

www.uneatlantico.es

MATEMÁTICAS

Funciones Reales de Variable Real

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Iniciar el estudio de las funciones reales de una variable

- Funciones reales de una variable real
- Funciones definidas por partes
- Funciones crecientes y decrecientes
- Funciones básicas
- Funciones nuevas a partir de funciones previas
- Función inversa

www.uneatlantico.es

Sean D y E dos conjuntos cualesquiera. Una función f definida sobre D es una regla de asociación que asigna a cada elemento $x \in D$ un único elemento $y \in E$ al que se denomina *imagen* de x mediante f, y se escribe y = f(x).

$$f: D \to E$$

$$x \mapsto y = f(x)$$

$$\{(x, f(x)) | x \in D\}$$

El método más común para visualizar una función es mediante su gráfica

www.uneatlantico.es

Ejemplo:

La gráfica de una función f se muestra en la figura a continuación:

- a) Encuentre los valores de f(1) y f(5).
- b) ¿Cuál es el dominio y el rango de f?

www.uneatlantico.es

Ejemplo:

Encuentre el dominio de las siguientes funciones:

$$a) \quad f(x) = \sqrt{x+2}$$

a)
$$f(x) = \sqrt{x+2}$$

b) $g(x) = \frac{1}{x^2-x}$

www.uneatlantico.es

No todas las curvas que se pueden trazar en el plano xy son gráficas de funciones.

- (a) Esta curva representa una función.
- (b) Esta curva no representa una función.

La prueba de la recta vertical Una curva en el plano xy es la gráfica de una función de x si y solo si no hay recta vertical que se interseque con la curva más de una vez.

www.uneatlantico.es

Funciones definidas por partes

Una función f se dice definida por partes cuando existe más de una regla de asociación (dependiente de x) que asigna a cada elemento $x \in D$ un único elemento $y \in E$ al que se denomina *imagen* de x mediante f.

Ejemplo:

Escriba la operación matemática valor absoluto de un número a como función.

Simetría

Si una función f satisface f(-x) = f(x) para todo x en su dominio, entonces f es una función par.

Si una función f satisface f(-x) = -f(x) para todo x en su dominio, entonces f es una **función impar**.

www.uneatlantico.es

Simetría

Ejemplo:

Determine si cada una de las funciones siguientes es par, impar o ninguna de las dos

(a)
$$f(x) = x^5 + x$$

(b) $g(x) = 1 - x^4$

(b)
$$g(x) = 1 - x^4$$

$$(c) h(x) = 2x - x^2$$

Funciones crecientes y decrecientes

Una función f se llama creciente sobre un intervalo I si

$$f(x_1) < f(x_2)$$
 siempre que $x_1 < x_2$ en I

Se llama decreciente sobre I si

$$f(x_1) > f(x_2)$$
 siempre que $x_1 < x_2$ en I

www.uneatlantico.es

Funciones básicas

Un modelo matemático es una descripción matemática (a menudo por medio de una función o ecuación de un fenómeno real. El propósito del modelo es comprender el fenómeno y, tal vez, hacer predicciones sobre su comportamiento futuro.

Existen numerosos modelos y funciones básicas:

- 1. Funciones lineales
- 2. Funciones polinómicas
- 3. Funciones potencia
- 4. Funciones racionales
- 5. Funciones trigonométricas
- 6. Funciones exponenciales
- 7. Funciones logarítmicas

Funciones lineales

$$y = f(x) = mx + b$$

Donde *m* es la pendiente de la recta y *b* es la intersección de la recta con el eje y.

Dominio: Dom: $\{x \in \mathbb{R}\}$

Х	f(x) = 3x - 2
1.0	1.0
1.1	1.3
1.2	1.6
1.3	1.9
1.4	2.2
1.5	2.5

Funciones polinómicas

$$y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Donde n es un número entero no negativo y $a_n, a_{n-1}, \dots a_1, a_0$ son constantes llamadas coeficientes de la función polinómica.

Dominio: $Dom: \{x \in \mathbb{R}\}$

(a)
$$y = x^3 - x + 1$$

(b)
$$y = x^4 - 3x^2 + x$$

(c)
$$y = 3x^5 - 25x^3 + 60x$$

www.uneatlantico.es

Funciones potencia

$$y = f(x) = x^a$$

Se consideran tres casos:

- 1. a = n, donde n es un entero positivo 2. a = 1/n, donde n es un entero positivo 3. a = -1

Dominio:

 $Dom: \{x \in \mathbb{R}\} \text{ \'o}$

 $Dom: \{x \in \mathbb{R}; x \neq 0\}$

www.uneatlantico.es

Funciones racionales

$$y = f(x) = \frac{P(x)}{Q(x)}$$

Donde *P* y *Q* son polinomios

Dominio: $Dom: \{x \in \mathbb{R}; Q(x) \neq 0\}$

Funciones algebraicas

Una función f se llama función algebraica si puede construirse a partir de polinomios utilizando operaciones algebraicas (como suma, resta, multiplicación, división y tomando raíces.)

Funciones trigonométricas

En Cálculo, por convención, siempre se utilizan medidas en radianes (excepto cuando se indique lo contrario).

Funciones exponenciales

$$y = f(x) = b^x$$

Donde la base b es una constante positiva

Dominio: Dom: $\{x \in \mathbb{R}\}$

Funciones logarítmicas

$$y = f(x) = \log_b x$$

Donde la base b es una constante positiva

Dominio: $Dom: \{x \in \mathbb{R}; x > 0\}$

Funciones nuevas a partir de funciones previas

A partir de las funciones básicas se pueden obtener nuevas funciones mediante desplazamiento, estiramiento y reflexión:

www.uneatlantico.es

Funciones nuevas a partir de funciones previas

A partir de las funciones básicas se pueden obtener nuevas funciones mediante la combinación de operaciones aritméticas estándar y composición.

Dos funciones f y g pueden combinarse para formar funciones nuevas f + g, f - g, fg y f/g de forma similar a la suma, resta, multiplicación y división de números reales.

Dadas dos funciones f y g, la función compuesta $f \circ g$ se define como

$$(f \circ g)(x) = f(g(x))$$

www.uneatlantico.es

Funciones nuevas a partir de funciones previas

Ejemplo:

Si $f(x) = x^2$ y g(x) = x - 3, encuentre las funciones compuestas $f \circ g$ y $g \circ f$

Función inversa

Una función f se llama **función inyectiva** si nunca toma el mismo valor dos veces, esto es:

$$f(x_1) \neq f(x_2) \ \forall x_1 \neq x_2$$

Prueba de la recta horizontal Una función es inyectiva si y solo si no existe una recta horizontal que interseque su gráfica más de una vez.

Función inversa

Una f una función inyectiva con dominio A y rango B. Entonces la función inversa tiene dominio B y rango A y está definida por:

$$f^{-1}(y) = x \iff f(x) = y$$

dominio de
$$f^{-1}$$
 = rango de f rango de f^{-1} = dominio de f

Para comprobar si dos funciones son inversas entre si se utilizan las ecuaciones de cancelación:

$$f^{-1}(f(x)) = x$$
 para todo x en A
 $f(f^{-1}(x)) = x$ para todo x en B

www.uneatlantico.es

Función inversa

Ejemplo:

Si $f(x) = x^3$ y $g(x) = x^{1/3}$, investigue si son funciones inversas

Ejemplo:

Encuentre la función inversa de $f(x) = x^3 + 3x^2 + 3x + 1$

www.uneatlantico.es