

Work Item Number: 0

Date: 0

1	Include Ballot Rationale Here (Required for all Ballots)
3 4	Standard Test Method for Asphalt Mixture Workability Index ¹
5 6 7 8	This standard is issued under the fixed designation X $XXXX$; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.
9	
10	1. Scope
11	1.1 This test method covers the testing of asphalt pavement mixtures such as Warm Mix
12	Asphalt (WMA), Hot-Mix Asphalt (HMA), and Polymer Modified Hot-Mix Asphalt to establish
13	the relative workability (compactability) at paving temperatures. This test can be performed on a
14	modified Superpave Gyratory Compactor (SGC) or other suitable loading frame meeting the
15	requirements outlined in the apparatus section.
16	1.2 The values stated in SI units are to be regarded as the standard.
17	1.3 This standard does not purport to address all of the safety concerns, if any, associated
18	with its use. It is the responsibility of the user of this standard to establish appropriate safety and
19	health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

20

21

22

2.1 ASTM Standards:

Current edition approved XXX. XX, XXXX. Published XX XXXX. DOI:10.1520/XXXXX-XX

 $^{^{1}}$ This test method is under the jurisdiction of ASTM Committee D04 and is the direct responsibility of Subcommittee 20.

23	D 9/9/D 9/9M-12 Standard Practice for Sampling Bituminous Paving Mixtures		
24	D 3665 Standard Practice for Random Sampling of Construction Materials.		
25	D 3666 Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and		
26	Paving Materials		
27	D 4402 Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational		
28	Viscometer		
29	D 4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock,		
30	and Construction Materials Testing ANSI B46.1		
31	D 6925 Test Method for Preparation and Determination of the Relative Density of Hot Mix Asphalt (HMA)		
32	Specimens by Means of the Superpave Gyratory Compactor		
33	2.2 AASHTO Standards:		
34	AASHTO PP2 Practice for Short and Long Term Aging of Hot Mix Asphalt (HMA)		
35			
36	3. Terminology		
37	3.1 Definitions:		
38	3.1.1 Workability, n— a rheological property that quantifies the effort required to manipulate		
39	an un-compacted asphalt mixture with minimum loss of homogeneity (without segregation).		
40	DISCUSSION— The term manipulate refers to operations such as mixing, handling, and		
41	placement at the construction site. A mixture that requires less effort (lower force) has a		
42	higher workability than a material which requires more effort (higher force) to be directed		
43	into the desired shape. Workability is a temperature dependent characteristic for asphalt		
44	concrete mixtures.		
45	Note—This definition differs from that offered by ASTM D6704.		
46	3.1.2 Compactability, n— a rheological characteristic of an un-compacted asphalt mixture		
47	describing how much effort is required to achieve consolidation in an unconfined condition.		

- DISCUSSION— The effort required to achieve consolidation influences when the material can be properly consolidated without flowing and thus impacts construction rolling techniques. Compactability is a temperature dependent characteristic for asphalt mixtures.

 NOTE—Workability and compactability are interrelated temperature dependent characteristics for asphalt mixtures;
- bowever, two mixtures with the same laboratory workability may not have the same field compactability.

4. Summary of Test Method

53

54

55

56

57

58

59

60

61

62

63

64

65

67

68

69

70

- 4.1 An un-compacted (loose) asphalt mixture material specimen, conditioned at a predescribed temperature, is confined to a cylindrical steel mold while a consolidation pressure is applied at controlled travel rates (rate of strain). The resulting stress versus strain response of the material is used to determine an index value representing the relative workability and compactability of the material at the test temperature. Materials are typically tested at more than one temperature.
- 4.2 The test result represents the relative ease at which at which a loose material develops into an organized structure that can withstand a stress at a given temperature. A high workability result is indicative of a material easily manipulated to a point in which it can withstand stress at the test temperature. A low workability result indicates a material which is more difficult to manipulate at the test temperature to a point it can withstand stress.

5. Significance and Use

5.1 The value obtained in this test provides a relative index which ranks the behavior of the loose material related to the effort required to place and compact the material during construction. The index can indicate the relative temperature performance of materials and may be applicable for predicting appropriate production and construction temperatures. Lower

- production and construction temperatures may result in energy savings, lower emissions which reduce workers exposure to harmful vapors, and also contribute to the reduction in the release of pollutants to the environment.
 - 5.2 Results of materials tested at multiple temperatures used to predict lower paving temperatures can be applied to extend haul distances, expand ambient temperature limitations during placement (extend paving season), and determine construction requirements for proper placement without test strips to determine rolling requirements. The results may also be applicable for evaluating the warm mix additive levels and the effectiveness of such additives.
 - 5.3 The information extracted during the test may be applicable to quality control procedures used to monitor production materials meet design requirements and consistency specifications.

 The measurement data may reflect changes to aggregate structure as well as binder quality and additive levels.

6. Interferences

6.1 Temperature is known to significantly influence the workability of asphalt pavement mixtures.

7. Apparatus

88

108

89	7.1 Loading Frame— A system capable of applying a force at a programmed rate of travel
90	(velocity or strain rate) to a material specimen confined in a cylindrical mold of known diameter
91	while simultaneously measuring and recording the applied force (stress), height of the material
92	specimen, and time index. The system including an electromechanical, electro-hydraulic, or
93	electro-pneumatic instrument comprised of the following system components: (1) reaction frame,
94	and drive motor, (2) loading system and loading head, (3) force indicating and recording system,
95	(4) position measuring and recording system, (5) mold and mold end plates.
96 97	NOTE—Some models of SUPERPAVE Gyratory Compactor modified to operate to the specified protocol have proven to be acceptable loading systems.
98	7.1.1 The loading system and force indicator shall be capable of applying and measuring a
99	vertical force of at least 18kN which corresponds to up to 1000kPa on a 150mm diameter
100	specimen. The axis of the loading ram shall be perpendicular to the platen of the loading frame.
101	The force measurement and recording system shall be capable of measuring and recording the
102	force to the nearest 10 Newton (pressure to the nearest 0.5 kPa).
103	7.1.2 The loading system shall be capable of providing the required rate of travel.
104	7.1.3 The position measurement and recording system shall be capable of measuring and
105	recording the height of the specimen during the test process to the nearest 0.1 mm.
106	7.1.4 Specimen Molds—Specimen molds shall conform to the requirements of ASTM D6925.
107	Molds shall be secured to the reaction frame throughout the test sequence.

7.1.5 *Mold End Plates*—*M*old end plates shall conform to the requirements of ASTM D6925.

(I) X XXXX

09	7.2 Data Acquisition—The data acquisition system shall record at a minimum rate of 10 data
10	sets per second throughout the test. Each data set shall include at minimum a time index
11	(second), applied pressure (kPa) (or force (N) with specimen diameter (mm)), and specimen
12	height (mm).
13	7.3 Thermometers—Armored or dial type thermometers with metal stems for determining the
14	temperature of aggregates, asphalt binders, and asphalt mixtures between 10°C and 232°C, with
15	a minimum sensitivity of 3°C. A means for measuring, recording, or otherwise indicating the
16	specimen temperature at the completion of the test.
17 18	Note—Some loading systems may be equipped with instrumentation to measure and record the specimen temperature throughout the test.
19	7.4 Tamping Rod—A round, smooth, straight, steel rod with a diameter of $5/8 \pm 1/16$ and
20	approximately 20 in. [500 mm] in overall length. The rod shall have the tamping end or both
21	ends rounded to a hemispherical tip of the same diameter as the rod.
22	7.5 Tamping Mallet—A mallet with a rubber or rawhide head weighing 1.25 \pm 0.50 lb [0.6 \pm
23	0.2 kg] shall be used.
24	7.6 Balance—The balance shall have a minimum capacity of 10,000 g with a sensitivity of
25	0.1 g. The balance shall conform to Specification D 4753 as a Class GP2 balance.
26	7.7 Ovens—Two ovens are recommended for laboratory produced specimens. One oven shall
27	be a forced draft oven capable of maintaining the temperature required, nominally 135°C, for
28	short term aging. At least one more oven shall be available for heating aggregates, asphalt
29	binders, and equipment. This oven shall have a range to a minimum of 204°C, thermostatically
30	controlled to $\pm 3^{\circ}C$

AND X XXXX

131	7.8 Miscellaneous—Miscellaneous equipment may include: flat bottom metal pans for		
132	heating aggregates; scoops for batching aggregates; containers for heating asphalt binders;		
133	mixing spoons; trowels; spatulas; welders gloves for handling hot equipment; 150 mm paper		
134	disks; lubricants for moving parts; laboratory timers; and mechanical mixers.		
135			
136	8. Reagents and Materials		
137	8.1		
138			
139	9. Hazards		
140	9.1 Use standard safety precautions and protective equipment when handling hot materials,		
141	hazardous materials, and testing material specimens.		
142			
143	10. Sampling, Test Specimens, and Test Units		
144	10.1 Materials for laboratory produced specimens shall be sampled following procedure		
145	ASTM D 3665 Standard Practice for Random Sampling of Construction Materials.		
146	10.2 Plant produced asphalt mixtures shall be sampled following procedure ASTM D 979/D		
147	979M-12 Standard Practice for Sampling Bituminous Paving Mixtures.		
148	10.3 Sample adequate materials to prepare specimens of approximately 4600 g. Mixture		
149	weights for specimens prepared in the laboratory vary with different aggregate sources and with		
150	different mix types.		
151			
152	11. Preparation of Apparatus		

153	11.1 Molds and mold end plates shall be clean and free of damage prior to the start of each		
154	test.		
155			
156	12. Calibration and Standardization		
157	12.1 Calibration of the following items shall be verified following the manufacturer's		
158	recommendations annually: applied force, measured height, time recorder, mold and mold end		
159	plate dimensions, oven temperature, and thermometer.		
160	12.1.1 Verification of calibration shall be performed by the equipment manufacturer,		
161	agencies providing standardization services, or in-house personnel.		
162			
163	13. Preparation and Conditioning of Laboratory Prepared Material Specimens		
164	13.1 Material samples are often tested at multiple temperatures to determine the workability		
165	index at each test temperature; therefore, multiple material specimens are typically used but are		
166	not required.		
167	Note—Two material specimens are typically tested at each testing temperature with the results averaged.		
168	13.2 Preparation of Aggregates—Weigh and combine the appropriate aggregate fractions to		
169	the desired specimen mass. Generally, 4600 g of aggregate are required for aggregates with		
170	combined bulk specific gravities in the range of 2.55 to 2.70. The final height of specimens of		
171	this mass will be approximately 130mm. If the test utilizes molds other than 150mm diameter,		
172	the mass shall be adjusted to achieve the desired specimen final height.		
173	Note—Details of aggregate preparation may be found in any suitable mix design manual, such as the Asphalt Institute's		
174	MS-2.		
175	Note—SUPERPAVE™ volumetric design specimens have been shown to be of appropriate mass.		

176	13.3 Place the blended aggregate specimens and asphalt binder in an oven and bring to the		
177	required mixing temperature. Heat the mixing container and all necessary mixing implements to		
178	the required temperature.		
179	13.4 The laboratory mixing temperature range is typically defined as the range of		
180	temperatures where the un-aged asphalt binder has a kinematic viscosity of $170 \pm 20 \text{ mm2/s}$		
181	(approximately 0.17 ± 0.02 Pa-s for an asphalt binder density of 1.000 g/cm3) measured in		
182	accordance with Test Method D 4402.		
183	NOTE—Modified asphalt binders, especially those produced with polymer additives, generally do not adhere to the		
184	viscosity ranges noted. The user should refer to the asphalt binder manufacturer to establish appropriate mixing and		
185	compaction temperature ranges. In no case should the mixing temperature exceed 175°C.		
186	13.5 Charge the heated mixing bowl with the dry, heated aggregate and dry mix. Form a		
187	crater in the heated aggregate blend and weigh the required amount of asphalt binder into the		
188	aggregate blend. Immediately initiate mixing.		
189	13.6 Mix the asphalt binder and aggregate as quickly and thoroughly as possible to yield an		
190	asphalt mixture having a uniform distribution of asphalt binder. Because of the large batch		
191	weights, a mechanical mixer is preferable for the mixing process.		
192	13.7 Laboratory prepared material specimens require short term aging prior to testing.		
193	13.7.1 After completing the mixing process, subject the loose mix to short-term conditioning		
194	according to AASHTO PP2 for 2 h \pm 5 min at the conditioning temperature \pm 3°C. Stir the mix		
195	after 60 ± 5 min to maintain uniform conditioning.		
196			
197	14. Preparation of Field Plant Mix Material Specimens		

198	14.1 For samples of HMA plant-produced mix, the user must specify one of the following			
199	short-term aging conditions.			
200	14.1.1 No conditioning, test immediately as produced once the specimen is at test			
201	temperature for a period of 15 minutes.			
202	14.1.2 Another conditioning that the user can demonstrate will replicate the design			
203	conditioning.			
204				
205	15. Testing of Material Specimens			
206	15.1 Bring the material specimen to the selected test temperature and hold for 15 minutes.			
207	NOTE—A temperature offset may be required to help compensate for temperature loss during placement of material into			
208	the mold.			
209	NOTE—For construction temperature prediction models, test temperatures are typically selected to achieve workability			
210	index values less than 150kPa or greater than 170 kPa. Depending on material type, the temperature for a DWT value less			
211	than or equal to 150kPa may range from 60° C (140° F) for Warm Mix Asphalt, 71° C (160° F) Hot Mix Asphalt, to 80° C			
212	(176°F) for Polymer Modified materials. The temperature to achieve a workability value greater than or equal to 170kPa			
213	may range from 104°C (220°F) for Warm Mix Asphalt, 120°C (248°F) Hot Mix Asphalt, to 150°C (302°F) for Polymer			
214	Modified materials. temper			
215	15.2 Place the mold, mold end plates, and tamping rod into an oven at a temperature 3°C			
216	higher than the test temperature for a minimum of 45 min prior to the testing of the first			
217	specimen (during the time the mixture is in the conditioning process).			
218	15.3 At the end of the conditioning period, bring the specimen to the desired test			
219	temperature.			
220	15.4 Remove the loose mix specimen, mold, and mold end plates from the oven. Place a			
221	paper disk on the bottom end plate inside the mold to aid separation of the specimen after testing.			

222	15.5 Quickly place the specimen into the mold in a single lift using a transfer bowl or other		
223	suitable device. Take care to minimize segregation of the mixture in the mold.		
224	15.6 Rod the specimen with the heated tamping rod 15 strokes distributed around the		
225	perimeter and 10 strokes over the interior for a total of 25 strokes. The rodding should be to the		
226	full depth of the specimen.		
227	15.7 After the sample is rodded, tap the outside of the mold in the area occupied by the		
228	specimen lightly 10 to 15 times with the mallet to close any holes left by rodding and to release		
229	any large air bubbles that may have been trapped.		
230	15.8 Level the top of the specimen then place a second paper disk onto the material specimen		
231	to avoid material adhering to the top end plate.		
232	15.9 Insert the top end plate into the mold if required.		
233	15.10 Place the prepared specimen and mold into the loading frame and initiate the test		
234	sequence. The loading frame shall apply a force to the specimen at the specified rate until the		
235	desired final stress is achieved. Unless noted otherwise, loading rate shall be 0.05mm/s over the		
236	stress range of 40 kPa through 950 kPa.		
237	15.11 Record the time, applied force, and specimen height every 0.1 seconds.		
238	15.12 At the completion of the test profile, measure and record the temperature of the		
239	specimen. On systems equipped with temperature measurement instrumentation, record the		
240	specimen temperature throughout the test.		
241	15.13 Remove the mold specimen assembly from the loading frame and remove the		
242	specimen from the mold.		
243	NOTE—The material specimen may not be sufficiently compacted to remain intact when removed from the mold.		

15.14 If the loading frame is a gyratory compactor, at the completion of the workability test profile, the material specimen may be compacted using gyratory compaction. Specimens compacted in this manner have the advantage of further evaluation.

247

248

249

16. Calculation or Interpretation of Results

16.1 Calculate the Normal Stress at each index point *n* for the test sequence:

 $\sigma_{n} = \frac{F_{n}}{A}$ Equation 1

250

Where,

252 $\sigma_{n} = \text{Stress at } n, \text{ kPa}$ 253 $P_{n} = \text{Force at } n, \text{ kN}$ 254 $A = \text{Area of cross-section, m}^{2}$ 255 n = Time Index

256

257

16.2 Calculate the % Volumetric Strain at each index point *n* for the test sequence:

 $\varepsilon_{n} = \frac{h_{0} - h_{n}}{h_{0}} * 100$ Equation 2

Where, $\varepsilon_{n} = \text{Volumetric Strain at } n, \%$ $h_{n} = \text{Specimen Height at } n, \text{mm}$ $h_{0} = \text{Specimen Height at stress level of } 90\text{kPa, mm}$ n = Time Index

264 265

16.3 Calculate the Dongre Workability Test Value (slope of stress vs. volumetric strain curve

266 near 600 kPa):

 $DWT_T = \frac{\sigma_{650} - \sigma_{550}}{\varepsilon_{650} - \varepsilon_{550}}$ Equation 3
267
268 Where,
269 DWT_T = Workability at Temperature T, kPa
270 σ_{550} = Measured stress at index nearest 550 kPa, kPa
271 σ_{650} = Measured stress at index nearest 650 kPa, kPa
272 ε_{550} = Volumetric Strain at index nearest 550 kPa stress, %
273 ε_{650} = Volumetric Strain at index nearest 650 kPa stress, %

275 276

Figure 1: Stress vs. Volumetric Strain Chart NOTE—Lower slope (less steep) reflects lower workability.

277

278

279

280

282

284

17. Report

- 17.1 For each specimen tested, the report shall contain the following information:
- 17.1.1 Date of test 281
 - 17.1.2 Specimen Identification and Material information (mix type, etc.)
- 17.1.3 Specimen Temperature, °C 283
 - 17.1.4 Specimen Workability (DWT) value, kPa
- 17.1.5 Name of the technician performing the test 285

286 287

18. Precision and Bias

288	18.1 Precision— The within-laboratory repeatability standard deviation has been determined			
289	to be, based on labs, test replicates, and different samples. The between-			
290	laboratory reproducibility of this test method is being determined and will be available on or			
291	before (date). Therefore, this standard should not be used for acceptance or rejection of a			
292	material for purchasing purposes.			
293	18.2 Bias—Bias has not been determined since there is no accepted reference material			
294	suitable for determining the bias for the procedure in this test method.			
295				
296	19. Keywords			
297	19.1 Bituminous paving mixtures, asphalt, compaction, workability, compactability, warm mix			
298				
299				
300 301	ANNEX			
001				
302	(Mandatory Information)			
303	A1.			
304	A1.1			
305	A1.1.1			
306				
307				

308		APPENDIX
309		(Nonmandatory Information)
310		X1.
311	X1.1	
312	X1.1.1	
313		
314		
315		
0.0		
316		REFERENCES
317	(1)	
318		