Lecture 1: Introduction to Reinforcement learning. Cross-Entropy Method.

Anton Plaksin

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_0, A_0, S_1, A_1, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_0, A_0, S_1, A_1, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- \bullet S is a state space
- \bullet \mathcal{A} is an action space
- \bullet \mathcal{P} is a transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 an initial state probability function
- \mathcal{R} a reward function

$$\mathcal{R}(s, a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — discount coefficient

MDP with final states

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

The agent's goal is to maximize

$$G = \sum_{t=0}^{\infty} \gamma^t R_t$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

• S_F — a set of final states

The agent's goal is to maximize

$$G = \sum_{t=0}^{T} \gamma^t R_t, \quad \text{if} \quad S_T \in \mathcal{S}_F$$

or

$$G = \sum_{t=0}^{\infty} \gamma^t R_t \quad \text{if} \quad S_t \notin \mathcal{S}_F$$

Example: Breakout Atari Game

- States: pixels
- Actions: \rightarrow , \leftarrow , <0»
- Rewards: points
- Final states: when the ball falls down

Example: Cartpole

- States: \mathbb{R}^4
- Actions: \rightarrow , \leftarrow , «0»
- \bullet Rewards: +1 for each step
- Final states: when the pole falls down

Example: Humanoid

- States: \mathbb{R}^{26}
- Actions: \mathbb{R}^6
- Rewards: +1 for each step
- Final states: when the Humanoid falls down

OpenAI Gym Interface

$initial_stete = env.reset()$

- initial_stete an initial state $S_0 \sim \mathcal{P}_0$
- env.state = initial stete

$next_stete$, reward, done, info = env.step(action)

- action a current action A_t
- next_stete a next state $S_{t+1} \sim \mathcal{P}(S_{t+1}|S_t, A_t)$
- reward a current reward $R_t = \mathcal{R}(S_t, A_t)$
- done the inclusion $S_{t+1} \in \mathcal{S}_F$ holds or not
- info an additional information
- \bullet env.state = next stete

Stochastic policy

$$\pi(a|s) \in [0,1], \quad a \in \mathcal{A}, \quad s \in \mathcal{S}$$

- Set π
- Agent starts from the initial state $S_0 \sim \mathcal{P}_0$
- acts $A_0 \sim \pi(\cdot|S_0)$
- gets the reward $R_0 = \mathcal{R}(S_0, A_0)$ and goes to the next state $S_1 \sim \mathcal{P}(\cdot|S_0, A_0)$
- acts $A_1 \sim \pi(\cdot|S_1)$
- gets the reward $R_1 = \mathcal{R}(S_1, A_1)$ and goes to the next state $S_2 \sim \mathcal{P}(\cdot|S_1, A_1)$
- . . .
- $\tau = \{S_0, A_0, S_1, A_1, S_2, A_2, \ldots\}, \quad G(\tau) = \sum_{t=0}^{\infty} \gamma^t \mathcal{R}(S_t, A_t)$

The Reinforcement Learning problem

$$\mathbb{E}_{\pi}[G] \longrightarrow \max_{\pi}$$

What is $\mathbb{E}_{\pi}[G]$?

$$\tau = \{S_0, A_0, S_1, A_1, S_2, A_2, \ldots\}$$

$$\mathbb{P}(\tau) = \mathbb{P}(S_0)\mathbb{P}(A_0|S_0)\mathbb{P}(S_1|S_0, A_0)
\times \mathbb{P}(A_1|S_1)\mathbb{P}(S_2|S_1, A_1)
\times \mathbb{P}(A_2|S_2)\mathbb{P}(S_3|S_2, A_2)
\times \cdots$$

$$\mathbb{P}(\tau|\pi) := \mathcal{P}_0(S_0) \prod_{t=0}^{\infty} \pi(A_t|S_t) \mathcal{P}(S_{t+1}|S_t, A_t)$$

$$\mathbb{E}_{\pi}[G] = \sum_{\tau} G(\tau) \mathbb{P}(\tau | \pi) \quad \text{or} \quad \mathbb{E}_{\pi}[G] = \int_{\tau} G(\tau) \mathbb{P}(d\tau | \pi)$$

How to calculate $\mathbb{E}_{\pi}[G]$?

If \mathcal{P} , \mathcal{P}_0 , π are deterministic

$$\mathbb{E}_{\pi}[G] = G(\tau)$$

General case

$$\mathbb{E}_{\pi}[G] \approx \frac{1}{K} \sum_{k=1}^{K} G(\tau_k), \quad \tau_k \sim \{\mathcal{P}, \mathcal{P}_0, \pi\}$$

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- S a finite (|S| = n) state space
- A a finite (|A| = m) action space
- \bullet \mathcal{P} a deterministic transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 a deterministic initial state function
- \mathcal{R} a reward function

$$\mathcal{R}(s, a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — discount coefficient

Reinforcement learning as an optimization problem

State and action spaces

$$S = \{1, 2, \dots n\}, \quad A = \{1, 2, \dots m\}$$

Policy

$$\pi(a|s) = \Pi_{a,s}, \quad a \in \mathcal{A}, \quad s \in \mathcal{A}$$

Finite-dimensional optimization problem

$$\max_{\Pi} f(\Pi),$$

где
$$f(\Pi) = \mathbb{E}_{\pi}[G]$$

Cross-Entropy Method. General scheme

On each iteration:

- Policy evaluation. Seeking $E_{\pi}[G]$
- Policy improvement. Seeking $\pi' \geq \pi$ ($E_{\pi'}[G] \geq E_{\pi}[G]$)

Quantile (Percentile)

Let $q \in (0,1)$. q-quantile of the numbers G_1, G_2, \ldots, G_K is a number γ_q such that

$$\begin{aligned} &\frac{|\{G_k, k \in \overline{1, K} \colon G_k \leq \gamma_q\}|}{|\{G_k, k \in \overline{1, K}\}|} \geq q \\ &\frac{|\{G_k, k \in \overline{1, K} \colon G_k \geq \gamma_q\}|}{|\{G_k, k \in \overline{1, K}\}|} \geq 1 - q \end{aligned}$$

Let $p \in [0, 100]$. p-percentile is (p/100)-quantile

Cross-Entropy Method

Let π_0 be an initial (uniform) policy, N be a number of iterations, $q \in (0,1)$ — parameter for defining elite trajectories. For each $n \in \overline{0,N}$, do

• (Policy evaluation) Acting in accordance with the current policy π_n , get K trajectories τ_k , $k \in \overline{1,K}$ and total rewards $G(\tau_k)$. Evaluate π_n :

$$\mathbb{E}_{\pi_n}[G] \approx V_{\pi_n} := \frac{1}{K} \sum_{k=1}^K G(\tau_k)$$

• (Policy improvement) Select «elite» trajectories $\mathcal{T}_n = \{\tau_k, k \in \overline{1,K} \colon G(\tau_k) > \gamma_q\} \ (\gamma_q - q$ -quantile of the numbers $G(\tau_k), \ k \in \overline{1,K}$). If $\mathcal{T}_n \neq \emptyset$, then update policy as

$$\pi_{n+1}(a|s) = \frac{\text{number of pairs}(a|s) \text{ in trajectories from } \mathcal{T}_n}{\text{number of } s \text{ in trajectories from } \mathcal{T}_n}$$

What are the weaknesses of the algorithm?

- Requires a large number of sessions
- The policy update is highly dependent on randomness
- Problems with the stochastic environments
- State and action spaces must be finite

Weakness: The policy update is highly dependent on randomness

Solution:

• Laplace smoothing

$$\pi_{n+1}(a|s) = \frac{|(a|s) \in \mathcal{T}_n| + \lambda}{|s \in \mathcal{T}_n| + \lambda|\mathcal{A}|}, \quad \lambda > 0$$

Policy smoothing

$$\pi_{n+1}(a|s) \leftarrow \lambda \pi_{n+1}(a|s) + (1-\lambda)\pi_n(a|s), \quad \lambda \in (0,1]$$

Weakness: Problems with the stochastic environments

Solution:

By stochastic policy π_n , sample deterministic policies $\pi_{n,m}$, $m \in \overline{1, M}$. According to them, get trajectories $\tau_{m,k}$, $m \in \overline{1, M}$, $k \in \overline{1, K}$. Define

$$V_{\pi_{n,m}} = \frac{1}{K} \sum_{k=1}^{K} G(\tau_{m,k})$$

Select «elite» trajectories $\mathcal{T}_n = \{\tau_{m,k}, m \in \overline{1, M}, k \in \overline{1, K} : V_{\pi_{n,m}} > \gamma_q \}$ $(\gamma_q - q$ -quantile of the numbers $V_{\pi_{n,m}}, m \in \overline{1, M})$.

