Requirement already satisfied: category_encoders in c:\users\acer\anaconda3\lib\site-packages (2.2.2) Requirement already satisfied: numpy=1.14.0 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (1.19.2) Requirement already satisfied: scipy>=1.0.0 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (1.5.2) Requirement already satisfied: pandas>=0.21.1 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (1.1.3) Requirement already satisfied: patsy>=0.5.1 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (0.5.1) Requirement already satisfied: statsmodels>=0.9.0 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (0.12.0) Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\acer\anaconda3\lib\site-packages (from category_encoders) (0.23.2) Requirement already satisfied: pytz>=2017.2 in c:\users\acer\anaconda3\lib\site-packages (from pandas>=0.21.1->category_encoders) (2020.1) Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\acer\anaconda3\lib\site-packages (from pandas>=0.21.1->category_encoders) (2.8.1) Requirement already satisfied: six in c:\users\acer\anaconda3\lib\site-packages (from pandas>=0.21.1->category_encoders) (2.1.0) Requirement already satisfied: six in c:\users\acer\anaconda3\lib\site-packages (from pandas>=0.20.0->category_encoders) (2.1.0) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\acer\anaconda3\lib\site-packages (from scikit-learn>=0.20.0->category_encoders) (2.1.0)
import company data set sales = pd.read_csv('/Users/acer/Sandesh Pal/Data Science Assgn/DEsicion TRee/Company_Data.csv') sales ut[3]: Sales CompPrice Income Income Advertising Population Price ShelveLoc Age Education Urban US
4 4.15 141 64 3 340 128 Bad 38 13 Yes No
400 rows × 11 columns n [4]: # checking for null values sales.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 400 entries, 0 to 399 Data columns (total 11 columns): # Column Non-Null Count Dtype </class>
3 Advertising 400 non-null int64 4 Population 400 non-null int64 5 Price 400 non-null int64 6 ShelveLoc 400 non-null int64 8 Education 400 non-null int64 9 Urban 400 non-null object 10 US 400 non-null object dtypes: float64(1), int64(7), object(3) memory usage: 34.5+ KB
count 400.000000 400.00000 400.000000 400.00000 53.322500 13.900000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 120.00000 120.00000 140.00000 140.00000 100.00000 100.00000 100.00000 100.00000 160.00000 160.00000 160.00000 100.00000 100.00000 100.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 160.00000 16
max 16.270000 175.000000 120.000000 29.000000 509.000000 191.000000 80.000000 18.000000 n [6]: import category_encoders as ce # encode variables with ordinal encoding encoder = ce.OrdinalEncoder(cols=['ShelveLoc', 'Urban', 'US']) sales1 = encoder.fit_transform(sales) C:\Users\acer\anaconda3\lib\site-packages\category_encoders\utils.py:21: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_vpe instead elif pd.api.types.is_categorical(cols):
<pre>n [7]: # Converting the Target column i.e. Sales into Categorical value using mean of the column i.e. 7.49 sales_val = [] for value in sales["Sales"]: if value<=7.49: sales_val.append("low") else: sales_val.append("high") sales1["sales_val"]= sales_val n [8]: sales1.head()</pre> sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US sales_val
0 9.50 138 73 11 276 120 1 42 17 1 1 high 1 11.22 111 48 16 260 83 2 65 10 1 1 high 2 10.06 113 35 10 269 80 3 59 12 1 1 high 3 7.40 117 100 4 466 97 3 55 14 1 1 low 4 4.15 141 64 3 340 128 1 38 13 1 2 low X = sales1.drop(['sales_val', 'Sales'], axis =1) y = sales1['sales_val']
NameError
0 138 73 11 276 120 1 42 17 1 1 1 111 48 16 260 83 2 65 10 1 1 2 113 35 10 269 80 3 59 12 1 1 3 117 100 4 466 97 3 55 14 1 1 4 141 64 3 340 128 1 38 13 1 2
397 162 26 12 368 159 3 40 18 1 1 398 100 79 7 284 95 1 50 12 1 1 399 134 37 0 27 120 2 49 16 1 1 400 rows × 10 columns [12]: y.head(10) tt[12]: 0 high
<pre>1 high 2 high 3 low 4 low 5 high 6 low 7 high 8 low 9 low Name: sales_val, dtype: object</pre> [13]: # Splitting data into training and testing data set x_train, x_test,y_train,y_test = train_test_split(x,y, test_size=0.2,random_state=40)
Building Decision Tree Classifier using Entropy Criteria Iteration-1: Max Depth = 4 [14]: model1 = DecisionTreeClassifier(criterion = 'entropy', max_depth=4) model1.fit(x_train,y_train) [14]: DecisionTreeClassifier(criterion='entropy', max_depth=4) [15]: #Predicting on test data pred_test1 = model1.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_test1==y_test)) #Predicting on train data #Predicting on train data
<pre>pred_train1 = model1.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_train1==y_train)) Test data Accuracy is: 0.675 Train data Accuracy is: 0.784375 Iteration-2: Max Depth = 5 [16]: model2 = DecisionTreeClassifier(criterion = 'entropy', max_depth=5) model2.fit(x_train,y_train)</pre> tt[16]: DecisionTreeClassifier(criterion='entropy', max_depth=5)
<pre>[17]: #Predicting on test data pred_test2 = model2.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_test2==y_test)) #Predicting on train data pred_train2 = model2.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_train2==y_train)) Test data Accuracy is: 0.675 Train data Accuracy is: 0.821875 Iteration-3: Max Depth = 6</pre>
<pre>[18]: model3 = DecisionTreeClassifier(criterion = 'entropy', max_depth=6) model3.fit(x_train,y_train) tt[18]: DecisionTreeClassifier(criterion='entropy', max_depth=6) [19]: #Predicting on test data pred_test3 = model3.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_test3==y_test)) #Predicting on train data pred_train3 = model3.predict(x_train)</pre>
#Accuracy on train data print('Train data Accuracy is:',np.mean(pred_train3==y_train)) Test data Accuracy is: 0.6625 Train data Accuracy is: 0.90625 Iteration-4: Max Depth = 7 [20]: model4 = DecisionTreeClassifier(criterion = 'entropy',max_depth=7) model4.fit(x_train,y_train) t[20]: DecisionTreeClassifier(criterion='entropy', max_depth=7)
<pre>[21]: #Predicting on test data pred_test4 = model4.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_test4==y_test)) #Predicting on train data pred_train4 = model4.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_train4==y_train)) Test data Accuracy is: 0.65 Train data Accuracy is: 0.91875 We get the best test results at Iteration-2 max depth = 5. so we will consider that final</pre>
<pre>[22]: # let's plot the decision tree fig = plt.figure(figsize=(25,20)) fig = tree.plot_tree(model2, feature_names= ['CompPrice', 'Income', 'Advertising', 'Population', 'Price', 'ShelveLoc', 'Age', 'Education', 'Urban', 'Us'], class_names= ['low', 'high'], filled=True) plt.title('Decision tree using Entropy', fontsize=22) plt.savefig('DT_Entropy.pdf')</pre> Decision tree using Entropy
Price <= 131.5 entropy <= 1.0 samples = 320 value = 164,135 (sas = 164)
Advertising < 140.3 Samples = 210 Samples = 20 Samp
Value = [36, 45] Value = [16, 45] Value = [16
Comparison = 13.0 Comp
Cotropy = 0.764 Cotropy = 0.8
From the above decision tree 3 most important features affecting the sales are - 1) Price 2) Advertising 3) Comp Price Building Decision Tree Classifier (CART) using Gini Criteria Iteration-1: Max Depth = 5 [23]: from sklearn.tree import DecisionTreeClassifier model_gini1 = DecisionTreeClassifier(criterion='gini', max_depth=5) model_gini1.fit(x_train, y_train) [24]: #Predicting on test data prod total = model_gini1 predict(x_total)
<pre>pred_testg1 = model_gini1.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_testg1==y_test)) #Predicting on train data pred_traing1 = model_gini1.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_traing1==y_train)) Test data Accuracy is: 0.7625 Train data Accuracy is: 0.8875 Iteration-2: Max Depth = 6</pre> [25]: model_gini2 = DecisionTreeClassifier(criterion='gini', max_depth=6) model_gini2 fit(x_train_x_train)
<pre>model_gini2.fit(x_train,y_train) tt[25]: DecisionTreeClassifier(max_depth=6) [26]: #Predicting on test data pred_testg2 = model_gini2.predict(x_test) #Accuracy on test data print('Test data Accuracy is:',np.mean(pred_testg2==y_test)) #Predicting on train data pred_traing2 = model_gini2.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_traing2==y_train))</pre>
Test data Accuracy is: 0.7125 Train data Accuracy is: 0.925 Iteration-3: Max Depth = 7 [27]: model_gini3 = DecisionTreeClassifier(criterion='gini', max_depth=7) model_gini3.fit(x_train,y_train) [28]: #Predicting on test data pred_testg3 = model_gini3.predict(x_test) #Accuracy on test data
print('Test data Accuracy is:',np.mean(pred_testg3==y_test)) #Predicting on train data pred_traing3 = model_gini3.predict(x_train) #Accuracy on train data print('Train data Accuracy is:',np.mean(pred_traing3==y_train)) Test data Accuracy is: 0.6875 Train data Accuracy is: 0.96875 We get the best test results at Iteration-1 max depth = 5. so we will consider that final [29]: # let's plot the decision tree fig = plt.figure(figsize=(25,20))
fig = tree.plot_tree(model_gini1, feature_names= ['CompPrice','Income','Advertising','Population','Price', 'ShelveLoc', 'Age', 'Education', 'Urban', 'US'], class_names= ['low', 'high'], filled=True) plt.title('Decision tree using Gini',fontsize=22) plt.savefig('DT_Gini.pdf')
Sampling or 13.3
Price == 125.21
Age = 0.5 Supplies = 12.5
Part
The state of the s
From the above decision tree 3 most important features affecting the sales are 1) Price 2) Advertising 3) Comp Price Hence it is concluded that both Entropy and Gini criteria gives us best result at max depth = 5 and 3 most importand features for both is same

!pip install category_encoders
import category_encoders as ce
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import classification_report
from sklearn import preprocessing