1. Chose the persp() part

2. a.

According to the summary statistics and regression results, the four groups of data look very similar at first glance. Therefore, we might expect them to have a similar distribution.

```
> summary(anscombe)
                                                                       y1
       x1
                        x2
                                        x3
                 Min. : 4.0
                                       : 4.0
                                                                Min. : 4.260
                                                                                         :3.100
                                                                                                          : 5.39
       : 4.0
                                Min.
                                                  Min. : 8
                                                                                   Min.
                                                                                                    Min.
                                                                1st Qu.: 6.315
                                                                                   1st Qu.:6.695
 1st Qu.: 6.5
                 1st Qu.: 6.5
                                 1st Qu.: 6.5
                                                  1st Qu.: 8
                                                                                                    1st Qu.: 6.25
 Median : 9.0
                 Median : 9.0
                                 Median : 9.0
                                                  Median : 8
                                                                Median : 7.580
                                                                                   Median :8.140
                                                                                                    Median : 7.11
 Mean : 9.0
                 Mean : 9.0
                                 Mean : 9.0
                                                  Mean : 9
                                                                Mean : 7.501
                                                                                   Mean :7.501
                                                                                                     Mean : 7.50
                                 3rd Qu.:11.5
                                                  3rd Qu.: 8
                                                                3rd Qu.: 8.570
                                                                                   3rd Qu.:8.950
                                                                                                    3rd Qu.: 7.98
 3rd Ou.:11.5
                 3rd Qu.:11.5
 Max.
       :14.0
                 Max.
                       :14.0
                                 Max.
                                        :14.0
                                                  Max.
                                                         :19
                                                                Max.
                                                                       :10.840
                                                                                   Max. :9.260
                                                                                                    Max.
                                                                                                           :12.74
      y4
       : 5.250
 Min.
 1st Qu.: 6.170
 Median : 7.040
 Mean : 7.501
 3rd Qu.: 8.190
 Max. :12.500
> lm1 <- lm(y1 \sim x1, data=anscombe)
                                                      > lm2 <- lm(y2 ~ x2, data=anscombe)
> summary(lm1)
                                                       > summary(lm2)
lm(formula = y1 \sim x1, data = anscombe)
                                                       lm(formula = y2 \sim x2, data = anscombe)
Residuals:
                                                       Residuals:
            1Q Median
                                                                 10 Median
                                                                              30
-1.92127 -0.45577 -0.04136 0.70941 1.83882
                                                       -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
                                                                Estimate Std. Error t value Pr(>|t|)
          3.0001
                    (Intercept)
                                                                            x1
           0.5001
                                                       x2
                                                                   0.500
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                       Residual standard error: 1.237 on 9 degrees of freedom
Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665,
                          Adjusted R-squared: 0.6295
                                                       Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

```
> lm4 <- lm(y4 \sim x4, data=anscombe)
> 1m3 <- 1m(y3 \sim x3, data=anscombe)
                                                                                    > summary(lm4)
> summary(lm3)
                                                                                    Call:
                                                                                    lm(formula = y4 \sim x4, data = anscombe)
Call:
lm(formula = y3 \sim x3, data = anscombe)
                                                                                    Residuals:
                                                                                     Min 1Q Median 3Q Max
-1.751 -0.831 0.000 0.809 1.839
                1Q Median
Min 1Q Median 3Q Max
-1.1586 -0.6146 -0.2303 0.1540 3.2411
                                                                                    Coefficients:
                                                                                                     Estimate Std. Error t value Pr(>|t|)
| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 3.0025 | 1.1245 | 2.670 | 0.02562 * x3 | 0.4997 | 0.1179 | 4.239 | 0.00218 **
                                                                                                                   1.1239 2.671 0.02559 *
0.1178 4.243 0.00216 **
                                                                                     (Intercept) 3.0017
                                                                                    x4
                                                                                                        0.4999
                                                                                    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
                                                                                     Residual standard error: 1.236 on 9 degrees of freedom
Residual standard error: 1.236 on 9 degrees of freedom
Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
                                                                                    Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
```

However, once we plot the graphs of each group, it becomes clear that their distributions are actually very different.

b. different ways to create the plot

```
# Different styles for each subplot
colors <- c("pink", "darkgreen", "royalblue", "purple")</pre>
symbols <- c(15, 16, 17, 18)
linetypes <- c(1, 2, 3, 4)
# Preparing for the plots
op <- par(mfrow = c(2, 2), mar = 0.1+c(4,4,1,1), oma = c(0, 0, 2, 0))
# Plot charts using for loop
for(i in 1:4) {
  ff[2:3] \leftarrow lapply(paste0(c("y","x"), i), as.name)
 plot(ff, data = anscombe,
       pch = symbols[i],
       col = colors[i],
       bg = adjustcolor(colors[i], alpha.f = 0.5),
       xlim = c(3, 19), ylim = c(3, 13),
       main = paste("Dataset", i),
       xlab = paste0("x", i), ylab = paste0("y", i))
 abline(mods[[i]], col = colors[i], lty = linetypes[i], lwd = 2)
mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex = 1.5)
par(op)
```


3. serif font +non-default colors+own plotting colors

```
data(anscombe)
lm1 <- lm(y1 \sim x1, data=anscombe)
lm2 \leftarrow lm(y2 \sim x2, data=anscombe)
lm3 \leftarrow lm(y3 \sim x3, data=anscombe)
lm4 \leftarrow lm(y4 \sim x4, data=anscombe)
ff <- y \sim x
mods <- setNames(as.list(1:4), paste0("lm", 1:4))</pre>
# Plot using for loop
for(i in 1:4) {
  ff[2:3] \leftarrow lapply(paste0(c("y","x"), i), as.name)
  ## or ff[[2]] <- as.name(paste0("y", i))
## ff[[3]] <- as.name(paste0("x", i))</pre>
  mods[[i]] <- lmi <- lm(ff, data = anscombe)</pre>
  #print(anova(lmi))
# Preparing for the plots
op <- par(mfrow = c(2, 2), mar = 0.1+c(4,4,1,1), oma = c(0, 0, 2, 0), family = "serif") #family
# Plot charts using for loop
for(i in 1:4) {
  ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
plot(ff, data = anscombe, col = "turquoise", pch = 23, bg = "hotpink", cex = 1.2,</pre>
        xlim = c(3, 19), ylim = c(3, 13))
  abline(mods[[i]], col = "gray")
mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex = 1.5)
par(op)
```

Anscombe's 4 Regression data sets

4. ggplot

```
library(tidyverse)
                                                                                 p3 = ggplot(anscombe, aes(x = x3, y = y3)) +
library(gridExtra)
                                                                                   geom_point(
shape = 23,
color = "de
p1 = ggplot(anscombe, aes(x = x1, y = y1)) +
  geom_point(
                                                                                      fill = "turq
size = 3 ) +
    shape = 23
color = "d
                                                                                   geom_smooth(method = "lm", se = FALSE, color = "darkgray") +
labs(
     fill = "
    size = 3 )
  geom_smooth(method = "lm", se = FALSE, color = "darkgray") +
labs(
                                                                                      title = "Anscombe's Quartet - Dataset 3 (ggplot2)"
                                                                                    theme_minimal(base_family = "serif")
    title = "Anscombe's Quartet - Dataset 1 (ggplot2)"
                                                                                 p4 = ggplot(anscombe, aes(x = x4, y = y4)) +
   theme_minimal(base_family = "serif")
                                                                                    geom_point(
                                                                                      eom_point(

shape = 23,

color = "de

fill = "tur

size = 3 )
p2 = ggplot(anscombe, aes(x = x2, y = y2)) +
geom_point(
    shape = 23
color = "d
                                                                                   geom_smooth(method = "lm", se = FALSE, color = "darkgray") + labs(
     fill = "
                                                                                      title = "Anscombe's Quartet - Dataset 4 (ggplot2)"
    size = 3
  \label{eq:geom_smooth}  \mbox{geom\_smooth(method = "lm", se = FALSE, color = "darkgray") + labs()} 
                                                                                    theme_minimal(base_family = "serif")
  title = "Anscombe's Quartet - Dataset 2 (ggplot2)" ) +
                                                                                 grid.arrange(p1, p2, p3, p4, ncol = 2)
  theme_minimal(base_family = "serif")
```

