# SUBGRADIENT ALGORITHM

#### Author

Vinitra Muralikrishnan 11th March, 2024

## Contents

| 1        | Overview   | 3 |
|----------|------------|---|
| <b>2</b> | References | 4 |

#### 1 Overview

**Definition 1.1.** This is an algorithm to minimize a non-differentiable function

It applies on:

- $\bullet$  non differentiable f
- step lengths or sizes are not searched by backtracking line search. They are fixed beforehand
- Unlike ordinary gradient descent methods, subgradient method is not a descent method.
  The function value can increase or decrease

**Definition 1.2.** The subgradient of a convex function f at x is any  $g \in \mathbb{R}^n$  s.t.

$$f(y) \ge f(x) + g^T(y - x), \ \forall y$$

The above definition stands for:

- $\bullet$  always exists for convex f
- for f differentiable at x, then  $g = \nabla f(x)$
- difficut to determine all subgradients at a point
- $\bullet$  Also applicable for non-convex f

First order global underestimator:



Remark. max of 2 functions  $f_1, f_2$  is non-convex whether or not they are convex

**Definition 1.3.** The subdifferential is the set of all subgrdients of a convex f at x

$$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$

The above definition implies:

- $\bullet$  non empty convex f
- $\partial f(x)$  is closed and convex, even for non convex f
- f is differentiable at  $x \Leftrightarrow \partial f(x) = {\nabla f(x)}$

Remark. Subdifferential is a set while subgradient of a point is a vector.

*Remark.* Subgradient algorithm is not a descent method. It can move in any direction and keeps track of the best value so far.

### 2 References

 $\bullet\,$  Stanford Lecture Notes