PARALELNI SISTEMI (IV)

1. zadatak: Napisati MPI program koji realizuje množenje matrice A_{mxn} i vektora \vec{b}_n . Matrica A se inicijalizuje u master procesu i podeljena je u blokove po kolonama (n je deljivo sa p) tako da proces P_i dobija kolone sa indeksima l, $l \mod p = i$ ($0 \le i \le p-1$), tj. kolone sa indeksima i, i+p, i+2p, i+n-p. Vektor b treba učitati iz fajla "vecB.dat" tako da proces P_i učita elemente s indeksima l, $l \mod p = i$ ($0 \le i \le p-1$), tj. elemente sa indeksima i, i+p, i+2p,, i+n-p. Voditi računa o efikasnosti učitavanja iz fajla. Predvideti da se slanje blokova matrica svakom procesu, kao i čitanje elemenata vektora obavlja odjednom. Svaki proces obavlja odgovarajuća izračunavanja i učestvuje u generisanju rezultata. Rezultujući vektor se treba naći u procesu koji je učitao minimalni element vektora b. Zadatak rešiti korišćenjem grupnih operacija, izvedenih tipova podataka i funkcija za rad sa fajlovima.

Napisati na koji se način iz komandne linije vrši startovanje napisane MPI aplikacije. [45 poena]

2. zadatak: Koristeći CUDA tehnologiju, napisati program koji za date nizove A_n i B_n računa niz C_{n-2} na sledeći način:

$$C[i] = (A[i] * A[i+1] * A[i+2] + 10* A[i]) / (B[i] + B[i+1] + B[i+2])$$

Veličinu nizova A i B unosi korisnik. Maksimalno redukovati broj pristupa globalnoj memoriji. Obratiti pažnju na efikasnost paralelizacije. Omogućiti rad programa za nizove proizvoljne veličine. [35 poena]

3. zadatak: Napisati OpenMP kod koji sadrži sledeću petlju:

```
d=42;
for(i= N-2; i>= 0; i--)
   {
    d = d / z[i];
    a[i] = b[i] * c[pom + N-i-1] - a[i+1];
}
```

Proučiti da li je moguće izvršiti paralelizaciju petlje. Ako nije, obrazložiti i transformisati petlju tako da paralelizacija bude moguća. Koju vrednost ima promenljiva d, a koje elementi niza a nakon izvršenja petlje? Testiranjem sekvencijalnog i paralelnog rešenja za proizvoljno N i proizvoljan broj niti, pokazati korektnost paralelizovanog koda. [20 poena]