Tetranilina. Tetranitro anilina, Tetranitro aniline.

Tetranilina jest żółtym krystalicznym ciałem stałym o temperaturze topnienia 210 stopni Celsjusza. Jest łatwo rozpuszczalna w acetonie, ale słabo rozpuszczalna w kwasie octowym, benzenie i chloroformie - jest nierozpuszczalna w wodzie. Tetranilina jest silnym materiałem wybuchowym stosowanym w kompozycjach inicjujących do spłonek, substytutach azydku ołowiu, detonatorach i kompozycjach wybuchowych. Łatwo ulega redukcji w roztworze acetonu z mocną zasadą dając 2,4,6-trinitrobenzeno-1,3-diaminę (DATB).

Masa cząsteczkowa: 273.117	Palność: Podpalony deflagruje
Prędkość detonacji: Podobna do TNT	Toksyczność: Umiarkowana
Wrażliwość: Umiarkowana	Typ: Materiał wybuchowy inicjujący
Stabilność: Bardzo dobra	Wartość ogólna (jako MWI): Umiarkowana

Przygotowanie Tetraniliny:

Materiały:	1. 72 gramy kwasu siarkowego 98%
	5 gramów azotanu sodu 3. 2 gramów meta-nitroaniliny (można ją otrzymać przez ostrożne nitrowanie aniliny 70% kwasem azotowym

Streszczenie: Tetranilinę otrzymuje się w reakcji meta-nitroaniliny z azotanem sodu w stężonym kwasie siarkowym. Powstała mieszanina jest następnie podgrzewana. Po czym usuwa się ciepło, a mieszaninę reakcyjną pozostawia się do ochłodzenia do temperatury pokojowej. Wytrącony produkt jest następnie filtrowany, myty i suszony.

Zagrożenia: Nosić rękawice podczas pracy z 98% kwasem siarkowym, oraz meta-nitroaniliną. Meta-nitroanilina jest toksyczna i może być wchłonięta przez skórę.

Procedura: Do odpowiedniej zlewki umieść 72 gramy kwasu siarkowego 98%. Następnie dodaj 2 gramy meta-nitroaniliny i 5 gramów azotanu sodu. Następnie podgrzej mieszaninę do temperatury 70 stopni Celsjusza i szybko mieszaj. Nie dopuszczać do wzrostu temperatury powyżej 90 stopni C. Częste zatrzymywanie i uruchamianie źródła ciepła może być konieczne w celu kontrolowania temperatury reakcji. Podczas podgrzewania, powstanie reakcja egzotermiczna, ogrzewamy

naszą zlewkę do czasu aż ta reakcja się zakończy. Gdy reakcja się zakończy, ogrzewaj mieszaninę ciągle mieszając w temperaturze 100 °C przez około 10 minut, a następnie usuń źródło ciepła i pozostaw mieszaninę reakcyjną do schłodzenia do temperatury pokojowej. Po tym czasie odfiltruj wytrącony produkt, a następnie przemyj dużą ilością zimnej wody. Nie należy myć zasadą, ponieważ może to spowodować redukcję czwartej grupy nitrowej. Po przemyciu produkt należy wysuszyć próżniowo lub powietrzem.

Przygotowanie Tetraniliny:

Materiały:	1. 2000 mililitrów kwasu siarkowego 98%
	 570 gramów kwasu azotowego 99% 214 gramów meta-nitroaniliny (można ją przygotować przez ostrożne nitrowanie aniliny 70% kwasem azotowym). 500 ml kwasu siarkowego 50%

Streszczenie: Tetranilinę można przygotować przez nitrowanie meta-nitroaniliny bezwodnym kwasem azotowym w obecności stężonego kwasu siarkowego. Powstała mieszanina reakcyjna jest następnie mieszana, a pożądany produkt się wytrąca. Wytrącony produkt jest następnie filtrowany, przemywany kwasem, a następnie wodą. Wilgotny produkt jest następnie suszony próżniowo lub na powietrzu.

Zagrożenia: Podczas pracy z kwasem azotowym 99% należy nosić rękawice i stosować maksymalną wentylację. 99% kwas azotowy jest wysoce toksyczną i żrącą cieczą, która wydziela silnie trujące opary tlenków azotu. Należy zachować szczególną ostrożność. Nosić rękawice podczas pracy z 98% kwasem siarkowym i meta-nitroaniliną. Meta-nitroanilina jest toksyczna i może być wchłaniana przez skóre.

Procedura: Do dużej 3-szyjkowej kolby wyposażonej w wkraplacz, mieszadło i termometr, dodaj roztwór kwasu przygotowany przez rozpuszczenie 214 gramów meta-nitroaniliny w 2000 mililitrach 98% kwasu siarkowego. Następnie podgrzej zawartość kolby do temperatury 60 stopni Celsjusza. Gdy roztwór kwasu osiągnie temperaturę 60°C, usuń źródło ciepła, a następnie szybko umieść 570 gramów 99% kwasu azotowego do wkraplacza, a następnie rozpocznij dodawanie tego kwasu, powoli i po kropli, do roztworu kwasu siarkowego/nitroaniliny w czasie wystarczającym do utrzymania mieszaniny reakcyjnej w temperaturze 60°C przez cały czas, jednocześnie szybko mieszając mieszaninę reakcyjną.

Uwaga: dodanie kwasu azotowego wytworzy wystarczająco dużo ciepła, aby utrzymać mieszaninę reakcyjną w określonej temperaturze, ale w zależności od szybkości dodawania kwasu azotowego można dodać lub nie łaźnie lodową.

Po dodaniu kwasu azotowego kontynuować mieszanie mieszaniny reakcyjnej w temperaturze 60°C przez około 40 minut. Następnie umieść mieszaninę reakcyjną w łaźni lodowej, jeżeli nie zostało to jeszcze zrobione, i pozostaw mieszaninę reakcyjną do schłodzenia do temperatury około 40 °C. Następnie odfiltruj wytrącony produkt, który będzie miał postać zawiesiny, używając szklanego lejka, a następnie przemyj odfiltrowany produkt 500 mililitrami kwasu siarkowego 50%, a następnie 2000 mililitrami zimnej wody. Po umyciu produkt należy wysuszyć próżniowo lub powietrzem. Wynikiem końcowym będzie około 300 gramów pożądanego produktu.

Kompozycja na bazie Tetraniliny:

Do zlewki dodajemy 52 gramy tetraniliny, a następnie podgrzewamy do temperatury 210 stopni Celsjusza, aby ją stopić. Następnie dodajemy 30 gramów naftalenu i następnie 130 gramów trotylu, po czym gwałtownie mieszamy stopioną mieszaninę przez kilka minut. Po czym gwałtownie schładzamy mieszaninę, a następnie należy sproszkować powstałą substancję stałą na drobny proszek. Następnie umieść ten proszek w bębnie mieszającym, po czym dodaj 322 gramy azotanu amonu, oraz 26 gramów węgla drzewnego, a następnie gwałtownie mieszaj mieszaninę przez kilka godzin, aby utworzyć jednolitą mieszaninę. Po wymieszaniu, wtłocz mieszaninę w dowolny pożądany pocisk moździerzowy, artyleryjski, bombowy lub rakietowy pod wysokim ciśnieniem; najlepiej poniżej 10 000 psi. Mieszankę tę stosuje się głównie w pociskach torpedowych, ze względu na wysoki stopień gazu pod ciśnieniem wytwarzanego podczas detonacji.

Przetłumaczone przez: Fudes

Zródło: The preparatory manual of explosives