2.4 Central Limit Theorem

Thm 5.7 (Lindeberg-Levy CLT): $\{X_i\}_{i=1}^{\infty}$

Suppose $\{X_i\}_{i=1}^n$ is a seq of iid random variables with μ, σ^2 finite. Then an asym-

2.7 Interval Estimation

4.1 Test statistics and critical values **Goal**: Derive statistic T and reject iff $T > c_{\alpha}$

Test choice: One approach: fix α , take the one with the best power over all $\theta \in \Theta_1$ (might not

Def 7.5/7.6: For $\alpha \in [0,1]$, a test is *level* α if $\sum_{\theta \in \Theta_0} \beta(\theta) \le \alpha$ (size: equality).

controlling $\sup_{\theta \in \Theta_0} P_{\theta}(T > c_{\alpha}) \Rightarrow \text{need } F_T(t)$.

Ex 7.2 (Two-sided T): $X \sim N(\mu, \sigma^2)$ so $\theta =$

 (μ, σ^2) . Test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ use

 $T = \frac{\sqrt{n}|\overline{X}_n - \mu_0|}{S_{\cdots}} |t_{n-1}|$ and reject for $T > c_{\alpha} =$

 $t_{n-1,1-\alpha/2}$. By construction $sup_{\theta\in\Theta_0}P_{\theta}(T>$

 c_{α}) = α . Note this holds for all $\sigma^2 \in \Gamma$ thus

Ex (One-sided T): $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n}$ with $c_\alpha = t_{n-1,1-\alpha}$ or Z = -T and c_α unchanged (symme-

try). Intuition: want to reject for large $\mu > \mu_0$

Deriving $\beta(\theta)$: (1) add and subtract (true) μ ,

The one-sided test is also a test for H_0 :

 $\mu \leq \mu_0$ against H_1 : $\mu > \mu_0$ with si-

ze α , because $\sup_{\theta \in \Theta_0, \sigma \in \Gamma} \beta^{1sided}(\theta) \leq \alpha$.

Def (p-value): For any realization T^* , $p^* =$

 $\inf\{p \in [0,1]: T^* > c_p\}$. Intuition: smallest α

Under H_0 , $p \sim Unif[0,1]$ (require $P(p^* < \alpha) =$

 α , i.e. want $Pr_{\theta}(rejectH_0) < \alpha$), but holds $\forall \alpha$.

p-value with simple H_0 : If F_0 is strictly incre-

asing, $p* = 1 - F_0(T*)$ (again: $p_{H_0}Unif[0,1]$).

With parametric distributions with multiple

parameters (e.g. $N(\mu, \sigma^2)$) usually fix one pa-

rameter (e.g. σ^2) resulting in simple test but

Test-inversion: Assume test $H_0: \theta = \theta_0$ and

have test s.t. $P_{\theta_0}(rejectH_0) = \alpha$ (size α). Assu-

me can perform for any $\theta_0 in\Theta$. Then we ha-

ve $CS = \{\theta_0 \in \Theta : notrejectH_0 : \theta = \theta_0\}$ with

We can also do the reverse: From any CS with

coverage rate $1 - \alpha$ can construct size α test as

Ex. one-sided CI: Testing $H_0: \mu = \mu_0$ against

 $H_1: \mu > \mu_0$ (or $H_0: \mu \le \mu_0$) for normal case we

for which we would still reject.

technically composite H_0 .

 $P_{\theta}(\theta \in CS) = 1 - \alpha$.

reject $\Leftrightarrow \theta_0 \notin CS$.

4.2 Hypothesis Testing and CIs

(2) look at behavior as μ changes.

a test of level and size α .

(right-sided).

 $z_{1-\alpha/2}) \rightarrow \alpha$ under H_0 . **Hypotheses**: Set of distributions \mathbb{P} with $\mathbb{P}_0 \subset$

 \mathbb{P} set of distributions consitent with H_0 . **Def** 7.7 (Asymptotic power function): $\beta^{\alpha}(P) =$

Def 7.8/7.9: test with $\beta^a(P)$ is asymptotic level α if $\sup_{P \in P_0} \beta^a(P) \leq \alpha$ (size: equality).

Def 7.10 (consistency): Test consistent against alternative $P \in P_1$ if $\beta^a(P) = 1$.

partiti-

seq. of iid rvs from F_X , μ and σ^2 finite. Then $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$. Thm 5.9 (Berry-Esseen): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X , μ and σ^2 finite and $\lambda = E(|X - E(X)|^3)$ exist and finite. Let $Z \sim N(0,1)$. Then $|P\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le x\right) - P(Z \le x)| \le \frac{C\lambda}{\sigma^3 \sqrt{n}}.$

2.5 Convergence of Random Vectors

Def 5.7: $\mathbf{X}_n \xrightarrow{p} \mathbf{X} \leftrightarrow \lim_{n \infty} P(\|\mathbf{X}_n - \mathbf{X}\| < 1)$ **Def 5.8:** $X_n \xrightarrow{ms} X \leftrightarrow \lim_{n \to \infty} E(||X_n||)$

 $\lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$. **Def 5.3**: $|X||^2 = 0$. **Def 5.9:** $X_n \xrightarrow{a} X \leftrightarrow \lim_{n \to \infty} F_{X_n}(x) =$ $F_{\mathbf{X}}(x)$ for every continuity point x of

> Thm 5.10 (Cramér-Wold): $\{X_n\}_{n=1}^{\infty}$ seq. of K-dimensional random vectors. Then, $\forall \lambda \in \mathbb{R}^{\mathbb{K}}$ we have $\lambda' \mathbf{X}_n \xrightarrow{d} \lambda' \mathbf{X} \leftrightarrow \mathbf{X}_n \xrightarrow{d}$

2.6 CMT and Slutzky's

Thm 5.11 (CMT): Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of K-dim. rvecs X K-dim rvec, and $g: \mathbb{R}^{\mathbb{K}} \to \mathbb{R}$ with discontinuity points D such that $P(\mathbf{X} \in D) = 0$.

 $X_n = Z \sim N(0,1)$ and $X, Z \sim N(0,1)$, have (a) $X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$.

(b) $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$. Implication: Sums and products of convergent sequences converge. Does not hold for *mean square* convergence.

Thm 5.12 (Slutzky's): X_n , Y_n seq of rvs with $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c \in \mathbb{R}$, then $X_n + Y_n \xrightarrow{d} X + c$ and $X_n Y_n \xrightarrow{d} cX$, and if $c \neq 0$, $X_n/Y_n \xrightarrow{d} X/c$.

Extension to rvecs: $X_n \stackrel{d}{\longrightarrow} X$ and $\mathbf{Y}_n \xrightarrow{p} \mathbf{C} \in \mathbb{R}^{K \times K}$, C invertible, then $\mathbf{Y}_{n}^{-1}\mathbf{X}_{n} \xrightarrow{d} \mathbf{C}^{-1}\mathbf{X}.$

Example CMT: $\left(\frac{\sqrt{n}(\overline{X}_n-\mu)}{\sigma}\right)^2$ $N(0,1)^2 = \xi_1^2$.

Thm 5.13 (Delta-Method): X_n seq of rvs with LL-CLT applying. $g: \mathbb{R} \to \mathbb{R}$ continuously diff. at μ with $g'(\mu) \neq 0$.

Then $\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{a} N(0, g'(\mu)^2 \sigma^2)$. Proof: CMT and Slutzky's applied to Taylor's/intermediate value theorem.

ptotically valid CI for μ is given by $CI = \left| \overline{X}_n \pm \frac{z_{1-\alpha/2}}{\sqrt{n}} S_n \right|$

where S_n is a consistent estimator of σ

and $P(u \in CI) \rightarrow 1 - \alpha$. Proof: CLT, CMT, Slutzky. 2.8 Moment-Based Estimation

Parameter of interest: $\theta = h(E(g(X)))$ (simple case: X, θ scalars and $g : \mathbb{R} \to \mathbb{R}$

and $h: \mathbb{R} \to \mathbb{R}$ cont. diff.). Moment-based estimator: $\hat{\theta}_n$ $h\left(\frac{1}{n}\sum_{i=1}^{n}g(X_i)\right)$. Consistency follows from LLN and CMT.

distribution: Large-sample $Var(g(X)) < \infty$ CLT applies so $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} g(X_i) - E(g(X)) \right)$ N(0, Var(g(X))). By the delta-method if $h'(g(E(X))) \neq 0$ we have

$$\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n} \left(h \left(\frac{1}{n} \sum_{i=1}^n g(X_i) \right) - h(E(g(X))) \right)$$

$$\xrightarrow{d} N(0, h'(E(g(X))^2 V ar(g(X)))^{3/2}$$

3 Hypothesis Testing 3.1 Basics

Def 7.1: A *hypothesis* is a statement about the population distribution. **Def** 7.2: H_0 (null hypothesis) and H_1 (alternative hypothesis) are the

complementary hypothesis. We write $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_1$ with Θ_k mutually exclusive and exhaustive. Simple hypothesis: Θ_0 is singleton. Composite hypothesis: Θ_1 more than one

Def 7.3: A hypothesis test is a rule when to reject H_0 (in favor of H_1) given the data. (Accepting H_0 is weird, e.g. what about $\theta_0 + \epsilon$?.)

Size and Power **Type-I error**: Reject H_0 although in fact true.

Type-II error: Not reject H_0 although in fact Error rates: Probabilities of making these errors (errors are random because they depend on the sample).

I-II-trade-off: We want to minimize $P_{\theta}(rejectH_0) \quad \forall \theta \in \Theta_0 \quad \text{and} \quad \text{maximize}$ $P_{\theta}(rejectH_0) \ \forall \theta \in \Theta_1 \ (P_{\theta} \ denotes \ proba$ bilities assuming θ is the true parameter). Def 7.4 (Power function): $\beta(\theta) =$ $P_{\Theta}(rejectH_0)$.

Type-I error: $\beta(\theta)$ for any $\theta \in \Theta_0$. **Type-II error**: $\beta(\theta)$ for any $\theta \in \Theta_1$.

 $T \xrightarrow{a} |N(0,1)|$ and we can use $\Phi^{-1}(x)$ to con-

have $CS = \{\mu_0 \in [\overline{X}_n - \frac{t_{1-\alpha,n-1}}{\sqrt{n}}S_n, \infty)\}.$ 4.3 Asymptotic Approximations

: Asymptotic argument: No parametric model $f(x;\theta)$, but, e.g., moments: $H_0: E(X) = \mu$.

trol α asymptotically. In particular, P(T >

$F_{X_{n}}(x) = F_{X}(x)$ but $P(|Z - X| \ge \epsilon) > 0$. Exception: $X_n \xrightarrow{d} c \in \mathbb{R} \Rightarrow X_n \xrightarrow{p} c$. 2.3 Law of Large Numbers Thm 5.4 (LLN): $X_{i}_{i=1}^{\infty}$ seq. of uncorrelated rvs from F_X with $\mu = E(X)$, Var(X)existing and finite. Then $\overline{X}_n \xrightarrow{P} \mu$. Proof: Chebyshev's inequality. **Thm 5.5 (WLLN)**: $X_{i,i=1}^{\infty}$ seq. of uncorrelated rvs. Suppose $\mu_i = E(X_i)$ and $\sigma_i^2 = Var(X_i)$ exist and finite. If $\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 = 0$ then \overline{X}_n $\frac{1}{n}\sum_{i=1}^n \mu_i \xrightarrow{p} 0.$ **Thm 5.6 (LLN i.i.d)**: $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X with $\mu = E(X)$ exist and fini-

Convergence Criteria: Need a combina-

tion of three assumptions: (1) finite mean

and/or variance (no LLN for Cauchy), (2)

bounds on asymptotic variance (e.g. not

growing too fast with i), (3) restricted de-

Econometrics Year 1 Cheat-sheet

Theorem 1.3: $A_1, ..., A_2$

on of S and $B \subset S$, then P(B) =

Thm 5.1 (Markov's Inequality): X r.v.,

 $g: \mathbb{R} \to [0, \infty)$, then $\forall \epsilon > 0$, $P(g(X) > \epsilon) \leq$

Cor 5.1 (Chebyshev's Inequality): X

r.v., then $\forall \epsilon > 0$, $P(|X - E(X)| \geq \epsilon) \leq$

Def 5.2: $plim_{n\to\infty}X_n = X \leftrightarrow$

 $\hat{\theta}_n$ consistent f or $\theta \leftrightarrow p \lim \hat{\theta}_n = \theta$. **Def 5.4:** $\{X_n\}_{n=1}^{\infty}$ converges in distribu-

tion to $X \leftrightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for

Def 5.5: $\{X_n\}_{n=1}^{\infty}$ converges in mean square to $X \leftrightarrow \lim_{n \to \infty} E[(X_n - X)^2] = 0$.

Thm 5.2: $X_n \xrightarrow{m.s.} X_n \xrightarrow{p} X$. Proof by Chebyshev's inequality. The reverse

is not true, consider $X_n \in 0, \sqrt{n}$ with

Thm 5.3: $X_n \xrightarrow{p} \Rightarrow X_n \xrightarrow{d} X$. Proof uses

definition of \xrightarrow{P} and continuity. The

reverse is generally not true, consider

every continuity point of x of $F_X(\cdot)$.

Julian Budde, Page 1 of 2

1 Probability Theory

 $\sum i = 1^{\infty} P(B|A_i) P(A_i).$

2 Asymptotic Theory

2.2 Modes of Convergence

probabilities 1 - 1/n, 1/n.

te. Then $\overline{X}_n \xrightarrow{p} \mu$.

pendence.

2.1 Inequalities

E(g(X))