Note Title

12/12/2023

Esempio 1) Rotatione di 90° intorno all'asse z in verso giudicato ORARIO da un Omino in piedi

lungo il semianse delle 2 positive

Potasique di 8 autiovania di augolo 8

Verifica!
$$(1,0,0) \rightarrow (0,-1,0)$$
 :: $(0,1,0) \rightarrow (1,0,0)$::

Determinare l'immagine del piamo x-2y+52=7

5 logan: le parametiche vanus beue avaeti!

Parametrica del piano

$$(7,0,0)+t(2,1,0)+s(5,0,-1)=(7+2t+5s,t,-s)$$

La trasformatione eva

$$(x,y,z) \rightarrow (y,-x,z)$$
 (matrice $(\frac{y}{z})$)

 $(7+2t+55, t, -s) \rightarrow (t, -7-2t-55, -s)$

$$= (0, -7, 0) + t (1, -2, 0) + s (0, -5, -1)$$

volemplo posso

cambiane segue

Nuovo piano, che se serve passo in contesiana

Determinare l'immagine della retta (1,2,3)+t(1,-1,1)Stessa cosa (1+t, 2-t, 3+t) \longrightarrow (2-t, -1-t, 3+t) = (2,-1,3) + t (-1,-1,1) Déterminare la controinnagine del plans 2×+34+52 -8 Mogan: le contesione vanno bene indicts Al posto di (x, y, z) metto (y, -x, z) e trovo 2y - 3x + 52 = 8Determinare la controinnesque della retta (1,0,1) + t (2,1,6)1º mado) Mi scriso la retta data in cartesiana, cioè come cutersexione di due piani, e poi porto indietro le contesiane dei due prami \[\times - 2y = 1 \quad i due plani passano per (1,0,1) \\ 3\times - 2 = 2 \quad gli (a,b,c) dei due plani sono \(\text{L} \) alla diretione della retta Tiro indietro i de piani (metto (y,-x, z) al posto di (x,y,z) $\begin{cases} y + 2x = 1 \\ 3y - 2 = 2 \end{cases}$ Risolvo e trovo de parametrica della retta richiesta

2º cusdo] BOVINO Rendo Pe Q Sulla retta, ad esempio P = (1,0,1) $Q = (3,1,7) \leftarrow t=1$ Calcolo che controlumagini (y, -x, 2) = (3, 1, 7)(y,-x,2)= (1,0,1) $P^{-1}(P) = (0, 1, 1)$ $f^{-1}(Q) = (-1, 3, 7)$ Facció la retta per 1 due movi p.ti (0,1,1) + + (-1,2,6) [Verificare che veuga la sterra nei 2 madi] Escupio 2 Rotarione di 30° in verso antioranio respetto alla retta t (1,2,3) (retta de passa per l'origine) per un ouivo in piedi uella direktone (1,2,3) Ci procuriamo una bare ORTONORMALE di R2 che contiene (un multiplo) del vettore (1,2,3) U1 = (1,2,3) $U_2 = (2, -1, 0)$ $\begin{pmatrix} * & * & * \\ 1 & 2 & 3 \end{pmatrix} \sim (+3, 6, -5) = U_3$ li normalitzo $\widehat{\mathcal{O}}_{3} = \left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right) \quad \widehat{\mathcal{O}}_{2} = \left(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}, 0 \right) \quad \widehat{\mathcal{O}}_{1} = \left(\frac{3}{\sqrt{50}}, \frac{6}{\sqrt{70}}, \frac{-5}{\sqrt{70}} \right)$ facció in maniera de l'asse d'estasione sia su is

Con	w	ns, e	elle	`.															
>	٦\	pro	نطف	lwe	uto		M 7	RM	t 4	Zun	Pr, Or	la	Se	M.	e Q	pius	ta		
			ba												`	•		e	
	dic	eut	ca o	ziu	sta														
	(1	u o	Of e	wal	tha	. U	20	Qu	ba	e 1	'sbo	agli	iato	" e	· w	ietto	u	u	
	S	egu	0 -	· ri	spe	tto	all	a	lagu	o d	in	ota	Ribl	رما					
								O .		0 -		_							
Os	S.	2e	υso	la	. Çc) } }	ula	w	ister	1050	. pe	м þ.	rodu	me	Uz	a f	troc	i're	
	c	da	U 1	ور	5 2	(Us	SOF) ta	e (J2 3	allo	, (د	alla	ora	lo	i ba	26x		
	!	₹ U3	, ن	z , U3	s }	che	ott	end	9		auix	ta.							
					_			•	b –	_) —	_							