Vysoké Učeni Technické v Brně

Fakulta informačních technologií

Elektronika pre informačne technológie

2020/2021

Semestrálny projekt

Obsah

1. Príklad	3
2. Príklad	Ç
3. Príklad	1.2
4. Príklad	

Zadanie:

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8 [\Omega]$
D	105	85	420	980	330	280	310	710	240	200

$$U_{R6} = ?, I_{R6} = ?$$

Riešenie: metóda postupného zjednodušovania

R4 a R3 sú zapojené paralelne

R2 a R43 sú zapojené sériovo

$$R_{432} = R_{43} + R_2 = 151.45754 + 980 = 1131.4754$$

Úprava na trojholnikový tvar

$$R_A = \frac{R_1 * R_{432}}{R_1 + R_{432} + R_5} = \frac{420 * 1131.4754}{420 + 1131.4754 + 310} = 255.2919 \,\Omega$$

$$R_B = \frac{R_1 * R_5}{R_1 + R_{432} + R_5} = \frac{420 * 310}{420 + 1131.47541 + 310} = 69.94452 \,\Omega$$

$$R_C = \frac{R_{432} * R_5}{R_1 + R_{432} + R_5} = \frac{1131.4754 * 310}{420 + 1131.4754 + 310} = 188.4298 \,\Omega$$

R_B a R₇ a aj R_C a R₆ sú zapojené sériovo

$$R_{B7} = R_B + R_7 = 69.9445 + 240 = 309.9445 \Omega$$

 $R_{C6} = R_C + R_6 = 188.4298 + 710 = 898.4297 \Omega$

RB7 a RC6 sú zapojené paralelne

$$R_{B7C6} = \frac{R_{B7} * R_{C6}}{R_{B7} + R_{C6}} = \frac{309.9445 * 898.4298}{309.9445 + 898.4298} = 230.4446 \Omega$$

 $R_{AB7C6} = R_{B7C6} + R_A = 230.4446 + 255.2919 = 485.7366 \Omega$

$$R_{REKV} = R_{AB7C6} + R_8 = 485.7365 + 200 = 685.7366 \Omega$$

Celkový prúd I:

$$I = \frac{U}{R_{EKV}} = \frac{105 + 85}{685.7366} = 0.2771 A$$

 $U_{R6,}I_{R6}$:

$$U_{RB7C6} = I * R_{B7C6} = 0.27707 * 230.4446 = 63,8502 V$$

$$I_{R6} = \frac{U_{RB7C6}}{R_{C6}} = \frac{63,8502}{898.4298} = 0.0711 A$$

$$U_{R6} = I_{R6} * R_6 = 0.07107 * 710 = 50.4597 V$$

Zadanie:

sk.	U [V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
С	200	70	220	630	240	450	300

$$U_{R3} = ?, I_{R3} = ?$$

Riešenie pomocou Théninovej vety

Výpočet R_{i:}

Skratujeme napäťový zdroj odobratím R3

Obvod postupným zjednodušovaním upravujeme

Výpočet U_{i:}

Pomocou rovnice deliča napätia vypočítame napätie na U_{R1} a U_{R2} :

$$U_{R1} = U * \frac{R_1}{R_1 + R_{45}} = 200 * \frac{70}{70 + 690} = 18.4211 \Omega$$

$$U_{R2} = U * \frac{R_2}{R_2 + R_6} = 200 * \frac{220}{220 + 300} = 84.6154 \Omega$$

Pomocou II. Kirchoffového zákonu dopočítame Ui:

$$U_{R1} + U_i - U_{R3} = 0$$

$$U_i = U_{R3} - U_{R1} = 84.6154 - 18.4211 = 66.1943$$

Dopočítame I_{R3} a U_{R3}:

$$I_{R3} = \frac{U_i}{R_i + R_3} = \frac{66.1943}{190.4757 + 630} = 0.0807 A$$

$$U_{R3} = I_{R3} * R_3 = 0.0800678 * 630 = 50.8271 V$$

Zadanie:

sk.	U [V]	$I_1[A]$	$I_2[A]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
Е	135	0.55	0.65	52	42	52	42	21

$$U_{R2} = ?, I_{R2} = ?$$

Riešenie: metóda uzlových napätí

Prevedieme si odpory na vodivosť.

$$G_1 = \frac{1}{R_1} = \frac{1}{52}S$$
 $G_2 = \frac{1}{R_2} = \frac{1}{42}S$ $G_3 = \frac{1}{R_3} = \frac{1}{52}S$ $G_4 = \frac{1}{R_4} = \frac{1}{42}S$ $G_5 = \frac{1}{R_5} = \frac{1}{21}S$

Napäťový zdroj U prevedieme na prúdový zdroj I₃:

$$I_3 = \frac{U}{R_1} = \frac{135}{52} = 2.5961 A$$

Zostavíme rovnice pre nezávisle uzly:

$$A : -I_3 + G_1 U_A + G_2 U_A + G_3 (U_A - U_B) = 0$$

$$B : -I_1 + G_3 (U_B - U_A) + G_5 (U_B - U_C) = 0$$

$$C : -I_2 + G_4 U_C + G_5 (U_C - U_B) + I_1 = 0$$

Rovnice upravíme:

$$A : U_A(G_1+G_2+G_3)+U_B(-G_3)=I_3$$

$$B : U_A(-G_3)+U_B(+G_3+G_5)+U_C(-G_5)=I_1$$

$$C : U_B(-G_5)+U_C(G_4+G_5)=I_2-I_1$$

Prepíšeme rovnice do maticevého tvaru:

$$\begin{vmatrix} G_1 + G_2 + G_3 & -G_3 & 0 \\ -G_3 & G_3 + G_5 & -G_5 \\ 0 & -G_5 & G_4 + G_5 \end{vmatrix} * \begin{vmatrix} U_A \\ U_B \\ U_C \end{vmatrix} = \begin{vmatrix} I_3 \\ I_1 \\ I_2 - I_1 \end{vmatrix}$$

$$\begin{vmatrix} \frac{17}{273} & -\frac{1}{52} & 0 \\ -\frac{1}{52} & \frac{73}{1092} & -\frac{1}{21} \\ 0 & \frac{1}{21} & \frac{1}{14} \end{vmatrix} * \begin{vmatrix} U_A \\ U_B \\ U_C \end{vmatrix} = \begin{vmatrix} \frac{135}{52} \\ \frac{11}{20} \\ \frac{1}{10} \end{vmatrix}$$

Vypočítame determinanty Sarrusovým pravidlom

$$[D] = \begin{vmatrix} \frac{17}{273} & -\frac{1}{52} & 0\\ -\frac{1}{52} & \frac{73}{1092} & -\frac{1}{21}\\ 0 & \frac{1}{21} & \frac{1}{14} \end{vmatrix} = \frac{(\frac{17}{273} * \frac{73}{1092} * \frac{1}{14}) - ((-\frac{1}{21}) * (\frac{-1}{21}) * \frac{17}{273})}{-(\frac{1}{14}) * (-\frac{1}{52}) * (-\frac{1}{52}) = \frac{6497}{50083488} = 1.2972 * 10^{-4}$$

$$[D_{UA}] = \begin{vmatrix} \frac{135}{52} & -\frac{1}{52} & 0\\ \frac{11}{20} & \frac{73}{1092} & -\frac{1}{21}\\ \frac{1}{10} & \frac{1}{21} & \frac{1}{14} \end{vmatrix} = (\frac{135}{52} * \frac{73}{1092} * \frac{1}{14}) - ((-\frac{1}{21}) * (-\frac{1}{21}) * \frac{135}{52}) - (\frac{1}{14} * (-\frac{1}{52}) * \frac{11}{20}) = \frac{4813}{662480} = 7.3567 * 10^{-4}$$

Pomocou Crammerovho pravidla vypočítame U_{R2} a I_{R2} :

$$U_{A} = U_{R2} = \frac{[D_{UA}]}{[D]} = \frac{7.3567 * 10^{-4}}{1.2972 * 10^{-4}} = 56.7107 V$$

$$I_{R2} = \frac{U_{R2}}{R_{2}} = 1.3502 A$$

Zadanie:

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2 [\Omega]$	$L_1[mH]$	$L_2[mH]$	$C_1 [\mu F]$	C_1 [μ F]	f [Hz]
D	45	50	13	15	180	90	210	75	85

Riešenie: metóda slučkových prúdov

Vyjadríme si impedancie a uhlovú frekvenciu

$$\omega = 2 \pi f = 2 \pi 85$$

$$Z_{L1} = j \omega * L_1 = 96.1327 \ j \Omega$$

$$Z_{C2} = j * -\frac{1}{\omega * C_2} = -24.9655 \Omega$$

$$Z_{L2} = j \omega * L_2 = 48.0664 \ j \Omega$$

$$Z_{C1} = j * -\frac{1}{\omega * C_1} = -8.9162 \Omega$$

Zostavíme si rovnicu pre slúčkové prúdy:

$$\begin{split} I_A \colon & I_A(R_1 + Z_{L2} + Z_{C1}) + I_B(-Z_{C1}) + I_C(Z_{L2}) = -45 \\ I_B \colon & I_A(-Z_{C1}) + I_B(Z_{L1} + Z_{C1} + R_2) + I_C(R_2) = 0 \\ I_C \colon & I_A(Z_{L2}) + I_B(R_2) + I_C(R_2 + Z_{C2} + Z_{L2}) = 50 \end{split}$$

Dosadíme do matice:

$$\begin{pmatrix} R_1 + ZL_2 + Z_{C1} & -Z_{C1} & Z_{L2} \\ -Z_{C1} & Z_{L1} + Z_{C1} + R_2 & R_2 \\ Z_{L2} & R_2 & R2 + Z_{C2} + Z_{L2} \end{pmatrix} * \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -U_1 \\ 0 \\ U_2 \end{pmatrix}$$

Z týchto rovníc pomocou Crameroveho a Sarussoveho pravidla zistíme hodnoty Ia a Ic.

$$I_A = \frac{300274.01993 - 1038236.8235 j}{-67985.22 + 145972.4387 j} = -1.3718 - 1.4182 j A$$

$$I_C = \frac{-345649.9533 + 112479.6468 j}{-67985.22 + 145972.4387 j} = 1.5395 + 1.6509 j A$$

Zistime si napätie na L₂ pomocou Ohmovho zákona:

$$U_{L2} = ZL2*(I_A + I_C) = -11.1878 + 8.0598 j$$

Vyjadríme zo vzorca $[U_{L2}]$ a φ_{L2}

$$[U_{L2}] = \sqrt{Re(u_{L2})^2 + Im(u_{L2})^2} = 13.7886 V$$

$$\varphi L_2 = \arctan \frac{-11.1878}{8.0598} = 2.4215 rad$$

Príklad	Skupina	Výsledky				
1	D	$U_{R6} = 50.4597V$	$I_{R6} = 0.0711$			
2	C	$U_{R3} = 50.8271V$	$I_{R3} = 0.0807A$			
3	Е	$U_{R2} = 56.7107V$	I _{R2} =1.3502A			
4	D	$[U_{L2}] = 13.7886$	$\varphi_{L2} = 2.4215 \text{ rad}$			