Lay 5.4 Math 2210Q

Question 1 True/False: Let $T: V \to W$ be a linear transformation. The matrix for T relative to the bases \mathcal{B} and \mathcal{C} for V and W respectively is given by:

$$M = \begin{bmatrix} [T(\vec{b}_1)]_{\mathcal{C}} & [T(\vec{b}_2)]_{\mathcal{C}} & \cdots & [T(\vec{b}_n)]_{\mathcal{C}} \end{bmatrix}$$

where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}.$

Multiple Choice:

- (a) True ✓
- (b) False

Question 2 True/False: Let $T: V \to W$ be a linear transformation. Let $\mathcal B$ and $\mathcal C$ be bases for V and W respectively. Let M be the matrix for T relative to $\mathcal B$ and $\mathcal C$. Then which of the following equations is true?

Multiple Choice:

- (a) $[T(\vec{x})]_{\mathcal{C}} = M[\vec{x}]_{\mathcal{B}} \checkmark$
- (b) $[T(\vec{x})]_{\mathcal{B}} = M[\vec{x}]_{\mathcal{C}}$

Question 3 Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ be bases for the vector spaces V and W respectively. Let $T: V \to W$ be a linear transformation. Given the equations below, find the matrix for T relative to \mathcal{B} and \mathcal{C} .

$$T(\vec{b}_1) = 4\vec{c}_1 + 2\vec{c}_2 \quad T(\vec{b}_2) = -3\vec{c}_2$$

$$M = \begin{bmatrix} 4 & 0 \\ 2 & -3 \end{bmatrix}$$

Question 4 Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ be bases for the vector spaces V and W respectively. Let $T: V \to W$ be a linear transformation. Given the equations below, find the matrix for T relative to \mathcal{B} and \mathcal{C} .

$$T(\vec{b}_1) = -\vec{c}_1 + 2\vec{c}_2 \quad T(\vec{b}_2) = \vec{c}_1 + \vec{c}_2 \quad T(\vec{b}_3) = 5\vec{c}_1$$

1

$$M = \begin{bmatrix} -1 & 1 & 5 \\ 2 & 1 & 0 \end{bmatrix}$$

Lay 5.4 Math 2210Q

Question 5 Let \mathcal{B} be a basis for some vector space V. If the linear transformation $T:V\to V$ sends vectors written with respect to the basis \mathcal{B} to vectors written with respect to the basis \mathcal{B} , then the matrix for T relative to \mathcal{B} (or the \mathcal{B} -matrix for T) satisfies:

$$[T(\vec{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}$$

Multiple Choice:

- (a) True ✓
- (b) False

Question 6 True/False. Suppose $A = PDP^{-1}$ where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for $\mathbf{R}^{\mathbf{n}}$ formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation $\vec{x} \mapsto A\vec{x}$.

Multiple Choice:

- (a) True ✓
- (b) False

Hint: See the diagonal matrix representation theorem on page 291 of Lay.

Question 7 Suppose $A = PDP^{-1}$ where P, D, P^{-1} are given below. Let the linear transformation $T: \mathbf{R^3} \to \mathbf{R^3}$ be defined by $T(\vec{x}) = A\vec{x}$. Which of the following gives a basis \mathcal{B} for $\mathbf{R^3}$ with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$P = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad P^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}$$

2

Multiple Choice:

(a)
$$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 9 \\ 3 \end{bmatrix}$$

Lay 5.4 Math 2210Q

(c)
$$\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix}$ \checkmark

Hint: See the diagonal matrix representation theorem on page 291 of Lay.