* * *

L'objet de ce problème est la minimisation sur un sous-domaine $K \subset \mathbb{R}^n$ d'une fonction f définie sur \mathbb{R}^n . Nous proposons plusieurs approches pour trouver des conditions nécessaires d'optimalité, et obtenir des approximations des minimiseurs de f dans des cas particuliers.

Les dépendances entre les parties du problème sont données par le schéma suivant :

NOTATIONS ET DÉFINITIONS

Pour tout entier $k \in \mathbb{N}^*$, on <u>désignera le produit scalaire usuel sur \mathbb{R}^k par $\langle \cdot, \cdot \rangle$, et la <u>norme</u> euclidienne sur \mathbb{R}^k par $\| \cdot \|$.</u>

Dans tout le sujet, on se place sur \mathbb{R}^n , où $n \in \mathbb{N}^*$.

- On dit qu'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est convexe si pour tous $x, y \in \mathbb{R}^n$ et tout $\lambda \in [0, 1]$,

$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y).$$

- On dit qu'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est <u>coercive</u> si $\lim_{\|x\| \to +\infty} f(x) = +\infty$, autrement dit :

$$\forall M > 0, \ \exists R > 0, \ \forall x \in \mathbb{R}^n, \ \|x\| > R \Rightarrow f(x) > M.$$

I - PRÉLIMINAIRES

FONCTIONS CONVEXES

- **I.1.** On considère une fonction $f: \mathbb{R}^n \to \mathbb{R}$.
 - a. Pour tous $x, y \in \mathbb{R}^n$, soit $\varphi_{x,y} : \mathbb{R} \to \mathbb{R}$ la fonction définie par $\varphi_{x,y}(t) = f(x + t(y x))$ pour tout $t \in \mathbb{R}$. Montrer que f est convexe si et seulement si pour tous $x, y \in \mathbb{R}^n$, $\varphi_{x,y}$ est convexe.
 - b. On suppose que f est différentiable sur \mathbb{R}^n . Montrer que pour tous $x,y\in\mathbb{R}^n$, la fonction $\varphi_{x,y}$ est dérivable, et montrer que pour tout $t\in\mathbb{R}$, $\varphi'_{x,y}(t)=\langle\nabla f(x+t(y-x)),y-x\rangle$.
 - c. En déduire que si f est différentiable sur \mathbb{R}^n , alors f est convexe si et seulement si pour tous $x,y\in\mathbb{R}^n$, $f(y)\geqslant f(x)+\langle\nabla f(x),y-x\rangle.$

d. Montrer que si $f: \mathbb{R}^n \to \mathbb{R}$ est différentiable sur \mathbb{R}^n , alors f est convexe si et seulement si pour tous $x, y \in \mathbb{R}^n$,

 $\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0.$

I.2. Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe et différentiable sur \mathbb{R}^n , et $x^* \in \mathbb{R}^n$. Montrer que si $\nabla f(x^*) = 0$ alors f admet un minimum global en x^* .

Définition. Soit $\alpha \in \mathbb{R}_+^*$. On dit qu'une fonction $f : \mathbb{R}^n \to \mathbb{R}$ différentiable sur \mathbb{R}^n est α -convexe si pour tous $x, y \in \mathbb{R}^n$,

$$f(y) \geqslant f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2.$$

- **I.3.** On considère un réel $\alpha \in \mathbb{R}_+^*$ et une fonction $f : \mathbb{R}^n \to \mathbb{R}$ différentiable sur \mathbb{R}^n .
- a. On considère la fonction $g_{\alpha}: \mathbb{R}^n \to \mathbb{R}$ définie par $g_{\alpha}(x) = f(x) \frac{\alpha}{2} ||x||^2$ pour tout $x \in \mathbb{R}^n$. Calculer $\nabla g_{\alpha}(x)$ pour tout $x \in \mathbb{R}^n$, et montrer que f est α -convexe si et seulement g_{α} est convexe.
- b. En déduire que f est α -convexe si et seulement si pour tous $x, y \in \mathbb{R}^n$,

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \alpha ||y - x||^2.$$

FONCTIONS COERCIVES

- I.4. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue et coercive. Montrer que si K est un fermé non vide de \mathbb{R}^n , alors il existe $x^* \in K$ tel que $f(x^*) = \inf_{x \in K} f(x)$.
- **I.5.** Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^n et α -convexe, où $\alpha \in \mathbb{R}_+^*$. Montrer que si K est un convexe fermé non vide de \mathbb{R}^n , alors f admet un unique minimum sur K.

PROJECTION SUR UN CONVEXE FERMÉ

- **I.6.** Soient C un convexe fermé non vide de \mathbb{R}^n et $x \in \mathbb{R}^n$.
 - a. Montrer qu'il existe un unique point $P_C(x) \in C$ tel que $\|P_C(x) x\| = \inf_{y \in C} \|y x\|$.
 - b. Soit $\bar{x} \in C$. Montrer que $\bar{x} = P_C(x)$ si et seulement si

$$\langle x - \bar{x}, y - \bar{x} \rangle \leq 0$$
 pour tout $y \in C$.

Indication: on pourra considérer la fonction $\psi_y: t \in \mathbb{R} \mapsto ||x - (\bar{x} + t(y - \bar{x}))||^2$, où $y \in C$.

c. En déduire que si $x, y \in \mathbb{R}^n$, alors $||P_C(y) - P_C(x)|| \leq ||y - x||$.

Une première condition nécessaire d'optimalité

Soit $K \subset \mathbb{R}^n$. On dit qu'un vecteur $h \in \mathbb{R}^n$ est K-admissible au point $x \in K$ s'il existe

- une suite $(t_k)_{k\in\mathbb{N}}$ de réels strictement positifs vérifiant $\lim_{k\to\infty} t_k = 0$,
- une suite $(h_k)_{k\in\mathbb{N}}$ de vecteurs de \mathbb{R}^n vérifiant $\lim_{k\to\infty} h_k = h$,

telles que pour tout $k \in \mathbb{N}$,

$$x + t_k h_k \in K$$
.

On appelle cône K-admissible au point $x \in K$ l'ensemble

$$A_K(x) := \{ h \in \mathbb{R}^n, \ h \ est \ un \ vecteur \ K-admissible \ au \ point \ x \}.$$

- I.7. Décrire $\mathcal{A}_K(x)$ dans le cas où x est dans l'intérieur de K.
- I.8. Montrer que si $f: \mathbb{R}^n \to \mathbb{R}$ est différentiable en $x^* \in K$ et admet un minimum local sur K en x^* , alors

$$\forall h \in \mathcal{A}_K(x^*), \ \langle \nabla f(x^*), h \rangle \geqslant 0.$$

Qu'exprime ce résultat dans le cas particulier où x^* est dans l'intérieur de K?

II - PÉNALISATION

Dans le but d'approcher un minimum d'une fonction f sur $K \subset \mathbb{R}^n$, on cherche à se ramener à la minimisation d'une fonction sur \mathbb{R}^n tout entier. Pour ce faire, on propose d'ajouter à f un terme de "pénalisation", qui prend de grandes valeurs en dehors de K, et de minimiser la nouvelle fonction pénalisée sur \mathbb{R}^n tout entier. Cette partie a pour but de justifier cette approche dans un cas particulier.

Dans toute cette partie, on considère une fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable sur \mathbb{R}^n et α -convexe, où $\alpha \in \mathbb{R}_+^*$. On pose

 $K = \{x \in \mathbb{R}^n, \ g_1(x) \le 0, \dots, g_p(x) \le 0\},\$

 $où p \in \mathbb{N}^* \ et \ g_1, \dots, g_p \ sont \ des \ \underline{fonctions \ convexes} \ de \ \mathbb{R}^n \ dans \ \mathbb{R}, \ \underline{différentiables} \ sur \ \mathbb{R}^n$. On suppose de plus que l'ensemble K est $\underline{non \ vide}$.

II.1. Montrer qu'il existe un unique élément $x^* \in K$ tel que $f(x^*) = \inf_{x \in K} f(x)$.

Pour tout $k \in \mathbb{N}$, on introduit la fonction $f_k : \mathbb{R}^n \to \mathbb{R}$ définie par

$$f_k(x) = f(x) + k \Psi(x)$$
 pour tout $x \in \mathbb{R}^n$,

 $où \Psi : \mathbb{R}^n \to \mathbb{R}$ est la fonction définie par $\Psi(x) = \sum_{i=1}^p \max(0, g_i(x))^2$ pour tout $x \in \mathbb{R}^n$.

- **II.2.** Pour tout $x \in \mathbb{R}^n$, calculer $\lim_{k \to \infty} f_k(x)$.
- II.3. Montrer que pour tout $k \in \mathbb{N}$, il existe un unique $x_k \in \mathbb{R}^n$ tel que $f_k(x_k) = \inf_{x \in \mathbb{R}^n} f_k(x)$.

 Indication: on pourra commencer par montrer que si $g : \mathbb{R}^n \to \mathbb{R}$ est une fonction convexe, et $h : \mathbb{R} \to \mathbb{R}$ est une fonction convexe croissante, alors $h \circ g$ est convexe.
- II.4. Montrer que pour tout $k \in \mathbb{N}$, $f(x_k) \leq f(x^*)$.
- II.5. On considère une sous-suite $(x_{\varphi(k)})_{k\in\mathbb{N}}$ de $(x_k)_{k\in\mathbb{N}}$ qui converge vers $\bar{x}\in\mathbb{R}^n$.
 - a. Montrer que $\bar{x} \in K$.
 - b. En déduire que $\bar{x} = x^*$.
- II.6. En déduire que la suite $(x_k)_{k\in\mathbb{N}}$ converge vers x^* .
- II.7. Montrer que la suite $(f_k(x_k))_{k\in\mathbb{N}}$ converge vers $f(x^*)$.

III - Théorème de Karush-Kuhn-Tucker

Le but de cette partie est d'établir une condition nécessaire d'optimalité dans le cas où le domaine K est décrit par des contraintes de type inégalité.

LEMME DE FARKAS

Soient $m \in \mathbb{N}^*$ et (u_1, \ldots, u_m) une famille de vecteurs de \mathbb{R}^n . On note

$$C = \left\{ \sum_{i=1}^{m} \mu_i u_i, \ \mu_i \geqslant 0 \ \forall i \in \llbracket 1, m \rrbracket \right\}.$$

On cherche à démontrer le résultat suivant.

Lemme 1. Si $v \in \mathbb{R}^n$, alors une et une seule des deux assertions suivantes est vérifiée :

- (i) $v \in C$,
- (ii) il existe $w \in \mathbb{R}^n$ tel que $\langle v, w \rangle < 0$ et $\langle u_i, w \rangle \ge 0$ pour tout $i \in [1, m]$.

III.1. Le but de cette question est de montrer que C est un convexe fermé de \mathbb{R}^n .

- a. Montrer que C est convexe.
- b. Montrer que si (u_1, \ldots, u_m) est une famille libre, alors C est fermé.
- c. Pour tout $I \subset [1, m]$, on pose $C_I = \{ \sum_{i \in I} \mu_i u_i, \mu_i \ge 0 \ \forall i \in I \}$. Montrer que

$$C = \bigcup_{I} C_{I},$$

où l'union est prise sur les ensembles $I \subset [1, m]$ tels que $(u_i)_{i \in I}$ est une famille libre. En déduire que C est fermé.

III.2. On considère un vecteur $v \in \mathbb{R}^n \setminus C$.

- a. Montrer que $\langle P_C(v), P_C(v) v \rangle = 0$.
- b. On pose $w = P_C(v) v$. Montrer que $\langle v, w \rangle < 0$ et $\langle u_i, w \rangle \ge 0$ pour tout $i \in [1, m]$.
- III.3. Conclure la preuve du lemme 1.

CONDITION NÉCESSAIRE D'OPTIMALITÉ

Soit $p \in \mathbb{N}^*$. Dans toute la suite de cette partie, on suppose que f, g_1, \ldots, g_p sont des fonctions de \mathbb{R}^n dans \mathbb{R} différentiables sur \mathbb{R}^n , et que

$$K = \{x \in \mathbb{R}^n, g_1(x) \le 0, \dots, g_p(x) \le 0\}$$

est non vide. Pour tout $x \in K$, on note

$$I_x = \{i \in [1, p], g_i(x) = 0\}.$$

III.4. Montrer que pour tout $x \in K$,

$$\mathcal{A}_K(x) \subset \{h \in \mathbb{R}^n, \ \forall i \in I_x, \ \langle \nabla g_i(x), h \rangle \leq 0\}.$$

III.5. On considère $x^* \in K$ et on fait l'hypothèse suivante :

il existe
$$v \in \mathbb{R}^n$$
 tel que pour tout $i \in I_{x^*}$, $\langle \nabla g_i(x^*), v \rangle < 0$. (H)

Montrer que $\mathcal{A}_K(x^*) = \{ h \in \mathbb{R}^n, \ \forall i \in I_{x^*}, \ \langle \nabla g_i(x^*), h \rangle \leqslant 0 \}.$

III.6. Montrer que si $x^* \in K$ est tel que $(\nabla g_i(x^*))_{i \in I_{x^*}}$ forme une famille libre, alors l'hypothèse (H) est vérifiée.

III.7. On suppose que f atteint en $x^* \in K$ un minimum local sur K, et que l'hypothèse (H) est vérifiée. Montrer qu'il existe des réels positifs μ_1^*, \ldots, μ_n^* tels que

$$\begin{cases}
\nabla f(x^*) + \sum_{i=1}^p \mu_i^* \nabla g_i(x^*) = 0, \\
\mu_i^* g_i(x^*) = 0 \text{ pour tout } i \in [1, p].
\end{cases}$$
(1)

III.8. On suppose dans cette question que les fonctions f, g_1, \ldots, g_p sont convexes. Soient $x^* \in K$ et $\mu_1^*, \ldots, \mu_p^* \in \mathbb{R}_+$ tels que (1) soit vérifié. Montrer que f admet en x^* un minimum global sur K.

IV - ÉTUDE DU PROBLÈME DUAL

Le but de cette partie est d'aborder la minimisation d'une fonction f sur un sous-domaine K de \mathbb{R}^n en considérant le problème "dual" associé. Dans un cas particulier, on propose une approche basée sur l'étude du problème dual pour obtenir une approximation du minimum de f sur K.

Soit $p \in [1, n]$. On suppose dans toute cette partie que f, g_1, \ldots, g_p sont des fonctions de \mathbb{R}^n dans \mathbb{R} différentiables. On fait l'hypothèse supplémentaire que f est α -convexe pour un certain $\alpha \in \mathbb{R}_+^*$, et que les fonctions g_1, \ldots, g_p sont convexes. On suppose par ailleurs que

$$K = \{x \in \mathbb{R}^n, g_1(x) \le 0, \dots, g_p(x) \le 0\}$$

est non vide. Dans toute la suite, on note $g(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_p(x) \end{pmatrix}$ pour tout $x \in \mathbb{R}^n$.

On introduit la fonction $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p_+ \to \mathbb{R}$ définie par

$$\mathcal{L}(x,\mu) = f(x) + \sum_{i=1}^{p} \mu_i g_i(x),$$

pour tout $x \in \mathbb{R}^n$ et tout $\mu = (\mu_1, \dots, \mu_p) \in \mathbb{R}^p_+$. On s'intéresse au problème : trouver $x^* \in K$ tel que

$$f(x^*) = \inf_{x \in K} f(x). \tag{P}$$

IV.1. Montrer que $\inf_{x \in K} f(x) = \inf_{x \in \mathbb{R}^n} \sup_{\mu \in \mathbb{R}^p_+} \mathcal{L}(x, \mu).$

IV.2. Montrer que pour tout $\mu \in \mathbb{R}^p_+$, il existe un unique $x_\mu \in \mathbb{R}^n$ vérifiant $\mathcal{L}(x_\mu, \mu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \mu)$.

Pour tout $\mu \in \mathbb{R}^p_+$, on note $G(\mu) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \mu) = \mathcal{L}(x_\mu, \mu)$. On va s'intéresser au problème dit dual : trouver $\mu^* \in \mathbb{R}^p_+$ tel que

$$G(\mu^{\star}) = \sup_{\mu \in \mathbb{R}^{p}_{+}} G(\mu) = \sup_{\mu \in \mathbb{R}^{p}_{+}} \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \mu). \tag{Q}$$

On dit que $(\bar{x}, \bar{\mu}) \in \mathbb{R}^n \times \mathbb{R}^p_+$ est un point selle de \mathcal{L} si

$$\mathcal{L}(\bar{x}, \bar{\mu}) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \bar{\mu}) \quad et \quad \mathcal{L}(\bar{x}, \bar{\mu}) = \sup_{\mu \in \mathbb{R}^p_+} \mathcal{L}(\bar{x}, \mu),$$

IV.3. On suppose dans cette question que $(\bar{x}, \bar{\mu}) \in \mathbb{R}^n \times \mathbb{R}^p_+$ est un point selle de \mathcal{L} .

- a. Montrer que \bar{x} est solution de (P).
- b. Montrer que $\bar{\mu}$ est solution de (Q).
- c. Montrer que $\inf_{x \in \mathbb{R}^n} \sup_{\mu \in \mathbb{R}^p_+} \mathcal{L}(x,\mu) = \sup_{\mu \in \mathbb{R}^p_+} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\mu)$.

IV.4. On considère $x^* \in K$ une solution de (P) satisfaisant l'hypothèse (H). Soit $\mu^* = (\mu_1^*, \dots, \mu_p^*)$ comme dans la question III.7. Montrer que μ^* est solution de (Q).

IV.5. On suppose dans toute cette question que la fonction $\mu \in \mathbb{R}^p_+ \mapsto x_\mu$ est continue. On considère une solution $\bar{\mu} \in \mathbb{R}^p_+$ de (Q).

a. Soient $\mu \in \mathbb{R}^p_+$ et $\xi \in \mathbb{R}^p$ tels que $\mu + \xi \in \mathbb{R}^p_+$. Montrer que pour tout $t \in [0,1]$, $\mu + t\xi \in \mathbb{R}^p_+$, et

$$\lim_{\substack{t \to 0 \\ t \to 0}} \frac{G(\mu + t\xi) - G(\mu)}{t} = \langle g(x_{\mu}), \xi \rangle.$$

En déduire que pour tout $\mu \in \mathbb{R}^p_+$, $\langle g(x_{\bar{\mu}}), \mu - \bar{\mu} \rangle \leq 0$.

b. Montrer que $x_{\bar{\mu}}$ est solution de (P).

IV.6. (Théorème d'Uzawa). Soient $A \in \mathcal{M}_{p,n}(\mathbb{R})$ une matrice de rang p et $b \in \mathbb{R}^p$. On suppose que la fonction g est de la forme

$$g: x \mapsto Ax + b.$$

- a. Montrer que pour tout $\mu \in \mathbb{R}^p_+$, $\nabla f(x_\mu) = -^t A \mu$, et en déduire que la fonction $\mu \mapsto x_\mu$ est continue sur \mathbb{R}^p_+ .
- b. Montrer que (P) admet une unique solution $x^* \in K$, et que (Q) admet une unique solution $\mu^* \in \mathbb{R}^p_+$.

Soit $\rho > 0$. On définit la suite $(\mu^k)_{k \in \mathbb{N}}$ par récurrence de la manière suivante :

- on fixe $\mu^0 \in \mathbb{R}^p_+$,
- pour tout $k \in \mathbb{N}$, on pose $\mu^{k+1} = P_{\mathbb{R}^p_+}(\mu^k + \rho g(x_{\mu^k}))$,

où $P_{\mathbb{R}^p_+}: \mathbb{R}^p \to \mathbb{R}^p_+$ désigne la projection sur le convexe fermé \mathbb{R}^p_+ de \mathbb{R}^p .

c. Montrer que $\mu^* = P_{\mathbb{R}^p_+}(\mu^* + \rho \ g(x_{\mu^*}))$.

On suppose désormais que $||Ax|| \leq \sqrt{\frac{\alpha}{\rho}} ||x||$ pour tout $x \in \mathbb{R}^n$.

- d. Montrer que la suite $(x_{\mu^k})_{k\in\mathbb{N}}$ converge vers x^* .
- e. Montrer que la suite $(\mu^k)_{k\in\mathbb{N}}$ converge vers μ^* .

Fin du sujet.