Policy Gradient Theorem

We are interested in finding the gradient of the statevalue function $\nabla_{\theta}v_{\pi_{\theta}}(s)$ with respect to the policy parameters θ as a function of the policy gradient $\nabla_{\theta}\pi_{\theta}(a|s)$. By applying thre bellman equation we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) =
abla_{ heta}\left[\sum_{a}\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a)
ight]$$

By the identity abla[a+b] =
abla a +
abla b we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{a}
abla_{ heta}[\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a)]$$

By the identity $abla[a\cdot b]=b\cdot
abla a+a\cdot
abla b$ we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{a}
abla_{ heta}\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a) + \pi_{ heta}(a|s)
abla_{ heta}q_{\pi_{ heta}}(s,a)$$

By expanding the last $q_{\pi_{\theta}}(s,a)$ term according to the bellman equation we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{a}
abla_{ heta}\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a) + \pi_{ heta}(a|s)
abla_{ heta} \left[\sum_{r,s'} p(s',r|s,a)[r + \gamma v_{\pi_{ heta}}(s')]
ight]$$

By the identity abla[a+b] =
abla a +
abla b we get:

$$egin{aligned}
abla_{ heta} v_{\pi_{ heta}}(s) &= \sum_{a}
abla_{ heta} \pi_{ heta}(a|s) q_{\pi_{ heta}}(s,a) + \pi_{ heta}(a|s) \left[\sum_{r,s'} p(s',r|s,a) [
abla_{ heta} r + \gamma
abla_{ heta} v_{\pi_{ heta}}(s')]
ight] \end{aligned}$$

Since r is conditionally independent of θ i.e. $p(r|s,a,s',\theta)=p(r|s,a,s')$ we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{a}
abla_{ heta}\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a) + \pi_{ heta}(a|s)\sum_{r,s'}p(s',r|s,a)\gamma
abla_{ heta}v_{\pi_{ heta}}(s')$$

At this point we have a recursive relation ship of $\nabla_{\theta} v_{\pi_{\theta}}(s)$ to it self $\nabla_{\theta} v_{\pi_{\theta}}(s')$. Therefore we can substitute s with s' and self insert the recursive relation for one step.

$$abla_{ heta}v_{\pi_{ heta}}(s) = \left[\sum_{a}
abla_{ heta}\pi_{ heta}(a|s)q_{\pi_{ heta}}(s,a) + \pi_{ heta}(a|s)\left[\sum_{r,s'}p(s',r|s,a)
ight.$$

$$\gamma \left[\sum_{a'}
abla_{ heta} \pi_{ heta}(a'|s') q_{\pi_{ heta}}(s',a') + \pi_{ heta}(a'|s') \left[\sum_{r',s''} p(s'',r'|s',a') \gamma
abla_{ heta} v_{\pi_{ heta}}(s'')
ight]
ight]
ight]$$

Repeating this step leads to an infinite regression. For this regression we can seperate sums according to the distribution identity $\sum_x c(x)\cdot [f(x)+g(x)]=\sum_x c(x)\cdot f(x)+\sum_x c(x)\cdot g(x)$. By applying this step and pulling γ outside of the sums we get:

We can define the path probability of getting from state s to state \hat{s} in exactly t timesteps under policy π_{θ} as $\Pr(s \to \hat{s}, t, \pi_{\theta})$ with the following properties:

$$\Pr(s o \hat{s}, 0, \pi_{ heta}) = egin{cases} 1 & ext{if } s = \hat{s} \ 0 & ext{else} \end{cases} \ \Pr(s o s'', t + 1, \pi_{ heta}) = \sum_{a} \pi_{ heta}(a|s) \sum_{s'} p(s'|a, s) \Pr(s' o s'', t, \pi_{ heta}) \ \end{cases}$$

By induction we can show that this path probability \Pr can be used to substitue the factors of the infinite regression sum for $\nabla_{\theta} v_{\pi_{\theta}}(s)$.

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{\hat{s}} \sum_{t=0}^{\infty} \gamma^{t} ext{Pr}(s
ightarrow \hat{s}, t, \pi_{ heta}) \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s}, a)$$

Since $\sum_a \nabla_\theta \pi_\theta(a|\hat{s}) q(\hat{s},a)$ does not depend on the variable t we can write the previous equation as:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{\hat{s}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathrm{Pr}(s
ightarrow \hat{s}, t, \pi_{ heta})
ight] \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s}, a)$$

The term $\sum_{t=0}^{\infty} \gamma^t \Pr(s \to \hat{s}, t, \pi_{\theta})$ is the discounted expected time spend in state \hat{s} for an episode. It is a quantitative measure of how much state \hat{s} contributes to state s in absolute terms. This measure will be abreviated as $\eta(\hat{s})$:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{\hat{s}} \eta(\hat{s}) \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)$$

By inserting the independent factor $\frac{\sum_{\hat{s}} \eta(\hat{s})}{\sum_{\hat{s}} \eta(\hat{s})} = 1$ we get the following equation.

$$abla_{ heta}v_{\pi_{ heta}}(s) = \sum_{\hat{s}} rac{\sum_{\hat{s}} \eta(\hat{s})}{\sum_{\hat{s}} \eta(\hat{s})} \eta(\hat{s}) \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)$$

$$abla_{ heta}v_{\pi_{ heta}}(s) = \left[\sum_{\hat{s}} \eta(\hat{s})
ight] \sum_{\hat{s}} rac{\eta(\hat{s})}{\sum_{\hat{s}} \eta(\hat{s})} \sum_{a}
abla_{ heta}\pi_{ heta}(a|\hat{s})q(\hat{s},a)$$

By substituting $rac{\eta(\hat{s})}{\sum_{\hat{s}}\eta(\hat{s})}$ with $\mu(s)$ we get:

$$abla_{ heta}v_{\pi_{ heta}}(s) = \left[\sum_{\hat{s}} \eta(\hat{s})
ight] \sum_{\hat{s}} \mu(\hat{s}) \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)$$

By examining $\mu(\hat{s})$ we can see that μ gives the probability of being in state \hat{s} over after infinite time steps where each step is weighted by the discountfactor γ to account for the relevance that the given state in time step t has for the overall value estimation. Therefore we can drop the proportionality constant $\sum_{\hat{s}} \eta(\hat{s})$ to get:

$$abla_{ heta} v_{\pi_{ heta}}(s) \propto \sum_{\hat{s}} \mu(\hat{s}) \sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)$$

$$egin{aligned}
abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s}} \left[\sum_{a}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)
ight] \end{aligned}$$

Further we can add the factor $\frac{\pi_{\theta}(a|\hat{s})}{\pi_{\theta}(a|\hat{s})}=1$ to obtain:

$$abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s}} \left[\sum_{a} rac{\pi_{ heta}(a|\hat{s})}{\pi_{ heta}(a|\hat{s})}
abla_{ heta} \pi_{ heta}(a|\hat{s}) q(\hat{s},a)
ight]$$

$$egin{aligned}
abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s}} \left[\sum_{a} \pi_{ heta}(a|\hat{s}) rac{
abla_{ heta} \pi_{ heta}(a|\hat{s})}{\pi_{ heta}(a|\hat{s})} q(\hat{s},a)
ight] \end{aligned}$$

$$egin{aligned}
abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s}} \left[\mathbb{E}_a rac{
abla_{ heta} \pi_{ heta}(a|\hat{s})}{\pi_{ heta}(a|\hat{s})} q(\hat{s},a)
ight] \end{aligned}$$

$$abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s},a} \left[rac{
abla_{ heta} \pi_{ heta}(a|\hat{s})}{\pi_{ heta}(a|\hat{s})} q(\hat{s},a)
ight]$$

By the identity $rac{
abla x}{x} =
abla \ln(x)$ we get the update for the **REINFORCE** algorithm:

 $abla_{ heta} v_{\pi_{ heta}}(s) \propto \mathbb{E}_{\hat{s},a} \left[q(\hat{s},a)
abla_{ heta} ext{ln} \pi_{ heta}(a|\hat{s})
ight]$