Definition (Monoidal poset). A monoidal structure on a poset $P = \langle P, \leq \rangle$ is specified by:

Constituents

1. A monotone map \otimes : $\mathbf{P} \times \mathbf{P} \to \mathbf{P}$, called the *monoidal product*.

Note that here we are implicitly assuming $\mathbf{P} \times \mathbf{P}$ as having the product order. In detail, monotonicity means that, for all $x_1, x_2, y_1, y_2 \in \mathbf{P}$,

$$x_1 \le y_1$$
 and $x_2 \le y_2 \Rightarrow (x_1 \otimes x_2) \le (y_1 \otimes y_2)$.

2. An element $1 \in \mathbb{P}$, called the *monoidal unit*.

Conditions

1. Associativity: for all $x, y, z \in \mathbf{P}$,

$$(x \otimes y) \otimes z = x(\otimes y \otimes z).$$

2. Left and right unitality: for all $x \in P$,

$$\mathbf{1} \otimes x = x$$
 and $x \otimes \mathbf{1} = x$.

A poset equipped with a monoidal structure is called a monoidal poset.