Data structures for Partially Ordered Sets Prepatory work for the master thesis

June 7, 2018

Hakim Boulahya

Département d'Informatique Université Libre de Bruxelles Belgium

Contents

- 1. Introduction Subject and motivations
- 2. **Definitions** Poset and antichains
- 3. Existing implementation
- 4. **Objective** Requirements and overview

Introduction

Subject

- Implement data structures to represent partially ordered sets
- Main focus on antichain-based algorithms in automata theory

Motivations

- There exists new algorithms that uses antichains:
 - Model checking
 - Synthesis problem
 - Language universality
- There is a need for an efficient implementation of antichains

Data Structures Definitions

Partial order

A partial order \leq on a set S is a binary relation $\leq\subseteq S\times S$ that is reflexive, transitive and antisymmetric.

Partially ordered set (or poset)

A partially ordered set is a pair $\langle S, \preceq \rangle$ where S is a set, and \preceq a partial order on S.

Antichains

An antichain α is a set of incomparable elements of poset $\langle S, \preceq \rangle$ w.r.t. to \preceq .

Interestring operations

- ▶ Lower closure of an antichain α on S, denoted $\downarrow \alpha$, is the set of all elements of S that are smaller or equal to an element of α
- ► Appartenance $s \in \downarrow \alpha_1$
- ▶ Inclusion $\downarrow \alpha_1 \subseteq \downarrow \alpha_2$
- ▶ Union $\downarrow \alpha_1 \cup \downarrow \alpha_2 = \downarrow \lceil \alpha_1 \cup \alpha_2 \rceil$
- ▶ Intersection $\downarrow \alpha_1 \cap \downarrow \alpha_2$

Data Structures Example

Example

- ► Poset is $\langle 2^Q, \subseteq \rangle$, where $Q = \{q_0, q_1, q_2\}$
- $\alpha = \{\{q_0, q_2\}, \{q_1, q_2\}\}\$ is an antichain
- Can retrieve all subset of cardinality 1 using the closure on the antichain: ↓α
- $\downarrow \alpha = \{ \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_2\}, \{q_1, q_2\} \}$

Existing implementations

Do implementation already exists?

Yes, 2 for antichains:

- 1. AaPAL: Antichains implementation in C
 - More of an API: user must implement comparison and intersection
- 2. Antichains for the Dedekind number problem
 - ► Bitarray represention (a bit is a subset)
 - Can only be applied to natural numbers

Objective Requirements

Requirements

- ▶ 0wl library: an automata library
- But symbolic antichain-based algorithm are missing (including antichain data structures)
- ► Implementation in Java 10

Objective

What to do?

- ► Provide an API and implement it against 0wl
- Provide some implementation for antichains depending on the universe of the sets
- Define the algorithms to test our antichains implementation against
- Study the performance of those implementations

