Bayesian network identification of lung cancer-supportive behavior

Novendri Isra Asriny 2023

Background

Lung cancer is the leading cause of cancer incidence and mortality worldwide, accounting for an estimated 2 million cases and 1.8 million deaths annually. Lung cancer is the second most typical cancer diagnosis for both men and women, after breast cancer and prostate cancer (Wheless et al., 2013).

According to recent UK data, the average 5-year survival rate for breast cancer, or the percentage of patients still alive after their diagnosis, is around 80 (World Cancer Research Fund International, 2020). Some malignancies, like lung cancer, have a 5-year survival rate of less than 20%.

One-year survival rates

All stages at diagnosis combined

Netherlands data is for invasive breast cancer; Netherlands colorectal data is avg of colon (83) and rectum (88) Source: World Cancer Research Fund International • Created with Datawrapper

Five-year survival rates %

All stages at diagnosis combined

Netherlands data is for invasive breast cancer; Netherlands colorectal data is avg of colon (66) and rectum (67)

Source: World Cancer Research Fund • Created with Datawrapper

Fig 1. Cancer Survival Data (are still alive #year after diagnosis or start of treatment)

Source: (World Cancer Research Fund International, 2020)

According to Fig. 1, lung cancer has a low survival rate in comparison to other malignancies for both men and women. This has motivated academics to investigate in greater detail which factors are causally related to the factors suggested to cause lung cancer.

The Bayesian Network technique is a mathematical model that uses conditional probabilities to show the causal connection between random variables (variables that cannot be used to establish causality). (Imoto et al., 2005).

As a beginning point for creating a recommendation system for recognizing lung cancer, it is hoped that by using the Bayesian Network approach to data on lung cancer, it will be possible to identify factors that have a high likelihood of determining the causation of the variables that are owned.

Literature Review

1. Bayesian Network

According to (Hasniati et al., 2019), the Bayesian Network technique is a probabilistic graphical model that may depict variables and the causal relationships between them. Nodes that serve as variables or initial hypotheses of a statement can be drawn as graphs in a Bayesian network. According to (Noriega et al., 2019), the Bayesian Network employs a method based on Bayes' Theorem called conditional probability, which is indicated by interpreting the likelihood of a condition A.

The formula of Bayes' Theorem is i.e (Noriega et al., 2019):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Informations:

P(A|B) = posterior probability which is the probability that A occurs after B occurs.

 $P(A \cap B)$ = the probability events B and A occur simultaneously

P(B|A) = Likelihood, where the probability of B occurring after event A

P(A) = priors, the probability of event A

P(B) = priors, the probability of event B

2. Conditional Probability

The Parent and Child scale nodes are the two conditions in the Bayesian Network's design. The available data scales are discrete ordinal, nominal, interval, or ratio. (Laitila & Virtanen, 2022).

For any pairing of parent nodes, CPT calculates the state of the immediate predecessors and the probability distribution of the child nodes, or descendants. A proper CPT typically requires expert elicitation because the scale of measurement for ranking nodes, such as "low, medium, and high," frequently changes. Due to factors like cognitive tiredness or a lack of time, it is frequently challenging for the expert to assess all relevant variables because a single CPT can have dozens or even hundreds of components.

The formula for Conditional Probability is as follows (Rohmer, 2020):

$$\theta_{ijk} = P(X_i = k | pa(X_i) = j)$$

Informations:

 X_i = parents node

 $i = 1, \dots, n$

 $j = 1, \dots, q_i$

 $k=1,\dots,r_i$

Methodology

1. Dataset

The dataset utilized in this study is annual updated Lung Cancer data from Kaggle with the CC BY-NC-SA 4.0 License. The source of the information used is The information is gathered from the online lung cancer prediction system website.

2. Population & Sample

The general public and global community serve as the study's population, while the survey respondents who said they had lung cancer serve as the study's sample.

3. Flow Research

Fig 2. Flow Research

4. Variables

Table 1. Research Variables Variables **Data Scale** Nominal **Smoking Yellow Fingers** Nominal **Anxiety** Nominal **Peer Pressure** Nominal Nominal **Chronic Disease Fatigue** Nominal Allergy Nominal Wheezing Nominal **Alcohol Consuming** Nominal Coughing Nominal **Shortness Of Breath** Nominal **Swallowing Difficulty** Nominal **Chest Pain** Nominal **Lung Cancer Status** Nominal

5. Bayesian Network

Implementing a Bayesian Network involves the following steps:

- a. Construction of a Bayesian Network Structure;
- b. Definition of Parameters;
- c. Make a Conditional Probability Table

Result & Discussion

Fig 3. Networks Between Variables and/or Factor

From **Fig 3.** we can create our first hypothesis before we take a look more deep to probability, we can know if allergy and swallowing difficulty have causality to lung cancer, then smoking can make chest pain, anxiety, chronic disease, then alcohol consuming can make coughing, wheezing, chest pain, shortness of breath.

Also from Fig 3. we can know the journey someone indicate with lung cancer.

- 1. Smoking can make anxiety and then turn into swallowing difficulty and indicate to lung cancer
- 2. Alcohol consuming can make yellow finger, someone with yellow finger can be anxiety that makes swallowing difficulty and indicate with lung cancer
- 3. Allergy have direct causality to lung cancer (low indicate)

Beside that from Fig 1. We can know the journey someone indicate with chronic disease

- 1. Alcohol consuming can make yellow finger that will be indicate to chronic disease
- 2. Smoking have direct causality to chronic disease
- 3. Yellow finger have impact to peer preasure that will makes shortness of breath that makes coughing with the final indicate to chronic disease

Table 2. Connection Nodes From Bayesian Network

From	To
	Chest Pain
	Coughing
Alashal Canaunina	Fatigue
Alcohol Consuming	Shortness of Breath
	Wheezing
	Yellow Fingers
	Alcohol Consuming
Allergy	Chronic Disease
	Lung Cancer
	Coughing
Anxiety	Fatigue
	Swallowing Difficulty
Coughing	Chronic Disease
Coughing	Wheezing
Estimo	Peer Pressure
Fatigue	Shortness of Breath
Peer Pressure	Shortness of Breath
Shortness of Breath	Coughing
	Anxiety
Smoking	Chest Pain
	Chronic Disease
Swallowing Difficulty	Lung Cancer
	Peer Pressure
	Anxiety
Yellow Fingers	Chronic Disease
	Peer Pressure

Based on **Table 2** it can be seen that most of the causes of physical or psychological illness come from Alcohol Consuming, Smoking and Yellow Fingers. Where, if a congenital disease (Allergy) places the cause also Alcohol Consuming.

Table 3. Parent and Child Node

Root	Parent	Child	
Smoking		Anxiety	
	(none)	Chronic Disease	
		Chest Pain	
Yellow Finger	Alcohol Consuming	Anxiety	
		Peer Pressure	
		Chronic Disease	
Anxiety	Smoking	Fatigue	
	Yellow Fingers	Coughing	
	(none)	Swallowing Difficulty	
Peer Pressure	Yellow Fingers		
	Fatigue	Shortness of Breath	
	Swallowing Difficulty	_	
Chronic Disease	Smoking	_	
	Yellow Fingers		
	Allergy	(none)	
	Coughing		
Fatigue	Anxiety	Peer Pressure	
	Alcohol Consuming	Shortness of Breath	
Allergy		Chronic Disease	
	(none)	Alcohol Consuming	
		Lung Cancer	

Based on **Table 3** it can be seen that the parent nodes are Smoking and Allergy because these 2 root variables do not have parents. In addition, it is also known that smoking can cause anxiety, chronic disease, and chest pain. Then, Yellow Finger can cause Anxiety, Peer Pressure, and Chronic Disease. Meanwhile, Anxiety can cause Fatigue, Coughing, and Swallowing Difficulty where Anxiety can be caused by Smoking and Yellow Fingers. Then Peer Pressure can cause Shortness of Breath where Peer Pressure is caused by Yellow Fingers, Fatigue, and Swallowing Difficulty. Then in Chronic Disease it can be caused by Smoking, Yellow Fingers, Allergy, and Coughing. Furthermore, fatigue can cause Peer Pressure (this is due to a lack of desire to do the activities you once enjoyed) and Shortness of Breath where Fatigue can be caused due to Anxiety and Alcohol Consuming. Finally, Allergy can cause Chronic Disease, Alcohol Consuming, and Lung Cancer.

Table 4. Conditional Probability Tables (CPTs) of Smoking in General

Root	Conditional Probability	
	Yes	No
Smoking	44%	56%

Based on **Table 4** it can be seen that from the data used the Lung Cancer Dataset CC BY-NC-SA 4.0 the potential for patients who do not smoke is greater (56%) than those who smoke.

Table 5. Conditional Probability Tables (CPTs) of Yellow Fingers with Alcohol Consuming

Yellow	Alcohol Consuming	
Fingers	Yes	No
Yes	27%	56%
No	73%	44%

Based on **Table 5** it can be seen that those who do not have Yellow Fingers are not due to Alcohol Consuming where this is marked with a probability of 73%.

Table 6. Conditional Probability Tables (CPTs) of Yellow Fingers with Alcohol Consuming and Anxiety

Yellow Fingers (Yes)		
	Smoking	
Anxiety	Yes	No
Yes	45%	10%
No	55%	90%

Based on **Table 6** it can be seen that Yellow Fingers disease is not affected by Anxiety or Smoking which is characterized by a probability value of 90%

Table 7. Conditional Probability Tables (CPTs) of Fatigue, Swallowing Difficulty, Peer Pressure and Yellow Fingers

una i chov	I mgcis		
Fatigue (Yes), Difficulty		ng	
•	,	Yellow Fingers	
Peer Pressure	Yes	No	
Yes	31%	13%	
No	69%	87%	
Fatigue (No), Swallow	ing Difficul	ty (No)	
Peer Pressure	Yellow Fingers		
Peer Pressure	Yes	No	
Yes	56%	74%	

Based on **Table 7** it can be seen that when patients have Fatigue and Swallowing Difficulity they do not experience Peer Pressure and Yellow Fingers with a probability value of 87%. Meanwhile, when the patient does not suffer from Fatigue and Swallowing Difficulity, they experience Peer Pressure and do not experience Yellow Fingers, which has a probability value of 74%.

44%

26%

No

Table 8. Conditional Probability Tables (CPTs) of Yellow Fingers, Allergy, Coughing, Chronic Disease, and Smoking

Disease, and		
Yellow Fingers (No), A (No		Cougining
Chuania Diagona	Smoking	
Chronic Disease	Yes	No
Yes	25%	63%
No	75%	36%
Yellow Fingers (Y Coughi		(No),
Character D'	Smoking	
Chronic Disease	Yes	No
Yes	46%	25%
No	54%	75%
Yellow Fingers (N Coughi	ng (No)	
Chronic Disease	Smo	king
	Yes	No
Yes	29%	29%
No	71%	71%
Yellow Fingers (Yo Coughi	ng (No)	
Chronic Disease		king
V.a.	Yes	No
Yes	75%	58%
No	25%	42%
Yellow Fingers (No), A		Coughing
	Smoking	
Chronic Discosco		
Chronic Disease	Yes	No
Chronic Disease Yes	Yes 64%	No 100%
Yes	64% 36% (es), Allergy	100%
Yes No Yellow Fingers (Y Coughin	64% 36% (es), Allergy ag (Yes)	100%
Yes No Yellow Fingers (Y	64% 36% (es), Allergy ag (Yes)	100% 0%

No	36%	0%
Yellow Fingers (N		(Yes),
Cl. ' D'	Smo	king
Chronic Disease	Yes	No
Yes	0%	80%
No	100%	20%
Yellow Fingers (Y Coughi		(Yes),
Chuania Diagga	Smoking	
Chronic Disease		
Cili Olic Disease	Yes	No
Yes	Yes 32%	No 31%

Based on **Table 8** it can be seen that:

- a. When the patient does not have Yellow Fingers, Allergy and Coughing, then the patient does not have Chronic Disease but is a Smoker with a probability of 75%.
- b. When the patient has Yellow Fingers, does not have Allergy and Coughing, the patient does not have Chronic Disease and the patient does not smoke with a probability of 75%.
- c. When a patient does not have Yellow Fingers and Coughing but has an Allergy, there is a possibility of 2, the patient does not have Chronic Disease and/or a Smoking-Non Smoking Patient with a probability of 71%.
- d. When a patient has Yellow Fingers and Allergy but not Coughing, then the patient has Chronic Disease and is a Smoking patient with a probability value of 75%.
- e. When the patient does not have Yellow Fingers, Allergy but Coughing, the patient has Chronic Disease and does not smoke has a probability value of 100%.
- f. When a patient has Yellow Fingers and Coughing, but does not have Allergies, the patient has Chronic Disease and Smokers have a probability value of 95%
- g. When the patient does not have Yellow Fingers, but suffers from Allergy and Coughing, then he has Chronic Disease and is a non-smoker with a probability value of 80%. While not experiencing Chronic Disease but smokers have a 100% probability value.
- h. While patients who have all of them, the possibility of patients not experiencing Chronic Disease and smokers is 68% while those who do not smoke are 69%.

Table 9. Conditional Probability Tables (CPTs) of Alcohol Consuming, Fatigue and Anxiety

Fatigue	Anz	Anxiety	
	Yes	No	
Yes	25%	21%	
No	75%	79%	

Alcohol Consuming (Yes)		
Estima	Anx	riety
Fatigue	Yes	No
Yes	23%	64%
No	77%	35%

Based on **Table 9** it can be seen that patients who are not Alcohol Consuming and not Fatigue are likely to not experience Anxiety with a possible value of 79%, this is 4% greater than those experiencing Anxiety. Whereas in patients who are Alcohol Consuming without suffering from Fatigue, the possibility of patients experiencing Anxiety is 77%.

Table 10. Conditional Probability Tables (CPTs) of Coughing, Wheezing, Alcohol Consuming

dointy rables (Cr 15		5, ,,,	
Coughin	ıg (No)		
	Alc	ohol	
Wheezing	Cons	Consuming	
	Yes	No	
Yes	83%	44%	
No	15%	56%	
Coughin	g (Yes)		
	Alc	ohol	
Wheezing	Cons	Consuming	
	Yes	No	
Yes	31%	26%	
No	69%	73%	

Based on **Table 10** it can be seen that patients who do not have Coughing and experience Wheezing and Alcohol Consuming have a probability value of 83%. Whereas patients who have Coughing without experiencing Wheezing and Alcohol Consuming are 73%, this is 4% greater than those who do not experience Wheezing but are Alcohol Consuming.

Table 11. Conditional Probability Tables (CPTs) of Alcohol Consuming, Shortness of Breath, Coughing and Anxiety

id Anxiety		
Shortness of B	reath (No)	
Anx	Anxiety	
Yes	No	
34%	84%	
66%	16%	
Shortness of Br	reath (Yes)	
Anxiety		
Yes	No	
	Anx Yes 34% 66% Shortness of Br Anx	

Yes	5%	27%
No	95%	72%

Based on **Table 11** it can be seen that patients who are Alcohol Consuming and do not suffer from Shortness of Breath experience Coughing and not Anxiety have a probability value of 84%. Whereas patients who are Alcohol Consuming and suffer from Shortness of Breath do not experience Coughing but experience Anxiety with a probability value of 95%.

Table 12. Conditional Probability Tables (CPTs) of Anxiety and Swallowing Difficulty

Swallowing	Anxiety	
Difficulty	Yes	No
Yes	77%	29%
No	22%	71%

Based on **Table 12** it can be seen that patients who experience Swallowing Difficulty and Anxiety have a probability value of 77%.

Table 13. Conditional Probability Tables (CPTs) of Alcohol Consuming, Chest Pain, and

Alcohol Consuming (No)			
hest Pain	Smo	Smoking	
	Yes	No	
Yes	51%	70%	
No	48%	30%	

Alcohol Consuming (Yes)		
Chest Pain	Smoking	
	Yes	No
Yes	51%	12%
No	49%	88%

Based on **Table 13** it can be seen that patients who are not Alcohol Consuming but experience Chest Pain and are not smokers have a probability value of 70%.

Table 14. Conditional Probability Tables (CPTs) of Swallowing Difficulty, Chest Pain and

Swallowing Difficulty (No)		
Chest Pain	Sm	oking
	Yes	No
Yes	43%	5%
No	57%	94%

Swallowing Difficulty (Yes)			
Chest Pain	Sm	Smoking	
Cnest Pain	Yes	No	
Yes	7%	0%	
No	93%	100%	

Based on **Table 14** it can be seen that patients who do not suffer from Swallowing Difficulty and do not experience Chest Pain or are non-smokers have a probability value of 94%. Whereas patients who suffer from Swallowing Difficulty without experiencing Chest Pain and patients who do not smoke have a probability value of 100% (7% greater than those who smoke).

Table 15. Conditional Probability Tables (CPTs) of Fatigue, Alcohol Consuming, Shortness of Breath and Peer Pressure.

Breath and Peer	Pressure	2 .	
Fatigue (No), Alcohol	Consumin	g (No)	
Shortness of Breath	Peer Pressure		
	Yes	No	
Yes	41%	86%	
No	59%	14%	
Fatigue (Yes), Alcohol	Consumin	ng (No)	
Cl 4 CD 41	Peer Pressure		
Shortness of Breath	Yes	No	
Yes	18%	15%	
No	82%	85%	
Fatigue (No), Alcohol (Consumin	g (Yes)	
Cl 4 CD 41	Peer Pressure		
Shortness of Breath	Yes	No	
Yes	59%	80%	
No	41%	19%	
Fatigue (Yes), Alcohol	Consumin	g (Yes)	
	ressure		
Shortness of Breath	Yes	No	
Yes	3%	58%	
No	97%	42%	

Based on **Table 15** it can be seen that patients who do not suffer from Fatigue and do not experience Alcohol Consuming experience Shortness of Breath and do not experience Peer Pressure have a probability value of 86%. Meanwhile, patients who suffer from Fatigue without Alcohol Consuming do not experience Shortness of Breath and do not experience Peer Pressure,

which has a probability value of 85% (3% greater than those experiencing Peer Pressure). Meanwhile, patients who suffer from Fatigue and Alcohol Consuming do not experience Shortness of Breath but experience Peer Pressure, which has a probability value of 97%.

Table 16. Conditional Probability Tables (CPTs) of Swallowing Difficulty and Anxiety

Swallowing	Anxiety	
Difficulty -	Yes	No
Yes	77%	29%
No	22%	71%

Based on **Table 16** it can be seen that patients who experience Anxiety and Swallowing Difficulty have a possible value of 77%.

Conclution

The Bayesian Networks approach led to the following finding (high probability of causality in the research variables):

- a. Patients who do not smoke are greater (56%) than those who smoke
- b. Yellow Fingers Disease is not affected by Anxiety or Smoking which is characterized by a probability value of 90%
- c. Patients with Fatigue and Swallowing Difficulity do not experience Peer Pressure and Yellow Fingers with a probability value of 87%
- d. The patient does not have Yellow Fingers, Allergy but Coughing, so the patient has Chronic Disease and does not smoke has a probability value of 100%.
- e. Patients who are Alcohol Consuming and suffer from Shortness of Breath do not experience Coughing but experience Anxiety with a probability value of 95%
- f. Patients who suffer from Swallowing Difficulty without experiencing Chest Pain and patients who do not smoke have a 100% probability, while those who smoke are 93%
- g. Patients who do not suffer from Fatigue and do not experience Alcohol Consuming experience Shortness of Breath and do not experience Peer Pressure have a probability value of 86%
- h. Patients who suffer from Fatigue and Alcohol Consuming do not experience Shortness of Breath but experience Peer Pressure has a probability value of 97%
- i. Anxiety and Swallowing Difficulty has a probability value of 77%.

References

- Hasniati, H., Arianti, A., & Philip, W. (2019). Penerapan Metode Bayesian Network Model Pada Sistem Diagnosa Penyakit Sesak Nafas Bayi. *IKRA-ITH INFORMATIKA: Jurnal Komputer Dan Informatika*, 3(2), 19–26. https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/314
- Imoto, S., Matsuno, H., & Miyano, S. (2005). Gene Networks: Estimation, Modeling, and Simulation. *Computational Systems Biology*, 2000, 205–228. https://doi.org/10.1016/B978-012088786-6/50030-7
- Laitila, P., & Virtanen, K. (2022). Advancing construction of conditional probability tables of Bayesian networks with ranked nodes method. *International Journal of General Systems*, 51(8), 758–790. https://doi.org/10.1080/03081079.2022.2086541
- Noriega, A. R., Ramírez, R. J., Tapia, J. J., Castillo, V. H., & Jimenez, S. (2019). Construction of conditional probability tables of Bayesian networks using ontologies and Wikipedia. *Computacion y Sistemas*, 23(4), 1275–1289. https://doi.org/10.13053/CyS-23-4-2705
- Rohmer, J. (2020). Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. *Engineering Applications of Artificial Intelligence*, 88. https://doi.org/10.1016/j.engappai.2019.103384
- Wheless, L., Brashears, J., & Alberg, A. J. (2013). Epidemiology of lung cancer. *Lung Cancer Imaging*, 1–15. https://doi.org/10.1007/978-1-60761-620-7_1
- World Cancer Research Fund International. (2020). *Cancer Survival Statistics*. https://www.wcrf.org/Cancer-Trends/Cancer-Survival-Statistics/