Package 'MLOutMod'

October 20, 2020

Type Package

Title Outlie	er detection and modification for machine learning thms
Version 1.0	
Date 2020-	10-19
Author Md	.Shahjaman and Md.Rabiul Auwul
Maintainer	${\bf Md.Shahjaman} < {\bf shahjaman_brur@yahoo.com} >$
tion (Nexpression a	We developed a simple method using median and median absolute divia-MAD) to detect and modify the outlying gene ssion by median. If an expression within a condition does not fall into the limit of mend median absolute deviation (MAD) we term this expression as outlier and we flagged this gene.
License GP	PL (>= 2.0)
Depends R	(>= 3.5.0), ROC, stats, MASS, caret, e1071
NeedsComp	pilation no
R topics	documented:
MI	LOutMod-package
Da	tTe 2
Da	tTr 3
	tTrOut
	ıt3sigma
	ıtModData
pei	rformance.eval
Index	8
——————————————————————————————————————	Iod-package Outlier detection and modification for machine learning algorithms

2 DatTe

Description

We developed a simple method using median and median absolute deviation (MAD) to detect and modify the outlying gene expression by median and then we applied this modified data in the machine learning algorithms to improve the performance of these methods. If an expression within a condition does not fall into the limit of median and median absolute deviation (MAD) then we term this expression as outlier and we flag them. This package can be used at the preprocessing step of gene expression data analysis.

Details

Package: MLOutMod Type: Package Version: 1.0 Date: 2020-10-19

Date: 2020-10-19 License: GPL (>=2.0)

Package OutMod has the following functions:

performance.eval(): This is the performance evaluation function. Which calculates TPR,TNR,FPR,PNR,AUC

etc. as a measure of performance index.

Out3sigma (): This function uses for detection and modify of outlier of a gene from each condition.

OutModData (): This function detect the outliers for each gene from each of the condition

and modify the outliers to produce the modified gene expression (MGE) dataset.

Author(s)

Md.Shahjaman and Md. Rabiul Auwul Maintainer: Md.Shahjaman shahjaman_brur@yahoo.com

Examples

```
data(DatTrOut)
xx=DatTrOut
groupid=rep(c(1,2),each=5)

#Outlier detection and modification

Moddata<-OutModData(xx,groupid)$uprmat
```

DatTe

Simulated Test gene expression dataset

Description

This dataset consist of 1000 gene and 10 samples. These samples are divided in to two groups normal(5) and cancer(5).

DatTr 3

Usage

```
data("DatTe")
```

Examples

```
data(DatTe)
```

DatTr

Simulated Training gene expression dataset

Description

This dataset consist of 1000 gene and 10 samples. These samples are divided in to two groups normal(5) and cancer(5).

Usage

```
data("DatTr")
```

Examples

data(DatTr)

DatTrOut

Simulated Training gene expression dataset with 5 percent Outlier.

Description

This dataset consist of 1000 gene and 10 samples. These samples are divided in to two groups normal(5) and cancer(5). This dataset was constructed by adding 5 percent outliers in DatTr dataset.

Usage

```
data("DatTrOut")
```

Examples

```
data(DatTrOut)
```

4 OutModData

Out3sigma

This function uses for detection and modification of outlier

Description

If an expression within a condition does not fall into the limit of median and median absolute deviation (MAD) then we term this expression as outlier and if outlier exist then we flag this gene by 1 otherwise 0. Then we replace the outliers by the median value of the expression

Usage

```
Out3sigma(xx)
```

Arguments

XX

xx denotes the vector of a gene expression.

Value

This function returns 1 component

upxx

Updated outlying gene expression data by median

Author(s)

Md.Shahjaman and Md. Rabiul Auwul shahjaman_brur@yahoo.com

Examples

```
 \begin{array}{l} {\rm data(DatTrOut)} \\ {\rm xx=DatTrOut} \\ {\rm groupid=rep(c(1,2),each=5)} \\ {\rm modout1<-t(apply(xx[,which(groupid==1)],1,Out3sigma~))[,-6]} \\ {\rm modout2<-t(apply(xx[,which(groupid==2)],1,Out3sigma~))[,-6]} \\ {\rm Data~up<-cbind(modout1,modout2)} \\ \end{array}
```

OutModData

This function OutModData() detect the outliers from each of the condition and modify the outliers to produce the modified gene expression (MGE) dataset

Description

If an expression within a condition does not fall into the limit of median and median absolute deviation (MAD) then we term this expression as outlying expression and if outliers exist, we flag this gene by 1 otherwise 0. It also replaces the outliers by the median value of the expression corresponding to each condition. This process was continued for each gene and each of the condition to obtain the modified gene expression (MGE) dataset.

performance.eval 5

Usage

```
OutModData(xx, groupid)
```

Arguments

xx xx denotes the gene expression data matrix.

groupid groupid denotes data levels of the xx.

Value

This function returns a 2 components

flag flag for outliers. If a gene contain at least one outlier, flag it by 1 otherwise 0

uprmat Modified outlying gene expression data matrix

Author(s)

Md.Shahjaman and Md. Rabiul Auwul shahjaman_brur@yahoo.com

Examples

```
\label{eq:continuity} \begin{split} & \operatorname{data}(\operatorname{DatTrOut}) \\ & \operatorname{xx=DatTrOut} \\ & \operatorname{groupid=rep}(c(1,\!2),\!\operatorname{each}=\!5) \\ & \operatorname{Moddata}<-\operatorname{OutModData}(\operatorname{xx,groupid}) \\ & \operatorname{uprmat} \end{split}
```

performance.eval This function estimates the different performance indices like,

TPR,TNR,FPR,FNR,AUC etc. for number of top genes

Description

This function estimates the different performance indeces,like TPR,TNR,FPR,FNR,AUC etc. to asses the performance of the method

Usage

```
performance.eval(PostP, Class, cutoff=NULL)
```

Arguments

PostP Posterior probability provided by the machine learning algorithms.

Class The true class label information should be given to calculates the performance

index.

cutoff cutoff value

6 performance.eval

Value

The following performance indices are produced by performance.eval():

TP	Number of True positive.
TN	Number of True negative.
FP	Number of False positive.
FN	Number of False negative.
R1	Specificity.
TPR	True positive rate.
TNR	True negative rate.
FPR	False positive rate.
FNR	False negative rate.
FDR	False discovery rate.
ER	Error rate.
$\mathrm{AUC2}$	Area under the curve of ROC.
pAUC2	Partial Area under the curve of ROC with FDR controlled at 0.2.

Author(s)

Md.Shahjaman and Md. Rabiul Auwul shahjaman_brur@yahoo.com

Examples

```
data(DatTr)
data(DatTe)
data(DatTrOut)
groupid = rep(c(1,2), each = 5)
modout1<-t(apply(DatTrOut[,which(groupid==1)],1,Out3sigma))[,-6]
modout2<-t(apply(DatTrOut[,which(groupid==2)],1,Out3sigma))[,-6]
DatTrMod<-cbind(modout1,modout2)
# Feature selection using original dataset, outlier dataset and proposed modified dataset
pTtestOrig < -pTtestOut < -pTtestMod < -NULL;
for (j1 in 1:dim(DatTrOut)[1])
DataYYorg <- data.frame(YY = DatTr[j1,], FactorLevels = factor(groupid))
DataYYout <- data.frame(YY = DatTrOut[j1,], FactorLevels = factor(groupid))
DataYYmod < -data.frame(YY = DatTrMod[j1,],\ FactorLevels = factor(groupid))
pTtestOrig[j1] <- t.test(YY^{\sim}FactorLevels, data = DataYYorg)[[3]] \\
pTtestOut[j1] <- t.test(YY~FactorLevels,data=DataYYout)[[3]]
pTtestMod[j1] <- t.test(YY^{\sim}FactorLevels, data = DataYYmod)[[3]] \\
TopDEGorg=which(pTtestOrig<0.05)
TopDEGout=which(pTtestOut<0.05)
TopDEGmod{=}which(pTtestMod{<}0.05)
```

performance.eval 7

DatTraOrg<-DatTr[TopDEGorg,]

```
DatTraOut<-DatTrOut[TopDEGout,]
DatTraMod<-DatTrMod[TopDEGmod,]
DatTeOrg<-DatTe[TopDEGorg,]
DatTeOut<-DatTe[TopDEGout,]
DatTeMod < -DatTe[TopDEGmod,]
Televel < -Trlevel < -as.factor(rep(c(1,2),each=5))
 #performance evaluation of SVM using original dataset, outlier dataset and modified gene expression dataset.
svm.modelOrig <- svm(Trlevel \ \tilde{\ } \ ., \ data = t(DatTraOrg), probability = TRUE)
 \begin{array}{l} svm.modelOut <- \ svm(Trlevel \ \tilde{\ } \ ., \ data = t(DatTraOut), probability = TRUE) \\ svm.modelMod <- \ svm(Trlevel \ \tilde{\ } \ ., \ data = t(DatTraMod), probability = TRUE) \\ \end{array} 
lorg=predict(svm.modelOrig, t(DatTeOrg),probability=TRUE)
lout=predict(sym.modelOut, t(DatTeOut),probability=TRUE)
lmod=predict(svm.modelMod, t(DatTeMod),probability=TRUE)
svm.proborg=as.numeric(attr(lorg, "probabilities")[,2])
svm.probout=as.numeric(attr(lout, "probabilities")[,2])
svm.probmod=as.numeric(attr(lmod, "probabilities")[,2])
cutoff symorg<-seq(min(sym.proborg),max(sym.proborg),length=100)
cutoff symout <-seq(min(sym.probout),max(sym.probout),length=100)
cutoff symmod<-seq(min(sym.probmod),max(sym.probmod),length=100)
Performance.ROC.svmorg<-performance.eval(svm.proborg, Televel, cutoff svmorg)
Performance. ROC. svmout < -performance. eval (svm. probout, Televel, cutoff svmout) \\
Performance.ROC.svmmod<-performance.eval(svm.probmod,Televel,cutoff svmmod)
plot (Performance.ROC.svmorg\$FPR, Performance.ROC.svmorg\$TPR, type="l",col=1,pch=1,lwd=2, ylab="TPR",xlab, ylab="TPR", xlab, ylab, ylab="TPR", xlab, ylab, ylab="TPR", xlab, ylab, ylab,
points (Performance.ROC.svmout\$FPR, Performance.ROC.svmout\$TPR, type="l",col=2, pch=2, lwd=2) \\
 points (Performance.ROC.svmmod\$FPR, Performance.ROC.svmmod\$TPR, type="1", col=3, lwd=2, pch=3)
legend("topright", c('SVM Original Dataset', 'SVM Outlier Dataset', 'SVM Modified Dataset'), lwd=1, pch=c(1,2,
```

Index

```
* datasets
Dat Te, 2
Dat Tr, 3
Dat TrOut, 3

Dat Te, 2
Dat Tr, 3
Dat TrOut, 3

MLOutMod (MLOutMod-package), 1
MLOutMod-package, 1

Out3sigma, 4
OutModData, 4

performance.eval, 5
```