Obliczenia Naukowe - Lista 2

Paweł Dychus (244941)

Listopad 2019

Zadanie 1

Opis problemu

Obliczyć iloczyn skalarny wektorów, ze zmienionymi wartościami
(względem zadania poprzedniego) $x=[2.718281828,-3.141592654,1.414213562,0.577215664,0.301029995] \\ y=[1486.2497,878366.9879,-22.37492,4773714.647,0.000185049].$ czterema sposobami i określić wpływ zmiany danych na wartości.

Rozwiązanie

Wystarczy podstawić nowe wartości do implementacji zadania poprzedniego.

Wyniki

Poniższe tabele przedstawiają, kolejne typy, wartości i różnice wartości(odległość) względem zadania z listy poprzedniej, dla czterech kolejnych algorytmów.

Algorytm 1			
Typ Wynik Różnica			
Float64	-0.004296342739891585	0.004296342842410399	
Float32	-0.4999443	0.0	

	Algorytm 2			
Typ Wynik Różnica				
	Float64	-0.004296342998713953	0.004296342842280865	
	Float32	-0.4543457	0.0	

Algorytm 3			
Typ Wynik Różnica			
Float64	-0.004296342842280865	0.004296342842280865	
Float32	-0.5	0.0	

Algorytm 4				
Тур	Typ Wynik Różnica			
Float64	-0.004296342842280865	0.004296342842280865		
Float32	-0.5	0.0		

Jak można zauważyć, dla Float32 nie ma żadnej zmiany. Dla Float64, różnice są stosunkowo spore, już dla 3 miejsca po przecinku mamy zmianę wartości.

Wniosek

Niewielka zmiana wartości przyniosła znaczne, aczkolwiek nie olbrzymie zmiany w wyniku, rzędu 10^{-3} , dla zaburzeń na poziomie 10^{-10} . Na tej podstawie, można stwierdzić, że zadanie jest raczej źle uwarunkowane.

Zadanie 2

Problem

Wyznaczenie graficzne i matematyczne prawej granicy wykresu funkcji $f(x) = e^x ln(1 + e^{-x})$ oraz poprawność.

Rozwiązanie

Matematyczne rozwiązanie: $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^x \ln(1+e^{-x}) = \lim_{x\to\infty} \ln(1+\frac{1}{e^x})^{e^x}, (e^x=y), \lim_{y\to\infty} \ln(1+\frac{1}{y})^y = 1$

Graficznie poniższe wykresy funkcji:

Rysunek 1 – Wykresy $f(x) = e^x ln(1 + e^{-x})$ na $x \in [-10, 50]$

Wyniki

Jak widać na wykresach, dla dostatecznie dużych x, wartości funkcji zaczynają fluktuować. Po czym, ostatecznie spada do wartości równej 0. Jest to błędne, ponieważ wiemy, że granica w rzeczywistości wynosi 1.

Wniosek

Wniosek jest prosty: e^{-x} zaczyna tracić precyzje, aż do osiągnięcia epsilona maszynowego. Po osiągnięciu wartości macheps, sumowanie z 1 wewnątrz logarytmu, zwraca zawsze wartość równą 1, a $\ln(1) = 0$. Ponadto jest to dowód na to, że programy do wizualizacji, mogą wprowadzać w błąd.

Zadanie 3

Problem

Błędy przy obliczaniu układu równań metodą Gaussa oraz inwersji dla określonych macierzy: Macierz Hilberta i macierz losowa.

Rozwiązanie

Rozwiązanie polega na implementacji załączonych algorytmów, wypisaniu wyniku i poddaniu ich analizie.

Wyniki
Poniższe tabele przedstawiają wartości zastosowanych eskperymentów.

	Hilbert					
n	rank	cond	err-Gauss	err-inverse		
2	2	19.28147006790397	5.661048867003676e-16	1.4043333874306803e-15		
3	3	524.0567775860644	8.022593772267726e-15	0.0		
4	4	15513.73873892924	4.137409622430382e-14	0.0		
5	5	476607.25024259434	1.68284262992271e-12	3.3544360584359632e-12		
6	6	1.4951058642254665e7	2.6189133023116e-10	2.0163759404347654e-10		
7	7	4.75367356583129e8	1.2606867224171e-8	4.713280397232037e-9		
8	8	1.5257575538060041e10	6.124089555723e-8	3.07748390309622e-7		
9	9	4.931537564468762e11	3.8751634185032e-6	4.541268303176643e-6		
10	10	1.6024416992541715e13	8.67039023709e-5	0.0002501493411824886		
11	10	5.222677939280335e14	0.00015827808158	0.007618304284315809		
12	11	1.7514731907091464e16	0.13396208372	0.258994120804705		
13	11	3.344143497338461e18	0.11039701117868264	5.33127563942683		
14	11	6.200786263161444e17	1.4554087127659643	8.71499275104814		
15	12	3.674392953467974e17	4.696668350857427	7.344641453111494		
16	12	7.865467778431645e17	54.15518954564602	29.84884207073541		
17	12	1.263684342666052e18	13.707236683836307	10.51694237836934		
18	12	2.2446309929189128e18	9.134134521198485	7.575475905055309		
19	13	6.471953976541591e18	9.720589712655698	12.233761393757726		
20	13	1.3553657908688225e18	7.549915039472976	22.06269725787049		

Dla powyższych wyników, można dostrzec ogromny wzrost wskaźnika uwarunkowania dla kolejnych wartości n. Oznacza, to że macierz Hilberta jest bardzo źle uwarunkowana. Przekłada się to na błąd wyniku, który już przy 13 iteracji przekracza 100% błędu względnego dla metody z inwersją i przy 14 iteracji dla metody Gaussa. Ponadto dla n = 11, tracimy prawidłowy stopień macierzy.

П	Random				
1		,			
n	rank	cond	err-Gauss	err-inverse	
5	5	1.0	$2.1065000811460203\mathrm{e}\text{-}16$	1.5700924586837752e-16	
5	5	10.0	2.808666774861361e-16	4.328446199157272e-16	
5	5	1000.0	2.7741005665387162e-14	2.5483137506553956e-14	
5	5	1.0e7	2.15133323313752e-10	1.478291244618629e-10	
5	5	1.0e12	3.5803616730494477e-16	1.6523628822756612e-5	
5	4	1.0e16	0.13486827020540584	0.19008632907181935	
10	10	1.0	3.1597501217190306e-16	1.9229626863835638e-16	
10	10	10.0	3.9720546451956367e-16	2.531698018113677e-16	
10	10	1000.0	2.9930756179749472e-15	4.250284076336683e-15	
10	10	1.0e7	$2.381523200785395 \mathrm{e}\text{-}10$	1.3177319689038872e-10	
10	10	1.0e12	2.9195243512259457e-5	2.617332187665795e-5	
10	9	1.0e16	0.0715705530062106	0.07407469572583474	
20	20	1.0	5.994176260545586e-16	3.3583099550713974e-16	
20	20	10.0	1.3414875847488985e-15	1.0441409976237532e-15	
20	20	1000.0	1.7888859297457136e-14	1.48075618724414e-14	
20	20	1.0e7	4.70165384989995e-10	4.4579493045128954e-10	
20	20	1.0e12	5.757097268849091e-6	1.9804534585280597e-6	
20	19	1.0e16	0.10537882939428717	0.08618572106576007	

Zgodnie z przewidywaniami, macierz losowa o wskaźniku uwarunkowania równego 1.0e16, osiąga błędy względne bliskie 100%, a dla niskiego uwarunkowania, błędy rzędu 10^{-16} .

Wniosek

Wskaźnik uwarunkowania bezpośrednio wpływa na błędy w wynikach. Macierz Hilberta jest bardzo źle uwarunkowana, a macierz losowa z niskim wskaźnikiem uwarunkowania, generuje stosunkowo dokładne wyniki.

Zadanie 4

Problem

Problem polega na obliczeniu miejsc zerowych wielomianu Wilkinsona. Następnie do podstawienia znalezionych miejsc zerowych, oraz sprawdzenia poprawności miejsc zerowych. Ponadto podpunkt B. wymaga niewielkiej zmiany wartości jednego ze współczynników.

Rozwiązanie

Rozwiązanie polega na implementacji załączonych algorytmów: Poly, poly i użycia roots w celu znalezienia miejsc zerowych.

Wyniki

Poniższe tabele przedstawiają otrzymane wartości dla kolejno podpunktu A i B. Gdzie $P(z_k)$ to wielomian w postaci naturalnej. $p(z_k)$ to iloczyn kolejnych rzeczywistych miejsc zerowych, a $|z_k - k|$ to odległość do rzeczywistej pozycji miejsca zerowego.

Podpunkt A				
k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $	
1	36352.0	38400.0	3.0109248427834245e-13	
2	181760.0	198144.0	2.8318236644508943e-11	
3	209408.0	301568.0	4.0790348876384996e-10	
4	3.106816e6	2.844672e6	1.626246826091915e-8	
5	2.4114688e7	2.3346688e7	6.657697912970661e-7	
6	1.20152064e8	1.1882496e8	1.0754175226779239e-5	
7	4.80398336e8	4.78290944e8	0.00010200279300764947	
8	1.682691072e9	1.67849728e9	0.0006441703922384079	
9	4.465326592e9	4.457859584e9	0.002915294362052734	
10	1.2707126784e10	1.2696907264e10	0.009586957518274986	
11	3.5759895552e10	3.5743469056e10	0.025022932909317674	
12	7.216771584e10	7.2146650624e10	0.04671674615314281	
13	2.15723629056e11	2.15696330752e11	0.07431403244734014	
14	3.65383250944e11	3.653447936e11	0.08524440819787316	
15	6.13987753472e11	6.13938415616e11	0.07549379969947623	
16	1.555027751936e12	1.554961097216e12	0.05371328339202819	
17	3.777623778304e12	3.777532946944e12	0.025427146237412046	
18	$7.199554861056\mathrm{e}{12}$	7.1994474752e12	0.009078647283519814	
19	1.0278376162816e13	1.0278235656704e13	0.0019098182994383706	
20	$2.7462952745472\mathrm{e}{13}$	2.7462788907008e13	0.00019070876336257925	

Można zauważyć, że dla każdego wyznaczonego miejsca zerowego, nie udało się otrzymać wartości 0.

Podpunkt B				
k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $	
1	20992.0	22016.0	1.6431300764452317e-13	
2	349184.0	365568.0	5.503730804434781e-11	
3	2.221568e6	2.295296e6	3.3965799062229962e-9	
4	1.046784e7	1.0729984e7	8.972436216225788e-8	
5	3.9463936e7	4.3303936e7	1.4261120897529622e-6	
6	1.29148416e8	2.06120448e8	2.0476673030955794e-5	
7	3.88123136e8	1.757670912e9	0.00039792957757978087	
8	1.072547328e9	1.8525486592e10	0.007772029099445632	
9	3.065575424e9	1.37174317056e11	0.0841836320674414	
10	7.143113638035824e9	1.4912633816754019e12	0.6519586830380406	
11	7.143113638035824e9	1.4912633816754019e12	1.1109180272716561	
12	3.357756113171857e10	3.2960214141301664e13	1.665281290598479	
13	3.357756113171857e10	3.2960214141301664e13	2.045820276678428	
14	1.0612064533081976e11	9.545941595183662e14	2.5188358711909045	
15	1.0612064533081976e11	9.545941595183662e14	2.7128805312847097	
16	3.315103475981763e11	2.7420894016764064e16	2.9060018735375106	
17	3.315103475981763e11	2.7420894016764064e16	2.825483521349608	
18	9.539424609817828e12	4.2525024879934694e17	2.454021446312976	
19	9.539424609817828e12	4.2525024879934694e17	2.004329444309949	
20	1.114453504512e13	1.3743733197249713e18	0.8469102151947894	

Dla podpunktu B, po zaburzeniu wartości, otrzymaliśmy skrajnie inne wyniki względem A.

Wnioski

Nie udało się nam otrzymać wartości zerowych, co spowodowane jest tym, że w arytmetyce brakuje precyzji, a dokładniej odpowiedniej ilości cyfr znaczących. Ponadto na podstawie podpunktu B, możemy wywnioskować, że zadanie jest źle uwarunkowane, ponieważ niewielka zmiana wartości, wpłynęła znacznie na wyniki końcowe.

Zadanie 5

Problem

Problem polega na testowaniu równania rekurencyjnego danego wzorem: $p_{n+1} := p_n + rp_n(1 - p_n)$, w 40 iteracjach, na

- Float 32
- Float 32, gdzie co 10 iteracji ucianamy do 3 miejsca po przecinku
- Float 64

Gdzie r jest ustalone i wynosi 3.

Rozwiązanie

Rozwiązanie polega na implementacji funkcji rekurencyjnej symulującej równanie rekurencyjne. W przypadku z ucinaniem części ułamkowej, co 10 iteracji, przerywamy funkcję, aby następnie ją wznowić po wykonaniu operacji trunc.

Wyniki

Poniższa tabela przedstawia wartości kolejnych iteracji funkcji rekurencyjnych. Gdzie n+1 oznacza aktualny wyraz, a FLOAT32+TRUNC, to wyniki rekurencji z obcinaniem części ułamkowej.

Tabela kolejnych wartości rekurencji				
n+1 FLOAT32		FLOAT32+TRUNC	FLOAT64	
1	0.01	0.01	0.01	
2	0.0397	0.0397	0.0397	
3	0.15407173	0.15407173	0.15407173000000002	
4	0.5450726	0.5450726	0.5450726260444213	
5	1.2889781	1.2889781	1.2889780011888006	
6	0.1715188	0.1715188	0.17151914210917552	
7	0.5978191	0.5978191	0.5978201201070994	
8	1.3191134	1.3191134	1.3191137924137974	
9	0.056273222	0.056273222	0.056271577646256565	
10	0.21559286	0.21559286	0.21558683923263022	
11	0.7229306	0.722	0.722914301179573	
12	1.3238364	1.3241479	1.3238419441684408	
13	0.037716985	0.036488414	0.03769529725473175	
14	0.14660022	0.14195944	0.14651838271355924	
15	0.521926	0.50738037	0.521670621435246	
16	1.2704837	1.2572169	1.2702617739350768	
17	0.2395482	0.28708452	0.24035217277824272	
18	0.7860428	0.9010855	0.7881011902353041	
19	1.2905813	1.1684768	1.2890943027903075	
20	0.16552472	0.577893	0.17108484670194324	
21	0.5799036	1.309	0.5965293124946907	
22	1.3107498	0.095556974	1.3185755879825978	
23	0.088804245	0.3548345	0.058377608259430724	
24	0.3315584	1.0416154	0.22328659759944824	
25	0.9964407	0.91157377	0.7435756763951792	
26	1.0070806	1.1533948	1.315588346001072	
27	0.9856885	0.62262046	0.07003529560277899	
28	1.0280086	1.3275132	0.26542635452061003	
29	0.9416294	0.023178816	0.8503519690601384	
30	1.1065198	0.091103494	1.2321124623871897	
31	0.7529209	0.339	0.37414648963928676	
32	1.3110139	1.0112369	1.0766291714289444	
33	0.0877831	0.9771474	0.8291255674004515	
34	0.3280148	1.0441384	1.2541546500504441	
35	0.9892781	0.90587854	0.29790694147232066	
36	1.021099	1.1616664	0.9253821285571046	
37	0.95646656	0.59825915	1.1325322626697856	
38	1.0813814	1.3192946	0.6822410727153098	
39	0.81736827	0.05556369	1.3326056469620293	
40	1.2652004	0.21299279	0.0029091569028512065	
41	0.25860548	0.71587336	0.011611238029748606	

Niedokładności na pierwszej pozycji po ułamku, dla wszystkich 3 typów, występują już dla 17 wyrazu. A do czasu ostatniej iteracji, wyniki są już całkowicie inne.

Wniosek

Wartość uwarunkowania równań rekurencyjnych rośnie proporcjonalnie wraz z ilością iteracji. Jak widać na naszym przykładzie, dla 40 iteracji uwarunkowanie jest beznadziejne.

Zadanie 6

Problem

Problem polega na testowaniu równania rekurencyjnego danego wzorem: $x_{n+1} := x_n^2 + c$, w 40 iteracjach, dla ustalonych danych.

Rozwiązanie

Rozwiązanie polega na implementacji funkcji rekurencyjnej symulującej równanie rekurencyjne.

Wyniki

Otrzymaliśmy kolejno dla ustalonych danych:

- 1. c = -2 i $x_0 = 1$ wynik: -1
- 2. c = -2 i $x_0 = 2$ wynik: 2
- 4. c = -1 i $x_0 = 1$ wynik: -1
- 5. c = -1 i $x_0 = -1$ wynik: -1
- 6. c = -1 i $x_0 = 0.75$ wynik: -1.0
- 7. c = -1 i $x_0 = 0.25$ wynik: 0.0

Przypadki całkowite są trywialne. Ale dla przykładów na liczbach zmiennoprzecinkowych mamy poniższe iteracje graficzne:

Patrząc na rysunek 2, wartości funkcji zaczynają znacznie odchodzić od prawdziwych wyników, już po około 20 iteracjach.

Rysunek 3 – c = -1 i $x_0 = 0.75$

Dla rysunku 3, wartości dążą do liczb całkowitych i po 16 iteracjach je osiągają.

Rysunek 4-c=-1 i $x_0=0.25$

Dla rysunku 4, wartości dążą do liczb całkowitych i po 11 iteracjach je osiągają.

Wniosek

Zadanie znowu dowodzi o błędach równań rekurencyjnych zaimplementowanych na liczbach zmienno-przecinkowych. Widać na przykładzie z 1.99999999999, że niewielkie zaburzenie danych spowodowało znaczną zmianę wyników, przez co można stwierdzić, że zadanie jest źle uwarunkowane.