Permit Number 7103

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissid lb/hr	on Rates TPY
A	15,000 cfm Dust Collector Stack (Cutoff and Power Pac)	PM/PM ₁₀	1.30	5.70
В	8,000 cfm Sintamatic Dust Collector Stack (Cutoff)	PM/PM ₁₀	0.86	3.77
С	4,800 cfm Sintamatic SU80 Dust Collector Stack (Metal Control)	PM/PM ₁₀	0.42	1.81
AJ	8,000 cfm Sintamatic Dust Collector Stack (Cutoff)	PM/PM ₁₀	0.86	3.77
AAE	3,200 cfm Torit Dust Collector Stack (Knockout and CaseBlast)	PM/PM ₁₀	0.01	0.04
AAD	1,000 cfm Torit Dust Collector Stack (Grit Reclaim)	PM/PM ₁₀	<0.01	0.01

Permit Number 7103 Page 2

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

K	Flash Fire Dewax Furnace and Afterburner	PM/PM ₁₀ VOC NO _x CO SO ₂	0.12 0.03 0.96 0.47 <0.01	0.53 0.14 4.18 2.08 0.01
L1	Dewax Furnace and Afterburner	PM/PM_{10} VOC NO_x CO SO_2	0.18 0.05 1.43 0.71 <0.01	0.80 0.21 6.27 3.12 0.02
L2	Cooling Tunnel	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01
U	Casters No. 1	PM/PM ₁₀	<0.01	<0.01
V	Casters No. 2	PM/PM ₁₀	<0.01	<0.01
W	Casters No. 3	PM/PM ₁₀	<0.01	<0.01
AT	Casters No. 4	PM/PM ₁₀	<0.01	<0.01
AV	Casters No. 5	PM/PM ₁₀	<0.01	<0.01
AM1	BC3 Dewax Furnace and Afterburner	PM/PM_{10} VOC NO_x CO SO_2	0.17 0.04 1.23 0.54 <0.01	0.73 0.16 5.40 2.38 0.01

Permit Number 7103 Page 3

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AM2	BC3 Cooling Tunnel	$\begin{array}{c} PM/PM_{10} \\ VOC \\ NO_x \\ CO \\ SO_2 \end{array}$	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01
AU	Can Slammer No. 1	PM/PM ₁₀	5.62	2.76
AW	BC3 Can Slammer No. 2	PM/PM ₁₀	5.62	2.76
FUG1	Can Slammer Fugitives (4)	PM/PM ₁₀	1.25	0.61
FUG2	Shell and Penetrant Inspection (4)	IOC-U VOC	0.13 0.38	0.56 0.84
Н	Shell Core Removal No. 1	IOC-U	0.95	2.08
1	Shell Core Removal No. 2	IOC-U	0.95	2.08
J	Shell Core Removal No. 3	IOC-U	0.95	2.08
AG	Shell Softening No. 4	IOC-U	0.95	2.08
M	Dehumidification No. 1	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.03 0.02 <0.01	<0.01 <0.01 0.11 0.09 <0.01
Ο	Dehumidification No. 3	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.03 0.02 <0.01	<0.01 <0.01 0.11 0.09 <0.01

P	Preheat Molds No. 2	PM/PM_{10} VOC NO_x CO SO_2	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.52 <0.01
Q	Preheat Molds No. 3	PM/PM_{10} VOC NO_x CO SO_2	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.52 <0.01
R	Preheat Molds No. 4	PM/PM_{10} VOC NO_x CO SO_2	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.52 <0.01
S	Preheat Molds No. 5	PM/PM_{10} VOC NO_x CO SO_2	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.52 <0.01
Т	Preheat Molds No. 7	PM/PM_{10} VOC NO_x CO SO_2	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.52 <0.01
Υ	Dehumidification No. 4 and Dehumidification No. 6	PM/PM_{10} VOC NO_x CO SO_2	0.01 0.01 0.19 0.16 <0.01	0.05 0.06 0.83 0.70 <0.01
Z	Dehumidification No. 5	PM/PM_{10} VOC NO_x CO	0.01 <0.01 0.14 0.12 <0.01	0.05 0.03 0.61 0.51 <0.01

 SO_2

AC	Autoclave Boiler	PM/PM_{10} VOC NO_x CO SO_2	0.02 0.01 0.21 0.18 <0.01	0.07 0.05 0.92 0.77 <0.01
AO	BC3 Dehumidification No. 7	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.03 0.02 <0.01	<0.01 <0.01 0.11 0.09 <0.01
AP	BC3 Dehumidification No. 8	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.04 0.03 <0.01	0.01 <0.01 0.18 0.15 <0.01
AR	Preheat Molds No. 6	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.04 0.03 <0.01	0.01 <0.01 0.18 0.15 <0.01
AS	Dehumidification No. 11	PM/PM_{10} VOC NO_x CO SO_2	<0.01 <0.01 0.03 0.02 <0.01	<0.01 <0.01 0.11 0.09 <0.01
AB	Backup Generator No. 1	PM/PM_{10} VOC NO_x CO SO_2	0.83 0.93 11.63 2.51 0.77	0.36 0.41 5.09 1.10 0.34

AAB	Back-up Generator No. 2	PM/PM ₁₀	0.53	0.23
	·	VOC	0.53	0.23
		NO_x	18.12	7.94
		CO	4.15	1.82
		SO_2	6.11	2.68

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) PM particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter
 - NO_x total oxides of nitrogen
 - CO carbon monoxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - SO₂ sulfur dioxide
 - IOC-U inorganic compounds (combination of citric acid, nitric acid, and hydrogen chloride)
- (4) Fugitive emissions are an estimate only.

Dated February 9, 2009