Contention management for Deterministic Networking

November 9, 2017

Problematic

- Latency critical application (C-RAN,).
- Stochastic networks could not ensure a low latency.
- NP-hard

- Contention in the fronthaul network
- Need to guarantee the latency

Model

- Network : Directed Graph
- \bullet RRH / BBU \to set of vertices A (Antennas) and C (Computation)
- \bullet Physical Delay of a link \to Weight on arcs

Model

Slotted time

The time is discrete.

- ullet Slot $o 1 \mu$ s.
- Step by step.

Message sending

Block of one or several slots used by the messages.

Latency

Latency

- 3 factors increases the latency
 - The physical delay of the links (not alterable).
 - 2 The time before inserting a messages in the network.
 - **3** The buffering time of the messages in the network.

Collisions

An easy topology

Control of the contention: reserving slots on routes.

Problem

Problem

Find some time at which send the messages from the BBU/RRH, such that there is no collisions in the network.

NP-hard

On topology with restricted parameters.

Main ideas

No buffering in BBU

- Greedy Policy: ensure a solution for small loads
- Shortest-Longest : ensure a solution for similar length of routes
- Exhaustive search : optimal solutions for few routes

Allowing buffers in BBU

Two greedy parts:

Way forward

Multiple random sendings

Way backward

- Greedy Algorithm
- Adapted scheduling algorithm

Deterministic vs Stochastic

Optical ring

Model

Waiting only at the insertion

Insertion

Parameters

Broadcast and select Policy

Parameters

Length of the ring	20km	100 slots
Number of nodes	3 -10	
Duration of a slot	1μ s	-
Bandwidth	100 Gbps	-
Period	1ms	1000 slots
Capacity of a packet	1Mb	-
Flow of an antenna	5Gbps	1 packet/Every 10 slots during 500 slots

Optical ring problematic

• We got two kinds of traffic : CRAN - high priority, Best effort

 We want to observe the behavior of the ring and analyze the latency of CRAN

 We will try to find some methods to decrease the CRAN latency without increasing the Best effort latency too much

No management

Priority with low load

Priority with high load

- Average load = 0.85
- More BE than without priority

Deterministic policy

Rerservation

Loaded network

An harder topology

Split frequencies

6 antennas/ less BE/ load increased

Future work

- Infocom review
- Ngreen results