max\{|x_1|, ..., |x_{n'}|\}$, тогда с учетом свойства транзитивности, получаем что $\forall n \in \mathbb{N} \to |x_n| < C$

ТЕОРЕМА 5: Если $\{x_n\}$ - б.м.п и $\forall n \in \mathbb{N} \to x_n \neq 0$, то $\{\frac{1}{x_n}\}$ - б.б.п и наоборот, если $\{x_n\}$ - б.б.п и $\forall n \in \mathbb{N} \to x_n \neq 0$, то $\{\frac{1}{x_n}\}$ - б.м.п

▶ Пусть $\{x_n\}$ - б.б.п, тогда лишь конечное количество членов удовлетворяет неравенству $|x_n| \ge \epsilon \Leftrightarrow |\frac{1}{x_n}| \le \frac{1}{\epsilon}$ \Rightarrow неравенству $|\frac{1}{x_n}| > \frac{1}{\epsilon}$ удовлетворяет бесконечное количество членов последовательности $\{x_n\}$, а значит $\{\frac{1}{x_n}\}$ - б.б.п. Пусть $\{x_n\}$ - б.м.п, тогда лишь конечное количество членов удовлетворяет неравенству $|x_n| \le \epsilon \Leftrightarrow |\frac{1}{x_n}| \ge \frac{1}{\epsilon}$ \Rightarrow неравенству $|\frac{1}{x_n}| < \frac{1}{\epsilon}$ удовлетворяет бесконечное количество членов последовательности $\{x_n\}$, а значит $\{\frac{1}{x_n}\}$ - б.м.п. \blacktriangleleft

ТЕОРЕМА 6 (АРИФМЕТИКА БЕСКОНЕЧНО МАЛЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ): 1: Если $\{x_n\}$ - б.м.п, то и $\{x_n\}$ - б.м.п. 2: Алгебраическая сумма конечного б.м.п - б.м.п

▶ 1: Очевидно. 2: Пусть $\{x_n\}$ и $\{y_n\}$ - б.м.п, тогда получаем, что $\forall \epsilon > 0 \exists n_1 = n_1(\frac{\epsilon}{2})$ и $n_2 = n_2(\frac{\epsilon}{2}) \in \mathbb{N}$: $\forall n > max\{n_1,n_2\} \to |x_n \pm y_n| \leqslant |x_n| + |y_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ ◀

ТЕОРЕМА 7 (АРИФМЕТИКА БЕСКОНЕЧНО МАЛЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ): Произведение б.м.п на ограниченную последовательность - б.м.п

▶ Пусть $\{x_n\}$ - б.м.п, а $\{y_n\}$ ограничена, тогда $\exists C>0: \forall n\in\mathbb{N}\to |y_n|< C$ и $\forall \epsilon>0 \exists n(\epsilon_1)\in\mathbb{N}[$ где $\epsilon_1=\frac{\epsilon}{C}]: \forall n>n(\epsilon_1)\to |x_n\cdot y_n|\leqslant |x_n|\cdot C<\frac{\epsilon}{C}\cdot C=\epsilon$ ◀

4 Сходимость и единственность предела сходящейся последовательности

Сходящаяся последовательность:Последовательность $\{x_n\}$ называется сходящейся (имеющей предел), если $\forall \epsilon > 0 \exists (\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n - a| < \epsilon$ Единственность предела последовательноси: Если $\{x_n\}$ сходится, то она имеет единственный предел

▶ Предположим обратное

```
\int \lim_{n \to \infty} x_n = a \Leftrightarrow \forall \epsilon > 0 \exists n_1 = n_1(\epsilon) \in \mathbb{N} : \forall n > n_1 \to a - \epsilon < x_n < a + \epsilon
                                                                                                                                                        , где a > b, возьмем \epsilon = \frac{a-b}{2} > 0,
 \lim_{n \to \infty} x_n = b \Leftrightarrow \forall \epsilon > 0 \exists n_2 = n_2(\epsilon) \in \mathbb{N} : \forall n > n_2 \to b - \epsilon < x_n < b + \epsilon
тогда \forall n>n(\epsilon)=\max\{n_1,n_2\}\to a-\epsilon=\frac{a+b}{2}< x_n<\frac{a+b}{2}=b+\epsilon \blacktriangleleft
```

5 Арифметические свойства пределов сходящихся последовательностей

```
Свойство 1: \lim_{n\to\infty}(x_n\pm y_n)=\lim_{n\to\infty}x_n\pm\lim_{n\to\infty}y_n
Свойство 2: \lim_{n\to\infty}(x_n\cdot y_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n
Свойство 3: Пусть \forall n \in \mathbb{N} \to y_n \neq 0 и \lim_{n \to \infty} y_n \neq 0, тогда: \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}
```

Пусть $\lim_{n\to\infty}x_n=a\Rightarrow x_n=a+a_n, \lim_{n\to\infty}y_n=b\Rightarrow y_n=b+\beta_n,$ где a_n,β_n - б.м.п

- ► (1) $x_n \pm y_n = (a + a_n) \pm (b + \beta) = (a \pm b) + (a_n \pm \beta_n)$ ◀
- ▶ (2) $x_n \cdot y_n = (a + a_n) \cdot (b + \beta) = ab + a\beta_n + ba_n a_n \beta_n$ ◀

 ▶ $\frac{x_n}{y_n} \frac{a}{b} = \frac{bx_n ay_n}{by_n} = \frac{b(a + a_n) a(b + \beta_n)}{by_n} = \frac{ba_n a\beta_n}{by_n} = \frac{1}{y_n} (a_n \frac{a}{b}\beta_n)$, а произведение ограниченной на б.м.п есть б.м.п. Тогда $\frac{x_n}{y_n} = \frac{a}{b} + \frac{1}{y_n} (a_n \frac{a}{b}\beta_n)$ ◀

Теорема о двух миллиционерах 6

ТЕОРЕМА: Пусть $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$ и $\forall n\in\mathbb{N}\to x_n\leqslant z_n\leqslant y_n$ справедливо, что $\lim_{n\to\infty} z_n = a$ \blacktriangleright Для каждого $\epsilon > 0$ находим $n(\epsilon)$ такое, что $\forall n > n(\epsilon)$ выполняются неравенства $a - \epsilon < x_n < a + \epsilon$ и $a-\epsilon < y_n < a+\epsilon$ тогда для таких n верно $a-\epsilon < x_n \leqslant z_n \leqslant y_n < a+\epsilon$ то есть $z_n \in (a-\epsilon,a+\epsilon)$

7 Теорема Штольца

ТЕОРЕМА: Пусть $\{y_n\}_{n=1}^{\infty}: 1) \forall n \in \mathbb{N} \to y_n \leqslant y_{n+1}; 2) \lim_{n \to \infty} y_n = +\infty; 3) \exists \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l$, тогда $\lim_{n\to\infty} \frac{x_n}{y_n} = l$

lacktriangle Так как $\lim_{n \to \infty} rac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \Rightarrow rac{x_{n_1} - x_n}{y_{n+1} - y_n} = l + a_n$, где a_n - б.м.п, а значит $orall \epsilon > 0 \exists n(\epsilon) : orall n \geqslant n(\epsilon) \to |a_n| < 1$ $\frac{\epsilon}{2}$. Полагая значение номера равным последовательно $n(\epsilon), n(\epsilon)+1,...,n$ получаем систему уравнений: $x_{n+1} - ly_{n+1} = x_n - ly_n + a_n(y_{n+1} - y_n),$ $\int x_{n(\epsilon)+1} - ly_{n(\epsilon)+1} = x_n(\epsilon) - ly_n(\epsilon) + a_n(\epsilon)(y_{n(\epsilon)+1} - y_n(\epsilon))$ сложим полученные равенства, получим $x_{n+1} - ly_{n+1} = x_{n(\epsilon)} - ly_{n(\epsilon)} + \sum_{i=n(\epsilon)}^n a_i(y_{i+1} - y_i) \rightarrow |x_{n+1} - ly_{n+1}| \leqslant n$ $|x_{n(\epsilon)} - ly_{n(\epsilon)}| + |a_{n(\epsilon)}| \cdot |y_{n(\epsilon)+1} - y_{n(\epsilon)}| + \dots + |a_n| \cdot |y_{n+1} - y_n|, |x_{n+1} - ly_{n+1}| \le |x_{n(\epsilon)} - ly_{n(\epsilon)}| + \frac{\epsilon}{2} |y_{n(\epsilon)+1} - y_{n(\epsilon)}| + \dots + \frac{\epsilon}{2} |y_{n+1} - y_n|, |x_{n+1} - y_{n(\epsilon)}| + \frac{\epsilon}{2} |y_{n+1} -$

 $\frac{|x_{n(@e)}-ly_{n(\epsilon)}|}{y_{n+1}}<rac{\epsilon}{2}$ Полагая $n_0=maxn_1,n(\epsilon)$ получаем, что $\forall n>n_0
ightarrow |rac{x_{n+1}}{y_{n+1}}-l|<\epsilon
ightarrow rac{x_n}{y_n} \xrightarrow{n
ightarrow\infty}=l$ \blacktriangleleft

8 Теорема Вейерштрасса

ТЕОРЕМА: Если неубывающая (невозрастающая) последовательность $\{x_n\}$ ограничена сверху (снизу), то она $\operatorname{сходится} \ \mathbf{K} \ sup x_n$

▶ Пусть $\{x_n\}: \forall n \in \mathbb{N} \to x_n \leqslant x_{n+1}$ и $x_n \leqslant C \in \mathbb{R} \Rightarrow \exists \hat{x} := sup_{n \in \mathbb{R}} x_n$ Покажем, что $\lim_{n \to \infty} x_n = \overline{x}$. Действительно, $\forall n \in \mathbb{N} \to x_n \leqslant (x)$ - согласно определению точки верхней грани. Далее, фиксируем значение $\epsilon>0$, для которого согласно утверждению $\exists x_\epsilon: \overline{x}-\epsilon>x_\epsilon$, а в силу того, что $\{x_n\}\uparrow$ получаем, что $\forall n>n_\epsilon\to \infty$ $\overline{x} - \epsilon < x_n$, тогда для этих же номеров справедливо $\overline{x} - \epsilon < x_n \leqslant \overline{x} \Rightarrow |x_n - \overline{x}| < \epsilon \Rightarrow \lim_{n \to \infty} x_n = \overline{x} = \sup_{n \in \mathbb{N}} x_n$

9 Теорема Больцано-Вейерштрасса без док-ва

ТЕОРЕМА: Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность

10 Критерий Коши о фундаментальности последовательности

ТЕОРЕМА: Для сходимости последовательности необходимо и достаточно, что бы она была фундаментальной. Определение: Последовательность $\{x_n\}$ называется фундаментальной, если для нее выполняется условие Коши: $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n, m \in \mathbb{N} : n, m > n(\epsilon) \to |x_n - x_m| < \epsilon$

- lacktriangle Необходимость: Пусть $x_n \xrightarrow{n o \infty} a \in \mathbb{R}$ возьмем произвольное $\epsilon > 0$ тогда $\exists n(\epsilon) \in \mathbb{N}: \forall n > n(\epsilon) \to \infty$ $|x_n-a|<rac{\epsilon}{2},$ если теперь $n,m>n(\epsilon)$ то $|x_n-x_m|=|x_n-a-(x_n-a)|\leqslant |x_n-a|+|x_m-a|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$
- \blacktriangleright Достаточность: Пусть последовательность $\{x_n\}$ фундаментальна, то есть удовлетворяет условию в определении. Покажем что она сходится. Покажем, что последовательность $\{x_n\}$ ограничена. Возьмем $\epsilon=1,$ тогда согласно определению $\forall n > n(1) \rightarrow |x_n - x_{n(1)}| < 1 \Rightarrow |x_n| \leqslant |x_{n(1)}| + 1$, так как $|a| - |b| \leqslant |a - b|$. Следовательно $\{x_n\}$ ограничена.

По теореме Больцано-Вейерштрасса из $\{x_n\}$ можно выделить сходящуюся подпоследовательность $\{x_{k_n}\}$. Пусть $a := \lim_{n \to \infty} x_{k_n}$

Покажем что $\lim_{n\to\infty}x_n=a$. Согласно определению, имеем что $\forall \epsilon>0 \exists n(\epsilon)\in\mathbb{N}: \forall n,k>n(\epsilon)\to |x_n-x_{k_n}|<\frac{\epsilon}{2}$ Переходя к пределу при $k \to \infty$, получаем $|x_n - a| < \frac{\epsilon}{2} < \epsilon \blacktriangleleft$

Эквивалентность определений предела по Коши и по Гейне 11

Определение предела функции по Коши и по Гейне являются эквивалентными

▶ Пусть $f(x) \xrightarrow{x \to a} b$ по Коши. Покажем, что $\lim_{n \to \infty} f(x_n) = b$, где $x_n \xrightarrow{n \to \infty} a$ и $x_n \neq a$

Из сходимости функции по Коши следует, что $f: \mathring{\mathbb{U}}(a,\delta) \to \mathbb{R}$. Рассмотрим проивзольную последовательность $\{x_n\}: x_n \in \mathring{\mathbb{U}}(a,\delta) \text{ и } x_n \xrightarrow{n \to \infty} a.$

Фиксируем произвольное положительное число ϵ , тогда согласно определению Коши имеем, что $\exists \delta = \delta(\epsilon) >$ $0: \forall x \in \mathbb{U}(a, \delta) \to f(x) \in \mathbb{U}_{\epsilon}(\delta).$

В силу сходимости $x_n \xrightarrow{x \to \infty} a$ для выбранного $\delta = \delta(\epsilon)$.

 $\exists n(\delta) \in \mathbb{N} : \forall n \geqslant n(\delta) \to x_n \in \mathring{\mathbb{U}}(a,\delta).$ Но тогда $\forall n \geqslant n(\delta) \to f(x_n) \in \mathbb{U}_{\epsilon}(b) \Rightarrow f(x_n) \xrightarrow{x \to \infty} b$

Пусть $\lim_{n\to\infty} f(x_n) = b$, где $x_n \xrightarrow{n\to\infty} a$ и $x_n \neq a$. Покажем, что $f(x) \xrightarrow{x\to a} b$.

Допустим противное, то есть что $\exists \epsilon_0 > 0 : \forall \delta > 0 \exists x \in \mathring{\mathbb{U}}(a, \delta) : f(x) \notin \mathbb{U}_{\epsilon_0}(b)$.

Будем в качестве δ брать $\delta = \frac{1}{n}$, а соответствующее значение x обозначать через x_{n_1} то есть что

 $\forall n \in \mathbb{N} \exists x_n \in \mathbb{U}(a, \frac{1}{n}) : f(x_n) \notin \mathbb{U}_{\epsilon_0}(b) \blacktriangleleft$

Ho это означает, что для последовательности $\{x_n\}_{n=1}^{\infty}$ имеем: $x_n \neq a, x_n \xrightarrow{x \to \infty} a, \lim_{n \to \infty} f(x_n) \neq b$ то есть b не является пределом функции f(x) при $x \to a$ согласно определению предела функции в точке по Коши, что противоречит исходному условию.

12 Критерий Коши о сходимости функции

ТЕОРЕМА: Пусть функция f(x) определена на $\mathbb{U}(a)$, где $a \in \mathbb{R}$. Тогда для существования конечного предела функции в точке a необходимо и достаточно что бы выполнялось условие Коши $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0$: \forall : $x', x'' \in \mathbb{U}(a, \delta) \to |f(x') - f(x'')| < \epsilon$

▶ Необходимость: Пусть $\exists \lim_{x\to a} f(x) = b \in \mathbb{R}$, тогда $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 : \forall x', x'' \in \mathring{\mathbb{R}}(a, \delta) \to |f(x') - b| < \frac{\epsilon}{2}$ и $|f(x'')-b|<\frac{\epsilon}{2}$

Отсюда заключем, что

$$|f(x') - f(x'')| = |f(x') - b - f(x'') + b| \le |f(x') - b| + |f(x'') - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \blacktriangleleft$$

 $|f(x')-f(x'')|=|f(x')-b-f(x'')+b|\leqslant |f(x')-b|+|f(x'')-b|< rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$ \blacksquare Достаточность: Пусть выполняется условие Коши. Покажем $\exists \lim_{x\to a} f(x)$ Согласно определению предела по Гейне возьмем $x_n \in \mathring{\mathbb{U}}(a): x_n \stackrel{n \to \infty}{\longleftarrow} a$. Так же возьмем произвольное $\epsilon > 0$ к которому подбираем $\delta=\delta(\epsilon)>0$ из определения следует, что найдется $n(\delta)\in\mathbb{N}: \forall n\geqslant n(\delta)\to x_n\in\mathring{\mathbb{U}}(a,\delta)$ Тогда из условия Коши

$$|f(x_n) - f(x_m)| < \epsilon | \forall n, m \ge n(\delta)$$

Тогда последовательность $\{f(x_n)\}$ сходится в силу критерия Коши для последовательностей. Пусть мы имеем, что $\lim_{n\to\infty} f(x_n) = A \in \mathbb{R}$

Для завершения доказательства покажем, что $\forall \{x'_n\}: x'_n \in \mathring{\mathbb{U}}(a), x'_n \xrightarrow{n \to \infty} a$ предел $\lim_{n \to \infty} f(x'_n)$ (существующий по уже доказанному) и также равен A

Предположим противное: $\lim_{n\to\infty} f(x_n') = B \neq A$ для некоторой последовательности $\{x_n'\} : x_n' \in \mathring{\mathbb{U}}(a), x_n \xrightarrow{n\to} a$ Так как $\{f(x_1), f(x_2), f(x_3)...\}$ расходится, то получаем противоречие \blacktriangleleft

13 Непрерывность функций над арифметическими операциями с ними

ТЕОРЕМА: Пусть на одном и том же множестве заданы функции f(x) и g(x), непрерывные в точке а. Тогда функция $f(x) \pm g(x), f(x) \cdot g(x), \frac{f(x)}{g(x)}$ непрерывны в точке а

▶ Так как непрерывные функции в точке а функции имеют в этой точке пределы, соответственно равные f(a) и g(a), то в силу арифметических свойств предела функции $f(x) \pm g(x), f(x) \cdot g(x), \frac{f(x)}{g(x)}$ существуют и равны соответственно $f(a) \pm g(a), f(a) \cdot g(a), \frac{f(a)}{g(a)}$. Но как раз эти величины равны частным значениям перечисленных функций в точке а. А значит, по определению эти функции непрерывны в точке а. \blacktriangleleft

14 О непрерывности сложной функции

ТЕОРЕМА: Пусть функция $x = \varphi(t)$ непрерывна в точке a, а функция y = f(x) непрерывна в точке $b = \varphi(a)$. Тогда функция $y = f[\varphi(t)]$ непрерывна в точке a

▶ Пусть $\{t_n\}$ - произвольная последовательность значений аргумента сложной функции сходящейся в точке а. Так как функция $x = \varphi(t)$ непрерывна в точке а, то определению непрерывности по Гейне соответствующая последовательность значений функции $x_n = \varphi(t_n)$ сходится к числу $b = \varphi(a)$. Далее поскольку функция y = f(x) непрерывна в точке $b = \varphi(a)$ и для нее указанная выше последовательность $\{x_n\}$ сходящаяся к $b = \varphi(a)$ является последовательностью значений аргумента, то соответствующая последовательность значений функции $f(x_n) = f[\varphi(t_n)]$ сходится к числу $f(b) = f[\varphi(a)]$

15 Существование односторонних пределов монотонной на отрезке функции

ТЕОРЕМА: Если функция f определена и является монотонной на отрезке [a,b], то в каждой точке x_0 из интервала функции (a,b) функция имеет конечные пределы слева и справа, а в точках а и b соответственно правый и левый пределы.

▶ Пусть функция f(x) возрастает на отрезке [a,b]. Зафиксируем точку x_0 , принадлежащую (a,b] Тогда: $\forall x \in [a,x_0] \to f(x) \leqslant f(x_0)$

Множество значений функции f(x) на промежутке $[a, x_0)$ ограничено сверху, по теореме о точной верхней грани существует: $\sup_{a \leq x < x_0}$, где $M \leq f(x_0)$.

Согласно определению точной верхней грани выполняются следующие условия:

```
\forall x \in [a, x_0) \to f(x) \leqslant M
```

$$\forall \epsilon > 0 \exists x_{\epsilon} = x_{\epsilon}(\epsilon) \in [a, x_0) : M - \epsilon < f(x_{\epsilon})$$

Обозначим $\delta = x_0 - x_{\epsilon}, \delta > 0$

Имеем: $\forall \epsilon > 0 \exists \delta = x_0 - x_\epsilon > 0 : \forall x \in (x_0 - \delta; x_0) \to |M - f(x_0)| < \epsilon \blacktriangleleft$

16 Монотонность и непрерывность обратной функции

ТЕОРЕМА: Пусть функция y = f(x) возрастает (убывает) на отрезке [a,b] и непрерывна на нем и пусть $a = f(a), \beta = f(b)$. Тогда если множеством значений функции y = f(x) является отрезок $[a,\beta]$ (соответственно

отрезок $[\beta, a]$) то на этом последнем отрезке определена обратная для y = f(x) функция $x = f^{-1}(y)$, которая также непрерывно возрастает (убывает) на указанном отрезке.

▶ Так как f(x) возрастает и непрерывна на [a,b], то в силу необходимости теоремы о непрерывности монотонной функции множеством всех значений этой функции является отрезок $[a,\beta]$. Но тогда на этом отрезке существует возрастающая обратная функция $x=f^{-1}(y)$ в силу биективности правила f, которая следует из возрастания. Непрерывность обратной функции вытекает из того, что [a,b] - множество всех значений обратной функции и достаточности для нее из теоремы о непрерывности монотонной функции. Для убывающей функции доказательство аналогично. \blacktriangleleft

17 О локальной ограниченности функции, имеющей конечный предел

ТЕОРЕМА: Для функции f(x), имеющей (конечный) предел при $x \to x_0$ существует проколотая окрестность этой точки, на которой данная функция ограничена.

▶ Пусть $a = \lim_{x \to \infty}(x)$. Тогда для положительного числа 1 найдется $\delta > 0$ такое, что при $0 < |x - x_0| < \delta$ выполняется неравенство |f(x) - a| < 1 Отсюда: $|f(x)| = |f(x) - a + a| \le |f(x) - a| + |a| < 1 + |a|$ т.е |f(x)| < 1 + |a|. И мы видим что f(x) ограничена в проколотой δ -окрестности $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ точки $x_0 1$ ◀

18 Устойчивость знака непрерывной в точке функции

ТЕОРЕМА: Пусть f(x) задана на множестве на X, непрерывна в точке $x_0 \in X$ и $f(x_0) \neq 0$. Тогда существует положительное число δ такое, что для всех $x \in (x_0 - \delta, x_0 + \delta) \cap X$ функция имеет тот же знак, что и $f(x_0)$

▶ Пусть $f(x_0) > 0$. Тогда в силу непрерывность функции для $\forall \epsilon > 0 : \forall x \in X : |x_0 - x| < \delta$ выполняется условие $|f(x) - f(x_0)| < \epsilon$. Запишем последнее неравенство в виде $f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$ оно выполняется для всех $x \in (x_0 - \delta, x_0)$. Возьмем $\epsilon = f(x_0) > 0$, тогда получи, что для всех $x \in (x_0 - \delta, x_0 + \delta) f(x) > 0$ Если $f(x_0) < 0$, то рассмотрим функцию f(x). Тогда $f(x_0) > 0$ и по только что доказанному существует δ -окрестности точки x_0 , в которой - f(x) > 0. Следовательно f(x) < 0

19 Первая теорема Вейерштрасса о непрерывности

ТЕОРЕМА: Если функция f(x) непрерывна на отрезке [a,b], то она ограничена на нем.

▶ Док-во от противного. Пусть для всякого M>0 найдется точка $x_M\in[a,b]$, что $|f(x_M)|>M$: для M=1 найдется $x_1\in[a,b]:|f(x_1)|>1$; для M=2 найдется $x_2\in[a,b]:|f(x_2)|>2$; и тд. Для M=n найдется $x_n\in[a,b]:|f(x_n)|>n$; Итак построена последовательность, $\{x_n\}\subset[a,b]$ такая, что для всех $n:|f(x_n)|>n$. Ясно, что $f(x_n)\to\infty$. Последовательность $x_{n_k}\to a\in[a,b]$ т. е ограничена. Следовательно по Т. Больцано-Вейерштрасса существует подпоследовательность $\{x_{n_k}\}\subset\{x_n\}$ такая, что $x_{n_k}\to a\in[a,b]$. Так как функция f непрерывна на отрезке [a,b], она непрерывна и в точке $a\in[a,b]$. Итак имеем $f(x_{n_k})\to f(a)$, но по построению $f(x_{n_k})\to\infty$, что является противоречием \blacktriangleleft