

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Automi, Calcolabilità e Complessità

Appunti integrati con il libro "Introduzione alla teoria della computazione", Michael Sipser

Author Simone Bianco

Indice

In	form	nazioni e Contatti	1
1	Linguaggi e Automi		
	1.1	Linguaggi	2
		Determinismo	
		Non determinismo	
		1.3.1 Equivalenza tra NFA e DFA	10
	1.4	Linguaggi regolari	13
	1.5	Espressioni regolari	20
		1.5.1 NFA generalizzati	23
		1.5.2 Equivalenza tra espressioni e linguaggi regolari	29
	1.6	Linguaggi non regolari	
		1.6.1 Pumping lemma per i linguaggi regolari	
	1.7	Esercizi svolti	
2	Gra	ammatiche e Linguaggi acontestuali	37
	2.1	Grammatiche acontestuali	37

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Automi, Calcolabilità e Complessità* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore :

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Progettazione di Algoritmi.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Linguaggi e Automi

1.1 Linguaggi

Definizione 1: Alfabeto

Definiamo come alfabeto un insieme finito di elementi detti simboli

Esempio:

- L'insieme $\Sigma = \{0, 1, x, y, z\}$ è un alfabeto
- L'insieme $\Sigma = \{0, 1\}$ è un alfabeto. In particolare, tale alfabeto viene detto **alfabeto** binario

Definizione 2: Stringa

Dato un alfabeto Σ , definiamo come **stringa di** Σ una sequenza di simboli $x_1x_2...x_n$ dove $x_1,...,x_n \in \Sigma$ e $n \in \mathbb{N}$.

In particolare, indichiamo come ε la stringa vuota

Esempio:

- Dato l'alfabeto $\Sigma = \{0,1,\mathbf{x},\mathbf{y},\mathbf{z}\},$ una stringa di Σ è 0x1yyy0

Definizione 3: Linguaggio

Dato un alfabeto Σ , definiamo come **linguaggio di** Σ , indicato come Σ^* , l'insieme delle stringhe di Σ .

In particolare, notiamo che $\varepsilon \in \Sigma^*$ per qualsiasi linguaggio Σ^*

Definizione 4: Concatenazione

Data la stringa $x := x_1 \dots x_n \in \Sigma^*$ e la stringa $y := y_1 \dots y_m \in \Sigma^*$, definiamo come **concatenazione** la seguente operazione:

$$xy = x_1 \dots x_n y_1 \dots y_n$$

Definizione 5: Potenza

Data la stringa $x \in \Sigma^*$ e dato $n \in \mathbb{N}$, definiamo come **potenza** la seguente operazione:

$$x^{n} = \begin{cases} \varepsilon & \text{se } n = 0\\ xx^{n-1} & \text{se } n > 0 \end{cases}$$

1.2 Determinismo

Definizione 6: Automa

Un **automa** è un meccanismo di controllo (o macchina) progettato per seguire automaticamente una sequenza di operazioni o rispondere a istruzioni predeterminate, mantenendo informazioni relative allo **stato** attuale dell'automa stesso ed agendo di conseguenza, **passando da uno stato all'altro**.

Esempio:

- Un sensore che apre e chiude una porta può essere descritto tramite il seguente automa, dove Chiuso e Aperto sono gli stati dell'automa e N, F, R e E sono le operazioni di transizione tra i due stati indicanti rispettivamente:
 - N: il sensore non rileva alcuna persona da entrambi i lati della porta
 - F: il sensore rileva qualcuno nel lato frontale della porta
 - R: il sensore rileva qualcuno nel lato retrostante della porta
 - E: il sensore rileva qualcuno da entrambi i lati della porta

• L'automa appena descritto è in grado di interpretare una **stringa in input** che ne descriva la sequenza di operazioni da svolgere (es: la stringa NFNNNFRR terminerà l'esecuzione dell'automa sullo stato Aperto)

Definizione 7: Deterministic Finite Automaton (DFA)

Un **Deterministic Finite Automaton (DFA)** (o Automa Deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \to Q$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa, ossia l'insieme degli stati su cui, a seguito della lettura di una stringa in input, l'automa accetta la corretta terminazione

Esempio:

• Consideriamo il seguente DFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{0,1\}$ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \rightarrow Q$ definita come

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline 0 & q_1 & q_3 & q_2 \\ 1 & q_2 & q_2 & q_2 \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $F=\{q_2\}$ è l'insieme degli stati accettanti

Definizione 8: Funzione di transizione estesa

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo $\delta^* : Q \times \Sigma^* \to Q$ come **funzione di transizione estesa di** D la funzione definita ricorsivamente come:

$$\left\{ \begin{array}{l} \delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q \\ \delta^*(q,ax) = \delta^*(\delta(q,a),x), \ \text{dove} \ a \in \Sigma, x \in \Sigma^* \end{array} \right.$$

Proposizione 1: Stringa accettata in un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Data una stringa $x \in \Sigma^*$, diciamo che x è accettata da D se $\delta^*(q_0, x) \in F$, ossia l'interpretazione di tale stringa termina su uno stato accettante

Esempio:

- Consideriamo ancora il DFA dell'esempio precedente.
- La stringa 0101 è accettata da tale DFA, poiché:

$$\delta^*(q_1, 0101) = \delta^*(\delta(q_1, 0), 101) = \delta^*(q_2, 101) = \delta^*(\delta(q_2, 1), 01) = \delta^*(q_2, 01) =$$
$$= \delta^*(\delta(q_2, 0), 1) = \delta^*(q_3, 1) = \delta^*(\delta(q_3, 1), \varepsilon) = \delta^*(q_2, \varepsilon) = q_2 \in F$$

• La stringa 1010, invece, non è accettata dal DFA, poiché:

$$\delta^*(q_1, 1010) = \delta^*(q_2, 010) = \delta^*(q_3, 10) = \delta^*(q_2, 0) = \delta^*(q_3, \varepsilon) = q_3 \notin F$$

Definizione 9: Linguaggio di un DFA

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo come **linguaggio di** D, indicato come L(D), l'insieme di stringhe accettate da D

$$L(D) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \in F \}$$

Inoltre, diciamo che D riconosce L(D)

Esempi:

1. • Consideriamo il seguente DFA D

• Il linguaggio riconosciuto da tale DFA corrisponde a

$$L(D) = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$$

ossia al linguaggio composto da tutte le stringhe terminanti con 1

2. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 1y, \exists y \in \{0, 1\}^*\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

3. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid w_H(x) \ge 3\}$$

dove w_H è il **peso di Hamming** (ossia $w_H(x) =$ numero di "1" in x)

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

4. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 0^n 1, n \in \mathbb{N} - \{0\}\}\$$

 $\bullet\,$ Un DFA in grado di riconoscere tale linguaggio corrisponde a

Definizione 10: Configurazione di un DFA

Sia $D:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo la coppia $(q,x)\in Q\times \Sigma^*$ come configurazione di D

Definizione 11: Passo di computazione

Definiamo come passo di computazione la relazione binaria definita come

$$(p, ax) \vdash_D (q, x) \iff \delta(p, a) = q$$

Definizione 12: Computazione deterministica

Definiamo una computazione come **deterministica** se ad ogni passo di computazione segue un'unica configurazione:

$$\forall (q, ax) \exists !(p, x) \mid (q, ax) \vdash_D (p, x)$$

Proposizione 2: Chiusura del passo di computazione

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. La **chiusura riflessiva e transitiva** di \vdash_D , indicata come \vdash_D^* , gode delle seguenti proprietà:

- $\bullet \ (p,ax) \vdash_D (q,x) \implies (p,ax) \vdash_D^* (q,x)$
- $\forall q \in Q, x \in \Sigma^* \ (q, x) \vdash_D^* (q, x)$
- $\bullet \ (p,aby) \vdash_D (q,by) \land (q,by) \vdash_D (r,y) \implies (p,aby) \vdash_D^* (r,y)$

Osservazione 1

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA. Dati $q_i, q_f \in Q, x \in \Sigma^*$, si ha che

$$\delta^*(q_i, x) = q_f \iff (q_i, x) \vdash_D^* (q_f, \varepsilon)$$

(dimostrazione omessa)

1.3 Non determinismo

Definizione 13: Alfabeto epsilon

Dato un alfabeto $\Sigma,$ definiamo $\Sigma_\varepsilon=\Sigma\cup\{\varepsilon\}$ come alfabeto epsilon di Σ

Definizione 14: Non-deterministic Finite Automaton (NFA)

Un Non-deterministic Finite Automaton (NFA) (o Automa Non-deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- $\delta:Q\times\Sigma_{\varepsilon}\to\mathcal{P}(Q)$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa

Nota: $\mathcal{P}(Q)$ è l'insieme delle parti di Q, ossia l'insieme contenente tutti i suoi sottoinsiemi possibili

Esempio:

• Consideriamo il seguente NFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $-\Sigma = \{a, b\}$ è l'alfabeto dell'automa
- $-\delta: Q \times \Sigma \to Q$ definita come

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline \varepsilon & \{q_3\} & \varnothing & \varnothing \\ \text{a} & \varnothing & \{q_2,q_3\} & \{q_1\} \\ \text{b} & \{q_2\} & \{q_3\} & \varnothing \\ \end{array}$$

è la funzione di transizione degli stati dell'automa

- $-q_1$ è lo stato iniziale dell'automa
- $-F = \{q_1\}$ è l'insieme degli stati accettanti

Proposizione 3: Stringa accettata in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $x := x_0 \dots x_k \in \Sigma_{\varepsilon}^*$, diciamo che x è **accettata da** N se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ tali che:

- $r_0 = q_0$
- $\forall i \in [0, k] \ r_{i+1} \in \delta(r_i, x_i)$
- $r_{k+1} \in F$

Osservazione 2: Computazione in un NFA

Sia $N := (Q, \Sigma, \delta, q_0, F)$ un NFA. Data una stringa $x \in \Sigma_{\varepsilon}$ in ingresso, la **computazione** viene eseguita nel seguente modo:

- Tutte le volte che uno stato potrebbe avere più transizioni per diversi simboli dell'alfabeto, l'automa N si duplica in **più copie**, ognuna delle quali segue il suo corso. Si vengono così a creare più **rami di computazione** indipendenti che sono eseguiti in **parallelo**.
- Se il prossimo simbolo della stringa da computare non si trova su nessuna delle transizioni uscenti dello stato attuale di un ramo di computazione, l'intero ramo termina la sua computazione (terminazione incorretta).
- Se almeno una delle copie di N termina correttamente su uno stato di accettazione, l'automa accetta la stringa di partenza.
- Quando a seguito di una computazione ci si ritrova in uno stato che possiede un ε -arco in uscita, la macchina si duplica in più copie: quelle che seguono gli ε -archi e quella che rimane nello stato raggiunto.

Esempio:

• Consideriamo il seguente NFA

• Supponiamo che venga computata la stringa x = 1010:

 \bullet Poiché esiste un ramo che termina correttamente, l'NFA descritto accetta la stringa x = 1010

1.3.1 Equivalenza tra NFA e DFA

Definizione 15: Classe dei linguaggi riconosciuti da un DFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un **DFA** il seguente insieme:

$$\mathcal{L}(DFA) = \{ L \subseteq \Sigma^* \mid \exists DFA \ D \text{ t.c } L = L(D) \}$$

Definizione 16: Classe dei linguaggi riconosciuti da un NFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un NFA il seguente insieme:

$$\mathcal{L}(NFA) = \{ L \subseteq \Sigma_{\varepsilon}^* \mid \exists NFA \ N \text{ t.c } L = L(N) \}$$

Teorema 1: Equivalenza tra NFA e DFA

Date le due classi di linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(DFA) = \mathcal{L}(NFA)$$

Dimostrazione.

Prima implicazione.

- Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Poiché il concetto di NFA è una generalizzazione del concetto di DFA, ne segue automaticamente che D sia anche un NFA, implicando che $L \in \mathcal{L}(NFA)$ e di conseguenza che:

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(NFA)$$

Seconda implicazione.

- Dato $L \in \mathcal{L}(NFA)$, sia $N := (Q_N, \Sigma, \delta_N, q_{0_N}, F_N)$ il NFA tale che L = L(N)
- Consideriamo quindi il DFA $D:=(Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ costruito tramite N stesso:
 - $-Q_D = \mathcal{P}(Q_N)$
 - Dato $R \in Q_D$, definiamo l'estensione di R come:

 $E(R) = \{ q \in Q_N \mid q \text{ è raggiungibile in } N \text{ da } q' \in R \text{ tramite } k \geq 0 \text{ } \varepsilon\text{-archi} \}$

- $q_{0_D} = E(\{q_{0_N}\})$
- $F_D = \{ R \in Q_D \mid R \cap F_N \neq \emptyset \}$
- Dati $R \in Q_D$ e $a \in \Sigma$, definiamo δ_D come:

$$\delta_D = (R, a) = \bigcup_{r \in R} E(\delta_N(r, a))$$

• A questo punto, per costruzione stessa di *D* si ha che:

$$x \in L = L(N) \iff x \in L(D)$$

implicando dunque che $L \in \mathcal{L}(DFA)$ e di conseguenza che:

$$L \in \mathcal{L}(NFA) \subseteq \mathcal{L}(DFA)$$

Osservazione 3

Dato un NFA N, seguendo i passaggi della dimostrazione precedente è possibile definire un DFA D equivalente ad N

Esempio:

• Consideriamo ancora il seguente NFA

• Definiamo quindi l'insieme degli stati del DFA equivalente a tale NFA:

$$Q_D = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} = \{\emptyset, q_1, q_2, q_3, q_{1,2}, q_{2,3}, q_{1,3}, q_{1,2,3}\}$$

• A questo punto, lo stato iniziale sarà $q_{0_D}=E(\{q_{0_N}\})=E(\{q_1\})=\{q_1,q_3\}=q_{1,3},$ mentre gli stati accentanti saranno:

$$F_D = \{\{q_1\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\} = \{q_1, q_{1,2}, q_{1,3}, q_{1,2,3}\}$$

• Le transizioni del DFA corrisponderanno invece a:

$$- \delta_{D}(\{q_{1}\}, a) = E(\delta_{N}(q_{1}), a) = \varnothing$$

$$- \delta_{D}(\{q_{1}\}, b) = E(\delta_{N}(q_{1}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{2}\}, a) = E(\delta_{N}(q_{2}), a) = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{2}\}, b) = E(\delta_{N}(q_{2}), b) = \{q_{2}\} = q_{2}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, a) = E(\delta_{N}(q_{1}, a)) \cup E(\delta_{N}(q_{2}, a)) = \varnothing \cup \{q_{2}, q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \delta_{D}(\{q_{1}, q_{2}\}, b) = E(\delta_{N}(q_{1}, b)) \cup E(\delta_{N}(q_{2}, b)) = \{q_{2}\} \cup \{q_{3}\} = \{q_{2}, q_{3}\} = q_{2,3}$$

$$- \dots$$

• Il DFA equivalente corrisponde dunque a:

1.4 Linguaggi regolari

Definizione 17: Linguaggi regolari

Dato un alfabeto Σ , definiamo come **insieme dei linguaggi regolari di** Σ , indicato con REG, l'insieme delle classi dei linguaggi riconosciuti da un DFA:

$$REG := \mathcal{L}(DFA)$$

Proposizione 4: Operazioni sui linguaggi

Dati i linguaggi $L, L_1, L_2 \subseteq \Sigma^*$, definiamo le seguenti operazioni:

• Operatore unione:

$$L_1 \cup L_2 = \{ x \in \Sigma^* \mid x \in L_1 \lor x \in L_2 \}$$

• Operatore intersezione:

$$L_1 \cap L_2 = \{ x \in \Sigma^* \mid x \in L_1 \land x \in L_2 \}$$

• Operatore complemento:

$$\neg L = \{ x \in \Sigma^* \mid x \notin L \}$$

Operatore concatenazione:

$$L_1 \circ L_2 = \{xy \in \Sigma^* \mid x \in L_1, x \in L_2\}$$

• Operatore potenza:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{se } n = 0\\ L \circ L^{n-1} & \text{se } n > 0 \end{cases}$$

• Operatore star di Kleene:

$$L^* = \{x_1 \dots x_k \in \Sigma^* \mid k \ge 0, \forall i \in [1, k] \ x_i \in L\} = \bigcup_{n \ge 0} L^n$$

• Operatore plus di Kleene:

$$L^{+} = \{x_{1} \dots x_{k} \in \Sigma^{*} \mid k \geq 1, \forall i \in [1, k] \ x_{i} \in L\} = \bigcup_{n \geq 1} L^{n} = L \circ L^{*}$$

Corollario 1

Tramite il teorema dell'Equivalenza tra NFA e DFA, si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA)$$

Teorema 2: Chiusura dell'unione in REG

L'operatore unione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \cup L_2 \in \text{REG}$$

Dimostrazione I.

- Dati $L_1, L_2 \in REG$, siano $D_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $D_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$
- Definiamo quindi il DFA $D=(Q,\Sigma,\delta,q_0,F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$-Q = Q_1 \times Q_2$$

$$-F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$$

$$- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

• A questo punto, per costruzione stessa di *D* ne segue che:

$$x \in L_1 \cup L_2 \iff x \in L(D)$$

dunque che $L_1 \cup L_2 = L(D) \in REG$

Dimostrazione II.

- Dati $L_1, L_2 \in \text{REG}$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(M_2)$
- Definiamo quindi il NFA $N=(Q,\Sigma,\delta,q_0,F)$ tale che:
 - $-q_0$ è un nuovo stato iniziale aggiunto

$$- Q = Q_1 \cup Q_2 \cup \{q_0\}$$

$$-F = F_1 \cup F_2$$

 $- \forall q \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 \\ \delta_2(q, a) & \text{se } q \in Q_2 \\ \{q_1, q_2\} & \text{se } q = q_0 \land a = \varepsilon \\ \varnothing & \text{se } q = q_0 \land a \neq \varepsilon \end{cases}$$

 \bullet A questo punto, per costruzione stessa di N ne segue che:

$$x \in L_1 \cup L_2 \iff x \in L(N)$$

dunque che $L_1 \cup L_2 = L(N) \in REG$

Interpretazione grafica della dimostrazione precedente

Teorema 3: Chiusura dell'intersezione in REG

L'operatore intersezione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \cap L_2 \in \text{REG}$$

Dimostrazione.

- Dati $L_1,L_2\in \text{REG}$, siano $D_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $D_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ i due DFA tali che $L_1=L(D_1)$ e $L_2=L(D_2)$
- Definiamo quindi il DFA $D=(Q,\Sigma,\delta,q_0,F)$ tale che:

$$-q_0=(q_1,q_2)$$

$$-Q = Q_1 \times Q_2$$

$$- F = F_1 \times F_2 = \{ (r_1, r_2) \mid r_1 \in F_1 \land r_2 \in F_2 \}$$

 $- \forall (r_1, r_2) \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

Capitolo 1. Linguaggi e Automi

• A questo punto, per costruzione stessa di *D* ne segue che:

$$x \in L_1 \cap L_2 \iff x \in L(D)$$

dunque che $L_1 \cap L_2 = L(D) \in REG$

Teorema 4: Chiusura del complemento in REG

L'operatore complemento è chiuso in REG, ossia:

$$\forall L \in \text{REG} \ \neg L \in \text{REG}$$

Dimostrazione.

- Dato $L \in \text{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi il DFA $D' = (Q, \Sigma, \delta, q_0, Q F)$, dunque il DFA uguale a D ma i cui stati accettanti sono invertiti
- A questo punto, per costruzione stessa di D' ne segue che:

$$x \in L \iff x \notin L(D)$$

dunque che $\neg L = L(D') \in REG$

Teorema 5: Chiusura della concatenazione in REG

L'operatore concatenazione è chiuso in REG, ossia:

$$\forall L_1, L_2 \in \text{REG} \ L_1 \circ L_2 \in \text{REG}$$

Dimostrazione.

- Dati $L_1, L_2 \in REG$, siano $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ i due NFA tali che $L_1 = L(N_1)$ e $L_2 = L(N_2)$
- Definiamo quindi il NFA $N = (Q, \Sigma, \delta, q_0, F)$ tale che:

$$- q_0 = q_1$$

$$-Q = Q_1 \cup Q_2$$

$$-F = F_2$$

 $- \forall q \in Q, a \in \Sigma \text{ si ha che:}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{se } q \in Q_1 - F_1 \\ \delta_1(q, a) & \text{se } q \in F_1 \land a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & \text{se } q \in F_1 \land a = \varepsilon \\ \delta_2(q, a) & \text{se } q \in Q_2 \end{cases}$$

ullet A questo punto, per costruzione stessa di N ne segue che:

$$x \in L_1 \circ L_2 \iff x \in L(N)$$

dunque che $L_1 \circ L_2 = L(N) \in REG$

Interpretazione grafica della dimostrazione precedente

Corollario 2: Chiusura della potenza in REG

L'operatore potenza è **chiuso in** REG, ossia:

$$\forall L \in \text{REG}, n \in \mathbb{N} \ L^n \in \text{REG}$$

Dimostrazione.

Caso base.

• Dato n=0, si ha che $L^0=\{\varepsilon\}\in {\rm REG}$

Ipotesi induttiva.

• Dato $n \in \mathbb{N}$, assumiamo che $L^n \in REG$

Passo induttivo.

• Tramite la Chiusura della concatenazione in REG otteniamo che

$$L^{n+1} = L \circ L^n \in REG$$

Teorema 6: Chiusura di star in REG

L'operatore star è **chiuso in** REG, ossia:

$$\forall L \in \text{REG } L^* \in \text{REG}$$

Dimostrazione I.

Caso base.

• Dato n = 0, si ha che $\bigcup_{n \geq 0} L^n = L^0 \in REG$

Ipotesi induttiva.

• Dato $n \in \mathbb{N}$, assumiamo che $\bigcup_{n \geq 0} L^n \in REG$

Passo induttivo.

• Tramite la Chiusura dell'unione in REG e la Chiusura della potenza in REG otteniamo che:

$$\bigcup_{n\geq 0} L^{n+1} = L^{n+1} \cup \left(\bigcup_{n\geq 0} L^n\right) \in \text{REG}$$

Dimostrazione II.

• Dato $L \in \text{REG}$, sia $N = (Q, \Sigma, \delta, q_0, F)$ il NFA tale che L = L(N)

• Definiamo quindi il DFA $N' = (Q', \Sigma, \delta', q_{0*}, F')$ tale che:

 $-q_{0*}$ è un nuovo stato iniziale aggiunto

$$- Q' = Q \cup \{q_{0*}\}\$$

$$- F' = F \cup \{q_{0*}\}\$$

 $- \forall q \in Q', a \in \Sigma$ si ha che:

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{se } q \in Q - F \\ \delta(q, a) & \text{se } q \in F \land a \neq \varepsilon \\ \delta(q, a) \cup \{q_0\} & \text{se } q \in F \land a = \varepsilon \\ \{q_0\} & \text{se } q = q_{0*} \land a = \varepsilon \\ \varnothing & \text{se } q = q_{0*} \land a \neq \varepsilon \end{cases}$$

 $\bullet\,$ A questo punto, per costruzione stessa di N'ne segue che:

$$x \in L^* \iff N(x) \in F'$$

dunque che $L^* = L(N') \in REG$

Interpretazione grafica della dimostrazione precedente

Corollario 3: Chiusura di plus in REG

L'operatore plus è **chiuso in** REG, ossia:

$$\forall L \in \text{REG } L^+ \in \text{REG}$$

Dimostrazione I.

ullet Analoga a quella dell'operatore star, utilizzando n=1 come caso base

Dimostrazione II.

• Analoga a quella dell'operatore star, rimuovendo tuttavia lo stato iniziale dall'insieme degli stati accettanti

Teorema 7: Leggi di De Morgan

Dati $L_1, L_2 \in REG$, si ha che:

$$L_1 \cup L_2 = \neg(\neg L_1 \cap \neg L_2)$$

$$L_1 \cap L_2 = \neg(\neg L_1 \cup \neg L_2)$$

(dimostrazione omessa)

1.5 Espressioni regolari

Definizione 18: Espressione regolare

Dato un alfabeto Σ , definiamo come **espressione regolare di** Σ una stringa R rappresentante un linguaggio $L(R) \subseteq \Sigma^*$. In altre parole, ogni espressione regolare R rappresenta in realtà il linguaggio L(R) ad essa associata.

In particolare, definiamo l'insieme delle espressioni regolari di Σ , indicato con re(Σ), come:

- $\varnothing \in \operatorname{re}(\Sigma)$
- $\varepsilon \in \operatorname{re}(\Sigma)$
- $a \in \operatorname{re}(\Sigma)$, dove $a \in \Sigma$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \cup R_2 \in \operatorname{re}(\Sigma)$
- $R_1, R_2 \in \operatorname{re}(\Sigma) \implies R_1 \circ R_2 \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^* \in \operatorname{re}(\Sigma)$
- $R \in \operatorname{re}(\Sigma) \implies R^+ \in \operatorname{re}(\Sigma)$

Osservazione 4

Data un'espressione regolare $R \in re(R)$, si ha che:

- $R = \emptyset \in \operatorname{re}(\Sigma) \implies L(R) = \emptyset$
- $R = \varepsilon \in \operatorname{re}(\Sigma) \implies L(R) = \{\varepsilon\}$
- $R = a \in re(\Sigma), a \in \Sigma \implies L(R) = \{a\}$
- $R = R_1 \cup R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \cup L(R_2)$
- $R = R_1 \circ R_2 \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1) \circ L(R_2)$
- $R = R_1^* \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^*$
- $R = R_1^+ \in \operatorname{re}(\Sigma) \implies L(R) = L(R_1)^+$

Esempi:

- 1. $0 \cup 1$ rappresenta il linguaggio $\{0\} \cup \{1\} = \{0, 1\}$
- 2. 0*10* rappresenta il linguaggio $\{0\}^* \circ \{1\} \circ \{0\}^* = \{x1y \mid x,y \in \{0\}^*\}$
- 3. $\Sigma^*1\Sigma^*$ rappresenta il linguaggio $\Sigma^* \circ \{1\} \circ \Sigma^* = \{x1y \mid x, y \in \Sigma^*\}$
- 4. $(0 \cup 1000)^*$ rappresenta il linguaggio $(\{0\} \cup \{1000\})^* = \{0, 1000\}^*$
- 5. \emptyset^* rappresenta il linguaggio $\emptyset^* = \{\varepsilon\}$ (ricordiamo che per definizione stessa si ha che $\forall L \subseteq \Sigma^*$ $L^0 = \{\varepsilon\}$)

- 6. $0^*\emptyset$ rappresenta il linguaggio $\{0\}^* \circ \emptyset = \emptyset$
- 7. $(0 \cup \varepsilon)(1 \cup \varepsilon)$ rappresenta il linguaggio $\{\emptyset, 0, 1, 01\}$
- 8. Σ^+ equivale all'espressione $\Sigma\Sigma^*$

Definizione 19: Classe dei linguaggi descritti da esp. reg.

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ descritti da un'espressione regolare il seguente insieme:

$$\mathcal{L}(re) = \{ L \subseteq \Sigma^* \mid \exists R \in re(\Sigma) \text{ t.c. } L = L(R) \}$$

Lemma 1: Conversione da espressione regolare a NFA

Date le due classi di linguaggi $\mathcal{L}(re)$ e $\mathcal{L}(NFA)$, si ha che:

$$\mathcal{L}(re) \subset \mathcal{L}(NFA)$$

Dimostrazione.

Procediamo per induzione strutturale, ossia dimostrando che se per ogni sottocomponente vale una determinata proprietà allora essa varrà anche per ogni componente formato da tali sotto-componenti

Caso base.

• Se $R = \emptyset \in \operatorname{re}(\Sigma)$, definiamo il NFA $N_{\emptyset} = (\{q_0\}, \Sigma, \delta, q_0, \emptyset)$, ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $x \in L(R) \iff x \in L(N_{\varnothing})$ dunque $L(R) = L(N_{\varnothing}) \in \mathcal{L}(NFA)$

• Se $R=\varepsilon\in {\rm re}(\Sigma),$ definiamo il NFA $N_\varepsilon=(\{q_0\},\Sigma,\delta,q_0,\{q_0\}),$ ossia:

$$\operatorname{start} \longrightarrow q_0$$

per cui si ha che $x \in L(R) \iff x \in L(N_{\varepsilon})$ dunque $L(R) = L(N_{\varepsilon}) \in \mathcal{L}(NFA)$

• Se $R = a \in re(\Sigma)$ con $a \in \Sigma$, definiamo il NFA $N_a = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{q_1\})$ dove per δ è definita solo la coppia $\delta(q_0, a) = q_1$, ossia:

$$\operatorname{start} \longrightarrow \overbrace{q_0} \longrightarrow \overbrace{q_1}$$

per cui si ha che $x \in L(R) \iff x \in L(N_a)$ dunque $L(R) = L(N_a) \in \mathcal{L}(NFA)$

 $Ipotesi\ induttiva.$

• Date $R_1, R_2 \in \text{re}(\Sigma)$, assumiamo che \exists NFA $N_1, N_2 \mid L(R_1) = L(N_1), L(R_2) = L(N_2)$, dunque che $L(R_1), L(R_2) \in \mathcal{L}(\text{NFA})$

Passo induttivo.

- Se $R = R_1 \cup R_2$, tramite la Chiusura dell'unione in REG, otteniamo che: $L(R) = L(R_1) \cup L(R_2) = L(N_1) \cup L(N_2) \in \text{REG} = \mathcal{L}(\text{NFA})$
- Se $R = R_1 \circ R_2$, tramite la Chiusura della concatenazione in REG, otteniamo che:

$$L(R) = L(R_1) \circ L(R_2) = L(N_1) \circ L(N_2) \in REG = \mathcal{L}(NFA)$$

• Se $R = R_1^*$, tramite la Chiusura di plus in REG, otteniamo che:

$$L(R) = L(R_1)^* = L(N_1)^* \in REG = \mathcal{L}(NFA)$$

Esempio:

- Consideriamo l'espressione regolare $(a \cup ab)^*$
- Costruiamo il NFA corrispondente a tale espressione partendo dai suoi sotto-componenti

$$a \qquad \Rightarrow \qquad \text{start} \longrightarrow \bigoplus_{b} \bigoplus_{c} \bigoplus_{c} \bigoplus_{b} \bigoplus_{c} \bigoplus_{$$

1.5.1 NFA generalizzati

Definizione 20: Generalized NFA (GNFA)

Un Generalized NFA (GNFA) è una quintupla $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ dove:

- Q è l'insieme finito degli stati dell'automa dove $|Q| \geq 2$
- Σ è l'alfabeto dell'automa
- $q_{\text{start}} \in Q$ è lo stato iniziale dell'automa
- $q_{\text{accept}} \in Q$ è l'unico stato accettante dell'automa
- $\delta: (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \rightarrow \text{re}(\Sigma)$ è la funzione di transizione degli stati dell'automa, implicando che:
 - Lo stato q_{start} abbia solo transizioni **uscenti**
 - Lo stato q_{accept} abbia solo transizioni **entranti**
 - Tra tutte le possibili coppie di stati $q, q' \in Q$ (incluso il caso in cui q = q') vi sia una transizione $q \to q'$ ed una transizione $q' \to q$
 - Le "etichette" delle transizioni sono delle **espressioni regolari**

Esempio:

Osservazione 5

In un GNFA, il risultato $\delta(q, q') = R$ può essere interpretato come "l'espressione regolare che effettua la transizione da q a q' è R". Di conseguenza, possiamo immaginare un GNFA come un NFA che legga la stringa in input **blocco per blocco**

Proposizione 5: Stringa accettata in un GNFA

Sia $G := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ un GNFA. Data una stringa $x := x_0 \dots x_k \in \Sigma_{\varepsilon}^*$, dove $x_0, \dots, x_k \in \Sigma_{\varepsilon}^*$ (ossia sono delle sottostringhe), diciamo che x è **accettata da** G se esiste una sequenza di stati $r_0, r_1, \dots, r_{k+1} \in Q$ tali che:

- $r_0 = q_{\text{start}}$
- $\forall i \in [0, k] \ x_i \in L(\delta(r_i, r_{i+1}))$
- $r_{k+1} = q_{\text{accept}}$

Esempio:

- Il GNFA dell'esempio precedente accetta la stringa ababaaaba, poiché:
 - $-\delta(q_{\text{start}},q_1) = ab^*$, dunque viene letta in blocco la sottostringa abab
 - $-\delta(q_1,q_1)=aa^*$, dunque viene letta in blocco la sottostringa aa
 - $-\delta(q_1,q_{\text{accept}}) = \mathtt{ab} \cup \mathtt{ba}$, dunque viene letta in blocco la sottostringa ba

Corollario 4

Una transizione con "etichetta" pari a \varnothing è una transizione inutilizzabile in quanto $L(\varnothing)=\varnothing$

Definizione 21: Classe dei linguaggi riconosciuti da un GNFA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un GNFA il seguente insieme:

$$\mathcal{L}(\mathrm{GNFA}) = \{ L \subseteq \Sigma_{\varepsilon}^* \mid \exists \mathrm{GNFA} \ G \ \mathrm{t.c} \ L = L(G) \}$$

Lemma 2: Conversione da DFA a GNFA

Date le due classi di linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(GNFA)$, si ha che:

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA)$$

Dimostrazione.

- Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L(D) = L
- Consideriamo quindi il GNFA $G := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ costruito tramite D stesso:
 - $-Q' = Q \cup \{q_{\text{start}}, q_{\text{accept}}\}\$
 - $-\delta'(q_{\text{start}}, q_0) = \varepsilon$

- $\forall q \in F \ \delta'(q, q_{\text{accept}}) = \varepsilon$
- Per ogni transizione con etichetta multipla in D, in G esiste una transizione equivalente con etichetta corrispondente all'unione di tali etichette multiple
- Per ogni coppia di stati per cui non esiste una transizione entrante o uscente in D, viene aggiunta una transizione con etichetta \varnothing
- \bullet A questo punto, per costruzione stessa di G si ha che:

$$x \in L = L(D) \implies L(G)$$

implicando dunque che $L(D) \in \mathcal{L}(DFA)$ e di conseguenza che:

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA)$$

Esempio:

• Consideriamo il seguente DFA:

• Il suo GNFA equivalente corrisponde a:

Algoritmo 1: Riduzione minimale di un GNFA

```
Dato un GNFA G = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}}) in input, il seguente algoritmo restituisce un
GNFA G' avente due soli stati ed una sola transizione:
   function REDUCEGNFA(G)
       if |Q| == 2 then
            return G
       else if |Q| > 2 then
            q := q \in Q - \{q_{\text{start}}, q_{\text{accept}}\}
            Q' := Q - \{q\}
            for q_i \in Q' - \{q_{\text{accept}}\}\ \mathbf{do}
                 for q_i \in Q' - \{q_{\text{start}}\}\ do
                      \delta'(q_i, q_i) := \delta(q_i, q)\delta(q, q)^*\delta(q, q_i) \cup \delta(q_i, q_i)
                 end for
            end for
            G' := (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})
            return reduceGNFA(G')
        end if
   end function
```

Dimostrazione.

Siano G_0, \ldots, G_n i vari GNFA prodotti dalla ricorsione dell'algoritmo, implicando che $G_0 = G$ e che G_n sia l'output. Procediamo per induzione sul numero $k \in \mathbb{N}$ di riduzioni effettuate, mostrando che $L(G) = L(G_0) = \ldots = L(G_n)$

Caso base.

• Se k=0, allora $G_0=G$, dunque $L(G)=L(G_0)$

Ipotesi induttiva.

• Dato $k \in \mathbb{N}$, assumiamo che per il GNFA $G_k := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ si abbia che $L(G) = L(G_k)$

Passo induttivo.

• Consideriamo quindi il GNFA $G_{k+1} := (Q', \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ ottenuto rimuovendo uno stato $q \in Q$ (dunque $Q' = Q - \{q\}$) e ponendo

$$\delta'(q_i,q_j) := \delta(q_i,q)\delta(q,q)^*\delta(q,q_j) \cup \delta(q_i,q_j)$$

per ogni $q_i \in Q' - \{q_{\text{accept}}\}, q_j \in Q' - \{q_{\text{start}}\}$

• Data una stringa $x = x_0 \dots x_m \in L(G_k)$, dove $x_0, \dots, x_m \in \Sigma_{\varepsilon}^*$, esiste una sequenza di stati $q_0, \dots, q_m \in Q$ tali che:

```
-q_0 = q_{\text{start}} e q_m = q_{\text{accept}}-\forall i \in [0, m-1] \ x_i \in L(\delta(q_i, q_{i+1}))
```

• A questo punto, consideriamo la costruzione della funzione δ' :

$$\delta'(q_i, q_j) = \delta(q_i, q)\delta(q, q)^*\delta(q, q_j) \cup \delta(q_i, q_j)$$

- Se $q \notin \{q_0, \ldots, q_m\}$, allora tramite l'unione si ha che $x_i \in L(\delta(q_i, q_j)) \implies x \in L(\delta'(q_i, q_j))$, dunque tutte le possibili sottostringhe passanti per le transizioni dirette da q_i a q_j vengono riconosciute
- Se $q \in \{q_0, \ldots, q_m\}$, allora la concatenazione $\delta(q_i, q)\delta(q, q)^*\delta(q, q_j)$ permette il riconoscimento di tutti i cammini da q_i a q_j passanti per q, implicando che $x \in L(\delta'(q_i, q_j))$
- Viceversa, poiché ogni $\delta'(q_i, q_j)$ è definito come la combinazione di tutti i cammini possibili da q_i a q_j (dunque passando per q o non), ne segue automaticamente che $x \in L(G_{k+1}) \implies x \in L(G_k)$
- Esprimendo il tutto graficamente, risulta evidente che le seguenti transizioni siano del tutto equivalenti:

• Di conseguenza, otteniamo che $x \in L(G_k) \iff x \in L(G_{k+1})$, concludendo quindi, per ipotesi induttiva, che $L(G) = L(G_k) = L(G_{k+1})$

Esempio:

• Consideriamo nuovamente il seguente GNFA, applicando su esso l'algoritmo reduceGNFA:

• Rimuoviamo quindi lo stato q_0 calcolando le nuove transizioni:

$$\delta'(q_{\text{start}}, q_1) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_1) \cup \delta(q_{\text{start}}, q_1) = \varepsilon(0 \cup 1)^*2 \cup \varnothing = (0 \cup 1)^*2$$

$$\delta'(q_{\text{start}}, q_{\text{accept}}) = \delta(q_{\text{start}}, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_{\text{start}}, q_{\text{accept}}) = \varepsilon(0 \cup 1)^*\varnothing \cup \varnothing = \varnothing$$

$$\delta'(q_1, q_{\text{accept}}) = \delta(q_1, q_0)\delta(q_0, q_0)^*\delta(q_0, q_{\text{accept}}) \cup \delta(q_1, q_{\text{accept}}) = \varnothing(0 \cup 1)^*\varnothing \cup \varepsilon = \varepsilon$$

• Infine, rimuoviamo lo stato q_1 calcolando le nuove transizioni:

$$\delta''(q_{\text{start}}, q_{\text{accept}}) = \delta'(q_{\text{start}}, q_1)\delta'(q_1, q_1)^*\delta'(q_1, q_{\text{accept}}) \cup \delta'(q_{\text{start}}, q_{\text{accept}}) =$$

$$= (0 \cup 1)^*2(0 \cup 1)^*\varepsilon \cup \varnothing = (0 \cup 1)^*2(0 \cup 1)^*$$

• Il GNFA minimale, dunque, corrisponde a:

start
$$\longrightarrow$$
 q_{start} q_{accept}

Corollario 5: Conversione da GNFA ad espressione regolare

Date le due classi di linguaggi $\mathcal{L}(GNFA)$ e $\mathcal{L}(re)$, si ha che:

$$\mathcal{L}(GNFA) \subset \mathcal{L}(re)$$

Dimostrazione.

- Dato $L \in \mathcal{L}(GNFA)$, sia $G := (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ il GNFA tale che L(G) = L
- Dato il GNFA G' ottenuto applicando reduceGNFA, sia $R \in \text{re}(\Sigma)$ l'espressione regolare tale che $R = \delta'(q_{\text{start}}, q_{\text{accept}})$. Essendo l'unica transizione di G' ed essendo G' equivalente a G, ne segue automaticamente che:

$$L = L(G) = L(G') = L(R) \in re(\Sigma)$$

da cui traiamo che:

$$\mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

1.5.2 Equivalenza tra espressioni e linguaggi regolari

Teorema 8: Equivalenza tra espressioni e linguaggi regolari

Data la classe $\mathcal{L}(re)$, si ha che:

$$\mathcal{L}(re) = REG$$

Dimostrazione.

Prima implicazione.

• Tramite la Conversione da espressione regolare a NFA, otteniamo che:

$$\mathcal{L}(re) \subseteq \mathcal{L}(NFA) = REG$$

• Inoltre, in quando un NFA è anche un GNFA, ne segue automaticamente che:

$$\mathcal{L}(NFA) \subseteq \mathcal{L}(GNFA)$$

Seconda implicazione.

• Tramite la Conversione da DFA a GNFA e Conversione da GNFA ad espressione regolare, otteniamo che:

$$REG = \mathcal{L}(DFA) \subseteq \mathcal{L}(GNFA) \subseteq \mathcal{L}(re)$$

Corollario 6: Classi dei linguaggi regolari

Dato un alfabeto Σ , si ha che:

$$REG := \mathcal{L}(DFA) = \mathcal{L}(NFA) = \mathcal{L}(GNFA) = \mathcal{L}(re)$$

1.6 Linguaggi non regolari

Consideriamo il seguente linguaggio composto dalle stringhe aventi un numero uguale di simboli 0 ed 1:

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Nel provare a costruire un automa che riconosca tale linguaggio, notiamo che sarebbe necessario che l'automa avesse **infiniti stati**, in quanto esso dovrebbe memorizzare la quantità di simboli 0 ed 1 letti. Di conseguenza, non è possibile costruire un **automa a stati finiti** (dunque un DFA, NFA o GNFA) che riconosca tale linguaggio.

Definizione 22: Linguaggio non regolare

Dato un alfabeto Σ , definiamo un linguaggio L di Σ come **non regolare** se $L \notin REG$, dunque se non è possibile definire un automa a stati finiti che lo riconosce o un'espressione regolare che lo descrive

1.6.1 Pumping lemma per i linguaggi regolari

Definizione 23: Lunghezza di una stringa

Dato un linguaggio L e una stringa $s \in L$, indichiamo con |s| la sua **lunghezza**, ossia la quantità di simboli al suo interno

Lemma 3: Pumping lemma per i linguaggi regolari

Dato un linguaggio L, se $L \in \text{REG}$ allora $\exists p \in \mathbb{N}$, detto **lunghezza del pumping**, tale che $\forall s := xyz \in L$, con $|s| \geq p$ e $x, y, z \in L$ (ossia sono sue sottostringhe), si ha che:

- $\forall i \in \mathbb{N} \ xy^iz \in L$, ossia è possibile concatenare y per i volte rimanendo in L
- |y| > 0, dunque $y \neq \varepsilon$
- $|xy| \le p$, ossia y deve trovarsi nei primi p simboli di s

Dimostrazione.

- Poiché $L \in REG$, sia $D := (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Consideriamo quindi p := |Q|. Data la stringa $s := s_1 \dots s_n \in L$ dove $s_1, \dots, s_n \in \Sigma$ e dove $n \geq p$, consideriamo la sequenza di stati r_1, \dots, r_{n+1} tramite cui s viene accettata da D:

$$\forall k \in [1, n] \ \delta(r_k, s_k) = r_{k+1}$$

- Notiamo quindi che $|r_1,\ldots,r_{n+1}|=n+1$, ossia che il numero di stati attraversati sia n+1. Inoltre, in quanto $n\geq p$, ne segue automaticamente che $n+1\geq p+1$. Tuttavia, poiché p:=|Q| e $n+1\geq p+1$, ne segue necessariamente che $\exists i,j\in [1,n+1] \mid i< j\leq p+1 \land r_i=r_j$, ossia che tra i primi p+1 stati della sequenza vi sia almeno uno stato ripetuto
- A questo punto, consideriamo le seguenti sottostringhe di s:
 - $-x = s_1 \dots s_{i-1}$, tramite cui si ha che $\delta^*(r_1, x) = r_i$
 - $-y = s_i \dots s_{j-1}$, tramite cui si ha che $\delta^*(r_i, y) = r_i = r_i$
 - $-z = s_j \dots s_n$, tramite cui si ha che $\delta^*(r_j, z) = r_n$

• Poiché $\delta^*(r_i, y) = r_i$, ossia y porta sempre r_i in se stesso, ne segue automaticamente che

$$\forall k \in \mathbb{N} \ \delta^*(r_i, y^k) = r_i \implies \delta(r_1, xy^k z) \in F \implies xy^k z \in L(D) = L$$

• Inoltre, ne segue direttamente che |y| > 0 in quanto i < j e che $|xy| \le p$ in quanto $j \le p+1$

Interpretazione grafica della dimostrazione precedente

Esempio:

- Consideriamo il seguente linguaggio $L = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$
- Tale linguaggio risulta essere regolare in quanto il seguente DFA è in grado di riconoscerlo:

- Essendo un linguaggio regolare, per esso vale il Pumping lemma per i linguaggi regolari. Ad esempio, preso p=5 e la stringa $s:=0100010101\in L$, è possibile separare s in tre sottostringhe x:=010, y=00 e z=10101 tali che:
 - $-xy^0z = 01010101 \in L$
 - $-xy^1z = 0100010101 \in L$
 - $-xy^2z = 010000010101 \in L$
 - $-xy^3z = 0100000010101 \in L$

- . .

Osservazione 6: Dimostrazione di non regolarità

Il Pumping lemma per i linguaggi regolari può essere utilizzato per dimostrare che un linguaggio **non è regolare**

Esempio:

- Consideriamo il seguente linguaggio $L = \{0^n 1^n \mid n \in \mathbb{N}\}$
- Supponiamo per assurdo che L sia regolare. In tal caso, ne segue che per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $s := 0^p 1^p \in L$. Poiché $|s| \ge p$, possiamo suddividerla in tre sottostringhe $x, y, z \in L$ tali che s = xyz, per poi procedere con uno dei due seguenti approcci:

1. Approccio enumerativo:

- Se y è composta da soli 0, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 0 sarà superiore al numero di 1
- Se y è composta da soli 1, allora ogni stringa generata dal pumping non sarà in L in quanto il numero di 1 sarà superiore al numero di 0
- Se y è composta sia da 0 che da 1, allora ogni stringa generata dal pumping non sarà in L in quanto esse assumeranno la forma 0000...101010...1111
- Di conseguenza, poiché in ogni caso viene contraddetto il pumping lemma, ne segue necessariamente che L non sia regolare

2. Approccio condizionale:

- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $s:=0^p1^p$, ne segue che $xy=0^m$ e $z=0^{p-m}1^p$, dove $m\in[1,p]$
- Inoltre, per la seconda condizione, si ha che |y| > 0, dunque necessariamente si ha che $x = 0^{m-k}$ e $y = 0^k$, dove $k \in [1, m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^0z = 0^{m-k}(0^k)^00^{p-m}1^p = 0^{m-k}0^{p-m}1^p = 0^{p-k}1^p$$

implicando dunque che $xy^0z \notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$

- Dunque, ne segue necessariamente che L non sia regolare

1.7 Esercizi svolti

Problema 1: Linguaggio rovesciato

Data una stringa $x=a_1\ldots a_n\in \Sigma^*$, dove $a_1\ldots a_n\in \Sigma$, definiamo la sua stringa rovesciata, indicata con x^R , come $x^R=a_n\ldots a_1$.

Dato un linguaggio L e il suo linguaggio rovesciato $L^R = \{x^R \mid x \in L\}$, dimostrare che

$$L \in \text{REG} \implies L^R \in \text{REG}$$

Dimostrazione.

- Dato $L \in \text{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D)
- Definiamo quindi un primo NFA $N = (Q', \Sigma, \delta', q_0, \{q_f\})$ tale che:
 - $-q_f$ è il nuovo unico stato accettante aggiunto
 - $Q' = Q \cup \{q_f\}$
 - $\ \forall q \in Q, a \in \Sigma \ \delta'(q,a) = \delta(q,a),$ ossia tutti gli archi rimangono invariati
 - $\ \forall q \in F \ \delta'(q,\varepsilon) = q_f,$ ossia tutti gli stati finali precedenti hanno un $\varepsilon\text{-arco}$ verso q_f
- ullet A questo punto, per costruzione stessa di N ne segue che:

$$x \in L = L(D) \iff x \in L(N)$$

dunque che L = L(D) = L(N)

• Definiamo quindi un secondo NFA $N^R = (Q', \Sigma, \delta'', q_f, \{q_0\})$ tale che:

$$\forall p, q \in Q', a \in \Sigma_{\varepsilon} \ \delta'(p, a) = q \implies \delta''(q, a) = p$$

ossia avente tutti gli archi invertiti rispetto ad N

• A questo punto, per costruzione stessa di N' ne segue che:

$$x \in L = L(N) \iff x^R \in L(N^R)$$

dunque che $L^R = L(N)^R = L(N^R) \in REG$

Problema 2: Complemento di un'espressione regolare

Data l'espressione regolare $R=(01^+)^*$, costruire il DFA D tale che:

$$L(D) = \{ w \in \{0, 1\}^* \mid w \notin L(R) \}$$

Solutione:

 $\bullet\,$ Prima di tutto, costruiamo un DFA D_R tale che $L(D_R)=L(R)$:

• A questo punto, ci basta costruire il DFA D tale che $L(D) = \neg L(D_R)$ utilizzando la Chiusura del complemento in REG:

Problema 3

Data una stringa $x \in \{0,1\}^*$, definiamo $|x|_0$ come il numero di 0 presenti in x e $|x|_1$ come il numero di 1 presenti in x.

Dato il linguaggio $L = \{x \in \{0,1\}^* \mid |x|_0 = |x|_1\}$, dimostrare che $L \notin REG$

Dimostrazione.

- ullet Supponiamo per assurdo che L sia regolare, implicando chi per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $s := 0^p 1^p \in L$. Poiché $|s| \ge p$, possiamo suddividerla in tre sottostringhe $x, y, z \in L$ tali che s = xyz
- Poiché la terza condizione del pumping lemma impone che $|xy| \le p$ e poiché $s := 0^p 1^p$, ne segue che $xy = 0^m$ e $z = 0^{p-m} 1^p$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione, si ha che |y| > 0, dunque necessariamente si ha che $x = 0^{m-k}$ e $y = 0^k$, dove $k \in [1, m]$
- A questo punto, consideriamo la stringa xy^0z . Notiamo immediatamente che

$$xy^{0}z = 0^{m-k}(0^{k})^{0}0^{p-m}1^{p} = 0^{m-k}0^{p-m}1^{p} = 0^{p-k}1^{p}$$

$$\implies |xy^{0}z|_{0} \neq |xy^{0}z|_{1} \implies xy^{0}z \notin L$$

contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$

 \bullet Dunque, ne segue necessariamente che L non sia regolare

Problema 4

Dato il linguaggio $L = \{1^{n^2} \mid n \in \mathbb{N}\}$, dimostrare che $L \notin REG$

Dimostrazione.

- \bullet Supponiamo per assurdo che Lsia regolare, implicando ch
 per esso debba valere il pumping lemma, dove p è la lunghezza del pumping
- Consideriamo quindi la stringa $s := 1^{p^2} \in L$. Poiché $|s| \ge p$, possiamo suddividerla in tre sottostringhe $x, y, z \in L$ tali che s = xyz
- Poiché la terza condizione del lemma impone che $|xy| \leq p$ e poiché $s := 1^{p^2}$, ne segue che $xy = 1^m$ e $z = 1^{p^2 m}$, dove $m \in [1, p]$
- Inoltre, per la seconda condizione del lemma, si ha che |y| > 0, dunque necessariamente si ha che $x = 1^{m-k}$ e $y = 1^k$, dove $k \in [1, m]$

 \bullet A questo punto, consideriamo la stringa $xy^0z.$ Notiamo immediatamente che

$$xy^0z = 1^{m-k}(1^k)^01^{p^2-m} = 1^{p^2-k}$$

- Tuttavia, poiché $k \in [1,p]$, ne segue che $\nexists n \in \mathbb{N} \mid n^2 = p^2 k$, implicando dunque che $xy^0z \notin L$, contraddicendo la prima condizione del lemma per cui si ha che $\forall i \in \mathbb{N} \ xy^iz \in L$
- \bullet Dunque, ne segue necessariamente che L non sia regolare

Grammatiche e Linguaggi acontestuali

2.1 Grammatiche acontestuali

Definizione 24: Context-freee Grammar (CFG)

Una Context-free Grammar (CFG) (o Grammatica acontestuale) è una quadrupla (V, Σ, R, S) dove:

- V è l'insieme delle variabili della grammatica
- $\bullet~\Sigma$ è l'insieme dei terminali della grammatica e
- $\bullet \,\,R$ è l'insieme delle regole o produzioni della grammatica
- $S \in V$ è la variabile iniziale della grammatica
- $V \cap \Sigma = \emptyset$, ossia variabili e terminali sono tutti distinti tra loro

Le **regole in** R assumono la forma $X \to Y$, dove $X \in V$, ossia è una variabile, e $Y \in (V \cup \Sigma)^+$, ossia è una stringa composta da una o più variabili e/o terminali.

Osservazione 7: Acontestualità

Con acontestualità intendiamo la condizione secondo cui il lato sinistro delle regole della grammatica è composto sempre e solo da una singola variabile.

Esempio:

- La regola $A \to B$ può appartenere ad una CFG
- La regola $AB \to B$ non può appartenere ad una CFG

Definizione 25: Produzione

Sia $G = (V, \Sigma, R, S)$ una CFG. Se u, v, w sono stringhe di variabili o terminali ed esiste la regola $A \to w$, allora la stringa uAv **produce** la stringa uwv, denotato come $uAv \Rightarrow uwv$.

$$u, v, w \in (V \cup \Sigma)^+, A \to w \in R \implies uAv \Rightarrow uwv$$

Esempio:

• Consideriamo la grammatica $G = (\{A, B\}, \{0, 1, \#\}, R, A)$ dove:

$$R = \{A \rightarrow 0A1, A \rightarrow B, B \rightarrow \#\}$$

• Tramite le regole di G è possibile ottenere la stringa 000#111 attraverso la seguente catena di produzioni:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000#111$$

• Tale catena può anche essere descritta graficamente dal seguente albero di produzione:

Definizione 26: Derivazione

Sia $G = (V, \Sigma, R, S)$ un CFG. Date $u, v \in (V \cup \Sigma)^+$, diciamo che u deriva v, denotato come $u \stackrel{*}{\Rightarrow} v$, se u = v oppure se $\exists u_1, \ldots, u_k \in (V \cup \Sigma)^+$ tali che:

$$u \Rightarrow u_1 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$$

Definizione 27: Linguaggio di una CFG

Sia $G = (V, \Sigma, R, S)$ una CFG. Definiamo come **linguaggio di** G, indicato come L(G), l'insieme di stringhe derivate dalle regole di G tramite la variabile S:

$$L(G) = \{ x \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} x \}$$