WO 2004/028336 PCT/IL2003/000785

CLAIMS

5

10

- 1. An in vivo imaging device comprising:
- a first circuit board having disposed thereon an image sensor, said first circuit board having a top surface and a bottom surface; and
- a second circuit board, said second circuit board being in electrical communication with the first circuit board and extending at an angle of between about 0^0 to about 180^0 from the bottom surface of the first circuit board.
- 2. The device according to claim 1 wherein the second circuit board is substantially perpendicular to the first circuit board.
- 3. The device according to claim 1 wherein the first circuit board has disposed thereon least one illumination source.
- 4. The device according to claim 3 wherein the illumination source includes an LED.
- 5. The device according to claim 1 wherein the second circuit board comprises circuitry for processing image signals.
 - 6. The device according to claim 1 wherein the second circuit board is configured for accommodating an ASIC.
- 7. The device according to claim 1 wherein the second circuit board is configured for accommodating a transmitter.
 - 8. The device according to claim 1 wherein the second circuit board includes an illumination source.
 - 9. The device according to claim 8 wherein the illumination source includes an LED.
- 25 10. The device according to claim 8 comprising a light redirecting device.
 - 11. The device according to claim 10 wherein the light redirecting device is selected from the group consisting of: a prism, a mirror and a fiber optic light guide.

WO 2004/028336 PCT/IL2003/000785

12. The device according to claim 1 wherein the second circuit board is configured for containing a power source.

13. In an in vivo imaging device, a circuit board configured for being in electrical communication with another circuit board and extending substantially perpendicularly to the other circuit board.

5

- 14. The circuit board according to claim 13, comprising attaching means for attaching the circuit board substantially perpendicularly to the other circuit board.
- 15. The imaging device according to claim 14 wherein the attaching means includes electrically communicating means.
 - 16. The imaging device according to claim 13 comprising circuitry for processing image signals.
 - 17. The imaging device according to claim 13 wherein the circuit device is configured for accommodating at least a transmitter.
- 18. The circuit device according to claim 13 wherein the circuit device is configured for accommodating at least an illumination source.
 - 19. The circuit device according to claim 18 wherein the illumination source includes an LED.
- 20. In an in vivo imaging device, an image sensor, said sensor configured for being in electrical communication with a circuit board, said circuit board extending substantially perpendicularly to the image sensor.
 - 21. The image sensor according to claim 20 comprising a niche configured for accommodating a side edge of a second circuit board.
- 22. The image sensor according to claim 21 wherein the niche comprises communication means for electrically communicating with the other circuit board.
 - 23. In an in vivo imaging device, a circuit board configured for accommodating an image sensor and at least one illumination source.

WO 2004/028336 PCT/IL2003/000785

24. The circuit board according to claim 23 wherein the illumination source includes an LED.

- 25. In an in vivo imaging device, a circuit board comprising a transmitter and a transmitter antenna, said antenna being embedded into the circuit board.
- 5 26. An in vivo imaging device comprising:
 - a circuit board;
 - a transmitter; and

an antenna, said antenna substantially surrounding the circuit board.

- 27. The device of claim 26, comprising an imager.
- 10 28. The device of claim 26, wherein the antenna substantially surrounds the transmitter.
 - 29. An in vivo imaging device comprising:

an imager;

a power source; and

- an antenna, said antenna disposed substantially between the power source and the imager.
 - 30. The device of claim 29, wherein the power source includes a battery.
 - 31. A capsule comprising:

an optical window behind which are disposed:

an illumination source:

20

25

- a first circuit board configured for accommodating at least an image sensor, said first circuit board having a bottom surface; and
- a second circuit board, said second circuit board being in electrical communication with the first circuit board and extending substantially perpendicularly from the bottom surface of the first circuit board.
- 32. The capsule according to claim 25 comprising a transmitter.
- 33. The device according to claim 8 wherein the illumination source includes an LED.