Simple Spectrum Simulation

(released 2019-10-25)

General Idea:

This small python program has a purpose to simulate simple spectrum. By giving a list of vertical excitation energies E_{0i}^{ν} and oscillation strengths f_{0i} , a spectrum can be obtained by solving this equation:

$$\sigma(E) = 0.619n \sum_{i} \frac{f_{i0}}{\Gamma_i} e^{-\left(E - E_i^{\nu} + \delta_i\right)^2 / \Gamma_i^2}$$
(1)

Where n is the refractive index, Γ_i is the width of band i, δ_i is the energy shift between the vertical excitation and the band maximum.

E is the domain of values, where Emin is a minimum value of E, Emax is a maximum value of E and dE is a size of the interval

Each parameter has a default value in the program as shown, used in some cases:

Parameters	Unit	Default value
gamma	eV	0.4
delta	eV	0.0
n	-	1.0
Emin	eV	2.0
Emax	eV	10.0
dE	eV	0.1

After execution of the program, a spectrum is obtained by plotting energies (E) given in (eV) x $\sigma(E)$ with units of absorption cross section \mathring{A}^2 .mol⁻¹.

Theory:

Experimentally, the oscillator strength of an absorption band ε_i is given as:

$$f_{0i} = \frac{10^3 ln(10)mc}{\pi N_A e^2 n} \int \varepsilon_i(\nu) d(\nu)$$

Where m_e is the mass of the electron, c is the speed of the light, ε_0 is the vacuum permittivity, N_A is the Avogadro's number, and e is the electron charge (CGS units) and ε_i is the molar absorbance. Integrating over the absorption frequency ν and supposing that the band has a gaussian shape with maximum ε_i^{max} at ν_i^{max} and width γ_i , the integral gives:

$$\int \varepsilon_i(v) d(v) = \int \varepsilon_i^{max} \, e^{-\left(v-v_i^{max}\right)^2/\gamma_i^2} = \sqrt{\pi} \, \varepsilon_i^{max} \gamma_i$$

Thus, the oscillator strength is

$$f_{0i} = \frac{10^3 ln(10)mc}{\pi N_A e^2 n} \ \varepsilon_i^{max} \gamma_i$$

Following these definitions, the total simulated spectrum can be written as the sum of all bands

$$\varepsilon(v) = \sum_{i} \varepsilon_{i}(v)$$

$$= \sum_{i} \varepsilon_{i}^{max} e^{-(v-v_{i}^{max})^{2}/\gamma_{i}^{2}}$$

$$= \frac{\sqrt{\pi}N_{A}e^{2}n}{10^{3}ln(10)mc} \sum_{i} \frac{f_{0i}}{\gamma_{i}} e^{-(v-v_{i}^{max})^{2}/\gamma_{i}^{2}}$$

The absorption cross section is given by

$$\sigma(v) = \ln(10) \frac{10^3}{N_A} \varepsilon(v)$$

$$= \frac{\sqrt{\pi}e^2n}{mc} \sum_i \frac{f_{0i}}{\gamma_i} e^{-(v-v_i^{max})^2/\gamma_i^2}$$

It is convenient to express the absorption cross section in terms of the absorption energy

$$\sigma(E) = \frac{2\pi^{2/3}\hbar e^2 n}{mc} \sum_{i} \frac{f_{0i}}{\Gamma_i} e^{-\left(E - E_i^{max}\right)^2/\Gamma_i^2}$$
(2)

where $arGamma_i$ is the energy width of the band, E_i^{max} its energy maximum and \hbar is the reduce Planck constant

Usually, the energy of the band maximum E_i^{max} is red-shifted in relation to the vertical excitation E_i^{ν} . Thus, an energy-shift parameter δ_i is added to account for its effect expressed as:

$$E_i^{max} = E_i^{\nu} - \delta_i$$

Replacing this equation in Eq (2) gives (in CGS unit):

$$\sigma(E) = \frac{2\pi^{2/3}\hbar e^2 n}{mc} \sum_{i} \frac{f_{0i}}{\Gamma_i} e^{-\left(E - E_i^{max} + \delta_i\right)^2 / \Gamma_i^2}$$

For energies in eV and absorption cross section in Å².mol⁻¹, it gives the main equation (1)

How to run it?

Input:

- All the files are prepared and given as an example, only the values should be modified
- 1-An input file called "inp.py" is prepared, containing all the parameters: (gamma, delta, n, Emin, Emax, dE)

Each parameter has a default value as shown:

Parameters	Unit	Default value
gamma	eV	0.4
delta	eV	0.0
n	-	1.0
Emin	eV	2.0
Emax	eV	10.0
dE	eV	0.1

Where Emin is the minimum value of E Emax is the maximum value of E dE is the interval size of E

Two conditions are applied for all parameter:

- a) If the parameter exists in the inp.py file, its value is used for all the excitation energies.
- b) If the parameter does not exist (deleted) in the file, the default value is used.

For gamma:

- a) If the parameter exists and the given value > 0, this value is used for all the bands
- b) If the parameter exists and the given value = 0, gamma will be read from a "gamma.dat" file where it should contain a list of values corresponding to each excitation energy.

For delta:

- a) If the parameter exists and the given value > or = 0, its value is used for all the bands
- b) If the parameter exists and the given value = -1, delta be read from a "delta.dat" file where it should contain a list of values corresponding to each excitation energy.

2-energies_forces.py file is prepared, to be modified,containing two lists, $E_i^{
u}$ and f_i

3-Run the program by: python spectra_simulation.py

Output:

1-After execution , an "Output.dat" file is created containing four columns:

(E(eV) $\lambda(nm)$ $\sigma(\mathring{A}^2.mol^{-1})$ $\epsilon(M^{-1}cm^{-1})$)

Where:

 λ is the wavenumber corresponding to (1240/E) ϵ is the molar absorbance or extinction coefficient ($\epsilon = \sigma/3.82353x10^{-5}$)

2- To plot $\sigma(E)$ x E:

- a) Install "matplotlib" library and uncomment the plotting part (last four lines in the code)
- b) Use a graphical program as gnuplot or Excel