CHANG WOON JANG, Ph.D

Materials and Data Scientist

- Address(w): NASA Ames Research Center, Moffett Field CA 94035
- Tel(c): 1-610-888-7536
- Email: changwoon.jang@nasa.gov OR changwoonjang@gmail.com
- LinkedIn: www.linkedin.com/in/chang-jang-44a07158
- GitHub: https://github.com/huddack20
- Google Scholar Citation: https://scholar.google.com/citations?user=Cz6pGq4AAAJ&hl=en

EDUCATION

University of Pennsylvania, Philadelphia, PA

Data Science and Visualization Boot Camp

Mississippi State University, Mississippi State, MS

Ph.D., Aerospace Engineering

Pukyong National University, Busan, South-Korea

Bachelor of Science, Physics

WORK EXPERIENCES

Materials Scientist, KBR Wyle, Mountain View, CA

NASA Ames Research Center

Development of computational analysis codes for simulating aerospace grade composite materials. Development of QSAR from protein-drug docking simulations. Publish research papers.

Research Scientist, Department of Materials Chemistry

Nagova University

Development of computational analysis codes, which enable predicting properties of perfluorosulfonic acid polymeric battery membrane at the atomistic and coarse-graining simulations. Publish research papers.

Postdoctoral Research Associate, Biological and Chemical Engineering

Drexel University

Performed research using atomistic simulations to characterize properties polymers, understand mechanisms of their atomistic behaviors, and build structural-property relationships. Publish research papers.

Sep. 2012-May. 2017

June. 2017-May. 2018

Dec. 2018-Current

COMPUTER SKILLS

Simulation Packages

LAMMPS, Materials Studio, GROMACS, COMSOL, ABAQUS

Machine Learning Python Libraries

Scikit-learn, Numpy, Scipy, Pandas, Matplotlib

Software/Applications

Autodock, Schrodinger Software, MOE, VOTCA, Jmol, Packmol,

ChemSketch, VMD, Xmgrace, GNU Plot, Avogardro, Ambertools, MS Office

Languages and Scripts

C/C++, Python, Perl, AWK, SED, TCL, Linux Shell Script

LIST OF PUBLICATIONS

Book Chapter (HYPERLINK)

Lacy, T., Gwaltney, S. R., Pittman, C., Toghiani, H., <u>Jang, C.</u>, Nouranian, S., and Yu, J. (May 2011). "Some Key Issues in Multi-Scale Modeling of Thermoset Nanocomposites/Composites" In S. M. Arnold, T. Wong (Eds.), Tools, Models, Databases, and Simulation Tools Developed and Needed to Realize the Vision of Integrated Computational Materials Engineering, Materials Park, OH: ASM International.

Peer-Reviewed Journal Articles (HYPERLINK)

- 1. <u>Jang, C.</u>, Kang, J. H., Palmieri, F. L., Hudson, T. B., Brandenburg, C. J., Lawson, J. W. "Molecular Dynamics Investigation of the Structural and Mechanical Properties of Off-Stoichiometric Epoxy Resins" *ACS Applied Polymer Materials* 2021, 3, 2950.
- 2. Kuo, A-T., Miyazaki, Y., <u>Jang, C</u>., Nielsen, S. O., Okazaki, S., Shinoda, W. "Large-scale Molecular Dynamics Simulation of Perfluorosulfonic Acid Membranes: Remapping Coarse-grained to All-atomistic Simulations" *Polymer* 2019, 181, 121766.
- 3. Payal, R. S., Fujimoto, K., <u>Jang, C.</u>, Wataru, Shinoda., Takei, Y., Shima, H., Tsunoda, K., Okazaki, S. "Molecular Mechanism of Material Deformation and Failure in Butadiene Rubber: Insight from All-atom Molecular Dynamics Simulation using a Bond Breaking Potential Model" *Polymer*, 2019, 170, 113-119.
- 4. Yang, JH., Srikanth, A., <u>Jang, C</u>., Abrams, C. F. "Relationships between molecular structure and thermomechanical properties of bio-based thermosetting polymers" *Journal of Polymer Science Part B: Polymer Physics*. 2017, 55, 285-292.
- 5. <u>Jang, C.</u>, Abrams, C. F. "Thermal and Mechanical Properties of Thermosetting Polymers using Coarse-grained Simulation" *The European Physical Journal Special Topics*. 2016, 225, 1775-1783.
- 6. <u>Jang, C.</u>, Sharifi, M., Palmese, G. R., Abrams, C. F. "Toughness Enhancement of Thermosetting Polymers Using a Novel Partially Reacted Substructure Curing Protocol: A Combined Molecular Simulation and Experimental Study" *Polymer*. 2016, 90, 249-255.
- 7. Sharifi, M., <u>Jang, C</u>., Abrams, C. F., Palmese, G. R. "Epoxy Polymer Network with Improved Thermal and Mechanical Properties via Controlled Dispersion of Reactive Toughening Agents" *Macromolecules*. 2015, 48(20), 7495-7502.
- 8. <u>Jang, C.</u>, Sirk, T., Andzelm, J., Abrams, C. F. "Comparison of Crosslinking Algorithms in Molecular Dynamics simulations of Thermosetting Polymer" *Macromolecular Theory and Simulation*. 2015, 24(3), 260-270.
- 9. Sharifi, M., <u>Jang, C</u>., Abrams, C. F., Palmese, G. R. "Toughened Epoxy Polymers via Rearrangement of Network Topology" *Journal of Materials Chemistry A*. 2014, 2(38), 16071-16082.
- 10. <u>Jang, C.</u>, Sharifi, M., Palmese, G. R., Abrams, C. F. "Crosslink Network Rearrangement via Reactive Encapsulation of Solvent in Epoxy Curing: A Combined Molecular Simulation and Experimental Study" *Polymer*, 2014, 55(16), 3282-3289.
- 11. <u>Jang, C.</u>, Hutchins, J., Yu, J. "Carbon Nanofiber-reinforced Polymeric Nanocomposites" *Carbon Letters*, 2013, 14(4), 197-205.
- 12. <u>Jang, C.</u>, Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. "Interfacial Shear Strength of Cured Vinyl Ester Resin-Graphite Nanoplatelet from Molecular Dynamics Simulations" *Polymer*, 2013, 54(13), 3282-3289.
- 13. <u>Jang, C.</u>, Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. "Relative Reactivity Volume Criterion for Cross-Linking: Application to Vinyl Ester Resin Molecular Dynamics Simulations" *Macromolecules*, 2012, 45(11), 4876-4885.

- 14. <u>Jang, C.</u>, Nouranian, S., Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. Jr. "Molecular Dynamics Simulation of Oxidized Vapor-Grown Carbon Nanofiber Surface Interactions with Vinyl Ester Resin Monomers" *Carbon*, 2012, 50(3), 748-760.
- 15. Nouranian, S., <u>Jang, C.</u>, Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. Jr. "Molecular Dynamics Simulations of Vinyl Ester Resin Monomer Interactions with a Pristine Vapor-Grown Carbon Nanofiber and Their Implications for Composite Interphase Formation" *Carbon*, 2011, 49(10), 3219-3232.

Conference Proceedings

- 1. <u>Jang, C.</u>, Majid Sharifi., Giuseppe R. Palmese., Cameron F. Abrams (Sep 2015). Partially Reacted Substructures Method for Thermoset Epoxies Studied Using Molecular Dynamics Simulations, 2015 ASC 30 Technical Conference, September 28-30, Michigan State University, MI.
- 2. <u>Jang, C.</u>, Majid Sharifi., Giuseppe R. Palmese., Cameron F. Abrams "Molecular Dynamics Simulation Study of Reactive Encapsulation of Solvent in Epoxy Curing, 2014 ASC 29/US-Japan 16/ASTM D30 Conference, September 8-10, UC San Diego, CA.
- 3. <u>Jang, C.</u>, Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. Jr. "Molecular Dynamics Simulation of Vinyl Ester Resin Crosslinking." To appear in the Proceeding of 53 rd. AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, April 2012, Honolulu, Hawaii.
- 4. <u>Jang, C.</u>, Lacy, T., Gwaltney, S. R., Toghiani, H., and Pittman, C. Jr. "Interfacial Shear Strength of a Graphene/Vinyl Ester Composite Determined by Molecular Dynamics Simulations." to appear in the The American Society for Composites 27th Technical Conference, the 15th US-Japan Conference on Composite Materials and the ASTM-D30 Meeting, October, 1-3, Arlington, TX.

PRESENTATIONS

- 1. "Development of Atomistic Molecular Dynamics Simulation to Characterize Microscopic Fracture Behavior of Epoxy Resins", *AIChE*, San Francisco, CA, November **2020**. (Oral)
- 2. "Property Prediction of Offset Polymers", APS Meeting, Denver, CO, March 2020. (Oral)
- 3. "Polymer Electrolyte Membrane", *IMPACT Meeting*, Zushi, Japan, October **2018**. (Poster)
- 4. "Epoxy Molecular Simulations", MEDE Fall Meeting, Towson, MD, October 2016. (Poster)
- 4. "Epoxy Molecular Simulations", *Summer 2016 MEDE Composites CMRG Meeting*, August **2016**. (Oral)
- 5. "Molecular Dynamics Simulation Study of Thermosetting Polymers from Atomistic to Mesoscopic Scales", *MEDE Composites CMRG Conference Call*, May **2016**. (Oral)
- 6. "Coarse-Grained Molecular Dynamics Simulations of DGEBA/POP-DA Crosslinked Thermosets", *Mach Conference*, Annapolis, MD, April **2016**. (Poster)
- 7. "Partially Reacted Substructures Method for Thermoset Epoxies Studied Using Molecular Dynamics Simulations", *ASC 30 Technical Conference*, Michigan State University MI, September **2015**. (Oral)
- 8. "Understanding Properties Enhancement of Thermoset Epoxies Cured via Partially Reacted Substructures", *Mach Conference*, Annapolis, MD, April **2015**. (Oral)
- 9. "Molecular Dynamics Simulation Study of Reactive Encapsulation of Solvent in Epoxy Curing", ASC 29/US-Japan 16/ASTM D30 Conference, San Diego, CA, September 2014. (Oral)
- 10. "Comparison of Crosslinking Algorithms on Material Properties and Network Structure of Simulated Epoxies", *MEDE Fall Meeting*, Towson, MD, October **2014**. (Poster)
- 11. "Characterizing Molecular-Scale Void Space in Epoxies using All-atom Molecular Simulations", *Mach Conference*, Annapolis, MD, 2014. (Oral)

- 12. "Molecular Dynamics Simulation of Vinyl Ester Resin Crosslinking.", 53 rd. AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu Hawaii, April 2012. (Oral)
- 13. "Molecular Dynamics Simulations of An Oxidized Vapor-Grown Caron Nanofiber and Vinyl Ester Resin Interactions Leading to a Possible Interphase Formation in the Cured Nanocomposites.", *AIChE Annual Meeting*, Salt lake City, UT, October **2011**. (Oral)