MATH410 Advanced Calculus I

Michael Li

Contents

1	\mathbf{Cha}	apter 6 Integrals	2
	1.1	Darboux Sums	2
	1.2	Lower and Upper Integrals	3
	1.3	Archimedes-Riemann Theorem	3

1 Chapter 6 Integrals

Basic idea of what an integral represents: For an integratable $f: [a,b] \to \mathbb{R}$ with $f(x) \ge 0$ for all $x \in [a,b]$, $\int_a^b f$ is the area under f and above the interval [a,b]

1.1 Darboux Sums

For reals a < b, $n \in \mathbb{N}$, and $a = x_0, \dots x_n = b$, $P = \{x_0, \dots, x_n\}$ is a **partition** of the interval [a, b]. For an index $i \ge 0$, x_1 is called a **partition point** of P. For $i \ge 1$, $[x_{i-1}, x_i]$ is a **partition interval** of P.

Suppose $f:[a,b]\to\mathbb{R}$ is bounded and $P=\{x_0,\ldots,x_n\}$ is a partition of [a,b], then for $i\geq 1$:

$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}\$$

 $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}\$

We use m_i and M_i to define the **Lower and Upper Darboux Sums** for f based on partition P

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

Since $m_i \leq M_i$ for each $i \geq 1$, we have

$$L(f,P) \leq U(f,P)$$
 for any partition P of $[a,b]$

Also useful to note that for any partition of [a, b]:

$$b - a = \sum_{i=1}^{n} (x_i - x_{i-1})$$

Lemma 6.1: if $f:[a,b]\to\mathbb{R}$ is bounded and for m,M: $m\leq f(x)\leq M$ for all $x\in[a,b]$ then

$$m(b-a) < L(f, P)$$
 and $U(f, P) < M(b-a)$

Proof: m is a lower bound for all m_i as defined above so we have:

$$m(b-a) = \sum_{i=1}^{n} m(b-a) \le \sum_{i=1}^{n} m_i(b-a) = L(f, P)$$

Similar proof is applied for $U(f, P) \leq M(b - a)$

Partition P^* is the **refinement** of partition P if each partition pt of P is a partition pt of P^* Partition pts of P^* that belong to the partition interval $[x_{i-1}, x_i]$ define a sub-partition P_i . Observe:

$$\sum_{i=1}^{n} L(f, P_i) = L(f, P^*) \text{ and } \sum_{i=1}^{n} U(f, P_i) = U(f, P^*)$$

Lemma 6.2 Refinement Lemma: Suppose $f:[a,b] \to \mathbb{R}$ is bounded and that P is a partition of [a,b]. If P^* is a refinement of P then:

$$L(f, P) \le L(f, P^*)$$
 and $U(f, P^*) \le U(f, P)$

Proof: Let $P = \{x_0, \dots, x_n\}$, for index $i \geq 1$, define m_i the same as above, and let P_i be the partition of $[x_{i-1}, x_i]$ induced by P^* . Applying Lemma 6.1 to $f: [x_{i-1}, x_i] \to \mathbb{R}$ gives:

$$m_i(x_i - x_{i-1}) \le L(f, P_i)$$

Taking the sum of all n sub-partitions gives

$$L(f, P) \le \sum_{i=1}^{n} L(f, P_i) = L(f, P^*)$$

Similar argument can be done to show $U(f, P^*) \leq U(f, P)$

Given partitions P_1 , P_2 of [a, b], a **common refinement** P^* can be formed by taking the union of the partition pts of P_1 , P_2

Lemma 6.3: Suppose $f: [a,b] \to \mathbb{R}$ is bounded and that P_1, P_2 are partitions of [a,b] then:

$$L(f, P_1) < U(f, P_2)$$

Proof: Let P^* be the common refinement of P_1, P_2 . By the Refinement Lemma, we have:

$$L(f, P_1) \le L(f, P^*) \le U(f, P^*) \le U(f, P_2)$$

1.2 Lower and Upper Integrals

Suppose $f:[a,b]\to\mathbb{R}$ is bounded. We can define the lower and upper integrals on [a,b] as:

$$\int_a^b f = \sup\{L(f,P) \colon P \text{ is a partition of } [a,b]\}$$

$$\int_a^b f = \inf\{L(f, P) \colon P \text{ is a partition of } [a, b]\}$$

Lemma 6.4: for a bounded $f:[a,b] \to \mathbb{R}$

$$\int_{a}^{b} f \leq \int_{a}^{\overline{b}} f$$

Proof: Let P be a partition of [a,b]. By Lemma 6.3, U(f,P) is an upperbound for all Lower Darboux Sums of f. Thus:

$$\int_a^b f \le U(f,P)$$

This inequality implies that $\underline{\int}_a^b$ is a lower bound for all Upper Darboux Sums of f. Thus, by definition of infimum:

$$\int_{a}^{b} f \le \int_{a}^{\overline{b}} f$$

1.3 Archimedes-Riemann Theorem

Suppose $f: [a, b] \to \mathbb{R}$ is bounded. Then f is **integrable** on [a, b] if

$$\int_{\underline{a}}^{b} f = \int_{\overline{a}}^{\overline{b}} f$$

When this condition is met, the integral of f over [a, b] is defined as

$$\int_{\underline{a}}^{b} f = \int_{a}^{b} = \int_{\overline{a}}^{\overline{b}} f$$

Lemma 6.7: For a bounded $f:[a,b] \to \mathbb{R}$ and partition P of [a,b],

$$L(f,P) \leq \int_a^b f \leq \int_a^b f \leq U(f,P)$$

This creates 3 useful inequalities

$$0 \le \int_a^b f - \int_a^b f \le U(f, P) - L(f, P)$$
$$0 \le U(f, P) - \int_a^b f \le U(f, P) - L(f, P)$$
$$0 \le \int_a^b f - L(f, P) \le U(f, P) - L(f, P)$$

Proof: by definition of lower and upper integrals

$$L(f,P) \le \int_a^b f$$
 and $\int_a^b \le U(f,P)$

Using Lemma 6.4 we get:

$$L(f,P) \le \int_a^b f \le \int_a^b f \le U(f,P)$$

Theorem 6.8 Archimedes-Riemann Theorem: Let $f:[a,b] \to \mathbb{R}$ be bounded. Then f is integrable on [a,b] if and only if there is a sequence $\{P_n\}$ of partitions of [a,b] such that

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0$$

Moreover, for any such sequence of partitions,

$$\lim_{n\to\infty} L(f,P_n) = \int_a^b f \text{ and } \lim_{n\to\infty} U(f,P_n) = \int_a^b f$$

Proof Forward: suppose that such a sequence of partitions exists satisfying the equation. Using Lemma 6.7, for an index n, P_n satisfies the inequality

$$0 \le \int_{a}^{b} f - \int_{a}^{b} f \le \lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0$$

Thus

$$\int_a^b f = \int_a^{\overline{b}} f$$
 as desired and f is integrable over $[a,b]$

Proof Backwards: fix a natural number n. By definition of lower integral and least upper bound,

$$\left(\int_a^b f\right) - 1/n$$
 is not an upper bound for the Lower Darboux Sums of f

Thus for some partition P' of [a, b]

$$\int_{a}^{b} f - 1/n < L(f, P')$$

Similar for upper integral and some partition P'' of [a, b]

$$U(f,P'')<\left(\int_a^bf\right)+1/n$$

By the Refinement Lemma, the 2 inequalities above hold for a common refinement, P_n , of P', P''. Thus,

$$0 \le U(f, P_n) - L(f, P_n) < \left[\left(\int_a^b f \right) + 1/n \right] - \left[\left(\int_a^b f \right) - 1/n \right] = 2/n$$

Thus,

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0$$

The sequence of partitions $\{P_n\}$ that satisfies the Archimedes-Riemann Theorem is called the **Archimedean sequence of partitions**, satisfying:

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0$$

For a $n \in \mathbb{N}$, the partition $P = \{x_0, \dots, x_n\}$ of [a, b] is called the **regular partition** of [a, b] into n partition intervals (of length (b - a)/n) if:

$$x_i = a + i \frac{b-a}{n}$$
 for $0 \le i \le n$

For partition P of [a, b], the **gap** of P, denoted gap P, is the length of the largest partition interval:

$$\operatorname{gap} P = \max_{i < i < n} [x_i - x_{i-1}]$$

Example 6.9: A monotonically increasing $f: [a,b] \to \mathbb{R}$ is integrable. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a,b]. Since f is monotonically decreasing, we can define for any index $i \ge 1$:

$$m_i = \inf\{f(x) \colon x \in [x_{i-1}, x_i] = f(x_{i-1})$$

$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i] = f(x_i)$$

Divide P into regular partitions and for $n \in \mathbb{N}$, take P_n . Then

$$U(f, P_n) - L(f, P_n) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} (M_i - m_i) \frac{b - a}{n} = \frac{b - a}{n} (f(b) - f(a))$$

Thus

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = \lim_{n \to \infty} \frac{(f(b) - f(a))(b - a)}{n} = 0$$

Example 6.11: Let $f(x) = x^2$ for $x \in [0,1]$. Show that

$$\int_0^1 x^2 dx = 1/3$$

Since f(x) is monotonically increasing, it is integrable on [0,1] (shown in Example 6.9) Define a regular partition P_n of [0,1]. Since $\{P_n\}$ is an Archimedean sequence of partitions for f on [0,1] (Example 6.9), by Archimedes-Rieman Theorem:

$$\int_0^1 x^2 dx = \lim_{n \to \infty} U(f, P_n)$$

For index $i \geq 1$, we have

$$M_i = \sup\{f(x) \colon x \in [x_{i-1}, x_i]\} = f(x_i) = i^2/n^2$$

 $x_i - x_{i-1} = 1/n$ Thus,

$$M_i(x - x_{i-1}) = i^2/n^3$$

Using the sum of squares we get

$$U(f, P_n) = \sum_{i=1}^n M_i(x_i - x_{i-1}) = (1/n^3) \left(\sum_{i=1}^n i^2\right) = \frac{n(n+1)(2n+1)}{6n^3}$$

Therefore,

$$\int_0^1 x^2 dx = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = 1/3$$