Lie Algebra methods for Accelerator Physics in 4D

Chapter 1. Poisson Brackets and Lie Algebra in 4D

```
Info ]:= PoissonBracket[a , b , q List, p List] := Block[{pk, n}, n = Length[q];
        If[n == Length[p],
          pk = Simplify[Sum[D[a, q[j]] \times D[b, p[j]] - D[b, q[j]] \times D[a, p[j]], \{j, 1, n\}]],
          Print["Incompatible lengths"]]]
Inf_{\mathbb{R}} = PoissonBracket[f[x, px, y, py], g[x, px, y, py], \{x, y\}, \{px, py\}]
      g^{(0,0,0,1)}[x, px, y, py] f^{(0,0,1,0)}[x, px, y, py] -
       f^{(0,0,0,1)}[x, px, y, py]g^{(0,0,1,0)}[x, px, y, py] +
       g^{(0,1,0,0)}[x, px, y, py] f^{(1,0,0,0)}[x, px, y, py] -
       f^{(0,1,0,0)}[x,px,y,py]g^{(1,0,0,0)}[x,px,y,py]
In[a]:= LieOperator[f_] := Function[g, PoissonBracket[f, g, {x, y}, {px, py}]]
In[@]:= LieOperator[f[x, y, px, py]][g[x, y, px, py]]
     g^{(0,0,0,1)}[x, y, px, py] f^{(0,1,0,0)}[x, y, px, py] -
       f^{(0,0,0,1)}[x,y,px,py]g^{(0,1,0,0)}[x,y,px,py] +
       g^{(0,0,1,0)}[x,y,px,py]f^{(1,0,0,0)}[x,y,px,py]
       f^{(0,0,1,0)}[x, y, px, py]g^{(1,0,0,0)}[x, y, px, py]
In[o]:= ExpOperator[oprtr_, n_:10] :=
       Function[f, Fold[f+oprtr[#1] / #2 &, f, Reverse@Range[n]]]
ln[a] := Simplify[ExpOperator[LieOperator[f[x, y, px, py]], 1][g[x, y, px, py]]]
     g[x, y, px, py] + g^{(0,0,0,1)}[x, y, px, py] f^{(0,1,0,0)}[x, y, px, py] -
       f^{(0,0,0,1)}[x, y, px, py] g^{(0,1,0,0)}[x, y, px, py] +
       g^{(0,0,1,0)}[x,y,px,py] f^{(1,0,0,0)}[x,y,px,py] -
       f^{(0,0,1,0)}[x, y, px, py]g^{(1,0,0,0)}[x, y, px, py]
```

```
In[a]:= Simplify[ExpOperator[LieOperator[f[x, y, px, py]], 2][g[x, y, px, py]]]
           g[x, y, px, py] + \frac{1}{2} (f^{(0,1,0,0)}[x, y, px, py]
                         [g^{(0,0,0,2)}[x,y,px,py]f^{(0,1,0,0)}[x,y,px,py]-f^{(0,0,0,2)}[x,y,px,py]
                                g^{(0,1,0,0)}\left[x,\,y,\,px,\,py\right]\,+\,g^{(0,0,0,1)}\left[x,\,y,\,px,\,py\right]\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)\,-\,\left(2\,+\,f^{(0,1,0,1)}\left[x,\,y,\,px,\,py\right]\right)
                              f^{(0,0,0,1)}[x, y, px, py] g^{(0,1,0,1)}[x, y, px, py] + g^{(0,0,1,1)}[x, y, px, py]
                                f^{(1,0,0,0)}[x, y, px, py] - f^{(0,0,1,1)}[x, y, px, py] g^{(1,0,0,0)}[x, y, px, py] +
                              g^{(0,0,1,0)}[x, y, px, py] f^{(1,0,0,1)}[x, y, px, py] -
                              f^{(0,0,1,0)}[x, y, px, py]g^{(1,0,0,1)}[x, y, px, py]) +
                      f^{(1,0,0,0)}[x, y, px, py] (g^{(0,0,1,1)}[x, y, px, py] f^{(0,1,0,0)}[x, y, px, py] -
                              f^{(0,0,1,1)}[x, y, px, py]g^{(0,1,0,0)}[x, y, px, py] +
                              g^{(0,0,0,1)}[x, y, px, py] f^{(0,1,1,0)}[x, y, px, py] - f^{(0,0,0,1)}[x, y, px, py]
                                g^{(0,1,1,0)}[x, y, px, py] + g^{(0,0,2,0)}[x, y, px, py] f^{(1,0,0,0)}[x, y, px, py] -
                              f^{(0,0,2,0)}[x, y, px, py] g^{(1,0,0,0)}[x, y, px, py] + g^{(0,0,1,0)}[x, y, px, py]
                                (2 + f^{(1,0,1,0)}[x, y, px, py]) - f^{(0,0,1,0)}[x, y, px, py]g^{(1,0,1,0)}[x, y, px, py]) +
                      f^{(0,1,0,0)}[x, y, px, py] g^{(0,1,0,1)}[x, y, px, py] -
                              g^{(0,0,0,1)}[x,y,px,py]f^{(0,2,0,0)}[x,y,px,py]+f^{(0,0,0,1)}[x,y,px,py]
                                g^{(0,2,0,0)}[x, y, px, py] - g^{(0,1,1,0)}[x, y, px, py] f^{(1,0,0,0)}[x, y, px, py] +
                              f^{(0,1,1,0)}[x, y, px, py] g^{(1,0,0,0)}[x, y, px, py] - g^{(0,0,1,0)}[x, y, px, py]
                                f^{(1,1,0,0)}[x, y, px, py] + f^{(0,0,1,0)}[x, y, px, py] g^{(1,1,0,0)}[x, y, px, py]) +
                      f^{(0,0,1,0)}[x,y,px,py] (g^{(0,1,0,0)}[x,y,px,py] f^{(1,0,0,1)}[x,y,px,py] -
                              f^{(0,1,0,0)}[x,y,px,py]g^{(1,0,0,1)}[x,y,px,py] +
                              g^{(1,0,0,0)}[x, y, px, py] (-2 + f^{(1,0,1,0)}[x, y, px, py]) - f^{(1,0,0,0)}[x, y, px, py]
                                g^{(1,0,1,0)}[x, y, px, py] - g^{(0,0,0,1)}[x, y, px, py] f^{(1,1,0,0)}[x, y, px, py] +
                              f^{(0,0,0,1)}[x, y, px, py] g^{(1,1,0,0)}[x, y, px, py] - g^{(0,0,1,0)}[x, y, px, py]
                                f^{(2,0,0,0)}[x, y, px, py] + f^{(0,0,1,0)}[x, y, px, py] g^{(2,0,0,0)}[x, y, px, py])
In[a]:= ExpLieOperator[f_, n_: 10] := Function[g, ExpOperator[LieOperator[f], n][g]]
In[o]:= ExpLieOperator[f[x, y, px, py], 1][g[x, y, px, py]]
            g[x, y, px, py] + g^{(0,0,0,1)}[x, y, px, py] f^{(0,1,0,0)}[x, y, px, py] -
              f^{(0,0,0,1)}[x, y, px, py]g^{(0,1,0,0)}[x, y, px, py] +
              g^{(0,0,1,0)}[x,y,px,py] f^{(1,0,0,0)}[x,y,px,py] -
              f^{(0,0,1,0)}[x, y, px, py]g^{(1,0,0,0)}[x, y, px, py]
```

Chapter 2. Common Accelerator Elements

ln[*]:= Drift[L_, n_: 10] := Function[g, ExpLieOperator[-0.5 * L * px^2 - 0.5 * L * py^2][g]]

```
In[@]:= Simplify[Map[Drift[L], {x, y, px, py}]]
Out[0]=
       \{0. + 1. Lpx + x, 0. + 1. Lpy + y, 0. + px, 0. + py\}
 In[*]:= ThinQuad[kL_, n_:10] := Function[g, ExpLieOperator[-0.5 * kL * x^2 + 0.5 * kL * y^2][g]]
 In[0]:= Simplify[Map[ThinQuad[-1/f], {x, y, px, py}]]
Out[0]=
       \left\{0.+x,0.+y,0.+px+\frac{1.x}{f},0.+py-\frac{1.y}{f}\right\}
 In[o]:= Simplify[Map[ThinQuad[k], {x, y, px, py}]]
Out[0]=
       \{0. + x, 0. + y, 0. + px - 1. kx, 0. + py + 1. ky\}
 In[0]:= ThinSextupole[s , n :10] :=
        Function[g, ExpLieOperator[(1/3) *s*(x^3-3*x*y^2), n][g]]
 In[*]:= Map[ThinSextupole[s], {x, y, px, py}]
Out[0]=
       \{x, y, px + s (x^2 - y^2), py - 2 s x y\}
 ln[a] := GetNormalHamiltonian[kn, n] := (1/(1+n)) * ComplexExpand[Re[kn*(x+I*y)^(n+1)]]
 In[*]:= Expand[GetNormalHamiltonian[k, 2]]
Out[0]=
       \frac{k x^3}{2} - k x y^2
 In[\circ]:= GetSkewHamiltonian[k_, n_] := (1 / (1 + n)) * ComplexExpand[Re[I * k * (x + I * y) ^ (n + 1)]]
 In[*]:= Expand[GetSkewHamiltonian[k, 2]]
Out[0]=
       -k x^2 y + \frac{k y^3}{3}
 In[@]:= ThinNormalMultipole[ki_, i_, n_:10] :=
        Function[g, ExpLieOperator[GetNormalHamiltonian[ki, i], n][g]]
 In[@]:= Map[ThinNormalMultipole[k, 2], {x, y, px, py}]
Out[0]=
       \{x, y, px + k (x^2 - y^2), py - 2 k x y\}
 In[0]:= ThinSkewMultipole[ki_, i_, n_:10] :=
        Function[g, ExpLieOperator[GetSkewHamiltonian[ki, i], n][g]]
 In[@]:= Map[ThinSkewMultipole[k2s, 2], {x, y, px, py}]
       \{x, y, px - 2 k2s x y, py + k2s (-x^2 + y^2)\}
```

In[0]:=

Hamiltonians of some machine elements (3D)

In general for multipole n:

$$H_n = \frac{1}{1+n} \Re \left[(k_n + ik_n^{(s)})(x+iy)^{n+1} \right] + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

We get for some important types (normal components k_n only

In[0]:=

dipole:
$$H = -\frac{-x\delta}{\rho} + \frac{x^2}{2\rho^2} + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

quadrupole:
$$H = \frac{1}{2}k_1(x^2 - y^2) + \frac{p_x^2 + p_y^2}{2(1 + \delta)}$$
 Such a field (force) y we need for focusing

sextupole:
$$H = \frac{1}{3}k_2(x^3 - 3xy^2) + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

Hamiltonians of some machine elements (3D)

In general for multipole n:

$$H_n = \frac{1}{1+n} \Re \left[(k_n + ik_n^{(s)})(x+iy)^{n+1} \right] + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

We get for some important types (normal components k_n only

dipole:
$$H = -\frac{-x\delta}{\rho} + \frac{x^2}{2\rho^2} + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

quadrupole:
$$H = \frac{1}{2}k_1(x^2 - y^2) + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$
 Such a field (force) y we need for focusing

sextupole:
$$H = \frac{1}{3}k_2(x^3 - 3xy^2) + \frac{p_x^2 + p_y^2}{2(1+\delta)}$$

Chapter 3. Multiple elements and Map Composition

```
In[0]:= Map[Composition[Drift[L], Drift[L]], {x, y, px, py}]
Out[0]=
       \{0. + 2. Lpx + x, 0. + 2. Lpy + y, 0. + px, 0. + py\}
 In[0]:=
```

FODO Lattice

$$In[a]:=$$
 FODO[L_, K_, n_:10] := Function[g, Composition[ThinQuad[-0.5 * K], Drift[L], ThinQuad[K], Drift[L], ThinQuad[-0.5 * K]][g]]

$$0. + \left(2. L + \frac{1. L^2}{f}\right) px + \left(1 - \frac{0.5 L^2}{f^2}\right) x$$

In[*]:= Collect[Simplify[FODO[L, -1/f][y]], {x, y, px, py}]
Out[*]=

$$0. + \left(2. L - \frac{1. L^2}{f}\right) py + \left(1 - \frac{0.5 L^2}{f^2}\right) y$$

In[o]:= Collect[Simplify[FODO[L, -1/f][px]], {x, y, px, py}]

Out[0]=

$$0. + \left(1 - \frac{0.5 L^2}{f^2}\right) px + \left(-\frac{0.5 L}{f^2} + \frac{0.25 L^2}{f^3}\right) x$$

In[o]:= Collect[Simplify[FODO[L, -1/f][py]], {x, y, px, py}]

Out[0]=

$$0. + \left(1 - \frac{0.5 L^2}{f^2}\right) py + \left(-\frac{0.5 L}{f^2} - \frac{0.25 L^2}{f^3}\right) y$$