

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Instance Segmentation

Lecture 18

Instance Segmentation

Segment each instance of the same class separately.

Instance Segmentation

A simple solution

A simple solution

Use results from object detection

Mask - RCNN

Mask R-CNN

Mask R-CNN = Faster R-CNN + FCN on Rols

8

RolAlign vs. RolPool

RolPool: nearest neighbor quantization

ROI-Pooling

https://tinyurl.com/y6xpm24d

ROI-Pooling

https://tinyurl.com/y6xpm24d

RolAlign vs. RolPool

- RolPool: nearest neighbor quantization
- RolAlign: bilinear interpolation

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Rol placement

Rol-Pooling

3x3 Rol Pooling

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Rol-Pooling

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

3x3 Rol Pooling

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Now divide the 3x3 region:

$$6.25 / 3 = 2.08$$

$$4.53 / 3 = 1.51$$

3x3 Rol Pooling

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Now further divide a 2.08 x1.25 into 3 x 3 equal part and ultimately find the coordinate of 4 points that further using maxpool operation help to find a single output of 3 x 3 required grid

In our case we're calculating first point (top left) coordinates like this:

$$X = 9.25 + (2.08/3) * 1 = 9.94$$

•
$$Y = 6 + (1.51/3) * 1 = 6.50$$

To calculate the second point (top right) we have to change only the X:

$$X = 9.25 + (2.08/3) * 2 = 10.64$$

•
$$Y = 6 + (1.51/3) * 1 = 6.50$$

•
$$X = X_box + (2.08/3) * 1 = 9.94$$

•
$$Y = Y_box + (1.51/3) * 2 = 7.01$$

•
$$X = X_box + (2.08/3) * 2 = 10.64$$

•
$$Y = Y_box + (1.51/3) * 2 = 7.01$$

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Sampling points distribution

- Our point has coordinates (9.44, 6.50)
- Connecting it with 4 closest neighboring cells

					6.25			
		(9.94, 6. (x1,y1)	(x2,y1)	1.51				$(\mathbf{x}, \mathbf{y}) = (9.94, 6.50)$
•		(x1,y2)	(x2, y2)	\				(x1, y1) = (9.5, 6.50), $(x2, y1) = (10.5, 6.50),$ $(x1, y2) = (9.5, 7.50),$ $(x2, y2) = (10.5, 7.50),$
4.53								
	L							

				6.25				<∨ < ₩r	ALA
	0.1	0.2).3	0.4	0.	5	0.6	0.8	
	1	0.7	1.2	0.6	0.		0.9	0.4	
4.53	0.9	0.8).7	0.3	0.	5	0.2	0.5	
	0.2	0.5	1	0.7	0.	l 0.1		0.8	
	0.6	0.2	1	0.0	0		0.4	0.2	

$$Q_{11} = 0.1, Q_{21} = 0.2$$

 $Q_{12} = 1, Q_{22} = 0.7$

$$\begin{array}{c} \text{CF CENTER FOR RESEARCH} \\ \text{IN COMPUTER VISION} \end{array} \\ P \approx \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{11} + \frac{x - x_1}{x_2 - x_1} Q_{21} \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{12} + \frac{x - x_1}{x_2 - x_1} Q_{22} \right) \\ \text{Bilinear Interpolation equation} \end{array}$$

$$(x, y) = (9.94, 6.50)$$

 $(x1, y1) = (9.5, 6.50), (x2, y1) = (10.5, 6.50),$
 $(x1, y2) = (9.5, 7.50), (x2, y2) = (10.5, 7.50),$

$$Q_{11} = 0.1, Q_{21} = 0.2$$

 $Q_{12} = 1, Q_{22} = 0.7$

$$P(1,1) = \frac{P(9.94, 6.50)}{(7.5 - 6.5)/(7.5 - 6.5)} = \frac{(7.5 - 6.5)}{(7.5 - 6.5)} = \frac{(10.5 - 9.5) * 0.1 + (9.94 - 6.5)}{(7.5 - 6.5)} = \frac{(10.5 - 9.5) * 0.2)}{(10.5 - 9.5)} + \frac{(6.5 - 6.5)}{(7.5 - 6.5)} = \frac{(10.5 - 9.5) * 0.7)}{(10.5 - 9.5)} = \frac{0.14}{(10.5 - 9.5)} = \frac{(10.5 - 9.5) * 0.7}{(10.5 -$$

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

$$\begin{array}{c} \text{ROI-Align} \\ \text{ROI-Align} \end{array}^{P \approx \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{11} + \frac{x - x_1}{x_2 - x_1} Q_{21} \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} Q_{12} + \frac{x - x_1}{x_2 - x_1} Q_{22} \right) }_{\text{Bilinear Interpolation equation}}$$

When you take the first point from our box, you're connecting with closest neighboring cells (exactly to the middle). In this case, our point has coordinates (9.44, 6.50).

Closest middle of the cell in top-left direction is (9.50, 6.50) would be (9.50, 5.50) if our point was only 0.01 higher on the grid). Then we have to select a bottom-left point and the close one is (9.50, 7.50). Following the same rule, we're selecting (10.50, 6.50) and (10.50, 7.50) as top-right and bottom-right points. Above the RoI, you could see the whole calculation to get the value for the first point is **0.14**

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

1x1 = MAX(0.14, 0.21, 0.51, 0.43) = 0.51

3x3 RolAlign

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

3x3 RolAlign

0.51	0.46	0.71
0.86	0.50	0.52
0.56	0.83	>

3x3 RolAlign

0.51	0.46	0.71
0.86	0.50	0.52
0.56	0.83	0.30

3x3 RolAlign

https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

Mask R-CNN

 From RolAlign features, predict class label, bounding box, and segmentation mask

Mask R-CNN

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Example results

Example results

Questions?

Sources for this lecture include materials from works by Sedat Ozer, Ulas Bagci, and Svetlana Lazebnik