4Geeks Academy: data science cohort 12

DAY 17: EXPLORATORY DATAANALYSIS

TODO

EXPLORATORY DATA ANALYSIS

EDA philosophy, workflow and techniques

LOGISTIC REGRESSION PROJECT

Finish Logistic Regression Project Tutorial (Your first ML Algorithm module), last look at model eval & next steps

EDA PROJECT

Start Data Preprocessing Project Tutorial (Exploratory data analysis project) plan to complete as much as possible by Monday - we will go over solution together.

TOPICS

- **O1** EXPLORATORY DATA ANALYSIS
- O2 OBSERVING DATA
- O3 OBSERVING INTERACTIONS
- O4 CLEANING DATA

EXPLORATORY DATA ANALYSIS

WHAT

Get to know your data! Look at it from every possible angle and become an expert on your dataset.

WHY

- Identify and fix problems in the data
- Utilize the data effectively

HOW

- Look at structure of dataset
 - o How much data do we have?
 - o How many features are there?
 - What type of data is each feature?
- Look at composition of each feature
 - Descriptive statistics
 - Data visualizations
- Look at interactions between features
 - Statistical tests
 - Correlation coefficients
 - Data visualizations

OBSERVING DATA

STRUCTURE

	0.0s								
	id	price	minimum_nights	reviews_per_month	calculated_host_listings_count				
0	2539	149	1	0.21	6				
1	2595	225	1	0.38	2				
2	3647	150	3	NaN	1				
3	3831	89	1	4.64	1				
4	5022	80	10	0.10	1				

DESCRIPTIVE STATISTICS

<pre>data_df.describe() v 0.0s</pre>										
	id	price	minimum_nights	reviews_per_month	calculated_host_listings_count					
count	4.889500e+04	48895.000000	48895.000000	38843.000000	48895.000000					
mean	1.901714e+07	152.720687	7.029962	1.373221	7.143982					
std	1.098311e+07	240.154170	20.510550	1.680442	32.952519					
min	2.539000e+03	0.000000	1.000000	0.010000	1.000000					
25%	9.471945e+06	69.000000	1.000000	0.190000	1.000000					
50%	1.967728e+07	106.000000	3.000000	0.720000	1.000000					
75%	2.915218e+07	175.000000	5.000000	2.020000	2.000000					
max	3.648724e+07	10000.000000	1250.000000	58.500000	327.000000					

DATA VISUALIZATION

OBSERVING INTERACTIONS

TESTS groups = data_df.groupby(['neighbourhood_group', 'room_type']).size() chisquared_result = stats.chisquare(list(groups)) print(f'Chi-squared p-value = {chisquared_result.pvalue:.4f}') Chi-squared p-value = 0.0000

CORRELATIONS COEFS

	Feature 1	Feature 2	Spearman	Spearman p- value
0	number_of_reviews	reviews_per_month	0.706208	0.000000e+00
1	availability_365	$calculated_host_listings_count$	0.406606	0.000000e+00
2	availability_365	reviews_per_month	0.392126	0.000000e+00
3	availability_365	number_of_reviews	0.236664	0.000000e+00

DATA VISUALIZATION

CLEANING DATA

MISSING DATA

Missing data can hide in plain sight!

- Fill it in somehow
- Drop it

EXTREME VALUES

Extreme values (outliers) should not be arbitrarily thresholded away!

- Do nothing
- Fill it in somehow
- Drop it

ENCODING

Strings/objects must be converted into numbers

- Ordinal encoding
- One-hot encoding
- Fancy stuff: cyclical encoding with trig functions
- Something else?

WHEN ALTERING DATA THINK ABOUT THE CONTEXT & DOCUMENT EVERYTHING!