Needham Schroeder Protocol

Software Security

Steffen Helke

Chair of Software Engineering

9th January 2019

Needham-Schroeder Protocol

- Introduction -

Objectives of today's lecture

- → Getting to know different variants of the famous Needham-Schroeder protocol
- → Understanding attack types like *Man-in-the-Middle* and *Replay* attack and possible countermeasures

Needham-Schroeder Protocols (NSP)

- → Developed by Rodger Needham and Michael Schroeder at the Xerox Palo Alto Research Center (MIT) in 1978
- → Protocol family to support secure data exchange
- → Providing key exchange and authentication mechanism
- → Development of different variants for *symmetric and* asymmetric encryption systems

Remarks

- The NSP family is not only interesting for historical reasons, but also forms the basis for modern security protocols
- Note that the asymmetric encryption variant had a design flaw that was found 17 years later

Steffen Helke: Software Security, 9th January 2019

Attack Types

Man-in-the-Middle Attack

- The attacker places himself between the communication partners Alice and Bob
- He has full control over the data traffic between Alice and Bob
- He can see/modify any information
- Attack is not detectable

Replay Attack

- Assumption: The attacker has found old keys and/or old tickets
- Attacker reuses old tickets from a previous session to manipulate the current communication

Steffen Helke: Software Security, 9th January 2019

2

Preliminary Specifications

- A: Identity of Alice
- *B*: Identity of Bob
- \blacksquare K_{AB} : Symmetric session key of Alice and Bob
- AS: Authentication server, is trustworthy, generates and distributes the session key K_{AB}
- \blacksquare K_A : Symmetric key between AS and A
- \blacksquare K_B : Symmetric key between AS and B
- N_A and N_B : Nonces (number used one or number once), random numbers used for only one protocol session

Needham-Schroeder Protocol

- Symmetric Encryption Variant -

Naive Variant of the Symmetric NSP

The naive variant of the NSP is not secure! Why?

Attack for the naive Symmetric NSP

Eve is pretending to Alice to be Bob! Countermeasures?

→ Man-in-the-middle attacks can be prevented by sending identities inside the tickets!

Steffen Helke: Software Security, 9th January 2019

5

Variant 2 for the Symmetric NSP

By specifying Bob's identity in step 2, Alice is able to detect the Man-in-the-middle attack!

Steffen Helke: Software Security, 9th January 2019

Detecting a Man-in-the-middle Attack

Alice detects in Step 2 that the ticket of the authentication server has been manipulated and cancels the session!

→ Is the protocol secure now? No, because replay attacks are possible

Attack for Variant 2 of the Symmetric NSP

Assumption: Eve knows the old session key K_{AB_0} of Alice & Bob and also the corresponding ticket of the authentication server

→ How to prevent such a replay attack?

Variant 3 for the Symmetric NSP

By using Nonce N_A (number used once), a correlation between Step 1 and Step 2 is implemented, such that Alice is able to check the freshness of the received ticket

Steffen Helke: Software Security, 9th January 2019

______, _____,

Variant 4: Symmetric NSP with Handshake

The handshake implemented in the original NSP does *not offer* Bob additional protection against replay attacks! Why?

Attack for Variant 3 of the symmetric NSP

Assumption: Eve knows the old session key K_{AB_o} of Alice & Bob and also the corresponding ticket of Step 3b

→ How can this replay attack against Bob be prevented?

Detecting a Replay Attack

Alice detects Eve's manipulation by finding out that the Nonce N_A has been changed

→ Is the protocol now finally secure? No, because Bob is attackable!

Steffen Helke: Software Security, 9th January 2019

11

Attack of Variant 4 of the Symmetric NSP

How to uncover the replay attack against Bob?

Steffen Helke: Software Security, 9th January 2019

Steffen Helke: Software Security, 9th January 2019

14

Attacks on Protocols with Time Stamps

We assume that ...

- the local clock of the target system can be manipulated or
- a time service (e.g. of a time server) can be manipulated

Procedure

- 1 Modify the time of your target system
- 2 Perform a replay attack

How to protect?

- → Use of previously negotiated nonces also for Bob
- → Disadvantage: The protocol is getting more complicated

Variant 5: Symmetric NSP & Time Stamps

A time stamp *T* gives information about the freshness of tickets and enables Bob to detect replay attacks

→ Is Bob protected now? No! You could also manipulate time!

Variant 6 of the Symmetric NSP with Nonces

This variant of the NSP prevents replay attacks against Alice & Bob and allows to detect man-in-the-middle attacks

13

Needham-Schroeder Protocols

- Asymmetric Variants -

Asymmetric Variant of the NSP

The protocol is not secure against man-in-the-middle attacks! Why? Find the attack scenario!

Preliminary Specifications

Given Keys

- **1** PK_{AS} : Public key of the authentication server AS
- 2 SK_{AS} : Secret key of the authentication server AS
- PK_A and PK_B : Public keys of Alice and Bob
- 4 SK_A and SK_B : Secret keys of Alice and Bob

Assumptions

- *AS* knows the public keys of all participants
- All participants only know the public key PK_{AS} before the protocol is started
- → Participants must request all other required keys from AS

Steffen Helke: Software Security, 9th January 2019

17

Simplified Version of the Asymmetric NSP

- → Assumption: Participants have already received all required public keys from the AS
- → Therefore, Steps 1,2,4 & 5 can be omitted

Note: The attacker Eve executes two of these protocol sessions in parallel to perform the attack!

Attack for the Asymmetric Variant of the NSP

Eve cheats on Bob. She pretends to be Alice in reality.

→ How to protect Bob? How to adapt the protocol?

Corrected Variant of the Asymmetric NSP

Sending Bob's identity in Step 6 enables Alice to detect the man-in-the-middle attack

20