

Vessel Path Identification in Short-Sea Shipping

iHelm Project

2023

Buro

MarineTraffic: Global Ship Tracking Intelligence | AIS Marine Traffic

Vessel Type: Passenger Ship

Size:(Length by Breadth) 19m * 6.41m;

MMSI: 265513810

Area: **BALTIC - Kattegat**

Gross Tonnage: 68

Average Speed recorded 8.2 knots(4.2 m/s)

Draught (Reported/Max): 2.5 m

Flag:Sweden (SE)

The onboard data have been received from our industry partner CetaSol AB in Gothenburg.

The data has been gathered over 15months, 2020 and 2021

39193 Datapoints 1754 Trips

CetaSol AB ." [Online]. Available: https://cetasol.com/

https://www.marinetraffic.com/
Knowledge Foundation

Using **GMM**

Confusion matrix:

	Direct	East_Canal	West_Canal
Direct	62	0	0
East_Canal	0	122	0
West_Canal	0	11	1560

Confusion matrix:

	Direct	East_Canal	West_Canal
Direct	62	0	0
East_Canal	0	122	0
West_Canal	0	0	1571

To Three Clusters by Distance Matrix

Statistics	Precision	Recall	F1-Score	Support
Direct	1.000	1.000	1.000	62.000
East_Canal	0.917	1.000	0.957	122.000
West_Canal	1.000	0.993	0.996	1571.000
accuracy	0.994	0.994	0.994	0.994
macro avg	0.972	0.998	0.984	1755.000
weighted avg	0.994	0.994	0.994	1755.000

To Three Clusters with Gaussian in Six Segments

Statistics	Precision	Recall	F1-Score	Support
Direct	1.0	1.0	1.0	62.0
East_Canal	1.0	1.0	1.0	122.0
West_Canal	1.0	1.0	1.0	1571.0
accuracy	1.0	1.0	1.0	1.0
macro avg	1.0	1.0	1.0	1755.0
weighted avg	1.0	1.0	1.0	1755.0

Buro's Data

39193 Datapoints 1754 sequences (Routes)

Let's cluster ship paths with a new data

MarineTraffic: Global Ship Tracking Intelligence | AIS Marine Traffic

Vessel Type:

Passenger Ship

Length × Breadth:

41.76x7.68

MMSI: 265609540 Gross Tonnage: 324

Speed recorded (Max / Average): 20.2 knots / 10.4

knots

Draught (Reported/Max): 1.2 m

Flag:Sweden (SE)

The onboard data have been received from our industry partner CetaSol AB in Gothenburg.

© NHK

MarineTraffic.com

The data has been gathered over 5months, 2022

243688 Datapoints 124 Trips

Cinderella_cluster_Analysis_v1

CAISR

hh.se

Knowledge Foundation

sodra-vaxholm

Vessel name: Cinderella II

Ports are Vaxhom and Sodra (East of Stockholm, Baltic Sea)

From July 1 to November 6th, 2022.

Temporal Resolution 1second

243688 Datapoints124 Trips

Cinderella

59.41

Cluster ship paths with a new data

59.415

Cinderella_cluster_Analysis_v1

Cinderella

Cluster ship paths with a new data

Statistics of Path Segments

Buro's Data

57.700

Direct

East Canal

Clustering by Distance Matrix

Buro's Data

East_Canal

Path Class

Direct

Distance = $\sum (P_i - NN(PJ))$

Path Class	West_Canal	East_Canal	Direct	West_Canal	East_Canal	Direct	West_Canal	West_Canal	West_Canal	East_Canal	West_Canal	Direct
West_Canal	0.0000	0.0194	0.1098	0.0084	0.0200	0.1083	0.0102	0.0114	0.0091	0.0207	0.0125	0.1061
East_Canal	0.0226	0.0000	0.1089	0.0171	0.0160	0.1079	0.0180	0.0173	0.0195	0.0130	0.0249	0.1064
Direct	0.0432	0.0458	0.0000	0.0413	0.0470	0.0097	0.0435	0.0389	0.0442	0.0422	0.0411	0.0117
West_Canal	0.0096	0.0158	0.1208	0.0000	0.0217	0.1199	0.0097	0.0086	0.0099	0.0214	0.0189	0.1180
East_Canal	0.0222	0.0141	0.1247	0.0228	0.0000	0.1233	0.0203	0.0239	0.0218	0.0136	0.0196	0.1226
Direct	0.0366	0.0421	0.0087	0.0370	0.0415	0.0000	0.0393	0.0376	0.0379	0.0382	0.0363	0.0100
West_Canal	0.0103	0.0163	0.1149	0.0096	0.0206	0.1146	0.0000	0.0091	0.0117	0.0210	0.0173	0.1122
West_Canal	0.0135	0.0164	0.1178	0.0087	0.0236	0.1195	0.0103	0.0000	0.0121	0.0202	0.0181	0.1154
West_Canal	0.0104	0.0154	0.1124	0.0092	0.0185	0.1103	0.0114	0.0112	0.0000	0.0177	0.0124	0.1073
East_Canal	0.0363	0.0189	0.1074	0.0345	0.0199	0.1047	0.0341	0.0338	0.0328	0.0000	0.0307	0.1030
West_Canal	0.0128	0.0218	0.1181	0.0177	0.0184	0.1181	0.0183	0.0180	0.0133	0.0172	0.0000	0.1183
Direct	0.0448	0.0488	0.0149	0.0443	0.0516	0.0143	0.0450	0.0417	0.0439	0.0446	0.0448	0.0000

57.715 57.710 57.705

11.660 11.665 11.670 11.675 11.680 11.685 11.690 11.695

West_Canal

Probability (%)

Cinderella

Clustering by Distance Matrix *To Five Clusters*

K-Means

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_ East	14	0	0	0	0
North_ Middle	6	34	0	0	0
North_ West	0	0	16	0	0
South	0	0	0	52	0
South_ West	0	0	0	0	2

	Precision	Recall	F1-score	Support
North_East	0.700	1.000	0.824	14.000
North_Middle	1.000	0.850	0.919	40.000
North_West	1.000	1.000	1.000	16.000
South	1.000	1.000	1.000	52.000
South_West	1.000	1.000	1.000	2.000
accuracy	0.952	0.952	0.952	0.952
macro avg	0.940	0.970	0.948	124.000
weighted avg	0.966	0.952	0.954	124.000

Cinderella

Clustering by Distance Matrix *To Five Clusters*

GMM

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_ East	14	0	0	0	0
North_ Middle	6	34	0	0	0
North_ West	0	0	16	0	0
South	0	0	0	52	0
South_ West	0	0	0	0	2

	Precision	Recall	F1-score	Support
North_East	0.700	1.000	0.824	14.000
North_Middle	1.000	0.850	0.919	40.000
North_West	1.000	1.000	1.000	16.000
South	1.000	1.000	1.000	52.000
South_West	1.000	1.000	1.000	2.000
accuracy	0.952	0.952	0.952	0.952
macro avg	0.940	0.970	0.948	124.000
weighted avg	0.966	0.952	0.954	124.000

Cinderella

Clustering
by Distance Matrix *To Five Clusters*

Actual Paths

Predicted Paths from (K-means and GMM)

Cinderella_cluster_by_distance_v4

Cinderella

Clustering
by Distance Matrix
To Five Clusters

K-Means and GMM

PDF for correct-clustered paths

PDF for misclustered paths

Cinderella

Clustering
by Distance Matrix *To Five Clusters*

Hierarchical Clustering

Cinderella

Clustering by Distance Matrix *To Five Clusters*

Hierarchical Clustering

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_ East	14	0	0	0	0
North_ Middle	0	40	0	0	0
North_ West	0	0	16	0	0
South	0	0	0	52	0
South_ West	0	0	0	0	2

	Precision	Recall	F1-score	Support
North_East	1.0	1.0	1.0	14.0
North_Middle	1.0	1.0	1.0	40.0
North_West	1.0	1.0	1.0	16.0
South	1.0	1.0	1.0	52.0
South_West	1.0	1.0	1.0	2.0
accuracy	1.0	1.0	1.0	1.0
macro avg	1.0	1.0	1.0	124.0
weighted avg	1.0	1.0	1.0	124.0

Cinderella

Clustering by Gaussians To Five Clusters with 8 segments

Statistics of Path Segments

	etatistics of fath segments							
index	segment	Latitude _mean	Latitude _std	Longitude _mean	Longitude _std			
1	North	59.4390	0.0035	18.4474	0.0269			
2	North_East	59.4260	0.0018	18.3920	0.0059			
3	North_Lower	59.4180	0.0006	18.5135	0.0014			
4	North_Middle	59.4249	0.0027	18.3730	0.0013			
5	North_Upper	59.4167	0.0010	18.5260	0.0023			
6	North_West	59.4245	0.0025	18.3571	0.0053			
7	South	59.4243	0.0008	18.4450	0.0145			
8	Other	59.4154	0.0089	18.4270	0.0740			

Cinderella

Clustering by Gaussians To Five Clusters with 8 segments

Statistics of the Clustering Results

Cinderella_cluster_by_Gaussian_8segments_v2

Cinderella

Clustering by Gaussians

To Five Clusters with 8 segments

Cinderella

Clustering
by Gaussians
To Five Clusters
with 8 segments

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_ East	14	0	0	0	0
North_ Middle	0	40	0	0	0
North_ West	0	0	16	0	0
South	0	0	0	52	0
South_ West	0	0	0	0	2

25%									North_We South_We
3370			40						
30%									
(% 25%									
Probability (%)									
15%							 16		
10%					14	-			
5%	_								
								 2	

North_East

North_Middle

Historgrams of Paths Distribution

Precision Recall F1-score **Support** North_East 1.0 1.0 1.0 14.0 North_Middle 40.0 1.0 1.0 1.0 **North West** 1.0 1.0 1.0 16.0 South 1.0 1.0 1.0 52.0 **South West** 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 accuracy 124.0 1.0 1.0 1.0 macro avg weighted avg 1.0 1.0 1.0 124.0

North West

South
North_Middle
North East

South West

Classification of Ship Paths

Cinderella

To 5 Classes

Cinderella_Classification_v2

Knowledge Foundation

mean(|SHAP value|) (average impact on model output magnitude

Classification of Ship Paths

Cinderella

To 5 Classes

Size(y_test)=21793 out of 108963

Random Random Forest with Balanced Subsampling

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_East	5263	0	0	0	0
North_Middle	0	2282	0	0	0
North_West	0	0	752	0	0
South	0	0	0	13062	0
South_West	0	0	0	0	436

			 istribution	N. d. E.
				North_East North_Middle
59.44				North_West South
59.43		<u> </u>		
59.42	H			
59.41				
59.41				
	7			

	Precision	Recall	F1-score	Support
North_East	1.0	1.0	1.0	5263.0
North_Middle	1.0	1.0	1.0	2282.0
North_West	1.0	1.0	1.0	752.0
South	1.0	1.0	1.0	13062.0
South_West	1.0	1.0	1.0	436.0
accuracy	1.0	1.0	1.0	1.0
macro avg	1.0	1.0	1.0	21795.0
weighted avg	1.0	1.0	1.0	21795.0

Classification of Ship Paths

Cinderella

To 5 Classes

Size(y_test)=21793 out of 108963

Random Random Forest with Balanced Subsampling

Confusion Matrix	Pred. North_ East	Pred. North_ Middle	Pred. North_ West	Pred. South	Pred. South_ West
North_East	5263	0	0	0	0
North_Middle	0	2282	0	0	0
North_West	0	0	752	0	0
South	0	0	0	13062	0
South_West	0	0	0	0	436

	Precision	Recall	F1-score	Support		
North_East	1.0	1.0	1.0	5263.0		
North_Middle	1.0	1.0	1.0	2282.0		
North_West	1.0	1.0	1.0	752.0		
South	1.0	1.0	1.0	13062.0		
South_West	1.0	1.0	1.0	436.0		
accuracy	1.0	1.0	1.0	1.0		
macro avg	1.0	1.0	1.0	21795.0		
weighted avg	1.0	1.0	1.0	21795.0		

Uncertainty Analysis

Class North East: Mean=1.0000, StdDev=0.0009, Median=1.0000, Min=0.9600, Max=1.0000

Class North Middle: Mean=0.9998, StdDev=0.0064, Median=1.0000, Min=0.7000, Max=1.0000

Class North_West: Mean=0.9999, StdDev=0.0022, Median=1.0000, Min=0.9400, Max=1.0000

Class South: Mean=1.0000, StdDev=0.0003, Median=1.0000, Min=0.9900, Max=1.0000

Class South_West: Mean=1.0000, StdDev=0.0000, Median=1.0000, Min=1.0000, Max=1.0000

Thanks for your listening Any Qs?