

实变函数

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第1章	集合与点集
1.1	集合之间的运算
1.2	映射与基数
1.3	\mathbb{R}^n 中点与点之间的距离·点集的极限点
	1.3.1 点集的直径、点的 (球) 邻域、矩体
	1.3.2 点集的极限点 1
1.4	\mathbb{R}^n 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集
	1.4.1 闭集 1
	1.4.2 开集 1
	1.4.3 Borel 集
	1.4.4 Cantor(三分) 集
1.5	点集间的距离 2
第2章	Lebesgue 测度
2.1	点集的 Lebesgue 外测度 2
2.2	可测集与测度 3
2.3	可测集与 Borel 集的关系

第1章 集合与点集

1.1 集合之间的运算

定理 1.1

设有集合 A, B 与 C, 则

(i) 交换律:

 $A \cup B = B \cup A$, $A \cap B = B \cap A$;

(ii) 结合律:

 $A \cup (B \cup C) = (A \cup B) \cup C,$ $A \cap (B \cap C) = (A \cap B) \cap C;$

(iii) 分配律:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

定义 1.1 (集族的并和交)

设有集合族 $\{A_{\alpha}\}_{\alpha\in I}$, 我们定义其并集与交集如下:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{x : 存在\alpha \in I, x \in A_{\alpha}\} = \{x : \exists \alpha \in I \text{ s.t. } x \in A_{\alpha}\},$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{x : 対一切\alpha \in I, x \in A_{\alpha}\} = \{x : \forall \alpha \in I, x \in A_{\alpha}\}.$$

定理 1.2

- (1) 广义交换律和结合律: 当一个集合族被分解 (以任何方式) 为许多子集合族时, 那么先作子集合族中各集合的并集, 然后再作各并集的并集, 仍然得到原集合族的并, 而且作并集时与原有的顺序无关. 当然, 对于交的运算也是如此.
- (2) 分配律:

(i)
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha});$$

(ii) $A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$
(3) $\bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha}).$

(1)

(2)

(3) 对 $\forall x \in \bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha}$, 存在 $\alpha_{x} \in I$, 使 $x \in A_{\alpha_{x}}$, 并且 $x \notin B_{\alpha}$, $\forall \alpha \in I$. 从而 $x \in A_{\alpha_{x}} \setminus B_{\alpha_{x}} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha})$. 故 $\bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha})$.

定义 1.2

设 A, B 是两个集合, 称 $\{x : x \in A, x \notin B\}$ 为 $A \subseteq B$ 的**差集**, 记作 A = B 或 $A \setminus B$.

在上述定义中, 当 $B \subset A$ 时, 称 A - B 为集合 B 相对于集合 A 的**补集**或**余集**.

通常,在我们讨论问题的范围内,所涉及的集合总是某个给定的"大"集合 X 的子集,我们称 X 为全集.此时,集合 B 相对于全集 X 的补集就简称为 B 的补集或余集,并记为 B^c 或 CB,即

$$B^c = X - B$$
.

今后, 凡没有明显标出全集 X 时, 都表示取补集运算的全集 X 预先已知, 而所讨论的一切集合皆为其子集. 于是 B^c 也记为

$$B^c = \{ x \in X : x \notin B \}.$$

命题 1.1 (集合的差与补的基本性质)

- (1) $A \cup A^c = X, A \cap A^c = \emptyset, (A^c)^c = A, X^c = \emptyset, \emptyset^c = X.$
- (2) $A B = A \cap B^{c}$.
- (3) $\exists A \supset B$, $\bigcup A^c \subset B^c$; $\exists A \cap B = \emptyset$, $\bigcup A \subset B^c$.
- (4) $A B^c = B A^c$.

证明

- (1)
- (2)
- (3)
- $(4) \ x \in A B^c \Longleftrightarrow x \in A \, \exists \, x \notin B^c \Longleftrightarrow x \in A \, \exists \, x \in B \iff x \in B \, \exists \, x \notin A^c \Longleftrightarrow x \in B A^c.$

定理 1.3 (De Morgan 法则)

$$\text{(i)} \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c}; \qquad \text{(ii)} \left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}.$$

证明 以 (i) 为例. 若 $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$,则 $x \notin \bigcup_{\alpha \in I} A_{\alpha}$,即对一切 $\alpha \in I$,有 $x \notin A_{\alpha}$. 这就是说,对一切 $\alpha \in I$,有 $x \in A_{\alpha}^{c}$. 故得 $x \in \bigcap A_{\alpha}^{c}$.

反之, 若 $x \in \bigcap_{\alpha \in I} A_{\alpha}^{c}$, 则对一切 $\alpha \in I$, 有 $x \in A_{\alpha}^{c}$, 即对一切 $\alpha \in I$, 有 $x \notin A_{\alpha}$. 这就是说,

$$x\notin\bigcup_{\alpha\in I}A_\alpha,\quad x\in\left(\bigcup_{\alpha\in I}A_\alpha\right)^c.$$

定义 1.3 (集合的对称差)

设 A, B 为两个集合, 称集合 $(A \setminus B) \cup (B \setminus A)$ 为 $A \in B$ 的**对称差集**, 记为 $A \triangle B$.

命题 1.2 (集合的对称差的基本性质)

- (i) $A \triangle \emptyset = A, A \triangle A = \emptyset, A \triangle A^c = X, A \triangle X = A^c$.
- (ii) 交換律: $A \triangle B = B \triangle A$.
- (iii) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.

(iv) 交与对称差满足分配律:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

- (v) $A^c \triangle B^c = A \triangle B$; $A = A \triangle B$ 当且仅当 $B = \emptyset$.
- (vi) 对任意的集合 A 与 B, 存在唯一的集合 E, 使得 $E \triangle A = B$ (实际上 $E = B \triangle A$).

定义 1.4 (递增、递减集合列)

设 $\{A_k\}$ 是一个集合列. 若

$$A_1 \supset A_2 \supset \cdots \supset A_k \supset \cdots$$

则称此集合列为**递减集合列**, 此时称其交集 $\bigcap_{k=1}^{\infty} A_k$ 为集合列 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$; 若 $\{A_k\}$ 满足

$$A_1 \subset A_2 \subset \cdots \subset A_k \subset \cdots$$

则称 $\{A_k\}$ 为**递增集合列**, 此时称其并集 $\bigcup_{k=1}^{\infty} A_k$ 为 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$.

命题 1.3

1. 当 $\{A_k\}$ 为递减集合列时, $\lim_{k\to\infty}A_k=\bigcap_{k=1}^\infty A_k = \bigcap_{k=N}^\infty A_k (\forall N\in\mathbb{N})$.

2. 当 $\{A_k\}$ 为递增集合列时, $\lim_{k\to\infty}A_k=\bigcup_{k=1}^\infty A_k \in \mathbb{N}$.

证明

1. 对 $\forall N \in \mathbb{N}$, 一方面, 由 $\bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{N-1} A_k \cap \bigcap_{k=N}^{\infty} A_k$ 可知 $\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=N}^{\infty} A_k$. 另一方面, 由 $\{A_k\}$ 为递减集合列可得

$$A_1 \supset A_2 \supset \cdots \supset A_{N-1} \supset A_k, \forall k = N, N+1, \cdots$$

因此
$$\bigcap_{k=1}^{N-1} A_k \supset \bigcap_{k=N}^{\infty} A_k$$
, 故再根据 $\bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{N-1} A_k \cap \bigcap_{k=N}^{\infty} A_k$ 可知 $\bigcap_{k=1}^{\infty} A_k \supset \bigcap_{k=N}^{\infty} A_k$.

2. 对 $\forall N \in \mathbb{N}$, 一方面, 由 $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{N-1} A_k \cup \bigcup_{k=N}^{\infty} A_k$ 可知 $\bigcup_{k=1}^{\infty} A_k \supset \bigcup_{k=N}^{\infty} A_k$. 另一方面, 由 $\{A_k\}$ 为递增集合列可得

$$A_1 \subset A_2 \subset \cdots \subset A_{N-1} \subset A_N$$
.

因此 $\bigcup_{k=1}^{N-1} A_k \subset A_N \subset \bigcup_{k=N}^{\infty} A_k$, 故再根据 $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{N-1} A_k \cup \bigcup_{k=N}^{\infty} A_k$ 可知 $\bigcup_{k=1}^{\infty} A_k \subset \bigcup_{k=N}^{\infty} A_k$.

定义 1.5 (上、下极限集)

设 $\{A_k\}$ 是一集合列,令

$$B_j = \bigcup_{k=j}^{\infty} A_k \quad (j=1,2,\cdots),$$

显然有 $B_j \supset B_{j+1}(j = 1, 2, \cdots)$. 我们称

$$\lim_{k \to \infty} B_k = \bigcap_{j=1}^{\infty} B_j = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$$

为集合列 $\{A_k\}$ 的上极限集, 简称为上限集, 记为

$$\overline{\lim}_{k\to\infty} A_k = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k.$$

类似地, 称集合 $\bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k$ 为集合列 $\{A_k\}$ 的**下极限集**, 简称为**下限集**, 记为

$$\lim_{k\to\infty}A_k=\bigcup_{j=1}^{\infty}\bigcap_{k=j}^{\infty}A_k.$$

若上、下限集相等,则说 $\{A_k\}$ 的极限集存在并等于上限集或下限集,记为 $\lim_{k\to\infty}A_k$.

命题 1.4 (上、下极限集的性质)

设 $\{A_k\}$ 是一集合列,E是一个集合则

$$(i)E \setminus \overline{\lim}_{k \to \infty} A_k = \underline{\lim}_{k \to \infty} (E \setminus A_k); \quad (ii)E \setminus \underline{\lim}_{k \to \infty} A_k = \overline{\lim}_{k \to \infty} (E \setminus A_k).$$

定理 1.4

若 $\{A_k\}$ 为一集合列,则

$$(i)\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k=\{x: 对任一自然数j, 存在k(k\geqslant j), x\in A_k\}=\{x: \forall j\in\mathbb{N}, \exists k\geqslant j \, \text{且} k\in\mathbb{N} \text{ s.t. } x\in A_k\}$$

(ii)
$$\lim_{k\to\infty}A_k=\bigcup_{j=1}^\infty\bigcap_{k=j}^\infty A_k=\{x:$$
 存在自然数 $j_0,$ 当 $k\geqslant j_0$ 时, $x\in A_k\}=\{x:\exists j_0\in\mathbb{N}, \forall k\geqslant j_0$ 且 $k\in\mathbb{N}, x\in A_k\}$

并且我们有

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

证明 以 (ii) 为例. 若 $x \in \underline{\lim}_{k \to \infty} A_k$, 则存在自然数 j_0 , 使得

$$x\in\bigcap_{k=j_0}^\infty A_k,$$

从而当 $k \ge j_0$ 时,有 $x \in A_k$. 反之,若存在自然数 j_0 ,当 $k \ge j_0$ 时,有 $x \in A_k$,则得到

$$x \in \bigcap_{k=i_0}^{\infty} A_k$$
.

由此可知 $x \in \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k = \lim_{k \to \infty} A_k$.

由 (i) (ii) 可知, $\{A_k\}$ 的上限集是由属于 $\{A_k\}$ 中无穷多个集合的元素所形成的; $\{A_k\}$ 的下限集是由只不属于 $\{A_k\}$ 中有限多个集合的元素所形成的. 从而立即可知

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

定义 1.6 (直积集)

设 X,Y 是两个集合, 称一切有序"元素对"(x,y)(其中 $x \in X, y \in Y$) 形成的集合为 X 与 Y 的**直积集**, 记为 $X \times Y$, 即

$$X \times Y = \{(x, y) : x \in X, y \in Y\},\$$

其中 (x, y) = (x', y') 是指 $x = x', y = y'.X \times X$ 也记为 X^2 .

1.2 映射与基数

定义 1.7 (映射的像集)

对于 $f: X \to Y$ 以及 $A \subset X$, 我们记

$$f(A) = \{ y \in Y : x \in A, y = f(x) \},$$

并称 f(A) 为集合 A 在映射 f 下的 (映) **像集** ($f(\emptyset) = \emptyset$).

命题 1.5 (映射的像集的基本性质)

对于 $f: X \to Y$, 我们有

(i)
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right) = \bigcup_{\alpha\in I}f(A_{\alpha})\left(A_{\alpha}\in X, \alpha\in I\right)$$

(i)
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right) = \bigcup_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X, \alpha\in I);$$

(ii) $f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X, \alpha\in I).$

定义 1.8 (映射的原像集)

对于 $f: X \to Y$ 以及 $B \subset Y$, 我们记

$$f^{-1}(B) = \{ x \in X : f(x) \in B \},\$$

并称 $f^{-1}(B)$ 为 B 关于 f 的**原像集**.

命题 1.6 (映射的原像集的基本性质)

对于 $f: X \to Y$, 我们有

(i) $\not\exists B_1 \subset B_2$, 则 $f^{-1}(B_1) \subset f^{-1}(B_2)(A \subset Y)$;

(ii)
$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})(B_{\alpha}\subset Y,\alpha\in I);$$

(iii)
$$f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(B_{\alpha})(B_{\alpha}\subset Y,\alpha\in I);$$

(iv)
$$f^{-1}(B^c) = (f^{-1}(B))^c (B \subset Y)$$
.

定义 1.9 (示性函数)

一般地,对于X中的子集A,我们作

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \setminus A, \end{cases}$$

且称 $\chi_A: X \to \mathbb{R}$ 是定义在 X 上的 A 的特征函数或示性函数.

命题 1.7 (示性函数的基本性质)

对于X中的子集A,B,我们有

- (i) $A \neq B$ 等价于 $\chi_A \neq \chi_B$.
- (ii) $A \subset B$ 等价于 $\chi_A(x) \leq \chi_B(x)$.
- (iii) $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$.

- (iv) $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$.
- (v) $\chi_{A \setminus B}(x) = \chi_A(x)(1 \chi_B(x)).$
- (vi) $\chi_{A \triangle B}(x) = |\chi_A(x) \chi_B(x)|$.

定义 1.10 (幂集)

设 X 是一个非空集合, 由 X 的一切子集 (包括 \emptyset, X 自身) 为元素形成的集合称为 X 的**幂集**, 记为 $\mathcal{P}(X)$.

\$

笔记 例如,由n个元素形成的集合 E 之幂集 $\mathcal{P}(E)$ 共有 2^n 个元素.

例题 1.1 单调映射的不动点 设 X 是一个非空集合, 且有 $f: \mathcal{P}(X) \to \mathcal{P}(X)$. 若对 $\mathcal{P}(X)$ 中满足 $A \subset B$ 的任意 A, B, 必有 $f(A) \subset f(B)$, 则存在 $T \subset \mathcal{P}(X)$, 使得 f(T) = T.

证明 作集合 S,T:

$$S = \{A : A \in \mathcal{P}(X) \ \mathbb{L}A \subset f(A)\},\$$

$$T = \bigcup_{A \in S} A(\in \mathcal{P}(X)),\$$

则有 f(T) = T.

事实上, 因为由 $A \in S$ 可知 $A \subset f(A)$, 从而由 $A \subset T$ 可得 $f(A) \subset f(T)$. 根据 $A \in S$ 推出 $A \subset f(T)$, 这就导致

$$\bigcup_{A \in S} A \subset f(T), \quad T \subset f(T).$$

另一方面, 又从 $T \subset f(T)$ 可知 $f(T) \subset f(f(T))$. 这说明 $f(T) \in S$, 我们又有 $f(T) \subset T$.

定义 1.11 (集合之间的对等关系)

设有集合 A 与 B. 若存在一个从 A 到 B上的一一映射,则称集合 A 与 B 对等,记为 $A \sim B$.

命题 1.8 (对等关系的基本性质)

设有集合A 与 B,则

- (i) $A \sim A$;
- (ii) 若 $A \sim B$, 则 $B \sim A$;
- (iii) 若 $A \sim B, B \sim C$, 则 $A \sim C$.

引理 1.1 (映射分解定理)

若有 $f: X \to Y, g: Y \to X$, 则存在分解

$$X = A \cup A^{\sim}, \quad Y = B \cup B^{\sim},$$

其中 $f(A) = B, g(B^{\sim}) = A^{\sim}, A \cap A^{\sim} = \emptyset$ 以及 $B \cap B^{\sim} = \emptyset$.

证明 对于 X 中的子集 E(不妨假定 $Y \setminus f(E) \neq \varnothing)$, 若满足

$$E \cap g(Y \setminus f(E)) = \emptyset,$$

则称 E 为 X 中的分离集. 现将 X 中的分离集的全体记为 Γ , 且作其并集

$$A = \bigcup_{E \in \Gamma} E.$$

我们有 $A \in \Gamma$. 事实上, 对于任意的 $E \in \Gamma$, 由于 $A \supset E$, 故从

$$E \cap g(Y \setminus f(E)) = \emptyset$$

可知 $E \cap g(Y \setminus f(A)) = \emptyset$, 从而有 $A \cap g(Y \setminus f(A)) = \emptyset$. 这说明 $A \in X$ 中的分离集且是 Γ 中最大元.

现在令 $f(A) = B,Y \setminus B = B^{\sim}$ 以及 $g(B^{\sim}) = A^{\sim}$. 首先知道

$$Y = B \cup B^{\sim}$$
.

其次, 由于 $A \cap A^{\sim} = \emptyset$, 故又易得 $A \cup A^{\sim} = X$. 事实上, 若不然, 那么存在 $x_0 \in X$, 使得 $x_0 \notin A \cup A^{\sim}$. 现在作 $A_0 = A \cup \{x_0\}$, 我们有

$$B = f(A) \subset f(A_0), \quad B^{\sim} \supset Y \setminus f(A_0),$$

从而知 $A^{\sim} \supset g(Y \setminus f(A_0))$. 这就是说, $A \supset g(Y \setminus f(A_0))$ 不相交. 由此可得

$$A_0 \cap g(Y \setminus f(A_0)) = \emptyset$$
.

这与A是 Γ 的最大元相矛盾.

定理 1.5 (Cantor - Bernstein 定理)

若集合X与Y的某个真子集对等,Y与X的某个真子集对等,则 $X \sim Y$.

笔记 特例: 设集合 A, B, C 满足下述关系:

 $C \subset A \subset B$.

若 $B \sim C$, 则 $B \sim A$.

证明 由题设知存在单射 $f: X \to Y$ 与单射 $g: Y \to X$, 根据映射分解定理知

$$X = A \cup A^{\sim}$$
, $Y = B \cup B^{\sim}$, $f(A) = B$, $g(B^{\sim}) = A^{\sim}$.

注意到这里的 $f: A \to B$ 以及 $g^{-1}: A^{\sim} \to B^{\sim}$ 是一一映射, 因而可作 X 到 Y 上的一一映射 F:

$$F(x) = \begin{cases} f(x), & x \in A, \\ g^{-1}(x), & x \in A^{\sim}. \end{cases}$$

这说明 $X \sim Y$.

定义 1.12 (集合的基数 (或势))

设 A,B 是两个集合, 如果 $A\sim B$, 那么我们就说 A 与 B 的**基数** (cardinal number) 或**势**是相同的, 记为 $\overline{A}=\overline{B}$. 可见, 凡是互相对等的集合均具有相同的基数.

如果用 α 表示这一相同的基数, 那么 $\overline{A} = \alpha$ 就表示 A 属于这一对等集合族. 对于两个集合 A 与 B, 记 $\overline{A} = \alpha$, $\overline{B} = \beta$. 若 A 与 B 的一个子集对等, 则称 α 不大于 β , 记为

$$\alpha \leqslant \beta$$
.

$$\alpha < \beta \quad (\check{\mathfrak{A}}\beta > \alpha).$$

显然, 若 $\alpha \leq \beta$ 且 $\beta \leq \alpha$, 则由Cantor - Bernstein 定理可知 $\alpha = \beta$.

定义 1.13 (有限集与无限集)

设 A 是一个集合. 如果存在自然数 n, 使得 $A \sim \{1, 2, \cdots, n\}$, 则称 A 为**有限集**, 且用同一符号 n 记 A 的基数. 由此可见, 对于有限集来说, 其基数可以看作集合中元素的数 B . 若一个集合不是有限集, 则称为**无限集**. 下面我们着重介绍无限集中若干重要且常见的基数.

<u>定义 1.14 (自然</u>数集 № 的基数・可列集)

记自然数集 \mathbb{N} 的基数为 \aleph_0 (读作阿列夫 (Aleph, 希伯来文) 零). 若集合 A 的基数为 \aleph_0 , 则 A 叫作**可列集**. 这是由于 $\mathbb{N} = \{1, 2, \cdots, n, \cdots\}$, 而 $A \sim \mathbb{N}$, 故可将 A 中元素按一一对应关系以自然数次序排列起来, 附以下

标,就有

$$A = \{a_1, a_2, \cdots, a_n, \cdots\}.$$

定理 1.6

任一无限集 E 必包含一个可列子集.

0

全 笔记 这个定理说明,在众多的无限集中,最小的基数是 №
0.

证明 任取 E 中一元, 记为 a_1 ; 再从 $E\setminus\{a_1\}$ 中取一元, 记为 a_2,\dots 设已选出 a_1,a_2,\dots,a_n . 因为 E 是无限集, 所以

$$E \setminus \{a_1, a_2, \cdots, a_n\} \neq \emptyset.$$

于是又从 $E \setminus \{a_1, a_2, \dots, a_n\}$ 中可再选一元,记为 a_{n+1} .这样,我们就得到一个集合

$$\{a_1, a_2, \cdots, a_n, a_{n+1}, \cdots\}.$$

这是一个可列集且是E的子集.

定理 1.7

设 A 是无限集且其基数为 α . 若 B 是至多可列集, 则 $A \cup B$ 的基数仍为 α .

证明 不妨设 $B = \{b_1, b_2, \dots\}, A \cap B = \emptyset, 且$

$$A = A_1 \cup A_2, \quad A_1 = \{a_1, a_2, \cdots\}.$$

我们作映射 f 如下:

$$f(a_i) = a_{2i}, \quad a_i \in A_1;$$

$$f(b_i) = a_{2i-1}, b_i \in B;$$

$$f(x) = x$$
, $x \in A_2$.

显然,f 是 $A \cup B$ 到 A 上的一一映射.

定理 1.8

集合 A 为无限集的充要条件是 A 与其某真子集对等.

m

证明 因为有限集是不与其真子集对等的,所以充分性是成立的.现在取A中一个非空有限子集B,则由定理1.7立即可知

$$\overline{\overline{A}} = \overline{\overline{((A \setminus B) \cup B)}} = \overline{\overline{(A \setminus B)}}.$$

故 $A \sim (A \setminus B)$.

定理 1.9

 $[0,1] = \{x: 0 \le x \le 1\}$ 不是可数集.

 \sim

证明 只需讨论 (0,1]. 为此,采用二进位制小数表示法:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},$$

其中 a_n 等于 0 或 1, 且在表示式中有无穷多个 a_n 等于 1. 显然,(0,1] 与全体二进位制小数一一对应.

若在上述表示式中把 $a_n=0$ 的项舍去,则得到 $x=\sum_{i=1}^{\infty}2^{-n_i}$,这里的 $\{n_i\}$ 是严格上升的自然数数列. 再令

$$k_1 = n_1, \quad k_i = n_i - n_{i-1}, \quad i = 2, 3, \cdots,$$

则 $\{k_i\}$ 是自然数子列. 把由自然数构成的数列的全体记为 \mathcal{H} ,则 $\{0,1\}$ 与 \mathcal{H} ——对应.

现在假定(0,1]是可数的,则 光是可数的,不妨将其全体排列如下:

但这是不可能的,因为 $(k_1^{(1)}+1,k_2^{(2)}+1,\cdots,k_i^{(i)}+1,\cdots)$ 属于 \mathcal{H} , 而它并没有被排列出来. 这说明 \mathcal{H} 是不可数的,也就是说 (0,1] 是不可数集.

定义 1.15 (聚 的基数 · 不可数集)

我们称 (0,1] 的基数为**连续基数**, 记为 c(或 $\mathbb{N}_1)$.

拿 笔记 易知 ℝ = c = **%**₁.

定理 1.10

设有集合列 $\{A_k\}$. 若每个 A_k 的基数都是连续基数,则其并集 $\bigcup_{k=1}^{\infty}A_k$ 的基数是连续基数.

证明 不妨假定 $A_i \cap A_i = \emptyset (i \neq j)$, 且 $A_k \sim [k, k+1)$, 我们有

$$\bigcup_{k=1}^{\infty} A_k \sim [1, +\infty) \sim \mathbb{R}.$$

定理 1.11 (无最大基数定理)

若 A 是非空集合,则 A 与其幂集 $\mathcal{P}(A)$ (由 A 的一切子集所构成的集合族) 不对等.

 $\stackrel{\textstyle \bullet}{\mathbf{Y}}$ **\(\frac{\pmi}{2} \)** $\stackrel{\textstyle \bullet}{\mathbf{Y}}$ **\(\frac{\pmi}{2} \)** $\stackrel{\textstyle \bullet}{\mathbf{Y}}$ $\stackrel{\textstyle \bullet}{\mathbf{Y}$ $\stackrel{\textstyle \bullet}{\mathbf{Y}}$ $\stackrel{\textstyle \bullet}{\mathbf{Y}$ $\stackrel{\textstyle \bullet}{\mathbf{Y$

证明 假定 A 与其幂集 $\mathcal{P}(A)$ 对等, 即存在一一映射 $f: A \to \mathcal{P}(A)$. 我们作集合

$$B = \{x \in A : x \notin f(x)\},\$$

于是有 $y \in A$, 使得 $f(y) = B \in \mathcal{P}(A)$. 现在分析一下 $y \in B$ 的关系:

- (i) 若 $y \in B$, 则由 B 的定义可知 $y \notin f(y) = B$;
- (ii) 若 $y \notin B$, 则由 B 的定义可知 $y \in f(y) = B$.

这些矛盾说明 $A 与 \mathcal{P}(A)$ 之间并不存在一一映射, 即 $A 与 \mathcal{P}(A)$ 并不是对等的.

1.3 \mathbb{R}^n 中点与点之间的距离 · 点集的极限点

1.3.1 点集的直径、点的(球)邻域、矩体

定义 $1.16 (\mathbb{R}^n 与 \mathbb{R}^n 中的运算)$

记一切有序数组 $x = (\xi_1, \xi_2, \dots, \xi_n)$ 的全体为 \mathbb{R}^n , 其中 $\xi_i \in \mathbb{R}(i = 1, 2, \dots, n)$ 是实数, 称 ξ_i 为 x 的第 i 个坐标, 并定义运算如下:

(i) 加法: 对于 $x = (\xi_1, \dots, \xi_n)$ 以及 $y = (\eta_1, \dots, \eta_n)$, 令

$$x + y = (\xi_1 + \eta_1, \dots, \xi_n + \eta_n);$$

(ii) 数乘: 对于 $\lambda \in \mathbb{R}$, $\diamondsuit \lambda x = (\lambda \xi_1, \dots, \lambda \xi_n) \in \mathbb{R}^n$.

在上述两种运算下构成一个向量空间. 对于 $1 \le i \le n$, 记

$$e_i = (0, \cdots, 0, 1, 0, \cdots, 0),$$

其中除第 i 个坐标为 1, 外其余皆为 $0.e_1, e_2, \cdots, e_i, \cdots, e_n$ 组成 \mathbb{R}^n 的基底, 从而 \mathbb{R}^n 是实数域上的 n 维向量空间, 并称 $x = (\xi_1, \cdots, \xi_n)$ 为 \mathbb{R}^n 中的**向量**或点. 当每个 ξ_i 均为有理数时, $x = (\xi_1, \cdots, \xi_n)$ 称为**有理点**.

定义 1.17

设 $x = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n,$ 令

$$|x| = (\xi_1^2 + \dots + \xi_n^2)^{\frac{1}{2}},$$

称 |x| 为向量 x 的模或长度.

命题 1.9 (向量的模的性质)

设 $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$, 则

- (i) $|x| \ge 0, |x| = 0$ 当且仅当 $x = (0, \dots, 0)$;
- (ii) 对任意的 $a \in \mathbb{R}$, 有 |ax| = |a||x|;
- (iii) $|x + y| \le |x| + |y|$;
- (iv) 设 $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n), 则有$

$$(\xi_1\eta_1 + \dots + \xi_n\eta_n)^2 \leq (\xi_1^2 + \dots + \xi_n^2)(\eta_1^2 + \dots + \eta_n^2).$$

证明 (i),(ii) 的结论是明显的;(iii) 是 (iv) 的推论. 因此我们只证明 (iv).

只需注意到函数

$$f(\lambda) = (\xi_1 + \lambda \eta_1)^2 + \dots + (\xi_n + \lambda \eta_n)^2$$

是非负的 (对一切 λ), 由 λ 的二次方程 $f(\lambda)$ 的判别式小于或等于零即得.(iv) 就是著名的 Cauchy - Schwarz 不等式. \square

定义 1.18 (距离空间)

一般地说,设X是一个集合. 若对X中任意两个元素x与y,有一个确定的实数与之对应,记为d(x,y),它满足下述三条性质: 对 $\forall x, y, z \in X$,都有

- (i) $d(x, y) \ge 0, d(x, y) = 0$ 当且仅当 x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x, y) \leq d(x, z) + d(z, y)$,

则认为在X中定义了距离d. 并称(X,d) 为**距离空间**.

注 由 (iii) 可直接推出对 \forall , x, y, z ∈ X, 都有

$$|d(x,z) - d(y,z)| \le d(x,y) \le d(x,z) + d(z,y).$$

定义 1.19 (点集的直径与有界集)

设E是 \mathbb{R}^n 中一些点形成的集合,令

$$diam(E) = \sup\{|x - y| : x, y \in E\},\$$

称为点集 E 的**直径**. 若 diam(E) < + ∞ , 则称 E 为有界集.

命题 1.10 (有界集的充要条件)

E 是有界集的充要条件是, 存在 M > 0, 使得 $\forall x \in E$ 都满足 $|x| \leq M$.

证明 由有界集的定义易得.

定义 1.20 (点的 (球) 邻域)

设 $x_0 \in \mathbb{R}^n, \delta > 0$, 称点集

$$\{x \in \mathbb{R}^n : |x - x_0| < \delta\}$$

为 \mathbb{R}^n 中以 x_0 为中心,以 δ 为半径的**开球**,也称为 x_0 的(**球)邻域**,记为 $B(x_0,\delta)$,从而称

$$\{x \in \mathbb{R}^n : |x - x_0| \le \delta\}$$

为**闭球**, 记为 $C(x_0, \delta)$. \mathbb{R}^n 中以 x_0 为中心, 以 δ 为半径的球面是

$$\{x \in \mathbb{R}^n : |x - x_0| = \delta\}.$$

定义 1.21 (矩体)

设 $a_i, b_i (i = 1, 2, \dots, n)$ 皆为实数, 且 $a_i < b_i (i = 1, 2, \dots, n)$, 称点集

$${x = (\xi_1, \xi_2, \dots, \xi_n) : a_i < \xi_i < b_i \ (i = 1, 2, \dots, n)}$$

为 \mathbb{R}^n 中的**开矩体** (n=2 时为矩形,n=1 时为区间),即直积集

$$(a_1,b_1)\times\cdots\times(a_n,b_n).$$

类似地, \mathbb{R}^n 中的**闭矩体**以及**半开闭矩体**就是直积集

$$[a_1, b_1] \times \cdots \times [a_n, b_n], \quad (a_1, b_1] \times \cdots \times (a_n, b_n],$$

 $b_i - a_i (i = 1, 2, \dots, n)$ 为**矩体的边长**. 若各边长都相等, 则称矩体为**方体**.

矩体也常用符号 I, J 等表示, 其**体积**用 |I|, |J| 等表示.

命题 1.11 (矩体的直径与体积)

若 $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$, 则

diam
$$(I) = [(b_1 - a_1)^2 + \dots + (b_n - a_n)^2]^{\frac{1}{2}}, \quad |I| = \prod_{i=1}^n (b_i - a_i).$$

定义 1.22

设 $x_k \in \mathbb{R}^n (k = 1, 2, \cdots)$. 若存在 $x \in \mathbb{R}^n$, 使得

$$\lim_{k\to\infty}|x_k-x|=0,$$

则称 $x_k(k=1,2,\cdots)$ 为 \mathbb{R}^n 中的**收敛 (于 x 的) 点列**, 称 x 为它的**极限**, 并简记为

$$\lim_{k\to\infty}x_k=x.$$

定义 1.23 (Cauchy 列)

称 $\{x_k\}$ 为 Cauchy 列或基本列, 若 $\lim_{l,m\to\infty}|x_l-x_m|=0$. 即对任意 $\varepsilon>0$, 存在 N, 使得当 k,l>N 时, 有 $|x_k-x_l|<\varepsilon$.

定理 1.12

 $x_k(k=1,2,\cdots)$ 是收敛列的充分必要条件是 $\{x_k\}$ 为 Cauchy 列, 即

$$\lim_{l,m\to\infty} |x_l - x_m| = 0.$$

证明 若令 $x_k = \{\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_n^{(k)}\}, x = \{\xi_1, \xi_2, \cdots, \xi_n\},$ 则由于不等式

$$|\xi_i^{(k)} - \xi_i| \le |x_k - x| \le |\xi_1^{(k)} - \xi_1| + \dots + |\xi_n^{(k)} - \xi_n|$$

对一切 k = i 都成立. 故可知 $x_k(k = 1, 2, \cdots)$ 收敛于 x 的充分必要条件是, 对每个 i, 实数列 $\{\xi_i^{(k)}\}$ 都收敛于 ξ_i . 由此根据实数列收敛的 Cauchy 收敛准则可知结论成立.

1.3.2 点集的极限点

定义 1.24 (极限点、导集与完全集)

设 $E \subset \mathbb{R}^n, x \in \mathbb{R}^n$. 若存在E中的互异点列 $\{x_k\}$, 使得

$$\lim_{k\to\infty}|x_k-x|=0,$$

则称x为E的极限点或聚点E的极限点全体记为E', 称为E的导集.

若 E = E', 则 E 称为完全集.

室记 显然,有限集是不存在极限点的.

定理 1.13 (一个点是极限点的充要条件)

若 $E \subset \mathbb{R}^n$, 则 $x \in E'$ 当且仅当对任意的 $\delta > 0$, 有

$$(B(x,\delta)\setminus\{x\})\cap E\neq\varnothing.$$

证明 若 $x \in E'$,则存在 E 中的互异点列 $\{x_k\}$,使得

$$|x_k - x| \to 0 \quad (k \to \infty),$$

从而对任意的 $\delta > 0$, 存在 k_0 , 当 $k \ge k_0$ 时, 有 $|x_k - x| < \delta$, 即

$$x_k \in B(x, \delta) \quad (k \geqslant k_0).$$

反之, 若对任意的 $\delta > 0$, 有 $(B(x,\delta) \setminus \{x\}) \cap E \neq \emptyset$, 则令 $\delta_1 = 1$, 可取 $x_1 \in E, x_1 \neq x$ 且 $|x - x_1| < 1$. 令

$$\delta_2 = \min\left(|x - x_1|, \frac{1}{2}\right),\,$$

可取 $x_2 \in E, x_2 \neq x$ 且 $|x - x_2| < \delta_2$. 继续这一过程, 就可得到 E 中互异点列 $\{x_k\}$, 使得 $|x - x_k| < \delta_k$, 即

$$\lim_{k\to\infty}|x-x_k|=0.$$

这说明 $x \in E'$.

定义 1.25 (孤立点)

设 $E \subset \mathbb{R}^n$. 若E 中的点x 不是E 的极限点,即存在 $\delta > 0$, 使得

$$(B(x, \delta) \setminus \{x\}) \cap E = \emptyset$$
,

则称 x 为 E 的**孤立点**, 即 $x \in E \setminus E'$.

定理 1.14 (导集的性质)

设 $E_1, E_2 \subset \mathbb{R}^n$, 则 $(E_1 \cup E_2)' = E_1' \cup E_2'$.

5

证明 因为 $E_1 \subset E_1 \cup E_2, E_2 \subset E_1 \cup E_2$, 所以

$$E_1' \subset (E_1 \cup E_2)', \quad E_2' \subset (E_1 \cup E_2)',$$

从而有 $E_1' \cup E_2' \subset (E_1 \cup E_2)'$. 反之, 若 $x \in (E_1 \cup E_2)'$, 则存在 $E_1 \cup E_2$ 中的互异点列 $\{x_k\}$, 使得

$$\lim_{k\to\infty} x_k = x.$$

显然, 在 $\{x_k\}$ 中必有互异点列 $\{x_{ki}\}$ 属于 E_1 或属于 E_2 , 而且

$$\lim_{i \to \infty} x_{k_i} = x.$$

在 $\{x_{k_i}\}\subset E_1$ 时, 有 $x\in E_1'$, 否则 $x\in E_2'$. 这说明

$$(E_1 \cup E_2)' \subset E_1' \cup E_2'.$$

定理 1.15 (Bolzano - Weierstrass 定理)

 \mathbb{R}^n 中任一有界无限点集 E 至少有一个极限点.

证明 首先从 E 中取出互异点列 $\{x_k\}$. 显然, $\{x_k\}$ 仍是有界的,而且 $\{x_k\}$ 的第 $i(i=1,2,\cdots,n)$ 个坐标所形成的实数列 $\{\xi_i^{(k)}\}$ 是有界数列. 其次,根据 \mathbb{R}^1 的 Bolzano - Weierstrass 定理可知,从 $\{x_k\}$ 中可选出子列 $\{x_k^{(1)}\}$,使得 $\{x_k^{(1)}\}$ 的第一个坐标形成的数列是收敛列;再考查 $\{x_k^{(1)}\}$ 的第二个坐标形成的数列,同理可从中选出 $\{x_k^{(2)}\}$,使其第二个坐标形成的数列成为收敛列,此时其第一坐标数列仍为收敛列(注意,收敛数列的任一子列必收敛于同一极限),……至第 n 步,可得到 $\{x_k\}$ 的子列 $\{x_k^{(n)}\}$,其一切坐标数列皆收敛,从而知 $\{x_k^{(n)}\}$ 是收敛点列,设其极限为 x. 由于 $\{x_k^{(n)}\}$ 是互异点列,故 x 为 x 的极限点.

1.4 \mathbb{R}^n 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集

1.4.1 闭集

定义 1.26 (闭集与闭包)

设 $E \subset \mathbb{R}^n$. 若 $E \supset E'$ (即 E 包含 E 的一切极限点), 则称 E 为闭集 (这里规定空集为闭集). 记 $\overline{E} = E \cup E'$, 并称 \overline{E} 为 E 的闭包 (E 为闭集就是 $E = \overline{E}$).

定义 1.27 (稠密子集)

定理 1.16 (闭集的运算性质)

- (i) 若 F_1, F_2 是 \mathbb{R}^n 中的闭集,则其并集 $F_1 \cup F_2$ 也是闭集,从而有限多个闭集的并集是闭集;
- (ii) 若 $\{F_{\alpha}: \alpha \in I\}$ 是 \mathbb{R}^n 中的一个闭集族, 则其交集 $F = \bigcap F_{\alpha}$ 是闭集.
- (iii) 设 $E_{\alpha} \subset \mathbb{R}^{n} (\alpha \in I)$, 则

$$\bigcup_{\alpha\in I}\overline{E_\alpha}\subset\overline{\bigcup_{\alpha\in I}E_\alpha},\quad \overline{\bigcap_{\alpha\in I}E_\alpha}\subset\bigcap_{\alpha\in I}\overline{E_\alpha}.$$

注 无穷多个闭集的并集不一定是闭集. 例如, 令

$$F_k = \left[\frac{1}{k+1}, \frac{1}{k}\right] \subset \mathbb{R} \quad (k=1, 2, \cdots),$$

П

则有 $\bigcup_{k=1}^{\infty} F_k = (0,1]$. 此例还说明

$$[0,1] = \bigcup_{k=1}^{\infty} F_k \neq \bigcup_{k=1}^{\infty} \overline{F_k} = (0,1].$$

证明 (i) 从等式

$$\overline{F_1 \cup F_2} = (F_1 \cup F_2) \cup (F_1 \cup F_2)'$$

$$= (F_1 \cup F_2) \cup (F'_1 \cup F'_2)$$

$$= (F_1 \cup F'_1) \cup (F_2 \cup F'_2)$$

$$= \overline{F_1} \cup \overline{F_2}$$

可知, 若 F_1 , F_2 为闭集, 则 $\overline{F_1 \cup F_2} = F_1 \cup F_2$. 即 $F_1 \cup F_2$ 是闭集.

(ii) 因为对一切 $\alpha \in I$, 有 $F \subset F_{\alpha}$, 所以对一切 $\alpha \in I$, 有 $\overline{F} \subset \overline{F_{\alpha}} = F_{\alpha}$, 从而有

$$\overline{F}\subset \bigcap_{\alpha\in I}F_\alpha=F.$$

但 $F \subset \overline{F}$,故 $F = \overline{F}$,这说明F是闭集.

定理 1.17 (Cantor 闭集套定理)

若 $\{F_k\}$ 是 \mathbb{R}^n 中的非空有界闭集列, 且满足 $F_1 \supset F_2 \supset \cdots \supset F_k \supset \cdots$, 则 $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.

证明 若在 $\{F_k\}$ 中有无穷多个相同的集合,则存在自然数 k_0 , 当 $k \ge k_0$ 时,有 $F_k = F_{k_0}$. 此时, $\bigcap_{k=1}^{\infty} F_k = F_{k_0} \neq \emptyset$. 现在不妨假定对一切 k, F_{k+1} 是 F_k 的真子集,即

$$F_k \setminus F_{k+1} \neq \emptyset$$
 ($- \forall k$),

我们选取 $x_k \in F_k \setminus F_{k+1}(k=1,2,\cdots)$,则 $\{x_k\}$ 是 \mathbb{R}^n 中的有界互异点列. 根据 Bolzano - Weierstrass 定理可知, 存在 $\{x_{k_i}\}$ 以及 $x \in \mathbb{R}^n$,使得 $\lim_{k \to \infty} |x_{k_i} - x| = 0$. 由于每个 F_k 都是闭集, 故知 $x \in F_k(k=1,2,\cdots)$,即

$$x \in \bigcap_{k=1}^{\infty} F_k$$
.

1.4.2 开集

定义 1.28 (开集)

设 $G \subset \mathbb{R}^n$. 若 $G^c = \mathbb{R}^n \setminus G$ 是闭集, 则称 G 为开集.

😤 笔记 由此定义立即可知,ℝ″本身与空集 Ø 是开集;ℝ″中的开矩体是开集; 闭集的补集是开集.

定理 1.18 (开集的运算性质)

(i) 若 $\{G_{\alpha}: \alpha \in I\}$ 是 \mathbb{R}^n 中的一个开集族,则其并集 $G = \bigcup_{\alpha \in I} G_{\alpha}$ 是开集;

(ii) 若 $G_k(k=1,2,\cdots,m)$ 是 \mathbb{R}^n 中的开集,则其交集 $G=\bigcap^m G_k$ 是开集 (有限个开集的交集是开集);

(iii) 若 G 是 \mathbb{R}^n 中的非空点集,则 G 是开集的充分必要条件是,对于 G 中任一点 x,存在 $\delta>0$,使得 $B(x,\delta)\subset G$.

证明 (i) 由定义知 $G^c_{\alpha}(\alpha \in I)$ 是闭集,且有 $G^c = \bigcap_{\alpha \in I} G^c_{\alpha}$. 根据闭集的性质可知 G^c 是闭集,即 G 是开集.

(ii) 由定义知 $G_k^c(k=1,2,\cdots,m)$ 是闭集,且有 $G^c=\bigcup_{k=1}^m G_k^c$.根据闭集的性质可知 G^c 是闭集,即 G 是开集.

(iii) 若 G 是开集且 $x \in G$, 则由于 G^c 是闭集以及 $x \notin G^c$, 可知存在 $\delta > 0$, 使得 $B(x, \delta) \subset G$. 反之, 若对 G 中的任一点 x, 存在 $\delta > 0$, 使得 $B(x, \delta) \subset G$, 则

$$B(x,\delta) \cap G^c = \varnothing,$$

从而 x 不是 G^c 的极限点, 即 G^c 的极限点含于 G^c . 这说明 G^c 是闭集, 即 G 是开集.

定义 1.29 (内点与边界点)

设 $E \subset \mathbb{R}^n$. 对 $x \in E$, 若存在 $\delta > 0$, 使得 $B(x, \delta) \subset E$, 则称 $x \to E$ 的**内点**. E 的内点全体记为 E, 称为 E 的**内 核**. 若 $x \in E$ 但 $x \notin E$, 则称 $x \to E$ 的**边界点**. 边界点全体记为 ∂E .

定理 1.19 (开集构造定理)

- (i) \mathbb{R} 中的非空开集是可数个互不相交的开区间 (这里也包括 ($-\infty$, a),(b, $+\infty$) 以及 ($-\infty$, $+\infty$)) 的并集;
- (ii) \mathbb{R}^n 中的非空开集 G 是可列个互不相交的半开闭方体的并集.

证明 (i) 设 G 是 \mathbb{R} 中的开集. 对于 G 中的任一点 a, 由于 a 是 G 的内点, 故存在 $\delta > 0$, 使得 $(a - \delta, a + \delta) \subset G$. 现在令

$$a' = \inf\{x : (x, a) \subset G\}, \quad a'' = \sup\{x : (a, x) \subset G\}$$

(这里 a' 可以是 $-\infty$,a'' 可以是 $+\infty$), 显然 a' < a < a'' 且 $(a',a'') \subset G$. 这是因为对区间 (a',a'') 中的任一点 z, 不妨设 $a' < z \leq a$, 必存在 x, 使得 a' < x < z 且 $(x,a) \subset G$, 即 $z \in G$. 我们称这样的开区间 (a',a'') 为 G(关于点 a) 的**构成区间** I_a .

如果 $I_a = (a', a''), I_b = (b', b'')$ 是 G 的构成区间, 那么可以证明它们或是重合的或是互不相交的. 为此, 不妨设 a < b. 若

$$I_a \cap I_b \neq \emptyset$$
,

则有 b' < a''. 于是令 $\min\{a',b'\} = c,\max\{a'',b''\} = d$, 则有 $(c,d) = (a',a'') \cup (b',b'')$. 取 $x \in I_a \cap I_b$, 则 $I_x = (c,d)$ 是构成区间, 且

$$(c,d) = (a',a'') = (b',b'').$$

最后, 我们知道 ℝ中互不相交的区间族是可数的.

(ii) 首先将 \mathbb{R}^n 用格点 (坐标皆为整数) 分为可列个边长为 1 的半开闭方体, 其全体记为 Γ_0 . 再将 Γ_0 中每个方体的每一边二等分, 则每个方体就可分为 2^n 个边长为 $\frac{1}{2}$ 的半开闭方体, 记 Γ_0 中如此做成的子方体的全体为 Γ_1 . 继续按此方法二分下去, 可得其所含方体越来越小的方体族组成的序列 $\{\Gamma_k\}$, 这里 Γ_k 中每个方体的边长是 2^{-k} , 且此方体是 Γ_{k+1} 中相应的 2^n 个互不相交的方体的并集. 我们称如此分成的方体为二进方体.

现在把 Γ_0 中凡含于G 内的方体取出来, 记其全体为 H_0 . 再把 Γ_1 中含于

$$G\setminus\bigcup_{J\in H_0}J$$

(J 表示半开闭二进方体) 内的方体取出来, 记其全体为 H_1 . 依此类推, H_k 为 Γ_k 中含于

$$G \setminus \bigcup_{i=0}^{k-1} \bigcup_{J \in H_i} J$$

内的方体的全体. 显然, 一切由 $H_k(k=0,1,2,\cdots)$ 中的方体构成的集合为可列的. 因为 G 是开集, 所以对任意的 $x\in G$, 存在 $\delta>0$, 使得 $B(x,\delta)\subset G$. 而 Γ_k 中的方体的直径当 $k\to\infty$ 时是趋于零的, 从而可知 x 最终必落入某个

 Γ_k 中的方体. 这说明

$$G = \bigcup_{k=0}^{\infty} \bigcup_{J \in H_k} J, \quad J.$$

 \mathbb{R}^n 中的开集还有一个重要事实,即 \mathbb{R}^n 中存在由可列个开集构成的开集族 Γ , 使得 \mathbb{R}^n 中任一开集均是 Γ 中某些开集的并集. 事实上. Γ 可取为

$$\left\{B\left(x,\frac{1}{k}\right):x\mathbb{R}^n,k\right\}$$
.

首先, Γ 是可列集. 其次, 对于 \mathbb{R}^n 中开集 G 的任一点 x, 必存在 $\delta > 0$, 使得 $B(x,\delta) \subset G$. 现在取有理点 x', 使得 d(x,x') < 1/k, 其中 $k > 2/\delta$, 从而有

$$x \in B(x', 1/k) \subset B(x, \delta) \subset G$$
,

显然, 一切如此做成的 B(x', 1/k) 的并集就是 G.

定义 1.30 (开覆盖)

设 $E \subset \mathbb{R}^n$, $\Gamma \not\in \mathbb{R}^n$ 中的一个开集族. 若对任意的 $x \in E$, 存在 $G \in \Gamma$, 使得 $x \in G$, 则称 Γ 为E的一个**开覆盖**. 设 $\Gamma \not\in E$ 的一个开覆盖. 若 $\Gamma' \subset \Gamma$ 仍是E的一个开覆盖, 则称 Γ' 为 Γ (关于E)的一个**子覆盖**.

引理 1.2

 \mathbb{R}^n 中点集 E 的任一开覆盖 Γ 都含有一个可数子覆盖.

 \circ

П

定理 **1.20** (Heine - Borel 有限子覆盖定理)

Rⁿ 中有界闭集的任一开覆盖均含有一个有限子覆盖.

注 在上述定理中, 有界的条件是不能缺的. 例如, 在 \mathbb{R}^1 中对自然数集作开覆盖 $\{(n-\frac{1}{2},n+\frac{1}{2})\}$ 就不存在有限子覆盖. 同样, 闭集的条件也是不能缺的. 例如, 在 \mathbb{R} 中对点集 $\{1,\frac{1}{2},\cdots,\frac{1}{n},\cdots\}$ 作开覆盖

$$\left\{ \left(\frac{1}{n} - \frac{1}{2n}, \frac{1}{n} + \frac{1}{2n} \right) \right\}$$
 $(n = 1, 2, \dots),$

就不存在有限子覆盖.

证明 设 $F \in \mathbb{R}^n$ 中的有界闭集, $\Gamma \in F$ 的一个开覆盖. 由引理 1.2, 可以假定 Γ 由可列个开集组成:

$$\Gamma = \{G_1, G_2, \cdots, G_i, \cdots\}.$$

令

$$H_k = \bigcup_{i=1}^k G_i, \quad L_k = F \cap H_k^c \quad (k = 1, 2, \cdots).$$

显然, H_k 是开集, L_k 是闭集且有 $L_k \supset L_{k+1}(k=1,2,\cdots)$. 分两种情况:

- (i) 存在 k_0 , 使得 L_{k_0} 是空集, 即 H_{k_0} 中不含 F 的点, 从而知 $F \subset H_{k_0}$, 定理得证;
- (ii) 一切 L_k 皆非空集,则由Cantor 闭集套定理可知,存在点 $x_0 \in L_k(k = 1, 2, \cdots)$, 即 $x_0 \in F$ 且 $x_0 \in H_k^c(k = 1, 2, \cdots)$. 这就是说 F 中存在点 x_0 不属于一切 H_k ,与原设矛盾,故第 (ii) 种情况不存在.

定理 1.21

设 $E \subset \mathbb{R}^n$. 若E 的任一开覆盖都包含有限子覆盖,则E 是有界闭集.

证明 设 $y \in E^c$, 则对于每一个 $x \in E$, 存在 $\delta_x > 0$, 使得

$$B(x, \delta_x) \cap B(y, \delta_x) = \emptyset$$
.

显然, $\{B(x,\delta_x):x\in E\}$ 是 E 的一个开覆盖, 由题设知存在有限子覆盖, 设为

$$B(x_1, \delta_{x_1}), \cdots, B(x_m, \delta_{x_m}).$$

由此立即可知 E 是有界集. 现在再令

$$\delta_0 = \min\{\delta_{x_1}, \cdots, \delta_{x_m}\},\$$

则 $B(y, \delta_0) \cap E = \emptyset$, 即 $y \notin E'$. 这说明 $E' \subset E$, 即 E 是闭集. 有界性显然.

定义 1.31 (紧集)

如果 E 的任一开覆盖均包含有限子覆盖, 我们就称 E 为紧集.

定义 1.32 (实值函数的连续)

设 f(x) 是定义在 $E \subset \mathbb{R}^n$ 上的实值函数, $x_0 \in E$. 如果对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in E \cap B(x_0, \delta)$ 时, 有

$$|f(x) - f(x_0)| < \varepsilon,$$

则称 f(x) 在 $x = x_0$ 处连续, 称 x_0 为 f(x) 的一个连续点 (在 $x_0 \notin E'$ 的情形, 即 x_0 是 E 的孤立点时, f(x) 自然在 $x = x_0$ 处连续). 若 E 中的任一点皆为 f(x) 的连续点, 则称 f(x) 在 E 上连续. 记 E 上的连续函数之全体为 C(E).

命题 1.12 (在 \mathbb{R}^n 的紧集上连续的函数的性质)

设F 是 \mathbb{R}^n 中的有界闭集, $f \in C(F)$,则

- (i) f(x) 是 F 上的有界函数, 即 f(F) 是 \mathbb{R} 中的有界集.
- (ii) 存在 $x_0 \in F, y_0 \in F$, 使得

$$f(x_0) = \sup\{f(x) : x \in F\}, \quad f(y_0) = \inf\{f(x) : x \in F\}.$$

(iii) f(x) 在 F 上是一致连续的,即对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x',x'' \in F$ 且 $|x'-x''| < \delta$ 时, 有

$$|f(x') - f(x'')| < \varepsilon$$
.

此外, 若 $E \subset \mathbb{R}^n$ 上的连续函数列 $\{f_k(x)\}$ 一致收敛于 f(x), 则 f(x) 是 E 上的连续函数.

1.4.3 Borel 集

定义 1.33 $(F_{\sigma}, G_{\delta}$ 集)

 $\dot{\mathbf{L}}$ 由定义可直接推知, F_{σ} 集的补集是 G_{δ} 集; G_{δ} 集的补集是 F_{σ} 集.

例题 1.2 记 \mathbb{R}^n 中全体有理点为 $\{r_k\}$, 则有理点集

$$\bigcup_{k=1}^{\infty} \{r_k\}$$

为 F_{σ} 集.

例题 1.3 函数连续点的结构 若 f(x) 是定义在开集 $G \subset \mathbb{R}^n$ 上的实值函数,则 f(x) 的连续点集是 G_δ 集. 证明 令 $\omega_f(x)$ 为 f(x) 在 x 点的振幅, 易知 f(x) 在 $x = x_0$ 处连续的充分必要条件是 $\omega_f(x_0) = 0$. 由此可知 f(x) 的 连续点集可表示为

$$\bigcap_{k=1}^{\infty} \left\{ x \in G : \omega_f(x) < \frac{1}{k} \right\}.$$

因为 $\{x \in G : \omega_f(x) < 1/k\}$ 是开集, 所以 f(x) 的连续点集是 G_δ 集.

定义 1.34 (σ -代数)

设 Γ 是由集合X的一些子集所构成的集合族且满足下述条件:

- (i) $\emptyset \in \Gamma$;
- (ii) 若 $A \in \Gamma$, 则 $A^c \in \Gamma$;
- (iii) 若 $A_n \in \Gamma$ $(n = 1, 2, \dots)$, 则 $\bigcup_{n=1} A_n \in \Gamma$,

这时称 Γ 是(X上的)一个 σ -代数

命题 1.13 (σ -代数的基本性质)

若 Γ 是 X 上的一个 σ -代数,则

(i) 若
$$A_n \in \Gamma(n = 1, 2, \dots, m)$$
, 则 $\bigcup_{n=1}^m A_n \in \Gamma$, $\bigcap_{n=1}^m A_n \in \Gamma$,;
(ii) 若 $A_n \in \Gamma(n = 1, 2, \dots)$, 则 $\bigcap_{n=1}^\infty A_n \in \Gamma$, $\overline{\lim}_{n \to \infty} A_n \in \Gamma$, $\underline{\lim}_{n \to \infty} A_n \in \Gamma$;

$$\bigcap_{n=1}^{\infty} A_n \in \Gamma, \quad \overline{\lim}_{n \to \infty} A_n \in \Gamma, \quad \underline{\lim}_{n \to \infty} A_n \in \Gamma$$

- (iii) 若 $A, B \in \Gamma$, 则 $A \setminus B \in \Gamma$;
- (iv) $X \in \Gamma$.

证明 由 σ-代数的定义立得.

定义 1.35 (生成 σ -代数)

设 Σ 是集合 X 的一些子集所构成的集合族, 考虑包含 Σ 的 σ -代数 Γ (即若 $A \in \Sigma$, 必有 $A \in \Gamma$, 这样的 Γ 是 存在的, 如 $\mathcal{P}(X)$). 记包含 Σ 的最小 σ -代数为 $\Gamma(\Sigma)$. 也就是说, 对任一包含 Σ 的 σ -代数 Γ' , 若 $A \in \Gamma(\Sigma)$, 则 $A \in \Gamma'$, 称 $\Gamma(\Sigma)$ 为由 Σ 生成的 σ -代数.

定义 1.36 (Borel 集)

由 \mathbb{R}^n 中一切开集构成的开集族所生成的 σ -代数称为 Borel σ -代数, 记为 \mathcal{B} . \mathcal{B} 中的元称为 Borel $\boldsymbol{\xi}$.

命题 1.14 (Borel 集的基本性质)

 \mathbb{R}^n 中的闭集、开集、 F_{σ} 集与 G_{δ} 集皆为 Borel 集;

任一Borel 集的补集是Borel 集;Borel 集列的并、交、上(下) 限集皆为Borel 集.

例题 **1.4** 设 $f_k \in C(\mathbb{R}^n)$ $(k = 1, 2, \dots)$, 且有

$$\lim_{k \to \infty} f_k(x) = f(x), \quad x \in \mathbb{R}^n,$$

则 f(x) 的连续点集

证明 证明是显然的.

$$\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \mathring{E}_k \left(\frac{1}{m} \right)$$

是 G_{δ} 型集, 其中 $E_k(\varepsilon) = \{x \in \mathbb{R}^n : |f_k(x) - f(x)| \leq \varepsilon\}.$

证明 (i) 设 $x_0 \in \mathbb{R}^n$ 是 f(x) 的连续点. 由题设知, 对任意 $\varepsilon > 0$, 存在 k_0 , 使得 $|f_{k_0}(x_0) - f(x_0)| < \varepsilon/3$, 且存在 $\delta > 0$, 使得

$$|f(x) - f(x_0)| < \varepsilon/3, \quad |f_{k_0}(x) - f_{k_0}(x_0)| < \varepsilon/3, \quad x \in U(x_0, \delta),$$

从而对 $x \in U(x_0, \delta)$, 有

$$|f_{k_0}(x) - f(x)| < \varepsilon, \quad U(x_0, \delta) \subset \mathring{E}_{k_0}(\varepsilon).$$

这说明 $x_0 \in \bigcup_{k=1}^{\infty} \mathring{\mathcal{E}}_k(\varepsilon)$. 又由 ε 的任意性, 可推知

$$x_0 \in \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \mathring{E}_k \left(\frac{1}{m}\right).$$

(ii) 设 $x_0 \in \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \mathring{\mathcal{E}}_k \left(\frac{1}{m}\right)$. 对 $\varepsilon > 0$, 取 $m > 3/\varepsilon$. 由于 $x_0 \in \bigcup_{k=1}^{\infty} \mathring{\mathcal{E}}_k \left(\frac{1}{m}\right)$, 故存在 k_0 , 使得 $x_0 \in \mathring{\mathcal{E}}_{k_0} \left(\frac{1}{m}\right)$, 从 而可得 $U(x_0, \delta_0) \subset E_{k_0} \left(\frac{1}{m}\right)$, 即

$$|f_{k_0}(x) - f(x)| \le \frac{1}{m} < \frac{\varepsilon}{3}, \quad x \in U(x_0, \delta_0).$$

注意到 $f_{k_0}(x)$ 在 $x = x_0$ 处连续, 又有 $\delta_1 > 0$, 使得

$$|f_{k_0}(x) - f_{k_0}(x_0)| < \frac{\varepsilon}{3}, \quad x \in U(x_0, \delta_1).$$

记 $\delta = \min\{\delta_0, \delta_1\}$, 则当 $x \in U(x_0, \delta)$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$. 这说明 f(x) 在 $x = x_0$ 处连续.

定义 1.37 (Baire 第一函数类)

称区间 I 上连续函数列的极限函数 f(x) 的全体为 $oldsymbol{Baire}$ 第一函数类, 记为 $f \in B_1(I)$.

定理 1.22

若 $f_n \in B_1(\mathbb{R})$, 且 $f_n(x)$ 在 \mathbb{R} 上一致收敛于 f(x), 则 $f \in B_1(\mathbb{R})$.

证明 事实上, 由题设知, 对任意 $k \in \mathbb{N}$, 存在 $n_k \in \mathbb{N}$, 使得

$$|f_{n_k}(x) - f(x)| < 1/2^{k+1} \quad (x \in \mathbb{R}).$$

这里不妨认定 $n_1 < n_2 < \dots < n_k < \dots$ 考查 $\sum_{k=1}^{\infty} [f_{n_{k+1}}(x) - f_{n_k}(x)]$, 因为我们有

$$|f_{n_{k+1}}(x) - f_{n_k}(x)| \le |f_{n_{k+1}}(x) - f(x)| + |f_{n_k}(x) - f(x)|$$

$$< \frac{1}{2^{k+2}} + \frac{1}{2^{k+1}} < \frac{1}{2^k} \quad (x \in \mathbb{R}),$$

所以 $g(x) \stackrel{\text{def}}{=} \sum_{k=1}^{\infty} [f_{n_{k+1}}(x) - f_{n_k}(x)] \in B_1(\mathbb{R})$. 显然有 $g(x) = f(x) - f_{n_1}(x)$, 即 $f(x) = g(x) + f_{n_1}(x)$. 证毕.

命题 1.15

 \mathbb{R} 中存在非 $F_{\sigma\delta}$ 集、非 $F_{\delta\delta\sigma}$ 集等等.

定理 1.23 (Baire 定理)

设 $E \subset \mathbb{R}^n$ 是 F_σ 集,即 $E = \bigcup_{k=1}^{\infty} F_k, F_k (k=1,2,\cdots)$ 是闭集. 若每个 F_k 皆无内点,则E 也无内点.

证明 若 E 有内点, 设为 x_0 , 则存在 $\delta_0 > 0$, 使 $\overline{B}(x_0, \delta_0) \subset E$. 因为 F_1 是无内点的, 所以必存在 $x_1 \in B(x_0, \delta_0)$, 且有 $x_1 \notin F_1$. 又因为 F_1 是闭集, 所以可以取到 $\delta_1(0 < \delta_1 < 1)$, 使得

$$\overline{B}(x_1, \delta_1) \cap F_1 = \emptyset$$
,

同时有 $\overline{B}(x_1, \delta_1) \subset B(x_0, \delta_0)$. 再从 $\overline{B}(x_1, \delta_1)$ 出发以类似的推理使用于 F_2 ,则可得 $\overline{B}(x_2, \delta_2) \cap F_2 = \emptyset$,同时有 $\overline{B}(x_2, \delta_2) \subset B(x_1, \delta_1)$,这里可以要求 $0 < \delta_2 < 1/2$. 继续这一过程,可得点列 $\{x_k\}$ 与正数列 $\{\delta_k\}$,使得对每个自然

数 k, 有

$$\overline{B}(x_k, \delta_k) \subset B(x_{k-1}, \delta_{k-1}), \quad \overline{B}(x_k, \delta_k) \cap F_k = \emptyset,$$

其中 $0 < \delta_k < 1/k$. 由于当 l > k 时, 有 $x_l \in B(x_k, \delta_k)$, 故

$$|x_l - x_k| < \delta_k < \frac{1}{k}.$$

这说明 $\{x_k\}$ 是 \mathbb{R}^n 中的基本列 (Cauchy 列), 从而是收敛列, 即存在 $x \in \mathbb{R}^n$, 使得 $\lim_{k \to \infty} |x_k - x| = 0$. 此外, 从不等式

$$|x - x_k| \le |x - x_l| + |x_l - x_k| < |x - x_l| + \delta_k, \quad l > k$$

立即可知 $(\diamondsuit l \to \infty) | x - x_k | \le \delta_k$. 这说明 $x \in \overline{B}(x_k, \delta_k)$, 即对一切 $k, x \notin F_k$. 这与 $x \in E$ 发生矛盾. \square **例题 1.5** 有理数集 \mathbb{Q} 不是 G_δ 集.

证明 事实上, 令 $\mathbb{Q} = \{r_k : k = 1, 2, \cdots\}$, 假定 $\mathbb{Q} = \bigcap_{i=1}^{\infty} G_i$, 式中 G_i $(i = 1, 2, \cdots)$ 是开集, 则有表示式

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q} = \left(\bigcup_{i=1}^{\infty} G_i^c\right) \cup \left(\bigcup_{k=1}^{\infty} \{r_k\}\right),\,$$

这里的每个单点集 $\{r_k\}$ 与 G_i^c 皆为闭集,而且从 $\overline{G}_i = \mathbb{R}^1$ 可知每个 G_i^c 是无内点的. 这说明 \mathbb{R} 是可列个无内点之闭集的并集. 从而由 Baire 定理可知 \mathbb{R} 也无内点,这一矛盾说明 \mathbb{Q} 不是 G_{δ} 集.

定义 1.38

设 $E \subset \mathbb{R}^n$. 若 $\overline{E} = \mathbb{R}^n$, 则称 E 为 \mathbb{R}^n 中的**稠密集**; 若 $\dot{\overline{E}} = \emptyset$, 则称 E 为 \mathbb{R}^n 中的**无处稠密集**; 可数个无处稠密集的并集称为**贫集**或**第一纲集**. 不是第一纲集称为**第二纲集**.

例题 1.6 设 $\{G_k\}$ 是 \mathbb{R}^n 中的稠密开集列, 则 $G_0 = \bigcap_{k=1}^{\infty} G_k$ 在 \mathbb{R}^n 中稠密.

证明 只需指出对 \mathbb{R}^n 中任一闭球 $\overline{B} = \overline{B}(x, \delta)$, 均有 $G_0 \cap \overline{B} \neq \emptyset$ 即可. 采用反证法: 假定存在闭球 $\overline{B}_0 = \overline{B}(x_0, \delta_0)$, 使 得 $G_0 \cap \overline{B}_0 = \emptyset$, 则易知

$$\mathbb{R}^n = (G_0 \cap \overline{B}_0)^c = G_0^c \cup (\overline{B}_0)^c,$$

$$\overline{B}_0 = \mathbb{R}^n \cap \overline{B}_0 = G_0^c \cap \overline{B}_0 = \left(\bigcap_{k=1}^{\infty} G_k\right)^c \cap \overline{B}_0 = \bigcup_{k=1}^{\infty} (G_k^c \cap \overline{B}_0).$$

注意到 G_k^c 是无内点的闭集, 故由Baire 定理可知, \overline{B}_0 也无内点, 矛盾.

例题 1.7 设 $f_k \in C(\mathbb{R}^n)$ $(k = 1, 2, \cdots)$. 若 $\lim_{k \to \infty} f_k(x) = f(x)$ $(x \in \mathbb{R}^n)$, 则 f(x) 的不连续点集为第一纲集. 证明 注意到 f(x) 的连续点集的表示, 只需指出 (例题 1.4)

$$\left(G\left(\frac{1}{m}\right)\right)^{c} \quad \left(G\left(\frac{1}{m}\right) = \bigcup_{k=1}^{\infty} \mathring{E}_{k}\left(\frac{1}{m}\right)\right)$$

是第一纲集. 对 $\varepsilon > 0$, 令

$$F_k(\varepsilon) = \bigcap_{i=1}^{\infty} \left\{ x \in \mathbb{R}^n : |f_k(x) - f_{k+i}(x)| \le \varepsilon \right\},\,$$

易知
$$\mathbb{R}^n = \bigcup_{k=1}^{\infty} F_k(\varepsilon), F_k(\varepsilon) \subset E_k(\varepsilon)$$
, 从而有

$$\mathring{F}_k(\varepsilon) \subset \mathring{E}_k(\varepsilon) \subset G(\varepsilon), \quad \bigcup_{k=1}^{\infty} \mathring{F}_k(\varepsilon) \subset G(\varepsilon).$$

由此知

$$[G(\varepsilon)]^c = \mathbb{R}^n \setminus G(\varepsilon) \subset \mathbb{R}^n \setminus \bigcup_{k=1}^{\infty} \mathring{F}_k(\varepsilon)$$

$$=\bigcup_{k=1}^{\infty}F_k(\varepsilon)\setminus\bigcup_{k=1}^{\infty}\mathring{F}_k(\varepsilon)\subset\bigcup_{k=1}^{\infty}[F_k(\varepsilon)\setminus\mathring{F}_k(\varepsilon)]=\bigcup_{k=1}^{\infty}\partial F_k(\varepsilon).$$

因为 $F_k(\varepsilon)$ 是闭集, 所以 $\partial F_k(\varepsilon)$ 是无处稠密集. 这说明 $(G(\varepsilon))^c$ 是第一纲集.

例题 1.8 设 $f \in C([0,1])$, 且令

$$f_1'(x) = f(x), f_2'(x) = f_1(x), \dots, f_n'(x) = f_{n-1}(x), \dots$$

若对每一个 $x \in [0,1]$, 都存在自然数 k, 使得 $f_k(x) = 0$, 则 $f(x) \equiv 0$.

证明 只需指出 f(x) 在 [0,1] 中的一个稠密集上为 0 即可. 对此, 我们在 [0,1] 中任取一个闭子区间 I, 并记

$$F_k = \{x \in I : f_k(x) = 0\} \quad (k = 1, 2, \cdots).$$

显然, 每个 F_k 都是闭集, 且 $I = \bigcup_{k=1}^{\infty} F_k$. 根据Baire 定理可知, 存在 F_{k_0} , 它包含一个区间 (α, β) . 因为在 (α, β) 上 $f_{k_0}(x) = 0$, 所以 f(x) = 0, $x \in (\alpha, \beta)$. 注意到 $(\alpha, \beta) \subset I$, 即得所证.

1.4.4 Cantor(三分) 集

定义 1.39

设 [0,1] ⊂ ℝ, 将 [0,1] 三等分, 并移去中央三分开区间

$$I_{1,1} = \left(\frac{1}{3}, \frac{2}{3}\right),$$

记其留存部分为 F_1 ,即

$$F_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right] = F_{1,1} \cup F_{1,2};$$

再将 F_1 中的区间 [0,1/3] 及 [2/3,1] 各三等分, 并移去中央三分开区间

$$I_{2,1} = \left(\frac{1}{9}, \frac{2}{9}\right)$$
 \mathcal{R} $I_{2,2} = \left(\frac{7}{9}, \frac{8}{9}\right)$,

记 F_1 中留存的部分为 F_2 ,即

$$F_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$
$$= F_{2,1} \cup F_{2,2} \cup F_{2,3} \cup F_{2,4}.$$

一般地说 (归纳定义), 设所得剩余部分为 F_n , 则将 F_n 中每个 (互不相交) 区间三等分, 并移去中央三分开区间, 记其留存部分为 F_{n+1} , 如此等等. 从而我们得到集合列 $\{F_n\}$, 其中

$$F_n = F_{n,1} \cup F_{n,2} \cup \cdots \cup F_{n,2^n} \quad (n = 1, 2, \cdots).$$

作点集 $C = \bigcap_{n=1}^{\infty} F_n$, 我们称 C 为 Cantor(三分) 集.

定理 1.24 (Cantor 集的基本性质)

- (1) C是非空有界闭集,因此是紧集.
- (2) C = C', 即 C 为完全集.
- (3) C 无内点.
- (4) Cantor 集的基数是 c.
- (5) [0,1]\C的长度的总和为1.

证明

- (1) 因为每个 F_n 都是非空有界闭集,而且 $F_n \supset F_{n+1}$,所以根据 Cantor 闭集套定理,可知 C 不是空集 (实际上, F_n $(n=1,2,\cdots)$ 中每个闭区间的端点都是没有被移去的,即都是 C 中的点). 显然,C 是闭集.
- (2) 设 $x \in C$, 则 $x \in F_n$ $(n = 1, 2, \dots)$, 即对每个 n, x 属于长度为 $1/3^n$ 的 2^n 个闭区间中的一个. 于是, 对任一

 $\delta > 0$, 存在 n, 满足 $1/3^n < \delta$, 使得 F_n 中包含 x 的闭区间含于 $(x - \delta, x + \delta)$. 此闭区间有两个端点, 它们是 C 中的点且总有一个不是 x. 这就说明 x 是 C 的极限点, 故得 $C' \supset C$. 由 (i) 知 C = C'.

- (3) 设 $x \in C$, 给定任一区间 $(x \delta, x + \delta)$, 取 $2/3^n < \delta$. 因为 $x \in F_n$, 所以 F_n 中必有某个长度为 $1/3^n$ 的闭区间 $F_{n,k}$ 含于 $(x \delta, x + \delta)$. 然而, 在构造 C 集的第 n+1 步时, 将移去 $F_{n,k}$ 的中央三分开区间. 这说明 $(x \delta, x + \delta)$ 不含于 C.
- (4) 事实上, 将 [0,1] 中的实数按三进位小数展开, 则 Cantor 集中点 x 与下述三进位小数集的元

$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}, \quad a_i = 0, 2$$

--对应. 从而知 C 为连续基数集 (与 (0,1] 的二进位小数比较).

(5) 由 C 的定义可得

$$\sum_{n=1}^{\infty} 2^{n-1} 3^{-n} = 1.$$

定义 1.40 (类 Cantor 集)

设 δ 是 (0,1) 内任意给定的数, 考虑在 [0,1] 区间, 取 $p = (1+2\delta)/\delta$, 采用类似于 Cantor 集的构造过程: 第一步, 移去长度为 1/p 的同心开区间;

第二步,在留存的两个闭区间的每一个中,又移去长度为 1/p² 的同心开区间;

第三步, 在留存的四个闭区间中再移去长度为 $1/p^3$ 的同心区间. 继续此过程, 可得一列移去的开区间, 记其并集为 G(开集), 我们称 $C_p = [0,1] \setminus G$ 为**类 Cantor 集** (当 p=3 时, C_p 就是 Cantor (三分) 集). 类 Cantor 集 也称为 **Harnack 集**.

注 若要在 \mathbb{R}^n 的单位方体 $[0,1] \times [0,1] \times \cdots \times [0,1]$ 中构造具有类似性质的集合, 则只需取 $C \times C \times \cdots \times C(C)$ 是 [0,1] 中的类 Cantor 集) 即可.

定理 1.25 (类 Cantor 集的基本性质)

- (1) G 的总长度为 $\delta(0 < \delta < 1$ 是任意给定的数) 的稠密开集.
- (2) C_p 是非空完全集,且没有内点.

证明

(1) 由 G 的定义可知 G 的总长度为

$$\sum_{n=1}^{\infty} 2^{n-1} \left(\frac{1}{p} \right)^n = \frac{1}{p-2} = \delta.$$

(2)

定义 1.41 (Cantor 函数)

设 C 是 [0,1] 中的 Cantor 集, 其中的点我们用三进位小数

$$x = 2 \sum_{i=1}^{\infty} \frac{\alpha_i}{3^i}, \quad \alpha_i = 0, 1 \quad (i = 1, 2, \dots)$$

来表示.

(i) 作定义在 C 上的函数 $\varphi(x)$. 对于 $x \in C$, 定义

$$\varphi(x) = \varphi\left(2\sum_{i=1}^{\infty} \frac{\alpha_i}{3^i}\right) = \sum_{i=1}^{\infty} \frac{\alpha_i}{2^i}, \quad \alpha_i = 0, 1 \quad (i = 1, 2, \cdots).$$

(ii) 作定义在 [0,1] 上的 $\Phi(x)$. 对于 $x \in [0,1]$, 定义

$$\Phi(x) = \sup \{ \varphi(y) : y \in C, y \leqslant x \}.$$

我们称 $\Phi(x)$ 为 Cantor 函数.

定理 1.26 (Cantor 函数的性质)

设 $\Phi(x) = \sup \{ \varphi(y) : y \in C, y \leq x \}$ 为 Cantor 函数, 则有下列性质:

- (1) $\varphi(C) = [0,1]$, 即 φ 是满射. 并且 $\varphi(x)$ 是 C 上的递增函数.
- (2) $\Phi(x)$ 是 [0,1] 上的递增连续函数. 此外, 在构造 Cantor 集的过程中所移去的每个中央三分开区间 $I_{n,k}$ 上, $\Phi(x)$ 都是常数.

证明

(1) 因为 [0,1] 中的点可用二进位小数表示, 所以由 φ 的定义有 $\varphi(C) = [0,1]$..

下面证明 $\varphi(x)$ 是 C 上的递增函数. 设 $\alpha_1, \alpha_2, \cdots, \beta_1, \beta_2, \cdots$ 是取 0 或 1 的数, 而且它们所表示的 C 中的数有下述关系:

$$2\sum_{i=1}^{\infty} \frac{\alpha_i}{3^i} < 2\sum_{i=1}^{\infty} \frac{\beta_i}{3^i}.$$

若记 $k = \min\{i : \alpha_i \neq \beta_i\}$, 则我们有

$$0 < \sum_{i=1}^{\infty} \frac{\beta_i - \alpha_i}{3^i} = \frac{\beta_k - \alpha_k}{3^k} + \sum_{i>k} \frac{\beta_i - \alpha_i}{3^i}$$
$$\leq \frac{\beta_k - \alpha_k}{3^k} + \sum_{i>k} \frac{2}{3^i} = \frac{\beta_k - \alpha_k + 1}{3^k}.$$

由此可知 $(\alpha_k < \beta_k)\alpha_k = 0, \beta_k = 1,$ 从而得到

$$\begin{split} \varphi\left(2\sum_{i=1}^{\infty}\frac{\alpha_i}{3^i}\right) &= \sum_{i=1}^{\infty}\frac{\alpha_i}{2^i} = \sum_{i=1}^{k-1}\frac{\alpha_i}{2^i} + \sum_{i=k}^{\infty}\frac{\alpha_i}{2^i} \\ &\leqslant \sum_{i=1}^{k-1}\frac{\beta_i}{2^i} + \sum_{i=k+1}^{\infty}\frac{1}{2^i} = \sum_{i=1}^{k-1}\frac{\beta_i}{2^i} + \frac{1}{2^k} \\ &\leqslant \sum_{i=1}^{k-1}\frac{\beta_i}{2^i} + \sum_{i=k}^{\infty}\frac{\beta_i}{2^i} = \varphi\left(2\sum_{i=1}^{\infty}\frac{\beta_i}{3^i}\right). \end{split}$$

(2) 由 (2) 的结论及 Φ 的定义即得 Φ 的递增性. 因为 $\Phi([0,1]) = [0,1]$, 所以由命题 6.7可知 $\Phi(x)$ 是 [0,1] 上的连续函数.

例题 1.9 $E \subset \mathbb{R}$ 是完全集当且仅当 $E = \left(\bigcup_{n \geq 1} (a_n, b_n)\right)^c$,其中 (a_i, b_i) 与 (a_j, b_j) $(i \neq j)$ 无公共端点.

证明 必要性: 若 E 是完全集,则 E 是闭集.从而 E^c 是开集,它是 E^c 内构成区间的并集.这些构成区间相互之间是没有公共端点的,否则 E 中就会有孤立点了,这是不可能的.

充分性: 首先, 由题设知 E 是闭集. 其次, 对任意的 $x \in E$, 如果 $x \notin E'$, 那么存在 $\delta > 0$, 使得 $(x-\delta, x+\delta) \cap E = \{x\}$. 这说明 x 是某两个开区间的端点, 与假设矛盾.

例题 1.10 设 $E \subset \mathbb{R}^2$ 是完全集,则 E 是不可数集.

证明 用反证法. 假定 $E = \{x_n \in \mathbb{R}^2 : n = 1, 2, \dots\}$.

- (i) 选取 $y_1 \in E \setminus \{x_1\}$, 则点 x_1 到 y_1 的距离大于 0. 存在以 y_1 为中心的闭正方形 $Q_1,Q_1 \cap E$ 是紧集.
- (ii) 看 $E \setminus \{x_2\}$. 因为 $y_1 \in E \setminus \{x_2\}$ 的极限点, 所以 $\mathring{Q}_1 \cap (E \setminus \{x_2\}) \neq \emptyset$. 又取 $y_2 \in \mathring{Q}_1 \cap (E \setminus \{x_2\})$, 并作以 y_2 为中心的闭正方形 $Q_2:Q_2 \subset Q_1, x_1 \notin Q_2, x_2 \notin Q_2$, 可知 $(Q_1 \cap E) \supset (Q_2 \cap E)$ 是紧集. 如此继续做下去, 可得有界闭

集套列 $\{Q_n \cap E\}: (Q_{n-1} \cap E) \supset (Q_n \cap E) (n \in \mathbb{N})$, 而且 x_1, x_2, \dots, x_n 不在其内. 我们有

$$\bigcap_{n=1}^{\infty} (Q_n \cap E) = \varnothing,$$

导致矛盾.

命题 1.16

任一非空完全集的基数均为c.

证明 证明见那汤松著《实变函数论》的上册,有高等教育出版社出版的中译本,1955年.

例题 1.11 设
$$E = \left\{ x \in [0,1] : x = \sum_{n=1}^{\infty} a_n/10^n, a_n = 2 \text{ 或7} \right\}$$
, 我们有

- (i) E 是闭集;
- (ii) $\overline{E} = c$;
- (iii) E 在 [0,1] 中不稠密.

证明 (i) 若有 $\{x_m\} \subset E: x_m \to x(m \to \infty)$, 则

$$x = \sum_{n=1}^{\infty} b_n / 10^n$$
 $(b_n = 0, 1, 2, \dots, 9).$

如果 $|x_m-x|<10^{-p}$, 那么在 $x\in E$ 时, $b_n=2$ 或7($n=1,2,\cdots,p-1$). 这说明 E 是闭集.

- (ii) 与 0 和 1 组成的数列类似, $\overline{E} = c$.
- (iii) 注意到 $E \cap (0.28, 0.7) = \emptyset$, 故 E 不是稠密集.

1.5 点集间的距离

定义 1.42

设 $x \in \mathbb{R}^n$, $E \in \mathbb{R}^n$ 中的非空点集, 称

$$d(x, E) = \inf\{|x - y| : y \in E\}$$

为点 x 到 E 的**距离**; 若 E_1, E_2 是 \mathbb{R}^n 中的非空点集, 称

$$d(E_1, E_2) = \inf\{|x - y| : x \in E_1, y \in E_2\}$$

为 E_1 与 E_2 之间的距离. 也可等价地定义为

inf{
$$d(x, E_2)$$
 : $x \in E_1$ } $\overset{\checkmark}{}$ $\overset{\checkmark}{}$ inf{ $d(E_1, y)$: $y \in E_2$ }.

命题 1.17 (点集间的距离的性质)

(1) 设 E_1, E_2, \cdots, E_n, F 是 \mathbb{R}^n 中n+1个非空点集,则

$$d\left(F,\bigcup_{i=1}^{n} E_{i}\right) = \min_{i=1,2,\cdots,n} \left\{d\left(F,E_{i}\right)\right\}.$$

- (2) 设 E_1, E_2, \dots, E_n 是 \mathbb{R}^n 中 n 个非空点集, 若 $d(E_i, E_j) > 0 (i \neq j)$, 则 $E_i \cap E_j = \emptyset (i \neq j)$.
- (3) 设 E_1, E_2, \dots, E_n 是 \mathbb{R}^n 中 n 个非空闭集, 若 $E_i \cap E_j = \emptyset (i \neq j)$, 则 $d(E_i, E_j) > 0 (i \neq j)$.

 $\dot{\mathbf{L}}$ 若 (3) 中去掉 E_i 是闭集这个条件, 则结论不一定成立 (例如, 两个开球相切).

证明

(1) 由
$$\bigcup_{i=1}^{n} E_i \supset E_i (i=1,2,\cdots,n)$$
 可知

$$\left\{ (x,y)|x\in F, y\in \bigcup_{i=1}^n E_i \right\} \supset \left\{ (x,y)|x\in F, y\in E_i \right\} \quad (i=1,2,\cdots,n).$$

因此

$$d\left(F,\bigcup_{i=1}^{n}E_{i}\right)=\inf\left\{d(x,y)|x\in F,y\in\bigcup_{i=1}^{n}E_{i}\right\}\geqslant\inf\left\{d(x,y)|x\in F,y\in E_{i}\right\}=d(F,E_{i})\quad(i=1,2,\cdots,n).$$

故

$$d\left(F,\bigcup_{i=1}^{n} E_{i}\right) \geqslant \min_{i=1,2,\cdots,n} \left\{d(F,E_{i})\right\}.$$

对 $\forall x \in F, y \in \bigcup_{i=1}^{n} E_i$, 都存在 $j \in \{1, 2, \dots, n\}$, 使得 $y \in E_j$. 于是

$$d(x, y) \geqslant d(F, E_j) \geqslant \min_{i=1, 2, \dots, n} \left\{ d(F, E_i) \right\}.$$

故
$$\min_{i=1,2,\cdots,n} \{d(F,E_i)\}$$
 是 $\left\{d(x,y)|x\in F,y\in\bigcup_{i=1}^n E_i\right\}$ 的一个下界. 因此

$$d\left(F,\bigcup_{i=1}^{n}E_{i}\right)=\inf\left\{d(x,y)|x\in F,y\in\bigcup_{i=1}^{n}E_{i}\right\}\geqslant\min_{i=1,2,\cdots,n}\left\{d(F,E_{i})\right\}.$$

综上,
$$d\left(F,\bigcup_{i=1}^{n}E_{i}\right)=\min_{i=1,2,\cdots,n}\left\{d(F,E_{i})\right\}.$$

- (2) 反证, 假设存在 $i \neq j$, 使得 $E_i \cap E_j \neq \emptyset$, 则任取 $x_0 \in E_i \cap E_j$, 又由 $d(E_i, E_j) > 0$ 可知, 对 $\forall x \in E_i, y \in E_j$, 都 有 $d(x, y) \geq d(E_i, E_j) > 0$. 这与 $d(x_0, x_0) = 0$, $x_0 \in E_i \cap E_j$ 矛盾!
- (3) 反证, 假设存在 $i \neq j$, 使得 $d(E_i, E_j) = 0$. 由 $d(E_i, E_j) = \inf\{d(x, y) \mid x \in E_i, y \in E_j\}$ 及下确界的定义可知, 对 $\forall n \in \mathbb{N}$, 存在 $x_n \in E_i, y_n \in E_j$, 使得 $d(x_n, y_n) < \frac{1}{n}$. 从而 $\lim_{n \to \infty} d(x_n, y_n) = 0$, 因此

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = c.$$

再由 E_i, E_j 都是闭集可知 $c \in E_i \cap E_j$, 这与 $E_i \cap E_j = \emptyset$ 矛盾!

例题 1.12 在 \mathbb{R}^2 中作点集

$$E_1=\{x=(\xi,\eta): -\infty<\xi<+\infty, \eta=0\},$$

$$E_2 = \{ y = (\xi, \eta) : \xi \cdot \eta = 1 \},$$

则 $d(E_1, E_2) = 0$.

证明 事实上, 当我们取 $x = (\xi, 0) \in E_1$ 且 $y = (\xi, \eta) \in E_2$ 时, 由

$$d(E_1, E_2) \leqslant d(x, y) = |\eta| = \frac{1}{|\xi|}$$

可知, 对任给的 $\varepsilon > 0$, 只需 $|\xi|$ 充分大, 就有 $d(E_1, E_2) < \varepsilon$. 由此得

$$d(E_1, E_2) = 0.$$

显然, 若 $x \in E$, 则 d(x, E) = 0. 但反之, 若 d(x, E) = 0, 则 x 不一定属于 E. 不过在 $x \notin E$ 时, 必有 $x \in E'$.

定理 1.27

若 $F \subset \mathbb{R}^n$ 是非空闭集, 且 $x_0 \in \mathbb{R}^n$, 则存在 $y_0 \in F$, 有

$$|x_0 - y_0| = d(x_0, F).$$

证明 作闭球 $\overline{B} = \overline{B}(x_0, \delta)$, 使得 $\overline{B} \cap F$ 不是空集. 显然

$$d(x_0, F) = d(x_0, \overline{B} \cap F).$$

 $\overline{B} \cap F$ 是有界闭集, 而 $|x_0 - y|$ 看作定义在 $\overline{B} \cap F$ 上的 y 的函数是连续的, 故它在 $\overline{B} \cap F$ 上达到最小值, 即存在

 $y_0 \in \overline{B} \cap F$, 使得

$$|x_0 - y_0| = \inf\{|x_0 - y| : y \in \overline{B} \cap F\},\$$

从而有 $|x_0 - y_0| = d(x_0, F)$.

定理 1.28

若 $E \in \mathbb{R}^n$ 中非空点集, 则 d(x, E) 作为 x 的函数在 \mathbb{R}^n 上是一致连续的.

证明 考虑 \mathbb{R}^n 中的两点 x, y. 根据 d(y, E) 的定义, 对任给的 $\varepsilon > 0$, 必存在 $z \in E$, 使得 $|y - z| < d(y, E) + \varepsilon$, 从而有

$$d(x, E) \le |x - z| \le |x - y| + |y - z|$$
$$< |x - y| + d(y, E) + \varepsilon.$$

由 ε 的任意性可知

$$d(x, E) - d(y, E) \leqslant |x - y|.$$

同理可证 $d(y, E) - d(x, E) \leq |x - y|$. 这说明

$$|d(x, E) - d(y, E)| \le |x - y|.$$

推论 1.1

若 F_1, F_2 是 \mathbb{R}^n 中的两个非空闭集且其中至少有一个是有界的,则存在 $x_1 \in F_1, x_2 \in F_2$,使得

$$|x_1 - x_2| = d(F_1, F_2).$$

引押 13

若 F_1, F_2 是 \mathbb{R}^n 中两个互不相交的非空闭集,则存在 \mathbb{R}^n 上的连续函数 f(x),使得

(i) $0 \leqslant f(x) \leqslant 1 \ (x \in \mathbb{R}^n)$;

(ii)
$$F_1 = \{x : f(x) = 1\}, F_2 = \{x : f(x) = 0\}.$$

证明 构造函数 f(x):

$$f(x) = \frac{d(x, F_2)}{d(x, F_1) + d(x, F_2)}, \quad x \in \mathbb{R}^n,$$

它就是所求的函数.

定理 1.29 (连续延拓定理)

若 F 是 \mathbb{R}^n 中的闭集, f(x) 是定义在 F 上的连续函数, 且 $|f(x)| \leq M$ $(x \in F)$, 则存在 \mathbb{R}^n 上的连续函数 g(x) 满足

$$|g(x)| \leq M$$
, $g(x) = f(x)$, $x \in F$.

注 1. 上述定理在 f(x) 无界时也成立 (研究 arctan f(x)).

2. \mathbb{R}^2 中存在由某些有理点构成的稠密集, 其中任意两点的距离为无理数.

证明 把 F 分成三个点集:

$$A = \left\{ x \in F : \frac{M}{3} \leqslant f(x) \leqslant M \right\},$$

$$B = \left\{ x \in F : -M \leqslant f(x) \leqslant \frac{-M}{3} \right\},$$

$$C = \left\{ x \in F : \frac{-M}{3} < f(x) < \frac{M}{3} \right\},$$

并作函数

$$g_1(x) = \frac{M}{3} \cdot \frac{d(x,B) - d(x,A)}{d(x,B) + d(x,A)}, \quad x \in \mathbb{R}^n.$$

因为A与B是互不相交的闭集,所以 $g_1(x)$ 处处有定义且在 \mathbb{R}^n 上处处连续.此外,还有

$$|g_1(x)| \le \frac{M}{3}, \quad x \in \mathbb{R}^n,$$

 $|f(x) - g_1(x)| \le \frac{2}{3}M, \quad x \in F.$

再在F上来考查 $f(x)-g_1(x)$ (相当于上述之f(x)),并用类似的方法作 \mathbb{R}^n 上的连续函数 $g_2(x)$. 此时由于 $f(x)-g_1(x)$ 的界是2M/3,故 $g_2(x)$ 应满足

$$|g_2(x)| \leqslant \frac{1}{3} \cdot \frac{2M}{3}, \quad x \in \mathbb{R}^n,$$

$$|(f(x) - g_1(x)) - g_2(x)| \le \frac{2}{3} \cdot \frac{2M}{3} = \left(\frac{2}{3}\right)^2 M, \quad x \in F.$$

继续这一过程, 可得在 \mathbb{R}^n 上的连续函数列 $\{g_k(x)\}$, 使得

$$|g_k(x)| \le \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{k-1} M, \quad x \in \mathbb{R}^n \quad (k = 1, 2, \cdots),$$

$$\left| f(x) - \sum_{i=1}^{k} g_i(x) \right| \leqslant \left(\frac{2}{3}\right)^k M, \quad x \in F \quad (k = 1, 2, \cdots).$$

上面的第一式表明 $\sum_{k=1}^{\infty} g_k(x)$ 是一致收敛的. 若记其和函数为 g(x), 则 g(x) 是 \mathbb{R}^n 上的连续函数. 上面的第二式表明

$$g(x) = \sum_{k=1}^{\infty} g_k(x) = f(x), \quad x \in F.$$

最后,对于任意的 $x \in \mathbb{R}^n$,得到

$$|g(x)| \le \sum_{k=1}^{\infty} |g_k(x)| \le \frac{M}{3} \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \cdots \right)$$

 $\le \frac{M}{3} \cdot \frac{1}{1 - \frac{2}{3}} = M.$

第2章 Lebesgue 测度

2.1 点集的 Lebesgue 外测度

定义 2.1 (Lebesgue 外测度)

设 $E \subset \mathbb{R}^n$. 若 $\{I_k\}$ 是 \mathbb{R}^n 中的可数个开矩体, 且有

$$E\subset\bigcup_{k\geq 1}I_k,$$

则称 $\{I_k\}$ 为 E 的一个 L-**覆盖** (显然, 这样的覆盖有很多, 且每一个 L- 覆盖 $\{I_k\}$ 确定一个非负广义实值 $\sum_{k>1} |I_k|$ (可以是 $+\infty$, $|I_k|$ 表示 I_k 的体积)). 称

为点集E的Lebesgue外测度,简称外测度

注 显然, 若 E 的任意的 L- 覆盖 $\{I_k\}$ 均有

$$\sum_{k>1} |I_k| = +\infty,$$

则 $m^*(E) = +\infty$, 否则 $m^*(E) < +\infty$.

定理 2.1 (\mathbb{R}^n 中点集的外测度性质)

- (1) 非负性: $m^*(E) \ge 0$, $m^*(\emptyset) = 0$;
- (2) 单调性: 若 $E_1 \subset E_2$, 则 $m^*(E_1) \leq m^*(E_2)$;
- (3) 次可加性: $m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^*(E_k)$.

证明

- (1) 这可从定义直接得出.
- (2) 这是因为 E_2 的任一个 L- 覆盖都是 E_1 的 L- 覆盖.
- (3) 不妨设 $\sum_{k=1}^{\infty} m^*(E_k) < +\infty$. 对任意的 $\varepsilon > 0$ 以及每个自然数 k, 存在 E_k 的 L- 覆盖 $\{I_{k,l}\}$, 使得

$$E_k \subset \bigcup_{l=1}^{\infty} I_{k,l}, \quad \sum_{l=1}^{\infty} |I_{k,l}| < m^*(E_k) + \frac{\varepsilon}{2^k}.$$

由此可知

$$\bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k,l=1}^{\infty} I_{k,l}, \quad \sum_{k,l=1}^{\infty} |I_{k,l}| \leq \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon.$$

显然, $\{I_{k,l}: k, l=1,2,\cdots\}$ 是 $\bigcup_{k=1}^{\infty} E_k$ 的 L- 覆盖, 从而有

$$m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \le \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon.$$

由 ε 的任意性可知结论成立.

命题 2.1

 \mathbb{R}^n 中的单点集的外测度为零, 即 $m^*(\{x_0\}) = 0, x_0 \in \mathbb{R}^n$. 同理, \mathbb{R}^n 中的点集

$$\{x = (\xi_1, \xi_2, \dots, \xi_{i-1}, t_0, \xi_i, \dots, \xi_n) : a_j \le \xi_j \le b_j, j \ne i\}$$

(n-1 维超平面块) 的外测度也为零.

证明 这是因为可作一开矩体 I, 使得 $x_0 \in I$ 且 |I| 可任意地小.

推论 2.1

若 $E \subset \mathbb{R}^n$ 为可数点集,则 $m^*(E) = 0$.

 $\frac{1}{1}$ 由此可知有理点集的外测度 $m^*(\mathbb{Q}^n) = 0$. 这里我们看到了一个虽然处处稠密但外测度为零的可列点集. 证明 由外测度的次可加性不难证明.

命题 2.2

[0,1] 中的 Cantor 集 C 的外测度是零.

注 这个命题 2.2说明外测度为零的点集不一定是可列集.

证明 事实上,因为 $C = \bigcap_{n=1}^{\infty} F_n$,其中的 F_n (在构造 C 的过程中第 n 步所留存下来的)是 2^n 个长度为 3^{-n} 的闭区间的并集,所以我们有

$$m^*(C) \le m^*(F_n) \le 2^n \cdot 3^{-n}$$
,

从而得知 $m^*(C) = 0$.

命题 2.3

设 $I \in \mathbb{R}^n$ 中的开矩体, \overline{I} 是闭矩体, 则 $m^*(I) = m^*(\overline{I}) = |I|$.

证明 对任给的 $\varepsilon > 0$, 作一开矩体 J, 使得 $J \supset \overline{I}$ 且 $|J| < |I| + \varepsilon$, 从而由外测度的单调性有

$$m^*(\overline{I}) \le |J| < |I| + \varepsilon$$
.

由 ε 的任意性可知 $m^*(\bar{I}) \leq |I|$. 现在设 $\{I_k\}$ 是 \bar{I} 的任意的L-覆盖,则因为 \bar{I} 是有界闭集,所以存在 $\{I_k\}$ 的有限子覆盖

$$\{I_{i_1},I_{i_2},\cdots,I_{i_l}\}, \quad \bigcup_{i=1}^l I_{i_j}\supset \overline{I}.$$

由外测度的单调性和次可加性可得

$$|I| \le \sum_{j=1}^{l} |I_{i_j}| \le \sum_{k=1}^{\infty} |I_k|,$$

再由下确界是最大的下界可得 $|I| \leq m^*(\overline{I})$, 从而我们有 $m^*(\overline{I}) = |I|$.

又因为 $I \subset \overline{I}$, 所以由外测度的单调性可得 $m^*(I) \leq m^*(\overline{I}) = |I|$. 同理可证 $|I| \leq m^*(I)$, 故 $m^*(I) = |I| = m^*(\overline{I})$.

引理 2.1

设 $E \subset \mathbb{R}^n$ 以及 $\delta > 0$. 令

$$m_{\delta}^*(E) = \inf \left\{ \sum_{k=1}^{\infty} |I_k| : \bigcup_{k=1}^{\infty} I_k \supset E,$$
 每个开矩体 I_k 的边长 $< \delta \right\}$,

则 $m_{\delta}^*(E) = m^*(E)$.

 $\widehat{\mathbf{Y}}$ 笔记 这个引理告诉我们, 今后可以对点集 E 的 L-覆盖中的每个开矩体的边长做任意限制, 而不影响 E 的外测度的值.

证明 显然有 $m_{\delta}^*(E) \ge m^*(E)$. 为证明其反向不等式也成立, 不妨设 $m^*(E) < +\infty$. 由外测度的定义可知, 对于任给的 $\varepsilon > 0$, 存在 E 的 L- 覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| \le m^*(E) + \varepsilon.$$

对于每个 k, 我们把 I_k 分割成 I(k) 个开矩体:

$$I_{k,1}, I_{k,2}, \cdots, I_{k,l(k)},$$

它们互不相交且每个开矩体的边长都小于 $\delta/2$. 现在保持每个 $I_{k,i}$ 的中心不动, 边长扩大 $\lambda(1<\lambda<2)$ 倍做出开矩体, 并记为 $\lambda I_{k,i}$, 显然, 对每个 k, 有

$$\bigcup_{i=1}^{l(k)} \lambda I_{k,i} \supset I_k, \quad \sum_{i=1}^{l(k)} |\lambda I_{k,i}| = \lambda^n \sum_{i=1}^{l(k)} |I_{k,i}| = \lambda^n |I_k|.$$

易知 $\{\lambda I_{k,i}: i=1,2,\cdots,l(k); k=1,2,\cdots\}$ 是 E 的边长小于 δ 的 L- 覆盖,且有

$$\sum_{k=1}^{\infty} \sum_{i=1}^{l(k)} |\lambda I_{k,i}| = \lambda^n \sum_{k=1}^{\infty} |I_k| \le \lambda^n (m^*(E) + \varepsilon),$$

从而可知 $m_{\delta}^*(E) \leq \lambda^n(m^*(E) + \varepsilon)$. 令 $\lambda \to 1$ 并注意到 ε 的任意性, 我们得到 $m_{\delta}^*(E) \leq m^*(E)$. 这说明 $m_{\delta}^*(E) = m^*(E)$.

定理 2.2

设 E_1, E_2 是 \mathbb{R}^n 中的两个点集. 若 $d(E_1, E_2) > 0$, 则

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

证明 由外测度的次可加性可知, 只需证明 $m^*(E_1 \cup E_2) \ge m^*(E_1) + m^*(E_2)$ 即可. 为此, 不妨设 $m^*(E_1 \cup E_2) < +\infty$. 对任给的 $\varepsilon > 0$, 作 $E_1 \cup E_2$ 的 L — 覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m^*(E_1 \cup E_2) + \varepsilon,$$

其中 I_k 的边长都小于 $d(E_1, E_2)/\sqrt{n} (n \ge 2)$. 现在将 $\{I_k\}$ 分为如下两组:

$$(i)J_{i_1}, J_{i_2}, \cdots, \bigcup_{k\geq 1} J_{i_k} \supset E_1; \quad (ii)J_{l_1}, J_{l_2}, \cdots, \bigcup_{k\geq 1} J_{l_k} \supset E_2.$$
 (2.1)

且其中任一矩体皆不能同时含有 E_1 与 E_2 中的点. 否则, 若对任意的 J_{i_1}, J_{i_2}, \cdots , $\bigcup_{k \geq 1} J_{i_k} \supset E_1$ 或 J_{i_1}, J_{i_2}, \cdots , $\bigcup_{k \geq 1} J_{i_k} \supset E_2$, 其中 $J_{i_k} \in \{I_k\}$,都存在 $m \in [1, k] \cap \mathbb{N}$,使得 J_{i_m} 中同时含有 E_1 和 E_2 中的点. 设 $x_1 \in J_{i_m} \cap E_1, x_2 \in J_{i_m} \cap E_2$,则由 $d(E_1, E_2) > 0$ 可知

$$d(x_1, x_2) \geqslant d(E_1, E_2) > 0.$$

又因为 I_k 的边长都小于 $d(E_1, E_2)/\sqrt{n} (n \ge 2)$, 所以

$$d(x_1, x_2) \leqslant \frac{\sqrt{2}d(E_1, E_2)}{\sqrt{n}} < d(E_1, E_2) < d(x_1, x_2).$$

上式显然矛盾!(最大的矩体应为正方体, $\frac{\sqrt{2}d(E_1,E_2)}{\sqrt{n}}$) 为最大的矩体的对角线长) 故(2.1)式成立. 从而得

$$m^*(E_1 \cup E_2) + \varepsilon > \sum_{k \ge 1} |I_k| = \sum_{k \ge 1} |J_{i_k}| + \sum_{k \ge 1} |J_{I_k}|$$

 $\ge m^*(E_1) + m^*(E_2).$

再由 ε 的任意性可知 $m^*(E_1 \cup E_2) \ge m^*(E_1) + m^*(E_2)$.

П

推论 2.2

设 E_1, E_2, \dots, E_n 是 \mathbb{R}^n 中的 n 个点集. 若 $d(E_i, E_j) > 0 (i \neq j)$, 则

$$m^*\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n m^*(E_i).$$

证明 当 n=1 时结论显然成立. 假设当 n=k 时结论成立, 现在考虑 n=k+1 的情形. 由点集间的距离的性质及 $d(E_i,E_j)>0 (i\neq j)$ 可知

$$d\left(E_{k+1}, \bigcup_{i=1}^{k} E_{i}\right) = \min_{i=1,2,\dots,k} d\left(E_{k+1}, E_{i}\right) > 0.$$

故再由定理 2.2和归纳假设可得

$$m^* \left(\bigcup_{i=1}^{k+1} E_i \right) = m^* \left(E_{k+1} \cup \bigcup_{i=1}^k E_i \right) = m^* \left(E_{k+1} \right) + m^* \left(\bigcup_{i=1}^k E_i \right)$$
$$= m^* \left(E_{k+1} \right) + \sum_{i=1}^k m^* (E_i) = \sum_{i=1}^{k+1} m^* (E_i).$$

因此由数学归纳法可知结论成立.

命题 2.4

设 $E \subset [a,b]$, $m^*(E) > 0$, $0 < c < m^*(E)$, 则存在 E 的子集 A, 使得 $m^*(A) = c$.

证明 记 $f(x) = m^*([a,x) \cap E)$, $a \le x \le b$, 则 f(a) = 0, $f(b) = m^*(E)$. 考查 x = 5 x + 5

$$[a, x + \Delta x) \cap E = ([a, x) \cap E) \cup ([x, x + \Delta x) \cap E)$$

可知 $f(x + \Delta x) \leq f(x) + \Delta x$, 即

$$f(x + \Delta x) - f(x) \le \Delta x$$
.

对 $\Delta x < 0$ 也可证得类似不等式. 总之, 我们有

$$|f(x + \Delta x) - f(x)| \le |\Delta x|, \quad a \le x \le b.$$

这说明 $f \in C([a,b])$. 根据连续函数中值定理, 对 f(a) < c < f(b), 存在 $\xi \in (a,b)$, 使得 $f(\xi) = c$. 取 $A = [a,\xi) \cap E$, 即得证.

定理 2.3 (外测度的平移不变性)

设 $E \subset \mathbb{R}^n, x_0 \in \mathbb{R}^n$. 记 $E + \{x_0\} = \{x + x_0, x \in E\}$, 则

$$m^*(E + \{x_0\}) = m^*(E).$$
 (2.2)

注 对集合做相同的平移并不会改变集合之间的关系 (交、并、差、补、子集等).

证明 首先,对于 \mathbb{R}^n 中的开矩体 I, 易知 $I + \{x_0\}$ 仍是一个开矩体且其相应边长均相等, $|I| = |I + \{x_0\}|$. 其次,对 E 的任意的 L- 覆盖 $\{I_k\}$, $\{I_k + \{x_0\}\}$ 仍是 $E + \{x_0\}$ 的 L- 覆盖. 从而由

$$m^*(E + \{x_0\}) \le \sum_{k=1}^{\infty} |I_k + \{x_0\}| = \sum_{k=1}^{\infty} |I_k|$$

可知(对一切 L-覆盖取下确界)

$$m^*(E + \{x_0\}) \le m^*(E).$$

反之, 考虑对 $E + x_0$ 作向量 $-x_0$ 的平移, 可得原点集 E. 同理又有

$$m^*(E) \le m^*(E + \{x_0\}).$$

定理 2.4 (外测度的数乘)

设 $E \subset \mathbb{R}$, $\lambda \in \mathbb{R}$, 记 $\lambda E = {\lambda x : x \in E}$, 则

$$m^*(\lambda E) = |\lambda| m^*(E).$$

证明 因为 $E \subset \bigcup_{n \geq 1} (a_n, b_n)$ 等价于 $\lambda E \subset \bigcup_{n \geq 1} \lambda(a_n, b_n), m^*([a_n, b_n]) = m^*((a_n, b_n)),$ 且对任一区间 $(\alpha, \beta),$ 有

$$m^*(\lambda(\alpha, \beta)) = |\lambda| m^*((\alpha, \beta)) = |\lambda|(\beta - \alpha),$$

所以按外测度定义可得 $m^*(\lambda E) = |\lambda| m^*(E)$.

定义 2.2 (集合上的外测度)

设 X 是一个非空集合, μ^* 是定义在幂集 $\mathcal{P}(X)$ 上的一个取广义实值的集合函数, 且满足:

- (i) $\mu^*(\emptyset) = 0, \mu^*(E) \ge 0 (E \subset X);$
- (ii) $\stackrel{.}{\text{H}} E_1, E_2 \subset X, E_1 \subset E_2, 则 \mu^*(E_1) \leq \mu^*(E_2);$
- (iii) 若 $\{E_n\}$ 是 X 的子集列,则有

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} \mu^*(E_n),$$

那么称 μ^* 是 X 上的一个**外测度**.

若(X,d)是一个距离空间,且其上的外测度 μ^* 还满足**距离外测度性质**: 当 $d(E_1,E_2)>0$ 时,有

$$\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2),$$

那么称 μ^* 是 X 上的一个**距离外测度** (利用距离外测度性质可以证明开集的可测性).

2.2 可测集与测度

定义 2.3 (可测集)

设 $E \subset \mathbb{R}^n$. 若对任意的点集 $T \subset \mathbb{R}^n$,有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c),$$

则称 E 为 Lebesgue 可测集 (或 m^* -可测集) 或 E 可测, 简称为可测集, 其中 T 称为试验集 (这一定义可测集的等式也称为 Carathéodory 条件). 可测集的全体称为可测集类, 简记为 M.

定理 2.5 (集合可测的充要条件)

设 $E \subset \mathbb{R}^n$, 则 $E \in \mathcal{M}$ 的充要条件是对任一点集 $T \subset \mathbb{R}^n$ 且 $m^*(T) < +\infty$, 都有

$$m^*(T) \ge m^*(T \cap E) + m^*(T \cap E^c)$$
 (2.3)

成立.

注 往后经常利用这个定理的充分性来证明一个集合可测. 但这个定理的必要性要弱于可测集的定义. 证明 必要性由可测集的定义立得. 下证充分性. 由外测度的次可加性可得

$$m^*(T) = m^* (T \cap \mathbb{R}^n) = m^* (T \cap (E \cup E^c)) = m^* ((T \cap E) \cap (T \cup E^c)) \le m^* (T \cap E) + m^* (T \cap E^c)$$

总是成立的. 又因为在 $m^*(T) = \infty$ 时 (2.3) 式总成立, 故对任意的点集 $T \subset \mathbb{R}^n$, 都有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c).$$

即 $E ∈ \mathcal{M}$.

定义 2.4 (零测集)

外测度为零的点集称为零测集.

 $\dot{\mathbf{L}}$ 显然, \mathbb{R}^n 中由单个点组成的点集是零测集. 从而根据外测度的次可加性知道 \mathbb{R}^n 中的有理点集 \mathbb{Q}^n 是零测集.

命题 2.5

- 1. 零测集的任一子集是零测集.
- 2. 零测集一定可测, 即若 $m^*(E) = 0$, 则 $E \in \mathcal{M}$.

证明

- 1. 由外测度的单调性立得.
- 2. 事实上, 此时我们有

$$m^*(T \cap E) + m^*(T \cap E^c) \le m^*(E) + m^*(T) = m^*(T).$$

再由定理 2.5立得.

命题 2.6

若 $E_1 \subset S$, $E_2 \subset S^c$, $S \in \mathcal{M}$, 则有

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

注 这个命题表明: 当两个集合由一个可测集分离开时, 其外测度就有可加性.

证明 事实上, 此时取试验集 $T = E_1 \cup E_2$, 从 S 是可测集的定义得

$$m^*(E_1 \cup E_2) = m^*((E_1 \cup E_2) \cap S) + m^*((E_1 \cup E_2) \cap S^c) = m^*(E_1) + m^*(E_2).$$

推论 2.3

当 E_1 与 E_2 是互不相交的可测集时, 对任一集合 T 有

$$m^*(T \cap (E_1 \cup E_2)) = m^*((T \cap E_1) \cup (T \cap E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

证明 注意到 $T \cap E_1 \in E_1, T \cap E_2 \in E_1^c$, 而 $E_1 \in \mathcal{M}$, 故由集合运算的性质和命题 2.6可知

$$m^*(T \cap (E_1 \cup E_2)) = m^*((T \cap E_1) \cup (T \cap E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

推论24

当 E_1, E_2, \cdots, E_n 是互不相交的可测集时,对任一集合 T 有

$$m^*\left(T\cap\bigcup_{k=1}^n E_k\right)=m^*\left(\bigcup_{k=1}^n (T\cap E_k)\right)=\sum_{k=1}^n m^*(T\cap E_k).$$

证明 当 n=1 时, 结论显然成立. 假设当 n=m 时结论成立, 考虑 n=m+1 的情况. 由于 $E_1, E_2, \cdots, E_{m+1}$ 皆互不相交, 因此 $\bigcup_{k=1}^{m} E_k$ 和 E_{m+1} 也互不相交. 于是由集合运算的性质和推论 2.3以及归纳假设可得

$$m^{*}\left(T \cap \bigcup_{k=1}^{m+1} E_{k}\right) = m^{*}\left(\bigcup_{k=1}^{m+1} (T \cap E_{k})\right) = m^{*}\left(T \cap \left(\bigcup_{k=1}^{m} E_{k} \cup E_{m+1}\right)\right) = m^{*}\left(\left(T \cap \bigcup_{k=1}^{m} E_{k}\right) \cup (T \cap E_{m+1})\right)$$

$$= m^{*}\left(T \cap \bigcup_{k=1}^{m} E_{k}\right) + m^{*}\left(T \cap E_{m+1}\right) = \sum_{k=1}^{m} m^{*}\left(T \cap E_{k}\right) + m^{*}\left(T \cap E_{m+1}\right) = \sum_{k=1}^{m+1} m^{*}\left(T \cap E_{k}\right).$$

故由数学归纳法可知结论成立.

定理 2.6 (可测集的性质)

- $(1) \varnothing \in \mathscr{M}.$
- (2) 若 $E \in \mathcal{M}$, 则 $E^c \in \mathcal{M}$.
- (3) 若 $E_1 \in \mathcal{M}$, $E_2 \in \mathcal{M}$, 则 $E_1 \cup E_2$, $E_1 \cap E_2$ 以及 $E_1 \setminus E_2$ 皆属于 \mathcal{M} . (由此知, 可测集任何有限次取交、并运算后所得的集皆为可测集.)
- (4) 若 $E_i \in \mathcal{M}$ $(i=1,2,\cdots)$, 则其并集 $\bigcup_{i=1}^{\infty} E_i$ 也属于 \mathcal{M} . 若进一步有 $E_i \cap E_j = \emptyset$ $(i \neq j)$, 则

$$m^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m^*(E_i),$$

即 m^* 在 \mathcal{M} 上满足**可数可加性**(或称为 σ -可加性).

(5) 若
$$E_i \in \mathcal{M}$$
 $(i = 1, 2, \cdots)$, 则其交集 $\bigcap_{i=1}^{\infty} E_i$ 也属于 \mathcal{M} .

证明

- (1) 显然成立.
- (2) 注意到 $(E^c)^c = E$, 从定义可立即得出结论.
- (3) 对于任一集 $T \subset \mathbb{R}^n$,根据集合分解(参阅图 2.1)与外测度的次可加性,我们有

$$\begin{split} m^*(T) &\leq m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c) \\ &= m^*(T \cap (E_1 \cup E_2)) + m^*((T \cap E_1^c) \cap E_2^c) \\ &\leq m^*((T \cap E_1) \cap E_2) + m^*((T \cap E_1) \cap E_2^c) \\ &+ m^*((T \cap E_1^c) \cap E_2) + m^*((T \cap E_1^c) \cap E_2^c). \end{split}$$

又由 E_1 , E_2 的可测性知, 上式右端就是

$$m^*(T \cap E_1) + m^*(T \cap E_1^c) = m^*(T).$$

这说明

$$m^*(T) = m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c).$$

也就是说 $E_1 \cup E_2$ 是可测集.

为证 $E_1 \cap E_2$ 是可测集, 只需注意 $E_1 \cap E_2 = (E_1^c \cup E_2^c)^c$ 即可. 又由 $E_1 \setminus E_2 = E_1 \cap E_2^c$ 可知, $E_1 \setminus E_2$ 是可测集.

(4) 首先,设 $E_1, E_2, \dots, E_i, \dots$ 皆互不相交,并令

$$S = \bigcup_{i=1}^{\infty} E_i$$
, $S_k = \bigcup_{i=1}^{k} E_i$, $k = 1, 2, \cdots$.

由(3) 知每个 S_k 都是可测集,从而对任一集T,我们有

$$\begin{split} m^*(T) &= m^*(T \cap S_k) + m^*(T \cap S_k^c) \\ &= m^* \left(\bigcup_{i=1}^k (T \cap E_i) \right) + m^*(T \cap S_k^c) \\ &= \frac{ \text{$\frac{k}{2}$.4}}{2} \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S_k^c). \end{split}$$

由于 $T \cap S_k^c \supset T \cap S^c$,可知

$$m^*(T) \ge \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S^c).$$

Ŷ k → ∞, 就有

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c).$$

再由外测度的次可加性可得

$$m^{*}(T) \geqslant \sum_{i=1}^{\infty} m^{*}(T \cap E_{i}) + m^{*}(T \cap S^{c}) \geqslant m^{*}(\bigcup_{i=1}^{\infty} (T \cap E_{i})) + m^{*}(T \cap S^{c})$$
$$= m^{*}(T \cap \bigcup_{i=1}^{\infty} E_{i}) + m^{*}(T \cap S^{c}) = m^{*}(T \cap S) + m^{*}(T \cap S^{c}).$$

这说明 $S \in \mathcal{M}$. 此外, 在公式

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c)$$

中以 $T \cap S$ 替换T,则又可得

$$m^*(T \cap S) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

又由外测度的次可加性可知反向不等式总是成立的,因而实际上有

$$m^*(T \cap S) = \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

在这里再取T为全空间 \mathbb{R}^n ,就可证明可数可加性质:

$$m^*(S) = m^* \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} m^*(E_i).$$

其次,对于一般的可测集列 $\{E_i\}$,我们令

$$S_1 = E_1, \quad S_k = E_k \setminus \left(\bigcup_{i=1}^{k-1} E_i\right), \quad k \ge 2,$$

则 $\{S_k\}$ 是互不相交的可测集列. 而由 $\bigcup_{i=1}^{\infty} E_i = \bigcup_{k=1}^{\infty} S_k$ 可知, $\bigcup_{i=1}^{\infty} E_i$ 是可测集.

(5) 由 (2) 可知 $E_i^c \in \mathcal{M}$, 再由 (4) 可知 $\bigcup_{i=1}^{\infty} E_i^c$. 于是再利用 (2) 和 De Morgan 定律可得

$$\left(\bigcup_{i=1}^{\infty} E_i^c\right)^c = \bigcap_{i=1}^{\infty} E_i \in \mathcal{M}.$$

推论 2.5

M 是 \mathbb{R}^n 上的一个 σ -代数.

...

证明 由可测集的性质 (1)(2)(4)立得.

命题 2.7

证明:Cantor 集 C 是可测的, 并且 m(C) = 0.

证明 开区间是可测的. 由开集构造定理, 我们知道 $\mathbb R$ 中的开集是开区间的可数并, 因此也可测. 因此, 闭集也是可测的. 显然, 每个 C_n 都是闭集. 并且

$$C = \bigcap_{n=1}^{\infty} C_n$$

于是C也是闭集. 因此C是可测的.

下面, 我们用两种方法计算康托集的测度.

法一:根据我们的构造, C_{n+1} 的测度刚好是去掉了 1/3 的 C_n 的测度. 换言之,

$$m(C_{n+1}) = \left(1 - \frac{1}{3}\right) m(C_n) = \frac{2}{3} m(C_n)$$

递归地,对任意 $n \in \mathbb{N}$,我们有

$$m(C_n) = \left(\frac{2}{3}\right)^n m(C_0) = \left(\frac{2}{3}\right)^n$$

注意到

$$m(C_0) = 1 < \infty$$

因此由测度的第二单调收敛定理,

$$m(C) = m\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

此即得证.

法二:设 $n \geq 2$. C_n 比 C_{n-1} 减少了 2^{n-1} 个区间,每个区间长度为 $\frac{1}{3^n}$. 因此 C_n 比 C_{n-1} 减少的长度为

$$2^{n-1}\frac{1}{3^n} = \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$

总共减少的长度为

$$\sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = \frac{1}{3} \cdot 3 = 1$$

因此

$$m(C) = 1 - 1 = 0.$$

命题 2.8

 \mathcal{M} 的基数是 2^c .

证明 由命题 2.7可知 Cantor 集是零测集, 不难推断 \mathcal{M} 的基数大于或等于 2^c , 但 \mathcal{M} 的基数又不会超过 2^c , 于是 \mathcal{M} 的基数实际上是 2^c .

定义 2.5 (Lebesgue 测度)

对于可测集 E, 其外测度称为**测度**, 记为 m(E). 这就是通常所说的 \mathbb{R}^n 上的 Lebesgue **测度**.

定义 2.6 (测度)

设 X 是非空集合, \mathscr{A} 是 X 的一些子集构成的 σ - 代数. 若 μ 是定义在 \mathscr{A} 上的一个集合函数, 且满足:

(i) $0 \le \mu(E) \le +\infty (E \in \mathcal{A});$

- (ii) $\mu(\emptyset) = 0$;
- (iii) μ在 A 上是可数可加的,

则称 μ 是 \mathscr{A} 上的 (非负) **测度**. \mathscr{A} 中的元素称为 (μ) **可测集**, 有序组 (X, \mathscr{A} , μ) 称为**测度空间**.

 $\dot{\mathbf{L}}$ 由推论 2.5可知 \mathcal{M} 就是 \mathbb{R}^n 上的一个 σ -代数, 故本节所建立的测度空间就是 (\mathbb{R}^n , \mathcal{M} , m).

定理 2.7 (测度的基本性质)

- (1) 非负性: 若 $E \in \mathcal{M}$, 则 $m(E) \ge 0$, $m(\emptyset) = 0$;
- (2) 单调性: 若 $E_1, E_2 \in \mathcal{M}$ 且 $E_1 \subset E_2$, 则 $m(E_1) \leq m(E_2)$, 并且 $m(E_2 \setminus E_1) = m(E_1) m(E_2)$;
- (3) 可数可加性: 若 $E_i \in \mathcal{M}$ $(i = 1, 2, \cdots)$ 且 $E_i \cap E_j = \emptyset$ $(i \neq j)$, 则

$$m\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m(E_i).$$

证明

- (1) 由 R^n 中点集的外测度性质立得.
- (2) 由 \mathbb{R}^n 中点集的外测度性质可知 $m(E_1) \leq m(E_2)$. 再根据 E_1 可测可知

$$m^*(E_2) = m^*(E_2 \cap E_1) + m^*(E_2 \cap E_1^c) = m^*(E_1) + m^*(E_2 \setminus E_1).$$

又由可测集的性质可知 $E_2 \setminus E_1$ 可测, 又因为 E_1, E_2 可测, 所以上式等价于

$$m(E_2) = m(E_2 \cap E_1) + m(E_2 \cap E_1^c) = m(E_1) + m(E_2 \setminus E_1).$$

(3) 由可测集的性质立得.

定理 2.8 (递增可测集列的测度运算)

若有递增可测集列 $E_1 \subset E_2 \subset \cdots \subset E_k \cdots$, 则

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k). \tag{2.4}$$

证明 若存在 k_0 , 使得 $m(E_{k_0}) = +\infty$, 则

$$m^* \left(\lim_{k \to \infty} E_k \right) = m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k) \geqslant m^*(E_{k_0}).$$

因此 $m^* \left(\lim_{k \to \infty} E_k \right) = +\infty$. 又由 $\{E_k\}_{k=1}^{\infty}$ 递增可知

$$m^*(E_k) \geqslant m^*(E_{k_0}), \quad \forall k \geqslant k_0.$$

因此 $\lim_{k\to\infty} m^*(E_k) = +\infty$. 故此时定理自然成立.

现在假定对一切 k, 有 $m(E_k) < +\infty$. 由假设 $E_k \in \mathcal{M}(k = 1, 2, \cdots)$, 故 E_{k-1} 与 $E_k \setminus E_{k-1}$ 是互不相交的可测集. 由测度的可加性知 $m(E_{k-1}) + m(E_k \setminus E_{k-1}) = m(E_k)$. 因为 $m(E_{k-1})$ 是有限的, 所以移项得 $m(E_k \setminus E_{k-1}) = m(E_k) - m(E_{k-1})$. 令 $E_0 = \varnothing$, 可得 $\lim_{k \to \infty} E_k = \bigcup_{k \to \infty} E_k = \bigcup_{k \to \infty} (E_k \setminus E_{k-1})$. 再应用测度的可数可加性, 我们有

$$m\left(\lim_{k\to\infty} E_k\right) = m\left(\bigcup_{k=1}^{\infty} (E_k \setminus E_{k-1})\right) = \sum_{k=1}^{\infty} (m(E_k) - m(E_{k-1}))$$
$$= \lim_{k\to\infty} \sum_{i=1}^{k} (m(E_i) - m(E_{i-1})) = \lim_{k\to\infty} m(E_k).$$

推论 2.6 (递减可测集列的测度运算)

若有递减可测集列 $E_1 \supset E_2 \supset \cdots \supset E_k \supset \cdots$, 且 $m(E_1) < +\infty$, 则

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k). \tag{2.5}$$

证明 由可测集的性质 (5)可知 $\lim_{k\to\infty} E_k$ 是可测集, 再由测度的单调性可知 $\lim_{k\to\infty} m(E_k) \le m(E_1) < +\infty$. 因为 $E_1 \setminus E_k \subset E_1 \setminus E_{k+1}$, $k=2,3,\cdots$, 所以由可测集的性质 (2)可知 $\{E_1 \setminus E_k\}$ 是递增可测集合列. 于是由递增可测集列的测度运算可知

$$m\left(E_1\setminus \lim_{k\to\infty} E_k\right) = m\left(\lim_{k\to\infty} (E_1\setminus E_k)\right) = \lim_{k\to\infty} m(E_1\setminus E_k).$$

由于 $m(E_1) < +\infty$, 故由测度的基本性质 (2)上式可写为 $m(E_1) - m\left(\lim_{k \to \infty} E_k\right) = m(E_1) - \lim_{k \to \infty} m(E_k)$. 消去 $m(E_1)$, 我们有 $m\left(\lim_{k \to \infty} E_k\right) = \lim_{k \to \infty} m(E_k)$.

定理 2.9

(1) 若有可测集列 $\{E_k\}$, 且有 $\sum_{k=1}^{\infty} m(E_k) < +\infty$, 则

$$m\left(\overline{\lim_{k\to\infty}}E_k\right)=0.$$

(2) 设 $\{E_k\}$ 是可测集列,则

$$m\left(\underline{\lim_{k\to\infty}}E_k\right)\leqslant \underline{\lim_{k\to\infty}}m(E_k),\quad m\left(\overline{\lim_{k\to\infty}}E_k\right)\geqslant \overline{\lim_{k\to\infty}}m(E_k).$$

注 也称结论

$$m\left(\underline{\lim}_{n\to\infty}E_n\right)\leqslant \underline{\lim}_{n\to\infty}m(E_n), \quad m\left(\overline{\lim}_{n\to\infty}E_n\right)\geqslant \overline{\lim}_{n\to\infty}m(E_n)$$

为测度论中的 Fatou 引理 (见第四章)

证明

1.

2. 因为 $\bigcap_{i=k}^{\infty} E_i \subset E_k$, $\bigcup_{i=k}^{\infty} E_i \supset E_k (k=1,2,\cdots)$, 所以有

$$m\left(\bigcap_{j=k}^{\infty} E_j\right) \leqslant m(E_k), \quad m\left(\bigcup_{j=k}^{\infty} E_i\right) \geqslant m(E_k) \quad (k=1,2,\cdots).$$

令 $k \to \infty$, 则得 $(\bigcap_{i=k}^{\infty} E_i$ 随 k 增大而递增, $\bigcup_{i=k}^{\infty} E_i$ 随 k 增大而递减)

$$m\left(\underbrace{\lim_{k\to\infty}} E_k\right) = m\left(\bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} E_j\right) = m\left(\lim_{k\to\infty} \bigcap_{j=k}^{\infty} E_j\right)$$

2.3 可测集与 Borel 集的关系

引理 2.2 (Carathéodory 引理)

设 $G \neq \mathbb{R}^n$ 是开集, $E \subset G$, 令 $E_k = \{x \in E : d(x, G^c) \ge 1/k\}$ $(k = 1, 2, \dots)$, 则 $\lim_{k\to\infty} m^*(E_k) = m^*(E).$

证明 (i) 易知 $\{E_k\}$ 是递增列, 且 $\lim_{k\to\infty} E_k \subset E$. 又对 $x\in E$, 由于 $x\in G$ 的内点, 因此 d(x,y)>0, $\forall y\in G^c$, 否则, 存在 $y_0\in G^c$, 使得 $d(x,y_0)=0$, 从而 $x=y_0\in G^c$ 矛盾! 于是

$$d(x, G^c) = \inf\{d(x, y)|y \in G^c\} \ge 0 = \lim_{k \to \infty} \frac{1}{k}$$

进而存在充分大的 k > 0, 使得 $d(x, G^c) \ge \frac{1}{k}$, 即此时 $x \in E_k$.

故当 k 充分大时,必有 $x \in E_k$,这说明 $E \subset \bigcup_{k=1}^{\infty} E_k = \lim_{k \to \infty} E_k$. 从而可知

$$E = \lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k.$$

(ii) 由外测度的单调性可知 $m^*(E_k) \le m^*(E)(k = 1, 2, \cdots)$, 从而 $\lim_{k \to \infty} m^*(E_k) \le m^*(E)$. 为证反向不等式, 不妨 假定 $\lim_{k\to\infty} m^*(E_k) < +\infty$. 令

$$A_k = E_{k+1} \setminus E_k = \left\{ x \in E : d(x, G^c) \in \left[\frac{1}{k+1}, \frac{1}{k} \right) \right\} (k = 1, 2, \cdots),$$

则

$$A_{2k}=\left\{x\in E:d\left(x,G^{c}\right)\in\left[\frac{1}{2k+1},\frac{1}{2k}\right)\right\}\left(k=1,2,\cdots\right).$$

对 $\forall i, j \in \mathbb{N}$ 且 $i \neq j$, 不妨设 j > i, 则 $j - i \ge 1$. 任取 $x \in A_{2i}$, 则

$$d(x, G^c) \in \left[\frac{1}{2i+1}, \frac{1}{2i}\right), \quad d(y, G^c) \in \left[\frac{1}{2j+1}, \frac{1}{2j}\right).$$

再由三角不等式可知

$$d(x,y) \geqslant |d(x,G^c) - d(y,G^c)| \geqslant \frac{1}{2i+1} - \frac{1}{2i} = \frac{2(j-i)-1}{2i(2i+1)} > 0.$$

因此
$$d(A_{2i}, A_{2j}) \ge \frac{2(j-i)-1}{2j(2i+1)} > 0 (i \ne j)$$
. 再注意到 $E_{2k} \supset \bigcup_{i=1}^{k-1} A_{2j}$, 可得

$$m^*(E_{2k}) \geqslant m^* \left(\bigcup_{j=1}^{k-1} A_{2j} \right) \xrightarrow{\text{ #iv } 2.2} \sum_{j=1}^{k-1} m^*(A_{2j}).$$

这说明 (令 $k \to \infty$)

$$\sum_{j=1}^{\infty} m^*(A_{2j}) < +\infty. \qquad \left(类似地可知 \sum_{j=1}^{\infty} m^* \left(A_{2j+1} \right) < +\infty \right)$$

因为对任意的k,我们有

$$E \xrightarrow{\text{ϕ} \not\equiv 1.3} \bigcup_{j=2k}^{\infty} E_j = E_{2k} \cup \left(\bigcup_{j=k}^{\infty} A_{2j}\right) \cup \left(\bigcup_{j=k}^{\infty} A_{2j+1}\right),$$

所以对任意的k,就有

$$m^*(E) \le m^*(E_{2k}) + \sum_{j=k}^{\infty} m^*(A_{2j}) + \sum_{j=k}^{\infty} m^*(A_{2j+1}).$$

现在, $\Diamond k \to \infty$, 并注意上式右端后两项趋于零, 因此又知

$$m^*(E) \leqslant \lim_{k \to \infty} m^*(E_k),$$

即得所证.

定理 2.10

非空闭集 F 是可测集.

~

证明 对任一试验集 T, 由于 $T \setminus F \subset F^c = G$ 是开集, 故由Carathéodory 引理知, 存在 $T \setminus F$ 中的集列 $\{F_k\}$:

$$d(F_k, F) \ge 1/k > 0(k = 1, 2, \cdots), \quad \lim_{k \to \infty} m^*(F_k) = m^*(T \setminus F).$$

从而由外测度的单调性我们有(对任一试验集T)

$$m^*(T) \geqslant m^*[T \cap (F \cup F_k)] = m^*[(T \cap F) \cup F_k] \xrightarrow{\text{ $\frac{1}{2}$ the 2.2}} m^*(T \cap F) + m^*(F_k).$$

再令 $k \to \infty$, 可得

$$m^*(T) \geqslant m^*(T \cap F) + m^*(T \setminus F) = m^*(T \cap F) + m^*(T \cap F^c).$$

这说明 F 是可测集.

推论 2.7

Borel 集是可测集.

 \Diamond

证明 由闭集的可测性及可测集的性质 (2)可知开集是可测集. 又因为可测集类是一个 σ -代数, 所以由Borel 集的 定义可知可测集包含 Borel σ -代数, 故任一 Borel 集皆可测.

定理 2.11

若 $E \in \mathcal{M}$,则对任给的 $\varepsilon > 0$,我们有

- (i) 存在包含 E 的开集 G, 使得 $m(G \setminus E) < \varepsilon$;
- (ii) 存在含于 E 的闭集 F, 使得 $m(E \setminus F) < \varepsilon$.

证明

(i) 首先考虑 $m(E) < +\infty$ 的情形. 由定义知, 存在 E 的 L-覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m(E) + \varepsilon.$$

令 $G = \bigcup_{k=1}^{\infty} I_k$,则 G 是包含 E 的开集,且 $m(G) < m(E) + \varepsilon$. 因为 $m(E) < +\infty$, 所以移项后再合并得 $m(G \setminus E) < \varepsilon$. 其次讨论 m(E) 是 $+\infty$ 的情形.令

$$E_k = E \cap B(0, k), \quad E = \bigcup_{k=1}^{\infty} E_k, \quad k = 1, 2, \cdots.$$

因为 $m(E_k) < \infty (k = 1, 2, \cdots)$,所以对任给的 $\varepsilon > 0$,存在包含 E_k 的开集 G_k ,使得 $m(G_k \setminus E_k) < \varepsilon/2^k$. 现在作点集 $G = \bigcup_{k=1}^{\infty} G_k$,则 $G \supset E$ 且为开集. 由定理 1.2(3)我们有

$$G \setminus E \subset \bigcup_{k=1}^{\infty} (G_k \setminus E_k),$$

从而得

$$m(G \setminus E) \leqslant \sum_{k=1}^{\infty} m(G_k \setminus E_k) \leqslant \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

(ii) 考虑 E^c . 由 (i) 可知, 对任给的 $\varepsilon > 0$, 存在包含 E^c 的开集 G, 使得 $m(G \setminus E^c) < \varepsilon$. 现在令 $F = G^c$, 显然 $F \in \mathbb{R}$ 从集且 $F \subset E$. 由命题 1.1(4)可知 $E \setminus F = G \setminus E^c$, 所以得到 $m(E \setminus F) < \varepsilon$.

定理 2.12

若 $E \in \mathcal{M}$,则

(i) $E = H \setminus Z_1, H \not\in G_{\delta} \not\in m(Z_1) = 0$;

(ii) $E = K \cup Z_2, K \not\in F_\sigma \not\in m(Z_2) = 0$.

证明

(i) 对于每个自然数 k, 由定理 2.11(i)可知, 存在包含 E 的开集 G_k , 使得 $m(G_k \setminus E) < \frac{1}{k}$. 现在作点集 $H = \bigcap_{k=1}^{\infty} G_k$, 则 $H 为 G_{\delta}$ 集且 $E \subset H$. 因为对一切 k, 都有

$$m(H \setminus E) \leqslant m(G_k \setminus E) < \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(H \setminus E) = 0$. 若令 $H \setminus E = Z_1$, 则得 $E = H \setminus Z_1$.

(ii) 对于每个自然数 k, 由定理 2.11(ii)可知, 存在含于 E 的闭集 F_k , 使得 $m(E \setminus F_k) < \frac{1}{k}$. 现在作点集 $K = \bigcup_{k=1}^{\infty} F_k$, 则 $K \not\in F_{\sigma}$ 集且 $K \subset E$. 因为对一切 k, 都有

$$m(E \setminus K) \leqslant m(E \setminus F_k) < \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(E \setminus K) = 0$. 若令 $E \setminus K = Z_2$, 则得 $E = K \cup Z_2$.

定理 2.13 (外测度的正则性)

若 $E \subset \mathbb{R}^n$, 则存在包含 E 的 G_δ 集 H, 使得 $m(H) = m^*(E)$.

证明 由外测度的定义和下确界的定义可知,对于每个自然数 k,存在包含 E 的开集 G_k ,使得

$$m(G_k) \leqslant m^*(E) + \frac{1}{k}.$$

现在作点集 $H = \bigcap_{k=1}^{\infty} G_k$, 则 $H \neq G_{\delta}$ 集且 $H \supset E$. 因为

$$m^*(E) \leqslant m(H) \leqslant m(G_k) \leqslant m^*(E) + \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(H) = m^*(E)$.

定义 2.7 (等测包与等测核)

- 1. 设 $E \subset \mathbb{R}^n$, 若存在包含 E 的可测集 H, 使得 $m(H) = m^*(E)$. 我们称如此的 H 为 E 的**等测包**.
- 2. 设 $E \in \mathcal{M}$, 若存在含于 E 的可测集 K, 使得 m(K) = m(E). 我们称如此的 K 为 E 的**等测核**.

笔记 由外测度的正则性可知上述定义的等测包 (一定存在) 是良定义的. 由定理 2.12(ii)可知上述定义的等测核 (一定存在) 是良定义的.

注 注意, 若 H 是 E 的等测包且 $m^*(E) < \infty$, 则有

$$m(H) - m^*(E) = 0,$$

但 $m^*(H \setminus E)$ 不一定等于零. 不过可以证明 $H \setminus E$ 的任一可测子集皆为零测集 (见命题 2.9).

命题 2.9

若 $H \neq E$ 的等测包且 $m^*(E) < \infty$, 则 $H \setminus E$ 的任一可测子集皆为零测集.

证明 设 $A 为 H \setminus E$ 的可测子集,则由 $A \subset H \setminus E$ 可知, $A \subset H$ 且 $A \cap E = \emptyset$. 又注意到 $E \subset H$, 故 $E \subset H \setminus A$. 又因 H 可测, 故 $H \setminus A$ 也可测. 从而由外测度的单调性可知

$$m(H \setminus A) \geqslant m^*(E).$$
 (2.6)

由 $H \setminus A$ 可测得(H) 为试验集)

$$m(H) = m^*(H) = m^*(H \cap (H \setminus A)) + m^*(H \cap (H \setminus A)^c)$$

$$= m(H \setminus A) + m^*(H \cap (H \cap A^c)^c)$$

$$= m(H \setminus A) + m^*(H \cap (H^c \cup A))$$

$$= m(H \setminus A) + m(A).$$

又由 H 为 E 的等测包可知 $m(H) = m^*(E)$, 结合上式可得

$$m^*(E) = m(H \setminus A) + m(A)$$
.

再结合(2.6)式,有

$$m^*(E) \ge m^*(E) + m(A)$$
.

移项得 $m(A) \leq 0$. 故由测度的非负性可知 m(A) = 0.

推论 2.8

设 $E_k \subset \mathbb{R}^n (k = 1, 2, \cdots)$, 则

$$m^* \left(\underline{\lim}_{k \to \infty} E_k \right) \leqslant \underline{\lim}_{k \to \infty} m^*(E_k).$$

证明 对每个 E_k 均作等测包 H_k :

$$H_k \supset E_k$$
, $m(H_k) = m^*(E_k)$ $(k = 1, 2, \cdots)$,

则可得

$$m^*\left(\underbrace{\varinjlim_{k \to \infty}} E_k \right) \overset{\text{f, }}{\leqslant} m^*\left(\underbrace{\varinjlim_{k \to \infty}} H_k \right) \overset{\text{g, }}{\leqslant} \underbrace{\varinjlim_{k \to \infty}} m(H_k) = \underbrace{\varinjlim_{k \to \infty}} m^*(E_k).$$

推论 2.9

若 $\{E_k\}$ 是递增集合列,则

$$\lim_{k\to\infty} m^*(E_k) = m^* \left(\lim_{k\to\infty} E_k \right).$$

中(E)的港灣性可知 E C E(L-12) 从而由外测度的的调性可得

证明 记
$$E = \lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k$$
, 则由 $\{E_k\}$ 的递增性可知 $E_k \subset E(k=1,2,\cdots)$, 从而由外测度的单调性可得

$$m^*(E_k) \leq m^*(E), \quad k = 1, 2, \cdots.$$

 $\Diamond k \to \infty$, 得 $\lim_{k \to \infty} m^*(E_k) \leqslant m^*(E)$. 若 $\lim_{k \to \infty} m^*(E_k) = +\infty$, 则结论显然成立. 故不妨设 $\lim_{k \to \infty} m^*(E_k) < +\infty$.

下证 $\lim_{k\to\infty} m^*(E_k) \geqslant m^*(E)$. 对 $\forall k\in\mathbb{N}$, 取 E_k 的等测包 H_k , 则 $m(H_k)=m^*(E_k)$. 令 $F_k=\bigcap_{m=k}^{\infty} H_m$, 则显然 F_k 可

测, $\{F_k\}$ 递增, $E_k \subset F_k \subset H_k$. 再令 $F = \bigcup_{k=1}^{\infty} F_k$,则 F 可测, $E = \bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k=1}^{\infty} F_k = F$. 于是由外测度的单调性及递增可测集列的测度运算可得

$$m^*(E) \leqslant m(F) = m\left(\bigcup_{k=1}^{\infty} F_k\right) = m\left(\lim_{k \to \infty} F_k\right) \stackrel{\text{identify}}{=} \lim_{k \to \infty} m(F_k).$$
 (2.7)

又由 $F_k \subset H_k$ 和测度的单调性以及 $m(H_k) = m^*(E_k)$ 可知

$$\lim_{k \to \infty} m(F_k) \leqslant \lim_{k \to \infty} m(H_k) = \lim_{k \to \infty} m^*(E_k). \tag{2.8}$$

故结合(2.7)、(2.8)式可得
$$m^*(E) \leqslant \lim_{k \to \infty} m^*(E_k)$$
. 综上可得, $m^*(E) = \lim_{k \to \infty} m^*(E_k)$.

定理 2.14

若 $E \in \mathcal{M}, x_0 \in \mathbb{R}^n$, 则 $(E + \{x_0\}) \in \mathcal{M}$ 且

$$m(E + \{x_0\}) = m(E).$$

证明 由定理 2.12可知

$$E = H \setminus Z$$
,

其中 $H = \bigcap_{k=1}^{\infty} G_k$, 每个 G_k 都是开集,m(Z) = 0. 因为 $G_k + \{x_0\}$ 是开集, 所以

$$\bigcap_{k=1}^{\infty} (G_k + \{x_0\})$$

是可测集. 根据外测度的平移不变性, 可知点集 $Z + \{x_0\}$ 是零测集, 于是从等式

$$E + \{x_0\} = (H + \{x_0\}) \setminus (Z + \{x_0\}) = \left(\bigcap_{k=1}^{\infty} (G_k + \{x_0\}) \setminus (Z + \{x_0\})\right)$$

立即可知 $E + \{x_0\} \in \mathcal{M}$. 再用外测度的平移不变性得到

$$m(E+\{x_0\})=m(E).$$

<u>注</u> 一般地说, 若在 Borel σ -代数上定义了测度 μ , 且对紧集 K 有 $\mu(K) < +\infty$, 则称 μ 为 Borel 测度 (显然, \mathbb{R}^n 上的 Lebesgue 测度是一种 Borel 测度).

可以证明: 若 μ 是 \mathbb{R}^n 上的平移不变的 Borel 测度, 则存在常数 λ , 使得对 \mathbb{R}^n 中每一个 Borel 集 B, 均有

$$\mu(B) = \lambda m(B)$$
.

这就是说,除了一个常数倍因子外,Lebesgue 测度是 \mathbb{R}^n 上平移不变的唯一的 Borel 测度.

例题 2.1 作 [0,1] 中的第二纲零测集 E.

解 令 $\{r_n\} = [0,1] \cap \mathbb{Q}, I_{n,k} = (r_n - 2^{-n-k}, r_n + 2^{-n-k})(n,k \in \mathbb{N}), 易知$

$$m\left(\bigcup_{n=1}^{\infty}I_{n,k}\right)\leqslant 2^{-k+1},\quad m\left(\bigcap_{k=1}^{\infty}\bigcup_{n=1}^{\infty}I_{n,k}\right)=0.$$

由于每个 $[0,1]\setminus\bigcup_{n=1}^{\infty}I_{n,k}(k\in\mathbb{N})$ 均是无处稠密集, 故可知 $E=\bigcap_{k=1}^{\infty}\bigcup_{n=1}^{\infty}I_{n,k}$ 是第二纲集.

例题 2.2 设 $A \subset \mathbb{R}$, 且对 $x \in A$, 存在无穷多个数组 $(p,q)(p,q \in \mathbb{Z},q \geqslant 1)$, 使得 $|x-p/q| \leqslant 1/q^3$, 则 m(A) = 0证明

(i) 令
$$B = [0,1] \cap A$$
, 注意到 $x + n - (p + nq)/q = x - p/q$, 故 $A = \bigcup_{n=-\infty}^{+\infty} (B + \{n\})$, 从而只需指出 $m(B) = 0$.

(ii) 令
$$I_{p,q}=\left[\frac{p}{q}-\frac{1}{q^3},\frac{p}{q}+\frac{1}{q^3}\right],$$
则 $x\in I_{p,q}$ 等价于

$$qx - \frac{1}{q^2} \leqslant p \leqslant qx + \frac{1}{q^2}.\tag{2.9}$$

易知对 $q \ge 2$ 或 q = 1, 在长度为 $2/q^2$ 的区间中至多有一个或三个整数, 故 $x \in B$ 当且仅当 x 属于无穷多个 B_q : $B_q = [0,1] \cap \left(\bigcup_p I_{p,q}\right)$. 从而又只需指出 $\sum_q m(B_q) < +\infty$. 由(2.9)式知, 对整数 q, 使 $I_{p,q} \cap [0,1] \neq \emptyset$ 就是 $-\frac{1}{q^2} \le p \le q + \frac{1}{q^2}$. 在 $q \ge 2$ 时, 这相当于 $0 \le p \le q$. 因此, 我们有 $m(B_q) \le 2(q+1)/q^3$, 即得所证.

2.4 正测度集与矩体的关系

定理 2.15

0

证明