INTRODUCTION TO STATISTICS

LECTURE 12

LAST TIME

- Hypothesis testing
- P-values
- Overview of some statistical tests
 - One-sample tests
 - t-test
 - One sample t-test
 - Two-sample tests
 - Two sample t-test
 - Welch's test
 - Pair samples t-test

TODAY

- Wrap-up hypothesis testing
 - Non-parametric tests: an overview
 - Practice

- Two random variables
 - Covariance
 - Correlation

QUICK QUIZ

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

After running a statistical test, you obtain a p-value of 0.001.

What is your conclusion?

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.01$.

After running a statistical test, you obtain a p-value of 0.1.

What is your conclusion?

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

After running a statistical test, you obtain a p-value of 0.001.

What is the probability to incorrectly reject the null hypothesis (Type I error)?

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

After running a statistical test, you obtain a p-value of 0.001.

What is the probability to obtain a value of the test statistic at least as extreme as the one you've got?

You are checking a hypothesis H_0 against a **one-sided** alternative H_1 at the level of significance $\alpha = 0.05$.

After running a statistical test, you obtain a **two-sided** p-value of 0.09.

What is your conclusion?

• Example: one-sample test for population mean μ

$$H_0$$
: $\mu = \mu_0$

• Example: one-sample test for population mean μ

$$H_0$$
: $\mu = \mu_0$

Two-sided alternative:

$$H_1: \mu \neq \mu_0$$

• Example: one-sample test for population mean μ

$$H_0$$
: $\mu = \mu_0$

• Two-sided alternative:

$$H_1: \mu \neq \mu_0$$

One-sided alternatives:

$$H_1: \mu < \mu_0$$

$$H_1: \mu > \mu_0$$

• Example: one-sample test for population mean μ

$$H_0$$
: $\mu = \mu_0$

Two-sided alternative:

$$H_1: \mu \neq \mu_0$$

One-sided alternatives:

$$H_1: \mu < \mu_0$$

$$H_1: \mu > \mu_0$$

Pay attention: the null hypothesis is still just $\mu = \mu_0$.

• Example: one-sample test for population mean μ

$$H_0$$
: $\mu = \mu_0$

Two-sided alternative:

$$H_1: \mu \neq \mu_0$$

One-sided alternatives:

$$H_1: \mu < \mu_0$$

$$H_1: \mu > \mu_0$$

Pay attention: the null hypothesis is still just $\mu = \mu_0$.

Never use a one-sided alternative unless absolutely sure that the opposite of it isn't possible.

- Up till now: **parametric** models
 - Example: mean μ and variance σ^2

- Up till now: parametric models
 - Example: mean μ and variance σ^2
- Non-parametric statistics doesn't rely on data belonging to any parametric family of probability distributions:
 - distribution-free or
 - having a specified distribution but with the distribution's parameters unspecified.

PARAMETRIC HYPOTHESES

NON-PARAMETRIC HYPOTHESES

 Data comes from the normal distribution with specified mean and variance.

 Data comes from the normal distribution with specified mean and unspecified variance.

PARAMETRIC HYPOTHESES

 Data comes from the normal
 Data comes from a normal distribution with specified mean and variance.

distribution with specified mean distributions are identical. and unspecified variance.

NON-PARAMETRIC HYPOTHESES

- distribution form with both mean and variance unspecified.
- Data comes from the normal Two unspecified continuous

An alternative to the two-sample t-test when the distribution of the data cannot be assumed to be normal

• Two independent i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

• Two independent i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

Null hypothesis:

 H_0 : For randomly selected values X and Y from two populations, P(X > Y) = P(X < Y)

• Two independent i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

Null hypothesis:

 H_0 : For randomly selected values X and Y from two populations, P(X > Y) = P(X < Y)

- Alternatives
 - Two-sided: $P(X > Y) \neq P(X < Y)$
 - One-sided: P(X > Y) > P(X < Y), P(X > Y) < P(X < Y)

• Test statistic:

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(X_i, Y_j)$$
where $S(X, Y) = \begin{cases} 1, & Y < X \\ 1/2, & Y = X \\ 0, & Y > X \end{cases}$

• Test statistic:

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(X_i, Y_j)$$

where
$$S(X,Y) = \begin{cases} 1, & Y < X \\ 1/2, & Y = X \\ 0, & Y > X \end{cases}$$

Null distribution:

For small n, tabulated For large n, $(n \ge 30)$ $U \sim normal$

An alternative to the paired t-test when the distribution of the differences cannot be assumed to be normal

• Two paired i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

• Two paired i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

Null hypothesis:

 H_0 : difference between the pairs follows a symmetric distribution around zero

• Two paired i.i.d. sets of data:

$$X_1, X_2, \ldots, X_n$$

$$Y_1, Y_2, ..., Y_m$$

Null hypothesis:

 H_0 : difference between the pairs follows a symmetric distribution around zero

- Alternatives
 - Two-sided: difference between the pairs doesn't follow a symmetric distribution around zero
 - One-sided: distribution is skewed to one particular side

• Test statistic:

• Test statistic:

Compute $|X_i - Y_i|$ and $sgn(X_i - Y_i)$

• Test statistic:

Compute $|X_i - Y_i|$ and $sgn(X_i - Y_i)$

Exclude pairs (X_i, Y_i) where $|X_i - Y_i| = 0$

• Test statistic:

Compute $|X_i - Y_i|$ and $sgn(X_i - Y_i)$

Exclude pairs (X_i, Y_i) where $|X_i - Y_i| = 0$

Rank the remaining pairs from smallest to largest $|X_i - Y_i| \rightarrow R_i$

• Test statistic:

Compute
$$|X_i - Y_i|$$
 and $sgn(X_i - Y_i)$

Exclude pairs (X_i, Y_i) where $|X_i - Y_i| = 0$

Rank the remaining pairs from smallest to largest $|X_i - Y_i| \rightarrow R_i$

$$W = \sum_{i=1}^{n} R_i \operatorname{sgn}(X_i - Y_i)$$

• Test statistic:

Compute
$$|X_i - Y_i|$$
 and $sgn(X_i - Y_i)$

Exclude pairs (X_i, Y_i) where $|X_i - Y_i| = 0$

Rank the remaining pairs from smallest to largest $|X_i - Y_i| \rightarrow R_i$

$$W = \sum_{i=1}^{n} R_i \operatorname{sgn}(X_i - Y_i)$$

- Null distributions:
 - some specific tabulated distribution.

χ^2 -TEST

Independence of two categorical variables based on contingency table

• Motivating example: consider the following contingency table:

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

• Motivating example: consider the following contingency table:

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College			611/1436
No college			825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College	0.365		611/1436
No college			825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college			825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492		825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

 Are education levels and number of marriages (one / many) independent?

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times
College	550, 523.8	61,
No college	681,	144,

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681,	144,

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144,

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

Null hypothesis:

 H_0 : cell probabilities are the product of the marginal ones, the difference, so the difference between them should be small

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

Null hypothesis:

 H_0 : cell probabilities are the product of the marginal ones, the difference, so the difference between them should be small

 H_1 : the difference between observed and expected counts is large (!!! one-sided)

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

• Test statistic: Pearson's chi-square statistic

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \sim \chi^2(df), \qquad df = (n-1)(m-1)$$

where O_i - observed count, and E_i - expected count

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

$$\chi^2 =$$

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

$$\chi^2 = 16.01, df = 1$$

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

$$\chi^2 = 16.01, df = 1$$

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

$$\chi^2 = 16.01, df = 1$$

$$\chi^2_{1-\alpha}(1) = \chi^2_{0.95}(1) = 7.879$$

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

$$\chi^2 = 16.01, df = 1$$

$$\chi_{1-\alpha}^2(1) = \chi_{0.95}^2(1) = 7.879$$

$$16.01 > 7.879 \implies \text{reject } H_0$$

NON-PARAMETRIC TESTS

• Fewer assumptions, wider applicability.

NON-PARAMETRIC TESTS

• Fewer assumptions, wider applicability.

- This comes with the cost: when parametric tests are applicable, non-parametric ones have less power
 - a larger sample size can be required to draw conclusions with the same degree of confidence.

PRACTICE!

Google Classroom -> Lecture 11 -> Two-sample tests

TWO RANDOM VARIABLES

Covariance and correlation

Random variables X and Y are independent if and only if

Random variables X and Y are independent if and only if

• Discrete case:

$$P(X = x, Y = y) = P(X)P(Y)$$

Random variables X and Y are independent if and only if

• Discrete case:

$$P(X = x, Y = y) = P(X)P(Y)$$

Continuous case:

$$p_{xy}(x,y) = p_x(x)p_y(y)$$

If X and Y are independent, then

$$var(aX + bY) = a^2 var(X) + b^2 var(Y)$$

If X and Y are independent, then

$$var(aX + bY) = a^2 var(X) + b^2 var(Y)$$

But what if *X* and *Y* are dependent?

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) - ab \cdot cov(X, Y)$$

• Covariance σ_{XY}^2 is a measure of the joint variability of two random variables X and Y:

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

• Covariance σ_{XY}^2 is a measure of the joint variability of two random variables X and Y:

$$\sigma_{XY}^2 = E[(X - \overline{X})(Y - \overline{Y})] = E(XY) - \overline{X}\overline{Y}$$

Example:

Height and weight of a giraffe have a positive covariance: when one is large, the other also tends to be large.

• Covariance σ_{XY}^2 is a measure of the joint variability of two random variables X and Y:

$$\sigma_{XY}^2 = E[(X - \overline{X})(Y - \overline{Y})] = E(XY) - \overline{X}\overline{Y}$$

$$\sigma_{XX}^2 =$$

• Covariance σ_{XY}^2 is a measure of the joint variability of two random variables X and Y:

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

• Note that covariance of a variable with itself is its variance:

$$\sigma_{XX}^2 = E(X - \bar{X})^2 = E(X^2) - \bar{X}^2 = \sigma_X^2$$

COVARIANCE & INDEPENDENCE

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

COVARIANCE & INDEPENDENCE

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

If X and Y are independent, the covariance

COVARIANCE & INDEPENDENCE

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

If X and Y are independent, the covariance $\sigma_{XY}^2 = 0$.

COVARIANCE & INDEPENDENCE

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

If X and Y are independent, the covariance $\sigma_{XY}^2 = 0$.

Is the opposite true?

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0						
1						
4						
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	
1						
4						
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	
1	0	1/5	0	1/5	0	
4						
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	
1	0	1/5	0	1/5	0	
4	1/5	0	0	0	1/5	
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	1/5
1	0	1/5	0	1/5	0	2/5
4	1/5	0	0	0	1/5	2/5
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	1/5
1	0	1/5	0	1/5	0	2/5
4	1/5	0	0	0	1/5	2/5
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$$\sigma_{XY}^2 = E(XY) - \bar{X}\bar{Y} =$$

$Y \backslash X$	-2	-1	0	1	2	$p(y_j)$
0	0	0	1/5	0	0	1/5
1	0	1/5	0	1/5	0	2/5
4	1/5	0	0	0	1/5	2/5
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	1

$$\sigma_{XY}^2 = E(XY) - \bar{X}\bar{Y} = \frac{1}{5}(0 - 1 + 1 - 2 + 2) - 0 \cdot 2 = 0$$

COVARIANCE & INDEPENDENCE

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

If X and Y are independent, the covariance $\sigma_{XY}^2 = 0$.

The inverse is not true: $\sigma_{XY} = 0$ does not imply that If X and Y are independent.

• Covariance: $\sigma_{XY}^2 = E(XY) - \bar{X}\bar{Y}$

- Covariance: $\sigma_{XY}^2 = E(XY) \bar{X}\bar{Y}$
- What are the measurement units of it?

- Covariance: $\sigma_{XY}^2 = E(XY) \bar{X}\bar{Y}$
- What are the measurement units of it?
 - 'units of X times units of Y'

- Covariance: $\sigma_{XY}^2 = E(XY) \bar{X}\bar{Y}$
- What are the measurement units of it?
 - 'units of X times units of Y'
- Hard to compare covariances.

- Covariance: $\sigma_{XY}^2 = E(XY) \bar{X}\bar{Y}$
- What are the measurement units of it?
 - 'units of X times units of Y'
- Hard to compare covariances.
- Correlation removes scale from covariance:

$$\rho = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y} = \frac{E(X - \overline{X})(Y - \overline{Y})}{\sqrt{E(X - \overline{X})^2 E(Y - \overline{Y})^2}}$$

PROPERTIES OF CORRELATION

$$\rho = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y} = \frac{E(X - \overline{X})(Y - \overline{Y})}{\sqrt{E(X - \overline{X})^2 E(Y - \overline{Y})^2}}$$

PROPERTIES OF CORRELATION

$$\rho = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y} = \frac{E(X - \overline{X})(Y - \overline{Y})}{\sqrt{E(X - \overline{X})^2 E(Y - \overline{Y})^2}}$$

1. Correlation is dimensionless (it's a ratio!)

PROPERTIES OF CORRELATION

$$\rho = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y} = \frac{E(X - \overline{X})(Y - \overline{Y})}{\sqrt{E(X - \overline{X})^2 E(Y - \overline{Y})^2}}$$

1. Correlation is dimensionless (it's a ratio!)

2.
$$-1 \le \rho \le 1$$

WHAT IS CORRELATION

- Degree to which a pair of variables are linearly related.
 - The higher $|\rho|$ is, the greater the degree of linear dependency is.
- Sign:
 - $\rho(X,Y) > 0$ "The larger X is, the larger Y tends to be"
 - $\rho(X,Y) < 0$

"The larger X is, the smaller Y tends to be"

WHAT IS CORRELATION

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

Data sources: U.S. Office of Management and Budget and Centers for Disease Control & Prevention

WHAT IS CORRELATION NOT

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

Data sources: U.S. Office of Management and Budget and Centers for Disease Control & Prevention

tylervigen.com

WATCH THE VIDEO

https://youtu.be/6RzDMEW5omc

SPURIOUS CORRELATIONS

More:

http://www.tylervigen.com/spurious-correlations

WHAT IS CORRELATION NOT

