

In the name of Allah, the Most Merciful, the Most Kind

Date: 04-10-2021

BCS 103 Digital Logic & Computer Architecture

Lecture 17 and 18

Boolean Algebra

Boolean laws

Commutative law	Absorption law
AB = BA	A + AB = A
A+B=B+A	A(A+B)=A
Distributive law	De Morgan's law
A(B+C) = AB+BC	$\overline{A+B} = \overline{A} \bullet \overline{B}$
A+BC=(A+B)(A+C)	$\overline{A \bullet B} = \overline{A} + \overline{B}$
Associative law	Note also
A(BC) = (AB)C	$A + \overline{A}B = A + B$
A+(B+C)=(A+B)+C	$A(\overline{A}+B)=AB$

Commutative Law of Addition:

$$A + B = B + A$$

$$\begin{array}{ccc}
A & & \\
B & & \\
\end{array}$$

$$A + B \equiv A = D - B + A$$

Commutative Law of Multiplication:

$$A*B=B*A$$

Associative Law of Addition:

$$A + (B + C) = (A + B) + C$$

Associative Law of Multiplication:

Distributive Law:

$$A(B + C) = AB + AC$$

Rule 1 IDENTITY w.r.t ADDITION

$$\begin{array}{c}
A = 1 \\
0
\end{array}
\qquad X = 1$$

$$X = A + 0 = A$$

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Rule 2 NULL w.r.t ADDITION

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

$$X = A + 1 = 1$$

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Rule 3 NULL w.r.t MULTIPLICATION

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

Rule 4 IDENTITY w.r.t MULTIPLICATION

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

Rule 5 IDEMPOTENT w.r.t ADDITION

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

 Rule 6 COMPLEMENTARITY w.r.t ADDITION

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Rule 7 IDEMPOTENT w.r.t MULTIPLICATION

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

 Rule 8 COMPLEMENTARITY w.r.t MULTIPLICATION

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

Rule 9 INVOLUTION

$$A = 0 \longrightarrow \overbrace{\bar{A}} = 1 \longrightarrow \overbrace{\bar{A}} = 0 \qquad A = 1 \longrightarrow \overbrace{\bar{A}} = 0 \longrightarrow \bar{\bar{A}} = 1$$

$$\bar{\bar{A}} = A$$

Rule 10: A + AB = A

Α	В	Х	Α	В	Х
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table OR Truth Table

Rule 11: A + AB = A + B

A	B	AB	A + AB	A + B	
0	0	0	0	0	
0	1	1	1	1	
1	0	0	1	1	A
1	1	0	1	1	·))—

Α	В	Х	Α	В	Х
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table OR Truth Table

Rule 12: (A + B)(A + C) = A + BC

ĺ	Α	В	Х	Α	В	Х
3	0	0	0	0	0	0
	0	1	0	0	1	1
	1	0	0	1	0	1
	1	1	1	1	1	1

AND Truth Table OR Truth Table

DeMorgan's Theorem

DeMorgan's 1st Theorem

The complement of a product of variables is equal to the sum of the complemented variables.

$$\overline{AB} = \overline{A} + \overline{B}$$

Applying DeMorgan's first theorem to gates:

Input	s Ou	ıtput
A B	ĀB	Ā+B
0 0 0 1 1 0 1 1	1 1 1 0	1 1 1 0

DeMorgan's Theorem

DeMorgan's 2nd Theorem

The complement of a sum of variables is equal to the product of the complemented variables.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Applying DeMorgan's second theorem to gates:

Inp	uts	Output			
A B		A + B	AB		
0	0	1	1		
0	1	0	0		
1	0	0	0		
1	1	0	0		

Simplify the following expression

Simplify the following expression

A +
$$\overline{A}B$$

Applying the previous rule to expand A term

A + AB + $\overline{A}B$

A + AB + $\overline{A}B$

Factoring B out of 2nd and 3rd terms

A + B(A + \overline{A})

Applying identity A + \overline{A} = 1

A + B(1)

Applying identity 1A = A

A + B

• Simplify the following expression

$$AB+A(B+C)+B(B+C)$$

- (distributive law)
 - AB+AB+AC+BB+BC
- (rule 7; BB=B)
 - \blacksquare AB+AB+AC+**B**+BC
- (rule 5; AB+AB=AB)
 - \blacksquare **AB**+AC+B+BC
- (rule 10; B+BC=B)
 - \blacksquare AB+AC+**B**
- (rule 10; AB+B=B)
 - **■ B**+AC

• Simplify the following expression

$\frac{\text{Expression}}{\overline{AB}(\overline{A} + B)(\overline{B} + B)}$	Rule(s) Used Original Expression
$\overline{AB}(\overline{A} + B)$	Complement law, Identity law.
$(\overline{A} + \overline{B})(\overline{A} + B)$	DeMorgan's Law
$\overline{A} + \overline{B}B$	Distributive law. This step uses
Ā	Complement, Identity.

• Simplify the following expression

Expression	Rule(s) Used
$(A+C)(AD+A\overline{D})+AC+C$	Original Expression
$(A+C)A(D+\overline{D})+AC+C$	Distributive.
(A+C)A+AC+C	Complement, Identity.
A((A+C)+C)+C	Commutative, Distributive.
A(A+C)+C	Associative, Idempotent.
AA + AC + C	Distributive.
A + (A + T)C	Idempotent, Identity, Distributive.
A + C	Identity, twice.

A + B

Simplify the following expression

Simplify: $\overline{A}(A+B) + (B+AA)(A+\overline{B})$	
Expression	Rule(s) Used
$\overline{A}(A+B) + (B+AA)(A+\overline{B})$	Original Expression
$\overline{A}A + \overline{A}B + (B + A)A + (B + A)\overline{B}$	Idempotent (AA to A), then Distributive, used twice.
$\overline{A}B + (B + A)A + (B + A)\overline{B}$	Complement, then Identity. (Strictly speaking, we also used the Commu
$\overline{A}B + BA + AA + B\overline{B} + A\overline{B}$	Distributive, two places.
$\overline{A}B + BA + A + A\overline{B}$	Idempotent (for the A's), then Complement and Identity to remove $B\overline{B}$.
$\overline{A}B + AB + AT + A\overline{B}$	Commutative, Identity; setting up for the next step.
$\overline{A}B + A(B + T + \overline{B})$	Distributive.
$\overline{A}B + A$	Identity, twice (depending how you count it).
$A + \overline{A}B$	Commutative.
$(A + \overline{A})(A + B)$	Distributive.

Complement, Identity.

Example 1

Determine if the following equation is valid

$$\bar{x}_1\bar{x}_3 + x_2x_3 + x_1\bar{x}_2 = \bar{x}_1x_2 + x_1x_3 + \bar{x}_2\bar{x}_3$$

Left-Hand Side (LHS)

Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$x_1 \overline{x_2}$	f
0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
2	0	1	0	1	0	0	1
3	0	1	1	0	1	ŏ	1
4	1	0	0	0	0	1	1
5	1	0	1	0	0	1	1
6	1	1	0	0	0	0	0
7	1	1	1	0	1	ŏ	l i

Right-Hand Side (RHS)

Row number	x_1	x_2	x_3	$-\frac{1}{x_1x_2}$	$x_{1}x_{3}$	$\frac{-}{x_2}\frac{-}{x_3}$	f
0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0
2	0	1	0	1	0	0	1
3	0	1	1	1	0	0	1
4	1	0	0	0	0	1	1
5	1	0	1	0	1	Ô	1
6	1	1	0	0	0	0	0
7	1	1	1	0	1	ő	

$\overline{x}_1\overline{x}_3 + x_2x_3 + x_1\overline{x}_2$ LHS	$? = \overline{x}_1 x_2 + x_1 x_3 + \overline{x}_2 \overline{x}_3 $ RHS
0	0
1 1	1 1
1 0	1 0
1	1

Thanks