# Future Vehicle Education Workshop

Subject: LiDAR

Automation Lab.



# **Contents**

- INTRODUCTION
- **EXERCISE**



■ LiDAR(Light Detection And Ranging)





- Distance Measurement
  - Time-Of-Flight(TOF)





■ RPLIDAR-A2(LiDAR)



Product Specification

- Distance range: 0.15m ~ 6m

- Angular range: 0 ~ 360 degree

- Angular resolution: 0.45 ~ 0.9 degree





### **■ LiDAR Operating**









### **■ LiDAR Operating**







- **■**LiDAR Operating
  - Measurement Angle



# **Contents**

- **INTRODUCTION**
- **EXERCISE**



### **■ LiDAR Application**

- Step 1 : Hardware connection
  - → Connect LiDAR's power USB cable and data USB cable to the hub and PC



### **■ LiDAR Application**

Step 2 : Running program and Connection





Device Manager– port(COM & LPT)
Check CP210x USB Port number





**■ LiDAR Application** 

■ Step 3 : Running Program [IDLE] Model: A2M8(40) FW: 1.28 HW: 7 Serial: EC8FEDF9C7E29BCEA.





### **■ LiDAR Application**

■ Step 3 : Running Program [IDLE] Model: A2M8(40) FW: 1.28 HW: 7 Serial: EC8FEDF9C7E29BCEA

When clicked, LiDAR operates.

270degree





### **■ LiDAR Application**

• Step 3 : Program Running



When the rider is in operation, detect objects as follows



### **■ LiDAR Application**

Step 3 : Running Program



**Motor Motion Speed Settings** 



Reset



### **■ LiDAR Application**

Step 3 : Running Program

**Storing LiDAR detection information** 





Distance information available based on degrees from 0 to 365

### **■ LiDAR Application**

Result Video





#### **■ LiDAR Basic Functions**

```
import Lib_LiDAR as LiDAR
if (__name__ == "__main__"):
   env = LiDAR.libLidar('COM11')
   env.init()
   env.getState()
   count = 0
    for scan in env.scanning():
        count += 1
        print('%d: Got %d measurments' % (count, len(scan)))
        if count == 100:
           env.stop()
           break
```

#### **■ LiDAR Basic Functions**



19

#### **■ LiDAR Basic Functions**



20

**■ LiDAR Basic Functions** 

```
import Lib_LiDAR as LiDAR
if (__name__ == "__main__"):
   env = LiDAR.libLidar('COM11')
   env.init()
   env.getState()
   count = 0
    for scan in env.scanning():
        count += 1
        print('%d: Got %d measurments' % (count, len(scan)))
        if count == 100:
            env.stop()
            break
```

```
0: Got 135 measurments
1: Got 135 measurments
2: Got 123 measurments
3: Got 117 measurments
4: Got 112 measurments
5: Got 110 measurments
6: Got 98 measurments
7: Got 93 measurments
8: Got 87 measurments
9: Got 89 measurments
10: Got 96 measurments
11: Got 93 measurments
```

LiDAR stop

#### **■ LiDAR Basic Functions**

1) LiDAR data scan

```
def scanning(self):
```

2) Output only data within a specific angle range

```
def getAngleRange(self, scan, minAngle, maxAngle):
```

3) Only output data within a specific distance range

```
def getDistanceRange(self, scan, minDist, maxDist):
```

4) Output only data within a specific angle and distance range

```
def getAngleDistanceRange(self, scan, minAngle, maxAngle, minDist, maxDist):
```

5) Change and check the RPM of the LiDAR Motor

```
def setRPM(self, rpm): def getRPM(self):
```

6) LiDAR stop

```
def stop(self):
```

7) LiDAR initialization

```
def init(self):
```

8) Check LiDAR status

```
def getState(self):
```



#### **■ LiDAR Basic Function**

1) Only output data within a specific angle range

def getAngleRange(self, scan, minAngle, maxAngle):

- Scan
  - · Result data obtained through the scanning() function
- minAngle
- · Minimum value of the angle to scan (0 or higher)
- maxAngle
- · Maximum value of the angle to scan(360 ০। চা
- Return: Search results in the form of a list
- · Output only data that satisfies the set conditions from the input data.





#### **■ LiDAR Basic Function**

2) Output only data within a specific distance range

def getDistanceRange(self, scan, minDist, maxDist):

#### - Scan

Result data obtained through the scanning() function

- minDist
- · Minimum distance to san (150 이상)
- maxDist
  - · Maximum distance to scan (600 ০। চা )
- Return: Search results in the form of a list
- · Output only data that satisfies the set conditions from the input data.





#### **■ LiDAR Basic Function**

3) Output only data within a specific angle and distance range

def getAngleDistanceRange(self, scan, minAngle, maxAngle, minDist, maxDist):

- Scan
- · Result data obtained through the scanning() function
- minAngle
  - · Minimum value of the angle to search (0 or higher)
- maxAngle
  - · Maximum angle to search (360 or less)
- minDist
  - Minimum distance to search (150 or higher)
- maxDist
- Maximum distance to search (600 or less)



- Return: Search results in the form of a list
- Output only data that satisfies the set conditions from the input data.



#### **■ LiDAR Basic Function**

4) Change and check the RPM of the LiDAR Motor

def setRPM(self, rpm):

- rpm
  - · Rotational speed of lidar motor
  - · Minimum 0, maximum 1023
- · Default : 660
- Return: None

def getRPM(self):

- Return: rpm(Int)
- · Returns the currently set rpm value



#### **■ LiDAR Basic Function**

5) LiDAR Stop

def stop(self):

- When the function is executed, stop LiDAR operation and disconnect.
- Return: None



- **LiDAR Basic Function** 
  - 2-1 : Output only LiDAR information within 180° to 210°



```
# LiDAR Lib
import Lib_LiDAR as LiDAR
if (__name__ == "__main__"):
    env = LiDAR.libLidar('COM11')
    env.init()
    count = 0
    for scan in env.scanning():
        count += 1
        scan = env.getAngleRange(scan, 180, 210)
        print(scan)
        if count == 100:
            env.stop()
            break
```

- **LiDAR Basic Function** 
  - 2-2 : Output only LiDAR information within 150mm ~ 300mm







#### **■ LiDAR Basic Function**

● 2-3 : Output only information contained within 200 mm to 250 mm of LiDAR information within 330° to 350°.





#### **■ LiDAR Basic Function**

 2-4: First, start the LiDAR at 660 rpm, and after 30 operations, change the motor RPM to 1000 rpm.





- **LiDAR Basic Function** 
  - 2-5 : After 50 LiDAR scanning operations, Stop the LiDAR





### ■ LiDAR Operation after object detection

• If no object is detected at a specific angle and distance, output "Go," and if an object is detected, output "Stop" and stop the LiDAR.

Angle (330° to 350°), distance (200 to 250 mm)

"Go" "Go"











12:1 CRLF UTF-8 4 spaces Python 3.9 %

# Thank You!

Automation Lab.

