第3讲 Windows威胁防护

Windows 10、Windows Server 2016等产品中的威胁防护主要使用Microsoft Defender。

Microsoft Defender 高级威胁防护(Microsoft DEFENDER ATP)是一个统一的平台,用于实现:

- 预防性保护服务器和终端结点
- 入侵检测、检测高级威胁和数据泄露
- 自动调查和响应、自动执行安全操作

Microsoft Defender ATP

我们下面将依次介绍Microsoft Defender的:

- 威胁与漏洞管理
- 减少攻击面
- 安防新技术
- 端点检测与防护

威胁与漏洞管理(Threat & Vulnerability Management)

TVM是Microsoft Defender的內置功能。它使用颠覆性(game-changing)的基于风险的方法来发现(discovery)、优化(prioritization)、补救(remediation)终端的漏洞和错误配置。

它有效整合了3方面内容:

- 微软终端安全栈 (Microsoft endpoint security stack)
- 微软智能安全图 (Microsoft Intelligent Security Graph)
- 应用分析知识库(Application analytics knowledgebase)

System Center Endpoint Protection

Comprehensive Protection Stack

Building on Windows Platform Security

© 2014 Edgile, Inc. - All Rights Reserved

4

微软智能安全图:

应用分析知识库:

Windows的威胁与漏洞管理是业界首个将安全管理与IT管理结合起来的解决方案。通过整合下列2个工具来生成安全任务(task)或票据(ticket):

- 微软精灵 (Microsoft Intune)
- 微软系统中心配置管理器(Microsoft System Center Configuration Manager, SCCM)

Microsoft Intune

Microsoft Intune 是企业移动管理 (EMM) 领域中基于云的服务,可帮助员工提高工作效率,同时保护企业数据。

与其他 Azure 服务一样,Microsoft Intune 也可在 Azure 门户中使用。 通过 Intune, 还可以:

- 管理工作人员用来访问公司数据的移动设备和 PC。
- 管理员工使用的移动应用。
- 通过帮助控制员工访问和共享公司信息的方式来保护公司信息。
- 确保设备和应用符合公司安全要求。

Intune 可帮助解决的常见业务问题

- 保护本地电子邮件和数据以供移动设备访问
- 保护 Office 365 电子邮件和数据以供移动设备安全访问
- 向员工发放公司拥有的手机
- 为所有员工提供一个"自带设备办公"(BYOD) 或个人设备计划
- 允许员工从不受管理的公用网亭安全访问 Office 365
- 向任务工作者发放使用受限的共享平板电脑

Intune 如何工作?

Intune 是 Microsoft 企业移动性 + 安全性 (EMS) 套件的组件,可用于管理移动设备和应用。 它与 Azure Active Directory (Azure AD) 等其他 EMS 组件紧密集成以实现标识和访问控制,并与 Azure 信息保护集成以实现数据保护。 将它与 Office 365 结合使用时,员工可以在其设备上高效工作,同时保护组织的信息。

微软系统中心配置管理器(Microsoft System Center Configuration Manager, SCCM)

System Center Configuration Manager 作为 Microsoft System Center 管理解决方案套件中的一种产品,有助于在本地和云中管理设备和用户。

Configuration Manager 扩展现有的 Microsoft 技术和解决方案并与之协同工作,主要功能:

- 安全和可伸缩的软件部署。
- 符合性设置管理。
- 服务器、台式计算机、笔记本电脑和移动设备的全面资产管理。

.

说明:

- CMDB: 配置管理数据库
- Virtual Workload Provisioning: 虚拟工作载荷配置
- Orchestration:编排治理,配置集中化与动态化。可支持数据源、表与分片及读写分离策略的动态切换;数据治理。提供熔断数据库访问程序对数据库的访问和禁用从库的访问的能力;

Configuration Manager 可与以下各项集成:

- Microsoft Intune, 管理各种移动设备平台。
- Windows Server 更新服务 (WSUS), 管理软件更新。
- 证书服务。
- Exchange Server 和 Exchange Online。
- Windows 组策略。
- DNS.
- Windows 自动部署工具包 (Windows ADK) 和用户状态迁移工具 (USMT)。
- Windows 部署服务 (WDS)。
- 远程桌面和远程协助。
- Active Directory 域服务来获得安全性、服务定位和配置,并使用它来发现要管理的用户和设备。
- Microsoft SQL Server 作为分布式变更管理数据库,并与 SQL Server Reporting Services (SSRS) 集成以生成报表来监视和跟踪管理活动。

- 站点系统角色,可扩展管理功能并使用 Internet Information Services (IIS) 的 Web 服务。
- 后台智能传输服务 (BITS) 和 BranchCache 来帮助管理可用的网络带宽。

具体可以参考微软安全中心: https://securitycenter.windows.com/

减少Windows系统的攻击面

攻击面减少功能组在堆栈中提供了第一道防线。

Windows在减少攻击面方面做了很多功能、程序,能够抵御攻击和漏洞。

主要内容包括:

- 基于硬件的隔离
- 应用程序控制
- 渗透保护
- 网络保护
- 受控文件夹访问权限
- 网络防火墙
- 攻击面减少规则

基于硬件的隔离

windows 提供独特的硬件隔离方法,保护系统。主要使用了:

- Windows Defender 应用程序防护
- Windows Defender System Guard等工具,

Windows Defender 应用程序防护

Windows Defender 应用程序防护专为 Windows 10 和 Microsoft Edge 设计,可以隔离企业定义的不受信任的站点,从而在员工浏览 Internet 时为公司提供防护。

企业管理员需要定义哪些是受信任的网站、云资源和内部网络。

如果用户通过 Microsoft Edge 或 Internet Explorer 访问不受信任的网站,则 Microsoft Edge 将在启用 Hyper-V 的隔离容器中打开这些网站,这将与主机操作系统隔离开来。 这一方法可让隔离容器成为匿名容器,而攻击者无法获得员工的企业凭据。

Windows Defender System Guard (系统防护)

Windows Defender 系统防护可以在启动Windows时、运行Windows中保护系统。防止在windows启动前运行未经确认的固件或软件(bootkit)。

WINDOWS DEFENDER SYSTEM GUARD

BOOT TIME INTEGRITY PROTECTION

Windows Defender 系统防护在2个阶段起作用:

• Windows 启动时

• Windows 运行中

下面依次说明。

Windows 启动前的防护

Windows Defender 系统防护主要使用的技术有:

- 静态信任根(SRTM),用于在开启启动前,评估UEFI的信任状态。具体方法就是采集受信任的安全硬件厂商提供的UEFI BIOS驱动程序的哈希等信息。
- 动态信任根(DRTM),用于在开启启动时测量受信任状态。具体方法是:通过CPU计算可能加载的UEFI驱动的受信任状态。

- 系统管理模式(SMM)保护,用于保护电源管理、硬件配置、热量监控等CPU管理模式。Windows使用两种方法保护SMM。
 - 。 分页保护, 防止恶意代码访问SMM使用内存和缓存
 - 。 SMM硬件监督和验证。

说明:

SMM模式是CPU执行的操作,它运行时调用不可屏蔽中断(SMI),该中断将执行BIOS中的SMM代码。SMM程序在最高特权级别运行,OS不可见,这使得它成为高级黑客关注焦点之一。

SMM 保护构建在安全启动技术的基础之上,并且需要它才能正常工作。将来, Windows 10 还将测量此 SMI 处理程序的行为,并证明操作系统所拥有的内存没有被篡改。

Windows 运行中的防护

当 Windows 10 启动时, 将使用设备的受信任的平台模块 2.0 (TPM 2.0) 执行一系列完整性测量。

WINDOWS DEFENDER SYSTEM GUARD

BOOT TIME INTEGRITY PROTECTION

系统启动后, Windows Defender 系统保护使用 TPM 对这些测量进行签名和签署。 请求后, 诸如 Intune 或 System Center Configuration Manager 之类的管理系统可以获取它们以进行远程分析。 如果 Windows Defender System Guard 指示设备缺少完整性, 管理系统可以执行一系列操作, 例如拒绝设备对资源的访问。

应用程序控制 (WDAC)

应用程序控件是一项至关重要的防线,可保护企业环境免受不断变化的恶意软件影响。

只能在从 Windows 10 企业版或专业版或 Windows Server 2016 开始的计算机上创建 WDAC 策略。 可将其应用于运行任何版本的 Windows 10 或 Windows Server 2016 的计算机, 也可通过移动设备管理 (MDM) (如 Microsoft Intune) 进行管理。 可以使用组策略或 Intune 分发 WDAC 策略。

新安全防护技术

为了进一步巩固网络的安全外围,Microsoft Defender ATP 使用下一代保护功能,用于捕获所有类型的新兴威胁。主要内容包括:

- 行为监视
- 基于云的保护
- 机器学习
- URL 保护

• 自动沙盒服务

Microsoft Defender ATP next generation protection engines

行为监视

在Windows中,可以配置组策略,启用和配置防病毒始终保护和监视。

具体操作可参考:实验4Windows Defender 安全中心配置中的实验内容:使用组策略启用和配置防病毒保护和监视。

基于云的保护

可以启用或禁用 Windows Defender 防病毒云通过 Microsoft Intune、System Center Configuration Manager、组策略、PowerShell cmdlet 或 Windows 安全应用中的单个客户端提供的保护。

机器学习

微软目前构建的ML机器学习模型包括:

- 本地ML模型、基于行为的检测、算法、基因和假设检测(generics and heuristics)
- 基于元数据的ML模型
- 基于样本分析的ML模型
- 基于爆破的(detonation-based)的ML模型
- 大数据分析

具体信息可以参考: https://docs.microsoft.com/zh-cn/windows/security/threat-protection/windows-defender-antivirus/utilize-microsoft-cloud-protection-windows-defender-antivirus

URL 保护

微软提供的基于云和基于网络的安全防护,需要使用正确的URL去访问,下列URL不应被任何程序阻止、过滤、拒绝或更改。

Windows Defender 防病毒云保护服务

也称为 Microsoft Active Protection Service (MAPS),由 Windows Defender 防病毒使用以提供云保护。相关URL为:

- \ *. wdcp.microsoft.com
- \ * wdcpalt.microsoft.com
- \ * wd.microsoft.com

Microsoft 更新服务 (MU)

安全智能和产品更新,相关URL:

• \ *. update.microsoft.com

安全智能更新备用下载位置(ADL)

Windows Defender 防病毒安全智能更新的备用位置(如果已安装的安全智能已过期)(**7**天或更多天)。相关URL为:

*. download.microsoft.com

恶意软件提交存储

通过提交表单或自动提交示例上传已提交到 Microsoft 的文件位置。相关URL有:

- ussus1eastprod.blob.core.windows.net
- ussus1westprod.blob.core.windows.net
- usseu1northprod.blob.core.windows.net
- usseu1westprod.blob.core.windows.net
- ussuk1southprod.blob.core.windows.net
- ussuk1westprod.blob.core.windows.net

- ussas1eastprod.blob.core.windows.net
- ussas1southeastprod.blob.core.windows.net
- ussau1eastprod.blob.core.windows.net
- · ussau1southeastprod.blob.core.windows.net

证书吊销列表 (CRL)

创建 SSL 与 MAPS 的连接以更新 CRL 时由 Windows 使用。

相关URL:

- http://www.microsoft.com/pkiops/crl/
- http://www.microsoft.com/pkiops/certs
- http://crl.microsoft.com/pki/crl/products
- http://www.microsoft.com/pki/certs

符号存储区

在修正流程中由 Windows Defender 防病毒使用以还原某些关键文件。

https://msdl.microsoft.com/download/symbols

通用遥测客户端

由 Windows 用于发送客户端诊断数据;Windows Defender 防病毒软件将其用于产品质量监视用途 此更新使用 SSL (TCP 端口443)下载清单并将诊断数据上载到使用以下 DNS 终结点的 Microsoft:

- vortex-win.data.microsoft.com
- settings-win.data.microsoft.com

首次看到时阻止

当 Windows Defender 防病毒软件遇到可疑但未检测到的文件时,它会查询云保护后端。 云后端应用对文件的启发、机器学习和自动分析,以确定文件是否是恶意的或干净的。

终结点检测和响应

终结点检测和响应功能可用于检测、调查和响应高级威胁。

主要功能有:

- 警报
- 历史终结点数据
- 响应协调
- 取证集合
- 威胁情报
- 高级渗透和分析服务
- 高级搜索
- 自定义检测
- 实时和历史搜索

Microsoft 安全响应中心: https://www.microsoft.com/en-us/msrc?rtc=1

自动调查和修正

与能够快速响应高级攻击相结合,Microsoft Defender ATP 提供自动调查和补救功能,可帮助在数分钟内减少警报数量。

自动调查和修正 威胁修正 管理自动调查 分析自动调查

安全功能分数

使用Azure云,可以通过安全功能分数查看自己系统安全情况。

Microsoft Defender ATP 包括一个安全分数,可帮助你动态评估企业网络的安全状态、识别未受保护的系统,并采取建议的措施来提高组织的整体安全。

- 资产清单
- 建议的改进操作
- 安全功能分数
- 威胁分析

Microsoft 威胁专家

Microsoft Defender ATP 新增的托管威胁搜寻服务提供主动的搜寻、优先级和其他上下文和见解,进一步使安全操作中心(SOCs)能够快速准确地识别和响应威胁。

管理 和 API

将 Microsoft Defender 高级威胁防护集成到现有工作流中。

- 载入
- API 和 SIEM 集成
- 公开 API

- 基于角色的访问控制 (RBAC)
- 报告和趋势