WITNESS-INDISTINGUISHABILITY and SZK ARGUMENTS for NP

ALON ROSEN

IDC HERZLIYA

Statistical Zero-Knowledge

Statistical ZK:
$$\forall PPT\ V^* \exists PPT\ S\ \forall x \in L\ \forall z$$

$$S(x,z) \cong_S (P(w),V^*(z))(x)$$

$$PZK \subseteq SZK \subseteq CZK$$

<u>Recall</u>: If NP \subseteq SZK then the polynomial-time hierarchy collapses to the second level

Possible relaxations:

- Computational indistinguishability (previous lectures)
- Computational soundness (now)

Interactive Argument Systems

Definition [BCC'86]: An interactive argument system for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then Pr[(P, V) accepts x] = 1

Computational soundness: If $x \notin L$, then $\forall PPT P^*$

$$Pr[(P^*, V) \text{ accepts } x] \leq neg(n)$$

- Computational soundness is typically based on a cryptographic assumption (e.g. CRH)
- Hardness of breaking the assumption is parametrized by security parameter n
- Independent parallel repetitions do not necessarily reduce the soundness error [BIN'97]

CZK Proofs vs SZK Arguments

CZK Proofs

- Soundness is unconditional (undisputable)
- Secrecy is computational suitable when secrets are ephemeral and "environment" is not too powerful

SZK Arguments

- Secrecy is unconditional (everlasting)
- Soundness is computational suitable when prover is a weak device and no much time for preprocessing

NP ⊆ SZK arguments

Statistical ZK argument for HAM

<u>Theorem</u>: If statistically-hiding commitments exist then there exists an SZK argument for HAM

Computational Soundness

<u>Claim:</u> If (Com, Dec) is computationally binding then (P, V) is an interactive argument for HAM

Computational soundness:

If $Pr_b[(P^*, V) \text{ accepts } x] > 1/2$

- u is a cycle in H
- and $H = \pi(G)$

Case 1: $\pi^{-1}(u)$ is a cycle in G

Case 2: u not consistent with (π, H)

 \downarrow

 $PPT P^*$ breaks binding of Com

Statistical ZK

$$S^{V^*}(G)|b=0$$

$$\underline{H^{V^*}(G,w)}|b=0$$

$$c = Com(G_0)$$

$$\mathbf{c} = Com(G_1)$$

 $\cong_{\mathcal{S}}$

Amplifying soundness

- Negligible soundness
- High round complexity
- ZK

- Negligible soundness
- Low round complexity
- ZK?

Witness Indistinguishability

The Goal

<u>Goal</u>: construct argument for every $L \in NP$

- in statistical ZK
- with negligible soundness
- and a constant number of rounds

Main tool: witness indistinguishability

Witness-Indistinguishability

An extremely useful (and meaningful) relaxation of ZK

The interaction does not reveal which of the NP-witnesses for $x \in L$ was used in the proof

<u>Witness-indistinguishable</u>: $\forall w_1, w_2$

$$(P(w_1), V^*)(x) \cong_{c} (P(w_2), V^*)(x)$$

Witness independent: $\forall w_1, w_2$

$$(P(w_1), V^*)(x) \cong_{S} (P(w_2), V^*)(x)$$

Defined with respect to some NP-relation R_L

NP-Witnesses and NP-Relations

 $L \in NP$ if $\exists poly-time\ recognizable\ relation\ R_L$ so that

$$x \in L \Leftrightarrow \exists w, (x, w) \in R_L$$

Define the "set of NP-witnesses for $x \in L$ "

$$R_L(x) = \{ w \mid (x, w) \in R_L \}$$
$$= \{ w \mid V(x, w) = ACCEPT \}$$

- $R_L(x)$ is fully determined by R_L (equivalently, by V)
- $L \in NP$ can have many different NP-relations R_L

Witness-Indistinguishability

Definition [FS'90]: (P, V) is witness indistinguishable wrt NP-relation R_L if $\forall PPT\ V^*\ \forall x \in L\ \forall w_1, w_2 \in R_L(x)$ $(P(w_1), V^*)(x) \cong_c (P(w_2), V^*)(x)$

- Holds trivially (and hence no security guarantee) if there is a unique witness w for $x \in L$
- Interesting (and useful) whenever more than one w
- Holds even if w_1 , w_2 are public and known
- Every ZK proof/argument is also WI
- WI is closed under parallel/concurrent composition

An Equivalent Definition

Unbounded simulation: $\forall PPT \ V^* \ \exists S \ \forall x \in L$ $S(x) \cong_c (P(w), V^*)(x)$

<u>Claim</u>: (P, V) has unbounded simulation iff it is WI

Proof:

$$(\Rightarrow) (P(w_1), V^*)(x) \cong_c S(x) \cong_c (P(w_2), V^*)(x)$$

(⇐) Exercise

ZK implies WI

<u>Claim</u>: If (P, V) is ZK then it is also WI

Proof: $(P(w_1), V^*)(x) \cong_{\mathcal{C}} S(x) \cong_{\mathcal{C}} (P(w_2), V^*)(x)$

<u>Corollary</u>: If <u>statistically-binding</u> commitments exist then every $L \in NP$ has a witness-<u>indistinguishable</u> proof

<u>Proof</u>: (P, V) for HAM is CZK and so, by claim above, it is also witness-indistinguishable

Analogously,

<u>Corollary</u>: If <u>statistically-hiding</u> commitments exist then every $L \in NP$ has a witness-<u>independent</u> argument

WI is Closed under Parallel Composition

Let $(P^{(k)}, V^{(k)})$ denote k parallel executions of (P, V)

<u>Theorem</u>: If (P, V) is WI then $(P^{(k)}, V^{(k)})$ is also WI

Hybrid argument $(w_1, w_2 \text{ are known})$:

Constant-round WI for NP

<u>Theorem</u>: Assuming non-interactive <u>statistically-binding</u> commitments, every $L \in NP$ has a 3-round <u>witness-indistinguishable</u> proof with soundness error 2^{-k}

<u>Theorem</u>: Assuming 2-round <u>statistically-hiding</u> commitments, every $L \in NP$ has a 4-round <u>witness-independent</u> argument with soundness error exp(-O(k))

- The protocols are in fact proofs of knowledge
- We will use them to construct
 - a **5**-round SZK argument (of knowledge) for *NP*
 - a constant-round identification scheme

both with soundness error exp(-O(k))

Constant-Round SZK Arguments for NP

Statistical ZK argument for NP [FS'90]

Completeness

witness w $x \in L$ $(y_0, y_1) = (f(z_0), f(z_1))$ WIPOK statement: $\exists z$ s.t. **1.** $y_0 = f(z)$ or **2.** $y_1 = f(z)$ WIAOK statement: $\exists w, z \text{ s.t.}$ 1. $(x, w) \in R_L \text{ or}$ 2. $y_0 = f(z) \text{ or}$ 3. $y_1 = f(z)$ Use w to prove **ACCEPT**

Soundness/POK

P*

 $x \notin L$

 $(y_0, y_1) = (f(z_0), f(z_1))$

V

Given to V:

$$y_b = f(\boldsymbol{z_b})$$

Sampled by *V*:

$$y_{1-b} = f(z_{1-b})$$

Cannot guess
$$b$$

WIPOK statement: $\exists z$ s.t.

1.
$$y_0 = f(z)$$
 or

2.
$$y_1 = f(z)$$

Use z_{1-b} to prove

WIAOK statement: $\exists w, z \text{ s.t.}$

1.
$$(x, w) \in R_L \underline{\text{or}}$$

2.
$$y_0 = f(z)$$
 or

3.
$$y_1 = f(z)$$

Extract z_{ext}

$$y_0 = f(z_{\text{ext}}) \ \underline{\text{or}}$$

 $y_1 = f(z_{\text{ext}})$

Soundness/POK

<u>Claim</u>: If POK is witness indistinguishable then $\forall PPT P^*$

$$Pr_b[f(z_{\mathrm{ext}}) = y_b] \approx 1/2$$

Exercise: otherwise P^* distinguishes between

$$(V(z_b), P^*)(y_0, y_1)$$
 and $(V(z_{1-b}), P^*)(y_0, y_1)$

- If $f(z_{\text{ext}}) = y_b$ then z_{ext} is a preimage of $y_b = f(\mathbf{z_b})$
- So if P^* cheats w.p. ε we invert y_b w.p. $\approx \varepsilon/2$
- Thus, if f is one-way, P^* makes V accept $x \notin L$ with neg(n) probability

Zero-Knowledge

Simulator 5

 $x \in L$

$$(y_0, y_1) = (f(z_0), f(z_1))$$

Extract
$$z$$
 $\left\{ \Leftarrow \right.$

WIPOK statement: $\exists z$ s.t.

- **1.** $y_0 = f(z)$ or **2.** $y_1 = f(z)$

Use zto prove WIAOK statement: $\exists w, z \text{ s.t.}$

- 1. $(x, w) \in R_L \text{ or}$ 2. $y_0 = f(z) \text{ or}$ 3. $y_1 = f(z)$

Cannot distinguish if 1,2 or 3

Zero-Knowledge

Claim: If AOK is witness independent then $\forall PPT\ V^*$ $S(x) \cong_S (P(w), V^*)(x)$

Exercise: otherwise build \widehat{V}^* for AOK using V^* and then distinguish between

$$(P(w), \widehat{V}^*)(x, y_0, y_1)$$
 and $(P(z), \widehat{V}^*)(x, y_0, y_1)$

<u>Hint</u>: \widehat{V}^* relays WIPOK messages between V^* and P

Corollary: If 2-round statistically-hiding commitments exist then every $L \in NP$ has a constant-round SZK argument

Towards 4-rounds?

$$(y_0, y_1) = (f(z_0), f(z_1))$$

An issue: in simulation can set 2^{nd} message of WIAOK only after z_b is extracted from WIPOK

In order to get 4-rounds more ideas are required [FS'89, BJY'97]

Trapdoor commitments:

 $\mathbf{Com}_{g,h}(m,r) = h^r \cdot g^m$

If $\log_g h$ is known, can decommit to any (m', r')

Witness hiding: infeasible for V^* to output witness following the interaction

Summary so far

Defined:

- Interactive arguments
- Statistically-hiding commitments
- Witness indistinguishability/independence

Saw:

- NP \subseteq SZK arguments
- ZK implies WI (and hence NP ⊆ WI)
- WI composes (and hence negligible error)
- NP ⊆ SZK in constant number of rounds

Witness Hiding

Identification using a ZKPOK

Setup phase (f is a one-way function):

 $Gen(1^n)$: Alice picks $z \in_R \{0,1\}^n$ and publishes y = f(z)

Identification phase:

Bob cannot impersonate Alice

- Use constant-round ZKPOK with neg(n) error
- Observation: "witness hiding" is sufficient

Identification using a WHPOK

Setup phase:

$$Gen(1^n)$$
: Alice picks $z_0, z_1 \in_R \{0,1\}^n$ and publishes
$$(y_0, y_1) = (f(z_0), f(z_1))$$

Identification phase:

$$\mathbf{A}$$
 (y_0, y_1) \mathbf{B}

WIPOK statement: $\exists z$ s.t.

1.
$$y_0 = f(z)$$
 or

2.
$$y_1 = f(z)$$

<u>We already saw</u>: if proof is WI and f is a OWF then a PPT B^* cannot output z following the interaction

Witness Hiding

- If V^* can output a witness $w \in R_L(x)$ following the interaction with P he could have done so without it
- WH is implied by ZK but does not necessarily imply ZK
- Defined with respect to an instance generator Gen for R_L

<u>Definition [FS'90]:</u> (P,V) is <u>witness hiding</u> with respect to (Gen, R_L) if $\exists PPT \ M \ \forall PPT \ V^*$

$$Pr[(P(w), V^*)(x) \in R_L(x)] \le Pr[M^{V^*}(x) \in R_L(x)] + neg(n)$$

<u>Claim</u>: If an NP-statement $x \in L$ has two independent witnesses then any WI protocol for $x \in L$ is also WH

Bob cannot impersonate Alice

- D^* interacts with A and outputs a witness z_{ext} for (y_0, y_1)
- By witness hiding, $M^{D^*}(y_0, y_1)$ outputs a witness for (y_0, y_1)
- Exercise: use M^{D^*} to invert the one-way function f

The Fiat-Shamir Identification Scheme

- Repeat the QR_N protocol k times in parallel
- Single execution is ZK and so is WI
- Single execution is WI and so k executions are WI
- k executions are WI with multiple independent witnesses and so are WH with error 2^{-k}
- This gives an identification scheme based on the hardness of finding a square root of

$$x = w^2 \mod N$$

• Recent [CCHLRRW'19, PS'19]: k parallel repetitions of QR_N protocol are not ZK (under plain LWE)

Okamoto's protocol

$$P \qquad y = h^{z_0} \cdot g^{z_1}$$

$$r_0, r_1 \in_R \mathbb{Z}_q \qquad c = h^{r_0} \cdot g^{r_1}$$

$$S \qquad s \in_R \mathbb{Z}_q$$

$$t_0 = sz_0 + r_0$$

$$t_1 = sz_1 + r_1$$

$$y^s \cdot c \stackrel{?}{=} h^{t_0} \cdot g^{t_1}$$

- witness independent with soundness error 1/q
- and each y has q witnesses $(z_0, z_1) \in \mathbb{Z}_q^2$
- so the protocol is witness hiding

Summary

Defined:

- Interactive arguments
- Statistically-hiding commitments
- Witness indistinguishability/independence
- Witness hiding

Saw:

- NP \subseteq SZK arguments
- ZK implies WI and WI composes
- NP ⊆ SZK in constant number of rounds
- Identification schemes via ZK and via WH

Food for Thought

Man-in-the-middle Attacker

A
$$y = f(z)$$
 B* $y = f(z)$ C

ZKPOK \Rightarrow

- What if both ZKPOKs take place at the same time?
- Both proof of security and real-life security fail
- Must address man-in-the-middle explicitly

Zero Knowledge vs WI and WH

Encryption:

semantic security ↔ indistinguishability of encryptions

Protocols:

witness indistinguishability ← zero knowledge

- Unlike WH both ZK and WI compose
- ZK leaks nothing → modular protocol design
- ZKPOK functionality:

$$(x,w) \qquad \qquad \mathcal{F}_{ZK}$$

$$\mathsf{ACCEPT} \leftrightarrow (x,w) \in R_L$$

$$\mathsf{ACCEPT} \leftrightarrow (x, w) \in R_L$$

ZK via Real/Ideal Paradigm

Real/ideal paradigm: ∀Real PPT V* ∃Ideal PPT S

- Special case of two-party computation
- V has no input (binary output) and P has no output

History

Uriel Feige

Adi Shamir

Amos Fiat

Gilles Brassard

David Chaum

Claude Crépeau

Mihir Bellare

Russell Impagliazzo

Tatsuaki Okamoto

Questions?