LISTING OF CLAIMS:

Please consider the claims as follows:

1	1. (currently amended) Apparatus adapted for use in <u>long haul</u> transmission
2	in an optical communication system, comprising:
3	a modulatorat least one modulator, for modulating an optical phase of pulses
4	within a sequence of return-to-zero (RZ) pulses having a duty cycle of less than or equal
5	to approximately 33% in accordance with an input digital data stream to form an optical
6	phase modulated signal , said modulator being encoded by one of phase shift keying
7	(PSK), differential phase shift keying (DPSK) or quadrature phase shift keying (QPSK)
8	modulatorin accordance with an input digital data stream; and
9	a wavelength division multiplexer adapted to combine an output signal of said at
10	least one modulator with other optical phase modulated signals having optical carriers
11	with different wavelengths;
12	a dispersion managed optical transmission medium for transmitting an output
13	wavelength division multiplexed signal of said wavelength division multiplexer; and
14	a means for transmitting the optical phase modulated wavelength division
15	multiplexed signal in the[[a]] dispersion managed optical transmission medium. medium;
16	wherein dispersion management is provided by applying pre-dispersion
17	compensation to the optical phase modulated signal containing pulses having a duty cycle
18	of less than or equal to about 33%, and applying post-dispersion compensation to the
19	transmitted signal.
	2-9. (canceled)

- 10. 1 (currently amended) The invention defined in claim 1 wherein said at least 2 one modulator is a LiNbO3 phase modulator.
- 1 (currently amended) The invention defined in claim 1 wherein said at least 11. 2 one modulator is a LiNbO3 Mach-Zehnder phase modulator.

1	12. (currently amended) The invention defined in claim 1 wherein said
2	apparatus further comprises [[a]] at least one receiver including a delay demodulator for
3	receiving said input digital data stream the optical phase modulated signal from the
4	dispersion managed optical transmission medium.
1	13. (currently amended) The invention defined in claim 1 wherein said
2	apparatus further comprises a receiver including [[a]] at least one balanced receiver for
3	recovering said input digital data stream from a transmitted wavelength division
4	multiplexed signal. the phase modulated signal.
	14. (canceled)
1	15. (previously presented) The invention defined in claim 1 wherein said
2	transmission medium includes discrete or distributed means of erbium-doped fiber
3	amplification (EDFA) or Raman amplification.
1	16. (currently amended) A method of transmission in an for long haul optical
2	communications, comprising the steps of:
3	modulating an optical carrier signal in a sequence of return-to-zero (RZ) pulses
4	having a duty cycle of less than or equal to approximately 33%;
5	modulating an optical phase of said pulses in accordance with an input digital data
6	stream to form an optical phase modulated signal via one of phase shift keying (PSK),
7	differential phase shift keying (DPSK) or quadrature phase shift keying (QPSK);
8	combining said optical phase modulated signal with other optical phase
9	modulated signals having optical carriers with different wavelengths to form a
10	wavelength division multiplexed signal; and
11	transmitting said optical phase modulated wavelength division multiplexed signal
12	in a dispersion managed optical transmission medium. medium;

wherein dispersion management is provided by applying pre-dispersion
compensation to the optical phase modulated signal containing pulses having a duty cycle
of less than or equal to about 33%, and applying post-dispersion compensation to the
transmitted signal.

17-20. (canceled)

- 1 21. (newly presented) The method of claim 16, wherein dispersion 2 management is provided by applying pre-dispersion compensation and post-dispersion 3 compensation to said wavelength division multiplexed signal.
- 1 22. (newly presented) The method of claim 16, wherein dispersion 2 management is provided by soliton transmission of said wavelength division multiplexed 3 signal.
- 1 23. (newly presented) The method of claim 22, wherein the dispersion 2 managed optical transmission medium comprises a plurality of serially interconnected 3 fibers arranged such that adjacent interconnected fibers have alternating and opposite 4 dispersion characteristics.
 - 24. (newly presented) The method of claim 16, wherein the dispersion managed optical transmission medium comprises one or more optical fibers exhibiting a high chromatic dispersion.
- 1 25. (newly presented) The apparatus of claim 1, wherein dispersion 2 management is provided by applying pre-dispersion compensation and post-dispersion 3 compensation to said wavelength division multiplexed signal.

1

2

3

- 1 26. (newly presented) The apparatus of claim 1, wherein dispersion
 2 management is provided by soliton transmission of said wavelength division multiplexed
 3 signal.
- 1 27. (newly presented) The apparatus of claim 26, wherein the dispersion 2 managed optical transmission medium further comprises a plurality of serially 3 interconnected fibers arranged such that adjacent interconnected fibers have alternating 4 and opposite dispersion characteristics.
- 1 28. (newly presented) The method of claim 11, wherein the dispersion 2 managed optical transmission medium comprises one or more optical fibers exhibiting a 3 high chromatic dispersion.