

Modelos de regresión: Introducción

Christoper A. Alarcon-Ruiz MD MSc(c)

(Parte de la presentación en coordinación con Álvaro Taype Rondan)

Christoper A. Alarcon Ruiz
MD, MSc(c)
christoper.alarconr20@gmail.com

- Afiliaciones actuales:
 - Consultor en Dirección de Investigación IETSI, EsSalud, Lima, Perú
 - Asistente de investigación en Universidad San Ignacio de Loyola, Lima, Perú
 - Docente en Universidad Científica del Sur, Lima, Perú
- Potenciales conflictos de interés:
 - Cursó estudios en: URP, UPCH, UChile
 - Ha recibido pagos/financiamientos de: USIL, UCSUR, IETSI-EsSalud, CMP, MINSA, EviSalud
 - Financiamiento de la industria farmacéutica: ninguno

Variable independiente

Exposición Intervención Causa

Ejm: Fumar

Ejm: Corticoides

Ejm: Ejercicio físico

Variable dependiente

Desenlace Outcome Efecto

Ejm: Cáncer de pulmón

Ejm: Mortalidad

Ejm: mmHg presión arterial

 En estudios biomédicos, generalmente vamos a evaluar una relación de causa-efecto.

 Es decir, si la VI tiene un impacto en la VD (la aumenta o la disminuye)

Variable independiente y dependiente

En pacientes con diabetes, ¿la actividad física (minutos por día) está asociada a la glucosa en ayunas (mg/dL)?

Población

Pacientes con diabetes

Variable independiente

Nombre

Actividad física

Tipo

Numérica

Variable dependiente

Nombre

Glucosa en ayunas

Tipo

Numérica

Variable independiente y dependiente

En pacientes con forunculosis recurrente, ¿dar antibióticos profilácticos disminuye el número de recurrencias a los seis meses?

Población

Pacientes con forunculosis recurrente

Variable independiente

Nombre

Recibir antibióticos profilácticos

Tipo

Dicotómica

Variable dependiente

Nombre

Número de recurrencias a 6m

Tipo

Numérica

Variable independiente y dependiente

En pacientes con tuberculosis, ¿cuáles son los factores asociados a presentar síntomas depresivos?

Población

Pacientes con tuberculosis

Variable independiente

Nombre

Varias

Tipo

_

Variable dependiente

Nombre

Presencia de síntomas depresivos

Tipo

Dicotómica

Modelos de regresión

Determinan el impacto de una o más variables independientes en la variable dependiente

Tienen dos posibles objetivos:

Objetivo 1: Evaluar la asociación entre dos variables

- Asociación simple: ¿Fumar está asociado a cáncer de pulmón?
- Asociación causal: ¿Fumar causa cáncer de pulmón?

"A" causa "B"

Objetivo 2: Predecir el valor de la variable dependiente, para cierto valor de la variable independiente.

 Para una gestante de 70 Kg, ¿cual es en promedio el peso esperado de su bebé a término?

Modelos de regresión

- Existen diversos modelos de regresión.
- Elegir un modelo dependerá de:
 - De qué tipo es la variable dependiente (numérica, dicotómica, tiempo a evento)
 - El cumplimiento de supuestos

Variable dependiente	Regresión	Calcularemos
Numérica	Lineal	Coeficiente (β)
Dicotómica	Logística Poisson	Odds Ratio Riesgo Relativo
Tiempo a evento	Cox	Hazard Ratio

Muchas gracias (:

MEJORES DECISIONES EN SALUD

- **©** 950 876 703
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Introducción a la regresión lineal

Christoper A. Alarcon-Ruiz MD MSc(c)

Asociación entre dos variables numéricas

Subject	X	Y		
1	74.75	25.72		
2	72.60	25.89		
3	81.80	42.60		
4	83.95	42.80		
5	74.65	29.84		
6	71.85	21.68		
7	80.90	29.08		
8	83.40	32.98		
9	63.50	11.44		
10	73.20	32.22		
11	71.90	28.32		
12	75.00	43.86		
13	73.10	38.21		
14	79.00	42.48		
15	77.00	30.96		
16	68.85	55.78		
17	75.95	43.78		
18	74.15	33.41		

Para cada asociación pueden haber muchas pendientes

- ¿Cómo saber qué β explica mejor la asociación?
- Stata calculará un β usando la metodología de "mínimos cuadrados"
- Dicho β será la mejor
 pendiente (la que mejor
 explica la relación entre X e Y)

Circunferencia abdominal (cm)

V. Independiente

β puede ser positivo o negativo

- Modelo matemático usado para evaluar la asociación entre una variable dependiente y una o más variables independientes
 - La variable dependiente debe ser numérica
 - Las *variables independientes* pueden ser numéricas o categóricas

- Para poder realizar una regresión lineal, la VD debe ser numérica.
- La VI puede ser numérica o categórica.
- Primero veremos qué sucede cuando la VI es numérica. Luego, veremos qué sucede cuando es categórica.

Variable dependiente (IMC)

Intercepto (valor de y, cuando x es cero)

Coeficiente o pendiente (β)

Variable independiente (Circ. Abdomi.)

y = -0.9 + 0.45*70

30.6 = -0.9 + 0.45*70

Variable Interceptor dependiente (FC) Interceptor de y, cuan cero

Intercepto (valor de y, cuando x es cero)

Coeficiente o pendiente (β)

Variable independiente (Edad)

y = 100 + -0.5*60

70 = 100 + -0.5*60

Fórmula:

$$y = Cons + \beta 1*X$$

- <u>y:</u> Valor numérico de v. dependiente
- <u>x:</u> Valor numérico de v. independiente
- β1: Pendiente o coeficiente
- Cons: β0 o intercepto: Valor de "y" cuando "x" es cero

Interpretación:

En las gestantes evaluadas

Población

, por cada

punto adicional en la nota de secundaria

Unidad adicional de la variable independiente

nota

la

nota obtenida en la universidad

Desenlace

fue en promedio

1,41 puntos

Coeficiente de regresión lineal, y unidad del desenlace mayor

Mayor o Menor

. Este resultado

fue estadísticamente significativo

Fue estadísticamente significativo o No fue estadísticamente significativo

Comandos y resultados en STATA

Usaremos el siguiente ejemplo:

- Población: Universitarios
- Variable independiente: Nota promedio de la secundaria
- Variable dependiente: Nota en primer año de la universidad

Comando en STATA

Nota = Cons + β 1*Promsecu

Comandos y resultados en STATA

regress nota promsecu

Nota = Cons + β 1*Promsecu

	nota	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
β	promsecu		.0332339			1.349531	1.480275
	_cons	-6.511647	.4737255	-13.75	0.000	-7.443478	-5.579815

En los estudiantes evaluados, por <u>cada punto</u> <u>adicional</u> en el promedio de secundaria, <u>la</u> <u>nota en el 1er año de la universidad</u> fue en promedio <u>1.41 puntos mayor</u>

Si β1=0: No existe asociación

lowess nota promsecu

Cuando la variable independiente aumenta una unidad (un punto más en el promedio de secundaria)

La variable dependiente aumenta 1.41 unidades (1.41 puntos más en la nota de 1er año de universidad)

regress nota promsecu

Nota = Cons + β 1*Promsecu

	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	promsecu	1.414903	.0332339	42.57	0.000	1.349531	1.480275
β0	_cons	-6.511647	.4737255	-13.75	0.000	-7.443478	-5.579815
	,						

- B0 = Coeficiente
- Interpretación: "Cuando el promedio de secundaria <u>es</u> <u>cero</u>, la nota universitaria <u>promedio es -6.51 puntos"</u>
- No se suele mostrar ni interpretar en las tablas finales.

lowess nota promsecu

Cuando la variable independiente es cero (Cero en el promedio de secundaria)

La variable dependiente será -6.51 puntos (-6.51 en nota de primer año de universidad)

Si β1=0: No existe asociación

Resultado:

 β = 1.41 (IC 95%: 1.35 a 1.48) Valor p < 0,001

Inferencia (IC95%)

 β = 1.41 (IC 95%: 1.35 a 1.48)

Valor p < 0,001

Por cada punto adicional
en el promedio de
secundaria, la nota en el
ler año de la
universidad fue en
promedio entre 1.35 a
1.48 puntos mayor

Población

Muestra

Por <u>cada punto</u>
<u>adicional</u> en el
promedio de
secundaria, <u>la nota en el</u>
<u>1er año de la</u>
<u>universidad</u> fue en
promedio <u>1.41 puntos</u>
<u>mayor</u>

Inferencia

regress nota promsecu

Por <u>cada punto adicional</u> en el promedio de secundaria, <u>la nota en el 1er año de la universidad</u> fue en promedio <u>1.41 puntos</u> <u>mayor</u>

Si β=0: No existe asociación (O es el "valor de no efecto")

Este resultado fue estadísticamente significativo

¿Cuándo será estadísticamente significativo el \(\beta \)?

- Cuando el IC 95% no incluya el 0
- Cuando el valor p < 0.05

(Ambos se relacionan. Basta con que uno se cumpla)

regress nota edad

Por <u>cada año adicional</u> de edad, la <u>nota</u> <u>universitaria</u> fue en promedio <u>0.06</u> <u>puntos menor</u>

Este resultado no fue estadísticamente significativo

Si β=0: No existe asociación

Extrapolar a las tablas de resultados

D.C.	ota	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall	
110	Jea	coer.	Stu. Ell.		ادادا	[93% COIII.	Tircer varj	
promse	ecu	1.414903	.0332339	42.57	0.000	1.349531	1.480275	Ы
_cc	ons	-6.511647	.4737255	-13.75	0.000	-7.443478	-5.579815	
							<u> </u>	\Rightarrow
n	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
e	dad	0593271	.1228929	-0.48	0.630	3010608	.1824066	\mathcal{H}
_c	ons	14.70155	2.730558	5.38	0.000	9.330464	20.07263	¯
	•							$-\parallel$
	Variables Nota promedio en		Nota	Nota promedio en primer año de universidad (0 al 20)				
				B (IC95%) 1.41 (1.35 a 1.48)				
								_
		secundaria						
	Edad			-0.06 (-0.30 a 0.18)				

Muchas gracias (:

MEJORES DECISIONES EN SALUD

- **950 876 703**
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Regresión lineal con variable independiente categórica

Christoper A. Alarcon-Ruiz MD MSc(c)

$$y = Cons + \beta 1*X$$

- Para poder realizar una regresión lineal, la variable dependiente (Y) debe ser numérica.
- La variable independiente (X)
 puede ser numérica o categórica

$$y = Cons + \beta 1*X$$

Asociación entre sexo y nota en primer año de universidad

Sexo: Variable independiente. Es dicotómica (Masculino o Femenino)

Categorias:

- Categoria de referencia = 0 (Masculino)
- Categoria de exposición = 1 (Femenino)

Regresión lineal con VI dicotómica

Interpretación:

Comandos y resultados en STATA

Usaremos el siguiente ejemplo:

- Población: Universitarios
- Variable independiente: Sexo (0=Masculino) (1=Femenino)
- Variable dependiente: Nota en primer año de la universidad

Comando en STATA

Nota = $Cons + \beta 1*Sexofem$

La media de la nota de 1er año en **mujeres** fue **0.3 puntos más** en comparación a **los varones**

La media de la nota de 1er año en los varones (Categoría de Referencia) fue **13.2 puntos**

La media de la nota de 1er año en **mujeres** fue **0.3 puntos más** en comparación a **los varones**

Resultado:

 $\beta = 0.31$ (IC 95%: -0.56 a 1.19)

Valor p >= 0,05

Si β=0: No existe asociación (O es el "valor de no efecto")

¿Cuándo será estadísticamente significativo el \(\beta \)?

- Cuando el IC 95% no incluye el 0
- Cuando el valor p < 0.05

(Ambos se relacionan. basta con que uno se cumpla)

La media de la nota de 1er año en **mujeres** fue **0.3 puntos más** en comparación a **los varones**

Este resultado no fue estadísticamente significativo

Si β=0: No existe asociación (O es el "valor de no efecto")

¿Cuándo será estadísticamente significativo el \(\beta \)?

- Cuando el IC 95% no incluye el 0
- Cuando el valor p < 0.05

(Ambos se relacionan. basta con que uno se cumpla)

Extrapolar a las tablas de resultados

n	nota	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
sexo Femeni _0		.313582 13.15455	.4447611 .3827047	0.71 34.37	0.481 0.000	5612756 12.40175	1.18844 13.90734
	Variables		No	ta promedio e	n primer año B (IC95%	de universidad (0 al	20)
	Sexo			-	<u>-</u>		
	Ma	sculino			Ref.		
	Fen	nenino		——	0.31 -0.56 a	1.19)	

$$y = Cons + \beta 1*X$$

- <u>y:</u> Promedio de v. dependiente "y" en cat. exposición
- x: V. independiente dicotómica (Cat: Exposición)
- Cons: β0 o intercepto: Valor promedio de "y" cuando "x" es la categoría de ref.
- β1: Promedio de "y" en cat. Exposición Promedio de "y" en cat. Ref.

Comandos y resultados en STATA

Usaremos el siguiente ejemplo:

- Población: Universitarios
- Variable independiente: Estado nutricional (0=Normal) (1=Sobrepeso) (2=Obesidad)
- Variable dependiente: Nota en primer año de la universidad

$$y = Cons + \beta 1*X1 + \beta 2*X2$$

Asociación entre estado nutricional y nota en primer año

Variable independiente: Estado nutricional (categórica politómica)

Categorías:

- Categoria de referencia : Normal = 0
 Categoria de exposición 1: Sobrepeso = 1
- Categoria de exposición 2: Obesidad = 2

$$y = Cons + \beta 1*X1 + \beta 2*X2$$

Asociación entre estado nutricional y nota en primer año

Variable independiente: Estado nutricional (categórica politómica) Categorías:

- Categoria de referencia : Normal
- Categoria de exposición 2: Obesidad = 2 _

Categoria de exposición 1: Sobrepeso = 1 β2 (compara la cat ref con la exp 2)

regress nota i.estadonut

Si β=0: No existe asociación

	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	estadonut						
1	Sobrepeso	-1.556141	.3987109	3.9 0	0.000	-2.340425	7718568
	Obesidad	-1.108242	.8106855	-1.37	0.173	-2.7029	.4864167
	cons	14.07967	.2607438	54.00	0.000	13.56677	14.59257

La media de la nota universitaria en los que tuvieron sobrepeso fue <u>1.56 puntos menos</u> en comparación con <u>los de estado nutricional normal.</u>

regress nota i.estadonut

Si β=0: No existe asociación

	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
	estadonut						
31	Sobrepeso	-1.556141	.3987109	-3.90	0.000	-2.340425	7718568
T	Obesidad	-1.108242	.8106855	-1.37	0.173	-2.7029	.4864167
	_cons	14.07967	.2607438	54.00	0.000	13.56677	14.59257

La media de la nota universitaria en los que tuvieron sobrepeso fue 1.56 puntos menos en comparación con los de estado nutricional normal.

Este resultado fue estadísticamente significativo

Resultado:

 β = -1.56 (IC 95%: -2.34 a -0.77) *Valor p* < 0,05

regress nota i.estadonut

Si β=0: No existe asociación

	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
32	estadonut Sobrepeso Obesidad	-1.556141 -1.108242	.3987109 8106855	-3.90 -1.37	0.000 0.173	-2.340425 -2.7029	7718568 .4864167
	_cons	14.07967	.2607438	54.00	0.000	13.56677	14.59257

La media de la nota universitaria en obesos fue <u>1.11</u> <u>puntos menos</u> en comparación con <u>los de estado</u> <u>nutricional normal.</u>

regress nota i.estadonut

Si β=0: No existe asociación

	nota	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
β	estadonut Sobrepeso Obesidad	-1.556141 -1.108242	.3987109 .8106855	-3.90 -1.37	0.000 0.173	-2.340425 -2.7029	7718568 .4864167
	_cons	14.07967	. 2607438	54.00	0.000	13.56677	14.59257

La media de la nota universitaria en obesos fue 1.11
puntos menos en comparación con los de estado
nutricional normal. Este resultado no fue
estadísticamente significativo

Resultado:

 β = -1.11 (IC 95%: -2.70 a 0.49)

Valor p >= 0.05

regress nota i.estadonut

Si β=0: No existe asociación

nota	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
estadonut Sobrepeso Obesidad	-1.556141 -1.108242	.3987109 .8106855	-3.90 -1.37	0.000 0.173	-2.340425 -2.7029	7718568 .4864167
30 _cons	14.07967	.2607438	54.00	0.000	13.56677	14.59257

La media de la nota universitaria en los de **estado nutricional normal** fue **14.1 puntos** (categoría de referencia)

Extrapolar a las tablas de resultados

not	a Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval]
estadonu Sobrepeso Obesidad	-1.556141	≺		-3.90 -1.37	0.000 0.173	-2.340425 -2.7029	7718568 .4864167
_con	s 14.07967	.25074	438	54.00	0.000	13.56677	14.59257
	Variables		Nota promedio en primer año de universidad (0 al 20) B (IC95%)				
	Estado nutricional						
	Normal				Ref.		_
	Sobrepeso			-1.56	(-2.34 a -0.77	-	
	Obesidad			-1.11	(-2.70 a 0.49)	-	

MEJORES DECISIONES EN SALUD

- **©** 950 876 703
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Interpretación de las salidas en Stata

Christoper A. Alarcon-Ruiz MD MSc(c)

Correlación entre dos variables

Número de participantes analizados en el modelo de regresión

regress nota promsecu

Source	SS	df	MS	Numb	er of obs	=	339
				F(1,	337)	=	1812.55
Model	3667.94462	1	3667.94462	Prob	> F	=	0.0000
Residual	681.965647	337	2.02363694	R-sq	uared	=	0.8432
				Adj	R-squared	=	0.8428
Total	4349.91027	338	12.869557	Root	MSE	=	1.4225
nota	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
promsecu _cons	1.414903 -6.511647	.0332339		0.000 0.000	1.349533		1.480275 -5.579815

Número de participantes analizados en el modelo de regresión

regress nota edad

Source	SS	df	MS	Number o		339
			_	F(1, 337) =	0.23
Model	3.00609997	1	3.00609997	Prob > F	=	0.6296
Residual	4346.90417	337	12.8988254	R-square	d =	0.0007
				Adj R-sq	uared =	-0.0023
Total	4349.91027	338	12.869557	Root MSE		3.5915
nota	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
edad	0593271	.1228929	-0.48	0.630	3010608	.1824066
_cons	14.70155	2.730558	5.38	0.000 9	.330464	20.07263

Número de participantes analizados en el modelo de regresión

regress nota i.sexofem

Source	SS	df	MS	Numb	er of obs	=	339
				F(1,	337)	=	0.50
Model	6.40706375	1	6.40706375	Prob) > F	=	0.4813
Residual	4343.5032	337	12.8887335	R-so	uared	=	0.0015
				- Adj	R-squared	=	-0.0015
Total	4349.91027	338	12.869557	' Root	: MSE	=	3.5901
	I						
	_						
nota	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
sexofem							
Femenino	.313582	.4447611	0.71	0.481	56127	56	1.18844
_cons	13.15455	.3827047	34.37	0.000	12.401	75	13.90734
_							

Número de participantes analizados en el modelo de regresión

regress nota i.estadonut

_cons

14.07967

.2607438

<u> </u>								
	339	ıs =	ımber of ob	Nu	MS	df	SS	Source
	7.77	=	2, 336)	— F(
ኢ	0.0005	=	ob > F	.1 Pr	96.1739613	2	192.347922	Model
	0.0442	=	squared	'5 R-	12.373697	336	4157.56234	Residual
	0.0385	:d =	lj R-square	— Ac				
	3.5176	=	ot MSE	7 R	12.869557	338	4349.91027	Total
	Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	nota
								estadonut
	7718568	425	-2.340	0.000	-3.90	.3987109	-1.556141	Sobrepeso
	.4864167	029	-2.7	0.17	-1.37	.8106855	-1.108242	Obesidad

54.00

0.000

13.56677

14.59257

Muchas gracias (:

MEJORES DECISIONES EN SALUD

- **950 876 703**
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Regresión lineal múltiple

Christoper A. Alarcon-Ruiz MD MSc(c)

Confusión

Queremos evaluar si existe una relación de causa-efecto (causalidad) entre:

- Variable independiente: tomar café
- Desenlace: cáncer de pulmón

Fumar puede ser un "confusor" si:

- Los que fumaban tenían más probabilidad de tomar café, y
- Los que fumaban tenían más probabilidad de presentar cáncer de pulmón

Tomar café -----> Cáncer de pulmón

Edad

Cocinar con leña

Fumar

Variable confusora

- Es una variable que <u>distorsiona la</u> <u>asociación</u> entre otras dos variables.
- Debe estar asociada a la variable dependiente y a la variable independiente.
- Una forma de "limpiar" el efecto de los confusores es usando un modelo de regresión lineal ajustado.

Tabla 3

Resultados de la Asociación entre la duración del sueño y el IMC

Horas de sueño	Crudo	Modelo Ajustado 1
Horas de sueno	Coef (IC 95%)	Coef (IC 95%)
Bajo	0	0
Normal	-1,95(-3,26;-0,64)	-1,77(-2,98;-0,57)
Alto	-2,84(-6,14;0,46)	-2,99(-6,05;0,07)

Mendoza Cáceres AE, Zumaeta Gonzales NV. Asociación entre la duración del sueño y el IMC en pacientes adultos que asistieron a un Centro Universitario de Salud de Lima, Perú

- Crudo = bivariado
- Ajustado = multivariable

- Determinar el número máximo de variables:
 - 1 var dep + 1 var indep → necesito al menos 20 participantes
 - 1 var dep + 2 var indep → necesito al menos 40 participantes
 - 1 var dep + 3 var indep → necesito al menos 60 participantes
 - •
- ¿Qué variables incluir en tu modelo?
 - Confusores teóricos → De la literatura previa
 - Confusores estadísticos → Ejm: Incluir todas las variables indep que, al asociarse con la var dep (modelo crudo), hayan tenido p<0.20

Resultados en modelos crudos

Para evaluar qué factores se asociarían con "nota", evaluaremos las regresiones crudas entre cada variable independiente con "nota" y seleccionaremos a aquellas que tuvieron p<0.20 (en Prob>F o Prob>Chi2)

. reg	ress nota i.sexo	fem				
Source	SS	df	MS	Number of obs	=	339
					=	0.50
Model	6.40706375	1	6.40706375	Prob > F	=	0.4813
Residual	4343.5032	337	12.8887335	K-squarea	=	0.0015
				Adj R-squared	=	-0.0015
Total	4349.91027	338	12.869557	Root MSE	=	3.5901

	regr	ress nota edad					
	Source	SS	df	MS	Number of obs	=	339
					F(1, 337)	=	0.23
	Model	3.00609997	1	3.00609997	Prob > F	=	0.6296
	Residual	4346.90417	337	12.8988254	R-squared	=	0.0007
					Adj R-squared	=	-0.0023
	Total	4349.91027	338	12.869557	Root MSE	=	3.5915

. regr	ress nota promsec	u				
Source	SS	df	MS	Number of obs	=	339
				F(1, 337)	=	1812.55
Model	3667.94462	1	3667.94462	Prob > F	=	0.0000
Residual	681.965647	337	2.02363694	R-squared	=	0.8432
				Adj R-squared	=	0.8428
Total	4349.91027	338	12.869557	Root MSE	=	1.4225

. regr	ress nota i.esta	donut				
Source	SS	df	MS	Number of obs	=	339
				F(2, 336)	=	7.77
Model	192.347922	2	96.1739611	Prob > F	=	0.0005
Residual	4157.56234	336	12.3736975	R-squared	=	0.0442
				Adj R-squared	=	0.0385
Total	4349.91027	338	12.869557	Root MSE	=	3.5176

Interpretación de regresión lineal cruda

. regi	ress nota prom	secu				
Source	SS	df	MS	Number of obs	=	339
				F(1, 337)	=	1812.55
Model	3667.94462	1	3667.94462	Prob > F	=	0.0000
Residual	681.965647	337	2.02363694	R-squared	=	0.8432
				Adj R-squared	=	0.8428
Total	4349.91027	338	12.869557	Root MSE	=	1.4225
nota	Coef.	Std. Err.	t F	۰> t [95% Co	onf.	Interval]
promsecu _cons	1.414903 -6.511647	.0332339		0.000 1.34953 0.000 -7.44347		1.480275 -5.579815

Coeficiente (β) crudo:
Por <u>cada punto adicional</u> de la nota promedio en secundaria, la <u>nota</u> <u>universitaria</u> fue en promedio <u>1.41</u> <u>puntos mayor</u>

Este resultado fue estadísticamente significativo

Interpretación de regresión lineal ajustada

. regress nota promsecu i.estadonut							
Source	SS	df	MS	Number of ob	s =	339	
				F(3, 335)	=	611.74	
Model	3678.44773	3	1226.14924	Prob > F	=	0.0000	
Residual	671.462537	335	2.00436578	R-squared	=	0.8456	
				Adj R-square	d =	0.8443	
Total	4349.91027	338	12.869557	Root MSE	=	1.4158	
nota	Coef.	Std. Err.	t P	?> t [95%	Conf.	Interval]	
promsecu	1.401341	.0336018	41.70 0	1.335	243	1.467438	
estadonut							
Sobrepeso	3698477	.1629728	-2.27	.0246904	266	0492688	
Obesidad	2571712	.3269181	-0.79	.4329002	422	.3858998	
_cons	-6.156611	.4964503	-12.40 0	.000 -7.133	164	-5.180058	

Coeficiente (β) ajustado:
Por cada punto adicional de la nota promedio en secundaria, la nota universitaria fue en promedio 1.40 puntos mayor; al ajustar por estado nutricional

Este resultado fue estadísticamente significativo

Extrapolar a las tablas de resultados

40 <mark>(1.33 a 1.47) </mark>	1.4							
Variables	339 611.74	=	nber of obs		adonut MS	secu i.est df	ress nota prom SS	. reg
Promedio de secundaria	0.0000 0.8456 0.8443	= =	bb > F squared j R-squared	.4 Pro '3 R-s - Adj	1226.1492	335	3678.44773 671.462537	Model Residual
(nota)	1.4158	=	ot MSE	/ Roo	12.86955	338	4349.91027	Total
Estado	Interval]	onf.	[95% Co	P> t	t	Std. Err.	Coef.	nota
nutricional	1.467438	43	1.33524	0.000	41.70	.0336018	1.401341	promsecu
Normal								estadonut
Sobrepeso	0492688 .3858998		690426 900242	0.024 0.432	-2.27 -0.79	.1629728 .3269181	3698477 2571712	Sobrepeso Obesidad
Obesidad	-5.180058	64	-7.13316	0.000	-12.40	.4964503	-6.156611	_cons
* Aiustado por pr								

Variables	Nota promedio e universida	o de		
	Bc (IC 95%)	Ba (IC	95%)*	
Promedio de secundaria (nota)	1.41 (1.35 a 1.48)	1.40 (1.33 a 1.47)		
Estado nutricional				
Normal	Ref.	Ref.		
Sobrepeso	-1.56 (-2.34 a -0.77)	-0.37 (-0.69 a -0.05)		
Obesidad	-1.11 (-2.70 a 0.49)	-0.26 (-0.90 a 0.39)		

^{*} Ajustado por promedio de secundaria y estado nutricional

-0.37 (-0.69 a -0.05)

-0.26 (-0.90 a 0.39)

Muchas gracias (:

MEJORES DECISIONES EN SALUD

- **950 876 703**
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Evaluación de supuestos en regresión lineal

Christoper A. Alarcon-Ruiz MD MSc(c)

Valores esperados de y (ŷ):

- Valor de y, según la pendiente β
- Stata: Luego de correr la regresión (regress...), ejecutar predict vesp

Residuos:

- Resta entre valor observado de y (yi), con su respectivo valor esperado de y (ŷ)
- Stata: Luego de correr la regresión (regress...), ejecutar predict **resi**, residuals

x, Promedio secundaria

Regresión lineal cruda:

- 1. L= Relación lineal
- 2. I= Observaciones independientes.
- 3. N= Distribución normal de los residuos.
- 4. E= Igual(equal)varianzas(Homocedasticidad)

Regresión lineal ajustada:

- 1. L= Relación lineal
- 2. I= Observaciones independientes.
- 3. N= Distribución normal de los residuos.
- 4. E= Igual(equal)varianzas(Homocedasticidad)
- 5. Multicolinealidad

¿Qué se debe saber de los supuestos?

1. Supuesto

2. ¿Cómo evaluar supuesto?

3. ¿Cómo saber si se cumple o no?

4. ¿Qué hacer si no se cumple?

Al evaluar visualmente la relación entre la VI y la VD, esta dibujará una línea.

 <u>I. Evaluación de la linealidad para VI</u> numérica

Gráfico: VD vs VI

lowess **nota** promsecu lowess **nota** edad

Se cumple cuando línea roja es diagonal positiva, diagonal negativa u horizontal

II. Evaluación de la linealidad para VI categórica (dicotómica o politómica)

No es necesario evaluar linealidad. Siempre existirá linealidad

III. Evaluación de la linealidad para regresión ajustada:

 Si ninguna VI del modelo es numérica (todas son categóricas: No es necesario evaluarla (siempre existirá linealidad)

· Si al menos una VI del modelo es numérica:

Gráfico: "Valores esperados + residuos" vs VI (Luego de correr la regresión ajustada) cprplot promsecu cprplot edad

Se cumple el supuesto cuando línea azul es diagonal positiva, diagonal negativa u horizontal

No se cumple cuando dicha línea presenta altibajos pronunciados

• Ejemplos cuando no se cumple relación no lineal

¿Qué hacer si no se cumple con el supuesto de relación lineal?

- Hay diferentes formas de poder enfrentar el no cumplimiento de este supuesto.
- La más sencilla es categorizar la variable independiente numérica, siguiendo una regla lógica

 Automáticamente cumplirá con el supuesto

2. Observaciones independientes

- "La medición del desenlace de una observación (persona / encuestado / paciente...), no debe influenciar en la medición del desenlace de otra observación"
- Evaluación teórica, en base al diseño de estudio elegido.
- Confirmar que durante recolección de datos, esta fue independiente para cada observación.
- Si no lo es, no se puede usar un modelo de regresión lineal. Debe valorarse la corrección por cluster, multinivel, u otros métodos.

Normalidad de los **residuos**, por cada valor de VI

<u>I. Método de evaluación para VI numérica en regresión cruda:</u>

Evaluar la **normalidad de residuos** (Luego de correr la regresión cruda y crear sus residuos):

- regress vardep varindep
- predict **resi1**, residuals
- histogram resi1 → Distribución normal en forma de campana

Cuando el histograma no sea concluyente:

sum resi1, d → Igualdad de media y mediana, kurtosis = 3, sesgo = 0 swilk resi1 → p > 0.05

 II. Método de evaluación para VI categórica (dicotómica o politómica) en regresión cruda

Evaluar la **Normalidad** (Luego de correr la regresión cruda y crear sus residuos)

- regress vardep i.varindep
- predict **resi10**, residuals
- histogram resi10, by(sexofem) normal ->
 Distribución normal en forma de campana

Cuando el histograma no sea concluyente:

by sexofem: sum resi10, d \rightarrow Igualdad de media y mediana, kurtosis = 3, sesgo = 0 by sexofem : swilk resi10 \rightarrow p > 0.05

 III. Método para regresión ajustada (con al menos una VI numérica)

Normalidad de residuos (Luego de correr la regresión ajustada y crear residuos)

- regress vardep varindep1 i.varindep2 ...
- predict **resi5**, residuals
- histogram resi5

 Distribución normal en forma de campana

Cuando el histograma no sea concluyente:

sum resi5, d → Igualdad de media y mediana, kurtosis = 3, sesgo = 0 swilk resi5 → p > 0.05

¿Cuál es el problema de no cumplir con este supuesto?

- Interpretación inferencial no es adecuada (Valor p e IC95%)

¿Qué hacer si no se cumple con supuesto?

- Hay diferentes formas de poder enfrentar el no cumplimiento de este supuesto:
- Considerar no hacer regresión lineal y hacer otro tipo de regresión con un desenlace categórico o de conteo.
- 2. Usar "Bootstrap" en el modelo de regresión línea
- Por Teorema del Límite Central, asumir que se cumple con normalidad cuando se tiene tamaño de muestra suficiente.
- 4. Usar otras correcciones estadísticas, según sea necesario

"Bootstrap" en el modelo de regresión lineal: Asume que la muestra del estudio es representativa para toda la población. Realiza múltiples muestreos para calcular un error estándar más representativo.

Comando en Stata:

bootstrap, bca reps(1000): regress vardep varindep

(Considerar que usando esta opción, podría ocasionar resultados con falsos positivos. No es perfecta.)

Usando Boostrap obtenemos la siguiente salida en Stata:

Prob>F ahora es Prob>Chi2
Misma utilidad para decidir si ingresa o no al modelo de regresión ajustada

4. Homocedasticidad

Homocedasticidad = igualdad de varianzas. Es decir, que las varianzas del desenlace son iguales en cada valor de la VI

Método de evaluación para cualquier tipo de variable independiente (crudo o ajustado):

Prueba estadística de Cook-Weisberg

(Correr comando luego de hacer regresión)

estat hettest

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of nota

chi2(1) = 0.00

Prob > chi2 = 0.9797
```

p<0.05: Se rechaza Ho → No existe</p>
homocedasticidad (no se cumple el supuesto)

<u>p>=0.05: No se rechaza Ho</u> → Existe homocedasticidad (se cumple con el supuesto)

4. Homocedasticidad

¿Cuál es el problema de no cumplir con este supuesto?

- Interpretación inferencial no es adecuada (Valor p e IC95%)

¿Qué hacer si no se cumple con supuesto?

- Hay diferentes formas de poder enfrentar el no cumplimiento de este supuesto.
- La más sencilla es usar la opción "robust" en el modelo de regresión lineal:
 Convierte los valores extremos, para homogenizar las varianzas

regress vardep varindep, robust

5. Evaluar multicolinealidad

<u>Multicolinealidad (solo en modelo ajustado)</u>: Presencia de dos o más VI excesivamente correlacionadas entre sí

Método para evaluar este supuesto: Calcular el "Factor de Inflación de Varianza" (Correr comando luego de hacer regresión) estat hettest

Variable	VIF	1/VIF
1.sexofem	1.11	0.903149
edad	1.02	0.978545
socioeco		
2	1.76	0.567837
3	1.89	0.530046
4	1.19	0.838612
1.vivesolo	1.02	0.984655
horasredes	1.03	0.974416
estadonut		
2	1.17	0.856250
3	1.08	0.926609
promsecu	1.05	0.949292
Mean VIF	1.23	

- Algún VIF > 6: nos preocupamos
- Algún VIF > 10: nos preocupamos más

Para corregir esto: Considerar excluir una de las variables con VIF alto del modelo ajustado

Supuestos con variable independiente numérica

En resumen		Comando para evaluar	Se cumple si	Solución en caso de no cumplir
Linealidad entre vardep y varindep numérica		lowess vardep varindep	Línea diagonal lineal, u horizontal	Categorizar variable independiente
	Independencia de observaciones	Teórico	Recolección de datos fue independiente entre observaciones	Realizando regresión con cluster o regresión de multinivel
V. Independiente numérica			Distribución normal	Usar bootstrap bootstrap, bca reps(1000): regress vardep varindep
	Homocedasticidad	Luego de correr el comando de regresión: estat hettest	Valor p >= 0.05	Usar robust regress vardep varindep, robust

Supuestos con variable independiente categórica

En resumen		Comando para evaluar	Se cumple si	Solución en caso de no cumplir
Linealidad entre vardep y varindep numérica			Ya se cumple No necesidad de evaluar	
	Independencia de observaciones	Teórico	Recolección de datos fue independiente entre observaciones	Realizando regresión con cluster o regresión de multinivel
V. Independiente categórica	Normalidad de residuos	Luego de correr el comando de regresión: predict resi, residuals histogram resi, by(varindep) Si hay duda con el histograma, usar: by varindep: sum resi, d by varindep: swilk resi	Distribución normal en cada categoría	Usar bootstrap bootstrap, bca reps(1000): regress vardep varindep
	Homocedasticidad	Luego de correr el comando de regresión: estat hettest	Valor p >= 0.05	Usar robust regress vardep varindep, robust

En resumen...

	Supuestos en	Comando para evaluar	Se cumple si	Solución en caso de no cumplir
	Linealidad entre vardep y el resto de varindep numéricas (Evaluar sólo si hay alguna variable independiente numérica en el modelo) Luego de correr el comando de regresión ajustada, evaluar cada VI numérica: cprplot varindepnum1 cprplot varindepnum2		Línea diagonal lineal, u horizontal, en todas las variables independientes numéricas	Categorizar las variables independientes que no cumplan
	Independencia de observaciones	Teórico	Recolección de datos fue independiente entre observaciones	Realizando regresión con cluster o regresión de multinivel
Regresión ajustada	Normalidad de residuos	Luego de correr el comando de regresión ajustada: predict resi, residuals histogram resi Si hay duda con el histograma, usar: sum resi, d swilk resi	Distribución normal	Si se usó para alguna var indep usar bootstrap bootstrap, bca reps(1000): regress vardep varindep
	Homocedasticidad	Luego de correr el comando de regresión ajustada: estat hettest	Valor p >= 0.05	Si se usó para alguna var indep usar robust regress vardep varindep, robust
	Multicolinealidad entre varindep	Luego de correr el comando de regresión ajustada: vif	Si todos los números son menos a 6	Considerar excluir variable(s), con VIF >6, de la regresión ajustada

¿Qué hacer con una variable si...?

¿Qué hacer si tengo alguna variable cuyo modelo de regresión no cumple con los supuestos de **normalidad** y de **homocedasticidad** a la vez?

 Puedes usar <u>Boostrap</u> para corregir ambos supuestos a la vez en ese modelo de regresión.

	Nota en el primer año de universidad		
Características	β crudo	β ajustado	
	(IC 95%)	(IC 95%)*	
Edad (años)			
Sexo			
Masculino	Ref.	Ref.	
Femenino			
Estado			
nutricional			
Normal	Ref.	Ref.	
Sobrepeso			
Obesidad			
Nota promedio			
en secundaria			
(puntos)			

- Si todas las variables cumplen todos los supuestos -> correr los comandos crudos y ajustados sin problemas.
- Si al menos una variable requirió corrección con Boostrap y/o Robust, ¿Qué hacemos con el resto de las variables de la tabla que no requieren la corrección?
 - Opción 1: Corregir a todas las variables (que requieran o no corrección) en el modelo de regresión crudo y ajustado, con un mismo método, para que el análisis sea similar en toda la tabla → Nosotros usaremos esta :D
 - Opción 2: Dejar sin corregir a las variables que no necesiten corrección en el modelo de regresión crudo. Cada variable es corregida según su necesidad, y se tiene que especificar en la tabla).

Si decides usar Robust o
Boostrap <u>debes especificarlo</u>
en la sección de métodos de
tu artículo científico / trabajo
de investigación.

De preferencia, también especificarlo en la tabla de resultados.

Muchas gracias (:

Próximo video 7/7: Práctica guiada en Stata

MEJORES DECISIONES EN SALUD

- **950 876 703**
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu

Práctica guiada en Stata

Christoper A. Alarcon-Ruiz MD MSc(c)

¿Cómo ver este video?

- Este video (práctica guiada) es un complemento previo al taller A
- Tiene como objetivo brindar ejemplos de cómo utilizar Stata para realizar análisis de regresión lineal
- Para aprovechar mejor el taller A, te recomendamos ver este video una vez y luego utilizar el PDF que acompaña el video para realizar los análisis por su cuenta para el taller A.

Recordando el estudio del taller A

- Población: Estudiantes de medicina de primer año
- Variables independientes: Sexo, edad, estado nutricional, nota promedio en secundaria
- Desenlace: Nota en el primer año de universidad (desenlace numérico)
- Objetivo: Evaluar los factores asociados al desenlace de interés.

Práctica guiada

- El producto de la práctica guiada será completar esta tabla.
- En este video vamos a realizar las regresiones lineales crudas de las variables:
 - Edad
 - Sexo
 - Estado nutricional
 - Nota de secundaria
- También haremos la regresión lineal ajustada (entrarán al modelo ajustado sólo las variables que tienen p<0.20 en prueba F en el modelo de regresión lineal crudo)

	Nota en el primer año de universidad		
Características	β crudo (IC 95%)	β ajustado (IC 95%)*	
Edad (años)			
Sexo			
Masculino	Ref.	Ref.	
Femenino			
Estado nutricional			
Normal	Ref.	Ref.	
Sobrepeso			
Obesidad			
Nota promedio en secundaria			
(puntos)			

^{*}Valor β ajustado por...

- 1. Determinar tipo de variable dependiente e independiente
 - codebook vardep
 - codebook varindep
- 2. Evaluación de supuestos

Linealidad entre vardep y varindep numérica	lowess vardep varindep
Independencia de observaciones	Teórico
Normalidad de residuos	Luego de correr el comando de regresión: predict resi, residuals histogram resi Si hay duda con el histograma, usar: sum resi, d swilk resi
Homocedasticidad	Luego de correr el comando de regresión: estat hettest

- 3. Análisis de regresión
 - regress vardep varindep
 (Aplicar Boostrap o Robust según necesidad)
- 4. Interpretación de resultado
- 5. Determinar si ingresa o no en modelo ajustado (Ver valor de prueba F o chi2)

Pasos para el análisis de regresión lineal crudo (variable independiente categórica)

- 1. Determinar tipo de variable dependiente e independiente
 - codebook vardep
 - codebook varindep
- 2. Evaluación de supuestos

Independencia de observaciones	Teórico
Normalidad de residuos	predict resi, residuals histogram resi, by(varindep) Si hay duda con el histograma, usar: by varindep: sum resi, d by varindep: swilk resi
Homocedasticidad	Luego de correr el comando de regresión: estat hettest

- 3. Análisis de regresión
 - regress vardep i.varindep
 (Aplicar Boostrap o Robust según necesidad)
- 4. Interpretación de resultado
- 5. Determinar si ingresa o no en modelo ajustado (Ver valor de prueba F o chi2)

Pasos para el análisis de regresión ajustada

- 1. Elegir variables para modelo ajustado
- 2. Evaluación de supuestos

Linealidad entre vardep y el resto de varindep numéricas (Evaluar sólo si hay alguna variable independiente numérica en el modelo)	Luego de correr el comando de regresión ajustada, evaluar cada variable independiente numérica: cprplot varindepnum1 cprplot varindepnum2
Independencia de observaciones	Teórico
Normalidad de residuos	Luego de correr el comando de regresión ajustada: predict resi, residuals histogram resi Si hay duda con el histograma, usar: sum resi, d swilk resi
Homocedasticidad	Luego de correr el comando de regresión ajustada: estat hettest
Multicolinealidad entre varindep	Luego de correr el comando de regresión ajustada: vif

- 3. Realizar regresión ajustada
 - regress vardep varindep1 i.varindep2 ...
 (Aplicar Boostrap o Robust según necesidad)
- 4. Interpretación de resultados

Vamos a Stata:D

Producto de práctica guiada

	Nota en el primer año de universidad		
Características	β crudo (IC 95%)	β ajustado (IC 95%)*	
Edad (años)	-0.56 (-0.30 a 0.18)		
Sexo			
Masculino	Ref.		
Femenino	0.31 (-0.56 a 1.19)		
Estado nutricional			
Normal	Ref.	Ref.	
Sobrepeso	-1.56 (-2.34 a -0.77)	-0.37 (-0.69 a -0.05)	
Obesidad	-1.11 (-2.70 a 0.49)	-0.26 (-0.90 a 0.39)	
Nota promedio en secundaria (puntos)	1.41 (1.35 a 1.48)	1.40 (1.34 a 1.47)	

^{*}Valor β ajustado por estado nutricional y nota promedio de secundaria

Continuar con el Taller A

- Realizar análisis de regresión lineal cruda de las variables restantes:
 - Vive solo
 - Horas red
 - Nivel socioeconómico
 - Buena nota secundaria
- Realizar análisis de regresión ajustada (entran al modelo ajustado sólo las variables que tienen p<0.20 en prueba F o Chi2 en el modelo de regresión lineal crudo)

_	Nota en el primer año de universidad		
Características	β crudo (IC 95%)	β ajustado (IC 95%)*	
Edad (años)	-0.56 (-0.30 a 0.18)		
Sexo			
Masculino	Ref.		
Femenino	0.31 (-0.56 a 1.19)		
Estado nutricional			
Normal	Ref.		
Sobrepeso	-1.56 (-2.34 a -0.77)		
Obesidad	-1.11 (-2.70 a 0.49)		
Nota promedio en secundaria	1.41 (1.35 a 1.48)		
(puntos)	=======================================		
Vive sólo			
No	Ref.		
Sí			
Horas que pasa en red (Horas)			
Nivel socioeconómico			
Muy baja	Ref.		
Ваја			
Media			
Alta			
Buena nota en secundaria			
No	Ref.		
Sí			

Muchas gracias (:

MEJORES DECISIONES EN SALUD

- **950 876 703**
- www.evisalud.net
- f facebook.com/evisalud/
- @evisaludperu