Bending stresses in beams

 determine stresses, strains and displacements in beams under (pure) bending loads

- upper side is under compression (thus under compressive stress) and lower side is under tension (tensile stress)
- since the stresses (more accurately strains) are continuous through the thickness, there must be a location (or plane) where direct stress is zero

Neutral axis

- the plane (perpendicular to the figure along the dashed line in the middle) in which direct stresses are zero, intersects any beam cross section along a horizontal line, the **neutral axis**
- the neutral axis is a convenient reference location when determining stresses under bending loads

Assumptions: Engineering bending theory

- plane sections (such as CD) remain plane after deformation (C'D' is still a straight line after deformation)
- plane sections remain perpendicular to the beam axis after deformation (angle AOC= angle A'O'C' = 90°)

Assumptions: Engineering Bending theory

- the first assumption, "plane sections remain plane" is valid for most beams (except some non-homogeneous beams etc.)
- the second assumption, "plane sections remain perpendicular to beam axis" is violated for deep beams (h large)

Assumptions: Engineering Bending theory

- linear elastic beam: $\sigma = E\varepsilon$
- beam is homogeneous

Sign convention

• a positive moment M causes tension on the outer (extreme) fibers of the beam that lie in the region where y is positive

- considering the deformations of a slice of beam of length dz:
 - locally the deformed beam shape can be approximated by a circular arc of radius R
 - then strains are linear in y (and zero at the neutral axis)

$$\varepsilon_z = -\frac{y}{R}$$

(note negative sign to conform to the sign convention) 7

 corresponding direct (or normal) stress is obtained by multiplying by Young's modulus (linear elastic assumption)

$$\sigma_z = -E \frac{y}{R}$$

• and since the beam is under a pure moment, the total force in the z direction is zero:

(2.0)
$$\int_{A} \sigma_{z} dA = 0 \Rightarrow -\frac{E}{R} \int_{A} y dA = 0$$

First moment of area is zero => neutral axis passes through the centroid of the cross-section g

if now the y axis is an axis of symmetry

 the origin of the coordinate system for determining stresses and strains coincides with the centroid of the beam cross section

• moment equilibrium requires that at any crosssection, the moment caused by σ_z is the result of the applied moment M:

$$M = \int_{A} \sigma_{z} y dA = -\frac{E}{R} \int_{A} y^{2} dA$$

$$M = -\frac{EI}{\sigma_{-}}$$
 $\sigma_{-} = -\frac{My}{\sigma_{-}}$

second moment of area I

h T=Sh

which material and shape should the Gossamer Albatross team select?

Problem definition and constraints:

- M=29430 Nm
- Airfoil shape limits 2R_o to 0.3m

- The **circular shape** has the same moment of inertia in all directions; thus it is good to use if there are concerns about add'l bending moments in the plane of the wing (fwd/aft)
- Assume t<<R_i, R_o; after solving the problem check if the resulting geometry violates this assumption
- From the σ_z equation, to minimize the applied stress for a given M, we must maximize I; so set R_o =max allowable value = 0.15m (but if R_o is large then y is also large which increases the normal stress; is this a good idea?)
- moment of inertia I about the neutral axis is negligible terms

$$I = \frac{\pi}{4} \left(R_o^4 - R_i^4 \right) = \frac{\pi}{4} \left(R_o^4 - \left(R_o - t \right)^4 \right) = \frac{\pi}{4} \left(R_o^4 - \left(R_o^4 - 4 R_o^3 t + 6 R_o^3 t + 6 R_o^4 \right)^4 + 4 R_o^4 \right)$$

• or, for small t: $I = \pi R_o^3 t$

$$\sigma_z = -\frac{My}{I}$$

therefore, the direct stress is:

$$\sigma_z = \frac{My}{\pi R_o^3 t}$$

• to design this beam, we need to find the highest σ_z stress and make sure it does not exceed the ultimate strength of the material selected; the highest stress is at $\pm y_{max} = \pm R_o$. Therefore,

$$\sigma_{z \max} = \frac{M}{\pi R_o^2 t}$$

$$\sigma_{z \max} = \frac{M}{\pi R_o^2 t}$$

• now failure occurs when $\sigma_{zmax} = \sigma_{ult}$:

$$\sigma_{ult} = \frac{M}{\pi R_o^2 t}$$

• in this equation, everything is known except for the thickness t. Solving for t,

$$t = \frac{M}{\pi \sigma_{ult} R_o^2}$$

• so if we pick a material (so σ_{ult} is known) we can find the min value of t that will just fail the beam under applied M

Basic structural material

Material	Ultimate tension strength (MPa)	Density (kg/m³)	Mat'l cost (€/kg)
Steel	1262	7822	4.4
(AM-350)			
Aluminium (7075-T6)	552	2801	6.6
Titanium	958	4438	22
(Ti-6Al-4V)			
Quasi-Isotropic composite	483	1609	176

$$t = \frac{M}{\pi \sigma_{ult} R_o^2}$$

Weight =
$$\rho AL = \rho 2\pi RtL = \rho 2\pi (R_o - t)tL \Rightarrow \frac{Weight}{L} = \rho 2\pi R_o t$$

or
$$\frac{Weight}{L} = 2\rho \frac{M}{\sigma_{ult} R_o}$$

Also
$$\frac{Cost}{L} = \frac{\text{ }}{kg} \frac{Weight}{L} = \frac{\text{ }}{kg} 2\rho \frac{M}{\sigma_{ult} R_o}$$

Material	thickness (mm)	Weight/L (kg/m)	Mat'l Cost/L (€/m)	
Steel	2.8	2.4	10.6	
Al	6.4	2.0	13.2	←-"sensible" thing to do
Ti	3.7	1.8	39.6	i i i i i g to do
QI composite	7.3	1.3	229	GA team 16

- a few final comments:
 - the calculated values of t are, indeed <<R_o so
 the original assumption was justified
 - the material cost is just that: material; it does not include fabrication (labor) which would make the composite (and Ti) look even worse
 - the final choice is based on a cost versus weight trade: which is most important and by how much?

Weight-Cost trades: Pareto analysis

$$R = \sqrt{a_1 W_n^2 + a_2 C_n^2}$$
 selection criterion: minimize R

Weight-Cost trades: Relative importance of Cost and Weight

"Running" example – Fuselage crosssection

Note: the bending moment M usually has opposite sign: the top is under tension and bottom under compression

Property	Value	
Diameter(m)	4.0	
M (MNm)	60	
V (kN)	660	
T (kNm)	30 20	

Concentrate on M first...

$$D = 4 \text{ m}$$

$$M = 60x10^6 Nm$$

Also, from previous example:

$$\sigma_z = -\frac{My}{I}$$

$$I = \pi R_o^3 t$$
 approx.

- Calculate maximum tensile and compressive stresses
- For symmetric cross-section, neutral axis is at the center
- Max (or min) stress occurs at locations of y_{max}:

$$\sigma_{\max} = -\sigma_{\min} = \frac{My_{\max}}{\pi R^3 t}$$

Required thickness to meet M load

$$\begin{array}{ccc}
& & D = 4 \text{ m} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

- Failure (yielding) will just start when the max or min applied stress equals the yield stress σ_v of the material
- For 7075-T6 AI, σ_y^t = 482.6 MPa and σ_y^c = 489.5 MPa
- Then for failure to occur:

$$\sigma_{y}^{t} = \frac{My_{\min}}{\pi R^{3}t} \text{ tensile failure at bottom}$$

$$\sigma_{y}^{c} = \frac{My_{\max}}{\pi R^{3}t} \text{ compressive failure at top}$$

$$My$$

$$\sigma_{y}^{c} = \frac{My_{\text{max}}}{\pi R^{3}t} \quad compressive \quad failure \quad at \quad top$$
• Solving for t: $t_{bot} = \frac{My_{\text{min}}}{\pi R^{3}\sigma_{y}^{t}}$ Substituting: $t_{bot} = \frac{60x10^{6}(2)}{\pi 2^{3}482.6x10^{6}} = 9.89mm$

$$t_{top} = \frac{My_{\text{max}}}{\pi R^{3}\sigma_{y}^{c}} \qquad t_{top} = \frac{60x10^{6}(2)}{\pi 2^{3}489.5x10^{6}} = 9.75mm \quad 22$$

Required thickness to meet M load

• setting the fuselage thickness equal to the highest of the two values gives the constant thickness solution with Mass/length:

$$\frac{M}{L} = \rho 2\pi R t_{\text{max}} = 2774(2)\pi(2)(0.00989) = 344kg / m$$

Required thickness to meet M load

- But if the stress is not constant around the circumference, keeping a constant thickness is inefficient!
- The thickness can be reduced where the stress is lower
- As a first step, calculate the thickness at every location around the circumference that would just fail the fuselage skin at that location

Required thickness- iteration 1

 use the bending stress equation with stress equal to the yield stress and back-solve for the skin thickness:

substituting values gives:

Optimum thickness distribution – iteration 1

• note that the max thickness<10mm which implies that the thin-walled assumption is valid (t² terms and higher order terms are negligible)

Optimum thickness distribution – iteration 2

$$t_{bot} = 9.89mm$$
$$t_{top} = 9.75mm$$

$$I = \pi R_o^3 t$$
 approx.

- However, to determine I we assumed that the thickness was constant
- If the thickness varies as shown above, the expression for I used is no longer valid.
- Approximate continuous thickness distribution with a piecewise constant distribution to make the calculation of I easier
- Update I and repeat process until convergence

Optimum thickness distribution - Iterations

iterations should lead to a converged value of I and distribution of t;
 note that the finer the segments of constant thickness are, the closer the design will be to the absolute minimum weight

28

Optimum thickness distribution - Iterations

 The requirement at each iteration is that the bending stress My/I in each segment equals the yield stress of the material (use the lower yield stress of the two):

$$\sigma_{y}^{c} = \frac{MR\sin\theta}{I}$$

$$\sigma_{y}^{t} = \frac{MR|\sin\theta|}{I}$$

$$I = 4 \int_{0}^{\pi/2} y^2 dA = 4 \int_{0}^{\pi/2} (R \sin \theta)^2 t(\theta) R d\theta \simeq 4 \sum_{i=1}^{\pi/2} R^3 \sin^2 \theta_i t_i \Delta \theta$$

- Pick $\Delta\theta$ (e.g. 5°); find cg of segment i; find θ_i ; pick t_i
- Calculate I, check if local stress = yield stress;
 adjust t_i and continue

Optimum thickness distribution - Iterations

- The iterations remove material from the center of the beam and put more material at the top and bottom
- To avoid having zero thickness over most of the beam and infinite thickness at top and bottom, impose the condition that t_i≥0.5mm (thinner fuselage skin has handling problems, cannot be riveted, etc.)

const. t equal to max t of 9.9mm

variable t matching bending stress distribution

piecewise const t trying to make each segment fail at same time

optimum solution => useless!!

compromise solution with 0.5 mm everywhere except top and bottom

not very good either

Cross-sectional area

Cross-sectional Area = weight/ρ per unit length=W/(ρL)

Unsymmetrical bending

- random asymmetric cross-section under moments
 Mx and My
- the beam bends in space about some axis having compression on one side and tension on the other; so there is a "neutral axis" on which direct stress is zero

Unsymmetrical bending strains and stresses

• because the origin is the centroid, the normal strain in the beam measured in that coordinate system is (as for symmetric bending)

$$\varepsilon_z = \frac{\xi}{R}$$
 (notice no minus sign here because of the sign convention!)

Unsymmetrical bending strains and stresses

and the corresponding normal stress is

$$\sigma_z = E \frac{\xi}{R}$$

 again, because the beam is under pure bending, there is no net axial force so

$$\int_{A} \sigma_{z} dA = 0 \Longrightarrow -\frac{E}{R} \int_{A} \xi dA = 0$$

 but this means that the moment of area of the beam crosssection about the neutral axis is zero => the neutral axis passes through the centroid of the cross-section

Unsymmetrical bending strains and stresses

Bending moments in unsymmetrical bending

 ξ =xsin α +ycos α

$$\sigma_z = E \frac{\xi}{R}$$

the normal stress is then given by:

$$\sigma_z = \frac{E}{R} (x \sin \alpha + y \cos \alpha)$$

this stress is caused by the moments Mx and My

$$M_{x} = \int_{A} \sigma_{z} y dA = \frac{E}{R} \left[\sin \alpha \int_{A} xy dA + \cos \alpha \int_{A} y^{2} dA \right]$$

• define $I_{xx} = \int_A y^2 dA$ $I_{xy} = \int_A xy dA$ Then:

$$M_{x} = \frac{E \sin \alpha}{R} I_{xy} + \frac{E \cos \alpha}{R} I_{xx}$$

Bending moments in unsymmetrical bending

• similarly,

$$M_y = \frac{E \sin \alpha}{R} I_{yy} + \frac{E \cos \alpha}{R} I_{xy}$$
 with $I_{yy} = \int_A x^2 dA$ (2.2)

• equations (2.1) and (2.2) form a system of two eqns in the two unknowns $E\sin\alpha/R$ and $E\cos\alpha/R$; Solving:

$$\frac{E \sin \alpha}{R} = \frac{1}{I_{xx}I_{yy} - I_{xy}^{2}} \left(-I_{xy}M_{x} + I_{xx}M_{y} \right)
\frac{E \cos \alpha}{R} = \frac{1}{I_{xx}I_{yy} - I_{xy}^{2}} \left(I_{yy}M_{x} - I_{xy}M_{y} \right)
37$$

Bending moments in unsymmetrical bending

dA
$$\frac{E \sin \alpha}{R} = \frac{1}{I_{xx}I_{yy} - I_{xy}^{2}} \left(-I_{xy}M_{x} + I_{xx}M_{y} \right)$$

$$\frac{E \cos \alpha}{R} = \frac{1}{I_{xx}I_{yy} - I_{xy}^{2}} \left(I_{yy}M_{x} - I_{xy}M_{y} \right)$$
(2.3)

$$\sigma_z = \frac{E}{R} (x \sin \alpha + y \cos \alpha)$$
 (2.4)

• using (2.3) to substitute in (2.4):

$$\sigma_{z} = \frac{I_{xx}M_{y} - I_{xy}M_{x}}{I_{xx}I_{yy} - I_{xy}^{2}} x + \frac{I_{yy}M_{x} - I_{xy}M_{y}}{I_{xx}I_{yy} - I_{xy}^{2}} y$$
(2.5)

• so, given Mx and My, the direct bending stress σ_z in a beam can be obtained from eq. (2.5)

Unsymmetrical bending: implications of equation (2.5)

$$\sigma_z = \frac{I_{xx}M_y - I_{xy}M_x}{I_{xx}I_{yy} - I_{xy}^2} x + \frac{I_{yy}M_x - I_{xy}M_y}{I_{xx}I_{yy} - I_{xy}^2} y$$
(2.5)

 suppose one of the axes of the coordinate system is an axis of symmetry (e.g <u>y axis</u>)

• then the x integration in the expression for I_{xy} :

$$I_{xy} = \int_A xydA$$
 is zero because: $\int_A xydA = \int y \left(\int_{lwr}^{upp} xdx \right) dy$ $\Rightarrow = \left[\frac{x^2}{2} \right]_{lwr \text{ lim}}^{uppr \text{ lim}} = 0$ and lower limits (although function of y) are equal due to symmetry 39

because upper

Unsymmetrical bending: implications of equation (2.5)

$$\sigma_z = \frac{I_{xx}M_y - I_{xy}M_x}{I_{xx}I_{yy} - I_{xy}^2} x + \frac{I_{yy}M_x - I_{xy}M_y}{I_{xx}I_{yy} - I_{xy}^2} y$$
 (2.5)

- therefore, if one (or both) axes of the coordinate system with origin at the centroid are axes of symmetry, I_{xv} =0
- and as a result,

$$\sigma_z = \frac{M_y x}{I_{yy}} + \frac{M_x y}{I_{xx}}$$
 (2.6)

• if either of the moments M_x or M_y are zero, we recover the basic beam bending equation from before:

$$\sigma_z = \frac{M_y x}{I_{yy}} \quad for \quad M_x = 0$$

$$\sigma_z = \frac{M_x y}{I_{yx}} \quad for \quad M_y = 0$$

$$40$$

Unsymmetrical bending: implications of equation (2.5)

$$\sigma_z = \frac{I_{xx}M_y - I_{xy}M_x}{I_{xx}I_{yy} - I_{xy}^2} x + \frac{I_{yy}M_x - I_{xy}M_y}{I_{xx}I_{yy} - I_{xy}^2} y$$
 (2.5)

In the general case where I_{xy}≠0, if only M_x (or only M_y) is applied, the direct stress is a function of both x and y

$$\sigma_{z} = \frac{-I_{xy}M_{x}}{I_{xx}I_{yy} - I_{xy}^{2}} x + \frac{I_{yy}M_{x}}{I_{xx}I_{yy} - I_{xy}^{2}} y \quad for \quad M_{y} = 0$$

$$\sigma_{z} = \frac{I_{xx}M_{y}}{I_{xx}I_{yy} - I_{xy}^{2}} x + \frac{-I_{xy}M_{y}}{I_{xx}I_{yy} - I_{xy}^{2}} y \quad for \quad M_{x} = 0$$

$$\text{Or:}$$

$$\sigma_{z} = \frac{\left(-I_{xy}X + I_{yy}y\right)M_{x}}{I_{xx}I_{yy} - I_{xy}^{2}} \quad for \quad M_{y} = 0$$

$$\sigma_{z} = \frac{\left(I_{xx}X - I_{xy}y\right)M_{y}}{I_{xx}I_{yy} - I_{xy}^{2}} \quad for \quad M_{x} = 0$$

$$(2.8)$$

Location of neutral axis

- as shown earlier, the neutral axis always passes through the centroid of the beam cross-section
- its orientation (angle α) is a function of applied loading and beam geometry

Location of neutral axis

• as shown earlier, the direct stress σ_z is zero at the neutral axis; using eq. (2.5):

$$0 = \frac{I_{xx}M_{y} - I_{xy}M_{x}'}{I_{xx}I_{yy} - I_{xy}^{2}} + \frac{I_{yy}M_{x} - I_{xy}M_{y}'}{I_{xx}I_{yy} - I_{xy}^{2}} y_{NA}$$
(2.5)

• from which we can solve for y_{NA}/x_{NA} :

$$\frac{y_{NA}}{x_{NA}} = -\frac{I_{xx}M_y - I_{xy}M_x}{I_{yy}M_x - I_{xy}M_y}$$

Location of neutral axis

• but y_{NA}/x_{NA} =-tan α (α is defined positive clockwise so when it is positive x and y are of opposite sign); So:

$$\tan \alpha = \frac{I_{xx}M_y - I_{xy}M_x}{I_{yy}M_x - I_{xy}M_y}$$
 defines the orientation of the neutral axis (2.9)

Load intensity, shear, moment relations

force equilibrium in y direction (and moment equilibrium):

$$S_{y} + \frac{\partial S_{y}}{\partial z} dz - S_{y} + pdz = 0 \Rightarrow p = -\frac{\partial S_{y}}{\partial z}$$

$$-\left(M_{x} + \frac{\partial M_{x}}{\partial z} dz\right) + M_{x} + \left(S_{y} + \frac{\partial S_{y}}{\partial z} dz\right) dz + pdz \frac{dz}{2} = 0 \Rightarrow S_{y} = \frac{\partial M_{x}}{\partial z}$$
(2.10)

Approximations for thin-walled sections

• recall the approximation(s) we made in calculating the moment of inertia of the tubular spar:

$$I = \frac{\pi}{4} \left(R_o^4 - R_i^4 \right) = \frac{\pi}{4} \left(R_o^4 - \left(R_o - t \right)^4 \right) = \frac{\pi}{4} \left(R_o^4 - \left(R_o^4 - 4 R_o^3 t + 6 R_o^2 t^2 - 4 R_o^4 t^3 + t^4 \right) \right)$$

Approximations for thin-walled sections

(revisited in a future lecture)

- in general, second and third powers of thickness are neglected for thin-walled sections
- for calculating the moment of inertia I_{xx} of the following section:

$$I_{xx} = \frac{tb_1^3}{12} + tb_1 \left(\frac{b_1}{2} - \frac{-y}{y}\right)^2 + \frac{(b_2 - t)t^3}{12} + (b_2 - t)\left(\frac{-y}{y} - \frac{t}{2}\right)^2$$
web flange

is approximated by

$$I_{xx} = \frac{tb_1^3}{12} + tb_1 \left(\frac{b_1}{2} - y\right)^2 + b_2 t y$$
 linear in t

• it is really up to the analyst to decide when the approximation is accurate enough

Thin-walled sections at an angle

$$I_{xx} = \int_{A} y^{2} dA$$
$$dA = dxdy = tds$$
$$y = s \sin \beta$$

Substituting:

$$I_{xx} = \int_{-a/2}^{a/2} ts^2 \sin^2 \beta ds = \frac{ts^3}{3} \Big|_{-a/2}^{a/2} \sin^2 \beta = \frac{ta^3 \sin^2 \beta}{12}$$

Example: Unsymmetrical bending

Beam inclined at an angle θ to the x axis. Applied moment M_x . Determine the "worst" possible value of θ i.e. the value leading to the highest (or lowest) possible stresses in the beam

Example: Unsymmetrical bending

• **important**: the x-axis is NOT the neutral axis. So simply calculating I_{xx} , I_{yy} , and I_{xy} about the xy coordinate system is not correct. The beam will actually bend about its neutral axis which has some unknown orientation

• one can either determine the neutral axis and proceed from there or, which takes less calculations, resolve the applied moment M_x to two components about the beam axes:

Example: Unsymmetrical bending

$$M_{x1} = M_x \cos \theta$$

$$M_{\rm vl} = M_{\rm x} \sin \theta$$

note that for θ between 0 and 90 degrees, M_{x1} and M_{y1} are both positive according to the sign convention (a positive moment causes tension in the outer fibers lying on the positive half-plane)

Example: Determination of moments of inertia and direct stress

• in the new coordinate system,

$$I_{x1x1} = \frac{at^3}{12}$$

$$I_{y1y1} = \frac{ta^3}{12}$$

$$I_{x1y1} = 0$$

• substituting in (2.5)

$$\sigma_z = \frac{I_{xx}M_y - I_{xy}M_x}{I_{xx}I_{yy} - I_{xy}} x + \frac{I_{yy}M_x - I_{xy}M_y}{I_{xx}I_{yy} - I_{xy}} y$$

leads to

$$\sigma_z = \frac{M_{y1}}{I_{y1y1}} x_1 + \frac{M_{x1}}{I_{x1x1}} y_1 = \frac{12M_x}{at} \left(\frac{x_1 \sin \theta}{a^2} + \frac{y_1 \cos \theta}{t^2} \right)$$

$$\sigma_{z}(a/2,t/2) = \frac{6M_{x}}{at} \left(\frac{\sin \theta}{a} + \frac{\cos \theta}{t} \right)$$

$$\sigma_{z}(a/2,-t/2) = \frac{6M_{x}}{at} \left(\frac{\sin \theta}{a} - \frac{\cos \theta}{t} \right)$$

$$\sigma_{z}(-a/2,t/2) = \frac{6M_{x}}{at} \left(-\frac{\sin \theta}{a} + \frac{\cos \theta}{t} \right)$$

$$\sigma_{z}(-a/2,-t/2) = \frac{6M_{x}}{at} \left(-\frac{\sin \theta}{a} - \frac{\cos \theta}{t} \right)$$

- for 0≤θ≤90, sine and cosine are positive; so most positive stress is the first and most negative is the fourth (which is the negative of the first)
- to find critical θ suffices to find which θ maximizes the first or minimizes the last

• therefore, for critical θ set

$$\frac{d}{d\theta} \left[\sigma_z \right]_{\text{max}} = 0$$

$$or$$

$$\frac{d}{d\theta} \left[\sigma_z \right]_{\text{min}} = 0$$

$$\sigma_{z}(a/2,t/2) = \frac{6M_{x}}{at} \left(\frac{\sin\theta}{a} + \frac{\cos\theta}{t}\right)$$

$$\sigma_{z}(a/2,-t/2) = \frac{6M_{x}}{at} \left(\frac{\sin\theta}{a} - \frac{\cos\theta}{t}\right)$$

$$\sigma_{z}(-a/2,t/2) = \frac{6M_{x}}{at} \left(-\frac{\sin\theta}{a} + \frac{\cos\theta}{t}\right)$$

$$\sigma_{z}(-a/2,-t/2) = \frac{6M_{x}}{at} \left(-\frac{\sin\theta}{a} - \frac{\cos\theta}{t}\right)$$

$$\tan\theta = \frac{t}{a}$$

Example: Implications of result

Note that the first two cases are essentially the same and they agree with intuition ("thin" beams bending about the long axis have high bending stresses)