Contents

1	202 3	3-07		1
	1.1	Steepe	est Edge	. 1
		1.1.1	Zörnig (2006)	. 2
			Hall and McKinnon (2004)	

1 2023-07

1.1 Steepest Edge

2023-07-07 10:22 linear programming problem

$$min c'x$$

$$s.t. Ax = b$$

$$x \ge 0$$

where **A** is an $m \times n$ matrix of rank m with m < n

$$\mathbf{A} = [\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \cdots \ \boldsymbol{a}_n] \rightarrow [\mathbf{B} \ \mathbf{N}]$$

Define the basic index set to be an integer set $\mathsf{B} = \{i_1, i_2, \cdots, i_m\}$ with $1 \leqslant i_1 < i_2 < \cdots < i_m \leqslant n$, such that $\mathbf{B} = [\mathbf{a}_{i_1} \ \mathbf{a}_{i_2} \ \cdots \ \mathbf{a}_{i_m}]$ is full rank. The matrix \mathbf{N} is the block of \mathbf{A} after \mathbf{B} is taken out, and non-basic index set $\mathsf{N} = \{1, 2, \cdots, n\} \setminus \mathsf{B}$. Let $\mathbf{h}'_N = \mathbf{c}'_N - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N}$, and

$$g_i = \frac{h_i^2}{1 + \left\|\mathbf{B}^{-1} \boldsymbol{a}_i\right\|^2} \qquad h_i < 0, i \in \mathbb{N}$$

then

$$k = \operatorname{argmax} \{ g_i : h_i < 0, i \in \mathbb{N} \}$$

is the entering index detected by the steepest edge rule.

See Goldfarb and Reid (1977) and Forrest and Goldfarb (1992) for more.

1.1.1 Zörnig (2006)

Zörnig (2006) Example 6.1, Problem (6.3) $B = \{5, 6, 7\}$: entering index 1, leaving index 5

for

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{33}{25} & \frac{1}{2} & -\frac{53}{25} & -\frac{9}{20} \\ -44 & -\frac{24}{5} & 6 & \frac{33}{100} \\ \frac{1319}{1000} & -40 & \frac{2123}{10} & \frac{1173}{100} \end{bmatrix}$$

$$\mathbf{h}_{N}' = \mathbf{c}_{N}' - \mathbf{c}_{B}' \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{7}{100} & -\frac{3}{50} & \frac{11}{50} & \frac{133}{12500} \end{bmatrix}$$
$$g_{i} = \frac{h_{i}^{2}}{1 + \|\mathbf{B}^{-1} \mathbf{a}_{i}\|^{2}} \qquad h_{i} < 0$$

$$g_1 = \frac{\left(-\frac{7}{100}\right)^2}{1 + \frac{1939}{1000000}} = \frac{4900}{1940482161} = 2.5251 \times 10^{-6}$$

$$g_2 = \frac{\left(-\frac{3}{50}\right)^2}{1 + \frac{162329}{100}} = \frac{3}{1353575} = 2.2164 \times 10^{-6}$$

 $B = \{1, 6, 7\}$: entering index 2, leaving index 1

c	$-\frac{7}{100}$	$-\frac{3}{50}$	$\frac{11}{50}$	$\frac{133}{12500}$	0	0	0
	1	$ riangled rac{25}{66}$	$-\frac{53}{33}$	$-\frac{15}{44}$	$\frac{25}{33}$	0	0
	0	$\frac{178}{15}$	$-\frac{194}{3}$	$-\frac{1467}{100}$	$\frac{100}{3}$	1	0
	0	$-\frac{106919}{2640}$	$\frac{7075807}{33000}$	$\frac{107181}{8800}$	$-\frac{1319}{1320}$	0	1
h		$-\frac{221}{6600}$	$\frac{71}{660}$	$-\frac{7273}{550000}$	$\frac{7}{132}$		
\mathbf{g}		$\sqrt{\frac{195364}{310527143625}}$		$\frac{211586116}{441249749640625}$			
i	1	2	3	4	5	6	7

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{33}{25} & 0 & 0 \\ -44 & 1 & 0 \\ \frac{1319}{1000} & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{2} & -\frac{53}{25} & -\frac{9}{20} & 1 \\ -\frac{24}{5} & 6 & \frac{33}{100} & 0 \\ -40 & \frac{2123}{10} & \frac{1173}{100} & 0 \end{bmatrix} = \begin{bmatrix} \frac{25}{66} & -\frac{53}{33} & -\frac{15}{44} & \frac{25}{33} \\ \frac{178}{15} & -\frac{194}{3} & -\frac{1467}{100} & \frac{100}{3} \\ -\frac{106919}{2640} & \frac{7075807}{33000} & \frac{107181}{8800} & -\frac{1319}{1320} \end{bmatrix}$$

$$\mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{7}{100} & 0 & 0 \end{bmatrix} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{7}{264} & \frac{371}{3300} & \frac{21}{880} & -\frac{7}{132} \end{bmatrix}$$

$$\mathbf{h}'_N = \mathbf{c}'_N - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{3}{50} & \frac{11}{50} & \frac{133}{12500} & 0 \end{bmatrix} - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{221}{6600} & \frac{71}{660} & -\frac{7273}{550000} & \frac{7}{132} \end{bmatrix}$$

$$g_2 = \frac{\left(-\frac{221}{6600}\right)^2}{1 + \frac{827607743}{6464640}} = \frac{195364}{310527143625} = 6.2914 \times 10^{-7}$$

$$g_4 = \frac{\left(-\frac{7273}{550000}\right)^2}{1 + \frac{28162543977}{77440000}} = \frac{211586116}{441249749640625} = 4.7952 \times 10^{-7}$$

 $B = \{2, 6, 7\}$: entering index 4, leaving index \blacktriangleleft

\mathbf{c}	$-\frac{7}{100}$ $-\frac{3}{50}$		$\frac{11}{50}$	$\frac{133}{12500}$	0	0	0
	$\frac{66}{25}$	1	$-\frac{106}{25}$	$-\frac{9}{10}$	2	0	0
	$-\frac{3916}{125}$	0	$-\frac{1794}{125}$	$-\frac{399}{100}$	$\frac{48}{5}$	1	0
	$\frac{106919}{1000}$	0	$\frac{427}{10}$	$-\frac{2427}{100}$	80	0	1
h	$\frac{221}{2500}$		$-\frac{43}{1250}$	$-\frac{271}{6250}$	$\frac{3}{25}$		
\mathbf{g}			$\frac{1849}{3200386725}$	$\sqrt{\frac{146882}{47403359375}}$			
i	1	2	3	4	5	6	7

for

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{24}{5} & 1 & 0 \\ -40 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{33}{25} & -\frac{53}{25} & -\frac{9}{20} & 1 \\ -44 & 6 & \frac{33}{100} & 0 \\ \frac{1319}{1000} & \frac{2123}{10} & \frac{1173}{100} & 0 \end{bmatrix} = \begin{bmatrix} \frac{66}{25} & -\frac{106}{25} & -\frac{9}{10} & 2 \\ -\frac{3916}{125} & -\frac{1794}{125} & -\frac{399}{100} & \frac{48}{5} \\ \frac{106919}{1000} & \frac{427}{10} & -\frac{2427}{100} & 80 \end{bmatrix}$$

$$\mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{3}{50} & 0 & 0 \end{bmatrix} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{99}{625} & \frac{159}{625} & \frac{27}{500} & -\frac{3}{25} \end{bmatrix}$$

$$\mathbf{h}'_N = \mathbf{c}'_N - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{7}{100} & \frac{11}{50} & \frac{133}{12500} & 0 \end{bmatrix} - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} \frac{221}{2500} & -\frac{43}{1250} & -\frac{271}{6250} & \frac{3}{25} \end{bmatrix}$$

$$g_3 = \frac{\left(-\frac{43}{1250}\right)^2}{1 + \frac{127952969}{62500}} = \frac{1849}{3200386725} = 5.7774 \times 10^{-7}$$

$$g_4 = \frac{\left(-\frac{271}{6250}\right)^2}{1 + \frac{605763}{1000}} = \frac{146882}{47403359375} = 3.0986 \times 10^{-6}$$

The entering index 4, since $\mathbf{B}^{-1}a_4 < 0$, the LP is unbounded

Zörnig (2006) Example 6.1, Problem (6.4) $B = \{7, 8, 9\}$: entering index 5, leaving index 7

for

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 2 & \frac{1}{5} & -5 & -\frac{9}{10} & 1 & \frac{23}{1000} \\ -41 & -\frac{6}{5} & 12 & \frac{1}{5} & -\frac{14}{5} & -\frac{1}{500} \\ 165000 & 2600 & 9600 & 125 & -100 & -300 \end{bmatrix}$$

$$\mathbf{c}_{B}^{\prime}\mathbf{B}^{-1}\mathbf{N} = 0$$

$$\mathbf{h}_{N}^{\prime} = \mathbf{c}_{N}^{\prime} - \mathbf{c}_{B}^{\prime}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 36 & -\frac{3}{5} & 20 & \frac{1}{4} & -\frac{1}{20} & -\frac{1}{20} \end{bmatrix}$$

$$g_{2} = \frac{\left(-\frac{3}{5}\right)^{2}}{1 + \frac{169000037}{25}} = \frac{3}{56333354} = 5.3254 \times 10^{-8}$$

$$g_{5} = \frac{\left(-\frac{1}{20}\right)^{2}}{1 + \frac{250221}{25}} = \frac{1}{4003936} = 2.4975 \times 10^{-7}$$

$$g_{6} = \frac{\left(-\frac{1}{20}\right)^{2}}{1 + \frac{90000000533}{1000000533}} = \frac{2500}{90001000533} = 2.7777 \times 10^{-8}$$

 $B = \{5, 8, 9\}$: entering index 2, leaving index 5

\mathbf{c}	36	$-\frac{3}{5}$	20	$\frac{1}{4}$	$-\frac{1}{20}$	$-\frac{1}{20}$	0	0	0
	2	$\blacktriangleleft \frac{1}{5}$	-5	$-\frac{9}{10}$	1	$\frac{23}{1000}$	1	0	0
	$-\frac{177}{5}$	$-\frac{16}{25}$	-2	$-\frac{58}{25}$	0	$\frac{39}{625}$	$\frac{14}{5}$	1	0
	165200	2620	9100	35	0	$-\frac{2977}{10}$	100	0	1
\mathbf{h}	$\frac{361}{10}$	$-\frac{59}{100}$	$\frac{79}{4}$	$\frac{41}{200}$		$-\frac{977}{20000}$	$\frac{1}{20}$		
\mathbf{g}		$\sqrt{\frac{3481}{68644014496}}$				$\frac{954529}{35450517769104}$			
i	1	2	3	4	5	6	7	8	9

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{14}{5} & 1 & 0 \\ -100 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & \frac{1}{5} & -5 & -\frac{9}{10} & \frac{23}{1000} & 1 \\ -41 & -\frac{6}{5} & 12 & \frac{1}{5} & -\frac{1}{500} & 0 \\ 165000 & 2600 & 9600 & 125 & -300 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & \frac{1}{5} & -5 & -\frac{9}{10} & \frac{23}{1000} & 1 \\ -\frac{177}{5} & -\frac{16}{25} & -2 & -\frac{58}{25} & \frac{39}{625} & \frac{14}{5} \\ 165200 & 2620 & 9100 & 35 & -\frac{2977}{10} & 100 \end{bmatrix}$$

$$\mathbf{c}_{B}^{\prime}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{1}{20} & 0 & 0 \end{bmatrix} \mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{1}{10} & -\frac{1}{100} & \frac{1}{4} & \frac{9}{200} & -\frac{23}{20000} & -\frac{1}{20} \end{bmatrix}$$

$$\mathbf{h}_{N}^{\prime} = \mathbf{c}_{N}^{\prime} - \mathbf{c}_{B}^{\prime}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 36 & -\frac{3}{5} & 20 & \frac{1}{4} & -\frac{1}{20} & 0 \end{bmatrix} - \mathbf{c}_{B}^{\prime}\mathbf{B}^{-1}\mathbf{N}$$

$$= \begin{bmatrix} \frac{361}{10} & -\frac{59}{100} & \frac{79}{4} & \frac{41}{200} & -\frac{977}{20000} & \frac{1}{20} \end{bmatrix}$$

$$g_{2} = \frac{\begin{pmatrix} -\frac{59}{100} \end{pmatrix}^{2}}{1 + \frac{4290250281}{625}} = \frac{3481}{68644014496} = 5.0711 \times 10^{-8}$$

$$g_{6} = \frac{\begin{pmatrix} -\frac{997}{20000} \end{pmatrix}^{2}}{1 + \frac{2215632360569}{2500000}} = \frac{954529}{35450517769104} = 2.6926 \times 10^{-8}$$

 $B = \{2, 8, 9\}$: entering index 4, leaving index 9

c
 36

$$-\frac{3}{5}$$
 20
 $\frac{1}{4}$
 $-\frac{1}{20}$
 $-\frac{1}{20}$
 0
 0
 0
 0
 0

 10
 1
 -25
 $-\frac{9}{2}$
 5
 $\frac{23}{200}$
 5
 0
 0

 -29
 0
 -18
 $-\frac{26}{5}$
 $\frac{16}{5}$
 $\frac{17}{125}$
 6
 1
 0

 139000
 0
 74600
 11825
 -13100
 -599
 -13000
 0
 1

 h
 42
 5
 $-\frac{49}{20}$
 $\frac{59}{20}$
 $\frac{19}{1000}$
 3
 $\frac{1}{20}$

 g
 $\frac{1}{20}$
 3
 4
 5
 6
 7
 8
 9

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{6}{5} & 1 & 0 \\ 2600 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -5 & -\frac{9}{10} & 1 & \frac{23}{1000} & 1 \\ -41 & 12 & \frac{1}{5} & -\frac{14}{5} & -\frac{1}{500} & 0 \\ 165000 & 9600 & 125 & -100 & -300 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & -25 & -\frac{9}{2} & 5 & \frac{23}{200} & 5 \\ -29 & -18 & -\frac{26}{5} & \frac{16}{5} & \frac{17}{125} & 6 \\ 139\,000 & 74\,600 & 11\,825 & -13\,100 & -599 & -13\,000 \end{bmatrix}$$

$$\mathbf{c}'_{B}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{3}{5} & 0 & 0 \end{bmatrix} \mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -6 & 15 & \frac{27}{10} & -3 & -\frac{69}{1000} & -3 \end{bmatrix}$$

$$\mathbf{h}'_{N} = \mathbf{c}'_{N} - \mathbf{c}'_{B}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 36 & 20 & \frac{1}{4} & -\frac{1}{20} & -\frac{1}{20} & 0 \end{bmatrix} - \mathbf{c}'_{B}\mathbf{B}^{-1}\mathbf{N}$$

$$= \begin{bmatrix} 42 & 5 & -\frac{49}{20} & \frac{59}{20} & \frac{19}{1000} & 3 \end{bmatrix}$$

$$g_{4} = \checkmark, \text{ unique choice}$$

 $B = \{2, 4, 8\}$: entering index 6, leaving index \triangleleft

for

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{1}{5} & -\frac{9}{10} & 0 \\ -\frac{6}{5} & \frac{1}{5} & 1 \\ 2600 & 125 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -5 & 1 & \frac{23}{1000} & 1 & 0 \\ -41 & 12 & -\frac{14}{5} & -\frac{1}{500} & 0 & 0 \\ 165000 & 9600 & -100 & -300 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{29750}{473} & \frac{1603}{473} & \frac{7}{473} & -\frac{2137}{18920} & \frac{25}{473} & \frac{9}{23650} \\ \frac{5560}{473} & \frac{2984}{473} & -\frac{524}{473} & -\frac{599}{11825} & -\frac{520}{473} & \frac{1}{11825} \\ \frac{15195}{473} & \frac{35014}{2365} & -\frac{6056}{2365} & -\frac{7533}{59125} & \frac{134}{473} & \frac{26}{59125} \end{bmatrix}$$

$$\mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{3}{5} & \frac{1}{4} & 0 \end{bmatrix} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} -\frac{16460}{473} & -\frac{1079}{2365} & -\frac{676}{2365} & \frac{5213}{94600} & -\frac{145}{473} & -\frac{49}{236500} \end{bmatrix}$$

$$\mathbf{h}'_N = \mathbf{c}'_N - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} 36 & 20 & -\frac{1}{20} & -\frac{1}{20} & 0 & 0 \end{bmatrix} - \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{N}$$

$$= \begin{bmatrix} \frac{33488}{473} & \frac{48379}{2365} & \frac{2231}{9460} & -\frac{9943}{94600} & \frac{145}{473} & \frac{49}{236500} \end{bmatrix}$$

$$\mathbf{a}_C = \mathbf{a}'$$
unique choice

The entering index 6, since $\mathbf{B}^{-1}a_6 < 0$, the LP is unbounded

 $g_6 = \checkmark$, unique choice

1.1.2 Hall and McKinnon (2004)

Hall and McKinnon (2004) Table 2: $B = \{5, 6, 7\}$: entering index 1, leaving index 5

for

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{2}{5} & \frac{1}{5} & -\frac{7}{5} & -\frac{1}{5} \\ -\frac{39}{5} & -\frac{7}{5} & \frac{39}{5} & \frac{2}{5} \\ 0 & -20 & 156 & 8 \end{bmatrix}$$

$$\mathbf{c}'_{B}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \mathbf{B}^{-1}\mathbf{N} = 0$$

$$\mathbf{h}'_{N} = \mathbf{c}'_{N} - \mathbf{c}'_{B}\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -1 & -\frac{7}{4} & \frac{49}{4} & \frac{1}{2} \end{bmatrix}$$

$$g_{1} = \frac{(-1)^{2}}{1+61} = \frac{1}{62} = 1.6129 \times 10^{-2}$$

$$g_{2} = \frac{\left(-\frac{7}{4}\right)^{2}}{1+402} = \frac{49}{6448} = 7.5993 \times 10^{-3}$$

 $B = \{1, 6, 7\}$: entering index 2, leaving index 1

c
 -1

$$-\frac{7}{4}$$
 $\frac{49}{4}$
 $\frac{1}{2}$
 0
 0
 0

 1
 $\frac{1}{2}$
 $-\frac{7}{2}$
 $-\frac{1}{2}$
 $\frac{5}{2}$
 0
 0

 0
 $\frac{5}{2}$
 $-\frac{39}{2}$
 $-\frac{7}{2}$
 $\frac{39}{2}$
 1
 0

 h
 -20
 156
 8
 0
 0
 1

 b
 $-\frac{5}{4}$
 $\frac{35}{4}$
 0
 $\frac{5}{2}$
 $-\frac{5}{2}$

 g
 \checkmark

 i
 1
 2
 3
 4
 5
 6
 7

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{2}{5} & 0 & 0 \\ -\frac{39}{5} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{5} & -\frac{7}{5} & -\frac{1}{5} & 1 \\ -\frac{7}{5} & \frac{39}{5} & \frac{2}{5} & 0 \\ -20 & 156 & 8 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{7}{2} & -\frac{1}{2} & \frac{5}{2} \\ \frac{5}{2} & -\frac{39}{2} & -\frac{7}{2} & \frac{39}{2} \\ -20 & 156 & 8 & 0 \end{bmatrix}$$

$$\mathbf{c}_B'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{1}{2} & \frac{7}{2} & \frac{1}{2} & -\frac{5}{2} \end{bmatrix}$$

$$\mathbf{h}_N' = \mathbf{c}_N' - \mathbf{c}_B'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{7}{4} & \frac{49}{4} & \frac{1}{2} & 0 \end{bmatrix} - \mathbf{c}_B'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{5}{4} & \frac{35}{4} & 0 & \frac{5}{2} \end{bmatrix}$$

$$g_2 = \checkmark, \text{ unique choice}$$

 $B = \{2, 6, 7\}$: entering index 4, leaving index \triangleleft

for

$$\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{7}{5} & 1 & 0 \\ -20 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{2}{5} & -\frac{7}{5} & -\frac{1}{5} & 1 \\ -\frac{39}{5} & \frac{39}{5} & \frac{2}{5} & 0 \\ 0 & 156 & 8 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -7 & -1 & 5 \\ -5 & -2 & -1 & 7 \\ 40 & 16 & -12 & 100 \end{bmatrix}$$

$$\mathbf{c}_{B}'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{7}{4} & 0 & 0 \end{bmatrix} \mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -\frac{7}{2} & \frac{49}{4} & \frac{7}{4} & -\frac{35}{4} \end{bmatrix}$$

$$\mathbf{h}_{N}' = \mathbf{c}_{N}' - \mathbf{c}_{B}'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} -1 & \frac{49}{4} & \frac{1}{2} & 0 \end{bmatrix} - \mathbf{c}_{B}'\mathbf{B}^{-1}\mathbf{N} = \begin{bmatrix} \frac{5}{2} & 0 & -\frac{5}{4} & \frac{35}{4} \end{bmatrix}$$

$$g_{4} = \checkmark, \text{ unique choice}$$

The entering index 4, since $\mathbf{B}^{-1}a_4 < 0$, the LP is unbounded

References

- Forrest, John J. and Donald Goldfarb, 1992. Steepest-Edge Simplex Algorithms for Linear Programming. Mathematical Programming. 57:341–374
- Goldfarb, D. and J.K. Reid, 1977. A Practicable Steepest-Edge Simplex Algorithm. *Mathematical Programming*. 12:361–371
- Hall, J.A.J. and K.I.M. McKinnon, 2004. The Simplest Examples Where the Simplex Method Cycles and Conditions Where EXPANDFails to Prevent Cycling. *Mathematical Programming, Series B.* 100:133–150
- Zörnig, Peter, 2006. Systematic Construction of Examples for Cyclingin the Simplex Method. Computers & Operations Research. 33:2247–2262