

HYDROPHOBIC SILICA

Reference to a Related Application

This application claims the benefit of provisional application 60/ 171,667 filed December 27, 1999 which is relied on and incorporated by reference.

5

Introduction and Background

This invention relates to a hydrophobic, pyrogenically produced silica, to a process for the production thereof and to the use thereof.

It is known to compact hydrophilic, pyrogenically produced silica (EP 0 280 854 B1).

Disadvantageously, as tamped or bulk density increases, thickening action declines in a linear 10 manner. Dispersibility also falls as density increases. This results in unwanted speckling. Thus, once compacted, a hydrophilic, pyrogenically produced silica may only be used for a limited number of applications.

It is therefore an object of the present invention to avoid the problems of compacted, hydrophobic, pyrogenically produced silica of the past.

15

Summary of the Invention

The above and other objects of the present invention can be achieved by developing a hydrophobic, pyrogenically produced silica having a tamped density of 55 to 200 g/l.

The tamped density is preferably from 60 to 200 g/l.

A feature of the present invention is a process for the production of the hydrophobic, 20 pyrogenically produced silica having a bulk density of 55 to 200 g/l. which process is characterised in that pyrogenically produced silica is hydrophobized using known methods and then compacted.

Hydrophobing can preferably be performed by means of halogen-free silanes. The chloride content of the silica can be less than or equal to 100 ppm, preferably from 10 to 100 ppm.

Compaction can be performed by means of a roller compactor. Compaction can preferably be performed by means of a belt filter press according to EP 0 280 851 B1, which reference is relied on and incorporated by reference.

The hydrophobic, pyrogenically produced silica used for purposes of the present invention can

5 be, for example, the silicas known as:

Aerosil R 812 or Aerosil R 812S, having the group -O-Si(CH₃)₃

Aerosil R 202, Aerosil MS 202, Aerosil MS 202, Aerosil R 106

or Aerosil R 104 having the group

10 Aerosil R 805 having the group

These are commercially available products from Degussa Hüls AG.

The hydrophobic, pyrogenic silica according to the invention having a tamped density of 55 to 200 g/l exhibits the following advantages:

Transport costs are distinctly lower as a result of the higher tamped density.

15 Once dispersed, the silica according to the invention is in the form of relatively small aggregates. In other words, the dispersions are more finely divided because the silica according to the invention is more readily dispersible.

The dispersions produced using the silica according to the invention exhibit a lower Grindometer value.

20 Both UV transmission transparency and visual transparency of the dispersions are distinctly improved by using the silica according to the invention.

Dispersions containing the silicas according to the invention exhibit distinctly increased stability because the tendency towards settling is distinctly lower.

Another advantage of the silica according to the invention is reduced dusting during 25 incorporation and the distinctly reduced incorporation or wetting time in, for example, liquid systems.

In comparison with hydrophobic, pyrogenic silica of a lower bulk density, the hydrophobicity of the silica according to the invention is unchanged. Thickening action is also unchanged.

Detailed Description of the Invention

The present invention will be further understood with reference to the following detailed 5 embodiments thereof.

Example 1

Various hydrophobic, pyrogenically produced silicas are investigated, wherein different compaction states are compared.

The following definitions apply:

10 bulk = pulverulent, unmodified silica

CF = silica compacted with a Carter filter

VV 60 = silica compacted to a tamped density of approx. 60 g/l

VV 90 = silica compacted to a tamped density of approx. 90 g/l

Aerosil grades R 202, US 202, US 204, R 812, R 812S and R 805 are investigated. The results 15 are shown in Table 1.

As evaluated by the Corning Glass methanol wettability method, the degree of compaction has virtually no appreciable influence on hydrophobicity. Viscosity also exhibits no clear systematic dependency upon tamped density. Especially for R 812, dispersibility improves with increasing density. R 812 S, which contains more SiOH groups than R 812, exhibits the above phenomenon 20 less markedly.

US 202 and US 204 have very comparable rheological properties and are inferior to AEROSIL R 202.

Surprisingly, the compacted variants, in particular of R 812, R 202 and US 202/4, exhibit an incorporation time reduced by up to half. The compacted silicas moreover exhibit reduced 25 dusting.

PA	Test method	444701 AER 202 CF	444702 AER 202 CF	444703 AER 202 VV60	444704 AER 202 VV90	444705 AER 805 bulk	444706 AER 805 CF	444707 AER 805 VV60	444708 AER 805 VV90	444709 AER 812 bulk	444710 AER 812 CF	444711 AER 812 VV60
0330	Viscosity, quasy-lubricant	459	456	382	430	190	181	185	178			
0335	Viscosity, quasy-lubricant	54.4	54.7	49.1	52.8	42	41.7	39	43			
0340	Thixotropy ratio									11.7	13.3	11.5
0410	Cloud point value									127	102	92
0420	Metastability											
0701	Tapped density	45	50	51	75	44	62	55	68	45	44	50
0720	Apparent viscosity	11	20	18		15	15	20				
0830	Initial shear modulus	0	24	4	27	0	36	7	19	0	0	
0955	Effectiveness	258	274	203	266	235	260	236	258	166	185	169
0965	Effectiveness (UT)	280	290	226	295	271	284	270	288	197	213	209
0975	Scaling (effectiveness)	15	15	15	8	10	15	10	5	13	15	8

PA	Test method	444712	444713	444714	444715	444716	444717	444718	444719	444720	444721	444722	444723
	AER 812	AER	AER	AER	AER	US202	US202	US202	US204	US204	US204	US204	US204
	VV90	812S	812S	812S	bulk	bulk	CF	VV60	bulk	CF	VV60	VV60	VV90
0330	Viscosity, quarry effluent					350.4	377.6	380.8	379.2	350.4	358.4	358.4	368
0335	Viscosity, quarry effluent					50.7	45.9	45.3	49.9	47	52.6	50.7	
0340	Thickening agent	11.1	17.3	17.3	18.2	17							
0410	Crumb resistance	77	93	110	110	100							
0420	Mediation ability												
0701	Impact density	73	49	50	58	75	39	50	67	44	45	57	71
0920	Apparent viscosity	22				28		10	15			16	23
0930	Hardness (Hg)	12	0	0	0	4	0	27	36	0	0	3	20
0955	Effectiveness	159	168	169	187	219	320	301	320	186	193	192	201
0965	Effectiveness (Hg)	225	201	200	216	235	336	327	346	223	225	225	230
0975	Scaling (effectiveness)	5	8	8	3	0	15	10	3	10	10	10	10

Example 2

Investigation of the influence of higher compaction on applicational properties

		AE R 812, uncom- pacted UB 3847-1	AE R 812, compacted RHE UB 3847-2 (4)	AE R 812, compacted RHE UB 3847-3 (5)	AE R 812 RHE specific.
Tamped density (DIN ISO 787/11)	g/l	50	87	106	approx. 50
Effectiveness, ethanol (0955)		184	214	209	216 1)
Effectiveness (UT), ethanol (0965)		218	260	290	236 1)
Settling (effectiveness, high-speed mixer)	vol. %	10	1	1	1)

1. Determined on standard sample (UB 3391)

5 RHE in the above table indicates the Rheinfelden plant located in Germany.

Rheological testing:

Polymer: Araldit M (biphenol-1-epoxy resin by Ciba-Geigy, in the form of clear yellow liquid).

Thixotroping agent: R 202 and R 812 Additive: -

Sample A R 812 10 kg 2-10123

5 Sample production date: 24.02.1994 Spindle: 5

Storage time in days	5 rpm [mPa*s]	50 rpm [mPa*s]	T.I.
0	16600 80-85 μ	4460	3.72

Sample A R 812 15 kg 1.0/8 min

Sample production date: 24.02.1994 Spindle: 5

Storage time in days	5 rpm [mPa*s]	50 rpm [mPa*s]	T.I.
0	15100 50-60 μ	4060	3.72

Sample A R 812 20 kg 0.6/14 min

Sample production date: 24.02.1994 Spindle: 5

Storage time in days	5 rpm [mPa*s]	50 rpm [mPa*s]	T.I.
0	15100 50-60 μ	4020	3.73

10

Compaction may amount to a type of predispersion. Accordingly, effectiveness values rise with tampered density, i.e. the particles effectively present in the ethanol dispersion become smaller and

the compacted samples exhibit distinctly less settling. Any suitable organic solvent can be used to form the dispersion.

The compacted samples accordingly have a more favourable Grindometer value in Araldit.

However, since the larger particles have a decisive influence on thickening action, the property

5 declines slightly on compaction.

It may be seen from the graph of effectiveness values that, while the highly compacted AEROSIL

R 812 sample may indeed still be broken up with the Ultra-Turrax mixer (0965), it can no longer

be broken up with the high speed mixer (0955). Due to the smaller surface area of AEROSIL R

202 (and to the consequently theoretically improved dispersibility), this phenomenon hardly

10 occurs with AEROSIL R 202.

As compaction rises, the particles effectively present in an ethanol dispersion thus become

smaller and 90° angle scattering rises due to Rayleigh scattering. Total scattering (over all

angles), however, falls and the samples become distinctly more transparent on visual inspection.

as is also substantiated by the UV transmission spectra.

15 Compaction has no influence on hydrophobicity, which in each case substantially corresponds to that of the standard sample.

Example 3

Investigation of the influence of higher compaction on applicational properties.

	AE R 812 , uncompacted	AE R 202 , compacted	AE R 202 , compacted	AE R 202
UB 3848 - 1	RHE	RHE	RHE	RHE
2 - 02024	UB 3848 - 2	UB 3848 - 3	UB 3848 - 3	specifc.
10 kg sack	2 - 01024 - (2)	2 - 01024 - (3)	2 - 01024 - (3)	
	15 kg sack	20 kg sack	20 kg sack	
Tamped density (DIN ISO 787/11)	9/1	93	119	approx. 60 3)
Effectiveness, ethanol (0955)	319	334	336	334 1)
Effectiveness (UR) , ethanol (0965)	346	365	373	339 1)
Setting (effectiveness, high-speed mixer)	vol. % 10	5	1	

1) Determined on standard sample (UB 3391)

3) Guide value

The compacted AEROSIL R 202 samples behave in a similar manner to the compacted AEROSIL R 812 samples.

5 Reference is thus made to Example 2 with regard to the discussion.

The parameter of "effectiveness" reported in the tables herein relates to the high degree of fineness of the particle. This is therefore an indicator of high transparency and good stability of the resulting dispersions.

Further variations and modifications of the foregoing will be apparent to those skilled in the art.

10 and are intended to be encompassed by the claims appended hereto.

German priority application filed December 22, 2000 199 61 933.6 is relied on and incorporated herein by reference.