

Chapter 7: Entity-Relationship Model

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 7: Entity-Relationship Model

- Design Process
- Modeling
- Constraints
- E-R Diagram
- Design Issues
- Weak Entity Sets
- Extended E-R Features
- Design of the Bank Database
- Reduction to Relation Schemas
- Database Design
- UML

Figure 2-1: Effect of miscommunications in Software Development

Modeling

- A database can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects. Entity types fall into five categories: roles, events, locations, tangible things or concepts.
 - Example: employee, hockey match, campus, book and department
- Entities have attributes
 - Example: people have names and addresses
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student

instructor_ID instructor_name

76766 Crick				
45565	Katz			
10101	Srinivasan			
98345	Kim			
76543	Singh			

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationship Sets

A relationship is an association among several entities

Example:

44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) student entity relationship set instructor entity

A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

 $(44553,22222) \in advisor$

Relationship Set advisor

Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the advisor relationship set between entity sets instructor and student may have the attribute date which tracks when the student started being associated with the advisor

Degree of a Relationship Set

binary relationship

- involve two entity sets (or degree two).
- most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)
 - Example: *students* work on research *projects* under the guidance of an *instructor*.
 - relationship proj_guide is a ternary relationship between instructor, student, and project

Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary)
course= (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth

Composite Attributes

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- ☐ For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

One to one

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Keys

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- ☐ A candidate key of an entity set is a minimal super key
 - ID is candidate key of instructor
 - course_id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

ID	First Name	Last Name	Email	Year of Birth
1	Peter	Lee	plee@university.edu	1992
2	Jonathan	Edwards	jedwards@university.edu	1994
3	Marilyn	Johnson	mjohnson@university.edu	1993
6	Joe	Kim	jkim@university.edu	1992
12	Haley	Martinez	hmartinez@university.edu	1993
14	John	Mfume	jmfume@university.edu	1991
15	David	Letty	dletty@university.edu	1995

Table: Students

Practice

We need to create a database schema design based on the following (simplified) **requirements** of the COMPANY Database:

- The company is organized into DEPARTMENTs. Each department has a name, number and an employee who manages the department. We keep track of the start date of the department manager. A department may have several locations.
- Each department controls a number of PROJECTs. Each project has a unique name, unique number and is located at a single location.

Practice

- The database will store each EMPLOYEE's social security number, address, salary, sex, and birthdate.
 - Each employee works for one department but may work on several projects.
 - The DB will keep track of the number of hours per week that an employee currently works on each project.
 - It is required to keep track of the *direct supervisor* of each employee.
- Each employee may have a number of DEPENDENTs.
 - For each dependent, the DB keeps a record of name, sex, birthdate, and relationship to the employee.

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside oval
- Underline indicates primary key attributes
- □ Tutorial : https://vertabelo.com/blog/crow-s-foot-notation/
- ☐ ERD Tool: https://erdplus.com/

Entity With Composite, Multivalued, and Derived Attributes

Cardinality Constraints

- In crow's foot notation:
- A multiplicity of one and a mandatory relationship is represented by a straight line perpendicular to the relationship line.
- A multiplicity of many is represented by the three-pronged 'crowfoot' symbol.
- An optional relationship is represented by an empty circle.

Relationship Sets with Attributes

Roles

- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- ☐ The labels "course_id" and "prereq_id" are called roles.

One-to-One Relationship

- one-to-one relationship between an *instructor* and a *student*
 - an instructor is associated with at most one student via advisor
 - and a student is associated with at most one instructor via advisor

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including 0) students via advisor
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- □ In a many-to-one relationship between an *instructor* and a *student*,
 - an instructor is associated with at most one student via advisor,
 - and a student is associated with several (including 0) instructors via advisor

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

Participation of an Entity Set in a Relationship Set

- □ Total participation (indicated by I): every entity in the entity set participates in at least one relationship in the relationship set
 - □ E.g., participation of *student* in *advisor* is total
 - every student must have an associated instructor
- Partial participation (indicated by 0): some entities may not participate in any relationship in the relationship set
 - Example: participation of instructor in advisor is partial

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

Steps in E-R Modeling

Usually the following six steps are followed to generate E-R Models.

- a) Identify the entities: Look for general nouns in requirement specification document which are of business interest to business users
- b) Find relationships: Identify the natural relationship and their cardinalities between the entities
- c) Identify the key attributes for every entity: Identify the attribute or set of attributes which can identify instance of entity uniquely
- d) Identify other relevant attributes: Identify other attributes which are interest to business users and want to store the information in database
- e) Complete E-R diagram: Draw complete E-R diagram with all attributes including primary key
- f) Review your results with your business users Look at the list of attributes associated with each entity to see if anything has been omitted.

Note that while this is an iterative approach and one cannot come to a final E-R model in a single step. It requires a great deal of patience and numerous revisions before the model is created.

Tutorial

- An university has many departments
- Each department has multiple instructors; one among them is the head of the department
- An instructor belongs to only one department
- Each department offers multiple courses, each of which is taught by a single instructor
- A student may enroll for many courses offered by different departments

Tutorial

University library scenario for developing the E-R model.

- There are multiple libraries and each library has multiple student members
- Students can become members to multiple libraries by paying appropriate membership fee
- Each library has its own set of books. Within the library these books are identified by a unique number
- Students can borrow multiple books from subscribed library
- Students can order books using inter-library loan. This can be useful if a student wishes to borrow books from a library where s/ he is not a member. The student orders the books through a library where s/ he is a member

Tutorial

Assume in a city

- There are multiple banks and each bank has many branches. Each branch has multiple customers
- Customers have various types of accounts
- Some customers also had taken different types of loans from these bank branches
- One customer can have multiple accounts and loans