6E 电解与极化作用

我们在前面主要讨论了原电池,而并没有涉及化学电池中另一重要的类别——电解池.理论上,只需给电池外加大于其电动势的电压,就能使其变为电解池,而实际操作中往往要外加比理论值大得多的电压.这是由于电极的计划作用所致.本节,我们就来详细讨论电解池以及极化作用的原理.

6E.1 分解电压与极化作用

分解电压

我们以Pt电极电解HCl水溶液为例.调节施加的电压U,测定对应的电流I,得到电解时的U-I曲线,如下图所示.

开始施加外电压时,尚没有 H_2 与 Cl_2 生成.继续增大外电压,在电极上开始有 H_2 与 Cl_2 生成,并形成与外加电压方向相反的原电池,从而形成**反电动势**.

Definition 6E.1.1 反电动势

电解时,电解产物附着在电极上产生的与外加电压方向相反的电势差层,称为反电动势.

在产生气体的初期,电极上生成的 H_2 和 Cl_2 会由于浓度太低而直接向溶液扩散.只有当电压达到一定值时, H_2 和 Cl_2 的分压增大到与大气压相等,反电动势 E_b 达到最大值 $E_{b,max}(H_2$ 和 Cl_2 的分压至多与大气压相等),然后 H_2 和 Cl_2 就会从溶液中逸出.此后,电流满足欧姆定律,有

$$U - E_{b,max} = IR$$

因此电流I与外加电压U呈线性关系.由此不难知道,将U - I图线的直线部分反向延长后与U轴的交点即为 $E_{\text{b max}}$.

Hint.

实际上,上面的E-I图没有十分精确的理论意义,由图得出的分解电压也并不十分精确,实验的重现性也并不好,但这一实验仍有相当的价值.

Definition 6E.1.2 分解电压

使给定电解过程连续稳定进行所必须施加的最小外加电压称为**分解电压**,即上文所说的 $E_{\mathrm{b.max}}$.

理论上,分解电压应当等于对应的原电池的可逆电动势 E_{rev} 然而,实验表明,用Pt电极电解几种酸或碱的溶液(产物为 H_2 和 O_2),分解电压都在1.7 V左右,这远高于理论电动势1.23 V.这也表明实际过程是在不可逆的条件下进行的.我们在下一小节就将讨论这一现象产生的原因.

极化与超电势

我们已经知道分解电压总是与理论的可逆电动势有差异.这是由于电极的极化所致.

Definition 6E.1.3 极化

在有电流通过时,电极的电势对理论值的偏离称作极化作用.

为了定量地描述极化现象,我们将电极电势的实际值对理论值的偏离称作超电势.

Definition 6E.1.4 超电势

把某一电流密度下电极的实际电势 φ_{re} 与理论电势 φ_{id} 之差称作电极的**超电势**,记作 η .

一般而言,电极的极化作用主要是由浓差极化和电化学极化造成的,超电势也主要由这两种效应贡献.我们先来讨论浓差极化.

浓差极化主要是电解时电极附近溶液和其余部分(远离电极的部分)浓度不同导致的.例如,用Cu电极电解 $CuCl_2$ 溶液时,在阴极消耗 Cu^{2+} 的速率如果快于 Cu^{2+} 向阴极迁移的速度,那么电极附近的 Cu^{2+} 浓度就将降低.从而与远处的溶液形成电势差.

Definition 6E.1.5 浓差极化

浓差极化是指电极反应足够快速使得电极附近反应物浓度低,与溶液本体产生明显浓度差 异而导致电极电位偏离平衡电位的现象.

Hint.

从定义上说,浓差极化**6C.3.1**的双电层是不同的概念.但似乎一些教材认为剧烈搅拌可以削弱扩散层从而减少浓差极化.总之,这两个概念有一定相似性,但笔者认为你还是清楚地知道两者应用的场景(浓差极化出现在电解过程中,双电层出现在电极与溶液平衡时).

尽管理论上,只要外加电压大于电池理论的电动势即可发生电解反应,但即使在搅拌得十分完全的情形下也很难做到如此.我们总是需要更高的电压使得电解顺利进行(这在气体参与的电极反应中尤为明显),这主要是由于电极反应大多是分步进行的,如果某一步反应的电子得失不够徐速,就会导致整个反应在电极表面受阻,从而使得电极电势偏离理论电势.我们把这一现象称为电化学极化.

Definition 6E.1.6 电化学极化

电化学极化是指由于电化学反应过程中电子得失不够快速,反应在电极表面受阻而导致电极电位偏离平衡电位的现象.

因此,电化学极化实际上与我们将在Chapter 7中讲到的化学反应动力学有密切的联系.

电极上的竞争反应

我们以含有多种简单阳离子的溶液为例对实际电解过程进行简单的讨论.例如,用Zn电极电解含有 Zn^{2+} 的溶液中,阴极可能发生的反应为

$$\begin{split} Zn^{2+} + 2\,e^- &\longrightarrow Zn \qquad \varphi^\ominus_{Zn^{2+}/Zn} = -0.76\ V \\ 2\,H^+ + 2\,e^- &\longrightarrow H_2 \qquad \varphi^\ominus_{H^+/H_2} = 0\ V \end{split}$$

在中性条件下也有 $\varphi_{H^+/H_2} = -0.41 \text{ V}$,理论上阴极应该发生 H^+ 的还原.然而, H^+/H_2 在Zn上的超电势即使在 $10 \text{ A} \cdot \text{m}^{-2}$ 下 1 这表明此时 H^+/H_2 实际的电势为-0.89 V,而 Zn^{2+} 在Zn上的超电势则较小.因此,此时应当析出Zn.这也是在阴极电镀比H活泼的金属元素,例如Ni,Cd等的原理.

6E.2 电极反应动力学

Butler-Volmer方程²

根据基本的电化学知识和化学动力学知识,我们可以推导出超电势 η 与电流密度i之间的关系.

¹这一电流密度已经相当小,即使电极面积为10 cm²,电流也仅有10 mA.

²本小节内容不必掌握,仅作参考.作为提示,你可以在学习Chapter 7后再来学习此方程的推导.

Derivation.

我们从最简单的单电子氧化还原反应开始.考虑反应

$$\operatorname{Ox} + \operatorname{e}^{-} \xrightarrow{k_f} \operatorname{Red}$$

依照过渡态理论,我们可以简单地把这一过程的能量(如果你与读了前面的电化学势一节,就 会知道这里的能量事实上指电化学势能)曲线与反应坐标的关系表示如下.

Reaction coordinate

其中蓝线为理论电势(这里的理论电势是Ox和Red浓度一定时的理论电极电势,并非标准状 态对应的电极电势.)下Ox与e-的能量,橙线为实际电解的电势下Ox与e-的能量.显然,在理论 电势下,反应的历程为蓝线-红线,而在实际电势下,反应的历程为橙线-红线.

我们可以将e⁻的电势能并入自由能一项,并用处理一般体系的动力学方法处理此体系. 现在将临近过渡态的区域放大,得到下图.

在电势为 φ_0 和电势为 φ 时的,每摩尔电子的能量差为

$$E_{\varphi_0} - E_{\varphi} = N_{\mathcal{A}} \cdot (-e)\Delta \varphi = F(\varphi - \varphi_0)$$

从上图中可以发现即使反应物的能量降低了 $F(\varphi-\varphi_0)$,活化能却并不降低相同的值.定义转移系数 α 衡量活化能附近反应物和生成物在过渡态附近的斜率(我们将在后面提到其真正的物理定义).当两边斜率相同时, $\alpha=\frac{1}{9}$.这一系数也被称为对称因子.因此,根据Eyring方程有

$$k_{f0} = A_f \exp\left(-\frac{\Delta G_{0f}^{\ddagger}}{RT}\right)$$
$$k_{b0} = A_b \exp\left(-\frac{\Delta G_{0b}^{\ddagger}}{RT}\right)$$

其中 A_f , A_b 分别为两个反应的指前因子.我们认为指前因子不随电势发生变化. 考虑两张图中不同电势下正逆反应的活化能的差值,有

$$\Delta G_f^{\ddagger} = \Delta G_{0f}^{\ddagger} + F(\varphi - \varphi_0) - (1 - \alpha)F(\varphi - \varphi_0) = \Delta G_{0f}^{\ddagger} + \alpha F(\varphi - \varphi_0)$$
$$\Delta G_h^{\ddagger} = \Delta G_{0h}^{\ddagger} - (1 - \alpha)F(\varphi - \varphi_0)$$

于是再根据Eyring方程有

$$k_{f} = A_{f} \exp\left(-\frac{\Delta G_{0f}^{\ddagger}}{RT}\right) \exp\left(-\frac{\alpha F\left(\varphi - \varphi_{0}\right)}{RT}\right) = k_{f0} \exp\left(-\frac{\alpha F\left(\varphi - \varphi_{0}\right)}{RT}\right)$$
$$k_{b} = A_{f} \exp\left(-\frac{\Delta G_{0b}^{\ddagger}}{RT}\right) \exp\left(\frac{(1 - \alpha)F\left(\varphi - \varphi_{0}\right)}{RT}\right) = k_{b0} \exp\left(\frac{(1 - \alpha)F\left(\varphi - \varphi_{0}\right)}{RT}\right)$$

理想情况下,在Ox和Red浓度一定时,如果 $\varphi = \varphi_0$,则电极反应达到平衡,此时有

$$k_{f0}c_{\text{Ox}} = k_{b0}c_{\text{Red}}$$

由于电极反应发生在电极的表面上,因此反应速率应当正比于电极的表面积.因此,这里的速率是指单位面积上的反应速率,速率常数 k_f 和 k_b 亦如此.在此时,尽管净电流为0,但电子的转移仍在电极上发生,其电流密度

$$j_0 = \frac{I_0}{A} = \frac{F\Delta n_{e^-,0}}{At} = F\frac{v_{eq}}{A} = Fk_{f0}c_{Ox} = Fk_{b0}c_{Red}$$

这样,实际的电流密度即为

$$j = \frac{I}{A} = \frac{F\Delta n_{e^{-}}}{At} = F\left(k_f c_{\text{Ox}} - k_b c_{\text{Red}}\right)$$

$$= F\left[k_{f0} c_{\text{Ox}} \exp\left(-\frac{\alpha F\left(\varphi - \varphi_0\right)}{RT}\right) - k_{b0} c_{\text{Red}} \exp\left(\frac{(1 - \alpha)F\left(\varphi - \varphi_0\right)}{RT}\right)\right]$$

$$= j_0 \left[\exp\left(-\frac{\alpha F\left(\varphi - \varphi_0\right)}{RT}\right) - \exp\left(\frac{(1 - \alpha)F\left(\varphi - \varphi_0\right)}{RT}\right)\right]$$

而 $\varphi - \varphi_0$ 就是我们定义的超电势 η ,因此上式即

$$j = j_0 \left[\exp\left(-\frac{\alpha F \eta}{RT}\right) - \exp\left(\frac{(1 - \alpha) F \eta}{RT}\right) \right]$$

这就是电极反应动力学中一个重要的方程——Butler-Volmer方程.

Theorem 6E.2.1 Butler-Volmer方程

在参与电极反应的物质的浓度一定时,电极的电流密度;与超电势n满足

$$j = j_0 \left[\exp\left(-\frac{\alpha F \eta}{RT}\right) - \exp\left(\frac{(1-\alpha)F\eta}{RT}\right) \right]$$

其中 j_0 为**交换电流密度**,即电极反应平衡时的电流密度. α 为**转移系数**,其物理意义将在下面进一步说明.

转移系数的物理定义如下.

Definition 6E.2.2 转移系数

转移系数 α ,定义为还原反应活化能 ΔG_f^{\dagger} 对电势 φ 在 $\varphi=\varphi_0$ 处的偏导数与Faraday常数之比的负值,即

$$\alpha = -\frac{1}{F} \left. \left(\frac{\partial \Delta G_f^{\ddagger}}{\partial \varphi} \right) \right|_{\varphi = \varphi_0}$$

转移系数的几何意义已经在前面的推导与图示中说明了.对于一般的反应,α在0.3到0.7左右.

当超电势 η → 0时,根据近似e^x ~ 1 + x,可将**6E.2.1**简化为

$$j = -\frac{j_0 \alpha F \alpha}{RT}$$

这里的负号是由于超电势 $\eta > 0$ 时将发生与原电池电流方向相反的电解过程,因此令此时的电流密度为负值.这也可以由前面的推导看出.

Tafel公式³

1905年,Tafel研究氢电极的超电势,得出了Tafel公式.

Theorem 6E.2.3 Tafel公式

超电势 η 与电流密度j满足

$$\eta = a + b \ln j$$

其中a和b在一定温度下为常数.

这也可以由Butler-Volmer方程近似得到.

³Tafel公式是应当记忆的结论,但是其推导则如前面一样也不做要求.

Proof.

首先需要注意的是,氢电极在电解时作为阴极,其超电势 η 为负值(有时也用 η_{Cat} 表示).对于Butler-Volmer方程,当 η 是较大的负值时,可以将第二项忽略,从而有

$$j = j_0 \exp\left(-\frac{\alpha F \eta}{RT}\right)$$

两边取对数可得

$$\ln j = \ln j_0 - \frac{\alpha F \eta}{RT}$$

于是

$$-\eta = -\frac{RT}{\alpha F} \ln j_0 + \frac{RT}{\alpha F} \ln j$$

令

$$a = -\frac{RT}{\alpha F} \ln j_0$$
 $b = \frac{RT}{\alpha F}$

即可得到Tafel公式.由于 α 的值一般在0.5左右,因此b的值在一定温度下对于各种反应相差都不大,而a则主要取决于具体的反应和电极类型.

阳极的Tafel公式的推导也是类似的,在这里就不再赘述了.

我们再一次声明,以上的结论都是在忽略浓差极化时推得的.对于反应迅速的反应过程,大过电位下将直接到达浓差极化为主的阶段,没有明显的Tafel现象.而对于反应动力学缓慢,具有较大的活化能的反应,可以观察到很好的Tafel关系,此时逆反应几乎可以忽略,也反映了反应的完全不可逆性.氢电极就是这样的一种电极,Tafel公式对其符合得较好.