

FACULTY OF INFORMATION TECHNOLOGY

Fall,2019

MAT 207- LINEAR ALGEBRA

Lecture 2 - Linear equations in Linear Algebra

Content

1 Linear Independent

2 Introduction To Linear Transformation

The Matrix Of Linear Transformation

Linear Independence

• **Definition:** An indexed set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1 V_1 + x_2 V_2 + ... + x_p V_p = 0$$

has only the trivial solution. The set $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights $c_1, ..., c_p$, not all zero, such that

$$c_1 V_1 + c_2 V_2 + \dots + c_p V_p = 0$$
 (2)

• Example 1: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

- a. Determine if the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among v_1 , v_2 , and v_3 .

• **Solution:** We must determine if there is a nontrivial solution of the equation on the previous slide.

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \Box \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determines a nontrivial solution of (1).
- Hence, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent.

• To find a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , completely row reduce the augmented matrix and write the new system:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 - 2x_3 &= 0 \\ x_2 + x_3 &= 0 \\ 0 &= 0 \end{aligned}$$

- Thus, $x_1 = 2x_3$, $x_2 = -x_3$, and x_3 is free.
- Choose any nonzero value for x_3 —say, $x_3 = 5$.
- Then $x_1 = 10$ and $x_2 = -5$.

Linear Equation

• Substitute these values into equation (1) and obtain the equation below.

$$10v_1 - 5v_2 + 5v_3 = 0$$

• This is one (out of infinitely many) possible linear dependence relations among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

LINEAR INDEPENDENCE OF MATRIX COLUMNS

- Suppose that we begin with a matrix $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ instead of a set of vectors.
- The matrix equation Ax = 0 can be written as

$$x_1 a_1 + x_2 a_2 + \dots + x_n a_n = 0$$

- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of Ax = 0
- The columns of matrix A are linearly independent if and only if the equation Ax = 0 has *only* the trivial solution.

Set of One or Two Vector

• A set containing only one vector - say, \mathbf{v} - is linearly independent if and only if \mathbf{v} is not the zero vector.

• This is because the vector equation $x_1 v = 0$ has only the trivial solution when $v \neq 0$.

• The zero vector is linearly dependent because $x_1 0 = 0$ has many nontrivial solutions.

Set of One or Two Vectors

• A set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

• The set is linearly independent if and only if neither of the vectors is a multiple of the other.

Set of One or Two Vectors

• THEOREM 7: Characterization of Linearly Dependent Sets

- An indexed set $S = \{v_1, ..., v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $v_1 \neq 0$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, ..., \mathbf{v}_{j-1}$

Set of One or Two Vectors

Example 4: Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$.

Describe the set spanned by **u** and **v**, and explain why a vector **w** is in Span {**u**, **v**} if and only if {**u**, **v**, **w**} is linearly dependent.

Solution: The vectors \mathbf{u} and \mathbf{v} are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .

Set of One or Two Vector

• If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.

• Conversely, suppose that {**u**, **v**, **w**} is linearly dependent.

• By theorem 7, some vector in $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linear combination of the preceding vectors (since $\mathbf{u} \neq \mathbf{0}$).

• That vector must be w, since v is not a multiple of u.

Set of Two or More Vectors

• So w is in Span {u, v}. Fig. 2 below

Linearly dependent, w in Span{u, v}

Linearly independent, w *not* in Span{**u**, **v**}

• The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v.

Set of Two or More Vectors

• THEOREM 8:

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf v_1,\dots,\mathbf v_p\}$ in $\mathbb R^n$ is linearly dependent if

• **Example**: The vectors $\binom{2}{1}$, $\binom{4}{-1}$, $\binom{2}{2}$ are linearly dependent by Theorem 8, because there are three vectors in the set and there are only two entries in each vector.

Set of Two or More Vectors

• THEOREM 9:

If a set $S = \{v_1, ..., v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Proof:

By renumbering the vectors, we may suppose $v_1 = 0$

Then the equation $1v_1 + 0v_2 + ... + 0v_p = 0$ shows that S in linearly dependent.

Introduction to Linear transformations

LINEAR TRANSFORMATIONS

- The transformation (map) $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .
- For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the **range** of T

MATRIX TRANSFORMATIONS

- For each \mathbf{x} in \mathbb{R}^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a *matrix transformation* by $x \mapsto Ax$.
- Observe that the domain of T is \mathbb{R}^n when A has n columns and the codomain of T is \mathbb{R}^m when each column of A has m entries.
- The range of T is the set of all linear combinations of the columns of A, because each image $T(\mathbf{x})$ is of the form $A\mathbf{x}$.

MATRIX TRANSFORMATIONS

• Example 1:

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$.

and define a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ by T(x) = Ax, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.

b. Find an **x** in \mathbb{R}^2 whose image under *T* is **b**.

c. Is there more than one **x** whose image under *T* is **b**?

d. Determine if \mathbf{c} is in the range of the transformation T.

Solution:

Solution:
a. Compute
$$T(u) = Au = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$

b. Solve T(x) = b for x. That is, solve Ax = b, or

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$
 (1)

• Row reduce the augmented matrix:

• Row reduce the augmented matrix.
$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} (2)$$
• Hence $x_1 = 1.5$, $x_2 = -.5$, and $x = \begin{bmatrix} 1.5 \\ -.5 \end{bmatrix}$

• Hence
$$x_1 = 1.5$$
, $x_2 = -.5$, and $x = \begin{bmatrix} 1.5 \\ -.5 \end{bmatrix}$

• The image of this **x** under T is the given vector **b**.

- c. Any \mathbf{x} whose image under T is \mathbf{b} must satisfy equation (1).
 - From (2), it is clear that equation (1) has a unique solution.
 - So there is exactly one **x** whose image is **b**.

- d. The vector **c** is in the range of T if **c** is the image of some **x** in \mathbb{R}^2 , that is, if c = T(x) for some **x**.
 - This is another way of asking if the system Ax = c is consistent.

• To find the answer, row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \square \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \square \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \square \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

- The third equation, 0 = -35, shows that the system is inconsistent.
- So **c** is *not* in the range of *T*.

- **Definition:** A transformation (or mapping) *T* is **linear** if:
 - i. T(u+v) = T(u) + T(v) for all **u**, **v** in the domain of T;
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

These two properties lead to the following useful facts.

- If T is a linear transformation, then T(0) = 0 (3)
- and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$. (4)

Generation case:

$$T(c_1 \mathbf{v}_1 + ... + c_p \mathbf{v}_p) = c_1 T(\mathbf{v}_1) + ... + c_p T(\mathbf{v}_p)$$

THE MATRIX OF A LINEAR TRANSFORMATION

THE MATRIX OF A LINEAR TRANSFORMATION

THEOREM 10: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(x) = Ax$$
 for all x in \mathbb{R}^n

In fact, A is the m × n matrix whose j^{th} column is the vector $T(e_j)$, where e_j is the j^{th} column of the identity matrix in \mathbb{R}^n

$$A = [T(e_1)...T(e_n)]$$

The Matrix of Linear Transformations

• **Proof**: Write $x = I_n x = [e_1 \dots e_2] x = x_1 e_1 + \dots + x_n e_n$, and use the linearity of T to compute

$$T(x) = T(x_1e_1 + \dots + x_ne_n) = x_1T(e_1) + \dots + x_nT(e_n)$$

$$= [T(e_1) \dots T(e_1)]\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

The Matrix of Linear Transformations

• Example 2:

Find the standard matrix A for the dilation transformation T(x)=3x, for x in \mathbb{R}^2 .

• Solution: Write

$$T(e_1) = e_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 and $T(e_2) = e_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

• **Definition**: A mapping T: $\mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^n if each **b** in \mathbb{R}^m is the image of *at least one* **x** in \mathbb{R}^n .

• Example 4: Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

• **Solution**: Since *A* happens to be in echelon form, we can see at once that *A* has a pivot position in each row. By Theorem 4 in Section 1.4, for each **b** in \mathbb{R}^3 , the equation Ax=b is consistent. In other words, the linear transformation T maps \mathbb{R}^4 (its domain) onto \mathbb{R}^3 .

• However, since the equation Ax=b has a free variable (because there are four variables and only three basic variables), each **b** is the image of more than one **x**. This is, *T* is *not* one-to-one.

- Theorem 11: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation T(x)=0 has only the trivial solution.
- Theorem 12: Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:
- a) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b) T is one-to-one if and only if the columns of A are linearly independent.

• Proof:

- a) By Theorem 4 in Section 1.4, the columns of A span \mathbb{R}^m if and only if for each b in \mathbb{R}^m the equation Ax=b is consistent—in other words, if and only if for every b, the equation T(x)=b has at least one solution. This is true if and only if T maps \mathbb{R}^n onto \mathbb{R}^m .
- The equations T(x)=0 and Ax=0 are the same except for notation. So, by Theorem 11, T is one-to-one if and only if Ax=0 has only the trivial solution. This happens if and only if the columns of A are linearly independent.

An Application of Linear Symstem

Polynomial Interpolation:

- The simplest example of such a problem is to find a linear polynomial y = ax + b (1)
- The graph of (1) is a line passes through two distinct point (x_1, y_1) (x_2, y_2) , we must have :

$$y_1 = ax_1 + b$$
 ; $y_2 = ax_2 + b$

- For Example the line y = ax + b passes through the points (2,1); (5,4)
- Then the equation of the line is : y = x 1

Polynomial Interpolation

- In general case: of finding polynomial whose graph through n-distinct points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- We looking for a polynomial of the form

$$p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$$

• it follows that the coordinates of the points must satisfy

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n-1}x_{1}^{n-1} = y_{1}$$

$$a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n-1}x_{2}^{n-1} = y_{2}$$

$$\dots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n-1}x_{n}^{n-1} = y_{n}$$

Polynomial Interpolation

• The augmented matrix for the system is

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} & y_1 \\ 1 & x_1 & x_1^2 & \dots & x_2^{n-1} & y_2 \\ & & \dots & & \\ 1 & x_1 & x_1^2 & \dots & x_n^{n-1} & y_n \end{bmatrix}$$

• Hence the interpolating polynomial can be found by reducing this matrix to reduced row echelon form (Gauss–Jordan elimination).

• **EXAMPLE**: Find a cubic polynomial whose graph passes through the points (1, 3), (2, -2), (3, -5), (4, 0)

SOLUTION

Since there are four points, we will use an interpolating polynomial of degree n=3. Denote this polynomial by

$$x_1 = 1$$
, $x_1 = 2$, $x_1 = 3$, $x_1 = 4$ and $y_1 = 3$, $y_2 = -2$, $y_3 = -5$, $y_4 = 0$

Polynomial Interpolation

• the augmented matrix for the linear system in the unknowns a0, a1, a2, and a3 is

$$\bullet \begin{bmatrix}
1 & x_1 & x_1^2 & \dots & x_1^{n-1} & y_1 \\
1 & x_1 & x_1^2 & \dots & x_2^{n-1} & y_2 \\
& & & & & \\
1 & x_1 & x_1^2 & \dots & x_n^{n-1} & y_n
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 3 \\
1 & 2 & 4 & 8 & -2 \\
1 & 3 & 9 & 27 & -5 \\
1 & 4 & 16 & 64 & 0
\end{bmatrix}$$

• the reduced row echelon form of this matrix is

Polynomial Interpolation

• from which it follows that a0 = 4, a1 = 3, a2 = -5, a3 = 1. Thus, the interpolating polynomial is

$$p(x) = 4 + 3x - 5x^2 + x^3$$

Thank you for Listening

