Progetto 10 Semaforo

Informatica Industriale A.A 2018/2019 Pietro Colombo 793679

Carlo Radice 807159

- Introduzione al progetto
- Specifiche implementative
- Risultati delle simulazioni
- Casi particolari

- Introduzione al progetto
- Specifiche implementative
- Risultati delle simulazioni
- Casi particolari

Introduzione al progetto

Condizioni operative del semaforo:

- NOMINAL: ROSSO acceso per 3 secondi, il VERDE per 5 secondi e il GIALLO sovrapposto al verde per 2 secondi;
- STANDBY: ROSSO e VERDE spenti e il GIALLO lampeggia, 1 secondo (acceso), 2 secondi (spento)
- MAINTENANCE: ROSSO, GIALLO e VERDE lampeggiano a intervalli regolari di 0.5 secondi. È
 possibile avere la durata del ROSSO pari a 6 secondi e del GIALLO pari a metà, una o due volte
 la durata del rosso.

All'avvio del semaforo va automaticamente in posizione MAINTENANCE.

Il semaforo è dotato dei segnali ENABLE e RESET

- ENABLE: è attivo alto, con ENABLE a '0' il semaforo è insensibile a qualsiasi controllo;
- RESET: è attivo basso, quando RESET transisce da '1' a '0' il semaforo ritorna nello stato di MAINTENANCE.

- Introduzione al progetto
- Specifiche implementative
- Risultati delle simulazioni
- Casi particolari

Specifiche implementative

- Condizione operative del semaforo rappresentate dal segnale mode:
 - o '00' = MAINTENANCE
 - 0 '01' = STANDBY
 - '10' = NOMINAL

- Condizioni operative modalità MAINTENANCE rappresentate dal segnale **mod_Maintenance**:
 - o '00' = i segnali ROSSO, GIALLO, VERDE lampeggiano a intervalli regolari di 0.5 secondi
 - o '01' = ROSSO acceso per 6 secondi, GIALLO acceso per 3 secondi
 - o '10' = ROSSO acceso per 6 secondi, GIALLO acceso per 6 secondi
 - '11' = ROSSO acceso per 6 secondi, GIALLO acceso per 12 secondi

ClockFrequencyHz 100 Hz

Specifiche implementative: counter

- ad ogni ciclo di clock aggiorno i Ticks
- aggiorno i millisecondi quando Ticks è uguale a clockfrequency -10

 aggiorno i secondi quando i millisecondi sono uguali a 900 e azzero i millisecondi

- clk:in std_logic;
- nRst: in std_logic;
- milliseconds: inout integer := 0;
- seconds: inout integer := 0;
- nRstTimer : in std_logic

```
if rising edge (clk) then
   if nRstTimer = 'l' then
       Ticks <= 0:
       milliseconds <= 0;
        seconds <= 0;
   end if:
   -- if the negative reset signal is active
   if nRst = '0' then
       Ticks <= 0:
       milliseconds <= 0;
       seconds <= 0;
   else
        report "reset = 1";
        -- True one every 10 milliseconds
       if Ticks = ClockFrequencyHz - 10 then
            report "tick = 0";
           Ticks <= 0;
            -- True every second
            if milliseconds = 900 then
                report "aggiorno i secondi";
                milliseconds <= 0;
                seconds <= seconds + 1;
                report "aggiorno i millisecondi";
                milliseconds <= milliseconds + 100:
            end if:
       else
            Ticks <= Ticks + 10:
       end if:
   end if:
end if:
```

Specifiche implementative: semaforo nominal

Per i primi 3 secondi rimane acceso il rosso
Per i successivi 3 secondi accendo il verde
Per i successivi 2 secondi accendo il verde e il giallo
clk: in std_logic;
mode: inout std_logic_vector (1 downto 0):= "10";
red, green, yellow: out std_logic:= '0';
nRst: in std_logic;
milliseconds: in integer;
seconds: in std_logic;
nRstTimer: inout std_logic:= '0';

mod Maintenance: in std logic vector (1 downto 0

```
if (mode = "10") then
    --nominal
    report "nominal";
    if (seconds < 3) then
        red <= '1';
        yellow <= '0';
        green <= '0';
    else
        red <= '0';
        if (seconds < 8) then
            green <= 'l';
            if (seconds >= 6) then
                vellow <= '1';
            end if:
        else
            green <= '0';
            vellow <= '0';
            nRstTimer <= 'l';
            red <= '1';
        end if:
    end if:
end if:
```

Specifiche implementative: semaforo standby

- Per il primo secondo accendo il giallo
- Per i successivi 3 secondi tengo tutto spento

```
if (mode = "01") then
    --standby
    report "standby";
    if (seconds < 1) then
        yellow <= 'l';
        red <= '0';
        green <= '0';
    else
        if (seconds < 3) then
            yellow <= '0';
        else
            nRstTimer <= 'l';
            yellow <= 'l';
        end if:
    end if:
```

Specifiche implementative: semaforo maintenance

- '00' = i segnali ROSSO,
 GIALLO, VERDE lampeggiano
 a intervalli regolari di 0.5
 secondi
- '01' = ROSSO acceso per 6 secondi, GIALLO acceso per 3 secondi
- '10' = ROSSO acceso per 6 secondi, GIALLO acceso per 6 secondi
- '11' = ROSSO acceso per 6 secondi, GIALLO acceso per 12 secondi

```
if (mode = "00") then
    --maintenance
    report "maintenace";
    if (mod_Maintenance = "00") then
        if (seconds = 0 and milliseconds < 500) then
            red <= '1';
            yellow <= '0';
            green <= '0';
            if (seconds < 1) then
                red <= '0';
                vellow <= 'l';
                if (milliseconds < 500 and seconds >= 1) then
                    vellow <= '0';
                    green <= '1';
                    nRstTimer <= '1':
                    green <= '0';
                    red <= '1';
                end if:
            end if:
        end if;
    else
        if (seconds < 6) then
            red <= '1';
            yellow <= '0';
            green <= '0';
            if ((seconds < 9 and mod_Maintenance = "01") or (seconds < 12 and mod_Maintenance = "10")
                    or (seconds < 18 and mod Maintenance = "11")) then
                -- in base alla modalita la durata del giallo cambia
                red <= '0';
                yellow <= 'l';
            else
                nRstTimer <= 'l';
                yellow <= '0';
                red <= '1';
            end if:
        end if;
    end if:
else
```

- Introduzione al progetto
- Specifiche implementative
- Risultati delle simulazioni
- Casi particolari

• '10' = NOMINAL: ROSSO on 3 sec, VERDE on 5 sec, GIALLO sovrapposto al verde per 2 sec.

• '01' = STANDBY: GIALLO on 1 sec, GIALLO off 2 sec.

- '00' = MAINTENANCE:
 - o '00' = i segnali ROSSO, GIALLO, VERDE lampeggiano a intervalli regolari di 0.5 secondi

- '00' = MAINTENANCE:
 - o '01' = ROSSO acceso per 6 secondi, GIALLO acceso per 3 secondi

- '00' = MAINTENANCE:
 - o '10' = ROSSO acceso per 6 secondi, GIALLO acceso per 6 secondi

- '00' = MAINTENANCE:
 - o '11' = ROSSO acceso per 6 secondi, GIALLO acceso per 12 secondi

- Introduzione al progetto
- Specifiche implementative
- Risultati delle simulazioni
- Casi particolari

Casi Particolari

 Reset attivo basso, passo alla modalità Maintenance (lampegiano ad intervalli regolari di 0.5 secondi)

Conclusioni

Il lavoro effettuato consiste nell'implementazione di un semaforo

Il sistema si comporta come definito da progetto secondo le varie modalità.

Dopo aver effettuato le simulazioni

• i risultati sono coerenti con quanto richiesto dal progetto