Supplemental Instructions

Erik Thorsell erithor@student.chalmers.se

2015-10-22

Tentakött!

- 1. Betrakta mängden V med n element.
 - a) För ett positivt heltal $k < \binom{n}{2}$, hur många grafer med V som nodmängd och med k kanter kan man bilda?

(Kom ihåg att en graf saknar öglor och multipla kanter.)

- b) På hur många olika sätt kan man bilda en fullständig bipartit graf med V som nodmängd?
- c) På hur många sätt kan man bilda en n-väg med V som nodmängd?
- d) På hur många sätt kan man bilda en n-cykel med V som nodmängd?
- 2. För vilka heltal n gäller att

$$21|n^8 - 7n^5 + 6n^3 + 4$$

- 3. a) Antag att n olika bollar ska fördelas på tre urnor på så sätt att i de tre urnorna ska det finnas k, l, respektive m bollar. På hur många sätt kan det ske?
 - b) Låt $a, b, c \in \mathbb{R}$ och $n \in \mathbb{Z}_+$. Som bekant säger binomialsatsen att

$$(a+b)^n = \sum_{(k,l):k+l=n} \binom{n}{k} a^k b^l$$

På liknande sätt gäller att

$$(a+b+c)^n = \sum_{(k,l,m):k+l+m=n} A(k,l,m)a^k b^l c^m$$

Fråga: Vad är A(k, l, m)?

4. Visa att antalet följder av längd n, n = 1, 2, 3, ..., av nollor och ettor, som innehåller ett udda antal ettor är 2^{n-1} .

- 5. Följden $f_1, f_2, f_3, ...$ är given av att $f_1 = 1$ och att det för $n \ge 2$ gäller att $f_n = \sqrt{1 + f_{n-1}^2}$. Visa att det för alla n gäller att $f_n = \sqrt{n}$.
- 6. Låt f_n vara antalet följder av längd n av talen 1, 2 och 3 sådana att det aldrig står en etta omedelbart före en tvåa.

Finn en rekursiv formel för följden f_1, f_2, f_3, \dots

- 7. Låt G=(V,E) vara en graf och låt $R,\,S$ och T vara relationer på V givna att:
 - xRy om x och y är grannar.
 - $\bullet \ xSy$ om xoch yligger i samma sammanhängande komponent.
 - xTy om $d_x \leq d_y$.

Vilka av relationerna R, S och T är ekvivalensrelationer?