

Segmentieren von Schadendaten mit Entscheidungsbäumen

In der Reservierung in der Nichtlebensversicherung schätzt man zukünftige Cashflows von Schäden um damit angemessene Reserven zu bilden.

Fragestellung: Können wir Teilportfolien identifizieren, welche ein unterschiedliches Abwicklungsverhalten zeigen?

Wir verwenden einen Machine Learning Ansatz um ein Reservierungsmodelle auf Einzelschadendaten zu erstellen.

Die verwendeten Methoden eigenen sich gut, um 'unterschiedliche' Teilportfolios (Segmente) zu identifizieren.

Chain-Ladder Illustration

Fragestellung: Wie hoch ist der Endschaden pro Schadenjahr?

$$\hat{C}_{i,j} = \hat{f}_{j-1} \, C_{i,j-1}$$

Cumulativ	e claims	Development year											
loss settle	ments	0	1	2	3	4	5	6	7				
	2005	1232	2178	2698	3420	3736	3901	3949	3963				
year	2006	1469	2670	3378	4223	4684	4919	4975					
	2007	1652	3068	4027	4981	5586	5873						
occurrence	2008	1831	3465	4589	5676	6401	3736+4684+5586+6401						
occu	2009	2074	3993	5323	6563	•	3/30+4	= 20407					
	2010	2434	ACOZ	6358		1.	3420+4223+4981+5676						
Claims	2011	2810	$C_{5,2}$				= 18300						
	2012	3072	-,-		$\int f_3$	$_{3}=$	20407/18300 = 1,1151						
CLM estimator						, '							
for claims loss			1,8508	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035				
settlemer	settlement factor												

Illustrative Beispieldaten

Source: A practical guide to the use of the chain-ladder method for determining technical provisions for outstanding reported claims in non-life insurance (Björn Weindorfer, University of Applied Sciences bfi Vienna)

3

Hintergrund und Daten

- Der diesem Foliensatz zugrundeliegende Code und die Daten sind öffentlich verfügbar.
- Die Daten wurden mit der 'Individual Claims History Simulation Machine' von Andrea Gabrielli und Mario Wüthrich simuliert.
- 12 x 12 Abwicklungsdreieck mit Zahlungen

Jeder Schaden hat folgende Variablen (Erklärende in unseren Modellen):

- LoB: Line of Business (1, 2, 3, 4)
- AY, AQ: Schadenjahr und Schadenquartal
- age: Alter (15 bis 70)
- cc: kategorieller Schadencode mit Werten 1, 53 (nicht alle Werte kommen vor)
- inj_part: kategorielle Variable mit Werten 1, ... 99 (nicht alle Werte kommen vor)

"Neural Networks Applied to Chain-Ladder Reserving" (M. Wüthrich) modelliert diese Daten mittels Neural Networks.

Motivation

Chain-Ladder liefert oftmals gute Schätzwerte auf für das gesamte Portfolio.

Worin liegt der Mehrwert der Verwendung von Einzelschadendaten?

- Womöglich genauere Schätzungen vom Endschaden
- Detaillierte Schätzwerte für verschiedene Schadenarten (bzw. Subportfolios)
- Schätzung ändert sich wenn sich der Business Mix des Exposures ändert: Wenn im neuesten Jahr prozentual mehr Schäden mit 'inj_part = 83' auftreten, dann wird dies durch ein detailliertes Model 'automatisch berücksichtigt'
- Kann das Verständnis der Schadendaten verbessern
- Erkenntnisse können womöglich andernorts verwendet werden (Claim management, Pricing, ...)

Ansatz

Gibt es 'Segmente' mit unterschiedlichen Chain-Ladder Faktoren?

$$\hat{C}_{i,j} = \hat{f}_{j-1} \, C_{i,j-1}$$

$$\hat{f}_{j-1} = \frac{\sum_{i=1}^{I-j} C_{i,j}}{\sum_{i=1}^{I-j} C_{i,j-1}}$$

Cumulativ	e claims	Development year											
loss settle	ments	0	1	2	3	4	5	6	7				
	2005	1232	2178	2698	3420	3736	3901	3949	3963				
year	2006	1469	2670	3378	4223	4684	4919	4975					
	2007	1652	3068	4027	4981	5586	5873						
rren	2008	1831	3465	4589	5676	6401	2726.4	1.6401					
occurrence	2009	2074	3993	5323	6563	·	3736+4684+5586+6401 = 20407						
	2010	2434	4697	6358			3420+4223+4981+567						
Claims	2011	2810	4918				= 18300						
	2012	3072					20407/18300 = 1,115						
CLM estimator						.'							
for claims loss			1,8508	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035				
settlement factor													

-> finde Teilportfolios mit unterschiedlichen \hat{f}_{j-1}

Illustrative Beispieldaten

Source: A practical guide to the use of the chain-ladder method for determining technical provisions for outstanding reported claims in non-life insurance (Björn Weindorfer, University of Applied Sciences bfi Vienna)

Entscheidungsbäume

Wir teilen die Daten schrittweise in zwei Teilportfolien auf.

In jedem Schritt werden alle möglichen Splits betrachtet.

- numerische Variable: z.B. 'age<=25'
- kategorielle Variable: 'LoB in {2,4}'

Wir betrachten alle möglichen Splits und wählen den 'besten' aus.

Welcher Split der beste ist, wird durch eine vom Benutzer gewählten Gütefunktion bestimmt (purity funciton)

- Die einzelnen Blätter sollten in sich homogen sein.
- Verschiedene Blätter sollte sich unterscheiden.

Wahl vom Splitting Kriterium

 $C_{i,j}$ ist die Summe der einzelnen Zahlungen $P_{i,j,k}$ k=1:N wobei N die Anzahl Schäden ist.

$$C_{i,j} = \sum_{k=1}^{N} P_{i,j,k}$$

Für jeden Split minimiere: $weighted_sse_{links} + weighted_sse_{rechts}$

$$weighted_sse_{links} = \sum_{k \in links} P_{i,j-1,k} \left[\frac{P_{i,j,k}}{P_{i,j-1,k}} - \hat{f}_{j-1,links} \right]^2$$

Wobei $\hat{f}_{j-1,links}$ gefittet wird auf allen Beobachtungen im linken Kind.

Wohlgemerkt: Wir betrachten hier keinen 'information gain' (sse von der parent node ist nicht relevant). Wir stoppen mit dem Wachstum des Baumes, wenn ein minimum exposure (#Schäden) erreicht ist.

Verwendete Daten

Wir verwenden 5 Millionen simulierte Schäden*

	Values in CHF Mio - Evaluated as of Dezember 31, 2005														
	Paid Loss - Cumulative														
Accident Year	1	2	3	4	5	6	7	8	9	10	11	12			
1994	342.4	525.5	589.5	623.3	643.7	658.1	668.9	677.1	683.7	689.3	694.2	697.1			
1995	336.0	524.7	593.5	627.8	649.3	663.9	675.3	683.9	690.9	696.6	701.0				
1996	335.6	526.5	596.0	632.4	654.7	669.9	681.2	690.2	696.9	703.3					
1997	326.7	511.5	578.5	614.1	636.4	651.9	662.8	671.3	677.9						
1998	324.4	516.3	589.0	626.5	649.5	665.0	676.5	685.4							
1999	330.9	527.4	602.8	641.6	665.1	681.1	692.7								
2000	332.1	534.3	613.3	652.9	676.8	692.7									
2001	333.5	541.7	623.0	663.6	687.7										
2002	349.7	567.0	653.4	696.3											
2003	371.2	599.9	690.0												
2004	381.6	620.9													
2005	400.6														

^{*}die Modelle funktionieren auch auf weit kleineren Datensätzen.

Chain-Ladder

- Offensichtlich gibt es hier zeitliche Effekte.
- Für dieses Anwendungsbeispiel ignorieren wir diese.
- Ebenso wurde ein willkürlicher Tail Faktor von 1 gewählt.

_											<u> </u>		
F	Paid Loss Development												▼
	Accident												
	Year	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108		120-132		144-Ult
	12-1994	1.535	1.122	1.057	1.033	1.022	1.016	1.012	1.010	1.008	1.007	1.004	
	12-1995	1.562	1.131	1.058	1.034	1.023	1.017	1.013	1.010	1.008	1.006		
	12-1996	1.569	1.132	1.061	1.035	1.023	1.017	1.013	1.010	1.009			
	12-1997	1.566	1.131	1.062	1.036	1.024	1.017	1.013	1.010				
	12-1998	1.591	1.141	1.064	1.037	1.024	1.017	1.013					
	12-1999	1.594	1.143	1.064	1.037	1.024	1.017						
	12-2000	1.609	1.148	1.065	1.037	1.023							
	12-2001	1.624	1.150	1.065	1.036								
	12-2002	1.621	1.152	1.066									
	12-2003	1.616	1.150										
	12-2004	1.627											
	12-2005												
	Vol Wtd Avg	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	
١	ol Wtd Avg Exc Hi/Lo	1.595	1.141	1.063	1.036	1.023	1.017	1.013	1.010	1.008			
	Default	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	
	Manual Selected												1.000
	Selected	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	1.000
	Cumulative	2.169	1.362	1.194	1.124	1.085	1.061	1.043	1.030	1.020	1.011	1.004	1.000
	Ratio to Ultimate	0.461	0.734	0.837	0.890	0.921	0.943	0.959	0.971	0.981	0.989	0.996	1.000

Modellansatz

- Wir erstellen einen Entscheidungsbaum für jeden Abwicklungsfaktor (LDF)
- •LDF Y1 = 1.593
- •Um Division durch 0 zu vermeiden, werden jene Schäden ausgeschlossen für welche $P_{i,j,k}=0$
- •Wir modellieren das Inverse vom Chain-Ladder Faktor um sowenige Schäden wie möglich auszuschliessen.
- Wir teilen die Daten zufällig in 30% Validation- (hold-out) und 70% Trainingsdaten

Resultat für Jahr 1

LDF Y1 = 1.593 = 1/0.628

Weight = 70% der Anzahl Zeilen für LDF Y1 (für welche $P_{i,i,k}$ ungleich 0)

Der erste Split findet LDFs, welche sich um Faktor 2 unterscheiden.

Resultat für Abwicklungsfaktor 1

- Der Baum hat 11 Blätter (d.h. 11 Segmente)
- Die Mindestgrösse der Blätter wurde als 150'000 gewählt.
- Die Validierungsdaten zeigen Werte, welche nahe bei den Trainingsdaten liegen.
- Dieser Baum würde womöglich von Pruning/Zusammenfassung profitieren (z.B. Blätter 5-6 unterscheiden sich kaum)

Resultat für Abwicklungsfaktor 2

- Der Baum hat 9 Blätter
- Die Mindestgrösse der Blätter wurde als 200'000 gewählt.

Vergleich der Endschadenschätzung

LoB	True Outstanding Amount	Decision Trees Estimate	Boosted Decision Tree Estimate	Chain Ladder Estimate	Decision Trees Error	Boosted Decision Tree Error	Chain Ladder Error
1	268.3	218.5	239.5	239.8	-49.8	-28.8	-28.5
2	208.4	273.6	227.6	290.4	65.3	19.2	82.1
3	214.8	269.8	233.8	265.8	55.0	19.0	51.0
4	424.7	332.7	385.8	291.9	-92.1	-39.0	-132.9
Total	1'116.2	1'094.6	1'086.7	1'087.9	-21.6	-29.6	-28.3
In Prozent					-1.9%	-2.6%	-2.5%

Zusätzlich zu den einzelnen Entscheidungsbäumen wurde ein Boosting Modell erstellt.

Ein Boosting ist eine Kombination (ensemble) von mehreren Entscheidungsbäumen. Somit ist das Modelle komplexer und hat häufig eine höhere Vorhersagekraft als ein einzelner Entscheidungsbaum

Estimates - LoB

Estimates - injured part (inj_part)

Mehrwert von Individual Claims Reserving

Der Mehrwert von individual claims reserving ist bei kleineren, inhomogeneren und weniger robusteren/stabileren Portfolien womöglich grösser als bei diesem Portfolio

Daid Loss [Development												
	dent												
	ear	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108	108-120	120-132	132-144	144-Ult
12-	1994	1.535	1.122	1.057	1.033	1.022	1.016	1.012	1.010	1.008	1.007	1.004	
12-	1995	1.562	1.131	1.058	1.034	1.023	1.017	1.013	1.010	1.008	1.006		
12-	1996	1.569	1.132	1.061	1.035	1.023	1.017	1.013	1.010	1.009			
12-	1997	1.566	1.131	1.062	1.036	1.024	1.017	1.013	1.010				
12-	1998	1.591	1.141	1.064	1.037	1.024	1.017	1.013					
12-	1999	1.594	1.143	1.064	1.037	1.024	1.017						
12-2	2000	1.609	1.148	1.065	1.037	1.023							
12-2	2001	1.624	1.150	1.065	1.036								
12-2	2002	1.621	1.152	1.066									
12-2	2003	1.616	1.150										
12-2	2004	1.627											
12-2	2005												
Vol W	td Avg	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	
Vol Wtd Av	g Exc Hi/Lo	1.595	1.141	1.063	1.036	1.023	1.017	1.013	1.010	1.008			
Def	ault	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	
Manual	Selected												1.000
	ected	1.593	1.140	1.062	1.036	1.023	1.017	1.013	1.010	1.009	1.007	1.004	1.000
	ulative	2.169	1.362	1.194	1.124	1.085	1.061	1.043	1.030	1.020	1.011	1.004	1.000
Ratio to	Ultimate	0.461	0.734	0.837	0.890	0.921	0.943	0.959	0.971	0.981	0.989	0.996	1.000

Best Practice und Verfeinerung der Modelle

Wie bei jedem Modell ist es essentiell:

- Dass die Daten so fehlerfrei und konsistent wie möglich sind
- Die Daten genau zu verstehen

Die gezeigten Modelle können an verschiedenen Orten verbessert werden:

- Alternatives Splitting Kriterium: maximiere die absolute Differenz zw. Links/Rechts (liefert vergleichbare Resultate)
- Fine Tuning der Parameter
- Data Pre-Processing: Eventuell gewisse Werte zusammenfassen (inj_part, cc)
- Pruning der Trees
- Cross Validation
- Ensembles: Boosting, Bagging, Random Forest
- Die gezeigten Modell verwenden nur 70% der Daten. Man könnte die Schätzer auf 100% der Daten fitten (bei einem fixierten Modell)
- Noch nicht gemeldete Schäden könnten eventuell gesondert behandelt werden (bei Modellen die auf Einzelschadendaten basieren)

Alternative Ansätze

- Wir haben hier für jeden LDF eine neue Segmentierung erstellt. Die Modelle sind dabei unabhängig.
- Alternativ könnte man Segmente definieren, welche gleich sind für alle LDFs (klassische Reservierungssegmente). Diese könnten dann in verschiedenen aggregierten Reservierungsmethoden (CL, BF,...) verwendet werden
- Man könnte die Daten erst aufteilen in 4 LoBs und dann 4 verschiedene Modelle erstellen.

Parallele Loss Ratio Modelling

Der modellierte CL Faktor war ein Quotient zweier positiver Grössen.

Eine Loss Ratio
$$LR = \frac{\sum_{i} Schaden_{i}}{\sum_{i} Pr\ddot{a}mie_{i}}$$
 ist konzeptionell dasselbe

Die hier verwendeten Entscheidungsbäume eignen sich deshalb äusserst gut um die Loss Ratio von einem Portfolio zu modellieren.

Damit lassen sich profitable und unprofitable Kundensegmente identifizieren, was Rückschlüsse auf Tarifierung, Underwriting, Verkauf, Marketing und Strategie erlaubt.

Fachgruppe Data Science

www.actuarialdatascience.org

- Peter Blum
- Andrea Ferrario
- Frank Genheimer
- Roger Hämmerli
- Thomas Hull
- Bernhard König
- David Lüthi
- Alexander Noll
- Robert Salzmann
- Jürg Schelldorfer
- Frank Weber
- Mario Wüthrich

Thank you

Bernhard König, Aktuar SAV +41 79 706 01 26 bernhard.koenig@miliman.com

IT TAKES VISION

APPENDIX

Kleinere Datensätze

Boosting

Parameters used: 8 Iterations, 15% learning rate, subsampling of features: 60%

Target variable of the model is $\frac{n(x)}{d(x)}$

- 1. Initialize $\hat{f}_0(x)$ as the average ratio of the total portfolio. Compute $\hat{n}_0(x) = d(x)\hat{f}_0(x)$
- 2. For m = 1 to M:
 - a) Consider the multiplicative residual $r_m(x) = \frac{f(x)}{\hat{f}_{i-1}(x)} = \frac{n(x)}{\hat{n}_{i-1}(x)}$
 - b) Fit a decision tree (weak learner) to that response variable $r_m(x) = \frac{n(x)}{\hat{n}_{i-1}(x)}$
 - c) Let $\hat{r}_m(x)$ be the estimated ratio of the tree
 - d) Set $\hat{f}_m(x) = \hat{f}_{m-1}(x) * moderate(\hat{r}_m(x), \lambda)$

Where λ is a user specified learning rate and

$$moderate(r,\lambda) = \begin{cases} (r-1)\lambda + 1 & for \ r > 1 \\ (1-r)\lambda + 1 & for \ r \leq 1 \end{cases}$$

Laufzeit

- 5s für den grössten Baum (+10s für Generierung der Graphen & Statistiken)
- Wohlgemerkt sind hier nur wenige Erklärende vorhanden weshalb relativ wenige Splits zu berechnen sind
- https://github.com/kafisatz/DecisionTrees.jl/blob/master/tutorials/5.ReservingExample.jl

```
2018-08-28T21:14:11.571
write tree to txt file: false, statsByVariables=
, writeSasCode: false, writeIterationMatrix: false, writeResult: false, writeStatisti
e: false, statsRandomByVariable: 5, saveJLDFile: false
---Data Summary-----
Number of records - Trn: 2546004 Val: 1093085 Val Proportion: 0.3004
Number of numeric/character variables: 2/3
Number of levels for numeric variables: (Maximal # of splitting points: 250)
Number of levels for character variables:
catSortByThreshold: 7, catSortBy: SortByMean(), smoothEstimates: 1, deriveFitPerScore
---Model Settings-----
Type: build_tree, Minweight: 150000.0, Rnd: 0.0
NummaxSplitPoints: 250, Criterion: mseSplit()
Building Tree... Time: 2018-08-28T21:14:11.639
 5.081501 seconds (732.22 k allocations: 267.844 MiB, 67.44% gc time)
beriving Trn Estimates... Time: 2018-08-28T21:14:16.903
Preparing output... Time: 2018-08-28T21:14:21.408
0.490922 seconds (5.87 k allocations: 28.143 MiB, 90.85% gc time)
Exporting Stats to Excel file:
C:\Users\bernhard.konig\Documents\ASync\publicnl\Personal\Bernhard\Projects & Meetin
\build_t_LDF_Year_1crt_mseSplit_minw_150000.0.xlsx
0.199211 seconds (2.66 k allocations: 77.813 KiB)
Writing DOT tree structure to file:
C:\Users\bernhard.konig\Documents\ASync\publicnl\Personal\Bernhard\Projects & Meeting
\build_t_LDF_Year_1crt_mseSplit_minw_150000.0.dot.txt
Graph was visualized in the file:
C:\Users\bernhard.konig\Documents\ASync\publicnl\Personal\Bernhard\Projects & Meeting
\build_t_LDF_Year_1crt_mseSplit_minw_150000.0.dot.pdf
Modelling finished. Time: 2018-08-28T21:14:23.007 - Total time was 15.6s = 0.3m
```


Thank you

Bernhard König, Aktuar SAV +41 79 706 01 26 bernhard.koenig@miliman.com