華中科技大学 本科生毕业设计[论文]

RIS 辅助的无线通信系统的原型验证

院	糸	人工智能与目动化学院									
专业	班级	自动化 1705 班									
姓	名										
学	号	U201714286									
指导	教师	陈忠、尹海帆									

2021年5月17日

学位论文原创性声明

本人郑重声明: 所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。

作者签名: 年 月 日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

本学位论文属于 1、保密 \Box ,在 年解密后适用本授权书。 2、不保密 \square 。

(请在以上相应方框内打"√")

作者签名: 年 月 日

导师签名: 年 月 日

摘 要

近年来,

关键词: 可重构智能表面;智能反射面;无线中继;大规模多进多出系统;原型系统;现场可编程逻辑门阵列

Abstract

Recently,

Key Words: Reconfigurable intelligent surface; intelligent reflecting surface; wireless repeating; massive multiple-input multiple-output; prototype; field programmable gate array

目 录

摘	要	
Ab	stract	t I
1	绪论	
	1.1	引言
	1.2	智能超表面概述
	1.3	国内外现状分析
	1.4	本文主要研究内容与组织结构安排
2	超表	面基础理论 ′
	2.1	广义反射和折射定律
	2.2	超表面对电磁波的调控机理
	2.3	本章小结
3	物理	、传播和路径损耗建模1
	3.1	无源金属表面 16
		3.1.1 散射波的波束宽度 1
		3.1.2 多个相邻金属表面 1
	3.2	智能超表面的系统模型 12
		3.2.1 传播和路径损耗模型 12
		3.2.2 智能超表面的散射体阵列模型
		3.2.3 智能超表面的传输系统模型 15
	3.3	本章小结 15
4	系统	传输建模仿真分析
	4.1	系统模型 14
		4.1.1 智能超表面使能的传输
	4.2	分析性能比较
	4.3	仿真性能比较
	4.4	本章小结 15
5	系统	设计与实现 10
	5.1	智能超表面选择 10

华中科技大学毕业设计(论文)

	5.2	控制电	路设计				 	 				 		16
		5.2.1	行列扫描	控制力	方法		 	 				 		17
		5.2.2	移位寄存	器控制	可方法	<u></u>	 	 				 		20
		5.2.3	智能超表	面控制	11电路	·	 	 				 		20
			5.2.3.1	方案选	 上择		 	 				 		21
			5.2.3.2	总体设	计		 	 				 		21
			5.2.3.3	电源管	 理		 	 				 		22
			5.2.3.4	串并轻			 	 				 		23
			5.2.3.5	小结			 	 				 		24
	5.3	驱动、	固件设计				 	 				 		24
		5.3.1	设计思路	·			 	 				 		24
		5.3.2	实现细节	î			 	 				 		24
	5.4	码本设	计				 	 				 		25
	5.5	本章小	结				 	 				 		25
6	总结	与展望					 	 	• •	• •	• •	 	 •	27
	6.1	论文研	究工作总	结			 	 				 		27
	6.2	未来工	作展望				 	 				 		27
7	公式	这么用					 	 	• •	• •		 		28
致i	射						 	 	• • •	• •		 		29
参	考文南	£					 	 	• •	• •	• •	 		30
附表	录 A	控制电	路原理图				 	 				 		34

1 绪论

1.1 引言

作为最新一代蜂窝移动通信技术,第五代移动通信技术(5G)以其大带宽、低时延、大连接等特性,将为物联网、社交娱乐、智慧交通、工业互联网等技术发展注入新的活力,助力我国数字经济发展。目前,增强移动宽带(eMBB)、高可靠低时延(uRLLC)和海量机器类通信(mMTC)成为 5G 的三大应用场景。进一步细分,在 3D 超高清视频、云工作/娱乐、AR/VR、工业自动化、关键任务应用、自动驾驶、ITU-R WP5D、智慧城市和智能家居/建筑等方方面面都有长足的应用。这是因为 5G 有着多项关键技术,其中举足轻重的就是毫米波(Millimeter Wave)技术和大规模多入多出(Massive MIMO)技术;前者可以增加带宽资源,提供更低的时延,并且天线尺寸更小,可以使设备轻量化,从而部署更为便捷,后者可以提高频谱效率。5G 毫米波技术频率资源丰富、带宽大、峰值速率极高,有时延低和容量大的优点,这是 5G 毫米波系统的最大优势之一,适用于大量4k/8k 视频业务的场景[1]。

具体来说,毫米波或极高频(Extremely high frequency, EHF)是指波长短于超高频 (SHF) 的电磁波,它的波长由 1 mm 到 10 mm,所对应的频率范围是 30~300 GHz^[2]。现阶段主要毫米波应用于气象雷达、空间通信、射电天文等方面。在 5G 通信中,美国已率先启用毫米波频段,其毫米波部署最为广泛,AT&T、Verizon 和 T-Mobile 从 2018 年起陆续在美国国内的城市开通利用毫米波频谱的5G 商用网络,而中国现在部署的主要是 Sub-6 GHz 频段^[3]。中国的三大运营商从 2017 年开始就不断联合各厂家进行了 5G 毫米波的关键技术测试和验证,随着 2020 年 3 月工信部推动 5G 加快发展的通知以及 2022 年冬奥会毫米波应用场景的预期,毫米波大规模商用的脚步越来越近^[3]。最近中新社报道称,5G 毫米波将赋能北京 2022 年冬奥会。可以想象,有了毫米波技术的加持,这一届冬奥会会给我们带来不一样的精彩。

但现阶段 5G 以及毫米波的应用还存在覆盖差、成本高、能耗高等痛点问题。由于频点较高,毫米波呈现准光学传播特性,穿透能力很弱,绕射、散射很不明显。如表 1-1 所示,毫米波容易收到大尺寸结构的阻挡,生活中高楼、墙面、

混凝土、钢筋、玻璃、人体等物体的阻挡会造成信号衰减严重,在极端情况下,26 GHz 毫米波于 3.5 GHz 的穿透损耗高 90 dB,大雨等恶劣天气也会对毫米波的覆盖产生较大的影响[1]。另外,人体的遮挡在极高频时也会有不可忽视的影响。从上述的毫米波的传播特性来看,它适用于室内室外的视距(Line-of-sight, LoS)通信,而不适用于室内外有较高的穿透损耗的场景。如图 1-1 为在城市中模拟的 3.5 GHz 和 26 GHz 两种频段的覆盖范围对比。从右图可以看到,对于视距场景,毫米波覆盖尚可;而被遮挡的区域就差强人意了。我们以参考信号接收功率(Reference Signal Receiving Power, RSRP)不低于一 110 dBm 为基准,26 GHz 的总体覆盖(按面积计算)只能达到 3.5 GHz 的 62%[3]。

混凝土 木头 雨衰(10 mm/hr) 人体损耗 普通多层玻璃 IRR 玻璃 3.5 GHz 0 3 19 5.27 2.7 24.05 26 GHz 7.97 9-13 7.2 30.8 109 1.57

表 1-1 3.5 GHz 和 26 GHz 下不同材料的穿透损耗(dB) 对比[3]

图 1-1 3.5 GHz 和 26 GHz 覆盖对比[3]

从毫米波设备的硬件架构来看,毫米波设备由大量的射频链路、射频开关、移相器组成用来实现模拟波束赋形。这样的收发器的组成需要所需的天线、放大器等器件相比现有通信方案增加多达数十倍,造成了成本长时间居高不下。同时带来的也有能耗问题,复杂的射频硬件电路带来了令人难以置信的高功耗,这不是绿色通信的发展方向,也不利于实现碳中和(carbon neutrality)。

面对这些问题,急需一种能够规避高频信道不可靠性的方法,其中重要的一环便是能智能地改善当前的无线环境。中继站是一种可以将非视距路径(Non-line-of-sight, NLoS)转化为视距路径的方法^[4]。使用中继站传输时,需要为每个

中继站配备专用的电源和射频前端,这需要很高的资本投入,而且,中继站需要 先接收处理无线信号再做转发,会带来较大的时延,更为严重的是,广播出的新 信号可能会干扰原信号^[5]。反射阵列给出了有效的解决方案: 当 LoS 径不能提 供服务时,另一种建立替代路径的方法是通过无源非可重构镜面反射器。反射 阵列是指能够以波束的形式反射电磁波的平面^[6],这和曲面的反射镜不同,后 者依靠物理曲率的变化决定反射波束的方向,而前者是由离散的单元组成,每 个单元对应着不同的幅度和相移^[7]。无源非可重构的反射器与传统中继器相比, 在成本和功耗方面有一定的优势。但是,这种反射器的一个重大缺陷是它的反射 在生产制造出来后就被固定了,在部署和使用是不可以修改的,这使得它无法适 应高动态的无线信道环境。

近年来,人们研制出了能够对撞击的无线电波进行特定变换的基于电磁的可重构结构,它们的工作频段非常广阔,可以覆盖 Sub-6 GHz、毫米波甚至太赫兹^[8]。下面将详细介绍这一新技术。

1.2 智能超表面概述

由于具有主动适应、改变无线通信环境的能力,可重构智能表面(RIS),也称为可重构反射阵列、可编程超表面、大型智能表面或智能反射表面,已成为无线通信研究领域的一个焦点,用于缓解在不同无线网络中遇到的各种挑战^[9,10]。智能超表面是由电磁材料构成的,因为它不需要改变现有的网络结构,也不需要修改现有的无线通信标准,所以特别适合"无感"地部署在建筑物外墙、公路指示牌、广告面板、车窗等平面物体上。RIS 能够通过被动反射接收信号在基站和移动用户之间形成虚拟视线链路,从而补偿长距离的功率损耗,智能地配置无线信号环境。当基站和终端之间的直射链路被高层建筑阻断时,通过 RIS 的智能部署和设计,可以构建软件定义的无线环境,进而使接收信的信噪比(SINR)增强。与传统放大转发和解码转发的中继系统相比,RIS 不需要专用的大功率电源来运行,其功耗和硬件复杂度有着其他技术难以望其项背的优势^[5]。

2014年,中国科学院院士崔铁军教授首次提出了智能超表面并进行了实验验证,其基本结构如图 1-2 所示[11]。这是一种具有可编程电磁特性的二维薄层人工电磁表面结构,可以应用于从微波到可见光的各种波段中[12]。从图 1-2 中可以看出,超表面由精心设计的电磁单元规则排列而成,这些电磁单元通常由金

属铜片、电磁介质和可调元件¹组成。通过控制电磁单元中的可调元件,以可编程的方式更改反射的电磁波的电磁参数(例如幅度和相位)^[13]。

图 1-2 智能超表面示意图

如图 1-3 所示为智能超表面的异常反射、折射示意图,智能超表面可以将入射信号反射和折射到非斯涅尔定律预测的异常方向,可以改变入射电磁波的波形和极化方向^[14]。就无线电波的传播而言,基于超材料元表面的 RIS 就像一个突变的电磁间断,改变了散射场。如前所述,实现智能超表面的功能的关键要素便是元表面单元结构的设计。元表面是由亚波长金属或电介质散射粒子(称为亚原子)形成的亚波长阵列^[15]。图 1-3 描绘了电磁波对于给应的入射角,元表面的预期反射相应和折射相应,与普通平面的反射 $\theta_2 = \theta_1$ 不同,超表面可以使 $\theta_3 \neq \theta_1$ 。

图 1-3 智能超表面的异常反射、折射

¹这里可调元件指的是变容二极管、PIN 二极管、射频开关、MEMS 器件等有不同状态的元件。

在智能超表面中,每个单元的反射系数 $\Gamma_{n,m}$ 是可以根据外界环境调整改变的。图 1-2 上的可调元件一般被安装在单元上。这样,通过外部的控制电路控制可调元件的状态,就可以操纵元表面上无线电波的波前,以实现信号调制或波束赋形。智能超表面的中央控制器一般采用现场可编程逻辑门阵列(FPGA)或微控制器(MCU)。通过软件设计,超表面可以实现对移动通信中电磁信号的实时调控。目前,国内外有关智能超表面在移动通信领域的研究主要集中在两个方向 $^{[13]}$,下面详细介绍国内外研究现状。

1.3 国内外现状分析

目前智能反射面的第一个主要研究方向是利用它进行无线中继,构建智能无线电环境。如图 1-4 (a) 所示,RIS 可以被认为是一个多功能的"神奇镜",将它置于无线通信系统中,可以主动地改善无线传播环境,通过接收机的反馈动态调整反射系数,使得接收机处通过 RIS 反射和其他路径的叠加信号功率最大化,实现对电磁波资源的"再分配"。国内外有许多 RIS 增强系统的主动和被动联合设计的研究: Qingqing Wu 等人设计了在单用户和多用户情况下联合的主动和被动波束赋形,可以在接收用户 SINR 的约束下,最小化总发射功率^[8]。智能超表面可以使得各个路径的波束在用户(UE)处相干增强,从而最大化接收功率。Chongwen Huang 等人将可重构智能表面用于多用户无线通信,他们通过设计 RIS 的相移和从基站到用户的功率分配策略,来最大化 RIS 系统的能效。此外,文中还介绍了 RIS 的实际能耗模型。并针对基站发射功率分配和 RIS 反射系数提出了两个计算效率高的算法。其中一种采用梯度下降方法设计,而另一种是基于分式规划方法。其中的仿真结果表明,与传统的多天线自动对焦中继相比,该系统能够获得高达 300% 的能效^[16]。

绝大多数的研究只停留在理论分析与建模仿真阶段,基于智能超表面的无线通信实验验证系统十分稀缺,目前只有少量的研究: Zhuqi Li 等人在室内环境中部署了一个6×6的可重构发射天线阵列,设计了信道分解算法来快速估计无线信道环境^[17]。通过实时配置无线信道,改善通信环境,系统的吞吐量提高到了原来的124%。2019年 MIT 研究团队展示了一个由3000多个无源天线组成的反射面(由几十块 PCB 板拼接而成),取名为"RFocus",工作频率为1.6 GHz 至3 GHz。实验表明它可以使接收信号强度平均增加10.5 倍,将信道容量平均提升

图 1-4 智能超表面的两大研究方向

两倍 $^{[18]}$ 。2019年清华大学研究团队最近展示了一个工作在毫米波波段的 16×16 单元的智能超表面。该 RIS 每个单元使用四个 PIN 二极管控制,可实现两比特的反射相位调整。这个系统实现了 $28.5~\mathrm{GHz}$ 下 $19.1~\mathrm{dBi}$ 的天线增益 $^{[19]}$ 。

另外一个研究方向是通过智能超表面实现信号的编码与调制。智能超表面可以灵活地调控电磁信号波前,改变诸如幅度、相位、频率甚至极化方向等电磁参数^[13]。这一新型的发射机架构不需要复杂的基带信号处理和高性能的射频链路,未来有希望应用于毫米波通信和 Massive MIMO 系统中。其基本结构如图 1-4 (b) 所示,基带信号直接作用于智能超表面,通过对反射系数的控制直接调制正弦信号。东南大学崔铁军院士团队中提出了一种同时在时间和频率上操纵电磁波的时空调制数字可编程超表面,并实现了 BFSK 调制^[20]。进一步地,唐万凯等人设计了一个基于可编程表面的正交相移键控(QPSK)无线发射机的原型,实现了 2.048 Mbit/s 的数据传输速率,视频流也能实时传输^[21]。

1.4 本文主要研究内容与组织结构安排

todo 本文的主要研究内容是如何利用可编程电磁超表面增强 5G 信号覆盖。 文中首先在第 2 节介绍了电磁超表面的相关基础理论,包括广义反射定律和折 射定律以及波束赋形理论。

第4节开始对RIS通信系统建模分析,比较了巴拉巴拉

第5节设计了一个由可编程超表面及其控制电路构成的智能反射面系统,

最后,在第6节得出结论,并对未来的研究工作作了初步分析。

2 超表面基础理论

超表面和超材料有着完善复杂的理论,本章根据后续内容的需要着重介绍广义斯涅尔定律和超表面对电磁信号的调控机理。

2.1 广义反射和折射定律

电磁波在超表面上会发生相位或幅度的突变,这一现象的理论依据是广义斯涅尔定律 $^{[22]}$ 。2011年 Capasso 教授等人发现了相位不连续的电磁波传播,并提出了广义反射和折射定律 $^{[23]}$ 。通过沿着电磁波传播路径,在波长范围内引入突变相移,可以获得控制波前的新自由度。费马原理指出光线在两点 A 和 B 之间的轨迹是最小光程的轨迹,即 $\int_A^B n(\vec{r})dr$,其中 $n(\vec{r})$ 是局部折射率,由此容易推演得到两种介质之间的反射和折射定律。在其最普遍的形式中,费马原理可以表述为固定相原理 $^{[24]}$,也就是说,相对于路径的无穷小变化,沿着实际光路累积的相位导数 $\int_A^B d\varphi(\vec{r})$ 将为零。但是研究表明,通过适当设计两种介质之间的界面,可以在光路中引入波长范围内的突然相移 $\Phi(\vec{r}_s)$,相移 $\Phi(\vec{r}_s)$ 取决于沿界面的坐标 \vec{r}_s 。那么,对于光所走的实际路径,总相移 $\Phi(\vec{r}_s)$,并分 是传播光的波矢。这提供了反射和折射定律的一般化,其适用于整个光谱中两种介质之间的大范围的亚波长结构化界面。

图 2-1 广义斯涅尔折射定律的示意图

下面考虑**广义反射和折射定律**,在两种介质的界面上引入一个突变的相移,称为相位不连续,这使得我们可以通过应用费马原理来重新审视反射和折射定律。图 2-1 中的入射平面波入射角为 θ_1 ,假设两条光路无限接近实际光路,那么

它们之间的相位差为零,有:

$$k_{o}n_{1}\sin(\theta_{1})dx + (\Phi + d\Phi) = k_{o}n_{2}\sin(\theta_{2})dx + \Phi$$
(2.1)

其中 θ_2 为折射角, Φ 和 $\Phi + d\Phi$ 分别是两条路径穿过界面位置处的相位不连续性,dx 是两条路径界面处的距离差, n_1 是上层介质的折射率, n_2 为下层介质的折射率, $k_0 = 2\pi/\lambda_0$, λ_0 为真空中的光波波长。

如果沿界面的相位梯度被设计为常数,由式 (2.1)可以推导出广义的斯涅尔 折射定律:

$$n_2 \sin \theta_2 - n_1 \sin \theta_1 = \frac{1}{k_0} \frac{d\Phi}{dx}$$
 (2.2)

式 (2.2) 意味着折射光束可以具有任意方向,只要沿界面引入相位不连续性的合适的恒定梯度 $d\Phi/dx$ 。由于在式 (2.2) 中引入了非零的相位梯度 $d\Phi/dx$,两个入射角 $\pm\theta_1$ 会导致不同的折射角。因此,全内反射在 $n_2 < n_1$ 时有两种可能的临界角:

$$\theta_{\rm c} = \arcsin\left(\pm \frac{n_2}{n_1} - \frac{\lambda_{\rm o}}{2\pi n_1} \frac{d\Phi}{dx}\right) \tag{2.3}$$

同理,由式 (2.2) 也可以推导出广义斯涅尔反射定律。对于反射的情况,入射波和反射波都在介质 1 中,所以有 $n_2 = n_1$,可得:

$$\sin \theta_2 - \sin \theta_1 = \frac{1}{k_0 n_1} \frac{d\Phi}{dx} \tag{2.4}$$

此时 θ_2 是反射角,入射角 θ_1 和反射角 θ_2 之间存在非线性关系,这与传统的镜面 反射明显不同。由式 (2.4) 可知总有一个临界角 θ_c 满足:

$$\theta_{\rm c}' = \arcsin\left(1 - \frac{\lambda_{\rm o}}{2\pi n_1} \left| \frac{d\Phi}{dx} \right| \right)$$
 (2.5)

在入射角 $\theta_1 = \theta'_c$ 时,反射波束将不存在。

广义反射和折射定律可以统一写成如下的形式[25]:

$$k_x^{(r)} - k_x^{(i)} = \frac{d\Phi}{dx}$$
 (2.6)

$$k_x^{(t)} - k_x^{(i)} = \frac{d\Phi}{dx}$$
 (2.7)

其中 $k_x^{(i,r,t)}=k_{\rm o}n_{i,i,t}\sin\theta_{i,r,t}$ 表示平面波矢量。标号 i 表示入射侧的参量,标号 r 表示反射侧的参量,标号 t 表示折射侧的参量。当 $\frac{d\Phi}{dx}=0$ 时,即得到经典的斯涅尔定律。

广义斯涅尔定律为超表面的设计提供了理论指导,在设计超表面的过程中, 我们只需要将它分解为二维亚波长单元,分析每个单元对电磁波带来的附加相 位,通过对反射阵列的附加相位的设计,结合波束赋形理论,就可以实现对电磁波的灵活调控。

2.2 超表面对电磁波的调控机理

todo

2.3 本章小结

本章主要介绍了

3 物理、传播和路径损耗建模

本章中,我们使用物理光学知识导出了远场路径损耗^[26],并解释了为什么智能超表面由许多元素组成,这些元素单独充当散射体,但可以在特定波束宽度的期望方向上联合波束赋形。本章首先将从无源金属表面的散射分析引入。

3.1 无源金属表面

在这一节中,我们总结了由有限尺寸的无源的完全导电的金属板散射的波形的场强和波束宽度的研究。这些结果将被用来解释智能超表面的理想工作状态。

我们考虑一个尺寸为 $a \times b$ 的厚度可以忽略的矩形完美导电板,且位于水平面上(即 e_x, e_y 所在平面)。一个距离为 d_i 的很远的点源辐射具有波数为 k ($k = 2\pi/\lambda$, λ 为波长)的线性极化电磁波。为了便于讨论,我们假设源的极化是这样的,即电场平行于 e_x ,而磁场位于 e_y, e_z 所跨越的平面上。 $\theta_i \in \left[0, \frac{\pi}{2}\right]$ 表示为入射角,即电磁波的坡印亭矢量与 e_z 的夹角, θ_s 为散射角,如图 3-1 所示。

图 3-1 入射波被金属板散射示意图

进一步假设,相对于金属板的尺寸, d_i 足够大,符合远场模型。此时入射波为幅度为 E_i 的平面波。这时入射的平面波的电场和磁场分布可以表示为:

$$\mathbf{E}_{i} = E_{i}e^{-jk(\sin(\theta_{i})y - \cos(\theta_{i})z)}\mathbf{e}_{x}$$

$$\mathbf{H}_{i} = -\frac{E_{i}}{\eta}\left(\cos(\theta_{i})\mathbf{e}_{y} + \sin(\theta_{i})\mathbf{e}_{z}\right)e^{-jk(\sin(\theta_{i})y - \cos(\theta_{i})z)}$$
(3.1)

其中 η 是介质的特征阻抗。

电场会引起电子在金属板中的运动。由于电场与 e_y 正交,电子将沿 e_x 方向

移动,而不会沿 e_y 方向移动。因为金属板的厚度忽略不计,电子也不会沿 e_z 方向移动。运动的电子感应电磁辐射,产生散射波。

引理 3.1. 在 e_y , e_z 平面内,对于任意观察角度 $\theta_s \in \left[0, \frac{\pi}{2}\right]$ (相对于 e_z),在 远场观察距离 $r \geq \frac{2\max\left(a^2,b^2\right)}{\lambda}$ 时,散射场的平方幅度为:

$$S(r, \theta_s) = \left(\frac{ab}{\lambda}\right)^2 \frac{E_i^2}{r^2} \cos^2(\theta_i) \left(\frac{\sin\left(\frac{\pi b}{\lambda}\left(\sin(\theta_s) - \sin(\theta_i)\right)\right)}{\frac{\pi b}{\lambda}\left(\sin(\theta_s) - \sin(\theta_i)\right)}\right)^2$$
(3.2)

证明. 这个结果来自标准的物理光学技术 (忽略边缘效应) [27]。 □

从式 (3.2) 中关于散射场的平方幅度的公式可以发现,对于我们考虑的极化方式来说,当观察角度 $\theta_s = \theta_i$ 即镜面反射时, $S(r, \theta_s)$ 达到最大值,这和斯涅尔反射定律所描述的是吻合的。

3.1.1 散射波的波束宽度

式 (3.2) 揭示了散射场就像是一个波束,随着 θ_s 远离 θ_i ,强度越来越弱。在 [26] 中,作者运用三角函数和泰勒展开的数学知识推导出散射波的 -3 dB 宽度为:

$$2\left|\theta_{s}-\theta_{i}\right|<2\sqrt{\frac{1}{2}\frac{3\lambda^{2}}{\pi^{2}b^{2}\cos^{2}\left(\theta_{i}\right)}}=2\sqrt{\frac{3}{2}\frac{\lambda}{\pi b\cos\left(\theta_{i}\right)}}\tag{3.3}$$

这个不等式表明,-3 dB 的波束宽度与金属板板宽 b 成反比。波束宽度也与波长 λ 成正比,因此普通尺寸的板可以在可见光谱中提供非常窄的波束宽度,就像一束光照射在镜子上一样。但是在典型的无线电光谱波段中,波束宽度要宽四至五个数量级。

3.1.2 多个相邻金属表面

由于单个金属板的尺寸有限,有时可以部署多个相邻的板。如果板子之间的间隙足够大,那么耦合效应可以忽略。当来自不同的金属板的散射场在给定位置被接收时,相对的相移将导致干涉相长或干涉相消。在理想的干涉相长下,来自 N 个平板的平方场强为:

$$\left(N\sqrt{S\left(r,\theta_{s}\right)}\right)^{2} = N^{2}S\left(r,\theta_{s}\right) \tag{3.4}$$

式 (3.4) 表明,只要总面积确定,无论是由许多小的还是几个大的金属板组成,最大接收功率是相同的。

3.2 智能超表面的系统模型

智能超表面的主要目的是实现"异常反射" [28] ,这意味着对散射场进行整形,使主波束指向接收器。考虑一个由与图 3-1 相同尺寸的超表面和相同的撞击平面波组成的反射系统。RIS 的目标是实现全反射,并将主光束指向我期望方向 θ_r 。因此,超表面必须被设计成获得反射或散射波的以下理想场分布:

$$\mathbf{E}_{r} = E_{r}e^{-jk(\sin(\theta_{r})y + \cos(\theta_{r})z)}\mathbf{e}_{x}$$

$$\mathbf{H}_{r} = -\frac{E_{r}}{\eta}\left(\sin(\theta_{r})\mathbf{e}_{z} - \cos(\theta_{r})\mathbf{e}_{y}\right)e^{-jk(\sin(\theta_{r})y + \cos(\theta_{r})z)}$$
(3.5)

使用第 2.1 小节中介绍的广义斯涅尔定律,利用式 (2.4) ,可以通过调整超表面相位分布或表面阻抗将入射波 ($\mathbf{E}_i, \mathbf{H}_i$) 转换成散射波 ($\mathbf{E}_r, \mathbf{H}_r$)。在超表面上 (z=0),入射和反射电场的叠加可以写成^[29]:

$$\mathbf{E}_t = E_i e^{-jk\sin(\theta_i)y} \mathbf{e}_x + E_r e^{-jk\sin(\theta_r)y} \mathbf{e}_x \tag{3.6}$$

由此可得,期望反射系数的期望相位是:

$$\phi_r(y) = \angle \left(\frac{E_r e^{-jk\sin(\theta_r)y}}{E_i e^{-jk\sin(\theta_i)y}} \right) = -k\sin(\theta_r) y + k\sin(\theta_i) y$$
(3.7)

并且对 y 进行微分给出了广义斯内尔定律中反射系数的梯度:

$$k\left(\sin\left(\theta_{i}\right) - \sin\left(\theta_{r}\right)\right) = \frac{d\phi_{r}(y)}{dy} \tag{3.8}$$

它给出了 θ_i, θ_r 和局部表面相位 $\phi_r(y)$ 之间的关系。

3.2.1 传播和路径损耗模型

与单纯的金属表面不同,智能超表面必须由许多小单元组成,细致的配置每个单元的相位,可以获得角度为 θ_r 的主反射波束。如第 3.1 小节中所述,式 (3.1) 中的入射波电场在 e_x 方向上感应出表面电流。通过调整每个元件的表面阻抗,调整该电流,以获得近似广义斯内尔定律所需的表面相位分布。

引理 3.2. 当使用智能超表面向 θ_r 方向反射信号时,任意观察角度 $\theta_s \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 下,在远场观察距离 $r \geq \frac{2\max\left(a^2, b^2\right)}{\lambda}$ 时,散射场平方幅度为:

$$S_{\text{IRS}}\left(r, \theta_s, E_i^2\right) = \left(\frac{ab}{\lambda}\right)^2 \frac{E_i^2 \cos^2\left(\theta_i\right)}{r^2} \left(\frac{\sin\left(\frac{\pi b}{\lambda}\left(\sin\left(\theta_s\right) - \sin\left(\theta_r\right)\right)\right)}{\frac{\pi b}{\lambda}\left(\sin\left(\theta_s\right) - \sin\left(\theta_r\right)\right)}\right)^2 \tag{3.9}$$

证明. 超表面的厚度可以忽略不计,这使得我们可以写出超表面上某处 (z=0,y=y') 的电流密度 $J_x=\frac{2E_i}{\eta}\cos\left(\theta_i\right)e^{-jk\sin(\theta_r)y'}$ 。假设超表面是无损的,上述引

理利用引理 3.1可以证明。

假设基站端的发射机发射功率为 P_t ,发射天线的增益为 G_t , E_i 和 P_t 之间的关系可以表示为:

$$\frac{E_i^2}{2\eta} = \frac{P_t G_t}{4\pi d_i^2} \tag{3.10}$$
此外,假设接收器天线的有效面积为 $\frac{\lambda^2}{4\pi} G_r$,其中 G_r 为接收天线的增益。可得,

此外,假设接收器天线的有效面积为 $\frac{\lambda^2}{4\pi}G_r$,其中 G_r 为接收天线的增益。可得距离为 r 时,在方向 θ_r 上,接收信号功率 P_r 为:

$$P_r\left(P_t, d_i, r, \theta_s\right) = \frac{1}{2\eta} S_{\text{IRS}}\left(r, \theta_s, \frac{P_t G_t \eta}{2\pi d_i^2}\right) \left(\frac{\lambda^2}{4\pi} G_r\right) \tag{3.11}$$

推论 3.1. 当使用智能超表面向 θ_r 方向上反射电磁波时, 远场距离为 r 时的路径损耗是:

$$\beta_{\text{IRS}}(r, d_i, \theta_s) = \frac{P_r(P_t, d_i, r, \theta_s)}{P_t}$$

$$= \frac{G_t G_r}{(4\pi)^2} \left(\frac{ab}{d_i r}\right)^2 \cos^2\left(\theta_i\right) \left(\frac{\sin\left(\frac{\pi b}{\lambda}(\sin(\theta_s) - \sin(\theta_r))\right)}{\frac{\pi b}{\lambda}(\sin(\theta_s) - \sin(\theta_r))}\right)^2$$
(3.12)

当接收机处于理想位置时,即 $\theta_s = \theta_r$,路径损耗简化为:

$$\beta_{\text{IRS}}(r, d_i, \theta_r) = \frac{G_t G_r}{(4\pi)^2} \left(\frac{ab}{d_i r}\right)^2 \cos^2(\theta_i)$$
(3.13)

3.2.2 智能超表面的散射体阵列模型

3.2.3 智能超表面的传输系统模型

考虑直射径下发射机和接收机之间的信道为 $\sqrt{\beta_{sd}}e^{j\phi_{sd}}$,囊括智能超表面的反射路径,接收信号可以表示为:

$$y = \left(\sqrt{\beta_{\text{IRS}}^s} \mathbf{h}_{\text{sr}}^{\text{T}} \mathbf{\Theta} \mathbf{h}_{\text{rd}} + \sqrt{\beta_{\text{sd}}} e^{j\phi_{\text{sd}}}\right) x + n \tag{3.14}$$

3.3 本章小结

在这封信中,我们首先在第二节解释了无源金属表面如何散射入射波,然后在第三节推导出红外反射器必须如何设计来模拟这种表面,同时控制散射波的方向性,从而填补了这一空白。这就产生了一个严格的路径损耗模型,以及一种建立可用于进一步研究的系统模型的方法。

4 系统传输建模仿真分析

4.1 系统模型

考虑从单天线源到单天线目的地的通信(SISO)。确定性平坦衰落信道表示为 $h_{\rm sd}\in\mathbb{C}$,目的地接收到的信号是:

$$y = h_{\rm sd} \sqrt{p} s + n \tag{4.1}$$

其中p是发射功率,s是单位功率信息信号, $n \sim \mathcal{N}_{\mathbb{C}}(0, \sigma^2)$ 是接收机噪声。为了便于分析,天线增益包含在信道中。该单输入单输出(SISO)信道的容量为:

$$R_{\text{SISO}} = \log_2 \left(1 + \frac{p \left| h_{\text{sd}} \right|^2}{\sigma^2} \right) \tag{4.2}$$

通过在通信中加入额外的设备,可以潜在地增加容量。

在本章中,我们考虑两种不同的中继方式,其一为智能超表面,其二为中继器。智能超表面被配置为使反射波束指向目的地,中继器工作于经典的解码转发模式下。下面导出相应的可实现速率,然后通过分析进行优化,以实现公平的比较。然而,本章中选择的信道模型是"偏心"智能超表面的,特别是确定性平坦衰落信道的假设对于智能超表面辅助增强通信是理想的,因为它不能获取信道状态信息(Channel State Information, CSI),比中继站更不能处理信道估计和频率选择性衰落。

4.1.1 智能超表面使能的传输

如图 $\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}(\mathbf{a})$ 所示,RIS 由总共由 L 个元素组成。从基站到智能超表面的确定性信道表示为 $\mathbf{h}_{sr} \in \mathbb{C}^L$, $[\mathbf{h}_{sr}]_l$ 代表第 l 个结构单元的信道。从智能超表面到终端的信道表示为 $\mathbf{h}_{rd} \in \mathbb{C}^L$,每个单元的尺寸都小于入射波波长,这样可以认为[26]

因此,它以近似恒定的增益向所有感兴趣的方向散射输入信号

- 4.2 分析性能比较
- 4.3 仿真性能比较
- 4.4 本章小结

本章

5 系统设计与实现

5.1 智能超表面选择

本设计选用了图 5-1 所示的工作频点为 28 GHz 的智能超表面。其中图 5-1 (a) 为三维仿真图,图 5-1 (b) 为实物图。

图 5-1 28 GHz 智能超表面

它的主要优良特性如下:

- 1. 采用 MACOM 公司的 PIN 二极管,型号为 MADP-000907-14020,工作频率可以到 70 GHz。它有着极低的 RC 时间常数 (0.1 皮秒)和 2 至 3 纳秒的开关速度;
- 2. 一共由 $16 \times 16 = 256$ 个单元构成,单元数量众多,且可以独立控制,灵活性高;
- 3. 28 GHz 智能超表面拥有 1600 MHz 的工作带宽,能在主流的毫米波频段下工作;
- 4. 采用模块化设计,可以多块拼接,组成大规模 RIS 阵列。

5.2 控制电路设计

现今智能超表面的控制方法是使用一个控制器 IO 口控制一个反射单元,这种方法虽然简单,但是由于超表面往往有大量的电磁单元,因此需要大量的控制器 IO 口资源。例如,对于具有 L 个单元的智能超表面,就需要 L 个控制引脚,特别地,如果引入模拟控制,则需要 L 路数模转换电路,这会导致硬件实现成本居高不下。为了高效的控制第 5.1 小节中选择的智能超表面,本文提出了两种高

效的智能超表面控制方法,并基于此设计了一款模块化的智能超表面控制电路。下面首先介绍行列扫描控制方法。

5.2.1 行列扫描控制方法

生活中有许多常见的产品是由行列扫描驱动的,例如键盘、LED 点阵显示屏和液晶显示器等。受此启发,本文将行列扫描的技术运用在智能超表面的控制上,提出了提供一种有源矩阵式的行列扫描控制方案,从而实现利用少数控制器引脚控制大规模的反射阵列的目的,节省了智能超表面系统的成本,提高了控制器的利用效率。

图 5-2 基于行列扫描的智能超表面控制方法示意图

如图 5-2 所示为本文设计的基于行列扫描的智能超表面控制方法示意图,图中控制器负责运行智能超表面的控制算法,将运算得到的反射系数矩阵输出给扫描线驱动电路和信号线驱动电路。剖析左上角的第一个 RIS 单元及其控制电路: U_1 为设计的 RIS 单元,与它并联的是一个保持电容 C_1 。单元 U_1 由晶体管 T_1 来控制加载的电压。当单元 U_1 的行扫描信号脉冲结束后,保持电容 C_1 仍能保持单元 U_1 两端的电压,从而为 RIS 单元提供持续的驱动电压,直到下一次选通到来。

具体来说,按照本文中的设计,对 M 行 N 列的智能超表面阵列进行 Q bit 的控制 $(Q \ge 1)$ 时,控制器向扫描线驱动电路发送扫描信号,由扫描线驱动电路 选通某一行 RIS 单元(图中 $G_1, G_2, G_3, \cdots, G_{M-1}, G_M$)。接着,控制器向信号线

驱动电路发送此行 RIS 的控制信号,信号线驱动电路在 $S_1, S_2, S_3, \cdots, S_{N-1}, S_N$ 上加载 Q bit 的模拟信号作为控制电压。此时,被选中行的 MOS 管导通,电压加载到 RIS 单元上。未选通的行的 MOS 管关断,控制电压由 RIS 单元对应的保持电容保持。需要注意的是,控制器需要对 RIS 面板定时刷新,使保持电容的电压维持在较为稳定的水平。

图 5-3 基于行列扫描的智能超表面单元

图 5-3 为基于行列扫描的智能超表面的左上角单元示意图,接下来考虑保持电容容值 C_1 的设计。仍然设 RIS 面板的尺寸为 M 行 N 列,对 RIS 面板进行刷新时,每秒更新 f 次,则每次的更新时间为 T=1/f,即:每帧(Frame)更新时间为 T,每行更新时间为 $T_h=T/M$ 。每次刷新时电容的充电时间 $dt_{charge}=T_h$,而电容需要保持的时间为 $dt_{hold}=T-T_h$ 。设 RIS 单元的阻值为 R_{RIS} ,MOS 管 T_1 关断时的 RIS 单元的电流和 MOS 漏电流之和为 I_{leak} ,关断时允许的电压降为 dV_{hold} ,正常工作时 RIS 单元的电压为 V_{hold} 。需要充电的电压 dV_{charge} 为信号线电压与 RIS 单元电压的电压差,即为晶体管的 V_{ds} ,有:

$$dV_{charge} = V_{ds} (5.1)$$

导通充电时,假设充电电流为 I_{charge} ,分析电容充电电荷,有:

$$I_{charge} \cdot t_{charge} > C_1 \cdot dV_{charge}$$
 (5.2)

为保证控制效果, 使保持电容的电压维持在较为稳定的水平, 要求:

$$dV_{hold} < 0.05 \cdot V_{hold} \tag{5.3}$$

即电压变化率不超过5%。关断保持时,对电荷变化建立不等式:

$$I_{leak} \cdot t_{hold} < C_1 \cdot dV_{hold} \tag{5.4}$$

其中 $I_{leak} = \frac{V_{hold}}{R_{RIS}}$ 。 联立式 (5.1) ,式 (5.2) ,式 (5.3) 和式 (5.4) ,可以得到 C_1 的取值范围为:

$$\frac{20(M-1)}{M} \cdot \frac{T}{R_{RIS}} < C_1 < \frac{MI_{charge}T}{V_{ds}}$$
 (5.5)

然而对于驱动 PIN 二极管使能的超表面单元来说,式 (5.5) 可能是无解的,这是因为包含 PIN 二极管的单元的导通电阻 R_{RIS} 太小,这时候需要对图 5-3 中的电路结构进行改进。

图 5-4 所示为第 1 行第 1 列一个 RIS 单元及采样保持装置的改进结构。其中场效应管 T_1 的栅极接扫描线 G_1 ,源极接信号线 S_1 ,漏极接保持电容 C_1 ,并连接到运算放大器 A_1 的同向输入端,运算放大器处于单位跟随状态,输出接 RIS单元,同时接反向输入端。

图 5-4 带采样保持器的智能超表面单元

选通时间内,场效应管处于导通状态,信号线上的电压被加载到运算放大器的同向输入端并给电容充电;电压经过运算放大器跟随后加载到 RIS 单元上。关断时间内,场效应管处于关断状态,由于运算放大器的输入电阻很大,用这种方法可以保持更长时间,且不受 RIS 单元阻抗的影响。这种改进电路降低刷新频率,提高稳定性,并且由于运算放大器的输出驱动能力较强,这种电路结构可以驱动阻抗小的 RIS 单元。

使用行列扫描控制方法可以 IO 口的数量得到锐减, 1 bit 控制时容易得出以下的结论:

1. 若扫描线驱动电路一对一接入控制器,则一共需要 M + N 个 IO 口;

- 2. 若扫描线驱动电路采用译码逻辑电路,则一共需要 $\log_2 M + N$ 个 IO 口;
- 3. 若扫描线驱动电路采用移位寄存器电路,则一共需要 N+1 个 IO 口。

5.2.2 移位寄存器控制方法

行列控制可以大大减少 IO 口数量,但白璧微瑕,这种方案需要对智能超表面定时刷新。所以,本小节提出了一种使用移位寄存器的控制方法,无需刷新就可以稳定地保持电平,在原理上更为简单。移位寄存器是一种数字电路类型,使用多个触发器级联构成,其中一个触发器的输出连接到下一个触发器。它们共享单个时钟信号,时钟触发会导致系统中存储的数据从一个位置转移到下一个位置。

图 5-5 为串入并出形式的移位寄存器接法,可以将输入的串行数据以并行格式输出。串行通信要求的几位数据完成输入之后,就可以在输出端的各位同时读出并行数据。在这种配置中,每个触发器是边沿触发。所有触发器都以给定的时钟频率运行。每个输入位在 n 个时钟周期后将移动到第 n 个触发器的输出端,导致并行输出。

若使用 a bit 的移位寄存器,b 个级联作为一组控制,对于一个 M 行 N 列的智能超表面,需要的控制引脚数约为 $\frac{MN}{ab}$ 。由此可见,这也是一种差强人意的控制方法。

5.2.3 智能超表面控制电路

本小节详细阐述智能超表面控制电路:首先对两种方案进行比较选择,其次给出控制电路的总体设计,然后描述各个部分的设计细节,最后给出设计结果。

5.2.3.1 方案选择

权衡上述方法的利弊,最终选用移位寄存器控制方法制作智能超表面的控制电路,以获得更良好的系统稳定性。在数据更新过程中,我们希望串行数据加载过程中并行输出不应改变,故需要使用锁存或缓冲输出。如图 5-6 所示,在带输出锁存的移位寄存器中,串行数据首先加载到内部缓冲寄存器中,然后在接收到输出加载信号时,将缓冲寄存器的状态复制到一组输出寄存器中。

图 5-6 带输出锁存的移位寄存器逻辑图

5.2.3.2 总体设计

考虑到所选的智能超表面一共需要 $16 \times 16 = 256$ 个控制信号。综合比较控制速度和硬件复杂度,选用两片移位寄存器级联作为一组,一共 16 组的方案控制 RIS。为了使控制电路也能模块化组装,在设计时保持了智能超表面和控制电路的机械尺寸一致。

控制电路的系统框图如图 5-7 所示,包括电源、移位寄存器和网络排阻几部分。其中,电源采用低压差线性稳压器(Low-dropout regulator, LDO),以提供相较开关电源纹波更低、噪声更小的输出。移位寄存器具有将串行信号转为并行信号的作用,图中的移位寄存器共用时钟信号,同步输出。由于工作时 PIN 二极管处于导通状态,需要串联网络排阻将电流限制在 4 mA 左右。

图 5-7 控制电路系统框图

5.2.3.3 电源管理

假设 28 GHz RIS 中的 PIN 二极管导通时的电流为 I_{work} , 供电电压为 U_{work} , 考虑极端情况,即所有单元均处于导通状态,此时 RIS 的总电流为:

$$I_{total} = MNI_{work} (5.6)$$

总功耗为:

$$P_{total} = U_{work}I_{total} = MNU_{work}I_{work}$$
(5.7)

带入 $M = N = 16, I_{work} = 4 \text{ mA}, U_{work} = 3.3 \text{ V}$,可得: $I_{total} = 1024 \text{ mA}, P_{total} = 3.38 \text{ W}$ 。由此可见,至少需要使用输出电流能力 1.5 A 的 LDO 芯片。

为保证设计的通用性,使用 DC 插座输入 5 V 直流电压,该电压作为后续LDO 芯片的输入。LDO 芯片选用 TPS7A7001¹,它是德州仪器(Texas Instruments)公司生产的一款高性能、正电压、低压降稳压器,专为要求在高达 2 A 的电流下拥有超低输入电压和超低压降的应用而设计。该器件支持低至 1.425 V 的单输入电压,输出电压最低可通过编程设定为 0.5 V。输出电压可使用外部电阻分压器进行设置。TPS7A7001 具有超低压降,非常适用于输出电压与输入电压极为接近的应用。此外,TPS7A7001 还具有使能引脚以便在关断模式下进一步降低功率耗散。

如图 5-8 所示,为了使 LDO 稳定工作,需要选取合适的输入电容 $C_{\rm IN}=22\,\mu{\rm F}$ 和输出电容 $C_{\rm OUT}=100\,\mu{\rm F}$ 。FB 引脚上的电压将设置输出电压 $V_{\rm OUT}$,并由 R_1 和

¹详细信息和数据手册请参考 https://www.ti.com.cn/product/cn/TPS7A7001。

图 5-8 TPS7A7001 应用电路图

 R_2 的值确定如下:

$$V_{\text{OUT}} = 0.5 \times \left(1 + \frac{R_1}{R_2}\right)$$
 (5.8)

反之,可以通过式 (5.8) 和需要的输出电压 V_{OUT} 来计算 R_1 和 R_2 的值。本设计中 $V_{\text{OUT}}=3.3\,\text{V}$,在 E96 系列电阻中尝试,选用 $R_1=169\,\text{k}\Omega, R_2=30.1\,\text{k}\Omega$,满足设计要求。

5.2.3.4 串并转换

本设计选用了安世半导体(nexperia)生产的型号为 74LVC595ABQ¹的移位 寄存器。它是具有存储寄存器和三态输出的 8 位串行至并行移位寄存器。其中移位操作和存储寄存器都具有单独的时钟,并且该器件具有串行输入(DS)和串行输出(Q7S),以实现级联和异步重置,满足本设计的需求。

对于级联应用而言,在第一个时钟上升沿 DS 输入的"引脚电平值",需要在第 8 个时钟上升沿时刻时,被移位至第一片 74LVC595ABQ 的第 8 位的寄存器中,在第 9 个时钟上升沿时刻,该"值"需要被推移至下一片级联的 74LVC595ABQ 的第一位寄存器中。这样,就需要在第 9 个 SHCP 上升沿之前,将该"值"呈现在第二片的 DS 引脚上,并等待第 9 个 SHCP 上升沿时刻的到来。74LVC595ABQ 逻辑门的处理方法是引入 Q7S 这个引脚,在第 8 个 SHCP 时刻后,将该值呈现在第二片的 DS 引脚上。如图 5-11 所示为 74LVC595ABQ 的时序图。因此,若要实现 74LVC595ABQ 串并转换的级联扩展,只需将数据 DATA 信号连接至第一片74LVC595ABQ 的 DS 引脚,并将第一片 74LVC595ABQ 的 Q7S 输出连接至第二片74LVC595ABQ 的 DS 引脚,依次类推。而各 74LVC595ABQ 的 SHCP,STCP信号连接至统一的信号端。图 5-9 为典型的二级 74LVC595ABQ 级联电路示意

¹详细信息和数据手册请参考 https://www.nexperia.cn/product/74LVC595ABQ。

图,它能够将 FPGA 输出的串行信号转化 16 路并行信号,相当于实现了 FPGA 引脚的拓展,减小了系统对 FPGA 本身引脚数量的需求。

图 5-9 两片 8 位移位寄存器级联原理图

在 3.3 V 供电条件下,74LVC595ABQ 可以在 180 MHz 的时钟速率下运行。由于没有进行等长布线,为了约束时序并保持信号完整性,将时钟频率设为 $f_{clk}=50\,\mathrm{MHz}$,则刷新一次的时间 $T=16/f_{clk}=0.32\,\mu\mathrm{s}$,可以实现实时调控的目标。

5.2.3.5 小结

本小节详细描述了智能超表面控制电路的设计,为了增强 FPGA IO 引脚的驱动能力,驱动电路还采用了缓冲芯片 SN74LVC2T45¹、时钟分配芯片 CD-CLVC1104²,这里不再展开叙述。

控制电路的原理图详见附录 A,图 5-10 为其三维仿真图。

5.3 驱动、固件设计

本小节将详述智能超表面驱动、固件的设计。

5.3.1 设计思路

图 5-11 为 74LVC595ABQ 的时序图。

5.3.2 实现细节

考虑到底层的控制逻辑需要并行输出,顶层又需要做算法的执行和无线通信,所以选择了

¹详细信息和数据手册请参考 https://www.ti.com.cn/product/cn/SN74LVC2T45。

²详细信息和数据手册请参考 https://www.ti.com.cn/product/cn/CDCLVC1104。

图 5-10 控制电路三维图

5.4 码本设计

5.5 本章小结

本章

图 5-11 74LVC595ABQ 时序图

6 总结与展望

毕业设计主要内容到这里就告一段落了,下面总结一下这几个月来的研究 工作和未来研究生阶段的展望

6.1 论文研究工作总结

6.2 未来工作展望

未来,这是一个参考文献引用的范例[30,31]

7 公式这么用

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 11 & 22 & 33 & 44 \end{bmatrix} \times \begin{bmatrix} 22 & 24 \\ 32 & 34 \\ 42 & 44 \\ 52 & 54 \end{bmatrix}$$
 (7.1)

或者多个带编号的公式

$$f_1(x) = 12x^2 + 36x + \sin x \tag{7.2}$$

$$f_2(x) = \sqrt{3}x^3 + 3x \tag{7.3}$$

以上

致谢

LATEX

2021 年 5 月 10 日 于华中科技大学韵苑

参考文献

- [1] RAPPAPORT T S, XING Y, KANHERE O, et al. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond[J]. IEEE Access, 2019, 7: 78729–78757.
- [2] CONTRIBUTORS W. Extremely high frequency Wikipedia, The Free Encyclopedia[J], 2021.
- [3] 中兴通讯. 5G 毫米波 (mmWave) 技术白皮书 [R]. [S.l.]: 中兴通讯股份有限公司, 2020.
- [4] DOHLER M, LI Y. Cooperative Communications: Hardware, Channel and PHY[M]. [S.l.]: John Wiley & Sons, 2010.
- [5] DI RENZO M, NTONTIN K, SONG J, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society, 2020, 1: 798–807.
- [6] HUANG J. Reflectarray antenna[J]. Encyclopedia of RF and Microwave Engineering, 2005.
- [7] POZAR D M, TARGONSKI S D, SYRIGOS H. Design of millimeter wave microstrip reflectarrays[J]. IEEE transactions on antennas and propagation, 1997, 45(2): 287-296.
- [8] Wu Q, Zhang R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming[J]. IEEE Trans. Wireless Commun., 2019, 18(11): 5394-5409.
- [9] LIU X, LIU Y, CHEN Y, et al. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2020.
- [10] HUANG C, HU S, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125.

- [11] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218-e218.
- [12] 张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用 [J]. 中国光学, 2017, 10(1): 1-12.
- [13] 周儒雅, 唐万恺, 李潇, et al. 基于可重构智能表面的移动通信简要综述 [J]. 移动通信, 2020, 44(6): 63-69.
- [14] DI RENZO M, DEBBAH M, PHAN-HUY D-T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 1–20.
- [15] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753 116773.
- [16] HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[J]. IEEE Trans. Wireless Commun., 2019, 18(8): 4157-4170.
- [17] LI Z, XIE Y, SHANGGUAN L, et al. Towards programming the radio environment with large arrays of inexpensive antennas[C] // 16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19). 2019: 285–300.
- [18] ARUN V, BALAKRISHNAN H. RFocus: Practical beamforming for small devices[J]. arXiv preprint arXiv:1905.05130, 2019.
- [19] DAI L, WANG B, WANG M, et al. Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results[J]. IEEE Access, 2020, 8: 45913-45923.
- [20] ZHAO J, YANG X, DAI J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. Natl. Sci. Rev., 2019, 6(2): 231–238.

- [21] TANG W, LI X, DAI J Y, et al. Wireless communications with programmable metasurface: Transceiver design and experimental results[J]. China Commun., 2019.
- [22] Wu Q, Zhang S, Zheng B, et al. Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial[J]. IEEE Trans. Commun., 2021: 1-1.
- [23] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333-337.
- [24] FEYNMAN R P, HIBBS A R, STYER D F. Quantum mechanics and path integrals[M]. [S.l.]: Courier Corporation, 2010.
- [25] DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2017, 81(2): 026401.
- [26] ÖZDOGAN O, BJÖRNSON E, LARSSON E. Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling[J]. IEEE Wireless Communications Letters, 2019, PP: 1–1.
- [27] BALANIS C. CourseSmart Series: Advanced Engineering Electromagnetics[M]. [S.l.]: Wiley, 2012.
- [28] LIANG L, QI M, YANG J, et al. Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials[J]. Advanced Optical Materials, 2015, 3(10): 1374–1380.
- [29] ASADCHY V S, ALBOOYEH M, TCVETKOVA S N, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces[J]. Physical Review B, 2016, 94(7).
- [30] Yang D, Yang L, Hanzo L. DFT-Based Beamforming Weight-Vector Codebook Design for Spatially Correlated Channels in the Unitary Precoding Aided Multiuser Downlink[C] // 2010 IEEE International Conference on Communications. 2010: 1–5.

[31] Liang Y, Long R, Zhang Q, et al. Large Intelligent Surface/Antennas (LISA): Making Reflective Radios Smart[J]. J. Commun. Inf. Netw., 2019, 4(2): 40–50.

附录 A 控制电路原理图

图 A-1 原理图 1

图 A-2 原理图 2