Notas de Álgebra Lineal 1

Facultad de Ciencias, UNAM

Frank Patrick Murphy Hernandez

Índice general

Introducción	5
Capítulo 1. Espacios Vectoriales 1. Campos 2. Espacios Vectoriales 3. Subespacios Vectoriales 4. Sumas Directas Espacios Cocientes Ejercicios	7 7 9 11 13 13
Capítulo 2. Dimensión 1. Independencia Lineal 2. Subconjuntos Generadores 3. Bases 4. Dimensión Matroides Ejercicios	15 15 16 17 18 19
Capítulo 3. Transformaciones Lineales 1. Transformaciones Lineales 2. Matrices 3. Sistemas de Ecuaciones Ejercicios	21 21 23 25 26
Capítulo 4. Producto Interior 1.	27 27
Capítulo 5. Determinantes 1.	29 29
Anexos 2. Retículas 3. Lema de Zorn	31 31 33
Ribliografía	35

Introducción

"El álgebra es la oferta hecha por el diablo al matemático. El diablo dijo: Te daré esta potente máquina, que responderá cualquier cuestión. Todo lo que necesitas es darme tu alma. Deja la geometría y te daré esta maravillosa máquina."

Michael Atiyah.

"Cuando un matemático dice que algo es *fácil de ver* o *trivial*, significa que espera que saques un lápiz y una hoja de papel, y dediques un poco de tiempo (probablemente considerable) revisandolo por ti mismo."

Jonathan Golan [1]

El objetivo de estas notas es darle un seguimiento puntual a mis cursos de álgebra lineal 1 de la Facultad de Ciencias de la UNAM. Sin embargo, me permito recomendar ampliamente dos libros, el primero es el libro de Dr. Hugo Rincón [3] que esta disponible en la Prensa de Ciencias. A mi parecer es un libro que cualquier persona que lleve álgebra lineal en la facultad debería tener, es un libro muy bien escrito y captura perfectamente la esencia algebraica del álgebra lineal. El segundo es el libro de Golan [1], que trae muchos comentarios históricos y muchos ejercicios. Se que el libro de Friedberg [4] es muy popular en los cursos de lineal y lo incluyo en la bibliografía, pero es un libro muy escaso en la biblioteca, y aunque se puede conseguir en las librerías tiende a ser excesivamente caro. Por último, no hay que olvidar el libro de Lang [2] en el cual se basa el temario oficial.

Capítulo 1

Espacios Vectoriales

"Las matemáticas son la más bella y la más poderosa creación del espíritu humano"

Stefan Banach.

1. Campos

DEFINICIÓN 1.1 (Campo). Sea K un conjunto no vacío con dos funciones $+: K \times K \longrightarrow K$ $y *: K \times K \longrightarrow K$. Notacionalmente escribimos $\lambda + \mu := +(\lambda, \mu)$ $y \lambda \mu := *(\lambda, \mu)$ para $\lambda, \mu \in K$. Si estas dos funciones cumplen:

- *C1)* Para $\lambda, \mu, \nu \in K$, $\lambda + (\mu + \nu) = (\lambda + \mu) + \nu$.
- *C2)* Existe $\phi \in K$ tal que para cualquier $\lambda \in K$, $\lambda + \phi = \lambda = \phi + \lambda$.
- *C3*) Para todo $\lambda \in K$, existe $\mu \in K$ tal que $\lambda + \mu = \phi = \mu + \lambda$.
- *C4*) Para $\lambda, \mu \in K$, $\lambda + \mu = \mu + \lambda$.
- *C5*) Para $\lambda, \mu, \nu \in K$, $\lambda(\mu \nu) = (\lambda \mu) \nu$.
- *C6)* Existe $\eta \in K$ tal que para cualquier $\lambda \in K$, $\lambda \eta = \lambda = \eta \lambda$.
- C7) Para todo $\lambda \in K$ con $\lambda \neq \emptyset$, existe $\mu \in K$ tal que $\lambda \mu = \eta = \mu \lambda$.
- *C8)* Para $\lambda, \mu \in K$, $\lambda \mu = \mu \lambda$.
- *C9*) Para $\lambda, \mu, \nu \in K$, $\lambda(\mu + \nu) = \lambda \mu + \lambda \nu$.

Entonces llamamos a K un campo.

Los frenceses llaman a los campos cuerpos(corps), por lo que es comúen encontrar que los españoles también los llamen así.

EJEMPLO 1.1. Los ejemplos más conocidos de campos son:

- Los reales \mathbb{R}
- Los racionales ℚ
- Los complejos \mathbb{C}
- Los enteros módulo p, \mathbb{Z}_p , con p un primo.

PROPOSICIÓN 1.1. Sea K un campo, entonces:

- 1. El neutro aditivo es único.
- 2. El neutro multiplicativo es único.

DEMOSTRACIÓN. □

NOTACIÓN 1.1. Por la proposición anterior, al neutro aditivo le podemos asignar el nombre de cero, 0, y al neutro multiplicativo el de uno, 1.

PROPOSICIÓN 1.2. Sea K un campo, entonces:

- 1. Los inversos aditivos son únicos.
- 2. Los inversos multiplicativos son únicos.

Demostración.

NOTACIÓN 1.2. Por la proposición anterior, si $\lambda \in K$, a su inverso aditivo lo denotaremos por $-\lambda$ y a su inverso multiplicativo por λ^{-1} .

PROPOSICIÓN 1.3. Sean K un campo $y \lambda, \mu, \nu \in K$, entonces:

- 1. $\lambda 0 = 0$
- 2. $(-1)\lambda = -\lambda$
- 3. $\lambda(-\mu) = -(\lambda\mu) = (-\lambda)\mu$
- 4. $-(-\lambda) = \lambda$
- 5. $(-\lambda)(-\mu) = \lambda \mu$
- 6. $-(\lambda + \mu) = (-\lambda) + (-\mu)$
- 7. $\lambda(\mu \nu) = \lambda \mu \lambda \nu$
- 8. Si $\lambda \neq 0$ entonces $(\lambda^{-1})^{-1} = \lambda$
- 9. Si $\lambda, \mu \neq 0$ entonces $(\lambda \mu)^{-1} = \lambda^{-1} \mu^{-1}$
- 10. Si $\lambda + \nu = \mu + \nu$ entonces $\lambda = \mu$
- 11. Si $c \neq 0$ y $\lambda v = \mu v$, entonces $\lambda = \mu$
- 12. Si $\lambda \mu = 0$ entonces $\lambda = 0$ ó $\mu = 0$

DEMOSTRACIÓN. □

DEFINICIÓN 1.2. Sea K un campo y L un subconjunto de K. Decimos que L es un subcampo de K si cumple:

- SC1) $1 \in L$.
- *SC2*) *Para* $\lambda, \mu \in L$, $\lambda \mu \in L$.

SC3) *Para* $\lambda, \mu \in L, \lambda \mu^{-1} \in L$.

EJEMPLO 1.2. Definimos $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$. Entonces $\mathbb{Q}(\sqrt{2})$ es un subcampo de \mathbb{R} .

PROPOSICIÓN 1.4. Sea K un campo y L un subcampo de K. Entonces L es un campo.

2. Espacios Vectoriales

DEFINICIÓN 2.1. Sea V un conjunto con dos funciones $+: V \times V \longrightarrow V$ $y *: K \times V \longrightarrow V$. Notacionalmente escribimos v + w := +(v, w) y $\lambda v := *(\lambda, v)$ para $\lambda, \mu \in K$. Si estas dos funciones cumplen:

- *V1) Para todo* $u, v, w \in V$, u + (v + w) = (u + v) + w
- *V2)* Existe $z \in V$ tal que para todo $v \in V$, v + z = v = z + v
- *V3*) Para todo $v \in V$ existe $v' \in V$ tal que v + v' = z = v' + v
- *V4*) Para todo $v, w \in V$, v + w = w + v
- *V5*) Para todo $v \in V$ y $\lambda, \mu \in K$, $(\lambda \mu)v = \lambda(\mu v)$
- *V6*) Para todo $v \in V$, 1v = v
- *V7) Para todo* $\lambda \in K$, $v, w \in V$, $\lambda(v+w) = \lambda v + \lambda w$
- *V8) Para todo* $\lambda, \mu \in K$, $v \in V$, $(\lambda + \mu)v = \lambda v + \mu v$

Entonces llamamos a V un K-espacio vectorial. A un K-espacio vectorial le llamaremos simplemente un K-espacio. A la segunda operación la llamamos el producto escalar.

EJEMPLO 2.1. Para K un campo y n y m dos naturales, tenemos los siguientes K-espacios:

 \blacksquare K^n es un K-espacio con suma

$$(x_1,...,x_n)+(y_1,...,y_n)=(x_1+y_n,...,x_n+y_n)$$

y producto escalar

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

$$para(x_1,...,x_n),(y_1,...,y_n) \in K^n \ y \ \lambda \in K.$$

■ Las matrices de n por m con coeficientes en K, $M_{n \times m}$, son un K-espacio con suma

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
, para $i = 1, ..., n, j = 1, ..., m$

y producto escalar

$$(\lambda A)_{ij} = \lambda A_{ij}$$
, para $i = 1, \dots, n, j = 1, \dots, m$

para $A, B \in M_{n \times m}(K)$ y $\lambda \in K$. En el caso de que n = m, pondremos $M_n(K)$.

• Los polinomios en una indeterminada x, K[x], son un K-espacio con suma

$$(p+q)(x) = \sum_{i} = 0^{r} (a_{i} + b_{i})x^{i}$$

y con producto escalar

$$\lambda p(x) = \sum_{i=0}^{r} \lambda a_i x^i$$

para $p(x) = \sum_{i=0}^{r} a_i x^i, q(x) = \sum_{i=0}^{r} b_i x^i \in K[x] \ y \ \lambda \in K.$

DEFINICIÓN 2.2. Sea S un conjunto, definimos K^S como el conjunto de todas las funciones $f: S \to K$.

PROPOSICIÓN 2.1. Sea S un conjunto, entonces K^S es un K-espacio.

Demostración.

PROPOSICIÓN 2.2. Sea V un K-espacio, entonces el neutro aditivo es único.

Demostración.

NOTACIÓN 2.1. Al neutro aditivo de un K-espacio se le denotará por 0.

PROPOSICIÓN 2.3. Sean V un K-espacio, $v, w \in V$ y $\lambda \in K$, entonces:

- 1. $-\lambda 0 = 0$
- 2. 0v = 0
- 3. (-1)v = -v
- 4. $(-\lambda)v = -(\lambda v) = \lambda(-v)$
- 5. -(-v) = v
- 6. $\lambda v = (-\lambda)(-v)$
- 7. -(v+w) = -v w
- 8. $\lambda(v-w) = \lambda v \lambda w$
- 9. Si $\lambda v = 0$ entonces $\lambda = 0$ ó v = 0

3. Subespacios Vectoriales

DEFINICIÓN 3.1. *Sea V un K-espacio, sí W* \subseteq *V y cumple:*

- 1. $0 \in W$
- 2. Para todo $v, w \in W$, $v + w \in W$
- 3. Para todo $v \in W$ y $\lambda \in K$, $\lambda v \in W$

entonces a W lo llamaremos un subespacio de V

Notación 3.1. Si W es un subespacio de V, entonces denotaremos este hecho como $W \leq V$

EJEMPLO 3.1. Para K un campo, y n y m dos naturales, tenemos los siguientes K-espacios:

- Para todo K-espacio V, tiene dos subespacios canónicos V y 0.
- Si $m \le n$, ponemos $K_m^n = \{x \in K^n \mid x_m = 0\}$. Entonces $K_m^n \le K^n$.
- Para $A \in M_n(K)$, definimos la traza de A, $Tr(A) = \sum_{i=1}^{n} Definimos W_n = \{A \in M_n(K) \mid Tr(A) = 0\}$, entonces $W_n \leq M_n(K)$.
- Ponemos $P_n(K)$ como $\{p(x) \in K[x] \mid \partial(p) \le n\}$. Entonces $P_n(K) \le K[x]$.

DEFINICIÓN 3.2. Sea S un conjunto, entonces K(S) es el conjunto de todas las funciones $f: S \to K$ tales que sop(f) es finito, donde $sop(f) = \{s \in S | f(s) \neq 0\}$.

PROPOSICIÓN 3.1. Sea S un conjunto, entonces $K(S) \leq K^S$.

Notación 3.2. Sea V un K-espacio, el conjunto de todos los subespacios de V, se denotará por $\mathcal{L}(V)$.

PROPOSICIÓN 3.2. Sea V un K-espacio, entonces $\mathcal{L}(V)$ es una retícula completa.

PROPOSICIÓN 3.3. Sea V un K-espacio, entonces $\mathcal{L}(V)$ es una retícula modular.

DEMOSTRACIÓN. Sea U_1, U_2, U_3 subespacios de V si $U_1 \subseteq U_3$, entonces $U_1 + (U_2 \cap U_3) = (U_1 + U_2) \cap U_3$

Definición 3.3. Sean U,W subespacios de V. Definimos $U+W:=\{n+w\in V|u\in U,w\in W\}$

PROPOSICIÓN 3.4. Sean U, W subespacios de V. Entonces $U \setminus W = U + W$

DEMOSTRACIÓN. □

DEFINICIÓN 3.4. Sea $W_{ii \in I}$ una familia de subespacios de V. Definimos

$$\sum_{i \in I} W_i = \{ w_1 + \dots + w_n \in V | w_i \in W_{k_i}, k_i \in I, n \in N \}$$

PROPOSICIÓN 3.5. Sean $\{W_i\}_{i\in I}$ una familia de subespacios de V. Entonces $\bigvee_{i\in I}W_i=\sum_{i\in I}W_i$

Demostración.

DEFINICIÓN 3.5. Sea $S \subseteq V$ con V un K-espacio. El subespacio generado por S en V, $\langle S \rangle$, es el mínimo subespacio que contiene de V que contiene a S, es decir:

- 1. $\langle S \rangle \leq V$
- 2. $S \subseteq \langle S \rangle$
- 3. Si $W \le V$ y $S \subseteq W$ entonces $\langle S \rangle \subseteq W$

Notamos que por la asimetría de la contención el subespacio generado es único.

PROPOSICIÓN 3.6. Sean S, T subconjuntos de V un K-espacio, entonces:

- 1. $\langle \langle S \rangle \rangle = \langle S \rangle$.
- 2. $\langle S \rangle = S \text{ si y s\'olo si } S \leq V.$
- 3. Si $S \subseteq T$ entonces $\langle S \rangle \subseteq \langle T \rangle$.
- *4.* $\langle S \cap T \rangle \subseteq \langle S \rangle \cap \langle T \rangle$.
- 5. $\langle S \cup T \rangle = \langle S \rangle + \langle T \rangle$.

Demostración.

PROPOSICIÓN 3.7. Sea S subconjunto de V un K-espacio. Entonces

$$\langle S \rangle = \bigcap \{ W \in \mathcal{L}(V) \mid S \subseteq W \}$$

DEMOSTRACIÓN.

DEFINICIÓN 3.6. Sean $w, v_1, ..., v_n \in V$ con V un K-espacio. Se dice que w es combinación lineal de $v_1, ..., v_n$ si existen $\lambda_1, ..., \lambda_n \in K$ tales que $w = \lambda_1 v_1 + ... + \lambda_n v_n$

EJERCICIOS 13

DEFINICIÓN 3.7. Sea S subconjunto de V un K-espacio y $w \in V$. Se dice que w es combinación lineal de S, si existen $v_1,...,v_n \in S$ tales que w es combinación lineal de $v_1,...,v_n$.

PROPOSICIÓN 3.8. Sea S subconjunto de V un K-espacio, entonces $\langle S \rangle$ es el conjunto de todas las combinaciones lineales de S.

Demostración.

4. Sumas Directas

DEFINICIÓN 4.1. Sean U,W subespacios de V. Se dice que V es suma directa de U y W, si U+W=V y $U\cap W=0$.

NOTACIÓN 4.1. Si V es suma directa de U y W. Entonces escribiremos $V = U \oplus W$.

PROPOSICIÓN 4.1. Sean U,W subespacios de V, entonces V es suma directa de U y W si y sólo si para todo $v \in V$ existen únicos $u \in U$ y $w \in W$ tales que v = u + w

Demostración.

Proposición 4.2. Sea W un subespacio de V. Entonces existe U subespacio de V tal que $U \oplus W = V$.

Demostración.

Espacios Cocientes

Ejercicios

Capítulo 2

Dimensión

"La esencia de las matemáticas yace en su libertad"

Georg Cantor.

1. Independencia Lineal

DEFINICIÓN 1.1. Sean $v_1, \ldots, v_n \in V$. Decimos que v_1, \ldots, v_n son linealmente dependientes, si existen $\lambda_1, \ldots, \lambda_n \in K$ con algún $\lambda_j \neq 0$ tales que $\sum_{i=1}^n \lambda_i v_i = 0$.

Por las propiedades de espacios vectoriales, observamos que si todos los vectores son distintos de cero y existe una λ_i distinta de cero, entonces deben de existir al menos dos.

DEFINICIÓN 1.2. Sean $S \subseteq V$. Decimos que S es linealmente dependiente si existen $v_1, \ldots, v_n \in S$ tales que v_1, \ldots, v_n son linealmente dependientes.

Tenemos que si $0 \in S$, entonces S es linealmente dependiente. En general, tenemos que V siempre es linealmente dependiente.

PROPOSICIÓN 1.1. Sean $S, T \subseteq V$ con $S \subseteq T$. Si S es linealmente dependiente, entonces T es linealmente dependiente.

Demostración.

DEFINICIÓN 1.3. Sean $v_1, ..., v_n \in V$. Decimos que $v_1, ..., v_n$ son linealmente independientes, si $v_1, ..., v_n$ no son linealmente dependientes. Esto es, si existen $\lambda_1, ..., \lambda_n \in K$ tales que $\sum_{i=1}^n \lambda_i v_i = 0$, entonces $\lambda_i = 0$ para toda i = 1, ..., n.

DEFINICIÓN 1.4. Sean $S \subseteq V$. Decimos que S es linealmente independiente si para cualesquiera $v_1, \ldots, v_n \in S$ tales que v_1, \ldots, v_n son linealmente independientes.

EJEMPLO 1.1. El conjunto vacío Ø es linealmente dependiente.

PROPOSICIÓN 1.2. Sean $S, T \subseteq V$ con $S \subseteq T$. Si T es linealmente independiente, entonces S es linealmente independiente.

2. DIMENSIÓN

Demostración.

DEFINICIÓN 1.5. Para i = 1, ..., n, definimos:

$$e_i(j) = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

Es decir, e_i es un elemento de K^n , que en su entrada i-ésima tiene 1 y 0 en las demas entradas. Para el caso de n = 2, tenemos que $e_1 = (1,0)$ y $e_2 = (0,1)$. Para el caso n = 3, tenemos $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, y $e_3 = (0,0,1)$.

PROPOSICIÓN 1.3. Los elementos $e_1, e_2 \in K^2$ son linealmente independientes.

DEMOSTRACIÓN. □

PROPOSICIÓN 1.4. Los elementos $e_1, \dots, e_n \in K^n$ son linealmente independientes.

Demostración.

DEFINICIÓN 1.6. Sea S un conjunto $y \in S$. Definimos la función $e_s : S \longrightarrow K$ como:

$$e_s(t) = \begin{cases} 1, & \text{si } s = t \\ 0, & \text{si } s \neq t \end{cases}$$

para $t \in S$.

16

Notamos que la definción e_s generaliza la de e_i . Notamos que si $S = \{1, ..., n\}$, las dos definiciones coinciden. Ahora, al nueva definción no le impone ninguna concidicón de fnitud a S.

PROPOSICIÓN 1.5. Sea S un conjunto. Entonces $\{e_s\}_{s\in S}$ es linealmente independiente.

Demostración.

2. Subconjuntos Generadores

DEFINICIÓN 2.1. Sea $S \subseteq V$. Decimos que S es un generador de V si $\langle S \rangle = V$.

En general, tenemos que V siempre es un generador.

Proposición 2.1.

PROPOSICIÓN 2.2. Sean $S,T\subseteq V$ con $S\subseteq T$. Si S es un subconjunto generador, entonces T es un subconjunto generador.

3. BASES 17

PROPOSICIÓN 2.3. Los elementos $\{e_1, \ldots, e_n\}$ es un subconjunto generador de K^n .
Demostración.
PROPOSICIÓN 2.4. Sea S un conjunto. Entonces $\{e_s\}_{s\in S}$ es un subconjunto generador de K^S .
Demostración.
PROPOSICIÓN 2.5 (Lema Técnico). Sea S un subconjunto linealmente independiente de V y $v \in V \setminus S$. Entonces $S \cup \{v\}$ es linelamente independiente si y sólo si $v \notin \langle S \rangle$.
3. Bases
DEFINICIÓN 3.1. Ponemos $\mathcal{G}(V)$ como la familia de subconjuntos generadores de V y $\mathcal{J}(V)$ como la familia de subconjuntos linealmente independientes de V . Ambos son subconjuntos parcialmente ordenados de V .
PROPOSICIÓN 3.1. Sea S subconjunto de V. Son equivalentes:
1. S es linealmente independiente y es un subconjunto generador.
2. S es linealmente independiente y S es máximo en $\mathcal{I}(S)$.
3. S es un subconjunto generador y S es mínimo en $\mathcal{G}(S)$.
4. Para todo $v \in V$, existen únicos $v_1, \ldots, v_n \in S$ y $\lambda_1, \ldots, \lambda_n \in K^*$ tales que $v = \sum_{i=1}^n \lambda_i v_i$.
Demostración.
Vemos que la última equivalencia nos dice que el conjunto sea generador nos permite expresar a todo elemento como combinación lineal y que sea linealmente independiente nos dice que los escalares son únicos.
DEFINICIÓN 3.2. Sea S un subconjunto de V. Si S cumple cualquiera de las condiciones
de la proposición anterior, decimos que S es una base de V.
Proposición 3.2. Todo espacio vectorial tiene una base.
Demostración.
PROPOSICIÓN 3.3. Sea S un subconjunto finito de V . Si S es un subconjunto generador, entonces existe S_0 subconjunto de S tal que S_0 es base de V .
DEMOSTRACIÓN.

4. Dimensión

PROPOSICIÓN 4.1 (Teorema del Reemplazo). Sea V un espacio con una base β que tenga n elementos, y $S = \{w_1, ..., w_m\}$ un subconjunto de V linealmente independiente con $m \le n$. Entonces existe un subconjunto S_0 de β con n-m elementos tal que $S \cup S_0$ es un subconunto generador de V.

Demostración.	
PROPOSICIÓN 4.2. Sea V un espacio con una base β que subconjunto de V linealmente independiente con n elementos. Es	
Demostración.	
PROPOSICIÓN 4.3. Sea V un espacio con una base β que subconjunto de V . Si S tiene más de n elementos, entonces S es l	
Demostración.	

Por contra puesta se sigue que, si S es linealmente independiente entonces S tiene a lo más n elementos.

Proposición 4.4. Sea V un espacio con una base β que tenga n elementos. Entonces cualquier base de V tiene n-elementos.

Demostración.

DEFINICIÓN 4.1. Sea V un K-espacio con una base finita β . Llamamos dimensión de V a la cardinalidad de β . A la dimensión de V la denotamos por dim(V). Notamos que por la proposición anterior la dimensión de V está bien definida pues no depende de la base que elijamos. En este caso decimos que V es de dimensión finita. A los espacios que no tienen una base finita los llamamos de dimensión infinita. En caso de que sea necesario hacer notar el campo se escribiremos $dim_K(V)$.

Notemos que $dim_{\mathbb{R}}(\mathbb{C}) = 2$ y $dim_{\mathbb{C}}(\mathbb{C}) = 1$.

PROPOSICIÓN 4.5. Sea V un espacio de dimensión n, y S un subconjunto de V. Entonces son equivalentes:

Proposición 4.6.

S es base.

Proposición 4.7. Sean V_1 y V_2 subespacios V. Entonces $dim(V_1+V_2)=dim(V_1)+dim(V_1)$ $dim(V_2) - dim(V_1 \cap V_2).$

DEMOSTRACIÓN.

DEMOSTRACIÓN.

PROPOSICIÓN 4.8. Sea W un subespacio V. Entonces dim(V) = dim(W) + dim(V/W). Más aún, $dim(W) \le dim(V)$ y $dim(V/W) \le dim(V)$.

DEMOSTRACIÓN.

Matroides

Ejercicios

EJERCICIO 4.1. Los elementos $e_1, e_2, e_3 \in K^3$ son linealmente independientes.

Capítulo 3

Transformaciones Lineales

"Las matemáticas puras son, en su forma, la poesía de las ideas lógicas."

Albert Einstein.

1. Transformaciones Lineales

DEFINICIÓN 1.1. Sea V y W K-espacios, y $T:V\longrightarrow W$ una función. Decimos que T es una transformación lineal, si:

- $T(v+w) = T(v) + T(w) para v, w \in V.$
- $T(\lambda v) = \lambda T(v) para v \in V y \lambda \in K$.

Observamos que de la segunda propiedad tenemos que T(0) = 0, puesto que

$$T(0) = T(0v) = 0$$
 $T(v) = 0$

.

PROPOSICIÓN 1.1. Sea V y W K-espacios, y $T: V \longrightarrow W$ una función. Entonces T es una transformación lineal si y sólo si $T(v + \lambda w) = T(v) + \lambda T(w)$ para toda $v, w \in V$ y $\lambda \in K$.

DEFINICIÓN 1.2. Sea V y W K-espacios, y $T: V \longrightarrow W$ una transformación lineal. Definimos el nucleo de T, nuc(T) como $\{v \in V \mid T(v) = 0\}$

PROPOSICIÓN 1.2. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Entonces nuc(T) es un subespacio de V

PROPOSICIÓN 1.3. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Entonces im(T) es un subespacio de W

PROPOSICIÓN 1.4. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Entonces son equivalentes:

- 1. T es inyectiva.
- 2. nuc(T) = 0.
- 3. T manda conjuntos linealmente independientes en conjuntos linealmente independientes, esto es, $T(\mathcal{I}(V)) \subseteq \mathcal{I}(W)$).
- 4. Si $S_1, S_2 : U \longrightarrow V$ son transformaciones lineales tales que $TS_1 = TS_2$, entonces $S_1 = S_2$.

Demostración.

DEFINICIÓN 1.3. Sea V y W K-espacios, y T: V \longrightarrow W una transformación lineal. Definimos el conucleo de T, con(T) como W/im(T).

PROPOSICIÓN 1.5. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Entonces son equivalentes:

- 1. T es suprayectiva.
- 2. con(T) = 0.
- 3. T manda subconuntos generadores en subconuntos generadores, esto es, $T(\mathcal{G}(V)) \subseteq \mathcal{G}(W)$).
- 4. Si $S_1, S_2 : W \longrightarrow U$ son transformaciones lineales tales que $S_1T = S_2T$, entonces $S_1 = S_2$.

Demostración.

PROPOSICIÓN 1.6. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Entonces son equivalentes:

- 1. T es biyectiva.
- 2. T manda bases en bases.
- 3. T manda alguna base en una base.

Demostración.

DEFINICIÓN 1.4. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Si T es invertible, decimos que T es un isomorfismo.

2. MATRICES 23

PROPOSICIÓN 1.7. Sea V y W K-espacios, y $T:V\longrightarrow W$ una transformación lineal. Si T es invertible, entonces T^{-1} es una tranformación lineal.

Demostración.	

DEFINICIÓN 1.5. Sea V y W K-espacios. Decimos V y W son isomorfos si existe $T:V\longrightarrow W$ un isomorfismo. Este hecho lo denotamos por $V\cong W$.

PROPOSICIÓN 1.8 (Propiedad Universal de las Bases). Sea V un K-espacio, $y \beta \subseteq V$. Entonces β es una base de V si y sólo si para toda función $f: \beta \longrightarrow V$ con W un K-espacio existe una única transformación lineal $T: V \longrightarrow W$ tal que $T \mid_{\beta} = f$.

PROPOSICIÓN 1.9. Sea V un K-espacio. Entonces $V \cong K(S)$ para algún conjunto S.

DEFINICIÓN 1.6. Sea V y W K-espacios de dimensión finita, y $T: V \longrightarrow W$ una transformación lineal. Llamamos nulidad de T a la dimensión del núcleo de T y la denotamos por nul(T) = dim(nuc(T)). Llamamos rango de T a la dimensión de la imagen de T y la denotamos por ran(T) = dim(im(T)).

PROPOSICIÓN 1.10. Sea V y W K-espacios, y $T: V \longrightarrow W$ una transformación lineal. Entonces dim(V) = nul(T) + ran(T).

PROPOSICIÓN 1.11. Sea V y W K-espacios de dimensión finita, y $T:V\longrightarrow W$ una transformación lineal. Si V y W tienen dimensión n, entonces son equivalentes:

- 1. T es inyectiva.
- 2. T es suprayectiva.
- 3. T es biyectiva.

DEMOSTRACIÓN. □

2. Matrices

A partir de este momento, y en el resto del cápitulo los espacios son de dimensión finita.

DEFINICIÓN 2.1. Sea V un K-espacio. Una base ordenada β de V, es un vector $\beta = (v_1, \dots, v_n) \in V^n$ tal que $\{v_1, \dots, v_n\}$ es una base para V. En un abuso de notación se escribiremos $\{v_1, \dots, v_n\}$ en vez de (v_1, \dots, v_n) .

EJEMPLO 2.1. Para K^2 , tenemos dos bases ordenadas "canónicas" $\beta_1 = \{e_1, e_2\}$ y $\beta_2 = \{e_2, e_1\}$.

DEFINICIÓN 2.2. Sea $\beta = \{v_1, \dots, v_n\}$ una base ordena de V, $y \in V$. Entonces existen únicos $\lambda_1, \dots, \lambda_n \in K$ tales que $\sum_{i=0}^n \lambda_i v_i = v$. Definimos al vector de coordenadas de v con respecto a β , $[v]_{\beta} \in M_{n \times 1}(K)$, como $[v]_i^{\beta} = \lambda_i$ para $i = 1, \dots, n$.

DEFINICIÓN 2.3. Sea $A \in M_{m \times n}(K)$, i = 1, ..., n, $y \ j = 1, ..., m$. Definimos ⁱA como la i-ésima columna de A, $y \ a \ _i$ A como el j-ésimo renglón de A.

Es bien sabido que para $A, B \in M_{m \times n}(K)$, A = B si y sólo si $A_{ij} = B_{ij}$ para toda i = 1, ..., n, y j = 1, ..., m. De forma análoga, A = B si y sólo si $A_i = B$ para toda i = 1, ..., n. También tenemos que, A = B si y sólo si $A_i = B$ para toda $A_i = B$ si y sólo si $A_i = B$ para toda $A_i = B$ para toda $A_i = B$ si y sólo si $A_i = B$ para toda $A_i = B$ para toda $A_i = B$ si y sólo si $A_i = B$ para toda $A_i = B$ para toda para toda $A_i = B$ para toda $A_i = B$ para toda para t

DEFINICIÓN 2.4. Sea V y W K-espacios, $\beta = \{v_1, \ldots, v_n\}$ base ordenada de V, $\gamma = \{w_1, \ldots, w_m\}$ base ordenada de W, y $T: V \longrightarrow W$ una transformación lineal. Definimos la matriz asociada a la transformación T con respecto a las bases β y γ , $[T]_{\beta}^{\gamma} \in M_{m \times n}(K)$, como $[T]_{\beta}^{\gamma} = [T(v_i)]^{\gamma}$. En caso de que V = W y $\beta = \gamma$, ponemos $[T]^{\beta} = [T]_{\beta}^{\beta}$.

PROPOSICIÓN 2.1. Sea V y W K-espacios, $\beta = \{v_1, ..., v_n\}$ base ordenada de V, $\gamma = \{w_1, ..., w_m\}$ base ordenada de W, y $T: V \longrightarrow W$ una transformación lineal. Para toda $v \in V$, tenemos que $[T]^{\gamma}_{\beta}[v]^{\beta} = [T(v)]^{\gamma}$.

DEMOSTRACIÓN.		
---------------	--	--

DEFINICIÓN 2.5. Denotamos por I_n a la matriz identidad en $M_n(K)$.

PROPOSICIÓN 2.2. Sea V y W K-espacios, β base ordenada de V. Entonces $[1_V]^{\beta} = I_n$

PROPOSICIÓN 2.3. Sea V y W K-espacios, β base ordenada de V, γ base ordenada de W, y $T_1, T_2 : V \longrightarrow W$ una transformaciones lineales. Entonces $[T_1 + T_2]^{\gamma}_{\beta} = [T_1]^{\gamma}_{\beta} + [T_2]^{\gamma}_{\beta}$.

PROPOSICIÓN 2.4. Sea V_1, V_2 y V_3 K-espacios, T_i : $V_i \longrightarrow V_{i+1}$ con i = 1, 2 y β_i base ordenada de V_i con i = 1, 2, 3. Entonces $[T_2T_1]_{\beta_1}^{\beta_3} = [T_2]_{\beta_2}^{\beta_3} [T_1]_{\beta_1}^{\beta_2}$

DEFINICIÓN 2.6. Sea $A \in M_n(K)$. Decimos que A es invertible, si existe $B \in M_n(K)$ tal que $AB = I_n = BA$. En tal caso llamamos a B la inversa de A y lo denotamos por A^{-1} . Al subconjunto de $M_n(K)$ de matrices invertibles lo denotamos por $GL_n(K)$.

PROPOSICIÓN 2.5. Sea V y W K-espacios, β base ordenada de V, γ base ordenada de W, y $T:V\longrightarrow W$ una transformación lineal. Entonces T es invertible si y sólo si $[T]^{\gamma}_{\beta}$ es invertible. En cuyo caso tenemos que $[T^{-1}]^{\beta}_{\gamma}=([T]^{\gamma}_{\beta})^{-1}$

PROPOSICIÓN 2.6. Sea V un K-espacio, β y γ bases ordenadas de V, base ordenada de W, y T: $V \longrightarrow V$ una transformación lineal. Entonces $[T]^{\gamma} = [I_n]^{\gamma}_{\beta}[T]^{\beta}[I_n]^{\beta}_{\gamma}$.

DEFINICIÓN 2.7. Sean $A, B \in M_n(K)$. Decimo A y B son similares, $A \sim B$, si existe $U \in GL_n(K)$ tal que $A = UBU^{-1}$.

Proposición 2.7. La relación \sim es una relación de equivalencia.

PROPOSICIÓN 2.8. Sea V un K-espacio, β y γ bases ordenadas de V, base ordenada de W, y $T_1, T_2 : V \longrightarrow V$ una transformaciones lineales. Entonces $T_1 = T_2$ si y sólo si $[T_1]^{\beta} \sim [T_2]^{\gamma}$.

3. Sistemas de Ecuaciones

DEFINICIÓN 3.1. Sea $A \in M_{n \times m}(K)$. Definimos $L_A : K^n \longrightarrow K^n$ como $L_A(x) = Ax^t$.

PROPOSICIÓN 3.1. Sean $A \in M_n(A)$ y β la base (ordenada) canónica de K^n . Entonces $[L_A]^{\beta} = A$.

Regresando a la definición tenemos que para una matriz A

Ejercicios

EJERCICIO 3.1. Sean V_1, \ldots, V_n K-espacios de dimensión finita y una secesión de transformaciones lineales

$$0 \xrightarrow{T_0} V_1 \xrightarrow{T_1} \dots \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} 0$$

tales que $im(T_i) = nuc(T_{i+1})$ para i = 0, ..., n-1. Entonces $\sum_{i=1}^{n} (-1)^n dim(V_i) = 0$.

Capítulo 4

Producto Interior

"No se pueden aplicar las matemáticas mientras las palabras oscurezcan la realidad.."

Hermann Weyl.

1.

Capítulo 5

Determinantes

"Las matemáticas no permiten hipocresía ni vagueza."

Stendahl.

1.

Anexos

2. Retículas

DEFINICIÓN 2.1. Sea P un conjunto $y \le una$ relación sobre P. Decimos que P con \le es un conjunto parcialmente ordenado.

- 1. Para toda $x \in P$, x < x
- 2. Para todo $x, y \in P$, si $x \le y$ e $y \le x$, entonces x = y
- 3. Para todo $x, y, z \in P$, si $x \le y$ e $y \le z$, entonces $x \le z$

EJEMPLO 2.1. Sea X un conjunto. Entonces el conjunto potencia $\mathscr{P}(X)$ es un conjunto parcialmente ordenado con la contención \subseteq .

DEFINICIÓN 2.2. Sea L un conjunto parcialmente ordenado. Decimos que L tiene un elemento máximo x. Si para todo $y \in L$, $y \le x$. Por la asimetría el elemento maximo es único y lo denotamos por $\bar{1}$.

En el caso de $\mathcal{P}(X)$ su elemento máximo es X.

DEFINICIÓN 2.3. Sea L un conjunto parcialmente ordenado. Decimos que L tiene un elemento máximo x. Si para todo $y \in L$, $x \le y$. Por la asimetría el elemento maximo es único y lo denotamos por \bar{o} .

En el caso de $\mathcal{P}(X)$ su elemento mínimo es \emptyset .

DEFINICIÓN 2.4. Sea L un conjunto parcialmente ordenado, $S \subseteq L$ y $a \in L$. Decimos que a es una cota superiorde S, si $x \le a$ para toda $x \in S$.

En caso de S sea vacío, cualquier elemento de L es cota superior.

DEFINICIÓN 2.5. Sea L un conjunto parcialmente ordenado, $S \subseteq L$ y $a \in L$. Decimos que a es el supremo de S, si a es la menor cota superior, es decir, si a cumple:

- *Para todo* $x \in S$, $x \le a$.
- $Si\ b \in L\ es\ tal\ que\ para\ todo\ x \in S\ tenemos\ que\ x \le b$, entonces $a \le b$

32 ANEXOS

NOTACIÓN 2.1. Sean L una retícula, $S \subseteq L$ y $x, y \in L$. Denotamos por $\bigvee S$ al supremo de S. En caso de que $S = \{x, y\}$, ponemos $x \vee y$ para denotar al supremo.

En caso de *S* sea vacío, $\bigvee S = \bar{0}$.

DEFINICIÓN 2.6. Sea L un conjunto parcialmente ordenado, $S \subseteq L$ y $a \in L$. Decimos que a es una cota inferior de S, si $a \le x$ para toda $x \in S$.

En caso de S sea vacío, cualquier elemento de L es cota inferior.

DEFINICIÓN 2.7. Sea L un conjunto parcialmente ordenado, $S \subseteq L$ y $a \in L$. Decimos que a es el ínfimo de S, si a es la menor cota inferior, es decir, si a cumple:

- *Para todo* $x \in S$, $a \le x$.
- Si $b \in L$ es tal que para todo $x \in S$ tenemos que $b \le x$, entonces $b \le a$

NOTACIÓN 2.2. Sean L una retícula, $S \subseteq L$ y $x, y \in L$. Denotamos por $\bigwedge S$ al ínfimo de S. En caso de que $S = \{x, y\}$, ponemos $x \wedge y$ para denotar al ínfimo.

En caso de *S* sea vacío, $\bigwedge S = \overline{1}$.

DEFINICIÓN 2.8. Sea L un conjunto parcialmente ordenado. Decimos que L es una retícula, si para todo $x,y \in L$ $x \land y$ y $x \lor y$ existen.

DEFINICIÓN 2.9. Una retícula L es completa si todo subconjunto S de L, $\bigvee S$ $y \land S$ existen.

Tenemos que $\mathcal{P}(X)$ es una retícula completa.

PROPOSICIÓN 2.1. Sean L una retícula tal que existen todos los infimos. Entonces L es una retícula completa.

DEFINICIÓN 2.10. Una retícula L es modular, si $a \le b$ implica $a \lor (x \land b) = (a \lor x) \land b$ para cualesquiera $a, b, x \in L$.

DEFINICIÓN 2.11. Sean L una retícula, y $x, y \in L$. Decimos que y es un pseudocomplemento de x si:

- $\mathbf{x} \wedge \mathbf{y} = \bar{\mathbf{0}}.$
- Si $z \in L$ es tal que $z \land x = \bar{0}$ y $y \le z$, entonces z = y.

3. Lema de Zorn

Bibliografía

- [1] J.S. Golan. *The Linear Algebra a Beginning Graduate Student Ought to Know*. Texts in the Mathematical Sciences. Springer, 2004.
- [2] Serge Lang. Introduction to linear algebra. Springer Science & Business Media, 2012.
- [3] Hugo Alberto Rincón Mejía. Álgebra lineal. UNAM, Facultad de Ciencias, 2006.
- [4] Lawrence E Spence, Arnold J Insel, and Stephen H Friedberg. Elementary linear algebra. Prentice Hall, 2000.