

NeurIPS - Thoth

Conference on Neural
Information Processing Systems

Fridolin Pokorny < fridolin@redhat.com> & Thoth team https://thoth-station.ninja/
Red Hat AlCoE, Project Thoth 2020

Thoth

- Why Thoth?
 - · Large stack of dependencies to run an application
 - Each layer in the stack introduces complexity
 - · Any component on any lazyer may cause issues
 - · An issue on any layer creates an observable aspect
 - Performance
 - Security
 - ...
 - How to find the right stack for user needs?

Thoth

- Not just 2 dependencies but the whole dependency graph
 - Consider direct dependencies
 - · Consider transitive dependencies
 - · Consider runtime environment and other aspects of the software
- The state space is often too large to explore in real time
 - Number of combinations for a TensorFlow==2.1.0 stack: ~3x10¹³
 - Red Hat Developer: <u>Al software stack inspection with Thoth and TensorFlow</u>
- Can we split this into smaller sub-problems and find a solution to the optimization problem?

Thoth: TensorFlow dependency graph

Thoth: random state space sampling

- Randomly resolve software stacks based on the dependency graph
- Check "how good" they are based on knowledge about the software

Thoth: reinforcement learning

- Create a mechanism that can learn how to resolve software stacks
 - · Using knowledge about the software to score software stacks
 - · Learning how to navigate through the dependency graph to obtain best possible set of packages
- Gradient-free methods
 - Temporal Difference learning (TD-learning) and Monte Carlo Tree Search (MCTS)
 - Learning how to navigate through the state space and predicting score of trajectories in the dependency graph
 - Using "scoring pipeline" to score actions taken in the dependency graph and propagating a reward signal
 - · Adaptive simulated annealing helps to balance exploration and exploitation

Thoth: example scenario

- Recommending a flask application
 - · 7 direct packages considered in total
 - · 7,861,340 possible valid software stack resolutions
 - Reinforcement learning based resolver run to resolve and score 70,000 software stacks (~1%)
 - Using randomly assigned scores for packages

Thoth: an example scenario

Finding a software stack with a score of 4.99, the best possible candidate has 5.04

Project Thoth CONFIDENTIAL designator

Call to action

- Use our data
 - · Kaggle datasets at https://www.kaggle.com/thothstation/datasets
 - · By conducting experiments on our datasets
 - · By asking our services for advise
- Use our Services
 - GitHub App https://github.com/apps/qeb-hwt
 - Thamos
 - · OpenShift Pipeline Tasks
- Create Open Source software
 - · Contribute a tiny feature (or a large)
 - Project Planning is done openly

Project Thoth CONFIDENTIAL designator

Project Thoth

- AICoE, Office of the CTO
- Homepage
 - http://thoth-station.ninja/
- GitHub organization
 - http://github.com/thoth-station/
- Twitter account with updates
 - https://twitter.com/thothstation
- YouTube channel
 - https://www.youtube.com/channel/UCIUIDug hQ6vlzmgM59B2Lw
 - http://bit.ly/thoth-on-youtube

Thanks for your attention!

https://www.youtube.com/channel/UCIUIDuq_hQ6vlzmqM59B2Lw

References

Website https://thoth-station.ninja/

Twitter https://twitter.com/thothstation

GitHub https://github.com/thoth-station

n linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

