Machine Learning Multilayer Networks

Jian Liu

Part 1: MLP Part 2: CNN

Machine Learning Multilayer Networks

Jian Liu

Part 1: MLP

Perceptron limitations

Multi-layer Perceptron (MLP)

Choose a straight line that separates the points as in the figure, and whose corresponding perceptron returns 1 in the highlighted area

Now for the other points

Possible solution:

$$-x_1-x_2+2.5=0$$

$$w = \langle -1, -1 \rangle$$

$$x_1 + x_2 - 0.5 = 0$$

$$w = \langle 1, 1 \rangle$$

$$-x_1-x_2+2.5\ge 0$$

$$x_1 + x_2 - 0.5 \ge 0$$

These are 2 perceptrons with weights:

 $\langle 1, 1, 0.5 \rangle$

Their outputs are:

What	we	want
------	----	------

x1	x2	p1	p2	0
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

$$p_1 = -x_1 - x_2 + 2.5 \ge 0$$
$$p_2 = x_1 + x_2 - 0.5 \ge 0$$

$$p_1 \equiv x_1 + x_2 - 0.5 \ge 0$$

$$p_2 \equiv -x_1 - x_2 + 1.5 \ge 0$$

$$o \equiv p_1 + p_2 - 1.5 \ge 0$$

A Universal Approximator

$$g(x) = \sum_{j=1}^{N} w_{j} \sigma(y_{j}^{T} x + \theta_{j}) \qquad \text{given} \qquad q(x) \qquad \epsilon > 0$$

$$|g(x)-q(x)|<\epsilon$$

Error definition

$$E(X) = \sum_{x_n \in X} |y_n - t_n|$$

$$E_p(\boldsymbol{X}) = \sum_{\boldsymbol{x}_n \in \boldsymbol{X}} \boldsymbol{w}^T \boldsymbol{x}_n (y_n - t_n)$$

$$E_m(X) = \frac{1}{2} \sum_{x_n \in X} (y_n - t_n)^2$$

$$y = f\left(\sum_{i=1}^{M} w_i x_i\right)$$

Number of errors on the training set

The Perceptron error

Squared error function (differentiable!)
Usually known as the Mean Squared Error (MSE)

Output is differentiable if f is

Not good

A different activation function

The sigmoid function:
$$f(x) = \frac{1}{1 + e^{-\beta x}} \equiv \sigma_{\beta}$$

$$\sigma_{\beta}'(x)=?$$

The derivative of the sigmoid

The sigmoid function:
$$f(x) = \frac{1}{1 + e^{-\beta x}} \equiv \sigma_{\beta}$$

$$\sigma_{\beta}'(x) = ?$$

Two useful properties of derivatives:

$$f(x)=e^x \qquad f'(x)=e^x$$

Example: $(e^{x^2})' = e^{x^2} \cdot 2x$

Chain rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$

Hint:
$$\frac{1}{1+e^{-\beta x}} = (1+e^{-\beta x})^{-1}$$

The derivative of the sigmoid

The sigmoid function: $f(x) = \frac{1}{1 + e^{-x}} \equiv \sigma$ where $\beta = 1$ for simplicity

We derive the most external function first
$$\sigma'(x) = ((1+e^{-x})^{-1})' = -1(1+e^{-x})^{-2} \cdot (1+e^{-x})' = -1(1+e^{-x})^{-2} \cdot (-x)' = -1(1+e^{-x})^{-2} \cdot e^{-x} \cdot (-1)$$
 and finally this one

$$\sigma'(x) = -1(1+e^{-x})^{-2} \cdot e^{-x} \cdot (-1) = \frac{e^{-x}}{(1+e^{-x})^2}$$

Let's note that:

$$1 - \sigma = 1 - \frac{1}{1 + e^{-x}} = \frac{1 + e^{-x} - 1}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} \Rightarrow \sigma' = \sigma(1 - \sigma)$$

The same thing with β, FYI

The sigmoid function:
$$h(x) = \frac{1}{1 + e^{-\beta x}} \equiv \sigma_{\beta}$$

We derive the most external function first $\sigma_{\beta}'(x) = ((1 + e^{-\beta x})^{-1})' = (1 + e^{-\beta x})^{-2} \cdot (1 + e^{-\beta x})' = (1 + e^$ Then this $=-1(1+e^{-\beta x})^{-2} \cdot e^{-\beta x} \cdot (-\beta x)' = -1(1+e^{-\beta x})^{-2} \cdot e^{-\beta x} \cdot (-\beta)$ and finally this one

$$\sigma_{\beta}'(x) = -1 (1 + e^{-\beta x})^{-2} \cdot e^{-\beta x} \cdot (-\beta) = \frac{\beta e^{-\beta x}}{(1 + e^{-\beta x})^2}$$

Let's note that:

$$1 - \sigma_{\beta} = 1 - \frac{1}{1 + e^{-\beta x}} = \frac{1 + e^{-\beta x} - 1}{1 + e^{-\beta x}} = \frac{e^{-\beta x}}{1 + e^{-\beta x}} \Rightarrow \sigma_{\beta}' = \beta \sigma_{\beta} (1 - \sigma_{\beta})$$

A different activation function

before

$$y(\mathbf{w}^T \mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} > 0 \\ 0 & \text{if } \mathbf{w}^T \mathbf{x} \le 0 \end{cases}$$

after

$$y(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\beta \mathbf{w}^T \mathbf{x}}}$$

$$\sigma_{\beta}'(x) = \beta \frac{e^{-\beta x}}{(1 + e^{-\beta x})^2} = \beta \sigma_{\beta}(x)(1 - \sigma_{\beta}(x))$$

Gradient descent (again)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla E(\mathbf{x})$$

Perceptron

$$E_p(X) = \sum_{x_n \in X} \mathbf{w}^t x_n (y_n - t_n)$$

Multi-Layer P

$$E_m(\mathbf{X}) = \frac{1}{2} \sum_{\mathbf{x}_n \in \mathbf{X}} (y_n - t_n)^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{x} (y-t)$$

$$x_{0}=1$$

$$x_{1}=3$$

$$v_{0}=1$$

$$v_{0}=1$$

$$v_{0}=1$$

$$b$$

$$w_{0}=1$$

$$a$$

$$b = v_{0} x_{0} + v_{1} x$$

$$z_{1}=\sigma(b) \quad a=w_{0} z_{0} + w_{1} z_{1} \quad y=\sigma(a)$$

$$\frac{\partial E}{\partial w_{0}} = \frac{\partial E}{\partial a} \frac{\partial a}{\partial w_{0}}$$

$$chain rule$$

$$\frac{\partial E}{\partial a} = \frac{\partial}{\partial a} \frac{1}{2} (\sigma(a) - t)^2 = (\sigma(a) - t) \cdot \sigma(a) (1 - \sigma(a))$$

$$\frac{\partial a}{\partial w_0} = \frac{\partial}{\partial w_0} w_0 z_0 + w_1 z = z_0$$

$$\frac{\partial E}{\partial w_0} = (y - t)y(1 - y)z_0$$

$$\frac{\partial E}{\partial w_1} = (y - t)y(1 - y)z_1$$

$$x_{0}=1$$

$$x_{1}=3$$

$$v_{0}=1$$

$$b$$

$$b=v_{0} x_{0}+v_{1}x \qquad z_{1}=\sigma(b) \qquad a=w_{0} z_{0}+w_{1}z_{1} \qquad y=\sigma(a)$$

$$a=w_{0} z_{0}+w_{1}\sigma(b)$$

$$\frac{\partial E}{\partial v_{0}}=\frac{\partial E}{\partial a}\frac{\partial a}{\partial b}\frac{\partial b}{\partial v_{0}} \qquad \frac{\partial E}{\partial a}=(y-t)y(1-y) \quad \text{from before}$$

$$\frac{\partial a}{\partial b}=\frac{\partial}{\partial b}w_{0}z_{0}+w_{1}\sigma(b)=w_{1}\sigma(b)(1-\sigma(b))=w_{1}z_{1}(1-z_{1})$$

$$\frac{\partial}{\partial v_{0}}v_{0}x_{0}+v_{1}x_{1}=x_{0}$$

$$\frac{\partial E}{\partial v_{0}}=(y-t)y(1-y)w_{1}z_{1}(1-z_{1})x_{0}$$

$$\frac{\partial E}{\partial v_{1}}=(y-t)y(1-y)w_{1}z_{1}(1-z_{1})x_{1}$$

$$x_0=1$$
 $v_0=1$
 $v_0=$

$$\nabla E = \begin{bmatrix} \frac{\partial E}{\partial w_0} \\ \frac{\partial E}{\partial w_1} \\ \frac{\partial E}{\partial v_0} \\ \frac{\partial E}{\partial v_1} \end{bmatrix} = \begin{bmatrix} (y-t)y(1-y)z_0 \\ (y-t)y(1-y)z_1 \\ (y-t)y(1-y)w_1z_1(1-z_1)x_0 \\ (y-t)y(1-y)w_1z_1(1-z_1)x_1 \end{bmatrix} \nabla E(\mathbf{w}) = \begin{bmatrix} 0.09 \\ 0.09 \\ 0.002 \\ 0.002 \end{bmatrix}$$

Summary

$$\frac{\partial E}{\partial w_0} = \frac{\partial E}{\partial a} \frac{\partial a}{\partial w_0}$$

$$\frac{\partial E}{\partial v_0} = \frac{\partial E}{\partial a} \frac{\partial a}{\partial b} \frac{\partial b}{\partial v_0}$$

Backpropagation of errors, notation

Neuron j is a hidden neuron

Neuron k is an **output** neuron

...
$$a_j = \sum_{i=1}^{N} w_{ij} z_i$$
 $z_j = f(a_j)$ $a_k = \sum_{j=1}^{M} w_{jk} z_j$ $z_k = f(a_k)$

Forward pass

Neuron j is a **hidden** neuron

Neuron k is an **output** neuron

...
$$a_j = \sum_{i=1}^{N} w_{ij} z_i$$
 $z_j = f(a_j)$ $a_k = \sum_{j=1}^{M} w_{jk} z_j$ $z_k = f(a_k)$

Forward pass: compute all the z

Backward pass, output neuron

How does ak affect the error?

$$E(\mathbf{x}) = \frac{1}{2} (y-t)^2 = \frac{1}{2} (z_k - t)^2$$

$$\frac{\partial E}{\partial a_k} = \frac{\partial}{\partial a_k} \frac{1}{2} (z_k - t_k)^2 = \frac{\partial}{\partial a_k} \frac{1}{2} (\sigma(a_k) - t_k)^2 = (\sigma(a_k) - t_k) \sigma(a_k) (1 - \sigma(a_k))$$

Now this useful, because it cancels out the exponent in the derivation

Backward pass, output neuron

One step backward, inside the box: how does w_{jk} affect the error?

$$E(x) = \frac{1}{2} (z_k - t)^2 = \frac{1}{2} (\sigma(a_k) - t)^2 \qquad a_k = \sum_j w_{jk} z_j$$

We apply the chain rule again: $\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial w_{jk}} = \delta_k ?$

$$\frac{\partial a_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} w_{0k} z_0 + w_{1k} z_1 + w_{2k} z_2 + \dots + w_{jk} z_j = ?$$

Backward pass, output neuron

One step backward, inside the box: how does w_{jk} affect the error?

We apply the chain rule again:

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial w_{jk}} = \delta_k z_j$$

$$\frac{\partial a_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} w_{0k} z_0 + w_{1k} z_1 + w_{2k} z_2 + \dots + w_{jk} z_j = z_j$$

Backward pass, hidden neuron

One step backward: how does a_j affect the error?

Computing delta

One step backward, inside the box: how does w_{ij} affect the error?

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ij}} = \delta_{j} ?$$

$$\frac{\partial a_{j}}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \sum_{i} w_{ij} z_{i} = ?$$

$$\sum_{i} w_{ij} z_{i}$$

$$\delta_{j} = z_{j} (1 - z_{j}) \sum_{k} w_{jk} \delta_{k}$$

$$w_{jk} = w_{jk} - \eta \delta_{k} z_{j}$$

Computing delta

One step backward, inside the box: how does w_{ij} affect the error?

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ij}} = \delta_{j} z_{i}$$

$$\frac{\partial a_{j}}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \sum_{i} w_{ij} z_{i} = z_{i}$$

$$\sum_{i} w_{ij} z_{i}$$

$$\delta_{j} = z_{j} (1 - z_{j}) \sum_{k} w_{jk} \delta_{k}$$

$$w_{ij} = w_{ij} - \eta \delta_{j} z_{i}$$

$$\sum_{i} w_{jk} z_{j}$$

$$\delta_{k} = (z_{k} - t_{k}) z_{j} (1 - z_{k})$$

Gradient descent (again)

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \nabla E(\boldsymbol{x})$$

Perceptron

$$E_p(\mathbf{X}) = \sum_{\mathbf{x}_n \in \mathbf{X}} \mathbf{w}^t \mathbf{x}_n (y_n - t_n)$$

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta (y - t) \boldsymbol{x}$$

Multi-Layer P

$$E_m(\mathbf{X}) = \frac{1}{2} \sum_{\mathbf{x}_n \in \mathbf{X}} (y_n - t_n)^2$$

Output:

$$\delta_{\text{output}} = (y - t)y(1 - y)$$

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \delta_{\text{output}} \boldsymbol{x}$$

Hidden:

$$\delta_{\text{hidden}} = \sum_{k} w_{k} \delta_{k}$$

$$\boldsymbol{v}_{t+1} = \boldsymbol{v}_t - \eta \delta_{\text{hidden}} \boldsymbol{x}$$

Local Minima

Start with weights close to 0: where the decision is actually made

Multiple random restarts

Using MLPs

Regression

Classification

Compression (Autoencoder)

Last neuron linear

One output per class, pick highest

Middle "bottleneck" layer

Training "recipe"

Choose features

Normalize (rescale) data:

$$x' = \frac{x - \overline{x}}{\sigma}$$
 or

$$x' = \frac{x - \overline{x}}{\sigma}$$
 or $x' = \frac{x - min(x)}{max(x) - min(x)}$

in [0,1]

Zero mean, unit variance

Create training, validation, and test sets

Decide whether you need hidden layers and how big. Try several ones.

Train

Test

Deep learning

