MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC-27001-2005 Certified) SUMMER- 13 EXAMINATION

Subject Code: 12043 Model Answer

Q. No.	Answer	Marks
1 a)	Elasticity :-it is the property of a material by virtue of which it regains its original size & shape after deformation, when the loads causing deformation are removed.	1 M
	Plasticity: - the plasticity of a material is the ability to change its shape without destruction under the action of external loads & to regain the shape given to it when the forces are removed	1 M
b)	Data :- L= 500mm, d=22mm, δ L=1.2mm, P=105KN=105 x 10 ³ N.	
	To find :- i) σ ii) e iii) E	
	Solution :- i) Stress $\sigma = P/A = (105X10^3)/((\pi/4)x22^2) = 276.22N/mm^2$	1/2 M
	ii) Strain $e = \delta L/L = 1.2/500 = 0.0024$	1/2 M
	iii) Modulus of elasticity , $E = \sigma/e = 276.22/0.0024 = 11509167 \text{ N/mm}^2$	1 M
	Answer:- i) $\sigma = 276.22 \text{N/mm}^2$ ii) $e = 0.0024$ iii) $E = 11509167 \text{ N/mm}^2$	
c)	Simply supported beam: a beam which is freely supported on the wall or column its both the ends is called as a simply supported beam.	1/2 M Each
	$\stackrel{\mathbf{A}}{\longleftarrow} \stackrel{\mathbf{B}}{\longleftarrow}$	(any four)
	2. Cantilever Beam : a beam fixed at one end & free at the other is called as cantilever beam	
	A L B	
	3. Overhanging Beam : if the end portion of the beam extend beyond the support called as an overhanging beam. a beam may be overhanging on one side or both side.	
	<u>↑</u>	
	i) overhanging at ii) overhanging on iii) overhanging on right side both side left side	

4. **Fixed beam**: A beam whose both the ends are rigidly fixed in wall is called fixed beam, constrained beam, built-in beam or an encastre beam.

5. Continuous beam: - a beam which is supported on more than two supports (i.e. a three support) is called continuous beam. The end support of a beam may be simply supported or fixed.

i) two span continuous beam

ii) Three span continuous beam

A simply supported beam of span L carrying a U.D.L w/unit length over the entire span as shown in fig.

Parallel Axis Theorem.

D

e

It states that "The moment of inertia of a plane section about any axis parallel to the centroidal axis is equal to the moment of inertia of the section about the centroidal axis plus

1 M

1 M

2 M

	the product of the area of the section and the square of the distance between the two axes."	
	Figure of the state of the square of the state of the sta	
f	Polar moment of inertia	
	"The moment of inertia of a plane area about an axis perpendicular to the plane of figure is	1 M
	called as Polar moment of inertia with respect to point, where the axis intersects the plane."	
	$I_p = I_{xx} + I_{yy} = \frac{\pi}{64} D^4 + \frac{\pi}{64} D^4 = 2 \times \frac{\pi}{64} D^4 = \frac{\pi}{22} D^4$	
	For a hollow circular shaft of external diameter 'D' and internal diameter 'd',	1 M
	$I_p = I_{xx} + I_{yy} = \frac{\pi}{64} (D^4 - d^4) + \frac{\pi}{64} (D^4 - d^4) = 2x \frac{\pi}{64} (D^4 - d^4) = \frac{\pi}{32} (D^4 - d^4)$	
g	Section Modulus: It is the ratio of mi of the section about the neutral axis & the distance of	
	the most extreme layer from the neutral axis.	
	The flexural formula $\frac{M}{I} = \frac{\sigma}{y}$, Can be written as $m = \sigma \times \frac{I}{y} = \sigma \times Z$	
	Where $Z = \frac{I}{y}$ is called as modulus of section or section modulus.	135
	Z_{XX} = Section modulus about X-X axis = I_{xx}/y_{max}	1 M
	Z_{YY} = Section modulus about Y-Y axis = I_{yy}/y_{max}	
	Neutral Axis: Neutral layer or neutral surface. The intersection of neutral layer with any normal cross section of a beam is called neutral axis (N.A.) All the layers above the neutral axis are under compression while those below the neutral axis are under tension. Hence the compressive stresses are developed in the layers above the N.A. there is no stress of any kind i.e. the bending stress at the N.A. is Zero	1 M
h	Single shear stress = shear load/area subjected to shear = $P/(\pi/4 \times d^2)$	½ M
	Double shear stress = shear load/area subjected to shear = $P/2(\pi/4 \times d^2)$	½ M
	Plane of failure Fig. : Single shear failure of lap joint	1 /2 M
	Planes of failure Pig. Double shear failure of butt joint	1 /2
i	Ecentric Loading : A load whose line of action does not coincide with the axis of a member is called an eccentric load. The distance between the geometric axis of the body and the point of loading is called an eccentric limit or limit of eccentricity. It is denoted by 'e'.	1 M

	$e_y=1/E \mathbf{x} (6_y-\mu 6_x)$ $e_y=1/2 \times 10^5 \times ((-200)-(0.25 \times 100))$ $e_y=1.125 \times 10^{-3}$ (compressive)	1 Mark 1 Mark
f)	Given: i) $P=8KN$ ii) $A_{C}=20mm^{2}$ iii) $A_{s}=30mm^{2}$ iv) $E_{C}=1 \times 10^{5}MPa$ v) $E_{s}=20 \times 10^{5}Mpa$	
	$\mathbf{e_s} = \mathbf{e_c}$ $(6_s/E_s) = (6_C/E_C)$ $6_s = ((20 \times 10^5)/(20 \times 10^5)) 6_C$ $\mathbf{6_s} = \mathbf{20 6_C}$	1 Mark
	$P=P_S+P_C$ $P=6_SA_S+6_CA_C$ $8 \times 10^3=20 \ 6_C \ 30+6_C \ 20$ $8 \times 10^3=6206_C$	1 Mark
	$6_{\rm C}$ =(8 x10 ³)/(620) $6_{\rm C}$ =12.90 N/mm ²	1 Mark
	$6_{\rm S}$ =206 _C $6_{\rm S}$ =20 X 12.90 $6_{\rm s}$ =258 N/mm ²	1 Mark
Q-3 a)	Given -: i) P=35KN ii) E=2 x10 ⁵ N/mm ² iii) µ=0.3 iv) b=20mm v) t=15mm vi) L=2000mm	
	To calculate change of length dL=PL/AE =(35 x10 ³ X2000)/(20x15x2x10 ⁵) dL=1.167mm	1 Mark
	To calculate change of thickness and width	TIVIGIK
	e = dL/L = 1.167/2000	

 $e = 5.83 \times 10^{-4}$ change of thickness change of width

 $\begin{array}{ll} dt/t = - \ \mu \ X \ e \\ dt/15 = - \ 0.3 \ X \ 5.83 X 10^{-4} \\ dt = \ 2.62 \ X 10^{-3} \ (decrease) \end{array}$

db= 3.498 X10⁻³ (decrease)

b)

1 Mark 1 Mark

1 Mark

Reaction calculation-

 $\begin{array}{l} \sum Fy = & 0 \\ R_A + R_B = & 12 \\ \sum M_A = & 0 \\ -R_B \ X \ 5 + \ 7 \ X \ 3.5 + 5 \ X \ 1.5 = & 0 \end{array}$

 $R_B = 6.4 \text{ KN}$ $R_A = 5.6 \text{KN}$

S.F Calculation

a) $F_B = -6.4 \text{ KN}$

b) $F_{DR} = -6.4 \text{ KN}$

b) $F_{DL} = 0.6 \text{ KN}$

b) $F_{CR} = 0.6 \text{ KN}$

b) $F_{CL} = 5.6 \text{ KN}$

b) $F_A = 5.6 \text{ KN}$

1 Mark

B.M Calculation

a) $M_B = 0 \text{ KN-m}$

b) $M_D = 9.6 \text{ KN-m}$

b) $M_C = 8.4 \text{ KN-m}$

b) $M_A = 0 \text{ KN-m}$

1 Mark

C)

1 Mark

1 Mark

Reaction calculation-

$$\sum Fy = 0$$

$$R_A+R_B=120$$
i

$$\sum M_A = 0$$

$$-R_B X 3+5 X 2.5+30 X 2+70 X 1(0.5+1)+10X1+5X0.5=0$$

 $R_B = 63.33 \text{ KN}$

 $R_A = 56.67KN$

S.F Calculation

a)
$$F_B = -63.33 \text{ KN}$$

b)
$$F_{FR} = -63.33 \text{ KN}$$

c)
$$F_{FL}$$
= - 58.33 KN

d)
$$F_{ER} = -58.33 \text{ KN}$$

e) F_{EL} = - 28.33 KN f) F_{DR} = 41.67 KN g) $F_{DL} = 51.67 \text{ KN}$ i) $F_{CR} = 51.67 \text{ KN}$ b) $F_{CL} = 56.67 \text{ KN}$ b) $F_A = 56.67 \text{ KN}$ 1 Mark To Locate the point of contashear Fpzc = -63.33 + 5 + 30 + 70(x-1)X = 1.40m**B.M Calculation** a) $M_B = 0 \text{ KN-m}$ b) $M_F = 31.66 \text{ KN-m}$ c) $M_E = 60.83 \text{ KN-m}$ d) $M_D = 54.16 \text{ KN-m}$ e) M_C = 28.325 KN-m f) $M_A = 0$ KN-m g) M_{max} = 72.162 KN-m 1 Mark 3KN IKM 2KN d) d) MAIOI GKM 9KM 7 KN 3KM 1 Mark tre S.F.D OKN-M 6 KN-M 1 Mark 4.5KN-M 34.5KN.4

	S.F Calculation a) $F_B = 3 \text{ KN}$ b) $F_{DR} = 7 \text{ KN}$ c) $F_{DL} = 9 \text{ KN}$ d) $F_{CR} = 9 \text{ KN}$ e) $F_{CL} = 10 \text{ KN}$ f) $F_A = 10 \text{ KN}$	1 Mark
	B.M Calculation a) $M_B = 0$ KN-m b) $M_D = -10$ KN-m c) $M_C = -14.5$ KN-m d) $M_A = -34.5$ KN-m	1 Mark
e)	I KN 2KN 3KN I M O.SM. IM G KN SKN SKN SKN 3KN TVE SSKN-M F Calculation	1 Mark
	a) $F_B = 3 \text{ KN}$ b) $F_{CR} = 3 \text{ KN}$ c) $F_{CL} = 5 \text{ KN}$ d) $F_{BR} = 5 \text{ KN}$	1 Mark

e) F_{BL}=6 KN

f) $F_A = 6 \text{ KN}$

B.M Calculation

a) $M_D = 0$ KN-m

b) $M_C = -3$ KN-m

c) $M_B = -5.5 \text{ KN-m}$

d) $M_A = -11.5 \text{ KN-m}$

1 Mark

1 Mark

1 Mark

f)

Reaction calculation-

$$\sum Fy = 0$$

RA+RB=170

 $\sum M_A = 0$

-RB X 6+50 X 7+20x 6 X 6/2=0

RB= 118.33 KN

RA = 51.67KN

S.F Calculation

- a) $F_c = 3 \text{ KN}$
- b) $F_{BR}=3$ KN
- c) $F_{BL} = 5 \text{ KN}$
- d) $F_A = 5 \text{ KN}$

To locate point of contrashear

$$Fpc = 51.67 - 20 \text{ X}$$

$$X = 2.5835m$$

B.M Calculation

- a) $M_C = 0$ KN-m
- b) $M_B = -50 \text{ KN-m}$
- c) $M_A = 0$ KN-m
- d) M_{max} = 51.67 x 2.5835 20 X 2.5835 x(2.5835/2)

 $M_{max} = 66.749 \text{ KN-m}$

To locate point of contraflexure

 $Mpc = 51.67 X_1 - 20 X_1(X_1/2)$

 $0 = 51.67 X_1 - 10 X_1^2$

 $51.67-10X_1=0$

 $X_1 = 5.167m$

1 Mark

0.4		
Q.4	Given- for a rod of square cross section	
a]	Dimensions- 10mm*10mm so Area=100mm ²	
	L= length of rod=1000mm, E=Young's Modulus=2*10 ⁵ MPA=2*10 ⁵ N/mm ²	
	α = Coefficient of linear expansion = 12*10 ⁻⁶ / 0 C	
	ΔT = Change in temperature=50 $^{\circ}$ C	
	To find- End reactions due to rise in temperature i.e. force	
	Solution- We know that	
	Temperature stress = $E\alpha \Delta T$	1 marks
	$=2*10^5*12*10^{-6}*50$	
	= 120N/mm ² (Compressive in nature)	1 Marks
	Now, Reaction at the end due to rise in temperature	
	$P=\sigma^*A$	
	=120*100= 12000N	2 Marks
Q.4	Moment of Inertia	
b]	It is defined as the algebraic sum of the product of area and the square of its distance from	
i]	the fixed axis. It is also called as the second moment of area. It is denoted by "I" $I = \sum Ah^2$	
	Where A=Area of the cross section	
	h=distance of the centroid of area from the axis to be considered	
	Unit- mm ⁴ , m ⁴ .	1 Marks
	X ₁ X ₂ X ₃ X ₄ X ₄ X ₁ X ₂ X ₃ X ₄ X ₄ X ₁ X ₂ X ₃ X ₄ X ₄ X ₄ X ₁ X ₂ X ₃ X ₄ X ₄ X ₄ X ₄ X ₄ X ₅ X ₄ X ₄ X ₅ X ₄ X ₄ X ₅ X ₄ X ₅ X ₄ X ₅ X ₆ X ₇ X ₇ X ₈	
	o	1 Mark
	Radius of Gyration	
b]-ii]	It is defined as the distance at which area "A" is supposed to be concentrated to give the	
	same moment of inertia. It is denoted by 'K'.	
	$I=Ak^2$	
	$K = \sqrt{\frac{I}{A}}$	
	Where I=M.I. about the axis to be considered.	
	A= Area of the section.	1 Mark
		1 IVIGIN
	K= Radius of gyration	
	Unit-mm, cm, m	
		1 Mark

Q.4 **Given** – for the right angle triangle Base=b=140mm c] Height=h=100mm N= 100 MM 4 **To find-** 1) Moment of inertia about the base. 2) Moment of inertia about the axis passing centroid. Solution- 1) Moment of inertia about the base $I base = \frac{bh3}{12}$ $= (140* 100^3)/12$ $I = 11.67*10^6 \text{mm}^4$ 1 Marks 1 Marks 2) Moment of inertia about the axis passing centroid $I = \frac{bh3}{36}$ $I = (140*100^3)/36$ 1 Marks 1 Marks $I = 3.89 * 10^6 \text{ mm}^4$ **Given-** for the symmetrical I section Q.4 Dimensions- flanges=100mm*10mm, d] Web= 10mm*100mm 120 mm X-100mm 1 Mark 10 mm D 100 mm

B= Width of the	rectangle ABCD=100mm
-----------------	----------------------

H= Height of the rectangle ABCD=120mm

b= width of the shaded rectangle= (100-10) =90mm

h= height of the shaded rectangle= (120-20) = 100mm

To find=Polar moment of inertia of the section.

Solution- as per the given dimensions in order to find the polar moment of inertia we have to use the perpendicular axis theorem

$$I_{ZZ} = I_{XX} + I_{YY}$$

I_{XX}= moment of inertia about the X axis

I_{XX}= I_{XX}+I_{YY}

$$I_{XX} = \text{moment of inertia about the X axis}$$

$$IXX = \left(\frac{BH3}{12}\right) - \left(\frac{bh3}{12}\right)$$

$$= [(100*120^3)/12] - [(90*100^3)/12]$$

$$I_{XX} = 6.9*10^6 \text{ mm}^4$$
ges and web are symmetrical about the Y axis so no need

Flanges and web are symmetrical about the Y axis so no need to apply the parallel axis theorem

$$\begin{split} I_{YY}&=(2*\text{ moment of inertia of the flanges})+\text{M.I. of the web}\\ &=\{2[(10*100^3)/12)]+[(100*10^3)/12]\}\\ I_{YY}&=1.675*10^6\text{ mm}^4 \end{split}$$

Now, let's find the polar moment of inertia i.e. Izz

$$I_{ZZ} = I_{XX} + I_{YY}$$

= $(6.9*10^6) + (1.675*10^6)$
 $I_{ZZ} = 8.575*10^6 \text{mm}^4$

 $I_{ZZ} = 8.575*10^6 \text{mm}^4$

Q.4 **Given-** for the T section

e]

Dimensions-200mm*200mm*20mm

To find- M.I. about the centriodal axis i.e. I_{XX} & I_{YY}

Solution- 1) MI about the X axis

$$\begin{split} &I_{XX} \!\!=\!\! I_{XX1} \!\!+\!\! I_{XX2} \\ &= \{ (I_{G1} \!\!+\!\! A_1 \!h_1^{\ 2}) + (I_{G2} \!\!+\!\! A_2 \!h_2^{\ 2}) \} \\ &I_{G1} \!\!=\! (b_1 \!d_1^{\ 3}) \!/\! 12 \!\!=\! (200 \!\!*\! 20^3) \!/\! 12 \\ &I_{G1} \!\!=\! 133.33 \!\!*\! 10^3 mm^4 \end{split}$$

1 mark

1 Mark

1 Mark

1marks

		1marks
i]	middle third rule of eccentricity.	
Q.5 b]	Limit of eccentricity It is the limit at which the stress is purely compressive in nature. It can be found out by using	1marks
0.5	Due to symmetry about Y axis $h_1=h_2=0$ $I_{YY}=(I_{G1}+I_{G2})$ $=\{[(20*200^3)/12]+[(180*20^3)/12]\}$ $=[(13.33*10^6)+(120*10^3]$ $I_{YY}=13.45*10^6 \text{mm}^4$	1 Mark
	To find the MI about the y axis $I_{YY} = I_{YY1} + I_{YY2} \\ = \{(I_{G1} + A_1h_1^2) + (I_{G2} + A_2h_2^2)\}$	
	$\begin{split} I_{xx} = & \{ (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2) \} \\ &= \{ [(133.33*10^3) + (4000*47.3684^2)] + [(9.72*10^6) + (3600*52.63^2)] \} \\ &= \{ [(133.33*10^3) + (8.957*10^6)] + [(9.72*10^6) + (9.971*10^6) \} \\ &= (9.1083*10^6) + (19.691*10^6) \\ I_{XX} = & 28.7993*10^6 \text{mm}^4 \end{split}$	1 Mark
	$h_1=190-142.63$ =47.36mm $h_2=142.43-90$ =52.63mm	1 Mark
	$Y = (A_1y_1 + A_2y_2)/(A_1 + A_2)$ $= \{ [(4000*190) + (3600*90)]/(4000+3600) \}$ $= \{ [(760*10^3) + (324*10^3)]/(7600) \}$ $= 142.63 mm$	
	$X = x_1 = x_2 = (200/2) = 100 \text{mm}\text{due to symmetry}$ $y_1 = 180 + (20/2) = 190 \text{mm}$ $y_2 = (180/2) = 90 \text{mm}$	
	$A_1=200*20=4000 \text{mm}^2$ $A_2=180*20=3600 \text{mm}^4$ <u>Let's find X & Y</u>	
	$I_{G2} = (b_2 d_2^3)/12 = (20*180^3)/12$ $I_{G2} = 9.72*10^6 \text{mm}^4$	1 mark

Q.5 Eccentric load

b] ii] If the load is acting at the eccentric distance that is at a certain distance from the centriodal axis, then it is called as the eccentric load.

For the eccentric loading the load axis doesn't coincide with the axis of the member. Due to eccentric load the combined stresses are induced in the member.

1 Mark

Axial load-

It is defined as the load whose line of action coincides with the axis of the member, it is also called as the direct load, due to axial load only direct stress induced in the member.

Q.5 Given- for the rectangular column c]

b= width=2000mm d=depth=2000mm e=eccentricity =1000-75=925mm

W=weight= 385kN

To find- the value of eccentric load for the no tension condition

Solution- for the no tension condition

 $\sigma_0 = \sigma_b$

 σ_0 = total direct stress

=direct stress due to own weight+ direct stress due to compression

= (W/A)+(P/A)

A= Area of the section

=(2000*2000)

 $=4*10^6 \text{mm}^2$

 $\sigma_0 = (W/A) + (P/A)$

 $= \{[(385*10^5)/(4*10^6)] + [(P)/(4*10^6)]$

 $=0.096+2.5*10^{-7}P$

 σ_b = Bending stress

 $=M/Z_{XX}$

M= P*e=925P

1 Mark

	Zxx= section modulus about the X axis $= (bd^{2})/6$ $= (2000*2000^{2})/6$ Zxx = 1.333*10 ⁹ mm ³ $\sigma_{b} = (925*P)/(1.333*10^{9})$ $\sigma_{0} = \sigma_{b}$ $(0.096+2.5*10^{-7}P) = (925*P)/(1.333*10^{9})$ $(1.333*10^{9})*(0.096+2.5*10^{-7}P=925*P)$ P=316.35 kN, comparessive in potents] 1 Marks
	P=216.25 kN compressive in nature	1 Marks
Q.5 d]	Given- for a column section w=width=200mm d=t=thickness=150mm P=200kN=200*10 ³ N,e=eccentricity=20mm To find= maximum and minimum stress.	
	Solution=	
	Suny X D=2 comun Gury Gury Gury	
	$\sigma_{\text{MAX}} = \sigma_0 + \sigma_B$ $\sigma_0 = \text{Direct stress} = P/A$ $= (200*10^3)/(200*150)$ $= 6.66 \text{N/mm}^2$	1 Mark
	M= Bending moment about the Y axis = $P*e=200*10^3*20$ = 4000*10 ³ N-mm	
	Z= Section modulus about the Y axis $= db^{2}/6$ $= (150*200^{2})/(6)$ $= 1*10^{6} \text{ mm}^{3}$	2 Marks

 $\sigma_{B=}$ bending stress =M/Z =(4000*10³N)/(1*10⁶) $\sigma_{B} = 4N/mm^{2}$ $\sigma_{MAX} = \sigma_{0} + \sigma_{B}$ $\sigma_{MAX} = 6.66 + 4 = 10.66N/mm^{2}$

1 Mark

$$\begin{split} &\sigma_{Mini} = \sigma_0 - \sigma_B \\ &\sigma_{Min} = 6.66 - 4 = 2.66 N/mm^2 \end{split}$$

Q.5 Core of the section

e]

The controlly legated parti

1 Mark

The centrally located portion of a section within the load line falls so as to produce only compressive stress; **it is called as the core of the section**. It is also known as the Kernel of the section.

By using the middle third rule of eccentricity, we can find out the core of the rectangular section, we can find out the limit of eccentricity so as to only produce the compressive stresses.

Let us consider the rectangular section with the width 'b' and the thickness 'd' at the eccentric distance of 'e' as shown

If the load P is acting on the X axis such that it bisect the X axis i.e. bisecting the thickness at the eccentricity of 'e'.

$$\sigma_0$$
= direct stress=P/A
= P/(bd)

$$\sigma_B$$
= bending stress
=M/Z_{yy}=(P*e)/(db²/6)
=(6P*e)/(db²)

1 Mark

```
For the no tension condition
                         P/(bd)=(6P*e)/(db^2)
                         e = b/6
                                                                                                                         1 Mark
                Similarly if the load is acting on the Y axis bisecting the width then we can say that
        e=d/6
                Thus "e" will be at the distance of b/6 to the left as well as the right of y axis and at a distance
        of d/6 upward as well as downward with respect to the X axis. The formed with the (b/3) and (d/3)
        is diagonals as which is situated at the middle third portion of the section of the rectangle giving the
        core of the section.
        Given = for the rectangular rod bent into the C section with the dimensions as
Q.5
f
        b=width=100mm,
        d=thickness=50mm
        P=load acting=40kN=40*10<sup>3</sup>N Acing on the y axis.
        e= eccentricity=40mm
        To find- resultant stresses developed at X-X section.
        Solution=
                                                                                                                         1 Mark
                         \sigma_0= direct stress=P/A
                            = (40*10^3)/(50*100)
                            = 8 \text{ N/mm}^2
                         \sigma_B= bending stress=(My)/I
                         M = Moment = P^*e = 40^*10^3*40
                            = 1.6*10^6 \text{ N-mm}
                         I=(db^2)/6=(50*100^2)/(6)
                          =4.17*10^6 \text{N/mm}^2
                         y = 100/2
                          =50mm
                                                                                                                         2 Mark
                         \sigma_B = (My)/I = (1.6*10^6*50)/(4.17*10^6)
                            = 19.18 \text{ N/mm}^2
             As the rectangular rod is bent into the 'C' section, the tensile stress is considered as positive
        while the compressive stress is considered as negative.
        Resultant stress developed is
                         \sigma_{\text{max}} = \sigma_0 + \sigma_B
                              = 8+19.18=27.18N/mm<sup>2</sup>
                                                                                                                         1 Mark
                         \sigma_{mini} = \sigma_0 - \sigma_B
```

 $= 8-19.18 = -11.18 \text{N/mm}^2$

Q.6 **Given=** for a simply supported beam of rectangular section

b=width of the section=300mm a]

d=depth = 500mm, y=500/2=250mm

L=Span of the beam=4m=4000mm

w=UDL acting over the entire span=10kN/m

1 mark

To find=1) maximum bending stress

To draw- 1) Bending stress distribution diagram

Solution= by using the flexural formulae

$$(M/I)=(\sigma_b/y)$$

$$M_{\text{max}} = (wL^2)/8$$
udl on simply supported beam = $10*(4)^2/(8)$

 $M_{max} = 20*10^6 \text{ N.mm}$

I= MI of the section= $bd^3/12$

 $=(300*500^3)/12$

 $I = 3.125*10^9 \text{ mm}^4$

 $(M/I)=(\sigma_b/y)$

$$(20*10^6)/(3.125*10^9) = (\sigma_b/250)$$

 $\sigma_b = 1.6 \text{N/mm}^2$

1 mark

1 mark

Q.6 b]	Shear stress equation is given by $q = (FA \overline{y})/(Ib)$	1 marks
i]	where, q= shear stress at any section in N/mm ² A= area of the portion above the N-A in mm ²	
	\overline{y} = distance of the centroid of the area considered above the N-A in mm. I = MI about the N-A in mm ⁴	
	b=width of the section above the N-A in mm. $A\overline{y}$ = First moment of area.	1 Marks
Q.6 b] ii]	Shear stress distribution diagram for the circular section	
11]	900	
		1 Marks
	quant = 6 que.	
	720,	
	Twan = 4 gave	
	9 ave = F/1182	1 Mark
	1 7 qve 5 7 11 0 -	
Q.6 c]	Assumptions made in the theory of torsion 1. The shaft should be perfectly straight and uniform in cross section. 2. Material of the shaft is homogeneous and isotropic.	½ marks each.
	3. Circular shaft remains circular after twisting.4. Plane section of the shaft remains plane before and after twisting.	
	5. Twist is uniform along the length of the shaft.	
	6. Maximum shear stress induced in the shaft does not exceed elastic limit.7. Torque is applied on the shaft in the plane perpendicular to the axis of the shaft.	
	8. Shaft is acted upon by pure torsion.9. Shear stress is proportional to the shear strain.	

Q.6	Given- d= diameter of the shaft=40mm	
d]	N= Speed in RPM=200 RPM	
_	τ = Shear stress= 85 N/mm ²	
	To find=power to be transmitted	
		1 Marks
	Solution = The power transmitted by the shaft is given by	
	$P = (2\Pi NT)/60$ in Watts	
	The strength of the shaft is given by	
	$T = (\Pi/16) * \tau * d^3$	
	$= (\Pi/16)*85*40^3$	
	$T = 1.068 * 10^6 \text{ N-mm}$	1 Marks
	$T = 1.068 \times 10^3 \text{ N-m}$	
	$P = (2\Pi * 200 * 1.068 * 10^{3})/60$	
	$P = 22.36*10^3$ Watt	
	P = 22.36 kW.	2 Marks
Q.6	Given= Power (P)=200HP	
e]	=200*735.751 Watts	
_	$P = 147.15 \text{kW} = 147.15 \times 10^3 \text{ Watts}$	
	N=180 RPM	
	$\tau=80 \text{ N/mm}^2$	
	$\emptyset = 1^{\circ} \text{C} = (1*\Pi/180) = 0.01745 \text{ radians}$	
	C= Modulus of rigidity=0.8* 10 ⁵ N/mm ²	
	L= length of the shaft=3m=3000mm	
	To select= suitable diameter of the shaft	
	Solution = 1) Diameter of the shaft on the basis of strength	
	By Torsional formula	1 mark
	$(T/J)=(\tau/R)$	
	T can be found out from the power given	
	$P = (2\Pi NT)/60$	
	$147.15*10^3 = (2\Pi*180*T)/(60)$	
	$T = (7.8065*10^3) \text{ N-m}$	
	$T=7.8065*10^6 \text{ N-mm}$	1 mark
	$(7.8065*10^6)/(\Pi/32*D^4) = (80)/(D/2)$	
	$(7.8065*10^6)/(\Pi/32*D^4) = (160)/(D)$	
	$(7.8065*10^6)/(\Pi/32*D^3) = (160)$	
	D=79.20mm	
		1Marks
	2) Diameter of the shaft on the basis of angle of twist	
	$(T/J)=(G\emptyset/L)$	
	$(7.8065*10^6)/(\Pi/32*D^4) = (0.82*10^5*0.01745)/(3000)$	
	$D^4=166.71*10^6$	
	D= 113.62mm	
	Selecting the larger diameter of two, So the suitable diameter of shaft is 113.62mm	1Marks
<u> </u>	_ ~	

Q.6	Torsional formula	
f]	$\left(\frac{\mathrm{T}}{\mathrm{J}}\right) = \left(\frac{\mathrm{G}\varnothing}{\mathrm{L}}\right) = \left(\frac{\mathrm{\tau}}{\mathrm{R}}\right)$	2 mark
	Where, $T=$ twisting moment in N-mm $J=$ polar $MI=I_{XX}+I_{YY}$ in mm ⁴ $G=$ Modulus of rigidity in N/mm ² .('C' also be used) $\emptyset=$ angle of twist in radian, $\tau=$ maximum Shear stress, $R=$ radius of the shaft in mm $L=$ length of the shaft in mm	2Mortes
	L= length of the shaft in mm	2Marks