Improving Relevance in a Recommendation System to Suggest Charities

Pablo Adames, U. of Calgary, now with CP Railway IS Sourabh Mokhasi, U. of Calgary, now with AWS

Data for Good, April 28. 2022

Table of Contents

- 1 Introduction
 - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system
 - Building the Systen
 - Project definition
 - Previous research
 - Inductive Bias
 - Methodology
 - Feature engineering
 - Measuring relevance
 - Results
 - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user
 - Conclusions
 - knowledgements

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

• An user-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of a person
 you come up with gift ideas
- based on preferences or choices of other people you know.
- that have similar taste or preferences as the birthday person

This is the basis for...

An user-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

• An user-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

• An user-based collaborative filter algorithm

3/33

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

• An user-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

An user-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of a person
- you come up with gift ideas
- based on preferences or choices of other people you know
- that have similar taste or preferences as the birthday person

This is the basis for...

• An user-based collaborative filter algorithm

3/33

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

An item-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

• An item-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

• An item-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

• An item-based collaborative filter algorithm

ywy good

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

• An item-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

An item-based collaborative filter algorithm

Recommending birthday gifts...:

- Given a description or knowledge of what a person prefers or uses
- you come up with gift ideas
- that are like things you have seen other people prefer
- who have chosen the same items as the birthday person

This is the basis for ...

• An item-based collaborative filter algorithm

- Recommendations can be calculated with algorithms
- They expect data as a list of (user, item, rating)
- Or equivalently as a rating matrix of user vs. items

- Recommendations can be calculated with algorithms
- They expect data as a list of (user, item, rating)
- Or equivalently as a rating matrix of user vs. items

<i>U</i> 1,	<i>I</i> 1,	(5))
		0	1

$$(U_1, I_3, (4))$$

$$(U_2, I_2, 3)$$

- Recommendations can be calculated with algorithms
- They expect data as a list of (user, item, rating)
- Or equivalently as a rating matrix of user vs. items

- Recommendation algorithms implement these main tasks
- A definition of similarity to create neighbourhoods
- Rating prediction
- To produce a ranked list of items for the target user

- A definition of similarity to create neighbourhoods

- Item-based CF: Similar items to the ones rated by the target user
- User-based CF: Similar users that have rated the same items as the target user

6/33

- Recommendation algorithms implement these main tasks
- A definition of similarity to create neighbourhoods
- Rating prediction
- To produce a ranked list of items for the target user

- Item-based CF: User-similarity weighted ratings to unseen item
- User-based CF: Average target user rating corrected by user-similarity weighted rating to unseen item

- Recommendation algorithms implement these main tasks
- A definition of similarity to create neighbourhoods
- Rating prediction
- To produce a ranked list of items for the target user

- Descending order from top predicted rated item and length k
- Top-*k* recommendations

- Naive implementations work on the user-item matrix
- Sparse matrix puts high tax on memory
- Algorithm complexity puts high tax on processing
- SVD++ and auto-encoders tackle sparsity and complexity...
- Real applications store a lot of pre-computed values

April 28, 2022

- Naive implementations work on the user-item matrix
- Sparse matrix puts high tax on memory
- Algorithm complexity puts high tax on processing
- SVD++ and auto-encoders tackle sparsity and complexity...
- Real applications store a lot of pre-computed values

- Naive implementations work on the user-item matrix
- Sparse matrix puts high tax on memory
- Algorithm complexity puts high tax on processing
- SVD++ and auto-encoders tackle sparsity and complexity...
- Real applications store a lot of pre-computed values

- Naive implementations work on the user-item matrix
- Sparse matrix puts high tax on memory
- Algorithm complexity puts high tax on processing
- SVD++ and auto-encoders tackle sparsity and complexity...
- Real applications store a lot of pre-computed values

- Naive implementations work on the user-item matrix
- Sparse matrix puts high tax on memory
- Algorithm complexity puts high tax on processing
- SVD++ and auto-encoders tackle sparsity and complexity...
- Real applications store a lot of pre-computed values

CF algorithm with dual-autoencoders

The recommendation algorithm

A collaborative filter based on item similarity

8/33

CF algorithm with dual-autoencoders

The Machine Learning Project Flow

 $From\ https://huyenchip.com/machine-learning-systems-design/design-a-machine-learning-system.htmldesign-a-machine-learning-system.dwGQ15R$

Table of Contents

- 1 Introduction
 - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system
- 2 Building the System
 - Project definition
 - Previous research
 - Inductive Bias
- Methodology
 - Feature engineering
 - Measuring relevance
 - Results
 - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user
 - Conclusions
 - knowledgements

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

• A prototype to make recommendations

11/33

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

• A prototype to make recommendations

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data

- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

A prototype to make recommendations

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

A prototype to make recommendations

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories

Collaborative filter (CF)

Build in the cloud

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

Adames et al.

Given the following:

- A global charitable donations platform
- Real-life anonymous transaction data
- No explicit user profiles
- Causes with categories and subcategories
- Collaborative filter (CF)

Build in the cloud

Donations related previous work

- 59,000 ratings of 70 non-profit organizations from over 3,800 users, May 2009
- On-boarding interview to obtain user donation preferences
- Patented constant-time algorithm for recommendations: EigenTaste 2.0

Algorithm selection

Options for the basic recommendation algorithm:

- Content-based
- Item-based collaborative filter
- User-based collaborative filter

Settled for Item-based CF due to:

- CF favours personalization and serendipity
- Lack of user profiles

ML selection

Strategies we considered:

- Dual-autoencoders
- Scalable SVD

Settled for dual-autoencoders due to:

- Efficient use of memory
- Parallel pipeline design

System metric selection

Could use:

- MAP
- Diversity
- Serendipity
- Novelty
- Coverage

Chose MAP for simplicity

See K. Falk, Practical Recommender Systems. Shelter Island, NY: Manning Publications, 2019 Kaminskas, Marius and Bridge, and Derek, "Diversity, Serendipity, Novelty, and Coverage", ACM transactions on interactive intelligent systems, v.7, No. 1, pp. 1-14, 2016

Question

Given:

- Lack of explicit user profiles or ratings
- Sparsity:
 - 24 million anonymous donations
 - 165 thousand unique causes
 - Over 1.2 million users

How to make relevant recommendations?

Table of Contents

- Introduction
 - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system
 - Building the System
 - Project definition
 - Previous research
 - Inductive Bias
- 3 Methodology
 - Feature engineering
 - Measuring relevance
 - Results
 - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user
 - Conclusions
 - knowledgements

Generation of features

To capture patterns from how users interact with causes

- ullet The set of transactions ψ gets pre-processed into λ
- ullet Then the set of features θ is computed
- \bullet Finally the set of implicit ratings, r, is generated

Features

FOCUS: how a user distributes their donation money among causes

IMPACT: It is very similar to INTENSITY but in terms of money

INTENSITY: capture the frequency of donations by a user to a category of causes

KIND: encodes the category of the cause donated to

Data set description

Table: Statistics of data sets to make recommendations for donations to charities.

Dataset	No. of users	No. of items	No. of ratings	Rating density	Avg. ratings per user	Avg. ratings per item
Donations-Dashboard ¹	3 133	70	57 517	26.31%	18.42	851.9
Donations-1 ²	9 397	2 711	24 417	0.0958%	2.60	9.03
Donations-2 ²	1 264 083	165 842	24 174 672	0.0115%	19.12	145.76

¹ The Donation Dashboard data set: http://dd.berkeley.edu/dataset/

Note the sparsity in rating density^a of the Donations-2 data set.

^aThe ratings per user per item

² Data used for this research.

Measuring what matters: ©

For the machine learning components...

Regressor performance: RMSE, MAE /

Classifier performance: precision, recall \(\square\$

Used during training and tuning via cross-validation \checkmark

The goal is to generalize while avoiding over-fitting \(\square\)

Measuring what matters:

For the machine learning components...

Regressor performance: RMSE, MAE /

Classifier performance: precision, recall \(\sqrt{} \)

Used during training and tuning via cross-validation <

The goal is to generalize while avoiding over-fitting <

Measuring what matters:

For the machine learning components...

Regressor performance: RMSE, MAE 🗸

Classifier performance: precision, recall \(\square\$

Used during training and tuning via cross-validation \checkmark

The goal is to generalize while avoiding over-fitting <

Measuring what matters:

For the machine learning components...

Regressor performance: RMSE, MAE 🗸

Classifier performance: precision, recall ✓

Used during training and tuning via cross-validation \checkmark

The goal is to generalize while avoiding over-fitting \(\square\)

Measuring what matters:

For the machine learning components...

Regressor performance: RMSE, MAE 🗸

Classifier performance: precision, recall ✓

Used during training and tuning via cross-validation ✓

The goal is to generalize while avoiding over-fitting \(\square\)

Measuring what matters:

For the machine learning components...

Regressor performance: RMSE, MAE 🗸

Classifier performance: precision, recall 🗸

Used during training and tuning via cross-validation ✓

The goal is to generalize while avoiding over-fitting \checkmark

System Performance:

System Performance:

System Performance:

System Performance:

System Performance:

System Performance:

Table of Contents

- Introduction
 - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system
 - Building the System
 - Project definition
 - Previous research
 - Inductive Bias
 - Methodology
 - Feature engineering
 - Measuring relevance
- 4 Results
 - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user

Conclusions

knowledgements

23 / 33

Sensitivity to embedding size

Figure: Effect of the size of the cause embedding vectors on MAP at various values of top k for samples of 10,000 users. Key: scat=subcategories of causes used to compute features, nc=no feature for country of user, 256=embedding size, 512=embedding size.

Cause categories Vs. subcategories

Figure: Effect of using categories or subcategories on MAP at different top k values for samples of 10,000 users. Key: cat=categories for feature computation, scat= subcategories instead of categories for feature computation, nc=no feature for country of user, 256=size of the cause embedding vectors.

Effect of user activity

Figure: Effect of removing users with a minimum number of donations on MAP at various top k values for samples of 10,000 users. Key: scat= subcategories used for feature computation, c= country of the user as a feature, 1d=all users are included in the system, 55d=only users with 55 donations or more are included, 100d=only users with more than data donations are included.

Transactions and users

Figure: Number of transactions and number of users in the data set as a function of the minimum number of donations per user during the 2-year interval in the donations data of data set.

Adames et al.

Causes and companies

Figure: Number of causes and companies in the data set as a function of the minimum number of donations per user during the 2-year interval in the donations-2 data set.

Countries of users

Figure: Number of user countries in the data set as a function of the minimum number data constions per user during the 2-year interval in the donations-2 data set.

Table of Contents

- Introduction
 - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system
 - Building the System
 - Project definition
 - Previous research
 - Inductive Bias
- Methodology
 - Feature engineering
 - Measuring relevance
 - Results
 - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user
- 5 Conclusions
- 6 kenowledgements

Conclusions

- Successfully used inferred user profiles via implicit ratings
- Using finer cause classifications increases relevance
- Controlling for minimum number of donations improves MAP
- An empirical threshold for user donations seems reasonable to max MAP at any k

Table of Contents

- - Context
 - Algorithms
 - Algorithm Implementations
 - Building a recommendation system

 - Project definition
 - Previous research
 - Inductive Bias
- - Feature engineering
 - Measuring relevance
 - - Embedding size
 - Categories Vs. Subcategories
 - User activity
 - Effect of setting the minimum donations per user
- Acknowledgements

Acknowledgements

Special thanks for funding and supporting this research:

- The University of Calgary, Software Engineering Program
- MITACS Accelerate
- Benevity, Inc.

