RECONHECIMENTO DE PADRÕES | RP

Prof. André Backes | @progdescomplicada

O que é?

- Ramo do aprendizado de máquina
- Consiste em atribuir um rótulo (ou classe) para uma certa amostra ou valor de entrada
- Exemplo: classificação
 - Podemos tentar determinar se um e-mail é "spam" ou "não-spam"
 - 2 classes

O que é?

- Só classificação?
 - Reconhecimento de padrões é algo mais geral do que apenas classificar amostras
- O que mais?
 - Regressão
 - Sequence labeling: usado para análise de fala
 - Análise da estrutura sintática
 - Etc

Para que serve?

- Em geral, visa fornecer uma resposta razoável para todas as entradas possíveis e realizar a correspondência "mais provável" das entradas, tendo em conta a sua variação estatística.
- É estudado em muitas áreas
 - psicologia, psiquiatria, fluxo de tráfego, ciência da computação, etc

O que é ser inteligente?

- Seria resolver um problema específico com exatidão?
 - Ter um mestre do xadrez ou médico especialista
- Resolver problemas genéricos de modo aproximado?
 - Determinar a vaga adequada no estacionamento
- Ter conhecimento Enciclopédico?
 - Saber tudo
- Tocar um instrumento? Falar outras línguas? Jogar bola bem?

RP e a inteligência

- Seres vivos são bastante habilidosos em reconhecer padrões
 - Comportamentais
 - Sonoros
 - Táteis
 - Visuais
 - Olfativos
 - Lógico Matemáticos

RP e a inteligência

- Reconhecer padrões equivale a classificar determinado objeto físico ou situação como pertencente ou não a um certo número de categorias previamente estabelecidas.
 - Dada uma amostra, a qual das classes conhecidas ela pertence?

Usando a intuição

A qual grupo pertence este objeto?

Usando a intuição

- E agora?
- A qual grupo pertence este objeto?

Como o computador reconhece padrões?

- Seres humanos
 - A decisão de a qual grupo pertence é tomada com base no grau de similaridade entre a fruta desconhecida e os grupos de frutas conhecidas.
- Como o cérebro humano realiza esta tarefa?
 - comparação entre o objeto novo e objetos armazenados/conhecidos?

Como o computador reconhece padrões?

- Podemos "replicar" este processo em uma máquina. Para isso, precisamos
 - Representar os atributos físicos das frutas
 - Aprender o conceito laranja/maçã.
 - Armazenar as frutas aprendidas
 - De uma regra de decisão para classificar a nova fruta

Como o computador reconhece padrões?

- Jornadas nas Estrelas Voyager
 - O médico da nave (IA holograma) tem que lidar com as questões éticas durante o processo de tomada de decisão.
 - Ele se torna obcecado com o fato de talvez ter tomado a decisão "errada".

https://www.youtube.com/watch?v=FqvmoyLozzY

Modelo básico de um sistema RP

Definição Formal de RP

- Para definir um problema de RP precisamos
 - Um número finito de K classes: C₁, C₂, ..., C_K
 - Um número finito de N_i objetos por classe C_i
 - Um número finito de *p* atributos (*features*) para representar numericamente cada objeto físico.
 - Um mecanismo de memória e/ou aprendizado.
 - Uma regra de decisão para classificar novos objetos.
 - Um critério de avaliação do classificador.

Definições básicas

Classe

 Trata-se de um conjunto de objetos que compartilham um mesmo conjunto de características ou atributos comuns a todos.

Objeto ou amostra

 Trata-se de um único exemplar de uma classe conhecida ou não. É representado por um conjunto de atributos.

Definições básicas

- Atributo (feature)
 - É cada uma das características ou propriedades mais representativas de um determinado objeto
- Vetor de atributos ou padrão (X)
 - Em geral, mais de um atributo é necessário para descrever um objeto. Assim, é interessante considerar um conjunto de atributos organizados na forma de um vetor

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_p \end{bmatrix}$$

- Tipos de atributos possíveis
 - Nominal
 - cor, identificação, profissão, ...
 - Ordinal
 - gosto (ruim, médio, bom), dias da semana, ...
 - Intervalar
 - temperatura em Celsius, ...
 - Racional
 - peso, tamanho, idade, temperatura em Kelvin, ...

Categórico (Qualitativo)

Numérico Quantitativo)

Tipo de Atributo	Descrição	Exemplos
Nominal	Valores são simplesmente nomes (símbolos) diferentes, i.e., atributos nominais provêm apenas informação suficiente para distinguir uma instância de outra: (=, ≠)	Sexo, Estado Civil, CEP,
Ordinal	Os valores de atributos ordinais provêm informação suficiente para distinguir e ordenar instâncias, i.e.: (=, ≠) e (<, >)	Grau de Educação, Números de Endereço,
Intervalo	Atributos para os quais a diferença entre valores faz sentido, i.e., existe uma unidade de medida com referência (zero) arbitrário. Suporta as operações anteriores e ainda (+, -)	Datas, Temperatura em Fahrenheit,
Razão	Atributos para os quais não apenas a diferença entre valores faz sentido, mas também a razão entre valores (zero é absoluto). Suporta as ops. anteriores e ainda (*, /)	Contagens, Massa, Largura, Corrente Elétrica, Quantidades Monetárias,

- Pose-se estabelecer uma taxonomia independente para atributos pelo seu número de valores
 - Atributos Discretos
 - Atributos Contínuos

- Atributos Discretos
 - assumem um número contável (enumerável) de valores
 - estações do ano, cores elementares, ...
 - nº de filhos, nº estrelas no universo, nº de anos
 - Caso especial: Atributos Binários
 - 0 ou 1
 - V ou F
 - etc

- Atributos Contínuos
 - assumem uma quantidade incontável de valores
 - valores que são números reais
 - temperatura
 - peso
 - distância

- Quais atributos podemos usar para descrever a fruta ao lado?
 - Forma?
 - Cor?
 - Textura?
 - Cheiro?
 - Sabor?
 - Etc

- Quais atributos podemos usar para descrever uma amostra de minério de ferro?
 - Teor de ferro?
 - Teor de umidade?
 - Granulometria?
 - Etc
- Quais atributos são mais importantes?
 - Difícil responder...

- Atributos inadequados
 - São atributos que não contém nenhuma informação relevante para a separação das classes, não importa o classificador usado.
 - Solução: definir novos atributos

- Atributos correlacionados
 - Pode acontecer de 2 atributos distintos serem influenciados por um mecanismo comum de modo que variem juntos.
 - Isso pode degradar o desempenho do classificador
 - Exemplos:
 - raio e comprimento da circunferência
 - o preço de um produto e a quantidade de imposto pago por ele

Correlação não implica causalidade!

https://www.tylervigen.com/spurious-correlations

- O computador entende apenas números!
 - Cada atributo deve ser representado por um valor numérico
 - Teor de ferro: 0,5 (50%)
 - Teor de umidade: 0,1 (10%)
 - Granulometria: 1,5 mm
- Vetor de atributos da amostra

$$X = \begin{bmatrix} 0, 5 \\ 0, 1 \\ 1, 5 \end{bmatrix}$$

Classificação

- Consiste em tentar discriminar em diferentes classes um conjunto de objetos com características mensuráveis
 - Exemplo: classificação de frutas
 - Forma, cor, sabor, etc

Classificação

- Essas características, ou atributos, do objeto formam um espaço multidimensional
 - Espaço de características
- Cada objeto é então representado como sendo um ponto nesse espaço

Tipos de aprendizado

- Principais paradigmas de treinamento
 - Supervisionado
 - Semi-supervisionado
 - Não supervisionado
 - Reforço

Treinamento Supervisionado

 Consiste em apresentar um padrão a ser reconhecido juntamente com a resposta que o sistema deve fornecer ao deparar-se novamente com o esse padrão

Treinamento Supervisionado

- Guiado por um "professor" externo que possui conhecimento sobre o ambiente
 - Parâmetros do sistema são ajustados por apresentações sucessivas do padrão de modo a reproduzir comportamento do "professor"

Treinamento Supervisionado

- Métodos Paramétricos
 - Assumem que a distribuição dos dados é conhecida
 - distribuição normal, por exemplo
 - Em muitos casos não se tem conhecimento da distribuição
- Métodos Não-Paramétricos
 - Não consideram essa hipótese
 - Um exemplo é o k-NN (k Nearest Neighbor)

Treinamento por Reforço

- Tipo de treinamento intermediário entre o supervisionado e não supervisionado
 - Processo de tentativa e erro que procura maximizar sinal de reforço
 - Exemplo: agente jogador de damas, onde o sistema é reforçado de acordo com o número de peças capturadas ou perdidas

Treinamento por Reforço

- Guiado por um "crítico" externo
 - Se ação tomada por sistema é seguida por estado satisfatório, sistema é fortalecido, caso contrário, sistema é enfraquecido (lei de Thorndike)
 - Tipos de reforço:
 - Positivo (recompensa)
 - Negativo (punição)
 - Nulo

Treinamento Não Supervisionado

- Não tem "crítico" ou "professor" externo, apenas os dados de entrada
- Tem-se um conjunto de exemplos mas não se conhece as categorias envolvidas
- Busca extrair as propriedades estatisticamente relevantes

Treinamento Não Supervisionado

- Exemplos: Clustering
 - Organização dos objetos similares (em algum aspecto) em grupos
 - Descobre categorias automaticamente
- Quantização: atribui valores discretos para um atributo que aceita infinitos valores

Treinamento Semi-Supervisionado

- Combina uma pequena quantidade de amostras classificadas com um grande número de amostras não classificadas para produzir melhores classificadores
- Tem um "professor" externo apenas para parte dos exemplos de treinamento
 - Exemplo: busca por páginas de internet similares.

Função Alvo

- Trata-se da função objetivo.
 - Ela estabelece qual conhecimento será aprendido
- Permite também verificar quão bem o conhecimento foi aprendido
 - Função discriminante entre classes
 - Função de similaridade intra grupos
 - etc

Teste diagnóstico

- Utilizado para a verificação da ocorrência ou não ocorrência de uma doença
 - Compara o resultado de um teste com um padrão de referência (padrão ouro)

True negative NOT HOTDOG False negative NOT HOTDOG

Teste diagnóstico

- Indicadores que podem ser calculados a partir dos resultados da tabela
 - Classificação correta (acurácia):
 - (VP+VN)/(VP+FP+FN+VN)
 - Classificação incorreta:
 - (FP+FN)/(VP+FP+FN+VN)

Teste diagnóstico

- Indicadores que podem ser calculados a partir dos resultados da tabela
 - Sensibilidade: capacidade de detectar corretamente os doentes
 - VP/(VP+FN)
 - Especificidade: capacidade de detectar corretamente os indivíduos sadios
 - VN/(VN+FP)

- Nos próximos slides são apresentadas algumas definições estatísticas muito comuns no trato com dados multivariados.
- Essas estatísticas se aplicam, de modo geral, a cada atributo do nosso vetor de atributos.

- Amplitude Total
 - Trata-se da dispersão entre o maior e o menor valor de um determinado atributo.

$$R = \max_{j} X_{i}(j) - \min_{j} X_{i}(j)$$

- Exemplo: para um atributo "idade" temos o seguinte conjunto de valores:
 - 20, 25, 27, 28, 40, 30, 31 e 19
 - R = 40 19 = 21

- Média ou esperança
 - É o valor que aponta para onde mais se concentram os dados de uma distribuição
 - Pode também ser chamado de centróide

- Média ou esperança
 - A média aritmética é a forma mais simples de calcular uma média

$$\mu = E[X] = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \dots \\ E(X_p) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_p \end{bmatrix}$$

$$\mu_i = \frac{1}{N} \sum_{j=1}^N X_i(j)$$

- Muito cuidado ao calcular a média, pois o resultado obtido pode não refletir a realidade
 - Exemplo: uma pesquisa feita em uma população de 8 domicílios em duas regiões (A e B)

Local	В	Α	В	В	В	Α	Α	В
Renda	13	17	6	5	10	12	19	6

Média	11
Média A	16
Média B	8

- Mediana
 - Dado um conjunto de dados organizados em ordem crescente, a mediana é o valor que ocupa a posição central do conjunto.
 - Dado o conjunto {2, 2, 3, 5, 5, 6, 7, 7, 9, 9, 10}
 - A mediana \tilde{x} será igual a 6

Mediana

- Se a quantidade de valores é ímpar, a mediana, será simplesmente o valor central.
- Se a quantidade de valores é par, a mediana será a média dos dois valores centrais
 - Dado o conjunto $\{0, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8\}$, a mediana \tilde{x} será igual a (4+5)/2 = 4,5.

- Mediana é muito mais resistente a dados espúrios
 - Para o conjunto {2, 2, 3, 5, 5, 6, 7, 7, 9, 9, 10}

Média: 5.91

Mediana: 6

Para o conjunto {2, 2, 3, 5, 5, 6, 7, 7, 9, 9, 10, 1000}

Média: 88.75

Mediana: 6,50

- Moda
 - Dado um conjunto de dados, a moda é o valor com maior frequência individual, ou seja, aquele que mais se repete dentro do conjunto de dados
 - Dado o conjunto {0, 1, 2, 2, 2, 3, 4, 5, 5, 6, 6, 7, 8}, a moda será igual a 2

- Variância
 - Trata-se de uma medida da dispersão estatística de um atributo
 - É uma medida unidimensional. Não leva em consideração as outras dimensões
 - Indica quão longe, em geral, os valores se encontram da média.
 - Para o seu cálculo deve-se ter em mente a natureza dos dados estudados

$$\sigma^2 = var(X) = E\left[(X - \mu)^2 \right]$$

- Os dados estudados podem constituir uma população ou uma amostra
 - Variância da População: nosso conjunto de dados observados representa todos os elementos existentes na população
 - Variância da Amostra: nosso conjunto de dados observados representa apenas uma amostra de todos os elementos existentes na população

Variância da População

$$\sigma_i^2 = \frac{1}{N} \sum_{j=1}^{N} (X_i(j) - \mu_i)^2$$

Variância da Amostra

$$\sigma_i^2 = \frac{1}{N-1} \sum_{j=1}^N (X_i(j) - \mu_i)^2$$

Média e variância

- Desvio Padrão
 - É dado pela raiz quadrada da variância

$$\sigma = \sqrt{var(X)} = \sqrt{E\left[(X - \mu)^2\right]}$$

$$\sigma_i = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \mu_i)^2}$$

- Como no cálculo da variância, deve-se ter em mente a natureza dos dados estudados
 - População ou amostra

- Qual a diferença entre Variância e Desvio Padrão?
 - O desvio padrão é, em geral, mais útil para descrever a variabilidade dos dados e tem a conveniência de ser expresso nas mesmas unidades do dado original
 - O desvio padrão é utilizado para normalização antes dos testes estatísticos
 - A variância é geralmente mais útil matematicamente

Desvio Padrão

- Coeficiente de Variação
 - É uma medida de dispersão empregada para estimar a precisão de experimentos
 - É definido como a razão entre o desvio padrão e a média

$$CV = \frac{\sigma}{\mu}$$

- O coeficiente de variação permite representar o desvio-padrão como uma porcentagem da média.
 - Capacidade de comparar distribuições que apresentem diferentes médias e desvios

- Covariância
 - Trata-se de uma medida da dispersão estatística de entre dois atributos
 - É uma medida bidimensional.
 - Verifica a dispersão de duas variáveis aleatórias
 - Permite a nós medir o grau de relacionamento linear entre duas variáveis aleatórias (atributos) X_i e X_j

$$\sigma_{ij} = cov(X_i, X_j) = E\left[(X_i - \mu_i)(X_j - \mu_j) \right] =$$

$$\frac{1}{N-1} \sum_{k=1}^{N} (X_i(k) - \mu_i)(X_j(k) - \mu_j)$$

- Matriz de Covariâncias
 - Trata-se de uma matriz simétrica que sumariza a covariância entre p atributos.

$$cov(X) = \Sigma_{p \times p} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \dots & \dots & \dots & \dots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{pp} \end{bmatrix}$$

Exemplo:

$$\Sigma_{2\times 2} = \left[\begin{array}{cc} 8 & -2 \\ -2 & 5 \end{array} \right]$$

- Matriz de Covariâncias
 - Note que temos as variâncias dos atributos ao longo da diagonal principal e das covariâncias entre cada par de variáveis nas outras posições da matriz

$$\sigma_{ii} = \sigma_i^2$$

$$\sigma_{ij} = \sigma_{ji}$$

- Calcular a matriz de covariâncias tem um custo alto
 - Devemos buscar alternativas para ter uma boa estimativa utilizando menos dados

 Podemos assumir que os atributos são estatisticamente independentes

$$\Sigma_{p \times p} = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_p^2 \end{bmatrix}$$

- Assumir que a matriz de covariâncias é a mesma para todas as classes
 - Abordagem utilizada pelo classificador Naive-Bayes

- Variância total
 - É representada pela soma de todos os atributos envolvidos no vetor X.
 - Altos valores de variância indicam uma maior dispersam dos atributos
 - O traço da matriz de covariâncias é uma forma sintetizada da variância total

$$\operatorname{traço}(\Sigma_{p\times p}) = \operatorname{tr}(\Sigma_{p\times p}) = \sigma_{11} + \sigma_{22} + \cdots + \sigma_{pp}$$

- Variância generalizada
 - É representada pelo determinante da matriz de covariâncias
 - Como na variância, a raiz da variância generalizada é o desvio-padrão generalizada

- Coeficiente de Correlação
 - Também chamada de correlação, indica a força e a direção do relacionamento linear entre dois atributos
 - Trata-se de uma medida da relação entre dois atributos, embora correlação não implique causalidade
 - Duas variáveis podem estar altamente correlacionadas e não existir relação de causa e efeito entre elas

- Coeficiente de Correlação
 - Existem vários coeficientes medindo o grau de correlação, adaptados à natureza dos dados.
 - O coeficiente de correlação de Pearson ou "coeficiente de correlação produto-momento" é um dos mais utilizados

$$p_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} = \frac{\sigma_{ij}}{\sigma_i\sigma_j}$$

 O estudo de correlação pressupõe que os dois atributos tenham distribuição normal

- O experimento do gorila
 - Sofremos de atenção seletiva
 - O foco numa hipótese pode nos cegar para algumas descobertas

(

	Gorilla <u>not</u> discovered	Gorilla discovered
Hypothesis-focused	14	5
Hypothesis-free	5	9

- Matriz de Correlação
 - Trata-se de uma matriz simétrica que sumariza a covariância entre p atributos.

$$P_{p \times p} = \begin{bmatrix} 1 & p_{12} & \dots & p_{1p} \\ p_{21} & 1 & \dots & p_{2p} \\ \dots & \dots & \dots & \dots \\ p_{p1} & p_{p2} & \dots & 1 \end{bmatrix}$$

Exemplo:

$$P_{2\times 2} = \begin{bmatrix} 1 & -0.3162 \\ -0.3162 & 1 \end{bmatrix}$$

- Combinação linear
 - Trata-se de uma ferramenta importante na análise de dados multivariados, pois permite sumarizar as informações dos p-atributos originais
 - Um atributo Z é combinação linear de outros p atributos se existe um conjunto de escalares $a_1, a_2, ..., a_p$, tal que

$$Z = a_1 X_1 + a_2 X_2 + \dots + a_p X_p$$

Agradecimentos

 Agradeço ao professor Guilherme de Alencar Barreto da Universidade Federal do Ceará (UFC) pelo material disponibilizado