

Adaboost

Son Nguyen September 28, 2020

Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

Round 1	(P)				1		
best weak classifier:	177	1/7	17.	1/7	1/7	17	1/7
change weights:	1/16	1/4	1/16	1/16	1/4	1/16	1/4

1/8 1/32 1/32 1/8 1/32 11/32 best weak classifier: change weights: Round 2

Idea Behind Ada Boost

Round 3

- out of all available weak classifiers, we choose the one that works best on the data we have at round 3
- we assume there is always a weak classifier better than random (better than 50% error)
- image is half of the data given to the classifier
- chosen weak classifier has to classify this image correctly

Adaboost, Clearly Explained

- Demonstration by StatQuest
- . ____

•						•			5.0	
									4.5	
		•							4.0	
									3.5	
•						•		•	30	Y3
									2.5	
		•				•			2.0	
									1.5	
				•				•	1.0	
20	4.5	4.0	3.5	30 30 30	2.5	20	1.5	1.0		

Detail Calculation

>	$\overline{}$	$\overline{}$	<u></u>	_	ī	<u></u>	$\overline{}$	<u></u>	ī	ī
2	_	33	7	4	_	2	2	4	7	2
×	_	_	7	2	\sim	\sim	\sim	4	2	2
Row	0	<u> </u>	2	33	4	2	9	7	∞	6

- Assign weights for each row
- Every row has the same weight in the first step

>	_	_	ī	_	ī	_	<u></u>	_	T	<u></u>
x 2	<u> </u>	\sim	7	4		2	2	4	7	2
	<u></u>									
Row	0	_	2	3	4	2	9	7	∞	6

- Assign weights for each row
- Every row has the same weight in the first step

t 1										
Weight										
×	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
>	_	<u></u>	T	_	<u> </u>	T	$\overline{}$	<u>~</u>	<u> </u>	T
X	<u></u>	3	7	4	<u> </u>	7	2	4	7	2
×	_	_	7	2	\sim	3	\sim	4	2	2
Row	0	<u></u>	2	3	4	2	9	7	∞	6

Use Weighted Gini-Index to calculate the children entropy of all candidate splits

ıt 1										
Weight 1	0.1	0.1	0.1	0.1	_			0.1	0.1	0.1
>		<u></u>	<u></u>	<u></u>	<u></u>	_	$\overline{}$	<u></u>	T	<u> </u>
X	<u></u>	\sim	7	4		2	2	4	7	2
×	_	_	7	2	\sim	\sim	\sim	4	2	2
Row	0	_	2	Ω	4	2	9	7	∞	6

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Weight '0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
> ~	<u> </u>	ī	<u></u>	Ī	\sqrt{1}	$\overline{}$	<u></u>	_	Ī
2 –	\sim	7	4		2	2	4	7	2
\(\times \)	<u></u>	2	2	\sim	3	\sim	4	2	2
Row	<u> </u>	7	33	4	2	9	7	∞	6

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split
- **NOTE**: You are not required to make the stump. So the stump will be given to you!

Weight 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
>	$\overline{}$	<u></u>	T	<u></u>	T	\sqrt{1}	$\overline{}$	<u></u>	T	T
X	_	2	7	4	<u></u>	2	2	4	7	2
×	_	_	7	2	3	3	\sim	4	2	2
Row	0	_	2	3	4	2	9	7	∞	6

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split
- **NOTE**: You are not required to make the stump. So the stump will be given to you!
- Here is the first stump

Prediction of Stump 1

• Stump 1:

$$I(x_2>2.5)$$

- ullet If x2>2.5, predicts y=1.
- Otherwise, predicts y=-1

Stump 1 Predicts	<u> </u>		\		\ <u>\</u>	<u> </u>	←	<u></u>	<u> </u>	_
>	$\overline{}$	<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>	$\overline{}$	_	<u> </u>	<u> </u>
X	<u></u>	\sim	7	4	_	2	2	4	7	2
×	<u></u>	—	2	2	\sim	\sim	\sim	4	2	2
Row	0	<u></u>	2	χ	4	2	9	7	∞	0

_	\ \									\ \
Weight	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
y Stump 1 Predicts Weight 1	<u>\</u>	~	<u>\</u>	~	<u> </u>	\	←	~	_	
>	$\overline{}$	<u></u>	ī	<u></u>	<u> </u>	T	$\overline{}$	<u></u>	T	T
X	$\overline{}$	\sim	7	4	<u></u>	7	2	4	7	2
×	$\overline{}$	$\overline{}$	7	2	\sim	\sim	33	4	2	2
Row x1	0	<u> </u>	2	3	4	2	9	7	∞	6

Error of the first stump

 Stump 1 has 2 misclassifications at row 0 and 9 (The predictions are NOT the same as the y values). The total weights of these rows are:

$$\epsilon_1 = 0.1 + 0.1 = 0.2$$

2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y Stump 1 Predicts Weight 1	Neight 1	
- 'I - 'I 'I '	0	0.1	ı V
<u></u>	O .	0.1	
<u> </u>	O	0.1	
<u> </u>	O	0.1	
<u></u>	0	0.1	
	O	0.1	
<u> </u>	O	0.1	
<u></u>	O	0.1	
~	O	0.1	
ī	0	0.1	I V

Voting Power of the first Stump

 Stump 1 has 2 misclassifications at row 0 and 9 (The predictions are NOT the same as the y values). The total weights of these rows are:

$$\epsilon_1 = 0.1 + 0.1 = 0.2$$

- Voting Power: (L is the learning rate. L=1 in this example 1)

$$\alpha_1 = L \cdot \frac{1}{2} \cdot \ln(\frac{1-\epsilon_1}{\epsilon_1}) = 0.693$$

	V									V
Weight 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Stump 1 Predicts Weight 1	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u>\</u>	1
>	$\overline{}$	<u></u>	<u></u>		<u>\</u>	<u></u>	$\overline{}$	<u></u>	<u>\</u>	<u> </u>
X	<u></u>	3	7	4	$\overline{}$	2	2	4	7	5
X	<u></u>	_	2	2	\sim	\sim	\sim	4	2	2
Row x1 x2	0	<u></u>	2	3	4	2	9	7	∞	6

For misclassified rows 0 and 9:

$$w_{new} = w_{old} \cdot e^{\alpha} = 0.1 \cdot e^{0.693} = 0.2$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-\alpha} = 0.1 \cdot e^{-0.693} = .05$$

	\ \									\ \
Weight 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Stump 1 Predicts Weight 1	\		\		<u>\</u>	<u> </u>	←		<u>\</u>	_
>	$\overline{}$		\[\bar{\pi}\]	_	<u> </u>	T	$\overline{}$	<u></u>	<u> </u>	<u> </u>
X	<u></u>	\sim	2	4	$\overline{}$	2	2	4	7	5
×	_	_	2	2	\sim	\sim	\sim	4	2	2
Row	0	_	2	3	4	2	9	7	∞	6
	_	•	()	(.,	7	Δ,	•	1 ~	∞	O.

For misclassified rows 0 and 9:

$$w_{new} = w_{old} \cdot e^{\alpha} = 0.1 \cdot e^{0.693} = 0.2$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha} = 0.1 \cdot e^{-0.693} = .05$$

0 1 1 1 -1 -1 0.1 0.05 1 1 3 1 1 0.0 0.05 2 2 2 -1 -1 0.0 0.05 3 2 4 1 1 0.0 0.0 4 3 1 -1 -1 0.0 0.0 5 3 2 -1 -1 0.0 0.0 6 3 5 1 1 0.0 0.0 8 5 2 -1 -1 0.0 0.0 9 5 5 -1 1 0.0 0.0 0.0	Row x1 x2	×	X		y Stump 1 Predicts Weight 1 Weight 2	Weight 1	Weight 2
1 3 1 1 0.1 2 2 -1 -1 0.1 3 1 -1 -1 0.1 3 2 -1 -1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 -1 0.1 5 5 -1 -1 0.1	0	<u></u>	_	<u></u>	<u> </u>	0.1	0.2
2 2 -1 -1 0.1 2 4 1 1 0.1 3 1 -1 -1 0.1 3 2 -1 -1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 -1 0.1 5 5 -1 1 0.1	—	_	\sim	<u></u>	<u></u>	0.1	0.05
2 4 1 1 0.1 3 1 -1 -1 0.1 3 2 -1 -1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 -1 0.1 5 5 -1 1 0.1	2	2	2	<u> </u>	<u>\</u>	0.1	0.05
3 1 -1 -1 -1 0.1 3 2 -1 -1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 -1 0.1 5 5 -1 1 0.1	3	2	4	<u></u>	<u> </u>	0.1	0.05
3 2 -1 -1 0.1 3 5 1 1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 1 0.1	4	\sim	_	<u> </u>	<u>\</u>	0.1	0.05
3 5 1 1 0.1 4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 1 0.1	2	\sim	2	<u></u>	√	0.1	0.05
4 4 1 1 0.1 5 2 -1 -1 0.1 5 5 -1 1 0.1	9	\sim	2	$\overline{}$	<u></u>	0.1	0.05
5 2 -1 -1 0.1 5 5 -1 1 0.1	7	4	4	<u></u>	_	0.1	0.05
5 5 -1 1 0.1	∞	2	7	ī	<u> </u>	0.1	0.05
	6	2	2	ī		0.1	0.2

For misclassified rows 0 and 9:

$$w_{new} = w_{old} \cdot e^{\alpha} = 0.1 \cdot e^{0.693} = 0.2$$

For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha} = 0.1 \cdot e^{-0.693} = .05$$

 Notice how the weights increase for misclassified rows and decrease otherwise.

Row	×	X	>	Row x1 x2 y Stump 1 Predicts Weight 1 Weight 2	Weight 1	Weight 2
0	<u></u>	_	$\overline{}$	<u>\</u>	0.1	0.2
—	_	\sim	_		0.1	0.05
2	2	2	<u> </u>	<u> </u>	0.1	0.05
\sim	2	4	_	_	0.1	0.05
4	\sim	_	<u></u>	<u>\</u>	0.1	0.05
2	\sim	2	<u></u>	<u> </u>	0.1	0.05
9	\sim	2	$\overline{}$		0.1	0.05
7	4	4	_	<u></u>	0.1	0.05
∞	2	7	<u></u>	<u>\</u>	0.1	0.05
6	2	2	<u> </u>	1	0.1	0.2

• The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.

M	×	2	>	Row x1 x2 y Stump 1 Predicts Weight 1 Weight 2	Weight 1	Weight 2
	<u> </u>	<u> </u>	<u> </u>	\	0.1	0.2
	<u></u>	\sim	<u></u>	—	0.1	0.05
	2	2	<u>\</u>	<u> </u>	0.1	0.05
	2	4	<u></u>	<u></u>	0.1	0.05
	\sim	<u></u>	<u>\</u>	<u>\</u>	0.1	0.05
	\sim	2	<u> </u>	<u>\</u>	0.1	0.05
9	∞	2	<u></u>	<u></u>	0.1	0.05
	4	4	<u></u>	_	0.1	0.05
	2	7	<u> </u>	<u>\</u>	0.1	0.05
	2	2	<u></u>	F	0.1	0.2

• The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.

Divide Weight 2 by 0.8

_	Row x1 x2	X		y Stump 1 Predicts Weight 1 Weight 2	Weight 1	Weight 2
	<u> </u>	<u> </u>	<u></u>	<u> </u>	0.1	0.2
	<u></u>	3	<u></u>	<u></u>	0.1	0.05
	2	2	<u> </u>	<u>\</u>	0.1	0.05
	2	4	<u></u>	_	0.1	0.05
	\sim	<u></u>	<u>\</u>	<u> </u>	0.1	0.05
	\sim	2	<u> </u>	<u> </u>	0.1	0.05
	\sim	2	$\overline{}$	<u> </u>	0.1	0.05
	4	4	<u></u>	_	0.1	0.05
	2	7	<u> </u>	<u>\</u>	0.1	0.05
	2	2	T	<u>←</u>	0.1	0.2

- The total weights has to be 1. We divide the weights by the total (.2*2+.05*8=.8) to achieve this.
- Divide Weight 2 by 0.8

×		9	>	Row x1 x2 y Stump 1 Predicts Weight 1 Weight 2	Weight 1	Weight 2
<u></u>	_		$\overline{}$	<u>\</u>	0.1	0.25
1 3	α		_	<u></u>	0.1	0.0625
2		2	<u> </u>	<u>\</u>	0.1	0.0625
7 7		4	<u></u>	_	0.1	0.0625
3 1			<u></u>	<u>\</u>	0.1	0.0625
ω		2	<u> </u>	<u>\</u>	0.1	0.0625
ω		2	$\overline{}$	—	0.1	0.0625
7 +		4	<u></u>	~	0.1	0.0625
2		7	<u> </u>	<u>\</u>	0.1	0.0625
5		2	<u></u>	<u></u>	0.1	0.25

Repeat the process to make the second Stump

Data to make the second Stump

7										
Weight 2	0.25	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.25
>	$\overline{}$	<u></u>	T	<u></u>	<u> </u>	T	$\overline{}$	_	<u> </u>	<u></u>
X		\sim	7	4	<u></u>	2	2	4	2	2
×	_	_	2	2	3	3	3	4	2	2
Row	0	_	2	33	4	2	9	7	∞	6

Make the second stump

Use Weighted Gini-Index to calculate the children entropy of all candidate splits

Weight 2	0.25	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.25
>	$\overline{}$	<u></u>	<u></u>	<u></u>	<u> </u>	<u>\</u>	$\overline{}$	<u></u>	T	<u></u>
X		3	7	4	<u></u>	2	2	4	7	2
×	$\overline{}$	_	2	2	33	3	\sim	4	2	2
Row	0	<u> </u>	2	\sim	4	2	9	7	8	6

Make the second stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Weight 2	0.25	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.25
>	$\overline{}$	<u></u>	<u></u>	<u></u>	<u>\</u>	_	$\overline{}$	<u></u>	<u>\</u>	<u></u>
X	_	\sim	7	4	<u></u>	2	2	4	7	2
×	<u></u>	—	7	2	\sim	\sim	\sim	4	2	2
Row	0	<u></u>	2	3	4	2	9	7	∞	6

Make the second stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Error of the second stump

>	×	Row x1 x2		y Stump 2 Predicts Weight 2	Weight 2	
	_	$\overline{}$		_	0.25	
	<u></u>	\sim			0.0625	
	7	2	ī	<u>\</u>	0.0625	
	2	4	<u></u>	<u></u>	0.0625	V
	\sim	$\overline{}$	Ī	<u>\</u>	0.0625	
	\sim	2	Ī	<u>\</u>	0.0625	
	$^{\circ}$	2	_	<u>\</u>	0.0625	V
	4	4	<u></u>	<u>\</u>	0.0625	V
	2	2	ī	<u>\</u>	0.0625	
	2	2	<u> </u>	<u> </u>	0.25	

Error of the second stump

- Stump 2 has misclassifications at row 3, 6, and 7 (The predictions are NOT the same as the y values). The total weights of these rows are: 0.0625 + 0.0625 + 0.0625
- Error of Stump 2:

$$\epsilon_2=0.1875$$

Voting Power:

$$\alpha_1 = L \cdot \frac{1}{2} \cdot \ln(\frac{1 - \epsilon_2}{\epsilon_2}) = 0.733$$

Row x1 x2	×	×2	>	y Stump 2 Predicts Weight 2	Weight 2	
0	_	_	_	_	0.25	
_	_	\sim	<u></u>	_	0.0625	
2	7	7	\int \int \int \int \int \int \int \int	<u> </u>	0.0625	
33	2	4	<u></u>	<u> </u>	0.0625	V
4	\sim	_	<u>\</u>	<u> </u>	0.0625	
2	3	2	\(\sigma\)	<u> </u>	0.0625	
9	\sim	2	$\overline{}$	<u> </u>	0.0625	V
7	4	4	<u></u>	<u> </u>	0.0625	\ \
∞	2	7	VI.	<u> </u>	0.0625	
6	2	2	<u>\</u>	<u> </u>	0.25	

Calculating the new weights

• For misclassified rows 3, 6 and 7:

$$w_{new} = w_{old} \cdot e^{lpha}$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-lpha}$$

Row	×	x2	>	Row x1 x2 y Stump 2 Predicts Weight 2	Weight 2	
0	$\overline{}$	_		└	0.25	
—	_	\sim	<u></u>	<u> </u>	0.0625	
2	2	7	<u></u>	<u>\</u>	0.0625	
Ω	2	4	_	<u>\</u>	0.0625	V
4	\sim	_	<u></u>	<u>\</u>	0.0625	
2	\sim	2	<u> </u>	<u> </u>	0.0625	
9	\sim	2	$\overline{}$	\ <u>\</u>	0.0625	V
7	4	4	<u></u>	<u>\</u>	0.0625	V
∞	2	7	<u> </u>	<u></u>	0.0625	
0	2	2	<u> </u>	<u> </u>	0.25	

Calculating the new weights

• For misclassified rows 3, 6 and 7:

$$w_{new} = w_{old} \cdot e^{lpha}$$

• For the correctly classified rows:

$$w_{new} = w_{old} \cdot e^{-\alpha}$$

Row	×	X	>	Weight 2	Row x1 x2 y Weight 2 Stump 2 Predicts Weight 3	Weight 3
0		_	$\overline{}$	0.25		0.12012
<u> </u>		\sim	<u></u>	0.0625		0.03003
2	7	2	ī	0.0625	<u> </u>	0.03003
m	2	4	<u></u>	0.0625	<u>\</u>	0.13008
4	\sim	_	<u></u>	0.0625	<u> </u>	0.03003
2	\sim	2	<u> </u>	-1 0.0625	1-	0.03003
9	\sim	2	$\overline{}$	0.0625	<u> </u>	0.13008
7	4	4	<u></u>	0.0625	<u> </u>	0.13008
∞	2	7	T	-1 0.0625	<u> </u>	0.03003
6	2	2	\(\sigma\)	-1 0.25	<u></u>	0.12012

Normalize the new weights

• The total weights has to be 1. We divide Weight 3 by the total of current Weight 3, which is 0.780624761 to achieve this.

Row	×	X	>	Weight 2	Row x1 x2 y Weight 2 Stump 2 Predicts Weight 3	Weight 3
0	<u></u>	$\overline{}$	$\overline{}$	0.25		0.15387
~	_	\sim		0.0625		0.03847
2	7	2	<u> </u>	0.0625	\	0.03847
3	2	4		0.0625	<u></u>	0.16664
4	\sim	<u></u>	T	0.0625	\ <u>\</u>	0.03847
2	3	2	<u>\</u>	0.0625	<u> </u>	0.03847
9	3	2	<u></u>	0.0625	\	0.16664
7	4	4	_	0.0625	<u> </u>	0.16664
∞	2	7	<u>\</u>	0.0625	<u>\</u>	0.03847
6	2	2	<u> </u>	-1 0.25	<u> </u>	0.15387

Repeat the process to make the third Stump

Data to Make the third stump

Weight 3	0.15387	0.03847	0.03847	0.16664	0.03847	0.03847	0.16664	0.16664	0.03847	0.15387
>	<u></u>	<u></u>	T	<u></u>	_	T	<u></u>	<u></u>	ī	T
x	<u> </u>	3	2	4	<u> </u>	2	2	4	2	2
×	_	_	2	2	3	3	3	4	2	2
Row	0	_	2	33	4	2	9	7	∞	6

Make the third stump

Use Weighted Gini-Index to calculate the children entropy of all candidate splits

Weight 3	0.15387	0.03847	0.03847	0.16664	0.03847	0.03847	0.16664	0.16664	0.03847	0.15387
>	_	<u></u>	ī	<u> </u>	\rightarrow{\rightarrow{1}{\rightarr	ī	_	<u></u>	\sqrt{1}	\sqrt{1}
x2		3	7	4		2	2	4	7	2
×	_	_	2	2	3	3	3	4	2	2
Row	0	_	2	3	4	2	9	7	∞	6

Make the third stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

Weight 3	0.15387	0.03847	0.03847	0.16664	0.03847	0.03847	0.16664	0.16664	0.03847	0.15387
>	$\overline{}$	<u></u>	<u></u>	<u></u>	<u>\</u>	<u></u>	$\overline{}$	<u></u>	<u>\</u>	<u></u>
X	<u></u>	\sim	7	4	$\overline{}$	2	2	4	7	2
×	_	_	7	2	\sim	\sim	\sim	4	2	2
Row	0	<u></u>	2	3	4	2	9	7	∞	6

Make the third stump

- Use Weighted Gini-Index to calculate the children entropy of all candidate splits
- The split with the lowest children impurity is the best split

			\ \		\ \	\ \				
Weight 3	0.15385	0.03846	0.03846	0.16667	0.03846	0.03846	0.16667	0.16667	0.03846	0.15385
y Stump 3 Predicts Weight 3					<u></u>	<u></u>	_	_	<u> </u>	<u> </u>
>			T	<u> </u>	_	\(\sum_{1}\)	$\overline{}$	$\overline{}$	_	\(\sum_{\perp}\)
x	<u></u>	3	2	4	$\overline{}$	2	2	4	7	2
	<u></u>	$\overline{}$	7	2	3	3	3	4	2	2
Row x1	0	←	2	3	4	2	9	7	∞	6

Error of the third stump

Stump 3 has misclassifications at row 2, 4, and 5 (The predictions are NOT the same as the y values). The total weights of these rows are:

$$\epsilon_3 = 0.03846 \cdot 3 = 0.11538$$

Voting Power:

$$\alpha_1 = L \cdot \frac{1}{2} \cdot \ln(\frac{1-\epsilon_3}{\epsilon_3}) = 1.018$$

y Stump 3 Predicts Weight 3
<u>\</u>
<u> </u>

Summarise the results

tump 1 Predicts Weight 1	y Stump 1 Predi	Stump 1 Predi	Weight 1 Weight 2 Stump 2	Weight 2 Stump 2	Stump 2	Predicts	Weight 3	Stump 3 Predicts
1 1 1 1 0.1 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 0.1	1.0		0.0625	· ·		0.0384615	
2 2 -1 -1 0.0625 -1	-1 -1 0.0625	-1 0.0625	0.0625		<u>\</u>		0.0384615 1	_
2 4 1 1 0.0625 -1	1 1 0.0625	0.0625	0.0625		<u> </u>		0.166667	_
3 1 -1 -1 0.0625 -1	-1 0.0625	-1 0.0625	0.0625		<u>\</u>		0.0384615	←
3 2 -1 -1 0.0625 -1	-1 0.0625	-1 0.0625	0.0625		<u> </u>		0.0384615 1	_
3 5 1 1 0.0625 -1	1 1 0.0625	0.0625	0.0625		<u>\</u>		0.166667	
4 4 1 1 0.0625 -1	1 1 0.0625	0.0625	0.0625		<u></u>		0.166667	_
5 2 -1 -1 0.0625 -1	-1 0.0625	-1 0.0625	0.0625		<u></u>		0.0384615 -1	_
5 5 -1 1 0.25 -1	-1 1 0.25	1 0.1 0.25	0.25		<u></u>		0.153846	-1

Combining three Stumps

- Let say we stop making new stumps here.
- We will combine the three stumps to make the final model

