

Projeto 1

Matemática Computacional 2024/2025

Grupo 9:

Afonso da Conceição Ribeiro	ist1102763
Margarida Rodrigues da Silva Freire	ist1109526
Maria Marta Veloza Silva	ist1109604
Sara Jacinto Costa	ist1110787

Licenciatura em Matemática Aplicada e Computação Instituto Superior Técnico — Universidade de Lisboa

Índice

Grupo	Ι																						2
1																		 					2
2			•	•	•								 •	•				 					4
Grupo	п																						9
1																		 					Ö
	(a)																	 					6
	(b)																						
	(c)																	 					12
	(d)																	 					13
2																		 					17

Grupo I

1.

Para se mostrar que a sucessão $\{I_n\}_{n\in\mathbb{N}_0}$, definida por:

$$I_0 = \ln\left(\frac{6}{5}\right)$$

$$I_n + 5I_{n-1} = \frac{1}{n}$$

é decrescente começou-se por mostrar que $I_n > 0, \forall n \in \mathbb{N}_0$:

$$I_{0} = \ln\left(\frac{6}{5}\right)$$

$$I_{n} = \frac{1}{n} - 5I_{n-1}$$

$$= \frac{1}{n} - 5\left(\frac{1}{n-1} - 5I_{n-2}\right)$$

$$= \frac{1}{n} - \frac{5}{n-1} + 5^{2}I_{n-2}$$

$$= \frac{1}{n} - \frac{5}{n-1} + 5^{2}\left(\frac{1}{n-2} - 5I_{n-3}\right)$$

$$= \frac{1}{n} - \frac{5}{n-1} + \frac{5^{2}}{n-2} - 5^{3}I_{n-3}$$

$$= \frac{1}{n} - \frac{5}{n-1} + \frac{5^{2}}{n-2} - \frac{5^{3}}{n-3} + \dots + (-5)^{n-1} + (-5)^{n}I_{0}$$

$$= \sum_{i=0}^{n-1} \frac{(-5)^{i}}{n-i} + (-5)^{n}I_{0}$$

$$(j = n - i)$$

$$= \sum_{j=1}^{n} \frac{(-5)^{n-j}}{j} + (-5)^{n}I_{0}$$

$$= (-5)^{n} \left(\sum_{j=1}^{n} \frac{(-5)^{j}}{j} + \ln\left(\frac{6}{5}\right)\right)$$

$$= (-5)^{n} \left(\sum_{j=1}^{n} \frac{(-5)^{j}}{j} + \ln\left(\frac{6}{5}\right)\right)$$

Relacionando a sucessão obtida com uma sucessão que se conheça a convergência reparouse que:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}, \quad |x| < 1$$

$$\Rightarrow \int \sum_{k=0}^{\infty} x^k dx = \int \frac{1}{1-x} dx, \quad |x| < 1$$

$$\Rightarrow \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} = -\ln(1-x), \quad |x| < 1$$

(onde
$$\tilde{k} = k + 1$$
)

$$\Rightarrow \sum_{\tilde{k}=1}^{\infty} \frac{x^{\tilde{k}}}{\tilde{k}} = -\ln(1-x), \quad |x| < 1$$

Que é extamente a sucessão que se está à procura. Usando a notação abaixo:

$$S_n = \sum_{j=1}^k \frac{\left(\frac{-1}{5}\right)^j}{j} = \sum_{j=1}^n x_j$$

Sabe-se que:

$$\lim_{n \to +\infty} S_n = -\ln\left(\frac{6}{5}\right), \quad \text{pois } \left|-\frac{1}{5}\right| < 1$$

Assim tem-se dois casos para o n:

- n par: $(-5)^n > 0$, logo temos que ter g(n) > 0
- n impar: $(-5)^n < 0$, logo temos que ter g(n) < 0

Ou seja, tem-se que analisar o sinal de:

$$g(n) = S_n + \ln\left(\frac{6}{5}\right)$$

Para isso é necessário tirar conclusões:

- S_n converge para $-\ln\left(\frac{6}{5}\right)$
- $x_n \cdot x_{n-1} < 0, \forall n$
- $|x_i| > |x_{i+1}|$
- $x_i > 0$ para i par, $x_i < 0$ para i impar

Ou seja, S_n é uma série alternada com termos que diminuem em magnitude, que converge para $-\ln\left(\frac{6}{5}\right)$. Temos:

- $S_n > -\ln\left(\frac{6}{5}\right)$, n par, visto que o próximo termo é negativo
- $S_n < -\ln\left(\frac{6}{5}\right)$, n ímpar, visto que o próximo termo é positivo

Ou seja,

- $g(n) = S_n + \ln\left(\frac{6}{5}\right) > 0, n \text{ par}$
- $g(n) = S_n + \ln\left(\frac{6}{5}\right) < 0$, n impar

O que diz que:

$$I_n = (-5)^n \cdot g(n) > 0, \quad \forall n \in \mathbb{N}_0$$

Agora, sabendo isto:

$$I_n = \frac{1}{n} \underbrace{-5}_{<0}^{>0} \underbrace{I_{n-1}}_{<0} < \frac{1}{n}$$

Como $\frac{1}{n}$ é decrescente, I_n é uma sucessão decrescente. Se $I_{n+1} < I_n$ e $I_n > 0$, $\forall n$, então a sucessão converge para um limite L. Assim, verifica-se que:

$$\lim_{n \to +\infty} (I_n + 5I_{n-1}) = \lim_{n \to +\infty} \frac{1}{n}$$

$$\Rightarrow L + 5L = 0$$

$$\Leftrightarrow L = 0$$

2.

```
function [resultado] = I_n(n)
format long g

resultado = log(6/5);

i = 1;

while i <= n
    resultado = 1/i - 5
    i = i + 1;
end
end</pre>
```

Este código define uma função que calculará a sucessão $I_n + 5I_{n-1} = \frac{1}{n}$, em que definimos o "resultado" com um valor inicial. Em seguida, inicia-se um contador i, e cria-se um ciclo para calcular o termo n da sequência. Ao obtê-lo, atualiza-se o valor do resultado com a fórmula da sucessão. Posteriormente, adiciona-se 1 ao contador e continua-se o loop até chegarmos ao i-ésimo termo na sucessão. O valor i-ésimo é o input que fornecemos, ou seja, o valor n, e o output é o valor da sucessão em n.

```
function resultado = calcular_integral(n)
    f = @(x) (x.^n) ./ (x + 5);

resultado = integral(f, 0, 1);
end
```

Já este código começa por definir uma função que irá calcular o integral de $\frac{x^n}{x+5}$ no intervalo de 0 a 1. Para que esta função seja executada corretamente, é necessário fornecer como input o valor de n, sendo que o programa retorna como output o valor do integral para o dado n.

Com o auxílio do programa Matlab enunciado acima, calculou-se I_{29} utilizando a fórmula de recorrência fornecida. Vamos denotar este valor por $I_{29,Matlab}$. Obteve-se o seguinte resultado:

$$I_{29,Matlab} = 7333.7672718936$$

Como foi observado na alínea anterior, a sucessão $\{I_n\}_{n\in\mathbb{N}_0}$ é decrescente e tende para 0, por isso podemos prever que I_{29} deve ser um valor próximo de 0 e menor que

$$I_0 = \ln\left(\frac{6}{5}\right) \approx 0.1823215568$$

No entanto, o valor de $I_{29,Matlab}$ calculado não está de acordo com o resultado esperado, visto que:

- $I_{29,Matlab} \gg I_0$ (ou seja, não se verifica um decréscimo nos valores da sucessão);
- $I_{29,Matlab} \gg 0$;
- seja o valor teórico $I_{29}=\int_0^1 \frac{x^{29}}{x+5}\,dx\approx 0.00558574007363853$, calculado com a função definida no Matlab, verifica-se que $I_{29,Matlab}\gg I_{29}$.

Vamos começar por observar as primeiras iteradas da sucessão

$$I_n = \frac{1}{n} - 5I_{n-1}$$
 , $n = 1, 2, \dots$

e compará-las com as primeiras iteradas de uma sucessão perturbada $\{\tilde{I}_n\}_{n\in\mathbb{N}_0}$, definida por

$$\tilde{I}_n = \frac{1}{n} - 5\tilde{I}_{n-1}$$
 , $n = 1, 2, \dots$

que apresenta uma perturbação δ_0 no dado inicial $\tilde{I}_0 = I_0(1+\delta_0)$, sendo que $|\delta_0| \leq U$, com U a unidade de arredondamento do sistema utilizado para efetuar os cálculos (neste caso, o sistema utilizado é o Matlab, por isso temos que $U = 2^{-52} \approx 2.2204 \times 10^{-16}$).

Como calculado na alínea anterior, temos que

$$I_n = C_n + (-5)^n I_0$$
 , com $C_n = \sum_{j=1}^n \frac{(-5)^{n-j}}{j}$.

Então:

$$I_1 = 1 - 5I_0$$

$$I_2 = -\frac{9}{2} + (-5)^2 I_0$$

$$I_3 = \frac{137}{6} + (-5)^3 I_0$$

. . .

Para \tilde{I}_n , após efetuar os cálculos, tem-se que: $\tilde{I}_0 = I_0 + I_0 \delta_0$

$$\tilde{I}_1 = 1 - 5I_0 - 5I_0\delta_0$$

$$\tilde{I}_2 = -\frac{9}{2} + (-5)^2 I_0 + (-5)^2 I_0 \delta_0$$

$$\tilde{I}_3 = \frac{137}{6} + (-5)^3 I_0 + (-5)^3 I_0 \delta_0$$

. . .

Observa-se que $\tilde{I}_n = C_n + (-5)^n I_0 + (-5)^n I_0 \delta_0$.

Assim, verifica-se que a diferença entre os valores das duas sucessões deve-se ao termo $(-5)^n I_0 \delta_0$.

De seguida, vamos calcular os erros absolutos associados à sucessão em causa, o que permite comparar as sucessões $\{I_n\}_{n\in\mathbb{N}_0}$ e $\{\tilde{I}_n\}_{n\in\mathbb{N}_0}$.

Começamos por verificar que:

$$\begin{split} \mathbf{e}_{\tilde{I}_0} &= I_0 - \tilde{I}_0 = I_0 - I_0(1+\delta_0) = I_0 - I_0 - I_0 \delta_0 = -I_0 \delta_0 \Rightarrow e_{\tilde{I}_0} = -I_0 \delta_0 \\ &|\mathbf{e}_{\tilde{I}_0}| = |-I_0 \delta_0| \approx |-\ln(\frac{6}{5}) \times 2^{-52}| \approx 4.048351805 \times 10^{-17} \text{ , considerando } \delta_0 \approx U \end{split}$$

Agora vamos calcular $e_{\tilde{I}_n}$:

$$e_{\tilde{I}_{n}} = I_{n} - \tilde{I}_{n} =$$

$$= C_{n} + (-5)^{n} I_{0} - (C_{n} + (-5)^{n} I_{0} + (-5)^{n} I_{0} \delta_{0})$$

$$= (-5)^{n} e_{\tilde{I}_{0}}$$

$$= (-5)^{n} e_{\tilde{I}_{0}}$$

$$e_{\tilde{I}_{n}} = I_{n} - \tilde{I}_{n} =$$

$$= \frac{1}{n} - 5I_{n-1} - (\frac{1}{n} - 5\tilde{I}_{n-1})$$

$$= -5I_{n-1} + 5\tilde{I}_{n-1}$$

$$= -5(I_{n-1} - \tilde{I}_{n-1})$$

$$= -5e_{\tilde{I}_{n-1}}$$

$$Se \ e_{\tilde{I}_{n}} = -5e_{\tilde{I}_{n-1}}, \text{ então}$$

$$e_{\tilde{I}_{n}} = -5e_{\tilde{I}_{n-1}} = (-5)^{2}e_{\tilde{I}_{n-2}} = \dots = (-5)^{n} e_{\tilde{I}_{0}}$$

$$\Rightarrow e_{\tilde{I}_n} = (-5)^n e_{\tilde{I}_0}$$

Como $|e_{\tilde{I}_0}| \ll 1$, os erros $e_{\tilde{I}_n}$ não são significativos para as primeiras iteradas da sucessão, no entanto, estes erros absolutos são consideráveis para uma dada iterada I_n , com n suficientemente grande.

O coeficiente associado aos erros absolutos é $(-5)^n = (-1)^n \times 5^n$, pelo que se verifica o seguinte:

1. o expoente n provoca um rápido aumento destes erros ao longo da recorrência. Temos que

$$\lim_{n \to +\infty} |e_{\tilde{I}_n}| = \lim_{n \to +\infty} |(-5)^n e_{\tilde{I}_0}| = 5^n |e_{\tilde{I}_0}| = +\infty$$

ou seja, o valor absoluto destes erros fica cada vez maior e os valores \tilde{I}_n calculados vão ficando cada vez mais afastados dos valores teóricos;

2. o fator $(-1)^n$ faz com que os valores da sucessão perturbada tenham um comportamento alternado (alternam em torno dos valores teóricos), ao contrário do espectável, visto que se esperava que a sucessão fosse decrescente (demonstrado na alínea 1.)

Para comparar os valores de \tilde{I}_{29} e $I_{29,Matlab}$, podemos realizar o seguinte processo:

$$e_{\tilde{I}_{29}} = I_{29} - \tilde{I}_{29} \Leftrightarrow \tilde{I}_{29} = I_{29} - e_{\tilde{I}_{29}}$$

Sem perda de generalidade, vamos calcular $\tilde{I}_{29} = I_{29} + e_{\tilde{I}_{29}}$, porque $\tilde{I}_{29} > 0$, I_{29} é próximo de 0 e $e_{\tilde{I}_{29}} > 0$ (ou seja, estamos a considerar que $e_{\tilde{I}_{29}}$ é uma "distância" entre \tilde{I}_{29} e I_{29}).

$$\tilde{I}_{29} = I_{29} + e_{\tilde{I}_{29}}$$

$$\Leftrightarrow \tilde{I}_{29} = \int_0^1 \frac{x^{29}}{x+5} dx + (-5)^{29} e_{\tilde{I}_0}$$

$$\Leftrightarrow \tilde{I}_{29} = \int_0^1 \frac{x^{29}}{x+5} dx - (-5)^{29} I_0 \delta_0$$

$$\Leftrightarrow \tilde{I}_{29} = \int_0^1 \frac{x^{29}}{x+5} dx - (-5)^{29} \ln\left(\frac{6}{5}\right) \times 2^{-52}$$
$$\Leftrightarrow \tilde{I}_{29} \approx 7540.64843726232$$

Como $I_{29,Matlab} = 7333.7672718936$ podemos concluir que \tilde{I}_{29} e $I_{29,Matlab}$ são ligeiramente próximos e têm a mesma ordem de grandeza, o que está de acordo com o esperado.

Com recurso ao Matlab, construiram-se gráficos que permitem uma melhor vizualização do desvio da sucessão perturbada. Desenvolveu-se o seguinte código:

```
n = _; % Definir o numero de iteracoes (alterado conforme necessario)
x = 1:n;
y1 = [];
y2 = [];
for num = 1:n
    y1 = [y1, I_n(num)];
    y2 = [y2, calcular_integral(num)];
end
hold on
scatter(x, y1, 'b', 'filled');
plot(x, y2, 'k-', 'MarkerFaceColor', 'k');
scatter(29, y1(29), 'r', 'filled');
grid on;
xlabel('n');
ylabel('I_n');
title('Grafico de I_n')
hold off
```

Neste código começa-se por definir n, ou seja, o número de iterações. Posteriormente, criase um vetor de valores para o eixo x, que varia de 1 até n. Em seguida, inicializam-se os vetores y_1 e y_2 para armazenar os valores de I_n e da função calcular_integral, respetivamente. Após essa inicialização, utiliza-se um ciclo para calcular os valores das funções I_n e calcular_integral para cada n, armazenando os resultados em y_1 e y_2 . O gráfico gerado contém um scatter, que representa os pontos de I_n na cor azul e preenchidos, e um plot que traça uma linha preta representando os valores da função calcular_integral em cada n. Também se destacou o ponto em que n = 29, a vermelho.

Assim, o output deste código é este gráfico.

Figure 1: Gráficos que comparam a sucessão e o integral até n=20 e n=29

Podemos ainda calcular os erros relativos associados a I_0 e I_{29} . Para tal, vamos considerar que $\delta_0 \approx U = 2^{-52}$.

$$\delta_{\tilde{I}_0} = \frac{I_0 - \tilde{I}_0}{I_0} = \frac{e_{\tilde{I}_0}}{I_0} = \frac{-I_0 \delta_0}{I_0} = -\delta_0$$

$$\Rightarrow |\delta_{\tilde{I}_0}| = |-\delta_0| \approx 2^{-52} \approx 2.2204 \times 10^{-16} = 2.2204 \times 10^{-14} \%$$

Sabendo que

$$\delta_{\tilde{I}_n} = \frac{I_n - \tilde{I}_n}{I_n} = \frac{e_{\tilde{I}_n}}{I_n} = \frac{(-5)^n e_{\tilde{I}_0}}{C_n + (-5)^n I_0} = \frac{-(-5)^n I_0 \delta_0}{\sum_{j=1}^n \frac{(-5)^{n-j}}{j} + (-5)^n I_0} = \frac{-(-5)^n I_0 \delta_0}{(-5)^n (\sum_{j=1}^n \frac{(-5)^{-j}}{j} + I_0)} = \frac{-I_0 \delta_0}{\sum_{j=1}^n \frac{(-5)^{-j}}{j} + I_0}$$

Então

$$\delta_{\tilde{I}_{29}} \approx \frac{-\ln(\frac{6}{5})2^{-52}}{\sum_{j=1}^{29} \frac{(-5)^{-j}}{j} + \ln(\frac{6}{5})} \approx \frac{-(-5)^{29} \ln(\frac{6}{5})2^{-52}}{\int_{0}^{1} \frac{x^{29}}{x+5} dx} \approx 1.34998 \times 10^{4} \%$$

(usou-se I_{29} definido pelo integral para evitar erros de arredondamento ao calcular o somatório no Matlab)

Pode-se verificar que o erro relativo $\delta_{\tilde{I}_0}$ é bastante pequeno, ao contrário do erro $\delta_{\tilde{I}_{29}}$ que é consideravelmente grande. Mais uma vez, verifica-se a instabilidade desta sucessão por recorrência para valores de n suficientemente grandes.

Assim, conclui-se que quando a sucessão definida por recorrência é calculada no Matlab, este cálculo fica sujeito a erros de arredondamento provocados pelo sistema de ponto flutuante característico deste software, $\mathbb{PF} = (2, 52, -1022, 1023)$, com $\epsilon_M = 2^{-52} \approx 0.22204 \times 10^{-15}$ (machine epsilon).

Desta forma, uma pequena perturbação nos dados iniciais pode causar grandes desvios nos valores calculados após um grande número de iterações.

Grupo II

1.

(a)

Seja z solução da equação f(x) = 0 e considere-se o método iterativo descrito. Para garantir a convergência local, é necessário que:

- $f \in \mathbb{C}^2$ numa vizinhança de z que contenha x_0 ;
- $f'(z) \neq 0$, ou seja, que z seja uma raiz simples da equação.

Seja $e_n = x_n - z$ o erro da n-ésima iteração.

Procede-se à expansão em série de Taylor do termo $f(x_n)$ em torno de z:

$$f(x_n) = f(z + e_n) = f(z) + f'(z)e_n + \frac{1}{2}f''(\xi_n^{(1)})(e_n)^2 = f'(z)e_n + \underbrace{\frac{1}{2}f''(\xi_n^{(1)})(e_n)^2}_{Q((e_n)^2)},$$

para algum ponto $\xi_n^{(1)}$ entre z e x_n .

À medida que $e_n \to 0$, $(e_n)^2$ converge mais rapidamente para 0 do que e_n , portanto, quando e_n é pequeno, o termo $f'(z)e_n$ domina, e o termo $\frac{1}{2}f''(\xi_n^{(1)})(e_n)^2 = O((e_n)^2)$ é considerado de ordem superior em relação ao primeiro, justificando a sua desprezibilidade em estimativas posteriores:

$$f(x_n) = f'(z)e_n + O((e_n)^2) \approx f'(z)e_n.$$

Pretende-se, de seguida, expandir o termo $f(x_n + f(x_n))$ em torno de z. Note-se que:

$$x_n + f(x_n) = (z + e_n) + \left[f'(z)e_n + \frac{1}{2}f''(\xi_n^{(1)})(e_n)^2 \right] = z + \underbrace{e_n + f'(z)e_n + \frac{1}{2}f''(\xi_n^{(1)})(e_n)^2}_{\delta_n^+}.$$

Portanto:

$$f(x_n + f(x_n)) = f(z + \delta_n^+) = f(z)^{-1} + f'(z)\delta_n^+ + \frac{1}{2}f''(\xi_n^{(2)})(\delta_n^+)^2 = f'(z)\delta_n^+ + \frac{1}{2}f''(\xi_n^{(2)})(\delta_n^+)^2,$$

para algum ponto $\xi_n^{(2)}$ entre z e $z + \delta_n^+$.

Analogamente, para expandir o termo $f(x_n - f(x_n))$ em torno de z:

$$x_n - f(x_n) = (z + e_n) - \left[f'(z)e_n + \frac{1}{2}f''(\xi_n^{(1)})(e_n)^2 \right] = z + \underbrace{e_n - f'(z)e_n - \frac{1}{2}f''(\xi_n^{(1)})(e_n)^2}_{\delta_n^-}.$$

$$f(x_n - f(x_n)) = f(z + \delta_n^-) = f(z) + f'(z) \delta_n^- + \frac{1}{2} f''(\xi_n^{(3)}) (\delta_n^-)^2 = f'(z) \delta_n^- + \frac{1}{2} f''(\xi_n^{(3)}) (\delta_n^-)^2,$$
 para algum ponto $\xi_n^{(3)}$ entre $z \in z + \delta_n^-$.

Pretende-se, agora, inserir estas expansões na expressão do método iterativo.

Para o denominador:

$$f(x_n + f(x_n)) - f(x_n - f(x_n)) = f'(z)(\delta_n^+ - \delta_n^-) + \underbrace{\frac{1}{2}f''(\xi_n^{(2)})(\delta_n^+)^2 - \frac{1}{2}f''(\xi_n^{(3)})(\delta_n^-)^2}_{O((e_n)^2)}.$$

Os dois últimos termos são quadráticos nos δ_n^{\pm} , ou seja, são polinómios de termos quadráticos, cúbicos e quárticos em e_n . Uma vez que, à medida que $e_n \to 0$, $(e_n)^2$, $(e_n)^3$ e $(e_n)^4$ convergem mais rapidamente para 0 do que e_n , desprezam-se esses termos:

$$f(x_n + f(x_n)) - f(x_n - f(x_n)) = f'(z)(\delta_n^+ - \delta_n^-) + O((e_n)^2) \approx f'(z)(\delta_n^+ - \delta_n^-).$$

Conservando apenas os termos lineares em e_n de δ_n^+ e de δ_n^- e desprezando os termos quadráticos (pelo mesmo motivo justificado acima), tem-se:

$$\delta_n^+ - \delta_n^- \approx (e_n + f'(z)e_n) - (e_n - f'(z)e_n) = 2f'(z)e_n.$$

Portanto:

$$f(x_n + f(x_n)) - f(x_n - f(x_n)) = 2(f'(z))^2 e_n + O((e_n)^2) \approx 2(f'(z))^2 e_n.$$

Para o numerador (utilizando a expansão de Taylor de $f(x_n)$):

$$2(f(x_n))^2 = 2(f'(z)e_n + O((e_n)^2))^2 = 2(f'(z))^2(e_n)^2 + O((e_n)^3) + O((e_n)^3)^2$$
$$= 2(f'(z))^2(e_n)^2 + O((e_n)^3) \approx 2(f'(z))^2(e_n)^2.$$

À medida que $e_n \to 0$, substituindo estas estimativas na expressão do método iterativo, obtémse:

$$\frac{2(f(x_n))^2}{f(x_n + f(x_n)) - f(x_n - f(x_n))} \approx \frac{2(f'(z))^2 (e_n)^2}{2(f'(z))^2 e_n} = e_n.$$

Desse modo, para n suficientemente grande, a expressão do método fica aproximadamente:

$$x_{n+1} \approx x_n - e_n = x_n - (x_n - z) = z.$$

Quanto à ordem de convergência:

$$e_{n+1} = x_{n+1} - z = \left(x_n - \frac{2(f(x_n))^2}{f(x_n + f(x_n)) - f(x_n - f(x_n))}\right) - z =$$

$$= (x_n - z) - \frac{2(f(x_n))^2}{f(x_n + f(x_n)) - f(x_n - f(x_n))} = e_n - \frac{2(f(x_n))^2}{f(x_n + f(x_n)) - f(x_n - f(x_n))} =$$

$$= e_n - \frac{2(f'(z))^2(e_n)^2 + O((e_n)^3)}{2(f'(z))^2 e_n + O((e_n)^2)} = e_n - \frac{(e_n)^2 \left[2(f'(z))^2 + O(e_n)\right]}{(e_n) \left[2(f'(z))^2 + O(e_n)\right]} = e_n - (e_n) \underbrace{\frac{2(f'(z))^2 + \alpha_n e_n}{2(f'(z))^2 + \beta_n e_n}}_{\approx 1 + O(e_n)} =$$

$$= e_n - (e_n) \left[1 + O(e_n)\right] = e_n - e_n + O((e_n)^2) = O((e_n)^2) \Leftrightarrow e_{n+1} = O((e_n)^2) \Leftrightarrow e_{n+1} = L_n(e_n)^2 \Rightarrow$$

$$\Rightarrow \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^2} = \lim_{n \to \infty} |L_n| = L, \quad \text{com } L \text{ constante finita não nula}$$

Desta forma, conclui-se que o método tem convergência de ordem 2 (convergência quadrática).

(b)

Considere-se um método com convergência supralinear. Então:

•
$$\lim_{n\to\infty} x_n = z;$$

•
$$\exists p > 1 : 0 < \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = L < \infty \Leftrightarrow$$

 $\Leftrightarrow \forall \varepsilon > 0 \quad \exists N_1 \in \mathbb{N} : \quad \forall n \ge N_1 \quad |z - x_{n+1}| \le (L + \varepsilon)|z - x_n|^p$

Antes da demonstração, pretende-se provar uma desigualdade que será útil posteriormente. Sejam $a, b \in \mathbb{R}$ e $c = \max\{|a|, |b|\}$. Então:

$$|a+b| \le |a| + |b| \le 2c \Rightarrow |a+b|^p \le (2c)^p = 2^p c^p = \begin{cases} 2^p |a|^p, & a > b \\ 2^p |b|^p, & \text{c.c.} \end{cases} \le 2^p (|a|^p + |b|^p)$$
(1)

Demonstra-se, agora, que $|z - x_{n+1}| \le |x_{n+1} - x_n|$:

$$|z - x_{n+1}| \le (L + \varepsilon)|z - x_n|^p = (L + \varepsilon) \left| (z - x_{n+1}) + (x_{n+1} - x_n) \right|^p \le 1$$

$$\le (L + \varepsilon) 2^p \left(|z - x_{n+1}|^p + |x_{n+1} - x_n|^p \right) = (L + \tilde{\varepsilon}) \left(|z - x_{n+1}|^p + |x_{n+1} - x_n|^p \right) = 1$$

$$= (L + \tilde{\varepsilon})|z - x_{n+1}|^p + (L + \tilde{\varepsilon})|x_{n+1} - x_n|^p \Leftrightarrow 1$$

$$\Leftrightarrow |z - x_{n+1}| \le (L + \tilde{\varepsilon})|z - x_{n+1}|^{p-1}|z - x_{n+1}| + (L + \tilde{\varepsilon})|x_{n+1} - x_n|^p \Leftrightarrow 1$$

$$\Leftrightarrow |z - x_{n+1}| - (L + \tilde{\varepsilon})|z - x_{n+1}|^{p-1}|z - x_{n+1}| \le (L + \tilde{\varepsilon})|x_{n+1} - x_n|^p \Leftrightarrow 1$$

$$\Leftrightarrow |z - x_{n+1}| \le \frac{(L + \tilde{\varepsilon})|x_{n+1} - x_n|^p}{1 - (L + \tilde{\varepsilon})|z - x_{n+1}|^{p-1}} = \frac{(L + \tilde{\varepsilon})|x_{n+1} - x_n|^{p-1}}{1 - (L + \tilde{\varepsilon})|z - x_{n+1}|^{p-1}}|x_{n+1} - x_n|$$

Para obter $|z - x_{n+1}| \le |x_{n+1} - x_n|$, basta que o coeficiente que multiplica $|x_{n+1} - x_n|$ seja ≤ 1 :

$$\frac{(L+\tilde{\varepsilon})|x_{n+1}-x_n|^{p-1}}{1-(L+\tilde{\varepsilon})|z-x_{n+1}|^{p-1}} \le 1 \Leftrightarrow (L+\tilde{\varepsilon})|x_{n+1}-x_n|^{p-1} \le 1-(L+\tilde{\varepsilon})|z-x_{n+1}|^{p-1} \Leftrightarrow (L+\tilde{\varepsilon})|z-x_{n+1}|^{p-1}$$

$$\Leftrightarrow (L + \tilde{\varepsilon}) \Big(|x_{n+1} - x_n|^{p-1} + |z - x_{n+1}|^{p-1} \Big) \le 1 \Leftrightarrow \Big(|x_{n+1} - x_n|^{p-1} + |z - x_{n+1}|^{p-1} \Big) \le \frac{1}{L + \tilde{\varepsilon}}$$

Agora, como p-1>0 e os termos $|x_{n+1}-x_n|$ e $|z-x_{n+1}|$ tendem para zero quando $n\to\infty$ (porque a sucessão converge), pode-se escolher N_2 suficientemente grande para garantir que $\forall n\geq N_2$ esta desigualdade é verdadeira.

Portanto, para $n \ge \max\{N_1, N_2\}$:

$$|z - x_{n+1}| \le \underbrace{\frac{(L + \tilde{\varepsilon})|x_{n+1} - x_n|^{p-1}}{1 - (L + \tilde{\varepsilon})|z - x_{n+1}|^{p-1}}_{\le 1}} |x_{n+1} - x_n| \le |x_{n+1} - x_n|$$

(c)

Na implementação da função metodolterativo, pretende-se impor uma tolerância ϵ para o erro relativo $|\delta_{n+1}|$. Pode-se utilizar a majoração do erro da alínea anterior e, uma vez que x_{n+1} converge para z, pode-se aproximar |z| por $|x_{n+1}|$:

$$|\delta_{n+1}| = \frac{|e_{n+1}|}{|z|} \approx \frac{|e_{n+1}|}{|x_{n+1}|} = \frac{|z - x_{n+1}|}{|x_{n+1}|} \le \frac{|x_{n+1} - x_n|}{|x_{n+1}|} \le \epsilon$$

```
function [iteradas] = metodoIterativo(f, x_0, epsilon, M)
    N = M+1;
    iteradas = zeros(N, 1); % Alocacao de memoria para
                             % o vetor das iteradas
    iteradas(1) = x_0;
    for n=2:N
        x_n = iteradas(n-1);
        f_x_n = f(x_n);
        x_n1 = x_n - (2*f_x_n^2) / (f(x_n + f_x_n) - f(x_n - f_x_n));
        iteradas(n) = x_n1; % x_{n+1}
        delta = abs(x_n1 - x_n) / abs(x_n1);
        if delta < epsilon || f(x_n1) == 0 % Criterios de paragem</pre>
            iteradas = iteradas(1:n); % Ao atingir um criterio de
                                       % paragem, o vetor tem mais
                                       % posicoes alocadas do que
                                       % usadas, portanto trunca-se
            break
        end
    end
end
```

Os inputs da função metodoIterativo são a função cujas raizes se pretende encontrar, a iterada inicial, a tolerância para o erro relativo e o número máximo de iterações a efetuar. O output desta função é um vetor com todas as iteradas até que:

- se atinja o número máximo de iteradas a fazer, M; ou
- $f(x_n) = 0$, pois nesse caso encontrou-se a raiz da equação; ou
- o erro relativo seja inferior à tolerância, ϵ .

(d)

```
function [iteradas, tabela] = tabela(f, x_0, epsilon, M)
    iteradas = metodoIterativo(f, x_0, epsilon, M);
    z = iteradas(end);
    e_n = abs(z - iteradas(1:end-1));
    num = e_n(2:end); % e_1 ate e_{n+1}
    den = e_n(1:end-1); % e_0 ate e_n
    K_1 = num ./ den;
    K_2 = num ./ den.^2;
    K_3 = num ./ den.^3;
    n = (0:length(iteradas)-1);
    col_e_n = [e_n; NaN];
    col_K_1 = [K_1; NaN; NaN];
    col_K_2 = [K_2; NaN; NaN];
    col_K_3 = [K_3; NaN; NaN];
    tabela = table(n, iteradas, col_e_n, col_K_1, col_K_2, col_K_3);
end
```

Na função tabela utiliza-se a função metodoIterativo da alínea anterior, sendo o *input* o mesmo. O *output* inclui, para além do vetor das iteradas, a tabela correspondente. Note-se que foram colocados manualmente valores NaN nas entradas que devem ficar vazias nas tabelas, apenas para que todas as colunas sejam vetores com a mesma dimensão, permitindo a construção das tabelas em MatLab.

```
function [] = grafico(f, iteradas, axis_, legend_)
    x_func = linspace(-2, 10, 100);
    y_func = f(x_func);
    yiteradas = f(iteradas);

figure;
    hold on;
    plot(x_func, y_func, 'k-', 'LineWidth', 2);
    scatter(iteradas, yiteradas, 20, 'r', 'filled');
    axis(axis_);
    xlabel('X');
    ylabel('Y');
    legend(legend_, 'iteradas');
    grid on;
    hold off;
end
```

A função grafico recebe como *input* uma função, as iteradas obtidas pelo método, os valores para ajuste da janela e o nome da função, e constrói o gráfico da função juntamente com os pontos das iteradas.

O primeiro exemplo escolhido foi com a função $f_1(x) = \sin(x) - \exp(x)$. O código seguinte permite constuir a tabela respetiva e o gráfico:

```
format long

f1 = @(x) sin(x) - exp(-x);
x1_0 = 0.7;
epsilon1 = 10^-5;
M1 = 10;

% Tabela
[iteradas1, tabela1] = tabela(f1, x1_0, epsilon1, M1)

% Grafico
grafico(f1, iteradas1, [0.58 0.7 -0.05 0.16], 'f1(x)')
```

O gráfico e a tabela obtidos são os seguintes:

n	x_n	$ e_n $	$\frac{ e_{n+1} }{ e_n }$	$\frac{ e_{n+1} }{ e_n ^2}$	$\frac{ e_{n+1} }{ e_n ^3}$							
0	0.70000000000000000	0.111467	0.050765	0.455432	4.08579							
1	0.582874018545673	0.005658	0.002250	0.397736	70.2872							
2	0.588520007998022	1.273598×10^{-5}	5.097818×10^{-6}	0.400268	3.14281×10^4							
3	0.588532743916935	6.492573×10^{-11}										
4	0.588532743981861											
	$p = 2 K_{\infty} \approx 0.4$											

Pelo gráfico percebe-se que, de facto, as iteradas estão a convergir para z. Apesar do reduzido número de iteradas, os valores da tabela permitem concluir que $\frac{|e_{n+1}|}{|e_n|}$ deve convergir para 0 e $\frac{|e_{n+1}|}{|e_n|^3}$ deve convergir para ∞ . Já os valores $\frac{|e_{n+1}|}{|e_n|^2}$ devem convergir para um $K_\infty \approx 0.4$, mostrando a convergência de ordem 2.

A segunda função escolhida foi $f_2(x) = x^3 - 2$. O código implementado para construção do gráfico e da tabela é semelhante ao da função anterior:

```
format long

f2 = @(x) x.^3 - 2;
x2_0 = 2;
epsilon2 = 10^-5;
M2 = 15;

% Tabela
[iteradas2, tabela2] = tabela(f2, x2_0, epsilon2, M2)

% Grafico
grafico(f2, iteradas2, [1.25 2 -0.2 6], 'f2(x)')
```

O gráfico e a tabela obtidos são os seguintes:

$\mid n \mid$	x_n	₀	$ e_{n+1} $	$ e_{n+1} $	e_{n+1}							
11	ω_n	$ e_n $	$ e_n $	$ e_n ^2$	$ e_n ^3$							
0	2.00000000000000000	0.740078	0.831099	1.122987	1.51738							
1	1.87500000000000000	0.615078	0.763988	1.242098	2.01941							
2	1.729834556821689	0.469913	0.645474	1.373602	2.92309							
3	1.563238177806971	0.303317	0.436235	1.438215	4.74162							
4	1.392238676508353	0.132317	0.162335	1.226863	9.27210							
5	1.281400912585896	0.021479	0.018825	0.876420	40.8019							
6	1.260325416620598	4.043667×10^{-4}	3.21587×10^{-4}	0.795285	1.96674×10^3							
7	1.259921179934046	1.300391×10^{-7}										
8	1.259921049894887											
	$p = 2 K_{\infty} \approx 0.8$											

Pelo gráfico percebe-se que, de facto, as iteradas estão a convergir para z. Os valores da tabela permitem concluir que $\frac{|e_{n+1}|}{|e_n|}$ deve convergir para 0 e $\frac{|e_{n+1}|}{|e_n|^3}$ deve convergir para ∞ . Já os valores $\frac{|e_{n+1}|}{|e_n|^2}$ devem convergir para um $K_\infty \approx 0.8$, mostrando a convergência de ordem 2.

A terceira função escolhida foi $f_3(x) = cos(x) - x$. O código implementado para construção do gráfico e da tabela é semelhante aos das funções anteriores:

```
format long

f3 = @(x) cos(x) - x;
x3_0 = 1;
epsilon3 = 10^-5;
M3 = 100;

% Tabela
[iteradas3, tabela3] = tabela(f3, x3_0, epsilon3, M3)

% Grafico
grafico(f3, iteradas3, [0.73 1 -0.5 0.04], 'f3(x)')
```

O gráfico e a tabela obtidos são os seguintes:

n	x_n	$ e_n $	$\frac{ e_{n+1} }{ e_n }$	$\frac{ e_{n+1} }{ e_n ^2}$	$\frac{ e_{n+1} }{ e_n ^3}$						
0	1.0000000000000000000000000000000000000	0.260914	0.027744	0.106335	0.407548						
1	0.746324095080226	0.007238	0.001576	0.217764	30.08226						
2	0.739096544625631	1.141141×10^{-5}	2.519641×10^{-6}	0.220800	1.934907×10^4						
3	0.739085133243913	2.875266×10^{-11}									
4	0.739085133215161										
	$p=2$ $K_{\infty}\approx 0.2$										

Pelo gráfico percebe-se que, de facto, as iteradas estão a convergir para z. Os valores da tabela permitem concluir que $\frac{|e_{n+1}|}{|e_n|}$ deve convergir para 0 e $\frac{|e_{n+1}|}{|e_n|^3}$ deve convergir para ∞ . Já os valores $\frac{|e_{n+1}|}{|e_n|^2}$ devem convergir para um $K_\infty \approx 0.2$, mostrando a convergência de ordem 2.

2.

Pretende-se determinar o ângulo de lançamento (θ_0) de uma bola, cujas coordenadas (x, y) da sua trajetória satisfazem a seguinte relação:

$$y = \tan(\theta_0)x - \frac{g}{2v_0^2\cos^2(\theta_0)}x^2 + y_0.$$

Dados fornecidos:

- $g = 9.81 \ m/s^2$ (aceleração gravítica);
- $v_0 = 20 \ m/s$ (velocidade inicial);
- $y_0 = 2 m$ (altura inicial);
- $x_f = 35 m$ (distância horizontal percorrida);
- $y_f = 1 m$ (altura final).

Para aplicar o método (2), descrito no enunciado, na resolução deste problema, é necessário ter em conta algumas considerações:

- 1. adaptar o problema de forma a ter uma equação do tipo f(x) = 0, à qual se pretende aplicar o método;
- 2. definir o número de soluções que se pretende encontrar;
- 3. definir um ou mais valores para uma aproximação inicial x_0 da solução.

NOTA (alteração de notação): Daqui em diante, consideramos θ o valor do ângulo de lançamento que se pretende encontrar (em vez de θ_0). Por outro lado, θ_0 , θ_1 , θ_2 , θ_3 , ..., são as iteradas calculadas através do método para encontrar os valores de θ . Portanto, θ_0 passa a denotar uma aproximação inicial para a solução θ .

Como θ se trata de um ângulo de lançamento, considera-se, sem perda de generalidade, que $\theta \in]-\frac{\pi}{2},\frac{\pi}{2}[.$

Tendo em conta a posição final da bola $(x,y) := (x_f, y_f) = (35, 1)$, temos que:

$$y = 1 \Leftrightarrow y - 1 = 0$$

seja

$$h(\theta) = y - 1 = \tan(\theta)x - \frac{g}{2v_0^2 \cos^2(\theta)}x^2 + y_0 - 1$$

Para encontrar o valor de θ , considera-se a equação $h(\theta)=0$. Portanto, temos a seguinte fórmula de recorrência:

$$\theta_{n+1} = \theta_n - \frac{2(h(\theta_n))^2}{h(\theta_n + h(\theta_n)) - h(\theta_n - h(\theta_n))} \quad , \text{ com } h(\theta) = \tan(\theta) \cdot x - \frac{gx^2}{2v_0^2 \cos^2(\theta)} + y_0 - 1$$

Antes de aplicar o método, é necessário descobrir os valores de θ_0 . Para tal, começamos por estudar o comportamento da função $h(\theta)$. Sabemos que h é diferenciável em $]-\frac{\pi}{2},\frac{\pi}{2}[$.

$$h'(\theta) = \frac{x}{\cos^2(\theta)} - \frac{gx^2}{2v_0^2} \times \frac{2\sin(\theta)}{\cos^3(\theta)} = \frac{x}{\cos^2(\theta)} \left(1 - \frac{gx}{v_0^2} \tan(\theta)\right)$$

$$h'(\theta) = 0 \xrightarrow{\frac{1}{\cos^2(\theta)}} \stackrel{\text{1}+\tan^2(\theta)}{\Leftrightarrow} x(1+\tan^2(\theta)) \left(1 - \frac{gx}{v_0^2} \tan(\theta)\right) = 0 \xrightarrow{\text{1}-\tan(\theta)} \underbrace{1 + u^2 = 0} \quad \forall \quad 1 - \frac{gx}{v_0^2} u = 0 \Leftrightarrow 0$$

$$\Leftrightarrow u = \frac{v_0^2}{gx} \Leftrightarrow \tan(\theta) = \frac{v_0^2}{gx} \Leftrightarrow \theta = \arctan\left(\frac{v_0^2}{gx}\right) = \arctan\left(\frac{20^2}{9.81 \times 35}\right) \Leftrightarrow \theta \approx 0.8614601928 \text{ rad}$$

A função h tem um ponto crítico em $p = \arctan\left(\frac{20^2}{9.81 \times 35}\right)$.

$$h'(\theta) = \underbrace{\frac{x}{x}}_{\cos^2(\theta)} \left(1 - \frac{gx}{v_0^2} \tan(\theta) \right)$$

Como $\tan(\theta)$ é uma função crescente em] $-\frac{\pi}{2},\frac{\pi}{2}[,$

- $h'(\theta) > 0$ quando $\theta \in]-\frac{\pi}{2}, p[\Rightarrow h$ é estritamente crescente
- $h'(\theta) < 0$ quando $\theta \in]p, \frac{\pi}{2}[$ $\Rightarrow h$ é estritamente decrescente

Sabendo que 0 , por exemplo, temos que:

$$h(p) \approx 6.365797337 > 0$$

 $h(0) \approx -14.0215625 < 0$
 $h\left(\frac{2\pi}{5}\right) \approx -48.58892096 < 0$

Como h é uma função contínua, pelo Teorema de Bolzano, podemos concluir que h tem duas raízes em] $-\frac{\pi}{2},\frac{\pi}{2}[$.

De seguida, vamos procurar possíveis valores para θ_0 , resolvendo a equação analiticamente:

$$y = \tan(\theta_0)x - \frac{g}{2v_0^2 \cos^2(\theta_0)}x^2 + y_0$$

$$\xrightarrow{\frac{1}{\cos^2(\theta_0)}} = 1 + \tan^2(\theta_0) \qquad y = \tan(\theta_0)x - \frac{gx^2}{2v_0^2}(1 + \tan^2(\theta_0)) + y_0$$

$$\stackrel{u = \tan(\theta_0)}{\Leftrightarrow} \frac{gx^2}{2v_0^2}u^2 - xu + \frac{gx^2}{2v_0^2} + y - y_0 = 0$$

$$\Leftrightarrow u = \frac{x \pm \sqrt{x^2 - 4 \times \frac{gx^2}{2v_0^2}\left(\frac{gx^2}{2v_0^2} + y - y_0\right)}}{\frac{gx^2}{v_0^2}}$$

$$\Leftrightarrow u = \frac{x \pm \sqrt{x^2 - \left(\frac{gx^2}{v_0^2}\right)^2 - \frac{2(y - y_0)gx^2}{v_0^2}}}{\frac{gx^2}{v_0^2}}$$

$$\Leftrightarrow u = \frac{v_0^2}{gx} \pm \frac{v_0^2}{gx^2}\sqrt{x^2\left(1 - \left(\frac{gx}{v_0^2}\right)^2 - \frac{2(y - y_0)g}{v_0^2}\right)}$$

$$\Leftrightarrow u = \frac{v_0^2}{gx}\left(1 \pm \sqrt{1 - \left(\frac{gx}{v_0^2}\right)^2 - \frac{2g(y - y_0)}{v_0^2}\right)}$$

$$\Leftrightarrow u \approx 0.514010186598950 \qquad \lor \quad u \approx 1.815973794761178$$

 $\Leftrightarrow \theta_0 \approx \arctan(0.514010186598950) \qquad \lor \quad \theta_0 \approx \arctan(1.815973794761178)$
 $\Leftrightarrow \theta_0 \approx 0.474792835517415 \qquad \lor \quad \theta_0 \approx 1.067439833438722$

Podemos verificar que $0.474792835517415 \approx \frac{\pi}{6}$ e $1.067439833438722 \approx \frac{\pi}{3}$, por isso podemos usar estes dois valores como aproximações iniciais para θ_0 . Tendo em conta que

$$h(\theta) = \tan(\theta)x - \frac{gx^2}{2v_0^2\cos^2(\theta)} + y_0 - 1 \Rightarrow h(u) = ux - \frac{gx^2}{2v_0^2}(1 + u^2) + y_0 - 1,$$

para aplicar o método iterativo abordado pode-se usar o programa Matlab elaborado na alínea (c) da pergunta 1, com os seguintes dados de entrada:

- função h(u) que define a equação h(u) = 0;
- aproximações iniciais u_0 para a solução. Por exemplo, podemos considerar

$$\theta_0 = \frac{\pi}{6} \Leftrightarrow u_0 = \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$
 e $\theta_0 = \frac{\pi}{3} \Leftrightarrow u_0 = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$

- uma tolerância ϵ para o erro relativo, por exemplo $\epsilon = 10^{-6}$;
- o número máximo de iterações M a efetuar, por exemplo M=10.

Utilizou-se o seguinte código:

```
format long
             % aceleracao gravitica (m/s^2)
% velocidade inicial (m/s)
g = 9.81;
v = 20;
y_0 = 2;
               % altura inicial (m)
                % distancia final (m)
x = 35;
  Iteradas iniciais para u (correr o codigo para cada uma das
   iteradas):
%u_0 = sqrt(3)
u_0 = sqrt(3)/3
% Funcao h:
h = 0(u) 35*u - ((g.*(x.^2))./(2.*(v.^2))).*(1 + u^2)+y_0-1;
% Funcao elaborada na alinea c) que implementa o metodo pedido:
metodoIterativo(h,u_0,1e-6,10) % Consideramos epsilon=10^(-6) e M=10
% Resultados obtidos:
u = 1.815973794761178
                                  quando u_0 = sqrt(3)
 u = 0.514010186598950
                                  quando u_0 = sqrt(3)/3
```

Antes de correr o código, é necessário retirar o símbolo % antes de uma das atribuições à variável u_0. Portanto, temos que

```
u = 0.514010186598950 \lor u = 1.815973794761178 \Leftrightarrow \theta = 0.474792835517415 \lor \theta = 1.067439833438722
```

Obtemos, assim, os possíveis valores do ângulo de lançamento θ .

Por fim, criaram-se dois gráficos que ilustram a trajetória da bola para cada um dos valores obtidos para o ângulo de lançamento. O código utilizado foi o seguinte:

```
format long
% Dados:
g = 9.81;
               % aceleracao gravitica (m/s^2)
v = 20;
               % velocidade inicial (m/s)
               % altura inicial (m)
y_0 = 2;
xf = 35;
                % distancia final (m)
% Angulos de lancamento (radianos); correr o codigo para cada um dos
   angulos:
%theta = 0.474792835517415;
%theta = 1.067439833438722;
% Definir as abcissas dos pontos que vao ser representados
x = 0:0.1:xf;
\% Expressao que define a relacao de x (distancia em m) e y (altura em
  m)
y = tan(theta).*x - (g.*(x.^2))./(2.*(v.^2).*(cos(theta)).^2) + y_0;
hold on
plot(x,y, 'b--'); % grafico da altura da bola em funcao da distancia
                    percorrida
title('Trajetoria da bola, definida pelas coordenadas (x,y)')
xlabel('x (m)')
ylabel('y (m)')
legend('Trajetoria')
grid on
axis([0 36 0 18]); % ajustar os limites da janela de visualizacao
% Criar uma visualizacao da bola
bola = plot(NaN, NaN, 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g',
   LineWidth', 2, 'HandleVisibility', 'off');
% Construcao de um grafico que permite percepcionar a trajetoria da
  bola
for i = 1:length(x)-1
    plot(x(i:i+1), y(i:i+1), 'r', 'LineWidth', 2, 'HandleVisibility',
       'off'); % Grafico da trajetoria percorrida
    set(bola, 'XData', x(i), 'YData', y(i));  % Atualizar a posicao
                                                 da bola
    pause(0.005) % Pequena pausa para efeito de animacao
end
```

Antes de correr o código, é necessário retirar o símbolo % que está antes de uma das atribuições à variável theta.

Estes gráficos são dinâmicos, por isso quando são visualizados no Matlab é possível observar uma representação dinâmica do percurso percorrido pela bola.

Figure 2: Trajetória da bola para $\theta=0.474792835517415.$

Figure 3: Trajetória da bola para $\theta = 1.067439833438722$.

Figure 4: Trajetória da bola para os dois valores do ângulo de lançamento.