Université d'Aix-Marseille, Licence SV, 1^{re} année, 2^e semestre

Mathématiques : devoir 1

Hugo Raguet

avril 2016

Une marque de gâteaux offre en cadeau, avec l'achat de chaque paquet de cette marque, un aimant à coller sur le réfrigérateur. Il y a $M \in \mathbb{N}^*$ aimants différents, et on suppose que pour chaque paquet acheté, l'aimant offert peut être chacun des M aimants, de façon équiprobable et indépendante des autres paquets achetés.

On souhaiterait connaître le nombre moyen de paquets à acheter pour avoir toute la collection, c'est-à-dire pour avoir M aimants différents. Pour tout $n \in \mathbb{N}$, on définit X_n la variable aléatoire qui compte le nombre exact d'aimants différents qu'on a après n achats, à valeur dans $\{0, \ldots, M\}$.

- 1. Soit $n \in \mathbb{N}^*$, et $m \in \{0, ..., M-1\}$. Si on a exactement $X_{n-1} = m$ aimants différents après n-1 achats, quelles sont les différentes valeurs possibles pour X_n , et quelles sont leurs probabilités respectives?
 - À l'achat n, soit on tire un des m aimants qu'on a déjà, alors on a toujours m aimants différents. Avec l'hypothèse d'équiprobabilité, $\mathbb{P}(X_n=m\mid X_{n-1}=m)=\frac{m}{M}$. Sinon, on tire un des M-m aimants qu'on n'a pas encore, alors on a m+1 aimants différents, avec $\mathbb{P}(X_n=m+1\mid X_{n-1}=m)=1-\frac{m}{M}$.
- 2. Soit $m \in \{0, ..., M-1\}$. Dans un premier temps, on suppose qu'on commence avec exactement $X_0 = m$ aimants différents, et on s'intéresse au nombre d'achats nécessaires pour passer de m à m+1 aimants différents; soit $N_{m\to m+1}$ la variable aléatoire correspondante, à valeur dans \mathbb{N}^* .
 - (a) Donner, dans cette expérience, la loi de $N_{m\to m+1}$. Soit $n\in\mathbb{N}^*$. Obtenir m+1 aimants différents après exactement n achats est équivalent à n'avoir toujours que m aimants différents après n-1 achats et tirer un nouvel aimant différent à l'achat n. On en déduit

$$\mathbb{P}(N_{m \to m+1} = n) = \mathbb{P}(\{X_n = m+1\} \cap \{X_{n-1} = m\})$$

$$= \mathbb{P}(X_n = m+1 \mid X_{n-1} = m)\mathbb{P}(X_{n-1} = m)$$

$$= \left(1 - \frac{m}{M}\right) \left(\frac{m}{M}\right)^{n-1}.$$

(b) Le nombre moyen d'achats nécessaires pour passer de m à m+1 aimants différents est $\mathbb{E}(N_{m\to m+1})=\lim_{N\to+\infty}\sum_{n=0}^{N}n\mathbb{P}(N_{m\to m+1}=n)$. En admettant que pour tout $x\in]-1,1[$, $\lim_{N\to+\infty}\sum_{n=0}^{N}nx^{n-1}=\frac{1}{(1-x)^2},$ montrer que $\mathbb{E}(N_{m\to m+1})=\frac{M}{M-m}$.

Pour tout $N \in \mathbb{N}^*$, $\sum_{n=0}^N n \mathbb{P}(N_{m \to m+1} = n) = \sum_{n=0}^N n \left(1 - \frac{m}{M}\right) \left(\frac{m}{M}\right)^{n-1} = \left(1 - \frac{m}{M}\right) \sum_{n=0}^N n \left(\frac{m}{M}\right)^{n-1}$. En utilisant la formule donnée avec $x = \frac{m}{M} < 1$,

$$\mathbb{E}(N_{m \to m+1}) = \left(1 - \frac{m}{M}\right) \lim_{N \to +\infty} \sum_{n=0}^{N} n \left(\frac{m}{M}\right)^{n-1}$$
$$= \left(1 - \frac{m}{M}\right) \frac{1}{\left(1 - \frac{m}{M}\right)^2} = \frac{1}{1 - \frac{m}{M}} = \frac{M}{M - m} .$$

3. On suppose maintenant que l'on commence avec aucun aimant, $X_0=0$, et on note N la variable aléatoire qui compte le nombre d'achats nécessaires pour avoir toute la collection. En admettant que $N=N_0+\cdots+N_{M-1}$, où pour tout $m\in\{0,\ldots,M-1\}$, N_m est une variable aléatoire de même loi que $N_{m\to m+1}$ définie en 2, exprimer le nombre moyen d'achats nécessaires pour avoir toute la collection. Donner une valeur approchée pour M=12.

Par linéarité de l'espérance, $\mathbb{E}(N) = \sum_{m=0}^{M-1} \mathbb{E}(N_m) = \sum_{m=0}^{M-1} \frac{M}{M-m} = M \sum_{m=1}^{M} \frac{1}{m}$. Avec M=12, on trouve $\mathbb{E}(N) \approx 37$.

Bon courage pour finir les Asie'Magnets...