概统笔记附录

附录

A.1 常用积分

A.2 常用分布

A.2.1 一维离散型

- 1 二项分布
- 2 泊松分布
- 3 超几何分布
- 4 负二项分布
- 5 几何分布
- 5' 几何分布
- 6 泽塔分布

A.2.2 一维连续型

- 1 正态分布
- 2 指数分布
- 3 混合指数分布
- 4 均匀分布
- 5 对数正态分布
- 6 柯西分布
- 7 拉普拉斯分布
- 8 卡方分布
- 9 t 分布
- 10 F 分布
- 11 贝塔分布
- 12 伽马分布
- 13 威布尔分布
- 14 瑞利分布
- 15 帕累托分布
- 16 逻辑斯蒂分布
- 17 广义贝塔分布

其它分布

A.2.3 多维离散型

1 多项分布

A.2.4 多维连续型

- 1 矩形均匀分布
- 2 二维正态分布
- 3 多元正态分布
- 4 狄利克雷分布

A.3 常用分布统计表

- A.3.1 标准正态分布表
- A.3.2 卡方分布表
- A.3.3 t 分布表

A.3.4 F 分布表

- 1上 0.1 分位数
- 2上 0.05 分位数
- 3上 0.025 分位数
- 4上 0.01 分位数
- 5上 0.005 分位数

A.4 数列和常数

A.4.1 数列

卡特兰数 A.4.2 常数 卡特兰常数

附录

A.1 常用积分

特殊函数的性质 伽马函数与贝塔函数.

伽马函数与递推式:
$$\Gamma(x)=\int_0^{+\infty}\mathrm{e}^{-t}t^{x-1}\,\mathrm{d}t=(x-1)\Gamma(x-1)$$
 $(x>0)$

贝塔函数与关系式:
$$\mathrm{B}(x,y)=\int_0^1 t^{x-1}(1-t)^{y-1}\,\mathrm{d}t=rac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\quad (x,y>0)$$

勒让德倍量公式:
$$\Gamma(s)\Gamma\left(s+rac{1}{2}
ight)=rac{\sqrt{\pi}}{2^{2n-1}}\Gamma(2s)$$
 $(s>0)$

余元公式:
$$B(s,1-s) = \Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$$
 $(0 < s < 1)$

$$egin{cases} \Gamma(n) = (n-1)!, & n \in \mathbb{N}^+, \ \Gamma\left(rac{n}{2}
ight) = rac{(n-2)!!}{2^{(n-1)/2}}\sqrt{\pi}, & n$$
 为正奇数.

$$B(s,s)=rac{1}{2^{2n-1}}B\left(rac{1}{2},s
ight)\quad (s>0)$$

更多内容可以参考 Euler 积分笔记.

特殊函数的应用

一般的

$$\int_{0}^{1}x^{a}(1-x^{b})^{c}\,\mathrm{d}x = rac{1}{b}\mathrm{B}\left(rac{a+1}{b},c+1
ight) \qquad (a>-1,\,b>0,\,c>-1) \ \int_{0}^{+\infty}rac{x^{a}\,\mathrm{d}x}{(1+x^{b})^{c}} = rac{1}{|b|}\mathrm{B}\left(c-rac{a+1}{b},rac{a+1}{b}
ight) \qquad egin{pmatrix} a>-1,\,b>0,\,c>rac{a+1}{b} & rac{1}{b} \ a<-1,\,b<0,\,c>rac{a+1}{b} & rac{1}{b} \ a>0,\,c>-1 \ a>0,\,c>rac{a+1}{b} \ a<-1,\,b<0,\,c>-1 \ a>0,\,c>-1 \ a>0$$

特殊的

$$\int_{-\infty}^{+\infty} \frac{x^m \, \mathrm{d}x}{(1+x^2)^n} = \mathrm{B}\left(n - \frac{m+1}{2}, \frac{m+1}{2}\right) \qquad (注意积分限)$$

$$\int_{0}^{+\infty} \frac{x^m \, \mathrm{d}x}{(1+x)^n} = \mathrm{B}\left(n - m - 1, m + 1\right)$$

$$\int_{0}^{+\infty} \mathrm{e}^{-ax^{p}} \, \mathrm{d}x = rac{\Gamma\left(rac{1}{p}
ight)}{pa^{rac{1}{p}}}$$
 $\int_{0}^{+\infty} \mathrm{e}^{-x^{p}} \, \mathrm{d}x = rac{1}{p}\Gamma\left(rac{1}{p}
ight)$
 $\int_{-\infty}^{+\infty} \mathrm{e}^{-ax^{2}} \, \mathrm{d}x = \sqrt{rac{\pi}{a}} \quad (注意积分限)$

$$\int_{0}^{+\infty} x^{n} e^{-ax} = \frac{\Gamma(n+1)}{a^{n+1}} = \frac{n!}{a^{n+1}}$$

$$\int_{0}^{+\infty} x^{n} e^{-ax^{2}} = \frac{\Gamma\left(\frac{n+1}{2}\right)}{2a^{\frac{n+1}{2}}}$$

$$\int_{0}^{+\infty} x^{2n} e^{-ax^{2}} dx = \frac{(2n-1)!!}{2(2a)^{n}} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{+\infty} x^{2n+1} e^{-ax^{2}} dx = \frac{(2n)!!}{(2a)^{n+1}}$$

$$\int_{0}^{+\infty} x^{2} e^{-ax^{2}} dx = \frac{1}{4a} \sqrt{\frac{\pi}{a}}$$

有关 Catalan 常数的积分.

A.2 常用分布

定义说明

- 期望 $\mu := E(X)$.
- 方差 $\sigma^2 := E[(X \mu)^2]$.
- k 阶原点矩 $\alpha_k := E(X^k)$.
- k 阶中心距 $\mu_k := E[(X \mu)^k].$
- 偏度系数 $\beta_1 = \frac{\mu_3}{\sigma^3}$.
- 峰度系数 $\beta_2 := \frac{\mu_4}{\sigma^4} = \frac{\mu_4}{\mu_2^2}$.
- 变异系数 $v_c := \frac{\sigma}{\mu}$.

A.2.1 一维离散型

1 二项分布

1.1 基础概念

- $X \sim B(n, p)$.
- 理解: 事件发生的概率为 p, 则重复 n 次试验, 事件发生的次数为 x.
- 概率分布: $P(X=i)=b(i;n,p)=\binom{n}{i}p^i(1-p)^{n-i}$.

1.2 数字特征

- 最可能数: x = |(n+1)p|.
- 期望: E(X) = np.
- 方差: Var(X) = np(1-p).
- 母函数: $G(s) = (ps + q)^n, q = 1 p$.
- 特征函数: $g(t) = (pe^{it} + q)^n$.

1.3 其它性质

• 二项分布和的函数

$$X_1 \sim B(n_1,p), \ X_2 \sim B(n_2,p) \quad \Rightarrow \quad X_1 + X_2 \sim B(n_1+n_2,p).$$

- 发生偶数次的概率为 $p_n = \frac{1}{2}[1 + (1-2p)^n].$
- 记 $f(p) = P(X \le k)$, 则 f'(p) < 0, 并且

$$f(p) = rac{n!}{k!(n-k-1)!} \int_0^{1-p} t^k (1-t)^{n-k-1} \, \mathrm{d}t.$$

1.4 参数估计

- 矩估计: p=m/n. (MVU 估计)
- 极大似然估计: p=m/n. (MVU 估计)
- 贝叶斯估计
 - 。 同等无知原则: $p = \frac{X+1}{n+2}$.
 - 。 若先验密度 $h(p)=p^{a-1}(1-p)^{b-a-1}$, 则 $ilde{p}=rac{X+c}{n+d}$.
- 区间估计
 - 。 大样本法: 近似取枢轴变量 $\dfrac{X-np}{\sqrt{np(1-p)}}\sim N(0,1)$, 解不等式得

$$egin{split} \left(1+rac{z_{lpha/2}^2}{n}
ight)p^2-\left(2X+rac{z_{lpha/2}^2}{n}
ight)p+X^2 &<0 \ \hat p_1, \hat p_2 &=rac{n}{n+z_{lpha/2}^2}\left(\overline X+rac{z_{lpha/2}^2}{2n}\pm z_{lpha/2}\sqrt{rac{\overline X(1-\overline X)}{n}}+rac{z_{lpha/2}^2}{4n^2}
ight) \ &pprox \overline X\pm z_{lpha/2}\sqrt{rac{\overline X(1-\overline X)}{n}}. \end{split}$$

• $p^k\ (k \leq n)$ 的无偏估计是 $\dfrac{X^{\underline{k}}}{n^{\underline{k}}}$. (下降阶乘幂)

2 泊松分布

2.1 基础概念

- $X \sim P(\lambda)$.
- 理解: 单位时间内事件平均发生 λ 次, 则某一段单位时间内发生的次数为 x.
- 概率分布: $P(X=i) = \lim_{n \to \infty} b(i; n, \frac{\lambda}{n}) = \frac{\mathrm{e}^{-\lambda} \lambda^i}{i!}.$
- 当二项分布满足 n > 50, p < 0.1, np < 5 时,用泊松分布近似效果较好.

2.2 数字特征

- 最可能数: k = |λ|.
- 期望: $E(X) = \lambda$.
- 方差: $Var(X) = \lambda$.
- 中位数: $m_e=rac{\ln 2\lambda}{\lambda}$.
- $E|X m_e| = m_e$.
- 母函数: $G(s) = e^{\lambda(s-1)}, s \in (-\infty, +\infty).$
- 特征函数: $g(t) = e^{\lambda(e^{it}-1)}$.

2.3 其它性质

• 泊松分布和的函数 (可加性)

$$X_1 \sim P(\lambda_1), \, X_2 \sim P(\lambda_2) \quad \Rightarrow \quad X_1 + X_2 \sim P(\lambda_1 + \lambda_2).$$

• 记
$$f(\lambda)=P(X\leq k)$$
,则 $f'(\lambda)<0$,并且 $f(\lambda)=rac{1}{k!}\int_{\lambda}^{+\infty}t^k\mathrm{e}^{-t}\,\mathrm{d}t.$

注: 上式可用于参数检验.

•
$$P_{\lambda}(X \leq k) = \sum_{i=0}^k \frac{\mathrm{e}^{-\lambda}\lambda^i}{i!} = \int_{\lambda}^{+\infty} \frac{\mathrm{e}^{-t}t^k}{k!} \, \mathrm{d}t = K_{2k+2}(2\lambda)$$
. (卡方分布函数)

- 若 $X \sim P(\lambda), Y \sim B(X, p)$,则 $Y \sim P(\lambda p)$.
- 若有一批零件寿命服从指数分布,固定一个时间 T>0,让一个元件从时刻 0 开始工作,每当这个元件坏了的时候马上用一个新的替换,则到 T 时替换的次数 $X\sim P(\lambda T)$,即 $P(X=n)=\frac{\mathrm{e}^{-\lambda T}(\lambda T)^n}{n!}$.

6

• 泊松分布的一个应用见特殊函数笔记中的 Dobinski 公式.

2.4 参数估计

- 矩估计
 - \circ $\lambda=m$. (MVU 估计)
 - \circ $\lambda = m_2$ 或 S^2 .
- 极大似然估计: $\lambda = \overline{X}$.
- 贝叶斯估计: 见第四章第五题:
- 区间估计
 - 。 大样本法: 近似地取 $(Y_n-n\lambda)/\sqrt{n\lambda}\sim N(0,1)$, 则

$$A,B=\overline{X}+u_{lpha/2}^2/(2n)\pm u_{lpha/2}\sqrt{u_{lpha/2}^2/(4n^2)+\overline{X}/n},\quad \overline{X}=Y_n/n.$$

3 超几何分布

3.1 基础概念

- $X \sim H(N, n, M)$.
- 理解: N 件产品中有 M 件次品, 从总体中抽 n 件时次品的数量 m.

• 概率分布:
$$P(X=m) = \binom{M}{m} \binom{N-M}{n-m} / \binom{N}{n}$$
.

3.2 数字特征

- 期望: $E(X) = \frac{nM}{N}$.
- 方差: $\operatorname{Var}(X) = \frac{nM(N-n)(N-M)}{N^2(N-1)} = \frac{nM}{N} \frac{N-n}{N-1} \left(1 \frac{M}{N}\right).$

3.3 其它性质

3.4 参数估计

已知 N, n 估计 M.

• 贝叶斯估计: 采用同等无知原则, 则 $M=rac{N+2}{n+2}(X+1)-1.$

4 负二项分布

4.1 基础概念

- $X \sim NB(r,p)$, 又称为正整数形式帕斯卡分布.
- 理解: 合格率为 p, 抽取到 r 个合格产品时, 抽到的不合格产品的个数 x.

• 概率分布:
$$P(X=i)=d(i;r,p)=inom{i+r-1}{r-1}p^r(1-p)^i.$$

4.2 数字特征

- 数学期望: $E(X) = \frac{r(1-p)}{p}$.
- 方差: $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$.

4.3 其它性质

4.4 参数估计

注: $m_e := (X_1 + X_2 + \cdots + X_n)/n$.

- 矩估计: $p = \frac{r}{m_e + r}$.
- 极大似然估计: $p = \frac{r}{m_e + r}$.

• 贝叶斯估计: $p = \frac{nr+1}{nr+nm_e+1}$.

5 几何分布

5.1 基础概念

- $X \sim GE(p)$.
- 理解: 合格率为 p, 抽取到第一个合格产品时, 抽到的不合格产品的个数 x.
- 概率分布: $P(X=i) = p(1-p)^i$.
- 累积分布函数: $P(X \le k) = 1 (1-p)^{k+1}$.
- 互补累积分布函数: $P(X \ge k) = (1-p)^k$.

5.2 数字特征

- 数学期望: $E(X) = \frac{1-p}{p}$.
- 方差: $\operatorname{Var}(X) = \frac{1-p}{p^2}$.
- 母函数: $G(s)=rac{ps}{1-qs}-1,\,s\in\left(-rac{1}{q},rac{1}{q}
 ight).$
- 特征函数: $g(t) = \frac{pe^{it}}{1 qe^{it}} 1$.

5.3 其它性质

- 几何分布具有无记忆性.
- 若 X_1, X_2, \cdots, X_r 独立同分布GE(p),则 $X_1 + X_2 + \cdots + X_r \sim NB(r, p)$.
- 若 $X_1 \sim \mathrm{GE}(1-p_1)$ 和 $X_2 \sim \mathrm{GE}(1-p_2)$ 独立,则

$$egin{aligned} \min(X_1,X_2) &\sim \mathrm{GE}(1-p_1p_2) \ \max(X_1,X_2) &\sim P(X=k) = p_1^k(1-p_1) + p_2^k(1-p_2) + p_1^kp_2^k(p_1p_2-1) \end{aligned}$$

更一般的,若 $X_i \sim \mathrm{GE}(1-p_i)$,则 $\min_i(X_i) = \mathrm{GE}(1-\prod_i p_i)$.

5' 几何分布

5'.1 基础概念

- $X \sim G(p)$.
- 理解: 合格率为 p, 抽取到第一个合格产品时, 抽取的总产品的个数 x.
- 概率分布: $P(X=i) = p(1-p)^{i-1}$.

5'.2 数字特征

- 数学期望: $E(X) = \frac{1}{p}$.
- 方差: $\operatorname{Var}(X) = \frac{1-p}{p^2}$.
- 母函数

$$\circ \ \ G(s) = rac{ps}{1-qs}, \, s \in \left(-rac{1}{q}, rac{1}{q}
ight).$$

$$\circ \ \ G^{(n)}(1) = rac{(1-p)^{n-1}}{p^n} n!.$$

• 特征函数: $g(t) = \frac{p e^{it}}{1 - q e^{it}}$.

5'.3 其它性质

- 几何分布具有无记忆性.
- 若 X_1, X_2, \cdots, X_r 独立同分布G(p),则 $X_1 + X_2 + \cdots + X_r r \sim NB(r, p)$.

6 泽塔分布

6.1 基础概念

- $X \sim \text{Zeta}(s)$.
- Riemann Zeta 函数: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$
- 概率密度函数: $P(X=k)=rac{1}{\zeta(s)k^s}, \ k=1,2,\cdots.$

6.2 数字特征

- k 阶矩: $E(X^k) = \frac{\zeta(s-k)}{\zeta(s)}, \ s>k+1.$
- 对数期望: $E(\ln X) = -\frac{\zeta'(s)}{\zeta(s)}, \ s>1.$
- 信息熵: $H(X)=E(-\ln(\mathrm{Zeta}(s)))=-\sum_{k=1}^{\infty}\frac{\ln\frac{1}{\zeta(s)k^s}}{\zeta(s)k^s}=\ln\zeta(s)-s\frac{\zeta'(s)}{\zeta(s)}.$

6.3 其它性质

问题 1 (最大熵分布)

对于取值为正整数的概率分布, 求给定对数期望的条件下熵最大的分布, 即

$$egin{aligned} \max &= -\sum_k p_k \ln p_k \ &\sum_k p_k = 1, \ &\sum_k p_k \ln k = a. \end{aligned}$$

由 Lagrange 乘数法解得此分布即为 Zeta 分布.

• 性质 1

设 $X \sim \text{Zeta}(s)$, 则素因数分解中素数 p 的指数满足:

$$u_p(X) \sim \mathrm{GE}(1-p^{-s}).$$

$$egin{split} P(
u_p(X) \geq k) &= rac{1}{\zeta(s)} \sum_{n=1}^{\infty} rac{1}{(p^k n)^s} = rac{1}{p^{ks}} \ P(
u_p(X) = k) &= rac{1}{p^{ks}} - rac{1}{p^{(k+1)s}} = (1-p^{-s})p^{-ks} \end{split}$$

• 性质 2

设 $X \sim \mathrm{Zeta}(s)$, 若p 和q 是两个互素的素数, 则 $\nu_p(X)$ 和 $\nu_q(X)$ 独立.

证明

$$P(
u_p(X) \geq k,
u_q(X) \geq l) = rac{1}{(p^k q^l)^s} = rac{1}{p^{ks} p^{ls}} = P(
u_p(X) \geq k) P(
u_q(X) \geq l).$$

• 性质3

设 $\mathbb P$ 是全体素数的集合, $\{X_p\}_{p\in\mathbb P}$ 是一组相互独立的随机变量, 其中 $X_p\sim \mathrm{GE}(1-p^{-s})$, 则

$$Z = \prod_{p \in \mathbb{P}} p^{X(1-p^{-s})} \sim \mathrm{Z}(s).$$

证明 由 Euler 乘积公式 $\dfrac{1}{\zeta(s)} = \prod_{p \in \mathbb{P}} \left(1 - \dfrac{1}{p^s}\right)$ 得:

$$P(Z=k) = \prod_{p \in \mathbb{P}} igg(1 - rac{1}{p^s}igg) rac{1}{p^{
u_p(k)s}} = rac{1}{\zeta(s)} \prod_{p \in \mathbb{P}} rac{1}{p^{
u_p(x)s}} = rac{1}{\zeta(s)k^s}.$$

• 性质 4

若 $X_1 \sim \mathrm{Zeta}(s_1)$ 和 $X_2 \sim \mathrm{Zeta}(s_2)$ 独立,则

$$\gcd(X_1,X_2) \sim \operatorname{Zeta}(s_1+s_2).$$

证明

$$u_p\left(\gcd(X_1,X_2)
ight) = \min\left\{
u_p(X_1),
u_p(X_2)
ight\} \sim \operatorname{GE}\left(1-p^{-(s_1+s_2)}
ight).$$

• 问题 2 (两个随机的正整数互素的概率)

X和Y互素 \Leftrightarrow gcd(X,Y)=1.

正整数集上的均匀分布 $\sim \lim_{s \to 1^+} \mathrm{Zeta}(s)$.

$$\lim_{s_1,s_2 o 1^+} P(\gcd(X,Y)=1) = \lim_{s_1,s_2 o 1^+} rac{1}{\zeta(s_1+s_2)} = rac{1}{\zeta(2)} = rac{6}{\pi^2}.$$

注: 这并非严格的证明.

A.2.2 一维连续型

1 正态分布

点击查看 Geogebra 图像 或直接打开 网页链接

1.1 基础概念

- 正态分布又称高斯分布.
- $X \sim N(\mu, \sigma^2)$.
- 概率密度函数: $f(x) = (\sqrt{2\pi}\sigma)^{-1} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
- 标准正态分布: $Y=(X-\mu)/\sigma \sim N(0,1)$.
- 3σ原则: 0.6826, 09544, 9.9974.
- 上 α 分位数: $\Phi(z_{\alpha}) = 1 \alpha$.

1.2 数字特征

- 期望: μ.
- 方差: σ².
- 二阶原点矩: $\alpha_2 = E(X^2) = \sigma^2 + \mu^2$.
- k 阶中心矩: $\mu_k = \begin{cases} \sigma^k(k-1)!!, & k \text{ 为偶数}, \\ 0, & k \text{ 为奇数}. \end{cases}$
- 偏度系数: β₁ = 0.
- 峰度系数: β₂ = 3.
- 特征函数: $g(t) = e^{i\mu t \frac{\sigma^2}{2}t^2}$.
- 矩母函数: $\phi_X(t)=\mathrm{e}^{rac{t^2\sigma^2}{2n}+\mu t}$.

1.3 其它性质

- $aN(\mu, \sigma^2) + b \sim N(a\mu + b, a^2\sigma^2)$.
- 若X和Y独立同分布N(0,1),则将(X,Y)化为极坐标 (R,Θ) 后,R与 Θ 独立.
- 相互独立的正态分布的函数
 - o 分布之和
 - 若 $X_1 \sim N(\mu_1, \sigma_1^2), \ X_2 \sim N(\mu_2, \sigma_2^2)$ 相互独立, 则 $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
 - ullet 若 $X_i\sim N(\mu_i,\sigma_i^2)$ 且相互独立, 则 $X_1+\cdots+X_n\sim N(\mu_1+\cdots+\mu_n,\sigma_1^2+\cdots+\sigma_n^2)$.
 - 。 分布之差

若 $X_1 \sim N(\mu_1, \sigma_1^2), \ X_2 \sim N(\mu_2, \sigma_2^2)$ 相互独立, 则 $X_1 - X_2 \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$.

。 分布之商

若 X_1 和 X_2 独立同分布 N(0,1), 则 $X_1/X_2 \sim C(1,0)$ (柯西分布).

o 分布之积

若 $X_1\sim N(0,\sigma_1^2),~X_2\sim N(0,\sigma_2^2)$, 则 $X_1X_2\sim \frac{1}{\pi\sigma_1\sigma_2}K_0\left(\frac{|z|}{\sigma_1\sigma_2}\right)$ (修正贝塞尔函数; 暂时未学)

。 平方之和

若
$$X_1,X_2,\cdots,X_n$$
 独立同分布 $N(0,1)$, 则 $Y=X_1^2+X_2^2+\cdots+X_n^2\sim\chi_n^2$

• 统计量的分布

$$\circ \ \overline{X}$$
 与 $S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})$ 独立.

。 均值已知, 标准差已知

$$\quad \blacksquare \quad \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

。 均值已知, 标准差未知

$$lacksquare rac{\sqrt{n}\,(\overline{X}-\mu)}{S}\sim t_{n-1}.$$

。 均值未知, 标准差已知

。 两份相互独立的样本

$$X_1,X_2,\cdots,X_{n_1}, ext{ iid}, \sim N(\mu_1,\sigma_1^2).$$

$$Y_1,Y_2,\cdots,Y_{n_2}, ext{ iid}, \sim N(\mu_2,\sigma_2^2).$$

$$lacksquare \overline{X} - \overline{Y} \sim N\left(\mu_1 - \mu_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight).$$

$$lacksquare rac{S_1^2}{\sigma_1^2} igg/rac{S_2^2}{\sigma_2^2} \sim f(n_1-1,n_2-1).$$

•
$$\sharp \sigma_1^2 = \sigma_2^2 = \sigma^2 \operatorname{Bl}$$

$$egin{aligned} S_{\omega} := \sqrt{rac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}}, \ rac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{S_{\omega}\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \sim t_{n_1+n_2-2}. \end{aligned}$$

注: 利用
$$\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}$$
 和 $\frac{\mathrm{SS}}{\sigma^2}$, 由 t 分布的定义即得.

1.4 参数估计

- 单个正态总体 $N(\mu,\sigma^2)$ 均值 μ 与方差 σ^2 的估计.
 - 。 已知 σ^2 , 估计 μ .
 - 矩估计: $\mu=m$. 注: 无论 σ^2 是否已知, 均为 MVU 估计.
 - 区间估计(枢轴变量法)

根据
$$\dfrac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim N(0,1)$$
, 知

$$[\hat{\mu}_1,\hat{\mu}_2] = igg[\overline{X} - rac{\sigma}{\sqrt{n}} u_{lpha/2}, \overline{X} + rac{\sigma}{\sqrt{n}} u_{lpha/2} igg].$$

- 已知 μ , 估计 σ^2 .
 - 矩估计: $\hat{\sigma^2}=m_2$. 注: 这是 μ 已知时的 MVU 估计, 且此时均方误差为 $\frac{2}{\pi}\sigma^4$.
 - 区间估计(枢轴变量法)

根据
$$rac{1}{\sigma^2}\sum_{i=1}^n (X_i-\mu)^2 \sim \chi_n^2$$
 知

$$[\hat{\sigma_1^2},\hat{\sigma_2^2}] = \left[rac{\displaystyle\sum_{i=1}^n (X_i-\mu)^2}{\chi_n^2\left(rac{lpha}{2}
ight)},rac{\displaystyle\sum_{i=1}^n (X_i-\mu)^2}{\chi_n^2\left(rac{lpha}{2}
ight)}
ight].$$

- 估计 μ 和 σ^2 .
 - 矩估计
 - μ = m.
 注: 无论 σ² 是否已知, 均为 MVU 估计.
 - $\sigma^2 = S^2$. 注: 这是 μ 未知时的 MVU 估计.
 - 极大似然估计
 - $\mu=m$. (MVU 估计)
 - $\sigma^2=m_2$. (非 MVU 估计)
 - 区间估计(枢轴变量法)
 - 根据 $\dfrac{\sqrt{n}\,(\overline{X}-\mu)}{S}\sim t_{n-1}$, 知一样本 t 区间估计为

$$[\hat{\mu}_1,\hat{\mu}_2] = \left[\overline{X} - rac{S}{\sqrt{n}}t_{n-1}\left(rac{lpha}{2}
ight), \overline{X} + rac{S}{\sqrt{n}}t_{n-1}\left(rac{lpha}{2}
ight)
ight].$$

■ 根据 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, 知

$$[\hat{\sigma_1^2},\hat{\sigma_2^2}]=\left[rac{(n-1)S^2}{\chi_{n-1}^2\left(rac{lpha}{2}
ight)},rac{(n-1)S^2}{\chi_{n-1}^2\left(1-rac{lpha}{2}
ight)}
ight].$$

■ 无偏估计 (通过调整系数而得)

$$\tilde{\sigma} = \sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S.$$

- 两个正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的均值差 $\mu_1 \mu_2$ 与方差比 σ_1^2/σ_2^2 的区间估计.
 - 估计 $\delta = \mu_1 \mu_2$.
 - 方差 σ_1^2 和 σ_2^2 已知.

$$egin{align} U &= rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}} \sim N(0,1), \ [\hat{\delta}_1,\hat{\delta}_2] &= \left[\overline{X}-\overline{Y}-z_{lpha/2}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}},
ight. \ &\overline{X}-\overline{Y}+z_{lpha/2}+\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}
ight]. \end{split}$$

■ 方差 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知.

$$S_{\omega}^2 := rac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, \ rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}, \ [\hat{\delta}_1, \hat{\delta}_2] = \left[\overline{X} - \overline{Y} - t_{n_1 + n_2 - 2} \left(rac{lpha}{2}
ight) S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}, \ \overline{X} - \overline{Y} + t_{n_1 + n_2 - 2} \left(rac{lpha}{2}
ight) S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}
ight].$$

方差 σ₁² 和 σ₂² 未知.
 即贝伦斯 - 费歇尔问题, 目前还没有较好的处理方法.
 不过可以利用大样本法, 近似同方差已知的情况处理

$$N(0,1) \sim \left[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2) \right] / \sqrt{\sigma_1^2 / n + \sigma_2^2 / m}$$
 (严格的) $\sim \left[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2) \right] / \sqrt{S_1^2 / n + S_2^2 / m}$ (近似的)

- 。 估计 $\lambda = \sigma_1^2/\sigma_2^2$.
 - 均值 µ₁ 和 µ₂ 已知.

$$F = rac{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i - \mu_2)^2}{n_2 \sigma_2^2}}{\displaystyle\sum_{i=1}^{n_1} rac{(X_i - \mu_1)^2}{n_1 \sigma_1^2}} \sim F_{n_2,n_1},$$

$$egin{aligned} [\hat{\lambda}_1,\hat{\lambda}_2] &= \left[rac{\displaystyle\sum_{i=1}^{n_1} rac{(X_i-\mu_1)^2}{n_1}}{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i-\mu_2)^2}{n_2}} F_{n_2,n_1} \left(1-rac{lpha}{2}
ight), \ &rac{\displaystyle\sum_{i=1}^{n_1} rac{(X_i-\mu_1)^2}{n_1}}{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i-\mu_2)^2}{n_2}} F_{n_2,n_1} \left(rac{lpha}{2}
ight)
ight]. \end{aligned}$$

■ 均值 µ₁ 和 µ₂ 未知.

$$rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}, \ [\hat{\lambda}_1,\hat{\lambda}_2] = \left[rac{S_1^2}{S_2^2}F_{n_2-1,n_1-1}\left(1-lpha
ight), rac{S_1^2}{S_2^2}F_{n_2-1,n_1-1}\left(rac{lpha}{2}
ight)
ight].$$

- 估计变异系数 σ/μ .
 - 。 矩估计: $\sqrt{m_2}/m$ 或 S/m.
- 估计 $N(\theta, 1)$ 的 θ .
 - 。 贝叶斯估计: 先验密度 $h(\theta) \sim N(\mu, \sigma^2)$, 则

$$ilde{ heta} = rac{n}{n+1/\sigma^2} \overline{X} + rac{1/\sigma^2}{n+1\sigma^2} \mu.$$

2 指数分布

点击查看 Geogebra 图像 或直接打开 网页链接

2.1 基础概念

- 指数分布又称为负指数分布.
- $X \sim E(\lambda)$.
- 概率密度函数: $f(x) = egin{cases} \lambda \mathrm{e}^{-\lambda x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$
- 分布函数: $F(x) = \begin{cases} 1-\mathrm{e}^{-\lambda x}, & x>0, \\ 0, & x\leq 0. \end{cases}$

2.2 数字特征

- 数学期望: $E[X] = \lambda^{-1}$.
- 方差: $\operatorname{Var}[X] = \lambda^{-2}$.
- k 阶原点矩: $E(X^k) = \frac{k!}{\lambda^k}$.
- 特征函数: $g(t) = \frac{\lambda}{\lambda \mathrm{i}t}$.
- 矩量母函数: $m_X(t)=rac{\lambda}{\lambda-t},\, t<\lambda.$

2.3 其它性质

- $aE(\lambda) = E\left(\frac{\lambda}{a}\right)$.
- 指数分布具有无记忆性, 即 $P(X > m + t \mid X > m) = P(X > t)$.
- 若有一批元件寿命 $X\sim E(\lambda)$, 让一个元件开始工作, 每当这个元件坏了就用一个新的替换, 则到经历时间 T 后替换的次数 $Y\sim P(\lambda T)$.
- 若 X_1, X_2, \cdots, X_n 独立同分布 $E(\lambda)$,则

$$Y = 2\lambda(X_1 + X_2 + \cdots + X_n) \sim \chi^2_{2n}$$
.

• 若 $X_i \sim E(\lambda_i)$ 相互独立,则

$$Y = \min(X_1, X_2, \cdots, X_n) \sim E(\lambda_1 + \lambda_2 + \cdots + \lambda_n).$$

2.4 参数估计

- 矩估计: $1/\lambda = m$. (MVU 估计)
- 极大似然估计: $\lambda = 1/m$.
- 贝叶斯估计: 若先验密度为 $h(\lambda)=\lambda {
 m e}^{-\lambda}\ (\lambda>0)$, 其它值为零, 则 $\lambda=\dfrac{n+2}{n\overline{X}+1}$.
- 区间估计
 - 。 枢轴变量法
 - ・ 估计 λ . 由 $2n\lambda\overline{X}\sim\chi^2_{2n'}$ 知

$$[\hat{ heta}_1,\hat{ heta}_2] = \left[\chi_{2n}^2(1-lpha/2)/(2n\overline{X}),\,\chi_{2n}^2(lpha/2)/(2n\overline{X})
ight].$$

• 估计 $1/\lambda$. 由 $2n\lambda\overline{X}\sim\chi^2_{2n}$,知

$$[\hat{ heta}_1,\hat{ heta}_2]=\left[(2n\overline{X})/\chi^2_{2n}(1-lpha/2),\,(2n\overline{X})/\chi^2_{2n}(lpha/2)
ight].$$

- 若 X_1, X_2, \cdots, X_n 独立同分布 $E(\lambda_1), Y_1, Y_2, \cdots, Y_m$ 独立同分布 $E(\lambda_2)$, 估计 λ_2/λ_1 .
 - 区间估计 (枢轴变量法)

• 利用
$$rac{4\lambda_1 n \overline{X}}{4\lambda_2 m \overline{Y}} \sim rac{2n\chi_{2n}^2}{2m\chi_{2m}^2} \sim F_{2n,2m}.$$

3 混合指数分布

3.1 基础概念

- 混合指数分布又称为 超指数分布 (Hyperexponential Distribution).
- 理解: 设有 m 个平行的服务台 $X_i\sim E(\lambda_i)$, 若顾客有 p_i 的概率选取第 i 个服务台, 则这样顾客的服务时间分布服从 m 阶超指数分布.
- 概率密度函数 $f(x) = \sum_{i=1}^m p_i \lambda_i \mathrm{e}^{-\lambda_i x}, \quad (x>0).$

其中
$$\sum_{i=1}^m p_i = 1$$
.

• 累积分布函数 $F(x) = \sum_{i=1}^m p_i \left(1 - \mathrm{e}^{-\lambda_i x}\right), \quad (x>0).$

3.2 数字特征

ullet 和指数分布一样,不再赘述.如k 阶原点矩 $E(X^k) = \sum_{i=1}^m rac{k!}{\lambda^k} p_i.$

3.3 其它性质

- 无记忆性.
- ・ 若 $p_i=rac{1}{m},\ i=1,2,\cdots,m$, 则 $X\sim\chi^2_{2m}.$

3.4 参数估计

- 矩估计.
- 优化估计.

4 均匀分布

4.1 基础概念

- $X \sim R(a,b)$.
- 概率密度函数: $f(x) = egin{cases} 1/(b-a), & a \leq x \leq b, \\ 0, & x < a \ ext{ 或 } x > b. \end{cases}$
- 分布函数: $F(x) = egin{cases} 0, & x \leq a, \\ (x-a)/(b-a), & a < x < b, \\ 1, & x \geq b. \end{cases}$

4.2 数字特征

- 数学期望: $\frac{a+b}{2}$.
- 方差: $\frac{(b-a)^2}{12}$.
- k 阶原点矩: $lpha_k=rac{1}{k+1}rac{b^{k+1}-a^{k+1}}{b-a}.$
- k 阶中心距: $\mu_k = \begin{cases} \dfrac{1}{k+1} \left(\dfrac{b-a}{2}\right)^k, & k$ 为偶数, 0, & k 为奇数.
- 偏度系数: $\beta_1 = 0$.
- 峰度系数: $\beta_2 = \frac{9}{5}$.
- 特征函数: $g(t)=egin{cases} rac{\mathrm{e}^{\mathrm{i}bt}-\mathrm{e}^{\mathrm{i}at}}{\mathrm{i}t(b-a)}, & t
 eq 0, \ 1, & t=0. \end{cases}$

4.3 其它性质

- $cR(a,b) + d \sim R(ac + d, bc + d) \ (c > 0).$
- 若 X_1, X_2, \cdots, X_n 独立同分布U(a, b),则

$$\max(X_1 + X_2 + \dots + X_n) \sim f(x) = \frac{n(x-a)^{n-1}}{(b-a)^n} \ \min(X_1 + X_2 + \dots + X_n) \sim f(x) = \frac{n(b-x)^{n-1}}{(b-a)^n}$$

• 若 $X \sim U\left(-rac{\pi}{2},rac{\pi}{2}
ight)$, 则 $an X \sim C(1,0)$.

4.4 参数估计

- 估计 $R(\theta_1, \theta_2)$ 的参数.
 - 矩估计: $\theta_1 = m \sqrt{3m_2}$, $\theta_2 = m + \sqrt{3m_2}$.
 - 。 极大似然估计: $heta_1 = \min_i(X_i), \ heta_2 = \max_i(X_i).$
- 估计 $R(0,\theta)$ 的参数.
 - 。 极大似然估计: $\hat{ heta} = \max_i(X_i)$.
 - 。 无偏估计
 - $oldsymbol{\hat{ heta}} = rac{n+1}{n} \max_i (X_i)$. (MVU 估计, 也是相合估计)
 - $\hat{ heta}=(n+1)\min_i(X_i)$. (方差很大)
 - $ullet \hat{ heta} = \max_i (X_i) + \min_i (X_i).$
 - 。 区间估计
 - ullet 由 $\hat{ heta}_1:=\max_i(X_i)\sim F_{\hat{ heta}_1}(x)=rac{nx^{n-1}}{ heta^n},$ $[\max(X_i),(1-lpha)^{-rac{1}{n}}\max(X_i)]$ 的置信系数为 1-lpha.

5 对数正态分布

点击查看 Geogebra 图像 或直接打开 网页链接

5.1 基础概念

 $ullet \ \ln X \sim N(\mu,\sigma^2).$

• 概率密度函数:
$$f(x,\mu,\sigma) = egin{cases} \left(x\sqrt{2\pi}\sigma
ight)^{-1} \exp\left[-rac{(\ln x - \mu)^2}{2\sigma^2}
ight], & x>0, \\ 0, & x\leq 0. \end{cases}$$

5.2 数字特征

- 期望: $E(X) = e^{\mu + \sigma^2/2}$.
- 方差: $\operatorname{Var}(X) = \left(\operatorname{e}^{\sigma^2} 1 \right) \operatorname{e}^{2\mu + \sigma^2} = \left(\operatorname{e}^{\sigma^2} 1 \right) E(X)^2.$
- k 阶原点矩: $\alpha_k=\mathrm{e}^{\mu k+k^2\sigma^2/2}$.

• 偏度系数: $eta_1 = rac{\mu_3}{\sigma^3} = rac{\mathrm{e}^{2\sigma^2} - 3\mathrm{e}^{\sigma^2} + 1}{\left(\mathrm{e}^{2\sigma^2} - 1
ight)^{3/2}}.$

• 峰度系数: $\beta_2 = \frac{\mu_4}{\sigma^4} = \left(\mathrm{e}^{\sigma^2} - 1 \right) \left(\mathrm{e}^{4\sigma^2} + 2 \mathrm{e}^{3\sigma^2} + 3 \mathrm{e}^{2\sigma^2} - 3 \right) > 0.$

5.3 其它性质

• $\ln b X^a \sim N(a\mu + \ln b, a^2\sigma^2)$.

• 对数正态分布总是右偏的.

对数正态分布的期望和方差都是两个参数的增函数.
 而在正态分布中, 期望与 σ 无关, 方差与 μ 无关.

 $\bullet \ \lim_{\sigma \to 0+} E(X) = \mathrm{e}^{\mu}.$

$$\lim_{\sigma o 0+} \mathrm{Var}(X) = 0.$$

当
$$\mu = 0$$
 时, $E(X^k) = E(X)^{k^2}$.

5.4 参数估计

• 矩估计

$$\circ \hat{\sigma^2} = \ln \left(1 + rac{S^2}{\overline{X}^2} \right).$$

$$\circ \ \hat{\mu} = 2 \ln \overline{X} - \frac{1}{2} \ln \left(\overline{X}^2 + S^2 \right).$$

6 柯西分布

点击查看 Geogebra 图像

或直接打开网页链接

6.1 基础概念

• $X \sim C(\gamma, x_0)$.

• 概率密度函数: $f(x;x_0,\gamma) = rac{1}{\pi} \cdot rac{\gamma}{(x-x_0)^2 + \gamma^2} \quad (-\infty < x < +\infty).$

• 累积分布函数: $F(x; x_0, \gamma) = \frac{1}{\pi} \arctan \frac{x - x_0}{\gamma} + \frac{1}{2}$.

• 标准柯西分布: $C(1,0) \sim t_1$.

• 广义柯西分布: $X_k \sim f_m(X_k \mid \sigma_X) = \dfrac{a_m}{1+\left(\dfrac{X_k^2}{2\sigma_k^2}\right)^m} \; (a_m>0.5).$

6.2 数字特征

• 数学期望不存在. (仅 Cauchy 主值积分存在)

• 方差不存在.

• 高阶矩不存在.

6.3 其它性质

• 可加性: 若 X_i 独立同分布 $C(\gamma,x_0)$, 则 $X_1+X_2+\cdots+X_n\sim C(n\gamma,nx_0)$.

• 若 X_1 和 X_2 独立同分布N(0,1),则 $rac{X_1}{X_2}\sim C(1,0)$.

• 若 $X \sim U\left(-rac{\pi}{2},rac{\pi}{2}
ight)$, 则 $an X \sim C(1,0)$.

6.4 参数估计

• 参数估计: 可使用样本中位数 \tilde{m} 估计.

7 拉普拉斯分布

点击查看 Geogebra 图像 或直接打开 网页链接

7.1 基础概念

• $X \sim \operatorname{La}(\mu, \lambda)$.

• 概率密度函数: $f(x) = rac{1}{2\lambda} \mathrm{e}^{-rac{|x-\mu|}{\lambda}}.$

• 累积分布函数: $F(x)=egin{cases} rac{1}{2}\mathrm{e}^{rac{x-\mu}{\lambda}}, & x<\mu. \ 1-rac{1}{2}\mathrm{e}^{rac{\mu-x}{\lambda}}, & x\geq\mu. \end{cases}$

• 参数说明

μ 是位置参数。

γ是尺度参数,越小曲线越陡.

。 当 $\mu=0$ 时,正半部分是指数分布 $E\left(\lambda^{-1}\right)$ 概率密度的一半.

7.2 数字特征

• 矩及相关量

。 k 阶中心距: $\mu_k = E[(X - \mu)^k] = \begin{cases} 0, & k$ 为奇数, $k! \lambda^k, & k$ 为偶数.

。 期望 $E(X) = \mu$.

。 方差 $Var(X) = 2\lambda^2$.

• 同指数分布 (注意与 k 阶中心距、期望和方差比较)

 $\circ E(|X - \mu|^k) = k! \lambda^k.$

 $\circ \ E(|X-\mu|)=\lambda.$

 $\circ \operatorname{Var}(|X-\mu|) = \lambda^2.$

一些系数

 \circ 偏度系数 $\beta_1 = \frac{\mu_3}{\sigma^3} = 0.$

。 峰度系数 $\beta_2=rac{\mu_4}{\sigma^4}=6.$

• 相关函数

。 矩量母函数
$$m(t) = rac{\mathrm{e}^{rac{\mu t}{\lambda}}}{1 - \lambda^2 t^2}.$$

。 特征函数
$$g(t) = E(\mathrm{e}^{\mathrm{i}tX}) = rac{\mathrm{e}^{rac{\mathrm{i}\mu t}{\lambda}}}{1+\lambda^2 t^2}.$$

7.3 其它性质

• $a \operatorname{La}(\mu, \lambda) + b \sim \operatorname{La}(a\mu + b, a\lambda).$ $\operatorname{La}(\mu, \lambda) \sim \lambda \operatorname{La}(0, 1) + \mu.$

• 注意到 Laplace 分布与指数分布的关系, 可以立即得到如下平凡的结论

。 对于
$$X \sim \operatorname{La}(lpha,eta)$$
,有 $rac{2}{eta}|X-lpha| \sim \chi_2^2 \sim \Gamma(1,2)$.

。 若
$$X$$
和 Y 独立同分布于 $\operatorname{La}(lpha,eta)$,则 $\dfrac{|X-lpha|}{|Y-lpha|}\sim F_{2,2}$.

。 若
$$X_{11},X_{12},X_{21},X_{22}$$
 独立同分布于 $N(0,1)$, 则 $D=egin{bmatrix} X&Y\ Z&W \end{bmatrix}\sim \operatorname{La}(0,2).$

• 与稳健性的联系

古典回归分析中,用偏差平方和的大小作为标准,这种回归不具有稳健性.而改成偏差的绝对值和作为标准,却具有稳健性(尽管求解更加困难).

• 标准 Laplace 分布

。 概率密度:
$$\operatorname{La}(x;0,1) = \frac{\mathrm{e}^{-|x|}}{2}$$
.

。 特征函数:
$$\phi_L(t)=rac{1}{1+t^2}.$$

7.4 参数估计

估计 μ.

。 矩估计:
$$\hat{\mu} = \overline{X}$$
.

。 极大似然估计:
$$\hat{\mu}=m_e$$
 (中位数).

估计 λ.

。 矩估计:
$$\hat{\lambda} = \frac{\sqrt{2}}{2} S$$
 (标准差).

。 类似矩估计的估计:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu| \approx \frac{1}{n} \sum_{i=1}^{n} |X_i - \hat{\mu}|.$$

21

8 卡方分布

点击查看 Geogebra 图像 或直接打开 网页链接

8.1 基础概念

- 自由度为 n 的皮尔逊卡方密度与卡方分布 $X \sim \chi_n^2$.
- 概率密度函数

$$k_n(x) = egin{cases} rac{\mathrm{e}^{-x/2} x^{(n-2)/2}}{\Gamma\left(rac{n}{2}
ight) 2^{n/2}}, & x>0, \ 0, & x \leq 0. \end{cases}$$

例子(以下 x > 0)

$$k_1(x) = rac{\mathrm{e}^{-rac{x}{2}}}{\sqrt{2\pi x}} \qquad \qquad k_2(x) = rac{1}{2}\mathrm{e}^{-rac{x}{2}} \ k_3(x) = rac{\sqrt{x}\mathrm{e}^{-rac{x}{2}}}{\sqrt{2\pi}} \qquad \qquad k_4(x) = rac{x}{4}\mathrm{e}^{-rac{x}{2}}$$

- 上 α 分位数 $\chi^2_{\alpha}(n)$.
- 由中心极限定理近似求值 $X \sim \chi_n^2$

$$rac{X-n}{\sqrt{2n}}\dot{\sim}N(0,1) \quad \Rightarrow \quad rac{\chi_lpha^2(n)-n}{\sqrt{2n}}pprox z_lpha \quad \Rightarrow \quad \chi_lpha^2(n)pprox n+z_lpha\sqrt{2n}.$$

8.2 数字特征

- E(X) = n.
- Var(X) = 2n.

注意到方差是均值的两倍,可以以此检验是否为卡方分布.

•
$$E(X^{-1}) = \frac{1}{n-2}$$
.

$$ullet \ E(X^k) = rac{2^k \, \Gamma\left(rac{n}{2} + k
ight)}{\Gamma\left(rac{n}{2}
ight)} = 2^k \Big(rac{n}{2}\Big)^{(k)}.$$

• 特征函数:
$$g(t) = \frac{1}{(1-2it)^{\frac{n}{2}}}$$
.

• 矩量母函数:
$$m_X(t)=rac{1}{(1-2t)^{rac{n}{2}}},\quad t<rac{1}{2}.$$

8.3 其它性质

• 若 X_1, X_2, \cdots, X_n 独立同分布N(0,1),则

$$Y = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi_n^2.$$

• 若 $X_1 \sim \chi_m^2$ 与 $X_2 \sim \chi_n^2$ 独立,则

$$X_1+X_2\sim \chi^2_{m+n}.$$

• 若 X_1, X_2, \cdots, X_n 独立同分布 $E(\lambda)$,则

$$X=2\lambda(X_1+X_2+\cdots+X_n)\sim\chi^2_{2n}.$$

• 若 X_1, X_2, \cdots, X_n 独立同分布 $N(\mu, \sigma^2)$,则

$$rac{\mathrm{SS}}{\sigma^2} = rac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

9 t 分布

点击查看 Geogebra 图像 或直接打开 网页链接

9.1 基础概念

- 自由度为 n 的 t 分布 $X \sim t_n$.
- 概率密度函数

$$t_n(x) = rac{\Gamma\left(rac{n+1}{2}
ight)}{\sqrt{n\pi}\,\Gamma\left(rac{n}{2}
ight)}igg(1+rac{x^2}{n}igg)^{-rac{n+1}{2}} = rac{igg(1+rac{x^2}{n}igg)^{-rac{n+1}{2}}}{\mathrm{B}\left(rac{n}{2},rac{1}{2}
ight)\sqrt{n}}, \quad -\infty < x < +\infty.$$

- 上 α 分位数 $t_{\alpha}(n) \approx z_{\alpha}$. (正态分布的上 α 分位数)
- 由对称性知: $t_{1-\alpha}(n) = 1 t_{\alpha}(n)$.

9.2 数字特征

- $E(t_n) = 0 \ (n > 1)$.
- $Var(t_n) = \frac{n}{n-2} \ (n > 2).$

$$\bullet \ \ E(X^k) = \frac{\mathrm{B}\left(\frac{n-k}{2},\frac{k+1}{2}\right)}{\mathrm{B}\left(\frac{n}{2},\frac{1}{2}\right)} n^{\frac{k}{2}} \ (-1 < k < n).$$

9.3 其它性质

- 若 $X \sim t_n$,则 $X^2 \sim F_{1.n}$.
- 若 $X \sim N(0,1)$ 与 $Y \sim \chi_n^2$ 独立,则

$$rac{X}{\sqrt{Y/n}} \sim t_n.$$

• 若 X_1, X_2, \cdots, X_n 独立同分布 $N(\mu, \sigma^2)$,则

$$rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

• 设 X_1,X_2,\cdots,X_n 独立同分布 $N(\mu_1,\sigma^2)$, Y_1,Y_2,\cdots,Y_m 独立同分布 $N(\mu_2,\sigma^2)$, 且 X_i,Y_j 独立, 则

$$rac{\sqrt{rac{nm(n+m-2)}{n+m}}\left[(\overline{X}+\overline{Y})-(\mu_1-\mu_2)
ight]}{\sqrt{\displaystyle\sum_{i=1}^n(X_i-\overline{X})^2+\displaystyle\sum_{j=1}^m(Y_j-\overline{Y})^2}}\sim t_{n+m-2}.$$

10 F 分布

点击查看 Geogebra 图像

或直接打开网页链接

10.1 基础概念

- 自由度为 (m,n) 的 F 分布 $X \sim F_{m,n}$.
- 概率密度函数

$$f_{m,n}(x) = rac{m^{rac{m}{2}} n^{rac{n}{2}} x^{rac{m}{2}-1} I_{\{x \geq 0\}}}{\mathrm{B}\left(rac{m}{2},rac{n}{2}
ight) (mx+n)^{rac{m+n}{2}}} \ = rac{\left(rac{m}{n}
ight)^{rac{m}{2}} x^{rac{m}{2}-1} I_{\{x \geq 0\}}}{\mathrm{B}\left(rac{m}{2},rac{n}{2}
ight) \left(1+rac{m}{n}x
ight)^{rac{m+n}{2}}}.$$

- 若 $F \sim F(m,n)$,则 $F^{-1} \sim F(n,m)$.
- 第一自由度为 n_1 , 第二自由度为 n_2 的 F 分布的上 α 分位数 $F_{\alpha}(n_1, n_2)$.
- $F_{\alpha}(m,n) \cdot F_{1-\alpha}(n,m) = 1.$

10.2 数字特征

•
$$E(f_{m,n}) = \frac{n}{n-2} \; (n>2).$$

•
$$\operatorname{Var}(f_{m,n}) = rac{2n^2(m+n-2)}{m(n-2)^2(n-4)}.$$

•
$$E(X^k) = \frac{\mathrm{B}\left(\frac{m}{2} + k, \frac{n}{2} - k\right)}{\left(\frac{m}{n}\right)^k \mathrm{B}\left(\frac{m}{2}, \frac{n}{2}\right)}.$$

10.3 其它性质

ullet 设 X_1,X_2 独立, $X_1\sim\chi_m^2,\,X_2\sim\chi_n^2$,则

$$rac{X_1}{m} igg/rac{X_2}{n} \sim F_{m,n}.$$

• 设 X_1,X_2,\cdots,X_n 独立同分布 $N(\mu_1,\sigma_1^2)$, Y_1,Y_2,\cdots,Y_m 独立同分布 $N(\mu_2,\sigma_2^2)$, 且 X_i,Y_j 独立, 则

$$\left.rac{S_Y}{\sigma_2^2}
ight/rac{S_X}{\sigma_1^2}\sim F_{m-1,n-1}.$$

 $ullet \ orall k,n,\in \mathbb{N},a\in (0,1): kF_{k,n}(a)\geq F_{1,n}(a).$

11 贝塔分布

点击查看 Geogebra 图像

或直接打开网页链接

11.1 基础概念

• $X \sim \text{Be}(\alpha, \beta) \quad (\alpha, \beta > 0).$

• 概率密度函数 $f(x; \alpha, \beta) = rac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha, \beta)} \quad (0 < x < 1).$

• 累积分布函数 $F(x; \alpha, \beta) = \frac{\mathrm{B}_x(\alpha, \beta)}{\mathrm{B}(\alpha, \beta)} = I_x(\alpha, \beta).$

• 不完全 Beta 函数 $B_x(\alpha, \beta)$.

。 正则不完全 Beta 函数 $I_x(\alpha, \beta)$.

11.2 数字特征

• 常用统计量

$$\circ$$
 众数 $M_0=rac{lpha-1}{lpha+eta-2}$. (伯努利分布参数的极大似然估计)

• 期望 $E(X)=rac{lpha}{lpha+eta}$. (伯努利分布参数的贝叶斯估计 & 同等无知原则)

。 方差
$$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
.

• 矩及相关量

$$\circ$$
 k 阶矩 $E(X^k)=rac{\mathrm{B}(lpha+k,eta)}{\mathrm{B}(lpha,eta)}=rac{(lpha)^{(k)}}{(lpha+eta)^{(k)}}=rac{lpha+k-1}{lpha+eta+k-1}E(X^{k-1}).$

。 偏度
$$eta_1=rac{\mu_3}{\sigma^3}=rac{2(eta-lpha)\sqrt{lpha+eta+1}}{(lpha+eta+2)\sqrt{lphaeta}}$$

• 峰度
$$\beta_2 = \frac{\mu_4}{\mu_2^2} - 3 = \frac{6[(\alpha-\beta)^2(\alpha+\beta+1) - \alpha\beta(\alpha+\beta+2)]}{\alpha\beta(\alpha+\beta+2)(\alpha+\beta+3)}.$$

11.3 其它性质

• Beta 分布即伯努利分布的共轭先验分布.

• $E(\ln X) = \psi(\alpha) - \psi(\alpha + \beta)$.

$$ullet \ \ \ \mathrm{B}_{p,q}(lpha,eta) := rac{\partial^{p+q}\mathrm{B}(x,y)}{\partial^p x \partial^q y} = \int_0^1 x^{lpha-1} (1-x)^{eta-1} \ln^p x \ln^q (1-x) \, \mathrm{d}x.$$

25

$$\circ \ \mathrm{B}_{1,0}(x,y) = \mathrm{B}(x,y)(\psi(x) - \psi(x+y)).$$

$$\circ \ \mathrm{B}_{0,1}(x,y) = \mathrm{B}(x,y)(\psi(y) - \psi(x+y)).$$

• Beta 分布与 Gamma 分布的关系.

12 伽马分布

点击查看 Geogebra 图像 或直接打开 网页链接

12.1 基础概念

$$ullet \ X \sim \mathrm{Ga}(lpha,eta) \sim \Gamma\left(lpha,rac{1}{eta}
ight).$$

・ 概率密度函数
$$f(x; \alpha, \beta) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} \mathrm{e}^{-eta x} \quad (x>0).$$

- α 称为形状参数。
- β 称为逆尺度参数。
- 累积分布函数 $F(x; \alpha, \beta) = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$.
 - 。 其中 $\gamma(s,x)=\int_0^x t^{s-1}\mathrm{e}^{-t}\,\mathrm{d}t$ 为下不完全 Gamma 函数.
 - 。 此外 $\Gamma(s,x)=\int_x^{+\infty}t^{s-1}\mathrm{e}^{-t}\,\mathrm{d}t$ 为上不完全 Gamma 函数.
- 注意区分
 - 。 Gamma 分布 $Ga(\alpha,\beta)$ 或 $Gamma(\alpha,\beta)$, 其累积分布函数如上所示.
 - 。 Gamma 分布的另一种定义 $\Gamma(\alpha,\beta)$, 其累积分布函数为 $\frac{\gamma(\alpha,x/\beta)}{\Gamma(\alpha)}$.
 - \circ 上述定义的密度函数 $\Gamma(x;\alpha,\beta)$ 或 $\Gamma(X\mid\alpha,\beta)$.
 - 。 上不完全 Gamma 函数 $\Gamma(s,x)$ 和 Gamma 函数 $\Gamma(s)$.
- 当 $\alpha \in \mathbb{N}$ 时, 退化为埃尔朗分布.

12.2 数字特征

• 有量纲参数

。 众数
$$M_0=rac{lpha-1}{eta} \quad (lpha>1).$$

。
$$k$$
 阶原点矩 $lpha_k=E(X^k)=rac{\Gamma(lpha+k)}{eta^k\Gamma(lpha)}=rac{(lpha)^{(k)}}{eta^k}$. (上升阶乘幂)

。 期望
$$\mu = E(X) = \frac{\alpha}{\beta}$$
.

。 方差
$$\sigma^2 = \operatorname{Var}(X) = \frac{\alpha}{\beta^2}$$
.

• 无量纲参数

• 偏度系数
$$\beta_1 = \frac{\mu_3}{\sigma^3} = \frac{2}{\sqrt{\alpha}}$$
.

$$\circ$$
 峰度系数 $\beta_2=rac{\mu_4}{\sigma^4}=rac{6}{lpha}.$

• 变异系数
$$c_v = \frac{\sigma}{\mu} = \frac{1}{\sqrt{\alpha}}$$
.

• 特征函数
$$g(t) = \left(1 - rac{\mathrm{i} t}{eta}
ight)^{-lpha}.$$

• 矩量母函数
$$m_X(t)=m_X(t)=\left(1-rac{t}{eta}
ight)^{-lpha},\ t$$

12.3 其它性质

- 变化趋势
 - \circ 当 $\alpha \in (0,1]$ 时, $f(x;\alpha,\beta)$ 递减.
 - \circ 当 $\alpha \in (1, +\infty)$ 时, $f(x; \alpha, \beta)$ 先增后减, 为单峰函数.
 - \circ 无量纲参数与图像形状仅与 α 有关, 故 α 称为形状参数.
- 特殊情况

• 指数分布 $Ga(1,\lambda) \sim E(\lambda)$.

另一定义
$$\Gamma\left(1, \frac{1}{\lambda}\right) \sim E(\lambda)$$
. (此外也有一种定义, 使得 $\Gamma(1, \lambda) \sim E(\lambda)$, 问就是别用)

 \circ 卡方分布 $\operatorname{Ga}\left(rac{n}{2},rac{1}{2}
ight)\sim\chi_n^2.$ 另一定义 $\Gamma\left(rac{n}{2},2
ight)\sim\chi_n^2.$

函数运算

。 数乘

■ 若
$$X \sim \operatorname{Ga}(\alpha, \beta)$$
,则 $\lambda X \sim \operatorname{Ga}\left(\alpha, \frac{\beta}{\lambda}\right)$.

- 因此 β 称为尺度参数或逆尺度参数, 即 β 越大, 曲线越窄, 图像越接近 y 轴.
- 。 可加性
 - 若 $X_1 \sim \operatorname{Ga}(\alpha_1, \beta)$ 和 $X_2 \sim \operatorname{Ga}(\alpha_2, \beta)$ 独立,则 $X + Y \sim \operatorname{Ga}(\alpha_1 + \alpha_2, \beta)$.
 - 特例 1 (卡方分布): 若 $X_m\sim\chi_m^2,\,X_n\sim\chi_n^2$ 独立, 则 $\chi_m^2+\chi_n^2\sim\chi_{m+n}^2.$
 - 特例 2 (正态分布): X_i 独立同分布 N(0,1), 则 $X_1^2+X_2^2+\cdots+X_n^2\sim\chi_n^2$.
 - 特例 3 (指数分布): 若 X_i 独立同分布 $E(\lambda)$, 则 $2\lambda(X_1+X_2+\cdots+X_n)\sim\chi^2_{2n}$.

27

13 威布尔分布

点击查看 Geogebra 图像

或直接打开网页链接

13.1 基础概念

• 概率密度函数:
$$f(x;\lambda,k) = egin{cases} rac{k}{\lambda} \left(rac{x}{\lambda}
ight)^{k-1} \mathrm{e}^{-\left(rac{x}{\lambda}
ight)^k}, & x \geq 0, \\ 0, & x < 0. \end{cases}$$

• 累积分布函数:
$$F(x) = \begin{cases} 1 - \mathrm{e}^{-\left(\frac{x}{\lambda}\right)^k}, & x \geq 0, \\ 0, & x \leq 0. \end{cases}$$

13.2 数字特征

- n 阶原点矩: $E(X^n) = \lambda^n \Gamma\left(1 + \frac{n}{k}\right)$.
- 期望、方差、偏度、峰度等可由原点矩直接得到,形式复杂故不再列出.

14 瑞利分布

14.1 基础概念

- 概率密度函数: $f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, \quad x > 0.$
- 累积分布函数: $F(x) = 1 e^{-\frac{x^2}{\lambda^2}}, \quad x > 0.$

14.2 数字特征

• k 阶原点矩: $E(X^k)=(2\sigma^2)^k\Gamma\left(1+rac{k}{2}
ight).$

• 期望:
$$E(X)=\sqrt{rac{\pi}{2}}\sigmapprox 1.253\sigma$$
.

• 方差:
$$\operatorname{Var}(X) = \frac{4-\pi}{2}\sigma^2 \approx 0.429\sigma^2$$
.

15 帕累托分布

15.1 基础概念

• 帕累托分布 (Pareto Distribution) 又称布拉德福分布, 与幂律分布形式相同. 参考<u>齐夫定律</u>.

• 概率密度函数:
$$f(x) = egin{cases} 0, & x < x_{\min}, \ rac{kx_{\min}^k}{x^{k+1}}, & x \geq x_{\min}. \end{cases}$$

• 互补累积分布函数:
$$P(X>x) = egin{cases} 0, & x < x_{\min}, \\ \left(\dfrac{x_{\min}}{x} \right)^k, & x \geq x_{\min}. \end{cases}$$

互补累积分布函数又称为生存函数, 残存函数 或可靠性函数

• 大致服从帕累托分布的例子

。 个人财富或资源的分布.

。 人类居住区的大小.

。 对百科条目的访问.

龙卷风带来的灾难的数量.

15.2 数字特征

• 方便起见, 改变记号如下:
$$f(x)=rac{lpha heta^{lpha}}{r^{lpha+1}},\,x\geq heta.$$

•
$$k$$
 阶矩: $E(X^k) = rac{lpha heta^k}{lpha - k}, \ (lpha > k).$

• 期望:
$$E(X) = \frac{\alpha \theta}{\alpha - 1}$$
, $(\alpha > 1)$.

• 方差:
$$\operatorname{Var}(X) = \frac{\alpha \theta^2}{(\alpha - 1)^2 (\alpha - 2)}, \ (\alpha > 2).$$

16 逻辑斯蒂分布

16.1 基础概念

•
$$X \sim L(\mu, \gamma)$$
.

• Logistic 分布属于位置-尺度参数族.

• 累积分布函数:
$$F(x)=rac{1}{1+\mathrm{e}^{-rac{x-\mu}{\gamma}}}=rac{1}{2}igg(1+ anhrac{x-\mu}{2\gamma}igg),\quad x\in\mathbb{R},\,\gamma>0.$$

28

- 概率密度函数: $f(x) = \frac{\mathrm{e}^{-\frac{x-\mu}{\gamma}}}{\gamma \left(1 + \mathrm{e}^{-\frac{x-\mu}{\gamma}}\right)^2}.$
- 参数说明
 - \circ μ 是位置参数, 称为 **散布中心**.
 - \circ γ 是尺度参数, 称为 **散布程度**.
 - \circ 当 $\mu = 0$ 时, $\gamma = \pm \gamma_0$ 的分布相同.
- 标准 Logistic 分布 L(0,1).
 - 累积分布函数: $F_0(x) = \frac{1}{1 + e^{-x}}$.
 - 概率密度函数: $f_0(x) = \frac{e^{-x}}{(1+e^{-x})^2}$.

16.2 数字特征

- 期望 $E(X) = \mu$.
- 方差 $\operatorname{Var}(X) = \frac{\gamma^2 \pi^2}{3}$.

16.3 其它性质

- $egin{aligned} \bullet & aL(\mu,\gamma) + b \sim L(a\mu + b,a\gamma). \ & L(\mu,\gamma) \sim \gamma L(0,1) + \mu. \end{aligned}$
- 图像特征: $F(\mu x) + F(\mu + x) = 1$.
- 回归模型:

$$P_i = rac{1}{1 + \mathrm{e}^{-(a + bx_i)}} \quad \Rightarrow \quad \ln\left(rac{P_i}{1 - P_i}
ight) = a + bx_i.$$

• 推广: 多元 Logistic 函数 $y=(1+\mathrm{e}^{-\beta x})^{-1}$.

17 广义贝塔分布

不贴 Geogebra 图像的链接了, 给个 mathematica 绘图代码:

```
1 \[Alpha] = 2; \[Beta] = 1; \[Gamma] = 3; \[Lambda] = 0.5;
  Plot[(
       \[Lambda]^\[Alpha] \[Beta])
        x^{(\Lambda)} [Alpha] - 1
  ) / (
6
       Beta[
7
            \[Gamma] - \[Alpha] / \[Beta],
            \[Alpha] / \[Beta]
9
       1 (
10
            1 + ([Lambda] x)^{[Beta]}
11
       )^\[Gamma]
12 ), {x, 0, 10}]
```


17.1 基础概念

- $X \sim \mathrm{GBeta}(\alpha, \beta, \gamma, \lambda)$. (随便命的名, 不知道有没有人研究过这东西)
- 参数定义域

$$\circ \lambda > 0.$$

$$\circ \ \gamma > \frac{\alpha}{\beta} > 0.$$

• 概率密度函数

$$f(x;lpha,eta,\gamma,\lambda) = rac{\lambda^lpha\,|eta|}{\mathrm{B}\left(\gamma-rac{lpha}{eta},rac{lpha}{eta}
ight)} rac{x^{lpha-1}}{[1+(\lambda x)^eta]^\gamma} I_{\{x\geq 0\}}.$$

- 其中示性函数 $I_{\{x\geq 0\}}=egin{cases} 1, & x\geq 0, \\ 0, & x<0 \end{cases}$
- 作变量代换 $t=rac{\lambda x}{1+\lambda x}$, 则可验证 $\int_0^{+\infty}f\,\mathrm{d}x=1$.

17.2 数字特征

$$\bullet \ E(X^k) = \frac{\mathrm{B}\left(\gamma - \frac{\alpha + k}{\beta}, \frac{\alpha + k}{\beta}\right)}{\lambda^k \mathrm{B}\left(\gamma - \frac{\alpha}{\beta}, \frac{\alpha}{\beta}\right)} = \lambda^{-k} \left(\gamma - \frac{\alpha}{\beta}\right)^{\left(\frac{k}{\beta}\right)} \left(\frac{\alpha}{\beta}\right)^{\left(\frac{k}{\beta}\right)}.$$

其中上升阶乘幂定义为 $(\alpha)^{(\beta)} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)}$.

17.3 其它性质

• 特殊情况 (于是可以直接得到 t 分布与 F 分布的 k 阶矩)

。 t 分布: 若
$$X \sim \mathrm{GBeta}\left(x;1,2,rac{n+1}{2},rac{1}{\sqrt{n}}
ight)$$
, 则 $|X| \sim t_n$.

$$\circ$$
 F分布, 若 $X\sim \mathrm{GBeta}\left(rac{m}{2},1,rac{m+n}{2},rac{m}{n}
ight)$, 则 $X\sim F_{m,n}.$

其它分布

- 超指数分布
- Dirichlet 分布
- 广义 Dirichlet 分布

- 组合 Dirichlet 分布
- 刘维尔分布
- 威布尔分布
- 埃尔朗分布
- 帕累托分布

A.2.3 多维离散型

1 多项分布

 $X = (X_1, \cdots, X_n) \sim M(N; p_1, \cdots, p_n).$

$$P(X_1=k_1,X_2=k_2,\cdots,X_n=k_n)=rac{N!}{k_1!k_2!\cdots k_n!}p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}.$$

多项分布的边缘分布是二项分布.

$$(X_1,X_2,\cdots,X_n)\sim M(N;p_1,p_2,\cdots,p_n)\quad \Rightarrow\quad X_1+X_2\sim B(N;p_1+p_2).$$

A.2.4 多维连续型

- 1 矩形均匀分布
- 2 二维正态分布
- 2.1 基础概念
 - $ullet X = (X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2,
 ho).$

$$f(x_1,x_2) = (2\pi\sigma_1\sigma_2\sqrt{1-
ho^2})^{-1} \exp{\left[-rac{1}{2(1-
ho^2)} \left(rac{(x_1-\mu_1)^2}{\sigma_1^2} - rac{2
ho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + rac{(x_2-\mu_2)^2}{\sigma_2^2}
ight)
ight]}.$$

- 当且仅当 $\rho=0$ 时, X_1 和 X_2 独立.
- 边缘分布 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$

2.2 数字特征

- 相关系数 $\operatorname{Corr}(X_1, X_2) = \rho$.
- 协方差 $Cov(X_1, X_2) = \rho \sigma_1 \sigma_2$.
- 期望 $E(X_1X_2) = \text{Cov}(X_1, X_2) + E(X_1)E(X_2) = \rho\sigma_1\sigma_2 + \mu_1\mu_2$.

2.3 其它性质

- 二维正态分布的边缘分布是正态分布.
- 二维正态分布的条件分布是正态分布.

若 $(X,Y)\sim N(a,b,\sigma_1^2,\sigma_2^2,
ho)$, 则给定 X=x 时 Y 的条件分布为

$$N(b+
ho\sigma_2\sigma_1^{-1}(x-a),\,\sigma_2^2(1-
ho^2)).$$

• 二维正态分布的边缘分布的和仍为正态分布

若
$$(X_1,X_2)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,
ho)$$
, 则 $Y=X_1+X_2\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2+2
ho\sigma_1\sigma_2)$.

• 独立的正态分布的联合分布是正态分布.

正态分布的联合分布不一定是二维正态分布.

若 Y = X₁ + X₂ 服从正态分布, X₁, X₂ 独立, 则 X₁, X₂ 也是正态分布. ☆

3 多元正态分布

3.1 基础概念

• $\mathcal{Q}(X_1, X_2, \cdots, X_n) \ni n$ 元随机变量, 令

$$oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} \mu_1 \ \mu_2 \ dots \ \mu_n \end{pmatrix}, \quad oldsymbol{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{nn} \ dots & dots & dots \ c_{n1} & c_{n2} & \cdots & n_{nn} \end{pmatrix},$$

其中 C 为<u>协方差矩阵</u>, $c_{ij} = \text{Cov}(X_i, X_j) = \rho_{ij}\sigma_i\sigma_j$.

如果 (X_1, X_2, \dots, X_n) 的概率密度函数为

$$f(x_1,x_2,\cdots,x_n)=rac{\mathrm{e}^{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{C}^{-1}(oldsymbol{x}-oldsymbol{\mu})}}{(2\pi)^{rac{n}{2}}|oldsymbol{C}|^{rac{1}{2}}}$$

则称 (X_1, X_2, \dots, X_n) 是参数为 μ , C 的 n 元正态变量.

3.2 数字特征

- 方差: $Var(X_i) = c_{ii}$.
- 协方差: $Cov(X_i, X_j) = c_{ij}$.
- 相关系数: $\operatorname{Corr}(X_i, X_j) = \rho_{ij} = \frac{c_{ij}}{\sqrt{c_{ii}c_{jj}}}$.
- 数学期望: $E(X_iX_j) = c_{ij} + \mu_1\mu_2$.

3.3 其它性质

- n 维正态分布的边缘分布是正态分布.
- n 维正态分布的条件分布是正态分布.
- n 维正态分布的边缘分布的和是正态分布.
- n 维随机变量 (X_1, X_2, \dots, X_n) 服从 n 维正态分布的充要条件是:

$$orall l_i \in \mathbb{R} \, (i=1,2,\cdots,n): l_1X_1 + l_2X_2 + \cdots + l_nX_n \sim N(\mu,\sigma^2).$$

- 若 Y_1,Y_2,\cdots,Y_m 都是 n 维正态分布分量 X_i $(i=1,2,\cdots,n)$ 的线性函数, 则 (Y_1,Y_2,\cdots,Y_m) 服从 m 维正态分布.
- n 维正态分布各分量相互对立充要条件是它们两两不相关.

4 狄利克雷分布

4.1 基础概念

- $\boldsymbol{X} \sim \mathrm{Dir}(\boldsymbol{\alpha})$.
- Dirichlet 分布又称为多元 Beta 分布, 属于指数族分布.
- 多元 Beta 函数与 Gamma 函数的 Dirichlet 公式

$$egin{aligned} \mathrm{B}(oldsymbol{lpha}) &= \mathrm{B}(lpha_1,lpha_2,\cdots,lpha_n) := \int \cdots \int \prod_{i=1}^n x_i^{a_i-1} \, \mathrm{d}oldsymbol{x} & \left(\sum_{i=1}^n x_i = 1
ight) \ &= rac{\Gamma(lpha_1)\Gamma(lpha_2)\cdots\Gamma(lpha_n)}{\Gamma(lpha_1+lpha_2+\cdots+lpha_n)} &= rac{\Gamma(lpha_1)\cdots\Gamma(lpha_n)}{\Gamma(a_0)} & \left(a_0 = \sum_{i=1}^n a_i
ight) \end{aligned}$$

其中 d $(d \in \mathbb{N}^+)$ 维积分域是一个开放的 d-1 维正单纯形, 由顶点 $(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1)$ 围成.

• 概率密度函数

$$egin{aligned} \operatorname{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) &= rac{1}{\operatorname{B}(oldsymbol{lpha})} \prod_{i=1}^d X_i^{lpha_i-1} &= rac{\Gamma(lpha_0)}{\prod_{i=1}^d \Gamma(lpha_i)} \prod_{i=1}^d X_i^{lpha_i-1} & \left(lpha_0 = \sum_{i=1}^d lpha_i, d \geq 3
ight) \ &= rac{\Gamma(lpha_0)}{\prod_{i=1}^d \Gamma(lpha_i)} igg(\prod_{i=1}^{d-1} X_i^{lpha_i-1}igg) (1 - X_1 - \dots - X_{d-1})^{lpha_d-1} & (\|oldsymbol{X}\| = 1) \end{aligned}$$

其中 α 是无量纲的 **分布参数**, d > 3 为随机变量的维度.

备注:

- 上式中的范数指 1-范数而非 2-范数.
- o Dirichlet 分布的 d 维支撑集 同 Dirichlet 公式中的积分域。
- \circ 概率分布记作 $\mathrm{Dir}(\boldsymbol{\alpha})$, 密度函数记作 $\mathrm{Dir}(\boldsymbol{X} \mid \boldsymbol{\alpha})$.
- \circ 向量 X 是 n-1 维, 而 α 是 n 维.
- 对称 Dirichlet 分布
 - 。 概率密度函数 $\mathrm{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) = rac{\Gamma(doldsymbol{lpha})}{\Gamma(oldsymbol{lpha})^d} \prod_{i=1}^d X_i^{lpha_i-1}.$
 - \circ 对称 Dirichlet 分布在每个概率密度相等, 即分布参数 lpha 在所有维度相同, 取值也被称为 **浓度参数**
 - 当浓度参数为 1 时, d 维 Dirichlet 分布退化为 d-1 维正单纯形上的均匀分布, 也被称为 **平** Dirichlet 分布.
 - 当浓度参数大于 1 时, 对称 Dirichlet 分布是一个集中分布, 此时浓度参数越大, 概率密度越集中,
 - 当浓度参数小于 1 时, 对称 Dirichlet 分布是一个稀疏分布, 此时浓度参数越接近于 0, Giallo密度越稀疏.
- 累积分布函数

$$F(oldsymbol{b}) = \int_{\mathbb{R}_d \cap [0,b)} \mathrm{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) \, \mathrm{d}oldsymbol{X}, \quad (oldsymbol{b} \in (0,1])$$

4.2 数字特征

众数

・
$$M(X_i)=rac{lpha_i-1}{lpha_i+lpha_d-2}(x_d+x_i).$$

注: $x_d+x_i=1-x_1-\dots-x_{i-1}-x_{i+1}-\dots-x_{d-1}$ 与 x_i 无关.
・ $M(X_i)=rac{lpha_i-1}{lpha_i-d}.$

注: 这是所有分量都取到众数时的取值, 是上式的特例.

• 矩
$$E\left(\prod_{i=1}^d X_i^{\beta_i}
ight) = rac{\Gamma(lpha_0)}{\Gamma(lpha_0+eta_0)} \prod_{i=1}^d rac{\Gamma(lpha_i+eta_i)}{\Gamma(lpha_i)} = rac{\mathrm{B}(oldsymbol{lpha}+oldsymbol{eta})}{\mathrm{B}(oldsymbol{lpha})}$$
, $eta_0 = \sum_{i=1}^d eta_i$.

$$\circ$$
 期望 $E(X_i) = \frac{\alpha_i}{\alpha_0}$.

。 方差
$$\operatorname{Var}(X_i) = E(X_i^2) - E(X_i)^2 = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}.$$

• 协方差
$$\operatorname{Cov}(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j) = \frac{\alpha_i (\alpha_0 - \alpha_j)}{\alpha_0^2 (\alpha_0 + 1)}.$$

4.3 其它性质

- 相关分布
 - o 边缘分布 $p(X_i) = \operatorname{Be}(X_i \mid \alpha_i, \alpha_0 \alpha_i)$. 备注:
 - 即 Beta 分布, 或 2 维 Dirichlet 分布.
 - '|' 符号类似分号, 与条件概率毫无关系, 上式可写作 $F(x_i; \alpha_i, \alpha_0 \alpha_i)$.
 - 。 联合分布

$$p(X_i, X_j) = \operatorname{Dir}(X_i, X_j \mid \boldsymbol{\alpha}), \quad \boldsymbol{\alpha} = [\alpha_i, \alpha_j, \alpha_0], \quad i, j \in \{1, 2, \dots, d\}.$$

即边缘分布 X_i 和 X_i 的联合分布为 3 维 Dirichlet 分布.

- 作为概率分布的性质
 - o 共轭性: 多项分布的共轭先验是 Dirichlet 分布 (同等无知原则).
 - 。 聚合性: 不懂.
 - 。 中立性

任意的 $(X_1,X_2,\cdots,X_s)\in \mathbf{X}$ 都与归一化后的 $(X_{s+1},\cdots,X_d)\in \mathbf{X}$ 相互独立:

$$egin{aligned} (X_1,\cdots,X_s) \perp oldsymbol{X}^*, \quad oldsymbol{X}^* &= igg(rac{X_{s+1}}{X_{s+1}+\cdots+X_d},\cdots,rac{X_d}{X_{s+1}+\cdots+X_d}igg), \ p(oldsymbol{X}^* \mid X_1,X_2,\cdots,X_s) &= \operatorname{Dir}(oldsymbol{lpha}^*), \quad oldsymbol{lpha}^* &= (lpha_{s+1},lpha_{s+2},\cdots,lpha_d). \end{aligned}$$

o Dirichlet 是服从 Gamma 分布的 d 维 iid 随机变量 $T = \Gamma(T \mid \alpha, 1)$ 归一化后的联合分布:

$$egin{aligned} T_i &= \Gamma(T_i \mid lpha_i, 1), \quad Z_d = \sum_{i=1}^d T_i \ oldsymbol{X} &= rac{1}{Z_d}(T_1, T_2, \cdots, T_{d-1}), \ p(oldsymbol{X}) &= \mathrm{Dir}(lpha_1, lpha_2, \cdots, lpha_d). \end{aligned}$$

信息测度

A.3 常用分布统计表

A.3.1 标准正态分布表

	标准正态分布表 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09														
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09					
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359					
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753					
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141					
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517					
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879					
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224					
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549					
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852					
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133					
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389					
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621					
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830					
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015					
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177					
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319					
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441					
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545					
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633					
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706					
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767					
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817					
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857					
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890					
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916					
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936					
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952					
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964					
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974					
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981					
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986					
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990					
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993					

A.3.2 卡方分布表

				卡方分布表	(首行为	既率值,首列	为自由度)				
	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005	0.001
1	0.0000	0.0002	0.0010	0.0039	0.0158	2.7055	3.8415	5.0239	6.6349	7.8794	10.8276
2	0.0100	0.0201	0.0506	0.1026	0.2107	4.6052	5.9915	7.3778	9.2103	10.5966	13.8155
3	0.0717	0.1148	0.2158	0.3518	0.5844	6.2514	7.8147	9.3484	11.3449	12.8382	16.2662
4	0.2070	0.2971	0.4844	0.7107	1.0636	7.7794	9.4877	11.1433	13.2767	14.8603	18.4668
5	0.4117	0.5543	0.8312	1.1455	1.6103	9.2364	11.0705	12.8325	15.0863	16.7496	20.5150
6	0.6757	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.8119	18.5476	22.4577
7	0.9893	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	18.4753	20.2777	24.3219
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	20.0902	21.9550	26.1245
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.6660	23.5894	27.8772
10	2.1559	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	23.2093	25.1882	29.5883
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.7250	26.7568	31.2641
12	3.0738	3.5706	4.4038	5.2260	6.3038	18.5493	21.0261	23.3367	26.2170	28.2995	32.9095
13	3.5650	4.1069	5.0088	5.8919	7.0415	19.8119	22.3620	24.7356	27.6882	29.8195	34.5282
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.0641	23.6848	26.1189	29.1412	31.3193	36.1233
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	30.5779	32.8013	37.6973
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.9999	34.2672	39.2524
17	5.6972	6.4078	7.5642	8.6718	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185	40.7902
				9.3905							
18	6.2648	7.0149	8.2307		10.8649	25.9894	28.8693	31.5264	34.8053	37.1565	42.3124
19	6.8440	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823	43.8202
20	7.4338	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968	45.3147
21	8.0337	8.8972	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011	46.7970
22	8.6427	9.5425	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957	48.2679
23	9.2604	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813	49.7282
24	9.8862	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585	51.1786
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279	52.6197
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899	54.0520
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449	55.4760
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934	56.8923
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356	58.3012
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720	59.7031
31	14.4578	15.6555	17.5387	19.2806	21.4336	41.4217	44.9853	48.2319	52.1914	55.0027	61.0983
32	15.1340	16.3622	18.2908	20.0719	22.2706	42.5847	46.1943	49.4804	53.4858	56.3281	62.4872
33	15.8153	17.0735	19.0467	20.8665	23.1102	43.7452	47.3999	50.7251	54.7755	57.6484	63.8702
34	16.5013	17.7891	19.8063	21.6643	23.9523	44.9032	48.6024	51.9660	56.0609	58.9639	65.2472
35	17.1918	18.5089	20.5694	22.4650	24.7967	46.0588	49.8018	53.2033	57.3421	60.2748	66.6188
36	17.8867	19.2327	21.3359	23.2686	25.6433	47.2122	50.9985	54.4373	58.6192	61.5812	67.9852
37	18.5858	19.9602	22.1056	24.0749	26.4921	48.3634	52.1923	55.6680	59.8925	62.8833	69.3465
38	19.2889	20.6914	22.8785	24.8839	27.3430	49.5126	53.3835	56.8955	61.1621	64.1814	70.7029
39	19.9959	21.4262	23.6543	25.6954	28.1958	50.6598	54.5722	58.1201	62.4281	65.4756	72.0547
40	20.7065	22.1643	24.4330	26.5093	29.0505	51.8051	55.7585	59.3417	63.6907	66.7660	73.4020
41	21.4208	22.9056	25.2145	27.3256	29.9071	52.9485	56.9424	60.5606	64.9501	68.0527	74.7449
42	22.1385	23.6501	25.9987	28.1440	30.7654	54.0902	58.1240	61.7768	66.2062	69.3360	76.0838
43	22.8595	24.3976	26.7854	28.9647	31.6255	55.2302	59.3035	62.9904	67.4593	70.6159	77.4186
44	23.5837	25.1480	27.5746	29.7875	32.4871	56.3685	60.4809	64.2015	68.7095	71.8926	78.7495
45	24.3110	25.9013	28.3662	30.6123	33.3504	57.5053	61.6562	65.4102	69.9568	73.1661	80.076
46	25.0413	26.6572	29.1601	31.4390	34.2152	58.6405	62.8296	66.6165	71.2014	74.4365	81.4003
47	25.7746	27.4158	29.9562	32.2676	35.0814	59.7743			72.4433	75.7041	82.7204
							64.0011	67.8206			
48	26.5106	28.1770	30.7545	33.0981	35.9491	60.9066	65.1708	69.0226	73.6826	76.9688	84.037
49	27.2493	28.9406	31.5549	33.9303	36.8182	62.0375	66.3386	70.2224	74.9195	78.2307	85.350
50	27.9907	29.7067	32.3574	34.7643	37.6886	63.1671	67.5048	71.4202	76.1539	79.4900	86.660
75	47.2060	49.4750	52.9419	56.0541	59.7946	91.0615	96.2167	100.8393	106.3929	110.2856	118.5993
100	67.3276	70.0649	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612	135.8067	140.1695	149.4493
150	109.1422	112.6676	117.9845	122.6918	128.2751	172.5812	179.5806	185.8004	193.2077	198.3602	209.264
200	152.2410	156.4320	162.7280	168.2786	174.8353	226.0210	233.9943	241.0579	249.4451	255.2642	267.540
500	422.3034		439.9360	449.1468	459.9261	540.9303	553.1268	563.8515	576.4928	585.2066	603.4460
750	653.9968	662.8521	676.0026	687.4522	700.8136	800.0428	814.8215	827.7853	843.0290	853.5143	875.4044
1000	888.5635	898.9124	914.2572	927.5944	943.1326	1057.7239	1074.6794	1089.5309	1106.9690	1118.9481	1143.9171

A.3.3 t 分布表

1 2 3	0.25 1.0000 0.8165	0.1	t 分 0.05	0.025	0.01	0.005	
2		2.0777		0.023	0.01	0.005	0.0025
	0.0165	3.0777	6.3138	12.7062	31.8205	63.6567	127.3213
3	0.0103	1.8856	2.9200	4.3027	6.9646	9.9248	14.0890
	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409	7.4533
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041	5.5976
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321	4.7733
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995	4.0293
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554	3.8325
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693	3.5814
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058	3.4966
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545	3.4284
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768	3.3257
15	0.6912	1.3406	1.7531	2.1314	2.6025	2.9467	3.2860
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208	3.2520
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982	3.2224
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784	3.1966
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609	3.1737
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453	3.1534
21	0.6864	1.3232	1.7207	2.0796	2.5176	2.8314	3.1352
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188	3.1188
23	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073	3.1040
24	0.6848	1.3178	1.7109	2.0639	2.4922	2.7969	3.0905
25	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874	3.0782
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787	3.0669
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707	3.0565
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633	3.0469
29	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564	3.0380
30	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500	3.0298
31	0.6825	1.3095	1.6955	2.0395	2.4528	2.7440	3.0221
32	0.6822	1.3086	1.6939	2.0369	2.4487	2.7385	3.0149
33	0.6820	1.3077	1.6924	2.0345	2.4448	2.7333	3.0082
34	0.6818	1.3070	1.6909	2.0322	2.4411	2.7284	3.0020
35	0.6816	1.3062	1.6896	2.0301	2.4377	2.7238	2.9960
36	0.6814	1.3055	1.6883	2.0281	2.4345	2.7195	2.9905
37	0.6812	1.3049	1.6871	2.0262	2.4314	2.7154	2.9852
38	0.6810	1.3042	1.6860	2.0244	2.4286	2.7116	2.9803
39	0.6808	1.3036	1.6849	2.0227	2.4258	2.7079	2.9756
40	0.6807	1.3031	1.6839	2.0211	2.4233	2.7045	2.9712
41	0.6805	1.3025	1.6829	2.0195	2.4208	2.7012	2.9670
42	0.6804	1.3020	1.6820	2.0181	2.4185	2.6981	2.9630
43	0.6802	1.3016	1.6811	2.0167	2.4163	2.6951	2.9592
44	0.6801	1.3011	1.6802	2.0154	2.4141	2.6923	2.9555
45	0.6800	1.3006	1.6794	2.0141	2.4121	2.6896	2.9521
46	0.6799	1.3002	1.6787	2.0129	2.4102	2.6870	2.9488
47	0.6797	1.2998	1.6779	2.0117	2.4083	2.6846	2.9456
48	0.6796	1.2994	1.6772	2.0106	2.4066	2.6822	2.9426
49	0.6795	1.2991	1.6766	2.0096	2.4049	2.6800	2.9397
50	0.6794	1.2987	1.6759	2.0086	2.4033	2.6778	2.9370

A.3.4 F 分布表

1上 0.1 分位数

	F 分布表 (上 0.1 分位数) 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60																	
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120
1	39.8635	49.5000	53.5932	55.8330	57.2401	58.2044	58.9060	59.4390	59.8576	60.1950	60.7052	61.2203	61.7403	62.0020	62.2650	62.5291	62.7943	63.0606
2	8.5263	9.0000	9.1618	9.2434	9.2926	9.3255	9.3491	9.3668	9.3805	9.3916	9.4081	9.4247	9.4413	9.4496	9.4579	9.4662	9.4746	9.4829
3	5.5383	5.4624	5.3908	5.3426	5.3092	5.2847	5.2662	5.2517	5.2400	5.2304	5.2156	5.2003	5.1845	5.1764	5.1681	5.1597	5.1512	5.1425
4	4.5448	4.3246	4.1909	4.1072	4.0506	4.0097	3.9790	3.9549	3.9357	3.9199	3.8955	3.8704	3.8443	3.8310	3.8174	3.8036	3.7896	3.7753
5	4.0604	3.7797	3.6195	3.5202	3.4530	3.4045	3.3679	3.3393	3.3163	3.2974	3.2682	3.2380	3.2067	3.1905	3.1741	3.1573	3.1402	3.1228
6	3.7759	3.4633	3.2888	3.1808	3.1075	3.0546	3.0145	2.9830	2.9577	2.9369	2.9047	2.8712	2.8363	2.8183	2.8000	2.7812	2.7620	2.7423
7	3.5894	3.2574	3.0741	2.9605	2.8833	2.8274	2.7849	2.7516	2.7247	2.7025	2.6681	2.6322	2.5947	2.5753	2.5555	2.5351	2.5142	2.4928
8	3.4579	3.1131	2.9238	2.8064	2.7264	2.6683	2.6241	2.5893	2.5612	2.5380	2.5020	2.4642	2.4246	2.4041	2.3830	2.3614	2.3391	2.3162
9	3.3603	3.0065	2.8129	2.6927	2.6106	2.5509	2.5053	2.4694	2.4403	2.4163	2.3789	2.3396	2.2983	2.2768	2.2547	2.2320	2.2085	2.1843
10	3.2850	2.9245	2.7277	2.6053	2.5216	2.4606	2.4140	2.3772	2.3473	2.3226	2.2841	2.2435	2.2007	2.1784	2.1554	2.1317	2.1072	2.0818
11	3.2252	2.8595	2.6602	2.5362	2.4512	2.3891	2.3416	2.3040	2.2735	2.2482	2.2087	2.1671	2.1230	2.1000	2.0762	2.0516	2.0261	1.9997
12	3.1765	2.8068	2.6055	2.4801	2.3940	2.3310	2.2828	2.2446	2.2135	2.1878	2.1474	2.1049	2.0597	2.0360	2.0115	1.9861	1.9597	1.9323
13	3.1362	2.7632	2.5603	2.4337	2.3467	2.2830	2.2341	2.1953	2.1638	2.1376	2.0966	2.0532	2.0070	1.9827	1.9576	1.9315	1.9043	1.8759
14	3.1022	2.7265	2.5222	2.3947	2.3069	2.2426	2.1931	2.1539	2.1220	2.0954	2.0537	2.0095	1.9625	1.9377	1.9119	1.8852	1.8572	1.8280
15	3.0732	2.6952	2.4898	2.3614	2.2730	2.2081	2.1582	2.1185	2.0862	2.0593	2.0171	1.9722	1.9243	1.8990	1.8728	1.8454	1.8168	1.7867
16	3.0481	2.6682	2.4618	2.3327	2.2438	2.1783	2.1280	2.0880	2.0553	2.0281	1.9854	1.9399	1.8913	1.8656	1.8388	1.8108	1.7816	1.7507
17	3.0262	2.6446	2.4374	2.3077	2.2183	2.1524	2.1017	2.0613	2.0284	2.0009	1.9577	1.9117	1.8624	1.8362	1.8090	1.7805	1.7506	1.7191
18	3.0070	2.6239	2.4160	2.2858	2.1958	2.1296	2.0785	2.0379	2.0047	1.9770	1.9333	1.8868	1.8368	1.8103	1.7827	1.7537	1.7232	1.6910
19	2.9899	2.6056	2.3970	2.2663	2.1760	2.1094	2.0580	2.0171	1.9836	1.9557	1.9117	1.8647	1.8142	1.7873	1.7592	1.7298	1.6988	1.6659
20	2.9747	2.5893	2.3801	2.2489	2.1582	2.0913	2.0397	1.9985	1.9649	1.9367	1.8924	1.8449	1.7938	1.7667	1.7382	1.7083	1.6768	1.6433
21	2.9610	2.5746	2.3649	2.2333	2.1423	2.0751	2.0233	1.9819	1.9480	1.9197	1.8750	1.8271	1.7756	1.7481	1.7193	1.6890	1.6569	1.6228
22	2.9486	2.5613	2.3512	2.2193	2.1279	2.0605	2.0084	1.9668	1.9327	1.9043	1.8593	1.8111	1.7590	1.7312	1.7021	1.6714	1.6389	1.6041
23	2.9374	2.5493	2.3387	2.2065	2.1149	2.0472	1.9949	1.9531	1.9189	1.8903	1.8450	1.7964	1.7439	1.7159	1.6864	1.6554	1.6224	1.5871
24	2.9271	2.5383	2.3274	2.1949	2.1030	2.0351	1.9826	1.9407	1.9063	1.8775	1.8319	1.7831	1.7302	1.7019	1.6721	1.6407	1.6073	1.5715
25	2.9177	2.5283	2.3170	2.1842	2.0922	2.0241	1.9714	1.9292	1.8947	1.8658	1.8200	1.7708	1.7175	1.6890	1.6589	1.6272	1.5934	1.5570
26	2.9091	2.5191	2.3075	2.1745	2.0822	2.0139	1.9610	1.9188	1.8841	1.8550	1.8090	1.7596	1.7059	1.6771	1.6468	1.6147	1.5805	1.5437
27	2.9012	2.5106	2.2987	2.1655	2.0730	2.0045	1.9515	1.9091	1.8743	1.8451	1.7989	1.7492	1.6951	1.6662	1.6356	1.6032	1.5686	1.5313
28	2.8938	2.5028	2.2906	2.1571	2.0645	1.9959	1.9427	1.9001	1.8652	1.8359	1.7895	1.7395	1.6852	1.6560	1.6252	1.5925	1.5575	1.5198
29	2.8870	2.4955	2.2831	2.1494	2.0566	1.9878	1.9345	1.8918	1.8568	1.8274	1.7808	1.7306	1.6759	1.6465	1.6155	1.5825	1.5472	1.5090
30	2.8807	2.4887	2.2761	2.1422	2.0492	1.9803	1.9269	1.8841	1.8490	1.8195	1.7727	1.7223	1.6673	1.6377	1.6065	1.5732	1.5376	1.4989
40	2.8354	2.4404	2.2261	2.0909	1.9968	1.9269	1.8725	1.8289	1.7929	1.7627	1.7146	1.6624	1.6052	1.5741	1.5411	1.5056	1.4672	1.4248
60	2.7911	2.3933	2.1774	2.0410	1.9457	1.8747	1.8194	1.7748	1.7380	1.7070	1.6574	1.6034	1.5435	1.5107	1.4755	1.4373	1.3952	1.3476
120	2.7478	2.3473	2.1300	1.9923	1.8959	1.8238	1.7675	1.7220	1.6842	1.6524	1.6012	1.5450	1.4821	1.4472	1.4094	1.3676	1.3203	1.2646

2上 0.05 分位数

								F 分布表	(上 0.05 会	分位数)								
	1	2	3	4	5	6	7	8	9	10	12	15	20	24		40	60	120
1	161.4476	199.5000	215.7073	224.5832	230.1619	233.9860	236.7684	238.8827	240.5433	241.8817	243.9060	245.9499	248.0131	249.0518	250.0951	251.1432	252.1957	253.2529
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959	19.4125	19.4291	19.4458	19.4541	19.4624	19.4707	19.4791	19.4874
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.5720	8.5494
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.7170	5.6877	5.6581
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.9130	2.8450	2.7740	2.7372	2.6996	2.6609	2.6211	2.5801
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962	2.8536	2.7876	2.7186	2.6464	2.6090	2.5705	2.5309	2.4901	2.4480
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.3410
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.6710	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.4630	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141
16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589
17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.1040	2.0584	2.0107
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.3080	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1.9645	1.9165	1.8657
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.9380	1.8894	1.8380
23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.0050	1.9605	1.9139	1.8648	1.8128
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.9390	1.8920	1.8424	1.7896
25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684
26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.9010	1.8533	1.8027	1.7488
27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306
28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360	2.1900	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138
29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835
40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401	1.9926	1.9174	1.8364	1.7480	1.7001	1.6491	1.5943	1.5343	1.4673
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.4290	1.3519

3 上 0.025 分位数

	1	2		4	5	6	7	8	9	10	12	15	20	24	30	40	60	120
1	647.7890	799.5000	864.1630	899.5833	921.8479	937.1111	948.2169	956.6562	963.2846	968.6274	976.7079	984.8668	993.1028	997.2492	1001.4144	1005.5981	1009.8001	1014.0202
2	38.5063	39.0000	39.1655	39.2484	39.2982	39.3315	39.3552	39.3730	39.3869	39.3980	39.4146	39.4313	39.4479	39.4562	39.4646	39.4729	39.4812	39.4896
3	17.4434	16.0441	15.4392	15.1010	14.8848	14.7347	14.6244	14.5399	14.4731	14.4189	14.3366	14.2527	14.1674	14.1241	14.0805	14.0365	13.9921	13.9473
4	12.2179	10.6491	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047	8.8439	8.7512	8.6565	8.5599	8.5109	8.4613	8.4111	8.3604	8.3092
5	10.0070	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811	6.6192	6.5245	6.4277	6.3286	6.2780	6.2269	6.1750	6.1225	6.0693
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234	5.4613	5.3662	5.2687	5.1684	5.1172	5.0652	5.0125	4.9589	4.9044
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232	4.7611	4.6658	4.5678	4.4667	4.4150	4.3624	4.3089	4.2544	4.1989
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572	4.2951	4.1997	4.1012	3.9995	3.9472	3.8940	3.8398	3.7844	3.7279
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260	3.9639	3.8682	3.7694	3.6669	3.6142	3.5604	3.5055	3.4493	3.3918
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790	3.7168	3.6209	3.5217	3.4185	3.3654	3.3110	3.2554	3.1984	3.1399
11	6.7241	5.2559	4.6300	4.2751	4.0440	3.8807	3.7586	3.6638	3.5879	3.5257	3.4296	3.3299	3.2261	3.1725	3.1176	3.0613	3.0035	2.9441
12	6.5538	5.0959	4.4742	4.1212	3.8911	3.7283	3.6065	3.5118	3.4358	3.3736	3.2773	3.1772	3.0728	3.0187	2.9633	2.9063	2.8478	2.7874
13	6.4143	4.9653	4.3472	3.9959	3.7667	3.6043	3.4827	3.3880	3.3120	3.2497	3.1532	3.0527	2.9477	2.8932	2.8372	2.7797	2.7204	2.6590
14	6.2979	4.8567	4.2417	3.8919	3.6634	3.5014	3.3799	3.2853	3.2093	3.1469	3.0502	2.9493	2.8437	2.7888	2.7324	2.6742	2.6142	2.5519
15	6.1995	4.7650	4.1528	3.8043	3.5764	3.4147	3.2934	3.1987	3.1227	3.0602	2.9633	2.8621	2.7559	2.7006	2.6437	2.5850	2.5242	2.4611
16	6.1151	4.6867	4.0768	3.7294	3.5021	3.3406	3.2194	3.1248	3.0488	2.9862	2.8890	2.7875	2.6808	2.6252	2.5678	2.5085	2.4471	2.3831
17	6.0420	4.6189	4.0112	3.6648	3.4379	3.2767	3.1556	3.0610	2.9849	2.9222	2.8249	2.7230	2.6158	2.5598	2.5020	2.4422	2.3801	2.3153
18	5.9781	4.5597	3.9539	3.6083	3.3820	3.2209	3.0999	3.0053	2.9291	2.8664	2.7689	2.6667	2.5590	2.5027	2.4445	2.3842	2.3214	2.2558
19	5.9216	4.5075	3.9034	3.5587	3.3327	3.1718	3.0509	2.9563	2.8801	2.8172	2.7196	2.6171	2.5089	2.4523	2.3937	2.3329	2.2696	2.2032
20	5.8715	4.4613	3.8587	3.5147	3.2891	3.1283	3.0074	2.9128	2.8365	2.7737	2.6758	2.5731	2.4645	2.4076	2.3486	2.2873	2.2234	2.1562
21	5.8266	4.4199	3.8188	3.4754	3.2501	3.0895	2.9686	2.8740	2.7977	2.7348	2.6368	2.5338	2.4247	2.3675	2.3082	2.2465	2.1819	2.1141
22	5.7863	4.3828	3.7829	3.4401	3.2151	3.0546	2.9338	2.8392	2.7628	2.6998	2.6017	2.4984	2.3890	2.3315	2.2718	2.2097	2.1446	2.0760
23	5.7498	4.3492	3.7505	3.4083	3.1835	3.0232	2.9023	2.8077	2.7313	2.6682	2.5699	2.4665	2.3567	2.2989	2.2389	2.1763	2.1107	2.0415
24	5.7166	4.3187	3.7211	3.3794	3.1548	2.9946	2.8738	2.7791	2.7027	2.6396	2.5411	2.4374	2.3273	2.2693	2.2090	2.1460	2.0799	2.0099
25	5.6864	4.2909	3.6943	3.3530	3.1287	2.9685	2.8478	2.7531	2.6766	2.6135	2.5149	2.4110	2.3005	2.2422	2.1816	2.1183	2.0516	1.9811
26	5.6586	4.2655	3.6697	3.3289	3.1048	2.9447	2.8240	2.7293	2.6528	2.5896	2.4908	2.3867	2.2759	2.2174	2.1565	2.0928	2.0257	1.9545
27	5.6331	4.2421	3.6472	3.3067	3.0828	2.9228	2.8021	2.7074	2.6309	2.5676	2.4688	2.3644	2.2533	2.1946	2.1334	2.0693	2.0018	1.9299
28	5.6096	4.2205	3.6264	3.2863	3.0626	2.9027	2.7820	2.6872	2.6106	2.5473	2.4484	2.3438	2.2324	2.1735	2.1121	2.0477	1.9797	1.9072
29	5.5878	4.2006	3.6072	3.2674	3.0438	2.8840	2.7633	2.6686	2.5919	2.5286	2.4295	2.3248	2.2131	2.1540	2.0923	2.0276	1.9591	1.8861
30	5.5675	4.1821	3.5894	3.2499	3.0265	2.8667	2.7460	2.6513	2.5746	2.5112	2.4120	2.3072	2.1952	2.1359	2.0739	2.0089	1.9400	1.8664
40	5.4239	4.0510	3.4633	3.1261	2.9037	2.7444	2.6238	2.5289	2.4519	2.3882	2.2882	2.1819	2.0677	2.0069	1.9429	1.8752	1.8028	1.7242
60	5.2856	3.9253	3.3425	3.0077	2.7863	2.6274	2.5068	2.4117	2.3344	2.2702	2.1692	2.0613	1.9445	1.8817	1.8152	1.7440	1.6668	1.5810
120	5.1523	3.8046	3.2269	2.8943	2.6740	2.5154	2.3948	2.2994	2.2217	2.1570	2.0548	1.9450	1.8249	1.7597	1.6899	1.6141	1.5299	1.4327

4 上 0.01 分位数

								F 分布	表 (上 0.01 :	分位数)								
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	12
1	4052.1807	4999.5000	5403.3520	5624.5833	5763.6496	5858.9861	5928.3557	5981.0703	6022.4732	6055.8467	6106.3207	6157.2846	6208.7302	6234.6309	6260.6486	6286.7821	6313.0301	6339.3913
2	98.5025	99.0000	99.1662	99.2494	99.2993	99.3326	99.3564	99.3742	99.3881	99.3992	99.4159	99.4325	99.4492	99.4575	99.4658	99.4742	99.4825	99.4908
3	34.1162	30.8165	29.4567	28.7099	28.2371	27.9107	27.6717	27.4892	27.3452	27.2287	27.0518	26.8722	26.6898	26.5975	26.5045	26.4108	26.3164	26.2211
4	21.1977	18.0000	16.6944	15.9770	15.5219	15.2069	14.9758	14.7989	14.6591	14.5459	14.3736	14.1982	14.0196	13.9291	13.8377	13.7454	13.6522	13.5581
5	16.2582	13.2739	12.0600	11.3919	10.9670	10.6723	10.4555	10.2893	10.1578	10.0510	9.8883	9.7222	9.5526	9.4665	9.3793	9.2912	9.2020	9.1118
6	13.7450	10.9248	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761	7.8741	7.7183	7.5590	7.3958	7.3127	7.2285	7.1432	7.0567	6.9690
7	12.2464	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188	6.6201	6.4691	6.3143	6.1554	6.0743	5.9920	5.9084	5.8236	5.7373
8	11.2586	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106	5.8143	5.6667	5.5151	5.3591	5.2793	5.1981	5.1156	5.0316	4.9461
9	10.5614	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511	5.2565	5.1114	4.9621	4.8080	4.7290	4.6486	4.5666	4.4831	4.3978
10	10.0443	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424	4.8491	4.7059	4.5581	4.4054	4.3269	4.2469	4.1653	4.0819	3.9965
11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315	4.5393	4.3974	4.2509	4.0990	4.0209	3.9411	3.8596	3.7761	3.6904
12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875	4.2961	4.1553	4.0096	3.8584	3.7805	3.7008	3.6192	3.5355	3.4494
13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911	4.1003	3.9603	3.8154	3.6646	3.5868	3.5070	3.4253	3.3413	3.2548
14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297	3.9394	3.8001	3.6557	3.5052	3.4274	3.3476	3.2656	3.1813	3.0942
15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948	3.8049	3.6662	3.5222	3.3719	3.2940	3.2141	3.1319	3.0471	2.9595
16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804	3.6909	3.5527	3.4089	3.2587	3.1808	3.1007	3.0182	2.9330	2.8447
17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822	3.5931	3.4552	3.3117	3.1615	3.0835	3.0032	2.9205	2.8348	2.7459
18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971	3.5082	3.3706	3.2273	3.0771	2.9990	2.9185	2.8354	2.7493	2.6597
19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225	3.4338	3.2965	3.1533	3.0031	2.9249	2.8442	2.7608	2.6742	2.5839
20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3,5644	3,4567	3,3682	3,2311	3.0880	2.9377	2.8594	2,7785	2.6947	2.6077	2.5168
21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981	3.3098	3.1730	3.0300	2.8796	2.8010	2.7200	2.6359	2.5484	2.4568
22	7.9454	5.7190	4.8166	4.3134	3.9880	3,7583	3.5867	3,4530	3,3458	3,2576	3.1209	2.9779	2.8274	2.7488	2.6675	2.5831	2.4951	2,4029
23	7.8811	5.6637	4.7649	4.2636	3.9392	3,7102	3.5390	3,4057	3,2986	3,2106	3.0740	2.9311	2.7805	2.7017	2.6202	2.5355	2.4471	2.3542
24	7.8229	5.6136	4.7181	4.2184	3.8951	3,6667	3,4959	3.3629	3,2560	3.1681	3.0316	2.8887	2.7380	2.6591	2.5773	2,4923	2.4035	2.3100
25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.2172	3.1294	2.9931	2.8502	2.6993	2.6203	2.5383	2.4530	2.3637	2.2696
26		5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3,2884	3.1818	3.0941	2.9578	2.8150	2.6640	2.5848	2.5026	2.4170	2.3273	2.2325
27	7.6767	5.4881	4.6009	4.1056	3.7848	3,5580	3.3882	3,2558	3.1494	3.0618	2.9256	2.7827	2.6316	2.5522	2.4699	2.3840	2.2938	2.1985
28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195	3.0320	2.8959	2.7530	2.6017	2.5223	2.4397	2.3535	2.2629	2.1670
29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920	3.0045	2.8685	2.7256	2.5742	2.4946	2.4118	2.3253	2.2344	2.1379
30	7.5625	5.3903	4.5097	4.0179	3,6990	3,4735	3.3045	3.1726	3.0665	2.9791	2.8431	2.7002	2.5487	2.4689	2.3860	2.2992	2.2079	2.1108
40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2,9930	2.8876	2.8005	2.6648	2.5216	2.3689	2.2880	2.2034	2.1142	2.0194	1.9172
60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185	2.6318	2.4961	2.3523	2.1978	2.1154	2.0285	1.9360	1.8363	1.7263
120		4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586	2.4721	2.3363	2.1915	2.0346	1.9500	1.8600	1.7628	1.6557	1.5330

5 上 0.005 分位数

								F分布	表 (上 0.005	分位数)								
	1	2	3	4	5	6	7	8	9	10	12	15	20		30	40	60	
1	16210.7227	19999.5000	21614.7414	22499.5833	23055.7982	23437.1111	23714.5658	23925.4062	24091.0041	24224.4868	24426.3662	24630.2051	24835.9709	24939.5653	25043.6277	25148.1532	25253.1369	25358.5735
2	198.5013	199.0000	199.1664	199.2497	199.2996	199.3330	199.3568	199.3746	199.3885	199.3996	199.4163	199.4329	199.4496	199.4579	199.4663	199.4746	199.4829	199.4912
3	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824	43.6858	43.3874	43.0847	42.7775	42.6222	42.4658	42.3082	42.1494	41.9895
4	31.3328	26.2843	24.2591	23.1545	22.4564	21.9746	21.6217	21.3520	21.1391	20.9667	20.7047	20.4383	20.1673	20.0300	19.8915	19.7518	19.6107	19.4684
5	22.7848	18.3138	16.5298	15.5561	14.9396	14.5133	14.2004	13.9610	13.7716	13.6182	13.3845	13.1463	12.9035	12.7802	12.6556	12.5297	12.4024	12.2737
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915	10.2500	10.0343	9.8140	9.5888	9.4742	9.3582	9.2408	9.1219	9.0015
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138	8.3803	8.1764	7.9678	7.7540	7.6450	7.5345	7.4224	7.3088	7.1933
8	14.6882	11.0424	9.5965	8.8051	8.3018	7.9520	7.6941	7.4959	7.3386	7.2106	7.0149	6.8143	6.6082	6.5029	6.3961	6.2875	6.1772	6.0649
9	13.6136	10.1067	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411	6.4172	6.2274	6.0325	5.8318	5.7292	5.6248	5.5186	5.4104	5.3001
10	12.8265	9.4270	8.0807	7.3428	6.8724	6.5446	6.3025	6.1159	5.9676	5.8467	5.6613	5.4707	5.2740	5.1732	5.0706	4.9659	4.8592	4.7501
11	12.2263	8.9122	7.6004	6.8809	6.4217	6.1016	5.8648	5.6821	5.5368	5.4183	5.2363	5.0489	4.8552	4.7557	4.6543	4.5508	4.4450	4.3367
12	11.7542	8.5096	7.2258	6.5211	6.0711	5.7570	5.5245	5.3451	5.2021	5.0855	4.9062	4.7213	4.5299	4.4314	4.3309	4.2282	4.1229	4.0149
13	11.3735	8.1865	6.9258	6.2335	5.7910	5.4819	5.2529	5.0761	4.9351	4.8199	4.6429	4.4600	4.2703	4.1726	4.0727	3.9704	3.8655	3.7577
14	11.0603	7.9216	6.6804	5.9984	5.5623	5.2574	5.0313	4.8566	4.7173	4.6034	4.4281	4.2468	4.0585	3.9614	3.8619	3.7600	3.6552	3.5473
15	10.7980	7.7008	6.4760	5.8029	5.3721	5.0708	4.8473	4.6744	4.5364	4.4235	4.2497	4.0698	3.8826	3.7859	3.6867	3.5850	3.4803	3.3722
16	10.5755	7.5138	6.3034	5.6378	5.2117	4.9134	4.6920	4.5207	4.3838	4.2719	4.0994	3.9205	3.7342	3.6378	3.5389	3.4372	3.3324	3.2240
17	10.3842	7.3536	6.1556	5.4967	5.0746	4.7789	4.5594	4.3894	4.2535	4.1424	3.9709	3.7929	3.6073	3.5112	3.4124	3.3108	3.2058	3.0971
18	10.2181	7.2148	6.0278	5.3746	4.9560	4.6627	4.4448	4.2759	4.1410	4.0305	3.8599	3.6827	3.4977	3.4017	3.3030	3.2014	3.0962	2.9871
19	10.0725	7.0935	5.9161	5.2681	4.8526	4.5614	4.3448	4.1770	4.0428	3.9329	3.7631	3.5866	3.4020	3.3062	3.2075	3.1058	3.0004	2.8908
20	9.9439	6.9865	5.8177	5.1743	4.7616	4.4721	4.2569	4.0900	3.9564	3.8470	3.6779	3.5020	3.3178	3.2220	3.1234	3.0215	2.9159	2.8058
21	9.8295	6.8914	5.7304	5.0911	4.6809	4.3931	4.1789	4.0128	3.8799	3.7709	3.6024	3.4270	3.2431	3.1474	3.0488	2.9467	2.8408	2.7302
22	9.7271	6.8064	5.6524	5.0168	4.6088	4.3225	4.1094	3.9440	3.8116	3.7030	3.5350	3.3600	3.1764	3.0807	2.9821	2.8799	2.7736	2.6625
23	9.6348	6.7300	5.5823	4.9500	4.5441	4.2591	4.0469	3.8822	3.7502	3.6420	3.4745	3.2999	3.1165	3.0208	2.9221	2.8197	2.7132	2.6015
24	9.5513	6.6609	5.5190	4.8898	4.4857	4.2019	3.9905	3.8264	3.6949	3.5870	3.4199	3.2456	3.0624	2.9667	2.8679	2.7654	2.6585	2.5463
25	9.4753	6.5982	5.4615	4.8351	4.4327	4.1500	3.9394	3.7758	3.6447	3.5370	3.3704	3.1963	3.0133	2.9176	2.8187	2.7160	2.6088	2.4961
26	9.4059	6.5409	5.4091	4.7852	4.3844	4.1027	3.8928	3.7297	3.5989	3.4916	3.3252	3.1515	2.9685	2.8728	2.7738	2.6709	2.5633	2.4501
27	9.3423	6.4885	5.3611	4.7396	4.3402	4.0594	3.8501	3.6875	3.5571	3.4499	3.2839	3.1104	2.9275	2.8318	2.7327	2.6296	2.5217	2.4079
28	9.2838	6.4403	5.3170	4.6977	4.2996	4.0197	3.8110	3.6487	3.5186	3.4117	3.2460	3.0727	2.8899	2.7941	2.6949	2.5916	2.4834	2.3690
29	9.2297	6.3958	5.2764	4.6591	4.2622	3.9831	3.7749	3.6131	3.4832	3.3765	3.2110	3.0379	2.8551	2.7594	2.6600	2.5565	2.4479	2.3331
30	9.1797	6.3547	5.2388	4.6234	4.2276	3.9492	3.7416	3.5801	3.4505	3.3440	3.1787	3.0057	2.8230	2.7272	2.6278	2.5241	2.4151	2.2998
40	8.8279	6.0664	4.9758	4.3738	3.9860	3.7129	3.5088	3.3498	3.2220	3.1167	2.9531	2.7811	2.5984	2.5020	2.4015	2.2958	2.1838	2.0636
60	8.4946	5.7950	4.7290	4.1399	3.7599	3.4918	3.2911	3.1344	3.0083	2.9042	2.7419	2.5705	2.3872	2.2898	2.1874	2.0789	1.9622	1.8341
120	8.1788	5.5393	4.4972	3.9207	3.5482	3.2849	3.0874	2.9330	2.8083	2.7052	2.5439	2.3727	2.1881	2.0890	1.9840	1.8709	1.7469	1.6055

A.3.5 二项分布表

A.3.6 泊松分布表

A.4 数列和常数

A.4.1 数列

卡特兰数

Catalan 数又称明安图数.

递归定义

1.
$$C_0 = C_1 = 1$$
.

2.
$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$$
.

前几项值: 1, 1, 2, 5, 14, 43, 132, 429, 1439, 4862, 16796...

生成函数

曲
$$G(x)=\sum_{n=0}^\infty C_n x^n$$
 知 $G^2(x)=\sum_{n=0}^\infty C_{n+1} x^n$,故
$$\begin{cases} G(x)=\sum_{n=0}^\infty C_n x^n \\ C_n=\sum_{k=0}^{n-1} C_k C_{n-1-k} \end{cases} \Rightarrow G^2(x)=\sum_{n=0}^\infty C_{n+1} x^n \\ \begin{cases} xG^2(x)+1=G(x) \\ G(0)=1 \end{cases} \Rightarrow G(x)=\frac{1-\sqrt{1-4x}}{2x} \end{cases}$$

通项公式

1.
$$C_n=rac{1}{n+1}inom{2n}{n}=rac{1}{2n+1}inom{2n+1}{n}.$$
2. $C_n=inom{2n}{n}-inom{2n}{n-1}.$
3. $C_n=rac{1}{n+1}\sum_{i=0}^ninom{n}{i}^2.$

证明

- 1. 由生成函数泰勒展开即得.
- 2. 由组合数定义即得.

3. 对比
$$(1+x)^nig(1+rac{1}{x}ig)^n=rac{(1+x)^{2n}}{x^n}$$
 两边系数, 即得 $\sum_{i=0}^nig(n\choose i^2=ig(2n\choose nig).$

递推公式:
$$C_n=rac{4n-2}{n+1}C_{n-1}.$$

证明 由通项公式即得.

例题

1. 满足通项关系
$$C_n = inom{2n}{n} - inom{2n}{n-1}$$
 的场景.

- 1. 在 $n\times n$ 网格中,一开始在 (0,0) 处,每次可以向上走一格或向右走一格,在任一时刻,向右的次数不少于向上的次数,则合法的路径有 $\binom{2n}{n}-\binom{2n}{n-1}=C_n$ 种.
- 2. 有 n 对括号, 则长度为 2n 的括号序列中合法的序列有 C_n 种. (入栈出栈)
- 3. 一个圆周上有 2n 个点, 两两配对并连线, 则所有弦不相交的连法有 C_n 种.
- 2. 满足递归定义 $C_n=\sum_{k=0}^{n-1}C_kC_{n-k-1}$ 的场景.
 - 1. 把一个 n 层的矩形阶梯分为 n 个矩形的方法有 C_n 种.
 - 2. $\Box n + 2$ 边形按顶点连线划分为 n 个三角形的方法有 C_n 种.

A.4.2 常数

卡特兰常数

级数定义与积分定义

$$G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = \int_0^1 \frac{\arctan x}{x} \, \mathrm{d}x$$
$$= -\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \int_0^{+\infty} \frac{\ln x}{1+x^2} \, \mathrm{d}x$$
$$= -\int_0^{\frac{\pi}{4}} \ln \tan x \, \mathrm{d}x = \int_0^{\frac{\pi}{4}} \ln \cot x \, \mathrm{d}x$$
$$= 0.915965594177219015054603515...$$

常用积分

•
$$\left[0, \frac{\pi}{2}\right]$$
.

- 。 对数与三角
 - 正余弦 (区间再现后相加)

■ 正余切(卡特兰常数定义)

■ 1 ± 正余弦 (由半角公式即得)

■ 1 + 正余切(分区间利用结论)

○ 幂与三角(分布积分用结论)

•
$$\left[0, \frac{\pi}{4}\right]$$
.

。 对数与三角

■ 正余弦(相加减后解方程)

■ 1 ± 正余切(区间再现后展开)

■ 正余弦和差 (平方之后二倍角)

。 幂与三角

■ x·正余切(分布积分用结论)

• 其它区间

。 幂与对数 (三角换元用结论)