المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم ـ٤ ـ المدّة: ساعتان

# الهيئة الأكاديمية المشتركة



# نموذج مسابقة (يراعى تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

#### I- (4 points)

Dans l'espace rapporté à un repère orthonormé (0; i, j, k), on donne le plan (P) d'équation

$$x + y + z - 1 = 0$$
, la droite (d) d'équations paramétriques 
$$\begin{cases} x = -t - 1 \\ y = t + 5 \\ z = 3t + 9 \end{cases}$$

et H (1, 1, -1) un point de (P).

- 1) Déterminer les coordonnées du point A, intersection de (d) et (P).
- 2) Soit ( $\Delta$ ) la droite passant par H et perpendiculaire à (P).
  - a) Ecrire un système d'équations paramétriques de  $(\Delta)$ .
  - **b)** Vérifier que E (2,2,0) est le point d'intersection de  $(\Delta)$  et (d).
  - c) Calculer l'angle que forme (d) avec (P).
- 3) Soit (Q) le plan qui passe par les deux points O et F (2, 1,0), et perpendiculaire à (P).
  - a) Ecrire une équation du plan (Q).
  - b) Soit M(x,y,z) un point variable de (Q). Montrer que le volume du tétraèdre MEAH est constant.
  - c) Déduire que les deux plans (Q) et (EAH) sont parallèles.

### II- (4 points)

Un jeu consiste à lancer une fléchette sur une cible. La cible est partagée en quatre secteurs, comme l'indique la figure ci-contre.

On note P<sub>0</sub> la probabilité d'obtenir 0 point, P<sub>3</sub> la probabilité d'obtenir 3 points et P<sub>5</sub> la probabilité d'obtenir 5 points.

- 1) Sachant que la fléchette touche la cible à tous les coups et que  $P_5 = \frac{1}{2} P_3$  et  $P_5 = \frac{1}{3} P_0$ , vérifier que  $P_5 = \frac{1}{6}$ .
- 2) Dans cette partie, le jeu consiste à lancer 2 fléchettes au maximum, et on suppose que les 2 lancements sont indépendants. Le joueur gagne la partie s'il obtient 5 au premier lancement et, le jeu s'arrête, ou s'il obtient un total supérieur ou égal à 5.

On considère les événements suivants :

- $G_1$ : « le joueur gagne la partie en 1 lancement ».
- $G_2$ : « le joueur gagne la partie en 2 lancements ».
- G<sub>0</sub> :« le joueur perd la partie ».

Montrer que 
$$P(G_2) = \frac{1}{4}$$
, puis déduire  $P(G_0)$ .



On note X la variable aléatoire correspondant au gain algébrique du joueur pour une partie.

- **a-** Vérifier que les valeurs possibles pour X sont : -2000, 1000 et 3000.
- **b-** Donner la loi de probabilité de X.



**c-** Ce jeu est favorable si E(X) > 0. Le jeu est-il favorable ?

## III- (4points)

Le plan complexe est rapporté à un repère orthonormé direct  $(0; \vec{u}, \vec{v})$ .

On considère les points E, A, B, M et M' d'affixes respectives i, 2, 2i, z et z'.

Soit z' le nombre complexe définie par: z' =  $\frac{2-z}{2+iz}$ .

- 1) Si z = -2i. Ecrire z' sous forme exponentielle.
- 2) a) Montrer que (z'-i)(2+iz) = 2 2i.
  - **b)** Vérifier que 2 + iz = i (z 2i).
  - c) Déduire la valeur de (z'-i)(z-2i).
  - **d)** Calculer BM×EM' et  $(\vec{u}, \overrightarrow{BM}) + (\vec{u}, \overrightarrow{EM}')$ .
- 3) Soit z = x+iy et z' = x'+iy'.
  - a) Calculer x' et y' en fonction de x et y.
  - b) Si z' est un imaginaire pur, montrer que M varie sur une droite dont on déterminera l'équation.
  - c) Calculer, dans ce cas, l'angle  $(\vec{u}, \overrightarrow{BM})$ .

# IV- (8points).

#### Partie A

Soit g la fonction définie sur]0;+ $\infty$ [ par g(x) = ax  $^2$  -2 ln x + b. (C  $_g$ ) sa courbe représentative dans un repère orthonormé. A est le point de (C  $_g$ ) tel que x  $_A$  = 1.

- 1) Trouver a et b sachant que  $(C_g)$  est tangente en A, à la droite (d): y = 2x + 2.
- 2) Dans ce qui suit a = b = 2.
  - **a)** Calculer  $\lim_{x\to 0} g(x)$  et  $\lim_{x\to +\infty} g(x)$ .
  - **b)** Dresser le tableau de variations de g, en déduire que g(x) > 0 pour tout reel x > 0.
- 3) Soit h la fonction définie sur]0;+  $\infty$  [par h(x) =  $x^2$   $\ln^2 x + 2 \ln x 1$ .
  - **a)** Calculer  $\lim_{x\to 0} h(x)$  et  $\lim_{x\to +\infty} h(x)$ .
  - **b)** Montrer que h' (x) =  $\frac{g(x)}{x}$ . En déduire que h est croissante.
  - c) Calculer h(1) et déterminer le signe h(x).

#### Partie B

Soit f la fonction définie sur]0;+ $\infty$  [ par f(x) = x - 1 +  $\frac{1 + \ln^2 x}{x}$ ; ( C ) étant sa courbe représentative

- 1) a) Calculer  $\lim_{x\to 0} f(x)$  et  $\lim_{x\to +\infty} f(x)$ .
  - **b**) Montrer que la droite ( $\Delta$ ) y = x 1 est une asymptote à (C).
  - c) Montrer que (C) est au-dessus de ( $\Delta$ ).
- **2) a)** Montrer que f'(x) =  $\frac{h(x)}{x^2}$ .
  - **b**) Dresser le tableau de variations de f.
  - c) Trouver le point B de(C) où la tangente (T) est parallèle à ( $\Delta$ ).
  - **d**) Calculer  $f(\frac{1}{2})$ , f(2), et tracer  $(\Delta)$ , (T) et (C).
- 3) a) Pour  $x \ge 1$ , montrer que f admet une fonction inverse P, dont on déterminera le domaine de définition.
  - **b**) Tracer la courbe (C') de P, dans le même repère de (C).
- 4) On suppose que  $P(2) = \alpha$ .
  - a) Montrer que  $2,2 < \alpha < 2,3$ .
  - **b)** Montrer que P'(2)=  $\frac{\alpha^2}{2\alpha^2 3\alpha + 2\ln \alpha}$ .

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٤-المدة: ساعتان

# الهيئة الأكاديمية المشتركة قسم: الرياضيات



# أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

| Question I |                                                                                                                                            |      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1          | A(3;1;-3) pour t=-4                                                                                                                        | 0.5  |
| 2.a        | $\begin{cases} x = k+1 \\ y = k+1 \\ z = k-1 \end{cases}$                                                                                  | 0.5  |
|            | $\begin{cases} y = k+1 \end{cases}$                                                                                                        |      |
|            | z = k - 1                                                                                                                                  |      |
| 2.b        | $E \in (\Delta)$ pour t=-3 et $E \in (d)$ pour k=1 $\Rightarrow$ { $E$ } = $(\Delta) \cap (d)$                                             | 0.5  |
| 2.c        | l'angle est $H\widehat{A}E$ et $cosH\widehat{A}E = \frac{2\sqrt{2}}{\sqrt{11}} \approx 0.85 \ alors \ H\widehat{A}E = 32^{\circ}$          | 0.5  |
| 3.a        | $\overrightarrow{OM}.(\overrightarrow{OF} \wedge \overrightarrow{N_P}) = 0 \Rightarrow (Q): x - 2y + z = 0.$                               | 0.75 |
| 3.b        | $V = \frac{1}{6} \left  \overrightarrow{EM} \cdot \left( \overrightarrow{EA} \wedge \overrightarrow{EH} \right) \right  = \frac{2}{3} U^3$ | 0.75 |
| 3.c        | Le volume est indépendant de M, donc la distance de (Q) à (EAH) est constant                                                               | 0.5  |
|            | alors (Q)//(EAH).                                                                                                                          |      |

| Question II |                                                                                                                  |                |               | Note          |   |
|-------------|------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------|---|
| 1           | $P_0+ P_3+P_5=1$ , donc $P_5=\frac{1}{6}$                                                                        |                |               | 0.5           |   |
| 2           | $\frac{1}{2} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3} = \frac{1}{4}$ |                |               | 1             |   |
|             | $1 - \frac{1}{6} - \frac{1}{4} = \frac{7}{12}$                                                                   |                |               | 0.5           |   |
| 3.a         |                                                                                                                  |                |               | 0.5           |   |
|             | $1000 \rightarrow P(G_2)$                                                                                        |                |               |               |   |
|             | $3000 \rightarrow P(G_1)$                                                                                        |                |               |               |   |
| 3.b         | $X = x_i$                                                                                                        | -2000          | 1000          | 3000          | 1 |
|             | $p(X = x_i)$                                                                                                     | $\frac{7}{12}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |   |
| 3.c         | E(X) = $\frac{-1250}{3}$ < 0, donc, cle jeu n'est pas favorable.                                                 |                |               | 0.5           |   |

|     | Question III                                         |     |
|-----|------------------------------------------------------|-----|
| 1   | $z' = \frac{\sqrt{2}}{2}e^{\frac{i\pi}{4}}$          | 0.5 |
| 2.a | $\left(\frac{2-z}{2+iz}-i\right)(2+iz)=2-2i$         | 0.5 |
| 2.b | $2 + iz = i\left(z + \frac{2}{i}\right) = i(z - 2i)$ | 0.5 |

| 2.c $(z'-i)(z-2i) = \frac{2-2i}{i(z-2i)}(z-2i) = \frac{2-2i}{i} = -2-2i$                                                                                          | 0.5                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2.d $EM' \times BM =  -2 - 2i  = 2\sqrt{2} ; (\overrightarrow{U}, \overrightarrow{BM}) + (\overrightarrow{U}, \overrightarrow{EM'}) = \arg(-2 - 2i)$              | $-2i\big) = \frac{5\pi}{4} + 2k\pi \qquad \qquad \textbf{0.5}$ |
| 3.a $x' = \frac{4 - 2x - 2y}{x^2 + (2 - y)^2}; y' = \frac{x^2 + y^2 - 2x - 2y}{x^2 + (2 - y)^2}$                                                                  | 0.5                                                            |
| <b>3.b</b> z' est imaginaire pur, alors x'=0 et y' $\neq$ 0 donc M varie sur la de $2-x-y=0$ , privée des deux points A et B.                                     | roite d'équation 0.5                                           |
| 3.c $(\overrightarrow{U}; \overrightarrow{EM'}) = \pm \frac{\pi}{2} \text{ alors } (\overrightarrow{U}, \overrightarrow{BM}) = \frac{3\pi}{4} ou \frac{-\pi}{4}.$ | 0.5                                                            |

|            | Question IV                                                                                          |             | Note |  |
|------------|------------------------------------------------------------------------------------------------------|-------------|------|--|
| Part       | tie A                                                                                                |             |      |  |
| 1          | g(1) = 4 et $g'(1)=2$ alors $a=b=2$                                                                  |             |      |  |
| 2.a        | $\lim_{x \to 0} g(x) = +\infty  \lim_{x \to +\infty} g(x) = +\infty$                                 |             |      |  |
| 2.b        | $g'(x) = 4x - \frac{2}{x} = \frac{4x^2 - 2}{x}$                                                      |             |      |  |
|            | $\left \begin{array}{c c} \mathbf{x} & \\ 0 & \frac{\sqrt{2}}{2} \end{array}\right $                 | +∞          |      |  |
|            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                | <b>→</b> +∞ |      |  |
|            | $3-2\ln\frac{\sqrt{2}}{2}$                                                                           |             |      |  |
|            | puisque min $(g(x)>0)$ alors $g(x)>0$ dans son domaine de définition.                                |             |      |  |
| 3.a        | $\lim_{x \to 0} h(x) = -\infty  \lim_{x \to +\infty} h(x) = +\infty$                                 |             |      |  |
| 3.b        | $h'(x) = 2x - \frac{2\ln x}{x} + \frac{2}{x} = \frac{g(x)}{x}$ et h'(x) > 0 alors h est croissante.  |             |      |  |
| 3.c        | x $x$ $xh(1) = 0$ alors $h(x) > 0$ pour $x > 1$ et $h(x) < 0$ pour $0 < x < 1$ .                     |             | 0.25 |  |
| Part       |                                                                                                      |             |      |  |
| 1.a        | $\lim_{x \to 0} f(x) = +\infty \lim_{x \to +\infty} f(x) = +\infty$                                  |             |      |  |
| 1.b        | $\lim_{x \to +\infty} (f(x) - (x-1)) = \lim_{x \to +\infty} \frac{1 + \ln^2 x}{x} = 0$               |             |      |  |
|            | alors $(\Delta)$ est une asymptote oblique $\hat{a}$ (C).                                            |             |      |  |
| 1.c        | $f(x) - (x - 1) = \frac{1 + \ln^2 x}{x} > 0 \text{ alors } (\Delta) \text{ est au dessous de } (C).$ |             |      |  |
| 2.a        |                                                                                                      |             |      |  |
| <b>2.b</b> | <b>x</b> 0 1                                                                                         | +∞          | 0.5  |  |
|            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                | <b>→</b> +∞ |      |  |
|            | 1 1                                                                                                  | , +∞        |      |  |

| 2.c |                                                                                                                                                   | 1    |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|     | f(0.5) = 2.46 et $f(2) = 1.74$                                                                                                                    | -    |  |
|     | 6 - G - G - G - G - G - G - G - G - G -                                                                                                           |      |  |
|     | r -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1                                                                                                      |      |  |
| 2.d | $f'(x) = 1$ , alors $h(x) = x^2$ par suite $(\ln x - 1)^2 = 0$ donc $B(e, f(e))$ .                                                                | 0.5  |  |
| 3.a | Pour $x \in [1; +\infty[$ , f définie continue et strictement croissante, alors elle admet une                                                    | 0.25 |  |
|     | fonction réciproque $P = f^{-1}$ et $D_P = [1; +\infty[$                                                                                          |      |  |
| 3.b | Le graphe de P (C') est symétrique à (C) par rapport à la première bissectrice d'équation $y = x$ .                                               | 0.5  |  |
| 4.a | $(2, \alpha) \in (C') \Rightarrow (\alpha, 2) \in (C) \text{ avec } \alpha \ge 1$                                                                 | 0.5  |  |
|     | $f(\alpha) = 2, f(2.2) < 2 \text{ et } f(2.3) > 2$                                                                                                |      |  |
| 4 - | puisque f est croissante pour $x \ge 1$ alors $2.2 < \alpha < 2.3$                                                                                |      |  |
| 4.b | $P'(2) = \frac{1}{f'(\alpha)} = \frac{\alpha^2}{h(\alpha)} = \frac{\alpha^2}{\alpha^2 - \ln^2 \alpha + 2\ln \alpha - 1}$ ou bien                  | 0.5  |  |
|     | $f(\alpha) = 2 \Rightarrow \alpha^2 - \alpha + 1 + \ln^2 \alpha = 2\alpha \Rightarrow P'(2) = \frac{\alpha^2}{2\alpha^2 - 3\alpha + 2\ln \alpha}$ |      |  |