Rational functions and finite permutation groups

Peter Müller

Würzburg, 1 February 2016

What I'm interested in

- ► Inverse Galois problem
- Combinatorial questions about finite fields, like permutation polynomials, Kakeya sets, (A)PN functions, . . .
- ▶ Finite geometries, algebraic combinatorics, permutation codes
- Permutation groups and applications to
 - number theory (Hilbert's irreducibility theorem, arithmetically equivalent fields, . . .)
 - polynomials and rational functions via their monodromy groups

Ritt: Maximal decompositions

$$f(z) = f_1(f_2(\ldots(f_m(z))\ldots))$$

of polynomials and rational functions

Ritt: Maximal decompositions

$$f(z) = f_1(f_2(\ldots(f_m(z))\ldots))$$

of polynomials and rational functions

▶ Cassels, Lewis, Davenport: Reducibility of variable-separated algebraic curves f(X) - g(Y) = 0

► *Ritt:* Maximal decompositions

$$f(z) = f_1(f_2(\ldots(f_m(z))\ldots))$$

of polynomials and rational functions

- ► Cassels, Lewis, Davenport: Reducibility of variable-separated algebraic curves f(X) g(Y) = 0
- ▶ Birch, Swinnerton-Dyer, Cohen: Value sets of "generic" rational functions $f(z) \in \mathbb{F}_q(z)$, $n = \deg f$:

$$\frac{1}{q}|f(\mathbb{F}_q)|=1-\frac{1}{2!}+\frac{1}{3!}-\cdots-(-1)^n\frac{1}{n!}+O_n(q^{-1/2})$$

► Ritt: Maximal decompositions

$$f(z) = f_1(f_2(\dots(f_m(z))\dots))$$

of polynomials and rational functions

- ► Cassels, Lewis, Davenport: Reducibility of variable-separated algebraic curves f(X) g(Y) = 0
- ▶ Birch, Swinnerton-Dyer, Cohen: Value sets of "generic" rational functions $f(z) \in \mathbb{F}_q(z)$, $n = \deg f$:

$$\frac{1}{q}|f(\mathbb{F}_q)|=1-\frac{1}{2!}+\frac{1}{3!}-\cdots-(-1)^n\frac{1}{n!}+O_n(q^{-1/2})$$

▶ *Schur:* For which $f(z) \in \mathbb{Z}[z]$ is

$$\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \ a \mapsto f(a)$$

bijective for infinitely many primes p?

▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$, or $\Gamma \subseteq$ circle

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$, or $\Gamma \subseteq$ circle
- ▶ Better examples: $f, g \in \mathbb{C}(z)$, $\Gamma = g(\mathbb{R}) \not\subset$ circle, $f \circ g \in \mathbb{R}(z)$, $h = g \circ f$:

$$h(\Gamma) = (g \circ f)(\Gamma) = g(\overbrace{f(g(\mathbb{R}))}^{\subseteq \mathbb{R}}) \subseteq g(\mathbb{R}) = \Gamma$$

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$, or $\Gamma \subseteq$ circle
- ▶ Better examples: $f, g \in \mathbb{C}(z)$, $\Gamma = g(\mathbb{R}) \not\subset$ circle, $f \circ g \in \mathbb{R}(z)$, $h = g \circ f$:

$$h(\Gamma) = (g \circ f)(\Gamma) = g(f(g(\mathbb{R}))) \subseteq g(\mathbb{R}) = \Gamma$$

Can Γ be a Jordan curve?

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$, or $\Gamma \subseteq$ circle
- ▶ Better examples: $f, g \in \mathbb{C}(z)$, $\Gamma = g(\mathbb{R}) \not\subset$ circle, $f \circ g \in \mathbb{R}(z)$, $h = g \circ f$:

$$h(\Gamma) = (g \circ f)(\Gamma) = g(\overbrace{f(g(\mathbb{R}))}^{\subseteq \mathbb{R}}) \subseteq g(\mathbb{R}) = \Gamma$$

▶ Can Γ be a Jordan curve? Yes (*M. 2015*):

$$\omega = e^{2\pi i/3}$$

$$f(z) = \frac{(6\omega + 5)z^3 + (-6\omega - 3)z^2 - 3z + 1}{4z^3 - 6z^2 + 3z}$$

$$g(z) = \frac{z^2 - \omega}{2z^3 + z^2 + (\omega + 1)z - \omega}$$

$$f(g(z)) = \frac{64z^9 - 192z^5 - 104z^3 - 48z}{96z^8 + 104z^6 + 96z^4 - 8}$$

- ▶ $\Gamma \subset \mathbb{C}$ curve with $h(\Gamma) \subseteq \Gamma$ for $h \in \mathbb{C}(z)$
- ▶ Boring examples: $\Gamma = \mathbb{R}$ and $h \in \mathbb{R}(z)$, or $\Gamma \subseteq$ circle
- ▶ Better examples: $f, g \in \mathbb{C}(z)$, $\Gamma = g(\mathbb{R}) \not\subset$ circle, $f \circ g \in \mathbb{R}(z)$, $h = g \circ f$:

$$h(\Gamma) = (g \circ f)(\Gamma) = g(f(g(\mathbb{R}))) \subseteq g(\mathbb{R}) = \Gamma$$

Can Γ be a Jordan curve? Yes (*M. 2015*):

$$\omega = e^{2\pi i/3}$$

$$f(z) = \frac{(6\omega + 5)z^3 + (-6\omega - 3)z^2 - 3z + 1}{4z^3 - 6z^2 + 3z}$$

$$g(z) = \frac{z^2 - \omega}{2z^3 + z^2 + (\omega + 1)z - \omega}$$

$$f(g(z)) = \frac{64z^9 - 192z^5 - 104z^3 - 48z}{96z^8 + 104z^6 + 96z^4 - 8}$$

can h be injective on Γ? No (M. 2015)

The monodromy group Mon(f) of a rational function f

$$K$$
 a field, $f(z) \in K(z)$ of degree n

 $\mathsf{Mon}(f) \leq \mathsf{Sym}(n)$ transitive subgroup

- ► Algebraic definition by Galois theory for any field *K*
- Geometric definition for $K=\mathbb{C}$ (or \mathbb{R})

Geometric definition of Mon(f) (Riemann)

Critical values of
$$f \in \mathbb{C}(z)$$

$$a \in \mathbb{C} \cup \{\infty\} \text{ critical value}$$

$$\Leftrightarrow$$

$$|f^{-1}(a)| < \deg f$$

$$\Leftrightarrow$$

$$f(z) - a \text{ has multiple root}$$

Geometric definition of Mon(f) (Riemann)

Critical values of
$$f \in \mathbb{C}(z)$$

$$a \in \mathbb{C} \cup \{\infty\} \text{ critical value} \Leftrightarrow |f^{-1}(a)| < \deg f \Leftrightarrow f(z) - a \text{ has multiple root}$$

Example

$$f(z) - 0 = \frac{16(4z+5)(z-1)^5}{729z}$$
$$f(z) - 1 = \frac{4(2z-5)(4z^2 - 11z + 16)(2z+1)^3}{729z}$$

Critical values: 0, 1 and ∞

Action of monodromy group $z \mapsto f(z)$ $\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$ acts on Critical values: •, • $f^{-1}(\bullet) = \{ \bullet, \bullet, \dots, \bullet \}$ Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Critical values: •, •
Noncritical value:

Action of monodromy group $z \mapsto f(z)$ $\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$ acts on Critical values: •, • $f^{-1}(\bullet) = \{ \bullet, \bullet, \dots, \bullet \}$ Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Critical values: •, •
Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Critical values: •, •
Noncritical value:

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\dots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\dots,\bullet\}$

Critical values: •, •
Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Action of monodromy group $z \mapsto f(z)$ $\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$ acts on Critical values: •, • $f^{-1}(\bullet) = \{\bullet, \bullet, \dots, \bullet\}$

Noncritical value: •

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

$$\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$$
 acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Noncritical value:

 $\pi_1(\mathbb{C}\setminus\{ullet,ullet\},ullet)$ acts on $f^{-1}(ullet)=\{ullet,ullet,\ldots,ullet\}$

Noncritical value:

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

$$\pi_1(\mathbb{C}\setminus\{\bullet,\bullet\},\bullet)$$
 acts on $f^{-1}(\bullet)=\{\bullet,\bullet,\ldots,\bullet\}$

Critical values: •, •
Noncritical value: •

Generators of Mon(f)

$$\sigma_1 = (12345)$$

$$\sigma_2 = (364)$$

 $\mathsf{Mon}(f) = \langle \sigma_1, \sigma_2 \rangle = \mathsf{Alt}(6)$

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rational function

 $f(z) \in \mathbb{C}(z)$, degree n, critical values 0, 1 and ∞

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rational function

 $f(z) \in \mathbb{C}(z)$, degree n, critical values 0, 1 and ∞

Dessins d'enfants (Grothendieck 1984) Linienzüge (Felix Klein 1879)

Rational function

 $f(z) \in \mathbb{C}(z)$, degree n, critical values 0, 1 and ∞

Generators of Mon(f)

$$\sigma_1 = (1\,2\,3)(5\,6)$$

$$\sigma_2 = (34567)$$

$$\sigma_3 = (\sigma_1 \sigma_2)^{-1} = (123467)$$

Riemann's Existence Theorem

 $f(z) \in \mathbb{C}(z)$ of degree n with r critical values

- \downarrow
- ▶ $\mathsf{Mon}(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_r \rangle \leq \mathsf{Sym}(n)$ transitive
- $ightharpoonup \sum_{i=1}^r \text{number of cycles of } \sigma_i = (r-2)n+2$

Riemann's Existence Theorem

$$f(z)\in\mathbb{C}(z)$$
 of degree n with r critical values

- ▶ $Mon(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_r \rangle \leq Sym(n)$ transitive
- \bullet $\sigma_1 \cdot \sigma_2 \cdots \sigma_r = 1$
- $ightharpoonup \sum_{i=1}^r \text{number of cycles of } \sigma_i = (r-2)n+2$

M. ... (C)

Examples

((-)

1(2)	Ι	ivion(<i>i</i>)
z ⁿ	2	<(12 n)> cyclic

Riemann's Existence Theorem

$$f(z)\in\mathbb{C}(z)$$
 of degree n with r critical values

- ▶ $\mathsf{Mon}(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_r \rangle \leq \mathsf{Sym}(n)$ transitive

 - ▶ $\sum_{i=1}^{r}$ number of cycles of $\sigma_i = (r-2)n+2$

Examples

f(z)	r	Mon(f)
Z^n	2	<(12 n)> cyclic
$f(\cos\phi)=\cos n\phi$	3	dihedral group of order 2n

Riemann's Existence Theorem

$$f(z) \in \mathbb{C}(z)$$
 of degree n with r critical values

- ▶ $\mathsf{Mon}(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_r \rangle \leq \mathsf{Sym}(n)$ transitive
- ▶ $\sum_{i=1}^{r}$ number of cycles of $\sigma_i = (r-2)n+2$

Examples

f(z)	r	Mon(f)
z ⁿ	2	<(12 n)> cyclic
$f(\cos\phi)=\cos n\phi$	3	dihedral group of order 2n
"random", degree <i>n</i>	2(n-1)	Sym(n)

Riemann's Existence Theorem

$$f(z) \in \mathbb{C}(z)$$
 of degree n with r critical values

$$ightharpoonup$$
 Mon $(f) = \langle \sigma_1, \sigma_2, \dots, \sigma_r \rangle \leq \operatorname{Sym}(n)$ transitive

$$\bullet$$
 $\sigma_1 \cdot \sigma_2 \cdots \sigma_r = 1$

$$ightharpoonup \sum_{i=1}^r \text{number of cycles of } \sigma_i = (r-2)n+2$$

Examples

<i>f</i> (<i>z</i>)	r	Mon(f)
Z^n	2	<(12 n)> cyclic
$f(\cos\phi)=\cos n\phi$	3	dihedral group of order 2n
"random", degree <i>n</i>	2(n-1)	Sym(n)
?	3	Aut(Higman-Sims), degree 100

Translate ramification data

$$f(z) - 0 = \frac{(z - \alpha)^5 (z^2 + \beta z + \gamma)}{z}$$
$$f(z) - 1 = \frac{(z - \delta)^3 (z - \epsilon)^2 (z^2 + \zeta z + \eta)}{z}$$

Polynomial system

Compare coefficients, solve polynomial system in $\{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta\}$

Problem

- ► This considers only vertex degrees of the dessin, one obtains many "wrong" solutions.
- ▶ Polynomial system solvable only about up to n = 10.

Challenge: Mathieu group $M_{23} \leq \text{Sym}(23)$

► (*Matiyasevich 1998*) Compute numerical approximation by deformation, determine algebraic coefficients.

Challenge: Mathieu group $M_{23} \leq \text{Sym}(23)$

- ► (*Matiyasevich 1998*) Compute numerical approximation by deformation, determine algebraic coefficients.
- ▶ (*Elkies 2013*) Solve polynomial system over \mathbb{F}_p , lift this to p-adic solution in \mathbb{Q}_p , determine algebraic coefficients.

Challenge: Mathieu group $M_{23} \leq \text{Sym}(23)$

- ► (*Matiyasevich 1998*) Compute numerical approximation by deformation, determine algebraic coefficients.
- ▶ (*Elkies 2013*) Solve polynomial system over \mathbb{F}_p , lift this to p-adic solution in \mathbb{Q}_p , determine algebraic coefficients.
- ▶ (*M. 2015*) Formal power series and group action yield a polynomial system which can be solved directly.

Lemma

For $g(z) \in \mathbb{C}(z)$ the following properties are equivalent:

- (i) $\Gamma = g(\mathbb{R})$ is contained in a circle.
- (ii) $\lambda(g(z)) \in \mathbb{R}(z)$ for a linear fractional $\lambda \in \mathbb{C}(z)$.
- (iii) $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$.

Lemma

For $g(z) \in \mathbb{C}(z)$ the following properties are equivalent:

- (i) $\Gamma = g(\mathbb{R})$ is contained in a circle.
- (ii) $\lambda(g(z)) \in \mathbb{R}(z)$ for a linear fractional $\lambda \in \mathbb{C}(z)$.
- (iii) $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z)).$

Second question about invariant curves is (essentially) equivalent to

Theorem

Take $f,g \in \mathbb{C}(z)$. Suppose that

- $f(g(z)) \in \mathbb{R}(z)$, and
- $ightharpoonup \mathbb{R} o \mathbb{R}$, $a \mapsto f(g(a))$ is injective.

Then
$$f \circ g = \underbrace{f \circ \lambda^{-1}}_{\in \mathbb{R}(z)} \circ \underbrace{\lambda \circ g}_{\in \mathbb{R}(z)}$$
 for a linear fractional $\lambda \in \mathbb{C}(z)$.

Proposition

Given

- ▶ permutation group $G \leq \operatorname{Sym}(n)$,
- ▶ $\sigma \in \text{Sym}(n)$ involution with $G = \sigma G \sigma^{-1}$, and
- $ightharpoonup \sigma$ has exactly one fixed point 1.

Then $M = \sigma M \sigma^{-1}$ for each subgroup M with $G_1 < M < G$.

Proof of the theorem (sketch).

- ightharpoonup W.l.o.g. $f(g(z)) = rac{p(z)}{q(z)}$ with $p,q \in \mathbb{R}[z]$ relatively prime, and
 - ▶ $\deg p > \deg q$
 - $p(z) = \prod (z \alpha_i)$ separable

 - $\alpha_i \notin \mathbb{R}$ for $i \geq 2$

Proof of the theorem (sketch).

- $ightharpoonup ext{W.l.o.g.} \ f(g(z)) = rac{p(z)}{q(z)} \ ext{with} \ p,q \in \mathbb{R}[z] \ ext{relatively prime, and}$
 - ▶ $\deg p > \deg q$
 - $p(z) = \prod (z \alpha_i)$ separable
 - $\alpha_1 \in \mathbb{R}$
 - ▶ $\alpha_i \notin \mathbb{R}$ for $i \ge 2$
- ▶ Hensel's Lemma: $p(z) tq(z) = \prod (z \omega_i)$ with
 - $\omega = \omega_1 \in \mathbb{R}[[t]]$
 - $\omega_i \in \mathbb{C}[[t]] \setminus \mathbb{R}[[t]]$ for $i \geq 2$

Proof continued.

$$\begin{aligned} & p(z) - tq(z) = \prod (z - \omega_i) \text{ with} \\ & \omega = \omega_1 \in \mathbb{R}[[t]] \text{ and } \omega_i \in \mathbb{C}[[t]] \setminus \mathbb{R}[[t]] \text{ for } i \geq 2 \\ & t = \frac{p(\omega)}{q(\omega)} = f(g(\omega)) = \bar{f}(\bar{g}(\omega)) \\ & \sigma = \text{ complex conjugation on coefficients of } \mathbb{C}((t)), \text{ restricted to } \mathbb{C}(\omega_1, \omega_2, \dots) \subset \mathbb{C}((t)) \end{aligned}$$

