

飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

About the exam

- Exam (60%) + Course project (25%) + Homework (15%)
- Online open-book exam (在线开卷考试), 2h
- The exam questions will be based on <u>lecture slides</u>
- Exam date: between week 17~18

Follow-up arrangements

13		23	24	25	26	27	28	29
14		30	31					
				1	2	3 端午节	4	5
15		6	7	8	9	10	11	12
16	六	13	14	15	16	17	18	19
17		20	21	22	23	24	25	26
18		27	28	29	30			
	七			7 6 4 7		1	2	3

Contents

- Interplanetary flight
- Atmosphere
- Equation of motion for entry
- Aerodynamic heating

Geometric relationship

$$r_1 = R_{dep} + H_1 \qquad r_2 = R_{tar} + H_2$$

$$a_{tr} = \frac{1}{2} \left(r_{dep} + r_{tar} \right)$$

$$e = |r_{dep} - r_{tar}|/(r_{dep} + r_{tar})$$

Velocity at periapsis on transfer orbit

$$V_{pt} = \sqrt{GM_S\left(\frac{2}{r_{dep}} - \frac{1}{a_{tr}}\right)}$$

Excess velocity at departure planet

$$\mathbf{V}_{\infty,1} = \left| \mathbf{V}_{pt} - \mathbf{V}_{dep} \right|$$

Circular velocity around the earth:

$$V_{c1} = \sqrt{\frac{GM_{dep}}{r_1}}$$

Hohmann transfer (Earth scale)

Velocity in pericenter of <u>hyperbola</u> around departure planet

$$V_1 = \sqrt{\frac{2k^2}{r_1} - \frac{k^2}{a_1}} = \sqrt{\frac{2GM_{dep}}{r_1} + V_{\infty,1}^2}$$

Maneuver in pericenter around departure planet

$$\Delta V_1 = |V_1 - V_{c1}|$$

Practice (10 mins)

Consider a Hohmann transfer from Earth (E) to Mercury (M). Begin and end of the transfer is in a parking orbit at 500 km altitude, for both cases.

- a) What are the semi-major axis and the eccentricity of the transfer orbit?
- b) What is the trip time?
- c) What are the excess velocities at Earth and at Mercury (i.e., heliocentric)?
- d) What are the circular velocities in the parking orbit around Earth and Mercury (i.e., planetocentric)?
- e) What are the ΔV 's of the maneuvers to be executed at Earth and Mercury? What is the total ΔV ?

```
Data: GM_S = 1.3271 \times 10^{11} \text{ km}^3/\text{s}^2; GM_E = 398,600 \text{ km}^3/\text{s}^2; GM_M = 22,034 \text{ km}^3/\text{s}^2; R_E = 6378 \text{ km}; R_M = 2440 \text{ km}; distance Earth-Sun = 1 AU; distance Mercury-Sun = 0.387 AU; 1 AU = 149.6 × 10<sup>6</sup> km.
```

An example

Consider a Hohmann transfer from Earth (E) to Mercury (M). Begin and end of the transfer is in a parking orbit at 500 km altitude, for both cases.

Answers:

- a) $a = 0.6935 \text{ AU} = 103.7 \times 10^6 \text{ km}$; e = 0.442
- b) $T_H = 9.11 \times 10^6 \text{ sec} = 0.289 \text{ year}$
- c) $V_{\infty}(Earth) = 7.535 \text{ km/s}$; $V_{\infty}(Mercury) = 9.615 \text{ km/s}$
- d) $V_c(Earth) = 7.613 \text{ km/s}; V_c(Mercury) = 2.738 \text{ km/s}$
- e) $\Delta V(Earth) = 5.528 \text{ km/s}$; $\Delta V(Mercury) = 7.627 \text{ km/s}$; $\Delta V_{tot} = 13.155 \text{ km/s}$

The reentry process

The life of a typical spacecraft:

- Launch from the surface of the earth
- 2. Travel in space
- 3. Return to earth, or landing on some other planet

Introduction

Spacecraft reentry module

Apollo reentry module

Shenzhou reentry module

The reentry process

The entry paths

1. Ballistic entry: vehicle has little or no aerodynamic lift

2. Glide entry: Space shuttle (L/D > 4)

3. Skip entry: not used yet

Figure 8.37 Three types of entry paths: (a) ballistic; (b) glide; (c) skip.

The entry paths

Components of dry air at sea level (relative to volume)

- Nitrogen 78.1 %
- Oxygen 20.9 %
- Argon 0.9 %
- Carbon dioxide 0.04 %
- Other elements only as traces (ppm)

U.S. Standard Atmosphere Air Properties - SI Units

Geo potential Altitude above Sea Level - h - (m)	Temperature - <i>t</i> - (^O C)	Acceleration of Gravity - g - (m/s ²)	Absolute Pressure - p - (10 ⁴ N/m ²)	Density - ρ - (kg/m ³)	Dynamic Viscosity - μ - (10 ⁻⁵ N s/m ²)
-1000	21.50	9.810	11.39	1.347	1.821
0	15.00	9.807	10.13	1.225	1.789
1000	8.50	9.804	8.988	1.112	1.758
2000	2.00	9.801	7.950	1.007	1.726
3000	-4.49	9.797	7.012	0.9093	1.694
4000	-10.98	9.794	6.166	0.8194	1.661
5000	-17.47	9.791	5.405	0.7364	1.628
6000	-23.96	9.788	4.722	0.6601	1.595
7000	-30.45	9.785	4.111	0.5900	1.561
8000	-36.94	9.782	3.565	0.5258	1.527
9000	-43.42	9.779	3.080	0.4671	1.493
10000	-49.90	9.776	2.650	0.4135	1.458
15000	-56.50	9.761	1.211	0.1948	1.422
20000	-56.50	9.745	0.5529	0.08891	1.422
25000	-51.60	9.730	0.2549	0.04008	1.448
30000	-46.64	9.715	0.1197	0.01841	1.475
40000	-22.80	9.684	0.0287	0.003996	1.601
50000	-2.5	9.654	0.007978	0.001027	1.704
60000	-26.13	9.624	0.002196	0.0003097	1.584
70000	-53.57	9.594	0.00052	0.00008283	1.438
80000	-74.51	9.564	0.00011	0.00001846	1.321

High altitude effects

Potala Palace: 3700 m above sea level

Exponential model atmosphere $\rho = f(h)$

$$\frac{\rho}{\rho_0} = e^{-g_0 h/(RT)}$$

Where temperature T can be assumed as constant of 288 K. The approximation is valid for the condition up to about 140 km

Enter atmosphere at inclined angle θ

$$-D + W\sin\theta = m\frac{dV}{dt}$$

$$L - W\cos\theta = m\frac{V^2}{r_c}$$

Figure 8.39 Geometry of entry vehicle forces and motion.

Velocity as a function of altitude

$$-D + W \sin \theta = m \frac{dV}{dt} = m \frac{dV}{ds} \frac{ds}{dt} = mV \frac{dV}{ds}$$

$$-D + W \sin \theta = \frac{1}{2} m \frac{dV^{2}}{ds}$$

$$D = \frac{1}{2} \rho V^{2} S C_{D}$$

$$ds = -\frac{dh}{\sin \theta}$$

Figure 8.40 Flight path geometry.

Velocity as a function of altitude

$$-\frac{1}{2}\rho V^2 SC_D + W\sin\theta = -\frac{1}{2}m\sin\theta \frac{dV^2}{dh}$$

Density relation

$$\frac{\rho}{\rho_0} = e^{-g_0 h/(RT)}$$

$$\frac{d\rho}{\rho_0} = e^{-Zh}(-Z\,dh) = \frac{\rho}{\rho_0}(-Z\,dh)$$

$$dh = -\frac{d\rho}{Z\rho}$$

Where $Z \equiv g_0/RT$

Velocity as a function of altitude

$$\frac{dV^{2}}{d\rho} + \frac{1}{m/(C_{D}S)} \frac{V^{2}}{Z \sin \theta} = \frac{2g}{Z\rho}$$
Ballistic parameter

Exact equation for spacecraft entering atmosphere. Where $Z \equiv g_0/RT$, $\rho = f(h)$

The entry path

The entry path

Gupta et al., NASA report, 1990

Figure 1. Flight stagnation region air chemistry for a 30.5-cm radius sphere (adapted from ref. 5).

Relevant research work

[1] 陈松, 孙泉华, 高超声速飞行流场中最大氧气离解度分析,力学学报,46(1):20-27, 2014.

Ballistic entry (弹道再入)

Approximation $(L \approx 0; D \gg W)$

$$-D + W\sin\theta = m\frac{dV}{dt}$$

$$-D = m\frac{dV}{dt}$$

$$\frac{dV^2}{d\rho} + \frac{1}{m/(C_D S)} \frac{V^2}{Z \sin \theta} = 0$$

Solution

$$\frac{dV^2}{d\rho} + \frac{1}{m/(C_D S)} \frac{V^2}{Z \sin \theta} = 0$$

$$\frac{V}{V_E} = e^{-\rho/2[m/(C_D S)]Z\sin\theta}$$

Where V_E is the initial entry velocity

Discussion

$$\frac{V}{V_E} = e^{-\rho/2[m/(C_D S)]Z\sin\theta}$$

- 1. As ρ increases (namely, as the altitude decreases), V decreases
- 2. If $m/(C_DS)$ is larger, the exponential term does not have strong effect until ρ becomes larger
- 3. For manned space mission, $m/(C_DS)$ should be sufficiently small.

Maximum Deceleration

$$-D = m \frac{dV}{dt}$$

Deceleration =
$$\left| \frac{dV}{dt} \right| = \frac{D}{m}$$

$$\left| \frac{dV}{dt} \right| = \frac{\rho V^2 S C_D}{2m}$$

Maximum Deceleration

$$\left| \frac{dV}{dt} \right| = \frac{\rho V^2 S C_D}{2m}$$

Maximum Deceleration

$$\left| \frac{d^2 V}{dt^2} \right| = \frac{SC_D}{2m} \left(2\rho V \frac{dV}{dt} + V^2 \frac{d\rho}{dt} \right)$$

Solution?

Maximum Deceleration

$$\frac{V}{V_E} = e^{-\rho/2[m/(C_D S)]Z\sin\theta}$$

$$\rho = \frac{m}{C_D S} Z \sin \theta$$

$$\left| \frac{dV}{dt} \right|_{\text{max}} = \frac{1}{2} V^2 Z \sin \theta$$

$$V = V_E e^{-1/2}$$

$$\left| \frac{dV}{dt} \right|_{\text{max}} = \frac{V_E^2 Z \sin \theta}{2e}$$

Discussion

$$\left| \frac{dV}{dt} \right|_{\text{max}} = \frac{V_E^2 Z \sin \theta}{2e}$$

$$\left| \frac{dV}{dt} \right|_{\text{max}} \propto V_E^2$$
 and $\left| \frac{dV}{dt} \right|_{\text{max}} \propto \sin \theta$

- 1. Entry with a higher initial velocity, V_E , will experience much more severe deceleration;
- 2. A smaller entry angle, θ , reduces the maximum deceleration.

Practice – example 8.10

Consider a solid iron sphere entering the earth's atmosphere at 13 km/s (slightly above escape velocity) and at an angle of 15° below the local horizontal. The sphere diameter is 1 m. The drag coefficient for a sphere at hypersonic speeds is approximately 1. The density of iron is 6963 kg/m^3 . Calculate (a) the altitude at which maximum deceleration occurs, (b) the value of the maximum deceleration, and (c) the velocity at which the sphere would impact the earth's surface.

Question

• What's highest temperature at the blunt body surface of the entry capsule?

A dimensionless heat transfer coefficient C_H

Stanton number (C_H) is defined as the ratio of heat transfer in the fluid to the heat capacity of the fluid.

$$C_H = \frac{dQ/dt}{\rho_{\infty} V_{\infty} (h_0 - h_w) S}$$

Aerodynamic heating rate

$$C_H = \frac{dQ/dt}{\rho_{\infty} V_{\infty} (h_0 - h_w) S}$$

$$h_0 = h_\infty + \frac{V_\infty^2}{2} \approx \frac{V_\infty^2}{2} \qquad h_0 \gg h_w \approx 0$$

$$h_0 \gg h_w \approx 0$$

$$\frac{dQ}{dt} = \frac{1}{2} \rho_{\infty} V_{\infty}^3 SC_H$$

Conclusion: the aerodynamic heating rate varies as the cube of the velocity

The Fay-Riddell formula

$$q_w = \frac{dQ}{dt} \bigg|_{\rm S} \propto \frac{1}{\sqrt{R_N}}$$

Where q_w is the heat rate at the stagnation point of the blunt body, R_N is the radius.

Source of the figure: 神舟飞船防热大底钻孔工艺技术研究,宇航材料工艺,2020

The high temperature real gas effects

Heat capacity

$$Cv_{tr,s} = \begin{cases} \frac{5}{2} \frac{R_u}{M_s} T & for \ diatomic \\ \frac{3}{2} \frac{R_u}{M_s} T & for \ monatomic \end{cases}$$
 Perfect gas

$$Cv_{v,s} = \frac{R_u}{M_s} \frac{\left(\theta_{v,s} / T_v\right)^2 \exp\left(\theta_{v,s} / T_v\right)}{\left[\exp\left(\theta_{v,s} / T_v\right) - 1\right]^2}$$
 Vibrational excitation

$$Cv_{e,s} = \frac{R_u}{M_s} \left\{ \frac{\sum_{i=1}^{\infty} g_{i,s} \left(\theta_{el,i,s} / T_e\right)^2 \exp\left(-\theta_{el,i,s} / T_e\right)}{\sum_{i=0}^{\infty} g_{i,s} \exp\left(-\theta_{el,i,s} / T_e\right)} - \frac{\left[\sum_{i=0}^{\infty} g_{i,s} \exp\left(-\theta_{el,i,s} / T_e\right)\right] \left[\sum_{i=0}^{\infty} g_{i,s} \exp\left(-\theta_{el,i,s} / T_e\right)\right]}{\left[\sum_{i=0}^{\infty} g_{i,s} \exp\left(-\theta_{el,i,s} / T_e\right)\right]^2} \right\}$$

electronical excitation

Dissociation

Arrhenius empirical formula

$$k = CT^{\alpha}e^{-E_a/R_uT}$$

Gas Kinetic theory

$$k_{f} = \frac{2\sigma_{ref}}{\pi^{1/2}} \left(\frac{T}{T_{ref}}\right)^{1-\omega} \left(\frac{2kT}{m_{r}}\right) \left(1 + \frac{E_{d}}{\left(\overline{\zeta} + 3/2 - \omega\right)}\right) \exp\left(-\frac{E_{d}}{kT}\right)$$

Reactions of air

$$\sum_{s=1}^{N} v'_{s,r} X_s \leftrightharpoons \sum_{s=1}^{N} v''_{s,r} X_s, \qquad r = 1, 2, \dots, nr$$

Reaction rate coefficients: $k = CT_x^{\eta} \exp(-\theta_d/T_x)$								
Reaction	M_i	k	$C(m^3-kmol-s)$	η	θ_d (K)			
$N_2 + M_i \rightarrow N + N + M_i$	N ₂	k_{f11}	4.80×10^{14}	-0.5	113000			
	O_2	k_{f12}	1.92×10^{14}	-0.5	113000			
	NO	k_{f13}	1.92×10^{14}	-0.5	113000			
	N	k_{f14}	4.16×10^{19}	-1.5	113000			
	O	k_{f15}	1.92×10^{14}	-0.5	113000			
$N+N+M_i \rightarrow N_2+M_i$	N_2	k_{b11}	2.72×10^{10}	-0.5	0			
	O_2	k_{b12}	1.10×10^{10}	-0.5	0			
	NO	k_{b13}	1.10×10^{10}	-0.5	0			
	N	k_{b14}	2.27×10^{15}	-1.5	0			
	O	k_{b15}	1.10×10^{10}	-0.5	0			
$O_2+M_i \rightarrow O+O+M_i$	N_2	k_{f21}	7.21×10^{15}	-1.0	59500			
	O_2	k_{f22}	3.25×10^{16}	-1.0	59500			
	NO	k_{f23}	3.61×10^{15}	-1.0	59500			
	N	k_{f24}	3.61×10^{15}	-1.0	59500			
	0.	. k	9.02×10 ¹⁶	1.A.	59500.			

The quasi-one-dimensional model (Chen & Sun, 2016)

[1] **Chen, S.,** Sun Q., A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline. Chinese Journal of Aeronautics, 29(6): 1517-1526, 2016.

Entry of Mars

