Categorical groups in brave new algebra

Fernando Muro

Universitat de Barcelona Dept. Àlgebra i Geometria

(joint work with H.-J. Baues)

Workshop on Categorical Groups Barcelona, June 2008

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

- It is a symmetric monoidal triangulated category S whose objects are called spectra.
- It maps onto the category of cohomology theories for finite CW-complexes.
- Monoids in S yield multiplicative cohomology theories.
- S = Ho M for many stable model categories M.
- There are symmetric monoidal models M. This reflects the existence of higher operations on multiplicative cohomology theories.
- A ring spectrum is a monoid in M.
- The homotopy groups of a spectrum E are the cohomology of the point $\pi_*(E) = E^*(\text{pt.})$, and E is connective if $\pi_n(E) = 0$ for n < 0.

$$\begin{array}{c}
\text{Sym. mon. cat.} \\
\hline
\text{May, Segal, Thomason}
\end{array}$$
Spectra

$$\underbrace{\text{Sym. mon. cat.}}_{\text{May, Segal, Thomason}} \underbrace{\text{Spectra}}_{\text{Spectra}}$$

Example

- B(finite sets, bijections,]]) = S the sphere spectrum.
- For R a ring, $B(f. g. free left R-mod., iso., \oplus) = K(R)$ the K-theory spectrum of R.

Example

- $B(finite\ sets,\ bijections,\ \coprod,\times)=S$ as a ring spectrum.
- For R commutative, B(f. g. free R-mod., iso., \oplus , \otimes_R) = K(R).

- Define a symmetric monoidal 'replacement' for the 2-category of Picard groupoids.
- Construct a 'lax symmetric monoidal' 2-functor

and more generally, $n \ge 0$,

Do it first unstably!

- Define a symmetric monoidal 'replacement' for the 2-category of Picard groupoids.
- Construct a 'lax symmetric monoidal' 2-functor

and more generally, $n \ge 0$,

② Do it first unstably!

- Define a symmetric monoidal 'replacement' for the 2-category of Picard groupoids.
- Construct a 'lax symmetric monoidal' 2-functor

$$\underbrace{\text{Spectra}}_{\text{fundamental Picard groupoid}} \underbrace{\pi_{0,*}}_{\text{put here the 'replacement'}} \underbrace{\text{Picard groupoids}}_{\text{put here the 'replacement'}}$$

and more generally, $n \ge 0$,

② Do it first unstably!

- Define a symmetric monoidal 'replacement' for the 2-category of Picard groupoids.
- Construct a 'lax symmetric monoidal' 2-functor

$$\underbrace{\text{Spectra}}_{\text{fundamental Picard groupoid}} \underbrace{\pi_{0,*}}_{\text{put here the 'replacement'}} \underbrace{\text{Picard groupoids}}_{\text{put here the 'replacement'}}$$

and more generally, $n \ge 0$,

Do it first unstably!

A Picard groupoid is strict if \otimes is strictly associative and unital. It is all-strict if \otimes is also strictly commutative.

Any Picard groupoid **P** can be *strictified* but not *all-strictified*.

Proposition

The following are equivalent.

- P can be all-strictified
- B(P) has trivial Postnikov invariants.
- The stable Hopf map $\eta \in \pi_1(S) \cong \mathbb{Z}/2$ acts trivially on $\pi_0(B(\mathbf{P}))$,

$$0 = \pi_0(B(\mathbf{P})) \cdot \eta \subset \pi_1(B(\mathbf{P})).$$

Example

The Picard groupoid $\mathbf{Pic}(X)$ of line bundles over a scheme X can be all-strictified.

A Picard groupoid is strict if \otimes is strictly associative and unital. It is all-strict if \otimes is also strictly commutative.

Any Picard groupoid **P** can be *strictified* but not *all-strictified*.

Proposition

The following are equivalent:

- P can be all-strictified.
- B(P) has trivial Postnikov invariants.
- The stable Hopf map $\eta \in \pi_1(S) \cong \mathbb{Z}/2$ acts trivially on $\pi_0(B(\mathbf{P}))$,

$$0 = \pi_0(B(\mathbf{P})) \cdot \eta \subset \pi_1(B(\mathbf{P})).$$

Example

The Picard groupoid $\mathbf{Pic}(X)$ of line bundles over a scheme X can be all-strictified.

A Picard groupoid is strict if \otimes is strictly associative and unital. It is all-strict if \otimes is also strictly commutative.

Any Picard groupoid **P** can be *strictified* but not *all-strictified*.

Proposition

The following are equivalent:

- P can be all-strictified.
- B(P) has trivial Postnikov invariants.
- The stable Hopf map $\eta \in \pi_1(S) \cong \mathbb{Z}/2$ acts trivially on $\pi_0(B(\mathbf{P}))$,

$$0 = \pi_0(B(\mathbf{P})) \cdot \eta \subset \pi_1(B(\mathbf{P})).$$

Example

The Picard groupoid $\mathbf{Pic}(X)$ of line bundles over a scheme X can be all-strictified.

Crossed bimodules

A monoid in this category is a crossed bimodule C_* ,

$$\begin{matrix} C_1 & \xrightarrow{\partial \\ \text{bimod. hom.} \end{matrix}} C_0$$

satisfying

$$c_1 \cdot \partial(c_1') = \partial(c_1) \cdot c_1'.$$

Theorem (Baues-Pirashvili'06)

For R a ring and M an R-bimodule,

 $SH^3(R,M)$, Shukla cohomology,

classifies crossed bimodules C_* with $h_0C_* = R$ and $h_1C_* = M$.

One can similarly consider graded crossed bimodules.

Crossed bimodules

A monoid in this category is a crossed bimodule C_* ,

satisfying

$$c_1 \cdot \partial(c_1') = \partial(c_1) \cdot c_1'.$$

Theorem (Baues-Pirashvili'06)

For R a ring and M an R-bimodule,

 $SH^3(R,M)$, Shukla cohomology,

classifies crossed bimodules C_* with $h_0C_* = R$ and $h_1C_* = M$.

One can similarly consider graded crossed bimodules.

Crossed bimodules

A monoid in this category is a crossed bimodule C_* ,

$$0 {\:\longrightarrow\:} h_1 \, C_* {\:\longrightarrow\:} C_1 {\:\longrightarrow\:} c_0 {\:\longmapsto\:} h_0 \, C_* {\:\longrightarrow\:} h_0 \, C_* {\:\longrightarrow\:} 0$$

satisfying

$$c_1 \cdot \partial(c_1') = \partial(c_1) \cdot c_1'.$$

Theorem (Baues-Pirashvili'06)

For R a ring and M an R-bimodule,

 $SH^3(R,M)$, Shukla cohomology,

classifies crossed bimodules C_* with $h_0C_* = R$ and $h_1C_* = M$.

One can similarly consider graded crossed bimodules.

Crossed bimodules

A monoid in this category is a crossed bimodule C_* ,

$$0 {\:\longrightarrow\:} h_1 \, C_* {\:\longrightarrow\:} C_1 {\:\longrightarrow\:} c_0 {\:\longmapsto\:} h_0 \, C_* {\:\longrightarrow\:} h_0 \, C_* {\:\longrightarrow\:} 0$$

satisfying

$$c_1 \cdot \partial(c_1') = \partial(c_1) \cdot c_1'.$$

Theorem (Baues-Pirashvili'06)

For R a ring and M an R-bimodule,

 $SH^3(R,M)$, Shukla cohomology,

classifies crossed bimodules C_* with $h_0C_* = R$ and $h_1C_* = M$.

One can similarly consider graded crossed bimodules.

Crossed bimodules

A monoid in this category is a crossed bimodule C_* ,

$$0 {\:\longrightarrow\:} h_1 \, C_* {\:\longrightarrow\:} C_1 {\:\longrightarrow\:} c_0 {\:\longmapsto\:} h_0 \, C_* {\:\longrightarrow\:} h_0 \, C_* {\:\longrightarrow\:} 0$$

satisfying

$$c_1 \cdot \partial(c'_1) = \partial(c_1) \cdot c'_1.$$

Theorem (Baues-Pirashvili'06)

For R a ring and M an R-bimodule,

 $SH^3(R,M)$, Shukla cohomology,

classifies crossed bimodules C_* with $h_0C_* = R$ and $h_1C_* = M$.

One can similarly consider graded crossed bimodules.

Theorem (Baues-M'06)

There are 2-functors, n > 0,

$$0 \to \frac{\pi_{n+1}(X)}{\pi_n(X) \cdot \eta} \to \overline{\pi}_{n,1}(X) \xrightarrow{\partial} \overline{\pi}_{n,0}(X) \to \pi_n(X) \to 0.$$

They extend (up to natural quasi-iso.) to a 2-functor

$$0 o rac{\pi_*(R)}{(n)}[1] o ar{\pi}_{*,1}(R) \stackrel{\partial}{\longrightarrow} ar{\pi}_{*,0}(R) o \pi_*(R) o 0.$$

Theorem (Baues-M'06)

There are 2-functors, $n \ge 0$,

$$0 \to \frac{\pi_{n+1}(X)}{\pi_n(X) \cdot \eta} \to \overline{\pi}_{n,1}(X) \xrightarrow{\partial} \overline{\pi}_{n,0}(X) \to \pi_n(X) \to 0.$$

They extend (up to natural quasi-iso.) to a 2-functor

$$0 \to \frac{\pi_*(R)}{(\eta)}[1] \to \bar{\pi}_{*,1}(R) \xrightarrow{\partial} \bar{\pi}_{*,0}(R) \to \pi_*(R) \to 0.$$

The functors $\bar{\pi}_{n,*}$ are good enough for spectra X neglecting the Hopf map, i.e. such that $\pi_*(X) \cdot \eta = 0$.

Remark

If R is a ring spectrum neglecting η ,

$$\{ar{\pi}_{0,*}(R)\} \in SH^3(\pi_0 R, \pi_1 R) \subset THH^3(\pi_0 R, \pi_1 R)$$

can be identified with the 1st Postnikov invariant of R.

The functors $\bar{\pi}_{n,*}$ are good enough for spectra X neglecting the Hopf map, i.e. such that $\pi_*(X) \cdot \eta = 0$.

Remark

If R is a ring spectrum neglecting η ,

$$\{\bar{\pi}_{0,*}(R)\} \in SH^3(\pi_0 R, \pi_1 R) \subset THH^3(\pi_0 R, \pi_1 R)$$

can be identified with the 1st Postnikov invariant of R.

$$0 \longrightarrow h_1 C_* \longrightarrow C_1 \xrightarrow{\partial} C_0 \longrightarrow h_0 C_* \longrightarrow 0$$

$$x,y,z$$

$$xy=0$$

$$yz=0$$

For R a ring spectrum neglecting η and $C_* = \bar{\pi}_{*,*}(R)$ if we have $x,y,z \in \pi_*(R)$ then

$$\langle x,y,z\rangle \subset \pi_{|x|+|y|+|z|+1}(R)$$

is the Toda bracket.

Example

The ring spectrum $H\mathbb{F}_2 \wedge H\mathbb{F}_2$ neglects the Hopf map, and $\bar{\pi}_{*,*}(H\mathbb{F}_2 \wedge H\mathbb{F}_2)$ is (quasi-iso. to) the dual secondary Steenrod algebra.

The secondary Steenrod algebra \mathcal{B} is a graded crossed bimodule

$$0 \to \mathcal{A}[-1] \to \mathcal{B}_1 \stackrel{\partial}{\longrightarrow} \mathcal{B}_0 \mathop{\to}_{\textit{Steenrod algebra}} \mathcal{A} \mathop{\to}_{\textit{Steenrod algebra}} 0,$$

actually a 2-Hopf algebra, computed by Baues'06. The cohomology of \mathcal{B} leads to a direct computation of \mathcal{E}_3 of Adams SS [Baues-Jibladze'06].

A commutative crossed bimodule C_* ,

$$\begin{matrix} C_1 & \xrightarrow{\partial} & C_0 \\ & \text{module hom.} \end{matrix}$$
 comm. ring

$$C_{*,1} \xrightarrow[ext{graded crossed bim.}]{\partial} C_{*,0}$$

$$\smile_1: C_{*,0} \otimes C_{*,0} \longrightarrow C_{*,1}$$

$$\begin{array}{lll} \partial(c_{0}\smile_{1}c_{0}') & = & c_{0}c_{0}'-(-1)^{|c_{0}||c_{0}'|}c_{0}'c_{0}, \\ \partial(c_{1})\smile_{1}c_{0} & = & c_{1}c_{0}-(-1)^{|c_{1}||c_{0}|}c_{0}c_{1}, \\ & 0 & = & c_{0}\smile_{1}c_{0}'+(-1)^{|c_{0}||c_{0}'|}c_{0}\smile_{1}c_{0}', \\ c_{0}c_{0}')\smile_{1}c_{0}'' & = & (-1)^{|c_{0}'||c_{0}''|}(c_{0}\smile_{1}c_{0}'')c_{0}'+c_{0}(c_{0}'\smile_{1}c_{0}''). \end{array}$$

A commutative crossed bimodule C_* ,

$$egin{aligned} C_1 & \xrightarrow{\partial} C_0 \ & ext{module hom.} \end{aligned} comm. ring$$

$$C_{*,1} \xrightarrow[\operatorname{graded\ crossed\ bim.}]{\partial} C_{*,0}$$

$$\smile_1: C_{*,0}\otimes C_{*,0}\longrightarrow C_{*,1}$$

$$\begin{array}{lll} \partial(c_0\smile_1c_0') &=& c_0c_0'-(-1)^{|c_0||c_0'|}c_0'c_0,\\ \partial(c_1)\smile_1c_0 &=& c_1c_0-(-1)^{|c_1||c_0|}c_0c_1,\\ &0 &=& c_0\smile_1c_0'+(-1)^{|c_0||c_0'|}c_0\smile_1c_0',\\ c_0c_0')\smile_1c_0'' &=& (-1)^{|c_0'||c_0''|}(c_0\smile_1c_0'')c_0'+c_0(c_0'\smile_1c_0''). \end{array}$$

A commutative crossed bimodule C_* ,

$$C_1 \stackrel{\partial}{\longrightarrow} C_0$$
 module hom. comm. rir

$$C_{*,1} \xrightarrow[\operatorname{graded\ crossed\ bim.}]{\partial} C_{*,0}$$

$$\smile_1: C_{*,0}\otimes C_{*,0}\longrightarrow C_{*,1}$$

$$\begin{array}{lcl} \partial(c_0\smile_1c_0') &=& c_0c_0'-(-1)^{|c_0||c_0'|}c_0'c_0,\\ \partial(c_1)\smile_1c_0 &=& c_1c_0-(-1)^{|c_1||c_0|}c_0c_1,\\ 0 &=& c_0\smile_1c_0'+(-1)^{|c_0||c_0'|}c_0\smile_1c_0',\\ (c_0c_0')\smile_1c_0'' &=& (-1)^{|c_0'||c_0''|}(c_0\smile_1c_0'')c_0'+c_0(c_0'\smile_1c_0''). \end{array}$$

A commutative crossed bimodule C_* ,

$$C_1 \stackrel{\partial}{\longrightarrow} C_0$$
 module hom. comm. rir

$$C_{*,1} \xrightarrow[ext{graded crossed bim.}]{\partial} C_{*,0} \xrightarrow{} h_0 C_* \xrightarrow[ext{graded comm. ring}]{\partial} 0$$

$$\smile_1 \colon \mathit{C}_{*,0} \otimes \mathit{C}_{*,0} \longrightarrow \mathit{C}_{*,1}$$

$$\begin{array}{lcl} \partial(c_0\smile_1c_0') & = & c_0c_0'-(-1)^{|c_0||c_0'|}c_0'c_0, \\ \partial(c_1)\smile_1c_0 & = & c_1c_0-(-1)^{|c_1||c_0|}c_0c_1, \\ 0 & = & c_0\smile_1c_0'+(-1)^{|c_0||c_0'|}c_0\smile_1c_0', \\ (c_0c_0')\smile_1c_0'' & = & (-1)^{|c_0'||c_0''|}(c_0\smile_1c_0'')c_0'+c_0(c_0'\smile_1c_0''). \end{array}$$

A commutative crossed bimodule C_* ,

$$egin{aligned} C_1 & \xrightarrow{\partial} & C_0 \ & & & \text{comm. ring} \end{aligned}$$

$$0 {\longrightarrow} h_1 \, C_* {\longrightarrow} C_{*,1} \underset{\text{graded crossed bim.}}{\xrightarrow{\partial}} C_{*,0} {\longrightarrow} h_0 \, C_* {\longrightarrow} 0$$

$$\smile_1: C_{*,0}\otimes C_{*,0}\longrightarrow C_{*,1}$$

$$\begin{array}{lcl} \partial(c_{0}\smile_{1}c_{0}') & = & c_{0}c_{0}'-(-1)^{|c_{0}||c_{0}'|}c_{0}'c_{0}, \\[2pt] \partial(c_{1})\smile_{1}c_{0} & = & c_{1}c_{0}-(-1)^{|c_{1}||c_{0}|}c_{0}c_{1}, \\[2pt] 0 & = & c_{0}\smile_{1}c_{0}'+(-1)^{|c_{0}||c_{0}'|}c_{0}\smile_{1}c_{0}', \\[2pt] (c_{0}c_{0}')\smile_{1}c_{0}'' & = & (-1)^{|c_{0}'||c_{0}''|}(c_{0}\smile_{1}c_{0}'')c_{0}'+c_{0}(c_{0}'\smile_{1}c_{0}''). \end{array}$$

Theorem (Baues-M'06)

The 2-functor $\bar{\pi}_{*,*}$ above extends (up to natural quasi-iso.) to a 2-functor

Comm. ring spectra
$$\overline{\pi}_{*,*}$$
 Graded shc crossed bim.

$$0
ightarrow rac{\pi_*(R)}{(\eta)}[1]
ightarrow ar{\pi}_{*,1}(R) \stackrel{\partial}{\longrightarrow} ar{\pi}_{*,0}(R)
ightarrow \pi_*(R)
ightarrow 0,$$
 $\sim_1 : ar{\pi}_{*,0}(R) \otimes ar{\pi}_{*,0}(R) \longrightarrow ar{\pi}_{*,1}(R).$

A commutative example

For the 3-local sphere commutative ring spectrum $S_{(3)}$,

n	0	2	3	6	7	9	10	11	12	13
π_n	$\mathbb{Z}^1_{(3)}$	0	$\mathbb{Z}/3$	0	$\mathbb{Z}/3$	0	$\mathbb{Z}/3$	$\mathbb{Z}/9$	0	$\mathbb{Z}/3$
$\pi_{n,*}$	$\mathbb{Z}^{\frac{1}{(3)}} \\ \uparrow \\ 0$	$0 \\ \uparrow \\ \mathbb{Z}/3 \\ \alpha_1[1]$	$\begin{bmatrix} \frac{a_1}{\mathbb{Z}(3)} \\ \vdots \\ 3 \end{bmatrix}$ $\begin{bmatrix} \mathbb{Z}(3) \\ \frac{\bar{a}_1}{1} \end{bmatrix}$	$\begin{bmatrix} \alpha_1^2 \\ \mathbb{Z}_{(3)} \\ \uparrow \\ (10) \\ \\ \mathbb{Z}_{(3)} \oplus \mathbb{Z}/3 \\ \frac{\bar{a}}{1} \alpha_2[1] \end{bmatrix}$	$\begin{bmatrix} \frac{a_2}{\mathbb{Z}} \\ \mathbb{Z}(3) \\ \\ \\ 3 \\ \\ \mathbb{Z}_{(3)} \\ \\ \frac{\bar{a}_2}{\bar{a}_2} \end{bmatrix}$	$\begin{bmatrix} a_1^3\\ \mathbb{Z}_{(3)}\\ \uparrow\\ (1\ 0)\\ \mid\\ \mathbb{Z}_{(3)}\oplus\ \mathbb{Z}/3\\ a_1\bar{a}_1\ \beta_1[1] \end{bmatrix}$	$\begin{bmatrix} a_{1}a_{2} \\ a_{2}a_{1} \\ b_{1} \\ \mathbb{Z}_{(3)}^{3} \\ \phi \\ \mathbb{Z}_{(3)}^{3} \oplus \mathbb{Z}/9 \\ \alpha_{3}'[1] \\ \bar{a}_{1,2} \\ \bar{b}_{1} \end{bmatrix}$	Z(3) Z(3) Z(3) Z(3) Z(3)	$\begin{array}{c} a_1^4 \\ \mathbb{Z}_{(3)} \\ \uparrow \\ (10) \\ \\ \mathbb{Z}_{(3)} \oplus \mathbb{Z}/3 \\ a_1^2 \bar{a}_1 \alpha_1[1]b_1 \end{array}$?

$$\begin{array}{rcl} a_1\bar{a}_2 & = & 3\bar{a}_{1,2} + x\alpha_3'[1], \\ \bar{a}_1a_2 & = & 3\bar{a}_{1,2} + (x-3)\alpha_3'[1], \\ a_1 \smile_1 a_1 & = & 2\bar{\bar{a}}_1, \\ a_1 \smile_1 a_2 & = & \bar{a}_{1,2} + \bar{a}_{2,1}, \end{array}$$

$$\partial = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{array}\right)$$

where $x \in \mathbb{Z}/9$ is an unknown constant!

$$\stackrel{\simeq}{-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-}}$$
 (Picard groupoids)

$$\begin{array}{rcl} \partial \langle c_0, c_0' \rangle & = & [c_0', c_0] \\ \langle \partial (c_1), \partial (c_1') \rangle & = & [c_1', c_1] \\ \langle c_0, c_0' \rangle & = & -\langle c_0', c_0 \rangle \end{array}$$

▶ sqm ▶ jump

 $C_0^{ab}\otimes C_0^{ab}$

$$\simeq$$

Picard groupoids

 PC_*

Object set: C₀

Maps:
$$c_0 + \partial(c_1) \stackrel{c_1}{\longrightarrow} c_0$$

$$\otimes$$
 = +

$$c_0 + c_0' \stackrel{\langle c_0, c_0' \rangle}{\longrightarrow} c_0' + c_0$$

▶ sqm → jump

not symmetric monoidal

$$C_0^{ab}\otimes C_0^{ab}$$
 $\langle\cdot,\cdot
angleigg|$

$$\begin{array}{rcl} \partial \langle c_0, c_0' \rangle & = & [c_0', c_0] \\ \langle \partial (c_1), \partial (c_1') \rangle & = & [c_1', c_1] \\ \langle c_0, c_0' \rangle & = & -\langle c_0', c_0 \rangle \end{array}$$

Picard groupoids

 PC_*

Object set: C_0

Maps:
$$c_0 + \partial(c_1) \xrightarrow{c_1} c_0$$

 $\otimes = +$

$$c_0+c_0' \stackrel{\langle c_0,c_0' \rangle}{\longrightarrow} c_0'+c_0$$

▶ sqm ▶ jump

symmetric monoidal!

Picard groupoids

 PC_*

Object set: C_0

Maps:
$$c_0 + \partial(c_1) \xrightarrow{c_1} c_0$$

$$\otimes = +$$

$$c_0 + c_0' \stackrel{\langle c_0, c_0' \rangle}{\longrightarrow} c_0' + c_0$$

$$C_0^{ab} \otimes C_0^{ab}$$
 $C_1 \longrightarrow C_0$

$$egin{array}{lll} \partial \langle m{c}_0, m{c}_0'
angle &=& [m{c}_0', m{c}_0] \ \langle \partial (m{c}_1), \partial (m{c}_1')
angle &=& [m{c}_1', m{c}_1] \ \langle m{c}_0, m{c}_0'
angle &=& -\langle m{c}_0', m{c}_0
angle \ H(m{c}_0 + m{c}_0') &=& H(m{c}_0) + H(m{c}_0') + m{c}_0' \otimes m{c}_0 \end{array}$$

symmetric monoidal! Baues-M'06, Baues-Jibladze-Pirashvili'08

Picard groupoids

$$PC_*$$

Object set: C_0

Maps:
$$c_0 + \partial(c_1) \xrightarrow{c_1} c_0$$

 $\otimes = +$

$$egin{array}{lll} \partial \langle m{c}_0, m{c}_0'
angle &=& [m{c}_0', m{c}_0] \ \langle \partial (m{c}_1), \partial (m{c}_1')
angle &=& [m{c}_1', m{c}_1] \ \langle m{c}_0, m{c}_0'
angle &=& -\langle m{c}_0', m{c}_0
angle \ H(m{c}_0 + m{c}_0') &=& H(m{c}_0) + H(m{c}_0') + m{c}_0' \otimes m{c}_0 \end{array}$$

$$c_0+c_0' \stackrel{\langle c_0,c_0' \rangle}{\longrightarrow} c_0'+c_0$$

We may want to assume that $\operatorname{Ker} H \subset C_0 \to h_0 C_*$ is surjective.

The 2-category of stable quadratic modules

A morphism $f\colon C_* o D_*$ is a chain morphism with $\langle f_0,f_0
angle=f_1\langle\cdot,\cdot
angle$ tack

$$\begin{array}{ccc}
C_1 & \xrightarrow{r_1} & D_1 \\
\partial \downarrow & & \downarrow \partial \\
C_0 & \xrightarrow{f_0} & D_0
\end{array}$$

The 2-category of stable quadratic modules

A morphism $f\colon C_* o D_*$ is a chain morphism with $\langle f_0,f_0
angle=f_1\langle\cdot,\cdot
angle$

The 2-category of stable quadratic modules

A morphism $f: C_* \to D_*$ is a chain morphism with $\langle f_0, f_0 \rangle = f_1 \langle \cdot, \cdot \rangle$ took

A track, homotopy or 2-morphism $\alpha : f \Rightarrow g$ is a map such that

$$\begin{aligned}
\partial \alpha(c_0) &= -g_0(c_0) + f_0(c_0), \\
\alpha \partial(c_1) &= -g_1(c_1) + f_1(c_1), \\
\alpha(c_0 + c_0') &= \alpha(c_0) + \alpha(c_0') + \langle g_0(c_0'), \partial \alpha(c_0) \rangle.
\end{aligned}$$

Quadratic pair modules

Example

Let C_{*}

be a stable quadratic module such that $C_0 = \langle E \rangle^{nil}$ is freely generated by a set E as a group of nilpotency class 2.

There exists a unique map H satisfying H(e) = 0 for any $e \in E$ which turns C_* into a quadratic pair module.

Quadratic pair modules

Example

Let C_{*}

be a stable quadratic module such that $C_0 = \langle E \rangle^{nil}$ is freely generated by a set E as a group of nilpotency class 2.

There exists a unique map H satisfying H(e) = 0 for any $e \in E$ which turns C_* into a quadratic pair module.

$$\partial(c_1)c_1' \ = \ c_1\partial(c_1'),$$

$$\begin{array}{rcl} \partial(c_1)c_1' & = & c_1\partial(c_1'), \\ c_i(c_j'+c_j'') & = & c_ic_j'+c_ic_j'', \quad 0 \leq i,j,i+j \leq 1, \end{array}$$

$$\begin{array}{lcl} \partial(c_1)c_1' &=& c_1\partial(c_1'),\\ c_i(c_j'+c_j'') &=& c_ic_j'+c_ic_j'',\quad 0\leq i,j,i+j\leq 1,\\ (c_0+c_0')c_0'' &=& c_0c_0''+c_0'c_0''+\partial P((c_0\otimes c_0')H(c_0'')),\\ (c_0+c_0')c_1 &=& c_0c_1+c_0'c_1+P((c_0\otimes c_0')H\partial(c_1)),\\ (c_1+c_1')c_0 &=& c_1c_0+c_1'c_0+P((\partial(c_1)\otimes\partial(c_1'))H(c_0)), \end{array}$$

$$\begin{array}{lll} \partial(c_1)c_1' &=& c_1\partial(c_1'),\\ c_i(c_j'+c_j'') &=& c_ic_j'+c_ic_j'', \quad 0 \leq i,j,i+j \leq 1,\\ (c_0+c_0')c_0'' &=& c_0c_0''+c_0'c_0''+\partial P((c_0\otimes c_0')H(c_0'')),\\ (c_0+c_0')c_1 &=& c_0c_1+c_0'c_1+P((c_0\otimes c_0')H\partial(c_1)),\\ (c_1+c_1')c_0 &=& c_1c_0+c_1'c_0+P((\partial(c_1)\otimes\partial(c_1'))H(c_0)),\\ H(1) &=& 0,\\ H(c_0c_0') &=& (c_0\otimes c_0)H(c_0')+H(c_0)(c_0'\otimes c_0'+H\partial PH(c_0')-2H(c_0')), \end{array}$$

A quadratic pair algebra is,

$$\begin{array}{lll} \partial(c_1)c_1' &=& c_1\partial(c_1'),\\ c_i(c_j'+c_j'') &=& c_ic_j'+c_ic_j'', \quad 0 \leq i,j,i+j \leq 1,\\ (c_0+c_0')c_0'' &=& c_0c_0''+c_0'c_0''+\partial P((c_0\otimes c_0')H(c_0'')),\\ (c_0+c_0')c_1 &=& c_0c_1+c_0'c_1+P((c_0\otimes c_0')H\partial(c_1)),\\ (c_1+c_1')c_0 &=& c_1c_0+c_1'c_0+P((\partial(c_1)\otimes\partial(c_1'))H(c_0)),\\ H(1) &=& 0,\\ H(c_0c_0') &=& (c_0\otimes c_0)H(c_0')+H(c_0)(c_0'\otimes c_0'+H\partial PH(c_0')-2H(c_0')),\\ c_0P(c_1)c_0' &=& P((c_0\otimes c_0)c_1(c_0'\otimes c_0'+H\partial PH(c_0')-2H(c_0'))). \end{array}$$

A quadratic pair algebra is,

$$\begin{array}{lll} \partial(c_1)c_1' &=& c_1\partial(c_1'),\\ c_i(c_j'+c_j'') &=& c_ic_j'+c_ic_j'', \quad 0 \leq i,j,i+j \leq 1,\\ (c_0+c_0')c_0'' &=& c_0c_0''+c_0'c_0''+\partial P((c_0\otimes c_0')H(c_0'')),\\ (c_0+c_0')c_1 &=& c_0c_1+c_0'c_1+P((c_0\otimes c_0')H\partial(c_1)),\\ (c_1+c_1')c_0 &=& c_1c_0+c_1'c_0+P((\partial(c_1)\otimes\partial(c_1'))H(c_0)),\\ H(1) &=& 0,\\ H(c_0c_0') &=& (c_0\otimes c_0)H(c_0')+H(c_0)(c_0'\otimes c_0'+H\partial PH(c_0')-2H(c_0')),\\ c_0P(c_1)c_0' &=& P((c_0\otimes c_0)c_1(c_0'\otimes c_0'+H\partial PH(c_0')-2H(c_0'))). \end{array}$$

A quadratic pair algebra is,

 $H(c_0c'_0) = (c_0 \otimes c_0)H(c'_0) + H(c_0)(c'_0 \otimes c'_0 + H\partial PH(c'_0) - 2H(c'_0)),$

 $c_0 P(c_1) c_0' = P((c_0 \otimes c_0) c_1 (c_0' \otimes c_0' + H \partial PH(c_0') - 2H(c_0'))).$

Theorem (Baues-Jibladze-Pirashvili'06)

For R a ring and M an R-bimodule,

 $THH^3(R, M)$, topological Hochschild cohomology,

classifies quadratic pair algebras C_* with $h_0C_* = R$ and $h_1C_* = M$.

The right $\pi_{n,*}$

Theorem (Baues-M'06)

There are 2-functors, $n \ge 0$,

$$0 \to \pi_{n+1}(X) \to \pi_{n,1}(X) \xrightarrow{\partial} \pi_{n,0}(X) \to \pi_n(X) \to 0.$$

They extend (up to natural quasi-iso.) to a 2-functor

$$(Ring\ spectra) \longrightarrow (Ring\ spectra) \longrightarrow (Ring\ spectra)$$

$$0 \to \pi_*(R)[1] \to \pi_{*,1}(R) \stackrel{\partial}{\longrightarrow} \pi_{*,0}(R) \to \pi_*(R) \to 0$$

The right $\pi_{n,*}$

Theorem (Baues-M'06)

There are 2-functors, $n \ge 0$,

$$0 \to \pi_{n+1}(X) \to \pi_{n,1}(X) \xrightarrow{\partial} \pi_{n,0}(X) \to \pi_n(X) \to 0.$$

They extend (up to natural quasi-iso.) to a 2-functor

$$0 \to \pi_*(R)[1] \to \pi_{*,1}(R) \xrightarrow{\partial} \pi_{*,0}(R) \to \pi_*(R) \to 0.$$

Remark

If R is a ring spectrum,

$$\{\pi_{0,*}(R)\} \in THH^3(\pi_0 R, \pi_1 R)$$

can be identified with the 1st Postnikov invariant of R.

Example

The quadratic pair algebra $\pi_{0,*}(S)$ is equivalent to

$$\begin{bmatrix}
\mathbb{Z} & \\
\langle \cdot, \cdot \rangle \\
\downarrow \\
\mathbb{Z}/2 & \xrightarrow{\partial = 0} \mathbb{Z}
\end{bmatrix}$$

$$H(n) = \frac{n(n-1)}{2}$$

which generates $THH^3(\mathbb{Z},\mathbb{Z}/2) \cong \mathbb{Z}/2$.

Remark

If R is a ring spectrum,

$$\{\pi_{0,*}(R)\} \in THH^3(\pi_0 R, \pi_1 R)$$

can be identified with the 1st Postnikov invariant of R.

Example

The quadratic pair algebra $\pi_{0,*}(S)$ is equivalent to

$$\begin{array}{c|c}
\mathbb{Z} & & \\
\langle \cdot, \cdot \rangle & & H(n) = \frac{n(n-1)}{2} \\
\mathbb{Z}/2 & \xrightarrow{\partial = 0} \mathbb{Z}
\end{array}$$

which generates $THH^3(\mathbb{Z},\mathbb{Z}/2)\cong\mathbb{Z}/2$.

Example

If F is a field, the quadratic pair algebra $\pi_{0,*}(K(F))$ is equivalent to

$$\begin{array}{c|c}
\mathbb{Z} & & \\
1 \mapsto -1 & & \\
F^{\times} & \xrightarrow{\partial = 0} \mathbb{Z}
\end{array}$$

which is non-trivial in THH³(\mathbb{Z}, F^{\times}) \cong ₂(F^{\times}) unless char F = 2.

Example

Let **C** be a monoidal exact or Waldhausen category, $\pi_{0,*}(K(\mathbf{C}))$ in the next talk!

Example

If F is a field, the quadratic pair algebra $\pi_{0,*}(K(F))$ is equivalent to

which is non-trivial in THH³(\mathbb{Z}, F^{\times}) \cong ₂(F^{\times}) unless char F = 2.

Example

Let ${\bf C}$ be a monoidal exact or Waldhausen category, $\pi_{0,*}(K({\bf C}))$ in the next talk!

Let X be a pointed space, n > 2,

$$\otimes^2 \pi_{n,0}(X)^{ab} \leftarrow H$$
 $\langle \cdot, \cdot \rangle \downarrow \qquad H$
 $\pi_{n,1}(X) \xrightarrow{\partial} \pi_{n,0}(X) = \langle \{S^n \to X\} \rangle^{n/l}$

An element $[f,F]\in\pi_{n,1}(X)$ is *represented* by $f\colon S^1 o \bigvee\limits_{S^n o X}S^1$ and

$$\mathbb{Z} = \pi_1(S^1) \xrightarrow{\pi_1(f)} \pi_1(\bigvee_{S^n \to X} S^n) = \langle \{S^n \to X\} \rangle \twoheadrightarrow \langle \{S^n \to X\} \rangle^{nil}$$

$$1 \mapsto \partial [f, F]$$

Let X be a pointed space, n > 2,

$$\otimes^{2}\pi_{n,0}(X)^{ab} \longleftrightarrow H$$

$$\langle \cdot, \cdot \rangle \downarrow \qquad \qquad H$$

$$\pi_{n,1}(X) \longrightarrow \pi_{n,0}(X) = \langle \{S^{n} \to X\} \rangle^{nil}$$

An element $[f, F] \in \pi_{n,1}(X)$ is *represented* by $f: S^1 \to \bigvee_{S^n \to X} S^1$ and

$$\mathbb{Z} = \pi_1(S^1) \xrightarrow{\pi_1(f)} \pi_1(\bigvee_{S^n \to X} S^n) = \langle \{S^n \to X\} \rangle \twoheadrightarrow \langle \{S^n \to X\} \rangle^{nil}$$

$$1 \mapsto \partial [f, F]$$

Let X be a pointed space, n > 2,

$$\otimes^2 \pi_{n,0}(X)^{ab} \leftarrow H$$
 $\langle \cdot, \cdot \rangle \downarrow \qquad H$
 $\pi_{n,1}(X) \xrightarrow{\partial} \pi_{n,0}(X) = \langle \{S^n \to X\} \rangle^{nil}$

An element $[f, F] \in \pi_{n,1}(X)$ is represented by $f: S^1 \to \bigvee_{S^n \to X} S^1$ and

Let X be a pointed space, n > 2,

$$\otimes^{2}\pi_{n,0}(X)^{ab} \longleftrightarrow H$$

$$\langle \cdot, \cdot \rangle \downarrow \qquad \qquad H$$

$$\pi_{n,1}(X) \xrightarrow{\partial} \pi_{n,0}(X) = \langle \{S^{n} \to X\} \rangle^{nil}$$

An element $[f, F] \in \pi_{n,1}(X)$ is represented by $f: S^1 \to \bigvee_{S^n \to X} S^1$ and

$$\mathbb{Z} = \pi_1(S^1) \xrightarrow{\pi_1(f)} \pi_1(\bigvee_{S^n \to X} S^n) = \langle \{S^n \to X\} \rangle \twoheadrightarrow \langle \{S^n \to X\} \rangle^{nil}$$

$$1 \mapsto \partial [f, F]$$

For
$$n = 2$$
,

$$\mathsf{Hopf}(T) \in \otimes^2 \mathbb{Z}^k \cong \mathbb{Z}^{k^2}$$

For
$$n=2$$
,
$$S^1 \wedge f$$

$$S^2 \bigvee_{S^1 \wedge g} T S^2 \vee \cdots \vee S^2 \qquad \mathsf{Hopf}(T) \in \otimes^2 \mathbb{Z}^k \cong \mathbb{Z}^{k^2}$$

$$[0,1]_+ \wedge S^1 \xrightarrow{ad(T)} \Omega(S^2 \vee \cdots \vee S^2)$$

For
$$n=2$$
,

$$H_2([0,1]_+ \wedge S^1, \{0,1\}_+ \wedge S^1) \xrightarrow{ad(T)_*} H_2(\Omega(S^2 \vee \overset{k}{\dots} \vee S^2), S^1 \vee \overset{k}{\dots} \vee S^1)$$

For
$$n=2$$
,

$$H_2([0,1]_+ \wedge S^1, \{0,1\}_+ \wedge S^1) \xrightarrow{ad(T)_*} H_2(\Omega(S^2 \vee \overset{k}{\dots} \vee S^2), S^1 \vee \overset{k}{\dots} \vee S^1)$$

$$\cong \bigcap_{\mathbb{Z}}$$

For n=2,

$$H_2([0,1]_+ \land S^1, \{0,1\}_+ \land S^1) \xrightarrow{ad(T)_*} H_2(\Omega(S^2 \lor \overset{k}{\dots} \lor S^2), S^1 \lor \overset{k}{\dots} \lor S^1)$$

$$\cong \bigcap_{\mathbb{Z}} \text{Pontryagin} \cong \bigotimes^2 \mathbb{Z}^k$$

For
$$n=2$$
,

$$H_2([0,1]_+ \land S^1, \{0,1\}_+ \land S^1) \xrightarrow{ad(T)_*} H_2(\Omega(S^2 \lor \overset{k}{\dots} \lor S^2), S^1 \lor \overset{k}{\dots} \lor S^1)$$

$$\cong \bigcap_{\mathbb{Z}} \qquad \qquad \otimes^2 \mathbb{Z}^k$$

For
$$n=2$$
,

For
$$n=2$$
,

$$\mathsf{Hopf}(T) \in \otimes^2 \mathbb{Z}^k \cong \mathbb{Z}^{k^2}$$

For n > 2 we need the reduced tensor square $\hat{\otimes}^2 A = \frac{A \otimes A}{(a \otimes b + b \otimes a)}$,

$$\mathsf{Hopf}(T) \in \hat{\otimes}^2 \mathbb{Z}^k \cong \mathbb{Z}^{\frac{k(k-1)}{2}} \oplus (\mathbb{Z}/2)^k.$$

Two elements $[f, F] = [g, G] \in \pi_{n,1}(X)$ coincide iff

there exists a track T such that Hopf(T) = 0 and the pasting of the diagram is the identity track.

We still have to define $\langle \cdot, \cdot \rangle \colon \otimes^2 \pi_{n,0}(X)^{ab} \longrightarrow \pi_{n,1}(X)$.

$\overline{\pi_{n,*}}$ for spaces

Two elements $[f, F] = [g, G] \in \pi_{n,1}(X)$ coincide iff

there exists a track T such that Hopf(T) = 0 and the pasting of the diagram is the identity track.

We still have to define $\langle \cdot, \cdot \rangle \colon \otimes^2 \pi_{n,0}(X)^{ab} \longrightarrow \pi_{n,1}(X)$.

Two elements $[f, F] = [g, G] \in \pi_{n,1}(X)$ coincide iff

there exists a track T such that Hopf(T) = 0 and the pasting of the diagram is the identity track.

We still have to define $\langle \cdot, \cdot \rangle \colon \otimes^2 \pi_{n,0}(X)^{ab} \longrightarrow \pi_{n,1}(X)$.

$\overline{\pi_{n,*}}$ for spaces

Let $c \colon S^1 \to S^1 \vee S^1$ be a map such that $\pi_1(c) \colon \mathbb{Z} \to \langle i_1, i_1 \rangle \colon 1 \mapsto [i_2, i_1]$.

For n > 2, there exists a unique track C

with Hopf(C) = $i_1 \otimes i_2 \in \hat{\otimes}^2 \langle i_1, i_2 \rangle^{ab}$.

Given $e, e' : S^n \to X$ in $\pi_{n,0}(X)$, the element $\langle e, e' \rangle \in \pi_{n,1}(X)$ is

Let $c \colon \mathcal{S}^1 \to \mathcal{S}^1 \vee \mathcal{S}^1$ be a map such that $\pi_1(c) \colon \mathbb{Z} \to \langle i_1, i_1 \rangle \colon 1 \mapsto [i_2, i_1].$

For n > 2, there exists a unique track C

with Hopf(C) = $i_1 \otimes i_2 \in \hat{\otimes}^2 \langle i_1, i_2 \rangle^{ab}$.

Given $e, e' : S^n \to X$ in $\pi_{n,0}(X)$, the element $\langle e, e' \rangle \in \pi_{n,1}(X)$ is

$$S^{n} \xrightarrow{S^{n-1} \land c} S^{n} \lor S^{n} \overset{e,e'}{\subset} \overset{\vee}{\underset{S^{n} \to X}{\vee}} S^{n} \xrightarrow{ev} X$$

Let $c \colon \mathcal{S}^1 \to \mathcal{S}^1 \vee \mathcal{S}^1$ be a map such that $\pi_1(c) \colon \mathbb{Z} \to \langle i_1, i_1 \rangle \colon 1 \mapsto [i_2, i_1].$

For n > 2, there exists a unique track C

with Hopf(C) = $i_1 \otimes i_2 \in \hat{\otimes}^2 \langle i_1, i_2 \rangle^{ab}$.

Given $e, e' : S^n \to X$ in $\pi_{n,0}(X)$, the element $\langle e, e' \rangle \in \pi_{n,1}(X)$ is

$$S^{n} \xrightarrow{S^{n-1} \wedge c} S^{n} \vee S^{n} \overset{e,e'}{\subset} \overset{\vee}{\underset{S^{n} \to X}{\vee}} S^{n} \xrightarrow{ev} X$$

Example

For n > 2, $\pi_{n,*}(S^n \vee \stackrel{k}{\cdots} \vee S^n)$ is quasi-isomorphic to

An element $a \in \hat{\otimes}^2 \mathbb{Z}^k$ can be identified with

$$S^n \xrightarrow{S^{n-1} \land f} S^n \lor \overset{k}{\cdots} \lor S^n \overset{i_j}{\subset} \bigvee_{S^n \to X} S^n \xrightarrow{ev} X = S^n \lor \overset{k}{\cdots} \lor S^n$$

where F is any track with Hopf(F) = a.

Example

For n > 2, $\pi_{n,*}(S^n \vee \stackrel{k}{\cdots} \vee S^n)$ is quasi-isomorphic to

An element $a \in \hat{\otimes}^2 \mathbb{Z}^k$ can be identified with

$$S^n \xrightarrow{S^{n-1} \wedge f} S^n \vee \cdots \vee S^n \overset{i_j}{\subset} \bigvee_{S^n \to X} S^n \xrightarrow{ev} X = S^n \vee \cdots \vee S^n$$

where F is any track with Hopf(F) = a.

Categorical groups in brave new algebra

