Indhold

1	Ind	ledning	2
2	Pro	blemformulering	3
3	Met	${f tode af snit}$	4
4	Ter	modynamiske processor og kredsprocessor	4
	4.1	Termodynamiske processor	4
		4.1.1 Isokor process	4
		4.1.2 Isobar proces	5
		4.1.3 Isoterm proces	6
		4.1.4 Adiabatisk proces	6
	4.2	Kredsprocesser	7
		4.2.1 Arbejde i kredsprocessor	8
	4.3	EuroDish	9
5	Ber	egning af EuroDishs effektivitet	9
	5.1	Analyse af en idealiseret Stirlingmotor	10
		5.1.1 Arbejde udført i en idealiseret Stirlingmotor	10
	5.2	Beregning på modellen	11
	5.3	Sammenligning	11

1 Indledning

Igennem tidens løb har mennesket adapteret sig til og anvendt sine omgivelser til deres fordel, ved at udarbejde redskaber, som gjorde dagligdagens opgaver nemmere. Denne tilpasning har fundet sted og finder stadig sted den dag i dag. Før i tiden har udviklingen været motiveret ved at skabe hurtigere og mere effektive redskaber og maskineri, som kunne erstatte arbejdernes jobs. Denne forskydning, hvor mennesker hele tiden har fundet nyere, smartere og mere effektive måder at udføre jobs på, har medført at flere mennesker kan arbejde i det tertiære og sekundære erhverv. Ultimativt vil denne udvikling nok resultere i en næsten komplet overtagelse af arbejde. I takt med at jordens befolkningsmængde stiger eksponentielt, så kræves der flere og flere ressourcer, både i form af energi, varme og fødevarer, mere specifikt så har verdensenergiforbruget mere end tredoblet siden 1970 ¹. Produktionen af el i USA kommer primært fra fossile brændsler, som er en andel på 81 procent, hvoraf 61.8 procent kommer fra naturgas og kul². For at kunne følge med på denne trend, med en voksende befolkningsmængde og et voksende energiforbrug, så vurdere forskere, at de naturlige ressourcer, som kul og olie, vil blive opbrugt indenfor ca. 53 år ³. Derfor er det nødvendigt at ændre på, hvilke ressourcer, der anvendes til energiproduktion, for ellers løber verden tør. Der er generel konsensus på dette, der bliver indgået aftaler om nedskæring af anvendelse af fossile brændsler og CO2 udledning, et eksempel på dette er Parisaftalen, som er en international aftale inden for FN's klimakonvention UNFCCC ⁴. I Danmark er der også en grøn omstillingsplan, som har til mål at reducere den danske udledning af drivhusgasser med 70 procent i 2030⁵. Danmark er i forvejen et meget grønt land, hvis man kigger på det nuværende danske elforbrug, så stammer 49 procent fra sol- og vindkraft, hvis energi produceret med biomasse inkluderes, så stammer hele 72 procent af Danmarks elforbrug fra CO2-frie energikilder

 $^{^{1} \}texttt{https://www.drivkraftdanmark.dk/wp-content/uploads/2019/05/DD_Energistatistik_energis$

²⁰¹⁹_WEB-spreads.pdf

 $^{^2} https://\verb|www.agfoundation.org/common-questions/view/Where-does-energy-come-from a continuous continuous and the continuous con$

³https://eu.usatoday.com/story/money/business/2014/06/28/the-world-was-533-years-of-oil-left/11528999/

⁴https://da.wikipedia.org/wiki/Parisaftalen_(2015)

⁵https://www.gate21.dk/groen-omstilling-i-2030/

 $^{^6 \}mathtt{https://energiwatch.dk/Energinyt/Politik__Markeder/article11839395.ece}$

I dette projekt arbejdes med, hvordan man kan forebygge dette altoverskyggende problem, global opvarmning, som med sig bringer mange konsekvenser. Blandt andet, på baggrund af det nuværende forbrug på verdensplan, som primært består af energi fra naturlige ressourcer, så vil de naturlige ressourcer være opbrugt indenfor 53 år. I og med jordens ressourcer er ved at være opbrugt, så er det nødvendigt for menneskeheden at omlægge energiproduktionen til primært at bestå, hvis ikke udelukkende, af vedvarende energikilder, som solenergi, vindenergi og bølgeenergi m.m. I denne opgave tages der afsæt i maskinen, Dish-Stirling, som er en maskine, der omdanner solens energi til el med en Stirling motor, der er koblet til en generator. (se Figur 1 for et grafisk overblik over projektets afgrænsning)

2 Problemformulering

Det er et problem, at verdens naturlige ressourcer er ved at være opbrugt i forhold til den nuværende produktion af el og varme.

- Hvordan fungerer en EuroDish?
- Hvordan kan man opstille en matematisk model, som der kan regnes på?
- Hvordan forholder effektiviteten sig i praksis og ved opstillede teoretiske modeller?
- Hvor effektiv er en Dish-Sterling i forhold til eksempelvis en solcelle eller et varmekraftværk?
- Hvilke begrænsninger er der ved EuroDish generatoren i forhold til klima og eventuelle andre faktorer, samt om den er et realistisk bud på et grønnere alternativ?

3 Metodeafsnit

4 Termodynamiske processor og kredsprocessor

4.1 Termodynamiske processor

Idealgasligningen er en ligning, som kan anvendes til at beskrive sammenhængen mellem tryk, volumen, stofmængde og temperatur for en ideal gas og derved dens tilstand. Den kan afbildes rent matematisk som

$$p \cdot V = n \cdot R \cdot T \tag{1}$$

hvor p er gassens tryk, V er gassenes volumen, n er stofmængden, R er gaskonstanten og har værdien $8.314 \,\mathrm{J/(mol \cdot K)}$ og T er temperaturen angivet i Kelvin. Mere specifikt, som navnet antyder, så gør ligningen sig gældende for ideale gasser, hvilket betyder, at der antages at gasmolekylerne kolliderer total elastisk imellem hinanden, altså at der ikke går nogen energi tabt ved sammenstød af molekyler. Hvis man begynder at ændre på to af de resterende faktorer ved en indespæret gas, som har en konstant stofmængde, så vil den tredje variable indstille sig, så den overholder idealgasligningen. Denne indstilling fra et stadie til et andet kaldes for en proces. Generelt for alle processorer gælder det, at temperaturen direkte korrelerer til ændringen af en given gas indre energi, som er et begreb for molekylernes kinetisk energi og indbyrdes kræfter i gassen. Dette kan illustreres ved

$$\Delta E_i = n \cdot c_{\text{mV}} \cdot \Delta T \tag{2}$$

hvor ΔE_i er den indre energi i gassen, n er stofmængdekoncentrationen i mol, $c_{\rm mV}$ er den specifikke molære varmekapacitet ved et konstant volumen.

4.1.1 Isokor process

Hvis en gas indespæret i et kammer med konstant volume oplever en varmetilførsel, så vil gassens tryk variere alt efter om det er en positiv eller negativ varmetilførsel. En sådan process, hvor volumenet holdes konstant kaldes en *isokor* proces. Netop da gassen holdes

i et konstant volumen, så kan gassen ikke udvide sig, så derfor vil gassens arbejde, som kan beskrives ved følgende formel

$$A = p \cdot \Delta V. \tag{3}$$

Idet volumenet er konstant og derved er volumeændringen ΔV lig nul, så vil arbejdet også være lig nul, da gassen ikke kan 'skubbe' på omgivelserne ved at udvide sig ligeledes er omgivelsernes arbejde på gassen lig nul.

$$A = 0 (4)$$

Formlen for at beregne den nødvendige mægnde varme, Q, som skal tilføres til gassen under en isokor proces, kan findes ved den tidligere nævnte formel (2)

$$Q = n \cdot n_{\rm mV} \cdot \Delta T \tag{5}$$

4.1.2 Isobar proces

Forskellen fra en isokor til en isobar process er, som navnet antyder, at trykket holdes konstant fremfor volumenet som i det forrige. Ved denne proces kan det udførte arbejde på gassen, altså omgivelsernes arbejde, findes ved

$$A = -p \cdot \Delta V \tag{6}$$

som er den samme som ligning (3) bortset fra at der er introduceret et negativt fortegn. Dette er gjort fordi det er arbejdet fra omgivelserne på gassen, der betragtes. Dette arbejde vil kun være positivt, når gassen komprimeres, idet det vil resultere i en negativ volumeændring.

Den tilførte varme, Q, som skal tilføres gassen for at resultere i temperaturændrigen ΔT kan findes ved

$$Q = n \cdot (c_{\text{mV}} + R) \cdot \Delta T \tag{7}$$

hvor man indfører en special varmekapacitet, som kaldes den specifikke molære varmekapacitet ved konstant tryk der denoteres som $c_{\rm mp}$. Denne varmekapacitet anvendes ved en isobar proces og er defineret som

$$c_{\rm mp} = c_{\rm mV} + R \tag{8}$$

Så beregnes den tilførte varme, Q, nu ved

$$Q = n \cdot c_{\rm mp} \cdot \Delta T \tag{9}$$

4.1.3 Isoterm proces

En isoterm proces er en proces, hvor temperaturen holdes konstant. Derfor må gassen indre energi også være konstant, da den direkte indikere temperaturen på gassen, som vi så i formel (2). Heraf må det betyde at hvis der tilføres eller fjernes varme under en isoterm proces, så må der på tilsvarende vis udføres et arbejde for at komme af med den overskydne varme og holde temperaturen konstant, og hvis der fjernes varme, så må der tilføres et arbejde på gassen for at holde temperaturen konstant. Ved en isoterm proces, kan det arbejde, som omgivelserne skal udføre på gassen beregnes ved

$$A = -n \cdot R \cdot T \cdot \ln \left(\frac{V_{\text{slut}}}{V_{\text{start}}} \right) \tag{10}$$

Det arbejde, som udføres på en gas under en isoterm proces, skal udlignes af den tilførte varme Q for at temperaturen kan forblive konstant, deraf har vi

$$Q = n \cdot R \cdot T \cdot \ln \left(\frac{V_{\text{slut}}}{V_{\text{start}}} \right) \tag{11}$$

Den eneste forskel på ligning (10) og (11) er fortegnet, hvilket bevidner, at de to er modsatte.

Endvidere, hvis en isoterm proces plottes i et pV-diagram, så vil den afbilde en hyperbel. Netop da, hvis man isolerer p og V i idealgasligningen (1), så følger det

$$p = n \cdot R \cdot T \cdot \frac{1}{V} \tag{12}$$

Netop da den plottes i et pV-diagram, hvor førsteaksen er volumenet, V, så vil trykke p aftage asympotisk som volumenet stiger.

4.1.4 Adiabatisk proces

En adiabatisk proces, er en proces, hvorved der ikke udveksles varme med omgivelserne. Denne proces finde eksempelvis sted i en dieselmotor motorens stempel, som komprimerer en blanding af dieselolie og luft, så hurtigt og kraftigt, at gassen ikke har tid til, at afgive varme til hverten cylindreret eller stemplet. Så alt arbejdet går til at få temperaturen på gassen til at stige. Altså sker der en stigning i indre energi, hvilket betyder at

$$Q = 0 (13)$$

Med andrer ord, så forekommer der ingen varmetilførsel, hverken til eller fra gassen. Netop da alt det udførte arbejde bliver omdannet til indre energi i gassen, heraf kan følgende opstilles med formel (2)

$$A = n \cdot c_{\text{mV}} \cdot \Delta T \tag{14}$$

Følgende gælder for en adiabatisk proces

$$p \cdot V^{\gamma} = k$$
, det betyder at $p_1 \cdot V_1^{\gamma} = p_2 \cdot V_2^{\gamma}$ (15)

og

$$T \cdot V^{\gamma - 1} = k$$
, det betyder at $p_1 \cdot V_1^{\gamma - 1} = T_2 \cdot V_2^{\gamma - 1}$ (16)

hvor k er en konstant og γ kaldes for adiabatkonstanen eller varmefyldeforholdet og er defineret som

$$\gamma = \frac{c_{\rm mp}}{c_{\rm mV}} \tag{17}$$

4.2 Kredsprocesser

Alle ovenstående termodynamiske processor kan kombineres til at danne en såkaldt kredsproces. En kredsproces består af op til flere forskellige termodynamiske processorer i en vilkårlig rækkefølge, som en gas i et lukket system ville opleve. Det definerende ved en kredsproces, som også ligger i navnet, er at det fungere som en kreds, altså at efter alle påvirkninger fra de forskellige termodynamiske processor, så vender gassen tilbage i dens starttilstand med samme tryk, temperatur og volume. Udledningsvist, må dette betyde, at ændringen i gassens indre energi må være nul, da den starter og slutter samme sted. Derfor gælder følgende for en kredsproces

$$\Delta E_{\rm i} = 0 \tag{18}$$

4.2.1 Arbejde i kredsprocessor

For at få et overblik over en kredsproces så kan det være fordelagtigt, at integne dem i et pV-diagram, hvor førsteaksten er volume, V og andenaksen er trykket, p, dette er gjort på figur 1

Figur 1: simpel kredsproces indtegnet i et pV-diagram. Kilde: https://orbithtxa.systime.dk/?id=281

I kredsprocessen i figur 1 ses det, at pilen indikerer, at omløbsretningen er med uret, derfor udføres der først en isokor opvarmning, så en isobar ekspansion, så en isokor afkøling og endelig en isobar kompression, så den er tilbage til starttilstanden. I kredsprocesson udføres, der et arbejde ved to isobare processor, først ved den isobare ekspansion, hvor gassen udvider sig og derved udfører et arbejde på omgivelserne, derefter udfører omgivelserne et arbejde på gassen idet den komprimeres ved den isobare kompression. Bemærk, at de to stykker arbejde, der udføres, ikke er lige store. Idet den isobare ekspansion finder sted ved et meget højere tryk, end den isobare kompression. Nettoarbejdet for enhver kredsproces er lig det areal, som determodynamiske processor afgrænser i pV-diagrammet.

Hvis kredsprocessens gas' omløbsretning forløber med uret i pV-diagrammet, så udfører gassen et positivt arbejde på omgivelserne, ligesom i eksemplet, hvor gassens arbejde er større end omgivelsernes arbejde på gassen, derfor vil nettoarbejdet være positivt. Sagt på en anden måde, så modtager gassen varme og udførerer et mekanisk arbejde - en sådan maskine benævnes som en kraftvarmemaskine. Hvorimod hvis gassen forløber mod uret, så udfører omgivelserne et positivt arbejde på gassen. Udfra termodynamikkens første hovedsætning samt at i en kredsproces gælder $\Delta E_{\rm i}=0$, kan følgende opstilles

$$A_{\rm gas} = Q_{\rm tilført} - Q_{\rm afgivet} \tag{19}$$

hvor $A_{\rm gas}$ er gassens nettoarbejde på omgivelserne, $Q_{\rm tilført}$ er den varme, som omgivelserne tilfører gassen i kredsprocessens forløb og $Q_{\rm afgivet}$ er den varme, der afgives til omgivelserne fra gassen. kilder ^{7 8}

4.3 EuroDish

EuroDish er en maskine, som udvikles i projektet EnviroDish. Maskinen består af en parabolsk formet koncentrator, som koncentrerer solens lys i et brændpunkt. I brændpunket er monteret en Stirling motor, som er koblet til en el-generator, der omdanner Stirling motorens mekaniske arbejde til el, der kan sendes ud til elnettet eller anvendes lokalt. For at udnytte solens energi bedst muligt, så er selve monteringsanordningen konfigureret sådan, at den ved instruktioner fra en sensor kan følge solens bane på himlem og derved altid være optimalt placeret i forhold til solen. Se figur 2 for et billede af en monteret EuroDish. Kilde ⁹

Figur 2

5 Beregning af EuroDishs effektivitet

For at kunne regne på, hvor effektiv en EuroDish er, så er det nødvendigt at opstille en matematisk model, som der kan regnes på. En sådan model, tager afsæt i selve den del på EuroDishen, som omdanner solens energi til mekanisk energi, atlså Stirlingmotoren.

⁷https://orbithtxa.systime.dk/?id=281

⁸Orbit A, s. 156-157

⁹https://www.promes.cnrs.fr/index.php?page=eurodish-system#prettyPhoto[742]/1/

5.1 Analyse af en idealiseret Stirlingmotor

En idealiseret stirling motor er en modelering af....

5.1.1 Arbejde udført i en idealiseret Stirlingmotor

Nettoarbejdet for en idealiseret Stirling motor kan beregnes ved at finde arealet, der afgrænses af de termodynamiske processor i pV-diagrammet. Der udføreres kun et arbejde ved proces $1 \to 2$, altså den isoterme ekspansion og ved den proces $3 \to 4$, den isoterme kompression. Arbejdet for en isoterm proces kan opfattes, som araelet under den afbillede graf i diagrammet. Derfor må nettoarbejdet være lig med forskellen på den øverste process og den nederste process, som rent matematisk kan udregnes som

$$A_{\text{netto}} = \int_{V_1}^{V_2} p \, dV - \int_{V_3}^{V_4} p \, dV \tag{20}$$

Selve arbejdet, som en isoterm udfører undervejs, kan findes ved at betrage formel (20), idealgasligningen, og huske at for en isoterm proces er temperaturen T konstant, samt stofmængden n, da det er en kredsproces. Ud fra dette kan et udtryk for det udførte arbejde skrives som

$$\int_{V_A}^{V_B} p \, dV = \int_{V_A}^{V_B} \frac{nRT}{V} \, dV = nRT \cdot \int_{V_A}^{V_B} \frac{1}{V} \, dV \tag{21a}$$

$$= nRT \cdot [\ln V]_{V_A}^{V_B} = nRT \cdot (\ln V_B - \ln V_A)$$
 (21b)

$$= nRT \ln \left(\frac{V_B}{V_A}\right) \tag{21c}$$

hvor $V_{\rm B}$ og $V_{\rm B}$ er henholdsvis slut- og startvolumenet. Fra trin b til c i formel (21c) anvendes, at

$$\ln(A) - \ln(B) = \ln\left(\frac{A}{B}\right).$$

Ved at substituere formel (21c) i formel (20), så kan integralet for nettoarbejdet evalueres på følgende vis

$$A_{\text{netto}} = nRT_H \ln \left(\frac{V_2}{V_1}\right) - nRT_L \ln \left(\frac{V_3}{V_4}\right)$$
 (22)

hvor subskriftene H og L denoterer henholdsvis den høje og lave temperatur i den isoterme proces. Ved at obsevere pV-diagrammet (indsæt figur), så kan det ses at $V_4 = V_1$ samt

at $V_3=V_2$, netop da to lodrette processor er isokore processor, hvor volumenet holdes konstant. Herved kan ligningen omskrives til

$$A_{\text{netto}} = nRT_H \ln \left(\frac{V_2}{V_1}\right) - nRT_L \ln \left(\frac{V_2}{V_1}\right)$$
 (23)

Ved at faktorisere kan udtrykket skrives som

$$A_{\text{netto}} = nR \ln \left(\frac{V_2}{V_1}\right) \cdot (T_H - T_L) \tag{24}$$

kilde $^{\rm 10}$

5.2 Beregning på modellen

5.3 Sammenligning

 $^{^{10}\}mathrm{pdf},\,\mathrm{plus}\,\,\mathrm{bog}$