Recitation 7

Recitation Instructor: Shivam Verma

Email: shivamverma@nyu.edu

Ph: 718-362-7836

Office hours: WWH 605 (2.50 - 4.50 pm, Tuesdays)

Brief Overview

Review for midterm

- Floating point system
- Solving equations iteratively Iteration, Newton etc.
- o LU decomposition, QR, least squares, norms
- Special matrices tridiagonal, banded, Householders
- Eigen value methods Jacobi, QR, Sturm, Inverse Iteration, Rayleigh, Gershgorin discs
- Quiz 2 review

Note: I've added useful resources from previous recitations, as well as some new links. Going through them would be useful revision

1. Floating point system [References: 1-4]

- Due to finite precision in floating point number representation, there are gaps between consecutive numbers.
- Size of these gaps depends on the size of the number and on the precision (e.g., double or single precision).
- MATLAB has the function eps(), which returns, for a number, the distance to the next floating point number in the same precision.

Examples:

- eps(1)
- eps(single(1))
- eps(2^(40))
- eps(single(2^(40)))

2. Solving equations iteratively [References: 5-11]

$$lim_{k\to\infty}|\epsilon_{k+1}|/|\epsilon_k|=lim_{k\to\infty}|x_{k+1}-\xi|/|x_k-\xi|=\mu$$

• If $\mu = 0$, converges superlinearly

- If μ \in (0,1) , converges linearly with asymptotic rate of convergence ρ =– $log_{10}\mu$
- If $\mu = 1$, converges sublinearly

For linearly convergent systems, $\,\rho\,$ measures number of correct decimal digits gained in one iteration.

Method	Step Equation	Rate of Convergence
Iteration / Fixed Point	$x_{k+1} = g(x_k)$	Sub, linear or Super $ \begin{aligned} &\bullet lim_{k\to\infty} \epsilon_{k+1} / \epsilon_k = g'(\xi) \\ &\bullet g'(\xi) \in (0,1) \text{, then} \\ &\text{converges linearly with} \\ &\rho = -\log_{10} g'(\xi) \\ &\bullet g'(\xi) > 1 \text{, does not} \\ &\text{converge} \end{aligned} $
Newton	$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$	"Ultimately" Quadratic
Bisection	$x_{k+1} = (a_{k+1} + b_{k+1})/2 \text{ where}$ $\bullet (a_{k+1}, b_{k+1}) = (a_k, x_k) \text{ if}$ $f(x_k)f(b_k) > 0$ $\bullet (a_{k+1}, b_{k+1}) = (x_k, b_k) \text{ if}$ $f(x_k)f(b_k) < 0$	If $[a_0,b_0]$ chosen such that $f(a_0)f(b_0)<0$, then after k iterations, soln lies in interval of length $(a_0-b_0)/2^k$ • $\rho=log_{10}2$
Secant	$x_{k+1} = x_k - f(x_k) \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \right)$	Faster than linear, less than quadratic $\bullet \epsilon_{k+1} \leq 2/3 \epsilon_k , \rho \text{atleast}$ $log_{10}3/2$ $\bullet \text{Precisely:}$ $lim_{k \to \infty} x_{k+1} - \xi / x_k - \xi ^q$ $= \left(f''(\xi) /2 f'(\xi) \right)^{q/1+q}$ Where q = $\frac{1}{2} \left(1 + \sqrt{5}\right) \approx 1.618$

3. Solving linear systems [References: 12-21]

Method	Algorithm	Computation cost
LU decomposition	 Break up matrix into product of upper and lower triangular matrices A = LU Solve two triangular systems of equations Ax = b ⇒ LUx = b Ly = b, Ux = y 	• Factorization: $2n^3/3 - n^2/2$ • Solving triangular sys.: $n(n-1) + n^2$ • Total $2n^3/3 + 3n^2/2 \approx 2n^3/3$
Cholesky Decomp.	• If A is PSD, $A = LL^T$ • $Ax = b \Rightarrow LL^Tx = b$ • Solve: • $Ly = b$ • $L^Tx = y$	 n³/3 Half cost compared to LU
Linear least squares	 Treat linear system as optimization problem: min_x Ax - b ₂² Solve Normal Eqn. A^TAx = A^Tb using Cholesky 	• $O(mn^2)$ using Cholesky/LU
QR Decomp.	 Break up matrix into product of orthogonal and upper triangular matrices: A = QR = [Q₁Q₂][R₁0]^T = Q₁R₁ Normal Eqn. equiv. to solving a triangular system R₁x = Q₁^Tb 	Givens rotations $ \begin{array}{l} \text{Givens rotations} \\ \text{Use sequence of rotations in 2D subspaces:} \\ \text{For } m \approx n: \sim n^2/2 \text{ square roots, and } 4/3n^3 \text{ multiplications} \\ \text{For } m \gg n: \sim nm \text{ square roots, and } 2mn^2 \text{ multiplications} \\ \text{Householder reflections} \\ \text{Use sequence of reflections in 2D subspaces} \\ \text{For } m \approx n: \ 2/3n^3 \text{ multiplications} \\ \text{For } m \gg n: \ 2mn^2 \text{ multiplications} \\ \end{array} $

Least Squares [See Ref. 21]

Taking the case where $m \ge n$,

- To solve Ax = b, minimize the 'residual sum of squares' or 'mean square error' or 'squared euclidean norm'
- Optimization problem:
 - $\circ \quad min_x \ ||Ax b||_2^2$
 - Has a closed-form solution, known as the normal equation:
 - Multiple ways of solving

Solve Normal Equation using LU, Cholesky etc.

- If A has full rank, A^TA is invertible. In general, A^TA is a symmetric positive definite. How?
 - $x^T A^T A x = (Ax)^T (Ax) = ||Ax||_2^2 \ge 0$
 - This property is very useful in general (see Cholesky decomposition).
- Can use the usual methods (LU, Cholesky etc.) to solve this linear system in $O(mn^2)$.
- Disadvantage:
 - Computing
 - May be ill-conditioned, as $k(A^T A) = k(A)^2$

QR decomposition

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} \\ 0 \end{bmatrix} = Q_1 R_{11},$$

$$||Ax - b||^2 = ||Q^T (Ax - b)||^2$$

$$= \left\| \begin{bmatrix} R_{11} \\ 0 \end{bmatrix} x - \begin{bmatrix} Q_1^T b \\ Q_2^T b \end{bmatrix} \right\|^2$$

$$= ||R_{11}x - Q_1^T b||^2 + ||Q_2^T b||^2.$$

- Since second term is independent of x, the minimum can be achieved when:
 - $\circ \quad R_{11}x = Q_1^T b$

• This is a triangular linear system. Can be solved in $O(n^2)$

• This decomposition exists for any matrix - rectangular, non-symmetric etc.

• How can we calculate a QR decomposition?

Givens rotations

Use sequence of rotations in 2D subspaces:

For $m \approx n$: $\sim n^2/2$ square roots, and $4/3n^3$ multiplications

For $m\gg n$: $\sim nm$ square roots, and $2mn^2$ multiplications

Householder reflections

Use sequence of reflections in 2D subspaces

For $m \approx n$: $2/3n^3$ multiplications For $m \gg n$: $2mn^2$ multiplications

• See textbook or Deuflhard/Hohmann for proof and discussion.

• Advantage: Better conditioned than least-squares, as $k(R_1) = k(A)$. How?

• $k(A^T A) = k(R_1^T Q_1^T Q_1 R_1) = k(R_1^T R_1)$

Geometric interpretation of least squares

• $A^{T}(Ax - b) = 0 \Rightarrow A^{T}r = 0$ where r is the residual

• This means residual vector is orthogonal to any vector in the range of A

- $||Ax||^2 + ||r||^2 = ||b||^2$
- Thus, least squares solves for the projection of 'b' on the range space of 'Ax', or, it solves $Ax = b_{projected}$, where $b_{projected} = b \cdot cos(\theta)$
- If $\theta \approx \pi/2$, then $b \cdot cos(\theta) \approx 0$, and corresponding solution will be bad (model doesn't fit data!)
- In general, it may be that columns of A are nearly linearly dependent, in which case problem becomes ill-conditioned, as $A^{T}A$ is not invertible.
 - One approach is called **regularization**. It involves adding a strictly positive constant to the diagonal elements to make eigenvalues non-zero.
 - $\circ (A^T A + \lambda I) x = A^T b$
 - o This is the solution of the minimization problem:

 - This is known as L2-regularization, since the "regularization" term involves an L2-norm
 - Can you say whether we can use an L1-norm instead of the L2-norm for regularization? Is there a closed-form solution for this? why/why not?

Norms and Condition Numbers

- An Lp norm is defined as $||x||_p = (\sum_{i=1}^n |x|^p)^{1/p}$
- 2-norm or Euclidean norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- 1-norm: $||x||_2 = \sum_{i=1}^n |x_i|$
- ∞ norm: $||x||_{\infty} = max(|x_1|, |x_2|, ..., |x_n|)$
- Relative condition number
 - $\circ supx(||f||/||f(x)||)/(||x||/||x||)$
 - o For a matrix (image from Trefethen et al., Numerical Linear Algebra, p. 93)

$$\kappa \ = \ \sup_{\delta x} \left(\frac{\|A(x+\delta x) - Ax\|}{\|Ax\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right) \ = \ \sup_{\delta x} \frac{\|A\delta x\|}{\|\delta x\|} \middle/ \frac{\|Ax\|}{\|x\|}$$

that is.

$$\kappa = \|A\| \frac{\|x\|}{\|Ax\|}$$

- Relative condition number more important in numerical analysis, as floating point system introduces relative errors
- Small condition number means well-conditioned. Large means ill-conditioned.

• Condition number of A:

$$\circ k(A) = ||A||.||A^{-1}||$$

4. Special matrices [References: 18-19]

- Banded matrices
 - o $a_{ii} = 0$ for all i and j such that |i-j| < k for a k-band matrix
 - o Eg. tri-diagonal matrix
- Positive-definite matrices
 - o $x^T A x > 0$ for all non-zero x in real space
- What is a Householder matrix? Where is it used (hint: QR algorithm)? Why is it useful?

5. Eigenvalue problems [References: 22-32]

Method	<u>Idea</u>	Algorithm
Jacobi	Use orthogonal transformations (preand post- multiply) to convert matrix to diagonal form.	$R(arphi) = \left(egin{array}{ccc} \cosarphi & \sinarphi \ -\sinarphi & \cosarphi \end{array} ight)$ $arphi = rac{1}{2} an^{-1}rac{2a_{pq}}{a_{qq}-a_{pp}}$
Sturm Sequence	 # of consecutive sign agreements in sequence p(λ) = # of eig. Values > λ Take interval using Gershgorin theorem, use bisection method to find any eig. value 	$T = \begin{pmatrix} a_1 & b_2 \\ b_2 & a_2 & b_3 \\ & b_3 & a_3 & b_4 \\ & \cdots & \cdots & \cdots \\ & & \cdots & \cdots & \cdots \\ & & \cdots & \cdots$
Inverse Iteration	 Take an estimate of eigenvalue Iterate to find corresponding eigenvector 	$(A-\vartheta I) oldsymbol{w}^{(k)} = oldsymbol{v}^{(k)}, \ oldsymbol{v}^{(k+1)} = c_k oldsymbol{w}^{(k)},$ where $c_k = 1/ w^{(k)} _2$, the sequence $\{v^{(k)}\}$ converges to the normalized eigenvector $ar{v}$ for the eigenvalue λ closest to v .

QR	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Rayleigh coefficient	• If we have a fairly close approximation of the eigenvector, R(x) gives us a good approximate of the corresponding eigenvalue • Th. 5.12: $\lambda_{min} \leq R(x) \leq \lambda_{max}$ $R(x) = \frac{x^{T_{Ax}}}{x^{T_x}} \text{ where A is symmetric.}$ • If x is eigenvector, R(x) is corresponding eigenvalue • Otherwise, if $\boldsymbol{x} = \sum_{j=1}^{n} \alpha_j \boldsymbol{x}^{(j)},$ $R(\boldsymbol{x}) = \frac{\sum_{j=1}^{n} \lambda_j \alpha_j^2}{\sum_{j=1}^{n} \alpha_j^2}$

Gershgorin's theorems

Theorem 1:

Every eigenvalue of matrix A_{nn} satisfies:

$$|\lambda - A_{ii}| \le \sum_{j \ne i} |A_{ij}| \quad i \in \{1, 2, ..., n\}$$

Every eigenvalue of a matrix A must lie in a Gershgorin disc corresponding to the columns of A.

Theorem 2:

A Subset G of the Gershgorin discs is called a disjoint group of discs if no disc in the group G intersects a disc which is not in G. If a disjoint group G contains r nonconcentric discs, then there are r eigenvalues.

Quiz 2 discussion

Q1:

Find the Householder transformation matrix which maps the column vector $(1, 1, 1, 1, 1)^T$ into a vector of the form $(1, 1, 1, *, 0, 0)^T$ and determined the value of the fourth element of the second vector marked by *.

Soln.

If x and y have the same length (norm(x) = norm(y)),

Hx = y if $H = I - 2uu^T$ where u = (x - y)/||x - y|| (definition of Householder transformation).

Therefore, in our case, x = [1, 1, 1, 1, 1, 1], y = [1, 1, 1, *, 0, 0]. It must be that ||x|| = ||y||, therefore, $* = \pm \sqrt{3}$, and u is given by the above formula.

For theory and example, see http://web.csulb.edu/~tgao/math423/s93.pdf.

Helpful links

- 1. https://en.wikipedia.org/wiki/IEEE floating point
- 2. Numerical Computing with IEEE Floating Point Arithmetic, Michael L. Overton (NYU)
- 3. Sec. 2.5, Numerical Mathematics, Alfio Quarteroni et al.
- 4. Sec. 2.1, Numerical Analysis in Modern Scientific Computing, Peter Deuflhard and Andreas Hohmann.
- 5. https://www.math.ust.hk/~mamu/courses/231/Slides/ch02 2b.pdf
- 6. A casual (but interesting) introduction to Newton's method
- 7. A good lecture on rates of convergence
- 8. A proof of Newton's method's quadratic convergence
- 9. Newton's method, complex numbers and pretty fractals
- 10. Newton's method on functions with multiple same roots
- 11. Secant method and why it's order of convergence is the golden ratio
- 12. More about cost of computation
- 13. Wiki page for LU decomp.
- 14. MIT OCW example for LU
- 15. <u>LU decomp. explained very well here</u>
- 16. Detailed notes on LU decomp. and linear systems
- 17. Cholesky decomposition explained
- 18. About householder transformation 1
- 19. About householder transformation 2
- 20. Numerical Mathematics (Quarteroni et al) is a very good resource for LU/Cholesky/etc. It's also freely available for NYU students via Springer!
- 21. http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec11.pdf

- 22. Nice reference on Gerschgorin's theorems
- 23. Sturm's theorem
- 24. Proof of Sturm's sequence property
- 25. <u>Using Sturm's theorem for finding eigenvalues (sec. 4.6.2)</u>
- 26. QR algorithm explained quite well
- 27. QR algorithm proof
- 28. Rayleight coefficient and Inverse iteration
- 29. Numerical Linear Algebra, Trefethen & Bau also has a nice discussion on condition numbers (see Lec. 12).
- 30. https://en.wikipedia.org/wiki/Wilkinson%27s polynomial
- 31. http://blogs.mathworks.com/cleve/2013/03/04/wilkinsons-polynomials/
- 32. http://college.cengage.com/mathematics/larson/elementary_linear/5e/students/ch08-10/chap_10_3.pdf