LAB T4B. Corrosão e Protecção Catódica

Introdução à corrosão electroquímica e protecção de metais

Identificação das zonas catódica e anódica no processo de corrosão de pregos de ferro

Ilustração de diversos tipos de corrosão:

- Pilha de composição
- Pilha de concentração
- Pilha de deformação

Ilustração dos principais processos de proteção catódica

- Por ânodo sacrificial
- Por potencial imposto

Célula eletroquímica

Oxidação (perda de e-) ↑ nº ox

Redução (ganho de e-) ↓ nº ox

Termodinâmica da Corrosão:

Para uma reação de elétrodo:

 $\Delta G = -nFE$

E, potencial de eléctrodo (referido ao $E^{\circ}(H^{+}/H_{2}) = 0 \text{ V}$) n, número de moles de electrões transferidos F, constante de Faraday (96485 C mol⁻¹)

$$E = E^0 - rac{RT}{nF} \ln Q = E^0 - rac{0,0592}{n} \log Q$$

Para reação global:

 $\Delta G = -nF\Delta E$ Corrosão espontânea se $\Delta G < 0$, i.e. $\Delta E > 0$

 $\Delta E = E c atodo - E anodo$

Série Eletroquímica

E (IVI/IVI.)	$\begin{bmatrix} 1 = T & IAI \end{bmatrix}$
otenciais de	P = 1 baı

↑ tendência a oxidar-se

PODER

Potenciais de oxidação (E°ox), em volt		Potenciais de redução (E°red), em volt
+ 3,04	Li ⁺ + 1e ⇌ Li°	-3,04
+ 2,87	Ca ²⁺ + 2e ← Ca°	-2,87
+ 2,71	Na ⁺ + 1e ⇌ Na°	-2,71
+ 2,36	Mg ²⁺ + 2e ← Mg°	-2,36
+ 1,66	Al ³⁺ + 3e ← Al°	-1,66
+ 0,76	Zn ²⁺ + 2e ← Zn°	-0,76
+ 0,44	Fe ²⁺ + 2e ← Fe°	-0,44
+ 0,28	Co ²⁺ + 2e ⇌ Co°	-0,28
+ 0,25	Ni ²⁺ + 2e ⇌ Ni°	-0,25
+ 0,14	Sn ²⁺ + 2e ← Sn°	-0,14
+ 0,13	Pb ²⁺ + 2e ← Pb°	-0,13
0,00	2H ⁺ + 2e ← H ₂	0,00
-0,34	Cu ²⁺ + 2e ← Cu°	+0,34
-0,80	Ag ⁺ + e ⇌ Ag ⁰	+0,80
-0,85	Hg ²⁺ + 2e ← Hg°	+0,85
-1,07	Br2 + 2e ← 2Br	+1,07
-1,36	Cl2 + 2e ← 2Cl-	+1,36
-1,50	Au ³⁺ + 3e ← Au°	+1,50
-2,87	F2 + 2e ← 2F-	+2,87

$$O_2$$
 (g) + 4H⁺ (aq) + 4e⁻ \rightarrow 2H₂O (l) +1.23 V (meio ácido)

$$O_2$$
 (g) + $2H_2O$ (l) + $4e^- \rightarrow 4OH^-$ (aq) +0,40 V (meio neutro ou básico)

I. Pilha de composição (ex: peça de ferro em contacto com humidade, pH ácido)

Processo catódico mais importante se existir oxigénio dissolvido

II. Pilha de concentração (corrosão por arejamento diferencial)

Fe (s)
$$\to$$
 Fe²⁺ (aq) + 2 e⁻¹

III. Pilha de deformação (peça metálica deformada a frio)

Proteção catódica: ânodo de sacrifício

Reacção de Redução	$E^{\theta}\left(\mathbf{V}\right)$
Li⁺ + e⁻ ↔ Li	- 3.045
Mg ²⁺ + 2 e [−] ↔ Mg	- 2.37
$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	- 0.763
Cr ³⁺ + 2 e ⁻ ↔ Cr	- 0.74
Fe ²⁺ +2e ⁻ ↔ Fe	- 0.440
Cd ²⁺ + 2 e ⁻ ↔ Cd	- 0.403
Ni ²⁺ + 2 e ⁻ ↔ Ni	- 0.250

↑ tendência a oxidar-se

Gota de água

 $E^{\circ}(Zn^{2+}/Zn^{0}) < E^{\circ}(Fe^{2+}/Fe^{0})$

Ânodo (Ox)

Zn2

Cátodo (Red) fissura na camada de zinco

Zinco

Zinco

Zn → Zn²⁺ + 2 e⁻

À superfície do ferro ocorre a redução do O_2 dissolvido e do H^+ da água.

$$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l)$$

$$O_2(g)+2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$$

$$H^{+}$$
 (aq) + $e^{-} \rightarrow \frac{1}{2} H_{2}$ (g)

Fe não se reduz

E⁰ + altos ↑ tendência a reduzirem-se

Ferro

Proteção catódica: potencial imposto

(Imposição de sobretensão exterior: metal a proteger ligado a terminal negativo de pilha exterior)

Trabalho experimental

1. Preparação do eletrólito (gel)

200 mL água

1.5 g agar-agar (gelificante)

2.0 g NaCl (eletrólito)

2 mL fenolftaleína

(indicador ácido-base)

$$O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$$

2 mL solução de K₃[Fe(CN)₆]

(indicador Fe²⁺ e Zn²⁺)

 $K_3[Fe(CN)_6] + Fe^{2+} \rightarrow complexo de cor azul$

 $K_3[Fe(CN)_6] + Zn^{2+} \rightarrow complexo de cor branca$

2. Preparação dos pregos e placa de zinco

Polir com lixa, lavar e secar

Experiência 1. Pilha de deformação

Fe (s) \rightarrow Fe²⁺ (aq) + 2e⁻ (Corrosão)

 $O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(I)$ $O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(aq)$ $H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(g)$

 $K_3[Fe(CN)_6] + Fe^{2+} \rightarrow complexo de cor azul$

ARREFECIMENTO

Experiência 2. Pilha de concentração

 $O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l)$ $O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$ $O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$

 H^+ (aq) + $e^- \rightarrow \frac{1}{2} H_2$ (g)

Cátodo (Red) Ânodo (Ox)

Fe (s) \rightarrow Fe²⁺ (aq) + 2e⁻

Experiência 3. Proteção por ânodo sacrificial

 $K_3[Fe(CN)_6] + Zn^{2+} \rightarrow complexo de cor branca$

Experiência 4. Proteção por potencial imposto

Ânodo (Ox)

Fe (s) \rightarrow Fe²⁺ (aq) + 2e⁻

 $K_3[Fe(CN)_6] + Fe^{2+} \rightarrow complexo de cor azul$

Cátodo (Red)

$$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(I)$$

 $O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(aq)$

$$H^+$$
 (aq) + $e^- \rightarrow \frac{1}{2} H_2$ (g)

Bolhas gasosas (H₂)

Discussão dos resultados

- Explicar a diferença entre os pregos dobrado e não dobrados
- Identificar ânodo e cátodo em cada pilha
- Escrever as reações anódicas e catódicas
- Explicar as cores junto aos pregos
- Explicar a formação do gás na última pilha

