Seri bahan kuliah Algeo #23

Aljabar Kompleks

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika
STEI-ITB
2022

Sumber:

- 1. John Vince, Geometric Algebra for Computer Graphics. Springer. 2007
- 2. Howard Anton & Chris Rores, *Elementary Linear Algebra*, 10th Edition

Bilangan Kompleks

Bilangan kompleks berbentuk:

```
z = a + bi,

a adalah bagian riil \rightarrow \text{Re}(z) = a

b adalah bagian imajiner \rightarrow \text{Im}(z) = b

i = \sqrt{-1} (sehingga i^2 = -1)

Contoh: z = 3 + 2i, z = 6 - 14i, z = 16 - 13i, dsb
```

- Simbol $i = \sqrt{-1}$ diperkenalkan oleh matematikawan Jerman, Leonhard Euler, pada tahun 1777
- Bagian riil (a) atau bagian imajiner (b) mungkin saja nol
- Jika b = 0, maka z = a (bilangan riil), jika a = 0, maka z = bi (bilangan kompleks).
- Ini berarti himpunan bilangan riil **R** adalah himpunan bagian (*subset*) dari himpunan bilangan kompleks **C**, yang dalam hal ini bagian imajinernya adalah nol.

• Konyugasi (conjugate) suatu bilangan kompleks sering dinamakan bilangan sekawan, ditulis sebagai z^* :

$$z^* = a - bi$$

Contoh:
$$z = 3 + 2i$$
, maka $z^* = 3 - 2i$
 $z = 5 - 3i$, maka $z^* = 5 + 3i$

- i bersifat komutatif dengan skalar, jadi menuliskan ia atau ai adalah sama.
- Perhatikan pola sbb:

$$i^0 = 1$$
, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$...

• Diagram Argand menyajikan z = a + bi sebagai vektor:

• Panjang z disebut modulus bilangan kompleks, dilambangkan dengan |z|:

$$|z| = \sqrt{a^2 + b^2}$$

$$|z| = \sqrt{3^2 + 4^2} = 5$$

• Sudut θ yang dibentuk sumbu mendatar dengan vektor dihitung dengan:

$$\theta = \tan^{-1} (b/a)$$

- Sudut yang dibentuk sumbu mendatar dengan vektor adalah θ .
- Untuk kuadran 1 dan 4, a > 0, maka $\theta = \tan^{-1}(b/a)$
- Untuk kuadran 2 dan 3, a < 0, maka $\theta = 180^{\circ} + \tan^{-1}(b/a)$

• Perhatikan kembali gambar ini:

$$cos(\theta) = \frac{a}{|z|} \rightarrow a = |z| cos(\theta)$$

$$sin(\theta) = \frac{b}{|z|} \rightarrow b = |z| sin(\theta)$$

- Jadi, $z = a + bi = |z|\cos(\theta) + i|z|\sin(\theta) = |z|(\cos(\theta) + i\sin(\theta))$
- Misalkan |z| = r, maka $z = a + bi = r (\cos(\theta) + i \sin(\theta)) \rightarrow z$ dalam bentuk polar

Operasi aritmetika bilangan kompleks

Penjumlahan dua bilangan kompleks:

$$z_{1} = a_{1} + b_{1}i$$

$$z_{2} = a_{2} + b_{2}i + a_{2}i + a_{2}i$$

$$z_{1} + z_{2} = (a_{1} + a_{2}) + (b_{1} + b_{2})i$$

• Contoh 1: (4 + 3i) + (2 - 5i) = 6 - 2i.

Perkalian dua bilangan kompleks:

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + b_1 a_2 i + b_1 b_2 i^2$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 i - b_1 b_2 \qquad \text{(karena } i^2 = -1\text{)}$$

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

• Contoh 2: (2+3i)(4-5i) = ((2)(4)-(3)(-5)) + ((2)(-5)+(3)(4))i = 23+2i

• Perkalian bilangan kompleks dengan sekawannya: $zz^* = |z|^2$

Pembagian bilangan kompleks:

Misalkan
$$z_1 = a_1 + ib_1 \operatorname{dan} z_2 = a_2 + ib_2$$

maka

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{z_2^*}{z_2^*} = \frac{a_1 + ib_1}{a_2 + ib_2} \cdot \frac{a_2 - ib_2}{a_2 - ib_2}$$

Jadi,

$$\frac{z_1}{z_2} = \frac{a_1 + ib_1}{a_2 + ib_2} \cdot \frac{a_2 - ib_2}{a_2 - ib_2}$$

$$= \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2}$$

$$= \left(\frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2}\right) + i\left(\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}\right)$$

Contoh 3:

$$\frac{(4+i2)}{(3+i2)} = \frac{(4+i2)}{(3+i2)} \cdot \frac{(3-i2)}{(3-i2)}$$
$$= \frac{16-i2}{9+4}$$
$$= \left(\frac{16}{13}\right) - i\left(\frac{2}{13}\right).$$

 Ketiga contoh operasi aritmetika di atas memperlihatkan bahwa operasi penjumlahan, perkalian, dan pembagian bilangan kompleks selalu menghasilkan bilangan kompleks juga (sifat closure atau ketertutupan). • Perkalian bilangan kompleks dengan bilangan kompleks sekawan lainnya:

Misalkan

$$z_1 = a_1 + ib_1$$

$$z_2 = a_2 + ib_2$$

dan

$$z_2^* = a_2 - ib_2$$

maka

$$z_1 z_2^* = (a_1 + ib_1)(a_2 - ib_2)$$

= $(a_1 a_2 + b_1 b_2) + i(a_2 b_1 - a_1 b_2).$

Perhatikan bahwa $(a_2b_1 - a_1b_2)$ adalah perkalian titik (*dot product*) dua buah vektor, sedangkan bagian imajiner, $(a_2b_1 - a_1b_2)$, adalah bentuk determinan:

$$\begin{vmatrix} a_2 & b_2 \\ a_1 & b_1 \end{vmatrix}$$

- Ingatlah kembali tafsiran determinan di dalam aljabar vektor, yaitu nilai mutlak determinan menyatakan luas area parallelogram yang yang dibentuk oleh dua buah vektor.
- Area parallelogram dibentuk oleh vektor z_1 dan z_2 : $z_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$ $z_2 = \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$

Paralelogram = area $OZ_2Z_{21}Z_1$

Luas area $OZ_2Z_{21}Z_1 = |a_2b_1 - a_1b_2|$

Luas segitiga $OZ_1Z_2 = \frac{1}{2}$ Luas area $OZ_2Z_{21}Z_1$

Aksioma-aksioma bilangan kompleks

Diberikan $z_1, z_2, z_3 \in \mathbf{C}$, maka aksioma-aksioma berikut berlaku:

Closure

For all z_1 and z_2

addition
$$z_1 + z_2 \in \mathbb{C}$$

multiplication $z_1 z_2 \in \mathbb{C}$.

Identity

For each z there is an identity element 0 and 1 such that:

addition
$$z + 0 = 0 + z = z$$
 $(0 = 0 + 0i)$
multiplication $z(1) = (1)z = z$ $(1 = 1 + 0i)$.

Inverse

For each z there is an inverse element -z and 1/z such that:

addition
$$z + (-z) = -z + z = 0$$

multiplication $z\left(\frac{1}{z}\right) = \left(\frac{1}{z}\right)z = 1 \quad (z \neq 0).$

Associativity

For all z_1 , z_2 and z_3

addition
$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$$

multiplication $z_1(z_2z_3) = (z_1z_2)z_3$.

Commutativity

For all z_1 and z_2

addition
$$z_1 + z_2 = z_2 + z_1$$

multiplication $z_1 z_2 = z_2 z_1$.

Distributivity

For all z_1 , z_2 and z_3

$$z_1(z_2+z_3)=z_1z_2+z_1z_3$$

$$(z_1+z_2)z_3=z_1z_3+z_2z_3.$$

Fungsi i sebagai rotor

- Rotor: sumbu putaran
- i memiliki tafsiran geometri sebagai rotor
- Jika a + bi dikalikan dengan i, maka hasilnya:

$$i(a + bi) = ai + bi^2 = ai + b(-1) = -b + ai$$

• Jika –b + ai dikalikan lagi dengan i, maka:

$$i(-b+ai) = -bi + ai^2 = -a - bi$$

• Jika –a – bi dikalikan lagi dengan i, maka:

$$i(-a-bi) = -ai - bi^2 = b - ai$$

• Jika *b – ai* dikalikan lagi dengan i, maka:

$$i(b-ai) = bi - ai^2 = a + bi$$

Pertanyaan: apa hasilnya jika *a* + *bi* dikaikan dengan –*i* ?

Persamaan Euler

• Bilangan alam e didefinisikan sebagai berikut:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

atau dapat juga dinyatakan dalam bentuk deret McLaurin:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right)$$

ex dinyatakan dalam bentuk deret McLaurin sebagai berikut:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} \right)$$

• sin(x) dan cos(x), x dalam radian, dinyatakan dalam bentuk deret McLaurin:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots,$$

Perpangkatan e dengan bilangan kompleks ix adalah sebagai berikut:

$$e^{ix} = \lim_{n \to \infty} \left(1 + \frac{ix}{1!} + \frac{i^2 x^2}{2!} + \frac{i^3 x^3}{3!} + \dots + \frac{i^n x^n}{n!} \right)$$

disederhanakan menjadi

$$e^{ix} = 1 + \frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} \dots$$

Kumpulkan bagian riil dan bagian imajiner menjadi:

$$e^{ix} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots + i \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots \right)$$

$$cos(x)$$

$$sin(x)$$

Jadi,
$$e^{ix} = \cos(x) + i\sin(x)$$

$$e^{-ix} = \cos(x) - i\sin(x)$$

$$atau,$$

$$e^{\pm ix} = \cos(x) \pm i\sin(x)$$

Persamaan yang terkenal ini dinamakan formula Euler

• Contoh 4: untuk $x = \pi/2$, maka

$$e^{i\frac{\pi}{2}} = \cos(\pi/2) + i\sin(\pi/2) = 0 + i(1) = i$$

untuk x =
$$\pi$$
, maka
 $e^{i\pi} = \cos(\pi) + i \sin(\pi) = -1 - i(0) = -1$

untuk x = 0, maka

$$e^{i0} = \cos(0) + i \sin(0) = 1 - i(0) = 1$$

untuk x =
$$\pi/4$$
, maka
$$e^{i\frac{\pi}{4}} = \cos(\pi/4) + i\sin(\pi/4) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

• Apabila kita mengalikan z=a+bi dengan $e^{i\pi}$ maka menjadi

$$z' = ze^{i\pi} = z(-1) = -(a + bi) = -a - bi$$

yang diinterpretasikan sebagai memutar vektor z sejauh 180° berlawanan jarum jam

• Begitu juga, jika kita mengalikan z = a + bi dengan $e^{i\frac{\pi}{2}}$ maka menjadi:

$$z' = ze^{i\frac{\pi}{2}} = zi = (a + bi)i = -b + ai$$

yang diinterpretasikan sebagai memutar
vektor z sejauh 90° berlawanan arah jarum
jam

• **Kesimpulan**: $e^{i\phi}$ adalah sebuah rotor yang memutar z menjadi z' sejauh ϕ berlawanan arah jaum jam, yaitu $z' = ze^{i\phi}$

Secara geometri diartikan $e^{i\phi}$ terdapat di dalam lingkaran dengan jari-jari = 1 di dalam himpunan bilangan kompleks

Soal Latihan 1

- 1. Misalkan $z_1 = 3 8i$, $z_2 = 5 + 10i$, $z_3 = -6i$, $z_4 = 5$, hitunglah

 (i) $z_1 z_2$ (ii) $z_1 z_3$ (iii) $z_1 z_2 z_3$ (iv) z_1 / z_2 (v) z_1 / z_3 (vi) $z_1 z_2^*$ (vi) $z_2^* z_3^*$ (vii) $z_2 z_4^*$ (ix) z_1^* / z_4^*
- 2. Hitunglah e^{ix} dan e^{-ix} untuk $x = 60^{\circ}$
- 3. Sebuah bilangan kompleks z = 4 9i diputar sejauh 120 derajat **searah** jarum jam, tentukan bayangannya.
- 4. Berapakah *i*^{*i*}? (hasilnya mengejutkan!)

Vektor di Ruang Kompleks

- Ruang vektor yang elemen-elemennya berbentuk bilangan kompleks dinamakan ruang vektor kompleks.
- Ruang vektor kompleks berorde-n dilambangkan dengan Cⁿ.
- Setiap vektor di dalam C^n memiliki n-komponen, yaitu $\mathbf{v} = (v_1, v_2, ..., v_n)$, dalam hal ini $v_1, v_2, ..., v_n$ adalah bilangan kompleks:

$$\mathbf{v} = (v_1, v_2, ..., v_n) = (a_1 + b_1 i, a_2 + b_2 i, ..., a_n + b_n i)$$

Contoh vektor-vektor di C³:

$$\mathbf{u} = (1+i, -4i, 3+2i), \quad \mathbf{v} = (0, i, 5), \quad \mathbf{w} = \left(6 - \sqrt{2}i, 9 + \frac{1}{2}i, \pi i\right)$$

Setiap vektor

$$\mathbf{v} = (v_1, v_2, ..., v_n) = (a_1 + b_1 i, a_2 + b_2 i, ..., a_n + b_n i)$$

di Cⁿ dapat dipecah menjadi bagian riil dan bagian imajiner:

$$\mathbf{v} = (a_1, a_2, ..., a_n) + i(b_1, b_2, ..., b_n)$$

yang juga dapat dinyatakan sebagai

$$\mathbf{v} = \text{Re}(\mathbf{v}) + i \text{ Im}(\mathbf{v})$$

dalam hal ini

$$Re(\mathbf{v}) = (a_1, a_2, ..., a_n)$$
 dan $Im(\mathbf{v}) = (b_1, b_2, ..., b_n)$

• Bentuk sekawan (conjugate) ${f v}$ adalah ${f ar v}$

$$\overline{\mathbf{v}} = (\overline{v}_1, \overline{v}_2, ..., \overline{v}_n) = (a_1 - b_1 i, a_2 - b_2 i, ..., a_n - b_n i)$$

Contoh 5: Misalkan

$$\mathbf{v} = (3+i, -2i, 5)$$
 and $\mathbf{A} = \begin{bmatrix} 1+i & -i \\ 4 & 6-2i \end{bmatrix}$

maka

$$\overline{\mathbf{v}} = (3 - i, 2i, 5), \quad \text{Re}(\mathbf{v}) = (3, 0, 5), \quad \text{Im}(\mathbf{v}) = (1, -2, 0)$$

$$\overline{A} = \begin{bmatrix} 1 - i & i \\ 4 & 6 + 2i \end{bmatrix}, \quad \text{Re}(A) = \begin{bmatrix} 1 & 0 \\ 4 & 6 \end{bmatrix}, \quad \text{Im}(A) = \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}$$

$$\det(A) = \begin{vmatrix} 1 + i & -i \\ 4 & 6 - 2i \end{vmatrix} = (1 + i)(6 - 2i) - (-i)(4) = 8 + 8i$$

Teorema-teorema Aljabar Vektor Kompleks

THEOREM 5.3.1

If **u** and **v** are vectors in \mathbb{C}^n , and if k is a scalar, then:

(a)
$$\overline{\overline{\mathbf{u}}} = \mathbf{u}$$

(b)
$$\overline{k}\mathbf{u} = \overline{k}\overline{\mathbf{u}}$$

$$(c)$$
 $\overline{\mathbf{u}+\mathbf{v}} = \overline{\mathbf{u}} + \overline{\mathbf{v}}$

$$(d) \overline{\mathbf{u} - \mathbf{v}} = \overline{\mathbf{u}} - \overline{\mathbf{v}}$$

THEOREM 5.3.2

If A is an $m \times k$ complex matrix and B is a $k \times n$ complex matrix, then:

(a)
$$\overline{\overline{A}} = A$$

(b)
$$(\overline{A}^T) = (\overline{A})^T$$

(c)
$$\overline{AB} = \overline{A} \ \overline{B}$$

Perkalian titik kompleks (complex dot product)

• Jika $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ adalah vektor-vektor di C^n , maka perkalian titik dua buah vektor didefinisikan sebagai:

$$\mathbf{u} \cdot \mathbf{v} = u_1 \overline{v}_1 + u_2 \overline{v}_2 + \ldots + u_n \overline{v}_n$$

- Vektor **u** dan **v** orthogonal jika $\mathbf{u} \cdot \mathbf{v} = 0$
- Norma Euclidean vektor v adalah

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{|v_1|^2 + |v_2|^2 + \dots + |v_n|^2}$$

• Vektor satuan adalah jika $||\mathbf{v}|| = 1$

• Contoh 6: Misalkan $\mathbf{u} = (1 + i, i, 3 - i), \mathbf{v} = (1 + i, 2, 4i), \text{ maka}$

$$\mathbf{u} \cdot \mathbf{v} = (1+i)\left(\overline{1+i}\right) + i\left(\overline{2}\right) + (3-i)\left(\overline{4i}\right) = (1+i)(1-i) + 2i + (3-i)(-4i) = -2 - 10i$$

$$\mathbf{v} \cdot \mathbf{u} = (1+i)\left(\overline{1+i}\right) + 2\left(\overline{i}\right) + (4i)\left(\overline{3-i}\right) = (1+i)(1-i) - 2i + 4i(3+i) = -2 + 10i$$

$$\|\mathbf{u}\| = \sqrt{|1+i|^2 + |i|^2 + |3-i|^2} = \sqrt{2+1+10} = \sqrt{13}$$

$$\|\mathbf{v}\| = \sqrt{|1+i|^2 + |2|^2 + |4i|^2} = \sqrt{2+4+16} = \sqrt{22}$$

THEOREM 5.3.3

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{C}^n , and if k is a scalar, then the complex Euclidean inner product has the following properties:

(a)
$$\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$$

[Antisymmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

[Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$

[Homogeneity property]

(d) $\mathbf{u} \cdot k\mathbf{v} = \overline{k}(\mathbf{u} \cdot \mathbf{v})$

[Antihomogeneity property]

(e) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$. [Positivity property]

Nilai eigen dan vektor eigen kompleks

THEOREM 5.3.4

If λ is an eigenvalue of a real $n \times n$ matrix A, and if \mathbf{x} is a corresponding eigenvector, then $\overline{\lambda}$ is also an eigenvalue of A, and $\overline{\mathbf{x}}$ is a corresponding eigenvector.

Contoh 7: Tentukan nilai eigen dan basis ruang eigen dari matriks berikut:

$$A = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$$

Jawaban: Persamaan karakteristiknya adalah

$$\begin{vmatrix} \lambda+2 & 1 \\ -5 & \lambda-2 \end{vmatrix} = \lambda^2 + 1 = (\lambda-i)(\lambda+i)$$

Nilai-nilai eigennya adalah $\lambda = i$ dan $\lambda = -i$

Menghitung vektor eigen:

$$\begin{bmatrix} \lambda + 2 & 1 \\ -5 & \lambda - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Untuk $\lambda = i$,

$$\begin{bmatrix} i+2 & 1 \\ -5 & i-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 Bentuk augmented:
$$\begin{bmatrix} i+2 & 1 & 0 \\ -5 & i-2 & 0 \end{bmatrix}$$

Lakukan eliminasi Gauss-Jordan pada matriks augmented:

$$\begin{bmatrix} i+2 & 1 & 0 \\ -5 & i-2 & 0 \end{bmatrix} \xrightarrow{R1 \leftrightarrow R2} \begin{bmatrix} -5 & i-2 & 0 \\ i+2 & 1 & 0 \end{bmatrix} \xrightarrow{R1/(-5)} \begin{bmatrix} 1 & 2/5-i/5 & 0 \\ i+2 & 1 & 0 \end{bmatrix} \xrightarrow{R2-(i+2)R1}$$

$$\begin{bmatrix} 1 & \frac{2}{5} - \frac{1}{5}i & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \text{Solusi: } \begin{aligned} \mathbf{x}_1 + (2/5 - i/5)\mathbf{x}_2 &= 0 \\ \text{Misalkan } \mathbf{x}_2 &= \mathbf{t}, \text{ maka } \mathbf{x}_1 = \left(-\frac{2}{5} + \frac{1}{5}i\right)t \end{aligned} \qquad \mathbf{x} = \begin{bmatrix} -\frac{2}{5} + \frac{1}{5}i \\ 1 \end{bmatrix}$$

Basis ruang eigen:

$$\mathbf{x} = \begin{bmatrix} -\frac{2}{5} + \frac{1}{5}\mathbf{i} \\ 1 \end{bmatrix}$$

Periksa kembali bahwa $A\mathbf{x} = i\mathbf{x}$ sebagai berikut:

$$A\mathbf{x} = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} -\frac{2}{5} + \frac{1}{5}i \\ 1 \end{bmatrix} = \begin{bmatrix} -2\left(-\frac{2}{5} + \frac{1}{5}i\right) - 1 \\ 5\left(-\frac{2}{5} + \frac{1}{5}i\right) + 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} - \frac{2}{5}i \\ i \end{bmatrix} = i\mathbf{x}$$

Dengan cara yang sama untuk $\lambda = -i$ (namun tidak perlu dihitung, sesuai Teorema 5.3.4) diperoleh basis ruang eigennya adalah

$$\overline{\mathbf{x}} = \begin{bmatrix} -\frac{2}{5} - \frac{1}{5}^i \\ 1 \end{bmatrix}$$
 yang merupakan bentuk sekawan dari basis ruang eigen sebelumnya

Periksa kembali bahwa $A\mathbf{x} = -i\overline{\mathbf{x}}$ sebagai berikut:

$$A\overline{\mathbf{x}} = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} -\frac{2}{5} - \frac{1}{5}i \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -2\left(-\frac{2}{5} - \frac{1}{5}i\right) - 1 \\ 5\left(-\frac{2}{5} - \frac{1}{5}i\right) + 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} + \frac{2}{5}i \\ -i \end{bmatrix} = -i\overline{\mathbf{x}}$$

THEOREM 5.3.5

If A is a 2×2 matrix with real entries, then the characteristic equation of A is $\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0$ and

- (a) A has two distinct real eigenvalues if $tr(A)^2 4 det(A) > 0$;
- (b) A has one repeated real eigenvalue if tr(A)² 4 det(A) = 0;
- (c) A has two complex conjugate eigenvalues if $tr(A)^2 4 \det(A) < 0$.

Contoh 8 In each part, use Formula 13 for the characteristic equation to find the eigenvalues of

$$(a) \quad A = \begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix}$$

$$(b) A = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$

Solution

(a) We have tr(A) = 7 and det(A) = 12, so the characteristic equation of A is

$$\lambda^2 - 7\lambda + 12 = 0$$

Factoring yields $(\lambda - 4)(\lambda - 3) = 0$, so the eigenvalues of A are $\lambda = 4$ and $\lambda = 3$.

(b) We have tr(A) = 2 and det(A) = 1, so the characteristic equation of A is

$$\lambda^2 - 2\lambda + 1 = 0$$

Factoring this equation yields $(\lambda - 1)^2 = 0$, so $\lambda = 1$ is the only eigenvalue of A; it has algebraic multiplicity 2.

(c) We have tr(A) = 4 and det(A) = 13, so the characteristic equation of A is

$$\lambda^2 - 4\lambda + 13 = 0$$

Solving this equation by the quadratic formula yields

$$\lambda = \frac{4 \pm \sqrt{(-4)^2 - 4(13)}}{2} = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$$

Thus, the eigenvalues of A are $\lambda = 2 + 3i$ and $\lambda = 2 - 3i$.

Latihan 2

- 1. Selesaikan $i\mathbf{x} 3\mathbf{v} = \overline{\mathbf{v}}$ jika $\mathbf{u} = (3 4i, 2 + i, -6i)$ dan $\mathbf{v} = (1 + i, 2 i, 4)$
- 2. Hitunglah $\mathbf{u} \cdot \mathbf{v}$ dan $\mathbf{v} \cdot \mathbf{w}$ jika diketahui $\mathbf{u} = (2 3i, i, 4 6i)$ dan $\mathbf{v} = (1 + i, 2 i, 0)$, dan $\mathbf{w} = (-5i, 2 + i, 4)$
- 3. Hitunglah nilai eigen dan basis ruang eigen untuk matriks2 berikut:

$$A = \begin{bmatrix} 4 & -5 \\ 1 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$$