JAME: Niklas Kampe 5MT S-136 Time Series Analysis with Python Part I of Assignment 6

Let x_t be a causal AR(2) process:

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$$
, where $w_t \stackrel{\text{no.}}{\sim} \mathcal{N}(0, \sigma_w^z)$.

Assume we know ϕ_1 , ϕ_2 , and σ_m . Suppose we observe x_1 , x_2 , and x_3 , i.e. n = 3.

(a) Find the minimum mean square error predictor x₄³ (the superscript "3" here indicates that the predictor is based on x_1, x_2, x_3) of x_4 using the conditional expectation:

$$x_4^3 = \mathbb{E}[x_4 \mid x_1, x_2, x_3].$$

- (b) Find the linear minimum mean square error predictor x₂ of x₄. You need to justify your answer here.
- (c) For the predictors you obtained in (a) and (b), find the one-step-ahead prediction
- (d) In both cases (a) and (b), construct the 95% prediction interval for x₄, that is, an interval (L, R), such that

$$P(L \le x_4 \le R \mid x_1, x_2, x_2) = 0.95$$

SOLUTION:

| x + 1 + 1 | x + = \$\phi_x \tau + \Phi_2 \times as \times a consol At (2) process

- a) As E[x41x1,x1x3] = E[tax3 + t2x2+we | x1x2,x3] is already a linear prediction of xy, the predictors in a) and b) are the same
- 4) Py = E[(xu-xu))] = E[(4xxxx4xxxx4-4xxx-4xx2) = E[ot] = ot
 - => As AR(2) is a cousal process and x, x, x, x, so all xe with t = m+t=4, is observable, the prediction error is or
- d) Interval bounds: x = + 1,36. TP3 = x + 1,36. TP3
 - >> Positive bound: \$1 x2 + \$1, x2 + 1,96. +2 \$1 x3 + \$1, x2 + 4,960-
 - => Negative bounds \$1 x2+ \$2x2 1,36. To2 = \$1 x1+ \$2 x2-1,360~ => [Pax3 + P2 x2 + 1, 5600, Pax, + D2 x, - 1, 260]