Компьютерное Зрение Лекция №1, осень 2024 Введение в цифровые изображения

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

Координатная система

Региприческое наблюдение, что восприятие хроматической составляющей цвета описывается примерно линейным законом

Система CIE

Свойства системы:

- Y соответствует видимой части спектра
- X и Z описывают хроматическую компоненту
- Точки (1,0,0), (0,1,0), (0,0,1) мнимые базовые цвета
- X, Y, Z изменяются от 0 до ∞

Значения трехцветного XYZ для цвета, где I λ – спектральная плотность какой-либо энергетической фотометрической величины :

$$X = \int_{380}^{780} I(\lambda)\bar{x}(\lambda)d\lambda$$
$$Y = \int_{380}^{780} I(\lambda)\bar{y}(\lambda)d\lambda$$
$$Z = \int_{380}^{780} I(\lambda)\bar{z}(\lambda)d\lambda$$

5

Цветовое пространство HSV (HSB)/HSI/HSL

$$I = \frac{R + G + B}{3}$$

$$L = \frac{\max(R, G, B) + \min(R, G, B)}{2}$$

$$V = \max(R, G, B)$$

Цветовое пространство YCbCr

Преобразование в пространство YCbCr:

$$Y = k_{r}R0 + (1 - k_{b})G + k_{b}B$$

$$C_{r} = \frac{0.5}{1 - k_{r}}(R - Y)$$

$$k_{r} + k_{s} + k_{b} = 1$$

$$k_{r}$$
, $k_{\&}$, k_{b} – весовые коэффиценты

Источники для погружения в теорию цвета

Лекция: <u>Как устроен цвет - Дмитрий Николаев,</u> <u>заведующий сектором зрительных систем ИППИ РАН</u>

Статья: У цветового треугольника не два, а один угол

Статья: <u>Как устроен формат JPEG</u>

Применение цвета в задачах

Построение гистограмм по цветам для индексированного поиска

Применение цвета в **Задачах** Поиск по заданному цвету – кожа

человека

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

Цифровое изображение

$$f(x,y) = \begin{bmatrix} f(0,0) & \cdots & f(0,n-1) \\ \vdots & \ddots & \vdots \\ f(m-1,0) & \cdots & f(m-1,n-1) \end{bmatrix}$$

0 \le f(x,y) \le L

Обычно
$$L = 255 - uint8$$

Типы

изображений

арно В градации

)

Цветно

е

Binary представление изображения

Grayscale представление изображения

Color представление изображения – один канал

Color представление

N: -

Представление части

ИЗОБРАЖЕНИЯ Изображение содержит дискретное количество пикселей

Значение пикселя:

- «шкала серого»
- (или «интенсивность»): [0,255]

Представление части

ИЗОБРАЖЕНИЯ Изображение содержит дискретное количество пикселей

Значение пикселя:

– «grayscale» (или «интенсивность»): [0,255]

- «color»
 - RGB: [R, G, B]
 - Lab: [L, a, b]
 - HSV: [H, S, V]

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

- Изображения обычно цифровые (дискретные):
 - Пример 2D пространства на регулярной сетке

• Представлено в виде матрицы целочисленных

значений

		m				ZIX	
62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

Div

Декартовые координаты

$$f[n,m] = \begin{bmatrix} \ddots & & \vdots & & \\ & f[-1,1] & f[0,1] & f[1,1] \\ & \ddots & f[-1,0] & \underline{f[0,0]} & f[1,0] & \dots \\ & f[-1,-1] & f[0,-1] & f[1,-1] & \\ & \vdots & \ddots & \end{bmatrix}$$

Изображение как функция f от R^2 до R^M :

• f(x, y) дает интенсивность в позиции (x, y)

• Определяется через прямоугольник, с конечным

диапазоном:

 $f: [a,b] \times [c,d] \square [0,255]$

Изображение как функция f от R^2 до R^M :

- \circ f(x, y) дает интенсивность в позиции (x, y)
- Определяется через прямоугольник, с конечным диапазоном:

$$f: [a,b] \times [c,d] \square [0,25]$$
 $f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$

Гомогенные координаты

Обычные координаты $(x y)^T$

$$R\phi = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$$

Гомогенные координаты $(sx \ sy \ s)^T$, где $s \ne 0$, но обычно s = 1

$$\tilde{x} = \begin{pmatrix} x \\ 1 \end{pmatrix}$$

$$R_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0\\ \sin(\phi) & \cos(\phi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Аффинные трансформации

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & t_{x} \\ \sin(\phi) & \cos(\phi) & t_{y} \\ 0 & 0 & 1 \end{pmatrix}$$

Трансформация перспективы

$$P=egin{pmatrix} a&b&c\d&e&f\g&h&1 \end{pmatrix}$$
 $P_{33}=1$, т.к. $P\sim aP\ orall a
eq 0$

Трансформац

Transform of unit square	Name	Transformation matrix	DoF
	Translation	$\begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix}$	2
	Rotation	$egin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \ \sin(\phi) & \cos(\phi) & 0 \ 0 & 0 & 1 \end{pmatrix}$	1
	Rigid Body	$\begin{pmatrix} \cos(\phi) & -\sin(\phi) & t_x \\ \sin(\phi) & \cos(\phi) & t_y \\ 0 & 0 & 1 \end{pmatrix}$	3
	Affine	$\begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix}$	6
	Projective Transform	$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{pmatrix}$	8

DoF – Degrees of Freedom

Совмещение преобразований. Аффинное преобразование

$$R = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$S=egin{pmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & 1 \end{pmatrix}$$

• Сдвиг

$$T = egin{pmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{pmatrix}$$

Итоговую матрицу получаем, умножив матрицы преобразований в следующем порядке:

$$M = T \cdot S \cdot R$$

Итоги

- Рассмотрены цветовые пространства: RGB, XYZ, HSV, Lab, YCbCr
- Показаны виды представления изображений: Binary, Grayscale, Color
- Изучена интерпретация изображения в виде двумерной дискретной функции