Transforming Functions

Parent Functions

$$y = x^2$$

Parent Functions

$$y = x^3$$

$$y = |x|$$

Parent Functions

$$y = \sqrt{x}$$

$$y = \sqrt[3]{x}$$

Objectives

1 Perform vertical and horizontal shifts of functions

Perform vertical stretches and compressions of functions

Perform reflections of functions across the x- and y-axes

4 Perform multiple transformations of functions

$$f(x) \pm d$$

INVESTIGATION:

For the function f(x) = |x|, examine the effects of

$$g(x) = |x| \pm d$$

where d is a real number.

Vertical shifts

A vertical shift (a.k.a. vertical translation) moves each point on the graph either up or down by a given number of spaces.

Vertical shifts

A vertical shift (a.k.a. vertical translation) moves each point on the graph either up or down by a given number of spaces.

Equation	Shift Graph	Visually
f(x) + d	Up	Add <i>d</i> to <i>y</i> -coordinates
f(x)-d	Down	Subtract <i>d</i> from <i>y</i> -coordinates

For each, list the parent function and indicate the vertical translation. *Be specific*.

(a)
$$g(x) = x^2 + 3$$

For each, list the parent function and indicate the vertical translation. *Be specific*.

(a)
$$g(x) = x^2 + 3$$

Parent function: $f(x) = x^2$

For each, list the parent function and indicate the vertical translation. *Be specific*.

(a)
$$g(x) = x^2 + 3$$

Parent function: $f(x) = x^2$

Transformation: Shift up 3 units

(b)
$$g(x) = x^3 - 2$$

(b)
$$g(x) = x^3 - 2$$

Parent function: $f(x) = x^3$

(b)
$$g(x) = x^3 - 2$$

Parent function: $f(x) = x^3$

Transformation: Shift down 2 units

(c)
$$g(x) = |x| + 4.7$$

(c)
$$g(x) = |x| + 4.7$$

Parent function: f(x) = |x|

(c)
$$g(x) = |x| + 4.7$$

Parent function: f(x) = |x|

Transformation: Shift up 4.7 units

$$f(x \pm c)$$

INVESTIGATION:

For the function f(x) = |x|, examine the effects of

$$g(x) = |x \pm c|$$

where c is a real number.

A horizontal shift (a.k.a. horizontal translation) moves each point on the graph either left or right by a given number of spaces.

A horizontal shift (a.k.a. horizontal translation) moves each point on the graph either left or right by a given number of spaces.

Equation	Shift Graph
f(x+c)	Left
f(x-c)	Right

A horizontal shift (a.k.a. horizontal translation) moves each point on the graph either left or right by a given number of spaces.

Equation	Shift Graph
f(x+c)	Left
f(x-c)	Right

Note: With horizontal shifts, the addition or subtraction is done inside the function.

A horizontal shift (a.k.a. horizontal translation) moves each point on the graph either left or right by a given number of spaces.

Equation	Shift Graph
f(x+c)	Left
f(x-c)	Right

Note: With horizontal shifts, the addition or subtraction is done inside the function.

You will need to use () for functions like x^2 and x^3 .

For each, list the parent function and indicate the horizontal translation. *Be specific.*

(a)
$$g(x) = (x-2)^2$$

For each, list the parent function and indicate the horizontal translation. *Be specific.*

(a)
$$g(x) = (x-2)^2$$

Parent function: $f(x) = x^2$

For each, list the parent function and indicate the horizontal translation. *Be specific.*

(a)
$$g(x) = (x-2)^2$$

Parent function: $f(x) = x^2$

Transformation: Shift right 2 units

(b)
$$g(x) = |x+3|$$

(b)
$$g(x) = |x+3|$$

Parent function: f(x) = |x|

(b)
$$g(x) = |x+3|$$

Parent function: f(x) = |x|

Transformation: Shift left 3 units

(c)
$$g(x) = \sqrt{x-6}$$

(c)
$$g(x) = \sqrt{x-6}$$

Parent function: $f(x) = \sqrt{x}$

(c)
$$g(x) = \sqrt{x-6}$$

Parent function: $f(x) = \sqrt{x}$

Transformation: Shift right 6 units

Objectives

Perform vertical and horizontal shifts of functions

2 Perform vertical stretches and compressions of functions

Perform reflections of functions across the x- and y-axes

Perform multiple transformations of functions

$$a \cdot f(x)$$

INVESTIGATION:

For the function $f(x) = \sin x$, examine the effects of

$$g(x) = a \cdot \sin x$$

where a > 1 and also where 0 < a < 1.

Vertical Stretches and Compressions

A vertical stretch or vertical compression is obtained by vertically pulling on (or vertically pressing on) the graph.

Vertical Stretches and Compressions

A vertical stretch or vertical compression is obtained by vertically pulling on (or vertically pressing on) the graph.

A vertical stretch pulls the points away from the x-axis, while a vertical compression pushes the points towards the x-axis.

Vertical Stretches and Compressions

A vertical stretch or vertical compression is obtained by vertically pulling on (or vertically pressing on) the graph.

A vertical stretch pulls the points away from the x-axis, while a vertical compression pushes the points towards the x-axis.

Algebraically, we obtain vertical stretches and compressions by multiplying the entire function by a positive value.

Vertical Stretches and Compressions

Value of a Stretch or Compress?		Factor
<i>a</i> > 1	Stretch	a
0 < a < 1	Compression	$\frac{1}{a}$

Vertical Stretches and Compressions

Value of a	Stretch or Compress?	Factor
a > 1	Stretch	а
0 < a < 1	Compression	$\frac{1}{a}$

Vertical stretches and compressions will multiply the y-coordinates of the function by whatever the value of a is.

Vertical Stretches and Compressions

Value of a	Stretch or Compress?	Factor
a > 1	Stretch	a
0 < a < 1	Compression	$\frac{1}{a}$

Vertical stretches and compressions will multiply the *y*-coordinates of the function by whatever the value of *a* is.

Note: The factor is expressed as a value greater than 1.

List the parent function and indicate if there is a vertical stretch or vertical compression. Then list the factor.

(a)
$$g(x) = 2\sqrt{x}$$

List the parent function and indicate if there is a vertical stretch or vertical compression. Then list the factor.

(a)
$$g(x) = 2\sqrt{x}$$

Parent function: $f(x) = \sqrt{x}$

List the parent function and indicate if there is a vertical stretch or vertical compression. Then list the factor.

(a)
$$g(x) = 2\sqrt{x}$$

Parent function: $f(x) = \sqrt{x}$

Transformation: Vertical stretch by factor of 2

(b)
$$g(x) = 3.5\sqrt[3]{x}$$

(b)
$$g(x) = 3.5\sqrt[3]{x}$$

Parent function: $f(x) = \sqrt[3]{x}$

(b)
$$g(x) = 3.5\sqrt[3]{x}$$

Parent function: $f(x) = \sqrt[3]{x}$

Transformation: Vertical stretch by factor of 3.5

$$(c) \quad g(x) = \frac{1}{3}x^2$$

$$(c) \quad g(x) = \frac{1}{3}x^2$$

Parent function: $f(x) = x^2$

$$(c) \quad g(x) = \frac{1}{3}x^2$$

Parent function: $f(x) = x^2$

Transformation: Vertical compression by factor of 3

(d)
$$g(x) = \frac{2}{5}|x|$$

(d)
$$g(x) = \frac{2}{5}|x|$$

Parent function: f(x) = |x|

(d)
$$g(x) = \frac{2}{5}|x|$$

Parent function: f(x) = |x|

Transformation: Vertical compression by factor of $\frac{5}{2}$

Objectives

1 Perform vertical and horizontal shifts of functions

Perform vertical stretches and compressions of functions

3 Perform reflections of functions across the x- and y-axes

Perform multiple transformations of functions

Reflections of Functions Across the x- and y-axes

INVESTIGATION:

For the function
$$f(x) = \sqrt{x}$$
, examine the effects of

$$g(x) = -\sqrt{x}$$

Reflections of Functions Across the x- and y-axes

INVESTIGATION:

For the function
$$f(x) = \sqrt{x}$$
, examine the effects of

$$g(x) = \sqrt{-x}$$

Reflections Across the x- and y-Axes

When we multiply by -1, we reflect our graph across either the x-axis or the y-axis.

Reflections Across the x- and y-Axes

When we multiply by -1, we reflect our graph across either the x-axis or the y-axis.

Function	Reflect Across
-f(x)	<i>x</i> -axis
f(-x)	<i>y</i> -axis

List the parent function and indicate the axis it is reflected across.

(a)
$$g(x) = \sqrt[3]{-x}$$

List the parent function and indicate the axis it is reflected across.

(a)
$$g(x) = \sqrt[3]{-x}$$

Parent function: $f(x) = \sqrt[3]{x}$

List the parent function and indicate the axis it is reflected across.

(a)
$$g(x) = \sqrt[3]{-x}$$

Parent function: $f(x) = \sqrt[3]{x}$

Transformation: Reflected across the y-axis

(b)
$$g(x) = -|x|$$

(b)
$$g(x) = -|x|$$

Parent function: f(x) = |x|

(b)
$$g(x) = -|x|$$

Parent function: f(x) = |x|

Transformation: Reflected across the x-axis

Objectives

1 Perform vertical and horizontal shifts of functions

Perform vertical stretches and compressions of functions

3 Perform reflections of functions across the x- and y-axes

4 Perform multiple transformations of functions

For multiple transformations, perform them in the following order:

Horizontal translations (shift left or right)

- Horizontal translations (shift left or right)
- Reflections

- Horizontal translations (shift left or right)
- 2 Reflections
- Vertical stretches or compressions

- Horizontal translations (shift left or right)
- 2 Reflections
- Vertical stretches or compressions
- Vertical translations (shift up or down)

For multiple transformations, perform them in the following order:

- Horizontal translations (shift left or right)
- Reflections
- Vertical stretches or compressions
- Vertical translations (shift up or down)

Note: Steps 2 and 3 may be switched without penalty.

Determine the parent function and list all transformations done to it. Be specific.

(a)
$$g(x) = -2\sqrt{x-3}$$

Determine the parent function and list all transformations done to it. Be specific.

(a)
$$g(x) = -2\sqrt{x-3}$$

Parent function: $f(x) = \sqrt{x}$

Determine the parent function and list all transformations done to it. Be specific.

(a)
$$g(x) = -2\sqrt{x-3}$$

Parent function:
$$f(x) = \sqrt{x}$$

Shift right 3 units
$$\sqrt{x-3}$$

Determine the parent function and list all transformations done to it. Be specific.

(a)
$$g(x) = -2\sqrt{x-3}$$

Parent function: $f(x) = \sqrt{x}$

Shift right 3 units $\sqrt{x-3}$

Reflect across x-axis $-\sqrt{x-3}$

Determine the parent function and list all transformations done to it. Be specific.

(a)
$$g(x) = -2\sqrt{x-3}$$

Parent function: $f(x) = \sqrt{x}$

Shift right 3 units $\sqrt{x-3}$

Reflect across x-axis $-\sqrt{x-3}$

Vertical stretch by factor of 2 $-2\sqrt{x-3}$

(b)
$$g(x) = \frac{1}{2}(x+3)^2$$

(b)
$$g(x) = \frac{1}{2}(x+3)^2$$

Parent function: $f(x) = x^2$

(b)
$$g(x) = \frac{1}{2}(x+3)^2$$

Parent function: $f(x) = x^2$

Shift left 3 units $(x+3)^2$

(b)
$$g(x) = \frac{1}{2}(x+3)^2$$

Parent function: $f(x) = x^2$

Shift left 3 units $(x+3)^2$

Vertical compression by a factor of 2 $\frac{1}{2}(x+3)^2$

(c)
$$g(x) = |-x+2|+1$$

(c)
$$g(x) = |-x+2|+1$$

Parent function: f(x) = |x|

(c)
$$g(x) = |-x+2|+1$$

Parent function: f(x) = |x|

Shift left 2 units |x+2|

(c)
$$g(x) = |-x+2|+1$$

Parent function: f(x) = |x|

Shift left 2 units |x+2|

Reflect across *y*-axis |-x+2|

(c)
$$g(x) = |-x+2|+1$$

Parent function: f(x) = |x|

Shift left 2 units |x+2|

Reflect across *y*-axis |-x+2|

Vertical shift up 1 unit |-x+2|+1

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

Shift right 7 units $(x-7)^3$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

Shift right 7 units $(x-7)^3$

Reflect across y-axis $(-x-7)^3$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

Shift right 7 units $(x-7)^3$

Reflect across y-axis $(-x-7)^3$

Vertical compression by factor of 5 $\frac{1}{5}(-x-7)^3$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

Shift right 7 units $(x-7)^3$

Reflect across y-axis $(-x-7)^3$

Vertical compression by factor of 5 $\frac{1}{5}(-x-7)^3$

Reflect across x-axis $-\frac{1}{5}(-x-7)^3$

(d)
$$g(x) = -\frac{1}{5}(-x-7)^3 - 4$$

Parent function: $f(x) = x^3$

Shift right 7 units $(x-7)^3$

Reflect across y-axis $(-x-7)^3$

Vertical compression by factor of 5 $\frac{1}{5}(-x-7)^3$

Reflect across x-axis $-\frac{1}{5}(-x-7)^3$

Vertical shift down 4 units $-\frac{1}{5}(-x-7)^3-4$