ALGORITMI GENETICI

Si ispira alla **selezione naturale** e alla **genetica**

`--ALGORITMO-

Serve per risolvere classi di **problemi**

'-- GENETICO-

1. CREAZIONE _ - - - - 2. SELEZIONE - - - 3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

1. CREAZIONE _ - - - - 2. SELEZIONE - - - 3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

Seleziono gli induvidui più adatti a risolvere il problema

1. CREAZIONE _----2. SELEZIONE ----3. RIPRODUZIONE POPOLAZIONE

Genero casualmente una popolazione iniziale

Seleziono gli induvidui più adatti a risolvere il problema

Produco una nuova generazione mediamente più adatta

UN ESEMPIO PRATICO:

RICERCA DEI MASSIMI DI UNA FUNZIONE

UN ESEMPIO PRATICO:

RICERCA DEI MASSIMI DI UNA FUNZIONE

 $f(x) = x^2$ nell'intervallo [0, 31]

Ciò che caratterizza un individuo

- [1] Scelgo un alfabeto [2] Scelgo una dimensione
- [3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

Ciò che caratterizza un individuo

[1] Scelgo un alfabeto

[2] Scelgo una dimensione

[3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

Ciò che caratterizza un individuo

[1] Scelgo un alfabeto

[2] Scelgo una dimensione

[3] Associo il valore

$$V = \{0, 1\}$$

01001

Conversione in binario

GENERAZIONE CASUALE

Ogni gene è il risultato di un lancio di moneta

GENERAZIONE CASUALE

Ogni gene è il risultato di un lancio di moneta

k	Stringa	Valore x
1	01101	13
2	11000	24
3	01000	8
4	10011	19

COME SCELGO GLI INDIVIDUI MIGLIORI?

COME SCELGO GLI INDIVIDUI MIGLIORI?

QUANTO È BUONO UN CERTO DNA?

Definisco la Funzione di fitness

Tanto il fitness è maggiore, tanto il DNA è adatto

Definisco la Funzione di fitness

Tanto il fitness è maggiore, tanto il DNA è adatto

Nel nostro esempio, scelgo come funzione di fitness f(x)