Számítási modellek

8. előadás

G. Paun 2000-ben vezette be a később róla elnevezett biológialag inspirált számítási modelljét, a P-rendszereket (membránrendszereket).

G. Paun 2000-ben vezette be a később róla elnevezett biológialag inspirált számítási modelljét, a P-rendszereket (membránrendszereket).

Az eukarióta sejtek sejtplazmája több, membránnal határolt sejtalkotót tartalmaz, így belső terekre, ún. régiókra különül. Általánosabban, a többsejtű organizmusok sejtek közötti tere is tekinthető régiónak. A membránok (bizonyos) kémiai molekulák számára átjárhatóak. Az egyes régiókban kémiai reakciók mehetnek végbe, melyek eredményéül kapott (bizonyos) molekulák a régiót határoló membránon áthaladhatnak.

G. Paun 2000-ben vezette be a később róla elnevezett biológialag inspirált számítási modelljét, a P-rendszereket (membránrendszereket).

Az eukarióta sejtek sejtplazmája több, membránnal határolt sejtalkotót tartalmaz, így belső terekre, ún. régiókra különül. Általánosabban, a többsejtű organizmusok sejtek közötti tere is tekinthető régiónak. A membránok (bizonyos) kémiai molekulák számára átjárhatóak. Az egyes régiókban kémiai reakciók mehetnek végbe, melyek eredményéül kapott (bizonyos) molekulák a régiót határoló membránon áthaladhatnak.

Olyan absztrakt számítási modellt szeretnénk adni, amely alkalmas a molekulák által közvetített sejten belüli és sejtközi információáramlás folyamatának leírására, jobb megértésére.

G. Paun 2000-ben vezette be a később róla elnevezett biológialag inspirált számítási modelljét, a P-rendszereket (membránrendszereket).

Az eukarióta sejtek sejtplazmája több, membránnal határolt sejtalkotót tartalmaz, így belső terekre, ún. régiókra különül. Általánosabban, a többsejtű organizmusok sejtek közötti tere is tekinthető régiónak. A membránok (bizonyos) kémiai molekulák számára átjárhatóak. Az egyes régiókban kémiai reakciók mehetnek végbe, melyek eredményéül kapott (bizonyos) molekulák a régiót határoló membránon áthaladhatnak.

Olyan absztrakt számítási modellt szeretnénk adni, amely alkalmas a molekulák által közvetített sejten belüli és sejtközi információáramlás folyamatának leírására, jobb megértésére.

Modellünk ugyanakkor alkalmas lehet absztrakt (nem biokémiai) számítások hatékony elvégzésére is a modellben rejlő masszív párhuzamosság révén.

A membránrendszerek tehát biokémiai folyamatok alapvető törvényszerűségeit szeretnénk modellezni. Ezek közül néhány:

 Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.

- Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.
- Ha a megfelelő mennyiségű nyersanyag rendelkezésre áll, a reakció (vagy ha több reakció lehetséges, ezek bármelyike) végbe is megy.

- Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.
- Ha a megfelelő mennyiségű nyersanyag rendelkezésre áll, a reakció (vagy ha több reakció lehetséges, ezek bármelyike) végbe is megy.
- Egyszerre több reakció (és/vagy egy reakció többször) is végbemehet ha van mindhez elegendő nyersanyag.

- Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.
- Ha a megfelelő mennyiségű nyersanyag rendelkezésre áll, a reakció (vagy ha több reakció lehetséges, ezek bármelyike) végbe is megy.
- Egyszerre több reakció (és/vagy egy reakció többször) is végbemehet ha van mindhez elegendő nyersanyag.
- Bizonyos reakciókhoz szükséges katalizátor molekulák jelenléte a régióban.

- Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.
- Ha a megfelelő mennyiségű nyersanyag rendelkezésre áll, a reakció (vagy ha több reakció lehetséges, ezek bármelyike) végbe is megy.
- Egyszerre több reakció (és/vagy egy reakció többször) is végbemehet ha van mindhez elegendő nyersanyag.
- Bizonyos reakciókhoz szükséges katalizátor molekulák jelenléte a régióban.
- A sejtmembránok feloldódhatnak, ilyenkor a régió tartalma az őt övező régióba kerül.

- Az egyes kémiai reakciókhoz szükséges a reakció bemeneti molekuláinak kellő számú jelenléte a régióban.
- Ha a megfelelő mennyiségű nyersanyag rendelkezésre áll, a reakció (vagy ha több reakció lehetséges, ezek bármelyike) végbe is megy.
- Egyszerre több reakció (és/vagy egy reakció többször) is végbemehet ha van mindhez elegendő nyersanyag.
- Bizonyos reakciókhoz szükséges katalizátor molekulák jelenléte a régióban.
- A sejtmembránok feloldódhatnak, ilyenkor a régió tartalma az őt övező régióba kerül.
- Néha két reakció közül biokémiai okok miatt mindig az egyik hajtódik végre, holott az erőforrások mindkét reakcióhoz rendelkezésre állnának.

A membránstruktúra:

 $\left[1\ \left[2\ \left[4\ \left[6\ \right]6\ \right]7\ \right]4\ \left[5\ \left[8\ \right]8\ \left[9\ \right]9\ \left[10\ \right]10\ \right]5\ \right]2\ \left[3\ \right]3\ \right]1\ \cdot$

Észrevétel: A régiókat azonosíthatjuk a legszűkebb őt tartalmazó membránnal. Így például ha azt mondjuk, hogy egy objektum a 4-es membránban van az úgy értendő, hogy abban a régióban, amit a 4-es membrán, és a 4-es membrán gyerek membránjai határolnak.

Észrevétel: A régiókat azonosíthatjuk a legszűkebb őt tartalmazó membránnal. Így például ha azt mondjuk, hogy egy objektum a 4-es membránban van az úgy értendő, hogy abban a régióban, amit a 4-es membrán, és a 4-es membrán gyerek membránjai határolnak.

A membránok (régiók) hierarchiáját fa alakban is ábrázolhatjuk. Ekkor a levelek az elemi membránok (régiók).

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O: M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O: |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1,M_2:O\to\mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1\subseteq M_2$, ha $\forall a\in O:M_1(a)\leqslant M_2(a)$.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1, M_2: O \to \mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1 \subseteq M_2$, ha $\forall a \in O: M_1(a) \leqslant M_2(a)$. M_1 és M_2 uniója: $\forall a \in O: (M_1 \cup M_2)(a) := M_1(a) + M_2(a)$.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1, M_2: O \to \mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1 \subseteq M_2$, ha $\forall a \in O: M_1(a) \leqslant M_2(a)$. M_1 és M_2 uniója: $\forall a \in O: (M_1 \cup M_2)(a) := M_1(a) + M_2(a)$. Ha $M_1 \subseteq M_2$, akkor M_1 és M_2 különbsége: $\forall a \in O: (M_2 - M_1)(a) := M_2(a) - M_1(a)$. Példa: $b^4c^2 \subseteq a^3b^5c^3$, de $a^2b \subseteq ab^7c^3$.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1, M_2: O \to \mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1 \subseteq M_2$, ha $\forall a \in O: M_1(a) \leqslant M_2(a)$. M_1 és M_2 uniója: $\forall a \in O: (M_1 \cup M_2)(a) := M_1(a) + M_2(a)$. Ha $M_1 \subseteq M_2$, akkor M_1 és M_2 különbsége: $\forall a \in O: (M_2 - M_1)(a) := M_2(a) - M_1(a)$.

Példa: $b^4c^2 \subseteq a^3b^5c^3$, de $a^2b \nsubseteq ab^7c^3$. $b^4c^2 \cup a^3b^5c^3 = a^3b^9c^5$.

Definíció

Legyen O egy ábécé. Elemeit **objektumoknak** nevezzük. Egy $M:O\to\mathbb{N}$ leképezést az objektumok egy **multihalmazának** nevezünk. Ha $a\in O$, akkor M(a) az a objektum **multiplicitása**.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a^4b^2 ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1, M_2: O \to \mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1 \subseteq M_2$, ha $\forall a \in O: M_1(a) \leqslant M_2(a)$. M_1 és M_2 uniója: $\forall a \in O: (M_1 \cup M_2)(a) := M_1(a) + M_2(a)$. Ha $M_1 \subseteq M_2$, akkor M_1 és M_2 különbsége: $\forall a \in O: (M_2 - M_1)(a) := M_2(a) - M_1(a)$.

Példa: $b^4c^2 \subseteq a^3b^5c^3$, de $a^2b \nsubseteq ab^7c^3$. $b^4c^2 \cup a^3b^5c^3 = a^3b^9c^5$. $a^3b^5c^3 - b^4c^2 = a^3bc$,

Definíció

Legyen O egy ábécé. Elemeit objektumoknak nevezzük. Egy $M: O \to \mathbb{N}$ leképezést az objektumok egy multihalmazának nevezünk. Ha $a \in O$, akkor M(a) az a objektum multiplicitása.

Egy multihalmaz üres, ha $\forall a \in O : M(a) = 0$. Egy M multihalmazt egy olyan w szóval reprezentálhatunk, melyre $\forall a \in O : |w|_a = M(a)$. Az üres multihalmazt ε reprezentálja.

Észrevétel: aaabab és a⁴b² ugyanazt a multihalmazt reprezentálja.

Legyenek $M_1, M_2: O \to \mathbb{N}$ két multihalmaz, azt mondjuk, hogy $M_1 \subseteq M_2$, ha $\forall a \in O : M_1(a) \leqslant M_2(a)$. M_1 és M_2 uniója: $\forall a \in O : (M_1 \cup M_2)(a) := M_1(a) + M_2(a)$. Ha $M_1 \subseteq M_2$, akkor M_1 és M_2 különbsége: $\forall a \in O : (M_2 - M_1)(a) := M_2(a) - M_1(a)$.

Példa: $b^4c^2 \subseteq a^3b^5c^3$. de $a^2b \subseteq ab^7c^3$. $b^4c^2 \cup a^3b^5c^3 = a^3b^9c^5$

 $a^3b^5c^3-b^4c^2=a^3bc$, viszont $ab^7c^3-a^2b$ nem értelmezett.

A membránrendszerek konfigurációi

Az egyes régiók objektumok multihalmazait tartalmazhatják.

A membránrendszerek konfigurációi

Az egyes régiók objektumok multihalmazait tartalmazhatják.

Az ábrához tartozó konfiguráció:

[1 a [2 [4 [6 bbc]6 [7 ac]7]4 [5 [8]8 [9]9 [10 b]10]5]2 [3 aabcc]3]1.

A membránrendszerek konfigurációi

Az egyes régiók objektumok multihalmazait tartalmazhatják.

Az ábrához tartozó konfiguráció:

Alternatív reprezentáció: $(a, \varepsilon, a^2bc^2, \varepsilon, \varepsilon, b^2c, ac, \varepsilon, \varepsilon, b)$, ahol az *i*. komponens az *i*. membrán által határolt régió tartalma,

Evolúciós szabályok alkalmazása

Legyenek $\{1, ..., m\}$ a régiók címkéi. Minden régióhoz tartoznak $u \to v$ alakú **evolúciós szabályok**, ahol $u \in O^+$ és $v \in (O \times \mathsf{TAR})^*$, ahol $\mathsf{TAR} = \{\mathsf{here}, \mathsf{out}\} \cup \{\mathsf{in}_j \mid 1 \leqslant j \leqslant m\}$.

Evolúciós szabályok alkalmazása

Legyenek $\{1,\ldots,m\}$ a régiók címkéi. Minden régióhoz tartoznak $u\to v$ alakú **evolúciós szabályok**, ahol $u\in O^+$ és $v\in (O\times \mathsf{TAR})^*$, ahol $\mathsf{TAR}=\{\mathsf{here},\,\mathsf{out}\}\cup \{\mathsf{in}_j\,|\,1\leqslant j\leqslant m\}.$

Egy $u \to v$ evolúciós szabályt akkor lehet alkalmazni, ha az u által reprezentált M_1 multihalmazra és a régió aktuális, M multihalmazzal adott tartalmára $M_1 \subseteq M$ teljesül. A szabály alkalmazása a következőt jelenti:

- Vegyük azt a konfigurációt, melyre a szabály régiójának tartalma $M-M_1$, a többi régió tartalma változatlan.
- ▶ v minden $(a, tar) \in O \times TAR$ betűjére adjuk egy a-t
 - tar=here esetén a régióhoz,
 - tar=out esetén a szülő régióhoz (ha gyökér: környezethez),
 - tar=in; esetén a j címkéjű gyerek régióhoz.

Evolúciós szabályok alkalmazása

Legyenek $\{1,\ldots,m\}$ a régiók címkéi. Minden régióhoz tartoznak $u\to v$ alakú **evolúciós szabályok**, ahol $u\in O^+$ és $v\in (O\times \mathsf{TAR})^*$, ahol $\mathsf{TAR}=\{\mathsf{here},\,\mathsf{out}\}\cup \{\mathsf{in}_j\,|\,1\leqslant j\leqslant m\}.$

Egy $u \to v$ evolúciós szabályt akkor lehet alkalmazni, ha az u által reprezentált M_1 multihalmazra és a régió aktuális, M multihalmazzal adott tartalmára $M_1 \subseteq M$ teljesül. A szabály alkalmazása a következőt jelenti:

- Vegyük azt a konfigurációt, melyre a szabály régiójának tartalma $M-M_1$, a többi régió tartalma változatlan.
- ▶ v minden $(a, tar) \in O \times TAR$ betűjére adjuk egy a-t
 - tar=here esetén a régióhoz,
 - tar=out esetén a szülő régióhoz (ha gyökér: környezethez),
 - tar=in; esetén a j címkéjű gyerek régióhoz.

Előfordulhat, hogy in-nek nincs indexe, ilyenkor nemdeterminisztikusan választunk egy gyereket.

Észrevétel: A környezetnek nincsenek szabályai, így a környezetbe kijutó objektumok a további számítások számára elvesznek.

Észrevétel: A környezetnek nincsenek szabályai, így a környezetbe kijutó objektumok a további számítások számára elvesznek.

Észrevétel: a szabályok párhuzamos alkalmazása csak akkor okozhat konfliktust, ha mindkét szabály ugyanahhoz a régióhoz tartozik és a szabályok baloldalának együttes kielégítéséhez nincs elég nyersanyag.

Észrevétel: A környezetnek nincsenek szabályai, így a környezetbe kijutó objektumok a további számítások számára elvesznek.

Észrevétel: a szabályok párhuzamos alkalmazása csak akkor okozhat konfliktust, ha mindkét szabály ugyanahhoz a régióhoz tartozik és a szabályok baloldalának együttes kielégítéséhez nincs elég nyersanyag.

A maximális párhuzamosság elve:

Motiváció: ha egy kémiai reakció számára minden nyersanyag és környezeti feltétel adott, akkor az a reakció végbe is megy.

Észrevétel: A környezetnek nincsenek szabályai, így a környezetbe kijutó objektumok a további számítások számára elvesznek.

Észrevétel: a szabályok párhuzamos alkalmazása csak akkor okozhat konfliktust, ha mindkét szabály ugyanahhoz a régióhoz tartozik és a szabályok baloldalának együttes kielégítéséhez nincs elég nyersanyag.

A maximális párhuzamosság elve:

Motiváció: ha egy kémiai reakció számára minden nyersanyag és környezeti feltétel adott, akkor az a reakció végbe is megy.

Membránrendszerekben a szabályokat mindig maximális párhuzamossággal kell alkalmazni, ez azt jelenti, hogy az egy ütemben végrehajtott szabályok multihalmaza egy tartalmazásra nézve maximális halmaz kell legyen, tehát ne legyen hozzáadható a végrehajtott szabályokhoz olyan további szabály, hogy ez a bővebb szabályhalmaz is konfliktusmentesen végrehajtható lett volna.

A maximális párhuzamosság elve

Az evolúció egy lépése alatt azt értjük, hogy minden régióban nemdeterminisztikusan kiválasztjuk az adott régióhoz tartozó szabályok egy olyan multihalmazát, hogy a szabálybaloldalak által reprezentált M_1, \ldots, M_r multihalmazokra és a régió aktuális M multihalmazzal adott tartalmára a következő két feltétel teljesül:

(1) $\bigcup_{i=1}^r M_i \subseteq M$, (azaz a kiválasztott szabálymultihalmaz baloldalainak együttes nyersanyagigénye kielégíthető)

A maximális párhuzamosság elve

Az evolúció egy lépése alatt azt értjük, hogy minden régióban nemdeterminisztikusan kiválasztjuk az adott régióhoz tartozó szabályok egy olyan multihalmazát, hogy a szabálybaloldalak által reprezentált M_1, \ldots, M_r multihalmazokra és a régió aktuális M multihalmazzal adott tartalmára a következő két feltétel teljesül:

- (1) $\bigcup_{i=1}^r M_i \subseteq M$, (azaz a kiválasztott szabálymultihalmaz baloldalainak együttes nyersanyagigénye kielégíthető)
- (2) ha M' a régió egy tetszőleges további szabályának baloldala által reprezentált multihalmaz, akkor $M' \nsubseteq M \bigcup_{i=1}^r M_i$. (Azaz a kiválasztott szabályokon felül további szabály nyersanyagigénye már nem elégíthető ki a régióból)

A maximális párhuzamosság elve

Az evolúció egy lépése alatt azt értjük, hogy minden régióban nemdeterminisztikusan kiválasztjuk az adott régióhoz tartozó szabályok egy olyan multihalmazát, hogy a szabálybaloldalak által reprezentált M_1, \ldots, M_r multihalmazokra és a régió aktuális M multihalmazzal adott tartalmára a következő két feltétel teljesül:

- (1) $\bigcup_{i=1}^r M_i \subseteq M$, (azaz a kiválasztott szabálymultihalmaz baloldalainak együttes nyersanyagigénye kielégíthető)
- (2) ha M' a régió egy tetszőleges további szabályának baloldala által reprezentált multihalmaz, akkor $M' \nsubseteq M \bigcup_{i=1}^r M_i$. (Azaz a kiválasztott szabályokon felül további szabály nyersanyagigénye már nem elégíthető ki a régióból)

A maximális párhuzamosság elve

Az evolúció egy lépése alatt azt értjük, hogy minden régióban nemdeterminisztikusan kiválasztjuk az adott régióhoz tartozó szabályok egy olyan multihalmazát, hogy a szabálybaloldalak által reprezentált M_1, \ldots, M_r multihalmazokra és a régió aktuális M multihalmazzal adott tartalmára a következő két feltétel teljesül:

- (1) $\bigcup_{i=1}^r M_i \subseteq M$, (azaz a kiválasztott szabálymultihalmaz baloldalainak együttes nyersanyagigénye kielégíthető)
- (2) ha M' a régió egy tetszőleges további szabályának baloldala által reprezentált multihalmaz, akkor $M' \nsubseteq M \bigcup_{i=1}^r M_i$. (Azaz a kiválasztott szabályokon felül további szabály nyersanyagigénye már nem elégíthető ki a régióból)

Ezek után minden kiválasztott szabály baloldalát kivonjuk a szabályhoz tartozó régióból, majd a szabályok jobboldalán szereplő objektumokat a szabályok utasítása szerinti régiókhoz hozzáadjuk.

$$(\varepsilon, \varepsilon, abc^2, a^2, a^3b^3c) \Rightarrow (c, a^2c^2, ab^2c^3, a^2, ab^2c)$$

P-rendszer (membránrendszer – alapmodell)

Definíció

Egy $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ rendezett (2m + 3)-ast **P-rendszernek** (membránrendszernek) nevezünk, ha

- O egy ábécé (elemeit objektumoknak nevezzük).
- μ egy m membránból álló hierarchikus membránstruktúra. A membránok (és így a régiók is) $\{1,2,\ldots,m\}$ elemeivel injektív módon vannak címkézve. m-et Π **fokának** nevezzük.
- $\omega_1, \ldots, \omega_m$ O feletti multihalmazokat reprezentáló sztringek, ezek rendre az $1, 2, \ldots, m$ címkéjű régióhoz vannak rendelve.
- ▶ $R_i, 1 \le i \le m \ \mu \ i$ -edik membránjához rendelt O feletti evolúciós szabályok véges halmaza. A szabályok $u \to v$ alakúak, $u \in O^+$, $v \in (O \times \mathsf{TAR})^*$, ahol $\mathsf{TAR} = \{\mathsf{here}, \ \mathsf{out}\} \cup \{\mathsf{in}_j \ | \ 1 \le j \le m\}.$
- $i_o \in \{1, 2, ..., m\}$ egy elemi membrán címkéje (kimeneti membrán)

 $C = (v_1, \dots v_m)$ a $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$

P-rendszer **konfigurációja**, ha $v_i \in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

 $C = (v_1, \dots v_m)$ a $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ P-rendszer **konfigurációja**, ha $v_i \in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

C kezdőkonfiguráció, ha $\forall \ 1 \leqslant i \leqslant m$ esetén $v_i = \omega_i$. (Az *i*-edik régió kezdeti tartalma az ω_i által reprezentált multihalmaz.)

 $C=(v_1,\ldots v_m)$ a $\Pi=\langle O,\mu,\omega_1,\ldots,\omega_m,R_1,\ldots,R_m,i_o\rangle$ P-rendszer **konfigurációja**, ha $v_i\in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

C kezdőkonfiguráció, ha $\forall \ 1 \leq i \leq m$ esetén $v_i = \omega_i$. (Az *i*-edik régió kezdeti tartalma az ω_i által reprezentált multihalmaz.)

Megállási konfiguráció: Olyan konfiguráció, melyre nem lehet már evolúciós szabályt alkalmazni.

 $C=(v_1,\ldots v_m)$ a $\Pi=\langle O,\mu,\omega_1,\ldots,\omega_m,R_1,\ldots,R_m,i_o\rangle$ P-rendszer **konfigurációja**, ha $v_i\in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

C kezdőkonfiguráció, ha $\forall \ 1 \leq i \leq m$ esetén $v_i = \omega_i$. (Az *i*-edik régió kezdeti tartalma az ω_i által reprezentált multihalmaz.)

Megállási konfiguráció: Olyan konfiguráció, melyre nem lehet már evolúciós szabályt alkalmazni.

(Egylépéses) konfigurációátmenet: $C_1 \Rightarrow_{\Pi} C_2$, ha C_1 -ből egy ütemben megkapható C_2 a korábban definiált maximális párhuzamos evolúciós átírással.

 $C=(v_1,\ldots v_m)$ a $\Pi=\langle O,\mu,\omega_1,\ldots,\omega_m,R_1,\ldots,R_m,i_o\rangle$ P-rendszer **konfigurációja**, ha $v_i\in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

C kezdőkonfiguráció, ha $\forall \ 1 \leqslant i \leqslant m$ esetén $v_i = \omega_i$. (Az *i*-edik régió kezdeti tartalma az ω_i által reprezentált multihalmaz.)

Megállási konfiguráció: Olyan konfiguráció, melyre nem lehet már evolúciós szabályt alkalmazni.

(Egylépéses) konfigurációátmenet: $C_1 \Rightarrow_{\Pi} C_2$, ha C_1 -ből egy ütemben megkapható C_2 a korábban definiált maximális párhuzamos evolúciós átírással.

Megjegyzés: Mivel az átírás nemdeterminisztikus, ezért egy C_1 -hez több ilyen C_2 is létezhet.

 $C=(v_1,\ldots v_m)$ a $\Pi=\langle O,\mu,\omega_1,\ldots,\omega_m,R_1,\ldots,R_m,i_o\rangle$ P-rendszer **konfigurációja**, ha $v_i\in O^*$ és v_i az i-edik régióban lévő objektum-multihalmaz sztring reprezentációja.

C kezdőkonfiguráció, ha $\forall \ 1 \leq i \leq m$ esetén $v_i = \omega_i$. (Az *i*-edik régió kezdeti tartalma az ω_i által reprezentált multihalmaz.)

Megállási konfiguráció: Olyan konfiguráció, melyre nem lehet már evolúciós szabályt alkalmazni.

(Egylépéses) konfigurációátmenet: $C_1 \Rightarrow_{\Pi} C_2$, ha C_1 -ből egy ütemben megkapható C_2 a korábban definiált maximális párhuzamos evolúciós átírással.

Megjegyzés: Mivel az átírás nemdeterminisztikus, ezért egy C_1 -hez több ilyen C_2 is létezhet.

A többlépéses **konfigurációátmenet** a szokásos módon definiáluk, a \Rightarrow_{Π} reláció \Rightarrow_{Π}^* -al jelölt reflexív tranzitív lezártjaként.

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a számítás eredménye a modell különféle változataiban lehet:

 a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a számítás eredménye a modell különféle változataiban lehet:

- a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)
- a kimeneti régióban a megálláskor jelen lévő objektumok vektora. Ha például $O=\{a,b,c\}$ és 2 a, 5 b és 1 c jutott ki, akkor az eredmény (2,5,1), míg az előbb 8 lett volna.

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a számítás eredménye a modell különféle változataiban lehet:

- a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)
- a kimeneti régióban a megálláskor jelen lévő objektumok vektora. Ha például $O = \{a, b, c\}$ és 2 a, 5 b és 1 c jutott ki, akkor az eredmény (2,5,1), míg az előbb 8 lett volna.
- a rendszert elhagyó objektumok száma

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a számítás eredménye a modell különféle változataiban lehet:

- a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)
- a kimeneti régióban a megálláskor jelen lévő objektumok vektora. Ha például $O = \{a, b, c\}$ és 2 a, 5 b és 1 c jutott ki, akkor az eredmény (2,5,1), míg az előbb 8 lett volna.
- a rendszert elhagyó objektumok száma
- a rendszert elhagyó objektumok vektora

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a számítás eredménye a modell különféle változataiban lehet:

- a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)
- a kimeneti régióban a megálláskor jelen lévő objektumok vektora. Ha például $O = \{a, b, c\}$ és 2 a, 5 b és 1 c jutott ki, akkor az eredmény (2,5,1), míg az előbb 8 lett volna.
- a rendszert elhagyó objektumok száma
- a rendszert elhagyó objektumok vektora

A Π által **generált nyelv**: A számítások lehetséges eredményeinek a halmaza. Jelölés: $N(\Pi)$.

A P-rendszer egy **számítása** alatt egy a kezdőkonfigurációból egy megállási konfigurációba történő (többlépéses) konfigurációátmenet-sorozatot értünk.

Ha a P-rendszer megállási konfigurációba kerül a **számítás eredménye** a modell különféle változataiban lehet:

- a kimeneti régióban a megálláskor jelen lévő objektumok száma (alapértelmezett, mi is ezt tekintjük)
- a kimeneti régióban a megálláskor jelen lévő objektumok vektora. Ha például $O=\{a,b,c\}$ és 2 a, 5 b és 1 c jutott ki, akkor az eredmény (2,5,1), míg az előbb 8 lett volna.
- a rendszert elhagyó objektumok száma
- a rendszert elhagyó objektumok vektora

A Π által **generált nyelv**: A számítások lehetséges eredményeinek a halmaza. Jelölés: $N(\Pi)$.

Alapértelmezett modellben tehát $N(\Pi)\subseteq\mathbb{N}$.

Szabálytípusok

A szabályok kompaktabb reprezentációi:

Példa: $a^2b \rightarrow (a, \text{in})(a, \text{here})(b, \text{here})(b, \text{here})(a, \text{out})(c, \text{out})$ helyett:

$$a^2b \rightarrow ab^2(a, in)(ac, out)$$
 vagy
 $a^2b \rightarrow ab^2a_{in}(ac)_{out}$

Szabálytípusok

A szabályok kompaktabb reprezentációi:

Példa: $a^2b \rightarrow (a, \text{in})(a, \text{here})(b, \text{here})(a, \text{out})(c, \text{out})$ helyett:

$$a^2b \rightarrow ab^2(a, in)(ac, out)$$
 vagy
 $a^2b \rightarrow ab^2a_{in}(ac)_{out}$

Definíció

Egy $u \rightarrow v$ szabály **súlya** alatt |u|-t értjük.

Az 1 súlyú szabályokat **nemkooperatívaknak**, a legalább kettő súlyú szabályokat **kooperatívnak** hívjuk.

Szabálytípusok

A szabályok kompaktabb reprezentációi:

Példa: $a^2b \rightarrow (a, \text{in})(a, \text{here})(b, \text{here})(a, \text{out})(c, \text{out})$ helyett:

$$a^2b \rightarrow ab^2(a, in)(ac, out)$$
 vagy
 $a^2b \rightarrow ab^2a_{in}(ac)_{out}$

Definíció

Egy $u \rightarrow v$ szabály **súlya** alatt |u|-t értjük.

Az 1 súlyú szabályokat **nemkooperatívaknak**, a legalább kettő súlyú szabályokat **kooperatívnak** hívjuk.

A 2-es membrán határolja a kimeneti régiót.

A 2-es membrán határolja a kimeneti régiót.

Az A-k megduplázása (kezdetben m=1): $(XA^mDE,\varepsilon)\Rightarrow^*(XB^{2m}DE,\varepsilon)\Rightarrow(YB^{2m}DE,\varepsilon)\Rightarrow^*(YA^{2m}DE,\varepsilon)\Rightarrow(XA^{2m}DE,\varepsilon)$

A 2-es membrán határolja a kimeneti régiót.

Az A-k megduplázása (kezdetben m = 1):

$$(XA^{m}DE, \varepsilon) \Rightarrow^{*} (XB^{2m}DE, \varepsilon) \Rightarrow (YB^{2m}DE, \varepsilon) \Rightarrow^{*} (YA^{2m}DE, \varepsilon) \Rightarrow (XA^{2m}DE, \varepsilon)$$

a-k kiküldése a 2-es régióba:

$$(YA^{2m}DE, \varepsilon) \Rightarrow (ZA^{2m}E, \varepsilon) \Rightarrow^* (ZE, a^{2m})$$
 (megállási konfiguráció)

A 2-es membrán határolja a kimeneti régiót.

Az A-k megduplázása (kezdetben m = 1):

$$(XA^{m}DE, \varepsilon) \Rightarrow^{*} (XB^{2m}DE, \varepsilon) \Rightarrow (YB^{2m}DE, \varepsilon) \Rightarrow^{*} (YA^{2m}DE, \varepsilon) \Rightarrow (XA^{2m}DE, \varepsilon)$$

a-k kiküldése a 2-es régióba:

$$(\mathit{YA}^{2m}DE, \varepsilon) \Rightarrow (\mathit{ZA}^{2m}E, \varepsilon) \Rightarrow^* (\mathit{ZE}, \mathit{a}^{2m})$$
 (megállási konfiguráció)

Tehát
$$N(\Pi) \supseteq \{2^n \mid n \geqslant 0\}.$$

egy "csapdajel". Mivel # baloldalon egyedül a $\# \to \#$ szabályban szerepel, ezért #-et ha egyszer behozzuk nem tudunk tőle megszabadulni, ráadásul a $\# \to \#$ szabály végtelen ciklusba küldi a membránrendszert, ilyen számítás nem eredményezhet $N(\Pi)$ -beli szót.

egy "csapdajel". Mivel # baloldalon egyedül a $\# \to \#$ szabályban szerepel, ezért #-et ha egyszer behozzuk nem tudunk tőle megszabadulni, ráadásul a $\# \to \#$ szabály végtelen ciklusba küldi a membránrendszert, ilyen számítás nem eredményezhet $N(\Pi)$ -beli szót.

Ha az $XA^mDE\ XB^{2m}DE$ -re való átírásánál az $XE\to YE$ szabályt még A jelenléténél alkalmaznánk, akkor a maximális párhuzamosság elve és az $AD\to \#$ szabály miatt keletkezne # objektum.

egy "csapdajel". Mivel # baloldalon egyedül a $\# \to \#$ szabályban szerepel, ezért #-et ha egyszer behozzuk nem tudunk tőle megszabadulni, ráadásul a $\# \to \#$ szabály végtelen ciklusba küldi a membránrendszert, ilyen számítás nem eredményezhet $N(\Pi)$ -beli szót.

Ha az $XA^mDE\ XB^{2m}DE$ -re való átírásánál az $XE\to YE$ szabályt még A jelenléténél alkalmaznánk, akkor a maximális párhuzamosság elve és az $AD\to \#$ szabály miatt keletkezne # objektum.

Ha az $YB^{2m}DE$ $YA^{2m}DE$ -re való átírásánál az $YD \to Z$ szabályt még B jelenléténél alkalmaznánk, akkor a maximális párhuzamosság elve és a $BE \to \#$ szabály miatt keletkezne # objektum.

#egy "csapdajel". Mivel # baloldalon egyedül a $\#\to\#$ szabályban szerepel, ezért #-et ha egyszer behozzuk nem tudunk tőle megszabadulni, ráadásul a $\#\to\#$ szabály végtelen ciklusba küldi a membránrendszert, ilyen számítás nem eredményezhet $N(\Pi)\text{-beli}$ szót.

Ha az $XA^mDE\ XB^{2m}DE$ -re való átírásánál az $XE\to YE$ szabályt még A jelenléténél alkalmaznánk, akkor a maximális párhuzamosság elve és az $AD\to \#$ szabály miatt keletkezne # objektum.

Ha az $YB^{2m}DE$ $YA^{2m}DE$ -re való átírásánál az $YD \to Z$ szabályt még B jelenléténél alkalmaznánk, akkor a maximális párhuzamosság elve és a $BE \to \#$ szabály miatt keletkezne # objektum.

Tehát csak teljes duplázási ütemek után tudjuk az a-kat úgy a 2-es membránba küldeni, hogy véget is érjen a számítás. Így $N(\Pi) \subseteq \{2^n \mid n \geqslant 0\}$, azaz Π a 2-hatványokat generálja.

Katalitikus P-rendszerek

Definíció

 $\Pi = \langle O, K, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ katalitikus P-rendszer ha

- $\emptyset \neq K \subset O$ az ún. katalizátorok halmaza
- $\Pi' := \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ P-rendszer
- Π szabályainak alakja
 - (a) vagy $a \rightarrow v$ (nemkooperatív szabályok),
 - (b) vagy $ca \rightarrow cv$ (katalitikus szabályok), ahol $c \in K$, $a \in O \setminus K$, $v \in ((O \setminus K) \times TAR)^*$.

A P-rendszerek számítási ereje

Definíció

 $\mathsf{NOP}_m(\alpha) = \{A \subseteq \mathbb{N} \mid A = N(\Pi) \text{ valamely } \Pi \text{ } m\text{-edfok\'u} \}$ P-rendszerre α típusú szabályokkal $\}$.

A P-rendszerek számítási ereje

Definíció

 $NOP_m(\alpha) = \{A \subseteq \mathbb{N} \mid A = N(\Pi) \text{ valamely } \Pi \text{ } m\text{-edfok\'u} \}$ P-rendszerre α típusú szabályokkal $\}$.

 α =ncoo: minden szabály nemkooperatív,

A P-rendszerek számítási ereje

Definíció

 $NOP_m(\alpha) = \{A \subseteq \mathbb{N} \mid A = N(\Pi) \text{ valamely } \Pi \text{ } m\text{-edfok\'u} \}$ P-rendszerre α típusú szabályokkal $\}$.

 α =ncoo: minden szabály nemkooperatív,

 α =cat: a P-rendszer katalitikus

Definíció

 $NOP_m(\alpha) = \{A \subseteq \mathbb{N} \mid A = N(\Pi) \text{ valamely } \Pi \text{ } m\text{-edfok\'u} \}$ P-rendszerre α típusú szabályokkal $\}$.

 α =ncoo: minden szabály nemkooperatív,

 α =cat: a P-rendszer katalitikus

 α =coo: kooperatív szabályok is megengedettek,

Definíció

 $NOP_m(\alpha) = \{A \subseteq \mathbb{N} \mid A = N(\Pi) \text{ valamely } \Pi \text{ } m\text{-edfok\'u} \}$ P-rendszerre α típusú szabályokkal $\}$.

 α =ncoo: minden szabály nemkooperatív,

 α =cat: a P-rendszer katalitikus

 α =coo: kooperatív szabályok is megengedettek,

$$\mathsf{NOP}_*(\alpha) := \bigcup_{m=1}^\infty \, \mathsf{NOP}_m(\alpha)$$

Jelölés: Jelölje a NRE, NCS, illetve NCF azon $A \subseteq \mathbb{N}$ számhalmazok osztályát, melyre A rendre RE, CS illetve CF-beli.

Jelölés: Jelölje a NRE, NCS, illetve NCF azon $A\subseteq\mathbb{N}$ számhalmazok osztályát, melyre A rendre RE, CS illetve CF-beli.

Észrevételek:

▶ $\mathsf{NOP}_m(\alpha) \subseteq \mathsf{NOP}_{m+1}(\alpha)$, minden $\alpha \in \{\mathsf{coo}, \mathsf{ncoo}, \mathsf{cat}\}$ -ra és $m \geqslant 1$ -re.

Jelölés: Jelölje a NRE, NCS, illetve NCF azon $A\subseteq\mathbb{N}$ számhalmazok osztályát, melyre A rendre RE, CS illetve CF-beli.

Észrevételek:

- ▶ $\mathsf{NOP}_m(\alpha) \subseteq \mathsf{NOP}_{m+1}(\alpha)$, minden $\alpha \in \{\mathsf{coo}, \mathsf{ncoo}, \mathsf{cat}\}$ -ra és $m \geqslant 1$ -re.
- ▶ $NOP_m(ncoo) \subseteq NOP_m(cat) \subseteq NOP_m(coo)$, minden $m \ge 1$ -re.

Jelölés: Jelölje a NRE, NCS, illetve NCF azon $A \subseteq \mathbb{N}$ számhalmazok osztályát, melyre A rendre RE, CS illetve CF-beli.

Észrevételek:

- ▶ $\mathsf{NOP}_m(\alpha) \subseteq \mathsf{NOP}_{m+1}(\alpha)$, minden $\alpha \in \{\mathsf{coo}, \mathsf{ncoo}, \mathsf{cat}\}$ -ra és $m \geqslant 1$ -re.
- ▶ $NOP_m(ncoo) \subseteq NOP_m(cat) \subseteq NOP_m(coo)$, minden $m \ge 1$ -re.
- $\blacktriangleright \mathsf{NOP}_*(\mathsf{ncoo}) \subseteq \mathsf{NOP}_*(\mathsf{cat}) \subseteq \mathsf{NOP}_*(\mathsf{coo}).$

Jelölés: Jelölje a NRE, NCS, illetve NCF azon $A \subseteq \mathbb{N}$ számhalmazok osztályát, melyre A rendre RE, CS illetve CF-beli.

Észrevételek:

- ▶ $\mathsf{NOP}_m(\alpha) \subseteq \mathsf{NOP}_{m+1}(\alpha)$, minden $\alpha \in \{\mathsf{coo}, \mathsf{ncoo}, \mathsf{cat}\}$ -ra és $m \geqslant 1$ -re.
- ▶ $NOP_m(ncoo) \subseteq NOP_m(cat) \subseteq NOP_m(coo)$, minden $m \ge 1$ -re.
- ▶ $NOP_*(ncoo) \subseteq NOP_*(cat) \subseteq NOP_*(coo)$.
- ▶ $NOP_*(coo) \subseteq NRE$.

Tétel

 $\mathsf{NOP}_{\mathit{m}}(\alpha) = \mathsf{NOP}_{*}(\alpha) \text{ minden } \alpha \in \{\mathsf{coo}, \, \mathsf{ncoo}, \, \mathsf{cat}\}\text{-ra \'es } \mathit{m} \geqslant 2\text{-re}.$

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \text{cat}$, akkor K a katalizátorok halmaza.

Tétel

 $\mathsf{NOP}_{\mathit{m}}(\alpha) = \mathsf{NOP}_{*}(\alpha) \text{ minden } \alpha \in \{\mathsf{coo}, \, \mathsf{ncoo}, \, \mathsf{cat}\}\text{-ra \'es } \mathit{m} \geqslant 2\text{-re}.$

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \text{cat}$, akkor K a katalizátorok halmaza.

Konstruálunk egy $\Pi' = \langle O', [_1 [_{i_o}]_{i_o}]_1, \omega, \omega_{i_o}, \bigcup_{i=1, i \neq i_o}^m R'_i, R'_{i_o}, i_o \rangle$ 2-fokú P-rendszert (ha α =cat, akkor K' katalizátor halmazzal), melyre $N(\Pi') = N(\Pi)$.

Tétel

 $\mathsf{NOP}_{\mathit{m}}(\alpha) = \mathsf{NOP}_{*}(\alpha)$ minden $\alpha \in \{\mathsf{coo}, \, \mathsf{ncoo}, \, \mathsf{cat}\}$ -ra és $\mathit{m} \geqslant 2$ -re.

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \text{cat}$, akkor K a katalizátorok halmaza.

Konstruálunk egy $\Pi' = \langle O', [_1 [_{i_o}]_{i_o}]_1, \omega, \omega_{i_o}, \bigcup_{i=1, i \neq i_o}^m R'_i, R'_{i_o}, i_o \rangle$ 2-fokú P-rendszert (ha α =cat, akkor K' katalizátor halmazzal), melyre $N(\Pi') = N(\Pi)$.

$$O' := O \cup \{a_i \mid a \in O, 1 \leqslant i \leqslant m\}$$

Tétel

 $\mathsf{NOP}_{\mathit{m}}(\alpha) = \mathsf{NOP}_{*}(\alpha) \text{ minden } \alpha \in \{\mathsf{coo}, \, \mathsf{ncoo}, \, \mathsf{cat}\}\text{-ra \'es } \mathit{m} \geqslant 2\text{-re}.$

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \mathsf{cat}$, akkor K a katalizátorok halmaza.

Konstruálunk egy $\Pi' = \langle O', [_1 [_{i_o}]_{i_o}]_1, \omega, \omega_{i_o}, \bigcup_{i=1, i \neq i_o}^m R'_i, R'_{i_o}, i_o \rangle$ 2-fokú P-rendszert (ha α =cat, akkor K' katalizátor halmazzal), melyre $N(\Pi') = N(\Pi)$.

$$O':=O\cup\{a_i\mid a\in O,1\leqslant i\leqslant m\}$$

 $K' = K \cup \{c_i \mid c \in K, 1 \leqslant i \leqslant m\}$. (Katalitikus rendszer esetén.)

Tétel

 $\mathsf{NOP}_{\mathit{m}}(\alpha) = \mathsf{NOP}_{*}(\alpha)$ minden $\alpha \in \{\mathsf{coo}, \, \mathsf{ncoo}, \, \mathsf{cat}\}$ -ra és $\mathit{m} \geqslant 2$ -re.

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \mathsf{cat}$, akkor K a katalizátorok halmaza.

Konstruálunk egy $\Pi' = \langle O', [_1 [_{i_o}]_{i_o}]_1, \omega, \omega_{i_o}, \bigcup_{i=1, i \neq i_o}^m R'_i, R'_{i_o}, i_o \rangle$ 2-fokú P-rendszert (ha α =cat, akkor K' katalizátor halmazzal), melyre $N(\Pi') = N(\Pi)$.

$$O' := O \cup \{a_i \mid a \in O, 1 \leqslant i \leqslant m\}$$

$$K' = K \cup \{c_i \mid c \in K, 1 \le i \le m\}$$
. (Katalitikus rendszer esetén.)

 $h_i: O^* \to (O')^*$ homomorfizmus, melyre $h_i(a) := a_i$ $(a \in O, 1 \le i \le m)$.

Tétel

 $\mathsf{NOP}_m(\alpha) = \mathsf{NOP}_*(\alpha)$ minden $\alpha \in \{\mathsf{coo}, \mathsf{ncoo}, \mathsf{cat}\}\$ -ra és $m \geqslant 2$ -re.

Bizonyítás: (vázlat)

Legyen $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$, ahol $R_i = \{r_{i,1}, \dots, r_{i,t_i}\}$ és ha $\alpha = \mathsf{cat}$, akkor K a katalizátorok halmaza.

Konstruálunk egy $\Pi' = \langle O', [_1 [_{i_o}]_{i_o}]_1, \omega, \omega_{i_o}, \bigcup_{i=1, i \neq i_o}^m R'_i, R'_{i_o}, i_o \rangle$ 2-fokú P-rendszert (ha α =cat, akkor K' katalizátor halmazzal), melyre $N(\Pi') = N(\Pi)$.

$$O' := O \cup \{a_i \mid a \in O, 1 \leqslant i \leqslant m\}$$

$$K' = K \cup \{c_i \mid c \in K, 1 \leqslant i \leqslant m\}$$
. (Katalitikus rendszer esetén.)

$$h_i: O^* \to (O')^*$$
 homomorfizmus, melyre $h_i(a) := a_i$ $(a \in O, 1 \le i \le m)$.

$$\omega := h_1(\omega_1) \cdots h_{i_o-1}(\omega_{i_o-1}) \omega_{i_o} h_{i_o+1}(\omega_{i_o+1}) \cdots h_m(\omega_m).$$

 $i \neq i_o$ -ra $R_i' = \{r_{i,j}': h_i(u) \rightarrow v' \mid r_{i,j}: u \rightarrow v \in R_i, 1 \leqslant j \leqslant t_i\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

▶ (b, here)-t b_i-vel helyettesítünk,

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j -vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

 $i \neq i_o$ -ra $R_i' = \{r_{i,j}': h_i(u) \rightarrow v' \mid r_{i,j}: u \rightarrow v \in R_i, 1 \leqslant j \leqslant t_i\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

 $R'_{i_o}=\{r'_{i_o,j}:u\to v'\,|\,r_{i_o,j}:u\to v\in R_{i_o},1\leqslant j\leqslant t_{i_o}\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

 $i \neq i_o$ -ra $R_i' = \{r_{i,j}': h_i(u) \rightarrow v' \mid r_{i,j}: u \rightarrow v \in R_i, 1 \leqslant j \leqslant t_i\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

 $R'_{i_o}=\{r'_{i_o,j}:u\to v'\,|\,r_{i_o,j}:u\to v\in R_{i_o},1\leqslant j\leqslant t_{i_o}\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

▶ (b, here) változatlan,

 $i \neq i_o$ -ra $R_i' = \{r_{i,j}': h_i(u) \rightarrow v' \mid r_{i,j}: u \rightarrow v \in R_i, 1 \leqslant j \leqslant t_i\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

 $R'_{i_o}=\{r'_{i_o,j}:u\to v'\,|\,r_{i_o,j}:u\to v\in R_{i_o},1\leqslant j\leqslant t_{i_o}\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- ▶ (b, here) változatlan,
- (b, out)-ot (b_j, out)-tal helyettesítjük, ahol j i_o szülő membránja.

 $i \neq i_o$ -ra $R_i' = \{r_{i,j}': h_i(u) \rightarrow v' \mid r_{i,j}: u \rightarrow v \in R_i, 1 \leqslant j \leqslant t_i\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- ▶ (b, here)-t b_i-vel helyettesítünk,
- (b, out)-ot b_j-vel helyettesítjük, ahol j közvetlenül tartalmazza i-t,
- (b, in_s) -t b_s -sel helyettesítjük, ha $s \neq i_o$,
- ▶ (b, in_{io}) változatlan.

 $R'_{i_o}=\{r'_{i_o,j}:u\to v'\,|\,r_{i_o,j}:u\to v\in R_{i_o},1\leqslant j\leqslant t_{i_o}\}$, ahol v'-t úgy kapjuk, hogy minden v-beli

- (b, here) változatlan,
- (b, out)-ot $(b_j, \text{ out})$ -tal helyettesítjük, ahol j i_o szülő membránja.

Meggondolható, hogy $N(\Pi') = N(\Pi)$ és nemkooperatív rendszer képe nemkooperatív, katalitikus képe katalitikus.

Tétel

 $NOP_*(ncoo) = NOP_m(ncoo) = NCF$, minden $m \ge 1$ -re.

Tétel

 $\mathsf{NOP}_*(\mathsf{coo}) = \mathsf{NOP}_m(\mathsf{coo}) = \mathsf{NRE}$, minden $m \geqslant 1$ -re.

(Bizonyítások nélkül.)

Megengedünk a szabályok között $u \to v\delta$ alakú szabályokat, ahol $u \to v$ evolúciós szabály és δ egy speciális szimbólum. Egy evolúciós lépés két részből áll. Először az esetleges δ -kat nem figyelembe véve a szokásos evolúciós lépés (a kiválasztott szabályokkal és objektumokkal) végrehajtódik. Ezután, ha egy vagy több alkalmazott szabályban szerepel a δ , akkor ezen szabályokhoz tartozó membránok feloldódnak. Ilyenkor a határolt régió tartalma (objektumok és membránok igen, a szabályok nem!) a membránt közvetlenül tartalmazó (szülő) régióba kerül.

Megengedünk a szabályok között $u \to v\delta$ alakú szabályokat, ahol $u \to v$ evolúciós szabály és δ egy speciális szimbólum. Egy evolúciós lépés két részből áll. Először az esetleges δ -kat nem figyelembe véve a szokásos evolúciós lépés (a kiválasztott szabályokkal és objektumokkal) végrehajtódik. Ezután, ha egy vagy több alkalmazott szabályban szerepel a δ , akkor ezen szabályokhoz tartozó membránok feloldódnak. Ilyenkor a határolt régió tartalma (objektumok és membránok igen, a szabályok nem!) a membránt közvetlenül tartalmazó (szülő) régióba kerül.

Ilyenkor io nem feltétlenül kell elemi membrán legyen.

Megengedünk a szabályok között $u \to v\delta$ alakú szabályokat, ahol $u \to v$ evolúciós szabály és δ egy speciális szimbólum. Egy evolúciós lépés két részből áll. Először az esetleges δ -kat nem figyelembe véve a szokásos evolúciós lépés (a kiválasztott szabályokkal és objektumokkal) végrehajtódik. Ezután, ha egy vagy több alkalmazott szabályban szerepel a δ , akkor ezen szabályokhoz tartozó membránok feloldódnak. Ilyenkor a határolt régió tartalma (objektumok és membránok igen, a szabályok nem!) a membránt közvetlenül tartalmazó (szülő) régióba kerül.

llyenkor i_o nem feltétlenül kell elemi membrán legyen. A külső membrán (skin) sosem oldódhat fel.

Megengedünk a szabályok között $u \to v\delta$ alakú szabályokat, ahol $u \to v$ evolúciós szabály és δ egy speciális szimbólum. Egy evolúciós lépés két részből áll. Először az esetleges δ -kat nem figyelembe véve a szokásos evolúciós lépés (a kiválasztott szabályokkal és objektumokkal) végrehajtódik. Ezután, ha egy vagy több alkalmazott szabályban szerepel a δ , akkor ezen szabályokhoz tartozó membránok feloldódnak. Ilyenkor a határolt régió tartalma (objektumok és membránok igen, a szabályok nem!) a membránt közvetlenül tartalmazó (szülő) régióba kerül.

llyenkor i_o nem feltétlenül kell elemi membrán legyen. A külső membrán (skin) sosem oldódhat fel.

A konfigurációk első komponense legyen az aktuális membránstruktúra (mivel ez változhat). Példa: $([1_4]_4]_1, a^2b, ca)$

Megengedünk a szabályok között $u \to v\delta$ alakú szabályokat, ahol $u \to v$ evolúciós szabály és δ egy speciális szimbólum. Egy evolúciós lépés két részből áll. Először az esetleges δ -kat nem figyelembe véve a szokásos evolúciós lépés (a kiválasztott szabályokkal és objektumokkal) végrehajtódik. Ezután, ha egy vagy több alkalmazott szabályban szerepel a δ , akkor ezen szabályokhoz tartozó membránok feloldódnak. Ilyenkor a határolt régió tartalma (objektumok és membránok igen, a szabályok nem!) a membránt közvetlenül tartalmazó (szülő) régióba kerül.

llyenkor i_o nem feltétlenül kell elemi membrán legyen. A külső membrán (skin) sosem oldódhat fel.

A konfigurációk első komponense legyen az aktuális membránstruktúra (mivel ez változhat). Példa: $([1_4]_4]_1, a^2b, ca)$

Alternatív jelölés: maradjon az eredeti rendezett m-es, ahol m a P-rendszer foka. Az eredeti membránstruktúra hiányzó membránjai helyére írjunk egy speciális szimbólumot, például δ -t.

Feloldásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha, \delta)$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m \geqslant 1)$ feloldással kiegészített P-rendszer generál, $\alpha \in \{coo, cat, ncoo\}$ típusú szabályokat használva.

Feloldásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha, \delta)$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m \geqslant 1)$ feloldással kiegészített P-rendszer generál, $\alpha \in \{coo, cat, ncoo\}$ típusú szabályokat használva.

A feloldással kiegészített P-rendszernek megnő a számítási ereje a nemkooperatív esetben.

Feloldásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha, \delta)$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m \geqslant 1)$ feloldással kiegészített P-rendszer generál, $\alpha \in \{coo, cat, ncoo\}$ típusú szabályokat használva.

A feloldással kiegészített P-rendszernek megnő a számítási ereje a nemkooperatív esetben.

Tétel

 $NCF = NOP_*(ncoo) \subset NOP_2(ncoo, \delta) \subseteq NOP_*(ncoo, \delta) \subset NCS.$

(Bizonyítás nélkül.)

P-rendszer prioritással

Definíció

 $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, (R_1, \varrho_1), \dots, (R_m, \varrho_m), i_o \rangle \text{ egy } \textbf{P-rendszer}$ **prioritással**, ha $\langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ P-rendszer és ϱ_i részbenrendezés R_i -n $(1 \leq i \leq m)$.

P-rendszer prioritással

Definíció

 $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, (R_1, \varrho_1), \dots, (R_m, \varrho_m), i_o \rangle \text{ egy } \textbf{P-rendszer}$ **prioritással**, ha $\langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ P-rendszer és ϱ_i részbenrendezés R_i -n $(1 \leq i \leq m)$.

Megjegyzés: Mivel az egyes részbenrendezéseknek nincs egymásra közvetlen hatása, használhatjuk a közös < jelet. Azaz $(r_1, r_2) \in \varrho_i$, helyett írhatunk $r_1 < r_2$ -t.

P-rendszer prioritással

Definíció

 $\Pi = \langle O, \mu, \omega_1, \dots, \omega_m, (R_1, \varrho_1), \dots, (R_m, \varrho_m), i_o \rangle \text{ egy } \textbf{P-rendszer}$ **prioritással**, ha $\langle O, \mu, \omega_1, \dots, \omega_m, R_1, \dots, R_m, i_o \rangle$ P-rendszer és ϱ_i részbenrendezés R_i -n $(1 \leq i \leq m)$.

Megjegyzés: Mivel az egyes részbenrendezéseknek nincs egymásra közvetlen hatása, használhatjuk a közös < jelet. Azaz $(r_1, r_2) \in \varrho_i$, helyett írhatunk $r_1 < r_2$ -t.

A szabályok alkalmazása: Ha $r_1 < r_2$ akkor az r_1 szabály csak abban az esetben alkalmazható, ha r_2 már nem. (Egy objektumot csak akkor lehet az r_1 szabályhoz rendelni, ha r_2 -höz már nem.)

P-rendszer feloldódással és prioritással- példa

Négyzetszámokat a környezetbe generáló P-rendszer $\mathcal{N}(\Pi) = \{n^2 \mid n \geqslant 1\}$

P-rendszer feloldódással és prioritással- példa

Négyzetszámokat a környezetbe generáló P-rendszer $N(\Pi) = \{n^2 \mid n \geq 1\}$

$$\begin{array}{l} (\varepsilon,\varepsilon,\mathit{ac}) \Rightarrow (\varepsilon,\varepsilon,\mathit{abc}^2) \Rightarrow (\varepsilon,\mathit{b}^2\mathit{c}^4,\delta) \Rightarrow (\varepsilon,\mathit{d}^2\mathit{c}^2,\delta) \Rightarrow \\ (\varepsilon,\mathit{d}^2\mathit{e}^2\mathit{c},\delta) \Rightarrow (\mathit{d}^2\mathit{e}^4,\delta,\delta) \Rightarrow (\mathit{d}^2,\delta,\delta), \text{ k\"ornyezetbe: 4 objektum.} \end{array}$$

P-rendszer feloldódással és prioritással- példa

П

Négyzetszámokat a környezetbe generáló P-rendszer $N(\Pi) = \{n^2 \mid n \geqslant 1\}$

$$\begin{array}{l} (\varepsilon,\varepsilon,ac) \Rightarrow (\varepsilon,\varepsilon,abc^2) \Rightarrow (\varepsilon,b^2c^4,\delta) \Rightarrow (\varepsilon,d^2c^2,\delta) \Rightarrow \\ (\varepsilon,d^2e^2c,\delta) \Rightarrow (d^2e^4,\delta,\delta) \Rightarrow (d^2,\delta,\delta), \text{ k\"ornyezetbe: 4 objektum.} \\ (\varepsilon,\varepsilon,ac) \Rightarrow (\varepsilon,\varepsilon,abc^2) \Rightarrow (\varepsilon,\varepsilon,ab^2c^4) \Rightarrow (\varepsilon,b^3c^8,\delta) \Rightarrow \\ (\varepsilon,d^3c^4,\delta) \Rightarrow (\varepsilon,d^3e^3c^2,\delta) \Rightarrow (\varepsilon,d^3e^6c,\delta) \Rightarrow (d^3e^9,\delta,\delta) \Rightarrow \\ (d^3,\delta,\delta), \text{ k\"ornyezetbe: 9 objektum.} \end{array}$$

Prioritásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha,\mathsf{pri})$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m\geqslant 1)$ prioritással kiegészített P-rendszer generál, $\alpha\in\{coo,cat,ncoo\}$ típusú szabályokat használva.

Prioritásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha,\mathsf{pri})$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m\geqslant 1)$ prioritással kiegészített P-rendszer generál, $\alpha\in\{coo,cat,ncoo\}$ típusú szabályokat használva.

Ha a prioritásos szabályok mellett feloldódás is megengedett, akkor $\mathsf{NOP}_m(\alpha, \delta, \mathsf{pri})$ jelöli az ilyen P-rendszerekkel generálható természetes szám halmazok családját.

Prioritásos P-rendszerek számítási ereje

Jelölje $\mathsf{NOP}_m(\alpha,\mathsf{pri})$ a természetes számok halmazainak családját, amelyeket egy legfeljebb m-edfokú $(m\geqslant 1)$ prioritással kiegészített P-rendszer generál, $\alpha\in\{coo,cat,ncoo\}$ típusú szabályokat használva.

Ha a prioritásos szabályok mellett feloldódás is megengedett, akkor $\mathsf{NOP}_m(\alpha, \delta, \mathsf{pri})$ jelöli az ilyen P-rendszerekkel generálható természetes szám halmazok családját.

Tétel

 $NOP_2(cat, pri) = NRE.$

(Bizonyítás nélkül.)