

18th International Conference on Arabidopsis Research

Beijing, China June 20-23, 2007

Home

Organizers

Scientific Program

General Meeting Information

Conference Location and Accommodations

Registration link

Abstracts

Pre and Post Conference Tours

Site-seeing in Beijing

Exhibitor and Sponsor Information

Sponsors and Exhibitors

Contact Link

Important Dates and Breaking News

Important Visa Information

国内代表注册

Abstract submit online

General Information

After you submit your registration you will receive an email confirmation containing your registration number and the website for submitting your abstract. Upon accessing the abstract website you will enter your registration number and email address and proceed to enter the designated information (authors, abstract title, presenter name, etc.) You will be given the option of (1) abstract for poster presentation only, or (2) abstract for poster presentation AND considered for oral presentation.

Note: you will be able to make changes to your abstract after submission until May 10, 2007.

Abstract Format

Abstract lengths are limited to 2400 characters (including spaces, title, authors, & institutions, and the website includes a character counter) and you may type your abstract directly online. However, we recommended that you first compose your abstract in a word processing program where you can easily check for spelling and grammatical errors and then copy and paste the text into the space provided. Please note that only plain text and some special character symbols will appear once you've pasted in your abstract. You can designate particular text to appear as italics or underlined after you've pasted the abstract in (details are included in the abstract submission site), and we highly encourage you to view your abstract after submitting to ensure your satisfaction with its appearance. The site also includes a space to list the AGI codes of the particular genes under study in your abstract (Example: At1g01015). The AGI codes will not be printed in your abstract or made public in any form prior to the conference. They will be used after the conference to associate your abstract within TAIR to the genes with the listed AGI codes, and will assist with the effort to monitor progress toward the 2010 initiative goal of understanding the function of all Arabidopsis genes by 2010.

Available Sessions for Abstract Submission

Bioenergy (poster and plenary sessions only- no abstracts will be selected for oral presentation in this category)

Cell Biology

Developmental Mechanisms

Genomics and Genetics

Hormonal Responses

Metabolism

Responses to the Environment

Responses to Microbials

Signal Transduction

Deadlines

The deadline to submit your abstract to be considered for an Oral presentation in either a Concurrent session or a Workshop is Friday, March 30, 2007 (note: changes to abstracts may be made online until May 10, 2007).

The deadline to submit your abstract for a poster presentation is Thursday, May 10, 2007 (note: changes to abstracts may be made online until May 10, 2007).

Abstracts submitted after the March 30, 2007 deadline will not be considered for oral presentation but will be included in the abstract book for a poster presentation. Abstracts must be submitted before the May 10, 2007 deadline or they will not be included in the abstract book.

Abstracts submitted for Oral Presentation Consideration

Members of the Organizing Committee and Workshop Organizers will send notification to participants whose abstracts have been selected for oral presentation.

Poster size

The maximum poster size is 0.9m (width) x 1.5m (height).

Abstracts selected for Oral Presentation:

First Name	Last Name	Session	Abstract Title
			Organogenesis of the perianth in Arabidopsis
			flowers is facilitated by the dual action of PETAL
David	Smyth	S1	LOSS and AUX1.
			Regulatory proteins, DUO1 and DUO3, link cell
			cycle progression and cell specification in male
Lynette	Brownfield	S1	germ line development
			A chromatin link that couples cell division to
			Arabidopsis root epidermis cell fate through
Elena	Caro	S2	epigenetic changes of patterning genes
			Genetic analysis of the vascular patterning of
Annelie	Carlsbecker	S2	the Arabidopsis root

			CHROMATIN CHARTING: Global mapping and
			characterization of epigenetic control
Eric	Lam	S3	mechanisms
			QTL analysis of developmental trade-offs:
			plastochron and pathogen response in
Marco	Todesco	S3	Arabidopsis thaliana
			Regulatory network construction in Arabidopsis
Joost	Keurentjes	S4	using genome-wide gene expression QTLs
			Global analysis of the Arabidopsis transcriptome
			data suggests methylation is a key factor that
Rodrigo	Gutierrez	S4	determines regulation of gene expression
			Mutation of an enzyme involved in the de novo
			synthesis of NAD causes early leaf senescence
Paul	Dijkwel	S5	in Arabidopsis thaliana
			Transposase-derived proteins FHY3 and FAR1
			From Arabidopsis modulate phyA signaling
			homeostasis through direct activation of "FHY1"
Haiyang	Wang	S5	and "FHL" expression
			Blue-light enhanced post-translational control of
			circadian cycling of the F-box protein ZEITLUPE
David	Somers	S6	occurs via the LOV domain
			Cryptochrome signaling to the plant clock
			associates with inhibition of COP1-mediated
Vicente	Rubio	S6	ELF3 ubiquitination
Xin	Li	S7	MOS7 is essential for plant innate immunity
			Transcriptional regulators in rhizobacteria-
Sjoerd	Van der Ent	S7	induced systemic resistance
			Dissection of the signaling pathway of RPW8-
Shunyuan	Xiao	S8	mediated broad-spectrum disease resistance
			Pseudomonas syringae effector AvrPto blocks
Tingting	Xiang	S8	innate immunity by targeting receptor kinases.
			Plastidial oleiclevels modulate defense signaling
Pradeep	Kachroo	S9	by regulating expression of resistance genes

			The C/S1 network of bZIP transcription factors: combinatorial control of developmentally and stress regulated transcription by bZIP
Wolfgang	Dr?ge-Laser	S9	heterodimers
Masaaki	Umeda	S10	B2-type cyclin-dependent kinase is controlled by protein degradation
Takashi	Ueda	S10	Plant evolves a unique mechanism of endocytosis
Jane	Ward	S11	Metabolites in Motion – tracking the dynamic metabolome with 1H NMR
Joshua	Gendron	S11	Brassinosteroids regulate organ boundary formation and organ separation in Arabidopsis
			Molecular mechanism of KNOX gene repression by the Arabidopsis ASYMMETRIC LEAVES1
Mengjuan	Guo	S12	complex
Stephan	Wenkel	S12	Feedback control of leaf polarity by a family of small leucine zipper proteins