Automatické řízení Semestrální práce

Miroslav Bulka, Jan Cibulka

81.121.1025

AUTOMATICKÉ ŘÍZENÍ- ZADÁNÍ REFERÁTU

I. Model neurčitosti

- 1. Při konstantním přítoku $Q_{10} = 1.5 \cdot 10^{-4} \text{m}^3 \cdot \text{s}^{-1}$ vypočtěte potřebné nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 tak, aby výšky hladin v nádobách při ustáleném stavu byly $H_{10} = 0$, g m a $H_{20} = 0$, g m (tzv. pracovní bod). Hodnoty známých parametrů: $S = 25 \cdot 10^{-4} \text{m}^2$ (plocha dna nádob), $c_p = c_2 = 0.6$.
- 2. Určete linearizovaný stavový model v daném pracovním bodě a v pracovním bodě, který by odpovídal 20% zvýšení přítoku Q_{10} .
 - (A) Nastavení přepouštěcích ventilů S_p a S_2 zůstane stejné, se zvyšujícím se přítokem Q_1 se mění výšky hladin H_1 a H_2 .
 - (B) Spolu se zvyšujícím se přítokem Q_1 se mění nastavení ventilů S_p a S_2 tak, aby výška hladin zůstala konstantní, tedy $H_1(t) = H_{10}$, $H_2(t) = H_{20}$.
- 3. Určete přenos systému $Q_1(t) \to H_2(t)$ v závislosti na výšce hladiny H_1 a H_2 (případ 2A) či nastavení ventilu S_p, S_2 (případ 2B). Znázorněte pro oba případy v komplexní rovině neurčitost přenosu za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a pracovním bodem při 20 % zvýšeném přítoku.
 - (a) Určete numericky skutečnou neurčitost danou intervalem pro výšky hladin H_1 , H_2 (resp. S_p , S_2) a přítok Q_1 .
 - (b) Definujte model neurčitosti pomocí vhodně zvoleného modelu perturbací, nominálního modelu P_0 a váhové funkce W(s) tak, aby velikost neurčitosti byla minimální a přesto pokrývala skutečnou neurčitost získanou v bodě (b).

Pro zobrazení neurčitosti použijte 10 frekvencí $\omega_1, \ldots, \omega_{10}$, které pokryjí fázové zpoždění $(0, \pi)$ fázové frekvenční charakteristiky procesu.

4. Porovnejte velikosti obou neurčitostí (2A a 2B).

II. Návrh regulátoru

Dále předpokládejte, že přítok $Q_1(t)$ je realizován vodním čerpadlem, které je poháněno stejnosměrným motorem. Chování čerpadla budeme pro jednoduchost aproximovat systémem prvního řádu s časovou konstantou T=0.5s a statickým zesílením $K_s=Q_{10}$. Dále uvažujme PI regulátor, který řídí napětí na kotvě motoru čerpadla s cílem řídit výšku hladiny H_2 . Rovněž předpokládejme, že všechny externí signály regulační smyčky jsou rozumně malé, takže systém není příliš vychýlen ze svého pracovního bodu a může být považován za lineární.

- 1. Navrhněte parametry PI regulátoru s přenosem $C(s) = K(1 + \frac{1}{T_i s})$ tak, aby byly splňeny následující návrhové požadavky pro všechny systémy z modelu neurčitosti získaného v bodě 3(b) pro 2A (mění se výška hladin), tedy pro libovolný pracovní bod, který se nachází mezi původním pracovním bodem a pracovním bodem při zvýšeném přítoku.
 - (a) Vnitřní stabilita uzavřené smyčky ověřte analyticky i graficky (Nyquistovo kritérium).
 - (b) Robustnost ve stabilitě maximální hodnota amplitudy citlivostní funkce $S(j\omega)$ je $M_S < 2$.
 - (c) Předpokládejte, že díky dalším nepřesnostem, šumům a nelinearitám je dostupná šířka pásma omezená na $\Omega_a=10$ [rad/s]. Útlum komplementární citlivostní funkce $T(\mathrm{j}\omega)$ na frekvenci Ω_a musí být alespoň -10 dB.
 - (d) Zajistěte, aby energie libovolného šumu měření n(t) nebyla zesílena více než 1.5 krát.
- 2. Předpokládejte, že měření, tedy senzor hladiny H_2 , je zatíženo harmonickým šumem n(t) s frekvencí 50Hz a výstup soustavy omezenou harmonickou poruchou d(t) s frekvencí 0.1Hz. Ověřte, zda žádný z těchto signálů není na výstupu systému (tedy $H_2(t)$) smyčkou s navrženým PI regulátorem zesílen.
- 3. Předpokládejte, že je systém v rovnovážném stavu a e(t) = 0. Na vstup řízené soustavy začne působit porucha d_i s omezenou energií $||d_i||_2 < 1$. Určet k jakému maximálnímu kolísání hladiny H_2 od požadovaného stavu může dojít.
- 4. Určete signály n(t) a d(t), kde $\|n(t)\|_{\infty} < 1$, $\|d(t)\|_{\infty} < 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu
 - (a) maximální hodnoty signálu,
 - (b) energie signálu.

Určete hodnoty těchto zesílení.

Poznámka: K řešení využijte libovolné prostředky Matlabu/Simulinku, Robust Control Toolbox, Symbolic Toolbox, webový applet "PID Control Laboratory".

Obsah

1	Řeš	ení - Model neurčitosti	5
	1.1	První úkol - výpočet nastavení ventilů	 5
	1.2	Druhý úkol - linearizace ve dvou pracovních bodech	 6
		1.2.1 Konstantní průtoky - mění se hladina	 6
		1.2.2 Konstantní hladina - mění se průtoky	 6
	1.3	Třetí úkol - určení přenosu systému	 8
		1.3.1 Určení numerické neurčitosti	 10
	1.4	Čtvrtý úkol - Porovnání velikostí neurčitostí	 12
2	Řeš	ení - Návrh regulátoru	13
	2.1	První úkol	 13
		2.1.1 Vnitřní stabilita uzavřené smyčky (Nquistovo kritérium)	 13
		2.1.2 Robustnost ve stabilitě	 13
		2.1.3 Podmínka útlumu komplementrání citlivostní funkce	 13
		2.1.4 Energie šumu omezená.	 13
	2.2	Druhý úkol	 13
	2.3	Třetí úkol	 13
	2.4	Čtvrtý úkol	 13

1 Řešení - Model neurčitosti

1.1 První úkol - výpočet nastavení ventilů

Máme konstantní přítok $Q_1 = Q_{10} = 1.5 \cdot 10^{-4} m^3 s^{-1}$, přičemž víme, že:

$$\begin{bmatrix} \frac{dV_1}{dt} \\ \frac{dV_2}{dt} \end{bmatrix} = \begin{bmatrix} Q_1 - Q_p \\ Q_p - Q_2 \end{bmatrix} = \begin{bmatrix} Q_1 - c_p S_p v_p \\ c_p S_p v_p - c_2 S_2 v_2 \end{bmatrix}. \tag{1}$$

Z Bernoulliho zákona pak odvodíme:

$$\begin{bmatrix} v_p \\ v_2 \end{bmatrix} = \begin{bmatrix} \sqrt{2g \cdot (H_1 - H_2)} \\ \sqrt{2g \cdot (H_2)} \end{bmatrix}. \tag{2}$$

Daný systém popisují diferenciální rovnice:

$$\begin{bmatrix} \frac{dH_1}{dt} \\ \frac{dH_2}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\frac{1}{S} \cdot Q_1 - \frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (H_1 - H_2)}}{\frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (H_1 - H_2)} - \frac{S_2 C_2}{S} \cdot \sqrt{2g \cdot H_2}} \end{bmatrix}. \tag{3}$$

Zavedením $x_1(t) = H_1(t); x_2(t) = H_2(t); u(t) = Q_1(t)$ získáme

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\frac{1}{S} \cdot u - \frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (x_1 - x_2)}}{\frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (x_1 - x_2)} - \frac{S_2 C_2}{S} \cdot \sqrt{2g \cdot x_2}} \end{bmatrix}. \tag{4}$$

Za předpokladu neměnících se hladin H_1 a H_2 budou obě derivace nulové. Položíme je tedy nulou a díky tomu získáme požadované nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 :

$$\begin{bmatrix} S_p \\ S_2 \end{bmatrix} = \begin{bmatrix} \frac{Q_{10}}{C_p \cdot \sqrt{2g(H_1 - H_2)}} \\ \frac{C_p S_p \sqrt{(H_1 - H_2)}}{C_2 \sqrt{H_2}} \end{bmatrix},$$
 (5)

kde po dosazení získáme:

$$\begin{bmatrix} S_p \\ S_2 \end{bmatrix} = \begin{bmatrix} 7.2864 \cdot 10^{-5} \\ 1.2620 \cdot 10^{-4} \end{bmatrix}. \tag{6}$$

1.2 Druhý úkol - linearizace ve dvou pracovních bodech

1.2.1 Konstantní průtoky - mění se hladina

Nejdříve si zavedeme značení:

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix}.$$
 (7)

Chování těchto stavových proměnných je popsáno rovnicí 4. My chceme získat linearizovaný stavový model, a to ve tvaru:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{8}$$

$$y\left(t\right) = Cx\left(t\right). \tag{9}$$

Pro systém popsaný rovnicí 4 budou parametry linearizovaného stavového modelu, provedemeli klasickou linearizaci, mít následující podobu:

$$A = \begin{bmatrix} -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} \\ \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} - \frac{C_2 S_{2g}}{S \sqrt{(2 \cdot g \cdot H_2)}} \end{bmatrix}.$$
 (10)

$$B = \begin{bmatrix} \frac{1}{S} \\ 0 \end{bmatrix}. \tag{11}$$

Parametry modelu pro konstantní přítok $Q_1 = Q_{10} = 1.5 \cdot 10^{-4} m^3 s^{-1}$:

$$A = \begin{bmatrix} -0.05 & 0.05 \\ 0.05 & -0.2 \end{bmatrix}; B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Parametry modelu pro zvýšený přítok $Q_{20}=Q_{10}\cdot 1.2=1.8\cdot 10^{-4}m^3s^{-1}$:

$$A = \begin{bmatrix} -0.0417 & 0.0417 \\ 0.0417 & -0.1667 \end{bmatrix}; B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

1.2.2 Konstantní hladina - mění se průtoky

V tomto případě budeme usilovat o to, aby se hladiny neměnily. Bude tedy platit:

$$\begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix} = \begin{bmatrix} H_{10} \\ H_{20} \end{bmatrix}. \tag{12}$$

Naopak budeme měnit nastavení ventilů. Takovéto nastavení jsme pro konstantní přítok Q_{10} již spočetli, viz výsledek 6. Aby byla výška hladin konstantní i při přítoku $1.2 \cdot Q_{10}$, budeme muset nastavení ventilů přepočítat pomocí vztahu 5, čímž získáme následující výsledné nastavení:

$$\begin{bmatrix} S_p \\ S_2 \end{bmatrix} = \begin{bmatrix} 8.7437 \cdot 10^{-5} \\ 1.5145 \cdot 10^{-4} \end{bmatrix}. \tag{13}$$

K získání linearizovaného stavového modelu v tomto pracovním bodě využijeme zavedeného vztahu 10. Jeho parametry budou vypadat následovně:

$$A = \begin{bmatrix} -0.06 & 0.06 \\ 0.06 & -0.24 \end{bmatrix}; B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

1.3 Třetí úkol - určení přenosu systému

Nyní nás zajímá přenos systému $Q_1(t) \to H_2(t)$. Je tedy zřejmé, že měříme pouze veličinu $H_2(t)$. Matici C stavového popisu

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{14}$$

$$y(t) = Cx(t) \tag{15}$$

budeme nyní uvažovat jako:

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
.

Přenos systému poté určíme ze stavové rovnice linearizovaného modelu pomocí známého vztahu:

$$P(s) = C \cdot (sI - A)^{-1} \cdot B. \tag{16}$$

V kapitolách 1.2.1 a 1.2.2 jsme získali tři různé stavové reprezentace pro různé situace, jako jsou různá nastavení ventilů a přítoků. Nejdříve spočteme přenosy pro systém popsaný v kapitole 1.2.1, tedy pro přítok Q_{10} ($P_1(s)$) a pro jeho zvýšenou variantu ($P_2(s)$):

$$P_1(s) = \frac{20}{s^2 + 0.25s + 0.0075} \tag{17}$$

$$P_2(s) = \frac{16.67}{s^2 + 0.2083s + 0.005208},\tag{18}$$

jejichž znázornění v komplexní rovině si můžeme prohlédnout na obrázku 1.

Obrázek 1: Nyquistova frekvenční charakteristika pro dané přenosy.

Pro získání přenosů pro systém popsaný v kapitole 1.2.2 budeme postupovat stejně a získáme znovu dva přenosy pro pro přítok $Q_{10}\ (P_{1}\left(s\right))$ a pro jeho zvýšenou variantu $(P_2(s))$:

$$P_{1}(s) = \frac{20}{s^{2} + 0.25s + 0.0075}$$

$$P_{2}(s) = \frac{24}{s^{2} + 0.3s + 0.0108},$$
(19)

$$P_2(s) = \frac{24}{s^2 + 0.3s + 0.0108},\tag{20}$$

jejichž znázornění v komplexní rovině si můžeme prohlédnout na obrázku 2.

Obrázek 2: Nyquistova frekvenční charakteristika pro dané přenosy.

1.3.1 Určení numerické neurčitosti

Nyní budeme uvažovat, že máme množinový model, ve kterém jsou všechny přenosy P, které vznikly z nominálního přenosu P_0 aditivní perturbací:

$$P = P_0 + W_a \Delta, \tag{21}$$

kde $\|\Delta\|_{\infty} < 1$ a $W_a\left(s\right)$ je pevně daná přenosová funkce. Tu můžeme vyjádřit následujícím způsobem:

$$W_a(s) = P_0(s) - P(s),$$
 (22)

kde za P(s) budeme dosazovat přenosy spočtené výše, tedy výsledky 17, 18, 19 a 20. Nejprve se tedy zabývejme přenosy týkající se varianty A, tedy přenosy $P_1(s)$ pro Q_{10} (viz 17) a $P_1(s)$ pro $1.2 \cdot Q_{10}$ (viz 18), které jsme spočetli výše. Dále předpokládáme, že pracovní bod se nachází libovolně mezi těmito dvěma pracovními body, lišící se v přítoku Q. Je zřejmé, že nominální model bude vhodné určit pro pracovní bod ležící zhruba uprostřed tohoto intervalu, tedy pro konstantní přítok $1.1 \cdot Q_{10}$. Při jeho určení budeme postupovat stejně jako během určování $P_1(s)$ a $P_2(s)$. Nominální přenos tedy bude mít tvar:

$$P_0(s) = \frac{18.18}{s^2 + 0.2273s + 0.006198}. (23)$$

Váhovou funkci pro námi zvolenou aditivní neurčitost spočteme ze vztahu 22:

$$Wa = \frac{1.818s^2 + 8.882 \cdot 10^{-16}s - 0.0124}{s^4 + 0.4773s^3 + 0.07052s^2 + 0.003254s + 4.649 \cdot 10^{-5}}.$$
 (24)

Zajímavé bude zejména grafické znázornění neurčitosti. To provedeme pro různé kombinace přenosových funkcí, které odpovídají systému za předpokladu různých velikostí konstantních přítoků, přičemž zavedeme omezení:

$$Q_{10} \le Q_1 \le 1.2 \cdot Q_{10},\tag{25}$$

z nichž jednomu bude odpovídat námi zvolení nominální model P_0 . Zobrazení k komplexní rovině je ke shlédnutí na obrázku 1.3.1.

S přenosy $P_1(s)$ a $P_2(s)$ týkajícími se varianty B (viz tvary přenosů 19 a 20) budeme pracovat stejně. V tomto případě bude mít nominální přenos tvar:

$$P_0(s) = \frac{22}{s^2 + 0.275s + 0.009075},\tag{26}$$

načež dále opět využijeme vztahu 22 k určení váhové funkce:

$$Wa = \frac{-2s^2 + 8.882 \cdot 10^{-16}s - 0.0165}{s^4 + 0.525s^3 + 0.08532s^2 + 0.004331s + 6.806 \cdot 10^{-5}}.$$
 (27)

Grafické znázornění provedeme rovněž stejně jako v předchozím bodě za respektování omezení 25. Znázornění je možno vidět na obrázku 1.3.1.

Na obrázcích 1.3.1 a 1.3.1 si všimněme, že je zde vykresleno několik zelených křivek pro přenosové funkce za předpokladu různých, na intervalu 25 vhodně rozmístěných, konstantních přítoků. Modrá křivka představuje náš nominální model P_0 . V případě aditivní perturbace se velikost neurčitosti rovná $|W_a|$, která určuje poloměr kružnic, které mají střed na křivce značící nominální přenos. na obrázcích jich vidíme hned několik, a to pro 10 vhodně zvolených frekvencí ω , které pokrývají fázové zpoždění $(0, 2\pi)$.

1.4 Čtvrtý úkol - Porovnání velikostí neurčitostí

Porovnání neurčitostí pro oba případy provedeme vykreslením příslušných Bodeho frekvenčních charakteristik, kde pozorujeme nepatrné rozdíly, viz obrázek 1.4.

2 Řešení - Návrh regulátoru

2.1 První úkol

Parametry PI regulatoru. Nejsem si jistej jestli tady jde o subukoly nebo jenom podminky pro jeden ukol.

- 2.1.1 Vnitřní stabilita uzavřené smyčky (Nquistovo kritérium)
- 2.1.2 Robustnost ve stabilitě
- 2.1.3 Podmínka útlumu komplementrání citlivostní funkce
- 2.1.4 Energie šumu omezená.

2.2 Druhý úkol

Harmonické poruchy.

2.3 Třetí úkol

Maximální kolísání hladiny.

2.4 Čtvrtý úkol

Určení hodnoty nějakých signálů.