Введение python

Цели курса

- 1. Понимание того как работает программирование
- 2. Знакомство с языком python
- 3. Получение инструмента для построения автоматизированных тестов
- 4. Дать знания для прохождения собеседований
- 5. "Уравнять" знания слушателей

Язык программирования

Язык программирования — формальный язык, предназначенный для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, определяющих внешний вид программы и действия, которые выполнит исполнитель под её управлением.

Классификация языков программирования по уровню

- Языки низкого уровня (Машинный код, Assembler)
 - Контроль над ресурсами аппаратуры
 - Быстрое исполнение программы
 - Высокий порог входа
 - Сложность написания программ
 - Зависимость от аппаратуры
- Языки среднего уровня (С/С++?)
- Языки высокого уровня (Python, Ruby, JavaScript)
 - Относительно низкий порог входа
 - Прозрачность и понятность кода
 - Переносимость
 - Теряется возможность легко управлять ресурсами, в т.ч. памятью
 - В некоторых случаях замедленное исполнение программы.

Классификация по способу исполнения Компилируемые языки

Компилятор переводит программу в машинный код и далее он может быть исполнен на уровне операционной системы

- Быстрая скорость исполнения программ
- Возможность для контроля над ресурсами программы
- Проблемы с кроссплатформеностью
- Необходимость компиляции

Классификация по способу исполнения Интерпретируемые языки

Другая программа (интерпретатор) построчно исполняет программу

- Программы проще переносятся с одной платформы на другую
- Компиляция не нужна. Программа исполняется сразу
- Программы как правило медленней чем на компилируемых языках
- Теряется контроль над ресурсами
- Часть ошибок, которые могут быть обнаружены на этапе компиляции могут быть обнаружены только в процессе выполнения

Mесто языка Python в классификации

- Высокоуровневый
- Интерпретируемый
- Динамически типизируемый
- Мультипарадигмальный
- Кроссплатформенный

Топ-16 Python-приложений в реальном мире

Uber

Spotify

Dropbox

Pinterest

Facebook

Reddit

Amazon

Jan 2022	Jan 2021	Change	Programming Language	Ratings	Change
1	3	^	Python	13.58%	+1.86%
2	1	~	G c	12.44%	-4.94%
3	2	~	🚜. Java	10.66%	-1.30%
4	4		⊘ C++	8.29%	+0.73%
5	5		⊘ C#	5.68%	+1.73%
6	6		VB Visual Basic	4.74%	+0.90%
7	7		JS JavaScript	2.09%	-0.11%
8	11	^	Assembly language	1.85%	+0.21%
9	12	^	SQL SQL	1.80%	+0.19%
10	13	^	Swift	1.41%	-0.02%
11	8	~	PHP	1.40%	-0.60%
12	9	~	R R	1.25%	-0.65%
13	14	^	G 0	1.04%	-0.37%
14	19	*	Delphi/Object Pascal	0.99%	+0.20%
15	20	*	Classic Visual Basic	0.98%	+0.19%
16	16		▲ MATLAB	0.96%	-0.19%
17	10	*	Groovy	0.94%	-0.90%
18	15	•	Ruby	0.88%	-0.43%
19	30	*	F Fortran	0.77%	+0.31%
20	17	~	Perl	0.71%	-0.31%

Архитектура Фон-Неймана

Принципы архитектуры Фон-Неймана

- Принцип двоичного кодирования информации
- Принцип программного управления
- Принцип хранимой программы

Базовая архитектура современного компьютера

Беззнаковые целые числа в компьютере

Любые числа представляются последовательностью бит (нулей и единиц) ограниченной длины.

Пример беззнакового числа, под которое выделен 1 байт:

Двоичная запись: 1 0 0 0 1 0 0 1

Номер бита: 7 6 5 4 3 2 1 0

Перевод в десятичный вид: $1 * 2^0 + 1 * 2^3 + 1 * 2^7 = 1 + 8 + 128 = 137$

Числа со знаком

Для представления чисел со знаком используется 3 разных формы записи числа. В них первый бит отвечает за знак, а остальные за модуль числа

- Прямой код
- Обратный код
- Дополнительный код

Представление чисел с плавающей точкой

Утверждение: Любое число N в системе счисления с основанием q можно представить в виде:

М – Мантисса

 $N = s * M * q^p$

р – порядок

s – знак числа (+1/-1)

Представление чисел с плавающей точкой в компьютере

Представление чисел с плавающей точкой в компьютере. Пример

$$6.25_{10} = 110.01_2 = 0.11001 \cdot 2^{11}$$

