

MA2201/TMA4150

Vår 2015

Norges teknisk—naturvitenskapelige universitet

Løsningsforslag — Øving 2

Institutt for matematikk

Oppgaver fra boka

5.23 For å finne gruppen generert av $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, starter vi med å gange matrisen med seg selv for å se om vi finner et mønster:

$$A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$$

Ved induksjon kan vi vise at for positive heltall n er

$$A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.$$

Ved å invertere A^n finner vi at for positive heltall n er

$$A^{-n} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}.$$

Følgelig har vi at

$$G = \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \middle| n \in \mathbb{Z} \right\}$$

5.42 Vi antar at $\phi: G \to G'$ er en isomorfi av grupper, og at gruppen G er syklisk. La g være en generator for G.

La $x' \in G'$. Da har vi at:

$$x' = \phi(x)$$
 $x \in G$, fordi ϕ er en isomorfi
$$= \phi(g^n) \qquad n \in \mathbb{Z}$$
$$= \phi(g)^n \qquad \text{fordi } \phi \text{ er en isomorfi}$$

Følgelig er G' generert av $\phi(g)$ og dermed syklisk.

5.53 For å sjekke om en relasjon er en ekvivalensrelasjon, må vi sjekke at den er refleksiv, symmetrisk og transitiv:

refleksiv: For $a \in G$ er $aa^{-1} = e \in H$, dermed er $a \sim a$.

symmetrisk: Om $a \sim b$ vet vi at $ab^{-1} \in H$. Men da er $ba^{-1} = (ab^{-1})^{-1} \in H$, og $b \sim a$.

transitiv: Om $a \sim b$, $b \sim c$ vet vi at $ab^{-1} \in H$ og $bc^{-1} \in H$. Da er $ac^{-1} = (ab^{-1})(bc^{-1}) \in H$.

[6.14] Vi ønsker å finne alle automorfiene på \mathbb{Z}_8 . Når vi ser på oppgave 5.42 ser vi hvis $\phi: G \to G'$ er en isomorfi, og $g \in G$ er en generator, så må også $\phi(g)$ være en generator. Videre ser vi i oppgave 6.44 at en isomorfi fra en syklisk gruppe er bestemt av hva den gjør med én generator for gruppen.

Generatorene i \mathbb{Z}_8 er $\{1,3,5,7\}$. Om vi tar utgangspunkt i 1, ser vi at det kun er fire mulige elementer 1 kan vi bli sendt til. Dermed er det fire automorfier på \mathbb{Z}_8 .

Anta at G er en syklisk gruppe generert av $g \in G$. Vi skal vise at en isomorfi fra G til G' er unikt bestemt av hva den gjør med generatoren g. Med andre ord: Dersom to isomorfier ϕ og ψ er slik at $\phi(g) = \psi(g)$, så er $\phi = \psi$. De to isomorfiene ϕ og ψ er like dersom $\phi(x) = \psi(x)$ for alle $x \in G$. Vi bruker at enhver $x \in G$ kan skrives som $x = g^n$ for en $n \in \mathbb{Z}$, og antar at $\phi(g) = \psi(g)$. Vi har da at:

$$\phi(x) = \phi(g^n) = \phi(g)^n = \psi(g)^n = \psi(g^n) = \psi(x).$$

Eksamen vår 2013

2 Vi antar at G er en gruppe med identitetselement e, og at $n \geq 2$ er et heltall. Videre definerer vi:

$$H_n = \{ x \in G | x^n = e \}$$

a) Anta at G er abelsk. Vi viser at H_n er en undergruppe av G ved å bruke teorem 5.14 i boka.

Lukket under binæroperasjon: Dersom $x, y \in H^n$ så har vi at

$$(xy)^n = x^n y^n = ee = e,$$

så $xy \in H^n$.

Inneholder identitetselementet: $e^n = e$, så $e \in H^n$.

Inneholder inverser: Dersom $x \in H^n$, og x' er inversen til x, så har vi at

$$(x')^n = (x')^n e = (x')^n x^n = (x'x)^n = e.$$

Dermed er $x' \in H^n$.

b) Her er det nok å finne et moteksempel. Siden vi vet at H_n alltid er en undergruppe for abelske grupper, bør vi lete etter en ikke-abelsk gruppe G. Vi kan da velge $GL_2(\mathbb{R},$ gruppen av reelle, inverterbare matriser under multiplikasjon. Etter litt mere leting finner vi at

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ og } B = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

er elementer i H_2 , men siden

$$(AB^2) = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}\right)^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

kan AB ikke være inneholdt i H_2 . H_2 er ikke lukket under binæroperasjoner, og dermed ikke en undergruppe.

Ekstraoppgaver

a) Anta først at $m \in \mathbb{Z}_n$ er en generator; da vet vi at m har orden n, og at $m, 2m, \ldots, (n-1)m \nmid n$. Anta nå at gcd(n, m) = x: vi har at $\frac{n}{x}$ er et heltall og at $1 \leq \frac{n}{x} < n$. Anta videre at $x \neq 1$. Da er et av elementene $m, 2m, \ldots, (n-1)m$ lik $\frac{n}{x}m = \frac{n}{x}x\frac{m}{x} = n\frac{m}{x}$, der også $\frac{m}{x}$ er et heltall. Dermed får vi at $\frac{n}{x}m|n$, som gir en selvmotsigelse. Det følger at x = 1.

Anta nå at $m \in \mathbb{Z}_n$ er slik at gcd(m, n) = 1. Vi har da at am = bn for positive heltall a, b hvis og bare hvis a|n; følgelig har m minst orden n, og genererer dermed \mathbb{Z}_n .

b)	Undergruppe	Generatorer	Elementer
	\mathbb{Z}_{p^3}	$np + m$, hvor $n, m \in \mathbb{Z}, 1 \le m \le p - 1$	$0, 1, \dots, p^3 - 1$
	$\langle p angle$	np , hvor $n \in \mathbb{Z}, \gcd(n, p) = 1$	$0, p, 2p, \dots, p^3 - p$
	$\langle p^2 \rangle$	np^2 , hvor $n \in \mathbb{Z}, \gcd(n, p) = 1$	$0, p^2, 2p^2, \dots, p^3 - p^2$
	0	0	0
		•	

c)	Undergruppe	Generatorer	Elementer
	\mathbb{Z}_{pq}	Alle elementer som ikke er på formen	$0,1\ldots,pq-1$
		np eller nq for $n \in \mathbb{Z}$	
	$\langle p angle$	Alle elementer på formen np hvor	
		$n \in \mathbb{Z}, \gcd(n, q) = 1$ Alle elementer på formen nq hvor	
	$\langle p angle$	Alle elementer på formen nq hvor	$0, q, \ldots, (p-1)q$
		$n \in \mathbb{Z}, \gcd(n, p) = 1$	
	{0}	0	0