Complex Analysis Homework 7

Colin Williams

November 9, 2020

Question 3

Use the definition to show that the sequence of functions $f_n(z) = \frac{1}{nz}$ is pointwise convergent, but not uniformly convergent, to f(z) = 0 on the domain $\Omega = D(0,1) \setminus \{0\}$.

Proof. I will first show that $f_n(z)$ is pointwise convergent. Let $z \in D(0,1) \setminus \{0\}$ and $\varepsilon > 0$ be fixed. Let us examine $|f_n(z) - f(z)| = |f_n(z)|$:

$$|f_n(z)| = \left| \frac{1}{nz} \right|$$
$$= \frac{1}{n|z|}$$

Thus, if we define $N_{\varepsilon}(z):=\frac{1}{\varepsilon|z|}$, then for $n>N_{\varepsilon}(z)$ we have the following:

$$|f_n(z) - f(z)| = |f_n(z)| = \frac{1}{n|z|}$$

$$< \frac{1}{N_{\varepsilon}(z)|z|}$$

$$= \frac{1}{|z|/(\varepsilon|z|)}$$

This shows that f_n is pointwise convergent to f(z) = 0. However, if we look at our choice for $N_{\varepsilon}(z)$, we see that it has no upper bound because as $|z| \to 0$, then $N_{\varepsilon}(z) \to \infty$. Thus, it is impossible to find an N_{ε} that does not depend on the specific point z, so f_n does not converge uniformly to f(z) = 0.