Vaja 47, Sila med ploščama kondenzatorja

Jure Kos

3.3.2022

Uvod

Privlaka med elektrodama kondenzatorja je posledica električnih privlačnih sil med nasprotnima nabojema. To si ogledamo pri ploščatem kondenzatorju, ki ima plošči s ploščino S v razmiku d. Kapaciteta kondenzatorja je tedaj $C=\epsilon_0 S/d$. Na ploščo pritisnemo napetost U. Sila (F) med ploščama kondenzatorja je enaka produktu naboja na prvi plošči ter poljske jakosti, ki bi jo dobili samo z nabojem na drugi plošči. To izrazimo po formuli: $F=e_1E_2$ Upoštevati je potrebno $e_1=CU$, vrednost $E_2=\frac{U}{2d}$. Z izrazom za kapaciteto lahko izračunamo silo F: $F=\frac{CU^2}{2d}=\frac{\epsilon_0 SU^2}{2d^2}$ Tudi pri drugače oblikovanih elektrodah je kvadrat napetosti sorazmeren s silo. Silo med elektrodama pa v statičnih voltmetrih lahko izkoriščamo za merjenje napetosti.

Naloga

Izmeri silo med ploščama danega kondenzatorja v odvisnosti od napetosti in določi električno konstanto.

Nariši diagram $F=F(U^2)$. Iz strmine premice, ki se najbolje prilega meritvam, izračunaj ϵ_0 . Primerjaj rezultat z vrednostjo $\epsilon_0=(c^2\mu_1)^{-1}$, kjer je $\mu_0=4\omega\cdot 10^{-7}Vs/Ainc=2,998\cdot 108m/s$ (svetlobna hitrost).

Potrebščine

- 1. Tehtnica s kondenzatorskima ploščama,
- 2. usmernik za 2000 V,
- 3. voltmeter,
- 4. 2 žici.

Meritve

polmer plošče = $9.5cm \pm 0.2cm$ razmik med ploščama = $0.51cm \pm 0.01cm$

U(V)	m(mg)	U(V)	m(mg)
4,60	500	9,16	1200
4,54	500	9,01	1200
4,70	500	8,80	1200
4,73	500	8,90	1200
4,62	500	9,04	1200
4,40	500	8,87	1200
6,18	700	8,08	1500
6,08	700	8,60	1500
6,18	700	8,63	1500
6,00	700	8,58	1500
5,90	700	8,35	1500
5,93	700	8,30	1500
6,41	1000		
6,40	1000		
6,38	1000		
6,44	1000		
6,45	1000		
6,60	1000		

Računi

$$F = e_1 E_2$$

$$F = \frac{CU^2}{2d} = \frac{\varepsilon_0 SU^2}{2d^2}$$

Iz grafa dobimo koeficient $k=4,16\cdot 10^{-9}\frac{N}{V^2}.$ Po enačbi $\varepsilon_0=k\frac{2d^2}{S}$ dobimo

$$\varepsilon_{0,merjen} = 7, 6 \cdot 10^{-12} \frac{F}{m} \pm 0.5 \cdot 10^{-12} \frac{F}{m}$$

Dejanska vrednost konstante je 8.85 $\cdot 10^{-12}~\frac{F}{m}.$

Dodatek

Z uporabo dobro poznanega ε_0 lahko po enačbi

$$d = \sqrt{\varepsilon_0 \frac{S}{2k}}$$

izračunamo natančnejši d kot

 $d_{izracunan} = 0,55cm \pm 0,06cm$