Lab 1 – MATH 240 – Computational Statistics

Anya Suko Computational Statistics Math asuko@colgate.edu

Abstract

This document provides a basic template for the 2-page labs we will complete each week. Here, you should provide a succint sumary about what you did and why it might be helpful.

Keywords: What topics does the lab cover with respect to class?

1 Instructions

For this lab, you will

- 1. Install R. and RStudio.
- 2. Install tinytex (if necessary):
 install.packages("tinytex")
- 3. Create a GitHub account $\frac{1}{1}$ here, and email me your username
- 4. Install GitHub desktop
- 5. Accept the LAB 1 assignment here.
- 6. recreate this document (except put your name/info at the top) to get used to writing in LATEX and to see the types of things we can do when creating a document to convey statistical information. make sure to commit and push your work to GitHub desktop as you finish each section.

Remark You will find the class Sweave cheatsheet to be *incredibly* helpful.

2 Word Processing Tasks

2.1 Centering Text

We can center text in Sweave.

2.2 Bold, Italics, and Underlining

We can **bold**, *italicize*, <u>underline</u>, and *emphasize* text in Sweave.

Note, I did a column break here so that the list wasn't broken across columns.

2.3 Lists, and Numbered Lists

We can write an unordered list in Sweave

- first item
- second item
- third item

We can write a numbered list in Sweave

- 1. first item
- 2. second item
- 3. third item

We can write a lettered list in Sweave

- a. first item
- b. second item
- c. third item

2.4 Submissions

This part of the midterm is due Sunday November 14 by 5p. I will not accept late submissions. Note that you may use this template to help build your introduction and methods sections, and you can use the work you did as a group during the datathon. Still, I expect this submission to be your own summary and extension of that work without collaboration.

2.5 Typing Mathematial Equations

We can write a one line equation that is centered like this

$$\hat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i.$$

This can be written in the text, as $\widehat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i$. using as well.

To create a multi-line equation that is centered like this

$$8(x-5) + x = 9(x-5) + 5$$

$$8x - 40 + x = 9x - 45 + 5$$
 (Distributing)
$$9x - 40 = 9x - 40$$
 (combining like terms)
$$9x = 9x$$
 (adding 40 to both sides)
$$x = x$$
 (dividing both sides by 9)

The equality holds for any z.

Note, I did a page break here so that the next section started on a clean page.

2.6 Running R Code

Code chunks can be entered into Sweave; e.g, here are some comments.

```
# R code goes here
# Output is automatically printed in the pdf
```

Below, you can see that we can do algebra with R.

```
8*(9-5)+9 #8(x-5)+x for x=9
## [1] 41
```

Below, we show we can produce the code without evaluating it.

```
8*(9-5)+9 #8(x-5)+x for x=9 ## [1] 41
```

Alternatively, we can produce the output without the code.

```
## [1] 41
```

We can also call object values from R directly.

```
result <- 8*(9-5)+0 #8(x-5)+x for x=9
result.with.error <- result + rnorm(1,mean=0,sd=0.1)
result.with.error
## [1] 31.97272</pre>
```

2.7 Plotting

We can also plot with R.

```
#Plot a histogram of random exponential data
hist(rexp(100))
```

Histogram of rexp(100)

Figure 1: A histogram of random exponentially distributed data, n=100

2.8 Tables

Below, we load and take a peek at some data about the death rates per 1000 in Virginia in 1940 (Molyneaux et al., 1947).

```
data("VADeaths")
head(VADeaths) #take a peek of the data
         Rural Male Rural Female Urban Male Urban Female
## 50-54
               11.7
                             8.7
                                        15.4
## 55-59
               18.1
                             11.7
                                        24.3
                                                      13.6
## 60-64
               26.9
                             20.3
                                        37.0
                                                      19.3
## 65-69
               41.0
                             30.9
                                        54.6
                                                     35.1
                                        71.1
## 70-74
               66.0
                            54.3
                                                     50.0
```

If we want to print this nicely, we can do so using the xtable packagr (Dahl et al., 2019), which we can refrence using the label (Table 1).

```
library(xtable)
colnames(VADeaths)<-c("Rural Male","Rural Female","Urban N
VADeaths.table<-xtable(VADeaths,label = "VADeaths.tab")
print(VADeaths.table,
table.placement = "H", include.rownames=FALSE, size = "smale")</pre>
```

Rural Male	Rural Female	Urban Male	Rural Female
11.70	8.70	15.40	8.40
18.10	11.70	24.30	13.60
26.90	20.30	37.00	19.30
41.00	30.90	54.60	35.10
66.00	54.30	71.10	50.00

Table 1: Death Rates per 1000 in Virginia

3 Appendix

Below is a table from a paper I'm currently working on. Without the analysis object in R, I have to create this table myself. The palmerpenguins package for R(Horst et al., 2020) provides data on adult foraging penguins near Palmer station, Antarctica. Figure 2 is too big to fit nicely in our column based template above, so I've placed it here in the abstract by saving it and presenting it scaled to 0.75.

Bibliography: Note that when you add citations to your bib.bib file *and* you cite them in your document, the bibliography section will automatically populate here.