

86.03 - DISPOSITIVOS SEMICONDUCTORES

Evaluación Parcial 23 de junio de 2022

Nom	bre y apellido:		Tema 2
Padrón:		Turno:	N° de examen:
•	Es condición necesar planteado.	ia para aprobar el parcial que al menos	el 60 % de cada problema esté correctamente
٠	Se considerará: La clar gráficos/circuitos, la ex	idad y síntesis conceptual de las respue actitud de los resultados numéricos.	estas y justificaciones, los detalles de los

Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación: _____

Datos generales: $q=1,602\times 10^{-19}\,\mathrm{C}$; $m_0=9,109\times 10^{-31}\,\mathrm{kg}$; $k=1,381\times 10^{-23}\,\mathrm{J/K}$; $h=6,626\times 10^{-34}\,\mathrm{J\,s}$; $\varepsilon_0=8,85\times 10^{-12}\,\mathrm{F/m}$; $\varepsilon_r(\mathrm{Si})=11,7$; $\varepsilon_r(\mathrm{SiO}_2)=3,9$.

1)

- a) Se tiene el circuito de la figura 1 donde R_1 , R_2 y R_3 son resistencias fabricadas con distintos materiales semiconductores intrínsecos. Inicialmente $I_1 = I_2 = I_3$ pero, pasado un tiempo y como consecuencia del efecto Joule, esta igualdad deja de cumplirse. Sabiendo que la relación que existe entre las energías de brecha de los materiales es $E_{g1} < E_{g2} < E_{g3}$, determinar por cuál resistencia circulará la mayor intensidad de corriente y explicar por qué no son necesarios más datos para predecir este fenómeno.
- b) En base al circuito de la figura 2 determinar el rango de valores de R_1 y R_2 para que la corriente que atraviesa el diodo D ($V_{D(ON)} = 0.7$ V) sea de $I_D = 1$ mA. Otros datos: $V_{IN} = 7.5$ V; $|V_Z| = 5.6$ V; $|I_{Z \min}| = 2$ mA; $|I_{Z \min}| = 6$ mA; T = 300 K.

Figura 1

Figura 2

- 2) Se tiene un transistor MOSFET canal P del que se conocen los siguientes parámetros: $V_T = -0.83 \, \text{V}$, $\lambda = 0 \, \text{V}^{-1}$, $t_{\text{ox}} = 20 \, \text{nm}$, $W = 100 \, \text{µm}$ y $L = 10 \, \text{µm}$. El substrato está dopado con $N_D = 1 \times 10^{17} \, \text{cm}^{-3}$ y las movilidades para este caso son $\mu_n = 740 \, \text{cm}^2/\text{Vs}$ y $\mu_p = 340 \, \text{cm}^2/\text{Vs}$.
 - a) Considerar que $V_B = V_S = V_D = 0$ V, formando un capacitor MOS, y con $V_{GB} = -1.5$ V y calcular la carga en x = 0 y en $x = -t_{ox}$, es decir en ambas interfaces del óxido con el semiconductor y con el "metal", respectivamente.
 - b) El transistor se utiliza en el circuito de la figura 3, donde $R_{G1} = 47 \,\mathrm{k}\Omega, \; R_{G2} = 150 \,\mathrm{k}\Omega, \; R_D = 3.3 \,\mathrm{k}\Omega \;\mathrm{y} \; V_{DD} = 15 \;\mathrm{V}.$ Determinar el modo de operación, el punto de trabajo y realizar el gráfico de la curva de salida y la recta de carga, resaltando el punto de trabajo. Además, calcular los elementos del modelo de pequeña señal para bajas frecuencias.

Figura 3