Extending the Deep Conjugate Direction Method to the BiCG Algorithm

Arihant Rastogi Hrishiraj Mitra Prasoon Dev

Phase Two Evaluation, April 2025

Project Overview

- Objective: Extend the Deep Conjugate Direction Method (DeepCD) to the Bi-Conjugate Gradient (BiCG) algorithm for solving nonsymmetric linear systems.
- ► **Reference Implementation:** Based on the repository ayano721/2023_DCDM and the paper by Kaneda et al. [1].

Challenges in Running DeepCD Code

- ► **High RAM Requirements:** Attempted to run the original DeepCD code but encountered excessive RAM usage.
- ► **GPU Limitations:** Even with reduced batch sizes, the GPU requirements remained prohibitive.

Strategies Employed

- ► **Reduced Matrix Dimensions:** Trained on 64-dimensional matrices to lower computational demands.
- ► **Fixed-Point Precision:** Experimented with lower precision to decrease memory usage.
- ▶ Batch Size Reduction: Attempted smaller batch sizes, but GPU constraints persisted.

Bi-Conjugate Gradient (BiCG) Algorithm

Overview:

- BiCG is an iterative method for solving nonsymmetric linear systems.
- ▶ It generates two sequences of vectors, one for the original system and one for the transpose system.

Pseudocode:

- 1. Initialize x_0 , compute $r_0 = b Ax_0$, choose \hat{r}_0 such that $(\hat{r}_0, r_0) \neq 0$.
- 2. Set $p_0 = r_0$, $\hat{p}_0 = \hat{r}_0$.
- 3. For $k = 0, 1, 2, \ldots$ until convergence:
 - $3.1 \ \alpha_k = \frac{(r_k, \hat{r}_k)}{(Ap_k, \hat{p}_k)}.$
 - 3.2 $x_{k+1} = x_k + \alpha_k p_k$.
 - 3.3 $r_{k+1} = r_k \alpha_k A p_k$.
 - 3.4 $\hat{r}_{k+1} = \hat{r}_k \alpha_k A^T \hat{p}_k$.
 - 3.5 If r_{k+1} is sufficiently small, then exit.
 - 3.6 Use neural network F_{θ} to predict new search directions:
 - $ightharpoonup p_{k+1}, \hat{p}_{k+1} = F_{\theta}(r_{k+1}, \hat{r}_{k+1}, p_k, \hat{p}_k).$

Proposed Framework for Deep BiCG

Conceptual Modifications:

- Integrate neural network-based direction predictions within BiCG iterations.
- Adapt DeepCD's learned updates to BiCG's bidirectional structure.

Algorithmic Adjustments:

- Train a neural network to predict optimal search directions using historical residuals and directions from both the original and transpose systems.
- Ensure bi-orthogonality of the generated directions.

Compute Resource Planning:

- Outline resource requirements to ensure readiness when adequate computational power becomes available.
- ▶ Plan for distributed computing or cloud-based solutions to handle increased computational demands.

Next Steps

- ▶ Resource Acquisition: Seek access to higher-capacity GPUs and increased RAM.
- ► Collaborative Development: Work with team members to implement and test the BiCG extension.
- Evaluation and Benchmarking: Compare performance against existing methods on benchmark problems.

References

Ayano Kaneda, Osman Akar, Jingyu Chen, Victoria Alicia Trevino Kala, David Hyde, and Joseph Teran.

A deep conjugate direction method for iteratively solving linear systems.

In Proceedings of the 40th International Conference on Machine Learning, pages 15720–15736, 2023.