Homework for week 14

1. Textbook Reading:

- Chapter 15 Introduction to the Laplace Transform.
- Chapter 16 Applications of the Laplace Transform

2. Reference-Tan's textbook(谭老师教材)

- ➤ Chapter 14 (第 14 章 状态方程)
- ▶ Chapter 15 (第 15 章 非线性电阻电路)

3. Problem-solving:

Problem 1:

- (a) The figure below shows a network where $V_{\rm IN}$ charges C with time constant $\tau_{\rm C}$ when Sw1 is closed. If it were closed for ever, $V_{\rm OUT}$ would tend to $V_{\rm MAX}$. When Sw1 is open, C discharges with time constant $\tau_{\rm D}$.
 - (i) Write an algebraic expression for τ_D .
 - (ii) Suppose that Sw1 is closed until $V_{\rm OUT}$ reaches a voltage $V_{\rm X}$. Sw1 is then opened. Write an algebraic expression for $V_{\rm OUT}$ from this time onwards. Sketch a graph of $V_{\rm OUT}$ against time, marking $V_{\rm X}$.
 - (iii) C is initially discharged, then Sw1 is closed. Sketch a graph of $V_{\rm OUT}$ against time, marking $V_{\rm MAX}$. Give algebraic expressions for $V_{\rm MAX}$ and $V_{\rm OUT}$.
 - (iv) Derive an algebraic expression for τ_C .

- (b) This circuit is used to sample $V_{\rm IN}$, which varies. Sw1 is closed briefly to take each sample. This happens once per second: Sw1 is closed for 1 ms then open for the next 999 ms. It is required that $V_{\rm OUT}$ rises to at least 99% of $V_{\rm MAX}$ while Sw1 is closed, and that $V_{\rm OUT}$ falls to no more than 1% of $V_{\rm MAX}$ while Sw1 is open. C is chosen to be 1 nF.
 - (i) Why do you think the 99% requirement was made?
 - (ii) Why do you think the 1% requirement was made?
 - (iii) What must R_1 be to fulfil the 99% requirement? You may assume that R_2 is so much larger than R_1 that R_2 may be ignored.

Problem 2:

The circuit shown in Figure below has the following frequency transfer function:

$$H(\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + j \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right) Q}$$

$$C \qquad L$$

$$V_{\text{in}} \qquad V_{\text{out}}$$

Passive filter circuit

By considering $H(\omega)$ at low frequencies, high frequencies and at $\omega = \omega_0$, justify that the circuit constitutes a band-pass filter. Write down expressions for Q and ω_0 in terms of R, C and L.

Problem 3:

Derive the State-Equation (in matrix form) of the circuit below.

Problem 4:

Following Problems are from Tan's textbook (谭老师教材).

Problem 5:

Page 397: 14-4

Problem 6:

Page 398: 14-6

Problem 7:

Page 413: 15-2

Problem 8:

Page **415**: 15-7