Kräfte auf Leiterschleifen im magnetischen Feld, magnetisches Moment

Eine von einem Strom I durchflossene rechteckige Leiterschleife mit den Kantenlängen a und l befindet sich um die x-Achse drehbar im Magnetfeld B. Die parallel zur x-Achse wirkenden Kräfte F_a heben sich gegenseitig auf.

Dagegen erzeugen die Kräfte F auf die Seiten l ein Drehmoment um die x-Achse der Größe

$$\vec{M} = 2 \cdot \frac{a}{2} \cdot |\vec{F}| \sin \phi \cdot \vec{e}_{x} = a \cdot |\vec{F}| \sin \phi \cdot \vec{e}_{x}$$

Für die Kraft auf die Leiterseiten gilt:

$$\vec{F} = I \cdot \vec{l} \times \vec{B} = I \cdot lB_{z} \cdot \vec{e}_{y}$$

wegen $\vec{B} = B\vec{e}_z$

Für das Drehmoment folgt dann

$$\vec{M} = I \cdot al \cdot B \cdot \sin \phi \cdot \vec{e}_{x}$$

mit A als Fläche der Leiterschleife.

Wir führen den Vektor \vec{A} ein, dessen Absolutbetrag die Fläche beschreibt und dessen Richtung parallel zu Flächennormalen zeigt. Dann gilt in Erweiterung für beliebig geformte Leiterschleifen

$$\vec{M} = I \cdot \vec{A} \times \vec{B}$$

Wir definieren nun ein *magnetisches Moment m*, also die magnetische
Wirkung einer Leiterschleife mit
Fläche A, durch die der Strom I fließt:

$$\vec{m} \equiv I \cdot \vec{A}$$

Damit folgt für das *Drehmoment*

$$\vec{M} = \vec{m} \times \vec{B}$$

Das Drehmoment verschwindet für $\vec{m} \parallel \vec{B}$ und daher richtet sich die stromdurchflossene Leiterschleife im Magnetfeld immer so aus, dass ihre Flächennormale parallel zum Magnetfeld steht.

Anwendungen: Kompassnadel, Eisenfeilspäne (Visualisierung des B-Feldes)

Abhängig von der Orientierung ist die *potentielle Energie* eines magnetischen Moments gegeben durch:

$$E_{pot} = -\vec{m} \cdot \vec{B}$$

Die potentielle Energie ist also minimal für $\vec{m} \parallel \vec{B}$ und verschwindet für $\vec{m} \perp \vec{B}$.

Experiment: Drehmoment auf eine Stromschleife (Spule mit N Windungen)

Bei Stromfluss I durch die Spule entsteht ein Drehmoment, das versucht das magnetische Moment in die Richtung des *B*-Feldes zu drehen.

Zeiger zeigt in Richtung des magnetischen Moments *m*

Prinzip eines Drehspulinstruments zur Strom- und Spannungsmessung

Drehmoment ist proportional zum Strom I durch die Spule.
Endlage des Zeigers erreicht, wenn Drehmoment der Spule so groß wie Rückstelldrehmoment der Spiralfeder.

Achtung:

Schwingungssystem mit kritischer Dämpfung (aperiodischer Grenzfall!)

den Endausschlag!

110

Das Gesetz von Biot-Savart

Da das elektrostatische Feld durch Ladungen erzeugt wird, konnten wir durch Überlagerung (Superposition) von Punktladungen das E-Feld für jede beliebige Ladungsverteilung berechnen. Ursache des Magnetfeldes sind aber die Ströme *I*. Wir betrachten daher ein vom Strom I durchflossenes Leiterelement der Länge $d\vec{l}$ am Ort \vec{r}' als Ursache für das Magnetfeld $d\vec{B}$ am Ort \vec{r} .

Nach *Biot-Savart* gilt nun folgender

Zusammenhang:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

Jean Baptiste Biot 1774 - 1862

Für Spezialisten: Man erkannt den formalen Zusammenhang zu:

$$d\vec{E} = \frac{dQ}{4\pi\varepsilon_0} \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

Kräfte zwischen stromdurchflossenen Leitern

Die Leiter seien unendlich lang. Wir berechnen zunächst die Kraft auf Leiter 2 im Magnetfeld des Leiters 1. Diese ist gegeben durch:

$$\vec{F}_{2} = I_{2}\vec{l}_{2} \times \vec{B}_{1} = -I_{2}l_{2}\vec{e}_{z} \times \vec{B}_{1}$$

Das Magnetfeld des Leiters 1 (langer Draht) im Abstand d als

$$\vec{B}_1 = \mu_0 \frac{I_1}{2\pi d} \vec{e}_x$$

Damit folgt:

$$\vec{F}_{2} = -\frac{\mu_{0}I_{1}I_{2} \cdot l_{2}}{2\pi d} \vec{e}_{z} \times \vec{e}_{x}$$

$$= -\frac{\mu_{0}I_{1}I_{2} \cdot l_{2}}{2\pi d} \vec{e}_{y}$$

und wegen actio = reactio

$$\vec{F}_1 = -\vec{F}_2$$

Pro Leitereinheitslänge üben also die Leiter eine Kraft von

$$\frac{dF}{dz} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}$$

aufeinander aus.

Hieraus resultiert im SI-System die Anbindung der Einheiten des Stromes und des Magnetfeldes an die Einheit der Kraft.

Beispiel:

$$I_1 = I_2 = 1A, \quad d = 1m, \quad \mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/Am}$$

$$\frac{dF}{dz} = \frac{4\pi \cdot 10^{-7} \cdot 1 \cdot 1}{2\pi \cdot 1} \frac{N}{m} = 2 \cdot 10^{-7} \frac{N}{m}$$

"Werden zwei parallele, unendlich lange Leiter im Abstand von d = 1m von je 1 A gleichnamig durchflossen, so üben sie eine anziehende Kraft von $2 \cdot 10^{-7}$ N pro m Länge aufeinander aus".

Damit liegt auch die Größe und Einheit von μ_0 fest.

$$\mu_0 = 2\pi \frac{d}{I_1 I_2} \cdot \frac{dF}{dz} = 4\pi \cdot 10^{-7} \frac{Nm}{mA^2}$$

Wegen 1 Nm = 1 J = 1 VAs folgt

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$$

Permeabilität des Vakuums (magnetische Feldkonstante)

Ältere Definition der Stromstärke:

"Wenn ein Strom von 1 A eine Sekunde lang fließt (also eine Ladung von 1 As), so wird 1,118 mg Silber aus einer wässrigen Lösung ausgeschieden"

Im Vorgriff auf die Elektrodynamik:

Es folgt mit c als Vakuumlichtgeschwindigkeit:

$$\varepsilon_0 \mu_0 = \frac{1}{c^2}$$

und mit c fest gegeben durch

$$c = 2,99792458 \cdot 10^8 \, \frac{m}{s}$$

folgt

$$\varepsilon_0 = \frac{1}{\mu_0 c^2} = \frac{1}{4\pi \cdot 10^{-7} \cdot c^2} \frac{Am}{Vs}$$

$$=8,854188\cdot10^{-12}\frac{Am}{Vs}\frac{s^2}{m^2}$$

also

$$\varepsilon_0 = 8,854188 \cdot 10^{-12} \, \frac{As}{Vm}$$

Dielektrizitätskonstante des Vakuums (elektrische Feldkonstante)

Elektrostatik und Magnetostatik auf einer Seite

Maxwell-Gleichungen für den statischen Fall

$$\frac{\partial}{\partial t} = 0$$

$$rot\vec{E}(\vec{r}) = 0$$

$$\oint_C \vec{E} \cdot d\vec{s} = 0$$

Das elektrostatische E-Feld ist wirbelfrei,

besitzt also ein elektrostatisches Potential φ ,

$$\vec{E}(\vec{r}) = -grad\varphi(\vec{r})$$

muss daher Quellen haben

$$div\vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0}$$

$$\iint_{a(V)} \vec{E} \cdot d\vec{a} = \frac{Q}{\varepsilon_0} = \frac{1}{\varepsilon_0} \iiint_{V(a)} \rho(\vec{r}) dV$$

$$div\vec{B}(\vec{r}) = 0$$

$$\iint_{a(V)} \vec{B} \cdot d\vec{a} = 0$$

Das statische B-Feld hat keine Quellen;

ein Potential existiert nicht. Das B-Feld ist daher ein Wirbelfeld

Die Wirbelstärke folgt aus:

$$rot\vec{B}(\vec{r}) = \mu_0 \vec{j}(\vec{r})$$

$$\oint_{C(a)} \vec{B} \cdot d\vec{s} = \mu_0 \vec{I} = \mu_0 \oiint_{a(C)} \vec{j}(\vec{r}) \cdot d\vec{a}$$

Inhalt der Vorlesung Physik A2 / B2

3. Wärmelehre

Druck und Temperatur: Das ideale Gas Wärmemenge, spezifische Wärme Die Hauptsätze der Wärmelehre

4. Elektrizitätslehre, Elektrodynamik

Die Ladung und elektrostatische Felder

- SEMESTERENDE -

Elektrischer Strom

Magnetische Felder und Magnetostatik

Zeitlich veränderliche Felder, Elektrodynamik

Wechselstromnetzwerke

Die Maxwellschen Gleichungen

Elektromagnetische Wellen und Strahlung

Relativität der Felder – Relativitätstheorie

Zeitlich veränderliche Felder / Elektrodynamik

$\partial / \partial t \neq 0$

elektrisches Feld E:

$$div\vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0}$$

$$\iint_{a(V)} \vec{E} d\vec{a} = \frac{Q}{\varepsilon_0} = \frac{1}{\varepsilon_0} \iiint_{V(a)} \rho(\vec{r}) dV$$

$$rot\vec{E}(\vec{r}) = 0 + ?????$$

$$\oint_{S} \vec{E}d\vec{s} = 0 + ?????$$

Es gibt ein elektrisches Wirbelfeld. Ursache ist *die magnetische Induktion*

magnetisches Feld B:

$$div\vec{B}(\vec{r}) = 0$$

$$\oiint \vec{B}d\vec{a} = 0$$

$$a(V)$$

$$rot\vec{B}(\vec{r}) = \mu_0 \vec{j}(\vec{r}) + ?????$$

$$\oint \vec{B}d\vec{s} = \mu_0 \vec{I} = \mu_0 \iint_{a(S)} \vec{j}(\vec{r})d\vec{a} + ??????$$

Es gibt eine weitere Ursache für Magnetfelder : *der elektrische Verschiebungsstrom*

Zur Erinnerung:

Magneto- und elektrostatische Erscheinungen bisher unabhängig voneinander.

Potentialdifferenz,

Spannung:

elektrischer Fluß:

Gaußsches Gesetz:

Elektrischer Strom:

magnetischer Fluß:

$$U = -\int_{\vec{r}}^{\vec{r}_2} \vec{E} d\vec{r}$$

$$\Phi_{\rm el} = \iint_a \vec{E} d\vec{a}$$

$$\Phi_{\rm el} = \iint_{\mathcal{E}} \vec{E} d\vec{a} = \frac{Q}{\varepsilon_0}$$

$$I = \frac{1}{\mu_0} \oint_S \vec{B} d\vec{r}$$

$$\Phi_{\rm m} = \iint_{a} \vec{B} d\vec{a} = 0$$

Im statischen Fall gelten also folgende Zuordnungen

$$U \xrightarrow{\partial/\partial t = 0} \vec{E}, \Phi_{el}$$

$$I \xrightarrow{\partial/\partial t} \vec{B}, \Phi_{m}$$

Bei zeitabhängigen Feldern kommen weitere Zuordnungen hinzu

Experiment: Leiterschleife im zeitabhängigen B-Feld

Beobachtung: Ein zeitlich sich ändernder magnetischer Fluss durch eine Leiterschleife induziert eine Induktionsspannung $U_{ind} = U(t)$

Experiment: Drehung einer Spule im Erdmagnetfeld

B-Feld der Erde an Oberfläche:

$$B_{Erde} \approx 2 - 3.10^{-5} T = 0, 2 - 0, 3 G (Gauss)$$

keine SI-Einheit, aber gebräuchlich:

$$1 G (Gauss) = 10^{-4} T$$

Beobachtung: Ein zeitlich sich ändernder magnetischer Fluss durch eine Leiterschleife induziert eine Induktionsspannung

$$U_{ind} = U(t)$$

Induktion

Ändert man das Magnetfeld *B*, das eine Leiterschleife durchsetzt, zeitlich, so wird in der Leiterschleife ein elektrisches Feld E und damit eine Spannung U(t) (*elektromotorische Kraft EMK*) induziert.

Fläche der Leiterschleife = A

Diesen 1831 von M.Faraday entdeckten Effekt nennt man "Induktion".

Die Experimente zeigen:

$$U_{ind}(t) \propto A \frac{dB}{dt}$$

In einer kreisförmigen Leiterschleife wird somit ein elektrisches Feld E induziert, das *nicht wirbelfrei* ist und für das gilt $\dot{\vec{E}}_{ind}(t) \bigg| \propto \frac{d}{dt} \bigg| \vec{B}(t) \bigg|$

$$U_{ind}(t) = \oint_{Schleife} \vec{E}_{ind}(t) d\vec{s}$$

Ein zeitlich sich änderndes Magnetfeld umgibt sich mit einem ringförmig geschlossenen elektrischen Feld. Es gibt also *E*-Felder, deren Ursache nicht die Ladungen sind:

Bevor wir endgültig eine Schlussfolgerung ziehen, wollen wir zunächst jedoch andere Erscheinungen betrachten, die wir als Folge der Lorentzkraft ansehen können.

Induktion als Folge der Lorentzkraft:

Ein Teil einer Leiterschleife bewege sich im konstanten Magnetfeld *B*.

Die Lorentzkraft wirkt auf die mit *v* bewegten Ladungsträger und führt zur Ladungstrennung (ähnlich Hall-Effekt). Es entsteht ein *elektromotorisches Feld E* senkrecht zu B und v. Im statischen Gleichgewicht gilt dann

$$\vec{F} = q\vec{v} \times \vec{B} = q\vec{E}_{ind}$$

$$\Rightarrow \vec{E}_{ind} = \vec{v} \times \vec{B} = \frac{d}{dt}\vec{x} \times \vec{B}$$

Die induzierte Spannung folgt dann zu

$$U_{ind}(t) = -\int \vec{E}_{ind} d\vec{s} = -E_{ind} \cdot b$$

Einsetzen von E liefert

$$U_{ind}(t) = -B \cdot b \cdot \frac{dx}{dt} = -B \cdot \frac{dA}{dt}$$

Hier ist dA/dt die zeitliche Änderung der Fläche der Leiterschleife. Die Spannung $U_{ind}(t)$ ist also proportional zur Änderung der Fläche A der Leiterschleife.

$$U(t) = -B \cdot \frac{dA}{dt}$$

Zur Verallgemeinerung definieren wir den magnetischen Fluß Ф durch eine Fläche

analog zum elektrischen Fluss

$$\Phi_m(t) = \Phi(t) = \iint_{A(t)} \vec{B}(t) d\vec{A}$$

Wir fassen die experimentellen Ergebnisse:

$$U_{ind}(t) \propto A \frac{dB}{dt}$$

$$U_{ind}(t) = -B \cdot \frac{dA}{dt}$$

Faradaysches Induktionsgesetz

$$U_{ind}(t) = -\frac{d}{dt}\Phi(t) = -\frac{d}{dt}\iint_{A(t)} \vec{B}(t)d\vec{A}$$

Experiment: Induktion durch bewegten Leiter

Wird der Leiter im Bereich des Magnetfeldes bewegt, entsteht eine Spannung.

Linearmotor:

Legt man eine externe Betriebsspannung an, so fließt ein Strom I in der Leiterschleife. Die Lorentzkraft wirkt dann auf die Ladungsträger und somit wirkt in Summe eine Kraft auf den beweglichen Leiter in Längsrichtung! 124

Lenzsche Regel (1834)

"Das durch den induzierten Strom *I* hervorgerufene Magnetfeld ist dem ursächlichen Magnetfeld, also der Ursache der Induktion, entgegengerichtet"

Heinrich Friedrich Emil Lenz (1804-1865)

Erklärung: Energiesatz muss gelten!

Experimentell findet man folgendes:

- (i) Wenn ein Magnet auf eine Leiterschleife zu bewegt wird, dann wird die Leiterschleife durch das induzierte Magnetfeld abgestoßen.
- (ii) Wenn hingegen die Leiterschleife vom Magneten weg bewegt wird, dann entsteht ein anziehendes induziertes Magnetfeld.

Formulierung:

Dies lässt sich allgemein zusammenfassen in der Lenzschen Regel (1834):

"Der Induktionsstrom wirkt immer seiner Ursache entgegen!"

Experiment: Thomsonscher Ring

Nach Einschalten des Stromes und damit des Magnetfeldes wird der Aluminiumring nach oben geschleudert (Lenzsche Regel). Bei unterbrochenem Ring unterbleibt dies (kein induzierter Ringstrom).

Achtung: Betrieb mit Wechselspannung, das B-Feld ändert mit 50 Hz seine Richtung!

