Группоиды, кольца, поля

Александра Игоревна Кононова

ниу миэт

2 января 2017 г.

Алгебра, группоид

Алгебра — множество G (носитель) с заданным на нём набором операций, удовлетворяющим некоторой системе аксиом.

Группоид — алгебра $\mathcal{G} = (G, \cdot)$, сигнатура которой состоит из одной бинарной операции \cdot : $G \times G \to G$.

Полугруппа, моноид

Полугруппа — группоид, операция ассоциативна — $\forall a,b,c \in G \colon a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Моноид — полугруппа с единицей:

$$\exists \mathbf{1} : \forall a \in G \ a \cdot \mathbf{1} = \mathbf{1} \cdot a = a,$$

1- нейтральный элемент (единица) моноида

Группа — моноид, в котором для каждого элемента существует обратный.

Группа

Множество G с операцией \cdot — группа, если:

- операция · в G ассоциативна: $a \cdot (b \cdot c) = (a \cdot b) \cdot c \ \forall a,b,c \in G;$
- ② в G существует единица (нейтральный элемент) 1: $a \cdot 1 = 1 \cdot a = a \ \forall a \in G$;
- $m{3}$ для каждого $a \in G$ существует обратный: $a^{-1} \in G \colon a \cdot a^{-1} = a^{-1} \cdot a = \mathbf{1}.$

Свойства

Если · коммутативна, то полугруппа (группа, группоид) называется коммутативной, или абелевой.

 $\exists \mathbf{0} : \forall a \ a \cdot \mathbf{0} = \mathbf{0} \cdot a = \mathbf{0}$ — полугруппа называется полугруппой **с нулём** (и не может быть группой).

Если все элементы полугруппы (группы, группоида) являются некоторыми целыми степенями $a \in G$ — полугруппа называется моногенной (циклической), a — примитивным (порождающим, образующим).

4□ > <部 > <き > <き > < き > の<0</p>

Трёхмерные вектора с векторным умножением —

№ с возведением в степень—

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N}, +) - \\ (\mathbb{N}, \cdot) - \\ (\mathbb{N} \cup \{0\}, +) - \\ (\mathbb{N} \cup \{0\}, \cdot) - \\ (\mathbb{Z}, +) - \\ (\mathbb{Z}, \cdot) -$$

4 D > 4 B > 4 E > 4 E > E 990

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень —

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N}, +) - \\ (\mathbb{N}, \cdot) - \\ (\mathbb{N} \cup \{0\}, +) - \\ (\mathbb{N} \cup \{0\}, \cdot) - \\ (\mathbb{Z}, +) - \\ (\mathbb{Z}, \cdot) -$$

◆ロ > ←面 > ←直 > ←直 > 一直 の Q Q

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{2}})$.

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N},+)$$
 — (\mathbb{N},\cdot) —

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 \mathbb{N} с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{3}})$.

Арифметика с насыщением ([-N,N],+) — группоид.

$$\begin{array}{l} (\mathbb{N},+) - \\ (\mathbb{N},\cdot) - \\ (\mathbb{N} \cup \{0\},+) - \\ (\mathbb{N} \cup \{0\},\cdot) - \\ (\mathbb{Z},+) - \end{array}$$

 (\mathbb{Z},\cdot) —

4□ > 4□ > 4□ > 4□ > 4□ > □
90

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\left(2^3\right)})$. Арифметика с насыщением ([-N,N],+) — группоид. $(\mathbb N,+)$ — циклическая полугруппа (коммутативная); $(\mathbb N,\cdot)$ — $(\mathbb N \cup \{0\}\,,+)$ —

$$(\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{2}})$. Арифметика с насыщением ([-N,N],+) — группоид. $(\mathbb N,+)$ — циклическая полугруппа (коммутативная); $(\mathbb N,\cdot)$ — коммутативный моноид.

$$(\mathbb{N} \cup \{0\}, +) - (\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)-$$

 $(\mathbb{Z},\cdot)-$

 $(2, \cdot)$

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{2}})$. Арифметика с насыщением ([-N,N],+) — группоид. $(\mathbb N,+)$ — циклическая полугруппа (коммутативная); $(\mathbb N,\cdot)$ — коммутативный моноид.

 $(\mathbb{N} \cup \{0\}\,,+)$ — циклический коммутативный моноид; $(\mathbb{N} \cup \{0\}\,,\cdot)$ —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{2}})$. Арифметика с насыщением ([-N,N],+) — группоид. $(\mathbb N,+)$ — циклическая полугруппа (коммутативная); $(\mathbb N,\cdot)$ — коммутативный моноид.

 $(\mathbb{N} \cup \{0\}\,,+)$ — циклический коммутативный моноид; $(\mathbb{N} \cup \{0\}\,,\cdot)$ — коммутативный моноид.

$$(\mathbb{Z},+)$$
 (\mathbb{Z},\cdot) $-$


```
Трёхмерные вектора с векторным умножением — группоид ((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b})).
```

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3 \neq 2^{\binom{2^3}{2}})$. Арифметика с насыщением ([-N,N],+) — группоид. $(\mathbb N,+)$ — циклическая полугруппа (коммутативная); $(\mathbb N,\cdot)$ — коммутативный моноид.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot)$ — коммутативный моноид.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

 (\mathbb{Z},\cdot) —

Трёхмерные вектора с векторным умножением группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b})).$

 $\mathbb N$ с возведением в степень — группоид $((2^2)^3
eq 2^{\left(2^3\right)})$. Арифметика с насыщением ([-N, N], +) — группоид. $(\mathbb{N}, +)$ — циклическая полугруппа (коммутативная);

 (\mathbb{N},\cdot) — коммутативный моноид.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид; $(\mathbb{N} \cup \{0\}, \cdot)$ — коммутативный моноид.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

 (\mathbb{Z},\cdot) — коммутативный моноид.

Аксиомы кольца

 $\mathcal{K}=(\mathbb{K},+,\cdot,\mathbf{0},\mathbf{1})$, причём для любых $a,b,c\in\mathbb{K}$:

- a + (b+c) = (a+b) + c;
- a + b = b + a;
- a + 0 = a;
- ullet для каждого $a \in \mathbb{K}$ существует элемент (-a), такой, что $a + (-a) = \mathbf{0}$;
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c;$

Аксиомы поля

Поле есть алгебра $\mathcal{F}=(\mathbb{F},+,\cdot,\mathbf{0},\mathbf{1}),\mathbf{0}
eq\mathbf{1},$ причём:

- a + b = b + a;
- a + 0 = a;
- **4** для каждого $a \in \mathbb{F}$ существует элемент (-a), такой, что $a + (-a) = \mathbf{0}$;

- f 0 для каждого $a \in \mathbb{F}$, отличного от f 0, существует элемент a^{-1} , такой, что $a \cdot a^{-1} = f 1$;

Некоммутативное поле — тело.

 \mathbb{Z} —

$$\mathbb{Z}_k = ig(\{0,1,\dots,k-1\},\oplus_k,\odot_k,0,1ig)$$
 с операциями сложения и умножения по модулю $k-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — \mathbb{Z}_p $(p$ — простое $)$ — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k-

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — \mathbb{Z}_p $(p$ — простое $)$ — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 ${\mathbb H}$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — \mathbb{Z}_p $(p$ — простое $)$ — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — \mathbb{Z}_p $(p$ — простое $)$ — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — поля.

$$\mathbb{Z}_p \; (p-$$
 простое) — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1
ight),\; a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 $\mathbb{Z}_p \ (p-$ простое)-поле.

$$({a+b\cdot\sqrt{2}},+,\cdot,0,1), a,b\in\mathbb{Q}-$$

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 $\mathbb{Z}_p \ (p-$ простое)-поле.

$$(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1)$$
, $a,b\in\mathbb{Q}$ — поле.

Конечные поля (поля Галуа)

Конечное поле или поле Галуа

Поле, состоящее из конечного числа элементов. \mathbb{F}_q или $\mathrm{GF}(q)$, где q — число элементов (мощность).

 $q=p^n$, где p — простое число (характеристика поля), $n\in\mathbb{N}$.

С точностью до изоморфизма:

для
$$q=p$$
 $\operatorname{GF}(q)=\mathbb{Z}_p$ для $q=p^n$ $\operatorname{GF}(q)$ — расширение поля \mathbb{Z}_p

Многочлены над полем

Многочлен степени $n \in \mathbb{N} \cup \{0\}$ над полем \mathcal{F}

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{F}$$

p(x) = q(x), если равны их коэффициенты при одинаковых степенях x.

$$x^k \cdot x^m = x^{k+m} (k, m \in \mathbb{N} \cup \{0\}), \quad x^0 \equiv 1.$$

Множество всех многочленов $\mathcal{F}[x]$ ассоциативно-коммутативное кольцо с единицей.

Делимость многочленов

$$\forall p(x), q(x) \in \mathcal{F}[x] \ \exists s(x), r(x) \in \mathcal{F}[x] :$$

 $p(x) = s(x) \cdot q(x) + r(x)$

причём $\deg r(x) < \deg q(x)$ или r(x) = 0.

Многочлен s(x) называется **частным** (неполным частным), а многочлен r(x) — **остатком** от деления p(x) на s(x).

Частное и остаток определяются однозначно.

Справедлива теорема Безу (и её следствия): остаток от деления f(x) на (x-a) равен f(a).

Неприводимые многочлены

Если для любого разложения

$$p(x) = s(x) \cdot q(x), \quad p(x), s(x), q(x) \in \mathcal{F}[x]$$

либо
$$\deg s(x) = 0$$
, либо $\deg q(x) = 0$,

многочлен p(x) называется **неприводимым** (простым) в кольце $\mathcal{F}[x]$ (или над полем \mathcal{F}).

	$x^2 + 1$	$x^2 + x + 1$
Hад \mathbb{Z}_2	(x+1)(x+1)	неприводим
Hад \mathbb{Z}_3	неприводим	(x+2)(x+2)
$oxed{Had}\ \mathbb{R}$	неприводим	неприводим
\overline{H} ад $\mathbb C$	(x+i)(x-i)	$(x + \frac{1+i\sqrt{3}}{2})(x + \frac{1-i\sqrt{3}}{2})$

Классы вычетов многочленов

Класс вычетов по модулю многочлена g(x) содержит все многочлены $\mathcal{F}[x]$, которые имеют один и тот же остаток при делении на g(x).

Если g(x) неприводим в $\mathcal{F}[x]$, множество классов вычетов (фактор-кольцо $\mathcal{F}[x]/g(x)$) — поле.

Поле $\mathcal{F}[x]/g(x)$ — расширение \mathcal{F} , полученное добавлением корня g(x) (примитивное расширение) — фиктивного $c \notin \mathcal{F}$, что g(c) = 0.

Примитивные расширения $\mathbb R$

Многочлен $g(x) = x^2 + 1$ неприводим над \mathbb{R} .

Поле $\mathbb{C}-$ примитивное расширение \mathbb{R} , полученное добавлением фиктивного корня x^2+1 — «мнимой единицы» $i\notin\mathbb{R}$.

 $x, x + 1, x + 2, x^2 + 4, x^2 + x + 1$ и $x^4 + 1$ также неприводимы над \mathbb{R} .

Как будут выглядеть примитивные расширения?

Примитивные расширения \mathbb{Z}_2

Многочлен $g(x) = x^2 + x + 1$ неприводим над \mathbb{Z}_2 .

Пусть $i \notin \mathbb{Z}_2$ — фиктивный корень $x^2 + x + 1$.

$$i^2 + i + 1 = 0$$

Элементы примитивного расширения 0,1,i,i+1. $i^2 = -(i+1) = i+1$

Поле GF(4)

Полиномиальное	Числовое		Степе	ни
представление	представление	0	1	2
1	1	1	1	1
i	2	1	i (2)	i + 1(3)
i+1	3	1	i+1(3)	i (2)

Из обобщённой малой теоремы Ферма $a^3=1$ для всех ненулевых a.

$$i$$
 и $i+1$ — примитивные элементы, наименьший i : $egin{array}{ccc} 1=1&=i^0 \\ 2=i&=i^1 \\ 3=i+1=i^2 \end{array}$

Сложение и умножение в $\mathrm{GF}(4)$

Сложение — сложение многочленов с учётом 1+1=0 (побитовое по модулю 2)

+	0	1 2	i+1
0	0	$1 \qquad i$	i+1
1	1	0 i +	1 i
i	i i -		1
i+1	i+1	i 1	0

Умножение — умножение степеней примитивного элемента с учётом $i^3=1$

•	U	1	\imath	ı-
0	0	0	0	0
1	0	1	i	i^2
i	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	i	i^2	1
i^2	0	i^2	1	i

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
$\frac{1}{2}$	0	2	3	1
3	0	3	1	2

Разрежённые полиномы, неприводимые по модулю 2 (порождающие табличные)

Наименьший примитивный элемент расширения: i(2) (для большинства).

Для используемого в AES $x^8 + x^4 + x^3 + x + 1$ примитивный элемент i + 1 (3).

Таблица степеней GF(8), порождающий полином $x^3 + x + 1$

				Степени							
			0	1	2	3	4	5	6	7	
0.0	1	1	1	1	1	1	1	1	1	1	
Полиномиально е представление	X	2	1	2	4	3	6	7	5	1	
	x+1	3	1	3	5	4	7	2	6	1	
	x^2	4	1	4	6	5	2	3	7	1	
	x ² +1	5	1	5	7	6	3	4	2	1	
шој	$x^{2+}x$	6	1	6	2	7	4	5	3	1	
]]	$x^{2}+x+1$	7	1	7	3	2	5	6	4	1	

Таблица степеней $\mathsf{GF}(16)$

		Степени														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	1
3	1	3	5	15	2	6	10	13	4	12	7	9	8	11	14	1
4	1	4	3	12	5	7	15	9	2	8	6	11	10	14	13	1
5	1	5	2	10	4	7	8	14	3	15	6	13	12	9	11	1
6	1	6	7	1	6	7	1	6	7	1	6	7	1	6	7	1
7	1	7	6	1	7	6	1	7	6	1	7	6	1	7	6	1
8	1	8	12	10	15	1	8	12	10	15	1	8	12	10	15	1
9	1	9	13	15	14	7	10	5	11	12	6	3	8	4	2	1
10	1	10	8	15	12	1	10	8	15	12	1	10	8	15	12	1
11	1	11	9	12	13	6	15	3	14	8	7	4	10	2	5	1
12	1	12	15	8	10	1	12	15	8	10	1	12	15	8	10	1
13	1	13	14	10	11	6	8	2	9	15	7	5	12	3	4	1
14	1	14	11	8	9	7	12	4	13	10	6	2	15	5	3	1
15	1	15	10	12	8	1	15	10	12	8	1	15	10	12	8	1

Спасибо за внимание!

НИУ МИЭТ http://miet.ru/

Александра Игоревна Кононова illinc@mail.ru

