

RODATECH Soluciones Eficientes

NEW TECHNOLOGY

Diferenciación – Valor Agregado

MagnoDrive – PMM Top Drive

Diferenciación del Magnodrive

Antes: El Problema: Motores Convencionales de Inducción con Poleas, Correas y

Cajas al Cabezal

Grapa de la Barra Pulida

Transmisión, Correas, Poleas

Cabezal de Rodación

Motor Eléctrico

Stuffing Box Convencional

<u>Después: La Solución:</u> Cabezal con Motor de Imanes Permanentes de Eje Huevo

Grapa de la Barra Pulida

Motor PMM de Eje Hueco

Cabezal de Rotación

Stuffing Box Convencional

CABEZAL CONVENCIONAL WEATHERFORD

CABEZAL MAGNO DRIVE PMM

NEW TECHNOLOGY

RODATECH

CABEZAL MAGNO DRIVE PMM CABEZAL CONVENCIONAL NETZSCH

NEW TECHNOLOGY

RODATECH

Diferenciación de los PMM

Función	Motor PM	Motor de Inducción	Beneficios del Motor PM			
Eficiencia Energética	Alta Promedio		Menor consumo de energía eléctrica			
Eficiencia Sistemática	Alta	Bajo	Eliminación de los dispositivos de reducción de velocidad			
Torque Operacional	Alto	Medio	Gran rango de velocidades con torque constante			
Rango de Velocidad	Alto	Medio	Mayores eficiencias sobre el rango de velocidad			
Ruido	Bajo	Bajo-Medio	Elimina la generación de ruido y mantenimiento por no tener cajas, correas y poleas			
Factor de Potencia	Alto	Bajo	Menores pérdidas en el cableado y el transformador			
Densidad de Potencia	Alto	Bajo	30-40% más flujo magnético y torque			
Temperatura de Operación	Baja	Baja	Incrementa el aislamiento y el ciclo de vida del Motor			
Aislamiento	Alta	Bajo-Medio	VPI (Vacuum Preasure Impregnation), recubrimiento interno y externo para evitar corrosion			
Mantenimiento	Bajo	Medio-Alto	Menos pérdidas en el rotor, generación de calor, menos paras de producción, menor OPEX			
Freno / Control de Backspin	Freno Mecánico o Hidráulico	Freno Electrónico de Resistencias	Mayor seguridad, control y contención completa de <i>Backspin</i> , Menor riesgo físico			

Proposición de Valor del MagnoDrive

Reducción Significativa de OPEX:

- Reducción significativa del consumo de energía de hasta más del 20%
- No require cambios de caja, correas o poleas en todo el rango de velocidades
- Virtualmente se eliminan los mantenimientos del motor y los tiempos Muertos asociados a estos.
- Un único mantenimiento anual de cambio de aceite de rodamientos
- Ciclo de vida de más de 10 años <mark>si</mark>n necesidad de rebobinado y cambio de rodamientos

Incremento de Producción por:

- Reducción de producción diferida por menor tiempo muerto por mantenimientos prevetivos y reactivos
- Si el campo tiene una limitante eléctrica, podemos aumentar la capacidad de producción, manteniendo las limitaciones eléctricas del mismo dados los ahorros energéticos y la altísima eficiencia del MagnoDrive

Eficiencia y Beneficios Ambientales

<u>Proposición de Valor: Eficiencia y Beneficios Ambientales</u>

Motor líder en la industria por su eficiencia de 97.4%

Eficiencia del sistema (de la línea a la sarta de varillas) del 92.9%

Reducidas Emisiones de GEI - 50 a 80 toneladas de CO2 (Alberta)

En generadores de Diesel la reducción de CO2 será muchísimo mayor.

Reducción en los costos de consumo eléctrico:

Ahorros en consumo de energía de hasta más del 20% dependiendo de condiciones y eficiencia de los sistemas convencionales.

Ejemplo:

100 hp equivalen a un factor de trabajo del 85%

Ahorros en electricidad anual dada la mayor eficiencia y el costo de la electricidad

	Cost of Electric Power (\$/kWh)											
Electrical Energy												
Reduction	\$	0.075	\$	0.10	\$	0.15	\$	0.20	\$	0.25	\$	0.30
10%	\$	4,163	\$	5,550	\$	8,325	\$1	1,100	\$1	3,875	\$1	6,650
15%	\$	6,244	\$	8,325	\$:	12,488	\$1	6,650	\$2	20,813	\$2	4,975
20%	\$	8,325	\$	11,100	\$	16,650	\$ 2	2,200	\$ 2	7,750	\$3	3,300

Confiabilidad – Aseguramiento de Calidad Gij

Confiabilidad y Aseguramiento de Calidad

- Productos operando por mas de 9 años en Canada sin intervencion alguna.
- Entre mas extremas las condiciones operativas, mas beneficios se tienen por los bajos costos consumos de energía y los muy pocos mantenimientos.

Your Assurance of Quality

- MagnoDrive developed and manufactured by a dedicated team of rotating equipment engineers and technicians
- ✓ MagnoDrive certified to UL, CSA, ATEX, and IEC Ex standards. Please ask for details.
- ✓ Canadian quality and standards of excellence assured

Seguridad y Mitigación de Riesgos

- Menos piezas en movimiento, menos fallas
- La única parte externa giratoria es la extensión del eje
- Facilita su levantamiento, colocación e instalación
- No hay tensión excéntrica en boca de pozo (Wellhead)
- Frenado electrónico de seguridad a prueba de fallas integrado
- Contención completa en caso de retroceso (backspin) no controlado

Especificaciones Técnicas

Capacidad de los Motores Gen III

Capacidad de los Motores Gen IV

Capacidad de los Motores Gen IV

Capacidad de los Motores Gen IV

Capacidad de Carga Axial - Rodamientos

Nominal Bearing Rating 20,000	40,000	[lb]
-------------------------------	--------	------

General Magnetic Criteria

Goal:

ISO L10h Life: minimum 5 years or 43,800hrs
Life Speed: maximum PMM top drive, 450rpm

Life Axial Load: selected, maximum PMM top drive rating

No. of revolutions: product of rating

Basic rating life, L10h	43,805	43,803	[hr]
Rotational Speed	450	450	[rpm]
GM Axial load rating	19,728	35,579	[lb]
No. of Revolutions	1,183 million	1,183 million	[# of rev]

Timken Ca90 Criteria

Goal:

ISO L10h Life: 3,000hrs Life Speed: 500rpm

Life Axial Load: product of rating

No. of revolutions: selected by 500rpm @ 3,000hr, hence, 90 million revolutions

Basic rating life, L10h	3000	3000	[hr]
Rotational Speed	500	500	[rpm]
Ca90 Axial load rating	42,726	77,055	[lb]
No. of Revolutions	90 million	90 million	[# of rev]

Variadores Certificados

Table 1 - Generation III / 450-1000C-910A-001 / Approved VFD / Filter Combinations

PMM Top Drive	VFD Manufacturer	P/N	Filter Manufacturer	P/N
450 / 1,000	Yaskawa	A1000	MTE	SWAP
	ABB	ACS880	MTE	SWAP
P/N: 450-1000M-	ABB	ACS880	TCI	KMG
910A-001	ABB	ACS880	n/a	n/a
	Schneider	ATV71	Schneider Electric	VW3A5104
	Unico	Series 1xx0	n/a	n/a
450 / 750	Yaskawa	A1000	MTE	SWAP
	ABB	ACS880	MTE	SWAP
P/N: 450-1000M-	ABB	ACS880	TCI	KMG
910A-022	ABB	ACS880	n/a	n/a
	Schneider	ATV71	Schneider Electric	VW3A5104
	Unico	Series 1xx0	n/a	n/a

Variadores Certificados

Tabla 6 - Generación IV - VFD Aprobados / Combinaciones de Filtros

Top Drive PMM	Fabricante VFD	Modelo	Fabricante de Filtro	Modelo	Frecuencia de carga
Modelos 224 & 224Ex P/N: MTA-1401-020	ABB	ACS880	TCI	KMG	Escalar predeterminado más 97.02 ajustado a 2kHz
P/N: MTA-1401-021	ABB	ACS880	n/a	n/a	DTC predeterminado
	Schneider	ATV71*	Schneider	VW3A5104	Max 10kHz
	Schneider	ATV930	Schneider	VW3A5104	Max 8kHz
	Unico	Serie 1xx0	n/a	n/a	Max 6kHz
Modelos 324 & 324Ex P/N: MTA-1201-020	ABB	ACS880	TCI	KMG	Escalar predeterminado más 97.02 ajustado a 2kHz
P/N: MTA-1201-021	ABB	ACS880	n/a	n/a	DTC Predeterminado
	Schneider	ATV930	Schneider	VW3A5104	Max 8kHz
Modelos 344 & 344Ex P/N: MTA-1201-040	ABB	ACS880	TCI	KMG	Escalar predeterminado más 97.02 ajustado a 2kHz
P/N: MTA-1201-041	ABB	ACS880	n/a	n/a	DTC Predeterminado
	Schneider	ATV930	Schneider	VW3A5104	Max 8kHz
Modelos 424 & 424Ex P/N: MTA-1001-020	ABB	ACS880	TCI	KMG	Escalar predeterminado más 97.02 ajustado a 2kHz
P/N: MTA-1001-021	ABB	ACS880	n/a	n/a	DTC Predeterminado
	Schneider	ATV930	Schneider	VW3A5104	Max 8kHz
Modelos 444 & 444Ex P/N: MTA-1001-040	ABB	ACS880	TCI	KMG	Escalar predeterminado más 97.02 ajustado a 2kHz
P/N: MTA-1001-041	ABB	ACS880	n/a	n/a	DTC Predeterminado
	Schneider	ATV930	Schneider	VW3A5104	Max 8kHz
					15

Intervención – Bloqueo Mecánico

Instalación Mecánica

Instalación Mecánica

NEW TECHNOLOGY

Señalización de Sistemas PMM

Antes de Cualquier Intervención

Seguridad – Barreras Mecánicas

Seguridad – Barreras Mecánicas

Grapas con Brazo para mayor seguridad

Bloqueo de RAMs de la BOP

RODATECH

Control de Backspin

Control Electrónico de Frenado

Diagrama de Flujo de Energías en el Control de Backspin

Control de Backspin

Rejilla protectora

Grapa de barra pulida (grapa de potencia)

Anillos para izaje y manipulación de carga

Ventilación forzada

Carcaza del Moto PM – Al Interior están el rotor con imanes permanentes y el estator

Caja de bornes

Mirilla de nivel de aceite

Carcaza del cabezal de rotación, al interior están los rodamientos de carga axial

Booth y Stuffing Box

BOP

NOTA:

La Stuffing Box, el Booth y la BOP no hacen parte del cabezal PMM, son equipos convencionales

Coupling de barra lisa

Rejilla protectora

Barra lisa pasa a través del eje hueco del cabezal PMM

Grapa de barra pulida (grapa de potencia)

Anillos para izaje y manipulación de carga

Extensión del eje hueco del cabezal de rotación – soporte de la grapa de potencia

Ventilación forzada

Carcaza del cabezal PMM

Estator con bobinas enrolladas

Rotor con imanes permanentes

Carcaza del cabezal de rotación, al interior están los rodamientos de carga axial

Caja de bornes certificada

Fase 1

Fase 2

Fase 3

Termistor

Tierra

Booth de la Stuffing
Box

Stuffing Box

BOP

Banco de Pruebas

Cabezal PMM siendo probado

Banco de pruebas

Cabezal PMM que simula la carga axial de la sarta

RODATECH

Representante de General Magnetic en Colombia

David Calle R.

General Manager

M: +57 316 349 0491

dcalle@rodatech.co

Av. CII 80 # 69H – 69 Bogotá, Colombia +57 1 310 1406

www.rodatech.co