

AD-A104 933 SYSTEMS TECHNOLOGY INC HAWTHORNE CA F/G 6/6
USER'S GUIDE TO BIODYN-B01 AN INTERACTIVE SOFTWARE PACKAGE FOR --ETC(U)
JUL 81 S A RIEDEL, R E MAGDALENO, M R JFX F33615-79-C-0519
UNCLASSIFIED STI-TR-1146-1 AFAMRL-TR-81-59 NL

100%
40%
20%
10%

END
DATE FILMED
10 81
DTIC

LEVEL II

12

AFAMRL-TR-81-59

AD A104933

**USER'S GUIDE TO BIODYN-80;
AN INTERACTIVE SOFTWARE PACKAGE FOR
MODELING BIODYNAMIC FEEDTHROUGH TO
A PILOT'S HANDS, HEAD, AND EYES**

**SUSAN A. RIEDEL
RAYMOND E. MAGDALENO
HENRY R. JEX**

**SYSTEMS TECHNOLOGY, INC.
13766 SOUTH HAWTHORNE BOULEVARD
HAWTHORNE CALIFORNIA 90250**

JULY 1981

DTIC
SELECTED
OCT 2 1981
S H

Approved for public release; distribution unlimited.

**AIR FORCE AEROSPACE MEDICAL RESEARCH LABORATORY
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB OH 45433**

81 10 2 088

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Air Force Aerospace Medical Research Laboratory. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AFAMRL-TR-81-59

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

HENNING E. VON GIERKE
Director
Biodynamics and Bioengineering Division
Air Force Aerospace Medical Research Laboratory

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFAMRL-TR-81-59	2. GOVT ACCESSION NO. AD-A104933	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and SUBTITLE) USER'S GUIDE TO BIODYN-80; AN INTERACTIVE SOFTWARE PACKAGE FOR MODELING BIODYNAMIC FEEDTHROUGH TO A PILOT'S HANDS, HEAD, AND EYES.		5. TYPE OF REPORT & PERIOD COVERED Final Report 1779 to 11/80
6. AUTHOR(s) Susan A. Riedel Raymond E. Magdaleno Henry R. Jex		7. PERFORMING ORG. REPORT NUMBER AFT-TR-1146-1
8. PERFORMING ORGANIZATION NAME AND ADDRESS Systems Technology, Inc. 13766 S. Hawthorne Blvd. Hawthorne CA 90250		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2312-V3-20
10. CONTROLLING OFFICE NAME AND ADDRESS Air Force Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB OH 45433		11. REPORT DATE July 1981
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 73
14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) Unclassified
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. SUPPLEMENTARY NOTES		
18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Biodynamics Control Performance Whole-body Vibration Man/Machine Interface Visual Performance Computer Program: BIODYN-80 Human Transmissability		
19. ABSTRACT (Continue on reverse side if necessary and identify by block number) This is the User's Manual for BIODYN-80, an interactive computer program for solving the dynamic motion response of seated aircrew (pilots or equipment operators) working in a biodynamic environment (such as vibration or changing levels of acceleration in aircraft, surface vehicles, or motion simulators). The multi-degree-of-freedom, lumped-parameter model includes elements for: pelvis, torso, neck, head, eyes, upper and lower arms, hand-grip and control stick (center-stick with arm rest). An active 21-parameter neuromuscular system is operable with either the limb or head control. The eye's image		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

4103

JCL

20. ABSTRACT (continued)

motion dynamics include a 13-parameter model for the fixation and vestibulo-ocular reflexes. The nonlinear equations of motion of the body's main elements are linearized about a general set of body-limb-head postures, ranging from prone, to erect, to supine. Inputs are vertical or fore-aft accelerations of the seat, while a wide variety of outputs are available, including motions of the shoulder, head, eyes, arm, hand, or control stick. Typical parameter ranges and sources are given, along with two "typical" sets: a seated-pilot with center-stick, and a seated crewman with hands in lap.

The program can be run in a mode interactive with the user, or in a batch mode. The program helps the user load the necessary parameters, and offers a "quick-look" printer plot of the resulting frequency responses, in standard Bode-plot forms. The program also can produce biomechanical transmissability files needed for use in the Air Force's PIVIB program for tracking performance estimation.

Procedures and examples are given for both a Cyber 175 version available on "INTERCOM" for Wright-Patterson Air Force Base users, and a PDP-10 version, available on the Tymshare national computer network for other users.

PREFACE

This report was prepared by Systems Technology, Inc., Hawthorne, California, under Contract F33615-79-C-0519, for the Air Force Aerospace Medical Research Laboratory (AFAMRL). Mr. Charles Harmon, Biodynamic Effects Branch of the Biodynamics and Bioengineering Division, served as the technical monitor for AFAMRL in support of Project 2312-V3-20, "Man-Machine Interface Model."

Accession For	
NTIS GRANT	<input checked="" type="checkbox"/>
DOD T&E	<input type="checkbox"/>
Commercial	<input type="checkbox"/>
Intelligence	<input type="checkbox"/>
By _____	
Distribution	
Availability Codes	
Author	<input type="checkbox"/>
Date	<input type="checkbox"/>

A

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION.....	4
A Scope.....	4
B Background.....	4
C Applications.....	5
SOFTWARE OVERVIEW.....	6
MODEL DESCRIPTION.....	10
A Biomechanical Model.....	10
B Limb Neuromuscular Model.....	12
C Neck/Head/Eye Models.....	12
USING BIODYN-80.....	17
A CREATE.....	17
B BIODYN.....	27
C Plot.....	28
D Interface with PIVIB.....	28
E For Assistance.....	35
APPENDIX A DEFINITION OF PARAMETERS, SYMBOLS, RANGES AND TYPICAL VALUES.....	36
APPENDIX B DEFINITION OF FORCING FUNCTION AND RESPONSE VARIABLES.....	45
APPENDIX C EQUATIONS OF MOTION.....	49
APPENDIX D TYMSHARE EXAMPLE PROBLEM.....	57
APPENDIX E INTERCOM EXAMPLE PROBLEM.....	66
REFERENCES.....	69

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Overview of BIODYN-80.....	7
2	BIODYN-80 Flow Chart.....	8
3	Main Biomechanical Elements.....	11
4	Linearized Limb Neuromuscular System.....	13
5	Simplified Head Pointing Neuromuscular System.....	14
6	Block Diagram for Head, Eye, Vestibular Models and Display Kinematics.....	15
7	Example Long Format File Listing.....	20
8	Example Short Format PARAMETER File Listing.....	22
9	Format for BIODYN-80 Transfer Function Printouts.....	29
10	Format Used for BIODYN-80 TAPE19 File of Transfer Functions.....	30
11	Example Output from Plot.....	31
12	BIODYN-80 Transfer Functions Which May Be Used as PIVIB Input.....	34

LIST OF TABLES

Table

1	Parameter and Symbol Definitions, Ranges, and Typical Values.....	36
2	Parameter File Structure (Short Format).....	43
3	Input (Forcing Function) Variables.....	45
4	Output (Response) Variables.....	46

INTRODUCTION

A. SCOPE

BIODYN-80 is a versatile computational tool used to determine transmissibilities (transfer functions) between vertical and/or fore-aft vibrational inputs and important biodynamic outputs, such as motions of the torso, head, eyes, arms or hands. The program scenario assumes a seated pilot, gripping an arbitrary-angle stick and viewing a display, possibly engaged in a tracking task. The physical model uses an "isomorphic," (lumped parameter,) approach to represent the relevant portions of the whole-body torso, limbs and head, as well as postural compliances among the joints. The implementation of this model includes a chain of interacting parallel and serial second-order elements, with neuromuscular and other force feedbacks at the arm or head. The resulting equations are in "second-order element" matrix form and apply to a wide range of seated postures. A separate input file, which describes the particular set of parameters to be used, is created by the user (usually by modifying one of a catalogued set). This file is incorporated in the matrix to produce linearized coefficients for perturbations about the selected equilibrium posture. A variety of outputs and inputs can be specified to evaluate the desired transmissibility transfer functions, and these are written to a file in formatted form for plotting or use in other programs. On-line, printer-drawn frequency response plots (Bode format) are available to aid in interactive user-computer operations, or to screen significant results from batch runs.

B. BACKGROUND

BIODYN-80 is one result of a several year small-scale development effort, reported in detail in References 1-6. It is based on vibration

measurements made at the Aerospace Medical Research Lab/Biodynamics Division (AMRL/BB) and elsewhere. Most of the torso, limb and stick model elements are based on independent vibration measurements (e.g., Reference 5), and the neck, head and eye effects show promising correlations with the few available measurements on image motion effects (Reference 6). However, many aspects remain to be explored, validated or upgraded as more experiments are run and interpreted via BIODYN-80.

C. APPLICATIONS

The possible applications of this program are many. It should be used in the early stages of experimental design for determining the optimal locations for vibration measurements and/or selection of frequencies. It can also be used by development engineers for solving practical pilot-vehicle interface design problems such as pilot-induced oscillations and for optimizing design alternatives such as seat location, orientation and suspension parameters. Flight control system designers can make use of BIODYN-80 output in optimizing vehicle/aircrew ride qualities and visual performance effects, possibly incorporating anti-vibration devices to improve the design.

One further application of BIODYN-80 deserves special mention. Its vibration-input to biodynamic parameter-output transfer functions are ideally suited as input to PIVIB, another software package which relates pilot tracking performance to the vibration environment (Reference 7). PIVIB accepts biomechanical transfer functions in the format created by BIODYN-80. The details of the BIODYN-80/PIVIB interface will be found in a later section.

The remainder of this report details the use of BIODYN-80, and describes the model and the equations comprising it. Detailed instructions for the creation of the required input files, and a complete example problem are also included.

SOFTWARE OVERVIEW

Figure 1 is a functional block diagram description of the elements in BIODYN and its interface with PIVIB. The BIODYN-80 package is composed of three programs. The first, called CREATE,* interactively sets up the two input files used by BIODYN. The second program called BIODYN, is the actual "number cruncher," which structures and solves the biomechanical equations and computes the desired transfer functions. The third program called PLOT, accepts the file of BIODYN transfer functions, prints selected ones in a form readily comprehended by the user, and prepares "quick plot" Bode plots on the line printer, to facilitate a visual interpretation of the transfer function information. Both BIODYN and PLOT are designed primarily as batch programs while, CREATE permits conversational user interaction in structuring input data.

A subsequent link in this series of programs is PIVIB. It is a large batch program with three modules. The first, BDMOD, computes the response behavior of the various biomechanical subsystems. The second, PVMOD, uses the results of BDMOD and the BBN optimal control model to estimate pilot tracking performance within the vibration environment. The final module, VEXEC, provides the top level communication interface between BDMOD and PVMOD, and performs no actual computation. The BDMOD module expects biodynamic transfer functions in a format generated by BIODYN. Only the relationships of BIODYN-80 to PIVIB are described herein, because PIVIB is run separately and has its own User's Manual (Reference 7).

Figure 2 presents a flow chart covering the use of BIODYN and PIVIB in a given session. The detailed description of the various steps for BIODYN is found in Section D. Note that the flow of execution can be

*The CREATE program should not be confused with INTERCOM's EDITOR subcommand CREATE; it has been given the permanent file name EXECRT to distinguish it from the latter.

Figure 1 Overview of BIODYN-80

Figure 2 BIODYN-80 Flow Chart

used to solve a single problem, by submitting a single batch request, or to iterate on a design by submitting a number of batch requests using the same CHOICES file and slightly altered PARAMETER files (heavy lines in Figure 2).

BIODYN-80 uses three separate files in performing its computations. The PARAMETER file contains the set of 96 parameters used to define the specific pilot/posture/display/vibration characteristics. Appendix A contains a complete description of each parameter, including definition, mnemonic, nominal value, recommended range of values and reference (where available). CREATE is used to assemble this file and can modify an existing file or produce an entirely new file. The CHOICES file contains the list of desired transfer functions to be computed and output by BIODYN, as well as directives for producing the line printer Bode plots. Again, this CHOICES file is assembled by CREATE. Finally, the TF file is used to store the resulting transfer functions output by BIODYN, and is read by the PLOT routine for generating Bode plots.

PIVIB employs a single large file to direct its flow of execution. This file defines the vibration environment, biomechanical transfer functions, tracking dynamics, tracking performance requirements, and pilot limitations (bandwidths, time delays, etc.). Currently, this file is assembled in the editor, using output from BIODYN-80 if desired.

BIODYN-80 and each of its predecessors were developed on the Tymshare, Inc., PDP-10 computers. BIODYN-80 has been adapted to the CDC "Intercom" System on the CDC 6600 or CYBER 175 at WPAFB in order to increase its availability to Air Force users, and to interact with PIVIB, which is also operable on the WPAFB CDC computer. The details of this manual will address its use on the CDC machine; an example of a Tymshare session is given in Appendix D. Throughout the manual, however, it is assumed that the user is familiar with the WPAFB CYBER 175, and in particular has experience with the INTERCOM operating system. If not, the user should read References 8 and 9 first.

MODEL DESCRIPTION

Three distinct subsystem models are included in BIODYN-80. They are described individually below.

A. BIOMECHANICAL MODEL

Figure 3 (updated from Figure 2 of Reference 3) presents the biomechanical model and defines many of the necessary parameters that describe the nominal (or trim) situation. It utilizes an "isomorphic," or body-mimicking representation, of the major body segments in their orientations, simplified to a minimum number of lumped parameter equivalents. The biomechanical features include:

- Semisupine torso; sliding hip plus rocking chest supported on a compliant buttocks/seat.
- Head bobbing on an articulated neck with passive compliance, or active neuromuscular system.
- Upper arm and forearm links plus grip-interface compliance, driven by an active neuromuscular system.
- Arm-rest restraints (optional).
- Stick "feel system" dynamics from zero to infinite stiffness, and any angle of stick or grip.

The simplified torso model was derived to describe the dominant motions of the head and arm elements; the "pin joint" node between upper and lower torso segments is not meant to represent any physical feature. In practice, the masses and inertias are obtained from tabulated biomechanical and anthropometric data for the appropriate sized person (e.g., Reference 11), the postural angles are based on the actual situation (preferably via a side-view photo), and the spring forces and damping coefficients are fitted to data or taken from other sources (e.g., References 3 and 12).

a) Basic Elements

b) Body Parameters

Figure 3 Main Biomechanical Elements

B. LIMB NEUROMUSCULAR MODEL

The active neuromuscular system noted on Figure 3 is a schematic representation of the net effect of complex agonist/antagonist muscle pairs controlling the upper arm or head based on the work summarized in Reference 10. An "NM switch" is defined in the PARAMETER file which causes this neuromuscular model to control the limb ($NM = 0$) or the head ($NM = 1$). A linearized representation of the limb neuromuscular model is shown in Figure 4, while the head neuromuscular model is depicted in Figure 5. This model relates the action of the muscle pairs to the effective (spindle) sensors of muscle length and force as well as proprioception from the stick grip interface (in the case of the limb neuromuscular model) or the head-neck interface (in the case of the head neuromuscular model), thus closing the receptor-CNS-effector loop.

Unless neuromuscular properties are being investigated, it is recommended that the typical values of the parameters shown in Table A-1 be used. These are representative of a normal person's arm-hand or head-neck system, and generally yield reasonably damped neuromuscular servo properties. The neuromuscular parameters listed in Appendix A are characteristic of the largest muscles in the body (e.g., the legs), but experience has shown that the dynamic properties (torque/inertia ratios, damping ratios, natural frequencies, etc.) are about the same for all postural muscle pairs. Here, an empirical scale factor $S (> 1.0)$ is used to scale the normalized muscle to a particular configuration, as though the muscle acted normal to the upper arm c.g. A more detailed description of the neuromuscular model is found in Reference 10.

C. NECK/HEAD/EYE MODELS

Figure 6 illustrates the basic elements involved in the neck/head/eye model. Details involving validation and example use of this subsystem model are found in Reference 6. The task is to keep the eye fixated on the target, i.e., null the relative eye (point of regard) deviation (RED) at the display. The moving base can produce image error disturbances, both from induced head rotation and translation as well as

Figure 4 Linearized Limb Neuromuscular System (When the Option NM = 0)

Notes:

When $NM=1$, this simplified NM system is connected to the head to maintain head pointing at the vibrating target. The values of the parameters F_A , K_{IC} , K_a , etc. are different between the limb case ($NM=0$) and head case ($NM=1$).

Figure 5 Simplified Head Pointing Neuromuscular System
(When Option $NM = 1$)

Figure 6 Block Diagram for Head, Eye, Vestibular Models and Display Kinematics

target motions. The "vestibulo-ocular reflex" is a "crossfeed" (or "feedforward") that rotates the eye oppositely to the head to compensate for head rotation, i.e., to maintain approximate inertial eye fixation.

The "Fixation Reflex" or feedback tracking loop involves the subject's efforts to null the image error θ_I by compensatory eye movements. The "Target Pursuit" path (shown dashed) models the subject's "feedforward" operations on the perceived absolute target motions in inertial space (as distinct from the image error motions). For highly predictable and perceivable target motions the Target Pursuit path is capable of greatly reducing the image errors, but it is not involved in most vibration cases because of insufficient bandwidth.

The linearized model formulation assumes that the target remains within the foveal area (3-4 deg field), and that angular velocities are small (i.e., less than 20 deg/sec) such that saccades are rare and can be ignored. Additionally, the vibration-induced motions will always be small enough to permit linearization of all angular functions and allow a quasi-linear representation of the dynamic elements about each "operating point" (posture, view geometry, frequency). The operating point angles can have any values within human limits for a seated pilot or crewman.

The three subsystem models described above contain parameters which must be assigned values via the PARAMETER file, in order to describe the desired problem to BIODYN. These parameters are defined in Appendix A. The available input (forcing function) variables and output (response) variables are given in Appendix B. Two different input deflection variables are available for the x and z axes. BZP and BXP should be used when absolute outputs (referenced to inertial space) are desired; DZP and DXP are used when outputs relative to the moving platform are desired. The equations of motion are in Appendix C. Background on their derivation and development are given in a series of prior reports (References 1-3, 6, 10).

USING BIODYN-80

Three job steps are required for a complete run of BIODYN-80. The CREATE program is used interactively via a remote terminal, to assemble the PARAMETER and CHOICES files. These files are then read by BIODYN and the transfer functions computed, stored on the TF file, and listed at a line printer. The TF file is in turn read by the PLOT program to produce any Bode plots desired. Each of these steps is described in detail. Note that all user interaction with the computer assumes the user is logged in to CDC's INTERCOM. It is assumed that the user has access to Intercom set "AFML" where the program and its files reside. For other setname groups, please consult your Computer Center Representative to get on the AFML list, or for instructions on how to use a "modified job stream listing" (Reference 8).

A. CREATE

Because of the large number of parameters required by BIODYN-80, it was decided that a dedicated interactive "editor" for creating parameter files was needed to produce rational, error-free input files, and thereby avoid aborting during the subsequent, and expensive, batch run of BIODYN (for example, due to a missing decimal point). Furthermore, this approach allows the maintenance of a "catalog" of PARAMETER files for various postures and situations, from which the most appropriate one can be easily selected and modified for a particular situation. The CREATE program serves in this regard by allowing a user to interactively assemble new parameter files or modify existing ones. CREATE also performs various data checks and identifies common parameter entry errors. This section details the use of the CREATE program.

1. Entering CREATE

CREATE makes use of five files, as defined by the PROGRAM card:

TAPE4 = INPUT file (the user's terminal)

TAPE5 = OUTPUT file (the user's terminal)
TAPE7 = CHOICES file (if new one is created)
TAPE8 = PARAMETER file (new or modified)
TAPE20 = PARAMETER file (existing)

The PROGRAM card automatically assigns the INPUT and OUTPUT files to the appropriate tape units. If an existing PARAMETER file is to be accessed, it must be assigned prior to executing CREATE. The job stream to be input by the user looks like this (detailed examples are given later, in Appendices D and E):

```
REQUEST,TAPE7,*PF          (pfn1 is the PARAMETER file name  
REQUEST,TAPE8,*PF          selected by the user from the  
ATTACH,TAPE20,pfn1          permanent file catalog within  
ATTACH,EXECRT             the setname AFML group)  
EXECRT
```

Now the user is at the entry level of CREATE. The first issue addressed is creating the PARAMETER file, or modifying an existing PARAMETER file. The computer's first prompt

NEW FILE?

asks the user to identify which option is desired. Answers are YES or NO; any other response will cause the query to be repeated.

2. Modifying a PARAMETER File

If the answer is NO, the values stored on the file assigned to TAPE20 are read. The user may list those values by responding to the next prompt

LISTING DESIRED?

with YES. A NO response will skip over the listing option. Any other response will cause repeat of the question. The listing produced can either be long or short. The long listing provides parameter definition, mnemonic, units and current value, while the short listing prints only values, grouped according to each element (see Table A-2, Appendix A). Examples of each are given in Figures 7 and 8, respectively.

Response to the prompt:

(LO)NG OR (SH)ORT LISTING?

determines which listing to generate. A response other than LO or SH will cause repeat of the question.

Values are now ready for change, as indicated by the message:

INPUT MNEMONIC (5 CHARS) AND VALUE FOR EACH CHANGE,
TO EXIT, TYPE XXX.

To change any desired parameter value, its mnemonic from the second column of the definitions in Appendix A is input. Mnemonic must be left justified within a 5 character field followed by a comma, followed by the new value. The mnemonic is then checked against the internal list of permissible mnemonics; e.g., if ABDCE is not found, the message:

MNEMONIC ABCDE NOT PERMISSIBLE. PLEASE REINPUT.

appears and the user should try again. Likely errors include typos, and forgetting to pad the 5 character field with trailing blanks.

Once a correct mnemonic is identified, its new value is compared with the recommended range of values for that parameter. If the value is not within that range, a warning message appears:

WARNING - RECOMMENDED RANGE FOR THIS PARAMETER IS
0.5 TO 3.5 GS
DO YOU WANT TO CHANGE THE VALUE?

STD CREWMAN, HANDS ON KNEES

PARAMETER DEFINITION	MNEMONIC	UNITS	VALUE
LOWER BODY MASS	XMB	KG	14.0000
L. BODY SEAT CUSHION DAMPER	BB	N/M/S	315.000
L. BODY SEAT CUSHION STIFFNESS	XKB	N/M	49360.0
SERIES SPRING GRAD.-LOWER BODY	GK1	N/M	119320.
SEAT TILT ANGLE	THL	DEG	13.0000
TRIM VERTICAL ACCEL.	G	M/S2	9.80000
TORSO MASS	XMT	KG	18.0000
TORSO INERTIA	ZIT	KGM2	.800000
TORSO DAMPING	BTB	NM/R/S	40.0000
TORSO STIFFNESS	XKTB	NM/R	500.000
ANGLE OF XLT FROM VERTICAL	THT	DEG	-15.0000
TORSO CG TO HIPS PIVOT LENGTH	XLT	M	.150000
ANGLE OF XI TN	THTN	DEG	-5.00000
TORSO CG TO NECK/TORSO PIVOT	XLTN	M	.300000
ANGLE OF XLS	THS	DEG	-5.00000
TORSO CG TO SHOULDER LENGTH	XLS	M	.300000
NECK MASS	XMN	KG	1.24000
NECK INERTIA	ZIN	KGM2	.240000E-02
NECK/TORSO DAMPER	BNT	NM/R/S	.100000
NECK/TORSO STIFFNESS	XKNT	NM/R	50.0000
ANGLE OF XIN	THN	DEG	-30.0000
NECK LENGTH	XLN	M	.124440
NECK CG TO NECK/TORSO PIVOT	XLN1	M	.622200E-01
HEAD MASS	XMH	KG	3.10000
HEAD INERTIA	ZIH	KGM2	.303000E-01
HEAD/NECK DAMPER	BHN	NM/R/S	.126000
HEAD/NECK STIFFNESS	XKHN	NM/R	15.0000
HEAD/NECK COMPLIANCE	CH	-	1.00000
ANGLE OF XLH	TH	DEG	60.0000
HEAD CG TO HEAD/NECK PIVOT LEN	XLH	M	.250000E-01
LINE OF SIGHT ANGLE	THV	DEG	-30.0000
VIEWING DISTANCE	VD	M	.685300
UPPER ARM MASS	XM1	KG	1.37200
UPPER ARM INERTIA	Z1	KGM2	.120000E-01
UPPER ARM ANGLE	T1	DEG	15.0000
UPPER ARM LENGTH	D1	M	.290000
UPPER ARM CG	R1	M/M	.440000
LOWER ARM MASS	XM2	KG	1.01700
LOWER ARM INERTIA	Z2	KGM2	.152000E-01
ELBOW ANGLE	TE	DEG	115.000
LOWER ARM LENGTH	D2	M	.305000
LOWER ARM CG	R2	M/M	.500000
GRIP INTERFACE ANGLE	TIJ	DEG	0.
GRIP INTERFACE TIME CONSTANT	TIF	S	.100000
GRIP INTERFACE COMPLIANCE	CI	M/N	1.00000

(continued)

Figure 7 Example Long Format File Listing

SUM OF SENSORS	XMS	N/G	4.00000
SWING GEARBOX	BS	N/M/S	.240.000
SWING GEARBOX	XKS	N/M	10000.0
SWING GEARBOX GEAR RATIO	CKS	-	1.00000
SWING GEARBOX SENSITIVITY TO NX	SX	N/G	0.
SWING GEARBOX SENSITIVITY TO NZ	SZ	N/G	0.
SWING GEARBOX	THC	DEG	.70.0000
SWING GEARBOX	XLC	M	.550000
SWING GEARBOX	XKSC	/M	.100000E-01
SWING GEARBOX	BAR	N/M/S	0.
SWING GEARBOX UNIFOR (NORMAL)	XKAR	N/M	0.
SWING GEARBOX UNIFOR (TANG)	BAT	N/M/S	0.
SWING GEARBOX UNIFOR (TANG)	XBAT	N/M	0.
SWING GEARBOX REST DISTANCE	XLER	M	0.
SWING ARM LENGTH AND RPM LIM	ARMR	-	0.
SWING ARM LENGTH (INTERNAL AND EXTR.)	NM	-	0.
SWING ARM LENGTH ELEMENT ELEMENTS	SI	-	.50.0000
SWING ARM LENGTH	TCC	S	.909000E-01
SWING ARM LENGTH DELAY	TCS	S	.890000E-01
SWING ARM LENGTH	XNAO	N/N	1.00000
SWING ARM LENGTH	ZD	-	.300000
SWING ARM LENGTH	WA	R/S	16.0000
SWING ARM LENGTH	TAA	S	0.
SWING ARM LENGTH	BM	N/N/S	1.00000
SWING ARM LENGTH SYSTEM	XRM	N/M	2.00000
SWING ARM LENGTH ELEMENT DAMPER	BE	N/M/S	2.43000
SWING ARM LENGTH ELEMENT GRAB	XKE	N/M	40.0000
SWING ARM LENGTH	BT	N/M/S	0.
SWING ARM LENGTH	XNT	N/M	.60.0000
SWING ARM LENGTH	XNSP	N/M	.5.00000
SWING ARM LENGTH TIME CONSTANT	TSP	S	.909000E-01
SWING ARM LENGTH TIME CONSTANT	TPS	S	0.
SWING ARM LENGTH TIME CONST	TSS	S	0.
SWING ARM LENGTH TIME CONST	XNG	N/N	.500000
SWING ARM LENGTH TIME CONST	TG	S	.550000E-01
SWING ARM LENGTH TIME CONST	TZ	S	0.
SWING ARM LENGTH TIME CONST	TP	S	0.
SWING ARM LENGTH	XKDE	R/R	.7.07950
SWING ARM LENGTH	XKRE	R/R/S	0.
SWING ARM LENGTH	TV	S	.450000E-01
SWING ARM LENGTH CYCLE FREQ	ALPHA	R/S	.300000
SWING ARM LENGTH CYCLE FREQ	XKF	R/R	0.
SWING ARM LENGTH CYCLE FREQ	XKIE	-	.670000
SWING ARM LENGTH CYCLE FREQ	XKUE	-	.100000
SWING ARM LENGTH CYCLE FREQ	TC2	S	.100000E-01
SWING ARM LENGTH CYCLE FREQ	TEM	S	.100000
SWING ARM LENGTH CYCLE FREQ	TLM	S	.125000E-01
SWING ARM LENGTH CYCLE FREQ	QE	-	1.00000
SWING ARM LENGTH CYCLE FREQ	ZE	-	.650000
SWING ARM LENGTH CYCLE FREQ	WE	R/S	316.230

Figure 7 (Concluded)

PARAMETERS FOR:

SEATED CREWMAN - VIEWING DISTANCE = 9 CM

LOWER BODY

14.000	315.00	49360.	.11932E+06	13.000	9.8000
--------	--------	--------	------------	--------	--------

TORSO

18.000	.80000	40.000	500.00		
--------	--------	--------	--------	--	--

-15.000	.15000	-5.0000	.30000	-5.0000	.30000
---------	--------	---------	--------	---------	--------

NECK

1.2400	.24000E-02	.10000	50.000		
--------	------------	--------	--------	--	--

-30.000	.12444	.62220E-01			
---------	--------	------------	--	--	--

HEAD/DISPLAY VIEWING

3.1000	.30300E-01	.12600	15.000	1.0000	
--------	------------	--------	--------	--------	--

60.000	.25000E-01	-30.000	.90000E-01		
--------	------------	---------	------------	--	--

ARM (UPPER, LOWER)

1.3720	.12000E-01	15.000	.29000	.44000	
--------	------------	--------	--------	--------	--

1.0170	.15200E-01	115.00	.30500	.50000	
--------	------------	--------	--------	--------	--

GRIP INTERFACE

0.	.10000	1.0000			
----	--------	--------	--	--	--

STICK

4.0000	240.00	10000.	1.0000	0.	0.
--------	--------	--------	--------	----	----

90.000	.55000	.10000E-01			
--------	--------	------------	--	--	--

ARM REST

0.	0.	0.	0.	0.	0.
----	----	----	----	----	----

NEUROMUSCULAR SYSTEM

0	50.000				
---	--------	--	--	--	--

.20000E-01	.90900E-01	.89000E-01			
------------	------------	------------	--	--	--

1.0000	.80000	16.000	0.		
--------	--------	--------	----	--	--

1.0000	2.0000	2.4300	40.000	0.	80.000
--------	--------	--------	--------	----	--------

5.0000	.90900E-01	0.	0.		
--------	------------	----	----	--	--

.50000	.55000E-01	0.	0.		
--------	------------	----	----	--	--

0.	.10000	.45000E-01	.30000	0.	
----	--------	------------	--------	----	--

.67200	.10000	.10000E-01			
--------	--------	------------	--	--	--

.10000	.12500E-01	1.0000	.65000	316.23	
--------	------------	--------	--------	--------	--

Figure 8 Example Short Format PARAMETER File Listing

If a mistake has been made in typing the new value, a YES answer will allow retyping of both the mnemonic and its corrected value. If, however, the value is correct, even if out of range, a NO answer will cause the value to be stored as it stands. Any response other than YES or NO will cause the warning message to be repeated.

The range of parameters given in Appendix A is as wide as can be allowed for typical applications of BIODYN-80 (e.g., arm joint limits). Values outside this range are used at the user's risk, and precise postural angles for the given case should be carefully checked at this point. (It is good practice to check your lengths and angles by drawing a stick figure to scale, using the desired values.)

When all the desired changes have been made, an input of XXX causes control to leave the modify mode. An opportunity to change the case title is then presented as

TITLE IS STD CREWMAN, HANDS ON KNEES
CHANGE DESIRED?

A YES answer causes the message

NEW TITLE:

to appear and a new title (60 characters maximum) can be typed. A NO response skips this section; other responses cause the prompt to repeat.

After all desired changes have been made, the user is once again given the opportunity to list the file, using either the LOnG or SHort format, as described above. At this point the computer writes the new values to the PARAMETER output file, TAPE8.

3. Assembling a New PARAMETER File

If most of the parameters are new, then instead of modifying an existing file the initial prompt

NEW FILE?

is answered YES. Every parameter value must then be input. The message

INPUT VALUE FOR EACH MNEMONIC. FOR FURTHER EXPLANATION, TYPE?

initiates this process. For each parameter, the mnemonic is printed as, for example, Viewing Distance, VD:

VD =

and the value is accepted in floating point format. If the user is uncertain as to the range of appropriate values, an expanded prompt may be requested by typing "?". The expanded prompt for VD is, for example:

VD = ?

VD VIEWING DISTANCE
RECOMMENDED RANGE = 0.5 TO 3.0 M
VD =

the user can then enter the desired value.

As each value is read, it is checked against the recommended range of values, in order to weed out input errors due to wrong sign or incorrect decimal placement. If the value is not within range, the warning message given previously appears. The user always has the option of modifying or saving any value typed.

This process continues until all 96 parameters have been entered. The case title is then added as a response to

INPUT TITLE FOR THIS CASE:

At this point, a L0ng or SHort format listing may be generated as discussed above. The file is then written by the computer to the PARAMETER file designated TAPE8.

4. Assembling the CHOICES File

The next section of CREATE is used to assemble a new CHOICES file which specifies the transfer functions to be output. Note that there is no provision for modifying an existing CHOICES file; any changes to an existing CHOICES file must be made by creating an entirely new file. The prompt

NEW CHOICES FILE?

has two responses: a NO allows the user to skip this entire section if an existing CHOICES file will be used as input to BIODYN; a YES response will cause prompting for the CHOICES file components as described below. Any other response will cause the prompt to be repeated.

A YES response to the next prompt

BIODYN TFS DESIRED FOR PIVIB?

will automatically generate the ten transfer functions to be included in the PIVIB input file. This is mandatory if interaction with PIVIB is anticipated. The response and forcing function variables involved are shown later, in Figure 12. A NO answer skips this section; other answers cause repeat of the question.

All other desired transfer functions are entered by the user in response to the following computer-specified format:

TRANSFER FUNCTION INPUT:

FIRST LINE - RESPONSE MNEMONIC, FORCING FUNCTION MNEMONIC

(AAA, AAA); ENTER XXX TO STOP

SECOND LINE - PLOTTING INFORMATION, 5 ITEMS:

BODE LOWER FREQ. LIMIT

BODE UPPER FREQ. LIMIT

BODE UPPER PHASE LIMIT (0. DEFAULTS TO 200.)

BODE LOWER PHASE LIMIT (0. DEFAULTS TO -400.)

LIST (1. TO LIST TABLE, 0. FOR NO LIST)

IF NO PLOT DESIRED, ENTER 0. FOR ALL ITEMS .

Note that the parameters for each transfer function are entered on two consecutive lines, each item separated by a comma, each line followed by CR.

The mnemonics requested are three-character codes as defined in Appendix B. The program checks each mnemonic against the list of acceptable codes. If a match is not made, the error message

XYZ NOT PERMISSIBLE, PLEASE REINPUT.

is given and the entire first line must be retyped.

If Bode plots are desired, the frequency and phase limits must be entered; if not, zeros are assumed. The frequency limits must bound a frequency range of no more than 3 decades. If frequencies with an unacceptable range are entered, the message

MAX FREQUENCY RANGE IS 3 DECADES
PLEASE REINPUT ENTIRE LINE

appears and, all five items for that transfer function must be re-typed. The phase limits are unbounded, but entering zeros will cause default to +200.0 deg and -400.0 deg for the upper and lower limits, respectively. If a tabular listing, including frequency, amplitude, and phase at 20 increments/decade intervals is desired, a 1.0 should be entered as the fifth item; otherwise enter 0.0.

The CREATE program stops when an XXX is read in the CHOICES file section. The two files created must be saved as permanent files by giving the following INTERCOM commands:

CATALOG,TAPE7,pfn₂,RP=10
CATALOG,TAPE8,pfn₃,RP=10

where pfn₂ is a new (seven character) permanent file name assigned to the CHOICES file and pfn₃ is a new (seven character) permanent file name assigned to the PARAMETER file. The user is now ready to exercise BIODYN.

The user can interactively create a number of PARAMETER and CHOICES files, each uniquely named for subsequent use in the BIODYN program. In

most cases one same set of transfer function choices will be adequate for a variety of different parameter sets.

B. BIODYN

Because of memory size limitations presently imposed by the INTERCOM operating system, BIODYN must be run in the batch mode. A batch job can be submitted through INTERCOM using the following command sequence

```
EDITOR
CREATE,S
ABC,CM150000,STCSA.
ATTACH,TAPE7,pfn2.           User supplies desired
ATTACH,TAPE8,pfn3.           file name for each pfn
REQUEST,TAPE19,*PF.
ATTACH,EXEBIO.
EXEBIO(TAPE4,OUTPUT,TAPE7,TAPE8,TAPE19,TAPE21).
CATALOG,TAPE19,pfn4,RP=999.
*EOR
SAVE,GOBIO,NOSEQ
END
COMMAND = BATCH,GOBIO,INPUT,HERE
```

The first section of this batch request assigns the PARAMETER and CHOICES files produced by CREATE to the tape units which BIODYN reads. The BIODYN program is then retrieved and executed.

BIODYN first reads the PARAMETER file and uses it to set up the equations in the form

$$Ax = Bu$$

where x is a vector of response variables (currently dimensioned 48) and u is a vector of forcing function variables (dimensioned 9). The desired transfer functions (as listed in the CHOICES file) are then evaluated, using Cramer's rule and several advanced factorization algorithms in order to obtain the first- and second-order poles and zeros. These are all written to a file called TAPE19 (the TF file), as well as to the line printer (via the OUTPUT file). The format used by the program for

printing the transfer functions is shown in Figure 9, while the format for storing these transfer functions on TAPE19 is given in Figure 10.

The TF file (TAPE19) is used by the PLOT program for generating the quick-look Bode plots on the line printer. Thus, the last lines supplied by the user in the batch job stream "rewind" this file and assign it a permanent file name pf_n4.

C. PLOT

The Bode plots, if desired, may be generated at the user's terminal or written to a local file for later examination, as the user wishes. The user's job stream looks like the following:

```
ATTACH,TAPE19,pfn4.      pfn4 is the file name of
ATTACH,EXEPLT.          the plot instructions
EXEPLT(OUTPUT,TAPE19)
```

The output from this routine consists of four items. First, the input file mnemonics are printed, so the user can identify which plots are forthcoming. Then, for each transfer function, three items are printed. The transfer function dipoles (first and second order) which have been cancelled are first, followed by the numerator and denominator of the transfer function. Then, the Bode plot is "drawn." Finally, if a listing was requested in the CHOICES file, it follows the Bode plot. An annotated example is given in Figures 11a, b, and c.

D. INTERFACE WITH PIVIB

Ten of the possible BIODYN-80 transfer functions can be used as input to PIVIB. These are listed in Figure 12. The input file structure for PIVIB is quite lengthy and complex, involving over 200 parameters. An explanation of it is beyond the scope of this user's manual, and the interested reader is referred to Reference 7, the PIVIB User's Manual. A brief outline of the steps used to generate the PIVIB input file is given below.

Each transfer function is to be interpreted as

$$\text{Transfer Function} = \frac{\frac{N_{\text{output}}}{N_{\text{input}}} (s)}{\Delta} = \frac{\kappa \left\{ \prod \left(s + \frac{1}{T_z} \right) \right\} \cdot \left\{ \prod \left(s^2 + 2\zeta_z \omega_z s + \omega_z^2 \right) \right\}}{\left\{ \prod \left(s + \frac{1}{T_p} \right) \right\} \cdot \left\{ \prod \left(s^2 + 2\zeta_p \omega_p s + \omega_p^2 \right) \right\}}$$

where \prod denotes a product of first- or second-order roots, and κ is the so-called "root locus gain" (of the high-frequency asymptote):

$$\kappa = \frac{\text{High Frequency Gain of Numerator}}{\text{High Frequency Gain of Denominator}}$$

and the various first- and second-order poles and zeros are indicated below. The transfer function can also be interpreted in Bode format, as:

$$\text{Transfer Function} = \frac{\kappa \left\{ \prod (T_z s + 1) \right\} \cdot \left\{ \prod \left(\frac{s^2}{\omega_z^2} + \frac{2\zeta_z s}{\omega_z} + 1 \right) \right\}}{\left\{ \prod (T_p s + 1) \right\} \cdot \left\{ \prod \left(\frac{s^2}{\omega_p^2} + \frac{2\zeta_p s}{\omega_p} + 1 \right) \right\}}$$

where K_{OL} is the gain of the low-frequency asymptote ("Bode gain"):

$$K_{OL} = \frac{\text{Low Frequency Gain of Numerator}}{\text{Low Frequency Gain of Denominator}}$$

11-MAR-80 17:06 Date, Time

CASE:HEAD,NECK,TORSO ONLY Case Identifier

TRANSFER FUNCTION COMPONENTS:

DENOMINATOR: $\frac{1.0464E-12}{(46.384 - 8.3929s + 3.7123s^2 - 7.5273s^3 + 530.63s^4 - 100.00s^5)}$

High-frequency gain (denominator) K_p
 First-order poles ($1/T$)
 Second-order poles ($(\zeta, \omega, \zeta\omega, \omega\sqrt{1-\zeta^2})$)
 Re Im

Low-frequency gain (denominator)

NUMERATOR: $\frac{-8.3639E-11}{(46.384 - 44.231s + 10.483s^2 - 17.112s^3 + 32.746s^4 - 44.530s^5 + 316.83s^6 - 206.02s^7 + 240.70s^8)}$

Numerator: output/input
 <High-freq. gain> numerator alone K_n ,
 <>High-freq. gain>> for transfer function $K = K_n/K_p$
 First-order zeros

Second-order zeros

<<Low-freq. gain, transfer function>>
 <Low-freq. gain, numerator alone>

Figure 9 Format for BIODYN-80 Transfer Function Printouts

Format	Comment
Case title (15A4)	
D\$\$	(Specifies denominator)
NP1, NP2, K _p , 0., 0., 0., 0.	(2I4, G14.6, 5F7.1)
1/T _{p1}	
1/T _{p2}	First-order poles (5X, G14.6)
.	
.	
.	
ζ_{p1}, ω_{p1}	Second-order poles (ζ_1, ω_1)
ζ_{p2}, ω_{p2}	(5X, 2F14.6)
.	
.	
.	
XXX/XXX	First transfer function numerator
NZ1, NZ2, K _z , WI, WF, XU, XL, XP	(2I4, G14.6, 5F7.1)
1/T _{z1}	
1/T _{z2}	First-order zeros (5X, G14.6)
.	
.	
.	
ζ_{z1}, ω_{z1}	Second-order zeros (ζ_2, ω_2)
ζ_{z2}, ω_{z2}	(5X, 2G14.6)
.	
.	
XXX/XXX	Second transfer function numerator
.	
.	
.	

where

NP1 = No. first-order poles
 NP2 = No. second-order poles
 K_p = High-frequency denominator gain
 NZ1 = No. first-order zeros
 NZ2 = No. second-order zeros

K_z = High-frequency numerator gain
 WI = Bode plot lower frequency limit
 WF = Bode plot upper frequency limit
 XU = Bode plot upper phase limit
 XL = Bode plot lower phase limit
 XP = Listing switch

Figure 10. Format Used for BIODYN-80 TAPE19 File of Transfer Functions

BIODYN T.F. 05/20/80 15.13.57.
SEATED CREWMAN - VIEWING DISTANCE = 9 CM

Title

DSS
RHD/DZF

Dump of file

BIODYN T.F.

BIODYN T.F. 05/20/80 15.13.57.
SEATED CREWMAN - VIEWING DISTANCE = 9 CM

Title

RHD/DZF ←
DSS
FIRST-ORDER DIPOLES CANCELLED :
46.384000
100.00000
SECOND-ORDER DIPOLES CANCELLED :
.44230900 , 8.3929300
.50022000 , 50.002500
.65024400 , 316.83100

First transfer
function

Cancelled dipoles
(only exact can-
cellation)

NUMERATOR:

- .81361 → High frequency gain
(0.) (0.) (10.955) (11.950) }
(22.500) (107.75) (535.79) } First-order zeros
((.22639 , 8.4561 , 1.9144 , 8.2365))
((.78552 , 13.624 , 10.702 , 8.4311))
((.82761 , 20.273 , 16.777 , 11.379))
((-.16669 , 21.651 , -3.6090 , 21.348))
((.22759 , 47.017 , 10.700 , 45.783)) Second-order zeros

DENOMINATOR:

* (10.957) (11.983) (22.499) (107.81) } First-order poles
(/ 31.02) }
((.22869 , 8.4682 , 1.9366 , 8.2437))
((.40550 , 13.701 , 5.5558 , 12.524))
((.24026 , 16.682 , 4.0081 , 16.193))
((.82362 , 20.305 , 16.723 , 11.516))
((.94299E-01 , 31.293 , 2.9509 , 31.153))
((.19289 , 46.973 , 9.0608 , 46.091)) Second-order poles
- .13857E-02 → Low frequency gain

BLODYN T.F.

BLODYN T.F. 05/20/80 15.13.57.
SEATED CREWMAN - VIEWING DISTANCE = 9 CM

Title

RHD/DZF
DSS

Top scale

XXX - MAGNITUDE (DB)

XXX is
magnitude

Values at ">" (in rad/sec)
and at --- (in Hertz) are
exact.

Bottom scale
for 000 is
phase

000 = PHASE (DEG)

b) Printer-Generated Frequency Response (Bode Plot)

Figure 11 (Continued)

SHOOTN T.F.

STUDY 1.P.

03/20/80

15:15:37

Title

CREATED CRITERIA - SWIMMING DISTANCE - P.LH

RESULTS
20

W	dB	deg
-1.00000	360.0	0.0
-0.99997	360.0	0.0
-0.99993	360.0	0.0
-0.99987	360.0	0.0
-0.99981	360.0	0.0
-0.99973	360.0	0.0
-0.99964	360.0	0.0
-0.99954	360.0	0.0
-0.99943	360.0	0.0
-0.99931	360.0	0.0
-0.99918	360.0	0.0
-0.99904	360.0	0.0
-0.99889	360.0	0.0
-0.99873	360.0	0.0
-0.99856	360.0	0.0
-0.99838	360.0	0.0
-0.99819	360.0	0.0
-0.99799	360.0	0.0
-0.99778	360.0	0.0
-0.99756	360.0	0.0
-0.99733	360.0	0.0
-0.99709	360.0	0.0
-0.99684	360.0	0.0
-0.99658	360.0	0.0
-0.99631	360.0	0.0
-0.99593	360.0	0.0
-0.99554	360.0	0.0
-0.99514	360.0	0.0
-0.99473	360.0	0.0
-0.99431	360.0	0.0
-0.99388	360.0	0.0
-0.99344	360.0	0.0
-0.99299	360.0	0.0
-0.99253	360.0	0.0
-0.99206	360.0	0.0
-0.99158	360.0	0.0
-0.99109	360.0	0.0
-0.99059	360.0	0.0
-0.99008	360.0	0.0
-0.98956	360.0	0.0
-0.98903	360.0	0.0
-0.98849	360.0	0.0
-0.98794	360.0	0.0
-0.98738	360.0	0.0
-0.98681	360.0	0.0
-0.98623	360.0	0.0
-0.98564	360.0	0.0
-0.98504	360.0	0.0
-0.98443	360.0	0.0
-0.98382	360.0	0.0
-0.98319	360.0	0.0
-0.98255	360.0	0.0
-0.98191	360.0	0.0
-0.98125	360.0	0.0
-0.98058	360.0	0.0
-0.98000	360.0	0.0
-0.97940	360.0	0.0
-0.97879	360.0	0.0
-0.97817	360.0	0.0
-0.97754	360.0	0.0
-0.97690	360.0	0.0
-0.97625	360.0	0.0
-0.97559	360.0	0.0
-0.97492	360.0	0.0
-0.97424	360.0	0.0
-0.97355	360.0	0.0
-0.97285	360.0	0.0
-0.97215	360.0	0.0
-0.97144	360.0	0.0
-0.97072	360.0	0.0
-0.97000	360.0	0.0
-0.96927	360.0	0.0
-0.96853	360.0	0.0
-0.96778	360.0	0.0
-0.96702	360.0	0.0
-0.96625	360.0	0.0
-0.96547	360.0	0.0
-0.96468	360.0	0.0
-0.96388	360.0	0.0
-0.96307	360.0	0.0
-0.96225	360.0	0.0
-0.96142	360.0	0.0
-0.96058	360.0	0.0
-0.95973	360.0	0.0
-0.95887	360.0	0.0
-0.95799	360.0	0.0
-0.95710	360.0	0.0
-0.95619	360.0	0.0
-0.95527	360.0	0.0
-0.95434	360.0	0.0
-0.95340	360.0	0.0
-0.95245	360.0	0.0
-0.95149	360.0	0.0
-0.95052	360.0	0.0
-0.94954	360.0	0.0
-0.94855	360.0	0.0
-0.94755	360.0	0.0
-0.94654	360.0	0.0
-0.94552	360.0	0.0
-0.94449	360.0	0.0
-0.94345	360.0	0.0
-0.94240	360.0	0.0
-0.94134	360.0	0.0
-0.94027	360.0	0.0
-0.93919	360.0	0.0
-0.93810	360.0	0.0
-0.93700	360.0	0.0
-0.93588	360.0	0.0
-0.93475	360.0	0.0
-0.93361	360.0	0.0
-0.93246	360.0	0.0
-0.93130	360.0	0.0
-0.93013	360.0	0.0
-0.92895	360.0	0.0
-0.92776	360.0	0.0
-0.92656	360.0	0.0
-0.92535	360.0	0.0
-0.92412	360.0	0.0
-0.92288	360.0	0.0
-0.92163	360.0	0.0
-0.92037	360.0	0.0
-0.91910	360.0	0.0
-0.91782	360.0	0.0
-0.91653	360.0	0.0
-0.91523	360.0	0.0
-0.91392	360.0	0.0
-0.91260	360.0	0.0
-0.91127	360.0	0.0
-0.91093	360.0	0.0
-0.90958	360.0	0.0
-0.90822	360.0	0.0
-0.90685	360.0	0.0
-0.90547	360.0	0.0
-0.90408	360.0	0.0
-0.90268	360.0	0.0
-0.90127	360.0	0.0
-0.89985	360.0	0.0
-0.89842	360.0	0.0
-0.89697	360.0	0.0
-0.89552	360.0	0.0
-0.89306	360.0	0.0
-0.89159	360.0	0.0
-0.89011	360.0	0.0
-0.88862	360.0	0.0
-0.88712	360.0	0.0
-0.88561	360.0	0.0
-0.88409	360.0	0.0
-0.88256	360.0	0.0
-0.88102	360.0	0.0
-0.87947	360.0	0.0
-0.87791	360.0	0.0
-0.87634	360.0	0.0
-0.87476	360.0	0.0
-0.87317	360.0	0.0
-0.87157	360.0	0.0
-0.86996	360.0	0.0
-0.86834	360.0	0.0
-0.86671	360.0	0.0
-0.86507	360.0	0.0
-0.86342	360.0	0.0
-0.86176	360.0	0.0
-0.86009	360.0	0.0
-0.85841	360.0	0.0
-0.85672	360.0	0.0
-0.85502	360.0	0.0
-0.85331	360.0	0.0
-0.85159	360.0	0.0
-0.85086	360.0	0.0
-0.84912	360.0	0.0
-0.84737	360.0	0.0
-0.84561	360.0	0.0
-0.84383	360.0	0.0
-0.84204	360.0	0.0
-0.84024	360.0	0.0
-0.83843	360.0	0.0
-0.83661	360.0	0.0
-0.83478	360.0	0.0
-0.83294	360.0	0.0
-0.83109	360.0	0.0
-0.82923	360.0	0.0
-0.82736	360.0	0.0
-0.82548	360.0	0.0
-0.82359	360.0	0.0
-0.8217	360.0	0.0
-0.8198	360.0	0.0
-0.8179	360.0	0.0
-0.81599	360.0	0.0
-0.81408	360.0	0.0
-0.81216	360.0	0.0
-0.81023	360.0	0.0
-0.8083	360.0	0.0
-0.80637	360.0	0.0
-0.80442	360.0	0.0
-0.80246	360.0	0.0
-0.8005	360.0	0.0
-0.79853	360.0	0.0
-0.79655	360.0	0.0
-0.79456	360.0	0.0
-0.79256	360.0	0.0
-0.79055	360.0	0.0
-0.78853	360.0	0.0
-0.78651	360.0	0.0
-0.78448	360.0	0.0
-0.78244	360.0	0.0
-0.7804	360.0	0.0
-0.77835	360.0	0.0
-0.77629	360.0	0.0
-0.77422	360.0	0.0
-0.77214	360.0	0.0
-0.77005	360.0	0.0
-0.76795	360.0	0.0
-0.76584	360.0	0.0
-0.76372	360.0	0.0
-0.76159	360.0	0.0
-0.75945	360.0	0.0
-0.75731	360.0	0.0
-0.75515	360.0	0.0
-0.75298	360.0	0.0
-0.75079	360.0	0.0
-0.74859	360.0	0.0
-0.74638	360.0	0.0
-0.74415	360.0	0.0
-0.74191	360.0	0.0
-0.73966	360.0	0.0
-0.7374	360.0	0.0
-0.73512	360.0	0.0
-0.73283	360.0	0.0
-0.73052	360.0	0.0
-0.72821	360.0	0.0
-0.72588	360.0	0.0
-0.72354	360.0	0.0
-0.7212	360.0	0.0
-0.71886	360.0	0.0
-0.71651	360.0	0.0
-0.71415	360.0	0.0
-0.71178	360.0	0.0
-0.70941	360.0	0.0
-0.70699	360.0	0.0
-0.70455	360.0	0.0
-0.70211	360.0	0.0
-0.70965	360.0	0.0
-0.70719	360.0	0.0
-0.70472	360.0	0.0
-0.70224	360.0	0.0
-0.70975	360.0	0.0
-0.70727	360.0	0.0
-0.70478	360.0	0.0
-0.70229	360.0	0.0
-0.70978	360.0	0.0
-0.7073	360.0	0.0
-0.70481	360.0	0.0
-0.70232	360.0	0.0
-0.70981	360.0	0.0
-0.70733	360.0	0.0
-0.70484	360.0	0.0
-0.70235	360.0	0.0
-0.70985	360.0	0.0
-0.70736	360.0	0.0
-0.70486	360.0	0.0
-0.70237	360.0	0.0
-0.70987	360.0	0.0
-0.70737	360.0	0.0
-0.70487	360.0	0.0
-0.70238	360.0	0.0
-0.70988	360.0	0.0
-0.70738	360.0	0.0
-0.70488	360.0	0.0
-0.70239	360.0	0.0
-0.70989	360.0	0.0
-0.70739	360.0	0.0
-0.70489	360.0	0.0
-0.7024	360.0	0.0
-0.7099	360.0	0.0
-0.7074	360.0	0.0
-0.7049	360.0	0.0
-0.70241	360.0	0.0
-0.70991	360.0	0.0
-0.70742	360.0	0.0
-0.70492	360.0	0.0
-0.70243	360.0	0.0
-0.70993	360.0	0.0
-0.70743	360.0	0.0
-0.70493	360.0	0.0
-0.70244	360.0	0.0
-0.70994	360.0	0.0
-0.70744	360.0	0.0
-0.70494	360.0	0.0
-0.70245	360.0	0.0
-0.70995	360.0	0.0
-0.70745	360.0	0.0
-0.70495	360.0	0.0
-0.70246	360.0	0.0
-0.70996	360.0	0.0
-0.70746	360.0	0.0
-0.70496	360.0	0.0
-0.70247	360.0	0.0
-0.70997	360.0	0.0
-0.70747	360.0	0.0
-0.70497	360.0	0.0
-0.70248	360.0	0.0
-0.70998	360.0	0.0
-0.70748	360.0	0.0
-0.70498	360.0	0.0
-0.70249	360.0	0.0
-0.70999	360.0	0.0
-0.70749	360.0	0.0
-0.70499	360.0	0.0
-0.7025	360.0	0.0
-0.7100	360.0	0.0
-0.7075	360.0	0.0
-0.70499	360.0	0.0
-0.70251	360.0	0.0
-0.70999	360.0	0.0
-0.70751	360.0	0.0
-0.70499	360.0	0.0
-0.70252	360.0	

Note: \emptyset denotes a typed blank space.

<u>Output</u>	<u>BIODYN TF</u>	<u>PIVIB TF</u>	
Shoulder: (S)	$\frac{BXS}{BXP}$	- $\frac{Ch1}{Ch1} _S$	- <u>Inertial horizontal shoulder deflection</u> <u>Horizontal platform deflection</u>
	$\frac{BXS}{BZP}$	- $\frac{Ch1}{Ch2} _S$	- <u>Inertial horizontal shoulder deflection</u> <u>Vertical platform deflection</u>
	$\frac{BZ1}{BXP}$	- $\frac{Ch3}{Ch1} _S$	- <u>Inertial vertical shoulder deflection</u> <u>Horizontal platform deflection</u>
	$\frac{BZ1}{BZP}$	- $\frac{Ch3}{Ch2} _S$	- <u>Inertial vertical shoulder deflection</u> <u>Vertical platform deflection</u>
Head: (H)	$\frac{DTH}{BXP}$	- $\frac{Ch3}{Ch1} _H$	- <u>Inertial head pitch</u> <u>Horizontal platform deflection</u>
	$\frac{DTH}{BZP}$	- $\frac{Ch3}{Ch2} _H$	- <u>Inertial head pitch</u> <u>Vertical platform deflection</u>
	$\frac{DZH}{BXP}$	- $\frac{Ch2}{Ch1} _H$	- <u>Inertial vertical head deflection</u> <u>Horizontal platform deflection</u>
	$\frac{DZH}{BZP}$	- $\frac{Ch2}{Ch2} _H$	- <u>Inertial vertical head deflection</u> <u>Vertical platform deflection</u>
Stick (C)	$\frac{BCS}{DXP}$	- $\frac{Ch1}{Ch1} _C$	- <u>Longitudinal stick deflection</u> <u>Horizontal platform deflection</u>
	$\frac{BCS}{DZP}$	- $\frac{Ch1}{Ch2} _C$	- <u>Longitudinal stick deflection</u> <u>Vertical platform deflection</u>

Assumptions: Of the 3 vibration inputs possible, 2 are X and Z. Assume X is Channel 1, Z is Channel 2 for the above table.

Figure 12 BIODYN-80 Transfer Functions Which May Be Used as PIVIB Input

1. Specify title for run
2. BDMOD - enter the biodynamic response module
 - a. FREQS - specify all frequencies required for biodynamic analysis
 - b. VIBR - specify vibration input/source transfer functions
 - c. BIOTR - specify biodynamic transfer functions.
This is the interface between BIODYN-80 and PIVIB.
 - d. BDOUT - specify biodynamic outputs for printing
 - e. BCOMP - given all information specified above, compute and print biodynamic quantities
3. PVMOD - enter the pilot/vehicle module
 - a. Specify various P/V parameters in state vector form
 - b. VBINT - controls communication between BDMOD and PVMOD
 - c. PCOMP - perform pilot/vehicle computations and print results
 - d. FDREP - compute and print frequency domain measures, e.g., describing functions, remnants, signal spectra
4. Repeat 2 and 3 for each case
5. END

E. FOR ASSISTANCE

New and inexperienced users should have an experienced INTERCOM or batch user assist them through the first application. For technical questions concerning this program or models, please call or write:
Henry R. Jex at Systems Technology, Inc., 13766 S. Hawthorne Blvd.,
Hawthorne, CA 90250. Telephone Number (213) 679-2281.

APPENDIX A
DEFINITION OF PARAMETERS, SYMBOLS, RANGES AND TYPICAL VALUES

TABLE 1 PARAMETER AND SYMBOL DEFINITIONS, RANGES, AND TYPICAL VALUES

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)	
					MINIMUM	MAXIMUM	STDPLT†	STDCRM
M _B	XMB	kg	LOWER BODY Lower body mass (Hips)	T(1,2,3)	10.	25.	14.	14.
B _B	BB	n/m/s	Lower body/seat cushion damper	F(1,4,5)	100.	2,000.	1290.1	315.
K _B	XKB	N/m	Lower body/seat cushion stiffness	F(1,4,5)	20,000.	100,000.	29585.	49360.
K _{BS}	GK1	N/m	Series spring gradient in lower body	F(1,4,5)	50,000.	200,000.	71519.	119322.
θ _L	THL	deg	Seat (hips) tilt angle	M(1)	-20.	+80.	13.	13.
G	G	m/s ²	Trim vertical acceleration		0.1	100.	9.8	9.8
<hr/>								
M _T	XMT	kg	TORSO Torso mass	T(1,2,3)	10.	30.	18.	18.
I _T	ZIT	kg.m ²	Torso inertia	T(1,2,3)	0.5	2.	0.8	0.8
B _{TB}	BTB	N.m rad/s	Torso damping	F(1,4)	10.	100.	16.75	40.
K _{TB}	XKTB	N.m rad	Torso stiffness	G,F(1,4)	100.	2,000.	500.	500.
<hr/>								
θ _T	THT	deg	Angle of XLT from vertical	M(1,3,4)	-30.	+90.	10.	-15.
l _{LT}	XL _T	m	Torso c.g. to hips pivot length	T,M(1,2,3)	0.12	0.40	0.15	0.15
θ _{TN}	THTN	deg	Angle of XLTN	M,T(1,2,3)	-30.	+90.	5.	-5.
l _{TN}	XL _{TN}	m	Torso c.g. to neck/pivot	T,M(1,2,3)	0.15	0.30	0.3	0.3
θ _S	THS	deg	Angle of XLS	M,T(1,3)	-30.	+90.	5.	-5.
l _S	XL _S	m	Torso c.g. to shoulder length		0.10	0.30	0.3	0.3

†"STDPLT" = STD pilot, stiff centerstick

†"STDCRM" = STD crewman, hand on knees

†

*Sources Legend: Measured (e.g., photo) or specified by situation
 Tabulated, cadaver or anthropometric tables
 Fitted, to transfer function data
 Guesstimate (on basis of physical properties)

(continued)

TABLE 1. (Continued)

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)	
					MINIMUM	MAXIMUM	STDPLT	STDCRW
M _N	XMN	kg	Neck mass <u>NECK</u>	T(1,3,6)	0.	3.0	0.0**	1.24
I _N	ZIN	kg.m ²	Neck inertia	T(1,2,3,6)	0.	0.010	0.0**	0.0024
B _N	BNT	N.m rad/s	Neck/torso damper	G,F(1,5)	0.	0.40	0.25	0.1
K _{NT}	XKNT	N.m rad	Neck/torso stiffness	G(1,5)	10.	80.	50.0	50.0
<u>HEAD/DISPLAY VIEWING</u>								
M _H	XMH	kg	Head mass	T,G(1,2,3,5)	2.0	10.0 helmeted	4.34	3.1
I _H	ZIH	kg.m ²	Head inertia	T,G(1,2,3,6)	0.010	0.100 helmeted	0.039	0.0303
B _{HN}	BHN	N.m rad/s	Head/neck damper	G,F(1,8)	0.	0.40	0.0**	0.126
K _{HN}	XKHN	N.m rad	Head/neck stiffness	G,F(1,4,8)	10.	30.	10.**	15.
C _H	CH	-	Head/neck compliance parameter (CH = 0, locks head on neck)	M(1,8)	0.0 locked	1. unlocked	0.0**	1.
θ _H	TH	deg	Angle of XLG(pivot-CG)	M,T(1,2,3,6)	-30.	+150.	70.	60.
L _T	XLH	m	Head c.g. to head/neck pivot length	T,M(1,2,3,6)	0.0	0.100	0.0*	0.025
θ _V	THV	deg	Angle of line of sight	M,T(1,3)	-90.	+90.	-30.	-30.
V _D	VD	m	Viewing distance from head/neck pivot	M(1)	0.	1000.	0.75	0.6853

*Sources Legend:

Measured (e.g., photo) or specified by situation

Tabulated, cadaver or anthropometric tables

Fitted, to transfer function data

Guesstimate (on basis of physical properties)

**Head/Neck Locked

TABLE 1. (Continued)

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)	
					MINIMUM	MAXIMUM	STOPLT	STOCRW
M ₁	X _{M1}	kg	<u>ARMS (Upper, Lower)</u> Upper arm mass	T,M(1,2,3)	1.0	4.0	1.372	1.372
I ₁	Z ₁	kg.m ²	Upper arm inertia	T(1,2,3)	0.01	0.05	0.012	0.012
θ_1	T ₁	deg	Upper arm angle	M,T(1,3,8)	-30.0	+90.0	40.	15.
L ₁	D ₁	m	Upper arm length (= L _a + L _b)	M,T(1,3,8)	0.2	0.5	0.29	0.29
L _a /L ₁	R ₁	m/m	Upper arm c.g. (fractional distance)	T,G(1,2,3)	0.2	0.6	0.44	0.44
M ₂	X _{M2}	kg	Lower arm mass	T,M(1,2,3)	0.5	3.0	1.017	1.017
I ₂	Z ₂	kg.m ²	Lower arm inertia	T,(1,2,3)	0.01	0.10	0.0152	0.0152
θ_E	T _E	deg	Elbow angle	M,T(1,3,8)	60.0	170.0	145.	115.
L ₂	D ₂	m	Lower arm length (= L _e + L _d)	M,T(1,3,8)	0.2	0.5	0.305	0.305
L _d /L ₂	R ₂	m/m	Lower arm c.g. (fractional distance)	T,G(1,2,3)	0.2	0.6	0.5	0.5
θ_{IJ}	T _{IJ}	deg	<u>GRIP INTERFACE</u> Grip interface angle	M,G(3)	-45.0	+45.0	0.0	0.0
B _I /K _I	T _{IF}	s	Grip interface time constant	G,F(1,8)	0.0	0.5	0.01	0.1
C _I	C _I	N/N	Grip interface compliance K _I -1	M,G,F(1,8)	0.0 fixed	1000.0 "free"	.0000558	1.0

*Sources Legend: Measured (e.g., photo) or specified by situation
 Tabulated, cadaver or anthropometric tables
 Fitted, to transfer function data
Guesstimate (on basis of physical properties)

TABLE 1. (Continued)

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)	
					MINIMUM	MAXIMUM	STDPLT	STDORM
M_s	XMS	kg	STICK Stick/hand mass (referred to grip)	M,F(1,8)	0.0	1.0	1.31	4.0
B_s	BS	N/m/s	Stick damper	M,F(1,8)	0.0	5.0	2.	240.0
K_s	XKS	N/m	Stick gradient	M(1,8)	0.01	20,000.0	13900.	10000.0
C_{KS}	OKS	-	Stick compliance parameter (OKS=0 means that XKS=0)	M(1)	0.0 "fixed"	1.0 "fixed"	1.0	1.0
S_x	SX	N/g	Bobweight sensitivity to N_x	F,M,G(1,8)	-5.0	+10.0	0.0	0.0
S_z	SZ	N/g	Bobweight sensitivity to N_z	F,M,G(1,8)	-10.0	+10.0	0.0	0.0
θ_c	THC	deg	Stick angle	M(1)	-20.0	+120.0	90.	90.
L_c	XLC	m	Stick length (pivot to center of grip)	M(1)	0.0	2.0	0.61	0.55
K_{sc}	XKSC	Units m	Stick output scale factor (rescales stick displacement to "spec- ified" units (e.g., deg, cm, etc.))	F,G(1,8)	0.01	20,000.0	13900.(N/m)	0.01
<u>ARM REST</u>								
B_{AR}	BAR	N/m/s	Arm rest damper (nor- mal)	M,G(1)	0.0	1.0	0.0†	0.0†
K_{AR}	XKAR	N/m	Arm rest stiffness (normal)	M,G(1)	0.0	10,000.0	0.0†	0.0†
B_f	BAT	N/m/s	Arm rest damper (tangential)	G,M(1)	0.0	150.0	0.0†	0.0†
K_f	XKAT	N/m	Arm rest stiffness (tangential)	G,M(1)	0.0	10,000.0	0.0†	0.0†
L_{ER}	XLER	m	Elbow to arm rest distance	M(1)	0.0	0.5	0.0†	0.0†
A_{MR}	AMR	-	Fraction of arm weight on arm rest	G(1)	0.0	1.0	0.0†	0.0†

*Sources Legend: Measured (e.g., photo) or specified by situation
 Tabulated, cadaver or anthropometric tables
 Fitted, to transfer function data
 Guesstimate (on basis of physical properties)

†Armrest disabled.

TABLE 1. (Continued)

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)					
					MINIMUM	MAXIMUM	STDPLT	STDCRM				
<u>NEUROMUSCULAR SYSTEM:</u>												
<u>Actuation Elements:</u>												
NM	NM	-	Switch for central or force activation dynamics 0 for arm control 1 for head/neck control	M	0.0 arm	1.0 head	0.0	0.0				
S _i	SI	-	Overall scale factor	F,G(1,8)	0.0	200.0	104.4	50.0				
K _{1c}	XK1C	N/N	Neuromuscular actuation gain	F,G(1,8)	0.0	1.0	.02044	.02				
T _{oc}	TCC	s	Neuromuscular actuation time constant	F,G(1,8)	0.0	0.2	.0909	.0909				
c _s	TCS	s	Neuromuscular actuation lag	F,G(1,8)	0.0	0.3	0.089	.089				
K _a	XKAA	N/N	Gain of force activation dynamics	F,G(1,8)	0.0	10.0	1.	1.				
ζ_a	ZA	-	Damping in force activation dynamics	F,G(1,8)	0.0	1.0	0.8	0.8				
w _a	WA	rad/s	Natural frequency in force activation dynamics	F,G(1,8)	10.0	20.0	16.	16.				
τ_a	TAA	s	Time delay in force activation dynamics	F,G(1,8)	0.0	0.10	0.0	0.0				

*Sources Legend: Measured (e.g., photo) or specified by situation

Tabulated, cadaver or anthropometric tables

Fitted, to transfer function data

Guesstimate (on basis of physical properties)

TABLE 1. (Continued)

PARAMETER	FORTRAN NAME	UNITS	LOCATION DEFINITION	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STD CASES)					
					MINIMUM	MAXIMUM	STDLT	STDROW				
NEUROMUSCULAR SYSTEM:												
<u>Actuation Elements:</u>												
			continued									
B _M	BM	N/m/s	"Hills law" damper	G,F(1,7,8)	0.0	20.0	1.	1.0				
K _M	XKM	N.m	Spring in neuromuscular system	G,F(1,7,8)	0.1	20.0	2.	2.				
B _e	BE	N/m/s	Series elastic element damper	F(1,7,8)	0.0	10.0	2.431	2.43				
K _e	XKE	N/m	Series elastic element gradient	G,F(1,7,8)	0.1	100.0	40.	40.				
B _T	BT	N/m/s	Tendon damper	G,F(1,7,8)	0.0	10.0	0.	0.				
K _T	XKT	N/m	Tendon gradient	G,F(1,7,8)	0.1	300.0	80.	80.				
K _{sp}	XKSP	N/m	Muscle spindle model gain	G(1,7,8)	1.0	10.0	5.	5.				
T _{sp}	TSP	s	Muscle spindle lead time constant	G(1,7,8)	0.02	0.15	1/11.	1/11.				
T _{ps}	TPS	s	Muscle spindle lag time constant	G(1,7,8)	0.0	0.1	0.0	0.0				
T _{ss}	TSS	s	Muscle spindle high frequency lead time constantly	G(1,7,8)	0.0	0.1	0.0	0.0				
K _g	XKG	N/N	Golgi tendon organ model gain	G(1,7,8)	0.1	1.0	0.5	0.5				
T _g	TG	s	Golgi tendon organ time constant	G(1,7,8)	0.02	0.1	1/18.	1/18.				
T _z	TZ	s	Golgi tendon organ time constant	G(1,7,8)	0.0	0.1	0.0	0.0				
T _p	TP	s	Golgi tendon organ lag time constant	G(1,7,8)	0.0	0.1	0.0	0.0				

*Sources Legend: Measured (e.g., photo) or specified by situation
Tabulated, cadaver or anthropometric tables
Fitted, to transfer function data
Guesstimate (on basis of physical properties)

TABLE 1. (Concluded)

PARAMETER	FORTRAN NAME	UNITS	LOCATION Definition	SOURCE* (Refs.)	REASONABLE RANGE		TYPICAL VALUES (STANDARD CASES)	
					MINIMUM	MAXIMUM	STDPLT	STDWR
<u>IMAGE FIXATION/VESTIBULO-OCULAR SERVO</u>								
KDE	XKDE	rad rad	Fixation error gain	F (9)	1.0	10.0	7.08	7.08
KRE	XKRE	rad rad/s	Fixation rate gain	F (9)	0.0	10.0	0.0	0.0
τ_V	TV	s	Time delay in fixation loop	F (9)	0.0	0.10	0.045	0.045
α	ALPHA	rad/s	"Pseudo Integrator" break frequency	G, F(9)	0.0	0.5	0.3	0.3
K_p	XKP	rad rad	Target pursuit gain (Optional)	G (9)	0.0	1.0	0.0	0.0
KIE	XIE		Position gain from "Vestibular" sensor	F (9)	0.1	1.0	0.67	0.67
KVE	XVE		Velocity gain from "Vestibular" sensor	F (9)	0.0	0.1	0.1	0.1
Tc2	TC2		"Vestibular" lag	F, T(9)	0.005	0.015	0.01	0.01
T _{EM}	TEM	s	Ocular Servo Lag time constant	F (9)	0.05	0.10	0.1	0.1
T _{LIM}	TLM	s	Ocular Servo Lead time constant	F (9)	0.010	0.020	0.0125	0.0125
ζ_E	ζ_E		Switch for fast mode in Ocular Servo 1. use Z_E, ω_E 0. $\omega_E = \infty$	M	0.0 ($\omega_E = \infty$)	1.0	1.0	1.0
ζ_e	Z_E	-	Ocular Servo Damping Ratio	F (9)	0.2	1.0	0.65	0.65
ω_e	ω_E	rad/s	Ocular Servo Natural frequency	F (9)	200.0	400.0	316.23	316.23

*Sources Legend: Measured (e.g., photo) or specified by situation
 Tabulated, cadaver or anthropometric tables
 Fitted, to transfer function data
Guesstimate (on basis of physical properties)

TABLE 2. PARAMETER FILE STRUCTURE (SHORT FORMAT)

A. Lower Body

M_B	B_B	K_B	K_{BS}	θ_L	G
-------	-------	-------	----------	------------	-----

B. Torso

M_T	I_T	B_{TB}	K_{TB}
-------	-------	----------	----------

θ_T	L_T	θ_{TN}	L_{TN}	θ_S	L_S
------------	-------	---------------	----------	------------	-------

C. Neck

M_N	I_N	B_{NT}	K_{NT}
-------	-------	----------	----------

θ_N	L_N	L_{N1}
------------	-------	----------

D. Head/Display Viewing

M_H	I_H	B_{HN}	K_{HN}	C_H
-------	-------	----------	----------	-------

θ_H	L_H	θ_V	V_D
------------	-------	------------	-------

E. Arms (Upper then lower)

M_1	I_1	θ_1	L_1	L_a/L_1
-------	-------	------------	-------	-----------

M_2	I_2	θ_E	L_2	L_d/L_2
-------	-------	------------	-------	-----------

F. Grip Interface

θ_{IJ}	B_I/K_I	C_I
---------------	-----------	-------

G. Stick

M_s	B_s	K_s	C_{KS}	S_x	S_z
-------	-------	-------	----------	-------	-------

θ_c	L_c	K_{sc}
------------	-------	----------

H. Arm Rest

B_{AR}	K_{AR}	B_F	K_F	L_{ER}	Arm_R
----------	----------	-------	-------	----------	---------

I. Neuromuscular System

NM	S_i				
K_{1c}	T_{cc}	τ_{cs}			
K_a	ζ_a	ω_a	τ_a		
B_M	K_M	B_e	K_e	B_T	K_T
K_{sp}	T_{sp}	T_{ps}	T_{ss}		
K_g	T_g	T_z	T_p		

J. Image Fixation/Vestibulo-Ocular Servo

K_{DE}	K_{RE}	τ_v	α	K_p
K_{IE}	K_{VE}	T_{c2}		
T_{EM}	T_{LM}	Q_E	ζ_e	ω_e

APPENDIX B
DEFINITION OF FORCING FUNCTION AND
RESPONSE VARIABLES

TABLE 3 INPUT (FORCING FUNCTION) VARIABLES

MATRIX COLUMN NUMBER	INPUT VARIABLE NAME	COLUMN CODE*	UNITS	POSITIVE DIRECTION	DEFINITION AND USAGE
1	N _{zp}	NZP	g	Upward	Platform acceleration
2	Δ _{zp}	DZP	m	Upward	Platform deflection
3	N _{xp}	NXP	g	Forward	Platform acceleration
4	Δ _{xp}	DXP	m	Forward	Platform deflection
5	F _D	BFD	N	Forward	Force input to stick
6	B _{zp}	BZP	m	Upward	Special Platform deflection+
7	B _{xp}	BXP	m	Forward	Special Platform deflection+
8	NMC	NMC	N		Neuromuscular command within CNS
9	θ _{TI}	TTI	rad		Test input into fixation error

*Small "b" represents a typed-blank space.

+These are used to get transfer functions of Inertial shoulder (or head) motion Platform motion

TABLE 4 OUTPUT (RESPONSE) VARIABLES

MATRIX COLUMN NUMBER	RESPONSE VARIABLE NAME	MATRIX COLUMN CODE*	UNITS	POSITION DIRECTION	DEFINITION AND USAGE
1	c	KC	m or N	Forward	Stick output (K_{CS} used to scale as force)
2	f_{ca}	FCA	N	Forward on stick	Interface force at stick grip
3	Δz_1	ΔZ_1	m	Upward	Vertical shoulder deflection relative to platform ($z_s - z_p$)
4	$\Delta \theta_1 +$	$\Delta \theta_1$	rad	Pitch up	Lower arm angle
5	$\Delta \theta_a$	$\Delta \theta_a$	rad	Pitch up	Lower arm angle
6	f_{ly}	FLY	rad	Up on upper arm	Vertical interface force at elbow
7	F_M	ΔF_M	N		Muscle model force referred to upper arm c.g.
8	L_I	ΔL_I	N	Forward	Grip interface deflection (stick to lower arm)
9	f_{lx}	FLX	N	Forward on upper arm	Horizontal interface force at elbow
10	x_m	ΔX_M	m		Internal state in muscle model
11	f_{rs}	FNS	N	Forward on upper arm	Horizontal interface force at shoulder/upper arm
12	f_{vs}	FVS	N	Up on upper arm	Vertical interface force at shoulder/upper arm
13	x_s	ΔX_S	m	Forward	Horizontal shoulder deflection relative to platform ($x_s - x_p$)
14	$\Delta \theta_T$	$\Delta \theta_T$	rad	Pitch up	Torso rotation
15	f_{rh}	FNH	N	Forward on	Head/neck interface force
16	$\Delta \theta_H$	$\Delta \theta_H$	rad	Pitch up	Head rotation
17	f_{vh}	FVH	N	Up on head	Head/neck interface force
18	f_{by}	FBY	N	Up on Torso	Vertical hips/torso interface force
19	F_{bx}	FBX	N	Forward on hips	Hips/torso interface force

*Note: Small "b" represents a typed-blank space.

**Note: $\Delta \theta_1$ (Column 4) means small signal perturbation of θ_1 given in fig. 3

TABLE 4 (Continued)

MATRIX COLUMN NUMBER	RESPONSE VARIABLE NAME	MATRIX COLUMN CODE*	UNITS	POSITIVE DIRECTION	DEFINITION AND USAGE
20	u_{sp}	USP	m	Up the seat back	Internal state in hip model
21	u_{bp}	UBP	m	Up the seat back	Hip deflection relative to platform (parallel to seat-back)
22	x_1	XCL	m		Internal state in muscle model
23	$\Delta\theta_N$	DTN	rad	Pitch up	Neck rotation
24	f_{nN}	FNN	N	Forward on neck	Neck/torso horizontal interface force
25	f_{vN}	FVN	N	Up on neck	Neck/torso vertical interface force
26	RHD	RHD	deg	Up relative to display	Head point of Regard relative to a display on the platform
27	A_a	AAA	N		Muscle model command out of spinal cord
28	F_A	BFA	N		Commanded force out of force activation dynamics
29	f_{aa}	FAA	N		Internal state in force activation
30	A_g	BAG	N		Output of golgi tendon organ sensors
31	A_c	BAC	N		Spinal cord command
32	A_E	BAE	N		Error between neuromuscular command and proprioceptive stick force
33	x_{sp}	XSP	m		Muscle length change sensed by spindle model
34	Δr_n	DRN	m		Relative normal deflection of arm and rest
35	Δr_t	ORT	m		Relative tangential deflection of arm and rest
36	Δz_h	DZH	m		Vertical component of head motion relative to platform

*Note: Small "B" represents a typed-blank space.

TABLE 4 (Concluded)

MATRIX COLUMN NUMBER	RESPONSE VARIABLE NAME	MATRIX COLUMN CODE*	UNITS	POSITIVE DIRECTION	DEFINITION AND USAGE
37	A _{c1}	AC1	rad		Output of compensatory action in eye fixation loop
38	A _{E1}	AEI	rad		Output of "Pseudo Integrator"
39	θ _{MC}	TMC	rad		Command to Ocular Servo
40	A _y	bAV	r/s	Head up	Output of "Vestibular" Sensor
41	θ _{EH}	TEH	rad	Up	Eye rotation relative to head
42	θ _{M1}	TM1	rad		Internal node in Ocular Servo
43	θ _I	THI	rad	Up	Fixation error
44	RED	RED	m	Eye up rel. to display	Relative eyem point of regard at display
45	θ _{TC}	TTC	rad		Output of "Image Pursuit" operation
46	Z _T	WTZ	m	Up	Display inertial displacement (vertical)
47	θ _E	THE	rad	Up	Inertial eye rotation
48	Δx _h	DXH	m	Forward	Horizontal component of head motion relative to platform

*Note: Small "W" represents a typed-blank space.

APPENDIX C
EQUATIONS OF MOTION

1 if $C_{K_s} \neq 0$

$$(\sin \theta_c)c - x_s - L_1(\cos \theta_1)\Delta \theta_1 + L_2(\sin \theta_a)\Delta \theta_a - L_I(\cos \theta_{IJ}) = - B_{X_p}$$

2 if $C_{K_s} \neq 0$ if $C_{K_s} = 0$

$$\left\{ -(M_s s^2 + B_s s + K_s) - \frac{s_x}{L_c} - M_2(\cos \theta_c)^2 s^2 \right\} c/K_{sc} - c$$

$$+ (\sin \theta_c)Lca + (\cos \theta_c)L_{1y} - M_2(\cos \theta_c)(\sin \theta_{IJ})s^2 L_I$$

$$- M_2 L_d (\cos \theta_c) (\cos \theta_a) s^2 \Delta \theta_a + (\cos \theta_c) (B_{AR}s + K_{AR})(\Delta r_n)$$

$$+ (\cos \theta_c) (B_F s + K_F) (\Delta r_t)$$

$$= - (z/g + M_2 \cos \theta_c) a_{zp} - s_x/g a_{xp} - F_d$$

3 if $C_{K_s} \neq 0$

$$\Delta z_1 + L_1(\sin \theta_1)\Delta \theta_1 + L_2(\cos \theta_a)\Delta \theta_a + L_I(\sin \theta_{IJ}) + \frac{(\cos \theta_c)}{K_{sc}} c = 0$$

4 $\left\{ I_1 s^2 + (L_d M_1 g + L_1 M_2 g - L_1 F_{av0}) \cos \theta_1 \right\} \Delta \theta_1 - L_b (\sin \theta_1) f_{1y}$

$$+ L_b (\cos \theta_1) f_{1x} + L_a (\cos \theta_1) f_{ns} + L_a (\sin \theta_1) f_{vs} - S_1 L_a F_M = 0$$

NOTE: $F_{av0} = A_{avR} (M_1 + M_2)g ; \theta_a = 90 + \theta_1 - \theta_E$;

$$a_{zp} = g N_{zp} + s^2 (\Delta z_p + B z_p) ; a_{xp} = g N_{xp} t + s^2 (\Delta x_p + B x_p)$$

5

$$\left\{ (I_2 + M_2 L_d^2 \cos^2 \theta_a) s^2 + (F_{av_0} - M_2 g) L_e \sin \theta_a \right\} \Delta \theta_a - L_e (\sin \theta_a) f_{1x}$$

$$- L_2 (\cos \theta_a) f_{1y} - L_d (\sin \theta_a) f_{ca}$$

$$- (L_e - L_{ER} + L_d \cos^2 \theta_a) (B_{AR} s + K_{AR}) \Delta r_n$$

$$- (L_d \sin \theta_a \cos \theta_a) (B_F s + K_F) \Delta r_T$$

$$+ \underbrace{L_d M_2 (\cos \theta_a) (\cos \theta_c)}_{K_{sc}} s^2 c + L_d (\cos \theta_a) M_2 (\sin \theta_{IJ}) s^2 L_I = L_d (\cos \theta_a) M_2 a_{zp}$$

6

$$f_{1y} + f_{vs} - M_1 s^2 \Delta z_1 - M_1 L_a (\sin \theta_1) s^2 \Delta \theta_1 = M_1 a_{zp}$$

8

$$C_I (\cos \theta_{IJ}) f_{ca} + \left\{ C_I (\sin \theta_{IJ})^2 M_2 s^2 + B_I / K_I + 1 \right\} L_I$$

$$+ C_I (\sin \theta_{IJ}) (\cos \theta_a) M_2 L_d s^2 \Delta \theta_a$$

$$+ \underbrace{C_I (\sin \theta_{IJ}) (\cos \theta_c) M_2 s^2 c}_{K_{sc}} - C_I (\sin \theta_{IJ}) f_{1y}$$

$$+ C_I (\sin \theta_{IJ}) [- (B_F s + K_F) (\sin \theta_a) \Delta r_T]$$

$$= C_I (\sin \theta_{IJ}) M_2 a_{zp}$$

$$+ C_I (\sin \theta_{IJ}) [- (B_{AR} s + K_{AR}) (\cos \theta_a) \Delta r_n]$$

9

$$\underbrace{- M_2 (\sin \theta_c) s^2 c}_{K_{sc}} + M_2 (\cos \theta_{IJ}) s^2 L_I - \left\{ (M_2 L_d \sin \theta_a) s^2 + F_{av_0} \right\} \Delta \theta_a$$

$$+ f_{1x} - f_{ca} - (B_F s + K_F) (\cos \theta_a) \Delta r_T + (B_{AR} s + K_{AR}) (\sin \theta_a) \Delta r_n = M_2 a_{xp}$$

$$11 \quad f_{ns} - f_{1x} - M_1 s^2 x_s - M_1 L_a (\cos \theta_1) s^2 \Delta \theta_1 = M_1 a_{xp}$$

$$12 \quad f_{vs} + f_{VN} - f_{by} + M_T (\cos \theta_L) s^2 u_{bp} - M_T L_T (\sin \theta_T) s^2 \Delta \theta_T = - M_T a_{zp}$$

$$13 \quad x_s + (\sin \theta_L) u_{bp} + (L_T \cos \theta_T + L_s \cos \theta_s) \Delta \theta_T = B_{xp}$$

$$14 \quad [L_T s^2 + (B_{TB} + B_{NT})s + K_{TB} + K_{NT} - W_E] \Delta \theta_T - (B_{NT}s + K_{NT}) \Delta \theta_N$$

$$- (L_s \cos \theta_s) f_{ns} - L_{TN} (\cos \theta_{TN}) f_{nN} - L_s (\sin \theta_s) f_{vs}$$

$$- L_{TN} (\sin \theta_{TN}) f_{VN} + L_T (\cos \theta_T) f_{bx}$$

$$- L_T (\sin \theta_T) f_{by} + S_i L_a F_M = 0$$

$$W_E = L_T \cos \theta_T [(M_H + M_N + M_T + M_1 + M_2)g - F_{av0}]$$

$$+ L_s \cos \theta_s [(M_1 + M_2)g - F_{av0}] + L_{TN} \cos \theta_{TN} (M_H + M_N)g$$

$$15 \quad f_{nh} + M_H (\sin \theta_L) s^2 u_{bp} + M_H (L_T \cos \theta_T + L_{TN} \cos \theta_{TN}) s^2 \Delta \theta_T$$

$$+ M_H L_N (\cos \theta_N) s^2 \Delta \theta_N + M_H L_H (\cos \theta_H) s^2 \Delta \theta_H = M_H a_{xp}$$

$$16 \quad \underbrace{[(L_H s^2 + B_{HNS} - M_H g L_H \cos \theta_H) C_H + K_{HN}] \Delta \theta_H}_{\text{if } NM \neq 0} + F_A$$

$$- (B_{HN} C_H s + K_{HN}) \Delta \theta_N - C_H L_H (\sin \theta_H) f_{vh} - C_H L_H (\cos \theta_H) f_{nh} = 0$$

$$17 \quad f_{vh} - M_H (\cos \theta_L) s^2 u_{bp} + M_H (L_T \sin \theta_T + L_{TN} \sin \theta_{TN}) s^2 \Delta \theta_T$$

$$+ M_H L_N (\sin \theta_N) s^2 \Delta \theta_N + M_H L_H (\sin \theta_H) s^2 \Delta \theta_H = M_H a_{zp}$$

$$18 \quad (\cos\theta_L) f_{by} + (B_B s + K_B) u_{5p} + (\sin\theta_L) f_{bx} + M_B s^2 u_{bp} = M_B (\sin\theta_L) a_{xp} \\ - M_B (\cos\theta_L) a_{zp}$$

$$19 \quad f_{bx} + f_{nN} + f_{ns} - M_T L_T (\cos\theta_T) s^2 \Delta\theta_T - M_T (\sin\theta_L) s^2 u_{bp} = -M_T a_{xp}$$

$$20 \quad \left(\frac{B_B s + K_B}{K_{BS}} + 1 \right) u_{5p} - u_{bp} = 0$$

$$21 \quad (\cos\theta_L) u_{bp} - (L_T \sin\theta_T + L_s \sin\theta_s) \Delta\theta_T - \Delta z_1 = 0 - B_{zp}$$

$$23 \quad [I_N s^2 + B_{NT} s + K_{NT} - (M_H g L_N + M_N g L_{N1}) \cos\theta_N] \Delta\theta_N \\ - L_{N1} (\sin\theta_N) f_{VN} - L_{N1} (\cos\theta_N) f_{nN} - [(L_N - L_{N1}) \sin\theta_N + L_H \sin\theta_H] f_{vh} \\ - [L_H \cos\theta_H + (L_N - L_{N1}) \cos\theta_N] f_{nh} + [I_H s^2 - M_H g L_H \cos\theta_H] \Delta\theta_H \\ - (B_{NT} s + K_{NT}) \Delta\theta_T = 0$$

$$24 \quad f_{nN} - f_{nh} + M_N (\sin\theta_L) s^2 u_{bp} + M_N (L_T \cos\theta_T + L_{TN} \cos\theta_{TN}) s^2 \Delta\theta_T \\ + M_N (L_{N1} \cos\theta_N) s^2 \Delta\theta_N = M_N a_{xp}$$

$$25 \quad f_{VN} - f_{vh} - M_N (\cos\theta_L) s^2 u_b + M_N (L_T \sin\theta_T + L_{TN} \sin\theta_{TN}) s^2 \Delta\theta_T \\ + M_N (L_{N1} \sin\theta_N) s^2 \Delta\theta_N = M_N a_{zp}$$

NEUROMUSCULAR MODEL EQUATIONS

7 $F_M + (B_T s + K_T) La(\Delta\theta_1) - (B_T s + K_T) x_m = 0$

10 $F_M + (B_e s + K_e) x_m - (B_e s + K_e) x_1 = 0$

22 $F_M - (B_M s + K_M) La(\Delta\theta_T) + (B_M s + K_M) x_1 + \underbrace{F_A}_{\text{if } NM = 0} = 0$

27 $(T_{ps}s + 1)(A_a + A_g - A_c) - \underbrace{K_{sp}(T_{sp}s + 1)(T_{ss}s + 1)x_{sp}}_{\text{if } NM = 0} = 0$

28 $(\tau_a s + 2)F_A + K_a(\tau_a s - 2)F_{aa} = 0$

29 $\left[1 + \underbrace{\frac{2\zeta_a}{\omega_a} s + \frac{s^2}{\omega_a^2}}_{\text{This set to 1.0 if } \omega_a = 0} \right] F_{aa} - F_{aa} = 0$

30 $(T_p s + 1)A_g + \underbrace{K_g(T_g s + 1)(T_z s + 1)F_M}_{\text{if } NM = 0} = 0$

31 $(\tau_{cs}s + 2)(T_{cc}s + 1)A_c + K_{lc}(\tau_{cs}s - 2)A_E = 0$

32

$$NM = 0$$

$$\begin{aligned} & \left(\frac{M_2}{K_{sc}} \cos^2 \theta_c s^2 \right) c - \sin \theta_c f_{ca} + (M_2 L_d \cos \theta_a \cos \theta_c s^2) \Delta \theta_a - \cos \theta_c f_{1y} \\ & + (M_2 \sin \theta_{IJ} \cos \theta_c s^2) L_I - (B_{AR} \cos \theta_a \cos \theta_c s + K_{AR} \cos \theta_a \cos \theta_c) \Delta r_n \\ & - (B_F \sin \theta_a \cos \theta_c s + K_F \sin \theta_a \cos \theta_c) \Delta r_t + A_E \\ & = M_2 \cos \theta_c a_{zp} + NMC \end{aligned}$$

$$NM = 1$$

$$A_E + RHD/VD = NMC$$

$$33 \quad x_{sp} + L_a \Delta \theta_T - x_m = 0$$

$$\begin{aligned} 26 \quad & [L_T \sin(\theta_T - \theta_V) + L_{TN} \sin(\theta_{TN} - \theta_V)] \Delta \theta_T - v_D \Delta \theta_H - \cos(\theta_L - \theta_V) u_{bp} \\ & + L_N \sin(\theta_N - \theta_V) \Delta \theta_N + RHD = B_{zp} \cos \theta_V - B_{xp} \sin \theta_V \end{aligned}$$

$$34 \quad \Delta r_n + \underbrace{\frac{c \cos(\theta_c - \theta_a)}{K_{sc}}}_{\text{if } C_{K_s} \neq 0} + (L_2 - L_{ER}) \Delta \theta_a + L_I \sin(\theta_a - \theta_{IJ}) = 0$$

$$35 \quad \Delta r_t - c \underbrace{\frac{\sin(\theta_c - \theta_a)}{K_{sc}}}_{\text{if } C_{K_s} \neq 0} + L_I \cos(\theta_a - \theta_{IJ}) = 0$$

$$36 \quad \Delta z_H + (L_T \sin \theta_T + L_{TN} \sin \theta_{TN}) \Delta \theta_T$$

$$- (\cos \theta_L) u_{bp} + (L_N \sin \theta_N) \Delta \theta_N = B_{zp}$$

$$37 \quad (2 + \tau_v s) A_{c1} + (\tau_v s - 2)(K_{RE}s + K_{DE}) \theta_I = 0$$

$$38 \quad (s + \alpha) A_{EI} + A_{c1} + K_{IE} A_V = 0$$

$$39 \quad \theta_{MC} - \theta_{TC} - A_{EI} + K_{VE} A_V = 0$$

$$40 \quad (T_{c2}s + 1) A_V - s \Delta \theta_H = 0$$

$$41 \quad Q_E = 0 \quad \{ \quad \theta_{EH} - \theta_{M1} = 0$$

$$Q_E = 1 \quad \left\{ \quad (1 + \frac{2\zeta_e}{\omega_e} s + \frac{s^2}{\omega_e^2}) \theta_{EH} - \theta_{M1} = 0 \right.$$

$$42 \quad (1 + T_{EM}s) \theta_{M1} - (1 + T_{LM}s) \theta_{MC} = 0$$

$$43 \quad \theta_I - \frac{RED}{V_D} = \theta_{TI}$$

$$44 \quad [L_T \sin(\theta_T - \theta_V) + L_{TN} \sin(\theta_{TN} - \theta_V)] \Delta \theta_T - V_D \Delta \theta_H$$

$$- u_{bp} \cos(\theta_L - \theta_V) + \Delta \theta_N L_N \sin(\theta_N - \theta_V) - V_D \theta_{EH} + RED$$

$$= B_{zp} \cos \theta_V - B_{xp} \sin \theta_V$$

$$45 \quad \theta_{TC} - \frac{K_p}{V_D} Z_D = 0$$

$$46 \quad Z_D = \Delta z_p$$

$$47 \quad \theta_E - \Delta \theta_H - \theta_{EH} = 0$$

$$48 \quad \Delta x_n + (\sin \theta_L) u_{bp} + (L_T \cos \theta_T + L_{TN} \cos \theta_{TN}) \Delta \theta_T + L_N (\cos \theta_N) \Delta \theta_N = B_{x_p}$$

APPENDIX D

TYMSHARE EXAMPLE PROBLEM

This appendix documents the use of CREATE, BIODYN and PLOT on the Tymshare System 31 PDP 10.* The computer dialog appears on the next several pages for a typical session. An existing PARAMETER file is modified, a CHOICES file is created, BIODYN generates the requested transfer functions (only one of which is illustrated), and PLOT produces a quick-look Bode plot. Throughout the dialog, all user inputs/ responses are underlined. The following 6 character filenames are accessed in the course of this example (these are not the Standard Pilot and Standard Crewman which are available on Tymshare):

	<u>File Name</u>	<u>Title</u>
Existing PARAMETER file:	BB19	"Stiff Stick"
Modified PARAMETER file:	SEMI	"Semi-Supine"
CHOICES file:	CHOSAR	
TF file:	TAPE19	

There are several differences between the CDC version of the BIODYN-80 package and its Tymshare counterpart. These are listed below:

- All three programs run interactively on Tymshare; all files are specified by the user during execution.
- CHOICES filename can be an existing file, whose name is to be modified. (In CDC, the CHOICES filename must be a new name.)

*A user planning to use BIODYN-80 on Tymshare should be familiar with the Tymshare manual, XEXEC, especially Section 3. At present, BIODYN-80 is not a current Tymshare Library Program, and a potential user should contact the second author for the required procedures.

- Because of the above differences, there are slight changes in the dialog for the Tymshare version (e.g., the NEW PARAMETER FILE? query is not used, since the PDP-10 software can determine internally whether or not a new filename has been input).

D.1 Running CREATE

(continued on next page)

D.1 (Continued)

Modify title for
PARAMETER file

Short listing of modified file

Interactive input
of filename on which
to store modified
PARAMETER file

(Continued on next page)

D.1 (Concluded)

INPUT CHOICES FILENAME : CHOSAR } Interactive input of CHOICES filename

BIODYN TFS DESIRED FOR PIVIB ? NO } No PIVIB TF's desired

TRANSFER FUNCTION INPUT :
FIRST LINE-RESPONSE MNEMONIC, FORCING FUNCTION MNEMONIC
(AAAAAAA) ; ENTER XXX TO STOP
SECOND LINE-PLOTTING INFORMATION, 5 ITEMS :
BODE LOWER FREQ. LIMIT
BODE UPPER FREQ. LIMIT
BODE UPPER PHASE LIMIT (0, DEFAULTS TO 200.)
BODE LOWER PHASE LIMIT (0, DEFAULTS TO -400.)
LIST (1, TO LIST TABLE, 0, FOR NO LIST)
IF NO PLOT DESIRED, ENTER 0, FOR ALL ITEMS } Format for CHOICES file information input

C,NZF
1.,100.,0.,0.,0.
Z1,DZF
1.,100.,0.,0.,0.
0TH,DZF
1.,100.,0.,0.,1.
XXX } Input CHOICES file information

EXIT ← Exit CREATE

D.2 Running BIODYN

EXE BDNB0-NTRFN
LOADING
EXECUTION

} Execute BIODYN

ENTER INPUT FILE NAME: SEMI
ENTER CHOICES FILE NAME: CHOSAR

} Interactive input of
PARAMETER and CHOICES
files

11-Mar-80 11:53

BIODYN execution

CASE: SEMI-SUPINE

} Case title

ENTER SYSTEM OUTPUTS FILE NAME? TAPE20
NEW FILE

} Interactive input of
TF file

FLOATING UNDERFLOW FC=111246

FLOATING UNDERFLOW FC=111246

DENOMINATOR:

.10444E-26
(16.591) (46.384) (56.079) (97.512
(100.00) (285.86) (353.22)
((.44231 , 8.3929 , 3.7123 , 7.5273))
((.25697 , 11.309 , 2.9060 , 10.929))
((.20726 , 13.642 , 2.8274 , 13.346))
((.19865 , 24.860 , 4.9386 , 24.365))
((.32015 , 32.898 , 10.532 , 31.167))
((.85789 , 32.931 , 28.251 , 16.921))
((.19448 , 57.685 , 11.219 , 56.583))
((.65024 , 316.83 , 206.02 , 240.70))
+ .18027E+11

} Printout of DTH/DZF
transfer function

NUMERATOR: DTH/DZF

.29296E-27 << .28049 >>
(.00000) (.00000) (-10.621) (16.590)
(46.384) (97.067) (100.00) (-138.57)
(209.05)
((.44231 , 8.3929 , 3.7123 , 7.5273))
((.21687 , 11.488 , 2.4943 , 11.114))
((.98984 , 16.317 , 16.646 , 2.3916))
((.95130 , 33.163 , 28.232 , 17.100))
((.20646 , 55.410 , 11.440 , 54.216))
((.65024 , 316.83 , 206.02 , 240.70))
((.26657 , 336.66 , 325.41 , 96.321))
.67996E+08 .37719E-02

(See Figure 9 for
explanation of
format)

TRU =123.31 11-Mar-80 11:58

} Exit BIODYN

D.3 Running PLOT

```

ESE,CCPLOT,CQUB,CBODTF
LOADING
EXECUTION

ENTER TREN SYSTEM FILE NAME: TAPE20

M,TMP      11-Mar-80   11:53
SERT-SURINE

LSS
C,ANZP
Z,DZP
DTH/DZP

```

Execute PLOT
 Interactive entry
 of TF file
 Case title
 Dump of TF file
 contents

```

TAPE20
M,TMP      11-Mar-80   11:53
SERT-SURINE
DTH/DZP
DSS

```

PLOT execution

```

FIRST ORDER DIVIDERS CANCELLED :
  36,381000
  100,000000

SECOND ORDER DIVIDERS CANCELLED :
  .11,131000 , 0.3929300
  .50021400 , .316,83100

```

Transfer function DTH/DZP
 Identical roots in numerator
 and denominator are
 cancelled; close pairs are
 retained

NUMERATOR:

```

.28049
( .00000 ) ( .00000 ) ( -10.621 ) ( 16.590 )
( 97.057 ) ( -138.57 ) ( -109.05 ) ( )
( -214.87 ) ( 11.488 ) ( 2.4713 , 11.214 ) ( )
( 11.488 ) ( 14.817 ) ( 16.516 , 2.3917 ) ( )
( 11.488 ) ( 13.163 ) ( 28.23 , 17.400 ) ( )
( 11.488 ) ( 75.416 ) ( 11.140 , 54.216 ) ( )
( 11.488 ) ( 335.66 ) ( 325.41 , 85.321 ) ( )

```

Transfer function to
 be plotted (see
 Figure 11 for explana-
 tion of format)

DENOMINATOR:

```

( 16.591 ) ( 56.079 ) ( 97.512 ) ( 285.86 )
( 353.1 ) ( )
( -11.487 ) ( 11.309 ) ( 2.9050 , 10.929 ) ( )
( 11.487 ) ( 13.642 ) ( 2.8274 , 13.346 ) ( )
( 11.487 ) ( 24.860 ) ( 4.9386 , 24.365 ) ( )
( 11.487 ) ( 32.098 ) ( 10.532 , 31.167 ) ( )
( 11.487 ) ( 32.931 ) ( 29.251 , 16.921 ) ( )
( 11.487 ) ( 57.685 ) ( 11.219 , 56.083 ) ( )

```

(Continued on next page)

D.3 (Continued)

(Continued on next page)

D.3 (Concluded)

TABLE 20 H.TMP SEMI-SURFACE		
	DTH/DZP DB	
R/S	DB	DEG
1.00	-48.34	175.9
1.12	-46.31	175.4
1.25	-44.27	174.9
1.41	-42.21	174.3
1.58	-40.15	173.5
1.78	-38.07	172.8
2.00	-35.96	171.9
2.24	-33.83	170.8
2.51	-31.67	169.7
2.82	-29.46	168.4
3.15	-27.20	167.0
3.55	-24.88	165.3
3.98	-22.48	163.4
4.47	-19.97	161.2
5.01	-17.34	158.6
5.62	-14.56	155.5
6.31	-11.58	151.7
7.08	-8.48	147.1
7.94	-4.91	141.1
8.91	-1.17	133.2
10.00	5.85	122.9
11.22	7.30	110.0
12.59	12.34	89.2
14.13	16.45	56.6
15.85	19.74	24.4
17.73	20.72	-1.7
19.75	23.31	-27.3
21.9	26.34	-60.1
25.12	28.34	-104.6
28.18	27.92	-150.8
31.62	26.04	-189.7
35.48	23.40	-221.9
49.81	20.28	-246.8
44.67	17.12	-264.3
59.12	14.43	-275.8
74.23	12.50	-285.8
97.10	10.82	-299.4
120.79	9.59	-311.4
149.43	8.37	-320.3
199.13	7.35	-327.3
160.00	2.71	-333.2

EXIT

4

Listing of frequency (rad/sec),
amplitude (dB) and phase (deg)
at 20 evenly-spaced increments
per decade for DTH/DZP

(This listing is only generated
if XL = 1.0 in the CHOICES file
for this transfer function)

Exit PLOT

APPENDIX E
INTERCOM EXAMPLE PROBLEM

This appendix presents a typical terminal session in the Intercom 4.7 operating system, accessing the CSA mainframe at Wright-Patterson AFB's ASD Computer Center. The dialog is annotated so that a typical user will easily understand the basic sequences of parameter entry and job steps. All user responses are underlined; each is terminated by a carriage return.

This particular session was an exercise using a 9 cm viewing distance and the standard crewman (STDCRW) parameter set. It was one of a series of runs which attempted to determine optimal display distance for minimizing image motion of a vertically vibrating crewman. The example is carried far enough for the potential user to see how the programs interface with INTERCOM job control and file management commands.

The steps followed in the investigation are listed below:

- 1) Log in to Intercom.
- 2) Attach the PARAMETER file to be modified and name it TAPE20.
- 3) Attach the CREATE program, called EXECRT.
- 4) Run EXECRT, make changes to existing file, assemble new CHOICES file.
- 5) Assemble batch job to run BIODYN and PLOT, using the two PARAMETER file (old and modified) and the new CHOICES file.
- 6) Submit batch job to input queue.
- 7) When job completed, list the output file.

The user is advised to retain in his permanent files only those which he wishes to use in the future, and to frequently purge his directory of unneeded parameter and output files in order to forestall job failures resulting from file space overload.

Typical INTERCOM Terminal Session

user responses underlined

ASD COMPUTER CENTER INTERCOM 5.0
SYSTEM CSA
• DATE 05/20/80 TIME 14.46.39.

PLEASE LOGIN

ENTER 3-DIGIT TERMINAL ID-

05/20/80 LOGGED IN AT 14.46.52.
WITH USER-ID CR
EQUIP/PORT 12/001

COMMAND- REQUEST,TAPE7,*PF

COMMAND- REQUEST,TAPE8,*PF

COMMAND- ATTACH,TAFE20,STDCRW

FF CYCLE NO. - 001

COMMAND- ATTACH,EXECRT

PFN IS
EXECRT

FF CYCLE NO. - 001

COMMAND- EXECRT

NEW FILE ?

NO LISTING DESIRED?

YE (LONG OR SHORT LISTING?)

LI (LONG OR SHORT LISTING?)

LO NEW CHOICES FILE ?

YE BIDYNTFS DESIRED FOR PIVIB ?

NO TRANSFER FUNCTION INPUT :
FIRST LINE-RESPONSE MNEMONIC, FORCING FUNCTION MNEMONIC
(AAA,AAA) ; ENTER XXX TO STOP

SECOND LINE-PIOTTNG INFORMATION, 5 ITEMS :
BODE LOWER FREQ. LIMIT
BODE UPPER FREQ. LIMIT
BODE LOWER PHASE LIMIT (0. DEFAULTS TO 300.)
BODE LOWER PHASE LIMIT (0. DEFAULTS TO -400.)
LIST (1. TO LIST TABLE, 0. FOR NO LIST)
IF NO PLOT DESIRED, ENTER 0. FOR ALL ITEMS

RHF,DZF
RHF NOT PERMISSBLE, PLEASE RETINPUT

RHD,DZF
.1,200.,0.,0.,1.

MAX FREQUENCY RANGE IS 3 DECADES
PLEASE RETINPUT ENTIRE LINE

1.,100.,0.,0.,1.

STOP

XXX

14. Exit from CREATE

1. Log in to INTERCOM

2. Attach files to I/O units

3. Attach EXECRT(CREATE) program file

4. Execute EXECRT program module

5. Select existing data file (STDRCRW)

6. List data file

7. Program rejects unrecognizable input

8. Long listing option selected

9. Affirmative on CHOICES option

10. Negative on PIVIB option

11. Illegal parameter selected

12. Program screens for out-of-limit values

13. Finally, valid input

14. Exit from CREATE

Session continues with batch run

Sample INTERCOM Batch run

COMMAND- EDITOR

..CREATE,S

ENTER LINES

SAR,C1150000,STCSA. L800015,RIEDEL,(213)679-2281
ATTACH,TAPE7,CHOICE1.
ATTACH,TAPE9,VIEW9.
ATTACH,EXERIO.
ATTACH,EXEPLT.
EXERIO(TAPE4,OUTPUT,TAPE7,TAPE8,TAPE19,TAPE21).
REWIND,TAPE19.
EXEPLT(OUTPUT,TAPE19).
*FOR
=

..SAVE,GOFILE,NOSQ

..STORE,GOFILE,L800015

CT ID= L800015 FFN=GOFILE
CT CY= 001 00000128 WORDS.:
..END

COMMAND- BATCH,GOFILE,INPUT,HERE

COMMAND- FILES

--LOCAL FILES--
*EXECRT *GOFILE \$INPUT \$OUTPUT *TAPE7
*TAPE8 *TAPE20
--REMOTE EXECUTING JOBS--
SARCK02
COMMAND-
TASK '...TEL' TERMINATED
TASK EXIT WITH OUTSTANDING IO
FC=106646
FS=170000
RO=003770

1. Invoke INTERCOM editor

2. Create batch job stream

3. Preserve file containing job stream

4. Batch job stream to input queue

5. Job terminated by system crash

Note: Output files generated by BIODYN, when listed, are identical in format to printouts shown in Appendix D.

REFERENCES

1. Jex, H. R., and R. E. Magdaleno, Modeling Biodynamic Effects of Vibration, Fifth Year; Final Scientific Report, Systems Technology, Inc., SR-1037-1, Aug. 1979.
2. Jex, H. R., and R. E. Magdaleno, "Progress in Measuring and Modeling the Effects of Low Frequency Vibration on Performance," Models and Analogues for the Evaluation of Human Biodynamic Response, Performance and Protection, AGARD CP-253, June 1979, pp. A29-1 through A29-11.
3. Jex, H. R., and R. E. Magdaleno, "Biomechanical Models for Vibration Feedthrough to Hands and Head for a Semisupine Pilot," Aviation, Space and Environmental Med., Vol. 49, No. 1, Jan. 1978, pp. 304-316.
4. Magdaleno, R. E., and H. R. Jex, User's Guide to BIODYN-78, An Interactive Computer Program for Modeling Biodynamic Feedthrough to a Pilot's Hands and Head, Systems Technology, Inc., TR-1037-2, July 1979.
5. Jex, H. R., and R. W. Allen, "Evaluating Biodynamic Interference with Operational Crews," Vibration and Combined Stresses in Advanced Systems, AGARD CP-145, Mar. 1975, pp. B24-1 through B24-18.
6. Jex, H. R., and R. E. Magdaleno, Modeling Biodynamic Effects of Vibration; Fourth Year Interim Scientific Report, Systems Technology, Inc., ISR-1037-4, Sept. 1978.
7. Berliner, Jeffrey E., and William H. Levison, PIVIB: A Computer Program for Analysis of Pilot Biodynamic and Tracking Response to Vibration, Bolt, Beranek and Newman, Rept. 3457, Dec. 1976.
8. ASD Computer Center CDC NOS/BE User's Guide, Rev. E, Jan. 1978.
9. ASD Computer Center INTERCOM Guide, Rev. A, Sept. 1976.
10. Magdaleno, R. E., D. T. McRuer, and G. P. Moore, Small Perturbation Dynamics of the Neuromuscular System in Tracking Tasks, NASA CR-1212, Dec. 1968.
11. Braune, W., O. Fischer, J. Amar, and W. T. Dempster, Human Mechanics; Four Monographs Abridged, AMRL-TDR-63-123, Dec. 1963. (AD 600618)
12. "Symposium on Biodynamic Models and Their Applications," Dayton, Ohio, 15-17 Feb. 1977, published in Av., Space and Environ. Med., Vol. 49, No. 1, Jan. 1978.

END
DATE
FILMED
10-81
DTIC