Dark Sector Searches in LArTPC Experiments

APS April Meeting April 11, 2015

Elizabeth Himwich
On Behalf of the MicroBooNE Collaboration

Dark Sector, not Dark Matter

- Current Dark Matter searches
- Future Dark Sector searches (non-WIMP)
- MeV-scale dark sector phenomena
- Not accessible by direct detection experiments
- Leptophobic Dark Sector

Dark Sector

Standard Model

A New Window into the Dark Sector

- High energy dark sector production signals
- Where? High-intensity fixed-target experiments
- Neutrino beams
 - 8 GeV Booster Neutrino Beam (BNB) at Fermilab
- LArTPCs
 - MicroBooNE, LAr1-ND

MicroBooNE Cryostat

LArTPCs: Signature-Based Searches

- LArTPC technology:
 - Ionization charge
 - Scintillation light
- High resolution:
 - Millimeter distances
 - GeV energies
- Spatial information: characterization of events by topology

C. Anderson *et al.* (ArgoNeuT Collaboration), "The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab," Journal of Instrumentation 7, P10019 (2012).

Leptophobic Dark Sector

- Vector boson is a mediator between the dark sector and the Standard Model that couples dominantly to quarks
- ${}^ullet V_B$ produced via meson decay and direct QCD production

• Meson production in BNB is well-understood, so we can incorporate V_B in production simulations

Vector Boson Visible Decay

S. Tulin, New weakly coupled forces hidden in low-energy QCD, Phys.Rev. D89, 114008 (2014).

Vector Boson Visible Decay

S. Tulin, New weakly coupled forces hidden in low-energy QCD, Phys.Rev. D89, 114008 (2014).

- Focus on three-photon decay channel
 - Primary decay mode 140-620 MeV
 - Is faked by well-understood SM processes

Three-Photon Signature in MicroBooNE

Three-photon topological signature: photons can be traced back to a common point with no vertex activity (i.e. no hadronic interaction)

Background Analysis

- Study three-photon channel in MC events
- Goals:
 - Identify types of processes that fake the signal
 - Quantify their rate
 - Characterize their kinematics
 - Identify effective cuts to remove backgrounds
- Approach:
 - Topology-based event search and characterization
 - Fiducial volume spatial cut
 - Cut based on photon energy and physical distribution
 - Optimize cuts

Background Event Characterization

• In simulation of MicroBooNE's full exposure, 2% of events have \geq 3 γ , including \geq 2 γ from a π^o

Cuts to Minimize Background

Plans for the Future

- Use vector boson production statistics to optimize signal/background ratio
- Apply energy and distance cuts simultaneously
- Continue refining signal reconstruction
- Extend analysis to other channels / models
- Quantify signal detection efficiency

Backup Slides

Production of Vector Bosons

– Production of secondary hadrons followed by decay (e.g. pseudoscalar meson decay, scalar meson-vector boson mixing) γ

Direct QCD production

Normalized Photon Distance Distribution in π^0 Decay

