Results

May 4, 2015

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

Ranking	1.27272727272727	4.409090909090909	1.909090909090909	4.863636363636363	2.8181818181818175	6.045454545454545	6.681818181818182
Algorithm	Eley2007	Burke2008	Pillay2010	Demeester 2012	Abdullah2013	Leite2014	$_{ m cMA}$

Friedman statistic considering reduction performance (distributed according to chi-square with 6 degrees of freedom: 60.09740259740255. P-value computed by Friedman Test: 1.0524647819920574E-10.

Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 6 and 60 degrees of freedom: 101.81518151815091.

P-value computed by Iman and Daveport Test: 1.4515555920007258E-29

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

Holm/Hochberg/Hommel	0.00833333333333333	0.01	0.0125	0.01666666666666666	0.025	0.05
d	4.3000049171181805E-9	2.2026255198632744E-7	9.684484941072518E-5	6.618828140013914E-4	0.09339067572681041	0.4896602630171414
$z = (R_0 - R_i)/SE$	5.872218877515938	5.181369597808181	3.8983637926366312	3.404900021416805	1.6777768221474103	0.6908492797077573
algorithm	$_{ m cMA}$	Leite2014	Demeester 2012	Burke2008	Abdullah2013	Pillay2010
.2	9	Ю	4	က	7	П

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

1		otio m tot otom Quantott / titlet to otom	
algorithm	$z = (R_0 - R_i)/SE$	p	Holm/Hochberg/Hommel
$_{ m cMA}$	5.872218877515938	4.3000049171181805E-9	0.01666666666666666
Leite2014	5.181369597808181	2.2026255198632744E-7	0.02
Demeester 2012	3.8983637926366312	9.684484941072518E-5	0.025
Burke2008	3.404900021416805	6.618828140013914E-4	0.0333333333333333
Abdullah2013	1.6777768221474103	0.09339067572681041	0.05
Pillay2010	0.6908492797077573	0.4896602630171414	0.1

Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Nemenyi's procedure rejects those hypotheses that have a p-value $\leq 0.002380952380952381$.

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.004166666666667 .

Table 4: Adjusted p-values

2 Leite2014 2.2026255198632744E-7 1.3215753119179646E-6 1.1013127599316373E-6 1.1013127599316373E-6 1.1013127599316373E-6 3 Demeester2012 9.684484941072518E-5 5.810690964643511E-4 3.8737939764290074E-4 3.8737939764290074E-4 3.8737939764290074E-4 3.87379395648442004174 0.001985648442004174	i	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
3 Demeester 2012 9.684484941072518E-5 5.81069064643511E-4 3.8737939764290074E-4 3.8737939764290074E-4 3.8737939764290074E-4 3.8737939764290074E-4 3.8737939764290074E-4 5.8737939764290074E-4 5.873799	1	cMA	4.3000049171181805E-9	2.5800029502709083E-8	2.5800029502709083E-8	2.5800029502709083E-8	2.58000295027090831
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Leite2014	2.2026255198632744E-7	1.3215753119179646E-6	1.1013127599316373E-6	1.1013127599316373E-6	1.10131275993163731
5 Abdullah2013 0.09339067572681041 0.5603440543608624 0.18678135145362082 0.18678135145362082 0.18678135145362	3	Demeester2012	9.684484941072518E-5	5.810690964643511E-4	3.8737939764290074E-4	3.8737939764290074E-4	3.87379397642900741
	4	Burke2008	6.618828140013914E-4	0.003971296884008348	0.001985648442004174	0.001985648442004174	0.0019856484420041
6 Pillay2010 0.4896602630171414 2.9379615781028483 0.4896602630171414 0.4896602630171414 0.4896602630171414	5	Abdullah2013	0.09339067572681041	0.5603440543608624	0.18678135145362082	0.18678135145362082	0.1867813514536208
	6	Pillay2010	0.4896602630171414	2.9379615781028483	0.4896602630171414	0.4896602630171414	0.489660263017141

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

		10010 0. 1101111	DIRECT LUDIO TOT C	~ 0.00	
i	algorithms	$z = (R_0 - R_i)/SE$	p	Holm	Shaffer
21	Eley2007 vs. cMA	5.872218877515938	4.3000049171181805E-9	0.002380952380952381	0.002380952380952381
20	Eley2007 vs. Leite2014	5.181369597808181	2.2026255198632744E-7	0.0025	0.003333333333333333
19	Pillay2010 vs. cMA	5.181369597808181	2.2026255198632744E-7	0.002631578947368421	0.003333333333333333
18	Pillay2010 vs. Leite2014	4.4905203181004225	7.104939683990589E-6	0.00277777777777778	0.003333333333333333
17	Abdullah2013 vs. cMA	4.194442055368528	2.735440640775932E-5	0.0029411764705882353	0.003333333333333333
16	Eley2007 vs. Demeester2012	3.8983637926366312	9.684484941072518E-5	0.003125	0.003333333333333333
15	Abdullah2013 vs. Leite2014	3.50359277566077	4.590267265743911E-4	0.0033333333333333335	0.003333333333333333
14	Eley2007 vs. Burke2008	3.404900021416805	6.618828140013914E-4	0.0035714285714285718	0.004545454545454546
13	Pillay2010 vs. Demeester2012	3.2075145129288734	0.0013388730496827113	0.0038461538461538464	0.004545454545454546
12	Burke2008 vs. Pillay2010	2.7140507417090474	0.006646598468138471	0.0041666666666666667	0.004545454545454546
11	Burke2008 vs. cMA	2.4673188560991335	0.013612907831869468	0.004545454545454546	0.004545454545454546
10	Demeester2012 vs. Abdullah2013	2.220586970489221	0.0263789491129314	0.005	0.005
9	Demeester2012 vs. cMA	1.9738550848793073	0.04839822318129835	0.00555555555555556	0.00555555555555556
8	Burke2008 vs. Leite2014	1.7764695763913756	0.07565555213290082	0.00625	0.00625
7	Burke2008 vs. Abdullah2013	1.7271231992693945	0.08414553996842593	0.0071428571428571435	0.0071428571428571435
6	Eley2007 vs. Abdullah2013	1.6777768221474103	0.09339067572681041	0.008333333333333333	0.008333333333333333
5	Demeester2012 vs. Leite2014	1.2830058051715494	0.19949004226970665	0.01	0.01
4	Pillay2010 vs. Abdullah2013	0.9869275424396529	0.3236781609070167	0.0125	0.0125
3	Leite2014 vs. cMA	0.6908492797077578	0.48966026301714116	0.01666666666666666	0.01666666666666666
2	Eley2007 vs. Pillay2010	0.6908492797077573	0.4896602630171414	0.025	0.025
1	Burke2008 vs. Demeester2012	0.4934637712198263	0.6216849323610449	0.05	0.05

Shaffer's procedure rejects those hypotheses that have a p-value $\leq 0.002380952380952381$. Bergmann's procedure rejects these hypotheses:

- \bullet Eley2007 vs. Burke2008
- \bullet Eley 2007 vs. Demeester 2012
- \bullet Eley2007 vs. Leite2014
- \bullet Eley2007 vs. cMA
- \bullet Burke 2008 vs. Pillay 2010
- Pillay2010 vs. Demeester2012
- Pillay2010 vs. Leite2014
 - ı mayzoro vs. Lertezor

• Pillay2010 vs. cMA

- Abdullah2013 vs. Leite2014
- Abdullah2013 vs. cMA

Nemenyi's procedure rejects those hypotheses that have a p-value $\leq 0.004761904761904762$. Holm's procedure rejects those hypotheses that have a p-value ≤ 0.0090909099992 . Shaffer's procedure rejects those hypotheses that have a p-value $\leq 0.004761904761904762$. Bergmann's procedure rejects these hypotheses:

- \bullet Eley2007 vs. Burke2008
- \bullet Eley2007 vs. Demeester2012
- Eley2007 vs. Leite2014

Table 6: Holm / Shaffer Table for $\alpha = 0.10$

		_			
.2	algorithms	$z = (R_0 - R_i)/SE$	d	Holm	Shaffer
21	Eley2007 vs. cMA	5.872218877515938	4.3000049171181805E-9	0.004761904761904762	0.004761904761904762
20	Eley2007 vs. Leite2014	5.181369597808181	2.2026255198632744E-7	0.005	0.00666666666666667
19	Pillay 2010 vs. cMA	5.181369597808181	2.2026255198632744E-7	0.005263157894736842	0.00666666666666667
18	Pillay2010 vs. Leite2014	4.4905203181004225	7.104939683990589E-6	0.005555555555555556	0.00666666666666667
17	Abdullah2013 vs. cMA	4.194442055368528	2.735440640775932E-5	0.0058823529411764705	0.00666666666666667
16	Eley 2007 vs. Demeester 2012	3.8983637926366312	9.684484941072518E-5	0.00625	0.00666666666666667
15	Abdullah2013 vs. Leite2014	3.50359277566077	4.590267265743911E-4	0.006666666666666667	0.006666666666666667
14	Eley2007 vs. Burke2008	3.404900021416805	6.618828140013914E-4	0.0071428571428571435	0.009090909090909092
13	Pillay2010 vs. Demeester2012	3.2075145129288734	0.0013388730496827113	0.007692307692307693	0.009090909090909092
12	Burke2008 vs. Pillay2010	2.7140507417090474	0.006646598468138471	0.00833333333333333	0.009090909090909092
11	Burke2008 vs. cMA	2.4673188560991335	0.013612907831869468	0.009090909090909092	0.009090909090909092
10	Demeester 2012 vs. Abdullah 2013	2.220586970489221	0.0263789491129314	0.01	0.01
6	Demeester 2012 vs. cMA	1.9738550848793073	0.04839822318129835	0.0111111111111111	0.01111111111111111
œ	Burke 2008 vs. Leite 2014	1.7764695763913756	0.07565555213290082	0.0125	0.0125
7	Burke2008 vs. Abdullah2013	1.7271231992693945	0.08414553996842593	0.014285714285714287	0.014285714285714287
9	Eley2007 vs. Abdullah2013	1.6777768221474103	0.09339067572681041	0.01666666666666666	0.01666666666666666
Ю	Demeester 2012 vs. Leite 2014	1.2830058051715494	0.19949004226970665	0.02	0.02
4	Pillay2010 vs. Abdullah2013	0.9869275424396529	0.3236781609070167	0.025	0.025
က	Leite2014 vs. cMA	0.6908492797077578	0.48966026301714116	0.0333333333333333	0.033333333333333
7	Eley2007 vs. Pillay2010	0.6908492797077573	0.4896602630171414	0.05	0.05
1	Burke2008 vs. Demeester2012	0.4934637712198263	0.6216849323610449	0.1	0.1

 \bullet Eley2007 vs. cMA

• Burke2008 vs. Pillay2010

 \bullet Pillay 2010 vs. Demeester 2012

• Pillay2010 vs. Leite2014

• Pillay2010 vs. cMA

• Abdullah2013 vs. Leite2014

• Abdullah2013 vs. cMA

	pShaf	9.030010325948179E-8	3.3039382797949115E-6	3.3039382797949115E-6	1.0657409525985884E-4	4.103160961163898E-4	0.0014526727411608778	0.0068854008986158665	0.007280710954015305	0.014727603546509824	0.07311258314952318	0.14974198615056414	0.263789491129314	0.4355840086316851	0.5295888649303058	0.5890187797789815	0.5890187797789815	0.9974502113485333	1.2947126436280667	1.4689807890514235	1.4689807890514235	1.4689807890514235	
p-values	p_{Holm}	9.030010325948179E-8	4.405251039726549E-6	4.405251039726549E-6	1.278889143118306E-4	4.6502490893190844E-4	0.001549517590571603	0.0068854008986158665	0.00926635939601948	0.017405349645875246	0.07975918161766166	0.14974198615056414	0.263789491129314	0.4355840086316851	0.6052444170632065	0.6052444170632065	0.6052444170632065	0.9974502113485333	1.2947126436280667	1.4689807890514235	1.4689807890514235	1.4689807890514235	
Table 7: Adjusted p-values	pNeme	9.030010325948179E-8	4.625513591712876E-6	4.625513591712876E-6	1.4920373336380237E-4	5.744425345629458E-4	0.0020337418376252287	0.009639561258062214	0.013899539094029219	0.028116334043336938	0.13957856783090788	0.2858710644692588	0.5539579313715594	1.0163626868072653	1.588766594790917	1.7670563393369445	1.9612041902630186	4.18929088766384	6.7972413790473505	10.282865523359964	10.28286552335997	13.055383579581944	
	unadjusted p	4.3000049171181805E-9	2.2026255198632744E-7	2.2026255198632744E-7	7.104939683990589E-6	2.735440640775932E-5	9.684484941072518E-5	4.590267265743911E-4	6.618828140013914E-4	0.0013388730496827113	0.006646598468138471	0.013612907831869468	0.0263789491129314	0.04839822318129835	0.0756555213290082	0.08414553996842593	0.09339067572681041	0.19949004226970665	0.3236781609070167	0.48966026301714116	0.4896602630171414	0.6216849323610449	
	hypothesis	Eley2007 vs .cMA	Eley2007 vs .Leite2014	Pillay2010 vs .cMA	Pillay 2010 vs . Leite 2014	Abdullah2013 vs.cMA	Eley2007 vs .Demeester2012	Abdullah2013 vs .Leite2014	Eley2007 vs .Burke2008	Pillay 2010 vs . Demeester 2012	Burke2008 vs .Pillay2010	Burke 2008 vs.cMA	Demeester 2012 vs . Abdullah 2013	Demeester 2012 vs.cMA	Burke2008 vs .Leite2014	Burke2008 vs .Abdullah2013	Eley2007 vs .Abdullah2013	Demeester 2012 vs . Leite 2014	Pillay2010 vs .Abdullah2013	Leite2014 vs .cMA	Eley2007 vs .Pillay2010	Burke2008 vs .Demeester2012	
		L	7	က	4	10	9	-1	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	

 $\begin{array}{c} PB\,erg\\ 9.03001032584179E-8\\ 3.3033828277949115\,E-6\\ 3.00338282779749115\,E-6\\ 7.1049368399059E-5\\ 3.0089470485152E-4\\ 0.00106529334517977\\ 0.00132131870860207376\\ 0.005969453280125228\\ 0.00937211347778878\\ 0.03887595080839087\\ 0.1225161704862521\\ 0.13189474556465\\ 0.028875950839087901\\ 0.4539333127974049\\ 0.46895337863405206\\ 0.9710348272105\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689807890514235\\ 1.4689877890514235\\ 1.468980789051$