

CMSC 170: Introduction to Artificial intelligence

Week 05: Spam Filtering using a Naïve Bayes Classifier

John O-Neil V. Geronimo Institute of Computer Science University of the Philippines Los Baños

Content

- I. Background
- II. Implementing Spam Filter using Naïve Bayes Classifier

Content

- I. Background
- II. Implementing Spam Filter using Naïve Bayes
 Classifier

A **Spam Filter** classifies messages (commonly emails) to remove incoming spam. This is the technology that prevents you from seeing spam in your inbox folder as much as possible; the spam instead goes to the Spam folder.

A common way to implement a spam filter is to represent all received emails as in a **bag-of-words** and compute the probability of a message being spam given the words that make it up.

One of the ways to solve the spam filtering problem is via the **Naive Bayes classifier** technique. This technique is based on the Bayesian theorem which states that,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This theorem describes the **probability of an event based** on prior knowledge of conditions relating to the event. The naivety of the Naive Bayes classifier comes from its strong assumption that the conditions are *independent* of each other, that is, the features/attributes describing the event.

Naïve Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Spam Filtering Using Naïve Bayes

$$P(Spam|message) = \frac{P(message|Spam)P(Spam)}{P(message)}$$

We are initially given a data set of both Spam and Ham messages. The data set is the set of messages, and the target labels indicate whether a message is Spam/Ham. Since we already know whether a message is Spam/Ham, the target labels are already given, thus making spam filtering a **supervised learning problem**.

Spam Bag-of-Words

Index	Word	Frequency

Ham Bag-of-Words

Index	Word	Frequency

OF THE STATE OF TH

 $= \frac{P(Spam|message)}{P(message|Spam)P(Spam)}$ $= \frac{P(message)}{P(message)}$

How do we compute for P(Spam)?

$$P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$$

$$P(Ham) = \frac{count(Ham)}{count(Spam \cup Ham)}$$
$$= 1 - P(Spam)$$

 $\frac{P(Spam|message)}{P(message|Spam)P(Spam)}$ $\frac{P(message)}{P(message)}$

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)

How do we compute for P(message|Spam)?

$$message = w_0 w_1 w_2 \dots w_n$$

$$P(message|Spam) = P(w_0w_1w_2 ... w_n|Spam)$$
$$= P(w_0|Spam)P(w_1|Spam) ... P(w_0|Spam)$$

$$= \frac{P(Spam|message)}{P(message|Spam)P(Spam)}$$
$$= \frac{P(message)}{P(message)}$$

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message | Spam)= $P(w_0 | Spam) \dots P(w_n | Spam)$

How do we compute for P(w|Spam)?

$$P(w_n|Spam) = \frac{P(w,Spam)}{P(Spam)}$$

$$= \frac{count(w \ in \ Spam)}{count(total \ no \ of \ words \ in \ Spam)}$$


```
\frac{P(Spam|message)}{P(message|Spam)P(Spam)} = \frac{P(message|Spam)P(Spam)}{P(message)}
```

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message | Spam)= $P(w_0 | Spam) \dots P(w_n | Spam)$
- $P(w_n|Spam)$

```
= \frac{count(w in Spam)}{count(total no of words in Spam)}
```

How do we compute for P(message|Ham)?

$$message = w_0 w_1 w_2 \dots w_n$$

$$P(message|Ham) = P(w_0w_1w_2 ... w_n|Ham)$$
$$= P(w_0|Ham)P(w_1|Ham) ... P(w_0|Ham)$$

$$\frac{P(Spam|message)}{P(message|Spam)P(Spam)}$$

$$\frac{P(message)}{P(message)}$$

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message | Spam)= $P(w_0 | Spam) \dots P(w_n | Spam)$
- $P(w_n|Spam)$

$$= \frac{count(w in Spam)}{count(total no of words in Spam)}$$

• P(message | Ham)= $P(w_0 | Ham) \dots P(w_n | Ham)$

How do we compute for P(w|Ham)?

$$P(w_n|Ham) = \frac{P(w, Ham)}{P(Ham)}$$

$$= \frac{count(w in Ham)}{count(total no of words in Ham)}$$

$$\frac{P(Spam|message)}{P(message|Spam)P(Spam)}$$

$$\frac{P(message)}{P(message)}$$

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message | Spam)= $P(w_0 | Spam) \dots P(w_n | Spam)$
- $P(w_n|Spam)$
 - $= \frac{count(w in Spam)}{count(total no of words in Spam)}$
- P(message | Ham)= $P(w_0 | Ham) \dots P(w_n | Ham)$
- $P(w_n|Ham)$
 - $= \frac{count(w \text{ in Ham})}{count(total \text{ no of words in Ham})}$

How do we compute for P(message)?

P(Spam|message)

$$= \frac{P(message|Spam)P(Spam)}{P(message)}$$

- $P(Spam) = \frac{count (Spam)}{count (Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message|Spam)
 - $= P(w_0|Spam) \dots P(w_n|Spam)$
- $P(w_n|Spam)$

- P(message|Ham)
 - $= P(w_0|Ham) \dots P(w_n|Ham)$
- $P(w_n|Ham)$

$$= \frac{count(w \text{ in Ham})}{count(total \text{ no of words in Ham})}$$

- P(message)
 - = P(message|Spam)P(Spam)
 - + P(message|Ham)P(Ham)

Putting it all together,

$$= \frac{P(w_0|S)P(w_1|S) \dots P(w_n|S)P(S)}{P(w_0|S)P(w_1|S) \dots P(w_n|S)P(S) + P(w_0|H)P(w_1|H) \dots P(w_n|H)P(H)}$$

where m = message, S = Spam, and H = Ham

Lastly, a **threshold** must be set in order to determine which among the two (2) classes does a given message fall into. **Spam**

Content

- I. Background
- II. Implementing Spam Filter using Naïve Bayes Classifier

Spam Dataset

Buy now!

Ham Dataset

Spam Bag-of-Words

Index	Word	Frequency
0	you	1
1	will	1
2	love	1
3	this	2
4	product	1
5	i	1
6	used	1
7	cream	1

Index	Word	Frequency
8	and	1
9	it	1
10	removed	1
11	my	1
12	acne	1
13	buy	1
14	now	1

TNOW:

16

DS:

15

Ham Bag-of-Words

Index	Word	Frequency
0	lucky	1
1	i	3
2	am	1
3	in	1
4	love	3
5	with	1
6	my	1
7	bestfriend	1

Index	Word	Frequency
8	you	2
9	are	1
10	still	1
11	the	1
12	one	1
13	that	1
14	could	1
15	anymore	1

TNOW:

21

DS:

16

Is this message ham or spam?

I love you.

Compute for P(Spam):

Since we have three emails in the spam dataset and a total of six messages for both spam and ham dataset

$$P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$$

$$P(Spam) = \frac{3}{6} = 0.5$$

Compute for P(Ham):

Since we have three emails in the ham dataset and a total of six messages for both spam and ham dataset

$$P(Ham) = \frac{count(Ham)}{count(Spam \cup Ham)}$$

$$P(Ham) = \frac{3}{6} = 0.5$$

Compute for P(message|Spam):

Remember that we can compute P(message|spam) using this formula:

$$P(message|Spam) = P(w_0|Spam)P(w_1|Spam) \dots P(w_n|Spam)$$

 $P(w_n|Spam)$ can be computed using this formula:

$$P(w_n|Spam) = \frac{count(w \ in \ Spam)}{count(total \ no \ of \ words \ in \ Spam)}$$

Compute for P(message|Spam):

$$P("i"|Spam) = \frac{count("i" in Spam)}{count(total no of words in Spam)}$$

$$P("love"|Spam) = \frac{count("love" in Spam)}{count(total no of words in Spam)}$$

$$P("you"|Spam) = \frac{count("you" in Spam)}{count(total no of words in Spam)}$$

Spam Bag-of-Words

Index	Word	Frequency
0	you	1
1	will	1
2	love	1
3	this	2
4	product	1
5	i	1
6	used	1
7	cream	1

Index	Word	Frequency
8	and	1
9	it	1
10	removed	1
11	my	1
12	acne	1
13	buy	1
14	now	1

TNOW:

16

DS:

15

$$P("i"|Spam) = \frac{count("i" in Spam)}{count(total no of words in Spam)} = \frac{1}{16}$$

$$P("love"|Spam) = \frac{count("love" in Spam)}{count(total no of words in Spam)} = \frac{1}{16}$$

$$P("you"|Spam) = \frac{count("you" in Spam)}{count(total no of words in Spam)} = \frac{1}{16}$$

Compute for P(message|Spam):

$$P(message|Spam) = P(w_0|Spam)P(w_1|Spam) \dots P(w_n|Spam)$$

$$= P("i"|Spam)P("love"|Spam)P("you"|Spam)$$

$$= \frac{1}{16} * \frac{1}{16} * \frac{1}{16}$$

$$\mathbf{1}$$

Compute for P(message | Ham):

Remember that we can compute P(message|Ham) using this formula:

$$P(message|Ham) = P(w_0|Ham)P(w_1|Ham) \dots P(w_n|Ham)$$

 $P(w_n|Ham)$ can be computed using this formula:

$$P(w_n|Ham) = \frac{count(w \text{ in } Ham)}{count(total \text{ no of words in } Ham)}$$

Compute for P(message|Ham):

$$P("i"|Ham) = \frac{count("i" in Ham)}{count(total no of words in Ham)}$$

$$P("love"|Ham) = \frac{count("love" in Ham)}{count(total no of words in Ham)}$$

$$P("you"|Ham) = \frac{count("you" in Ham)}{count(total no of words in Ham)}$$

Ham Bag-of-Words

Index	Word	Frequency
0	lucky	1
1	i	3
2	am	1
3	in	1
4	love	3
5	with	1
6	my	1
7	bestfriend	1

Index	Word	Frequency
8	you	2
9	are	1
10	still	1
11	the	1
12	one	1
13	that	1
14	could	1
15	anymore	1

TNOW:

21

DS:

16

Compute for P(message|Spam):

$$P("i"|Ham) = \frac{count("i" in Ham)}{count(total no of words in Ham)} = \frac{3}{21}$$

$$P("love"|Ham) = \frac{count("love" in Ham)}{count(total no of words in Ham)} = \frac{3}{21}$$

$$P("you"|Ham) = \frac{count("you" in Ham)}{count(total no of words in Ham)} = \frac{2}{21}$$

Compute for P(message|Ham):

$$P(message|Ham) = P(w_0|Ham)P(w_1|Ham) \dots P(w_n|Ham)$$

$$= P("i"|Ham)P("love"|Ham)P("you"|Ham)$$

$$= \frac{3}{21} * \frac{3}{21} * \frac{2}{21}$$

$$\mathbf{2}$$

Compute for P(Spam|message):

$$P(Spam|message) = \frac{P(message|Spam)P(Spam)}{P(message)}$$

$$= \frac{P(message|Spam)P(Spam)}{P(message|Spam)P(Spam) + P(message|Ham)P(Ham)}$$

$$= \frac{\frac{1}{4096}(0.5)}{\frac{1}{4096}(0.5) + \frac{2}{1029}(0.5)} = 0.1115931027 = 11.16\%$$

Since P(Spam|message) = 11.16%

The message "I love you." is classified as a **ham** message!

Content

- I. Background
- II. Implementing Spam Filter using Naïve Bayes Classifier

Keep safe!