项目分析报告

预测邮寄产品目录带来的收入增长

1. 理解业务与数据

● 我们需要做出的决策:

是否向这 250 名新客户发送产品目录?

● 决策所需信息:

需要知道向这批客户发送产品目录带来的预期利润。

● 哪种分析模型能够获得所需信息:

需要通过一个预测性模型来获得。

● 目前所拥有的数据:

- Name: 姓名,分类数据,数据来源: customers、mailinglist
- Customer Segment: 客户分类,分类数据,数据来源: customers、mailinglist
- Customer ID: 客户 ID, 分类数据, 数据来源: customers、mailinglist
- Address: 地址,分类数据,数据来源: customers、mailinglist
- City: 城市,分类数据,数据来源: customers、mailinglist
- State: 所在州,分类数据,数据来源: customers、mailinglist
- ZIP: 邮政编码,分类数据,数据来源: customers、mailinglist
- Avg Sale Amount: 平均销售额, 数值型, 数据来源: customers
- Store Number: 门店号码, 分类数据, 数据来源: customers、mailinglist
- Responded to Last Catalog: 对上一次目录的回应, 分类数据,

数据来源: customers

■ Avg Num Products Purchased: 平均购买产品数,数值型,数据来源: customers、mailinglist

■ # Years as Customer: 作为顾客的年份,数值型,数据来源: customers、mailinglist

■ Score_No:客户不购买的概率,数据来源: mailinglist

■ Score_Yes: 客户购买的概率,数据来源: mailinglist

● 预测模型的确立

根据前述,已知这是一个预测性的问题,且已有丰富数据,而预期利润是一个连续型的数值型变量,按照以下方法图的指示,应当选用线性回归作为分析模型。

Business Problem					
Predict Outcome					Data Analysis
Data Rich Data			Data Poor	Geospatial	
Numeric		Classifi	Classification		Segmentation
Continuous	Time Based	Binary	Non Binary		Aggregation
Linear Regression Decision Tree Forest Model Boosted Model	ARIMA ETS	Logistic Regression Decision Tree	Forest Model Boosted Model		Descriptive

2. 分析、建模与验证

● 预测变量的选取:

- 首先根据经验排除 Name、Customer ID、Address、State、ZIP 等变量
- Customer Segment: 可能会对结果有影响, 结合图表及单变量回归来看, 可见箱线图显示出其规律, 亦可通过单变量回归分析(调整 R²>=0.5, P<0.05)

单变量回归分析		
Adjusted R Square	0.70199017	
Loyalty Club and Credit Card: P-value	1.2112E-121	
Loyalty Club Only: P-value	3.5029E-124	
Store Mailing List: P-value	0	

■ City: 可能对结果有影响, 但从单变量回归来看, 该变量对目标变量的解释度很弱

回归统计			
Adjusted R Square	-0.00242812		
Denver:P-value	0.653878407		
Aurora:P-value	0.670083437		
Arvada:P-value	0.777595069		
Lakewood:P-value	0.437528387		
Broomfield:P-value	0.982162584		
Westminster:P-value	0.976787778		
Centennial:P-value	0.609797788		
Littleton:P-value	0.687332806		

■ Store Number:可能会有影响,但图表中未见明显规律,单变量回归检测亦不支持其与目标变量间存在线性关系

回归统计		
Adjusted R Square	-0.000639123	
100: P-value	0.649510485	
101: P-value	0.371574747	
102: P-value	0.30169929	
103: P-value	0.550678485	
104: P-value	0.22058413	
105: P-value	0.808175198	
106: P-value	0.172444842	
107: P-value	0.703721449	
108: P-value	0.053817547	

Responded to Last Catalog: 按照经验判断,该变量应对结果有影响,同样以下箱线图也显示两者有区别,但单变量回归的分析统计量显示两者之间缺乏线性关系。

回归统计	
R Square	0.039743702
Responded to Last Catalog: P-value	1.0296E-22

■ Avg Num Products Purchased: 从以下的散点图可以看到明显

的相关性,同时回归分析也显示该变量与目标变量有线性关系 (相关系数>0.8, R²>0.7, P<0.01)

回归统计		
相关系数	0.855754217	
R Square	0.73231528	
Avg Num Products Purchased: P-value	0	

■ # Years as Customer: 主观考虑这个变量应会对结果有影响,但散点图未能体现出明显相关线性规律,同时相关系数、R²以及系数估计的 P 值都不符合要求。

综上所述, 应选择以下变量作为预测变量:

- Customer Segment
- Avg Num Products Purchased
- 多元线性回归模型的建立与验证
 - 多元线性回归模型方程:

Y=303.46+66.98*Avg Num Products Purchased+281.84 (If Type: Loyalty Club and Credit Card)–149.36 (If Type: Loyalty Club Only)-245.42(If Type: Store Mailing List)+0(if Type: Credit Card Only)

■ 多元线性回归模型的检验:

回归统计	
Adjusted R Square	0.836602397
Daraha	
P-value	
Intercept	1.1227E-155
Avg Num Products Purchased	0
Loyalty Club and Credit Card	2.5804E-111
Loyalty Club Only	6.34584E-59
Store Mailing List	1.0503E-123

整个模型的调整 R²>0.8, 各项系数估计值的 P 值都<0.05, 因此可以认为该多元线性回归模型是适用的。

3. 演示/可视化:

● 给出的建议:

建议向这 250 名客户发送产品目录。

- 预计发送产品目录带来的预期利润达到 21987.43 美元
- 得出建议的过程:

运用经验常识、可视化图表以及单变量回归分析等方法下筛选出合适的预测变量后,基于这些预测变量构建出如下多元线性回归模型:

Y = 303.46 + 66.98 * Avg Num Products Purchased + 281.84 (If Type: Loyalty Club and Credit Card) – 149.36 (If Type: Loyalty Club Only) - 245.42(If Type: Store Mailing List) + 0 (if Type: Credit Card Only)

其调整 R²及各个系数估计值的 P 值都满足要求,因此该模型可以用于估计预期收入额。

将该模型运用到 250 名新客户的资料中, 计算每一名客户对应的预计销售额, 预期销售额(预计销售额乘以购买概率)、预期利润。 将计算所得的 250 名客户的预期利润加总, 可得到向这些客户发送产品目录带来的预期利润总共 21987.43 美元。

按照要求,如果这些新客户带来的预期利润超过一万美元,那么管理层就会向他们寄送产品目录册。因此我们建议管理层向他们寄送产品目录。