User-in-the-loop Policy Enforcement with Cross-App Interaction Discovery in IoT Platforms

PRESENTED BY:

Rui Chen

University of Kansas

Electrical Engineering & Computer Science

Master Thesis Defense (CS)

Overview

- Introduction
- Related Works
 - IoT Access Control
 - Cross-app Interaction
 - Policy Enforcement
- The IoTDiscover System
 - Code analysis
 - Code instrumentation
 - Conflict Discovery
 - Conflict Resolution
 - Policy Language Generation and Evaluation
- Evaluations
- Conclusions

Introduction

- Smart Home Platforms
- SmartThings

Flawed/Malicious IoT Apps

- The user install IoT apps from third-party or unvetted marketplace
 - The actual functionality different from the app's description
 - Contains malicious code or flaws.

```
description: "Turn your lights on when motion is detected"
input "motion1", "capability.motionSensor", required: true, title:"Where?"
input "switch", "capability.switch"

subscribe(motion1, "motion.active", motionActiveHandler)

def motionActiveHandler(evt) {
   switch1.on()
   switch1.off()
}
```

Brighten-my-path app

Interaction in Complex Environment

- Multiple IoT apps interact with each other
 - IoT apps are based on trigger-action paradigm

Related Works

- IoT Access Control
 - ContexIoT [1]
 - Context based permission system
 - Request the user's permission at runtime
 - SmartAuth [2]
 - The app's actual functionality vs. app's description
 - Limitations: Only focused on single app violations

Name	Single-App	Cross-App	Presenting Recommended	Runtime Policy
	Conflicts	Interactions	Policies	Enforcement
ContexIoT [1]	√, O			
SmartAuth [2]	√, O			
HomeGuard [3]		$\sqrt{}$		
SOTERIA [4]		$\sqrt{}$		
IoTGuard [5]		О		√
PatrIoT [6]		О		√
IoTDiscover	√, O	√, O	V	√

" $\sqrt{}$ " in column "single-app conflicts" and "cross-app interaction" denote as the system detects the conflicts, and "O" denotes the system mitigates the conflicts

Related Works

- Cross-App Interaction
 - HomeGuard [3]
 - Detect Cross-App Inference Threats
 - SOTERIA [4]
 - Identify violations against safety and security properties
 - Limitations: Static analysis, did not provide solution to mitigate threats/violations

Name	Single-App	Cross-App	Presenting Recommended	Runtime Policy
	Conflicts	Interactions	Policies	Enforcement
ContexIoT [1]	√, O			
SmartAuth [2]	√, O			
HomeGuard [3]		$\sqrt{}$		
SOTERIA [4]		$\sqrt{}$		
IoTGuard [5]		О		√
PatrIoT [6]		О		√
IoTDiscover	√, O	√, O	V	√

" $\sqrt{}$ " in column "single-app conflicts" and "cross-app interaction" denote as the system detects the conflicts, and "O" denotes the system mitigates the conflicts

Related Works

Policy Enforcement

- IoTGuard [5]
- PatrloT [6]
- Monitor apps behavior at runtime based on pre-defined policies.
- Limitations:
 - Pre-defined policies are fixed and unknown to the user
 - Did not detecting the conflicts

Name	Single-App Conflicts	Cross-App Interactions	Presenting Recommended Policies	Runtime Policy Enforcement
	1 -			
ContexIoT [1]	√, O			
SmartAuth [2]	√, O			
HomeGuard [3]		V		
SOTERIA [4]		$\sqrt{}$		
IoTGuard [5]		О		√
PatrIoT [6]		О		√
IoTDiscover	√, O	√, O	V	√

" $\sqrt{}$ " in column "single-app conflicts" and "cross-app interaction" denote as the system detects the conflicts, and "O" denotes the system mitigates the conflicts

IoTDiscover System

- Main goals
 - Discover hidden functionalities
 - Discover potential interactions among multiple trigger-actions
 - Resolve conflicts with user-in-the-loop policy generation
- System workflow

Code Analysis

- Input SmartApps in Groovy
- Method
 - Works on Abstract Syntax Tree (AST) representation of Groovy
 - ASTTransformation class create an AST visitor
 - Visit each AST nodes
 - Reconstruct paths and extract triggers and actions
- Implementation
 - We adopted open-source code [7] to implement the code analyzer
- Output Trigger-Action tuples
 - Trigger-Action_ID
 - Trigger: <device>, <attribute>
 - Action: <device>, <command>

Code Instrumentation

- Input
 - SmartApps in Groovy
 - Trigger-actions extracted from code analysis
- Methods
 - Preprocess the code
 - AST
 - Guard action calls and wait for predicates
- Implementation
 - Adopted the code from PatrIoT [6]
- Output
 - Instrumented apps to collect information
 - Configured app information (device and input settings)
 - Decision (allow/deny) of extracted trigger-actions
 - Guarded runtime information
 - App name, trigger_event, action_device, action_command

```
definition( ...
   parent: "ruichenpolicy:PolicyManager",
preferences {...}
subscribe(motion1, "motion.inactive", motionInactiveHandler)
def motionInactiveHandler(evt) {
   parent.verify(app.getLabel(), evt, switch1.getDisplayName(), 'off', null) ==
      true ? switch1.off() : log.debug('Invariants violation!')
def getChildAppDevices() {
   return settings
def SetupPage() {
   dynamicPage(name: "SetupPage") {
     // original input section...
     section("App Description") {
        // display app description
     section("Single App Policy:") {
        //display extracted trigger-action
        //request for permission Allow/Deny
```


Conflicts Discovery

Single-App conflicts

- Input
 - App description
 - App's actual trigger-actions
- Idea
 - Present actual trigger-action behavior to user
 - Let user deice whether the behavior is conflict with app description
- Method
 - User-in-the-loop
- Output
 - Allow/Deny decision on each trigger-actions

Conflicts Discovery

Cross-App Interaction Threats

- The trigger event or action command of two trigger-actions are conflict or interplay with each other
- We categorize existing cross-app interference [3] into two types
 - Conflicting interactions
 - Chained interactions

Conflicting Interactions

- Conflicting Interactions
 - Two trigger-actions
 - $TA_1 = (T_1, A_1, CT_1, CA_1)$
 - $TA_2 = (T_2, A_2, CT_2, CA_2)$
 - T_1 trigger, A_1 action,
 - CT_1 physical channel of trigger, CA_1 physical channel of action

Category	Basic Pattern	Auxiliary Pattern	ID	Examples
	$A_1 = \neg A_2$	$T_1 = T_2$	A.1	Fig. 3.a
Conflicting		$T_1 \neq T_2$	A.2	Fig.3.b
Interactions	$A_1 = A_2$	$T_1 = \neg T_2$	A.3	Fig. 3.d
	$A_1 \neq A_2$, $CA_1 = \neg CA_2$	$T_1 = T_2$	A.4	Fig. 3.c

Chained Interactions

Chained Interactions

- Two trigger-actions
 - $TA_1 = (T_1, A_1, CT_1, CA_1)$
 - $TA_2 = (T_2, A_2, CT_2, CA_2)$

Category	Basic Pattern	Auxiliary Pattern	ID	Examples
		$\sim (A_2 \rightarrow T_1), A_1 \neq A_2$	T.1	Fig. 4.a
	$A_1 \rightarrow T_2$	$\sim (A_2 \rightarrow T_1), A_1 = \neg A_2$	T.2	Fig. 4.b
Chained		$A_2 \rightarrow T_1, A_1 \neq A_2$	T.3	Fig. 4.c
Interactions		$\sim (A_2 \nrightarrow T_1), A_1 \neq A_2$	T.4	Fig. 4.d
	$A_1 \not\rightarrow T_2$, $CA_1 = CT_2$	$\sim (A_2 \nrightarrow T_1), A_1 = \neg A_2$	T.5	Fig. 4.e
		$A_2 \nrightarrow T_1$, $CA_2 = CT_1$, $A_1 = \neg A_2$	T.6	Fig. 4.f

Conflicts Discovery

Interaction Threats Detection

```
Algorithm 1: Interaction Discovery - Conflict Interactions
```

Input: TA_P , sets of trigger actions with configured information, $\{t, a, ca, ct\}$

Output: IA, sets of discovered conflict Interactions

```
foreach i \in TA_P do

foreach j \in TA_P do

if i == j then

continue

if i. a == \sim j. a then

if i. t == j. t \parallel i. t! = j. t then

IA \leftarrow \{i, j\}

if i. a == j. a then

if i. t == \sim j. t then

IA \leftarrow \{i, j\}

if i. a! = j. a \& i. ca == \sim j. ca then

if i. t == j. t then

IA \leftarrow \{i, j\}
```

Algorithm 2: Interaction Discovery – Chained Interactions

Input: TA_P , sets of trigger actions with configured information, $\{t, a, ca, ct\}$

Output: IA, sets of discovered conflict Interactions

foreach
$$i \in TA_P$$
 do

if $i == j$ then

continue

if $i.a == j.t$ then

if $j.a != i.t$ then

if $i.a != j.a \parallel i.a == \sim j.a$ then

 $IA \leftarrow \{i,j\}$

else if $j.a == i.t \& i.a != j.a$ then

 $IA \leftarrow \{i,j\}$

if $i.a != j.t \& i.ca == j.ct$ then

if $j.a != i.t \& j.ca != i.ct$ then

if $j.a != i.t \& j.ca != i.ct$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == \sim j.a$ then

 $j.a != j.a \parallel i.a == i.a$

- Single-App Conflicts Resolution
 - Generate resolution policy based on the user's decision
 - Ex:
 - The user selected "Deny" on trigger-action
 - "<Darken behind me> will "off" <smart-plug-1> when <Hue-motion-sensor> is "active"
 - Then a policy is defined as:
 - "Deny smart-plug-1 to be off if Hue-motion-sensor is active

Conflicts Discovery

 An UI is designed to present the potential single-app conflicts to the user and collect her decisions for policy generation

- Cross-App Conflicts Resolution
 - Conflicting interactions
 - Deny one of the actions (decide by user)
 - Define policies to avoid two trigger-actions to be triggered at the same time
 - Deny turn off light_1 when motion is active
 - Deny turn on light_1 when door is locked

 An UI is designed to present the potential conflicting interactions to the user and collect her selection for policy generation

- Cross-App Conflicts Resolution
 - Chained Interactions
 - One solution: deny <A2> to be executed under <T1>
 - Two cases
 - The user may allow the chained interactions under a certain condition
 - Special case loop-triggering is could not be solved

- Cross-App Conflicts Resolution
 - Chained Interactions
 - User-in-the-loop design
 - Pre-defined condition lists
 - Present to the user based on target device type
 - The user select or specify expected conditions
 - A policy will be generated by combining selected condition with target trigger-action
 - ex: C.1 is selected to restrict the trigger action "turn on the light_1 when motion is active"

 A policy "Allow light_1 to be turned on when motion is active only if illuminance below 50 for 10 mins" is generated

ID	Conditions Description
C.1	Allow light to be turned on only if illuminance below 50 for 10 mins
C.2	Allow light to be turned on only if motion is detected
C.3	Allow light to be turned on only if user is at home
C.4	Allow light to be turned off only if motion is not detected within 30s
C.5	Allow window to be open only if user is at home
C.6	Allow heater to be turned on only if AC is off
C.7	Allow water valve to be turned on only if water leakage is detected with in 60s

 An UI is designed to present the potential chained interactions to the user and collect her selection and specification for policy generation

(c)

- Information from UIs
 - From the UI for single-app conflicts
 - Returns a decision with trigger-action ID in form: ["trigger-action_ID", "decision"]
 - Example: ["rule56", "Deny"]
 - The system gets correlated trigger-action based on trigger-action ID and assign with decision
 - From the UI for conflicting interactions
 - Selected policies that contains permission, trigger, and action information
 - From the UI for chained interactions
 - The information of the condition selected by the user will be returned
 - Condition would be NULL if no condition added to the policy
- Resolution Output Format
 - JSON lists containing all the trigger-action pairs, user selected conditions and the permissions

Policy Generator

- Policy Language
 - We adopted an expressive policy language from PatrloT [6]
 - Policies generated from three conflicts are following the same format
 - <target_clause>:
 - target actions, including action device and action command
 - <condition_clause>:
 - Trigger statement and condition statement
 - Non-temporal condition: the target action will be triggered immediately
 - Temporal condition: the target action will be triggered in a time period
 - Since, Once, Lastly

Allow heater to be turned on when motionSensor is active only if AC is off

Policy P_1:

ALLOW action_command = on **AND** action_device = heater

ONLY IF state(motionSensor) = active **AND**

state(AC) = off

Policy <identifier>:

allow/deny <target_clause>

[only if <condition_clause>]

Allow light_1 to be turned on only if illuminance below 50 for 10 minutes

Policy P_2:

ALLOW action_command = on **AND** action_device = light_1

ONLY IF LASTLY(value(illuminanceSensor) < 50) **WITHIN** [0, 600]

Deny light_1 to be turned on only if motionSensor is inactive

Policy P_3:

DENY action_command = on **AND** action_device = light_1

ONLY IF state(motionSensor) = inactive

Policy Enforcement

- Input
 - Runtime information from instrumented apps
 - App name, trigger event, action device and command
- Method
 - Parent-Child relationship between instrumented app and the Policy Enforcement
 - Policies are encoded in the Policy Enforcement as policy functions
 - A decision function is called by instrumented app at every guarded action
- Implementation
 - We adopted the code from PatrIoT [6] to implement the Policy Enforcement
- Output
 - Return TRUE if the action passed all the policies
 - Return FALSE if the action violated any policies

- Dataset
 - 17 SmartThings official apps [8]
 - 2 flawed/malicious apps from IoTBench [9]
- Testing Cases
 - 5 testing cases
 - Each testing case are manually selected several apps

Test Case	# of apps	# of single app conflicts	Interaction threats	# of policies generated
A	6	2	T.5, T.6	4
В	5	1	A.2, T.4	3
С	5	0	T.1, A.3	2
D	4	2	T.3	3
Е	6	1	A.4, T.2	2

Conflict Discovery Result

Test	App Name	Threats	Threat
Case			type
	Darken-behind-Me	Unknown trigger-action: turn off light_1 when motionSensor is active	Single-
			app
	Battery-Monitor	Unknown trigger-action: unlock myFrontDoor when motionSensor is	Single-
A		inactive	app
	Darken-behind-me	Turn off the light_1 when motionSensor is inactive	T.5
	Light-up-the-night	Turn on the light_1 when illuminance exceeds 50	
	Light-up-the-night	Turn off the light_1 when illuminance exceeds 50	T.6
		Turn on the light_1 when illuminance below 50	
	Lock-it-at-a-specific-time	Lock myFrontDoor when currentTime is 9:00pm	A.2
В	Unlock-it-when-i-arrive	Unlock myFrontDoor when presentSensor is present	
	Humidity-alert	Turn on humidifier when humidity below 30%	T.4
	Curling-iron	Turn on the heater when motionSensor is active	
	Curling-iron	Turn on heater when motionSensor is active	A.3
C		Turn on fan when motionSensor is active	
	Make-it-so	Open the window when mode is "home"	T.1
	Change-mode-on-unlock	Change mode to "home" when door is unlocked	
D	Make-it-so	Turn on light when mode is "home"	T.3
	Switch-change-mode	Change mode to "home" when light is on	
	Close-the-valve	Turn off the valve when waterSensor is wet	A.4
E	Dry-the-wetspot	Turn off the valve when waterSensor is dry (user misconfigured)	
	Energy-saver	Turn off the heater when powerMeter exceeds 3000 W	T.2
	Its-too-cold	Turn on the heater when temperature below 70F	

- Conflicts Resolution Result
 - Testing Case A

Test	App Name	Threats	Threat
Case			type
A	Darken-behind-Me	Unknown trigger-action: turn off light_1 when motionSensor is active	Single-
			app
A	Battery-Monitor	Unknown trigger-action: unlock myFrontDoor when motionSensor is	Single-
		inactive	app
A	Darken-behind-me	Turn off the light_1 when motionSensor is inactive	T.5
	Light-up-the-night	Turn on the light 1 when illuminance exceeds 50	
A	Light-up-the-night	Turn off the light_1 when illuminance exceeds 50	T.6
		Turn on the light 1 when illuminance below 50	

ID	Policy
P.1	Deny light_1 to be off if motionSensor is active
P.2	Deny unlock myFrontDoor if motionSensor is inactive
P.3	Allow turn on the light 1 only if illuminance below 50 over 10 mins
P.4	Allow turn off the light 1 only if illuminance exceeds 50 over 10 mins

- Conflicts Resolution Result
 - Testing Case B

Test	App Name	Threats	Threat
Case			type
В	Its-too-hot	Unknown trigger-action: sendSMS when temperature > 75	Single-
			app
В	Lock-it-at-a-specific-time	Lock myFrontDoor when currentTime is 9:00pm	A.2
	Unlock-it-when-i-arrive	Unlock myFrontDoor when presentSensor is present	
В	Humidity-alert	Turn on humidifier when humidity below 30%	T.4
	Curling-iron	Turn on the heater when motionSensor is active	

ID	Policy
P.1	Deny sending SMS when temperature > 75
P.2	Deny myFrontDoor to be unlocked when currentTime is 9:00pm
P.3	Allow humidifier to be turned on when humidity below 30% only if temperature > 75

- Policy Enforcement Result
 - Tested the action by manually trigger each devices
 - Compare the executed action before and after policy enforcement

Testing Case A

Triggers	Action before Policy Enforcement	Action after Policy Enforcement
Motion.active	• light_1 on then off immediately	• Light_1 on
Motion.inactive	light_1 offmyFrontDoor unlocked	• light_1 off
Set illuminance to 30	light_1 on then of immediately	light_1 onlight_1 off after 10 mins
Set illuminance to 60	• light_1 off then on immediately	light_1 offlight_1 on after 10 mins

Testing Case B

Triggers	Action before Policy Enforcement	Action after Policy Enforcement
Set temperature to 80	heater offsending SMS	heater off
currentTime: 9:00pm presentSensor.present	myFrontDoor locked then unlocked immediately	myFrontDoor locked
motionSensor.active	heater onhumidifier on	 heater on humidifier on only when temperature > 75

Conclusions

- We present a new framework, IoTDiscover
 - Detect potential conflicts in single-app and multi-app use cases in smart homes
 - Generate corresponding policies to resolve the conflicts using a user-in-the-loop design
- Future Work
 - Improve user-in-the-loop design with machine learning techniques
 - Introduce policy verification to resolve potential conflicts

References

- [1] Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z. M., ... & Unviersity, S. J. (2017, February). ContexloT: Towards Providing Contextual Integrity to Applified IoT Platforms. In *NDSS* (Vol. 2, No. 2, pp. 2-2).
- [2] Tian, Y., Zhang, N., Lin, Y. H., Wang, X., Ur, B., Guo, X., & Tague, P. (2017). {SmartAuth}:{User-Centered} Authorization for the Internet of Things. In *26th USENIX Security Symposium (USENIX Security 17)* (pp. 361-378).
- [3] Chi, H., Zeng, Q., Du, X., & Yu, J. (2020, June). Cross-app interference threats in smart homes: Categorization, detection and handling. In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (pp. 411-423). IEEE. [24] On the Safety of IoT Device Physical Interaction Control
- [4] Celik, Z. B., McDaniel, P., & Tan, G. (2018). Soteria: Automated {IoT} Safety and Security Analysis. In 2018 USENIX Annual Technical Conference (USENIX ATC 18) (pp. 147-158).
- [5] Celik, Z. B., Tan, G., & McDaniel, P. D. (2019, February). IoTGuard: Dynamic Enforcement of Security and Safety Policy in Commodity IoT. In *NDSS*.
- [6] Yahyazadeh, M., Hussain, S. R., Hoque, E., & Chowdhury, O. (2020, October). PATRIOT: Policy assisted resilient programmable IoT system. In *International Conference on Runtime Verification* (pp. 151-171). Springer, Cham.
- [7] https://github.com/cyoki/IoTPrivacy
- [8] SmartThings Public Repo https://github.com/SmartThingsCommunity/SmartThingsPublic
- [9] IoTBentch. https://github.com/IoTBench/IoTBench-test-suite

