# MIAT\_STM32 CMOS影像擷取

浯陽科技有限公司





# Declared Version

| Training Only    |                                                |  |  |  |
|------------------|------------------------------------------------|--|--|--|
| Declare          |                                                |  |  |  |
| Document Number  |                                                |  |  |  |
| Document Version | 1.00                                           |  |  |  |
| Release Date     |                                                |  |  |  |
| Document Title   | MIAT_STM32 CMOS影像擷取                            |  |  |  |
| Exercise Time    |                                                |  |  |  |
| Platform         | ■ <i>MIAT_STM32.V2</i><br>■ <i>MIAT IOB.V1</i> |  |  |  |
| Peripheral       |                                                |  |  |  |
| Author           | ■ WU-YANG Technology Co., Ltd.                 |  |  |  |



# 實驗目的(一)

□ 使用MIAT\_STM32實驗板透過MIAT\_IOB實驗板整合 2MPixels影像感測器進行影像擷取,並利用其取得之影 像進行RGB色彩辨識實驗。



# 實驗原理

- ☐ System requirement
  - CMOS
  - LCD
  - KEY
- □ 通訊介面
  - Master Clock
    - ☐ Timer
  - I2C
  - PPI
    - ☐ Timer
    - ☐ GPIO
    - □ DMA
- ☐ CMOS Pixel Color Pattern



# 通訊介面

## Connecting to CMOS Image Sensor





# CMOS訊號

| The pins of the CMOS |                         |                            |  |  |  |
|----------------------|-------------------------|----------------------------|--|--|--|
| 功能                   | 訊號名稱                    | 說明                         |  |  |  |
| Clock                | Master Clock (MCLK)     | 提供CMOS時脈                   |  |  |  |
| I2C                  | SDA<br>(SDATA)          | I2C通訊資料                    |  |  |  |
|                      | SCK<br>(SCLK)           | I2C通訊時脈                    |  |  |  |
| PPI                  | Pixel Clock (PIXCLK)    | CMOS pixel輸出時脈             |  |  |  |
|                      | Pixel Data[7:0] (DOUT)  | CMOS pixel資料輸出             |  |  |  |
|                      | CMOS_HSYNC (LINE_VALID) | CMOS pixel資料輸出row同步訊號      |  |  |  |
|                      | CMOS_VSYNC (LINE_VALID) | CMOS pixel資料輸出frame的時脈同步訊號 |  |  |  |



## Master Clock

- □功能說明
  - Sensor master clock
  - 6 MHz to 80 MHz
- □ STM32方案
  - Timer2 Channel 2產生Clock



## I2C介面

- □ 功能說明
  - Two-wire serial interface
  - CMOS Sensor控制
- □ STM32方案
  - I2C2 (Hardware Ready)

Write Timing Diagram

## WRITE Timing to R0x09:0—Value 0x0284





## PPI介面

- □ 功能說明
  - 同步CMOS Frame
  - 接收CMOS Sensor資料

Pixel Data Timing Diagram

## **Timing Example of Pixel Data**





## PPI介面

### **Timing Diagram**

## Row Timing and FRAME\_VALID/LINE\_VALID Signals



- □ STM32方案
  - GPIO同步Frame
  - Timer3 Channel 1觸發接收
  - DMA1 Channel 6 & GPIO接收資料



## **CMOS** Pixel Color Pattern





# GUI硬體電路配置

## Mapping Table

| Num. | MIAT_STM32V2 | MIAT_IOBV1 | Num. | MIAT_STM32V2 | MIAT_IOBV1 |
|------|--------------|------------|------|--------------|------------|
| 1    | PC8 (3.26)   | SW1        | 9    | PE6 (1.5)    | LCD_EN     |
| 2    | PC9 (3.27)   | SW2        | 10   | PF6 (1.18)   | LCD_R/W    |
| 3    | PC10 (4.3)   | SW3        | 11   | PF7 (1.19)   | LCD_RS     |
| 4    | PC11 (4.4)   | SW4        | 12   | PF8(1.20)    | LCD_D4     |
| 5    | PB5 (4.27)   | KEY1       | 13   | PF9 (1.21)   | LCD_D5     |
| 6    | PB6 (4.28)   | KEY2       | 14   | PF10 (1.22)  | LCD_D6     |
| 7    | PB7 (4.29)   | KEY3       | 15   | PF11 (2.13)  | LCD_D7     |
| 8    | PB8 (4.31)   | KEY4       | 16   | VDD (2.36)   | VCC3.3V    |



# CMOS硬體電路配置

## Mapping Table

| Num. | MIAT_STM32V2 | MIAT_IOBV1 | Num. | MIAT_STM32V2 | MIAT_IOBV1 |
|------|--------------|------------|------|--------------|------------|
| 1    | PC0 (1.24)   | CMOS_D0    | 10   | PC1 (1.25)   | CMOS_D1    |
| 2    | PC2 (1.26)   | CMOS_D2    | 11   | PC3 (1.27)   | CMOS_D3    |
| 3    | PC4 (2.8)    | CMOS_D4    | 12   | PC5 (2.9)    | CMOS_D5    |
| 4    | PC6 (3.24)   | CMOS_D6    | 13   | PC7 (3.25)   | CMOS_D7    |
| 5    | PE4 (1.3)    | CMOS_STBYN | 14   | PA1 (1.33)   | CMOS_MCLK  |
| 6    | VCC5V (1.36) | VCC5V      | 15   | GND (1.35)   | GND        |
| 7    | PE3 (1.2)    | CMOS_VSYNC | 16   | PA6 (2.6)    | CMOS_PCLK  |
| 8    | PE2 (1.1)    | CMOS_HSYNC | 17   | PE5 (1.4)    | CMOS_RST   |
| 9    | PB10 (2.33)  | CMOS_SCL   | 18   | PB11 (2.34)  | CMOS_SDA   |



## CMOS硬體電路配置





# 實驗步驟

- □ 範例目錄架構
- □ 函式庫說明
- □ 範例說明
- □ 參數說明
- □ 燒錄MIAT\_STM32



## 範例目錄架構

- □ 範例目錄
  - ■測試映像檔
  - 含括檔
  - 函式庫
  - 專案檔
  - ■原始碼

- 🖃 🧀 CMOSCOLOR
  - 🛅 image
  - include 🛅
  - ibrary 🛅
  - 표 🚞 project
    - 🛅 source



## CMOS函式庫

- □ void CMOS\_Init(void)
  CMOS初始化函式
- □ void CMOS\_Exposure(unsigned short Shutter\_Width) 調整CMOS曝光時間
- □ void CMOS\_SetWindowOrigin(unsigned short Row\_Start, unsigned short Column\_Start)

設定取像視窗起始位置



## CMOS函式庫

- □ void CMOS\_SetImageSize(unsigned short Row\_Width, unsigned short Column\_Width) 設定取像視窗大小
- □ void CMOS\_Capture(unsigned char \*CAM\_Buffer) 取得CMOS影像存入CAM\_Buffer記憶體區塊



## Embedded Software Side Bootup STM32F10x int main (void) **Programming Bootup** stm32 Init STM32F10x unsigned char i,j; **RCC Configure** int R,G,B; **NVIC Configure** // STM32 stm32\_Init(); Initialization **GPIO** Configure CMOS\_Init(); Init\_BasicIO(); **CMOS Init GPIO Configure** lcd\_init(); // LCD Initialization **I2C Configure DMA Configure Timer Configure BasicIO Configure lcd Configure**



## Embedded Software Side CMOS operation lcd\_clear(); **CMOS** operation lcd\_print ("MIAT\_STM32 DEMO "); **CMOS Exposure** LCD Line1顯示 CMOS\_Exposure(0x0080); MIAT\_STM32DEMO CMOS SetWindowOrigin CMOS\_SetWindowOrigin(578,810); CMOS\_SetImageSize(128,128); **CMOS SetImageSize** while(1)設定CMOS參數 Example KEY\_Buffer=Key\_Scan(); if(KEY\_Buffer==1) 掃描KEY是否按下 CAM\_Buffer=(unsigned char \*)0x60040000; CMOS\_Capture(CAM\_Buffer); 如果KEY1按下,取得一張 128\*128影像



## Embedded Software Side

# CMOS operation Example

## CMOS operation

```
CAM_Buffer=(unsigned char *)0x60040000;
  R=0;
  G=0;
  B=0;
  for(i=0;i<16;i++)
   for(j=0;j<128;j+=8)
    G+=CAM_Buffer[j];
   for(j=1;j<128;j+=8)
    R+=CAM_Buffer[j];
                                      由取得影像取樣,分別累積
   CAM_Buffer+=128;
                                      RGB數值
   for(j=0;j<128;j+=8)
    B+=CAM_Buffer[j];
  CAM_Buffer+=896;
```



# 取樣方式

□ 依照Pixel Color Pattern, RGB每8點取一點,由128\*128 中影像中,取樣16\*16\*3點





## Embedded Software Side

# CMOS operation Example

### **CMOS** operation

```
if(((G-R)>800) && ((G-B)>1000))
   set_cursor (0, 1);
   lcd_print ("Color is Green ");
  else if(((R-G)>1000) && ((R-B)>1000))
   set_cursor (0, 1);
   lcd_print ("Color is Red ");
                                                 判定顏色,LCD Line2顯示
  else if(((B-R)>1000) && ((B-G)>1000))
                                                Color is?
   set_cursor (0, 1);
   lcd_print ("Color is Blue ");
  else
   set_cursor (0, 1);
   lcd_print ("Color is Unknow ");
 else if(KEY_Buffer==2)
   set_cursor (0, 1);
                                                 如果KEY2按下,清除LCD
   lcd_print ("CLEAR
                         ");
                                                Line2顏色顯示,LCD
                                                 Line2顯示Clear
```



## 參數說明

- □ Row\_Start
  - Row\_Start CMOS取像的Row起始位置
  - Row\_Start必須大於等於 28
- ☐ Column\_Start
  - Column\_Start CMOS取像Column的起始位置
  - Column\_Start必須大於等於 60
- □ Row\_Width
  - CMOS取像Row的大小
  - Row\_Width + Row\_Start必須小於等於1228
- ☐ Column\_Width
  - CMOS取像Column的大小
  - Column\_Width + Column\_Start必須小於等於1660



# 燒錄MIAT\_STM32

- □ Rebuilder all target files產生HEX
- □ DFU File Manager轉換HEX產生DFU
- □ DfuSe Demonstration 燒錄DFU
- ☐ Leave DFU mode

# CMOS影像擷取RGB色彩辨識實驗

實驗一





# 實驗一練習

## □ 練習:

- 修改CAM\_Buffer與CMOS取像大小測試是否正常
- 修改CMOS曝光時間、取像原點測試是否正常
- ■修改取樣點數測試是否正常
- 修改判定顏色方式測試是否正常



# 實驗目的(二)

□ 使用MIAT\_STM32實驗板透過MIAT\_IOB實驗板整合 2MPixels影像感測器進行影像擷取,並利用其取得之影 像進行亮度檢測實驗。



# 實驗原理

- ☐ System requirement
  - CMOS
  - LCD
  - LED
  - KEY



# GUI硬體電路配置

## Mapping Table

| Num. | MIAT STM32V2 | MIAT IOBV1 | Num. | MIAT_STM32V2 | MIAT IOBV1 |
|------|--------------|------------|------|--------------|------------|
| 1    | PC8 (3.26)   | SW1        | 13   | PE6 (1.5)    | LCD EN     |
| 2    | PC9 (3.27)   | SW2        | 14   | PF6 (1.18)   | LCD_R/W    |
| 3    | PC10 (4.3)   | SW3        | 15   | PF7 (1.19)   | LCD_RS     |
| 4    | PC11 (4.4)   | SW4        | 16   | PF8(1.20)    | LCD_D4     |
| 5    | PB5 (4.27)   | KEY1       | 17   | PF9 (1.21)   | LCD_D5     |
| 6    | PB6 (4.28)   | KEY2       | 18   | PF10 (1.22)  | LCD_D6     |
| 7    | PB7 (4.29)   | KEY3       | 19   | PF11 (2.13)  | LCD_D7     |
| 8    | PB8 (4.31)   | KEY4       | 20   | VDD (2.36)   | VCC3.3V    |
| 9    | PG8 (3.21)   | LEDR1      | 21   | PG12 (4.19)  | LEDG1      |
| 10   | PG9 (4.16)   | LEDR2      | 22   | PG13 (4.20)  | LEDG2      |
| 11   | PG10 (4.17)  | LEDR3      | 23   | PG14 (4.21)  | LEDG3      |
| 12   | PG11 (4.18)  | LEDR4      | 24   | PG15 (4.24)  | LEDG4      |



# 實驗步驟

- □ 範例目錄架構
- □ 範例說明



## 範例目錄架構

- □ 範例目錄
  - 測試映像檔
  - 含括檔
  - 函式庫
  - 專案檔
  - ■原始碼

- 🖃 🧀 CMOS\_Brightness
  - 🛅 image
  - include 🛅
  - ibrary 🚞
  - 🖪 🛅 project
    - 🛅 source







### Embedded Software Side



### **CMOS** operation

```
lcd_clear();
lcd_print ("MIAT_STM32 DEMO ");
                                            LCD Line1顯示
CMOS_Exposure(0x0080);
CMOS_SetWindowOrigin(578,810); //548,476
                                            MIAT_STM32DEMO
CMOS_SetImageSize(128,128);
bright=65535;
                                            設定CMOS參數
Dark=0;
while(1)
 CAM_Buffer=(unsigned char *)0x60040000;
 CMOS_Capture(CAM_Buffer);
 CAM_Buffer=(unsigned char *)0x60040000;
 G=0;
 for(i=0;i<16;i++)
 for(j=0;j<128;j+=8)
  G+=CAM_Buffer[j];
                                            由取得影像取樣,累積G數值
 CAM_Buffer+=1024;
```



# 取樣方式

□ 依照Pixel Color Pattern,每8點G取一點,由128\*128中 影像中,取樣16\*16點





## Embedded Software Side

# CMOS operation Example

## CMOS operation

```
KEY_Buffer=Key_Scan();
                                 掃描KEY是否按下
 if(KEY_Buffer==1)
                              如果KEY1按下,紀錄G累積值為全黑
  Dark=G;
                              LCD Line2顯示Set Dark Value
  set_cursor (0, 1);
  lcd_print ("Set Dark value ");
 else if(KEY_Buffer==2)
                             如果KEY2按下,紀錄G累積值為全黑
  bright=G;
                             LCD Line2顯示Set bright Value
  set_cursor (0, 1);
  lcd_print ("Set bright value");
 else if((bright-Dark)>0)
  Interval=(bright-Dark)>>8;
  i=1;
  LED_Buffer=0;
  G-=Dark;
```



## Embedded Software Side

# CMOS operation Example

## CMOS operation

```
while(G>0)
   for(j=0;j< i;j++)
              G-=Interval;
   if(G>0)
    LED_Buffer+=i;
              if(i>255)break;
   else
    G=0;
               i<<=1;
  LED_DATA_OUT(LED_Buffer);
  set_cursor (0, 1);
                                          判定亮度,由LED以光棒方式
  lcd_print ("Display value ");
                                          顯示
 else
  set_cursor (0, 1);
  lcd_print ("Range Error
                                      當範圍設定錯誤時,LCD
                                      Line2顯示Range Error
```

# CMOS影像擷取亮度檢測實驗

實驗二





# 實驗二練習

## □ 練習:

- 修改CAM\_Buffer與CMOS取像大小測試是否正常
- 修改CMOS曝光時間、取像原點測試是否正常
- ■修改取樣點數測試是否正常

# Q & A

