Chapter 5. Line and Surface Integrals

1 Mathematical Representation of Surfaces

Question 1: What is a surface in 3-dimensional (2-dimensional) space?

Question 2: How to represent it in mathematics?

1.1	Parameterization	of	Surfaces
 •		$\mathbf{O}_{\mathbf{I}}$	Duriacos

Example Parameterize the following surfaces:

1. Spherical band: the portion of the sphere $x^2 + y^2 + z^2 = 36$ between the plane z = -3 and $z = 3\sqrt{3}$.

2. The surface $z = x + y^2, 0 \le x \le 1, 0 \le y \le 2$.

3. Find a parametrization of the cone $z = \sqrt{x^2 + y^2}$, $1 \le z \le 2$.

4. The plane with norm vector (-1, 2, 3) passes through (2, 3, 1).

5. S is the surface whose sides S_1 is given by $x^2 + y^2 = 1$, bottom S_2 $x^2 + y^2 \le 1$ in the plane z = 0, and top S_3 z = 1 + x lies above S_2 .

6. Find a parametrization of the cylinder

$$x^2 + (y-3)^2 = 9, \quad 0 \le z \le 5$$

1.2 Tangent Plane of Curves

Definition Given a surface S with a parameterization $\vec{r}(u, v)$, the tangent plane of S at point $P = \vec{r}(u_0, v_0)$ is the one with equation

$$[(x, y, z) - P] \cdot \left[\partial_u \vec{r}(u_0, v_0) \times \partial_v \vec{r}(u_0, v_0) \right] = 0,$$

where

$$\partial_u \vec{r}(u_0, v_0) \times \partial_v \vec{r}(u_0, v_0)$$

is the norm vector of the tangent plane at $P = \vec{r}(u_0, v_0)$.

Particularly, $|\vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0)|$ represents the area on the tangent plane over unit square on uv-plane.

Example Let S as the surface of the cone $z = 1 + \sqrt{x^2 + y^2}$, for $0 \le z \le 8$. Find its tangent plane and norm vector at P(3,4,6).

2 Surface Integral of 1st kind

Definition:

Remark: If S is a region D on xy-plan, $\int_S f dS$ is same as the double integral $\int_D f(x,y,0) dx dy$.

Physical Interpretation Let f(x, y, z) be the point density of a thin sheet shaped of S. Then

- $\int_S f(x, y, z) dS$ is the mass of the sheet.
- $(\int_S x f(x,y,z) dS, \int_S y f(x,y,z) dS, \int_S z f(x,y,z) dS)$ is the center of mass of the wire.
- $\int_S 1 \ dS$ is the area of the surface S.

Example Compute the surface integral $\iint_S x^2 dS$, where S is the unit sphere $x^2 + y^2 + z^2 = 1$.

Example Evaluate $\iint_S y \, dS$ where S is the surface $z = x + y^2, 0 \le x \le 1, 0 \le y \le 2$.

Example Evaluate $\iint_s z \, dS$ where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose bottom S_2 is the disk $x^2 + y^2 \le 1$ in the plane z = 0, and whose top S_3 is the part of the plane z = 1 + x that lies above S_2 .

Example Find the area of tilted plane x - y + 2z = 2 inside cylinder

- a.) Inside the cylinder $x^2 + z^2 = 3$
- b.) Inside the cylinder $y^2 + z^2 = 2$.

3 Surface integral of 2nd kind

Definition: