Problem Set #1

Heejin Yoon

1

• The sequential problem can be written as follows:

$$\max_{(k_{t+1}, c_t)} E[\sum_{t=0}^{\infty} \beta^t \log(c_t)]$$

s.t.
$$c_t + k_{t+1} - (1 - \delta)k_t \le z_t k_t^{\theta}$$

Thus the Bellman equation is:

$$V(k, z) = \max_{k'} (\log(zk^{\theta} + (1 - \delta)k - k')) + \beta E[v(k', z')]$$

2

• As shown in the figure below, the value function over k for each state z is increasing and concave (i.e., $V(k_{i+1}, z) \geq V(K_i, z)$ for $k_{i+1} \geq k_i$ and $V(k_{i+1}, z) - V(K_i, z)$ is decreasing).

• The decision rule is increasing in k and z (i.e., $K'(k_{i+1}, z) \ge K'(K_i, z)$). Also, saving is increasing in z (i.e., k'(k, z) - k is increasing in z). With regard to k, in z_g saving is first increasing but turns to be decreasing, whereas in z_b saving is always decreasing. My argument is presented in the below two figures.

• Also, figures drawn from Fortran and Matlab are presented below.

1. Fortran

2. Matlab

