

Macro II

Luis Chávez

Introducció

Overshootin

Calibración

Anexos

References

Macroeconomía II

Tópico 4: Dinámica Macroeconómica

Luis Chávez

0

Departamento Académico de Economía y Planificación UNALM

Lima, 2025

Contenido

Macro II

Luis Chávez

Introducció

Overshooting Modelación Solución

Anavor

1 Introducción

Overshooting Modelación Solución Calibración

3 Anexos

Background

Macro II

Luis Chávez

Introducción

Overshootin Modelación

Calibración

Anexos

References

- La macroeconomía estática es importante pero no suficiente.
- La economía es dinámica, la macro también.
- Las nociones de ecuaciones en diferencia y diferenciales son útiles.
- Ahora se analiza el estado estacionario y el diagrama de fases.

Background

Macro II

Luis Chávez

Introducción

Overshootin

Modelación

Solución

Calibración

Anevos

THEXOS

Reference

Ejemplo 1

Considere el modelo armamentista de Richardson(1960). Analice las predicciones del modelo.

Macro II

Luis Chávez

Introducción

Overshootin Modelación

Solución Calibración

Anevos

,

References

Sea el modelo dinámico básico:

$$C(t) = a + bY(t) \tag{1}$$

$$D(t) = C(t) + I + G \tag{2}$$

$$\Delta Y(t+1) = \lambda [D(t) - Y(t)], \ \lambda > 0 \tag{3}$$

donde la inversión y el gasto público son exógenos. En equilibrio,

$$\Delta Y(t+1) = 0, \ \forall t \tag{4}$$

¿Implicancia?

Macro II

Luis Chávez

Introducción

Overshooting Modelación

Calibración

Anevos

References

De (3),

$$\Delta Y(t+1) = \lambda(a+I+G) - \lambda(1-b)Y(t) \tag{5}$$

$$Y^* = \frac{a+I+G}{1-b} \tag{6}$$

De (5), se tiene la forma recursiva:

$$Y(t+1) = \lambda(a+I+G) + [1 - \lambda(1-b)]Y(t)$$
(7)

¿Gráfica?

Macro II

Luis Chávez

Introducción

Overshooting

Modelación

Calibración

Anexos

Deferences

Macro II

Luis Chávez

Introducción

Overshooting

Modelación

C-Ub---14-

Anexos

References

Macro II

Luis Chávez

Introducción

Overshootin

Modelación

6 111 17

Λ

Aplicación: ver código python.

Contenido

Macro II

Luis Chávez

Introducción

Overshootin

Modelación

Solución

Calibració

A nove

Reference

Introducción

2 Overshooting Modelación

Solución Calibració

3 Anexos

Supuestos

Macro II

Luis Chávez

Modelación

• Economía pequeña y abierta: r_t^* y P_t^* exógenas.

- MB puede estar en desequilibrio a CP: ajuste lento en P bajo la regla de Phillips.
- TCFx.
- Versión continua.
- Expectativas racionales en los agentes.

Macro II

Luis Chávez

Introducció

Overshooti

Modelación

wodelacion

Calibración

Anexo

Referenc

La brecha del producto es nula (economía de pleno empleo):

$$Y_t = \bar{Y}_t \tag{8}$$

Implicancia,

$$y_t = \ln(Y_t) = \ln(\bar{Y}_t) = \bar{y}_t \tag{9}$$

donde el producto está en términos reales.

Macro II

Luis Chávez

Introducció

Overshooti

Modelación

Calibración

Anexo

MD siempre en equilibrio:

$$H_t^s = \frac{M_t}{P_t} = H_t^d = Y_t^{b_0} e^{-b_1 r_t}, \quad b_i > 0, \ \forall i$$
 (10)

donde r_t es el tipo de interés nominal, M_t el stock nominal de dinero en soles, P_t es el IPC expresado en soles por unidades reales de consumo y M_t/P_t son los saldos reales expresados en unidades reales de consumo y

$$b_0 = \frac{\partial (M_t/P_t)}{\partial Y_t} \frac{Y_t}{(M_t/P_t)} \tag{11}$$

$$b_1 = \frac{\partial \ln(M_t/P_t)}{\partial r_t} \tag{12}$$

Macro II

Luis Chávez

Introducció

Modelación

Solucion

Calibracion

Anex

Peferenc

De (10),

$$\ln\left(\frac{M_t}{P_t}\right) = \ln(Y_t^{b_0} e^{-b_1 r_t}) = b_0 \ln Y_t - b_1 r_t \tag{13}$$

O también,

$$\ln M_t - \ln P_t = b_0 \ln Y_t - b_1 r_t \tag{14}$$

Macro II

Luis Chávez

meroducción

Overshooting

Modelación

Calibración

Anevos

Para un X_t arbitrario, $x_t = In(X_t)$, las tasas de crecimiento instantáneas se pueden escribir:

$$\dot{m_t} = \frac{\dot{M_t}}{M_t} \tag{15}$$

$$\dot{p_t} = \frac{\dot{P_t}}{P_t} \tag{16}$$

$$\dot{y_t} = \frac{\dot{Y_t}}{Y_t} \tag{17}$$

Además, la LM:

$$m_t - p_t = b_0 \bar{y}_- b_1 r_t \tag{18}$$

Macro II

Luis Chávez

Introducció

Overshooti

Modelación

Calibración

Anexo

- ----

Bajo paridad de intereses descubierta $\forall t$,

$$r_t = r_t^* + \dot{e}_t^e \tag{19}$$

donde \dot{e}_t^e es la tasa de (de)crecimiento instantáneo del tipo de cambio nominal, con $e_t^e = \ln(E_t^e)$ y

$$\dot{e}_t^e = \frac{\dot{E}_t^e}{E_t^e} \tag{20}$$

Se asume expectativas racionales, por lo que se espera previsión perfecta:

$$\dot{e}_t^e = \dot{e}_t \tag{21}$$

¹Los activos domésticos y externos son sustitutos perfectos.

Macro II

Luis Chávez

Modelación

El mercado doméstico de bienes se ajusta según la ecuación diferencial:

$$rac{\dot{P}_t}{P_t} = \mu \ln \left(rac{Y_t^d}{ar{Y}_t}
ight) = \mu \left[\ln(Y_t^d) - \ln(ar{Y}_t)
ight], \quad \mu > 0$$

Si.

$$y_t^d = \ln(Y_t^d)$$

$$\dot{y}_t^d = rac{\dot{Y}_t^d}{Y_t^d}$$

$$\dot{ar{y}}_t = rac{\dot{ar{Y}}_t}{ar{Y}_t}$$

(25)

(22)

(23)

(24)

Luego, la curva de Phillips será:

$$\dot{p}_t = \mu(y_t^d - \bar{y}_t)$$

(26)

Macro II

Luis Chávez

Introducció

Overshooti

Modelación

Calibración

Anexo

Referenc

La PPA establece que $E_t = P_t/P_t^*$. Al normalizar $P_t^* = 1$, se tiene la PPA

$$e_t = p_t \tag{27}$$

la IS preliminar será:

$$Y_t^d = \left(\frac{E_t P_t^*}{P_t}\right)^{\beta_1} e^{(\beta_0 - \beta_2 r_t)}; \quad \beta_j > 0, \ \forall j$$
 (28)

donde β_0 es el componente autónomo de la demanda de bienes (incluido G). Ajustando, se tiene la IS:

$$y_t^d = \beta_0 + \beta_1(e_t - p_t) - \beta_2 r_t \tag{29}$$

Contenido

Macro II

Luis Chávez

Introducció

Overshooting

Modelación

Solución

Calibración

Anexos

Reference

1 Introducción

Overshooting Modelación Solución Calibración

3 Anexos

Solución

Macro II

Luis Chávez

Introducció

Overshooting

Modelación

Solución

Calibración

A n ava

.

Reference

Taxonomía:

• Exógenas: m_t , p_t^{*2} , r_t^* , \bar{y}_t , β_0 .

• Endógenas: e_t , p_t , r_t , y_t^d .

• Endógenas claves: e_t , p_t .

²Aunque se normalizó y se hizo=0.

Solución

Macro II Luis Chávez

Solución

De (18),

$$r_i$$

 $r_t = \frac{1}{h_t}(b_0\bar{y}_t - m_t + p_t)$ y al reemplazar r_t de (29) en (30), se tiene

$$y_t^d = \beta_0 + \beta_1(e_t - p_t) - \frac{\beta_2}{b_1}(b_0\bar{y}_t - m_t + p_t)$$

Al reemplazar (31) en (26) se tiene la curva de DA:

$$\dot{a} = u \left[\theta + \theta \left(0 - n \right) \right] \beta_2 \left(h = m + n \right) = 0$$

$$\dot{p}_t = \mu \left[\beta_0 + \beta_1 (e_t - p_t) - \frac{\beta_2}{b_1} (b_0 \bar{y}_t - m_t + p_t) - \bar{y}_t \right]$$

$$\dot{p}_t = -\mu \left(eta_1 + rac{eta_2}{b_1}
ight) p_t + (\mu eta_1) e_t + \mu \left[eta_0 + rac{eta_2 m_t}{b_1} - \left(1 + rac{eta_2 b_0}{b_1}
ight) ar{y}_t
ight]$$

(30)

(31)

(32)

(33)

Solución

Macro II

Luis Chávez

Introducció

Overshootin

Modelación Solución

Calibración

Λ

.

Referenc

De (30) en (19),

$$\frac{1}{b_1}(b_0\bar{y}_t - m_t + p_t) - r_t^* = \dot{e}_t^e \tag{34}$$

De (21) en (34), se tiene el equilibro del mercado de activos financieros:

$$\dot{e}_t = \frac{1}{b_1} p_t + \frac{1}{b_1} (b_0 \bar{y}_t - m_t) - r_t^*$$
(35)

Forma compacta

Macro II

Luis Chávez

Introducció

Overshootin

Solución

Calibración

Anexo

Reference

Se tiene el sistema de ecuaciones diferenciales:

$$\begin{bmatrix} \dot{p}_t \\ \dot{e}_t \end{bmatrix} = \begin{bmatrix} -\mu \begin{pmatrix} \beta_1 + \frac{\beta_2}{b_1} \end{pmatrix} & \mu \beta_1 \\ \frac{1}{b_1} & 0 \end{bmatrix} \begin{bmatrix} p_t \\ e_t \end{bmatrix} + \begin{bmatrix} \mu & \mu \frac{\beta_2}{b_1} & -\mu \begin{pmatrix} 1 + \frac{\beta_2 b_0}{b_1} \end{pmatrix} & 0 \\ 0 & -\frac{1}{b_1} & \frac{b_0}{b_1} & -1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ m_t \\ \bar{y}_t \\ r_t^* \end{bmatrix}$$
(36)

$$\begin{bmatrix} \dot{p}_t \\ \dot{e}_t \end{bmatrix} = \begin{bmatrix} -\mu \begin{pmatrix} \beta_1 + \frac{\beta_2}{b_1} \end{pmatrix} & \mu \beta_1 \\ \frac{1}{b_1} & 0 \end{bmatrix} \begin{bmatrix} p_t \\ e_t \end{bmatrix} + \begin{bmatrix} \mu \begin{bmatrix} \beta_0 + \frac{\beta_2 m_t}{b_1} - \left(1 + \frac{\beta_2 b_0}{\theta}\right) \bar{y}_t \end{bmatrix} \\ \frac{1}{b_1} (b_0 \bar{y}_t - m_t) - r_t^* \end{bmatrix}$$
(37)

$$\dot{x}_t = Ax_t + B \tag{38}$$

Macro II

Luis Chávez

Introducción

Overshooting

Modelación

Solución

Allexus

References

De A,

$$\begin{cases} trA = -\mu \left(\beta_1 + \frac{\beta_2}{b_1}\right) < 0\\ |A| = -\frac{\mu\beta_1}{b_1} < 0\\ \Delta = (trA)^2 - 4|A| = \mu^2 \left(\beta_1 + \frac{\beta_2}{b_1}\right)^2 + 4\frac{\mu\beta_1}{b_1} > 0 \end{cases}$$
(39)

Como A no es singular, se puede calcular

$$x_t^e = -A^{-1}B$$

Macro II

Luis Chávez

Introducció

Overshooting Modelación

Solución Calibración

Anexos

Ejemplo 1

Hallar los valores y vectores propios de la matriz:

$$A = \begin{pmatrix} -2 & 1 \\ 4 & 1 \end{pmatrix}$$

Nota: una ecuación característica se escribe como $det(A - \lambda I) = 0$, cuyo lado izquierdo es el polinomio característico $p_A(\lambda)$. Además, el espacio generado de cada valor propio, el vector propio, se halla vía $(A - \lambda_i I)v_i = 0$, $\forall \lambda_i \neq 0$.

Macro II

Luis Chávez

Introducción

Overshooting

Modelación

Solución

.

Anexo

Reference

Resolviendo, se tiene:

$$\begin{bmatrix} p^e \\ e^e \end{bmatrix} = \begin{bmatrix} m_t + b_1 r_t^* - b_0 \bar{y}_t \\ \beta_1 m_t - \beta_0 - \bar{y}_t (b_0 \beta_1 - 1) + (b_1 \beta_1 + \beta_2) r_t^* \\ \beta_1 \end{bmatrix}$$
(40)

donde ambas son función de las exógenas. Luego, el polinomio característico se escribe como:

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 - (\operatorname{tr} A)\lambda + |A| = 0$$
(41)

donde

$$\lambda_1 = rac{trA + \sqrt{\Delta}}{2}$$
 $\lambda_2 = rac{trA - \sqrt{\Delta}}{2}$

Macro II

Luis Chávez

Introducción

Overshooting

Solución

Calibración

Anexos

Reference

Los autovalores tienen signos opuestos, lo que sugiere punto de silla. Así, los autovectores serán útiles. Para $\lambda_1 i 0$.

$$\begin{bmatrix} -\mu \left(\beta_1 + \frac{\beta_2}{b_1}\right) - \lambda_1 & \mu \beta_1 \\ \frac{1}{b_1} & -\lambda_1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (42)

con pendiente

$$b = \left(\frac{1}{b_1 \lambda_1}\right) a = \left[\frac{\mu\left(\beta_1 + \frac{\beta_2}{b_1}\right) + \lambda_1}{\mu \beta_1}\right] a \to \frac{b}{a} = \frac{1}{b_1 \lambda_1} = \frac{\mu\left(\beta_1 + \frac{\beta_2}{b_1}\right) + \lambda_1}{\mu \beta_1} > 0$$

$$\tag{43}$$

Macro II

Luis Chávez

Modelación

Solución

Luego,

$$\frac{e_t}{p_t}$$

$$\frac{e_t-e^e}{p_t-p^e}=\frac{1}{b_1\lambda_1}$$

Despejando,

$$e_t = \epsilon$$

$$e_t = e^e + \left(\frac{1}{b_1 \lambda_1}\right) (p_t - p^e)$$

$$e_t = \left[e^e - \left(rac{1}{b_1\lambda_1}
ight)
ho^e
ight] + \left(rac{1}{b_1\lambda_1}
ight)
ho_t$$

(45)

Macro II

Luis Chávez

Introducción

Overshooti

Modelación

Solución

Calibración

Anexos

Reference

Para $\lambda_2 < 0$,

$$\begin{bmatrix} -\mu \left(\beta_1 + \frac{\beta_2}{b_1}\right) - \lambda_2 & \mu \beta_1 \\ \frac{1}{b_1} & -\lambda_2 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (46)

donde

$$d = \left(\frac{1}{b_1 \lambda_2}\right) c = \left[\frac{\mu \left(\beta_1 + \frac{\beta_2}{b_1}\right) + \lambda_2}{\mu \beta_1}\right] c \implies \frac{d}{c} = \frac{1}{b_1 \lambda_2} = \frac{\mu \left(\beta_1 + \frac{\beta_2}{b_1}\right) + \lambda_2}{\mu \beta_1} < 0$$

$$\tag{47}$$

Macro II

Luis Chávez

Introducción

Overshooting

Modelación Solución

Calibración

Anexos

References

$$\frac{e_t - e^e}{p_t - p^e} = \frac{e_0 - e^e}{p_0 - p^e} = \frac{d}{c} = \frac{1}{b_1 \lambda_2}$$

Despejando,

$$e_t = \mathrm{e}^e + \left(rac{1}{b_1\lambda_2}
ight)(p_t - p^e)$$

$$e_t = \left[e^e - \left(rac{1}{b_1\lambda_2}
ight)
ho^e
ight] + \left(rac{1}{b_1\lambda_2}
ight)
ho_t$$

De (48), si se conoce p_0 , se conoce:

$$e_0 = e^e + \left(\frac{1}{b_1 \lambda_2}\right) (p_0 - p^e)$$
 (50)

(48)

(49)

Macro II

Luis Chávez

Introducción

Overshootin

Modelación

Solución

Calibración

Anexo

Reference

De la primera ecuación de (37), la ceroclina permite obtener la IS:

$$e_{t} = \left[\left(\frac{1}{\beta_{1}} + \frac{\beta_{2}\psi}{\beta_{1}b_{1}} \right) \bar{y}_{t} - \frac{\beta_{0}}{\beta_{1}} - \frac{\beta_{2}m_{t}}{\beta_{1}b_{1}} \right] + \left(1 + \frac{\beta_{2}}{\beta_{1}b_{1}} \right) \rho_{t}$$
 (51)

De la segunda ecuación de (37), la ceroclina permite obtener la LM:

$$p_t = m_t + b_1 r_t^* - b_0 \bar{y}_t = p^e (52)$$

Macro II

Luis Chávez

Introducció

Overshooti

Modelación

Solución

Calibración

Anexo

Reference

De (35) y (52),

$$\dot{e}_t = \frac{1}{b_1} \rho^e + \frac{1}{b_1} (b_0 \bar{y}_t - m_t) - r_t^* = 0$$
 (53)

Macro II

Luis Chávez

Introducció

Overshootii

Solución

Calibración

Anexos

References

Macro II

Luis Chávez

Introducción

Overshootii Modelación

Solución

Calibración

Anexos

References

Contenido

Macro II

Luis Chávez

Introducció

Overshooting

Modelación

Calibración

Anexos

Reference

Introducción

Overshooting

Modelación Solución

Calibración

3 Anexos

Supuestos

Macro II

Luis Chávez

Introducción

Overshootin

Modelación

Calibración

Anexos

Reference

Supuestos

Macro II

Luis Chávez

Introducció

Overshootin

Modelación

Calibración

Anexos

Reference

Referencias

Macro II

Luis Chávez

Introducción

Overshooting

Modelación

Calibración

Anexos

References