Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA A XII-a

Problema 1. Fie $f:[0,\infty)\to[0,\infty)$ o funcție descrescătoare, astfel încât $\int_0^x f(t)dt < 1$, oricare ar fi $x \ge 0$. Să se arate că:

- a) $\lim_{x\to\infty} \int_0^x f(t) dt$ există și este finită; b) $\lim_{x\to\infty} xf(x) = 0$.

Problema 2. Fie A un inel comutativ cu n elemente, $n \geq 2$. Să se arate că următoarele afirmații sunt echivalente:

- a) $x^2 = x$, oricare ar fi $x \in A$;
- b) numărul funcțiilor polinomiale $\tilde{f}:A\to A$ este $n^2.$

Gazeta Matematică

Problema 3. Fie $f:[0,1]\to\mathbb{R}$ o funcție continuă astfel încât

$$\int_0^1 (x-1)f(x)\mathrm{d}x = 0.$$

Să se arate că:

- a) există un punct $a \in (0,1)$ astfel încât $\int_0^a x f(x) dx = 0$;
- b) există un punct $b \in (0,1)$ astfel încât $\int_0^b x f(x) dx = b f(b)$.

Problema 4. Fie K un corp finit cu q elemente și $n \geq q$, $n \in \mathbb{N}$. Să se determine probabilitatea ca alegând un polinom din mulțimea polinoamelor de grad n din K[X], acesta să nu aibă nicio rădăcină în K.

Timp de lucru 3 ore + 1/2 oră pentru întrebări lămuritoare asupra enunțurilor. Fiecare problemă este punctată de la 0 la 7 puncte.