Eksponentiel vækst og eksponentialfunktioner 2

Vi ser igen på et eksempel.

Eksempel 1.1. Hvis vi folder et stykke papir på midten, vil vi få et stykke papir med to lag. Gør vi dette igen, får vi et stykke papir med 4 lag. Næste gang 8 lag, så 16 og så videre. Vi ganger altså antallet af lag med to, hver gang vi folder. Antallet af lag vil derfor være eksponentiel vækst. Antallet af lag L må derfor kunne bestemmes som funktion af antallet af foldninger x som

$$L(x) = 2^x$$
.

De første 10 funktionsværdier kan ses af Fig. 1

Figur 1: De første ti funktionsværdier af L, der beskriver antallet af lag af foldet papir.

På Fig 2 kan grafen for L ses.

Figur 2: Antal lag af foldet papir som funktion af gentagen foldning

Hvis vi i stedet vil beskrive tykkelsen af det foldede stykke papir, kan vi bruge vores model L fra tidligere. Da et stykke papir er omtrent $0,1\,$ mm tykt, vil vi kunne beskrive tykkelsen af papiret i cm

$$T(x) = 0.01 \cdot L(x) = 0.01 \cdot 2^x$$
.

Grafen for T kan ses på Fig. 3. Det ses, at tykkelsen af papiret efter 20 foldninger er omtrent 10 meter.

Figur 3: Tykkelse af foldet papir som funktion af gentagen foldning

Inspriret af Eksempel 1.1 vil vi se på, hvordan eksponentiel vækst udvikler sig. Vi husker på, at en eksponentialfunktion f kan skrives på formen

$$f(x) = b \cdot a^x,$$

for $a,b\in\mathbb{R},a>0$. Ser vi på Fig. 1, så kan vi se, at vi i det tilfælde øger f(x) med en faktor 2, når vi øger x med 1. Tilsvarende vil vi øge generel eksponentiel vækst med en faktor a, når vi øger x med 1. Faktoren a kaldes for fremskrivningsfaktoren. Vi kan se dette fænomen af Fig. 4

$$\frac{x}{f(x)} x + 1$$

$$\underbrace{f(x)}_{a} af(x)$$

Figur 4: Udvikling af eksponentiel vækst.

Det er ikke svært at vise, at dette rent faktisk er sandt. Betragter vi

$$f(x+1) = ba^{x+1} = ba^x a = af(x),$$

så ses det, at eksponentialfunktioner har en sådan udvikling.

Opgave 1

- i) Bevis, at hvis vi øger x med 2 i en eksponentialfunktion f(x), så tilsvarer dette at øge f(x) med en faktor a^2 . Hvad hvis vi øger x med 3?
- ii) Bevis, at hvis vi øger x med n i en eksponentialfunktion f(x), så tilsvarer dette at øge f(x) med en faktor a^n .

Opgave 2

- i) Hvis vi folder et stykke papir 25 gange, hvor mange lag papir har vi så? Hvor tykt er dette stykke papir?
- ii) Hvor mange gange skal vi folde papiret, for at det bliver 1km tykt?

Opgave 3

- i) En bakteriekoloni indeholder til tid t = 0 $B_0 = 100.000$ bakterier. En bakterie deler sig i gennemsnit 1 gang per 4. time, og bakteriekolonien har ubegrænset plads. Beskriv antallet af bakterier som funktion af tiden i timer. Hvor mange bakterier er der i kolonien efter et døgn? Hvornår er der 1 mia. (10⁹) bakterier i kolonien?
- ii) Et glas vand stilles i et rum, og temperaturen i vandet antages at kunne beskrives ved

$$H(t) = 70 \cdot (0.97)^t,$$

hvor H(t) beskriver temperaturen i grader celcius og t betegner tiden i minutter. Hvor varmt er vandet, når det stilles ind i rummet? Hvor varmt er det efter 5 minutter? Hvor varmt er der i rummet i følge modellen.

Opgave 4

Følgende funktioner er alle eksponentialfunktioner. Vis, hvorfor. Hint: Omskriv dem til formen $f(x) = b \cdot a^x$.

1)
$$f_1(x) = e^{2x}$$

2)
$$f_2(x) = 2 \cdot 3^x + 4 \cdot 3^x$$

$$3) f_3(x) = 100000 \cdot 2^{\frac{t}{60}}$$

4)
$$f_4(x) = 5x^2 + 7e^{10x}$$

Opgave 5

- i) Bevis, at ln(ab) = ln(a) + ln(b).
- ii) Bevis, at $\ln(\frac{a}{b}) = \ln(a) \ln(b)$.
- iii) Bevis, at $\ln(a^x) = x \ln(a)$.

Hint: Skriv $a = e^{\ln(a)}$ og $b = e^{\ln(b)}$ og anvend potensregneregler.