OPEN PROBLEMS ON GENERALISED BAIRE SPACES 2020

The Fifth Workshop on Generalised Baire Spaces took place at the School of Mathematics of the University of Bristol on 3-4 February, 2020, see https://philippschlicht.github.io/meetings/generalizedbairespaces2020. This is an incomplete list of some open problems that were discussed at the workshop. ¹

1. Generalized Baire Spaces

- 1.1. Claudio Agostini: Winning tactics. A *tactic* in a game of length ω is a strategy that depends only on the previous move of the opponent. For separable regular Hausdorff spaces, the following conditions are equivalent:
 - (1) There is a compatible complete metric.
 - (2) There is a winning tactic for II in the strong Choquet game.
 - (3) There is a winning strategy for II in the strong Choquet game.

Notice that tactics do not make sense for longer games, since moves at limit times don't have a predecessor. But one can define the following natural variant for the strong Choquet game $G_{\kappa}(X)$ of length κ for X. A tactic for II in $G_{\kappa}(X)$ is defined as a strategy with the following properties:

- (1) For successor times, the reply of II depends only on the preceding move.
- (2) For a play of limit length consisting of $\vec{U} = \langle U_i \mid i < \alpha \rangle$ and $\vec{x} = \langle x_i \mid i < \alpha \rangle$, the reply of II depends only on $\bigcap_{i < \alpha} U_i$ and (possibly) α .

Question 1.1. Suppose that X is a regular Hausdorff space of weight $\leq \kappa$. Does the existence of a winning strategy for player II in $G_{\kappa}(X)$ imply the existence of a winning tactic?

1.2. **Dorottya Sziraki: The open colouring axiom.** The *open colouring axiom* for X, $\mathsf{OCA}_{\kappa}(X)$, states that any open graph G on X either has a κ -coloring or else contains a complete subgraph of size κ^+ . OCA_{κ} states that $\mathsf{OCA}_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$.

Question 1.2. Is OCA_{κ} consistent with ZFC?

The open graph dichotomy $\mathsf{OGD}_{\kappa}(X)$ for X states that any open graph on X either has a κ -colouring or else contains a κ -perfect complete subgraph. The perfect set property $\mathsf{PSP}_{\kappa}(X)$ for $X \subseteq {}^{\kappa}\kappa$ states that $|X| \leq \kappa$ or X has a κ -perfect subsets.

Question 1.3. Does $\mathsf{PSP}_{\kappa}(\mathsf{closed})$ imply $\mathsf{OGD}_{\kappa}(\mathsf{closed})$?

Fact. $\mathsf{OGD}_{\kappa}(\mathsf{closed}) \Rightarrow \mathsf{OGD}_{\kappa}(\Sigma_1^1(\kappa)) \Rightarrow \mathsf{PSP}_{\kappa}(\Sigma_1^1(\kappa)).$

Fact. After forcing with $\operatorname{Col}(\kappa, <\lambda)$, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}$ holds for all sets definable from κ -sequences of ordinals.

Question 1.4. Can we force PSP_{κ} with some forcing other than $\mathsf{Col}(\kappa, <\lambda)$?

1

 $^{^1\}mathrm{If}$ you have an answer, comment or further question, please email Philipp Schlicht at philipp.schlicht@bristol.ac.uk.

2. Connections with model theory

2.1. Jan Dobrowolski: Polish groups.

Fact. Suppose that X is Polish, E is an equivalence relation on X such that

- (1) the equivalence class $[x]_E$ of any $x \in X$ is closed and
- (2) the saturation $[U]_E$ of any open subset U of X is Borel.

Then X/E, with the Effros Borel structure, is standard Borel, and the natural projection $\pi: X \to X/E$ has a Borel measurable right inverse f with $\pi \circ f = \mathrm{id}$.

In particular, this holds for any Polish group H and the equivalence relation on H induced by a closed subgroup $G \leq H$.

Question 2.1. Does the analogue of the previous statement about Polish groups hold for κ^{κ} ?

The product of two closed subgroups G, H of $Sym(\omega)$ has the property of Baire.

Question 2.2. Does the analogue of the previous statement hold for $\operatorname{Sym}(\kappa)$ with the bounded topology?

2.2. Rosario Mennuni: Omitting types.

Disclaimer: The answer to this question might be easy or already known.

The most basic version of the Omitting Type Theorem states:

Theorem. Let T be a consistent first-order theory in a countable language, $x = (x_0, \ldots, x_{n-1})$ an n-tuple of variables, and $\pi(x)$ a partial n-type over \emptyset such that for no formula $\phi(x)$ consistent with T we have $T \cup \{\phi(x)\} \vdash \pi(x)$. Then there is a countable $M \models T$ such that no element of M^n realises $\pi(x)$.

A better version states (see [2, Theorem 10.3]):

Theorem. Let T be a consistent first-order theory in a countable language, and for every $n \in \omega$ let A_n be a meagre subset of the space $S_n(T)$ of n-types over \emptyset . Then there is a countable $M \models T$ such that, for every $n \in \omega$ and $p(x) \in A_n$, no element of M^n realises p(x).

The basic version can be generalised to what is called the κ -omitting types theorem (see [1, Theorem 2.2.19]).

Theorem. Let T be a consistent first-order theory in a language of size κ , $x = (x_0, \ldots, x_{n-1})$ an n-tuple of variables, and $\pi(x)$ a partial n-type over \emptyset such that for no set of formulas $\Phi(x)$ of size $< \kappa$ consistent with T we have $T \cup \Phi(x) \vdash \pi(x)$. Then there is $M \models T$ with $|M| \le \kappa$ and such that no element of M^n realises $\pi(x)$.

Question 2.3. Let L be a language of size κ , and let T be a consistent L-theory. Equip each $S_n(T)$ with the topology generated by declaring partial types of size $< \kappa$ to induce open sets, and replace "meagre" with " κ -meagre". For which cardinals κ does Theorem 2.2 generalise in the fashion of Theorem 2.2?

References

- [1] C.C. Chang, H.J. Keisler. *Model Theory*, Third edition, Studies in Logic and the Foundations of Mathematics 73. North-Holland Publishing Co., Amsterdam, (1990).
- [2] B. Poizat. A Course in Model Theory. Universitext. Springer (2000).

3. Combinatorics of κ^{κ}

3.1. Adrian Mathias, Vera Fischer.

Question 3.1. Do analogues to some classical results for mad families on ω hold for mad families on κ ?

3.2. Johannes Schürz.

Question 3.2. Is there a forcing that adds a κ -dominating real, but no κ -Cohen real?

3.3. Sarka Stejskalova.

Question 3.3. Is $\mathfrak{u}_{\kappa} < 2^{\kappa}$ consistent for the successor κ of a regular cardinal?