

Faster Pandas

miki @tebeka

CEO, CTO, UFO ...

https://pydata.org/telaviv2022/ Use LUSHA to get a discount

Performance = CPU/Memory

Why?

Why Not?

System Event	Actual Latency	Scaled Latency
One CPU cycle	0.4 ns	1 s
Level 1 cache access	0.9 ns	2 s
Level 2 cache access	2.8 ns	7 s
Level 3 cache access	28 ns	1 min
Main memory access (DDR DIMM)	~100 ns	4 min
Intel Optane memory access	<10 μs	7 hrs
NVMe SSD I/O	~25 µs	17 hrs
SSD I/O	50–150 μs	1.5-4 days
Rotational disk I/O	1–10 ms	1–9 months
Internet call: SF to NYC	65 ms	5 years
Internet call: SF to Hong Kong	141 ms	11 years

Computer Latency at Human Scale

In [1]:

"Talk is cheap. Show me the code."

- Linus Torvalds

Culture >> Process

Thank You! miki@353solutions.com

Faster pandas

By: Miki Tebeka · Released 6 days ago

1h 23m 30s left

COURSE

Faster Python Code

1h 21m 18s let

