NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Kenny Sng, Poh Wei Shan Charlotte

MA3110 Mathematical Analysis II

AY 2008/2009 Semester 1

Question 1

(a) Since f is continuous at c, we have that:

 $\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that } \forall x \in I, \ |f(x) - f(c)| < \epsilon \text{ whenever } |x - c| < \delta - (*).$

We are also given that
$$g$$
 is differentiable at c , thus we also have that: $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{such that} \ \forall x \in I, \ \left| \frac{g(x) - g(c)}{x - c} - g'(c) \right| < \epsilon \ \text{whenever} \ |x - c| < \delta - (**).$

Suppose that f(c) > 0. Letting $\epsilon = \frac{1}{2}f(c) > 0$, we have from (*):

 $\exists \delta_1 > 0$ such that $\forall x \in I \cap (c - \delta_1, c + \delta_1), |f(x) - f(c)| < \frac{1}{2}f(c)$ whenever $|x - c| < \delta_1$.

Thus, $\forall x \in I \cap (c - \delta_1, c + \delta_1), f(x) > \frac{1}{2}f(c) > 0.$

Hence, $\forall x \in I \cap (c - \delta_1, c + \delta_1), f(x) = |f(x)| = g(x),$ and thus f is differentiable at c since g is given to be differentiable at c.

Suppose that f(c) < 0. Letting $\epsilon = -\frac{1}{2}f(c) > 0$, we have from (*):

 $\exists \delta_2 > 0$ such that $\forall x \in I \cap (c - \delta_2, c + \delta_2), |f(x) - f(c)| < -\frac{1}{2}f(c)$ whenever $|x - c| < \delta_2$.

Thus, $\forall x \in I \cap (c - \delta_2, c + \delta_2), f(x) < \frac{1}{2}f(c) < 0.$

Hence, $\forall x \in I \cap (c - \delta_2, c + \delta_2), f(x) = -|f(x)| = -g(x)$, and since g is given to be differentiable at c, f = -g is also differentiable at c.

Suppose that f(c) = 0. Then, g(c) = |f(c)| = 0.

We suppose for a contradiction that g'(c) > 0.

Then, from (**), letting $\epsilon = \frac{1}{2}g'(c) > 0$, we have:

$$\exists \delta_3 > 0 \text{ such that } \forall x \in I \cap (c - \delta_3, c + \delta_3), \left| \frac{g(x) - g(c)}{x - c} - g'(c) \right| < \frac{1}{2}g'(c).$$

Thus, $\forall x \in I \cap (c - \delta_3, c + \delta_3)$ such that x < c, we have $\frac{g(x) - g(c)}{x - c} > \frac{1}{2}g'(c)$, which implies that $g(x) < \frac{1}{2}(x-c)g'(c) < 0$, which is a contradiction as $g(x) = |f(x)| \ge 0 \ \forall x \in I$.

Similarly, if g'(c) < 0, letting $\epsilon = -\frac{1}{2}g'(c) > 0$, we have:

$$\exists \delta_4 > 0 \text{ such that } \forall x \in I \cap (c - \delta_4, c + \delta_4), \left| \frac{g(x) - g(c)}{x - c} - g'(c) \right| < -\frac{1}{2}g'(c).$$

Thus, $\forall x \in I \cap (c - \delta_4, c + \delta_4)$ such that x > c, we have $\frac{g(x) - g(c)}{x - c} < \frac{1}{2}g'(c)$, which implies that $g(x) < \frac{1}{2}(x-c)g'(c) < 0$, which is a contradiction as $g(x) = |f(x)| \ge 0 \ \forall x \in I$.

Page: 1 of 7

Thus we can conclude that if f(c) = g(c) = 0, we must have g'(c) = 0 as well.

Hence, from (**), $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x \in I$, if $|x - c| < \delta$,

$$\left| \frac{f(x) - f(c)}{x - c} - g'(c) \right| = \left| \frac{f(x)}{x - c} \right|$$

$$= \left| \frac{|f(x)|}{x - c} \right|$$

$$= \left| \frac{g(x)}{x - c} \right|$$

$$= \left| \frac{g(x) - g(c)}{x - c} - g'(c) \right|$$

Thus, f is differentiable at c if f(c) = 0, in fact, f'(c) = g'(c) = 0.

(b) We shall assume that such a function exists.

Since we are given that f'(0) = 1, by definition, we have:

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that } \forall x \in (-1,1), \ \left| \frac{f(x) - f(0)}{x - 0} - 1 \right| < \epsilon \text{ whenever } |x - 0| < \delta.$$

Choosing $\epsilon = \frac{1}{2}$, then, $\exists \delta_1 > 0$, $0 < \delta_1 < 1$, such that $\forall x \in (-1,1)$, $\left| \frac{f(x) - f(0)}{x - 0} - 1 \right| < \frac{1}{2}$ whenever $|x - 0| < \delta_1$.

Thus, choosing $c \in (-\delta_1, \delta_1) \cap (0, 1)$, then c > 0, and from above, $\frac{f(c) - f(0)}{c - 0} < \frac{3}{2}$. Now, by the Mean Value Theorem, $\exists d \in (0, c)$ such that

$$f'(d) = \frac{f(c) - f(0)}{c - 0} < \frac{3}{2}$$

which is a contradiction to property (iii). Hence, such a function cannot exist.

Question 2

(a) Let $P = \{0 = x_0 < x_1 < ... < x_n = 1\}$ be a partition for [0, 1]. For each k = 0, 1, ..., n, we have:

$$M_k = \sup\{h(x) : x \in [x_{k-1}, x_k]\}$$

$$= 2x_k$$

$$m_k = \inf\{h(x) : x \in [x_{k-1}, x_k]\}$$

$$= -1.$$

If $M_k \neq 2x_k$, then let $M_k = a < 2x_k$. By the density of irrational numbers, $\exists 2b \in \mathbb{R} \setminus \mathbb{Q}$ such that $a < 2b < 2x_k$. Then, $b \in \mathbb{R} \setminus \mathbb{Q}$, and thus 2b = h(b), contradicting the fact that a is the supremum. A similar reasoning will yield $m_k = -1$. Hence,

$$U(h,P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1})$$

$$= 2\sum_{k=1}^{n} x_k(x_k - x_{k-1})$$

$$\geq 2\sum_{k=1}^{n} \frac{x_k + x_{k-1}}{2}(x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} x_k^2 - x_{k-1}^2$$

$$= 1.$$

$$L(h, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} (-1)(x_k - x_{k-1})$$

$$= -\sum_{k=1}^{n} x_k - x_{k-1}$$

$$= -1.$$

Thus,

$$U(h, P) - L(h, P) \ge 2.$$

Choosing $\epsilon = 2$ in Riemann Integrability Criterion, there does not exist a partition P for [0,1] for which U(h,P) - L(h,P) < 2, and thus h is not Riemann integrable on [0,1].

- (b) (i) Since f is continuous on [a,b], a closed and bounded interval, by the Extreme Value Theorem, $\exists \alpha \in [a,b]$ such that $f(\alpha) = M$. Since f is continuous at α , we have that for any $\epsilon > 0$, $\epsilon \leq M$, and for all $x \in [a,b]$, $|f(x) - M| < \epsilon$ whenever $|x - \alpha| < \delta$. Thus, by letting $[c,d] \subseteq [a,b] \cap (\alpha - \delta, \alpha + \delta) \subseteq [a,b]$, for all x in [c,d], $|f(x) - M| < \epsilon$, that is, $f(x) > M - \epsilon$.
 - (ii) Hence,

$$f(x) > M - \epsilon$$

$$\Rightarrow (f(x))^n > (M - \epsilon)^n \quad \text{since } M - \epsilon \ge 0$$

$$\Rightarrow \int_a^b (f(x))^n dx > \int_a^b (M - \epsilon)^n dx$$

$$\Rightarrow \int_a^b (f(x))^n dx > (b - a)(M - \epsilon)^n.$$

Letting K = (b - a) > 0, we are done.

(iii) Also, we have that $f(x) \leq M$. Thus,

$$(f(x))^n \leq M^n$$

$$\Rightarrow \int_a^b (f(x))^n dx \leq \int_a^b M^n dx$$

$$\Rightarrow \int_a^b (f(x))^n dx \leq (b-a)M^n.$$

Combining the result in (ii), we have

$$(b-a)^{\frac{1}{n}}(M-\epsilon) \le \left(\int_a^b (f(x))^n dx\right)^{\frac{1}{n}} \le M(b-a)^{\frac{1}{n}}.$$

Hence,

$$\lim_{n \to \infty} (b - a)^{\frac{1}{n}} (M - \epsilon) \le \lim_{n \to \infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} \le \lim_{n \to \infty} M(b - a)^{\frac{1}{n}}$$

$$\Rightarrow M - \epsilon \le \lim_{n \to \infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} \le M.$$

Thus, we have

$$-\epsilon \le \lim_{n \to \infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} - M \le 0.$$

Since ϵ is arbitrary, we have

$$\lim_{n \to \infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} - M = 0$$

$$\Rightarrow \lim_{n \to \infty} \left(\int_a^b (f(x))^n dx \right)^{\frac{1}{n}} = M.$$

Question 3

(a) Given that the sequence of functions converges uniformly on [a,b], we have that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$|f_n(t) - f(t)| < \frac{\epsilon}{b-a}$$

for all $t \in [a, b]$.

Then, $\forall n \geq N$,

$$\left| \int_{a}^{b} f_{n}(t)dt - \int_{a}^{b} f(t)dt \right| = \left| \int_{a}^{b} f_{n}(t) - f(t)dt \right|$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)|dt$$

$$\leq \int_{a}^{b} \frac{\epsilon}{b - a}dt$$

$$= \epsilon.$$

Hence, $\int_a^b f_n(t)dt \to \int_a^b f(t)dt$.

(b) Given that h is a bounded function on A, we have that $|h| \leq M$ for some $M \geq 0$. Given also that $(g_n : A \to \mathbb{R})$ is a uniformly convergent sequence, say, it converges to $g : A \to \mathbb{R}$, we have that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$|g_n(x) - g(x)| < \frac{\epsilon}{M}$$

for all $x \in A$.

Hence, for all $x \in A$ and for all $n \ge N$, we have

$$|h(x)g_n(x) - h(x)g(x)| = |h(x)||g_n(x) - g(x)|$$

$$\leq M \frac{\epsilon}{M}$$

$$= \epsilon.$$

Thus, the sequence $(hg_n : A \to \mathbb{R})$ converges uniformly on A.

(c) Now, for all $x \in [\delta, \infty)$, $\delta > 1$, and for all $n \in \mathbb{N}$, we have

$$\begin{array}{ccc} \frac{1}{1+x^n} & \leq & \frac{1}{x^n} \\ & \leq & \frac{1}{\delta^n}. \end{array}$$

Since $\delta > 1$, $\sum_{n=1}^{\infty} \frac{1}{\delta^n}$ converges.

Hence, by the Weierstrass M-Test, $\sum_{n=1}^{\infty} \frac{1}{1+x^n}$ converges uniformly on $[\delta, \infty)$.

Question 4

(a)

$$\lim_{n \to \infty} \left| \frac{\frac{((n+1)!)^2}{(2(n+1))!}}{\frac{(n!)^2}{(2n)!}} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+1)(2n+2)}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2 + 6n + 2}$$

$$= \frac{1}{4}$$

Hence, the power series is convergent on (-4,4).

Now, when x = 4, the power series becomes $\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$, and when x = -4, power series becomes

$$\sum_{n=1}^{\infty} \frac{(n!)^2 (-4)^n}{(2n)!}.$$

We have that

$$(2n)! = 1.2...2n$$

$$= (1.2)(3.4)(5.6)...(2n - 1.2n)$$

$$\leq (2.2)(4.4)(6.6)...(2n.2n)$$

$$= (2^2.1^2)(2^2.2^2)(2^2.3^2)...(2^2.n^2)$$

$$= 4^n(n!)^2.$$

Hence,

$$\frac{4^n(n!)^2}{(2n)!} \ge 1.$$

Thus, $\lim_{n \to \infty} \frac{(n!)^2 4^n}{(2n)!} \neq 0$ and $\lim_{n \to \infty} \frac{(n!)^2 (-4)^n}{(2n)!} \neq 0$.

Hence, both $\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$ and $\sum_{n=1}^{\infty} \frac{(n!)^2 (-4)^n}{(2n)!}$ diverges, and the region of convergence is (-4,4).

(b) (i) We are given that $\sum_{n=1}^{\infty} a_n$ converges, and thus it converges uniformly on the interval [0, 1] since it is independent of x.

Now, for $x \in (0,1)$, (x^n) is a decreasing sequence of function. For x=0 and x=1, (x^n) is a constant sequence which is still monotone. Hence, for $x \in [0,1]$, (x^n) is a monotone sequence. It is also uniformly bounded above by 1.

Hence, by Abel's Test, $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on [0,1].

(ii) From (b)(i), f(x) converges uniformly on [0,1]. Thus f is continuous on [0,1] since it is a series of continuous functions.

In particular, f(x) is continuous at x = 1. Hence,

$$\lim_{x \to 1^{-}} f(x) = f(1)$$
$$= \sum_{n=1}^{\infty} a_n$$

(c) Since

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$$

for |t| < 1, we have that for |x| < 1,

$$\int_0^x \frac{1}{1-t} dt = \ln\left(\frac{1}{1-x}\right)$$

$$= \int_0^x \sum_{n=0}^\infty t^n dt$$

$$= \sum_{n=0}^\infty \int_0^x t^n dt$$

$$= \sum_{n=0}^\infty \frac{x^{n+1}}{n+1}$$

$$= \sum_{n=0}^\infty \frac{x^n}{n}$$

as we can integrate a power series term by term within its radius of convergence. Thus,

$$\ln\left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} \frac{x^n}{n}.$$

Hence, for 0 < a < 1,

$$\int_0^a \ln\left(\frac{1}{1-x}\right) dx = \int_0^a \sum_{n=1}^\infty \frac{x^n}{n} dx.$$

Now, since $\sum_{n=0}^{\infty} x^n$ has radius of convergence 1, the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ will also have radius of convergence

1. Thus, $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges uniformly on [-c, c] for all c < 1.

Hence, for all 0 < a < 1,

$$\int_0^a \sum_{n=1}^\infty \frac{x^n}{n} dx = \sum_{n=1}^\infty \int_0^a \frac{x^n}{n} dx$$
$$= \sum_{n=1}^\infty \frac{a^{n+1}}{n(n+1)}.$$

Now, let $f(a) = \sum_{n=1}^{\infty} \frac{a^{n+1}}{n(n+1)}$. Since $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is a convergent series, by (b), we deduce that $\lim_{a \to 1^-} f(a) = f(1) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Hence, combining all the above results,

$$\lim_{a \to 1^{-}} \int_{0}^{a} \ln\left(\frac{1}{1-x}\right) dx = \lim_{a \to 1^{-}} \int_{0}^{a} \sum_{n=1}^{\infty} \frac{x^{n}}{n} dx$$

$$= \lim_{a \to 1^{-}} \sum_{n=1}^{\infty} \frac{a^{n+1}}{n(n+1)}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \frac{1}{n(n+1)}$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \lim_{k \to \infty} \left(1 - \frac{1}{k+1}\right)$$

Page: 7 of 7