| Nom:      |  |
|-----------|--|
| Prénom: . |  |
|           |  |
|           |  |

- Groupe:  $\Box 1 \Box 2 \Box 3$
- 1. (10 points) Considérons la diffraction à une fente. Si la taille de la fente est de 0.25 mm, que l'écran est à une distance de 1m de la fente et que le laser utilisé a une longueur d'onde de 400 nm, déterminez:
  - (a) (1 Point) La position du maximum central (interférence constructive);
  - (b) (2 Points) La position du premier minimum (interférence destructrice);
  - (c) (2 Points) La position du deuxième minimum;
  - (d) (1 Point) La position du troisième minimum;
  - (e) (1 Point) La taille du maximum central;
  - (f) (1 Point) La distance entre deux minima consécutifs (du même côté du maximum central);
  - (q) (2 Points) Un schéma de la situation.
  - (a) y = 0;
  - (b) Pour les minima:  $y_M = \frac{M\lambda L}{a} = \frac{M \cdot 400 \cdot 10^{-6} \, \text{mm} \cdot 1 \cdot 10^3 \, \text{mm}}{0.25 \, \text{mm}} = 1.6 M \, \text{mm}.$  Premier minimum ( $M = \pm 1$ ):  $y_{\pm 1} = \pm 1.6 \, \text{mm}$
  - (c) Deuxième minimum ( $M=\pm 2$ ):  $y_{\pm 2}=\pm 3.2$ mm
  - (d) Troisième minimum ( $M=\pm 3$ ):  $y_{\pm 3}=\pm 4.8$ mm
  - (e) La taille du maximum central est  $y_1 y_{-1} = 3.2$ mm.
  - (f) La distance entre deux minima consécutifs est toujours la même. Par simplicité, nous pouvons prendre M=1 et M=2:  $\Delta y=y_2-y_1=1.6$ mm.

(g)



Abbildung 1: Q1 (i)

|     | ,         | oux de réponse. Choisissez la  (les) réponse(s) juste(s).<br>D <b>as</b> besoin de justifier votre réponse. |
|-----|-----------|-------------------------------------------------------------------------------------------------------------|
| (a) | (1 Point) | La lumière est une onde acquatique:                                                                         |
|     |           | Vrai;                                                                                                       |
|     | Ø         | Faux;                                                                                                       |
|     |           | Il manque d'informations                                                                                    |
| (b) | (1 Point) | La lumière est une onde longitudinale:                                                                      |
|     | Ø         | Vrai;                                                                                                       |
|     |           | Faux;                                                                                                       |
|     |           | Il manque d'informations                                                                                    |
| (c) | (1 Point) | La polarisation représente une orientation préférentielle d'oscillation.                                    |
|     | Ø         | Vrai;                                                                                                       |
|     |           | Faux;                                                                                                       |
|     |           | Il manque d'informations                                                                                    |
| (d) | (1 Point) | De la lumière non-polarisée peut être polarisée grâce à de la pensée                                        |
|     | magique.  |                                                                                                             |
|     |           | Vrai;                                                                                                       |
|     | Ø         | Faux;                                                                                                       |
|     |           | Il manque d'informations                                                                                    |
| (e) | (1 Point) | Le critère de Rayleigh permet d'estimer la résolution spatiale d'un ap-                                     |
|     | pareil.   |                                                                                                             |
|     | Ø         | Vrai;                                                                                                       |
|     |           | Faux;                                                                                                       |
|     |           | Il manque d'informations                                                                                    |

| $\Delta \phi = \phi_2 - \phi_1$      | $\Delta\phi_{\rm tot} = \Delta\phi_{\delta} + \Delta\phi_r + \Delta\phi_0$ | $\delta = r_2 - r_1$                                             |
|--------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|
| $d\sin\theta=\delta$                 | an	heta=y/L                                                                | $\Delta\phi_{\delta}=\left(\frac{r_2-r_1}{\lambda}\right)(2\pi)$ |
| $m\lambda = \frac{yd}{L}$            | $(m+1/2)\lambda = \frac{yd}{L}$                                            | $\Delta\phi_\delta=rac{4\pi e n_p}{\lambda_0}$                  |
| $\Delta \phi_{tot} = m(2\pi)$        | $\Delta\phi_{\rm tot}=(m+1/2)(2\pi)$                                       | $(1+x)^{\alpha}\approx 1+\alpha x$                               |
| $\cos x \approx 1 - x^2/2 \approx 1$ | $\sin x \approx x$                                                         | $\tan x \approx x$                                               |
| $a\sin\theta=M\lambda$               | an	heta=y/L                                                                | $y_M = \frac{M\lambda L}{a}$                                     |
| $\theta_c = \frac{1.22\lambda}{D}$   | $\tan\theta_p=n_2/n_1$                                                     | $I = I_0/2  I = I_0 \cos^2 \theta$                               |

Tabelle 1: Formules Utiles

| Question    | 1  | 2 | Total |
|-------------|----|---|-------|
| Points      | 10 | 5 | 15    |
| Points Boni | 0  | 0 | 0     |
| Obtenus     |    |   |       |