### **FORENSICS**

# **Decrypting the Ransom: Malicious DOCM Analysis**

Description: A challenge where the goal was to analyze a malicious DOCM file, extract the encryption key from the ransomware, and decrypt the encrypted data.

Solution:

### **Opening the File**

The challenge provided a .docm file, which was opened using LibreOffice.



# **Noticing Macros**

• Observed the **"Show Macros"** option in the top menu of LibreOffice. This immediately indicated that the challenge might revolve around embedded macros.

### **Accessing Macros**

- Navigated to Tools > Macros > Edit Macros to examine the macro scripts embedded in the document.
- This opened the **Edit Macros** page in LibreOffice.



# **Identifying the Suspicious Macro**

• Under the **Modules** tab, found a file named **RunPython**. This script stood out as potentially significant.

### **Analyzing the Macro**

• Opened the RunPython script for inspection and began analyzing its code.

 Found a Base64 encoded string embedded within the macro logic. This string seemed like it could be the flag to solving the challenge.

## **Decoding the Base64 String**



### Submitting the Flag

Used the decoded flag to complete the challenge.

# **EDIT**

Description: In a forgotten data vault, a technician discovers a peculiar file, its contents scrambled and unreadable. There's no obvious way to decode it, but something feels off — as if the file is waiting for the right touch to restore its original form.

Solution:

### **Inspecting the Provided File**

- The challenge provided a **PNG file** for analysis.
- Attempted to open the file using standard image viewers, but it appeared to be **corrupted**.



### Researching a Solution

- Searched online for tools or techniques to recover corrupted image files.
- Discovered a GitHub repository named MagicBytes:
  - o GitHub Link: MagicBytes by Haxrein
  - This tool specializes in repairing damaged headers specific to various image formats, including PNG.

### **Cloning the Repository**

Cloned the GitHub repository to the local machine using:

git clone https://github.com/Haxrein/MagicBytes.git

### **Running the Tool**

- Installed any necessary dependencies (if prompted) using pip.
- Used the tool to recover the corrupted PNG file:

# **Opening the Recovered Image**

Opened the recovered image using an image viewer.



• The **flag** was displayed within the image.

# **Submitting the Flag**

• Retrieved and submitted the flag to complete the challenge.

# fsociety Takeover

Description: Elliot Alderson has left traces of his work while hacking E Corp. Your mission is to uncover the **three hidden keys** on this machine, each representing a step in his plan.

#### Rules:

- 1. Find all three keys and document your steps.
- 2. Include a timestamp screenshot of the keys with your machine's local time.
- 3. Submit your write-up through a Discord ticket in the #support channel.

A flag will be provided upon verification. Good luck, hackers—society needs you!

#### Solution

Initial Steps( I Had no idea on these commands and concepts, just followed chatgpt's assistance)

- 1. Extracting the `.ova` File
  - The provided `.ova` file was extracted to the local system:

tar -xvf challenge.ova -C ./robot

- The contents of the `.ova` file were successfully extracted into the `./robot` directory.

### 2. Converting the `.vmdk` File to a Raw File System

- The `.vmdk` file within the extracted content was converted to a raw file system for further analysis using `gemu-img`:

qemu-img convert -O raw ./robot/mrrobot.vmdk fs.raw

### 3. Associating the Raw Image with a Loop Device

- The raw file system image (`fs.raw`) was attached to a loop device using `losetup` to access its partitions:

sudo losetup -fP fs.raw

- 4. Mounting the Loop Device
  - The loop file system was mounted to the local machine at `/mnt/robots`:

sudo mount /dev/loopXpY /mnt/robots

- This step enabled access to the file system for further enumeration.

### **Enumeration Steps**

# 1. Navigating to the Mounted File System

- Changed to the directory containing the mounted file system:

cd /mnt/robots

### 2. Searching for Files Related to Keys

- Used the `find` command to locate files potentially containing the flag:

```
find ./opt -name "*key*" 2>/dev/null
```

# 3. Finding the Second Part of the Flag

- Located the file containing the second part of the flag:

```
cat ./home/robot/key-2-of-3.txt
```

### 4. Attempting to Access '/root' Directory

- Tried to `cd` into `/root`, but encountered a \*\*permission denied\*\* error:

cd /root

### 5. Escalating Privileges to Access '/root'

- Used `sudo` to bypass the permission restrictions:

```
sudo cat /root/key-3-of-3.txt
```

### KEYS:

- 073403c8a58a1f80d943455fb30724b9
- 822c73956184f694993bede3eb39f959
- 04787ddef27c3dee1ee161b21670b4e4

#### Screenshots:

# **SECOND PART OF KEY:**





# FIRST PART OF KEY:

### THIRD PART OF KEY:

