UPLB Eliens ICPC Notebook (C++)

Contents

1	Data	Structures								
_	1.1	Disjoint Set Union								
	1.2	Minimum Queue								
	1.3	Range Add Point Query								
	1.4	Segment Tree								
	1.5	Sparse Table								
2	Dynamic Programming 3									
_	2.1	Divide And Conquer								
	2.2	Edit Distance								
	2.3	Knapsack								
	2.4	Knuth Optimization								
	2.5	Longest Common Subsequence								
	2.6	Longest Increasing Subsequence								
	2.7	Subset Sum								
	2	Subsect Sum. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
3	Geor	netry 5								
	3.1	Circle Line Intersection								
	3.2	Convex Hull								
	3.3	Line Sweep								
	3.4	Nearest Points								
	0.1									
4	Grar	oh Theory 8								
-	4.1	Articulation Point								
	4.2	Bellman Ford								
	4.3	Bridge								
	4.4	Dijkstra								
	4.5	Find Cycle								
	4.6	Floyd Warshall								
	4.7	Hierholzer								
	4.8	Is Bipartite								
	4.9	Is Cyclic								
	4.10	Kahn								
	4.11	Kruskal Mst								
	4.12	Lowest Common Ancestor								
	4.13	Maximum Bipartite Matching								
	4.14	Max Flow								
	4.14	Prim Mst								
	4.16									
	4.17	Topological Sort								
5	Misc	ellaneous 14								
U	5.1									
	5.1	Gauss								
	5.2	Ternary Search								
6	Number Theory 15									
-	6.1	Extended Euclidean								
	6.2	Find All Solutions								
	6.3	Linear Sieve								
	6.4	Miller Rabin								
	6.5	Modulo Inverse								
	6.6	Pollard Rho Brent								
	6.7	Range Sieve								
	6.8	Segmented Sieve								
	6.9	Tonelli Shanks								
7	Strin	gs 18								
	7.1	Hashing								
	7.2	Knuth Morris Pratt								
	7.3	Rabin Karp								
	7.4	Suffix Array								
	7.5	Z Function								

Data Structures

1.1 Disjoint Set Union

17 17

```
struct DSU {
  vector<int> parent, size;
  DSU(int n) {
    parent.resize(n);
    size.resize(n);
    for (int i = 0; i < n; i++) make_set(i);</pre>
 void make_set(int v) {
    parent[v] = v;
    size[v] = 1;
 bool is_same(int a, int b) { return find_set(a) ==
     find set(b); }
  int find_set(int v) { return v == parent[v] ? v :
     parent[v] = find_set(parent[v]); }
 void union sets(int a, int b) {
    a = find_set(a);
    b = find set(b);
    if (a != b) {
      if (size[a] < size[b]) swap(a, b);</pre>
      parent[b] = a;
      size[a] += size[b];
};
```

1.2 Minimum Queue

```
11 get_minimum(stack<pair<11, 11>> &s1, stack<pair<11,</pre>
   11>> &s2) {
  if (s1.empty() || s2.empty()) {
    return s1.empty() ? s2.top().second : s1.top().
       second:
  } else {
    return min(s1.top().second, s2.top().second);
void add_element(ll new_element, stack<pair<ll, 11>> &s1
  11 minimum = s1.empty() ? new_element : min(
     new_element, s1.top().second);
  s1.push({new element, minimum});
11 remove element(stack<pair<11, 11>> &s1, stack<pair<11</pre>
   , 11>> \&s2) {
```

1.3 Range Add Point Query

```
template<class T>
class SegTreeNode {
public:
  const T IDENTITY = 0;
  int i, j;
  T value:
  SegTreeNode<T>* lc, * rc;
  SegTreeNode(int i, int j) : i(i), j(j) {
    value = IDENTITY;
    if (i - i == 1) {
     lc = rc = nullptr;
      return;
    int k = (i + j) / 2;
    lc = new SegTreeNode(i, k);
    rc = new SegTreeNode(k, j);
  SegTreeNode(const vector<T>& a, int i, int j) : i(i),
     i(i) {
    value = j - i == 1 ? a[i] : IDENTITY;
    if (i - i == 1) {
     lc = rc = nullptr;
      return;
    int k = (i + j) / 2;
    lc = new SegTreeNode(a, i, k);
    rc = new SegTreeNode(a, k, j);
  void range_update(int 1, int r, T x) {
    if (r <= i || j <= 1) return;</pre>
    if (1 <= i && j <= r) {
      value = op(value, x);
      return;
```

```
lc->range_update(l, r, x);
    rc->range_update(l, r, x);
  T point_query(int k) {
    if (k < i | | j <= k) return IDENTITY;</pre>
    if (i - i == 1) {
      return value;
    return op(value, op(lc->point_query(k), rc->
       point query(k)));
  T \circ p(T \times, T y) \{ return \times + y; \}
};
template<class T>
class SegTree {
public:
  SegTreeNode<T> root;
  SegTree(int n) : root(0, n) {}
  SegTree(const vector<T>& a) : root(a, 0, a.size()) {}
  void range_update(int 1, int r, T x) { root.
     range_update(l, r, x); }
  T point_query(int k) { return root.point_query(k); }
};
```

1.4 Segment Tree

```
template < class T>
class SegTreeNode {
public:
  const T IDENTITY = 0, DEFAULT = 0;
  int i, j;
  T val:
  SegTreeNode<T>* lc, * rc;
  SegTreeNode(int i, int j) : i(i), j(j) {
    if (j - i == 1) {
      lc = rc = nullptr;
      val = DEFAULT;
      return;
    int k = (i + j) / 2;
    lc = new SegTreeNode(i, k);
    rc = new SegTreeNode(k, j);
    val = op(lc->val, rc->val);
  SegTreeNode(const vector<T>& a, int i, int j) : i(i),
     j(j) {
    if (i - i == 1) {
      lc = rc = nullptr;
      val = a[i];
      return;
```

```
int k = (i + j) / 2;
    lc = new SegTreeNode(a, i, k);
    rc = new SegTreeNode(a, k, j);
    val = op(lc->val, rc->val);
  void set (int k, T x) { // update a[k] := x
    if (k < i \mid | i \le k) return;
    if (j - i == 1) {
        val = x;
        return;
    lc->set(k, x);
    rc \rightarrow set(k, x);
    val = op(lc->val, rc->val);
  T range_query(int 1, int r) { // [1, r)
    if (1 <= i && j <= r) return val;
    if (j <= l || r <= i) return IDENTITY;</pre>
    return op(lc->range_query(l, r), rc->range_query(l,
        r));
  T \circ p(T \times, T y) \{\}
template<class T>
class SegTree {
public:
  SegTreeNode<T> root;
  SegTree(int n) : root(0, n) {}
  SegTree(const vector<T>& a) : root(a, 0, a.size()) {}
  void set(int k, T x) { root.set(k, x); }
  T range_query(int 1, int r) { return root.range_query(
     1, r); }
};
```

1.5 Sparse Table

```
11 log2_floor(ll i) {
    return i ? __builtin_clzll(1) - __builtin_clzll(i) :
        -1;
}
vector<vector<ll>> build_sum(ll N, ll K, vector<ll> &
        array) {
    vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
    for (ll i = 0; i < N; i++) st[0][i] = array[i];
    for (ll i = 1; i <= K; i++)
        for (ll j = 0; j + (1 << i) <= N; j++)
        st[i][j] = st[i - 1][j] + st[i - 1][j + (1 << (i - 1))];
    return st;</pre>
```

```
11 sum_query(11 L, 11 R, 11 K, vector<vector<11>> &st) {
 11 \text{ sum} = 0;
  for (11 i = K; i >= 0; i--) {
    if ((1 << i) <= R - L + 1) {
      sum += st[i][L];
      L += 1 << i;
  return sum;
vector<vector<ll>> build_min(ll N, ll K, vector<ll> &
   array) {
  vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
  for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
  for (ll i = 1; i \le K; i++)
    for (11 \ j = 0; \ j + (1 << i) <= N; \ j++)
      st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (
         i - 1))]);
  return st;
11 min_query(11 L, 11 R, vector<vector<11>> &st) {
 ll i = log2\_floor(R - L + 1);
  return min(st[i][L], st[i][R - (1 << i) + 1]);
```

2 Dynamic Programming

2.1 Divide And Conquer

```
11 m, n;
vector<ll> dp_before(n), dp_cur(n);
11 C(11 i, 11 j);
void compute(ll l, ll r, ll optl, ll optr) {
  if (1 > r) {
    return;
  11 \text{ mid} = (1 + r) >> 1;
  pair<ll, ll > best = \{LLONG\_MAX, -1\};
  for (ll k = optl; k <= min(mid, optr); k++) {</pre>
    best = min(best, \{(k ? dp_before[k - 1] : 0) + C(k,
       mid), k});
  dp_cur[mid] = best.first;
  11 opt = best.second;
  compute(1, mid - 1, optl, opt);
  compute(mid + 1, r, opt, optr);
11 solve() {
```

```
for (ll i = 0; i < n; i++) {
   dp_before[i] = C(0, i);
}
for (ll i = 1; i < m; i++) {
   compute(0, n - 1, 0, n - 1);
   dp_before = dp_cur;
}
return dp_before[n - 1];</pre>
```

2.2 Edit Distance

2.3 Knapsack

2.4 Knuth Optimization

```
11 solve() {
  11 N:
  // read N and input
  \ensuremath{\text{vector}}\ensuremath{\text{ll>}}\ensuremath{\text{(N)}}\ensuremath{\text{)}}, \ensuremath{\text{opt}}\ensuremath{\text{(N, vector)}}
      <11>(N);
  auto C = [\&](11 i, 11 j) {
    // Implement cost function C.
  };
  for (11 i = 0; i < N; i++) {
     opt[i][i] = i;
     ... // Initialize dp[i][i] according to the problem
  for (11 i = N - 2; i >= 0; i--) {
     for (11 \ j = i + 1; \ j < N; \ j++)  {
       ll mn = ll\_MAX, cost = C(i, j);
       for (ll k = opt[i][j-1]; k <= min(j-1, opt[i+1])
            1][\dot{1}]; k++) {
         if (mn >= dp[i][k] + dp[k + 1][j] + cost) {
            opt[i][j] = k;
            mn = dp[i][k] + dp[k + 1][j] + cost;
       dp[i][j] = mn;
  cout << dp[0][N - 1] << ' \n';
```

2.5 Longest Common Subsequence

```
ll LCS(string x, string y, ll n, ll m) {
  vector<vector<ll>> dp(n + 1, vector<ll>(m + 1));
  for (ll i = 0; i <= n; i++) {
    for (ll j = 0; j <= m; j++) {
      if (i == 0 || j == 0) {
         dp[i][j] = 0;
      } else if (x[i - 1] == y[j - 1]) {
         dp[i][j] = dp[i - 1][j - 1] + 1;
      } else {
         dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
      }
    }
    ll index = dp[n][m];
    vector<char> lcs(index + 1);
    lcs[index] = '\0';
```

```
ll i = n, j = m;
while (i > 0 && j > 0) {
    if (x[i - 1] == y[j - 1]) {
        lcs[index - 1] = x[i - 1];
        i--;
        j--;
        index--;
    } else if (dp[i - 1][j] > dp[i][j - 1]) {
        i--;
    } else {
        j--;
    }
}
return dp[n][m];
}
```

2.6 Longest Increasing Subsequence

```
11 get ceil idx(vector<11> &a, vector<11> &T, 11 1, 11 r
   , 11 x) {
  while (r - 1 > 1) {
   11 m = 1 + (r - 1) / 2;
    if (a[T[m]] >= x) {
     r = m:
    } else {
      1 = m;
  return r;
11 LIS(ll n, vector<ll> &a) {
  11 len = 1;
  vector<11> T(n, 0), R(n, -1);
  T[0] = 0;
  for (ll i = 1; i < n; i++) {
    if (a[i] < a[T[0]]) {</pre>
      T[0] = i;
    } else if (a[i] > a[T[len - 1]]) {
      R[i] = T[len - 1];
      T[len++] = i;
    } else {
      ll pos = get_ceil_idx(a, T, -1, len - 1, a[i]);
      R[i] = T[pos - 1];
      T[pos] = i;
    }
  return len;
```

2.7 Subset Sum

```
bool subset_sum(ll n, vector<ll> &arr, ll sum) {
  vector<vector<ll>> dp(n + 1, vector<ll>(sum + 1, false
      ));
  dp[0][0] = true;
  for (ll i = 1; i <= n; i++) {
    for (ll j = 0; j <= sum; j++) {
      dp[i][j] = dp[i - 1][j];
      if (j >= arr[i]) {
        dp[i][j] |= dp[i - 1][j - arr[i]];
      }
    }
  }
  return dp[n][sum];
}
```

3 Geometry

3.1 Circle Line Intersection

```
double r, a, b, c; // given as input
double x0 = -a * c / (a * a + b * b);
double y0 = -b * c / (a * a + b * b);
if (c * c > r * r * (a * a + b * b) + EPS) {
  puts ("no points");
else if (abs (c *c - r * r * (a * a + b * b)) < EPS)
  puts ("1 point");
  cout << x0 << ' ' << y0 << '\n';
} else {
  double d = r * r - c * c / (a * a + b * b);
  double mult = sgrt (d / (a * a + b * b));
  double ax, ay, bx, by;
  ax = x0 + b * mult;
 bx = x0 - b * mult;
  ay = y0 - a * mult;
  by = y0 + a * mult;
  puts ("2 points");
  cout << ax << ' ' << ay << '\n' << bx << ' ' << by <<
     '\n';
```

3.2 Convex Hull

```
struct pt {
  double x, y;
```

```
};
11 orientation(pt a, pt b, pt c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x
      * (a.y - b.y);
  if (v < 0) {
    return -1;
  } else if (v > 0) {
    return +1;
  return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
  11 o = orientation(a, b, c);
  return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) {
  return orientation(a, b, c) == 0;
void convex_hull(vector<pt>& a, bool include_collinear =
    false) {
  pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b)
     ) {
    return make pair(a.y, a.x) < make pair(b.y, b.x);</pre>
  });
  sort(a.begin(), a.end(), [&p0](const pt& a, const pt&
     b) {
    11 o = orientation(p0, a, b);
    if (o == 0) {
      return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.y)
         * (p0.y - a.y)
           < (p0.x - b.x) * (p0.x - b.x) + (p0.y - b.y)
               * (p0.y - b.y);
    return o < 0;</pre>
  });
  if (include collinear) {
    11 i = (11) a.size()-1;
    while (i \ge 0 \&\& collinear(p0, a[i], a.back())) i--;
    reverse(a.begin()+i+1, a.end());
  vector<pt> st;
  for (ll i = 0; i < (ll) a.size(); i++) {</pre>
    while (st.size() > 1 && !cw(st[st.size() - 2], st.
       back(), a[i], include_collinear)) {
      st.pop_back();
    st.push_back(a[i]);
  a = st;
```

3.3 Line Sweep

```
const double EPS = 1E-9;
struct pt {
  double x, y;
struct seq {
  pt p, q;
  ll id;
  double get_y (double x) const {
    if (abs(p.x - q.x) < EPS) {
      return p.y;
    return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x);
} ;
bool intersect1d(double 11, double r1, double 12, double
    r2) {
  if (11 > r1) {
    swap(11, r1);
  if (12 > r2) {
    swap(12, r2);
  return max(11, 12) <= min(r1, r2) + EPS;
11 vec(const pt& a, const pt& b, const pt& c) {
  double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (
     c.x - a.x);
  return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;
bool intersect(const seg& a, const seg& b) {
  return intersect1d(a.p.x, a.q.x, b.p.x, b.q.x) &&
         intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
         vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <= 0 &&</pre>
         vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <= 0;
bool operator<(const seg& a, const seg& b) {
    double x = max(min(a.p.x, a.q.x), min(b.p.x, b.q.x))
    return a.get_y(x) < b.get_y(x) - EPS;</pre>
struct event {
  double x;
  ll tp, id;
  event() {}
  event (double x, ll tp, ll id) : x(x), tp(tp), id(id)
     { }
  bool operator<(const event& e) const {</pre>
```

```
if (abs(x - e.x) > EPS) {
      return x < e.x;
    return tp > e.tp;
 }
};
set<seg> s;
vector<set<seq>::iterator> where;
set<seg>::iterator prev(set<seg>::iterator it) {
  return it == s.begin() ? s.end() : --it;
set<seg>::iterator next(set<seg>::iterator it) {
  return ++it;
pair<11, 11> solve(const vector<seg>& a) {
 11 n = (11) a.size();
 vector<event> e;
  for (11 i = 0; i < n; ++i) {
    e.push_back(event(min(a[i].p.x, a[i].q.x), +1, i));
    e.push_back(event(max(a[i].p.x, a[i].q.x), -1, i));
  sort(e.begin(), e.end());
  s.clear();
  where.resize(a.size());
  for (size_t i = 0; i < e.size(); ++i) {</pre>
   ll id = e[i].id;
    if (e[i].tp == +1) {
      set<seg>::iterator nxt = s.lower_bound(a[id]), prv
          = prev(nxt);
      if (nxt != s.end() && intersect(*nxt, a[id])) {
        return make pair (nxt->id, id);
      if (prv != s.end() && intersect(*prv, a[id])) {
        return make pair (prv->id, id);
      where[id] = s.insert(nxt, a[id]);
    } else {
      set<seg>::iterator nxt = next(where[id]), prv =
         prev(where[id]);
      if (nxt != s.end() && prv != s.end() && intersect
         (*nxt, *prv)) {
        return make pair(prv->id, nxt->id);
      s.erase(where[id]);
  return make pair (-1, -1);
```

3.4 Nearest Points

```
struct pt {
  11 x, y, id;
};
struct cmp x {
  bool operator()(const pt & a, const pt & b) const {
    return a.x < b.x || (a.x == b.x && a.y < b.y);
};
struct cmp_y {
  bool operator()(const pt & a, const pt & b) const {
    return a.y < b.y;</pre>
};
11 n;
vector<pt> a;
double mindist;
pair<11, 11> best_pair;
void upd ans(const pt & a, const pt & b) {
  double dist = sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.x)
     b.y) * (a.y - b.y));
  if (dist < mindist) {</pre>
    mindist = dist;
    best_pair = {a.id, b.id};
vector<pt> t;
void rec(ll l, ll r) {
  if (r - 1 \le 3) {
    for (ll i = 1; i < r; ++i) {
      for (11 j = i + 1; j < r; ++j) {
        upd_ans(a[i], a[j]);
    sort(a.begin() + 1, a.begin() + r, cmp_y());
    return;
  11 m = (1 + r) >> 1, midx = a[m].x;
  rec(1, m);
  rec(m, r);
  merge(a.begin() + l, a.begin() + m, a.begin() + m, a.
     begin() + r, t.begin(), cmp_y();
  copy(t.begin(), t.begin() + r - l, a.begin() + l);
  11 tsz = 0;
  for (11 i = 1; i < r; ++i) {
    if (abs(a[i].x - midx) < mindist) {</pre>
      for (11 \dot{j} = tsz - 1; \dot{j} >= 0 && a[i].y - t[\dot{j}].y <
         mindist; --j) {
```

```
upd_ans(a[i], t[j]);
}
    t[tsz++] = a[i];
}
}
t.resize(n);
sort(a.begin(), a.end(), cmp_x());
mindist = 1E20;
rec(0, n);
```

4 Graph Theory

4.1 Articulation Point

```
void APUtil(vector<vector<11>> &adj, ll u, vector<bool>
   &visited.
vector<ll> &disc, vector<ll> &low, ll &time, ll parent,
   vector<bool> &isAP) {
  11 \text{ children} = 0;
  visited[u] = true;
  disc[u] = low[u] = ++time;
  for (auto v : adj[u]) {
    if (!visited[v]) {
      children++;
      APUtil(adj, v, visited, disc, low, time, u, isAP);
      low[u] = min(low[u], low[v]);
      if (parent !=-1 \&\& low[v] >= disc[u]) {
        isAP[u] = true;
    } else if (v != parent) {
      low[u] = min(low[u], disc[v]);
    }
  if (parent == -1 && children > 1) {
    isAP[u] = true;
void AP(vector<vector<ll>>> &adj, ll n) {
  vector<ll> disc(n), low(n);
  vector<bool> visited(n), isAP(n);
  11 time = 0, par = -1;
  for (11 u = 0; u < n; u++) {
    if (!visited[u]) {
      APUtil(adj, u, visited, disc, low, time, par, isAP
         );
  for (11 u = 0; u < n; u++) {
```

```
if (isAP[u]) {
    cout << u << " ";
    }
}</pre>
```

4.2 Bellman Ford

```
void bellman ford(vector<vector<ll>> &edges, ll n, ll m,
    ll src, vector<ll> &dis) {
  for (ll i = 0; i < n; i++) {
    dis[i] = INF;
  for (11 i = 0; i < n - 1; i++) {
    for (11 j = 0; j < m; j++) {
      ll\ u = edges[j][0],\ v = edges[j][1],\ w = edges[j]
         1[2];
      if (dis[u] < INF) {</pre>
        dis[v] = min(dis[v], dis[u] + w);
  for (11 i = 0; i < m; i++) {
    ll u = edges[i][0], v = edges[i][1], w = edges[i]
       1[2];
    if (dis[u] < INF && dis[u] + w < dis[v]) {</pre>
      cout << "The graph contains a negative cycle." <<</pre>
          '\n';
```

4.3 Bridge

```
void bridge_util(vector<vector<1l>> &adj, ll u, vector<
   bool> &visited, vector<1l> &disc, vector<1l> &low,
   vector<1l> &parent) {
   static ll time = 0;
   visited[u] = true;
   disc[u] = low[u] = ++time;
   list<1l>::iterator i;
   for (auto v : adj[u]) {
      if (!visited[v]) {
        parent[v] = u;
        bridge_util(adj, v, visited, disc, low, parent);
      low[u] = min(low[u], low[v]);
      if (low[v] > disc[u]) {
        cout << u << ' ' << v << '\n';
    }
}</pre>
```

```
}
    else if (v != parent[u]) {
        low[u] = min(low[u], disc[v]);
    }
}

void bridge(vector<vector<ll>> &adj, ll n) {
    vector<bool> visited(n, false);
    vector<ll> disc(n), low(n), parent(n, -1);
    for (ll i = 0; i < n; i++) {
        if (!visited[i]) {
            bridge_util(adj, i, visited, disc, low, parent);
        }
    }
}</pre>
```

4.4 Dijkstra

```
void dijkstra(ll n, vector<vector<pair<ll, ll>>> &adj,
   vector<ll> &dis) {
  priority_queue<pair<11, 11>, vector<pair<11, 11>>,
     greater<pair<11, 11>>> pq;
  for (int i = 0; i < n; i++) {
    dis[i] = INF;
  dis[0] = 0;
  pq.push({0, 0});
  while (!pq.empty()) {
    auto p = pq.top();
    pq.pop();
    11 u = p.second;
    if (dis[u] != p.first) {
      continue;
    for (auto x : adj[u]) {
     ll v = x.first, w = x.second;
      if (dis[v] > dis[u] + w) {
        dis[v] = dis[u] + w;
        pq.push({dis[v], v});
```

4.5 Find Cycle

```
bool dfs(ll v) {
  color[v] = 1;
```

```
for (ll u : adj[v]) {
    if (color[u] == 0) {
      parent[u] = v;
      if (dfs(u)) {
        return true;
    } else if (color[u] == 1) {
      cycle end = v;
      cycle_start = u;
      return true;
  color[v] = 2;
  return false;
void find cycle() {
  color.assign(n, 0);
  parent.assign(n, -1);
  cycle_start = -1;
  for (11 v = 0; v < n; v++) {
    if (color[v] == 0 && dfs(v)) {
      break;
    }
  if (cycle start == -1) {
    cout << "Acyclic" << endl;</pre>
  } else {
    vector<ll> cycle;
    cycle.push back(cycle start);
    for (ll v = cycle_end; v != cycle_start; v = parent[
       v]) {
      cycle.push_back(v);
    cycle.push back(cycle start);
    reverse(cycle.begin(), cycle.end());
    cout << "Cycle found: ";</pre>
    for (11 v : cycle) {
      cout << v << ' ';
    cout << '\n';
```

4.6 Floyd Warshall

```
void floyd_warshall(vector<vector<ll>>> &dis, ll n) {
  for (ll i = 0; i < n; i++) {
    for (ll j = 0; j < n; j++) {
      dis[i][j] = (i == j ? 0 : INF);
    }</pre>
```

4.7 Hierholzer

```
void print circuit(vector<vector<ll>> &adj) {
  map<11, 11> edge count;
  for (ll i = 0; i < adj.size(); i++) {</pre>
    edge count[i] = adj[i].size();
  if (!adj.size()) {
    return;
  stack<ll> curr path;
  vector<ll> circuit;
  curr path.push(0);
  11 \text{ curr } v = 0;
  while (!curr_path.empty()) {
    if (edge count[curr v]) {
      curr_path.push(curr_v);
      11 next_v = adj[curr_v].back();
      edge_count[curr_v]--;
      adj[curr_v].pop_back();
      curr_v = next_v;
    } else {
      circuit.push_back(curr_v);
      curr v = curr path.top();
      curr_path.pop();
```

```
for (ll i = circuit.size() - 1; i >= 0; i--) {
   cout << circuit[i] << ' ';
}</pre>
```

4.8 Is Bipartite

```
bool is_bipartite(vector<ll> &col, vector<vector<ll>> &
   adj, 11 n) {
  queue<pair<ll, ll>> q;
  for (ll i = 0; i < n; i++) {
    if (col[i] == -1) {
      q.push(\{i, 0\});
      col[i] = 0;
      while (!q.empty()) {
        pair<11, 11> p = q.front();
        q.pop();
        11 v = p.first, c = p.second;
        for (ll i : adi[v]) {
          if (col[j] == c) {
            return false;
          if (col[j] == -1) {
            col[j] = (c ? 0 : 1);
            q.push({j, col[j]});
  return true;
```

4.9 Is Cyclic

```
bool is_cyclic_util(int u, vector<vector<int>> &adj,
    vector<bool> &vis, vector<bool> &rec) {
    vis[u] = true;
    rec[u] = true;
    for(auto v : adj[u]) {
        if (!vis[v] && is_cyclic_util(v, adj, vis, rec)) {
            return true;
        } else if (rec[v]) {
            return true;
        }
    }
    rec[u] = false;
    return false;
```

```
bool is_cyclic(int n, vector<vector<int>> &adj) {
  vector<bool> vis(n, false), rec(n, false);
  for (int i = 0; i < n; i++) {
    if (!vis[i] && is_cyclic_util(i, adj, vis, rec)) {
      return true;
    }
  }
  return false;
}</pre>
```

4.10 Kahn

```
void kahn(vector<vector<ll>>> &adj) {
  ll n = adj.size();
  vector<ll> in degree(n, 0);
  for (11 u = 0; u < n; u++) {
    for (ll v: adi[u]) {
      in degree[v]++;
  queue<11> q;
  for (11 i = 0; i < n; i++) {</pre>
    if (in degree[i] == 0) {
      q.push(i);
  11 cnt = 0;
  vector<ll> top_order;
  while (!q.empty()) {
    ll u = q.front();
    q.pop();
    top_order.push_back(u);
    for (ll v : adj[u]) {
      if (--in_degree[v] == 0) {
        q.push(v);
      }
    }
    cnt++;
  if (cnt != n) {
    cout << -1 << '\n';
    return;
  for (11 i = 0; i < (11) top_order.size(); i++) {</pre>
    cout << top_order[i] << ' ';</pre>
  cout << '\n';
```

4.11 Kruskal Mst

```
struct Edge {
  ll u, v, weight;
 bool operator<(Edge const& other) {</pre>
    return weight < other.weight;</pre>
};
11 n;
vector<Edge> edges;
11 cost = 0;
vector<ll> tree id(n);
vector<Edge> result;
for (11 i = 0; i < n; i++) {
  tree_id[i] = i;
sort(edges.begin(), edges.end());
for (Edge e : edges) {
  if (tree id[e.u] != tree id[e.v]) {
    cost += e.weight;
    result.push_back(e);
    ll old_id = tree_id[e.u], new_id = tree_id[e.v];
    for (11 i = 0; i < n; i++) {
      if (tree_id[i] == old_id) {
        tree id[i] = new id;
```

4.12 Lowest Common Ancestor

```
struct LCA {
  vector<1l> height, euler, first, segtree;
  vector<bool> visited;
  ll n;
  LCA(vector<vector<1l>> &adj, ll root = 0) {
    n = adj.size();
    height.resize(n);
    first.resize(n);
    euler.reserve(n * 2);
    visited.assign(n, false);
    dfs(adj, root);
    ll m = euler.size();
    segtree.resize(m * 4);
    build(1, 0, m - 1);
}
  void dfs(vector<vector<1l>> &adj, ll node, ll h = 0) {
```

```
visited[node] = true;
    height[node] = h;
    first[node] = euler.size();
    euler.push_back(node);
    for (auto to : adj[node]) {
      if (!visited[to]) {
        dfs(adj, to, h + 1);
        euler.push back(node);
    }
  void build(ll node, ll b, ll e) {
    if (b == e) {
      segtree[node] = euler[b];
    } else {
      11 \text{ mid} = (b + e) / 2;
      build(node << 1, b, mid);</pre>
      build(node << 1 | 1, mid + 1, e);</pre>
      11 l = segtree[node << 1], r = segtree[node << 1 |</pre>
           11;
      segtree[node] = (height[l] < height[r]) ? l : r;</pre>
  11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
    if (b > R | | e < L) {
      return -1;
    if (b >= L && e <= R) {
      return segtree[node];
    11 \text{ mid} = (b + e) >> 1;
    11 left = query(node << 1, b, mid, L, R);</pre>
    11 right = query(node << 1 | 1, mid + 1, e, L, R);</pre>
    if (left == -1) return right;
    if (right == -1) return left;
    return height[left] < height[right] ? left : right;</pre>
  ll lca(ll u, ll v) {
    11 left = first[u], right = first[v];
    if (left > right) {
      swap(left, right);
    return query(1, 0, euler.size() - 1, left, right);
} ;
```

4.13 Maximum Bipartite Matching

```
bool bpm(ll n, ll m, vector<vector<bool>> &bpGraph, ll u
, vector<bool> &seen, vector<ll>> &matchR) {
```

```
for (11 v = 0; v < m; v++) {
    if (bpGraph[u][v] && !seen[v]) {
      seen[v] = true;
      if (matchR[v] < 0 || bpm(n, m, bpGraph, matchR[v],</pre>
           seen, matchR)) {
        matchR[v] = u;
        return true;
  return false;
11 maxBPM(11 n, 11 m, vector<vector<bool>> &bpGraph) {
 vector<ll> matchR(m, -1);
 11 \text{ result} = 0;
  for (11 u = 0; u < n; u++) {
    vector<bool> seen(m, false);
    if (bpm(n, m, bpGraph, u, seen, matchR)) {
      result++;
    }
  return result;
```

4.14 Max Flow

```
bool bfs(ll n, vector<vector<ll>> &r_graph, ll s, ll t,
   vector<ll> &parent) {
  vector<bool> visited(n, false);
  queue<11> q;
  q.push(s);
  visited[s] = true;
  parent[s] = -1;
  while (!q.empty()) {
    11 u = q.front();
    q.pop();
    for (11 \ v = 0; \ v < n; \ v++) {
      if (!visited[v] && r_graph[u][v] > 0) {
        if (v == t) {
          parent[v] = u;
          return true;
        q.push(v);
        parent[v] = u;
        visited[v] = true;
  return false;
```

```
11 fordFulkerson(ll n, vector<vector<ll>> graph, ll s,
   11 t) {
  11 u, v;
  vector<vector<ll>> r_graph;
  for (u = 0; u < n; u++) {
    for (v = 0; v < n; v++) {
      r_{graph}[u][v] = graph[u][v];
  vector<ll> parent;
  11 \text{ max flow} = 0;
  while (bfs(n, r_graph, s, t, parent)) {
    11 path flow = INF;
    for (v = t; v != s; v = parent[v]) {
      u = parent[v];
      path_flow = min(path_flow, r_graph[u][v]);
    for (v = t; v != s; v = parent[v]) {
     u = parent[v];
      r_graph[u][v] -= path_flow;
      r_graph[v][u] += path_flow;
    max_flow += path_flow;
  return max flow;
```

4.15 Prim Mst.

```
vector<ll> prim_mst(ll n, vector<vector<pair<ll, ll>>> &
   adj) {
  priority_queue<pair<11, 11>, vector<pair<11, 11>>,
     greater<pair<11, 11>>> pq;
  11 \text{ src} = 0;
  vector<ll> key(n, INF), parent(n, -1);
  vector<bool> in_mst(n, false);
  pq.push(make_pair(0, src));
  kev[src] = 0;
  while (!pq.empty()) {
   11 u = pq.top().second;
    pq.pop();
    if (in_mst[u]) {
      continue;
    in_mst[u] = true;
    for (auto p : adj[u]) {
      ll v = p.first, w = p.second;
      if (in_mst[v] == false && w < key[v]) {</pre>
        key[v] = w;
        pq.push(make_pair(key[v], v));
```

```
parent[v] = u;
}
}
return parent;
}
```

4.16 Strongly Connected Component

```
void dfs(ll u, vector<vector<ll>> &adj, vector<bool> &
   visited) {
 visited[u] = true;
  cout << u + 1 << ' ';
  for (ll v : adi[u]) {
    if (!visited[v]) {
      dfs(v, adj, visited);
vector<vector<ll>> get transpose(ll n, vector<vector<ll</pre>
   >> &adi) {
  vector<vector<ll>> res(n);
  for (11 u = 0; u < n; u++) {
    for (ll v : adj[u]) {
      res[v].push_back(u);
  return res;
void fill_order(ll u, vector<vector<ll>> &adj, vector<</pre>
   bool> &visited, stack<ll> &stk) {
  visited[u] = true;
  for(auto v : adj[u]) {
    if(!visited[v]) {
      fill_order(v, adj, visited, stk);
  stk.push(u);
void get_scc(ll n, vector<vector<ll>> &adj) {
  stack<ll> stk;
  vector<bool> visited(n, false);
  for (ll i = 0; i < n; i++) {
    if (!visited[i]) {
      fill_order(i, adj, visited, stk);
    }
  vector<vector<ll>>> transpose = get_transpose(n, adj);
  for (11 i = 0; i < n; i++) {
    visited[i] = false;
```

```
}
while (!stk.empty()) {
    ll u = stk.top();
    stk.pop();
    if (!visited[u]) {
        dfs(u, transpose, visited);
        cout << '\n';
    }
}</pre>
```

4.17 Topological Sort

```
void dfs(ll v) {
    visited[v] = true;
    for (ll u : adj[v]) {
        if (!visited[u]) {
            dfs(u);
        }
    }
    ans.push_back(v);
}

void topological_sort() {
    visited.assign(n, false);
    ans.clear();
    for (ll i = 0; i < n; ++i) {
        if (!visited[i]) {
            dfs(i);
        }
    }
    reverse(ans.begin(), ans.end());
}</pre>
```

5 Miscellaneous

5.1 Gauss

```
if (abs (a[sel][col]) < EPS) {</pre>
    continue;
 for (ll i = col; i <= m; ++i) {
    swap(a[sel][i], a[row][i]);
 where [col] = row;
 for (11 i = 0; i < n; ++i) {
    if (i != row) {
      double c = a[i][col] / a[row][col];
      for (ll j = col; j <= m; ++j) {
        a[i][j] -= a[row][j] * c;
  ++row;
ans.assign(m, 0);
for (11 i = 0; i < m; ++i) {
 if (where[i] != -1) {
    ans[i] = a[where[i]][m] / a[where[i]][i];
for (11 i = 0; i < n; ++i) {
  double sum = 0;
  for (11 j = 0; j < m; ++j) {
    sum += ans[j] * a[i][j];
  if (abs (sum - a[i][m]) > EPS) {
    return 0;
for (ll i = 0; i < m; ++i) {
 if (where [i] == -1) {
    return INF;
return 1;
```

5.2 Ternary Search

```
double ternary_search(double 1, double r) {
  double eps = 1e-9;
  while (r - 1 > eps) {
    double m1 = 1 + (r - 1) / 3;
    double m2 = r - (r - 1) / 3;
    double f1 = f(m1);
```

```
double f2 = f(m2);
if (f1 < f2) {
    1 = m1;
} else {
    r = m2;
}
return f(1);
}</pre>
```

6 Number Theory

6.1 Extended Euclidean

```
1l gcd_extended(ll a, ll b, ll &x, ll &y) {
   if (b == 0) {
      x = 1;
      y = 0;
      return a;
   }
   ll x1, y1, g = gcd_extended(b, a % b, x1, y1);
   x = y1;
   y = x1 - (a / b) * y1;
   return g;
}
```

6.2 Find All Solutions

```
11 find_all_solutions(ll a, ll b, ll c, ll minx, ll maxx
   , ll miny, ll maxy) {
  11 x, y, q;
  if (!find_any_solution(a, b, c, x, y, g)) {
    return 0;
  a /= q;
  b /= q;
  11 \text{ sign}_a = a > 0 ? +1 : -1;
  shift_solution(x, y, a, b, (minx - x) / b);
  if (x < minx) {
    shift_solution(x, y, a, b, sign_b);
  if (x > maxx) {
    return 0;
  11 1x1 = x;
  shift_solution(x, y, a, b, (maxx - x) / b);
  if (x > maxx) {
    shift_solution(x, y, a, b, -sign_b);
  11 rx1 = x;
  shift_solution(x, y, a, b, -(miny - y) / a);
  if (y < miny) {
    shift_solution(x, y, a, b, -sign_a);
  if (y > maxy) {
    return 0;
  11 \ 1x2 = x;
  shift_solution(x, y, a, b, -(maxy - y) / a);
  if (y > maxy) {
    shift_solution(x, y, a, b, sign_a);
  11 \text{ rx2} = x;
  if (1x2 > rx2) {
    swap(1x2, rx2);
  11 1x = max(1x1, 1x2), rx = min(rx1, rx2);
  if (lx > rx) {
    return 0;
  return (rx - lx) / abs(b) + 1;
```

6.3 Linear Sieve

void linear_sieve(ll N, vector<ll> &lowest_prime, vector

```
<1l> &prime) {
for (ll i = 2; i <= N; i++) {
   if (lowest_prime[i] == 0) {
     lowest_prime[i] = i;
     prime.push_back(i);
   }
   for (ll j = 0; i * prime[j] <= N; j++) {
     lowest_prime[i * prime[j]] = prime[j];
     if (prime[j] == lowest_prime[i]) {
        break;
     }
   }
}</pre>
```

6.4 Miller Rabin

```
bool check_composite(u64 n, u64 a, u64 d, 11 s) {
  u64 x = binpower(a, d, n);
  if (x == 1 | | x == n - 1)  {
    return false:
  for (ll r = 1; r < s; r++) {
    x = (u128) x * x % n;
    if (x == n - 1) {
      return false;
  return true;
bool miller_rabin(u64 n) {
  if (n < 2) {
    return false;
  11 r = 0;
  u64 d = n - 1;
  while ((d \& 1) == 0) {
    d >>= 1;
    <u>r</u>++;
  for (11 a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
     37}) {
    if (n == a) {
      return true;
    if (check_composite(n, a, d, r)) {
      return false;
    }
  return true;
```

6.5 Modulo Inverse

```
11 mod_inv(ll a, ll m) {
   if (m == 1) {
      return 0;
   }
   ll m0 = m, x = 1, y = 0;
   while (a > 1) {
      ll q = a / m, t = m;
      m = a % m;
      a = t;
      t = y;
      y = x - q * y;
      x = t;
   }
   if (x < 0) {
      x += m0;
   }
   return x;
}</pre>
```

6.6 Pollard Rho Brent

```
11 mult(11 a, 11 b, 11 mod) {
  return ( int128 t) a * b % mod;
11 f(11 x, 11 c, 11 mod) {
  return (mult(x, x, mod) + c) % mod;
ll pollard rho brent(ll n, ll x0 = 2, ll c = 1) {
  11 x = x0, g = 1, q = 1, xs, y, m = 128, l = 1;
  while (q == 1) {
    v = x;
    for (11 i = 1; i < 1; i++) {
      x = f(x, c, n);
    11 k = 0;
    while (k < 1 \&\& q == 1) {
      xs = x;
      for (ll i = 0; i < m && i < l - k; i++) {
        x = f(x, c, n);
        q = mult(q, abs(y - x), n);
      g = \underline{gcd}(q, n);
      k += m;
```

```
1 *= 2;
}
if (g == n) {
    do {
        xs = f(xs, c, n);
        g = __gcd(abs(xs - y), n);
    } while (g == 1);
}
return g;
}
```

6.7 Range Sieve

```
vector<bool> range_sieve(ll l, ll r) {
  ll n = sqrt(r);
  vector<bool> is_prime(n + 1, true);
  vector<ll> prime;
  is_prime[0] = is_prime[1] = false;
  prime.push back(2);
  for (11 i = 4; i \le n; i += 2) {
    is_prime[i] = false;
  for (11 i = 3; i \le n; i += 2) {
    if (is_prime[i]) {
      prime.push back(i);
      for (11 \ j = i * i; \ j <= n; \ j += i)
        is prime[j] = false;
    }
  vector<bool> result(r - 1 + 1, true);
  for (ll i : prime) {
    for (11 j = max(i * i, (1 + i - 1) / i * i); j <= r;
        i += i) {
      result[j - l] = false;
  if (1 == 1) {
    result[0] = false;
  return result;
```

6.8 Segmented Sieve

```
vector<1l> segmented_sieve(ll n) {
  const ll S = 10000;
  ll nsqrt = sqrt(n);
```

```
vector<char> is_prime(nsqrt + 1, true);
vector<ll> prime;
is prime[0] = is prime[1] = false;
prime.push_back(2);
for (11 i = 4; i \le nsqrt; i += 2) {
  is prime[i] = false;
for (11 i = 3; i <= nsgrt; i += 2) {
  if (is_prime[i]) {
    prime.push back(i);
    for (11 j = i * i; j \le nsqrt; j += i) {
      is_prime[j] = false;
 }
}
vector<ll> result;
vector<char> block(S);
for (11 k = 0; k * S <= n; k++) {
  fill(block.begin(), block.end(), true);
  for (ll p : prime) {
    for (ll j = max((k * S + p - 1) / p, p) * p - k *
       S; j < S; j += p) {
      block[j] = false;
  if (k == 0) {
    block[0] = block[1] = false;
  for (ll i = 0; i < S && k * S + i <= n; i++) {
    if (block[i]) {
      result.push back(k * S + i);
return result;
```

6.9 Tonelli Shanks

```
1l legendre(ll a, ll p) {
    return bin_pow_mod(a, (p - 1) / 2, p);
}
1l tonelli_shanks(ll n, ll p) {
    if (legendre(n, p) == p - 1) {
        return -1;
    }
    if (p % 4 == 3) {
        return bin_pow_mod(n, (p + 1) / 4, p);
    }
    ll Q = p - 1, S = 0;
```

```
while (Q % 2 == 0) {
 Q /= 2;
 S++;
11 z = 2;
for (; z < p; z++) {
 if (legendre(z, p) == p - 1) {
   break;
Q, p), R = bin_pow_mod(n, (Q + 1) / 2, p);
while (t % p != 1) {
 if (t % p == 0) {
   return 0;
 11 i = 1, t2 = t * t % p;
 for (; i < M; i++) {
  if (t2 % p == 1) {
     break;
   t2 = t2 * t2 % p;
 ll b = bin_pow_mod(c, bin_pow_mod(2, M - i - 1, p),
    p);
 M = i;
 c = b * b % p;
 t = t * c % p;
 R = R * b % p;
return R;
```

7 Strings

7.1 Hashing

```
11 compute_hash(string const& s) {
  const 11 p = 31, m = 1e9 + 9;
  11 hash_value = 0, p_pow = 1;
  for (char c : s) {
    hash_value = (hash_value + (c - 'a' + 1) * p_pow) %
          m;
    p_pow = (p_pow * p) % m;
  }
  return hash_value;
}
```

7.2 Knuth Morris Pratt

7.3 Rabin Karp

```
vector<ll> rabin karp(string const& s, string const& t)
  const 11 p = 31, m = 1e9 + 9;
  11 S = s.size(), T = t.size();
  vector<ll> p pow(max(S, T));
  p pow[0] = 1;
  for (ll i = 1; i < (ll) p_pow.size(); i++) {</pre>
    p_pow[i] = (p_pow[i-1] * p) % m;
  vector<ll> h(T + 1, 0);
  for (11 i = 0; i < T; i++) {
    h[i + 1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m;
  11 h_s = 0;
  for (ll i = 0; i < S; i++) {
    h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m;
  vector<ll> occurences;
  for (11 i = 0; i + S - 1 < T; i++) {
   11 \text{ cur } h = (h[i + S] + m - h[i]) \% m;
    if (cur_h == h_s * p_pow[i] % m) {
      occurences.push_back(i);
    }
  return occurences;
```

7.4 Suffix Array

```
vector<ll> sort cyclic shifts(string const& s) {
  ll n = s.size();
  const 11 alphabet = 256;
  vector<ll> p(n), c(n), cnt(max(alphabet, n), 0);
  for (ll i = 0; i < n; i++) {
    cnt[s[i]]++;
  for (ll i = 1; i < alphabet; i++) {</pre>
    cnt[i] += cnt[i - 1];
  for (ll i = 0; i < n; i++) {
    p[--cnt[s[i]]] = i;
  }
  c[p[0]] = 0;
  ll classes = 1;
  for (ll i = 1; i < n; i++) {
    if (s[p[i]]] != s[p[i - 1]]) {
      classes++;
    c[p[i]] = classes - 1;
  vector<ll> pn(n), cn(n);
  for (11 h = 0; (1 << h) < n; ++h)
    for (ll i = 0; i < n; i++) {</pre>
      pn[i] = p[i] - (1 << h);
      if (pn[i] < 0) {
        pn[i] += n;
    fill(cnt.begin(), cnt.begin() + classes, 0);
    for (ll i = 0; i < n; i++) {
      cnt[c[pn[i]]]++;
    for (ll i = 1; i < classes; i++) {</pre>
      cnt[i] += cnt[i - 1];
    for (ll i = n-1; i >= 0; i--) {
      p[--cnt[c[pn[i]]]] = pn[i];
    cn[p[0]] = 0;
```

```
classes = 1;
    for (ll i = 1; i < n; i++) {</pre>
      pair < ll, ll > cur = {c[p[i]], c[(p[i] + (1 << h)) %}
          n]};
      pair < 11, 11 > prev = \{c[p[i-1]], c[(p[i-1] + (1
           << h)) % n]};
      if (cur != prev) {
        ++classes;
      cn[p[i]] = classes - 1;
    c.swap(cn);
  return p;
vector<ll> build_suff_arr(string s) {
  s += (char) 0;
  vector<ll> sorted shifts = sort cyclic shifts(s);
  sorted_shifts.erase(sorted_shifts.begin());
  return sorted shifts;
```

7.5 Z Function

```
vector<ll> z_function(string s) {
    ll n = (ll) s.length();
    vector<ll> z(n);
    for (ll i = 1, l = 0, r = 0; i < n; ++i) {
        if (i <= r) {
            z[i] = min (r - i + 1, z[i - 1]);
        }
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
            ++z[i];
        }
        if (i + z[i] - 1 > r) {
            l = i, r = i + z[i] - 1;
        }
    }
    return z;
}
```

<u> </u>		
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $n = n + 1 =$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an <i>n</i> element set into <i>k</i> cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)^n$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \ \binom{n}{n-1}$	
$22. \ \left\langle \begin{matrix} n \\ 0 \end{matrix} \right\rangle = \left\langle \begin{matrix} n \\ n \end{matrix} \right\rangle$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,
25. $\left\langle {0\atop k}\right\rangle = \left\{ {1\atop 0}\right\}$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
28. $x^n = \sum_{k=0}^n \binom{n}{k}$	$\left. \left\langle {x+k \atop n} \right\rangle, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^m$	
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,
$34. \; \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n-1}{k}$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{n} \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \!\! \binom{x+n-1-k}{2n},$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$

The Chinese remainder theorem: There exists a number C such that:

$$C \equiv r_1 \bmod m_1$$

: : :

$$C \equiv r_n \bmod m_n$$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b$$
.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

-	`	0		
				ns

Loop An edge connecting a vertex to itself.

Directed Each edge has a direction. SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

connected ComponentA maximal subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$ $\delta(G)$ Minimum degree

 $\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number

 G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)y = mx + b(m, -1, b)x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

 $\lim \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2 x^2 + c^3 x^3 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$x^k \frac{dx^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{13}x^5 - \frac{1}{71}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{i}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i+1} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{1}{i},$$

$$\frac{x}{1-x} = x^2 + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

$$\frac{x}{1-x} = x^2 + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker