

Школа Data analyst Занятие 13

Статистический анализ Тема 3

Disclaimer

Все формулировки далее нестрогие, за более строгими определениями обращайтесь к специализированной литературе

А/В тестирование

План занятия

- АБ тестирование
 - 。 Общие слова
 - Статистические критерии

Что такое А/В тест?

Бизнес и процессы нуждаются в постоянном улучшении/изменении. **Откуда идеи ?** – рынок, поведение пользователей, потребности, видение...

Как проверить идею?

Как выбрать успешные идеи достоверно и с минимальными затратами?

- Здравый смысл?
- Опросы?
- Фокус-группы?
- Экспертиза?
- Интуиция?
- Оккультные практики?

Что такое А/В тест?

Тестируется:

- Внешний вид (вкус, запах, тембр, пр.)
- Алгоритмы и их влияние
- Новая функциональность
- Пользовательский опыт
- ...
- Ухудшения

Что такое А/В тест?

Планирование:

- описание теста
- группировка участников теста
- продолжительность
- пр.

Проверка гипотез

Метрики

Прежде чем начать тестирование, необходимо определиться с бизнес показателями по которым мы будем ориентироваться при принятии решений.

Что должно значимо улучшиться?

Например, "количество заказов", "количество денег", "количество клиентов" и т.д., и т.п..

Есть ли какие-то проблемы с такими метриками? Как их корректно рассчитать?

Метрики

Proxy – метрики:

достаточно чувствительны и хорошо согласуются с бизнес показателями

Пример: число уникальных пользователей или репостов в социальных сетях на сайте яхт-клуба

Виды метрик:

- Предварительные метрики (до эксперимента)
- Экспериментальные
- Бизнес-метрики

Метрики

VS

Office Online

TOP STARCHES

Home Products Help and How to Downloads Clip Art Templates Microsoft Office Live

Объясняет ли фича конверсию?

Тестирование на исторических данных

Пример: Есть сайт пиццерии, на сайте есть регистрация, пользователи идентифицируются достаточно точно. Имеется также довольно внушительная история заказов пользователей, а также существующий алгоритм выдачи предложений по "сопутствующим товарам", исходя из того, что заказывает пользователь. Допустим мы думаем над внедрением нового алгоритма. Какие показатели стоит измерить на исторических данных?

Дизайн эксперимента

- Как правильно выбрать пользователей?
 - 。 Стратификация снижаем дисперсию
 - Рандомизация обеспечиваем репрезентативность
- Какие получены артефакты?
- А что если мы хотим провести несколько экспериментов одновременно?
 - Как оценить ошибку теста?

Дизайн эксперимента

- Как правильно выбрать пользователей?
 - Стратификация
 - Рандомизация
- А что если мы хотим провести несколько экспериментов одновременно?
 - Обычно лучше разбить на непересекающиеся группы
 - Не проводить взаимоисключающие эксперименты
 - В связных экспериментах продумывать последовательность вариантов
 - Подождать завершения другого эксперимента
 - Хорошо подумать над влиянием фичей друг на друга, оценить связанность метрик и запустить эксперимент на свой страх и риск
 - Скоринг

Дизайн эксперимента

- Скоринг
 - o ROI
 - Видение продукта
 - 。 Запросы обратной связи (исторические данные)
 - Гигиена (фича у всех есть но нам не нужна)
 - 。 Wow-фактор
 - Сложность внедрения и поддержки

- Видеть значимые изменения где они есть
- Не видеть значимых изменений где их нет

UC Berkeley case	Мужчины			Женщины		
Факультет	Поступало	Поступило	%	Поступало	Поступило	%
Α	825	512	62, 1	108	89	82,4
В	560	353	63	25	17	68
С	325	120	36,9	593	202	34
D	417	138	33,1	375	131	34,9
E	191	53	27,8	393	94	23,9
F	272	16	5,9	341	24	7
Итого	2590	1192	46	1835	557	30,4

		Пятница	Суббота	Bcero
Α	Пользователи	990 000	500 000	1 490 000
	Конверсии	20 000	5 000	25 000
	%	2.02	1.00	1. 68
В	Пользователи	10 000	500 000	510 000
	Конверсии	230	6 000	6 230
	%	2.30	1.20	1.22

Обратный эксперимент: часть пользователей не видит изменений

Перекрестный эксперимент: группы пользователей чередуются

АА-тест: АВ-тест, но разным группам демонстрируется одно и то же решение

АА-тест: использование ЦПТ (пост-стратификация)

ААВ-тест: совмещенный АА и АВ-тесты

Объём выборки

- Минимальный размер эффекта **mde**
- Допустимые вероятности ошибок 1-ого и 2-ого рода
- Статистические инструменты
- Продолжительность теста

Число участников/событий → On-line калькуляторы, например:

https://raschitat-online.ru/raschet-doveritelnogo-intervala/ + формулы

https://socioline.ru/rv.php

https://fdfgroup.ru/poleznaya-informatsiya/stati/vyborka-tipy-vyborok-raschet-

oshibki-vyborki/

Ошибки 1-ого и 2-ого рода

		Верная гипотеза			
		H ₀	H ₁		
0	H ₀	Н ₀ принята	Н ₀ неверно принята (ошибка 2- ого рода, β): вероятность получить имеющиеся данные довольно высока при истинности Н ₀		
Ответ теста	H ₁	Н ₀ неверно отвергнута (ошибка 1-ого рода, α): вероятность получить имеющиеся данные при истинности Н ₀ слишком мала	Н ₀ отвергнута		

Ошибки 1-ого и 2-ого рода

Ошибка 1-ого рода критичнее

Вероятность ошибки первого рода $P(H_0 \text{ отв.} | H_0 \text{ вер.})$ жестко ограничивается

 $P(H_0 \text{ отвергнута } | H_0 \text{ верна}) = P(p \le \alpha | H_0) \le \alpha$

Вероятность ошибки второго рода $P(H_0 \text{ принимаем } | H_1 \text{ вер.})$ мягко минимизируется $pow = P(H_0 \text{ отвергнута } | H_1 \text{ верна}) = 1 - P(H_0 \text{ принимаем } | H_1 \text{ верна})$

p-value

Достигаемый уровень значимости — это вероятность при справедливости нулевой гипотезы получить такое же значение статистики, как в эксперименте, или ещё более экстремальное

Чем ниже ${\bf p}$ тем сильнее данные свидетельствуют против ${\bf H_0}$ в пользу ${\bf H_1}$

$$T(X) = t$$
$$p = \mathbb{P}(T \ge t | H_0)$$

p-value

$$p = FN_{(0,1)}(z) \qquad p = 1 - F_{N_{(0,1)}}(z) \qquad p = 2(1 - F_{N_{(0,1)}}(|z|))$$

$$H_1: \mu < \mu_0 \qquad H_1: \mu > \mu_0 \qquad H_1: \mu \neq \mu_0$$

$$f(x)_{0,2} \qquad 0,1 \qquad$$

Размер эффекта

p-value?

Какова вероятность верного предсказания? Насколько различаются суммы в чеках? и т.д.

Важно:

Выборка данных формируется случайно

Оценка размера эффекта по выборке это случайная величина

р показывает вероятность случайного получения такой оценки

p-value зависит от размера эффекта и размера выборки

На малых выборках эффект менее заметен, H_0 не отвергается

Еще раз про объём выборки

- Минимальный размер эффекта mde = p*эффект
- Допустимые вероятности ошибок 1-ого и 2-ого рода $\alpha = 0.05$
- Статистические инструменты
- Продолжительность теста

Конверсия 10%, нужно найти объем выборки N для фиксации эффекта 7%:

$$N = \frac{p(1-p)*z^2}{mde^2} = \frac{0.1(1-0.1)*1.96^2}{(0.1*0.07)^2} = 7056$$

Вопросы по α (или p-value)

Определяет ли α вероятность справедливости нулевой гипотезы H_0 ?

p-value — это такое значение статистики при справедливой H_0 с вероятностью α ?

Отсутствуют ли различия между группами при *p-value > 0.05*?

Имеет ли результат практическое значение?

Распределения, производные от нормального

$$X_1, X_2 \dots X_k \sim N(\mu, \sigma^2)$$

$$X = \sum_{i=1}^{k} X_i^2 \sim \mathcal{X}_k^2$$

$$X_1 \sim N(0,1)$$

$$X_2 \sim \mathcal{X}_k^2$$

$$X = \frac{X_1}{\sqrt{X_2/k}} \sim St(k)$$

$$X_{1} \sim \mathcal{X}_{k_{1}}^{2}$$

$$X_{2} \sim \mathcal{X}_{k_{2}}^{2}$$

$$X = \frac{X_{1}/k_{1}}{X_{2}/k_{2}} \sim F(k_{1}, k_{2})$$

Распределения, производные от нормального

$$X_1, X_2 ... X_n \sim N(\mu, \sigma^2) \rightarrow X^n = (X_1, X_2 ... X_n)$$

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{n})$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \Rightarrow X_{n-1}^2$$
 $T = \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} \sim St(n-1)$

$$T = \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} \sim St(n-1)$$

$$\frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}} \sim F(n_{1}-1, n_{2}-1)$$

Статистические критерии

Для среднего:

- Данные распределены нормально? Известна дисперсия \rightarrow z-критерий
- Дисперсия неизвестна → t-критерий (при большом количестве данных можно использовать квантили нормального распределения)

Для частоты:

Критерий согласия Пирсона (Хи-квадрат)

Для дисперсии:

- Среднее известно → критерий Хи-квадрат
- Неизвестно → критерий Фишера (z-критерий)

Статистические критерии

Одновыборочный критерий Стьюдента Сравнение непрерывных величин Среднее/Медиана/Мода, σ^2 — известна

Выборка:

Нулевая гипотеза:

Альтернатива:

Статистика:

Нулевое

распределение:

$$X^n = (X_1, \dots, X_n),$$

 $X \sim \mathcal{N}(\mu, \sigma^2)$

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu < \neq > \mu_0$

$$Z(X^n) = \frac{X_i - \mu_0}{\sigma / \sqrt{n}}$$

$$Z(X^n) = N(0,1)$$

Статистические критерии

Одновыборочный критерий Стьюдента Сравнение непрерывных величин Среднее/Медиана/Мода, σ^2 — неизвестна

Выборка:

Нулевая гипотеза:

Альтернатива:

Статистика:

Нулевое

распределение:

$$X^n = (X_1, ..., X_n)$$
, $X \sim \mathcal{N}(\mu, \sigma^2)$

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu < \neq > \mu_0$

$$T(X^n) = \frac{X_i - \mu_0}{S/\sqrt{n}}$$

$$T(X^n) \sim St(n-1)$$

Двухвыборочный критерий Стьюдента Независимые выборки, Z - критерий

Выборки:

 $X_{1}^{n_{1}} = (X_{11}, ..., X_{1n1}),$ $X_{2}^{n_{2}} = (X_{21}, ..., X_{2n2})$

 $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 < \neq > \mu_2$

Альтернатива:

Нулевая гипотеза:

Статистика:

 $Z\left(\boldsymbol{X}_{1}^{n_{1}},\boldsymbol{X}_{2}^{n_{2}}\right) = \frac{\bar{X}_{1} - \bar{X}_{2}}{\sqrt{\frac{\boldsymbol{\sigma_{1}}^{2}}{n} + \frac{\boldsymbol{\sigma_{2}}^{2}}{n}}}$

Нулевое

распределение:

$$\sigma_1 < \sigma_2$$

 $n_1 < n_2$

Двухвыборочный критерий Стьюдента Независимые выборки, Т - критерий

Выборки:

 $X_{1}^{n_{1}} = (X_{11}, ..., X_{1n1}),$ $X_{2}^{n_{2}} = (X_{21}, ..., X_{2n2})$

 $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

Нулевая гипотеза:

Альтернатива:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \neq > \mu_2$

Статистика:

 $\mathsf{T}(\boldsymbol{X}_{1}^{n_{1}}, \boldsymbol{X}_{2}^{n_{2}}) = \frac{\bar{X}_{1} - \bar{X}_{2}}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}^{2}}}}$

Нулевое

распределение:

$$\sigma_1 < \sigma_2$$
 $n_1 < n_2$

Двухвыборочный критерий Стьюдента Связанные выборки, Т - критерий

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 < \neq > \mu_2$

Выборки:

 $X_1^n = (X_{11}, ..., X_{1n}),$ $X_2^n = (X_{21}, ..., X_{2n})$ $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

Нулевая гипотеза:

Альтернатива:

Статистика:

Нулевое распределение:

 $T\left(\boldsymbol{X}_{1}^{n}, \boldsymbol{X}_{2}^{n}\right) = \frac{\bar{X}_{1} - \bar{X}_{2}}{S/\sqrt{n}}$ $T(X_1^n, X_2^n) \sim St(n-1)$

$$^{*}S = \sqrt{\frac{\sum_{i=0}^{n}(D_{i}-\overline{D})^{2}}{n-1}}$$
 , $D_{i} = X_{1i} \ _X_{2i}$

Сравнение дискретных величин

Критерий согласия Пирсона χ^2

Работает при большом количестве значений в каждой категории

Сравнение непрерывных величин Дисперсия/Разброс

Как не обмануть себя

- Не верить
 - 。 Ждать
 - Проводить обратный эксперимент
 - Не делать АБ тест без предварительного АА теста
 - Использовать статистику!
 - Определиться с размером ожидаемого эффекта
 - Допустимые вероятности ошибок 1-ого и 2-ого рода
 - Грамотно выбирать статистические критерии
- Не забывать правило Паретто

Механизм проверки гипотез

Гипотеза - данные - вывод

Прежде чем что-то сравнивать выдвигают конструктивную гипотезу, которую хочется проверить.

Например,

- препараты X и Y по-разному влияют на кровяное давление больных
- продолжительность лекции влияет на успеваемость студента
- постановка вопроса влияет на ответ респондента

На полученных данных мы пытаемся делать выводы об истинности или ложности выдвигаемой гипотезы

Гипотеза - данные - вывод

Нужно помнить, что проверка статистической гипотезы имеет вероятностный характер.

Точно также, мы не можем быть уверены на все 100, что параметр, оцениваемый по конечной выборке совпадает с реальным значением параметра в генеральной совокупности (вспоминаем доверительные интервалы).

Гипотеза

Статистическая гипотеза — предположение о виде распределения и свойствах случайной величины, которое можно подтвердить или опровергнуть применением статистических методов к данным выборки.

Гипотеза

Пусть в эксперименте наблюдается случайная величина **X**, распределение которой **P** полностью или частично неизвестно. Любое утверждение относительно **P** называют статистической гипотезой. Гипотезы бывают простые и сложные.

- Если гипотеза однозначно определяет P, т.е H: $\{P = P_0\}$, где P_0 это какой-то конкретный закон (например, нормальное распределение с параметрами 0 и 1), то гипотеза **простая.**
- Если же гипотеза утверждает, что **P** относится к семейству распределений, то гипотеза **сложная** (например, гипотеза о том, что данные распределены нормально, без фиксации параметров).

Формулировка основной гипотезы H_0 и конкурирующей гипотезы H_1 .

Задание уровня значимости α (или p-value), на котором в дальнейшем и будет сделан вывод о справедливости гипотезы. Он равен вероятности допустить ошибку первого рода H_0 .

Расчёт статистики ϕ критерия такой, что:

- её величина зависит от исходной выборки $\pmb{X^n} = (X_1, ..., X_n) \ \pmb{\varphi} = \varphi(X_1, ..., X_n)$
- по её значению можно делать выводы об истинности гипотезы H_0
- статистика $oldsymbol{arphi}$, как функция случайной величины $oldsymbol{X}$, также является случайной величиной и подчиняется какому-то закону распределения

Построение критической области. Из области значений φ выделяется подмножество (таких значений, по которым можно судить о существенных расхождениях с предположением. Его размер выбирается таким образом, чтобы выполнялось равенство $P(\varphi \in \mathbb{C}) = \alpha$. Это множество (и называется критической областью.

Вывод об истинности гипотезы. Наблюдаемые значения выборки подставляются в статистику $\boldsymbol{\varphi}$ и по попаданию (или непопаданию) в критическую область (выносится решение об отвержении (или принятии) выдвинутой гипотезы H_0 .

Итого

Выборка:	$X^n = ($	$[X_1, \ldots,$	X_n),	$X \sim P$
----------	-----------	-----------------	----------	------------

Нулевая гипотеза: H_0 : $P \in ω$

Альтернатива: H_1 : $P \notin \omega$

Статистика: $T(X_n)$, $T(X_n) \sim F(x)$ при H_0 $T(X_n) \nsim F(x)$ при H_1

Формализация конструктивной гипотезы

Пример с препаратами.

 H_0 : Реальная разность между средними значениями давлений в двух группах равна 0 (μ_0 - μ_1 = 0)

 H_1 : Реальная разность между средними значениями давлений в двух группах равна 0 (μ_0 - $\mu_1 \neq 0$)

Рассмотрим следующую задачу

В десятизначной записи числа Пи среди 10000 первых десятичных знаков после запятой цифры 0, 1,..., 9 встречаются соответственно **h**=(968, 1026, 1021, 972, 1014, 1046, 1021, 970, 948, 1014) раз. Можно ли при уровне значимости 0.05 (величина ошибки 1-го рода) считать эти цифры случайными?

Практика? Практика!

p-value

Про p-value habr: Если я живу в мире, где время доставки пиццы составляет 30 минут или меньше (нулевая гипотеза верна), насколько неожиданными являются мои доказательства в реальной жизни?

p-value отвечает на этот вопрос числом — вероятностью.

$$T(X) = t$$
$$p = \mathbb{P}(T \ge t | H_0)$$

Практика? Практика!

Размер эффекта

Размер эффекта — степень отклонения данных от нулевой гипотезы.

Примеры:

- Вероятность верного предсказания
- Вероятность выздоровления пациента
- Увеличение среднего чека

Ошибки 1/2-ого рода и размер эффекта

 μ_1 - μ_0 размер эффекта

α ошибка первого рода (или уровень значимости)

в ошибка второго рода

1 - β мощность критерия

с порог принятия решения

Ошибки 1/2-ого рода и размер эффекта

 μ_1 - μ_0 размер эффекта

α ошибка первого рода (или уровень значимости)

в ошибка второго рода

1 - β мощность критерия

с порог принятия решения

Практика? Практика!

Резюме

Обсудили что такое АБ тестирование, и общие принципы при его проведении Обсудили работу статистических критериев — механизма при принятии решения

Обратная связь

Спасибо за внимание!