Time-varying extreme pattern with dynamic models

Dani Gamerman Instituto de Matemática - UFRJ dani@im.ufrj.br

UFBA - 02/06/2017

Joint work with F. Nascimento and H. Lopes, published in Test, 2016

Why do we need to study extremes?

Introduction

- Extreme Value Theory (EVT): required when extreme pattern is relevant
- Extrapolation beyond data points
- Useful tool in many areas of application
- Examples include
 Environment (climate change), Finance (stock returns), ...
- Beautiful theory but... usually applied for independent observations
- Many examples in fact consist of time series
- Models should incorporate temporal dependence

EVT for exceedances

Starting point: Pickands (1975) theorem

$$\lim_{u\to x_F} P(X-u\le x|X>u)=G(x)$$

 x_F is upper limit of F, the distribution of X G is the d.f. of the GPD valid for a large number of scenarios for F

- Standard approach: set/choose <u>finite</u> value for <u>u</u>
 Perform EV analysis for exceedances <u>X</u> <u>u</u> with fixed <u>u</u>
- Problem 1: Throws away information from bulk of distribution
- Problem 2: u is assumed to be known and $\langle x_F \rangle$

Our approach for exceedances

Nascimento, Gamerman and Lopes (S&C, 2012)

- We treat threshold u as a model parameter!
- Use complete data to <u>estimate</u> the threshold
- GPD distribution for exceedances beyond the threshold
- Nonparametric approach to center of distribution
- GPD density

$$g(x|\xi,\sigma,u) = \begin{cases} \sigma^{-1} (1 + \xi x/\sigma)^{-(1+\xi)/\xi}, & \text{if } \xi \neq 0 \\ \sigma^{-1} \exp\{-x/\sigma\}, & \text{if } \xi = 0 \end{cases}, (1)$$

for x > 0 when $\xi \ge 0$ and for $0 \le x < -\sigma/\xi$ when $\xi < 0$.

3 different regimes:

Weibull
$$(\xi < 0)$$
, Gumbel $(\xi = 0)$, Frechet $(\xi \ge 0)$

Model

The distribution function is given by

$$F(x|\theta, \Psi) = \begin{cases} H(x \mid \theta), & \text{if } x < u \\ H(u \mid \theta) + [1 - H(u \mid \theta)] G(x \mid \Psi), & \text{if } x > u, \end{cases}$$

H: mixture of Gamma's with parameters (μ_j, ν_j) and weights p_j Why mixture of Gamma's? It is dense!

Parameters:
$$\theta = (\mu, \nu, p)$$
 and $\Psi = (u, \sigma, \xi)$

Observations are conditionally independent given (θ, Ψ)

Provides likelihood for all parameters

Maxima and higher quantiles

Extreme analysis: extrapolation evaluation in the tail of distribution (beyond data points) Extreme quantiles: q s.t. P(X > q) = 1 - p, for large p

$$q = \frac{[(1-p^*)^{-\xi}-1]\sigma}{\xi}, \text{ where } p^* = \frac{p-H(u\mid\theta)}{1-H(u\mid\theta)}.$$

s-period return level = quantile 1 - 1/s

H is the d.f. of the central part θ - parameters of H

Note: when $\xi < 0$, the distribution is bounded by $u - \sigma/\xi$

Dynamics on tail

- Rainfall and temperature can be related to seasonality and level rise over the years
- Recession periods may have influence on economic indices
- Propose a model to estimate time-varying extreme events
- Dynamic structure should imply better estimation and forecasting
- Dynamic extremes: evolution of tail parameters
- $(u, \sigma, \xi) \rightarrow (u_t, \sigma_t, \xi_t)$

Maxima and higher quantiles

Extreme analysis: extrapolation evaluation in the tail of distribution (beyond data points) Extreme quantiles: q_t s.t. $P(X_t > q_t) = 1 - p_t$, for large p_t

$$q_t = \frac{[(1-p_t^*)^{-\xi_t}-1]\sigma_t}{\xi_t}, \text{ where } p_t^* = \frac{p-H(u_t\mid\theta)}{1-H(u_t\mid\theta)}.$$

s-period return level = quantile 1 - 1/s

H is the d.f. of the central part

heta - parameters of H

Note: when $\xi_t < 0$, the distribution is bounded by $u_t - \sigma_t/\xi_t$

Dynamic model

- Suppose a temporal dependence of the data
- σ_t are parameters in $(0,\infty)$ and ξ_t in $(-1,\infty)$
- We used $I\sigma_t = \log(\sigma_t)$ and $I\xi_t = \log(\xi_t + 1)$

Example: First order dynamic model

$$\begin{array}{lcl} I\xi_t & = & \theta_{\xi,t} + v_{\xi,t} & v_{\xi,t} \sim N(0,1/V_{\xi}), \\ \theta_{\xi,t} & = & \theta_{\xi,t-1} + w_{\xi,t} & w_{\xi,t} \sim N(0,1/W_{\xi}), \\ I\sigma_t & = & \theta_{\sigma,t} + v_{\sigma,t} & v_{\sigma,t} \sim N(0,1/V_{\sigma}), \\ \theta_{\sigma,t} & = & \theta_{\sigma,t-1} + w_{\sigma,t} & w_{\sigma,t} \sim N(0,1/W_{\sigma}), \end{array}$$

Threshold is static in the example

Model

The distribution function is given by

$$F_t(x_t|\theta, \Psi_t) = \begin{cases} H(x_t \mid \theta), & \text{if } x_t < u \\ H(u \mid \theta) + [1 - H(u \mid \theta)] G(x_t \mid \Psi_t), & \text{if } x_t > u, \end{cases}$$

H: mixture of Gamma's with parameters (μ_j, ν_j) and weights p_j Parameters: $\theta = (\mu, \nu, p)$ and $\Psi_t = (u_t, \sigma_t, \xi_t), t = 1, \dots, n$

Provides likelihood for all the above parameters

Observations are conditionally independent given

$$\theta, \{\Psi_t, t=1,...,n\}$$

Temporal dependence provided through latent states

Inference

- Bayesian approach to inference → requires prior for all parameters
- Prior distribution for dynamic structure of the example

$$\pi(I\xi, \theta_{\xi}, V_{\xi}, W_{\xi}) = \prod_{t=1}^{n} \left(\pi(I\xi_{t}|\theta_{\xi,t}, V_{\xi}) \pi(\theta_{\xi,t}|\theta_{\xi,t-1}, W_{\xi}) \right) \pi(\theta_{\xi,0}) \pi(V_{\xi}) \pi(W_{\xi})$$

$$\pi(I\sigma, \theta_{\sigma}, V_{\sigma}, W_{\sigma}) = \prod_{t=1}^{n} \left(\pi(I\sigma_{t}|\theta_{\sigma,t}, V_{\sigma}) \pi(\theta_{\sigma,t}|\theta_{\sigma,t-1}, W_{\sigma}) \right) \pi(\theta_{0,\sigma}) \pi(V_{\sigma}) \pi(W_{\sigma})$$

Hyperparameters: $(\theta_{\xi}, V_{\xi}, W_{\xi}, \theta_{\sigma}, V_{\sigma}, W_{\sigma})$

- ullet combined with likelihood o posterior distribution
- Approximate estimation using MCMC
- Usual mix of full conditionals and M-H steps

Simulations

- Simulations of proposed model, with n=1,000 , 2,500 and 10,000
- Gamma distribution to nontail and GPD for tail
- Results shown the efficiency on detection of true parameters
- Precise estimation of threshold
- Dynamic structure is better estimated when the sample size increase

Applications

Indexes of stock market Absolute returns $r_t = |x_t/x_{t-1} - 1| \times 100$ Petrobras and SP500

Figura: Petrobras Stocks

Model comparison for Petrobrás

	DIC values					
Time series	MG_k	$MGPD_k$	SV	Prop	$Prop_{\sigma}$	$Prop_{\xi}$
Petrobrás	4529 ₍₃₎	4524 ₍₂₎	4885	4467 ₍₂₎	4444 ₍₂₎	4525 ₍₂₎
SP500	9412(3)	9438(2)	9338	9297 ₍₂₎	9320(2)	9295 ₍₂₎

 MG_k mixture of Gamma's with the smallest DIC $MGPD_k$ mixture of Gamma's + GPD with the smallest DIC SV is the standard stochastic volatility model Prop is the proposed model $Prop_{\sigma}$ ($Prop_{\xi}$): proposed model with σ (ξ) constant.

95% credibility intervals to tail parameters Top: ξ for Petrobrás; bottom: σ for SP500

Figura: Petrobras data with 95% and 99% quantiles.

Figura: SP500 data with 95% and 99% quantiles.

Absolute returns of Petrobrás (full) 99.999% quantiles (dashed) maximum when $median(\xi|\mathbf{x}) < \mathbf{0}$ (dotted) Shaded area: posterior probability of finite maximum $P(\xi_t < 0|\mathbf{x})$, for all t.

Posterior mean of the return level plot for Petrobras, in different points in time: October 2000 (Full), February 2003 (Grey) and July 2008 (Dotted) and February 2014 (Dashed).

Posterior mean of the return level plot for SP500, in different points in time: January 1950 (Full), April 1988 (Grey), March 2008 (Dashed) and February 2014 (Dotted).

Extension 1: Dynamic regression

Regression on tail:

Nascimento et al. (2011) and Cabras et al. (2011)

Use a dynamic model where $F'_t = (1, x_{1,t}, \dots, x_{t,p})$, $G = I_n$ and $\theta'_t = (\beta_{t,0}, \dots, \beta_{t,p})$.

For example, to scale parameter $l\sigma_t = \log(\sigma_t)$,

$$I\sigma_{t} = \beta_{t,0} + \beta_{t,1}x_{t,1} + \ldots + \beta_{t,p}x_{t,p} + v_{t}$$

$$\beta_{t,i} = \beta_{t-1,i} + w_{i,t}, i = 0, \ldots, p.$$

Extend these ideas to the threshold: $u \rightarrow u_t$

Extension 2: Regime identification

Our approach treated ξ as continuous Shape parameter ξ defines 3 different extremal regimes: Weibull ($\xi < 0$), Gumbel ($\xi = 0$), Frechet ($\xi > 0$)

Nascimento et al. (2016) These regimes could be treated separately Allows identification of the regime

Regime may switch over time \rightarrow Markov switching model Current work with Fernando Nascimento

Extension 3: Multivariate extremes

Our approach considers only univariate extremes Many situations involve joint distributions Example: wind speed and wave height

Possible static model: univariate models MGPD + dependence through flexible copulas

Time-varying scenario: Parameters may be allowed to change over time Current work with Manuele Leonelli (Glasgow)

Conclusions

- Model for extreme values with dynamic structure
- Model captures qualitative changes in tail behaviour
- Advantages over other standard models
- Temporal dependence in central part?
- Point process approach?

Obrigado!

dani@im.ufrj.br www.statpop.com.br