Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

LÓGICA MATEMÁTICA

Curso académico 2019-2020

Autor: Javier López

Versión Febrero 2020

Fe de errores

Este texto está sacado integramente de los apuntes que he tomado en clase. Por ello, es más que probable, encontrar en él erratas y errores. Todos ellos pueden ser comunicados a través del foro del campus virtual de la asignatura y serán subsanados lo antes posible o, en su defecto, añadidos a esta lista para que se tengan en cuenta.

- En el *ejemplo III*, *el apartado* (□) no lo tengo escrito en mis apuntes y por tanto la solución no es de Luis.
- Recomiendo revisar el ejemplo V, caso 4.

Lógica de proposiciones

Definición 1. Diremos que una **proposición** es un enunciado que puede ser verdadero o falso. Nunca será una proposición cualquier enunciado que expresa duda o sentimientos. Tampoco lo serán aquellos enunciados que no tengan sentido lógico.

Un ejemplo de lo que no es proposición sería

 $p \equiv "Juan se cae"$

 $q \equiv$ "Yo me río"

 $\varphi \equiv$ Juan se cae y yo me río

Conectivas lógicas. Son los símbolos que utilizamos para formalizar las proposiciones. Estos son

¬ → negación
$$\wedge$$
 → conjunción \vee → disyunción \rightarrow → implicación \leftrightarrow → implicación \bot → falso \top → cierto

Definición 2. Se denomina **formalizar** una proposición, a escribirla mediante conectivas lógicas.

Ejemplo I: Formalizar las siguientes frases

- 1. Si llueve se suspende el partido.
- 2. Solo si llueve se suspende el partido.

tomando como proposiciones $p \equiv$ "Llueve" y $q \equiv$ "se suspende el partido".

- (1) $p \rightarrow q$
- $(2) q \rightarrow p$

Definición 3. Llamaremos **formula** a una cadena de símbolos.

Definición 4. Denotamos el conjunto de todos los símbolos de proposición como

$$SP = \{p, q, \ldots\}$$

que es un conjunto numerable (no necesariamente finito).

Definición 5. Al conjunto formado por SP y las conectivas lógicas se le denomina **alfabeto** y lo denotamos como

$$A = SP \cup \{\neg, \land, \lor \rightarrow, \leftrightarrow, \top, \bot, (,)\}$$

denotamos por A* al conjunto de cadenas de símbolos de A

$$A^* = \{ \varepsilon, a_1, a_2, \dots, a_n : a_n \ge 0, a_i \in A, 1 \le j \le n \}$$

donde ε es la cadena vacía.

Ejemplo II: Dado el vocabulario $A = \{a, b\}$ su conjunto de cadena de símbolos será el conjunto

$$A^* = \{ \varepsilon, a, b, ab, ba, aaa, aab, \ldots \}$$

Definición 6. Dado SP un conjunto de símbolos de proposición, tomamos el alfabeto A_{SP} y definimos PROP_{SP} como el menor subconjunto de A_{SP}^* que verifica

- 1. $SP \subseteq PROP_{SP}$
- 2. Si $\varphi \in PROP_{SP}$, entonces $(\neg \varphi) \in PROP_{SP}$
- 3. Si $\varphi, \psi \in PROP_{SP}$, entonces $(\varphi \square \psi) \in PROP_{SP}$, donde

$$\square \in \{\land, \lor \rightarrow, \leftrightarrow\}$$

Veamos como se construye esta definición. Sean

$$P_0 = \mathrm{SP}$$

$$P_{n+1} = P_n \cup \{ (\neg \varphi), \ (\varphi \square \psi) : \square \in \{ \land, \lor \to, \leftrightarrow \}, \ \varphi, \psi \in P_n \}$$

$$P = \bigcup_{i \ge 0}$$

veamos como P cumple las propiedades 1, 2 y 3 de la definición anterior. De forma trivial se verifica que $PROP_{SP} \subseteq P$ y nos faltaría por demostrar la inclusión en el otro sentido.

Demostración. Sea $\varphi \in P$ entonces $\exists k$ tal que $\varphi \in P_k$ y aplicamos inducción sobre k para ver que $\varphi \in PROP_{SP}$.

Para k=0, por la propiedad 1 de la definición se tienen que $\varphi\in PROP_{SP}$. Para $k\geq 0$

- (i) $\varphi \in P_{k-1}$
- (ii) $\psi \in P_{k-1}$ tal que $\varphi = (\neg \psi)$
- (iii) $\psi_1, \psi_2 \in P_{k-1}$ entonces $\varphi = (\psi_1 \square \psi_2)$

Inducción estructural

Supongamos que queremos probar una propiedad P que cumpla $P(\varphi), \forall \varphi \in PROP_{SP}$. Para ello vamos a usar una estructura basada en el método de inducción usual sobre $\mathbb N$ aplicado sobre las proposiciones. El método tiene la siguiente estructura

- (1) Demostrar la base inductiva. Lo haremos sobre las atómicas (i.e. SP, \bot , \top)
 - (AT) Se cumple $P(\varphi), \forall \varphi \in AT$.

Curso 19/20 3

- (2) **Paso inductivo**. Una vez que tenemos la propiedad P probada para el caso base, suponemos la cierta la hipótesis de inducción, es decir que se cumple $P(\varphi)$, y la utilizamos para los dos casos siguientes
 - $(\neg \varphi)$ Utilizando la h.i. demostraremos que se cumple $P((\neg \varphi))$.
 - (\square) Suponemos que φ_1 cumple P y que φ_2 cumple P, es decir, se verifican $P(\varphi_1)$ y $P(\varphi_2)$ y entonces hay que demostrar $P(\varphi_1 \square \varphi_2)$ con $\square \in \{\land, \lor \to, \leftrightarrow\}$. Dependiendo de la propiedad que queramos demostrar, podremos, o bien agrupar la conectivas lógicas en un sólo caso, o bien separarlas de forma en casos particulares.

Ejemplo III: Vamos a demostrar por inducción estructural la siguiente propiedad

P: Toda fórmula tiene el mismo número de paréntesis abiertos y cerrados

Para ello, vamos a denotar $|\varphi|_{(}$ al número de paréntesis abiertos de φ y, análogamente, denotamos $|\varphi|_{)}$ al número de paréntesis cerrados de φ .

(AT) Si $\varphi \in SP$ ó $\varphi = \bot$ ó $\varphi = \top$, en cualquiera de los casos no hay paréntesis, luego $|\varphi|_{\ell} = |\varphi|_{\ell}$ y por tanto se verifica

$$P(\varphi), \forall \varphi \in AT$$

 $(\neg \varphi)$ Sea $\varphi \in PROP_{SP}$ tal que se verifica $P(\varphi)$, es decir

$$|\varphi|_{(}=|\varphi|_{)}$$

ahora, el $|(\neg \varphi)|_{(} = |\varphi|_{(} + 1 \text{ y analogamente } |(\neg \varphi)|_{)} = |\varphi|_{)} + 1$, luego por h.i. se tiene que

$$|(\neg \varphi)|_{1} = |(\neg \varphi)|_{0}$$

luego se verifica $P(\neg \varphi), \forall \varphi \in PROP_{SP}$.

 (\square) Sean $\varphi_1, \varphi_2 \in PROP_{SP}$, supongamos que

Se verifica
$$P(\varphi_1) \Rightarrow |\varphi_1|_{\ell} = |\varphi_1|_{\ell}$$

Se verifica
$$P(\varphi_2) \Rightarrow |\varphi_2|_{\ell} = |\varphi_2|_{\ell}$$

y veamos que ocurre con $P(\varphi_1 \square \varphi_2)$

$$|\varphi_1 \square \varphi_2|_{(} = |\varphi_1|_{(} + |\varphi_2|_{(} + 1$$

$$|\varphi_1 \square \varphi_2|_1 = |\varphi_1|_1 + |\varphi_2|_1 + 1$$

y, por h.i. se tiene que

$$|\varphi_1 \square \varphi_2|_{)} = |\varphi_1 \square \varphi_2|_{(}$$

finalizando así la demostración.

Definición 7. Sea A un alfabeto y $\omega \in A^*$ decimos que ω' es **prefijo** de ω si $\exists \omega''$ tal que

$$\omega = \omega' \omega''$$

con, $\omega = a_1 \dots a_n$, entonces $\exists k, 0 \le k \le n$ tal que $\omega' = a_1 \dots a_k$. Diremos que ω' es **prefijo propio** si $\omega' \ne \varepsilon$ y $\omega' \ne \omega$.

Ejemplo IV: Sea $A = \{a, b\}$ y $\omega = aababb$ entonces

• Si
$$k=0 \Rightarrow \omega'=\varepsilon$$

• Si
$$k = 1 \Rightarrow \omega' = a$$

• Si
$$k=2 \Rightarrow \omega'=aa$$

• Si
$$k = 3 \Rightarrow \omega' = aab$$

• Si
$$k = 4 \Rightarrow \omega' = aaba$$

• Si
$$k = 5 \Rightarrow \omega' = aabab$$

• Si
$$k = 5 \Rightarrow \omega' = \omega$$

Ejemplo V: Sea φ' prefijo propio de φ , vamos a probar por inducción estructural la propiedad

P: El número de paréntesis cerrados de φ' es menor que el número de paréntesis abiertos. utilizando la notación del ejemplo (III).

(AT) Sea $\varphi \in SP$, supongamos $\varphi = p$ entonces, o bien $\varphi' = \epsilon$ o $\varphi' = p$ luego φ no tiene prefijos propios de modo que se cumple la propiedad. Si $\varphi = \bot$ o $\varphi = \top$ de nuevo $\varphi' = \epsilon$ o $\varphi' = \bot$ o $\varphi' = \top$ que no son prefijos propios, luego φ tampoco tiene prefijos.

$$P(\varphi), \forall \varphi \in AT$$

 $(\neg \varphi)$ Supongamos que φ' es prefijo propio de $(\neg \varphi)$, y supongamos que todo prefijo propio de φ cumple la propiedad.

(CASO 1) Si
$$\varphi' = ($$
, entonces $|\varphi'|_{\ell} = 1 > |\varphi'|_{\ell} = 0$

(CASO 2) Si
$$\varphi' = (\neg, \text{ entonces } |\varphi'|_{(} = 1 > |\varphi'|_{)} = 0$$

(CASO 3) Si $\varphi' = (\neg \varphi'')$, siendo φ'' prefijo de φ luego cumple la propiedad, si además le sumamos uno la cumple también.

(CASO 4) Si
$$\varphi' = (\neg \varphi, \text{ entonces } |\varphi'|_{\ell} = 1 = |\varphi'|_{\ell} = 0$$

(\square) Supongamos que todo prefijo propio de φ_1 , φ_2 cumple la propiedad. Hay que ver entonces, que los prefijos lo cumplen

$$(, (\varphi_1, \varphi_1, \varphi_1 \square, (\varphi_1 \square \varphi_2', (\varphi_1 \square \varphi_2))))$$

Se deja como ejercicio.

Definiciones recursivas

Supongamos que queremos definir una función

$$H: PROP_{SP} \to A$$

donde A puede tomar diferentes tipos de conjunto: \mathbb{N} , $\mathcal{P}(PROP_{SP})$,... para hacerlo de forma recursiva, vamos a necesitar las siguientes funciones auxiliares

Caso atómico

$$H_{\rm AT}:{\rm AT}\to A$$

dada por
$$H(\varphi) = H_{AT}(\varphi), \forall \varphi \in AT$$

- Paso recursivo: donde diferenciamos entre la negación y las conectivas binarias.
 - (i) Negación

$$H_{\neg}: A \to A$$

dada por

$$H|(\neg \varphi)| = H_{\neg}|(H(\varphi))|$$

(ii) Conectivas binarias

$$H_{\square}: A \times A \to A$$

dada por

$$H|(\varphi_1 \square \varphi_2)| = H_{\square}|(H(\varphi_1, \varphi_2))|$$

En los casos (i) e (ii) ni la entrada ni la salida de la función está formada por formulas.

Ejemplo VI: Si queremos definir de forma recursiva el número de paréntesis abiertos de una proposición

$$H_{(}: PROP_{SP} \rightarrow \mathbb{N}$$

se tendría

$$H_{\mathrm{AT}}(: \mathrm{AT} \to \mathbb{N}$$

dada por

$$H_{\mathrm{AT}}(\varphi) = 0, \forall \varphi \in \mathrm{AT}$$

la negación

$$\begin{array}{cccc} H_{\neg}: & \mathbb{N} & \to & \mathbb{N} \\ & n & \longmapsto & n+1 \end{array}$$

finalmente, el resto de conectivas

$$H_{\square}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(n, m) \longmapsto n + m + 1$