

Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time

Fine-tuning

What is meant by fine-tuning of neural network?

Asked 4 years, 9 months ago Modified 4 years, 9 months ago Viewed 44k times

Fine-tuning. Transfer score

Fine-tuning. Flat basin

Fine-tuning. Stochastic Weight Averaging

Model Soups

- Best on validation set
- Ensemble

Proposed:

- Uniform soup
- Greedy soup
- Learned soup

Intuition and motivation. Error landscapes

Intuition and motivation. Correlation

Intuition and motivation. Ensembles

Experiments and results. State of the art

90.93 91.29

90.94 91.20

	ImageNet			Distribution shifts					
Method	Top-1	ReaL	Multilabel	IN-V2	IN-R	IN-Sketch	ObjectNet	IN-A	Avg shifts
ViT/G-14 (Zhai et al., 2021)	90.45	90.81	_	83.33	_	_	70.53	_	_
CoAtNet-7 (Dai et al., 2021)	90.88	_	-	a—a	_	_	-	_	_
Our models/evaluations based on ViT-G/14:									
ViT/G-14 (Zhai et al., 2021) (reevaluated)	90.47	90.86	96.89	83.39	94.38	72.37	71.16	89.00	82.06
Best model on held out val set	90.72	91.04	96.94	83.76	95.04	73.16	78.20	91.75	84.38
Best model on each test set (oracle)	90.78	91.78	97.29	84.31	95.04	73.73	79.03	92.16	84.68

97.23

97.17

84.14

84.22 95.46

94.85

73.07

74.23

77.87

78.52 **92.67**

91.69

84.33

85.02

Greedy ensemble

Greedy soup

Experiments and results

The effectiveness of model soups

- The rich literature on ensembles [Gontijo-Lopes et al. (2022)] tells us that the expected error of the ensemble is often strictly below min of errors of each model
- Whenever errors of ensemble and soup are close we expect the soup to outperform both endpoint models

$$\mathcal{L}_{\alpha}^{\text{soup}} - \mathcal{L}_{\alpha}^{\text{ens}} \approx \frac{\alpha(1-\alpha)}{2} \left(-\frac{\mathrm{d}^2}{\mathrm{d}\alpha^2} \mathcal{L}_{\alpha}^{\text{soup}} + \beta^2 \mathbb{E}_x \mathrm{Var}_{Y \sim p_{\mathrm{sftmx}}(\beta f(x;\theta_{\alpha}))} \left[\Delta f_Y(x) \right] \right)$$