Homework 5

Armand Nasseri

December 1, 2017

1 Problem 1: Undecidability

a) Assume A is decidable. Then there is a decider M_A for A. Then we will build a decider for $Halt_{TM}$ as follows.

On input $\langle M, w \rangle$:

create a TM M_1 : on input x, run M on w, if halts, accept. else reject.

run M_A on $\langle M_1 \rangle$, if accepts, then accept. else reject.

since M_A is the decider, so this is a valid reduction and M_A accepts $< M_1 >$ iff M_1 halts on all input (including ε) iff M halts on w.

So, $Halt_TM$ is decidable, but in class it is shown to be undecidable. Therefore, this is a contradiction and A is undecidable.

b) We first must show that A is recognizable by building the recognizer as follows:

on input $\langle M \rangle$: run M on ε , if halts then accept.

So, we can conclude that A is recognizable. If \overline{A} is recognizable, then that implies that A is decidable, which is a contradiction to part A which is undecidable. Therefore, \overline{A} is not recognizable.

- c) Rices Theorem:
- Condition 1: $L(M_1) = L(M_2)$, there are two possible cases,
 - they are Σ^* , then both of them in L.
 - they are not Σ^* , then both of them are not in L.

So, if $L(M_1) = L(M_2)$ then $< M_1 > \in L$ iff $< M_2 > \in L$ Condition 2: Pick two TMs where $L(M) = \emptyset$ and $L(M_1) = \Sigma^*$. Then $M_1 \in L$ but $M \notin L$.

d) A_2, A_3, A_5

2 Problem 2: Vertex Cover

a) Let A be the algorithm for problem Vertex Cover. Algorithm B:

$$def B(< G >):$$

$$n = |V|$$

$$for k = 1 to n:$$

$$run A on < G, k >$$

$$if yes, return k.$$

The number of times calling A is at most n.

b) Let C be the algorithm to find the actual smallest Vertex Cover:

$$\label{eq:continuous} \begin{split} \operatorname{def} \mathcal{C}(< G >) &: \\ \operatorname{VC} &= \{ \} \\ \text{for } \mathbf{v} = 1 \text{ to n:} \\ & \text{if } B(G - v) < B(G) \\ & VC = VC \cup \{ v \} \\ & G = G - v \end{split}$$

return VC.

The number of times calling B is at most 2n = O(n).