Nonnegative Matrix Factorisation for Audio Applications

Dan Jacobellis, Tyler Masthay

Nonnegative Matrix Factorisation

$$egin{aligned} \mathbf{V} &pprox \mathbf{\hat{V}} = \mathbf{WH} \ \mathbf{W} &\in \mathbb{R}^{\mathbf{m} imes \mathbf{k}} & \mathbf{W} \geq \mathbf{0} \ \mathbf{H} &\in \mathbb{R}^{\mathbf{k} imes \mathbf{n}} & \mathbf{H} \geq \mathbf{0} \end{aligned}$$

- Unsupervised learning (think SVD)
- Number of components k is a parameter
- \mathbf{V} is $m \times n$
- ullet Setting k < m is a form of lossy compression

Audio Example

$$V = |CQT(x)| =$$

Time-frequency representation of 'Korobeiniki' played on piano. The frequency is on a logarithmic scale.

Audio Example

Algorithm: Multiplicative Update

- ullet Initialize f W and f H with non-negative values
- ullet Iteratively update ${f W}$ and ${f H}$ using the following rules: (n here is the iteration)

$$\mathbf{H}^{n+1}_{[i,j]} \leftarrow \mathbf{H}^n_{[i,j]} \odot rac{\left((\mathbf{W}^n)^ op \mathbf{V}
ight)_{[i,j]}}{\left((\mathbf{W}^n)^ op \mathbf{W}^n \mathbf{H}^n
ight)_{[i,j]}} \ \mathbf{W}^{n+1}_{[i,j]} \leftarrow \mathbf{W}^n_{[i,j]} \odot rac{\left(\mathbf{V} (\mathbf{H}^{n+1})^ op
ight)_{[i,j]}}{\left(\mathbf{W}^n \mathbf{H}^{n+1} (\mathbf{H}^{n+1})^ op
ight)_{[i,j]}}$$

- and division are element-wise.
- [2] Lee, D.D., Seung, H.S., 2001. Algorithms for Non-negative Matrix Factorization, in: Advances in Neural Information Processing Systems 13. MIT Press, pp. 556–562.

Algorithm: Multiplicative Update

Parallelization on GPU: Motivation

- Matricies remain stationary in memory
- Matrix multiplies have high computational intensity compared to memory
- Single precision is sufficient
- Would like to use consumer hardware

Name	Clock(<u>MHz</u>)	GFLOPS(FP32)	
Adreno 616	750	384	
Adreno 630	710	727	
Adreno 640	585	899	

GPU Implementation

- Used Julia bindings to CUDA (CURAND, CUBLAS)
- Compiler allows easily mapping high level syntax to GPU
- Compiler finds best way to send data back and forth between device and host

```
a = CuArray([1., 2., 3.])
                                            @device code ptx @cuda apply(x->x^2, a)
function apply(op, a)
                                           apply(.param .b8 a[16])
  i = threadIdx().x
                                                                 %rd1, [a+8];
  a[i] = op(a[i])
                                                  ld.param.u64
                                                                  %r1, %tid.x;
return
                                                  mov.u32
end
@cuda threads=length(a) apply(x->x^2, a)
                                                   // index calculation
                                                                  %rd2, %r1, 4;
                                                   mul.wide.u32
                                                                  %rd3, %rd1, %rd2;
                                                   add.s64
julia> a
                                                   cvta.to.global.u64
                                                                           %rd4, %rd3;
3-element CuArray{Float32,1}:
1.0
                                                   ld.qlobal.f32 %f1, [%rd4];
4.0
                                                   mul.f32
                                                                  %f2, %f1, %f1;
                                                                 [%rd4], %f2;
9.0
                                                   st.global.f32
                                                   ret;
```

[2] <u>https://github.com/JuliaGPU/CUDAnative.jl</u> (<u>https://github.com/JuliaGPU/CUDAnative.jl</u>)

GPU Implementation

- Must be careful and explicit with types and constants
- Otherwise, compiler will think you want to move all of the data off of the GPU and back

```
API calls:
             91.92% 11.2821s
                               40 282.05ms
                                           26.070us 1.18052s
                                                               cuMemcpyDtoH
              2.23% 273.60ms
                                3 91.198ms
                                            692ns
                                                     273.59ms
                                                               cuDevicePrimaryCtxRelease
              2.16% 264.86ms
                                6 44.143ms
                                            682ns
                                                     185.30ms
                                                               cudaFree
                            172 649.66us 2.9950us 9.1952ms
              0.91% 111.74ms
                                                               cuModuleUnload
              0.86% 105.85ms
                                1 105.85ms 105.85ms 105.85ms
                                                               cuDevicePrimaryCtxRetain
              0.74% 90.441ms 1346 67.192us 3.4970us 460.51us
                                                               cuMemAlloc
              0.25% 30.511ms 3856 7.9120us 5.2800us 246.57us
                                                               cudaLaunchKernel
```

GPU Performance

- Runtime is relatively flat as the number of components increases up to a point
- We can't fit everying in GPU memory after the number of components reaches
 ~128
- After this point, we are forced to send data between CPU and GPU every iteration
- Fortunately, the behavior as a function of the audio length is well-behaved

Compilation Performance

- Left figure shows orders of magnitude slowdown on the initial compilation of code for a variety of commonly used functions
- Right figure shows speedup for subsequent compilations of code

Lines of Code

- Lines of host and device code for Rodinia benchmarks. Comparison between CUDA C and Julia implementations.
- On average, device code reduced by 8 percent and host code by 38 percent.

GPU Performance

- Runtime is relatively flat as the number of components increases up to a point
- We can't fit everying in GPU memory after the number of components reaches
 ~128
- After this point, we are forced to send data between CPU and GPU every iteration
- Fortunately, the behavior as a function of the audio length is well-behaved

CPU Performance

• Scikit-learn implementation would require many CPU cores to match GPU runtime

GPU

$k \backslash n$	8 secs	30 secs	2 mins	4 mins	8 mins
16	7.27467	26.5809	106.867	215.206	441.376
32	5.25291	21.563	91.1168	182.27	376.61
64	9.44327	38.2992	167.939	331.227	667.127
128	19.7414	83.2758	343.023	678.67	1339.14
256	47.8782	198.339	778.588	1531.27	2997.77

Scikit-learn (8 Cores, OpenBLAS)

$k \backslash n$	8 secs	30 secs	2 mins	4 mins	8 mins
16	0.57850	1.69655	3.21816	22.6694	35.9361
32	0.58758	3.84272	4.80095	19.733	36.3876
64	0.56073	2.88254	6.65211	19.9168	35.0325
128	0.70719	2.63012	10.6433	26.1736	94.5093
256	1.90019	4.4077	31.8833	97.0318	179.238

Runtime (in seconds) vs number of components (k) vs length of processed audio (n)