1) Design a combinational circuit that convolts. 8421 BCD code to Excess-3
Code.

Binary code desimal => 0 to 9 -> to to 15 us taken : as don't care

		V						- 4		
		8	D	1		Excus	-36	le		
Detimal	8	4	2	1					1	
	A	B	C	b	W	×	Y	Z		+
0	0	0	0	0	0	0	1	1	6)	1
1	0	0	0	1	Ö	1	0	0		
2	0	ð	1	0	O	ı	0	1		
3	0	0	1	1	0	-	1	0	1	
4	0	1	0	0	0	. 1	ı	1	14	
5	0	1	0	1	1	0	0	6		
6	0	1	1	0	l	0	0	1		10
٦	0	1	1	1	1	0	ı	0		
8	1	0	0	0	l	0	1	1		1
9	1	0	0	1	1	1	0	0		
10	L	0	ı	В	×	×	X	×		
11	1	0	1	1	×	×	×	×		
12	1	1	0	0	X	×	×	×		
13	1	(0	1	×	×	×	×		
14	(1	1	0	×	X	×	×		
15	t	1	1	(×	×	×	×		

2) Desigh a Synchronous Counter which counts the Sequence 001,001,010, 2) 011, 100, 101, 110, 111,000 using T flip-flip.

Step1: n=3 tits, Flip flop 2 T Flif flop

Stop 2! Excitation table for or flip flop

Qn · Qn+1 T
0 0 0
1 1
1 0 1

Step 3: State diggram & State Tuble

pou	powent Stat			at State	2	Bolog Lake		
GA	Qg	Qc.	Qan	QBH	Qcri	TA	TB	Te
0	0	0	0	0	1	0	0	1
0	0	1	0	-(0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	111	1	1
1	0	0	note.	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Q80	₹ 00	01	11	(0
OA		Lagra	10	
0				
1	900		1	
	7	A = 6	lg Qc	

Q8Q1 00	01	11	10
0	1	1	
1	1	-	

TB = Qc

3) Design a modulo -10 Synchonous biray Up-counter

Step 1. n=4, Flightop=. T Flyfolop range of counting =0 ton-1 = .0009.

Step 2: Excitation table

an	anti	T		
0	0	0	1	
0	1	1	1	
1	0	1	1	
11	1	0	1	

Step 3: Stute diagram

Qs	Qg	Qc	Qo	Qati	QBH	Oct	, (2011	TA	TB	Te	To		
0	0	0	0	0	0	0		١	0	0	0	1		
0	0	0	1	0	0	1		0	0	6	1	1		
Ö	0	1	0	0	0	1		1	0	0	0	1		
0	0	(1	0	1	0	(5	0)	1	1		
0	1	0	0	0	1	0		1	0	0	0	1		
0	1	0	1	0	1	1	1	0	0	0	1	1		
0	1	1	0	0	1	1		1	0	0	0	1		
0	1	1	1	1	0	0	C	0	1	1	1	1		
1	0	0	0	1	0	0		1	0	0	6	1		
1	0	0	1	0	0	0	(0	01	6	Ö	1		
1	0	1	0	×	×	×	>	<	×	×	×	×		
1	0	1	1	X	X	×	>	~	×	X	×	X		
1	(0	0	×	×	×	>	<	×	X	×	X		
1	1	0	1	×	×	×	7		×	×	X	×		
1	1	t	0	X	×	×	×	<	×	×	×	×		
1	1	1	1	×	×	×	>	C	X	X	X	×		
80 0	0 0	TA	1 (0	QCQ ₀	60	01	TBI	(0	Q Q	0000	Te	11	[7]
0					00			1		00		11	1	
		T	1		01			1		01		1	1	
*		×	3 3	<	11	7	×	x	×	11	K	×	×	×
	1	0	× ;	×	(0)			×	X	1	0		K	7

4) Designa 2-bit Synchosonous using down - counter

N = 2 = 4.

Excitation table for T flip flop

1		
Qn	Qn+1	7
0	0	0
0	1	1
1	0	1
1	1	0

State diagram

State table

1	Q ₂	Q,	Q_2^{\dagger}	Q+	T2	T,	1
1	0	0	1	1	1	,	
-	6	1	6	0	0		
	1	0	0	1	1	7	
-	1	1	1	0	0	1	
-	6	0	0	0	0	7	

Flig Flop

T2 = Q

7121

Cincuit diagnam:

6) Draw the state table for the following state diagram.

I State table:

Present	Nex	OIP	
State	200	Xal	Z
So	So	Sı	0
8,	Sı	So	1

I State assignment:

State table:

So = 0

Present	Mext s	olf	
QA	α=0	X=1	
0 '	0	1 0	0
1		a	1

III K-map

QA+1 = QAT + QAX

DA = QA DX Z = QA

Logic diagram

