- 1. Let P and P' be the points with spherical coordinates $(1, \theta, \phi)$ and $(1, \theta', \phi')$, respectively. Let O be the origin of the coordinate system. Find
 - 1) the angle γ between the two vectors \overline{OP} and \overline{OP} ,
 - 2) the distance between the points P and P'.

(14%)

- 2. In Cartesian coordinate system, let S be the triangular plane defined by x+y+z=1, 0 < x, y, z < 1 and \overline{A} be the vector given by $\overline{A} = 3\hat{x} + 2\hat{y} + \hat{z}$. Find
 - 1) the unit normal vector to the plane S,
 - 2) the surface integral $\int_{S} \overline{A} \cdot d\overline{S}$ over the plane S.

(14%)

3. Two equal and opposite point charges +Q and -Q are located at $\left(0,0,\frac{d}{2}\right)$ and $\left(0,0,-\frac{d}{2}\right)$, respectively. Such an arrangement is known as the electric dipole. Find the electric field intensity $\overline{E}(\bar{r})$ at the point \bar{r} , due to the electric dipole, such that the spacing d is much smaller than the distance $r = |\bar{r}|$ from the origin.

(14%)

4. The Faraday disk generator consists of a circular metal disk rotating with a constant angular velocity ω in a uniform and constant magnetic field of flux density $\overline{B} = \hat{z}B_0$ that is parallel to the axis of rotation. Brush contacts are provided at the axis and on the rim of the disk, as shown in Fig.1. Determine the open-circuit voltage or emf of the generator if the disk radius is b.

5. Let us consider the charge distribution given by

$$\rho = \begin{cases} \rho_0 / a & , & -a < x < a \\ 0 & , & \text{otherwise} \end{cases}$$

where $\rho_0(C/m^3)$ is a constant. Find the displacement flux density vector \overline{D} everywhere and plot D versus x.

(15%)

6. A coaxial cable consists of an inner conductor of radius a and an outer conductor (zero thickness) of radius b (b>a). Assume that the cable is infinitely long and its axis is along the z-axis. Current I flows with uniform density in the z-direction in the inner conductor and returns with uniform density in the -z-direction in the outer conductor. Find the magnetic field intensity \overline{H} everywhere and plot H versus r.

(15%)

7. Let an electric field in free space (μ_0, ε_0) be specified by

$$\overline{E}(z,t) = \hat{x} e^{j(\omega t - \beta z)}, j = \sqrt{-1}.$$

Find the condition on ω and β such that the field would satisfy both Faraday's and Ampere's circuital laws.

(14%)

Fig.1.