K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC Biasing Circuit

Numerical 1: Determine V_C and V_B for the network shown in figure 1. Given $\beta = 120$.

Figure 1: Circuit 1

Solution: The above circuit is a voltage divider bias configuration

DC equivalent circuit: For DC analysis, f = 0 so $X_C = \frac{1}{2\pi fc} = \infty$. Thus capacitor act as open circuit.

Figure 2: Circuit with capacitor open circuited

Determining Thevenin equivalent circuit:-

First, we find R_{TH} :-

$$R_{TH}=R_1 \mid\mid R_2=8.2k\Omega \mid\mid 2.2k\Omega=1.73k\Omega$$

Finding out V_{TH} :-

$$V_{TH} = \left(\frac{V_{CC} + V_{EE}}{R_1 + R_2}\right) R_2 - V_{EE}$$
 (where $V_{EE} = 20V$)

$$V_{TH} = \left(\frac{20+20}{8.2k+2.2k}\right) 2.2k - 20 = \frac{40}{10.4k} \times 2.2k - 20 = -11.53846V$$

Thevenin equivalent circuit:-

Figure 3: Thevenin Equivalent circuit

Applying KVL to the emitter - base loop:

$$-V_{TH} - I_B R_{TH} - V_{BE} - I_E R_E + V_{EE} = 0$$

We know, $I_E = (\beta + 1)I_B$

$$V_{EE} - V_{TH} - I_B R_{TH} - V_{BE} - (1 + \beta) I_B R_E = 0$$

$$I_B = \frac{V_{EE} - V_{TH} - V_{BE}}{R_{TH} + (1+\beta)R_E} = \frac{7.77}{1.73k + (121)(1.8k)} = 35.07\mu\mathbf{A}$$

$$I_C = \beta I_B = 120 \times 35.07 \times 10^{-6} = 4.2 \text{mA}$$

$$I_E = (1 + \beta)I_B = 121 \times 35.07 \times 10^{-6} = 4.24 \text{mA}$$

$$V_C = V_{CC} - I_C R_C = 20 - 4.2 \times 10^{-3} (2.7 \times 10^3) = 8.6 \mathbf{V}$$

 $V_B = -V_{TH} - I_B R_{TH} = -11.53 - (35.07 \times 10^{-6})(1.73 \times 10^{-3}) = -11.59 \mathbf{V}$

Above circuit is simulated in LTspice and the result is as follows:

Figure 4: Circuit schematic: Results

Parameter	Theoretical	Simulated
I_B	$35.07\mu A$	$34.87 \mu A$
I_C	4.2 mA	$4.182~\mathrm{mA}$
V_B	-11.59V	-11.598V
V_C	8.6 V	8.7 V

Table 1: Numerical 1

Numerical 2: Determine V_{CE} for the voltage divider bias configuration, given in figure 5.

Figure 5: circuit 2

Solution: The above circuit is a voltage divider bias configuration DC equivalent circuit: For DC analysis, f = 0 so $X_C = \frac{1}{2\pi fc} = \infty$. Thus capacitor act as open circuit

Figure 6: Circuit after capacitors are open circuited

Determining Thevenin equivalent circuit:

Figure 7: Thevenin Equivalent circuit

Where,
$$V_{TH} = \frac{V_{CC} \times R_2}{R_1 + R_2} = \frac{-18 \times 10k}{10k + 47k} = -3.157V$$

And
$$R_{TH} = R_1 \mid \mid R_2 = 8.2456 \text{k}\Omega$$

Finding V_E , I_E and V_{CE} :-

Applying Kirchoff's law,

$$V_B - V_E = V_{BE}$$

$$V_E = V_B - V_{BE}$$

Here
$$V_B = V_{TH}$$

$$V_E = -3.157 - 0.7 = -2.457 \mathbf{V}$$

$$I_E = rac{V_E}{R_E} = rac{2.457}{1.1k} = \mathbf{2.2336mA}$$

Applying KVL to collector - emitter loop:-

$$I_E R_E + V_{CE} - I_C R_C + V_{CC} = 0$$

$$I_E \approx I_C$$

$$V_{CE} = -V_{CC} + I_C(R_C + R_E) = -18 + (2.24 \times 10^{-3})(2.4k + 1.1k) = -18 + 7.84 = -10.16V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 8: Circuit schematic results

Comparison between Theoretical and practical value:-

Parameter	Theoretical	Simulated
V_E	$-2.457 \mathrm{\ V}$	-2.2268 V
V_{CE}	-10.16 V	-10.95 V
I_E	$2.2336~\mathrm{mA}$	$2.024~\mathrm{mA}$

Table 2: Numerical 2

Numerical 3: For the circuit shown below determine I_C , V_C , V_E and V_{CE} . Given $\beta = 100$

Figure 9: Circuit 3

Solution: The given circuit is a collector to base bias circuit employing npn bjt transistor.

DC equivalent circuit:

From figure 9,

Current passing through R_C is $(I_C + I_B)$

Current passing through R_B is I_B

Current passing through R_E is $(I_C + I_B)$

DC analysis:

Applying KVL to the input loop.

$$V_{CC} - (I_B + I_C)R_C - I_BR_B - V_{BE} - (I_B + I_C)R_E = 0$$

But
$$I_C = \beta I_B$$

$$V_{CC} - (I_B + \beta I_B)R_C - I_B R_B - V_{BE} - (I_B + \beta I_B)R_E = 0$$

$$V_{CC} - I_B(1+\beta)R_C - I_BR_B - V_{BE} - I_B(1+\beta)R_E = 0$$

$$V_{CC} - V_{BE} = I_B[(1+\beta)R_C + R_B + R_E(1+\beta)] = I_B[R_B + (1+\beta)(R_E + R_C)]$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)(R_C + R_E)} = \frac{30 - 0.7}{690 \times 10^3 + (1+100)(6.2+1.5)10^3} = \frac{29.3}{(690 + 777.7) \times 10^3}$$

$$I_B = 19.96 \mu A$$

But
$$I_C = \beta I_B = 100 \times 19.96 \times 10^{-6} = 1.996 \text{mA}$$

Finding V_C :

Applying KVL to collector - emitter loop.

 $V_{CE} = V_C - V_E = 17.50 - 3.023 = 14.476V$

$$V_C = V_{CC} - (I_B + I_C)R_C = 30 - (19.96 \times 10^{-6} + 1.996 \times 10^{-3})(6.2 \times 10^3)$$

$$V_C = 30 - 12.498 = \mathbf{17.50V}$$

$$V_E = (I_B + I_C)R_E = (19.96 \times 10^{-6} + 1.996 \times 10^{-3})(1.5 \times 10^3)\mathbf{3.023V}$$

SIMULATED RESULTS

Above circuit is simulated in LTspice and the result is as follows:

Figure 10: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_B	$19.90 \mu A$	$19.96 \mu A$
I_C	1.990 m A	1.996 mA
V_C	17.538V	117.5V
V_E	3.0149 V	3.023 V
V_{CE}	14.523 V	14.476 V

Table 3: Numerical 3

Numerical 4: Calculate DC collector current I_C and voltage V_C for the bias circuit shown below. Given $\beta = 75$

Figure 11: Circuit 4

Solution: The given circuit is a collector to base bias circuit employing npn bjt transistor.

DC equivalent circuit:

From figure 11,

Current passing through R_C is $(I_C + I_B)$

Current passing through R_B is I_B

Current passing through R_E is $(I_C + I_B)$

DC analysis:-

Applying KVL to the input loop.

$$V_{CC} - (I_B + I_C)R_C - I_B R_B - V_{BE} - (I_B + I_C)R_E = 0$$

But
$$I_C = \beta I_B$$

$$V_{CC} - (I_B + \beta I_B)R_C - I_B R_B - V_{BE} - (I_B + \beta I_B)R_E = 0$$

$$V_{CC} - I_B(1+\beta)R_C - I_BR_B - V_{BE} - I_B(1+\beta)R_E = 0$$

$$V_{CC} - V_{BE} = I_B[(1+\beta)R_C + R_B + R_E(1+\beta)] = I_B[R_B + (1+\beta)(R_E + R_C)]$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)(R_C + R_E)} = \frac{18 - 0.7}{600 \times 10^3 + (1+75)(2.4 + 0.56)10^3} = \frac{17.3}{824.96 \times 10^3}$$

$$I_B = 20.97 \mu A$$

But
$$I_C = \beta I_B = 75 \times 20.97 \times 10^{-6} = 1.57 \text{mA}$$

Finding V_{CE} :

$$V_{CE} = V_{CC} - (I_B + I_C)(R_C + R_E) = 18 - (20.9 \times 10^{-6} + 1.57 \times 10^{-3})(2.4 + 0.56)10^3$$

 $V_{CE} = 18 - 4.709 = \mathbf{13.290V}$

SIMULATED RESULTS

Above circuit is simulated in LTspice and the result is as follows:

Figure 12: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_B	$20.87\mu A$	$20.97 \mu A$
I_C	1.565 mA	1.57 mA
V_{CE}	13.30 V	13.29 V

Table 4: Numerical 4

Numerical 5: For the network given below determine: I_B , I_C , V_E , V_{CE} . Given $\beta = 130$

Figure 13: Circuit 5

Solution: The given circuit is a voltage divider bias configuration.

DC equivalent circuit:

Refer to figure 13 for DC equivalent circuit.

Finding Thevenin's equivalent circuit:

Figure 14: Thevenin's equivalent circuit

Where,
$$R_{TH} = R_1 \parallel R_2 = 510k \parallel 510k = 255k\Omega$$

$$V_{TH} = \left(\frac{V_{CC} - V_{EE}}{R_1 + R_2}\right) R_2 + V_{EE}$$
 (here, $V_{EE} = -18V$)

$$V_{TH} = \left(\frac{18+18}{510k+510k}\right)510k - 18 = 18 - 18 = \mathbf{0}$$

Applying KVL to base- emitter loop:

$$V_{TH} - I_B R_{TH} - V_{BE} - I_E R_E - V_{EE} = 0$$

But
$$I_E = (\beta + 1)I_B$$
 and $V_{TH} = 0$

$$-I_B R_{TH} - V_{BE} - (1+\beta)R_E I_B - V_{EE} = 0$$

$$V_{BE} + V_{EE} = -I_B[R_{TH}(1+\beta)R_E]$$

$$I_B = -\frac{[V_{BE} + V_{EE}]}{R_{TH} + (1+\beta)R_E} = -\frac{-18 + .07}{[255k + (131)7.5k]} = \frac{17.3}{1237.5 \times 10^3} = \mathbf{13.97}\mu\mathbf{A}$$

Now,
$$I_C = \beta I_B = 130 \times 13.97 \times 10^{-6} = 1.81 \text{mA}$$

$$V_E - I_E R_E - V_{EE} = 0$$

$$V_E = (1+\beta)I_BR_E + V_{EE} = 131(13.97 \times 10^{-6})(7.5 \times 10^3) + (-18) = 13.725 - 18 = -4.3V$$

Applying KVL to the collector-emitter loop:

$$V_{CC} - I_C R_C - V_{CE} - I_E R_E - V_{EE} = 0$$

$$V_{CE} = V_{CC} - V_{EE} - I_C R_C - (1 + \beta) I_B R_E$$

$$V_{CE} = 18 + 18 - (1.81 \times 10^{-3})(9.1 \times 10^{3}) - 131(13.97 \times 10^{-6})7500 = 19.529 - 13.725 = 5.803$$
V

Above circuit is simulated in LTspice and the result is as follows:

Figure 15: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_B	$13.907 \mu A$	$13.97\mu A$
I_C	1.807 m A	1.81 mA
V_E	-4.33V	-4.3V
V_{CE}	5.88 V	5.803 V

Table 5: Numerical 5

Numerical 6: For the network given below determine: I_E , V_C , V_{CE} . Given $\beta = 120$

Figure 16: Circuit 6

Solution:

Refer to figure 16 for DC equivalent circuit.

Applying KVL to the base - emitter loop:

$$-V_{BE} - I_{E}R_{E} - V_{EE} = 0$$

$$I_{E} = -\frac{V_{EE} - V_{BE}}{R_{E}} = \frac{8 - 0.7}{2.2 \times 10^{3}} = \frac{7.3}{2.2 \times 10^{3}} = \mathbf{3.318mA}$$

$$V_{CC} - I_{C}R_{C} - V_{C} = 0$$

$$V_{C} = 10 - (3.318 \times 10^{-3})(1.8 \times 10^{3}) = V_{C} = \mathbf{4.0276V} \quad \text{(As } I_{C} \approx I_{E})$$
Applying KVL to the collector - emitter loop:
$$V_{CC} - I_{C}R_{C} - V_{CE} - I_{E}R_{E} - V_{EE} = 0$$

$$V_{CE} = V_{CC} - V_{EE} - I_E(R_E + R_C) = 10 + 8 - (3.318 \times 10^{-3})(1.8 + 2.2)10^3 = 4.728V$$

(As $I_C \approx I_E$)

Above circuit is simulated in LTspice and the result is as follows:

Figure 17: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_E	3.318 mA	$3.270~\mathrm{mA}$
V_C	4.027 V	4.171 V
V_{CE}	4.728 V	4.97 V

Table 6: Numerical 6

Numerical 7: Consider the circuit shown below, the transistor parameters are $V_{TP} = -0.8V$ and $K_P = 0.5mA/V^2$. Determine I_D , V_{GS} , V_{SD}

Figure 18: Circuit 7

Solution: The given circuit is a voltage divider configuration employing a Enhancement type PMOSFET.

Refer to figure 18 for DC equivalent circuit.

Thevenin's equivalent circuit:

Figure 19: Thevenin's equivalent circuit

Where,
$$R_G = R_{TH} = R_1 \mid \mid R_2 = 8k \mid \mid 22k = 5.87 \mathbf{k} \Omega$$

$$V_{TH} = \left(\frac{V_{SS} - V_{DD}}{R_1 + R_2}\right) R_2 + V_{EE}$$

$$V_{TH} = \left(\frac{3+3}{8k+22k}\right) 22k - 3 = \mathbf{1.4V}$$

Applying KVL to Source - Gate loop:

$$V_{SS} - I_S R_S - V_{SG} - I_G R_G - V_{TH} = 0$$

$$\therefore I_S R_S = -V_{GS} - V_{TH} + V_{SS} - R_G R_G$$

But
$$I_G = 0$$
 and $V_{GS} = -V_{GS}$ and $I_S \approx I_D$

$$I_D R_S = V_{GS} - V_{TH} + V_{SS}$$

$$I_D = -\frac{V_{GS} - V_{TH} + V_{SS}}{R_S} = -\frac{V_{GS} - 1.4 + 3}{0.5 \times 10^3}$$

$$I_D = -\frac{V_{GS} + 1.6}{1.6 \times 10^3} \qquad \dots (1)$$

Also for PMOS of enhancement type, in saturation region.

$$I_D = k_P (V_{GS} - V_{TP})^2$$
 Where $V_{TP} = -0.8V$

$$I_D = k_P(V_{GS}^2 - 2V_{GS}V_{TP} + V_{TP}^2) = 0.5 \times 10^{-3}(V_{GS}^2 + 2 \times 0.8V_{GS} + V_{TP}^2)$$

$$I_D = 0.5 \times 10^{-3} (V_{GS}^2 + 1.6V_{GS} + 0.64) \qquad \dots (2)$$

From (1) and (2);

$$\frac{V_{GS} + 1.6}{0.5 \times 10^3} = 0.5 \times 10^{-3} (V_{GS}^2 + 1.6V_{GS} + 0.64)$$

$$V_{GS} = 1.6 = 0.25(V_{GS}^2 + 1.6V_{GS} + 0.64)$$

$$\therefore 0.25V_{GS}^2 + 0.4V_{GS} \times 0.16 - 1.6 - V_{GS} = 0$$

$$\therefore 0.25V_{GS}^2 + 0.4V_{GS} - V_{GS} - 1.44 = 0$$

$$V_{GS} = 3.88V \text{ or } -1.48V$$

Since $|V_{GS}| < |V_P|$

$$V_{GS} = -1.48V$$

$$V_{SG} = 1.48V$$

$$I_D = \frac{V_{GS} + 1.6}{0.5 \times 10^3} = \frac{0.12}{0.5 \times 10^3} = \mathbf{0.24mA}$$

Applying KVL for source Drain loop,

$$V_{SS} - I_S R_S - V_{SD} - I_D R_D - V_{DD} = 0$$

$$\therefore I_S \approx I_D$$

$$V_{SD} = V_{SS} - V_{DD} - I_D(R_D + R_S) = 3 + 3 - (0.2 \times 100^{-3})(5.5 \times 10^3) = 5V$$

Above circuit is simulated in LTspice and the result is as follows:

Figure 20: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_D	$0.2~\mathrm{mA}$	0.15 mA
V_{SG}	1.48 V	1.5V
V_{SD}	5 V	5.2 V

Table 7: Numerical 7

Numerical 8: Consider the circuit shown in figure 21, Determine $I_{DQ},\,V_{GSQ},\,V_{DSQ},$ where $V_P=-5V$ and $I_{DSS}=10mA$

Figure 21: Circuit 8

Solution: DC Analysis

For DC analysis
$$f = 0$$
: $X_C = \frac{1}{2\pi fc} = \infty$

.: Capacitor acts as a open circuit

Figure 22: Thevenin's equivalent circuit

Applying KVL to Gate - Source loop:

$$-I_S R_S - V_{GS} - I_G R_G = 0$$

But for JFET; $I_G = 0$

$$\therefore V_{GS} = -I_S R_S$$
 and $I_S = I_D$

$$V_{GS} = I_D R_S = -0.2 \times 10^3 \times I_D \qquad(1)$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \times 10^{-3} \left(1 - \frac{V_{GS}}{5} \right)^2$$
(2)

From (1) and (2);

$$\frac{-V_{GS}}{0.2 \times 10^3} = 10 \times 10^{-3} \left(1 + \frac{V_{GS}}{5} \right)^2$$

$$\therefore V_{GS} = 2\left(1 + \frac{2V_{GS}}{5} + \frac{V_{GS}^2}{25}\right)$$

$$\therefore 2 + \frac{4V_{GS}}{5} + \frac{2V_{GS}^2}{25} + V_{GS} = 0$$

$$\therefore 2 + \frac{9V_{GS}}{5} + \frac{2V_{GS}^2}{25} = 0$$

On solving, we get;

$$V_{GS} = -1.17 \text{ or } -21.32V$$

Since $|V_{GS}| > |V_P|$

$$V_{GS} = -1.17V$$

$$I_{DQ} = rac{V_{GS}}{-0.2 imes 10^3} = \mathbf{5.85mA}$$

Applying KVL to the Source Drain loop,

$$V_{DD} - I_S R_S - V_{DS} - I_D R_D = 0$$

$$I_D = I_S$$

:
$$V_{DSQ} = 20 - (5.8 \times 10^{-3})(2k + 0.2k) = 7.24V$$

Above circuit is simulated in LTspice and the result is as follows:

Figure 23: Circuit schematic: Results

Parameter	Simulated	Theoretical
I_{DQ}	5.85 mA	$5.86~\mathrm{mA}$
V_{GSQ}	-1.17V	-1.17V
V_{DSQ}	7.24V	7.1 V

Table 8: Numerical 8

Numerical 9: The MOS biasing circuit shown below in figure 1 has $R_D = k\Omega$, $R_{SR} = 500\Omega$, $R_1 = 400k\Omega$, $R_2 = 60k\Omega$, $V_{DD} = 12V$ MOS parameters are $k_n = 0.5mA/V^2$, $V_t = -1.5V$. Determine I_D , V_{GS} and V_{DS}

Figure 24: Circuit 9

Solution: The above circuit is a voltage divider biasing configuration employing a Enhancement type NMOS

DC Equivalent circuit:

Refer to Figure 24 for DC equivalent circuit

Thevenin's equivalent circuit:

Figure 25: Thevenin's equivalent circuit

Here, $R_{TH}=R_G=R_1 \mid\mid R_2=600k \mid\mid 400k=\mathbf{240k}\Omega$

and
$$V_G = V_{TH} = \left(\frac{R_2}{R_1 + R_2}\right)(V_{DD}) = 7.2V$$

DC analysis:

Applying KVL to the Gate - Source loop,

$$V_{DD} - I_S R_{SR} - V_{GS} - I_G R_G - V_G = 0$$

For mosfet, $I_G = 0$ and $I_D \approx I_S$

$$12 - I_D R_{SR} - V_{SG} - 7.2 = 0$$

$$V_{SG} = \frac{4.8 - V_{SG}}{500}$$

$$V_{SG} = -V_{GS}$$

$$\therefore I_D = \frac{4.8 + V_{GS}}{500} \qquad1$$

Above for enhancement type PMOS, in saturation region,

$$I_D = k_n (V_{GS} - V_t)^2$$
 (Where $V_t = -1.5V$)

$$I_D = 0.5 \times 10^{-3} (V_{GS} + 1.5)^2$$
2

From 1 and 2, we get,

$$\frac{4.8 + V_{GS}}{500} = 0.5 \times 10^{-3} (V_{GS}^2 + 3V_{GS} + 2.25)$$

$$4.8 + V_{GS} = 0.25(V_{GS}^2 + 3V_{GS} + 2.25)$$

$$\therefore 0.25V_{GS}^2 + 0.75V_{GS} + 0.55625 - V_{GS} - 4.8 = 0$$

$$\therefore 0.25V_{GS}^2 - 0.25V_{GS} - 4.2375 = 0$$

On solving we get,

$$V_{GS} = -3.647V$$
 and $V_{GS} = 4.64V$

As
$$|V_{GS}| > |V_t|$$

$$\therefore V_{GS} = -3.65 \mathbf{V}$$

Substituting value of V_{GS} in 2 we get,

$$I_D = 0.5 \times 10^{-3} (-3.65 + 1.5)^2 = 2.3 \text{mA}$$

Applying KVL to the Source - Drain loop:

$$V_{DD} - I_S R_{SR} + V_{DS} - I_D R_D = 0$$

For NMOS,
$$I_D \approx I_S$$

$$V_{DD} - I_D(R_{SR} + R_D) = -V_D S$$

$$12 - (2.3 \times 10^{-3})(500 + 1500) = -V_{DS}$$

$$V_{DS} = -7.4 V$$

Above circuit is simulated in LTspice and the result is as follows:

Comparison between Theoretical and Simulated values:-

Parameter	Simulated	Theoretical
I_D	$2.38~\mathrm{mA}$	$2.3 \mathrm{mA}$
V_{GS}	-3.61V	-3.65V
V_{DS}	7.23V	7.4 V

Table 9: Numerical 9

Figure 26: Circuit schematic: Results

Numerical 10: Determine the values of I_B add V_E in the given circuit

Figure 27: Circuit 10

Solution: Applying KVL to the input loop from V_{CC} to $-V_{EE}$

Figure 28: Thevenin's equivalent circuit

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E + V_{EE} = 0$$

$$V_{CC} - I_B R_B - V_{BE} - (1 + \beta) I_B R_E + V_{EE} = 0$$

$$\therefore I_B = \frac{V_{CC} + V_{EE} - V_{BE}}{R_B + (1 + \beta) R_E} = \frac{6 + 6 - 0.7}{330 \times 10^3 + 121 \times 1.2 \times 10^3} = \mathbf{23.72} \mu \mathbf{A}$$

We know that $I_E = (1 + \beta)I_B = (1 + 120)23.72 \times 10^{-6} = 2.87 \text{mA}$

Applying KVL to the emiter loop,

$$V_E - I_E R_E + V_{EE} = 0$$

 $V_E = I_E R_E - V_{EE} = (2.87 \times 10^{-3})(1.2 \times 10^3) - 6 = -2.547 V$

Above circuit is simulated in LTspice and the result is as follows:

Figure 29: Circuit schematic: Results

Comparison between Theoretical and Simulated values:-

Parameter	Simulated	Theoretical
I_B	$23.72\mu A$	$23.566\mu A$
V_E	-2.547V	-2.57812V
I_E	$2.87~\mathrm{mA}$	$2.851~\mathrm{mA}$

Table 10: Numerical 10
