Planare Graphen - Planare Einbettung

Manuel Frohn

RWTH Aachen University, Aachen, Germany

28.08.2023

Inhaltsverzeichnis

Relevanz

- 1. Real auftretene Klasse
- 2. Wichtig für Chip Design und Städteplanung
- 3. Bedingung für Algorithmen und Sätze

Planare Graphen

Definition

Ein Graph G heißt planar, wenn man in der Lage ist, den Graphen so auf eine Ebene zu zeichnen, dass sich seine Kanten nicht schneiden.

Minor

Definition

 $\mbox{\bf M}$ heißt Minor von $\mbox{\bf G}$ wenn $\mbox{\bf M}$ aus einem Teilgarphen von $\mbox{\bf G},$ durch Kantenkontaktion hervorgeht.

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |F| gilt: |V|-|E|+|F|=2

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |F| gilt: |V|-|E|+|F|=2

Satz

G Planar
$$\Leftrightarrow |E| \leq 3|V| - 6 \land |F| \leq 2|V| - 4$$

Satz von Kuratowski

Satz

Ein Graph ist genau dann planar, wenn er weder den K3,3 noch den K_5 als Minor enthält

Komponente

Definition

Ein maximale Teilgraph $G'=(V',G')\subset G$ mit $\forall v\in V'\forall w\in V':v\stackrel{*}{\Rightarrow}w$ heißt Komponente von G

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Bikomponenten und Planarität

Satz
Fin Graph ist genau dan Planar, wenn seine Bikon

Ein Graph ist genau dan Planar, wenn seine Bikomponenten planar sind

Knoten in der Planaren Einbettung

Knoten in der Planaren Einbettung

Der Einbettungsalgorithmus - Idee

Bette Kante für Kante ein, so dass jede Teileinbettung planar ist

Frage 1: Wo?

Frage 2: Wann?

Wo?

Wo?

Wo?

Der Einbettungsalgorithmus

- 1. Erstelle einen Palmtree des Eingabegraphens G
- 2. Für alle Knoten v des Graphens, in inverser DFI Ordnung:
- 3. Für alle Kanten *e*, die *v* mit einem DFS Nachkommen verbinden:
- 4. Führe WalkUp(e) aus
- Führe auf den Graphen, der durch die Pfade aus Schritt 4 induziert wird, WalkDown aus

Außen Aktive Knoten

Suche einen Pfad von w nach v über die außen liegenden Knoten

Suche einen Pfad von w nach v über die außen liegenden Knoten

Beachte:

Außenaktive Knoten dürfen nicht traversiert werden

Suche einen Pfad von w nach v über die außen liegenden Knoten

Beachte:

Wird eine Wurzel aus Zwei Au-Benaktiven Bikomponenten, oder aus zwei Richtungen beschritten, müssen zwei Pfade über die außen liegenden Knoten gefunden werden

Suche einen Pfad von w nach v über die außen liegenden Knoten

Suche einen Pfad von w nach v über die außen liegenden Knoten

Walk Down

Performe DFS auf den Graphen, der durch die Pfade aus dem WalkUp induziert wird

Beachte jedoch

- Füge zuerst die Kante zu einbettung hinzu, die an dem Knoten anliegt, indem du gerade bist
- Gibt es eine zuvor besuchte Bikomponte,ohne außen aktive Knoten von der der Momentane Knoten die Wurzel ist, schreite in diese Bikomponente hinein
- 3. Gibt es eine zuvor besuchte Bikomponte, mit außen aktive Knoten von der der Momentane Knoten die Wurzel ist, schreite in diese Bikomponente hinein

Kuratowski Minore - Walk Up

