Diskretes Äußeres Kalkül (DEC) auf Oberflächen ohne Rand

Ingo Nitschke

IWR - TU Dresden

21. September 2014

Content

1 Differentialformen und Motivation

Simplizialer Kettenkomplex

"Tensor-Maschine"

Für einen Vektorraum V nimmt ein (m, n)-Tensor m Kovektoren aus V^* (Dualraum von V) und n Vektoren aus V und gibt einen Wert aus \mathbb{R} zurück.

Differentialform als "Tensor-Maschine"

Eine Differentialform vom Grad n ist ein antisymmetrischer (0, n)-Tensor.

Beispiel im $\mathbb{R}^2 \supseteq U$, dim(U) = 2

0-Formen $f: \emptyset \to \mathbb{R}$ sind Konstanten bzw. Funktionen.

$$f: U \to \mathbb{R}, \ x \mapsto f_x := f(x).$$

1-Formen $\alpha \in (\mathbb{R}^2)^* \cong \mathbb{R}^2$ können als Zeilenvektoren (Kovektoren) aufgefasst werden

$$\alpha = [\alpha_1, \alpha_2] : \mathbb{R}^2 \to \mathbb{R}$$

$$\vec{v} = \begin{bmatrix} v^1 \\ v^2 \end{bmatrix} \mapsto \alpha(v) = [\alpha_1, \alpha_2] \begin{bmatrix} v^1 \\ v^2 \end{bmatrix} = \alpha_1 v^1 + \alpha_2 v^2$$

bzw. als Zeilenvektorfeld

$$\alpha: U \times \mathcal{V}(U) \to \mathbb{R}$$
$$(x, \vec{v}) \mapsto \alpha_x(\vec{v}) = \alpha_1(x)v^1(x) + \alpha_2(x)v^2(x)$$

2-Formen können als antisymmetrische Matrizen aufgefasst werden.

Metrischer Tensor zweidimensionaler Mannigfaltigkeiten

o.E.d.A orthogonal:

$$g = \begin{bmatrix} g_1 & 0 \\ 0 & g_2 \end{bmatrix}$$

Skalarprodukt:

$$\langle \vec{w}, \vec{v} \rangle_{g} = \vec{w}^{T} g \vec{v} = g_{1} w^{1} v^{1} + g_{2} w^{2} v^{2}$$

• Länge:

$$\|\vec{v}\|_{g} = \sqrt{\langle \vec{v}, \vec{v} \rangle_{g}}$$

Winkel:

$$\cos\Theta = \frac{\left\langle \vec{w}, \vec{v} \right\rangle_g}{\left\| \vec{v} \right\|_g \left\| \vec{w} \right\|_g}$$

Motivation: Skalarprodukt → Kontraktion von 1-Formen

$$\langle \vec{w}, \vec{v} \rangle_g = g_1 w^1 v^1 + g_2 w^2 v^2$$

= $w_1 v^1 + w_2 v^2 = \vec{w}^{\,\flat} (\vec{v})$

Motivation: Gradient → äußere Ableitung

• $f:M o\mathbb{R}$ differenzierbar und $dx^i(\partial_i)=\delta_{ij}$

$$\nabla f = \mathbf{g}^{1} \partial_{1} f \partial_{1} + \mathbf{g}^{2} \partial_{2} f \partial_{2} = \begin{bmatrix} \mathbf{g}^{1} \partial_{1} f \\ \mathbf{g}^{2} \partial_{2} f \end{bmatrix}$$
$$= (\partial_{1} f dx^{1} + \partial_{2} f dx^{2})^{\sharp} = [\partial_{1} f, \partial_{2} f]^{\sharp}$$
$$= (\mathbf{d} f)^{\sharp}$$

 $\bullet \Rightarrow \mathbf{d}f$ metrikunabhängig

Beispiel: Polarkoordinaten (ϕ, r) (flacher Fall)

- \vec{x} : $[0, 2\pi) \times \mathbb{R}_+ \to \mathbb{R}^2$, $(\phi, r) \mapsto r [\cos \phi, \sin \phi]^T$
- mit $\vec{e}_i := \|\partial_i \vec{x}\|^{-1} \partial_i \vec{x}$ gilt

$$\nabla f = \frac{1}{r} \partial_{\phi} f \vec{e}_{\phi} + \partial_{r} f \vec{e}_{r}$$
$$\mathbf{d}f = \partial_{\phi} f d\phi + \partial_{r} f dr$$

• \Rightarrow **d** f koordinatenunabhängig (koordinatenfrei)

Beispiel: Einheitssphäre (nichtflacher Fall)

u Breitengrad und v Längengrad

$$\vec{x}: (0,\pi) \times [0,2\pi) \to \mathbb{S}^2 \subset \mathbb{R}^3, \ (u,v) \mapsto \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix} := \begin{bmatrix} \sin u \cos v \\ \sin u \sin v \\ \cos u \end{bmatrix}$$

•

$$\nabla f = \partial_u f \partial_u \vec{x} + \frac{1}{\sin^2 u} \partial_v f \partial_v \vec{x}$$
$$\mathbf{d}f = \partial_u f du + \partial_v f dv$$

Richtungsableitung

$$\mathbf{d}f(\vec{v}) = \langle \nabla f, \vec{v} \rangle_g$$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

Hodge-Stern-Operator

• * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

- * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$
- für n = 2:

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

- * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$
- für n=2:
 - $*f = \sqrt{g_1g_2}fdx^1 \wedge dx^2$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

- * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$
- für n = 2:
 - $*f = \sqrt{g_1g_2}fdx^1 \wedge dx^2$
 - $*(w_1dx^1 + w_2dx^2) = -\sqrt{g_1g^2}w_2dx^1 + \sqrt{g^1g_2}w_1dx^2$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

- * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$
- für n=2:
 - $*f = \sqrt{g_1g_2}fdx^1 \wedge dx^2$
 - $*(w_1dx^1 + w_2dx^2) = -\sqrt{g_1g^2}w_2dx^1 + \sqrt{g^1g_2}w_1dx^2$
 - $*w_{12}dx^1 \wedge dx^2 = \sqrt{g^1g^2}w_{12}$

$$\mathbf{d}\left(w_1dx^1+w_2dx^2\right)=\left(\partial_1w_2-\partial_2w_1\right)dx^1\wedge dx^2$$

- * ist Isomorphismus zwischen $\Omega^p(M)$ und $\Omega^{n-p}(M)$
- für n = 2:
 - $*f = \sqrt{g_1g_2}fdx^1 \wedge dx^2$
 - $*(w_1dx^1 + w_2dx^2) = -\sqrt{g_1g^2}w_2dx^1 + \sqrt{g^1g_2}w_1dx^2$
 - $*w_{12}dx^1 \wedge dx^2 = \sqrt{g^1g^2}w_{12}$
- ⇒ nicht metrikunabhängig!

Baukasten für lineare Differentialoperatoren 1. Ordnung für dim(M) = 2

• $C^{\infty}(M)$ glatte Funktionen, $\mathcal{V}^{\infty}(M)$ glatte Vektorfelder auf M

Baukasten für lineare Differentialoperatoren 1. Ordnung für dim(M) = 2

• $C^{\infty}(M)$ glatte Funktionen, $\mathcal{V}^{\infty}(M)$ glatte Vektorfelder auf M

$$\Omega^{0}(M) \xrightarrow{\mathbf{d}} \Omega^{1}(M) \xrightarrow{\mathbf{d}} \Omega^{2}(M)$$

$$\downarrow \downarrow \downarrow$$

$$C^{\infty}(M) \xrightarrow{\nabla} V^{\infty}(M) \xrightarrow{\mathsf{rot}} C^{\infty}(M)$$

• $\delta := - * \mathbf{d} * \mathsf{Koableitung}$

$$\Omega^{0}(M) \underset{\text{id}}{\longleftarrow} \Omega^{1}(M) \underset{\delta}{\longleftarrow} \Omega^{2}(M)$$

$$\downarrow^{\dagger} \qquad \qquad \downarrow^{\ast}$$

$$C^{\infty}(M) \underset{\text{Div}}{\longleftarrow} V^{\infty}(M) \underset{\text{-Rot}}{\longleftarrow} C^{\infty}(M)$$

Diskretisierungen

• Mannigfaltigkeit $M \rightsquigarrow \text{Simplizialkomplex } K$, Kettenkomplex $C_p(K)$

Diskretisierungen

- Mannigfaltigkeit $M \rightsquigarrow \mathsf{Simplizialkomplex}\ K$, Kettenkomplex $C_p(K)$
- Differentialformen $\Omega^p(M) \rightsquigarrow \text{Kokettenkomplex } \Omega^p_d(K) := C^p(K)$

Diskretisierungen

- Mannigfaltigkeit $M \rightsquigarrow \text{Simplizialkomplex } K$, Kettenkomplex $C_p(K)$
- Differentialformen $\Omega^p(M) \rightsquigarrow \mathsf{Kokettenkomplex}\ \Omega^p_d(K) := C^p(K)$
- Operatoren auf $\Omega^p(M)$ (**d**, *, usw.) \leadsto Operatoren auf $\Omega^p_d(K)$, $C_p(K)$

• sind Knoten, Kanten, Dreiecke, usw.

• sind Knoten, Kanten, Dreiecke, usw.

• sind Knoten, Kanten, Dreiecke, usw.

- sind Knoten, Kanten, Dreiecke, usw.
- können mit einer Orientierung versehen werden

- sind Knoten, Kanten, Dreiecke, usw.
- können mit einer Orientierung versehen werden
- besitzen einen Umkreismittelpunkt $c(\sigma^p)$ $(c(\sigma^p) \in Int(\sigma^p) \Rightarrow$: Wohlzentrierheit)

• K besteht aus (orientierten) Simplizes.

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- Der Schnitt zweier Simplizes ist leer oder liegt in K. (⇒: Simplizialkomplex)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- Der Schnitt zweier Simplizes ist leer oder liegt in K. (⇒: Simplizialkomplex)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- Der Schnitt zweier Simplizes ist leer oder liegt in K. (⇒: Simplizialkomplex)
- Das Polytop $|K| := \bigcup_{\sigma \in K} \sigma$ ist C^0 -Mannigfalltigkeit. (\Rightarrow : mannigfaltigartig)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- ullet Der Schnitt zweier Simplizes ist leer oder liegt in K. (\Rightarrow : Simplizialkomplex)
- Das Polytop $|K|:=\bigcup_{\sigma\in K}\sigma$ ist C^0 -Mannigfalltigkeit. (\Rightarrow : mannigfaltigartig)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- ullet Der Schnitt zweier Simplizes ist leer oder liegt in K. (\Rightarrow : Simplizialkomplex)
- ullet Das Polytop $|K|:=igcup_{\sigma\in K}\sigma$ ist C^0 -Mannigfalltigkeit. (\Rightarrow : mannigfaltigartig)
- Alle Dreiecke sind gleichorientiert. (⇒: Orientierbarkeit)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- ullet Der Schnitt zweier Simplizes ist leer oder liegt in K. (\Rightarrow : Simplizialkomplex)
- Das Polytop $|K| := \bigcup_{\sigma \in K} \sigma$ ist C^0 -Mannigfalltigkeit. (\Rightarrow : mannigfaltigartig)
- Alle Dreiecke sind gleichorientiert. (⇒: Orientierbarkeit)
- Zusätzlich: Jedes Simplex ist wohlzentriert. (⇒ ∃ Dualgitter)

- K besteht aus (orientierten) Simplizes.
- Jede Facette liegt in K.
- ullet Der Schnitt zweier Simplizes ist leer oder liegt in K. (\Rightarrow : Simplizialkomplex)
- Das Polytop $|K| := \bigcup_{\sigma \in K} \sigma$ ist C^0 -Mannigfalltigkeit. (\Rightarrow : mannigfaltigartig)
- Alle Dreiecke sind gleichorientiert. (⇒: Orientierbarkeit)
- Zusätzlich: Jedes Simplex ist wohlzentriert. ($\Rightarrow \exists$ Dualgitter)

Über einen mechanischen Ansatz $d_t \vec{x}_i = \vec{F}(\vec{x}_i)$ lassen sich Gitterpunkte u.U. neu arrangieren. \vec{F} wird nach folgenden Kriterien definiert.

Über einen mechanischen Ansatz $d_t \vec{x}_i = \vec{F}(\vec{x}_i)$ lassen sich Gitterpunkte u.U. neu arrangieren. \vec{F} wird nach folgenden Kriterien definiert.

Optimale Winkel von 60°

Über einen mechanischen Ansatz $d_t \vec{x}_i = \vec{F}(\vec{x}_i)$ lassen sich Gitterpunkte u.U. neu arrangieren. \vec{F} wird nach folgenden Kriterien definiert.

- Optimale Winkel von 60°
- ullet Optimale Kantenlänge: $orall \sigma^1 \in K: \quad \left|\sigma^1\right| = I^*$

Über einen mechanischen Ansatz $d_t \vec{x}_i = \vec{F} \left(\vec{x}_i \right)$ lassen sich Gitterpunkte u.U. neu arrangieren. \vec{F} wird nach folgenden Kriterien definiert.

- Optimale Winkel von 60°
- ullet Optimale Kantenlänge: $orall \sigma^1 \in K: \quad \left|\sigma^1\right| = I^*$

Das Dualgitter csdK ist die Umkreismittelpunktsunterteilung eines wohlzentrierten Primärgitters. Dazu gehören . . .

Das Dualgitter csdK ist die Umkreismittelpunktsunterteilung eines wohlzentrierten Primärgitters. Dazu gehören . . .

• alle Umkreismittelpunkte $c(\sigma^p)$

Das Dualgitter csdK ist die Umkreismittelpunktsunterteilung eines wohlzentrierten Primärgitters. Dazu gehören ...

- alle Umkreismittelpunkte $c(\sigma^p)$
- alle Kanten $s[c(\sigma^p), c(\sigma^q)]$ mit $\sigma^p \prec \sigma^q$

Das Dualgitter csdK ist die Umkreismittelpunktsunterteilung eines wohlzentrierten Primärgitters. Dazu gehören . . .

- alle Umkreismittelpunkte $c(\sigma^p)$
- alle Kanten $s[c(\sigma^p), c(\sigma^q)]$ mit $\sigma^p \prec \sigma^q$
- alle Dreiecke $s[c(\sigma^p), c(\sigma^q), c(\sigma^r)]$ mit $\sigma^p \prec \sigma^q \prec \sigma^r$

Das Dualgitter csdK ist die Umkreismittelpunktsunterteilung eines wohlzentrierten Primärgitters. Dazu gehören ...

- alle Umkreismittelpunkte $c(\sigma^p)$
- alle Kanten $s[c(\sigma^p), c(\sigma^q)]$ mit $\sigma^p \prec \sigma^q$
- alle Dreiecke $s[c(\sigma^p), c(\sigma^q), c(\sigma^r)]$ mit $\sigma^p \prec \sigma^q \prec \sigma^r$

Das Dualgitter ist wieder ein Primärgitter, aber kein wohlzentriertes.

Kettenkomplex $C_p(K)$

• Eine p-Kette aus $C_p(K)$ ist eine formale Summe aus p-Simplizes

$$C_p(K) := \left\{ \sum_{\sigma \in K^{(p)}} \mathsf{a}_\sigma \sigma \middle| \mathsf{a}_\sigma \in \mathbb{Z} \right\}$$

Kettenkomplex $C_p(K)$

• Eine p-Kette aus $C_p(K)$ ist eine formale Summe aus p-Simplizes

$$C_p(K) := \left\{ \sum_{\sigma \in K^{(p)}} a_\sigma \sigma \middle| a_\sigma \in \mathbb{Z} \right\}$$

• zB. $c^1 := \sigma_0^1 - \sigma_1^1 + 2\sigma_2^1 \in C_1(K)$

Kettenkomplex $C_p(K)$

• Eine p-Kette aus $C_p(K)$ ist eine formale Summe aus p-Simplizes

$$C_p(K) := \left\{ \sum_{\sigma \in K^{(p)}} \mathsf{a}_\sigma \sigma \middle| \mathsf{a}_\sigma \in \mathbb{Z} \right\}$$

- zB. $c^1 := \sigma_0^1 \sigma_1^1 + 2\sigma_2^1 \in C_1(K)$
- zB. $c^2 := \sum_{\sigma^2 \succ v} \sigma^2 \in C_2(\operatorname{csd} K)$ (1-Ring um v im $\operatorname{csd} K$, $\star v$)

Sternoperator $\star: C_p(K) \to C_{n-p}(\star K) \subset C_{n-p}(\mathsf{csd} K)$

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec \ldots \prec \sigma^n} s_{\sigma^p \sigma^{p+1} \ldots \sigma^n} \left[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n) \right]$$

Sternoperator $\star: C_p(K) \to C_{n-p}(\star K) \subset C_{n-p}(\operatorname{csd} K)$

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec \ldots \prec \sigma^n} s_{\sigma^p \sigma^{p+1} \ldots \sigma^n} \left[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n) \right]$$

• Knoten $\sigma^0 \mapsto \mathsf{Voronoizelle} \star \sigma^0 \in C_2(\star K)$

Sternoperator $\star: C_p(K) \to C_{n-p}(\star K) \subset C_{n-p}(\operatorname{csd} K)$

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec \ldots \prec \sigma^n} s_{\sigma^p \sigma^{p+1} \ldots \sigma^n} \left[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n) \right]$$

- Knoten $\sigma^0 \mapsto \text{Voronoizelle } \star \sigma^0 \in C_2(\star K)$
- Kante $\sigma^1 \mapsto \mathsf{Voronoikante} \star \sigma^1 \in \mathcal{C}_1(\star \mathcal{K})$

Sternoperator $\star: C_p(K) \to C_{n-p}(\star K) \subset C_{n-p}(\operatorname{csd} K)$

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec ... \prec \sigma^n} s_{\sigma^p \sigma^{p+1} ... \sigma^n} \left[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n)
ight]$$

- Knoten $\sigma^0 \mapsto \text{Voronoizelle } \star \sigma^0 \in C_2(\star K)$
- Kante $\sigma^1 \mapsto \mathsf{Voronoikante} \star \sigma^1 \in C_1(\star K)$
- Dreieck $\sigma^2 \mapsto \text{Voronoiknoten } \star \sigma^2 \in C_0(\star K)$

