

Projektowanie Systemów Informatycznych

Rok akademicki 2015/2016	TEMAT: Rozwiązanie układu równań metodą iteracji prostej (mnożenie macierzy przez wektor) A·x=x'		
Kierunek studiów:	Informatyka		
Semestr:	V	Wykonawca:	Dawid Gawiński Oskar Gruszczyński
Data oddania:	14. I. 2016	Podpis:	

1. Wybór wariantu

Na podstawie numeru indeksu 8427 określono numer wariantu zadania AL.

AL został wyznaczony według wzoru

$$AL = 1 + (IND) \mod 20$$

gdzie:

IND - liczba składająca się z dwóch ostatnich cyfr numeru indeksu.

Ostatecznie:

$$AL = 1 + (27) \mod 20 = 8$$

ZADANIE:

Rozwiązanie układu równań metodą iteracji prostej (mnożenie macierzy przez wektor) $\mathbf{A} \cdot \mathbf{x} = \mathbf{x}'$

2. Program realizujący zadanie

Korzystając z środowiska NeatBeans 8.0 został opracowany program realizujący powyższe zadanie:

Rys.1. Wygenerowane losowo dane.

Rys.2. Okno aplikacji wraz z danymi wyjściowymi.

Poniżej przedstawiono 2 fragmenty kodu źródłowego, których zadaniem jest:

KOD 1

generowanie losowo danych do obliczenia

KOD 2

- wyznaczenie macierzy D potrzebnej do obliczeń
- obliczenia kolejnych wartości zmiennej x_n
- wyznaczenie wierzchołków oraz listy łuków

OBJAŚNIENIA

```
i - wiersze
j - kolumny
rn- zmienna pomocnicza
N - rozmiar macierzy kwadratowej
l - przechowuje informacje o bieżącym wierzchołku
tabb[]-tablica, w której przechowujemy wartości wyrazów wolnych
taba[]-tablica, w której przechowujemy wartości w macierzy A
determ-zmienna odpowiedzialna za wyznacznik macierzy A
tabd[]-tablica, na której wykonujemy działania
tabx[]-tablica, która przechowuje obliczone wartości X`
```

KOD 1

```
else
{
         jTextArea2.append(taba[x][y]+ " ");
}

jTextArea2.append("\n");
jTextArea1.append("\n");
}
```

KOD 2

```
if (determ(taba,size)<1)</pre>
             for (int i=0;i<size;i++)</pre>
                 for (int j=0; j < size; j++)
                     if (i==j)
                          tabd[i][j]=taba[i][j]-1;
                     else
                          tabd[i][j]=taba[i][j];
                     if (tabd[i][j]<10)</pre>
                          jTextArea3.append(" "+tabd[i][j]+ " ");
                     else
                          jTextArea3.append(tabd[i][j]+ " ");
                 jTextArea3.append("\n");
            for(int i=0;i<size;i++)</pre>
                 tabx[i]=tabb[i];
            int l=0;
            for (int i=0;i<size;i++)</pre>
                 for (int j=0;j<size;j++)</pre>
                     tabb[i]=tabb[i]+(tabd[i][j]*tabx[j]);
                      1=1+1;
                      if(1<10)
                           jt w.append(" "+1 +": "+(i+1)+" "+(j+1)+"\n");
                      else
                          jt_w.append(l +": "+(i+1)+" "+(j+1)+" \n");
      for(int j=0;j<size;j++)</pre>
                 jTextArea7.append(+tabb[j]+"\n");
        }
        else
    jTextArea3.append("Wyznacznik = "+ determ(taba,size) + "\ndalsze
działania nie mozliwe");
```

3. Graf zależności informacyjnych

Opracowany program na podstawie danych wejściowych (N) generuje tabele wierzchołków i łuków grafu algorytmu.

Tab.1. Lista wierzchołków

I GD. II. LISCO	WIEIZCHOIK	.0 **			
Lp	i	j	A (i , j)	B(i)	X(i)
1	1	1	(1,1)	1	1
2	1	2	(1,2)	1	1
3	1	3	(1,3)	1	1
4	1	4	(1,4)	1	1
5	2	1	(2,1)	2	2
6	2	2	(2,2)	2	2
7	2	3	(2,3)	2	2
8	2	4	(2,4)	2	2
9	3	1	(3,1)	3	3
10	3	2	(3,2)	3	3
11	3	3	(3,3)	3	3
12	3	4	(3,4)	3	3
13	4	1	(4,1)	4	4
14	4	2	(4,2)	4	4
15	4	3	(4,3)	4	4
16	4	4	(4,4)	4	4

Tab.2. Lista łuków

Lp	Początek A(i , j)	Koniec A(i,j)
2	(1,1) (1,1) (1,2) (1,2) (1,3)	
2	(1,1)	(2,1)
3	(1,2)	(2,2)
4	(1,2)	(1,2) (2,1) (2,2) (1,3) (2,3) (1,4) (2,4) (3,1) (2,2) (3,2) (2,3) (2,3) (2,3) (2,4)
5	(1,3)	(2,3)
6 7	(1,3)	(1,4)
7	(1,4)	(2,4)
8	(2,1)	(3,1)
9	(2,1)	(2,2)
10	(2,2)	(3,2)
11	(2,2)	(2,3)
12	(2,3)	(3,3)
13	(2,1) (2,1) (2,1) (2,2) (2,2) (2,3) (2,3)	(2,4)
14	(2,4)	(3,4)
15	(3,1)	(4,1)
16	(3,1)	(3,2)
17	(3,2) (3,2) (3,3)	(4,2)
18	(3,2)	(3,3)
19	(3,3)	(4,3)
20	(3,3)	(3,4)
21	(3,3)	(4,4)
22	(4,1)	(4,2)
23	(4,2)	(4,3)
24	(4,3)	(4,4)

Na podstawie wyżej wygenerowanych tabel, został utworzony graf:

4. Macierz zależności informacyjnych

Na podstawie grafu wyznaczono macierz zależności informacyjnych $D = \begin{bmatrix} d_1 d_2 \end{bmatrix}$,

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ ,gdzie } d_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ a } d_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ .}$$

5. Odwzorowanie przestrzenno – czasowe

Analizując graf algorytmu możliwe jest wyznaczenie takich parametrów jak:

• liczba wymiarów przestrzeni struktury urządzenia

$$m=1$$

• liczba wymiarów przestrzeni grafu

$$n=2$$
,

parametry te decydują o rozmiarze macierzy F (m+1,n). Na podstawie macierzy D oraz wzorów:

$$F_S \cdot d_i = -1 \vee 0 \vee 1,$$

$$F_T \cdot d_i = 1$$
,

Gdy w naszym przypadku 'i' równe jest 2, otrzymujemy zatem układy równań:

$$F_S \cdot d_1 = -1 \vee 0 \vee 1$$

$$F_T \cdot d_1 = 1$$

$$F_s \cdot d_2 = -1 \lor 0 \lor 1$$

$$F_T \cdot d_2 = 1$$

Wynikiem układów równań są macierze F czyli liniowe odwzorowanie przestrzenno – czasowe

$$F = \begin{bmatrix} F_S \\ F_T \end{bmatrix}.$$

Dla rozważanego przeze nas przypadku istnieje dziewięć możliwych macierzy F, jednak muszą one spełniać warunek

$$\det F \neq 0$$

Po sprawdzeniu zapisanej wyżej nierówności odrzucono trzy spośród dziewięciu możliwych rozwiązań układów równań. W ten sposób określono liczbę struktur realizujących dany algorytm, w rozważanym przypadku liczba ta to '6'.

$$F_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad F_{3} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad F_{5} = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

$$F_{6} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}, \quad F_{7} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad F_{8} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

6. Liczba elementów przetwarzających oraz taktów

Na podstawie wzoru:

$$F_s \cdot K_i$$
,

wyznaczono liczbę elementów przetwarzających dla każdej z struktur, a na podstawie wzoru:

$$F_t \cdot K_i$$

wyznaczono licząc nie powtarzające się wyniki ilość taktów, czyli w jakim czasie zostanie zrealizowana poszczególna struktura

Tab.3. Liczba elementów przetwarzających

Struktura	Liczba elementów przetwarzających	Liczba taktów
F2	4	7
F3	4	7
F5	4	7
F6	4	7
F7	7	7
F8	7	7

7. Połączenia pomiędzy elementami przetwarzającymi

Na podstawie wzoru:

$$F_{s} \cdot d_{i}$$
,

określamy liczbę, długość i kierunek kanału, czyli połączeń pomiędzy elementami przetwarzającymi.

Tab.4. Połączenia pomiędzy elementami przetwarzającymi

Struktura	Liczba kanałów łączących	Długość i kierunek kanału (0-brak)
F2	1	1,0
F3	1	0,1
F5	1	-1 , 0
F6	1	0,-1
F7	2	-1 , 1
F8	2	1,-1

10. Współczynnik obciążenia

Jednym z ważniejszych parametrów opisujących układ przetwarzający jest współczynnik obciążenia. Wyznacza się go w oparciu o wzór :

$$\Delta = \frac{LiczbaK}{T \cdot LiczbaEP}$$

LiczbaK – liczba wierzchołków grafu,

LiczbaEP – liczba elementów przetwarzających układu,

T – czas realizacji algorytmu

Tab.5. Obciażenie

lab.5. Obciążenie	
Struktura	Δ
F2	0,57
F3	0,57
F5	0,57
F6	0,57
F7	0,32
F8	0,32

11. Analiza wyników i wybór układu przetwarzającego

Wcześniejszy graf i wyliczone wartości współczynników obciążenia układów przetwarzających pozwalają wybrać strukturę najbardziej optymalną. Liczba taktów wykonania algorytmu jest stała dla wszystkich architektur, więc szybkość nie będzie cechą decydującą o wyborze. Suma połączeń pomiędzy elementami układów jest różna, więc jest to jedna cecha decydująca o wybraniu optymalnej struktury oraz liczba magistrali również będzie podstawowym kryterium wyboru.

Najmniejszą liczbą elementów przetwarzających cechuje się struktura F2,F3,F5 i F6. Wszystkie elementy przetwarzające wykonują jednakowe zadania. Wydaje się, iż optymalną architekturą będzie realizacja algorytmu za pomocą jednej ze wyżej wymienionych struktur, ponieważ te układy posiadają najlepszy współczynnik obciążenia procesorów, a także wymagają najmniejszej ilości procesorów oraz mniejszej ilości prowadzonych kanałów.

