On Structured Prediction Theory with Calibrated Convex Surrogate Losses

Rushab Munot

University of Pennsylvania rushab@seas.upenn.edu

Instructor: Shivani Agarwal

Authors

Anton Osokin Francis Bach Simon Lacoste-Julien

October 30, 2018

Overview

- Structured Prediction Obstacles
 - Exponential number of classes
 - Cost-Sensitive Task Loss
- Previous Work
 - Consistent but not efficient (non-convex)
 - Efficient (convex) but not consistent
- What we need
 - Consistency for surrogate losses and
 - Efficient algorithm

Overview - continued

- - Exponential constant in Generalization Error bound (eg. Ciliberto et. al. 2010)
 - ullet To have error ϵ on Task Loss
 - Exponentially small error on surrogate loss
 - 2 Exponential number of iterations

Approach

- Calibration function: Connect actual excess risk and surrogate excess risk
- Exponential constants: Constrain the score vector space
- Online SGD

Recap - Calibrated Surrogates for 0-1 Loss

- Inner Risk: $L_I(\eta, \alpha) = E_{y \sim \eta}[I(y, \alpha)]$
- Bayesian Inner Risk: $H_I(\eta) = \inf_{\alpha} L_I(\eta, \alpha)$
- Inner Regret/Excess Risk: $\mathcal{R}_I(\eta, \alpha) = L_I(\eta, \alpha) H_I(\eta)$

• 0-1 Calibrated Surrogate Loss $(\psi : [0,1] \to \mathbb{R})$:

$$\inf_{R_{0-1}(\eta, sign(f))>0} R_{\psi}(\eta, f)>0 \ \ldots \ \forall \ \eta \in [0, 1]$$

- Bartlett et al (2006): Calibrated surrogate losses admit a regret transfer bound w.r.t. the 0-1 loss
- Calibrated Multi-class losses

Notation

- $\mathbf{x} \in \mathcal{X}$, $\mathbf{y} \in \mathcal{Y}$ (structured) $(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}$
- $|\mathcal{Y}| = k$ (finite, exponential in size of \mathbf{y})
- Loss function $L \in \mathbb{R}^{k \times k}$ (non-negative)
- Score function: $\mathfrak{f}: \mathcal{X} \to \mathcal{F} \subseteq \mathbb{R}^k$ $\mathsf{pred}(\mathfrak{f}(x)) = \mathsf{argmax}_{\hat{\mathfrak{y}} \in \mathcal{Y}} \mathfrak{f}_{\hat{\mathfrak{y}}}(x)$
- $\mathfrak{F}_{\mathcal{F}} = \mathsf{Set}$ of score functions
- Surrogate Loss $\Phi: \mathbb{R}^k \times \mathcal{Y} \to \mathbb{R}$ (continuous and bounded below)

Notation

• Generalization Error:

$$er_{\mathcal{D}}^{L} = E_{(x,y)\sim\mathcal{D}}[L(\operatorname{pred}(f(x)), y)]$$

$$= E_{x\sim\mathcal{D}_{\mathcal{X}}}[I(\operatorname{pred}(f(x)), P(\cdot|x))]$$

$$I(\boldsymbol{f}, \boldsymbol{q}) = \sum_{c=1}^{k} q_{c}L(\operatorname{pred}(f), c) \dots \text{ Inner Risk}$$

Surrogate Error:

$$er_{\mathcal{D}}^{\Phi} = E_{(x,y)\sim\mathcal{D}}[\Phi(f(x),\ y)]$$
 $\phi(m{f},m{q}) = \sum_{c=1}^k q_c \Phi(f,c)$... Surrogate Inner Risk

ullet R_I and R_ϕ denote the inner regret and surrogate inner regret

Loss functions under consideration

- 01 Loss
- Hamming Loss
- Block loss:
 Divide into b blocks of size s
 k = bs
- Mixed Loss: $L_{mixed,01,b}(\hat{y},y) =$

$$L_{mixed,01,b}(\hat{y},y) = \eta L_{01}(f,q)(\hat{y},y) + (1-\eta)L_{b}(\hat{y},y)$$

b blocks of size s: k=bs

Figure: Block 0-1 Loss

Calibration Function

Connects actual and surrogate inner regrets

Definition (Calibration Function)

For a task loss L, surrogate loss Φ , and space of allowed score vectors \mathcal{F} ,

$$\mathcal{H}_{L,\Phi,\mathcal{F}}(\epsilon) = \inf_{m{f} \in \mathcal{F}, \; m{q} \in \Delta_k} R_{\phi}(f,q)$$

s.t. $R_{I}(m{f},m{q}) > \epsilon$

- Implications:

 - $\mathcal{L}_{L,\Phi,\mathcal{F}}$ is non-decreasing
 - **3** Larger $\mathcal{H}_{L,\Phi,\mathcal{F}}(\epsilon)$ is better

Visualizing the Calibration Function

(a) Surrogate Loss: Quadratic Task Loss: Hamming

Constraints: $\mathcal{F} = \text{span}(L_{Ham,T})$

0 0.2 0.4 ε (b) Surrogate Loss: Quadratic Task Loss: Mixed $L_{01,b,\eta}$ Constraints: $\mathcal{F} = \operatorname{span}(L_{01,b,\eta})$

 $H(\varepsilon)$

Figure: Exponential rise in $\mathcal{H}_{L,\Phi,\mathcal{F}}(\epsilon)$ with constraints. $\mathcal{H}_{L,\Phi,\mathcal{F}}$ can be inconsistent/ not continuous

no constraints

tight constraints

Consistency

Note that, $\forall \epsilon, \ \mathcal{H}_{L,\Phi,\mathcal{F}}(\epsilon) > 0 \implies$ consistency

Theorem

 $\check{\mathcal{H}}_{L,\Phi,\mathcal{F}}$ is the lower convex envelope of $\mathcal{H}_{L,\Phi,\mathcal{F}}$. Then

$$regret_{\mathcal{D}}^{\Phi}[f] < \check{\mathcal{H}}_{L,\Phi,\mathcal{F}}(\epsilon) \implies regret_{\mathcal{D}}^{L} < \epsilon$$

Definition (η consistency)

- Φ is η -consistent iff

 - **2** $\mathcal{H}_{L,\Phi,\mathcal{F}}$ is finite for some $\hat{\epsilon} > 0$

Allows optimization up to a certain accuracy. Can be much faster (Mixed 01 block loss).

Constraints of \mathcal{F}

Approximation Error:

$$\textit{er}_{\mathcal{D}}^{\textit{L},\mathcal{F},*} - \textit{er}_{\mathcal{D}}^{\textit{L},*} = \inf_{\mathfrak{f} \in \mathfrak{F}_{\mathcal{F}}} \textit{er}_{\mathcal{D}}^{\textit{L}}[\mathfrak{f}] - \inf_{\mathfrak{f}} \textit{er}_{\mathcal{D}}^{\textit{L}}[\mathfrak{f}]$$

- Given $(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}$, $\mathbf{q} = P(\cdot | \mathbf{x}) \in \mathbb{R}^k$ and $L \in \mathbb{R}^{k \times k}$
 - Expected loss if you predict y = c is $(L\mathbf{q})_c$
 - Observe that $\mathbf{f} = -L\mathbf{q}$ is optimal
- $\operatorname{span}(L) \subseteq \mathcal{F} \implies 0$ approximation error
- Can restrict $\mathcal{F} = \operatorname{span}(L)$
- Low Rank L may get rid of exponential constants

Quadratic Surrogate Loss

Definition

$$extbf{\emph{f}} \in \mathcal{F}, \ extbf{\emph{y}} \in \mathcal{Y}$$

$$\Phi_{quad}(\mathbf{f}, \mathbf{y}) = \frac{1}{2k} ||\mathbf{f} + L(:, \mathbf{y})||^2 = \frac{1}{2k} \sum_{c=1}^{k} (\mathbf{f}_c + L(c, \mathbf{y}))^2$$

- Let $F \in \mathbb{R}^{k \times r}$ (e.g. F is the basis of span(L))
- Constrain $\mathcal{F} = \operatorname{span}(F) = \{F\theta \mid \theta \in \mathbb{R}^r\}$
- $\dim(\mathcal{F}) = \operatorname{rank}(F) \le r << k$
- Surrogate inner regret: $R_{\phi}(\mathbf{f} = F\mathbf{\theta}) = \frac{1}{2k}||F\mathbf{\theta} + L\mathbf{q}||^2$ (Convex in \mathbf{f} and \mathbf{q})

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Lower Bound on $\mathcal{H}_{\Phi_{guad},L,\mathcal{F}}$

i = Label with lowest expected loss
 j = Label with highest predicted score

$$egin{aligned} \mathcal{H}_{ij}(\epsilon) &= \inf_{i,j \in \mathit{pred}(\mathcal{F})} R_{\phi}(f,q) \ & ext{s.t.} \ &(\mathit{Lq})_i \leq (\mathit{Lq})_j - \epsilon \ &(\mathit{Lq})_i \leq (\mathit{Lq})_c \ orall \ c \in \mathit{pred}(\mathcal{F}) \ &f_j \geq f_c \ orall \ c \in \mathit{pred}(\mathcal{F}) \ &oldsymbol{f} \in \mathcal{F} \ &oldsymbol{q} \in \Delta_k \end{aligned}$$

- The union of feasibility sets is $\mathcal{F} \times \Delta_k$
- $\mathcal{H}_{L,\Phi,\mathcal{F}}(\epsilon) = \min_{i,i \in pred(\mathcal{F}): i \neq i} \mathcal{H}_{ii}(\epsilon)$

Lower Bound on $\mathcal{H}_{\Phi_{guad},L,\mathcal{F}}$

• For the quadratic surrogate, this translates to

$$\mathcal{H}_{ij}(\epsilon) = \inf_{\theta, \mathbf{q}} ||F\theta + L\mathbf{q}||^2$$
$$(\mathbf{e_i} - \mathbf{e_j})^T Lq = -\epsilon$$
$$(\mathbf{e_i} - \mathbf{e_j})^T \theta \le 0$$

Can prove that

$$\mathcal{H}_{\Phi_{quad}, L, \mathcal{F}} \geq \frac{\epsilon^2}{2k} \left(\frac{1}{\max_{i \neq j} \|P_{\mathcal{F}}(\mathbf{e_i} - \mathbf{e_j})\|_2^2} \right) \geq \frac{\epsilon^2}{4k}$$

 $P_{\mathcal{F}}$: Operator for projection onto \mathcal{F} $\mathbf{e_c}$: c^{th} standard basis vector in \mathbb{R}^k

Task Loss: 0-1

- $\mathcal{H}_{L_{01},\Phi_{quad},\mathcal{F}}(\epsilon) \geq \frac{\epsilon^2}{4k}$
- This bound is tight
- Note that $\mathcal{F} = \operatorname{span}(L_{01}) = \mathbb{R}^k$ Hence the projection is always $e_i - e_j$
- k is exponential in the dimension of y
- 0-1 Loss has poor guarantees as expected

Block 0-1 Loss

- $\mathcal{F} = \text{span}(L_{block,b})$
- rank(L) = b
- $||P_{\mathcal{F}}(\mathbf{e_i} \mathbf{e_j})||_2^2 = \frac{2}{s} \dots i \neq j$, else 0
- $\mathcal{H}_{L_{block}, au, \Phi_{quad}, \mathcal{F}}(\epsilon) \geq rac{\epsilon^2}{4b}$ (not tight)

b blocks of size s: k=bs

Figure: Block 0-1 Loss

Hamming Loss

Hamming Loss: Fraction of wrong labels

- T = Sequence Length
- $\mathcal{F} = \operatorname{span}(L_{Ham,T})$
- rank(L) = T + 1
- $\mathcal{H}_{L_{Ham,T},\Phi_{quad},\mathcal{F}}(\epsilon) \geq \frac{\epsilon^2}{8T}$ (tight)

Upper Bound on $\mathcal{H}_{\Phi_{guad},L,\mathcal{F}}$

ullet Turns out we cannot give good guarantees if ${\mathcal F}$ is not constrained

Theorem

For a Loss Matrix L which is a pseudometric, and unconstrained \mathcal{F} (i.e. $\mathcal{F} = \mathbb{R}^k$),

$$\mathcal{H}_{\Phi_{quad},L,\mathcal{F}}(\epsilon) < rac{\epsilon^2}{2k}$$

- This is why we need to constrain the score vector space.
- Also this bound is the reason why previous algorithms were not efficient.

Learning Guarantees

- Online (kernel) Projected Averaged SGD
- $F \in \mathbb{R}^{k \times r} \ \psi : \mathcal{X} \to \mathbb{R}^d$ Feature Map; $W \in \mathbb{R}^{r \times d}$
- $\mathfrak{f}(x) = FW\psi(x)$
- SGD Update for $(\mathbf{x}^n, \mathbf{y}^n) \sim \mathcal{D}$:

$$W^{(n)} = P_D [W^{(n-1)} - \gamma^{(n)} F^T \nabla \Phi \psi(\mathbf{x}^n)^T]$$

 P_D is the projection on the ball of radius D wrt the Hilbert Schmidt norm. γ is the step size. (No need to calculate the feature map - kernel trick)

Learning Guarantees

- Assumption: The surrogate regret $er_{\mathcal{D}}^{\Phi}$ has a global minimum f^* over the function class $\mathfrak{F}_{\mathcal{F}} = \{f \mid f(x) = FW\psi(x)\}$. Not required but analysis becomes complicated!
- If we have
 - \bullet $\Phi(f, y)$ is bounded below and convex wrt f for all y
 - $||F^T \nabla \Phi \psi(\mathbf{x}^n)^T||_{HS}^2 \leq M^2$
 - $||W^*||_{HS} < D$

then with $\gamma = \frac{2D}{M\sqrt{N}}$, we have

$$m{E}\Big[\mathsf{er}_{\Phi}\Big[m{ar{f}}^{(N)}\Big]\Big] - \mathsf{er}^{\Phi,\mathcal{F},*} \leq rac{2DM}{\sqrt{N}}$$

$$\bar{f}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} f^{(N)}; \quad f^{(n)} = FW^{(n)}\psi(x)$$

Learning Guarantees

ullet Under the same assumptions, for any $\epsilon>0$, we have

$$m{E}\left[ext{er}_L\left[m{ar{f}}^{(N)}
ight]
ight] - er^{L,\mathcal{F},*} < \epsilon ext{ if}$$

$$N > \frac{4D^2M^2}{\check{\mathcal{H}}_{L,\Phi,\mathcal{F}}^2(\epsilon)}$$

- 01 Loss DM = O(k)
- Hamming Loss $DM = O(\log_2 k^3)$
- Block 01 Loss DM = O(b)

Thank You