

CURSO DE

Fundamentos de Matemáticas para física

OPERACIONES BÁSICAS

$$6x2=2x6$$

$$Sen^2(a) + Cos^2(a) = 1$$

$$Sen(a + b) = Sen \ a \ Cos \ b + Sen \ b \ Cos \ a$$

$$Cos(a + b) = Cos a Cos b - Sen a Sen b$$

$$Sen(a - b) = Sen \ a \ Cos \ b - Cos \ a \ Sen \ b$$

$$Cos(a - b) = Cos a Cos b + Sen a Sen b$$

$$Sen(2a) = 2 Sen a Cos a$$

$$Cos(2a) = Cos^2a - Sen^2a$$

NÚMEROS

$$(4-2i)+(5+6i)=(4+5)+(-2+6)i=9+4i$$

$$(4-3i)-(2-6i)=(4-2)+(-3-(-6))i=2+3i$$

$$(2+3i)*(4-5i)=(8-10i+12i-15)$$

Que es un vector?

$$\begin{bmatrix} \bar{A} \\ \bar{A} \\ 3 \end{bmatrix} \qquad V = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$\overrightarrow{W}$$
 = $\begin{vmatrix} 4 \\ 2 \\ -1 \end{vmatrix}$

$$|\bar{A}|^2 = 4^2 + 3^2$$

$$3 \qquad |\bar{A}| = \sqrt{25}$$

$$|\bar{A}| = 5$$

$$|\bar{A}| = \sqrt{25}$$

$$|\bar{A}| = 5$$

$$\sin\theta = \frac{3}{5}$$

$$\theta = \sin^{-1}\frac{3}{5}$$

$$\theta = 36.8^{\circ}$$

$$\bar{A}$$
 $A = 4i, 3j$ $A = (5, 36.8^{\circ})$ $A = (5, \frac{36.8}{180}\pi)$

VECTORES

OPERACIONES BÁSICAS CON VECTORES

Entenderemos la suma entre dos vectores, la multiplicación por un escalar y un ejercicio practico para aplicar los conocimientos adquiridos

Suma de vectores

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$$

Multiplicación por escalar

$$|\bar{V}| = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Calcular y dibujar la combinación lineal

$$\frac{1}{2}[V] - 3[W]$$

$$|V| = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$|W| = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

VECTORES

PRODUCTO PUNTO

Interpretación del producto punto o escalar entre dos vectores

Producto punto

$$\begin{bmatrix} a1\\a2 \end{bmatrix} . \begin{bmatrix} b1\\b2 \end{bmatrix} = (a1b1 + a2b2)$$

$$\begin{bmatrix} a1 \\ a2 \\ a3 \end{bmatrix} \cdot \begin{bmatrix} b1 \\ b2 \\ b3 \end{bmatrix} = (a1b1 + a2b2 + a3b3)$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
. $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ = 1.3 + 2.4 = 11

$$\begin{bmatrix} a1 \\ a2 \\ a3 \end{bmatrix} \cdot \begin{bmatrix} b1 \\ b2 \\ b3 \end{bmatrix} = (a1b1 + a2b2 + a3b3) \qquad \begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} = 1.5 + 5.2 + 4.1 = 14$$

$$\vec{a} \cdot \vec{b} = |a||b|Cos\theta$$

VECTORES

PRODUCTO CRUZ

Interpretación del producto cruz o vectorial entre dos vectores

Producto cruz

$$\vec{a} \ X \ \vec{b} \neq \vec{b} \ X \ \vec{a}$$

$$\vec{m} = 3i - 4j + 3k$$

$$\vec{n} = 5i - 2j - k$$

ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

Conversión coordenadas polares a cartesianas

Conversión de coordenadas cartesianas a polares

Conversión de coordenadas cartesianas a polares

$$Sen\theta = \frac{y}{r}$$

$$Tan\theta = \frac{y}{x}$$

$$Cos\theta = \frac{x}{r}$$

Expresemos los siguientes puntos en coordenadas polares

(4,3)

$$(-4, -3)$$

GEOMETRÍA

Estudiaremos los conceptos básicos sobre funciones y vectores, su representación, su aritmética y algunas operaciones que resultan útiles para el análisis de problemas

Sistemas tridimensionales de coordenadas

EJERCICIO

Grafiquemos los siguientes puntos

$$(2,-3,4)$$
 $(4,5,-3)$

GEOMETRÍA DEL ESPACIO Y VECTORES

ALGUNAS GRÁFICAS EN TRES DIMENSIONES

Conoceremos algunas graficas importantes en tres dimensiones

Qué superficies están representadas por las siguientes ecuaciones?

Qué superficies están representadas por las siguientes ecuaciones?

Qué superficies están representadas por las siguientes ecuaciones?

$$x^2 + y^2 = 1$$

GEOMETRÍA DEL ESPACIO Y VECTORES

DISTANCIA ENTRE DOS PUNTOS EN EL ESPACIO

Estudiaremos los conceptos básicos sobre vectores, su representación, su aritmética y algunas operaciones que resultan útiles para el análisis de problemas

Distancia entre dos puntos en el espacio

$$|P_1A| = |x_2 - x_1|$$

 $|AB| = |y_2 - y_1|$

$$|P_1B|^2 = |x_2 - x_1|^2 + |y_2 - y_1|^2$$

$$|P_2B| = |z_2 - z_1|$$

 $|P_1P_2|^2 = |P_1B|^2 + |P_2B|^2$

$$|P_1P_2|^2 = |x_2 - x_1|^2 + |y_2 - y_1|^2 + |z_2 - z_1|^2$$

Hallemos la distancia entre los puntos

$$P = (2, -1, 7)$$

$$R = (1, -3, 5)$$

$$|P_1P_2|^2 = |x_2 - x_1|^2 + |y_2 - y_1|^2 + |z_2 - z_1|^2$$