1. Let's compare reservoirs with normal and reverse faulting regimes (onshore). For both regimes, plot the limits of S_1 and S_3 versus depth from 0 to 5 km assuming hydrostatic pore pressure and a state of stress limited by frictional strength of faults. Assume sliding friction coefficient is μ =0.6. For both regimes, how does changing μ from 0.6 to 1.0 change the maximum possible differential stress S_1 - S_3 at a fixed depth of z=5km? Explain what that friction coefficient change physically means.

Instructor: DNE

- 2. A given site offshore (sea floor at 500 ft) is subjected to a Normal Faulting stress regime. Over-pressure is first detected at 1500 ft (TVD) and at 2000 ft overpressure is λ_p =0.78. Calculate the total minimum horizontal stress S_{hmin} at this depth assuming frictional equilibrium of faults and friction angle 30°. Draw the corresponding Mohr circle with a solid line and draw an additional Mohr circle with a dashed line assuming hydrostatic pressure. (Assume typical water and lithostatic gradients)
- 3. Find out the orientations of (a) a hydraulic fracture and (b) a shear fracture both created in a site subjected to stresses $S_v < S_{hmin} < S_{Hmax}$ where S_{Hmax} strikes E-W and μ =0.8.
- 4. Find out the orientations of (a) a hydraulic fracture and (b) a shear fracture both created in a site subjected to stresses S_{hmin} < S_v < S_{Hmax} where S_{Hmax} strikes W20°N and μ =0.5.
- 5. For the following faults: (i) draw the corresponding points in a stereonet (lower hemisphere projection) map, (ii) convert to strike to azimuth convention, and (iii) draw equivalent geological map symbols.
 - (a) N55°E, 45°SE
 - (b) E20°S. 60°NE
 - (c) N20°W, 25°SW
 - (d) S10°W, 60°NW
- 6. In a given reservoir under study stresses are S_{hmin} =40 MPa, S_{Hmax} =60 MPa, S_v =45 MPa, P_p = 20MPa, and S_{hmin} acts E-W. For each of the faults below, calculate (using the Mohr Circle method <u>if possible</u>) the normal and shear stress on the plane of the fault and then determine if the fault is prone to slip (μ =0.6).
 - a. Fault with strike north-south, dip 65° to the east
 - b. Fault with strike east-west, dip 35° to the north

- c. Fault with strike 060°, dip 90°
- d. Fault with strike 030°, dip 25°
- 7. (Optional See class notes) Write a Matlab code that can obtain $(S_n, \tau_d, \tau_s, \sigma_n)$ on an arbitrary fault with orientation (strike, dip) for a given state of stress $(S_P, \alpha, \beta, \gamma)$.
 - a. Verify with problems solved in lecture slides
 - b. Apply to solve <u>all</u> cases in problem 6
 - c. Apply code to solve stress on 100 fractures randomly oriented. Plot all results the respective 3D Mohr circle.
 - d. A nearby injection wellbore will perform water flooding. What is the <u>additional</u> pore pressure needed to start reactivating faults?

Hint for problem 7:

- Matlab function 'rand' can be used for creating an array of random values;

r = a + (b-a)*rand(N,1) creates an array r (Nx1) of values in interval [a,b]

- 8. (Real application problem) The following page contains seismic images (http://www.glossary.oilfield.slb.com/Terms/c/crossline.aspx) of a section the subsurface in the North Sea. We are interested in the Frigg sandstone formation. This is a hydrocarbon-bearing formation and it is located at about 1790 m of TVDSS.
 - a. Calculate the water depth by measuring the two-way travel time and assuming $V_P(\text{sea-water}) = 1450 \text{ m/s}$.
 - b. Find the location of the Frigg Formation in the time axis assuming $V_P(\text{sediments}) = 3000 \text{ m/s}$.
 - c. Evaluate qualitatively the faulting at the reservoir depth. Describe how faulting could affect fluid flow.

