ГЛАВА 4. ИЗМЕРИМЫЕ ФУНКЦИИ

1 Определение измеримых функций и некоторые их свойства

Кроме числовой оси $\mathbb{R} = (-\infty, +\infty)$ введем в рассмотрение *расширенную* числовую ось $\overline{\mathbb{R}} = [-\infty, +\infty]$. Определим арифметические операции с участием несобственных чисел $-\infty$ и $+\infty$ следующим образом:

$$\begin{split} &-\infty + (-\infty) = -\infty, \quad +\infty + (+\infty) = +\infty, \\ &(-\infty) \times (-\infty) = +\infty, \quad (+\infty) \times (+\infty) = +\infty; \\ &-\infty + a = -\infty, \quad +\infty + a = +\infty, \quad a/(+\infty) = 0, \quad a/(-\infty) = 0 \quad \forall \, a \in \mathbb{R}; \\ &(+\infty) \times (-a) = -\infty, \quad (+\infty) \times a = +\infty, \quad \forall \, a \in (0, +\infty). \end{split}$$

Всюду в этом параграфе E – измеримое множество в \mathbb{R}^m . Рассматриваются функции $f: E \to \overline{\mathbb{R}}$ и используются обозначения следующего рода:

$$E[f > a] = \{x \in E \mid f(x) > a\}, E[f \geqslant a] = \{x \in E \mid f(x) \geqslant a\}$$

и т.д.

Пример. Мы допускаем к рассмотрению функции типа

$$f(x) = \begin{cases} +\infty, & \text{если} \quad |x| < 1, \\ 0 & \text{если} \quad |x| \geqslant 1 \end{cases}.$$

Опр. Функция f, определенная на измеримом множестве E, называется uз-меримой, если множество E[f>a] измеримо для всех $a\in\mathbb{R}$.

Пример 1. Функция $f(x) = x^2$, заданная на $E = \mathbb{R} = (-\infty, +\infty)$, измерима. Действительно,

$$E[f > a] = \begin{cases} (-\infty, +\infty), & a < 0, \\ (-\infty, -\sqrt{a}) \cup (\sqrt{a}, +\infty), & a \geqslant 0. \end{cases}$$

Пример 2. Характеристическая функция χ_{E_0} неизмеримого множества $E_0 \subset \mathbb{R}$, заданная на \mathbb{R} неизмерима. Действительно,

$$\chi_{E_0}(x) = \begin{cases} 1, & x \in E_0, \\ 0, & x \in \mathbb{R} \setminus E_0. \end{cases}$$

Поэтому

$$E[\chi_{E_0} > 0] = \{x \in \mathbb{R} \mid \chi_{E_0}(x) > 0\} = E_0$$
 — неизмеримое множество.

Теорема 1.1. Если одно из следующих 4 множеств:

$$E[f > a], \quad E[f \geqslant a], \quad E[f < a], \quad E[f \leqslant a]$$

измеримо для всех $a \in \mathbb{R}$, то любое из оставшихся множеств также измеримо для всех $a \in \mathbb{R}$.

Доказательство. Заметим, что

$$E[f \geqslant a] = \bigcap_{n=1}^{\infty} E[f > a - 1/n], \quad E[f < a] = E \setminus E[f \geqslant a],$$

$$E[f \leqslant a] = \bigcap_{n=1}^{\infty} E[f < a + 1/n], \quad E[f > a] = E \setminus E[f \leqslant a].$$

Поэтому

мн-ва
$$E[f>a]$$
 измеримы $\forall\,a\Rightarrow$ мн-ва $E[f\geqslant a]$ измеримы $\forall\,a\Rightarrow$ \Rightarrow мн-ва $E[f< a]$ измеримы $\forall\,a\Rightarrow$ мн-ва $E[f\leqslant a]$ измеримы $\forall\,a\Rightarrow$ \Rightarrow мн-ва $E[f>a]$ измеримы $\forall\,a$.

Теорема доказана.

Свойства измеримых функций.

Свойство 1. Пусть функция f измерима на множестве E. Тогда она измерима на каждом измеримом множестве $E_1 \subset E$.

Доказательство. Множество

$$E_1[f > a] = E_1 \cap E[f > a]$$

измеримо для всех $a \in \mathbb{R}$ как пересечение двух измеримых множеств.

Свойство 2. Пусть $E = \bigcup_k E_k$, где E_k – измеримые множества. Если функция f измерима на каждом из множеств E_k , то она измерима и на E.

Доказательство. Множество

$$E[f > a] = \bigcup_{k} E_k[f > a]$$

измеримо для всех $a \in \mathbb{R}$ как счетное объединение измеримых множеств.

Свойство 3. Любая функция f, определенная на множестве меры нуль, является измеримой.

Доказательство. Множество E[f>a] имеет нулевую меру и поэтому измеримо.

Свойство 4. Если измерима функция f, то измерима и функция |f|. Доказательство.

$$E[|f|>a]=egin{cases} E[f>a]\cup E[f<-a], & ext{если }a>0, \ E, & ext{если }a\leqslant 0. \end{cases}$$

Замечание 1. Из измеримости функции |f|, вообще говоря, не следует измеримость функции f.

Возьмем неизмеримое множество E_0 и положим

$$f(x) = \begin{cases} 1, & \text{если} \quad x \in E_0, \\ -1, & \text{если} \quad x \in \mathbb{R} \setminus E_0. \end{cases}$$

Замечание 2. Обратим внимание на то, что характеристическая функция измеримого множества измерима, а характеристическая функция неизмеримого множества неизмерима.

Опр. Говорят, что некоторое свойство выполнено *почти всюду на* E, если это свойство выполнено для всех $x \in E$ за исключением множества меры нуль.

Обозначим через $\mathfrak{M}(E)$ множество измеримых на E и конечных почти всюду на E функций.

Договоримся, что каждая функция, определенная почти всюду на E, полагается равной нулю в тех точках $x \in E$, где она не была определена.

Справедливы следующие свойства.

Свойство 1*. Если E_1 – измеримое подмножество множества E, то

$$f \in \mathfrak{M}(E) \Rightarrow f \in \mathfrak{M}(E_1).$$

Свойство 2*. Пусть $E = \bigcup_k E_k$, где E_k – измеримые множества. Тогда

$$f \in \mathfrak{M}(E_k) \ \forall k \geqslant 1 \Rightarrow f \in \mathfrak{M}(E).$$

Свойство 3*. Если функция f определена на множестве E меры нуль, то $f \in \mathfrak{M}(E)$.

Свойство 4^* $f \in \mathfrak{M}(E) \Rightarrow |f| \in \mathfrak{M}(E)$.