# **Signals and Circuits**

**ENGR 35500** 

**Equivalent Circuit** 

Chapter 2-3 (Equivalent Circuits) pp. 54-62

Ulaby, Fawwaz T., and Maharbiz, Michael M., Circuits, 2<sup>nd</sup> Edition, National Technology and Science Press, 2013.



# **Circuit Equivalence**



Two circuits connected between a pair of nodes are considered to be equivalent-as seen by the rest of the circuit-if they exhibit identical i - v characteristics at those nodes.



Find the relationship between the resistors,  $i_s$  and  $V_s$ 





Find the relationship between the resistors,  $i_s$  and  $V_s$ 



Share the same current:  $i_S = i_1 = -i_2 = i_3 = i_4 = -i_5 = -i_6 = i_7$ 

KVL: 
$$-V_S + i_S R_1 + i_S R_2 + i_S R_3 + i_S R_4 + i_S R_5 + i_S R_6 + i_S R_7 = 0$$

$$\Rightarrow V_S = i_S (R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7)$$

For nodes a and h  $V_S = i_S(R_{eq})$ 

$$R_{eq} = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7$$





$$ightharpoonup R_{eq} = \sum_{i=1}^{k} R_i = (R_1 + R_2 + \dots + R_k)$$

Multiple Resistors connected in series (experiencing the same current) can be combined into a single equivalent resistor  $R_{eq}$  whose resistance is equal to the sum of all of their individual resistances.

Find the voltage cross R<sub>1</sub> and R<sub>5</sub>



Ohm's law

$$V_{ab} = R_1 i_s$$

$$V_{ef} = R_5 i_s$$

And

$$R_{eq} = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7$$

$$V_S = i_S(R_{eq})$$

$$V_1 = \frac{R_1}{R_1 + R_2 + \cdots R_7} V_S$$

$$V_5 = \frac{R_5}{R_1 + R_2 + \cdots R_7} V_S$$



#### Voltage divider

The voltage across any individual resistor  $R_i$  in a series circuit is a proportionate fraction  $(R_i/R_{eq})$  of the voltage of the entire group  $V_i = \frac{R_i}{R_{eq}} V_s$ 

#### Example:





# Resistors in parallel

Find the relationship between is, vs, R1, R2, R3



Apply ohm's law

$$i_1 = \frac{v_S}{R_1}$$
  $i_2 = \frac{v_S}{R_2}$   $i_3 = \frac{v_S}{R_3}$ 

**KCL** 

$$i_{S} = i_{1} + i_{2} + i_{3} = \frac{v_{S}}{R_{1}} + \frac{v_{S}}{R_{2}} + \frac{v_{S}}{R_{3}}$$

$$\frac{i_{S}}{v_{S}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \longrightarrow \frac{1}{R_{eq}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

$$K$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
 KF



#### **Resistors in Parallel**



Equivalent



$$R_{\text{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

For short, we sometimes denote such a parallel  $R_1$  and  $R_2$  combination as  $R_1 \mid \mid R_2$ .



#### **Current divider**

#### **Current Division**



$$i_1 = \left(\frac{R_2}{R_1 + R_2}\right) i_s$$
  $i_2 = \left(\frac{R_1}{R_1 + R_2}\right) i_s$ 



### **Exercise**

Example: Find the equivalent resistance between "a" and "b"





### **Exercise**

Use the equivalent-resistance approach to determine *V2, I1, I2,* and *I3* in the circuit.





#### Source in series





If the two current sources provide the same value current and in the same direction, so?







$$v_{eq} = v_1 - v_2 + v_3$$
  $R_{eq} = R_1 + R_2$ 

Multiple voltage source connected in series can be combined into an equivalent voltage source whose voltage is equal to the algebraic sum of the voltages of the individual sources.



# Source in parallel



If the two voltage sources provide the some voltage and in the same direction, so ?



$$R_{\text{eq}} = R_2 \parallel R_3 = \frac{R_2 R_3}{R_2 + R_3}$$
  $I_{\text{eq}} = I_1 - I_2 + I_3$ 



# Source in Series/parallel

➤ Series voltage sources have a total voltage equal to the algebraic sum of sources voltages:



➤ Parallel current sources have a total current equal to the algebraic sum of all sources:



➤ Parallel voltage sources should have the same voltage and series current sources should have the same currents:





### **Source Transformation**



$$i_s = v_s / R_1$$
$$R_2 = R_1$$



### **Exercise**



