└4. Root finding

4. Root finding

Last time

- Approximating functions by polynomials
- Taylor series
- Taylor polynomials + Lagrange remainder

Goal for today

- Methods for finding roots of functions
- Convergence of those methods

Solving equations

- lacksquare Suppose we need to solve the equation g(x)=h(x)
- $\blacksquare \text{ Write } f(x) := g(x) h(x)$
- **Equivalent to solve** f(x) = 0 instead
- lacksquare Solutions x^* such that $f(x^*)=0$: **roots** or **zeros** of f
- We may want to find a single root or all roots

Roots of polynomials

- \blacksquare Suppose $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ is polynomial
- How many roots does p have?
- Fundamental theorem of algebra: a degree-n polynomial has exactly n roots in C
- So can factor p as

$$p(x) = (x-x_1)^{m_1}(x-x_2)^{m_2}\cdots (x-x_k)^{m_k}$$

where x_i are the roots and $\sum_{i=1}^k m_i = n$

lacksquare m_i is the **multiplicity** of root x_i

Roots of polynomials II

- Some of the roots may be multiple roots
- \blacksquare E.g. $p=(x-1)^2(x^2-2)$ has roots $1,\,1,\,\sqrt{2}$ and $-\sqrt{2}$
- \blacksquare Roots may be complex even if coefficients a_i are real
- E.g. $x^2 + 1$ has roots $x_{1,2} = \pm i$ and *no* real roots

Can we find roots of polynomial analytically?

- \blacksquare Suppose p is a degree- n polynomial with coefficients a_i
- $\ \ \, n=2$ (quadratic): exact formula for roots in terms of a_i
- \blacksquare n=3,4: more complicated formulae exist
- Abel–Ruffini theorem: for $n \ge 5$, in general no such formula exists!

Numerical methods for root finding

- Need numerical methods to approximate roots
- Some methods for all roots of a polynomial simultaneously, e.g. Aberth method (PS 2)
- Here we focus on methods to find single root

Fixed-point iteration

Numerical method for roots must be iterative:

$$x_{n+1} = g(x_n)$$

- $\ \ \, \blacksquare$ algorithm g and initial guess x_0
- Produces a sequence x_0 , x_1 , x_2 , ...
- If iteration converges, $x_n \to x^*$ as $n \to \infty$, then

$$g(x^*) = x^*$$

provided g is **continuous**

 $lacksquare x^*$ is a fixed point of g; solves f(x) := g(x) - x = 0

Existence of fixed point

- lacksquare If g is continuous and maps [a,b] into itself, \exists a fixed point.
- If $|g'(x)| \le k \ \forall x \in [a,b]$ with k < 1, then unique.
- Called a contraction mapping

Dynamics of iterations

- Such an iteration is a discrete-time dynamical system
- Assume there is a fixed point x*
- What condition do we need for (x_n) to converge?
- lacksquare Look at distance $\delta_n := x_n x^*$

Dynamics II

We have

$$\delta_{n+1} = x_{n+1} - x^*$$

$$=g(x_n)-x^*=g(x^*+\delta_n)-x^*\simeq \delta_n g'(x^*)$$

- \blacksquare So (asymptotically) $\delta_{n+1} = \alpha \, \delta_n$ with $\alpha = g'(x^*)$
- $\bullet \delta_{n+1} = \alpha \, \delta_n \Rightarrow \delta_n = \alpha^n$
- lacksquare Decays (stable fixed point) if |lpha| < 1
- lacksquare Grows (unstable fixed point) if lpha>1

Rate of convergence

- For √, Babylonian converges faster than bisection
- How can we make this precise?
- $\blacksquare \text{ If } x_n \to x^* \text{ then } x_n x^* \to 0 \\$
- **E**stimate **distance** or **error** $|x_n x^*|$ as function of n
- lacktriangleright In bisection, error reduces by constant factor 2 at each step

Rate of convergence II

lacksquare If there are constants λ and α such that

$$\lim_{n\to\infty}\frac{|x_{n+1}-x^*|}{|x_n-x^*|^\alpha}=\lambda$$

then the iteration is of **order** α

- lacksquare lpha = 1: linearly convergent
- lacksquare $\alpha=2$: quadratic convergence
- Note that "linear" actually means that the sequence converges exponentially fast!

Newton method

- $\blacksquare \text{ Want to solve } f(x) = 0; \text{ have guess } x_0$
- $\blacksquare \text{ Let } x=x_0+\delta; \quad \text{ solve } f(x_0+\delta)=0$
- \blacksquare Taylor theorem: $f(x_0) + \delta f'(x_0) + \frac{1}{2} \delta^2 f''(\xi)$ = 0
- \blacksquare So $\delta \simeq \frac{-f(x_0)}{f'(x_0)}$
- $\qquad \text{Newton method:} \quad x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Quadratically convergent!
- Babylon is special case

Newton method viewed as a fixed-point iteration

- How **design** quadratically-convergent algorithm for f(x) = 0?
- \blacksquare Look for fixed-point algorithm with $g(x) := x \phi(x) f(x)$
- Impose $g'(x^*) = 0$ at root $f(x^*) = 0$
- $\blacksquare \ \text{So} \ g'(x^*) = 1 \phi(x^*)f'(x^*) = 0$
- lacksquare So need $\phi(x^*) = rac{1}{f'(x^*)}$
- Take $\phi(x) := \frac{1}{f'(x)}$ gives Newton method

Convergence of Newton method

- Newton is very powerful when it works
- Generalises
- When "sufficiently close" to a root, Newton converges fast
- Otherwise, not guaranteed to converge; may fail
- There are known conditions for Newton to converge:
 - \blacksquare Smale α theory
 - Radii polynomials
- Interval Newton method: Use interval arithmetic to guarantee convergence

Summary

- There are many methods for finding roots of functions
- Rewrite as fixed-point iteration
- Do not always converge
- Methods differ in convergence rate