1

Matrix theory - Assignment 20

Satyam Singh EE20MTECH14015

Abstract—This document deals with ideals of polynomial.

Download latex-tikz from

https://github.com/satyam463/Assignment-20/blob/main/Assignment%2020.tex

1 Problem Statement

Let F be a field , show that the intersection of any numbers of ideals in F[x] is an ideal.

2 Pictorial Representation

Fig. 0: Index set containing α

Fig. 0: ideal containing I_{α}

3 Solution

Given	F is a field
To prove	$I = \bigcap_{\alpha \in A} I_{\alpha} \text{ is an ideal}$
Proof	Let A be an index set and
	I_{α} be an in F[x] for each $\alpha \in A$
	Obviously I is the subspace
	since I_{α} is a subspace of $F[x]$
	and arbitrary intersection of subspace
	is also a subspace.
	Let $g(x) \in F[x]$ and $f(x) \in I$
	Since $f(x) \in I$
	and I_{α} is an ideal follows that
	$f(x) g(x) \in I_{\alpha} \ \forall \alpha \in A$
	Thus $f(x)$ $g(x) \in I$.