

CS918: LECTURE 7

Text Classification, Evaluation and Error Analysis

Arkaitz Zubiaga, 24th October, 2018

LECTURE 7: CONTENTS

- What is text classification?
 - Examples of text classification.
- Supervised Text Classification.
 - Sentiment analysis.
- Evaluation.
- Error Analysis.

WHAT IS TEXT CLASSIFICATION?

- Having as input:
 - A text document d
 - A set of categories C={c₁, ..., c_m}
- The **text classification** task **outputs**:
 - Predicted class c* that document d belongs to.

$$c^* \in C$$

• Spam detection: classifying emails/web pages as spam (or not).

Classification by topic: what is the text about?

Sentiment analysis: is a text positive, negative or neutral?

- I really liked the food at the restaurant.
- We were 8 friends who went there for the first time.
- The service was terrible.

• Language identification: what language a text is written in?

Wieviel Uhr ist es? → {German, English, Spanish, French}

Classification of political orientation:
 does a text support labour or conservative?

WHAT IS TEXT CLASSIFICATION?

- A range of different problems, with a **common goal**:
 - Assigning a category/class to each document.
 - We **know the set of categories** beforehand.

TEXT CLASSIFICATION: APPROACHES

- Rule-based classifiers, e.g. if email contains 'viagra' → spam
 - Significant manual effort involved.
- Supervised classification:
 - Given: a hand-labeled set of document-class pairs $(d_1,c_1), (d_2,c_j), ..., (d_m,c_2) \rightarrow \text{classified into C=}\{c_1,...,c_j\}$
 - The classifier learns a model that can classify new documents into C.

SUPERVISED TEXT CLASSIFICATION

SUPERVISED CLASSIFICATION

- Assumption: We have a manually labelled dataset, e.g.:
 - d₁: 'That's really good, I love it' → positive
 - d_2 : 'It was boring, don't recommend it' \rightarrow negative
 - ...
 - d_n: 'I wouldn't go again, awful' → negative

• If not, we need to find one or label one ourselves.

SUPERVISED CLASSIF.: DECISIONS TO MAKE

- Split the dataset into train/dev/test sets.
 - or often just train/test.
- What features are we going to use to represent the documents?
- What classifier are we going to use?
 - Choose **settings**, **parameters**, etc. for the classifier.

SPLITTING THE DATASET

- We can split the dataset into 3 parts:
 - Training set → the largest set as we want proper training.
 - Development set.
 - Test set.

Training set Development Set Test Set

- Tweak classifier based on the development set, then test it on the test set.
 - Tweaking and testing on the test set may lead to overfitting (doing the right things specifically for that test set, not necessarily generalisable)

WHAT IS OVERFITTING?

- Overly adjusting our classifier and features to a specific test set.
- The classifier may not generalise to new instances beyond the current test set.

WARWICK

Pretty much like designing a mattress based on a single observation of sleeping position!

HOW TO AVOID OVERFITTING

- Having train/dev/test, tweak our classifier for the dev set.
 - Then apply to the **test set**, does it **generalise**?

Cross-validation.

CROSS-VALIDATION

- Cross-validation: train and test on different "folds"
 - e.g. 10-fold cross-validation, split the data into 10 parts.
 - each time 1 fold is used for testing, the other 9 for training.
 - after all 10 runs, compute the average performance.

CROSS-VALIDATION

• Cross-validation: example.

Final Accuracy = Average(Round 1, Round 2, ...)

CHOOSING THE FEATURES

- Usually start with some basic features:
 - Bag of words.
 - Or preferably word embeddings.
- Keep adding new features:
 - Need to be creative.
 Think of features could characterise the problem at hand.

THINKING OF FEATURES

Possible features:

- **Sentiment analysis** → counts of positive/negative words.
- Language identification → probabilities of characters (how many k's, b's, v's...), features from word suffixes (e.g. many ing words → English)
- Spam detection → count words in blacklist, domain of URLs in email (looking for malicious URLs)

CHOOSING THE FEATURES

- How to assess which features are good?
- Empirical evaluation:
 - Incremental testing: keep adding features, see if adding improves performance
 - Leave-one-out testing: test all features, and combinations of all features except one. when leaving feature i out performs better than all features, remove feature I
 - **Error analysis:** (later in this lecture) look at classifier's errors, what features can we use to improve?

CHOOSING A CLASSIFIER

- Many different classifiers exist, well-known classifiers include:
 - Naive Bayes.
 - Logistic Regression (Maximum Entropy classifier)
 - Support Vector Machines (SVM).
- Classifiers can be **binary** (k = 2) or **multiclass** (k > 2).

CHOOSING A CLASSIFIER

- How many categories (k)?
 - [k=2] **Binary** → binary classifier.
 - [k>2] Multiclass:
 - One-vs-all classifiers.

 Build *k* classifiers, each able to distinguish class *i* from the rest. Then combine output of all classifiers (e.g. based on their confidence scores)
 - Multinomial/multiclass classifiers.

WARWICK

BINARY VS MULTICLASS CLASSIFIERS

WHEN TO USE MULTINOMIAL OR ONE-VS-ALL?

- Multinomial:
 - is generally faster, a single classifier.
 - classes are **mutually exclusive**, no overlap.
- One-vs-all:
 - Multilabel classification, document can fall in 1+ categories: e.g. classify by language:

I said "bonjour mon ami" to my friend → English & French

How? Out of k classifiers, those with **confidence > threshold**

SENTIMENT ANALYSIS

HOW TO BUILD A SENTIMENT CLASSIFIER

- Two main approaches:
 - Unsupervised classifier using lexicons.
 - Supervised classifier leveraging training data.

UNSUPERVISED CLASSIFIER USING LEXICONS

Using lexicons of positive and negative words, e.g.:

fantastic
fantastically
fascinate
fascinating
fascinatingly
fascination
fashionable
fashionably

- Count number of +/- words in a review:
 - Majority wins (are there more + or words?).
 - Produce percentages (x% positive, y% negative).

CLASSIFIER USING LEXICONS

- + No need for training data (reviews annotated as +/-), just lexicons.
- + Quick and easy to implement.
- Can't handle negations and other expressions, e.g.:
 - The restaurant is <u>not bad</u> at all, so we will be back!
 - I had heard that the service was **slow**, the food was **terrible**, and that it was **pricey**... but hey, it's actually **awesome!**

WORKAROUND FOR NEGATIONS

- The restaurant is not bad at all, so we will be back!
- Workaround: add "not_" to words after negation, up to next punctuation.
- The restaurant is not not_bad not_at not_all, so we will be back!
- Expand lexicons to incorporate "not_*" in opposite list, e.g.: not_happy, not_good as negative not_bad, not_sad as positive

SUPERVISED SENTIMENT CLASSIFIER

- Pretty much like any text classification, we **need labelled data**.
- Where we don't have data, a good solution is distant supervision.

DISTANT SUPERVISION

Use positive and negative keywords to collect data, e.g.:

```
#happy, :), #sad, :(,...
```


Build dataset after removing those keywords:

DISTANT SUPERVISION

- + Easy and quick to get large collection of data.
- + Generally free, e.g. Twitter.
- We can only get positive/negative labels, not neutral.
- Data tends to be noisy, e.g. sarcasm.

EVALUATION OF TEXT CLASSIFICATION

EVALUATION OF TEXT CLASSIFICATION

- Evaluation is different for binary and multiclass classification.
 - Binary: we generally have a positive and a negative class (spam vs non-spam, medical test positive vs negative, exam pass vs fail). Classification errors can only go the other class.
 - Multiclass: multiple categories, may have different level of importance.
 - Classification errors can go to any other class.

EVALUATION OF BINARY CLASSIFICATION

• 2-by-2 contingency table:

	Actually positive	Actually negative
Classified as positive	True Positive (TP)	False Positive (FP)
Classified as negative	False Negative (FN)	True Negative (TN)

• 2-by-2 contingency table:

	Actually positive	Actually negative	
Classified as positive	True Positive (TP)	False Positive (FP)	
Classified as negative	False Negative (FN)	True Negative (TN)	

- **Precision:** ratio of items classified as positive that are correct.
- Recall: ratio of actual positive items that are classified as positive.

• 2-by-2 contingency table:

	Actually positive	Actually negative
Classified as positive	True Positive (TP)	False Positive (FP)
Classified as negative	False Negative (FN)	True Negative (TN)

- Precision: ratio of items classified as positive that are correct.
- Recall: ratio of actual positive items that are classified as positive.

• 2-by-2 contingency table:

	Actually positive	Actually negative
Classified as positive	True Positive (TP)	False Positive (FP)
Classified as negative	False Negative (FN)	True Negative (TN)

• **Precision:** ratio of items classified as positive that are correct.

$$ext{Precision} = rac{tp}{tp + fp}$$

Recall: ratio of actual positive items that are classified as positive.

$$ext{Recall} = rac{tp}{tp + fn}$$

We want to optimise for both precision and recall:

$$F=2\cdotrac{ ext{precision}\cdot ext{recall}}{ ext{precision}+ ext{recall}}$$
 (harmonic mean of precision and recall)

• Equation as follows, however generally $\beta = 1$:

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{eta^2 \cdot ext{precision} + ext{recall}}$$

• Bigger confusion matrix:

	Actually UK	Actually World	Actually Tech	Actually Science	Actually Politics	Actually Business
Classified as UK	95	1	13	0	1	0
Classified as World	0	1	0	0	0	0
Classified as Tech	10	90	0	1	0	0
Classified as Science	0	0	0	34	3	7
Classified as Politics	0	1	2	13	26	5
Classified as Business	0	0	2	14	5	10

• Overall Accuracy: ratio of correct classifications.

$$\frac{\sum_{i} c_{ii}}{\sum_{j} \sum_{i} c_{ij}}$$

- Overall Accuracy: ratio of correct classifications.
- Generally a bad evaluation approach, e.g.:
 - We classify 1,000 texts → data is skewed with 990 texts actually having positive sentiment.
 - We (naively) classify everything as positive.
 - 990 classified correctly: 990 / 1000 = 0.99 accuracy!

Is it fair?

Per-class precision and recall:

Precision:
$$\frac{C_{jj}}{\sum C_{jj}}$$
 — # of items we correctly classified as class i j # of items we classified as class i $\sum_{j} C_{ij}$ — # of items we correctly classified as class i j # of actual i items

• With the harmonic mean, we can then get per-class F1 score.

- We have **per-class precision**, **recall and F1 scores**.
 - How do we combine them all to get a single score?

- Obtaining overall performances:
 - Macroaveraging:

Compute performance for each class, then average them. All classes contribute the same to the final score (e.g. class with 990 and class with 10 instances).

Microaveraging:

Compute **overall performance** without computing per-class performances.

Large classes contribute more to the final score.

Macroaveraging:

$$ext{macroaveraged precision} = rac{\sum_i rac{ ext{TP}_i}{ ext{TP}_i + ext{FP}_i}}{k}$$

$$ext{macroaveraged recall} = rac{\sum_i rac{ ext{TP}_i}{ ext{TP}_i + ext{FN}_i}}{k}$$

• The macroaveraged F1 score is then the harmonic mean of those.

Microaveraging:

$$ext{microaveraged precision} = rac{\sum_{i} ext{TP}_{i}}{\sum_{i} ext{TP}_{i} + ext{FP}_{i}}$$

$$ext{microaveraged recall} = rac{\sum_{i} ext{TP}}{\sum_{i} ext{TP}_{i} + ext{FN}_{i}}$$

The microaveraged F1 score is then the harmonic mean of those.

MICRO- VS MACRO-AVERAGING EXAMPLE

	S	D	Q	С
S	366 (40.4%)	32 (3.5%)	22 (2.4%)	487 (53.7%)
D	38 (11.1%)	22 (6.4%)	23 (6.7%)	260 (75.8%)
Q	11 (3.1%)	10 (2.8%)	149 (41.6%)	188 (52.5%)
C	261 (9.0%)	91 (3.1%)	133 (4.6%)	2,421 (83.3%)

• Microaveraged F1 score: **0.665**

Macroaveraged F1 score: 0.440

where I have so many instances with label C, which metric is fairer?

depends on our objective: do we need a classifier that performs well for all labels? Do we just want to perform well for C?

FURTHER WEIGHTING/SELECTION

- We can choose to **prioritise certain categories**:
 - Give higher weight to important categories:

$$0.3*Prec(c_1) + 0.3*Prec(c_2) + 0.4*Prec(c_3)$$

- → unless we have clear criteria to choose these weights, it's rather arbitrary though!
- Select some categories for inclusion in macro/microaverage:
 - e.g. Semeval task (Exercise 2 of the module), we only macroaverage over positive and negative sentiment classes. Performance over the neutral class is not included.

ERROR ANALYSIS FOR TEXT CLASSIFICATION

- Error analysis: can help us find out where our classifier can do better.
- No magic formula for performing error analysis.
 - Look where we are doing wrong, what labels particularly.
 - Do our errors have some common characteristics? Can we infer a new feature from that?
 - Could our classifier be favouring one of the classes (e.g. the majority class)?

• Error analysis: where are we doing wrong? What labels?

Look at frequent deviations in the confusion matrix.

	Actually UK	Actually World	Actually Tech	Actually Science	Actually Politics	Actually Business
Classified as UK	95	1	13	0	1	0
Classified as World	0	1	0	0	0	0
Classified as Tech	10	90	0	1	0	0
Classified as Science	0	0	0	34	3	7
Classified as Politics	0	1	2	13	26	5
Classified as Business	0	0	2	14	5	10

• Error analysis: do our errors have some common characteristics?

Print some of our errors, e.g. classifying person names by gender.

```
>>> for (tag, guess, name) in sorted(errors):
        print('correct={:<8} quess={:<30}'.format(tag, quess, name))</pre>
correct=female
                quess=male
                                name=Abigail
correct=female
                                name=Cindelyn
                 guess=male
correct=female
                 quess=male
                                name=Katheryn
correct=female
                 quess=male
                                name=Kathryn
correct=male
                 guess=female
                                name=Aldrich
correct=male
                guess=female
                                name=Mitch
correct=male
                 quess=female
                                name=Rich
```


• Error analysis: do our errors have some common characteristics?

Print some of our errors, e.g. classifying person names by gender.

```
>>> for (tag, guess, name) in sorted(errors):
       print('correct={:<8} quess={:<30}'.format(tag, quess, name))</pre>
correct=female
                quess=male
                               name=Abigail
correct=female
                               name=Cindelyn
                guess=male
correct=female
                quess=male
                               name=Katheryn
correct=female
                quess=male
                               name=Kathryn
                guess=female
                               name=Aldr(ch
correct=male
correct=male
                guess=female
correct=male
                quess=female
```


• Error analysis: do our errors have some common characteristics?

Print some of our errors.

```
>>> for (tag, guess, name) in sorted(errors):
       print('correct={:<8} quess={:<30}'.format(tag, quess, name))</pre>
correct=female
               quess=male
                              name=Abigail
correct=female
                              name=Cindelyn
                guess=male
correct=female
                quess=male
                              name=Katheryn
correct=female
                quess=male
                              name=Kathryn
                guess=female
                              name=Aldr(ch
correct=male
                                                New feature: suffix, last 2-3 characters
correct=male
                guess=female
correct=male
                guess=female
                              name=Rich
```


- Error analysis: could our classifier be favouring one of the classes?
 - Owing to class imbalance, classifiers tend to predict popular classes more often, e.g.:

class A (700), class B (100), class C (100), class D (100) classifiers will tend to predict A, over-represented as in our previous example:

	S	D	Q	С
S	366 (40.4%)	32 (3.5%)	22 (2.4%)	487 (53.7%)
D	38 (11.1%)	22 (6.4%)	23 (6.7%)	260 (75.8%)
Q	11 (3.1%)	10 (2.8%)	149 (41.6%)	188 (52.5%)
C	261 (9.0%)	91 (3.1%)	133 (4.6%)	2,421 (83.3%)

- Error analysis: could our classifier be favouring one of the classes?
 - How to deal with imbalance (i.e. A-700, B-100, C-100, D-100)?
 - 1) Undersample popular class → A-100, B-100, C-100, D-100

randomly remove 600 instances of A

- Error analysis: could our classifier be favouring one of the classes?
 - How to deal with imbalance (i.e. A-700, B-100, C-100, D-100)?
 - 2) Oversample other classes → A-700, B-700, C-700, D-700

repeat instances of B, C, D to match the number of A's

- Error analysis: could our classifier be favouring one of the classes?
 - How to deal with imbalance (i.e. A-700, B-100, C-100, D-100)?
 - 3) Create synthetic data → A-700, B-700, C-700, D-700

generate new B, C, D items → needs some understanding of the contents of the classes to be able to produce sensible data items

- Error analysis: could our classifier be favouring one of the classes?
 - How to deal with imbalance (i.e. A-700, B-100, C-100, D-100)?
 - 4) Cost sensitive learning

e.g. higher probability to predict uncommon classes
$$P(A)=1/700$$
, $P(B)=1/100$, $P(C)=1/100$, $P(D)=1/100$

- Important for the error analysis:
 - Subset we analyse for errors (dev set) has to be different to the one where we ultimately apply the classifier (test set).
 - If we tweak the classifier looking at the test set, we'll end up overfitting, developing a classifier that works very well for that particular test set.
- NB: for exercise 2, you're given 3 test sets, we'll test it in 2 more held-out test sets. Not looking at test sets while developing will improve generalisability.

ASSOCIATED READING

- Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 3rd edition. Chapters 4 and 5.
- Bird Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, Inc., 2009. **Chapter 6.**