Réactions chimiques : quelques rappels

- I. Équation bilan
- II. Avancement de reaction
- III. Tableau d'avancement et état final
- IV.Cas avec deux réactions

Nous nous limiterons à des systèmes réactionnels (faisant intervenir une ou pusieurs réactions) fermés.

I. Équation bilan

Une réaction chimique est modélisée par une **équation bilan** de la forme :

$$\alpha_1 A_1 + \dots + \alpha_n A_n = \beta_1 B_1 + \dots + \beta_p B_p$$

Elle doit **conserver** la charge électrique totale et la quantité de chaque élément chimique.

Les A_i (**réactifs**) et B_i (**produits**) sont des composés <u>physico</u>-chimiques dont la <u>phase</u> doit être précisée.

Les α_i et β_i sont les **coefficients stœchiométriques**.

Cette équation est équivalente à
$$0 = \sum_{i} \nu_i C_i$$

Avec v_i les coefficients stœchiométriques algébriques :

$$v_i = -\alpha_i < 0$$
 pour les réactifs et $v_i = \beta_i < 0$ pour les produits

II. Avancement de réaction

On note n_i la quantité de matière de C_i à un instant quelconque. L'**avancement** de réaction ξ , nul au début de la réaction ($\xi_0 = 0$), est défini par $d\xi = \frac{dn_i}{\nu_i}$ pour tout i.

Alors
$$n_i = n_{i,0} + \nu_i \xi$$

C'est une grandeur homogène à une quantité de matière (en moles).

Lorsque ξ augmente, le système évolue dans le **sens direct** (symbolisé par \rightarrow). Lorsque ξ diminue , le système évolue dans le **sens indirect**, ou **sens inverse** (symbolisé par \leftarrow).

Une des questions principales de la thermodynamique chimique est de déterminer l'avancement final ξ_f .

III. Tableau d'avancement et état final

Plusieurs états finaux sont possibles :

- la réaction est **totale** lorsque l'avancement final atteint sa valeur maximale théorique $\xi_f = \xi_{max}$. Au moins un réactif a alors disparu, c'est le **réactif limitant**, et la réaction s'arrête.
- la réaction est **limitée** lorsque $\xi_f < \xi_{max}$, les réactifs et produits cohabitent alors à l'équilibre.

Les réactifs sont introduits en **proportions stoéchiométriques** quand $\frac{n_{i,0}}{|\nu_i|} = k$ constante (pour les réactifs). Ils sont alors tous limitants et disparaissent tous si la réaction est totale. Les proportions restent stœchiométriques si elles le sont initialement.

IV. Cas avec deux réactions

Considérons deux réactions simultanées :

(1)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} = CO_{2(g)}$$

	$\mathrm{CO}_{(\mathrm{g})}$	$O_{2(g)}$	$\mathrm{CuO}_{(\mathrm{s})}$	$Cu_{(s)}$	$\mathrm{CO}_{2(\mathrm{g})}$
Initial	n	n	2n	0	n

(2)
$$CO_{(g)} + CuO_{(s)} = Cu_{(s)} + CO_{2(g)}$$

IV. Cas avec deux réactions

Considérons deux réactions simultanées :

(1)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} = CO_{2(g)}$$

(2)
$$CO_{(g)} + CuO_{(s)} = Cu_{(s)} + CO_{2(g)}$$

	$\mathrm{CO}_{(\mathrm{g})}$	$ m O_{2(g)}$	CuO _(s)	$\mathrm{Cu}_{(\mathrm{s})}$	$\mathrm{CO}_{2(\mathrm{g})}$
Initial	n	n	2n	0	n
Variation due à (1)	$-\xi_1$	$-\frac{\xi_1}{2}$			$+\xi_1$
Variation due à (2)	$-\xi_2$		$-\xi_2$	$+\xi_2$	$+\xi_2$

IV. Cas avec deux réactions

Considérons deux réactions simultanées :

(1)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} = CO_{2(g)}$$

(2)
$$CO_{(g)} + CuO_{(s)} = Cu_{(s)} + CO_{2(g)}$$

	$\mathrm{CO}_{(\mathrm{g})}$	$ m O_{2(g)}$	CuO _(s)	$\mathrm{Cu_{(s)}}$	$\mathrm{CO}_{2(\mathrm{g})}$
Initial	n	n	2n	0	n
Variation due à (1)	$-\xi_1$	$-rac{\xi_1}{2}$			$+\xi_1$
Variation due à (2)	$-\xi_2$		$-\xi_2$	$+\xi_2$	$+\xi_2$
Quantités pour (ξ_1,ξ_2)	$n-\xi_1-\xi_2$	$n-rac{\xi_1}{2}$	$2n-\xi_2$	$+\xi_2$	$n+\xi_1+\xi_2$

Exercice : déterminer graphiquement le domaine des avancements accessibles dans le plan (ξ_1, ξ_2) .