A simple linear classifier

CSE 250B

Linear decision boundary for classification: example

- What is the formula for this boundary?
- What label would we predict for a new point x?

Linear classifiers

Binary classification: data $x \in \mathbb{R}^d$ and labels $y \in \{-1, +1\}$

- Linear classifier:
 - Parameters: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$
 - Decision boundary $w \cdot x + b = 0$
 - On point x, predict label $sign(w \cdot x + b)$
- If the true label on point x is y:
 - Classifier correct if $y(w \cdot x + b) > 0$

当真实值y和预测值同号的时候,分类正确

A loss function for classification

What is the **loss** of the linear classifier w, b on a point (x, y)?

One idea for a loss function:

- If $y(w \cdot x + b) > 0$: correct, no loss
- If $y(w \cdot x + b) < 0$: loss = $-y(w \cdot x + b)$

A simple learning algorithm

Fit a linear classifier w, b to the training set using **stochastic** gradient descent.

- Update w, b based on just one data point (x, y) at a time
- If $y(w \cdot x + b) > 0$: zero loss, no update
- If $y(w \cdot x + b) \le 0$: loss is $-y(w \cdot x + b)$

A simple learning algorithm

Fit a linear classifier w, b to the training set using **stochastic** gradient descent.

- Update w, b based on just one data point (x, y) at a time
- If $y(w \cdot x + b) > 0$: zero loss, no update
- If $y(w \cdot x + b) \le 0$: loss is $-y(w \cdot x + b)$

The Perceptron algorithm

- Initialize w = 0 and b = 0
- Keep cycling through the training data (x, y):
 - If $y(w \cdot x + b) \le 0$ (i.e. point misclassified):
 - w = w + yx 求导理解一下
 - b = b + y update rule

Perceptron: convergence

Theorem: Let $R=\max\|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma>0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges within R^2/γ^2 updates.

Perceptron: convergence

Theorem: Let $R = \max \|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma > 0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges within R^2/γ^2 updates.

Proof idea. Let w_t be the classifier after t updates.

Track angle between w_t and w^* :

$$\cos(\angle(w_t, w^*)) = \frac{w_t \cdot w^*}{\|w\|}.$$

Perceptron: convergence

Theorem: Let $R = \max \|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma > 0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges within R^2/γ^2 updates.

Proof idea. Let w_t be the classifier after t updates.

On each mistake, when w_t is updated to w_{t+1} ,

- $w_t \cdot w^*$ grows significantly.
- $||w_t||$ does not grow much.