

# Lecture 03 Probability and Statistics

Chao Zhang Georgia Tech

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## Probability

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
  - E.g., S may be the set of all possible outcomes of a dice roll: S
     (1 2 3 4 5 6)
  - E.g., S may be the set of all possible nucleotides of a DNA site: S
     (A C G T)
  - E.g., S may be the set of all possible time-space positions of an aircraft on a radar screen.
- An Event A is any subset of S
  - Seeing "1" or "6" in a dice roll; observing a "G" at a site; UA007 in space-time interval

# Three Key Ingredients in Probability Theory

- Random variables X represents outcomes or states of world. Instantiations of variables usually in lower case: x We will write p(x) to mean probability (X = x).
- Sample Space: the space of all possible outcomes/states.
   (May be discrete or continuous or mixed.)
- Probability mass (density) function  $p(x) \geq 0$ Assigns a non-negative number to each point in sample space. Sums (integrates) to unity:  $\sum_x p(x) = 1$  or  $\int_x p(x) dx = 1$ . Intuitively: how often does x occur, how much do we believe in x.
- Ensemble: random variable + sample space+ probability function

# Discrete Probability Functions

- A probability distribution P defined on a discrete sample space S is an assignment of a non-negative real number P(s) to each sample s∈S:
  - Probability Mass Function (PMF): $p_x(x_i) = P[X = x_i]$
  - Properties:  $p_x(x_i) \ge 0$  and  $\sum_i p_X(x_i) = 1$
- Examples:
  - Bernoulli Distribution:

$$\begin{cases} 1 - p & for \ x = 0 \\ p & for \ x = 1 \end{cases}$$

Binomial Distribution:

• 
$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

## Continuous Probability Functions

- A continuous random variable X is defined on a continuous sample space: an interval on the real line, a region in a high dimensional space, etc.
  - It is meaningless to talk about the probability of the random variable assuming a particular value --- P(x) = 0
  - Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval, or arbitrary Boolean combination of basic propositions.
  - Cumulative Distribution Function (CDF):  $F_x(x) = P[X \le x]$
  - Probability Density Function (PDF):  $F_x(x) = \int_{-\infty}^x f_x(x) \, dx$  or  $f_x(x) = \frac{d F_x(x)}{dx}$
  - Properties:  $f_x(x) \ge 0$  and  $\int_{-\infty}^{\infty} f_x(x) dx = 1$
  - Interpretation:  $f_x(x) = P[X \in \frac{x,x+\Delta}{\Delta}]$

# Continuous Probability Functions

- Examples:
  - Uniform Density Function:

$$f_x(x) = \begin{cases} \frac{1}{b-a} & for \ a \le x \le b \\ 0 & otherwise \end{cases}$$

Exponential Density Function:

$$f_x(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}} \qquad for \ x \ge 0$$

$$F_x(x) = 1 - e^{\frac{-x}{\mu}} \qquad for \ x \ge 0$$

Gaussian(Normal) Density Function

$$f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Probability Distributions
- Joint and Conditional Probability Distributions



- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## Joint Distribution

- Key concept: two or more random variables may interact.
   Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write p(x,y) = prob(X = x and Y = y)



## Marginal Distribution

 We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$p(x) = \sum_{y} p(x, y)$$

This is like adding slices of the table together.



• Another equivalent definition:  $p(x) = \sum_{y} p(x|y)p(y)$ .

#### **Conditional Distribution**

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

$$p(x|y) = p(x,y)/p(y)$$



# Independence & Conditional Independence

Two variables are independent iff their joint factors:



 Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$p(x, y|z) = p(x|z)p(y|z) \quad \forall z$$

## Conditional Independence

#### Examples:

```
P(Virus | Drink Beer) = P(Virus)
  iff Virus is independent of Drink Beer
  P(Flu | Virus; DrinkBeer) = P(Flu | Virus)
  iff Flu is independent of Drink Beer, given Virus
  P(Headache | Flu; Virus; DrinkBeer) =
  P(Headache | Flu; DrinkBeer)
  iff Headache is independent of Virus, given Flu and Drink Beer
Assume the above independence, we obtain:
  P(Headache;Flu;Virus;DrinkBeer)
  =P(Headache | Flu; Virus; DrinkBeer) P(Flu | Virus; DrinkBeer)
   P(Virus | Drink Beer) P(DrinkBeer)
  =P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)
```

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## Bayes' Rule

- P(X|Y)= Fraction of the worlds in which X is true given that Y is also true.
- For example:
  - H="Having a headache"
  - F="Coming down with flu"
  - P(Headche|Flu) = fraction of flu-inflicted worlds in which you have a headache. How to calculate?
- Definition:

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(Y|X)P(X)}{P(Y)}$$

Corollary:

$$P(X,Y) = P(Y|X)P(X)$$

This is called Bayes Rule

# Bayes' Rule

• 
$$P(Headache|Flu) = \frac{P(Headache,Flu)}{P(Flu)}$$
  
=  $\frac{P(Flu|Headache)P(Headache)}{P(Flu)}$ 

#### Other cases:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X|Y)P(Y) + P(X|\neg Y)P(\neg Y)}$$

• 
$$P(Y = y_i | X) = \frac{P(X|Y)P(Y)}{\sum_{i \in S} P(X|Y = y_i)P(Y = y_i)}$$

• 
$$P(Y|X,Z) = \frac{P(X|Y,Z)P(Y,Z)}{P(X,Z)} = \frac{P(X|Y,Z)P(Y,Z)}{P(X|Y,Z)P(Y,Z)}$$

$$\frac{P(X|Y,Z)P(Y,Z)+P(X|\neg Y,Z)P(\neg Y,Z)}{P(X|Y,Z)P(Y,Z)+P(X|\neg Y,Z)P(\neg Y,Z)}$$

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance



- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

#### Mean and Variance

Expectation: The mean value, center of mass, first moment:

$$E_X[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x)dx = \mu$$

- N-th moment:  $g(x) = x^n$
- N-th central moment:  $g(x) = (x \mu)^n$
- Mean:  $E_X[X] = \int_{-\infty}^{\infty} x p_X(x) dx$ 
  - $E[\alpha X] = \alpha E[X]$
  - $\bullet \ E[\alpha + X] = \alpha + E[X]$
- Variance(Second central moment):  $Var(x) = E_X[(X E_X[X])^2] = E_X[X^2] E_X[X]^2$ 
  - $Var(\alpha X) = \alpha^2 Var(X)$
  - $Var(\alpha + X) = Var(X)$

## For Joint Distributions

- Expectation and Covariance:
  - $\bullet E[X+Y] = E[X] + E[Y]$
  - $cov(X,Y) = E[(X E_X[X])(Y E_Y(Y))] = E[XY] E[X]E[Y]$
  - Var(X + Y) = Var(X) + 2cov(X, Y) + Var(Y)



- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution



Maximum Likelihood Estimation

#### Gaussian Distribution

- Gaussian Distribution:
  - If Z~N(0,1)

$$F_x(x) = \Phi(x) = \int_{-\infty}^x f_x(z) dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{\frac{-z^2}{2}} dz$$

 This has no closed form expression, but is built in to most software packages (eg. normcdf in matlab stats toolbox).





## Multivariate Gaussian Distribution

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\}$$

• Moment Parameterization  $\mu = E(X)$ 

$$\Sigma = Cov(X) = E[(X - \mu)(X - \mu)^{\mathsf{T}}]$$



- Mahalanobis Distance  $\Delta^2 = (x = \mu)^T \Sigma^{-1} (x \mu)$
- Tons of applications (MoG, FA, PPCA, Kalman filter,...)

#### Multivariate Gaussian Distribution

• Joint Gaussian  $P(X_1, X_2)$ 

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Marginal Gaussian

$$\mu_2^m = \mu_2 \qquad \Sigma_2^m = \Sigma_2$$

• Conditional Gaussian  $P(X_1|X_2=x_2)$ 

$$\mu_{1|2} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

## Properties of Gaussian Distribution

 The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x is distributed

$$E(AX + b) = AE(X) + b$$
$$Cov(AX + b) = ACov(X)A^{T}$$

this means that for Gaussian distributed quantities:

$$X \sim N(\mu, \Sigma) \rightarrow AX + b \sim N(A\mu + b, A\Sigma A^{\mathsf{T}})$$

The sum of two independent Gaussian r.v. is a Gaussian

$$Y = X_1 + X_2$$
,  $X_1 \perp X_2 \rightarrow \mu_{\nu} = \mu_1 + \mu_2$ ,  $\Sigma_{\nu} = \Sigma_1 + \Sigma_2$ 

 The multiplication of two Gaussian functions is another Gaussian function (although no longer normalized)

$$N(a,A)N(b,B) \propto N(c,C),$$
  
where  $C = (A^{-1} + B^{-1})^{-1}, c = CA^{-1}a + CB^{-1}b$ 

#### Central Limit Theorem

- If  $(X_1, X_2, ... X_n)$  are i.i.d. continuous random variables, then the joint distribution is  $f(\bar{X})$
- CLT proves that  $f(\bar{X})$  is Gaussian with mean  $E[X_i]$  and  $Var[X_i]$

$$\overline{X} = f(X_1, X_2, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i \qquad as \ n \to \infty$$

Somewhat of a justification for assuming Gaussian noise







- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation



#### Maximum Likelihood Estimation

- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).

#### Maximum Likelihood Estimation

- Example: toss a coin
- Objective function:

$$l(\theta; Head) = \log P(Head|\theta) = \log \theta^n (1 - \theta)^{N-n} = n \log \theta + (N - n) \log(1 - \theta)$$

- We need to maximize this w.r.t.  $\theta$
- Take derivatives w.r.t.  $\theta$

$$\frac{dl}{d\theta} = \frac{n}{\theta} - \frac{N-n}{1-\theta} = 0$$



$$\widehat{\theta}_{MLE} = \frac{n}{N}$$