Template

Joshua T. Vogelstein*1,2

¹Department of Biomedical Engineering, Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University

²University of Something Else

This is the abstract.

The bibliography file has a relatively recent copy of all neurodata pubs.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

1 This is a section

The quick brown fox jumps over the lazy dog Eq. (1).

The quick brown fox jumps over the lazy dog [1–8].

The quick brown fox jumps over the lazy dog Figure 1.

The quick brown fox jumps over the lazy dog.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.____

Add cats

The quick brown fox jumps over the lazy dog.

The quick [brown | chartreuse] fox jumps over the lazy [ass] dog

Aligned equation:

$$e^{i\pi} - 1 = 0, (1)$$

$$\chi = V - E + F \tag{2}$$

^{*}jovo@jhu.edu

Enumerate:

- 1. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
- 2. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.

Itemize:

- Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis.
- Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Description:

The The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.

Quick brown fox jumps over the lazy dog

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.

Table 1: Table.

Metrics	Sub	Phase 1	Phase 2				
1							
The	quick	brown	fox				

Table 2: The median sample size for each method to achieve power 85% at type 1 error level 0.05, grouped into monotone (type 1-5) and non-monotone simulations (type 6-19) for both one- and ten-dimensional settings, normalized by the number of samples required by Mgc. In other words, a 2.0 indicates that the method requires double the sample size to achieve 85% power relative to Mgc. Pearson, RV, and Cca all achieve the same performance, as do Spearman and Kendall. Mgc requires the fewest number of samples in all settings, and on average for high-dimensional settings, all other methods require about two to three times more samples than Mgc.

Dimensionality	One-Dimensional			Ten-Dimensional		
Dependency Type	Monotone	Non-Mono	Average	Monotone	Non-Mono	Average
MGC	1	1	1	1	1	1
DCORR	1	2.6	2.2	1	3.2	2.6
Mcorr	1	2.8	2.4	1	3.1	2.6
НнG	1.4	1	1.1	1.7	1.9	1.8
Hsic	1.4	1.1	1.2	1.7	2.4	2.2
Mantel	1.4	1.8	1.7	3	1.6	1.9
PEARSON / RV / CCA	1	>10	>10	8.0	>10	>10
Spearman / Kendall	1	>10	>10	n/a	n/a	n/a
Mic	2.4	2	2.1	n/a	n/a	n/a

1.1 This is a subsection

The quick brown fox jumps over the lazy dog.

1.1.1 This is a subsubsection

The quick brown fox jumps over the lazy dog.

This is a paragraph The quick brown fox jumps over the lazy dog.

This is a subparagraph The quick brown fox jumps over the lazy dog.

Figure 1: Lion is awesome.

Algorithm 1 Mgc test statistic. This algorithm computes all local correlations, take the smoothed maximum, and reports the (k,l) pair that achieves it. For the smoothing step, it: (i) finds the largest connected region in the correlation map, such that each correlation is significant, i.e., larger than a certain threshold to avoid correlation inflation by sample noise, (ii) take the largest correlation in the region, (iii) if the region area is too small, or the smoothed maximum is no larger than the global correlation, the global correlation is used instead. The running time is $\mathcal{O}(n^2)$.

```
Input: A pair of distance matrices (A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}.
Output: The Mgc statistic c^* \in \mathbb{R}, all local statistics C \in \mathbb{R}^{n \times n}, and the corresponding local scale
     (k,l) \in \mathbb{N} \times \mathbb{N}.
 1: function MGCSAMPLESTAT(A, B)
         C = \mathsf{MGCALLLocal}(A, B)
                                                                                                      > All local correlations
         \tau = \mathsf{THRESHOLDING}(\mathcal{C})
                                                             ⊳ find a threshold to determine large local correlations
         for i,j:=1,\ldots,n do r_{ij} \leftarrow \mathbb{I}(c^{ij}>\tau) end for

    identify all scales with large correlation

    binary map encoding scales with large correlation

         \mathcal{R} \leftarrow \{r_{ij}: i, j = 1, \dots, n\}
 6:
         \mathcal{R} = \mathsf{Connected}(\mathcal{R})
                                                                ▷ largest connected component of the binary matrix
 7:
         c^* \leftarrow \mathcal{C}(n,n)
                                                                                  k \leftarrow n, l \leftarrow n
 8:
         if \left(\sum_{i,j} r_{ij}\right) \geq 2n then
                                                   proceed when the significant region is sufficiently large
             [c^*, k, l] \leftarrow \max(\mathcal{C} \circ \mathcal{R})
                                                           ⊳ find the smoothed maximum and the respective scale
10:
11:
         end if
12: end function
```

References and Notes

- [1] Amit, Y. & Geman, D. Shape quantization and recognition with randomized trees. *Neural Computation* **9**, 1545–1588 (1997). URL http://dx.doi.org/10.1162/neco.1997.9.7.1545. http://dx.doi.org/10.1162/neco.1997.9.7.1545.
- [2] Choromanska, A., Jebara, T., Kim, H., Mohan, M. & Monteleoni, C. *Fast Spectral Clustering via the Nyström Method*, 367–381 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).
- [3] Bakir, G., Hofmann, T. & Scholkopf, B. Predicting structured data (MIT press, 2007).
- [4] Goodfellow, I. et al. Generative adversarial nets. In Advances in neural information processing systems, 2672–2680 (2014).
- [5] Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. & Ionescu, C. Using fast weights to attend to the recent past. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I. & Garnett, R. (eds.) *Advances in Neural Information Processing Systems 29*, 4331–4339 (Curran Associates, Inc., 2016).
- [6] Hagmann, P. From diffusion MRI to brain connectomics. Ph.D. thesis, STI, Lausanne (2005). URL http://vpaa.epfl.ch/page14976.html.
- [7] Tang, M., Park, Y. & Priebe, C. E. Out-of-sample extension for latent position graphs (2013). Arxiv preprint at http://arxiv.org/abs/1305.4893.
- [8] E.Aleskerov, B.Frelisleben & B.Rao. Cardwatch: A neural network based database mining system for credit card fraud detection. In *Proceedings of IEEE Computational Intelligence for Financial Engineering*, 220–226 (1997).