1 Η έννοια του διανύσματος

Ε΄ Ημερομηνία:

Πίνακας Ύλης		
Ορισμοί - Βασικές έννοιες 🗏		
 1.1 Διάνυσμα 1.2 Αρχή και πέρας 1.3 Στοιχεία διανύσματος: Μέτρο - διεύθυνση - φορά 1.4 Φορέας διανύσματος 1.5 Μηδενικό - Μοναδιαίο διάνυσμα 	 1.6 Παράλληλα διανύσματα 1.7 Ομόρροπα διανύσματα 1.8 Αντίρροπα διανύσματα 1.9 Ίσα διανύσματα 1.10 Αντίθετα διανύσματα 	
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨		
☑ Εύρεση παράλληλων διανυσμάτων□ Εύρεση ομόρροπων και αντίρροπων διανυσμάτων	Εύρεση ίσων και αντίθετων διανυσμάτωνΥπολογισμός γωνίας διανυσμάτων	
Τυπολόγιο - Συμβολισμοί 🖺		
1. Διάνυσμα \vec{a} ή \overrightarrow{AB} 2. Μέτρο διανύσματος $ \vec{a} , \overrightarrow{AB} $ 3. Μηδενικό διάνυσμα : $\vec{a} = \vec{0}$ 4. Μοναδιαίο διάνυσμα : $ \vec{a} = 1$	5. Ομόρροπα διανύσματα : $\overrightarrow{a} \uparrow \uparrow \overrightarrow{\beta}$ 6. Αντίρροπα διανύσματα : $\overrightarrow{a} \uparrow \downarrow \overrightarrow{\beta}$ 7. Γωνία διανυσμάτων : $\theta = (\overrightarrow{a}, \overrightarrow{\beta}), \ \theta \in [0, \pi]$	

Πρόσθεση διανυσμάτων

🗰 Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 2.1 Πρόσθεση διαδοχικών διανυσμάτων
- 2.2 Κανόνας παραλληλογράμμου
- 2.3 Αφαίρεση διανυσμάτων
- 2.4 Διάνυσμα θέσης
- 2.5 Σημείο αναφοράς

Θεωρήματα - Ιδιότητες 💥

- 2.1 Ιδιότητες πρόσθεσης
- 2.2 Διαφορά διανυσματικών ακτίνων
- 2.3 Μέτρο αθροίσματος Τριγωνική ανισό-
- 2.4 Κριτήριο ομόρροπων και αντίρροπων διανυσμάτων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- ☑ Πρόσθεση και αφαίρεση διαδοχικών δια-
- ☑ Πρόσθεση και αφαίρεση διανυσμάτων με κανόνα παραλληλογράμμου
- **Δ** Απόδειξη διανυσματικής ισότητας
 - Απόδειξη ότι δύο σημεία ταυτίζονται
 - Μέσο ευθύγραμμου τμήματος

- 🗹 🗌 Απόδειξη ότι ένα τετράπλευρο είναι παραλληλόγραμμο
 - □ Προσδιορισμός σημείου
- **Γ** Τριγωνική ανισότητα
 - □ Κριτήριο ομόρροπων και αντίρροπων διανυσμάτων
 - □ Γεωμετρικοί τόποι

Τυπολόγιο - Συμβολισμοί

- 1. Πρόσθεση διανυσμάτων $\vec{a} + \vec{\beta}$
- 2. Αφαίρεση διανυσμάτων : $\vec{a} \vec{\beta}$
- 3. Διάνυσμα θέσης σημείου $M: \overrightarrow{OM}$ όπου

Ο σημείο αναφοράς.

4. Τριγωνική ανισότητα:

$$\vec{a} + \vec{\beta} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

$$\vec{a} + \vec{\beta}$$

$$\vec{a} + \vec{\beta}$$

$$\vec{a} + \vec{\beta}$$

Σχήμα 2.1: Άθροισμα διαδοχικών διανυσμάτων

Σχήμα 2.2: Κανόνας παραλληλογράμμου

Σχήμα 2.3: Διαφορά διαδοχικών διανυσμάτων - Κανόνας παραλληλογράμμου

Ιδιότητα	Συνθήκη
Αντιμεταθετική	$\vec{a} + \vec{\beta} = \vec{\beta} + \vec{a}$
Προσεταιριστική	$\vec{a} + \left(\vec{\beta} + \vec{\gamma}\right) = \left(\vec{a} + \vec{\beta}\right) + \vec{\gamma}$
Ουδέτερο στοιχείο	$\vec{a} + \vec{0} = \vec{a}$
Αντίθετα διανύσματα	$\vec{a} + (-\vec{a}) = \vec{0}$

Πίνακας 2.1: Ιδιότητες πρόσθεσης διανυσμάτων

3 Γινόμενο αριθμού με διάνυσμα

ដែ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 3.1 Γινόμενο αριθμού με διάνυσμα
- 3.2 Γραμμικός συνδυασμός διανυσμάτων

Θεωρήματα - Ιδιότητες 💥

- 3.1 Ιδιότητες γινομένου
- 3.2 Συνθήκη παραλληλίας
- 3.3 Διανυσματική ακτίνα μέσου

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- ☑ Απόδειξη Έλεγχος παραλληλίας διανυσμάτων
- 🗹 🗆 Απόδειξη διανυσματικής ισότητας
 - υνθήκη παραλληλίας διανυσμάτων
 - 🔲 Συνευθειακά σημεία

- 🗹 🗆 Διανυσματική ακτίνα μέσου
 - Προσδιορισμός αριθμού
- Γραμμικός συνδυασμός
 - □ Γεωμετρικοί τόποι
 - □ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

- 1. Γινόμενο αριθμού με διάνυσμα: $\lambda \vec{a}$
- 2. Συνθήκη παραλληλίας: $\vec{a} \parallel \vec{\beta} \Leftrightarrow \vec{a} = \lambda \vec{\beta}$
- 3. $\vec{a} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{a} = \lambda \vec{\beta} \text{ kai } \lambda > 0$

- 4. $\vec{a} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{a} = \lambda \vec{\beta} \text{ kai } \lambda < 0$
- 5. Διανυσματική ακτίνα μέσου: $\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$
- 6. Γραμμικός συνδυασμός: $\vec{\gamma} = \lambda \vec{a} + \mu \vec{\beta}$

Ιδιότητα	Συνθήκη	
Επιμεριστική (ως προς αριθμό)	$\lambda \left(\vec{a} \pm \vec{\beta} \right) = \lambda \vec{a} \pm \lambda \vec{\beta}$	
Επιμεριστική (ως προς διάνυσμα)	$(\lambda \pm \mu)\vec{a} = \lambda \vec{a} \pm \mu \vec{a}$	
Προσεταιριστική	$\lambda \left(\mu \vec{a}\right) = (\lambda \mu) \vec{a}$	
Μηδενικό γινόμενο	$\lambda \vec{a} = \vec{0} \Leftrightarrow \lambda = 0 \ \dot{\eta} \ \vec{a} = \vec{0}$	
Πρόσημο γινομένου	$(-\lambda \vec{a}) = (-\lambda)\vec{a} = -(\lambda \vec{a})$	
Νόμος διαγραφής (ως προς διάνυσμα)	Αν λ $\vec{a}=\mu\vec{a}$ και $\vec{a}\neq 0$ τότε $\lambda=\mu$	
Νόμος διαγραφής (ως προς αριθμό)	Αν $\lambda \vec{a} = \lambda \vec{\beta}$ και $\lambda \neq 0$ τότε $\vec{a} = \vec{\beta}$	

Πίνακας 3.2: Ιδιότητες γινομένου αριθμού με διάνυσμα

4 Συντεταγμένες διανύσματος

Ε΄ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 4.1 Συντεταγμένες διανύσματος
- 4.2 Συντελεστής διεύθυνσης διανύσματος
- 4.3 Ορίζουσα διανυσμάτων

Θεωρήματα - Ιδιότητες 💥

- 4.1 Ίσα διανύσματα
- 4.2 Οριζόντια Κατακόρυφα διανύσματα
- 4.3 Συντεταγμένες γραμμικού συνδυασμού
- 4.4 Συντεταγμένες μέσου τμήματος
- 4.5 Συντεταγμένες διανύσματος με γνωστά άκρα
- 4.6 Συνθήκες παραλληλίας διανυσμάτων
- 4.7 Μέτρο διανύσματος
- 4.8 Απόσταση σημείων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

Οριζόντια - Κατακόρυφα διανύσματα

🗹 🗆 Συντεταγμένες αθροίσματος - Γινομένου

- Γραμμικού συνδυασμού διανυσμάτων

🗹 🗆 Συντεταγμένες μέσου τμήματος

Υπολογισμός διανύσματος με γνωστά άκρα

🗷 🗌 Παράλληλα διανύσματα

Υπολογισμός συντελεστή διεύθυνσης διανύσματος

🗹 🗆 Υπολογισμός μέτρου διανύσματος

🗹 🗌 Υπολογισμός απόστασης σημείων

□ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

2. Συντελεστής διεύθυνσης: $\lambda = \frac{y}{r}$

3. Ίσα διανύσματα: $\vec{a} = \vec{\beta} \Rightarrow x_1 = x_2 \ \ \text{και} \ \ y_1 = y_2$

4. Ορίζουσα διανυσμάτων: $\det(\vec{a},\vec{\beta}) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1y_2 - x_2y_1$

5. Συντεταγμένες μέσου: $x_{M} = \frac{x_{A} + x_{B}}{2} \text{ και } y_{M} = \frac{y_{A} + y_{B}}{2}$

6. Διάνυσμα με γνωστά άκρα:

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$$

7. Παράλληλα διανύσματα:

i.
$$\vec{a} \parallel \vec{\beta} \Leftrightarrow \lambda_{\vec{a}} = \lambda_{\vec{\beta}}$$

ii.
$$\vec{a} \parallel \vec{\beta} \Leftrightarrow \det(\vec{a}, \vec{\beta}) = 0$$

- 8. Μέτρο διανύσματος: $|\vec{a}| = \sqrt{x^2 + y^2}$
- 9. Απόσταση μεταξύ σημείων:

$$AB = |\overrightarrow{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Πράξη	Συντεταγμένες
Άθροισμα	$\vec{a} + \vec{\beta} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
Πολλαπλασιασμός	$\lambda \vec{a} = \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$
Γραμμικός συνδυασμός	$\lambda \vec{a} + \mu \vec{\beta} = \lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2)$

Πίνακας 4.1: Πράξεις μεταξύ διανυσμάτων και συντεταγμένες

5 Εσωτερικό γινόμενο

Ε΄ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 5.1 Εσωτερικό γινόμενο διανυσμάτων
- 5.2 Εσωτερικό γινόμενο Αναλυτικός τύπος

Θεωρήματα - Ιδιότητες 💥

- 5.1 Ιδιότητες εσωτερικού γινομένου
- 5.2 Συνθήκη καθετότητας διανυσμάτων
- 5.3 Συνημίτονο γωνίας διανυσμάτων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- 🗹 🗌 Υπολογισμός εσωτερικού γινομένου
- 🗹 🗆 Έλεγχος καθετότητας διανυσμάτων
 - Μέτρο γραμμικού συνδυασμού

- □ Γραμμικός συνδυασμός ίσος με μηδέν
- Υπολογισμός γωνίας συνημιτόνου γωνίας διανυσμάτων
 - □ Γεωμετρικοί τόποι

Τυπολόγιο - Συμβολισμοί

1. Εσωτερικό γινόμενο:

$$\vec{a} \cdot \vec{\beta} = |\vec{a}| |\vec{\beta}| \text{ouv}(\vec{a}, \vec{\beta})$$

2. Αναλυτικός τύπος γινομένου:

$$\vec{a} \cdot \vec{\beta} = x_1 x_2 + y_1 y_2$$

3. Συνημίτονο γωνίας διανυσμάτων:

$$\operatorname{sun}\theta = \frac{\vec{a} \cdot \vec{\beta}}{|\vec{a}||\vec{\beta}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$$

4. Κάθετα διανύσματα:

Aν
$$\vec{a} \perp \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = 0$$
 και $\lambda_{\vec{a}} \lambda_{\vec{\beta}} = -1$

Ιδιότητα	Συνθήκη	
Ομόρροπα διανύσματα	Av $\vec{a} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = \vec{a} \cdot \vec{\beta} $	
Αντίρροπα διανύσματα	Av $\vec{a} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = - \vec{a} \cdot \vec{\beta} $	
Τετράγωνο διανύσματος	$\vec{a}^2 = \vec{a} ^2$	
Αντιμεταθετική	$\vec{a}\cdot\vec{eta}=\vec{eta}\cdot\vec{a}$	
Προσεταιριστική	$\mu(\vec{a}\cdot\vec{\beta}) = (\mu\vec{\beta})\cdot\vec{a}$	
Επιμεριστική	$\vec{a} \cdot \left(\vec{\beta} + \vec{\gamma} \right) = \vec{a} \cdot \vec{\beta} + \vec{a} \cdot \vec{\gamma}$	

Πίνακας 5.2: Ιδιότητες εσωτερικού γινομένου

6 Εξίσωση ευθείας

ដែ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 6.1 Εξίσωση γραμμής
- 6.2 Γωνία ευθείας
- 6.3 Συντελεστής διεύθυνσης ευθείας

Θεωρήματα - Ιδιότητες 💥

- 6.1 Εξίσωση ευθείας Είδη ευθειών
- 6.2 Συντελεστής διεύθυνσης ευθείας που διέρχεται από δύο σημεία.
- 6.3 Συνθήκες παραλληλίας και καθετότητας ευθειών

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- Γωνία Συντελεστής διεύθυνσης
 - Συντελεστής διεύθυνσης με δύο γνωστά σημεία της ευθείας
- 🗷 🗆 Εξίσωση ευθείας
 - με σημείο και συντελεστή
 - 🔲 με γνωστά δύο σημεία της
- $m{\Sigma}$ Συνθήκες για παράλληλες και κάθετες ευθείες

- Κοινά σημεία ευθειών Σημεία τομής με άξονες
- 🖸 🗆 Σημείο που ανήκει σε ευθεία
 - Ευθεία με γνωστό συντελεστή και ιδιότητα
 - 🔲 Ευθεία με γνωστό σημείο και ιδιότητα
- 🗹 🗆 Στοιχεία τριγώνου
- Λ □ Γεωμετρικοί τόποι
- 🗹 🗆 Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

- 1. Γωνία ευθείας $0^{\circ} \le \omega < 180^{\circ}$
- 2. Οριζόντια ευθεία $\varepsilon \parallel x'x \Leftrightarrow \omega = 0^{\circ}$
- 3. Κατακόρυφη ευθεία: $\varepsilon \parallel y'y \Leftrightarrow \omega = 90^{\circ}$
- 4. Πλάγια ευθεία $0^{\circ} < \omega < 180^{\circ}$
- 5. Συντελεστής διεύθυνσης: $\lambda = \epsilon \phi \omega$
- 6. Συντελεστής ευθείας με δύο σημεία: $\lambda_{AB} = \frac{y_2 y_1}{x_2 x_1}$

- 7. Εξίσωση ευθείας: $y y_0 = \lambda(x x_0)$
- 8. Εξίσωση οριζόντιας ευθείας: $y = y_0$
- 9. Εξίσωση κατακόρυφης ευθείας: $x = x_0$
- 10. Ευθεία που διέρχεται από το O(0,0) : $y = \lambda x$
- 11. Παράλληλες ευθείες: $\varepsilon_1 \parallel \varepsilon_2 \Leftrightarrow \lambda_1 = \lambda_2$
- 12. Κάθετες ευθείς: $\varepsilon_1\bot\varepsilon_2\Leftrightarrow \lambda_1\lambda_2=-1$

7 Γενική μορφή εξίσωση ευθείας

Ε΄ Ημερομηνία:

Πίνακας Ύλης

Θεωρήματα - Ιδιότητες 💥

- 7.1 Γενική εξίσωση ευθείας
- 7.2 Παράλληλο και κάθετο διάνυσμα με ευθεία $Ax + By + \Gamma = 0$, $A \neq 0, B \neq 0$

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

- **Ε΄** Ελεγχος αν μια εξίσωση παριστάνει ευ-
 - Ευθείες που διέρχονται από το ίδιο σημείο
 - Σχετική θέση ευθειών

- **Δ** Παράλληλες και κάθετες ευθείες με τη χρήση του παράλληλου ή κάθετου διανύσματος.
- 🗹 🗆 Γωνία δύο ευθειών

Τυπολόγιο - Συμβολισμοί

- 1. Γενική εξίσωση ευθείας: $Ax + By + \Gamma = 0 \; , \; A \neq 0 \; \dot{\mathbf{n}} \; B \neq 0$
- 2. Συντελεστής διεύθυνσης: $\lambda = -\frac{A}{B}$
- 3. Διάνυσμα παράλληλο στην ευθεία: $\vec{\delta}=(B,-A)$ ή $\vec{\delta}=(-B,A)$
- 4. Διάνυσμα κάθετο στην ευθεία:

$$\vec{n} = (A, B) \, \dot{\eta} \, \vec{n} = (-A, -B)$$

5. Συνημίτονο γωνίας δύο ευθειών $\varepsilon_1, \varepsilon_2$: $\sigma \text{υν}(\widehat{\vec{\delta_1}}, \widehat{\vec{\delta_2}}) = \frac{\vec{\delta_1} \cdot \vec{\delta_2}}{|\vec{\delta_1}| |\vec{\delta_2}|} \text{ όπου } \vec{\delta_1} \parallel \varepsilon_1 \text{ και } \vec{\delta_2} \parallel \varepsilon_2$

Απόσταση σημείου από ευθεία - Εμβαδόν τριγώνου

🗰 Ημερομηνία:

Πίνακας Ύλης

Θεωρήματα - Ιδιότητες 💥

- 8.1 Απόσταση σημείου από ευθεία
- 8.2 Απόσταση μεταξύ παράλληλων ευθειών
- 8.3 Εμβαδόν τριγώνου

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- 🗹 🗆 Απόσταση σημείου από ευθεία
- 🗹 🗆 Απόσταση μεταξύ παράλληλων ευθειών
- 🗹 🗆 Εμβαδόν τριγώνου
 - □ Μεσοπαράλληλη δύο παράλληλων ευθειών
- Διχοτόμος γωνίας
- ▲ □ Προσδιορισμός εξίσωσης ευθείας
 - □ Γεωμετρικός τόπος
 - Ελάχιστη απόσταση σημείου ευθείας από σταθερό σημείο

Τυπολόγιο - Συμβολισμοί

- 1. Απόσταση σημείου $M(x_0, y_0)$ από ευθεία $Ax + By + \Gamma = 0$: $d(M, ε) = \frac{|Ax_0 + By_0 + \Gamma|}{\sqrt{A^2 + B^2}}$
- 2. Απόσταση μεταξύ παράλληλων ευθειών
- $$\begin{split} \varepsilon_1 : y &= \lambda x + \beta_1 \text{ kai } \varepsilon_2 : y = \lambda x + \beta_2 \\ d(\varepsilon_1, \varepsilon_2) &= \frac{|\beta_1 \beta_2|}{\sqrt{1 + \lambda^2}} \end{split}$$
- 3. Εμβαδόν τριγώνου ΑΒΓ: $(AB\Gamma) = \frac{1}{2} \left| \det(\overrightarrow{AB}, \overrightarrow{A\Gamma}) \right| = 0$

9 Κύκλος

Ε΄ Ημερομηνία:

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 9.1 Εξίσωση κύκλου
- 9.2 Μοναδιαίος κύκλος
- 9.3 Εφαπτομένη κύκλου

Θεωρήματα - Ιδιότητες 💥

- 9.1 Εξίσωση κύκλου με κέντρο την αρχή των αξόνων
- 9.2 Εξίσωση κύκλου με κέντρο $K(x_0, y_0)$
- 9.3 Η εξίσωση $x^2 + y^2 + Ax + By + \Gamma = 0$
- 9.4 Εξίσωση εφαπτομένης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

- \square Εξίσωση κύκλου με κέντρο $K(x_0, y_0)$
 - Σχετική θέση σημείου και κύκλου

$$\square$$
 Η εξίσωση $x^2 + y^2 + Ax + By + \Gamma = 0$

- Περιγεγραμμένος κύκλος
- Σχετική θέση ευθείας και κύκλου
- □ Γεωμετρικές εφαρμογές
- □ Κύκλος που εφάπτεται με τους άξονες.
- Εξίσωση εφαπτομένης κύκλου με κέντρο O(0,0)

- $lackbox{$lackbox{$\lower L$}$}$ Εξίσωση εφαπτομένης κύκλου με κέντρο $K(x_0,y_0)$ και
 - \Box σημείο επαφής $A(x_1, y_1)$
 - γνωστό συντελεστή διεύθυνσης λ
 - \square γνωστό εξωτερικό σημείο $M(x_0, y_0)$
 - Σχετική θέση κύκλων Κοινές εφαπτομένες κύκλων
- ▲ □ Γεωμετρικοί τόποι
- ▲ □ Ελάχιστη και μέγιστη απόσταση

Τυπολόγιο - Συμβολισμοί 🖺

- 1. Εξίσωση κύκλου με κέντρο O(0,0): $x^2 + y^2 = \rho^2$
- 2. Εξίσωση κύκλου με κέντρο $K(x_0, y_0)$: $(x x_0)^2 + (y y_0)^2 = \rho^2$
- 3. Γενική εξίσωση κύκλου:

$$x^2 + y^2 + Ax + By + \Gamma = 0$$

- α. αν $A^2+B^2-4\Gamma>0$ η εξίσωση παριστάνει κύκλο με κέντρο $K\left(-\frac{A}{2},-\frac{B}{2}\right)$ και ακτίνα $\rho=\frac{\sqrt{A^2+B^2-4\Gamma}}{2}$
- β. αν $A^2 + B^2 4\Gamma = 0$ η εξίσωση παριστάνει σημείο $K\left(-\frac{A}{2}, -\frac{B}{2}\right)$

- γ. αν $A^2+B^2-4\Gamma>0$ η εξίσωση δεν αντιστοιχεί σε σημείο
- 4. Εξίσωση εφαπτομένης κύκλου με κέντρο O(0,0):

$$xx_1 + yy_1 = \rho^2$$

5. Εξίσωση εφαπτομένης κύκλου με κέντρο $K(x_0, y_0)$:

$$\overrightarrow{AM} \cdot \overrightarrow{AK} = 0$$

όπου M(x,y) σημείο της ευθείας και $A(x_1,y_1)$ το σημείο επαφής

Σχήμα 9.1: Κύκλος με κέντρο O(0,0)

Σχήμα 9.2: Κύκλος με κέντρο $K(x_0, y_0)$

Σχήμα 9.3: Εφαπτομένη κύκου με κέντρο O(0,0)

Σχήμα 9.4: Εφαπτομένη κύκλου με κέντρο $K(x_0, y_0)$

10 Παραβολή

ii Ημερομηνία:	
-----------------------	--

Πίνακας Ύλης		
Ορισμοί - Βασικές έννοιες Ε 10.1 Ορισμός παραβολής 10.2 Εστία παραβολής 10.3 Άξονας παραβολής 10.4 Διευθετούσα παραβολής	Οεωρήματα - Ιδιότητες ** 10.1 Εξίσωση παραβολής με άξονα x'x' και y'y' 10.2 Εξίσωση εφαπτομένης παραβολής 10.3 Ανακλαστική ιδιότητα παραβολής 10.4 Γεωμετρικοί τόποι 10.5 Γεωμετρικές εφαρμογές	
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨		
 Εύρεση στοιχείων παραβολής (Εξίσωση, εστία, διευθετούσα, παράμετρος p) Εξίσωση εφαπτομένης Προσδιορισμός σημείων 	 □ Κοινές εφαπτ. κύκλου και παραβολής □ Ανακλαστική ιδιότητα παραβολής □ Σχετική θέση παραβολής και ευθείας ▲ □ Γεωμετρικές εφαρμογές 	
Τυπολόγιο - Συμβολισμοί 🖹		
 Παραβολή με εστία στον άξονα x'x α. Εξίσωση: y² = 2px β. Εστία: E (^p/₂, 0) γ. Διευθετούσα: x = -^p/₂ Παραβολή με εστία στον άξονα y'y α. Εξίσωση: x² = 2py 	β. Εστία: $E\left(0, \frac{p}{2}\right)$ γ. Διευθετούσα: $y = -\frac{p}{2}$ 3. Εξίσωση εφαπτομένης παραβολής στο σημείο $A(x_1, y_1)$ α. και άξονα $x'x$: $yy_1 = p(x + x_1)$ β. και άξονα $y'y$: $xx_1 = p(y + y_1)$	

Σχήμα 10.1: Παραβολή με εστία στον άξονα y'y

Σχήμα 10.2: Παραβολή με εστία στον άξονα x'x

Σχήμα 10.3: Εφαπτομένη παραβολής στο σημείο $A(x_1, y_1)$

Σχήμα 10.4: Ανακλαστική ιδιότητα παραβολής

Έλλειψη

苗 Ημερομηνία:	
---------------	--

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 11.1 Ορισμός έλλειψης
- 11.2 Εστίες έλλειψης
- 11.3 Άξονες έλλειψης
- 11.4 Κορυφές έλλειψης
- 11.5 Εκκεντρότητα
- 11.6 Εστιακή απόσταση

Θεωρήματα - Ιδιότητες 💥

- 11.1 Εξίσωση έλλειψης με μεγάλο άξονα x'x'και y'y'
- 11.2 Εξίσωση εφαπτομένης έλλειψης

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Εύρεση	στοιχείων	έλλειψης	(εξίσωση
παράμετ	ροι, εστίες,	άξονες, κα	ρυφές)

- Υπολογισμός εκκεντρότητας συμπεράσματα
- Εφαπτομένες έλλειψης
- Ανακλαστική ιδιότητα έλλειψης
- □ Γεωμετρικοί τόποι
- □ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

- 1. Παράμετροι $a, \beta, \gamma \ (a > \gamma)$:
 - i. Μήκος μεγάλου άξονα: AA' = 2a.
 - ii. Μήκος μικρού άξονα: $BB' = 2\beta$.
 - iii. Εστιακή απόσταση: $EE' = 2\gamma$.
 - iv. $\beta = \sqrt{a^2 \gamma^2}$
- 2. Έλλειψη με εστίες στον άξονα x'x
 - α. Εξίσωση: $\frac{x^2}{a} + \frac{y^2}{\beta^2} = 1$
 - β. Εστίες: $E(\gamma, 0)$ και $E'(-\gamma, 0)$

- 3. Έλλειψη με εστίες στον άξονα y'y
 - α. Εξίσωση: $\frac{y^2}{a} + \frac{x^2}{\beta^2} = 1$ β. Εστίες: $E(0, \gamma)$ και $E'(0, -\gamma)$
- 4. Εξίσωση εφαπτομένης έλλειψης στο σημείο $A(x_1, y_1)$
 - α. και εστίες στον άξονα x'x: $\frac{xx_1}{a^2} + \frac{yy_1}{\beta^2} = 1$
 - β. και εστίες στον άξονα $y'y: \frac{yy_1}{a^2} + \frac{xx_1}{\beta^2} = 1$
- 5. Εκκεντρότητα $\varepsilon = \frac{\gamma}{a} < 1$

Σχήμα 11.1: Έλλειψη με εστέις στον άξονα x'x

Σχήμα 11.2: Έλλειψη με εστίες στον άξονα y'y

Σχήμα 11.3: Εφαπτομένη έλλειψης στο σημείο $A(x_1, y_1)$

Σχήμα 11.4: Εκκεντρότητα

Σχήμα 11.5: Όμοιες ελλείψεις

Σχήμα 11.6: Συμμετρικά σημεία πάνω σε έλλειψη

Σχήμα 11.7: Ανακλαστική ιδιότητα έλλειψης

12 Υπερβολή

Πίνακας Ύλης

Ορισμοί - Βασικές έννοιες 🗏

- 12.1 Ορισμός υπερβολής
- 12.2 Εστίες υπερβολής
- 12.3 Άξονες υπερβολής
- 12.4 Κορυφές υπερβολής
- 12.5 Εκκεντρότητα
- 12.6 Εστιακή απόσταση

Θεωρήματα - Ιδιότητες 💥

- 12.1 Εξίσωση υπερβολής με μεγάλο άξονα x'x' και y'y'
- 12.2 Εξίσωση εφαπτομένης υπερβολής

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Εύρεση στοιχείων υπερβολής (Εξίσωση, παράμετροι, εστίες, κορυφές, άξονας)
Ασύμπτωτες υπερβολής
Υπολογισμός εκκεντρότητας - συμπερά-

- □ Εξίσωση εφαπτομένης υπερβολής
- Ανακλαστική ιδιότητα υπερβολής
- □ Γεωμετρικοί τόποι
- □ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί

σματα

- 1. Παράμετροι $a, \beta, \gamma \ (a < \gamma)$:
 - α. Μήκος άξονα: AA' = 2a.
 - β. Εστιακή απόσταση: $EE' = 2\gamma$.
 - γ . $\beta = \sqrt{\gamma^2 a^2}$
- 2. Εστίες στον άξονα x'x
 - α. Εξίσωση: $\frac{x^2}{a^2} \frac{y^2}{\beta^2} = 1$.
 - β. Εστίες: $E(\gamma,0)$, $E'(-\gamma,0)$.
 - γ. Ασύμπτωτες ευθείες: $y = \frac{\beta}{a}x, \ y = -\frac{\beta}{a}x.$
- 3. Εστίες στον άξονα γ' γ

- a. Exiswsh: $\frac{y^2}{a^2} \frac{x^2}{\beta^2} = 1$.
- β. Εστίες: $E(0, \gamma), E'(0, -\gamma)$.
- γ. Ασύμπτωτες ευθείες: $y = \frac{a}{\beta}x$, $y = -\frac{a}{\beta}x$.
- 4. Εξίσωση εφαπτομένης υπερβολής στο $A(x_1, y_1)$
 - α. και εστίες στον άξονα x'x: $\frac{xx_1}{a^2} \frac{yy_1}{\beta^2} = 1$
 - β. και εστίες στον άξονα y'y: $\frac{yy_1}{a^2} \frac{xx_1}{\beta^2} = 1$
- 5. Εκκεντρότητα: $\varepsilon = \frac{\gamma}{a} > 1$.

Σχήμα 12.1: Υπερβολή με εστίες στον άξονα x'x

Σχήμα 12.3: Ασύμπτωτες υπερβολής με εστίες στον άξονα x'x - Ορθογώνιο βάσης

Σχήμα 12.5: Εφαπτομένη υπερβολής στο σημείο $A(x_1, y_1)$

Σχήμα 12.2: Υπερβολή με εστίες στον άξονα y'y

Σχήμα 12.4: Ασύμπτωτες υπερβολής με εστίες στον άξονα y'y - Ορθογώνιο βάσης

Σχήμα 12.6: Εκκεντρότητα

Σχήμα 12.7: Συζυγείς υπερβολές

Σχήμα 12.8: Ισοσκελής υπερβολή

Σχήμα 12.9: Ανακλαστική ιδιότητα

Σχήμα 12.10: Συμετρικά σημεία πάνω σε υπερβολή