Тьюринг-полнота нетипизированного лямбда-исчисления

Машина Поста — машина Тьюринга на бинарном алфавите. Закодируем описание и состояние машины лямбда-термами:

- Будем кодировать алфавит с помощью True и False.
- Состояния $q \in \{\bot\} \cup Q$ нумералами 0, ..., |Q| (терминальное состояние \bot кодируется нулём).
- Таблицу состояний $\delta: Q \times \{0,1\} \to (\{\bot\} \cup Q) \times \{0,1\} \times \{\mathtt{L},\mathtt{S},\mathtt{R}\}$ списком пар длины |Q|, где каждая компонента каждой пары Pair q (Pair b n), где q номер нового состояния, b новый символ, $n \lambda xyz.x$, $\lambda xyz.y$ или $\lambda xyz.z$).
- Бесконечную ленту и головку парой списков символов, где в первом списке перечислены символы слева от головки (читая от головки), а во втором справа (списки конечные, поскольку в любой момент на ленте записано только конечное количество символов).

Постройте замкнутый терм Interpret такой, что для любого описания таблицы δ и начального состояния

$$s = \text{Pair } q_0 \text{ (Pair } [b_1, \dots, b_n] [b'_1, \dots, b'_m])$$

про R = Interpret δ s верно следующее:

- Если у *R* нет нормальной формы, соответствующая машина Поста не завершает свою работу на данном входе;
- Если R нормализуется, то nf(R) это состояние ленты в результате работы соответствующей машины.

P.S. При желании можете вводить более удобную Вам нотацию для лямбда-термов (инфиксные операторы, кортежи), главное — объясните, как она устроена.

P.P.S. Также, при желании, можете взять любую другую более удобную Вам кодировку; опять же, главное — объясните, как она устроена.

решение

Базовые комбинаторы:

- True = T = $\lambda x y$. x
- False = $F = \lambda xy$. y
- $\langle \rangle = \lambda x y P. P x y$

$$- [x_1, ..., x_n] = \langle x_1, \langle ..., \langle x_n, F \rangle \rangle \rangle$$

- get = $\lambda i l.$ $(i (\lambda l. l F) l) T n$ -ный элемент списка l
- isnil = $\lambda l. l(\lambda x y z. F) T$

Будем кодировать

- таблицу состояний машины δ как $[\langle\langle q,\langle b,n\rangle\rangle\rangle,\langle\langle q,\langle b,n\rangle\rangle\rangle]$
- состояние ленты t как $\langle [b_0, ..., b_n], [b'_1, ..., b'_m] \rangle$, где b_0 ячейка под головкой, b_1 ячейка слева от головки, b'_1 ячейка справа от головки, и т. д. Будем считать, что за пределами списков все ячейки False.
- индексы состояний как натуральные числа: $q_0 = \lambda Sx$. x и $q_n = \lambda Sx$. S q_{n-1}
- положение дел s как $\langle q_i, t \rangle$

Итак.

- rewr = $\lambda tb. \langle \langle b, t T F \rangle, t F \rangle$
 - получив состояние ленты t и значение b, возвращает t, где вместо первого элемента первого списка (ячейки под головкой) записано b.
- shift = $\lambda t n$. $\langle n(t T F)(t T)(\langle t F T, t T \rangle), n(\langle t T T, t F \rangle)(t F)(t F F) \rangle$
 - получив состояние ленты t и сдвиг $n=\lambda xyz.$ x/y/z, возвращает сдвинутую ленту
 - * $\langle [b_1, ..., b_n], [b_0, b'_1, ..., b'_m] \rangle$, если $n = \lambda x y z. x$

*
$$\langle [b_0, ..., b_n], [b'_1, ..., b'_m] \rangle$$
, если $n = \lambda xyz$. y * $\langle [b'_1, b_0 ..., b_n], [b'_2, ..., b'_m] \rangle$, если $n = \lambda xyz$. z

- в результате сдвига один из списков может оказаться пустым, так что введем еще и xtnd, добавляющий в список еще одну (пустую) ячейку
- xtnd = λt . $\langle \text{isnil}(t \, \text{T}) \, \langle \text{F}, \, \text{F} \, \rangle \, (t \, \text{T})$, $\text{isnil}(t \, \text{F}) \, \langle \text{F}, \, \text{F} \, \rangle \, (t \, \text{F}) \rangle$
 - принимает состояние ленты пару списков и, если один из списков пуст (F), заменяет его на список из одного F $(\langle F, F \rangle)$
- b = λqt . q (t T T) F T n = λqt . q (t T T) F F qi = λqt . q (t T T) T
 - достают из состояния новое значение (b), сдвиг (n) и индекс нового состояния (q_i), соответвующие значению в текущей ячейке
- oper = λqt . $\langle \text{qi } q t, \text{ xtnd (shift (rewr } t \text{ (b } q t)) (n q t)) \rangle$
 - $-\,$ получив состояние машины q и состояние ленты t, возвращает новое положение дел с перезаписанным значением под головкой и сдвигом
- step = $\lambda \delta s$. oper (get (s T) δ) (s F)
 - шаг машины: преобразует таблицу состояний машины и положение дел в состояние машины и состояние ленты и возвращает новое положение дел
- eval = $\lambda e \delta s.$ (s T) ($e \delta$ (step δs)) (s F)
 - шаг рекурсии: возвращает текущее состояние ленты, если машина в терминальном состоянии ($q_i = 0 = F$), или вычисляет новое состояние ленты и отправляет его дальше
- Interpret = $\lambda \delta s_0$. (λx . eval (x x) δ s_0) (λx . eval (x x) δ s_0)
 - обычный оператор неподвижной точки, зацикливающий eval