CS305-2022Spring Lab2 Report

Name: Yitong WANG 11910104@mail.sustech.edu.cn

Student ID: 11910104

Lab Time: Thursday 10:20 a.m. to 12:10 p.m.

Lab Teacher: Qing WANG wangq9@mail.sustech.edu.cn

Lab SA:

- Siyu LIU 11912935@mail.sustech.edu.cn
- Xingying ZHENG 11912039@mail.sustech.edu.cn

Practice 1: Find Narcissistic Numbers

Source Code

```
def narcissistic(value: int) -> bool:
    length = len(str(value))
    subs = [int(single) ** length for single in str(value)]
    sum3 = sum(subs)
    del subs
    return sum3 == value

def find_narcissistic_number(start: int, end: int) -> list:
    result = []
    for number in range(start, end + 1, 1):
        if narcissistic(number):
            result.append(number)
    return result

print(' '.join([str(i) for i in find_narcissistic_number(1, 1000000)]))
```

This program can display all the narcissistic numbers from 1 to 1,000,000 (including).

Commands and Screenshots

Type this in the command line:

```
python3 narcissistic_number.py
```

And this is the screenshot of the python source code.

D:\PycharmProjects\CS305\venv\Scripts\python.exe D:/PycharmProjects/CS305/narcissistic_number.py
1 2 3 4 5 6 7 8 9 153 370 371 407 1634 8208 9474 54748 92727 93084 548834

Process finished with exit code 0

Practice 2: Wireshark & curl

Problem 2-1

Q1

Filter: Capture Filter. Since capture filter can select those packets satisfying the requirements.

Q2

Step 1: Use display filter to find out the ip address of www.example.com. But unfortunately, we cannot find any packets since we haven't built connection with the destination address.

Step 2: Type the following in the command line, so that curl can send request via ipv4.

curl --ipv4 www.example.com

Then it can be seen that the ip address of www.example.com is 93.184.216.34, and localhost is 10.26.128.169.

Step 3: Add the new capture filter.

This is the filter requirement:

Step 4: Select a packet we need.

Packet we select:

Source Address

```
Source Address: 93.184.216.34
    Destination Address: 10.26.128.169

> Transmission Control Protocol, Src Port: 80, Dst Port: 10439, Seq: 0, Ack: 

0000 04 33 c2 ed ef 59 3c 8c 93 d0 83 c1 08 00 45 00 3...Y<

0010 00 34 09 c1 00 00 32 06 be 65 5d b8 d8 22 0a 1a 4...2 e]....
```

Source Port

Destination Address

Destination Port

We can find these information:

Source Address: 93.184.216.34(5d.b8.d8.22 in hexadecimal)

Source Port: 80(0050 in hexadecimal)

Destination Address: 10.26.128.169(0a.1a.80.a9 in hexadecimal)

Destination Port: 10439(28c7 in hexadecimal)

Problem 2-2

Q1

The process of this part is as same as Q2 in Problem 2-1. So only screenshots and commands will be displayed.

Step 1

Step 2

curl --ipv4 www.baidu.com

Step 3

· Packet we select:

Source Address:

Source Port:

• Destination Address:

Destination Port:

Source Address: 14.215.177.39(0e.d7.b1.27 in hexadecimal)

Source Port: 80(0050 in hexadecimal)

Destination Address: 10.26.128.169(0a.1a.80.a9 in hexadecimal)

Destination Port: 10071(2757 in hexadecimal)

Q2

Comparing the result in Q2 of Problem 2-1 and Q2 of Problem 2-2:

	www.example.com	www.baidu.com
Source Address	93.184.216.34	14.215.177.39
Source Port	80	80
Destination Address	10.126.128.169	10.126.128.169
Destination Port	10439	10071

And we can find that the source port and destination address are identical in the two cases.

Practice 3: Wireshark & tracert

Q1

• Step 1: Add capture filter to select those packets whose destination address is www.163.com.

Non-HTTP and non-SMTP to/from www wireshark org. not port 80 and not port 25 a... 新建捕获过滤器 ip host www.163.com

• Step 2: Type the following commands to trace the route:

tracert -4 www.163.com

```
PS C:\Users\16011\Desktop> tracert -4 www.163.com
通过最多 30 个跃点跟踪
到 z163picipv6.v.bsgslb.cn [124.225.141.57] 的路由:
        2 ms
                2 ms
                          2 ms
                               10.10.10.11
 2
       5 ms
                5 ms
                          1 ms
                               10.23.255.83
       5 ms
                4 ms
 3
                         4 ms
                               group01.its.sustc.edu.cn [116.7.234.1]
       9 ms
                          3 ms 13.186.37.59.broad.dg.gd.dynamic.163data.com.cn [59.37.186.13]
 4
                 3 ms
 5
                               117.176.37.59.broad.dg.gd.dynamic.163data.com.cn [59.37.176.117]
        3 ms
                2 ms
                          3 ms
                         4 ms
 6
                2 ms
                               14.147.127.41
        3 ms
 7
                               218.77.143.138
               18 ms
                         15 ms
      15 ms
 8
                15 ms
                                218.77.136.94
       29 ms
                         15 ms
 9
                27 ms
                                124.225.180.54
       68 ms
                         24 ms
 10
                                请求超时。
               14 ms
                         14 ms
       17 ms
                               124.225.141.57
 11
跟踪完成。
PS C:\Users\16011\Desktop>
```

And we can find those packets with display filter <code>icmp</code>

Reorganize the packet information, group by Info.

8 echo reply messages

١	59 2.400997	10.26.128.169	124.225.141.57	ICMP	106 Echo (ping) request id=0x0001, seq=56/14336, ttl=1 (n
	26832 705.840033	10.27.255.254	10.25.107.68	ICMP	118 Echo (ping) reply id=0xa9f9, seq=4/1024, ttl=255
	13264 370.943934	10.27.255.254	10.25.6.19	ICMP	118 Echo (ping) reply id=0x9647, seq=3/768, ttl=255
	13207 369.796966	10.27.255.254	10.25.6.19	ICMP	118 Echo (ping) reply id=0x9647, seq=2/512, ttl=255
	20947 547.573491	10.27.255.254	10.26.129.65	ICMP	1382 Echo (ping) reply id=0x94f2, seq=0/0, ttl=255
	1090 33.267265	10.27.255.254	10.25.113.27	ICMP	56 Echo (ping) reply id=0x6d1e, seq=1/256, ttl=255
	3175 88.543924	124.225.141.57	10.26.128.169	ICMP	106 Echo (ping) reply id=0x0001, seq=88/22528, ttl=54 (
	3172 88.528622	124.225.141.57	10.26.128.169	ICMP	106 Echo (ping) reply id=0x0001, seq=87/22272, ttl=54 (
	3170 88.512264	124.225.141.57	10.26.128.169	ICMP	106 Echo (ping) reply id=0x0001, seq=86/22016, ttl=54 (
	17923 490.756733	10.26.128.169	172.18.1.93	ICMP	428 Destination unreachable (Port unreachable)

27 time-to-live exceed messages

No.	Time	Source	Destination	Protocol L	ength Info
	2303 65.674976	124.225.180.54	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	2301 65.650034	124.225.180.54	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	2299 65.621423	124.225.180.54	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1918 55.191114	218.77.136.94	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1915 55.174921	218.77.136.94	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1913 55.156483	218.77.136.94	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1564 44.819068	218.77.143.138	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1562 44.802358	218.77.143.138	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1560 44.783165	218.77.143.138	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1161 34.736009	14.147.127.41	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1159 34.731182	14.147.127.41	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1157 34.727947	14.147.127.41	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1116 33.711965	59.37.176.117	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1114 33.708663	59.37.176.117	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	1112 33.705378	59.37.176.117	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	711 23.536767	59.37.186.13	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	709 23.532662	59.37.186.13	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	707 23.527469	59.37.186.13	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	671 22.515992	116.7.234.1	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	669 22.510701	116.7.234.1	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	667 22.505382	116.7.234.1	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	411 12.463012	10.23.255.83	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	409 12.460803	10.23.255.83	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	405 12.455006	10.23.255.83	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	64 2.409166	10.10.10.11	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	62 2.405764	10.10.10.11	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	60 2.403136	10.10.10.11	10.26.128.169	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
	3173 88.529689	10.26.128.169	124.225.141.57	ICMP	106 Echo (ping) request id=0x0001, seq=88/22528, ttl=11 (
	3474 00 544005	** ** ***	*** *** **	T.0110	400 5 1 / 1 1 1 1 0 0004 07/00070 117 44 /

• Step 3: Reorganize the packet information, order by No.

We can find the first received 'time-to-live exceed' message number is 60, and the first received 'echo reply' message number is 1090.

Step 4: Click and see the details.

First TTL Exceed Source IP Address: 10.10.10.11

First Echo Reply Source IP Address: 10.27.255.254

Q2

• Step 1: Use the command to calculate RTT.

ping -4 www.164.com

```
PS C:\Users\16011\Desktop> ping -4 www.163.com

正在 Ping z163picipv6.v.bsgslb.cn [124.225.141.53] 具有 32 字节的数据:
来自 124.225.141.53 的回复: 字节=32 时间=13ms TTL=54
来自 124.225.141.53 的回复: 字节=32 时间=13ms TTL=54
来自 124.225.141.53 的回复: 字节=32 时间=14ms TTL=54
来自 124.225.141.53 的回复: 字节=32 时间=14ms TTL=54
来自 124.225.141.53 的回复: 字节=32 时间=14ms TTL=54

124.225.141.53 的 Ping 统计信息:
数据包:已发送=4,已接收=4,丢失=0(0%丢失),
往返行程的估计时间(以毫秒为单位):
最短=13ms,最长=14ms,平均=13ms

PS C:\Users\16011\Desktop>
```

We can see the RTT value is 13ms.

• Step 2: Use wireshark to find RTT of all selected packets.

The average value is 0.027430 s = 13.430 ms.

We find that this result is almost the same as the command line result.

Q3

Step 1: Type the following command in the command line.

```
tracert -4 www.163.com
```

Then we can find the route of accessing www.163.com.

```
PS C:\Users\16011\Desktop> tracert -4 www.163.com
通过最多 30 个跃点跟踪
到 z163picipv6.v.bsgslb.cn [124.225.141.50] 的路由:
       2 ms
                         7 ms
                               10.10.10.11
                3 ms
 2
       3 ms
                2 ms
                         2 ms
                               10.23.255.83
 3
                         4 ms
                               group01.its.sustc.edu.cn [116.7.234.1]
      31 ms
                8 ms
                               14.147.80.25
       3 ms
                2 ms
                         3 ms
 5
                         5 ms
                               117.176.37.59.broad.dg.gd.dynamic.163data.com.cn [59.37.176.117]
                3 ms
                         5 ms
                               202.105.158.69
               13 ms
      15 ms
                        14 ms
                               218.77.143.138
 8
       *
                *
                         *
                               请求超时。
 9
      69 ms
               46 ms
                        24 ms
                               124.225.180.54
 10
                               请求超时。
                *
                         *
 11
      14 ms
               13 ms
                        13 ms 124.225.141.50
跟踪完成。
PS C:\Users\16011\Desktop>
```

• Step 2: Use Wireshark to find the corresponding packet. (We take the second line with ip address 10.23.255.83 as the example)

Use the following display filter:

```
icmp && ip.addr == 10.23.255.83
```


Step 3: See the packet TTL information.

We can see the TTL + hop = 254 + 2 = 256, is the constant.

Proof

This sum value is constant, because when the ip hops from one address to another, the TTL value will decrease 1 and hop will increase 1.

If the TTL is 0 after decreasing, then the packet will be processed, or loss.

Therefore, the sum will be an constant value.