UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

半记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4v1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移 梢

机器学习基础

可视化

模仿学习 生成模型 元学习 卷积网络

梯度策略

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复「添砖加瓦]

The world has over **6000** languages

Automated translation systems require paired data

[En] I think, therefore I am. <-> [Fr] Je pense, donc je suis.

Judge a man by his questions rather than by his answers.

[En<->Fr]

paired text corpus
[En<->Fr]

translation
model

Il est encore plus facile de juger de l'esprit d'un homme par ses questions que par ses réponses.

How many **paired** sentences are there for translating **Maltese** to **Tibetan**?

Improved efficiency:

Translating into and out of rare languages works **better** if the model is also trained on more common languages

What did they find?

Zero-shot machine translation:

E.g., train on **English -> French**, **French -> English**, and **English -> Spanish**, and be able to translate **French -> Spanish**

Translating **English** to **mix** of **Spanish** and **Portuguese**:

	Spanish/Portuguese:	Here the other guinea-pig cheered, and was suppressed.
	$w_{pt} = 0.00$	Aquí el otro conejillo de indias animó, y fue suprimido.
	$w_{pt} = 0.30$	Aquí el otro conejillo de indias animó, y fue suprimido.
	$w_{pt} = 0.40$	Aquí, o outro porquinho-da-índia alegrou, e foi suprimido.
	$w_{pt} = 0.42$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
"Portuguese" weight -	$w_{pt} = 0.70$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
(Spanish weight = 1-w)	$w_{pt} = 0.80$	Aqui a outra cobaia animou, e foi suprimida.
	$w_{pt} = 1.00$	Aqui a outra cobaia animou, e foi suprimida.

Translating **English** to **mix** of **Japanese** and **Korean**:

Japanese/Korean:	I must be getting somewhere near the centre of the earth.		
$w_{ko} = 0.00$	私は地球の中心の近くにどこかに行っているに違いない。		
$w_{ko} = 0.40$	私は地球の中心近くのどこかに着いているに違いない。		
$w_{ko} = 0.56$	私は地球の中心の近くのどこかになっているに違いない。		
$w_{ko} = 0.58$	私は지구の中心의가까이에어딘가에도착하고있어야한다。		
$w_{ko} = 0.60$	나는지구의센터의가까이에어딘가에도착하고있어야한다。		
$w_{ko} = 0.70$	나는지구의중심근처어딘가에도착해야합니다。		
$w_{ko} = 0.90$	나는어딘가지구의중심근처에도착해야합니다.		
$w_{ko} = 1.00$	나는어딘가지구의중심근처에도착해야합니다。		

Translating **English** to **mix** of **Russian** and **Belarusian**:

Russian/Belarusian:	I wonder what they'll do next!	
$w_{be} = 0.00$	Интересно, что они сделают дальше!	
$w_{be} = 0.20$	Интересно, что они сделают дальше!	
$w_{be} = 0.30$	Цікаво, что они будут делать дальше!	Neither Russian nor
$w_{be} = 0.44$	Цікаво, що вони будуть робити далі!	-
$w_{be} = 0.46$	Цікаво, що вони будуть робити далі!	Belarusian!
$w_{be} = 0.48$	Цікаво, што яны зробяць далей!	
$w_{be} = 0.50$	Цікава, што яны будуць рабіць далей!	
$w_{be} = 1.00$	Цікава, што яны будуць рабіць далей!	

What's going on?

the "thought" is a representation!

Representation learning

"Classic" view of machine learning:

but what is x?

Il est encore plus facile de juger de l'esprit d'un homme par ses questions que par ses réponses.

Handling such complex inputs requires **representations**

The power of deep learning lies in its ability to **learn** such **representations** automatically from data

Deep Learning

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

Course overview

- Broad overview of deep learning topics
 - Neural network architectures
 - Optimization algorithms
 - Applications: vision, NLP
 - Reinforcement learning
 - Advanced topics
- Four homework programming assignments
 - Neural network basics
 - Convolutional and recurrent networks
 - Natural language processing
 - Reinforcement learning
- **Two** midterm exams
 - Format TBD, but most likely will be a take-home exam
- Final project (group project, 2-3 people)
 - Most important part of the course
 - CS182: choose vision, NLP, or reinforcement learning
 - CS282: self-directed and open-ended project

Course policies

Grading:

30% midterms

40% programming homeworks

30% final project

Late policy:

5 slip days

strict late policy, no slack beyond slip days

no slip days for final project (due to grades deadline)

Prerequisites:

Excellent knowledge of calculus linear algebra

especially: multi-variate derivatives, matrix operations, solving linear systems

CS70 or STAT134, excellent knowledge of probability theory (including continuous random variables)

CS189, or a very strong statistics background

CS61B or equivalent, able to program in Python

What is machine learning? What is deep learning?

What is machine learning?

- How do we implement this program?
- ➤ A function is a set of **rules** for transforming **inputs** into **outputs**
- Sometimes we can define the rules by hand this is called programming
- What if we don't know the rules?
- ➤ What if the rules are too complex? Too many exceptions & special cases?

What is machine learning?

- Instead of defining the **input -> output** relationship by hand, define a program that acquires this relationship from **data**
- ➤ **Key idea:** if the rules that describe how **inputs** map to **outputs** are complex and full of special cases & exceptions, it is easier to provide **data** or **examples** than to implement those rules
- Question: Does this also apply to human and animal learning?

What are we learning?

so that our *parameterized* program (function) gives the right answer!

In general...

can also write as: $f_{\theta}(x) = y$

crucially, $f_{\theta}(x)$ can be almost any expression of x and θ !

But what parameterization do we use?

"Shallow" learning

fixed function for extracting features from x

$$\phi(x)^T \theta \le 0$$

- ➤ Kind of a "compromise" solution: don't hand-program the rules, but hand-program the features
- Learning on top of the features can be simple (just like the 2D example from before!)
- Coming up with good features is very hard!

From shallow learning to deep learning

Multiple layers of representations?

So, what is deep learning?

- ➤ Machine learning with multiple layers of learned representations
- The **function** that represents the transformation from input to internal representation to output is usually a deep neural network
 - This is a bit circular, because almost all multi-layer parametric functions with learned parameters can be called neural networks (more on this later)

- The parameters for every layer are usually (**but not always!**) trained with respect to the overall task objective (**e.g.**, **accuracy**)
 - This is sometimes referred to as end-to-end learning

What makes deep learning work?

1950 1960	1950: Turing describes how learning could be a path to machine intelligence of the second sec	
1970	1969: Minsky & Papert publish book describing fundamental limitations of neural networks	
1980	most (but not all) mainstream research focuses on "shallow" learning	
1360		
1990	1986: Backpropagation as a practical method for training deep nets 1989: LeNet (neural network for handwriting recognition)	what the heck
2000	Huge wave of interest in ML community in probabilistic methods, convex optimization, but mostly in shallow models	happened here?
2010	~2006: deep neural networks start gaining more attention	
7	2012: Krizhevsky's AlexNet paper beats all other methods on ImageNet	

What makes deep learning work?

1) Big models with many layers

2) Large datasets with many examples

3) Enough compute to handle all this

Model scale: is more layers better?

LeNet, 7 layers (1989)

Krizhevsky's model (AlexNet) for ImageNet, 8 layers (2012)

How big are the datasets?

MNIST (handwritten characters), 1990s - today: 60,000 images

CalTech 101, 2003: ~9,000 images

CIFAR 10, 2009: ~60,000 images

ILSVRC (ImageNet), 2009: 1.5 million images

How does it scale with compute?

What about NLP?

how long does it take to train BERT

Q All News Shopping Images

About 21,700,000 results (0.78 seconds)

about 54 hours

On what?? on this:

about 16 TPUs (this photo shows a few thousand of these)

So... it's really expensive?

- ➤ One perspective: deep learning is not such a good idea, because it requires huge models, huge amounts of data, and huge amounts of compute
- ➤ Another perspective: deep learning is great, because as we add more data, more layers, and more compute, the models get better and better!

About

...which human?

Andrej Karpathy blog

What I learned from competing against a ConvNet on ImageNet

Sep 2, 2014

human performance:

about 5% error

The underlying themes

- ➤ Acquire representations by using high-capacity models and lots of data, without requiring manual engineering of features or representations
 - Automation: we don't need to know what the good features are,
 we can have the model figure it out from data
 - Better performance: when representations are learned end-to-end, they are better tailored to the current task
- ➤ Learning vs. inductive bias ("nature vs. nurture"): models that get most of their performance from their data rather than from designer insight
 - Inductive bias: what we build into the model to make it learn effectively (we can never fully get rid of this!)
 - Should we build in knowledge, or better machinery for learning and scale?
- ➤ Algorithms that scale: This often refers to methods that can get better and better as we add more data, representational capacity, and compute

Model capacity: (informally) how many different functions a particular model class can represent (e.g., all linear decision boundaries vs. nonlinear boundaries).

Inductive bias: (informally) built-in knowledge or biases in a model designed to help it learned. All such knowledge is "bias" in the sense that it makes some solutions more likely and some less likely.

Scaling: (informally) ability for an algorithm to work better as more data and model capacity is added.

Why do we call them neural nets?

Early on, neural networks were proposed as a rudimentary model of neurons in the brain

dendrites receive signals from other neurons

Is this a good model for real neurons?

- Crudely models *some* neuron function
- Missing many other important anatomical details
- Don't take it too seriously

artificial "neuron" sums up signals from upstream neurons z= (also referred to as "units") neuron "decides" how much to fire based on incoming signals

activations transmitted to downstream units

 $z = \sum_i a_i$ upstream activations

What does deep learning have to do with the brain?

Unsupervised learning models of primary cortical receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University

{asaxe, mbhand, rmudur, bipins, ang}@cs.stanford.edu

Does this mean that the brain does deep learning?

Or does it mean that any sufficiently powerful learning machine will basically derive the same solution?

UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4y1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移

机器学习基础

可视化

模仿学习

生成模型

梯度策略

元学习 ^{卷积网络} Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机	.器学习	深度学习	自然语言处理	计算机视觉
Stanf	ord · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复「添砖加瓦]