Long Short Term Memory

Long Short Term Memory

 Long Short-Term Memory (LSTM) is an enhanced version of the Recurrent Neural

LSTM Architecture

LSTM architectures involves the memory cell which is controlled by three gates

- Input gate: Controls what information is added to the memory cell.
- Forget gate: Determines what information is removed from the memory cell.
- Output gate: Controls what information is output from the memory cell.

These gates decide what information to add to, remove from and output from the memory cell.

Long Short Term Memory

- LSTM architecture has a chain structure that contains four neural networks and different memory blocks called **cells**.
- Information is retained by the cells and the memory manipulations are done by the gates. There are three
 gates

Forget Gate

The equation for the forget gate is:

$$f_t = \sigma(W_f \cdot [h_t - 1, x_t] + b_f)$$

where:

- **W**_f represents the weight matrix associated with the forget gate.
- $[\mathbf{h_t} \mathbf{1}, \mathbf{x_t}]$ denotes the concatenation of the current input and the previous hidden state.
- **b**_f is the bias with the forget gate.
- σ is the sigmoid activation function.
- The information that is no longer useful in the cell state is removed with the forget gate.
- Two inputs x_t (input at the particular time) and h_{t_1} (previous cell output) are fed to the gate and multiplied with weight matrices followed by the addition of bias.
- The resultant is passed through an activation function which gives a binary output.
- If for a particular cell state the output is 0, the piece of information is forgotten and for output 1, the information is retained for future use.

The useful information to the cell state is done by the input gate.

- First, the information is regulated using the sigmoid function and filter the values to be remembered similar to the forget gate using inputs h_{t-1} and x_t .
- Then, a vector is created using tanh function that gives an output from -1 to +1, which contains all the possible values from h_{t-1} and x_t .

• At last, the values of the vector and the regulated values are multiplied to obtain the useful information. The

equation for the input gate is

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$C^t = \tanh(Wc \cdot [h_{t-1}, x_t] + b_c$$

- We multiply the previous state by f_t, disregarding the information we had previously chosen to ignore. Next, we include i_t*C_t.
- This represents the updated candidate values, adjusted for the amount that we chose to update each state value.

•
$$C_t = f_t \odot C_{t-1} + i_t \odot C^t$$

Output gate

- The task of extracting useful information from the current cell state to be presented as output is done by the output gate.
- First, a vector is generated by applying tanh function on the cell.
- Then, the information is regulated using the sigmoid function and filter by the values to be remembered using inputs h_{t-1} and x_t .
- At last, the values of the vector and the regulated values are multiplied to be sent as an output and input to the next cell.
 The equation for the output gate is:

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \cdot \tanh(C_t)$$

"She loves coffee."

We calculate the forget gate activation for the word "coffee" using:

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Given Values

• Previous hidden state h_{t-1} :

$$h_{t-1} = [0.5, 0.3]$$

• Word embedding of "coffee" x_t :

$$x_t = [0.6, 0.8]$$

• Forget gate weight matrix W_f :

$$W_f = \begin{bmatrix} 0.2 & -0.4 & 0.1 & 0.3 \\ -0.5 & 0.6 & 0.2 & -0.1 \end{bmatrix}$$

• Forget gate bias b_f :

$$b_f = [0.1, -0.2]$$

Step 3: Apply Sigmoid Function

$$f_t = \sigma(z_f) = egin{bmatrix} \sigma(0.28) \ \sigma(-0.23) \end{bmatrix}$$

Using:

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Approximating:

$$f_t = \begin{bmatrix} 0.57 \\ 0.44 \end{bmatrix}$$

Step 4: Interpretation

- 0.57 (1st unit) → Keeps 57% of past memory.
- 0.44 (2nd unit) → Forgets 56% of past memory.

Since the values are **not close to 1**, **some past information is forgotten**, allowing the LSTM to process "**coffee**" effectively.

Step 1: Concatenate h_{t-1} and x_t

$$[h_{t-1}, x_t] = [0.5, 0.3, 0.6, 0.8]$$

Step 2: Compute Weighted Sum

$$z_f = W_f \cdot [h_{t-1}, x_t] + b_f$$

Matrix Multiplication

$$\begin{bmatrix} 0.2 & -0.4 & 0.1 & 0.3 \\ -0.5 & 0.6 & 0.2 & -0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.3 \\ 0.6 \\ 0.8 \end{bmatrix} + \begin{bmatrix} 0.1 \\ -0.2 \end{bmatrix}$$

$$= \begin{bmatrix} (0.2 \times 0.5) + (-0.4 \times 0.3) + (0.1 \times 0.6) + (0.3 \times 0.8) \\ (-0.5 \times 0.5) + (0.6 \times 0.3) + (0.2 \times 0.6) + (-0.1 \times 0.8) \end{bmatrix} + \begin{bmatrix} 0.1 \\ -0.2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.1 - 0.12 + 0.06 + 0.24 \\ -0.25 + 0.18 + 0.12 - 0.08 \end{bmatrix} + \begin{bmatrix} 0.1 \\ -0.2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.28 \\ -0.23 \end{bmatrix}$$