

What Is Claimed Is:

1 1. A virtual reality method, comprising the steps of:
2 providing a plurality of images and connecting the images
3 in series as an image sequence;

4 providing a pointer pointed to a target-image in the image
5 sequence, wherein the target-image is one of the images in the
6 image sequence;

7 receiving a direction signal;

8 determining the direction signal;

9 altering the pointer to point to an adjacent image next to
10 the target-image in the image sequence when the direction signal
11 is a first direction signal; and

12 altering the pointer to point to an adjacent image previous
13 to the target-image in the image sequence when the direction
14 signal is a second direction signal.

1 2. The method as claimed in claim 1 further comprising:

2 determining whether the pointer is pointing to the last
3 image of the image sequence; and

4 altering the pointer to point to the first image of the
5 image sequence when the direction signal is the first direction
6 signal and the pointer is pointing to the last image of the image
7 sequence.

1 3. The method as claimed in claim 1 further comprising:

2 determining whether the pointer is pointing to the first
3 image of the image sequence; and

4 altering the pointer to point to the last image of the image
5 sequence when the direction signal is the second direction

6 signal and the pointer is pointing to the first image of the image
7 sequence.

1 4. The method as claimed in claim 1 further comprising
2 displaying the image pointed to by the pointer.

1 5. The method as claimed in claim 2 wherein the first
2 direction signal is a right signal.

1 6. The method as claimed in claim 3 wherein the second
2 direction signal is a left signal.

1 7. The method as claimed in claim 1 wherein the images are
2 the photos of an object at different positions on a circle having
3 a fixed radius, and there is a predetermined angle difference
4 between one image and its adjacent image in the image sequence.

1 8. The method as claimed in claim 7 wherein the
2 predetermined angle difference is a 24 degree horizontal angle.

1 9. A virtual reality method, comprising the steps of:
2 providing a plurality of images and arranging the images
3 into a matrix;
4 providing a pointer pointed to a target-image in the
5 matrix, wherein the target-image is one of the images in the
6 matrix;
7 receiving a direction signal;
8 determining the direction signal;

9 altering the pointer to point to an adjacent image next to
10 the target-image in the matrix when the direction signal is a
11 first direction signal;

12 altering the pointer to point to an adjacent image previous
13 to the target-image in the matrix when the direction signal is
14 a second direction signal;

15 altering the pointer to point to an adjacent image above
16 the target-image in the matrix when the direction signal is a
17 third direction signal; and

18 altering the pointer to point to an adjacent image below
19 the target-image in the matrix when the direction signal is a
20 fourth direction signal.

1 10. The method as claimed in claim 9 further comprising:
2 determining whether the pointer is pointing to the image
3 in the last column of the matrix; and

4 altering the pointer to point to the image in the first
5 column of the matrix when the direction signal is the first
6 direction signal and the pointer is pointing to the image in the
7 last column of the matrix.

1 11. The method as claimed in claim 9 further comprising:
2 determining whether the pointer is pointing to the image
3 in the first column of the matrix; and

4 altering the pointer to point to the image in the last
5 column of the matrix when the direction signal is the second
6 direction signal and the pointer is pointing to the image in the
7 first column of the matrix.

1 12. The method as claimed in claim 9 further comprising:

2 determining whether the pointer is pointing to the image
3 in the first row of the matrix; and

4 altering the pointer to point to the image in the first row
5 of the matrix when the direction signal is the third direction
6 signal and the pointer is pointing to the image in the first row
7 of the matrix.

1 13. The method as claimed in claim 9 further comprising:

2 determining whether the pointer is pointing to the image
3 in the last row of the matrix; and

4 altering the pointer to point to the image in the last row
5 of the matrix when the direction signal is the fourth direction
6 signal and the pointer is pointing to the image in the last row
7 of the matrix.

1 14. The method as claimed in claim 9 further comprising
2 displaying the image pointed to by the pointer.

1 15. The method as claimed in claim 10 wherein the first
2 direction signal is a right signal.

1 16. The method as claimed in claim 11 wherein the second
2 direction signal is a left signal.

1 17. The method as claimed in claim 12 wherein the third
2 direction signal is an up signal.

1 18. The method as claimed in claim 13 wherein the fourth
2 direction signal is a down signal.

1 19. The method as claimed in claim 9 wherein the images
2 are the photos of an object at different positions on a virtual
3 spherical surface, and the images in the same row of the matrix
4 represent the images photographed from the same overlooking
5 angle but different horizontal angles, and there is a
6 predetermined horizontal angle difference between one image and
7 its adjacent image in one row, and the images in the same column
8 of the matrix represent the images photographed from the same
9 horizontal angle but different overlooking angles, and there is
10 a predetermined overlooking angle difference between one image
11 and its adjacent image in one column.

1 20. The method as claimed in claim 19 wherein the
2 predetermined horizontal angle difference is a 24 degree
3 horizontal angle.