Problem Sheet 0 Solutions

Q1.
$$13^{\frac{1}{8}}e^{j(\frac{\theta}{4}+k\frac{\pi}{2})}$$
, $k=0,1,2$ and $\theta=\arctan(\frac{3}{3})\approx 56.3^{\circ}$

Q2.
$$\frac{z_1}{z_2} = \frac{2+3j}{4+3j} \frac{4-3j}{4-3j}$$

= $\frac{1}{25} (17-6j)$

Q3. Assume z = x + jy, where $x, y \in \mathbb{R}$, rest is pretty straight forward.

Q4. (a) and (b) can be obtained quite easily by simple substitution.

For (c), notice that,

$$\sin(A + B) - \sin(A - B) = \Im(e^{j(A+B)} - e^{j(A-B)})$$

$$= \Im(e^{jA}(e^{jB} - e^{-jB})) = \Im(e^{jA}2j\sin B) = \Re(2\sin Be^{jA})$$

$$= 2\cos A\sin B$$

Q5. (a)
$$r^2 e^{2j\theta}$$
 (b) $\frac{1}{r} e^{-j\theta}$ (c) $r e^{-j\theta}$ (d) $r e^{j(\theta + \frac{\pi}{2})}$ (e) r^2 (f) $e^{2j\theta}$

Q6. (a)
$$\frac{1 - e^{-5a}}{5}$$
 (b) $\frac{e^{-2a}}{2}$

Q7. (a) Clearly, since f(1) takes two values. (b) Domain is $[1,\infty)$ and Range is $[0,\infty)$

Q8. The solution is composed of two parts, the particular and the homogeneous solution. That is,

$$y(t) = y_p(t) + y_h(t)$$

 $y_h(t)$ can be solved for, and is a solution to the homogeneous differential equation,

$$\frac{dy}{dt} + 2y = 0$$

Substituting $y=Ae^{st}$ gives us that $y_h(t)=Ae^{-2t}$, where A is a constant. The particular solution is a solution to the original differential equation. Making the substitution for y=a where a is a constant, and substituting, we obtain that $a=\frac{1}{2}$. Thus,

$$y(t) = \frac{1}{2} + Ae^{-2t}$$

Where the value of A can be calculated if the initial conditions are known.

Q.9
$$y[n] - 2y[n-1] = 1$$
, for $n \ge 0$

We need to figure out what y[n] is, in terms of n. Substituting n = 1, we get that

$$y[1] = 1 + 2y[0]$$

$$y[2] = 1 + 2y[1] = 1 + 2(1 + 2y[0])$$

$$= 1 + 2 + 4y[0]$$

$$y[3] = 1 + 2y[2] = 1 + 2(1 + 2 + 4y[0])$$

$$y[3] = 1 + 2 + 4 + 8y[0]$$

Thus, we see that a pattern emerges, and y[n] can be written as,

$$y[n] = \sum_{k=0}^{n-1} 2^k + 2^n y[0]$$

$$\implies y[n] = 2^n - 1 + 2^n y[0]$$

 $y[n] = 2^n(y[0] + 1) - 1$

Alternate method:

As in the case of solving the differential equation, here the final signal (sequence) y[n] can be split into two parts: a particular solution and an homogeneous solution. Mathematically,

$$y[n] = y_n[n] + y_h[n]$$

 $y_h[n]$ is a solution to the homogeneous difference equation,

$$y[n] - 2y[n-1] = 0$$

Assuming $y[n] = Az^n$, and substituting, $Az^n - 2Az^{n-1} = 0$ $\implies A = 0 \text{ or } z = 0 \text{ or } z = 2 \text{ } (A \neq 0)$

Thus $y_h[n]$ can be written as $y_h[n] = A2^n$, where A is a constant.

The particular solution is a solution to the original difference equation. Substituting y[n] = a where a is a constant, we get that a = -1. Which means that $y_p[n] = -1$. Thus, we get that,

$$v[n] = -1 + A2^n$$

Which is what we had obtained before.

Q10. A relation R defined on a set \mathcal{S} is said to be an equivalence relation, iff it is reflexive, transitive and symmetric. Any equivalence relation partitions the set it is defined upon into various equivalence classes. All elements within a particular equivalence class are equivalent to each element in that class, but is not equivalent to any element from some other equivalence class. Such a partition is disjoint.

Q11. (a)
$$\frac{1}{1-a} = 1 + a + a^2 + \dots$$
, this sum converges for $|a| < 1$

(b)
$$\frac{1}{(1-a)^2} = 1 + 2a + 3a^2 + \dots$$
, this sum converges for $|a| < 1$

The expressions can be obtained either by performing a Taylor Series expansion about the point a=0. Or, one can use the binomial expansion,

$$a=0$$
. Or, one can use the binomial expansion,
$$(1+x)^n=1+n\,x+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\dots$$