1 Определения

1.1 Упорядоченная пара

Для некоторого множества X и I - множество "индексов", тогда $(x_{\alpha})_{\alpha \in I}$ - семейство элементов X. ($\forall \alpha \in I \ x_{\alpha} \in X$)

Упорядоченная пара — семейство из двух элементов, построенная при $I=\{1,2\}$. Обозначается (a,b).

Кроме того,

$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

1.2 Декартово произведение

Декартово произведение двух множеств — множество всех упорядоченных пар элементов этих множеств. $A \times B = \{(a,b) : a \in A, b \in B\}$

Кроме того, декартово произведение можно обобщить для произвольного числа множеств. $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2 \ldots a_n) : a_1 \in A_1, a_2 \in A_2 \ldots a_n \in A_n\}$

1.3 Аксиомы вещественных чисел

1.3.1 Аксиомы поля

В множестве $\mathbb R$ определены две операции, называемые сложением и умножением, действующие из $\mathbb R \times \mathbb R$ в $\mathbb R$ ($+, \cdot : \mathbb R \times \mathbb R \to \mathbb R$), удовлетворяющие следующим свойствам:

Аксоимы сложения (здесь и далее $\forall a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$):

- 1. a + b = b + a -коммутативность
- 2. (a+b)+c=a+(b+c) ассоциативность
- 3. $\exists 0 : 0 + a = a$
- 4. $\exists a' : a + a' = \mathbf{0}$

Аксиомы умножения:

- 1. ab = ba коммутативность
- 2. (ab)c = a(bc) ассоциативность
- 3. $\exists \mathbf{1} \neq \mathbf{0} : \forall a \in \mathbb{R} : a \cdot \mathbf{1} = a$
- 4. $\forall a \neq \mathbf{0} : \exists \tilde{a} : a \cdot \tilde{a} = \mathbf{1}$

Аксоима комбинации сложения и умножения:

1.
$$(a+b)c = ac + bc -$$
 дистрибутивность

Поле — множество, в котором определены операции $+,\cdot$, удовлетворяющие группе аксиом І. Например, $\mathbb{R},\mathbb{Q},\mathbb{F}_3$

1.3.2 Аксиомы порядка

- 1. $\forall x, y \in \mathbb{R} : x \leq y$ или $y \leq x$
- 2. $x \le y; y \le x \Rightarrow x = y$
- 3. $x \le y; y \le z \Rightarrow x \le z$ транзитивность
- 4. $x \le y \Rightarrow \forall z \in \mathbb{R} : x + z \le y + z$
- 5. 0 < x; $0 < y \Rightarrow 0 < xy$

Упорядоченное поле — множество, для которого выполняются аксиомы групп I и II.

 \mathbb{F}_3,\mathbb{C} - не упорядоченные поля

 $\mathbb{R}, \mathbb{Q}, \mathcal{R}$ - упорядоченные поля

Дальнейшие аксиомы в следующем вопросе.

1.4 Аксиома Кантора, аксиома Архимеда

1.4.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$$

Следствие: существуют сколько угодно большие натуральные числа:

$$\forall y \in \mathbb{R} : \exists n \in \mathbb{N} : n > y$$

Архимедовы поля — упорядоченные поля, в которых выполняется Аксиома Архимеда.

 \mathcal{R} - не архимедово поле

 \mathbb{R},\mathbb{Q} - архимедовы поля

1.4.2 Аксиома Кантора

Для последовательности вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ ($\forall n\in\mathbb{N}a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$)

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

 $\mathbb Q$ не удволетворяет этой аксиоме, в отличие от $\mathbb R$.

1.5 Пополненное множество вещественных чисел, операции и порядок в нем

 $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$ — пополненное множество вещественных чисел.

Свойства ($\forall x \in \mathbb{R}$):

- $-\infty < +\infty$
- $\pm \infty \cdot \pm \infty = +\infty$
- $\pm \infty \cdot \mp \infty = -\infty$
- $-\infty < x < +\infty$
- $x \pm \infty = \pm \infty$
- $\pm \infty \pm \infty = \pm \infty$
- $\pm \infty \mp \infty$ не определено

Для $\forall x \in \mathbb{R}, x > 0$

• $x \cdot \pm \infty = \pm \infty$

1.6 Максимальный элемент множества

 $M \in A$ называется максимальным элементом множества A, если $\forall a \in A \ a \leq M$

1.7 Последовательность

 $x: \mathbb{N} \to Y$ — последовательность

1.8 Образ и прообраз множества при отображении

Для $A\subset X, f:X\to Y$ образ — множество $\{f(x),x\in A\}\subset Y$ — обозначается f(A) Для $B\subset Y$ прообраз — $\{x\in X:f(x)\in B\}$ — обозначается $f^{-1}(B)$

1.9 Инъекция, сюръекция, биекция

Сюръекция — такое отображение $f: X \to Y$, что f(X) = Y, т.е. $\forall y \in Y \ f(x) = y$ имеет решение относительно x.

Инъекция — такое отображение $f: X \to Y$, что $\forall x_1, x_2 \in X, x_1 \neq x_2 \; f(x_1) \neq f(x_2)$, т.е. $\forall y \in Y \; f(x) = y$ имеет не более одного решения относительно x.

Биекция — отображение, являющееся одновременно сюръекцией и инъекцией, т.е. $\forall y \in Y \ f(x) = y$ имеет ровно одно решение относительно x.

1.10 Векторнозначаная функция, ее координатные функции

Если $F: X \to \mathbb{R}^m; x \mapsto F(x) = (F_1(x), ..., F_m(x))$, то F — векторнозначная функция (значения функции - вектора)

 $F_{1}(x)..F_{m}(x)$ - координатные функции отображения F

1.11 График отображения

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

1.12 Композиция отображений

f:X o Y,g:Y o Z, тогда композиция f и g (обозначается $g\circ f$) — такое отображение, что $g\circ f:X o Z,x\mapsto g(f(x)).$

Также возможно определение, которое допускает $g: Y_1 \to Z, Y_1 \supset Y$

1.13 Сужение и продолжение отображений

Для $g: X \to Y$ f — сужение g на множество A, если $f: A \subset X \to Y$, $\forall a \in A$ g(a) = f(a) g называется продолжением f.

1.14 ! Предел последовательности (эпсилон-дельта определение)

Если для $(x_n), a \in \mathbb{R}$ выполняется $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n - a| < \varepsilon$, то a — предел последовательности (x_n) , обозначается $x_n \to a$ или $\lim_{n \to \infty} x_n = a$

1.15 Окрестность точки, проколотая окрестность

Окрестность точки $a=\{x\in\mathbb{R}:|x-a|<\varepsilon\}$, обозначается $U_{\varepsilon}(a)$

Проколотая окрестность точки $a=U_{\varepsilon}(a)\setminus\{a\}$, обозначается $\dot{U}_{\varepsilon}(a)$

1.16 Предел последовательности (определение на языке окрестностей)

$$\forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

1.17 ! Метрика, метрическое пространство, подпространство

На множестве X отображение $\rho: X \times X \to \mathbb{R}$ называется **метрико**й, если выполняются свойства 1-3:

1.
$$\forall x, y \ \rho(x, y) \ge 0; \rho(x, y) = 0 \Leftrightarrow x = y$$

- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника: $\forall x,y,z\in X \ \rho(x,y)\leq \rho(x,z)+\rho(z,y)$

Метрическое пространство — упорядоченная пара (X, ρ) , где X — множество, ρ — метрика на X.

Подпространством метрического пространства (X,ρ) называется $(A,\rho|_{A\times A})$, если $A\subset X$

1.18 ! Шар, замкнутый шар, окрестность точки в метрическом пространстве

Шар (открытый шар) $B(a,r) = \{x \in X : \rho(a,x) < r\}$

Замкнутый шар $B(a,r) = \{x \in X : \rho(a,x) \le r\}$

Окрестность точки a в метрическом пространстве: $B(a, \varepsilon) \Leftrightarrow U(a)$.

1.19 Линейное пространство

Если K — поле ($K = \mathbb{R}$ unu \mathbb{C}), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1. $+: X \times X \to X$ сложение векторов
- 2. $\,\cdot:K\times X\to X$ умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь $A,B,C\in X; a,b\in K$):

1.19.1 Аксиомы сложения векторов

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. $\exists 0 \in X : A + 0 = A$
- 4. $\exists -A \in X: A+(-A)=0$ обратный элемент

1.19.2 Аксиомы умножения векторов на скаляры

- 1. $(A+B) \cdot a = A \cdot a + B \cdot a$
- 2. $A \cdot (a+b) = A \cdot a + A \cdot b$
- 3. $(ab) \cdot A = a(b \cdot A)$

4. $\exists 1 \in K : 1 \cdot A = A$

1.20 Норма, нормированное пространство

Норма - отображение $X \to \mathbb{R}, x \mapsto ||x||$, если X - линейное пространство (над \mathbb{R} или \mathbb{C}) и выполняется следующее:

- 1. $\forall x \ ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$
- 3. Неравенство треугольника: $\forall x, y \in X \ ||x + y|| \le ||x|| + ||y||$

Нормированное пространство — упорядоченная пара $(X, ||\cdot||)$, где |||| - норма

1.21 Ограниченное множество в метрическом пространстве

 $A \subset X$ — ограничено, если $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0,R)$, т.е. если A содержится в некотором шаре в X.

1.22 ! Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если $\exists U(a): U(a) \subset D$, т.е. $\exists r > 0: B(a,r) \subset D$

D — открытое множество, если $\forall a \in D : a$ — внутренняя точка D

Внутренностью множества D называется $Int(D) = \{x \in D : x - \text{внутр. точка } D\}$

1.23 ! Предельная точка множества

a — предельная точка множества D, если

$$\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$$

1.24 !Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки.

 $\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Граница множества — множество его граничных точек. Обозначается ∂D

1.25 ! Изолированная точка, граничная точка

a — изолированная точка D, если $a \in D$ и a — не предельная, то есть:

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

1.26 Описание внутренности множества

- 1. IntD откр. множество
- 2. $IntD = \bigcup\limits_{\substack{D \supset G \\ G \text{ открыт}}} -$ максимальное открытое множество, содержащееся в D
- 3. D откр. в $X \Leftrightarrow D = IntD$

1.27 Описание замыкания множества в терминах пересечений

$$\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$$
мин. (по вкл.) замкн. множество, содержащее $D.$

1.28 ! Верхняя, нижняя границы; супремум, инфимум

 $E\subset\mathbb{R}.\ E$ — огр. сверху, если $\exists M\in\mathbb{R}\ \ \forall x\in E\ \ x\leq M.$ Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

$$E \subset \mathbb{R}, E \neq \emptyset$$
.

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу инфимум (inf E) — наибольшая из нижних границ E.

1.29 Техническое описание супремума

Техническое описание супремума:
$$b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$$

1.30 ! Последовательность, стремящаяся к бесконечности

В ℝ:

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

1.31 ! Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия этого множества \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.32 Секвенциальная компактность

Секвенциально компактным называется множество $A \subset X : \forall$ посл. (x_n) точек $A \equiv$ подпосл. x_{n_k} , которая сходится к точке из A

1.33 ! Определения предела отображения (3 шт)

$$(X, \rho^x), (Y, \rho^y) \quad D \subset X \quad f: D \to Y$$

 $a\in X,$ a — пред. точка множества D, $A\in Y$

Тогда $\lim_{x\to a} f(x) = A$ — предел отображения, если:

1. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

2. На языке окрестностей:

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

- 3. По Гейне: $\forall (x_n) \text{посл. в } X$:
 - (a) $x_n \to a$
 - (b) $x_n \in D$
 - (c) $x_n \neq a$

$$f(x_n) \to A$$

1.34 Определения пределов в $\overline{\mathbb{R}}$

Для $X = \mathbb{R}, Y = \overline{\mathbb{R}}, -\infty < x < +\infty$:

1.
$$\lim_{x \to a} f(x) = +\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) > E$

2.
$$\lim_{x \to a} f(x) = -\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) < E$

3.
$$\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) - c| < \varepsilon$$

4.
$$\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) - c| < \varepsilon$$

1.35 Предел по множеству

$$f:D\subset X o Y,D_1\subset D,x_0$$
 — пред. точка D_1

Тогда предел по множеству D_1 в точке x_0 — это $\lim_{x \to x_0} f|_{D_1}(x)$

1.36 Односторонние пределы

В \mathbb{R} одностор. = $\{$ левостор., правостор. $\}$

Певосторонний предел $\lim_{x \to x_0 - 0} f(x) = L$ - это $\lim f|_{D \cap (-\infty, x_0)}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правосторонний.

1.37 ! Непрерывное отображение

$$f: D \subset X \to Y \quad x_0 \in D$$

f — **непрерывное** в точке x_0 , если:

- 1. $\lim_{x\to x_0}f(x)=f(x_0)$, либо x_0 изолированная точка D
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$
- 3. $\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$
- 4. По Гейне $\forall (x_n): x_n \to x_0; x_n \in D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

1.38 Непрерывность слева

f — непр. слева в x_0 , если $f|_{(-\infty,x_0]\cap D}$ — непрерывно в x_0

1.39 Разрыв, разрывы первого и второго рода

Если
$$ot\equiv\lim_{x\to x_0}f(x)$$
, либо $ot\equiv\lim_{x\to x_0}f(x)\neq f(x_0)$ — точка разрыва.

Пусть $\exists f(x_0-0), f(x_0+0)$ и не все 3 числа равны: $f(x_0-0), f(x_0), f(x_0+0)$. Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

Примечание.

$$f(x_0 - 0) \Leftrightarrow \lim_{x \to x_0 - 0} f(x)$$

1.40 ! О большое, о маленькое

 $f,g:D\subset X o\mathbb{R}\ x_0$ — пр. точка D

Если
$$\exists V(x_0) \;\; \exists \varphi: V(x_0) \cap D \to \mathbb{R} \quad f(x) = g(x)\varphi(x)$$
 при $x \in V(x_0) \cap D$

1. $\,arphi\,-$ ограничена. Тогда говорят f=O(g) при $x o x_0$

"f ограничена по сравнению с g при $x \to x_0$ "

2.
$$\varphi(x) \xrightarrow[x \to x_0]{} 0$$
 f — беск. малая по отношению к g при $x \to x_0$, $f = o(g)$

3.
$$\varphi(x) \xrightarrow[x \to x_0]{} 1$$
 f и g экв. при $x \to x_0$ $f \underset{x \to x_0}{\sim} g$

Примечание. О большое и о малое — разные вопросы в табличке.

1.41 ! Эквивалентные функции, таблица эквивалентных

Эквивалентные функции даны выше.

Таблица эквивалентных для $x \to 0$:

$$\sin x \sim x$$

$$\sinh x \sim x$$

$$\tan x \sim x$$

$$\arctan x \sim x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\cosh x - 1 \sim \frac{x^2}{2}$$

$$e^x - 1 \sim x$$

$$\ln(1+x) \sim x$$

$$(1+x)^{\alpha} - 1 \sim \alpha x$$

$$a^x - 1 \sim x \ln a$$

1.42 Асимптотически равные (сравнимые) функции

В условиях прошлых определений $f = O(g), g = O(f) \Leftrightarrow f \asymp g$ — асимптотически сравнимы на множестве D, "величины одного порядка".

1.43 Асимптотическое разложение

 $g_n:D\subset X o\mathbb{R}\quad x_0$ — пред. точка D

$$\forall n \quad g_{n+1}(x) = o(g_n), x \to x_0$$

Пример.
$$g_n(x) = x^n, n = 0, 1, 2 \dots x \to 0$$
 $g_{n+1} = xg_n, x \to 0$

 (g_n) называется шкала асимптотического разложения.

$$f:D\to\mathbb{R}$$

Если $f(x) = c_0 g_0(x) + c_1 g_1(x) + \ldots + c_n g_n(x) + o(g_n)$, то это асимптотическое разложение f по шкале (g_n)

1.44 Наклонная асимптота графика

Пусть
$$f(x) = Ax + B + o(1), x \to +\infty$$

Прямая y = Ax + B — наклонная асимптота к графику f при $x \to +\infty$

1.45 Путь в метрическом пространстве

Y — метр. пр-во

$$\gamma:[a,b] \to Y$$
 — непр. на $[a,b]$

= **путь** в пространстве Y

1.46 Линейно связное множество

 $E \subset Y$

E — линейно связное, если $\forall A, B \in E \; \exists \;$ путь $\gamma : [a,b] \to E \;$ такой, что:

- $\gamma(a) = A$
- $\gamma(b) = B$

1.47 ! Функция, дифференцируемая в точке и производная

$$f: \langle a, b \rangle \to \mathbb{R} \quad x_0 \in \langle a, b \rangle$$

f — дифференцируема. в точке x_0 , если $\exists A \in \mathbb{R}$

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

При этом A называется производной f в точке x_0

Примечание. Это два разных билета.

1.48 Счётное множество

A — счётное множество \Leftrightarrow равномощно $\mathbb N$

1.49 ! Мощность континуума

A равномощно $[0,1] \Rightarrow A$ имеет мощность континуума.

1.50 Фундаментальная последовательность

 x_{n} — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

1.51 Полное метрическое пространство

X — метрическое пространство называется **полным**, если в нём любая фундаментальная последовательность — сходящаяся.

1.52 Классы функций $C^n([a,b])$

f-n-гладкая, если $\forall i=1\dots n\ \exists\ i$ -ная непрерывная производная.

Класс функций $C^n([a,b])$ — множество функций, n-гладких на [a,b]

1.53 Производная n-го порядка

Пусть $n-1\in\mathbb{N}$ — множество D_{n-1} и $f^{(n-1)}:D_{n-1}\to\mathbb{R}$ определены. Пусть D_n — множество точек $x_0\in D_{n-1}$, для которых существует $\delta>0$, такое что:

$$(x_0 - \delta, x_0 + \delta) \cap D_{n-1} = (x_0 - \delta, x_0 + \delta) \cap D$$

и $f^{(n-1)}$ дифференцируема в точке x_0 . Если $x_0 \in D_n$, то f — дифференцируема n раз в точке x_0 . Функция

$$f^{(n)} = (f^{(n-1)})'_{D_n} : D_n \to \mathbb{R}$$

называется производной порядка n.

1.54 Многочлен Тейлора n-го порядка

Многочленом Тейлора n-той степени (порядка) функции f в точке a называется:

$$T_n(f,a)(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

1.55 Разложения Тейлора основных элементарных функций

Некоторые разложения по Тейлору:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

2 Теоремы

2.1 Законы де Моргана

Пусть $(X_{\alpha})_{\alpha \in A}$ - семейство множеств, Y - множество. Тогда:

1.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ①

2.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ②

Вариант 2:

1.
$$Y \cap (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

2.
$$Y \cup (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

Доказательство. $\triangleleft x \in$ левая часть (1)

$$x \in Y; x \notin \bigcup X_{\alpha}$$

$$x \in Y; x \notin \{y: \exists \alpha: y \in X_\alpha\}$$

$$x \in Y; \forall \alpha \in A : x \notin X_{\alpha}$$

 $\triangleleft x \in$ правая часть (1)

$$\forall \alpha : x \in Y \setminus X_{\alpha}$$

$$x \in Y; \forall \alpha \ x \notin X_{\alpha}$$

Из чего левая и правая части эквивалентны. Аналогично доказывается ②

- 2.2 Неравенство Коши-Буняковского, евклидова норма в \mathbb{R}^m
- 2.2.1 Неравенство Коши-Буняковского

$$\left(\sum a_i b_i\right)^2 \leq \left(\sum a_i^2\right) \left(\sum b_k^2\right)$$

 $\mathbf{2.2.2}$ Евклидова норма в \mathbb{R}^m

$$||x|| = \sqrt{\sum_{i}^{m} x_i^2}$$

Неравенство Коши-Буняковского следует из тождества Лагранжа. Докажем его:

Доказательство.

Таким образом,

$$\left(\sum_{(i,k) \in A \times B} a_i b_i\right)^2 = \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \le \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,$$

Доказательство. Альтернативное:

$$\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) - \left(\sum_{i=1}^{n} a_i b_i\right)^2 =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i^2 b_j^2 - \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_i a_j b_j =$$

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(a_i^2 b_j^2 + a_j^2 b_i^2 - 2a_i b_i a_j b_j\right) =$$

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 \ge 0$$

2.3 Аксиома Архимеда. Плотность множества рациональных чисел в $\mathbb R$

2.3.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$$

2.3.2 Плотность множества $\mathbb Q$ в $\mathbb R$

$$\mathbb Q$$
 плотно в $\mathbb R \stackrel{def}{\Longleftrightarrow} \forall a,b \in \mathbb R, a < b \ (a,b) \cap \mathbb Q \neq \mathcal O$

В любом интервале в $\mathbb R$ содержится число $\in \mathbb Q.$

Доказательство. $\mathbb Q$ плотно в $\mathbb R$, т.е. $\forall a,b \in \mathbb R, a < b \quad (a,b) \cap \mathbb Q \neq \emptyset$

Возьмем $n \in \mathbb{N} : n > \frac{1}{b-a}$. Тогда $\frac{1}{n} < b-a$

$$q := \frac{[na]+1}{n} \in \mathbb{Q}$$

$$q \le \frac{na+1}{n} = a + \frac{1}{n} < a+b-a = b \Rightarrow q < b$$

$$q > \frac{na}{n} = a \Rightarrow q > a$$

2.4 Неравенство Бернулли

$$(1+x)^n \ge 1 + nx$$
 $x \ge -1, n \in \mathbb{N}$

$$(1+x)^n \geq 1+nx+rac{n(n-1)}{2}x^2 \quad x>0, n\in \mathbb{N}$$
 — более сложная версия

Доказательство. База: $n=1: (1+x)^1 \ge 1+x$

Переход: Дано неравенство $(1+x)^n \geq 1+nx$, оно верно при каком-то n. Докажем, что $(1+x)^{n+1} \geq 1+(n+1)x$

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

2.5 Единственность предела и ограниченность сходящейся последовательности

2.5.1 Единственность предела

$$(X,\rho)$$
 — метрическое пр-во, $a,b\in X$, (x_n) — послед. в $X,x_n\xrightarrow[n\to+\infty]{}a,x_n\xrightarrow[n\to+\infty]{}b$, тогда $a=b$

Доказательство.

Докажем от противного — пусть
$$a \neq b$$
. Возьмем $0 < \varepsilon < \frac{1}{2} \rho(a,b)$

$$\exists N(\varepsilon) \ \forall n > N(\varepsilon) \ \rho(x_n, a) < \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K(\varepsilon) \ \rho(x_n, b) < \varepsilon$$

При
$$n>\max(N(\varepsilon),K(\varepsilon))$$
 $\rho(a,b)\leq \rho(a,x_n)+\rho(b,x_n)<2\varepsilon<\rho(a,b)$ — противоречие

2.5.2 Ограниченность сходящейся последовательности

Если (x, ρ) — метрическое пр-во, (x_n) — послед. в X, x_n сходится, тогда x_n - ограничен.

Доказательство.

Пусть
$$a=\lim_{n\to +\infty}x_n$$

$$\forall U(a) \ \exists N \ \forall n>N \ x_n\in U(a)$$

$$U(a)=B(a,\varepsilon)$$
 $r:=max(\varepsilon,\rho(x_1,a),\rho(x_2,a)\dots\rho(x_N,a))+1$ тогда $\forall n\in \mathbb{N} \ x_n\in B(a,r)$

2.6 Теорема о предельном переходе в неравенствах для последовательностей и для функций

2.6.1 Для последовательностей

Если $(x_n), (y_n)$ — вещественные последовательности $x_n \to a, y_n \to b, \exists N \ \forall n > N \ x_n \le y_n$, тогда $a \le b$.

 \Box

2.6.2 Для функций

Если $f,g:X\to\mathbb{R},$ a — предельная точка X, и $\forall x\in X$ $f(x)\leq g(x).$ Тогда $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$

Доказательство.

Докажем от противного. Пусть $a>b, 0<\varepsilon<\frac{a-b}{2}.$

$$\exists N(\varepsilon) \ \forall n > N \ a - \varepsilon < x_n < a + \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K \ b - \varepsilon < y_n < b + \varepsilon$$

При $n > \max(N,K)$ $y_n < b + \varepsilon < a - \varepsilon < x_n$ — противоречие

Доказательство. По Гейне.

$$\forall (x_n) \to a, x_n \in X, x_n \neq a$$
:

$$f(x_n) \to A, g(x_n) \to B, \forall x \ f(x) \le g(x) \Rightarrow f(x_n) \le g(x_n) \Rightarrow A \le B$$

2.7 ! Теорема о двух городовых

Если $(x_n),(y_n),(z_n)$ - вещ. посл., $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a$, тогда $\exists \lim y_n = a$

Доказательство.

$$\forall \varepsilon>0 \ \exists N \ \forall n>N \ a-\varepsilon < x_n < a+\varepsilon$$

$$\forall \varepsilon>0 \ \exists K \ \forall n>K \ a-\varepsilon < z_n < a+\varepsilon$$

$$\forall \varepsilon>0 \ \exists N_0=max(N,K) \ \forall n>N_0 \ a-\varepsilon < x_n \leq y_n \leq z_n < a+\varepsilon$$
 По определению $\lim y_n=a$

2.8 Бесконечно малая последовательность

Произведение бесконечно малой последовательности на ограниченную — бесконечно малая последовательность, т.е. (x_n) — беск. малая, (y_n) — ограничена $\Rightarrow x_n y_n$ — беск. малая

Доказательство. Возьмём K такое, что $\forall n \mid y_n \mid \leq K$.

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n| \le \frac{\varepsilon}{K}$$

$$|x_n y_n| \le \frac{\varepsilon}{K} K = \varepsilon \Rightarrow x_n y_n \to 0$$

2.9 ! Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в $\mathbb R$

Об арифметических свойствах предела в нормированном пространстве.

Если $(X, ||\cdot||)$ — норм. пр-во, $(x_n), (y_n)$ — посл. в X, λ_n — посл. скаляров, и $x_n \to x_0, y_n \to y_0, \lambda_n \to \lambda_0$, тогда:

- 1. $x_n \pm y_n \rightarrow x_0 \pm y_0$
- 2. $\lambda_n x_n \to \lambda_0 x_0$
- 3. $||x_n|| \to ||x_0||$

Доказательство. 1. $\forall \varepsilon \ \exists N_1 \ \forall n > N_1 \ ||x_n - x_0|| < \varepsilon$

$$\forall \varepsilon \ \exists N_2 \ \forall n > N_2 \ ||y_n - y_0|| < \varepsilon$$

$$N := \max(N_1, N_2)$$

$$\forall \varepsilon \ \forall n > N \ ||(x_n + y_n) - (x_0 + y_0)|| \le ||x_n - x_0|| + ||y_n - y_0|| \le 2\varepsilon$$

2. $||\lambda_n x_n - \lambda_0 x_0|| = ||\lambda_n x_n - \lambda_0 x_0 + \lambda_0 x_n - \lambda_0 x_n|| = ||(\lambda_n - \lambda_0) x_n + (x_n - x_0) \lambda_0|| \le ||(\lambda_n - \lambda_0) x_n|| + ||(x_n - x_0) \lambda_0|| = ||x_n|||\lambda_n - \lambda_0| + ||x_n - x_0|||\lambda_0||$

 $|\lambda_n-\lambda_0|$ и $||x_n-x_0||$ — бесконечно малые, $||x_n||$ и $|\lambda_n|$ — ограниченные $\Rightarrow ||x_n|||\lambda_n-\lambda_0|+||x_n-x_0|||\lambda_0|$ — бесконечно малая

3. Докажем, что $|||x_n|| - ||x_0||| \le ||x_n - x_0||$.

$$||x_n|| = ||x_0 + (x_n - x_0)|| \le ||x_0|| + ||x_n - x_0|| \Rightarrow ||x_n|| - ||x_0|| \le ||x_n - x_0||$$

Аналогично $||x_0|| - ||x_n|| \le ||x_n - x_0||$.

Тогда
$$|||x_n|| - ||x_0||| \le ||x_n - x_0||$$

Об арифметических свойствах пределов в \mathbb{R} .

Для $(x_n), (y_n)$ — вещ.посл., $\forall n \ y_n \neq 0, y_0 \neq 0$:

4.
$$\frac{x_n}{y_n} \rightarrow \frac{x_0}{y_0}$$

Доказательство взято из воздуха.

Доказательство. Докажем, что $\frac{1}{y_n} o \frac{1}{y_0}$, если $\forall n \ y_n \neq 0, y_0 \neq 0$.

$$\left| \frac{1}{y_n} - \frac{1}{y_0} \right| = \left| \frac{y_0 - y_n}{y_n y_0} \right|$$

В числителе бесконечно малая последовательность, в знаменателе ограниченная \Rightarrow дробь — бесконечно малая последовательность.

2.10 Неравенство Коши-Буняковского в линейном пространстве, норма, порожденная скалярным произведением

2.10.1 Неравенство Коши-Буняковского в линейном пространстве

Для X — линейного пространства (над \mathbb{R}, \mathbb{C})

$$\forall x, y \in X \quad |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Доказательство. Возьмём $\lambda \in \mathbb{R}(\mathbb{C})$

Заметим, что
$$\langle x, \alpha y \rangle = \overline{\langle \alpha y, x \rangle} = \overline{\alpha \langle y, x \rangle} = \overline{\alpha} \overline{\langle y, x \rangle} = \overline{\alpha} \langle x, y \rangle.$$

При y=0 тривиально, пусть $y\neq 0$

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \langle \lambda y, x \rangle + \langle x, \lambda y \rangle + \langle \lambda y, \lambda y \rangle =$$

$$= \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$\lambda := -\frac{\langle x,y\rangle}{\langle y,y\rangle}, \overline{\lambda} = \overline{\left(-\frac{\langle x,y\rangle}{\langle y,y\rangle}\right)} = -\frac{\langle y,x\rangle}{\langle y,y\rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$
$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle$$
$$\frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle \le \langle x, x \rangle$$
$$\langle x, y \rangle \langle y, x \rangle \le \langle x, x \rangle \langle y, y \rangle$$
$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

2.10.2 Норма, порожденная скалярным произведением

Для лин. пространства X, скалярного произведения $\langle \cdot, \cdot \rangle$

$$ho:X o\mathbb{R}$$
 $ho(x)=\sqrt{\langle x,x
angle}$ — норма

Доказательство. Докажем, что ρ удовлетворяет всем леммам нормы.

1.
$$\rho(x) \ge 0$$
 $\rho(x) = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0$

2.
$$\rho(\alpha x) = \sqrt{\alpha \overline{\alpha} \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle} = |\alpha| \rho(x)$$

3.
$$\rho(x+y) \le \rho(x) + \rho(y)$$

$$\sqrt{\langle x+y, x+y \rangle} \stackrel{?}{\leq} \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

$$\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \stackrel{?}{\leq} \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Пояснение следующего перехода: пусть $\langle x,y\rangle=a$. Тогда $a=\Re a+\Im a, \overline{a}=\underline{\Re a}-\Im a$ (разложение на вещественную и мнимую части). $\langle x,y\rangle+\langle y,x\rangle=\langle x,y\rangle+\overline{\langle x,y\rangle}=\Re\langle x,y\rangle+\Im\langle x,y\rangle+\Re\langle x,y\rangle-\Im\langle x,y\rangle=2\Re\langle x,y\rangle.$

$$2\Re\langle x,y\rangle \stackrel{?}{\leq} 2\sqrt{\langle x,x\rangle\langle y,y\rangle}$$

$$\Re\langle x,y\rangle < |\langle x,y\rangle| < \sqrt{\langle x,x\rangle\langle y,y\rangle}$$

2.11 Леммы о непрерывности скалярного произведения и покоординатной сходимости в \mathbb{R}^n

2.11.1 О покоординатной сходимости в \mathbb{R}^m

О покоординатной сходимости в \mathbb{R}^m

 $(x^{(n)})$ — последовательность векторов в \mathbb{R}^m

в \mathbb{R}^m задано евклидово скалярное произведение и норма.

Тогда
$$(x^{(n)}) \to x \Leftrightarrow \forall i \in \{1, 2, \dots m\} \ x_i^{(n)} \underset{n \to +\infty}{\to} x_i$$

Доказательство. Модуль координаты \leq нормы всего вектора:

$$|x_i^{(n)} - x_i| \le ||x^{(n)} - x|| \le \sqrt{m} \max_{1 \le i \le m} |x_i^n - x_i|$$

Первое неравенство доказывает \Rightarrow , второе неравенство доказывает \Leftarrow

2.11.2 О непрерывности скалярного произведения

X - лин. пространство со скалярным произведением, $||\cdot||$ — норма, порожденная скалярным произведением.

Тогда
$$\forall (x_n): x_n \to x, \ \forall (y_n): y_n \to y, \ \langle x_n, y_m \rangle \to \langle x, y \rangle$$

Доказательство.

$$|\langle x_n, y_m \rangle - \langle x, y \rangle| = |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| = |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0$$

По теореме о двух городовых чтд.

2.12 Открытость открытого шара

$$B(a,r) = \{x \in X : \rho(a,x) < r\}$$
 — открыт

Доказательство. $x_0 \in B(a,r)$

Докажем, что x_0 — внутренняя, т.е. $\exists U(x_0) \subset B(a,r)$

$$k := r - \rho(a, x_0)$$

Докажем, что $B(x_0,k) \subset B(a,r)$

$$\forall x \in B(x_0, k) \quad \rho(x, x_0) < k$$

$$\rho(a, x_0) + \rho(x, x_0) < r$$

$$\rho(x, a) \le \rho(a, x_0) + \rho(x, x_0) < r$$

2.13 Теорема о свойствах открытых множеств

- 1. $(G_{\alpha})_{\alpha \in A}$ семейство открытых множеств в (X, ρ) Тогда $\bigcup_{\alpha \in A} G_{\alpha}$ открыто в X.
- 2. $G_1, G_2, \dots G_n$ открыто в X.

Тогда
$$\bigcap_{i=1}^n G_i$$
 - открыто в X .

Доказательство. 1. $x_0 \in \bigcup_{\alpha \in A} G_\alpha$

 $\exists \alpha_0 : x_0 \in G_{\alpha_0}$

 G_{α_0} — открыто $\Rightarrow \exists U(x_0) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in A} G_\alpha \Rightarrow x_0$ — внтуренняя точка $\bigcup_{\alpha \in A} G_\alpha \Rightarrow \bigcup_{\alpha \in A} G_\alpha$ — открыто, т.к. в нём все точки внутренние.

 $2. \ x_0 \in \bigcap_{\alpha \in A} G_\alpha$

 $\forall \alpha \in A : x_0 \in G_\alpha$

 $orall lpha \in A \ G_lpha$ — открыто $\Rightarrow \exists B_lpha(x_0,r_lpha) \subset G_lpha$

 $\forall x_0: \exists U(x_0) = B(x_0, \min_{\alpha} r_{\alpha}) \subset \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow x_0 - \text{внутренняя точка} \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow \bigcap_{\alpha \in A} G_{\alpha} - \text{открыто, т.к. в нём все точки внутренние.}$

2.14 Теорема о связи открытых и замкнутых множеств, свойства замкнутых множеств

D — замкнуто $\Leftrightarrow D^c = X \setminus D$ (дополнение) — открыто.

Свойства:

1. $(F_{\alpha})_{\alpha \in A}$ — замкн. в X Тогда $\bigcap F_{\alpha}$ — замкн. в X

M3137y2019

2.
$$F_1 \dots F_n$$
 — замкн. в X Тогда (Ј F_i — замкн. в X

Доказательство. Докажем \Rightarrow : D — замкн. \Rightarrow ? $X \setminus D$

 $x \in X \setminus D \Rightarrow x$ — не пред. точка D, т.к. D содержит все свои пред. точки и $x \notin D$ $\Rightarrow \exists r : B(x,r) \subset X \setminus D$

Докажем $\Leftarrow: X \setminus D$ — откр., D — замкн.?, т.е. $\forall x \in \{$ пр.точки $D\}$ $?x \in D$

Если $x \in D$ — тривиально.

$$x \notin D \quad x \in X \setminus D$$

$$\exists U(x)\subset X\setminus D\Rightarrow x$$
 - не пред. точка

Доказательство. 1.
$$(\bigcap F_{\alpha})^c = X \setminus (\bigcap F_{\alpha}) = \bigcup (X \setminus F_{\alpha})$$

 F_{α} — закрыто \Rightarrow $X \setminus F_{\alpha}$ — открыто \Rightarrow $\bigcup (X \setminus F_{\alpha})$ — открыто $(\bigcap F_{\alpha})^{c}$ — открыто $\Rightarrow \bigcap F_{\alpha}$ — замкнуто

2.
$$(\bigcup F_i)^c = \bigcap (F_i)^c$$

$$\bigcap (F_i)^c$$
 — открыто, т.к. F_i^c — открыто $\Rightarrow (\bigcup F_i)^c$ — открыто $\Rightarrow \bigcup F_i$ — замкнуто

! Теорема об арифметических свойствах предела последователь-2.15 ности (в $\overline{\mathbb{R}}$). Неопределенности

Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$)

2.15.1.1 По Кохасю

$$(x_n),(y_n)$$
 — вещ., $x_n \to a, y_n \to b, \quad a,b \in \overline{\mathbb{R}}$

Тогда:

1.
$$x_n \pm y_n \rightarrow a \pm b$$

2.
$$x_n y_n \to ab$$

3.
$$\frac{x_n}{y_n}
ightarrow rac{a}{b}$$
 , если $orall n \ y_n
eq 0; b
eq 0$

При условии, что выражения в правых частях имеют смысл.

2.15.1.2 По Виноградову

1.
$$x_n \to +\infty$$
, $\{y_n\}$ — огр. снизу $\Rightarrow x_n + y_n \to +\infty$

2.
$$x_n \to -\infty$$
, $\{y_n\}$ — orp. сверху $\Rightarrow x_n + y_n \to -\infty$

3.
$$x_n \to \infty$$
, $\{y_n\}$ - orp. $\Rightarrow x_n + y_n \to \infty$

4.
$$x_n \to \pm \infty, \forall n \ y_n > 0$$
 или $y_n \to b > 0 \Rightarrow x_n y_n \to \pm \infty$

5.
$$x_n \to \pm \infty, \forall n \ y_n < 0$$
 или $y_n \to b < 0 \Rightarrow x_n y_n \to \mp \infty$

6.
$$x_n \to \infty, \forall n \mid y_n \mid > 0$$
 или $y_n \to b \neq 0 \Rightarrow x_n y_n \to \infty$

7.
$$x_n \to a \neq 0, y_n \to 0, \forall n \ y_n \neq 0 \Rightarrow \frac{x_n}{y_n} \to \infty$$

8.
$$x_n \to a \in \mathbb{R}, y_n \to +\infty \Rightarrow \frac{x_n}{y_n} \to 0$$

9.
$$x_n \to \infty, y_n \to a \in \mathbb{R} \Rightarrow \frac{x_n}{y_n} \to \infty$$

Доказательство. Тривиально.

2.15.2 Неопределенности

•
$$+\infty - \infty$$

•
$$0 \cdot (\pm \infty)$$

•
$$\frac{\pm \infty}{\pm \infty}$$

$$\bullet \quad \frac{0}{0}$$

2.16 ! Теорема Кантора о стягивающихся отрезках

Дана последовательность отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\dots$

Длины отрезков $\to 0$, т.е. $(b_n - a_n) \to_{n \to +\infty} 0$

Тогда
$$\exists!c\in\mathbb{R}\quad\bigcap_{k=1}^{+\infty}[a_k,b_k]=\{c\}$$
 и при этом $a_n\to_{n\to+\infty}c,b_n\to_{n\to+\infty}c$

Доказательство. Берем из аксиомы Кантора $c\in \bigcap_{k=1}^{+\infty} [a_k,b_k]$

$$\begin{cases} 0 \le b_n - c \le b_n - a_n \\ 0 \le c - a_n \le b_n - a_n \end{cases} \Rightarrow \begin{cases} b_n - c \to 0 \\ c - a_n \to 0 \end{cases} \Rightarrow \begin{cases} b_n \to c \\ a_n \to c \end{cases}$$

По теореме об единственности предела c однозначно определено.

2.17 Теорема о существовании супремума

 $E \subset \mathbb{R}, E \neq \emptyset, E$ — огр. сверху.

Тогда $\exists \sup E \in \mathbb{R}$

Доказательство. Строим систему вложенных отрезков $[a_k, b_k]$ со свойствами:

- 1. b_k верхняя граница E
- 2. $[a_k, b_k]$ содержит точки E.

 a_1 — берём любую точку E, b_1 — любая верхняя граница.

Границы следующего отрезка найдём бинпоиском (математики это называют половинное деление).

Если $\frac{a_1+b_1}{2}$ — верхняя граница $E, [a_2,b_2] := [a_1,\frac{a_1+b_1}{2}].$

Иначе на $[\frac{a_1+b_1}{2},b_1]$ есть элементы $E,[a_2,b_2]:=[\frac{a_1+b_1}{2},b_1]$

Длина $[a_k,b_k]=b_k-a_k=rac{b_1-a_1}{2^{k-1}} o 0$

 $\exists ! c \in \bigcap [a_k, b_k]$

Проверим: $c = \sup E$ по техническому описанию супремума:

- 1. $\forall x \in E \ \forall n \ x < c$
- 2. $\forall \varepsilon > 0 \ c \varepsilon$ не верхн. гран., т.е. $\exists n : c \varepsilon < a_n$

Доказательство 1: $\forall n \ x \leq b_n, x \to x, b_n \to c \Rightarrow x \leq c$ (предельный переход)

Доказательство 2: $\forall \varepsilon > 0$ возьмём n : длина отрезка $= b_n - a_n < \varepsilon$.

$$c - a_n < b_n - a_n < \varepsilon$$

$$c - \varepsilon < a_n$$

2.18 Лемма о свойствах супремума

О свойствах sup, inf

- 1. $\emptyset \neq D \subset E \subset \mathbb{R}$ $\sup D \leq \sup E$
- 2. $\lambda \in \mathbb{R}$ $(\lambda E = \{\lambda x, x \in E\})$

Пусть $\lambda > 0$, тогда $\sup \lambda E = \lambda \sup E$

 $3. \ \sup(-E) = -\inf E$

Доказательство. 1. Множество верхних границ $E \subset$ множество верхних границ D.

- 2. λ · Множество верхних границ E= множество верхних границ λE
- 3. Множество верхних границ -E=- множество нижних границ E

2.19 Теорема о пределе монотонной последовательности

- 1. x_n вещ. посл., огр. сверху, возрастает. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 2. x_n убывает, огр. снизу. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 3. x_n монотонна, огр. $\Rightarrow \exists \lim x_n \in \mathbb{R}$

Доказательство. Достаточно доказать 1.

Проверяем $\lim x_n = \sup x_n = M \in \mathbb{R}$

По определению sup:

$$\forall \varepsilon \ \exists N \ M - \varepsilon < x_N$$

$$x_N \le x_{N+1} \le x_{N+2} \le x_{N+3} \dots \le M$$

$$\forall \varepsilon \exists N \forall n > N M - \varepsilon < x_n \leq M < M + \varepsilon$$

По определению $M = \lim x_n$

2.20 Определение числа e, соответствующий замечательный предел

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

2.21 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве

 $Y\subset X, X$ — метр.п., Y — подпространство, $D\subset Y\subset X$

- 1. D откр. в $Y \Leftrightarrow \exists G$ откр. в X $D = G \cap Y$
- 2. D замкн. в $Y \Leftrightarrow \exists F$ замкн. в X $D = F \cap Y$

Докажем 1.

Доказательство. Докажем "⇒".

 \forall точка D внутр. в Y

$$\forall x \in D \ \exists r_x \ B^Y(x, r_x) \subset D$$

Очевидно
$$D = \bigcup_{x \in D} B^Y(x, r_x) \quad G := \bigcup_{X \in D} B^X(x, r_x) - \text{откр. в } X.$$

$$G \cap Y = (\bigcup_{x \in D} B^X(r, r_x)) \cap Y = \bigcup_{x \in D} B^Y(x, r_x) = D$$

Докажем "⇐".

$$G$$
 — откр. в X — $D:=G\cap Y$ — ? D — откр. в Y

$$x \in D$$
 ? x — внутр. точка D (в Y)

$$x \in D \Rightarrow \exists B^X(x,r) \subset G \Rightarrow B^X(x,r) \cap Y = B^Y(x,r) \subset G \cap Y = D$$

Докажем 2.

Доказательство. Докажем "⇒"

$$D$$
 — замкн. в $Y \Rightarrow D^c = Y \setminus D$ — откр. в Y

$$\exists G$$
 — откр. в X , такое что $D^c = G \cap Y$

Тогда
$$G^c = X \setminus G$$
 — замкнуто в X , кроме того $D = G^c \cap Y$, т.к. $D^c = G \cap Y$

Возьмём в качестве F G^c .

Докажем "⇐".

$$F$$
 — замкн. в X

$$F \cap Y$$
 — замкн. в Y ?

$$F^c = X \setminus F$$
 — откр. в X

$$F^c \cap Y$$
 — откр. в Y

$$Y \setminus (F^c \cap Y)$$
 — замкн. в Y

$$Y \setminus (F^c \cap Y) = ^? F \cap Y$$

$$Y \setminus ((X \setminus F) \cap Y) = ^{?} F \cap Y$$

Докажем это.

$$Y \cdot \overline{F \cdot Y} = Y \cdot (\overline{\overline{F}} + \overline{Y}) = YF + Y\overline{Y} = F \cap Y$$

2.22 Теорема о компактности в пространстве и в подпространстве

 (X, ρ) — метрич. пространство, $Y \subset X$ — подпространство, $K \subset Y$

Тогда K — комп. в $Y \Leftrightarrow K$ — компактно в X.

Доказательство. Докажем "⇒"

$$K$$
 — комп. в $X \Leftrightarrow K \subset \bigcup_{\alpha \in A} G_{\alpha}, G_{\alpha}$ — откр. в X

Доказать: \exists кон. $\alpha_1 \dots \alpha_n \quad K \subset \bigcup_{i=1}^n G_{\alpha_i}$

$$K \subset \bigcup_{\alpha \in A} (G_{\alpha} \cap Y) \Rightarrow \exists$$
 кон. $\alpha_1 \dots \alpha_n : K \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap Y)$

Тогда $K\subset igcup_{i=1}^n G_{lpha_i}$

Докажем "⇐"

Дано: K — комп. в X, доказать: K — комп. в Y.

$$K \in \bigcup_{lpha \in A} O_lpha, O_lpha$$
 — откр. в Y

$$\exists G_{\alpha}: O_{\alpha} = G_{\alpha} \cap Y(G_{\alpha} - \mathit{omkp.}\ \mathit{e}\ X)$$

По двум выражениям выше:

$$K \subset \bigcup_{\alpha \in A} O_{\alpha} = \bigcup_{\alpha \in A} G_{\alpha} \cap Y = Y \cap \bigcup_{\alpha \in A} G_{\alpha}$$
$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$

Это открытое покрытие, K — компактно в $X \Rightarrow \exists \alpha_1 \dots \alpha_n : K \subset \bigcup_{i=1}^n G_{\alpha_i}$.

Тогда $K \subset \bigcup_{i=1}^n O_{\alpha_i}$ — конечное подпокрытие в Y.

2.23 Простейшие свойства компактных множеств

 (X, ρ) — метрическое пространство, $K \subset X$

1.
$$K$$
 — комп. $\Rightarrow K$ — замкн., K — огр.

2.
$$X - \text{комп}, K - \text{замкн.} \Rightarrow K - \text{комп}.$$

Доказательство. 1. ?K — замкн. $?K^c$ — откр.

$$a \not\in K$$
, проверим, что $\exists U(a) \subset K^c$

$$K \subset \bigcup_{x \in K} B(x, \frac{1}{2}\rho(x,a))$$
 — откр. покрытие

$$K$$
 — комп. $\Rightarrow \exists x_1 \dots x_n \quad K \subset \bigcup_{i=1}^n B(x_i, \frac{1}{2}\rho(x_i, a))$ — открытое покрытие

$$r := \min(\frac{1}{2}\rho(x_1, a)) \dots \frac{1}{2}\rho(x_n, a)))$$

B(a,r) не пересекается ни с одним $B(x_i, \frac{1}{2}\rho(x_i,a)) \Rightarrow B(a,r) \subset K^c$

$$?K - \text{orp.}$$

$$b \in X$$

$$K \subset \bigcup_{n=1}^{+\infty} B(b,n) = X$$

$$K$$
 — комп. $\Rightarrow K \subset \bigcup_{n=1}^m \Rightarrow K \subset B(b, \max(n_1 \dots n_m))$

2. ?K - комп.

$$\begin{cases} K\subset \bigcup_{\alpha\in A}G_{\alpha}, G_{\alpha}-\text{откр.}\\ K-\text{замкн.}, K^{c}-\text{откр.} \end{cases} \Rightarrow K^{c}\cup\bigcup_{\alpha\in A}G_{\alpha}-\text{откр. покрытие }X\Rightarrow$$

$$\Rightarrow X\subset \left(\text{может быть }K^{c}\right)\cup\bigcup_{i=1}^{n}G_{\alpha_{i}}$$

2.24 Лемма о вложенных параллелепипедах

 $[a,b]=\{x\in\mathbb{R}^m: \forall i=1\dots m \ a_i\leq x_i\leq b_i\}$ — параллеленинед.

 $[a^1,b^1]\supset [a^2,b^2]\supset\ldots$ — бесконечная последовательность параллелепипедов.

Тогда
$$\bigcap\limits_{i=1}^{+\infty}[a^i,b^i] \neq \emptyset$$

Если $diam[a^n,b^n]=||b^n-a^n||\to 0,$ тогда $\exists!c\in\bigcap\limits_{i=1}^{\infty}[a^i,b^i]$

Доказательство. $\forall i=1\dots m \quad [a_i^1,b_i^1]\supset [a_i^2,b_i^2]\supset \dots \quad \exists c_i\in \bigcap_{n=1}^{+\infty} [a_i^n,b_i^n]. \ c=(c_1\dots c_m)$ общая точка всех параллелепипедов.

$$|a_i^n - b_i^n| \le ||a^n - b^n|| \to 0 \Rightarrow_{\mathsf{T. Kahtopa}} \exists ! c_i \in \bigcap_{n=1}^{+\infty} [a_i^n, b_i^n] \Rightarrow \exists ! c = (c_1 \dots c_m)$$

2.25 Компактность замкнутого параллелепипеда в \mathbb{R}^m

[a,b] — компактное множество в \mathbb{R}^m

Доказательство. Докажем, что \exists кон. $\alpha=(\alpha_1\dots\alpha_n):[a,b]\subset\bigcup_{i=1}^nG_{\alpha_i}$

Допустим, что не ∃

 $[a^{1},b^{1}]:=[a,b]\Rightarrow [a^{1},b^{1}]$ нельзя покрыть кон. набором

 $[a^2,b^2]:=$ делим $[a^1,b^1]$ на 2^m частей, берем любую "часть", которую нельзя покрыть конечным набором G_α

:

$$diam = [a^n, b^n] = \frac{1}{2} diam[a^{n-1}, b^{n-1}] = \frac{1}{2^{n-1}} diam[a^1, b^1]$$

$$\exists c \in \bigcap_{n=1}^{+\infty} [a^n, b^n]$$

$$c \in [a,b] \subset \bigcup_{\alpha \in A} G_{\alpha}$$

$$\exists \alpha_0 \quad c \in G_{\alpha_0}$$
 — откр.

$$\exists U_{\varepsilon}(c) \subset G_{\alpha_0}$$

$$\exists n \quad diam[a^n, b^n] \ll \varepsilon$$

и тогда
$$[a^n,b^n]\subset U_{\varepsilon}(c)\subset G_{\alpha_0}$$

2.26 Реорема о характеристике компактов в \mathbb{R}^m

 $K \subset \mathbb{R}^m$. Эквивалентны следующие утверждения:

- 1. K замкнуто и ограничено
- 2. K компактно
- 3. K секвенциально компактно

Доказательство. Докажем $1 \Rightarrow 2$

K — огр. $\Rightarrow K$ содержится в [a, b]

K — замкн. в $\mathbb{R}^m \Rightarrow K$ — замкн. в [a,b]

Т.к. [a, b] — комп., по простейшему свойству компактов K — комп.

Доказательство. Докажем $2 \Rightarrow 3$

 $\forall (x_n)$ — точки из K.

?сходящаяся последовательность

Если множество значений $D = \{x_n, n \in \mathbb{N}\}$ — конечно, то \exists сход. подпосл. очевидно.

Пусть D — бесконечно

Если D имеет предельную точку, то $x_{m_k} \to a$

Если D — бесконечно и не имеет предельных точек, $K\subset\bigcup_{x\in K}B(x,\varepsilon_x)$, радиус такой, что в этом шаре нет точек D, кроме x (его может тоже не быть). Тогда $\bigcup_{x\in K}B(x,\varepsilon_x)$ — открытое покрытие K. Так как каждый шар содержит 0 или 1 точку, конечное число шаров не может покрыть K, т.к. в K бесконечное число точек (т.к. бесконечное число различных значений D). Таким образом, мы нашли открытое покрытие K, у которого нет конечного подпокрытия — противоречие.

M3137y2019

Пусть $a \in K$ — предельная точка. Возьмём из $B(a,r_1)$ точку x_{n_1} . Возьмём $r_2 < r_1$ и из соответствующего шара возьмём x_{n_2} . При $r_n \to 0$ $x_{n_k} \to a$.

Почему вблизи
$$a$$
 будет точка из произвольной последовательности?

Доказательство. Продолжим доказательство из прошлой лекции, докажем, $3 \Rightarrow 1$.

Рассмотрим секвенциально компактное K и пусть K — не ограничено. (случай ограниченного множества тривиален)

$$\exists x_n: ||x_n|| \to +\infty$$

Тогда в этой последовательности нет сходящейся последовательности, т.к. любая $x_{n_k} \to x_0 \in \mathbb{R}$ ограничена. Противоречие $\Rightarrow K$ — не секвенциально компактно.

Таким образом, если K — секвенциально компактно, то K ограничено.

Докажем замкнутость K.

Пусть \exists предельная точка $x_0 \notin K$

$$\exists x_n \to x_0$$

По секвенциальности \exists подпоследовательность $x_{n_k} \to a \in K$.

2.27 Эквивалентность определений Гейне и Коши

Определение Коши ⇔ определение Гейне.

Доказательство. Докажем "⇒".

Если дана (x_n) , удовл. определению Коши, доказать

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ 0 < \rho(f(x_n), A) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) < \varepsilon$$

Для этого
$$\delta \ \exists N \ \forall n > N \rho(x_n, a) < \delta$$

, где
$$x_n \in D, x_n \neq a$$

 $\Rightarrow \rho(f(x_n), A) < \varepsilon$

Доказательство. Докажем "←"

Пусть определение Коши не выполняется.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) > \varepsilon$$

$$\delta := \frac{1}{n} \exists x_n \in D \ 0 < \rho(x_n, a) < \frac{1}{n} \ \rho(f(x_n), A) \ge \varepsilon$$

Построена последовательность $(x_n): x_n \in D$ $x_n \neq a$ $\rho(x_n,a) < \frac{1}{n} \Rightarrow \rho(x_n,a) \to 0 \Rightarrow x_n \to a$. Кроме того, $\rho(f(x_n),A) \geq \varepsilon$ — противоречит утверждению Гейне, что $f(x_n) \to A$.

2.28 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака

2.28.1 Единственность предела

оединственностипредела

Доказательство. По Гейне. $\forall (x_n)$:

- $x_n \to a$
- $x_n \in D$
- $x_n \neq a$

$$f(x_n) \to A, f(x_n) \to B \xrightarrow{\text{теор. о ед. предела посл.}} A = B$$

2.28.2 Локальная ограниченность отображения, имеющего предел

О локальной ограниченности отображения, имеющего предел.

$$f:D\subset X o Y,$$
 $a-$ пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Тогда $\exists V(a): f$ — огр. на $V(a) \cap D$, т.е. $f(V(a) \cap D)$ содержится в некотором шаре.

Доказательство. Для $\varepsilon=1 \ \exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \in U_{\varepsilon}(A)$

Если $\not\exists f(a)$, ограниченность доказана. Иначе:

$$\forall x \in V(a) \cap D \ f(x) \in U_{\tilde{arepsilon}}(A)$$
, где $\tilde{arepsilon} = \max(arepsilon,
ho(A, f(a)) + 1)$

2.28.3 Теорема о стабилизации знака

О стабилизации знака.

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Пусть $B \in Y, B \neq A$

Тогда
$$\exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \neq B$$

Доказательство. Для

$$0 < \varepsilon < \rho(A, B) \ \exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \in U_{\varepsilon}(A)$$

 $U_{\varepsilon}(A)$ не содержит B.

2.29 Арифметические свойства пределов отображений. Формулировка для $\overline{\mathbb{R}}$

 $f,g:D\subset X\to Y, X$ — метрич. пространство, Y— норм. пространство над $\mathbb{R},$ a— пред. точка D

$$\lim_{x\to a} f(x) = A, \lim_{x\to a} g(x) = B$$

$$\lambda: D \to \mathbb{R}, \lim_{x \to a} \lambda(x) = \lambda_0$$

Тогда:

- 1. $\exists \lim_{x \to a} f(x) \pm g(x)$ и $\lim_{x \to a} f(x) \pm g(x) = A \pm B$
- 2. $\lim_{x \to a} \lambda(x) f(x) = \lambda_0 A$
- 3. $\lim_{x \to a} ||f(x)|| = ||A||$
- 4. Для случая $Y=\mathbb{R}$ и для $B\neq 0$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

 $\frac{f}{g}$ задано на множестве $D'=D\setminus\{x:g(x)=0\}$

a — пр. точка D' по теореме о стабилизации знака $\exists V(a) \ \, \forall x \in V(a) \cap D \ \, g(x)$ — того же знака, что и B, т.е. $g(x) \neq 0$

$$\dot{V}(a)\cap D'=\dot{V}(a)\cap D\Rightarrow a$$
 — пред. точка для D'

Доказательство. По Гейне. $\forall (x_n):$

• $x_n \to a$

- $x_n \in D$
- $x_n \neq a$

 $f(x_n) + g(x_n) \rightarrow^? A + B$ верно по теореме последовательности.

Аналогично прочие пункты, кроме 4.

$$f(x_n) \to A$$

$$q(x_n) \to B \neq 0 \Rightarrow \exists n_0 \ \forall n > n_0 \ q(x_n) \neq 0$$

$$\frac{f(x_n)}{g(x_n)}$$
 корректно задано при $n>n_0.$

Если $Y=\overline{\mathbb{R}}$, можно "разрешить" случай $A,B=\pm\infty$ — Тогда 3. тривиально, 1., 2. и 4. верно, если выражения $A\pm B, \lambda_0 A, \frac{A}{B}$ корректны.

Докажем 1. как в теореме об арифметических свойствах последовательности.

$$\lim_{\substack{x \to a \\ 0 \ \forall x \in D \cap V_{\delta_2}(a)}} f(x) = +\infty; \lim_{\substack{x \to a \\ 0 \ \forall x \in D \cap V_{\delta_2}(a)}} g(x) = +\infty \Leftrightarrow \forall E_1 \ \exists \delta_1 > 0 \ \forall x \in D \cap V_{\delta_1}(a) \ f(x) > E_1 \ \forall E_2 \ \exists \delta_2 > 0 \ \forall x \in D \cap V_{\delta_2}(a) \ g(x) > E_2$$

2.30 Принцип выбора Больцано-Вейерштрасса

Если в \mathbb{R}^m (x_n) — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

Доказательство. x_n — огр. $\Rightarrow x_n$ содержится в замкнутом кубе. Так как куб секвенциально компактен, x_{n_k} сходится.

2.31 Сходимость в себе и ее свойства

 x_n — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

- 1. $x_n \phi$ унд. $\Rightarrow x_n \sigma$ ограничена
- 2. $x_n \phi$ унд; $\exists x_{n_k} \text{сходящ}$. Тогда x_n сходится.

Доказательство. 1. $\varepsilon:=1$ $\exists N$ $\forall m,n:=N+1>N$ $\rho(x_m,x_{N+1})<1$

$$R := \max(1; \rho(x_1, x_{N+1}), \dots, \rho(x_N, x_{N+1}))$$

 $\forall n \ x_n \in B(x_{N+1}, R) \Rightarrow x_n$ ограничена.

2.
$$\begin{cases} \varepsilon > 0 \ \exists K \ \forall k > K \ \rho(x_{n_k}, a) < \varepsilon \\ \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon \end{cases} \stackrel{?}{\Rightarrow} x_n \to a$$

orall arepsilon>0 $\exists \tilde{N}:=\max(N,K)$ при $k>\tilde{N}$ выполняется k>K, значит $n_k\geq k>K\Rightarrow
ho(x_{n_k},a)<arepsilon.$

При
$$n>\tilde{N}\geq N$$
 $m:=n_k>\tilde{N}\geq N\Rightarrow \rho(x_n,x_{n_k})$

Итого
$$\forall n > \tilde{N} \;\; \rho(x_n,a) \leq \rho(x_{n_k},a) + \rho(x_n,x_{n_k}) < 2 arepsilon$$

2.32 Критерий Коши для последовательностей и отображений

2.32.1 Для последовательностей

- 1. В любом метрическом пространстве x_n сходящ. $\Rightarrow x_n$ фунд.
- 2. В $\mathbb{R}^m x_n \phi$ унд. $\Rightarrow x_n \text{сходящ}$.

Доказательство. 1. $x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n > N \ \rho(x_n, a) < \varepsilon$

$$x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n, m > N \rho(x_m, x_n) \le \rho(x_n, a) + \rho(x_m, a) < 2\varepsilon$$

2. $x_n - \phi$ унд. $\Rightarrow x_n - o$ гр. $\xrightarrow{\text{Б.-В.}} \exists x_{n_k} - c$ ходящ.

$$\begin{cases} \exists x_{n_k} - \text{сходящ.} \\ x_n - \text{фунд.} \end{cases} \Rightarrow x_n - \text{сходящ.}$$

2.32.2 Для отображений

 $f:D\subset X o Y,$ a- пр. точка D,Y- полное метрическое пространство.

Тогда

$$\exists \lim_{x \to a} f(x) \in Y \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D \ \rho(x_1, a) < \delta; \rho(x_2, a) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Доказательство. "⇒" как для последовательностей.

Докажем "⇐" по Гейне.

Заметим, что последовательность $f(x_n)$ — фундаментальная, т.е.

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(f(x_m), f(x_n)) < \varepsilon$$

M3137y2019

$$x_n \to a \Rightarrow \exists N \ \forall n > N \ \rho(x_n, a) < \delta$$

$$\forall m, n > N \ \rho(x_n, a) < \delta; \rho(x_m, a) < \delta \xrightarrow{\Phi_{\text{УНД.}}} \rho(f(x_n), f(x_m)) < \varepsilon$$

2.33 ! Теорема о пределе монотонной функции

 $f:D\subset\mathbb{R} o\mathbb{R}$, монотонная, $a\in\overline{\mathbb{R}}$

 $D_1:=D\cap (-\infty,a), a$ — пред. точка D_1 . Тогда:

- 1. f возрастает, огр. сверху на D_1 . Тогда \exists конечный предел $\lim_{x \to a-0} f(x)$
- 2. f убывает, огр. снизу на D_1 . Тогда \exists конечный предел $\lim_{x \to a-0} f(x)$

Доказательство. 1. $L:=\sup_{D_1}f$ $L\stackrel{?}{=}\lim_{x\to a-0}f(x)$

 $\forall \varepsilon > 0 \;\; L - \varepsilon$ — не верхн. граница для $\{f(x) : x \in D_1\} \;\; \exists x_1 : L - \varepsilon < f(x_1)$.

Тогда при $x \in (x_1, a) \cap D_1 \ L - \varepsilon < f(x_1) \le f(x) \le L$

$$\exists \delta := |x_1 - a| \ \forall x : x \in (x_1, a) \ L - \varepsilon \le f(x) < L + \varepsilon$$

Аналогично доказывается пункт 2.

2.34 Свойства непрерывных отображений: арифметические, стабилизация знака, композиция

2.34.1 Арифметические

1. $f, g: D \subset X \to Y \ x_0 \in D \ (Y - \text{норм. пространство})$

$$f,g$$
 — непр. в $x_0;\lambda:D o\mathbb{R}(\mathbb{C})$ — непр. x_0

Тогда $f \pm g, ||f||, \lambda f$ — непр. x_0

2. $f, g: D \subset X \to \mathbb{R}$ $x_0 \in D$

f, g — непр. в x_0

Тогда $f \pm g$, |f|, fg — непр. в x_0

 $g(x_0) \neq 0$, тогда $\frac{f}{g}$ — непр. x_0

Доказательство отсутствует

M3137y2019

2.34.2 Стабилизация знака

Если функция $f:D\to\mathbb{R}$ непрерывна в точке x_0 и $f(x_0)\neq 0$, то:

$$\exists V(x_0) : \forall x \in V(x_0) \cap D \quad \operatorname{sign} f(x) = \operatorname{sign} f(x_0)$$

Доказательство. Докажем для $f(x_0) > 0$.

Докажем от противного:

$$\forall n \in \mathbb{N} \ \exists x_n \in U_{x_0}\left(\frac{1}{n}\right) \cap D : g(x_n) \le 0$$

Противоречие.

2.34.3 Непрерывность композиции непрерывных отображений

$$f: D \subset X \to Y$$
 $g: E \subset Y \to Z$ $f(D) \subset E$

$$f$$
 — непр. в $x_0 \in D$, g — непр. в $f(x_0)$

Тогда $g \circ f$ непр. в x_0

Доказательство. По Гейне.

Проверяем, что $\forall (x_n): x_n \in D, x_n \to x_0 \quad g(f(x_n)) \xrightarrow{?} g(f(x_0))$

$$y_n := f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$$

$$y_n \in E$$

$$\Rightarrow g(y_n) \to g(y_0)$$

2.35 Непрерывность композиции и соответствующая теорема для пределов

2.35.1 Непрерывность композиции

Дана выше.

2.35.2 Соответствующая теорема для пределов

$$f:D\subset X\to Y\quad g:E\subset Y\to Z\quad f(D)\subset E$$

$$a$$
 — предельн. точка $D - f(x) \xrightarrow[x \to a]{} A$

$$A$$
 — предельн. точка $E \quad g(y) \xrightarrow[y \to A]{} B$

$$\exists V(a) \quad \forall x \in \dot{V}(a) \cap D \quad f(x) \neq A \quad (*)$$

Тогда
$$g(f(x)) \xrightarrow[x \to a]{} B$$

Доказательство. По Гейне.

Проверяем, что
$$\forall (x_n): \substack{x_n \in D \\ x_n \to a \\ x_n \neq a} \quad g(f(x_n)) \stackrel{?}{\to} B$$

$$y_n := f(x_n) \xrightarrow[n \to +\infty]{} A$$

 $y_n \in E$

При больших $N \quad y_n \in V(a) \Rightarrow y_n \neq A$

$$\Rightarrow g(y_n) \to B$$

2.36 ! Теорема о замене на эквивалентную при вычислении пределов. Таблица эквивалентных

2.36.1 Теорема о замене на эквивалентную при вычислении пределов

$$f, \tilde{f}, g, \tilde{g}: D \subset X \to \mathbb{R}$$

 x_0 — предельная точка D

$$f \sim \tilde{f}, g \sim \tilde{g}$$
 при $x \to x_0$

Тогда

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)\tilde{g}(x)$$

, т.е. если \exists один из пределов, то \exists и второй и имеет место равенство

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\tilde{f}(x)}{\tilde{g}(x)}$$

, если x_0 лежит в области определения $\frac{f}{g}$

Доказательство.

$$f(x)g(x) = \tilde{f}(x)\tilde{g}(x)\frac{f}{\tilde{f}}\frac{g}{\tilde{g}} \to \tilde{f}(x)\tilde{g}(x)\cdot 1\cdot 1$$

2.36.2 Таблица эквивалентных

Дана выше. (1.41, стр. 10)

M3137y2019

2.37 Теорема единственности асимптотического разложения

$$f, g_n : D \subset X \to \mathbb{R}$$
 x_0 — предельная точка D

$$\forall n \ g_{n+1} = o(g_n), x \to x_0$$

$$\exists U(x_0) \ \forall x \in \dot{U}(x_0) \cap D \ \forall i \ g_i(x) \neq 0$$

Если
$$f(x) = c_0 g_0(x) + \ldots + c_n g_n(x) + o(g_n(x))$$

$$f(x) = d_0 g_0(x) + \ldots + d_m g_m(x) + o(g_m(x))$$

 $|n \le m|$

Тогда $\forall i \ c_i = d_i$

Доказательство. $k := min\{i : c_i \neq d_i\}$

$$f(x) = c_0 g_0 + \ldots + c_{k-1} g_{k-1} + c_k g_k + o(g_k)$$

$$f(x) = c_0 g_0 + \ldots + c_{k-1} g_{k-1} + d_k g_k + o(g_k)$$

$$0 = (c_k - d_k)g_k + o(g_k)$$

$$d_k - c_k = \frac{o(g_k)}{g_k(x)} \xrightarrow[x \to x_0]{} 0$$

2.38 ! Теорема о топологическом определении непрерывности

f:X o Y — непр. на $X\Leftrightarrow \forall G\subset Y$, откр. $f^{-1}(G)$ — откр. в X.

Доказательство. " \Rightarrow " $x_0 \in f^{-1}(G)$? $\exists V(x_0) \subset f^{-1}(G)$

$$f$$
 — непр. в x_0 $\forall U(f(x_0))$ $W(x_0)$ $\forall x \in W$ $f(x) \in U$

$$f(x_0) \in G$$
 — откр. $\Rightarrow \exists U_1(f(x_0)) \subset G$

Для
$$U_1 \quad \exists W(x_0): x \in W \quad f(x) \in U_1 \subset G$$

$$W(x_0)\subset f^{-1}(G)$$

" \Leftarrow " $x_0 \in X$? непр. f в x_0

$$orall U(f(x_0)) \quad \exists W(x_0) \quad orall x \in W \quad orall f(x) \in U$$
 — надо проверить

M3137y2019

$$U(f(x_0))$$
 — откр. $\Rightarrow f^{-1}(U(f(x_0)))$ — откр., а $x_0 \in f^{-1}(U(f(x_0)))$, значит $\exists W(x_0) \subset f^{-1}(U(f(x_0)))$

Для любого
$$x \in W(x_0)$$
 будет выполняться $f(x) \in U(f(x_0))$

2.39 ! Теорема Вейерштрасса о непрерывном образе компакта. Следствия

$$f:X o Y$$
 — непр. на X

Если X — комп., то f(X) — комп.

Доказательство. ?f(X) — комп.

$$f(X) \subset \bigcup G_{\alpha}$$
 G_{α} – откр. в Y .

$$X\subset\bigcup f^{-1}(G_lpha)$$
 — откр. т.к. f — непр. $\Longrightarrow X$ — комп.

$$\exists \alpha_1 \dots \alpha_n \quad X \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i}) \Rightarrow f(X) \subset \bigcup_{i=1}^n G_{\alpha_i}$$

Следствие. Непрерывный образ компакта замкнут и ограничен.

Следствие. (1-я теорема Вейерштрасса)

$$f:[a,b] \to \mathbb{R}$$
 — непр.

Тогда f — огр.

Следствие. $f: X \to \mathbb{R}$

X — комп., f — непр. на X

Тогда $\exists \max_X f, \min_X f$

$$\exists x_0, x_1 : \forall x \in X \quad f(x_0) \le f(x) \le f(x_1)$$

Следствие. $f:[a,b] \to \mathbb{R}$ — непр.

 $\exists \max f, \min f$

2.40 Лемма о связности отрезка

Промежуток $\langle a,b \rangle$ (границы могут входить, могут не входить) — не представим в виде объединения двух непересекающихся непустых открытых множеств

Т.е.
$$\not\exists G_1, G_2 \subset \mathbb{R} - \text{откр.}:$$

M3137y2019

- $G_1 \cap G_2 = \emptyset$
- $\langle a, b \rangle \cap G_1 \neq \emptyset$ $\langle a, b \rangle \cap G_2 \neq \emptyset$
- $\langle a, b \rangle \subset G_1 \cup G_2$

Доказательство. От противного: $\alpha \in \langle a,b \rangle \cap G_1$ $\beta \in \langle a,b \rangle \cap G_2$, пусть $\alpha < \beta$

$$t := \sup\{x : [\alpha, x] \subset G_1\} \quad \alpha \le t \le \beta$$

 $t \in G_1$? нет, т.к. если да, то $t \neq \beta$ и $\exists U(t) = (t - \varepsilon, t + \varepsilon) \subset G_1 \cap [\alpha, \beta]$, это противоречит определению t:

$$[\alpha, t - \frac{\varepsilon}{2}] \subset G_1$$
$$(t - \varepsilon, t + \varepsilon) \subset G_1$$
$$[\alpha, t + \frac{\varepsilon}{2}] \subset G_1$$

 $t \in G_2$? нет, т.к. если лежит, то $t \neq \alpha \quad \exists (t - \varepsilon, t + \varepsilon) \subset G_2 \cap [\alpha, \beta)$

$$\sup\{x: [\alpha, x] \subset G_1\} \le t - \varepsilon$$

2.41 ! Теорема Больцано-Коши о промежуточном значении

 $f:[a,b] o \mathbb{R}$, непр. на [a,b]. Тогда

$$\forall t$$
 между $f(a)$ и $f(b)$ $\exists x \in [a,b]: f(x) = t$

Традиционное доказательство — бинпоиск.

Доказательство. Сразу следует из леммы о связности отрезка и топологического определения

непрерывности.

Если нашлось t, для которого доказуемое утверждение неверно, то

$$[a,b] = f^{-1}(-\infty,t) \cup f^{-1}(t,+\infty)$$

Оба множества открыты, т.к. они — прообразы открытых множеств. Кроме того, они непусты, т.к. одно из них содержит a, другое содержит b. Итого, мы представили отрезок [a,b] в виде двух непересекающихся непустых открытых множеств, противоречие по предыдущей лемме.

2.42 Теорема о сохранении промежутка

 $f:\langle a,b\rangle\to\mathbb{R}$, непр.

Тогда $f(\langle a,b \rangle)$ — промежуток.

Доказательство. Не по Кохасю.

 $m:=\inf f, M:=\sup f.$ Докажем, что $f(\langle a,b\rangle)=\langle m,M\rangle$ путем доказательства, что $f(\langle a,b\rangle)\subset \langle m,M\rangle$ и $f(\langle a,b\rangle)\supset \langle m,M\rangle.$

1. $f(\langle a, b \rangle) \subset \langle m, M \rangle$

$$\forall x \ m \le f(x) \le M \Rightarrow f(\langle a, b \rangle) \subset \langle m, M \rangle$$

2. $f(\langle a, b \rangle) \supset \langle m, M \rangle$

 ${<}k\in {<}m,M{>}$. По теореме Больцано-Коши о промежуточном значении $\exists c\in {<}a,b{>}: f(c)=k\Rightarrow k\in f({<}a,b{>})\Rightarrow {<}m,M{>}\subset f({<}a,b{>})$

2.43 Теорема Больцано-Коши о сохранении линейной связности

X,Y — метрические пространства, $f:X \to Y$ — непрерывное и сюръекция

X — линейно связное множество. Тогда Y — линейно связное множество.

Доказательство. Надо доказать, что \exists путь $[a,b] \rightarrow [A,B]$

$$f(a) = A; f(b) = B$$

X — линейно связное $\Rightarrow \exists \gamma: [\alpha,\beta] \to X, \gamma(\alpha) = a, \gamma(\beta) = b, \gamma$ — непрерывное

$$f\circ\gamma[a,b]\to Y; f\circ\gamma(\alpha)=A, f\circ\gamma(\beta)=B$$

Т.к. композиция непрерывных функций непрерывна, $f\circ\gamma$ — непрерывна.

2.44 Описание линейно связных множеств в \mathbb{R}

 $\mathbb{B}\ \mathbb{R}$ линейно связанными множествами являются только промежутки.

Доказательство. 1. Промежуток линейно связен.

$$\forall A,B \in \langle a,b \rangle \quad \exists$$
 путь: $\gamma:[A,B] \Rightarrow \langle a,b \rangle; t \mapsto t$

2. $E \subset \mathbb{R}$ — линейно связное $\stackrel{?}{\Rightarrow} E$ — промежуток

Пусть E — не промежуток

$$\exists a, b, t : a, b \in E; a < b \quad a < t < b; t \notin E$$

Линейная связность: $\gamma: [\alpha, \beta] \to E$

$$\gamma(\alpha) = a \quad \gamma(\beta) = b \quad \gamma$$
 — непр.

2.45 Теорема о бутерброде

Кусок хлеба и кусок колбасы, лежащие на столе, можно разрезать прямой на две равные по площади части каждый.

Доказательство. Рассмотрим угол φ и разделим прямой под углом φ колбасу на две равные по площади части. Это можно сделать для произвольного φ по теореме о разделении колбасы.

$$S(\varphi) = S_{\pi} - S_{\pi}$$
 (для хлеба)

$$S$$
 — непр.

Берём произвольный угол φ_0 ; $\varphi_0 + \pi$

$$\varphi_0: S_{\pi} - S_{\pi}$$

$$\varphi_0 + \pi : S_{\pi} - S_{\pi}$$

 $\exists \varphi \ S(\varphi) = 0$ по теореме Больцано-Коши о промежуточном значении.

2.46 Теорема о вписанном n-угольнике максимальной площади

Вписанный n-угольник максимальной площади — правильный.

Доказательство. Докажем, что если такой n-угольник существует, то он правильный. Предположим обратное — он не правильный \Rightarrow не все стороны равны. Возьмём точки этого n-угольника A,B,C на окружности такие, что $AB \neq BC$. Сдвинем B таким образом, что AB = BC. Площадь треугольника увеличилась (m. κ . основание не изменилось), а высота увеличилась $\Rightarrow n$ -угольник правильный.

Докажем, что такой n-угольник существует, т.е. $\exists \max S$. Зададим n-угольник углами между соседними вершинами α_i . Заметим, что $0 \le \alpha_i \le \pi$ и $\sum_{i=1}^n \alpha = 2\pi$. Совпадающие

вершины разрешены, искомый n-угольник содержит центр окружности (очевидно). Таким образом, мы задали n-угольник в \mathbb{R}^n — пространстве углов. Множество всех многоугольников ограничено гиперкубом со стороной π . Кроме того, оно замкнуто \Rightarrow по характеристике компактов в \mathbb{R}^m оно компактно.

$$S:=\sum rac{1}{2}R^2\sinlpha_i$$
 — непрерывна на компакте $\Rightarrow\exists\max S$

2.47 ! Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва

2.47.1 Теорема о непрерывности монотонной функции

 $f:\langle a,b \rangle o \mathbb{R}$, монотонна. Тогда

- 1. Точки разрыва f (если есть) I рода
- 2. f непр. на $\langle a,b\rangle \Leftrightarrow f(\langle a,b\rangle)$ промежуток

Доказательство. Рассмотрим $f \uparrow$

1. $\triangleleft x_1 \in \langle a, b \rangle$

$$\lim_{x\to x_1-0} f(x) \stackrel{\mathrm{def}}{=} \lim_{x\to x_1} f(x)|_{\langle a,x_1\rangle}$$

 $f(x)|_{\langle a,x_1\rangle} \uparrow$ и ограничена значением $f(x) \Rightarrow$ по теореме о пределе монотонной функции $\exists \lim_{x \to x_1} f(x)|_{\langle a,x_1\rangle} = \sup f(x)|_{\langle a,x_1\rangle}$. Аналогично $\exists \lim_{x \to x_1+0}$. Таким образом, для каждой точки существует предел слева и справа.

2. " \Rightarrow " следует из теоремы о сохранении промежутка.

Пусть f имеет разрыв в x_0 . Тогда либо $f(x_0-0) < f(x_0)$, либо $f(x_0) < f(x_0+0)$. Рассмотрим $f(x_0) < f(x_0+0)$. В силу монотонности f не принимает значений между $f(x_0)$ и $f(x_0+0) \Rightarrow$ множество значений — не промежуток. Противоречие.

2.47.2 Следствие о множестве точек разрыва

У монотонной функции, заданной на промежутке, имеется не более чем счётное (НБЧС) множество точек разрыва.

Доказательство.
$$f(x-0) < f(x+0)$$

Создадим инъекцию $(f(x-0),f(x+0))\leadsto q_x\in\mathbb{Q}$. Возьмём $q_x\in(f(x-0),f(x+0))$. Такая точка будет в силу плотности \mathbb{Q} в \mathbb{R} . Теперь докажем, что взятие q_x — инъекция. Рассмотрим другую точку разрыва — y.

$$\exists t \in (f(x), f(y))$$

$$f(x) \le t \le f(y)$$

$$f(x) \le f(x+0) \le t \le f(y-0) \le f(y)$$

Таким образом, (f(x-0), f(x+0)) и (f(y-0), f(y+0)) не имеют общих точек, тогда q_x все разные \Rightarrow взятие q_x — инъекция. Доказать инъективность достаточно, т.к. нам не нужна равномощность.

2.48 Теорема о существовании и непрерывности обратной функции

 $f:\langle a,b
angle
ightarrow\mathbb{R}$ — непр., строго монот.

$$m:=\inf_{\langle a,b \rangle} f(x), M:=\sup_{\langle a,b \rangle} f(x).$$
 Тогда:

- 1. f обратимая и $f^{-1}: \langle m, M \rangle \rightarrow \langle a, b \rangle$
- 2. f^{-1} строго монотонна и того же типа (возрастает или убывает)
- 3. f^{-1} непрерывна

Доказательство. Пусть $f \uparrow$

 $f(\langle a,b\rangle)$ — промежуток $\langle m,M\rangle$ (типы скобок совпадают)

f — строго монот. $\Rightarrow f$ — инъекция. Тогда $f:\langle a,b \rangle \to \langle m,M \rangle$ — биекция

$$\forall x_1 < x_2 \ f(x_1) < f(x_2)$$

$$\forall y_1 < y_2 \ f^{-1}(y_1) < f^{-1}(y_2)$$

2.49 Счетность множества рациональных чисел

 \mathbb{Q} — счётное

Доказательство.

$$\mathbb{Q}_{+} := \{ x \in \mathbb{Q} : x > 0 \}, \ \mathbb{Q}_{-} := \{ x \in \mathbb{Q} : x < 0 \}$$

$$orall q\in \mathbb{N} \ \ Q_p=\left\{rac{1}{q},rac{2}{q}\ldots
ight\}$$
 — счётно $\mathbb{Q}_+=igcup_{q=1}^\infty Q_p$ — счётно $\mathbb{Q}_-\sim \mathbb{Q}_+\Rightarrow \mathbb{Q}_-$ — счётно $\mathbb{Q}=\mathbb{Q}_+\cup \mathbb{Q}_-\cup \{0\}$ — счётно

2.50 Несчетность отрезка

[0,1] — несчётно

Доказательство. Пусть $\exists \varphi: \mathbb{N} \to [0,1]$ — биекция

 $[a_1,b_1]$ — любая из частей, где нет arphi(1)

 $[a_2,b_2]$ — любая из частей, где нет $\varphi(2)$ и $[a_2,b_2]\subset [a_1,b_1]$

 $\bigcap [a_k,b_k]\supset \{x\}\quad x$ — не имеет номера

$$\forall k \ x \in [a_k, b_k] \Rightarrow x \neq \varphi(k)$$

2.51 Континуальность множества бинарных последовательностей

Bin = множество бинарных последовательностей

Bin имеет мощность континуума

Доказательство. $\varphi: Bin \to [0,1] \cup Bin_{\text{кон.}}$

 $0101\ldots\mapsto 0.0101\ldots$ – это отображение не иньективно ($0100\ldots\mapsto 0.01;0011\ldots\mapsto 0.01$)

Иньекция достигается тем, что конечные дроби идут в $Bin_{\text{кон.}}$, а бесконечные в [0,1] \square

2.52 Равносильность двух определений производной. Правила дифференцирования.

2.52.1 Равносильность двух определений производной

Определение 1 ⇔ определению 2, т.е.

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = B \in \mathbb{R}$$

$$A = B$$

Доказательство. Докажем "⇐".

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

$$A = \frac{f(x) - f(x_0)}{x - x_0} - \frac{o(x - x_0)}{x - x_0}$$

Докажем "⇒".

$$\frac{f(x) - f(x_0)}{x - x_0} = A + \alpha(x) \quad \alpha(x) \xrightarrow[x \to x_0]{} 0$$

2.52.2 Правила дифференцирования

 $f,g:\langle a,b
angle
ightarrow\mathbb{R}$, дифф. в x_0

Тогда указанные ниже в левых частях дифференцируемы в x_0 и их производные равны.

1.
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

2.
$$\forall \alpha \in \mathbb{R} \quad (\alpha f)'(x_0) = \alpha f'(x_0)$$

3.
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4. Если $g(x_0) \neq 0$:

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Доказательство. Докажем 4 по определению.

$$\frac{\frac{f}{g}(x_0) + h - \frac{f}{g}(x_0)}{h} = \frac{\frac{f(x_0 + h) - f(x_0)}{h}g(x_0) - f(x_0)\frac{g(x_0 + h) - g(x_0)}{h}}{g(x_0 + h)g(x_0)} \xrightarrow[h \to 0]{} \text{OK}$$

2.53 Дифференцирование композиции и обратной функции

2.53.1 Дифференцирование композиции

$$f:\langle a,b
angle o \langle c,d
angle \quad x\in\langle a,b
angle \quad f$$
— дифф. в x $g:\langle c,d
angle o \mathbb{R}\quad g$ — дифф. $y=f(x)$ Тогда $g\circ f$ — дифф. в $x;(g(f(x)))'=g'(f(x))\cdot f'(x)$

Доказательство.

$$f(x+h) = f(x) + f'(x)h + \alpha(h)h, \alpha(h) \xrightarrow[h \to 0]{} 0$$

$$g(y+k) = g(y) + g'(y)k + \beta(k)k$$

$$[f'(x)h + \alpha(h)h = k; \quad k \xrightarrow[h \to 0]{} 0$$

$$g(f(x+h)) = g(f(x) + f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))(f'(x)h + \alpha(h)h) + \beta(k)(f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))f'(x)h + g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h$$

$$[g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h = \gamma(h) \cdot h; \quad \gamma(h) \xrightarrow[h \to 0]{} 0$$

2.53.2 Дифференцирование обратной функции

 $f:\langle a,b \rangle o \mathbb{R}$ — непр., строго монот. $x\in\langle a,b \rangle$ f — дифф. в $x;f'(x)\neq 0$ По определению f $\exists f^{-1}$

Тогда f^{-1} — дифф. в y = f(x) и

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

Доказательство. $\forall k \ \exists h: f(x+h) = y+k$

$$h = (x+h) - x = f^{-1}(y+k) - f^{-1}(y) = \tau(k)$$

$$\frac{f^{-1}(y+k)-f^{-1}(y)}{k} = \frac{\tau(k)}{f(x+\tau(k))-f(x)} = \frac{1}{\underbrace{\frac{f(x+\tau(k))-f(x)}{(x+\tau(k))-x}}} \xrightarrow{\text{to t.o hetip. ofd. } \phi \to 0} \frac{1}{f'(x)}$$

2.54 Теорема Ферма (с леммой)

2.54.1 Лемма

 $f:\langle a,b \rangle \to \mathbb{R}$ — дифф. в $x_0 \in (a,b); f'(x_0) > 0$

Тогда $\exists \varepsilon > 0 \ \forall x : x \in (x_0, x_0 + \varepsilon) \ f(x_0) < f(x)$

и
$$\forall x: x \in (x_0 - \varepsilon, x_0)$$
 $f(x_0) > f(x)$

Примечание. Это не монотонность.

Доказательство.

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} f'(x_0) > 0$$

 $x o x_0 + 0$ $x - x_0 > 0 \Rightarrow f(x) - f(x_0) > 0$ вблизи x_0 (по теор. о стабилизации знака)

$$x o x_0 - 0$$
 $x - x_0 < 0 \Rightarrow f(x) - f(x_0) < 0$ вблизи x_0

2.54.2 Теорема Ферма

 $f: \langle a, b \rangle \to \mathbb{R}$

 $x_0 \in (a,b)$ — точка максимума

f — дифференцируема в x_0

Тогда $f'(x_0) = 0$

Доказательство. Из леммы.

Если $f'(x_0) > 0$, то справа от x_0 есть $x : f(x) > f(x_0)$

Если $f'(x_0) < 0$, то слева от x_0 есть $x : f(x) > f(x_0)$

2.55 Теорема Ролля. Вещественность корней многочлена Лежандра

2.55.1 Теорема Ролля

 $f:[a,b]\to\mathbb{R}$ — непр. на [a,b], дифф. на (a,b)

$$f(a)=f(b)$$
. Тогда $\exists c\in(a,b):f'(c)=0$

Доказательство. По теореме Вейерштрасса.

$$x_0=\max f(x); x_1=\min f(x)$$
 $\{x_0,x_1\}=\{a,b\}\Rightarrow f=const; f'\equiv 0$ Иначе: пусть $x_0\in (a,b)\xrightarrow[\mathrm{T.\Phiedma}]{\mathrm{Pr.\Phiedma}} f'(x_0)=0$

2.55.2 Вещественность корней многочлена Лежандра

 $n \in \mathbb{N}$

$$L_n(x) = ((x^2-1)^n)^{(n)}$$
 — полиномы Лежандра (с точностью до умножения на константу) $\deg L_n = n$

Утверждение: L_n имеет n различных вещественных корней.

Доказательство. Рассмотрим $(x^2-1)^n$. У этого многочлена 2 корня $\{-1,1\}$, каждый кратности n.

Возьмём производную. По т. Ролля у этого многочлена есть корень $\in (-1,1)$. Кроме того, $\{-1,1\}$ все ещё корни, у них кратность n-1. Т.к. $\deg=2n-1$, кратность нового корня 1. На n-ном шаге получается n корней, каждый кратности 1.

2.56 ! Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пределе производной

2.56.1 Теорема Лагранжа

 $f:[a,b] o \mathbb{R}$ — непр., дифф. в (a,b). Тогда $\exists c \in (a,b)$, такое что:

$$f(b) - f(a) = f'(c)(b - a)$$

Примечание. Теорему Лагранжа можно интерпретировать как следующее: $\frac{f(b)-f(a)}{b-a}$ — тангенс угла между хордой графика и горизонталью, а f'(c) — касательная. Таким образом, если провести хорду графика, то можно найти точку между точками пересечения графика и хорды такую, что касательная к графику будет параллельна этой хорде.

Доказательство. Следует из теоремы Коши при g(x)=x

2.56.2 Теорема Коши

$$f,g:[a,b] o\mathbb{R}$$
 $f,g-$ дифф. в $(a,b);g'
eq 0$ на $(a,b).$ Тогда

 $\exists c \in (a,b)$, такое что:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Теоремы Коши.

$$F(x) := f(x) - kg(x)$$

Подберем k такое, что F(b) = F(a)

$$f(b) - kg(b) = f(a) - kg(a)$$
$$k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

По т. Ролля $\exists c: F'(c) = 0$

$$f'(c) - kg'(c) = 0$$
$$k = \frac{f'(c)}{g'(c)}$$

2.56.3 Следствия об оценке приращения и о пределе производной

1. f непр. на [a,b], дифф. в (a,b)

$$\exists M: \forall x \ |f'(x)| \leq M$$

Тогда $\forall x, x+h \in [a,b]$

$$|f(x+h) - f(x)| \le M|h|$$

2. f — непр. на [a,b
angle, дифф. на (a,b
angle

$$\exists \lim_{x \to a+0} f'(x) = k \in \overline{\mathbb{R}}$$

Тогда
$$f'_+(a) = k$$

Доказательство. Следствия 2.

 $\exists a < c < a+h$, такой что:

$$\frac{f(a+h) - f(a)}{h} = f'(c) \xrightarrow[h \to 0]{} k$$

2.57 Теорема Дарбу. Следствия

2.57.1 Теорема Дарбу

 $f:[a,b] o\mathbb{R}$ — дифф. на [a,b]

Тогда $\forall C$ лежащего между f'(a), f'(b)

$$\exists c \in (a,b) : f'(c) = C$$

Доказательство. $F(x):=f(x)-C\cdot x$ — у неё $\exists \max_{[a,b]}$ (в силу непрерывности)

F'(x) = f'(x) - C F'(a) и F'(b) разных знаков.

1. F'(a) > 0 F'(b) < 0

По лемме при x>a, близких к $a\ f(x)>f(a)\Rightarrow\max f$ достигается в $c\in(a,b)$

2.57.2 Следствия

Следствие. 1. Функция f' обладает свойством "сохранять промежуток"

2. f' не может иметь разрывов вида "скачок"

2.58 Теорема о свойствах показательной функции

f — показ. ф-ция

Тогда:

1.
$$\forall x \ f(x) > 0; f(0) = 1$$

2.
$$\forall r \in \mathbb{Q} \quad f(rx) = (f(x))^r$$

3.
$$f$$
 — строго монот.: $a:=f(1)$

Тогда $a \neq 1$, если a > 1 — возр., если a < 1 — убыв.

4. Множество значений $f \quad (0,+\infty)$

5.
$$\tilde{f}(1)=f(1)$$
, тогда $f=\tilde{f}$

Доказательство. 1. $f \not\equiv 0 \ \exists f(x_0) \neq 0$

$$x = x_0, y = 0$$
 $f(x_0 + 0) = f(x_0) \cdot f(0) \Rightarrow f(0) = 1$

Если $f(x_1) = 0$, тогда

$$\forall x \quad f(x) = f(x - x_1) \cdot f(x_1) = 0$$
$$f(x) = f\left(\frac{x}{2}\right) \cdot f\left(\frac{x}{2}\right) > 0$$

- 2. Как в опр. ст. с рациональным показателем
 - (a) r = 1
 - (b) $r \in \mathbb{N}$

$$f(2x) = f(x+x) = f(x) \cdot f(x) = f(x^2)$$
$$f((n+1)x) = f(nx+x) = f(nx) \cdot f(x) = (f(x))^n f(x) = (f(x))^{n+1}$$

(c) $r \in "-\mathbb{N}"$

$$1 = f(0) = f(nx + (-n)x) = f(nx) \cdot f(-nx) = (f(x))^n f(-nx)$$

(d)
$$r = 0$$

$$f(rx) = f(0) = 1 = (f(x))^0$$

(e)
$$r = \frac{1}{n}$$

$$f(x) = f(n \cdot \frac{x}{n}) = (f(\frac{x}{n}))^n$$
$$f(\frac{1}{n}x) = (f(x))^{\frac{1}{n}}$$

(f)
$$r = \frac{m}{n} \quad m \in \mathbb{Z}, n \in \mathbb{N}$$

$$f(\frac{m}{n}x) = f(m \cdot (\frac{1}{n}x)) = (f(\frac{1}{n}x))^m = (f(x)^{\frac{1}{n}})^m$$

3.
$$a = 1$$
 $f(1) = 1$ $\forall r \in \mathbb{Q}$ $f(r) = 1^r = 1$

$$f$$
 — непр. и $f(x)=1$ при $x\in\mathbb{Q}\Rightarrow f\equiv 1$

$$a > 1$$
. Тогда $\forall x > 0$ $f(x) > 1$

$$r \in \mathbb{Q}, r > 0$$
 $f(r) = r(r \cdot 1) = (f(1))^r = a^r > 1$

Значит $\forall x \in \mathbb{R}, x > 0$ берем $r_k \to x (r_k \in \mathbb{Q})$

$$f(r_k) o f(x)$$
, значит $f(x) \ge 1$

$$f(x) = f((x - r) + r) = f(x - r) \cdot f(r) > 1$$

$$\exists r \in \mathbb{Q} : 0 < r < x$$

возр.
$$x \in \mathbb{R}, h > 0$$

$$f(x+h) = f(x) \cdot f(h)$$

$$f(h) > 1 \Rightarrow f(x+h) > f(x)$$

a < 1 — аналогично.

4.
$$f(\mathbb{R}) = (\inf f, \sup f)$$

$$\inf f = 0 \quad \sup f = +\infty$$

$$f(1) = a > 1$$

$$a^n, n \in \mathbb{Z}$$

5.
$$\tilde{f}(1) = f(1) \Rightarrow \forall r \quad \tilde{f}(r) = f(r)$$

$$\forall x \quad r_k \to x$$

$$\tilde{f}(r_k) = f(r_k)$$

$$\tilde{f}(r_k) \to \tilde{f}(x); f(r_k) \to f(x) \Rightarrow f(x) = \tilde{f}(x)$$

2.59 Выражение произвольной показательной функции через экспоненту. Два следствия

 \exists показательная функция f_0 , удовлетворяющая

$$\frac{f_0(x) - 1}{x} \xrightarrow[x \to 0]{} 1, f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

f — произвольная показательная функция. Тогда $\exists \alpha \in \mathbb{R} : \forall x : f(x) = f_0(\alpha x)$

Доказательство. $a := f(1), \exists \alpha : f_0(\alpha) = a$

 $f_0(\alpha x)$ и есть f(x), т.к. у них совпадает значение в 0.

Докажем, что $f_0(\alpha x)$ — показ. функция.

$$f_0(\alpha(x+y)) = f_0(\alpha x + \alpha y) = f_0(\alpha x) f_0(\alpha y)$$

Следствие. f_0 — единственна.

Доказательство. Пусть h(x) — ещё одна такая функция $\Rightarrow \exists \alpha : h(x) = f_0(\alpha x)$

$$1 \underset{x \to 0}{\longleftarrow} \frac{h(x) - 1}{x} = \frac{f_0(\alpha x) - 1}{x} = \frac{f_0(\alpha x) - 1}{\alpha x} \cdot \alpha \xrightarrow[x \to 0]{} \alpha \Rightarrow \alpha = 1$$

Следствие. $\forall a > 0, a \neq 1 \quad \exists ! f : f(1) = a$

Доказательство. Для этого $a \ \exists ! \alpha : f_0(\alpha) = a$

$$f(x) := f_0(\alpha x)$$

$$f(1) = a = f(\alpha)$$

2.60 Показательная функция от произведения

f — показ. ф-ция. $\forall r \in \mathbb{R} \quad f(rx) = (f(x))^r$

Доказательство. Для $r \in \mathbb{Q}$ доказано выше. (2.58, стр. 54)

$$f(a_n x) = f(x)^{a_n} \to f(x)^r$$

2.61 Формула Тейлора с остатком в форме Пеано

Остаток: $T_n := o((x - x_0)^{n+1}), x \to x_0.$

$$f(x) = f(x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^{n+1})$$

Доказательство.

Лемма 1. $\varphi: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle, \varphi$ п раз дифференциируема в x_0 и $\varphi(x_0) = \varphi'(x_0) = \ldots = \varphi^{(n)}(x_0) = 0$.

Тогда
$$\varphi(x) = o((x - x_0)^n), x \to x_0$$

Доказательство. База: n=1.

$$\varphi(x) = \varphi(x_0) + \varphi'(x_0)(x - x_0) + o(x - x_0) = o(x - x_0)$$

Переход:

 $\varphi'(x) = o((x-x_0)^n)$ по индукционному переходу.

$$r(x) = r(x_0) + r'(x_0)(x - x_0) + o(x - x_0) = 0 + o((x - x_0)^n)(x - x_0) + o(x - x_0) =$$

$$= o((x - x_0)^{n+1}) + o(x - x_0) = o((x - x_0)^{n+1})$$

 $T_n := f(x) - f(x_0) - \ldots - \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ — подходит в лемму $\Rightarrow T_n = o((x - x_0)^{n+1})$ \square

2.62 ! Формула Тейлора с остатком в форме Лагранжа

Остаток: $R_n:=rac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$, где $c\in (x_0,x)$ (или наоборот, если $x< x_0$).

$$f(x) = f(x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Доказательство.

$$g(t) := f(x) - f(t) - f'(t)(x - t) - \dots - \frac{f^{(n)}(t)}{n!}(x - t)^n$$

 $g(x) = 0, g(x_0) \stackrel{\text{def}}{=} R_n$

$$g'(t) = \left(f(x) - f(t) - f'(t)(x - t) - \dots - \frac{f^{(n)}(t)}{n!}(x - t)^n\right)'$$

$$g'(t) = 0 - f'(t) - (f''(t)(x - t) - f'(t)) - \dots - \left(\frac{f^{(n)}(t)}{n!}(x - t)^n\right)'$$

$$g'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n$$

$$h(x) := (x_0 - x)^{n+1}, n+1 > 0$$

По т. Коши: (можно применить, т.к. $h' \neq 0$, $g, h - \partial u \phi \phi$. на (x, x_0))

$$\frac{g(x) - g(x_0)}{h(x) - h(x_0)} = \frac{g'(c)}{h'(c)}$$

и при этом $c \in (x, x_0)$.

$$\frac{0 - R_n}{0 - (x - x_0)^{n+1}} = \frac{-\frac{f^{(n+1)}(t)}{n!}(x - t)^n}{-(n+1)(x - c)^n}$$
$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

2.63 Метод Ньютона

 $f:\langle a,b \rangle o \mathbb{R}$ — дважды дифф.

$$m:=\inf_{\langle a,b\rangle}|f'|>0$$

$$M:=\sup|f''|$$

$$\xi \in (a,b) : f(\xi) = 0$$

$$x_1 \in (a,b): |x_1 - \xi| \frac{M}{2m} < 1$$

Рассмотрим последовательность $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Тогда $\exists \lim x_n = \xi$ и при этом !. Кроме того, оно очень быстро сходится.

$$|x_n - \xi| \le \left(\frac{M}{2m}|x_1 - \xi|\right)^{2^n}$$

$oldsymbol{2}$.64 Иррациональность числа e^2

$$e^2$$
 — ирр.

Доказательство. Предположим обратное: e^2 — рационально. Тогда e^2 представимо следующим образом:

$$e^2 = \frac{2k}{n}$$

$$ne = 2ke^{-1}$$

$$n(2k-1)!e = (2k)!e^{-1}$$

$$n(2k-1)!e = n(2k-1)!\left(1+1+rac{1}{2}+\ldots+rac{1}{(2k-1)!}+rac{e^c}{(2k)!}
ight) =$$
 целое число $+rac{ne^c}{2k}$

$$\frac{ne^c}{2k} \le \frac{ne}{2k} = e \cdot e^{-2} = e^{-1} \le \frac{1}{2}$$

$$(2k)!e^{-1}=(2k)!\left(1-1+\frac{1}{2}+\ldots+\frac{1}{(2k)!}-\frac{e^d}{(2k+1)!}\right)=\text{целое число}-\frac{e^d}{2k+1}$$

Заметим, что $d \in [-1, 0]$

$$\frac{e^d}{2k+1} \le \frac{e^d}{3} \le \frac{e^0}{3} \le \frac{1}{3}$$

Дробная часть левой части $\leq \frac{1}{2}$, дробная часть правой $\geq \frac{2}{3}$ — противоречие. \square

2.65 Следствие об оценке сходимости многочленов Тейлора к функции. Примеры

$$|f^{(n+1)}| \le M$$

$$|R_n(x_0)f(x)| \le \frac{M|x - x_0|^{n+1}}{(n+1)!}$$

Пусть $f \in C^\infty\langle a,b \rangle, \exists M>0: \forall n \in N, t \in \langle a,b \rangle \quad |f^{(n)}(t)| \leq M.$ Тогда

$$T_n(x_0)f(x) \xrightarrow[n\to\infty]{} f(x)$$

2.66 Теорема о разложении рациональной функции на простейшие дроби

$$P(x), Q(x)$$
 — многочлен $\deg P < \deg Q = n$

$$Q(x) = (x - a_1)^{k_1} \dots (x - a_m)^{k_m} \quad (k_1 + \dots + k_m = n; a_i \neq a_j)$$

Тогда ∃

$$\frac{P(x)}{Q(x)} = \left(\frac{A_1}{(x-a_1)} + \frac{A_2}{(x-a_1)^2} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) + \left(\frac{B_1}{(x-a_2)} + \frac{B_2}{(x-a_2)^2} + \dots + \frac{B_{k_2}}{(x-a_2)^{k_2}}\right) + \dots + \left(\frac{C_1}{(x-a_m)} + \frac{C_2}{(x-a_m)^2} + \dots + \frac{C_{k_m}}{(x-a_m)^{k_m}}\right)$$

Доказательство.

$$\frac{P(x)}{(x-a_1)^{k_1}\dots(x-a_m)^{k_m}} = \frac{1}{(x-a_1)^{k_1}} \frac{P(x)}{(x-a_2)^{k_2}\dots(x-a_m)^{k_m}} =
= \frac{1}{(x-a_1)^{k_1}} (A_{k_1} + A_{k_1+1}(x-a_1) + A_{k_1-2}(x-a_1)^2 + \dots + A_1(x-a_1)^{k_1} + o((x-a_1)^{k_1}))
\frac{P}{Q} - \left(\frac{A_1}{x-a_1} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) = \frac{o((x-a_1)^{k_1})}{(x-a_1)^{k_1}}$$

$$\frac{P}{Q}-$$
 (Пр. часть) = знам. сократится \Rightarrow многочлен $\equiv 0$