

# Query Processing in a Self-Organized Storage System



Hannes Mühleisen, supervised by Robert Tolksdorf

#### Distributed DBs - Goals

- Scalability
  - Data, Queries, Nodes
- Robustness
  - Node/Network failure
- Adaptiveness
  - "Fair" distribution of load

## Clustered / Federated



#### Global Laws



[Harreno2, Karnstedto4, Röscho5]

## Probabilistic Request Routing





## Distribution Paradigms

|                              | Scalability | Adaptability | Robustness | Completeness | Complex<br>Queries |
|------------------------------|-------------|--------------|------------|--------------|--------------------|
| Stand-Alone                  | low         | high         | low        | high         | <b>√</b>           |
| Federated                    | high        | high         | fair       | high         | <b>√</b>           |
| Global-Law                   | high        | fair         | high       | high         | ✓                  |
| Probabilistic<br>e.g. Swarms | high        | high         | high       | fair         | ;                  |

#### Research Question

Can complex queries be evaluated efficiently in a swarm-based distributed storage system?

## Mutable Moving Query Plans







$$p(\#) = 53\%$$

$$p(*) = 3%$$



$$p(\#) = 2%$$

$$p(*) = 78\%$$



# Handling Routing #Failures



### Evaluation Methodology

# Participating Nodes / Query



## Evaluation Methodology



## Thank You!

Questions?