مساله ۴۳. فرض کنید d_n معرف تعداد دنباله های n تایی متشکل از مولفه های e^1 باشد بطوریکه دست دنباله مورد نظر نه شامل دو مولفه متوالی ۱ باشد و نه شامل دو مولفه متوالی ۲ یک رابطه بازگشتی d_n به دست آورید.

حل:

$$d_n = d_{n-1} + 2x_n$$
$$x_n = x_{n-1} + d_{n-2}$$
$$x_n$$

2.

0	1			

$$2x_n = d_n - d_{n-1}$$

$$2x_n - 2x_{n-1} = 2d_{2n-2}$$
1

$$d_n - d_{n-1} - (d_{n-1} - d_{n-2}) = 2d_{n-2}$$

 $d_n = 2d_{n-1} + d_{n-2}$, $n \ge 2$
 $d_1 = 3$, $d_0 = 1$

تمرین ۴۴.بنابر تعریف یک پرچم متشکل از n نوار افقی است که در آن هر نوار یکی از s رنگ قرمز ،سفید و آبی را داراست ، هیچ دو نوار مجاوری یک رنگ نیستند و رنگ نوار فوقانی متفاوت از رنگ نوار تحتانی است. اگر a_n معرف تعداد پرچمهای دارای s نوار رنگی باشد رابطه ای بازگشتی برای s

(Dq(x,n,d) دیسک ۴۵.(رابطه بازگشتی برای تعداد نقاط دیسک

و $\mathbf{x} \in A^n$ و اعداد صحیح مفروض در نظر بگیرید و کلیه نقاط $\mathbf{q} > \mathbf{2}$ که $\mathbf{q} > \mathbf{0}$

را مورد توجه قرار دهید . فاصله همینگ دو نقطه $x,y\in A^n$ بنابر تعریف ، مساوی $A=\{0,1,...,q-1\}$ تعداد مولفه های متمایز آن دو نقطه تعریف می شود و یک Dq(x,n,d) بنابر تعریف به صورت:

$$Dq(x, n, d) := \{ y \in A^n : d(x, y) \le d \}$$

مشخص ميشود.

بيابيد.

فرض کنید $|Dq(x,n,r)| \coloneqq |Dq(x,n,r)|$ و رابطه ای بازگشتی برای |Dq(x,n,r)| به دست آورید.

$$(Aq(0,r)=[r\geq 0]\leftarrow$$
شرط اولیه (شرط اولیه)

تمرین ۴۶ رابطه بازگشتی برای عدد استرلینگ نوع دو $S(n,k)={n \choose k}$ (تعداد راه های افراز به kجز را پیدا کنید)

$$\binom{\mathbf{n}}{\mathbf{k}} = \binom{\mathbf{n} - \mathbf{1}}{\mathbf{k} - \mathbf{1}} + \binom{\mathbf{n} - \mathbf{1}}{\mathbf{k}}$$

	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$
0	1	0	0	0	0
1	0	1	0	0	0
2	0	1	1	0	0
3	0	1	3	1	0
4	0	1	7	6	1
5	0	1	15	25	10

تمرین ۴۷. ثابت کنید

$$x^n = \sum_{0 \le h \le n} \langle {n \atop h} \rangle x^{\underline{h}}$$

$$\sum_{h} h! \langle {}_{h}^{n} \rangle \langle {}_{h}^{n} \rangle = \sum_{h} \langle {}_{h}^{n} \rangle x^{\underline{h}}$$
خل:حل

اثبات به استقرا روی **n** :

$$P(0)$$
بر قرار است

$$P(n-1)$$
 فرض استقرا

$$x^{n-1} = \sum_{h} {n-1 \choose h} x^{\underline{h}}$$

$$x^{n} = x x^{n-1} = \sum_{h} {n-1 \choose h} x^{\underline{h}} x = \sum_{h} {n-1 \choose h} x^{\underline{h}}$$

$$\sum_{h} {n-1 \choose h} x^{\underline{h}} (x-h) + \sum_{h} h {n-1 \choose h} x^{\underline{h}} = \sum_{h} {n-1 \choose k-1} x^{\underline{h}}$$

$$+ \sum_{h} h {n-1 \choose h} x^{\underline{h}} = \sum_{h} ({n-1 \choose k-1} + h {n-1 \choose h}) x^{\underline{h}}$$

تمرین A A. B(n) عدد بل برابر است با تعداد افراز های B(n) به عبارت دیگر:

$$B(n) = \sum_{0 \le k \le n} \binom{n}{k}$$

یک رابطه بازگشتی است.