1.	The Transition matrix A defined in lecture allows you to:	1/1 point
	O Compute the probability of going from a word to a part of speech tag.	
	O Compute the probability of going from a part of speech tag to a word.	
	Compute the probability of going from a part of speech tag to another part of speech tag.	
	O Compute the probability of going from a word to another word.	
	 ✓ Correct Correct. 	
2.	The Emission matrix B defined in lecture allows you to:	1/1 point
	O Compute the probability of going from a part of speech tag to another part of speech tag.	
	O Compute the probability of going from a word to another word.	
	Compute the probability of going from a part of speech tag to a word.	
	O Compute the probability of going from a word to a part of speech tag.	
3.	The column sum of the emission matrix has to be equal to 1.	1/1 point
	False.	
	O True.	
	 ✓ Correct It is the row sum that has to be 1. 	
4.	The row sum of the transition matrix has to be 1.	1/1 point
	O False, it has to be the column sum.	
	True	
	Correct.	

- Applying smoothing, for the majority of cases, allows us to decrease the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.
- CorrectCorrect
- Applying smoothing, for the majority of cases, allows us to increase the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.
- Applying smoothing is a bad idea and we should not use it.
- Applying smoothing, for the minority of cases, allows us to increase the probabilities in the transition and emission matrices and this allows us to have non zero probabilities.
- CorrectCorrect.
- 6. Given the following D matrix, what would be the sequence of tags for the words on the right?

1/1 point

D 1	/ ₅	W ₅	W ₄	W_3	W ₂	W ₁		
- 2	3 ←	3	2	3	1	0	t,	
t ₃ 0 2 4 1	3	3	1	4	2	0	t ₂	D =
	1	4	1	4	2	0	t ₃	
t ₄ 0 4 4 3	1	1	3	4	4	0	t ₄	

- \bigcirc t_3, t_4, t_2, t_2, t_1
- \bigcirc t_3, t_4, t_2, t_3, t_1
- $\bigcirc t_1, t_3, t_1, t_2, t_1$
- ✓ CorrectCorrect

	$\bigcirc t_3, t_4, t_2, t_2, t_1$	
	$\bigcirc t_3, t_4, t_2, t_3, t_1$	
	$\bigcirc \ t_1,t_3,t_1,t_2,t_1$	
7.	Previously, we have been multiplying the raw probabilities, but in reality we take the log of those probabilities. Why might that be the case?	1/1 point
	O Because the log probabilities force the numbers to be between 0 and 1 and hence, we want to take a probability.	
	O The log probabilities should not be used because they introduce noise to our original computed scores.	
	We take the log probabilities because probabilities are bounded between 0 and 1 and as a result, the numbers could be too small and will go towards 0.	
	O The log probabilities help us with the inference as they bound the numbers between -1 and 1.	
8.	Which of the following are useful for applications for parts of speech tagging?	1/1 point
	Speech recognition	
	○ Correct Correct.	
	✓ Coreference Resolution	
	☐ Sentiment Analysis	
	Named Entity Recognition	