05/06/2025, 00:12 alphaVal

Bittensor Subnet Valuation Framework

Revised 4 June 2025

1 Introduction

This memorandum develops an analytical framework for valuing Bittensor subnets. The treatment combines

- 1. hardware operating expenditure,
- 2. user-generated cash-flows,
- 3. peer financing benchmarks, and
- 4. the token-supply mechanics dictated by Dynamic TAO (dTAO).

All monetary figures are stated in United States dollars (USD) unless noted; all present-value calculations employ a **20 percent** discount rate (denoted d = 0.20).

2 Motivation

Under Dynamic TAO every subnet's token supply, reward schedule and burn mechanics differ materially from conventional Web 3 projects. Early-epoch inflation, hardware intensity and the interplay between Alpha prices and TAO halvings complicate standard venture valuation heuristics. A transparent framework is therefore required to:

- benchmark the economic floor for securing a subnet;
- quantify the upside from prospective user adoption;
- reconcile token-supply growth with comparable market valuations; and
- provide investors a defensible discount or premium when committing off-chain capital.

The sections that follow operationalise these objectives via four complementary lenses.

3 Methodological Pillars

Pillar	Captured quantity	Output symbol
Cost-of- Participation	Net-present cost of running the required mining + validation set	NPC_{lpha}
Net-Present Value of Users	Discounted profit stream from end users	$NPVU_{lpha}$
Comparable- Deals Benchmark	Median post-money valuations from 313 decentralised-AI financings	$V_{ m market}$

05/06/2025, 00:12 alphaVal

Pillar	Captured quantity	Output symbol
Inflation Anchoring	Circulating Alpha at investor horizon T	$S_{ m max}(T), S_{ m min}(T)$

Here $S_{\text{max}}(T)$ and $S_{\text{min}}(T)$ denote, respectively, the cumulative Alpha under maximal and minimal issuance (derived in Section 6).

4 Cost-of-Participation (CoP)

4.1 Per-node operating expenditure

(The table below assumes a power price of $0.12 \text{ USD kWh}^{-1}$ and PUE = 1.2.)

Hardware profile	Cap-ex \$ day ⁻¹	Power \$ day ^{-1 2}	Total \$ day-1
CPU only	2.00	1.20	3.20
8 × RTX 4090	25.00	18.00	43.00
8 × A100	64.00	22.00	86.00
8 × H200	90.00	25.00	115.00

¹ Five-year straight-line depreciation, 12 % cost of capital.

4.2 Subnet-level expenditure and present value

Let

- N = miner-node count, N_v = validator-node count;
- M and V = per-node daily costs from Table 4.1;
- $K \ge 1$ = labour-complexity multiplier (baseline 1.0);
- P_{α} = spot price of the subnet's Alpha token.

Daily burn (USD)

$$C = 365.25K(NM + N_vV).$$

Present value (USD)

$$NPC_{USD} = \frac{C}{d}$$
.

Converted to Alpha

$${
m NPC}_lpha = rac{C}{d\,P_lpha}$$

5 Net-Present Value of User Cash-Flows (NPVU)

Let

2/5

² Operating electricity cost.

05/06/2025, 00:12 alphaVal

- U = steady-state active user count,
- ARPU = average revenue per user per year (USD).

Perpetuity (USD)

$$NPVU_{USD} = \frac{U ARPU}{d}.$$

Finite horizon T years

$$ext{NPVU}_{T, ext{USD}} = U \operatorname{ARPU} rac{1 - (1+d)^{-T}}{d}.$$

After division by P_{α} the result is $NPVU_{\alpha}$.

Comparable-Deals Benchmark 6

Stage	Median valuation (USD M)	Observations	IQR (25–75 %)
Pre-Seed	20	57	10 - 30
Seed	26.8	156	15 - 50
Strategic	50	34	26 - 75
Private	44	64	21 - 72
Series A	125	2	113 – 138

7 **Token-Supply Dynamics**

7.1 Maximum per-block issuance

Let

- $\Delta \tau = \text{TAO}$ minted per base-chain block, $\sum_j p_j = \text{cross-subnet price sum (empirically 1-2, baseline 1.5),}$
- $\overline{\Delta \alpha_i}$ = subnet-specific hard cap on Alpha issuance.

$$\delta_1 = rac{\Delta au}{\sum_j p_j}, \quad \delta_2 = \overline{\Delta lpha_i}, \quad \delta = \min(\delta_1, \delta_2).$$

Maximum issuance

$$\Delta lpha_{
m max} = 2\,\delta$$
 .

7.2 Minimum net issuance

Define

- β_m = fraction of miners' reward (0.41 δ) immediately burned,
- B_r , B_x = registration and external burns (Alpha block⁻¹).

05/06/2025, 00:12

$$oxed{\Deltalpha_{\min}=2\,\delta-ig[eta_m\,(0.41)\,\delta+B_r+B_xig]}$$

7.3 Cumulative supply up to horizon T

Let t_0 be subnet genesis; integrate over time t:

$$S_{
m max}(T) = \int_{t_0}^T \!\! \Delta lpha_{
m max}(t) \, {
m d}t, \qquad S_{
m min}(T) = \int_{t_0}^T \!\! \Delta lpha_{
m min}(t) \, {
m d}t.$$

Numerical evaluation is implemented in the companion calculator.

Estimating Future Circulating Supply 8

To estimate the circulating Alpha at a future date T the investor specifies:

Required input	Symbol	Comment
Existing circulating supply (today)	S_0	as on-chain
Average sum-of-prices $\langle \sum p \rangle$	Σ	choose within $1-2$
Miner-burn fraction	eta_m	0 - 1
Registration burn / block	B_r	Alpha block ⁻¹
External burn / block	B_x	Alpha block ⁻¹
Next TAO-halving date	T_h	calendar date

8.1 Block-level issuance across a halving boundary

Let

- $D=T-t_{
 m now}=$ days until horizon, $D_h=$ days from now to the TAO-halving date T_h (clip to 0 if $T\leq T_h$),
- 7 200 blocks per day.

Split the horizon into **Segment 1** (pre-halving, $D_1 = \min(D, D_h)$) and **Segment 2** (posthalving, $D_2 = D - D_1$).

For each segment $k \in \{1, 2\}$ set

$$\Delta au^{(k)} = egin{cases} \Delta au_{ ext{current}}, & k=1 \ rac{1}{2}\,\Delta au_{ ext{current}}, & k=2 \end{cases}$$

Compute the per-block limit

$$\delta^{(k)} = \min\!\!\left(rac{\Delta au^{(k)}}{\Sigma}, \overline{\Deltalpha_i}
ight)\!.$$

8.2 Net Alpha minted in each segment

Net per block

$$\Delta lpha_{ ext{net}}^{(k)} = 2\,\delta^{(k)} - \left[eta_m\left(0.41
ight)\delta^{(k)} + B_r + B_x
ight].$$

Total minted

05/06/2025, 00:12 alp

$$M^{(k)} = 7\,200 imes D_k imes \Deltalpha_{
m net}^{(k)}$$

8.3 Projected circulating supply at T

$$oxed{S(T) = S_0 + M^{(1)} + M^{(2)}}.$$

Worked example

Inputs: $S_0=2.5$ M Alpha, $\Sigma=1.5$, $\beta_m=0.25$, $B_r=0.02$, $B_x=0$ Alpha block⁻¹, current $\Delta \tau=1$, TAO halving in 180 days, horizon T in 540 days.

Segment-level calculations yield $M^{(1)} \approx 0.47$ M, $M^{(2)} \approx 0.18$ M, hence $S(T) \approx 3.15$ M Alpha.

9 Conclusion

The framework now enables a practitioner to project circulating supply directly from observable burns, price aggregates and halving timing, then embed that projection into cost-, demand- and market-based valuation bounds.

All variables are defined locally at first use to minimise cross-reference latency; numerical examples are readily reproduced with the associated calculator.