Attention

- By Polisetty Sai Teja

Recap

- Embeddings first: Transformers turn text into high-dimensional vectors called embeddings.
- Lookup, not meaning (yet): At this stage, an embedding is a learned lookup — the token "mole" maps to the same vector in every sentence.
- What transformers add: Through attention, the model reads surrounding words and steers each token's vector toward the meaning required by its context.
- Why it matters: Context-aware vectors help the model both understand neighbors and predict the next token more accurately.

ame Token → Same Initial Embedding (Before Attention

Before attention: every 'mole' maps to the same embedding row (lookup).

Core Idea of Attention

Context-free Embeddings (Before Attention)

Text \rightarrow tokens \rightarrow ID \rightarrow lookup vector (no context vet)

All 'mole' tokens map to the same initial embedding row

Start point: Tokens begin as context-free embeddings (look up vectors).

What Attention Does: Weighted Information Pull

Each token gathers from others with learned weights $\rightarrow \Delta E \rightarrow$ new embedding

What attention does: Each token computes how much to pay attention to every other token and pulls in their information as a weighted sum— producing a context-specific update (ΔΕ) to its embedding.

Short- and Long-Range Information Flow Attention connects nearby and far tokens as meeded

Short & long range: These weights connect both nearby words and farapart words, so information can jump across the sequence(short- and long-distance dependencies).

Core Idea of Attention

ng Emerges from Context (Same Token, Different 5

Meaning via context: The same token (e.g., mole) is steered to different regions of the space depending on its neighbours—animal vs chemistry unit vs skin lesion.

Deep Refinement: [Attention + MLP] \times L Layers

Representations grow more abstract with depth

Deep refinement: Repeat in attention (plus MLPs) over many layers progressively sharpens meaning.

Next-Token Prediction Uses the Last Position

Final hidden state at last position → Linear → Logits → Softmax → Next token

 $y = softmax(W_out \cdot h_t + b)$

 Prediction: For next-token prediction, the model uses the final, last-position representation produced after all layers.

Single-Head Attention - What & Why

Goal: Let a token "borrow" the right info from other tokens.

Projections: $Q_i=E_iW_Q,\; K_i=E_iW_K,\; V_i=E_iW_V$

Scores: $s_{ij} = \frac{Q_i \cdot K_j}{\sqrt{d_k}}$ (apply causal **mask** if predicting left→right)

Weights: $a_{ij} = \operatorname{softmax}_j(s_{ij})$

Update: $\Delta E_i = \sum_j a_{ij} V_j; \; ext{output} = E_i + \Delta E_i$

Intuition: Q = what I'm looking for, K = what I offer, V = what to send.

Single-Head Attention - Cont...

- Step 1 Build the Query (Q)
 - Target token: "fox" in "The hungry brown fox jumped over the sleepy dog."
- Step 2: Keys (K i) + "I'm an adjective" tagging
- Step 3: Scores(Dot product Q·K → relevance score) + scaling (attention weights probability distribution)
 + causal mask(prevents future words from leaking information) → weights
- Step 4: Weighted sum of Values → ΔE4 → updated
 'fox' attention pattern grid
- Step 5: Update the embedding.

S1: Query Vector

- Idea: At "fox", the model forms a question: "Are there adjectives before me?"
- Operation: $Q_4 = E_4 \cdot W_Q$ projects the "fox" embedding into a query space (d_k e.g., 128)
- Why: Q_4 encodes what "fox" should look for (modifiers like hungry, brown).
- **Scope:** We compute a **query Qi** for **every** token; we're highlighting Q4 only for clarity.

Build the query for the focus token: $Q_4 = E_4 \cdot W \cdot Q$

Query vector - cont....

Idea: Each token advertises what it is. For our head, adjectives like hungry, brown, sleepy emit a "I'm an adjective" signal so nouns (e.g., fox, dog) can find them.

Operation: $K_i = E_i \cdot W_k$

- E_i: embedding of token I (size d model)
- W_k: learned, shared projection matrix (d_{model} * d_k)
- K_i: key in the same dk space as queries, so dot products
 Q.K are comparable

Why: Queries need something to match against. Keys are the comparators—learned directions that make the "right" tokens align with the current token's intent (e.g., a noun's query aligns with adjective keys). Without keys, the model couldn't score who to attend to.

Scope

- We compute a key Ki for every token using the same WK
- Different heads learn different "advertisements"
 (adjective-ness, subject-verb links, coreference, etc.). This step is independent of masking; masking affects scoring later, not key creation.

Key vector

Compute keys for every token: $K_i = E_i \cdot W_K - keys$ advertise what each token offers to others.

	The	hungry	brown	fox E4	jumped E5	over E6	the E7	sleepy	dog	E10
	W_Q Q1	W_Q Q2	W_Q Q3	w_o	w_Q Q5	W_Q 06	W_Q Q7	W_Q Q8	W_Q Q9	W_Q Q10
The WK1	K1 · Q1	K1 · Q2	K1 · Q3	K1 · Q4	K1 · Q5	K1 · Q6	K1 · Q7	K1 · Q8	K1 · Q9	K1 · Q10
hungry W_K K2	K2 · Q1	K2 · Q2	K2 · Q3	K2 · Q4	K2 · Q5	K2 · Q6	K2 · Q7	K2 · Q8	K2 · Q9	K2 · Q10
brown W_K K3	K3 · Q1	K3 · Q2	K3 · Q3	K3 · Q4	K3 · Q5	K3 · Q6	K3 · Q7	K3 · Q8	K3 · Q9	K3 · Q10
fox W_K K4	K4 · Q1	K4 · Q2	K4 · Q3	K4 · Q4	K4 · Q5	K4 · Q6	K4 · Q7	K4 · Q8	K4 · Q9	K4 · Q10
jumped W_K KS	K5 · Q1	K5 · Q2	K5 · Q3	K5 · Q4	K5 · Q5	K5 · Q6	K5 · Q7	K5 · Q8	K5 · Q9	K5 · Q10
over W_K K6	K6 · Q1	K6 · Q2	K6 · Q3	K6 · Q4	K6 · Q5	K6 · Q6	K6 · Q7	K6 · Q8	K6 · Q9	K6 · Q10
the W_K K7	K7 · Q1	K7 · Q2	K7 · Q3	K7 · Q4	K7 · Q5	K7 · Q6	K7 · Q7	K7 · Q8	K7 · Q9	K7 · Q10
sleepy W_K K8	K8 · Q1	K8 · Q2	K8 · Q3	K8 · Q4	K8 · Q5	K8 · Q6	K8 · Q7	K8 · Q8	K8 · Q9	K8 · Q10
dog W_K K9	K9 · Q1	K9 · Q2	K9 · Q3	K9 · Q4	K9 · Q5	K9 · Q6	K9 · Q7	K9 · Q8	K9 · Q9	K9 · Q10
<u>₩_</u> K K10	K10 · Q1	K10 · Q2	K10 · Q3	K10 · Q4	K10 · Q5	K10 · Q6	K10 · Q7	K10 · Q8	K10 · Q9	K10 · Q10

S2: Key vector

Conceptually, Key vector is **answer** of query vector when both are in the same direction.

S3: Scores -> Mask -> Weights (queries vs keys)

Idea: Turn "what I'm looking for" (Q) and "what I offer" (K) into match scores, then mask future positions, and finally apply softmax to get attention weights.

Operation:

- o i is the current position (here we illustrate i=4 the word "fox").
- Mask all positions j>i (future tokens) before softmax in a decoder block.

s_j =	$=rac{Q_i\cdot K_j}{\sqrt{d_k}}$
a_i =	$= \operatorname{softmax}(s)$

Step 3: scores \rightarrow mask \rightarrow softmax. Example for Q₄ ('fox'): focus lands on adjectives 'hungry' and 'brown'.

ATTENTION PATTERN

Why

- The dot product measures **alignment** between the current token's intent and other tokens' signals.
- Scaling by sqrt(d_k) stabilizes training.
- Softmax produces a **probability distribution** (weights) over allowed positions that sum to 1.

Scope

- Do this for **every position** i.
- Masking policy depends on architecture: causal (decoderonly) vs bidirectional (encoders don't mask).

** Context Size

- size of attention pattern is same as that of context size.
- Hence context is not scalable, but to work on it different mechanics came into picture like
 - Sparse attention mechanism
 - Blockwise attention
 - Linformer
 - Reformer
 - Ring attention
 - Long former
 - Adaptive attention span

S4: Values -> ΔE -> Updated Embedding

Idea: Use the attention weights to mix value vectors V_j. The result is a context vector C_i that captures what the current token needs from others. Project it (optional W_O) and add to the original embedding.

• Operation:

$$egin{aligned} V_j &= E_j \, W_V \ C_i &= \sum_j a_{ij} \, V_j \ \ \Delta E_i &= C_i \, W_O \quad ext{(optional head output proj)} \ E_i' &= E_i + \Delta E_i \quad ext{(then LayerNorm in the block)} \end{aligned}$$

Why

Values carry the information to transfer (e.g., the adjectives' descriptors). The weights decide how much of each value flows to the current position. Adding ΔEi steers the embedding in a context-aware direction.

Scope

This happens for every token and for every head in the layer. Multi-head outputs are concatenated and projected before the residual add & LayerNorm.

	The	hungry	brown	fox	jumped	over	the	sleepy	dog	
	E1 ↓	Ţ	E3	E4	E5	E6	E7 ↓	E8	E9	E10
E1	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
The W_V→ v1				0.14 v1						
hungry W_V → v2				0.42 v2						
				0.42 V2						
brown W_V→ v3				0.36 v3						
F4 fox W_V → v4										
				0.08 v4						
jumped w_v→ v5				0.00 v5						
E6										
over W_V→ v6				0.00 v6						
the W_V → v7				0.00 v7						
sleepy W_V→ v8				0.00 v8						
dog W_V → v9										
				0.00 v9						
E10 W_V→ v10				0.00 v10						

Value matrix (white): each row forms $v_i = E_i \cdot W_V$ (left). The highlighted 'fox' column shows its attention weights \times value labels.

When we multiply **VALUE MATRIX** with the embedding, we can think of it as saying, if this word is relevant to adjusting the meaning of something else, what exactly should be added to embedding of something else.

**Keys and queries are not needed once u get the attention pattern.

Attention adds ΔE_4 (from hungry/brown), giving $E_4{}^\prime$ — a co

Apply updates at every position

This complete process is called = **single head of attention**.

The

hungry

brown

fox

jumped

the

over

sleepy

dog

Connect to the "big model" numbers cont

- Total weights = 175,181,291,520
- Organized into 27,938 matrices

Matrix name	Matrix dimension
Embedding	D_embed * n_vocab 12,288 * 50,257 = 617558016
Key	12,288 * 128 = 1,572,864
Query	12,288 * 128 = 1,572,864
Value	12,288 * 12,288 (wrong) 128 * 12,288 = 1,572,864 And 12,288 * 128 = 1,572,864
Output	
Up-projection	
Down-projection	
UnEmbedding	n_vocab * D_embed 50,257 * 12288 = 617558016

Multi-Head Attention - Big Idea

Idea

- Single head attention * 10,000 = parallel ops
- Each head with its own key/query/value matrices, so it can learn a different relation (e.g., adjectives →nouns, subject → verb, long-range links).
- GPT-3 has 96 attention heads inside each block = 96 attention patterns

Operation:

For each head h:

$$Q^{(h)} = E \, W_Q^{(h)}, \quad K^{(h)} = E \, W_K^{(h)}, \quad V^{(h)} = E \, W_V^{(h)}$$

$$A^{(h)} = \operatorname{softmax}\!\left(rac{Q^{(h)}{K^{(h)}}^ op}{\sqrt{d_k}}
ight), \quad C^{(h)} = A^{(h)}V^{(h)}$$

Concat all head outputs and project:

$$\mathrm{MHA}(E) = \left[\begin{array}{cc} C^{(1)} \parallel \cdots \parallel C^{(H)} \end{array} \right] W_O$$

Residual add & LayerNorm finish the block:

$$E' = \text{LayerNorm}(E + \text{MHA}(E))$$

Combine heads: per-head updates add into ΔE_i , then $E_i \leftarrow E_i + \Delta E_i$

Original embedding $E_i + \Delta E_i^{(1)} + \Delta E_i^{(2)} + \Delta E_i^{(3)} + \Delta E_i^{(4)} + ...$

→ Ei′ (concat heads → W_O, then residual add & LayerNorm)

Multi-Head Attention – cont...

Why this works

- Different heads specialize (syntax, agreement, long-distance references, etc.).
- Parallel heads = richer, disentangled signals per token.
- Scales well: GPT-3 uses 96 heads per block (we illustrate with 4 for clarity).

Scope

- Heads run for every token and at every layer.
- The mechanism is identical to singlehead; only the number of projections changes.

Connect to the "big model" numbers cont

- Total weights = 175,181,291,520
- Organized into 27,938 matrices

Matrix name	Matrix dimension			
Embedding	D_embed * n_vocab 12,288 * 50,257 = 617558016			
Key	12,288 * 128 = 1,572,864 * 96			
Query	12,288 * 128 = 1,572,864 * 96			
Value	12,288 * 12,288 (wrong) 128 * 12,288 = 1,572,864 * 96 And 12,288 * 128 = 1,572,864 * 96			
Output				
Up-projection				
Down-projection				
UnEmbedding	n_vocab * D_embed 50,257 * 12288 = 617558016			

- Inside attention, each head uses two "value" projections:
 - o **Value** \checkmark (**W** $_{V}$ \checkmark): projects the model width to the head width $W_{V_{\lambda}} \in R \text{ (e.g., } 12,288 \rightarrow 128)$
 - After attention mixes values, each head must return to model width via Value[↑].

Collecting all heads' Value ↑ blocks into one big projection is the output matrix

 $W_0 \in R^{(H \cdot dhead) \times dmodel}$.

Output matrix (W_O): the 'Value1' from ALL heads assembled into one projection Docs usually say "value matrix" to mean Value1 (d_model - d_head). W_O is the big map back to d_model.

Takeaway: when someone says "the value matrix," they usually mean Value 1. The 'value up' pieces across heads are assembled into a single Output matrix W O that maps the concatenated head output

Output Matrix

Beyond attention: the full Transformer block

- Data doesn't stop at attention; each block has Multi-Head
 Attention → residual+LayerNorm → MLP → residual+LayerNorm.
- The MLP is position-wise (same weights at every token), typically widening by 2–4× then projecting back down.
- Depth builds meaning
 - o Blocks are repeated many times (e.g., GPT-3 uses 96 layers).
 - As we go deeper, embeddings absorb richer context from other embeddings that are themselves improving—enabling higher-level abstractions (sentiment, tone, genre), not just grammar.

Deep Stack: repeated blocks (e.g., 96 layers in GPT-3)

L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12
MHA + MLP											
L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24
MHA + MLP											
L25	L26	L27	L28	L29	L30	L31	L32	L33	L34	L35	L36
MHA + MLP											
L37	L38	L39	L40	L41	L42	L43	L44	L45	L46	L47	L48
MHA + MLP											
L49	L50	L51	L52	L53	L54	L55	L56	L57	L58	L59	L60
MHA + MLP											
L61	L62	L63	L64	L65	L66	L67	L68	L69	L70	L71	L72
MHA + MLP											
L73	L74	L75	L76	L77	L78	L79	L80	L81	L82	L83	L84
MHA + MLP											
L85	L86	L87	L88	L89	L90	L91	L92	L93	L94	L95	L96
MHA + MLP											

As depth increases:

- lower: local grammar / short-range links
- middle: long-range dependencies, entities
- higher: topic, sentiment, tone, genre (poem vs. research)

Transformer Block: Multi-Head Attention + MLP (with residuals & LayerNorm)

Output of block → feeds next block (same for every token).

Parallelism:

- · Across tokens (matrix multiplies over the whole sequence)
- Across heads (dozens of heads per block)
- → GPUs exploit this for scale and throughput

Connect to the "big model" numbers cont

- Total weights = 175,181,291,520
- Organized into 27,938 matrices

Matrix name	Matrix dimension
Embedding	D_embed * n_vocab 12,288 * 50,257 = 617558016
Key	12,288 * 128 = 1,572,864 * 96 * 96 layers
Query	12,288 * 128 = 1,572,864 * 96 * 96 layers
Value	12,288 * 12,288 (wrong) 128 * 12,288 = 1,572,864 * 96 * 96 layers And 12,288 * 128 = 1,572,864 * 96 * 96 layers
Output	
Up-projection	
Down-projection	
UnEmbedding	n_vocab * D_embed 50,257 * 12288 = 617558016

Total studied params so

far: ~58B parameters

Yet to study params:

~ 117B parameters

What's next? - MLP layers ...

Where the parameters live (attention vs other)

Attention params (K/Q/V + Output) $\approx 57,982,058,496 \ (\approx 58B) \approx \text{one-third}$

Other params (MLPs, embeddings, layer norms, etc.) ≈ two-thirds of total

Takeaways

- Attention is powerful for routing information, and it parallelizes well across tokens & heads.
- Most parameters come from the MLPs (big up/down projections at each layer).
- Scaling works because GPUs handle the large matrix multiplies in parallel.