28-11-2024

Language model evaluation

- Extrinsic evaluation application specific
- Intrinsic evaluation independent of any application
- Perplexity $(W = w_1 w_2 \dots w_N)$:
 - $PP(W) = p(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$
 - For 2-gram Model

$$-PP(W) = \sqrt{\prod_{i=1}^{N} \frac{1}{p(w_i | w_{i-1})}}$$

Language translation evaluation

- Human evaluation
- Automatic evaluation
- Things to be consider:
 - Adequacy/faithfulness/fidelity
 - How well the translation capture the exact meaning of the source sentence
 - Fluency
 - How fluent the translation is in the target language
 - Grammar, readable, natural

- Human evaluation
- Automatic evaluation
 - Bilingual Evaluation Understudy (BLEU), Papineni et al., ACL, 2002

$$BLEU = BP \times \exp\{\sum_{n=1}^{N} W_n \log p_n\}$$

- ► *BP* Brevity penalty:
 - 1 if c > r
 - $\exp(1 r/c)$ if $c \le r$
- $ightharpoonup p_n$ n-gram precision:
 - Number of candidate n-gram matched with the reference n-gram (m_1) divides by the total number of n-grams in the candidate translation (m)
- W_n weight factor
- $^{\bullet}$ Original paper- Uniform weight and N=4

BLEU- example

- Example-1:
 - Candidate: the the the the the the.
 - Reference: the can is on the mat.
- Can you see issues?
- Metric for Evaluation of Translation with Explicit ORdering (METEOR), Banerjee and Davie, ACL, 2005

- Human evaluation
- Automatic evaluation
 - ► Character overlap: character F-score (charF β)¹
 - charP: percentage of character 1-gram, ..., k-gram in the hypothesis that occur in the reference, averaged
 - charR: percentage of character 1-gram, ..., k-gram in the reference that occur in the hypothesis, averaged

$$- \operatorname{char} \beta = (1 + \beta^2) \frac{\operatorname{char} P \times \operatorname{char} R}{\beta^2 \operatorname{char} P + \operatorname{char} R}$$

• Character overlap: character F-score (charF β)

$$- \operatorname{char} \beta = (1 + \beta^2) \frac{\operatorname{char} P \times \operatorname{char} R}{\beta^2 \operatorname{char} P + \operatorname{char} R}$$

- Example:
 - REF: witness for the past,
 - HYP1: witness of the past,
 - HYP2: past witness
 - witnessforthepast, (18 1-grams, 17 2-grams)
 - witnessofthepast, (17 1-grams, 16 2-grams)
 - ► 1-gram match: 17
 - 2-gram match: 13
 - ► 1-gramP: 17/17, 1-gramR: 17/18
 - 2-gramP: 13/16, 2-gramR: 13/17
 - \rightarrow charP = (17/17 + 13/16)/2
 - ightharpoonup charR = (17/18 + 13/17)/2
 - charF2, 2(REF, HYP1) = 0.86
 - charF2, 2(REF, HYP2) = 0.62

• Character overlap: character F-score (charF β)

$$- \operatorname{char} \beta = (1 + \beta^2) \frac{\operatorname{char} P \times \operatorname{char} R}{\beta^2 \operatorname{char} P + \operatorname{char} R}$$

- Limitation:
 - a good translation may use alternate words or paraphrases
- Solution?
 - Word embedding?
 - reference translation: $x = (x_1, x_2, \dots, x_n)$
 - candidate machine translation: $\bar{x} = (\bar{x_1}, \bar{x_2}, \cdots, \bar{x_m})$
 - human rating: r
 - Train a model 1,2 to predict r based on x and \bar{x}
 - Models try to correlates with human labels

- If human rating is not available!
 - Happen many cases
- Solution?
 - Word embedding?
 - reference translation: $x = (x_1, x_2, \dots, x_n)$; x_i is a word embedding
 - candidate machine translation: $\bar{x}=(\bar{x_1},\bar{x_2},\cdots,\bar{x_m})$
 - Define a similarity between x and \bar{x} as

$$-Precision_{BERT} = \frac{1}{|\bar{x}|_0} \sum_{\bar{x}_i \in \bar{x}} max_{x_i \in x} x_i \cdot \bar{x}_j$$

$$Recall_{BERT} = \frac{1}{|x|_0} \sum_{x_i \in x} max_{\bar{x}_j \in \bar{x}} x_i \cdot \bar{x}_j$$

Automatic Evaluation of Summaries

Recall-Oriented Understudy for Gisting Evaluation (ROUGE), Lin, WAS, 2004

$$ROUGE - N = \frac{\sum_{S \in Ref.} \sum_{n-gram \in S} Count_{match}(n - gram)}{\sum_{S \in Ref.} \sum_{n-gram \in S} Count(n - gram)}$$

 ullet $Count_{match}(n-gram)$ - number of n-gram matched with the candidate and reference summaries

Course review