# Kx for Wine Tasting Machine Learning in q/kdb+

Mark Lefevre
Algorithmic Quantitative Analyst



## Machine Learning Introduction

- ML algorithms can be grouped by learning style
  - Supervised Learning
  - Unsupervised Learning
  - Reinforcement Learning
- Or, alternatively, by similarity
  - Regression
  - Clustering
  - Classification
  - Neural Networks
  - Etc.

## Unsupervised Learning

- Uses a dataset with known inputs and unlabeled outputs
  - In a true application, it is impossible to evaluate the accuracy of the algorithm's output
- Infers a function to describe a transformation
- Typical types of problems are classification, clustering, anomaly/fraud detection, image processing and topic modeling

## K-Means Clustering Algorithm

- Given n d-dimensional data points (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>), partition the n observations into k (≤ n) sets
   S = {S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>k</sub>} that minimize a within-cluster distance measure
- Using a Euclidean distance measure (L<sup>2</sup>-norm)

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{x \in S_i} \|x - \mu_i\|^2$$



# Lloyds Algorithm

- A simple, useful heuristic algorithm is widely used often called Lloyds Algorithm
- Initialize centroids
   Iterate the following two steps until convergence
- 1. Assign data points to nearest cluster
- 2. Calculate new centroids

# Simple Example (k=3)

#### 0. Initialize 3 Centroids



#### 1. Cluster Assignment



# Simple Example

#### 2. Calculate New Centroids



#### 3. Cluster Assignment



# Simple Example

#### 4. Calculate New Centroids



#### 5. Cluster Assignment



#### Wine Dataset

- UCI Machine Learning Repository
- http://archive.ics.uci.edu/ml
- Irvine, CA: University of California, School of Information and Computer Science.
- Consists of 178 instances, 13 chemical analysis attributes and a column indicating the actual class

- 1. Alcohol
- 2. Malic acid
- 3. Ash
- 4. Alcalinity of ash
- 5. Magnesium
- 6. Total phenols
- 7. Flavanoids
- 8. Nonflavanoid phenols
- 9. Proanthocyanins
- 10. Color intensity
- 11. Hue
- 12. OD280/OD315
- 13. Proline

## Quick Look at Raw Wine Dataset

- Here are 9 samples, 3 from each class
- What do you notice about the data?
- Could you find a pattern to distinguish the 3 cultivars from each other?

| 1 | 14.23 | 1.71 | 2.43 | 15.6 | 127 | 2.8  | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065 |
|---|-------|------|------|------|-----|------|------|------|------|------|------|------|------|
| 1 | 13.2  | 1.78 | 2.14 | 11.2 | 100 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.4  | 1050 |
| 1 | 13.16 | 2.36 | 2.67 | 18.6 | 101 | 2.8  | 3.24 | 0.3  | 2.81 | 5.68 | 1.03 | 3.17 | 1185 |
| 2 | 11.79 | 2.13 | 2.78 | 28.5 | 92  | 2.13 | 2.24 | 0.58 | 1.76 | 3    | 0.97 | 2.44 | 466  |
| 2 | 12.37 | 1.63 | 2.3  | 24.5 | 88  | 2.22 | 2.45 | 0.4  | 1.9  | 2.12 | 0.89 | 2.78 | 342  |
| 2 | 12.04 | 4.3  | 2.38 | 22   | 80  | 2.1  | 1.75 | 0.42 | 1.35 | 2.6  | 0.79 | 2.57 | 580  |
| 3 | 12.86 | 1.35 | 2.32 | 18   | 122 | 1.51 | 1.25 | 0.21 | 0.94 | 4.1  | 0.76 | 1.29 | 630  |
| 3 | 12.88 | 2.99 | 2.4  | 20   | 104 | 1.3  | 1.22 | 0.24 | 0.83 | 5.4  | 0.74 | 1.42 | 530  |
| 3 | 12.81 | 2.31 | 2.4  | 24   | 98  | 1.15 | 1.09 | 0.27 | 0.83 | 5.7  | 0.66 | 1.36 | 560  |

## Wine Dataset Boxplots (All features)



## Wine Dataset Boxplots (-Proline)



#### Wine Dataset Boxplots (-Proline, -Magnesium)



## Alcohol and Malic Acid QQ Plots



### Q Code

```
// Demonstration implementing k-means algorithm/Lloyds algorithm
wds:flip (`$'14#.Q.A)!("J",13#"F";",") 0: `:wine.csv;
actualGroup:wds[`A];
/X:delete A from X;
wds:update g:178?3 from wds;
f:{[X]
  // Lambda Function to find centroids by group (column name=g)
  C:{[t;b;ac;f] ?[t;();b;ac!f,/:ac]} [X;{x!x} raze `g;(cols X) except `g;avg];
  // Group assignments
  newg:{{x?min x}x$'x} each
     (raze each delete g from X)-/:\:(raze each value C);
  update g:newg from X
wds:(f/)wds;
```

### Principal Component Analysis (PCA)

- PCA is a statistical procedure that utilizes orthogonal transformations to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.
- In a word, *decorrelation*
- The principal components are the eigenvectors of a symmetric variancecovariance matrix

- Eigenvectors are ordered by their corresponding eigenvalues
  - Amount of variance explained by the component
- Taking a few of principal components, we can achieve
  - dimensionality reduction
- This is very useful for high dimensionality problems, such as instantaneous forward curve evolutions analyzing wine

# **Principle Components**



# Visualization of Wine Data Using Principal Component Analysis





#### Another Look at Raw Wine Dataset

- Here are 9 samples, 3 from each class
- Can you find a pattern to distinguish the 3 cultivars, if you knew the principle components?

| 1065 | 3.92 | 1.04 | 5.64 | 2.29 | 0.28 | 3.06 | 2.8  | 127 | 15.6 | 2.43 | 1.71 | 14.23 | 1 |
|------|------|------|------|------|------|------|------|-----|------|------|------|-------|---|
| 1050 | 3.4  | 1.05 | 4.38 | 1.28 | 0.26 | 2.76 | 2.65 | 100 | 11.2 | 2.14 | 1.78 | 13.2  | 1 |
| 1185 | 3.17 | 1.03 | 5.68 | 2.81 | 0.3  | 3.24 | 2.8  | 101 | 18.6 | 2.67 | 2.36 | 13.16 | 1 |
| 466  | 2.44 | 0.97 | 3    | 1.76 | 0.58 | 2.24 | 2.13 | 92  | 28.5 | 2.78 | 2.13 | 11.79 | 2 |
| 342  | 2.78 | 0.89 | 2.12 | 1.9  | 0.4  | 2.45 | 2.22 | 88  | 24.5 | 2.3  | 1.63 | 12.37 | 2 |
| 580  | 2.57 | 0.79 | 2.6  | 1.35 | 0.42 | 1.75 | 2.1  | 80  | 22   | 2.38 | 4.3  | 12.04 | 2 |
| 630  | 1.29 | 0.76 | 4.1  | 0.94 | 0.21 | 1.25 | 1.51 | 122 | 18   | 2.32 | 1.35 | 12.86 | 3 |
| 530  | 1.42 | 0.74 | 5.4  | 0.83 | 0.24 | 1.22 | 1.3  | 104 | 20   | 2.4  | 2.99 | 12.88 | 3 |
| 560  | 1.36 | 0.66 | 5.7  | 0.83 | 0.27 | 1.09 | 1.15 | 98  | 24   | 2.4  | 2.31 | 12.81 | 3 |

#### Weaknesses of K-Means

- K is an input
- Sensitivity to initialization
  - Multiple runs with different random initializations
  - Kmeans++
- Empty clusters
  - Delete cluster
  - Randomly chose another centroid

- Hyperspherical clusters
  - Cannot handle non globular clusters well
- Outliers
  - K-medians algorithm
- No guarantee it will converge to global optimum
  - NP-hard

#### K-means++

- Improved initialization algorithm
- Addresses potentially bad initial guesses



- Choose random data point as first centroid
- Compute distance, D(x), from initial random point to all other data points
- 3. Choose a new centroid from those data points using a weighted probability distribution proportional to  $D(x)^2$
- Repeat Steps 2 and 3 until k centers have been chosen

#### Conclusion

- Briefly introduced machine learning, the concept of unsupervised learning and the kmeans algorithm
- Showed how this algorithm can be easily written in q and can be used to learn how to categorize wine cultivars
- Hopefully, this has provide an interesting look at the opportunities to utilize q/kdb+ in machine learning

#### **About Me**

- Mark is currently consulting at one of the largest banks in Tokyo as an algorithmic quantitative analyst developing high-performance algorithmic trading systems on the e-FX desk. Prior to moving to Japan, he worked in London for Unicredit on the Equity-Linked Origination desk creating convertible bonds for European corporates, consulted in the US on e-commerce analytics and worked for several high-tech software companies.
- Earlier in his career, he worked for Mitsubishi Semiconductor America designing semiconductors and a startup developing a DSP. He then moved into applications engineering for an Electronic Design Automation (EDA) company and, subsequently, internet software companies in CA and Europe.
- Mark has a bachelors degree in Electrical Engineering and Computer Science from Duke University, a masters degree in Computer Engineering from North Carolina State University and an MBA in Quantitative Finance from the Wharton School of Business. He recently completed a Certificate in Quantitative Finance (CQF).
- He dreams of the day when he can create software without encountering a single type error