Algebra per Informatica

Foglio di esercizi 4

Esercizio 1. Provare, usando il principio di induzione, le seguenti affermazioni:

- (1) $1+3+5+\cdots+(2n-1)=n^2 \quad \forall n \in \mathbb{N}^*;$
- (2) $1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \quad \forall n \in \mathbb{N}^*;$ (3) $1 + 4 + 7 + \dots + (1+3n) = \frac{3n^2 + 5n + 2}{2} \quad \forall n \in \mathbb{N}^*;$
- (4) Se $x \in \mathbb{R}$, $x \neq 1$ per ogni n > 0 si ha $1 + x + x^2 + \dots + x^n = \frac{1 x^{n+1}}{1 x}$;
- (5) Un insieme finito che ha n elementi ha 2^n sottoinsiemi;
- (6) $n^3 n + 6$ è divisibile per 3 per ogni $n \in \mathbb{N}^*$;
- (7) $8^n + 6$ è divisibile per 14 per ogni $n \in \mathbb{N}^*$;
- (8) $n! > 2^n$ per ogni $n \ge 4$.

Esercizio 2. Calcolare quoziente q e resto r della divisione di b per a, dove

$$b = 63, \ a = 20;$$
 $b = -63, a = 20.$

Esercizio 3. Siano $a, b, c \in \mathbb{Z}$ tali che $a|b \in a|c$. Provare che per ogni $x, y \in \mathbb{Z}$ si ha a|(bx+cy).

Esercizio 4. Calcolare, usando l'algoritmo euclideo, il massimo comun divisore delle seguenti coppie di interi:

$$(354, 128), (689, 533), (720, 880), (228, 612), (1271, 1147),$$

e scrivere la corrispondente identità di Bezout.

Esercizio 5. Siano a, b, k tre numeri interi positivi. Provare che

$$MCD(ka, kb) = k \cdot MCD(a, b).$$

Esercizio 6. Esistono $x, y \in \mathbb{Z}$ tali che 10 = 3752x + 730y? E tali che 3752x + 730y = 25?

Esercizio 7. Dire se le seguenti equazioni hanno soluzioni intere e in caso affermativo determinarne una usando l'algoritmo euclideo:

$$42x + 24y = 6;$$
 $42x + 24y = 100;$ $42x + 24y = 30.$

Esercizio 8. Determinare tutte le soluzione intere delle seguenti equazioni:

$$18x + 84y = 42;$$
 $623x + 679y = 21;$ $623x + 679y = 22.$

Esercizio 9. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}$ l'applicazione data da f(x,y) = 20x - 27y. Provare che f è surgettiva e determinare $f^{-1}(0)$ e $f^{-1}(2)$.

Esercizio 10. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}$ l'applicazione data da f(x,y) = 21x + 28y.

- 1. Stabilire se f è surgettiva e/o iniettiva.
- 2. Determinare $f^{-1}(34)$ e $f^{-1}(35)$.