Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
${\tau_1^{\#1}}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
β	$\frac{1}{k^2(2r_3+r_5)}$	$\sigma_{1+}^{#2} + \alpha \beta = \frac{\sqrt{2}}{k^2 (1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha \beta$ $\frac{\chi^{2}(2)}{\chi^{2}(2)}$	$-\frac{k^2(1+k)}{(1+k)^2}$	$t_1^{\#1} + \alpha \beta \boxed{\frac{i}{k(1+k^2)}}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} + \alpha$	$\tau_1^{\#1} + ^{lpha}$	$\tau_1^{\#^2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{$ #1}	$\omega_{1}^{ ext{#2}}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1}$ † lphaeta	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	2 <i>ikt</i> 3 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{t_2}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ \dagger	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

$\omega_2^{\#1}$ $\alpha_2^{\#1}$ $\alpha_2^{\#1}$ $\alpha_2^{\#1}$	0	0	0	
$f_{2}^{\#1}_{\alpha\beta}$	0	0	0	
$\omega_2^{\#1}{}_+\alpha\beta$	$-\frac{3k^2r_3}{2}$	0	0	
	$\omega_{2}^{#1} + \alpha^{\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2^{-}}^{\#1} +^{lphaeta X}$	

_			
$r_{2}^{\#1}$ $r_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{3}^{\#1}$	0	0	0
$\tau_{2}^{\#1}\alpha\beta$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + ^{\alpha\beta}$	$\sigma_{2^{-}}^{*1} +^{lphaeta\chi}$

auge generat	Multiplicities	1	1	3	3	3	5	5	21
Source constraints/gauge generat	SO(3) irreps	$t_0^{\#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{i}k\sigma_{0+}^{\#1} == 0$	$t_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi$ == 0	$\tau_{2}^{\#1}\alpha\beta=0$	Total constraints:

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$