Containers & Kubernetes

A Beginner's Workshop

Rigerta Demiri & Katharina Sick #theNewlTGirls | November 17, 2023

About today

Let's do a step-by-step journey into the world of containers and Kubernetes.

Containers & Docker

What are containers? Why are they cool? How to create & use them?

Kubernetes

What is Kubernetes? Why do so many companies need it? How to get started?

Troubleshooting and Questions

Feel free to ask any time!:)

So, what is Docker?

An open-source tool used to turn your application into a container that can easily be deployed in any other system.

First things first, what is an Application?

Any piece of **Software** that performs a specific function either for an end user or for another application.

An **Application** is written in a specific **Programming language** and typically has one or more **Dependencies**.

Cool, so what is a Container?

A **self-contained**, **runnable** software application or service.

And how do we do this with Docker?

We write a **Dockerfile**, which is "a recipe" defining how to build a **Docker Image** and when we run the image so we can reach the application, we are in a **Container**

Key Concepts 😛

Application

o Any piece of software you write, to fulfil a goal for end users or other applications

Dependencies

o All software libraries an application needs to be able to run successfully

Dockerfile

A text file containing a set of instructions

Docker image

- A read-only blueprint that includes container-creation instructions
- An executable application artifact

Rave (stage Stage 1 FROM ubuntur16.84 as stage) RNN apt-pet update RNN apt-pet update RNN stripter y firstall make curl RNN curl Intra/y/xyz.com/abc.tar.gz - 0 RNI tar Zar dab.Ctar.gz - 66 cd abc RNN make 06510En/tep (notal) COPY --fromestage1 /tep /abc ENTRYPOINT [1/dac/app*] Dockerfile Docker Image Docker Container

Docker container

- o A running instance of a Docker image that gets created when the \$ docker run command is implemented
- Multiple containers can run from the same Docker image

Docker registry

- A storage and distribution system for container images (can be private or public)
- o Docker Hub (hub.docker.com) is the official public Docker registry

OK, let's take a step back

Why do we even **need** Docker?
How were applications deployed before it?

Traditional Application Deployment

Developer

Pushes code for 3 applications into their own Git repositories

Web Application 1

Web Application 2

Web Application 3

Application Deployment Process

Artifact

Deployment instructions

Production Server

Install & config all necessary libraries / databases / services for Appplication 1 directly on the server

Same for Application 2

Same for Application 3

User

Consumes the web application via a web browser

What is the problem with that?

The same production server is usually used for multiple applications, for efficiency, but:

- Error prone process
- Different applications might need different
 - software & software versions
 - libraries & library versions
- This causes:
 - dependency issues
 - a painful deployment process

What is the problem with that?

Memory and processing power of the production server are limited

This is where Kubernetes & Docker play very well together and you will hear all about it in Part 2 of this workshop by Katharina

Enter Docker

VM Virtualization

OS Kernel & the application layer of the OS

Docker Virtualization

Only the application layer of the OS

Benefits

- Isolation
 - No conflicting with the host system
- Packaged application and all its dependencies (code, libraries, system binaries etc)
 - No more "it works on my machine" issues
- Reliable deployment
 - A **self-contained** image is used to deploy, making the deployment independent of the OS or other details of the host system
 - Docker runtime is the only necessary installation

Enter Docker

More benefits

- Better resource consumption management
 - Configurable memory & cpu a container can use (docs on resource constraints)
- Efficiency
 - A side effect of the lightweight, efficient isolation model of containers
 - Many Docker containers can run on a single production server

Demo Time

- **Step by step Docker introduction**
- --- Docker Registry
- **Use existing Docker Images**
- Create your own Docker Image

First steps

- Docker running locally
 - o Instructions to download and install Docker
 - I run/prefer Rancher Desktop

- An IDE or text editor to use for editing files.
 - o I prefer VSCode <u>Download link</u>

- Free Docker Account
 - You can sign-up for a free Docker account (https://hub.docker.com) and access free unlimited public repositories
 - Not mandatory, images are available to unauthenticated users too

Demo Part 1

- Where to find Docker Images?
 - Docker Registries
 - Public (Docker Hub)
 - Private (AWS ECR, Google Container Registry, etc)

• How to create a Container?

- How to access a containerised application
 - Port Binding

• How to stop Containers

• How to remove Docker Images and Containers

Demo Part 2

Creating your own Docker Image

• Running it locally with streamlit run

• Building a Docker Image for this Application

Main Takeaways

With Docker you can package your application into a single runnable artifact - Docker Image

Docker Images will run everywhere, independent of the platform you deploy it to

Where to go from here?

Explore the official documentation

- https://docs.docker.com/get-started/
- https://www.docker.com/resources/what-container/
- https://docker-curriculum.com/#docker-compose
- https://rancherdesktop.io/
- https://docs.streamlit.io/

Watch YouTube videos

• Techworld with Nana

Experiment with side projects

- Build a simple application in any language of your choice and containerise it
- Play around and experiment with Docker
- Have fun!

Thank you!

Happy to take any questions.