Nama: Az – Zahra Chikal E.

NIM : 1103213039

Kelas : TK-45-05

TUGAS WEEK 10 MLP CLASSIFICATION

Link Google Colab (Apabila yang di zip tidak dapat dibuka):

https://colab.research.google.com/drive/1ztl55VCbNTM7EqQEPo7fjRTwwbXzLVVK?usp=sharing

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.medel_selection import StandardScaler
from sklearn.metrics import accuracy_score, classification_report, roc_curve, auc, confusion_matrix
import testing.
                                         df.info()
Output:
                                                                                                   10 Veggies
                     RangeIndex: 70692 entries, 0 to 70691
Data columns (total 22 columns):
                                                                                                   11 HvyAlcoholConsump
                                                                                                                                       70692 non-null
                                                                                                  12 AnyHealthcare
13 NoDocbcCost
                                                                                                                                       70692 non-null
                                                                                                 12
13 NoDocbce
14 GenHlth
15 MentHlth
16 PhysHlth
17 DiffWalk
                                                         Non-Null Count Dtype
                                                                                                                                       70692 non-null float64
                                                                                                                                       70692 non-null float64
                           Diabetes_binary 70692 non-null float64
HighBP 70692 non-null float64
HighChol 70692 non-null float64
                                                                                                                                       70692 non-null float64
                                                                                                                                       70692 non-null float64
                            HighChol
                                                        70692 non-null float64
                            CholCheck
                                                                                                                                       70692 non-null float64
                                                         70692 non-null float64
                                                                                                  19 Age
20 Education
                                                                                                                                       70692 non-null float64
                                                          70692 non-null
                                                                                                                                                             float64
                                                                                                                                       70692 non-null
                            Stroke
                                                          70692 non-null
                                                                                float64
                                                                                                                                        70692 non-null float64
                                                                                                   21 Income
                            HeartDiseaseorAttack 70692 non-null
                                                                                float64
                                                                                                 dtypes: float64(22)
                                                                                                 memory usage: 11.9 MB
                                                          70692 non-null
```

Analisis:

Kode di atas digunakan untuk memuat library untuk analisis data, pembelajaran mesin, dan visualisasi, seperti pandas, PyTorch, dan seaborn. Dataset diabetes_binary_5050split_health_indicators_BRFSS2015.csv. diimpor menggunakan pd.read_csv(), dan metode seperti .head(), .info(), dan .isnull().sum() digunakan untuk mengeksplorasi data, termasuk menampilkan 5 baris pertama, informasi kolom, tipe data, dan jumlah nilai kosong.

```
df = df.drop_duplicates()
               ✓ 0.0s
Output:
                                                     <class 'pandas.core.frame.DataFrame'>
            Diabetes binary
                                          a
                                                     Index: 69057 entries, 0 to 70691
            HighBP
                                          0
                                                     Data columns (total 22 columns):
            HighChol
                                          0
                                                                               Non-Null Count Dtype
                                                         Column
            CholCheck
                                          0
                                                     0 Diabetes_binary 69057 non-null float64
1 HighBP 69057 non-null float64
2 HighChol 69057 non-null float64
            BMI
                                          0
            Smoker
                                          0
                                                      3 CholCheck
                                                                              69057 non-null float64
            Stroke
                                          a
                                                                          69057 non-null float64
69057 non-null float64
                                                     4 BMI
            HeartDiseaseorAttack
                                          0
                                                         Smoker
            PhysActivity
                                          0
                                                     6 Stroke
                                                                               69057 non-null float64
            Fruits
                                          0
                                                     7 HeartDiseaseorAttack 69057 non-null float64
                                          0
                                                        PhysActivity 69057 non-null float64
Fruits 69057 non-null float64
            Veggies
                                                     8
            HvyAlcoholConsump
                                          0
                                                     10 Veggies
                                                                              69057 non-null float64
            AnyHealthcare
                                          0
                                                     11 HvyAlcoholConsump 69057 non-null float64
12 AnyHealthcare 69057 non-null float64
                                                     11 HVYAICONOICE

12 AnyHealthcare 69057 non-null float64
69057 non-null float64
            NoDocbcCost
                                          0
            GenHlth
                                          0
                                                                              69057 non-null float64
            MentHlth
                                                     14 GenHlth
                                          0
                                                                        69057 non-null float64
69057 non-null float64
69057 non-null float64
                                                      15 MentHlth
            PhysHlth
                                          0
                                                      16 PhysHlth
            DiffWalk
                                          0
                                                     17 DiffWalk
                                                                               69057 non-null float64
            Sex
                                          0
                                                     18 Sex
                                                      19 Age
                                                                                69057 non-null
                                                                                                 float64
                                          0
            Age
                                                      20 Education
                                                                               69057 non-null float64
            Education
                                          0
                                                      21 Income
                                                                                69057 non-null float64
            Income
                                          0
                                                     dtypes: float64(22)
            dtype: int64
                                                     memory usage: 12.1 MB
```

Kode tersebut menghapus duplikasi data dalam dataset menggunakan df.drop_duplicates() dan mengecek kembali struktur data dengan df.info(), yang memberikan informasi seperti jumlah kolom, tipe data, dan jumlah entri non-kosong. Selanjutnya, df.describe() digunakan untuk menghitung statistik deskriptif seperti rata-rata, standar deviasi, nilai minimum, dan maksimum untuk kolom numerik, yang membantu memahami distribusi data.

```
# Melihat jumlah data pada kolom
df['Diabetes_binary'].value_counts()

v 0.0s

Output:

Diabetes_binary
1.0 35097
0.0 33960
Name: count, dtype: int64
```

Analisis:

Kode di atas digunakan untuk menghitung nilai pada kolom 1 (Diabetes) dan 0 (Tidak diabetes). Untuk dataset ini digunakan yang sudah di split 5050 saat pengujian data yang digunakan sudah seimbang.

```
# Function to plot pie charts for all columns in the dataset

def plot_pie_charts(dataframe, num_cols=5):
    cols = dataframe.columns
    total_plots = len(cols)
    rows = (total_plots + num_cols - 1) // num_cols # Calculate required rows

fig, axes = plt.subplots(rows, num_cols, figsize=(15, rows * 4))
    axes = axes.flatten() # Flatten in case of multiple rows

# Plot pie charts

for idx, col in enumerate(cols):
    values = dataframe[col].value_counts()
    axes[idx].pie(values, labels=values.index, autopct='%1.1f%%', startangle=90, colors=plt.cm.Paired.colors)

    axes[idx].set_title(col)

# Hide unused subplots

for ax in axes[total_plots:]:
    ax.axis('off')

plt.tight_layout()
    plt.show()

# Plot pie charts for all columns in the dataset

plot_pie_charts(df)
```


Analisis:

Kode diatas diguanakan untuk membuat diagram pie chart dari tiap kolom/fitur yang

terdapat pada dataset tersebut. dataframe (data yang ingin divisualisasikan) dan num_cols (jumlah kolom per baris dalam grid plot, default-nya adalah 5). Untuk setiap kolom, akan dihitung nilai – nilai nya dan akan ditampilkan dalam bentuk presentase.

Kode diatas diguanakan untuk membuat diagram bar chart dari tiap kolom/fitur yang terdapat pada dataset tersebut. dataframe (data yang ingin divisualisasikan) dan num_cols (jumlah kolom per baris dalam grid plot, default-nya adalah 5). Untuk setiap kolom, akan dihitung nilai — nilai nya dan akan ditampilkan. Untuk sumbu y menggunakan fitur count sedangkan untuk sumbu x dilabelkan fitur — fitur yang terdapat pada dataset tersebut.

Kode di atas mendefinisikan fungsi Python bernama plot_heatmap yang bertujuan untuk memvisualisasikan korelasi antar kolom numerik dalam sebuah dataset menggunakan heatmap. Fungsi ini pertama-tama memilih kolom dengan tipe data numerik (int64 dan float64) menggunakan metode select_dtypes, sehingga hanya fitur numerik yang dianalisis. Selanjutnya, matriks korelasi dihitung menggunakan fungsi corr, yang menghasilkan nilainilai korelasi antar kolom dalam rentang -1 hingga +1. Nilai +1 menunjukkan hubungan linier positif sempurna, sedangkan -1 menunjukkan hubungan linier negatif sempurna. Nilai mendekati 0 mengindikasikan tidak adanya hubungan linier.


```
HighChol CholCheck \
                                                                       0.118900
HighBP
                                  0.372048
                                              1.000000
                                                          0.308987
                                                                       0.106593
HighChol
CholCheck
                                  0.118900
                                              0.106593
                                                          0.088231
                                  0.285643
0.075853
                                             0.232372
0.078123
Smoker
Stroke
                                             0.126869
                                                          0.098166
PhysActivity
                                  -0.150281 -0.128307
                                                          -0.084469
                                                                       -0.010072
                                                                        0.01585
Veggies
HvyAlcoholConsump
                                  -0.072181 -0.059824
                                                          -0.037801
                                                                       -0.001040
AnyHealthcare
                                  0.027034
                                              0.039659
                                                          0.034352
                                                                       0.106549
NoDocbcCost
GenHlth
                                                                       0.063116
                                  0.396571
                                                          0.227588
MentHlth
PhysHlth
                                              0.058133
0.167821
                                             0.229638
0.037824
DiffWalk
                                  0.267082
                                                          0.157859
                                                                       0.046421
                                                          0.013250
                                             0.333721
-0.130037
                                  0.274550
                                                          0.235779
                                                                       0.103414
Age
Education
Income
                                  -0.212846 -0.176360
                                                         -0.098712
Education
                          -0.101774
                          -0.124261 0.450376 1.000000
[22 rows x 22 columns]
Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u>. Adjust cell output <u>settings</u>
```

Kode di atas digunakan untuk menghitung dan menampilkan matriks korelasi antar kolom dalam sebuah dataset. nilai-nilai korelasi antar kolom dalam rentang -1 hingga +1. Nilai +1 menunjukkan hubungan linier positif sempurna, sedangkan -1 menunjukkan hubungan linier negatif sempurna. Nilai mendekati 0 mengindikasikan tidak adanya hubungan linier.

Analisis:

Kode ini menghasilkan boxplot untuk setiap kolom numerik dalam dataset menggunakan 'sns.boxplot()'. Boxplot digunakan untuk mendeteksi outlier atau pencilan dalam data. Boxplot menunjukkan distribusi data melalui kuartil, dengan garis tengah (mediana), kotak yang mewakili rentang interkuartil, dan garis keluar (whiskers) yang menunjukkan rentang data yang dianggap normal. Titik-titik di luar whiskers dianggap sebagai outlier. Setiap boxplot membantu untuk memvisualisasikan sebaran data dan mengidentifikasi apakah ada nilai yang tidak biasa dalam setiap fitur numerik.

Kode ini menghasilkan boxplot untuk setiap kolom numerik dalam dataset menggunakan 'sns.boxplot()'. Boxplot digunakan untuk mendeteksi outlier atau pencilan dalam data. Boxplot menunjukkan distribusi data melalui kuartil, dengan garis tengah (mediana), kotak yang mewakili rentang interkuartil, dan garis keluar (whiskers) yang menunjukkan rentang data yang dianggap normal. Titik-titik di luar whiskers dianggap sebagai outlier. Setiap boxplot membantu untuk memvisualisasikan sebaran data dan mengidentifikasi apakah ada nilai yang tidak biasa dalam setiap fitur numerik.

Analisis:

Kode ini digunakan mempersiapkan data untuk membangun model klasifikasi menggunakan Multilayer Perceptron (MLP) di PyTorch. Pertama, data dibagi menjadi fitur

(X) dan target (y), dengan kolom yang tidak relevan seperti Fruits, Veggies, dan PhysActivity dihapus, dan kolom Diabetes binary dijadikan target untuk klasifikasi. Fitur kemudian dinormalisasi menggunakan StandardScaler untuk memastikan semua fitur memiliki skala yang sama. Data kemudian dibagi menjadi set pelatihan dan pengujian, dengan 80% untuk pelatihan dan 20% untuk pengujian, menggunakan teknik stratified sampling untuk menjaga keseimbangan kelas. Setelah itu, data diubah menjadi tensor PyTorch agar dapat diproses di GPU atau CPU. Model MLP dibangun dengan beberapa lapisan tersembunyi, di mana setiap lapisan diikuti oleh fungsi aktivasi (seperti ReLU, Sigmoid, atau Tanh), dan lapisan output terdiri dari dua neuron untuk klasifikasi biner. Model ini kemudian akan digunakan untuk melatih dan memprediksi kelas target berdasarkan data yang diberikan.

Output:

```
HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 16, Accuracy: 0.7165, Loss: 0.6939

HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 32, Accuracy: 0.6807, Loss: 0.6982

HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 64, Accuracy: 0.7101, Loss: 0.6711

HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 128, Accuracy: 0.7044, Loss: 0.7372

HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 256, Accuracy: 0.6733, Loss: 0.6701

HL: [4], Act: linear, Epochs: 1, LR: 10, BS: 512, Accuracy: 0.6754, Loss: 0.6963

HL: [4], Act: linear, Epochs: 1, LR: 1, BS: 16, Accuracy: 0.7231, Loss: 0.7312

HL: [4], Act: linear, Epochs: 1, LR: 1, BS: 32, Accuracy: 0.3168, Loss: 0.7244

HL: [64], Act: tanh, Epochs: 250, LR: 0.0001, BS: 512, Accuracy: 0.7252, Loss: 150.0839

Output is truncated. View as a scollable element or open in a text editor. Adjust cell output settings.
```

Kode ini melakukan eksperimen untuk melatih model Multilayer Perceptron (MLP) dengan berbagai kombinasi parameter. Beberapa variasi yang diuji meliputi jumlah neuron di lapisan tersembunyi (misalnya, 4, 16, 32, 64), jenis fungsi aktivasi (seperti ReLU, Sigmoid, Softmax, dll.), jumlah epoch (dari 1 hingga 250), laju pembelajaran (dari 10 hingga 0.0001), dan ukuran batch (16 hingga 512). Untuk setiap kombinasi parameter, model dilatih menggunakan CrossEntropyLoss dan dioptimalkan dengan algoritma Adam. Setelah pelatihan, akurasi pada set pengujian dihitung, dan hasilnya disimpan bersama dengan total loss. Hasil eksperimen ini kemudian disimpan dalam file CSV yang mencatat setiap konfigurasi parameter yang diuji beserta akurasi dan loss-nya. Proses ini membantu dalam mencari konfigurasi terbaik untuk model dalam memprediksi target berdasarkan data yang diberikan.

Analisis:

Kode ini digunakan untuk menganalisis hasil eksperimen model MLP yang telah dilatih sebelumnya. Pertama, dataset hasil eksperimen dimuat, kemudian kode ini memeriksa setiap kombinasi dari parameter yang diuji: jumlah lapisan tersembunyi (hidden layers), fungsi aktivasi, dan laju pembelajaran (learning rate). Untuk setiap kombinasi, data difilter dan akurasi diuji untuk berbagai ukuran batch (batch size). Setelah itu, kode ini menghasilkan grafik yang menunjukkan perubahan akurasi sepanjang epoch untuk setiap ukuran batch yang berbeda, dengan tujuan untuk membandingkan bagaimana masing-

masing parameter mempengaruhi kinerja model. Setiap plot berisi informasi tentang kombinasi parameter tersebut, dengan grafik untuk masing-masing ukuran batch dalam grid 3x3.

Output:

```
HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 32, Accuracy: 0.7124, Loss: 0.7356

HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 32, Accuracy: 0.7018, Loss: 0.6867

HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 64, Accuracy: 0.2878, Loss: 0.7252

HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 128, Accuracy: 0.7103, Loss: 0.7014

HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 256, Accuracy: 0.2832, Loss: 0.6837

HL: [4, 16], Act: linear, Epochs: 1, LR: 10, BS: 512, Accuracy: 0.2878, Loss: 0.7371

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 16, Accuracy: 0.2818, Loss: 0.7070

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 32, Accuracy: 0.7123, Loss: 0.6643

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 64, Accuracy: 0.6926, Loss: 0.7006

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 128, Accuracy: 0.7070, Loss: 0.8333

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 512, Accuracy: 0.6959, Loss: 0.6756

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 512, Accuracy: 0.7066, Loss: 0.7456

HL: [4, 16], Act: linear, Epochs: 1, LR: 1, BS: 16, Accuracy: 0.7066, Loss: 0.6953

HL: [4, 16], Act: linear, Epochs: 1, LR: 0.1, BS: 16, Accuracy: 0.7066, Loss: 140.0560

HL: [64, 128], Act: tanh, Epochs: 250, LR: 0.0001, BS: 512, Accuracy: 0.7446, Loss: 138.4758

Output is truncated. View as a scallable element or open in a text editor. Adjust cell output settings...
```

Analisis:

Kode ini melakukan eksperimen untuk melatih model Multilayer Perceptron (MLP) dengan berbagai kombinasi parameter. Beberapa variasi yang diuji meliputi jumlah neuron di lapisan tersembunyi (misalnya (4, 16), (32, 64), dst) jenis fungsi aktivasi (seperti ReLU, Sigmoid, Softmax, dll.), jumlah epoch (dari 1 hingga 250), laju pembelajaran (dari 10 hingga 0.0001), dan ukuran batch (16 hingga 512). Untuk setiap kombinasi parameter, model dilatih menggunakan CrossEntropyLoss dan dioptimalkan dengan algoritma Adam. Setelah pelatihan, akurasi pada set pengujian dihitung, dan hasilnya disimpan bersama dengan total

loss. Hasil eksperimen ini kemudian disimpan dalam file CSV yang mencatat setiap konfigurasi parameter yang diuji beserta akurasi dan loss-nya. Proses ini membantu dalam mencari konfigurasi terbaik untuk model dalam memprediksi target berdasarkan data yang diberikan.

Kode ini digunakan untuk menganalisis hasil eksperimen model MLP yang telah dilatih sebelumnya. Pertama, dataset hasil eksperimen dimuat, kemudian kode ini memeriksa setiap kombinasi dari parameter yang diuji: jumlah lapisan tersembunyi (hidden layers), fungsi aktivasi, dan laju pembelajaran (learning rate). Untuk setiap kombinasi, data difilter dan akurasi diuji untuk berbagai ukuran batch (batch size). Setelah itu, kode ini menghasilkan grafik yang menunjukkan perubahan akurasi sepanjang epoch untuk setiap ukuran batch yang berbeda, dengan tujuan untuk membandingkan bagaimana masingmasing parameter mempengaruhi kinerja model. Setiap plot berisi informasi tentang kombinasi parameter tersebut, dengan grafik untuk masing-masing ukuran batch dalam grid 3x3.

```
Output:
```

```
HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 32, Accuracy: 0.2877, Loss: 0.6773

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 32, Accuracy: 0.3172, Loss: 0.6799

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 64, Accuracy: 0.3052, Loss: 0.7021

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 128, Accuracy: 0.3226, Loss: 0.7718

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 256, Accuracy: 0.4124, Loss: 0.7061

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 10, BS: 512, Accuracy: 0.3051, Loss: 0.7398

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 16, Accuracy: 0.6976, Loss: 0.6976

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 32, Accuracy: 0.6968, Loss: 0.7327

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 64, Accuracy: 0.3043, Loss: 0.7048

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 128, Accuracy: 0.7103, Loss: 0.7021

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 256, Accuracy: 0.7218, Loss: 0.6852

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 1, BS: 512, Accuracy: 0.752, Loss: 0.6849

HL: [4, 16, 32], Act: linear, Epochs: 1, LR: 0.1, BS: 16, Accuracy: 0.7458, Loss: 135.5201

HL: [64, 128, 256], Act: tanh, Epochs: 250, LR: 0.0001, BS: 512, Accuracy: 0.7451, Loss: 134.4791

Cutput is truncated. View as a scollable element or open in a text editor. Adjust cell output settings...
```

Kode ini melakukan eksperimen untuk melatih model Multilayer Perceptron (MLP) dengan berbagai kombinasi parameter. Beberapa variasi yang diuji meliputi jumlah neuron di lapisan tersembunyi (misalnya (4, 16, 32), (32, 64, 128), dst) jenis fungsi aktivasi (seperti ReLU, Sigmoid, Softmax, dll.), jumlah epoch (dari 1 hingga 250), laju pembelajaran (dari 10 hingga 0.0001), dan ukuran batch (16 hingga 512). Untuk setiap kombinasi parameter, model dilatih menggunakan CrossEntropyLoss dan dioptimalkan dengan algoritma Adam. Setelah pelatihan, akurasi pada set pengujian dihitung, dan hasilnya disimpan bersama dengan total loss. Hasil eksperimen ini kemudian disimpan dalam file CSV yang mencatat setiap konfigurasi parameter yang diuji beserta akurasi dan loss-nya. Proses ini membantu dalam mencari konfigurasi terbaik untuk model dalam memprediksi target berdasarkan data yang diberikan.

Analisis:

Kode ini digunakan untuk menganalisis hasil eksperimen model MLP yang telah dilatih sebelumnya. Pertama, dataset hasil eksperimen dimuat, kemudian kode ini memeriksa setiap kombinasi dari parameter yang diuji: jumlah lapisan tersembunyi (hidden layers), fungsi aktivasi, dan laju pembelajaran (learning rate). Untuk setiap kombinasi, data difilter dan akurasi diuji untuk berbagai ukuran batch (batch size). Setelah itu, kode ini

menghasilkan grafik yang menunjukkan perubahan akurasi sepanjang epoch untuk setiap ukuran batch yang berbeda, dengan tujuan untuk membandingkan bagaimana masing-masing parameter mempengaruhi kinerja model. Setiap plot berisi informasi tentang kombinasi parameter tersebut, dengan grafik untuk masing-masing ukuran batch dalam grid 3x3.

```
import pandas as pd

# Load result datasets
results_df_1 = pd.read_csv("mlp_experiment_classification_hl1.csv")
results_df_2 = pd.read_csv("mlp_experiment_classification_hl2.csv")
results_df_3 = pd.read_csv("mlp_experiment_classification_hl3.csv")

# Sort and select top 10 results for each hidden layer configuration
top_10_hl1 = results_df_1.sort_values(bye accuracy', ascending=False).head(10)
top_10_hl2 = results_df_2.sort_values(bye accuracy', ascending=False).head(10)
top_10_hl3 = results_df_3.sort_values(bye accuracy', ascending=False).head(10)

# Display top 10 results for each hidden layer in tablar format
print("Top 10 Results for Hidden Layer 1:")
display(top_10_hl1[['hidden_layers', 'activation', 'epochs', 'learning_rate', 'batch_size', 'accuracy', 'total_loss']])

print("NTop 10 Results for Hidden Layer 2:")
display(top_10_hl2[['hidden_layers', 'activation', 'epochs', 'learning_rate', 'batch_size', 'accuracy', 'total_loss']])

print("\nTop 10 Results for Hidden Layer 3:")
display(top_10_hl3[['hidden_layers', 'activation', 'epochs', 'learning_rate', 'batch_size', 'accuracy', 'total_loss']])

$\square$ display(top_10_hl3[['hidden_layers', 'activation', 'epochs', 'learning_rate', 'batch_size', 'accuracy', 'total_loss']])

$\square$ 0.05$
```

Output:

	hidden_layers	activation	epochs	learning_rate	batch_size	accuracy	total_loss
1635	[16]	relu	50	0.10	128	0.751738	26.254702
2755	[32]	relu	100	0.01	32	0.751738	52.018155
1677	[16]	relu	100	0.01	128	0.751376	52.194516
1668	[16]	relu	100	0.10	16	0.751376	51.358639
1421	[16]	softmax	50	0.10	512	0.751231	26.707046
2713	[32]	relu	50	0.10	32	0.751158	26.324679
1715	[16]	relu	250	0.01	512	0.751086	128.328839
3796	[64]	relu	50	0.10	256	0.751014	27.452455
1461	[16]	softmax	100	0.01	128	0.750941	56.962629
3794	[64]	relu	50	0.10	64	0.750869	30.256176

	Top 10	Results for H	lidden Laye	r 2:				
١		hidden lavers	activation	enochs	learning rate	hatch size	accuracy	total loss
١	1024	[4, 16]	tanh	100	0.10	256	0.752172	52.450121
١	1063	[4, 16]	tanh	250	0.10	32	0.752172	129.092148
١	1063	[4, 16] [4, 16]	tann	250	0.01	512	0.751810	129.092146
١	2146		tanh	250	0.10	256	0.751738	127.762700
١		[16, 32]						
١	1670	[16, 32]	relu	100	0.10	64	0.751303	52.355460
١	2755	[32, 64]	relu	100	0.01	32	0.750941	51.484025
١	1668	[16, 32]	relu	100	0.10	16	0.750869	51.966917
١	1678	[16, 32]	relu	100	0.01	256	0.750724	52.143462
١	2757	[32, 64]	relu	100	0.01	128	0.750724	51.350396
ı	1679	[16, 32]	relu	100	0.01	512	0.750507	52.276919
	Top 10	Results for H	lidden Laye	r 3:				
	Top 10				learning_rate	batch_size	accuracy	total_loss
	Top 10 848				learning_rate	batch_size	accuracy 0.751665	total_loss 134.764617
		hidden_layers	activation	epochs				
	848	hidden_layers [4, 16, 32]	activation sigmoid	epochs 250	0.010	64	0.751665	134.764617
	848 2109	hidden_layers [4, 16, 32] [16, 32, 64]	activation sigmoid tanh	epochs 250 100	0.010 0.010	64 128	0.751665 0.751520	134.764617 51.951709
	848 2109 3841	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256]	activation sigmoid tanh relu	epochs 250 100 100	0.010 0.010 0.001	64 128 32	0.751665 0.751520 0.751086	134.764617 51.951709 52.876278
	848 2109 3841 2722	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256] [32, 64, 128]	activation sigmoid tanh relu relu	epochs 250 100 100 50	0.010 0.010 0.001 0.010	64 128 32 256	0.751665 0.751520 0.751086 0.751014	134.764617 51.951709 52.876278 26.127391
	848 2109 3841 2722 841	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256] [32, 64, 128] [4, 16, 32]	activation sigmoid tanh relu relu sigmoid	250 100 100 50 250	0.010 0.010 0.001 0.010 0.100	64 128 32 256 32	0.751665 0.751520 0.751086 0.751014 0.750869	134.764617 51.951709 52.876278 26.127391 140.707145
	848 2109 3841 2722 841 1920	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256] [32, 64, 128] [4, 16, 32] [16, 32, 64]	activation sigmoid tanh relu relu sigmoid sigmoid	250 100 100 50 250 250	0.010 0.010 0.001 0.010 0.100	64 128 32 256 32 16	0.751665 0.751520 0.751086 0.751014 0.750869 0.750724	134.764617 51.951709 52.876278 26.127391 140.707145 140.760035
	848 2109 3841 2722 841 1920 631	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256] [32, 64, 128] [4, 16, 32] [16, 32, 64] [4, 16, 32]	activation sigmoid tanh relu relu sigmoid sigmoid	250 100 100 50 250 250 250	0.010 0.010 0.001 0.010 0.100 0.100 0.010	64 128 32 256 32 16	0.751665 0.751520 0.751086 0.751014 0.750869 0.750724 0.750652	134.764617 51.951709 52.876278 26.127391 140.707145 140.760035 129.480720
	848 2109 3841 2722 841 1920 631 3843	hidden_layers [4, 16, 32] [16, 32, 64] [64, 128, 256] [32, 64, 128] [4, 16, 32] [16, 32, 64] [4, 16, 32] [64, 128, 256]	activation sigmoid tanh relu relu sigmoid sigmoid relu relu	epochs 250 100 100 50 250 250 250 100	0.010 0.010 0.001 0.010 0.100 0.100 0.010	64 128 32 256 32 16 32	0.751665 0.751520 0.751086 0.751014 0.750869 0.750724 0.750652 0.750362	134.764617 51.951709 52.876278 26.127391 140.707145 140.760035 129.480720 52.776987

```
import pandas as pd

# most results of 1 = pd.read.csv("mlp.experiment.classification.hli.csv")
results of 1 = pd.read.csv("mlp.experiment.classification.hli.csv")
results of 2 = pd.read.csv("mlp.experiment.classification.hli.csv")

# Sort and select top 10 results for each hidden layer configuration
top.10 hli = results of 2. over values(by" accuracy', ascending-raise).head(10)
top.10 hli = results of 2. over values(by" accuracy', ascending-raise).head(10)
top.10 hli = results of 2. over values(by" accuracy', ascending-raise).head(10)

# Add a column to indicate which Hidden layer experiment the data is from
top.10 hli | This column to indicate which Hidden layer experiment the data is from
top.10 hli | This column to indicate which Hidden layer experiment top.10 hli | This column top.10 hli | This column the proper proper
```

	hidden_layers	activation	epochs	learning_rate	batch_size	accuracy	total_loss	hidden_layer_experiment
10	[4, 16]	tanh	100	0.10	256	0.752172	52.450121	HL2
12	[4, 16]	tanh	250	0.10	512	0.751810	128.523728	HL2
11	[4, 16]	tanh	250	0.01	32	0.751810	129.092148	HL2
0	[16]	relu	50	0.10	128	0.751738	26.254702	HL1
1	[32]	relu	100	0.01	32	0.751738	52.018155	HL1
13	[16, 32]	tanh	250	0.01	256	0.751738	127.762700	HL2
20	[4, 16, 32]	sigmoid	250	0.01	64	0.751665	134.764617	HL3
21	[16, 32, 64]	tanh	100	0.01	128	0.751520	51.951709	HL3
3	[16]	relu	100	0.10	16	0.751376	51.358639	HL1
2	[16]	relu	100	0.01	128	0.751376	52.194516	HL1