## SocModelScenarios

### Sophie Wulfing

2023-03-29

Function:

$$\begin{split} \frac{dF_1}{dt} &= r_1 F_1 (1-F_1) - \frac{h_1 * F_1 (1-X_1)}{F_1 + s_1} - i_2 F_1 + i_1 F_2 \\ \frac{dF_2}{dt} &= r_2 F_2 (1-F_2) - \frac{h_2 * F_2 (1-X_2)}{F_2 + s_2} - i_1 F_2 + i_2 F_1 \\ \frac{dX_1}{dt} &= k_1 X_1 (1-X_1) [\frac{1}{F_1 + c_1} - \omega_1 + d_1 (2X_1 - 1) + \rho_1 (2X_2 - 1)] \\ \frac{dX_2}{dt} &= k_2 X_2 (1-X_2) [\frac{1}{F_2 + c_2} - \omega_2 + d_2 (2X_2 - 1) + \rho_2 (2X_1 - 1)] \end{split}$$

Table 1: Default parameter values used in this analysis

| Parameter    | Population_1 | $Population\_2$ | Def                                 |
|--------------|--------------|-----------------|-------------------------------------|
| r            | 0.35         | 0.35            | Fish net growth                     |
| S            | 0.8          | 0.8             | Supply and demand                   |
| h            | 0.5          | 0.5             | Harvesting efficiency               |
| k            | 1.014        | 1.014           | Social learning rate                |
| $\omega$     | 0.35         | 0.35            | Conservation cost                   |
| $\mathbf{c}$ | 1.5          | 1.5             | Rarity valuation                    |
| d            | 0.5          | 0.5             | Social norm strength (within pop)   |
| i            | 0.2          | 0.2             | Fish immigration (from patch)       |
| $\rho$       | 0.5          | 0.5             | Social norm strength (opposite pop) |

Table 2: Starting values used in this analysis

| Parameter | Population_1 | Population_2 |
|-----------|--------------|--------------|
| F         | 0.406        | 0.406        |
| X         | 0.240        | 0.240        |



Figure 1: Model without social dynamics

### ${\bf Observations:}$

- Fishing remains sustainable UNLESS more than 50% of people are fishing



Figure 2: New Model with social dynamics

#### ${\bf Observations:}$

- Still decreasing. Indicates that human dynamics consistently have fishers above 50%

Humans actually tanked dynamics.

# Scenarios

## One group tanking whole system

Table 3: Default parameter values used in this analysis

| Parameter    | Population_1 | Population_2 | Def                                 |
|--------------|--------------|--------------|-------------------------------------|
| r            | 0.4          | 0.4          | Fish net growth                     |
| S            | 0.8          | 0.8          | Supply and demand                   |
| h            | 0.25         | 0.25         | Harvesting efficiency               |
| k            | 1.014        | 1.014        | Social learning rate                |
| $\omega$     | 0.2          | 0.2          | Conservation cost                   |
| $\mathbf{c}$ | 1.5          | 1.5          | Rarity valuation                    |
| d            | 0.5          | 0.5          | Social norm strength (within pop)   |
| i            | 0.2          | 0.2          | Fish immigration (from patch)       |
| ho           | 0.5          | 0.5          | Social norm strength (opposite pop) |



Figure 3: Changing fish growth, conservaiton cost, and harvesting efficiency for sustainable practices



Figure 4: One group unsustainable practices scenario. Shows that one groups bad fishing can tank whole system



Figure 5: However, changing the rarity valuation parameters can recover the system

## Heirarchy in decision making

Table 4: Default parameter values used in this analysis

| Parameter | Population_1 | Population_2 | Def                                 |
|-----------|--------------|--------------|-------------------------------------|
| r         | 0.35         | 0.35         | Fish net growth                     |
| S         | 0.8          | 0.8          | Supply and demand                   |
| h         | 0.5          | 0.25         | Harvesting efficiency               |
| k         | 0.17         | 1.014        | Social learning rate                |
| $\omega$  | 0.35         | 0.35         | Conservation cost                   |
| c         | 1.5          | 1.5          | Rarity valuation                    |
| d         | 0.5          | 0.5          | Social norm strength (within pop)   |
| i         | 0.1          | 0.4          | Fish immigration (from patch)       |
| $\rho$    | 0.5          | 0.5          | Social norm strength (opposite pop) |



Figure 6: model with different fishing conditions in each patch



Figure 7: model with social inequity. idk does similar stuff but allows x1 to fish more

## Dispersion Exploration

Table 5: Default parameter values used in this analysis

| Parameter               | Population_1 | Population_2 | Def                                 |
|-------------------------|--------------|--------------|-------------------------------------|
| $\overline{\mathbf{r}}$ | 0.4          | 0.35         | Fish net growth                     |
| S                       | 0.8          | 0.8          | Supply and demand                   |
| h                       | 0.25         | 0.5          | Harvesting efficiency               |
| k                       | 1.014        | 1.014        | Social learning rate                |
| $\omega$                | 0.2          | 0.35         | Conservation cost                   |
| $\mathbf{c}$            | 1.5          | 1.5          | Rarity valuation                    |
| d                       | 0.5          | 0.5          | Social norm strength (within pop)   |
| i                       | 0            | 0            | Fish immigration (from patch)       |
| ho                      | 0.5          | 0.5          | Social norm strength (opposite pop) |



Figure 8: no dispersion. Unsustainable practices in one patch



Figure 9: slow dispersion. Unsustainable practices in one patch. Note: no adjustment to rho or d could fix fishing scenario



Figure 10: No social dynamics. Taking away rho doesn't really improve dynamics, but instead allows pop1 to take advantage of their sustainable fishing

Patch 1 all conservationists but fish pop is high

Table 6: Default parameter values used in this analysis

| Parameter    | Population_1 | Population_2 | Def                                 |
|--------------|--------------|--------------|-------------------------------------|
| r            | 0.07         | 0.07         | Fish net growth                     |
| S            | 0.8          | 0.8          | Supply and demand                   |
| h            | 0.1          | 0.1          | Harvesting efficiency               |
| k            | 1.014        | 1.014        | Social learning rate                |
| $\omega$     | 0.35         | 0.35         | Conservation cost                   |
| $\mathbf{c}$ | 1.5          | 1.5          | Rarity valuation                    |
| d            | 0.5          | 0.5          | Social norm strength (within pop)   |
| i            | 0.07         | 0.2          | Fish immigration (from patch)       |
| ho           | 0.5          | 0.5          | Social norm strength (opposite pop) |



Figure 11: Hypothetical Madagascar. Can change H, S, omega, rho



Figure 12: Hypothetical Madagascar with social inequity