

AADL Meta Model & XML/XMI

Peter Feiler Software Engineering Institute phf@sei.cmu.edu

Outline

- Meta Modeling Approach
- Declarative AADL Model
- AADL Instance Model

XMI/XML Based Tool Interoperability

AADL Meta Model

- Defined in Eclipse Modeling Framework (EMF)
 - Collection of meta model packages with graphical views
 - Separate from, but close to UML profile of AADL
- XML as persistent storage
 - XMI specification from Ecore meta model
 - Generated XML schema
- In-core AADL model
 - Generated methods for AADL model manipulation
 - Edit history, deep copy, object editor, graphical editor
 - Methods to support
 - AADL extends hierarchy
 - feature "inheritance"
 - property value "inheritance"

AADL Meta Model Packages

- Core: defines the concepts of component type, implementation, subcomponent, AADL packages and modes.
- Component: defines the concrete classes for the different categories of components, including the constraints on their containment.
- Feature: defines the features of component types.
- Connection: defines the connections between component features.
- Flow: defines flow related elements of the AADL.
- Property: defines the elements for associating property values and for introducing new property types and properties via property sets.

Outline

- Meta Modeling Approach
- Declarative AADL Model
- AADL Instance Model

AADL Meta Model Class Hierarchy

AADL Meta Model Fragment

AADL Text Example

```
package edu::cmu::sei::XMIExample
public
  system GPS
  features
      init: in event port;
      signal: out data port GPS_Signal;
  end GPS;
  system implementation GPS.basic
  end GPS.Basic;
  data GPS_Signal
  end GPS_Signal;
end edu::cmu::sei::XMIExample;
```


AADL XML Example

```
<?xml version="1.0" encoding="UTF-8"?>
<core:AadlSpec xmi:version="2.0" .....>
 <aadlPackage name="edu::cmu::sei::XMIExample">
  <aadlPublic>
   <systemType name="GPS">
    <features>
      <eventPort name="init"/>
      <dataPort name="signal" direction="out"</pre>
   dataClassifier="//aadlPackage[@name=edu::cmu::sei::XMIExample]/aadl
   Public/dataType[@name=GPS_Signal]"/>
    </features>
   </systemType>
   <systemImpl name="GPS.basic"
   compType="//aadlPackage[@name=edu::cmu::sei::XMIExample]/aadlPublic/systemType[@name=GPS]"/>
   <dataType name="GPS_Signal"/>
  </aadlPublic>
 </aadlPackage>
</core:AadlSpec>
```


AADL Inheritance

- Inheritance of component type features
 - By type extensions
 - By implementations
 - By subcomponents
- Inheritance of component implementation elements
 - By implementation extensions
 - By subcomponents
- Inheritance of property values
 - By type extensions
 - By implementations
 - By subcomponents
 - By contained components
 - By instance model

AADL inheritance handled by methods

AADL Inheritance

Flow Sequence Meta Model

Property Values As Objects

Outline

- Meta Modeling Approach
- Declarative AADL Model
- AADL Instance Model

AADL Instance Model Objectives

- Derivable from declarative AADL model
 - System implementation as root
 - Application & execution platform as subcomponents
 - Traceability to declarative model
- Self-contained compact system model
 - Compact representation
 - Separately loadable XML document
 - Semantic connections
 - Profile of locally cached property values
- Modal system instances
 - Legal mode combinations for system operation modes
 - System operation mode specific property values
- Recording of instance analysis results

OSATE creates instance models

AADL Instance Model

Instance Meta Model

18

Semantic Connections

© 2005 by Carnegie Mellon University

AADL Properties & Instance Model

Instance Property Values

Modal & Configurable System Instances

Modal Analysis Result Sets

Summary

- AADL Meta Model specified in Ecore
- Modular, extensible meta model specification
- XML Schema & XMI specification generated from meta model
- Declarative model & instance model
- Self-contained instance models

