VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF COMPUTER SCIENCE AND ENGINEERING

PROBABILITY AND STATISTICS

PROJECT

ANALYZING RELATIVE CPU PERFORMANCE FOR DIFFERENT MACHINES

Lecturer: Dr. Nguyễn Tiến Dũng

Class: CC01

Group: 3

Students: Lê Tuấn Hưng 2052508

Hồng Huy Mẫn 2052593

Mai Hữu Nghĩa 2052612

Đình Xuân Phú 2052650

Đỗ Hữu Thanh Thiện 2053453

Table of contents

1. Introduction	2
1.1 Purpose	2
1.2 What is relative performance?	2
1.3 THE RELATIVE PERFORMANCE PREDICTION MODEL	2
2. Data Interpretation	3
2.1 Data Description:	3
2.2 Import Data in RStudio	5
3. Analysis & Models	6
3.1. Histogram Plot	6
3.2. Box Plot	14
3.3. Pairs Plot	15
4. Statistical Methods	16
4.1 ANOVA Test	16
4.2 Tukey's Test	17
4.2.1 For CACH	17
4.2.2 For MAVG	20
4.2.3 For CHCAP	22
4.2.4 For PRP	24
4.3 Multiple Linear Regression	26
4.3.1 Calculating A ₀ , A ₁ , A ₂ and A ₃	26
5. Conclusion	27
6 References	28

1. Introduction

1.1 Purpose

There are several situations that we need to evaluating the performance of central processing units (CPUs), including computer system selection for both original acquisitions and upgrades, computer system configuration, and computer system design. In these context, analytical and approximate models are particularly useful to perform a benchmark.

Probably the most effective solution found tat date to the problem of CPU performance evaluation is the computation of *relative performance* data, which measure the performance of CPUs in terms of a base machine

Briefly, the methodology was to collect data on the characteristics and *relative performance* of a large number of CPUs. These data were then subjected to extensive statistical analysis in which those characteristics that significantly affect relative performance were identified and isolated, primarily by factor analysis; and correlation data were examined as the basis for selecting transformations that improved performance of the statistics. A linear prediction model was then developed, using stepwise multi-variate linear regression, and its predictive accuracy

evaluated.

1.2 What is relative performance?

Relative performance is measured by the performance of CPUs in terms of a base machine - the IBM 370/158 model 3, initialized at 45. Relative performance of other CPUs is calibrated with it on the basis of vendor claims, user experience, and information supplied by independent consultants; ideally, this information is based on extensive benchmarks.

1.3 THE RELATIVE PERFORMANCE PREDICTION MODEL

The linear model for relative performance prediction is as follows

$$SQRPERF = A_0 + A_1(MAVG) + A_2(CACH) + A_3(CHCAP)$$

Where

SQRPERF: square root of relative performance

MAVG: Average memory size, calculated by $(MMIN + MMAX)/2 * 10^{-3}$

CACH: Cache memory size, calculated by CACHE * 10^{-1}

CHCAP: Channel capacity = $[INT [\frac{CHMIN+CHMAX}{2} + 1] \times MCYT^{-1}]$

2. Data Interpretation

2.1 Data Description:

Our data set has 12 categories of data:

- Vendor name: The company supply the different models of CPU
- Model name: Name of the model of central processing unit (CPU)
- MCYT: Machine cycle time, unit: Nanoseconds (ns)
- MMIN: Minium main memory, unit: Kilobytes (KB)
- MMAX: Maximum main memory, unit: Kilobytes (KB)
- CACH: Cache memory size, which equals CACHE $\times 10^{-1}$, unit: 10 Kilobytes
- CACHE: Cache memory size, unit: Kilobytes (KB)
- CHMIN: Minimum number of I/O channels, unit: Channels
- CHMAX: Maximum number of I/O channels, unit: Channels
- PRP: Published relative performance
- SQRPERF: Square root of relative performance
- ERP: Estimated relative performance
- MAVG: Average memory size, which equals $(MMIN + MMAX)/2 \times 10^{-3}$
- CHCAP: Channel capacity, which equals CHAVG * SPEED * 10, unit: Channel executions per 10 nanoseconds

Table 2.1: CPU Specs Dataset

vendor name	model name	MCYT	MMIN	MMAX	CACH	CACHE	CHMIN	CHMAX	PRP	SQRPERF	ERP	MAVG	CHCAP
amd	470v/7	29	8000	32000	3.2	32	8	32	269	1.640.121.947	253	20	724.137.931
amd	470v/7a	29	8000	32000	3.2	32	8	32	220	1.483.239.697	253	20	724.137.931
amd	470v/7b	29	8000	32000	3.2	32	8	32	172	1.311.487.705	253	20	724.137.931
amd	470v/7c	29	8000	16000	3.2	32	8	16	132	1.148.912.529	132	12	4.482.758.621
amd	470v/b	26	8000	32000	6.4	64	8	32	318	178.325.545	290	20	8.076.923.077
amd	580-5840	23	16000	32000	6.4	64	16	32	367	1.915.724.406	381	24	1.086.956.522
amd	580-5850	23	16000	32000	6.4	64	16	32	489	2.211.334.439	381	24	1.086.956.522
amd	580-5860	23	16000	64000	6.4	64	16	32	636	2.521.904.043	749	40	1.086.956.522
amd	580-5880	23	32000	64000	12.8	128	32	64	1144	3.382.306.905	1238	48	2.130.434.783
bur	b1955	167	524	2000	8.0	8	4	15	19	4.358.898.944	23	1.262	628.742.515
bur	b2900	143	512	5000	0	0	7	32	28	5.291.502.622	29	2.756	1.433.566.434
bur	b2925	143	1000	2000	0	0	5	16	31	5.567.764.363	22	1.5	804.195.804
bur	b4955	110	5000	5000	14.2	142	8	64	120	1.095.445.115	124	5	3.363.636.364
bur	b5900	143	1500	6300	0	0	5	32	30	5.477.225.575	35	3.9	1.363.636.364
bur	b5920	143	3100	6200	0	0	5	20	33	5.744.562.647	39	4.65	944.055.944
bur	b6900	143	2300	6200	0	0	6	64	61	7.810.249.676	40	4.25	2.517.482.517
bur	b6925	110	3100	6200	0	0	6	64	76	8.717.797.887	45	4.65	3.272.727.273
c.r.d	68/10-80	320	128	6000	0	0	1	12	23	4.795.831.523	28	3.064	234.375
c.r.d	universe:2203t	320	512	2000	0.4	4	1	3	69	8.306.623.863	21	1.256	9.375
c.r.d	universe:68	320	256	6000	0	0	1	6	33	5.744.562.647	28	3.128	140.625
c.r.d	universe:68/05	320	256	3000	0.4	4	1	3	27	5.196.152.423	22	1.628	9.375
c.r.d	universe:68/137	320	512	5000	0.4	4	1	5	77	8.774.964.387	28	2.756	125
c.r.d	universe:68/37	320	256	5000	0.4	4	1	6	27	5.196.152.423	27	2.628	140.625
c.r.d	1636-1	50	1000	4000	8.0	8	3	5	26	5.099.019.514	30	2.5	1
c.r.d	1636-10	50	1000	8000	8.0	8	3	5	36	6	41	4.5	1
c.r.d	1641-1	50	2000	16000	8.0	8	3	5	40	632.455.532	74	9	1
c.r.d	1641-11	50	2000	16000	8.0	8	3	6	52	7.211.102.551	74	9	1.1
c.r.d	1651-1	50	2000	16000	8.0	8	3	6	60	7.745.966.692	74	9	1.1
cdc	cyber:170/750	25	1310	2620	13.1	131	12	24	274	1.655.294.536	102	1.965	7.6
cdc	cyber:170/760	25	1310	2620	13.1	131	12	24	368	1.918.332.609	102	1.965	7.6
cdc	cyber:170/815	50	2620	10480	3	30	12	24	32	5.656.854.249	74	6.55	3.8
cdc	cyber:170/825	50	2620	10480	3	30	12	24	63	7.937.253.933	74	6.55	3.8
cdc	cyber:170/835	56	5240	20970	3	30	12	24	106	1.029.563.014	138	13.105	3.392.857.143
cdc	cyber:170/845	64	5240	20970	3	30	12	24	208	144.222.051	136	13.105	296.875

cdc	omega:480-i	50	500	2000		8	1	4	20	4.472.135.955	23 1		0.7
cdc	omega:480-ii	50	1000	4000		8	1	5	29	5.385.164.807	29	2.5 (
dc.	omega:480-iii	50	2000	8000		8	1	5	71	8.426.149.773	44	5 (
dec	decsys:10:1091 4341-12	133 185	1000 2000	12000 16000	0.9 1.6	9 16	3	12 6	72 76	8.485.281.374 8.717.797.887	54 76	6.5 9	639.097.744 243.243.243
ibm ibm	4341-12	180	2000	16000	1.6	16	1	6	66	8.124.038.405	76		0.25
ibm	4341-9	225	1000	4000		2	3	6	24	4.898.979.486	26	2.5	244.444.444
ibm	4341-9	25	2000	12000		8	1	4	49	4.030.313.400	59	7	1.4
ibm	4361-5	25	2000	12000	1.6	16	3	5	66	8.124.038.405	65	7	2
ibm	4381-1	17	4000	16000		8	6	12	100	0.124.030.403	101	10	5.882.352.941
ibm	4381-2	17	4000	16000	3.2	32	6	12	133	1.153.256.259	116	10	5.882.352.941
ibm	8130-a	1500	768	10000	0.2	0	0	0	12	3.464.101.615	18	884	6.666.667
ibm	8130-b	1500	768	2000	0	0	0	0	18	4.242.640.687	20	1.384	6.666.667
ibm	8140	800	768	2000	0	0	0	0	20	4.472.135.955	20	1.384	125
ibm	4436	50	2000	4000	0	0	3	6	27	5.196.152.423	30	1.304	1.1
ibm	4443	50	2000	8000	-	8	3	6	45	6.708.203.932	44	5	1.1
ibm	4445	50	2000	8000		8	1	6	56	7.483.314.774	44	5	0.9
ibm	4446	50	2000	16000	2.4	24	1	6	70	8.366.600.265	82	9	0.9
ibm	4460	50	2000	16000	2.4	24	1	6	80	894.427.191	82		0.9
	as/30	100	1000	8000	0	0	2	6	16	4	37		0.5
nas	as/31	100	1000	8000	2.4	24	2	6	26	5.099.019.514	46		0.5
nas	as/32	100	1000	8000	2.4	24	3	6	32	5.656.854.249	46	4.5	0.55
nas	as/32 as/42	50	2000	16000	1.2	12	3	16	45	6.708.203.932	80	4.5	2.1
nas	as/42 as/43	50	2000	16000	2.4	24	6	16	45 54	7.348.469.228	88	9	2.1
nas	as/44	50	2000	16000	2.4	24	6	16	65	8.062.257.748	88	9	2.4
nas	as/44 as/3000	115	2000	8000	1.6	16	1	3	50	7.071.067.812	46	5	260.869.565
	as/3000-n	115	2000	4000		2	1	5	40	632.455.532	29	3	347.826.087
nas	as/5000-II	92	2000	8000	3.2	32	1	6	62	7.874.007.874	53	5	489.130.435
nas	as/5000 as/5000-e		2000	8000	3.2	32	1	6	60		53	5	
nas	as/5000-e as/5000-n	92 92	2000	8000		4	1	6	50	7.745.966.692 7.071.067.812	41	5	489.130.435 489.130.435
nas	as/6130	75	4000	16000	1.6	16	1	6	66		86		0.6
nas	as/6150	60	4000	16000	3.2	32	1	6	86	8.124.038.405 9.273.618.495	95		0.6
nas			2000	16000	6.4	64	5	8	74		107		1.25
nas	as/6620	60		16000	6.4		5	8	93	8.602.325.267			
nas	as/6630	60	4000			64				9.643.650.761	117		1.25
nas	as/6650	50	4000	16000	6.4	64	5	10	111	1.053.565.375	119	10	
nas	as/7000	72	4000	16000	6.4	64	8	16	143	1.195.826.074	120	10	1.805.555.556
nas	as/7000-n	72	2000	8000	1.6 3.2	16 32	6 8	8	105	1.024.695.077	48	5	1.111.111.111
nas	as/8040	40	8000	16000			8	16 24	214	1.462.873.884	126		3.25 4.25
nas	as/8050	40	8000	32000	6.4	64	0	24	277	1.664.331.698	266	20	4.25
hwell	dps:8/62	140	2000	32000		32	1	54	189	1.374.772.708	181	17	2.035.714.286
nas	as/8060	35	8000	32000	6.4	64	8	24	370	1.923.538.406	270	20	4.857.142.857
nas	as/9000-dpc	38	16000	32000		128	16	32	510	2.258.317.958	426	24	6.578.947.368
nas	as/9000-n	48	4000	24000	3.2	32	8	24	214	1.462.873.884	151	14	3.541.666.667
nas	as/9040	38	8000	32000		64	8	24	326	1.805.547.009	267	20	4.473.684.211
nas	as/9060	30	16000	32000		256	16	24	510	2.258.317.958	603	24	7
ncr	v8535:ii	112	1000	1000		0	1	4	8	2.828.427.125	19	1	3.125
ncr	v8545:ii	84	1000	2000		0	1	6	12	3.464.101.615	21	1.5	535.714.286
ncr	v8555:ii	56	1000	4000		0	1	6	17	4.123.105.626	26	2.5	803.571.429
ncr	v8565:ii	56	2000	6000		0	1	8	21	4.582.575.695	35	4	982.142.857
ncr	v8565:ii-e	56	2000	8000		0	1	8	24	4.898.979.486	41	5	982.142.857
ncr	v8575:ii	56	4000	8000		0	1	8	34	5.830.951.895	47	6	982.142.857
ncr	v8585:ii	56	4000	12000		0	1	8	42	6.480.740.698	62	8	982.142.857
ncr	v8595:ii	56	4000	16000		0	1	8	46	6.782.329.983	78	10	982.142.857
ncr	v8635	38	4000	8000		32	16	32	51	7.141.428.429	80	6	6.578.947.368
ncr	v8650	38	4000	8000		32	16	32	116	1.077.032.961	80	6	6.578.947.368
ncr	v8655	38	8000	16000		64	4	8	100	10	142	12	1.842.105.263
ncr	v8665	38	8000	24000		160	4	8	140	1.183.215.957	281	16	1.842.105.263
ncr	v8670	38	4000	16000		128	16	32	212	1.456.021.978	190	10	6.578.947.368
spe	1100/61-h1	116	2000	8000		32	5	28	70	8.366.600.265	56	5	150.862.069
spe	1100/81	50	2000	32000		24	6	26	114	1.067.707.825	182	17	3.4
spe	1100/82	50	2000	32000		48	26	52	208	144.222.051	227	17	8
spe	1100/83	50	2000	32000		112	52	104	307	1.752.141.547	341	17	15.8
spe	1100/84	50	4000	32000		112	52	104	397	1.992.485.885	360	18	15.8
spe	1100/93	30	8000	64000		96	12	176	915	3.024.896.692	919	36	3.166.666.667
spe	1100/94	30	8000	64000		128	12	176	1150	3.391.164.992	978	36	3.166.666.667
•	80/3	180	262	4000		0	12	3	112	3.464.101.615	24	2.131	166.666.667
spe sne	80/4	180	512	4000		0	1	3	14	3.741.657.387	24	2.131	166.666.667
spe	80/5		262	4000		0	1	3			24		
spe		180 180	512	4000		0	1	3	18 21	4.242.640.687 4.582.575.695	24	2.131	166.666.667 166.666.667
eno	80/6			4000				.5	21	4.002.075.095	24	4.450	100.000.001
spe spe	80/6 80/8	124	1000	8000		0	1	8	42	6.480.740.698	37	4.5	443.548.387

The dataset above includes the values in each variable relating to the CPU performance, including 12 vendors, its different types of models and 12 specifications of each CPU. We decided to use this data for the report, analyzing the variables and the relations to one another. Such as checking their similarities, differences, and finding a conclusion if the relative performance prediction equation can be applied to our data.

Table 2.2: Frequency table of table 2.1

Vendor name	Frequency
amd	9
bur	8
c.r.d	11
cdc	9
dec	6
dg	12
hp	7
hwell	20
ibm	37
nas	25
ner	13
spe	13
Total	170

2.2 Import Data in RStudio

After importing 'cpu_time.csv' into RStudio, we will receive information from the program about which column is the factor or the numerical data with the following code:

^	ïvendor.name	model.name	MCYT ÷	MMIN ÷	MMAX ⁼	CACH =	CACHE	CHMIN [©]	CHMAX	PRP =	SQRPERF	ERP =	MAVG	CHCAP
1	amd	470v/7	29	8000	32000	3.2	32	8	32	269	16.401219	253	20.000	7.24137931
2	amd	470v/7a	29	8000	32000	3.2	32	8	32	220	14.832397	253	20.000	7.24137931
3	amd	470v/7b	29	8000	32000	3.2	32	8	32	172	13.114877	253	20.000	7.24137931
4	amd	470v/7c	29	8000	16000	3.2	32	8	16	132	11.489125	132	12.000	4.48275862
5	amd	470v/b	26	8000	32000	6.4	64	8	32	318	17.832555	290	20.000	8.07692307
6	amd	580-5840	23	16000	32000	6.4	64	16	32	367	19.157244	381	24.000	10.86956522
7	amd	580-5850	23	16000	32000	6.4	64	16	32	489	22.113344	381	24.000	10.86956522
8	amd	580-5860	23	16000	64000	6.4	64	16	32	636	25.219040	749	40.000	10.86956522
9	amd	580-5880	23	32000	64000	12.8	128	32	64	1144	33.823069	1238	48.000	21.30434783
10	bur	b1955	167	524	2000	0.8	8	4	15	19	4.358899	23	1.262	0.62874251
11	bur	b2900	143	512	5000	0.0	0	7	32	28	5.291503	29	2.756	1.43356643
12	bur	b2925	143	1000	2000	0.0	0	5	16	31	5.567764	22	1.500	0.80419580
13	bur	b4955	110	5000	5000	14.2	142	8	64	120	10.954451	124	5.000	3.36363636
14	bur	b5900	143	1500	6300	0.0	0	5	32	30	5.477226	35	3.900	1.36363636
15	bur	b5920	143	3100	6200	0.0	0	5	20	33	5.744563	39	4.650	0.94405594
16	bur	b6900	143	2300	6200	0.0	0	6	64	61	7.810250	40	4.250	2.51748251
17	bur	b6925	110	3100	6200	0.0	0	6	64	76	8.717798	45	4.650	3.27272727
18	c.r.d	68/10-80	320	128	6000	0.0	0	1	12	23	4.795832	28	3.064	0.23437500
19	c.r.d	universe:2203t	320	512	2000	0.4	4	1	3	69	8.306624	21	1.256	0.09375000
20	c.r.d	universe:68	320	256	6000	0.0	0	1	6	33	5.744563	28	3.128	0.14062500

```
cpu <- read.csv("C:/Users/EmChes/OneDrive - wtpvf/Desktop/zdfg/cpu_time.csv")
cpu <- read.csv("C:/Users/EmChes/OneDrive - wtpvf/Desktop/zdfg/cpu_time.csv", header = TRUE, colClasses =
c("factor", "factor", "numeric", "numeric"
```

After running:

```
vendor.name
                    model.name
                                       MCYT
                                                          MMIN
                                                                            MMAX
                                                                                             CACH
                                         : 17.0
                                                                                               : 0.000
ibm
        :37
              100
                                 Min.
                                                    Min.
                                                                96
                                                                      Min.
                                                                                512
                                                                                        Min.
        :25
              1100/61-h1:
                                 1st Qu.:
                                            50.0
                                                    1st Qu.:
                                                              1000
                                                                      1st Qu.: 4000
                                                                                        1st Qu.: 0.000
nas
                             1
                                                    Median :
hwe11
        :20
              1100/81
                                 Median : 105.0
                                                              2000
                                                                      Median: 8000
                                                                                        Median : 0.800
                             1
              1100/82
ncr
        :13
                                 Mean
                                           212.4
                                                    Mean
                                                              3003
                                                                      Mean
                                                                              :12370
                                                                                        Mean
                                 3rd Qu.: 225.0
spe
        :13
              1100/83
                             1
                                                    3rd Qu.:
                                                              4000
                                                                      3rd Qu.:16000
                                                                                        3rd Ou.: 3.200
                                 Max.
dg
        :12
              1100/84
                                         :1500.0
                                                    Max.
                                                            :32000
                                                                      Max.
                                                                              :64000
                                                                                        Max.
                                                                                                :25.600
(Other):50
                          :164
              (Other)
    CACHE
                       CHMIN
                                          CHMAX
                                                              PRP
                                                                               SQRPERF
                                                                                                    FRP
min. : 0.00
1st Qu.: 0.00
                   Min. : 0.000
1st Qu.: 1.000
                                                                            Min. : 2.449
1st Qu.: 5.099
                                      Min.
                                             : 0.00
                                                         Min.
                                                                     6.0
                                                                                               Min.
                                                                                                         15.0
                                      1st Qu.:
                                                 5.00
                                                         1st Qu.:
                                                                    26.0
                                                                                               1st Qu.:
                                                                                                          28.0
                                                                    47.5
Median :
           8.00
                   Median : 3.000
                                      Median :
                                                 8.00
                                                         Median:
                                                                            Median : 6.891
                                                                                               Median:
                                                                                                          45.0
       : 23.54
                           : 4.894
                                                                  109.8
                                                                                    : 8.787
                                                                                                        104.8
Mean
                   Mean
                                      Mean
                                               18.18
                                                         Mean
                                                                            Mean
                                                                                               Mean
                                      3rd Qu.: 24.00
3rd Ou.: 32.00
                   3rd Ou.: 6.000
                                                         3rd Ou.: 105.8
                                                                            3rd Ou.:10.283
                                                                                               3rd Ou.: 101.8
       :256.00
                           :52.000
                                             :176.00
                                                                                   :33.912
                                      Max.
                                                        Max.
                                                                 :1150.0
                                                                            Max.
                                                                                               Max.
                                                                                                      :1238.0
Max.
                   Max.
     MAVG
                       CHCAP
       : 0.304
                   Min. : 0.00667
1st Qu.: 0.23659
Min.
1st Qu.: 2.532
                   Median : 0.82500
Median : 5.000
       : 7.686
                   Mean : 2.44560
3rd Qu.: 2.40000
Mean
3rd Qu.:10.000
Max.
        :48.000
                   Max.
                           :31.66667
```

Using this code gives us the overview of the figures in each variable which will be used later on when coming to analyzing and modeling our data.

3. Analysis & Models

3.1. Histogram Plot

A histogram is used to summarize discrete or continuous data, it helps provide us a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values. Simplifying it by giving us the figure summary of data distribution in each variable for this report. This can help us see the median, outliers or gaps in our data as well.

Histogram plot is used to describe the frequency of an outcome. Here, we will use histogram to study the pattern of certain variables in different CPUs with the following codes:

3.1.1. For Cache Memory in kilobytes

```
par(mfrow=c(2,3))
hist(cpu$CACH[cpu$vendor.name=="amd"], xlab="amdahl" ,main="")
hist(cpu$CACH[cpu$vendor.name=="bur"], xlab="burroughs" ,main="")
hist(cpu$CACH[cpu$vendor.name=="c.r.d"], xlab="c.r.d" ,main="")
hist(cpu$CACH[cpu$vendor.name=="cdc"], xlab="cdc" ,main="")
hist(cpu$CACH[cpu$vendor.name=="dec"], xlab="dec" ,main="")
hist(cpu$CACH[cpu$vendor.name=="dg"], xlab="dg" ,main="")
hist(cpu$CACH[cpu$vendor.name=="hwell"], xlab="honeywell" ,main="")
hist(cpu$CACH[cpu$vendor.name=="hwell"], xlab="honeywell" ,main="")
hist(cpu$CACH[cpu$vendor.name=="ibm"], xlab="ibm" ,main="")
hist(cpu$CACH[cpu$vendor.name=="ibm"], xlab="ibm" ,main="")
hist(cpu$CACH[cpu$vendor.name=="ncr"], xlab="ncr" ,main="")
hist(cpu$CACH[cpu$vendor.name=="ncr"], xlab="ncr" ,main="")
hist(cpu$CACH[cpu$vendor.name=="spe"], xlab="sperry" ,main="")
```

Result:

Figure 3.1.1: Cache Memory Frequency

3.1.2. For Average Memory Size

```
par(mfrow=c(2,3))
hist(cpu$MAVG[cpu$vendor.name=="amd"], xlab="amdahl" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="bur"], xlab="burroughs" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="c.r.d"], xlab="c.r.d" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="cdc"], xlab="cdc" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="dec"], xlab="dec" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="dg"], xlab="dg" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="hwell"], xlab="honeywell" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="hwell"], xlab="hp" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="ibm"], xlab="ibm" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="ibm"], xlab="nas" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="ncr"], xlab="nas" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="ncr"], xlab="ncr" ,main="")
hist(cpu$MAVG[cpu$vendor.name=="spe"], xlab="sperry" ,main="")
```

Result:

Figure 3.1.2: Average Memory Size Frequency

3.1.3. For Channel Capacity

```
par(mfrow=c(2,3))
hist(cpu$CHCAP[cpu$vendor.name=="amd"], xlab="amdahl" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="bur"], xlab="burroughs" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="c.r.d"], xlab="c.r.d" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="cdc"], xlab="cdc" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="dec"], xlab="dec" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="dg"], xlab="dg" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="hwell"], xlab="honeywell" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="hp"], xlab="hp" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="ibm"], xlab="ibm" ,main="")
hist(cpu$CHCAP[cpu$vendor.name=="nam"], xlab="nam" ,main="")
```

Result:

Figure 3.1.3: Channel Capacity Frequency

3.1.4. For Published Relative Performance

```
par(mfrow=c(2,3))
hist(cpu$PRP[cpu$vendor.name=="amd"], xlab="amdahl", main="")
hist(cpu$PRP[cpu$vendor.name=="bur"], xlab="burroughs", main="")
hist(cpu$PRP[cpu$vendor.name=="c.r.d"], xlab="c.r.d", main="")
hist(cpu$PRP[cpu$vendor.name=="cdc"], xlab="cdc", main="")
hist(cpu$PRP[cpu$vendor.name=="dec"], xlab="dec", main="")
hist(cpu$PRP[cpu$vendor.name=="dg"], xlab="dg", main="")
hist(cpu$PRP[cpu$vendor.name=="hwell"], xlab="honeywell", main="")
hist(cpu$PRP[cpu$vendor.name=="hp"], xlab="hp", main="")
hist(cpu$PRP[cpu$vendor.name=="ibm"], xlab="ibm", main="")
hist(cpu$PRP[cpu$vendor.name=="nas"], xlab="nas", main="")
hist(cpu$PRP[cpu$vendor.name=="nas"], xlab="nas", main="")
hist(cpu$PRP[cpu$vendor.name=="nas"], xlab="nas", main="")
hist(cpu$PRP[cpu$vendor.name=="spe"], xlab="sperry", main="")
```

Result:

Figure 3.1.4: Published Relative Performance Frequency

3.2. Box Plot

Box plots provide a visual summary of analyzing by quickly identifying the mean values, dispersion of the data set as well as signs of skewness. It will help us show the dispersion and outliers within a data set. An outlier is an observation that is numerically distant from the rest of the data. When reviewing a box plot, an outlier is defined as a data point that is located outside the whiskers of the box plot.

Box plot is a method for description by mapping the group data numbers through their private section. A typical box plot will look like this:

Figure 3.2: Box Plot Model for Normal Distribution

Boxplots are a standardized way of displaying the distribution of data based on a five number summary ("minimum", first quartile (Q1), median, third quartile (Q3), and "maximum"):

- Median (Q2/50th Percentile): the middle value of the dataset.
- First Quartile (Q1/25th Percentile): the middle number between the smallest number (not the "minimum") and the median of the dataset.
- *Third Quartile* (Q3/75th *Percentile*): the middle value between the median and the highest value (not the "maximum") of the dataset.
- Interquartile Range (IQR): 25th to the 75th percentile.
- Whiskers (shown in blue)
- Outliers (shown as green circles)
- "Maximum": Q3 + 1.5*IQR
- "Minimum": Q1 1.5*IQR

3.2.1 Box Plot Model:

We will now draw the box plot to demonstrate the variables of each CPU in our data set:

```
boxplot(CACH~vendor.name, data=cpu , col=blues9)
boxplot(PRP~vendor.name, data=cpu , col=blues9)
boxplot(MAVG~vendor.name, data=cpu , col=blues9)
boxplot(CHCAP~vendor.name, data=cpu , col=blues9)
```

Result:

Figure 3.2.1: Box Plot for CACH, PRP, MAVG and CHCAP

3.3. Pairs Plot

A pairs plot allows us to see both distribution of single variables and relationships between two variables.

Pair plots are a great method to identify trends for follow-up analysis as well. A pairs plot is a matrix of scatterplots that lets you understand the pairwise relationship between different variables in a dataset. In RStudio, pair plots can also be used to determine the pairwise correlation coefficients of the variables.

3.3.1 Pairs Plot Model:

We will now draw the pairs plot to demonstrate the variables of each CPU in our data set:

```
library(ggplot2)
library(GGally)
data <- data.frame(cpu$CACH, cpu$MAVG, cpu$CHCAP, cpu$PRP)
ggpairs(data = data, lower=list(continuous="smooth",
wrap=c(colour="blue")),
upper=list(wrap=list(corSize=6)), axisLabels='show')
Result:</pre>
```


Figure 3.3.1: Pairs Plot and Correlation Coefficients

<u>Note:</u> *** means the p-value is in the range [0, 0.001]. These significance codes are displayed as a series of stars or a decimal point if the variables are statistically significant.

From the correlation coefficients, we can conclude that CACH, MAVG, CHCAP and PRP are strongly pairwise related to one another, as all of them are close to 1 or -1. This subject will be discussed further in the linear regression section.

4. Statistical Methods

4.1 ANOVA Test

In this experiment data, ANOVA is used to understand whether there is a statistically significant difference in the population mean resulted from many types of CPU. Researchers can conduct a one-way ANOVA using "Name of CPU" as the factor and the remaining 4 variables as the response.

```
CACH.aov= aov(CACH~vendor.name, data = cpu)
summary(CACH.aov)

Df Sum Sq Mean Sq F value Pr(>F)
vendor.name 11 561.4 51.03 4.243 1.61e-05 ***
Residuals 158 1900.6 12.03
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
MAVG.aov= aov(MAVG~vendor.name, data = cpu)
summary(MAVG.aov)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
vendor.name 11 4173 379.4 9.533 4.61e-13 ***
Residuals 158 6288 39.8
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
CHCAP.aov= aov(CHCAP~vendor.name, data = cpu)
summary(CHCAP.aov)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
vendor.name 11 1198 108.87 7.524 2.49e-10 ***
Residuals 158 2286 14.47
---
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
```

```
PRP.aov= aov(PRP~vendor.name, data = cpu)
summary(PRP.aov)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
vendor.name 11 1467582 133417 5.811 7.28e-08 ***
Residuals 158 3627857 22961
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Taking the F-value of the 4 ANOVA tests with a significance level of $\alpha =$

$$F_{CACH} = 4.243 > F_{0.02,11,158} = 2.15$$

 $F_{MAVG} = 4.243 > F_{0.02,11,158} = 2.15$
 $F_{CHCAP} = 4.243 > F_{0.02,11,158} = 2.15$
 $F_{PRP} = 4.243 > F_{0.02,11,158} = 2.15$

We can safely conclude with a 98% confidence level that there is a significant difference between each treatment when it comes to CACH, MAVG, CHCAP, PRP.

4.2 Tukey's Test

Multiple Comparisons Using Tukey's Range Test (Tukey Honest Significant Difference)

After knowing that each treatment differs one another, we want to perform multiple comparisons on them by using Tukey's range test. First, we will observe these 6 types of cpu in terms of CACH, MAVG, CHCAP, PRP.

4.2.1 For CACH

TukeyHSD(CACH.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = CACH ~ vendor.name, data = cpu)

\$vendor.name

	diff	lwr	upr	p adj
bur-amd	-3.81388889	-9.40515001	1.777372230	0.5071430
c.r.d-amd	-5.17979798	-10.35168421	-0.007911749	0.0492665
cdc-amd	-1.17777778	-6.60209782	4.246542263	0.9998871
dec-amd	-5.0555556	-11.12012973	1.009018616	0.2052508
dg-amd	-5.15555556	-10.22954234	-0.081568768	0.0427434
hp-amd	-5.34603175	-11.14487379	0.452810297	0.1019585
hwell-amd	-4.73888889	-9.35753098	-0.120246801	0.0387222
ibm-amd	-4.58888889	-8.86558470	-0.312193076	0.0239011
nas-amd	-1.07288889	-5.54589778	3.400120006	0.9997021
ncr-amd	-2.48888889	-7.47853761	2.500759834	0.8853387
spe-amd	-1.19658120	-6.18622992	3.793067527	0.9997026
c.r.d-bur	-1.36590909	-6.71262399	3.980805805	0.9994564
cdc-bur	2.63611111	-2.95515001	8.227372230	0.9191701
dec-bur	-1.24166667	-7.45600596	4.972672629	0.9999506
dg-bur	-1.34166667	-6.59374196	3.910408629	0.9994566
hp-bur	-1.53214286	-7.48743647	4.423150757	0.9994190
hwell-bur	-0.92500000	-5.73860652	3.888606520	0.9999667
ibm-bur	-0.77500000	-5.26154434	3.711544335	0.9999887
nas-bur	2.74100000	-1.93305194	7.415051944	0.7286699
ncr-bur	1.32500000	-3.84564284	6.495642840	0.9994403
spe-bur	2.61730769	-2.55333515	7.787950532	0.8749132
cdc-c.r.d	4.00202020	-1.16986603	9.173906433	0.3074418
dec-c.r.d	0.12424242	-5.71563935	5.964124201	1.0000000
dg-c.r.d	0.02424242	-4.77893373	4.827418582	1.0000000
hp-c.r.d	-0.16623377	-5.72966152	5.397193983	1.0000000
hwell-c.r.d	0.44090909	-3.87846749	4.760285668	1.0000000
ibm-c.r.d	0.59090909	-3.36070910	4.542527286	0.9999975
nas-c.r.d	4.10690909	-0.05637902	8.270197197	0.0569121
ncr-c.r.d	2.69090909	-2.02308642	7.404904600	0.7612722
spe-c.r.d	3.98321678	-0.73077873	8.697212293	0.1888509
dec-cdc	-3.87777778	-9.94235195	2.186796394	0.6083607
dg-cdc	-3.97777778	-9.05176457	1.096209010	0.2882697
hp-cdc	-4.16825397	-9.96709601	1.630588074	0.4225349
hwell-cdc	-3.56111111	-8.17975320	1.057530976	0.3128015

```
ibm-cdc
            -3.41111111
                         -7.68780692
                                      0.865584702 0.2636436
nas-cdc
             0.10488889
                         -4.36812001
                                      4.577897784 1.0000000
ncr-cdc
            -1.31111111
                         -6.30075983
                                      3.678537612 0.9992914
spe-cdc
            -0.01880342
                         -5.00845214
                                      4.970845305 1.0000000
dg-dec
            -0.10000000
                         -5.85336023
                                      5.653360226 1.0000000
hp-dec
            -0.29047619
                         -6.69222447
                                      6.111272087 1.0000000
hwell-dec
                                      5.672753551 1.0000000
             0.31666667
                         -5.03942022
ibm-dec
             0.46666667
                         -4.59751531
                                      5.530848639 1.0000000
nas-dec
             3.98266667
                         -1.24835814
                                      9.213691476 0.3319034
ncr-dec
             2.56666667
                         -3.11245354
                                      8.245786877 0.9387707
spe-dec
             3.85897436
                         -1.82014585
                                      9.538094569 0.5133078
                                      5.282060977 1.0000000
hp-dg
            -0.19047619
                         -5.66301336
hwell-dg
             0.41666667
                                      4.618326903 1.0000000
                         -3.78499357
ibm-dg
             0.56666667
                         -3.25592684
                                      4.389260170 0.9999977
nas-dg
             4.08266667
                                      8.123694084 0.0452361
                         0.04163925
ncr-dg
             2.66666667
                         -1.93970809
                                      7.273041423 0.7446013
                                      8.565349115 0.1693279
spe-dg
             3.95897436
                         -0.64740040
hwell-hp
                                      5.660377055 0.9999997
             0.60714286
                         -4.44609134
ibm-hp
             0.75714286
                         -3.98558296
                                      5.499868677 0.9999950
                                      9.193623495 0.1579827
nas-hp
             4.27314286
                         -0.64733778
ncr-hp
             2.85714286
                         -2.53729090
                                      8.251576610 0.8381386
                         -1.24498320
spe-hp
             4.14945055
                                      9.543884302 0.3163480
                                      3.343545663 1.0000000
ibm-hwell
             0.15000000
                         -3.04354566
nas-hwell
             3.66600000
                         0.21398386
                                      7.118016136 0.0268281
                                      6.349414740 0.8041068
ncr-hwell
             2.25000000
                         -1.84941474
spe-hwell
                                      7.641722432 0.1633893
             3.54230769
                         -0.55710705
nas-ibm
             3.51600000
                         0.53695859
                                      6.495041414 0.0072151
ncr-ibm
             2.10000000
                         -1.60991557
                                      5.809915572 0.7709238
spe-ibm
             3.39230769
                         -0.31760788
                                      7.102223265 0.1087153
            -1.41600000
                         -5.35060990
                                      2.518609898 0.9887648
ncr-nas
                                      3.810917591 1.0000000
spe-nas
            -0.12369231
                         -4.05830221
                         -3.22099939 5.805614779 0.9984345
spe-ncr
             1.29230769
```

We see that μ_{nas} - μ_{ihm} = 3.51 > 0 and p-value =0.007 < 0.05 so we can say that

$$\mu_{nas} > \mu_{ibm}$$

with μ_{spe} - μ_{hwell} = 3.542 > 0 and p-value = 0.1633 > 0.05, so we conclude that

$$\mu_{spe} = \mu_{hwell}$$

Overall we have the CACH order Group A includes bur, hp, c.r.d, cdc, nas Group B includes dg, hwell, ibm, ncr, spe, dec

$$\mu_{GroupA} > \mu_{GroupB}$$

We can apply this calculating method for MAVG, CHCAP, PRP

TukeyHSD(MAVG.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = MAVG ~ vendor.name, data = cpu)

\$vendor.name

	diff	lwr	upr	p adj
bur-amd	-21.83733333	-32.0070981	-11.667569	0.0000000
c.r.d-amd	-20.92787879	-30.3348561	-11.520901	0.0000000
cdc-amd	-19.55666667	-29.4227877	-9.690546	0.0000000
dec-amd	-21.49600000	-32.5266586	-10.465341	0.0000001
dg-amd	-20.96166667	-30.1905778	-11.732756	0.0000000
hp-amd	-22.63561905	-33.1829461	-12.088292	0.0000000
hwell-amd	-19.79123333	-28.1919327	-11.390534	0.0000000
ibm-amd	-19.07003604	-26.8487803	-11.291292	0.0000000
nas-amd	-14.87333333	-23.0091452	-6.737522	0.0000006
ncr-amd	-18.56410256	-27.6396139	-9.488591	0.0000000
spe-amd	-12.73533333	-21.8108447	-3.659822	0.0004131
c.r.d-bur	0.90945455	-8.8155130	10.634422	1.0000000
cdc-bur	2.28066667	-7.8890981	12.450431	0.9998449
dec-bur	0.34133333	-10.9617283	11.644395	1.0000000
dg-bur	0.87566667	-8.6771639	10.428497	1.0000000
hp-bur	-0.79828571	-11.6301775	10.033606	1.0000000
hwell-bur	2.04610000	-6.7092139	10.801414	0.9997683
ibm-bur	2.76729730	-5.3931337	10.927728	0.9931185
nas-bur	6.96400000	-1.5374825	15.465483	0.2275462
ncr-bur	3.27323077	-6.1314850	12.677946	0.9914555
spe-bur	9.10200000	-0.3027157	18.506716	0.0677491
cdc-c.r.d	1.37121212	-8.0357652	10.778189	0.9999981
dec-c.r.d	-0.56812121	-11.1900941	10.053852	1.0000000
dg-c.r.d	-0.03378788	-8.7701303	8.702555	1.0000000
hp-c.r.d	-1.70774026	-11.8268798	8.411399	0.9999911
hwell-c.r.d	1.13664545	-6.7197295	8.993020	0.9999982
ibm-c.r.d	1.85784275	-5.3296283	9.045314	0.9993927
nas-c.r.d	6.05454545	-1.5179252	13.627016	0.2602485
ncr-c.r.d	2.36377622	-6.2103584	10.937911	0.9988931
spe-c.r.d	8.19254545	-0.3815892	16.766680	0.0758210
dec-cdc	-1.93933333	-12.9699920	9.091325	0.9999865
dg-cdc	-1.40500000	-10.6339111	7.823911	0.9999970
hp-cdc	-3.07895238	-13.6262794	7.468375	0.9981355

```
hwell-cdc
                                        8.166133 1.0000000
             -0.23456667
                           -8.6352660
ibm-cdc
              0.48663063
                           -7.2921136
                                        8.265375 1.0000000
nas-cdc
                           -3.4524785
                                       12.819145 0.7513958
              4.68333333
ncr-cdc
              0.99256410
                           -8.0829473
                                       10.068075 0.9999999
spe-cdc
                                       15.896845 0.3517307
              6.82133333
                           -2.2541780
dg-dec
                                       10.998935 1.0000000
              0.53433333
                           -9.9302683
hp-dec
                                       10.504315 1.0000000
             -1.13961905 -12.7835528
hwell-dec
              1.70476667
                           -8.0372473
                                       11.446781 0.9999871
ibm-dec
              2.42596396
                           -6.7851135
                                       11.637041 0.9992759
nas-dec
                                       16.137209 0.4745077
              6.62266667
                           -2.8918759
ncr-dec
              2.93189744
                           -7.3976714
                                       13.261466 0.9985544
spe-dec
              8.76066667
                           -1.5689022
                                       19.090236 0.1844875
hp-dg
             -1.67395238 -11.6277740
                                        8.279869 0.9999915
hwell-dg
              1.17043333
                           -6.4718311
                                        8.812698 0.9999968
                                        8.844423 0.9990203
ibm-dg
              1.89163063
                           -5.0611616
nas-dg
                           -1.2617613
                                       13.438428 0.2132150
              6.08833333
                                       10.775951 0.9984430
ncr-dg
              2.39756410
                           -5.9808226
                                       16.604720 0.0594420
spe-dg
              8.22633333
                           -0.1520534
hwell-hp
                           -6.3467792
                                       12.035551 0.9968645
              2.84438571
ibm-hp
              3.56558301
                           -5.0608082
                                       12.191974 0.9672899
              7.76228571
                           -1.1874180
                                       16.711989 0.1593615
nas-hp
ncr-hp
              4.07151648
                          -5.7402453
                                       13.883278 0.9663375
spe-hp
              9.90028571
                           0.0885239
                                       19.712048 0.0458066
ibm-hwell
                           -5.0874401
                                        6.529835 0.9999996
              0.72119730
nas-hwell
              4.91790000
                           -1.3608610
                                       11.196661 0.2895601
ncr-hwell
              1.22713077
                           -6.2291627
                                        8.683424 0.9999932
spe-hwell
              7.05590000
                           -0.4003934
                                       14.512193 0.0823550
nas-ibm
              4.19670270
                           -1.2217798
                                        9.615185 0.3060713
ncr-ibm
                                        7.253779 1.0000000
              0.50593347
                           -6.2419125
spe-ibm
              6.33470270
                           -0.4131432
                                       13.082549 0.0880443
ncr-nas
             -3.69076923 -10.8473045
                                        3.465766 0.8606249
                           -5.0185352
                                        9.294535 0.9977057
spe-nas
              2.13800000
                                       14.037878 0.4423440
spe-ncr
              5.82876923
                           -2.3803397
```

We can have the MAVG order Group A includes ncr, nas, spe Group B includes hp, bur, ibm, cdc, c.r.d, dec, hwell, hp

$$\mu'_{GroupA} = \mu'_{GroupB}$$

TukeyHSD(CHCAP.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = CHCAP ~ vendor.name, data = cpu)

\$vendor.name

```
diff
                                lwr
                                                   p adj
                                           upr
            -8.00864606 -14.1407728 -1.8765193 0.0015209
bur-amd
c.r.d-amd
            -9.25164009 -14.9238241 -3.5794561 0.0000146
cdc-amd
            -6.30391733 -12.2529541 -0.3548805 0.0274883
dec-amd
            -9.51172176 -16.1629471 -2.8604964 0.0002844
            -9.70103809 -15.2658525 -4.1362237 0.0000025
dg-amd
hp-amd
            -8.31869908 -14.6784869 -1.9589112 0.0014819
hwell-amd
            -8.95519980 -14.0206221 -3.8897775 0.0000016
ibm-amd
            -8.36508764 -13.0554858 -3.6746895 0.0000013
nas-amd
            -7.68188367 -12.5875851 -2.7761822 0.0000394
ncr-amd
            -7.49322433 -12.9655423 -2.0209064 0.0006573
                        -6.8439376 4.1006983 0.9995462
spe-amd
            -1.37161961
c.r.d-bur
            -1.24299404
                        -7.1069186 4.6209306 0.9999110
cdc-bur
            1.70472873
                        -4.4273981 7.8368555 0.9988047
dec-bur
            -1.50307570
                        -8.3185536 5.3124022 0.9998684
dg-bur
            -1.69239204
                         -7.4525222 4.0677381 0.9980238
hp-bur
            -0.31005302
                        -6.8414267 6.2213206 1.0000000
hwell-bur
                                    4.3326927 0.9999835
            -0.94655374
                         -6.2258002
            -0.35644158
                                    4.5641046 1.0000000
ibm-bur
                         -5.2769878
nas-bur
            0.32676239
                         -4.7994298
                                    5.4529546 1.0000000
                                    6.1862421 1.0000000
ncr-bur
            0.51542172
                        -5.1553986
spe-bur
             6.63702644
                         0.9662061 12.3078468 0.0080978
cdc-c.r.d
             2.94772276
                         -2.7244613 8.6199068 0.8544235
dec-c.r.d
            -0.26008166
                         -6.6648792
                                    6.1447159 1.0000000
dg-c.r.d
            -0.44939800
                         -5.7172051
                                     4.8184091 1.0000000
hp-c.r.d
             0.93294102
                         -5.1686600
                                     7.0345420 0.9999968
hwell-c.r.d 0.29644030
                         -4.4407673
                                     5.0336479 1.0000000
ibm-c.r.d
             0.88655246
                         -3.4473220
                                     5.2204269 0.9999375
            1.56975643
nas-c.r.d
                         -2.9962636
                                     6.1357765 0.9922835
ncr-c.r.d
            1.75841576
                         -3.4115839
                                     6.9284154 0.9929453
spe-c.r.d
            7.88002048
                         2.7100208 13.0500202 0.0000734
dec-cdc
            -3.20780443
                         -9.8590298
                                    3.4434209 0.9066882
dg-cdc
            -3.39712076
                         -8.9619351
                                    2.1676936 0.6755443
hp-cdc
            -2.01478175
                         -8.3745696 4.3450061 0.9961526
hwell-cdc
           -2.65128247
                        -7.7167048 2.4141399 0.8484454
```

```
ibm-cdc
            -2.06117031
                         -6.7515685
                                     2.6292279 0.9494268
nas-cdc
            -1.37796634
                         -6.2836678
                                     3.5277351 0.9986858
                         -6.6616250
ncr-cdc
                                     4.2830109 0.9998861
            -1.18930700
                         -0.5400202 10.4046157 0.1212980
spe-cdc
            4.93229772
dg-dec
            -0.18931633
                         -6.4992227
                                     6.1205901 1.0000000
hp-dec
             1.19302268
                         -5.8279930
                                     8.2140384 0.9999905
hwell-dec
             0.55652196
                         -5.3176812
                                     6.4307251 1.0000000
ibm-dec
                                     6.7006952 0.9999315
             1.14663412
                         -4.4074270
nas-dec
                                     7.5668814 0.9959199
             1.82983809
                         -3.9072052
ncr-dec
             2.01849742
                         -4.2099874
                                     8.2469823 0.9953184
spe-dec
             8.14010214
                         1.9116173 14.3685870 0.0015032
                                     7.3842572 0.9997989
hp-dg
             1.38233902
                         -4.6195792
hwell-dg
             0.74583829
                         -3.8622658
                                     5.3539424 0.9999942
ibm-dg
             1.33595046
                         -2.8564182
                                     5.5283191 0.9959518
             2.01915442
                         -2.4127782
                                     6.4510870 0.9353910
nas-dg
ncr-dg
             2.20781376
                         -2.8441546
                                     7.2597821 0.9513288
spe-dg
             8.32941848
                         3.2774502 13.3813868 0.0000111
                         -6.1785550 4.9055536 0.9999998
hwell-hp
            -0.63650072
                                     5.1551206 1.0000000
ibm-hp
            -0.04638856
                         -5.2478977
nas-hp
             0.63681541
                         -4.7596435
                                     6.0332744 0.9999998
ncr-hp
             0.82547474
                         -5.0907848
                                     6.7417342 0.9999988
spe-hp
             6.94707946
                         1.0308200 12.8633390 0.0077417
ibm-hwell
                                     4.0925826 0.9999913
             0.59011216
                         -2.9123583
nas-hwell
             1.27331613
                         -2.5126277
                                     5.0592600 0.9935794
ncr-hwell
             1.46197547
                         -3.0339925
                                     5.9579434 0.9951802
spe-hwell
             7.58358019
                          3.0876122 12.0795482 0.0000061
nas-ibm
             0.68320397
                         -2.5840124 3.9504203 0.9999222
ncr-ibm
             0.87186330
                         -3.1969276 4.9406543 0.9999009
spe-ibm
             6.99346802
                          2.9246771 11.0622590 0.0000036
ncr-nas
             0.18865934
                         -4.1265615 4.5038802 1.0000000
spe-nas
                          1.9950432 10.6254849 0.0001801
             6.31026406
spe-ncr
             6.12160472
                          1.1717069 11.0715025 0.0036555
```

We have the CHCAP order : Group A includes cdc, spe Group B includes nas, ncr, bur, dg, cdc, c.r.d, hwell, ibm, hp $\mu''_{GroupA} = \mu''_{GroupB}$

TukeyHSD(PRP.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = PRP ~ vendor.name, data = cpu)

\$vendor.name

	diff	lwr	upr	p adj
bur-amd	-366.583333	-610.867316	-122.29935	0.0001036
c.r.d-amd	-373.606061	-599.567421	-147.64470	0.0000103
cdc-amd	-286.222222	-523.212496	-49.23195	0.0052026
dec-amd	-369.000000	-633.963181	-104.03682	0.0004781
dg-amd	-377.750000	-599.434102	-156.06590	0.0000046
hp-amd	-379.904762	-633.258021	-126.55150	0.0001053
hwell-amd	-359.633333	-561.423280	-157.84339	0.0000013
ibm-amd	-335.225225	-522.075430	-148.37502	0.0000011
nas-amd	-272.373333	-467.800519	-76.94615	0.0004710
ncr-amd	-353.025641	-571.024986	-135.02630	0.0000174
spe-amd	-161.410256	-379.409602	56.58909	0.3752556
c.r.d-bur	-7.022727	-240.622407	226.57695	1.0000000
cdc-bur	80.361111	-163.922872	324.64509	0.9946779
dec-bur	-2.416667	-273.923134	269.08980	1.0000000
dg-bur	-11.166667	-240.631512	218.29818	1.0000000
hp-bur	-13.321429	-273.510107	246.86725	1.0000000
hwell-bur	6.950000	-203.358005	217.25801	1.0000000
ibm-bur	31.358108	-164.660446	227.37666	0.9999949
nas-bur	94.210000	-110.000821	298.42082	0.9298058
ncr-bur	13.557692	-212.349344	239.46473	1.0000000
spe-bur	205.173077	-20.733959	431.08011	0.1145190
cdc-c.r.d	87.383838	-138.577522	313.34520	0.9801600
dec-c.r.d	4.606061	-250.540238	259.75236	1.0000000
dg-c.r.d	-4.143939	-213.996239	205.70836	1.0000000
hp-c.r.d	-6.298701	-249.366635	236.76923	1.0000000
hwell-c.r.d	13.972727	-174.742214	202.68767	1.0000000
ibm-c.r.d	38.380835	-134.266625	211.02830	0.9998576
nas-c.r.d	101.232727	-80.662659	283.12811	0.7895754
ncr-c.r.d	20.580420	-185.375549	226.53639	1.0000000
spe-c.r.d	212.195804	6.239836	418.15177	0.0371049
dec-cdc	-82.777778	-347.740959	182.18540	0.9965932
dg-cdc	-91.527778	-313.211880	130.15632	0.9675549

```
hp-cdc
             -93.682540 -347.035799
                                     159.67072 0.9860342
hwell-cdc
             -73.411111 -275.201058
                                     128.37884 0.9877393
ibm-cdc
             -49.003003 -235.853208
                                     137.84720 0.9993041
nas-cdc
              13.848889 -181.578297
                                     209.27608 1.0000000
ncr-cdc
             -66.803419 -284.802764
                                     151.19593 0.9971249
spe-cdc
             124.811966
                         -93.187379
                                     342.81131 0.7578017
dg-dec
              -8.750000 -260.116144
                                     242.61614 1.0000000
hp-dec
             -10.904762 -290.599187
                                     268.78966 1.0000000
hwell-dec
               9.366667 -224.642479
                                     243.37581 1.0000000
ibm-dec
              33.774775 -187.480952
                                     255.03050 0.9999969
nas-dec
              96.626667 -131.918477
                                     325.17181 0.9614704
ncr-dec
              15.974359 -232.148215
                                     264.09693 1.0000000
spe-dec
             207.589744 -40.532831
                                     455.71232 0.2007939
hp-dg
              -2.154762 -241.251657
                                     236.94213 1.0000000
hwell-dg
              18.116667 -165.455210
                                     201.68854 1.0000000
ibm-dg
              42.524775 -124.485555
                                     209.53510 0.9994731
                                     281.93044 0.7060100
nas-dg
             105.376667 -71.177111
ncr-dg
              24.724359 -176.529624
                                     225.97834 0.9999997
spe-dg
             216.339744
                          15.085760
                                     417.59373 0.0234110
hwell-hp
              20.271429 -200.505986
                                     241.04884 1.0000000
ibm-hp
              44.679537 -162.531668
                                     251.89074 0.9998946
             107.531429 -107.445941
                                     322.50880 0.8834183
nas-hp
ncr-hp
              26.879121 -208.805411
                                     262.56365 0.9999999
spe-hp
             218.494505
                         -17.190027
                                     454.17904 0.0975320
ibm-hwell
              24.408108 -115.118921
                                     163.93514 0.9999872
nas-hwell
              87.260000 -63.559687
                                     238.07969 0.7453046
ncr-hwell
                                     185.71243 1.0000000
               6.607692 -172.497046
spe-hwell
             198.223077
                                     377.32782 0.0166260
                          19.118339
nas-ibm
              62.851892
                         -67.303378
                                     193.00716 0.9059473
ncr-ibm
             -17.800416 -179.887811
                                     144.28698 0.9999999
spe-ibm
             173.814969
                          11.727573
                                     335.90236 0.0240644
ncr-nas
             -80.652308 -252.556670
                                     91.25205 0.9216733
                                     282.86744 0.5939936
spe-nas
             110.963077
                         -60.941285
spe-ncr
             191.615385
                          -5.572442
                                     388.80321 0.0653318
```

We can have the PRP order

Group A includes nas, ncr, spe

Group B includes c.r.d, dg, hwell, ibm, hp, cdc, bur, dec

$$\mu^{\prime\prime\prime}_{GroupA} = \mu^{\prime\prime\prime}_{GroupB}$$

Depending on the foundation of PC we want to build, we will choose the model that fits our purpose.

4.3 Multiple Linear Regression

We has construct a linear model for Relative Performance by predicting the square root of that

$$SQRPERF = A_0 + A_1(MAVG) + A_2(CACH) + A_3(CHCAP)$$

Where

SQRPERF: square root of relative performance

MAVG: Average memory size, calculated by $(MMIN + MMAX)/2 \times 10^{-3}$

CACH: Cache memory size, calculated by CACHE $\times 10^{-1}$

CHCAP: Channel capacity =
$$[INT \left[\frac{CHMIN + CHMAX}{2} + I \right] \times MCYT^{-1}$$

4.3.1 Calculating A₀, A₁, A₂ and A₃

```
model <- lm(SQRPERF ~ MAVG + CACH + CHCAP,data = cpu)
summary(model)</pre>
```

Result:

```
Call:
```

```
lm(formula = SQRPERF \sim MAVG + CACH + CHCAP, data = cpu)
```

Residuals:

```
Min 1Q Median 3Q Max
-5.0887 -0.9953 -0.2823 0.7313 7.0308
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.02042 0.18286 21.987 < 2e-16 ***

MAVG 0.40140 0.02742 14.641 < 2e-16 ***

CACH 0.36634 0.04428 8.273 4.05e-14 ***

CHCAP 0.33478 0.04712 7.105 3.38e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.638 on 166 degrees of freedom

Multiple R-squared: 0.9196, Adjusted R-squared: 0.9181

F-statistic: 632.6 on 3 and 166 DF, p-value: < 2.2e-16
```

From the figure, we all have low p-values for the slope coefficient ($< 10^{-7}$), which means that the coefficients of variables are meaningful or significantly affected to each other. Moreover, Intercept A_0 are also low.

Thus,

```
SQRPERF = 4.0204 + 0.4015 \times (MAVG) + 0.3663 \times (CACH) + 0.3348 \times (CHCAP)
```

Moreover, the median of Residual values is -0.2832, IQR = 0.8633. It shows that it is a good approximation for the equation for the Relative Performance.

Hence, we can conclude that the linear regression our group used is fit with the dataset.

5. Conclusion

As can be seen from our report by using models and statistic methods, we can conclude that there is a strictly ralation between elements of the CPU. We try to find the similarities for the variety of factor which will affect the relative performance, having the purpose to find for its alternatives when it comes to the CPU.

Using the observation, and analysis used in our report, it is not possible to reduce any of factors (cache, mavg, ...) as its fundamental factor to the performance of the CPU, being a heart of the computer hardware. With the use of statistics, this has helped us to have further in depth of the differences in CPU and how we should not easily decrease any factors of it.

6. References

- [1]: Phillip Ein-Dor and Jacob Feldmesser. 1987. Attributes of the performance of central processing units: a relative performance prediction model. Commun. ACM 30, 4 (April 1987), 308–317. https://doi.org/10.1145/32232.32234
- [2]: Galarnyk, M. (2020, July 6). Understanding Boxplots. Medium. Retrieved November 14, 2021, from https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51.
- [3]: Koehrsen, W. (2018, April 6). Visualizing data with pairs plots in Python. Medium. Retrieved at November 14, 2021, from https://towardsdatascience.com/visualizing-data-with-pair-plots-in-python-f228cf529166.
- [4]: Zach. (2020, August 11). How to create and interpret pairs plots in R. Statology. Retrieved November 14, 2021, from https://www.statology.org/pairs-plots-r/.
- [5]: Histogram. Corporate Finance Institute. (2019, November 22). Retrieved November 14, 2021, from https://corporatefinanceinstitute.com/resources/excel/study/histogram/