

What means "Estimation"?

- A sender transmits a signal $s_{\Theta}(t)$ which depends on an **unknown** parameter Θ
- ▶ The signal is affected by noise, we receive $r(t) = s_{\Theta}(t) + noise$
- ▶ We want to **find out** the correct value of the parameter
 - based on samples from the received signal, or the full continuous signal
 - ▶ available data is noisy => we "estimate" the parameter
- ▶ The found value is $\hat{\Theta}$, **the estimate** of Θ ("estimatul", rom)
 - there will always be some estimation error $\epsilon = \hat{\Theta} \Theta$

What means "Estimation"?

- Examples:
 - ▶ Unknown amplitude of constant signal: r(t) = A + noise, estimate A
 - Unknown phase of sine signal: $r(t) = \cos(2\pi f t + \phi)$, estimate ϕ
 - Even complicated problems:
 - Record speech signal, estimate/decide what word is pronounced

Estimation vs Decision

Consider the following estimation problem:

We receive a signal r(t) = A + noise, estimate A

- For detection, we have to choose between **two known values** of *A*:
 - ▶ i.e. A can be 0 or 5 (hypotheses H_0 and H_1)
- ► For estimation, A can be anything => we choose between **infinite number of options** for A:
 - ightharpoonup A might be any value in \mathbb{R} , in general

Estimation vs Decision

- ▶ Detection = Estimation constrained to **only a few** discrete options
- ► Estimation = Detection with an **infinite number** of options available
- The statistical methods used are quite similar
 - In practice, distinction between Estimation and Detections is somewhat blurred
 - (e.g. when choosing between 1000 hypotheses, do we call it "Detection" or "Estimation"?)

Available data

- ▶ The available data is the received signal $r(t) = s_{\Theta}(t) + noise$
 - it is affected by noise
 - it depends on the unknown parameter Θ
- ▶ We consider **N** samples from r(t), taken at some sample times t_i

$$\begin{array}{ll}
t = [t_1, t_2, ... t_N] \\
r = [r_1, r_2, ... r_N]
\end{array}$$

ightharpoonup The samples depend on the value of Θ

Available data

- ightharpoonup Each sample r_i is a random variable that depends on Θ (and the noise)
 - ightharpoonup Each sample has a distribution that depends on Θ

$$w_i(r_i;\Theta)$$

- ▶ The whole sample vector \mathbf{r} is a N-dimensional random variable that depends on Θ (and the noise)
 - \blacktriangleright It has a N-dimensional distribution that depends on Θ

$$w(\mathbf{r};\Theta)$$

▶ Equal to the product of all $w_i(r_i|\Theta)$

$$w(\mathbf{r}|\Theta) = w_1(r_1|\Theta) \cdot w_2(r_2|\Theta) \cdot ... \cdot w_N(r_N|\Theta)$$

Two types of estimation

- ▶ We consider two types of estimation:
 - 1. Maximum Likelihood Estimation (MLE): Besides r, nothing else is known about the parameter Θ , except maybe some allowed range (e.g. $\Theta > 0$)
 - 2. **Bayesian Estimation**: Besides \mathbf{r} , we know a **prior** distribution $p(\Theta)$ for Θ , which tells us the values of Θ that are more likely than others

II.2 Maximum Likelihood estimation

Maximum Likelihood definition

- ▶ When no distribution is known except r, we use a method known as Maximum Likelihood estimation (MLE)
- We define the **likelihood** of a parameter value Θ , given the available observations \mathbf{r} as:

$$L(\Theta|\mathbf{r}) = w(\mathbf{r}|\Theta)$$

- ▶ $L(\Theta|\mathbf{r})$ is the likelihood function
- The plausibility of a parameter value Θ given some measurements $\mathbf{r} =$ the probability density of generating \mathbf{r} if the true value would be Θ "
- Compare with formula in Chapter 2, slide 20
 - it is the same
 - ▶ here we try to "guess" Θ, there we "guessed" H_i

Maximum Likelihood definition

Maximum Likelihood (ML) Estimation:

- ► The estimate $\hat{\Theta}_{ML}$ is the value that maximizes the likelihood, given the observed data r
 - i.e. the value that maximizes $L(\Theta|\mathbf{r})$, i.e. maximize $w(\mathbf{r}|\Theta)$ $\hat{\Theta}_{ML} = \arg\max_{\Theta} L(\Theta|\mathbf{r}) = \arg\max_{\Theta} w(\mathbf{r}|\Theta)$ Such that

► If Θ is allowed to live only in a certain range, restrict the

If Θ is allowed to live only in a certain range, restrict the maximization only to that range.

Notations

- General mathematical notations:
 - ▶ arg $\max_x f(x)$ = "the value x which maximizes the function f(x)"
 - $ightharpoonup \max_{x} f(x) =$ "the maximum value of the function f(x)"

Maximum Likelihood estimation vs decision

- Very similar with decision problem!
- ML decision criterion:
 - "pick the hypothesis with a higher likelihood":

$$\frac{L(H_1|r)}{L(H_0|r)} = \frac{w(r|H_1)}{w(r|H_0)} \stackrel{H_1}{\geqslant} 1$$

- ML estimation
 - "pick the value which maximizes the likelihood"

$$\hat{\Theta}_{\mathit{ML}} = \arg\max_{\Theta} L(\Theta|\mathbf{r}) = \arg\max_{\Theta} w(\mathbf{r}|\Theta)$$

How to solve

- How to solve the maximization problem?
 - i.e. how to find the estimate $\hat{\Theta}_{ML}$ which maximizes $L(\Theta|\mathbf{r})$
- Find maximum by setting derivative to 0

$$\frac{dL(\Theta|\mathbf{r})}{d\Theta}=0$$

We can also maximize the natural logarithm of the likelihood function ("log-likelihood function")

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

Solving procedure

Solving procedure:

1. Find the function

$$L(\Theta|\mathbf{r}) = w(\mathbf{r}|\Theta)$$

2. Set the condition that derivative of $L(\Theta|\mathbf{r})$ or $\ln((L(\Theta|\mathbf{r})))$ is 0

$$\frac{dL(\Theta|\mathbf{r})}{d\Theta} = 0$$
, or $\frac{d\ln(L(\Theta))}{d\Theta} = 0$

- 3. Solve and find the value $\hat{\Theta}_{ML}$
- 4. Check that second derivative at point $\hat{\Theta}_{ML}$ is negative, to check that point is a maximum
 - because derivative = 0 for both maximum and minimum points
 - we'll sometimes skip this, for brevity

Examples:

- Estimating a constant signal in gaussian noise:
 - Find the ML estimate of a constant value $s_{\Theta}(t) = A$ from 5 noisy measurements $\underline{r_i = A + noise}$ with values [5, 7, 8, 6.1, 5.3]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$.
- ► Solution: at whiteboard.

- ▶ The estimate \hat{A}_{ML} is the average value of the samples
 - ▶ not surprisingly, what other value would have been more likely?
 - ▶ that's literally what "expected value" means

$$\widehat{A}_{NL} = \underset{A}{\text{argmin d}} (n_1 N_6)^2 = (A-5)^2 + (A-7)^2 + \dots + (A-5.3)^2$$

$$R = [5 + 8 + 6.1 + 5.3]$$

$$N_6 = [R + A + A + A]$$

$$\frac{d}{d_R} d[N_1 N_6]^2 = 0 \Rightarrow 2(A-5) + 2(A-7) + \dots + 2(A-5.3) = 0$$

$$= \sum_{n=1}^{\infty} \widehat{A}_{nL} = \frac{5+7+8+6.1+5.3}{5}$$

Curve fitting

- **▶** Estimation = curve fitting
 - we're finding the best fitting of $s_{\Theta}(t)$ through the data **r**
- From the previous graphical example:
 - ightharpoonup we have some data $m {f r}=$ some points
 - ▶ we know the shape of the signal = a line (constant A)
 - we're fitting the best line through the data

- Consider that the true underlying signal is $s_{\Theta}(t)$

- Consider **AWGN** noise $\mathcal{N}(\mu = 0, \sigma^2)$.
- The samples r_i are taken at sample moments $t_i = \frac{1}{\sqrt{1/2\pi}} \cdot e^{-\frac{1}{2}}$. The samples r_i have now $1 \cdot \cdot \cdot \cdot$.
- ▶ The samples r_i have normal distribution with average value $\mu = s_{\Theta}(t_i)$ and variance σ^2
- Overall likelihood function = product of likelihoods for each sample r_i

$$L(\Theta|\mathbf{r}) = w(\mathbf{r}|\Theta) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} e^{-\sum_{j=1}^{N} (r_i - s_{\Theta}(t_i))^2} \qquad \text{with}$$

► The log-likelihood is

▶ The maximum of the function = the minimum of the exponent

$$\hat{\Theta}_{ML} = \arg\max_{\Theta} L(\Theta|\mathbf{r}) = \arg\min_{\Theta} \sum_{i=1}^{N} (r_i - s_{\Theta}(t_i))^2$$

▶ The term $\sum (r_i - s_{\Theta}(t_i))^2$ is the **squared distance** $d(\mathbf{r}, s_{\Theta})$

$$d(\mathbf{r}, s_{\Theta}) = \sqrt{\sum (r_i - s_{\Theta}(t_i))^2}$$
$$(d(\mathbf{r}, s_{\Theta}))^2 = \sum (r_i - s_{\Theta}(t_i))^2$$

$$R = \left\{ R_{\lambda}, R_{2}, \dots R_{N} \right\}$$

$$\Delta_{0} = \left\{ \Lambda_{0}(H), \Lambda_{0}(H), \dots \Lambda_{0}(H) \right\}$$

$$\Delta \left(R, \Lambda_{0} \right)^{2}$$

▶ ML estimation can be rewritten as:

$$\hat{\Theta}_{ML} = \arg\max_{\Theta} L(\Theta|\mathbf{r}) = \arg\min_{\Theta} d(\mathbf{r}, \mathbf{s}_{\Theta})^{2}$$

- ▶ ML estimate $\hat{\Theta}_{ML}$ = the value that makes $s_{\Theta}(t_i)$ closest to the received values r
 - closer = beter fit = more likely
 - closest = best fit = most likely = maximum likelihood

- ► ML estimation in AWGN noise = minimization of distance
- ▶ Hey, we had the same interpretation with ML decision!
 - but for decision, we choose the minimum out of 2 options
 - here, we choose the minimum out of all possible options
- Same interpretation applies for all kinds of vector spaces
 - vectors with N elements, continuous signals, etc
 - just change the definition of the distance function

Procedure for ML estimation in AWGN noise:

1. Write the expression for the (squared) distance:

$$D = (d(\mathbf{r}, s_{\Theta}))^{2} = \sum_{i=1}^{M} (r_{i} - s_{\Theta}(t_{i}))^{2}$$

2. We want it minimal, so set derivative to 0:

$$\frac{dD}{d\Theta} = \sum 2(r_i - s_{\Theta}(t_i))(-\frac{ds_{\Theta}(t_i)}{d\Theta}) = 0$$

- 3. Solve and find the value $\hat{\Theta}_{ML}$
- 4. Check that second derivative at point $\hat{\Theta}_{ML}$ is positive, to check that point is a minimum
 - we'll sometimes skip this, for brevity

Estimating the frequency f of a cosine signal

- Find the Maximum Likelihood estimate of the frequency f of a cosine signal $s_{\Theta}(t) = cos(2\pi f t_i)$, from 10 noisy measurements $r_i = cos(2\pi f t_i) + noise$ with values [...]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$. The sample times $t_i = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$
- Solution: at whiteboard.

Multiple parameters

- ▶ What if we have more than one parameter?
- We can consider the parameter Θ to be a vector:

$$\overset{\text{vector}}{\Theta} = [\Theta_1, \Theta_2, ...\Theta_M]$$

▶ e.g. $\Theta = [\Theta_1, \Theta_2, \Theta_3] = [A, f, \phi]$

Multiple parameters

- have M derivatives
- We solve the system:

$$\begin{cases} \frac{\partial L}{\partial \Theta_1} = 0 \\ \frac{\partial L}{\partial \Theta_2} = 0 \end{cases}$$
 System of M equations,
$$\frac{\partial L}{\partial \Theta_M} = 0$$

→ # =0

sometimes difficult to solve

Gradient Descent

- ightharpoonup How to estimate the parameters Θ in complicated cases?
 - e.g. in real life applications
 - ightharpoonup usually there are many parameters (Θ is a vector)
- ➤ Typically it is impossible to get the optimal values directly by solving the system
- ► Improve them iteratively with **Gradient Descent** algorithm or its variations

Gradient Descent procedure

- 1. Start with some random parameter values $\Theta^{(0)}$
- - 2.3 Update all values Θ_i by subtracting the derivative ("**descent**")

$$\Theta_{i}^{(k+1)} = \Theta_{i}^{(k)} - \mu \frac{\partial L}{\partial \Theta_{i}^{(k)}} \qquad \times_{k \neq 1} = \times_{k} \mu \cdot \mathcal{A}_{(k)}$$

or, in vector form:

$$\mathbf{\Theta}^{(k+1)} = \mathbf{\Theta}^k - \mu \frac{\partial L}{\partial \mathbf{\Theta}^{(k)}}$$

3. Until termination criterion (e.g. parameters don't change much)

Gradient Descent explained

- Explanations at blackboard
- ► Simple example: logistic regression on 2D-data
 - maybe do example at blackboard

Neural Networks

- ► The most prominent example is **Artificial Neural Networks** (a.k.a. Neural Networks, Deep Learning, etc.)
 - Can be regarded as ML estimation
 - Use Gradient Descent to update parameters
 - State-of-the-art applications: image classification/recognition, automated driving etc.
- ▶ More info on neural networks / machine learning:
 - look up online courses, books
 - join the IASI AI Meetup

Estimator bias and variance

How good is an estimator?

- An estimator $\hat{\Theta}$ is a **random variable**
 - can have different values, because it is computed based on the received samples, which depend on noise
 - example: in lab, try on multiple computers => slightly different results
- As a random variable, it has:
 - ightharpoonup an <u>average value</u> (expected value): $E\{\hat{\Theta}\}$
 - a variance: E

= E \ \ \left(\hat{\theta} - E \ \left(\hat{\theta} - E \ \left(\hat{\theta})^2\right)\right\} \\ \text{individual overlage } \frac{\hat{\theta}}{\theta} \\ \text{individual} \\ \theta \

Estimator bias and variance

Figure 1: Estimator bias and variance

Estimator bias

▶ The **bias** of an estimator $\hat{\Theta} = \text{difference between the estimator's average value and the true value$

$$Bias = E\left\{\hat{\Theta}\right\} - \Theta$$

Estimator is $\underline{\text{unbiased}}$ = the average value of the estimator is the true value of Θ

$$E\left\{\hat{\Theta}\right\} = \Theta$$

- ightharpoonup Estimator is **biased** = the average value of the estimator is different from the true value Θ
 - ▶ the difference $E\left\{\hat{\Theta}\right\} \Theta$ is **the bias** of the estimator

Estimator bias

Example: for constant signal A with AWGN noise (zero-mean), ML

estimator is
$$\widehat{A}_{ML} = \frac{1}{N} \sum_{i} r_{i}$$

Then:
$$E\left\{\widehat{A}_{ML}\right\} = \frac{1}{N} E\left\{\sum_{i} r_{i}\right\}$$

$$= \frac{1}{N} \sum_{i} E\left\{r_{i}\right\}$$

$$= \frac{1}{N} \sum_{i} E\left\{r_{i}\right\}$$

$$E\left\{c \cdot x \right\} = c \cdot E\left\{x\right\}$$

$$E \left\{AML\right\} = \frac{1}{N} E \left\{\sum_{i} r_{i}\right\}$$

$$= \frac{1}{N} \sum_{i=1}^{N} E \left\{r_{i}\right\}$$

$$= \frac{1}{N} \sum_{i=1}^{N} E \left\{A + noise\right\}$$

$$= \frac{1}{N} \sum_{i=1}^{N} A$$

$$= A$$

$$= A$$

$$= A$$

$$= \frac{1}{N} \sum_{i=1}^{N} A$$

► This estimator in unbiased

Efficient = A

Estimator variance

- ► The <u>variance</u> of an estimator measures the "<u>spread</u>" of the estimator around its average
 - that's the definition of variance
- ▶ Unbiased estimators are good, but if the **variance** of the estimator is large, then estimated values can be far from the true value
- We prefer estimators with <u>small variance</u>, even if maybe slightly biased

- **Bayesian estimation** considers extra factors alongside $w(\mathbf{r}|\Theta)$ in the estimation:
 - ightharpoonup a prior distribution $w(\Theta)$
 - possibly some cost function
- ▶ This makes it the estimation version of the MPE and MR decision criteria

- Conceptually, Bayesian estimation consists of two major steps:
 - 1. Finding the **posterior distribution** $w(\Theta|\mathbf{r})$
 - 2. Estimating a value from the distribution, based on a cost function

▶ We define the **posterior** probability density of Θ , given the known observations \mathbf{r} , using the **Bayes rule**:

$$w(\Theta|\mathbf{r}) = \frac{w(\mathbf{r}|\Theta) \cdot w(\Theta)}{w(\mathbf{r})}$$

- Explanation of the terms:
 - Θ is the unknown parameter
 - **r** are the observations that we have
 - ▶ $w(\Theta|\mathbf{r})$ is the probability of a certain value Θ to be the correct one, given our current observations \mathbf{r} ;
 - \triangleright $w(\mathbf{r}|\Theta)$ is the likelihood function
 - \blacktriangleright $w(\Theta)$ is the **prior distribution** of Θ , i.e. what we know about Θ even in the absence of evidence
 - $\mathbf{w}(\mathbf{r})$ is a scaling constant, which makes the integral of the resulting function be 1 (like for any distribution)

- ▶ With MLE estimation, we only have the term $w(\mathbf{r}|\Theta)$. When viewed as a function of Θ , this is not a distribution of Θ . It's just something we want to maximize.
- ▶ Bayesian estimation, however, uses $w(\Theta|\mathbf{r})$, which **is** the actual probability distribution of the possible values of Θ

Bayes rule

- ▶ The Bayes rule shows that the probability of a value Θ depends on two things:
 - 1. The observations that we have, via the term $w(\mathbf{r}|\Theta)$
 - 2. The prior knowledge (or prior belief) about Θ , via the term $w(\Theta)$
 - (the third term $w(\mathbf{r})$ is considered a constant, and plays no role)
- ► Known as "Bayesian estimation"
 - ► Thomas Bayes = discovered the Bayes rule
 - Stuff related to Bayes rule are often named "Bayesian"

The prior distribution

- ▶ The role of the prior distribution $w(\Theta)$ is to express what we know beforehand about Θ
 - we know beforehand how likely it is to have a certain value
 - known as a priori distribution or prior distribution
- ▶ Bayesian estimation takes the prior information into account, alongside the measurements
 - the estimate will be slightly "moved" towards more likely values

The MAP estimator

- ▶ Suppose we know $w(\Theta|\mathbf{r})$. What is our estimate?
- Let's pick the value with the highest probability
- The Maximum A Posteriori (MAP) estimator:

$$\hat{\Theta}_{\mathit{MAP}} = \arg\max_{\Theta} w(\Theta|\mathbf{r}) = \arg\max_{\Theta} w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

- ▶ The MAP estimator chooses Θ as the value where the posterior distribution $w(\Theta|\mathbf{r})$ is maximum
- ► The MAP estimator maximizes the likelihood of the observed data but multiplied with the prior distribution $w(\Theta)$

The MAP estimator

Image example here

Relation with Maximum Likelihood Estimator

► The ML estimator:

$$arg max w(\mathbf{r}|\Theta)$$

▶ The MAP estimator:

$$arg max w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

- ▶ The ML estimator is a particular case of MAP when $w(\Theta)$ is a constant
 - \triangleright $w(\Theta) = \text{constant means all values } \Theta \text{ are equally likely}$
 - ightharpoonup i.e. we don't have a clue where the real Θ might be

Relation with Detection

- ► The MPE criterion $\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\gtrless}} \frac{P(H_0)}{P(H_1)}$
- ▶ It can be rewritten as $w(r|H_1) \cdot P(H_1) \stackrel{H_1}{\underset{H_0}{\gtrless}} w(r|H_0)P(H_0)$
 - ▶ i.e. choose the hypothesis where $w(r|H_i) \cdot P(H_i)$ is maximum
- ▶ MPE decision criterion: pick hypothesis which maximizes $w(r|H_i) \cdot P(H_i)$
 - out of the two possible hypotheses
- ▶ The MAP estimator: pick value which maximizes $w(\mathbf{r}|\Theta) \cdot w(\Theta)$
 - out of all possible values of Θ
- Same principle!

Cost function

- ▶ Let's find an equivalent for the Minimum Risk criterion. We need an equivalent for the costs *C_{ij}*
- ▶ The **estimation error** = the difference between the estimate $\hat{\Theta}$ and the true value Θ

$$\epsilon = \hat{\Theta} - \Theta$$

- ▶ The **cost function** $C(\epsilon)$ = assigns a cost to each possible estimation error
 - when $\epsilon = 0$, the cost C(0) = 0
 - ightharpoonup small errors ϵ have small costs
 - large errors ϵ have large costs

Cost function

- Usual types of cost functions:
 - Quadratic:

$$C(\epsilon) = \epsilon^2 = (\hat{\Theta} - \Theta)^2$$

Uniform ("hit or miss"):

$$C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| \le E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| > E \end{cases}$$

Linear:

$$C(\epsilon) = |\epsilon| = |\hat{\Theta} - \Theta|$$

Draw them at whiteboard

Cost function

- ▶ The cost function $C(\epsilon)$ is the equivalent of the costs C_{ij} at detection
 - ▶ for detection we only had 4 costs: C_{00} , C_{01} , C_{10} , C_{11}
 - lacktriangle now we have a cost for all possible estimation errors ϵ
- ▶ The cost function guides which value to choose from $w(\Theta|\mathbf{r})$

The importance of the cost function

Consider the following posterior distribution

Figure 2: Unbalanced posterior distribution

- Which is the MAP estimate?
- Supposing we have the following cost function, does your estimate change ?:
 - ▶ if your estimate $\hat{\Theta}$ is < then the real Θ , you pay 1000\$
 - if your estimate $\hat{\Theta}$ is > then the real Θ , you pay 1\$

The importance of the cost function

- ► Choosing one particular value $\hat{\Theta}$ from the distribution of possible values is driven by the cost function
- ▶ The most probable value is not always the best
- ▶ The best value is the one which leads to the smallest average cost

The Bayesian risk

- ▶ The posterior distribution $w(\Theta|\mathbf{r})$ tells us the probability of a certain value $\hat{\Theta}$ to be the correct one of Θ
- lacktriangle Picking a certain estimate value $\hat{\Theta}$ implies a certain error ϵ
- ▶ The error implies a certain cost $C(\epsilon)$
- ▶ The **risk** = the average cost = $C(\epsilon)$ × the probability:

$$R = \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta$$

The Bayes estimator

ightharpoonup We need to pick the value $\hat{\Theta}$ which **minimizes the expected cost** R

$$\hat{\Theta} = \arg\min_{\Theta} \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta$$

- lacktriangle To find it, replace $C(\epsilon)$ with its definition and derivate over $\hat{\Theta}$
 - ► Attention: derivate with respect to Θ̂, not Θ!

MMSE estimator

▶ When the cost function is quadratic $C(\epsilon) = \epsilon^2 = (\hat{\Theta} - \Theta)^2$

$$R = \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta)^2 w(\Theta | \mathbf{r}) d\Theta$$

 \blacktriangleright We want the $\hat{\Theta}$ that minimizes R, so we derivate

$$\frac{dR}{d\hat{\Theta}} = 2 \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta) w(\Theta | \mathbf{r}) d\Theta = 0$$

Equivalent to

$$\hat{\Theta} \underbrace{\int_{-\infty}^{\infty} w(\Theta|\mathbf{r})}_{1} d\Theta = \int_{-\infty}^{\infty} \Theta w(\Theta|\mathbf{r}) d\Theta$$

▶ The Minimum Mean Squared Error (MMSE) estimator is

$$\hat{\Theta}_{MMSE} = \int_{-\infty}^{\infty} \Theta \cdot w(\Theta|\mathbf{r}) d\Theta$$

Interpretation

▶ The MMSE estimator: the estimator $\hat{\Theta}$ is the average value of the posterior distribution $w(\Theta|\mathbf{r})$

$$\hat{\Theta}_{MMSE} = \int_{-\infty}^{\infty} \Theta \cdot w(\Theta|\mathbf{r}) d\Theta$$

- ► MMSE = "Minimum Mean Squared Error"
- ightharpoonup average value = sum (integral) of every Θ times its probability $w(\Theta|\mathbf{r})$
- ► The MMSE estimator is obtained from the posterior distribution $w(\Theta|\mathbf{r})$ considering the quadratic cost function

The MAP estimator

When the cost function is uniform:

$$C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| \le E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| > E \end{cases}$$

- Keep in mind that $\Theta = \hat{\Theta} \epsilon$
- ► We obtain

$$I = \int_{-\infty}^{\hat{\Theta} - E} w(\Theta | \mathbf{r}) d\Theta + \int_{T\hat{h}\hat{e}ta + E}^{\infty} w(\Theta | \mathbf{r}) d\Theta$$
 $I = 1 - \int_{\hat{\Theta} - E}^{\hat{\Theta} + E} w(\Theta | \mathbf{r}) d\Theta$

The MAP estimator

- ▶ To minimize C, we must maximize $\int_{\hat{\Theta}-E}^{\hat{\Theta}+E} w(\Theta|\mathbf{r})d\Theta$, the integral around point $\hat{\Theta}$
- ► For E a very small, the function $w(\Theta|\mathbf{r})$ is approximately constant, so we pick the point where the function is maximum
- ▶ The Maximum A Posteriori (MAP) estimator = the value $\hat{\Theta}$ which maximizes $w(\Theta|\mathbf{r})$

$$\hat{\Theta}_{\mathit{MAP}} = \arg\max_{\Theta} w(\Theta|\mathbf{r}) = \arg\max_{\Theta} \Theta w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

Interpretation

- The MAP estimator chooses Θ as the value where the posterior distribution is maximum
- The MMSE estimator chooses Θ as average value of the posterior distribution

Figure 3: MAP vs MMSE estimators

Relationship between MAP and MMSE

- ► The MAP estimator = minimizing the average cost, using the uniform cost function
 - ▶ similar with the MPE decision criteria = MR when all costs are same
- ► The MMSE estimator = minimizing the average cost, using the quadratic cost function
 - similar to MR decision criteria, but more general

Exercise

Exercise: constant value, 3 measurement, Gaussian same σ

- ▶ We want to estimate today's temperature in Sahara
- Our thermometer reads 40 degrees, but the value was affected by Gaussian noise $\mathcal{N}(0, \sigma^2 = 2)$ (crappy thermometer)
- We know that this time of the year, the temperature is around 35 degrees, with a Gaussian distribution $\mathcal{N}(35, \sigma^2 = 2)$.
- Estimate the true temperature using ML, MAP and MMSE estimators

Exercise

Exercise: constant value, 3 measurements, Gaussian same σ

▶ What if he have three thermometers, showing 40, 38, 41 degrees

Exercise: constant value, 3 measurements, Gaussian different σ

- What if the temperature this time of the year has Gaussian distribution $\mathcal{N}(35, \sigma_2^2 = 3)$
 - different variance, $\sigma_2 \neq \sigma$

General signal in AWGN

- ▶ Consider that the true underlying signal is $s_{\Theta}(t)$
- ► Consider AWGN noise $\mathcal{N}(\mu = 0, \sigma^2)$.
- ▶ As in Maximum Likelihood function, overall likelihood function

$$w(\mathbf{r}|\Theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\sum(r_i - s_\Theta(t_i))^2}{2\sigma^2}}$$

▶ But now this function is also **multiplied with** $w(\Theta)$

$$w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

General signal in AWGN

▶ MAP estimator is the argument that maximizes this product

$$\hat{\Theta}_{MAP} = \arg\max w(\mathbf{r}|\Theta)w(\Theta)$$

Taking logarithm

$$\begin{split} \hat{\Theta}_{MAP} &= \operatorname{arg\,max} \ln \left(w(\mathbf{r}|\Theta) \right) + \ln \left(w(\Theta) \right) \\ &= \operatorname{arg\,max} - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \ln \left(w(\Theta) \right) \end{split}$$

Gaussian prior

▶ If the prior distribution is also Gaussian $\mathcal{N}(\mu_{\Theta}, \sigma_{\Theta}^2)$

$$\ln(w(\Theta)) = -\frac{\sum(\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

▶ MAP estimation becomes

$$\hat{\Theta}_{MAP} = \arg\min \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \frac{\sum (\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

Can be rewritten as

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\mathbf{r}} \cdot d(\Theta, \mu_{\Theta})^2$$

Interpretation

▶ MAP estimator with Gaussian noise and Gaussian prior

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\lambda} \cdot d(\Theta, \mu_{\Theta})^2$$

- $\hat{\Theta}_{MAP}$ is close to the expected value μ_{Θ} and it makes the true signal close to received data ${\bf r}$
 - Example: "search for a house that is close to job and close to the Mall"
 - $ightharpoonup \lambda$ controls the relative importance of the two terms
- Particular cases
 - σ_{Θ} very small = the prior is very specific (narrow) = λ large = second term very important = $\hat{\Theta}_{MAP}$ close to μ_{Θ}
 - σ_{Θ} very large = the prior is very unspecific = λ small = first term very important = $\hat{\Theta}_{MAP}$ close to ML estimation

Applications

- ▶ In general, practical applications:
 - can use various prior distributions
 - estimate multiple parameters (a vector of parameters)
- Applications
 - denoising of signals
 - signal restoration
 - signal compression

Sample applications

- 1. Single object tracking with Kalman filtering
- estimating an object's position through successive noisy measurements (e.g. consecutive frames in a video)
- ▶ ata every new measurement, we have two distributions of the position:
 - one given by the measurement itself, $w(r|\Theta)$
 - one predicted based on position and speed from last moment
 - both are presumed Gaussian, described only through average value and variance
- ▶ the two are combined via the Bayes rule => a more precise distribution $w(\Theta|r)$, also Gaussian
- lacktriangle the exact position is estimated with MMSE (average value of $w(\Theta|r)$
- $w(\Theta|r)$ + speed is used to predict the position at the next time moment

Single object tracking

Single object tracking

Sample applications

- 2. Constrained Least Squares (CLS) image restoration
- ▶ We have an image I corrupted by noise (additive noise, missing pixels, blurring)

$$I_{noisy} = I_{true} + Z$$

▶ We can estimate the original image by solving:

$$\hat{I_{true}} = \textit{argmin}_I \|I - I_{zg}\|_2 + \lambda \cdot \|\textit{HighPass}\{I\}\|_2$$

- Examples:
 - https://www.mathworks.com/help/images/deblurring-images-using-a-regularized-filter.html
 - https: //demonstrations.wolfram.com/ImageRestorationForDegradedImages
 - Google it

Constrained Least Squares (CLS) image restoration