Stanford's CS231n Convolutional Neural Networks for Visual Recognition (Spring 2017)

Sriram Sami

January 24, 2020

Contents

1	Lecture 1			
	1.1	Motivation	2	
	1.2	Visual cortex structure	2	
	1.3	History	2	

1 Lecture 1

1.1 Motivation

Estimated that > 85% of data online is "pixel-data". So image data is like the "dark mattaer" of the web - tons of it out there that sits, un-nalyzed.

1.2 Visual cortex structure

We ourselves mostly visualize objects first as simple edge-like features. So when we see neural nets do the same thing, it seems like a deep result. We believe vision processing to be hierarchical.

1.3 History

Edge detection \rightarrow Objects are compositions of basic shapes when viewed from a particular angle \rightarrow Normalized cut as an attempt to group things into objects \rightarrow decision making in vision by engineering important **features** about the object \rightarrow PASCAL standardized image recognition **datasets** for competing on these tasks \rightarrow ImageNetd dataset from Stanford **Point of the course** Image classification - what is in whole image X?