In []:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt from colorama import init, Fore, Back, Style from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import confusion_matrix from sklearn.metrics import hamming_loss from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split</pre>
	# Inicialmente procede-se ao load do dataset para o código, através da função pd.read_csv; O parâmetro usecols é usado para evitar o aparecimento de colunas # extra que não pertencem ao dataset, e que podem causar erros na modelação dos dados dataset = pd.read_csv('D:\si\si_lab3_material\dataset\DATASET_SI_XYZ_FINAL.csv', usecols= [0,1,2,3,4,5,6,7,8,9,10,11]) dataset
Out[]:	x_is_at goto_x y_is_at goto_y z_is_at z_is_at goto_y z_is_at z_is_at
	4 3 5 2 2 1 4 1 0 0 0 1 0 u. v. <
In []:	# Primeiro é feita a divisão do dataset em dois sets, X e Y. X reúne todos os inputs do dataset, e Y reúne todos os outputs. Após isto, a função # train_test_split faz novamente uma divisão de X e Y em sub sets. X_train_Decision_Tree e Y_train_Decision_Tree são os sets que serão usados para # treinar o modelo, X_test_Decision_Tree e Y_test serão os sets usados para testar a eficácia do modelo de previsão após o modelo ser treinado. # 0 parâmetro test_size indica a percentagem de dados do dataset original que serão usados para o teste de eficácia do modelo. 0.25 é um rácio # bom para o problema em mãos, uma vez que o prediction resultante apresenta uma grau elevado de accuracy para vários testes realizado # (geralmente variando entre 0.995 e 1). O modelo usado aqui foi Decision Tree. X = dataset.iloc[:20000, 0:6]
Out[]:	<pre>Y = dataset.iloc[:20000, 6:12] X_train_Decision_Tree, X_test_Decision_Tree, Y_train_Decision_Tree, Y_test_Decision_Tree = train_test_split(X,Y,test_size=0.25) clf_DT = DecisionTreeClassifier() clf_DT = clf_DT.fit(X_train_Decision_Tree, Y_train_Decision_Tree) prediction_Decision_Tree = clf_DT.predict(X_test_Decision_Tree) accuracy_Decision_Tree = accuracy_score(Y_test_Decision_Tree, prediction_Decision_Tree) accuracy_Decision_Tree</pre>
In []:	# O resultado de accuracy revela a semelhança entre o conjunto obtido pelo modelo predict e o conjunto Y_Test, que contém a solução correta para # o input que predict recebe (X_test_Decision_Tree). accuracy_score(Y_test_Decision_Tree, prediction_Decision_Tree) 0.9978
Out[]:	# Hamming loss é mais específico no seu resultado de accuracy do que accuracy_score. Enquanto accuracy considera errado uma linha de Output inteira se # um dos valores na linha estiver errado, Hamming loss apenas considera como errado esse valor em específico para a sua estatística de accuracy, # em vez de condenar a linha inteira hamming_loss(Y_test_Decision_Tree, prediction_Decision_Tree) 0.0008
In []:	# Ao longo deste notebook encontram-se alguns testes com uso de Confusion Matrix, para ambos os modelos e para casos estáticos com recurso a arrays definidos. # Canto superior Díreito e Inferior Esquerdo representa Previsões corretas, Canto superior Esquerdo e Inferior Direito representa Previsões incorretas acc = accuracy_score(Y_test_Decision_Tree, prediction_Decision_Tree) mat = confusion_matrix(Y_test_Decision_Tree.iloc[:,0],prediction_Decision_Tree[:,0]) mat_display = ConfusionMatrixDisplay(confusion_matrix=mat) mat_display.plot() print(acc) 0.9952
	- 4000
In []:	# Primeiro é feita a divisão do dataset em dois sets, X e Y. X reúne todos os inputs do dataset, e Y reúne todos os outputs. Após isto, a função # train_test_split faz novamente uma divisão de X e Y em sub sets. X_train_Random_Forest e Y_train_Random_Forest são os sets que serão usados para # treinar o modelo, X_test_Decision_Tree_Forest e Y_test serão os sets usados para testar a eficácia do modelo de previsão após o modelo ser treinado. # 0 parâmetro test_size indica a percentagem de dados do dataset original que serão usados para o teste de eficácia do modelo. 0.25 é um rácio # bom para o problema em mãos, uma vez que o prediction resultante apresenta uma grau elevado de accuracy para vários testes realizado # (geralmente variando entre 0.995 e 1). 0 modelo usado aqui foi Decision_Tree Forest. X_train_Decision_Tree_Forest, X_test_Random_Forest, Y_train_Decision_Tree_Forest, Y_test_Random_Forest = train_test_split(X,Y,test_size=0.25) clf_RF = RandomForestClassifier() clf_RF = clf_RF.fit(X_train_Decision_Tree_Forest, Y_train_Decision_Tree_Forest) prediction_Random_Forest = accuracy_score(Y_test_Random_Forest, prediction_Random_Forest) accuracy_Random_Forest = accuracy_score(Y_test_Random_Forest, prediction_Random_Forest)
In []:	0.998 # O resultado de accuracy revele a semelhança entre o conjunto obtido pelo modelo predict e o conjunto Y_Test, que contém a solução correta para # o input que predict recebe (X_test_Random_Forest). accuracy_score(Y_test_Random_Forest, prediction_Random_Forest) 0.998
In []:	# Hamming loss é mais específico no seu resultado de accuracy do que accuracy_score. Enquanto accuracy considera errado uma linha de Output inteira se # um dos valores na linha estiver errado, Hamming loss apenas considera como errado esse valor em específico para a sua estatística de accuracy, # em vez de condenar a linha inteira hamming_loss(Y_test_Random_Forest, prediction_Random_Forest) 0.00033333333333333333333333333333333
In []:	<pre>acc = accuracy_score(Y_test_Random_Forest, prediction_Decision_Tree) mat = confusion_matrix(Y_test_Decision_Tree.iloc[:,0],prediction_Decision_Tree[:,0]) mat_display = ConfusionMatrixDisplay(confusion_matrix=mat) mat_display.plot() print(acc)</pre> 0.17
	- 4258 3 3 - 3500 - 3500 - 3500 - 2500 - 2500 - 2500 - 1500 - 1500 - 1500 - 500
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>
	Confusion Matrix: move_x_left -2.5 -2.0 -1.5 -1.0 -0.5 -0.5 -0.0 Predicted label
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>
	Confusion Matrix: move_x_right 2
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>
	Confusion Matrix: move_y_outside 3.0 -2.5 -2.0 -1.5 -1.0 -0.5 -0.5 -0.0 Predicted label
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>
	Confusion Matrix: move_y_inside 4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.7 3.6 Predicted label
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>
	Confusion Matrix: move_z_down -25 -20 -15 -10 -05 -07 Predicted label
In []:	<pre>y_teste = np.array([[0,1,0,0,1,0],</pre>

Confusion Matrix: move_z_up

Predicted label

ò

True label

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5