РГПУ им. А.И. Герцена

Тема: «Основные понятия линейного программирования» Свистунова М. П., 2ИВТ (1) 2 подгруппа

Лабораторная работа №3

Задача №1.

Для изготовления п видов изделий И1, И2, ..., Ип необходимы ресурсы m видов: трудовые, материальные, финансовые и др. Известно необходимое количество отдельного i-ro ресурса для изготовления каждого j-ro изделия. Назовем эту величину нормой расхода. Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент. Известна прибыль Пj, получаемая предприятием от изготовления каждого j-ro изделия. Требуется определить, какие изделия и в каком количестве должно изготавливать предприятие, чтобы обеспечить получение максимальной прибыли. Необходимая исходная информация представлена в таблице.

Используемые	Из:	Изготавливаемые переменные							
ресурсы	И1	ресурсов							
Трудовые	3	5	2	7	15				
Материальные	4	3	3	5	9				
Финансовые	5	6	4	8	30				
Прибыль Пј	40	50	30	20					

1. Математическая модель задачи:

$$\begin{cases} 40x_1 + 50x_2 + 30x_3 + 20x_4 \to max \\ 3x_1 + 5x_2 + 2x_3 + 7x_4 \le 15 \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 \le 9 \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 \le 30 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

2. Канонический вид:

$$\begin{cases} 40x_1 + 50x_2 + 30x_3 + 20x_4 \to max \\ 3x_1 + 5x_2 + 2x_3 + 7x_4 + x_5 = 15 \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 + x_6 = 9 \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 + x_7 = 30 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

3. Исходная симплекс-таблица:

Базис	Переменные								
Базис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	D_{i}	
x_5	3	5	2	7	1	0	0	15	
x_6	4	3	3	5	0	1	0	9	
x_7	5	6	4	8	0	0	1	30	
c_j	40	50	30	20	0	0	0	0	

Допустимое базисное решение: (0, 0, 0, 0, 15, 9, 30), L = 0.

Разрешающий столбец:

$$c_r = \max\{c_i\} = \max\{40, 50, 30, 20, 0, 0, 0\} = 50 => r = 2$$

Разрешающая строка:

If
$$a_{ir} > 0$$
, $D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} = \min\left\{\frac{15}{5}, \frac{9}{3}, \frac{30}{6}\right\} = \min\{3, 3, 5\} = 3 => s = 1$

Разрешающий элемент:

$$a_{sr} = a_{12} = 5$$

Из базисного решения исключается x_5 .

4. Пересчет элементов симплекс-таблицы:

Базис	Переменные							
Вазис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i
x_2	$\frac{3}{5}$	1	$\frac{2}{5}$	7 5	$\frac{1}{5}$	0	0	3
x_6	<u>11</u> 5	0	9 5	4 5	$-\frac{3}{5}$	1	0	0
<i>x</i> ₇	7 5	0	8 5	$-\frac{2}{5}$	$-\frac{6}{5}$	0	1	12
c_{j}	10	0	10	-50	-10	0	0	-150

Допустимое базисное решение: :(0, 3, 0, 0, 0, 0, 12), L = -150.

Разрешающий столбец:

$$c_r = \max\{c_j\} = \max\{10, 0, 10, -50, -10, 0, 0\} = 10 => r = 1$$

Разрешающая строка:

$$If \ a_{ir} > 0, D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} = \min\left\{3: \frac{3}{5}, 0: \frac{11}{5}, 12: \frac{7}{5}\right\} = \min\left\{5, 0, \frac{60}{7}\right\} = 0 =>$$

$$=> s = 2$$

Разрешающий элемент:

$$a_{sr} = a_{21} = \frac{11}{5}$$

Из базисного решения исключается x_6 .

5. Пересчет элементов симплекс-таблицы:

Базис	Переменные								
Вазис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	
x_2	0	1	$-\frac{1}{11}$	$\frac{13}{11}$	$\frac{4}{11}$	$-\frac{3}{11}$	0	3	
x_1	1	0	9 11	$\frac{4}{11}$	$-\frac{3}{11}$	5 11	0	0	
<i>x</i> ₇	0	0	5 11	$-\frac{10}{11}$	$-\frac{9}{11}$	$-\frac{7}{11}$	1	12	
c_j	0	0	$\frac{20}{11}$	$-\frac{590}{11}$	$-\frac{80}{11}$	$-\frac{50}{11}$	0	-150	

Допустимое базисное решение: :(0, 3, 0, 0, 0, 0, 12), L = -150.

Разрешающий столбец:

$$c_r = \max\{c_j\} = \max\{0, 0, \frac{20}{11}, -\frac{590}{11}, -\frac{80}{11}, -\frac{50}{11}, 0\} = \frac{20}{11} = > r = 3$$

Разрешающая строка:

If
$$a_{ir} > 0$$
, $D_s = \min\left\{\frac{b_i}{a_{ir}}\right\} = \min\left\{0: \frac{9}{11}, 12: \frac{5}{11}\right\} = \min\left\{0, \frac{132}{5}\right\} = 0 =>$
=> $s = 2$

Разрешающий элемент:

$$a_{sr} = a_{23} = \frac{9}{11}$$

Из базисного решения исключается x_1 .

6. Пересчет элементов симплекс-таблицы:

Базис	Переменные								
Базис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	
x_2	$\frac{1}{9}$	1	0	$\frac{11}{9}$	$\frac{1}{3}$	$-\frac{2}{9}$	0	3	
x_3	$\frac{11}{9}$	0	1	4 9	$-\frac{1}{3}$	<u>5</u> 9	0	0	
<i>x</i> ₇	$-\frac{5}{9}$	0	0	$-\frac{10}{9}$	$-\frac{2}{3}$	$-\frac{8}{9}$	1	12	

C _j	$-\frac{20}{9}$	0	0	$-\frac{490}{9}$	$-\frac{20}{3}$	$-\frac{350}{99}$	0	-150
	9			9	3	99		

Допустимое базисное решение:(0, 3, 0, 0, 0, 0, 12), L = -150.

$$c_j \leq 0 = >$$
 решение $(0,3,0,0,0,0,12)$ является оптимальным. $F_{\max} = 40*0+50*3+30*0+20*0 = 150$

Вывод: для получения наибольшей прибыли, равной 150 денежных единиц, предприятие должно изготовить 3 единицы продукции вида И2, (продукцию вида И1, И3, И4 в данных условиях производить не выгодно) при этом трудовые ресурсы будут использованы полностью, а 12 единиц финансовых ресурсов останутся неизрасходованными.