Node selection Simulation

- 隨機產生 N=100 個 node 的位置,均匀分布在半徑 300m cell 裡,形成一個 node set V = {1, 2, ..., N},Cluster Head (CH) 在圓心。均匀分布的產生方法: r = R*sqrt(rand(1,N)); theta = 2*pi*rand(1,N); x = r.*cos(theta); y = r.*sin(theta);
- 2. 產生 covariance matrix $[\Sigma]_{N\times N}$: $\sigma_{ij}=\sigma_i\sigma_j\exp(-d_{ij}^2/a)$,其中 $\sigma_i\sigma_j$ 為 node i, j 的 variance, d_{ij} 為 node i, j 的距離(m)。設 a = 2500, $\sigma_i=\sigma_j=0.5$ 。
- 3. 我們所要解的問題:

Objective
$$\max_{S\subseteq V} H(X_S) = \frac{1}{2} \log_2 \left[(2\pi e)^{|S|} \det(\Sigma_S) \right] - |S| \log_2 \Delta$$
$$= \frac{1}{2} \log_2 \left[\left(\frac{2\pi e}{\Delta^2} \right)^{|S|} \det(\Sigma_S) \right] \dots (1)$$

Subject to
$$W\log_2\left(1 + \frac{G_iP_i}{WN_0}\right) \ge \frac{H(X_i)}{t_i} = \frac{1}{2t_i}\log_2\left(\frac{2\pi e\sigma_i^2}{\Delta^2}\right)$$
 $i \in S \dots (2)$

$$\sum_{i \in S} t_i \le T \quad \dots (3)$$

也就是我們要在有限的資源 (總傳輸時間 T, 以及頻寬 W) 中上傳最大的訊息量 $H(X_S)$ 。由於我們使用 TDMA 的傳輸方式,因此每個人所分到的傳輸時間總和不能大於資源 T;此外每個 node 的傳輸速率也不能大於其 channel capacity,|S|為 set S 的大小 (element 個數)。

4. Cross Entropy Algorithm

- 1) 由不等式(2)算出每個 node 所需最小傳輸時間 t_{mi}: tm={t_{m1}, t_{m2}, ..., t_{mN}}
- 2) 初始化機率向量值 p_{1xN} =[1/2, 1/2, ..., 1/2],每個 element 對應到每個 node 被選到的機率。設 HM = 0 ,S = 0_{1xN} 。
- 3) 根據機率 p 產生 8N 個 random binary sequence x=[1, 0, 0, ..., 1], 其中 1 代表該 node 被選到, 0 代表沒被選到。
- 4) 對於每個 binary sequence $\mathbf{x}^{(k)}$,如果其選到的 node $\sum_i x_i^{(k)} t_{mi} \leq T$,則此 sequence 為一可行解,否則將選到的 node 中 tm 最大者捨棄 $(\mathbf{x}_{\mathbf{j}} = \mathbf{0})$,直 到滿足 $\sum_i x_i^{(k)} t_{mi} \leq T$ 。如此這 8N 個 binary sequence 皆為可行解
- 5) 算出每個 sequence 的 objective $\{H_1, H_2, ..., H_{8N}\}$ 並將他們由大到小排序 $\{H_{I(1)}, H_{I(2)}, ..., H_{I(8N)}\}$,I 為所對應的 index;如果最大的值大於 HM,則 $HM=H_{I(1)}$, $S=x^{I(1)}$ 。

- 6) 選出前 20%最大的 r 個 H_i 所對應的 sequence (r=8*100*0.2=160) $\{x^{l(1)}, x^{l(1)}, \dots, x^{l(1)}\}$,更新機率向量 $\mathbf{p} = \alpha \cdot \mathbf{p} + \frac{1-\alpha}{r} \sum_{j=1}^r \mathbf{x}^{I(j)}$
- 7) 重複步驟(3)直到機率向量每個 element 收斂至 0.05 或 0.95 (大概跑 30~100 iterations),最後得到解 HM 以及 set S。

5. 參數設定

Quantization step: $\Delta = 2^{-8}$

Channel gain: $\textit{G}_i = 10^{-13.11} \cdot \emph{d}_i^{-4.281}$, \emph{d}_i 為 node 與 CH 的距離 (單位 km)

TX power: $P_i = 0.01$ Watt Bandwidth: W = 180kHz

Noise Power density: $N_0 = 10^{-12} \text{W/kHz}$

Total time length: $T = 10 \sim 60 \text{ms}$,可以自己調表示資源的多少。資源少時無

法讓所有人上傳,資源多時則所有人皆能傳。