MSMS 101

Statistical Inference: Point Estimation

Assignments

- 1. Show that the sample mean is a consistent estimator of θ in $N(\theta, 1)$ population.
- 2. Suppose we have a statistic T_n whose mean differs from θ by an order of $\frac{1}{n}$ and whose variance is of order $\frac{1}{n}$ and it tends to normality as $n \to \infty$. Then $\frac{T_n \theta}{\sqrt{n}} \stackrel{P}{\to} 0$ and T_n is a consistent estimator of θ .
- 3. Show that the sample mean is not a consistent estimator of θ in Cauchy population, although the sample median is.
- 4. Show that the sample variance is a consistent estimator of σ^2 in $N(\mu, \sigma^2)$ population.
- 5. Consider a random samle of size n from $N(\mu, \sigma^2)$ population where σ^2 is known. Obtain the MVBUE of μ .
- 6. Suppose $X_1, X_2, \dots X_n$ is a random sample from $N(\mu, \sigma^2)$ where μ is known. Obtain the MVBUE of σ^2 .
- 7. Consider a random sample of size n from Binomial(k, p) population where k is known. Obtain the MVBUE of p.
- 8. Suppose $X_1, X_2, ... X_n$ is a random sample from Poisson(λ) population. Obtain the MVBUE of λ .
- 9. Suppose $X_1, X_2, \dots X_n$ is a random sample from Cauchy (μ, λ) population where λ is known. Obtain the MVBUE of μ .
- 10. Suppose X_1, X_2 be a random sample of size 2 from Poisson(λ). Show that $X_1 + X_2$ is a sufficient for λ but $X_1 + 2X_2$ is not.
- 11. Consider a random sample of size n from an Exponential distribution with mean θ . Obtain the UMVUE of $e^{-\frac{t}{\theta}}$, $t \in \mathbb{R}^+$.
- 12. Suppose $f(x; \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} \cdot \exp\left\{-\frac{1}{2} \cdot \frac{(x-\theta_1)^2}{\theta_2}\right\}, \ x \in \mathbb{R}.$

Consider a random sample of size n from $f(\cdot)$. Obtain the CRLBs for unbiased estimators of θ_1 and θ_2 .

13. Suppose X be a random sample of size 1 from a population with PMF

$$P(X = x) = p(1 - p)^x; x = 0, 1, 2, 3, \dots$$

1

Obtain lower bounds to the variance of an unbiased estimator of p.

- 14. Suppose $X_1, X_2, \dots X_n$ is a random sample from $N(\mu, \sigma^2)$ where σ^2 is known. Show that the statistic $T(\underline{X}) = \overline{X}$ is complete.
- 15. Suppose $X_1, X_2, ... X_n$ is a random sample from $N(\mu, \sigma^2)$ where μ is known. Show that the statistic $T(X) = \sum_{i=1}^{n} (X_i \mu)^2$ is complete.
- 16. Consider a random sample of size n from Binomial(k, p) population where k is known. Obtain the MLE of p.
- 17. Suppose $X_1, X_2, \dots X_n$ is a random sample from Poisson(λ) population. Obtain the MLE of λ .
- 18. Consider a random samle of size n from $N(\mu, \sigma^2)$ population where σ^2 is known. Obtain the MLE of μ .
- 19. Suppose $X_1, X_2, \dots X_n$ is a random sample from $N(\mu, \sigma^2)$ where μ is known. Obtain the MLE of σ^2 .
- 20. Suppose $X_1, X_2, \dots X_n$ is a random sample from $N(\mu, \sigma^2)$ where both mean and variance are unknown. Obtain the MLE of the parameters μ and σ^2 .
- 21. Let $f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}I_{(0,\infty)}(x)$.

 $X_1, X_2, \dots X_n$ be a random sample from $f(\cdot)$. Obtain the MLE of θ .