Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Нелинейное программирование. Условная оптимизация» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 2 мая 2018 г.

Содержание

1	Техническое задание									
2	Исх	кодные данные	3							
3	Решение методом Лагранжа									
4	Необходимые условия оптимальности при линейных ограничениях									
5	Pen	пение методом Била	5							
6	Pen	пение методом проекции градиента	12							
7		обходимые условия оптимальности при квадратичных огра нениях	- 15							
8	Pen	пение методом штрафных функций	15							
9	Pen	пение методом возможных направлений	17							
C	пис	ок иллюстраций								
	3.1 5.1 6.1 8.1 9.1	Решение задачи методом Лагранжа	11 14 16							
С	пис	ок таблиц								
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 8.1	Базис x_3, x_4	77 77 88 88 99 100							
	9.1	Решение методом возможных направлений	17							

1. Техническое задание

- 1. Решить задачу методом Лагранжа при заданном ограничении;
- 2. Решить задачу методом Била при заданных ограничениях;
- 3. Решить задачу методом проекции градиента при заданных ограничениях;
- 4. Решить задачу методом штрафных функций или методом барьерных функций при заданном ограничении;
- 5. Решить задачу методом возможных направлений при заданном ограничении.

2. Исходные данные

Вариант 32 Дана задача нелинейного программирования:

$$\max f(X) = \max \left(-31x_1^2 - 34x_2^2 + 4x_1x_2 + 286x_1 + 388x_2\right)$$

Заданы коэффициенты a_{ij} :

$$a_{11} = 7$$
 $a_{21} = 10$ $a_{31} = -1$ $a_{41} = 0$ $a_{51} = 0$ $a_{12} = 12$ $a_{22} = 8$ $a_{32} = 0$ $a_{42} = -1$ $a_{52} = 1$

Заданы коэффициенты b_i :

$$b_1 = 84$$
 $b_2 = 80$ $b_3 = 0$ $b_4 = 0$ $b_5 = 5$ $b_6 = 400$

Заданы коэффициенты d_i :

$$d_1 = 16$$
 $d_2 = 25$

3. Решение методом Лагранжа

Решим задачу при ограничении:

$$a_{51}x_1 + a_{52}x_2 = b_5 \iff x_2 = 5 \iff x_2 - 5 = 0$$

В методе Лагранжа исходная задача условной оптимизации сводится к задаче безусловной оптимизации — задаче поиска стационарной точки функции Лагранжа, являющийся точкой локального максимума функции L(X,V) по аргументу X. Запишем функцию Лагранжа:

$$L(X,V) = -31x_1^2 - 34x_2^2 + 4x_1x_2 + 286x_1 + 388x_2 + V_1(x_2 - 5)$$

Сформулируем условие стационарности:

$$\begin{cases} \frac{\partial L}{\partial x_1} = -62x_1 + 4x_2 + 286 = 0\\ \frac{\partial L}{\partial x_2} = -68x_2 + 4x_1 + 388 + V_1 = 0\\ \frac{\partial L}{\partial V_1} = x_2 - 5 = 0 \end{cases}$$

Решая систему уравнений получим:

$$\begin{cases} x_2 = 5 \\ -62x_1 + 20 + 286 = 0 \\ -340 + 4x_1 + 388 + V_1 = 0 \end{cases} \Rightarrow \begin{cases} x_2 = 5 \\ x_1 \approx \frac{286}{62} \approx 4.94 \\ V_1 \approx -67.76 \end{cases}$$

Определим матрицу Гессе $H_L(X,V)$ и убедимся в ее отрицательной определенности:

$$H_L(X,V) = \begin{pmatrix} -62 & 4\\ 4 & -68 \end{pmatrix} = H_L$$

Критерий отрицательной определенности квадратичной формы. Для отрицательной определенности квадратичной формы необходимо и достаточно, чтобы угловые миноры четного порядка ее матрицы были положительны, а нечетного порядка — отрицательны.

Найдем главные миноры H_L :

$$\Delta_1 = \begin{vmatrix} -62 \end{vmatrix} = -62$$

$$\Delta_2 = \begin{vmatrix} -62 & 4 \\ 4 & -68 \end{vmatrix} = 4200$$

По критерию отрицательной определенности квадратичной формы, матрица H отрицательно определена. Таким образом, в соответствии с условиями второго порядка точка (X^*,V^*) является точкой максимума L(X,V) по X, а точка $X^* \approx (4.94,5)$ — решением задачи условной оптимизации, $f(X^*) \approx 1845$.

Рис. 3.1: Решение задачи методом Лагранжа

4. Необходимые условия оптимальности при линейных ограничениях

Запишем необходимые условия оптимальности Куна-Такера для задачи при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \leqslant b_1 \\ a_{21}x_1 + a_{22}x_2 \leqslant b_2 \\ a_{31}x_1 + a_{32}x_2 \leqslant b_3 \\ a_{41}x_1 + a_{42}x_2 \leqslant b_4 \end{cases} \iff \begin{cases} 7x_1 + 12x_2 \leqslant 84 \\ 10x_1 + 8x_2 \leqslant 80 \\ -x_1 \leqslant 0 \\ -x_2 \leqslant 0 \end{cases}$$

$$\begin{cases} \frac{\partial f}{\partial x_1} + u_1 \frac{\partial g_1}{\partial x_1} + u_2 \frac{\partial g_2}{\partial x_1} + u_3 \frac{\partial g_3}{\partial x_1} + u_4 \frac{\partial g_4}{\partial x_1} = 0\\ \frac{\partial f}{\partial x_2} + u_1 \frac{\partial g_1}{\partial x_2} + u_2 \frac{\partial g_2}{\partial x_2} + u_3 \frac{\partial g_3}{\partial x_2} + u_4 \frac{\partial g_4}{\partial x_2} = 0\\ u_i g_i = 0, i = \overline{1, 4}\\ u_i \leqslant 0, i = \overline{1, 4} \end{cases}$$

$$\begin{cases}
-62x_1 + 4x_2 + 286 + 7u_1 + 10u_2 - u_3 &= 0 \\
-68x_2 + 4x_1 + 388 + 12u_1 + 8u_2 - u_4 &= 0
\end{cases}$$

$$\begin{cases}
u_1(7x_1 + 12x_2 - 84) &= 0 \\
u_2(10x_1 + 8x_2) &= 0 \\
u_3x_1 &= 0 \\
u_4x_2 &= 0 \\
u_i &\leq 0, i = \overline{1, 4}
\end{cases}$$

5. Решение методом Била

Запишем ограничения в канонической форме:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \leqslant b_1 \\ a_{21}x_1 + a_{22}x_2 \leqslant b_2 \\ a_{31}x_1 + a_{32}x_2 \leqslant b_3 \\ a_{41}x_1 + a_{42}x_2 \leqslant b_4 \end{cases} \iff \begin{cases} 7x_1 + 12x_2 \leqslant 84 \\ 10x_1 + 8x_2 \leqslant 80 \\ -x_1 \leqslant 0 \\ -x_2 \leqslant 0 \end{cases} \iff \begin{cases} 7x_1 + 12x_2 + x_3 = 84 \\ 10x_1 + 8x_2 + x_4 = 80 \\ x_i \geqslant 0, i = \overline{1, 4} \end{cases}$$

Найдем частные производные:

$$\begin{cases} \frac{\partial f}{\partial x_1} = -62x_1 + 4x_2 + 286\\ \frac{\partial f}{\partial x_2} = -68x_2 + 4x_1 + 388 \end{cases}$$

Пусть $B_0 = \begin{pmatrix} 3 & 4 \end{pmatrix}$, тогда $X^{(0)} = \begin{pmatrix} 0 & 0 & 84 & 80 \end{pmatrix}^T$. Заполним симплекстаблицу для опорной точки $X^{(0)}$, записав в последнюю строку формулы для частных производных:

Таблица 5.1: Базис x_3, x_4

$X^{(0)}$	x_1	x_2	b
x_3	-7	-12	84
x_4	-10	-8	80
$\partial f/\partial x_j, u_j$	$-62x_1 + 4x_2 + 286$	$-68x_2 + 4x_1 + 388$	

Базис является допустимым, так как $b\geqslant 0$, но не является оптимальным, так как $c=\begin{pmatrix} 286 & 388 \end{pmatrix} \not\leqslant 0.$

Выберем как разрешающий столбец переменную x_k , соответствующую максимальному значению производной целевой функции в точке $X^{(0)}$:

$$k = \underset{i}{\operatorname{argmax}} \left\{ \frac{\partial f}{\partial x_i} \left(X^{(0)} \right) \right\} = 2 \Rightarrow x_2.$$

Оценим ситуацию в опорной точке $X^{(0)}$. Найдем соотношения между приращениями свободной переменной x_2 и изменениями базисных переменных x_3 и x_4 и частной производной по x_2 :

- $\frac{\partial f}{\partial x_2} \left(X^{(0)} \right) = 0$ при $x_2 \approx 5.7$
- $x_3 = 0$ при $x_2 = 7$
- $x_4 = 0$ при $x_2 = 10$

Производная обращается в ноль раньше базисных переменных, поэтому введем в задачу новую свободную переменную:

$$u_1 = \frac{1}{4} \cdot \frac{\partial f}{\partial x_2} = x_1 - 17x_2 + 97 \iff x_2 = \frac{1}{17} (x_1 - u_1 + 97)$$

Заполним промежуточную таблицу, содержащую строку для новой переменной u_1 . На пересечении u_1 и x_2 находится разрешающий элемент -68.

Таблица 5.2: Промежуточная таблица базиса x_3, x_4 и u_1

$X^{(0)} \to X^{(1)}$	x_1	x_2	b
u_1	1	-17	97
x_3	-7	-12	84
x_4	-10	-8	80

Произведем перерасчет в соответствии с правилом перерасчета симплекстаблиц.

Таблица 5.3: Промежуточная таблица базиса x_2 , x_3 и x_4

$X^{(0)} \to X^{(1)}$	x_1	u_1	b
x_2	-1	1	-97
x_3	131	-12	-264
x_4	178	-8	-584

Поделим на разрешающий элемент -17, а также выразим целевую функцию через свободные переменные и найдем частные производные:

$$f(u_1, x_1) = -31x_1^2 - \frac{2}{17}(x_1 - u_1 + 97)^2 + \frac{4x_1}{17}(x_1 - u_1 + 97) + 286x_1 + \frac{388}{17}(x_1 - u_1 + 97)$$

$$\begin{cases} \frac{\partial f}{\partial u_1} = \frac{4}{17} (x_1 - u_1 + 97) - \frac{4x_1}{17} - \frac{388}{17} = -\frac{4u_1}{17} \\ \frac{\partial f}{\partial x_1} = -62x_1 + \frac{4x_1}{17} + 286 + \frac{388}{17} = -\frac{1050x_1}{17} + \frac{5250}{17} \end{cases}$$

Таблица 5.4: Базис x_2 , x_3 и x_4

$X^{(1)}$	x_1	u_1	b
x_2	1/17	$^{-1}\!/_{17}$	97/17
x_3	$^{-131}\!/_{17}$	¹² / ₁₇	264/17
x_4	$-178/_{17}$	8/17	⁵⁸⁴ / ₁₇
$\partial f/\partial x_j, u_j$	$-1050x_1+5250/17$	$-4u_1/17$	

Базис является допустимым, так как $b\geqslant 0$, но не является оптимальным, так как $c=\left(\frac{5250}{17}\ 0\right)\nleq 0.$

Выберем как разрешающий столбец переменную x_k (u_k) , соответствующую максимальному значению производной целевой функции в точке $X^{(1)}$:

$$k = \underset{i}{\operatorname{argmax}} \left\{ \frac{\partial f}{\partial x_i} \left(X^{(1)} \right) \right\} = 1 \Rightarrow x_1.$$

Оценим ситуацию в опорной точке $X^{(1)}$. Найдем соотношения между приращениями свободной переменной x_1 и изменениями базисных переменных x_2 , x_3 и x_4 и частной производной по x_1 :

- $\frac{\partial f}{\partial x_1}(X^{(1)}) = 0$ при $x_1 = 5$
- $x_2 = 0$ при $x_1 = 98$
- $x_3 = 0$ при $x_1 \approx 1.9237$
- $x_4 = 0$ при $x_1 \approx -3.2359$

Переменная x_3 обращается в ноль раньше всех, поэтому выберем ее как разрешающую строку и произведем перерасчет симплекс-таблицы.

Таблица 5.5: Промежуточная таблица базиса x_2 , x_3 и x_4

$X^{(1)} \to X^{(2)}$	x_3	u_1	b
x_2	1/17	119/17	$-12971/_{289}$
x_1	1	$^{-12}/_{17}$	$-264/_{17}$
x_4	-178/17	$-1088/_{289}$	-74368/289

Поделим на разрешающий элемент -17, а также выразим целевую функ-

цию через свободные переменные и найдем частные производные:

$$x_1 = 84 - 12x_2 - x_3, \ x_2 = \frac{1}{17}(x_1 - u_1 + 97)$$

$$17x_2 = 84 - 12x_2 - x_3 - u_1 + 97 \Rightarrow x_2 = \frac{1}{29}(181 - x_3 - u_1)$$

$$x_1 = 84 - \frac{1}{29}(2172 + 12x_3 + 12u_1) - x_3 = \frac{1}{29}(264 - 17x_3 + 12u_1)$$

$$f(u_1, x_3) = -\frac{31}{841} (264 - 17x_3 + 12u_1)^2 - \frac{34}{841} (181 - x_3 - u_1)^2 + \frac{4}{841} (264 - 17x_3 + 12u_1)(181 - x_3 - u_1) + \frac{4}{841} (264 - 17x_3 + 12u_1) + 388(181 - x_3 - u_1)$$

$$\begin{cases} \frac{\partial f}{\partial u_1} = \frac{4}{841} (2191u_1 - 3174x_3 + 6940) \\ \frac{\partial f}{\partial x_3} = -\frac{2}{841} (6348u_1 - 8993x_3 + 23472) \end{cases}$$

Таблица 5.6: Базис x_1, x_2 и x_4

$X^{(2)}$	x_3	u_1	b
x_2	⁻¹ / ₁₃₁	$-119/_{131}$	$12971/_{2227}$
x_1	$^{-17}\!/_{131}$	¹² / ₁₃₁	²⁶⁴ / ₁₃₁
x_4	¹⁷⁸ / ₁₃₁	1088/2227	$74368/_{2227}$
$\partial f/\partial x_j, u_j$	$-2(6348u_1 - 8993x_3 + 23472)/841$	$4(2191u_1-3174x_3+6940)/841$	

Базис является допустимым, так как $b\geqslant 0$, но не является оптимальным, так как $c=\left(\frac{-4694562}{841}\right)\not\leqslant 0$.

Выберем как разрешающий столбец переменную x_k (u_k) , соответствующую максимальному значению производной целевой функции в точке $X^{(1)}$:

$$k = \underset{i}{\operatorname{argmax}} \left\{ \frac{\partial f}{\partial x_i} \left(X^{(1)} \right) \right\} = 1 \Rightarrow u_1.$$

Оценим ситуацию в опорной точке $X^{(2)}$. Найдем соотношения между приращениями свободной переменной u_1 и изменениями базисных переменных x_1 , x_2 и x_4 и частной производной по u_1 :

•
$$\frac{\partial f}{\partial u_1}\left(X^{(2)}\right)=0$$
 при $u_1 \approx 3.1679$

• $x_1 = 0$ при $u_1 \approx 23$

• $x_2 = 0$ при $u_1 \approx -6.4$

• $x_4 = 0$ при $u_1 \approx 65$

Производная обращается в ноль раньше базисных переменных, поэтому введем в задачу новую свободную переменную:

$$u_2 = \frac{1}{4} \cdot \frac{\partial f}{\partial u_1} = \frac{1}{841} (2191u_1 - 3174x_3 + 6940)$$

Заполним промежуточную таблицу, содержащую строку для новой переменной u_1 . На пересечении u_1 и u_2 находится разрешающий элемент $^{2191}/_{841}$.

Таблица 5.7: Промежуточная таблица базиса x_1, x_2, x_4 и u_2

$X^{(2)} \to X^{(3)}$	x_3	u_1	b
x_2	$\frac{-1}{131}$	-119/131	$\frac{12971}{2227}$
x_1	$-17/_{131}$	¹² / ₁₃₁	²⁶⁴ / ₁₃₁
x_4	$^{178}/_{131}$	1088/2227	$74368/_{2227}$
u_2	3174/841	²¹⁹¹ / ₈₄₁	-6940/841

Пересчитаем симплекс таблицу

Таблица 5.8: Промежуточная таблица базиса x_1, x_2, x_4 и u_1

$X^{(2)} \to X^{(3)}$	x_3	u_2	b
x_2	-379897/110171	$-119/_{131}$	845873/110171
x_1	1/131	¹² / ₁₃₁	661704/110171
x_4	186862/ ₁₁₀₁₇₁	1088/2227	155389568/1872907
u_1	-3174/841	1	6940/841

Поделим каждый элемент промежуточной таблицы на разрешающий элемент и выразим целевую функцию через u_2 и x_3 .

$$f(u_2, x_3) = \frac{1}{2227} (82746u_2x_3 - 80030u_2 - 4268x_3^2 - 107230x_3 - 8929)$$

Дополним таблицу строкой, содержащей частные производные целевой функции по свободным переменным.

$X^{(3)}$	x_3	u_2	b
x_2	$-379897/_{110171}$	-119/131	509045/110171
x_1	¹ / ₁₃₁	¹² / ₁₃₁	447691/110171
x_4	186862/110171	1088/2227	155389568/1872907
u_1	-3174/841	841/2227	6940/841
$\partial f/\partial x_j, u_j$	$82746u_2 - 8536x_3 - 107230 / 2227$	$82746x_3 - 80030/2227$	

Таблица 5.9: Базис x_1, x_2, x_4 и u_1

Базис является допустимым, так как $b\geqslant 0$, и является оптимальным, так как $c=\left(\frac{-107230}{2227}-\frac{-80030}{2227}\right)\leqslant 0$. Следовательно оптимальным решением при заданных ограничениях является точка $X^{(3)}=\left(4.0636-4.6205\right)^T$.

На рис. 5.1 изображены траектория поиска точки максимума методом проекции градиента.

Рис. 5.1: Траектория поиска методом Била

6. Решение методом проекции градиента

Решим задачу при ограничениях:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \leqslant b_1 \\ a_{21}x_1 + a_{22}x_2 \leqslant b_2 \\ a_{31}x_1 + a_{32}x_2 \leqslant b_3 \\ a_{41}x_1 + a_{42}x_2 \leqslant b_4 \end{cases} \iff \begin{cases} 7x_1 + 12x_2 \leqslant 84 \\ 10x_1 + 8x_2 \leqslant 80 \\ -x_1 \leqslant 0 \\ -x_2 \leqslant 0 \end{cases}$$

Пусть $X^{(0)} = \begin{pmatrix} 0 & 0 \end{pmatrix}$. Запишем в матричной форме A, b и X:

$$A = \begin{pmatrix} 7 & 12 \\ 10 & 8 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 84 \\ 80 \\ 0 \\ 0 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Определим градиент f'(X) и матрицу Гессе H целевой функции:

$$f'(X) = \begin{pmatrix} -62x_1 + 4x_2 + 286 \\ -68x_2 + 4x_1 + 388 \end{pmatrix}, H = \begin{pmatrix} -62 & 4 \\ 4 & -68 \end{pmatrix}$$

Определим матрицы активных ограничений в точке $X^{(0)}$. Убедимся в допустимости градиентного направления:

$$Af'(X^{(0)}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 286 \\ 388 \end{pmatrix} = \begin{pmatrix} -286 \\ -388 \end{pmatrix} < 0$$

Следовательно

$$K^{(0)} = f'(X^{(0)}) = \begin{pmatrix} 286 & 388 \end{pmatrix}^T$$

Выберем длину шага $t^{(0)}$.

Найдем множество нарушаемых ограничений I_{pred} :

$$AK^{(0)} = \begin{pmatrix} 7 & 12 \\ 10 & 8 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 286 \\ 388 \end{pmatrix} = \begin{pmatrix} 6658 \\ 5964 \\ -286 \\ -388 \end{pmatrix} \Longrightarrow I_{pred} = \{1, 2\}$$

Найдем $t^{(0)}$:

$$t^* = -\frac{\left\langle f'(X^{(0)}), K^{(0)} \right\rangle}{\left\langle K^{(0)}, HK^{(0)} \right\rangle} = -\frac{\left(286 \ 388\right) \left(286 \ 388\right)^T}{\left(286 \ 388\right) \left(-62 \ 4\right) \left(286\right)} \approx 0.0161$$

$$t_{pred_1} = \frac{b_1 - a_1 X^{(0)}}{a_1 K^{(0)}} = \frac{84 - \left(7 \ 12\right) \left(0 \ 0\right)^T}{\left(7 \ 12\right) \left(\frac{286}{388}\right)} = \frac{84}{6658} \approx 0.0126$$

$$t_{pred_2} = \frac{b_2 - a_2 X^{(0)}}{a_2 K^{(0)}} = \frac{80 - \left(10 - 8\right) \left(0 - 0\right)^T}{\left(10 - 8\right) \left(\frac{286}{388}\right)} = \frac{80}{5964} \approx 0.0134$$

Следовательно $t^{(0)} = \min\{t^*, t_{pred_1}, t_{pred_2}\} = 0.0126.$

$$X^{(1)} = X^{(0)} + t^{(0)}K^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + 0.0126 \begin{pmatrix} 286 \\ 388 \end{pmatrix} = \begin{pmatrix} 3.6036 \\ 4.8888 \end{pmatrix}$$

Сформируем матрицу активны ограничений.

Определим оператор проекции и направление $K^{(1)}$.

$$A = \begin{pmatrix} 7 & 12 \end{pmatrix}, f'(X^{(1)}) = \begin{pmatrix} 82.132 & 69.976 \end{pmatrix}^T$$

$$P = E - A^{T} (AA^{T})^{-1} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.2539 & 0.4352 \\ 0.4352 & 0.7461 \end{pmatrix} = \begin{pmatrix} 0.7461 & 0.4352 \\ -0.4352 & 0.2539 \end{pmatrix}$$

$$K^{(1)} = Pf'(X^{(1)}) = \begin{pmatrix} 0.7461 & 0.4352 \\ -0.4352 & 0.2539 \end{pmatrix} \begin{pmatrix} 82.132 \\ 69.976 \end{pmatrix} = \begin{pmatrix} 30.8251 \\ -17.9769 \end{pmatrix}$$

Найдем длину шага $t^{(1)}$.

Найдем множество нарушаемых ограничений I_{pred} :

$$AK^{(1)} = \begin{pmatrix} 7 & 12 \\ 10 & 8 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 30.8251 \\ -17.9769 \end{pmatrix} = \begin{pmatrix} 0 \\ 164.3944 \\ -30.824 \\ 17.9806 \end{pmatrix} \Longrightarrow I_{pred} = \{2, 4\}$$

Найдем
$$t^{(1)}$$
:
$$t^* = -\frac{\left\langle f'(X^{(1)}), K^{(1)} \right\rangle}{\left\langle K^{(1)}, HK^{(1)} \right\rangle} \approx 0.0149$$

$$t_{pred_2} = \frac{b_1 - a_1 X^{(1)}}{a_1 K^{(1)}} \approx 0.9437, \quad t_{pred_4} = \frac{b_2 - a_2 X^{(1)}}{a_2 K^{(1)}} \approx 0.2718$$

Следовательно $t^{(1)} = \min\{t^*, t_{pred_2}, t_{pred_4}\} = 0.0149.$

$$X^{(2)} = X^{(1)} + t^{(1)}K^{(1)} = \begin{pmatrix} 3.6036 \\ 4.8888 \end{pmatrix} + 0.0149 \begin{pmatrix} 30.8251 \\ -17.9769 \end{pmatrix} = \begin{pmatrix} 4.0636 \\ 4.6205 \end{pmatrix}$$

Проверим условия останова:

$$f'(X^{(2)}) = \begin{pmatrix} 52.5372 \\ 90.0637 \end{pmatrix}$$

$$K^{(1)} = Pf'(X^{(1)}) = \begin{pmatrix} 0.7461 & 0.4352 \\ -0.4352 & 0.2539 \end{pmatrix} \begin{pmatrix} 52.5372 \\ 90.0637 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Lambda = -(AA^T)^{-1} Af'(X^{(2)}) = -\left(\begin{pmatrix} 7 & 12 \end{pmatrix} \begin{pmatrix} 7 \\ 12 \end{pmatrix} \right)^{-1} \begin{pmatrix} 7 & 12 \end{pmatrix} \begin{pmatrix} 52.5372 \\ 90.0637 \end{pmatrix} = -7.5053$$

 $\Lambda\leqslant 0\Rightarrow$ точка $X^{(2)}=\left(4.0636\ 4.6205\right)^T$ является оптимальным решением задачи при заданных ограничениях. Значение целевой функции равно $f(X^{(2)})\approx 1792$.

На рис. 6.1 изображена траектория поиска оптимального решения при заданных ограничениях методом проекции градиента.

Рис. 6.1: Решение задачи методом проекции градиента

7. Необходимые условия оптимальности при квадратичных ограничениях

Запишем необходимые условия оптимальности Куна-Такера для задачи при ограничениях:

$$d_1 x_1^2 + d_2 x_2^2 \leqslant b_6 \iff 16x_1^2 + 25x_2^2 \leqslant 400$$

$$\begin{cases} \frac{\partial f}{\partial x_1} + u_1 \frac{\partial g_1}{\partial x_1} = 0\\ \frac{\partial f}{\partial x_2} + u_1 \frac{\partial g_1}{\partial x_2} = 0\\ u_1 g_1 = 0\\ u_1 \leqslant 0, \end{cases}$$

$$\begin{cases} -62x_1 + 4x_2 + 286 + 32x_1 u_1 = 0\\ -68x_2 + 4x_1 + 388 + 59x_2 u_2 = 0\\ u_1 g_1 = 0\\ u_1 \leqslant 0 \end{cases}$$

8. Решение методом штрафных функций

Решим задачу при ограничении:

$$d_1x_1^2 + d_2x_2^2 \le b_6 \iff 16x_1^2 + 25x_2^2 \le 400$$

Обозначим ограничение функцией g(x):

$$g(X) = 16x_1^2 + 25x_2^2 - 400$$

Заменим исходную задачу условной оптимизации эквивалентной ей задачей безусловной оптимизации. Для этого введем функцию штрафов $\psi(x)$ и штрафную функцию F(x):

$$\psi(x) = \max \{0, x\}$$

$$F(X, \mu) = f(X) - \mu \psi(g(X))$$

В таблице 8.1 приведены значения, полученные при различных значениях коэффициента μ .

μ	x_1	x_2	f(X)
$1 \cdot 10^{-3}$	4.997	5.995	1878.999
$1\cdot 10^{-2}$	4.971	5.955	1878.910
$1 \cdot 10^{-1}$	4.729	5.574	1871.011
$1 \cdot 10^0$	3.187	3.396	1 565.475
$1 \cdot 10^1$	3.023	3.186	1510.878
$1 \cdot 10^2$	3.023	3.186	1510.878
$1 \cdot 10^3$	3.002	3.199	1 510.846
$1 \cdot 10^4$	2.996	3.202	1510.826
$1 \cdot 10^5$	2.996	3.202	1510.826

Таблица 8.1: Решение методом штрафных функций

На рис. 8.1 изображена траектория поиска оптимального решения при заданных ограничениях методом штрафных функций.

Рис. 8.1: Решение задачи методом штрафных функций

9. Решение методом возможных направлений

Решим задачу при ограничении:

$$d_1 x_1^2 + d_2 x_2^2 \le b_6 \iff 16x_1^2 + 25x_2^2 \le 400$$

При поиске на границе области формулируется вспомогательная задача линейного программирования:

$$\begin{cases} \max u \\ \left\langle f'(X^{(i)}, K^{(i)} \right\rangle \geqslant u \\ \left\langle g'_l(X^{(i)}, K^{(i)}) \right\rangle \geqslant u, l \in I \\ u \geqslant 0 \end{cases}$$

В таблице 9.1 приведены значения, полученные на каждом шаге работы алгоритма.

i	x_1	x_2	u	f(X)	k_1	k_2
1	0.000	0.000	1.000	0.000	1.000	-0.637
2	2.774	3.328	17.274	1 506.400	2.044	2.788
3	2.956	3.212	1.000	1 508.000	1.000	-0.614
4	2.963	3.222	4.134	1510.600	1.992	2.806
5	3.008	3.195	1.000	1510.700	1.000	-0.609
6	3.008	3.195	0.996	1510.900	1.981	2.812
7	3.019	3.189	1.000	1510.900	1.000	-0.608
8	3.019	3.189	0.241	1510.900	1.978	2.813
9	3.022	3.187	1.000	1510.900	1.000	-0.607
10	3.022	3.187	0.058	1510.900	1.978	2.814
11	3.022	3.187	1.000	1510.900	1.000	-0.607
12	3.022	3.187	0.014	1510.900	1.978	2.814
13	3.023	3.186	1.000	1510.900	1.000	-0.607
14	3.023	3.186	0.003	1 510.900	1.000	0.607

Таблица 9.1: Решение методом возможных направлений

На рис. 9.1 изображена траектория поиска оптимального решения при заданных ограничениях методом возможных направлений.

Рис. 9.1: Решение задачи методом возможных направлений