

US Patent Application 10/644,220

Copper-Nickel-Silicon Two Phase Quench Substrate

Claim 1: A copper-nickel-silicon quench substrate of a thermally conducting alloy for rapid solidification of molten alloy into strip, having a two-phase microstructure with cells of copper rich regions surrounded intimately by a *discontinuous network* of nickel silicide and chromium silicide phases,

wherein said thermally conducting alloy is a copper-nickel-silicon alloy consisting essentially of about 6-8 wt. % nickel, about 1-2 wt. % silicon, about 0.3-0.8 wt. % chromium, the balance being copper and incidental impurities.

Continuous Network vs Discontinuous Network

Microstructure	Continuous Network
Recrystallized or Dendrite Cu Grains	Silicides at Boundaries
~ 100 μm diameter	>100 μm^2
Silicides Within Cu grains	<5 μm^2
Cells Between Silicides	~ 1000 μm
Discontinuous Network	

Key:
Black = CrSi
Dark Grey = NiSi
Light Grey = Cu

Forces Acting on Rim

Thermal Pulse from casting molten metal onto the rotating rim

Peeling from welding/stripping

EDS Analysis:
5.11Cr-25.99Fe-30.07Ni-38.82Cu

- Thermal Pulse Reduces Tensile Hoop Stress
- Average Rim Temperature ~ 300°C
- Molten Metal Penetrates Rim Surface (at large Silicides?)
- Cu, Cr and Ni Dissolution in Fe
- Cracks Extend From Weldment

Forces Acting on the Rim are not Traditional Mechanical Stresses

Rim Failure Modes

Definitions:

- **Pit**
Rim defect caused by intergranular failure at the rim surface
- **Pip**
Ribbon defect caused by casting over a pit
- **Pit Bands**
Localized cluster of pits on the rim surface (typical in Cu-Be rims)
- **Scars**
Localized cluster of pits on the rim surface (typical in Cu-Ni-Si-Cr rims)

Macro of Rim Surface
Showing Scars

Micro Cross Section of Rim
Showing Pit and Silicides

Note: Scarring is localized.
Significant "good" area.

Note: Individual pit is small.
Silicide is large ($>5\mu\text{m}$ thick)

Rim Failure Related to Non-Homogeneous Microstructure

Rim Surface Failure Analysis SEM - Transverse Section

**Sub-surface Crack Networks Can Create Pits...
Pits Can Expand Thru Continued Cracking**

Continuous Network vs Discontinuous Network

General Rim Failure Mechanism

Continuous Network Rims Have
Reduced Silicide Size
And Grain Size

Rim Surface Degrades via Cracking Through Large Silicide Particles
No Large Silicide Particles in Discontinuous Network

Effect on Cast Strip Quality

Continuous Network Rim Discontinuous Network Rim

More than 50 defects

Less than 5 defects

Discontinuous Network Rims Exhibit Reduced Defect Formation, Improved Quality