Euclid's Algorithm

- Euclid's Algorithm finds the Greatest Common Divisor of two numbers.
- Consider a two factorable integers a and b.
- Express a and b in terms of prime factors.
- A number is said to be prime if it cannot be divided by any other number except by itself and 1.
- Assume $a = p1^{e1} \times p2^{e2} \times ... pr^{er}$
- Similarly $b = p1^{f1} \times p2^{f2} \times \dots pr^{fr}$
- Then GCD of a and b is product of those prime factors with minimum exponents.

Example

• GCD of 32 and 48.

32=4*8

 $=(2^2)^*(2^3)$

=2^5.

48=6*8

 $=2*3*(2^3)$

STUDY SMARTER, SCORE BETTER

- Compare the factors of 32 and 48
- Common is 2⁴. Therefore GCD of 32 and 48 is 16.

But finding the factors of very large number in this approach is not efficient so we go for Euclid's Algorithm.

Euclid's Algorithm

It is Based on Recursion theorem - $GCD(a,b) = GCD(b, a \mod b)$ - if a > b

Find the GCD of 48 and 32 using recursion theorem.

 $GCD(48,32) = GCD(32, 48 \mod 32)$

= GCD(32,16)

 $= GCD(16, 32 \mod 16)$

Notes on – Euclid's Algorithm

$$GCD(48,32) = GCD(16, 0)$$

= 16

Algorithm: Euclid (a, b)

• Input: Two integers a and b

• Output: GCD of a and b

1. if b == 0

2. return a

3. else return Euclid(b, a mod b)

