

Exercise 11C

Question 14:

AB and CD are two chords of a circle which interect each other at P, outside the circle. AB = 6cm, BP = 2 cm and PD = 2.5 cm Therefore, AP \times BP = CP \times DP

Or,
$$8 \times 2 = (CD + 2.5) \times 2.5 \text{ cm}$$
 [as $CP = CD + DP$]

 $\text{Let} \times = \text{CD}$

Thus, 8 x 2 = (x + 2.5) x 2.5
⇒ 16 cm=2.5 x+ 6.25 cm
⇒ 2.5 x = (16 - 6.25) cm
⇒ 2.5 x = 9.75 cm
⇒
$$x = \frac{9.75}{2.5} = 3.9$$
 cm
∴ x=3.9 cm

Therefore, CD = 3.9 cm

Question 15:

O is the centre of a circle having ∠AOD = 140° and∠CAB = 50°

$$\angle BOD = 180^{\circ} - \angle AOD$$

$$= 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$OB = OD$$

$$\angle OBD = \angle ODB$$

$$A = A = A = A$$

$$O = A = B$$

In AOBD, we have

$$∠BOD + ∠OBD + ∠ODB = 180^{\circ}$$

⇒ $∠BOD + ∠OBD + ∠OBD = 180^{\circ}$ [∴ $∠OBD = ∠ODB$]

⇒ $40^{\circ} + 2∠OBD = 180^{\circ}$ [∴ $∠BOD = 40^{\circ}$]

⇒ $2∠OBD = 180^{\circ} - 40^{\circ} = 140^{\circ}$

⇒ $∠OBD = ∠ODB = \frac{140}{2} = 70^{\circ}$

Also, $∠CAB + ∠BDC = 180^{\circ}$ [∴ ABCD is cyclic]

⇒ $∠CAB + ∠ODB + ∠ODC = 180^{\circ}$

⇒ $∠ODC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

∴ $∠ODC = 60^{\circ}$

∴ $∠ODC = 60^{\circ}$

∴ $∠EDB = 180^{\circ} - (∠ODC + ∠ODB)$
 $= 180^{\circ} - 130^{\circ} = 50^{\circ}$

(ii) $∠EBD = 180^{\circ} - ∠OBD$
 $= 180^{\circ} - 70^{\circ} = 110^{\circ}$

********* END *******