Annahmen für die Umrechnung

1. Dichte der Partikel:

Typische Partikeldichte f
ür Feinstaub: 1,65 g/cm³.

2. Geometrische Form der Partikel:

Partikel werden als Kugeln angenommen.

3. Formel für das Volumen einer Kugel:

•
$$V=\frac{4}{3}\pi r^3$$

4. Partikelradius für unterschiedliche Größenklassen:

• PM1.0: Durchmesser $=1,0\,\mu m$ ightarrow Radius $r=0,5\,\mu m$

• PM2.5: Durchmesser $=2,5\,\mu m$ \rightarrow Radius $r=1,25\,\mu m$

• PM10: Durchmesser = $10,0 \,\mu m \rightarrow \text{Radius } r = 5,0 \,\mu m$

5. Beziehung zwischen Masse und Anzahl:

• Masse eines einzelnen Partikels $m_p = ext{Dichte} \cdot V$.

Anzahl der Partikel
$$N = \frac{\text{Masse}}{m_p}$$
.

1.3 Radius der Partikel pro Kategorie

- Die Radien der Partikel werden auf Basis der PM-Kategorien geschätzt:
 - PM1.0: Radius $r=0.5\,\mu\mathrm{m}$ (Durchmesser = 1.0 $\mu\mathrm{m}$).
 - PM2.5: Radius $r=1.25\,\mu\mathrm{m}$ (Durchmesser = 2.5 $\mu\mathrm{m}$).
 - PM4.0: Radius $r=2.0\,\mu\mathrm{m}$ (Durchmesser = 4.0 $\mu\mathrm{m}$).
 - PM10: Radius $r=5.0\,\mu\mathrm{m}$ (Durchmesser = 10.0 $\mu\mathrm{m}$).

1.4 Umrechnungsformel

Die Anzahl der Partikel pro Kubikmeter N wird berechnet durch:

$$N = rac{ ext{Masse pro Volumen } (\mu ext{g/m}^3)}{ ext{Masse eines einzelnen Partikels } (\mu ext{g})}$$

Die Masse eines einzelnen Partikels $m{m}$ ergibt sich aus:

$$m = \rho \cdot V$$

Dabei:

- ρ : Dichte des Partikels (g/cm³).
- V: Volumen des Partikels (cm 3).

2. Berechnungsschritte

Schritt 1: Radius in Zentimeter umrechnen

Der Radius wird von Mikrometern (μm) in Zentimeter (cm) umgerechnet:

$$r_{
m cm} = r_{
m \mu m} \cdot 10^{-4}$$

Schritt 2: Volumen eines Partikels berechnen

Das Volumen eines kugelförmigen Partikels berechnet sich nach:

$$V=rac{4}{3}\pi r^3$$

Schritt 3: Masse eines Partikels berechnen

Die Masse eines Partikels ergibt sich aus der Dichte multipliziert mit dem Volumen:

$$m = \rho \cdot V$$

Schritt 4: Partikelanzahl berechnen

Die Anzahl der Partikel pro Kubikmeter ergibt sich durch:

$$N = rac{ ext{Masse pro Volumen} \left(\mu ext{g/m}^3
ight)}{m}$$

3. Typische Werte und Ergebnisse

PM-Kategorie	Radius (μm)	Radius (cm)	Volumen (cm ³)	Masse (μg)
PM1.0	0.5	$5\cdot 10^{-5}$	$5.24 \cdot 10^{-13}$	$8.65 \cdot 10^{-13}$
PM2.5	1.25	$1.25\cdot 10^{-4}$	$8.18 \cdot 10^{-12}$	$1.35\cdot 10^{-11}$
PM4.0	2.0	$2.0\cdot 10^{-4}$	$3.35 \cdot 10^{-11}$	$5.52\cdot 10^{-11}$
PM10.0	5.0	$5.0\cdot 10^{-4}$	$5.24\cdot 10^{-10}$	$8.65 \cdot 10^{-10}$

• Mit diesen Werten kann der Faktor $m{m}$ in die Umrechnung eingesetzt werden, um die Partikelanzahl zu berechnen.

4. Annahmen und Einschränkungen

1. Kugelförmige Partikel:

- Partikel sind in der Realität oft nicht kugelförmig, sondern haben unregelmäßige Formen.
- Dies ist eine idealisierte Annahme.

2. Homogene Dichte:

Die Annahme einer konstanten Dichte von 1.65 g/cm³ trifft nicht auf alle Partikeltypen zu.
 Beispielsweise k\u00f6nnen organische Partikel eine geringere Dichte haben.

3. Einheitlicher Radius:

Alle Partikel einer Kategorie (z. B. PM2.5) werden mit einem festen Radius modelliert,
 obwohl in der Realität Partikel einer Kategorie unterschiedliche Größen haben können.