Decays of $\tau \to \rho(770)(\rho'(1450))\nu_{\tau}$ and $\tau \to K^*(892)(K^{*'}(1410))\nu_{\tau}$ in the extended Nambu - Jona- Lasinio model

A. I. Ahmadov a,b *, Yu. L. Kalinovsky c †, M. K. Volkov $^a,^\ddagger$

^a Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 Russia

^b Institute of Physics, Azerbaijan National Academy of Sciences,

H.Javid ave. 131, AZ-1143 Baku, Azerbaijan and

^c Laboratory of Information Technologies, JINR, Dubna, 141980 Russia

Abstract

In the extended Nambu - Jona - Lasinio model the decay widths $\tau \to \rho(770)(\rho'(1450))\nu_{\tau}$ and $\tau \to K^*(892)(K^{*'}(1410))\nu_{\tau}$ are studied in the quark one -loop approximation. Our estimations of the decay widths $\tau \to K^*(892)(K^{*'}(1410))\nu_{\tau}$ are in satisfactory agreement with experimental data. In the paper, the decay widths $\tau \to \rho(770)(\rho'(1450))\nu_{\tau}$ are also calculated.

Keywords: Nambu - Jona - Lasinio model, excited mesons, τ decays

PACS numbers: 12.39.Fe, 13.35.Dx

^{*} E-mail: ahmadov@theor.jinr.ru

[†] E-mail: kalinov@jinr.ru

[‡] E-mail: volkov@theor.jinr.ru

I. INTRODUCTION

Recently, in the framework of the extended Nambu - Jona - Lasinio (NJL) model [1–4] a number of processes connected with the creation of mesons in τ decays and in the reaction of $e^+e^- \to hh$ at low energy were successfully described.

Such processes are $\tau \to \pi^- \pi^0 \nu_{\tau}$ [5], $\tau \to \eta(\eta') \pi^- \nu_{\tau}$ [6], $\tau \to \eta(550)(\eta'(950)) 2\pi \nu_{\tau}$ [7], $\tau \to \pi^- \omega \nu_{\tau}$ [8]. In these reactions it is necessary the take into account in the intermediate states both the ground state $\rho(770)$ and the first radial excited state $\rho'(1450)$.

A similar mechanism can be used for the description of the reactions $e^+e^- \to hh$ at low energy. Here the intermediate ρ^0 , ω , ϕ mesons and their first radial excited states are used. These processes are $e^+e^- \to \pi^0(\pi^{0'})\gamma$ [9], $e^+e^- \to (\eta(550), \eta'(950), \eta(1295), \eta(1475))\gamma$ [10], $e^+e^- \to \pi\pi(\pi'(1300))$ [11], $e^+e^- \to \pi^0\omega$ [12], $e^+e^- \to \pi^0\rho^0$ [13], $e^+e^- \to \eta(550)(\eta'(950))2\pi$ [7].

Naturally it is interesting to describe the decays $\tau \to \rho(770)(\rho'(1450))\nu_{\tau}$ which are the basis of the above-mentioned processes. This paper is devoted to the solution of this problem. Also, it is very interesting to consider the decays $\tau \to K^*(892)(K^{*'}(1410))\nu_{\tau}$ as there are reliable experimental data for them [14]. It is shown that our results obtained in the framework of the extended NJL model are in satisfactory agreement with these experimental data.

II. LAGRANGIAN OF THE QUARK - MESON INTERACTIONS IN THE EXTENDED NAMBU - JONA -LASINIO MODEL

The Lagrangian of the quark - vector meson interactions in the extended Nambu - Jona -Lasinio model has the following form:

$$\Delta \mathcal{L}^{int} = \bar{q}(k') \left[i\hat{\partial} - m + A_{\rho} \lambda_3 \gamma_{\mu} \rho_{\mu}(p) - A_{\rho'} \lambda_3 \gamma_{\mu} \rho'_{\mu}(p) + A_{K^{\star}} \lambda_{\pm} \gamma_{\mu} K^{\star}_{\mu}(p) - A_{K^{\star'}} \lambda_{\pm} \gamma_{\mu} K^{\star'}_{\mu}(p) \right] q(k), \tag{1}$$

where $\hat{\partial} = \gamma_{\mu}\partial_{\mu}$, $m = \text{diag}(m_u, m_d, m_s)$, $m_u = m_d = 280$ MeV, $m_s = 405$ MeV, q and \bar{q} are the quark fields, $\rho_{\mu}(\rho'_{\mu})$ and $K^*_{\mu}(K^{*'}_{\mu})$ are the vector meson fields in the ground (excited)

state

$$A_{\rho} = g_{\rho_{1}} \frac{\sin(\beta + \beta_{0})}{\sin(2\beta_{0})} + g_{\rho_{2}} f(k_{\perp}^{2}) \frac{\sin(\beta - \beta_{0})}{\sin(2\beta_{0})},$$

$$A_{\rho'} = g_{\rho_{1}} \frac{\cos(\beta + \beta_{0})}{\sin(2\beta_{0})} + g_{\rho_{2}} f(k_{\perp}^{2}) \frac{\cos(\beta - \beta_{0})}{\sin(2\beta_{0})},$$

$$A_{K^{*}} = g_{K^{*}} \frac{\cos(\theta + \theta_{0})}{\sin(2\theta_{0})} + g_{K^{*'}} f(k_{\perp}^{2}) \frac{\cos(\theta - \theta_{0})}{\sin(2\theta_{0})},$$

$$A_{K^{*'}} = -g_{K^{*}} \frac{\sin(\theta + \theta_{0})}{\sin(2\theta_{0})} - g_{K^{*'}} f(k_{\perp}^{2}) \frac{\sin(\theta - \theta_{0})}{\sin(2\theta_{0})},$$
(2)

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_+ = \sqrt{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_- = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The values of the angles $\beta = 79.85^{\circ}$ and $\beta_0 = 61.44^{\circ}$ are taken from [2], and $\theta = 84.7^{\circ}$, $\theta_0 = 59.14^{\circ}$ [4] are the mixing angles for the ground and first radially excited states of mesons, respectively.

Radially excited states are described in the extended NJL model using the following form factors $f(k_{\perp}^2)$ in the quark-meson interaction:

$$f(k_{\perp}^{2}) = (1 - d|k_{\perp}^{2}|)\Theta(\Lambda_{3}^{2} - |k_{\perp}^{2}|),$$

$$k_{\perp} = k - \frac{(kp)p}{p^{2}}, \quad d = -1.784 \text{ GeV}^{-2},$$
(3)

where k and p are the quark and meson momenta, respectively, and the cut-off parameter $\Lambda_3 = 1.03\,$ GeV. The quark-meson coupling constants are

$$g_{\rho_2} = \left(\frac{2}{3}I_2^{f^2}(m_u, m_d)\right)^{-1/2} = 9.87, \qquad g_{\rho_1} = \left(\frac{2}{3}I_2^{(0)}(m_u, m_d)\right)^{-1/2} = 6.14,$$

$$g_{K^{*'}} = \left(\frac{2}{3}I_2^{(f^2)}(m_u, m_s)\right)^{-1/2} = 10.86, \qquad g_{K^*} = \left(\frac{2}{3}I_2^{(0)}(m_u, m_s)\right)^{-1/2} = 6.77, \qquad (4)$$

where the integrals $I_m^{f^n}$ read

$$I_m^{f^n}(m_q) = -i\frac{N_c}{(2\pi)^4} \int d^4k \frac{(f_q(k_\perp^2))^n}{(m_q^2 - k^2)^m} \Theta(\Lambda_3^2 - k_\perp^2), \tag{5}$$

where $N_c = 3$ is the number of color.

III. AMPLITUDES OF THE DECAYS $au o V(V') u_{ au}$ IN THE EXTENDED NJL MODEL

The Feynman diagram for the decay $\tau \to \rho(\rho')\nu_{\tau}$ is shown on Fig. 1. The amplitude of this decay has the form

$$A_{\tau \to \rho(\rho')\nu_{\tau}} = \frac{G_F}{\sqrt{2}} \cdot \bar{u}_{\nu_{\tau}} \gamma_{\alpha} u_{\tau} \cdot g_{\alpha\mu} \cdot |V_{ud}| \frac{g_{\rho}}{2} \int \frac{d^4k}{(2\pi)^4} \frac{tr \left[\gamma_{\mu}((\hat{k}+\hat{p}) + m_u)\gamma_{\nu}(\hat{k} + m_u)e_{\rho}^{\nu}(p_{\rho})\right]}{(k^2 - m_u^2)((k+p)^2 - m_u^2)}.$$
(6)

Here p is the ρ - meson momentum, $G_F = 1.16637 \cdot 10^{-11} MeV^{-2}$ - is the Fermi constant, k is the quark momentum, m_u - is the u - quark mass, and $|V_{ud}| = 0.97428$ is the Cabibbo - Kobayashi - Maskawa mixing angle.

The square of the amplitude takes the form

$$|M|^2 = 4m_{\tau} m_{\rho(\rho')}^2 E_{\nu} |V_{ud}|^2 \frac{G_F^2}{2} \frac{1}{g_{\rho(\rho')}^2} \left[2E_{\rho(\rho')}^2 + m_{\rho(\rho')}^2 - 2E_{\rho(\rho')} \sqrt{E_{\rho(\rho')}^2 - m_{\rho(\rho')}^2} \right]$$
(7)

The decay width for the process is

$$\Gamma(\tau \to \rho(\rho')\nu_{\tau}) = \frac{|M|^2}{2 \cdot 2m_{\tau}} \Phi, \tag{8}$$

where Φ is the phase volume:

$$\Phi = \frac{E_{\nu}}{4\pi m_{\tau}},\tag{9}$$

and E_{ν} and E_{ρ} are determined as

$$E_{\nu} = \frac{m_{\tau}^2 - m_{\rho(\rho')}^2}{2m_{\tau}}, \qquad E_{\rho} = \frac{m_{\tau}^2 + m_{\rho(\rho')}^2}{2m_{\tau}}, \tag{10}$$

We also use $(p_{\nu}p_{\tau}) = m_{\tau}E_{\nu}$, $(p_{\tau}p_{\rho(\rho')}) = m_{\tau}E_{\rho(\rho')}$.

The Feynman diagram for the decay $\tau \to K^*(K^{*'})\nu_{\tau}$ is shown on Fig. 2 and the amplitude can be written as

$$A_{\tau \to K^{\star}(K^{\star'})\nu_{\tau}} = \frac{G_F}{\sqrt{2}} \cdot \bar{u}_{\nu_{\tau}} \gamma_{\alpha} u_{\tau} \cdot g_{\alpha\mu} \cdot |V_{us}| \frac{g_{K^{\star}}}{2} \int \frac{d^4k}{(2\pi)^4} \frac{tr \left[\gamma_{\mu}((\hat{k}+\hat{p}) + m_u)\gamma_{\nu}(\hat{k} + m_s]e^{\nu}_{\rho}(p_{\rho})\right]}{(k^2 - m_s^2)((k+p)^2 - m_u^2)} (11)$$

where the m_s is the s- quark mass, and $|V_{us}|=0.2252$ is the Cabibbo - Kobayashi - Maskawa mixing angle.

Using formula (8) for the decay width $\tau \to \rho(\rho')\nu_{\tau}$, and the following numerical results we obtain

$$\Gamma_{\tau \to \rho \nu_{\tau}}^{theor} = 2.98 \cdot 10^{-11} \ MeV, \tag{12}$$

and

$$\Gamma_{\tau \to \rho' \nu_{\tau}}^{theor} = 3.306 \cdot 10^{-12} \ MeV.$$
 (13)

The square of the amplitude has an analogous form (7) with the replacement $\rho(\rho') \to K^*(K^{*'})$ and $|V_{ud}| \to |V_{us}|$.

The numerical result

$$\Gamma_{\tau \to K^* \nu_{\tau}}^{theor} = 2.67 \cdot 10^{-11} \ MeV,$$
 (14)

and

$$\Gamma_{\tau \to K^{*'}\nu_{\tau}}^{theor} = 1.13 \cdot 10^{-11} \ MeV.$$
 (15)

The experimental data are $\Gamma^{exp}_{ au o K^*
u_{ au}}=3.23\cdot 10^{-11}$ MeV, and $\Gamma^{exp}_{ au o K^*'
u_{ au}}=2.22\cdot 10^{-11}$ MeV.

Fig. 1: The Feynman diagram for the decay $\tau \to \rho(\rho')\nu_{\tau}$.

IV. DISCUSSIONS AND CONCLUSION

The presented here calculations demonsrate that the extended NJL model allows us to describe the decays $\tau \to K^*(892)(K^{*'}(1410))\nu_{\tau}$ in satisfactory agreement with experimental data. Let us emphasize that these results were obtained without using any additional arbitrary parameters. The corresponding estimations for the decay width $\tau \to \rho(770)(\rho'(1450))\nu_{\tau}$ are also obtained.

Fig. 2: The Feynman diagram for the decay $\tau \to K^{\star}(K^{\star'})\nu_{\tau}$.

The calculations of the amplitude of the decay $\tau \to V \nu_{\tau}$, where V is the vector meson field, in the one - quark loop approximation in the NJL model take the gradient invariant form $g_{\mu\nu}p^2 - p_{\mu}p_{\nu}$. Let us note that both terms for the decay width $\tau \to V\nu_{\tau}$ in the expression (11) play an important role. Indeed, if we use for the description of both decays $\tau \to V(V')\nu_{\tau}$, where V' is the first radially excited state, the term $g_{\mu\nu}p^2$, as in [23], then for the decay $\tau \to V'\nu_{\tau}$ a wrong result will be obtained. On the other hand, it interesting that for all more complicated processes discussed in the Introduction, where vector mesons are the intermediate states, the term $p_{\mu}p_{\nu}$ automatically gives zero after multiplication by the vertex describing the vector meson transition to the final product of the corresponding decay. As a result, the diagram containing the term $g_{\mu\nu}p^2$ together with the contact diagram, where W directly goes to the final product through the quark loop, leads to the vector dominant model. It explains the success of the vector dominant model for the description of different τ decays [13–22]. However, in these phenomenological models, for a satisfactory description of experimental data it is necessary to use a set of arbitrary parameters. The extended NJL model allows us to describe the τ decays and e^+e^- processes at low energy without introduction of any additional arbitrary parameters. Using our model in future works we are going to consider more complicated τ decays, in particular, decays with participation of strange particles.

V. ACKNOWLEDGEMENTS

We are gratefull to A. B. Arbuzov for the useful discussions. This work has been supported in part by the RFBR grant no. 13-01-00060a (Yu. L. K).

- [1] M.K.Volkov, C.Weiss, Phys. Rev. **D56** (1997) 221.
- [2] M.K. Volkov, Phys. Atom. Nucl. **60** (1997) 997
- [3] M.K.Volkov, D. Ebert, M. Nagy, Int. J. Mod. Phys. A13 (1998) 5443.
- [4] M. K. Volkov, V. Yudichev, Phys. Part. Nucl. 31 (2000) 282.
- [5] M. K. Volkov, D. G. Kostunin, PEPAN Lett. 10 (2013)18-23
- [6] M. K. Volkov, D. G. Kostunin, Phys. Rev. D86 (2012) 013005
- [7] M. K. Volkov, A. B. Arbuzov, D. G. Kostunin, Phys. Rev. C89 (2014) 015202
- [8] M. K. Volkov, A. B. Arbuzov, D. G. Kostunin, Phys. Rev. D86 (2012) 057301
- [9] A. B. Arbuzov, E. A. Kuraev, M. K. Volkov, The European Physical Journal A49, 103 (2011)
- [10] A. I. Ahmadov, D. G. Kostunin, M. K. Volkov, Phys. Rev. C87 (2013) 045203
- [11] M. K. Volkov, D. G. Kostunin, Phys. Rev. C86 (2012) 025202
- [12] A. B. Arbuzov, E. A. Kuraev, M. K. Volkov, Phys. Rev. C83 (2011) 048201
- [13] A. I. Ahmadov, E. A. Kuraev, M. K. Volkov, PEPAN Lett. 9 (2012) 461
- [14] K. A. Olive et al., Particle Data Group Collaboration, Chin. Phys. C. 2014. V. 38. P.090001.
- [15] M. K. Volkov, Sov.J. Part. Nucl. 17 (1986) 186
- [16] N. Paver and Riazuddin, Phys. Rev. 82 (2010) 057301
- [17] A.V.Vishneva, M.K.Volkov, Int.J.Mod.Phys. A29 (2014) 1450125.
- [18] N. Paver and Riazuddin, Phys. Rev. 84 (2011) 017302
- [19] G. Lopez Castro and D. A. Falcon, Phys. Rev. **D54** (1996) 4400
- [20] A. Tlalpa and G. Lopez Castro, Phys. Rev. **D77** (2008) 113011
- [21] Z.-H. Guo, Phys. Rev. **D78** (2008) 033004
- [22] D. Gomez Dumm and P. Roig, Phys. Rev. **D86** (2012) 076009
- [23] L. B. Okun, Leptons and Quarks, North-Holland, 2013