German University in Cairo Faculty of Media Engineering and Technology Prof. Dr. Slim Abdennadher Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2016 Practice Assignment 5

Discussion: 5.11.2016 - 10.11.2016

Exercise 5-1

To Be Discussed

Given a list A of floating-point numbers, representing students' GPAs, and a bonus mark as inputs from the user, write a Python algorithm that adds the bonus mark to all students' GPAs.

Exercise 5-2

To Be Discussed

The simplest algorithm to search a list of Numbers N for a given key Key is to test successively each element.

```
N = eval(input("Enter a list of numbers:"))
m = len(N)
Key = eval(input("Enter a key:"))
i = 0
FOUND = False
while i < m and FOUND == False:
    __ if Key == N[i]:
    __ FOUND = True
    __ else:
    __ i = i+1
if FOUND == False:
    __ print("Sorry, key is not in the list")
else:
    __ print("Key found")</pre>
```

If a list is already stored in increasing order, a modified sequential search algorithm can be used that compares aganist each element in turn, stopping if a list element exceeds the target value. Write an algorithm for the modified sequential serach.

Exercise 5-3

Given two lists A and B, write an algorithm that uses looping to store the sum of the corresponding elements of the lists A and B in a new list C.

Exercise 5-4

Dice Role

Write an algorithm that prints a list of n dice six-sided rolls.

Exercise 5-5

Write an algorithm to find the maximum value stored in an (unsorted) list A.

Exercise 5-6 Thousand Numbers

Given a list of non-negative numbers. Write an algorithm to find the number of

- even positive numbers
- odd positive numbers
- Zeros

Additionally, the algorithm should find the sum of

- even positive numbers
- odd positive numbers

Exercise 5-7 Print Repeated

Write an algorithm that given an **ordered** list of integers A prints the elements in the list that are repeated. If some elements occur more than twice, then these elements should be printed only once.

For example, for the list

1 1 1 1 4 6 7 7 8

your algorithm should print

1 7

Exercise 5-8 Reverse List

Write an algorithm that reverses the order of elements of the given list.

Exercise 5-9

Write an algorithm that given a list of integers A moves all even elements in a list of integers to the front of the list and all odd elements to the rear. Hint: you do not have to maintain any order other than all evens appearing before all odds in the list. For example: if the list is of the form [1,4,5,6,2,10] then the algorithm should create a new list of the form [4,6,2,10,5,1] and prints the elements of the resulting list.

Exercise 5-10

Write an algorithm that given a list of integers A and a number x prints the number of occurrences of x in the list. In addition, the algorithm should print the positions where x occurs.

For example, if the list is [1, 2, 4, 1, 3] and x is 1 then the algorithm should print

1 occurs in the following positions: 0, 3

The number of occurences of 1 is 2

If the list is [1, 2, 4, 1, 3] and x is 0 then the algorithm should print

The number of occurences of 0 is 0

Exercise 5-11 String Manipulation - Palindrome

Write an algorithm that determines whether the String the user inputs is a palindrome or not. A palindrome is a piece of text that can be read the same way in either direction (left to right and right to left). Examples of palindromes include words such as racecar and noon.

Exercise 5-12 String Manipulation - Run Length

Given a String containing uppercase characters (A-Z), write an algorithm that compresses repeated 'runs' of the same character by storing the length of that run.

Example:

Output: 12W1B12W3B24W1B14W