PHYS 2211 GPS Topics

Brandon Pries

August 2023

Fall/Summer Week 2, Spring Week 3:

- Quantities
 - o Scalars vs. vectors
 - o Symbolic vs. numeric
 - \blacksquare Units
- Vector algebra
 - $\circ \ \, Addition/subtraction, \, scalar \, \, multiplication/division \, \,$
 - Graphical ("tip-to-tail")
 - \circ Magnitudes
- Physics variables
 - o Position, velocity, acceleration, momentum, force
 - o Mass, time
- Position/velocity update equations and Newton's Second Law

$$\circ \vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$$

$$\circ \vec{v} = \frac{d\vec{r}}{dt} \approx \frac{\Delta \vec{r}}{\Delta t} \implies \vec{r}_f = \vec{r}_i + \vec{v}_{\text{avg}} \Delta t$$

$$\circ \ \vec{a} = \tfrac{d\vec{v}}{dt} \approx \tfrac{\Delta\vec{v}}{\Delta t} \implies \vec{v}_f = \vec{v}_i + \vec{a}\Delta t = \vec{v}_i + \tfrac{\vec{F}_{\rm net}}{m}\Delta t$$

Fall/Spring Week 4, Summer Week 3:

- Constant forces

 - o Contact forces
 - $\circ \ \vec{v}_{\text{avg}} = \frac{\vec{v}_i + \vec{v}_f}{2}$
- Non-constant forces
 - Spring force $\vec{F}_s = -k \left(\left| \vec{L} \right| L_0 \right) \hat{L}$
 - $\circ \ \vec{v}_{\rm avg} \approx \vec{v}_f$

Fall/Spring Week 5, Summer Week 4:

- Non-constant forces
 - $\circ \text{ Spring force } \vec{F}_s = -k \left(\left| \vec{L} \right| L_0 \right) \hat{L}$
 - $\circ~$ Gravitational force $\vec{F}_g = G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r}$
 - Electric force $\vec{F}_e = k \frac{q_1 q_2}{|\vec{r}|^2} \hat{r}$
- Reciprocity/Newton's Third Law

$$\circ \vec{F}_{12} = -\vec{F}_{21}$$

Fall/Spring Week 6, Summer Week 5:

• Equilibrium, force balancing, force decomposition

$$\circ \ \vec{F}_{\mathrm{net}} = \vec{0} \implies F_{\mathrm{net},x} = F_{\mathrm{net},y} = 0$$

- Contact forces, friction
 - \circ Normal force \vec{F}_N
 - \circ Friction $\left| \vec{F}_f \right| = \mu \left| \vec{F}_N \right|$
 - Static friction μ_s , kinetic friction μ_k
- Tension \vec{T}
- Rotated coordinate systems

Fall/Spring Week 7, Summer Week 6:

- Circular/elliptical/orbital motion
- Momentum coordinates \hat{p} , \hat{n}
- Forces in momentum coordinates

o
$$\vec{F}_{\rm net} = \frac{d\vec{p}}{dt} = \frac{d|\vec{p}|}{dt}\hat{p} + |\vec{p}|\,\frac{d\hat{p}}{dt}\hat{n}$$

$$\bullet \ F_{\mathrm{net},\parallel} = \left(\frac{\Delta \vec{p}}{\Delta t} \right)_{\parallel} = \frac{\Delta \vec{p}}{\Delta t} \cdot \hat{p} = \frac{\Delta |\vec{p}|}{\Delta t} \hat{p}$$

$$\bullet F_{\text{net},\perp} = \left(\frac{\Delta \vec{p}}{\Delta t}\right)_{\perp}^{"} = \frac{\Delta \vec{p}}{\Delta t} \cdot \hat{n} = |\vec{p}| \, \frac{\Delta \hat{p}}{\Delta t}$$

• Centripetal force

$$\circ \vec{F}_{\text{centripetal}} = \frac{mv^2}{R} \hat{n}$$

Fall/Spring Week 8, Summer Week 7:

- Dot product

 - - lacksquare θ is angle measured from \vec{a} to \vec{b}
- Work-energy principle $W = \Delta E$
 - $\circ\,$ Work done by surroundings W
 - \circ Change in energy in system ΔE
- Work $W = \int_C \vec{F}(\vec{r}) \cdot d\vec{r}$
 - $\circ \ \vec{F} \ \text{constant} \implies W = \vec{F} \cdot \Delta \vec{r}$

Fall/Spring Week 9, Summer Week 7:

- Types of energy
 - \circ Kinetic energy $K = \frac{1}{2}mv^2$
 - $\circ\,$ Gravitational potential energy $U_g=mgh,-\frac{GMm}{r}$
 - o Spring potential energy $U_s = \frac{1}{2}ks^2$
- Total system energy
 - $\circ E < 0 \implies \text{bound}$
 - $\circ E > 0 \implies \text{unbound}$
- Energy graphs

Fall/Spring Week 10, Summer Week 8:

- Types of energy
 - Spring potential energy $U_s = \frac{1}{2}ks^2$
 - Thermal energy $E_{\text{therm}} = mcT$
 - $\circ\,$ Internal energy $E_{\rm int}$
- Heat $Q = \Delta E_{\text{therm}}$

Fall Week 11, Spring Week 12, Summer Week 8:

- Center of mass $\vec{r}_{CM} = \frac{m_1\vec{r}_1 + m_2\vec{r}_2 + \dots}{m_1 + m_2 + \dots}$
- Extended objects, real systems
 - \circ Point particle system: $W = \vec{F} \cdot \Delta \vec{r}_{CM}$ (center of mass)
 - Real system: $W = \vec{F} \cdot \Delta \vec{r}_{PC}$ (point of contact)
- System decomposition, relative motion
 - $\circ K_{\text{trans}} (= K_{CM}), K_{\text{rel}}$
- Rotational motion
 - \circ Angular velocity $\vec{\omega}$
 - \circ Moment of inertia I
 - Parallel axis theorem $I_{\parallel} = I_{CM} + md^2$
 - Rotational kinetic energy $K_{\rm rot} = \frac{1}{2}I\omega^2$

Fall Week 12, Spring Week 13, Summer Week 9:

- Conservation of momentum $\vec{p_i} = \vec{p_f}$
- Collisions
 - \circ (Perfectly) elastic collisions $\Delta K = 0$
 - $\circ\,$ Inelastic collisions $\Delta K < 0$
 - $\circ\,$ Maximally inelastic collisions $\Delta K < 0, \vec{v}_{f,1} = \vec{v}_{f,2}$

Fall Week 13, Spring Week 14, Summer Week 9:

- Cross product
 - o Component formula $\vec{a} \times \vec{b} = \langle a_y b_z a_z b_y, a_z b_x a_x b_z, a_x b_y a_y b_x \rangle$
 - - lacksquare θ is angle measured from \vec{a} to \vec{b}
 - Right hand rule
- Translational angular momentum $\vec{L}_{\mathrm{trans}} = \vec{r} \times \vec{p}$

Fall Week 13, Spring Week 14, Summer Week 10:

- ullet Angular momentum \vec{L}
 - $\circ\,$ Translational angular momentum $\vec{L}_{\rm trans} = \vec{r} \times \vec{p}$ (point particle)
 - $\circ~$ Rotational angular momentum $\vec{L}_{\rm rot} = I \vec{\omega}$ (real system)
- Torque $\vec{\tau} = \frac{d\vec{L}}{dt}$
 - Point particle $\vec{\tau} = \vec{r} \times \vec{F}$

Fall/Spring Week 15, Summer Week 10:

- Conservation of angular momentum $\vec{L}_i = \vec{L}_f$
- Angular momentum update formula

$$\circ \ \vec{\tau} = \frac{d\vec{L}}{dt} \approx \frac{\Delta\vec{L}}{\Delta t} \implies \vec{L}_f = \vec{L}_i + \vec{\tau} \Delta t$$

• Tidal locking