Theorem 0.1

Suppose f is integrable and $m \leq f(x) \leq M$ for all x in [a,b]. Then, $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Proof. Note that $m(b-a) \leq L(f,P)$ and $U(f,P) \leq M(b-a)$ for any partition P. Then $m(b-a) \leq L(f,P) \leq \int_a^b f \leq U(f,P) \leq M(b-a)$.

1 Fundamental Theorem of Calculus

Theorem 1.1

Let f be integrable on [a, b] and define F on [a, b] by $F(x) = \int_a^x f$.

Then F is continuous on [a, b].

Proof. Take c in [a,b]. Since f is integrable on [a,b], it is bounded. Define M as a number such that $|f(x)| \leq M$ for all $x \in [a,b]$. If h > 0, then

$$F(c+h) - F(c) = \int_{a}^{c+h} f - \int_{a}^{c} f = \int_{c}^{c+h} f.$$

Since $-M \le f(x) \le M$ for all x, it follows from Theorem 0.1 that

$$-M \cdot h \le \int_{c}^{c+h} f \le M \cdot h$$

Thus,

$$-M \cdot h \le F(c+h) - F(h) \le M \cdot h$$

If h < 0, a similar inequality can be derived, since $F(c+h) - f(h) = -\int_{c+h}^{c} f$. Therefore, for [c+h,c],

$$Mh \le \int_{c+h}^{c} f \le -Mh,$$

which gives

$$M \cdot h \le F(c+h) - F(h) \le -M \cdot h$$

Thus,

$$\left| F(c+h) - F(h) \right| \le M|h|$$

Therefore, for any $\epsilon > 0$, if $|h| < \frac{\epsilon}{M}$,

$$|F(c+h) - F(h)| < \epsilon$$

Theorem 1.2

Let f be integrable on [a,b] and define F on [a,b] by $F(x) = \int_a^x f$.

If f is continuous at c in [a, b], then F is differentiable at c, and F'(c) = f(c).

Proof. Suppose first that c is in (a, b). By definition,

$$F'(c) = \lim_{h \to 0} \frac{F(c+h) - F(c)}{h}.$$

For each h, define m_h and M_h as follows:

$$m_h = \inf\{f(x) \mid c \le x \le c + h\} \tag{1}$$

$$M_h = \sup\{f(x) \mid c \le x \le c + h\} \tag{2}$$

From Theorem 0.1,

$$m_h \cdot h \leq \int_c^{c+h} f \leq M_h \cdot h,$$

and thus

$$m_h \le \frac{F(c+h) - F(c)}{h} \le M_h$$

If $h \leq 0$, then

$$m_h = \inf\{f(x) \mid c + h \le x \le c\} \tag{3}$$

$$M_h = \sup\{f(x) \mid c + h \le x \le c\} \tag{4}$$

From Theorem 0.1,

$$m_h \cdot (-h) \le \int_{c+h}^c f \le M_h \cdot (-h),$$

and thus

$$m_h \cdot (-h) \ge F(c+h) - F(c) \ge M_h \cdot (-h).$$

For h < 0,

$$m_h \le \frac{F(c+h) - F(c)}{h} \le M_h.$$

This inequality holds for any integrable function. However, since f is continuous,

$$\lim_{h \to 0} m_h = \lim_{h \to 0} M_h = f(c)$$

and thus

$$F'(c) = \lim_{h \to 0} \frac{F(c+h) - F(c)}{h} = f(c).$$

Note. If G is defined by $G(x) = \int_x^b f$, then $G(x) = \int_a^b f - \int_a^x f$. Therefore,

$$G'(c) = -f(c)$$