Вимірювання перерізів. Розділення сигналу і фону

Олександр Зенаєв

Переріз народження (визначення)

- Переріз народження, або переріз реакції (production cross section, or just cross section, x-section, σ) фізична величина, яка характеризує ймовірність утворення певного процесу або реакції у зіткненнях частинок
- Переріз народження визначає частоту подій певного типу (наприклад, народження нових частинок). Його можна уявити як ефективну площу, яку "бачать" частинки, що взаємодіють певним чином
- \bullet Переріз вимірюється в одиницях площі барн (barn, b): $1b=10^{-24} \text{cm}^2$. У НЕР зазвичай використовують $1\text{mb}=10^{-27} \text{cm}^2$, $1\mu b=10^{-30} \text{cm}^2$. . . $1\text{fb}=10^{-39} \text{cm}^2$
- Переріз визначається за формулою:

$$\sigma = \frac{N}{L}$$
,

де N – кількість подій, L – світимість (luminosity, іноді позначають \mathcal{L})

- L характеризує кількість зіткнень частинок у точці взаємодії та визначається параметрами пучків частинок (інтенсивністю, частотою зіткнень тощо), вимірюється в b^{-1} (inversed barn) або cm $^{-2}$
- Розрізняють миттєву світимість (instantaneous luminosity) за одиницю часу (наприклад, для LHC Run-3 це приблизно 10³⁴cm⁻²s⁻¹), та інтегральну світимість (integrated luminosity) за певний час, яка визначає, скільки всього було накопичено даних в експерименті (наприклад, з початку 2024 р. і до вересня 2024 р. ATLAS і CMS накопичили близько 100fb⁻¹)

Вимірювання перерізу народження

 Для експериментального вимірювання перерізу використовується та сама формула:

$$\sigma = \frac{N}{L}$$

Втім, N може містити не тільки сигнал, але і фон:

$$N_s = N - N_{bg}$$

Фон або віднімається за передбаченням, або визначається через template fitting

• Крім того, не всі події можуть бути зареєстровані

$$N_{s}=N_{s}^{rec}/\epsilon$$

Ефективність реєстрації ϵ визначається з Монте-Карло (МК) симуляції

- Іноді розрізняють аксептанс (A) як частину подій, яка геометрично потрапляє в детектор, і ефективність реєстрації (ϵ) подій детектором (сюди також можуть входити обмеження, що накладаються для зменшення фону)
- Більш повна формула для обрахунку перерізу:

$$\sigma = \frac{N - N_{Bg}}{\epsilon \cdot A \cdot L},$$

Визначення кількості сигнальних подій N_s

Задача: ϵ N подій. Треба визначити частки сигналу (N_s) і фону (N_{bg}) .

- (1) відняти очікувану кількість фонових подій
 - потребує знання перерізу фонових подій
 - симулюють фонові події, використовуючи певну модель, далі симулюють взаємодію частинок з детектором, проводять реконструкцію подій, визначають N_{Ba} і потім $N_{s}=N-N_{ba}$
 - результат залежить від моделі (model dependence), яку використовували для симуляції фону (кінематичні розподіли)
 - рідко використовується в чистому вигляді, оскільки фон у НЕР експериментах занадто складний і містить багато компонент
- (2) шаблонна підгонка (template fitting)
 - ▶ одним із варіантів є реконструкція і фітування розподілу інваріантної маси
 - ▶ в цьому випадку N_s визначається як площа піку
 - функція для опису комбінаторного фону зазвичай підбирається емпірично (data driven) і може варіюватися для оцінки систематичної похибки
 - lacktriangle чим менший фон, тим менша буде статистична похибка $\Delta N_{
 m S}$

Method	Statistical uncertainty	Model dependence
Background subtraction	$\Delta N_s = \sqrt{N_s}$	+
Template fitting	$\Delta N_{ extsf{S}} \sim \sqrt{N_{ extsf{S}} + N_{ extsf{B}g}}$	_

N.B. Можуть бути інші специфічні методи, такі як віднімання фону через використання подій з неправильним електричним зарядом та ін.

Визначення кількості сигнальних подій N_s

- left: "Measurement of D^{\pm} production in deep inelastic *ep* scattering with the ZEUS detector at HERA": fitting of invariant mass distribution $D^+ \to K^-\pi^+\pi^+$ [JHEP 05 (2013) 023, arXiv:1302.5058]
- right: ZEUS Coll., "Measurement of $D^{*\pm}$ production in deep inelastic scattering at HERA": wrong sign $D^{*+} \to D^0 (\to K^+\pi^-) \pi_s^+$ subtraction from correct sign $D^{*+} \to D^0 (\to K^-\pi^+) \pi_s^+$ [JHEP 05 (2013) 097, arXiv:1303.6578]

Розділення сигналу і фону

Задача: є N подій. Відсіяти якомога більше фонових подій і залишити якомога більше сигнальних подій, щоб мінімізувати $\Delta N_s/N_s$ (задача класифікації)

- Найважливіша складова аналізу даних: дозволяє "побачити" кілька (десятків, сотень, тисяч) сигнальних подій серед мільярдів усіх зареєстрованих подій
- Найпростіший підхід: накладати обмеження (cuts) на кінематичні властивості подій та/або окремих реконструйованих частинок (імпульси, кути)
- Більш сучасний метод: алгоритми машинного навчання (дерева рішень та ін.)
- Маємо N подій, що містять сигнал і фон ($N=N_s+N_b$). Із них відбираємо N^{sel} подій, які також будуть містити фон і сигнал ($N^{sel}=N_s^{sel}+N_b^{sel}$). Результат характеризується ефективністю (efficiency, ϵ) та чистотою (purity, p):

$$\epsilon = rac{N_{ ext{S}}^{ ext{sel}}}{N_{ ext{S}}}
onumber \ p = rac{N_{ ext{S}}^{ ext{sel}}}{N_{ ext{S}}^{ ext{sel}} + N_{ ext{b}}^{ ext{sel}}}$$

Практичне заняття

- Використовуючи генератор подій, згенерувати додатковий комбінаторний фон (декілька π^{\pm})
- Накладаючи обмеження на імпульси частинок, зменшити фон
- Визначити ефективність та чистоту
- Визначити переріз народження, скоректований на ефективність відбору подій

Github:

https://github.com/zenaiev/hep/blob/main/invmass/invmass adv.py

Google Colab:

 $https://colab.research.google.com/github/zenaiev/hep/blob/main/invmass/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.google.com/github/zenaiev/hep/blob/main/invmass_adv.ipynbuller.google.$