Grafos

Introdução

- \hookrightarrow Um grafo é uma estrutura de dados formada por vértices e arestas
- → Uma aresta é formada por dois vértices

Propriedades

Grajos Direcionados

- Existe uma orientação quanto ao sentido da aresta
- Se uma aresta liga A e B, podemos ir de A à B, mas não o contrário.
- $(u, v) \neq (v, u)$

→ Grajos Não Direcionados

- A aresta não possui orientação, logo os vértices não são ligados por direção.
- Podemos ir de A à B, e de B à A da mesma forma
- (u, v) = (v, u)

4 Ciclo

- É um caminho que começa e termina no mesmo vértice
- Um laço é um ciclo de comprimento l

→ Grafo Acíclico: Não contém ciclos simples (onde cada vértice aparece apenas uma vez cada)

→ Arestas múltiplas:

- Também chamada de multigrafo
- É um grafo que permite mais de uma aresta conectando o mesmo par de vértices
- Messe caso, as arestas são ditas paralelas

Tipos de Grafos

→ Grafo Trivial: É um grafo com um único vértice, sem arestas.

→ Grafo Simples: É um grafo não direcionado, sem laços e sem arestas paralelas

→ Grafo Completo: É um grafo simples onde cada vértice se conecta com todos os outros vértices

- → Subgrago: Um grafo "Gs, Vs, As" é chamado de subgrafo de G(V, A) se:
 - Vs está contido em V
 - As está contido em A

→ Grajo bipartido:

- Um grafo cujos vértices podem ser divididos em dois conjuntos.
- Nesses casos, as arestas ligam os vértices que estão em conjuntos diferentes, nunca ligando vértices do mesmo conjunto.

→ Grafo Conexo: Existe um caminho partindo qualquer vértice até qualquer outro vértice do grafo.

→ Grafo Desconexo: Existe um caminho partindo qualquer vértice até qualquer outro vértice do grafo.

→ Grafos Isomorgos: Dois grafos são ditos isomorfos se existe uma função que faça mapeamento de vértices e arestas de modo que os dois grafos se tornem coincidentes

→ Grafos Ponderados: É o grafo que possui peso atribuído à suas arestas

→ Grajos Hamiltonianos:

- É o grafo que possui um caminho que visita cada vértice apenas uma vez
- Sua detecção é árdua
- Um ciclo hamiltoniano é o ciclo que visita cada vértice apenas uma vez

→ Grafos Eulerianos: É o grafo que possui um ciclo que visita cada aresta apenas uma vez

→ Grafos Semi-Eulerianos: É o grafo que possui um caminho que visita cada aresta apenas uma vez

Representação de Grafos

→ Matriz de Adjacência

- Uma matriz NxN é utilizada para armazenar o grafo, onde N é o número de vértices
- Alto custo computacional $O(n^2)$
- Uma aresta é representada por uma marca na posição (i, j) da matriz
- Aresta liga o vértice i ao j

Grafo:

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1

Nigrajo:

	1	2	3	4
1	0	1	0	0
2	0	0	1	1
3	0	0	0	1
4	0	0	0	1

→ lista de Adjacência Grajo:

Nigrajo:

