定义

对于一个正整数 a ,求满足 $ax\equiv 1(mopd)$ 的最小正整数 x 。保证 a,p 互质。这个最小正整数 x称作 a 在对 p 取模意义下的阶,记做 $ord_p(a)$,在 p的值十分明确的时候,可以记做 ord(a) 。

性质

- 1. $a^n \equiv 1 (mopp)$ 充要条件是 $ord_p(a) | n$ 。推论: $ord_p(a) | \varphi(p)$ 。
- 2. 若 $a \equiv b(modp)$,则 $ord_p(a) = ordp(b)$ 。
- 3. 若 $a_n \equiv a_i(mopd)$,则 $n \equiv i(modord_p(a))$
- 4. 令 $n=ord_p(a)$,则 a_0,a_1,\cdots,a_{n-1} 对 p取模两两不同。

原根

定义

若 g是模 p意义下的原根,则 g 满足 $ord_p(g) = \varphi(p)$ 。

性质

- 1. 模 p意义下存在原根,当且仅当 p 是如下形式的数: $2,4,x^a,2x^a$ 。 (x 为 奇素数,a 为正整数
- 2. 当 p为奇素数时,模 p 意义下的原根个数为 $\varphi(\varphi(p))$
- 3. 若p是一个奇素数,g是模p的一个原根,则g和g+p是模 p^2 的原根;若g是模p的一个原根,则g是模 p^a 的原根
- 4. 对于质数 p , $\varphi(p) = p-1$, 将 p-1分解质因数,得到 $p-1 = \prod p_i^{q_i}$, 则正整数 g 是模 p 意义下的原根的充分必要条件是:对于所有 i , $g^{\frac{p-1}{p_i}} \not\equiv 1 (modp)$ 。证明:充分性很显然。必要性:首先考虑阶的第 1 点性质,可以得知 $ord_p(g)|p-1$,那么,如果这个值比p-1 小,必然可以找到一个 i ,使得 $ordp(g)|\frac{p-1}{p_i}$,那么 $g^{\frac{p-1}{p_i}} \equiv 1 (modp)$,故 g 不是原根,否则,说明 $ordp(m) = p-1 = \varphi(p)$,g是原根。

```
const int N = 1000005;
int cnt, tot, p;
int vis[N], prime[N], fac[N];
//质数筛
void Factor(int x) {
    tot = 0;
    int t = (int) sqrt(x + 0.5);
    for(int i = 1; prime[i] <= t; i++) {</pre>
        if(x % prime[i] == 0) {
            fac[tot++] = prime[i];
            while(x % prime[i] == 0) x /= prime[i];
        }
    }
    if(x > 1) fac[tot++] = x;
}
int mypow(int a, int b, int mod) {
    int ans = 1;
    while(b) {
        if(b & 1) ans = 111*ans*a% mod;
        a = 111*a * a % mod;
        b>>= 1;
    return ans;
}
init();
int solve(int _p) {
    p=_p;
    Factor(p - 1);
    for(int g = 2; g < p; g++) {
        bool flag = true;
        for(int i = 0; i < tot; i++) {
            int t = (p - 1) / fac[i];
            if(quick_pow(g, t, p) == 1) {
                flag = false;
                break;
            }
        if(flag) {return g;break;}
    }
}
```