

Subspace Training in LLMs

Kun Yuan (袁坤)

Center for Machine Learning Research @ Peking University

PART 01

Basics and Motivation

LLM pretraining is essentially solving stochastic optimization

• The model weights in neural networks are a set of matrices $oldsymbol{X} = \{X_\ell\}_{\ell=1}^L$

• Let $h(X;\xi)$ be the language model; $\hat{y} = h(X;\xi)$ is the predicted token

cross entropy

LLM cost function:
$$\boldsymbol{X}^{\star} = \arg\min_{\boldsymbol{X}} \left\{ \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{D}} \big[L(\underline{h}(\boldsymbol{X}; \boldsymbol{\xi}), \underline{y}) \big] \right\}$$
 data distribution pred. token real token

LLM pretraining is essentially solving stochastic optimization

• If we define $\boldsymbol{\xi}=(\xi,y)$ and $F(\boldsymbol{X};\boldsymbol{\xi})=L(h(\boldsymbol{X};\xi),y)$, the LLM problem becomes

$$\text{Stochastic optimization:} \quad \boldsymbol{X}^{\star} = \arg\min_{\boldsymbol{X}} \left\{ \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{D}} \big[F(\boldsymbol{X}; \boldsymbol{\xi}) \big] \right\}$$

- In other words, LLM pretraining is essentially solving a stochastic optimization problem
- Adam is the standard approach in LLM pretraining

(stochastic gradient)

(adaptive SGD)

Memory cost to pre-train LLMs

Memory = Model + Gradient + Optimizer states + Activations

 Given a model with P parameters, gradient will consume P parameters, and optimizer states will consume 2P parameters; 4P parameters in total.

P
$$G_t = \nabla F(\boldsymbol{X}_t; \boldsymbol{\xi}_t)$$

2P $\begin{cases} \boldsymbol{M}_t = (1-\beta_1)\boldsymbol{M}_{t-1} + \beta_1 \boldsymbol{G}_t \\ \boldsymbol{V}_t = (1-\beta_2)\boldsymbol{V}_{t-1} + \beta_2 \boldsymbol{G}_t \odot \boldsymbol{G}_t \end{cases}$

P $\boldsymbol{X}_{t+1} = \boldsymbol{X}_t - \frac{\gamma}{\sqrt{\boldsymbol{V}_t} + \epsilon} \odot \boldsymbol{M}_t$

Optimizer states introduces significant memory cost

Memory cost to pre-train LLMs

Memory = Model + Gradient + Optimizer states + Activations

Activations are auxiliary variables to facilitate the gradient calculations

Consider a linear neural network

$$z_i = X_i z_{i-1}, \forall i = 1, \cdots, L$$

 $f = \mathcal{L}(z_i; y)$

The gradient is derived as follows

$$\frac{\partial f}{\partial X_i} = \frac{\partial f}{\partial z_i} z_{i-1}^{\top}$$

Need to store activations z_1, z_2, \cdots, z_L

The size of activations depends on sequence length and batch size

Minimum memory requirement

Pretrain LLaMA 7B model (BF16) from scratch with a single batch size requires

Parameters: 7B

Model storage: 7B * 2 Bytes = 14 GB

Gradient storage: 14 GB

Optimizer states: 28 GB (using Adam)

Activation storage: 2 GB [Zhao et. al., 2024]

In total: 58 GB

Minimum memory requirement: LLaMA 7B

- Pretrain LLaMA 7B model (BF16) from scratch with a single batch size requires
 - Parameters: 7B
 - Model storage: 7B * 2 Bytes = 14 GB
 - Gradient storage: 14 GB
 - Optimizer states: 28 GB (using Adam)
 - Activation storage: 2 GB [Zhao et. al., 2024]
 - In total: 58 GB

RTX 4090: 24GB

The minimum requirement is A100 * 1

Minimum memory requirement: GPT-3

• Pretrain GPT-3 model (BF16) from scratch with a single batch size requires

Parameters: 175B

Model storage: 175B * 2 Bytes = 350 GB

Gradient storage: 350 GB

Optimizer states: 700 GB (using Adam)

Activation storage: ~220 GB

In total: 1620 GB

Minimum memory requirement: GPT-3

- Pretrain GPT-3 model (BF16) from scratch with a single batch size requires
 - Parameters: 175B
 - Model storage: 175B * 2 Bytes = 350 GB
 - Gradient storage: 350 GB
 - Optimizer states: 700 GB (using Adam)
 - Activation storage: ~220 GB
 - In total: 1620 GB

The minimum requirement is A100 * 21

Very expensive!

Memory-efficient algorithm is in urgent need

- With memory-efficient algorithms, we can
 - Train larger models on limited computing resources
 - Use a larger training batch size to improve throughput
- Activation-incurred memory is relatively minor when using a single batch size
- Gradient-incurred memory can be removed by layerwise calculation and dropping
- How to save memory caused by optimizer states?

PART 02

Subspace training

Coordinate descent

Consider the following optimization problem

$$\min_{\mathbf{x}} \quad f(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_s)$$

where $\mathbf{x} \in \mathbb{R}^d$ is decomposed into s block variables $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_s$

Block coordinate descent

$$\mathbf{x}_j^k = \arg\min_{\mathbf{x}_{i_k}} f(\mathbf{x}_{i_k}, \mathbf{x}_{\neq i_k}^{k-1}), \quad \mathbf{x}_j^k = \mathbf{x}_j^{k-1} \quad \text{if} \quad j \neq i_k$$

where $\mathbf{E}_{i_k} = [\mathbf{0}; \mathbf{0}; \cdots; \mathbf{I}_{i_k}; \cdots; \mathbf{0}] \in \mathbb{R}^{d \times d_{i_k}}$. The above recursion can be rewritten as

$$\mathbf{b}^k = \arg\min_{\mathbf{b}} \ f(\mathbf{x}^{k-1} + \mathbf{E}_{i_k} \mathbf{b}), \quad \mathbf{x}^k = \mathbf{x}^{k-1} + \mathbf{E}_{i_k} \mathbf{b}^k$$

ullet We only minimize a small block variable ${f b}^k$ each time, which saves memory

Subspace optimization

Now we consider optimization with matrix variables

$$\min_{X \in \mathbb{R}^{m \times n}} f(X)$$

Minimize X directly would result in large memory cost

Inspired by block coordinate descent, we consider the subspace optimization

$$B^{k} = \arg\min_{B \in \mathbb{R}^{r \times n}} f(X^{k-1} + P^{k}B), \quad X^{k} = X^{k-1} + P^{k}B^{k}$$

where $P^k \in \mathbb{R}^{m \times r}$ is a randomly chosen matrix.

• Instead of solving X directly, we solve subproblems with a smaller matrix variable

Subspace optimization: GD variant

$$B^k = \arg\min_{B \in \mathbb{R}^{r \times n}} f(X^{k-1} + P^k B), \quad X^k = X^{k-1} + P^k B^k$$

Now we consider solving the subproblem with GD, the above problem becomes

$$B^{(k,t)} = B^{(k,t-1)} - \gamma (P^k)^{\top} \nabla_X f(X^{k-1} + P^k B^{(k,t-1)}), \quad \forall \ t = 1, 2, \dots, \tau$$
$$X^k = X^{k-1} + P^k B^{(k,\tau)}$$

• We let $X^{(k-1,t)} = X^{k-1} + P^k B^{(k,t)}$, the above method reduces to

$$X^{(k-1,t)} = X^{(k-1,t-1)} - \gamma P^k (P^k)^\top \nabla_X f(X^{(k-1,t-1)}), \qquad \forall t = 1, \dots, \tau$$
$$X^{(k,0)} = X^{(k-1,\tau)}$$

Subspace optimization: GD variant

• We let $X^{(k-1,t)} = X^{k-1} + P^k B^{(k,t)}$, the above method reduces to

$$X^{(k-1,t)} = X^{(k-1,t-1)} - \gamma P^k (P^k)^\top \nabla_X f(X^{(k-1,t-1)}), \qquad \forall t = 1, \dots, \tau$$
$$X^{(k,0)} = X^{(k-1,\tau)}$$

The above algorithm can be rewritten as follows

$$X^{t} = X^{t-1} - \gamma P^{t}(P^{t})^{\top} \nabla f(X^{t-1}), \qquad \forall t = 1, \dots, T$$

$$P^{t} = \begin{cases} \text{Sample new } P & \text{if } \mod(t, \tau) = 0 \\ P^{t-1} & \text{otherwise} \end{cases}$$

Subspace optimization: advanced variant

$$B^{k} = \arg\min_{B \in \mathbb{R}^{r \times n}} f(X^{k-1} + P^{k}B), \quad X^{k} = X^{k-1} + P^{k}B^{k}$$

• Now we consider solving the subproblem with advanced approach $ho(\cdot)$

$$B^{(k,t)} = B^{(k,t-1)} - \gamma \rho \Big((P^k)^\top \nabla_X f(X^{k-1} + P^k B^{(k,t-1)}) \Big), \quad \forall t = 1, 2, \dots, \tau$$
$$X^k = X^{k-1} + P^k B^{(k,\tau)}$$

• The operator $\rho(\cdot)$ can be either Momentum GD or Adam

(momentum)
$$m^t = (1-\beta)m^{t-1} + \beta g^t$$

$$\rho(g^t) = m^t$$

$$m^{t} = (1 - \beta_{1})m^{t-1} + \beta_{1}g^{t}$$

$$v^{t} = (1 - \beta_{2})v^{t-1} + \beta_{2}g^{t} \odot g^{t} \qquad \text{(Adam)}$$

$$\rho(g^{t}) = \frac{m^{t}}{\sqrt{v^{t}} + \epsilon}$$

Subspace optimization: advanced variant

$$B^{(k,t)} = B^{(k,t-1)} - \gamma \rho \Big((P^k)^\top \nabla_X f(X^{k-1} + P^k B^{(k,t-1)}) \Big), \quad \forall t = 1, 2, \dots, \tau$$
$$X^k = X^{k-1} + P^k B^{(k,\tau)}$$

The above algorithm can be rewritten as follows

$$X^{t} = X^{t-1} - \gamma P^{t} \rho \Big((P^{t})^{T} \nabla f(X^{t-1}) \Big), \quad \forall t = 1, \dots, T$$

$$P^{t} = \begin{cases} \text{Sample new } P & \text{if } \mod(t, \tau) = 0 \\ P^{t-1} & \text{otherwise} \end{cases}$$

PART 03

GaLore Algorithm

GaLore

In stochastic scenario, the algorithm in Page 18 recovers GaLore

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao ¹ Zhenyu Zhang ³ Beidi Chen ²⁴ Zhangyang Wang ³ Anima Anandkumar ^{*1} Yuandong Tian ^{*2}

- GaLore is a novel approach for reducing memory consumption from optimizer states
- The first algorithm that enables LLaMA-7B pre-training on a single 4090 GPU (24GB)
- Memory-efficient without severe performance degradation

• Stochastic optimization: $m{X}^\star = \arg\min_{m{X}} \left\{ \mathbb{E}_{m{\xi} \sim \mathcal{D}} ig[F(m{X}; m{\xi}) ig]
ight\}$

- Terriain low-rank across iteration
- Given a gradient matrix with dimensions 2048 by 2048, around top 10 eigenvalues dominate
- How to utilize the low-rank structure in gradients?

- Main idea: Projecting gradient onto the low-rank subspace
- Given a gradient $G_t \in \mathbb{R}^{m \times n}$ and a projection $P_t \in \mathbb{R}^{m \times r}$, we project Gradient onto low-rank subspace

• Since $r \ll m$, the low-rank gradient g_t has much smaller parameters than G_t

Low-rank optimizer states:

$$egin{aligned} m{g}_t &= m{P}_t^{ op} m{G}_t &
hd &
hd & ext{dims rx n} \ m{m}_t &= (1-eta_1) m{m}_{t-1} + eta_1 m{g}_t &
hd &
hd & ext{dims rx n} \ m{v}_t &= (1-eta_2) m{v}_{t-1} + eta_2 m{g}_t \odot m{g}_t &
hd &
hd & ext{dims rx n} \ m{\delta}_t &= rac{\gamma}{\sqrt{m{v}_t} + \epsilon} \odot m{m}_t &
hd &
hd & ext{dims rx n} \end{aligned}$$

Parameter updates:

$$oldsymbol{X}_{t+1} = oldsymbol{X}_t - oldsymbol{P}_t oldsymbol{\delta}_t$$

 \triangleright dims m x n

Simplified as
$$oldsymbol{X}_{t+1} = oldsymbol{X}_t + oldsymbol{P}_t oldsymbol{
ho}(oldsymbol{P}_t^ op oldsymbol{G}_t)$$

Memory cost: Model X, Gradient G, Projection P, OptStates m, v and activations

trivial memory cost

RTX 4090 affordable !!

Adam

A100 * 21

Adam + GaLore + LWGD

A100 * 8

- Recall the GaLore update: $oldsymbol{X}_{t+1} = oldsymbol{X}_t + oldsymbol{P}_t oldsymbol{
 ho}(oldsymbol{P}_t^ op oldsymbol{G}_t)$
- How to find the projection matrix? SVD decomposition!

[Subspace Optimization for Large Language Models with Convergence Guarantees]

- It is computationally expensive to perform SVD in each iteration
- Lazy SVD: perform SVD every τ iterations

(The complete GaLore algorithm)

$$\begin{cases} \boldsymbol{P}_t \leftarrow \text{SVD}(\boldsymbol{G}_t) & \text{if } t \bmod \tau = 0 \\ \boldsymbol{P}_t \leftarrow \boldsymbol{P}_{t-1} & \text{otherwise} \end{cases}$$

$$oldsymbol{X}_{t+1} = oldsymbol{X}_t + oldsymbol{P}_t oldsymbol{
ho}(oldsymbol{P}_t^ op oldsymbol{G}_t)$$

[GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection]

Pretraining LLaMA on C4 dataset

	60M	130M	350M	1B
Full-Rank	34.06 (0.36G)	25.08 (0.76G)	18.80 (2.06G)	15.56 (7.80G)
GaLore	34.88 (0.24G)	25.36 (0.52G)	18.95 (1.22G)	15.64 (4.38G)
Low-Rank	78.18 (0.26G)	45.51 (0.54G)	37.41 (1.08G)	142.53 (3.57G)
LoRA	34.99 (0.36G)	33.92 (0.80G)	25.58 (1.76G)	19.21 (6.17G)
ReLoRA	37.04 (0.36G)	29.37 (0.80G)	29.08 (1.76G)	18.33 (6.17G)
r/d_{model}	128 / 256	256 / 768	256 / 1024	512 / 2048
Training Tokens	1.1B	2.2B	6.4B	13.1B

Fine-tuning RoBERTa-Base on GLUE

	Memory	CoLA	STS-B	MRPC	RTE	SST2	MNLI	QNLI	QQP	Avg
Full Fine-Tuning	747M	62.24	90.92	91.30	79.42	94.57	87.18	92.33	92.28	86.28
GaLore (rank=4) LoRA (rank=4)	253M 257M	60.35 61.38	90.73 90.57	92.25 91.07	79.42 78.70	94.04 92.89	87.00 86.82	92.24 92.18	91.06 91.29	85.89 85.61
GaLore (rank=8) LoRA (rank=8)	257M 264M	60.06 61.83	90.82 90.80	92.01 91.90	79.78 79.06	94.38 93.46	87.17 86.94	92.20 92.25	91.11 91.22	85.94 85.93

GaLore looks great

But does GaLore provably converge to the desired solution?

Not Necessarily True!

Y. He, P. Li, Y. Hu, C. Chen, and K. Yuan, Subspace Optimization for Large Language Models with Convergence Guarantees, 2024

PART 04

Non-convergence and convergence in GaLore

Intuition behind GaLore's non-convergence

When gradient noise dominates the stochastic gradient, SVD captures **noise-dominated** subspace!

All gradient information is lost!

Is non-convergence common? Yes!

Gradient dominates during the initial stages

Noise dominates when approaching the local minimum

Counter-example

Counter-Example. We consider the following quadratic problem with gradient noise:

$$f(\mathbf{X}) = \frac{1}{2} \|\mathbf{A}\mathbf{X}\|_F^2 + \langle \mathbf{B}, \mathbf{X} \rangle_F, \quad \nabla F(\mathbf{X}; \xi) = \nabla f(\mathbf{X}) + \xi \sigma \mathbf{C}, \tag{1}$$

where
$$\boldsymbol{A} = (\boldsymbol{I}_{n-r} \quad 0) \in \mathbb{R}^{(n-r)\times n}, \, \boldsymbol{B} = \begin{pmatrix} \boldsymbol{D} & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{n\times n} \text{ with } \boldsymbol{D} \in \mathbb{R}^{(n-r)\times (n-r)} \text{ generated}$$

randomly, $C = \begin{pmatrix} 0 & 0 \\ 0 & I_r \end{pmatrix} \in \mathbb{R}^{n \times n}$, ξ is a random variable uniformly sampled from $\{1, -1\}$ per iteration, and σ is used to control the gradient noise.

GaLore does **NOT** converge to desired solutions

Under what conditions can GaLore converge?

GaLore can converge if we can avoid the noise-dominant scenarios

Condition I: noise-free

• Consider GaLore with deterministic gradient: $G_\ell^{(t)} =
abla_\ell f(\mathbf{x}^{(t)})$

Theorem 2 (Convergence rate of deterministic GaLore). Under Assumptions 1-2, if the number of iterations $T \ge 64/(3\underline{\delta})$ and we choose

$$\beta_1 = 1, \quad \tau = \left\lceil \frac{64}{3\underline{\delta}\beta_1} \right\rceil, \quad and \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1},$$

GaLore using deterministic gradients and MSGD with MP converges as

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T}\right),$$

where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$.

Noise-free GaLore converges at rate $\mathcal{O}(1/T)$.

Condition II: Large batch-size

- Consider GaLore with large-batch stochastic gradient: $G_\ell^{(t)} = rac{1}{\mathcal{B}} \sum_{b=1}^{\mathcal{B}}
 abla_\ell F(\mathbf{x}^{(t)}; \mathbf{\xi}^{(t,b)})$
- Batch-size ${\mathcal B}$ increases with iteration T, e.g., ${\mathcal B}={\mathcal O}(\sqrt{T})$

Theorem 3 (Convergence rate of large-batch GaLore). Under Assumptions 1-3, if $T \geq 2 + 128/(3\underline{\delta}) + (128\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ and we choose $\tau = \lceil 64/(3\underline{\delta}\beta_1) \rceil$, $\mathcal{B} = \lceil 1/(\underline{\delta}\beta_1) \rceil$,

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1}, \quad and \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{40\tau^2 L^2}{\underline{\delta}}} + \sqrt{\frac{32\tau L^2}{3\beta_1}}\right)^{-1},$$

GaLore using large-batch gradients and MSGD with MP converges as

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right),$$

where $\Delta = f(x^{(0)}) - \inf_{x} f(x)$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$.

Numerical simulations

However, neither noise-free nor large-batch is practical for LLMs settings

PART 05

GoLore: Gradient random Low-rank projection

GoLore intuition

- In LLM settings, gradient noise exists and batch-size does not increase with iterations
- The root reason that GaLore has convergence issues is the SVD-incurred subspace
- Random projection can possibly capture gradient information when noise dominates

(Stiefel manifold)
$$\operatorname{St}_{m,r} = \{ \boldsymbol{P} \in \mathbb{R}^{m \times r} \mid \boldsymbol{P}^{\top} \boldsymbol{P} = I_r \}.$$

Proposition 1 (Chikuse (2012), Theorem 2.2.1). A random matrix X uniformly distributed on $\operatorname{St}_{m,r}$ is expressed as $X = Z(Z^{\top}Z)^{-1/2}$, where the elements of an $m \times r$ random matrix Z are independent and identically distributed as normal $\mathcal{N}(0,1)$.

Following Prop. 1, we can sample random projections from Stiefel manifold

Stiefel random projection injects contractive error

Instead of SVD, GoLore samples the projection matrix uniformly on the Stiefel manifold:

$$P_t \sim \mathcal{U}(\operatorname{St}_{m,r})$$

The following Lemma illustrates the projection error in GoLore:

Lemma 5 (Error of GoLore's projection). Let $P \sim \mathcal{U}(\operatorname{St}_{m,r})$, $Q \sim \mathcal{U}(\operatorname{St}_{n,r})$, it holds for all $G \in \mathbb{R}^{m \times n}$ that

$$\mathbb{E}[\boldsymbol{P}\boldsymbol{P}^{\top}] = \frac{r}{m} \cdot \boldsymbol{I}, \quad \mathbb{E}[\boldsymbol{Q}\boldsymbol{Q}^{\top}] = \frac{r}{n} \cdot \boldsymbol{I},$$

and

$$\mathbb{E}[\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G} - \boldsymbol{G}\|_{F}^{2}] = \left(1 - \frac{r}{m}\right)\|\boldsymbol{G}\|_{F}^{2}, \quad \mathbb{E}[\|\boldsymbol{G}\boldsymbol{Q}\boldsymbol{Q}^{\top} - \boldsymbol{G}\|_{F}^{2}] = \left(1 - \frac{r}{n}\right)\|\boldsymbol{G}\|_{F}^{2}.$$

GoLore converges to desired solutions

Theorem 4 (Convergence rate of GoLore). Under Assumptions 1-3, for any $T \ge 2 + 128/(3\underline{\delta}) + (128\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$, if we choose $\tau = \lceil 64/(3\underline{\delta}\beta_1) \rceil$,

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1}, \quad and \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2 L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1},$$

GoLore using small-batch stochastic gradients and MSGD with MP converges as

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right),$$

where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$.

• Theoretically, GoLore converges at rate $\mathcal{O}(1/\sqrt{T})$.

Convergence analysis for subspace GD

- The minimization problem $\min_{X \in \mathbb{R}^{m \times n}} f(X)$
- Subspace gradient descent: $X^t = X^{t-1} \gamma P^t(P^t)^\top \nabla f(X^{t-1}), \quad \forall t = 1, \cdots, T$
- For simplicity, we assume there is no lazy update on the projection matrix P
- Assumptions on projection matrix P: $(P^t)^\top P^t = I_r$ and $\mathbb{E}[P^t(P^t)^\top] = \frac{r}{m}I_m$

$$f(X^{t}) \leq f(X^{t-1}) + \langle \nabla f(X^{t-1}), X^{t} - X^{t-1} \rangle + \frac{L}{2} \| X^{t} - X^{t-1} \|^{2}$$

$$\leq f(X^{t-1}) - \gamma \langle \nabla f(X^{t-1}), P^{t}(P^{t})^{\top} \nabla f(X^{t-1}) \rangle + \frac{\gamma^{2} L}{2} \| P^{t}(P^{t})^{\top} \nabla f(X^{t-1}) \|^{2}$$

$$= f(X^{t-1}) - \gamma \| (P^{t})^{\top} \nabla f(X^{t-1}) \|^{2} + \frac{\gamma^{2} L}{2} \| (P^{t})^{\top} \nabla f(X^{t-1}) \|^{2}$$

$$= f(X^{t-1}) - \gamma (1 - \frac{\gamma L}{2}) \| (P^{t})^{\top} \nabla f(X^{t-1}) \|^{2}$$

Convergence analysis for subspace GD

Taking expectation on the random projection matrix P, we have

$$\mathbb{E}f(X^t) \leq \mathbb{E}f(X^{t-1}) - \gamma(1 - \frac{\gamma L}{2}) \frac{r}{m} \mathbb{E} \|\nabla f(X^{t-1})\|^2$$

$$\leq \mathbb{E}f(X^{t-1}) - \frac{\gamma r}{2m} \mathbb{E} \|\nabla f(X^{t-1})\|^2$$

From the above inequality, we achieve

$$\|\nabla f(X^{t-1})\|^2 \le \frac{2m\left(\mathbb{E}f(X^{t-1}) - \mathbb{E}f(X^t)\right)}{\gamma r}$$

and therefore

$$\frac{1}{T+1} \sum_{t=0}^{T} \|\nabla f(X^t)\|^2 \le \frac{2mL(f(X^0) - f^*)}{r(T+1)}$$

A hybrid strategy: GaLore + GoLore

- SVD projection is preferred in initial stages: effectively capture gradient information
- Random projection is preferred when approaching solutions: avoid losing gradient information

GoLore@x% = GaLore (first (100-x)% iters) + GoLore (last x% iters)

Experimental results

Fine-tuning LLaMA2-7B on WinoGrande:

Experimental results

Fine-tuning RoBERTa-BASE on GLUE benchmark:

Algorithm	CoLA	STS-B	MRPC	RTE	SST2	MNLI	QNLI	QQP Av	'g
Full Params.	62.07	90.18	92.25	78.34	94.38	87.59	92.46	91.90 86.	15
GaLore GoLore@20%	61.32 61.66	90.24 90.55	92.55 92.93	77.62 78.34	94.61 94.61	86.92 87.02	92.06 92.20	90.84 85. 90.91 86.	77 03

GoLore shows superior performance than GaLore in the above experiments.

Improving the computational efficiency

- GaLore/GoLore always computes the full gradient before compressing them into subspaces.
- Can we compute the compressed gradient directly, without computing the full gradient?

Original Implementation

$$y = Wx$$

$$W=W_0+BA$$

New Implementation

$$y = W_0 x + BAx$$

$$abla_W \mathcal{L} = (
abla_y \mathcal{L}) x^{ op}$$

Backpropagated gradient

$$abla_A \mathcal{L} = B^ op (
abla_y \mathcal{L}) x^ op$$

$$W \leftarrow W + B
ho(B^ op(
abla_W \mathcal{L}))$$

$$\Leftrightarrow$$

$$A \leftarrow A + \rho(\nabla_A \mathcal{L})$$

Improving the computational efficiency

Comparing the computational complexities:

GaLore Implementation	Memory	Computation				
(Zhao et al., 2024)	mn + rm + rn + bm	6bmn + 4rmn + 2mn + 3rn				
Our ReLoRA-like version $\mid mn + rm + 2rn + bm + br \mid 4bmn + 4brm + 6brn + 5rn$						

• When $r\ll \min\{m,n\}$, this new version reduces the computation complexity from (6b+4r+2)mn to 4bmn, with minimal memory overhead.

Summary

- Gradient low-rank projection can effectively save optimizer states
- GaLore cannot converge to desired solutions due to SVD projections
- Random projections enable GaLore to converge

Center of Machine Learning Research