Problem EX-2 (5 parts)

MIPS Assembly Expressions

Part A: Write a MIPS program fragment that computes " $-17 \cdot (B-C)$ " and puts the result in register \$6. Assume B and C are in registers \$1 and \$2, respectively. Use a minimum number of instructions and registers. You may reuse registers \$1 and \$2.

sub	\$1, \$1, \$2	# B = B - C
addi	\$6, \$0, -17	# \$6 = -17
mult	\$1, \$6	# Lo = -17 * (B - C)
mflo	\$6	# \$6 = result

Part B: Suppose A is stored in memory location 1020 and B is stored in memory location 1024. Write a MIPS program fragment that computes " $256 \cdot (A+B/16)$ " and stores the result at memory location 1028. Use a minimum number of instructions and registers.

lw	\$1, 1020(\$0)	# \$1 = mem[1020]
lw	\$2, 1024(\$0)	# \$2 = mem[1024]
sra	\$2, \$2, 4	# \$2 = \$2 / 16
add	\$2, \$2, \$1	# \$2 = A+B/16
sll	\$2, \$2, 8	# \$2 = 256*(A+B/16)
SW	\$2, 1028(\$0)	# mem[1028] = \$2

Part C: Write a MIPS program fragment to put the value 0xABCD1234 into register \$1.

Part D: Suppose an image processing system stores a 512x256 pixel image in memory. Each pixel is represented by 8 bits and they are store contiguously in memory. How much memory (in kilobytes) does this require? How many bits are needed to address 1 pixel?

$$512 \times 256$$
 pixels \times 1 byte/pixel = $2^9 \times 2^8 = 2^{17} = 128$ Kbytes
To address 128 Kbytes, an address would require at least 17 bits.

Part E: Write a MIPS fragment that exchanges two registers (\$1 and \$2) without using any other registers or memory. (hint: think xor).

xor	\$1, \$1, \$2	# \$1 = \$1 xor \$2
xor	\$2, \$1, \$2	# \$2 = \$1 xor \$2 xor \$2 = \$1
xor	\$1, \$1, \$2	# \$1 = \$1 xor \$2 xor \$1 = \$2