

Data Handling and Visualization (CSE2026) - Record

Submitted From,

Name: Bellakki Vinayak

Roll No: 20201ISE0038

Section & Semester: 8ISE-1 & 8th Sem

Submitted To,

Ms. Poornima S - Asst. Professor (CSE)

Presidency University,

Bengaluru

INDEX

SI. Number	Labsheets	Page number
1	LABSHEET 1(NUMPY)	1
2	LABSHEET 2(PANDAS)	6
3	LABSHEET 3(DATA CLEANING)	9
4	LABSHEET 4(Z-SCORE NORMALIZATION)	18
5	LABSHEET 5(OUTLIER DETECTION)	19
6	LABSHEET 6(MATPLOTLIB)	23
7	LABSHEET 7(DATA WRANGLING)	33
8	LABSHEET 8(COLORMAPS)	36
9	LABSHEET 9(HEATMAPS)	38
10	LABSHEET 10(SEABORN COLOR PALETTE)	40
11	LABSHEET 11(PLOTS IN SEABORN)	48
12	LABSHEET 12(TEXT DATA VISUALIZATION)	56
13	LABSHEET 13(TIME SERIES DATA)	59

☐ LABSHEET 1

```
from matplotlib import pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np
print("step 1")
     step 1
      <ipython-input-4-240c5389bdd3>:2: MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are deprecated since 3.6,
       plt.style.use('seaborn-whitegrid')
fig = plt.figure()
ax = plt.axes()
ax.grid()
       1.0
       0.8
       0.6
       0.4
       0.2
      0.0
                       0.2
                                      0.4
                                                    0.6
                                                                  0.8
                                                                                 1.0
fig = plt.figure()
ax = plt.axes()
x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x));
        1.00
        0.75
```



```
# Lets add a title and labels to the plot
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x))
ax.set_title('Simple Plot')  # Add a title
ax.set_xlabel('x label')  # Add x label
ax.set_ylabel('y label');  # Add y label
```



```
# Lets add a title to the plot above
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x))
ax.plot(x, np.cos(x))
#ax.plot(x, np.tan(x))
ax.set_title('Multiple Lines');
ax.set_xlabel('x label')
ax.set_ylabel('y label')
plt.show()
```



```
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x), label = 'sin')
ax.plot(x, np.cos(x), label = 'cos')
ax.set_title('Multiple Lines');
ax.set_xlabel('x label')
ax.set_ylabel('y label')
ax.legend()
# ax.legend(loc=1)
plt.show()
```

 $\overline{\geq}$


```
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x), label = 'sin', color = 'red')  # specify color by name
ax.plot(x, np.cos(x), label = 'cos', color = 'g')  # short color code (rgbcmyk)
ax.set_title('Multiple Lines');
ax.set_vlabel('x label')
ax.set_ylabel('y label')
ax.legend();
```



```
fig = plt.figure()
ax = plt.axes()
# ax.grid(linestyle = '--')

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x), label = 'sin', linestyle = 'dashed')
ax.plot(x, np.cos(x), label = 'cos', linestyle = 'dotted')
ax.plot(x, np.sin(x+1), label = 'cos', linestyle = 'dashdot')
ax.set_title('Multiple Lines');
ax.set_xlabel('x label')
ax.set_ylabel('y label')
ax.legend();
```



```
fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x))

ax.set_xlim(-5, 15)
ax.set_ylim(-3, 3);
```


fig, ax = plt.subplots() # a figure with a single Axes

☐ LABSHEET 2

pandas

```
import pandas as pd
data=pd.read_csv(r'C:\Users\Thejas Venugopal\Downloads\nyc_weather.csv')
data.head()
```

₹		EST	Temperature	DewPoint	Humidity	Sea Level PressureIn	VisibilityMiles	WindSpeedMP
	0	1/1/2016	38	23	52	30.03	10	8.
	1	1/2/2016	36	18	46	30.02	10	7.
	2	1/3/2016	40	21	47	29.86	10	8.
	3	1/4/2016	25	9	44	30.05	10	9.
	4							•

pandas series

☐ with d being a dictionary

```
d={'a':1.,'b':2,'c':3}
s=pd.Series(d,index=['b','c','d'])
s

b      2.0
      c     3.0
      d     NaN
      dtype: float64
```

☐ changing the index

☐ dtype = float

```
syntax
```

```
pd.Series(data,index=[],dtype=, name=, copy=,)
```

combining 2 arrays to make an object

```
a1=np.array([1,2,3])
a2=np.array(['a','b','z'])
s2=pd.Series(a1,a2)
s2

a 1
b 2
z 3
dtype: int32
```

☐ handling missing values

```
d={'a':1.,'b':2,'c':3}
s=pd.Series(d,index=['b','c','d'])
print(s)
글▼ b
       2.0
    c 3.0
d NaN
    dtype: float64
s.isna().sum()
₹ 1
s.dropna()
dtype: float64
d={'a':1.,'b':2,'c':3}
s=pd.Series(d,index=['b','c','d'])
→ b 2.0
    c 3.0
d NaN
    dtype: float64
s.fillna(2)
b 2.0
c 3.0
d 2.0
     dtype: float64
```

□ accessing elements from the index

```
series[['a','c','e']]

a    1
    c    3
    e    5
    dtype: int64

series1=pd.Series([103,1079,978],index=[' a hundred and three','one thousand seventy nine','nine hundred seventy eight'])
series1['nine hundred seventy eight']

$\rightarrow$ 978
```

□ DATA FRAME

```
import pandas as pd
data = {'Name':['Alice', 'Bob', 'Claire', 'David'],
       'Age':[20, 21, 20, 22]}
df = pd.DataFrame(data)
print(df)
 \overline{\geq}
          Name Age
     0 Alice
                 20
     1
          Bob
                21
     2 Claire
                 20
     3 David
                22
# creating a dataframe from a list of dictionary
{'Name': 'Claire', 'Age': 20},
{'Name': 'David', 'Age': 22}]
df = pd.DataFrame(data)
print(df)
          Name Age
                 20
        Alice
                21
     1
          Bob
     2 Claire
                20
22
         David
pd.DataFrame(df)
 \overline{\geq}
          Name Age
      0 Alice
      1
          Bob
                21
      2 Claire
                 20
```

Start coding or ge_nerate with AI.

3 David 22

LABSHEET 3

Data Cleaning and Data Preprocessing:

- 1. Data cleaning is the process of changing or eliminating garbage, incorrect, duplicate, corrupted, or incomplete data in a dataset.
- 2. There's no such absolute way to describe the precise steps in the data cleaning process because the processes may vary from dataset to dataset.

□ Data Cleaning Cycle

Missing Values:

```
# import the pandas library
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
print(df)
# df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
# print (df)
\rightarrow
             one
                                three
                       two
     a 0.375319 -0.763927 -0.762393
     c -1.093644 1.335944 -0.668966
     e -0.013401 0.155461 -0.843651
     f 0.423813 0.900266 -0.828664
     h -0.644593 2.654895 1.211697
```

Check for Missing Values:

To make detecting missing values easier (and across different array dtypes), Pandas provides the **isnull()** and **notnull()** functions, which are also methods on Series and DataFrame objects –

```
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
# print (df['one'].isnull())
# print(df)
print(df["one"].isnull())
          False
     b
          True
         False
     С
     d
          True
     е
         False
     f
         False
           True
     g
     h
          False
     Name: one, dtype: bool
```

Replacing the Missing Values

```
#Replace the missing values by 0
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print (df)
print ("NaN replaced with '0':")
print (df.fillna(0))
\rightarrow
                               three
             one
                       two
     a -0.961858 -1.671248 0.556286
     b
             NaN
                       NaN
                                  NaN
     c -0.386504 -0.709324 0.622838
     NaN replaced with '0':
              one
                        two
                               three
     a -0.961858 -1.671248 0.556286
     b 0.000000 0.000000 0.000000
     c -0.386504 -0.709324 0.622838
```

Fill NA Forward and Backward

```
# Method Action
pad/fill Fill methods Forward
bfill/backfill Fill methods Backward
```

```
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print (df.fillna(method='pad'))
             one
                               three
                       two
     a 0.109813 -1.940379 -0.444834
     b
            NaN
                       NaN
     c -0.208020 0.309864 0.819870
     d
            NaN
                       NaN
                                 NaN
     e -0.465764 0.215614 1.031519
     f 1.189843 3.814140 0.954030
             NaN
                       NaN
     g
     h 0.480653 0.552598 -0.888482
             one
                      two three
     a 0.109813 -1.940379 -0.444834
     b 0.109813 -1.940379 -0.444834
     c -0.208020 0.309864 0.819870
     d -0.208020 0.309864 0.819870
     e -0.465764 0.215614 1.031519
     f 1.189843 3.814140 0.954030
     g 1.189843 3.814140 0.954030
     h 0.480653 0.552598 -0.888482
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print (df.fillna(method='bfill'))
\rightarrow
             one
                       two
                              three
     a -1.204446 2.137228 -0.388020
     b 1.327178 2.355456 -1.347412
     c 1.327178 2.355456 -1.347412
     d -0.228600 1.300295 0.939832
     e -0.228600 1.300295 0.939832
     f -0.938383 2.278881 -0.098408
     g 0.726762 0.456629 -1.167753
     h 0.726762 0.456629 -1.167753
```

Drop Missing Values:

Use dropna function along with the axis argument.

By default, axis=0, i.e., along row, which means that if any value within a row is NA then the whole row is excluded.

```
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
print(df)
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print (df.dropna())
\rightarrow
             one
                        two
                                three
     a -0.481989 -1.249458 -2.316982
     c 1.119240 -1.054186 -0.972090
     e -0.991040 -0.749165 0.259387
     f -1.300768 -0.000567 -0.056870
     h 0.497341 0.984014 -1.094049
             one
                        two
                                three
     a -0.481989 -1.249458 -2.316982
     b
             NaN
                        NaN
       1.119240 -1.054186 -0.972090
     d
             NaN
                        NaN
     e -0.991040 -0.749165 0.259387
     f -1.300768 -0.000567 -0.056870
             NaN
                        NaN
     g
       0.497341 0.984014 -1.094049
                        two
                                three
             one
     a -0.481989 -1.249458 -2.316982
     c 1.119240 -1.054186 -0.972090
     e -0.991040 -0.749165 0.259387
     f -1.300768 -0.000567 -0.056870
     h 0.497341 0.984014 -1.094049
```

Replace Missing (or) Generic Values:

We can achieve this by applying the replace method.

Replacing NA with a scalar value is equivalent behavior of the fillna() function.

```
import pandas as pd
import numpy as np
df = pd.DataFrame({'one':[10,20,30,40,50,2000],
'two':[1000,0,30,40,50,60]})
print(df)
print (df.replace({1000:10,2000:60}))
\rightarrow
          one
                  two
      0
            10
                1000
      1
            20
                    0
      2
            30
                   30
      3
            40
                   40
            50
                   50
      4
      5
         2000
                   60
         one two
      0
          10
                 10
      1
          20
                 0
      2
          30
                 30
      3
          40
                40
```

4 50 50 5 60 60

□ Data Preprocessing

- 1. Load data in Pandas
- 2. Drop columns that aren't useful
- 3. Drop rows with missing values
- 4. Create dummy variables
- 5. Take care of missing data
- 6. Convert the data frame to NumPy

Download Titanic-Dataset from Kaggle.com.

Here we are going to use train.csv dataset for preprocessing.

```
import pandas as pd
import numpy as np
from google.colab import drive
drive.mount('/content/drive')
```

→ Mounted at /content/drive

df = pd.read_csv(r"C:\Users\Thejas Venugopal\Downloads\train (1).csv")
df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 891 entries, 0 to 890
 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2)	, int64(5), obje	ct(5)

Drop the Columns that are not required

memory usage: 83.7+ KB

```
cols=['Name','Ticket','Cabin']
df=df.drop(cols,axis=0)
df.info()
\rightarrow
     KeyError
                                                Traceback (most recent call last)
     C:\Users\THEJAS~1\AppData\Local\Temp/ipykernel_20436/1019933480.py in <module>
           1 cols=['Name','Ticket','Cabin']
     ---> 2 df=df.drop(cols)
           3 df.info()
     c:\Users\Thejas Venugopal\anaconda3\lib\site-packages\pandas\util\ decorators.py in
    wrapper(*args, **kwargs)
         309
                                  stacklevel=stacklevel,
         310
                         return func(*args, **kwargs)
     --> 311
         312
         313
                     return wrapper
     c:\Users\Thejas Venugopal\anaconda3\lib\site-packages\pandas\core\frame.py in
     drop(self, labels, axis, index, columns, level, inplace, errors)
                             weight 1.0
                                              0.8
                     .....
        4905
     -> 4906
                     return super().drop(
        4907
                         labels=labels.
        4908
                         axis=axis,
     c:\Users\Thejas Venugopal\anaconda3\lib\site-packages\pandas\core\generic.py in
     drop(self, labels, axis, index, columns, level, inplace, errors)
                     for axis, labels in axes.items():
        4148
        4149
                         if labels is not None:
     -> 4150
                              obj = obj. drop axis(labels, axis, level=level,
     errors=errors)
        4151
                     if inplace:
        4152
     c:\Users\Thejas Venugopal\anaconda3\lib\site-packages\pandas\core\generic.py in
     _drop_axis(self, labels, axis, level, errors)
                             new_axis = axis.drop(labels, level=level, errors=errors)
        4183
        4184
                         else:
                             new axis = axis.drop(labels, errors=errors)
     -> 4185
                         result = self.reindex(**{axis_name: new_axis})
        4186
        4187
     c:\Users\Thejas Venugopal\anaconda3\lib\site-packages\pandas\core\indexes\base.py in
     drop(self, labels, errors)
                     if mask.any():
        6015
        6016
                         if errors != "ignore":
     -> 6017
                              raise KeyError(f"{labels[mask]} not found in axis")
Drop the rows having no values
```

```
df = df.dropna()
df.info()
→▼ <class 'pandas.core.frame.DataFrame'>
     Int64Index: 712 entries, 0 to 890
     Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	PassengerId	712 non-null	int64
1	Survived	712 non-null	int64
2	Pclass	712 non-null	int64
3	Sex	712 non-null	object
4	Age	712 non-null	float64
5	SibSp	712 non-null	int64
6	Parch	712 non-null	int64
7	Fare	712 non-null	float64
8	Embarked	712 non-null	object
dtype	es: float64(2)), int64(5), obje	ct(2)
memor	ry usage: 55.6	5+ KB	

Creating Dummy variables

Instead of wasting our data, let's convert the Pclass, Sex and Embarked to columns in Pandas and drop them after conversion.

```
dummies = []
cols = ['Pclass', 'Sex', 'Embarked']
for col in cols:
    dummies.append(pd.get dummies(df[col]))
```

Transfor the eigth columns

```
titanic_dummies = pd.concat(dummies, axis=1)
```

Concatenate the values with data frame

```
df = pd.concat((df,titanic_dummies), axis=1)
```

Remove the unwanted cols

```
df = df.drop(['Pclass', 'Sex', 'Embarked'], axis=1)
```

Take care of Missing data

Let's compute a **median or interpolate()** all the ages and fill those missing age values. Pandas has an interpolate() function that will replace all the missing NaNs to interpolated values.

```
df['Age'] = df['Age'].interpolate()
print(df)
```


Normalization is a rescaling of the data from the original range so that all values are within the new range of 0 and 1.

A value is normalized as follows:

```
y = (x - min) / (max - min)

from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler()
print(scaler.fit(data))

MinMaxScaler()
print(scaler.data_max_)
print(scaler.transform(data))

→ MinMaxScaler()
    [ 1. 18.]
    [[0. 0. ]
    [0.25 0.25]
    [0.5 0.5 ]
    [1. 1. ]]
```

□ Data Standardization

Standardizing a dataset involves rescaling the distribution of values so that the mean of observed values is 0 and the standard deviation is 1.

A value is standardized as follows:

```
y = (x - mean) / standard_deviation
```

Where the mean is calculated as:

```
mean = sum(x) / count(x)
```

And the standard deviation is calculated as:

```
standard_deviation = sqrt(sum((x - mean)^2) / count(x))
```

```
from numpy import asarray
from sklearn.preprocessing import StandardScaler
# define data
data = asarray([[100, 0.001],
    [8, 0.05],
    [50, 0.005],
    [88, 0.07],
    [4, 0.1]])
print(data)
# define standard scaler
scaler = StandardScaler()
# transform data
scaled = scaler.fit transform(data)
```

□ LABSHEET 4

```
import numpy as np
import pandas as pd
# Example dataset
data = {
    'Feature1': [10, 20, 30, 40, 50],
    'Feature2': [5, 15, 25, 35, 45]
# Create a DataFrame
df = pd.DataFrame(data)
# Display the original data
print("Original Data:")
print(df)
→ Original Data:
        Feature1 Feature2
     0
              10
               20
                         15
               30
                         25
               50
# Function to normalize data using Z-score
def zscore_normalization(df):
   normalized_df = df.copy()
    for column in normalized\_df.columns:
       mean = normalized_df[column].mean()
       std = normalized_df[column].std()
       normalized_df[column] = (normalized_df[column] - mean) / std
    return normalized_df
# Normalize the DataFrame
normalized_df = zscore_normalization(df)
# Display the normalized data
print("\nNormalized Data (Z-score):")
print(normalized_df)
     Normalized Data (Z-score):
        Feature1 Feature2
     0 -1.264911 -1.264911
     1 -0.632456 -0.632456
     2 0.000000 0.000000
     3 0.632456 0.632456
     4 1.264911 1.264911
```

□ LABSHEET 5

from google.colab import files
df = files.upload()

Choose Files No file chosen enable.
Saving train.csv to train.csv

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

import pandas as pd
import numpy as np

	l	lat	:a =	= pd	.read	_csv(٠./	/trai	in.	CSV	')	
--	---	-----	------	------	-------	-------	-----	-------	-----	-----	----	--

da	ta	he	а	d	(

_														
$\overline{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	493	0	1	Molson, Mr. Harry Markland	male	55.0	0	0	113787	30.5000	C30	S	
	1	53	1	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.0	1	0	PC 17572	76.7292	D33	С	
	2	388	1	2	Buss, Miss. Kate	female	36.0	0	0	27849	13.0000	NaN	S	
	3	192	0	2	Carbines, Mr. William	male	19.0	0	0	28424	13.0000	NaN	S	
	4	687	0	3	Panula, Mr. Jaako Arnold	male	14.0	4	1	3101295	39.6875	NaN	S	

cols = ['Name', 'Ticket', 'Cabin']
filtered_data = data.drop(cols, axis = 1)
filtered_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 712 entries, 0 to 711
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	712 non-null	int64
1	Survived	712 non-null	int64
2	Pclass	712 non-null	int64
3	Sex	712 non-null	object
4	Age	566 non-null	float64
5	SibSp	712 non-null	int64
6	Parch	712 non-null	int64
7	Fare	712 non-null	float64
8	Embarked	710 non-null	object

dtypes: float64(2), int64(5), object(2)
memory usage: 50.2+ KB

data = data.dropna()
data.info()

<class 'pandas.core.frame.DataFrame'>
 Int64Index: 148 entries, 0 to 695
 Data columns (total 12 columns):

2000	002011111111111111111111111111111111111	ar re coramiio, .	
#	Column	Non-Null Count	Dtype
0	PassengerId	148 non-null	int64
1	Survived	148 non-null	int64
2	Pclass	148 non-null	int64
3	Name	148 non-null	object
4	Sex	148 non-null	object
5	Age	148 non-null	float64
6	SibSp	148 non-null	int64
7	Parch	148 non-null	int64
8	Ticket	148 non-null	object
9	Fare	148 non-null	float64
10	Cabin	148 non-null	object
11	Embarked	148 non-null	object
dtyne	s · float64(2)) int64(5) ohi	oct(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 15.0+ KB

data.head()

Outlier Detection.ipynb - Colab

\rightarrow		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	493	0	1	Molson, Mr. Harry Markland	male	55.0	0	0	113787	30.5000	C30	S
	1	53	1	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.0	1	0	PC 17572	76.7292	D33	С
	9	752	1	3	Moor, Master. Meier	male	6.0	0	1	392096	12.4750	E121	S
	10	541	1	1	Crosby, Miss. Harriet R	female	36.0	0	2	WE/P 5735	71.0000	B22	S

```
dummies = []
cols = ['Pclass', 'Sex', 'Embarked']
for col in cols:
 dummies.append(pd.get_dummies(data[col]))
```

```
<del>_</del>
        1 2 3
       1 0 0
    1
        1 0 0
    2
       0 1 0
    3
       0 1 0
0 0 1
    4
    707 0 0 1
    709 0 0 1
    710 0 1 0
    711 1 0 0
    [712 rows x 3 columns],
        female male
    0
           0
    1
            1
                  0
    2
    3
            0
    4
            0
                  1
           1
    ..
707
                ...
```

0

0

0 0 1

1

[712 rows x 3 columns]]

titanic_dummies = pd.concat(dummies, axis = 1) titanic dummies

708

709

\rightarrow		1	2	3	female	male	С	Q	S
	0	1	0	0	0	1	0	0	1
	1	1	0	0	1	0	1	0	0
	2	0	1	0	1	0	0	0	1
	3	0	1	0	0	1	0	0	1
	4	0	0	1	0	1	0	0	1
	707	0	0	1	1	0	1	0	0
	708	1	0	0	0	1	1	0	0
	709	0	0	1	0	1	0	0	1
	710	0	1	0	0	1	0	0	1
	711	1	0	0	0	1	0	0	1

712 rows x 8 columns

data.drop(['Pclass', 'Sex', 'Embarked'], axis = 1)

$\overline{\rightarrow}$		PassengerId	Survived	Name	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	493	0	Molson, Mr. Harry Markland	55.0	0	0	113787	30.5000	C30
	1	53	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	49.0	1	0	PC 17572	76.7292	D33
	2	388	1	Buss, Miss. Kate	36.0	0	0	27849	13.0000	NaN
	3	192	0	Carbines, Mr. William	19.0	0	0	28424	13.0000	NaN
	4	687	0	Panula, Mr. Jaako Arnold	14.0	4	1	3101295	39.6875	NaN
	707	859	1	Baclini, Mrs. Solomon (Latifa Qurban)	24.0	0	3	2666	19.2583	NaN
	708	65	0	Stewart, Mr. Albert A	NaN	0	0	PC 17605	27.7208	NaN
	709	130	0	Ekstrom, Mr. Johan	45.0	0	0	347061	6.9750	NaN
	710	21	0	Fynney, Mr. Joseph J	35.0	0	0	239865	26.0000	NaN
	711	476	0	Clifford, Mr. George Quincy	NaN	0	0	110465	52.0000	A14

712 rows x 9 columns

data['Age'] = data['Age'].interpolate()
print(data)

\rightarrow		Passeng	gerId	Survive	d Pcla	SS			Nam	ie \
	0		493		0	1		Molson,	Mr. Harry Marklan	d
	1		53		1	1 Harp	er, Mrs. F	Henry Sl	eeper (Myna Haxtun)
	2		388		1	2			Buss, Miss. Kat	e
	3		192		0	2		Cai	rbines, Mr. Willia	m
	4		687		0	3		Panula	a, Mr. Jaako Arnol	d
	707		859		1	3 B	Baclini, Mr	s. Solo	mon (Latifa Qurban)
	708		65		0	1		Ste	ewart, Mr. Albert	Α
	709		130		0	3			Ekstrom, Mr. Joha	n
	710		21		0	2		F	ynney, Mr. Joseph	J
	711		476		0	1	(lifford	, Mr. George Quinc	У
		Sex	Age	SibSp	Parch	Ticke ⁻	t Fare	Cabin E	Embarked	
	0	male	55.0	0	0	11378	7 30.5000	C30	S	
	1	female	49.0	1	0	PC 1757	2 76.7292	D33	C	
	2	female	36.0	0	0	2784	9 13.0000	NaN	S	
	3	male	19.0	0	0	2842	4 13.0000	NaN	S	
	4	male	14.0	4	1	310129	5 39.6875	NaN	S	
	707	female	24.0	0	3	266	6 19.2583	NaN	C	
	708	male	34.5	0	0	PC 1760	5 27.7208	NaN	C	
	709	male	45.0	0	0	34706	1 6.9750	NaN	S	
	710	male	35.0	0	0	23986	5 26.0000	NaN	S	
	711	male	35.0	0	0	11046	5 52.0000	A14	S	

[712 rows x 12 columns]

□ LABSHEET 6

```
import matplotlib.pyplot as plt
# import seaborn as sn
# print a empty figure
# linespace 10 points with 1000 data points
# styles
# sin x and cos x
\# legend values, colors, setting x, y title and other stuff
# line styles (different styles for each line)
# setting access limits (interval limits)
# subplot (printing multiple plots)
\# 0 1 y = sin and then 0 1 x = sin
                                                                 ■ Code
                                                                              ■ Text
# print a empty figure
fig = plt.figure()
plt.show()
₹ <Figure size 640x480 with 0 Axes>
# print sin wave until 4pi
import numpy as np
x = np.linspace(0, 4*np.pi, 1000)
y = np.sin(x)
z = np.cos(x)
a = np.tan(x)
plt.plot(x, y, color="green", linestyle="dotted")
plt.plot(x, z, color="blue")
# Set the x-axis and y-axis limits
plt.xlim(0, 4*np.pi)
plt.ylim(-1, 1)
# Set the x-axis and y-axis labels
plt.xlabel('x')
plt.ylabel('sin(x) and cos(x)')
# Show the plot
# plt.show()
\longrightarrow Text(0, 0.5, 'sin(x) and cos(x)')
            1.00
            0.75
            0.50
       sin(x) and cos(x)
           0.25
           0.00
          -0.25
          -0.50
          -0.75
```

10

12

plt.xlabel('empty grid')

-1.00

4

6

8

```
Text(0.5, 0, 'empty grid')

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0

0.0 0.2 0.4 0.6 0.8 1.0 empty grid
```

```
x = np.linspace(0, 10, 1000)
y = np.linspace(0, 5, 1000)
# plt.plot(np.sin(x), np.cos(y))
plt.plot(x, y)

# Set the x-axis and y-axis limits
plt.xlim(0, 10)
plt.ylim(0, 10)

# Set the x-axis and y-axis labels
plt.xlabel('x')
plt.ylabel('y')

# Show the plot
plt.show()
```



```
# printing a subplot
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(2, 1, 1)
plt.plot(x,y)

#plot 2:
#x = np.array([0, 1, 2, 3])
#y = np.array([10, 20, 30, 40])

#plt.subplot(2, 1, 2)
#plt.plot(x,y)
```

```
    [<matplotlib.lines.Line2D at 0x7a4d87f00ca0>]
```

```
# barchar example with dictionary
import matplotlib.pyplot as plt

# Define the data
data = {'apples': 10, 'oranges': 15, 'bananas': 5, 'cherries': 20}

# Create a bar chart
plt.bar(list(data.keys()), list(data.values()), width=0.35, color="teal")

# Add title and axis labels
plt.title('Fruit Sales')
plt.xlabel('Fruit')
plt.ylabel('Sales')

# Show the plot
plt.show()
```



```
# example of horizontal barchart with dictionary

# Define the data
data = {'apples': 10, 'oranges': 15, 'bananas': 5, 'cherries': 20}

# Create a horizontal bar chart
plt.barh(list(data.keys()), list(data.values()), color="purple", height=0.3)

# Add title and axis labels
plt.title('Fruit Sales')
# plt.xlabel('Sales')
# plt.ylabel('Fruit')

# Show the plot
show_plot = plt.show()
```


4/4

```
# pprint a axis plot with ax.grid()
import matplotlib.pyplot as plt
# Create a figure and an axes object
ax = plt.subplot()
# Plot some data
ax.plot([1, 2, 3, 4, 5], [5,6,7,8,9])
# Enable the grid
ax.grid(True)
# Show the plot
plt.show()
```



```
print(np.arange(10, 20, 2))
# grouped bar charts example
import numpy as np
import matplotlib.pyplot as plt
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 34, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]
x = np.arange(len(labels))
# width of the individual component
width = 0.25
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means, width, label='Men')
rects2 = ax.bar(x + width/2, women_means, width, label='Women')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend();
plt.show()
```



```
# adding labels to individual bars with their scores
```

```
fig, ax = plt.subplots()
ax.grid(linestyle='--', color='0.75', axis = 'y')
ax.set_axisbelow(True)

rects1 = ax.bar(x - width/2, men_means, width, label='Men')
rects2 = ax.bar(x + width/2, women_means, width, label='Women')

ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.set_titcks(x)
ax.set_xticks(x)
ax.set_xticklabels(labels)

ax.legend()

# Adding the bar labels
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.set_ylim(0,40);
```


→ (0.0, 70.0)


```
# scatter plot
x = np.random.randn(20)
y = np.random.randn(20)

fig, ax = plt.subplots()
ax.grid(True)
ax.scatter(x, y, marker = 'h') # can change to any marker
```



```
fig, axs = plt.subplots(2, 3, sharex=True, sharey=True, figsize=(16,12));
# plt.style.use('seaborn-darkgrid')
# marker symbol
axs[0, 0].scatter(x, y, s=80, marker=">")
axs[0, 0].set_title("marker='>'")
# marker from TeX
axs[0, 1].scatter(x, y, s=80, marker=r'$\alpha$')
axs[0, 1].set_title("marker = " + r'$\alpha$')
# axs[0, 1].set_title(f"marker = {r'$\alpha$'}")
# marker from path
verts = [[-1, -1], [1, -1], [1, 1], [-1, -1]]
axs[0, 2].scatter(x, y, s=80, marker=verts)
axs[0, 2].set_title("marker=verts")
axs[1, 0].scatter(x, y, s=80, marker=(5, 0))
axs[1, 0].set_title("marker=(5, 0)")
# regular star marker
axs[1, 1].scatter(x, y, s=80, marker=(5, 1))
axs[1, 1].set_title("marker=(5, 1)")
# regular asterisk marker
axs[1, 2].scatter(x, y, s=80, marker=(5, 2))
axs[1, 2].set_title("marker=(5, 2)");
\overline{\geq}
                             marker='>'
                                                                                     marker = \alpha
                                                                                                                                             marker=verts
                                                                                               α
        2
                                                                                              α
        0
                                                                                                         α
                                                                                                     α
                                                                                                      α
                                                                                                   α
                           marker=(5, 0)
                                                                                    marker=(5, 1)
                                                                                                                                             marker=(5, 2)
        0
                                                                                                                                                           0
```

```
# setting the colors with matplotlib
plt.style.use('seaborn-darkgrid')

z1 = np.sqrt(x**2 + y**2)

fig, ax = plt.subplots()
pos = ax.scatter(x, y, c=z1, cmap='cool', marker='3')

fig.colorbar(pos);
```

<ipython-input-51-3dd43bf91bb6>:2: MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are deprecated since 3.6,
plt.style.use('seaborn-darkgrid')


```
x = np.random.randn(100)
y = np.random.randn(100)

z1 = np.sqrt(x**2 + y**2)
z2 = np.random.randint(10, 200, size=len(x))

fig, ax = plt.subplots()
# pos = ax.scatter(x, y, c=z1, s=z2, alpha = 0.55, cmap='viridis')
pos = ax.scatter(x, y, c = z1, s = z2, alpha = 0.55, cmap='RdPu_r')
fig.colorbar(pos);
```



```
x = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, 'o-', color='violet');
```

```
1.00
0.75
0.50
0.25
0.00
-0.25
```

Box plots

```
# Generating the data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low))
# Visualization of the data using box plot (basic)
fig, ax = plt.subplots()
ax.boxplot(data)
ax.set_title("Basic Box plot")
```

 \rightarrow Text(0.5, 1.0, 'Basic Box plot')

Notched boxplot without outliers

□ LABSHEET 7

import pandas as pd ■ Code Text df = pd.read_csv('train.csv') df $\overline{\geq}$ PassengerId Survived Pclass SibSp Parch Ticket Fare Cabin Embarked Age 0 0 Braund, Mr. Owen Harris male 22.0 0 A/5 21171 7.2500 NaN S Cumings, Mrs. John Bradley С 2 female 38.0 0 PC 17599 71 2833 C85 (Florence Briggs Th... STON/O2 2 3 3 Heikkinen, Miss. Laina 26.0 0 0 7.9250 NaN S female 3101282 Futrelle, Mrs. Jacques Heath (Lily 3 4 0 113803 53.1000 S female 35.0 C123 May Peel) 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S 886 887 0 2 0 0 S Montvila, Rev. Juozas 27.0 211536 13.0000 NaN male 887 888 Graham, Miss. Margaret Edith 19.0 0 0 112053 30.0000 B42 S 888 889 0 3 Johnston, Miss. Catherine Helen female NaN 2 W./C. 6607 23.4500 NaN S "Carrie 889 890 0 С Behr, Mr. Karl Howell male 26.0 111369 30.0000 C148 df.dtypes → PassengerId int64 Survived int64 Pclass int64 object Name Sex object float64 Age SibSp int64 int64 Parch Ticket object Fare float64 Cabin object Embarked object dtype: object df.describe() $\overline{\pm}$ PassengerId Survived SibSp Fare Pclass Age Parch count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000 mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429 std min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000 25% 223 500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400 50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200 75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200 max df.isna().sum() PassengerId Survived 0 Pclass 0 0 Name Sex 0 177 Age

0

0

0

a

687

SibSp

Parch Ticket

Fare

Cabin

Embarked dtype: int64

age_mean_value=df['Age'].mean()
df['Age']=df['Age'].fillna(age_mean_value)

df.drop("Cabin",axis=1,inplace=True)

df.head()

$\overline{\Rightarrow}$	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
) 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S

filtered_age = df[df.Age>40]
filtered_age

$\overline{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	S
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	S
	15	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.0	0	0	248706	16.0000	S
	33	34	0	2	Wheadon, Mr. Edward H	male	66.0	0	0	C.A. 24579	10.5000	S
	35	36	0	1	Holverson, Mr. Alexander Oskar	male	42.0	1	0	113789	52.0000	S
	862	863	1	1	Swift, Mrs. Frederick Joel (Margaret Welles Ba	female	48.0	0	0	17466	25.9292	S
	865	866	1	2	Bystrom, Mrs. (Karolina)	female	42.0	0	0	236852	13.0000	S
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751	52.5542	S
	873	874	0	3	Vander Cruyssen, Mr. Victor	male	47.0	0	0	345765	9.0000	S
	879	880	1	1	Potter Mrs Thomas Jr (Lily Alexenia Wilson)	female	56 0	0	1	11767	83 1583	С

let's sort the column Name in ascending order
sorted_passengers = df.sort_values('Name',ascending=True,kind ='heapsort')

sorted_passengers.head(10)

$\overline{\supset_{\mathbb{P}}}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
	845	846	0	3	Abbing, Mr. Anthony	male	42.0	0	0	C.A. 5547	7.5500	S
	746	747	0	3	Abbott, Mr. Rossmore Edward	male	16.0	1	1	C.A. 2673	20.2500	S
	279	280	1	3	Abbott, Mrs. Stanton (Rosa Hunt)	female	35.0	1	1	C.A. 2673	20.2500	S
	308	309	0	2	Abelson, Mr. Samuel	male	30.0	1	0	P/PP 3381	24.0000	С
	874	875	1	2	Abelson, Mrs. Samuel (Hannah Wizosky)	female	28.0	1	0	P/PP 3381	24.0000	С
	365	366	0	3	Adahl, Mr. Mauritz Nils Martin	male	30.0	0	0	C 7076	7.2500	S
	401	402	0	3	Adams, Mr. John	male	26.0	0	0	341826	8.0500	S
	40	41	0	3	Ahlin, Mrs. Johan (Johanna Persdotter Larsson)	female	40.0	1	0	7546	9.4750	S
	855	856	1	3	Aks, Mrs. Sam (Leah Rosen)	female	18.0	0	1	392091	9.3500	S
	207	208	1	3	Albimona, Mr. Nassef Cassem	male	26.0	0	0	2699	18.7875	С

 $\label{lem:merged_df} $$ merge(df.head(2),df.tail(2),how='outer',indicator=True) $$ merged_df $$$

Data_wrangling.ipynb - Colab

$\overline{\Rightarrow}$	PassengerId Survived Pclass				Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	_merge
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S	left_only
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С	left_only
	2	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	С	right_only

group_df = df.groupby('Name')

group_df

□ LABSHEET 8

```
import pandas as pd
import numpy as no
import matplotlib.pyplot as plt
# Sample dataframe with multiple columns
data = pd.DataFrame({
    "x": np.random.randn(100),
    "y": np.random.randn(100),
    "value": np.random.randn(100)
})
# Define the colormap and alpha values
cmap = "viridis"
alpha = 1
# Create the scatterplot
plt.figure(figsize=(6, 6))
plt.scatter(data["x"], data["y"], c=data["value"], cmap=cmap, alpha=alpha)
# Customize the plot (optional)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Scatterplot with Colormap")
plt.colorbar(label="value")
# Show the plot
plt.show()
```


import pandas as pd
import numpy as np
print(np.random.randn(100))

```
[ 7.25060198e-01 2.53900412e+00 1.26528031e+00 1.84136990e+00
  -2.60848832e+00 -5.59983281e-01 4.35035456e-01 -7.00367135e-02
  1.96931749e+00 1.04382097e+00 -5.23481680e-01 4.38611173e-01
  -6.03314609e-02 -1.62331938e+00 -1.75368806e-01 -1.45327854e-01
  7.11162067e-01 -1.24752326e+00 1.10879435e+00 6.15797150e-01
  3.22382085e-02 -4.94204444e-01 -1.56553377e+00 1.86476127e+00
  -1.53372917e+00 6.21845005e-01 1.08857491e+00 -1.69076421e+00
  -3.80722950e+00 4.70410313e-01 8.77562643e-01 -8.95285501e-01
  9.83561836e-01 9.32718991e-01 -6.78531171e-01 9.14953408e-05
  -2.21344622e+00 -6.15124358e-02 -9.18144802e-02 7.84013469e-01
  9.64181023e-01 -1.75737978e+00 1.19471319e+00 -1.02246958e-01
  7.73172607e-01 1.02398382e+00 1.47867589e-01 -2.44199793e+00
 -8.49499655e-01 1.88210306e-01 -2.61106287e-01 -9.53558247e-01
  -8.54821744e-01 -3.80648950e-01 -5.87306646e-01 5.54602769e-01
  1.40580004e+00 1.08580790e+00 -8.33862936e-01 7.08280769e-01
 -1.43281505e+00 -1.93642975e-01 6.86796860e-01 5.50748349e-01
  7.79495185e-01 -2.71795003e-01 -1.16407843e+00 1.38373041e+00
 -2.90569948e-01 1.27385062e+00 -4.24752220e-01 5.69263764e-01
  -1.45006382e+00 8.39335515e-01 -9.49539071e-01 -2.04611107e+00
  1.00680640e+00 2.59974257e-01 -1.29858485e+00 9.67979863e-01
 -9.72496062e-01 -1.72551385e+00 -5.42038103e-01 4.26256470e-01
```

Colormaps .ipynb - Colab

```
6.57253328e-01 -1.75193447e+00 -1.22202143e+00 -6.31901884e-01 -9.24312354e-01 1.76235295e+00 -6.83714121e-01 5.19175365e-01 -3.18749238e-01 -1.69096151e-01 -4.49121798e-01 3.98598713e-01 8.80300195e-01 -6.39043290e-02 -4.47122464e-01 -1.65126924e-01]
```

Start coding or generate with AI.

Double-click (or enter) to edit

LABSHEET 9

```
# Program to plot 2-D Heat map
# using matplotlib.pyplot.imshow() method
import numpy as np
import matplotlib.pyplot as plt
data = np.random.random(( 13 , 16 ))
plt.imshow( data,cmap="magma" )
```

plt.title("2-D Heat Map")
plt.colorbar()

plt.colorbar()
plt.show()

Program to plot 2-D Heat map
using matplotlib.pyplot.imshow() method
import numpy as np
import matplotlib.pyplot as plt

data = np.random.random((12, 12))
plt.imshow(data, cmap='autumn')

plt.title("Heatmap with different color")
plt.show()

size=(10, 10))

plotting the heatmap
hm = sns.heatmap(data=data,annot=True)
displaying the plotted heatmap
plt.show()

All the IPython Notebooks in Python Seaborn Module lecture series by Dr. Milaan Parmar are available @ GitHub

☐ LABSHEET 10

□ Seaborn Color Palettes

Color is an utmost important aspect of figure styling because it reveals pattern in the data if used effectively; or hide those patterns if used poorly. Even professionals often assume usage of color to portray data as a solved problem. They just pick a palette from a drop-down menu (probably either a grayscale ramp or a rainbow), set start and end points & finally press apply. But it isn't that simple and thus many visualizations fail to represent the underlying data as appropriately as they could.

Primary objective with choice of color is to illuminate datapoints that are concealed in huge datasets. Quoting Robert Simmon:

Although the basics are straightforward, a number of issue complicate color choices in visualization. Among them: The relationship between the light we see and the colors we perceive is extremely complicated. There are multiple types of data, each suited to a different color scheme. A significant number of people (mostly men), are color blind. Arbitrary color choices can be confusing for viewers unfamiliar with a data set. Light colors on a dark field are perceived differently than dark colors on a bright field, which can complicate some visualization tasks, such as target detection.

One of the most fundamental and important aspects of color selection is the mapping of numbers to colors. This mapping allows us to pseudocolor an image or object based on varying numerical data. By far, the most common color map used in scientific visualization is the rainbow color map. Research paper on **Diverging Color Maps for Scientific Visualization** by Kenneth Moreland very well deals with the extended color concepts, if the topic interests you for further analysis.

With all that been said, let us now focus on what Seaborn has to offer BUT before doing that let me once again remind you that Seaborn runs on top of Matplotlib so any color that is supported by Matplotlib will be supported by Seaborn as well. So at first, let us understand what Matplotlib has to offer:

- an RGB or RGBA tuple of float values in [0, 1] (e.g., (0.1, 0.2, 0.5) or (0.1, 0.2, 0.5, 0.3))
- a hex RGB or RGBA string (e.g., '#0F0F0F' or '#0F0F0F0F')
- a string representation of a float value in [0, 1] inclusive for gray level (e.g., '0.5') one of {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}
- a X11/CSS4 color name
- a name from the xkcd color survey prefixed with 'xkcd:' (e.g., 'xkcd:sky blue') one of {'C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'}
- one of {'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'} which are the **Tableau** Colors from the 'T10' categorical palette (which is the default color cycle).

Note that all string specifications of color, other than "CN", are NOT case-sensitive. Let us briefly go through a couple of common supported colors here:

- RGB/RGBA tuples are 4-tuples where the respective tuple components represent Red, Green, Blue, and Alpha (opacity) values for a color. Each value is a floating point number between 0.0 and 1.0. For example, the tuple (1, 0, 0, 1) represents an opaque red, while (0, 1, 0, 0.5) represents a half transparent green.
- This is actually another way of representing RGBA codes and common Color Conversion
 Calculators can be used to translate values. Here is a <u>Hex to RGBA</u> and <u>RGB to Hex</u> Color
 converter for your future assistance.
- Dictionary of values from {'C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'} represent <u>Color</u>
 <u>Quantization</u>. I have attached a link in the provided notebook that shall guide you to an online book where on Page-29 you could find specifics.

My sole purpose of keeping you posted of Matplotlib background every now and then is only to ensure that when you get to production-level and try to customize a plot as per your analysis, you should know what is ACTUALLY running in the background. This shall empower you to accordingly tweak parameters here and there. Let us now look into few Seaborn options for colors:

```
# Importing required Libraries:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

# Setting a figure size for all the plots we shall be drawing in this kernel:
sns.set(rc={"figure.figsize": (6, 6)})
```

☐ Building color palettes:

current_palette = sns.color_palette()
sns.palplot(current palette)

The most important function for working with discrete color palettes is <code>color_palette()</code>. This function provides an interface to many (though not all) of the possible ways you can generate colors in seaborn, and it's used internally by any function that has a <code>palette</code> argument (and in some cases for a <code>color</code> argument when multiple colors are needed).

color_palette() will accept the name of any seaborn palette or matplotlib colormap (except jet, which you should never use). It can also take a list of colors specified in any valid matplotlib format (RGB tuples, hex color codes, or HTML color names). The return value is always a list of RGB tuples.

Finally, calling color_palette() with no arguments will return the current default color cycle.

sns.palplot(sns.color_palette("husl", 8))

Let me explain these Qualitative (or categorical) palettes. These are best when you want to distinguish discrete chunks of data that do not have an inherent ordering. Ideally, when importing Seaborn, the default color cycle is changed to a set of six colors that evoke the standard matplotlib color cycle. But when we have more than 6, say 8 categories in our data to distinguish, then the most common way is using hls color space, which is a simple transformation of RGB values.

Then there is also hls_palette() function that lets you control the lightness and saturation of colors.

All of it displayed above is just the basic Seaborn aesthetics. Let us now look at xkcd_rgb dictionary that has 954 colors in it. Let us try to pull a few out of it:

Seaborn_Color_Palettes.ipynb - Colab

sample_colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple", "pale red",
sns.palplot(sns.xkcd_palette(sample_colors))

Other style is **cubehelix** color palette that makes sequential palettes with a linear increase or decrease in brightness and some variation in **hue**. Actually let us plot this color palette in a Density contour plot:

```
# Default Matplotlib Cubehelix version:
sns.palplot(sns.color_palette("cubehelix", 8))
```


Default Seaborn Cubehelix version:
sns.palplot(sns.cubehelix_palette(8))


```
# Density Plot with Seaborn defaults:
x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T

sample_cmap = sns.cubehelix_palette(light=1, as_cmap=True)
sns.kdeplot(x, y, cmap=sample_cmap, shade=True)
```


→ C:\ProgramData\Anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: warnings.warn(

☐ Interactive widget to create a sequential cubehelix palette:

Let us now play with the parameters to have some fun and choose best parameters:

```
sns.choose_cubehelix_palette(as_cmap=True)
     NameError
                                                Traceback (most recent call last)
     <ipython-input-1-230a1c9055e9> in <cell line: 1>()
     ----> 1 sns.choose_cubehelix_palette(as_cmap=True)
```

NameError: name 'sns' is not defined

-3

Note that this app only works in this Jupyter Notebook as of now to help choose best parameters for our plot:

sns.palplot(sns.cubehelix_palette(n_colors=8, start=1.7, rot=0.2, dark=0, light=.95, reverse=Tru

start is always between 0 and 3. rot an abbreviation for rotation is kept between -1 and 1. reverse converses the color ordering and hue refers to plot appearance.

☐ Generic Seaborn Plots:

Thur

```
# Loading up built-in dataset:
tips = sns.load_dataset("tips")
# Creating Strip plot for day-wise revenue:
sns.stripplot(x="day", y="total_bill", data=tips, color="g")
<axesSubplot:xlabel='day', ylabel='total_bill'>
        50
        40
        10
                            Fri
```

This does the job for us but let us try to get better results by plotting each day in different color instead of same color. For this, we shall replace color parameter with palette parameter:

Sun

Sat

day

```
# Set Theme:
sns.set style('whitegrid')
# Creating Strip plot for day-wise revenue:
sns.swarmplot(x="day", y="total_bill", data=tips, palette="viridis")
```


Similarly, let us plot one more and for a change, this time we shall plot a Violin plot:

day

There are multiple such palette available for us to play around with like magma, warm grey, gunmetal, dusky blue, cool blue, deep teal, viridian, twilight blue and many more. For customized

Seaborn_Color_Palettes.ipynb - Colab

color brewing, we may also use color brewer that also offers interesting color palettes for working with Qualitative data. The cool thing about it is that you can use the an interactive lpython widget function to make the selection of the palette. For this, you only need to use choose colorbrewer palette().

There are multiple such palette available for us to play around with like magma, warm grey, gunmetal, dusky blue, cool blue, deep teal, viridian, twilight blue and many more. For customized color brewing, we may also use color brewer that also offers interesting color palettes for working with Qualitative data. A nice feature of the **Color Brewer website** is that it provides some guidance on which palettes are color blind safe.

The cool thing about it is that you can use the an interactive lpython widget function to make the selection of the palette. For this, you only need to use choose_colorbrewer_palette(). To access this on your web browser, please access ColorBrewer link provided in the notebook.

I also found a nice representation of Color Schemes in Seaborn, that I found somewhere on web, so thought of sharing it in your Resource bucket to check out if you wish to. Let's have a look at it

LABSHEET 11

#Installation #pip install seaborn

Figure

It refers to the whole figure that you see. It is possible to have multiple sub-plots (Axes) in the same figure.

Axes

An Axes refers to the actual plot in the figure. A figure can have multiple Axes but a given Axes can be part of only one figure.

Axis

An Axis refers to an actual axis (x-axis/y-axis) in a specific plot.

Four sub-plots (Axes) in a single figure.

Seaborn

Seaborn - can create complicated plot types from Pandas data with relatively simple commands Plotting

in seaborn is either : Axes-level functions $\ensuremath{\mathsf{OR}}$ Figure-level function

PLOT CATEGORIES IN SEABORN

- I. Relational plots: This plot is used to understand the relation between two variables.
- II. Categorical plots: This plot deals with categorical variables and how they can be visualized.
- $\textbf{III. Distribution plots:} \ This \ plot \ is \ used \ for \ examining \ univariate \ and \ bivariate \ distributions$
- IV. Matrix plots: A matrix plot is an array of scatterplots.
- V. Regression plots: The regression plots in seaborn are primarily intended to add a visual guide that helps to emphasize patterns in a dataset during exploratory data analyses.

Seaborn

#Import necessary Packages import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.pyplot import figure

import seaborn as sns

%matplotlib inline

```
#Simple Plotting with Seaborn
```


 $\label{eq:seaborn} \mbox{ #seaborn style as the default matplotlib style } \\ \mbox{ sns.set()}$

#Simple sine plot
x = np.linspace(0, 10, 1000)
plt.plot(x, np.sin(x), x, np.cos(x));


```
# I. Relational Plots
```

```
# Line plot : The line plot is one of the most basic plot in seaborn library.
#This plot is mainly used to visualize the data in form of some time series, i.e. in continuous manner.
sns.set(style="dark")
fig, ax = plt.subplots(ncols=2, nrows=1, figsize=(15,10))
#Loading Data with Seaborn
df = sns.load_dataset("tips")
print(df.head())
#lineplot
sns.lineplot(x="total\_bill", y="tip", hue="size", style="time", data=df,ax=ax[0]).set\_title("Line Plot")
#scatterplot
Sct_plt=sns.scatterplot(x="total_bill", y="tip", hue="size", style="time", data=df, ax=ax[1]).set_title("Scatter Plot")
#Saving Plot
Sct_plt.figure.savefig('Scatter_plot1.png')
print('Plot Saved')
\overline{z}
        total_bill
                      tip
                               sex smoker
                                            day
                                                   time size
              16.99
                    1.01
                            Female
                                            Sun
                                                 Dinner
                                       No
              10.34
                     1.66
                              Male
                                        No
                                            Sun
                                                 Dinner
                                       No
              21.01
                     3.50
                              Male
                                            Sun
                                                 Dinner
     3
              23.68 3.31
                              Male
                                       No
                                            Sun
                                                 Dinner
                                                             2
     4
              24.59
                     3.61
                           Female
                                       No
                                            Sun
                                                 Dinner
     Plot Saved
                                                                                                 Scatter Plot
```



```
#II. Categorical Plots
#Plots are basically used for visualizing the relationship between variables.
#Variables can be either be completely numerical or a category like a group, class or division.
sns.set_style('darkgrid')
fig, ax =plt.subplots(nrows=5,ncols=2)
fig.set_size_inches(18.5, 10.5)
#Data
# 'tips' dataset contains information about people who probably had food at a restaurant
# whether or not they left a tip for the waiters, their gender, whether they smoke and so on.
df = sns.load dataset('tips')
#barplot - basically used to aggregate the categorical data according to some methods and by default its the mean
sns.barplot(x = 'sex', y = 'total\_bill', data = df,palette = 'plasma', estimator = np.std,ax=ax[0,0]).set\_title('Bar Plot')
#countplot -Counts the categories and returns a count of their occurrences
sns.countplot(x ='sex', data = df,ax=ax[0,1]).set_title('Count Plot')
#boxplot - known as the box and whisker plot.
#It shows the distribution of the quantitative data that represents the comparisons between variables
sns.boxplot(x ='day', y ='total_bill', data = df, hue ='smoker',ax=ax[1,0]).set_title('Box Plot')
# Similar to the boxplot except that it provides a higher, more advanced visualization
\# Uses the kernel density estimation to give a better description about the data distribution.
sns.violinplot(x = 'day', y = 'total\_bill', data = df, hue = 'sex', split = True, ax = ax[1,1]).set\_title('Violin Plot')
#Stripplot - scatter plot based on the category
sns.stripplot(x ='day', y ='total_bill', data = df, jitter = True, hue ='smoker', dodge = True,ax=ax[2,0]).set_title('Strip Plot')
#Swarmplot-similar to stripplot except the fact that the points are adjusted so that they do not overlap.
sns.swarmplot(x ='day', y ='total_bill', data = df,ax=ax[2,1]).set_title('Swarm Plot')
#Combining the idea of a violin plot and a stripplot to form this plot
sns.violinplot(x = 'day', y = 'total_bill', data = df,ax=ax[3,0])
sns.swarmplot(x = 'day', y = 'total\_bill', data = df, color = 'black', ax = ax[3,0]).set\_title('Combined Plot')
# Density Plot
sns.kdeplot(df['tip'], df['total_bill'],ax=ax[3,1])
sns.boxenplot(x="day", y="total_bill",color="b", scale="linear", data=df,ax=ax[4,0])
#Ridgeplot
sns.pointplot(x="day", y="total_bill",color="b", hue="sex", data=df,ax=ax[4,1])
#General plot - provides a parameter called 'kind' to choose the kind of plot ,better that writing the plots separately.
#The kind parameter can be bar, violin, swarm etc.
sns.catplot(x ='day', y ='total_bill', data = df, kind ='bar')
```


III. Distribution plots in seaborn is used for examining univariate and bivariate distributions. 4 main types of distribution plots:

joinplot distplot pairplot rugplot

```
sns.set style('whitegrid')
#Data - 'iris'
df = sns.load_dataset('iris')
print(df.head())
#Displot- used for univariant set of observations and visualizes it through a histogram
#i.e. only one observation and hence we choose one particular column of the dataset.
#KDE is a way to estimate the probability density function (PDF) of the random variable that "underlies" the sample.
#KDE is a means of data smoothing.
#bins is used to set the number of bins you want in your plot and it actually depends on your dataset.
#color is used to specify the color of the plot
sns.distplot(df['petal_length'], kde = True, color ='red', bins = 30).set_title('Dist Plot')
#Joinplot/jointgrid- draw a plot of two variables with bivariate and univariate graphs. It basically combines two different plots.
#Plot a bi-variate distribution along with marginal distributions in the same plot
#Joint Distribution of two variables can be visualised using scatter plot/regplot or kdeplot.
#Marginal Distribution of variables can be visualised by histograms and/or kde plot
#KDE shows the density where the points match up the most
#The Axes-level function to use for joint distribution must be passed to JointGrid.plot joint().
#The Axes-level function to use for marginal distribution must be passed to JointGrid.plot_marginals()
jointgrid = sns.JointGrid(x='petal_length', y='petal_width', data=df)
jointgrid.plot_joint(sns.scatterplot)
jointgrid.plot_marginals(sns.distplot)
#jointplot() to plot bi-variate distribution along with marginal distributions.
#It uses JointGrid() and JointGrid.plot_joint() in the background.
g=sns.jointplot(x = 'petal_length',y = 'petal_width',data = df,kind = 'hex')
g.fig.suptitle('Joint Plot')
#Pairplot- pairwise relation across the entire dataframe
#hue sets up the categorical separation between the entries in the dataset.
#palette is used for designing the plots.
g=sns.pairplot(df, hue ="species", palette ='coolwarm')
g.fig.suptitle("Pair Plot 1")
g.add_legend()
#PairGrid() - creates Axes for each pair of variables
#PairGrid.map() - draws the plot on each Axes using data corresponding to that pair of variables
pairgrid = sns.PairGrid(data=df)
pairgrid = pairgrid.map_offdiag(sns.scatterplot)
pairgrid = pairgrid.map_diag(plt.hist)
#Different kind of plots on Upper Triangular Axes, Diagonal Axes and Lower Triangular Axes.
pairgrid = sns.PairGrid(data=df)
pairgrid = pairgrid.map_upper(sns.scatterplot)
pairgrid = pairgrid.map_diag(plt.hist)
pairgrid = pairgrid.map_lower(sns.kdeplot)
#Avoid Redundancy
g = sns.PairGrid(df, diag_sharey=False, corner=True)
g.map lower(sns.scatterplot)
g.map diag(sns.kdeplot)
```


□ LABSHEET 12

Load the Pacakges

To get started, open a Colab notebook and load the Pandas, Matplotlib, and Wordcloud packages.

import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud

Mount the drive and read the CSV file from the drive.

Here we are going to use netflix_titles.csv dataset downloaded from kaggle.

Since it is text visualization we are going to consider only one column.

from google.colab import drive

from wordcloud import STOPWORDS

drive.mount('/content/drive/')

→ Mounted at /content/drive/

df=pd.read_csv('/content/drive/My Drive/Data/netflix_titles.csv', usecols=['cast'])
df.head()

Perform Prepeocessing to remove the records containing NaN

ndf=df.dropna()
ndf.head()

→

cast

- Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban...
 Sami Bouaiila. Tracy Gotoas. Samuel Jouy. Nabi...
- 2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...
- 4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K...
- Kate Siegel, Zach Gilford, Hamish Linklater, H...Vanessa Hudgens, Kimiko Glenn, James Marsden, ...

The wordcloud package requires single string instead of column.

Joining the all text data of the coloumn 'cast' to single string to make text visualization easy

text = " ".join(item for item in ndf['cast'])
print(text)

🛨 Ama Qamata, Khosi Ngema, Gail Mabalane, Thabang Molaba, Dillon Windvogel, Natasha Thahane, Arno Greeff, Xolile Tshabalala, Getmore

Sometimes, there will be words in your dataframe that are insignificant and don't add any insight. We can take these out using the STOPWORDS module which is included in Wordcloud.

stopwords = set(STOPWORDS)

Create a basic word cloud

TextVisualization.ipynb - Colab

By instantiating WordCloud and then appending generate(text), we can pass in our big list of words and WordCloud will calculate the word frequencies, and determine the sizes, and colours of each of the words shown based on their frequencies within the text.

The other bits of Matplotlib code turn off the axes and ticks to make the word cloud look a bit neater.

```
wordcloud = WordCloud(background_color="white").generate(text)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.margins(x=0, y=0)
plt.show()

Tom

Tom

Singh

Jonathan

Jonathan

Anthony

Anthony
```


wordcloud = WordCloud(background_color="white";

```
max_words=100,
max_font_size=300,
width=800,
height=500,
colormap="magma"
).generate(text)

=(20,20))
ud, interpolation='biline:
```

```
plt.figure(figsize=(20,20))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.margins(x=0, y=0)
plt.savefig("cloud.jpg", format="jpg")
plt.show()
```


□ LABSHEET 13

A time series is the series of data points listed in time order.

A time series is a sequence of successive equal interval points in time.

A time-series analysis consists of methods for analyzing time series data in order to extract meaningful insights and other useful characteristics of data.

For performing time series analysis download stock_data.csv

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

reading the dataset using read_csv
df = pd.read_csv(r"stock_data.csv")
displaying the first five rows of dataset
df.head()

$\overline{\Rightarrow}$		Date	0pen	High	Low	Close	Volume	Name
	0	1/3/2006	39.69	41.22	38.79	40.91	24232729	AABA
	1	1/4/2006	41.22	41.90	40.77	40.97	20553479	AABA
	2	1/5/2006	40.93	41.73	40.85	41.53	12829610	AABA
	3	1/6/2006	42.88	43.57	42.80	43.21	29422828	AABA
	4	1/9/2006	43 10	43.66	42 82	43 42	16268338	AARA

We have used the 'parse_dates' parameter in the read_csv function to convert the 'Date' column to the DatetimeIndex format.

By default, Dates are stored in string format which is not the right format for time series data analysis.

Now, removing the unwanted columns from dataframe i.e. 'Unnamed: 0'.

Example 1: Plotting a simple line plot for time series data.

df['Volume'].plot()

Example 2: Now let's plot all other columns using subplot.

df.plot(subplots=True, figsize=(10, 12))

Resampling: Resampling is a methodology of economically using a data sample to improve the accuracy and quantify the uncertainty of a population parameter. Resampling for months or weeks and making bar plots is another very simple and widely used method of finding seasonality. Here we are going to make a bar plot of month data for 2016 and 2017.

Example 3:

Differencing: Differencing is used to make the difference in values of a specified interval. By default, it's one, we can specify different values for plots. It is the most popular method to remove trends in the data.

df.Low.diff(2).plot(figsize=(10, 6))

df.High.diff(2).plot(figsize=(10, 6))

Plotting the Changes in Data

We can also plot the changes that occurred in data over time. There are a few ways to plot changes in data.

Shift: The shift function can be used to shift the data before or after the specified time interval. We can specify the time, and it will shift the data by one day by default. That means we will get the previous day's data. It is helpful to see previous day data and today's data simultaneously side by side.

```
df['Change'] = df.Close.div(df.Close.shift())
df['Change'].plot(figsize=(10, 8), fontsize=16)
```


.div() function helps to fill up the missing data values.

Actually, div() means division.

If we take df. div(6) it will divide each element in df by 6.

We do this to avoid the null or missing values that are created by the 'shift()' operation.

Double-click (or enter) to edit