- 1. Find a function $f:[0,1]\to\mathbb{R}$ such that the following hold:
 - Let $0 \le a < b \le 1$ and pick a value c between f(a) and f(b). Then there is some $x \in [a, b]$ such that f(x) = c.
 - \bullet f is not continuous.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ such that for every open interval $I \subseteq \mathbb{R}$: $f(I) := \{ f(x) | x \in I \} = \mathbb{R}$.
 - (a) Prove that for every $a, b \in \mathbb{R}$ and c between f(a) and f(b). Then there is some $x \in [a, b]$ such that f(x) = c.
 - (b) prove that f is nowhere continuous, i.e., f is not continuous for any $x \in \mathbb{R}$.

Note: In the question above you proved that the converse of the Intermediate Value Theorem fails miserably for function satisfying that $f(I) = \mathbb{R}$ for every interval I. However, it is not so clear such functions exist!

- 3. Define $a \sim b$ iff $a b \in \mathbb{Q}$.
 - (a) Show that \sim is an equivalence relation on $\mathbb R$ and every equivalence class is countable.
 - (b) For every $x \in \mathbb{R}$, let cl(x) be the equivalence class of x with respect to \sim . Show that for every $x \in \mathbb{R}$: cl(x) is dense in \mathbb{R} , namely, for every interval I, there is some $y \in cl(x) \cap I$.
 - (c) Let $\mathcal{P} := \{ cl(x) | x \in \mathbb{R} \}$ be the set of all equivalence classes of \sim . Show that there is a bijection from \mathcal{P} to \mathbb{R} . You may need to use the following fact from set theory:

Let C is an infinite set of countable non-empty sets such that $A \cap B = \emptyset$ for every $A, B \in C$. Then there is a bijection between C and $\bigcup_{A \in C} A$.

(d) Let $g: \mathcal{P} \to \mathbb{R}$ be a bijection, as promised from Item 3c. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as f(x) = g(cl(x)). Prove that $f(I) = \mathbb{R}$ for every interval I. Deduce that f satisfies the intermediate value property, but is nowhere continuous.