Final_Report

2019

Importing data into R

```
setwd ("/Users/**

library(ggplot2)
library(corrplot)

## corrplot 0.84 loaded

library(pwr)
library(pscl)

## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis

library(car)

## Loading required package: carData
```

```
logisticPseudoR2s <- function(LogModel) {</pre>
  dev <- LogModel$deviance</pre>
  nullDev <- LogModel$null.deviance</pre>
  modelN <- length(LogModel$fitted.values)</pre>
  R.l \leftarrow 1 - dev / nullDev
  R.cs <- 1- exp ( -(nullDev - dev) / modelN)
  R.n \leftarrow R.cs / (1 - (exp (-(nullDev / modelN))))
  cat("Pseudo R^2 for logistic regression\n")
  cat("Hosmer and Lemeshow R^2 ", round(R.1, 3), "\n")
  cat("Cox and Snell R^2
                                 ", round(R.cs, 3), "\n")
                                  ", round(R.n, 3),
  cat("Nagelkerke R^2
}
load("births.rdat")
summary(births)
```

```
##
                                   maturity
      dad_age
                      mom_age
                                                 len preg
          : 14.0
                                advnced:133
                                                     : 20.00
##
   Min.
                   Min.
                          :13
                                              Min.
   1st Ou.: 26.0
                                younger:867
                                              1st Ou.: 37.00
##
                   1st Ou.:22
                                              Median : 39.00
##
   Median: 32.0
                   Median :27
##
   Mean :195.9
                   Mean
                          :27
                                              Mean
                                                     : 40.26
##
   3rd Qu.: 39.0
                  3rd Qu.:32
                                              3rd Qu.: 40.00
          :999.0
                 Max.
                                                     :999.00
##
   Max.
                          :50
                                              Max.
##
      is premie
                   num visits
                                        marital
                                                   mom wt gain
##
   fullterm:846
                  Min. : 0.00
                                   married :613
                                                   Min.
                                                        : 0.00
                  1st Qu.: 10.00
                                   unknown :
                                                   1st Qu.: 21.00
##
   premie :152
                                               1
##
   unknown: 2
                  Median : 12.00
                                   unmarried:386
                                                   Median : 30.00
##
                  Mean : 20.99
                                                   Mean : 56.48
                  3rd Qu.: 15.00
##
                                                   3rd Qu.: 40.00
##
                         :999.00
                                                        :999.00
                  Max.
                                                   Max.
##
        bwt
                      low bwt
                                     sex
                                                    smoke
                                                                mom white
   Min.
         : 1.000
                                 female:503
                                              nonsmoker:873
                                                             nonwhite:284
##
                    low
                          :111
                                 male :497
##
   1st Qu.: 6.380
                    notlow:889
                                              smoker :126 unknown:
   Median : 7.310
                                              unknown: 1
                                                             white :714
##
   Mean : 7.101
##
##
   3rd Qu.: 8.060
##
   Max.
          :11.750
##
   mom age level
##
   35+
           :133
##
   early20s:281
   early30s:219
##
   late20s :257
##
##
   teens :110
##
```

Data Cleaning

```
# Cleaning impossible values
births$dad_age[births$dad age == 999] <- NA
births$len preg[births$len preg == 999] <- NA
births$is_premie[births$is_premie == "unknown"] <- NA</pre>
births$num visits[births$num visits == 999] <- NA
births$marital[births$marital == "unknown"] <- NA</pre>
births$mom_wt_gain[births$mom_wt_gain == 999] <- NA
births$smoke[births$smoke == "unknown"] <- NA</pre>
births$mom white[births$mom white == "unknown"] <- NA</pre>
# Drop unused levels
births$is premie <- droplevels(births$is premie)</pre>
births$marital <- droplevels(births$marital)</pre>
births$smoke <- droplevels(births$smoke)</pre>
births$mom white <- droplevels(births$mom white)</pre>
# Reordering levels for correct visualizations
births$maturity <- factor(births$maturity, levels = c("younger", "advnced"))</pre>
births$mom age level <- factor( births$mom age level, levels = c("teens", "early20
s","late20s","early30s","35+") )
births$is premie <- factor(births$is premie, levels = c("premie", "fullterm"))</pre>
```

EDA

Summary Statistics : mean, median & quantiles included in summary.for categorica 1 variable counts are included too. summary(births)

```
##
       dad_age
                        mom_age
                                      maturity
                                                     len preg
                                                                      is premie
##
    Min.
           :14.00
                     Min.
                            :13
                                   younger:867
                                                  Min.
                                                          :20.00
                                                                   premie :152
##
    1st Ou.:25.00
                     1st Ou.:22
                                   advnced:133
                                                  1st Ou.:37.00
                                                                   fullterm:846
    Median :30.00
                                                  Median :39.00
##
                     Median :27
                                                                   NA's
##
    Mean
           :30.26
                     Mean
                            :27
                                                  Mean
                                                         :38.33
##
    3rd Ou.:35.00
                     3rd Ou.:32
                                                  3rd Ou.:40.00
##
    Max.
           :55.00
                     Max.
                             :50
                                                  Max.
                                                          :45.00
##
    NA's
                                                  NA's
                                                         :2
           :171
      num_visits
##
                         marital
                                      mom_wt_gain
                                                           bwt
##
    Min.
           : 0.0
                    married :613
                                     Min.
                                             : 0.00
                                                      Min.
                                                              : 1.000
##
    1st Ou.:10.0
                    unmarried:386
                                     1st Qu.:20.00
                                                      1st Ou.: 6.380
    Median :12.0
                                     Median :30.00
##
                    NA's
                              : 1
                                                      Median : 7.310
##
    Mean
           :12.1
                                     Mean
                                             :30.33
                                                      Mean
                                                              : 7.101
                                                      3rd Qu.: 8.060
##
    3rd Qu.:15.0
                                     3rd Qu.:38.00
##
    Max.
           :30.0
                                     Max.
                                             :85.00
                                                      Max.
                                                              :11.750
    NA's
                                     NA's
##
           :9
                                             :27
##
      low bwt
                      sex
                                      smoke
                                                    mom white
                                                                  mom age level
##
    low
          :111
                  female:503
                                nonsmoker:873
                                                 nonwhite:284
                                                                 teens
                                                                         :110
##
    notlow:889
                  male :497
                                smoker
                                         :126
                                                 white
                                                         :714
                                                                 early20s:281
                                NA's
                                                 NA's
##
                                         : 1
                                                          : 2
                                                                 late20s :257
##
                                                                 early30s:219
##
                                                                 35+
                                                                          :133
##
##
```

Correlation

```
births_numeric <- births[,c(1:14)]
births_numeric$maturity <- as.numeric(births$maturity )
births_numeric$is_premie <- as.numeric(births$is_premie )
births_numeric$marital <- as.numeric(births$marital )
births_numeric$low_bwt <- as.numeric(births$low_bwt )
births_numeric$sex <- as.numeric(births$sex )
births_numeric$smoke <- as.numeric(births$smoke )
births_numeric$mom_white <- as.numeric(births$mom_white)
births_numeric$mom_age_level <- as.numeric(births$mom_age_level)

c <- cor(births_numeric, use = "pairwise.complete.obs", method = "spearman")
corrplot(c)</pre>
```


corrplot(c, method="number")

Data Visualizations

```
g4 = ggplot(births, aes(x=len_preg))
g4 + geom_histogram(binwidth = 1,color="purple") + ggtitle("Distribution of the Le
ngth of pregnancy") +
   xlab("Length of pregnancy (weeks)") + ylab("Count")
```

Warning: Removed 2 rows containing non-finite values (stat bin).

Distribution of the Length of pregnancy


```
g9 = ggplot(births, aes(x=bwt))
g9 + geom_histogram(bins = 30, color = "azure") + ggtitle("Distribution of babies
birthweight") +
   xlab("Babies birthweight (pounds)") + ylab("Count")
```

Distribution of babies birthweight


```
g10 = ggplot(births, aes(x=low_bwt))
g10 + geom_bar(fill = "tan")+ ggtitle("Distribution of babies as per their birthwe
ight") +
   xlab("Classification of babies as per their birthweight (low / not low)") + ylab
("Count")
```

Distribution of babies as per their birthweight

Classification of babies as per their birthweight (low / not low)

```
g14 = ggplot(births, aes(x=mom_age_level))
g14 + geom_bar(fill = "slategrey")+ ggtitle("Distribution of mother's age level")
+
    xlab("Mother's age level") + ylab("Count")
```

Distribution of mother's age level


```
# the sample has random selectipn of mother's accross all age levels

g15 = ggplot(births, aes(x=low_bwt, y=bwt))
g15 + geom_boxplot(color="skyblue")+ ggtitle("Distribution of babies birthweight")
+
    xlab("Classification of babies as per their birthweight (low / not low)") + ylab
("Babies birthweight (in pounds)")
```

Distribution of babies birthweight

Classification of babies as per their birthweight (low / not low)

```
# plot implies that the low_bwt variable may be a derived column from the bwt valu
es

g16 = ggplot(births, aes(x=len_preg, y= bwt))
g16 + geom_point()+ geom_smooth(method=lm) + ggtitle("Distribution of babies birth
weight and length of pregnancy") +
    xlab("Length of pregnancy (weeks)") + ylab("Babies birthweight (in pounds)")
```

Warning: Removed 2 rows containing non-finite values (stat_smooth).

Warning: Removed 2 rows containing missing values (geom_point).

Distribution of babies birthweight and length of pregnancy


```
# plot implies that there is positive correlation between the length of pregnancy
and babies birthweight
# the more the length of pregnancy, more will be the babies birthweight
g17 = ggplot(births, aes(x=bwt, fill=is_premie))
```

g17 + geom_histogram(bins=30,position="dodge")+ ggtitle("Distribution of babies birthweight and baby being premature or not") +

xlab("Babies birthweight (in pounds)") + ylab("Count")

Distribution of babies birthweight and baby being premature or not

plot implies that there is positive correlation between the babies birthweight a
nd the baby being premature or fullterm

the fullterm babies will have more birthweight, than the premature babies with 1 ower birthweights

```
g18 = ggplot(births, aes(x=len_preg, y= bwt, col=low_bwt))
```

g18 + geom_point() + ggtitle("Distribution of babies birthweight and length of pre gnancy, classified by low birthweight or not") +

xlab("Length of pregnancy (weeks)") + ylab("Babies birthweight (in pounds)")

Warning: Removed 2 rows containing missing values (geom point).

Distribution of babies birthweight and length of pregnancy, classified by low birth

plot implies that all the babies delivered after a longer length of pregnancy, h
ave a higher birthweight

all the babies delivered after a short length of pregnancy, have a low birthweig
ht

all babies with low birthweights can be classified as low bwt babies

g19 = ggplot(births, aes(x=len preg, y= bwt, col=is premie))

g19 + geom_point() + ggtitle("Distribution of babies birthweight and length of pre
gnancy,

classifying babies as premature or not") + xlab("Length of pregnancy (weeks)") +
ylab("Babies birthweight (in pounds)")

Warning: Removed 2 rows containing missing values (geom point).

Distribution of babies birthweight and length of pregnancy, classifying babies as premature or not

plot implies that all the babies delivered after a longer length of pregnancy, h ave a higher birthweight

and are fullterm babies

all babies with shorter length of pregnancy and low birthweights are premature b
abies

Statistical Tests

T-test :

t.test(births\$bwt~births\$is_premie)

```
##
##
   Welch Two Sample t-test
##
## data: births$bwt by births$is premie
## t = -14.216, df = 167.51, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
  -2.654709 -2.007267
## sample estimates:
##
     mean in group premie mean in group fullterm
##
                 5.128421
                                        7.459409
# conclusions from the t test:
# p-value less than significance level=0.05
# and there is a significant difference in means of both groups : birthweight for
premature and fullterm babies
table(births$is_premie)
                          # n1=152, n2=846
##
##
     premie fullterm
        152
##
                 846
pwr.t2n.test(n1=152, n2=846, d=0.2, sig.level = .05)
##
        t test power calculation
##
##
                n1 = 152
##
                n2 = 846
##
                 d = 0.2
##
         sig.level = 0.05
##
             power = 0.6210034
##
       alternative = two.sided
##
# small effect size can be detected and the power of the study is 80%
# indicates results being statistically significant
# one-way ANOVA:
summary(aov(births$bwt~births$mom age level))
##
                         Df Sum Sq Mean Sq F value Pr(>F)
## births$mom age level
                          4
                              14.8
                                     3.699
                                              1.629 0.165
```

2.271

995 2259.6

Residuals

```
# null hypothesis is that the mean bwt of baby is same for all groups in mom's age
levels
# the p-value = 0.165, is more than significance level of 0.05
# we don't have enough evidence to reject the null hypothesis
# concluding that there isn't much impact of mother's age level on the babies birt
hweight
# Chisq Test:
chisq.test(table(births$low_bwt,births$is_premie))
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(births$low_bwt, births$is_premie)
## X-squared = 311.57, df = 1, p-value < 2.2e-16</pre>
```

```
# null hypothesis: Both low_bwt and is_premie are independent variables
# the p-value is < 2.2e-16, which is less than the significance level of 0.05
# we have enough evidence to reject the null hypothesis
# and conclude that low_bwt and is_premie are not independent variables</pre>
```

Linear Regression model

```
##
## Call:
## lm(formula = bwt ~ dad age + mom age + maturity + len preg +
##
       is premie + num visits + marital + mom wt gain + low bwt +
##
       sex + smoke + mom_white + mom_age_level, data = births)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -2.4770 -0.6012 -0.0021 0.5494
                                   3.5563
##
## Coefficients: (1 not defined because of singularities)
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -2.6503561
                                   0.7170302 -3.696 0.000234 ***
## dad age
                         0.0080555 0.0077365 1.041 0.298087
## mom age
                         0.0090994 0.0218822
                                                0.416 0.677644
## maturityadvnced
                        -0.0731887 0.4196130 -0.174 0.861581
                         0.1718275 0.0181833 9.450 < 2e-16 ***
## len preg
## is premiefullterm
                         0.0442754 0.1440740 0.307 0.758689
## num visits
                         0.0003972 0.0089395 0.044 0.964572
## maritalunmarried
                        -0.1172818 0.0853089 -1.375 0.169590
## mom wt gain
                         0.0071629 0.0023449
                                                3.055 0.002330 **
## low bwtnotlow
                         2.3881336 0.1431235 16.686 < 2e-16 ***
## sexmale
                         0.3821920 0.0653943 5.844 7.45e-09 ***
## smokesmoker
                        -0.2143158 0.1068650 -2.005 0.045255 *
                         0.2458025 0.0807928 3.042 0.002425 **
## mom whitewhite
## mom age levelearly20s 0.0825564 0.1538582
                                                0.537 0.591714
## mom age levellate20s
                         0.0187617 0.2309455
                                                0.081 0.935273
## mom age levelearly30s -0.0630545 0.3222707 -0.196 0.844929
## mom age level35+
                                           NA
                                                   NA
                                NA
                                                            NA
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.9136 on 784 degrees of freedom
     (200 observations deleted due to missingness)
## Multiple R-squared: 0.6055, Adjusted R-squared:
                                                  0.598
## F-statistic: 80.24 on 15 and 784 DF, p-value: < 2.2e-16
```

```
# there are variables that have high correlation with other variables, which might
cause multicollinearity
# variables highly correlated (from correlation test above) are :
# maturity with mom_age, is_premie iwth len_preg, low_bwt with bwt and mom_age_lev
els with mom_age
# removing variables that are derived values from other variables: maturity, is_pr
emie, low_bwt, mom_age_levels

# final linear model derived and is statitically significant is as follows:
final_fit_lm <- lm(bwt ~ len_preg + marital + mom_wt_gain + sex + smoke + mom_whit
e, data = births)
summary(final_fit_lm)</pre>
```

```
##
## Call:
## lm(formula = bwt ~ len_preg + marital + mom_wt_gain + sex + smoke +
     mom white, data = births)
##
##
## Residuals:
##
     Min
            10 Median
                        30
                              Max
## -3.7613 -0.6582 -0.0263 0.6872 4.2173
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               -5.977147 0.462464 -12.925 < 2e-16 ***
## len preg
                0.329042 0.011961 27.509 < 2e-16 ***
## mom wt gain
               ## sexmale
               ## smokesmoker
## mom whitewhite
               0.212131 0.081324 2.608 0.009236 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.071 on 963 degrees of freedom
    (30 observations deleted due to missingness)
## Multiple R-squared: 0.4869, Adjusted R-squared: 0.4837
## F-statistic: 152.3 on 6 and 963 DF, p-value: < 2.2e-16
```

```
# all variables have p-value less than 0.05 and their adjusted R squared=0.48
# indicating a good fit model, that will explain 48% variation of bwt (response variable) from the total explainable variation,
# when all other variables are held constant
plot(final_fit_lm, 1)
```


Im(bwt ~ len_preg + marital + mom_wt_gain + sex + smoke + mom_white)

the residual values are randomly distributed below & above the fitted line. # the fit line is close to the regression line

Brief Interpretation of the model

Birthweight of the baby is dependent on the variables : length of pregnancy(len_preg), marital status of the mother,

Mother's weight gain before delivery, sex of the baby, mother's smoking status & mother being white or not.

linear model: final model's fitted equation:

bwt = 0.329042 * len_preg - 0.265136 * marital + 0.009258 * mom_wt_gain + 0.378
405 * sex - 0.388843 * smoke + 0.212131 * mom white - 5.977147

For every 1 week increase in the length of pregnancy, the birthweight of the ba by increases by 0.329042 pounds on average, when all other variables in the model are held constant

For married mothers as compared with unmarried mother's, the birthweight of the baby decreases by 0.265136 pounds on average, when all other variables in the mode 1 are held constant

Logistic Regression model

```
fit_glm_all <- glm(low_bwt ~ ., family = binomial(), data = births)</pre>
```

Warning: glm.fit: algorithm did not converge

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
summary(fit_glm_all)
```

```
##
## Call:
## glm(formula = low bwt ~ ., family = binomial(), data = births)
##
## Deviance Residuals:
##
         Min
                      1Q
                             Median
                                             30
                                                        Max
                           2.100e-08
## -2.778e-04
               2.100e-08
                                      2.100e-08
                                                  2.431e-04
##
## Coefficients: (1 not defined because of singularities)
##
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        -9.264e+02 1.375e+05 -0.007
                                                        0.995
## dad age
                        -3.359e+00 9.207e+02 -0.004
                                                        0.997
                        -3.718e+00 2.668e+03 -0.001
                                                        0.999
## mom age
## maturityadvnced
                        1.473e+02 6.438e+04 0.002
                                                        0.998
                        3.282e+00 2.690e+03 0.001
## len preg
                                                        0.999
## is premiefullterm
                       -2.840e+01 1.373e+04 -0.002
                                                       0.998
## num_visits
                        -1.576e+00 1.079e+03 -0.001
                                                       0.999
## maritalunmarried
                       -1.859e+01 6.864e+03 -0.003
                                                        0.998
## mom wt gain
                        -5.582e-02 2.668e+02 0.000
                                                       1.000
## bwt
                        1.758e+02 1.299e+04 0.014
                                                        0.989
                        5.662e+00 5.273e+03 0.001
## sexmale
                                                        0.999
                       -6.726e+00 6.180e+03 -0.001
## smokesmoker
                                                        0.999
## mom whitewhite -1.349e+01 7.363e+03 -0.002
                                                       0.999
## mom age levelearly20s 3.415e+01 1.116e+04 0.003
                                                        0.998
## mom age levellate20s
                         9.080e+01 2.875e+04 0.003
                                                        0.997
## mom age levelearly30s 1.363e+02 4.292e+04
                                               0.003
                                                        0.997
## mom_age_level35+
                               NA
                                          NA
                                                  NA
                                                           NA
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 4.9325e+02 on 799
                                        degrees of freedom
## Residual deviance: 4.5427e-07 on 784
                                        degrees of freedom
    (200 observations deleted due to missingness)
##
## AIC: 32
##
## Number of Fisher Scoring iterations: 25
```

summary shows that there are variables in related to the model indicating a perfect linear separation # the fitted coefficients are not statistically significant to explain the model. $pR2(\text{fit_glm_all})$

```
## 11h 11hNull G2 McFadden r2ML

## -2.271326e-07 -3.486010e+02 6.972020e+02 1.0000000e+00 5.816774e-01

## r2CU

## 1.000000e+00
```

```
# Both McFadden & r2CU values are 1, indicating a model with perfect fit
# which is not possible

# there are variables that have high correlation with other variables, which might
cause multicollinearity
# variables highly correlated (from correlation test above) are:
# maturity with mom_age, is_premie iwth len_preg, low_bwt with bwt and mom_age_lev
els with mom_age
# removing variables that are derived values from other variables: maturity, is_pr
emie, low_bwt, mom_age_levels
# we arrive at our final interpretable logistic regression model:

fit_final_glm <- glm(low_bwt ~ len_preg + marital,family = binomial(), data = birt
hs)
summary(fit_final_glm)</pre>
```

```
##
## Call:
## glm(formula = low bwt ~ len preg + marital, family = binomial(),
       data = births)
##
##
## Deviance Residuals:
##
      Min
                10
                    Median
                                  30
                                          Max
## -3.4403
            0.1479 0.2132 0.3012
                                      1.9834
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
                                2.24101 -10.548 <2e-16 ***
## (Intercept)
                   -23.63838
## len preg
                     0.70286
                                0.06131 11.464
                                                  <2e-16 ***
## maritalunmarried -0.66923
                                0.27075 - 2.472
                                                  0.0134 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 692.56 on 997 degrees of freedom
## Residual deviance: 396.08 on 995 degrees of freedom
     (2 observations deleted due to missingness)
## AIC: 402.08
##
## Number of Fisher Scoring iterations: 6
```

```
# both variables have a p-value lesss than significance level 0.05,
# the difference between the null and residual deviance is good
# the degrees of freedom for hte model is very high for our sample size of 1000 ob
servations
# AIC = 402.08, hence indicating that the model is statistically significant
pR2(fit_final_glm)
```

```
## 11h 11hNull G2 McFadden r2ML

## -198.0396885 -348.6009843 301.1225915 0.4319015 0.2604594

## r2CU

## 0.5181017
```

```
# the McFadden value = 0.4319, also indicates a good fit

g20 = ggplot(births, aes(x=len_preg, fill=low_bwt))
g20 + geom_density(alpha=0.5) + ggtitle("Distribution of length of pregnancy and b
aby having low birthweight or not")+
   xlab ("Length of pregnancy (weeks)") + ylab("Density")
```

Warning: Removed 2 rows containing non-finite values (stat_density).

Distribution of length of pregnancy and baby having low birthweight or not

plot shows that higher the length of pregancy, more is the chance that the baby will not have a low birthweight

g21 = ggplot(births, aes(x=len_preg, fill=marital))
g21 + geom_bar() + ggtitle("Distribution of length of pregnancy and mother's marit
al status") +
 xlab("Length of pregnancy (weeks)") + ylab("Count")

Warning: Removed 2 rows containing non-finite values (stat count).

plot reveals that married mother's tend to have longer length of pregnancy as compared to unmarried mothers.

Brief Interpretation

- # the probability of the baby having low birthweight or not is highly dependent on the variables:
- # length of pregnancy and nother's marital status
- # fitted equation of the logistic model:
- # low bwt = 0.70286 * len preg 0.66923 * marital 23.63838
- # for len preq:
- # For every 1 week increase in length of pregnancy, the log odds of having baby with low birthweight
- # increases by 0.091152 on average, when all other variables in the model are held constant
- # In the fit final glm: exp(coef(len preg) = 2.019516
- # For every 1 week increase in length of pregnancy, the odds of having baby with 1 ow birthweight is
- # multiplied by 0.091152 on average, when all other variables in the model are hel
 d constant
- # for marital:
- # For married as compared with unmarried mothers, the log odds of having baby with low birthweight
- # decreases by 0.66923 on average, when all other variables in the model are held constant
- # In the fit_final_glm: exp(coef(marital) = 0.512104
- # For married as compared with unmarried mothers, the odds of having baby with low birthweight
- # is multiplied by 0.512104 on average, when all other variables in the model are held constant