Numerical Comparison Summary

Qiyuan Pang

July 6, 2021

According to the preprint, we solve Kx = b by solving

$$\hat{K}^* \hat{K} x = \hat{K}^* b,$$

preconditioned with and without $\hat{G} = (\hat{K}^*\hat{K})^{-1}$. The following quantities are used in the rest of the section to evaluate the performance of the preconditioner:

- N: problem size;
- e_a : the relative error set for the butterfly approximation \hat{K} of K;
- ϵ : the fixed tolerance set in HIF/HQR;
- e_f : forward error of a factorization (HIF/HQR) (e.g., \hat{A} factorizes A, then $e_f = \|\hat{A}x Ax\|/\|Ax\|$);
- e_h : the accuracy of HODLR construction using the peeling algorithm.
- r_h : the maximum rank recorded from the HODLR construction above.
- e_s : the relative error of the approximation $\hat{G}\hat{K}^*$ of K^{-1} , defined as $\|\hat{G}\hat{K}^*b x\|/\|x\|$ where x is a random vector and b = Kx;
- n_i : the number of iterations used in PCG until covergence;
- e: the relative error of the solution returned by PCG.

Among all experiments below, the stopping criteria set for PCG is tolerance 1e - 8. **Examples (1D).** We begin with an example of 1D discrete FIO of the form

$$u(x) = \int_{\mathbb{R}} a(x)e^{2\pi i\Phi(x,\xi)}\hat{f}(\xi)d\xi$$

There are five 1D kernels to test here, as follows:

$$a = 1, \Phi(x, \xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2 + \sin(2\pi x))/8, \tag{1}$$

$$a = 1, \Phi(x, \xi) = x \cdot \xi + c(x)\xi, c(x) = (2 + \sin(2\pi x))/6,$$
(2)

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi-\xi_k)^2}{\sigma^2}}, \sigma = 0.05, \Phi(x,\xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2+\sin(2\pi x))/8,$$
 (3)

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi - \xi_k)^2}{\sigma^2}}, \sigma = 0.1, \Phi(x, \xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2 + \sin(2\pi x))/8, \tag{4}$$

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi - \xi_k)^2}{\sigma^2}}, \sigma = 0.04, \Phi(x, \xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2 + \sin(2\pi x))/7,$$
 (5)

Note that the amplitude function a in (3), (4), and (5) are as the same as that in Example 2 in Lexing's preprint. Here we skip the exact formula of a.

Discretizing x and ξ on [0,1) and [-N/2, N/2) with N points,

$$x_i = (i-1)/N, x_2 = x_1 + 0.1, x_{N-1} = x_N - 0.1, \xi_j = j - 1 - N/2 + Noise(0, 0.9).$$

leads to the discrete system u = Kf.

Table 2 summarizes the results for 1D kernel (1). Table 3 summarizes the results for 1D kernel (2). Table 4 summarizes the results for 1D kernel (3). Table 5 summarizes the results for 1D kernel (4). Table 6 summarizes the results for 1D kernel (5).

Scaling. See Figure 1 for time scaling of the algorithms involved.

N	cond	Kernel 1	Kernel 2	Kernel 3	Kernel 4	Kernel 5
2^{8}	A	1.0660e+02	3.4571e + 02	5.8246e+02	2.6794e + 02	1.6771e + 03
	A^*A	1.1364e+04	1.1952e + 05	3.3926e+05	7.1790e+04	2.8128e + 06
2^{9}	A	1.1372e+02	6.7118e + 02	3.7644e + 02	1.6732e + 02	3.0517e + 03
	A^*A	1.2932e+04	4.5048e + 05	1.4171e + 05	2.7995e+04	9.3131e+06
2^{10}	A	1.0870e + 02	3.9350e + 03	4.4032e+02	1.8616e + 02	3.3981e+03
	A^*A	1.1815e+04	1.5484e + 07	1.9388e + 05	3.4657e + 04	1.1547e + 07
2^{11}	A	1.1999e+02	5.2064e+05	4.3108e+02	1.9745e + 02	5.0709e+03
	A^*A	1.4398e+04	2.7107e + 11	1.8583e + 05	3.8988e+04	2.5714e + 07
2^{12}	A	1.2626e+02	1.3755e + 10	5.5073e + 02	1.9459e + 02	3.4614e+03
	A^*A	1.5943e+04	2.9863e + 17	3.0330e+05	3.7866e + 04	1.1981e+07

Table 1: Condition numbers of all kernels

	$\hat{K} \approx K$	HOD	LR			HIF	יז		HQR				CG	
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	1e-15	2e-09	33	1e-4	8e-06	4e-05	4	8e-14	4e-05	3e-04	5	3e-13	120	3e-07
		2e-09	33	1e-6	9e-08	7e-07	3	8e-14	4e-07	2e-06	3	1e-13	120	3e-07
		2e-10	36	1e-8	1e-09	3e-08	2	1e-13	3e-09	4e-08	2	7e-14	120	3e-07
		1e-13	46	1e-12	1e-13	2e-12	2	7e-14	2e-13	3e-12	2	2e-14	120	3e-07
2^{9}	1e-15	1e-09	38	1e-4	1e-05	1e-04	4	9e-14	7e-05	2e-04	6	3e-12	120	1e-05
		1e-09	38	1e-6	1e-07	1e-06	3	8e-14	6e-07	2e-06	3	1e-13	120	1e-05
		2e-10	42	1e-8	1e-09	2e-08	2	1e-13	6e-09	1e-08	2	8e-14	120	6e-05
		2e-13	52	1e-12	3e-13	2e-12	2	7e-14	4e-13	2e-12	2	1e-13	119	5e-04
2^{10}	1e-15	2e-09	43	1e-4	1e-05	9e-05	4	5e-13	9e-05	2e-04	5	5e-13	103	2e-02
		2e-09	43	1e-6	1e-07	2e-06	3	6e-14	7e-07	2e-06	3	7e-14	103	2e-02
		2e-10	48	1e-8	1e-09	3e-08	2	6e-14	5e-09	2e-08	2	1e-13	102	1e-02
		7e-13	60	1e-12	9e-13	1e-11	2	1e-13	1e-12	1e-11	2	8e-14	95	2e-02
2^{11}	3e-11	2e-09	48	1e-4	2e-05	2e-04	5	6e-14	8e-05	2e-04	5	4e-12	109	1e-02
		2e-09	47	1e-6	2e-07	1e-06	3	2e-14	8e-07	2e-06	3	1e-13	90	2e-02
		2e-10	53	1e-8	2e-09	3e-08	2	2e-13	9e-09	2e-08	2	3e-13	120	3e-03
		3e-12	64	1e-12	3e-12	2e-11	2	3e-14	4e-12	2e-11	2	5e-14	120	8e-03
2^{12}	3e-11	2e-09	52	1e-4	2e-05	2e-04	5	5e-14	9e-05	2e-04	5	9e-13	120	7e-03
		2e-09	53	1e-6	1e-07	2e-06	3	9e-14	9e-07	2e-06	3	9e-14	120	5e-03
		4e-10	58	1e-8	2e-09	3e-08	2	3e-13	9e-09	2e-08	2	1e-13	120	3e-03
		3e-11	64	1e-12	3e-11	6e-10	2	6e-14	3e-11	6e-10	2	1e-13	120	2e-03
2^{13}	3e-11	2e-09	58	1e-4	2e-05	2e-04	5	5e-14	9e-05	2e-04	6	9e-12	118	1e-02
		2e-09	58	1e-6	1e-07	4e-06	3	4e-14	1e-06	3e-06	3	8e-13	120	1e-03
		8e-10	63	1e-8	2e-09	3e-08	2	2e-13	1e-08	2e-08	2	2e-14	97	1e-02
		3e-10	64	1e-12	3e-10	1e-09	2	3e-14	3e-10	1e-09	2	5e-14	120	2e-03
2^{14}	2e-11	2e-09	63	1e-4	3e-05	1e-04	5	5e-14	1e-04	2e-04	6	1e-11	120	3e-03
		3e-09	63	1e-6	1e-07	2e-06	3	3e-14	1e-06	2e-06	3	1e-13	120	5e-03
		3e-09	64	1e-8	4e-09	2e-08	2	4e-13	1e-08	3e-08	2	1e-12	120	3e-03
		1e-09	64	1e-12	1e-09	1e-08	2	1e-13	1e-09	1e-08	2	9e-14	111	2e-03
2^{15}	5e-11	9e-09	64	1e-4	2e-05	1e-04	5	6e-14	9e-05	2e-04	8	9e-12	120	5e-03
		9e-09	64	1e-6	2e-07	3e-06	3	3e-13	1e-06	3e-06	3	2e-13	120	7e-03
		9e-09	64	1e-8	1e-08	8e-08	2	3e-12	1e-08	7e-08	2	3e-12	120	1e-03
2^{16}	6e-11	3e-08	64	1e-4	2e-05	1e-04	5	9e-13	1e-04	6e-04	9	2e-11	120	3e-03
		3e-08	64	1e-6	2e-07	4e-06	3	2e-12	1e-06	3e-06	3	3e-12	120	1e-03
		3e-08	64	1e-8	3e-08	2e-07	3	2e-14	4e-08	2e-07	3	2e-14	120	2e-03

Table 2: Numerical comparison between HIF and HQR. We solve 1D kernel (1) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-14. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 120.

	$\hat{K} \approx K$	HOD	L.R			HII		HQR					e CG	
N				ϵ	0.0		n_i	e	0.0		1	e		$e \cup G$
$\frac{1}{2^8}$	e_a 1e-15	$\frac{e_h}{8e-09}$	r_h 35	1e-4	e_f 1e-05	e_s 3e-04	$\frac{n_i}{4}$	2e-12	e_f 6e-05	e_s 3e-04	$\frac{n_i}{5}$	1e-13	$\frac{n_i}{107}$	4e-02
2	16-10	8e-09	35	1e-4 1e-6	6e-08	5e-04 5e-07	3	2e-12 2e-13	2e-07	2e-06	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2e-13	107	4e-02 4e-02
		6e-10	39	1e-0 1e-8	5e-10	2e-08	$\begin{array}{ c c }\hline 3\\ 2 \end{array}$	3e-13	1e-09	2e-00 2e-08	$\begin{array}{ c c }\hline 3\\ 2\\ \end{array}$	3e-13	107	4e-02 4e-02
		6e-13	48	1e-12	3e-13	1e-11	$\frac{2}{2}$	6e-13	3e-13	1e-11	$\frac{2}{2}$	2e-13	107	4e-02
2^{9}	1e-15	8e-09	42	1e-12	3e-05	2e-04	5	2e-13	1e-04	5e-04	6	3e-13	104	5e-02
	10-10	8e-09	42	1e-6	1e-07	1e-06	$\begin{vmatrix} 3 \end{vmatrix}$	3e-13	3e-07	3e-04	3	4e-13	104	5e-02
		7e-10	46	1e-8	1e-07	9e-08	$\frac{3}{2}$	2e-12	3e-09	7e-08	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1e-12	117	5e-02
		6e-13	59	1e-12	7e-13	2e-11	$\frac{2}{2}$	2e-12 2e-13	7e-13	2e-11	$\frac{2}{2}$	3e-13	119	1e-02
2^{10}	1e-15	8e-09	50	1e-4	4e-05	1e-02	6	5e-11	2e-04	2e-02	5	1e+00	92	5e-02
	10.10	8e-09	50	1e-4	4e-03 4e-07	2e-04	$\begin{vmatrix} 0 \\ 4 \end{vmatrix}$	1e-11	$\frac{2e-04}{4e-07}$	2e-02 2e-05	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8e-11	92	5e-02
		8e-10	55	1e-8	2e-09	9e-07	$\frac{1}{2}$	1e-10	4e-09	5e-07	$\frac{1}{2}$	7e-11	90	4e-02
		1e-11	64	1e-12	1e-11	1e-07	$\frac{2}{2}$	2e-11	1e-11	1e-07	$\frac{2}{2}$	2e-11	111	6e-02
2^{11}	2e-11	1e-08	60	1e-4	9e-05	5e-02	13	2e-07	1e-04	4e-02	1	1e+01	107	5e-02
		1e-08	61	1e-6	7e-07	4e-02	7	9e-06	1e-06	3e-02	6	1e+01	104	5e-02
		2e-09	64	1e-8	5e-09	2e-02	5	2e-06	7e-09	2e-02	10	2e-06	118	4e-02
		2e-09	64	1e-12	2e-09	8e-03	6	7e-07	2e-09	8e-03	6	2e-06	118	4e-02
2^{12}	4e-11	2e-07	64	1e-4	7e-05	5e-02	37	2e+00	2e-04	5e-02	3	3e+01	118	4e-02
		2e-07	64	1e-6	6e-07	4e-02	18	2e-01	1e-06	4e-02	4	1e+00	118	4e-02
		2e-07	64	1e-8	2e-07	3e-02	20	4e-01	2e-07	3e-02	16	1e-01	116	5e-02
		2e-07	64	1e-12	2e-07	5e-02	20	4e-01	2e-07	5e-02	29	4e-01	116	4e-02
2^{13}	3e-11	3e-05	64	1e-4	1e-04	5e-02	118	8e-01	2e-04	5e-02	2	1e+00	117	5e-02
		2e-05	64	1e-6	2e-05	5e-02	83	4e-01	2e-05	5e-02	23	4e-01	120	5e-02
		3e-05	64	1e-8	3e-05	5e-02	98	3e-01	3e-05	5e-02	77	7e-01	120	5e-02
		3e-05	64	1e-12	3e-05	1e-01	119	7e-01	3e-05	1e-01	118	8e-01	119	5e-02
2^{14}	5e-11	2e-02	64	1e-4	1e-02	1e+00	120	3e-01	1e-02	1e+00	16	8e-01	119	5e-02
		2e-02	64	1e-6	2e-02	2e+00	119	2e-01	2e-02	2e+00	120	2e-01	118	5e-02
		2e-02	64	1e-8	2e-02	3e+00	120	2e-01	2e-02	3e+00	117	2e-01	119	6e-02
		1e-02	64	1e-12	1e-02	3e+00	120	3e-01	1e-02	3e+00	120	3e-01	113	6e-02
2^{15}	5e-11	6e-01	64	1e-4	6e-01	3e+01	96	1e+00	6e-01	3e+01	46	1e+00	119	6e-02
		5e-01	64	1e-6	9e+00	3e+01	2	9e-01	4e-01	1e+02	120	1e+00	118	6e-02
		5e-01	64	1e-8	4e-01	2e+01	120	1e+00	4e-01	2e+01	120	1e+00	119	5e-02

Table 3: Numerical comparison between HIF and HQR. We solve 1D kernel (2) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-14. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 120.

	$\hat{K} \approx K$	HOD	\overline{LR}			HIF	יז			HQ	R		Pure CG	
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	1e-09	33	1e-4	5e-06	4e-04	5	6e-13	3e-05	1e-03	7	2e-11	101	1e-01
		1e-09	33	1e-6	6e-08	1e-05	3	5e-13	4e-07	9e-06	3	4e-12	101	1e-01
		1e-10	37	1e-8	3e-10	5e-08	2	5e-13	3e-09	1e-07	2	4e-12	101	1e-01
		1e-13	46	1e-12	1e-13	4e-11	2	5e-13	3e-13	4e-11	2	5e-13	101	1e-01
2^{9}	1e-15	2e-09	37	1e-4	1e-05	2e-03	6	1e-12	5e-05	2e-03	7	6e-11	113	1e-01
		2e-09	37	1e-6	4e-08	5e-06	3	5e-13	5e-07	1e-05	3	1e-12	113	1e-01
		2e-10	40	1e-8	6e-10	1e-07	2	8e-13	6e-09	1e-07	2	5e-12	120	1e-01
		2e-13	53	1e-12	2e-13	7e-11	2	1e-13	5e-13	7e-11	2	8e-13	119	1e-01
2^{10}	1e-15	2e-09	40	1e-4	7e-06	7e-04	5	4e-11	7e-05	1e-03	10	2e-10	120	1e-01
		2e-09	40	1e-6	4e-08	3e-06	3	4e-13	7e-07	1e-05	3	7e-12	120	1e-01
		2e-10	46	1e-8	6e-10	1e-07	2	9e-13	8e-09	1e-07	2	1e-11	120	1e-01
		7e-13	58	1e-12	7e-13	2e-10	2	1e-13	1e-12	2e-10	2	2e-13	120	1e-01
2^{11}	3e-11	2e-09	46	1e-4	2e-05	3e-03	6	4e-11	8e-05	2e-03	13	2e-10	119	1e-01
		2e-09	46	1e-6	9e-08	3e-05	3	2e-11	6e-07	1e-05	3	6e-11	119	1e-01
		2e-10	50	1e-8	6e-10	1e-07	2	3e-12	8e-09	1e-07	2	2e-11	120	1e-01
		2e-12	63	1e-12	2e-12	1e-09	2	8e-13	2e-12	1e-09	2	7e-13	120	1e-01
2^{12}	4e-11	2e-09	51	1e-4	2e-05	2e-03	7	3e-12	8e-05	2e-03	9	1e-10	118	1e-01
		2e-09	51	1e-6	6e-08	2e-05	3	1e-11	9e-07	2e-05	4	4e-13	118	1e-01
		3e-10	57	1e-8	7e-10	2e-07	2	4e-12	1e-08	4e-07	2	3e-11	120	1e-01
		1e-11	64	1e-12	1e-11	5e-09	2	5e-13	1e-11	5e-09	2	4e-13	116	1e-01
2^{13}	4e-11	2e-09	54	1e-4	2e-05	2e-03	7	1e-11	8e-05	3e-03	104	1e-06	120	1e-01
		2e-09	56	1e-6	6e-08	1e-05	3	1e-11	1e-06	2e-05	4	7e-13	120	1e-01
		5e-10	61	1e-8	9e-10	2e-07	2	9e-12	9e-09	2e-07	2	7e-11	120	1e-01
		7e-11	64	1e-12	6e-11	2e-08	2	2e-13	6e-11	2e-08	2	2e-13	120	1e-01
2^{14}	2e-11	2e-09	60	1e-4	3e-05	3e-03	8	2e-11	8e-05	2e-03	10	2e-10	120	1e-01
		2e-09	60	1e-6	5e-08	8e-06	3	4e-12	1e-06	2e-05	4	9e-13	120	1e-01
		6e-10	64	1e-8	1e-09	2e-07	2	1e-11	1e-08	2e-07	2	8e-11	120	1e-01
		4e-10	64	1e-12	5e-10	2e-07	2	3e-12	5e-10	2e-07	2	3e-12	120	1e-01
2^{15}	5e-11	4e-09	64	1e-4	3e-05	3e-03	8	3e-11	9e-05	3e-03	10	2e-10	120	1e-01
		3e-09	64	1e-6	2e-07	2e-05	3	5e-11	1e-06	2e-05	4	9e-13	120	1e-01
		2e-09	64	1e-8	2e-09	1e-06	2	2e-10	1e-08	1e-06	3	4e-13	120	1e-01
2^{16}	4e-11	7e-09	64	1e-4	3e-05	3e-03	8	1e-10	9e-05	2e-03	16	4e-10	120	1e-01
		8e-09	64	1e-6	2e-07	3e-05	3	1e-10	1e-06	2e-05	4	6e-13	120	1e-01
		9e-09	64	1e-8	8e-09	4e-06	3	5e-13	1e-08	4e-06	3	6e-13	120	1e-01

Table 4: Numerical comparison between HIF and HQR. We solve 1D kernel (3) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-14. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 120.

	$\hat{K} \approx K$	HOD	LR			HIF	י		HQR				Pure CG	
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	1e-09	34	1e-4	6e-06	9e-05	4	1e-13	2e-05	3e-04	5	4e-13	111	3e-02
		1e-09	34	1e-6	5e-08	7e-07	3	2e-13	3e-07	2e-06	3	1e-13	111	3e-02
		2e-10	36	1e-8	8e-10	8e-08	2	2e-13	5e-09	1e-08	2	1e-13	111	3e-02
		1e-13	46	1e-12	1e-13	3e-12	2	2e-13	3e-13	3e-12	2	1e-13	111	3e-02
2^{9}	1e-15	2e-09	37	1e-4	4e-06	6e-05	4	2e-13	4e-05	2e-04	5	2e-12	119	2e-02
		2e-09	37	1e-6	6e-08	5e-07	3	1e-13	4e-07	3e-06	3	1e-13	119	2e-02
		1e-10	41	1e-8	5e-10	5e-08	2	3e-14	5e-09	2e-08	2	9e-14	80	6e-02
		2e-13	53	1e-12	2e-13	3e-12	2	6e-14	5e-13	3e-12	2	2e-13	118	2e-02
2^{10}	1e-15	2e-09	43	1e-4	5e-06	1e-04	4	6e-13	6e-05	4e-04	6	8e-13	120	3e-02
		2e-09	43	1e-6	5e-08	8e-07	3	6e-14	6e-07	2e-06	3	7e-14	120	3e-02
		1e-10	46	1e-8	6e-10	6e-08	2	2e-13	6e-09	2e-08	2	3e-13	120	3e-02
		7e-13	59	1e-12	8e-13	1e-11	2	2e-13	1e-12	2e-11	2	2e-13	120	1e-02
2^{11}	3e-11	2e-09	47	1e-4	2e-05	2e-04	5	2e-13	8e-05	3e-04	5	4e-12	120	2e-02
		2e-09	47	1e-6	8e-08	7e-06	3	3e-14	7e-07	2e-06	3	2e-12	120	2e-02
		2e-10	52	1e-8	8e-10	2e-08	2	2e-13	7e-09	3e-08	2	4e-13	120	1e-02
		2e-12	64	1e-12	2e-12	6e-11	2	7e-14	2e-12	6e-11	2	1e-13	120	1e-02
2^{12}	3e-11	2e-09	52	1e-4	2e-05	2e-04	5	5e-14	7e-05	3e-04	5	1e-11	120	1e-02
		2e-09	52	1e-6	6e-08	2e-06	3	1e-13	8e-07	4e-06	3	9e-14	120	1e-02
		3e-10	58	1e-8	1e-09	2e-08	2	4e-13	8e-09	2e-08	2	2e-13	120	1e-02
		1e-11	64	1e-12	1e-11	2e-10	2	8e-14	1e-11	2e-10	2	1e-13	120	1e-02
2^{13}	4e-11	2e-09	57	1e-4	2e-05	1e-04	5	7e-14	7e-05	3e-04	5	1e-11	120	1e-02
		2e-09	58	1e-6	7e-08	2e-06	3	6e-14	8e-07	2e-06	3	1e-13	120	9e-03
		6e-10	62	1e-8	1e-09	2e-08	2	2e-13	9e-09	4e-08	2	3e-13	120	1e-02
		1e-10	64	1e-12	1e-10	2e-09	2	5e-14	1e-10	2e-09	2	6e-14	120	1e-02
2^{14}	2e-11	2e-09	62	1e-4	2e-05	2e-04	5	1e-13	8e-05	3e-04	6	2e-12	120	1e-02
		2e-09	62	1e-6	6e-08	6e-06	3	1e-13	9e-07	3e-06	3	3e-13	120	1e-02
		1e-09	64	1e-8	1e-09	2e-08	2	4e-13	9e-09	3e-08	2	1e-13	120	1e-02
		9e-10	64	1e-12	8e-10	1e-08	2	1e-13	8e-10	1e-08	2	1e-13	120	1e-02
2^{15}	5e-11	4e-09	64	1e-4	2e-05	1e-04	5	6e-13	8e-05	3e-04	6	5e-13	120	7e-03
		5e-09	64	1e-6	2e-07	3e-06	3	6e-13	1e-06	3e-06	3	3e-14	120	9e-03
		4e-09	64	1e-8	4e-09	8e-08	2	4e-12	1e-08	7e-08	2	3e-12	120	1e-02
2^{16}	5e-11	1e-08	64	1e-4	2e-05	3e-04	5	1e-12	8e-05	3e-04	5	6e-12	120	7e-03
		1e-08	64	1e-6	1e-07	6e-06	3	1e-12	1e-06	3e-06	3	2e-14	120	8e-03
		1e-08	64	1e-8	1e-08	2e-07	3	3e-14	2e-08	2e-07	3	3e-14	120	8e-03

Table 5: Numerical comparison between HIF and HQR. We solve 1D kernel (4) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-14. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 120.

	$\hat{K} \approx K$	HOD	\overline{LR}			HI	F			НС	QR		Pur	e CG
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	2e-05	14	1e-3	1e-04	1e-03	3	2e-06	5e-04	2e-02	186	1e-03	193	2e-02
		1e-06	17	1e-4	1e-05	2e-04	3	2e-08	4e-05	2e-04	3	3e-07	193	2e-02
2^{8}	8e-16	3e-09	32	1e-4	4e-06	2e-03	5	1e-10	6e-05	7e-03	12	1e-10	119	1e-01
		3e-09	32	1e-6	6e-08	2e-05	3	9e-12	7e-07	3e-05	4	2e-12	119	1e-01
		2e-10	36	1e-8	5e-10	1e-06	2	2e-11	3e-09	1e-06	3	1e-11	119	1e-01
		1e-13	46	1e-12	3e-13	4e-10	2	6e-12	4e-13	4e-10	2	1e-11	119	1e-01
2^{9}	1e-15	4e-09	37	1e-4	1e-05	6e-03	7	4e-11	1e-04	9e-03	12	6e-10	118	2e-01
		4e-09	37	1e-6	1e-07	4e-05	3	8e-11	7e-07	7e-05	4	5e-12	118	2e-01
		4e-10	41	1e-8	1e-09	1e-06	2	6e-11	7e-09	1e-06	3	3e-12	116	1e-01
		4e-13	54	1e-12	3e-13	7e-10	2	4e-12	5e-13	6e-10	2	2e-12	119	1e-01
2^{10}	1e-15	3e-09	40	1e-4	1e-05	9e-03	9	1e-10	8e-05	1e-02	44	1e-03	118	2e-01
		3e-09	40	1e-6	1e-07	3e-05	3	8e-11	1e-06	1e-04	4	2e-10	118	2e-01
		3e-10	45	1e-8	8e-10	5e-07	2	4e-11	8e-09	9e-07	3	4e-12	115	1e-01
		8e-13	58	1e-12	7e-13	1e-09	2	4e-12	9e-13	1e-09	2	5e-12	117	2e-01
2^{11}	3e-11	3e-09	44	1e-4	3e-05	7e-02	14	2e-10	9e-05	4e-02	5	1e+00	117	2e-01
		3e-09	44	1e-6	2e-07	1e-04	4	1e-11	1e-06	3e-04	5	1e-09	117	2e-01
		3e-10	49	1e-8	8e-10	2e-06	2	2e-10	1e-08	5e-06	3	4e-12	119	2e-01
		2e-12	64	1e-12	2e-12	9e-09	2	4e-12	2e-12	8e-09	2	2e-12	118	2e-01
2^{12}	3e-11	4e-09	49	1e-4	3e-05	4e-02	16	2e-10	1e-04	2e-02	9	2e-01	120	2e-01
		4e-09	47	1e-6	1e-07	4e-04	4	1e-10	1e-06	2e-04	5	2e-10	117	2e-01
		4e-10	55	1e-8	7e-10	1e-06	2	6e-10	1e-08	1e-06	3	1e-11	117	2e-01
10		1e-11	64	1e-12	1e-11	4e-08	2	4e-12	1e-11	4e-08	2	4e-12	120	2e-01
2^{13}	4e-11	4e-09	52	1e-4	4e-05	6e-02	18	7e-10	1e-04	3e-02	5	2e+00	120	2e-01
		4e-09	53	1e-6	8e-08	1e-04	4	1e-10	1e-06	1e-04	5	2e-09	119	2e-01
		5e-10	58	1e-8	1e-09	1e-06	2	3e-10	1e-08	2e-06	3	3e-12	120	2e-01
1.4		4e-11	64	1e-12	4e-11	2e-07	2	9e-12	4e-11	2e-07	2	1e-11	120	2e-01
2^{14}	3e-11	4e-09	59	1e-4	5e-05	1e-01	46	7e-10	1e-04	2e-02	66	2e-01	117	2e-01
		4e-09	59	1e-6	1e-07	9e-05	4	1e-11	1e-06	3e-04	5	3e-10	118	2e-01
		8e-10	63	1e-8	1e-09	3e-06	2	1e-09	1e-08	3e-06	3	4e-12	120	2e-01
1.5		3e-10	64	1e-12	4e-10	2e-06	2	3e-10	4e-10	2e-06	2	3e-10	120	2e-01
2^{15}	5e-11	4e-09	61	1e-4	4e-05	1e-01	116	1e-09	1e-04	3e-02	2	4e+00	120	2e-01
		4e-09	61	1e-6	3e-07	9e-05	4	4e-11	1e-06	2e-04	5	6e-10	118	2e-01
- 10		1e-09	64	1e-8	2e-09	8e-06	3	4e-11	1e-08	8e-06	3	1e-10	120	2e-01
2^{16}	4e-11	5e-09	64	1e-4	5e-05	2e-01	120	5e-03	1e-04	2e-02	18	5e-01	118	2e-01
		6e-09	64	1e-6	3e-07	3e-04	4	7e-10	1e-06	1e-04	5	1e-09	120	2e-01
		3e-09	64	1e-8	4e-09	1e-05	3	9e-11	1e-08	1e-05	3	2e-10	120	2e-01

Table 6: Numerical comparison between HIF and HQR. We solve 1D kernel (5) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-14. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 120.

Figure 1: The upper left, upper right, lower left, and lower right plot the time scaling of HIF/HQR factorization, peeling algorithm, application of HIF/HQR factorization, and backward application of HIF/HQR factorization, respectively.