Lower Runtime Bounds for Integer Programs

Florian Frohn¹ Matthias Naaf¹ Jera Hensel¹ Marc Brockschmidt² Jürgen Giesl¹

¹RWTH Aachen University, Germany

²Microsoft Research, Cambridge, UK

June 27, 2016

worst case upper bounds

- worst case upper bounds
- best case lower bounds

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why?

• tight bounds

. . .

- worst case upper bounds
- best case lower bounds
- worst case lower bounds

Why?

- tight bounds
- identify attacks

$$z = y$$
while $(z > 0)$
 $z = z - 1$

$$z = y$$
while $(z > 0)$
 $z = z - 1$

$$z = y$$
while $(z > 0)$
 $z = z - 1$

$$z = y$$
while $(z > 0)$
 $z = z - 1$

$$z = y$$
while $(z > 0)$
 $z = z - 1$

The Technique

• step 1: underapproximating program simplification

The Technique

• step 1: underapproximating program simplification

The Technique

• step 1: underapproximating program simplification

• step 2: infer asymptotic lower bound

Acceleration and Chaining

Acceleration and Chaining

• accelerate simple loops

Acceleration and Chaining

• accelerate simple loops

Acceleration and Chaining

• accelerate simple loops

• chain subsequent transitions

Acceleration and Chaining

• accelerate simple loops

• chain subsequent transitions

Acceleration and Chaining

accelerate simple loops

• chain subsequent transitions

iterate

• What's the result?

• What's the result?

• What does it cost?

• What's the result?

- What does it cost?
- How many repetitions?

$$\begin{array}{c|c}
 & \ell_1 \\
\hline
1 & \text{if}(z > 0) \\
z = z - 1 & \ell_2
\end{array}$$

$$\begin{array}{c|c}
\hline
1 & z = y \\
\hline
z & \text{if}(z > 0) \\
z = 0 & \ell_2
\end{array}$$

- What's the result?
 - build recurrence equations

• What does it cost?

• How many repetitions?

- What's the result?
 - build recurrence equations
 - solve using existing tools
- What does it cost?
- How many repetitions?

- What's the result?
 - build recurrence equations
 - solve using existing tools

•
$$z^{(1)} = z - 1$$
 and $z^{(n+1)} = z^{(n)} - 1 \curvearrowright z^{(n)} = z - n$

- What does it cost?
- How many repetitions?

- What's the result?
 - build recurrence equations
 - solve using existing tools

•
$$z^{(1)} = z - 1$$
 and $z^{(n+1)} = z^{(n)} - 1 \curvearrowright z^{(n)} = z - n$

- What does it cost?
 - similar to iterated update
- How many repetitions?

- What's the result?
 - build recurrence equations
 - solve using existing tools

•
$$z^{(1)} = z - 1$$
 and $z^{(n+1)} = z^{(n)} - 1 \curvearrowright z^{(n)} = z - n$

- What does it cost?
 - similar to iterated update
- How many repetitions?
 - use metering functions

• variation of ranking functions

- variation of ranking functions
- ranking function: "> max. number of iterations"

- variation of ranking functions
- ranking function: "> max. number of iterations"
- metering function: "≤ max. number of iterations"

- variation of ranking functions
- ranking function: "> max. number of iterations"
- metering function: "≤ max. number of iterations"
- b is a metering
 - $\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b-1$

function iff

- variation of ranking functions
- ranking function: "> max. number of iterations"
- metering function: "≤ max. number of iterations"
- b is a metering function iff

$$\neg guard \Rightarrow b \leq 0$$
 and $guard \Rightarrow update(b) \geq b - 1$

 \Rightarrow transition can be applied at least b times

- variation of ranking functions
- ranking function: "> max. number of iterations"
- metering function: "≤ max. number of iterations"
- b is a metering (resp. ranking) function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0$$
 and $\mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b-1$
 $\mathsf{guard} \Rightarrow b > 0$ and $\mathsf{guard} \Rightarrow \mathsf{update}(b) \leq b-1$

 \Rightarrow transition can be applied at least b times

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b-1$$

$$\begin{array}{c|c}
1 & \text{if}(z > 0) \\
z = z - 1
\end{array}$$

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b - 1$$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \le 0$ and guard \Rightarrow update $(b) \ge b - 1$

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

- z, z 1, ...
- $0, -1, \dots$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \le 0$ and guard \Rightarrow update $(b) \ge b - 1$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

 \bullet $z, z-1, \ldots$

• z, z + 1, ...

• $0, -1, \dots$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

- z, z 1, ...
- 0. −1....

- z, z + 1, ...
- \bullet 2 · z, 3 · z + 1, . . .

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

- \bullet $z, z-1, \ldots$
- , ,
- **●** 0, −1, . . .
- $z < 0 \Rightarrow z < 0$

- \bullet $z, z+1, \ldots$
- \bullet 2 · z, 3 · z + 1, . . .

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b - 1$$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

 \bullet $z, z-1, \ldots$

 \bullet $z, z + 1, \dots$

0, −1, . . .

 \bullet 2 · z, 3 · z + 1, . . .

• $z \le 0 \Rightarrow z \le 0$

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b - 1$$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

0, −1, . . .

- $\bullet \ 2 \cdot z, 3 \cdot z + 1, \dots$
- $z \le 0 \Rightarrow z \le 0$ $z > 0 \Rightarrow z - 1 \ge z - 1$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

 \bullet $z, z-1, \ldots$

 \bullet $z, z+1, \dots$

0, −1, . . .

- $\bullet \ 2 \cdot z, 3 \cdot z + 1, \dots$
- $z \le 0 \Rightarrow z \le 0$ \checkmark $z > 0 \Rightarrow z 1 \ge z 1$ \checkmark

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b - 1$$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

• $0, -1, \dots$

 \bullet 2 · z, 3 · z + 1, . . .

- $z \le 0 \Rightarrow z \le 0$ \checkmark $z \le 0 \Rightarrow z + 1 \le 0$
 - $z > 0 \Rightarrow z 1 \ge z 1 \checkmark$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

• $0, -1, \dots$

 \bullet 2 · z, 3 · z + 1, . . .

- $z < 0 \Rightarrow z \le 0$ \checkmark $z \le 0 \Rightarrow z + 1 \le 0$
 - $z > 0 \Rightarrow z 1 \ge z 1 \checkmark$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \le 0$ and guard \Rightarrow update $(b) \ge b - 1$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

 \bullet 0. -1...

- \bullet 2 · z, 3 · z + 1, . . .
- $z < 0 \Rightarrow z < 0$
- $\checkmark \quad \bullet \ z \leq 0 \Rightarrow z+1 \leq 0$ $z > 0 \Rightarrow z - 1 > z - 1 \checkmark$ $z > 0 \Rightarrow 2 \cdot (z - 1) \ge 2 \cdot z - 1$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

Example

$$\boxed{1 \text{ if}(z>0)}$$

$$z=z-1$$

• z, z - 1, ...

• z, z + 1, ...

• $0, -1, \dots$

- \bullet 2 · z, 3 · z + 1, . . .
- $z < 0 \Rightarrow z < 0$
- $\checkmark \quad \bullet \ z \leq 0 \Rightarrow z+1 \leq 0$ $z > 0 \Rightarrow z - 1 > z - 1$ \checkmark $z > 0 \Rightarrow 2 \cdot (z - 1) \ge 2 \cdot z - 1$

b is a metering function iff

$$\neg$$
guard $\Rightarrow b \leq 0$ and guard \Rightarrow update $(b) \geq b - 1$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

• $0, -1, \dots$

- \bullet 2 · z, 3 · z + 1, . . .
- $z < 0 \Rightarrow z < 0$
- $\checkmark \quad \bullet \ z \leq 0 \Rightarrow z+1 \leq 0$ $z > 0 \Rightarrow z - 1 > z - 1$ \checkmark $z > 0 \Rightarrow 2 \cdot (z - 1) \ge 2 \cdot z - 1$

finding them:

b is a metering function iff

$$\neg \mathsf{guard} \Rightarrow b \leq 0 \text{ and } \mathsf{guard} \Rightarrow \mathsf{update}(b) \geq b - 1$$

Example

$$\begin{array}{c|c}
\hline
1 & if(z > 0) \\
z = z - 1
\end{array}$$

• z, z - 1, ...

• z, z + 1, ...

 \bullet 0. -1...

- \bullet 2 · z, 3 · z + 1....
- $z \le 0 \Rightarrow z \le 0$ \checkmark $z \le 0 \Rightarrow z + 1 \le 0$
 - $z > 0 \Rightarrow z 1 > z 1$ \checkmark $z > 0 \Rightarrow 2 \cdot (z 1) > 2 \cdot z 1$

finding them: just like ranking functions

Program Simplification

Algorithm

ullet while there is a path of length > 1

Program Simplification

Algorithm

- ullet while there is a path of length > 1
 - accelerate simple loops

Program Simplification

Algorithm

- ullet while there is a path of length > 1
 - accelerate simple loops
 - chain subsequent transitions

inferring lower bound still non-trivial

$$|x^2 - y|$$

$$|t(0 < x < 10 \land y + x < 0)|$$

$$\dots$$

- inferring lower bound still non-trivial
- runtime depends on cost and guard

- inferring lower bound still non-trivial
- runtime depends on cost and guard
- ullet search family $oldsymbol{v}_n$ of valuations which satisfies the guard for large n

- inferring lower bound still non-trivial
- runtime depends on cost and guard
- ullet search family $oldsymbol{v}_n$ of valuations which satisfies the guard for large n
- ullet apply $oldsymbol{v}_n$ to cost to get asymptotic bound

- inferring lower bound still non-trivial
- runtime depends on cost and guard
- ullet search family $oldsymbol{v}_n$ of valuations which satisfies the guard for large n
- ullet apply $oldsymbol{v}_n$ to cost to get asymptotic bound

•
$$\mathbf{v}_n = \{x/1, y/-n\}$$

- inferring lower bound still non-trivial
- runtime depends on cost and guard
- ullet search family $oldsymbol{v}_n$ of valuations which satisfies the guard for large n
- ullet apply $oldsymbol{v}_n$ to cost to get asymptotic bound

Example

• $\mathbf{v}_n = \{x/1, y/-n\}$ satisfies guard for $n \ge 2$

- inferring lower bound still non-trivial
- runtime depends on cost and guard
- ullet search family $oldsymbol{v}_n$ of valuations which satisfies the guard for large n
- ullet apply $oldsymbol{v}_n$ to cost to get asymptotic bound

- $\mathbf{v}_n = \{x/1, y/-n\}$ satisfies guard for $n \ge 2$
- $\mathbf{v}_n(x^2 y) = 1 + n \implies \Omega(n)$

goal: infer $v_n = \{x/1, y/-n\}$

goal: infer
$$v_n = \{x/1, y/-n\}$$

$${x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}}$$

goal: infer
$$v_n = \{x/1, y/-n\}$$

$${x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}}$$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- a^- : $\mathbf{v}_n(a)$ "decreases with n"
- a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe : $(a - b)^+$ if a^+ and b^{+_1}

$${x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}}$$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- a^- : $\mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

goal: infer $\mathbf{v}_n = \{x/1, y/-n\}$ **observe**: $(a-b)^+$ if a^+ and b^{+1}

$$\{x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}\} \longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},(-y)^{+}\}$$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+} : $\mathbf{v}_n(a)$ is pos. constant

- a^- : $\mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe : $(a - b)^+$ if a^+ and b^{+_1} $(-a)^+$ if a^-

$$\{x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}\} \longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},(-y)^{+}\}$$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- $a^-: \mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe : $(a - b)^+$ if a^+ and b^{+} $(-a)^+$ if a^-

$$\{x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}\} \longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},(-y)^{+}\}$$

 $\longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},y^{-}\}$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- $a^-: \mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe :
$$(a - b)^+$$
 if a^+ and $b^{+_!}$ $(-a)^+$ if $a^ (a - b)^{+_!}$ if $a^{+_!}$ and $b^{-_!}$

$$\{x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}\} \longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},(-y)^{+}\}$$

 $\longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},y^{-}\}$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- $a^-: \mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe :
$$(a - b)^+$$
 if a^+ and $b^{+_!}$ $(-a)^+$ if $a^ (a - b)^{+_!}$ if $a^{+_!}$ and $b^{-_!}$

$$\{x^{+_{!}}, (10-x)^{+_{!}}, (-y-x)^{+}\}$$
 \rightsquigarrow $\{x^{+_{!}}, (10-x)^{+_{!}}, (-y)^{+}\}$ \rightsquigarrow $\{x^{+_{!}}, (10-x)^{+_{!}}, y^{-}\}$ \rightsquigarrow $\{x^{+_{!}}, 10^{+_{!}}, x^{-_{!}}, y^{-}\}$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+} : $\mathbf{v}_n(a)$ is pos. constant

- $a^-: \mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe :
$$(a - b)^+$$
 if a^+ and $b^{+_!}$ $(-a)^+$ if $a^ (a - b)^{+_!}$ if $a^{+_!}$ and $b^{-_!}$

$$\{x^{+_{!}},(10-x)^{+_{!}},(-y-x)^{+}\} \longrightarrow \{x^{+_{!}},(10-x)^{+_{!}},(-y)^{+}\}$$

 $\leadsto \{x^{+_{!}},(10-x)^{+_{!}},y^{-}\}$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- $a^-: \mathbf{v}_n(a)$ "decreases with n"
 - a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

Example

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe :
$$(a - b)^+$$
 if a^+ and b^{+_1} $(-a)^+$ if $a^ (a - b)^{+_1}$ if a^{+_1} and b^{-_1}

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+_1} : $\mathbf{v}_n(a)$ is pos. constant

- a^- : $\mathbf{v}_n(a)$ "decreases with n"
- a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

Example

goal: infer
$$v_n = \{x/1, y/-n\}$$

observe :
$$(a - b)^+$$
 if a^+ and $b^{+_!}$ $(-a)^+$ if $a^ (a - b)^{+_!}$ if $a^{+_!}$ and $b^{-_!}$

$$\{x^{+_{!}}, (10-x)^{+_{!}}, (-y-x)^{+}\}\$$

 $(x^{+_{!}}, (10-x)^{+_{!}}, y^{-}\}$

$$\begin{cases} x^{+_{!}}, (10-x)^{+_{!}}, (-y-x)^{+} \end{cases} \longrightarrow \begin{cases} x^{+_{!}}, (10-x)^{+_{!}}, (-y)^{+} \end{cases}$$

$$\begin{cases} x^{+_{!}}, (10-x)^{+_{!}}, y^{-} \end{cases} \longrightarrow \begin{cases} x^{/1} \end{cases} \longrightarrow \begin{cases} x^{+_{!}}, (10-x)^{+_{!}}, (-y)^{+} \end{cases}$$

- a^+ : $\mathbf{v}_n(a)$ "increases with n"
- a^{+} : $\mathbf{v}_n(a)$ is pos. constant

- a^- : $\mathbf{v}_n(a)$ "decreases with n"
- a^{-1} : $\mathbf{v}_n(a)$ is neg. constant

simplify program

- simplify program
- normalize guard to $a_1 > 0 \wedge \cdots \wedge a_k > 0$

- simplify program
- normalize guard to $a_1 > 0 \land \cdots \land a_k > 0$
- ullet start with $\{a_1^{ullet 1},\ldots,a_k^{ullet k}\}$ where $ullet_i\in\{+,+_!\}$

- simplify program
- normalize guard to $a_1 > 0 \land \cdots \land a_k > 0$
- ullet start with $\{a_1^{ullet 1},\ldots,a_k^{ullet k}\}$ where $ullet_i\in\{+,+_!\}$
- simplify with " $\stackrel{\sigma}{\leadsto}$ "

- simplify program
- normalize guard to $a_1 > 0 \land \cdots \land a_k > 0$
- ullet start with $\{a_1^{ullet 1},\ldots,a_k^{ullet k}\}$ where $ullet_i\in\{+,+_!\}$
- simplify with " $\stackrel{\sigma}{\leadsto}$ "
- just variables left $\sim \mathbf{v}_n$

- simplify program
- normalize guard to $a_1 > 0 \land \cdots \land a_k > 0$
- ullet start with $\{a_1^{ullet 1},\ldots,a_k^{ullet k}\}$ where $ullet_i\in\{+,+_!\}$
- simplify with " $\stackrel{\sigma}{\leadsto}$ "
- just variables left $\sim \mathbf{v}_n$
- apply \mathbf{v}_n to cost

• https://github.com/aprove-developers/LoAT

- https://github.com/aprove-developers/LoAT
- comparison with KoAT, RanK, Loopus, CoFloCo

- https://github.com/aprove-developers/LoAT
- comparison with KoAT, RanK, Loopus, CoFloCo
- examples from KoAT-evaluation

- https://github.com/aprove-developers/LoAT
- comparison with KoAT, RanK, Loopus, CoFloCo
- examples from KoAT-evaluation

- https://github.com/aprove-developers/LoAT
- comparison with KoAT, RanK, Loopus, CoFloCo
- examples from KoAT-evaluation

runtime	Ω(1)	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^4)$	EXP	$\Omega(\omega)$
$\mathcal{O}(1)$	(132)	_	_	_	_	_	_
$\mathcal{O}(n)$	45	125	_	_	_	_	_
$\mathcal{O}(n^2)$	9	18	33	_	_	_	_
$\mathcal{O}(n^3)$	2	_	_	3	_	_	_
$\mathcal{O}(n^4)$	1	_	_	_	2	_	_
EXP	_	_	_	_	_	5	_
$\mathcal{O}(\omega)$	57	31	3	_	_	ı	173

- https://github.com/aprove-developers/LoAT
- comparison with KoAT, RanK, Loopus, CoFloCo
- examples from KoAT-evaluation

runtime	$\Omega(1)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^4)$	EXP	$\Omega(\omega)$
$\mathcal{O}(1)$	(132)	_	_	_	_	_	_
$\mathcal{O}(n)$	45	125	_	_	_	_	_
$\mathcal{O}(n^2)$	9	18	33	_	_	_	_
$\mathcal{O}(n^3)$	2	_	_	3	_	_	_
$\mathcal{O}(n^4)$	1	_	_	_	2	_	_
EXP	_	_	_	_	_	5	_
$\mathcal{O}(\omega)$	57	31	3	_	_	_	173

• non-trivial bounds: 78%, tight bounds: 67%

• underapproximating program simplification framework

- underapproximating program simplification framework
- calculus to obtain asymptotic lower bounds

- underapproximating program simplification framework
- calculus to obtain asymptotic lower bounds
- modular approach

- underapproximating program simplification framework
- calculus to obtain asymptotic lower bounds
- modular approach
- polynomial, exponential, and infinite bounds