

AMENDMENTS TO THE CLAIMS:

Complete Listing of Claims

- 1 1. (original) A bit-rate detection circuit, comprising:
 - 2 a plurality of shift registers adapted to serially shift in bits of data having a
 - 3 data frequency from a first transceiver, said shift registers being clocked at a first
 - 4 predetermined rate; and
 - 5 logic circuitry responsively coupled to said shift registers providing an
 - 6 output signal indicative of the data frequency.
- 1 2. (original) The bit-rate detection circuit of Claim 1 wherein said first
2 predetermined rate is the highest possible data rate that the incoming data
3 frequency can be.
- 1 3. (original) The bit-rate detection circuit of Claim 1 wherein said logic
2 circuitry is coupled to nodes defined between said shift registers.
- 1 4. (original) The bit-rate detection circuit of Claim 3 wherein said logic
2 circuitry comprises a first logic set and a second logic set each providing an
3 output signal, said first logic set being coupled to a first set of said nodes
4 between said shift registers, and said second logic set being coupled to a second
5 set of said nodes between said shift registers.

1 5. (original) The bit-rate detection circuit of Claim 4 wherein said first
2 logic set determines if said incoming data frequency is a first predetermined
3 frequency, and said second logic set determines if said incoming data frequency
4 is a second predetermined frequency being less than said first predetermined
5 frequency.

1 6. (original) The bit-rate detection circuit of Claim 5 wherein said first
2 predetermined frequency is a multiple of said second predetermined frequency.

1 7. (original) The bit-rate detection circuit of Claim 4 further comprising
2 output logic circuitry responsively coupled to said first logic set and said second
3 logic set, said output logic circuitry providing said output signal indicative of the
4 data frequency.

1 8. (original) The bit-rate detection circuit of Claim 4 further comprising a
2 third logic set coupled to a third set of said nodes being different than said first
3 and second sets of nodes.

1 9. (original) The bit-rate detection circuit of Claim 8 wherein said third
2 logic set determines if said incoming data frequency is a third predetermined
3 frequency being less than said second predetermined frequency.

1 10. (original) The bit-rate detection circuit of Claim 9 wherein said first
2 predetermined frequency is in multiple of said third predetermined frequency.

1 11. (original) The bit-rate detection circuit of Claim 10 wherein said third
2 predetermined frequency is also a multiple of said second predetermined
3 frequency.

1 12. (original) The bit-rate detection circuit of Claim 1 further comprising a
2 communications transceiver module responsively coupled to said logic circuitry
3 output signal and adapted to transmit data back to said first transceiver at said
4 incoming data frequency.

1 13. (original) The bit-rate detection circuit of Claim 1 wherein said logic
2 circuitry includes a single clock operating at a first frequency.

1 14. (original) The bit-rate detection circuit of Claim 1 wherein said logic
2 circuit provides said output signal as a function of framing data clocked into said
3 shift registers.

1 15. (original) The bit-rate detection circuit of Claim 14 wherein said
2 framing data is A1 and A2 SONET framing bytes.

1 16. (original) A data transceiver, comprising:
2 a data receiver circuit;
3 logic circuitry responsively coupled to said receiver circuit determining a
4 data rate of data received by said data receiver, said logic circuit including and
5 operating off a single clock operating at a first predetermined frequency; and
6 a data transmitter responsively coupled to said logic circuitry and adapted
7 to transmit data at a data rate as a function of said output signal.

1 17. (original) The bit-rate detection circuit of Claim 16 wherein said logic
2 circuitry comprises;

3 a plurality of shift registers adapted to serially shift in data having a data
4 frequency from a first transceiver, said shift registers being clocked at a first
5 predetermined rate; and

6 logic circuitry responsively coupled to said shift registers providing an
7 output signal indicative of the incoming data frequency.

1 18. (original) The bit-rate detection circuit of Claim 17 wherein said first
2 predetermined rate is the highest possible data rate that the incoming data
3 frequency can be.

1 19. (original) The bit-rate detection circuit of Claim 17 wherein said logic
2 circuitry is coupled to nodes defined between said shift registers.

1 20. (original) The bit-rate detection circuit of Claim 19 wherein said logic
2 circuitry comprises a first logic set and a second logic set each providing an
3 output signal, said first logic set being coupled to a first set of said nodes defined
4 between said shift registers, and said second logic set being coupled to a second
5 set of said nodes defined between said shift registers.

1 21. (original) A method of detecting a bit-rate of data incoming to a
2 receiver, comprising the steps of:

3 a) clocking said incoming bit data at a first frequency into a
4 plurality of shift registers having a node between each said shift register; and

5 b) analyzing data at a plurality of said nodes to determine the bit-
6 rate of said incoming bit data.

1 22. (original) The method as specified in Claim 21 wherein said first
2 frequency is the maximum possible data bit-rate of said incoming bit data.

1 23. (currently amended) The method as specified in Claim 22 wherein
2 logic circuitry analyzes said bit data, said logic circuitry having a first logic set
3 coupled to a first set of said nodes determining if said data bit-rate could be a
4 first data rate, and a second logic set coupled to a second set of said nodes
5 determining if said data bit-rate could be a second data rate being less than said
6 first data rate.

1 24. (original) The method of Claim 23 wherein said first data rate is said
2 first frequency, and said first data rate is also a multiple of said second data rate.

1 25. (original) The method of Claim 21 further comprising the step of
2 responsively transmitting data from a transmitter at a data rate being said
3 determined incoming data bit-rate.

1 26. (original) The method of Claim 21 wherein frame data is said
2 analyzed data in said step b).

1 27. (original) The method of Claim 26 where in said frame data is a A1
2 and A2 SONET framing byte.

1 28. (original) A bit-rate detection circuit, comprising:

2 a plurality of shift registers adapted to shift in bits of data having a data

3 rate in parallel from a first transceiver, said shift registers being clocked at a

4 predetermined clock rate; and

5 logic circuitry responsive coupled to said shift registers providing an

6 output signal indicative of the data rate.

1 29. (original) The bit-rate detection circuit as specified in Claim 28,

2 wherein said clock rate is less than the maximum data rate.

1 30. (original) The bit-rate detection circuit as specified in Claim 29,

2 wherein said data rate is a multiple of said clock rate.