Agrégation interne 1996, épreuve 1 Le 02 Décembre 2006, de 09 h. à 14 h. Institut Fourier. Salle 18

1 Énoncé

Dans tout le problème $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ désignent les ensembles de nombres habituels.

Pour $\mathbb{E} \in \{\mathbb{Z}, \mathbb{R}, \mathbb{C}\}$ on note $\mathcal{M}_n(\mathbb{E})$ l'algèbre des matrices (n, n) $(n \in \mathbb{N}^*)$ à coefficients dans \mathbb{E} . La matrice unité est notée I_n ; tr(A) désigne la trace de l'élément A de $\mathcal{M}_n(\mathbb{E})$ et det (A) son déterminant.

Pour $\mathbb{E} \in \{\mathbb{Z}, \mathbb{R}, \mathbb{C}\}$, $\mathbb{E}[X]$ désigne l'anneau des polynômes à coefficients dans \mathbb{E} . Un polynôme non nul est dit unitaire si, et seulement si, le coefficient de son terme dominant est 1.

Dans le cadre de ce problème une matrice A de $\mathcal{M}_n(\mathbb{E})$ est appelée matrice cyclique si, et seulement si, il existe un entier naturel non nul p tel que $A^p = I_n$; le plus petit entier naturel non nul p réalisant cette égalité est appelé ordre de la matrice cyclique A; c'est l'ordre du groupe cyclique engendré par A; il sera noté h(A).

L'ensemble des matrices cycliques de $\mathcal{M}_n(\mathbb{E})$ est noté $\mathcal{C}_n(\mathbb{E})$. Nous appellerons groupe de $\mathcal{C}_n(\mathbb{E})$ toute partie de $\mathcal{C}_n(\mathbb{E})$ muni d'une structure de groupe pour le produit matriciel.

L'objet du problème est l'étude de propriétés des éléments et des groupes de $\mathcal{C}_n(\mathbb{Z})$, ainsi que la mise en évidence de représentations géométriques de certains groupes de $\mathcal{C}_n(\mathbb{Z})$ pour n=2,3 ou 4.

Partie I

Cette partie a pour but de déterminer h(A) pour $A \in \mathcal{C}_2(\mathbb{Z})$ et de montrer que, pour $n \geq 2$, $\mathcal{C}_n(\mathbb{Z})$ n'est pas un groupe pour le produit matriciel.

Soit A une matrice cyclique de $C_n(\mathbb{Z})$, d'ordre h(A) = p.

Pour
$$n = 2$$
, on notera $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

1.

- (a) En considérant A comme un élément de $C_n(\mathbb{C})$, montrer que A est diagonalisable sur \mathbb{C} , et que ses valeurs propres $\lambda_1, \lambda_2, \cdots, \lambda_n$ sont des racines p-èmes de l'unité.
- (b) Soit $q_i = \min \{q \in \mathbb{N}^* \mid \lambda_i^q = 1\}$ pour $i = 1, \dots, n$. Prouver que $h(A) = \underset{1 \le i \le n}{\operatorname{ppcm}} (q_i)$.
- (c) Prouver que tr $(A) \in \{-n, -(n-1), \dots, -1, 0, 1, \dots, n-1, n\}$ et que det $(A) = \pm 1$.
- 2. Démontrer que, pour tout entier naturel $n \geq 2$ et toute suite (z_1, \dots, z_n) de nombres complexes non nuls, l'égalité :

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

est réalisée si, et seulement si, il existe suite $(\alpha_2, \dots, \alpha_n)$ de nombres réels strictement positifs telle que :

$$\forall k \in \{2, \cdots, n\}, \ z_k = \alpha_k z_1.$$

3. On pose $\varepsilon = \pm 1$. On suppose que tr $(A) = n\varepsilon$. Prouver que toutes les valeurs propres de A sont égales à ε , que $A = \varepsilon I_n$ et que $h(A) = \frac{1}{2}(3 - \varepsilon)$.

1

- 4. On pose $\varepsilon = \pm 1$ et on suppose que n = 2.
 - (a) On suppose que A a deux valeurs propres réelles distinctes λ_1 et λ_2 . Prouver que $\lambda_1 = \varepsilon$, $\lambda_2 = -\varepsilon$ et que h(A) = 2. Prouver qu'il existe une infinité de matrices A satisfaisant à cette condition.

(b) On suppose que A a deux valeurs propres non réelles λ_1 et λ_2 . Déterminer ces valeurs propres λ_1 et λ_2 , puis h(A) dans les trois cas suivants :

$$tr(A) = -1, tr(A) = 0, tr(A) = 1.$$

Dans chacun des cas, prouver qu'il existe une infinité de matrices A satisfaisant aux conditions imposées.

- 5. On suppose que n=2.
 - (a) Montrer qu'il existe un entier naturel non nul N_2 tel que pour toute matrice A de $\mathcal{C}_2(\mathbb{Z})$ on ait :

$$A^{N_2} = I_2$$
.

(b) Cette propriété est-elle encore vraie pour les matrices de $\mathcal{C}_2(\mathbb{R})$?

6.

- (a) Prouver que A^{-1} appartient également à $\mathcal{C}_n(\mathbb{Z})$. Déterminer $h(A^{-1})$.
- (b) Prouver que $\mathcal{C}_2(\mathbb{Z})$ n'est pas un groupe pour la multiplication matricielle.
- (c) En déduire que, pour tout $n \geq 2$, $C_n(\mathbb{Z})$ n'est pas un groupe pour la multiplication matricielle.

Partie II

Cette partie a pour but de mettre en évidence une famille de groupes de $\mathcal{C}_2(\mathbb{Z})$ et d'en donner une interprétation géométrique.

Soit $j = e^{\frac{2i\pi}{3}}$ et $\alpha = e^{\frac{i\pi}{3}}$. On désigne par $\mathbb{Z}[j]$ [resp. $\mathbb{Z}[\alpha]$] l'ensemble des complexes de la forme m + qj [resp. $m + q\alpha$] où (m,q) parcourt \mathbb{Z}^2 .

1.

- (a) Prouver que $\mathbb{Z}[j]$ est un sous-anneau de \mathbb{C} et que $\mathbb{Z}[\alpha] = \mathbb{Z}[j]$.
- (b) Déterminer l'ensemble (m,q) d'entiers relatifs tels que $0 < |m+qj| \le 1$; en déduire le groupe U_6 des unités de $\mathbb{Z}[j]$ (c'est-à-dire des éléments de $\mathbb{Z}[j]$ inversibles dans $\mathbb{Z}[j]$).
- 2. U_6 est l'ensemble des affixes des sommets d'un hexagone P. Montrer que le groupe I(P) des isométries conservant P est engendré par deux éléments r et s vérifiant les relations $r^6 = I_d = s^2$ et $r \circ s \circ r \circ s = I_d$ où I_d désigne l'application identique.
- 3. Les nombres 1 et j constituent une base \mathcal{B} de \mathbb{C} considéré comme un espace vectoriel réel.
 - (a) Ecrire les matrices de r et s dans la base \mathcal{B} .
 - (b) Établir un isomorphisme entre I(P) et un groupe G de $\mathcal{C}_2(\mathbb{Z})$. On précisera un groupe de générateurs de G vérifiant les relations analogues à **II.2**. pour le produit matriciel.

4.

- (a) Soit $z_1 = m_1 + q_1 j$ et $z_2 = m_2 + q_2 j$ deux éléments de $\mathbb{Z}[j]$ tels que $m_1 q_2 m_2 q_1 = -1$. Prouver que tout élément de $\mathbb{Z}[j]$ s'écrit d'une et d'une seule façon comme combinaison linéaire à coefficients entiers de z_1 et z_2 .
- (b) Soit B une matrice de $C_2(\mathbb{Z})$ telle que h(B) = 2. Prouver que l'ensemble des matrices de la forme BAB où A décrit le groupe G défini au **II.3.b.** est un groupe de $C_2(\mathbb{Z})$ isomorphe à G.
- (c) Déterminer explicitement une infinité de groupes de $\mathcal{C}_2(\mathbb{Z})$ isomorphes à G et préciser pour chacun d'eux un isomorphisme sur I(P).

Partie III

Dans cette partie, n est un entier supérieur ou égal à 2.

On établit que les groupes de $\mathcal{C}_n(\mathbb{Z})$ sont finis, ainsi que l'existence d'un entier naturel non nul N_n tel que $A^{N_n} = I_n$ pour toute matrice A de $\mathcal{C}_n(\mathbb{Z})$.

- 1. Soit G un groupe de $\mathcal{C}_n(\mathbb{Z})$. Nous désignons par $\langle G \rangle$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ engendré par les éléments de G.
 - (a) Montrer que $\langle G \rangle$ est de dimension finie; on posera alors dim $(\langle G \rangle) = k$.
 - (b) Soit $(X_i)_{1 \le i \le k}$ une base de $\langle G \rangle$ formée d'éléments de G; nous posons :

$$T: G \to \mathbb{C}^k$$

$$A \mapsto T(A) = (\operatorname{tr}(AX_i))_{1 \le i \le k}$$

Soit A et B deux éléments de G vérifiant T(A) = T(B); prouver que pour tout X de G on a :

$$\operatorname{tr}\left(\left(AB^{-1} - I_n\right)X\right) = 0.$$

(c) Montrer que l'application T est injective et en déduire que G est un groupe fini.

2.

- (a) Démontrer que l'ensemble des polynômes unitaires de degré n à coefficients entiers dont les racines complexes sont de module 1 est fini.
- (b) En déduire qu'il existe un entier naturel non nul N_n tel que :

$$\forall A \in \mathcal{C}_n(\mathbb{Z}), A^{N_n} = I_n.$$

Partie IV

L'objet de cette partie est de donner la liste des valeurs possibles de h(A) pour A élément de $C_i(\mathbb{Z})$ où i = 2, 3, 4.

Pour $d \in \mathbb{N}^*$ on note U_d le groupe des racines d-èmes de l'unité de \mathbb{C} .

 E_d désigne l'ensemble des éléments d'ordre d de ce groupe, dits racines primitives d-èmes de l'unité. Rappelons que ce sont les complexes α^r où α est une racine primitive d-ème de l'unité et r décrit l'ensemble des entiers naturels inférieurs à d et premiers avec d.

Soit A une matrice cyclique de $C_n(\mathbb{Z})$, d'ordre h(A) et $\operatorname{Sp}(A)$ l'ensemble de toutes les valeurs propres complexes de A.

L'indicateur d'Euler $\varphi(d)$ $(d \in \mathbb{N}^*)$ dénombre les entiers naturels inférieurs ou égaux à d et premiers avec d.

1.

(a) Montrer que:

si
$$(d_1 > 1 \text{ et } d_2 > 1 \text{ et } d_1 \text{ premier avc } d_2)$$
 alors $\varphi(d_1 d_2) = \varphi(d_1) \varphi(d_2)$.

- (b) Soit p un nombre premier et $k \in \mathbb{N}^*$; prouver que $\varphi(p^k) = p^k p^{k-1}$.
- 2. Soit $d \in \mathbb{N}^*$. Montrer que si $E_d \cap \operatorname{Sp}(A) \neq \emptyset$, alors $E_d \subset \operatorname{Sp}(A)$.
- 3. Soit d_1, d_2, \dots, d_m les différents ordres des valeurs propres de A comme racines de l'unité dans \mathbb{C} .
 - (a) Prouver que:

$$n \ge \sum_{i=1}^{m} \varphi\left(d_{i}\right).$$

(b) Soit $\prod_{j=1}^{q} p_{j}^{k_{j}}$ la décomposition en facteurs premiers de h(A); prouver que :

$$n \ge \max_{1 \le j \le q} \left(p_j^{k_j} - p_j^{k_j - 1} \right).$$

4. Déduire des deux majorations qui viennent d'être obtenues la liste des valeurs possibles de h(A) et indiquer une valeur de N_n dans les cas n = 2, n = 3, n = 4.

Partie V

Cette partie propose deux applications géométriques de l'étude précédente dans les cas n=3 et n=4.

Partie V.A

Dans l'espace affine euclidien orienté de dimension 3, muni d'un repère orthonormé direct $\mathbf{R} = (O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ on considère l'octaèdre régulier V_3 de centre O ayant pour sommets les points A, B, C de coordonnées A = (1,0,0), B = (0,1,0), C = (0,0,1), ainsi que leurs symétriques A', B', C' par rapport à l'origine O.

On se propose d'étudier le groupe $I(V_3)$ des isométries qui conservent V_3 et son sous-groupe $I^+(V_3)$ des isométries positives.

- 1. Préciser l'ordre du groupe $I(V_3)$ et celui de $I^+(V_3)$.
- 2. Prouver que $I^+(V_3)$ est engendré par trois rotations r_1, r_2, r_3 d'angles respectifs $\frac{\pi}{3}, \frac{2\pi}{3}, \pi$ dont on précisera les axes orientés.
- 3. Soit $G(V_3)$ le groupe des matrices représentant dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ les parties linéaires des éléments de $I(V_3)$.
 - (a) Prouver que $G(V_3)$ est un groupe de $C_3(\mathbb{Z})$.
 - (b) Donner une famille de générateurs de $G(V_3)$.
 - (c) Donner explicitement un élément A de $G(V_3)$ tel que h(A) = 6.
 - (d) Quelles sont toutes les valeurs h(A) effectives quand A décrit $G(V_3)$.

Partie V.B

On considère un espace affine euclidien orienté de dimension 4, muni d'un repère orthonormé direct $\mathbf{R} = (O, e_1, e_2, e_3, e_4)$; O(4) désigne le groupe orthogonal en dimension 4.

On considère le polytope V_4 de centre O, ayant pour sommets les points A, B, C, D de coordonnées A = (1, 0, 0, 0), B = (0, 1, 0, 0), C = (0, 0, 1, 0), D = (0, 0, 0, 1) ainsi que leurs symétriques A', B', C', D' par rapport à l'origine O.

On se propose d'étudier le groupe $I(V_4)$ des isométries qui conservent V_4 et son sous-groupe $I^+(V_4)$ des isométries positives.

1.

- (a) Déterminer un morphisme injectif de $I(V_4)$ dans le groupe des permutations de l'ensemble des sommets du polytope V_4 .
- (b) Préciser l'ordre du groupe $I(V_4)$.
- 2. Donner explicitement un élément $I^+(V_4)$ d'ordre 8.
- 3. En déduire un exemple de matrice A appartenant à $\mathcal{C}_4(\mathbb{Z}) \cap O(4)$, telle que h(A) = 8.

2 Corrigé

Partie I

On identifie, dans ce qui suit, une matrice complexe d'ordre n à l'endomorphisme qu'elle définit dans la base canonique de \mathbb{C}^n .

D'autre part, si A et B sont deux matrices complexes semblables, alors A est cyclique d'ordre p si, et seulement si, B l'est, c'est-à-dire que h(A) = h(B). En effet avec $B = P^{-1}AP$ où P est une matrice inversible d'ordre n, on a $B^k = P^{-1}A^kP$ pour tout entier $k \ge 1$ et $B^k = I_n$ si, et seulement si, $A^k = I_n$.

Enfin on rappelle qu'une matrice réelle ou complexe d'ordre n ayant une seule valeur propre d'ordre n est diagonalisable si, et seulement si, c'est une homothétie.

1.

- (a) Une matrice cyclique d'ordre p dans $C_n(\mathbb{C})$ est diagonalisable puisque annulée par le polynôme X^p-1 qui est scindé à racines simples dans \mathbb{C} . Si $A \in C_n(\mathbb{C})$ est cyclique d'ordre p, de $A^p = I_n$, on déduit que pour toute valeur propre λ de A et tout vecteur propre associé $X \in \mathbb{C}^n \setminus \{0\}$, on a $X = A^pX = \lambda^pX$ et $\lambda^p = 1$. Donc λ est une racine p-ième de l'unité.
- (b) La matrice A est semblable à une matrice diagonale :

$$D = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$$

où les λ_k sont des racines p-èmes de l'unité et h(A) = h(D). En désignant, pour tout k compris entre 1 et n par q_k l'ordre de λ_k dans \mathbb{C}^* et par μ le ppcm de ces ordres, on a $\lambda_k^{\mu} = 1$ pour tout k compris entre 1 et n et $D^{\mu} = I_n$, donc h(D) divise μ . D'autre part de $D^{h(D)} = I_n$, on déduit que $\lambda_k^{h(D)} = 1$ pour tout k compris entre 1 et n et h(D) est multiple de tous les q_k donc de μ . On a donc $h(A) = h(D) = \mu$.

(c) De $A^p = I_n$, on déduit que $(\det(A))^p = \det(A^p) = 1$ avec $\det A \in \mathbb{Z}$ et nécessairement $\det A = \pm 1$. On peut remarquer que pour p impair, on a nécessairement $\det(A) = 1$. En notant $\lambda_1, \dots, \lambda_n$ les valeurs propres complexes de A, on a :

$$|\operatorname{tr}(A)| = \left| \sum_{k=1}^{n} \lambda_k \right| \le \sum_{k=1}^{n} |\lambda_k| = n$$

puisque $|\lambda_k| = 1$ pour tout k. Tenant compte de tr $(A) \in \mathbb{Z}$, on déduit que :

$$\operatorname{tr}(A) \in \{-n, -(n-1), \dots, -1, 0, 1, \dots, n-1, n\}.$$

2. Chaque nombre complexe non nul z_k $(1 \le k \le n)$ peut s'écrire $z_k = \rho_k e^{i\theta_k}$ avec $\rho_k = |z_k| > 0$ et $\theta_k \in [-\pi, \pi]$. On a alors :

$$\begin{cases} \left| \sum_{k=1}^{n} z_{k} \right|^{2} = \sum_{k=1}^{n} |z_{k}|^{2} + 2 \sum_{1 \leq j < k \leq n} \rho_{j} \rho_{k} \cos \left(\theta_{j} - \theta_{k} \right), \\ \left(\sum_{k=1}^{n} |z_{k}| \right)^{2} = \sum_{k=1}^{n} |z_{k}|^{2} + 2 \sum_{1 \leq j < k \leq n} \rho_{j} \rho_{k} \end{cases}$$

et l'égalité $\left|\sum_{k=1}^{n} z_k\right| = \sum_{k=1}^{n} |z_k|$ est équivalente à :

$$\sum_{1 \le j < k \le n} \rho_j \rho_k \left(1 - \cos \left(\theta_j - \theta_k \right) \right) = 0.$$

Tous les termes de cette somme étant positifs ou nuls avec $\rho_j \rho_k > 0$, on en déduit que $\cos(\theta_j - \theta_k) = 1$ avec $\theta_j - \theta_k \in]-2\pi, 2\pi[$ pour $1 \le j < k \le r$ (on a $-\pi < \theta_j \le \pi$ et $-\pi < \theta_k \le \pi$ donc $-\pi \le -\theta_k < \pi$ et

5

 $-2\pi < \theta_j - \theta_k < 2\pi$), ce qui donne $\theta_j = \theta_k$ et en notant θ cette valeur commune on a $z_k = \rho_k e^{i\theta} = |z_k| e^{i\theta}$ pour tout entier k compris entre 1 et n ou encore :

$$z_k = \frac{|z_k|}{|z_1|} |z_1| e^{i\theta} = \alpha_k z_1 \ (1 \le k \le n)$$

où on a posé $\alpha_k = \frac{|z_k|}{|z_1|}$ pour tout k compris entre 1 et n.

Réciproquement si $z_k = \alpha_k z_1$ avec $\alpha_k > 0$ pour tout k compris entre 2 et n et $\alpha_1 = 1$, on a :

$$\left| \sum_{k=1}^{n} z_k \right| = |z_1| \sum_{k=1}^{n} \alpha_k = \sum_{k=1}^{n} \alpha_k |z_1| = \sum_{k=1}^{n} |z_k|.$$

On peut aussi démontrer ce résultat par récurrence sur $n \geq 1$, le cas n = 2 correspondant au cas d'égalité dans l'inégalité triangulaire sur \mathbb{C} .

3. Si $\operatorname{tr}(A) = n\varepsilon$, on a alors:

$$n = |\operatorname{tr}(A)| = \left| \sum_{k=1}^{n} \lambda_k \right| = \sum_{k=1}^{n} |\lambda_k|$$

et $\lambda_k = \alpha_k \lambda_1$ avec $\alpha_k = \frac{|\lambda_k|}{|\lambda_1|} = 1$, c'est-à-dire que A n'a qu'une valeur propre λ_1 d'ordre n. Comme A est diagonalisable, c'est l'homothétie de rapport λ_1 , soit $A = \lambda_1 I_n$. De $\operatorname{tr}(A) = n\lambda_1 = n\varepsilon$, on déduit que $\lambda_1 = \varepsilon$, soit $A = \varepsilon I_n = \pm I_n$ avec h(A) = 1 pour $A = I_n$ et h(A) = 2 pour $A = -I_n$, ce qui peut s'écrire $h(A) = \frac{1}{2}(3 - \varepsilon)$.

4.

(a) Si les deux valeurs propres de A sont réelles et distinctes, comme elles sont de module égal à 1, elles valent nécessairement -1 et 1. On a donc $\lambda_1 = \varepsilon$, $\lambda_2 = -\varepsilon$ et A est semblable à $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, ce qui donne h(A) = h(J) = 2. Pour toute matrice $P = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in GL_2(\mathbb{Z})$ (i. e. $P \in \mathcal{M}_2(\mathbb{Z})$ et $\det(P) = ps - qr = \pm 1$) la matrice :

$$A = PJP^{-1} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} s & -q \\ -r & p \end{pmatrix}$$
$$= \begin{pmatrix} ps + qr & -2pq \\ 2rs & -(ps + qr) \end{pmatrix} = \begin{pmatrix} 2qr \pm 1 & -2pq \\ 2rs & -(2qr \pm 1) \end{pmatrix}$$

est une matrice de ce type, il y en donc bien une infinité.

On peut par exemple prendre p et r premier entre eux, le théorème de Bézout nous dit alors qu'il existe deux entiers s_0 et q_0 tels que $ps_0 - q_0r = 1$ (ou -1) et les couples d'entiers $(s,q) = (s_0 + kq, r_0 + kp)$ où k décrit Z nous fournissent une infinité de matrices P et donc de matrices A.

Plus simplement, on peut aussi remarquer que pour tout entier relatif n, la matrice $A_n = \begin{pmatrix} \varepsilon & 0 \\ n & -\varepsilon \end{pmatrix}$ convient, ce qui en donne bien une infinité.

(b) Si les deux valeurs propres de A ne sont pas réelles, elles s'écrivent $\lambda_1 = e^{i\theta}$ et $\lambda_2 = \overline{\lambda_1} = e^{-i\theta}$ avec $\theta \in]-\pi, \pi[\setminus \{0\}]$. On a alors det $(A) = \lambda_1\lambda_2 = 1$ et $\mathrm{tr}(A) = 2\cos(\theta) \in \{-1, 0, 1\}$ d'après **I.1.a** et **I.4.a.** Il reste donc trois cas à étudier.

I.1.a et **I.4.a.** Il reste donc trois cas à étudier.

- Si tr A = -1, on a alors $\cos(\theta) = -\frac{1}{2}$ et $\theta = \pm \frac{2\pi}{3}$, soit $\lambda_1 = e^{\frac{2i\pi}{3}} = j$, $\lambda_2 = e^{-\frac{2i\pi}{3}} = \overline{j}$ et A est semblable à $J_{-1} = \begin{pmatrix} j & 0 \\ 0 & \overline{j} \end{pmatrix}$, ce qui donne $h(A) = h(J_{-1}) = 3$. Pour déterminer de telles matrices $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ dans $C_2(\mathbb{Z})$, on écrit que nécessairement :

$$\begin{cases} \operatorname{tr}(A) = a + d = -1 \\ \operatorname{det}(A) = ad - bc = 1 \end{cases}$$

ce qui donne d=-a-1 et $bc=-a^2-a-1$, c'est-à-dire que b est un diviseur de $m=-a^2-a-1$ et $c = \frac{m}{h}$. Faisant varier a dans \mathbb{Z} , on a une infinité de telles matrices. Réciproquement toutes ces matrices conviennent, du fait qu'elles ont toutes le même polynôme caractéristique :

$$P_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = \lambda^2 + \lambda + 1$$

de racines j et \bar{j} .

Par exemple, en prenant, pour tout entier relatif n, a=n, b=m, c=1, d=-n-1, la matrice:

$$A_n = \left(\begin{array}{cc} n & -n^2 - n - 1\\ 1 & -n - 1 \end{array}\right)$$

convient et on en a bien une infinité. – Si trA=0, on a alors $\cos{(\theta)}=0$ et $\theta=\pm\frac{\pi}{2}$, soit $\lambda_1=i,\ \lambda_2=-i$ et A est semblable à $J_0 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, ce qui donne $h(A) = h(J_0) = 4$. Pour déterminer de telles matrices $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ dans $C_2(\mathbb{Z})$, on écrit que nécessairement :

$$\begin{cases} \operatorname{tr}(A) = a + d = 0\\ \det(A) = ad - bc = 1 \end{cases}$$

ce qui donne d=-a et $bc=-a^2-1$, c'est-à-dire que b est un diviseur de $m=-a^2-1$ et $c=\frac{m}{b}$. Faisant varier a dans \mathbb{Z} , on a une infinité de telles matrices. Réciproquement toutes ces matrices conviennent, du fait qu'elles ont toutes le même polynôme caractéristique :

$$P_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = \lambda^2 + 1$$

de racines i et -i.

Par exemple, en prenant, pour tout entier relatif $n,\,a=n,\,b=m,\,c=1,\,d=-n,$ la matrice :

$$A_n = \left(\begin{array}{cc} n & -n^2 - 1\\ 1 & -n \end{array}\right)$$

convient et on en a bien une infinité. – Si trA=1, on a alors $\cos{(\theta)}=\frac{1}{2}$ et $\theta=\pm\frac{\pi}{3}$, soit $\lambda_1=e^{\frac{i\pi}{3}}$, $\lambda_2=e^{-\frac{i\pi}{3}}$ et A est semblable à $J_1 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, ce qui donne $h(A) = h(J_1) = 6$. Pour déterminer de telles matrices $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ dans $\mathcal{C}_2(\mathbb{Z})$, on écrit que nécessairement :

$$\begin{cases} \operatorname{tr}(A) = a + d = 1\\ \det(A) = ad - bc = 1 \end{cases}$$

ce qui donne d=1-a et $bc=-a^2+a-1$, c'est-à-dire que b est un diviseur de $m=-a^2+a-1$ et $c = \frac{m}{h}$. Faisant varier a dans \mathbb{Z} , on a une infinité de telles matrices. Réciproquement toutes ces matrices conviennent, du fait qu'elles ont toutes le même polynôme caractéristique :

$$P_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = \lambda^2 - \lambda + 1$$

de racines λ_1 et $\overline{\lambda_1}$.

Par exemple, en prenant, pour tout entier relatif n, a = n, b = m, c = 1, d = 1 - n, la matrice :

$$A_n = \left(\begin{array}{cc} n & -n^2 + n - 1\\ 1 & 1 - n \end{array}\right)$$

convient et on en a bien une infinité.

- (a) Les questions précédentes nous disent qu'une matrice $A \in \mathcal{C}_2(\mathbb{Z})$ a pour ordre h(A) = 1, 2, 3, 4 ou 6. Il en résulte que pour $N_2 = \operatorname{ppcm}(1, 2, 3, 4, 6) = 12$, on a $A^{N_2} = I_2$ pour tout $A \in \mathcal{C}_2(\mathbb{Z})$.
- (b) En remarquant qu'une matrice de rotation d'angle $\frac{2\pi}{n}$, où n est un entier naturel non nul, est d'ordre n, on voit que la propriété précédente n'est pas vrai dans $\mathcal{C}_2(\mathbb{R})$.

6.

- (a) On a vu que pour toute matrice $A \in \mathcal{C}_n(\mathbb{Z})$, on a det $A = \pm 1$, ce qui signifie qu'elle est inversible dans $\mathcal{M}_2(\mathbb{Z})$. En fait, pour A d'ordre $p \geq 1$, de $A^p = I_n$ on déduit que $A^{-1} = A^{p-1} \in \mathcal{M}_2(\mathbb{Z})$. L'égalité $A^k = I_n$ étant équivalente à $(A^{-1})^k = I_n$ pour tout entier $k \geq 1$ (on a $(A^{-1})^k = (A^k)^{-1}$), on déduit qu'une matrice $A \in GL_n(\mathbb{Z})$ est dans $\mathcal{C}_n(\mathbb{Z})$ si, et seulement si $A^{-1} \in \mathcal{C}_n(\mathbb{Z})$ et ces deux matrices ont même ordre.
- (b) Si A, B sont dans $C_2(\mathbb{Z})$ leur trace est comprise entre -2 et 2. Pour montrer que $C_2(\mathbb{Z})$ n'est pas un groupe pour la multiplication matricielle, il suffit donc de trouver deux telles matrices telles que $|\operatorname{tr}(A)| \geq 3$. Par exemple, pour $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ dans $C_2(\mathbb{Z})$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, on a:

$$AB = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} a & -c \\ b & -d \end{array}\right)$$

et tr(AB) = a - d. Prenant d = -a, $bc = -a^2 - 1$ (équivalent à tr(A) = 0 et det (A) = 1, ce qui donne $h(A) = h(J_0) = 4$), on a tr(AB) = 2a = 4 pour a = 2 et $AB \notin \mathcal{C}_2(\mathbb{Z})$. Par exemple, on a :

$$A = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, AB = \begin{pmatrix} 2 & 1 \\ 5 & 2 \end{pmatrix}$$

avec $A^4 = I_2$, $B^2 = I_2$ et $(AB)^p \neq I_n$ pour tout entier $p \geq 1$ (la matrice AB étant à coefficients tous strictement positifs, il en est de même des A^p).

On peut aussi s'inspirer des exemples donnés en **I.4.b.** pour prendre $A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ dans $C_2(\mathbb{Z})$ qui donnent $AB = \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix} \notin C_2(\mathbb{Z})$ puisque cette matrice est de

Ou plus généralement, pour tout $n \in \mathbb{Z}$, $A_n = \begin{pmatrix} n & -n^2 - n - 1 \\ 1 & -n - 1 \end{pmatrix}$ et $B_n = \begin{pmatrix} n & -n^2 + n - 1 \\ 1 & 1 - n \end{pmatrix}$ dans $C_2(\mathbb{Z})$ donnent $A_n B_n = \begin{pmatrix} -n - 1 & n^2 - n - 1 \\ -1 & n - 2 \end{pmatrix} \notin C_2(\mathbb{Z})$ puisque cette matrice est de trace égale à -3.

(c) En gardant les notations de la question précédente, pour tout $n \geq 3$, les matrices $A' = \begin{pmatrix} A & 0 \\ 0 & I_{n-2} \end{pmatrix}$ et $B' = \begin{pmatrix} B & 0 \\ 0 & I_{n-2} \end{pmatrix}$ sont dans $C_n(\mathbb{Z})$ alors que A'B' n'y est pas. Donc $C_n(\mathbb{Z})$ n'est pas un groupe pour la multiplication matricielle.

Partie II

1.

(a) Pour tout nombre complexe z, l'application $\varphi: \mathbb{Z}[X] \to \mathbb{C}$ définie par $\varphi(Q) = Q(z)$ est un morphisme d'anneau, donc son image $\mathbb{Z}[z]$ est un sous-anneau de \mathbb{C} . Le nombre complexe $z \in \{\alpha, j\}$ étant racine d'un polynôme de degré deux à coefficients entiers $P(X) = X^2 + \varepsilon X + 1$ avec $\varepsilon = -1$ pour α et $\varepsilon = 1$ pour j, il vérifie $z^2 = -\varepsilon z - 1$ et par récurrence $z^n = m_n + q_n z$ pour tout entier naturel n, où m_n et q_n sont des entiers relatifs. Il en résulte que $\mathbb{Z}[z] = \{m + qz \mid (m,q) \in \mathbb{Z}^2\}$. Enfin avec $\alpha^2 = j$ et $1 + j = -j^2 = \alpha$, on déduit que $\mathbb{Z}[j] = \mathbb{Z}[\alpha]$.

(b) Pour tout $(m,q) \in \mathbb{Z}^2$, on a:

$$|m+qj|^2 = \left| m - \frac{q}{2} + q \frac{\sqrt{3}}{2}i \right|^2 = \left(m - \frac{q}{2} \right)^2 + \frac{3}{4}q^2$$
$$= m^2 + q^2 - mq \in \mathbb{N}$$

et l'encadrement $0 < |m + qj| \le 1$ équivaut à $|m + qj|^2 = 1$, soit à :

$$Q(m,q) = \left(m - \frac{q}{2}\right)^2 + \frac{3}{4}q^2 - 1 = 0.$$

 $\begin{array}{l} \text{Pour } |q|\geq 2, \, \text{on a} \, \frac{3}{4}q^2-1\geq 2>0 \, \, \text{et} \, \, Q\left(m,q\right)>0. \\ \text{Pour } q=0, \, \text{on a} \, \, m^2=1 \, \, \text{et} \, \, m=\pm 1. \end{array}$

Pour |q|=1, cette équation s'écrit $Q(m,q)=m^2-qm=0$ et m=0 ou m=q. En définitive, l'ensemble des solutions entières de l'équation Q(m,q)=1 est :

$$S = \{(0, -1), (0, 1), (-1, 0), (-1, -1), (1, 0), (1, 1)\}.$$

On peut remarquer que |m + qj| = 0 si, et seulement si, q = 0 et m = 0. On a donc montré que l'intersection de $\mathbb{Z}[j]$ avec le disque unité fermée D de \mathbb{C} est :

$$\begin{split} P &= \mathbb{Z}\left[j\right] \cap D = \left\{-j, j, -1, -1 - j, 1, 1 + j\right\} \\ &= \left\{e^{ik\frac{\pi}{3}} \mid k = 0, \cdots, 5\right\} = \left\{\alpha^k \mid k = 0, \cdots, 5\right\} = \left<\alpha\right>. \end{split}$$

C'est le groupe cyclique des racines 6-èmes de l'unité engendré par α ou encore l'ensemble des affixes des sommets de l'hexagone régulier P.

Un élément z de $\mathbb{Z}[j]$ est inversible si, et seulement si, il existe $z' \in \mathbb{Z}[j]$ tel que zz' = 1, ce qui entraı̂ne $z \neq 0$ et $|z|^2 |z'|^2 = 1$ avec $|z|^2 \in \mathbb{N}^*$. On a donc $|z|^2 = 1$ et $z \in P$. Comme tous les éléments de P sont inversibles, on a $U_6 = P$.

2. On désigne par $r: z \mapsto \alpha z$ la rotation d'angle $\frac{\pi}{3}$, par s la réflexion $s: z \mapsto \overline{z}$ et par $G = \langle r, s \rangle$ le groupe des isométries engendré par r et s. La rotation r est d'ordre 6, la réflexion s d'ordre 2 et pour tout $z \in \mathbb{C}$, on a :

$$(r \circ s)^2(z) = \alpha \overline{\alpha \overline{z}} = |\alpha|^2 z = z$$

avec $r \circ s \neq I_d$, c'est-à-dire que $r \circ s$ est d'ordre 2.

On vérifie de manière analogue que $s \circ r$ est d'ordre 2.

L'hexagone P étant globalement invariant par la rotation r, le groupe cyclique $\langle r \rangle$ est contenu dans groupe $I^+(P)$ des rotations laissant P globalement invariant.

D'autre part toute rotation $\rho \in I^+(P)$ étant une application affine, elle doit conserver le barycentre 0 des sommets de P, donc $\rho(0) = 0$ et $\rho: z \mapsto e^{i\theta}z$. Comme $\rho(\alpha) \in P$, on a $\rho(\alpha) = \alpha^k$ avec k compris entre 1 et 6, soit $e^{i\theta}\alpha = \alpha^k$ et $e^{i\theta} = \alpha^{k-1}$, ce qui signifie que $\rho = r^k \in \langle r \rangle$. On a donc $I^+(P) = \langle r \rangle$. En notant $I^{-}(P) = I(P) \setminus I^{+}(P)$ et en remarquant que l'application :

$$\varphi: I^{+}(P) \to I^{-}(P)$$

$$\rho \mapsto s \circ \rho$$

est bijective, on déduit que

$$I(P) = I^{+}(P) \cup I^{-}(P) = I^{+}(P) \cup s(I^{+}(P)) \subset \langle r, s \rangle$$

et comme la réflexion s conserve aussi P, on a $\langle r, s \rangle \subset I(P)$ et :

$$I\left(P\right) = \left\langle r, s \right\rangle = \left\{r^k \mid 0 \leq k \leq 5\right\} \cup \left\{s \circ r^k \mid 0 \leq k \leq 5\right\}$$

est le groupe d'ordre 12 engendré par r et s.

On peut aussi utiliser le morphisme de groupes multiplicatifs :

$$\begin{array}{ccc} \delta: & I\left(P\right) & \rightarrow & \{-1,1\} \\ & \rho & \mapsto & \det\left(\rho\right) \end{array}$$

Le noyau de ce morphisme est $\ker(\delta) = I^+(P) = \langle r \rangle$ de cardinal 6. Comme δ est surjectif $(\delta(r) = 1)$ et $\delta(s) = -1$, il induit une bijection de l'ensemble quotient $\frac{I(P)}{\ker(\delta)}$ sur $\{-1,1\}$ et il en résulte de I(P) est de cardinal 12. Comme $\{s \circ r^k \mid 0 \le k \le 5\}$ est contenu dans $I(P) \setminus I^+(P)$ avec 6 éléments, on en déduit que :

 $I(P) = \left\{ r^k \mid 0 \le k \le 5 \right\} \cup \left\{ s \circ r^k \mid 0 \le k \le 5 \right\}.$

3.

(a) De:

$$\begin{cases} r(1) = \alpha = -j^2 = 1 + j \\ r(j) = \alpha j = -1 \end{cases} \text{ et } \begin{cases} s(1) = 1 \\ s(j) = \overline{j} = j^2 = -1 - j \end{cases}$$

on déduit que les matrices de r et s dans la base $\mathcal B$ sont respectivement :

$$R = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } S = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}.$$

(b) On désigne respectivement par $GL(\mathbb{C})$ le groupe des automorphismes du \mathbb{R} -espace vectoriel \mathbb{C} et par $GL_2(\mathbb{R})$ le groupe multiplicatif des matrices inversibles d'ordre 2. On sait alors que l'application φ qui associe à tout automorphisme $u \in GL(\mathbb{C})$ sa matrice $A \in GL_2(\mathbb{R})$ dans la base \mathcal{B} réalise un isomorphisme de groupes de $GL(\mathbb{C})$ sur $GL_2(\mathbb{R})$. La restriction de φ au groupe $I(P) = \langle r, s \rangle$ définit alors un isomorphisme de groupes de I(P) sur $G = \varphi(\langle r, s \rangle) = \langle R, S \rangle$. Comme G est fini à 12 éléments et formé de matrices à coefficients entiers, on a bien $G \subset \mathcal{C}_n(\mathbb{Z})$. Avec $R^k = \varphi(r^k)$ et $S^k = \varphi(s^k)$, on déduit que R est d'ordre 6 et S, SR et RS d'ordre 2. On a donc :

$$G = \left\{ R^k \mid 0 \le k \le 5 \right\} \cup \left\{ S \cdot R^k \mid 0 \le k \le 5 \right\} = G^+ \cup G^-$$

avec :

$$G^{+} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array} \right), \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array} \right) \right\}$$

et:

$$G^- = \left\{ \left(\begin{array}{cc} 1 & -1 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} -1 & 0 \\ -1 & 1 \end{array}\right), \left(\begin{array}{cc} -1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array}\right) \right\}$$

4.

(a) Si $\det_{\mathcal{B}}(z_1, z_2) = m_1 q_2 - m_2 q_1 = -1 \neq 0$ alors (z_1, z_2) est une base du \mathbb{R} -espace vectoriel \mathbb{C} et tout nombre complexe $z = m + qj \in \mathbb{Z}[j]$, s'écrit de façon unique sous la forme :

$$m + qj = az_1 + bz_2$$

où a,b sont a priori réels. En utilisant la formule de changement de bases :

$$\left(\begin{array}{c} m \\ q \end{array}\right) = \left(\begin{array}{cc} m_1 & m_2 \\ q_1 & q_2 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right)$$

on obtient :

$$\left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{cc} m_1 & m_2 \\ q_1 & q_2 \end{array}\right)^{-1} \left(\begin{array}{c} m \\ q \end{array}\right) = - \left(\begin{array}{cc} q_2 & -m_2 \\ -q_1 & m_1 \end{array}\right) \left(\begin{array}{c} m \\ q \end{array}\right)$$

et on en déduit que a et b sont des entiers relatifs.

On obtient un résultat analogue si $\det_{\mathcal{B}}(z_1, z_2) = 1$.

On a en fait montré qu'un couple (z_1, z_2) est une \mathbb{Z} -base de $\mathbb{Z}[j]$ si, et seulement si, sa matrice dans la base \mathcal{B} est dans $GL_2(\mathbb{Z}) = \{P \in \mathcal{M}_2(\mathbb{Z}) \mid \det(P) = \pm 1\}$.

(b) L'hypothèse $B \in \mathcal{C}_2(\mathbb{Z})$ avec h(B) = 2 équivaut à $B \in GL_2(\mathbb{Z})$ et $B^{-1} = B$. Il en résulte que l'application :

$$\varphi_B: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z})$$

$$A \mapsto BAB = BAB^{-1}$$

est un automorphisme intérieur de $GL_2(\mathbb{Z})$ et $\varphi(G)$ est un sous-groupe de $GL_2(\mathbb{Z})$ isomorphe à G. Comme G est fini à 12 éléments, il en est de même $\varphi_B(G)$ et $\varphi_B(G) \subset \mathcal{C}_2(\mathbb{Z})$. En fait, on a :

$$\varphi_{B}(G) = \varphi_{B}(\langle R, S \rangle) = \varphi_{B}\left(\left\{R^{k} \mid 0 \leq k \leq 5\right\} \cup \left\{SR^{k} \mid 0 \leq k \leq 5\right\}\right)$$
$$= \left\{BR^{k}B \mid 0 \leq k \leq 5\right\} \cup \left\{BSR^{k}B \mid 0 \leq k \leq 5\right\}$$

avec :

$$BR^{k}B = (BRB)^{k} = (\varphi_{B}(R))^{k}$$

et:

$$BSR^{k}B = (BSB) (BR^{k}B) = \varphi_{B}(S) (\varphi_{B}(RS))^{k}$$

puisque $B^2 = I_2$. Donc :

$$\varphi_{B}(G) = \left\{ (\varphi_{B}(R))^{k} \mid 0 \le k \le 5 \right\} \cup \left\{ \varphi_{B}(S) (\varphi_{B}(RS))^{k} \mid 0 \le k \le 5 \right\}$$
$$= \left\langle \varphi_{B}(R), \varphi_{B}(S) \right\rangle$$

avec $\varphi_{B}(S) \in \mathcal{C}_{2}(\mathbb{Z})$ d'ordre 2 et $\varphi_{B}(R) \in \mathcal{C}_{2}(\mathbb{Z})$ d'ordre 6.

On peut remarquer, d'après l'étude faite en **I** que si $B \in \mathcal{C}_2(\mathbb{Z})$ est telle que h(B) = 2, on a soit $B = -I_2$ et tr(B) = -2, det(B) = 1, soit $B \neq -I_2$ et B a deux valeurs propres réelles qui sont -1 et 1 et det(B) = -1.

Pour $B = -I_2$, on a $\varphi_B(G) = G$.

(c) On a vu en **I.4.a.** qu'on dispose d'une infinité de matrices $B_n \in \mathcal{C}_2(\mathbb{Z})$ d'ordre 2, de la forme $B_n = \begin{pmatrix} 1 & 0 \\ n & -1 \end{pmatrix}$ où $n \in \mathbb{Z}$. À un telle matrice B_n , on associe l'isomorphisme φ_{B_n} de G sur le groupe $\varphi_{B_n}(G)$ qui est contenu dans $\mathcal{C}_2(\mathbb{Z})$ et de même cardinal que G, soit 12. Pour tout $n \in \mathbb{Z}$ on a $B_n^{-1} = B_n$ puisque $B_n^2 = I_n$ et :

$$\varphi_{B_n}(R) = \begin{pmatrix} 1 & 0 \\ n & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ n & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1-n & 1 \\ -n^2+n-1 & n \end{pmatrix}$$

ce qui donne une infinité de matrices. Il y a donc une infinité de groupes $\varphi_{B_n}(G)$ puisque tous ces groupes sont de cardinal 12. En utilisant l'isomorphisme φ de I(P) sur G défini en **II.3.b.** on dispose d'un isomorphisme de groupes de I(P) sur chacun de ces groupes $\varphi_{B_n}(G)$. Cet isomorphisme est tout simplement défini en associant à toute isométrie $\rho \in I(P)$ de matrice $A \in G$ dans la base $\mathcal{B} = (1, j)$, la matrice $B_n A B_n = B_n^{-1} A B_n$ qui est la matrice de ρ dans la base $\mathcal{B}_n = (1 + nj, -j)$.

Partie III

1.

(a) Comme $\mathcal{M}_n(\mathbb{C})$ est un \mathbb{C} -espace vectoriel de dimension n^2 , le sous-espace vectoriel $\langle G \rangle$ engendré par G est de dimension finie $k \leq n^2$.

(b) Comme G est un système de générateurs de $\langle G \rangle$, on peut en extraire une base $(X_i)_{1 \leq i \leq k}$. Dire que T(A) = T(B) équivaut à dire que, pour i compris entre 1 et k, on a tr $(AX_i) = \text{tr }(BX_i)$ encore équivalent à tr (AX) = tr (BX) pour tout $X \in \langle G \rangle$ du fait que $(X_i)_{1 \leq i \leq k}$ une base de $\langle G \rangle$ et que l'application trace est une forme linéaire sur $\langle G \rangle$. On a alors en particulier :

$$\forall X \in G, \operatorname{tr}(AX - BX) = \operatorname{tr}((AB^{-1} - I_n)BX) = 0$$

encore équivalent à :

$$\forall Y \in G, \text{ tr}\left(\left(AB^{-1} - I_n\right)Y\right) = 0$$

du fait que l'application $X\mapsto BX$ réalise une bijection de G sur lui même.

(c) Si A, B dans G sont tels que T(A) = T(B), on a alors $\operatorname{tr}\left(\left(AB^{-1} - I_n\right)X\right) = 0$ pour tout X dans G et pour $X = I_n$, on obtient $\operatorname{tr}\left(AB^{-1} - I_n\right) = 0$, soit $\operatorname{tr}\left(AB^{-1}\right) = \operatorname{tr}\left(I_n\right) = n$ avec $AB^{-1} \in G \subset \mathcal{C}_n(\mathbb{Z})$, ce qui équivaut à $AB^{-1} = I_n$ d'après **I.3.** soit à A = B. L'application T est donc injective et réalise une bijection de G sur $\operatorname{Im}\left(T\right) \subset \mathbb{C}^k$.

D'autre part, pour tout $A \in G$ et i compris entre 1 et k, on a $AX_i \in G \subset \mathcal{C}_n(\mathbb{Z})$, de sorte que $|\operatorname{tr} AX_i| \leq n$, soit $\operatorname{Im}(T) \subset \{-n, \cdots, 0, \cdots, n\}^k$ et :

$$\operatorname{card}(G) = \operatorname{card}(\operatorname{Im}(T)) \le (2n+1)^k$$
.

2.

(a) Soit $P(X) = \sum_{k=0}^{n} a_k X^k$ dans $\mathbb{Z}[X]$ tel que $a_n = 1$ et ayant toutes ses racines complexes de module égal à 1. En notant $\lambda_1, \dots, \lambda_n$ ces racines, on sait que les fonctions symétriques des racines s'écrivent :

$$\sigma_k = \sum_{1 \le i_1 < \dots < i_k \le n} \lambda_{i_1} \cdots \lambda_{i_k} = (-1)^k a_{n-k}$$

pour tous k compris entre 1 et n, ce qui donne

$$|a_{n-k}| \le \sum_{1 \le i_1 < \dots < i_k \le n} |\lambda_{i_1} \cdots \lambda_{i_k}| \le \sum_{1 \le i_1 < \dots < i_k \le n} 1 = C_n^k = C_n^{n-k}.$$

Le (n-1)-uplet $(a_0, a_1, \dots, a_{n-1})$ qui défini le polynôme P est donc dans l'ensemble fini :

$$\prod_{k=0}^{n-1} \left\{ -C_n^k, \cdots, 0, \cdots, C_n^k \right\}.$$

Il en résulte que l'ensemble de ces polynômes P est fini.

(b) On vu que toute matrice $A \in \mathcal{C}_n(\mathbb{Z})$ est diagonalisable de valeurs propres racines de l'unité. De plus, toute matrice $A \in \mathcal{C}_n(\mathbb{Z})$ a son polynôme caractéristique P_A dans $\mathbb{Z}[X]$, le polynôme $(-1)^n P_A$ étant unitaire de degré n. L'ensemble \mathcal{P}_n de tous ces polynômes est donc fini ainsi que l'ensemble Λ_n de toutes les racines de ces polynômes (les valeurs propres des matrices $A \in \mathcal{C}_n(\mathbb{Z})$), cet ensemble étant contenu dans un groupe U_{N_n} de racines N_n -èmes de l'unité (il suffit de prendre pour N_n le ppcm des ordres de toutes les valeurs propres $\lambda \in \Lambda_n$). On a donc :

$$\forall \lambda \in \Lambda_n, \ \lambda^{N_n} = 1.$$

et en diagonalisant chaque matrice $A \in \mathcal{C}_n(\mathbb{Z})$, on déduit que :

$$\forall A \in \mathcal{C}_n(\mathbb{Z}), \ A^{N_n} = I_n.$$

Partie IV

1. On note, pour tout entier $n \ge 1$, $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}}$.

(a) Le théorème chinois nous dit que si d_1 et d_2 sont deux entiers premiers entre eux alors les anneaux $\mathbb{Z}_{d_1d_2}$ et $\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}$ sont isomorphes, un isomorphisme étant réalisé par :

$$\forall \overline{k} \in \mathbb{Z}_{d_1 d_2}, \ f\left(\overline{k}\right) = \begin{pmatrix} \cdot & \cdot \\ k & k \end{pmatrix},$$

où on a noté \overline{k} la classe de k modulo d_1d_2 , k la classe de k modulo d_1 et k la classe de k modulo d_2 . La restriction de f à $\mathbb{Z}_{d_1d_2}^{\times}$ réalise un isomorphisme de groupes multiplicatifs de $\mathbb{Z}_{d_1d_2}^{\times}$ sur $\mathbb{Z}_{d_1}^{\times} \times \mathbb{Z}_{d_2}^{\times}$, ce qui entraı̂ne :

$$\varphi\left(d_{1}d_{2}\right)=\operatorname{card}\left(\mathbb{Z}_{d_{1}d_{2}}^{\times}\right)=\operatorname{card}\left(\mathbb{Z}_{d_{1}}^{\times}\right)\operatorname{card}\left(\mathbb{Z}_{d_{2}}^{\times}\right)=\varphi\left(d_{1}\right)\varphi\left(d_{2}\right).$$

(b) Si p est premier, alors un entier r compris entre 1 et p^k n'est pas premier avec p^k si, et seulement si, il est divisible par p, ce qui équivaut à r=mp avec $1\leq m\leq p^{k-1}$, il y a donc p^{k-1} possibilités. On en déduit alors que :

$$\varphi(p^k) = p^k - p^{k-1} = (p-1) p^{k-1}.$$

2. Soit λ une valeur propre de A dans E_d . Comme λ est une racine d-ème de l'unité, c'est un nombre complexe algébrique sur \mathbb{Q} (λ est annulé par $X^d - 1 \in \mathbb{Q}[X]$) et on sait que son polynôme minimal est le polynôme cyclotomique Φ_d . En désignant par π_A le polynôme minimal de A, on a $\pi_A(\lambda) = 0$ et π_A est un multiple de Φ_d . L'ensemble E_d des racines de Φ_d est donc contenu dans l'ensemble $\operatorname{Sp}(A)$ des racines de π_A (on peut aussi raisonner avec le polynôme caractéristique P_A de A).

3.

(a) Soit $A \in \mathcal{C}_n(\mathbb{Z})$ d'ordre p. Le polynôme minimal π_A de A divise le polynôme $X^p - 1 = \prod_{d/p} \Phi_d(X)$ où les $\Phi_d(X) = \prod_{z \in E_d} (X - z)$ sont les polynômes cyclotomiques. On rappelle que chaque polynôme Φ_d est irréductible dans $\mathbb{Q}[X]$, donc π_A est un produit de polynômes cyclotomiques Φ_d où d est un diviseur de p. On sait de plus que les valeurs propres de A sont les racines de π_A . On a donc $\pi_A(X) = \prod_{i=1}^m \Phi_{d_i}(X)$, où d_1, d_2, \dots, d_m sont les différents ordres des valeurs propres de A. Comme π_A divise le polynôme caractéristique P_A , on a :

$$n = \deg(P_A) \ge \deg(\pi_A) = \sum_{i=1}^{m} \deg(\Phi_{d_i})$$

avec deg (Φ_{d_i}) = card $(E_{d_i}) = \varphi(d_i)$.

Plus simplement, on peut aussi dire que $\bigcup_{i=1}^{m} E_{d_i}$ est contenue dans $\operatorname{Sp}(A)$, cette réunion étant disjointe, ce qui entraı̂ne :

$$\operatorname{card}\left(\bigcup_{i=1}^{m} E_{d_{i}}\right) = \sum_{i=1}^{m} \operatorname{card}\left(E_{d_{i}}\right) = \sum_{i=1}^{m} \varphi\left(d_{i}\right)$$

$$\leq \operatorname{card}\left(\operatorname{Sp}\left(A\right)\right) \leq n.$$

(b) On a:

$$h(A) = \text{ppcm}(d_1, \dots, d_m) = \prod_{i=1}^{q} p_j^{k_j},$$

chaque d_r , pour r compris entre 1 et m, admettant la décomposition en facteurs premiers $d_r = \prod_{j=1}^q p_j^{k_{r,j}}$ et, pour tout j compris entre 1 et q, $k_j = \max_{1 \le r \le m} k_{r,j}$.

Pour j compris entre 1 et q, il existe un entier r compris entre 1 et m tel que $k_j = k_{r,j}$, ce qui signifie que d_r est divisible par $p_j^{k_j}$ et :

$$n \ge \sum_{i=1}^{m} \varphi\left(d_{i}\right) \ge \varphi\left(d_{r}\right) \ge \varphi\left(p_{j}^{k_{j}}\right) = p_{j}^{k_{j}} - p_{j}^{k_{j}-1}.$$

On a donc bien:

$$n \ge \max_{1 \le j \le q} \left(p_j^{k_j} - p_j^{k_j - 1} \right).$$

4.

(a) Soit n = 2. Les facteurs premiers p de h(A) doivent être tels que $p^{k-1}(p-1) \le 2$ avec $k \ge 1$, ce qui impose p = 2 et k = 1 ou 2, ou p = 3 et k = 1, soit :

$$h(A) \in \{1, 2, 3, 4, 6, 12\}.$$

Et en partie I on a vu que les seules valeurs possibles et atteintes pour h(A) sont 1, 2, 3, 4, 6, c'est-à-dire que la valeur 12 est exclue. On a vu également que $N_2 = 12$.

(b) Soit n = 3. Les facteurs premiers p de h(A) doivent être tels que $p^{k-1}(p-1) \le 3$ avec $k \ge 1$, ce qui impose p = 2 et k = 1 ou 2, ou p = 3 et k = 1, soit :

$$h(A) \in \{1, 2, 3, 4, 6, 12\}$$
.

En utilisant les matrices du cas n=2, on voit que les valeurs 1,2,3,4,6 sont atteintes (prendre les matrices $\begin{pmatrix} A & 0 \\ 1 & 1 \end{pmatrix}$ où A est une matrice 2×2 d'ordre 1,2,3,4 ou 6).

Supposons qu'il existe une matrice A telle que $h(A) = \operatorname{ppcm}(d_1, \dots, d_m) = 12 = 2^2 3$. Si m = 1, alors $d_1 = 12$ ce qui est incompatible avec $n = 3 \ge \varphi(12) = 4$. Si m = 2, alors (d_1, d_2) peut prendre les valeurs (1, 12) ou (3, 4) incompatibles avec $n = 3 \ge \varphi(d_1) + \varphi(d_2)$. La valeur 12 est donc exclue et $h(A) \in \{1, 2, 3, 4, 6\}$. Là encore $N_3 = 12$.

(c) Soit n = 4. Les facteurs premiers p de h(A) doivent être tels que $p^{k-1}(p-1) \le 4$ avec $k \ge 1$, ce qui impose p = 2 et k = 1, 2 ou 3, ou p = 3 et k = 1, ou p = 5 et k = 1, soit :

$$h(A) \in \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120\}.$$

Avec $4 \ge \sum_{i=1}^{m} \varphi\left(d_{i}\right)$, on voit que $d_{i} \le 12$ pour tout i compris entre 1 et m puisque $\varphi\left(12\right) = 4$ et $\varphi\left(d\right) \ge 8$ pour $d \ge 15$ ($h\left(A\right)$ étant le ppcm des d_{i} , chaque d_{i} divise $h\left(A\right)$ qui divise 120). Les d_{i} , pour i compris entre 1 et m, sont donc dans $\{1, 2, 3, 4, 5, 6, 8, 10, 12\}$. Comme $\varphi\left(5\right) = \varphi\left(8\right) = \varphi\left(10\right) = \varphi\left(12\right) = 4$, on a m = 1 si l'un des d_{i} vaut 5, 8, 10 ou 12 et $h\left(A\right) = 12$ dans ce cas. Si tous les d_{i} sont dans $\{1, 2, 3, 4, 6\}$, on a $h\left(A\right) \le 12$ puisque c'est le ppcm des d_{i} . On a donc :

$$h(A) \in \{1, 2, 3, 4, 5, 6, 8, 10, 12\}$$

et $N_4 = \text{ppcm}(1, 2, 3, 4, 5, 6, 8, 10, 12) = 120$ est un multiple de tous les h(A).

En utilisant les matrices du cas n = 3, on voit que les valeurs 1, 2, 3, 4, 6 sont atteintes

En utilisant les matrices $R^2 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ d'ordre 3 et $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ d'ordre 4, on construit les matrices :

$$\begin{pmatrix} R^2 & 0 \\ 0 & T \end{pmatrix}$$
 et $\begin{pmatrix} 0 & I_2 \\ T & 0 \end{pmatrix}$

qui son respectivement d'ordre 12 et 8.

On vérifie que les matrices :

$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \text{ et } -A$$

sont respectivement d'ordre 5 et 10. Toutes les valeurs prévues pour h(A) sont donc permises et $N_4 = 120$ est la plus petite valeur possible.

(d) Plus généralement, pour $n \geq 2$, on peut montrer (mais c'est difficile) que :

$$\{h\left(A\right)\mid A\in\mathcal{C}_{n}\left(\mathbb{Z}\right)\}=\left\{\operatorname{ppcm}\left(d_{1},\cdots,d_{m}\right)\text{ où }\left\{\begin{array}{l}1\leq m\leq n,\\1\leq d_{m}\leq\cdots\leq d_{1},\\n=\sum\limits_{i=1}^{m}\varphi\left(d_{i}\right)\end{array}\right\}$$

Partie V

Partie V.A

1. Une isométrie $\rho \in I(V_3)$ étant une application affine qui permute les sommets de V_3 , elle laisse invariant l'isobarycentre O de ces sommets et on peut l'identifier à sa partie linéaire. Le morphisme de groupes multiplicatifs :

$$\delta: I(V_3) \rightarrow \{-1,1\}$$

$$\rho \mapsto \det(\rho)$$

a pour noyau $\ker(\delta) = I^+(V_3)$ et est surjectif (si σ est la symétrie par rapport à O, alors $\delta(\sigma) = -1$), il induit donc une bijection de l'ensemble quotient $\frac{I(V_3)}{\ker(\delta)}$ sur $\{-1,1\}$ et :

$$\operatorname{card}\left(I\left(V_{3}\right)\right)=2\operatorname{card}\left(I^{+}\left(V_{3}\right)\right).$$

À toute isométrie $\rho \in I(V_3)$ on peut associer la permutation :

$$\sigma = \begin{pmatrix} A & B & C & A' & B' & C' \\ \rho(A) & \rho(B) & \rho(C) & \rho(A') & \rho(B') & \rho(C') \end{pmatrix}$$

L'application $\psi: \rho \mapsto \sigma$ réalise alors un morphisme de groupes de $I(V_3)$ dans le groupe S_6 des permutations de l'ensemble $S = \{A, B, C, A', B', C'\}$ des sommets de V_3 .

Si $\sigma = \psi(\rho) = I_d$, alors ρ laisse fixe les points O, A, B, C qui forment un repère affine de \mathbb{R}^3 et $\rho = I_d$. Le morphisme ψ est donc injectif et ψ réalise un isomorphisme de groupes de $I(V_3)$ sur $\operatorname{Im}(\psi)$. Il nous suffit donc de compter les éléments de $\operatorname{Im}(\psi)$.

Pour $\rho \in I(V_3)$, on a 6 possibilités pour $\rho(A)$ et comme le milieu O du segment [AA'] a pour image le milieu $\rho(O) = O$ de $[\rho(A) \rho(A')]$, l'image $\rho(A')$ est uniquement déterminée par $\rho(A)$. Le couple $(\rho(A), \rho(A'))$ étant choisi, il reste 4 possibilités pour $\rho(B)$, l'image $\rho(B')$ étant déterminée par $\rho(B)$ puisque O est le milieu de [BB']. Enfin, ayant choisi $\rho(A)$ et $\rho(B)$, il reste 2 possibilités pour $\rho(C)$, l'image $\rho(C')$ étant déterminée par celle de C. On a donc card $(Im(\psi)) \le 6 \cdot 4 \cdot 2 = 48$. Réciproquement la donnée d'une de ces 48 permutations définit un élément de $I(V_3)$. On a donc :

$$\operatorname{card}\left(I\left(V_{3}\right)\right)=\operatorname{card}\left(\operatorname{Im}\left(\psi\right)\right)=48$$

et:

$$\operatorname{card}\left(I^{+}\left(V_{3}\right)\right) = 24.$$

2. On désigne par r_1 la rotation d'axe orienté d'axe $\mathbb{R} \overrightarrow{k}$ et d'angle $\frac{\pi}{2}$, r_2 la rotation d'axe orienté d'axe $\mathbb{R} \left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}\right)$ et d'angle $\frac{2\pi}{3}$ et r_3 la rotation d'axe orienté d'axe $\mathbb{R} \overrightarrow{j}$ et d'angle π . Ces rotations sont dans $I^+(V_3)$, r_1 étant d'ordre 4, r_2 d'ordre 3 et r_3 d'ordre 2. Le groupe $H = \langle r_1, r_2, r_3 \rangle$ engendré par r_1, r_2, r_3 contient le groupe :

$$H' = \langle r_1, r_2 \rangle = \left\{ r_1^{k_1} r_2^{k_2} \mid 0 \le k_1 \le 3, \ 0 \le k_2 \le 2 \right\}$$

qui a 12 éléments et r_3 , donc $\operatorname{card}(H) \geq 13$ et $\operatorname{card}(H)$ divise $\operatorname{card}(I^+(V_3)) = 24$ (théorème de Lagrange), ce qui donne $\operatorname{card}(H) = 24$ et $H = I^+(V_3)$.

(a) En désignant par $I(\mathbb{R}^3)$ le groupe des isométries de \mathbb{R}^3 qui laissent fixe l'origine O, l'application \mathcal{A} qui associe à toute isométrie $f \in I(\mathbb{R}^3)$ la matrice $A \in GL_3(\mathbb{R})$ dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ de sa partie linéaire u, réalise un morphisme de groupes injectif de $I(\mathbb{R}^3)$ dans $GL_3(\mathbb{R})$ et $G(V_3) = \mathcal{A}(I(V_3))$ est un sous-groupe d'ordre 48 de $GL_3(\mathbb{R})$, il en résulte que $G(V_3)$ est un groupe de $\mathcal{C}_3(\mathbb{R})$.

Pour toute isométrie $f \in I(V_3)$, l'application linéaire associée u transformant la base $(\overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$ en $(\pm \overrightarrow{\iota}, \pm \overrightarrow{\jmath}, \pm \overrightarrow{k})$, on en déduit que la matrice A de u dans cette base est à coefficients entier, donc $G(V_3) \subset \mathcal{C}_3(\mathbb{Z})$.

(b) Les matrices dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ des trois rotations qui engendrent $I^+(V_3)$ sont respectivement:

$$R_1 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, R_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, R_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

et celle de la symétrie s par rapport à O est $-I_3$. Comme r_1, r_2, r_3, s engendrent $I(V_3)$, on déduit que les matrices R_1, R_2, R_3, S engendrent $G(V_3)$.

(c) Comme R_2 est d'ordre 3, la matrice

$$A = -R_2 = \left(\begin{array}{ccc} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right)$$

est d'ordre 6 dans $G(V_3)$, c'est la matrice d'un antidéplacement qui laisse O fixe.

(d) On a $G(V_3) \subset C_3(\mathbb{Z})$ et on a vu en partie **IV** que les valeurs prises par h sur $C_3(\mathbb{Z})$ sont 1, 2, 3, 4, 6. On vient de voir qu'il existe dans $G(V_3)$ des éléments d'ordre 2, 3, 4, 6 et tenant compte de I_3 qui est d'ordre 1, on a toutes les valeurs possibles de h sur $G(V_3)$.

Partie V.B

1.

(a) Comme dans le cas n=3, on voit que si S_8 est le groupe des permutations des sommets $\{A, B, \dots, D'\}$ de V_4 , alors l'application :

$$\Psi: I(V_3) \to S_4$$

$$\rho \mapsto \begin{pmatrix} A & B & \cdots & D' \\ \rho(A) & \rho(B) & \cdots & \rho(D') \end{pmatrix}$$

réalise un morphisme de groupes injectif de $I(V_3)$ dans $S_8((O, A, B, C, D))$ est un repère affine).

(b) Là encore, le même raisonnement que dans le cas n=3, nous donne :

$$\operatorname{card}(I(V_4)) = 2\operatorname{card}(I^+(V_4)) = 384.$$

De manière plus générale, en désignant, pour $n \geq 3$, par O une origine de l'espace affine euclidien \mathbb{R}^n , par $(e_k)_{1 \leq k \leq n}$ la base canonique de \mathbb{R}^n , par $(A_k)_{1 \leq k \leq n}$ et $(A'_k)_{1 \leq k \leq n}$ les suites de points définies par $\overrightarrow{OA'_k} = -\overrightarrow{OA_k} = -e_k$ et par V_n le polytope de centre O et de sommets $A_1, \dots, A_n, A'_1, \dots, A'_n$, on a :

$$\operatorname{card}\left(I\left(V_{n}\right)\right)=2\operatorname{card}\left(I^{+}\left(V_{n}\right)\right)=2^{n}n!$$

La démonstration se faisant comme dans le cas n=3.

2. La permutation:

$$\left(\begin{array}{cccc} e_1 & e_2 & e_3 & e_4 \\ e_2 & e_3 & e_4 & -e_1 \end{array}\right)$$

définit un élément $\rho \in I^+(V_4)$ d'ordre 8.

3. La matrice de ρ :

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

est d'ordre 8 dans $C_4(\mathbb{Z}) \cap O(4)$.

Plus généralement la matrice d'ordre $n \geq 3$:

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & -1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

a pour polynôme caractéristique $P_A(X) = X^n + 1$. Ces valeurs propres sont donc les n racines n-ème de -1, donc A est diagonalisables et sur la forme diagonale, on voit que $A^k \neq I_n$ pour $1 \leq k \leq 2n-1$ et $A^{2n} = I_n$. On a donc une matrice d'ordre 2n dans $C_n(\mathbb{Z}) \cap O(n)$.