Presentabilidad en el contexto de infinito categorías

David Martínez Carpena

Supervisors: Carles Casacuberta & Javier J. Gutiérrez

X Encuentro de Jóvenes Topólogos

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22

20 de octubre de 2022

Contents

Higher categories

Higher categories via quasicategories

Presentable higher categories

Presentability and sketches

Contents

Higher categories

Higher categories via quasicategories

Presentable higher categories

Presentability and sketches

In higher category theory, the main objects of study are **higher categories**, which are composed not only of objects and morphisms between objects, but also of n-morphisms between (n-1)-morphisms for all $n \geq 1$.

The composition is **weak**:

For any *n*-morphisms f, g and h there is a (n+1)-morphism

$$f \circ (g \circ h) \Rightarrow (f \circ g) \circ h$$

In higher category theory, the main objects of study are **higher categories**, which are composed not only of objects and morphisms between objects, but also of n-morphisms between (n-1)-morphisms for all $n \geq 1$.

The composition is **weak**:

For any *n*-morphisms f, g and h there is a (n+1)-morphism

$$f \circ (g \circ h) \Rightarrow (f \circ g) \circ h$$

For any *n*-morphism f there is (n+1)-morphisms

$$f \circ \mathsf{Id} \Rightarrow f \Leftarrow \mathsf{Id} \circ f$$

Infinity categories and Infinity groupoids

A higher category is a (∞, m) -category if for any n > m, the n-morphisms are invertible up to a (n + 1)-morphism.

Then, define:

- ▶ An ∞ -category as a $(\infty, 1)$ -category.
- ▶ An ∞ -groupoid is a $(\infty, 0)$ -category.

Infinity categories and Infinity groupoids

A higher category is a (∞, m) -category if for any n > m, the n-morphisms are invertible up to a (n + 1)-morphism.

Then, define:

- ▶ An ∞ -category as a $(\infty, 1)$ -category.
- ▶ An ∞ -groupoid is a $(\infty, 0)$ -category.

Infinity categories and Infinity groupoids

A higher category is a (∞, m) -category if for any n > m, the n-morphisms are invertible up to a (n+1)-morphism.

Then, define:

- ▶ An ∞ -category as a $(\infty, 1)$ -category.
- ▶ An ∞ -groupoid is a $(\infty, 0)$ -category.

Models of higher categories

Historically, there have been many definitions for higher categories, and each one is called a **model**:

- ► Globular models [Grothendieck, Batanin, Berger, etc.].
- ► Topological (or simplicial) categories [Bergner, Lurie, etc.].
- Quasicategories [Joyal, Lurie].
- Segal categories or complete Segal spaces [Segal, Rezk, etc.]
- Relative categories [Dwyer-Kan, Barwick-Kan]

Contents

Higher categories

Higher categories via quasicategories

Presentable higher categories

Presentability and sketches

Simplicial sets

The **simplex category** Δ is the category with objects the linearly ordered sets $[n] := \{0, 1, \dots, n\}$ for all $n \ge 0$, and morphisms all set functions $[n] \to [m]$ which are order-preserving.

Simplicial sets

The **simplex category** Δ is the category with objects the linearly ordered sets $[n] := \{0, 1, ..., n\}$ for all $n \ge 0$, and morphisms all set functions $[n] \to [m]$ which are order-preserving.

A simplicial set is a functor $X:\Delta^{op}\to \mathbf{Set}$. Simplicial sets with natural transformations form a category \mathbf{sSet} .

Simplicial sets

The **simplex category** Δ is the category with objects the linearly ordered sets $[n] := \{0, 1, \dots, n\}$ for all $n \ge 0$, and morphisms all set functions $[n] \to [m]$ which are order-preserving.

A **simplicial set** is a functor $X : \Delta^{op} \to \textbf{Set}$. Simplicial sets with natural transformations form a category sSet.

For each [n], a simplicial set X has a set denoted X[n] or X_n . In addition to those sets, X is determined by its **faces** $d_i: X_n \to X_{n-1}$ and **degeneracies** $s_i: X_n \to X_{n+1}$, which satisfy the simplicial identities.

Idea of simplicial sets

Figure: A simplicial set $X : \Delta^{op} \to \mathbf{Set}$, from nLab wiki.

Standard simplices and horns

The **standard** *n*-**simplex** is the simplicial set defined by

$$\Delta^n := \Delta(-, [n]).$$

Standard simplices and horns

The **standard** *n***-simplex** is the simplicial set defined by

$$\Delta^n := \Delta(-, [n]).$$

The k-th horn Λ_k^n is the sub-simplicial-set of Δ^n obtained from removing the k-th face.

Standard simplices and horns

The **standard** *n*-**simplex** is the simplicial set defined by

$$\Delta^n := \Delta(-, [n]).$$

The k-th horn Λ_k^n is the sub-simplicial-set of Δ^n obtained from removing the k-th face.

Quasi-categories and Kan complexes

 $X \in \mathbf{sSet}$ has the k-th horn extension property if for every $n \in \mathbb{N}$ and every map $f : \Lambda_k^n \to X$, there exists a map $\tilde{f} : \Lambda_k^n \to X$ making the following diagram commute:

Quasi-categories and Kan complexes

 $X \in \mathbf{sSet}$ has the k-th horn extension property if for every $n \in \mathbb{N}$ and every map $f : \Lambda_k^n \to X$, there exists a map $\tilde{f} : \Lambda_k^n \to X$ making the following diagram commute:

A simplicial set is:

- A quasicategory if it has the k-th horn extension property for all 0 < k < n.</p>
- ▶ A **Kan complex** is a simplicial set that has the k-th horn extension property for all $0 \le k \le n$.

Higher structure

There exists a model of higher categories where quasicategories correspond to ∞ -categories, and Kan complexes correspond to ∞ -groupoids.

Higher structure

There exists a model of higher categories where quasicategories correspond to ∞ -categories, and Kan complexes correspond to ∞ -groupoids.

In a quasicategory $\mathcal C$ the 0-simplices represent the objects, and the n-simplices represent n-morphisms.

Higher structure

There exists a model of higher categories where quasicategories correspond to ∞ -categories, and Kan complexes correspond to ∞ -groupoids.

In a quasicategory \mathcal{C} the 0-simplices represent the objects, and the n-simplices represent n-morphisms.

It can be shown that for any two quasicategories $\mathcal C$ and $\mathcal D$, there is a quasicategory of ∞ -functors between them, defined by:

$$\mathsf{Fun}(\mathcal{C},\mathcal{D}) := \mathsf{sSet}(\mathcal{C} \times \Delta^{ullet},\mathcal{D})$$

Here, the 0-simplices are functors, and the 1-simplices are natural transformations

Mapping space

In an abstract ∞ -category, the set of morphisms between two objects is replaced by an ∞ -groupoid of morphisms, which includes the information about the higher structure.

All the higher structure between two objects x and y inside a quasicategory $\mathcal C$ can be represented as a Kan complex, usually called the **mapping space** $\operatorname{Map}_{\mathcal C}(x,y)$, and defined as the following pullback:

$$\mathsf{Map}_{\mathcal{C}}(x,y) \longrightarrow \mathsf{Fun}(\Delta^1,\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow^p$$
 $\{(x,y)\} \hookrightarrow \mathcal{C} \times \mathcal{C}$

Contents

Higher categories

Higher categories via quasicategories

Presentable higher categories

Presentability and sketches

Limits and colimits

Let K be any simplicial set, $y \in \mathcal{C}_0$ an object, and $F: K \to \mathcal{C}$ any functor. Given any object $x \in \mathcal{C}_0$, the **constant functor** on $x \times x : K \to \mathcal{C}$ sends all objects of K to x, and all higher morphisms to higher identities.

Limits and colimits

Let K be any simplicial set, $y \in \mathcal{C}_0$ an object, and $F: K \to \mathcal{C}$ any functor. Given any object $x \in \mathcal{C}_0$, the **constant functor** on $x \times x : K \to \mathcal{C}$ sends all objects of K to x, and all higher morphisms to higher identities.

A natural transformation $\alpha : \underline{y} \Rightarrow F$ exhibits y as a limit of F if α induces a homotopy equivalence of Kan complexes

$$\mathsf{Map}_{\mathcal{C}}(x,y) \longrightarrow \mathsf{Map}_{\mathsf{Fun}(K,\mathcal{C})}(\underline{x},F).$$

Limits and colimits

Let K be any simplicial set, $y \in \mathcal{C}_0$ an object, and $F : K \to \mathcal{C}$ any functor. Given any object $x \in \mathcal{C}_0$, the **constant functor** on $x \times x : K \to \mathcal{C}$ sends all objects of K to x, and all higher morphisms to higher identities.

A natural transformation $\alpha : \underline{y} \Rightarrow F$ exhibits y as a limit of F if α induces a homotopy equivalence of Kan complexes

$$\mathsf{Map}_{\mathcal{C}}(x,y) \longrightarrow \mathsf{Map}_{\mathsf{Fun}(K,\mathcal{C})}(\underline{x},F).$$

A natural transformation $\beta: F \Rightarrow \underline{y}$ exhibits y as a colimit of F if β induces a homotopy equivalence of Kan complexes

$$\mathsf{Map}_{\mathcal{C}}(y,z) \longrightarrow \mathsf{Map}_{\mathsf{Fun}(K,\mathcal{C})}(F,\underline{z}).$$

Accessible and presentable quasicategories

A quasicategory $\mathcal C$ is **accessible** if there is a regular cardinal κ such that:

- $ightharpoonup \mathcal{C}$ is locally small.
- \triangleright C admits κ -filtered colimits
- ▶ The full subcategory $C_{\kappa} \subset C$ of κ -compact objects is essentially small.
- \triangleright \mathcal{C}_{κ} generates \mathcal{C} under small, κ -filtered colimits.

Accessible and presentable quasicategories

A quasicategory $\mathcal C$ is **accessible** if there is a regular cardinal κ such that:

- $ightharpoonup \mathcal{C}$ is locally small.
- \triangleright C admits κ -filtered colimits
- ▶ The full subcategory $C_{\kappa} \subset C$ of κ -compact objects is essentially small.
- \triangleright \mathcal{C}_{κ} generates \mathcal{C} under small, κ -filtered colimits.

Definition

A quasicategory $\mathcal C$ is **(locally) presentable** if $\mathcal C$ is accessible and has all small colimits.

Characterization of presentable quasicategories

Theorem (Lurie, Pavlov)

A quasicategory is presentable if, and only if, it is presented by a combinatorial model category.

Contents

Higher categories

Higher categories via quasicategories

Presentable higher categories

Presentability and sketches

Sketches

Recall that a **cone** (resp. **cocone**) of a functor $F: K \to C$ at an object y is a natural transformation $\alpha: y \Rightarrow F$ (resp. $\beta: F \Rightarrow y$).

Sketches

Recall that a **cone** (resp. **cocone**) of a functor $F: K \to C$ at an object y is a natural transformation $\alpha: y \Rightarrow F$ (resp. $\beta: F \Rightarrow y$).

Definition (Ehresmann)

A **sketch** $S = (K, \mathfrak{L}, \mathfrak{C})$ is a small category K equip with a set \mathfrak{L} of cones and a set \mathfrak{C} of cocones. If $\mathfrak{C} = \emptyset$, we call it a **limit sketch**.

Sketches

Recall that a **cone** (resp. **cocone**) of a functor $F: K \to C$ at an object y is a natural transformation $\alpha: \underline{y} \Rightarrow F$ (resp. $\beta: F \Rightarrow \underline{y}$).

Definition (Ehresmann)

A **sketch** $S = (K, \mathfrak{L}, \mathfrak{C})$ is a small category K equip with a set \mathfrak{L} of cones and a set \mathfrak{C} of cocones. If $\mathfrak{C} = \emptyset$, we call it a **limit sketch**.

A **model** $M: K \to \mathbf{Set}$ of a sketch $\mathcal{S} = (K, \mathfrak{L}, \mathfrak{C})$ is a functor sending each cone in \mathfrak{L} to a limit cone, and each cocone in \mathfrak{C} to a colimit cocone. The category of all models of \mathcal{S} is denoted $\mathsf{Mod}(\mathcal{S})$.

Representation theorem

Theorem (Adamek-Rosicky)

Let C be a category. The following are equivalent:

- (i) C is a locally presentable category.
- (ii) C is equivalent to an accessible localization of the category of presheaves PSh(K) on a small category K.
- (iii) C is equivalent to the category of models of limit sketches.

Representation theorem

Theorem (Adamek-Rosicky)

Let C be a category. The following are equivalent:

- (i) C is a locally presentable category.
- (ii) C is equivalent to an accessible localization of the category of presheaves PSh(K) on a small category K.
- (iii) C is equivalent to the category of models of limit sketches.

Theorem (Simpson, Lurie)

A quasicategory $\mathcal C$ is presentable if, and only if, there exists an accessible localization of the quasicategory of presheaves $\mathsf{PSh}(\mathcal K)$ on a small quasicategory $\mathcal K$.

Generalization to higher categories

Context	Localization of presheaves	Sketchable
Categories	Adamek-Rosicky	Adamek-Rosicky
Model Categories	Dugger	?
∞ -categories	Simpson, Lurie	?

Table: Table of the equivalent characterizations seen in the representation theorem but in more general contexts.

Bibliography

- Jacob Lurie. *Higher Topos Theory*. Annals of Mathematics Studies 170. Princeton University Press, 2009.
- Jacob Lurie. Kerodon. 2022. URL: https://kerodon.net.
- Charles Rezk. Introduction to Quasicategories. June 1, 2022. URL: https://faculty.math.illinois.edu/~rezk/quasicats.pdf.
- Daniel Dugger. "Combinatorial Model Categories Have Presentations". In: Advances in Mathematics 164.1 (2001).
- Jiří Adamek and Jiří Rosicky. Locally Presentable and Accessible Categories. Vol. 189. Cambridge University Press, 1994.

Presentabilidad en el contexto de infinito categorías

David Martínez Carpena

Supervisors: Carles Casacuberta & Javier J. Gutiérrez

X Encuentro de Jóvenes Topólogos

This work is supported by the MCIN/ AEI/10.13039/501100011033/ under the I+D+i grant PID2020-117971GB-C22

20 de octubre de 2022

