三 (2)

ethylene associative chain transfer

== **B.** Cyclophane-based α-diimine complex

C. Molecular model of complex 1

A. Acyclic α -diimine complex (catalyst **4g** in reference 5)

FIG. 2

Summary of Polymerization Data

		ı			•							1
	Branches Per 1000 carbons	99	73	29	80	84	85	91	68	91	26	96
	PDI	1.29	1.30	1.31	1.23	1.28	1.23	1.45	1.43	1.41	1.72	1.64
	$(x 10^{-3})$	413	374	386	305.	834	422	468	988	605	433	756
	$(x 10^{-3})$	320	288	294	248	652	342	323	619	429	252	462
	$(x 10^{\frac{b}{10}}/h)$	1 491	1 436	1321	1 371	1 468	1 286	1 333	1 307	1 050	1 071	1 007
	$\frac{\text{TON}^b}{(x \ 10^{-3})}$	124	239	331	114	245	321	111	218	263	68	168
	Yield (g)	3.48	6.70	9.25	3.20	6.85	9.00	3.11	6.10	7.35	2.50	4.70
	Time (min)	5	10	15	\$	10	15	ν,	10	15	\$	10
	Temp.	30	30	30	50	20	20	70	70	70	06	06
-	Moles of Catalyst (x 10°)	-	·	-	-			-	_	-	_	-
	Entry	-	7	ю	4	5	9	7	œ	6	10	11

^a Experimental condition: in 200 mL of toluene, cocatalyst MMAO (Al:Ni ≈ 3000), 200 psi ethylene pressure.

^b TON = turnover number, which was calculated as the moles of ethylene per mole of catalyst; TOF = turnover frequency, i.e., TON per hour.

FIG. 4A Examples of bidentate ligands

FIG. 4B Examples of bidentate ligands (continued)

FIG. 4C Examples of bidentate ligands (continued)

$B_1 = B_2 = -T-Ar-T-$	A H H K LOIN A K LOIN	15.	$B_1 = B_2 = -T - Ar - T -$	DAN H. R. H. N. A. M.	18.
$B_1 = B_2 = -T - Ar - T -$	N I N I N I N I N I N I N I N I N I N I	14.	$B_1 = B_2 = -T - Ar - T$	O'n' H R' TO N' TO	17.
$B_1 = B_2 = .T.Ar.T.$	Con R R R Con	13,	$B_1 = B_2 = -T-Ar-T-$	On R R COIN	16.

FIG. 4DExamples of bidentate ligands (continued)

$B_1 = B_2 = -T - Ar - T -$	R. SIN R.	21.	$B_1 = B_2 = -T - Ar - T.$	R. SI A. B.	24.
$B_1 = B_2 = -T - Ar - T -$	R _s -Si n R _s -Si n H H N R _s -Si n H R _s	20.	$B_1 = B_2 = -T - Ar - T$ -	R _s Si R _s	23.
$B_1 = B_2 = -T - Ar - T$	Residence Reside	19.	$B_1 = B_2 = -T - Ar - T.$	R _s Si A N N Si R _s	22.

half-cyclic structure for any of the above ligands FIG. 4E
Examples of bidentate ligands (continued) 26. αĥ $B_1 = B_2 = -T - Ar - T$ $B_1 = B_2 = -T - Ar - T$ (33) 27.

FIG. 5A

FIG. 5BExamples of tridentate ligands (continued)

Examples of preference of metals for different types of ligands

FIG. 6B

Examples of preference of metals for different types of ligands (continued)

FIG. 6C

Examples of preference of metals for different types of ligands (continued)

In structures 1 through 42, Q, n, R4 and R5 are as defined in Formula 1 in the specification, n' is 1 through 4, and R' are alkyl, alkenyl, aryl, aralkyl, or cycloalkyl.

14/16

FIG. 7 (Prior Art)

$$\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & & \\ \hline & &$$

FIG. 8

FIG. 9

15/16

FIG. 10

Polymerization of 1-Hexene
(Catalyst Activity and Molecular Weight Data at 0 °C and at 25 °C)

entry	c at	Load (mmol)	Temp (oC)	Yield (g)	TON	Mw	Mn	PDI	DSC (°C)	Branch /1000c
F62	2	0.005	. 0	0.33	784.	170 K	96 K	1.77	T _m 58	65
F36	2	0.01	0	0.41	488	305 K	292 K	1.05	T _m 63	61
F84	1	0.005	0	1.62	3850	719 K	627 K	1.15	T _m -42	104
Ref JACS 95, 6414	1	0.017 activated by Et ₂ AICI	0	2.1	1468	310 K	140 K	2.2	T _m -20 T _g -57	100
F60	2	0.005	25	1.68	3992	623 K	510 K	1.22	T _m 62	57
F72	1	0.005	25	1.90	4515	817 K	543 K	1.50	T _m -50	108
Ref JACS 96,11664	1	0.017 3.2 M; 30 min rxn.	23		2800	129 K	84 K	1.54	T _m -17 T _B -57	120
F74	3	0.005	25	0.80	1901	88 K	83 K	1.06	T _m 56	35
F42	2	0.005	75	2.21	5466	622 K	529 K	1.17	T _m 59	52
F68	1	0.005	75	0.43	1022	415 K	. 279 K	1.49	T _m -53	111
F70	3	0.005	75	0.26	618	131 K	92 K	1.43	T _m 73	38
F46	2	0.005	95	1.6	3802	252 K	125 K	2.00	T _m 57	54
F48	1	0.005	95	0.47	1117	287 K	171 K	1.68	T _m -53	113
F50	3	0.005	95	0.59	1402	77 K	59 K	1.29	T _m 76	40

FIG. 11

TON vs. Temp

