II/ Relation d'équivalence

1. Définitions

Une relation binaire \mathcal{R} définie sur E est une **relation d'équivalence** si elle est

- 1. réflexive
- 2. symétrique
- 3. transitive

2. Classes d'équivalence

Rappel : Soit E un ensemble fini, $A_1, A_2, ..., A_n$ n parties de E.

On dit que $A_1, A_2, ..., A_n$ forme une partition de E ssi les A_i sont disjoints 2 à 2 et leur réunion est égale à E.

c'est-à-dire
$$\bigcup_{i=1}^n A_i = E$$
 et $\forall i,j$ tels que $1 \leqslant i < j \leqslant n$, $A_i \cap A_j = \emptyset$
Soit $\mathcal R$ une relation d'équivalence définie sur E .

Pour tout élément x de E on note : $C(x) = \{ y \in E \mid x R y \}$: classe d'équivalence de l'élément x.

Théorème:

Soit \mathcal{R} une relation d'équivalence définie sur E.

Alors la famille $(C(x))_{x \in E}$ des classes d'équivalences associées forme une partition de E.

Réciproquement:

Étant donnée une partition $(A_i)_{i \in I}$ d'un ensemble E,

la relation définie sur E par : $x \mathcal{R} y \Leftrightarrow \exists i \in I \mid x \in A_i \text{ et } y \in A_i \text{ est une relation d'équivalence}$ et les classes d'équivalences associées sont les ensembles A_i .

2. Représentation sagittale

Si \mathcal{R} est une relation d'équivalence, il suffit d'afficher un cycle par classe d'équivalence.

On peut aussi faire apparaître les classes d'équivalence

3. Exemples

- > Dans n'importe quel ensemble, la relation d'égalité
- ➤ Dans $\mathbb{N} \times \mathbb{N}$, $(a,b) \mathcal{R}(c,d) \Leftrightarrow a+d=b+c \longrightarrow$ définition de \mathbb{Z}
- ightharpoonup Dans $\mathbb{Z} \times \mathbb{N}^*$, $(a,b) \mathcal{R}(c,d) \Leftrightarrow ad = bc$ \longrightarrow définition de \mathbb{Q}
- > Dans l'ensemble des bipoints du plan euclidien,

(A,B)équipollent à $(C,D) \Leftrightarrow (A,D)$ et (B,C) ont même milieu $\Leftrightarrow (AB)//(CD)$ et (AC)//(BD)

- → définition des vecteurs du plan.
- \blacktriangleright Dans un ensemble d'ensembles A est équipotent à $B \Leftrightarrow il$ existe une bijection de A vers B
 - → définition des cardinaux.
- \triangleright Dans l'ensemble des droites du plan euclidien, $\Delta_1 \sim \Delta_2 \Leftrightarrow \Delta_1//\Delta_2$ ou $\Delta_1 = \Delta_2 \longrightarrow$ définition des directions.
- ➤ Dans \mathbb{Z} , n étant fixé, $a = b \iff n$ divise $a b \implies$ définition de $\mathbb{Z}/n\mathbb{Z}$
- \triangleright Dans $\mathbb R$, congruence modulo 2π
- ➤ Dans l'ensemble des matrices carrées d'ordre n, A est semblable à $B \iff$ il existe une matrice inversible P telle que $B = P^{-1}AP$