Wie aus Atomen Ionen werden

Heftaufschrieb

Merke:

Ziel der Atome in Verbindungen ist es, **Edelgaskonfiguration** zu erlangen d.h. eine mit **8 Elektronen** besetzte Außenschale.

Ausnahme: Die 1. Schale ist mit 2 Elektronen voll besetzt.

Bsp. Natrium:

Na-Atom (Na)

11 Protonen 11 Elektronen ungeladen

1 Außenelektron in der 3. Schale

Na-Kation (Na⁺)

11 Protonen 10 Elektronen 1-fach positiv geladen

Mit 8 Elektronen voll besetzte äußere Schale

"Edelgaskonfiguration" erreicht

Kurz: Na • \longrightarrow Na⁺ + e⁻

Bsp. Chlor:

Heftaufschrieb

Elektronenaufnahme

Chlor-Atom (CI)

17 Protonen 17 Elektronen ungeladen

7 Außenelektron in der 3. Schale

Kurz: $|C| \cdot + e^{-} \longrightarrow C|$

Chlor-Anion (Cl-)

17 Protonen
18 Elektronen

1-fach negativ geladen

Mit 8 Elektronen voll besetzte äußere Schale

"Edelgaskonfiguration" erreicht

Aufgabe: Bilde die Ionen aus den Atomen von Magnesium, Sauerstoff und Wasserstoff (Kurzform)

Elektronenabgabe

Mg-Atom (Mg)

- 12 Protonen
- ^L ungeladen 12 Elektronen
- 2 Außenelektron in der 3. Schale

 $Mg^{2+} + 2e^{-}$ Kurz: • Mg • ----

2+

Mg-Kation (Mg²⁺)

12 Protonen 2-fach positiv geladen

Voll besetzte äußere 2. Schale

Elektronenaufnahme

Sauerstoff-Atom (O)

- 8 Protonen ungeladen 8 Elektronen
- 6 Außenelektron in der 2. Schale

 O^{2}

Sauerstoff-Anion (O²-)

8 Protonen 2-fach negativ geladen **10** Elektronen

2-

Voll besetzte äußere 2. Schale

Elektronenabgabe

+

Wasserstoffatom (H)

- 1 Proton
- 1 Elektron
- 1 Außenelektron in der 1. Schale

Kurz: $H \bullet \longrightarrow H^+ + e$

H-Kation (H⁺)

1 Proton
0 Elektronen
1-fach po

1-fach positiv geladen

Besitzt keine Schale, ist nur ein **Proton**

+

Elektronenaufnahme

Kurz:

$$H \cdot + e^{-} \longrightarrow H^{-}$$

H-Anion (H⁻)

1 Proton
2 Flektronen 1-fach negativ geladen

Voll besetzte äußere Schale

Merke:

Um Edelgaskonfiguration zu erreichen, geben **Metall-Atome** Außenelektronen ab (bilden **Kationen**) und **Nichtmetalle** nehmen Elektronen in die äußerste Schale auf (bilden **Anionen**).

Anhand der Hauptgruppe des Atoms kann man die Höhe der Ionenladung ermitteln: Ionen besitzen meist dieselbe Anzahl von Außenelektronen, wie das Atom des Edelgases, das ihnen im Periodensystem am nächsten steht. Das sind 8 Elektronen (in der 1. Periode: 2) (**Edelgasregel / Oktettregel**)