

Dynamic Programming

Matrix Chain-Products (not in book)

Rather than give the general structure, let us first give a motivating example:

- Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A *B
 - \blacksquare A is $d \times e$ and B is $e \times f$

■ *O*(*def*) time

© 2004 Goodrich, Tamassia

Dynamic Programming

Matrix Chain-Products

Matrix Chain-Product:

- Compute A=A₀*A₁*...*A_{n-1}
- \blacksquare A_i is d_i × d_{i+1}
- Problem: How to parenthesize?
- Example

© 2004 Goodrich, Tamassia

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
- B*(C*D) takes 1500 + 2500 = 4000 ops

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
- Calculate number of ops for each one
- Pick the one that is best
- Running time:

© 2004 Goodrich, Tamassia

- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

A Greedy Approach

- ◆ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2004 Goodrich, Tamassia

Dynamic Programming

© 2004 Goodrich, Tamassia

© 2004 Goodrich, Tamassia

Dynamic Programming

A "Recursive" Approach

■ Find the best parenthesization of A_i*A_{i+1}*...*A_i.

- Let N_i, denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is N_{0 n-1}.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0 * ... *A_i) * (A_{i+1} * ... *A_{n-1})$.
 - Then the optimal solution N_{0,n-1} is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Another Greedy Approach

- ◆ Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,i} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do length
 2,3,... subproblems,
 and so on.
- The running time is O(n³)

```
{\bf Algorithm}\ {\it matrix}\ {\it Chain}\ (S):
```

Input: sequence S of n matrices to be multiplied **Output:** number of operations in an optimal paramethization of S

for
$$i \leftarrow 1$$
 to n -1 do $N_{i,i} \leftarrow 0$

for
$$b \leftarrow 1$$
 to $n-1$ do
for $i \leftarrow 0$ to $n-b-1$ do

$$j \leftarrow i + b$$

$$N_{i,j} \leftarrow + \mathbf{infinity}$$

for
$$k \leftarrow i$$
 to $j-1$ do

$$N_{i,j} \leftarrow \min\{N_{i,j} \;,\; N_{i,k} \; + N_{k+1,j} \; + d_i \; d_{k+1} \; d_{j+1}\}$$

© 2004 Goodrich, Tamassia

Dynamic Programming

9

A Dynamic Programming Algorithm Visualization

- ◆ Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each N entry

© 2004 Goodrich, Tamassia

© 2004 Goodrich, Tamassia

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

A **subsequence** of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form $x_{j_1}x_{j_2}...x_{j_k}$, where $i_j < i_{j+1}$.

Dynamic Programming

- Not the same as substring!
- ◆Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

10

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

© 2004 Goodrich, Tamassia

Dynamic Programming

13

© 2004 Goodrich, Tamassia

Analysis:

Dynamic Programming

This is an exponential-time algorithm!

14

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,i] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- \bullet Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate that the null part of X or Y has no match with the other.
- ♦ Then we can define L[i,j] in the general case as follows:
 - 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
 - 2. If $xi \neq yj$, then $L[i,j] = max\{L[i-1,j], L[i,j-1]\}$ (we have no match here)

Case 1: 0 1 2 3 4 5 6 7 8 9 10 11 Y=CGATAATTGAGA

X=GTTCCTAATA

0 1 2 3 4 5 6 7 8 9 10 Y=CGATAATTGAG *X=GTTCCTAATA*

Case 2:

L[9,9]=6L[8,10]=5

An LCS Algorithm

```
Algorithm LCS(X,Y ):
```

Input: Strings X and Y with n and m elements, respectively

A Poor Approach to the

Enumerate all subsequences of X

■ If X is of length n, then it has 2ⁿ

Test which ones are also subsequences of Y

LCS Problem

A Brute-force solution:

Pick the longest one.

subsequences

Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string that is a subsequence of both the string $X[0..i] = x_0x_1x_2...x_i$ and the string Y [0.. j] = $y_0y_1y_2...y_1$

for i = 1 to n-1 do L[i,-1] = 0

for j = 0 to m-1 do L[-1.i] = 0

for i = 0 to n-1 do for j = 0 to m-1 do

> if $x_i = y_i$ then L[i, j] = L[i-1, j-1] + 1

else

 $L[i, j] = max\{L[i-1, j], L[i, j-1]\}$

return array L

© 2004 Goodrich, Tamassia

Dynamic Programming

16

L[8,10]=5

Visualizing the LCS Algorithm

L	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	1	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	2	2	2	3	4	4	4	4	4
6	0	1	1	2	2	3	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	5	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	6

Analysis of LCS Algorithm

- •We have two nested loops
 - The outer one iterates *n* times
 - The inner one iterates *m* times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is O(*nm*)
- ◆Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).

© 2004 Goodrich, Tamassia

Dynamic Programming

17

© 2004 Goodrich, Tamassia

Dynamic Programming

18