Further, for each $|z|=r\leq R_{\mathfrak{F}}$, one can observe that

$$\frac{1}{2} \le 1 \le a = \frac{1 + Ar^2}{1 - r^2} \le \frac{1 + AR_{\mathfrak{F}}^2}{1 - R_{\mathfrak{F}}^2} < \frac{3}{2}. \tag{2.6}$$

Infact inequalities (2.5) and (2.6) yields the inequality,

$$\frac{(5+A)r}{1-r^2} \le \frac{3}{2} - \frac{1+Ar^2}{1-r^2},$$

provided $r \leq R_{\mathfrak{F}}$. Due to Lemma 2.5, it is clear that the disc |u-a| < R lies in $\Omega_{\mathcal{LP}}$. Further, at $z_0 = R_{\mathfrak{F}}$ the function $f_{\mathfrak{F}}(z)$ defined as $f_{\mathfrak{F}}(z) = z(1+z)^2/(1-z)^{3+A}$ acts as the extremal function.

Corollary 2.18. Let $f \in \mathcal{F}_{\mathcal{LP}}$, then sharp \mathfrak{F}_1 -radius and \mathfrak{F}_2 -radius for the class $\mathcal{F}_{\mathcal{LP}}$ are respectively given as

- (i) $\mathcal{R}_{\mathfrak{F}_1}(\mathcal{F}_{\mathcal{LP}}) = \sqrt{17} 4 \approx 0.123...$
- (ii) $\mathcal{R}_{\mathfrak{F}_2}(\mathcal{F}_{\mathcal{LP}}) = (\sqrt{41} 6)/5 \approx 0.080...$

Theorem 2.19. Let $\delta = (\pi\sqrt{\beta - 1}/\sqrt{2})$, where $1 < \beta < 3/2$, and suppose $f \in \mathcal{F}_{\mathcal{LP}}$, then $\mathcal{M}(\beta)$ radius is $r_{\beta} = 1 + 2(\cot \delta)^2 - 2|\sec \delta/(\tan^2 \delta)|$.

Proof. From Lemma 2.1 it can be viewed that

$$\operatorname{Re} \mathcal{LP}(z) \le \mathcal{LP}(-r) = 1 - \frac{2}{\pi^2} \left(\log \left(\frac{1 + i\sqrt{r}}{1 - i\sqrt{r}} \right) \right)^2 = 1 + \frac{2}{\pi^2} \left(\tan^{-1} \left(\frac{2\sqrt{r}}{1 - r} \right) \right)^2.$$

As $f \in \mathcal{F}_{\mathcal{LP}}$, then assume that zf'(z)/f(z) = p(z). Due to the above inequality $\operatorname{Re} p(z) \leq \mathcal{LP}(-r)$. Moreover, $\mathcal{LP}(-r) \leq \beta$ provided $r \leq r_{\beta}$, where r_{β} is the root of the equation $(1-\beta)\pi^2 + 2(\tan^{-1}(2\sqrt{r}/(1-r)))^2 = 0$ for $1 < \beta < 3/2$. Equality here occurs for the function $f_0 \in \mathcal{A}$, given by (1.2).

If f(z) and g(z) be analytic functions in |z| < r, then f(z) is said to be majorized by g(z), denoted as $f(z) \ll g(z)$, in |z| < r, if $|f(z)| \le |g(z)|$ in |z| < r. Equivalently, a function f(z) is said to be majorized by g(z), if there exists an analytic $\Psi(z)$ with $|\Psi(z)| \le 1$ in \mathbb{D} and $f(z) = \Psi(z)f(z)$ for all $z \in \mathbb{D}$. For recent update on majorization for starlike and convex function, see [4] [5]. In the next theorem, we determine sharp majorization radius for the class $\mathcal{F}_{\mathcal{LP}}$.

Theorem 2.20. Let $f \in \mathcal{A}$ and suppose that $g \in \mathcal{F}_{\mathcal{LP}}$. Further assume that f(z) is majorized by g(z) in \mathbb{D} , i.e $f(z) \ll g(z)$, then for $|z| \leq r_m \approx 0.4220...$,

$$|f'(z)| \le |g'(z)|,$$

where r_m is the unique positive root of the following equation

$$2\pi^2 r - (1 - r^2)(\pi^2 - 2(\log((1 + \sqrt{r})/(1 - \sqrt{r})))^2) = 0.$$
(2.7)

Proof. Suppose $0 \le r < r^* = \tanh^2(\pi/2\sqrt{2}) \approx 0.646...$, then due to Remark 2.9 we conclude that, $g \in \mathcal{F}_{\mathcal{LP}}$ qualifies to be a Ma-Minda type function in $|z| < r^*$. Further let w(z) be a Schwarz function in \mathbb{D} with w(0) = 0, then by definition of subordination,

$$\frac{zg'(z)}{g(z)} = \mathcal{LP}(w(z)).$$

Note that for each |z| = r < 1, the inequality $|\mathcal{LP}(w(z))| \le |\mathcal{LP}(r)|$ holds. Now for $|z| = r < r^*$, we obtain

$$\left| \frac{g(z)}{g'(z)} \right| = \frac{|z|}{|\mathcal{LP}(z)|} \le \frac{r}{1 - |\mathcal{P}_0(r)|} = \frac{r}{\mathcal{LP}(r)}.$$
 (2.8)

As f(z) is majorized by g(z) in \mathbb{D} , we find from the definition of majorization,

$$f(z) = \psi(z)g(z).$$

Upon differentiating the above equality and suitable rearrangement of terms, we obtain

$$f'(z) = g'(z) \left(\psi'(z) \frac{g(z)}{g'(z)} + \psi(z) \right).$$
 (2.9)