Список использованных команд с #комментариями

```
#Making symbolic links
      ln -s /usr/share/data-minor-bioinf/assembly/oil_R1.fastq
      ln -s /usr/share/data-minor-bioinf/assembly/oil_R2.fastq
      ln -s /usr/share/data-minor-bioinf/assembly/oilMP_S4_L001_R1_001.fastq
      ln -s /usr/share/data-minor-bioinf/assembly/oilMP_S4_L001_R2_001.fastq
      #Substracting samples
      seqtk sample -s113 oil_R1.fastq 5000000 > ~/HT1/samples/sub_oil_R1.fq
      segtk sample -s113 oil R2.fastq 5000000 > ~/HT1/samples/sub oil R2.fq
      seqtk sample -s113 oilMP_S4_L001_R1_001.fastq 1500000 > ~/HT1/sam-
ples/sub_oilMP_R1.fq
      seqtk sample -s113 oilMP_S4_L001_R2_001.fastq 1500000 > ~/HT1/sam-
ples/sub_oilMP_R2.fq
      #Making fastqc reports on samples
      mkdir fastqc
      ls *.fq | xargs -P 4 -tI{} fastqc -o fastqc {}
      #Making cumulative report
      mkdir multiqc
      multiqc -o multiqc fastqc
      #Copy report from server to local host (command performed on local host)
      scp -P 5222 sakomlev@92.242.58.92:~/HT1/samples/multiqc/multiqc_report.html
~/
      #Trim adapters from paired-end
      platanus_trim sub_oil_R1.fq sub_oil_R2.fq
      #Trim adapters from mate-pair
      platanus_internal_trim sub_oilMP_R1.fq sub_oilMP_R2.fq
```

#Making fastqc reports on trimmed samples
mkdir trim_fastqc
ls *trimmed | xargs -P 4 -tI{} fastqc -o trim_fastqc {}

#Making cumulative report on trimmed samples
mkdir trim_multiqc
multiqc -o trim_multiqc trim_fastqc

#Copy report from server to local host (command performed on local host)
scp -P 5222 sakomlev@92.242.58.92:~/HT1/samples/trimmed/trim_multiqc/multiqc_report.html ~/

#Delete not trimmed sequences (trimmed sequences are stored in another dir, so rm won't affect them)

rm *.fq*

#Platanus assemble

time platanus assemble -o Poil -t 4 -n 20 -f ../trimmed/sub_oil_R1.fq.trimmed ../trimmed/sub_oil_R2.fq.trimmed 2> assemble.log

#Copy contigs from server to local host (command performed on local host)
scp -P 5222 sakomlev@92.242.58.92:~/HT1/samples/assemble/Poil_contig.fa
~/minor

#Platanus scaffold

time platanus scaffold -o Poil -t 4 -c ../assemble/Poil_contig.fa -IP1 ../trimmed/sub_oil_R1.fq.trimmed ../trimmed/sub_oil_R2.fq.trimmed -OP2 ../trimmed/sub_oilMP_R1.fq.int_trimmed ../trimmed/sub_oilMP_R2.fq.int_trimmed 2> scaffold.log

#Copy scaffolds from server to local host (command performed on local host)
scp -P 5222 sakomlev@92.242.58.92:~/HT1/samples/scaffolds/Poil_scaffold.fa
~/minor

#Use screen screen -S gap_close_sakomlev

#Platanus gap_close

 $time \quad platanus \quad gap_close \quad -o \quad Poil \quad -c \quad ../scaffolds/Poil_scaffold.fa \quad -IP1 \\ ../trimmed/sub_oil_R1.fq.trimmed \quad ../trimmed/sub_oil_R2.fq.trimmed \quad -OP2 \\ ../trimmed/sub_oilMP_R1.fq.int_trimmed \quad ../trimmed/sub_oilMP_R2.fq.int_trimmed \quad 2> \\ gap_close.log$

#Make fasta file with longest scaffold
echo scaffold1_cov232 > _tmp.txt
seqtk subseq Poil_gapClosed.fa _tmp.txt > longest.fasta

#Delete trimmed fastq files
rm *trimmed*

Скриншоты и статистика из файлов multiQC

1. До подрезания чтений (удаления адаптеров)

Базовая статистика. Стоит обратить внимание на среднюю длину чтений.

General Statistics

Showing ⁴/₄ row Copy table	rs and ⁴ / ₅ columns.			
Sample Name	% Dups	% GC	Length	M Seqs
sub_oilMP_R1	4.5%	44%	251 bp	1.5
sub_oiIMP_R2	3.9%	44%	251 bp	1.5
sub_oil_R1	32.3%	46%	101 bp	5.0
sub_oil_R2	30.7%	46%	101 bp	5.0

Качество mate-pairs опускается до неприемлемых значений под конец чтений.

Содержание адаптеров в чтениях высокое

2. После подрезания чтений (удаления адаптеров)

Средняя длина чтений и количество последовательностей заметно сократились.

General Statistics

Significant Copy table	All Plot Showing 4I_4 rows and 4I_5 columns.					
Sample Name	% Dups	% GC	Length	M Seqs		
sub_oiIMP_R1	2.4%	46%	111 bp	0.9		
sub_oilMP_R2	2.0%	45%	105 bp	0.9		
sub_oil_R1	30.6%	46%	97 bp	4.8		
sub_oil_R2	29.5%	46%	96 bp	4.8		

Качество чтений приемлемое на протяжении всей длины последовательности.

Содержание адаптеров в чтениях не превышает 1%.

Результаты полученные в Jupyter ноутбуке

1. Анализ полученных контигов и скаффолдов

Анализ полученных контигов

```
Ввод [126]: count_basic_assemble_statistics(get_contig_sizes('/home/doctor/minor/HT1/Poil_contig.fa'))

Общее кол-во контигов (скаффолдов): 603
Общая длина контигов (скаффолдов): 3925361
Длина самого длинного контига (скаффолда): 179304
N50: 53989

Анализ полученных скаффолдов

Ввод [127]: count_basic_assemble_statistics(get_contig_sizes('/home/doctor/minor/HT1/Poil_scaffold.fa'))

Общее кол-во контигов (скаффолдов): 73
Общая длина контигов (скаффолдов): 3874648
```

2. Подсчёт гэпов

N50: 3836186

Подсчёт гэпов до убирания гэпов

Длина самого длинного контига (скаффолда): 3836186

```
Ввод [130]: count_gaps(get_longest_scaffold('/home/doctor/minor/HT1/Poil_scaffold.fa'))

Суммарная длина гэпов (количество N): 7336

Количество гэпов: 61

Подсчёт гэпов после убирания гэпов

Ввод [131]: count_gaps(get_longest_scaffold('/home/doctor/minor/HT1/Poil_gapClosed.fa'))

Суммарная длина гэпов (количество N): 2851

Количество гэпов: 11
```