CREDIT CARD CLASSIFICATION BY - AVINASH RAI **CREDIT SCORE** GOOD POOR EXCELLENT

Agenda

01 Importing the Libraries

O2 Loading the Data

03 Data Cleaning

04 One Hot Encoding

05 Feature Selection

o6 Implementing ML Algorithms

Problem Statement

You are working as a data scientist in a global finance company. Over the years, the company has collected basic bank details and gathered a lot of credit-related information. The management wants to build an intelligent system to segregate the people into credit score brackets to reduce the manual efforts. Given a person's credit-related information, build a machine learning model that can classify the credit score.

Credit score dataset contains 1 lac records with 28 features.

Attributes	Description
ID	unique identification of an entry
Customer_ID	unique identification of a person
Month	month of the year
Name	name of a person
Age	age of the person
SSN	social security number of a person
Occupation	occupation of the person
Annual_Income	annual income of the person
Monthly_Inhand_Salary	monthly base salary of a person
Num_Bank_Accounts	number of bank accounts a person holds
Num_Credit_Card	number of other credit cards held by a person

Attributes	Description
Interest_Rate	interest rate on credit card
Num_of_Loan	number of loans taken from the bank
Type_of_Loan	types of loan taken by a person
Delay_from_due_date	average number of days delayed from the payment date
Num_of_Delayed_Payment	age of the person
Changed_Credit_Limit	percentage change in credit card limit
Num_Credit_Inquiries	number of credit card inquiries
Credit_Mix	classification of the mix of credits
Outstanding_Debt	remaining debt to be paid (in USD)
Credit_Utilization_Ratio	utilization ratio of credit card
Credit_History_Age	the age of credit history of the person

Attributes	Description
Payment_of_Min_Amount	the minimum amount was paid by the person
Total_EMI_per_month	monthly EMI payments (in USD)
Amount_Invested_monthly	monthly amount invested by the customer (in USD)
Payment_Behaviour	payment behavior of the customer (in USD)
Monthly_Balance	monthly balance amount of the customer (in USD)
Credit_Score	the bracket of credit score

Importing the Libraries

We start off this project by importing all the necessary libraries that will be required for the process.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

Loading the Data

Loading the data and removing unnecessary column from the dataframe

```
df=pd.read_csv("credit_score.csv")
df=df.drop(columns=["ID","Customer_ID","Name","SSN","Type_of_Loan","Credit_History_Age"])
df.head()
```

	Month	Age	Occupation	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Interest_Rate	Num_of_Loan	Delay_from_due_date	•••
0	January	23	Scientist	19114.12	1824.843333	3	4	3	4	3	
1	February	23	Scientist	19114.12	NaN	3	4	3	4	-1	
2	March	-500	Scientist	19114.12	NaN	3	4	3	4	3	
3	April	23	Scientist	19114.12	NaN	3	4	3	4	5	
4	May	23	Scientist	19114.12	1824.843333	3	4	3	4	6	

5 rows x 22 columns

Loading the Data

Checking the shape of a dataframe and datatypes of all columns along with calculating the statistical data.

df.shape df.info() df.describe()

(100000, 22)

	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Interest_Rate	Delay_from_due_date	Num_Credit_Inquiries
count	84998.000000	100000.000000	100000.00000	100000.000000	100000.000000	98035.000000
mean	4194.170850	17.091280	22.47443	72.466040	21.068780	27.754251
std	3183.686167	117.404834	129.05741	466.422621	14.860104	193.177339
min	303.645417	-1.000000	0.00000	1.000000	-5.000000	0.000000
25%	1625.568229	3.000000	4.00000	8.000000	10.000000	3.000000
50%	3093.745000	6.000000	5.00000	13.000000	18.000000	6.000000
75%	5957.448333	7.000000	7.00000	20.000000	28.000000	9.000000
max	15204.633333	1798.000000	1499.00000	5797.000000	67.000000	2597.000000

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 Data columns (total 22 columns): Column Non-Null Count Dtype object Month 100000 non-null Age 100000 non-null object Occupation 100000 non-null object Annual Income 100000 non-null object Monthly Inhand Salary 84998 non-null float64 Num Bank Accounts 100000 non-null int64 Num Credit Card 100000 non-null int64 Interest Rate 100000 non-null int64 Num of Loan 100000 non-null object Delay from due date 100000 non-null int64 Num of Delayed Payment 92998 non-null object Changed Credit Limit 100000 non-null object Num Credit Inquiries 98035 non-null float64 Credit Mix 100000 non-null object Outstanding Debt 100000 non-null object Credit Utilization Ratio 100000 non-null float64 Payment of Min Amount 100000 non-null object Total EMI per month 100000 non-null float64 Amount_invested_monthly object 95521 non-null Payment Behaviour object

100000 non-null

100000 non-null object

object

98800 non-null

dtypes: float64(4), int64(4), object(14)

memory usage: 16.8+ MB

Credit Score

Monthly Balance

Missing Values

Checking out the missing values in a dataframe

Month

df.isnull().sum()

Month	9
Age	0
Occupation	0
Annual_Income	0
Monthly_Inhand_Salary	15002
Num_Bank_Accounts	0
Num_Credit_Card	0
Interest_Rate	0
Num_of_Loan	0
Delay_from_due_date	0
Num_of_Delayed_Payment	7002
Changed_Credit_Limit	0
Num_Credit_Inquiries	1965
Credit_Mix	0
Outstanding_Debt	0
Credit_Utilization_Ratio	0
Payment_of_Min_Amount	0
Total_EMI_per_month	0
Amount_invested_monthly	4479
Payment_Behaviour	0
Monthly_Balance	1200
Credit_Score	0
dtype: int64	

```
df["Age"]=df["Age"].str.replace(" ","")
df["Age"]=df["Age"].astype(int)
df["Occupation"]=df["Occupation"].replace(" ",np.nan)
df["Annual Income"]=df["Annual Income"].str.replace(" ","")
df["Annual Income"]=df["Annual Income"].astype(float)
df["Num of Loan"]=df["Num of Loan"].str.replace(" ","")
df["Num_of_Loan"]=df["Num_of_Loan"].astype(int)
df["Num of Delayed Payment"]=df["Num of Delayed Payment"].str.replace(" ","")
df["Num of Delayed Payment"]=df["Num of Delayed Payment"].astype(float)
df["Credit Score"]=df["Credit Score"].replace(["Poor", "Standard", "Good"], [0,1,2])
df["Monthly Balance"]=df["Monthly Balance"].str.replace(" ","")
df["Monthly Balance"]=df["Monthly Balance"].astype(float)
df["Payment Behaviour"]=df["Payment Behaviour"].replace("!@9#%8",np.nan)
df["Amount_invested_monthly"]=df["Amount_invested_monthly"].str.replace("_","")
df["Amount_invested_monthly"]=df["Amount_invested_monthly"].astype(float)
df["Payment_of_Min_Amount"]=df["Payment_of_Min_Amount"].replace("NM","No")
df["Payment of Min Amount"]=df["Payment of Min Amount"].replace(["Yes","No"],[1,0])
df["Outstanding Debt"]= df["Outstanding Debt"].str.replace(" ","")
df["Outstanding Debt"]=df["Outstanding Debt"].astype(float)
df["Credit Mix"]=df["Credit Mix"].replace(" ",np.nan)
df["Credit Mix"]=df["Credit Mix"].replace(["Standard", 'Good', "Bad"], [1,2,0])
df["Changed Credit Limit"]= df["Changed Credit Limit"].replace(" ",np.nan)
df["Changed Credit Limit"]=df["Changed Credit Limit"].astype(float)
```

Replacing the special characters with empty string or with null values according to the data and converting it into int or float datatype. Also, Converting the categorical values of some columns into integer values.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 22 columns):
                               Non-Null Count
     Column
                                                Dtvpe
     Month
                               100000 non-null
                                                object
     Age
                               100000 non-null
                                                int64
                               92938 non-null
    Occupation
                                                object
    Annual Income
                               100000 non-null float64
    Monthly Inhand Salary
                              84998 non-null
                                                float64
    Num Bank Accounts
                               100000 non-null int64
    Num Credit Card
                               100000 non-null
                                               int64
    Interest Rate
                               100000 non-null int64
    Num of Loan
                              100000 non-null int64
    Delay from due date
                               100000 non-null int64
    Num of Delayed Payment
                               92998 non-null
                                                float64
    Changed Credit Limit
                               97909 non-null
                                                float64
    Num Credit Inquiries
                               98035 non-null
                                               float64
    Credit Mix
                               79805 non-null
                                               float64
    Outstanding Debt
                               100000 non-null float64
    Credit Utilization Ratio 100000 non-null float64
    Payment of Min Amount
                               100000 non-null int64
    Total EMI per month
                               100000 non-null float64
    Amount invested monthly
                              95521 non-null
                                               float64
    Payment Behaviour
                              92400 non-null
                                                object
    Monthly Balance
                               97132 non-null
                                                float64
    Credit Score
                               100000 non-null int64
dtypes: float64(11), int64(8), object(3)
memory usage: 16.8+ MB
```

Clearly, The datatype of the columns have been changed after performing the operation

```
df.isnull().sum()
df=df.fillna(method="ffill")
df=df.fillna(method="bfill")
df.isnull().sum()
```

Month	0
Age	9
Occupation	7062
Annual Income	9
_	
Monthly_Inhand_Salary	15002
Num_Bank_Accounts	0
Num_Credit_Card	0
Interest_Rate	0
Num_of_Loan	0
Delay_from_due_date	0
Num_of_Delayed_Payment	7002
Changed_Credit_Limit	2091
Num_Credit_Inquiries	1965
Credit_Mix	20195
Outstanding_Debt	0
Credit_Utilization_Ratio	0
Payment_of_Min_Amount	0
Total_EMI_per_month	0
Amount_invested_monthly	4479
Payment_Behaviour	7600
Monthly_Balance	2868
Credit_Score	0
dtype: int64	

Month	0
Age	0
Occupation	0
Annual_Income	0
Monthly_Inhand_Salary	0
Num_Bank_Accounts	0
Num_Credit_Card	0
Interest_Rate	0
Num_of_Loan	0
Delay_from_due_date	0
Num_of_Delayed_Payment	0
Changed_Credit_Limit	0
Num_Credit_Inquiries	0
Credit_Mix	0
Outstanding_Debt	0
Credit_Utilization_Ratio	0
Payment_of_Min_Amount	0
Total_EMI_per_month	0
Amount_invested_monthly	0
Payment_Behaviour	0
Monthly_Balance	0
Credit_Score	0
dtvpe: int64	

After replacing the special characters with null value. The new missing value is shown in the figure. Here Forward and backward filling method is used to fill the missing values.

```
sns.boxplot(df["Age"])
plt.xlabel("Age")
plt.ylabel('count')
plt.show()
```


removing outliers from age since all other columns values are relevant

```
from sklearn.preprocessing import LabelEncoder
le= LabelEncoder()
df["Month"]=le.fit_transform(df["Month"])
df["Occupation"]=le.fit_transform(df["Occupation"])
df["Payment_Behaviour"]=le.fit_transform(df["Payment_Behaviour"])
df.info()
```

Performing One Hot Encoding for categorical features of a dataframe

Column	Non-Null Co	ount	Dtype
Month	100000 non-	-null	int64
Age	100000 non-	-null	int64
Occupation	100000 non-	-null	int64
Annual_Income	100000 non-	-null	float64
Monthly_Inhand_Salary	100000 non-	-null	float64
Num_Bank_Accounts	100000 non-	-null	int64
Num_Credit_Card	100000 non-	-null	int64
Interest_Rate	100000 non-	-null	int64
Num_of_Loan	100000 non-	-null	int64
Delay_from_due_date	100000 non-	-null	int64
Num of Delayed Payment	100000 non-	-null	float64
Changed_Credit_Limit	100000 non-	-null	float64
Num_Credit_Inquiries	100000 non-	-null	float64
Credit_Mix	100000 non-	-null	float64
Outstanding Debt	100000 non-	-null	float64
Credit_Utilization_Ratio	100000 non-	-null	float64
Payment of Min Amount	100000 non-	-null	int64
Total_EMI_per_month	100000 non-	-null	float64
Amount_invested_monthly	100000 non-	-null	float64
Payment_Behaviour	100000 non-	-null	int64
Monthly_Balance	100000 non-	-null	float64
Credit_Score	100000 non-	-null	int64
<u> </u>			

Feature Selection

Selecting the features using VIF. VIF should be less than 5. Here, all features have VIF value less than 5, So we will select all the features.

```
feature
                               VIF
                          0.300012
                  Month
                         0.974661
                     Age
              Occupation
                         0.277722
           Annual Income
                         0.985001
  Monthly Inhand Salary
                         0.365970
      Num Bank Accounts
                          0.979247
        Num Credit Card
                         0.970567
                         0.976430
           Interest Rate
            Num of Loan 0.997697
     Delay from due date
                          0.332213
 Num of Delayed Payment
                          0.981707
   Changed Credit Limit
                         0.299307
   Num Credit Inquiries
                          0.979793
              Credit Mix
                         0.321474
       Outstanding Debt
                         0.396141
Credit Utilization Ratio
                         0.024506
   Payment of Min Amount
                         0.476749
     Total EMI per month
                         0.972258
Amount invested monthly
                          0.911321
       Payment Behaviour
                         0.310525
         Monthly Balance
                          1.000207
```

Logistic Regression

The accuracy of the logistic regression model is 61.8 percentage

```
X=df.drop(columns=["Credit_Score"])
y=df["Credit_Score"]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =train_test_split(X,y,test_size=0.2,random_state=42)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train= sc.fit_transform(x_train)
x_test= sc.transform(x_test)
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_train,y_train)
y_pred=lr.predict(x_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)
pd.DataFrame({"actual_value":y_test,"predicted_value":y_pred})
```

	actual_value	<pre>predicted_value</pre>
75721	2	2
80184	0	0
19864	2	2
76699	0	0
92991	2	2
32595	1	1
29313	1	1
37862	0	1
53421	1	1
42410	1	1

20000 rows x 2 columns

Decision Tree

The accuracy of the decision tree model is 69.7 percentage

```
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
y_pred= dt.predict(x_test)
accuracy_score(y_test,y_pred)
pd.DataFrame({"actual_value":y_test,'predicted_value':y_pred})
```

0.6977

actual_value predicted_value

75721	2	2
80184	0	0
19864	2	2
76699	0	0
92991	2	2
32595	1	1
29313	1	1
37862	0	1
53421	1	1
42410	1	0

20000 rows x 2 columns

Hyperparameter Tuning on Decision Tree

```
from sklearn.model selection import GridSearchCV
parameters = {'max features': ['log2', 'sqrt', 'auto'],
              'criterion': ['entropy', 'gini'],
              'max depth': [2, 3, 5, 10, 50],
              'min samples split': [2, 3, 50, 100],
              'min samples leaf': [1, 5, 8, 10]
grid obj = GridSearchCV(dt, parameters)
grid_obj = grid_obj.fit(x_train, y_train)
dt = grid obj.best estimator
dt.fit(x train,y train)
y pred = dt.predict(x test)
acc_dt = round(accuracy_score(y_test, y_pred) * 100, 2 )
print( 'Accuracy of Decision Tree model : ', acc dt )
```

Here, We are using
GridSearch CV technique
which is used to identify the optimal
hyperparameters for a model and the
accuracy obtained from Decision
Tree is 70.93

Accuracy of Decision Tree model: 70.93

Random Forest

The accuracy of the random forest model is 79.7 percentage

```
from sklearn.ensemble import RandomForestClassifier

rfc= RandomForestClassifier()

rfc.fit(x_train,y_train)

y_pred=rfc.predict(x_test)

accuracy_score(y_test,y_pred)

pd.DataFrame({"Actual_Value":y_test,"Predicted_Value":y_pred})
```

0.7974

	Actual_Value	Predicted_Value
75721	2	2
80184	0	0
19864	2	2
76699	0	0
92991	2	2
32595	1	1
29313	1	1
37862	0	1
53421	1	1
42410	1	0

20000 rows x 2 columns