Práctico 8

Coordenadas y Matrices de transformaciones lineales

Objetivos.

- Aprender a calcular coordenadas y la matriz de cambio de base.
- Aprender a calcular la matriz de una transformación lineal.
- Aprender a construir transformaciones lineales que satisfagan las propiedades solicitadas.

Ejercicios.

(1) Encontrar las coordenadas de $v \in V$ respecto de la base \mathcal{B} en los siguientes casos:

(a)
$$V = \mathbb{R}^3$$
, $v = (1, -1, 2)$ y $\mathcal{B} = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}.$

(a)
$$V = \mathbb{R}^3$$
, $v = (1, -1, 2)$ y $\mathcal{B} = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}.$
(b) $V = \mathbb{R}^{2 \times 2}$, $v = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ y $\mathcal{B} = \left\{\begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix}\right\}.$

- (2) Sea \mathcal{C} la base canónica de \mathbb{R}^2 y $\mathcal{B} = \{(1,0),(1,1)\}$ otra base ordenada de \mathbb{R}^2 .
 - (a) Encontrar la matriz de cambio de base $P_{\mathcal{C},\mathcal{B}}$ de \mathcal{C} a \mathcal{B} .
 - (b) Encontrar la matriz de cambio de base $P_{\mathcal{B},\mathcal{C}}$ de \mathcal{B} a \mathcal{C} .
 - (c) ¿Qué relación hay entre $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$?
 - (d) Encontrar $(x, y), (z, w) \in \mathbb{R}^2$ tal que $[(x, y)]_{\mathcal{B}} = (1, 4)$ y $[(z, w)]_{\mathcal{B}} = (1, -1)$.
 - (e) Utilizando la matriz de cambio de base, dar las coordenadas de un vector (x, y), en la base \mathcal{B} .

(3) Sea
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{3\times 3}$$
.

- (a) Dar una base ordenada \mathcal{B} de \mathbb{K}^3 tal que P es la matriz de cambio de base de la base canónica \mathcal{C} de \mathbb{K}^3 a la base \mathcal{B} .
- (b) Encontrar $(x, y, z) \in \mathbb{K}^3$ tal que su vector de coordenadas con respecto a \mathcal{B} es

$$[(x, y, z)]_{\mathcal{B}} = (2, -1, -1).$$

(4) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1),(1,-1)\}$ una base ordenada de \mathbb{R}^2 .

- (a) Calcular la matriz $[T]_{\mathcal{CB}'}$, es decir la matriz de T respecto de las bases \mathcal{C} y \mathcal{B}' .
- (b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .
- (c) Sea $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases $\mathcal{B}' \vee \mathcal{C} es$

$$[S]_{\mathcal{B}'\mathcal{C}} = \left[\begin{array}{cc} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{array} \right].$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

(5) Sea $T: \mathbb{R}_4[x] \to \mathbb{R}_4[x]$ dada por T(p(x)) = p'(x). Calcular $[T]_{\mathcal{BB}'}$ donde $\mathcal{B} = \mathcal{B}' =$ $\{1, x, x^2, x^3\}$ y utilizar esto para dar una base de Nu T y para caracterizar con ecuaciones a $\operatorname{Im} T$.

(6) Sean $\mathcal{B} = \{v_1, v_2, v_3\}$, $\mathcal{U} = \{v_1 + v_3, v_1 + 2v_2 + v_3, v_2 + v_3\}$ y \mathcal{U}' bases de \mathbb{R}^3 , y sea \mathcal{C} la base canónica de \mathbb{R}^3 . Sea $T : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$[T]_{\mathcal{BC}} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix} \quad \text{y} \quad [T]_{\mathcal{UU'}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Determinar \mathcal{U}' .

- (7) Decidir en cada caso si existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga las siguientes condiciones. En caso afirmativo decidir si es única:
 - (a) T(3,0,0) = (1,2,1), T(1,-2,0) = (2,7,3), y T(-5,4,1) = (1,0,0).
 - (b) T(1,1,0) = (-1,1,1) y T(0,0,2) = (2,3,1).
 - (c) T(1,0,0) = (4,-1,-2), T(0,1,0) = (-4,0,1) y T(1,1,0) = (0,-1,1).
 - (d) T(1,0,0) = (4,-1,-2), T(0,1,0) = (-4,0,1), T(1,1,0) = (0,-1,-1).
- (8) En cada uno de los siguientes casos encontrar una transformación lineal no nula $T: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido:
 - (a) $\{(1,0,1)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).
 - (b) $\dim \operatorname{Nu} T \cap \operatorname{Im} T = 1$.
 - (c) $e_1 \in \text{Im}(T), (-5, 1, 1) \in \text{Nu}(T) \text{ y Nu } T \cap \text{Im } T = \{0\}.$

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (9) (a) Dar una base ordenada del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x y + 2z = 0\}.$
 - (b) Dar las coordenadas de w=(1,-1,-1) en la base que haya dado en el item anterior.
 - (c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item (a).
- (10) Repetir el ejercicio (2) con la base canónica de \mathbb{R}^3 y la base ordenada

$$\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}.$$

Considerar las 3-uplas (1,2,3) y (0,1,2) para el ítem (d), y (2,3,1) para el ítem (e).

- (11) Calcular la matriz cambio de base $P_{\mathcal{B},\mathcal{B}'}$ en los siguientes casos:
 - (a) $V = \mathbb{R}^3$, $\mathcal{B} = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$, $\mathcal{B}' = \{(-1, 1, 1), (2, 0, 1), (1, -1, 3)\}$.
 - (b) $V = \mathbb{R}_3[x], \mathcal{B} = \{3, 1+x, x^2\}, \mathcal{B}' = \{1, x+3, x^2+x\}$
 - (c) $V = \mathbb{R}^4$, $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$, $\mathcal{B}' = \{v_3, v_1, v_4, v_2\}$.
- (12) Dadas la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $\mathcal{B} = \{v_1, v_2, v_3\}$ de \mathbb{K}^3 , hallar una base \mathcal{B}' de \mathbb{K}^3 tal que $M = P_{\mathcal{B},\mathcal{B}'}$.
- (13) Sea V un \mathbb{K} -espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ una matriz. Sea $\mathcal{B}' = \{v'_1, ..., v'_n\}$ donde

$$v'_j = \sum_{i=1}^n a_{ij} v_i$$
 para todo $1 \le j \le n$.

Probar que \mathcal{B}' es una base de V si y sólo si A es invertible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} , y viceversa.

(14) Sean $V = \mathbb{R}_3[x]$ y $a \in \mathbb{R}$ fijo. Definimos $g_1(x) = 1$, $g_2(x) = x - a$, $g_2(x) = (x - a)^2$. Demostrar que $\mathcal{B} = \{g_1(x), g_2(x), g_3(x)\}$ es una base de V. ¿Cuáles son las coordenadas de $p(x) = a_0 + a_1x + a_2x^2$ en la base \mathcal{B} ?

2

- (15) Calcular $[T]_{\mathcal{BB}'}$ en los siguientes casos:
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (3x 2y + z, 5x + y z, x + 3y + 4z), $\mathcal{B} = \{(1,2,1), (-1,1,3), (2,1,1)\}, \mathcal{B}' = \{(1,1,0), (1,2,3), (-1,3,1)\}$
 - (b) $T: \mathbb{C}^2 \to \mathbb{C}^2$, T(x,y) = (2x iy, x + y), $\mathcal{B} = \mathcal{B}' = \{(1,0), (0,1), (i,0), (0,i)\}$, considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.
 - (c) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, $T(A) = A^{\hat{t}}, \mathcal{B} = \mathcal{B}' = \{E^{11}, E^{12}, E^{21}, E^{22}\}.$
- (16) Sea V un \mathbb{K} -espacio vectorial y $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ una base de V. Sea $T: V \to V$ la transformación lineal tal que

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Hallar $T(3v_1 + 2v_2 v_3)$.
- (b) Probar que T es invertible y hallar $[T^{-1}]_{\mathcal{B}}$
- (17) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga que $T(1,-1,1) = (2,a,-1), T(1,-1,2) = (a^2,-1,1)$ y T(1,-1,-2) = (5,-1,-7).

Ejercicios adicionales de interés teórico. Estos son ejercicios sólo para el lector interesado.

- (18) Sean V, W espacios vectoriales de dimensión finita sobre \mathbb{K} con bases $\mathcal{B} = \{v_1, \dots, v_m\}$ y $\mathcal{B}' = \{w_1, \dots, w'_n\}$ respectivamente. Probar que $f : \text{Hom}(V, W) \to \mathbb{K}^{n \times m}$ dada por $f(T) = [T]_{\mathcal{BB}'}$ es un isomorfismo¹.
- (19) Sean $A, B \in \mathbb{K}^{n \times n}$. Probar que A es semejante a B sobre \mathbb{K} si y sólo si existe una transformación lineal $T : \mathbb{K}^n \to \mathbb{K}^n$ y bases \mathcal{B} y \mathcal{B}' de \mathbb{K}^n tales que $[T]_{\mathcal{B}} = A$ y $[T]_{\mathcal{B}'} = B$.
- (20) Sea V un \mathbb{K} -espacio vectorial de dimensión n y sea $\mathcal{B}' = \{v_1, \dots, v_n\}$ una base de V. Por Teorema 4.1.1, existe (para cada i) un único funcional lineal $f^i: V \to \mathbb{K}$ (muchas veces se lo suele denotar v^i) tal que

$$f_i(v_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases},$$

es decir $f_i(v_i) = 1$ y $f_i(v_j) = 0$ para todo $i \neq j$.

- (a) Probar que $\{f_1, \ldots, f_n\} \subset V^*$ es LI y concluir que es una base, llamada la base dual de \mathcal{B} .
- (b) Si $f \in V^*$, probar que $f = \sum_{i=1}^n f(v_i) f_i$.
- (21) Dados V,W espacios vectoriales sobre \mathbb{K} y una transformación lineal $T:V\to W,$ se define la $traspuesta\ de\ T,\ T^t:W^*\to V^*$ por: dado $f\in W^*,$

$$(T^t f)(v) = f(T(v)) \quad \forall v \in V.$$

- (a) Probar que T^t es lineal.
- (b) Sean $B \in \mathbb{K}^{n \times n}$ una matriz fija, T el operador lineal sobre $\mathbb{K}^{n \times n}$ definido por T(A) = AB BA y f es la función traza. Calcular $T^t f$.
- (c) Sean V y W \mathbb{K} -espacios vectoriales de dimensión n. Sea $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base ordenada de V con base dual $\mathcal{B}^* = \{v^1, \ldots, v^n\}$ y sea $\mathcal{B}' = \{w_1, \ldots, w_n\}$ una base ordenada de W con base dual $\mathcal{B}'^* = \{w^1, \ldots, w^n\}$. Probar que

$$[T^t]_{\mathcal{B}'^*\mathcal{B}^*} = [T]_{\mathcal{B}\mathcal{B}'}^t.$$

¹En particular, dim $\operatorname{Hom}(V,W)=mn$. Luego dim $V^*=\dim\operatorname{Hom}(V,\mathbb{K})=\dim V\cdot 1=\dim V$, por lo que V es isomorfo a V^* .