Homework #5: Due: Nov. 14, 2019

1. On 2-dimensional space with real coordinates (x,y), define position eigenstates $|x,y\rangle$ with $\hat{x}|x,y\rangle = x|x,y\rangle$ and $\hat{y}|x,y\rangle = y|x,y\rangle$ and normalization $\langle x,y|x',y'\rangle = \delta(x-x')\delta(y-y')$; and momentum eigenstates $|p_x,p_y\rangle$ with $\hat{p_x}|p_x,p_y\rangle = p_x|p_x,p_y\rangle$ and $\hat{p_y}|p_x,p_y\rangle = p_y|p_x,p_y\rangle$ and normalization $\langle p_x,p_y|p_x',p_y'\rangle = \delta(p_x-p_x')\delta(p_y-p_y')$. And $\langle x,y|p_x,p_y\rangle = \frac{e^{i(p_x\cdot x+p_y\cdot y)/\hbar}}{2\pi\hbar}$.

Here $[\hat{x}, \hat{p}_x] = [\hat{y}, \hat{p}_y] = i\hbar$, and other commutators between them are zero.

The rotations around the origin point form the SO(2) group (also denoted by C_{∞}). Denote the counter-clockwise rotation of angle θ by $g(\theta)$, which maps the point (x, y) to $(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$. It is easy to check that $g(\theta) \cdot g(\theta') = g(\theta + \theta' \mod 2\pi)$, so this is an Abelian group. All its irreducible representations(irreps) are 1-dimensional(1-dim'l), and are labeled by integer n, $\chi_n[g(\theta)] = R_n[g(\theta)] = (e^{in\theta})$. The orthogonality relation is $\int_0^{2\pi} d\theta \, \chi_n[g(\theta)]^* \chi_{n'}[g(\theta)] = \int_0^{2\pi} d\theta \, e^{-in\theta} e^{in'\theta} = 2\pi \cdot \delta_{n,n'}$.

- (a). (2pts) The unitary operator for $g(\theta)$ is $\widehat{g(\theta)} = \int \mathrm{d}x \int \mathrm{d}y \, |x \cos \theta y \sin \theta, x \sin \theta + y \cos \theta \rangle \langle x, y|$. Compute the matrix element of $\widehat{g(\theta)}$ under the momentum eigenbasis, $\langle p_x', p_y' | \widehat{g(\theta)} | p_x, p_y \rangle$.
- (b). (2pts) Compute the generator of this "Lie group", $\widehat{L_z} \equiv \left[i\frac{\partial}{\partial \theta}\widehat{g(\theta)}\right]_{\theta=0}$. Represent the result by the $\hat{x}, \hat{y}, \hat{p}_x, \hat{p}_y$ operators. [Hint: consider $\widehat{L_z}\psi(x,y) = \left\{i\frac{\partial}{\partial \theta}\widehat{[g(\theta)}\psi(x,y)]\right\}_{\theta=0}$]
- (c). (2pts) Consider the 2D harmonic oscillator, $\hat{H} = \frac{1}{2m}(\hat{p}_x^2 + \hat{p}_y^2) + \frac{m\omega^2}{2}(\hat{x}^2 + \hat{y}^2)$. Here m, ω are positive constants. It can be viewed as the sum of two independent harmonic oscillators, $\hat{H} = (\frac{\hat{p}_x^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}) + (\frac{\hat{p}_y^2}{2m} + \frac{m\omega^2\hat{y}^2}{2})$. The ladder operators for the x- and y-components can be defined as $\hat{b}_x = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + \frac{\mathrm{i}}{m\omega}\hat{p}_x)$ and $\hat{b}_y = \sqrt{\frac{m\omega}{2\hbar}}(\hat{y} + \frac{\mathrm{i}}{m\omega}\hat{p}_y)$. They satisfy the commutation relation of boson annihilation operators, $[\hat{b}_x, \hat{b}_x^{\dagger}] = [\hat{b}_y, \hat{b}_y^{\dagger}] = 1$, $[\hat{b}_x, \hat{b}_y^{\dagger}] = [\hat{b}_x, \hat{b}_y] = 0$. Denote the unique normalized ground state of \hat{H} by $|\mathrm{vac}\rangle$, then $\hat{b}_x|\mathrm{vac}\rangle = \hat{b}_y|\mathrm{vac}\rangle = 0$. Write down all eigenvalues and normalized eigenstates of \hat{H} .
- (d). (2pts) Rewrite the $\widehat{L_z}$ in (b) in terms of the ladder operators in (c). Show that $[\hat{H}, \widehat{L_z}] = 0$. {Hint: use $[\hat{A}\hat{B}, \hat{C}\hat{D}] = \hat{A}[\hat{B}, \hat{C}]\hat{D} + [\hat{A}, \hat{C}]\hat{B}\hat{D} + \hat{C}\hat{A}[\hat{B}, \hat{D}] + \hat{C}[\hat{A}, \hat{D}]\hat{B}$. }

- (e). (4pts) The "raising" operators \hat{b}_x^{\dagger} and \hat{b}_y^{\dagger} form basis of a 2-dimensional representation of the SO(2) group. $g(\theta)$ transforms them to their linear combinations, $(\widehat{g(\theta)}\widehat{b}_x^{\dagger}\widehat{g(\theta)}^{\dagger},\ \widehat{g(\theta)}\widehat{b}_y^{\dagger}\widehat{g(\theta)}^{\dagger}) = (\widehat{b}_x^{\dagger},\ \widehat{b}_y^{\dagger}) \cdot R[g(\theta)]$. Solve this 2×2 representation matrix $R_{\hat{b}^{\dagger}}[g(\theta)]$. Check that $R_{\hat{b}^{\dagger}}[g(\theta)] \cdot R_{\hat{b}^{\dagger}}[g(\theta')] = R_{\hat{b}^{\dagger}}[g(\theta + \theta')]$. [Hint: $\widehat{g(\theta)} = \exp(-i\theta \widehat{L_z})$.]
- (f). (5pts) We can decompose the $R_{\hat{b}^{\dagger}}$ representation into irreps by the "projection operator". Compute $\int_0^{2\pi} R_n[g(\theta)]^* \cdot \widehat{g(\theta)} \hat{b}_a^{\dagger} \widehat{g(\theta)}^{\dagger}$, for a=x,y and all integer n. Only two of them are linearly independent, after normalization denote them as \hat{a}_1^{\dagger} and \hat{a}_2^{\dagger} , satisfying $[\hat{a}_i, \hat{a}_j^{\dagger}] = \delta_{i,j}$. \hat{a}_i^{\dagger} forms an irrep of the SO(2) group, $\widehat{g(\theta)} \hat{a}_i^{\dagger} \widehat{g(\theta)}^{\dagger} = \hat{a}_i^{\dagger} \cdot R_{\hat{a}_i^{\dagger}}[g(\theta)]$, Write down $\hat{a}_{1,2}^{\dagger}$ in terms of $\hat{b}_{x,y}^{\dagger}$, and their corresponding irreps $R_{\hat{a}_i^{\dagger}}[g(\theta)]$. Rewrite \hat{H} and \hat{L}_z in terms of $\hat{a}_{1,2}^{\dagger}$ and $\hat{a}_{1,2}$.
- (g). (5pts) Write down the simultaneous eigenstates of \hat{H} and $\widehat{L_z}$, $|\hat{H} = E, \widehat{L_z} = \ell\rangle$, in terms of $|\text{vac}\rangle$ and ladder operators \hat{a}_i^{\dagger} . What are the possible eigenvalues E and ℓ ?
- (h). (3pts) Each state $|\hat{H} = E, \widehat{L_z} = \ell\rangle$ in (g) forms an irrep of SO(2). $\widehat{g(\theta)}|\hat{H} = E, \widehat{L_z} = \ell\rangle = |\hat{H} = E, \widehat{L_z} = \ell\rangle \cdot R_{E,\ell}[g(\theta)]$. Compute this 1×1 representation 'matrix' $R_{E,\ell}[g(\theta)]$.
- (i). (5pts) Compute the "matrix elements", $\langle \hat{H} = E, \widehat{L_z} = \ell | \hat{a}_i^{\dagger} | \hat{H} = E', \widehat{L_z} = \ell' \rangle$, for i = 1, 2. Check that the results satisfy the "selection rule" for SO(2) group, namely that if $R_{E,\ell}^* \otimes R_{\hat{a}_i^{\dagger}} \otimes R_{E',\ell'}$ is not the trivial irrep., then this matrix element vanishes.
- (j). (5pts) Define two hermitian operators $\widehat{L}_x = \hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1$ and $\widehat{L}_y = -\mathrm{i} \hat{a}_1^{\dagger} \hat{a}_2 + \mathrm{i} \hat{a}_2^{\dagger} \hat{a}_1$. Check that $[\hat{H}, \widehat{L}_x] = [\hat{H}, \widehat{L}_y] = 0$. Compute the commutators $[\widehat{L}_x, \widehat{L}_y]$, $[\widehat{L}_y, \widehat{L}_z]$, $[\widehat{L}_z, \widehat{L}_x]$, represent the results in terms of linear combinations of $\widehat{L}_{x,y,z}$. [Side remark: SO(2) has only 1-dim'l irrep., but \hat{H} has degenerate eigenvalues. In fact \hat{H} has a larger non-Abelian symmetry. The $\widehat{L}_{x,y,z}$ are generators of this symmetry group and commute with \hat{H} .]
- 2. Considered $\hat{H} = (\hat{f}_1^{\dagger} \hat{f}_2 + \hat{f}_2^{\dagger} \hat{f}_3 + \hat{f}_3^{\dagger} \hat{f}_4 + \hat{f}_4^{\dagger} \hat{f}_1 + \text{h.c.}).$ Here $\hat{f}_i(\hat{f}_i^{\dagger})$ are annihilation(creation) operators for 4 fermion modes, satisfying $\{\hat{f}_i, \hat{f}_j^{\dagger}\} = \delta_{ij}$ and $\{\hat{f}_i, \hat{f}_j\} = 0$, and h.c. means hermitian conjugate of the previous 4 terms.

The model conserves total particle number $\hat{n} = \sum_{i=1}^{4} \hat{f}_{i}^{\dagger} \hat{f}_{i}$, namely $[\hat{H}, \hat{n}] = 0$.

 \hat{H} also has the D_4 point group symmetry, generated by "4-fold rotation" $C_4: \hat{f}_1 \to \hat{f}_2 \to \hat{f}_3 \to \hat{f}_4 \to \hat{f}_1$, (this means $\widehat{C}_4 \hat{f}_1 \widehat{C}_4^{\dagger} = \hat{f}_2$, etc.), and "principal axis reflection" $\sigma_s: \hat{f}_1 \to \hat{f}_1, \hat{f}_2 \to \hat{f}_4, \hat{f}_3 \to \hat{f}_3, \hat{f}_4 \to \hat{f}_2$.

This group has 8 elements, and 5 conjugacy classes: $\{1\}, \{C_4, C_4^3\}, \{C_4^2\}, \{\sigma_s, C_4^2\sigma_s\}, \{\sigma_d \equiv C_4\sigma_s, C_4^3\sigma_s\}$. The character table for the five irreducible representations, $\Gamma_{1,2,3,4,5}$, is

	1	$2C_4$	C_4^2	$2\sigma_s$	$2\sigma_d$
Γ_1	1	1	1	1	1
Γ_2	1	1	1	-1	-1
Γ_3	1	-1	1	1	-1
Γ_4	1	-1	1	-1	1
Γ_5	2	0	-2	0	0

(a) (5pts) A group element $g \in D_4$ will transform \hat{f}_i^{\dagger} as $\hat{f}_i^{\dagger} \mapsto \sum_j \hat{f}_j^{\dagger} \cdot R[g]_{ji}$, where R[g] is the 4×4 representation matrix. Decompose this into irreducible representations. Namely find $\hat{f'}_i^{\dagger} = \sum_j \hat{f}_j^{\dagger} \cdot U_{ji}$, where U_{ji} is a 4×4 unitary matrix, so that $\hat{f'}_i^{\dagger}$ transform under $g \in D_4$ as $\hat{f'}_i^{\dagger} \mapsto \sum_j \hat{f'}_j^{\dagger} \cdot R'[g]_{ji}$ with R'[g] block-diagonalized, and each diagonal block is one of the irreducible representations. Solve the new basis $\hat{f'}_i^{\dagger}$ in terms of \hat{f}_i^{\dagger} (or equivalently solve U), and the block-diagonalized representation R'[g] for the generators $g = C_4$ and $g = \sigma_s$. [Hint: use the "projection operator" to find the new basis]

(b) (5pts) The Hilbert space with fixed total particle number \hat{n} is a representation space of the D_4 group. Assume that the vacuum state $|\text{vac}\rangle$ is invariant under D_4 group. Then the transformation rules for \hat{f}_i^{\dagger} completely determine the transformation rules for any states, for example C_4 transforms $\hat{f}_1^{\dagger}\hat{f}_2^{\dagger}|\text{vac}\rangle \mapsto \hat{f}_2^{\dagger}\hat{f}_3^{\dagger}|\text{vac}\rangle$. Decompose the 6-dimensional 2-particle Hilbert space, with occupation basis $\hat{f}_i^{\dagger}\hat{f}_j^{\dagger}|\text{vac}\rangle$ for i < j, into irreducible representations of D_4 . [Hint: one can first work out the 6×6 representation and then change basis to block-diagonalize it; or use the result of (a) to construct the irreducible representation basis]

(c) (5pts) Rewrite \hat{H} in terms of the $\hat{f'}_i^{\dagger}$ and $\hat{f'}_i$ solved in (a). Solve all the eigenvalues and eigenstates of \hat{H} in the 2-particle Hilbert space.