Fonctions d'une variable réelle

Fiche exercices

Exercices essentiels

Exercice 1. Pour chacune des fonctions suivantes, déterminer son domaine de définition:

a)
$$f(x) = \frac{1}{1 - \frac{1}{x}}$$

b) $f(x) = \frac{1 + \frac{2}{x}}{1 + \frac{1}{1 - x}}$ c) $f(x) = \sqrt{x + 1}$
d) $f(x) = \frac{1}{\sqrt{x - 1}}$ f) $f(x) = \frac{1}{4 - x^2}$ g) $f(x) = \sqrt{x - x^3}$

c)
$$f(x) = \sqrt{x+1}$$

d) $f(x) = \frac{1}{\sqrt{x-1}}$
e) $f(x) = \frac{1}{\sqrt{x-1}}$

$$f(x) = \frac{1}{4 - x^2}$$

$$g) \quad f(x) = \sqrt{x - x^3}$$

Questions facultatives supplémentaires : exercice 10

Réponse:

a) Il faut que $x \neq 0$ (terme $\frac{1}{x}$), et que $1 - \frac{1}{x} \neq 0$:

$$\left[1 - \frac{1}{x} = 0 \iff 1 = \frac{1}{x} \iff 1 = x\right] \iff \left[1 - \frac{1}{x} \neq 0 \iff x \neq 1\right]$$

$$\mathcal{D}_f = \mathbb{R} \setminus \{0, 1\} =] - \infty, 0[\cup]0, 1[\cup]1, +\infty[$$

Remarque : si on modifie l'expression de la fonction ainsi :

$$\frac{1}{1-\frac{1}{x}} = \frac{x}{x\left(1-\frac{1}{x}\right)} = \frac{x}{x-1}$$

on obtient alors une autre expression, donc une autre fonction définie cette fois-ci sur $\mathbb{R} \setminus \{1\}$ donc définie en x=0.

Cette fonction g définie par $g(x) = \frac{x}{x-1}$ est la fonction obtenue en prolongeant par continuité la fonction f en x=0 (cette notion de prolongement par continuité n'est plus abordée en

Ce qui est important est de déterminer le domaine de définition de la fonction à partir de son expression donnée sans la modifier.

b) Il faut que
$$x \neq 0$$
 (terme $\frac{2}{x}$), $x \neq 1$ (terme $\frac{1}{x-1}$), et que $1 + \frac{1}{1-x} \neq 0$:

$$\left[1 + \frac{1}{1 - x} = 0 \iff \frac{1}{1 - x} = -1 \iff 1 - x = -1 \iff x = 2\right]$$

$$\iff \left[1 + \frac{1}{1 - x} \neq 0 \iff x \neq 2\right]$$

$$\mathcal{D}_f = \mathbb{R} \setminus \{0, 1, 2\} =] - \infty, 0[\cup]0, 1[\cup]1, 2[\cup]2, +\infty[$$

c) Il faut que $x+1 \ge 0 \iff x \ge -1$:

$$\mathcal{D}_f = [-1, +\infty[$$

d) Il faut que $\left\{ x-1 \ge 0 \text{ et } \sqrt{x-1} \ne 0 \right\} \text{donc } x-1 > 0 \iff x > 1$:

$$\mathcal{D}_f =]1, +\infty[$$

e) Il faut que $\left\{ x \geq 0 \text{ et } \sqrt{x} - 1 \neq 0 \right\} \text{donc } \left\{ x \geq 0 \text{ et } x \neq 1 \right\}$:

$$\mathcal{D}_f = [0, 1[\ \cup\]1, +\infty[$$

f) Il faut que $4 - x^2 \neq 0 \iff (2 - x)(2 + x) \neq 0 \iff \left\{ x \neq -2 \text{ et } x \neq 2 \right\}$:

$$\mathcal{D}_f = \mathbb{R} \setminus \{-2, 2\} =]-\infty, -2[\cup]-2, 2[\cup]2, +\infty[]$$

g) Il faut que $x - x^3 \ge 0 \iff x(1-x)(1+x) \ge 0$.

On fait un tableau de signe pour avoir le signe du produit x(1-x)(1+x):

x	$-\infty$	_	-1	_	0	+	1	+	$+\infty$
1-x		+	+	+	+	+	0	_	
1+x		_	0	+	+	+	+	+	
$x-x^3$		+	0	_	0	+	0	_	

$$\mathcal{D}_f =]-\infty, -1] \cup [0, 1]$$

Exercice 2. Soient les fonctions $f(x) = \frac{1}{x}$, g(x) = x - 1 et $h(x) = x^2$.

Pour chacune des fonctions composées suïvantes, déterminer son domaine de définition \mathcal{D} , ainsi qu'une expression la plus simple possible.

Réponse:

a) g est définie sur \mathbb{R} .

Pour
$$x \in \mathcal{D}_g = \mathbb{R}$$
, $(f \circ g)(x) = f(g(x)) = f(x-1) = \frac{1}{x-1}$

Donc
$$\mathcal{D}_{f \circ g} = \mathbb{R} \setminus \{1\}$$

b) f est définie sur \mathbb{R}^* .

Pour
$$x \in \mathcal{D}_f = \mathbb{R}^*$$
, $(g \circ f)(x) = g(f(x)) = g\left(\frac{1}{x}\right) = \frac{1}{x} - 1 = \frac{1-x}{x}$

$$\mathcal{D}_{g \circ f} = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$$

c) h est définie sur \mathbb{R} .

Pour $x \in \mathcal{D}_g = \mathbb{R}$, $(g \circ h)(x) = g(x^2) = x^2 - 1$ définie sur \mathbb{R} .

Pour
$$x \in \mathcal{D}_{g \circ h} = \mathbb{R}$$
, $(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x^2)) = f(x^2 - 1) = \frac{1}{x^2 - 1}$

Donc
$$\mathcal{D}_{f \circ g \circ h} = \mathbb{R} \setminus \{-1; 1\}$$

d) f est définie sur \mathbb{R}^* .

Pour
$$x \in \mathcal{D}_f = \mathbb{R}^*$$
, $h(f(x)) = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2}$ définie sur \mathbb{R}^* .

Pour
$$x \in \mathcal{D}_{h \circ f} = \mathbb{R}^*$$
, $(g \circ h \circ f)(x) = g(h(f(x))) = g\left(h\left(\frac{1}{x}\right)\right) = g\left(\frac{1}{x^2}\right) = \frac{1}{x^2} - 1$

$$\mathrm{Donc}\left[\mathcal{D}=\mathbb{R}^*=\mathbb{R}\setminus\{0\}\right]$$

e) q est définie sur \mathbb{R} .

Pour $x \in \mathcal{D}_g = \mathbb{R}$, $h(g(x)) = h(x-1) = (x-1)^2$ définie sur \mathbb{R} .

$$(f \circ h \circ g)(x) = f(h(g(x))) = f((x-1)^2) = \frac{1}{(x-1)^2}$$

Donc
$$\mathcal{D}_{f \circ h \circ g} = \mathbb{R} \setminus \{1\}$$

f) $(g \circ h)(x) = x^2 - 1$ définie sur \mathbb{R} .

Pour
$$x \in \mathcal{D}_{g \circ h} = \mathbb{R}$$
, $(g \circ g \circ h)(x) = g(x^2 - 1) = x^2 - 1 - 1 = x^2 - 2$ définie sur \mathbb{R} .

Pour
$$x \in \mathcal{D}_{g \circ g \circ h} = \mathbb{R}$$
, $(f \circ g \circ g \circ h)(x) = f(x^2 - 2) = \frac{1}{x^2 - 2}$:

il faut que
$$x^2 - 2 \neq 0 \iff \left(x \neq -\sqrt{2} \text{ ET } x \neq \sqrt{2} \right)^3$$

Donc
$$\mathcal{D} = \mathbb{R} \setminus \{-\sqrt{2} ; \sqrt{2}\}$$

Exercice 3

a) Déterminer les constantes a, b et c telles que :

$$\forall x \in \mathbb{R}, \ (x+a)(bx-1) = 2 - cx^2$$

b) Déterminer les constantes a et b telles que :

$$\forall x \in \mathcal{D}_f, \ f(x) = \frac{a}{x-1} + \frac{b}{x+1} = \frac{x+3}{x^2-1}$$

Questions facultatives supplémentaires : exercice 11

Réponse :

a) Pour tout x réel :

$$(x+a)(bx-1) = 2 - cx^{2}$$

$$\iff bx^{2} + abx - x - a = -cx^{2} + 2 \iff bx^{2} + (ab-1)x - a = -cx^{2} + 0x + 2$$

$$\begin{cases} b = -c \\ ab-1 = 0 \\ -a = 2 \end{cases} \Rightarrow \begin{cases} ab-1 = -2b-1 = 0 \\ c = -b \end{cases} \Rightarrow \begin{cases} a = -2 \\ b = -1/2 \\ c = 1/2 \end{cases}$$

b)
$$\frac{a}{x-1} + \frac{b}{x+1} = \frac{a(x+1)}{(x-1)(x+1)} + \frac{b(x-1)}{(x+1)(x-1)} = \frac{a(x+1) + b(x-1)}{x^2 - 1}$$
$$\frac{a}{x-1} + \frac{b}{x+1} = \frac{x+3}{x^2 - 1} \Rightarrow a(x+1) + b(x-1) = x+3$$
$$\iff (a+b)x + (a-b) = x+3 \Rightarrow \begin{cases} a+b = 1\\ a-b = 3 \end{cases} \Rightarrow \begin{cases} a = 2\\ b = -1 \end{cases}$$

Exercice 4. Simplifier les expressions suivantes :

a)
$$\exp\left(2 \ln|x| - 3 \ln(y)\right) - \exp\left(-\ln(y)\right)$$
 b) $\log_2\left(4^x 2^{x+y}\right) + \log_4\left(\frac{8^{y-x}}{2^x}\right)$

Réponse:

a)

$$\exp\left(2\ln|x| - 3\ln(y)\right) - \exp\left(-\ln(y)\right) = \exp(\ln|x| \times 2) \exp(-\ln(y) \times 3) - \frac{1}{\exp(\ln(y))}$$

$$= \exp(\ln|x|)^2 \frac{1}{\exp(\ln(y) \times 3)} - \frac{1}{y} = \frac{|x|^2}{y^3} - \frac{1}{y} = \left[\frac{x^2}{y^3} - \frac{y^2}{y^3}\right] = \left[\frac{x^2 - y^2}{y^3}\right]$$
b)
$$\log_2\left(4^x 2^{x+y}\right) + \log_4\left(\frac{8^{y-x}}{2^x}\right) = \log_2(4^x) + \log_2(2^{x+y}) + \log_4(8^{y-x}) - \log_4(2^x)$$

$$= x \log_2(4) + (x+y) \log_2(2) + (y-x) \log_4(8) - x \log_4(2)$$

$$= x \log_2(2^2) + (x+y) \log_2(2) + (y-x) \log_4(4^{3/2}) - x \log_4(4^{1/2})$$

$$= 2 x \log_2(2) + (x+y) \log_2(2) + \frac{3}{2} (y-x) \log_4(4) - \frac{1}{2} x \log_4(4)$$

$$= 2 x + (x+y) + \frac{3}{2} (y-x) - \frac{1}{2} x = \left[x + \frac{5}{2} y\right]$$

Exercice 5. Déterminer le (ou les réels) x strictement positif(s) solution(s) de chaque équation :

a)
$$2(4^x) = 8(2^x)$$
 b) $x^x = (2x)^{2x}$

Questions facultatives supplémentaires : exercice 12

Réponse:

a)

$$2(4^{x}) = 8(2^{x}) \Rightarrow \ln(2(4^{x})) = \ln(8(2^{x})) \iff \ln(2) + \ln(4^{x}) = \ln(8) + \ln(2^{x})$$

$$\iff \ln(2) + x \ln(4) = \ln(8) + x \ln(2)$$

$$\iff x(\ln(4) - \ln(2)) = \ln(8) - \ln(2) \iff x(\ln(2^{2}) - \ln(2)) = \ln(2^{3}) - \ln(2)$$

$$\iff x(2\ln(2) - \ln(2)) = 3\ln(2) - \ln(2) \iff x \ln(2) = 2\ln(2) \iff x = 2$$

La solution est x = 2.

b)

$$x^{x} = (2 x)^{2x} \Rightarrow \ln\left(x^{x}\right) = \ln\left((2 x)^{2x}\right) \iff x \ln(x) = 2 x \ln(2 x)$$

$$\underset{\text{car } x \neq 0}{\Longleftrightarrow} \ln(x) = 2 \ln(2x) \iff \ln(x) = \ln((2x)^{2}) \iff x = 4x^{2} \iff 1 = 4x \iff x = 1/4$$

La solution est x = 1/4.

Exercice 6. En utilisant les formules du cours :

$$(1) \quad \cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

(2)
$$\sin(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$$

(3)
$$\cos^2(x) + \sin^2(x) = 1$$

(4)
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$(5) \quad \cos(-x) = \cos(x)$$

(6)
$$\sin(-x) = -\sin(x)$$

démontrer les formules de trigonométrie ci-dessous.

Une fois qu'une formule est démontrée, on peut l'utiliser pour démontrer les formules suivantes.

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a) \quad \sin(2a) = 2\sin(a)\cos(a)$$

$$\cos^{2}(a) = \frac{1 + \cos(2 a)}{2} \left| \sin^{2}(a) = \frac{1 - \cos(2 a)}{2} \right| \tan^{2}(a) + 1 = \frac{1}{\cos^{2}(a)}$$

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \left| \tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)} \right|$$

Questions facultatives supplémentaires : exercice 13

Réponse:

$$\cos(2a) = \cos(a+a) \stackrel{\text{(1)}}{=} \cos(a)\cos(a) - \sin(a)\sin(a) = \boxed{\cos^2(a) - \sin^2(a)} \tag{7}$$

$$\cos^{2}(a) - \sin^{2}(a) \stackrel{(3)}{=} \cos^{2}(a) - 1 + \cos^{2}(a) = \boxed{2 \cos^{2}(a) - 1}$$
 (8)

$$\cos^{2}(a) - \sin^{2}(a) \stackrel{\text{(3)}}{=} 1 - \sin^{2}(a) - \sin^{2}(a) = \boxed{1 - 2\sin^{2}(a)}$$
 (9)

$$\sin(2a) = \sin(a+a) \stackrel{(2)}{=} \cos(a)\sin(a) + \sin(a)\cos(a) = 2\sin(a)\cos(a)$$
 (10)

(8) :
$$2\cos^2(a) - 1 = \cos(2a) \iff \cos^2(a) = \frac{1 + \cos(2a)}{2}$$
 (11)

(9) :
$$1 - 2\sin^2(a) = \cos(2a) \iff \sin^2(a) = \frac{1 - \cos(2a)}{2}$$
 (12)

$$\tan^{2}(a) + 1 = \frac{\sin^{2}(a)}{\cos^{2}(a)} + \frac{\cos^{2}(a)}{\cos^{2}(a)} = \frac{\sin^{2}(a) + \cos^{2}(a)}{\cos^{2}(a)} \stackrel{(3)}{=} \frac{1}{\cos^{2}(a)}$$
(13)

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$

$$(1)(2) \frac{\sin(a)\cos(b) + \sin(b)\cos(a)}{\cos(a)\cos(b) - \sin(a)\sin(b)}$$

$$= \frac{\sin(a)\cos(b) + \sin(b)\cos(a)}{\cos(a)\cos(b) + \sin(a)\sin(b)}$$

$$= \frac{\cos(a)\cos(b)}{\cos(a)\cos(b) - \sin(a)\sin(b)}$$

$$= \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$
(14)

$$\tan(2a) = \tan(a+a) \stackrel{\text{(14)}}{=} \frac{\tan(a) + \tan(a)}{1 - \tan(a)\tan(a)} = \frac{2\tan(a)}{1 - \tan^2(a)} \tag{15}$$

Exercice 7. Simplifier les expressions suivantes :

a)
$$\cosh(x) + \sinh(x)$$
 b) $\cosh^2(x) - \sinh^2(x)$

Questions facultatives supplémentaires : exercice 14

Réponse:

a) $\cosh(x) + \sinh(x)$

$$= \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \frac{e^{x} + e^{-x} + e^{x} - e^{-x}}{2} = \frac{2e^{x}}{2} = \boxed{e^{x}}$$

b) $\cosh^2(x) - \sinh^2(x)$

$$= \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{(e^x + e^{-x})^2}{4} - \frac{(e^x - e^{-x})^2}{4}$$

$$= \frac{(e^x)^2 + 2e^x e^{-x} + (e^{-x})^2}{4} - \frac{(e^x)^2 - 2e^x e^{-x} + (e^{-x})^2}{4}$$

$$= \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4}$$

$$= \frac{e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}}{4} = \frac{4}{4} = \boxed{1}$$

Exercice 8. Dans cet exercice a, b désignent deux réels. Soit la fonction f définie sur \mathbb{R} ainsi :

$$f(x) = \begin{cases} 1 + \ln|x| & \text{si } x \le -1\\ ax + b & \text{si } -1 < x < 1\\ 6 - x^2 & \text{si } x \ge 1 \end{cases}$$

Déterminer a et b afin que f soit continue sur \mathbb{R} .

Réponse:

- 1. La fonction f(x) est continue en tout point $x \in \mathbb{R} \setminus \{-1, 1\}$.
- 2. La fonction est continue en x = -1 si $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) = f(1)$:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 1 + \ln|x| = 1 + \ln(1) = 1 = f(-1)$$
$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} a x + b = -a + b = 1$$

donc il faut que -a + b = 1.

3. La fonction est continue en x = 1 si $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} a x + b = a + b = f(1) = 5$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 6 - x^2 = 6 - 1 = 5 = f(1)$$

donc il faut que a + b = 5.

4. Donc
$$\left\{ \begin{array}{ccc} -a & + & b & = & 1 \\ a & + & b & = & 5 \end{array} \right\} \Rightarrow \boxed{a = 2 \text{ et } b = 3}$$

Exercice 9. Dans cet exercice a, b et c désignent trois réels. Soit la fonction f définie sur \mathbb{R} ainsi :

$$f(x) = \begin{cases} \exp(x) & \text{si } x \le 0 \\ a x^2 + b x + c & \text{si } 0 < x < 2 \\ x + 1 & \text{si } x \ge 2 \end{cases}$$

Déterminer a, b et c afin que f soit continue sur \mathbb{R} , et vérifie f(1) = 0.

Réponse:

1. la fonction est prolongeable par continuité en x = 0:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) \iff \lim_{x \to 0^{-}} \exp(x) = \lim_{x \to 0^{+}} a x^{2} + b x + c \iff 1 = c$$

2. la fonction est prolongeable par continuité en x=2:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \iff \lim_{x \to 2^{-}} a x^{2} + b x + c = \lim_{x \to 2^{+}} x + 1 \iff 4 a + 2 b + c = 3$$

3. $f(1) = 0 \iff a + b + c = 0$

On a donc un système de 3 équations (linéaires) à 3 inconnues (a, b, c):

$$\left\{ \begin{array}{cccc}
c & = & 1 & & & \\
4 a & + & 2 b & + & c & = & 3 \\
a & + & b & + & c & = & 0
\end{array} \right\} \iff \left[\begin{array}{cccc}
a & = & 2 \\
b & = & -3 \\
c & = & 1
\end{array} \right]$$

Exercices supplémentaires

Exercice 10. Pour chacune des fonctions suivantes, déterminer son domaine de définition :

a)
$$f(x) = \frac{1}{\sqrt{2 + x - x^2}}$$

b) $f(x) = \sqrt{x^2 - |x| - 2}$
c) $f(x) = \sqrt{\frac{3}{x - 1} + \frac{3}{x + 1} - \frac{8}{x}}$

Réponse : a) Il faut que $2+x-x^2>0 \iff (2-x)(1+x)>0$:

$$\mathcal{D}_f =]-1,2[$$

b) Il faut que $x^2 - |x| - 2 \ge 0$.

- si
$$x \le 0$$
: $x^2 - |x| - 2 = x^2 + x - 2 = (x - 1)(x + 2) \ge 0 \iff \left\{ x \le -2 \text{ ou } x \ge 1 \right\}$
donc $x \le -2$

- si
$$x \ge 0$$
: $x^2 - |x| - 2 = x^2 - x - 2 = (x+1)(x-2) \ge 0 \iff \left\{ x \le -1 \text{ ou } x \ge 2 \right\}$ donc $x \ge 2$

$$\mathcal{D}_f =]-\infty, -2] \cup [2, +\infty[$$

c) Il faut que $x - 1 \neq 0$, $x + 1 \neq 0$, $x \neq 0$ et $\frac{3}{x - 1} + \frac{3}{x + 1} - \frac{8}{x} \geq 0$.

$$g(x) = \frac{3}{x-1} + \frac{3}{x+1} - \frac{8}{x} = \frac{3(x+1)x + 3(x-1)x - 8(x-1)(x+1)}{(x-1)(x+1)x}$$

$$= \frac{3x^2 + 3x + 3x^2 - 3x - 8x^2 + 8}{(x-1)(x+1)x} = \frac{-2x^2 + 8}{(x-1)(x+1)x} = \frac{2(2-x)(2+x)}{(x-1)(x+1)x}$$

g(x) a le même signe que le produit (2-x)(2+x)(x-1)(x+1)x:

x	$-\infty$		-2		-1		0		1		2		$+\infty$
2-x		+	+	+	+	+	+	+	+	+	0	_	
2+x		_	0	+	+	+	+	+	+	+	+	+	
x		_	_	_	_	_	0	+	+	+	+	+	
x-1		_	_	_	_	_	_	_	0	+	+	+	
x+1		_	_	_	0	+	+	+	+	+	+	+	
g(x)		+	0	_		+		_		+	0	_	

Donc $f(x) = \sqrt{g(x)}$ a pour domaine de définition $\mathcal{D}_f =]-\infty, -2] \cup]-1, 0[\cup]1, 2]$.

Exercice 11.

a) Déterminer les constantes a, b, c et d telles que :

$$\forall x \in \mathcal{D}_f, \ f(x) = a x + b + \frac{c}{x-1} + \frac{d}{(x-1)^2} = \frac{x^3}{(x-1)^2}$$

b) Déterminer les constantes a, b, c, d, α et β telles que :

$$\forall x \in \mathcal{D}_f, \ f(x) = a + \frac{b}{x+\alpha} + \frac{c}{x+\beta} + \frac{d}{(x+\beta)^2} = \frac{x^3 + 2x - 3}{x^3 - 3x - 2}$$

Réponse:

a)

$$ax + b + \frac{c}{x - 1} + \frac{d}{(x - 1)^2} = \frac{(ax + b)(x - 1)^2 + c(x - 1) + d}{(x - 1)^2}$$

$$ax + b + \frac{c}{x - 1} + \frac{d}{(x - 1)^2} = \frac{x^3}{(x - 1)^2}$$

$$\Rightarrow (ax + b)(x - 1)^2 + c(x - 1) + d = x^3$$

$$\iff ax^3 + (-2a + b)x^2 + (a - 2b + c)x + b - c + d = x^3 + 0x^2 + 0x + 0$$

$$\Rightarrow \begin{cases} a &= 1 \\ -2a + b &= 0 \\ a - 2b + c &= 0 \\ b - c + d &= 0 \end{cases} \Rightarrow \begin{cases} a &= 1 \\ b &= 2 \\ c &= 3 \\ d &= 1 \end{cases}$$

b) Pour cet exercice, il faut déterminer en premier α et β en factorisant le dénominateur $(x-\alpha)(x+\beta)^2=x^3-3\,x-2$:

$$(x+\alpha)(x+\beta)^{2} = (x+\alpha)(x^{2}+2\beta x+\beta^{2}) = x^{3}+(\alpha+2\beta)x^{2}+(\beta^{2}+2\alpha\beta)x+\alpha\beta^{2} = x^{3}+0x^{2}+3x-2$$

$$\Rightarrow \begin{cases} \alpha+2\beta &= 0 & (1) \\ \beta^{2}+2\alpha\beta &= -3 & (2) \\ \alpha\beta^{2} &= -2 & (3) \end{cases}$$

$$(1) \Rightarrow \alpha = -2\beta \Rightarrow \begin{cases} (2) : -3\beta^{2} &= -3 \\ (3) : -2\beta^{3} &= -2 \end{cases} \Rightarrow \beta = 1 \text{ et } \alpha = -2$$

On détermine ensuite les quatre constantes a, b, c et d telles que

$$\forall x \in \mathcal{D}_f, \ a + \frac{b}{x-2} + \frac{c}{x+1} + \frac{d}{(x+1)^2} = \frac{x^3 + 2x - 3}{x^3 - 3x - 2}$$

$$a + \frac{b}{x-2} + \frac{c}{x+1} + \frac{d}{(x+1)^2} = \frac{a(x-2)(x+1)^2 + b(x+1)^2 + c(x-2)(x+1) + d(x-2)}{(x-2)(x+1)^2}$$

$$= \frac{a(x^3 - 3x - 2) + b(x^2 + 2x + 1) + c(x^2 - x - 2) + d(x-2)}{x^3 - 3x - 2} = \frac{x^3 + 2x - 3}{x^3 - 3x - 2}$$

On identifie les numérateurs :

$$\forall x \in \mathcal{D}_f, \ a(x^3 - 3x - 2) + b(x^2 + 2x + 1) + c(x^2 - x - 2) + d(x - 2) = x^3 + 2x - 3$$

$$\iff a x^{3} + (b+c) x^{2} + (-3a+2b-c+d) x + (-2a+b-2c-2d) = x^{3} + 0 x^{2} + 2x - 3$$

$$\Rightarrow \begin{cases} a = 1 & (1) \\ b+c = 0 & (2) \\ -3a+2b-c+d = 2 & (3) \\ -2a+b-2c-2d = -3 & (4) \end{cases}$$

$$\begin{cases} (1) : a = 1 \\ (2) : c = -b \end{cases} \Rightarrow \begin{cases} (3) : 3b+d = 5 & (5) \\ (4) : 3b-2d = -1 & (6) \end{cases}$$

$$(5) - (6) : 3d = 6 \Rightarrow \begin{cases} d = 2 \\ b = 1 \\ c = -1 \\ a = 1 \end{cases}$$

$$\forall x \in \mathcal{D}_{f}, \boxed{1 + \frac{1}{x-2} - \frac{1}{x+1} + \frac{2}{(x+1)^{2}} = \frac{x^{3} + 2x - 3}{x^{3} - 3x - 2}}$$

Exercice 12. Déterminer le (ou les réels) x strictement positif(s) solution(s) de chaque équation :

a)
$$\sqrt{x} \ln(x) = x \ln(\sqrt{x})$$
 b) $\log_2(x) + \log_x(2) = 5/2$

Réponse:

a)

$$\sqrt{x} \ln(x) = x \ln(\sqrt{x}) \iff \sqrt{x} \ln(x) = x \ln(x^{1/2}) = \frac{1}{2} x \ln(x) \iff \left(\sqrt{x} - \frac{1}{2} x\right) \ln(x) = 0$$

$$\iff \left\{\sqrt{x} - \frac{1}{2} x = 0 \iff 1 = \frac{1}{2} \sqrt{x} \iff x = 4\right\} \text{ ou } \left\{\ln x = 0 \iff x = 1\right\}$$

Les solutions sont x = 1 ou x = 4

b)

$$\log_2(x) + \log_x(2) = 5/2 \iff \frac{\ln(x)}{\ln(2)} + \frac{\ln(2)}{\ln(x)} = \frac{5}{2}$$

Il faut $ln(x) \neq 0 \iff x \neq 1$. Posons X = ln(x):

$$\frac{\ln(x)}{\ln(2)} + \frac{\ln(2)}{\ln(x)} = \frac{5}{2} \iff \frac{X}{\ln(2)} + \frac{\ln(2)}{X} = \frac{5}{2}$$

on multiplie chaque terme de l'équation par $X \ln(2)$:

$$X^{2} - \frac{5}{2}\ln(2) X + \ln(2)^{2} = 0 \qquad \Delta = \left(\frac{5}{2}\ln(2)\right)^{2} - 4\ln(2)^{2} = \frac{9}{4}\ln(2)^{2} = \left(\frac{3}{2}\ln(2)\right)^{2}$$

$$\Rightarrow \begin{cases} X_{1} = \frac{\frac{5}{2}\ln(2) - \frac{3}{2}\ln(2)}{2} = \frac{\ln(2)}{2} = \ln\left(\sqrt{2}\right) &\iff x_{1} = \exp(X_{1}) = \sqrt{2} \\ X_{2} = \frac{\frac{5}{2}\ln(2) + \frac{3}{2}\ln(2)}{2} = 2\ln(2) = \ln(4) &\iff x_{2} = \exp(X_{2}) = 4 \end{cases}$$

Les solutions sont $x = \sqrt{2}$ ou x = 4.

Exercice 13. (suite de l'exercice 6)

Demontrer les formules de trigonométrie ci-dessous.

$$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a-b) + \cos(a+b)\right) \left|\sin(a)\sin(b) = \frac{1}{2}\left(\cos(a-b) - \cos(a+b)\right)\right|$$

$$\sin(a)\cos(b) = \frac{1}{2}\left(\sin(a+b) + \sin(a-b)\right)$$

$$\cos(a) + \cos(b) = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \left| \sin(a) + \sin(b) = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \right|$$

en posant
$$t = \tan(x/2)$$
 : $\sin(x) = \frac{2t}{1+t^2} \cos(x) = \frac{1-t^2}{1+t^2} \tan(x) = \frac{2t}{1-t^2}$

Réponse:

$$\begin{cases}
\cos(a+b) & \stackrel{\text{(1)}}{=} \cos(a)\cos(b) - \sin(a)\sin(b) \\
\cos(a-b) & \stackrel{\text{(1)}}{=} \cos(a)\cos(-b) - \sin(a)\sin(-b) & \stackrel{\text{(5)(6)}}{=} \cos(a)\cos(b) + \sin(a)\sin(b)
\end{cases}$$
(16)

$$(16.1) \Rightarrow \frac{1}{2} \left(\cos(a-b) + \cos(a+b) \right) = \cos(a)\cos(b) \tag{17}$$

$$(16.2) \Rightarrow \frac{1}{2} \left(\cos(a-b) - \cos(a+b) \right) = \sin(a)\sin(b) \tag{18}$$

$$\bullet \begin{cases}
\sin(a+b) & \stackrel{(2)}{=} \sin(a)\cos(b) + \cos(a)\sin(b) \\
\sin(a-b) & \stackrel{(2)}{=} \sin(a)\cos(-b) + \cos(a)\sin(-b) & \stackrel{(5)(6)}{=} \sin(a)\cos(b) - \cos(a)\sin(b)
\end{cases}$$

$$\Rightarrow \frac{1}{2} \left(\sin(a+b) + \sin(a-b)\right) = \sin(a)\cos(b) \tag{19}$$

(17) $\Rightarrow \cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y)$. En posant $x = \frac{a+b}{2}$ et $y = \frac{a-b}{2}$, alors x+y=a et x-y=b, et on obtient :

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right) \tag{20}$$

 $(19) \Rightarrow \sin(x+y) + \sin(x-y) = 2\sin(x)\cos(y).$

En posant $x = \frac{a+b}{2}$ et $y = \frac{a-b}{2}$, alors x+y=a et x-y=b, et on obtient :

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right) \tag{21}$$

$$\sin(x) \stackrel{\text{(10)}}{=} 2 \sin(x/2) \cos(x/2) = 2 \frac{\sin(x/2)}{\cos(x/2)} \cos^2(x/2)$$

$$= 2 \frac{\sin(x/2)}{\cos(x/2)} \cos^2(x/2) \stackrel{\text{(4)(13)}}{=} 2t \frac{1}{1+t^2} = \frac{2t}{1+t^2}$$
 (22)

$$\cos(x) \stackrel{(7)}{=} \cos^{2}(x/2) - \sin^{2}(x/2) = \frac{\cos^{2}(x/2) - \sin^{2}(x/2)}{\cos^{2}(x/2)} \cos^{2}(x/2)$$

$$= \frac{\cos^{2}(x/2) - \sin^{2}(x/2)}{\cos^{2}(x/2)} \cos^{2}(x/2) \stackrel{(13)}{=} \frac{\cos^{2}(x/2) - \sin^{2}(x/2)}{\cos^{2}(x/2)} \frac{1}{1 + t^{2}}$$

$$= \left(\frac{\cos^{2}(x/2)}{\cos^{2}(x/2)} - \frac{\sin^{2}(x/2)}{\cos^{2}(x/2)}\right) \frac{1}{1 + t^{2}} = (1 - t^{2}) \frac{1}{1 + t^{2}} = \frac{1 - t^{2}}{1 + t^{2}}$$
(23)

$$\tan(x) \stackrel{\text{(4)}}{=} \frac{\sin(x)}{\cos(x)} \stackrel{\text{(22)(23)}}{=} \frac{\frac{2t}{1+t^2}}{\frac{1-t^2}{1+t^2}} = \frac{2t}{1-t^2}$$
 (24)

Exercice 14. Simplifier les expressions suivantes :

a)
$$\cosh^2(x) + \sinh^2(x) - \cosh(2x)$$
 b) $\frac{1 + \tanh(x)}{1 - \tanh(x)}$

Réponse:

a)
$$\cosh^2(x) + \sinh^2(x) - \cosh(2x)$$

$$= \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} - \frac{e^{2x} + e^{-2x}}{2}$$

$$= \frac{(e^{x})^{2} + 2e^{x}e^{-x} + (e^{-x})^{2}}{4} + \frac{(e^{x})^{2} - 2e^{x}e^{-x} + (e^{-x})^{2}}{4} - \frac{e^{2x} + e^{-2x}}{2}$$

$$= \frac{e^{2x} + 2 + e^{-2x} + e^{2x} - 2 + e^{-2x}}{4} - \frac{e^{2x} + e^{-2x}}{2}$$

$$= \frac{e^{2x} + 2 + e^{-2x} + e^{2x} - 2 + e^{-2x}}{4} - \frac{e^{2x} + e^{-2x}}{2}$$

$$= \frac{2e^{2x} + 2e^{-2x}}{4} - \frac{e^{2x} + e^{-2x}}{2} = \frac{e^{2x} + e^{-2x}}{2} - \frac{e^{2x} + e^{-2x}}{2} = \boxed{0}$$

b)
$$\frac{1 + \tanh(x)}{1 - \tanh(x)}$$

$$= \frac{1 + \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}}{1 - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}} = \frac{\frac{e^{x} + e^{-x}}{e^{x} + e^{-x}} + \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}}{\frac{e^{x} + e^{-x}}{e^{x} + e^{-x}} - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}} = \frac{\frac{(e^{x} + e^{-x}) + (e^{x} - e^{-x})}{e^{x} + e^{-x}}}{\frac{(e^{x} + e^{-x}) - (e^{x} - e^{-x})}{e^{x} + e^{-x}}}$$
$$= \frac{e^{x} + e^{-x} + e^{x} - e^{-x}}{e^{x} + e^{-x} - e^{x} + e^{-x}} = \frac{2e^{x}}{2e^{-x}} = \frac{e^{x}}{e^{-x}} = e^{x}e^{x} = \boxed{e^{2x}}$$

Exercice 15. Pour chaque fonction:

- dire si elle est paire ou impaire, ou ni l'une, ni l'autre,
- déterminer son domaine de définition,

a)	$\frac{2 x}{x^2 - 1}$	b)	$\frac{1}{x^3 - 1}$	c)	$\frac{x^3 - 8}{x^2 - 4}$
d)	$\frac{1}{\sinh(x^3 - x)}$	e)	$\frac{\sin(x)}{x}$	f)	$\frac{x^2}{\sin^2(x)}$

Réponse :
a)
$$f(x) = \frac{2x}{x^2 - 1}$$

1. f est impaire car f(-x) = -f(x).

2.
$$x^2 - 1 = 0 \iff (x = -1 \text{ OU } x = 1)$$

 $\Rightarrow \mathcal{D}_f = \mathbb{R} \setminus \{-1; 1\} =]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$

b)
$$f(x) = \frac{1}{x^3 - 1}$$

- 1. f n'est ni paire, ni impaire, car f(-2) = -1/9, f(2) = 1/7, et f(-2) n'est égal ni à f(2), ni à -f(2).
- 2. $\mathcal{D}_f = \mathbb{R} \setminus \{1\} =]-\infty, 1[\cup]1, +\infty[$ car il faut $x^3 1 \neq 0 \iff x^3 \neq 1 \iff x \neq 1$ (car la fonction $x \mapsto x^3$ est bijective de \mathbb{R} dans \mathbb{R})

c)
$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$

1. f n'est ni paire, ni impaire car f(-1) = 3, f(1) = 7/3, et f(-1) n'est égal ni à f(1), ni $\hat{a} - f(1)$.

2.
$$x^2 - 4 = 0 \iff (x = -2 \text{ OU } x = 2)$$

 $\Rightarrow \mathcal{D}_f = \mathbb{R} \setminus \{-2; 2\} =] - \infty, -2[\cup] - 2, 2[\cup] 2, +\infty[$

$$d) f(x) = \frac{1}{\sinh(x^3 - x)}$$

1. f est impaire car

$$f(-x) = \frac{1}{\sinh(-x^3 + x)} = \frac{1}{\sinh(-(x^3 - x))} = \frac{1}{-\sinh(x^3 - x)} = -f(x)$$

2. La fonction est définie pour x tel que $\sinh(x^3 - x) \neq 0$:

$$\sinh(x^3-x)=0\iff x^3-x=0 \text{ (car sinh est bijective)} \iff x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)=0$$

$$x=-1$$
 OU $x=0$ OU $x=1$

$$\mathcal{D}_f = \mathbb{R} \setminus \{ -1 ; 0 ; 1 \}$$

e)
$$f(x) = \frac{\sin(x)}{x}$$

1. f est paire car f(-x) = f(x)

2.
$$\mathcal{D}_f = \mathbb{R} \setminus \{0\} = \mathbb{R}^*$$

$$f) f(x) = \frac{x^2}{\sin^2(x)}$$

1. f est paire car f(-x) = f(x)

2. La fonction est définie pour les valeurs x telles que $\sin(x) \neq 0$

$$\sin(x) = 0 \iff x = k\pi \text{ avec } k \in \mathbb{Z}$$

$$\mathcal{D}_f = \mathbb{R} \setminus \{k \, \pi \, \text{ avec } k \in \mathbb{Z}\}$$

Exercice 16. Le but de cet exercice est de déterminer, pour chaque fonction hyperbolique y = f(x), l'expression de sa fonction réciproque $x = f^{-1}(y)$.

Pour chaque fonction, le but est de déterminer l'expression de x en fonction de y.

- (réciproque de sinh) $y = \sinh(x)$, bijective de \mathbb{R} dans \mathbb{R}
- (réciproque de cosh) $y = \cosh(x)$, bijective de \mathbb{R}_+ dans $[1; +\infty]$
- (réciproque de tanh) $y = \tanh(x)$, bijective de \mathbb{R} dans]-1;1

Indication: utiliser $X = e^x > 0$, ainsi que les ensembles de départ et d'arrivée de chaque fonction bijective.

Réponse : Le principe est de poser $X = e^x$, et en notant que X est strictement positif.

a) $y = \sinh(x)$

$$y = \frac{e^x - 1/e^x}{2} = \frac{X - 1/X}{2} = \frac{X^2 - 1}{2X}$$

$$\iff 2yX = X^2 - 1 \iff X^2 - 2yX - 1 = 0$$

On résout l'équation du second degré en X:

$$\Delta = 4y^2 + 4 = 4(y^2 + 1) > 4y^2 > 0$$

Les deux racines sont

$$X_{1} = \frac{2y - \sqrt{4y^{2} + 4}}{2} = y - \sqrt{y^{2} + 1} \quad \text{et} \quad X_{2} = \frac{2y + \sqrt{4y^{2} + 4}}{2} = y + \sqrt{y^{2} + 1}$$

$$\sqrt{y^{2} + 1} > \sqrt{y^{2}} = |y| \Rightarrow \begin{cases} \sqrt{y^{2} + 1} > |y| \ge y \quad \Rightarrow \quad y - \sqrt{y^{2} + 1} < 0 \\ \sqrt{y^{2} + 1} > |y| \ge -y \quad \Rightarrow \quad y + \sqrt{y^{2} + 1} > 0 \end{cases}$$

On a donc $X_1 < 0$ et $X_2 > 0$ donc seul $X = X_2 = y + \sqrt{y^2 + 1}$ convient. D'où $x = \ln(X) = \ln(y + \sqrt{y^2 + 1})$

b) $y = \cosh(x)$

$$y = \frac{e^x + 1/e^x}{2} = \frac{X + 1/X}{2} = \frac{X^2 + 1}{2X}$$

$$\iff 2yX = X^2 + 1 \iff X^2 - 2yX + 1 = 0$$

On résout l'équation du second degré en X:

$$\Delta = 4y^2 - 4 = 4(y^2 - 1) \Rightarrow 0 \le \sqrt{y^2 - 1} \le \sqrt{y^2} = y \quad \text{car } y \ge 1$$

Les deux racines sont

$$X_1 = \frac{2y - \sqrt{4y^2 - 4}}{2} = y - \sqrt{y^2 - 1}$$
 et $X_2 = \frac{2y + \sqrt{4y^2 - 4}}{2} = y + \sqrt{y^2 - 1} \ge y \ge 1$

Comme x doit être supérieur à 0, il faut que X soit supérieur à 1.

On a
$$X_2 \ge 1$$
 et $X_1 X_2 = 1 \iff X_1 = 1/X_2 \le 1$.

Pour
$$y = 1$$
, $X_1 = X_2 = 1 = \exp(x) = 1$, donc $x = 0 = \ln(1 + \sqrt{1^2 - 1})$.

Pour
$$y > 1$$
, seul $X = X_2 = y + \sqrt{y^2 - 1} > y \ge 1$ convient D'où $x = \ln(X) = \ln(y + \sqrt{y^2 - 1})$

D'où
$$x = \ln(X) = \ln(y + \sqrt{y^2 - 1})$$

c) $y = \tanh(x)$

$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{X - 1/X}{X + 1/X} = \frac{X^2 - 1}{X^2 + 1}$$

$$\iff y(X^2 + 1) = X^2 - 1 \iff (1 - y)X^2 = 1 + y \iff X^2 = \frac{1 + y}{1 - y}$$

comme $y \in]-1;1[, Y = \frac{1+y}{1-y}$ est un réel strictement positif et donc

$$X = \sqrt{Y} \Rightarrow x = \ln(X) = \ln(\sqrt{Y}) = \ln(Y^{1/2}) = \frac{1}{2}\ln(Y) = \boxed{\frac{1}{2}\ln\left(\frac{1+y}{1-y}\right)}$$

Exercice 17. En utilisant la double inégalité

$$\forall t \in]0; \pi/2[, \sin(t) \le t \le \tan(t) = \frac{\sin(t)}{\cos(t)}$$

calculer les limites suivantes :

a)
$$\lim_{t \to 0} \frac{\sin(t)}{t}$$
 b) $\lim_{t \to 0} \frac{\sin(t/2)}{t/2}$ c) $\lim_{t \to 0} \frac{\sin^2(t/2)}{t/2}$ d) $\lim_{t \to 0} \frac{\cos(t) - 1}{t}$

Réponse:

a) pour $t \in]0$; $\pi/2[$, on a 0 < t, $0 < \sin(t)$ et $0 < \cos(t) < 1$, donc:

$$\sin(t) \le t \le \tan(t) = \frac{\sin(t)}{\cos(t)} \iff \frac{\sin(t)}{t} \le 1 \le \frac{\sin(t)}{t} \frac{1}{\cos(t)}$$
$$\Rightarrow \frac{\sin(t)}{t} \le 1 \quad \text{et} \quad \cos(t) \le \frac{\sin(t)}{t}$$

Comme $\lim_{t\to 0^+} \cos(t) = 1$, par encadrement (théorème des gendarmes) : $\lim_{t\to 0^+} \frac{\sin(t)}{t} = 1$.

La fonction $t \mapsto \frac{\sin(t)}{t}$ étant paire, on a

$$\lim_{t \to 0^-} \frac{\sin(t)}{t} = \lim_{t \to 0^+} \frac{\sin(t)}{t} = 1 \quad \Rightarrow \quad \lim_{t \to 0} \frac{\sin(t)}{t} = 1$$

b) Quand t tend vers 0, il en est de même pour t/2, donc :

$$\lim_{t \to 0} \frac{\sin(t/2)}{t/2} = \lim_{t/2 \to 0} \frac{\sin(t/2)}{t/2} = \lim_{u = t/2 \to 0} \frac{\sin(u)}{u} = 1$$

c)
$$\frac{\sin^2(t/2)}{t/2} = \sin(t/2) \frac{\sin(t/2)}{t/2}$$

$$\Rightarrow \lim_{t\to 0}\frac{\sin^2(t/2)}{t/2} = \left[\lim_{t\to 0}\sin(t/2)\right] \times \left[\lim_{t\to 0}\frac{\sin(t/2)}{t/2}\right] = 0 \times 1 = 0$$

d)
$$\cos(t) = \cos(2(t/2)) = 1 - 2\sin^2(t/2) \Rightarrow \cos(t) - 1 = -2\sin^2(t/2)$$

$$\Rightarrow \frac{\cos(t) - 1}{t} = -\frac{2\sin^2(t/2)}{t} = -\frac{\sin(t/2)^2}{t/2} \Rightarrow \lim_{t \to 0} \frac{\cos(t) - 1}{t} = -\lim_{t \to 0} \frac{\sin(t/2)^2}{t/2} = 0$$

Exercice 18. Démontrer que deux fonctions polynomiales p et q de degré n sont égales sur tout intervalle A de \mathbb{R} si et seulement si leurs coefficients de même rang sont égaux :

$$\left[\forall x \in A, \ p(x) = \sum_{k=0}^{n} a_k \, x^k = q(x) = \sum_{k=0}^{n} b_k \, x^k \right] \iff \left[\forall k \in \{0, 1, \dots, n\}, \ a_k = b_k \right]$$

La démonstration se fait par récurrence sur $n \in \mathbb{N}$.

Réponse:

A) On commence avec n=0. Deux fonctions polynomiales de degré 0 sont deux fonctions constantes. Posons $p(x)=a_0$ et $q(x)=b_0$ alors : $\forall x \in \mathbb{R}, \ p(x)=q(x) \iff a_0=b_0$.

B) Supposons que la propriété est vraie pour le degré n. Soient deux fonctions polynomiales de degré n+1, $p(x) = \sum_{k=0}^{n+1} a_k x^k$ et $q(x) = \sum_{k=0}^{n+1} b_k x^k$, montrons que :

$$\left[\forall x \in \mathbb{R}, \ p(x) = q(x) \right] \iff \left[\forall k \in \{0, 1, \dots, n, n+1\}, \ a_k = b_k \right]$$

1. L'implication

$$\left[\forall k \in \{0, 1, \dots, n, n+1\}, \ a_k = b_k \right] \Rightarrow \left[\forall x \in \mathbb{R}, \ p(x) = q(x) \right]$$

est évidente car alors :

$$p(x) - q(x) = \sum_{k=0}^{n+1} a_k x^k - \sum_{k=0}^{n+1} b_k x^k = \sum_{k=0}^{n+1} (a_k - b_k) x^k = \sum_{k=0}^{n+1} 0 x^k = 0 \text{ pour tout } x \text{ r\'eel.}$$

Donc pour tout réel x, $p(x) - q(x) = 0 \iff p(x) = q(x)$

2. Montrons l'implication

$$\left[\forall x \in \mathbb{R}, \ p(x) = q(x) \right] \Rightarrow \left[\forall k \in \{0, 1, \dots, n+1\}, \ a_k = b_k \right]$$

2.1) Si pour tout x réel, on a $p(x) = \sum_{k=0}^{n+1} a_k x^k = q(x) = \sum_{k=0}^{n+1} b_k x^k$, cela est vrai pour x=0:

$$p(0) = a_0 = q(0) = b_0 \iff a_0 = b_0$$

2.2) Ensuite pour tout x réel, p(x) = q(x) est équivalent à $p(x) - a_0 = q(x) - b_0$

$$p(x) - a_0 = \sum_{k=1}^{n+1} a_k x^k = x \left(\sum_{k=0}^n a_{k+1} x^k \right) \quad \text{et} \quad q(x) - b_0 = \sum_{k=1}^{n+1} b_k x^k = x \left(\sum_{k=0}^n b_{k+1} x^k \right)$$

Pour $x \neq 0$, on a $\frac{p(x) - a_0}{x} = \frac{q(x) - b_0}{x}$, on a donc deux fonctions polynomiales de degré n:

$$P(x) = \frac{p(x) - a_0}{x} = \sum_{k=0}^{n} a_{k+1} x^k$$
 et $Q(x) = \frac{q(x) - b_0}{x} = \sum_{k=0}^{n} b_{k+1} x^k$

égales sur \mathbb{R}^* donc égales sur l'intervalle $A = \mathbb{R}_+^*$, donc pour tout entier k entre 0 et n, $a_{k+1} = b_{k+1}$.

Et donc avec 2.1) et 2.2), on a montré que pour tout entier k entre 0 et n+1, $a_k=b_k$.