Bases du traitement des images

► Filtrage d'images ◀

Séverine Dubuisson

22 octobre 2010

Plan du cours

- 1 Filtrage spatial linéaire 2D
- ② Filtrage spatial non linéaire
- 3 Cas des images en couleurs
- 4 Filtrage fréquentiel (1D et 2D)

Filtrage spatial

Filtrage spatial non linéaire

Pourquoi filtrer une image?

- Pour réduire le bruit dans l'image (sujet de ce chapitre)
- Pour détecter les contours d'une image (sujet d'un autre chapitre)
- Convolution entre une image f et un filtre h, appelé aussi masque de convolution
- Opération de voisinage qui effectue une combinaison linéaire (ou non) de pixels de l'image f, produisant une nouvelle image f'
- h est un opérateur sur f défini en chaque pixel f(i,j) et sur son voisinage

Réduction du bruit

Filtrage spatial non linéaire

Définition du bruit

- Phénomène parasite aléatoire (suivant une distribution de probabilité connue ou non) dont les origines sont diverses (capteur, acquisition, lumière, ...)
- ▶ Dans le cas du filtrage linéaire, on considère que le bruit est additif
- Pour le cas du bruit additif, si f_b est l'image alors on peut l'écrire de la forme :

$$f_b(i,j) = f(i,j) + b(i,j)$$

- Exemples de bruits additifs : bruits gaussiens et impulsionnels
- Autres types de bruits : flou (convolutif), grain (multiplicatif)

Exemples d'images bruitées

Filtrage spatial

Filtrage spatial non linéaire

Produit de convolution 1D

Le produit de convolution d'un signal x(n) avec un filtre h(n) est donné par :

$$(x \star h)(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

- Cette opération s'appelle aussi filtrage linéaire spatial
- Propriétés du produit de convolution :
 - Commutativité : $(f \star g)(n) = (g \star f)(n)$
 - Distributivité : $(f \star (g+h))(n) = (f \star g)(n) + (f \star h)(n)$
 - Associativité : $((f \star g) \star h)(n) = (f \star (g \star h))(n)$
- ► Le produit de convolution dans le domaine spatial équivaut à un produit dans le domaine fréquentiel

Filtrage spatial

Filtrage spatial non linéaire

Produit de convolution 2D

Le produit de convolution d'un signal 2D f(i,j) (une image) avec un filtre h(i,j) est donné par :

$$f'(i,j) = (f \star h)(i,j) = \sum_{n=1}^{N} \sum_{m=1}^{M} f(i,j)h(n-i,m-j)$$

► En général, h est un masque carré de taille d impaire, et on a alors :

$$f'(i,j) = (f \star h)(i,j) = \sum_{n=-\frac{d-1}{2}}^{\frac{d-1}{2}} \sum_{m=-\frac{d-1}{2}}^{\frac{d-1}{2}} f(i,j)h(n-i,m-j)$$

Filtrage par convolution

Filtrage spatial non linéaire

Principe de calcul de la convolution au pixel p = f(i,j)

- 1 Faire une rotation de π du noyau par rapport à son centre
- Centrer le filtre sur p en le superposant à l'image
- Seffectuer la somme pondérée entre les pixels de l'image et les coefficients du filtre
- 4 Le pixel p dans l'image but (filtrée) aura comme valeur cette somme pondérée

Exemple de convolution

Cas avec un filtre de taille d = 3

$$h = \left(\begin{array}{ccc} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{array}\right)$$

La convolution au pixel (i,j) de f par le noyaux h est donnée par :

$$f'(i,j) = w_1 f(i-1,j-1) + w_2 f(i-1,j) + w_3 f(i-1,j+1)$$

$$+ w_4 f(i,j-1) + w_5 f(i,j) + w_6 f(i,j+1)$$

$$+ w_7 f(i+1,j-1) + w_8 f(i+1,j) + w_9 f(i+1,j+1)$$

Pour conserver la moyenne originale de f dans f', on normalise les coefficients du filtre, donc on a $\sum_{i=1}^{t} w_i = 1$, où $t = d^2$ est le nombre de coefficients du filtre

Filtrage spatial linéaire

Principe de la fenêtre glissante

Convolution 2D

Filtrage spatial non linéaire

Types de convolution

- Comment faire quand le masque recouvre des zones en dehors de l'image?
- Convolution linéaire : on considère que l'image est entourée de noir, donc de valeurs nulles
- Convolution circulante : on considère que l'image est entourée d'elle même (i.e. support infini de l'image)

Définition

- Propriété : la valeur d'un pixel est relativement similaire à celle de ses voisins
- ▶ Dans le cas où l'image contient un bruit et que la propriété précédente est préservée, un moyennage local peut atténuer ce bruit
 → Cette opération est appelée lissage (smoothing)
- Pour effectuer un moyennage dans un bloc voisinage de taille $d \times d$, on obtient la sortie f':

$$f'(i,j) = \frac{1}{d^2} \sum_{n=-\frac{d-1}{2}}^{\frac{d-1}{2}} \sum_{m=-\frac{d-1}{2}}^{\frac{d-1}{2}} f(i+n,j+m)$$

Exemple

▶ Le filtre de taille d = 3:

$$h = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- ▶ D'une manière générale, si on a un filtre de taille d, tous les coefficients du filtre ont comme valeur $w_i = \frac{1}{d^2}$
- ▶ Plus d est grand, plus le lissage sera important, et plus l'image filtrée perd les détails de l'image originale

Filtrage spatial non linéaire

Définition

Le noyau gaussien centré et d'écart-type σ est défini par :

$$g_{\sigma}(i,j) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

Lissage par moyennage pondéré de l'image en fonction de la distance du pixel voisin

Filtrage spatial non linéaire

Du continu au discret

Le noyau gaussien est défini par un ensemble de coefficients qui sont des échantillons de la gaussienne 2D

Calcul des coefficients du filtre

- La largeur du filtre est donnée par son écart-type σ :
 - Largeur du filtre de part et d'autre du point central : Ent⁺(3σ) (Ent⁺(.) est l'entier supérieur)
 - Largeur totale du filtre : $2\text{Ent}^+(3\sigma) + 1$
- ightharpoonup Si σ est plus petit qu'un pixel le lissage n'a presque pas d'effet
- ightharpoonup Plus σ est grand, plus on réduit le bruit, mais plus l'image filtrée est floue
- ightharpoonup Si σ est choisi trop grand, tous les détails de l'image sont perdus
- → On doit trouver un compromis entre la quantité de bruit à enlever et la qualité de l'image en sortie disparaissent

Exemple pour $\sigma = 0.625 \ (\frac{1}{2\pi\sigma^2} = 0.4)$

- Largeur du filtre de part et d'autre du point central : Ent $^+(3\sigma)=2$
- Largeur totale du filtre : $2\text{Ent}^+(3\sigma) + 1 = 5$
- On obtient le filtre suivant :

Filtrage spatial linéaire

$$h = 0.4 \times 10^{-2} \times \left(\begin{array}{ccccc} 0.03 & 0.16 & 5.98 & 0.16 & 0.03 \\ 0.16 & 7.7 & 27.8 & 7.7 & 0.16 \\ 5.98 & 27.8 & 100 & 27.8 & 5.98 \\ 0.16 & 7.7 & 27.8 & 7.7 & 0.16 \\ 0.03 & 0.16 & 5.98 & 0.16 & 0.03 \end{array} \right)$$

Autres filtres

Filtre binomial

► Coefficients obtenus par le binôme de Newton

$$h = \frac{1}{256} \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix}$$

Autres filtres

Filtre pyramidal, filtre conique

$$h_p = \frac{1}{81} \begin{pmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{pmatrix} \quad h_c = \frac{1}{25} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 2 & 0 \\ 1 & 2 & 5 & 2 & 1 \\ 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Filtrage par corrélation normalisée

Filtrage spatial non linéaire

Définition

- ► Application à la détection de caractéristiques (feature detection)
- But : localiser la zone de l'image ressemblant le plus au filtre (appelé aussi template)
- Principe : calculer la corrélation normalisée en chaque pixel de l'image
 - La corrélation normalisée est également une opération de filtrage
 - On divise le résultat du calcul de la corrélation par la norme de la zone de l'image recouverte par le filtre
 - Le pixel d'intensité maximale dans cette image filtrée détermine la position centrale la plus vraisemblable pour le filtre dans l'image

Filtrage par corrélation normalisée

Le filtre médian

Définition

- Soit une séquence discrète a₁, a₂, ..., aN (N impair). aᵢ est la valeur médiane de la séquence si :
 - Il existe $\frac{N-1}{2}$ éléments de valeur inférieure
 - Il existe $\frac{N-1}{2}$ éléments de valeur supérieure
- Très adapté au bruit type "poivre et sel" (faux "blanc" et "noir" dans l'image)
- Préserve les contours
- Réduit le bruit additif uniforme ou gaussien (lissage de l'image)
- Si le bruit est supérieur à la moitié de la taille du filtre, alors le filtre est inefficace

Le filtre médian

Filtrage spatial non linéaire

Définition

- Déplacer une fenêtre de taille impaire sur le support image
- Remplacer le pixel central (sur lequel est positionnée la fenêtre) par la valeur médiane des pixels inclus dans la fenêtre

Le filtre médian

Le filtre médian contre filtre gaussien

(Filtrage spatial non linéaire)

Filtrage par le maximum

Filtrage spatial non linéaire

Définition

- Filtre supprimant le bruit "poivre et sel"
- Pour chaque pixel (i, j):
 - Calculer les niveaux de gris minimum f_{min} et maximum f_{max} sur l'ensemble de ses voisins
 - Si $f_{\min} \le f(x, y) \le f_{\max}$, f(x, y) reste inchangé
 - Sinon $f(x, y) = f_{\text{max}}$

Filtrage de Nagao

Filtrage spatial non linéaire

Définition

- Fenêtre 5×5 centrée sur chaque pixel, 9 domaines définis
- On calcule pour chaque domaine D_i la moyenne μ_i et la variance σ_i^2
- Le pixel est remplacé par la moyenne du domaine de plus faible variance

Cas des images en couleurs

Filtrage spatial non linéaire

Filtrage linéaire

Le filtrage spatial d'une image f en couleur par un filtre h s'effectue de la manière suivante :

$$f'(i,j) = (f \star h)(i,j) = \sum_{n=1}^{N} \sum_{m=1}^{M} f(i,j)h(n-i,m-j)$$

- Pour le cas d'une image couleur, on a deux solutions :
 - h est une matrice diagonale : le filtrage se fait plan par plan;
 - h n'est pas une matrice diagonale : il y a des termes croisés (dépendances entre composantes).

Filtrage linéaire d'images couleur : un exemple

Filtrage spatial non linéaire

Filtre moyenneur

- Trois moyenneurs scalaires
- ▶ Possibilité d'utiliser des masques différents sur chaque composante.
- ▶ Risque d'engendrer des phénomènes de fausses couleurs.

Filtre moyenneur sur une image en couleurs : illustration

Filtrage fréquentiel

Définitions

- On suppose que le signal dont on dispose a été discrétisé
- ► Garder/supprimer des fréquences du signal à l'aide d'un filtre
- Deux manières de procéder :
 - dans le domaine spatial : produit de convolution entre le signal et le filtre;
 - dans le domaine fréquentiel : produit entre les spectres du signal et du filtre.
- Trois familles :
 - filtrage passe-bas;
 - filtrage passe-haut;
 - filtrage passe-bande (et aussi coupe-bande).
- ► Filtre idéal : coefficients égaux à 0 ou 1.

Filtrage fréquentiel

Principe général du filtrage fréquentiel

- 1 Calculer la tranformée de Fourier X(f) du signal x(t) à filtrer
- 2 Calculer la transformée de Fourier F(f) du filtre f(t)
- 3 Multiplier les spectres $X_{\text{filtré}}(f) = X(f)F(f)$
- 4 Calculer la transformée de Fourier inverse du spectre obtenu pour obtenir le signal filtré $x_{\text{filtré}}(t)$

Filtrage fréquentiel

Principe du filtrage fréquentiel 2D

Filtrage passe-bas 1D

Principe

- ► Garder les basses fréquences du spectre de Fourier du signal
- Le signal est reconstruit par DFT inverse sans ses hautes fréquences, mais avec sa fréquence fondamentale

Filtrage passe-bas 1D : un exemple

Caractéristiques fréquentielles du bruit

Le bruit est une haute fréquence

Filtre passe-bas 2D

Filtrage spatial non linéaire

Définition

- Un filtre passe-bas idéal est un système linéaire ne modifiant pas ou peu les basses fréquences de l'image d'entrée
- La taille du voisinage caractérise la bande passante du filtre
- Basses fréquences et fréquence fondamentale conservées → L'information d'intensité est restituée lors de la reconstruction de l'image (IDFT)
- Hautes fréquences éliminées : les changements brusques d'intensité (bruit, frontières, ...) sont atténués voire éliminés
 - → étalement des frontières

Filtre passe-bas 2D idéal

Définition

La fonction de transfert H(u, v) du filtre passe-bas idéal de fréquence de coupure D_0 est donnée par :

$$H(u, v) = \begin{cases} 1 & \text{si } \sqrt{u^2 + v^2} \le D_0 \\ 0 & \text{si } \sqrt{u^2 + v^2} > D_0 \end{cases}$$

Ce filtre supprime les composantes fréquentielles ayant une fréquence radiale $\sqrt{u^2 + v^2}$ supérieure à D_0

Plan

Filtrage spatial non linéaire

Filtre passe-bas 2D idéal

Interprétations

- Les hautes fréquences sont supprimées
- Les basses fréquences, dont la fréquence fondamentale, sont conservées
- L'image reconstruite présente du flou sur le contour

Filtre passe-bas 2D de Butterworth d'ordre n

Définition

Le filtre passe-bas de Butterworth d'ordre *n* est défini par :

$$H(u,v) = \frac{1}{1 + \left(\frac{\sqrt{u^2 + v^2}}{D_0}\right)^{2n}}$$

Filtre passe-bas 2D de Butterworth d'ordre n

Caractéristiques

- Les composantes fréquentielles sont d'autant plus atténuées que le couple (u, v) est loin de l'origine
- ▶ Plus *n* est grand, plus l'atténuation des hautes fréquences est importante
- Moins de flou (contours moins lissés) qu'avec un filtre passe-bas idéal

Autres filtres passe-bas

- ▶ Le filtre moyenneur
- ► Le filtre gaussien

Filtre passe-bas 2D : un exemple réel

Filtrage passe-haut 1D

Principe

- ► Garder les hautes fréquences du spectre de Fourier du signal
- ► Le signal est reconstruit par DFT inverse sans ses basses fréquences, donc sans sa fréquence fondamentale

Filtrage passe-haut 1D : un exemple

Filtre passe-haut 2D

Filtrage spatial non linéaire

Définition

- Un filtre passe-haut est un système linéaire ne modifiant pas ou peu les hautes fréquences de l'image d'entrée
- Basses fréquences et fréquence fondamentale éliminées → L'information d'intensité est enlevée lors de la reconstruction de l'image (IDFT)
- Hautes fréquences préservées
 - → Les changements brusques d'intensité (bruit, frontières, ...) sont mis en évidence

Filtre passe-haut 2D idéal

Définition

La fonction de transfert H(u, v) du filtre passe-haut de fréquence de coupour D_0 idéal est donnée par :

$$H(u, v) = \begin{cases} 1 & \text{si } \sqrt{u^2 + v^2} \ge D_0 \\ 0 & \text{si } \sqrt{u^2 + v^2} < D_0 \end{cases}$$

Ce filtre supprime les composantes fréquentielles ayant une fréquence radiale $\sqrt{u^2 + v^2}$ inférieure à D_0

Filtre passe-haut 2D idéal

Filtre passe-haut 2D idéal

Interprétations

- Les hautes fréquences sont conservées
- Les basses fréquences, dont la fréquence fondamentale, sont éliminées
- L'image reconstruite n'a plus ses couleurs, mais le contour est net

Filtre passe-haut 2D de Butterworth d'ordre

n

Définition

Le filtre passe-haut de Butterworth d'ordre *n* est défini par :

$$H(u,v) = \frac{1}{1 + \left(\frac{D_0}{\sqrt{u^2 + v^2}}\right)^{2n}}$$

Filtre passe-haut 2D de Butterworth d'ordre

n

Caractéristiques

- Les composantes fréquentielles sont d'autant plus atténuées que le couple (u, v) est proche de l'origine
- ▶ *n* fixe la pente de transition entre les hautes et les basses fréquences
- Le filtrage passe-haut a un effet dérivateur

Filtre passe-haut 2D : un exemple réel

Filtrage passe-bande 1D

Principe

- ► Garder une bande de fréquences du spectre de Fourier du signal
- Le signal est reconstruit par DFT inverse sans cette bande de fréquences

Filtrage passe-bande 1D : un exemple

Filtre passe-bande 2D

Définition

Plan

- Un filtre passe-bande est complémentaire d'un filtre passe-bas et d'un filtre passe-haut
- Un filtre passe-bande est un système linéaire qui préserve une plage de fréquences
- L'image reconstruite est une combinaison d'un nombre réduit d'images de base (sinusoïdes)

Filtrage spatial non linéaire

