Econ 6190 Problem Set 7

Fall 2024

- 1. Let $\{X_1 \dots X_n\}$ be a sequence of i.i.d random variables with mean μ and variance σ^2 . Let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$, and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \hat{\mu})^2$.
 - (a) Suppose $\mathbb{E}X_i^2 < \infty, i = 1, \dots n$. Show $\hat{\sigma}^2 \stackrel{p}{\to} \sigma^2$ as $n \to \infty$.
 - (b) Imposing additional assumptions if necessary, find the asymptotic distribution of

$$\sqrt{n}(\hat{\sigma}^2 - \sigma^2)$$

by using delta method. Carefully state your results.

- 2. [Hansen 8.10] Let $X \sim U[0, b]$ and $M_n = \max_{i \leq n} X_i$, where $\{X_i, i = 1 \dots n\}$ is a random sample from X. Derive the asymptotic distribution using the following the steps.
 - (a) Calculate the distribution F(x) of U[0, b].
 - (b) Show

$$Z_n = n(M_n - b) = n\left(\max_{1 \le i \le n} X_i - b\right) = \max_{1 \le i \le n} n\left(X_i - b\right).$$

(c) Show that the cdf of Z_n is

$$G_n(x) = P\{Z_n \le x\} = (F(b + \frac{x}{n}))^n.$$

- (d) Derive the limit of $G_n(x)$ as $n \to \infty$ for x < 0. [Hint: Use $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$]
- (e) Derive the limit of $G_n(x)$ as $n \to \infty$ for $x \ge 0$.
- (f) Find the asymptotic distribution of Z_n as $n \to \infty$.