The maximal length of a gap between r-graph Turán densities

Oleg Pikhurko*
Mathematics Institute and DIMAP
University of Warwick
Coventry CV4 7AL, UK

April 6, 2015

Abstract

The Turán density $\pi(\mathcal{F})$ of a family \mathcal{F} of r-graphs is the limit as $n \to \infty$ of the maximum edge density of an \mathcal{F} -free r-graph on n vertices. Erdős [Israel J. Math **2** (1964) 183–190] proved that no Turán density can lie in the open interval $(0, r!/r^r)$. Here we show that any other open subinterval of [0, 1] avoiding Turán densities has strictly smaller length. In particular, this implies a conjecture of Grosu [E-print arXiv:1403.4653v1, 2014].

1 Introduction

Let \mathcal{F} be a (possibly infinite) family of r-graphs (that is, r-uniform set systems). We call elements of \mathcal{F} forbidden. An r-graph G is \mathcal{F} -free if no member $F \in \mathcal{F}$ is a subgraph of G, that is, we cannot obtain F by deleting some vertices and edges from G. The Turán function $\operatorname{ex}(n,\mathcal{F})$ is the maximum number of edges that an \mathcal{F} -free r-graph on n vertices can have. This is one of the central questions of extremal combinatorics that goes back to the fundamental paper of Turán [15]. We refer the reader to the surveys of the Turán function by Füredi [8], Keevash [12], and Sidorenko [14].

As it was observed by Katona, Nemetz, and Simonovits [11], the limit

$$\pi(\mathcal{F}) := \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{k}}$$

exists. It is called the $Tur\'{a}n$ density of \mathcal{F} . Let $\Pi^{(r)}_{\infty}$ consist of all possible Tur\'{a}n densities of r-graph families and let $\Pi^{(r)}_{\mathrm{fin}}$ be the set of all possible Tur'an densities when finitely many r-graphs are forbidden. It is convenient to allow empty forbidden families, so that 1 is also a Tur'an density. Clearly, $\Pi^{(r)}_{\mathrm{fin}} \subseteq \Pi^{(r)}_{\infty}$. A result of Brown and Simonovits [3, Theorem 1] implies that the topological closure $\mathrm{cl}(\Pi^{(r)}_{\mathrm{fin}})$ of $\Pi^{(r)}_{\mathrm{fin}}$ contains $\Pi^{(r)}_{\infty}$ while the converse inclusion was

^{*}Supported by ERC grant 306493 and EPSRC grant EP/K012045/1.

established in [13, Proposition 1]; thus

$$\Pi_{\infty}^{(r)} = \operatorname{cl}(\Pi_{\text{fin}}^{(r)}), \quad \text{for every integer } r \geqslant 2.$$
(1)

For r = 2, the celebrated Erdős-Stone-Simonovits Theorem [5, 6] determines the Turán density for every family \mathcal{F} . In particular, we have

$$\Pi_{\text{fin}}^{(2)} = \Pi_{\infty}^{(2)} = \left\{ \frac{m-1}{m} : m = 1, 2, 3, \dots, \infty \right\}.$$
(2)

Unfortunately, the Turán function for hypergraphs (that is, r-graphs with $r \ge 3$) is much more difficult to analyse and many problems (even rather basic ones) are wide open.

Fix some $r \geqslant 2$. A gap is an open interval $(a,b) \subseteq (0,1)$ that is disjoint from $\Pi_{\infty}^{(r)}$ (which, by (1), is equivalent to being disjoint from $\Pi_{\text{fin}}^{(r)}$). Here we consider g_r , the maximal possible length of a gap. In other words, g_r is the maximal g such that there is a real a with $(a,a+g) \subseteq (0,1) \setminus \Pi_{\infty}^{(r)}$. For example, (2) implies that $g_2 = 1/2$. Erdős [4] proved that $(0,r!/r^r)$ is a gap; in particular, $g_r \geqslant r!/r^r$. Here we show that this is equality and every other gap has strictly smaller length.

Theorem 1 For every $r \ge 3$, we have that $g_r = r!/r^r$ and, furthermore, $(0, r!/r^r)$ is the only gap of length $r!/r^r$ for r-graphs.

In particular we obtain the following result that was conjectured by Grosu [9, Conjecture 10].

Corollary 2 The union of r-graph Turán densities over all $r \ge 2$ is dense in [0,1], that is, $\operatorname{cl}(\bigcup_{r=2}^{\infty} \Pi_{\infty}^{(r)}) = [0,1]$.

The question whether the set $\Pi_{\infty}^{(r)}$ is a well-ordered subset of ([0,1], <) for $r \geqslant 3$ was a famous \$1000 problem of Erdős that was answered in the negative by Frankl and Rödl [7]. Despite a number of results that followed [7], very little is known about other gaps in $\Pi_{\infty}^{(r)}$ for $r \geqslant 3$. For example, let g'_r be the second largest gap length, that is, the maximum $g \geqslant 0$ such that $(a, a + g) \subseteq (r!/r^r, 1) \setminus \Pi_{\infty}^{(r)}$ for some a. The computer-generated proof of Baber and Talbot [2] implies that $g'_3 \geqslant 0.0017$. However, not for a single $r \geqslant 4$ is it known, for example, whether g'_r is zero (i.e. whether $\Pi_{\infty}^{(r)}$ is dense in $[r!/r^r, 1]$).

This paper is organised as follows. In Section 2 we give some definitions and auxiliary results. Theorem 1 is proved in Section 3. We give another proof of Corollary 2 in Section 4. Although the latter proof is not strong enough to prove Theorem 1, its advantage is that it produces explicit elements of $\Pi_{\text{fin}}^{(r)}$ (as opposed to the implicit values of certain maximisation problems returned by the proof in Section 3). So we include both proofs here, even though the second one is longer.

2 Preliminaries

For $n \in \mathbb{N}$, define $[n] := \{1, \dots, n\}$. For reals $a \leq b$, let (a, b) and [a, b] be respectively open and closed intervals of reals with endpoints a and b. The standard (m-1)-dimensional simplex is

$$\mathbb{S}_m := \{ x \in \mathbb{R}^m : x_1 + \dots + x_m = 1, \ \forall i \in [m] \ x_i \geqslant 0 \}.$$

An r-pattern is a collection P of r-multisets on [m], for some $m \in \mathbb{N}$. (By an r-multiset we mean an unordered collection of r elements with repetitions allowed.) Let V_1, \ldots, V_m be disjoint sets and let $V = V_1 \cup \cdots \cup V_m$. The profile of an r-set $X \subseteq V$ (with respect to V_1, \ldots, V_m) is the r-multiset on [m] that contains $i \in [m]$ with multiplicity $|X \cap V_i|$. For an r-multiset Y on [m], let $Y((V_1, \ldots, V_m))$ consist of all r-subsets of V whose profile is Y. We call this r-graph the blow-up of Y (with respect to V_1, \ldots, V_m) and the r-graph

$$P((V_1,\ldots,V_m)) := \bigcup_{Y \in P} Y((V_1,\ldots,V_m))$$

is called the blow-up of P. Let the Lagrange polynomial of P be

$$\lambda_P(x_1, \dots, x_m) := r! \sum_{D \in P} \prod_{i=1}^m \frac{x_i^{D(i)}}{D(i)!} \in \mathbb{R}[x_1, \dots, x_m],$$

where D(i) denotes the multiplicity of i in D. This definition is motivated by the fact that, for every partition $[n] = V_1 \cup \cdots \cup V_m$, we have that

$$|P((V_1,\ldots,V_m))| = \lambda_P\left(\frac{|V_1|}{n},\ldots,\frac{|V_m|}{n}\right) \times \binom{n}{r} + O(n^{r-1}), \quad \text{as } n \to \infty.$$

For example, if r=3, m=3, and P consists of multisets $\{1,1,2\}$ and $\{1,2,3\}$, then $P((V_1,\ldots,V_m))$ contains all triples that have two vertices in V_1 and one vertex in V_2 plus all triples with exactly one vertex in each part; here $\lambda_P(x_1,x_2,x_3)=3x_1^2x_2+6x_1x_2x_3$.

Let the Lagrangian of P be $\Lambda_P := \max\{\lambda_P(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{S}_m\}$, the maximum value of the polynomial λ_P on the compact set \mathbb{S}_m . One obvious connection of this parameter to r-graph Turán densities is that, if each blow-up of P is \mathcal{F} -free, then $\pi(\mathcal{F}) \geqslant \Lambda_P$. Also, it is not hard to show that $\Lambda_P = \pi(\mathcal{F})$, where \mathcal{F} consists of all r-graphs F such that every blow-up of P is F-free; thus $\Lambda_P \in \Pi_\infty^{(r)}$. As shown in [13, Theorem 3], we have in fact that

$$\Lambda_P \in \Pi_{\text{fin}}^{(r)}, \quad \text{for every } r\text{-pattern } P.$$
(3)

We will use a special case of Muirhead's inequality (see e.g. [10, Theorem 45]) which states that, for any $0 \le i < j \le k$, we have

$$x^{k+i}y^{k-i} + x^{k-i}y^{k+i} \le x^{k+j}y^{k-j} + x^{k-j}y^{k+j}, \text{ for } x, y \ge 0.$$
 (4)

3 Proof of Theorem 1

Let $r \ge 3$. Fix a sufficiently large integer m = m(r) so that $r!\binom{m}{r}/m^r > 1 - r!/r^r$. Consider r-graphs $G_0, \ldots, G_{\binom{m}{r}}$ on [m] such that G_0 has no edges and, for $i = 1, \ldots, \binom{m}{r}$, the r-graph

 G_i is obtained from G_{i-1} by adding a new edge. In other words, we enumerate all r-subsets of [m] as $R_1, \ldots, R_{\binom{m}{i}}$ and let $G_i := \{R_1, \ldots, R_i\}$. Let

$$\lambda_i(\boldsymbol{x}) := \lambda_{G_i}(\boldsymbol{x}) = r! \sum_{D \in G_i} \prod_{j \in D} x_j,$$

be the Lagrange polynomial of G_i and $\Lambda_i := \Lambda_{G_i}$ be its Lagrangian, where we view G_i as an r-pattern. Since $G_{i-1} \subseteq G_i$, we have that $\Lambda_{i-1} \leqslant \Lambda_i$.

We claim that for every $i \in [\binom{m}{r}]$

$$\Lambda_i - \Lambda_{i-1} \leqslant r!/r^r. \tag{5}$$

Indeed, pick $\mathbf{x} \in \mathbb{S}_m$ with $\Lambda_i = \lambda_i(\mathbf{x})$. Let $R_i = \{u_1, \dots, u_r\}$. When we remove the term $r! x_{u_1} \dots x_{u_r}$ from $\lambda_i(\mathbf{x})$, we get the evaluation of λ_{i-1} on $\mathbf{x} \in \mathbb{S}_m$. By definition, $\Lambda_{i-1} \geqslant \lambda_{i-1}(\mathbf{x})$. Also, since $x_{u_1} + \dots + x_{u_r} \leqslant 1$, we have $x_{u_1} \dots x_{u_r} \leqslant r^{-r}$ by the Geometric-Arithmetic Mean Inequality. Thus we obtain the stated bound:

$$\Lambda_i = \lambda_i(\boldsymbol{x}) = \lambda_{i-1}(\boldsymbol{x}) + r! \, x_{u_1} \dots x_{u_r} \leqslant \Lambda_{i-1} + r! / r^r.$$

Also, we have $\Lambda_{\binom{m}{r}} \geqslant \lambda_{\binom{m}{r}}(\frac{1}{m},\ldots,\frac{1}{m}) = r!\binom{m}{r}/m^r > 1 - r!/r^r$. This and (3) imply that $g_r \leqslant r!/r^r$, while the result of Erdős [4] gives the converse inequality. Also, if we have equality in (5), then necessarily $x_{u_1} = \cdots = x_{u_r} = 1/r$ and thus $\Lambda_{i-1} = 0$, implying the uniqueness part of Theorem 1.

4 Alternative proof of Corollary 2

For integers $r, s \ge 2$, let $\mathcal{P}_{r,s}$ consist of ordered s-tuples (r_1, \ldots, r_s) of non-negative integers such that $r_1 \ge \ldots \ge r_s$ and $r_1 + \cdots + r_s = r$. This set admits a partial order, where $\boldsymbol{x} \ge \boldsymbol{y}$ if $\sum_{i=1}^k x_i \ge \sum_{i=1}^k y_i$ for every $k \in [s]$. For example, the (unique) maximal element is $(r, 0, \ldots, 0)$ and the (unique) minimal element is $(\lceil r/s \rceil, \ldots, \lceil r/s \rceil)$.

Let $A \subseteq \mathcal{P}_{r,s}$. The set A is called *down-closed* if $\mathbf{y} \in A$ whenever $\mathbf{x} \in A$ and $\mathbf{x} \succcurlyeq \mathbf{y}$. Let G_A consist of all r-multisets X on [s] such that the multiplicities of X satisfy $\langle X(1), \ldots, X(s) \rangle \in A$, where $\langle \mathbf{x} \rangle$ denotes the non-increasing ordering of a vector \mathbf{x} . Also, we use shortcuts $\lambda_A := \lambda_{G_A}$ and $\Lambda_A := \Lambda_{G_A}$.

Lemma 3 Let $r, s \ge 2$. If $A \subseteq \mathcal{P}_{r,s}$ is down-closed, then $\Lambda_A = \lambda_A(\frac{1}{s}, \dots, \frac{1}{s})$.

Proof. We use induction on s.

First, we prove the base case s=2. Let k:=r/2. For $h \ge 0$, let I_h consist of all integer translates of k whose absolute value is at most h, that is, $I_h:=(\mathbb{Z}+k)\cap [-h,h]$. Also, let $I_h^+:=I_h\cap [0,h]$. (These definitions will allow us to deal with the cases of even and odd r uniformly.) For example, $\mathcal{P}_{r,2}=\{(k+i,k-i):i\in I_k^+\}$.

Take a down-closed set $A \subseteq \mathcal{P}_{r,2}$. It consists of pairs (k+i, k-i) with $i \in I_h^+$ for some h. By the homogeneity of the polynomials involved, the required inequality can be rewritten as

$$\sum_{i \in I_h} {2k \choose k+i} \left(\frac{x+y}{2}\right)^{2k} - \sum_{i \in I_h} {2k \choose k+i} x^{k+i} y^{k-i} \geqslant 0, \quad \text{for } x, y \geqslant 0.$$
 (6)

We will apply the so-called bunching method where we try to write the desired inequality as a positive linear combination of Muirhead's inequalities (4). If $j \in I_h$, then the coefficient in front of $x^{k+j}y^{k-j}$ in (6) is

$$2^{-2k} \binom{2k}{k+j} \sum_{i \in I_h} \binom{2k}{k+i} - \binom{2k}{k+j} \leqslant 0.$$

If $j \in I_k \setminus I_h$, then the coefficient is $2^{-2k} \binom{2k}{k+j} \sum_{i \in I_h} \binom{2k}{k+i} \geqslant 0$. Thus, if we group (6) into terms $x^{k+j}y^{k-j} + x^{k-j}y^{k+j}$, then we get non-positive coefficients for $0 \leqslant j \leqslant h$ followed by nonnegative coefficients for j > h. Also, the total sum of coefficients is zero because (6) becomes equality for x = y = 1. Thus we can "bunch" I_h -terms with $(I_k \setminus I_h)$ -terms and use (4) to derive the desired inequality (6). This proves the case s = 2.

Now, let $s \ge 3$ and suppose that we have proved the lemma for s-1 (and all r). The function λ_A is a continuous function on the compact set \mathbb{S}_s . Let it attain its maximum on some $\boldsymbol{x} \in \mathbb{S}_s$. If there is more than one choice, then choose \boldsymbol{x} so that $\Delta := \sum_{i \ne j} |x_i - x_j|$ is minimised. Suppose that $\Delta \ne 0$, say $x_1 \ne x_2$. Note that λ_A is a homogeneous polynomial of degree r, and the coefficient at $x_1^{r_1} \dots x_s^{r_s}$ is $\binom{r}{r_1,\dots,r_s}$ if the ordering $\langle \boldsymbol{r} \rangle$ of \boldsymbol{r} is in A and 0 otherwise.

Fix $j \in \{0, ..., r\}$. If we collect all terms in front of x_s^j , we get

$$\sum_{\substack{\langle r,j\rangle\in A\\r_1+\cdots+r_{s-1}=r-j}} \binom{r}{r_1,\ldots,r_{s-1},j} \prod_{i=1}^{s-1} x_i^{r_i} = \binom{r}{j} \lambda_{A\setminus j}(x_1,\ldots,x_{s-1}),$$

where $\langle \boldsymbol{y}, j \rangle$ is obtained from \boldsymbol{y} by inserting j and ordering the obtained sequence, while $A \setminus j$ consists of those $\boldsymbol{y} \in \mathcal{P}_{r-j,s-1}$ such that $\langle \boldsymbol{y}, j \rangle \in A$.

Let us show that $A \setminus j \subseteq \mathcal{P}_{r-j,s-1}$ is down-closed. Take arbitrary $\boldsymbol{z} \in A \setminus j$ and $\boldsymbol{y} \leqslant \boldsymbol{z}$. We have to show that $\boldsymbol{y} \in A \setminus j$. Since $A \ni \langle \boldsymbol{z}, j \rangle$ is down-closed, it is enough to show that $\langle \boldsymbol{z}, j \rangle \succcurlyeq \langle \boldsymbol{y}, j \rangle$. We have to compare the sums of the first i terms of $\langle \boldsymbol{z}, j \rangle$ and of $\langle \boldsymbol{y}, j \rangle$. A problem could arise only if the new entry j was included into these terms for $\langle \boldsymbol{y}, j \rangle$, say as the term number $h \leqslant i$, but not for $\langle \boldsymbol{z}, j \rangle$. Since $\boldsymbol{z} \succcurlyeq \boldsymbol{y}$, we have that $\sum_{f=1}^{h-1} z_f \geqslant \sum_{f=1}^{h-1} y_f$ (and these are also the initial sums for $\langle \boldsymbol{z}, j \rangle$ and $\langle \boldsymbol{y}, j \rangle$). Furthermore, each of the subsequent i - (h-1) entries is at least j for $\langle \boldsymbol{z}, j \rangle$ and at most j for $\langle \boldsymbol{y}, j \rangle$. It follows that $\langle \boldsymbol{z}, j \rangle \succcurlyeq \langle \boldsymbol{y}, j \rangle$. Thus $A \setminus j$ is down-closed, as claimed.

By the induction assumption (and since $\lambda_{A\setminus j}$ is a homogeneous polynomial), we have that $\lambda_{A\setminus j}(x_1,\ldots,x_{s-1})\leqslant \lambda_{A\setminus j}(\frac{1-x_s}{s-1},\ldots,\frac{1-x_s}{s-1})$. Thus

$$\Lambda_A = \lambda_A(\boldsymbol{x}) = \sum_{j=0}^r \binom{r}{j} \lambda_{A\setminus j}(x_1, \dots, x_{s-1}) x_s^j \leqslant \lambda_A \left(\frac{1-x_s}{s-1}, \dots, \frac{1-x_s}{s-1}, x_s\right).$$

Clearly, the sum $\sum_{i=1}^{s-1} |x_s - x_i|$ does not increase if we replace each of x_1, \ldots, x_{s-1} by their arithmetic mean $(1-x_s)/(s-1)$. Since $x_1 \neq x_2$, we have found another optimal element of \mathbb{S}_s with strictly smaller Δ , a contradiction. The lemma is proved.

Fix some enumeration $\mathcal{P}_{r,r} = \{R_1, \ldots, R_m\}$ such that if $R_i \geq R_j$ then $i \geq j$. For $j \in \{0, \ldots, m\}$, let $A_j := \{R_i : i \in [j]\}$. Thus, for example, $A_0 = \emptyset$ and $A_m = \mathcal{P}_{r,r}$. By (3), $\Pi_{\text{fin}}^{(r)}$ contains all of the following numbers:

$$0 = \Lambda_{A_0} \leqslant \Lambda_{A_1} \leqslant \ldots \leqslant \Lambda_{A_m} = 1.$$

Let us show that $\max\{\Lambda_{A_i} - \Lambda_{A_{i-1}} : i \in [m]\} = o(1)$ as $r \to \infty$. By definition, each $A_j \subseteq \mathcal{P}_{r,r}$ is down-closed. Thus, by Lemma 3 the difference $\Lambda_{A_i} - \Lambda_{A_{i-1}}$ is the probability that, when r balls are uniformly and independently distributed into r urns, the ordered ball distribution is given by R_i . Expose the first r-m balls, where, for example, $m := \lfloor \log r \rfloor$. Let k be the number of empty cells. Its expected value is $r(1-1/r)^{r-m} = (\mathrm{e}^{-1} + o(1)) \, r$. By Azuma's inequality (see e.g. [1, Theorem 7.2.1]), we have whp (i.e. with probability 1 - o(1) as $r \to \infty$) that k is in I := [r/4, 3r/4]. Assume that $k \in I$ and expose the remaining m balls. Let J be the number of balls that land inside the k cells that were empty after the first round. The probability that J = j for any particular $j \in [m/8, 7m/8]$ is

$$\binom{m}{j} \left(\frac{k}{r}\right)^{j} \left(\frac{r-k}{r}\right)^{m-j} = (1+o(1)) \sqrt{\frac{m}{2\pi j(m-j)}} \left(\frac{mk}{jr}\right)^{j} \left(\frac{m(r-k)}{(m-j)r}\right)^{m-j}$$

$$\leqslant (1+o(1)) \sqrt{\frac{m}{2\pi j(m-j)}} = o(1),$$

where we used Stirling's formula and the Arithmetic-Geometric Mean Inequality. On the other hand, we have whp that $m/8 \leq J \leq 7m/8$ (by Azuma's inequality and our assumption $k \in I$) and that the last m balls all go into different cells (since $m^2 = o(r)$). Thus the probability of getting R_i as the final ball distribution is o(1) uniformly in i, as desired. This finishes the second proof of Corollary 2.

Acknowledgements

The author would like to thank Codrut Grosu for helpful comments.

References

- [1] N. Alon and J. Spencer, The probabilistic method, 3d ed., Wiley Interscience, 2008.
- [2] R. Baber and J. Talbot, *Hypergraphs do jump*, Combin. Probab. Computing **20** (2011), 161–171.
- [3] W. G. Brown and M. Simonovits, Digraph extremal problems, hypergraph extremal problems and the densities of graph structures, Discrete Math. 48 (1984), 147–162.

- [4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.
- [5] P. Erdős and M. Simonovits, A limit theorem in graph theory, Stud. Sci. Math. Hungar. (1966), 51–57.
- [6] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
- [7] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149–159.
- [8] Z. Füredi, *Turán type problems*, Surveys in Combinatorics (A. D. Keedwell, ed.), London Math. Soc. Lecture Notes Ser., vol. 166, Cambridge Univ. Press, 1991, pp. 253–300.
- [9] C. Grosu, On the algebraic and topological structure of the set of Turán densities, E-print arXiv:1403.4653v1, 2014.
- [10] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge Univ. Press, 1952, 2d ed.
- [11] G. O. H. Katona, T. Nemetz, and M. Simonovits, On a graph problem of Turán (In Hungarian), Mat. Fiz. Lapok 15 (1964), 228–238.
- [12] P. Keevash, *Hypergraph Turán problem*, Surveys in Combinatorics (R. Chapman, ed.), London Math. Soc. Lecture Notes Ser., vol. 392, Cambridge Univ. Press, 2011, pp. 83–140.
- [13] O. Pikhurko, Possible Turán densities, Israel J. Math. 201 (2014), 415–454.
- [14] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995), 179–199.
- [15] P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941), 436–452.