# **System Verification**

### Tasks:

Note: all tasks execution time is calculated from the actual implemented tasks using GPIOs and the logic analyzer.

| Task Name            | Periodicity / Deadline<br>(MS) | Execution Time (MS) |
|----------------------|--------------------------------|---------------------|
| Button_1_Monitor     | 50                             | 0.0053              |
| Button_2_Monitor     | 50                             | 0.0053              |
| Periodic Transmitter | 100                            | 0.00963             |
| <b>UART Receiver</b> | 20                             | 0.0177              |
| Load 1 Simulation    | 10                             | 5                   |
| Load 2 Simulation    | 100                            | 12                  |

### **Methods of Verification:**

### 1- Using Analytical Method:

#### 1.1. System Hyper period:

- It's the Least Common Multiple of all task periods
- H = LCM (50, 50, 100, 20, 10, 100) = 100

#### 1.2. CPU Load

- U = (E1 + E2 + E3 + E4 + E5 + E6) / H
- where E is the Execution time and H is the Hyper period.
- U = (0.008\*2 + 0.008\*2 + 0.0096 + 0.017\*5 + 5\*10 + 12) / 100 = 0.621 (62.1%)

- 1.3. System stimulability check using URM and Time Demand Analysis Techniques:
  - $\sum_{i=1}^n \frac{c_i}{p_i} \le n(2^{\frac{1}{n}} 1)$

• 
$$L.H.S = \sum_{i=1}^{n} \frac{c_i}{p_i} = \frac{0.0053}{50} + \frac{0.0053}{50} + \frac{0.00963}{100} + \frac{0.0177}{20} + \frac{5}{10} + \frac{12}{100} = 0.6212$$

• 
$$R.H.S = n\left(2^{\frac{1}{n}} - 1\right) = 0.7348$$

•  $L.H.S \le R.H.S$  so, the system is schedulable.

## 2- Time Demand Analysis:

a- Sort the tasks making the highest priority at the first:

| Task Name               | Periodicity / Deadline<br>(MS) | Execution Time (MS) |
|-------------------------|--------------------------------|---------------------|
| 1- Load 1 Simulation    | 10                             | 5                   |
| 2- UART Receiver        | 20                             | 0.0177              |
| 3- Button_1_Monitor     | 50                             | 0.0053              |
| 4- Button_2_Monitor     | 50                             | 0.0053              |
| 5- Periodic Transmitter | 100                            | 0.00963             |
| 6- Load 2 Simulation    | 100                            | 12                  |

b- Choose the critical instant 0 then:

$$w_1(10) = 5 + 0 = 5 < deadline$$
  $w_2(20) = 0.0177 + 5 * \frac{20}{10} = 5.0177 < deadline$   $w_3(50) = 0.0053 + 0.0177 * \frac{50}{20} + 5 * \frac{50}{10} = 25.049 < deadline$   $w_4(50) = 0.0053 + 0.0053 * \frac{50}{50} + 0.0177 * \frac{50}{20} + 5 * \frac{50}{10} = 25.055 < deadline$ 

$$w_5(100) = 0.00963 + 0.0053 * \frac{100}{50} + 0.0053 * \frac{100}{50} + 0.0177 * \frac{100}{20} + 5 * \frac{100}{10} = 50.1193 < deadline$$

$$w_6(100) = 12 + 0.0096 * \frac{100}{100} + 0.008 * \frac{100}{50} + 0.008 * \frac{100}{50} + 0.017 * \frac{100}{20} + 5 * \frac{100}{10} = 62.1193 < deadline$$

As all Tasks are less Than the deadline. So, the system is schedulable.

### 3- Using SIMSO offline simulator:

Used Scheduler: Fixed priority rate monotonic.

Tasks Simulated:



For The CPU load the is the same as the analytical mode

|         | Total load | Payload | System load |
|---------|------------|---------|-------------|
| CPU 1   | 0.6203     | 0.6203  | 0.0000      |
| Average | 0.6203     | 0.6203  | 0.0000      |

#### Gantt chart over the Hyper period:



# 3- Using Keil Simulator at Runtime:

1- Calculate the CPU usage time using timer 1 and trace macros:



#### Note:

- 1- The CPU load is the same as the calculated analytically and the obtained using SIMSO offline simulator.
- 2- None of The Tasks Miss the Deadline.

2. Using trace macros and GPIOs, plot the execution of all tasks, tick, and the idle task on the logic analyzer:

