Errores absolutos y relativos

Existen dos maneras de cuantificar el error de la medida: Mediante el llamado 'error absoluto', que corresponde a la diferencia entre el valor medido < x > y el valor real x. Mediante el llamado 'error relativo', que corresponde a el cociente entre el error absoluto y el valor medido < x > y el valor real x '. Matemáticamente tenemos las expresiones:

$$E_{abs} = \Delta x = |x - \langle x \rangle|$$
 $E_r = \frac{\Delta x}{|x|}$

Demuestre que:

$$x + y = \langle x \rangle + \langle y \rangle \pm (\Delta x + \Delta y)$$

$$x - y = \langle x \rangle - \langle y \rangle \pm (\Delta x + \Delta y)$$

$$x * y = \langle x \rangle * \langle y \rangle \pm (\langle x \rangle * \langle y \rangle) * (E_{rx} + E_{ry})$$

$$x/y = \langle x \rangle / \langle y \rangle \pm (\langle x \rangle / \langle y \rangle) * (E_{rx} + E_{ry})$$

- 1. Indicar cuales son las condiciones que **deben satisfacer** los errores.
- 2. Escriba un programa que sume N (grande) veces el número 0.9, mostrando en pantalla: la suma, el valor real, el error absoluto, y el error relativo. Para obtener el valor real, recuerde que las operaciones con números enteros son exactas.
- 3. Considérese la sucesión de números dada por la fórmula de recurrencia:

$$x_0 = 1$$
, $x_1 = 1 - \sqrt{3}$, $x_n = 2 * (x(n-1) + x(n-2))$

Los elementos de esta sucesión también pueden definirse mediante la relación:

$$x_n = (1 - \sqrt{3})^n$$

Evaluar los 50 primeros números de la sucesión

- (a) Utilizando la fórmula de recurrencia
- (b) Utilizando la expresión de cada número.
- (c) Comparar los resultados obtenidos para determinar los errores que se van comentiendo.
- 4. Como recordará de su curso de cálculo para un función real de una variable, la derivada se puede obtener como:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Escriba un programa que le permita calcular la derivada de la función $f(x) = e^x$, para $h = 10^{-1}$, 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} , y 10^{-9} . Comente el resultado obtenido.

5. En clase vimos que la integran $I_n = \int_0^1 x^n sen(x) dx$, se puede obtener de la relación de recurrencia:

$$I_n = -\cos(1) + nsen(1) - n(n-1)I_{n-2}$$

Obtener los primeros 16 términos y compárelos con la relación de recurrencia en sentido inverso.

6. Calcular las raíces de la siguiente ecuación cuadrática:

$$ax^2 + bx + c = 0$$

siendo $a = 1.0, b = 1.343 \times 10^5 \text{ y } c = 3.764 \times 10^{-6}$ Usando las siguientes relaciones:

(a)
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(b) $x_{1,2} = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$

(b)
$$x_{1,2} = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$$

(c) Calcular previamente $q = \frac{-1}{2} \left[b + sgn(b) \sqrt{b^2 - 4ac} \right]$, y las dos raíces a partir de valor de q como: $x_1 = \frac{q}{a}, \quad x_2 = \frac{c}{q}$

7. En Fortran 90 existen algunas funciones que entregan información de la máquina

DIGITS(X)	Números de digitos significativos
EPSILON(X)	Casi despreciable (real)
MAXEXPONENT(X)	Máximo exponente del model(real)
MINEXPONENT(X)	Mínimum exponente del model(real)
PRECISION(X)	Precision decimal (real, complex)
RADIX(X)	Base del model
RANGE(X)	Range Decimal exponente
HUGE(X)	El número más grande
TINY(X)	El número real más pequeño (real)

Escriba un programa usando estas o algunas de estas funciones para números enteros, real de simple precisión y doble precisión

8. Escriba un program, que al realizar algún cálculo se obtenga un desbordamiento por exceso de punto flotante (overflow) y otro desbordamiento por defecto (underflow).