Robotics Studio MECE 4611 Fall 2021, Assignment 1

William Xie, Mimi Park wx2214, mp3942

Submission Date: 9/21/2021 at 11:00 PM

Grace Hours Gained: 1

Grace Hours Remaining: 97

Concept 1 - Little Kitten

Concept 1 - Inspiration

My cats, when they were kittens. I want another kitten and for it to stay a kitten forever.

Le heard, tail; A constrained rotation | swive | s hard stops

This face looks really creepy, so I already failed to achieve my goals.

Concept 1 – Passive Joints

All 8 motors are allotted toward the legs, but I still want the head and tail to swivel a little bit. The plan is to constrain their rotation with hard stops and dampen the rotation with a torsion spring.

[&]quot;Passive knee exoskeleton using torsion spring for cycling assistance", Chaichaowarat et al. (2017)

component view

Estimated weight = ~5 lbs

Paw thickness = ~0.5"

Entire leg weight = 8 oz. (0.5 lb)

L2 + paw weight = 4 oz. (0.25 lb)

Leg length = $^{7.5"}$ (0.625') L2 + paw length = $^{3.5"}$ (0.29')

Max ω (L1 or L2) = ~20 rpm (2.9 rad/s)

 $F_r = mv^2/r = 0.082 lbf (whole leg), 0.019 lbf (L2 + paw)$

F_g = ma (assumed holding force—just combatting gravity of fully extended leg parallel to the ground)

Defining dynamic torque as torque in motion (F_g + F_r)

 $\tau = rFsin(\vartheta)$

 $P = \tau \omega$

Max holding torque on motor 1: **0.3125 ft-lb**Max dynamic torque on motor 1: **0.3750 ft-lb**Max holding torque on motor 2: **0.0725 ft-lb**

$$\tau = \frac{P}{\omega}$$

Max dynamic torque on motor 2: **0.0957 ft-lb**

$$\omega = \frac{2\pi RPM}{60}$$

Max power from m1: **1.06 W**Max power from m2: **0.28 W**Per leg power draw: **1.34 W**Whole robot (4 legs): **5.32 W**

Each motor is within its 6 W envelope, and the robot is within the 30 W battery envelope.

with a small-kithen-scale, robot should be able to balance on 2 pows at a time

Concept 2 – Unfolding Ball/Egg

Concept 2 – Real world inspirations

Diabotical, video game

Folding Mechanism

front view

note: probably would not be self-righting/

arm deployment (much simpler)

top night puspecrine

folded unfolded

Concept 2 - Calculations

very similar to cat leg,
except lz (p, for the cat)
is powered, not driven by lz's
motor MP

Robot weight = ~5 lbs

Entire leg weight = $^{\sim}10$ oz. (0.5 lb) L2 + L3 weight = $^{\sim}6$ oz. (0.25 lb)

L3 weight = 2 oz. Arm weight = 3 oz.

Leg length = $^{8.5}$ " (0.708') L2 + L3 length = $^{4.5}$ " (0.375')

Max ω (L1/L2/L3) = ~20 rpm (2.9 rad/s) F_r = mv^2/r = 0.115, 0.037, 0.004 lbf (whole leg, L2+L3, L3) F_g = ma (assumed holding force—just combatting gravity—of fully extended leg parallel to the ground)

$\tau = rFsin(\vartheta)$

Max holding torque on motor 1: **0.443 ft-lb**Max dynamic torque on motor 1: **0.521 ft-lb**Max holding torque on motor 2: **0.141 ft-lb**

Max dynamic torque on motor 2: **0.154 ft-lb**

Max holding torque on motor 3: **0.016 ft-lb**Max dynamic torque on motor 3: **0.016 ft-lb**Max holding torque on arm motor: **0.079 ft-lb**

Max dynamic torque on arm motor: 0.088 ft-lb

$$P = \tau \omega$$
$$\tau = \frac{P}{\omega}$$

 $\omega = \frac{2\pi RPM}{60}$

Max power draw from m1: **1.48 W**Max power draw from m2: **0.44 W**Max power draw from m3: **0.05 W**

Max power draw from arm motor: 0.12 W

One side total: **2.09 W**Both sides: **4.18 W**

All motors are well within the individual 6W power envelope, and the robot is well within the 30 W battery power envelope.

Concept 3 – Tamagotchi

You can tell when Mimi joined the team...

Concept 3 – Alternate views

Concept 3 – Alternate views

Copying over from concept 2 because the legs are mechanically similar—these rough calculations apply approximately well to both concepts.

Robot weight = ~4 lbs

Entire leg weight = 10 oz. (0.5 lb) L2 + L3 weight = 6 oz. (0.25 lb)

L3 weight = 2 oz.

Leg length = $^{8.5''}$ (0.708') L2 + L3 length = $^{4.5''}$ (0.375')

Max ω (L1/L2/L3) = ~20 rpm (2.9 rad/s) F_r = mv^2/r = 0.115, 0.037, 0.004 lbf (whole leg, L2+L3, L3) F_g = ma (assumed holding force—just combatting gravity—of fully extended leg parallel to the ground)

 $\tau = rFsin(\vartheta)$

Max holding torque on motor 1: **0.443 ft-lb**Max dynamic torque on motor 1: **0.521 ft-lb**Max holding torque on motor 2: **0.141 ft-lb**Max dynamic torque on motor 2: **0.154 ft-lb**

Max holding torque on motor 3: **0.016 ft-lb**Max dynamic torque on motor 3: **0.016 ft-lb**

 $\tau = \frac{P}{\omega}$

 $P = \tau \omega$

Max power draw from m1: **1.48 W**Max power draw from m2: **0.44 W**Max power draw from m3: **0.05 W**

One side total: **1.97 W** Both sides: **3.94 W**

 $\omega = \frac{2\pi RPM}{co}$

All motors are well within the individual 6W power envelope, and the robot is well within the 30 W battery power envelope.

Concept 3 - Alternates

References

R. Chaichaowarat, D. F. P. Granados, J. Kinugawa and K. Kosuge, "Passive knee exoskeleton using torsion spring for cycling assistance," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3069-3074, doi: 10.1109/IROS.2017.8206146.

Robotics Studio MECE 4611 Fall 2021, Assignment 2

William Xie, Mimi Park wx2214, mp3942

Submission Date: 9/28/2021,

Robot Name: Poodle Moth

Grace Hours Used: 3

Grace Hours Remaining: 94

Poodle Moth Perspective and Context Render

Poodle Moth Render

Poodle Moth Key Components

Poodle Moth Model Joint Animation

Poodle Moth Exploded View

Poodle Moth Key Specs

Theta_1: 155 deg < theta < 205 deg

Theta_2: 150 deg < theta < 210 deg

Max angular vel: 20 rpm

Max stride length: 9.4" (see next slide)

Expected stride length: ~3"

Motor rotation for stride: 60 deg

Strides/minute: 120

Walking speed: 3" / s

Poodle Moth Front View

Poodle Moth Bottom View

Side View with Dimensions

16.75"

Side View with Dimensions

GrabCAD component: LX16A bottom bracket

https://grabcad.com/library/lx16a_servo_bottom_bracket-1

