最短経路

離散数学・オートマトン 2020年後期 佐賀大学理工学部 只木進一

最短経路問題とは

- ■有向ネットワーク
 - ●各辺に距離・コスト(正の実数)
- 始点から終点までの最短有向道を見つける
 - ■辺の向きがそろった道
- ■距離・コストの組み合わせ最適化問題

すべての弧の距離が同じならば 幅優先探索で十分

幅優先探索ではダメな理由

弧の長さがばらばらの値

幅優先探索では

- v_4 への経路が $v_0 \rightarrow v_1 \rightarrow v_4$ となり、距離が5
- しかし、経路 $v_0 \rightarrow v_1 \rightarrow v_3 \rightarrow v_4$ のほうが距離4
- 頂点の移動数が多くても、距離の短い道がある

Dijkstra法:初期化

```
p(v): 始点から頂点vへの距離
```

q(v): 始点から頂点vへ経路の、vの一つ前の頂点

l(e):辺eの長さ

$$U = \{v_0\}$$

$$W = \emptyset$$

$$p(v_0) = 0$$

$$p(u) = +\infty(\forall u \in V \setminus \{v_0\})$$

$$q(v) = \text{NULL}(\forall u \in V)$$

Uをp(w)によるヒープとして実装すると効率的

Dijkstra法:アルゴリズム

```
1. while (U \neq \emptyset)
      w = U. poll() //p(w)が最小であるw \in U
     forall (e \in \delta^+ w) {
3.
        x = \partial^{-}e //wの隣接頂点
4.
5.
        if (p(x) > p(w) + l(e)) {//eを使ったほうが近距離
6.
           q(x) \leftarrow w
7.
           p(x) \leftarrow p(w) + l(e)
8.
           if (x \in U) { U. reduce Value (x) //xの値を変更}
9.
           else { U. add(x) //Uにxを追加}
                                                 ヒープ中のp(x)の値が
     }}
10.
                                                 減ることがあることに注意
11. W \leftarrow W \cup \{w\}
```

12.}

	4.4											
		注目している頂点	W	U	p	q	変を受け手順					
	0		Ø	$\{v_0\}$	$p(v_0) = 0$							
	1	v_0	$\{v_0\}$	$\{v_1, v_2\}$	$p(v_1) = 2$	$q(v_1) = v_0$						
					$p(v_2) = 1$	$q(v_2) = v_0$						
	2	v_2	$\{v_0, v_2\}$	$\{v_1, v_3\}$	$p(v_3) = 4$	$q(v_3) = v_2$	3					
	3	v_1	$\{v_0, v_1, v_2\}$	$\{v_3, v_4\}$	$p(v_4) = 5$	$q(v_4) = v_1$	4					
					$p(v_3) = 3$	$q(v_3) = v_1$						
	4	v_3	$\{v_0, v_1, v_2, v_3\}$	$\{v_4\}$	$p(v_4) = 4$	$q(v_4) = v_3$						
	5	v_4	$\{v_0, v_1, v_2, v_3, v_4\}$	Ø								

$$p(v_0) = 0 p(v_1) = 2 p(v_4) = 4$$

$$v_0 2 v_1 3 v_4$$

$$p(v_2) = 1 3 p(v_3) = 3$$

$$p(v_6) = 4 v_6$$

	注目している頂点	W	U	p	q	変をけ手
0		Ø	$\{v_0\}$	$p(v_0) = 0$		
1	v_0	$\{v_0\}$	$\{v_1, v_2\}$	$p(v_1) = 2$	$q(v_1) = v_0$	
				$p(v_2) = 1$	$q(v_2) = v_0$	
2	v_2	$\{v_0, v_2\}$	$\{v_1, v_3, v_6\}$	$p(v_3) = 3$	$q(v_3) = v_2$	
				$p(v_6) = 4$	$q(v_6) = v_2$	
3	v_1	$\{v_0, v_1, v_2\}$	$\{v_3, v_4, v_6\}$	$p(v_4) = 5$	$q(v_4) = v_1$	4
4	v_3	$\{v_0, v_1, v_2, v_3\}$	$\{v_4, v_5, v_6\}$	$p(v_5) = 6$	$q(v_5) = v_3$	5
				$p(v_4) = 4$	$q(v_4) = v_3$	
5	v_4	$\{v_0, v_1, v_2, v_3, v_4\}$	$\{v_5, v_6\}$	$p(v_5) = 5$	$q(v_4) = v_3$	
6	v_6	$\{v_0, v_1, v_2, v_3, v_4, v_6\}$	$\{v_{5}\}$			
7	v_5	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6\}$	Ø			

Dijkstra法の正当性 証明概要

- ■補題1:頂点は、始点からの距離が短い順にWに入る。また、Wに入った頂点の 距離を更新することはない
- ■補題2: U及びWに属する頂点には、始 点からの経路があり、その時点で最短で ある。

補題1

- Dijkstra法の実行に伴って、頂点がv₀, v₁, v₂, ···· の順に集合Wに追加されるとする
 - 頂点名は、元のネットワークの頂点名でないことに注

$$0 \le p(v_0) \le p(v_1) \le p(v_2) \le \dots \le p(v_i) \le p(v_{i+1}) \le \dots$$

→ つまりWには、距離の小さい頂点から順に追加 されていく。従って、Wに入った頂点vに対する p(v)が後から更新されることはない。

- Dijkstra法の実行中に、以下が常に成り立 つことを示す
 - Wの要素である頂点への距離は、Wの要素でない任意の頂点への距離より大きいことはない $\max\{p(u) \mid u \in W\} \le \min\{p(u) \mid u \in V \setminus W\}$
- - **p**(v)を更新することはない

■U及びWに属する頂点には、始点からの 最短経路がある

補題2が正しいこと

- U及びWに属する頂点には、始点からの 最短経路がある: 自明
- ■Wに属する頂点は、より短い経路が見つかる度に更新→やがてUに入り、距離確定