PSALTer results panel

 $S = \\ \int \int \int \left(\frac{1}{6}\left(2t_{1}^{2}\mathcal{A}^{\alpha_{\alpha}}\mathcal{A}^{\theta}_{,\theta} - 4t_{3}^{2}\mathcal{A}^{\alpha_{\alpha}}\mathcal{A}^{\theta}_{,\theta} + 6\mathcal{A}^{\alpha\beta\chi}\mathcal{A}^{\alpha_{\beta}}\mathcal{A}^{\theta}_{,\theta} + 6\mathcal{A}^{\alpha\beta\chi}\mathcal{A}^{\alpha_{\beta}}\mathcal{A}^{\theta}_{,\theta} + 4t_{3}^{2}\mathcal{A}^{\theta}_{,\theta}\partial^{\theta}_{,\theta}\mathcal{A}^{\alpha_{\beta}} - 4t_{3}^{2}\mathcal{A}^{\theta}_{,\theta}\partial^{\theta}_{,\theta}\mathcal{A}^{\alpha_{\beta}}\mathcal{A}^{\beta_{\beta$

Wave operator

	⁰ . <i>9</i> ("	0. <i>f</i> 11	$^{\circ}$. f^{\perp}	$^{\circ}\mathcal{A}^{\scriptscriptstyle{\parallel}}$										
^{0,+} Æ †	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
^{0,+} f †		$2k^{2}t$.	0	0										
$0.^+f^{\perp}$ †	0	0	0	0										
^{0.} Æ [∥] †	0	0	0	$k^2 r_{\cdot \cdot} + t_{\cdot \cdot}$	${}^{1,^{+}}_{\cdot}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$^{1.^{+}}\mathcal{F}\!\!/^{_{\alpha\beta}}$	$\overset{1^{+}}{\cdot}f^{\parallel}_{lphaeta}$	$^{1}\mathcal{H}_{lpha}^{\parallel}$	$^{1}\mathcal{H}_{\ \alpha}^{\perp}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1^{+}}\mathcal{H}^{\parallel}\dagger^{^{\alpha\beta}}$	$\frac{1}{6}(t_1+4t_1)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
						$\frac{t.+t.}{\frac{1}{3}}$			0	0	0			
				$1.^+f^{\parallel}$ † $^{\alpha\beta}$	$\frac{i k (t2 t.)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				${}^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{1}{6}(t_1 + 4t_1)$	$\frac{t2t.}{\frac{1}{3}}$	0	$\frac{1}{3} ik(t_1 - 2t_1)$			
				¹ - β ¹ † ^α	0	0	0	$\frac{t \cdot -2 t \cdot \frac{1}{3}}{3 \sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	0	$\frac{1}{3}i\sqrt{2}k(t_1+t_2)$			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_1)-\frac{1}{3}$	$\frac{1}{3}i\sqrt{2}k(t_1+t_2)$	0	$\frac{2}{3}k^2(t_1+t_2)$	$2^+\mathcal{A}^{\parallel}_{\alpha\beta}$ 2^+	$f^{\parallel}_{\alpha\beta}$	$\left\ \mathcal{A}^{\parallel}_{lphaeta\chi} ight\ $
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$		$\frac{i kt}{\sqrt{2}}$	0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}} \qquad k$	k ² t.	0
											$\mathcal{F}^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	t. 1/2

Saturated propagator

	$^{0,^+}\sigma^{\parallel}$	0. ⁺ τ [∥]	0. τ⊥	$0^{-}\sigma^{\parallel}$										
^{0,+} σ †	$\frac{1}{(1+2k^2)^2t_{.3}}$	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
0.+ τ∥ +	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{2 k^2}{(1+2 k^2)^2 t}$	0	0										
0.+ τ [⊥] †	0	0	0	0										
^{0.⁻} σ [∥] †	0	0	0	$\frac{1}{k^2 r. + t.}$	$\overset{1^+}{\cdot}\sigma^{\parallel}{}_{lphaeta}$	$^{1^+}\sigma^{\scriptscriptstyle\perp}_{lphaeta}$	$1.^+\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2} \sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma_{\alpha}$	1 ⁻ τ α	1. τ ¹ α			
-				$\overset{1^+}{\cdot}\sigma^{\parallel} \overset{\alpha\beta}{\dagger}$		$\frac{\sqrt{2} (t2t.)}{3 (1+k^2) t. t.}$	$\frac{i \sqrt{2} k (t2t.)}{3 (1+k^2) t. t.}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{\sqrt{2} (t2t.)}{3 (1+k^2) t. t.}$	$\frac{t.+4t.}{3(1+k^2)^2t.t.}_{12}$	$\frac{i k (t. + 4 t.)}{3 (1 + k^2)^2 t. t.}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t2t.)}{3(1+k^2)t.t.}$	$-\frac{i k (t. + 4 t.)}{3 (1 + k^2)^2 t. t.}$	$\frac{k^2 (t.+4t.)}{3 (1+k^2)^2 t.t.}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2(t.+t.)}{\frac{1}{3}} \\ \frac{3t.t.}{13}$	$-\frac{\sqrt{2} (t2t.)}{3 (1+2k^2) t. t.}$	0	$-\frac{2ikt4ikt.}{3}$ $-\frac{1}{3t.t.+6k^2t.t.}$ 1 3			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t2 t.)}{3 (1+2 k^2) t. t.}_{1 3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_1}$	0	$\frac{i \sqrt{2} k (t.+4 t.)}{3 (1+2 k^2)^2 t. t.}$			
				$\frac{1}{2} \tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \frac{\alpha}{2}$	0	0	0	$\frac{2ikt4ikt.}{3}$ 3t.t.+6k ² t.t.	$-\frac{i\sqrt{2}k(t.+4t.)}{3(1+2k^2)^2t.t.}$	0	$\frac{2 k^2 (t.+4 t.)}{3 (1+2 k^2)^2 t. t.}_{1 3}$	2 ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	2 ⁻ σ αβχ
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t}$	0
											2^+ τ^{\parallel} † $^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	
											$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0^+ \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1			
$-2 \bar{\imath} k^{ 0.^{+}} \sigma^{\parallel} + {}^{0.^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\ \alpha}{}^{\beta}$	1			
$2ik \cdot 1_{\sigma^{\perp}}^{\alpha} + 1_{\tau^{\perp}}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1. τ" == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+$	3			
$-2ik^{2} + 2ik^{2} + 3ik^{2} + 2ik^{2} + 3ik^{2} + 2ik^{2} + 3ik^{2} + 2ik^{2} + 3ik^{2} + 3ik$					
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i \chi^{\chi} \partial_{\epsilon} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{ \epsilon} - 6 i \chi^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i \chi^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i \chi^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta} \partial^{\delta} \partial^{\delta} \sigma^{\delta} \partial^{\delta} \sigma$				
Total expected gauge	generators:	16			

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot 2}} > 0$
Square mass:	$\frac{t}{r} > 0$
Spin:	0
Darity	044

Massless spectrum

(No particles)

Unitarity conditions

 $r_{2} < 0 \&\& t_{2} > 0$