מטלת מנחה 15 - אינפי 2

328197462

20/01/2023

שאלה 1

 $f_n(x)=rac{nx}{e^x+n+x}$ נתונה סדרת הפונקציות $f_n(x)=rac{nx}{e^x+n+x}$ מתונה סדרת הפונקציה הגבולית. לכל $x\in[0,\infty)$ מחשב את הפונקציה הגבולית.

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{e^x + n + x} = \lim_{n \to \infty} \frac{x}{e^x \cdot \frac{1}{n} + 1 + x \cdot \frac{1}{n}} = \frac{x}{1} = x$$

 $n \in \mathbb{N}, x \in [0, \infty)$ כמו כן, מתקיים לכל

$$|f_n(x) - f(x)| = \left| \frac{nx}{e^x + n + x} - x \right| = \left| \frac{nx - x(e^x + n + x)}{e^x + n + x} \right| = \left| \frac{-x^2 - xe^x}{e^x + n + x} \right| = \frac{x^2 + xe^x}{e^x + n + x}$$

סעיף א

ניקח את הסדרה $x_n=n$ מתקיים:

$$\sup_{x\in[0,\infty)}|f_n(x)-f(x)|\geq |f_n(x_n)-f(x_n)|=\frac{n^2+ne^n}{e^n+2n}=\frac{\frac{n^2}{e^n}+n}{1+2\cdot\frac{n}{e^n}}\xrightarrow[n\to\infty]{}\infty$$

fבמידה שווה לf, נסיק כי f, נסיק כי (f_n) לא מתכנסת במידה שווה ל

סעיף ב

יהיו a < b כלשהם.

נדגיש כי מתקיים f נשארת והפונקציה הגבולית והפונקציה $[a,b]\subseteq [0,\infty)$ נשארת זהה. נדגיש כי מתקיים יוחלים והפונקציה והפונקציה בור את הסדרה ווחלים והפונקציה והפונקציה והפונקציה ווחלים בחר את הסדרה ווחלים וחלים ווחלים וחלים ווחלים ווחלי

$$|f_n(x) - f(x)| = \frac{x^2 + xe^x}{e^x + n + x} \le \frac{b^2 + be^b}{e^a + n + a} = \mu_n$$

 (f_n) מתכנסת במ"ש ל ביחידה 6 נסיק כי מתכנסת במ"ש ל קבועים) ולכן לפי שאלה (f_n) מתכנסת מ (f_n) מתכנסת מתקיים לכן, לפי משפט 6.8 נקבל

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

ובכך סיימנו את ההוכחה.

שאלה 2

שאלה 4

סעיף א

הטענה נכונה.

 $f(x)=\Sigma u_n(x)$ נסמן לכל n טבעי, $\mathbb{R}\to\mathbb{R}$ פונקציה כך שלכל x ממשי x ממשי $u_n(x):\mathbb{R}\to\mathbb{R}$. נוכיח את ההתכנסות במ"ש של $u_n(x):\mathbb{R}\to\mathbb{R}$ פונקציה כך שלכל $u_n(x):\mathbb{R}\to\mathbb{R}$ בעזרת מבחן ויירשטראס.

 $lpha_n=rac{1}{4n^2}$ נבחר $x\in\mathbb{R}$, $n\in\mathbb{N}$ נקבל:

$$u'_n(x) = \frac{1(4 + n^4x^2) - x(2n^4x)}{(4 + n^4x^2)^2} =$$

$$= \frac{4 + n^4x^2 - 2n^4x^2}{(4 + n^4x^2)^2} =$$

$$= \frac{4 - n^4x^2}{(4 + n^4x^2)^2}$$

 $.x=\pmrac{2}{n^2}$ נקבל נקודות החשודות לערכי קיצון מקומיים כאשר $u_n'(x)=0$, כלומר עבור לערכי $u_n(x) \xrightarrow[x \to \pm\infty]{} 0$ מתקיים: 0

$$|u_n(x)| \le |u_n(\pm \frac{2}{n^2})| =$$

$$= |\frac{\pm \frac{2}{n^2}}{4 + n^4(\pm \frac{2}{n^2})^2}| =$$

$$= \frac{\frac{|\pm 2|}{n^2}}{4 + n^4 \cdot \frac{4}{n^4}} =$$

$$= \frac{\frac{2}{n^2}}{8} = \frac{1}{4n^2} = \alpha_n$$

הטור $c=rac{1}{4}
eq 0$ עבור 5.10 עבור 5.10 אי לכך, לפי מבחן lpha=2>1 אי לכך, לפי מבחן $\Sigma a_n=\Sigma(rac{1}{4}\cdotrac{1}{n^2})$ אי לכך, לפי מבחן $\Sigma u_n(x)$ מתכנס במ"ש ב $\Sigma u_n(x)$ מתכנס בים 6.7 נסיק כי טור הפונקציות

 \mathbb{R} כעת, היות ו u_n פנונקציות רציפות ב \mathbb{R} ומתכנסות במ"ש ב \mathbb{R} ל ל, נסיק לפי t_n כי רציפה ב

סעיף ב

הטענה לא נכונה.

 $u_n(x)=(1-x)x^n=x^n-x^{n+1}$ גם כאן נסמן $u_n:[0,1] o u_n:[0,1] o u_n$ נקבל $u_n:[0,1] o u_n$ נציין כי הפונקציות u_n רציפות ב u_n ובפרט ב

נמצא התכנסות נקודתית של טור המספרים $\Sigma u_n(x_0)$ עבור לכל $x_0 \in [0,1]$ נקבל:

$$S_k = \sum_{n=1}^k u_n(x_0) = \sum_{n=1}^k x_0^n - x_0^{n+1} \stackrel{\text{utoform}}{=} x_0 - x_0^{k+1}$$

ולכן:

$$S(x_0) = \lim_{k \to \infty} S_k = \lim_{k \to \infty} x_0 - x_0^{k+1} = \begin{cases} x_0 & 0 \le x_0 < 1 \\ 0 & x_0 = 1 \end{cases}$$

אילו היה טור הפונקציות S(x) מתכנס במידה שווה ב[0,1], היינו מקבלים לפי 6.4* כי הפונקציות מתכנס במידה שווה ב[0,1], היינו מקבלים לפי S(x) כי הפונקציה במחדה S(x) מתכנס במידה שווה בS(x)