Rによる探索的データ分析入門 - 可視化 演習

発電基盤開発課 高津一誠

2018年10月19日

1 RStudio の使い方

R を使うときは開発環境ツールの RStudio を起動してください。RStudio はデータ分析作業をサポートする 便利なツールです。

1.1 画面構成

RStudio の画面は、4つのワクから構成されています。

図1 RStudio の画面構成

印をつけてあるのが、ここで使用する項目ですが、参考までにそれぞれのワクについて説明します。

左上のワクは、後でスクリプトファイルを作成すると表示されます。ここに R の処理を書いていきます。

左下のワクはコンソールで、R のコマンドを実行するところです。右上のワクにはタブが並んでいます。 [Envrionment] にはデータの一覧が表示されます。項目をクリックすると左上のワクにタブが新しくタブができて、データの内容が表示されます。 [History] には入力したコマンドの履歴が表示されます。右下のワクには、プロジェクトフォルダに含まれるファイルを操作する [Files]、グラフなどの出力を表示する [Plots] と [Viewer]、R の機能を拡張するパッケージを管理する [Packages]、英語ですがコマンドの使い方を表示する [Help] があります。

1.2 初期設定を行う

RStudio をインストールした後に、以下の設定を行ってください。

- 一時データを保存しないようにする。
 - メニューから [Tools -> Global Options] を選択する。
 - Restore .RData into workspace at startup: チェックを外す
 - Save workspace to .RData on exit: Never
- ライブラリをインストールする。
 - 右下のワクの [Packages] タブを選択する。
 - [Install] ボタンを押す。
 - [Packages] の欄に tidyverse と入力し [Install] を押す。

1.3 データ分析をはじめる

新しくデータ分析をはじめるときには、以下のようにしてください。

- プロジェクトを作成する。
 - あらかじめ、プロジェクトを保存するフォルダを用意する。
 - ツールバー右端の [Project] ボタンを押す。
 - [New Project] を選び、表示された画面で [Existing Directory] を選ぶ。
 - [Browse] ボタンを押して、用意したフォルダを選択し、[Open] ボタンを押す。
 - [Create Project] ボタンを押す。
- R の処理を記録するファイル (スクリプトファイル) を作成する。
 - ツールバー左端の[+] ボタンを押し、[R Script] を選ぶ。
 - 左上のワクに作られた [Untitled1] タブの下にある保存ボタン(フロッピーディスクのアイコン)を押す。
 - ファイル名を入力して [Save] ボタンを押す。(拡張子は自動で追加される。)
- ライブラリをインポートする。
 - スクリプトファイルの先頭に、以下を記述する。

library(tidyverse)

- カーソルが先頭行にある状態で、タブ内の右上の [Run] ボタンを押す。
- 処理を書く。スクリプトファイルに、実行させたいコマンドを記述する。

1.4 コマンドを実行する

スクリプトファイルに書いたコマンドを実行するには、実行したい行にカーソルがある状態で [Run] ボタンを押します。すると、コンソールにコマンドが転送されて実行されます。

複数行を実行したいときや、行内の一部分だけを実行したいときは、範囲選択した状態で [Run] ボタンを押します。スクリプトファイルが完成した後なら、ファイルの内容を一括して実行することも可能です。その場合は [Source] ボタンのドロップダウンメニューから [Source with Echo] を選んでください。

1.5 ショートカットキー

よく使う演算子や操作は、ショートカットキーで入力すると便利です。以下を使ってみてください。

表1: ショートカットキー

ショートカットキー	説明
$\overline{\text{Alt} + -(\mathcal{N} \mathcal{T} \mathcal{T} \mathcal{V})}$	代入演算子 (<-)
Ctrl + Shift + m	パイプ演算子 (%>%)
Ctrl + Enter	実行
Ctrl + z	Undo
Ctrl + Shift + z	Redo

1.6 入力の補完機能を活用する

RStudio ではキーボードから文字を入力すると候補が表示されます。(表示されないときは Tab キーを押すと表示されます。) 矢印キー (↑↓) で候補を選択して Enter キーや Tab キーを押すと入力の手間を省くことができます。

2 可視化の演習

前回勉強したRによる可視化を使って、データを分析してみましょう。

R に組み込まれている、diamonds データセットを使ってデータ分析をしてください。diamonds はダイヤモンドの品質と価格を格納したデータで、前回の iris と同じように tidyverse パッケージをロードすると使えるようになります。

library(tidyverse)

diamonds

A tibble: 53,940 x 10

##		carat	cut	color	clarity	depth	table	price	х	У	z
##		<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
##	2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
##	3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
##	4	0.290	Premium	I	VS2	62.4	58	334	4.2	4.23	2.63
##	5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
##	6	0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48
##	7	0.24	Very Good	I	VVS1	62.3	57	336	3.95	3.98	2.47
##	8	0.26	Very Good	H	SI1	61.9	55	337	4.07	4.11	2.53
##	9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49
##	10	0.23	Very Good	H	VS1	59.4	61	338	4	4.05	2.39

... with 53,930 more rows

変数の説明は以下のとおりです。

表2: diamond データセット

データ列 (変数)	説明
carat	重さ (カラット)
cut	カット等級
color	色
clarity	透明度
X	長さ (mm)
У	幅 (mm)
${f z}$	深さ (mm)
depth	深さ比 (z/(x+y)/2)
table	上面幅/最大幅

2.1 演習 1

ダイヤモンドのカラットと価格には相関があるでしょうか?グラフを描いて調べてください。

2.2 演習 2

カラットと価格の関係は、カット等級によって変化するでしょうか?カット等級ごとのサブグラフを描いて調べてください。