Key points 04/20 lecture M - 1 < - 38 > Definition of magnetization: H: classical or quantum Hamiltonian B: Strength of external magnetic field In canonical ensemble: $M = keT \left(\frac{\partial}{\partial B} \frac{\log Q_N}{V} \right)_{T,V,N}$ M: average induced magnetic moment per unit volume of the system along the direction of an external magnetic field 3. Paramagnetism discussion based on the following single-Diamagnetism discussion based on the following singleparticle Hamiltonian: $\mathcal{R} = \frac{1}{2m} \left(\hat{p} + \frac{e}{c} \hat{A} \right)^2$ (X<0)

Susceptibility $A_x = -B_y$ $A_y = A_z = 0$ The horizonal degree of freedom