Fundamentos de Ingeniería Eléctrica

Tema 2: Elementos de la teoría de circuitos

Contenidos

- Elementos básicos
- Ley de Ohm
- Resistencias en serie. Divisor de tensión
- Resistencias en paralelo. Divisor de intensidad
- Fuentes ideales

Elementos básicos

Resistencia (R)	$-\!$	v(t) = Ri(t)
Bobina (L)	-v(t)	$v(t) = L rac{di(t)}{dt}$
Condensador (C)	$\begin{array}{c c} & & i(t) \\ \hline & + & \\ & v(t) \end{array}$	$i(t) = C\frac{dv(t)}{dt}$
Fuente tensión	$ \begin{array}{c c} & \downarrow \\ & \downarrow \\ v(t) & \\ \end{array} $	$egin{aligned} v(t) & \text{conocida} \ i(t) & \text{incógnita} \end{aligned}$
Fuente intensidad	$- \underbrace{ \begin{matrix} i(t) \\ + \end{matrix} }_{v(t)}$	v(t) incógnita $i(t)$ conocida

Resistencia. Ley de Ohm

- La resistencia (R) se mide en Ohmios $(\Omega = V/A)$
- La conductancia (G) es la inversa de la resistencia (G=1/R) y se mide en Siemens $(S=1/\Omega)$
- La ley de Ohm depende del criterio!!!

$$\begin{array}{c}
R \\
i(t) \\
\downarrow \\
v(t)
\end{array}$$

$$\begin{split} v(t) &= Ri(t) & i(t) = Gv(t) & v(t) = -Ri(t) & i(t) = -Gv(t) \\ p(t) &= v(t)i(t) = Ri^2(t) & p(t) = v(t)i(t) = -Ri^2(t) \\ p(t) &= v(t)i(t) = \frac{v^2(t)}{R} & p(t) = v(t)i(t) = -\frac{v^2(t)}{R} \end{split}$$

Una resistencia siempre consume potencia (Efecto Joule)

? ¿Qué representa $R = \infty$? ¿Y R = 0?

Resistencia. Ley de Ohm (cont)

Dado el circuito de la figura, calcula:

- a) La intensidad i [A]
- b) La potencia consumida por la resistencia [W]

$$v$$
 R
 i

Datos:
$$v = 10 \cdot \alpha + \beta$$
 [V], $R = \gamma$ [Ω]

Solución 2-1

Calcula la intensidad i y la potencia consumida por la resistencia

a)
$$i = \frac{v}{R} = \frac{95}{8} = 11,88 \text{ A}$$

b) $p = Ri^2 = 8 \cdot 11,88^2 = 1129,08 \text{ W}$

Dado el circuito de la figura, calcula:

- a) La tensión v [V]
- b) La intensidad i_1 [A]
- c) La potencia total consumida por las dos resistencias [W]

Datos:
$$i_2 = 10 \cdot \delta + \epsilon$$
 [A], $G = \eta$ [S], $R = \theta$ [Ω]

Solución 2-2

a)
$$v = \frac{-12}{7} = -1.71 \text{ V}$$

b)
$$i_1 = \frac{-1.71}{3} = -0.57 \text{ A}$$

c)
$$P = \frac{1}{7}12^2 + 3 \cdot 0.57^2 = 21.55 \text{ W}$$

Dado el circuito de la figura, calcula:

- a) La tensión v [V]
- b) La intensidad i [A]
- c) La potencia total consumida por las cuatro resistencias [W]

Datos:
$$R_1 = \lambda[\Omega], G_2 = \kappa$$
 [S], $R_3 = \alpha[\Omega], R_4 = \delta[\Omega], v_4 = 10 \cdot \beta$ [V]

Resistencias en serie

Dos resistencias están en serie si están atravesadas por la misma intensidad

$$i_1 = i_2$$

$$v_1 = R_1 i_1$$

$$v_2 = R_2 i_2$$

¿Cuál es el valor de R_{eq} que hace que la relación entre la tensión y la intensidad vista desde lo terminales A y B sea la misma en ambos casos?

$$i = i_1 = i_2$$

$$v = v_1 + v_2$$

$$v = R_{eq}i$$

$$R_{eq}i = v = v_1 + v_2 = R_1i_1 + R_2i_2 = (R_1 + R_2)i \implies R_{eq} = R_1 + R_2$$

Divisor de tensión

Determina v_1 y v_2 en función de v, R_1 and R_2

Resistencias en paralelo

Dos resistencias están en paralelo si están sometidas a la misma tensión

¿Cuál es el valor de R_{eq} que hace que la relación entre la tensión y la intensidad vista desde lo terminales A y B sea la misma en ambos casos?

$$i = i_{1} + i_{2}$$

$$v = R_{eq}i$$

$$\frac{v}{R_{eq}} = i = i_{1} + i_{2} = \frac{v_{1}}{R_{1}} + \frac{v_{2}}{R_{2}} = v\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) \implies \frac{1}{R_{eq}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

$$\frac{1}{13/33} = \frac{1}{13/33} + \frac{1}{13/33} = \frac{1}{13/33} = \frac{1}{13/33} + \frac{1}{13/33} = \frac{1}{13/33} = \frac{1}{13/33} = \frac{1}{13/33} = \frac{1}{13/33} = \frac{1}{13/33} = \frac$$

 $v = v_1 = v_2$

Divisor de intensidad

Determina i_1 y i_2 en función de i, R_1 and R_2

$$v_1 = v_2 = \frac{R_1 R_2}{R_1 + R_2} i$$

$$i_1 = \frac{v_1}{R_1} = \frac{R_2}{R_1 + R_2} i$$

$$i_2 = \frac{v_2}{R_2} = \frac{R_1}{R_1 + R_2} i$$

Serie, paralelo y el más allá

Calcula la resistencia equivalente vista desde los terminales A y B

Datos:
$$R_1=\alpha[\Omega]$$
, $R_2=\beta[\Omega]$, $R_3=\gamma[\Omega]$, $R_4=\delta[\Omega]$, $R_5=\epsilon[\Omega]$, $R_6=\eta[\Omega]$, $R_7=\theta[\Omega]$

Solución 2-4

Solución 2-4 (cont)

Calcula la resistencia equivalente vista desde los terminales A y B

Datos: $R_1 = \alpha[\Omega]$, $R_2 = \beta[\Omega]$, $R_3 = \gamma[\Omega]$, $R_4 = \delta[\Omega]$, $R_5 = \epsilon[\Omega]$, $R_6 = \eta[\Omega]$, $R_7 = \theta[\Omega]$

Fuente de tensión ideal

ullet Tensión v conocida e intensidad i incógnita del circuito

Asociación en serie

• Asociación en paralelo

Solo tiene sentido si $v_1 = v_2 = v_3$

Fuente de intensidad ideal

• Intensidad i conocida y tensión v incógnita del circuito

Asociación en serie

Solo tiene sentido si $i_1 = i_2 = i_3$

• Asociación en paralelo

Para el circuito de la figura, calcula:

- a) v_1 [V]
- b) v_2 [V]
- c) v_3 [V]
- d) i_1 [A]

- e) i_2 [A]
- f) i_3 [A]
- g) P_{R1} [W,con] h) P_{R2} [W,con]

- i) P_{R3} [W,con]
- j) P_{vg} [W,gen]

Datos: $v_g = 10 \cdot \lambda + \kappa[V], R_1 = \theta[\Omega], R_2 = \eta[\Omega], R_3 = \epsilon[\Omega]$

Solución 2-6

En primer lugar transformamos el circuito

Solución 2-6 (cont)

Las intensidades por la rama en paralelo las podemos calcular haciendo

$$i_2 = \frac{v_2}{R_2} = \frac{21,89}{7} = 3,13 \text{ A}$$
 $i_3 = \frac{v_3}{R_3} = \frac{21,89}{2} = 10,95 \text{ A}$

Las potencias consumidas por las resistencias son:

$$P_{R1} = R_1 i_1^2 = 3 \cdot 14,04^2 = 591,36 \text{ W}$$

 $P_{R2} = R_2 i_2^2 = 7 \cdot 3,13^2 = 68,58 \text{ W}$
 $P_{R3} = R_3 i_3^2 = 2 \cdot 10,95^2 = 239,81 \text{ W}$

La potencia generada por la fuente de tensión es:

$$P_{vq} = 64 \cdot i_1 = 64 \cdot 14,04 = 898,56 \text{ W}$$

La suma de las potencias consumidas por la resistencias es igual a la generada por la fuente de tensión (balance de potencias ok)

Pare el circuito de la figura, calcula:

- a) v [V]
- **b)** *i* [A]
- c) P_R [W] (con)

- d) P_{g1} [W] (gen)
- e) P_{g2} [W] (gen)

Datos:
$$v_{g1} = 10 \cdot \lambda + \kappa[V], v_{g2} = \theta[V], R = \eta[\Omega]$$

Solución 2-7

$$64 = v + 3 \implies v = 61 \text{ V}$$
 $i = \frac{61}{7} = 8,71 \text{ A}$ $P_{7\Omega} = 7 \cdot 8,71^2 = 531,05 \text{ W (consumida)}$ $P_{64V} = 64 \cdot 8,71 = 557,44 \text{ W (generada)}$ $P_{3V} = 3 \cdot 8,71 = 26,13 \text{ W (consumida)}$

Las fuentes de tensión e intensidad pueden generar o consumir potencia

Para el circuito de la figura, calcula:

- a) i_1 [A] b) i_2 [A]
- c) i_3 [A]
- d) v_1 [V]

- e) v_2 [V]
- f) v_3 [V]
- g) P_{R1} [W,con]
- h) P_{R2} [W,con]

i) P_{R3} [W,con] j) P_{ia} [W,gen]

Datos: $i_q = \alpha[A], R_1 = \beta[\Omega], R_2 = \gamma[\Omega], R_3 = \delta[\Omega]$

Solución 2-8

$$\begin{split} i_1 &= \frac{v_1}{5} \\ i_2 &= i_3 = \frac{-v_1}{8+1} \\ i_1 + 9 &= i_2 \implies \frac{v_1}{5} + 9 = \frac{-v_1}{9} \implies v_1 = -28,93 \text{ V} \end{split}$$

Solución 2-8 (cont)

$$\begin{split} i_1 &= \frac{-28,93}{5} = -5,79 \text{ A} \\ i_2 &= i_3 = \frac{28,93}{9} = 3,21 \text{ A} \\ v_2 &= 8 \cdot i_2 = 8 \cdot 3,21 = 25,68 \text{ V} \\ v_3 &= 1 \cdot i_3 = 1 \cdot 3,21 = 3,21 \text{ V} \\ P_{9A} &= 28,93 \cdot 9 = 260,37 \text{ W,gen} \\ P_{5\Omega} &= -28,93 \cdot -5,79 = 167,50 \text{ W,con} \\ P_{8\Omega} &= 25,68 \cdot 3,21 = 82,43 \text{ W,con} \\ P_{2\Omega} &= 3,21 \cdot 3,21 = 10,30 \text{ W,con} \end{split}$$

Para el circuito de la figura, calcula:

a)
$$i_1$$
 [A]

b)
$$i_2$$
 [A]

c)
$$i_3$$
 [A]

Datos:
$$v_{g1} = 10 \cdot \eta[V], v_{g2} = 10 \cdot \beta[V], R_1 = \alpha[\Omega], R_2 = \epsilon[\Omega], R_3 = \delta[\Omega]$$

Para el circuito de la figura, calcula:

a) i_1 [A]

b) i_2 [A]

c) i_4 [A]

Datos:
$$i_{g1}=10\cdot\eta[\mathsf{A}], i_{g2}=\beta[\mathsf{A}], v_g=10\cdot\theta[\mathsf{V}], R_1=\alpha[\Omega], R_2=\epsilon[\Omega], R_3=\delta[\Omega], R_4=\gamma[\Omega]$$

b) i_2 [A]

Para el circuito de la figura, calcula:

- a) i_1 [A]
 - c) i_3 [A] d) i_4 [A]

e) P_{vg} [W,gen] f) P_{ig} [W,gen]

Datos:

$$i_g = 10 \cdot \beta[\mathsf{A}], v_g = 10 \cdot \eta[\mathsf{V}], R_1 = \alpha[\Omega], R_2 = \epsilon[\Omega], R_3 = \delta[\Omega], R_4 = \gamma[\Omega]$$

32 / 33

Para el circuito de la figura, calcula:

- a) i_1 [A]
- b) i_2 [A]
- c) i_3 [A]
- d) i_4 [A]

- e) P_{va} [W,gen]
- f) P_{ia} [W,gen]
- g) P_{R1} [W,con]
- h) P_{R2} [W,con]

- i) P_{R3} [W,con]
- i) P_{R4} [W,con]

Datos:

$$i_g = 10 \cdot \beta[\mathsf{A}], v_g = 10 \cdot \eta[\mathsf{V}], R_1 = \alpha[\Omega], R_2 = \epsilon[\Omega], R_3 = \delta[\Omega], R_4 = \gamma[\Omega]$$