MTH 435: Analysis and Topology

Evan Fox

September 16, 2022

Contents

1	Introduction		
	1.1	Algebraic and Order properties	2
	1.2	Absoulte Value	4
	1.3	Archimeadian Property and Completness	6

Chapter 1

Introduction

1.1 Algebraic and Order properties

The Real numbers, denoted \mathbb{R} form a field, that is \mathbb{R} is an Abelian group under addition and multiplication that has distinct identites and satisfies the distributive property. All important algebraic properties can be derivied from the fact that \mathbb{R} is a field.

Definition 1.1.1

Let $P \neq \emptyset$ be a subset of \mathbb{R} not containg 0. We say P is the set of positive real numbers and it satisfies

1.
$$a, b \in P \implies a + b \in P$$

$$2. \ a,b \in P \implies ab \in P$$

$$3. \ a \in P \implies a \in P \lor -a \in P \lor a = 0$$

We are now in a posistion to define the ordering we wish to place on \mathbb{R}

Definition 1.1.2

For $a, b \in \mathbb{R}$ such that $b - a \in P$ then we say a < b. If $b - a \in P \cup \{0\}$ then a < b

It follows imeditly from tricotomy that exactly one of a < b, a = b, a > b must hold. It is also clear that this is a total ordering on \mathbb{R} , but we must check that this turns \mathbb{R} into an ordered field.

Lemma 1.1.3

The ordering defined above is a strict total order.

Proof. The order is irreflexive since $a-a=0 \notin P$, then if $a-b \in P$ and $b-a \in P$ we can add to get $0 \in P$ a contradiction. Now we must prove the transitive property, suppose $a,b,b \in \mathbb{R}$ satisfy a < b and b < c, then $b-a,c-b \in P$ thus so is their sum, $c-a \in P$ which implies a < c as desired.

Lemma 1.1.4

The ordering defined above turns \mathbb{R} into an ordered field, let $a, b, c \in \mathbb{R}$.

- 1. if a < b then a + c < a + b
- 2. if c > 0 and a < b then ac < bc
- 3. if c < 0 and a < b then ac > bc

Proof. For the first item, we have b-a>0 then by adding and subtracting c we get

$$0 < b - a - c + c$$

$$a+c < b+c$$

Next assume c > 0, then we have 0 < b - a, since both of theses are positive, so is their product,

$$0 < c(b-a) \implies 0 < cb-ca \implies ca < cb$$
.

Now let c < 0, then -c > 0 and the argument is the same as above. \square

Thus we have turned \mathbb{R} into an ordered field.

Theorem 1.1.5

The natural numbers are all positive, we will prove this in the following steps.

- 1. If $a \in \mathbb{R}$ with $a \neq 0$ then $a^2 > 0$
- 2. 1 > 0
- 3. $\mathbb{N} \subset P$

Proof. If a > 0 we are done, suppose a < 0, then $-a \in P$ and since $a^2 = (-a)(-a) \in P$ we have $a^2 \in P$. Now note $1^2 = 1$ so $1 \in P$, then since we definied the natural number n as $1 + \cdots + 1$, n times, we see that all natural numbers are positive.

Theorem 1.1.6

If $a \in \mathbb{R}$ satisfies $0 \le a < \epsilon$ for all $\epsilon > 0$, then a = 0

Proof. Suppose a > 0, then let $\epsilon_0 = a/2$, then

$$0 < \epsilon_0 < a < \epsilon$$

a contradiction. \Box

Theorem 1.1.7

If ab > 0 then a, b are both posistive or both negitive.

Proof. Suppose ab > 0 and that at least one is negative, without loss of generality say a < 0, then if b > 0, we have -ab > 0 so $-(ab) \in P$ but we assumed $ab \in P$; a contradiction, thus b is negitive.

1.2 Absoulte Value

Next we define a function of great importance on \mathbb{R} .

$$|a| = \begin{cases} a, & \text{if } a > 0 \\ 0, & \text{if } a = 0 \\ -a, & \text{if } a < 0 \end{cases}$$
 (1.1)

Now we prove some basic properties of the absoulte value function,

Theorem 1.2.1

Basic properties of the absoutle value.

- 1. |ab| = |a||b|
- 2. $|a|^2 = a^2$
- 3. If c > 0 then $|a| < c \Leftrightarrow -c < a < c$
- 4. $-|a| \le a \le |a|$

Proof. To prove (1) first note that if a or b is zero we are done. Then we just consider the four possible cases on the signs of a and b. For example if a>0 and b<0, we have |ab|=-ab and |a|=a,|b|=-b so |a||b|=-ab. The rest are left as an exercise. Proving (2) is simillar, if a>0 we are done and if a<0, then $|a|^2=(-a)^2=a^2$. Now suppose c>0 and $|a|\leq c$, if $a\leq 0$, then the result is clear. If a<0 we have |a|=-a, so -a< c, rearranging gives -c<a. So we are finished. Now suppose $-c\leq a\leq c$, then $-a\leq c$ and $a\leq c$. But the absoute value maps to a or -a so in either case we are done. Now for (4) we let c=|a| and apply (3) to get the result.

Theorem 1.2.2 (Triangle Inequality)

For all $a, b \in \mathbb{R}$

$$|a+b| \le |a|+|b| \tag{1.2}$$

Proof. By the above, we have that

$$-|a| - |b| \le a + b \le |a| + |b|$$

implies

$$|a+b| \le |a| + |b|$$

as desired. \Box

The Triangle inequality is very important and equality hold only when a, b have the same sign.

Theorem 1.2.3

The following two inequalitys hold for all $a, b \in \mathbb{R}$

1.
$$|a-b| \leq |a| + |b|$$

2.
$$||a| - |b|| \le |a - b|$$

Proof. Proof of (1) follows from subing -b into the triangle inequality. To prove (2) start my applying the triangle inequality to a = a - b + b to get $|a| \le |a - b| + |b|$, and b = b - a + a to get $|b| \le |b - a| + |a|$, then subtracting gives

$$|a| - |b| \le |a - b|$$

and

$$|b| - |a| \le |a - b|.$$

We may multiply by -1 to get

$$-|b| + |a| \ge -|a-b|$$

and it follows,

$$-|a-b| \le |a| - |b| \le |a-b|.$$

Now we let |a - b| = c and use the third result from theorem 1.2.1, to get

$$|a| - |b| \le |a - b|$$

1.3 Archimeadian Property and Completness

The completness axiom is the last thing that we need in order to call are a complete ordered field.

Definition 1.3.1

A subset $A \subset \mathbb{R}$ is bounded is above if there exists $u \in \mathbb{R}$ such that for all $a \in A$ we have $a \leq u$, we say A is bounded below if the other inequality holds. We call u an upper bound or lower bound for the set A.

We say a set is bounded if it is bounded above and below.

Definition 1.3.2

We say that an upper bound $\alpha \in \mathbb{R}$ is a least upper bound if

- 1. α is an upper bound.
- 2. For an arbitrary upper bound u, we have $\alpha \leq u$.

Definition 1.3.3

Every subset $A \subset \mathbb{R}$ that is bounded above has a least upper bound.

We will see that this property is very important.

Theorem 1.3.4

Let $A \subset \mathbb{R}$, an upper bound $\alpha \in \mathbb{R}$ satisfies $\alpha = \sup(A)$ if and only if for all $\epsilon > 0$ there exists $a \in A$ such that $\alpha - \epsilon < a$

Proof. Let $\alpha = \sup(A)$ then for all $\epsilon > 0$, $\alpha - \epsilon < \alpha$ so it cannot be an upper bound. Conversly, let α be an upper bound with the desired property and let u be an upper bound, then if $u < \alpha$ we have $u = \alpha - \epsilon$ for some $\epsilon > 0$, but then by assumtion there is an $a \in A$ such that u < a; a contradiction. \square

Lemma 1.3.5

 \mathbb{N} is not bounded above in \mathbb{R}

Proof. Assume that \mathbb{N} is bounded, then there exists a least upper bound, let $\alpha = \sup(A)$, then there exists $n \in \mathbb{N}$ such that $\alpha - 1 < n$, but then $\alpha < n + 1$; a contradiction.

Theorem 1.3.6

For all $\epsilon \in \mathbb{R}_{>0}$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Proof. By the unboundedness of n, we may choose $n \in \mathbb{N}$ such that $\frac{1}{e} < n$, then $\frac{1}{n} < \epsilon$.

Now we may look at the algebraic properties of sup

Theorem 1.3.7

let S, A, B be sets and $r \in \mathbb{R}$

- $1. \, \sup(r+S) = r + \sup(S)$
- $2. \, \sup(A+B) = \sup(A) + \sup(B)$
- 3. if $a \le b$ for all $a \in A, b \in B$ then $\sup(A) \le \inf(B)$.

Proof. exercise. See HW1

Definition 1.3.8

A function $f: D \to \mathbb{R}$ is bounded in \mathbb{R} is there exists $M \in \mathbb{R}$ such that

$$-M \le f(x) \le M \, \forall x \in D$$

Lemma 1.3.9

if f, g are bounded functions such that $f(x) \leq g(x)$ then $\sup(f(x)) \leq \sup(g(x))$, but $\sup(f(x)) \nleq \inf(g(x))$ in general.

Proof. The first part is easy. To see that the second statement is false consider $f:[0,1]\to\mathbb{R}$ as $f(x)=x^2$ and $g:[0,1]\to\mathbb{R}$ as f(x)=x. Then $g(x)\geq f(x)$ but $\sup(f(x))=1>0=\inf(g(x))$.

Theorem 1.3.10

For $x, y \in \mathbb{R}$ with x < y there exists $m, n \in \mathbb{Z}$ such that

$$x < \frac{m}{n} < y$$

That is \mathbb{Q} is dense in \mathbb{R} .

Proof. Let $x, y \in \mathbb{R}$ with x, y. By the archimeadian property fix $n \in \mathbb{N}$ such that $\frac{1}{n} < y - x$. This gives

$$0 < 1 + nx < y$$

Now fix $m \in \mathbb{Z}$ such that $xn < m \le xn + 1$. Then from eq(1) it follows

$$nx < x < nx + 1 < ny \implies nx < m < ny \implies x < \frac{m}{n} < y.$$