

Electroencephalography (EEG)

Target Problem

- Eleven right-handed individuals: 4M and 7F; M. age = 55yrs, SD = 5.8.
- Decision-making tasks between 2 reaching movements.
- 12 blocks of 108 trials each.
- The factor of study is the three motivated states:
 - Solo, 0.
 - Easy, 1,
 - Hard, 2.

EEG data classification: Conventional Approach

EEG data classification: Automated Feature Extraction

CNNs

Convolutional Neural Networks

LSTM

Long Short-Term Memory Networks

GNNs

Graph Neural Networks:

- Generalize CNNs.
- Non-local, Long-distance relationships
- Capture **non-Euclidean**, curved spaces.

Graph Convolutions

Graph Convolutions

$$\mathcal{G} = (V, E)$$
 $A \in \mathbb{R}^{n \times n}$

$$A \in \mathbb{R}^{n \times n}$$

$$A_{uv} = \begin{cases} 1 & \text{if } (u, v) \in E \\ 0 & \text{if } (u, v) \notin E \end{cases}$$

$$h_v = \phi\left(x_v, \bigoplus_{u \in \mathcal{N}_v} \psi(x_v, x_u)\right)$$

$$E \subseteq V \times V$$

$$|V| = n$$

$$v \in V$$

$$x_v \in \mathbb{R}^p$$

$$X \in \mathbb{R}^{n \times p}$$

$$X = [x_1, ..., x_n]^T$$

GCN Convolution

$$\mathbf{X}' = \mathbf{\hat{D}}^{-1/2}\mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}\mathbf{X}\mathbf{\Theta},$$

node-wise formulation:

$$\mathbf{x}_i' = \mathbf{\Theta}^{\top} \sum_{j \in \mathcal{N}(i) \cup \{i\}} \frac{e_{j,i}}{\sqrt{\hat{d}_j \hat{d}_i}} \mathbf{x}_j$$

Data

By Laurens R. Krol - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=96843750

TimeAggNet

TimeGraphNet

DeepTimeGraphNet

SimpleTimeGraphNet

Adaptive Modification

$$A = XWX^T + I$$

$$X \in \mathbb{R}^{n \times \tau}$$

$$W \in \mathbb{R}^{\tau \times \tau}$$

Experiments

- → 80% train 20% test split.
- → 250 epochs using the Adam optimizer with a learning rate of 0.001.
- → The class labels are one hot encoded and the loss function of choice was mean squared error (MSE).
- → For the errors we will use a 95% confidence interval using a normal approximation based on the test set.

Results

Data exploration

Class Balance across subjects

	% of class 0	% of class 1	% of class 2	Total samples
Subject 0	33	33	33	1296
Subject 1	36	32	32	1017
Subject 2	33	33	33	1296
Subject 3	33	33	33	1296
Subject 4	40	20	40	1080
Subject 5	33	33	33	1296
Subject 6	40	40	20	1080
Subject 7	33	33	33	1296
Subject 8	33	33	33	1296
Subject 9	33	33	33	1296
Subject 10	33	33	33	1296

Missing channels across subjects, within all blocks of the

whole data

Missing channels across subjects, within all blocks of the whole dat

Results

Models: Training

Average loss and metrics on the training set for all models across all subjects

	Loss	Accuracy	Recall	Precision	F1
TimeAggNet	0.112	0.768	0.766	0.768	0.765
TimeGraphNet	0.117	0.756	0.752	0.758	0.753
TimeGraphNetAdap	0.117	0.756	0.752	0.758	0.753
DeepTimeGraphNet	0.122	0.732	0.719	0.746	0.716
DeepTimeGraphNetAdap	0.122	0.732	0.719	0.746	0.716
SimpleTimeGraphNet	0.129	0.715	0.709	0.715	0.709
SimpleTimeGraphNetAdap	0.129	0.715	0.709	0.715	0.709

Training loss for the DeepTimeGraphNet

Training loss for the DeepTimeGraphNetAdap

Results

Models: Testing

Average test metrics for the different models across subjects

	Accuracy	Recall class 0	Recall class 1	Recall class 2
TimeAggNet	0.709	0.742	0.678	0.695
TimeGraphNet	0.700	0.713	0.655	0.722
TimeGraphNetAdap	0.671	0.672	0.661	0.660
DeepTimeGraphNet	0.678	0.696	0.671	0.635
DeepTimeGraphNetAdap	0.661	0.655	0.676	0.632
SimpleTimeGraphNet	0.664	0.663	0.593	0.716
SimpleTimeGraphNetAdap	0.684	0.706	0.679	0.637

	Precision class 0	Precision class 1	Precision class 2
TimeAggNet	0.718	0.699	0.706
TimeGraphNet	0.719	0.686	0.690
TimeGraphNetAdap	0.687	0.684	0.641
DeepTimeGraphNet	0.690	0.709	0.605
DeepTimeGraphNetAdap	0.690	0.660	0.633
SimpleTimeGraphNet	0.673	0.662	0.656
SimpleTimeGraphNetAdap	0.707	0.671	0.620

Test accuracy distributions for the different models across all

subjects

Recall metrics grouped by class for all models over all subjects

Precision test metrics grouped by class for all models over all subjects

Accuracy distributions of all models grouped by subject

Average accuracies for subject 0 with a single and 4 repetitions for all models.

Test accuracy distribution over all graph models and subjects grouped into default models and adaptive modifications

Test accuracies for the TimeGraphNet and TimeGraphNetAdap models on the different subjects

Test accuracies for the DeepTimeGraphNet and DeepTimeGraphNetAdap models on the different subjects

Test accuracies for the SimpleTimeGraphNet and SimpleTimeGraphNetAdap models on the different subjects

Comparison with previous study

Conclusions

Limitations & Future Work

- Lack of generality.
 - Node pooling layers readout functions.
- Class unbalance
 - Weighted losses.
- Inductive bias.
- Need for further proving of the models.
 - Frequency bands filtering.
 - Frequency domain.
 - > Palliate the convergence problems.
 - > Other self-adaptive strategies.

References

The slide template is from **Slidesgo** and **Freepik**.

The CNN diagrams are from: NN-SVG: Publication-Ready Neural Network Architecture Schematics.