Applied Bayesian Phylogenetics

Emily Jane McTavish

Life and Environmental Sciences University of California, Merced ejmctavish@ucmerced.edu, twitter:snacktavish BL exercise review:

Split into groups. Go over your HW assignment together.

Did you get the same answers? Check each one and see if you can come to an agreement.

How would you extend the branch length MCMC exercise to a full phylogenetic analysis?

"Metropolis algorithm will produce a precise and accurate approximation of the posterior distribution if run long enough". - Paul Lewis

"Metropolis algorithm will produce a precise and accurate approximation of the posterior distribution if run long enough". - Paul Lewis

"People always forget how long of a time infinity really is" - paraphrased from Dave Swofford

So, what's all this got to do with phylogenetics?

The posterior probability of the split AC|BDE may be approximated by the fraction of trees sampled from the posterior that contain that split.

How are these splits values this similar to those you get from bootstrapping?

How are they different?

While we often motivate Bayesian analysis by integrating prior information, setting up accurate, informative priors for phylogenetic inference is hard to do.

Common Priors

- Discrete uniform for topologies
 - exceptions becoming more common
- Beta for proportions
- Gamma or Log-normal for branch lengths and other parameters with support [0,∞)
 - Exponential is common special case of the gamma distribution
- Dirichlet for state frequencies and GTR relative rates

Discrete Uniform distribution for topologies

Yule model provides joint prior for both topology and divergence times

The rate of speciation under the Yule model (λ) is constant and applies equally and independently to each lineage. Thus, speciation events get closer together in time as the tree grows because more lineages are available to speciate.

Gamma(a, b) distributions

"Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is the *inverse* of the value \hat{D} used in this slide in this case, the mean and variance would be a/D and a/D^2 , respectively. Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

Log-normal distribution

If X is log-normal with parameters μ and σ ...

...then log(X) is normal with mean μ and standard deviation σ .

Important: μ and σ do not represent the mean and standard deviation of X: they are the mean and standard deviation of $\log(X)$!

To choose μ and σ to yield a particular mean (m) and variance (v) for X, use these formulas: $\log(v + m^2) - \log(m^2)$

$$\mu = \log(m^2) - \log(m) - \frac{\log(v + m^2) - \log(m^2)}{2}$$

$$\sigma_v^2 = \log(v + m^2) - \log(m^2)$$

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

Beta(a,b) gallery

Beta distributions are appropriate for proportions, which are constrained to the interval [0,1].

mean = a/(a+b)variance = $ab/[(a+b)^2(a+b+1)]$

ı

Paul O. Lewis (2017 Woods Hole Molecular Evolution Workshop)

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

《□》《圖》《意》《意》。 意

72

Example: Internal Branch Length Priors

Separate priors applied to internal and external branches

External branch length prior is exponential with mean 0.1

Internal branch length prior is exponential with mean 0.1

This is a reasonably vague internal branch length prior

Internal branch length prior mean 0.01

(external branch length prior mean always 0.1)

Internal branch length prior mean 0.001

Internal branch length prior mean 0.0001

0.1

40 Cyanophora parad
39 Nephroselmis olivacea
38 Pteromonas angulos
36 Chlamydomonas reinl
37 Paulschulzia pseudovolvox
35 Volyox carteri
□ 33 Mesostigma viride
34 Mesostigma viride NIES
32 Chlorokybus atmosphyticus
— 20 Chaet oval
19 Chaet globosum SAG2698
25 Mesotaenium caldariorum
27 Mougeotia sp 758
23 Gonatozygon monotaenium
21 Onychonema sp
22 Cosmocladium perissum
31 Entransia fimbriata
24 Spirogyra maxima 2495
26 Zygnema peliosporum 45
28 Klebsormidium flaccidum
29 Klebsormidium subtilissimum
30 Klebsormidium nitens
16 Coleochaete soluta 32d1
15 Coleochaete orbicularis
17 Coleochaete irregularis
18 Coleochaete sieminskiana
14 Tolypella int prolifera
13 Nitella opaca
- 9 Chara connivens
- 10 Lamprothamnium macropogon
11 Lychnothamnus barbatus
12 Nitellopsis obtusa
8 Marchantia polymorpha
7 Anthoceros formosae
6 Sphagnum palustre
3 Huperzia lucidula
4 Psilotum nudum
5 Dicksonia antarctica
2 Taxus baccata
1 Arabidopsis thaliana

Internal branch length prior mean 0.00001

40 Cyanophora paradox	a
39 Nephroselmis olivacea	
38 Pteromonas angulos	
37 Paulschulzia pseudovolvox	
35 Volvox carteri	
36 Chlamydomonas reinhardtii	
34 Mesostigma viride NIES	
33 Mesostigma viride	
32 Chlorokybus atmosphyticus	
23 Gonatozygon monotaenium	
22 Cosmocladium perissum	
30 Klebsormidium nitens	
29 Klebsormidium subtilissimum	
21 Onychonema sp	
27 Mougeotia sp 758	
24 Spirogyra maxima 2495	
26 Zygnema peliosporum 45	
25 Mesotaenium caldariorum	
31 Entransia fimbriata	
19 Chaet globosum SAG2698	
20 Chaet oval	
28 Klebsormidium flaccidum	
15 Coleochaete orbicularis	
17 Coleochaete irregularis	
16 Coleochaete soluta 32d1	
13 Nitella opaca	
14 Tolypella int prolifera	
— 12 Nitellopsis obtusa	
— 11 Lychnothamnus barbatus	
— 9 Chara connivens	
— 10 Lamprothamnium macropogon	
8 Marchantia polymorpha	
7 Anthoceros formosae	
3 Huperzia lucidula	
6 Sphagnum palustre	
4 Psilotum nudum	
Dicksonia antarctica	
2 Taxus baccata	
1 Arabidancis thaliana	

Internal branch length prior mean 0.000001

The internal branch length prior is calling the shots now, and the likelihood must obey.

イロト イ御ト イミト イミト

0.1

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

In a non-hierarchical model, all parameters are present in the likelihood function

Hierarchical models add *hyperparameters* not present in the likelihood function

 μ is a *hyperparameter* governing the mean of the edge length prior

Prior: Exponential, mean μ

During an MCMC analysis, μ will hover around a reasonable value, sparing you from having to decide what value is appropriate. You still have to specify a hyperprior, however.

For example, see Suchard, Weiss and Sinsheimer. 2001. MBE 18(6): 1001-1013.

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

Empirical Bayes

Empirical Bayes uses the data to determine some aspects of the prior, such as the prior mean.

Pure Bayesian approaches choose priors without reference to the data.

An empirical Bayesian would use the maximum likelihood estimate (MLE) of the length of an average branch here

Prior: Exponential, mean=MLE

$$L_k = \frac{1}{4} \left[\frac{1}{4} + \frac{3}{4} e^{-4v_1/3} \right] \left[\frac{1}{4} + \frac{3}{4} e^{-4v_2/3} \right] \left[\frac{1}{4} - \frac{1}{4} e^{-4v_3/3} \right] \left[\frac{1}{4} - \frac{1}{4} e^{-4v_4/3} \right] \left[\frac{1}{4} + \frac{3}{4} e^{-4v_5/3} \right]$$

There are several software packages to perform Bayesian phylogenetics.

MrBayes

MrBayes is a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models. MrBayes uses Markov chain Monte Carlo (MCMC) methods to estimate the posterior distribution of model parameters. Has mostly been replaced by RevBayes, but is still useful for some analyses.

http://nbisweden.github.io/MrBayes/

RevBayes

A fuller featured successor to MrBayes. RevBayes provides an interactive environment for statistical computation in phylogenetics. It is primarily intended for modeling, simulation, and Bayesian inference in evolutionary biology, particularly phylogenetics.

https://revbayes.github.io/

BEAST2

BEAST 2 is a cross-platform program for Bayesian phylogenetic analysis of molecular sequences. It estimates rooted, time-measured phylogenies using strict or relaxed molecular clock models. It can be used as a method of reconstructing phylogenies but is also a framework for testing evolutionary hypotheses without conditioning on a single tree topology. BEAST 2 uses Markov chain Monte Carlo (MCMC) to average over tree space, so that each tree is weighted proportional to its posterior probability. BEAST 2 includes a graphical user-interface for setting up standard analyses and a suit of programs for analysing the results.

http://www.beast2.org/ Well developed set of tutorials at https://taming-the-beast.org/

MrBayes tutorial together on the cluster. We will do a simplified version of Paul Lewis's tutorial at https://plewis.github.io/mrbayes/