

Page 27 of 34

What Is Claimed:

	What is Claimed.		
	1. A crystalline silicoaluminophosphate molecular sieve comprising a		
	porous framework structure and a catalytically active integrated hydrocarbon co-		
	catalyst,		
	wherein the silicoaluminophosphate has a catalytic activity index for methanol		
	conversion at 250°C of at least 2.		
	2. The crystalline silicoaluminophosphate molecular sieve of claim 1,		
	wherein the silicoaluminophosphate has a catalytic activity index for methanol		
	conversion at 250°C of at least 10.		
	The crystalline silicoaluminophosphate molecular sieve of claim 1,		
	wherein the catalytically active integrated hydrocarbon co-catalyst is a product of a		
	reaction of any hydrocarbon having a diameter less than a pore-mouth diameter of the		
	crystalline silicoaluminophosphate molecular sieve in contact with the porous		
	framework structure.		
	4. The crystalline silicoaluminophosphate molecular sieve of claim 1,		
	wherein the catalytically active integrated hydrocarbon co-catalyst comprises 0.1 to		
	23 weight percent single ring aromatics.		
	5. The crystalline silicoaluminophosphate molecular sieve of claim 3,		
	wherein the hydrocarbon comprises an oxygenate.		
	wherein the hydrocarbon comprises an oxygenate.		
	6. The crystalline silicoaluminophosphate molecular sieve of claim 1,		
	wherein the catalytically active integrated hydrocarbon co-catalyst remains active		
even after being exposed to air at room temperature for 12 hours or after being			
subjected to heating at 450°C for 0.5 hour.			
	7. The crystalline silicoaluminophosphate molecular sieve of claim 1,		

wherein the silicoaluminophosphate molecular sieve is selected from the group

20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41,

consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-

1

2

1

2

3

Page 28 of 34

- SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof.
 - 8. The crystalline silicoaluminophosphate molecular sieve of claim 7, wherein the silicoaluminophosphate molecular sieve is SAPO-34.
- 9. A catalyst for converting an oxygenate feedstock to an olefin product, comprising a crystalline silicoaluminophosphate molecular sieve having a porous framework structure, and a binder, wherein the porous framework structure contains an active integrated hydrocarbon co-catalyst,
- wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 2.
- 1 10. The catalyst of claim 9, wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 10.
- 1 1. The catalyst of claim 9, wherein the catalytically active integrated
 2 hydrocarbon co-catalyst is a product of a reaction of any hydrocarbon having a
 3 diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate
 4 molecular sieve in contact with the porous framework structure.
- 1 12. The catalyst of claim 9, wherein the catalytically active integrated 2 hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.
- 1 13. The catalyst of claim 11, wherein the hydrocarbon comprises an 2 oxygenate.
 - 14. The catalyst of claim 9, wherein the catalytically active integrated hydrocarbon co-catalyst remains active even after being exposed to air at room temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
- 1 15. The catalyst of claim 9, wherein the silicoaluminophosphate molecular 2 sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-3 16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36,

1

2

3

22.

	Page 29 of 34
4	SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal
5	containing forms thereof, and mixtures thereof.
1	16. The catalyst of claim 15, wherein the silicoaluminophosphate
2	molecular sieve is SAPO-34.
1	17. A method of making an olefin product from an oxygenate feedstock,
2	comprising:
3	contacting a silicoaluminophosphate molecular sieve having a porous
4	framework structure with a hydrocarbon at conditions effective to form at least a
5	integrated hydrocarbon co-catalyst within the porous framework, and
6	contacting the silicoaluminophosphate molecular sieve containing the
7	integrated hydrocarbon co-catalyst with an oxygenate feedstock under conditions
8	effective to convert the feedstock to the olefin product,
9	wherein the silicoaluminophosphate has a catalytic activity index for methanol
10	conversion at 250°C of at least 2.
1	18. The method of claim 17, wherein the silicoaluminophosphate has a
2	catalytic activity index for methanol conversion at 250°C of at least 10.
1	19. The method of claim 17, wherein the catalytically active integrated
2	hydrocarbon co-catalyst is a product of a reaction of any hydrocarbon having a
3	diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate
4	molecular sieve in contact with the porous framework structure.
1	20. The method of claim 17, wherein the catalytically active integrated
2	hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.
1	The method of claim 19, wherein the hydrocarbon comprises an
2	oxygenate.

The method of claim 17, wherein the catalytically active integrated

hydrocarbon co-catalyst is remains active even after being exposed to air at room

temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.

Page 30 of 34

1	23.	The method of claim 17, wherein the silicoaluminophosphate	
2	molecular sie	eve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11	
3	SAPO-16, SA	APO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-	
4	36, SAPO-37	7, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the	
5	metal contair	ning forms thereof, and mixtures thereof.	
1	24.	The catalyst of claim 23, wherein the silicoaluminophosphate	
2	molecular sie	eve is SAPO-34.	
1	25.	An olefin product made according to the method of claim 17.	
1	26.	The olefin product of claim 25 comprising ethylene and propylene.	
1	27.	A method of making a polyolefin from an oxygenate feedstock,	
2	comprising:		
3	contacting a silicoaluminophosphate molecular sieve having a porous		
4	framework st	ructure with a hydrocarbon at conditions effective to form at least a	
5	integrated hydrocarbon co-catalyst within the porous framework,		
6	contacting the silicoaluminophosphate molecular sieve containing the		
7	integrated hy	drocarbon co-catalyst with an oxygenate feedstock under conditions	
8	effective to c	onvert the feedstock to an olefin product, and	
9	conta	cting the olefin product with a polyolefin-forming catalyst under	
10	conditions ef	fective to form the polyolefin,	
11	where	ein the silicoaluminophosphate containing the integrated hydrocarbon co	
12	catalyst has a	catalytic activity index for methanol conversion at 250°C of at least 2.	
1	28.	A polyolefin made by the process of claim 27.	
1	29.	The polyolefin of claim 28 comprising polyethylene.	
1	30.	The polyolefin of claim 28 comprising polypropylene.	
1	31.	A crystalline silicoaluminophosphate molecular sieve comprising a	
2	porous frame	work structure and a catalytically active integrated hydrocarbon co-	
3	catalyst,		

Page 31 of 34

4	wherein the catalytically active integrated hydrocarbon co-catalyst is a product
5	of a reaction of a hydrocarbon in contact with the porous framework.
_	

- 1 32. The crystalline silicoaluminophosphate molecular sieve of claim 31, 2 wherein the hydrocarbon comprises an oxygenate.
- 1 33. The crystalline silicoaluminophosphate molecular sieve of claim 31, 2 wherein the catalytically active integrated hydrocarbon co-catalyst comprises 0.1 to 3 23 weight percent single ring aromatics.
- The crystalline silicoaluminophosphate molecular sieve of claim 31, wherein the catalytically active integrated hydrocarbon co-catalyst is remains active even after being exposed to air at room temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
- The crystalline silicoaluminophosphate molecular sieve of claim 31, wherein the silicoaluminophosphate molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof.
- 1 36. The crystalline silicoaluminophosphate molecular sieve of claim 35, 2 wherein the silicoaluminophosphate molecular sieve is SAPO-34.
- 1 37. A method of making an integrated hydrocarbon co-catalyst, 2 comprising:
- preparing an silicoaluminophosphate molecular sieve having a porous
 framework structure and
- contacting said silicoaluminophosphate with a hydrocarbon at conditions effective to form at least said integrated hydrocarbon co-catalyst within the porous framework.

Page 32 of 34

8	wherein said the silicoaluminophosphate comprising said integrated	
9	hydrocarbon co-catalyst has a catalytic activity index for methanol conversion at	
10	250°C of at least 2.	
1	38. The method of claim 37, wherein said conditions effective to form	

- The method of claim 37, wherein said conditions effective to form at least said integrated hydrocarbon co-catalyst comprises contacting a hydrocarbon having a diameter less than a pore-mouth diameter of the crystalline silicoaluminophosphate molecular sieve.
- 1 39. The method of claim 38, wherein said contacting comprises first contacting at a lower temperature and second contacting at a higher temperature.
- 1 40. The method of claims 39, wherein a difference between said higher temperature and said lower temperature is at least 10°C.
- 1 41. The method of claims 39, wherein a difference between said higher 2 temperature and said lower temperature is at least 25°C.
- 1 42. The method of claims 39, wherein the hydrocarbon contacted in said 2 first contacting is different from that contacted in said second contacting.
- 1 43. The method of claims 42, wherein a difference between said higher 2 temperature and said lower temperature is at least 10°C.
- 1 44. The method of claims 42, wherein a difference between said higher temperature and said lower temperature is at least 25°C.
- 1 45. The method of claim 37, wherein the silicoaluminophosphate has a catalytic activity index for methanol conversion at 250°C of at least 10.
- 1 46. The method of claim 37, wherein the catalytically active integrated 2 hydrocarbon co-catalyst comprises 0.1 to 23 weight percent single ring aromatics.
- The method of claim 37, wherein the hydrocarbon comprises an oxygenate.

molecular sieve is SAPO-34.

2

Page 33 of 34

1	The method of claim 37, wherein the catalytically active integrated
2	hydrocarbon co-catalyst is remains active even after being exposed to air at room
3	temperature for 12 hours or after being subjected to heating at 450°C for 0.5 hour.
1	49. The method of claim 37, wherein the silicoaluminophosphate
2	molecular sieve is selected from the group consisting of SAPO-5, SAPO-8, SAPO-11
3	SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-
4	36, SAPO-37, SAPO-40, SAPO-41, \$APO-42, SAPO-44, SAPO-47, SAPO-56, the
5	metal containing forms thereof, and mixtures thereof.
1	50. The catalyst of claim 40, wherein the silicoaluminonhosphate