

Become MatheMagician in 21 Days Solve Complex Problems in Few Seconds of Maths

Prof. Chaitanya A. Patil

M.Tech (Computers); Formerly Asst. Professor

Link: www.Speed16.com/books/vm

Direct Whatsapp: https://wa.me/919764058654/?text=Hi

Location of this file: www.speed16.com/files/vm/sample.pdf (Last Updated on 2nd July 2020. Keep visiting above link for updated file.)

Beauty of

Vedic Speed Mathematics

(World's Fastest Mental Calculation System)

(with free workbook inside)

Third Edition

HIGHLY USEFUL FOR: Standard/Grade 3rd to **Ph.D** Students; Parents, Mathematics Teachers, Math Lovers, Placement & Job Interviews; All Entrance & Competitive Exams (PSAT/NMSQT, UPSC - CSAT, Banking - IBPS, RBI, CAT, MAT, Railways - RRB, PSUs, GATE, IES, SSC, LIC, TET, GRE, GMAT, SAT, ACT, PERT, GED, TASC etc.).

Chaitanya A. Patil (Speed16 Academy) Copyright © 2020 Chaitanya A. Patil All Rights Reserved.

Paperback, eBook, FREE Work Book, Video Course & Online Training on 'Vedic Speed Mathematics', 'C'& Python Programming

Link: www.Speed16.com/books

Direct Whatsapp: https://wa.me/919764058654/?text=Hi

Contents

Level-1

1.	N //1	4:1:	cation
	18/1111	T1MI1	carion
1.	IVIUI	ири	Cauon

- 1.1 Base Method
- 1.2 Criss Cross Method
- 1.3 Special Cases
 - 1.3.1 Multiplying numbers with repeating 9's
 - 1.3.2 When final digits added up gives power of 10
 - 1.3.3 Multiplication by 11
 - 1.3.4 Multiplication by 12
 - 1.3.5 Multiplication by 5, 25 and 125
 - 1.3.6 Multiplication Tables

2. Division

- 2.1 Division using Transpose and Apply
 - 2.1.1 Vinculum Numbers
 - 2.1.2 Above Working Base
 - 2.1.3 Below Working Base
- 2.2 Division using Flag Method

3. Addition

- 3.1 Right to Left Addition using Purification
- 3.2 Other Scenarios

4. Subtraction

- 4.1 Subtraction Using Base Method
- 4.2 Subtraction using Purification
- 4.3 Other Scenarios

5. Introduction to Vedic Speed Mathematics

- 5.1 List of Formulas and their Meaning
- 5.2 List of Corollaries and their Meaning
- 5.3 Formulas: Meaning and Usage
- 5.4 Corollaries: Meaning and Usage

Level-2

- 1. Squares
 - 1.1 Squares of numbers ending with Digit 5
 - 1.2 Squares Using Surpluses and Complements
 - 1.3 Squares Using Criss Cross Method
- 2. Square Roots
 - 2.1 Case 1 (Square Roots of Perfect Square Numbers)
 - 2.2 Case 2 (Square Roots of Perfect & Imperfect Square Numbers)
- 3. Cubes
 - 3.1 Cubes Using Surpluses and Complements
 - 3.2 Cubes Using Criss Cross Method
- 4. Cube Roots
 - 4.1 Case 1 (Cube Roots of Perfect Cube Numbers)
 - 4.2 Case 2 (Cube Roots of Perfect & Imperfect Cube Numbers)
- 5. Digit Sums
 - 5.5 Addition
 - 5.6 Subtraction
 - 5.7 Multiplication
- 6. Divisibility
 - 6.1 Divisibility Rules
 - 6.2 Positive Osculators
 - 6.3 Negative Osculators
- 7. Decimals, Fractions and Percentages
 - 7.1 Conversion
 - 7.2 Basic Operations on Decimals
 - 7.3 Basic Operations on Fractions
 - 7.4 Percentages
 - 7.5 Types of Decimals
 - 7.6 Reciprocals

Level - 3

- 1. Polynomials
 - 1.1 Multiplication using Criss Cross Method
 - 1.2 Division using Transpose and Apply
- 2. Factorization
 - 2.1 Type I: Simple Quadratic Polynomials
 - 2.2 Type II: Homogeneous Quadratic Polynomials
 - 2.3 Type III: Difficult Homogeneous Quadratic Polynomials
 - 2.4 Type IV: Cubic Polynomials
- 3. Highest Common Factor (HCF)
 - 3.1 Finding HCF using Sutra
- 4. Simple Equations
 - 4.1 Solution to Different Types of Examples
 - 4.2 Solution using "If the Set is same, it is ZERO"
- 5. Quadratic Equations
 - 5.1 Solution using Calculus
 - 5.2 Verification using Calculus
 - 5.3 Reciprocals "By Mere Observation"
 - 5.4 Solution using "If the Set is same, it is ZERO"
- 6. Cubic Equations
 - 6.1 Solution using "By the Completion Non Completion"
 - 6.2 Solution using "by Mere Observation"
 - 6.3 Different Cases
- 7. Biquadratic Equations
 - 7.1 Solution using "By the Completion/Non Completion"
 - 7.2 Solution using "By Mere Observation"
 - 7.3 Different Cases
- 8. Simultaneous Equations
 - 8.1 Solution using Cross Method
 - 8.2 Solution using "If one is in Ratio, the other is ZERO"
 - 8.3 Solution using "By Addition and Subtraction"

IMP Note:

This is not a complete book. This is collection of some randomly selected pages from book. Visit below given links for Paperback, eBook, Video Course, Workbook (FREE) and Online Training on Vedic Speed Mathematics, C, Python Programming and all IT courses.

- Link: www.Speed16.com/books/vm
- Download this PDF for Details: www.speed16.com/files/vm/vm.pdf
- Paperback (India):
- Amazon: https://amzn.to/2Mronn3 **OR**
- Instamojo: https://www.instamojo.com/speed16
- Paperback (International):
- www.Speed16.com/books/vm
- Vedic Speed Maths: Video Course (@just ₹99 / 1.3US\$; Thinkific)
- https://speed16.thinkific.com/courses/vsm
- Vedic Speed Maths: Video Course (6 to 12US\$; Udemy):
- https://www.udemy.com/course/speedmaths/?referralCode=7852F401 12045FBAD598
- eBooks (Country wise):
- India: Part-1: https://amzn.to/2MufSaT; Part-2: https://amzn.to/2MqmJSo
- US: https://amzn.to/2KmO47CUK: https://amzn.to/2Vi1Yj9
- Other Countries: https://www.speed16.com/books/vm/

Get all Future Updates & FREE Study Materials:

- Join our Telegram Channel:
- https://t.me/SpeedMaths
- Like our Facebook Page:
- facebook.com/SpeedMaths99
- Subscribe to our YouTube Channel:
- youtube.com/speedmaths

Sharing is Caring. Share with All.

Click Here to Share on WhatsApp

Speed16 Academy

(An Online & Offline School, Sports & IT Training Academy)

- **♣** C Programming: <u>www.Speed16.com/books/c</u>
- **♣** Python Programming: <u>www.Speed16.com/books/python</u>
- **♣** Interactive Online Python & all IT Training:
- www.Speed16.com/training
- ♣ (First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students)
- ↓ Vedic Speed Mathematics online training is completely FREE and open to all. www.Speed16.com/free
- ♣ Contact: Chaitanya Patil Mail: info@speed16.com Call: +91-97640-58-654; Whatsapp: https://wa.me/919764058654

How to use this Book:

- 1. Switch to Unit (or Point) of your Interest.
- 2. Read Working Procedure.
- **3.** Go through Solved Examples.
- **4.** Read Explanation of Examples (if required)
- **5.** Bonus: Observe Pictorial Guidelines (Graphical Representations) for easy Remembrance.
- **6.** Solve Exercises (given in this book & in workbook).
- **7.** Download our FREE Workbook. Practice, Practice, Practice. Practice makes a man Perfect. Experience, after all is the best Instructor.
- **8.** After Practice, you will be able to solve any problems mentally.
- **9.** Optionally you can refer eBook & Video Course on "Vedic Speed Mathematics". Link is: www.Speed16.com/books/vm

NOTE: In this book, in most of the solved examples, we solved problems in many steps. This is for your better understanding. Once you understand, skip the steps and directly go for answers.

NOTE: Follow this link (www.Speed16.com/books/vm) for Supplement (Graphical Representation of various methods), Sample Pages of Book, FREE Workbook (For solving Exercises) and Video Course.

Features of this Book:

- Simple and Easy English.
- Complete Working Procedure.
- **♣** Many Solved Examples with Relevant Explanation.
- **♣** Step by Step Solution for Better Understanding.
- Pictorial Guidelines for Easy Remembrance.
- ♣ Formula Names both in English and Devanagari.
- ♣ Topic, Case, Method, Formula wise & Systematical Classification of Problems.
- → Just Remember 1 Liner Formula (Pattern) & Solve Complex Problems in just Few Seconds.
- Exercise with Answer Keys.
- Learn with Fun Concept.
- and Many More..

Benefits of Learning 'Vedic Speed Mathematics':

- It is Very Simple, Efficient, Fast, Coherent, Flexible, Original & Straight Forward.
- It is Amazingly Compact, Powerful and World's Fastest Mental Calculation System.
- It leads to Improvement in Mental Ability, Sharpness, Creativity & Intelligence.
- Problems are reduced to One Line Answers.
- It can be Learnt and Mastered with Ease and in little Time.
- Covers from Basic Numeracy Skills to Advanced Math Topics.
- Faster Calculations and High Accuracy level when compared to the Conventional Methods.
- Increased Concentration and Confidence.
- Vedic Mathematics System also provides a set of Independent Cross Checking Methods.
- It Helps in Achieving Academic Success.
- Complete Details: www.Speed16.com/books/vm

MULTIPLICATION

Multiplication means times or repeated addition.

Ex.1: 13×3=39 (or 13+13+13=39)

Ex.2: 24×4=96 (or 24+24+24+24=96)

1.1 Multiplication using Base Method

1. **Bases** are any positive numbers ending with 0's (zeroes).

Ex: 70, 80, 90, 100, 140, 1300, 5600 etc.

2. Working (or functional) Base is always power of 10.

Ex: $10(10^1)$, $100(10^2)$, $1000(10^3)$, $10000(10^4)$ etc.

- 3. Surplus = Number Base
- 4. Complement = Number Base
- 5. **Note:** In multiplication, Base method is preferred if given numbers are nearer (closer) to Working Bases. Otherwise Criss Cross method is preferred.
- 6. Formula used: 'Nikhilam Navataścaramam Daśatah' (निखिलं नवतश्चरमं दशतः) **Meaning:** All from 9 and the last from 10.

Number	Base	Surplus
12	10	+2
107	100	+7
1145	1000	+145
12364	10000	+2364
57	50	+7
1846	1800	+46

Number	Base	Complement
8	10	-2
93	100	-7
974	1000	-26
845	1000	-155
57	60	-3
1846	1900	-54

In Vedic Speed Mathematics we get answers quickly if we choose Working Bases. So Prefer Working Bases over Bases. Ex. For 93 Base is both 90 and 100. Choose 100 over 90 because 100 is Working Base.

Abbreviations	D: Digit	B: Base	C: Complement
used	S: Surplus	BM: Base Multiple	BR: Base Ratio

Case 1: When both numbers (Multiplicand and Multiplier) are Greater than the Working Base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write surpluses of multiplicand and multiplier to its right side with signs.
- 3. Answer consists of two parts. Left Part and Right Part.
- 4. Left Part: Evaluation of any of the cross values (Addition).
- 5. Right Part: Product of both the surpluses (right side values).
- 6. **Caution:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser, add required number of zeroes before the right part. If greater, carry the left most excess digits of Right Part to Left Part.

Ex.1:12×14	Ex.1: 12×14; here we need to multiply 12 and
Base = 10	14. Multiplicand (12) and Multiplier ((14) are
12 +2	written one below the other. Surplus of 12 is +2
14 +4	(12-10) & Surplus of 14 is +4 (14-10). Left Part
	(12-10) & Surplus of 14 is +4 (14-10). Left Part is 16 (12+4 or 14+2). Right Part is product of
16 8	both the surpluses i.e. 2×4=8. So final answer is
168	168.

Ex.2:108×112	Ex.2: 108×112; here we need to multiply 108
Base = 100	and 112. Multiplicand (108) and Multiplier (112)
108 +8	are written one below the other. Surplus of 108 is
112 +12	+8 (108-100) & Surplus of 112 is +12 (112-100).
	Left Part is 120 (108+12 or 112+8). Right Part is
120 96	product of both the surpluses i.e. 8×12=96. So
12096	final answer is 12096.

Paperback, eBook, Video Course, FREE Work Book & Online Training on Vedic Speed Mathematics, C, Python & Many More Subjects:

Link: www.Speed16.com/books

Ex.3:117×110	Ex. 3: 117×110; surpluses are +17 and +10
Base = 100	respectively. Left Part is 127 (117+10 or
117 +17	110+17). Right Part is 170 (17×10). Caution:
110 +10	Here base is 100 (Two Zeroes). But in the Right
127¦170	Part we are having three digits. Leftmost digit of
127+1¦70	right part (here it is 1) is transferred to left part.
128 70	So Left part becomes 128 (127+1) and Right
12870	part becomes 70. So final answer is 12870.

Ex. 4: 1020×1033	Ex. 4: 1020×1033; surplus: +20 and +33.
Base = 1000	Left Part is 1053 (1020+33 or 1033+20).
1020 +20	Right Part is 660 (20×33). Here base is 1000
1033 +33	(Three Zeroes). Right part is having three
	digits. So no any further actions are required.
1053 660	The final answer is 1053660.
1053660	

Ex.5:104×102	Ex. 5: 104×102; surplus: +4 and +2. Left Part
Base = 100	is 106 (104+2 or 102+4). Right Part is 8
104 +4	(4×2) . Here base is 100 and there are two
102 +2	zeroes in the base. But in the Right part we
	are having only one digit. So, we need to add
106 ¦ 8	one zero before 8 to make it as two digit
106 ¦ 08	number. So our final answer is 10608.
10608	

Ex.6: 112×125?	Ex.7: 126×104?	Ex.8: 1048×1040?
Base = 100	Base = 100	Base = 1000
112 +12	126 +26	1048 +48
125 +25	104 +4	1040 +40
137 300	130 104	1088 1920
137+3 00	130+1 04	1088+1 ¦ 920
140 ¦ 00	131 04	1089 920
14000	13104	1089920

Ex.9: 12745×10200?	Ex.10: 1024×1006?	Ex.11: 113×107
Base = 10000	Base = 1000	Base = 100
12745 +2745	1024 +24	113 +13
10200 +200	1006 +6	107 +7
12945 549000	1030 144	120 91
12945+54 9000		
12999 9000		
129999000	1030144	12091

Ex.12: 109×121?	Ex.13: 107×114?	Ex.14: 102×103?
Base =	Base =	Base =

Ex.15: 115×108?	Ex.16: 129×106?	Ex.17: 1016×1008?
Base =	Base =	Base =

Ex.18:1251×1003?	Ex.19:1673×1001?	Ex.20:1042×1020?
Base =	Base =	Base =

Ex.21:1037×1039?	Ex.22: 1461×1002?	Ex.23: 1278×1010?
Base =	Base =	Base =

Ex.24:10450×10020	Ex.25:12451×10002	Ex.26:10600×13211
Base =	Base =	Base =

Case 2: When both numbers (Multiplicand and Multiplier) are Less than the Working Base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write complements of multiplicand and multiplier to its right side with signs.
- 3. Answer consists of two parts. Left Part and Right Part.
- 4. Left Part: Evaluation of any of the cross values (Subtraction)
- 5. Right Part: Product of both complements (right side values).
- 6. **Caution:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser, add required number of zeroes before the right part. If greater, carry the left most excess digits of Right Part to Left Part.

Ex.1: 94×96	Ex.1: Here we need to multiply 94 and 96. Base is
Base = 100	100 as both the given numbers (94 and 96) are
94 -6	closer to 100. Complement of 94 is -6 (94-100) and
96 -4	complement of 96 is -4 (96-100). Left Part is 90
	(94-4 or 96-6). Right Part is 24 (-6*-4). So final
90 24	answer is: 9024.
9024	

Ex.2: 90×89	Ex.2: 90×89; Here complements are -10 and -11.
Base = 100	Left Part is 79 (90-11 or 89-10). Right Part is 110
90 -10	(-10 * -11). In the base there are two zeroes, so
89 -11	right part should be of two digits. But, in the Right
	Part we are having three digits. So we need to
79 ¦ 110	transfer leftmost excess digit of Right Part (1) to
79+1 ¦ 10	Left Part. Left Part becomes 79+1=80 and Right
80 10	Part becomes 10. Final answer is: 8010.
8010	

Ex.3: 997×993	Ex.3: 997×993; Base is 1000. Complements	
Base = 1000	are -3 and -7. Left Part is 990 (997-7 or 993-3).	
997 -3	Right Part is 021 (-3*-7).	
993 -7	IMP Note: -3*-7=21. But we need to add one	
	ZERO before 21 to make it as three digit	
990 21	number. Because base is 1000 & having	
990 021	THREE zeroes. So, in the Right Part we	
990021	should have three digits.	

Ex.4: 950×930	Ex.4: 950×930: complements are -50 and -70.
B = 1000	Left Part is 880 (950-70 or 930-50). Right Part
950 -50	is 3500 (-50*-70). Here base is 1000 (Three
930 -70	Zeroes) and Right Part is having four digits. So
	Left most excess digit of Right Part (3) is
880 3500	passed as carry to Left Part. So Left Part
880+3 500	becomes 880+3=883 and Right Part becomes
883 500	500. So final answer is: 883500.
883500	

Ex.5: 81×92?	Ex.6: 76×95?	Ex.7: 985×960?
Base = 100	Base = 100	Base = 1000
81 -19	76 -24	985 -15
92 -8	95 -5	960 -40
73 152	71 120	945 600
73+1 52	71+1 20	
74 52	72 20	
7452	7220	945600

[&]quot;Success is not final; failure is not fatal: It is the courage to continue that counts."

[&]quot;It is better to fail in originality than to succeed in imitation."

[&]quot;The road to success and the road to failure are almost exactly the same."

[&]quot;Success usually comes to those who are too busy to be looking for it."

 $Speed 16\ Academy \ |\ Vedic\ Maths,\ Python,\ Data\ Science\ \&\ IT\ Courses\ |\ \underline{www.Speed 16.com\ info@speed 16.com\ |\ +91-97640-58-654\ |\ Whatsapp:\ \underline{https://wa.me/919764058654/?text=Hi}$

11		
Ex.8: 9800×9784?	Ex. 9: 84×94?	Ex.10: 996×975?
Base = 10000	Base = 100	Base = 1000
9800 -200	84 -16	996 -4
9784 -216	94 -6	975 -25
9584 43200	78 96	971 100
9584+4 3200		
9588 3200		
95883200	7896	971100

Ex.11: 88×91	Ex.12: 87×96	Ex.13: 79×92
Base =	Base =	Base =

Ex.14: 86×89	Ex.15: 984×975	Ex.16: 875×997
Base =	Base =	Base =

Ex.17: 780×996	Ex.18: 979×989	Ex.19: 9880×9996
Base =	Base =	Base =

Ex.20: 875×997	Ex.21: 749×998	Ex.22: 896×927
Base =	Base =	Base =

Ex.23: 938×899	Ex.24: 979×984	Ex.25: 623×999
Base =	Base =	Base =

Case 3: When one number is Lesser and other is Greater than the Working Base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write complement / surplus of multiplicand and multiplier to its right side with signs.
- 3. Left Part: Evaluation of any of the cross values as per the sign (addition or subtraction).
- 4. Right Part: Product of both complement and surplus.
- 5. **Additional Step:** In this case, in the Right Part we always get negative value. Let 'n' be the total number of zeroes in the base. To get 'n' digit positive number in the Right Part, Add 'x' times of Base to the Right Part and Parallelly Subtract 'x' from Left Part. Read explanation of below examples to get more clarity.

Ex.1: 8×13	Ex.1: 8×13; Complement of 8 is -2 and Surplus of
Base = 10	13 is +3. Left Part is 11 (8+3 or 13-2). Right Part is
08 -2	product of complement and surplus. i.e. $-2 \times 3 = -6$.
13 +3	Here base is 10 & there is only one zero in the base.
	So, in the Right Part we should have one digit
11 ¦ -6	positive number but having negative value. To get
11-1¦ -6+10	one digit positive number, we need to add ONE
10 ¦ 4	time of base to Right Part. Parallelly we need to
104	subtract 1 from Left Part. Right Part is 4 (:-
	6+10=4) and Left Part is 10 (:11-1=10). So final
	answer is 104.

Paperback, eBook, Video Course, FREE Work Book & Online Training on Vedic Speed Mathematics, C, Python & Many More Subjects:

Link: www.Speed16.com/books

Ex.2: 106×76	Surplus of 106 is +6 and Complement of 76 is
Base = 100	-24. Left Part is 82 (106-26 or 76+6). Right Part
106 +6	is product of surplus and complement. i.e. 6x-
76 -24	24=-144. Here base is 100 & there are two
	zeroes in the base. So, in the Right Part we
82 -144	should have two digit positive number but
82-2¦-144+200	having negative value. To get two digit positive
80 56	number, we need to add TWO times of base to
= 8056	Right Part. Parallelly we need to subtract 2
	from

Left Part. Right Part is 56 (:-144+200=56) and Left Part is 80 (:82-2=80). Final answer is 104. **Note:** If we add one time of base to Right Part; we get -44 (:-144+100=-44). We don't want negative value in the Right Part. If we add three times of base; we get 156 (:-144+300=156). We don't want three digit number in the Right Part as our base is 100 and having two zeroes. That's why we choose two times of base. After choosing we get required two digit positive number in the Right Part.

Ex.3: 109×94	Surplus of 109 is +9 and Complement of 94 is -
Base = 100	6. Left Part is 103 (109-6 or 94+9). Right Part is
109 +9	product of surplus and complement. i.e. 9×-6=-
94 -6	54. Here base is 100 & there are two zeroes in
	the base. So, in the Right Part we should have
103 -54	two digit positive number but having negative
103-1:-54+100	value. To get two digit positive number, we
102 46	need to add ONE time of base to Right Part.
=10246	Parallelly we need to subtract 1 from Left Part.
	Right Part is 46 (:-54+100=46) and Left Part is
	102 (∵103-1=102). Final answer is 10246.

If opportunity doesn't knock, build a door --Milton Berle

The way to get started is to quit talking and begin doing --Walt Disney

Ex.4: 97×124	Complement of 97 is -3 and Surplus of 124 is
Base = 100	+24. Left Part is 121 (97+24 or 124-3). Right
97 -3	Part is product of complement and surplus. i.e.
124 +24	$-3\times24=-72$. Here base is 100 & there are two
121 -72	zeroes in the base. So, in the Right Part we
121-1 -72+100	should have two digit positive number but
120 28	having negative value. To get two digit positive
=12028	number, we need to add ONE time of base to
D: 1 D D 11	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Right Part. Parallelly we need to subtract 1 from Left Part. Right Part is 28 (:-72+100=28) and Left Part is 120 (:121-1=120). Final answer is 12028.

Note: There is an alternative for additional step. Multiply Left Part with base. Add Right Part to it. We will get answer. For example:

Ex.2: Left Part is 82. Base is 100. Multiply both. Product is 8200. Add Right Part (-144) to it. So final answer is 8200 + (-144) = 8200 - 144 = 8056.

Ex.4: Left Part is 121. Base is 100. Multiply both. Product is 12100. Add Right Part (-72) to it. So final answer is 12100+(-72) = 12100 - 72 = 12028.

Ex.5: 1020×989	Surplus of 1020 is +20 and Complement of
B = 1000	989 is -11. Left Part is 1009 (1020-11 or
1020 +20	989+20). Right Part is product of surplus and
989 -11	complement. i.e. 20×-11=-220. Here base is
	1000 & there are three zeroes in the base. So,
1009 -220	in the Right Part we should have three digit
1009-1 -220+1000	positive number but having negative value.
1008 780	To get three digit positive number, we need
=1008780	to add ONE time of base to Right Part.

Parallelly we need to subtract 1 from Left Part. Right Part is 780 (\because 220+1000=780) and Left Part is 1008 (\because 1009-1=1008). Final answer is 1008780.

Ex.6: 1250×975	Surplus of 1250 is +250 and Complement	
Base = 1000	of 975 is -25. Left Part is 1225 (1250-25	
1250 +250	or 975+250). Right Part is product of	
975 -25	surplus and complement. i.e. 250×-25=-	
	6250. Here base is 1000 & there are three	
1225 -6250	zeroes in the base. So, in the Right Part we	
1225-7 -6250+7000	should have three digit positive number	
1218 750	but having negative value. To get three	
=1218750	digit positive number, we need to add	

SEVEN times of base to Right Part. Parallelly we need to subtract 7 from Left Part. Right Part is 750 (:-6250+7000=750) and Left Part is 1218 (:1225-7=1218). Final answer is 1218750

Ex.7:	Ex.8:	Ex.9:	Ex.10:
89×112?	92×116?	976×1030?	870×1026?
Base = 100	Base = 100	Base = 1000	Base=1000
89 -11	92 -8		870 -130
112 +12	116 +16	976 -24	1026 +26
		1030 +30	
101 -132	108 -128		896 -3380
101-2 -132+200	108-2 -128+200	1006 -720	896-4 -3380+4000
99 ¦ 68	106 ¦ 72	1006-1 -720+1000	892 620
		1005 280	
9968	10672	1005280	892620

Ex.11: 92×107?	Ex.12: 99×436? B:100	Ex.13: 98×284?

Ex.14: 103×77?	Ex.15: 106×69?	Ex.16: 121×93?
Ex.17: 1040×996?	Ex.18: 1874×999?	Ex.19: 1232×998?
Ex.20: 10201×9987?	Ex.21: 10040×9860?	Ex.22: 12465×9700?

Case 4: Working with two different Bases:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Total number of digits in multiplicand and multiplier should be same. If not add required number of zeroes (say 'n') to smaller number at the end.
- 3. Calculate product using any of the applicable cases (1, 2 or 3).
- 4. Cut all 'n' ending zeroes from intermediate answer to get final answer.

=90988	
90988 0	
909 880	
92 0 -80	ending zero to get final answer (90988)
989 -11	It gives 909880. We added one zero, so cut one
92	calculate product of 989 and 920 using case 2.
989	zero at the end of 92. It becomes 920. Now
Ex.1: 989×92	Ex. 1: 989×92; Here 92 is smaller. Place one

Ex.2:991×9970	Ex.3:96×9840	Ex.4:56×580	Ex.5:11×1040
991	96	56	11
9970	9840	580	1040
991 0 -90	96 00 -400	56 0 -40	11 00 +100
9970 -30	9840 -160	580 -20	1040 +40
9880 2700	9440 ¦ 64000	540 800	1140 ¦4000
98802700	9440+6 4000	540×6¦800	1140+4 000
9880270 0	9446 ¦ 4000	3240 800	1144000
	94464000	3240+8¦800-800	11440 00
	944640 00	3248 00	
9880270	944640	32480	11440

 $Speed 16\ Academy \ |\ Vedic\ Maths,\ Python,\ Data\ Science\ \&\ IT\ Courses \ |\ \underline{www.Speed 16.com}\ info@speed 16.com \ |\ +91-97640-58-654\ |\ Whatsapp:\ \underline{https://wa.me/919764058654/?text=Hi}$

Ex.6:	Ex.7:	Ex.8:	Ex.9:
89×974?	98×1042?	94×10124?	76×9850?
89	98	94	76
974	1042	10124	9850
89 0 -110	98 0 -20	94 00 -600	76 00 -2400
974 -26	1042 +42	10124 +124	9850 -150
864 2860	1022 -840	9524 -74400	7450 360000
864+2 860	1022-1 -840+1000	9524-8 -74400+80000	7450+36 0000
866 ¦ 86 0	1021 ¦ 16 0	9516 ¦ 56 00	7486 ¦ 00 00
86686	102116	951656	748600

Ex.10: 94×988	Ex.11: 89×996	Ex.12: 986×9974

Ex.14: 112×974	Ex.15: 1024×96
	Ex.14: 112×974

	40-58-654 Whatsapp: https://w	
Ex.16: 876×91	Ex.17: 103×9874	Ex.18: 109×1231
T 40 407 4000	T 40 00 07 0	T 44 02 404 5
Ex.19: 107×12234	Ex.20: 88×9760	Ex.21: 92×1016
		1
Ex.22: 1016×12241	Ex.23: 1212×77	Ex.24: 984×9976

Case 5: When both numbers are not nearer to Working Bases:

Some Examples:

Ex.: 592×624? Ex.: 410×874?

Ex.: 1824×1208? Ex.: 65475×3456?

Case 5 is little tricky as compared to other cases (1 to 4). There is an alternative for Case 5 (as well as to all other Cases). Alternative method is **Criss Cross Method** (We are learning this in the next Section). So avoid Case 5. Prefer Criss Cross method over Case 5 of Base Method. Download Appendix if you want more information (Working Procedure and Solved Examples of case 5) by following below link.

Link: www.Speed16.com/books/vm

1.2 Multiplication using Criss Cross Method

Formula Used: 3. Ūrdhva – tiryagbhyām (ऊर्ध्वतिर्यग्भ्याम्)

Meaning: Vertically & Crosswise

How to Remember? Here you no need to remember any formulas, just you need to understand pattern. Go through graphical representation of various cases and understand pattern.

Case 1: Two Digit Numbers (2D×2D and 2D×1D) {D: Digit} Answer consists of three parts.

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d}) + (\mathbf{b} \times \mathbf{c})$	$(\mathbf{b} \times \mathbf{d})$

- First Part is product of respective first digits of both multiplier and multiplicand.
- Second Part is applying criss cross on all digits of both multiplier and multiplicand.
- Last Part is product of respective last digits of both multiplier and multiplicand.

Ex. 1: 42 × 57	Ex. 2: 84 × 36
4 2	8 4
× 5 7	× 3 6
(4.5) (4.7, 2.5) (2.7)	(0, 2) (0, 6, 4, 2) (4, 6)
$(4\times5) \mid (4\times7 + 2\times5) \mid (2\times7)$	$(8\times3) \mid (8\times6 + 4\times3) \mid (4\times6)$
20 28+10 14	24 48+12 24
20 38 14	24 60 24
20 38+1 4	24 ¦ 60+2 ¦ 4
20 39 4	24 62 4
20+3 9 4	24+6 2 4
23 9 4	30 2 4
2394	3024

Ex.1: Calculate & Place Values as per Pattern. Evaluate all parts. All Parts except first should contain only one digit. Start observation from Right and go towards Left. If you find more than one digit in any of the parts, then pass leftmost excess digits to its immediate left part.

Ex. 3: 67 × 89	Ex. 4: 76 × 59
6 7	7 6
×8 9	×5 9
$(6\times8) \mid (6\times9 + 7\times8) \mid (7\times9)$	$(7\times5) \mid (7\times9 + 6\times5) \mid (6\times9)$
48 54+56 63	35 63+30 54
48 110 63	35 93 54
48 110+6 3	35 93+5 4
48 116 3	35 98 4
48+11 6 3	35+9 8 4
59 6 3	44 8 4
5963	4484

Ex. 5: 78 × 8	Ex. 6: 83 × 7
7 8	8 3
× 0 8	×0 7
(7×0) $(7\times8 + 8\times0)$ (8×8)	$(8\times0) \mid (8\times7 + 2\times0) \mid (3\times7)$
0 ¦ 56+0 ¦ 64	0 56+0 21
0 56 64	0 56 21
0 56+6 4	0 ¦ 56+2 ¦ 1
0 62 4	0 58 1
0+6 2 4	0+5 8 1
6 2 4	5 8 1
624	581

Ex.7: 59×62	Ex.8: 41×96	Ex.9: 87×58
5 9	4 1	8 7
× 6 2	×9 6	×5 8
= 30¦10+54¦18	= 36\24+9\6	=40\64+35\56
= 30¦64¦18	= 36¦33¦6	= 40 99 56
= 30¦64+1¦8	= 36+3 3 6	= 40\\\99+5\\6
= 30\;65\;8	= 39¦3¦6	= 40¦104¦6
= 30+6\;5\;8		= 40+10¦4¦6
= 3658	= 3936	= 5046

Ex.10: 71×39	Ex.11: 24×87	Ex.12: 37×68
7 1	2 4	3 7
×3 9	×8 7	×6 8
= 21\;63+3\;9	= 16¦14+32¦28	= 18 24+42 56
= 21¦66¦9	= 16¦46¦28	= 18\66\56
= 21+6¦6¦9	= 1646+28	= 18\66+5\6
= 27¦6¦9	= 16¦48¦8	= 18¦71¦6
	= 16+4¦8¦8	= 18+7¦1¦6
	= 20¦8¦8	= 25 1 6
= 2769	= 2088	= 2516

Ex.13: 44×69	Ex.14: 68×9	Ex.15: 49×54
Ex.16: 99×24	Ex.17: 87×29	Ex.18: 63×26
12A,10, ///24	12A,17, 07/22	EA.10. 03/20
Ex.19: 41×62	Ex.20: 69×8	Ex.21: 89×23

Ex.22: 28×93	Ex.23: 36×67	Ex.24: 58×77
Ex.25: 13×62	Ex.26: 29×87	Ex.27: 44×68
	L	<u> </u>
Ex.28: 54×67	Ex.29: 63×27	Ex.30: 82×91
	I	1

Case 2: Three Digit Numbers (3D×3D; 3D×2D and 3D×1D)

Answer consists of Five Parts.

First	Second	Third Part:	Fourth	Fifth
Part:	Part:		Part:	Part:
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(a\times e)+(b\times d)$	$(a\times f)+(b\times e)+$ $(c\times d)$	(b×f)+(c×e)	(c×f)

- First Part is product of respective first digits of both multiplier and multiplicand.
- Second Part is applying Criss Cross on first two digits of both multiplier and multiplicand.
- Third Part is applying Criss Cross on first three (all) digits of both multiplier and multiplicand.
- Fourth Part is applying Criss Cross on last two digits of both multiplier and multiplicand.
- Fifth (Last) Part is product of respective last digits of both multiplier and multiplicand.

Ex. 1: 417 × 765	Ex. 2: 644 × 589
4 1 7	6 4 4
×7 6 5	×5 8 9
(4×7) ¦ (4×6) + (1×7) ¦ (4×5 + 1×6 + 7×7) ¦ (1×5 + 7×6) ¦ (7×5)	(6×5) ¦ (6×8) + (4×5) ¦ (6×9 + 4×8 + 4×5) ¦ (4×9 + 4×8) ¦ (4×9)
28 24+7 20+6+49 5+42 35	30 48+20 54+32+20 36+32 36
28 31 75 47 35	30 68 106 68 36
28 31 75 47+3 5	30 68 106 68+3 6
28 31 75 50 5	30 68 106 71 6
28 31 75+5 0 5	30 68 106+7 1 6
28 31 80 0 5	30 68 113 1 6
28 31+8 0 0 5	30 68+11 3 1 6
28 39 0 0 5	30 79 3 1 6

319005	379316
31 9 0 0 5	37 9 3 1 6
28+3 9 0 0 5	30+7 9 3 1 6

Ex. 3: 844 × 67	Ex. 4: 749 × 9
8 4 4	7 4 9
×0 6 7	×0 0 9
(8×0) ¦ (8×6) + (4×0) ¦ (8×7 + 4×6 + 4×0) ¦ (4×7 + 4×6) ¦ (4×7)	(7×0) ¦ (7×0) + (4×0) ¦ (7×9 + 4×0 + 9×0) ¦ (4×9 + 9×0) ¦ (9×9)
0 48+0 56+24+0 28+24 28	0 0+0 63+0+0 36+0 81
0 48 80 52 28	0 0 63 36 81
0 48 80 52+2 8	0 0 63 36+8 1
0 48 80 54 8	0 0 63 44 1
0 48 80+5 4 8	0 0 63+4 4 1
0 48 85 4 8	0 0 67 4 1
0 48+8 5 4 8	0 0+6 7 4 1
0 56 5 4 8	0 6 7 4 1
0+5 6 5 4 8	
5 6 5 4 8	
56548	6741

Ex.5: 478 × 743	Ex.6: 649×928
4 7 8	6 4 9
× 7 4 3	×9 2 8
= 28\16+49\12+28+56\21+32\24	= 54\12+36\48+8+81\32+18\72
= 28 65 96 53 24	= 54 48 137 50 72
= 28 ¦ 65 ¦ 96 ¦ 53+2 ¦ 4	= 54 ¦ 48 ¦ 137 ¦ 50+7 ¦ 2
= 28 65 96 55 4	= 54 48 137 57 2
= 28 65 96+5 5 4	= 54 ¦ 48 ¦ 137+5 ¦ 7 ¦ 2
= 28 65 101 5 4	= 54 48 142 7 2
= 28 65+10 1 5 4	= 54 48+14 2 7 2
= 28 75 1 5 4	= 54 62 2 7 2
= 28+7 5 1 5 4	= 54+6 2 2 7 2
= 35 5 1 5 4	= 60 2 2 7 2
= 355154	= 602272

Exercise: Solve using appropriate methods.

1. 14×17	2. 19×16	29. 477×510	30. 369×764
3. 121×119	4. 116×109	31. 415×698	32. 286×478
5. 1024×1005	6. 1039×1010	33. 389×855	34. 475×996
7. 88×91	8. 96×89	35. 785×774	36. 475×875
9. 99×97	10. 980×978	37. 9987×9900	38. 9985×10200
11. 976×988	12. 955×990	39. 7007×7050	40. 9875×9980
13. 971×980	14. 1024×1010	41. 78×99	42. 7×99
15. 1100×1046	16. 1020×1005	43. 874×99	44. 649×999
17. 89×121	18. 91×115	45. 87×999	46. 7436×999
19. 94×117	20. 97×109	47. 96354×999	48. 7465×9999
21. 990×1050	22. 977×1020	49. 316×9999	50. 547×9999
23. 455×485	24. 475×485	51. 54×56	52. 77×73
25. 585×620	26. 690×725	53. 736×764	54. 349×351
27. 78×86	28. 475×520	55. 369×179	56. 411×296

Answers:

1. 238	2. 304	29. 243270	30. 281916
3. 14399	4. 12644	31. 289670	32. 136708
5. 1029120	6. 1049390	33. 332595	34. 473100
7. 8008	8. 8544	35. 607590	36. 415625
9. 9603	10. 958440	37. 98871300	38. 101847000
11. 964288	12. 945450	39. 49399350	40. 98552500
13. 951580	14. 1034240	41. 7722	42. 693
15. 1150600	16. 1025100	43. 86526	44. 648351
17. 10769	18. 10465	45. 86913	46. 7428564
19. 10998	20. 10573	47. 96257646	48. 74642535
21. 1039500	22. 996540	49. 3159684	50. 5469453
23. 220675	24. 230375	51. 3024	52. 5621
25. 362700	26. 500250	53. 562304	54. 122499
27. 6708	28. 247000	55. 66051	56. 121656

6. SQUARES

What is Square: Square is the result of multiplying a number by itself.

For ex. Square of 3 is 9 (3×3); Square of -45 is 2025 (-45×-45) Square of 12 is 144 (12×12); Square of -12 is 144 (-12×-12)

6.1 Squares of numbers ending with Digit 5

Formula used is: 1. Ekādhikena Pūrvena (एकाधिकेन पूर्वण)

Meaning: One More than the Previous One

Note: This formula is used to obtain square of numbers ending with digit 5 (Ex. 15, 125, 345, 4585, 6485, 9745 etc.).

Working Procedure:

- 1. Split the given number into two parts (left and right) using vertical line (\dip). Right part is last digit (i.e 5) and Left part is remaining digits.
- 2. Multiply left part with its next number in the number line. Right part is 25 (Square of 5).
- 3. Remove vertical line, the obtained number is required square of given number.

Ex.1:15 ²	$Ex.2:25^2$	$Ex.3:75^2$	$Ex.4:95^2$	$Ex.5:115^2$
1 5	2 5	7 ¦ 5	9 5	11 ¦ 5
1×2 ¦ 25	2×3 ¦ 25	7×8 ¦ 25	9×10 ¦ 25	11×12 ¦ 25
2 25	6 25	56 25	90 25	132 25
225	625	5625	9025	13225

Ex.6:145 ²	$Ex.7:205^2$	$Ex.8:795^2$	Ex.9: 1015 ²	10:7995 ²
14 ¦ 5	20 5	79 5	101 ¦ 5	799 ¦ 5
14×15 ¦ 25	20×21 ¦ 25	79×80 ¦ 25	101×102 ¦25	799×800¦25
210 25	420 25	6320 25	10302 25	39200¦25
21025	42025	632025	1030225	3920025

Ex.3: Left part is 7 and right part is 5. Multiply 7 with its next number in the number line (8). It gives 56. Right part is $25 (5^2)$. After removing vertical line we get 5625, which is the square of 75

Ex.8: Left part is 79 and right part is 5. Multiply 79 with its next number in the number line (80). It gives 6320. Right part is 25 (square of 5). After removing vertical line we get 632025, which is the square of 795.

Ex.1: 35^2	Ex.2: 195^2	Ex.3: 105^2

Ex.4: 205 ²	Ex.5: 45^2	Ex.6: 65^2

Ex.7: 55 ²	Ex.8: 115 ²	Ex.9: 85 ²

6.2 Squares Using Surpluses and Complements

Corollary used is: 7 Yāvadūnam Tāvadūnīkrtya Vargaňca Yojayet (यावदूनं तावदूनीकृत्य वर्गं च योजयेत्) **Meaning:** Lessen by the Deficiency and set up the square of that deficiency.

Note: This formula is used to obtain square of numbers which are closer to bases (10, 100, 1000 etc.).

Case 1: When Number is above the Working Base.

Working Procedure:

- 1. Note given number, its Base (B) and Surplus (S).
- 2. Answer consists of Two Parts (Left Part and Right Part).
- 3. Right Part is Square of Surplus.
- 4. Left Part = (Given Number + Surplus).
- 5. **Note:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser add required number of zeroes, if greater pass the carry (leftmost excess digits) to left part.

Ex.1: 108 ²	Ex.2: 103^2	Ex.3: 1104 ²	Ex.4: 1250 ²
B:100;S:+08	B:100;S:+3	B:1000;S:+104	B:1000;S:+250
$108+8 + 8^2$	$103+3 \mid 3^2$	$1104+104 \mid 104^2$	$1250+250 250^2$
116 ¦ 64	106 ¦ 9	1208 10816	1500 62500
	106 ¦ 09	1208+10 816	1500+62 500
		1218 816	1562 500
11664	10609	1218816	1562500

Ex.5: 1205 ²	Ex.6: 1301 ²	Ex.7: 11320^2
B:1000; S:+205	B:1000; S:+301	B:10000; S:+1320
$1205+205 \mid 205^2$	$1301+301 \mid 301^2$	11320+1320¦1320²
1410¦42025	1602 90601	12640¦1742400
1410+42 025	1602+90 ¦ 601	12640+174 2400
1452 025	1692 601	12814 2400
1452025	1692601	128142400

Case 2: When Number is below the Working Base.

Working Procedure:

- 1. Note given number, its Base and Complement.
- 2. Answer consists of Two Parts (Left Part and Right Part).
- 3. Right Part is square of Complement.
- 4. Left Part = (Given Number + Complement).
- 5. **Note:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser add required number of zeroes, if greater pass the carry (leftmost excess digits) to left part.

Ex.1: 94 ²	Ex.2: 97^2 Ex.3: 87^2	
B:100; C: -6	B:100; C: -3	B:100; C: -13
94-6¦-6²	97-3 ¦ -3 ²	87-13 -13 ²
88 36	94 ¦ 09	74 169
		74+1 ¦ 69
8836	9409	7569

Ex.4: 79 ²	Ex.5: 84^2	Ex.6: 976 ²
B:100; C: -21	B:100; C: -16	B:1000; C: -24
79-21 ¦ -21 ²	84-16¦-16 ²	976-24 ¦ -24 ²
58 441	68 256	952 576
58+4 ¦ 41	68+2 56	
62 41	70 56	
6241	7056	952576

Ex.7: 893 ²	Ex.8: 9790^2	Ex.9: 98930^2
B:1000; C:-107	B:10000; C:-210	B:100000; C: -1070
893-107 ¦ -107 ²	$9790-210 \mid -210^2$	98930-1070 ¦-1070 ²
786 11449	9580 44100	97860 ¦1144900
786+11 449	9580+4 4100	97860+11 ¦ 44900
797 449	9584 4100	97871 44900
797449	95844100	9787144900

		wa.me/919/04038034/?text=Hi
Ex.1: 88 ²	Ex.2: 875 ²	Ex.3: 117 ²
B: C:	B: C:	B: C:
Ex.4: 91 ²	Ex.5: 9890 ²	Ex.6: 124 ²
B: C:	B: C:	B: C:
В. С.	В. С.	В. С.
Ex.7: 76^2	Ex.8: 9989 ²	Ex.9: 1102 ²
B: C:	B: C:	B: C:
	1 2	1 3
Ex.10: 85^2	Ex.11: 9650^2	Ex.12: 1220 ²
B: C:	B: C:	B: C:
•	1	1

		wa.me/919704038034/?text=Hi
Ex.13: 93 ²	Ex.14: 102^2	Ex.15: 1045^2
B: C:	B: C:	B: C:
	· · · · · · · · · · · · · · · · · · ·	
Ex.16: 98 ²	Ex.17: 109^2	Ex.18: 116 ²
B: C:	B: C:	B: C:
В. С.	В. С.	В. С.
Ex.19: 989 ²	Ex.20: 113 ²	Ex.21: 190^2
B: C:	B: C:	B: C:
	3	2
Ex.22: 979^2	Ex.23: 126 ²	Ex.24: 10205 ²
B: C:	B: C:	B: C:

6.3 Squares using Criss Cross Method

- Square is the result of multiplying a number by itself.
- Square of A is (A × A); Square of 98456 is (98456 × 98456);
 Square of 64578965 is (64578965 × 64578965)
- For finding Squares of any complex (bigger) numbers, apply Criss Cross Method. We already Studied Multiplication using Criss Cross Method and refer the same for finding squares of any number.

Ex.1: 83 ²	Ex.2: 678 ²	Ex.3: -59^2
8 3	6 7 8	5 9
8 3	6 7 8	5 9
64 24+24 9	36; 42+42; 48+49+48; 56+56; 64	25 45+45 81
64 48 9	36 84 145 112 64	25 90 81
64+4 8 9	45 9 9 15 6 11 8 6 4	34 9 8 8 1
68 8 9	459684	3481
6889	459684	3481

Ex.4: 74 ²	Ex.5: -396^2	Ex.6: 578 ²
7 4	3 9 6	5 7 8
7 4	3 9 6	5 7 8
49 28+28 16	9; 27+27; 18+81+18; 54+54; 36	25 70 129 112 64
49 56 16	9 54 117 108 36	33 8 4 14 0 11 8 6 4
54 5 7 1 6	15 6 6 12 8 11 1 3 6	
5476	156816	334084

Ex.1: 349 ²	Ex.2: 426 ²	Ex.3: 512 ²
Ex.4: 568 ²	Ex.5: 789 ²	Ex.6: 880 ²
Ex.7: 29 ²	Ex.8: 43 ²	Ex.9: 3456 ²

Ex.10: 67 ²	Ex.11: 78 ²	Ex.12: 7321 ²
22.4.10.07		EM12. 7021
Ex.13: 81^2	Ex.14: 109^2	Ex.15: 8426 ²
Ex.16: 146 ²	Ex.17: 235 ²	Ex.18: 9271 ²

Exercise: Find squares of following numbers.

1. 25	2. 35	3. 45	4. 55	5. 65	6. 135
7. 185	8. 195	9. 355	10. 495	11. 49	12. 94
13. 104	14. 112	15. 109	16. 113	17. 97	18. 93
19. 473	20. 239	21. 477	22. 369	23. 89	24. 74
25. 76	26. 98	27. 73	28. 36	29. 984	30. 746
31. 638	32. 697	33. 1005	34. 977	35. 983	36. 1036
37. 1058	38. 666	39. 305	40. 989		

Answers:

1. 625	2. 1255	21. 22752	9 22. 136161
3. 2025	4. 3025	23. 7921	24. 5476
5. 4225	6. 18225	25. 5776	26. 9604
7. 34225	8. 38025	27. 5329	28. 1296
9. 126025	10. 245025	29. 96825	6 30. 556516
11. 2401	12. 8836	31. 40704	32. 485809
13. 10816	14. 12544	33. 10100	25 34. 954529
15. 11881	16. 12769	35. 96628	9 36. 1073296
17. 9409	18. 8649	37. 11193	64 38. 443556
19. 223729	20. 57121	39. 93025	40. 978121

Plastics give a helpful hand, but they are polluting our land!

Choose to be a scholastic; refuse plastic.

Don't laminate the earth!

Many innocent animals eat plastic and die due to which our earth cry.

If you are kind so show your kindness towards reducing plastic.

Save our best friend earth from the plastic.

Go Green ,no plastic ,everything is Fantastic.

12. POLYNOMIALS

Polynomials: Polynomial is addition /subtraction /multiplication /division of constants, variables and exponents, but

- 1. Division by variable is not allowed (but division by constant is allowed).
- 2. Variable's exponents can only be whole numbers (0,1,2,3,..).
- 3. Number of terms should be finite.
- Constants: 14, 36, -74, -963 etc.
- Variables: x, y, z, a, b, c, p, q, r, s etc.
- Exponents: x^2 , x^3 etc.
- If p(x) is a polynomial in x, the highest power of x is called degree of polynomial.
- Polynomials with one term is called monomial, with two terms is called binomial; with three terms is called Trinomials.

Ex.1: $x^2+7x+12$ (Degree: **2**)

Ex.2: $x^3-13x^2+2x-87$ (Degree: **3**);

Ex.3: x^4 -8 x^2 +12x (Degree:**4**); etc.

Types of Polynomials:

- A polynomial of degree 1 is called linear polynomial.
- A polynomial of degree 2 is called quadratic polynomial.
- A polynomial of degree 3 is called cubic polynomial.
- A polynomial of degree 4 is called biquadratic (or quartic) polynomial.

NOTE: Download below supplement for Graphical Representation of various methods and other materials.

Link: www.chaitanyapatil.in/books/vms1.pdf

12.1 Multiplication using Criss Cross Method

Sutra 3: Ūrdhva – tiryagbhyām; (उर्ध्वतिर्यग्भ्याम्)

Meaning: Vertically & Crosswise

Note: Read Multiplication using Criss Cross Method from Multiplication Unit.

Working Procedure:

- Write coefficients of both polynomials one below the other separated by spaces. Write coefficient as zero if any term is absent.
- 2. Apply Criss Cross method on coefficients.
- 3. No need to alter any parts (it means **don't** transfer leftmost excess digits to its immediate left part).
- 4. Last part is constant. Go on incrementing powers of variable by 1 from right side. Second last is x, then x^2 , x^3 , x^4 , x^5 and so on.

CASE 1: $(2\times2; 2\times1)$

Fi	rst Part:	Second Part:	rt: Third Par	
a	b	a b	a	b
c	d	c d	c	d
	(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b×d)	

Ex.1: (x+3) (x+5)	Ex.2: $(x+3)(x-5)$	Ex.3: (x-3) (x-5)
1 3	1 3	1 -3
1 5	1 -5	1 -5
$(1\times1) (1\times5+1\times3) (3\times5)$	$(1\times1) (1\times-5+1\times3) (3\times-5)$	(1×1) (1×-5+1×-3)
1 8 15	1 -2 -15	(-3×-5)
$x^2 + 8x + 15$	x^2 -2x-15	1 -8 15
		$x^2-8x+15$
$x^2 + 8x + 15$	$x^2-2x-15$	$x^2-8x+15$

Ex.4: (x+3) (x)	Ex.5: (-x+3) (-x+5)	Ex.6: (-x-3) (-x-5)
1 3	-1 3	-1 -3
1 0	-1 5	-1 -5
(1×1) (1×0+1×3)	(-1×-1) (-1×5+-	(-1×-1) (-1×-5+-
(3×0)	1×3) (3×5)	1×-3) (-3×-5)
1 3 0	1 -8 15	1 8 15
$x^2 + 3x + 0$	$x^2-8x+15$	$x^2 + 8x + 15$
x^2+3x	$x^2-8x+15$	$x^2 + 8x + 15$

CASE 2: (3×3; 3×2; 3×1)

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(\mathbf{a} \times \mathbf{f} + \mathbf{b} \times \mathbf{e})$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c×f)
		+ c × d)		

Ex.1: $(x^2+5x+1) (3x^2-10x+15)$	Ex.2: $(2x^2-4x-7)(4x^2+20x-12)$	
1 5 1	2 -4 -7	
3 -10 15	4 20 -12	
(1×3) (1×-10+3×5)	(2×4) (2×20+4×-4) (2×-12+-	
(1×15+5×-10+1×3) (5×15+-	4×20+4×-7) (-4×-12+20×-7)	
10×1) (1×15)	(-7×-12)	
3 5 -32 65 15	8 24 -132 -92 84	
$3x^4 + 5x^3 - 32x^2 + 65x + 15$	$8x^4 + 24x^3 - 132x^2 - 92x + 84$	
$3x^4 + 5x^3 - 32x^2 + 65x + 15$	$8x^4 + 24x^3 - 132x^2 - 92x + 84$	

The greatest sin is to think that you are weak.--Swami Vivekananda

Reach Us:

- Contact Person: Mr. Chaitanya A. Patil
- Email: <u>info@speed16.com</u>
- Call: +91-97640-58-654
- Direct WhatsApp
- Direct Telegram
- Join our Telegram Channels:
- https://t.me/SpeedMaths
- https://t.me/speed16_IT
- Subscribe to our YouTube Channels:
- Vedic Maths: youtube.com/speedmaths
- Python: <u>Click Here</u>
- Like our Facebook Pages:
- 1: facebook.com/SpeedMaths99
- 2: facebook.com/Speed16Academy
- 3: <u>facebook.com/ChaitanyaPatil88</u> (Send me friend Request)
- Follow our Linkedin Page:
- linkedin.com/company/speed16
- Connect with us on LinkedIn:
- <u>linkedin.com/in/cp488/</u>
- Follow us on Twitter:
- twitter.com/chait_patil
- Follow us on Instagram:
- instagram.com/chaitanya.1600
- Follow & Ask Questions on Quora:
- quora.com/profile/Chaitanya-Patil-128
- Follow us on Quora Space:
- quora.com/q/cmztxptoeyvanirp

IMP Note:

This is not a complete book. This is collection of some randomly selected pages from book. Visit below given link for Paperback, eBook, Video Course, Workbook (FREE) and Online Training on Vedic Speed Mathematics, C, Python Programming and all IT courses.

- Link: www.Speed16.com/books/vm
- Download this PDF for Details: www.speed16.com/files/vm/vm.pdf
- Paperback (India):
- Amazon: https://amzn.to/2Mronn3 OR
- Instamojo: https://www.instamojo.com/speed16
- Paperback (International):
- www.Speed16.com/books/vm
- Vedic Speed Maths: Video Course (@just ₹99 / 1.3US\$; Thinkific):
- https://speed16.thinkific.com/courses/vsm
- Vedic Speed Maths: Video Course (6 to 12US\$; Udemy):
- https://www.udemy.com/course/speedmaths/?referralCode=7852F401 12045FBAD598
- eBooks (Country wise):
- India: Part-1: https://amzn.to/2MqmJSo
- US: https://amzn.to/2KmO47C
 UK: https://amzn.to/2Vi1Yj9
- Other Countries: https://www.speed16.com/books/vm/

Get all Future Updates:

- Join our Telegram Channel:
- https://t.me/SpeedMaths
- Like our Facebook Page:
- facebook.com/SpeedMaths99
- Subscribe to our YouTube Channel:
- youtube.com/speedmaths

Sharing is Caring. Share with All.

Click Here to Share on WhatsApp

Speed16 Academy

(An Online & Offline School, Sports & IT Training Academy)

- **♣** C Programming: <u>www.Speed16.com/books/c</u>
- **♣** Python Programming: <u>www.Speed16.com/books/python</u>
- ♣ Python & all IT Training: www.Speed16.com/training
- **4** (First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students)
- Vedic Speed Mathematics online training is completely FREE and open to all. www.Speed16.com/free
- ♣ Contact: Chaitanya Patil email: info@speed16.com Call: +91-97640-58-654; Whatsapp: https://wa.me/919764058654

- Online Interactive Python, Java, Tableau, Salesforce, DevOps, AWS & all IT Training:
- www.Speed16.com/training
- **First Session is Completely FREE and Open to All. Separate Batches for Software Professionals and US/Europe Students**
- Contact: Chaitanya Patil
- ♣ email: <u>info@speed16.com</u>

 email: <u>info@speed16.com</u>
- **♣** Call: +91-97640-58-654
- **♦** Whatsapp: https://wa.me/919764058654

-----Notes-----