Laboratorio 66.02 Trabajo Práctico Nº 1 Multímetro en continua

Parte 1 Desarrollo

1) ¿Qué tensión espera que haya entre los bornes A-B de los circuitos indicados a continuación?

Ya entrando en la parte experimental:

2) ¿Qué tensión medirá un voltímetro analógico entre los bornes A-B, cuyas especificaciones son las indicadas en la hoja de datos técnicos del mismo?

3) ¿Qué tensión medirá un voltímetro digital entre los bornes A-B, cuyas especificaciones son las indicadas en la hoja de datos técnicos del mismo?

- 4) ¿Qué diferencia observa en las mediciones?
- 5) ¿A qué atribuye esas diferencias?
- 6) ¿Cómo relaciona esas diferencias con las especificaciones de los instrumentos y con los circuitos usados?
- 7) ¿Qué conclusiones obtiene?
- 8) Se medirá la tensión sobre la resistencia R₂ del divisor de tensión correspondiente al circuito sig.:

Nota: El valor de la tensión de la fuente es sólo como referencia, pero puede usarse cualquier otro razonable. La tensión la mediremos con voltímetro analógico y digital.

- 9) ¿Qué valor espera obtener en teoría?
- 10)) ¿Qué valor obtiene en la práctica?
- 11) Si se presentan diferencias, explique su origen. ¿Cuál es la diferencia relativa entre el valor teórico y el obtenido de la práctica, en cada caso?

Nota: Las respuestas y conclusiones se debatirán en el curso.

Parte 2

a) Armaremos el siguiente circuito de medición. Utilizaremos dos resistores cuyos valores están indicados como $R_1 = 100\Omega$ y $R_2 = 100k\Omega$. Las mediciones las realizaremos con multímetros analógicos y también con digitales.

En la tabla volcaremos los valores medidos y calculados indicados

Multímetro digital					Multímetro analógico				
	V	I	R	$\frac{\Delta R}{R}$	V	I	R	$\frac{\Delta R}{R}$	
	V	mA	kΩ	%	V	mA	kΩ	%	
100Ω									
	V	I	R	$\frac{\Delta R}{R}$	V	I	R	$\frac{\Delta R}{R}$	
	V	mA	kΩ	%	V	mA	kΩ	%	
1 00kΩ									

b) Armaremos el siguiente circuito de medición. Utilizaremos dos resistores cuyos valores están indicados como $R_1 = 100\Omega$ y $R_2 = 100k\Omega$. Las mediciones las realizaremos con multímetros analógicos y también con digitales.

En la tabla volcaremos los valores medidos y calculados indicados

Multímetro digital					Multímetro analógico				
	V	I	R	$\frac{\Delta R}{R}$	V	I	R	$\frac{\Delta R}{R}$	
	V	mA	kΩ	%	V	mA	kΩ	%	
100Ω									
	V	I	R	$\frac{\Delta R}{R}$	V	I	R	$\frac{\Delta R}{R}$	
	V	mA	kΩ	%	V	mA	kΩ	%	
1 00kΩ									

c) Mida los resistores anteriores con los multímetros analógico y digital respectivamente, en su función *óhmetro*

Analógico:

R_1 (indicada como 100 $\!\Omega\!$): $\!\Omega$	R_2 (indicada como $100k\Omega$):	k Ω
Digital:		

 R_2 (indicada como $100k\Omega$):....k Ω

Responda por favor las siguientes preguntas:

- 1) Indique qué diferencias observa entre las mediciones realizadas.
- 2) Trate de explicar a qué factores se deben esas diferencias.

 R_1 (indicada como 100Ω):..... Ω

- 3) ¿Qué influencia tendrá el tipo de conexión de los instrumentos?
- 4) ¿Qué nombre se le ocurriría poner a cada tipo de conexión?
- 5) ¿De qué manera puede aplicar los conceptos obtenidos de la parte a) en la b)?

Parte 3

a) Se armará el circuito de acuerdo al siguiente esquema, en el cual se pide que seleccione los instrumentos que crea más adecuados.

- b) Realice una medición de la tensión de salida con la SW abierta, es decir, en vacío.
- c) Cierre la llave SW y varíe la resistencia R₁ hasta que la corriente indicada por el amperímetro sea la adoptada como nominal. En esta condición, mida el valor de la tensión.
- **d)** Determine la variación relativa porcentual entre la tensión en vacío y la tensión a corriente nominal con la Incerteza correspondiente y exprésela correctamente. A este valor lo llamaremos *regulación de carga* (*r*)
- e) Responda por favor, las siguientes preguntas.
- I) ¿Qué sucedió al cargar la fuente?

- II) Si es que hubo algún cambio, explique su origen.
- III) Explique qué idea le brinda la relación obtenida en el punto d), acerca del comportamiento de la fuente.
- IV) Determine el valor de la resistencia serie de la fuente con la Incerteza correspondiente.
- f) Vuelque los resultados en la tabla siguiente

Llave SW abierta				Llave SW cerrada			
Corriente [mA]	ξ[%]	Tensión [V]	ξ[%];	Corriente [mA]	ξ[%]	Tensión [V]	ξ[%]

Regulación de carga:..... % ±%

g) Se armará el circuito de acuerdo al siguiente esquema, en el cual se pide que seleccione los instrumentos que crea más adecuados.

- h) Mida la tensión en vacío de la fuente.
- i) Con la llave SW abierta, varíe la tensión de la *fuente auxiliar* (V_{aux}) hasta lograr una lectura de cero Volt, con la mayor resolución posible.
- **j)** Cierre la llave SW y varíe la resistencia R₁ hasta que la corriente indicada por el amperímetro sea la adoptada como nominal. En esta condición, mida el valor de la tensión.
- k) Determine el valor de la regulación de carga con su Incerteza.
- I) Responda por favor, las siguientes preguntas:

- I) ¿Qué estrategia utiliza para eliminar el error sistemático, si no puede alcanzarse el cero del voltímetro en el punto i)?
- II) ¿Qué diferencia observa entre los resultados obtenidos con un método y otro y, en tal caso, a qué los atribuye? III) ¿Cuál de los métodos cree que es más exacto? Si las incertezas de cada método difieren, explique el origen de esa diferencia.
- m) Determine el valor de la resistencia serie de la fuente con la Incerteza correspondiente.
- n) Vuelque los resultados en la tabla siguiente

Llave SW abierta				Llave SW cerrada			
Corriente [mA] ξ [%] Tensión [V] ξ [%];		Corriente [mA]	ξ[%]	Tensión [V]	ξ[%]		

Resistencia serie de la fuente:
Regulación de carga:% ±%
<u>Instrumentos utilizados</u>
Multímetro analógico
Marca:
Modelo:
Sensibilidad:
Alcances:
Incerteza de clase:
Resistencia serie:
Número de inventario:
Multímetro digital
Marca:
Modelo:
Alcances:

Incerteza:
Impedancia de entrada:
Resistencia serie:
Nota: El TP deberá contener además una introducción teórica, cuyo objetivo es que pueda estudiarse de ella y también una memoria de cálculo de las incertezas en las mediciones de la parte 2.
Ing. Adrián Darío Rosa (adrosa@speedy.com.ar)