预赛专题

力学	1
质点运动学	1
参考系、坐标系、质点	1
位移、速度	1
平面极坐标系中的速度	2
加速度	2
匀加速运动	3
抛体运动	3
匀速圆周运动	3
变速曲线运动	4
相对运动	4
牛顿定律及其应用	5
	5
常见力	6
基本自然力	6
牛顿运动定律的运用	6
非惯性系和惯性力	7
科里奥利力	8
潮汐力	9
动量和角动量	11
冲量与动量定理	11
质点系的动量定理	11
动量守恒定律	12
变质量问题	12
质心	12
质心系	13
质心运动定理	13
两体问题	13
质点的角动量、角动量定理	14

角动量守恒定律	14
质点系的角动量、角动量定理和角动量守恒定理	14
质心系角动量定理	15
功和能	17
功和动能定理	17
一对力的功	17
保守力和势能	18
梯度、电势能求保守力	19
均匀球体的引力	20
势能曲线	21
功能原理和机械能守恒定律	22
有心力场中质点的运动	22
柯尼希定理	24
质心系中的功能原理	24
流体的定常流动	25
伯努利方程	26
刚体的运动	29
一般刚体的运动	29
刚体定轴转动	29
刚体的定轴转动定律	30
转动惯量的计算、	31
刚体定轴转动的角动量定律和角动量守恒定律	32
定轴转动的功能原理	32
刚体的平面运动	33
进动・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
小结	35
振动	37
简谐振动	37
简谐振动合成	40
非自由振动	43
波动	46
简谐波	46

	波的衍射、	反射、	折:	射								٠										50
	波的叠加和	1干涉																				52
	波的多普勒	対效应																				56
	波动方程																					58
热学																						62
分	子动理论和	口温度	相关	<u>.</u>																		62
	微观和宏观	<u>.</u>																				62
	统计规律													•	٠					٠		62
	平衡态和准	静态																	<u>,</u>			63
	理想气体温	标														. /	7.	K		>		64
	理想气体压	强													<							65
	温度的统计	意义													\	X	•					66
	麦克斯韦速	率分布	j律								.,	,	X	7								68
	三种速率.												1									69
	麦克斯韦速	度分布	律						C		X											70
	玻尔兹曼分	布律和	1平:	均	自	由	程	1	,	-)				٠				٠			71
	范氏气体.					,.(9	7							٠					٠		72
	相变			h																		73
	输运过程.		0																			73
热	力学第一定	建律 .		U																		76
	准静态过程	į .	7																			76
	功、热、内)能 .																				76
	热力学第一	·定律																				76
	热容量																					77
	理想气体的																					78
	循环过程.																					79
	卡诺循环.																					79
	制冷机			•																		80
热	力学第二定	建																				81
	自然过程的	方向.									•											81
	热力学第二	定律																				81
	热力学第二	定律的	1微	观	意	义																82

	热力学几率	82
	玻尔兹曼熵公式和熵增加原理	82
	玻尔兹曼分布	83
	混合熵	84
	熵增加原理及熵补偿原理	85
	可逆过程和卡诺定理	85
	热力学温标	86
	克劳修斯熵公式	86
	克劳修斯不等式	87
	温熵图	88
	熵和能量退化	88
	克拉伯龙方程	89
	冰为什么是滑的(固液气相变)	90
电磁	学	91
静	电场	91
	电荷	91
	库仑定律	
	电场和电场强度	92
	点电荷电量及叠加原理	93
	电通量	96
	立体角	96
	静电场的高斯定律的证明	96
	高斯定律和电场线	97
	高斯定律的应用	98
电	岑	99
	静电场的环路定理	99
	电势和叠加原理	99
	电势梯度	101
	电荷系的静电能	102
	常见电荷体系电场分布	103
静	电场中的导体	105
	物质中的电场	105

	导体的静电平衡条件	.105
	有导体时静电场的计算	.107
	导体壳与静电屏蔽	.109
	电容器及电容	.110
静	电场中的电介质	112
	电解质对电场的影响	.112
	极化强度	.113
	极化电荷与极化强度	.113
	电介质的极化规律	.114
	电位移矢量	.115
	有介质时静电场能量	.118
恒	定电流	119
	电流密度	.119
	稳恒电流和稳恒电场	.120
	电动势	.120
	欧姆定律	.122
	电流微观图像	.123
	电容器的充放电(暂态过程)	.124
静	兹场	125
		.125
	磁场和磁感应强度	.125
		.125
		.126
	安培环路定理及其应用	.127
磁	h	129
	带电粒子在磁场中的运动	.129
	霍尔效应	.131
	安培力	.132
	MANIET TO A LIGHT VA 1 NOT A LIGHT VA VE	.133
	汤中的磁介质	
	磁场和磁介质之间的相互作用	
	原子的磁矩	.136

磁介质的磁化	.137
磁化电流	.138
有磁介质时磁化的规律	.139
磁场的界面关系	.140
铁磁性材料	.142
电磁感应	145
法拉第电磁感应定律	.145
电磁感应定律和磁通连续定理的普适性	.146
动生电动势	.146
感生电动势和感生电场假设	.147
涡电流	.148
互感	.148
自感	.149
电阻-电感电路的暂态过程	.149
磁场的能量	.150
电场和磁场的相对性	.151
麦克斯韦方程组和电磁波	152
位移电流假设	.152
麦克斯韦方程组	.152
电磁波	.154
坡印亭矢量 ()	.155
电磁波的动量	.156
光压——辐射压强	.157
光学	158
干涉	158
光波表示与叠加原理	.158
双缝干涉	.159
光源的发光特性	.160
时间相干性	.160
空间相干性	.161
	.162
薄膜干涉	.163

迈克尔逊干涉仪
衍射
衍射现象 惠更斯——菲涅尔原理
单缝的夫琅禾费衍射 斑驳带法
光栅衍射168
光学仪器的分辨本领
X射线的衍射172
偏振
光的偏振状态
起偏和检偏
反射折射及散射光的偏振
双折射
波片
偏振光的干涉
人工双折射
旋光现象
近代物理
狭义相对论
狭义相对论的提出
洛伦兹变换
相对论效应
洛伦兹协变矢量和洛伦兹变换不变量191
相对论速度合成
相对论动力学

头●平面极坐标纸中的速度(1.3) △法一: : Titt) = Mt) - Fit) #at+DB, sr=ar. ++sp.r.p V=F=ki+too △法二: 对Fit)=nt)·ft) ガードチャイ 及分法一比较后有:F=00 么证明: Est-10 07, |01 = 08x1=08 11 P = Sim of = | Sim of | D = Sim of D= 00 同理 6=- Of か速度(1.4) △加速度 平均加速度: △直角坐标系中的加速度 0 = V=F 外月一成点运动轨迹为オニーも、リニーゼ・北京スニーろの其独率、加酸。 解: ドニオディップ・イニーろ・イナーラ ンVスニオニート Vy=リニーンナナン・、V3=17 及图有绳八回座收缩(Vo), 求船靠岸的座房和加速度。 1=-10,12=1250 -', V= s=-Vo /1+12 对块水=次印洞等数: i2+lil=s2+ss ""=0 1 A= S= 0 53 Vo2 女注意正成多公2018的多世级 ③:编小S的基件数

13 展人 4 13.61 △关于 医处布主人: 主义: 相对某一点的土症: Mo=アX产 于星辰人的中东一层点和对底人的力和:文 Moi = Tix Fi Moi = Frix Fi 同时,连原系中: Mo = 元 Fi x Fi 对于重力: Mo = 三 Fi x (mig) = = mir. xg=0 另一方面: Mo = = Tixmig) = = miri / kg = rex(mg) 民人运动年四132 有版心速度: Vc=它=型m疗M 版心加速度: Cc=它=型m;产/M 版心加量: mvc=型户。 又:有: 下=d户ld+、1.约到: 下=mac △理制: 成人多中庭外力和海像性力抵伤了! 在像(性新中: f=m, ai; -f=msai 相加有: miai +mai=D · · · · · · · · · · · · # ac=(miai+miai+miai+miai+miai=0. 智(ai = -mza/M 1 = m, a/M 双电: f=mia 绍子=mimz = na 又由: f=mia 绍子=mimz = na 双侧大幅水平地面上有一层量为M的小平,其上有草樱mil水脚。 的: f=Ma:,有-mg-T=Nix-';T=2不分(min) 放三体修正权对质是修正不对力修正(ing)!!

△理气状态,方程 70 额观方法得到的压强公式:P=3nmv≥ >> P=nkT 纸计方法得到的方均根膜等:V=3kT/m=> P=nkT 女做欢方法即可寻出. ●麦克斯韦速度分布律(19) $\Delta \int |\vec{v}| = \frac{dN\vec{v}}{Nd\vec{v}}$ Ū→ Ū+dī 间隔的各种速度均有: f(v) = g(vx)g(vy) g(v≥)=G(v) 麦克斯韦由统计力学方法给出: $f(\vec{v}) = \frac{dN\vec{v}}{N dV \times dV y dV = 0} = 0$ ⇒ fiv)=G.e: 野⇒速度分布因子, △讨论:由于(1)→f(v)
分布为一张表→取体积元4次v²dv => dNv = (m)1.5. e-mv2. 47. volv 山讨论:单位时间,单位面积上的分子碰壁数。 田小柱往法:对速度为了的分子作小柱体。 3分子数nVxdtdA一对使成为各种可的小柱体. =) nyxdtdA.fivI.dvxdvydvz \[= \int \int \n.vx \left(\frac{m}{2\ki\pi}\right)^{n} \text{e} - \frac{m(v\x^2+v\y^2+n^2)}{2\ki\pi} \dvxdvydvz = In (m 1/5 e - m/x) ZIXT /x d/x = n (m) as kT = n ET 研教分公式 Se-Tudu= 7 => Se-mvys dvys= TikT = 4 N 8 h = 4 hV 处的 BAD PO>>P外, VIT保持不变, 小孔面各RAA, 北 Po→兰Po 时间去t.

=> Sport = - Sot V sAdt => st = 4V ln2x mx

文阁平积极电容器中和脚切各向同性民性电介质, \$14650 的电场.
$\frac{A}{E} = \frac{E_0}{E_0} = \frac{E_0(E_r - 1)E}{E_0}$ $\Rightarrow E = \frac{E_0}{E_0} = \frac{E_0(E_r - 1)E}{E_0} \Rightarrow E = \frac{E_0}{E_0} = \frac{E_0}{E_0}$
及只有专名向同性民性中介质充满整个电场应面太平格成立 女别点电荷周围充满均匀名向同性民性电介质, 书电场.
194: Eo = RO = E = EO-E RO T
有: Q'= PS= E0 (Er-1) E X42R2 => Q' = E0(Er-1) X(Q0 - 4250R2)
$\Rightarrow E_0 - E = (\mathcal{E}_{r-1})E \Rightarrow \overrightarrow{E} = \frac{\mathcal{R}_0}{\mathcal{E}_r} \times \frac{\overrightarrow{r}}{\mathcal{E}_r}$
电位移矢置(45)
D=50产+户 → 四间变化率为位移电流密度。 对多向同性战性介质有介质方程: D=505r产=5产
是纲:[P]=[P]=[O]=C/m² △电位移矢量的高斯定理:
ヌロ: Zni = - Bs P.ds, D= Eo E+P ⇒ 単 P-ds = ≥ qo; → 自由時.
在某种对称性下: D > E > P > 0' > 9' 对例寻体证置于切归各向同性介质中(目似), 寻体带电风、北:
① 物分布②紧贴手体环来但外的极从电荷②的行版及紧处 的极从电荷。
Eo 解: ①由对称性: 男D·ds = 190i シイア= D. ドイアの
MEE = D/EOSY; P= (1- E)D
P = 0, CP = 0 $ P = 0, CP = 0$ $ P = 0, CP = 0, CP = 0$ $ P = 0, CP = 0, C$

2 /

少的成361

电场和磁场的相对性(9/10)分析:

① 磁体系中, 有动生虫动势

@我图系中, 有威生电动力.

然而,物理概念不正随参考有变化——这王里爱因斯也在

1905年发表的《论初体的电动力学》中提出的问题。 族义相对论认为:电磁场只有相对性。

推手:对同一电磁场同一 P(オツ、る、も)のP'(オツ、ま)な

F=9(巨+ 0xx) * 9不变!

下=9(E+UXB) F=9(又由力多速度之相对论及换:

By = 1-4/c2 1/2 1/2 = 1-4/62 1-4/62

=>> Ex = Ex Ey = Y (Ey-uBz)

Ez'=V(Ez+uBy)

Bx =Bx By= = > (By+ = E) Bz=r(Bz-4Ey)

·把电磁场划分为电磁场部分分参考系有关。 ·运动方向上电磁场分量相对,运方向上分量多相不能分开。 ·若份原电荷座来一根性系中静止,网本系仅有静电场。

可手比近初电荷之电磁场

门价射

西台湾的城市 访相(历形成)场线.

