Lec 20 Image Restoration

$$F(x,y) \rightarrow Deg. fn (H) \rightarrow f(x,y)$$

$$Noise$$

$$\eta(x,y)$$

$$Degradaton$$

$$Restoration$$

$$Degradaton$$

$$G(u,v)+F(u,v)+N(u,v)$$

G(U,V)=F(U,V)+N(U,V) g(x,y)=f(x,y)+n(x,y)

Estimation of degradation functions

-> Observations - I lexate

→ Experimentation - Imp idea for calibration - Mathematical modelling

Recoviding Images

-> Disact inverse Altering:
Assume H is know by above 3 methods:

$$\hat{F}(U,V) = \frac{G_1(U,V)}{H(U,V)}$$

F(U,V)=F(U,V)+ N(U,V)
1-1(U,V)

Boblems:

Delux) is sand whose F() with known

Delux) is sand whose F() with known

Delux) (H(U,V) will dominate

a) It deg how O or small values - N(U,V) (H(U,V) will dominate

Weinex Filter:

$$e^2 = E \left((f - \hat{f})^2 \right) \rightarrow \text{Assuming umage benoise as } Abs$$
 $\Rightarrow \text{Explicitly incosposates both degradation}$

$$\hat{F}(u,v) = \left[\frac{1}{4} (u,v) S_F(u,v) \right] G(u,v)$$
 $= \frac{1}{4} (u,v) \left[\frac{1}{4} (u,v) \right] \left[\frac{1$

$$S_n(u,v) = |n(u,v)|^2 = B_{u,v}$$
 spectrum of undequalitied image
 $S_n(u,v) = |F(u,v)|^2 = B_{u,v}$ spectrum of undequalitied image

SNA Ratio To quantify how much un home se covered

Highes -> Good economises touchen

$$f \rightarrow H \rightarrow g$$

Invesse Boblems

Geometric Distortion (1) Thich lens (2) Vignething - Court (3) Chaomatric Albertation (4) Production and Tangent (4) Production of Vinequal banding of Vinequal b	ses radial darkening in form on -> Not able to hous of tial Distostion -> Jans has paralled of light (bend more none edges) source in same borne Thage Compression	me corners all wavelengths at same fical seen asent Ls Zongitudinal Transverse
→ Data comp aunos : info as possible	to reduce amount of	data while pseeving as mu
Fay -	\	epoine Specompsess = f(x,y)
	No of bits Storage Device Device	Paka Adundancy Ro = 1 - 1 CB
	No-of lite bord in compose imag	When $n_i = n_i \Rightarrow C_A = 1, A_b = 0$ $n_2 << n_i \Rightarrow C_A = 0$ $n_3 << n_i \Rightarrow C_A = 0$ $n_3 << n_i \Rightarrow C_A = 0$
Type of sedundacy: -> Coding		
-> Spatial		

- Isrelevant

Optimal Information Coding Lavg = \(\lambda_n\) MNLAVO

(1) $l(s_R)$ = constant length (2) $l(s_R)$ = Variable length

Spatial Redundancia

- Maximally conducted horizonal viscetion. Each col how constraintly -> Run-length paix -> MI 286 I's one in depondant

Beduce interprised sed use toursbornetions like thresholding. DFT

Rychovisual:

- Ohonge not visible to eyes

- Quantisation

Enbopys

H= -\sum_{i=0}^{2-1} log(8)

I = loga (1/p) => -loga P

Shannors Noiseless Coding Thm

 $H(2) \leq \frac{2^n \log 2}{n} < H(2) + \frac{1}{n}$

Ellistency: enterpy/2'ang