Course

- Varying level of difficulty
- Prerequisites:
 - ▶ imperative programming (C, C++, Java, ...)
 - Basic data structures: lists, arrays, stacks, queues
 - Recursion, Big-Oh notation
 - Sorting, ...
- "Free-style" pseudo-code
- Having a laptop assumed

Grading

- participation in class 10%
 - full attendance is expected
 - in-class projects
- programming exercises 40%
 - ▶ one every ~2 weeks
 - plagiarism is not tolerated
- exam 50%

Useful books

CLRS = Cormen & Leiserson & Rivest & Stein

Some other good algorithm textbooks:

- Steven Skiena, The Algorithm Design Manual, 2nd Edition, Springer, 2008 [a bit advanced?]
- Jon Kleinberg and Éva Tardos, Algorithm Design, MIT Press 2005
- Robert Sedgewick and Kevin Wayne, Algorithms, Addison-Wesley, 4th Edition, 2011
 [for beginners, Java-oriented]

How to measure the efficiency of algorithms?

- Efficiency (in this course) = TIME and SPACE
 - other possible measure of efficiency: accuracy
- Classical model: RAM model of computation
 - all memory accesses have equal cost
 - no parallel execution
 - unit cost (O(1)) of basic operations (unless we want to explicitly count individual bits operations)
 - > space = # of computer words (unless bit complexity is considered); each computer word contains $\Theta(\log n)$ bits
 - other possible measures can be considered: disk accesses, cache misses, probe model, query complexity ...

How to measure the efficiency of algorithms?

- Algorithms solve mass problems
 - n: input size (in computer words or bits)
 - time/space as a function of *n*
- Different complexity analyses:
 - worst-case complexity
 - average-case complexity
 - smoothed analysis
 - query (probe) complexity
 - • •

Graphs

Graphs

Directed graph G = (V, E) V finite set of nodes (vertices) $E \subseteq V \times V$ set of edges (arcs), i.e., a relation on V

$$V = \{ 1, 2, 3, 4, 5 \}$$

 $E = \{ (1, 2), (1, 3), (2, 3), (3, 2), (4, 4), (4, 5) \}$

Undirected graph G = (V, E) E set of edges (arcs), symmetric relation

$$E = \{ 1, 2, 3, 4 \}$$

 $V = \{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\} \}$

Graphs are everywhere

Acyclic graph of an expression (DAG)

$$((a+b)*c+d/(b*(a+b)))*(a+b)*c$$

Gene regulation network in biology

Protein-protein interaction network (in yeast)

Social networks

Graph representations

$$G = (V, E)$$
 $V = \{1, 2, ..., n\}$

Adjacency list

reduces the size if $|E| << (|V|)^2$ reading time : O(|V| + |E|)

Adjacency matrix

using matrix operations reading time $O(|V|)^2$

Other representations possible

Adjacency lists

Lists of A(s)

weight: $w: A \longrightarrow X$

$$V = \{ 1, 2, 3 \}$$

 $E = \{ (1,1), (1, 2), (1, 3), (2, 1), (3, 2) \}$

Adjacency matrix

M[i, j] = 1 iff j is adjacent to i

weight: $w: A \longrightarrow X$

$$V = \{ 1, 2, 3 \}$$

 $E = \{ (1,1), (1, 2), (1, 3), (2, 1), (3, 2) \}$

$$M = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

$$W = \left(\begin{array}{ccc} 2 & 8 & 5 \\ 3 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right)$$

Graph algorithms

- Exploration
 - Depth-first or breadth-first search
 - Topological sorting
 - Strongly connected components
- Path computation
 - Shortest path
 - Transitive closure
 - Eulerian and Hamiltonian paths

- Minimum spanning trees
 - Kruskal's and Prim's algorithms
- Networks
 - Maximum flow
- Others
 - Graph coloring
 - Planarity testing
 - ...

Shortest paths in graphs

Single-source shortest path: unweighted case

- Path length = number of edges
- Distance between two nodes = length of the shortest path
- ▶ Problem: given a (directed or undirected) graph G = (V, E) and a source node $s \subseteq V$, compute the distance from s to each reachable node

Single-source shortest bath: unweighted case

a subgraph (29,160 nodes) of the graph of Rubik's mini cube (2x2x2) configurations (3,674,160 nodes)

https://miscellaneouscoder.wordpress.com/2014/07/28/working-with-rubiks-group-cycle-graphs/

Given a source node s,

Discovers all nodes reachable from s

Given a source node s,

- Discovers all nodes reachable from s
- Proceeds by "concentric circles"
- Discovers all nodes at distance d from s before discovering any nodes at distance d+1

Given a source node s,

- Discovers all nodes reachable from s
- Proceeds by "concentric circles"
- Discovers all nodes at distance d from s before discovering any nodes at distance d+1
- Computes the distances from s
- Computes a breadth-first tree encoding one shortest path for each node

Given a source node s,

- Discovers all nodes reachable from s
- Proceeds by "concentric circles"
- Discovers all nodes at distance d from s before discovering any nodes at distance d+1
- Computes the distances from s
- Computes a breadth-first tree encoding one shortest path for each node

How it works?

- colors every node white (not yet discovered), yellow (discovered but may have white adjacent nodes), or red (discovered and all adjacent nodes discovered)
- yellow nodes = "active frontier" (nodes under processing)
- when processing a (yellow) node, determine all white neighbors, set their distance to be larger by 1, color them yellow. After that, color the node red.

```
procedure BFT (s node of V);
begin
for each node v of V do {
       visited[v] = false ; //s is white
      d[v] = \infty; \pi(v) = nil
visited[s]=true ; //s becomes yellow
d[s]=0;
Queue = enqueue (empty-queue, s);
while not empty (Queue) do {
       u = dequeue (Queue);
       for t = first to last successor of u do
              if not visited [ t ] then
                     visited[ t ]=true ; //t becomes yellow
                     d[t] = d[u] + 1; \pi(t) = u
                     Queue = enqueue (Queue, t);
       //s' becomes red
end
```


Queue: a

Order of traversal:

Queue: a b c d e

Order of traversal: a

Queue:abcdefg

Order of traversal: a b

Queue: a b c d e f g

Order of traversal: a b c d e

Queue: a b c d efg

Order of traversal: a b c d e f g

Questions

▶ Show that BFS runs in time O(n+m) (assuming the graph is represented by adjacency lists), n=|V|, m=|E|

- ▶ Show that if $(v_1, v_2, ..., v_r)$ is the state of the Queue, then $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$ for all i
- Show that upon termination $d[v]=\delta(s,v)$, where $\delta(s,v)$ is the length of the shortest path from s to v

$d[v]=\delta(s,v)$: sketch of the proof

- by contradiction, let v be the closest to s node with $d[v] > \delta(s,v)$
- consider a shortest path from s to v, and let u be the node preceding v in this path
- $\delta(s,v)=\delta(s,u)+1$ (by properties of shortest paths)
- rightharpoonup consider the moment when u was dequeued $(d[u] = \delta(s,u))$
- ightharpoonup if v was white then, we have $d[v] = \delta(s,v) \Rightarrow contradiction$
- if v was yellow then, it was visited earlier by exploring the successors of some w with $d[w] \le d[u]$. Then $d[v] = d[w] + 1 \le d[u] + 1 \Rightarrow contradiction$
- ▶ if v was red, then $d[v] \le d[u] \Rightarrow$ contradiction

Space efficient BFS

- **BFS** stores the queue which (in the worst case) can contain O(n) nodes, i.e. $O(n \log n)$ bits
- Can we implement BFS with o(n log n) bits?
- **Example of a result:** There exists an algorithm that outputs vertices in the BFS order in time O(n+m) and uses 2n+o(n) bits
 - [N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space efficient linear time algorithms for BFS, DFS and applications. Theory of Computing Systems, Jan 2018]

Single-source shortest path: weighted case

Single-source shortest path: weighted case

Shortest path problem

Weighted (directed or undirected) graph: G = (V, E, w) where

 $w: E \rightarrow \mathbf{R}$ (weight/cost)

Source : $s \in V$

Problem: for all $t \in V$, compute

 $\delta(s, t) = \min \{\{ w(c) ; c \text{ path from } s \text{ to } t \} \cup \{+\infty\} \}$

Example:

Costs δ :

Properties of the shortest paths

Proposition 1 (existence):

shortest paths are well-defined (i.e. for all $t \in V$, $\delta(s, t) > -\infty$) **iff** the graph does not have a cycle of cost < 0 reachable from s

Proposition 2: if there exists a shortest path from *s* to *t*, then there exists one without a cycle

Proposition 3: if there exists a shortest path from s to t, then there exists one with no more than |V|-1 edges

Main properties

Property 1: G = (V, E, w)let c be a shortest path from p to rand q be the node preceding r in c. Then $\delta(p, r) = \delta(p, q) + w(q, r)$.

Property 2: A subpath of a shortest path is a shortest path

Shortest path tree: tree rooted at s representing shortest paths

Main properties (cont)

Property 3: G = (V, E, w) let c be a path from p to r and q be the node preceding r in c. Then $\delta(p, r) \leq \delta(p, q) + w(q, r)$.

Relaxation

```
Compute \delta(s,t) by successive approximations
t \in V \ d[t] = \text{estimate (from above) of } \delta(s, t)
       \pi[t] = predecessor of t on
              a path from s to t of cost d[t]
Initialization of d and \pi
INIT
       for all t \in V do
       { d[t] = \infty ; \pi[t] = \text{nil} }
       d[s] = 0;
                                                               d(q)
Relaxation of the edge (q, r)
RELAX(q, r)
       if d[q] + w(q, r) < d[r]
```

then $\{d[r] = d[q] + w(q, r) ; \pi[r] = q\}$

Relaxation (cont)

Proposition:

the following property is an invariant of **relax**: for all $t \in V$, $d(t) \ge \delta(s, t)$

Proof: by induction on the number of executions of relax

Dijkstra's algorithm

Assumption: $w(p, q) \ge 0$ for all edges (p, q)

```
begin  \begin{array}{c} \textbf{INIT};\\ S = \varnothing \;;\;\; Q = V \;;\\ \textbf{while}\;\; Q \neq \varnothing \;\;\; \textbf{do}\;\; \{\\ q = \textbf{MIN}_d(Q) \;;\;\; Q = Q \setminus \{q\} \;;\;\; S = S \cup \{q\} \;;\\ \textbf{for all}\;\; r \;\; \textbf{successor}\;\; \textbf{of}\;\; q \;\;\; \textbf{do}\\ \textbf{RELAX}(q,\,r) \;;\\ \} \\ \textbf{end} \end{array}
```

- At each iteration, the algorithm extracts a node from Q that is never returned to Q
- **RELAX**(q, r) may change d[r]

Example

$$S = \{\emptyset\}$$

 $Q = \{s, a, b, c, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = \text{nil}$
 $\pi[b] = \text{nil}$
 $\pi[c] = \text{nil}$
 $\pi[d] = \text{nil}$

$$S = \{s\}$$

 $Q = \{a, b, c, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = \text{nil}$
 $\pi[c] = s$
 $\pi[d] = \text{nil}$

Example (cont)

$$S = \{s\}$$

 $Q = \{a, b, c, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = \text{nil}$
 $\pi[c] = s$
 $\pi[d] = \text{nil}$

$$S = \{s, a\}$$

 $Q = \{b, c, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = a$
 $\pi[c] = a$
 $\pi[d] = \text{nil}$

Example (cont)

$$S = \{s, a\}$$

 $Q = \{b, c, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = a$
 $\pi[c] = a$
 $\pi[d] = \text{nil}$

$$S = \{s, a, c\}$$

 $Q = \{b, d\}$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = a$
 $\pi[c] = a$
 $\pi[d] = c$

Example (cont)

$$S = \{s, a, c\}$$

 $Q = \{b, d\}, Q = \{d\} \text{ then } Q = \emptyset$
 $\pi[s] = \text{nil}$
 $\pi[a] = s$
 $\pi[b] = a$
 $\pi[c] = a$
 $\pi[d] = c$

Correctness of Dijkstra's algorithm

Proposition: After the execution of Dijkstra's algorithm on a graph G = (V, E, w), $d[t] = \delta(s, t)$ for all $t \in V$.

Proof by contradiction: let $d[t] \neq \delta(s, t)$

Properties of Dijkstra's algorithm

▶ Algorithm maintains three sets:

S: finished nodes, for which $d[t] = \delta(s, t)$ (red)

▶ S': nodes of Q with $d[t] < \infty$ (yellow)

▶ nodes of Q with $d[t]=\infty$ (white)

 Algorithm can be seen as expanding a ball centered at s following a greedy strategy

Implementation

With adjacency matrix

time $O(n^2)$ (where n=|V|)

With adjacency lists

depends on the data structure for Q

we need to support operations:

- insert an element to Q
- extract an element with minimum d value
- modify (decrease) the *d* value of an element (when relaxing)
- ⇒ (min-)priority queue

Priority Queues

- (max-)Priority Queue is a data structure that supports operations
 - ► INSERT(S,x)
 - MAX(S)
 - EXTRACT-MAX(S)
 - INCREASE-KEY(S,x,k): increase the key of x to k
- Priority Queues are used in
 - Dijkstra's algorithm for shortest paths
 - Prim's algorithm for minimum spanning tree
 - other greedy algorithms
- Implemented using heaps

Binary Heaps

- Binary heap:
 - ▶ a binary tree that is
 - **complete**: every level except possibly the bottom one is completely filled and the leaves in the bottom level are as far left as possible
 - > satisfies the (max-)heap property: the key stored in every node is greater than or equal to the keys stored in its children
 - If the key at each node is smaller than or equal to the keys of its children, then we have a min-heap

Binary (max-)heap: example

Binary heaps stored in arrays

Due to their regular structure, binary heaps are easily stored in arrays

Given index i of a node,

- the index of its parent is [i / 2]
- the indices of its children are 2i and 2i+1

Binary heaps: some properties

▶ The height of a heap is [log(n)]

Not every array represents a heap

In a max-heap, the largest element is at the root and the smallest element is in a leaf

Heapify

Assume that node i violates the heap property, but the children nodes 2i and 2i+1 (if exist) are heaps.

```
HEAPIFY(A,i)
  if A[2i]>A[i] or A[2i+1]>A[i] then
      if A[2i+1]>A[2i] then
             exchange A[i] and A[2i+1];
             HEAPIFY(A, 2i+1)
      else
             exchange A[i] and A[2i];
             HEAPIFY(A, 2i)
      end
  end
```

Heapify: example

Building a binary heap

• Given an array A[1..n], build a binary heap for array elements

```
BUILD-HEAP(A,n)

for i=\lfloor n/2 \rfloor downto 1 do HEAPIFY(A,i);
```

Exercise: build the heap for A=[4,1,3,2,16,9,10,14,8,7]

BUILD-HEAP: complexity

Straightforward estimation O(n · log(n))

Refined analysis:

- Cost of a call to HEAPIFY at a node depends on the height, h, of the node O(h).
- Height of most nodes smaller [log(n)]
- \blacktriangleright Height of nodes h ranges from 0 to $\lfloor \log(n) \rfloor$
- number of nodes of height h is at most $[n/2^{h+1}]$?

Heap Characteristics

- \blacktriangleright Height = $\lfloor \log n \rfloor$
- Number of leaves = [n/2]
- Number of nodes of height $h \leq \lceil n/2^{h+1} \rceil$

Proof by induction:

- remove all leaves from the heap
- there remains $n \lfloor n/2 \rfloor = \lfloor n/2 \rfloor$ nodes
- the height of each node is decremented by 1
- ▶ nb of nodes of height h-1 is (by induction) $\lceil \lfloor n/2 \rfloor / 2^h \rceil \le \lceil n/2^{h+1} \rceil$

Tighter bound for BUILD-HEAP: O(n)

time of BUILD-HEAP is
$$\sum_{h=0}^{\lfloor \log n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right)$$

note that
$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

therefore the time is O(n)

Priority Queue

- ▶ MAX(A): return the heap root
- ► EXTRACT-MAX(A):

Priority Queue

- ▶ MAX(A): return the heap root
- EXTRACT-MAX(A): exchange A[1] and A[n], discard element n, and apply HEAPIFY(A,1)
- ► INCREASE-KEY(A,i,k):

Priority Queue

- ▶ MAX(A): return the heap root
- EXTRACT-MAX(A): exchange A[1] and A[n], discard element n, and apply HEAPIFY(A,1)
- ► INCREASE-KEY(A,i,k): $A[i] \leftarrow k;$ while A[[i/2]] < A[i] do

exchange A[[i/2]] and A[i];

 $i\leftarrow parent(i)$

end

► INSERT(A,i): insert a new leaf n+1 with key $-\infty$; call INCREASE-KEY(A,n+1,k)

INCREASE-KEY: example

INCREASE-KEY(A,9,15)

Priority Queues: time bounds

- ▶ MAX: *O*(1)
- ► EXTRACT-MAX, INCREASE-KEY, INSERT: O(log(n))

Priority Queues: time bounds

- ▶ MAX: *O*(1)
- ► EXTRACT-MAX, INCREASE-KEY, INSERT: O(log(n))

Various improvements have been proposed

- ▶ Fibonacci heaps take O(1) amortized time for INSERT and INCREASE-KEY
- ▶ if keys are integers bounded by C, van Emde Boas trees support INSERT, DELETE, MAX, MIN, SUCC, PRED in time O(log log(C))

Back to Dijkstra's algorithm

```
With adjacency matrix time O(n^2)
```

With adjacency lists

```
Q: priority queue if implemented by binary heaps: n building a heap of n elements: O(n) n operations \min_{d} : O(n \cdot \log n) m operations \min_{d} : O(m \cdot \log n) total time O((n+m) \cdot \log n): improves over O(n^2) if m=o(n^2/\log n)
```

time can be improved to $O(n \cdot \log n + m)$ using Fibonacci heaps, as decreasing the key takes O(1) amortized