1. Sketch the graph of a function with domain [-3, 3] that has an absolute maximum of 5 at x = -2, an absolute minimum of 0 at x = 2 and a local minimum of 2 at x = 0.

2. Give an example of a function with domain (-1,1) that does not attain either an absolute minimum or an absolute maximum value. Why doesn't your example violate the Extreme Value Theorem?

No violation: interal not closed.

3. Sketch a discontinuous function with domain [-1,1] that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?

No violation: function not continuous

4. Give an example of a continuous function with domain $[0, \infty)$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?

No viblation: interval not bounded

5. Consider the function sec(x). Sketch this function. From the sketch answer the following. Does this function have any absolute maximums? Absolute minimums? Local maximums? Local minimums?

no absolute mox/ming

6. Find all critical points of the function $f(x) = \sin(x)^{1/3}$.

$$\int_{-\infty}^{\infty} (x) = 0 \quad \text{if } \cos(x) = 0 \quad \left(x = \frac{\pi}{2} + k\pi, \left(k \in \mathbb{Z} \right) \right)$$

Sall critical points

7. Find the absolute maximum and minimum values of $f(x) = e^{-x^2}$ on the interval [-2,3], and the locations where those values are attained.

8. Find the maximum and minimum values of $f(x) = x + \frac{1}{x}$ on the interval [1/5,4]. Determine where those maximum and minimum values occur.

$$S = (1)^2$$

$$f(1)=2$$
 emin value at $x=1$

endpoint
$$\pm = \frac{1}{5}$$
 $f(15) = 5 + \frac{1}{5}$

$$f(1/5) = 5 + \frac{1}{5}$$

$$f(4) = 4 + \frac{1}{4}$$
 maxualve at $x = 4$

9. Find the maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.

end point
$$x=8$$
 $f(8)=4$

3

10. A ball thrown in the air at time t = 0 has a height given by

$$h(t) = h_0 + v_0 t - \frac{1}{2} g_0 t^2$$

meters where t is measured in seconds, h_0 is the height at time 0, v_0 is the velocity (in meters per second) at time 0 and g_0 is the constant acceleration due to gravity (in m/s²). Assuming $v_0 > 0$, find the time that the ball attains its maximum height. Then find the maximum hight.

$$h'(t) = v_0 - g_0 t$$
 $h'(t) = 0 \implies t = v_0 \iff time of max height$

$$h\left(\frac{v_0}{g_0}\right) = h_0 + v_0 \left(\frac{v_0}{g_0}\right) - \frac{1}{2} g_0 \left(\frac{v_0^2}{g_0^2}\right)$$

$$= h_0 + \frac{1}{2} \frac{v_0^2}{g_0} \qquad m_1 \times h_{eight}$$