#### Operating Systems: Internals and Design Principles, 6/E William Stallings



Dave Bremer Otago Polytechnic, N.Z. ©2008, Prentice Hall



### Roadmap



#### Overview ~

- File organisation and Access
- File Directories
- File Sharing
- Record Blocking
- Secondary Storage Management
- File System Security
- Unix File Management
- Linux Virtual File System
- Windows File System





### **Files**

- Files are the central element to most applications
- The File System is one of the most important part of the OS to a user
- Desirable properties of files:
  - Long-term existence
  - Sharable between processes
  - Structure







## File Management

- File management system consists of system utility programs that run as privileged applications
- Concerned with secondary storage







## **Typical Operations**

- File systems also provide functions which can be performed on files, typically:
  - Create
  - Delete
  - Open
  - Close
  - Read
  - Write







#### **Terms**

- Four terms are in common use when discussing files:
  - Field
  - Record
  - File
  - Database







### Fields and Records

- Fields
  - Basic element of data
  - Contains a single value
  - Characterized by its length and data type
- Records
  - Collection of related fields
  - Treated as a unit







### File and Database

- File
  - Have file names
  - Is a collection of similar records
  - Treated as a single entity
  - May implement access control mechanisms
- Database
  - Collection of related data
  - Relationships exist among elements
    - Consists of one or more files





- Provides services to users and applications in the use of files
  - The way a user or application accesses files
- Programmer does not need to develop file management software







# Objectives for a File Management System

- Meet the data management needs of the user
- Guarantee that the data in the file are valid
- Optimize performance
- Provide I/O support for a variety of storage device types
- Minimize lost or destroyed data
- Provide a standardized set of I/O interface routines to user processes
- Provide I/O support for multiple users (if needed)



# Requirements for a general purpose system

- 1. Each user should be able to create, delete, read, write and modify files
- 2. Each user may have controlled access to other users' files
- 3. Each user may control what type of accesses are allowed to the users' files
- 4. Each user should be able to restructure the user's files in a form appropriate to the problem



### Requirements cont.

- Each user should be able to move data between files
- 6. Each user should be able to back up and recover the user's files in case of damage
- 7. Each user should be able to access the user's files by using symbolic names







# Typical software organization





Figure 12.1 File System Software Architecture



#### **Device Drivers**

- Lowest level
- Communicates directly with peripheral devices
- Responsible for starting I/O operations on a device
- Processes the completion of an I/O request







## Basic File System

- Physical I/O
- Primary interface with the environment outside the computer system
- Deals with exchanging blocks of data
- Concerned with the placement of blocks
- Concerned with buffering blocks in main memory







## Basic I/O Supervisor

- Responsible for all file I/O initiation and termination.
- Control structures deal with
  - Device I/O,
  - Scheduling,
  - File status.
- Selects and schedules I/O with the device







## Logical I/O

- Enables users and applications to access records
- Provides general-purpose record I/O capability
- Maintains basic data about file







### **Access Method**

- Closest to the user
- Reflect different file structures
- Provides a standard interface between applications and the file systems and devices that hold the data
- Access method varies depending on the ways to access and process data for the device.





# Elements of File Management





Figure 12.2 Elements of File Management



## Roadmap

Overview



#### File organisation and Access

- File Directories
- File Sharing
- Record Blocking
- Secondary Storage Management
- File System Security
- Unix File Management
- Linux Virtual File System
- Windows File System





## File Organization

- File Management Referring to the logical structure of records
  - Physical organization discussed later
- Determined by the way in which files are accessed







# Criteria for File Organization

- Important criteria include:
  - Short access time
  - Ease of update
  - Economy of storage
  - Simple maintenance
  - Reliability
- Priority will differ depending on the use (e.g. read-only CD vs Hard Drive)
  - Some may even conflict





# File Organisation Types

- Many exist, but usually variations of:
  - Pile
  - Sequential file
  - Indexed sequential file
  - Indexed file
  - Direct, or hashed, file





### The Pile

- Data are collected in the order they arrive
  - No structure
- Purpose is to accumulate a mass of data and save it
- Records may have different fields
- Record access is by exhaustive search



(a) Pile File





## The Sequential File

- Fixed format used for records
- Records are the same length
- All fields the same (order and length)
- Field names and lengths are attributes of the file
- Key field
  - Uniquely identifies the record
  - Records are stored in key sequence



Fixed-length records Fixed set of fields in fixed order Sequential order based on key field

(b) Sequential File



## Indexed Sequential File

- Maintains the key characteristic of the sequential file:
  - records are organized in sequence based on a key field.

#### Two features are added:

- an index to the file to suppor random access,
- and an overflow file.



(c) Indexed Sequential File





### Indexed File

- Uses multiple indexes for different key fields
  - May contain an exhaustive index that contains one entry for every record in the main file
  - May contain a partial index
- When a new record is added to the main file, all of the index files must be updated.



(d) Indexed File







## File Organization

- Access directly any block of a known address.
- The Direct or Hashed File
  - Directly access a block at a known address
  - Key field required for each record







### Performance

Table 12.1 Grades of Performance for Five Basic File Organizations [WIED87]

|                    | Space      |       | Update      |         | Retrieval        |        |            |
|--------------------|------------|-------|-------------|---------|------------------|--------|------------|
|                    | Attributes |       | Record Size |         |                  |        |            |
| File<br>Method     | Variable   | Fixed | Equal       | Greater | Single<br>record | Subset | Exhaustive |
| Pile               | A          | В     | A           | E       | E                | D      | В          |
| Sequential         | F          | A     | D           | F       | F                | D      | A          |
| Indexed sequential | F          | В     | В           | D       | В                | D      | В          |
| Indexed            | В          | C     | С           | C       | A                | В      | D          |
| Hashed             | F          | В     | В           | F       | В                | F      | E          |

A = Excellent, well suited to this purpose  $\approx O(r)$ B = Good  $\approx O(o \times r)$ C = Adequate  $\approx O(r \log n)$ D = Requires some extra effort  $\approx O(n)$ E = Possible with extreme effort  $\approx O(r \times n)$ F = Not reasonable for this purpose  $\approx O(n^{>1})$ 

#### where

r = size of the result

o = number of records that overflow

n = number of records in file







## Roadmap

- Overview
- File organisation and Access



- File Sharing
- Record Blocking
- Secondary Storage Management
- File System Security
- Unix File Management
- Linux Virtual File System
- Windows File System





### Contents

- Contains information about files
  - Attributes
  - Location
  - Ownership
- Directory itself is a file owned by the operating system
- Provides mapping between file names and the files themselves



## Directory Elements: Basic Information

- File Name
  - Name as chosen by creator (user or program).
  - Must be unique within a specific directory.
- File type
- File Organisation
  - For systems that support different organizations





## Directory Elements: Address Information

- Volume
  - Indicates device on which file is stored
- Starting Address
- Size Used
  - Current size of the file in bytes, words, or blocks
- Size Allocated
  - The maximum size of the file





## Directory Elements: Access Control Information

#### Owner

 The owner may be able to grant/deny access to other users and to change these privileges.

#### Access Information

 May include the user's name and password for each authorized user.

#### Permitted Actions

Controls reading, writing, executing, transmitting over a network





## Directory Elements: Usage Information

- Date Created
- Identity of Creator
- Date Last Read Access
- Identity of Last Reader
- Date Last Modified
- Identity of Last Modifier
- Date of Last Backup
- Current Usage
  - Current activity, locks, etc





# Simple Structure for a Directory

- The method for storing the previous information varies widely between systems
- Simplest is a list of entries, one for each file
  - Sequential file with the name of the file serving as the key
  - Provides no help in organizing the files
  - Forces user to be careful not to use the same name for two different files





# Operations Performed on a Directory

- A directory system should support a number of operations including:
  - Search
  - Create files
  - Deleting files
  - Listing directory
  - Updating directory







# Two-Level Scheme for a Directory

- One directory for each user and a master directory
  - Master directory contains entry for each user
  - Provides address and access control information
- Each user directory is a simple list of files for that user
  - Does not provide structure for collections of files





# Hierarchical, or Tree-Structured Directory

- Master directory with user directories underneath it
- Each user directory may have subdirectories and files as entries



Figure 12.4 Tree-Structured Directory







## Naming

- Users need to be able to refer to a file by name
  - Files need to be named uniquely, but users may not be aware of all filenames on a system
- The tree structure allows users to find a file by following the directory path
  - Duplicate filenames are possible if they have different pathnames



# Example of Tree-Structured Directory







## Working Directory

- Stating the full pathname and filename is awkward and tedious
- Usually an interactive user or process is associated with a current or working directory
  - All file names are referenced as being relative to the working directory unless an explicit full pathname is used





## Roadmap

- Overview
- File organisation and Access
- File Directories

### File Sharing

- Record Blocking
- Secondary Storage Management
- File System Security
- Unix File Management
- Linux Virtual File System
- Windows File System





## File Sharing

- In multiuser system, allow files to be shared among users
- Two issues
  - Access rights
  - Management of simultaneous access







## Access Rights

- A wide variety of access rights have been used by various systems
  - often as a hierarchy where one right implies previous
- None
  - User may not even know of the files existence
- Knowledge
  - User can only determine that the file exists and who its owner is



# Access Rights cont...

#### Execution

 The user can load and execute a program but cannot copy it

#### Reading

 The user can read the file for any purpose, including copying and execution

### Appending

 The user can add data to the file but cannot modify or delete any of the file's contents





# Access Rights cont...

- Updating
  - The user can modify, delete, and add to the file's data.
- Changing protection
  - User can change access rights granted to other users
- Deletion
  - User can delete the file







### **User Classes**

- Owner
  - Usually the files creator, usually has full rights
- Specific Users
  - Rights may be explicitly granted to specific users
- User Groups
  - A set of users identified as a group
- All



<u>everyone</u>



## Simultaneous Access

- User may lock entire file when it is to be updated
- User may lock the individual records during the update
- Mutual exclusion and deadlock are issues for shared access







## Roadmap

- Overview
- File organisation and Access
- File Directories
- File Sharing



### Record Blocking

- Secondary Storage Management
- File System Security
- Unix File Management
- Linux Virtual File System
- Windows File System

