

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

SEPTEMBER 2020

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 16 pages./ *Hierdie nasienriglyn bestaan uit 16 bladsye*.

NOTE/LET WEL:

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.

 Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk SLEGS die EERSTE poging.
- Consistent accuracy applies in ALL aspects of the marking guideline. Volgehoue akkuraatheid geld deurgaans in ALLE aspekte van die nasienriglyn.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
 - Indien 'n kandidaat 'n poging vir 'n vraag deurgetrek het en nie die vraag weer beantwoord het nie, merk die poging wat deurgetrek is.
- The mark for substitution is awarded for substitution into the correct formula. *Die punt vir substitusie word vir substitusie in die korrekte formule toegeken.*

QUESTION 1/VRAAG 1

1.1.4 $2^{x} + 2^{2-x} = \frac{17}{2}$ $2.2^{x} + 2.2^{2-x} = 17$ $2.2^{x} + \frac{2^{3}}{2^{x}} = 17$ $2.2^{2x} - 17.2^{x} + 8 = 0$ Let $/ Laat \ k = 2^{x}$, $\therefore 2k^{2} - 17k + 8 = 0$ (2k - 1)(k - 8) = 0 $k = \frac{1}{2} \quad \text{or } / \text{of} \quad k = 8$ $\therefore 2^{x} = 2^{-1} \quad \text{or } / \text{of} \quad 2^{x} = 2^{3}$ $x = -1 \quad \text{or } / \text{of} \quad x = 3$ OR/OF

$$2^{x} + 2^{2-x} = \frac{17}{2}$$

$$2.2^{x} + 2.2^{2-x} = 17$$

$$2.2^{x} + \frac{2^{3}}{2^{x}} = 17$$

$$2.2^{2x} - 17.2^{x} + 8 = 0$$

$$(2.2^{x} - 1)(2^{x} - 8) = 0$$

$$\therefore 2^{x} = 2^{-1} \quad \text{or } / \text{ of } \qquad 2^{x} = 2^{3}$$

$$x = -1$$
 or $/of$ $x = 3$

✓ standard form / standaardvorm

✓ substitution / *vervanging* $k = 2^x$

✓ factorisation / faktorisering

$$\checkmark 2^x = 2^{-1} \text{ and/} en \quad 2^x = 3$$

✓ both answers / beide antwoorde

OR/OF

✓ standard form / standaardvorm

✓ factorisation / faktorisering

$$\checkmark 2^x = 2^{-1} \lor 2^x = 3$$

✓ both answers / beide antwoorde

1.2

$$(x-2)^2 + y^2 = 25$$

$$x+3-3y=0$$

$$x = 3y - 3$$

$$(3y-3-2)^2 + y^2 = 25$$

$$(3y-5)^2 + y^2 = 25$$

$$9y^2 - 30y + 25 + y^2 = 25$$

$$10y^2 - 30y = 0$$

$$10y(y-3) = 0$$

$$\therefore y = 0 \text{ or } / of \quad y = 3$$

$$x = -3$$
 or $/of$ $x = 6$

$$\therefore$$
 A(-3;0) and/en B(6;3)

 $\checkmark x = 3y - 3$

✓ substitution / *vervanging*

✓ standard form / *standaardvorm*

✓ factorisation / faktorisering

 \checkmark x and y values / x en y waardes

✓ both sets of coordinates beide stelle van koördinate

OR/OF

OR/OF

	$(x-2)^{2} + y^{2} = 25$ (1) x+3-3y=0 (2)	
	$y = \frac{1}{3}(x+3) $ (3)	$\checkmark y = \frac{1}{3}(x+3)$
	$(x-2)^{2} + \left(\frac{x}{3} + 1\right)^{2} = 25$ $x^{2} - 4x + 4 + \frac{x^{2}}{9} + \frac{2x}{3} + 1 - 25 = 0$	✓ substitution / vervanging
	$9x^{2} - 36x + 36 + x^{2} + 6x - 216 = 0$ $10x^{2} - 30x - 180 = 0$ $x^{2} - 3x - 18 = 0$	✓ standard form / standaardvorm
	(x+3)(x-6) = 0	✓ factorisation / faktorisering
	$\therefore x = -3 \text{or } / \text{ of } x = 6$ $\therefore y = 0 \text{or } / \text{ of } y = 3$	\checkmark x and y values / x en y waardes
	$\therefore A(-3; 0) \qquad B(6; 3)$	✓ both sets of coordinates / beide stelle koördinate (6)
1.3	$(x+m)(x+n) = p^2$	(0)
	$x^2 + nx + mx + mn - p^2 = 0$	
	$x^{2} + (m+n)x + (mn - p^{2}) = 0$	$\sqrt{x^2 + (m+n)x + (mn-p^2)} = 0$
	For real roots / Vir reële wortels:	$\checkmark (m+n)^2 - 4(1)(mn-p^2) \ge 0$
	$b^2 - 4ac \ge 0$	
	$\therefore (m+n)^2 - 4(1)(mn-p^2) \ge 0$	
	$m^2 + 2mn + n^2 - 4mn + 4p^2 \ge 0$	
	$m^2 - 2mn + n^2 + 4p^2 \ge 0$	$\checkmark (m-n)^2 + (2p)^2 \ge 0$
	$\left(m-n\right)^2+(2p)^2\geq 0$	✓ explanation / verduideliking
	Now/ <i>Maar</i> : $(m-n)^2 \ge 0$ and/ <i>en</i> $(2p)^2 \ge 0$	
	$\therefore \Delta \ge 0$	(4)
		[26]

QUESTION 2/VRAAG 2

	-2 -2 -2 -2		
2.1.1	206 ; 231	✓ 206 ✓231	(2)
2.1.2	2a = -2	/ n 1	
	$\therefore a = -1$	$\checkmark a = -1$	
	3a + b = 33		
	-3+b=33	✓ b = 36	
	∴ b = 36		
	a+b+c=86		
	-1+36+c=86	$\checkmark c = 51$	
	∴ c = 51	$\checkmark T_n = -n^2 + 36n + 51$	(4)
	$T_n = -n^2 + 36n + 51$	$V I_n = -n + 30n + 31$	(4)
2.1.3	$326 = -n^2 + 36n + 51$	✓ substitution / vervanging	
	$n^2 - 36n + 275 = 0$		
	(n-11)(n-25) = 0	✓ method / <i>metode</i>	
	$\therefore n = 11 or / of n = 25$	✓ answers / antwoorde	(3)
	33 31 29		
	2a = -2		
	$\therefore a = -1$		
	3a+b=33		
	-3 + b = 33		
	$\therefore b = 36$	$\checkmark a = -1 \text{ and/} en \ b = 36$	
	a+b+c=86+k		
	-1+36+c=86+k	(- 51 - L	
	$\therefore c = 51 + k$	$\checkmark c = 51 + k$	
	$\therefore T_n + k = -n^2 + 36n + (51+k)$		(2)
			\ - /

2.2.1	2y-1; $4y-1$; $6y-1$	
2.2.1		
	d = 4y - 1 - (2y - 1)	(1 2
	=2y	$\checkmark d = 2y$
	$T_n = 2yn - 1$	$\checkmark 2yn-1$
	$T_{30} = 2y(30) - 1$	
	=60y-1	$\checkmark 60y-1$
	OR/OF	OR/OF
	$T_n = a + (n-1)d$	$\checkmark d = 2y$
	$T_{30} = (2y-1) + (30-1)(2y)$	\checkmark <i>u</i> − 2 <i>y</i> \checkmark substitution / <i>vervanging</i>
	=2y-1+58y	✓ answer / antwoord
	=60y-1	(3)
2.2.2	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	2	$\checkmark d = 2y$
	$S_{30} = \frac{30}{2} [2(2y-1) + 29(2y)]$	✓ substitution into correct formula
	2	vervanging in die korrekte formule
	=15(4y-2+58y)	
	=15(62y-2)	\checkmark equating to $-2820/$
	$\therefore -2820 = 15(62y - 2)$	stel gelyk aan – 2820
	-188 = 62y - 2	
	-186 = 62y	
	∴ <i>y</i> = −3	✓ answer / antwoord
	OR/OF	OR/OF
	$S_n = \frac{n}{2} [a+l]$	$\checkmark d = 2y$
	2	✓ substituting a and l /
	$S_{30} = \frac{30}{2} [2y - 1 + 60y - 1]$	vervanging van a en l
	<u></u>	
	-2820 = 15[62y - 2]	\checkmark equating to -2820
	-188 = 62y - 2	stel gelyk aan – 2820
	-186 = 62y	✓ answer / antwoord
	$\therefore y = -3$	(4)
		[18]

QUESTION 3/VRAAG 3

3.1	$1+4+4^{2}+4^{3}++4^{n-1}$ ∴ $T_{n} = 4^{n-1}$ ∴ Sum/Som: $\sum_{n=1}^{7} 4^{n-1}$ For original sequence:/Vir oorspronklike ry: Sum/Som: $\sum_{n=1}^{5000} n$ $S_{n} : \sum_{n=1}^{5000} n - \sum_{n=1}^{7} 4^{n-1}$	$\checkmark T_n = 4^{n-1}$ $\checkmark \sum_{n=1}^{7} 4^{n-1}$ $\checkmark \sum_{n=1}^{5000} n$ $\checkmark \text{ answer / antwoord}$ (4)
3.2	$S_{\infty} = \frac{1}{a - r}$ $\therefore 1 + x + x^{2} + x^{3} + \dots = \frac{1}{1 - x} \text{ and/}en$ $1 - x + x^{2} - x^{3} + \dots = \frac{1}{1 + x}$ $Sum/Som: \frac{1}{1 - x} + \frac{1}{1 + x}$	$\checkmark \frac{1}{1-x}$ $\checkmark \frac{1}{1+x}$
	$= \frac{1+x+1-x}{(1-x)(1+x)}$ $= \frac{2}{1-x^2}$ $\therefore \frac{2}{1-x^2} = 8$ $8-8x^2 = 2$ $-8x^2 = -6$	$ √ \frac{2}{1-x^2} $ ✓ equating sum to 8 stel som gelyk aan 8
	$x^{2} = \frac{3}{4}$ $x = \pm \frac{\sqrt{3}}{2}$	$\checkmark x^2 = \frac{3}{4}$ $\checkmark \text{ answer } / \text{ antwoord}$ (6) $[10]$

QUESTION 4/VRAAG 4

4.1	$f(x) = \frac{a}{x-1} + 3,$ $x = 1; y = 3$		
	x=1; y=3	$\checkmark x = 1 \qquad \checkmark y = 3 \tag{2}$	2)
4.2	$y = \frac{a}{0-1} + 3$		
	=3-a	✓ 3-a	
	$0 = \frac{a}{x - 1} + 3$	$\checkmark 3-a$ $\checkmark y=0$	
	$-3 = \frac{a}{x-1}$ $-3x+3 = a$		
	-3x + 3 = a	a 3 a	
	$x = 1 - \frac{a}{3} \text{ or } / \text{ of } \frac{3 - a}{3}$	$\checkmark x = 1 - \frac{a}{3} \text{or/of} \frac{3 - a}{3} $ (3)	3)
4.3	Τν /f :	✓ asymptotes / asimptote	
	4		
	3	✓ y-intercepts / y-afsnitte	
		\checkmark x-intercepts / x-afsnitte	
		✓ shape / vorm	
	0 1 $\frac{4}{3}$ x		
		(4))
4.4	$f(x) = \frac{a}{x+2} + 1 \text{ or/of } f(x) = \frac{-1}{x+2} + 1$	$\sqrt{x+2} + 1$	
	x+2 $x+2$	(2)	
		[11]	- J

QUESTION 5/VRAAG 5

5.1	(0; -7)	$\checkmark y = -7 \tag{1}$
5.2	q = -8	$\checkmark q = -8 \tag{1}$
5.3	$g(x) = b^x - 8$	
	$-5 = b^1 - 8$	✓ substituting $(1; -5)$ /
	∴ <i>b</i> = 3	vervanging van (1;-5)
	At turning point of <i>f</i> : / By die draaipunt van <i>f</i> :	
		$\sqrt{r-b}$
	$x = -\frac{b}{2a} = -\frac{3}{4}$	$\sqrt{x} = -\frac{1}{2a}$
	$\Rightarrow -\frac{3}{2a} = -\frac{3}{4}$	$\checkmark x = -\frac{b}{2a}$ $\checkmark -\frac{b}{2a} = -\frac{3}{4}$
		$2a$ 4 $\checkmark b = 3$
	$\therefore -6a = -12$	✓ simplifying / vereenvoudiging
	a=2	simpinying / vereenvoudiging
	$\therefore -5 = 2(1)^2 + 3(1) + c$	$\checkmark f(1) = -5$
	c = -10	(6)
5.4	$y > -8$; $y \in \mathbb{R}$	\checkmark $y > -8$
5.5	y + 9x = -28	(accuracy) / (akkuraatheid) (2)
3.3	y = -9x - 28	
	$y = 3x - 26$ $y = 2x^2 + 3x - 10$	
	$\therefore 2x^2 + 3x - 10$ $\therefore 2x^2 + 3x - 10 = -9x - 28$	$\sqrt{2x^2 + 3x - 10} = -9x - 28$
	$2x^{2} + 12x + 18 = 0$	$\sqrt{2x^2 + 3x - 10} = -9x - 28$ $\sqrt{\text{standard form } / \text{standardvorm}}$
		Standard Torin', Standard Worm
	$x^2 + 6x + 9 = 0$	✓ factorisation / faktorisering
	(x+3)(x+3) = 0	$\checkmark x = -3$
	$\therefore x = -3$	
	$y = 2(-3)^2 + 3(-3) - 10$	$\checkmark y = -1$
	=-1	
	$\therefore T(-3;-1)$	
	OR/OF	OR/OF
	y = -9x - 28	$\checkmark m = -9$
	$\therefore m = -9$	
	$f(x) = 2x^2 + 3x - 10$	$\checkmark f'(x) = 4x + 3$
	f'(x) = 4x + 3 = -9	
	4x = -12	✓ equating gradients / stel gradiënte gelyk
	x = -3	
	y = -9(-3) - 28	$\checkmark x = -3$
	$\begin{vmatrix} y & 3(3) & 20 \\ = -1 & 3 & 3 \end{vmatrix}$	
	T(-3;-1)	$\checkmark y = -1$
	(- , -/	(5)

5.6	$y = \log_3 x$	$\checkmark \checkmark y = \log_3 x$
		(2)
5.7	p(x) = f(x) + 1	
	$=2x^2+3x-10+1$	
	$=2x^2+3x-9$	$\checkmark p(x) = 2x^2 + 3x - 9$
	=(2x-3)(x+3)	p(x) = 2x + 3x - 9
	∴ when/wanneer: $y = 0$,	
	$x = \frac{3}{2}$ or $/of -3$	\checkmark x-intercepts / x-afsnitte
	2	
	3	
	$\therefore x < -3 \text{ or } / \text{ of } 0 < x < \frac{3}{2}$	√ <i>x</i> < −3
		\checkmark x < -3 \checkmark 0 < x < $\frac{3}{2}$ (accuracy/akkuraatheid)
		(4)
		[21]

QUESTION 6/VRAAG 6

6.1 $A = P(1-i)^{n}$ $\frac{1}{3}x = x(1-i)^{4}$ $\frac{1}{3} = (1-i)^{4}$ $\frac{1}{3} = (1-i)^{4}$ $3^{\frac{1}{4}} - 1 = -i$ $-0.24 = -i$ $\therefore i = 0.24$ $\therefore r = 24\%$ $6.2.1$ $F = \frac{x[(1+i)^{n} - 1]}{i}$ $x = \frac{x[(1+\frac{0.095}{12})^{2} - 1]}{0.095}$ $x = \frac{R596458.10 \times \frac{0.095}{12}}{[(1+\frac{0.095}{12})^{2} - 1]}$ $= R6178.13$ $6.2.2$ $P = \frac{x[1-(1+i)^{-n}]}{i}$ $= \frac{R6178.13}{1-(1+i)^{-n}}$ $= \frac{R6178.13}{i} [1-(1+\frac{0.095}{12})^{-2}]$ $= R338070.29$ $A = P(1+i)^{n}$ $R338070.29 = P(1+\frac{0.095}{12})^{5}$ $\therefore P = \frac{R338070.29}{(1+\frac{0.095}{12})^{5}}$ $= R325000$ (6)	6.1	$A = P(1-i)^n$	
$3^{\frac{1}{4}} - 1 = -i$ $-0.24 = -i$ $\therefore i = 0.24$ $\therefore r = 24\%$ $7 = 24\%$ $7 = 24\%$ $8 = \frac{x(1+i)^n - 11}{i}$ $x = \frac{x\left[1 + \frac{0.095}{12}\right]^{2^2} - 1}{\frac{0.095}{12}}$ $x = \frac{x\left[1 + \frac{0.095}{12}\right]^{2^2} - 1}{\frac{1}{2}}$ $x = \frac{R596458.10 \times \frac{0.095}{12}}{\frac{1}{2}}$ $x = \frac{R6178.13}{i}$ $x =$		$\frac{1}{3}x = x(1-i)^4$	$\checkmark \frac{1}{3}x = x(1-i)^4$
$3^{\frac{1}{4}} - 1 = -i$ $-0.24 = -i$ $\therefore i = 0.24$ $\therefore r = 24\%$ $7 = 24\%$ $7 = 24\%$ $8 = \frac{x(1+i)^n - 11}{i}$ $x = \frac{x\left[1 + \frac{0.095}{12}\right]^{2^2} - 1}{\frac{0.095}{12}}$ $x = \frac{x\left[1 + \frac{0.095}{12}\right]^{2^2} - 1}{\frac{1}{2}}$ $x = \frac{R596458.10 \times \frac{0.095}{12}}{\frac{1}{2}}$ $x = \frac{R6178.13}{i}$ $x =$		$\frac{1}{3} = (1-i)^4$	
6.2.1 $F = \frac{x[(1+i)^n - 1]}{i}$ $x = \frac{x[(1+i)^n - 1]}{i}$ $x = \frac{x[(1+\frac{0.095}{12})^{-1}]}{\frac{0.095}{12}}$ $x = \frac{R596458,10 \times \frac{0.095}{12}}{\left[\left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]}$ $= R6178,13$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]}$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[1 - \left(1 + \frac{0.095}{12}\right)^{-2} - 1\right]$ $= R6178,13 \left[$		$3^{-\frac{1}{4}} - 1 = -i$	
6.2.1 $F = \frac{x[(1+i)^n - 1]}{i}$ $x = \frac{x[(1+\frac{0.095}{12})^{7^2} - 1]}{(1+\frac{0.095}{12})^{12}}$ $x = \frac{R596458,10 = \frac{x(1+\frac{0.095}{12})^{7^2} - 1}{(1+\frac{0.095}{12})^{12}}$ $x = \frac{R6178,13}{[1-(1+i)^n]}$ $= \frac{R6178,13}{[1-(1+\frac{0.095}{12})^{-7^2}]}$ $= R338070,29$ $A = P(1+i)^n$ $R338070,29 = P(1+\frac{0.095}{12})^{5}$ $\therefore P = \frac{R338070,29}{(1+\frac{0.095}{12})^{5}}$ $\Rightarrow R338070,29$ $\Rightarrow R3380$			
6.2.1 $F = \frac{x[(1+i)^n - 1]}{i}$ $x = \frac{x[(1+i)^n - 1]}{0.095}$ $x = \frac{R596458,10 \times \frac{0.095}{12}}{[(1+\frac{0.095}{12})^2 - 1]}$ $= R6178,13$ 6.2.2 $P = \frac{x[1-(1+i)^{-n}]}{i}$ $= \frac{R6178,13}{1-(1+i)^n}$ $= \frac{R6178,13}{12} = \frac{(1+\frac{0.095}{12})^{-72}}{\frac{0.095}{12}}$ $= R338070,29$ $A = P(1+i)^n$ $R338070,29 = P(1+\frac{0.095}{12})^5$ $\therefore P = \frac{R338070,29}{(1+\frac{0.095}{12})^5}$ $\Rightarrow P = \frac{R338070,29}{(1+\frac{0.095}{12})^5}$ $\Rightarrow P = \frac{R338070,29}{(1+\frac{0.095}{12})^5}$ $\Rightarrow R = R325000$ (6)			$\checkmark i = 0.24$
6.2.1 $F = \frac{x[(1+i)^n - 1]}{i}$ $x = \frac{x[(1+\frac{0.095}{12})^{72} - 1]}{\frac{0.095}{12}}$ $x = \frac{R596458,10 \times \frac{0.095}{12}}{\left[\left(1+\frac{0.095}{12}\right)^{72} - 1\right]}$ $= R6178,13$ 6.2.2 $P = \frac{x[-(1+i)^n]}{i}$ $= \frac{R6178,13}{1-\left(1+\frac{0.095}{12}\right)^{-72}}$ $= R338070,29$ $A = P(1+i)^n$ $R338070,29 = P\left(1+\frac{0.095}{12}\right)^5$ $\therefore P = \frac{R338070,29}{\left(1+\frac{0.095}{12}\right)^5}$ $= R325000$ (6)		$\therefore r = 24\%$	
$F = \frac{4(3+7)^{-1}}{i}$ $x = \frac{x\left[\left(1 + \frac{0,095}{12}\right)^{72} - 1\right]}{\frac{0,095}{12}}$ $x = \frac{R596458,10 \times \frac{0,095}{12}}{\left[\left(1 + \frac{0,095}{12}\right)^{72} - 1\right]}$ $= R6178,13$ $6.2.2 \qquad P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{i}$ $= \frac{R6178,13\left[1 - \left(1 + \frac{0,095}{12}\right)^{-72}\right]}{\frac{0,095}{12}}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $\Rightarrow R3325000$ $x = \frac{0,095}{12}$ $x = R596458,10$ $x = R6178,13$ $x = R6$	621	F(1 . NR 11	(3)
$R596458,10 = \frac{x \left[\left(1 + \frac{0.095}{12} \right)^{2} - 1 \right]}{\frac{0.095}{12}}$ $x = \frac{R596458,10 \times \frac{0.095}{12}}{\left[\left(1 + \frac{0.095}{12} \right)^{2} - 1 \right]}$ $= R6178,13$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0.095}{12} \right)^{-72} \right]}$ $= \frac{R6178,13}{i}$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0.095}{12} \right)^{-72} \right]}$ $= \frac{0.095}{12}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0.095}{12} \right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0.095}{12} \right)^{5}}$ $\Rightarrow P = \frac{R338070,29}{\left(1 + \frac{0.095}{12} \right)^{5}}$ $\Rightarrow R338070,29$ $\Rightarrow R3$	0.2.1	$F = \frac{x[(1+i)^{2}-1]}{x}$. 0,095
$x = \frac{R596458,10 \times \frac{0,095}{12}}{\left[\left(1 + \frac{0,095}{12}\right)^{72} - 1\right]}$ $= R6178,13$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0,095}{12}\right)^{-72}\right]}{\frac{0,095}{12}}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ $\Rightarrow 3000000000000000000000000000000000000$		[(0.005) ⁷²]	$\forall i = \frac{12}{12}$
$x = \frac{R596458,10 \times \frac{0,095}{12}}{\left[\left(1 + \frac{0,095}{12}\right)^{72} - 1\right]}$ $= R6178,13$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0,095}{12}\right)^{-72}\right]}{\frac{0,095}{12}}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ $\Rightarrow 3000000000000000000000000000000000000$		$x \left \left(1 + \frac{0.095}{12} \right) - 1 \right $	\checkmark $n = 72$
$x = \frac{R596458,10 \times \frac{0,095}{12}}{\left[\left(1 + \frac{0,095}{12}\right)^{72} - 1\right]}$ $= R6178,13$ $= \frac{R6178,13}{\left[1 - \left(1 + \frac{0,095}{12}\right)^{-72}\right]}{\frac{0,095}{12}}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ $\Rightarrow 3000000000000000000000000000000000000$		$R596458,10 = \frac{12}{9005}$	$\checkmark F = R596458,10$
6.2.2 $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{R6178,13}{1 - (1 + \frac{0.095}{12})^{-72}}$ $= \frac{R6178,13}{\frac{0.095}{12}}$ $= R338070,29$ $A = P(1 + i)^{n}$ $R338070,29 = P\left(1 + \frac{0.095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{(1 + \frac{0.095}{12})^{5}}$ $= R325000$ (5) $A = R722$ $\Rightarrow \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\Rightarrow \text{ valiswel } / \text{ aniswel } $		12	
6.2.2 $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{R6178,13}{1 - (1 + \frac{0.095}{12})^{-72}}$ $= \frac{R6178,13}{\frac{0.095}{12}}$ $= R338070,29$ $A = P(1 + i)^{n}$ $R338070,29 = P\left(1 + \frac{0.095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{(1 + \frac{0.095}{12})^{5}}$ $= R325000$ (5) $A = R722$ $\Rightarrow \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\Rightarrow \text{ valiswel } / \text{ aniswel } $		$R596458,10 \times \frac{0,095}{12}$	
6.2.2 $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{R6178,13}{1 - (1 + \frac{0.095}{12})^{-72}}$ $= \frac{R6178,13}{\frac{0.095}{12}}$ $= R338070,29$ $A = P(1 + i)^{n}$ $R338070,29 = P\left(1 + \frac{0.095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{(1 + \frac{0.095}{12})^{5}}$ $= R325000$ (5) $A = R722$ $\Rightarrow \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\Rightarrow \text{ valiswel } / \text{ aniswel } $		$x = \frac{12}{\left[(0.095)^{72} \right]}$	
6.2.2 $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{R6178,13}{1 - (1 + \frac{0.095}{12})^{-72}}$ $= \frac{R6178,13}{\frac{0.095}{12}}$ $= R338070,29$ $A = P(1 + i)^{n}$ $R338070,29 = P\left(1 + \frac{0.095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{(1 + \frac{0.095}{12})^{5}}$ $= R325000$ (5) $A = R722$ $\Rightarrow \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\Rightarrow \text{ valiswel } / \text{ aniswel } $		$\left \left(1 + \frac{3,35}{12} \right) - 1 \right $	
6.2.2 $P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$ $= \frac{R6178,13 \left[1 - \left(1 + \frac{0,095}{12}\right)^{-72}\right]}{\frac{0,095}{12}}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ (6)			
$R6178,13 \left[1 - \left(1 + \frac{0,095}{12} \right)^{-72} \right]$ $= \frac{0,095}{12}$ $= R338070,29$ $A = P(1+i)^{n}$ $R338070,29 = P \left(1 + \frac{0,095}{12} \right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12} \right)^{5}}$ $= R325000$ $A = P(1+i)^{n}$ $\Rightarrow A = R338070,29$ $\Rightarrow n = 5$ $\Rightarrow \text{substitution into correct formula / vervanging in die korrekte formule}$ $\Rightarrow \text{answer / antwoord}$ (6)	6.2.2		(5)
$\frac{0,095}{12}$ = R338070,29 $A = P(1+i)^{n}$ R338070,29 = $P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ = R325000 $A = R338070,29$ $\forall A = R338070,29$ $\forall n = 5$ $\forall \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\forall \text{ answer } / \text{ answer } / \text{ answord}$ (6)		1	
$\frac{0,095}{12}$ = R338070,29 $A = P(1+i)^{n}$ R338070,29 = $P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ = R325000 $A = R338070,29$ $\forall A = R338070,29$ $\forall n = 5$ $\forall \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\forall \text{ answer } / \text{ answer } / \text{ answord}$ (6)		$\begin{bmatrix} (0.095)^{-72} \end{bmatrix}$	v n = 72
$\frac{0,095}{12}$ = R338070,29 $A = P(1+i)^{n}$ R338070,29 = $P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ = R325000 $A = R338070,29$ $\forall A = R338070,29$ $\forall n = 5$ $\forall \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\forall \text{ answer } / \text{ answer } / \text{ answord}$ (6)		$R6178,13 \left 1 - \left 1 + \frac{6,075}{12} \right \right $	
		-	
$R = R 338070,29$ $A = P(1+i)^{n}$ $R 338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R 338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R 325000$ $A = R 338070,29$ $\checkmark n = 5$ $\checkmark \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\checkmark \text{ answer } / \text{ antwoord}$ (6)			
$R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ $A = R338070,29$ $\checkmark n = 5$ $\checkmark \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\checkmark \text{ answer } / \text{ antwoord}$ (6)			
$R338070,29 = P\left(1 + \frac{0,095}{12}\right)^{5}$ $\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^{5}}$ $= R325000$ $A = R338070,29$ $\checkmark n = 5$ $\checkmark \text{ substitution into correct formula } / \text{ vervanging in die korrekte formule}$ $\checkmark \text{ answer } / \text{ antwoord}$ (6)			
$\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^5}$ $= R325000$ $\Rightarrow \text{substitution into correct formula / vervanging in die korrekte formule}$ $\Rightarrow \text{answer / antwoord}$ (6)		$A = P(1+i)^n$	
$\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^5}$ $= R325000$ $\Rightarrow \text{substitution into correct formula / vervanging in die korrekte formule}$ $\Rightarrow \text{answer / antwoord}$ (6)		$R_{338070.29} = P(1 + 0.095)^5$	· ·
$\therefore P = \frac{R338070,29}{\left(1 + \frac{0,095}{12}\right)^5}$ $= R325000$ vervanging in die korrekte formule $\checkmark \text{ answer / antwoord}$ (6)		,	
$= R 325 000 \tag{6}$		$P = \frac{R338070,29}{R}$	
(6)		$\left(1+\frac{0,095}{12}\right)^5$	
(6)		= R325000	
			(6)

QUESTION 7/VRAAG 7

		T	
7.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{-2(x+h)^2 - \left(-2x^2\right)}{h}$	✓ substitution / vervanging	
	$= \lim_{h \to 0} \frac{-2(x^2 + 2xh + h^2) + 2x^2}{h}$	✓ expansion / uitbreiding	
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 2x^2}{h}$	$\sqrt{-2x^2 - 4xh - 2h^2 + 2x^2}$	
	$= \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$	✓ factorisation / faktorisering	
	$=\lim_{h\to 0}(-4x-2h)$		
	=-4x	$\checkmark -4x$	
	$f(x) = -2x^2$ OR/OF	OR/OF	
	$f(x+h) - f(x) = -2(x+h)^2 - (-2x^2)$ $= -2x^2 - 2xh - 2h^2 + 2x^2$ $= -4xh - 2h^2$	$\sqrt{-2x^2 - 2xh - 2h^2 + 2x^2}$ $\sqrt{-4xh - 2h^2}$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\sqrt{-4xn-2n^2}$	
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	✓ substitution / vervanging	
	$= \lim_{h \to 0} \frac{h(-4xh - 2h)}{h}$	✓ factorisation / faktorisering	
	$=\lim_{h\to 0}(-4xh-2h)$	$\sqrt{-4x}$	
	=-4x		(5)
7.2	$y = 7x^4 - \frac{2}{\sqrt{x^3}}$		
	$=7x^4 - 2x^{-\frac{3}{2}}$	$\sqrt{2x^{-\frac{3}{2}}} \\ \sqrt{28x^3} \sqrt{+3x^{-\frac{5}{2}}}$	
	$\therefore \frac{dy}{dx} = 28x^3 + 3x^{-\frac{5}{2}}$	$\checkmark 28x^3 \checkmark + 3x^{-\frac{5}{2}}$	(3)
7.3	$D_t \left[\frac{1}{2} g t^2 - \frac{5}{t} + 3g \right]$		
	$= D_t \left[\frac{1}{2} g t^2 - 5 t^{-1} + 3g \right]$	$\checkmark 5t^{-1}$ $\checkmark gt \checkmark + 5t^{-2}$	
	$= gt + 5t^{-2}$	$\sqrt{gt} \sqrt{+5t^{-2}}$	
		$\checkmark D_t(3g) = 0$	(4)
			[12]

QUESTION 8/VRAAG 8

8.1	(0;9)	√ (0;9)
		(1)
8.2	$f(x) = 2x^3 + x^2 - 12x + 9$	
	$f(1) = 2(1)^3 + (1)^2 - 12(1) + 9$ $= 0$	✓ method / <i>metode</i>
	$f(x) = (x-1)(2x^2 + 3x - 9)$ $0 = (x-1)(x+3)(2x-3)$	$\checkmark 2x^2 + 3x - 9$ \checkmark factorisation / faktorisering
	$\therefore x = 1 \text{ or } / \text{ of } x = -3 \text{ or } / \text{ of } x = \frac{3}{2}$	
	D(-3;0), E(1;0), $F\left(\frac{3}{2};0\right)$	$\checkmark D(-3;0) \checkmark E(1;0) \checkmark F\left(\frac{3}{2};0\right) $ (6)
		(0)
8.3	For concave down / Vir konkaaf afwaarts	$\checkmark f''(x) < 0$
	f''(x) < 0	$\checkmark f'(x) = 6x^2 + 2x - 12$
	$f'(x) = 6x^2 + 2x - 12$	$\checkmark f''(x) = 12x + 2$
	f''(x) = 12x + 2	
	$\therefore 12x + 2 < 0$	$\checkmark x < -\frac{1}{6}$
	$x < -\frac{1}{6}$	6
	G .	(4)
0.4	2 2 2 12 12	
8.4	$6x^2 + 2x - 12 \le 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
		(substitution into someof formula
	$=\frac{-2\pm\sqrt{2^2-4(6)(-12)}}{2.6}$	✓ substitution into correct formula vervanging in die korrekte formule
	$-2 \pm \sqrt{292}$	✓ x-values / x-waardes
	= 12	
	=-1,59 or $/ of$ 1,26	✓✓ answer / antwoord
	$\therefore -1,59 \le x \le 1,26$	(accuracy / akkuraatheid)
		(4)
		[15]

QUESTION 9/VRAAG 9

Area of/van $\triangle PBA = \frac{1}{2}bh = \frac{1}{2} \times t \times 12 = 6t \text{ cm}^2$

✓ Area of/van ∆PBA

Area of/van $\triangle ACS = \frac{1}{2}t(7-t) = \frac{7}{2}t - \frac{t^2}{2} cm^2$

✓ Area of/van ∆ACS

Area of/van $\triangle BQC = \frac{1}{2}(12-t)7 = 42 - \frac{7t}{2} cm^2$

✓ Area of/van ∆BQC

Area of rectangle/van reghoek: PBQS = $12 \times 7 = 84 \text{ cm}^2$

∴ Area of/*van* ∆ABC:

✓ subtracting from 84 / trek van 84 af

$$A(t) = 84 - 6t - \frac{7t}{2} + \frac{t^2}{2} - 42 + \frac{7t}{2}$$

$$= \frac{1}{2}t^2 - 6t + 42$$

a > 0, so A(t) is a min graph / is 'n min grafiek

$$A'(t) = t - 6$$

 $At \min / By \min : A'(t) = 0$

$$\therefore t - 6 = 0$$

$$t = 6$$

 $\checkmark A'(t) = 0$

Smallest area / Kleinste oppervlakte:

$$A(6) = \frac{1}{2}(6)^{2} - 6(6) + 42$$
$$= 24 cm^{2}$$

✓ smallest area / kleinste area

(6)

[6]

QUESTION 10/VRAAG 10

QUESTION 11/VRAAG 11

11.1	7!= 5 040 ways / <i>maniere</i>	\checkmark \checkmark 7! (2)	2)
11.2	Sample space/Steekproefruimte:		
	5 4 2 3 1 2 1	✓ arrangement / rangskikking	
	Possible outcomes/Moontlike uitkomste:		
	3 2 2 1 1 3	✓ arrangement / rangskikking	
	Probability/Waarskynlikheid = $\frac{3 \times 2 \times 2 \times 2 \times 1 \times 1 \times 3}{5 \times 4 \times 2 \times 3 \times 1 \times 2 \times 1}$	(2 2 2 2 1 1 2 - 1/	
	$=\frac{72}{240}$	$\begin{array}{c} \checkmark \ 3 \times 2 \times 2 \times 2 \times 1 \times 1 \times 3 \ \text{and/en} \\ 5 \times 4 \times 2 \times 3 \times 1 \times 2 \times 1 \end{array}$	
	$=\frac{3}{10}=0,3$	✓ answer / antwoord (4))
		[6	<u>[</u>

TOTAL/TOTAAL: 150