

8.

9. *Simplified SOP expressions:*

[2]

$$P = D + B' \cdot C$$

$$Q = D + B$$

10. *Simplified SOP expression:*

[4]

$$F = A' \cdot C' \cdot D' + B \cdot C' \cdot D' + A \cdot B \cdot C + A' \cdot B' \cdot C \cdot D$$

Simplified POS expression:

$$F = (C+D') \cdot (A'+B'+C) \cdot (A+B'+D') \cdot (A+C'+D) \cdot (A'+B+C') \text{ or } (C+D') \cdot (A'+B'+C) \cdot (A+B'+C') \cdot (A+C'+D) \cdot (A'+B+C') \text{ or } (C+D') \cdot (A'+B'+C) \cdot (A+B'+C') \cdot (B+C'+D) \cdot (A'+B+D')$$

11.

[6]

$$TA = A' \cdot B + A \cdot B'$$
 or $A' \cdot B + A \cdot C' \rightarrow A \oplus B$

$$JB = 1$$

$$KB = A$$

$$JC = A'$$

$$KC = A$$

Number of gates = 1

Explanation and Workings

2.
$$B + A \cdot B \cdot C \cdot D' \cdot E = B$$

 $C \cdot D' \cdot F + C \cdot D \cdot F + C' \cdot F = (C \cdot D' + C \cdot D + C') \cdot F = F$
 $B \cdot F + B' \cdot G \cdot H + F \cdot G \cdot H = B \cdot F + B' \cdot G \cdot H \text{ (consensus)}$

3. $1 \times NOR B = B$

4.

Α	В	С	F	G
0	0	0	1	1
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

5.

Α	В	J	К	Command
0	0	0	0	No change
0	1	1	0	Set
1	0	1	0	Set
1	1	0	1	Clear

6. 4186000

$$+1.000011 \times 2^{(127-131)} = 1.000011 \times 2^4 = 10000.11_2 = 16.75_{10}$$

7.
$$F = A' + B + C$$

$$= C + (A \cdot B')'$$

Alternative answer:

8.

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

9.

D

 $P = D + B' \cdot C$ Q = D + B

10.

Α	В	С	D	S ₃	S ₂	S ₁	S ₀	F
0	0	0	0	0	0	1	1	1
0	0	0	1	0	1	0	0	0
0	0	1	0	0	1	0	1	0
0	0	1	1	0	1	1	0	1
0	1	0	0	0	1	1	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	1	0	0	1	0
0	1	1	1	1	0	1	0	0
1	0	0	0	1	0	1	1	1
1	0	0	1	1	1	0	0	0
1	0	1	0	1	1	0	1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	1	1	1	1	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	1	0	1

D

 $F = A' \cdot C' \cdot D' + B \cdot C' \cdot D' + A \cdot B \cdot C + A' \cdot B' \cdot C \cdot D$

 $F' = C' \cdot D + A \cdot B \cdot C' + A' \cdot B \cdot D + A' \cdot C \cdot D' + A \cdot B' \cdot C \text{ or } C' \cdot D + A \cdot B \cdot C' + A' \cdot B \cdot C + A' \cdot C \cdot D' + A \cdot B' \cdot C$ or $C' \cdot D + A \cdot B \cdot C' + A' \cdot B \cdot C + B' \cdot C \cdot D' + A \cdot B' \cdot D$

 $F = (C+D') \cdot (A'+B'+C) \cdot (A+B'+D') \cdot (A+C'+D) \cdot (A'+B+C') \text{ or } (C+D') \cdot (A'+B'+C) \cdot (A+B'+C') \cdot (A+C'+D) \cdot (A'+B+C') \text{ or } (C+D') \cdot (A'+B'+C) \cdot (A+B'+C') \cdot (B+C'+D) \cdot (A'+B+D')$

11.

Present state			Ne	xt sta	state Flip-flop inputs					
Α	В	С	A⁺	B⁺	C ⁺	TA	JB	КВ	JC	кс
0	0	0	0	1	1	0	1	Х	1	Х
0	0	1	Χ	Χ	Х	Х	Х	Х	Х	Х
0	1	0	1	1	1	1	Х	0	1	Χ
0	1	1	1	1	1	1	Χ	0	Χ	0
1	0	0	0	1	0	1	1	Χ	0	Χ
1	0	1	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	1	0	0	0	Χ	1	Χ	1

 $TA = A' \cdot B + A \cdot B'$ or $A' \cdot B + A \cdot C' \rightarrow A \oplus B$

JB = 1; KB = A

JC = A'; KC = A

1 additional gate (XOR gate for *TA*).

