

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
15 April 2004 (15.04.2004)

PCT

(10) International Publication Number
WO 2004/031193 A1

(51) International Patent Classification⁷: **C07D 495/04**, 333/36 // (C07D 495/04, 333:00, 209:00)

Alderley, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). STOCKER, Andrew [GB/GB]; AstraZeneca R & D Alderley, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

(21) International Application Number:
PCT/GB2003/004211

(74) Agent: ASTRAZENECA; Global Intellectual Property, P O Box 272, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4GR (GB).

(22) International Filing Date:
29 September 2003 (29.09.2003)

(25) Filing Language: English

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CY, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, FR, GB, GD, GE, GH, GM, GR, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW only): ASTRAZENECA AB [SE/SE]; Sodertalje, S-151 85 (SE).

(26) Publication Language: English

(30) Priority Data:
0222909.4 3 October 2002 (03.10.2002) GB

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for AE, AG, AL, AM, AT, AU, AZ, BA, BB, BE, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CY, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, FR, GB, GD, GE, GH, GM, GR, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW only): ASTRAZENECA AB [SE/SE]; Sodertalje, S-151 85 (SE).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/031193 A1 (54) Title: PROCESS AND INTERMEDIATES FOR THE PREPARATION OF THIENOPYRROLE DERIVATIVES

(I)

(II)

(57) **Abstract:** Novel Process and Intermediates. A process for preparing a compound of formula (I) where R⁴ and R⁵ are as defined in the specification; and R⁶ is hydrogen or a protecting group, which process comprises cyclisation of a compound of formula (II) where R⁴, R⁵ and R⁶ are as defined in relation to formula (I), and R⁷ is a nitrogen protecting group, and removing the group R⁷, and thereafter if desired, removing any protecting group R⁶. Novel intermediates and the use of these in the formation of pharmaceutical compounds is also described and claimed.

PROCESS AND INTERMEDIATES FOR
THE PREPARATION OF THIENOPYRROLE DERIVATIVES

The present invention relates to a novel process for preparing intermediates for therapeutically effective compounds, together with novel intermediates for use in the process.

5 Compounds with glycogen phosphorylase activity are described in WO 02/20530.

These compounds have a general formula which may be represented as formula (A)

(A)

where X, Y and Z is selected from *inter alia* -S-CR⁴=CR⁵-, R⁴ and R⁵ are independently

10 selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, 15 C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N,-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; n is 0-4, and R¹, R² and R³ are various specified organic groups.

These compounds are generally prepared by reacting an acid of formula (B)

(B)

20 with an appropriate amine. Acids of formula (B) are prepared according to the following scheme:

- 2 -

However, this process is difficult to effect as it may proceed explosively.

The applicants have found an improved process for the production of certain
5 intermediates.

The present invention provides a process for preparing a compound of formula (I)

(I)

where R^4 and R^5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy,
10 fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl,
mercapto, sulphamoyl, ureido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl,
 C_{1-6} alkanoyloxy, N -(C_{1-6} alkyl)amino, N,N -(C_{1-6} alkyl)₂amino, C_{1-6} alkanoylamino, N -(C_{1-6} alkyl)carbamoyl,
 N,N -(C_{1-6} alkyl)₂carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl,
15 C_{1-6} alkoxycarbonylamino, N -(C_{1-6} alkyl)sulphamoyl, N,N -,(C_{1-6} alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino and C_{1-6} alkylsulphonyl- N -(C_{1-6} alkyl)amino;
and R^6 is hydrogen or a protecting group,

which process comprises cyclisation of a compound of formula (II)

(II)

where R⁴, R⁵ and R⁶ are as defined in relation to formula (I), and R⁷ is a nitrogen-protecting group, and removing the group R⁷, and thereafter if desired, removing any protecting group R⁶.

Cyclisation is suitably effected in an organic solvent such as dimethylformamide

5 (DMF), N-methylpyrrolidone or dimethylacetamide, in the presence of a base, preferably a weak base such as an alkali metal carbonate or bicarbonate, such as potassium carbonate. The reaction is suitably carried out at elevated temperatures, for example of from 40 to 100°C, and preferably at about 60°C. Under these conditions, R⁷ is generally removed in the same reaction step. Depending upon the nature of the group employed however, it might be 10 necessary to remove R⁷ in a subsequent step, for example by acid or base hydrolysis reactions.

Acid hydrolysis reactions may be carried out using conventional methods, and in particular using acids such as trifluoromethanesulphonic acid, acetic acid or hydrochloric acid. Base hydrolysis reactions are suitably effected in the presence of bases, such as alkali metal hydrides or hydroxides, and in particular sodium or potassium hydroxide.

15 Suitable example of protecting groups R⁷ are listed in T.W. Green, Protecting Groups in Organic Synthesis, J. Wiley and Sons, 1991 and in particular are those designated as nitrogen protection groups.

Particular examples of protecting groups R⁷ are groups of sub-formula (i)

20

(i)

where R⁸ is a hydrocarbyl or heterocyclic group, either of which may be optionally substituted.

As used herein, the expression "hydrocarbyl" includes any structure comprising carbon and hydrogen atoms. For example, these may be alkyl, alkenyl, alkynyl, aryl such as 25 phenyl or napthyl, arylalkyl such as benzyl, or cycloalkyl, cycloalkenyl or cycloalkynyl. Suitably hydrocarbyl groups contain up to 20 and preferably up to 10 carbon atoms.

The term "aryl" refers to aromatic rings such as phenyl or naphthyl.

The term "heterocyclic" includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 8 ring atoms, at least one of which, and suitably 30 from 1 to 4 of which is a heteroatom such as oxygen, sulphur or nitrogen. They may be monocyclic or have fused rings, such a bicyclic or tricyclic ring systems. Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl, tetrazolyl,

- 4 -

oxazolyl, isoxazolyl, piperidinyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxaliny, benzothiazolyl, benzoxazolyl, benzothienyl or benzofuryl.

The term "heteroaryl" refers to heterocyclic groups which are aromatic in nature.

5 Thus these may comprises cyclic aromatic hydrocarbons in which one or more carbon atoms have been replaced with a heteroatom. If the heteroaryl group contains more than one heteroatom, the heteroatoms may be the same or different. Examples of heteroaryl groups include pyridyl, pyrimidinyl, imidazolyl, thienyl, furyl, pyrazinyl, pyrrolyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, indolyl, isoindolyl, indolizinyl, triazolyl, pyridazinyl, 10 indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl phthalazinyl, naphthyridinyl, quinoxaliny, isothiazolyl and benzo[b]thienyl. Preferred heteroaryl groups are five or six membered rings and contain from one to three heteroatoms.

Suitable optional substituents for heterocyclic and hydrocarbyl groups R⁸ include nitro, cyano, halo, oxo, =CR¹³R¹⁴, C(O)_xR¹², OR¹², S(O)_yR¹², NR¹³R¹⁴, C(O)NR¹³R¹⁴, 15 OC(O)NR¹³R¹⁴, =NOR¹², -NR¹²C(O)_xR¹³, -NR¹²CONR¹³R¹⁴, -N=CR¹³R¹⁴, S(O)_yNR¹³R¹⁴ or -NR¹²S(O)_yR¹³ where R¹², R¹³ and R¹⁴ are independently selected from hydrogen or optionally substituted hydrocarbyl, or R¹³ and R¹⁴ together form an optionally substituted ring which optionally contains further heteroatoms such as S(O)_y oxygen and nitrogen, x is an integer of 1 or 2, y is 0 or an integer of 1-3. Hydrocarbyl groups R⁸ may also include 20 heterocyclic substituents, which may themselves be optionally substituted by one or more of the optional substituents listed above. Heterocyclic groups may also be substituted with hydrocarbyl groups which may also be optionally substituted by any of the groups listed above.

Preferably R⁸ is a hydrocarbyl group such as alkyl, aryl or arylalkyl. Most preferably 25 R⁸ is a straight chain alkyl group of from 1 to 6 carbon atoms, and particularly is a straight chain C₁₋₄alkyl group, such as methyl.

Examples of protecting groups R⁷ are groups of sub-formula (i)

30

(i)

where R⁸ is a straight chain alkyl group of from 1 to 6 carbon atoms, and particularly is a straight chain C₁₋₄alkyl group, such as methyl.

Particular examples of ester protecting groups R⁶ are any organic groups which can be removed by hydrogenation or hydrolysis. These include optionally substituted hydrocarbyl or optionally substituted heterocyclic groups. Such groups may be similar to those listed above in relation to R⁷.

5 Suitable example of protecting groups R⁶ are also listed in T.W. Green, Protecting Groups in Organic Synthesis, J. Wiley and Sons, 1991 and in particular are those designated as acid protecting groups.

In particular R⁶ is a hydrocarbyl group such as C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, aryl such as phenyl, or arylalkyl such as benzyl.

10 Conversion of a protecting group R⁶ to hydrogen is suitably effected using conventional methods, for example as described in WO 02/20530. In particular, the compound is reacted with a base such as lithium hydroxide, in an organic solvent such as methanol, at temperatures of from 20-80°C, and conveniently at the reflux temperature of the solvent.

15 Particular examples of groups R⁴ and R⁵ are hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl and C₁₋₆alkanoyloxy.

Suitably R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, 20 fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, and C₁₋₄alkanoyloxy.

Preferably R⁴ and R⁵ are independently selected from hydrogen and halo such as chloro, fluoro and bromo, and in particular chloro.

25 Most preferably R⁴ and R⁵ are halo such as chloro.

Compounds of formula (II) are suitably prepared by reacting a compound of formula (III)

- 6 -

(III)

where R⁴, R⁵ and R⁶ are as defined in relation to formula (I), and R¹² is a directing nitrogen-protecting group, with a compound of formula (IV)

5

(IV)

where R⁷ is as defined above, under acidic condition, for example in a solvent comprising an organic acid, such as acetic acid. Elevated temperatures for example of from 80-150°C and preferably from 110-130°C are employed.

10 Directing nitrogen protecting groups are groups which may act as nitrogen protecting groups, but are sufficiently bulky in nature to prevent any substitution on the nitrogen atom, or the ring atom to which it is attached. Reactions, for example deprotonation by an organolithium reagent, are thereby directed to the adjacent position on the ring. Thus particular examples of nitrogen directing groups R¹² are groups of sub-formula (ii)

15

(ii)

where R¹⁴ is a branched C₄₋₁₀alkyl group such as tertiary butyl, or an aryl or C₁₋₄alkylaryl group such as benzyl.

20 Compounds of formula (III) are suitably prepared by reacting a compound of formula (V)

(V)

where R⁴ and R⁵ are as defined above in relation to formula (I) and R¹² is as defined in relation to formula (III), with a compound of formula (VI)

5 where L is a leaving group such as halogen and in particular bromine. The reaction is suitably effected in the presence of a base such as an alkali metal carbonate, bicarbonate, hydroxide or alkoxide, for instance potassium bicarbonate in an organic solvent such as dimethylformamide. The reaction may be conducted at elevated temperatures, for example of from 40 to 100°C, preferably from 50 to 70°C and most preferably at about 60°C.

10 Compounds of formula (V) are suitably prepared by a directed ortho metallation reaction (J. Org. Chem. 2000, 66, 3662-3670). In this case, the compound of formula (V) is prepared by reacting a compound of formula (VII)

where R⁴ and R⁵ are as defined in relation to formula (I) and R¹² is as defined in relation to formula (III), with a lithiating agent, such as N-butyl lithium, and subsequently with a formylating agent, such as a compound of formula (VIII)

where R⁹ and R¹⁰ are alkyl groups and in particular lower alkyl groups of 1 to 4 carbon atoms, such as methyl. Reaction with the lithiating agent is suitably effected in an organic solvent such as tetrahydrofuran (THF), at low temperatures for example of from -100° to 0°C and preferably from -80° to -10°C. The subsequent addition of the formylating agent is suitably also effected at low temperatures, but in this case, temperatures of from -20° to 0°C are adequate.

Compounds of formula (VII) are suitably prepared by subjecting a compound of formula (IX)

- 8 -

(IX)

where R^4 and R^5 are as defined above in relation to formula (I), to a Curtius rearrangement reaction, in the presence of an alcohol of formula $R^{14}OH$ where R^{14} is as defined in relation to formula (ii). In this reaction, the compound of formula (IX) is reacted with
 5 diphenylphosphorylazide of formula (X)

(X)

to convert the acid group to a carbonyl azide, which is thermally decomposed to the desired amide via an isocyanate. Suitable reaction conditions are illustrated hereinafter. The reaction is suitably effected in the presence of a base such as triethylamine.

10 Compounds of formula (IX) are suitably prepared by oxidation of a compound of formula (XI)

(XI)

where R^4 and R^5 are as defined in relation to formula (I) for example using an oxidising agent such as potassium permanganate in the presence of a base such as an alkali metal hydroxide
 15 such as sodium hydroxide. The reaction is suitably effected in an aqueous solvent at moderate temperatures for example of from 10 to 80°C and preferably at about 40°C.

Compounds of formula (XI) where R^4 and R^5 are halogen can be prepared by halogenation of compounds of formula (XII)

(XII)

Suitably this is effected using a halogenating agent such as chlorine and aluminium trichloride, in an organic solvent such as dichloromethane.

Compounds of formula (II), (III), (V) and (VII) are novel and form further aspects of the invention.

5 Compounds of formula (IV), (VI), (VIII), (IX), (X), (XI) and (XII) are known compounds or they can be prepared from known compounds by conventional methods.

Compounds of formula (I) are suitably used in the production of pharmaceutical compounds and in particular, compounds with glycogen phosphorylase activity as described in WO 02/20530 and EP-A-1088824.

10 Thus in a further aspect, the invention provides a method as described above, for the production of a compound of formula (I) where R⁶ is hydrogen, and further comprising reacting the compound of formula (I) obtained with an amine of formula (XIII),

(XIII)

15 where R¹⁴ is selected from hydrogen and C₁₋₈alkyl,
m is an integer of from 0 to 4,
each R¹⁵ is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,
20 C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a
wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl,
N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,
C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl,
arylC₁₋₆alkyl, heterocyclic group and (heterocyclic group)C₁₋₆alkyl; wherein R¹⁵ may be
25 optionally substituted on carbon by one or more groups selected from P and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R;
each R¹⁶ is the same or different and is selected from hydrogen and C₁₋₆alkyl;
R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl,
30 difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl,

C_{1-6} alkanoyloxy, N -(C_{1-6} alkyl)amino, N,N -(C_{1-6} alkyl)₂amino, C_{1-6} alkanoylamino, N -(C_{1-6} alkyl)carbamoyl, N,N -(C_{1-6} alkyl)₂carbamoyl, N -(C_{1-6} alkyl)- N -(C_{1-6} alkoxy)carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, N -(C_{1-6} alkyl)sulphamoyl, N,N -(C_{1-6} alkyl)₂sulphamoyl, sulphamoylamino,

5 N -(C_{1-6} alkyl)sulphamoylamino, N,N -(C_{1-6} alkyl)₂sulphamoylamino, C_{1-6} alkylsulphonylamino, C_{1-6} alkylsulphonylaminocarbonyl, C_{1-6} alkylsulphonyl- N -(C_{1-6} alkyl)amino and a group -E-F-G-H;

wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-,

10 -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and -C(O)NR^aSO₂-; wherein R^a and R^b are independently selected from hydrogen or C_{1-6} alkyl which is optionally substituted by a group V;

F is C_{1-6} alkylene optionally substituted by one or more Q or a direct bond;

H is selected from aryl, C_{3-8} cycloalkyl and heterocyclic group; wherein H may be

15 optionally substituted on carbon by one or more groups selected from S and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T;

P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido,

20 C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, N -(C_{1-6} alkyl)amino, N,N -(C_{1-6} alkyl)₂amino, C_{1-6} alkanoylamino, N -(C_{1-6} alkyl)carbamoyl, N,N -(C_{1-6} alkyl)₂carbamoyl, N -(C_{1-6} alkyl)- N -(C_{1-6} alkoxy)carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, N -(C_{1-6} alkyl)sulphamoyl, N,N -(C_{1-6} alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino,

25 C_{1-6} alkylsulphonyl- N -(C_{1-6} alkyl)amino, C_{3-8} cycloalkyl, aryl and heterocyclic group; wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl,

30 amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N -methyl- N -ethylamino, acetylamino, N -methylcarbamoyl, N -ethylcarbamoyl, N,N -dimethylcarbamoyl, N,N -diethylcarbamoyl, N -methyl- N -ethylcarbamoyl, methylthio, ethylthio, methylsulphanyl,

ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N,N*-dimethylsulphamoyl, *N,N*-diethylsulphamoyl, *N*-methyl-*N*-ethylsulphamoyl, morpholino, morpholinocarbonyl, *N*-benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

5 R, T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, *N*-(C₁₋₄alkyl)carbamoyl, *N,N*-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;

10 to produce a compound of formula (XIV)

(XIV)

where R⁴, R⁵, R¹⁵, R¹⁶, R¹⁷ and m are as defined above, or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

15 Particular examples of compounds of formula (XIV) are compounds where R¹⁴ is hydrogen, as described in WO 02/20530. For instance, suitable compounds of formula (XIV) are compounds where R⁴ and R⁵ are as defined above, R¹⁴ is hydrogen, m is 0 and R¹⁷ is a group -E-F-G-H;

wherein E, F and G are each a direct bond;

20 H is a C₃₋₁₂cycloalkyl which is optionally fused to a benz ring wherein H may be optionally substituted on carbon by one or more groups S which are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, *N*-(C₁₋₆alkyl)amino, *N,N*-(C₁₋₆alkyl)₂amino,

25 C₁₋₆alkanoylamino, *N*-(C₁₋₆alkyl)carbamoyl, *N,N*-(C₁₋₆alkyl)₂carbamoyl, *N*-(C₁₋₆alkyl)-*N*-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, *N*-(C₁₋₆alkyl)sulphamoyl, *N,N*-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-*N*-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic groups; wherein

30 S may be optionally substituted on carbon by one or more groups selected from V;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

5 N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphanyl, ethylsulphanyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N-benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

10 or a pharmaceutically acceptable salt thereof.

Other suitable compounds of formula (XIV) are compounds where R⁴ and R⁵ are as defined above, R¹⁴ is hydrogen, m is 0, and R¹⁷ is a group -E-F-G-H; wherein E, F and G are each a direct bond; and H is a cyclic amide of formula

15

in which the point of attachment is the carbon atom adjacent to the carbonyl group, k is 0, 1 or 2 and l is 0, 1 or 2 such that the sum of (k + l) is 1, 2 or 3 and wherein one of the carbon atoms governed by k or l may be replaced by sulphur and wherein H is optionally substituted on the carbon atom adjacent to the aromatic ring by a group selected from S and may be

20 independently optionally substituted on nitrogen by a group selected from T;

S is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl,

25 N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein S may be optionally and independently substituted on carbon by one or more groups selected

30 from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;

5 V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphanyl, 10 ethylsulphanyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N- benzylcarbamoyl and 4-hydroxypiperidinocarbonyl ;
or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

15 Yet further examples of compounds of formula (XIV) are compounds where R¹⁴ is hydrogen, and wherein R⁴ and R⁵ are independently selected from hydrogen, halo or C₁₋₆alkyl.

m is 1; R¹⁵ is hydrogen or arylC₁₋₆alkyl, R¹⁶ is hydrogen or C₁₋₆alkyl, and R¹⁷ is selected from a group -E-F-G-H; wherein E, F and G are each a direct bond;

20 H is an unsaturated five membered heterocyclic group containing at least one nitrogen atom and one or two ring atoms selected from oxygen and sulphur and wherein H may be optionally substituted on carbon by one or more groups S which are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, 25 C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,

30 C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl and aryl groups;
or a pharmaceutically acceptable salt thereof.

Other particular examples include compounds of formula (XIV) where R¹⁴ is hydrogen, R⁴ and R⁵ are independently selected from hydrogen, halo or C₁₋₆alkyl.

m is 0; and R¹⁷ is a group -E-F-G-H;

wherein E is a direct bond;

F is methylene;

wherein G is -C(O)NR^a-, wherein R^a is selected from hydrogen or C₁₋₆alkyl which is

5 optionally substituted by a group V;

H is aryl which may be optionally substituted on carbon by one or more groups selected from S;

S is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,

10 C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino,

C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl,

N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2,

C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl,

N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino,

15 C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein

S may be optionally and independently substituted on carbon by one or more groups selected from V;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy,

20 methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino,

acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl,

N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl,

ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl,

N-methylsulphamoyl, N-ethylsulphamoyl, N,N-dimethylsulphamoyl, N,N-diethylsulphamoyl,

25 N-methyl-N-ethylsulphamoyl, morpholino, morpholinocarbonyl, N-benzylcarbamoyl, and

4-hydroxypiperidinocarbonyl;

or a pharmaceutically acceptable salt thereof.

Other particular compounds of formula (XIV) are compounds where the group

30 is a group of sub-formula (ii)

- 15 -

(ii)

where R¹⁴ is as defined above, R¹⁸ is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, R¹⁹ is a bond or a group -CH(OH)-, and R²⁰ is a group -C(=O)-A or a group -CH(OH)-C(=O)-A in which A is NR^dR^d, -NR^aCH₂CH₂OR^a, or

5 CH(OH)-C(=O)-A in which A is NR^dR^d, -NR^aCH₂CH₂OR^a, or

each R^a and R^b is independently hydrogen or -C₁-C₈alkyl;

each R^d is independently hydrogen, C₁-C₈alkyl, C₁-C₈alkoxy, aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

10 each R^c is independently hydrogen, -C(=O)OR^a, -OR^a, -SR^a, or -NR^aR^a; and each n is independently 1-3, and

X¹ is NR^a, -CH₂-, O or S.

Examples of substituents for aryl and heteroaryl groups Q and R^d include halogen,

15 C₁-₈alkoxy, C₁-₈alkyl, trifluoromethyl, amino, mono or di-(C₁-₈alkyl)amino, nitro, cyano, carboxy or C₁-₈alkyl esters thereof.

The invention will now be particularly described by way of example, in which, unless stated otherwise:

- (i) temperatures are given in degrees Celsius (°C); operations were carried out at room or
- 20 ambient temperature, that is, at a temperature in the range of 18-25°C and under an atmosphere of an inert gas such as argon;
- (ii) organic solutions were dried over anhydrous magnesium sulphate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pascals; 4.5-30 mmHg) with a bath temperature of up to 60°C;
- 25 (iii) chromatography means flash chromatography on silica gel; thin layer chromatography (TLC) was carried out on silica gel plates;

- 16 -

(iv) in general, the course of reactions was followed by TLC and reaction times are given for illustration only;

(v) yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required;

5 (vi) where given, NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard, determined at 300 MHz using perdeuterio dimethyl sulphoxide (DMSO-d₆) as solvent or other solvents (where indicated in the text) including deuterated chloroform CDCl₃;

(vii) chemical symbols have their usual meanings; SI units and symbols are used;

10 (viii) reduced pressures are given as absolute pressures in Pascals (Pa); elevated pressures are given as gauge pressures in bars;

(ix) solvent ratios are given in volume : volume (v/v) terms;

(x) mass spectra (MS) were run with an electron energy of 70 electron volts in the chemical ionisation (CI) mode using a direct exposure probe; where indicated ionisation was effected

15 by electron impact (EI), fast atom bombardment (FAB) or electrospray (ESP); values for m/z are given; generally, only ions which indicate the parent mass are reported and unless otherwise stated the value quoted is (M-H)⁻;

The following abbreviations are used:

20 DMSO = dimethylsulfoxide
 DCM = dichloromethane
 THF is tetrahydrofuran
 HPLC is high performance liquid chromatography
 DMF is dimethylformamide

25 THF is tetrahydrofuran

Example 1

Step 1

Thiophene-3-carbaldehyde (11.2g, 0.1M) was dissolved in dichloromethane (400ml) and cooled to 5°C. Aluminium chloride (33.25g, 0.25M) was then added in portions so that the temperature did not rise above 10°C. After the addition was complete the temperature was allowed to rise to 15°C and chlorine gas slowly bubbled into the reaction mixture. The 5 temperature was maintained between 15 and 20°C with ice/water cooling and the reaction followed by HPLC until the mixture contained >70% of 4,5-dichlorothiophene-3-carbaldehyde.

The reaction mixture was poured into ice water (1000 ml) and the organic layer separated. The aqueous was extracted with further portions of dichloromethane (3x200ml) 10 and the combined extracts washed with saturated sodium bicarbonate, water and brine, dried over magnesium sulphate and evaporated to give a dark oil, which crystallised on standing. Purification by recrystallisation from hexane gave

4,5-dichlorothiophene-3-carbaldehyde as light brown needles (14g, 78%). ^1H NMR (300MHz, $\text{d}^6\text{-DMSO}$) 9.9 (s,1H), 8.0 (s,1H)

15

Step 2

NaOH (0.47g) was dissolved in H_2O (8ml) and 4,5-dichlorothiophene-3-carbaldehyde from step 1 (1.42g) added in one portion giving a suspension. KMnO_4 (1.24g) was added 20 portionwise over approximately 25 minutes whilst heating the reaction suspension in a water bath at 40°C. After complete addition the water bath temperature was raised to 50°C for a further 15 minutes stirring.

Without cooling the brown precipitate was filtered off (nylon filter) and washed with H_2O . The resultant pale yellow clear solution was acidified with concentrated aqueous 25 hydrochloric acid to give a thick white suspension. The white solid was filtered off and washed with H_2O . The solid was dissolved in a mixture of ethyl acetate and dichloromethane, dried over MgSO_4 , filtered and evaporated under reduced pressure to leave the desired product, 4,5-dichlorothiophene-3-carboxylic acid as a white solid (1.34g). Further product was extracted from the aqueous mother liquors using dichloromethane. After drying over 30 Na_2SO_4 , filtration and evaporation under reduced pressure, an additional 0.19g of the desired 4,5-dichlorothiophene-3-carboxylic acid

- 18 -

was obtained as a white solid. ^1H NMR (300 MHz, $\text{d}^6\text{-DMSO}$) 13.23 (br s, 1H), 8.33 (s, 1H); ESP⁺ 195.12

Step 3

Under argon 4,5-dichlorothiophene-3-carboxylic acid (10.91g) was dissolved in warm dry tertiary butanol (60ml) and triethylamine (7.76ml) added followed by diphenylphosphoryl azide (DPPA) (11.99ml). The mixture was then heated slowly to reflux and refluxed for about 12 hours. On cooling the reaction mixture was poured into H_2O (~300ml). The

10 resultant dark suspension was filtered, and the solid was washed with H_2O then dried under suction to a brown powder. This was dissolved in diethyl ether and the solution dried over MgSO_4 , filtered and evaporated. Chromatography on silica gel (eluent gradient – isohexane to CH_2Cl_2) gave *tert*-butyl (4,5-dichloro-3-thienyl)carbamate as a pale yellow solid. Yield 12.05g (78%). ^1H NMR (300MHz, CDCl_3) 7.30 (br s, 1H), 6.72 (br s, 1H), 1.51 (s, 9H)

15

Step 4

The product from step 3 (445mg) was dissolved in tetrahydrofuran (THF) under an argon atmosphere, and cooled in a dry ice /acetone bath. *n*-Butyl lithium (1.6M in hexane)

20 (2.5ml) was added dropwise and the mixture left at this temperature for 35 minutes then allowed to warm to -10°C (external bath temperature) over ~ 15 minutes.

Dimethylformamide (0.25ml) was then added dropwise and the temperature held at 10°C for 30 minutes, before being allowed to warm to room temperature. It was kept at this temperature with stirring overnight.

25 Saturated aqueous sodium chloride solution was then added, and the mixture then partitioned between ethyl acetate and water. The organic phase was dried over MgSO_4 , filtered and evaporated to give a pale brown solid. Chromatography on silica gel (eluent gradient – isohexane to CH_2Cl_2) gave *tert*-butyl (4,5-dichloro-2-formyl-3-thienyl)carbamate

- 19 -

as a pale yellow solid. Yield 0.31g (63%). ^1H NMR (300MHz, CDCl_3) 10.01 (s, 1H), 6.83 (br s, 1H), 1.52 (s, 9H); ESP⁺ 294.07

Step 5

5 The product from step 4 (300mg) was dissolved in dry DMF (2ml) under an argon atmosphere, and KHCO_3 (102mg) was added followed by methyl bromoacetate (96 μl). The mixture was then heated to 60°C, for 3½ hours. After stirring overnight at room temperature, further KHCO_3 (51mg) and methyl bromoacetate (48 μl) were added and the mixture heated at 60°C for a further 1 hour 30 minutes.

10 The reaction mixture was then partitioned between ethylacetate and H_2O . The organic layer was dried over MgSO_4 , filtered and evaporated to a clear, orange oil. Chromatography on silica gel (eluent gradient – isohexane to CH_2Cl_2 then to Et_2O) gave methyl *N*-(*tert*-butoxycarbonyl)-*N*-(4,5-dichloro-2-formyl-3-thienyl)glycinate as a clear yellow oil (0.42g).

15 ^1H NMR (300MHz, CDCl_3) (exists as 2:1 mixture of rotamers) 10.13 (s, 1H), 4.78 (d, 1H), 3.87 (d, 1H), 3.72 (s, 3H), 1.38 (s, 9H) (major rotamer); 10.05 (s, 1H), 4.58 (d, 1H), 3.87 (d, 1H), 3.75 (s, 3H), 1.50 (s, 9H) (minor rotamer)

Step 6

20

Under an argon atmosphere, the product of step 5 (746mg) was dissolved in acetic acid (5ml) and acetic anhydride (0.41ml) added. After heating for 21 hours at 120°C, the reaction mixture was evaporated under reduced pressure, and the residue partitioned between

- 20 -

CH_2Cl_2 and aqueous sodium bicarbonate solution. The organic layer was dried over MgSO_4 , filtered and evaporated under reduced pressure.

The organic layer was dried over MgSO_4 , filtered and evaporated under reduced pressure. Chromatography on silica gel (eluent gradient – isohexane to CH_2Cl_2 then to Et_2O :
 5 CH_2Cl_2 (3:97)) gave the methyl *N*-acetyl-*N*-(4,5-dichloro-2-formyl-3-thienyl)glycinate as a clear yellow oil (34mg). ^1H NMR (300MHz, CDCl_3) 10.22
 (s, 1H), 5.00 (d, 1H), 3.75 (d, 1H), 3.72 (s, 3H), 1.99 (s, 3H)

Step 7

The product of step 6 (103mg) under an argon atmosphere and K_2CO_3 (70mg) were mixed together and dry DMF (1ml) added. The suspension quickly went red. After 2 hrs at room temperature, the temperature was raised to 60°C for 165 minutes. The reaction mixture was cooled to room temperature and stirred overnight.

15 The product was then worked-up using procedures as described in step 6, and the organic phase dried over Na_2SO_4 . Chromatography on silica gel (eluent gradient – isohexane to CH_2Cl_2 then to Et_2O) gave methyl 2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxylate as a white solid (37mg)(45%). ^1H NMR (300 MHz, $d^6\text{-DMSO}$) 12.86 (br s, 1H), 7.20 (s, 1H), 3.86 (s, 3H); ESP 248.04

20

Step 8

The ester from step 7 (1.03g) was suspended in methanol (7.5ml) and heated to 60°C. A solution of LiOH (346mg, 2 eq) in H_2O was added dropwise giving an orange suspension.

25 After complete addition, the suspension was heated to reflux for 1 hour, whereupon it had become a clear orange solution. The reaction mixture was concentrated to almost dryness under reduced pressure, then acidified with 2M aqueous hydrochloric acid, and extracted with

- 21 -

ethyl acetate (twice). The ethyl acetate layer was dried over MgSO₄, filtered and evaporated under reduced pressure. Residual traces of MeOH were removed by azeotroping with toluene to leave the desired 2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxylic acid as an off white solid (0.98g, 100%).

5 ¹H NMR (400 MHz, d⁶-DMSO) 12.79 (br s, 1H), 12.63 (br s, 1H), 7.09 (s, 1H), 3.86; ESP⁺ 234.21

Claims

1. A process for preparing a compound of formula (I)

(I)

where R^4 and R^5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl,

10 C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, $N-(C_{1-6}$ alkyl)carbamoyl, $N,N-(C_{1-6}$ alkyl)₂carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, $N-(C_{1-6}$ alkyl)sulphamoyl, $N,N-(C_{1-6}$ alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino and C_{1-6} alkylsulphonyl- $N-(C_{1-6}$ alkyl)amino; and R^6 is hydrogen or a protecting group,

15 which process comprises cyclisation of a compound of formula (II)

(II)

where R^4 , R^5 and R^6 are as defined in relation to formula (I), and R^7 is a nitrogen protecting group, and removing the group R^7 , and thereafter if desired, removing any protecting group R^6 .

20

2. A method according to claim 1 wherein R^7 is a group of sub-formula (i)

(i)

where R^8 is a straight chain alkyl group of from 1 to 6 carbon atoms.

25

3. A process according to claim 1 or claim 2 wherein R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, ureido, C₁-alkyl, C₂-alkenyl, C₂-alkynyl, C₁-alkoxy, C₁-alkanoyl and C₁-alkanoyloxy.

5

4. A compound of formula (II) as defined in claim 1.

5. A process for preparing a compound according to claim 4 which comprises reacting a compound of formula (III)

(III)

where R⁴ and R⁵ are as defined in relation to formula (I), and R¹² is a directing nitrogen protecting group, with a compound of formula (IV)

(IV)

15 where R⁷ is as defined above, under acidic conditions.

6. A compound of formula (III) as defined in claim 5.

7. A process for preparing a compound according to claim 6 which comprises reacting a
20 compound of formula (V)

(V)

where R⁴ and R⁵ are as defined above in claim 1 and R¹² is as defined in relation to formula (III), with a compound of formula (VI)

- 24 -

where L is a leaving group.

5 8. A compound of formula (V) as defined in claim 7.

9. A process for preparing a compound according to claim 8 which comprises reacting a compound of formula (VII)

10 where R⁴ and R⁵ are as defined in claim 1 and R¹² is as defined in relation to formula (III), with a lithiating agent, such as N-butyl lithium, and subsequently with a formylating agent, such as a compound of formula (VIII)

where R⁹ and R¹⁰ are alkyl groups and in particular lower alkyl groups of 1 to 4 carbon atoms, 15 such as methyl.

10. A compound of formula (VII) as defined in claim 9.

11. A process for preparing a compound according to claim 10 which comprises 20 subjecting a compound of formula (IX)

where R⁴ and R⁵ are as defined above in relation to formula (I), to a Curtius rearrangement reaction, in the presence of an alcohol of formula R¹²OH where R¹² is as defined in claim 5.

12. A method according to claim 1, for the production of a compound of formula (I)
 5 where R⁶ is hydrogen, wherein the method further comprises the step of reacting the compound of formula (I) obtained with an amine of formula (XIII),

(XIII)

where R¹⁴ is selected from hydrogen or C₁₋₈alkyl,

10 m is an integer of from 0 to 4,
 each R¹⁵ is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphonamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a
 15 wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphonamoyl, N,N-(C₁₋₆alkyl)₂sulphonamoyl, C₁₋₆alkylsulphonylamino, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group and (heterocyclic group)C₁₋₆alkyl; wherein R¹ may be optionally substituted on carbon by one or more groups selected from P and wherein if said
 20 heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R;
 each R¹⁶ is the same or different and is selected from is hydrogen or C₁₋₆alkyl;
 R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto,
 25 sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphonamoyl, N,N-(C₁₋₆alkyl)₂sulphonamoyl, sulphonamoylamino,
 30 N-(C₁₋₆alkyl)sulphamoylamino, N,N-(C₁₋₆alkyl)₂sulphamoylamino, C₁₋₆alkylsulphonylamino,

C_{1-6} alkylsulphonylaminocarbonyl, C_{1-6} alkylsulphonyl- N -(C_{1-6} alkyl)amino and a group -E-F-G-H;

wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-, 5 -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and -C(O)NR^aSO₂-, wherein R^a and R^b are independently selected from hydrogen or C_{1-6} alkyl which is optionally substituted by a group V;

F is C_{1-6} alkylene optionally substituted by one or more Q or a direct bond;

H is selected from aryl, C_{3-8} cycloalkyl and heterocyclic group; wherein H may be 10 optionally substituted on carbon by one or more groups selected from S and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T;

P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, 15 C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, N -(C_{1-6} alkyl)amino, N,N -(C_{1-6} alkyl)₂amino, C_{1-6} alkanoylamino, N -(C_{1-6} alkyl)carbamoyl, N,N -(C_{1-6} alkyl)₂carbamoyl, N -(C_{1-6} alkyl)- N -(C_{1-6} alkoxy)carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, N -(C_{1-6} alkyl)sulphamoyl, N,N -(C_{1-6} alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino,

20 C_{1-6} alkylsulphonyl- N -(C_{1-6} alkyl)amino, C_{3-8} cycloalkyl, aryl and heterocyclic group; wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl,

25 amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N -methyl- N -ethylamino, acetylamino, N -methylcarbamoyl, N -ethylcarbamoyl, N,N -dimethylcarbamoyl, N,N -diethylcarbamoyl, N -methyl- N -ethylcarbamoyl, methylthio, ethylthio, methylsulphanyl, ethylsulphanyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl,

30 N -methylsulphamoyl, N -ethylsulphamoyl, N,N -dimethylsulphamoyl, N,N -diethylsulphamoyl, N -methyl- N -ethylsulphamoyl, morpholino, morpholinocarbonyl, N -benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

R, T and U are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or

5 more groups selected from V;

to produce a compound of formula (XIV)

where R⁴, R⁵, R¹⁵, R¹⁶, R¹⁷ and m are as defined above, or a pharmaceutically acceptable salt

10 or an *in vivo* hydrolysable ester thereof.

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB 03/04211

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D495/04 C07D333/36 // (C07D495/04, 333:00, 209:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>SOTH, SAMRETH ET AL: "Recherches en série hétérocyclique. XXIX. Sur des voies d'accès à des thiéno, sélénolo, furo et pyrrolopyrroles" CANADIAN JOURNAL OF CHEMISTRY., vol. 56, no. 6, 1978, pages 1429-1434, XP008026687 NATIONAL RESEARCH COUNCIL. OTTAWA., CA ISSN: 0008-4042 scheme 3, step 15 to 13; page 1434, compound 15b</p> <p>----</p> <p>-/-</p>	1-4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

27 January 2004

23/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Alfaro Faus, I

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB 03/04211

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KOBAYASHI, SHOZO ET AL: "Heterocyclic sulfonyl compounds and activated blood coagulation factor X (FXa) inhibitors containing them" retrieved from STN Database accession no. 135:313616 XP002267904 368442-47-1 & JP 2001 294572 A (DAIICHI SEIYAKU CO., LTD., JAPAN) 23 October 2001 (2001-10-23) ---	8
X	WO 02 06246 A (ISTITUTO DI RICERCHE BIOLOGIA MOLECULARE P. ANGELETTI) 24 January 2002 (2002-01-24) page 34, compound 38 ---	10
X	WO 94 18196 A (WELLCOME FOUNDATION) 18 August 1994 (1994-08-18) example 9A ---	10
X	BRUGIER, DELPHINE ET AL: "Studies on the reactivity of N-(3-thienyl)carbamates" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1 (2001), (1), 37-43 , XP002267902 compounds 3a,7b,15a ---	10
X	BOGER, DALE L. ET AL: "Total Synthesis of Distamycin A and 2640 Analogs: A Solution-Phase Combinatorial Approach to the Discovery of New, Bioactive DNA Binding Agents and Development of a Rapid, High-Throughput Screen for Determining Relative DNA Binding Affinity or DNA Binding Sequence Selectivity" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2000), 122(27), 6382-6394 , XP002181404 compound 8a -& SUPPORTING INFO, page 1 XP002267903 compound 17 ---	10
X	BRUGIER, DELPHINE ET AL: ".alpha.-Substitution of .beta.-thienylcarbamates: alkylation, vinylation and Pd-catalyzed coupling reactions" TETRAHEDRON (2000), 56(19), 2985-2993 , XP004198008 compounds 10a, 10b, 11b ---	10
	-/-	

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 03/04211

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SHINKWIN, ANNE E. ET AL: "Synthesis of thiophenecarboxamides, thieno'3,4-c!pyridin-4(5H)-ones and thieno'3,4-d!pyrimidin-4(3H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP)" BIOORGANIC & MEDICINAL CHEMISTRY (1999), 7(2), 297-308 , XP002927684 compound 8a	10
X	BRUGIER, DELPHINE ET AL: "Synthesis and reactivity of alkyl (4-amino-3-thienyl)carbamates" TETRAHEDRON (1997), 53(30), 10331-10344 , XP004105921 compounds 2b,6a-6d	10
X	CARROLL, WILLIAM A. ET AL: "Competitive ortho metalation effects: the kinetic and thermodynamic lithiation of 3-(tert-butoxycarbonyl)amino-4-carbomethoxythiophene" TETRAHEDRON LETTERS (1997), 38(15), 2637-2640 , XP004058292 compounds 3-1, 3-3, 6, 8	10
X	SZABO, KALMAN J. ET AL: "Experimental and theoretical study of orientation in the nitration of dithieno'3,4-b:3',4'-d!pyridine" JOURNAL OF ORGANIC CHEMISTRY (1991), 56(4), 1590-6 , XP002268136 compound 5	10
X	BJOERK, PATRICK ET AL: "Improved syntheses of thieno'2,3-b!- and '3,2-b!-fused naphthyridines" JOURNAL OF HETEROCYCLIC CHEMISTRY (1995), 32(3), 751-4 , XP002268137 compound 5	10
X	GALVEZ ET AL: "Synthesis of thiophenedicarbonyldiazides and di-t-butyl thiophendicarbamates" JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 23, 1986, pages 1103-1108, XP002268138 HETERO CORPORATION. PROVO., US ISSN: 0022-152X compounds 1a, 1b, 13, 14	499
	--	

-/--

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 03/04211

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ADAMS, JERRY L. ET AL: "4-Amino-4,5-dihydrothiophene-2-carboxylic acid" JOURNAL OF ORGANIC CHEMISTRY (1985), 50(15), 2730-6 , XP001037712 compound 9 ---	10
X	GALVEZ, C. ET AL: "Synthesis of isomeric beta.-haloethylthienopyrroles" JOURNAL OF HETEROCYCLIC CHEMISTRY (1984), 21(2), 393-5 , XP002268139 compound 7b ---	10
X	BRUNNETT, EMERY W. ET AL: "Heterocyclic amines. IV. Urethan and urea derivatives of 3-aminothiophene" JOURNAL OF HETEROCYCLIC CHEMISTRY (1968), 5(3), 417-18 , XP002268140 compound III ---	10
X	BINDER, DIETER ET AL: "Thiophen als a Strukturelement physiologisch aktiver Substanzen, 8. Mitt. 1H,5H-Imidazo'1,2-a!thieno'3,4-d!pyrimidin - 2(3H)-one" ARCHIV DER PHARMAZIE (WEINHEIM, GERMANY) (1981), 314(6), 557-64 , XP008026782 compound 8 ---	10
P,X	MARQUES, MICHAEL A. ET AL: "Toward an understanding of the chemical etiology for DNA minor-groove recognition by polyamides" HELVETICA CHIMICA ACTA (2002), 85(12), 4485-4517 , XP002267901 page 4514, compounds 41 and 11 -----	10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB 03/04211

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: - because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/GB 03 04211

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 5 - 11 relate to compounds defined by reference to a desirable characteristic or property, namely having a substituent R12 that is a directing nitrogen protecting group which prevents substitution on the nitrogen atom or the ring atom to which it is attached (see page 6, lines 10-12).

The claims cover all compounds having this substituent, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to compounds where R12 is -(C=O)O-R14, where R14 is a branched C4-10 alkyl group, or an aryl or C1-4alkylaryl group as described on page 6, lines 13-19.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/GB 03/04211

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP 2001294572	A 23-10-2001	NONE		
WO 0206246	A 24-01-2002	AU 7253001 A		30-01-2002
		CA 2418288 A1		24-01-2002
		WO 0206246 A1		24-01-2002
		EP 1309566 A1		14-05-2003
WO 9418196	A 18-08-1994	AU 6005194 A		29-08-1994
		BG 99839 A		29-02-1996
		CA 2155758 A1		18-08-1994
		CN 1117731 A		28-02-1996
		CZ 9502044 A3		13-03-1996
		EP 0683778 A1		29-11-1995
		FI 953777 A		09-08-1995
		WO 9418196 A1		18-08-1994
		HU 73654 A2		30-09-1996
		JP 8506337 T		09-07-1996
		MX 9401080 A1		31-08-1994
		SK 99195 A3		06-12-1995
		ZA 9400891 A		10-08-1995