Supervised Learning

Clustering

Cluster Analysis: Basic Concepts

- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Evaluation of Clustering
- Summary

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- **Marketing:** Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- **City-planning:** Identifying groups of houses according to their house type, value, and geographical location
- **Earth-quake studies:** Observed earthquake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: distinctive between clusters
- The quality of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for intervalscaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

• Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

• Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Partitioning Algorithms: Basic Concept

• Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

Until no change

Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
 - Normally, k, t << n.
 - Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify *k*, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- Most of the variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes*
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the **mean** value of the object in a cluster as a reference point, **medoids** can be used, which is the **most centrally located** object in a cluster

Hierarchical Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

Dendrogram: Shows How Clusters are Merged

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = min(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = max(t_{ip}, t_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_i) = avg(t_{ip}, t_{iq})$
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j) = dist(C_i, C_i)
- Medoid: distance between the medoids of two clusters, i.e., dist $(K_i, K_j) = dist(M_i, M_j)$
 - Medoid: a chosen, centrally located object in the cluster

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as densityconnected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - <u>DENCLUE</u>: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: OPTICS & Its Applications

Measuring Clustering Quality

- Two methods: extrinsic vs. intrinsic
- Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
 - Ex. BCubed precision and recall metrics
- Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are
 - Ex. Silhouette coefficient

Measuring Clustering Quality: Extrinsic Methods

- Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a rag bag (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces