Meredith Durbin Emily Levesque Astro 531: Stellar Interiors April 18, 2018

Homework 2

All calculations can be found in the notebook https://github.com/meredith-durbin/ASTR531/blob/master/HW2/HW2.ipynb.

- 8.2 (a) The helium-burning core must be less massive than the hydrogen-burning core for a given stellar mass; for a given temperature/density profile, less of the enclosed mass will be at the temperature required to kick off helium vs. hydrogen burning.
 - (b) The star will be more chemically stratified at the end of the helium-burning phase, with the helium fusion products at the core and a shell of unfused helium surrounding them.
- 9.1 Timescales for various stars:

Star	$ au_{ m dyn}$	$ au_{ m KH}$	$ au_{ m nucl}$
$MS, 1 M_{\odot}$	0.906 h	$3.140 \times 10^7 \text{ yr}$	$10^{10} { m yr}$
$MS, 60 M_{\odot}$	6.792 h	$9.487 \times 10^{3} \text{ yr}$	$7.554 \times 10^{5} \text{ yr}$
RSG, 15 M_{\odot}	$5.056 \mathrm{\ yr}$	$4.793 \ { m yr}$	$3.358 \times 10^{5} \text{ yr}$
WD, $0.6~{\rm M}_{\odot}$	7.142 s	$7.945 \times 10^{10} \text{ yr}$	

The fact that the red supergiant's thermal timescale is shorter than its dynamical timescale is concerning; I suspect that RSGs are weird enough that the timescale formulae begin to break down.

- 9.2 If nuclear fusion in the sun were to suddenly stop, it would take approximately a thermal timescale to notice; the solar spectrum we observe is largely a product of temperature, and the thermal timescale is the timescale over which a change in temperature would become noticeable.
- 11.2 (a) For 1 M $_{\odot}$, I find $\beta = 0.9996$ and $P_{\rm rad}/P_{\rm gas} = 0.0004$, and for 60 M $_{\odot}$, I find $\beta = 0.6867$ and $P_{\rm rad}/P_{\rm gas} = 0.4562$.
 - (b) For 1 M $_{\odot}$ I find a predicted luminosity $L = L_{\rm Edd}(1-\beta) = 14.8 L_{\odot}$, and for 60 M $_{\odot}$ I find $L = 7.14 \times 10^5 L_{\odot}$.
 - (c) My luminosity is off by a factor of ~ 20 for 1 M_{\odot} , but is close for 60 M_{\odot} .
- 12.2 (a) All radii are in solar radii.

$R_{ m start,H}$	$R_{ m end,H}$	$R_{\rm end,PMS}$
10	0.2	0.2
100	2	1
1000	20	5
10^{4}	200	25
	10 100	100 2 1000 20

(b) Timescales:

$\mathrm{Mass}\;(\mathrm{M}_{\odot})$	$\tau_{\rm Hayashi} \ ({ m yr})$	$\tau_{\mathrm{PMS}} \; (\mathrm{yr})$
0.1	10^{7}	1.897×10^{10}
1	10^{6}	6×10^{7}
10	10^{5}	1.897×10^{5}
100	10^{4}	6×10^{2}

13.2 I chose to calculate the ratio of final to initial quantities so that I could ignore mass entirely.

$$\mu_0 = (2 - 1.25Y_0)^{-1} \tag{1}$$

$$\mu_0 = (2 - 1.25Y_0)^{-1}$$

$$\mu_1 = (2 - 1.25Y_1)^{-1}$$
(2)

$$L_1/L_0 = \frac{(2-Y_1)^{-1}\mu_1^4}{(2-Y_0)^{-1}\mu_1^4} \tag{3}$$

$$R_1/R_0 = \frac{(1+X_1)^{0.05}\mu_1^{2/3}}{(1+X_0)^{0.05}\mu_0^{2/3}}$$

$$T_1/T_0 = \frac{(1+X_1)^{-0.5}\mu_1^{0.83}}{(1+X_0)^{-0.5}\mu_0^{0.83}}$$
(4)

$$T_1/T_0 = \frac{(1+X_1)^{-0.5}\mu_1^{0.83}}{(1+X_0)^{-0.5}\mu_0^{0.83}}$$
(5)

For $X_1 = Y_1 = 0.49$ and $X_0 = 0.7$, $Y_0 = 0.28$, $L_1/L_0 = 2.28$, $R_1/R_0 = 1.12$, and $T_1/T_0 = 1.23$.