

Sequential circuits

Ms. Prathibha Prakash
Department of Computer Science
Amrita Vishwa Vidyapeetham

Objective

Introduction to sequential circuits.

Sequential circuits

- Combinational circuits = no memory (inputs —outputs)
- Sequential circuit output depends not only on the present value of the input but also on previous value of the input signal.
- Sequential circuits = Combinational circuits + memory elements.
- Sequential circuit uses a memory element like flip-flops as feedback circuit to store past values.

Sequential circuits

- Memory: device capable of storing binary information i.e., state.
- (inputs, present state) (outputs, next state)

Clock Signal in Sequential circuit

- A clock is a signal which oscillate between logic level 0 and logic level 1 repeatedly.
- Sequential circuit retains its state till the next clock edge occurs

Sequential circuits

Two types based on the timings of signal

Synchronous Sequential circuit

- Synchronization is achieved by a timing signal called <u>master-clock</u> generator which generates a periodic clock pulses.
- SS circuits using clock pulses in the input of memory elements are called <u>clocked sequential circuits</u>.
- Clock signal is used to control the exact time at which any output can change its state.
- Memory in clocked sequential circuits are designed using flip flops.

Synchronous Sequential circuit

Block diagram of Synchronous sequential circuit

 Flip flops receive inputs from combinational circuits and from clock signal with pulse that occur at fixed interval of time.

Asynchronous Sequential circuits

- System behavior depends on the order in which its input signals change and can occur at <u>any instant of time</u>.
- Do not use clock pulses, so change of state occur at any time.
- Memory elements used are latch or time delay elements.

Summary

Explained about sequential circuits

Reference

- M Morris Mano Computer System Architecture PHI Third Edition
- Gideon Langholz, Abraha& Joe L Mott Digital Logic Design World Scientific Publishing Co Ltd
- Thomas C Bartee Digital Computer Fundamentals Tata Mc Graw Hill - Sixth Edition

Flip Flops

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Introduction to basic building blocks of memory in digital systems : FLIP-FLOPS

Introduction

- Flip-flops are the building blocks of most sequential circuits.
- Flip-flops used as memory elements can <u>store one bit</u> of information.
- Clocked flip-flop serve as the memory element in synchronous sequential circuits.
- Unclocked flip-flops (latches) act as the memory element in asynchronous sequential circuits.
- Output in sequential circuit is from combinational circuit or flip-flop or both.

Basic Flip-flop circuits

- Flip-flops can be constructed using two NAND gates or two NOR gates.
- Cross-coupled connection from the output of one gate to the input of the other is the feedback path.
- 4 types of flip-flops: SR flip-flop, JK flip-flop, D flip-flop, T flip-flop.
- Application of flip-flop: Counters
 Shift Register
 Storage Register

SR latch with NAND gate

Most basic sequential logic circuit with inputs "SET" (output = 1) and "RESET" (output = 0).

l		

Truth table

S	R	Q	Q'	
1	0	0	1	reset
1	1	0	1	No change
0	1	1	0	set
1	1	1	0	No change
0	0	-	-	undefined

Logic diagram

For NAND gate, if any input is 0, output is 1 R = S = 1; keep previous state

SR Latch with NOR gate

Logic diagram

Truth table

	Q'	Q	R	S
set	0	1	0	1
No change	0	1	0	0
reset	1	0	1	0
No change	1	0	0	0
undefined	-	-	1	1

For NOR gate, if any input is 1,output is 0 R = S = 0; keep previous state

Summary

Explained about fundamentals of flip-flops

Reference

- M Morris Mano Computer System Architecture PHI Third Edition
- Gideon Langholz, Abraha& Joe L Mott Digital Logic Design World Scientific Publishing Co Ltd
- Thomas C Bartee Digital Computer Fundamentals Tata Mc Graw Hill - Sixth Edition

Flip Flops-II

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Introduction to clocked flip-flops

Clocked Flip-flops

- Operation of basic flip-flop can be modified by an additional control input which determine the change of state in circuit.
- Basic flip-flop circuits with additional NAND gates.
- Clock Pulse input act as the other inputs.

RS Flip-flop

Basic flip-flop circuit with 2 additional NAND gates.

Logic diagram

Q	S	R	Q_{t+1}
0	0	0	0
0	0	1	0
0	1	0	Ī
0	1	1	Indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Indeterminate

Characteristic table

RS flip-flop

Characteristic equation

$$Q_{t+1} = S + R'Q$$

 $SR = 0$

Next state = (present state, inputs)

• Given present state and the inputs S, R of a single pulse in the input go to the next state Q_{t+1} in flip-flop.

D Flip-flop

 To eliminate the intermediate state in RS flip-flop by never having value 1 to the inputs at the same time.

Modification of RS flip-flop

Logic diagram

Graphic symbol

	Q t+1	D	Q
	0	0	0
	1	1	0
reset	0	0	1
set	1	1	1

Characteristic equation, $Q_{t+1} = D$

JK Flip-flop

Refinement of RS flip-flop with definition for the intermediate state is

JK type.

Q	J	K	Qt+1
0	0	0	0
0	0	1	0
 0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q_{t+1} = JQ' + K'Q$$

• If J and K are both high at the clock edge, output will toggle from one state to the other

T flip-flop

• T means the ability of flip-flop to "toggle" or complement its state.

· Flip-flop complements its output when the clock pulse occurs while

input is 1, regardless of present state.

T—	Q T	J K	Q
C.	Q'		

$$\mathbf{Q}_{t+1} = \mathbf{T}\mathbf{Q}' + \mathbf{T}'\mathbf{Q}$$
$$= \mathbf{T} \oplus \mathbf{Q}$$

Excitation Table

- Characteristic table specifies the next state of flip-flop given inputs and present state.
- Excitation table: For a particular transition to take place what should be the inputs.(if Q is 0 and to get Q' as 1 what should be the inputs)

Q	Q_{t+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

Q	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Q	Q_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

Q	Q_{t+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

RS flip-flop

JK flip-flip

D flip-flop

T flip-flop

Summary

Basics of RS, D, T and JK flip-flops

Reference

- M Morris Mano Computer System Architecture PHI Third Edition
- Gideon Langholz, Abraha& Joe L Mott Digital Logic Design World Scientific Publishing Co Ltd
- Thomas C Bartee Digital Computer Fundamentals Tata Mc Graw Hill - Sixth Edition

Registers

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Fundamentals about Registers

Introduction

- One flip-flop can store one bit of information.
- A group of flip-flops which can <u>store multiple bits of information</u> is called a **register**.
- Register is a device used to store information.
- **n-bit register** has a group of <u>n flip-flops</u> capable of storing <u>n-bit</u> binary information's .
- To store 16-bit data need a set of 16 flip-flops

Registers

Simplest register consist of only flip-flops without any external gates.

• Clock pulse enables all flip-flops, so the information at four inputs can be transferred into the 4-bit register.

Shift Registers

- Binary data in a register can be moved within the register from one flip-flop to another.
- **Shift register**: Sequential logic circuit capable of storing and transferring of binary data.
- It can shift its binary data either to the right or to the left.
- Simplest possible shift register is the one with flip-flops only.

Shift register Operations

- There are four mode of operations of a shift register.
- Serial Input Serial Output (SISO)

Only 3 connections: Serial input (SI) to left flip-flop, serial output (SO) from right flip-flop and sequencing clock signal.

Operation:

```
Initially Q_3Q_2Q_1Q_0 = 0000
```

$$IN = D_3 = 1$$
; Apply clock; FF3 set; $Q_3 = 1$

$$IN = 1$$
; FF2 set; $Q_3Q_2 = 11$

$$IN = 0$$
; FF1 set; $Q_3Q_2Q_1 = 011$

$$IN = 1$$
; FF0 SET; $Q_3Q_2Q_1Q_0 = 1011$

Act as temporary storage or time delay device

Mode of Operations

- > Serial Input Parallel Output (SIPO)
- Data entered serially and taken out in parallel fashion.
- Data loaded bit by bit. Output disabled while data is loading.
- Once data loading completed, flip-flops contain the required data, outputs are enabled thus data is available at the same time.

4-bit word need clock cycles

Speed: SISO = SIPO

Mode of Operations

- Parallel Input Serial Output(PISO)
- Opposite of SIPO
- Data is loaded into the register in parallel format i.e., all data bits enter their input simultaneously.
- Data is outputted one bit in each clock cycle in a serial format.
- Parallel Input Parallel Output(PIPO)
- Data is loaded and unloaded in parallel format.
- One clock pulse loads and unloads the register.
- Also act as temporary storage or delay device as SISO.

Universal Shift Register

- Shift register capable of shifting in one direction is called unidirectional shift register.
- Shift register shifting in both direction are bi-directional shift register.
- Universal shift register: Shift data in both direction as well as load it parallelly.
- Operations: Parallel loading, Left shifting, Right shifting

Application of Registers

- Temporary data storage
- Data transfer
- Data manipulation
- As counters

Summary

Explained about Registers

Reference

- M Morris Mano Computer System Architecture PHI Third Edition
- Gideon Langholz, Abraha& Joe L Mott Digital Logic Design World Scientific Publishing Co Ltd
- Thomas C Bartee Digital Computer Fundamentals Tata Mc Graw Hill - Sixth Edition

Counters

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Synchronous counter

Counters

Asynchronous counter

Introduction

- **Counter** is a sequential digital device used for counting(up or down).
- It is a group of flip-flops which outputs sequence of states on applying clock signal as input.
- **n-bit binary counter** consist of <u>n flip-flops</u> and count in binary from 0 to 2^n -1.

Design of 3-bit Binary Counter

	P.State	N.State	
0	000	001	1
1	001	010	2
2	010	011	3
3	011	100	4
4	100	101	5
5	101	110	6
6	110	111	7
7	111	000	0

Excitation Table

Asynchronous Counter (Ripple Counter)

 The flip-flop output transition serves as the input for triggering other flip-flops. The input pulse is applied only to the first flip-flop.

4-bit binary ripple counter

Synchronous counter

- Clock pulses are applied to the CP inputs of all flip-flops so the delay problem in ripple counter get solved.
- Common clock pulse triggers all the flip-flops simultaneously unlike ripple counter.
- Synchronous counters have a regular pattern and can be constructed by complementing the flip-flops and gates.
- Design is complex when compared to asynchronous counter.

Difference

Synchronous Counter	Asynchronous Counter
All flip-flops are triggered with same clock	Different clock is applied to different flip-flops
Faster	Slower
Design is complex	Design is comparatively easy
Any flip-flop can be used	All flip-flops are toggle flip-flops
Expensive	Less costly

Application of Counter

- Frequency counter
- Digital clocks
- Analog to digital converter
- Time measurements

Summary

Explained about counters, different types of counters along with its application

Reference

- M Morris Mano Computer System Architecture PHI Third Edition
- Gideon Langholz, Abraha& Joe L Mott Digital Logic Design World Scientific Publishing Co Ltd
- Thomas C Bartee Digital Computer Fundamentals Tata Mc Graw Hill - Sixth Edition