Towards Automated
Deep Learning:
Efficient Joint Neural
Architecture &
Hyperparameter
Search (arXiv:1807.06906v1 [cs.LG] 18 Jul 2018)

**Toronto Deep Learning Series (TDLS)** 

Discussion Lead: Mark Donaldson
Discussion Encilitator: Massaud Hash









#### **Table of Contents**

- Discussion Paper Abstract: Introduction
  - Problems
  - Solutions
- Neural Architecture Search (NAS)
  - Problems
  - Solutions
- Efficient Joint Hyperparameter
   Optimization and Architecture Search
  - ResNet Blocks & Wide Residual Networks (WRN)

- Efficient Joint Hyperparameter
   Optimization and Architecture Search
   (Continued...)
  - Bayesian Optimization and Hyperband (BOHB)
  - Joint Architecture and Hyperparameter Search Space
- Conclusions
- Discussion Questions & Answers
- References





#### **Discussion Paper Abstract: Introduction to Problems**

- 1. Neural Architecture search (NAS) tunes hyperparameters in a separate post-processing step, rendering this method suboptimal
- 2. Use of very few epochs during the main NAS and much larger numbers of epochs during a post-processing step is inefficient due to little correlation in relative rankings



#### **Discussion Paper Abstract: Introduction to Solutions**

1. Combination of Bayesian optimization and Hyperband (BOHB) for efficient joint neural architecture and hyperparameter search





#### **Network Architecture Search (NAS): Problems**

- 1. Early machine learning workflows had manual feature engineering which was time consuming and tedious to configure
- 2. Recent work with NAS provided automation of the choice of network architecture which lead to improved performance at extreme computational costs (up to 800 GPUs for two weeks!)
- 3. NAS did not promote an anytime approach in automated machine learning (AutoML) systems that make predictions after a given time budget
- 4. Jump from small budget of 20 to large budget of 600 epochs lead to little correlation between small & large training budgets





#### **Network Architecture Search (NAS): Solutions**

- 1. Combine Bayesian optimization (BO) and Hyperband (HB) to perform efficient joint neural architecture and hyperparameter search [best of both worlds solution] (BOHB)
- 2. Overcome weak correlation between performance after long training budgets (up to 3 hours / 10800 seconds) by incrementally increasing the training budget during the optimization process
- 3. Great results on CIFAR-10 after training budget of 3 hours / 10800 seconds by optimizing the hyperparameters and architecture jointly





WRN is important to increase representational power of residual blocks by.....

- 1. Adding more convolutional layers per block
- 2. Widening the convolutional layers by adding more feature planes
- 3. Increasing filter sizes in convolutional layers







Fig. 1



Basic ResNet - with two consecutive 3 X 3 convolutions with batch normalization and ReLU preceding convolution: conv 3 X 3 - conv 3, shown in Fig 1, (a) basic

$$\mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l)$$

Eq. 1

| group name | output size    | block type = $B(3,3)$                                                                                   |
|------------|----------------|---------------------------------------------------------------------------------------------------------|
| conv1      | $32 \times 32$ | $[3 \times 3, 16]$                                                                                      |
| conv2      | 32×32          | $\left[\begin{array}{c} 3\times3, 16\times k \\ 3\times3, 16\times k \end{array}\right] \times N$       |
| conv3      | 16×16          | $\left[\begin{array}{c} 3 \times 3, 32 \times k \\ 3 \times 3, 32 \times k \end{array}\right] \times N$ |
| conv4      | 8×8            | $\begin{bmatrix} 3 \times 3, 64 \times k \\ 3 \times 3, 64 \times k \end{bmatrix} \times N$             |
| avg-pool   | $1 \times 1$   | $[8 \times 8]$                                                                                          |

Table 1



Pictorial representation of WRN layers and structure





Performance of Block structure B(3 x 3) [Original basic block]

| block type | depth | # params | time,s | CIFAR-10 |
|------------|-------|----------|--------|----------|
| B(1,3,1)   | 40    | 1.4M     | 85.8   | 6.06     |
| B(3,1)     | 40    | 1.2M     | 67.5   | 5.78     |
| B(1,3)     | 40    | 1.3M     | 72.2   | 6.42     |
| B(3,1,1)   | 40    | 1.3M     | 82.2   | 5.86     |
| B(3,3)     | 28    | 1.5M     | 67.5   | 5.73     |
| B(3,1,3)   | 22    | 1.1M     | 59.9   | 5.78     |

| l | CIFAR-10 |
|---|----------|
| 1 | 6.69     |
| 2 | 5.43     |
| 3 | 5.65     |
| 4 | 5.93     |

Table 3

Table 2



Test error (%) results of various 'k' widening factors on CIFAR-10

| depth | k  | # params | CIFAR-10 |  |  |
|-------|----|----------|----------|--|--|
| 40    | 1  | 0.6M     | 6.85     |  |  |
| 40    | 2  | 2.2M     | 5.33     |  |  |
| 40    | 4  | 8.9M     | 4.97     |  |  |
| 40    | 8  | 35.7M    | 4.66     |  |  |
| 28    | 10 | 36.5M    | 4.17     |  |  |
| 28    | 12 | 52.5M    | 4.33     |  |  |
| 22    | 8  | 17.2M    | 4.38     |  |  |
| 22    | 10 | 26.8M    | 4.44     |  |  |
| 16    | 8  | 11.0M    | 4.81     |  |  |
| 16    | 10 | 17.1M    | 4.56     |  |  |

Table 4



Training curve of CIFAR-10





Resulting benefits of using WRN architecture:

- 1. Widening consistently improves performance across residual networks of different depths
- 2. Increasing both depth and width helps until the number of parameters becomes too high and stronger regularization is needed
- 3. Regularization effect from very high depth RNs as WRNs with same number of parameters as thin WRNs can learn same or better representations





Resulting benefits of using WRN architecture:

4. WRNs can successfully learn with a 2 or more times larger number of parameters as thin RNs, besting thin RNs which would require doubling thin RN depth, making them unfeasibly expensive to train



Goals of using BOHB:

1. Strong anytime performance

6. Simplicity

2. Strong final performance

7. Computational efficiency

- 3. Effective use of parallel resources
- 4. Scalability
- 5. Robustness and flexibility





Bayesian Optimization (BO)

 Used to build a model that can be updated and queried to drive optimization decisions (training)

Real World Applications of BO

- 1. A/B Testing
- 2. Recommender Systems

- 3. Robotics and Reinforcement Learning
- 4. Environmental Monitoring and Sensor Networks
- 5. Preference Learning and Interactive Interfaces
- 6. Automatic Machine Learning and Hyperparameter Tuning
- 7. Combinatorial Optimization
- Natural Language Processing and Text





Bayesian Optimization (BO)





#### Hyperband (HB)

- Uses 'Successive Halving' while performing random search using 'shake-shake' regularization method
- Finds the local minima very quickly using 'Successive Halving' method to reduce the WRN or ResNet training budget



Fig. 3





Hyperband (HB)

#### Requires 2 key inputs:

- 1. R, maximum amount of resource that can be allocated to a single config
- 2.  $\eta$ , an input (tuning) that controls the proportion of configs discarded in each round of 'Successive Halving'

```
Algorithm 1: HYPERBAND algorithm for hyperparameter optimization. input :R,\eta (default \eta=3) initialization: s_{\max} = \lfloor \log_{\eta}(R) \rfloor, B = (s_{\max}+1)R

1 for s \in \{s_{\max}, s_{\max}-1, \ldots, 0\} do

2 n = \lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \rceil, r = R\eta^{-s}

// begin SuccessiveHalving with (n,r) inner loop

3 T = \text{get\_hyperparameter\_configuration}(n)

4 for i \in \{0, \ldots, s\} do

5 n_i = \lfloor n\eta^{-i} \rfloor

6 n_i = \lfloor n\eta^{-i} \rfloor

7 L = \{\text{run\_then\_return\_val\_loss}(t, r_i) : t \in T\}

8 T = \text{top\_k}(T, L, \lfloor n_i/\eta \rfloor)

9 end

10 end

11 return Configuration with the smallest intermediate loss seen so far.
```

Fig. 5  $B = (\lfloor \log_{\eta}(R) \rfloor + 1) R.$  Eq. 2





Hyperband (HB)

|   | s=4   |       | s = 3 |       | s = 2 |       | s = 1 |       | s = 0 |       |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| i | $n_i$ | $r_i$ |
| 0 | 81    | 1     | 27    | 3     | 9     | 9     | 6     | 27    | 5     | 81    |
| 1 | 27    | 3     | 9     | 9     | 3     | 27    | 2     | 81    |       |       |
| 2 | 9     | 9     | 3     | 27    | 1     | 81    |       |       |       |       |
| 3 | 3     | 27    | 1     | 81    |       |       |       |       |       |       |
| 4 | 1     | 81    | 550   |       |       |       |       |       |       |       |

Table 5

Values of  $n_i$  and  $r_i$  for the brackets of Hyperband when R = 81 and  $\eta$  =3



Performance of individual brackets S and Hyperband





#### **Efficient Joint Hyperparameter Optimization and Architecture Search: Conclusion**

#### What did we learn....?

- Neural Architecture (WRNs for example) is an important factor in parameter search performance using BOHB
- Combining 2 or more optimization methods will yield better search results, faster performance with minimal training error
- Hyperparameter optimization during training using WRN and BOHB yields optimal results at a lesser cost expense of performance, time and low training error (%)



### **Efficient Joint Hyperparameter Optimization and Architecture Search: Paper Discussion Topics**

#### Open for further discussion:

- Shake-shake WRN Regularization method of various ResNet dimensions [R3X3] error (%)
- 2. How to generalize the NAS BOHB parameter settings to start at the optimum settings for a given dataset to classify
- 3. Neural Architecture Search (NAS) and BOHB classifier performance applied to various data types and data sets (Images [CIFAR-10], NLP [Text data or text to speech and vice versa], Voice [IVR systems], Medical Images [Pathology classification of X-Ray images])





#### Efficient Joint Hyperparameter Optimization and Architecture Search: References used

- S. Falkner, A. Klein, and F. Hutter. Practical hyperparameter optimization for deep learning. ICLR 2018 Workshop, 2018.
- S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. ICML 2018 Stockholm, Sweden, PMLR 80, 2018.
- L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. 2017.
- B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148(175, 2016.

Xavier Gastaldi. Shake-shake regularization. ICLR 2017 Workshop, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. 2017.





#### **Efficient Joint Hyperparameter Optimization and Architecture Search: References used**

Giro-i-Nieto, X., Sayrol, E., Salvador, A., Torres, J., Mohedano, E., & McGuinness, K. (2016). *Deep Learning for Computer Vision, Summer Seminar UPC TelecomBCN*(Tech.). Barcelona: Universitat Politecnica de Catalunya Barcelona Tech.

doi:http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D2L1-memory.pdf; Neural Net Model image used.





#### Contact me at:

Email: mark.donaldson@ryerson.ca

LinkedIn: https://www.linkedin.com/in/markdonaldson888/

Twitter: @markdheilong





**Bayesian Optimization (BO)** 

$$egin{aligned} \mathcal{D} \ p(\mathbf{w}) \ p(\mathcal{D}) \ p(\mathcal{D} \mid \mathbf{w}) \ p(\mathbf{w} \mid \mathcal{D}) \end{aligned}$$

$$p(\mathbf{w} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$



















