beamer

0.2 Properties of the Integers	
6. Prove the Well Ordering Property of $\mathbb Z$ by indu	action and prove the minimal element is unique.
Theorem . (Well Ordering of \mathbb{Z}) If A is any such that $m \leq a$, for all $a \in A$ (m is called the	nonempty subset of \mathbb{Z}^+ , there is some element $m \in A$ minimal element of A .
Proof.	
11. Prove that if d divides n then $\varphi(d)$ divides $\varphi(n)$	n) where φ denotes Euler's φ -function.
Proof.	
$0.3 \mathbb{Z}/n\mathbb{Z} : \mathbf{The} \mathbf{I}$	ntegers Modulo n
10. Prove that the number of elements of $(\mathbb{Z}/n\mathbb{Z})^{\times}$	is $\varphi(n)$ where ϖ denotes the Euler φ -function.
Proof.	
11. Prove that if $\overline{a}, \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\overline{a} \cdot \overline{b} \in (\mathbb{Z}/n\mathbb{Z})$	$\mathbb{Z})^{ imes}.$
Proof.	
How did you get interested in math? Answer Here	
What are your goals for the course and for the Answer Here	ne semester?
Tell me about someone you met in this cour preferably new!- in the course outside of class Answer Here	rse. (This will require you to meet someone - s to strike up a conversation.)