Seminar 9 Polinom Taylor. Serii Taylor

1 Formula lui Taylor

Orice funcție cu anumite proprietăți poate fi aproximată cu un polinom. Rezultatul formal este următorul.

Definiție 1.1: Fie $I \subseteq \mathbb{R}$ un interval deschis și $f: I \to \mathbb{R}$ o funcție de clasă $C^m(I)$. Pentru orice $a \in I$, definim *polinomul Taylor* de gradul $n \leqslant m$ asociat funcției f în punctul a prin:

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Restul (eroarea de aproximare) este definit prin:

$$R_{n,f,a} = f(x) - T_{n,f,a}(x).$$

Primele polinoame (de gradul întîi și al doilea) se numesc, respectiv, *aproximarea liniară* și *pătratică* a lui f, în jurul lui a.

Acest polinom se regăsește și în formula lui Taylor, care ne arată legătura lui strînsă cu orice funcție.

Teoremă 1.1 (Formula lui Taylor cu restul Lagrange): Fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{n+1}(I)$ și $a \in I$. Atunci, pentru orice $x \in I$, există $\xi \in (a,x)$ sau (x,a) astfel încît:

$$f(x) = T_{n,f,a}(x) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Așadar, din această teoremă știm mai precis eroarea aproximării unei funcții cu polinomul Taylor asociat.

Următoarele sînt consecințe ale teoremei:

(a) Restul poate fi scris sub *forma Peano*: există o funcție $\omega: I \to \mathbb{R}$, cu $\lim_{x \to a} \omega(x) = \omega(a) = 0$ și restul se scrie:

$$R_{n,f,\alpha}(x) = \frac{(x-\alpha)^n}{n!} \omega(x).$$

(b) Restul poate fi scris și sub formă integrală:

$$R_{n,f,a}(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt;$$

(c)
$$\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$$

Aceste noțiuni pot fi mai departe utilizate pentru a studia seria Taylor asociată unei funcții.

Definiție 1.2: Fie $I \subseteq \mathbb{R}$ un interval deschis și fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{\infty}(I)$. Pentru orice $x_0 \in I$, se definește *seria Taylor* asociată funcției f în punctul x_0 seria de puteri:

$$T = \sum_{n \geqslant 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Dacă $x_0 = 0$, seria se mai numește *Maclaurin*.

Importanța seriilor Taylor este dată de rezultatul următor:

Teoremă 1.2: Fie a < b și fie $f \in C^{\infty}([a,b])$ astfel încît să existe M > 0 cu proprietatea că $\forall n \in \mathbb{N}, \forall x \in [a,b], |f^{(n)}(x)| \leq M$.

Atunci pentru orice $x_0 \in (a,b)$, seria Taylor a lui f în jurul lui x_0 este uniform convergentă pe [a,b] și suma ei este funcția f. Adică avem:

$$f(x) = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \forall x \in [a, b].$$

2 Exerciții

1. Să se dezvolte în serie Maclaurin funcțiile, indicînd și domeniul de convergență:

- (a) $f(x) = (1+x)^{\alpha}, \alpha \in \mathbb{R};$
- (b) $f(x) = \frac{1}{1+x}$;
- (c) $f(x) = \sqrt{1+x}$;
- (d) $f(x) = \int_0^x \frac{\sin t}{t} dt$;
- (e) $f(x) = \sin^2 x$;
- (f) $f(x) = \frac{3}{(1-x)(1+2x)}$;
- (g) $f(x) = \arcsin x$.

2. Să se dezvolte în jurul punctului $a \in \mathbb{R}$ funcțiile:

- (a) $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \frac{1}{x}$, a = 1;
- (b) $f: \mathbb{R} \{-2, -1\} \to \mathbb{R}, f(x) = \frac{1}{x^2 + 3x + 2}, \alpha = -4;$
- (c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos^2 x$, $a = \frac{\pi}{4}$.

3. Să se determine aproximările liniare și pătratice ale următoarelor funcții în jurul punctelor indicate:

- (a) $f(x) = x \ln x$ în jurul punctului a = 1;
- (b) $f(x) = \sqrt[3]{x+1} \sin x$, în jurul punctului a = 0.

4. Să se arate că seria numerică $\sum_{n\geqslant 0} \frac{(-1)^n}{3n+1}$ este convergentă și să se afle suma ei cu ajutorul seriilor de puteri.

Indicație: Considerăm seria $\sum_{n\geqslant 0} (-1)^n \frac{x^{3n+1}}{3n+1}$ și luăm x=1. Derivăm termen cu termen și obținem seria pentru $\frac{1}{1+x^3}$.

5. Să se afle suma seriilor:

- (a) $\sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{2n+1}$;
- (b) $\sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n}$;
- (c) $\sum_{n\geqslant 0} \frac{(n+1)^2}{n!}$;
- $(d) \ \sum_{n\geqslant 1} \frac{n^2(3^n-2^n)}{6^n};$
- (e) $\sum_{n\geqslant 0} \frac{(-1)^n}{2n+1}$;
- (f) $\sum_{n\geqslant 0} \frac{(-1)^n}{3n+1} x^{3n+1}$.

Indicatii:

- (a) Se folosește seria pentru arctan x, derivată termen cu termen;
- (b) Folosim seria pentru $e^x + xe^x$, din care o obținem pe cea pentru $(x + x^2)e^x$, pe care o derivăm termen cu termen. Pentru x = 1, avem seria cerută.
- (c) Se calculează seria $\sum_{n\geqslant 1} n^2 x^n$, obținută din seria pentru x^n ;
- (d) Se folosește seria pentru arctan x.

(e)
$$\sum_{n\geq 0} \frac{(-1)^n}{3n+1} = \lim_{x\to 1} \sum_{n\geq 0} \frac{(-1)^n}{3n+1} x^{3n+1} = \lim_{x\to 1} \int_0^x \sum_{n\geq 0} (-1)^n x^{3n} dx.$$

6. Să se calculeze $\sqrt[4]{10004}$ cu 4 zecimale exacte. *Indicație*: Se folosește dezvoltarea binomială:

$$\sqrt[4]{10004} = 10\sqrt[4]{1 + \frac{4}{10000}}.$$

- 7. Să se calculeze cu o eroare mai mică decît 10^{-3} integralele:
- (a) $\int_0^{\frac{1}{3}} \frac{\arctan x}{x} dx;$
- (b) $\int_0^1 e^{-x^2} dx$;
- (c) $\int_{0}^{\frac{1}{2}} \frac{\ln(1+x^2)}{x} dx$;
- (d) $\int_0^{\frac{1}{2}} \frac{1 \cos x^2}{x^2} dx.$