

FIG. 1

2/24

FIG. 2

3/24

FIG. 3A

FIG. 3B

4/24

FIG. 4A

FIG. 4B

5/24

FIG. 5A

FIG. 5B

6/24

FIG. 6A

FIG. 6B

7/24

FIG. 6C

FIG. 7

8/24

FIG. 8A

FIG. 8B

9/24

Ti : SAPPHIRE LASER: 150fs, 3.3 J/cm²
NATURAL: Ga⁶⁹/Ga⁷¹ = 60.4% / 39.6% = 1.53

FIG.9A

Ti : SAPPHIRE LASER: 150fs, 3.3 J/cm²
NATURAL: Ga⁶⁹/Ga⁷¹ = 60.4% / 39.6% = 1.53

FIG.9B

10/24

FIG.9C

2" SUBSTRATE HOLDER:
 TEMPERATURE: -196°C TO 1000°C
 ROTATION & TRANSLATION
 MOVED UP AND OUT OF PLUME FOR
 ELECTROSTATIC ANALYZER

FIG.10

11/24

FIG. 11

FIG. 14A

12/24

FIG. 12

13/24

FIG. 13

14/24

FIG.14B

FIG.14C

15/24

16/24

FIG.16

FIG.18

17/24

FIG. 17A
200fs (NIR), $1 \times 10^{14} \text{ W/cm}^2$

FIG. 17B
6 ns (IR), $1 \times 10^{11} \text{ W/cm}^2$

FIG. 17C
230 ps (NIR), $3 \times 10^{10} \text{ W/cm}^2$

FIG. 17D
6 ns (UV), $4 \times 10^9 \text{ W/cm}^2$

18/24

FIG. 19A

FIG. 19B

19/24

FIG. 20

FIG. 23

20/24

FIG. 21

Fig. 1. Average ion yield and energy as a function of time-delay between two identical 120 femtosecond ablation pulses on silicon. The single pulse at zero delay has an energy fluence of 2.2 kJ/cm^2 on a beam spot diameter of 42 microns. The two double pulses have a fluence of 1.1 kJ/cm^2 each. Expansion distance based on measured average ion velocity of $1.9 \times 10^7 \text{ cm/s}$

FIG. 22

Fig. 1. Enhancement of isotope separation for boron ions in an ultrafast laser ablation plume. Single pulse: 2.2 kJ/cm^2 . Double pulse: 1.1 kJ/cm^2 each pulse, separated by 10 ps. Laser pulses are 120 fs, 780 nm at 10 Hz. Total laser intensity: $2 \times 10^{16} \text{ W/cm}^2$. Natural abundance = 1.

FIG. 24

FIG. 25

22/24

FIG. 26

METHOD FOR LASER INDUCED ISOTOPE ENRICHMENT

FIG. 27

FIG. 28

23/24

FIG. 29

100 200 400 600 800 1000

FIG. 30

24/24

FIG. 31

2115D-002245

FIG. 32

