Using CC253X or CC254X with Dipole PCB Antennas

By Espen Wium

Keywords

- Half wave dipole
- RF
- Antenna
- Efficiency
- Gain
- TRP (Total Radiated Power)

- CC2530
- CC2531
- CC2533
- CC2540
- CC2541

1 Introduction

Many RFICs today use differential ports to transmit and receive RF power. This makes the use of balanced antennas an attractive proposition, as one can do away with the balun normally needed to convert the differential RF power at the IC ports to single ended signals that can be fed to an

SMA connected antenna or RF instrument. This document describes a simple half wave dipole antenna that is easy to integrate on a PCB and works well with all CC253X and CC254X RFIC's from Texas Instruments.

SWRA421 Page 1 of 19

Table of Contents

ΚI	EΥV	VORDS	
1		INTRODUCTION	1
2		ABBREVIATIONS	2
3		THE HALF WAVE DIPOLE ANTENNA IN BRIEF	3
4		DESIGNING A HALF WAVE DIPOLE ANTENNA ON A PCB	3
5		SIMULATING THE ANTENNA	3
	5.1	STEP 1: CLOSE TO IDEAL	3
	5.2		
	5.3		
	5.4	STEP 4: ADDING A GROUND PLANE	6
6		DESIGNING THE PROTOTYPES	7
7		PROTOTYPE TESTING AND OPTIMIZATION	7
	7.1	, united to the control of the contr	
	7.2	FILTERING HARMONICS	8
8		CONCLUSION	
9		GENERAL INFORMATION	
	9.1	DOCUMENT HISTORY	11
ΑI	PPE	NDIX A: CTIA REPORT	12

2 Abbreviations

BTM Below Threshold of Measurability	
EIRP Equivalent Isotropic Radiated Power	er
FCC Federal Communications Commiss	sion
PCB Printed Circuit Board	
SMA SubMiniature version A connector	
TRP Total Radiated Power	

SWRA421 Page 2 of 19

3 The Half Wave Dipole Antenna in Brief

The half wave dipole is one of the simplest and most commonly used antenna structures in the RF world. It can be made from a piece of wire, or a trace on a PCB. The basic half wave dipole antenna is a wire or trace with a length of lambda/2 and a slot in the middle where the antenna is fed. The impedance is around 73 ohms, and the directivity is 2.15 dBi.

4 Designing a Half Wave Dipole Antenna on a PCB

This design note describes the antenna design process for the Zlight2 reference design, a 40 mm PCB disc that is used to demonstrate the capabilities of the CC2530 when used as a wireless LED controller. This places some constraints on the use of the basic dipole antenna structure, the main ones being that the antenna will be placed close to the edge of the board, and it will be curved with a radius of 20 mm. The width of the trace does have an impact on the antenna performance, particularly the bandwidth. In this design note we will stick to a width of 300 um (12 mils), and refer the reader to more thorough papers on antenna theory if they wish to probe deeper into this particular property of the dipole. Placing the antenna close to the edge means that the effective dielectric constant will be harder to determine, as a 2.5D EM simulation tool such as Momentum will not accurately capture the effects of our finite substrate. Changing the shape of the antenna from a straight line into a curve means that the radiation pattern will not be the same as that of an ideal dipole.

As a first step, we simulate a close-to-ideal dipole using ADS Momentum to verify that the simulation setup yields credible results. Then we add substrate, curvature and a ground plane in order to model the final board more accurately. Finally, we add some length to be able to manually fine tune the antenna length on the first prototypes. This latter step is a precautionary one, given the uncertainty in the effective dielectric constant seen by the antenna.

The prototype testing and optimization process involves trimming the antenna to the right length, and then adding matching and filtering components to obtain a good trade off of high output power at the carrier frequency and low harmonics.

5 Simulating the Antenna

5.1 Step 1: Close to Ideal

Figure 1. A 300 um Trace in Free Space

The structure shown in Figure 1 is composed of two arc segments, each with a width of 300 um, a radius of 3 m and an angular length of 0.56 degrees. The substrate definition is set to free space above and below the trace. Figure 2 shows the simulated return loss (S11) using ADS momentum.

SWRA421 Page 3 of 19

Figure 2. Simulated S11. Substrate: Free Space

Figure 2 shows a 1 dB return loss variation in our band of interest (2400 MHz to 2480 MHz), and an impedance of about 78 ohms.

5.2 Step 2: Add Substrate

The layout used in Section 5.1 is simulated again, this time on an 800 um FR4 substrate. The resonance frequency has now dropped to around 1.86 GHz, and we need to shorten the arcs to 0.416 degrees to move our pass band back to 2.45 GHz.

Figure 3. Simulated S11. Substrate: 800 um FR4

Adding a substrate has the effect of lowering the impedance of our antenna to 51 ohms, which also explains the very low return loss given that we used 50 ohm ports in these simulations.

SWRA421 Page 4 of 19

5.3 Step 3: Adding Curvature

Figure 4. Curved Half Wave Dipole

The structure shown in Figure 4 is composed of two arc segments, each with a width of 300 um, a radius of 20 mm and an angular length of 64 degrees.

Figure 5. S11 Looking into the Curved Dipole

The impedance drops slightly (from \sim 51 ohms to \sim 45 ohms) as the shape is changed from an almost straight trace to a curved trace with a 20mm radius.

SWRA421 Page 5 of 19

5.4 Step 4: Adding a Ground Plane

A ground plane is added as shown in Figure 6. This further reduces the impedance to around 37 ohms, but does not change the frequency response by much.

Figure 6. A Ground Plane is Added to Improve the Accuracy of the Board Model

Figure 7. S11 Looking into the Curved Dipole with Added Ground Plane

We will use this pattern as a starting point for our prototypes. The length of each of the two arcs is $2\pi \cdot 20 \text{mm} \cdot 64/360 = 22.3 \text{ mm}$, thus the total length of the dipole is about 45 mm.

SWRA421 Page 6 of 19

6 Designing the Prototypes

In vacuum (or air), a half wavelength at 2.44 GHz is 61.5 mm. Our first simulations suggested a length of 2 times 29.3 mm (0.56 degrees with a radius of 3000 mm). When we added the 800 um FR4 substrate, this dropped to 2 times 21.8 mm (0.416 degrees) for the straight dipole and 2 times 22.3 mm for the curved dipole. Since the effects of a finite substrate is not taken into account by our tool (ADS Momentum), we will extend the antenna slightly to allow us to physically cut the traces back to the optimum length by experimentation. We know that the optimum length will be somewhere between 2.22.3 mm and 2.29.3 mm since a finite substrate will give an effective dielectric constant somewhere between that of an infinite substrate and that of no substrate at all.

With that in mind, we choose an arc length of 75 degrees. This corresponds to an antenna length of 2·26.2 mm.

Figure 8. First Prototype Layout with Tuning Marks and Filtering Components

To facilitate the antenna tuning, we add some silk print markings to make it easier to relate the end result back to the layout in our CAD tool. We also add a simple series/shunt filtering network to help suppress harmonics if needed (see Figure 8).

7 Prototype Testing and Optimization

7.1 Antenna Length Tuning

With the prototypes back, the first step is to tune the antenna to the right length. This is done by mounting 0 ohms resistors as series elements in the filtering network, and leaving the shunt element empty. Then, the emitted RF power at 2.44GHz is measured in an antenna test chamber while the antenna length is reduced by half a notch at a time. Since the information of interest is the signal strength relative to that of the previous measurement, it would also have been possible to measure range or RSSI when communicating between two Zlight2 boards.

SWRA421 Page 7 of 19

Figure 9. TRP (in dBm) versus the Number of Notches Cut (x-axis)

Two samples were tested, and they both indicated that the optimum length would be achieved by cutting two notches.

7.2 Filtering Harmonics

When fed from a differential source, the half wave dipole antenna will radiate odd harmonics rather well, while even harmonics will not be transmitted. However, in practice, some of the unwanted harmonic contents will be common mode, i.e. the currents and voltages at the two antenna terminals have zero phase difference. This means that our antenna will also radiate even harmonics of the carrier frequency unless our filter is able to suppress common mode signals as well as differential signals.

The initial filter was a purely differential design, which proved to be insufficient to handle the 2nd harmonic. A new version was therefore made, where shunt components were connected to ground to filter common mode signals. The antenna length was also updated according to the results found in Section 7.1.

To keep component count, cost, and insertion loss to a minimum, the new filter is simply a parallel resonant LC circuit (tuned to the carrier frequency) where the C is split into two capacitors of double capacitance connected to ground.

Figure 10. Parallel Resonant Circuit with Differential as well as Common Mode Rejection

SWRA421 Page 8 of 19

Figure 11. The Final Layout of the Antenna and Filtering Components

After tuning, the total length of the antenna is now 2-22.6 mm, which is very close to the simulated value found in Section 5.4.

The next step was to test different values of L and C to obtain a good trade off between output power and harmonic suppression. The tables below show the measured TRP for different values of L and C, and the corresponding harmonic levels.

	L [nH]									
C [pF]	1.8	3.3	3.6	3.9	4.3	4.7				
1		2.14				2.6				
1.2										
1.5				2.14	2.52					
1.8			1.99	2.04	2.18					
2.2			1.32	1.56	1.37					
2.7	-0.06		-0.78	-0.54	-0.61					

Table 1. TRP in dBm for Different Values of L and C

	L [nH]										
C [pF]	1.8	1.8 3.3 3.6 3.9 4.3 4.7									
1		-44.2				-44.3					
1.2				-44.8							
1.5											
1.8			-46.4	-45.8							
2.2				-45.1							
2.7	-47.1										

Table 2. 2nd Harmonic Levels in dBm (max EIRP)

	L [nH]									
C [pF]	1.8 3.3 3.6 3.9 4.3 4.									
1		-31.5				-32.5				
1.2				-35.5						
1.5				-36.0						
1.8			-37.2	-36.2						
2.2				-38.1						
2.7	-39.7									

Table 3. 3rd Harmonic Levels in dBm (max EIRP)

SWRA421 Page 9 of 19

The most obvious observation is that the 2nd harmonic level is more or less independent of the TRP and L values, but has a tendency to decrease with increasing capacitance to ground. This is most likely a result of the 2.7 pF cap being resonant close to the 2nd harmonic, so the closer we get to 2.7 pF the better the decoupling/filtering.

The 3rd harmonic level seems to depend mostly on the carrier power, and since we want to get it down towards -41.2 dBm to avoid strict duty cycle requirements from the FCC, we choose an inductance of 3.9 nH and a capacitance of 1.5 pF (which is equivalent to 0.75 pF in parallel with the inductor in the LC parallel resonant circuit). This gives us a safe level of the 2nd harmonic, a 3rd harmonic that is compliant with up to almost 50% duty cycle, and just above +2 dBm TRP. If we reduce the output power slightly, the 3rd harmonic will pass FCC even with 100% duty cycle.

	TXPOWER = 0xF5			TXP	OWER =	0xE5	TXPOWER = 0xD5		
Sample	TRP	2 nd	3 rd	TRP	2 nd	3 rd	TRP	2 nd	3 rd
S1	2.35								
S2	2.32	BTM	-37.1				-1.61	BTM	-48.6
S3	2.21								
S4	2.79	-45.1	-35.4	0.16	BTM	-42.8	-1.06	BTM	-46.0

Table 4: TRP and Harmonics Levels with 3 Different Power Settings (TXPOWER = 0xF5, E5 and D5)

The available power from CC2531 when using power setting 0xF5 is +4 dBm, which means that our measured TRP is less than 2 dB short of the efficiency reference. This gives an efficiency of at least $100*10^{-0.2} = 63\%$ even though this design has not been tuned for maximum TRP.

The part numbers of the 3.9 nH inductor and 1.5pF capacitors are:

- GRM1555C1H1R5CZ01 (0402 capacitor with C0G/NP0 dielectric from Murata)
- LQG15HS3N3S02 (0402 multilayer chip inductor from Murata)

A full measurement report on this antenna can be found in Appendix A: CTIA Report

8 Conclusion

A half wave dipole can be an excellent antenna choice for low cost RF nodes. A simple 3-component filter is all that is needed to ensure regulatory compliance. The antenna designed in this Design Note has an efficiency of more than 63%, and a directivity of 5.04 dBi.

SWRA421 Page 10 of 19

9 General Information

9.1 Document History

Revision	Date	Description/Changes
SWRA421	2013.01.25	Initial release.

SWRA421 Page 11 of 19

Appendix A: CTIA Report

With the board placed in the XZ-plane as shown in Figure 12, the radiation diagram was measured in an antenna chamber. The reference level used to calculate efficiency and gain was 0 dBm, which means that 4 dB needs to be subtracted from the gain given that the available power from CC2531 is 4 dBm.

Figure 12. Board Orientation During the Antenna Measurements

SWRA421 Page 12 of 19

OTA Test 1/7

CTIA Report (RP_2440.000_tot)

Test Information:

Test Method: Radiated Power Passive Antenna

Test Condition: FS: Free Space Frequency: 2440.000 MHz

Test Time: Start: 12-10-2012 15:01:02; Stop: 12-10-2012 15:28:59
Cal Data Hor: 43.80 dB (Range Calibration RadPower Hor Eval 200 to 6000)
Cal Data Ver: 46.53 dB (Range Calibration RadPower Ver Eval 400 to 6000)

OTA Evaluation Results:

Total Radiated Power 2,12 dBm Peak EIRP 7,16 dBm 5,04 dBi Directivity Efficiency 2,12 dB Efficiency 162,80 % Gain 7,16 dBi NHPRP 45° -0.22 dBm NHPRP 45° / TRP -2,34 dB NHPRP 45° / TRP 58,34 % NHPRP 30° -2.06 dBm NHPRP 30° / TRP -4,18 dB NHPRP 30° / TRP 38,18 % NHPRP 22.5° -3.33 dBm NHPRP 22.5° / TRP -5,44 dB NHPRP 22.5° / TRP 28,56 % UHRP -0.69 dBm UHRP / TRP -2,80 dB UHRP / TRP 52,46 % LHRP -1,11 dBm LHRP / TRP -3,23 dB LHRP / TRP 47,54 % Front/Back Ratio 3,13 100.0 dea PhiBW PhiBW Up 57,7 deg PhiBW Down 42,3 deg ThetaBW 59,2 deg ThetaBW Up 39,6 deg ThetaBW Down 19,5 deg Boresight Phi 75 deg Boresight Theta 150 deg Maximum Power 7.16 dBm Minimum Power -8,52 dBm Average Power 2,92 dBm Max/Min Ratio 15.68 dB 4,24 dB Max/Avg Ratio Min/Avg Ratio -11,44 dB Best Single Value 6.96 dBm

Best Position Phi = 90 deg; Theta = 150 deg; Pol = Ver

12-10-2012 EMC32 V8.53.0 15:01:02

SWRA421 Page 13 of 19

OTA Test 2/7

RP 2440.000 tot

(deg) 0 deg (dB) 15 deg (dB) 30 deg (dB) 45 deg (dB) 60 deg (dB) 75 deg (dB) 90 deg (dB) 105 deg (dB) 0.00 2.52 3.56 2.65 -0.14 -1.15 -4.35 -7.33 -7.89 15.00 2.68 3.39 2.58 -0.05 0.42 -3.08 -4.98 -6.47 30.00 3.15 3.27 3.34 0.58 2.27 -1.12 -2.03 -3.48 45.00 3.46 3.30 4.04 1.49 3.63 0.54 0.27 -0.97 60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14	<u> </u>	101000							
(dB)	Azimuth	Elevation							
0.00 2.52 3.56 2.65 -0.14 -1.15 -4.35 -7.33 -7.89 15.00 2.68 3.39 2.58 -0.05 0.42 -3.08 -4.98 -6.47 30.00 3.15 3.27 3.34 0.58 2.27 -1.12 -2.03 -3.48 45.00 3.46 3.30 4.04 1.49 3.63 0.54 0.27 -0.97 60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4	(deg)	0 deg	15 deg	30 deg	45 deg	60 deg	75 deg	90 deg	105 deg
15.00 2.68 3.39 2.58 -0.05 0.42 -3.08 -4.98 -6.47 30.00 3.15 3.27 3.34 0.58 2.27 -1.12 -2.03 -3.48 45.00 3.46 3.30 4.04 1.49 3.63 0.54 0.27 -0.97 60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55		(dB)							
30.00 3.15 3.27 3.34 0.58 2.27 -1.12 -2.03 -3.48 45.00 3.46 3.30 4.04 1.49 3.63 0.54 0.27 -0.97 60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 </td <td>0.00</td> <td>2.52</td> <td>3.56</td> <td>2.65</td> <td>-0.14</td> <td>-1.15</td> <td>-4.35</td> <td>-7.33</td> <td>-7.89</td>	0.00	2.52	3.56	2.65	-0.14	-1.15	-4.35	-7.33	-7.89
45.00 3.46 3.30 4.04 1.49 3.63 0.54 0.27 -0.97 60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46	15.00	2.68	3.39	2.58	-0.05	0.42	-3.08	-4.98	-6.47
60.00 3.67 3.53 4.61 2.29 4.37 1.70 1.85 0.80 75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31	30.00	3.15	3.27	3.34	0.58	2.27	-1.12	-2.03	-3.48
75.00 3.83 3.89 4.97 2.76 4.59 2.48 2.97 2.16 90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 150.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88	45.00	3.46	3.30	4.04	1.49	3.63	0.54	0.27	-0.97
90.00 3.79 4.30 4.98 2.86 4.45 2.89 3.59 2.98 105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48	60.00	3.67	3.53	4.61	2.29	4.37	1.70	1.85	0.80
105.00 3.63 4.75 4.72 2.71 3.95 2.98 3.65 3.14 120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02	75.00	3.83	3.89	4.97	2.76	4.59	2.48	2.97	2.16
120.00 3.35 4.91 4.28 2.14 3.11 2.67 3.14 2.67 135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38	90.00	3.79	4.30	4.98	2.86	4.45	2.89	3.59	2.98
135.00 2.91 4.85 3.75 1.47 1.95 1.94 1.93 1.67 150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42	105.00	3.63	4.75	4.72	2.71	3.95	2.98	3.65	3.14
150.00 2.39 4.55 3.27 1.00 0.78 0.65 0.12 -0.06 165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30	120.00	3.35	4.91	4.28	2.14	3.11	2.67	3.14	2.67
165.00 2.04 4.04 2.98 0.80 -0.07 -0.77 -2.21 -2.61 180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95	135.00	2.91	4.85	3.75	1.47	1.95	1.94	1.93	1.67
180.00 1.96 3.46 3.05 0.80 -0.06 -1.77 -4.12 -5.14 195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49	150.00	2.39	4.55	3.27	1.00	0.78	0.65	0.12	-0.06
195.00 2.31 3.07 3.37 1.15 0.84 -1.64 -3.56 -5.01 210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 <	165.00	2.04	4.04	2.98	0.80	-0.07	-0.77	-2.21	-2.61
210.00 2.88 2.89 3.71 1.90 2.06 -0.37 -1.46 -2.62 225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61	180.00	1.96	3.46	3.05	0.80	-0.06	-1.77	-4.12	-5.14
225.00 3.48 2.90 4.00 2.93 3.17 1.20 0.39 -0.48 240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	195.00	2.31	3.07	3.37	1.15	0.84	-1.64	-3.56	-5.01
240.00 4.02 3.09 4.07 3.93 3.93 2.48 1.81 1.07 255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	210.00	2.88	2.89	3.71	1.90	2.06	-0.37	-1.46	-2.62
255.00 4.38 3.23 4.03 4.72 4.40 3.38 2.76 2.16 270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	225.00	3.48	2.90	4.00	2.93	3.17	1.20	0.39	-0.48
270.00 4.42 3.48 3.83 5.00 4.35 3.80 3.07 2.57 285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	240.00	4.02	3.09	4.07	3.93	3.93	2.48	1.81	1.07
285.00 4.30 3.70 3.69 4.94 3.71 3.59 2.73 2.27 300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	255.00	4.38	3.23	4.03	4.72	4.40	3.38	2.76	2.16
300.00 3.95 3.82 3.54 4.46 2.63 2.88 1.62 1.36 315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	270.00	4.42	3.48	3.83	5.00	4.35	3.80	3.07	2.57
315.00 3.49 3.87 3.14 3.51 1.05 1.54 -0.11 -0.25 330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	285.00	4.30	3.70	3.69	4.94	3.71	3.59	2.73	2.27
330.00 3.00 3.91 2.68 2.21 -0.73 -0.44 -2.50 -2.44 345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	300.00	3.95	3.82	3.54	4.46	2.63	2.88	1.62	1.36
345.00 2.61 3.77 2.33 0.90 -2.04 -3.01 -5.41 -5.40	315.00	3.49	3.87	3.14	3.51	1.05	1.54	-0.11	-0.25
	330.00	3.00	3.91	2.68	2.21	-0.73	-0.44	-2.50	-2.44
360.00 2.50 3.33 2.22 0.33 -1.77 -4.33 -7.09 -8.52	345.00	2.61	3.77	2.33	0.90	-2.04	-3.01	-5.41	-5.40
	360.00	2.50	3.33	2.22	0.33	-1.77	-4.33	-7.09	-8.52

(continuation of the "RP_2440.000_tot" table from column 9 ...)

Azimuth	Elevation	Elevation	Elevation	Elevation	Elevation
(deg)	120 deg	135 deg	150 deg	165 deg	180 deg
	(dB)	(dB)	(dB)	(dB)	(dB)
0.00	-3.73	-0.51	2.21	-0.29	4.90
15.00	-2.91	-0.10	2.93	0.00	5.75
30.00	-1.74	1.12	3.87	1.29	6.12
45.00	-0.26	2.69	5.47	2.99	6.40
60.00	1.39	4.01	6.73	4.49	6.67
75.00	2.46	4.89	7.16	5.60	6.72
90.00	2.68	5.05	6.98	6.14	6.63
105.00	2.01	4.52	6.37	6.16	6.35
120.00	0.55	3.22	5.41	5.61	6.00
135.00	-1.20	1.21	3.94	4.34	5.71
150.00	-2.75	-0.82	2.16	2.44	5.38
165.00	-3.58	-1.48	1.09	0.58	5.07
180.00	-3.18	-1.27	2.17	0.20	4.85
195.00	-2.14	-0.56	3.94	1.07	4.84
210.00	-0.82	0.58	4.99	1.90	4.93
225.00	0.54	1.94	5.41	2.45	5.25
240.00	1.56	3.24	5.57	2.92	5.60
255.00	2.09	4.07	5.77	3.24	5.81
270.00	2.28	4.53	5.87	3.51	5.78
285.00	2.11	4.44	5.69	3.67	5.60
300.00	1.60	3.93	5.43	3.62	5.26
315.00	0.54	2.79	5.12	3.13	5.01
330.00	-0.80	1.32	4.72	2.17	4.91
345.00	-2.19	-0.11	4.03	0.84	5.02
360.00	-2.92	-1.16	3.27	1.83	5.38

RP 2440.000 hor

1	Azimuth	Elevation							
	(deg)	0 deg	15 deg	30 deg	45 deg	60 deg	75 deg	90 deg	105 deg
		(dB)							
	0.0	2.46	3.50	2.56	-0.39	-1.86	-4.62	-7.64	-8.46
	15.0	2.10	3.00	1.82	-0.99	-2.38	-4.61	-7.91	-8.88
	30.0	1.23	1.80	1.12	-2.45	-3.02	-5.18	-8.68	-9.71
	45.0	-0.54	-0.46	-0.28	-4.93	-4.38	-6.65	-10.02	-10.78

12-10-2012 EMC32 V8.53.0 15:01:02

SWRA421 Page 14 of 19

OTA Test 3/7

Azimuth (deg)	Elevation 0 deg (dB)	Elevation 15 deg (dB)	Elevation 30 deg (dB)	Elevation 45 deg (dB)	Elevation 60 deg (dB)	Elevation 75 deg (dB)	Elevation 90 deg (dB)	Elevation 105 deg (dB)
60.0	-3.42	-4.40	-2.92	-8.80	-6.97	-9.73	-13.20	-12.72
75.0	-8.77	-12.45	-7.92	-16.12	-13.13	-16.14	-19.22	-14.37
90.0	-23.05	-13.18	-23.71	-15.34	-21.80	-18.74	-16.45	-12.91
105.0	-8.87	-4.42	-9.08	-8.35	-9.14	-9.95	-10.82	-9.46
120.0	-3.73	-0.50	-3.22	-4.83	-4.78	-5.83	-7.49	-7.06
135.0	-0.94	1.80	-0.07	-2.39	-2.29	-3.49	-5.47	-6.17
150.0	0.70	3.01	1.64	-0.75	-1.00	-2.50	-4.67	-6.36
165.0	1.64	3.51	2.59	0.35	-0.45	-2.15	-4.57	-6.97
180.0	1.93	3.41	2.97	0.73	-0.60	-2.32	-4.92	-8.13
195.0	1.62	2.80	2.74	0.40	-1.33	-2.90	-5.74	-9.73
210.0	0.69	1.56	1.87	-0.45	-2.64	-4.02	-7.13	-12.18
225.0	-1.09	-0.56	0.24	-1.99	-4.70	-6.09	-9.18	-16.57
240.0	-4.10	-4.04	-2.69	-4.47	-7.90	-9.20	-12.39	-24.63
255.0	-9.88	-11.73	-7.86	-9.43	-13.12	-14.82	-17.02	-18.40
270.0	-18.99	-17.78	-24.14	-17.07	-19.92	-24.99	-18.83	-13.15
285.0	-8.25	-5.97	-9.40	-9.09	-12.17	-14.23	-14.28	-10.46
300.0	-3.34	-1.71	-3.78	-4.63	-7.52	-9.59	-11.33	-8.93
315.0	-0.48	0.97	-0.82	-2.32	-4.71	-7.04	-9.32	-7.96
330.0	1.25	2.57	0.87	-1.08	-3.14	-5.63	-8.29	-7.62
345.0	2.12	3.40	1.83	-0.42	-2.35	-4.96	-7.67	-7.83
360.0	2.42	3.29	2.14	0.07	-2.09	-4.40	-7.40	-8.81

(continuation of the "RP_2440.000_hor" table from column 9 ...)

Azimuth	Elevation	Elevation	Elevation	Elevation	Elevation
(deg)	120 deg	135 deg	150 deg	165 deg	180 deg
	(dB)	(dB)	(dB)	(dB)	(dB)
0.0	-3.80	-0.64	2.13	-0.39	4.87
15.0	-3.80	-1.10	2.30	-0.53	5.50
30.0	-4.92	-1.91	1.68	-0.54	4.97
45.0	-6.37	-3.01	1.02	-1.22	3.60
60.0	-8.79	-5.36	-0.83	-3.44	1.26
75.0	-13.40	-10.70	-5.01	-9.06	-3.14
90.0	-16.02	-24.99	-15.81	-21.22	-14.31
105.0	-9.79	-9.48	-9.74	-6.07	-8.81
120.0	-6.05	-5.07	-3.29	-1.87	-1.67
135.0	-4.35	-3.19	-0.69	-0.09	1.81
150.0	-3.81	-2.32	0.04	0.14	3.69
165.0	-3.67	-1.66	0.52	-0.05	4.61
180.0	-4.04	-1.60	1.89	0.17	4.82
195.0	-5.12	-2.35	2.99	0.55	4.47
210.0	-6.91	-3.54	2.73	0.21	3.55
225.0	-9.37	-5.27	1.09	-1.45	2.08
240.0	-13.43	-8.18	-1.69	-4.60	-0.23
255.0	-22.27	-14.65	-6.18	-11.26	-4.44
270.0	-15.82	-21.47	-14.80	-19.78	-13.26
285.0	-9.97	-10.27	-10.52	-7.24	-10.29
300.0	-6.66	-6.13	-3.93	-2.95	-2.98
315.0	-4.80	-3.74	-0.16	-0.66	0.82
330.0	-3.73	-2.36	2.16	0.26	3.03
345.0	-3.29	-1.34	3.24	0.20	4.44
360.0	-3.09	-1.31	3.10	1.78	5.26

RP_2440.000_ver

Azimuth	Elevation							
(deg)	0 deg	15 deg	30 deg	45 deg	60 deg	75 deg	90 deg	105 deg
	(dB)							
0.0	-16.24	-15.30	-14.07	-12.74	-9.39	-16.57	-19.03	-17.00
15.0	-6.29	-7.19	-5.36	-7.18	-2.82	-8.34	-8.08	-10.17
30.0	-1.32	-2.15	-0.63	-2.41	0.74	-3.29	-3.09	-4.66
45.0	1.25	0.92	2.03	0.36	2.89	-0.37	-0.15	-1.45
60.0	2.73	2.77	3.76	1.94	4.03	1.38	1.72	0.60
75.0	3.59	3.79	4.74	2.71	4.51	2.42	2.94	2.06
90.0	3.78	4.23	4.97	2.79	4.44	2.86	3.55	2.87
105.0	3.38	4.19	4.54	2.35	3.73	2.76	3.49	2.89
120.0	2.41	3.43	3.43	1.16	2.34	2.01	2.75	2.18
135.0	0.60	1.88	1.42	-0.83	-0.11	0.48	1.06	0.89

12-10-2012 EMC32 V8.53.0 15:01:02

SWRA421 Page 15 of 19

OTA Test 4/7

Azimuth	Elevation							
(deg)	0 deg	15 deg	30 deg	45 deg	60 deg	75 deg	90 deg	105 deg
	(dB)							
150.0	-2.52	-0.71	-1.78	-3.78	-3.96	-2.22	-1.64	-1.22
165.0	-8.57	-5.40	-7.71	-9.31	-10.91	-6.41	-5.99	-4.60
180.0	-19.27	-16.17	-14.44	-17.57	-9.40	-11.04	-11.84	-8.17
195.0	-6.04	-9.18	-5.32	-6.82	-3.21	-7.66	-7.61	-6.79
210.0	-1.15	-2.89	-0.93	-1.89	0.25	-2.82	-2.83	-3.13
225.0	1.61	0.30	1.62	1.23	2.39	0.30	-0.12	-0.59
240.0	3.29	2.16	3.05	3.25	3.64	2.17	1.64	1.06
255.0	4.21	3.09	3.74	4.55	4.32	3.31	2.72	2.12
270.0	4.40	3.45	3.83	4.98	4.34	3.79	3.05	2.46
285.0	4.05	3.21	3.47	4.77	3.60	3.51	2.65	2.03
300.0	3.06	2.39	2.65	3.89	2.19	2.63	1.40	0.94
315.0	1.26	0.75	0.91	2.20	-0.29	0.89	-0.66	-1.05
330.0	-1.77	-1.86	-2.00	-0.55	-4.43	-2.01	-3.83	-4.01
345.0	-7.13	-7.05	-7.29	-4.90	-13.68	-7.43	-9.32	-9.08
360.0	-14.78	-17.46	-14.83	-12.08	-13.25	-22.26	-18.79	-20.43

(continuation of the "RP_2440.000_ver" table from column 9 ...)

Azimuth	Elevation	Elevation	Elevation	Elevation	Elevation
(deg)	(deg) 120 deg		150 deg	165 deg	180 deg
	(dB)	(dB)	(dB)	(dB)	(dB)
0.0	-21.46	-15.86	-15.13	-16.83	-16.42
15.0	-10.23	-6.95	-5.71	-9.45	-6.75
30.0	-4.60	-1.87	-0.15	-3.33	-0.20
45.0	-1.47	1.33	3.54	0.91	3.17
60.0	0.96	3.48	5.89	3.73	5.20
75.0	2.35	4.77	6.89	5.45	6.24
90.0	2.62	5.04	6.96	6.13	6.60
105.0	1.72	4.35	6.26	5.89	6.22
120.0	-0.52	2.52	4.78	4.76	5.19
135.0	-4.08	-0.76	2.10	2.41	3.44
150.0	-9.39	-6.17	-1.97	-1.41	0.46
165.0	-20.60	-15.42	-7.97	-8.14	-4.88
180.0	-10.64	-12.61	-9.92	-21.49	-17.64
195.0	-5.18	-5.25	-3.15	-8.41	-6.05
210.0	-2.04	-1.55	1.07	-3.00	-0.71
225.0	0.08	1.02	3.40	0.17	2.40
240.0	1.43	2.92	4.67	2.07	4.29
255.0	2.07	4.01	5.48	3.08	5.38
270.0	2.21	4.52	5.83	3.49	5.72
285.0	1.84	4.29	5.58	3.31	5.48
300.0	0.90	3.48	4.90	2.54	4.55
315.0	-0.96	1.70	3.59	0.79	2.93
330.0	-3.90	-1.11	1.21	-2.31	0.39
345.0	-8.71	-6.18	-3.76	-7.75	-3.98
360.0	-17.11	-15.66	-10.93	-18.19	-10.27

SWRA421 Page 16 of 19

OTA Test 5/7

Theta = 0, Phi = 0

Theta = 180, Phi = 0

12-10-2012 EMC32 V8.53.0 15:01:02

OTA Test 6/7

Theta = 90, Phi = 180

12-10-2012 EMC32 V8.53.0 15:01:02

SWRA421

OTA Test 7/7

Theta = 90, Phi = 270

Theta = 90, Phi = 90

12-10-2012 EMC32 V8.53.0 15:01:02

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>