Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 830 890 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.03.1998 Bulletin 1998/13

(51) Int. Cl.⁶: **B01F 17/00**

(21) Application number: 97116101.3

(22) Date of filing: 16.09.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV RO SI

(30) Priority: 18.09.1996 US 715658

(71) Applicant:

AIR PRODUCTS AND CHEMICALS, INC. Allentown, PA 18195-1501 (US) (72) Inventors:

 Wilkinson, Steven Paul Coopersburg, PA 18036 (US)

 Schweighardt, Frank Kenneth Allentown, PA 18104-9558 (US)

 Robeson, Lloyd Mahlon Macungie, PA 18062 (US)

(74) Representative:

Kador, Ulrich, Dr. Kador & Partner Corneliusstrasse 15 80469 München (DE)

(54) Surfactants for use in liquid/supercritical CO2

(57) Acetylenic alcohols and diols have been found which are soluble in liquid/supercritical CO₂ and exhibit surface active properties. These alcohols and diols act as surfactants by lowering the surface tension between CO₂ and CO₂-phobic substances which are contacted with the CO₂.

EP 0 830 890 A

Description

TECHNICAL FIELD OF THE INVENTION

The present invention relates to the use of surfactants in applications using liquid/supercritical CO₂.

BACKGROUND OF THE INVENTION

Liquid and supercritical CO2 is receiving interest as a replacement for organic solvents, specifically halogenated hydrocarbons for environmental reasons. CO2 offers low cost, non-flammable, non-toxic, environmentally acceptable properties of interest for a number of applications. These applications include CO₂ cleaning, CO₂ extraction, and CO₂ media for polymerization. As with water based systems, CO2 systems would benefit from the addition of surface active agents. However, whereas surfactant technology is well developed for aqueous based systems, specifically water/oil type mixtures, surfactants for CO2 applications is not well understood. Aqueous surfactants are generally not suitable for CO₂ based systems as they lack CO₂-philic properties and as such do not offer any significant benefit. Several CO₂philic surfactant systems have been found. A fluorocarbon polymer (poly(1,1-dihydroperfluorooctyl acrylate) has been shown to exhibit CO2-philic properties and has been employed in the successful polymerization of poly(methyl methacrylate) to yield controlled particles (DeSimone et al, Science, 265, p. 356, July 15, 1994). Siloxane based polymers and oligomers were also noted to have CO2-philic properties and likewise could be employed as a surfactant (protective colloid stabilizer) for heterogeneous polymerization in CO2 (DeSimone et al., U.S. Pat. 5,312,882). Hoefling et al. reviewed the design and synthesis of CO2-soluble surfactants and chelating agents (Fluid Phase Equilibria, 83, 203-212, (1993)) and noted the following functional groups interact favorably with CO2: dimethyl siloxane, hexafluoropropylene oxide, fluoroalkyl, tertiary amines, aliphatic ethers, and aliphatic esters. The solubility of fluoroether and siliconebased amphiphiles in CO2 was noted and reverse micelle formation in CO2/water/surfactant mixtures was also observed. Hoefling et al. further noted that many of the available surfactants (designed for water/oil) and chelating agents exhibit poor CO2 solubility with siloxanes and fluoroethers having the best potential for solubility in supercritical

Hoefling et al., J. Phys. Chem., 95, 7127 (1991) noted that alkyl-functionalized amphiphiles are not effective in producing microemulsions in CO₂ whereas with alkane supercritical fluids they are effective. They noted that fluorinated alkanes are much more effective in CO₂ than conventional alkanes for surfactants in CO₂/water systems. Fulton et al., U.S. Pat. 5,266,205, disclosed a method of separating a solute from a polar fluid by contacting the solution with a near critical or supercritical fluid and a surfactant. A reverse micelle is formed whereby the continuous phase is a supercritical fluid, and the discontinuous phase is the polar fluid (immiscible with the supercritical fluid) surrounded by surfactant. The solute is transferred to the micelle for removal.

Matson et al., U.S. Pat. 5,238,671 describe conducting chemical reactions in a reverse micelle or microemulsion system comprised of a polar fluid as a discontinuous phase, a continuous phase of a water insoluble fluid at near critical or supercritical conditions, and a surfactant. In the examples, supercritical propane, water, and sodium bis(2-ethyl hexyl) sulfosuccinate) comprised the continuous phase, the discontinuous phase, and the surfactant respectively.

The technology for water based surfactants is probably only a century in development, but in reality significant advances have been made in the past five decades. As such, there are a large number of surfactants developed which will be noted in the following discussion. Most of these surfactants are designed for hydrophilic/hydrophobic combinations, specifically oil/water. These surfactants have been detailed in various reviews including "Surfactants" by K. Kosswig in Ullman's Encyclopedia of Industrial Chemistry, Vol. A25, p. 747, edited by B. Elvers, S. Hawkins and W. Russey, VCH Verlagsgesellschaft mbH, Weinheim (Germany) 1994 and by A. Cahn and J. L. Lynn, Jr. in the Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 22, 3rd Ed., p. 332, John Wiley & Sons, New York, 1983. These surfactants include carboxylated ethoxylates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkene sulfonates, α-olefin sulfonates, sulfosuccinates, alkyl sulfates, alkyl phosphates, nonyl phenol ethoxylates, silicone based surfactants, fluorosurfactants, block copolymers of poly(propylene oxide) and poly(ethylene oxide), poly(vinyl alcohol), imidozoline derivatives, quaternary ammonium surfactants, amine oxides, alkyl amine ethoxylates, ethylene diamine alkoxylates, amphoteric surfactants containing both acidic and basic hydrophilic groups, imidazolinium derivatives, alkyl pyridinium halides, alkylbetaines, amidopropylbetaines, aliphatic and rosin amine ethoxylates, monoalkanolamine condensates, diethanolamine condensates, carboxylic amides, sorbitan fatty acid esters, anhydrosoribotol esters, ethoxylated natural oils, fats and waxes, glycerol esters, and the like. These surfactants are generally designed for water/oil systems. Some of the surfactants offer promise in CO2/water systems, as has been discussed supra, specifically fluoroalkyl, fluoroether and siloxane based systems. However, the vast majority of these systems have limited to no utility in CO₂/water and even less utility in CO₂/oil systems. As such, improved surfactant systems for CO₂/water and CO₂/oil are desired for a multitude of applications where CO2 offers promise for new and unique applications such as CO2 cleaning, degreasing, CO₂ extraction, and CO₂ oil field utility.

A number of cleaning technologies for a wide variety of industries have been under change due to environmental concerns. Utility of chlorofluorinated hydrocarbons (Freons) for specialty cleaning operations (e.g. electronics) have been replaced or are being replaced by less efficient systems based on hydrocarbons or water based systems. Dry cleaning operations based on trichloroethylene, perchlorinated hydrocarbons etc. are under increasing environment pressure to move to new (yet unavailable) technologies. Supercritical CO₂ has been proposed for these operations but the present CO₂ cleaning technology lacks the necessary efficiency for rapid replacement. Iliff et al., U.S. Patent 5,412,958 describe a dry cleaning system utilizing supercritical CO₂ as the cleaning fluid, while R. L. Maffei (U.S. Patent 4,012,194) discloses the use of liquid CO₂ as the solvent of choice for extraction and cleaning processes. Water is a universal solvent for cleaning, however, without proper surfactants water has very limited utility. Likewise, CO₂ without proper surfactants also lacks universal cleaning potential. Prior to the present invention, available CO₂ based surfactants have been limited.

K.M. Motyl, NASA Tech Briefs MFS-29611 - "Cleaning with Supercritical CO₂", discusses the use of supercritical CO₂ to replace halocarbon solvents typically employed for removal of contaminants from metal parts. Studies were reported on carbon-based contaminant removal from stainless steel samples. The use of supercritical fluids containing solvent to clean apparatus containing polymeric compounds was described by Hoy et al., U.S. Patent 5,306,350. It was noted that surfactants, detergents, antifoaming agents and wetting agents could be added to the process they described. Whitlock et al., U.S. Patent 4,806,171 described a cleaning process whereby liquid carbon dioxide was expanded into particles of carbon dioxide (solid) and directed toward a substrate. This method was noted to be useful for removal of fine contaminant particles from the substrate. However, this impingement method would only be applicable to select surfaces and have limited utility to a wide variety of articles including fabrics. Suitable surfactants for CO₂ cleaning operations able to handle the diverse number of cleaning environments are highly desired.

Harris et al. (U.S. Pat. 4,913,235) discussed increasing the viscosity of CO₂ by adding a polymer having a solubility parameter of 6.85 (cal/cc)^{1/2} or less and a cosolvent for the CO₂ and polymer. These compositions were noted to be useful for enhanced oil recovery applications.

A series of acetylenic alcohol and acetylenic diols have been utilized as wetting agents, dispersants, defoamers, viscosity stabilizers, and non-ionic surfactants for various applications. These applications generally involve water/oil or water/inorganic combinations where surface activity is required. Specific applications where acetylenic alcohols and diols are employed include inks, emulsion polymerization pigment grinding aids, cleaning, agricultural chemicals, shampoo, metalworking fluids, adhesive paper coatings, pigment dispersion, latex dipping, drilling needs, coatings and the like. These applications have been discussed by J. Schwartz in Journal of Coatings Technology (September 1992) and (January 1995).

The preparation of acetylenic alcohols and diols has been discussed by E. V. Hort and P. Taylor in Kirk-Othmer: Encyclopedia of Chemical Technology, 4th edition, Vol. 1, pp. 195-231, John Wiley & Sons, New York, 1991. Examples of acetylenic alcohols of interest include: hexyn-3-ol, 3,6-dimethyl-1-heptyn-3-ol, 3-methyl-1-pentyn-3-ol, 4-ethyl-1-octyn-3-ol, 3,5 dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol and the like. Examples of acetylenic diols include 5-decyn-4, 7-diol, 2,5,8,11-tetramethyl-6-dodecyn-5, 8 diol; 3,6-dimethyl-4-octyn-3,6-diol, 5,10-diethyl-7-tetradecyn-6, 9-diol; 2,4,7,9-tetramethyl-5-decyn-4, 7-dio; 2,5-dimethyl-3-hexyn-2,5-diol and the like.

Acetylenic alcohols and diols have been reacted with ethylene oxide to tailor performance for many of the above noted applications as described in "Surfynol 400 Series Surfactants", Air Products & Chemicals trade literature, Pub. # 120-9427.

63

SUMMARY OF THE INVENTION -

A family of surfactants have been identified which are soluble in liquid/supercritical CO₂ and have surface active properties. Specifically, they reduce the interfacial tension of hydrophile/CO₂ compositions and improve the uptake of water by CO₂. The general structure of these surfactants is represented by acetylenic alcohol A and acetylenic diol B:

A

В

wherein

25

40

45

R, R¹, R³, R⁴ are independently hydrogen atoms or linear or branched alkyl groups comprised of one to 34 carbons, and R² and R⁵ are independently hydrogen atoms or hydroxyl terminated poly(alkylene oxide) chains derived from one to 20 alkylene oxide monomer units of the following structure:

wherein

5

10

15

20

25

30

35

40

45

50

55

R⁶, R⁷, R⁸, and R⁹ are independently hydrogen atoms, linear or branched alkyl groups from one to five carbons, or phenyl

Acetylenic alcohol or diol/CO₂ compositions are contemplated to have utility in environmentally friendly cleaning operations, organic or inorganic extraction operations, and polymerization processes. Acetylenic alcohols and diols are also contemplated as wetting agents for CO₂ spray coating operations, defoamers for CO₂ based systems, and dispersing additives for inorganic compounds in CO₂. In essence, the acetylenic alcohol or diol/CO₂ compositions are contemplated for applications involving CO₂-phobic materials where surface activity is desired.

DETAILED DESCRIPTION OF THE INVENTION

We have discovered acetylenic alcohols and diols which are soluble in liquid/supercritical CO₂ and exhibit surface active properties, i.e., act as surfactants. Specifically, they reduce the interfacial tension of hydrophile/CO₂ compositions and improve the uptake of water by CO₂.

These acetylenic alcohol and diol surfactants are prepared by reacting the appropriate ketone, such as acetone or methyl isobutyl ketone, with acetylene in the presence of a base catalyst. Acetylenic alcohols and diols containing pendant poly(alkylene oxide) chains are prepared by reacting ethylene oxide with the chosen acetylenic diol again using a base catalyst. The ethylene oxide concentration and ethoxylation reaction time are important parameters in controlling the extent of ethoxylation.

Suitable compositions contain from about 0.01 to 30 wt% acetylenic alcohol or diol in CO₂, preferably 0.1-15wt% acetylenic alcohol or diol in CO₂.

The general molecular structures of surfactants of the present invention are given by acetylenic alcohol A and acetylenic diol B:

Α

B

wherein

R, R¹, R³ and R⁴ are independently hydrogen atoms or linear or branched alkyl groups comprised of one to 34 carbons, R² and R⁵ are independently hydrogen atoms or hydroxyl terminated poly(alkylene oxide) chains derived from one to 20 alkylene oxide monomer units of the following structure:

wherein

R⁶, R⁷, R⁸, R⁹ are independently hydrogen atoms, linear or branched alkyl groups from one to five carbons.

Typical alkyl groups contained both in the acetylenic residue (i.e., R; R¹; R³; R⁴) and the poly(alkylene oxide) pendant chains (i.e., R⁶; R⁷; R⁸) would include, for example, methyl, ethyl, propyl and isobutyl groups.

Select acetylenic alcohols and diols are sold by Air Products and Chemicals, Inc. under the Surfynol tradename. Specific examples of the acetylenic alcohols of interest include: hexyn-3-ol; 3,6-dimethyl-1-heptyn-3-ol; 3-methyl-1-pentyn-3-ol; 4-ethyl-1-octyn-3-ol; 3,5 dimethyl-1-hexyn-3-ol (Surfynol[®] 61), 3-methyl-1-butyn-3-ol and the like. Examples of acetylenic diols include 5-decyn-4, 7-diol; 2,5,8,11-tetramethyl-6-dodecyn-5, 8 diol; 3,6-dimethyl-4-octyn-3, 6-diol (Surfynol[®] 82); 5,10-diethyl-7-tetradecyn-6, 9-diol; 2,4,7,9-tetramethyl-5-decyn-4, 7-diol (Surfynol[®] 104); ethoxylated 2,4,7,9-tetramethyl-5-decyn-4, 7-diol (Surfynol[®] 400 series); propoxylated 2,4,7,9-tetramethyl-5-decyn-4, 7-diol; 2,5-dimethyl-3-hexyn-2, 5 diol and the like.

The utility of the acetylenic diol or alcohol/CO₂ compositions includes, but is not restricted to, electronic cleaning operations such as silicon wafer cleaning, cleaning mechanical parts such as gyroscopes, dry cleaning of various fabrics, cleaning of equipment such as chemical reactors, cleaning of natural gas lines, cleaning of intricate pans where low viscosity and surfactant volatility is desired. The compositions are also contemplated for organic or inorganic extraction operations including environmental clean-up (soil extraction), food processes (fat/cholesterol), metal extraction and the like. It is also contemplated that acetylenic alcohols and diols can be employed in heterogeneous polymerization processes in CO₂, or as a cosurfactant with other CO₂-philic substances. These compounds might also be employed as wetting agents for CO₂ spray coating operations and defoamers for CO₂ based systems. They are also contemplated as dispersing additives for inorganic compound dispersion in CO₂.

As both hydrophobic and hydrophilic units are on the acetylenic alcohols and diols and these structures exhibit high solubility in CO₂ and surface activity, these materials offer surfactant utility for CO₂ based systems containing a wide variety of CO₂-phobic materials. CO₂-phobic materials in the broadest sense would comprise those compounds with limited solubility in CO₂ (e.g., <5 wt.%). CO₂-phobic materials include most higher molecular weight compounds (e.g., >1000 Mw) such as hydrocarbon polymers (e.g., polyethylene, polypropylene, polystyrene), polyamides, polyesters, polyacrylates, vinyl ester containing polymers, aromatic polymers (e.g., polycarbonates, polysulfones, and polyimides), hydrophilic polymers (e.g., poly(acrylic acid), and the like. Poly(ethylene oxide) is a specific example of a hydrophilic polymer (soluble in water) which also exhibits hydrophobic properties (soluble in benzene). However, poly(ethylene oxide) is not soluble in CO₂ (thus CO₂-phobic) and is a good model to assess the surfactant characteristics of the acetylenic alcohols and diols in a CO₂ medium. Other CO₂-phobic materials include naturally occurring materials such as proteins, enzymes, cellulosic products, inorganic salts, water, and water based systems, higher molecular weight oils and greases.

Acetylenic alcohols and diols are contemplated in all aforementioned applications utilizing CO₂, CO₂/water mixtures, CO₂/oil mixtures and CO₂/water/oil mixtures. In the CO₂/water mixtures or CO₂/water/oil mixtures, additional surfactants typically employed for water/oil surfactancy can be included in the overall composition.

The following examples are presented to better illustrate the present invention and are not meant to be limiting.

Experimental

40

50

In the following examples, mixtures of acetylenic alcohols or diols and CO_2 were prepared by adding the acetylenic alcohol or diol to a stainless steel variable volume view cell equiped with suitable relief devices, high pressure valves CO_2 inlet and outlet and a sapphire window at one end. A high pressure syringe pump (High Pressure Products, HIP pump) was filled with liquid CO_2 and used to quantitiatively add CO_2 to the pressure vessel. The pressure vessel contained a magnetic stirrer and was stirred via a magnetic couple to a magnet located below the vessel: A description of the vessel is given in The Journal of Physical Chemistry 94, pp6021, 1990.

Example 1

Solubility of 3,5-Dimethyl-1-hexyn-3-ol in CO₂

The solubility of 3,5-dimethyl-1-hexyn-3-ol in CO₂ was measured using a volume view cell as described above. A weighed amount of surfactant (0.5-10 weight %) was placed inside the cell chamber in front of the piston. The cell window was attached and 10 cc's of CO₂, was added to the cell. The surfactant was mixed in the CO₂ using a magnetic stirring bar. The cell was mounted in horizontally and then immersed in a water bath. After allowing the high pressure cell to attain thermal equilibrium the pressure within the cell was varied using a floating piston. The pressure was changed to monitor the cloud point as being indicative of insolubility. The operator viewed the floating piston through the sapphire window using a suitable optic device, the onset of insolubility was taken when the translucent solution changed to an orange/brown color due to the Tindall light scattering of the insoluble droplets. The onset of insolubility

was checked several times by varying the pressure using the high pressure syringe pump.

Surfactant Concn. in

CO₂ (wt%)

0.50

1.50

2.50

5.00

7.60

10.20

A water bath was used to vary the temperature for each concentration. On completing the solubility studies at one concentration and one temperature series, a calibrated injector loop attached to the high pressure cell was filled with the surfactant via a syringe. Utilizing a six way valve to help inject this fixed amount of surfactant, the surfactant concentration within the high pressure cell was increased by a fixed increment. The solubility studies for this new CO₂/surfactant concentration were measured at various temperatures in a similar manner to that previously described.

Table 1 summarizes the pressures at several different temperatures which describe the surfactant solubility limits for various surfactant/ CO_2 concentrations. The solubility levels of 10.2% by weight to CO_2 for 3,5-dimethyl-1-hexyn-3-ol illustrate the excellent affinity that this surfactant has for CO_2 .

Table 1

35°C

1480

1530

1500

1380

1280

1200

Pressure Describing Cloud Point Determinations For Sur-

factant/CO₂ Concentrations

Temperature

45°C

1800

1900

1860

1770

1680

1590

55°C

2200

2260

2210

2120

2030

1950

10

.

20

25

30 Example 2

Solubility of 2,4,7,9-Tetramethyl-5-decyn-4,7-diol in CO₂

Solubility studies were performed as described in Example 1 using 2,4,7,9-tetramethyl-5-decyn-4,7-diol at 10% by weight to CO₂. Phase transitions were observed at the following conditions, 25°C and 980 psi, 35°C and 1280 psi, 45°C and 1590, 55°C and 1880 psi. The unexpectedly high degree of solubility of 2,4,7,9-tetramethyl-5-decyn-4,7-diol in CO₂, is attributed to the acetylenic moiety in the surfactant.

40 Example 3

Solubility of Ethoxylated 2,4,7,9-Tetramethyl-5-decyn-4,7-diol in CO₂

Solubility studies were performed as described in Example 1 for various ethoxylates of 2,4,7,9-tetramethyl-5-decyn-4,7-diol. Table 2 gives the complete set of pressures observed for the solubility limits at various concentrations and different temperatures for ethoxylates of 2,4,7,9-tetramethyl-5-decyn-4,7-diol containing 20, 40, 65, and 85 wt% ethylene oxide. The data show that for ethoxylates containing 20 and 40 wt% ethylene oxide, the surfactant has unexpectedly high CO₂ affinity (note that up to 4 wt% surfactant is soluble in CO₂), despite the hydrophilicity imparted by the ethylene oxide units. For ethoxylates containing 65 and 85 wt% ethylene oxide, the surfactant has poor CO₂ solubility.

50

Table 2

			mina	itions Fo	oud Point r Sur- entrations	
	· · · · · · · · · · · · · · · · · · ·		. Т	emperatu	ıre	
wt% EO in surfactant	Surfactant Concn. in CO ₂ (wt%)	25°C	35°C	45°C	60°C	65°C
20	1.3646	1410	2040	2420	3060	3200
	2.6028	2180	2710	3320	4040	4330
	3.2104	2450	2990	3320	3950	4330
-	3.8330	1870	2350	2860	3500	3770
40	0.6159	1200		1750	2390	2490
	1.2484	1840		2610	3170>	3320
	1.8749	2360		3280	3640	3740
	2.8386	2580		3490	4300	. 4510
	4.0446	2700		3740	4440	4670
65	0.2486	1440	1920	2200	2690	2800
	0.8867	3570	4020	4590	5270	5470
85	0.2737	2350		3420		

30 Example 4

5

10

15

20

25

Interfacial Tension of Ethoxylated 2,4,7,9-Tetramethyl-5-decyn-4,7-diol in PEG/CO₂

For a molecule to be classified as a 'surfactant', i.e. a surface active agent, the compound should exhibit a degree of interfacial activity. Interfacial activity can be monitored using the 'pendant drop' technique, ("Chemistry of Interfaces" M.J.Jaycock & Parfitt, John Wiley and Sons, New York p49-51). This method is utilized to measure the interfacial tension between a pendant drop and a continuous phase that surrounds the drop. When carbon dioxide is used as the continuous media, special high pressure equipment with sapphire view ports is required to maintain a solution of CO₂ and surfactant, and to study the change in shape of the pendant drop for interfacial tension calculations. A general procedure for these high pressure phase behavior measurements may be found in Langmuir, vol. 10 1994, pg 3536-3541, by K. Harrison, K. P. Johnston, J. Goveas and E. A. O'Rear.

Various ethoxylates of 2,4,7,9-tetramethyl-5-decyn-4,7-diol were used in the interfacial tension study. Table 3 gives the interfacial tension observed for ethoxylates of 2,4,7,9-tetramethyl-5-decyn-4,7-diol containing 20, 40, and 65 wt% ethylene oxide. The table also gives the interfacial tension of the polyethyleneglycol (PEG 600)drop within the pure CO₂ media. The compound Surfynol 485, which comprises 85% ethylene glycol was found to be too insoluble at appreciable quantities to be used in the studies. This suggests that the desired weight % ethoxylation is 20-65 weight % The data show that each surfactant lowers interfacial tension when compared with the control having no surfactant. It is interesting to note the actual reduction in interfacial tension. For a control PEG 600 drop at 2510 psi the interfacial tension was measured to be 3.39 dyne/cm (run #5in Table 3). At a comparable pressure of 2501 psi a surfactant/CO₂ solution of 2 weight % (using the 20 wt% ethoxylated Surfynol surfactant) was found to lower the interfacial tension of the PEG drop to 2.85 dyne/cm (run #27in Table 3). This corresponds to lowering the interfacial tension by 0.54 dyne/cm, a 16% reduction. A surfactant/CO₂ solution of 2 weight % (using the 40 wt% ethoxylated Surfynol surfactant) gave an interfacial tension of 1.57 dyne/cm. at a CO₂ pressure of 4030 psi (run #33in Table 3). The corresponding PEG drop at 4093psi used as the control gave an interfacial tension of 1.92dyne/cm (run #18 in Table 3). This corresponds to an 18.2% reduction in interfacial tension. This data proves the interacial activity of Surfynol surfactants in CO₂ medium.

Table 3

# CCC 1	PEG (600) + Po/Surfactant	2006 2122 2215 2421 2510 2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	138 146 152 167 173 178 195 203 205 210 215 219 233 239	3.85 4.10 3.35 3.89 3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A 29 A	Os/Surfactant s H H H H H H H H H H H H	2122 2215 2421 2510 2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	146 152 167 173 178 195 203 205 210 215 219 233 239	4.10 3.35 3.89 3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2122 2215 2421 2510 2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	146 152 167 173 178 195 203 205 210 215 219 233 239	4.10 3.35 3.89 3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 29 A	13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	2215 2421 2510 2595 2834 2943 2986 3053 3130 3188 3384 3474	152 167 173 178 195 203 205 210 215 219 233 239	3.35 3.89 3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	11 11 11 11 11 11 11 11 11 11 11 11 11	2421 2510 2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	167 173 178 195 203 205 210 215 219 233 239	3.89 3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	H H H H H H H H H H H H H H H H H H H	2510 2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	173 178 195 203 205 210 215 219 233 239	3.39 3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	H II	2595 2834 2943 2986 3053 3130 3188 3384 3474 3606	178 195 203 205 210 215 219 233 239	3.19 2.90 2.79 2.71 2.66 2.71 2.60 2.38
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 29 A 29 A	11 11 11 11 11 11 11 11 11 11 11 11 11	2834 2943 2986 3053 3130 3188 3384 3474 3606	195 203 205 210 215 219 233 239	2.90 2.79 2.71 2.66 2.71 2.60 2.38
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 29 A 29 A	H 11 11 11 11 11 11 11 11 11 11 11 11 11	2943 2986 3053 3130 3188 3384 3474 3606	203 205 210 215 219 233 239	2.79 2.71 2.66 2.71 2.60 2.38
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	11 15 44 14 16 18	2986 3053 3130 3188 3384 3474 3606	205 210 215 219 233 239	2.71 2.66 2.71 2.60 2.38
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A 26 A 29 A	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3053 3130 3188 3384 3474 3606	210 215 219 233 239	2.66 2.71 2.60 2.38
10	11 11 11	3130 3188 3384 3474 3606	215 219 233 239	2.71 2.60 2.38
11 12 13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 26 A 27 A 29 A 29 A	11 11 11 11 11 11 11 11 11 11 11 11 11	3188 3384 3474 3606	219 233 239	2.60 2.38
12	n n	3384 3474 3606	233 239	2.38
13 14 15 16 17 18 19 20 21 22 23 24 A 25 A 27 A 28 A 29 A	a ta	3474 3606	239	<u> </u>
14 15 16 17 18 19 20 21 22 23 24 A A 25 A A 27 A A 28 A A 29 A A A A A A A A A	u	3606		
15 16 17 18 19 20 21 22 23 24 A 25 A 27 A 28 A 29 A				2.27
16 17 18 19 20 21 22 23 24 A 25 A 27 A 28 A 29 A	ti .		248	2.10
17 18 19 20 21 22 23 24 A 25 A 27 A 28 A 29 A		3681	2541	2.18
19 20 21 22 23 24 A 25 A 27 A 28 A 29 A	Ħ	3957	273	1.81
19 20 21 22 23 24 A 25 A 27 A 28 A 29 A	șt.	4093	282	1.92
21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	9	4117	284	1.81
21 22 23 24 A 25 A 26 A 27 A 28 A 29 A	ti .	4179	288	1.86
23 A 24 A 25 A 26 A 27 A 28 A 29 A	a	4333	299	1.71
24 A 25 A 26 A 27 A 28 A 29 A	10	4365	301	1.69
25 A 26 A 27 A 28 A 29 A	N N	4389	303	1.72
26 A 27 A 28 A 29 A	P-420	1984	137	3.45
27 A 28 A 29 A	P-420	2140	148	3.05
28 A 29 A	P-420	2498	172	2.75
29 A	P-420	2501	173	2.85
	P-420	3007	207	2.32
	AP-420	3574	246	1.83
30 A	AP-440	3146	217	2.04
	AP-440	3522	243	1.96
	AP-440	3536	244	1.93
	AP-440	4030	278	1.57
	AP-440	4028	278	1.56
		4568	315	1.38
	4P-440	4592 3599	317	1.35
37 <i>A</i>	AP-440	. 2522	248 250	1.95 1.99

	feetal Tancian	Experiment	s via Pendan	t Drop Technique
IFT	Experiment	Expe	riment ssure	Tension
Run #	PEG (600) +	p (psi)	p (bar)	IFT (dyne/cm)
	CO ₂ /Surfactant	3995	276	1.73
39	AP-465	3998	276	1.66
40	AP-465		311	1.57
41	AP-465	4508	311	1.51
42	AP-465	4505	311	

AP = 2 weight % Air Products Surfynol/CO₂ Solution

AP-420 = 20 weight % ethoxylated Surfynol 104 product

AP-440 = 40 weight % ethoxylated Surfynol 104 product

AP-465 = 65 weight % ethoxylated Surfynol 104 product

Example 5

10

15

20

Effect of Ethoxylated 2,4,7,9-Tetramethyl-5-decyn-4,7-diol on Water Uptake by CO₂

Utilizing the same phase behavior appartus described in Example 1, a known amount of water was added through a sample loop to a surfactant CO₂ mixture of known phase behavior (i.e. its cloud point was first determined). Comparisons were made to water solubilization by pure CO₂ and compared to the pure surfactant phase behavior to study the effect the water addition had made, if any, on the measured cloud point for the system.

If the surfactant allowed for the uptake of water, the system would show a single phase at water loadings beyond that normally solubilized by CO₂. A cloud point could then be measured for the system, and compared to pure water and pure surfactant phase behavior in CO₂. If the surfactant did not aid in the uptake of water, a two phase system would be seen when loading water above that normally solubilized by pure CO₂.

Table 4 details results for ethoxylates of 2,4,7,9-tetramethyl-5-decyn-4,7-diol containing 20, 40 and 85 wt% ethylene oxide, respectively. The uptake of water and poly ethylene glycol is given at different temperatures and pressures. It can be seen that with the 20 wt% ethoxylate (at 0.751% by weight in CO₂), water uptake was 0.553% at 4010 psi and 65 °C. Under these same conditions, the water solubility was 0.41%. Thus, the ethoxylated 2,4,7,9-tetramethyl-5-decyn-4,7-diol increased the uptake of water into the CO₂ medium, thereby illustrating surfactant behavior.

Similarly, with the ethoxylate containing 85 wt% ethylene oxide (at 0.237% by weight in CO₂), water uptake was 0.826% at 5720 psi and 65 °C. Water solubility under these pressure and temperature conditions was determined to be 0.45%. Thus, the ethoxylated 2,4,7,9-tetramethyl-5-decyn-4,7-diol again showed surfactant characteristics in the CO₂ medium.

50

Table 4

5 ·	Wt% EO in Surfactant	Wt% Sur- factant in CO2	Condition	Wt% of water uptake	Wt% of PEG (MW=600) uptake	water solubil- ity in CO ₂	PEG solubility in CO ₂
	20	0.751	4500 psi 45°C	0.277%		0.26%	
			3110 psi 65°C	0.277%		0.39%	:
10			4010 psi 65°C	0.553%		0.41%	
	40	0.897%	4040 psi 25°C		1.091%		1.25%
			4550 psi 25°C	7	1.360%		1.53%
15			5220 psi 25°C		1.627%		2.0%
	85	0.237%	3980 psi 45°C	0.276%		0.27%	
			4400 psi 65°C	0.276%		0.42%	
			5400 psi 65°C	0.553%		0.44%	
20			5720 psi 65°C	0.826%		0.45%	

Example 6

2,4,7,9-Tetramethyl-5-decyn-4,7-diol as a Surfactant for Polymer Synthesis in CO2

A stainless steel reactor was pressure tested, purged with CO₂ the and pressure raised to ~810 psi @ 19°C by the addition of 52.1 g of CO₂ (added via a ISCO syringe pump in the constant pressure mode set to 5200 psi). A solution containing methyl methacrylate monomer (Aldrich) ~50g, , Vazo 67 azo initiator (duPont) 0.25g, poly(dimethylsi-loxanemonomethacrylate) 2.5g and 2,4,7,9-tetramethyl-5-decyn-4,7-diol (0.5g) was purged thoroughly with nitrogen and pumped into the reactor against the 810 psi pressure using a high pressure Thermal Separations feed pump. The pressure was further increased to 1990 psi @ 30°C by adding 179.5g CO₂ to the reactor using the ISCO high pressure syringe. The temperature was raised to the polymerization temperature of 65°C. This temperature increase created a further pressure increase to ~4000 psi. Pressure was monitored throughout the run, the reaction was left overnight and ran for 16 hours. The temperature was lowered at the end of the reaction to ambient conditions which lowered pressure back to ~800 psi. Pressure was completely reduced to zero psi by venting the carbon dioxide. The polymer powder recovered from the reactor was studied by G.P.C. and gave number average molecular weights ~200 000g/mole. The recovered yield was measured at 83.2.

40 Claims

45

50

55

1. In a process which involves contacting liquid or supercritical CO₂ with a CO₂-phobic substance, the improvement for lowering the surface tension between said CO₂ and a CO₂-phobic substance which comprises adding to the CO₂ an acetylenic alcohol or diol surfactant represented by the structural formulae:

wherein

R, R¹, R³, R⁴ are independently hydrogen atoms or linear or branched alkyl groups comprised of one to 34 car-

bons, and R² and R⁵ are independently hydrogen atoms or hydroxyl terminated poly(alkylene oxide) chains derived from one to 20 alkylene oxide monomer units of the following structure:

whereir

5

10

15

- R⁶, R⁷, R⁸, and R⁹ are independently hydrogen atoms, linear or branched alkyl groups from one to five carbons, or phenyl
- 2. The process in accordance with Claim 1 wherein said surfactant is added to the CO₂ in an amount from 0.01 to 30 wt% based upon the CO₂/surfactant mixture.
- 3. The process in accordance with Claim 1 wherein R, R¹ R³ and R⁴ are each independently methyl, ethyl, propyl or butyl groups.
- 4. The process in accordance with Claim 1 wherein R⁶, R⁷, R⁸ and R⁹ are each independently methyl, ethyl, propyl or butyl groups.
 - 5. The process in accordance with Claim 1 wherein the process in which said CO₂ is employed is an electronic cleaning operation.
- 25 6. The process in accordance with Claim 1 wherein the process in which said CO₂ is employed is a dry cleaning operation.
 - The process in accordance with Claim 1 wherein the process in which said CO₂ is employed is a CO₂ spray coating
 operation.
 - 8. The process in accordance with Claim 1 wherein the process in which said CO₂ is employed is a heterogeneous polymerization process.
- 9. The process in accordance with Claim 1 wherein the process in which said CO₂ is employed is an extraction process.
 - 10. The process in accordance with Claim 1 wherein the process in which said CO₂ is employed contains water in a concentration sufficient to yield a separate phase.

40

30

50

45

EUROPEAN SEARCH REPORT

Application Number

EP 97 11 6101

	OOCUMENTS CONSIDERED TO BE RELE	- I a a 4	OLA COLFICATION OF THE		
ategory	Citation of document with indication, where appropriat of relevant passages		elevant claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
	EP 0 531 269 A (MONSANTO COMPANY) * claims 1-23 *			B01F17/00	
		_			
	, in the second				
•				TECHNICAL FIELDS SEARCHED (Int.CI.6)	
	-			B01F	
	·				
	·				
				*	
	The present search report has been drawn up for all cla	ims			
	riace of search	Date of completion of the search		Examiner	
	1112 111122	ber 1997		ouquier, J-P	
Y - r	particularly relevant if taken alone Darticularly relevant if combined with another	theory or principle un earlier patent documenter the filing date document cited in the document cited for co	ient, but pt ie applicati	on	
A : t	ocument of the same category	: document cited for c : member of the sam- document			