Testing Revisited

White Box Testing – Another Look

Motivation

- People are not perfect
 - Errors are made in design and code
- Goal of testing: given some code, uncover as many errors as possible
- Important and expensive activity:
 - May spend ~50% of total project effort on testing
 - For safety critical system cost of testing is several times higher than all other activities combined

A Way of Thinking

- Design and coding are creative activities
- Testing is destructive
 - Primary goal is to "break" the code
- Often same person does both coding and testing
 - Need "split personality": when you start testing, become paranoid and malicious
 - This is surprisingly difficult: people don't like to find out that they made mistakes.

Testing Objective

- **Testing:** a process of executing software with the intent of finding errors
- Good testing: high probability of finding as-yet-undiscovered errors
- Successful testing: discovers unknown errors

Basic Definitions

- Test case: specifies
 - Inputs + pre-test state of the software
 - Expected results (outputs an state)
- Black-box testing:

White-box testing:

Testing Approaches

- We've been looking at a small sample of approaches for testing
- Black-box testing
 - Equivalence partitioning
- White-box testing
 - Control-flow-based testing
 - Loop testing
 - Data-flow-based testing

Control-flow Testing Revisited

Control-Flow-Based Testing

- A traditional form of white-box testing
- Step 1: From the source, create a graph describing the flow of control
 - Called the control flow graph (CFG)
 - The graph is created (extracted from the source code) manually or automatically
- Step 2: Design test cases to cover certain elements of this graph
 - Nodes, edges, paths

Example of a Control Flow Graph (CFG)

Elements of a CFG

- Three kinds of nodes:
 - Statement nodes:
 - Predicate nodes:
 - Auxiliary nodes:
- Edges:
- It is relatively easy to map standard constructs from programming languages to elements of CFGs

IF-THEN, IF-THEN-ELSE, SWITCH

if (c) then // join point if (c)
then
else
// join point

switch (c)
 case 1:
 case 2:
 // join point

Statement Coverage

- Basic idea: given the control flow graph define a "coverage target" and write test cases to achieve it
- Traditional target: statement coverage
 - Need to write test cases that cover all nodes in the control flow graph
- Intuition: code that has never been executed during testing may contain errors

Example

- Suppose we write and execute two test cases
- Test case #1: follows path 1-2exit (e.g., we never take the loop)
- Test case #2: 1-2-3-4-5-7-8-2-3-4-5-7-8-2-exit (loop twice, and both times take the true branch)
- Do we have 100% statement coverage?

Branch Coverage

- Target: write test cases that cover all branches of predicate nodes
 - True and false branches of each IF
 - Two branches corresponding to the condition of a loop
 - All alternatives in a SWITCH statement
- In modern languages, branch coverage <u>implies</u> statement coverage

Branch Coverage

- Statement coverage does not imply branch coverage
 - Think of an example?
- Motivation for branch coverage:
 - experience shows that many errors occur in "decision making" (i.e., branching)
 - Plus, it subsumes statement coverage.

Example

- Same example as before
- Test case #1: follows path 1-2-exit
- Test case #2: 1-2-3-4-5-7-8-2-3-4-5-7-8-2-exit
- What is the branch coverage?

Achieving Branch Coverage

- For decades, branch coverage has been considered a necessary testing minimum
- To achieve it: pick a set of start-to-end paths (in the CFG) that cover all branches, and then write test cases to execute these paths
- It can be proven that branch coverage can be achieved with at most E-N+2 paths

Example

- First path: 1-2-exit (no execution of the loop)
- Second path: we want to include edge 2-3, so we can pick 1-2-3-4-5-7-8-2-exit
- What would we pick for the third path?

Determining a Set of Paths

- How do we pick a set of paths that achieves 100% branch coverage?
- Basic strategy:
 - Consider the current set of chosen paths
 - Try to add a new path that covers at least one edge that is not covered by the current paths
- The set of paths chosen with this strategy is called the "basic set"

Some Observations

- It may be impossible to execute some of the chosen paths from start-to-end.
 - Why?
 - Thus, branches should be executed as part of other chosen paths
- There are many possible sets of paths that achieve branch coverage

Loop Testing

- Branch coverage is not sufficient to test the execution of loops
 - It means two scenarios will be tested: the loop is executed zero times, and the loop is executed at least once
- Motivation for more testing of loops: very often there are errors in the boundary conditions
- Loop testing is a white-box technique that focuses on the validity of loops

Testing of Individual Loops

- Suppose that **m** is the **min** possible number of iterations, and **n** is the **max** possible number of iterations
- Write a test case that executes the loop **m** times and another one that executes it **m**+**1** times
- Write a test case that executes the loop for a "typical number" of iterations
- Write a test case that executes the loop **n-1** times and another one for **n** times

Testing of Individual Loops (cont.)

- If it is possible to have variable values that imply less than **m** iterations or more than **n** iterations, write test cases using those
- E.g., if we have a loop that is only supposed to process at most the 10 initial bytes from an array, run a test case in which the array has 11 bytes

Nested Loops

- Example: with 3 levels of nesting and 5 test cases for each level, total of 125 possible combinations: too many
- Start with the innermost loop do the tests (m,m+1, typical,), keep the other loops at their min number of iterations
- Continue toward the outside: at each level, do tests (m,m+1, typical,)
 - The inner loops are at typical values
 - The outer loops are at min values

Control-Flow Analysis

What is a loop?

A subgraph of CFG with the following properties:

- Strongly Connected: there is a path from any node in the loop to any other node in the loop; and
- Single Entry: there is a single entry into the loop from outside the loop. The entry node of the loop is called the loop header.

Loop nodes: 2, 3, 5

Header node: 2

Loop back edge: $5 \rightarrow 2$

Tail→Head

Property

Given two loops: they are either disjoint or one is completely nested within the other.

Loops {1,2,4} and {5,6} are Disjoint.

Loop {5,6} is nested within loop {2,4,5,6}.

Loop {5,6} is nested within loop {1,2,3,4,5,6}.

Identifying Loops

Definitions:

Dominates: node n dominates node m iff all paths from start node to node m pass through node n, i.e. to visit node m we must first visit node n.

A loop has

- A single entry \rightarrow
- A back edge, an edge A → B .

Identifying Loops

Algorithm for finding loops:

- 1. Compute Dominator Information.
- 2. Identify Back Edges.
- 3. Construct Loops corresponding to Back Edges.

Dominators: Characteristics

- 1. Every node dominates itself.
- 2. Start node dominates every node in the flow graph.
- 3. If N DOM M and M DOM R then N DOM R.
- 4. If N DOM M and O DOM M then either N DOM O or O DOM N
- 5. Set of dominators of a given node can be linearly ordered according to dominator relationships.

Dominators: Characteristics

6. Dominator information can be represented by a Dominator Tree. .

Computing Dominator Sets

Observation: node m donimates node n iff m dominates all predecessors of n.

Let D(n) = set ofdominators of n

$$D(n) = \{n\} \cup \bigcap D(p)$$
 $p \in pred(n)$

Where Pred(n) is set of immediate predecessors of n in the CFG

Computing Dominator Sets

Initial Approximation:

$$D(n_o) = \{n_o\}$$

 n_o is the start node.
 $D(n) = N$, for all $n!=n_o$
N is set of all nodes.

Iteratively Refine D(n)'s:

$$D(n) = \{n\} \cup \bigcap D(p)$$
 $p \in pred(n)$

Algorithm:

$$D(n_0) = \{n_0\}$$

for all $n \in \mathbb{N}$ st $n \neq n_0$ clo $D(n) = \mathbb{N}$

while changes to any $D(n)$ occur do

for n in \mathbb{N} - $\{n_0\}$ clo

 $D(n) = \{n \notin \mathbb{U} \cap D(p)\}$

end for end while.

Example: Computing Dom. Sets

Back Edges: $9 \rightarrow 4$, $10 \rightarrow 8$, $10 \rightarrow 5$

Loop

Given a back edge $N \rightarrow D$

Loop corresponding to edge $N \rightarrow D$

$$= \{D\} +$$

{X st X can reach N without going through D}

1 dominates 6

 \Rightarrow 6 \rightarrow 1 is a back edge

Loop of
$$6 \rightarrow 1$$

= $\{1\} + \{3,4,5,6\}$
= $\{1,3,4,5,6\}$

Algorithm for Loop Construction

Given a Back Edge N→D

```
Stack = empty
Loop = {D}
Insert(N)
While stack not empty do
    pop m - top element of stack
    for each p in pred(m) do
        Insert(p)
    endfor
Endwhile
```

```
Insert(m)
  if m not in Loop then
    Loop = Loop U {m}
    push m onto Stack
  endif
End Insert
```

Example

Back Edge $7 \rightarrow 2$

Examples

 $L2 \rightarrow B$, S2 $L1 \rightarrow A$, S1, B, S2L2 nested in L1 While A do
S1
While B do
S2
Endwhile
Endwhile

 $L1 \rightarrow 51,52,53,54$ $L2 \rightarrow 52,53,54$ L2 nested in L1

'?

Reducible Flow Graph

The edges of a reducible flow graph can be partitioned into two disjoint sets:

- *Forward* from an acyclic graph in which every node can be reached from the initial node.
- Back edges whose heads (sink) dominate tails (source).

Any flow graph that cannot be partitioned as above is a non-reducible or irreducible.

Reducible Flow Graph

How to check reducibility?

 Remove all back edges and see if the resulting graph is acyclic.

Irreducible

2→3 not a back edge 3→2 not a back edge graph is not acyclic

Node Splitting

Converts irreducible to reducible

Loop Detection in Reducible Graphs

Depth-first Ordering: numbering of nodes in the reverse order in which they were last visited during depth first search.

 $M \rightarrow N$ is a back edge iff DFN(M) >= DFN(N)

Sample Problems Control Flow Analysis