MA5114: Riemannian Geometry

Dr. Arjun Paul

Assistant Professor
Department of Mathematics and Statistics
Indian Institute of Science Education and Research Kolkata,
Mohanpur - 741 246, Nadia,
West Bengal, India.
Email: arjun.paul@iiserkol.ac.in.

Version: August 4, 2024 at 10:50pm (IST).

Disclaimer: This note will be updated from time to time. If you find any potential mistakes, please bring it to my notice.

Contents

Li	st of	Symbol	S	v		
1 Riemannian Geometry						
	1.1	Reviev	v of Manifold Theory	1		
		1.1.1	Real manifold	1		
		1.1.2	Complex manifold	2		
	1.2	Riema	nnian Manifold	2		
	1.3	Vector	bundles	3		
		1.3.1	Real and complex manifolds	3		
	1.4	Vector	bundles	3		
		1.4.1	Tangent space	3		
		1.4.2	Tangent bundle	7		
		1.4.3	Operations on vector bundles	7		
	1.5	Conne	ction and curvature	7		
		1.5.1	Directional derivative in Euclidean space	7		
		1.5.2	Flat connection and monodromy	7		
	1.0	A CC:		7		

List of Symbols

Ø	Empty set
\mathbb{Z}	The set of all integers
$\mathbb{Z}_{>0}$	The set of all non-negative integers
\mathbb{N}^{-}	The set of all natural numbers (i.e., positive integers)
Q	The set of all rational numbers
\mathbb{R}	The set of all real numbers
\mathbb{C}	The set of all complex numbers
<	Less than
\leq	Less than or equal to
>	Greater than
\geq	Greater than or equal to
\mathbb{C} $<$ $<$ $<$ $<$ $<$ $<$ $<$ \subseteq \subseteq \exists \exists \forall \in \notin Σ Π	Proper subset
\subseteq	Subset or equal to
\subsetneq	Subset but not equal to (c.f. proper subset)
3	There exists
∄	Does not exists
\forall	For all
\in	Belongs to
∉	Does not belong to
\sum	Sum
	Product
±	Plus and/or minus
$\infty_{\underline{}}$	Infinity
\sqrt{a}	Square root of <i>a</i>
U	Union
	Disjoint union
<u> </u>	Intersection
$A \rightarrow B$	A mapping into B
$a \mapsto b$	a maps to b
\hookrightarrow	Inclusion map
$A \setminus B$	A setminus B
\cong	Isomorphic to
$A := \dots$	A is defined to be
	End of a proof

Symbol	Name	Symbol	Name
α	alpha	β	beta
γ	gamma	δ	delta
π	pi	φ	phi
φ	var-phi	ψ	psi
ϵ	epsilon	ε	var-epsilon
ζ	zeta	η	eta
θ	theta	ι	iota
κ	kappa	λ	lambda
μ	mu	ν	nu
v	upsilon	ρ	rho
Q	var-rho	$ ho \ \xi$	xi
σ	sigma	τ	tau
χ	chi	ω	omega
Ω	Capital omega	Γ	Capital gamma
Θ	Capital theta	Δ	Capital delta
Λ	Capital lambda	Ξ	Capital xi
Σ	Capital sigma	П	Capital pi
Φ	Capital phi	Ψ	Capital psi

Some of the useful Greek letters

Chapter 1

Riemannian Geometry

MA5114 Syllabus

Metric: Definition of Riemannian metric and Riemannian manifolds.

Connections: Definition, Levi-Civita connection, covariant derivatives, parallel transport.

Geodesics: The concepts of geodesics, geodesics in the upper half plane, first variational formula, local existence and uniqueness of geodesics, the exponential map, Hopf-Rinow theorem.

Curvature: Curvature tensor and fundamental form, computation of curvature with examples, Ricci, sectional and scalar curvature.

References:

- 1. Loring W. Tu, *Differential geometry: Connections, curvature, and characteristic classes*, Graduate Texts in Mathematics, 275. Springer, Cham, 2017. xvi+346 pp.
- 2. John M. Lee, Introduction to Riemannian Manifolds, *Graduate Texts in Mathematics*, Springer Cham. doi:10.1007/978-3-319-91755-9.

1.1 Review of Manifold Theory

1.1.1 Real manifold

A topological space X is said to be *locally Euclidean* if every point $x \in X$ has an open neighbourhood U_x such that there is a homeomorphism φ_{U_x} from U_x onto an open subset of \mathbb{R}^{n_x} , for some $n_x \in \mathbb{N}$. The pair (U_x, φ_{U_x}) is called a coordinate chart of X at x. If $\varphi_{U_x}(x) = 0$, we say that (U_x, φ_{U_x}) is a coordinate chart on X centered at x. If $n_x = n$, for all $x \in X$, then X is said to have *dimension* n. A *topological manifold* (of dimension n) is a Hausdorff second countable locally Euclidean space (of dimension n).

Let M be a C^{∞} manifold over \mathbb{R} .

1.1.2 Complex manifold

1.2 Riemannian Manifold

Let V be a vector space over \mathbb{R} . Recall that an *inner product* on V is a \mathbb{R} -bilinear map

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

which is

- (i) symmetric, i.e., $\langle v, w \rangle = \langle w, v \rangle$, for all $v, w \in V$, and
- (ii) positive definite, i.e., $\langle v, v \rangle \geq 0$, for all $v \in V$, with equality holds if and only if v = 0.

For example, the Euclidean inner product on the \mathbb{R} -vector space \mathbb{R}^n is given by the formula (dot product)

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle := \sum_{j=1}^n x_j y_j,$$

for all $(x_1, ..., x_n)$, $(y_1, ..., y_n) \in \mathbb{R}^n$. We generally use this to the *length* of a vector $v \in \mathbb{R}^n$ to be the real number

$$||v|| := \sqrt{\langle v, v \rangle},$$

and the angle between two non-zero vectors u and v in \mathbb{R}^n to be the real number $\theta \in [0, \pi] \subset \mathbb{R}$ such that

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

The *arc length* of a parametrized curve $\gamma : [a, b] \to \mathbb{R}^n$ is defined to be the real number

$$s:=\int_a^b \|\gamma'(t)\|dt,$$

where $\gamma'(t)$ is the derivative of γ with respect to t.

Definition 1.2.1. A *Riemannian metric* on M is a C^{∞} section h of the vector bundle $TX \otimes_{\mathbb{C}} \overline{TX}$ such that for each $x \in M$ we have $h_x(\xi_x \otimes \overline{\xi}_x) > 0$, for all C^{∞} vector field ξ defined on an open neighbourhood of x.

1.3. Vector bundles 3

1.3 Vector bundles

1.3.1 Real and complex manifolds

1.4 Vector bundles

1.4.1 Tangent space

Let M be a C^{∞} manifold. Let τ_M be the set of all open subsets of M. For a non-empty open subset U of M, we denote by $C^{\infty}_M(U)$ the set of all real valued C^{∞} functions $U \to \mathbb{R}$ on U. Note that, $C^{\infty}_M(U)$ is an \mathbb{R} -algebra with respect to the point-wise addition and multiplication of real valued functions on U. For $U = \emptyset$, we set $C^{\infty}_M(\emptyset) = 0$, the zero \mathbb{R} -algebra. Given two open subsets $U, V \subseteq M$, the restriction of functions defines an \mathbb{R} -algebra homomorphism

$$res_{U,V}: C_M^{\infty}(U) \to C_M^{\infty}(V), f \mapsto f|_V.$$

that satisfies the following properties:

- (i) $res_{U,U} = Id_{C_{M_n}^{\infty}(U)}$, for all open subset U of M.
- (ii) $res_{V,W} \circ res_{U,V} = res_{U,W}$, for all open subsets U, V, W of M with $W \subseteq V \subseteq U$.
- (iii) Let U be an open subset of M and let $\{V_i : i \in I\}$ be an open cover of U. If $f \in C^{\infty}_{M,p}(U)$ satisfies $res_{U,V_i}(f) = 0$, for all $i \in I$, then f = 0.
- (iv) If for each $i \in I$ we are given $f_i \in C^{\infty}_{M,p}(V_i)$ such that $f_i\big|_{V_i \cap V_j} = f_j\big|_{V_i \cap V_j'}$ for all $i, j \in I$, then there exists a (unique) $f \in C^{\infty}_M(U)$ such that $f\big|_{V_i} = f_i$, for all $i \in I$.

In other words,

$$C_M^{\infty}: \tau_M \to Alg_{\mathbb{R}}$$

is a sheaf of \mathbb{R} -algebras on M.

Consider the set of all pairs (U,f), where U is an open neighbourhood of p in M and $f:U\to\mathbb{R}$ is a C^∞ function. Given any two such pairs (U,f) and (V,g), we define $(U,f)\sim (V,g)$, if there exists an open neighbourhood W of p in M such that $W\subseteq U\cap V$ and $f|_W=g|_W$. Note that \sim is an equivalence relation on the set of all such pairs (U,f). The \sim -equivalence class of (U,f) is denote by $\langle (U,f) \rangle$, and is called the *germ of* f at p. Let $C^\infty_{M,p}$ be the set of all germs of C^∞ functions defined on some open neighbourhood of p in M. Note that $C^\infty_{M,p}$ is an \mathbb{R} -algebra with respect to the point-wise addition and multiplication of \mathbb{R} -valued functions. Moreover, for each open neighbourhood U of p in M, we have a natural \mathbb{R} -algebra homomorphism

$$\varphi_{U,p}: C_M^{\infty}(U) \longrightarrow C_{M,p}^{\infty}$$

given by sending $f \in C_M^{\infty}(U)$ to its equivalence class $\langle (U, f) \rangle \in C_{M, p}^{\infty}$. Then for given open neighbourhoods U, V of p in M with $V \subseteq U$, we have the following commutative diagram of

R-algebra homomorphisms

Let $\tau_{M,p}$ be the set of all open neighbourhoods of p in M. Given $U, V \in \tau_{M,p}$, we write $U \leq V$ if $V \subseteq U$. Given any \mathbb{R} -algebra A and family of \mathbb{R} -algebra homomorphisms $\{\psi_{U,p} : C_M^\infty(U) \to A \mid U \in \tau_{M,p}\}$ satisfying the condition

$$\psi_{V,p} \circ res_{U,V} = \psi_{U,p}, \tag{1.4.1}$$

for each pair of open neighbourhoods $V \subseteq U$ of p in M, the map

$$\psi: C^{\infty}_{M, p} \to A$$
,

which sends $\langle (U,f) \rangle \in C^{\infty}_{M,p}$ to $\psi_{U,p}(f) \in A$, is a well-defined (c.f (1.4.1)) \mathbb{R} -algebra homomorphism satisfying

$$\psi \circ \varphi_{U,p} = \psi_{U,p}, \ \forall \ U \in \tau_{M,p}.$$

In other words,

$$C_{M,p}^{\infty} = \underset{U \in \tau_{M,p}}{\varinjlim} C_{M}^{\infty}(U),$$

the direct limit of the directed system of \mathbb{R} -algebras $\Big(\{C_M^\infty(U)\}_{U\in\tau_{M,p}}, \{\mathit{res}_{U,V}\}_{V\subseteq U\in\tau_{M,p}}\Big)$.

For notational simplicity, sometimes we express the germ of (U, f) by its representing C^{∞} function f only. Evaluation of functions at p gives a surjective \mathbb{R} -algebra homomorphism

$$ev_p: C^{\infty}_{M,p} \to \mathbb{R}, \ f \mapsto f(p),$$

with kernel

$$\mathfrak{m}_p := \{ f \in C^{\infty}_{M,p} : f(p) = 0 \}.$$

Note that \mathfrak{m}_p is a maximal ideal of $C_{M,p}^\infty$ because \mathbb{R} is a field. Since any element $f \in C_{M,p}^\infty \setminus \mathfrak{m}_p$ satisfies $f(p) \neq 0$, we can find a small enough open neighbourhood, say V, of p in M such that $f\big|_V$ takes non-zero values on V. Therefore, f is a unit in $C_{M,p}^\infty$. This shows that, \mathfrak{m}_p is the unique maximal ideal of $C_{M,p}^\infty$. Thus, $(C_{M,p}^\infty,\mathfrak{m}_p,\mathbb{R})$ is a local \mathbb{R} -algebra with the maximal ideal \mathfrak{m}_p and the residue field \mathbb{R} .

Definition 1.4.2. A \mathbb{R} -derivation at a point $p \in M$ is a \mathbb{R} -linear map $D : C_{M, p}^{\infty} \to \mathbb{R}$ that satisfies the *Leibniz rule*:

$$D(f \cdot g) = (Df)g(p) + f(p)Dg,$$

for all $f,g \in C^{\infty}_{M,p}$. A *tangent vector* on M at $p \in M$ is a derivation on M at p. The set of all tangent vectors on M at p is denoted by T_pM .

Exercise 1.4.3. Let $D: C_{M,v}^{\infty} \to \mathbb{R}$ be a \mathbb{R} -derivation. Think of a real number $c \in \mathbb{R}$ as an

1.4. Vector bundles 5

element of $C_{M,p}^{\infty}$ by considering the germ at p of the constant C^{∞} function $c:M\to\mathbb{R}$ that sends all points of M to the real number c. Show that D(c)=0.

Moreover, for any $f \in C^{\infty}_{M, p}$, we have $ev_p(f - f(p)) = 0$ so that $f - f(p) \in \mathfrak{m}_p$. Since the composite map

$$\mathbb{R} \stackrel{\alpha \mapsto c_{\alpha}}{\longrightarrow} C_{M,p}^{\infty} \stackrel{f \mapsto f(p)}{\longrightarrow} \mathbb{R}$$

is the identity map on \mathbb{R} , it follows that the natural map

$$C_{M,p}^{\infty} \longrightarrow \mathbb{R} \oplus \mathfrak{m}_p, \ f \longmapsto (f(p), f - f(p)),$$

is an isomorphism of R-vector spaces.

The restriction of D on $\mathfrak{m}_p \subset C^{\infty}_{M,p}$ is a \mathbb{R} -linear map, also denoted by the same symbol,

$$D:\mathfrak{m}_p\to\mathbb{R}.$$

If $f, g \in \mathfrak{m}_p$, then by Leibniz rule we see that

$$D(fg) = D(f)g(p) + f(p)D(g) = 0.$$

Therefore, $D(\mathfrak{m}_p^2) = \{0\}$, and so D gives rise to a \mathbb{R} -linear map

$$v_D:\mathfrak{m}_p/\mathfrak{m}_p^2\to\mathbb{R}.$$

Thus we obtain a map

$$v: T_pM \to \operatorname{Hom}_k(\mathfrak{m}_p/\mathfrak{m}_p^2, \mathbb{R}), \ D \mapsto v_D,$$

which is clearly \mathbb{R} -linear and injective. To show that v is surjective, note that for given an \mathbb{R} -linear map $\varphi: \mathfrak{m}_p/\mathfrak{m}_p^2 \to \mathbb{R}$, the composite map

$$D_{\varphi}: C_{M,p}^{\infty} \stackrel{f \mapsto f(p)}{\longrightarrow} \mathfrak{m}_{p}/\mathfrak{m}_{p}^{2} \stackrel{\varphi}{\longrightarrow} \mathbb{R}$$

is an \mathbb{R} -linear derivation satisfying $v_{D_{\varphi}}=\varphi$. Thus we get an isomorphism of \mathbb{R} -vector spaces

$$T_pM \longrightarrow \operatorname{Hom}_k(\mathfrak{m}_p/\mathfrak{m}_p^2, \mathbb{R}),$$

which gives a purely algebraic description of the tangent space of M at p. Note that, looking at the Taylor series expansion of $f \in C^{\infty}_{M, p}$ about p, the above isomorphism says that T_pM is the linear (first order) approximation of M at p.

Let $\mathbb{R}[\epsilon] := \mathbb{R}[t]/(t^2)$ be the \mathbb{R} -algebra of *dual numbers*. Note that $\mathbb{R}[\epsilon] = \{a + b\epsilon : a, b \in \mathbb{R} \text{ and } \epsilon^2 = 0\}$. Clearly, $\mathbb{R}[\epsilon]$ is a local \mathbb{R} -algebra with the maximal ideal

$$\mathfrak{m} = \{b\epsilon : b \in \mathbb{R}\} \subset \mathbb{R}[\epsilon].$$

Definition 1.4.4. Let k be a field, and let (A, \mathfrak{m}_A) and (B, \mathfrak{m}_B) be local k-algebras. A k-algebra homomorphism $\varphi : A \to B$ is said to be a *local k-algebra homomorphism* if $\varphi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$.

Exercise 1.4.5. Given local k-algebras (A, \mathfrak{m}_A) and (B, \mathfrak{m}_B) , let $\operatorname{Hom}_{\mathbf{Alg}_k^{\operatorname{loc}}}(A, B)$ be the set of all local k-algebra homomorphisms from (A, \mathfrak{m}_A) into (B, \mathfrak{m}_B) . Show that $\operatorname{Hom}_{\mathbf{Alg}_k^{\operatorname{loc}}}(A, B)$ is a k-vector space. We denote by $\mathbf{Alg}_k^{\operatorname{loc}}$ the category whose objects are local k-algebras and morphisms are local k-algebra homomorphisms.

Let $\alpha: C^{\infty}_{M,p} \to \mathbb{R}[\epsilon]$ be a *local* \mathbb{R} -algebra homomorphism. For given an $f \in C^{\infty}_{M,p}$, there exist unique $f_0, D_{\alpha}(f) \in \mathbb{R}$ such that

$$\alpha(f) = f_0 + D_{\alpha}(f)\epsilon$$
.

Given $f \in C^{\infty}_{M,p}$, note that $g := f - f(p) \in \mathfrak{m}_p$. Since $\alpha(\mathfrak{m}_p) \subseteq \mathfrak{m}$, we have $g_0 = 0$. Since α is an \mathbb{R} -algebra homomorphism we have

$$D_{\alpha}(f - f(p))\epsilon = \alpha(g) = \alpha(f) - \alpha(f(p)) = [f_0 - f(p)] + D_{\alpha}(f)\epsilon$$
,

From this we conclude that $f_0 = f(p)$. Moreover, for given $f, g \in C_{M,p}^{\infty}$ we have

$$\alpha(fg) = (fg)_0 + D_{\alpha}(fg)\epsilon,$$
 and
$$\alpha(f)\alpha(g) = (f_0 + D_{\alpha}(f)\epsilon) (g_0 + D_{\alpha}(g)\epsilon) = f_0g_0 + (D_{\alpha}(f)g_0 + f_0D_{\alpha}(g))\epsilon.$$

Comparing the above two expression, we see that D_{α} satisfies the Leibniz rule:

$$D_{\alpha}(fg) = D_{\alpha}(f)g(p) + f(p)D_{\alpha}(g). \tag{1.4.6}$$

Thus $\alpha \mapsto D_{\alpha}$ defines a map

$$D: \operatorname{Hom}_{\operatorname{Alg}_{\mathfrak{p}}^{\operatorname{loc}}}(C_{M,p}^{\infty}, \mathbb{R}[\epsilon]) \longrightarrow T_{p}M := \operatorname{Der}_{\mathbb{R}}(C_{M,p}^{\infty}, \mathbb{R}), \tag{1.4.7}$$

which is clearly an injective \mathbb{R} -linear homomorphism. To show that D is surjective, for given an \mathbb{R} -linear derivation $\xi:C^\infty_{M,\,p}\to\mathbb{R}$, note that the map $\widetilde{\xi}:C^\infty_{M,\,p}\to\mathbb{R}[\epsilon]$ defined by

$$\widetilde{\xi}(f) = f(p) + \xi(f)\epsilon, \ \forall f \in C^{\infty}_{M,p},$$

is a local \mathbb{R} -algebra homomorphism such that $D_{\widetilde{\xi}} = \xi$. Thus, D is an \mathbb{R} -linear isomorphism.

1.4.2 Tangent bundle

1.4.3 Operations on vector bundles

1.5 Connection and curvature

1.5.1 Directional derivative in Euclidean space

Let $f \in C^{\infty}_{\mathbb{R}^n}(U)$ be a C^{∞} function defined on an open neighbourhood, say U, of p in \mathbb{R}^n . Fix a tangent vector (need not be of unit length), say

$$X_p = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i} \Big|_p$$

at $p = (p_1, ..., p_n)$ in \mathbb{R}^n . To compute the *directional derivative* of f at p in the direction X_p , we consider a straight-line passing through p in the direction X_p given parametrically by the map $t \mapsto (x_1(t), x_2(t), x_3(t))$, for $t \in (-\epsilon, \epsilon) \subset \mathbb{R}$, where

$$x_i(t) := p_i + ta_i, i \in \{1, ..., n\}.$$

Set $a := (a_1, ..., a_n)$. Then the directional derivative $D_{X_p} f$ is given by

$$D_{X_p} f = \lim_{t \to 0} \frac{f(p+ta) - f(p)}{t} = \frac{d}{dt} \Big|_{t=0} f(p+ta)$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_p \cdot \frac{dx_i}{dt}$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_p \cdot a_i$$

$$= \left(\sum_{i=1}^n a_i \frac{\partial}{\partial x_i} \Big|_p\right) f$$

$$= X_p(f).$$

1.5.2 Flat connection and monodromy

1.6 Affine connection