EE24BTECH11059 - Yellanki Siddhanth

Question:

Using integration, find the area of the region enclosed by the line $y = \sqrt{3}x$ and semi-circle $y = \sqrt{4 - x^2}$ and x-axis in the first quadrant

Solution:

Variable	Description
h	Point lying on the line
m	Slope of line
e	Eccentricity of conic
F	Focus of conic
Ι	Identity matrix
f	$\ \mathbf{n}\ ^2 \ \mathbf{F}\ ^2 - c^2 e^2$
V	A symmetric matrix given by eigenvalue decomposition
u	Vertex of conic with same directrix

TABLE 0

Line equation of form $\mathbf{x} = \mathbf{h} + k\mathbf{m}$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} \tag{0.1}$$

1

Equation of circle of form $\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0$ is

$$\mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, f = -4, \mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{0.2}$$

If a line intersects the conic, k value of intersecting point is given by,

$$k_{i} = \frac{-\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u}\right) \pm \sqrt{\left[\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u}\right)\right]^{2} - g\left(h\right)\left(\mathbf{m}^{\top}\mathbf{V}\mathbf{m}\right)}}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}}$$
(0.3)

On substituting values of $\boldsymbol{u},\boldsymbol{m},\boldsymbol{h},\boldsymbol{V}$ we get,

$$k = \pm 1 \tag{0.4}$$

Since we are considering the area only in first quadrant, we will only consider k = +1. Thus point of intersection of line with circle is $\begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$.

Area bound between the semi-circle and the line is,

$$\mathbf{S} = \int_0^1 x dx + \int_1^2 \sqrt{4 - x^2} dx \tag{0.5}$$

$$=\frac{1}{2} + \frac{2\pi}{3} - \frac{1}{2} = \frac{2\pi}{3} \tag{0.6}$$

Thus area between the line and the semi-circle is $S = \frac{2\pi}{3}$

Finding the area between line AB and semi-circle

