- **1.** Доведіть, що (a b)|(P(a) P(b)) якщо $P \in \mathbb{Z}[x]$.
- **2.** Доведіть, що не існує $P \in \mathbb{Z}[x]$ такого, що P(7) = 5 і P(15) = 9.
- **3.** Доведіть, що у $P \in \mathbb{Z}[x]$ не може бути орбіти довжини 3, тобто що не існує таких чисел a, b та c, що P(a) = b, P(b) = c та P(c) = a.
- 4. Знайдіть усі дійсні корені системи рівнянь

$$\begin{cases} x + y + z = 3 \\ x^2 + y^2 + z^2 = 3 \\ x^3 + y^3 + z^3 = 3 \end{cases}$$

- **5.** Знайдіть кубічний поліном Q такий, що $Q(1)=2,\ Q(2)=4,\ Q(3)=8,\ Q(4)=16.$
- 6. Позначимо

$$f(x) = x^5 + 5x^4 + 5x^3 + 5x^2 + 1$$
$$(x) = x^5 + 5x^4 + 3x^3 - 5x^2 - 1$$

Знайдіть усі прості p для яких існує ціле невід'ємне n < p таке, що p|f(n), p|g(n). Для кожного такого p знайдіть усі такі n.

- 7. Нехай a, b два корені рівняння $x^4 + x^3 1 = 0$. Доведіть, що ab корінь рівняння $x^6 + x^4 + x^3 x^2 1 = 0$.
- 8. Знайдіть поліном P степеню не більше 5 який при діленні на $(x-1)^3$ та $(x+1)^3$ дає залишки -1 та 1 відповідно.
- **9.** Доведіть, що якщо поліном степеню n приймає цілі значення у n+1 послідовній цілій точці, то він приймає ціле значення у кожній цілій точці.
- 10. Знайдіть усі поліноми $P \in \mathbb{R}[x]$ такі, що

$$P(a-b) + P(b-c) + P(c-a) = 2P(a+b+c)$$

для всіх a, b і c таких, що ab + bc = ca = 0.

11. Знайдіть усі поліноми P для яких $P(x^2 + 1) \equiv P(x)^2 + 1$.

- **12.** У ЛМШ є n учнів, у кожного з яких є бейджик. Ми перемішали бейджики і роздали їх випадковим чином. Скільки в середньому людей отримають свій бейджик?
- **13.** У дитячому садочку 2006 дітей сіли в коло. Одночасно кожна дитина штовхнула одного зі своїх сусідів. Скільки в середньому дітей залишаться нештовхані?
- 14. 7 хлопців і 13 дівчат стали в ряд. Скільки в середньому пар (дівчина, хлопець) опиняться поруч?
- **15.** Нехай S множина дійсних чисел вигляду $0.\overline{abc}$ де a,b,c різні цифри. Знайдіть суму елементів S.
- **16.** Доведіть, що у довільного підграфу $K_{n,n}$, у якому принаймні $n^2 n + 1$ ребер, знайдеться ідеальне розбиття на пари.
- **17.** Доведіть, що $R(k,k) > 2^{k/2}$.
- **18.** Доведіть, що можна провести турнір (серед певної фіксованої, але початково не заданої і не обмеженої кількості учасників) так, що для кожних 1000 учасників знайшовся учасник, який переміг їх всіх.
- **19.** Розглянемо n дійсних чисел з сумую 0 не всі з яких 0. Доведіть, що їх можна занумерувати a_1, a_2, \ldots, a_n так, що $a_1a_2 + a_2a_3 + \cdots + a_na_1 < 0$.
- **20.** У Думі 1600 делегатів які утворили 16000 комітетів по 80 людей. Доведіть, що знайдуться два комітети у яких принаймні 4 спільні делегати.
- **21.** В олімпіаді було 6 задач, і в ній взяли участь 200 учасників, причому кожну задачу розв'язало принаймні 120 учасників. Доведіть, що знайдуться два учасники які разом розв'язали всі задачі.
- **22.** Нехай A множина з N залишків (mod N^2). Доведіть, що існує множина B з N залишків (mod N^2) така, що $A + B = \{a + b \mid a \in A, b \in B\}$ містить принаймні половину всіх залишків (mod N^2).
- **23.** У турнірі взяли участь 799 команд. Доведіть, що можна знайти дві неперетинні групи A і B з семи команд кожна такі, що всі команди з A виграли у всіх команд з B.

24 (Менелай). Доведіть, що точки A_1 , B_1 , C_1 на сторонах BC, CA, AB трикутника ABC колінеарні тоді і тільки тоді, коли

$$\frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} \cdot \frac{AC_1}{C_1B} = 1.$$

Тут колінеарні – такі, що лежать на одній прямій.

- **25** (Сімсон). Доведіть, що основи перпендикулярів з точки $P \in (ABC)$ на сторони ABC чи їх продовження колінеарні. Тут (ABC) позначає описане коло трикутника ABC.
- **26.** Коло S дотикається до кіл S_1 , S_2 в A_1 , A_2 . Доведіть, що пряма AB проходить через точку перетину спільних дотичних до S_1 , S_2 .
- **27.** Серпер до бісектриси AD трикутника ABC перетинає пряму BC у E. Доведіть, що $BE:EC=c^2:b^2$. Тут серпер серединний перпендикуляр, $b=AC,\ c=AB$.
- 28. Доведіть, що точки перетину серперів до бісектрис з продовженнями протилежних сторін колінеарні.
- **29.** З вершини C прямого кута ACB опущена висота CK. CE бісектриса ACK. Пряма через B паралельно CE перетинає CK в F. Доведіть, що пряма EF ділить AC навпіл.
- **30.** На прямих BC, CA, AB взяли колінеарні точки A_1 , B_1 , C_1 . Прямі симетричні до AA_1 , BB_1 , CC_1 відносно бісектрис ABC перетинають прямі BC, CA, AB в A_2 , B_2 , C_2 . Доведіть, що A_2 , B_2 , C_2 колінеарні.
- **31** (Дезарг). $AA_1 \cap BB_1 \cap CC_1 = P$. Доведіть, що A_2 , B_2 , C_2 колінеарні, де $A_2 = BC \cap B_1C_1$, $B_2 = CA \cap C_1A_1$, $C_2 = AB \cap A_1B_1$.
- **32** (Папп). $A_1, B_1, C_1 \in \ell_1, A_2, B_2, C_2 \in \ell_2$. Доведіть, що A, B, C колінеарні, де $A = B_1C_2 \cap B_2C_1, B = C_1A_2 \cap C_2A_1, C = A_1B_2 \cap A_2B_1$.
- **33.** На прямих AB, BC, CD взяли точки K, L, M. $KL \cap AC = P$, $LM \cap BD = Q$. Доведіть, що $R = KQ \cap MP$ лежить на AD.
- **34.** У чотирикутнику ABCD $AB \cap CD = P$, $BC \cap DA = Q$. Пряма через P перетинає BC, AD в E, F. Доведіть, що точки перетину діагоналей чотирикутників ABCD, ABEF, CDFE і Q колінеарні.
- **35.** $P \in \ell_{p,i}, \ Q \in \ell_{q,i}, \ A_{i,j} = \ell_{p,i} \cap \ell_{q,j} \ (i,j=\overline{1,3})$. Доведіть, що $\ell_i \ (i=\overline{1,3})$ конкурентні, де $\ell_i = A_{j,k}A_{k,j}$ $(i \neq j,j \neq k,k \neq i)$. Також, якщо $A_{i,i} \ (i=\overline{1,3})$ колінеарні, то точка перетину $\ell_i \ (i=\overline{1,3})$ лежить на PQ.

- **36.** Нехай $xy=z^n$ і $\gcd(x,y)=1$, де $x,y,z,n\in\mathbb{N}$ $(n\geq 2)$, тоді існують натуральні числа t і s такі, що $x=t^n$ і $y=s^n$.
- **37.** Якщо $a \in \mathbb{Q}$ і $a^n \in \mathbb{N}$, де $n \in \mathbb{N}$, то $a \in \mathbb{N}$.
- **38.** Якщо $a \in \mathbb{N}$ і $\sqrt[n]{a} \in \mathbb{Q}$, де $n \in \mathbb{N}$, n > 1, то $\sqrt[n]{a} \in \mathbb{N}$.
- **39.** Якщо $x^a = b^y$, де a, b, x, y натуральні числа, причому $\gcd(a, b) = 1$, тоді існує таке натуральне число z, що $x = z^b$ і $y = z^a$.
- **40.** Якщо xy=zt, деx,y,z,t натуральні числа, то існують такі натуральні числа a,b,c,d,(b,c)=1, що x=ab,y=cd,z=ac і t=bd.
- **41.** Рівняння вигляду ax + by = c має розв'язок у цілих числах тоді і тільки тоді, коли $d = \gcd(a, b)$ ділить c.
- **42.** Якщо (x_0, y_0) розв'язок рівняння ax + by = c, то всі інші розв'язки (x, y) мають вигляд $x = x_0 + \frac{b}{d}t$, $y = y_0 \frac{a}{d}t$, де $d = \gcd(a, b)mt \in \mathbb{Z}$.
- **43.** Будь-який розв'язок рівняння вигляду $x^2+y^2=z^2$ має вигляд $x=2mnk, y=(m^2-n^2)k, z=(m^2+n^2)k$ або $x=(m^2-n^2)k, y=2mnk, z=(m^2+n^2)k,$ де m,n і k цілі числа, що задовольняють умови $\gcd(m,n)=1$ та 2|n або 2|m.
- **44.** Якщо в задачі вище gcd(x,y) = 1 або gcd(x,z) або gcd(y,z) то в представленні вище існує розв'язок з k = 1.
- **45.** 175 жовтих кульок коштують дорожче, ніж 125, і дешевше, ніж 126 блакитних кульок. Доведіть, що на 3 жовті кульки і 1 блакитну 1 грн не вистачить. (Кульки коштують натуральне число копійок.)
- 46. Чи існують два послідовних натуральних числа, сума цифр кожного ділиться на 2017? Якщо так то знайдіть найменші такі числа.
- **47.** Знайдіть усі розв'язки рівняння 6x + 10y + 15z = 7.
- **48.** Розв'яжіть рівняння $1/x^2 + 1/y^2 = 1/z^2$.
- **49.** Розв'яжіть рівняння $x^2 + y^2 = 2017(x y)$.

- **50.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $f(f(x)) \equiv x, f(f(x)+1) \equiv 1-x.$
- **51.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $f(f(x)) \equiv (f(x) + 1) \cdot (x + 1)$.
- **52.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $f(x+y) \equiv \max\{f(x), y\} + \min\{f(y), x\}$.
- **53.** Знайдіть усі $f:\mathbb{R} \to \mathbb{R}$ такі, що $f(xy) \equiv \max \left\{ f(x), y \right\} + \min \left\{ f(y), x \right\}$
- **54.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $f(xy) + f(xz) \ge f(x) \cdot f(yz) + 1$.
- **55.** $\frac{1}{2} \in E_f$ та $f(x) f(y) \equiv f(x) \cdot f\left(\frac{1}{y}\right) f(y) \cdot f\left(\frac{1}{x}\right)$. Знайдіть f(-1).
- **56.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що

$$f(x + xy + f(y)) \equiv \left(f(x) + \frac{1}{2}\right) \cdot \left(f(y) + \frac{1}{2}\right).$$

- **57.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $f([x]y) \equiv f(x)[f(y)]$.
- **58.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що

$$f(x^2 + y^2 + 2017xy) \equiv x^2 + y^2 + 2017f(x)f(y).$$

- **59.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що $x \cdot f(x + xy) \equiv x \cdot f(x) + f(x^2) \cdot f(y)$.
- **60.** Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що f(0) = 2 та

$$f(x + (x + 2y)) \equiv f(2x) + f(2y).$$

61. Знайдіть усі $f: \mathbb{R} \to \mathbb{R}$ такі, що f(1) = 1 та

$$f\left(x + \frac{1}{x^2}\right) \equiv f(x) + \left(f\left(\frac{1}{x}\right)\right)^2.$$

62. Знайдіть усі $f: \mathbb{N} \to \mathbb{N}$ такі, що f(n+1) > f(f(n)).

- **63.** Для натуральних $n \ge m \ge 1$ доведіть, що $m \mid \left(n \sum_{k=0}^{m-1} (-1)^k \binom{n}{k} \right)$.
- **64.** Для $k,m \in \mathbb{N}$ доведіть, що поліном $(x^m-1)\cdot (x^{m-1}-1)\cdot \ldots \cdot (x-1)$ ділить поліном $(x^{k+m}-1)\cdot (x^{k+m-1}-1)\cdot \ldots \cdot (x^{k+1}-1)$.
- **65.** Обчисліть A^n для всіх $n \in \mathbb{N}$ якщо A матриця на діагоналі і над діагоналлю якої стоять одиниці, а під діагоналлю нулі.
- **66.** Доведіть, що $F_1 \binom{n}{1} + F_2 \binom{n}{2} + \dots + F_n \binom{n}{n} = F_{2n}$.
- **67.** Нехай S_n сума перших n елементів арифметичної прогресії (a_n) . Доведіть, що $\sum_{k=0}^n \binom{n}{k} a_{k+1} = \frac{2^n}{n+1} S_{n+1}$.
- **68.** Доведіть, що для кожного $n \in \mathbb{N}$ число

$$S_n = {2n+1 \choose 0} \cdot 2^{2n} + {2n+1 \choose 2} \cdot 2^{2n-2} \cdot 3 + \dots + {2n+1 \choose 2n} \cdot 3^n$$

- є сумою двох послідовних точних квадратів.
- **69.** Для кожного $n \in \mathbb{N}$ визначимо a_n, b_n, c_n наступним чином:

$$a_n + b_b \sqrt[3]{2} + c_n \sqrt[3]{4} = \left(1 + \sqrt[3]{2} + \sqrt[3]{4}\right)^n$$

Доведіть, що
$$2^{-n/3}\sum_{k=0}^n \binom{n}{k}a_k = \begin{cases} a_n & n\equiv 0\pmod{3}\\ b_n\sqrt[3]{2} & n\equiv 1\pmod{3}\\ c_n\sqrt[3]{4} & n\equiv 2\pmod{3} \end{cases}$$

70. Доведіть формулу аналогічну біному Ньютона:

$$[x+y]_n = \sum_{k=0}^n \binom{n}{k} [x]_k [y]_{n-k}$$

де
$$[x]_n = x \cdot (x-1) \cdot \ldots \cdot (x-n+1)$$

71. На прямих AB, BC, CA взяли C_1 , A_1 , B_1 , k з них на сторонах. Нехай

$$R = \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} \cdot \frac{AC_1}{C_1B}$$

Доведіть, що A_1 , B_1 , C_1 колінеарні $\iff R=1$ і 2|k. Доведіть, що AA_1 , BB_1 , CC_1 конкурентні $\iff R=1$ і $2\not\mid k$.

- **72.** Вписане (або зовнівписані) коло ABC дотикається до BC, CA, AB в A_1 , B_1 , C_1 . Доведіть, що AA_1 , BB_1 , CC_1 конкурентні.
- 73. Доведіть, що висоти гострокутного трикутника конкурентні.
- **74.** $A_1 = AP \cap BC$, $B_1 = BP \cap CA$, $C_1 = CP \cap AB$. Доведіть, що прямі через середини BC, CA, AB паралельно AP, BP, CP конкурентні. Доведіть, що прямі які з'єднують середини BC, CA, AB з серединами AA_1 , BB_1 , CC_1 конкурентні.
- **75.** На сторонах BC, CA, AB трикутника ABC взяли A_1 , B_1 , C_1 такі, що AA_1 , BB_1 , CC_1 конкурентні. A_1B_1 , A_1C_1 перетинають пряму через A паралельну до BC в C_2 , B_2 . Доведіть, що $AB_2 = AC_2$.
- **76.** Нехай α , β , γ такі кути, що сума кожних двох з яких менше 180°. На сторонах ABC зовнішнім (внутрішнім) чином побудовані AB_1C , BC_1A , CA_1B такі, що $\angle B_1AC = \angle BAC_1 = \alpha$, $\angle A_1BC = \angle ABC_1 = \beta$, $\angle A_1CB = \angle ACB_1 = \gamma$. Доведіть, що AA_1 , BB_1 , CC_1 конкурентні.
- **77.** A_1 , B_1 , C_1 точки дотику вписаного кола до BC, CA, AB. На променях IA_1 , IB_1 , IC_1 відклали рівні відрізки IA_2 , IB_2 , IC_2 . Доведіть, що AA_2 , BB_2 , CC_2 конкурентні.
- **78.** $A_1 = AP \cap BC$, $B_1 = BP \cap CA$, $C_1 = CP \cap AB$. $A_2 \in BC$, $B_2 \in CA$, $C_2 \in AB$: $\frac{BA_2}{A_2C} = \frac{A_1C}{BA_1}$, $\frac{CB_2}{B_2A} = \frac{B_1A}{CB_1}$, $\frac{AC_2}{C_2B} = \frac{C_1B}{AC_1}$. Доведіть, що AA_2 , BB_2 , CC_2 конкурентні (ізотомічне спряження).
- **79.** $A_1 \in BC, B_1 \in CA, C_1 \in AB$. Доведіть, що

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = \frac{\sin ACC_1}{\sin C_1CB} \cdot \frac{\sin BAA_1}{\sin A_1AC} \cdot \frac{\sin CBB_1}{\sin B_1BA}$$

Домашні задачі

- **80.** $A_1 \in BC$, $B_1 \in CA$, $C_1 \in AB$ такі, що AA_1 , BB_1 , CC_1 конкурентні в P. Доведіть, що AA_2 , BB_2 , CC_2 які симетричні AA_1 , BB_1 , CC_1 відносно бісектрис кутів ABC конкурентні в Q (ізогональне спряження).
- **81.** Протилежні пари сторін опуклого шестикутника паралельні. Доведіть, що прямі які з'єднують середини протилежних сторін конкурентні.
- **82.** З P опущені перпендикуляри PA_1 , PA_2 на BC і на висоту AA_3 . Аналогічно задали B_1 , B_2 , C_1 , C_2 . Доведіть, що A_1A_2 , B_1B_2 , C_1C_2 конкурентні.
- **83.** $A, D \in \omega$. Дотичні в A, D до ω перетнулися в S. B, C на дузі $AD. P = AC \cap BD, Q = AB \cap CD$. Доведіть, що P, Q, S колінеарні.
- **84.** AC = CB. $A_1 \in BC$, $B_1 \in CA$, $C_1 \in AB$: AA_1 , BB_1 , CC_1 конкурентні. Доведіть, що $AC_1/C_1B = \sin ABB_1/\sin BAA_1 \cdot \sin CAA_1/\sin CBB_1$.
- **85.** У рівнобічному ABC з основою AB взяли M, N такі, що $\angle CAM = \angle ABN$ і $\angle CBM = \angle BAN$. Доведіть, що C, M, N колінеарні.
- **86.** AA_1 , BB_1 , CC_1 бісектриси кутів ABC. $M = AA_1 \cap C_1B_1$, $N = CC_1 \cap A_1B_1$. Доведіть, що $\angle MBB_1 = \angle NBB_1$.

- **87.** \mathbb{Z}_p абелева група.
- **88.** $p|(a^p-a)$ якщо p просте, причому $p|(a^{p-1}-1)$ якщо $\gcd(a,p)=1$.
- 89. Нехай gcd(a, n) = 1, тоді $n | (a^{\varphi(n)} 1)$.
- **90.** Якщо $(n^b-1)|(n^a-1)$ то b|a, де $a,b,n\in\mathbb{N}:a\geq b\geq 1,n>1.$
- **91.** Якщо m>1 і $\gcd(a,m)=1$ то для будь-якого b конгруенція $ax\equiv b\pmod p$ має єдиний розв'язок в \mathbb{Z}_p .
- **92.** Якщо m_1, m_2, \ldots, m_n попарно взаємнопрості натуральні числа, то для будь-яких a_1, a_2, \ldots, a_n існує таке ціле число x, що

$$x_1 \equiv a_1 \pmod{m_1}, \quad x_2 \equiv a_2 \pmod{m_2}, \quad \dots, \quad x_n \equiv a_n \pmod{m_n}$$

- **93.** Доведіть, що рівняння $(x+1)^2 + (x+2)^2 + \cdots + (x+2001)^2 = y^2$ не має розв'язків у цілих числах.
- **94.** Знайдіть усі пари простих чисел p,q таких, що $p^3-q^5=(p+q)^2$.
- **95.** Доведіть, що рівняння $x^5 y^2 = 4$ не має розв'язків у цілих числах.
- **96.** Знайдіть усі прості p, при яких система рівнянь

$$\begin{cases} 2x^2 = p+1 \\ 2y^2 = p^2 + 1 \end{cases}$$

має розв'язки в цілих числах.

- **97.** Знайдіть усі натуральні $n, m \geq 2$ такі, що $\frac{m^{2 \cdot 3^n} + m^{3^n} + 1}{n} \in \mathbb{Z}$.
- 98. Нехай $m \in \mathbb{N}$ таке, що $\frac{3^{2^m}+1}{2^{m+1}+1} \in \mathbb{Z}$. Доведіть, що $2^{m+1}+1$ просте.
- **99.** Нехай $n \in \mathbb{N}$ таке, що для чотирьох його найменших дільників d_1, d_2, d_3, d_4 виконується $n = d_1^2 + d_2^2 + d_3^2 + d_4^2$. Знайдіть усі n для яких це можливо.

100. Обчисліть значення функцій

$$P(x) = 2x^3 - 27x^2 + 141x - 256, \quad x = 16$$
$$Q(x) = x^4 + \frac{x^3}{4} - \frac{x^2}{2} + 1, \quad x = -\frac{3}{4}$$

101. А тепер зробіть те саме не "в лоб" а за схемою Горнера:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = (\dots ((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0.$$

- **102.** Скільки операцій множення і додавання необхідно зробити в обох способах для обчислення значення поліному степеню n?
- **103.** Для довільного $P \in \mathbb{R}[x]$ і $a \in \mathbb{R}$ існує $Q \in \mathbb{R}[x]$ такий, що $P \equiv (x-a)Q + P(a)$, причому $\deg Q < \deg P$.
- **104.** Доведіть, що поліном степеню n має не більше ніж n коренів.
- **105.** Доведіть, що якщо значення двох поліномів збігаються в кожній точці то вони збігаються покоефіцієнтно.
- **106.** Зауважимо, що попередня задача не виконується у $\mathbb{Z}_p[x]$.
- **107.** Доведіть, що якщо значення двох поліномів степеню n збігаються в n+1 точці то вони рівні.
- 108. Доведіть тотожність

$$\frac{d(x-a)(x-b)(x-c)}{(d-a)(d-b)(d-c)} + \frac{a(x-b)(x-c)(x-d)}{(a-b)(a-c)(a-d)} + \frac{d(x-d)(x-c)(x-a)}{(b-d)(b-c)(b-a)} + \frac{c(x-d)(x-b)(x-a)}{(c-d)(c-b)(c-a)} = x$$

- **109.** Нехай $P \in \mathbb{Z}[x], a_1, a_2, \dots, a_k \in \mathbb{Z}$ різні корені P. Доведіть, що P ділиться на $(x a_1) \cdot (x a_2) \cdot \dots \cdot (x a_k)$.
- **110.** Сформулюйте і доведіть теорему про ділення із залишком в $\mathbb{R}[x]$.
- **111.** Чи виконується теорема про ділення із залишком в $\mathbb{Q}[x]$.

- **112.** Скільки чисел до 1000 не діляться на 2, 3, і на 5?
- **113.** У алфавіті є літери a_1, a_2, \ldots, a_n . Доведіть, що кількість слів які містять кожну з літер алфавіту рівно двічі і не поспіль дорівнює

$$\frac{1}{2^n} \left((2n)! - \binom{n}{1} \cdot 2 \cdot (2n-1)! + \binom{n}{2} \cdot 2^2 \cdot (2n-2)! - \dots + (-1)^n \cdot 2^n \cdot n! \right)$$

- **114.** $m > r > p, n > s > q \in \mathbb{N}$. Скільки є способів пройти від точки (0,0) у точку (m,n) ходами (0,+1) і (+1,0) не проходячи через (p,q) та (r,s)?
- **115.** Скільки існує сюр'єкцій з E на F якщо $|E| = n \ge p = |F|$?
- **116.** Перестановка σ називається δ езладною якщо у неї немає нерухомих точок. Скільки безладних перестановок множини з n елементів?
- **117.** Доведіть, що у графі з n вершин або є трикутник, або є вершина степеню не більше ніж [n/2].
- **118.** $n, m \geq 5 \in \mathbb{N}, P$ правильний (2n+1)-кутник. Знайдіть кількість опуклих m-кутників у яких є принаймні один гострий кут, і всі вершини яких вершини P.
- **119.** Для $a, b, c \in \mathbb{N}$ доведіть

$$\frac{\operatorname{lcm}(a,b,c)^2}{\operatorname{lcm}(a,b)\cdot\operatorname{lcm}(b,c)\cdot\operatorname{lcm}(c,a)} = \frac{\operatorname{gcd}(a,b,c)^2}{\operatorname{gcd}(a,b)\cdot\operatorname{gcd}(b,c)\cdot\operatorname{gcd}(c,a)}$$

- **120.** З кубиків $1 \times 1 \times 1$ склеїли паралелепіпед $150 \times 324 \times 375$. Через внутрішність скількох кубиків проходить головна діагональ?
- **121.** $S^1 = \{z \in \mathbb{C} : ||z|| = 1\}$. Для функцій $f: S^1 \to s^1$ визначимо $f^1 = f, f^{n+1} = f \circ f^n$. Точка $\omega \in S^1$ називається періодичною точкою функції f з періодом n якщо $\forall i \in \overline{1, n-1}: f^i(\omega) \neq \omega$ і $f^n(\omega) = \omega$. Знайдіть кількість точок з періодом 1989 якщо $f(z) = z^m, m \in \mathbb{N}$.

- **122.** $P \in (ABC) \iff$ проекції P на BC, CA, AB колінеарні (Сімсон).
- **123.** $A, B, C \in \ell, P \notin \ell$. ! O(ABP), O(BCP), O(CAP), P циклічні.
- **124.** AD бісектриса в ABC. B', C' проекції D на AC, AB. $M \in B'C'$: $DM \perp BC$. Доведіть, що M належить медіані з A.
- **125.** $P \in (ABC)$. З P провели прямі PA_1 , PB_1 , PC_1 під одним і тим же кутом α до прямих BC, CA, AB. Доведіть, що A_1 , B_1 , C_1 колінеарні. Доведіть, що кут між прямою Сімсона і новою прямою складає $90^{\circ} \alpha$.
- **126.** $P \in (ABC)$, A_1 , B_1 проекції P на BC, CA. Доведіть, що $PA \cdot PA_1 = 2Rd$, де R радіус (ABC), d відстань від P до A_1B_1 . Доведіть, що якщо α кут між A_1B_1 і BC. Доведіть, що $\cos \alpha = PA/2R$.
- **127.** $P \in (ABC)$, A_1 , B_1 проекції P на BC, CA. Доведіть, що довжина A_1B_1 дорівнює довжині проекції AB на пряму A_1B_1 .
- **128.** На колі зафіксовано точки P і C, а точки A і B рухаються по ньому так, що дуга AB стала. Доведіть, що прямі Сімсона точки P відносно всіх таких трикутників ABC дотикаються д одного фіксованого кола.
- **129.** P рухається по (ABC). Доведіть, що при цьому пряма Сімсона повертається половину кута повороту P.
- **130.** Доведіть, що прямі Сімсона двох діаметрально протилежних точок перпендикулярні, а їхня точка перетину лежить на колі 9 точок.
- **131.** A, B, C, P, Q лежать на колі з центром O, причому кути між OP і OA, OB, OC, OQ рівні α , β , γ , $(\alpha + \beta + \gamma)/2$. Доведіть, що пряма Сімсона P відносно ABC паралельна OQ.
- **132.** Хорда $P, Q \in (ABC)$: $PQ \perp BC$. Доведіть, що пряма Сімсона P відносно ABC паралельна AQ.
- **133.** $P \in (ABC)$, H ортоцентр ABC. Доведіть, що пряма Сімсона P відносно ABC ділить відрізок PH навпіл.
- **134.** ABCD вписаний, ℓ_A пряма Сімсона A відносно BCD, аналогічно визначаються ℓ_B , ℓ_C , ℓ_D . Доведіть, що ℓ_A , ℓ_B , ℓ_C , ℓ_D конкурентні.
 - © Нікіта Скибицький, Денис Пушкін, 2018

- 135. Не існує нескінченної спадної послідовності невід'ємних цілих чисел.
- **136.** Якщо послідовність невід'ємних цілих чисел задовольняє нерівностям $n_1 \geq n_2 \geq \cdots$ то існує такий номер i що $n_i = n_{i+1} = \cdots$
- **137.** Доведіть, що число $\sqrt{2}$ ірраціональне.
- **138.** Знайдіть усі прості p для яких існують натуральні $x,\,y,\,n$ такі, що

$$p^n = x^3 + y^3$$

- **139.** Розв'яжіть рівняння $x^3 + 2y^3 = 4z^3$ в цілих числах.
- **140.** Доведіть, що число $\frac{2^n-1}{n}$ не є цілим.
- **141.** Знайдіть найбільше значення виразу $m^2 + n^2$, якщо

$$\left(n^2 - nm - m^2\right)^2 = 1$$

142. $(ab+1) \mid (a^2+b^2)$. Доведіть, що число

$$\frac{a^2 + b^2}{ab + 1}$$

є точним квадратом.

143. Доведіть, що якщо число

$$\frac{a^2+b^2+a+b+1}{ab}$$

ціле, то воно дорівнює 5.