LEONARDO (LEO) ROSA WERNECK

Postdoctoral researcher

♥ 875 Perimeter Dr. MS 0903, Department of Physics, University of Idaho, Moscow, ID 83843, USA

■ leonardo@uidaho.edu • http://github.com/leowerneck • http://leowerneck.github.io

BIOGRAPHICAL DATA

Birth date September 24, 1991 **Birth place** São Paulo, Brazil

Citizenship Brazil

Languages English (fluent), Portuguese (native), Spanish (basic)

WORK EXPERIENCE

Postdoctoral researcher, University of Idaho, USA2021 – PresentPostdoctoral researcher, West Virginia University, USA2020 – 2021

EDUCATION

Ph.D. in Physics, University of São Paulo, Brazil

Thesis: Aspects of Numerical Relativity. Advisor: Elcio Abdalla

M.Sc. in Physics, University of São Paulo, Brazil. 2013 – 2016

Dissertation: A Gauge Theory for Continuous Spin Particles. Advisor: Victor O. Rivelles.

Physics Teaching Degree, University of São Paulo, Brazil. 2009 – 2013

Research Project: Plasma Physics in Tokamaks. Advisor: Artour Elfimov

GRANTS

Institutional Principal Investigator: Gravitational-Wave Signatures of Massive 2023 – Present

Black Hole Formation, NASA LISA Preparatory Science Program.

Total funding: \$644,836; \$78,298 to L. Werneck

FELLOWSHIPS

Ph.D. Fellowship, CAPES, Brazil	2016 – 2020
M.Sc. Fellowship, CAPES, Brazil	2013 – 2016
Undergraduate Research Fellowship, CNPa, Brazil	2011 – 2013

MENTORING

2024

Mentoring two graduate students: one is working on writing a new TOV solver for the Einstein Toolkit; the other is working on a new version of NRPyElliptic.

2023

Mentored two graduate students: one is working on writing a new TOV solver for the Einstein Toolkit; the other is working on a new version of NRPyElliptic.

2022

Mentored one graduate student on general relativity and numerical relativity.

2021

Mentored two undergraduate students on how to use SFcollapse1D for their senior thesis & one graduate student in the development of NRPyElliptic.

2020

Mentored two undergraduate students on how to use SFcollapse1D for their senior thesis.

COMMUNITY INVOLVEMENT

2023

- College of Science Tailgate Event, physics booth interactive demonstrator, Moscow, ID, USA.
- Reviewer for physics journals *Physical Review D* and *Classical and Quantum Gravity*.
- Manager for the Einstein Toolkit May 2023 release (codename "Karl Schwarzschild").
- M.Sc. committee member for Joaquín E. L. Salazar, UNIFEI, Brazil (online participation).
- Idaho Science & Engineering Fair, Natural Sciences & Best in Fair Judge, Moscow, ID, USA.

2022

- College of Science Tailgate Event, physics booth interactive demonstrator, Moscow, ID, USA.
- North American Einstein Toolkit Summer School, *Member of Scientific & Local Organizing Committees*, University of Idaho, ID, USA.
- First Einstein Toolkit Hackaton, NRPy+ mentor; documented several thorns, online event.

TEACHING EXPERIENCE

· Courses Taught

- PHYS 213 (Engineering Physics III), University of Idaho Spring 2024
- Experimental Physics I,* University of São Paulo 1st Semester 2017, 2018, 2019, 2020
- Experimental Physics II,* University of São Paulo 2nd Semester 2017, 2018
- Introduction to Experimental Physics,* University of S\(\tilde{a}\) Paulo
 2nd Semester 2016

• Teaching Assistant

- Statistical Data Analysis in Experimental Physics, University of São Paulo
- Electricity and Magnetism, University of São Paulo 2011, 2012

• Substitute Lecturer

 PHYS 404/504 (Relativistic Astrophysics), University of Idaho 	2024
 PHYS 428/528 (Numerical Methods), University of Idaho 	2023
- PHYS 111 (General Physics I), University of Idaho	2022
 PHYS 212 (Oscillations and Thermal Physics), West Virginia University 	2020

^{*}Course thought as a graduate student, under supervision of a professor.

RESEARCH EXPERIENCE

Compact object binaries in fully dynamical spacetimes

- Neutron star-neutron star (Pubs. [2], [3], [4]).
- Black hole-black hole (Pubs. [5]).

Black hole accretion (Pubs. [2], [3], [4], [7]).

Critical phenomena in gravitational collapse (Pubs. [6], [8]).

Development of numerical relativity software (Pubs. [3], [4], [5], [6], [8]).

Image analysis & particle tracking (Pubs. [1]).

PUBLICATIONS

Prefix denotes number of citations on INSPIRE-HEP (*: 1–5; **: 6–10; ***: 11–15; ****: 16–20)

- [1] L. R. Werneck, C. Jessup, A. Brandenberger, T. Knowles, C. W. Lewandowski, M. Nolan, K. Sible, Z. B. Etienne, and B D'Urso, "Cross-correlation image analysis for real-time particle tracking," arXiv: 2310.08770 [physics.optics] (2023). [submitted to Rev. Sci. Instrum.]
- [2] * Y. Zenati, J. H. Krolik, **L. R. Werneck**, A. Murguia-Berthier, Z. B. Etienne, S. C. Noble and T. Piran, "*Bound Debris Expulsion from Neutron Star Merger Remnants*," Astrophys. J. **958**, no.2, 161, arXiv: 2306.09464 [astro-ph.HE] (**2023**).
- [3] *** L. R. Werneck, Z. B. Etienne, A. Murguia-Berthier, R. Haas, F. Cipolletta, S. C. Noble, L. Ennoggi, F. G. L. Armengol, B. Giacomazzo and T. Assumpção, et al. "Addition of tabulated equation of state and neutrino leakage support to illinoisgrmhd," Phys. Rev. D 107, no.4, 044037, arXiv: 2208.14487 [gr-qc] (2023).
- [4] ** F. G. L. Armengol, Z. B. Etienne, S. C. Noble, B. J. Kelly, **L. R. Werneck**, B. Drachler, M. Campanelli, F. Cipolletta, Y. Zlochower and A. Murguia-Berthier, *et al.* "Handing off the outcome of binary neutron star mergers for accurate and long-term postmerger simulations," Phys. Rev. D **106**, no.8, 083015, arXiv: 2112.09817 [astro-ph.HE] (**2022**).
- [5] ** T. Assumpcao, L. R. Werneck, T. P. Jacques and Z. B. Etienne, "Fast hyperbolic relaxation elliptic solver for numerical relativity: Conformally flat, binary puncture initial data," Phys. Rev. D 105, no.10, 104037, arXiv: 2111.02424 [gr-qc] (2022).
- [6] * L. R. Werneck, Z. B. Etienne, E. Abdalla, B. Cuadros-Melgar and C. E. Pellicer, "NRPyCritCol & SFcollapse1D: an open-source, user-friendly toolkit to study critical phenomena," Class. Quant. Grav. 38, no.24, 245005, arXiv: 2106.06553 [gr-qc] (2021).
- [7] **** A. Murguia-Berthier, S. C. Noble, L. F. Roberts, E. Ramirez-Ruiz, L. R. Werneck, M. Kolacki, Z. B. Etienne, M. Avara, M. Campanelli and R. Ciolfi, et al. "HARM3D+NUC: A New Method for Simulating the Post-merger Phase of Binary Neutron Star Mergers with GRMHD, Tabulated EOS, and Neutrino Leakage," Astrophys. J. 919, no.2, 95, arXiv: 2106.05356 [astro-ph.HE] (2021).
- [8] L. R. Werneck "Aspects of numerical relativity: scalar fields and neutron stars," Ph.D. thesis, University of São Paulo (Brazil), doi:10.11606/T.43.2020.tde-01092020-014914, (2020). Downloaded 673 times as of November 2, 2023.
- [9] L. R. Werneck "A gauge theory for continuous spin particles," M.Sc. disseration, University of São Paulo (Brazil), doi:10.11606/d.43.2016.tde-07062016-114220, (2016). Downloaded 372 times as of November 2, 2023.

SOFTWARE DEVELOPMENT

IllinoisGRMHD, ¹ Core developer & maintainer 2019 - Present Einstein Toolkit thorn providing GRMHD for dynamical spacetimes. - Documented entire code in pedagogical Jupyter notebooks. - Added support for finite-temperature, microphysical equation of state tables. **Einstein Toolkit**, ² Contributor 2019 - Present A community-driven software platform of core computational tools to support research in relativistic astrophysics and gravitational physics. **GRHayL**,³ Core developer & maintainer 2023 – Present An open-source, modular, infrastructure agnostic GRMHD library. **NRPy+**, ⁴ *Core developer & maintainer* 2019 - Present Python-based C code generator for Numerical Relativity and beyond. **NRPvLeakage**, ⁵ *Lead developer & maintainer* 2022 - Present NRPy+-based neutrino leakage code. - Lead developer of Einstein Toolkit thorn version of the code, NRPyLeakageET. i **NRPyElliptic**, ⁶ *Core developer & maintainer* 2021 – Present Easily extensible, NRPy+-based elliptic solver for Numerical Relativity initial data. - Lead developer of Einstein Toolkit thorn version of the code, NRPyEllipticET. **NRPyCritCol**, ⁷ *Lead developer & maintainer* 2019 – Present User-friendly, well-documented NRPy+-based code to study critical phenomena. **SFCollapse1D**,⁸ *Lead developer & maintainer* 2018 - Present User-friendly, well-documented C++ code to study critical phenomena of a massless scalar field in 1D. **RETINAS**, ⁹ *Lead developer & maintainer* 2021 - Present An open-source, GPU-capable image analysis code for real-time particle tracking. 1: https://github.com/IllinoisGRMHD 6: http://github.com/assumpcaothiago/NRPyElliptic 2: http://einsteintoolkit.org 7: https://github.com/zachetienne/nrpytutorial 8: https://github.com/leowerneck/SFcollapse1D 3: https://github.com/GRHayL 4: https://nrpyplus.net 9: https://github.com/leowerneck/RETINAS 5: https://github.com/IllinoisGRMHD **SOFTWARE SKILLS** Operating systems: Linux, Mac OS, and Windows. **Programming languages**: C****, C++****, Fortran****, Python***, Bash***, CUDA*, UNIX CLI tools: git***, awk**, sed**, grep***, make***, autoconf*, automake* Parallel programming paradigms: OpenMP***, MPI*** **Document editing tools**: LATEX****, Overleaf***, Microsoft {Word, Excel, Powerpoint}****, Apple {Keynote, Pages, Numbers}***, Libre Office***

*: 1-2: **: 2-4: ***: 5-6: ****: >6 years of experience

HPC Workload Managers: Slurm***, PBS****

Package Managers: pip***, Homebrew***, Conda**, Spack*,

DISTINGUISHED TALKS

2024

• Selected talk, APS April Meeting, *Binary Neutron Star Mergers on a Moving Mesh*, SAFE Credit Union Convention Center, Sacramento, CA.

2023

- Invited talk, INT 23-2: Astrophysical Neutrinos and the Origin of the Elements, *GRHayL: An Open-source, Modular, Extensible GRMHD Library*, Institute for Nuclear Theory, Seattle, WA.
- Invited talk, North American Einstein Toolkit Summer School, *Tutorial: Einstein Toolkit Simulation Analysis*, Rochester Institute of Technology, NY, USA.
- Selected talk, APS April Meeting, *IllinoisGRMHD: Recent Developments and Future Plans*, Hilton Minneapolis, Minneapolis, MN.

2022

- Invited talk, North American Einstein Toolkit "Working Workshop", *An introduction to NRPy+*, University of Illinois at Urbana-Champaign, IL, USA.
- Invited talk, North American Einstein Toolkit Summer School, *Accurate, long-term binary neutron stars simulations with IllinoisGRMHD and HARM+NUC*, University of Idaho, ID, USA.
- Selected talk, APS April Meeting, *Accurate, long-term binary neutron stars simulations with IllinoisGRMHD and HARM+NUC*, New York Marriott Marquis, NY, USA.

2021

- Poster presentation, Midwest Relativity Meeting, *IllinoisGRMHD+HARM3D: Next-generation binary neutron stars simulations*, University of Illinois at Urbana-Champaign, IL, USA..
- Invited talk, North American Einstein Toolkit Summer School, NRPy+ tutorial: Maxwell's equations in flat space & ET thorn generation, University of Illinois at Urbana-Champaign, IL, USA (online event).
- Invited talk, TCAN on BNS Workshop, *IllinoisGRMHD progress update—advanced, tabulated equation of state support*,, Rochester Institute of Technology, NY, USA (online event).
- Selected talk, APS April Meeting, New, user-friendly codes to study critical collapse, online event.

2020

• Invited talk, TCAN on BNS Workshop, *IllinoisGRMHD progress update—piecewise polytropic equation of state support*,, Rochester Institute of Technology, NY, USA (online event).