Final Year Project

Effects of ISI on Equal Gain Combining and Maximal-Ratio Combining with Sub-Optimal Design

Yann Donnelly *University College Cork*

7th February 2014

Introduction

Introduction

BACKGROUND
Communications Overview
Detection Basics
Aims of Project

RESULTS
Achievements
Results

OBSTACLES
Problems Encountered

FUTURE WORK
Future Work

A TYPICAL COMMUNICATIONS SYSTEM

Likelihood of receiving a signal

Received signal response

Received signal response with timing error

Likelihood of receiving a signal

Likelihood of receiving a signal with timing error

AIMS OF PROJECT

To determine the effects of Tikhonov-distributed timing offset on receiver performance, and develop a means of improving performance through redefining the decision region boundaries.

► Developed models of 4-PAM communications systems in Mathematica

- ► Developed models of 4-PAM communications systems in Mathematica
- ► Examined performance in non-fading (line-of-sight) environment

- ► Developed models of 4-PAM communications systems in Mathematica
- ► Examined performance in non-fading (line-of-sight) environment
- Examined performance in Rayleigh fading environment with EGC

- ► Developed models of 4-PAM communications systems in Mathematica
- ► Examined performance in non-fading (line-of-sight) environment
- ► Examined performance in Rayleigh fading environment with EGC
- ► Examined performance in Rayleigh fading environment with MRC

- ► Developed models of 4-PAM communications systems in Mathematica
- ► Examined performance in non-fading (line-of-sight) environment
- Examined performance in Rayleigh fading environment with EGC
- Examined performance in Rayleigh fading environment with MRC
- ► Positive results:
 - ► Lower optimum decision region boundaries in the presence of timing error
 - Performance increase from redesigning detector to take this into account

RESULTS

- ► EGC: Improvements of 20-33%
- ► MRC: Improvements of 7-20%

- ► Simulation speed: 6 ways to do anything, only one is fast
 - ► Solution: Read up on Mathematica functions, testing and timing each method
 - ► Solution: Reduce how often you have to do something
 - ► Solution: Functions with memory
 - ► Solution: Parallel computing

- ► Simulation speed: 6 ways to do anything, only one is fast
 - ► Solution: Read up on Mathematica functions, testing and timing each method
 - ► Solution: Reduce how often you have to do something
 - ► Solution: Functions with memory
 - ► Solution: Parallel computing
- ► Running simulations across multiple headless machines
 - ► Solution: Remote access

- ► Simulation speed: 6 ways to do anything, only one is fast
 - ► Solution: Read up on Mathematica functions, testing and timing each method
 - ► Solution: Reduce how often you have to do something
 - ► Solution: Functions with memory
 - ► Solution: Parallel computing
- Running simulations across multiple headless machines
 - ► Solution: Remote access
- Running simulations across multiple machines that can be switched off at any point
 - ► Solution: Output regularly
 - ► Solution: Make sure outputs are descriptive
 - ► Solution: Easily reconfigurable code

► Describe the effects of timing error offset analytically

- ► Describe the effects of timing error offset analytically
- ► Determine the Gram-Charlier PDF approximation

- ► Describe the effects of timing error offset analytically
- ► Determine the Gram-Charlier PDF approximation
- ► Summarize findings in a publication