|             |                                     | Ce cours ▼ |
|-------------|-------------------------------------|------------|
| Commencé le | jeudi 21 octobre 2021, 11:35        |            |
| État        | Terminé                             |            |
| Terminé le  | jeudi 21 octobre 2021, 11:51        |            |
| Temps mis   | 16 min                              |            |
| Note        | <b>3,25</b> sur 5,00 ( <b>65</b> %) |            |



# Entité du bloc VerifyIntegrity



| Nom I/O          | Description                 |
|------------------|-----------------------------|
| a_i              | Données A                   |
| b_i              | Données B                   |
| c_i              | Données C                   |
| d_i              | Données D                   |
| verif_checksum_o | Résultat de la verification |

Créer un circuit prenant quatre entrées (trois octets de données et leur checksum) et permettant de calculer un bit de sortie valide égal à 1 lorsqu'aucune altération des données n'est détectée à la réception.

## NOTE: Ce circuit reçoit quatre octets et ne peut pas savoir quel est l'octet de checksum.

Afin de vérifier le checksum associé à un certain set de données, vous avez réalisé un circuit de vérification. Indiquer pour chacune des affirmations si elle est vraie ou fausse.

| Vrai     | Faux     |                                                                                                                                                                                                                                                                           |   |
|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          | Ox       | Il est possible de réaliser le circuit de vérification sans aucune porte "NOT"                                                                                                                                                                                            | ~ |
| OX       | <b>O</b> | Afin de vérifier l'intégrité des données, il suffit<br>d'additionner les 4 octets reçus et de regarder si<br>le carry vaut '1'                                                                                                                                            | ~ |
| <b>O</b> | OX       | Il est possible que verif_checksum_o soit à '0'<br>alors que la transmission présente une altération<br>des données                                                                                                                                                       | ~ |
| <b>0</b> | OX       | Si l'on sait au préalable quelle entrée correspond<br>au checksum, alors on pourrait additionner les 3<br>octets de données, calculer le complément à 2<br>de l'octet de checksum et ces deux valeurs. Si<br>elles sont identiques, c'est que le checksum est<br>correct. | ~ |

Il est possible de réaliser le circuit de vérification sans aucune porte "NOT": Vrai Afin de vérifier l'intégrité des données, il suffit d'additionner les 4 octets reçus et de regarder si le carry vaut '1': Faux

Il est possible que verif\_checksum\_o soit à '0' alors que la transmission présente une altération des données: Vrai

Si l'on sait au préalable quelle entrée correspond au checksum, alors on pourrait additionner les 3 octets de données, calculer le complément à 2 de l'octet de checksum et ces deux valeurs. Si elles sont identiques, c'est que le checksum est correct.: Vrai



### QUESTION 2

Incorrect

Note de 0,00 sur 1,00



| Nom I/O | Description          |
|---------|----------------------|
| a_i     | Données A            |
| b_i     | Données B            |
| c_i     | Données C            |
| r_o     | Résultat du checksum |

Définition du modular sum : Un modular sum se calcule en additionnant les données entre elles sans carry puis en effectuant le complément à deux de ce résultat.

Si  $a_i = 0x43$  et  $b_i = 0x76$ , quelle est la valeur de  $c_i$  ( $c_i = 0x$ ??) pour que checksum\_o = 0xA5 ?

Formattez la réponse de cette manière : **0x18** 

Réponse : 0x13

La réponse correcte est : 0xa2





Il y a des erreurs dans cet additionneur 1 bit

Quel comportement sera observé en sortie?

| Vrai       | Faux |                                                                                                                                                                                                                              |   |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>⊙</b> ✓ | OX   | Si l'on compare les sorties de ce circuit erroné à la sortie attendue d'un additionneur 1 bit fonctionnel, Lorsque :  • a_i = 0  • b_i = 1  • c_i = 0  La sortie du circuit erronée c_o est correcte MAIS r_o est incorrecte | ~ |
| O          | X    | La sortie c_o est toujours correcte                                                                                                                                                                                          | × |
| <b>©</b>   | Ox   | Dans un circuit add1bit fonctionnel, remplacer la porte "OR" 3 entrées qui détermine la sortie c_o par une porte "XOR" à 3 entrées sera juste dans <b>tous</b> les cas.                                                      | ~ |
|            |      | Si l'on compare les sorties de ce circuit erroné à la sortie attendue d'un additionneur 1 bit fonctionnel, Lorsque :  • a_i = 0  • b_i = 1  • c_i = 1  Les sorties du circuit erronée r_o et c_o sont correctes              | × |

Si l'on compare les sorties de ce circuit erroné à la sortie attendue d'un additionneur 1 bit fonctionnel,

Lorsque:

∘ a\_i = 0

∘ b\_i = 1

∘ c\_i = 0

La sortie du circuit erronée c\_o est correcte MAIS r\_o est incorrecte: Vrai

La sortie c\_o est toujours correcte: Vrai

Dans un circuit add1bit fonctionnel, remplacer la porte "OR" 3 entrées qui détermine la sortie c\_o par une porte "XOR" à 3 entrées sera juste dans tous les cas : Vrai sera juste dans tous les cas.: Vrai

Si l'on compare les sorties de ce circuit erroné à la sortie attendue d'un additionneur 1 bit fonctionnel,



Lorsque:

- ∘ a\_i = 0
- ∘ b\_i = 1
- ∘ c\_i = 1

Les sorties du circuit erronée r\_o et c\_o sont correctes: Vrai

### QUESTION 4

Correct

Note de 1,00 sur 1,00



Une start-up inspirée a réaliser un add/sub 8 bits de la manière suivante

Les affirmations suivantes sont-elles vraies ou fausses?

**ATTENTION:** ne vous fiez pas aux couleurs des signaux pour vous guider, ils ont tous été unifiés pour avoir la même couleur, à vous d'en déterminer le comportement réel.

| Vrai     | Faux |                                                                                                                           |   |
|----------|------|---------------------------------------------------------------------------------------------------------------------------|---|
| OX       | 0    | La start-up maîtrise les opérations effectués et<br>est assurée que le comportement attendu est<br>celui qu'elle a décrit | ~ |
| 0        | OX   | Le bit de sélection fournira la bonne valeur au carry pour l'addition <b>et</b> la soustraction                           | ~ |
| <b>O</b> | OX   | Ce circuit modifie correctement la valeur de b_i pour effectuer une soustraction                                          | ~ |
| OX       | 0    | La sortie c_o permet de savoir si un problème de<br>dépassement est survenu pour les opérations<br>possibles              | ~ |

La start-up maîtrise les opérations effectués et est assurée que le comportement attendu est celui qu'elle a décrit: Faux Le bit de sélection fournira la bonne valeur au carry pour l'addition **et** la soustraction: Vrai Ce circuit modifie correctement la valeur de b\_i pour effectuer une soustraction: Vrai La sortie c\_o permet de savoir si un problème de dépassement est survenu pour les opérations possibles: Faux

### **◄ QUIZ LABO CHECKSUM SESSION ABSENTS**

Aller à...

DONNÉE LABO ALU **>** 

