Seminar 5 Serii de funcții și serii de puteri — Exerciții —

1 Exerciții șiruri de funcții și serii de puteri

1. Să se studieze convergența simplă și uniformă a șirurilor de funcții:

(a)
$$f_n: (-1,1) \to \mathbb{R}, f_n(x) = \frac{1-x^n}{1-x};$$

(b)
$$f_n:[0,\infty)\to\mathbb{R}, f_n(x)=\frac{x+n}{x+n+1}$$
;

(c)
$$f_n:[0,\infty)\to\mathbb{R}, f_n(x)=\frac{x}{1+nx^2}$$
;

(d)
$$f_n : \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \arctan(nx)$;

(e)
$$f_n : [0, \frac{\pi}{2}], f_n(x) = n \sin^n x \cos x.$$

2. Să se arate că șirul de funcții (f_n) , unde:

$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{1}{n} \arctan x^n$$

converge uniform pe \mathbb{R} , dar:

$$\left(\lim_{n\to\infty}f_n(x)\right)'_{x=1}\neq\lim_{n\to\infty}f'_n(1).$$

Rezultatele diferă deoarece șirul derivatelor nu converge uniform pe R.

3. Să se studieze convergența punctuală și uniformă a șirului de funcții (f_n) , cu

$$f_n:[0,1]\to\mathbb{R},\quad f_n(x)=nxe^{-nx^2}.$$

Să se arate că:

$$\lim_{n\to\infty}\int_0^1f_n(x)dx\neq\int_0^1\lim_{n\to\infty}f_n(x)dx.$$

Rezultatul se explică prin faptul că șirul nu este uniform convergent.

De exemplu, pentru $x_n = \frac{1}{n} \in [0,1]$, avem $f_n(x_n) \to 1$, dar în general $f_n(x) \to 0$ (simplu).

4. Să se dezvolte în serie Maclaurin următoarele funcții, precizînd și domeniul de convergență:

(a)
$$f(x) = e^x$$
;

(b)
$$f(x) = \sin x$$
;

(c)
$$f(x) = \cos x$$
;

(d)
$$f(x) = (1+x)^{a}, a \in \mathbb{R};$$

(e)
$$f(x) = \frac{1}{1+x}$$
;

- (f) $f(x) = \ln(1+x)$;
- (g) $f(x) = \arctan x$.

5. Să se calculeze raza de convergență și mulțimea de convergență în $\mathbb R$ pentru seriile de puteri:

- (a) $\sum x^n$;
- (b) $\sum n^n x^n$;
- (c) $\sum (-1)^{n+1} \frac{x^n}{n}$;
- (d) $\sum \frac{n^n x^n}{n!}$;
- (e) $\sum \left(\cos\frac{1}{n}\right)^{\frac{n^2+2}{n+2}} x^n$;
- (f) $\sum \frac{(x-1)^{2n}}{n \cdot 9^n}$;
- (g) $\sum \frac{(x+3)^n}{n^2}$;
- (h) $\sum \frac{(-1)^{n-1}}{n} (x-2)^{2n}$.

Observație: Remarcați că ultimele 3 serii nu sînt centrate în origine! Astfel, de exemplu, la exercițiul (g), obținem R = 1, deci intervalul de convergență va fi (-4, -2) etc.

6. Găsiți mulțimea de convergență și suma seriei:

$$\sum_{n>0} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Indicație: R = 1 (raport), iar suma se află derivînd termen cu termen. Rezultă (prin derivare) seria geometrică de rază $-x^2$, cu suma $\frac{1}{1+x^2}$, pentru |x|<1. Atunci $f(x)=\arctan x+c$ etc.

7. Să se calculeze cu o eroare mai mică decît 10^{-3} integralele:

(a)
$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} dx;$$

(b)
$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx;$$

(c)
$$\int_0^{\frac{1}{3}} \frac{\arctan x}{x} dx;$$

(d)
$$\int_0^1 \frac{e^{-x^2}}{d} x$$
.

8. Să se calculeze limitele, cu ajutorul dezvoltărilor limitate:

(a)
$$\lim_{x \to 0} \frac{e^{-\frac{x^2}{2}} - \cos x}{x^4}$$
;

(b) $\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$;

2 Convergenta seriilor de functii

Definiție 2.1: Seria $\sum f_n$ este *simplu (punctual) convergentă către funcția* f dacă șirul sumelor parțiale $(S_n(x))_n$ este simplu (punctual) convergent către f.

Seria este *uniform convergentă către funcția* f dacă șirul sumelor parțiale $(S_n(x))_n$ este uniform convergent către f.

Seria $\sum f_n$ este absolut convergentă dacă seria $\sum |f_n|$ este simplu convergentă.

Avem următoarele teoreme de derivare și integrare termen cu termen:

Teoremă 2.1: Fie $\sum f_n$ o serie uniform convergentă de funcții continue $f_n : [a,b] \to \mathbb{R}$ și fie s suma acestei serii. Atunci s este o funcție continuă pe [a,b].

În plus, avem:

$$\int_a^b s(x)dx = \sum_{n \ge 1} \int_a^b f_n(x)dx.$$

Teoremă 2.2: Fie $\sum f_n$ o serie punctual convergentă de funcții de clasă $C^1([a,b])$, cu suma s pe [a,b] și astfel încît seria derivatelor $\sum f'_n$ să fie uniform convergentă.

Atunci funcția s este derivabilă pe [a, b] și:

$$s'(x) = \sum_{n \ge 1} f'_n(x), \forall x \in [a, b].$$

Criteriile de convergență pentru serii de funcții:

Teoremă 2.3 (Weierstrass): Fie $\sum f_n$, cu $f_n : [a,b] \to \mathbb{R}$ o serie de funcții și fie $\sum a_n$ o serie convergentă de numere reale pozitive.

Dacă $|f_n(x)| \le a_n$, $\forall x \in [a,b]$ și pentru orice $n \ge N$, cu N fixat, atunci seria de funcții este uniform convergentă pe [a,b].

Definiție 2.2: Funcțiile f_n se numesc *egal mărginite* dacă există $M \in \mathbb{R}$, astfel încît $f_n \leq M$, $\forall n \in \mathbb{N}$.

Evident, dacă fiecare funcție f_i este mărginită de m_i , putem lua $M = \max_i(m_i)$ și avem egal mărginirea.

Teoremă 2.4 (Abel): Dacă seria de funcții $\sum f_n$ se poate scrie sub forma $\sum a_n v_n$, astfel încît seria de funcții $\sum v_n$ este uniform convergentă, iar (a_n) este un șir monoton de funcții egal mărginite, atunci ea este uniform convergentă.

Teoremă 2.5 (Dirichlet): Dacă seria de funcții $\sum f_n$ se poate scrie sub forma $\sum a_n v_n$ astfel încît șirul sumelor parțiale al seriei $\sum v_n$ să fie un șir de funcții egal mărginite, iar $(a_n)_n$ să fie un șir monoton ce converge uniform către 0, atunci ea este uniform convergentă.

2.1 Exerciții

9. Să se precizeze convergența seriilor de funcții:

(a)
$$\sum \frac{n^2}{\sqrt{n!}} (x^n + x^{-n}), x \in \left[\frac{1}{2}, 2\right];$$

(b)
$$\sum \frac{nx}{1+n^5x^2}$$
, $x \in \mathbb{R}$;

(c) $\sum \arctan \frac{2x}{x^2+n^4}$, $x \in \mathbb{R}$;

(d)
$$\sum \left[e - \left(1 + \frac{1}{n} \right)^n \right] \cdot \frac{\cos nx}{n+1}$$
;

- (e) $\sum \frac{1}{2^n} \cos(3^n x), x \in \mathbb{R};$
- (f) $\sum x^n (1-x), x \in [0,1].$

Indicatii:

- (a) $\frac{1}{2^n} \leqslant x^n \leqslant 2^n$, deci seria este $\leqslant \frac{n^2}{\sqrt{n!}}(2^n+2^n)$. Arătăm acum (cu criteriul raportului) că seria numerică rezultată este convergentă;
- (b) Găsim maximul funcției (care este în $\sqrt{\frac{1}{n^5}}$), deci seria va fi uniform și absolut convergentă, fiind mai mică decît seria convergentă $\sum \frac{1}{2n\sqrt{n}}$;
- (c) Similar cu rationamentul anterior;

$$\left|\left[e-\left(1+\frac{1}{n}\right)^n\right]\frac{\cos nx}{n+1}\right|\leqslant \left[\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^n\right]\cdot\frac{1}{n+1}<\frac{3}{n(n+1)}.$$

Seria numerică rezultată este acum convergentă, putînd fi comparată cu o serie armonică.

- 10. Să se studieze convergența seriilor de funcții și să se decidă dacă se pot deriva termen cu termen (indicatie: Weierstrass, comparatie cu seria armonică):
- (a) $\sum n^{-x}$, $x \in \mathbb{R}$;
- (b) $\sum \frac{\sin nx}{2^n}$, $x \in \mathbb{R}$;
- (c) $\sum \frac{\sin nx}{n(n+1)}$, $x \in \mathbb{R}$.
 - 11. Să se determine mulțimea de convergență pentru următoarele serii de funcții:
- (a) $\sum \left(1+\frac{1}{n}\right)^n \left(\frac{1-x}{1-2x}\right)^n$, $x \neq \frac{1}{2}$; (rădăcină pentru seria valorilor absolute)
- (b) $\sum (-1)^n \frac{1}{\ln n} \left(\frac{1-x^2}{1+x^2}\right)^n$, $x \in \mathbb{R}$; (raport)
- (c) $\sum 2^n \sin \frac{x}{3^n}$, $x \in \mathbb{R}$; (comparație cu $\left(\frac{2}{3}\right)^n$)
- (d) $\sum \frac{\ln(1+\alpha^n)}{n^x}$, $\alpha \geqslant 0$; (0 < α < 1 raport, $\alpha = 1$ C, $\alpha > 1$ descompunem în două serii, $\alpha = 0$ C)
- (e) $\sum \frac{\sin^n x}{n^a}$, $\alpha \in \mathbb{R}$. (radical)

3 Exerciții speciale

12. Să se arate că seria numerică $\sum_{n\geqslant 0} \frac{(-1)^n}{3n+1}$ este convergentă și să se afle suma ei, folosind serii de puteri.

Soluție: Seria satisface criteriul lui Leibniz pentru serii numerice alternate, deci este convergentă. Pentru a găsi suma, considerăm seria de puteri $\sum (-1)^n \frac{\chi^{3n+1}}{3n+1}$.

Raza de convergență este R = 1, deci intervalul de convergență este (-1,1).

Pentru x = 1, avem seria dată. Fie f suma acestei serii de puteri în intervalul (-1, 1).

Derivăm termen cu termen și obținem:

$$f'(x) = \sum (-1)^n x^{3n} = \frac{1}{1 + x^3},$$

pentru |x| < 1, ca suma unei serii geometrice alternate.

Rezultă:

$$f(x) = \int \frac{dx}{1+x^3} = \frac{1}{6} \ln \frac{(x+1)^2}{x^2-x+1} + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + c,$$

pentru |x|<1. Pentru x=0, găsim $c=\frac{\pi}{6\sqrt{3}}$. Rezultă:

$$f(x) = \frac{1}{6} \ln \frac{(x+1)^2}{x^2 - x + 1} + \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}},$$

pentru |x| < 1.

Așadar, seria inițială este f(1) = $\frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}}$.

13. Să se afle suma seriilor:

(a)
$$\sum_{n \geqslant 0} \frac{(n+1)^2}{n!}$$
;

(b)
$$\sum_{n>1} \frac{n^2(3^n-2^n)}{6^n}$$

Indicații: (a) Folosiți seria pentru e^x , din care obțineți seria pentru $(x + x^2)e^x$, pe care apoi o derivați termen cu termen.

Pentru x = 1 se obține seria cerută, cu suma 5e.

(b) Descompunem seria în două, apoi folosim seria de puteri $\sum n^2 x^n$, pe care o derivăm termen cu termen, pentru a obține seria pentru nx^{n-1} , apoi seria pentru nx^n .