Bài tập về nhà môn Cấu trúc dữ liệu và thuật toán

Bài 2.1

Chứng minh rằng:

$$n! = o(n^n)$$

$$n! = \omega(2^n)$$

$$\lg(n!) = \Theta(n \lg n)$$

trong đó $\lg n = \log_2 n$.

Bài 2.2

Cho $p(n) = \sum_{i=0}^{d} a_i n^i$, trong đó $a_d > 0$, là một đa thức bậc d theo n, và cho k là một hằng số. Sử dụng định nghĩa của các ký hiệu tiệm cận để chứng minh các tính chất sau:

- a. Nếu $k \ge d$, thì $p(n) = O(n^k)$.
- b. Nếu $k \leq d$, thì $p(n) = \Omega(n^k)$.
- c. Nếu k = d, thì $p(n) = \Theta(n^k)$.
- d. Nếu k > d, thì $p(n) = o(n^k)$.
- e. Nếu k < d, thì $p(n) = \omega(n^k)$.

Bài 2.3

Cho mỗi cặp biểu thức (A,B) trong bảng dưới đây, hãy chỉ ra liệu A là O, o, $\Omega,$ ω , hay Θ của B. Giả sử rằng $k \geq 1,$ $\epsilon > 0$, và c > 1 là các hằng số. Viết câu trả lời của bạn dưới dạng bảng với "yes" hoặc "no" trong mỗi ô.

A	В	O	0	Ω	ω	Θ
$\lg^k n$	n^{ϵ}					
n^k	c^n					
\sqrt{n}	$n^{\sin n}$					
2^n	$2^{n/2}$					
$n^{\lg^c n}$	$c^{\lg n}$					
$\lg(n!)$	$\lg(n^n)$					

Bài 2.4

a. Sắp xếp các hàm sau theo thứ tự tăng dần. Cụ thể, hãy tìm một sắp xếp g_1, g_2, \ldots, g_{30} của các hàm thỏa mãn $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Phân chia danh sách của bạn thành các lớp tương đương sao cho các hàm f(n) và g(n) thuộc cùng một lớp nếu và chỉ nếu $f(n) = \Theta(g(n))$.

b. Hãy đưa ra một ví dụ về một hàm không âm f(n) sao cho đối với tất cả các hàm $g_i(n)$ trong phần (a), f(n) không là $O(g_i(n))$ và cũng không là $O(g_i(n))$.

Bài 2.5

Cho f(n) và g(n) là các hàm số dương tiệm cận. Hãy chứng minh hoặc bác bỏ từng giả thuyết sau:

- a. f(n) = O(g(n)) suy ra g(n) = O(f(n)).
- b. $f(n) + g(n) = \Theta(\min\{f(n), g(n)\}).$
- c. f(n) = O(g(n)) suy ra $\lg f(n) = O(\lg g(n))$, trong đó $\lg g(n) \ge 1$ và $f(n) \ge 1$ với mọi n đủ lớn.
- d. f(n) = O(g(n)) suy ra $2^{f(n)} = O(2^{g(n)})$.
- e. $f(n) = O((f(n))^2)$.
- f. f(n) = O(g(n))suy ra $g(n) = \Omega(f(n)).$
- g. $f(n) = \Theta(f(n)/2)$.
- h. $f(n) + o(f(n)) = \Theta(f(n))$.

Bài 2.6

Cho f(n) và g(n) là các hàm số dương tiệm cận. Hãy chúng minh các đồng nhất thức sau:

- a. $\Theta(\Theta(f(n))) = \Theta(f(n))$.
- b. $\Theta(f(n)) + O(f(n)) = \Theta(f(n))$.
- c. $\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n)).$
- d. $\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n)).$
- e. Chứng minh rằng đối với bất kỳ hằng số thực $a_1, b_1 > 0$ và các hằng số nguyên k_1, k_2 , thì giới hạn tiệm cận sau là đúng:

$$(a_1 n)^{k_1} \lg^{k_2} (a_2 n) = \Theta(n^{k_1} \lg^{k_2} n).$$