formal logic

形式逻辑

organon

工具论 逻辑学既非理论知识, 也非实际知识, 而是知识的工具

conceptproperty / attribute

概念 性质 / 属性 矛盾 自治

substantial definition genus plus species difference

实质定义 用属加种差的方法来定义

nominal definition

语词定义

proposition

命题 具有真假意义的陈述语句

回题 具有具限息义的陈处语句 deductive inference

proof

演绎推理 由一般到特殊(如三段论) <mark>归纳推理</mark> 由特殊到一般 推理的全过程叫作 证明 axiom / postulation

inductive inference

公理 / 公设 不证自明, 无法推导, 推导的起点

axiomatic system

公理系统 由若干公理经演绎推理形成的自洽的命题体系(公理化)

theorem / corollary

lemma

定理/推论 由公理及其它已知为真的命题经逻辑推理证明为真的重要命题 <mark>引理</mark>中间命题 law/principle/rule

定律 / 原理 / 规则 观察总结出来的客观规律, 由长期实践的事实所证明, 在人类认知范围内普遍适用conjecture / hypothesis

<u>猜想 / 假说</u> 可能为真但未被证明的命题 (当它被证明为真后便是定理) paradox

悖论 命题成立则推出其否定也成立 $p \Leftrightarrow \neg p$

sophistry

诡辩 循环论证, 机械类比, 以偏概全, 偷换论题, 偷换概念, 模棱两可 fallacy

谬误 形式谬误: 推理不正确, 非形式谬误: 语言歧义, 不合事实 counter example

 $\overline{\mathbf{D}}$ 命题 $A \rightarrow B$ 中满足条件 A 但不满足结论 B 的实例

数理逻辑

个体变元 x 人 (类) 个体常元 a 我 (特定个体)

一目谓词 x 是数学家 Math(x) 二目谓词 x,y 是兄弟 Bro(x,y)

谓词逻辑 否定 $\neg M(x): x$ 不是数学家, \blacksquare $\mathrm{Math}(x) \land \mathrm{Phys}(x): x$ 是数学家和物理学家

或 $Boy(x) \lor Girl(x) : x$ 是男孩或女孩 **条件** $Phys(x) \rightarrow Math(x) : 若 x 物理学家, 则 x 是数学家$

全称量词 $\forall x(A(x))$: 所有 x 有属性 A, **存在量词** $\exists x(A(x))$: 有些 x 有属性 A first order language

一阶语言 一阶是指量词作用的变元是不可再分割的基本对象 syllogism

所有人都有思想, 我是人, 所以我有思想: $\forall x(\operatorname{Man}(x) \to \operatorname{Think}(x)) \wedge \operatorname{Man}(a) \to \operatorname{Think}(x)$

定理 逆否命题有相同真假性

链接〈信息 - 逻辑运算〉

1

理论物理

相关总结于 (一辩证法作业)《关于物理学的几点思考》

基本假设 只能由其推出的实验现象来验证

物理学是探讨物质的结构和运动基本规律的学科 (更着重于物质世界普遍而基本的规律) science technology

科学认识世界,解决理论问题 技术 改造世界,解决实践问题 modern physics

|现代物理学| 是一门理论和实验高度结合的精确科学

- ①提出问题(新现象或新推导) ②推测答案(建立唯象模型,定性或定量解释) ③理论预言(可证伪)
- (4)实验检验(5)修改理论(确定成立范围)

falsify

新的理论必须提出能够为实验所[证伪]的预言 (不说证实是因为找不到反例不是有效证明)理论不唯一,一个理论包含的假设越少,越简洁,与之符合的事实越多,越普遍,理论就越好

费曼做理论 5 步: ①靠直觉猜②验证已知例子③应用到未知问题,与实验比较④有理有据地证明 (I know much more than I can prove.)

大胆近似, 小心求证

(一 冷原子) 如果发现理论不自治:

- ① 继续推看能不能推出对的结果 (能的话就留以后慢慢修正?) ② 搞清楚理论的适用范围 完整的 \hat{H} 不会解:
- ① 猜出 $\hat{H}_{meanfield}$ (物理合理, 可解, 易解) 可以留一些待定参数
- ② 解出平均场的基态波函数 ψ_{mf}
- (3) ψ_{mf} 代回原 \hat{H} 得能量关于待定参数的函数
- 4) 变分法极小该能量定参数
- ⑤ 代回 ψ_{mf} 求基态能量, 比较不同的猜测谁的基态能量最低, 以及跟实验比较等 (第一原理虽说是严格解, 但它用到的近似也还是猜出来的)

റ

order of magnitudes Date 正确度〉性/精确度 系统误差 恒定或变化方式可预知,由测量条件确定 精密度 随机误差单个有随机性,多次测量服从统计规律 桥准设差 6 有思失测 标准编第5 粗大误差 测量记录、计算失误 A类不确定度 独生测量 χ_{hk} , $u_{a}(z) = \sqrt{\frac{\sum(\chi_{i}-\chi)^{2}}{k(R+1)}} = \sqrt{\frac{\sum-\chi^{2}}{k-1}}$ B类不确定度 $u_b(x) = \frac{\triangle b}{K}$ 包含因于正态(±35) K=3 ,均匀 $K=\sqrt{3}$, 学生 $K=t_{ra}(n)$ 不确定度,直接 $u(x) = \int u_a^2(x) + u_b^2(x)$ 省差合成 间接 x_{inn} 独立直接, $F=f(x_{inn})$, 则 $u(F)=\sqrt{\sum \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)}$ $\delta(F)=\sum \left(\frac{\partial f}{\partial x_i}\right)\delta(x_i)$ $F = C \text{ Tr} x_i^{Pi}$ 可用相对不确定度 [对数合成] $\frac{u(F)}{E} = \left[\sum \left[\frac{P_i \cdot u(x_i)}{x_i} \right]^2 \right]$ 仪器误差(限) 游标卡尺:按分度值 分光仪: [钢尺, 螺旋测微针, 干涉仪: 最小分度之 指针式电表:△m=量程Nm·等级 am % (示数 > ≥量程) 数字式电表: △α=等級a名·示数Ux +绝对误差系数3名·满度值Um(半位最高值仅Q)) 或 △α= a% Ux + n字·最小量化单位 直流电位差片:Aq = a%(Ux+1/b) , Uo分最大量程对10的整数幂 直流电桥: Δα=a%(Rx+%) 标准电阻: Rx= Rzo[1+α(T-20°c)+β(T-20°c)²] 电阻箱: $\Delta \alpha = \sum a_i \% \cdot R_i + R_o$ (一般 档位越小, a 越差) 有效数字可靠数字:直接读出的,可疑数字:最后一位估读 486入5982 加城取有效数字末位最高者,乘降取有效数字最少者 函数运算:在自变量有效数字末取1个单位, Dy=以1xxx DX的第一个非零位是可疑数字 祖大, 次数>10 粒低达惟则 12;-元1>35 别降 收数 <10 七枪验准则 |xi-又| >k(n,p)·s ,k为七枪多全导数 ◎重复往 ②分名(单一)变量 ③精石角柱 AVERAGE DEVSQ SÉ LINEST @1/2 ctr/+shife + Enter 一元线性回归 Y=a+bx 计算器 shift node 3 = (陽至) mode 31 (线119) x, y m+ (約效) shift 2(院 a3) =

① 量纲相同才可相等, 相加减 ② 指, 对, 三角函数宗量应为量纲 1

	物理类			
交通流量 9= VP 线性	模型 V= Vm (1- fm) 高($P \rightarrow V = V_m \ln \left(\frac{P_m}{P} \right)$	低P -> V= Vm P-Pm	X3+115+25
扩放模型 9=-k	VC €C(x,y,z,0)=	Q8(x, y, 2) 4 Af	(QC(x,y, 8, +) = Q (4x, +t)3/2	e 4k+ (教育
	, ta		2 14 3	
dimensional homogeneity 量纲齐次性物理会:	式的等号两端必有相同	如 基本量的	LMTI	
Buckingham 元 theorem 白金汉兀定理 物	浬量 9/~m 的量纲 [2j]=	TXi XIN	为基本量纲、n≤m	
			为足物理规律TT2; =常卷	久兀
解	[A][Y]=[0] 会得到 m-r个	基解,则要求的*	见律可含(m-r)个相互独互的无	量纲量
almensional analysis 量级分析 先X馅性	医埃贝合理 发生解委人品	的信息会会系统	对三角 经粉取出 产能为人	
nondimensionalization = 2 无量纲化 = 2	characteristic scale 特征尺度。如9有	相同量纲,构造不	··唯一,要接近单位尺度	
Likew, Be				
机硬分析白铂分效电差	力于(尤化控制) 交箱(生态、气	多经决) 加拉	分析異箱	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	× × × × ×	/ 11 36 113	

基本单位

(- 物理单位表)

时间计量

铯原子钟能精确到 $\times 10^{-13}$ s, 氢微波激射器能保持数小时内精确到 $\times 10^{-15}$ s (目前, 时间是测的最准的一个基本量)

长度计量

规定真空中光速为 299792458 m/s, 从而可测时间得长度, 或测频率得波长

数量级估计 (学物理要心中有"数") 一年有 $1 a \approx 3.1 \times 10^7 \text{ s}$ 地球距太阳约 1.5 亿公里(8.3 光分钟) $1 \text{ AU} \approx 1.5 \times 10^{11} \text{ m}$ 冥王星与太阳的距离大约是 39 AU, 木星约是 5.2 AU $1 \text{ l.y.} \approx 9.5 \times 10^{15} \text{ m}$, $1 \text{ pc} = \frac{1 \text{ AU}}{100} \approx 3.3 \text{ l.y.}$

-