IA - Clase 3A

(ML - Machine Learning)

Aprendizaje de Máquina

Ejercicio para comparar resultados con
K-NN (784D y HOG), K-Means, GMM y

CNN simple.

- ¿Qué significa entrenar un modelo?
 - Es el proceso de ajustar sus parámetros internos (pesos, coeficientes, centroides, etc.) para que aprenda a realizar una tarea, como clasificar letras en EMNIST.
 - Datos de entrada → imágenes 28×28 píxeles (tensores).
 - Modelo → puede ser una red neuronal, una regresión logística, un KNN, etc.
 - Parámetros → son números internos del modelo (ejemplo: pesos sinápticos en una red).
 - Objetivo → que, al darle una imagen, el modelo prediga la clase correcta (A, B, C, ...).
 - Extended MNIST. Modified National Institute of Standards and Technology.

- Etapas del entrenamiento
 - Inicialización.
 - El modelo arranca con pesos aleatorios o predefinidos.
 - Forward pass (predicción)
 - Se le pasa una imagen → el modelo genera una predicción (ej: cree que la letra es "C").
 - Función de pérdida (loss)
- Compara la predicción del modelo contra la etiqueta real.
 - Ejemplo: predijo "C"
 - La etiqueta era "A"
- La pérdida mide cuán "mal" estuvo.
 - Fórmula típica:
 - Clasificación → se usa la entropía cruzada
 - Regresión → se usa el error cuadrático medio

- Backward pass (retropropagación)
 - El error se propaga hacia atrás para calcular cómo ajustar cada peso.
- Actualización de parámetros.
 - Se usa un optimizador (ej. gradiente descendente, Adam, SGD)
 que ajusta los pesos un poquito para reducir el error.
- Iteraciones (epochs)
 - Se repite el proceso sobre todo el dataset muchas veces hasta que el modelo "aprenda".

- Ejemplos de modelos:
 - Regresión logística multinomial (Softmax)
 - Logits: $z=Wx+b, \quad W\in\mathbb{R}^{26 imes784}, \ x\in\mathbb{R}^{784}, \ b\in\mathbb{R}^{26}$
 - Softmax (probabilidades): $p_k = \frac{e^{z_k}}{\sum_{j=1}^{26} e^{z_j}}, \quad k = 1, \dots, 26$
 - Predicción: $\hat{y} = \arg \max_k p_k$
 - Pérdida (entropía cruzada, una muestra):

$$\mathcal{L} = -\sum_{k=1}^{26} y_k \log p_k$$
 (con y one-hot)

- Perceptrón Multicapa (MLP) con 1 capa oculta
 - Aplanado: $x \in \mathbb{R}^{784}$
 - Capa oculta (ReLU):

$$h=\sigma(W_1x+b_1), \quad W_1\in\mathbb{R}^{m imes 784},\; b_1\in\mathbb{R}^m,\; \sigma(u)=\max(0,u)$$

Salida (logits y softmax):

$$z=W_2h+b_2, \quad W_2\in \mathbb{R}^{26 imes m},\; b_2\in \mathbb{R}^{26}$$
 , $p_k=rac{e^{z_k}}{\sum_{i=1}^{26}e^{z_i}}$

• Pérdida: $\mathcal{L} = -\sum_{k=1}^{26} y_k \log p_k$

- Logits son los valores crudos de salida de un modelo antes de aplicar una función de activación como sigmoid o softmax.
- Son los números reales (pueden ser negativos o positivos, incluso muy grandes) que la red neuronal calcula en la última capa lineal.
- Formalmente:
 - Si la última capa de una red es una transformación lineal
 - -z=wx+b
 - Donde w son los pesos, x es el vector de entrada y b el sesgo, entonces z son los logits.
- No son probabilidades, porque no están en el rango [0,1].
- No necesariamente suman 1 en problemas multiclase.

K-NN

- No hay pesos ni entrenamiento clásico.
- El modelo se guarda todos los datos de entrenamiento (imágenes + etiquetas).
- Para clasificar una nueva imagen: Se mide la distancia (usualmente Euclídea) entre esa imagen y cada imagen de entrenamiento.
- Se eligen los k vecinos más cercanos.
- Se predice la clase más frecuente entre esos vecinos (mayoría).
- Distancia Euclídea entre el vector de entrada x y un ejemplo de entrenamiento x_i $d(x,x_i) = \sqrt{\sum_{j=1}^{784} (x_j x_{i,j})^2}$
- Conjunto de índices de los k vecinos más cercanos

$$N_k(x) = \operatorname{argmin}_{i=1,\ldots,n}^k \ d(x,x_i)$$

- Predicción por mayoría de votos $\hat{y} = \text{mode}\{y_i : i \in N_k(x)\}$

- K-Means: objetivo de cuantización
 - Minimiza el error intra-cluster (distancia al centro).
 - Útil para compresión, prototipos e inicialización de GMM.
- Algoritmo de Lloyd
 - Paso E (asignación): asignar cada punto al centro más cercano.
 - Paso M (actualización): recomputar cada centro como media del cluster.

$$z_i = \operatorname{argmin}_{c \in \{1, ..., K\}} |x_i - \mu_c|_2^2$$

$$\mu_c = \frac{1}{N_c} \sum_{i=1}^N x_i \mathbf{1} \{ z_i = c \}, \quad N_c = \sum_{i=1}^N \mathbf{1} \{ z_i = c \}$$

- K-Means: convergencia y clasificación
 - El coste desciende monótonamente hasta un mínimo local.
 - Clasificación: cluster→clase por mayoría (train).
 - Predicción = clase del centro más cercano.
 - Pseudo-probabilidades: normalizar inversos de distancias a centros.

$$J^{(t+1)} \leq J^{(t)}$$

$$\hat{y}(x) = \operatorname{argmax}_{y} \sum_{i=1}^{N} \mathbf{1} \{ y_{i} = y \} \mathbf{1} \{ z_{i} = z^{*}(x) \}$$

$$z^{*}(x) = \operatorname{argmin}_{c} |x - \mu_{c}|_{2}^{2}$$

- GMM: modelo y log-verosimilitud
 - Mezcla gaussiana: combinación convexa de gaussianas con pesos \(\pi_k\).
 - Parámetros: medias \(\mu_k\), covarianzas \(\Sigma_k\), pesos \(\pi_k\).

$$p(x) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(x \mid \mu_k, \, \Sigma_k), \quad \sum_{k=1}^{K} \pi_k = 1, \, \, \pi_k \ge 0$$

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(x_{i} \mid \mu_{k}, \Sigma_{k}) \right)$$

- GMM: algoritmo EM
 - E-step: responsabilidades \(\gamma_{ik}\) (posterior del componente).
 - M-step: actualizar \(\mu_k\), \(\Sigma_k\), \(\pi_k\)
 ponderando por \(\gamma_{ik}\).

$$\gamma_{ik} = \frac{\pi_k \, \mathcal{N}(x_i \mid \mu_k, \, \Sigma_k)}{\sum_{j=1}^K \pi_j \, \mathcal{N}(x_i \mid \mu_j, \, \Sigma_j)}$$

$$N_k = \sum_{i=1}^N \gamma_{ik}, \quad \mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} x_i$$

- GMM: clasificación y relación con K-Means
 - Clasificación: componente→clase por mayoría (train);
 sumar responsabilidades por clase (test).
 - Límite: \(\Sigma_k=\sigma^2 I,\ \sigma\to 0\) ⇒ responsabilidades duras (K-Means).

label(k) = argmax_y
$$\sum_{i=1}^{N} \mathbf{1}\{y_i = y\} \mathbf{1}\{\text{argmax}_j \gamma_{ij} = k\}$$

$$p(y = c \mid x) = \sum_{k: |abel(k) = c} \gamma_k(x), \quad \hat{y}(x) = argmax_c \ p(y = c \mid x)$$

$$\Sigma_k = \sigma^2 I, \ \sigma \rightarrow 0 \Rightarrow \gamma_{ik} \in \{0, 1\}$$

- Selección de K (BIC)
 - En no supervisado: elegir K con BIC/AIC (penalización por complejidad).
 - Para EMNIST Letters como clasificador: K=26 por semántica

BIC =
$$\log L - \frac{p}{2} \log N$$
, $p = K \left[d + \frac{d(d+1)}{2} \right] + (K-1)$

- Clasificar un conjunto (set) de imagenes sencillas.
- Letras: quiero ingresar letras y que las clasifique en base a la base del EMINST (Extended MNIST) que es una extensión del dataset MNIST (dígitos manuscritos).
- Formato: cada imagen es en escala de grises, 28×28 píxeles, igual que MNIST.
- Etiquetas: números enteros que representan la clase (0-61 según la variante).

Variantes:

- EMNIST ByClass: 814,255 caracteres, 62 clases (10 dígitos + 26 mayúsculas + 26 minúsculas).
- EMNIST ByMerge: 814,255 caracteres, 47 clases (se fusionan mayúsculas y minúsculas similares, como C/c).
- EMNIST Balanced: 131,600 caracteres, 47 clases (subconjunto balanceado).
- EMNIST Letters: 145,600 caracteres, 26 clases (solo letras, sin distinción mayúscula/minúscula).
- EMNIST Digits: 280,000 caracteres, 10 clases (solo dígitos).
- EMNIST MNIST: 70,000 dígitos (idéntico al MNIST original, sirve para consistencia).
- Trabajaremos con EMNIST Letters (26 clases, 145 600 imágenes).
- Descarga del dataset
 - datasets.EMNIST(..., download=True) baja un archivo comprimido grande (cientos de MB).
 - Una vez descargado, queda guardado en ./data y ya no se vuelve a bajar.

- Descompresión / preparación de archivos
 - EMNIST viene en formato IDX comprimido (.gz).
 - torchvision lo descomprime la primera vez.
 - Esta operación de descompresión y escritura suele tardar varios minutos (pero ocurre solo una vez).
- Construcción de índices internos
 - Al inicializar el objeto EMNIST, se abren los archivos IDX y se leen los encabezados (número de imágenes, resolución, etc.).
 - Luego de la primera vez en las ejecuciones siguientes no vuelve a descargar ni descomprimir.
 - Solo abre los archivos en disco. El acceso a cada imagen es inmediato porque se hace lazy loading (on-demand).

- TRAIN: Es el grupo de datos que el modelo ve para aprender.
 - Se usa para ajustar los parámetros del modelo (pesos en una red neuronal, centroides en K-means, etc.).
 - EMNIST Letters: train = 124 800 imágenes.
 - Cada imagen tiene su etiqueta (1–26).
- TEST: grupo separado, que el modelo no vio nunca durante el entrenamiento.
 - Se usa para medir qué tan bien generaliza el modelo a datos nuevos.
 - EMNIST Letters: test = 20 800 imágenes.
 - Tienen el mismo formato que las de train, pero distintas instancias manuscritas.
- Si entreno y evalúo con el mismo conjunto, el modelo podría memorizar (overfitting) y dar una falsa sensación de que funciona bien.
 - Con test, verifico que realmente entiende los patrones y no solo repitió lo visto.

- Utilizamos datase EMNIST
 - Letters
- Objetivo: comparar K-NN (784D y HOG), K-Means, GMM y una CNN simple.
- Procesos para preprocesado de carácter manual (letra t):
 - umbrales, morfología, bbox, resize, centrado, deskew.
- Visualizaciones:
 - matriz de confusión, vecinos, y regiones K-NN en PCA-2D.
- Grilla de pruebas desde archivo (grid.json) y reportes automáticos.

- Dataset: EMNIST Letters
 - 26 clases: A..Z (mayús/minús fusionadas).
 - Etiquetas 1..26 ↔ A..Z.
- Corrección de orientación: rotar –90° + espejo horizontal (solo para el dataset).
- Muestreo estratificado:
 - mismo nº de ejemplos por letra
 - evita UndefinedMetricWarning
- División típica: ~15–25k train, ~5–8k test.

- Preprocesado del bitmap (28×28 estilo EMNIST)
- Convertir a escala de grises (L), auto-invertir si el fondo es claro (letra clara/fondo negro).
- Umbral adaptativo (ventana y offset) u Otsu para hallar bbox;
 padding asimétrico para no cortar la 't'.
- Morfología: opening (quita ruido), closing (cierra cortes), dilatación horizontal leve (refuerza travesaño).
- Resize manteniendo aspecto (lado mayor=20) + ancho mínimo;
 centrar en 28×28; deskew con límites + recentrado por COM.

- K-NN en 784D (baseline)
 - Característica: vector de 28×28 = 784 (intensidades normalizadas).
 - K vecinos, weights='distance' (vecinos cercanos pesan más).
 - Métrica: euclidean o cosine (más robusto a grosor de trazo).
 - Diagnóstico: vecinos más cercanos + votos por clase.

- Visualizaciones para K-NN
 - Matriz de confusión (test):
 - Clases más confundidas (p. ej., T↔L/F).
- Vecinos más cercanos: inspección cualitativa de la decisión.
- Regiones K-NN (PCA-2D): solo visual para entender la frontera.
- Reportes: se guardan PNG y JSON/CSV con votos/predicciones.
- UndefinedMetricWarning: por qué aparece y cómo evitarlo
 - Ocurre si alguna clase no aparece en y_test o nunca es predicha.
 - Solución: muestreo estratificado y zero_division=0 en el reporte.
 - Aumentar cobertura por clase y ajustar K/métrica si hay clases nunca predichas.

- K-NN con HOG (mejor para encontrar 't' vs 'l')
 - HOG para 28×28: orientaciones=9, celdas 4×4, bloques
 2×2, L2-Hys.
 - Captura bordes/direcciones: el travesaño de 't' deja firma horizontal.
 - K-NN sobre HOG suele mejorar frente a intensidades puras (784D).

- Desambiguador L → T (post-proceso)
 - 1) Votos K-NN: si P(T) ≈ P(L) (margen pequeño),
 - 2) 'Crossbar score': energía horizontal en banda superiorcentral.
 - Si score ≥ τ y P(T) no muy inferior a P(L), reasignar L \rightarrow T.
 - Parámetros típicos: τ≈1.05–1.20, margen≈0.05–0.10 (ajustar al trazo).

- Grilla de pruebas (grid.json) + reportes
 - Archivo externo con experimentos: modelo (784D/HOG), K, métrica, umbrales, dilatación...
 - Cada experimento: genera bitmap_postproc.png, vecinos.png, regiones.png y report.json.
- resumen.csv con los resultados de la grilla.

- K-Means (no supervisado) como clasificador
 - Entrenar con 26 clusters (A..Z).
 - Mapear cluster→clase por mayoría en train (pseudoetiquetado).
 - 'Probabilidades' por clase a partir de 1/distancia a centroides (normalizada).
 - Útil para explorar estructura; suele rendir menos que K-NN/CNN.

- GMM (Gaussian Mixture) como clasificador
 - Entrenar con 26 componentes (full covariance).
 - Mapear componente—clase por mayoría; usar responsabilidades como prob.
 - Suaviza fronteras; puede capturar subformas (multi-modos) por letra.
 - Visualización: regiones en PCA-2D (solo visual).

- GMM (Gaussian Mixture) como clasificador
 - Entrenar con 26 componentes (full covariance).
 - Mapear componente

 clase por mayoría; usar responsabilidades como prob.
 - Suaviza fronteras; puede capturar subformas (multi-modos) por letra.
 - Visualización: regiones en PCA-2D (solo visual).

- CNN simple (PyTorch)
 - Arquitectura: Conv(1→16)–MP–Conv(16→32)–MP–
 FC(64)–Softmax(26).
- Entrenar 5–15 épocas (estratificado ayuda).
- Evaluar: accuracy, matriz de confusión, top-8 probabilidades para tu bitmap.
- Regiones 2D: usar features de la penúltima capa + KNN 2D para visual.

- Comparativa y recomendaciones
 - 784D vs HOG: HOG suele ganar en t/l/f y otros pares confusos.
 - K-Means/GMM: buenos para explorar; asignación por mayoría necesaria.
 - CNN: mejor performance si le dedicás más épocas y datos.
- Afinar preprocesado: adaptive offset, dilatación horizontal, ancho mínimo, deskew limitado.