Пусть $K_0 > 0$, и $(T, K) \in B_{\epsilon}(K_0) \times B_{\epsilon}(K_0)$ для достаточно малого $\epsilon > 0$. Тогда

$$\begin{split} \hat{\sigma}(T,K) &= \hat{\sigma}(K,f,\nu) \approx \frac{\alpha}{f^{1-\beta}} \left(1 - \frac{1}{2}(1-\beta)\log\frac{K}{f}\right) - \frac{\rho\nu}{2}\log\frac{K}{f} \\ &= o(\nu) - \frac{\rho\nu}{2}\log\frac{K}{f}, \ \nu \to +\infty, \end{split}$$

потому что первое слагаемое ограничено равномерно по f и K из окрестности. Возьмём $f_0 \in B_{\epsilon}(K_0), \ f_0 + \delta f \in B_{\epsilon}(K_0)$ при $\delta f > 0$. Тогда

$$\hat{\sigma}(K, f_0 + \delta f, \nu) - \hat{\sigma}(K, f_0, \nu) = o(\nu) + \frac{\rho \nu}{2} \log \frac{f_0 + \delta f}{f_0}, \quad \nu \to +\infty,$$

то есть, разность пропорциональна ν и не зависит от K с точностью до $o(\nu)$. В свою очередь,

$$\frac{\partial \hat{\sigma}(K, f_0, \nu)}{\partial K} = o(\nu) - \frac{\rho \nu}{2K}, \quad \nu \to +\infty,$$

и дальнейшие рассуждения будут вестись для достаточного больших ν .

Итак, если $\rho > 0$, то $\hat{\sigma}(K, f_0, \nu)$ строго убывает, а разность $\hat{\sigma}(K, f_0 + \delta f, \nu) - \hat{\sigma}(K, f_0, \nu)$ положительна, то есть, график $\hat{\sigma}(K, f_0 + \delta f, \nu)$ локально является переносом вправо графика $\hat{\sigma}(K, f_0, \nu)$.

Аналогично, в случае $\rho<0$ функция строго возрастает, а разность отрицательна. Таким образом, график новой функции вновь является переносом вправо графика старой функции. Соответственно, при хорошо подобранном $\nu>0$ динамика предполагаемой волатильности налаживается.