第4章组合逻辑电路

第2讲:常用组合逻辑电路

4.3 若干常用的组合逻辑电路

§ 4.3.1 编码器 (Encoder)

编码:用二进制代码来表示某一信息(文字、数字、符号)的过程。

实现编码操作的电路称为编码器。

二进制编码器

用n位二进制代码对 $N=2^n$ 个一般信号进行编码的电路,叫做二进制编码器。例如n=3,可以对8个一般信号进行编码。

特点: 任何时刻只允许输入一个有效信号, 不允许同时 出现两个或两个以上的有效信号, 因而其输入是一组有约束 (互相排斥)的变量。

编码器的工作原理:

下图是三位二进制编码器的框图,它的输入是 $I_0\sim I_7$ 8个高电平信号,输出是三位二进制代码 F_2 、 F_1 、 F_0 。为此,又把它叫做8线—3线编码器。输出与输入的对应关系如表所示。

三位二进制8线—3线编码器框图

三位二进制编码器的真值表

			输	入				输出				
I ₀	<i>I</i> ₁	I ₂	<i>I</i> ₃	<i>I</i> ₄	I ₅	<i>I</i> ₆	I ₇	F ₂	F ₁	F_0		
1	0	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	0	0	1	0		
						0		0	1	1		
								1	0	0		
0	0	0	0	1	0	0	0	1	0	1		
0	0	0	0	0	0	1	0	1	1	0		
0	0	0	0	0	0	0	1	1	1	1		

由真值表求最小项之和,可得出编码器的输出函数为

$$F_{2} = \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}I_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}I_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}I_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}I_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{$$

I ₀	<i>I</i> ₁	<i>I</i> ₂	I ₃	I ₄	I ₅	<i>I</i> ₆	I ₇	F ₂	F ₁	F_0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$F_{2} = \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}I_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}I_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}I_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}I_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{4}\overline{I}_{5}\overline{I}_{6}\overline{I}_{7} + \overline{I}_{0}\overline{I}_{1}\overline{I}_{2}\overline{I}_{3}\overline{I}_{$$

因为任何时刻 $I_0\sim I_7$ 当中仅有一个取值为1,利用这个约束条件将上式化简,得到

$$\begin{cases} F_2 = I_4 + I_5 + I_6 + I_7 \\ F_1 = I_2 + I_3 + I_6 + I_7 \\ F_0 = I_1 + I_3 + I_5 + I_7 \end{cases}$$

$$\begin{cases} F_2 = I_4 + I_5 + I_6 + I_7 \\ F_1 = I_2 + I_3 + I_6 + I_7 \\ F_0 = I_1 + I_3 + I_5 + I_7 \end{cases}$$

的编码是隐含的,当 $I_1 \sim I_7$ 均为0时,电路的输出就是 I_0 的编码

优先编码器(Priority Encoder)

优先编码器常用于优先中断系统和键盘编码。 与普通编码器不同,优先编码器允许多个输入信 号同时有效,但它只对其中优先级别最高的有效 输入信号编码,对级别较低的输入信号不予理会。

常用的MSI优先编码器有10线—4线(如74LS147)、8线—3线(如74LS148)。

在优先编码器电路中,允许同时输入两个以

上编码信号。编码时只对优先权最高的进行红光展端

8线-3线优先编码器 74LS148逻辑图

选通输入端

		输				λ			7	输		Ш	
S'	I_7'	I_6'	I_5'	I_4'	I_3'	I_2'	I_1'	I_0'	<i>Y</i> ₂ '	Y_1'	Y_0'	Y_S'	Y'_{EX}
1	X	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	0	×	×	X	X	X	×	X	0		0	1	0
0	1	0	X	X	×	仟	由日	产表示	"电路	KT	1	1	0
0	1	1	0	X	X	作		己无编码	الملائبان	•	0	1	0
0	1	1	1	0	X	X	X	X	U	T	1		0
0	1	1	1	1	0	X	×	X	1	0		1	0
0	1	1	1	1	1	0	×	低电	平表	示"」	电路工	1	0
0	1	1	1	1	1	1	0	作,	且有	编码结	输入"	1	0
0	1	1	1	1	1	1	1	0	1	1	1	1	0

输入:逻辑0(低电平)有效

输出:逻辑0(低电平)有效

TI SN74LS148 8-Line-to-3-Line Encoder

148, 'LS148

Encode 8 Data Lines to 3-Line Binary(Octal)

Applications Include:

- n-Bit Encoding
- Code Converters and Generators

SN54148, SN54LS148...J OR W PACKAGE SN74148, SN74LS148...D, N, OR NS PACKAGE (TOP VIEW)

FUNCTION TABLE - '148, 'L\$148

				INPUTS	(C	UTPUT	S	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	X	X	X	X	X	X	X	X	Н	Н	Н	Н	Н
L	Н	H	H	H	H	H	H	H	н	H	H	н	L
L	X	X	X	X	X	X	X	L	L	L	L	L	Н
L	Х	X	X	X	X	X	L	Н	L	L	Н	L	Н
L	X	X	X	X	X	L	Н	H	L	Н	L	L	Н
L	X	X	X	X	L	H	Н	H	L	H	H	L	Н
L	X	X	X	L	Н	Н	Н	H	Н	L	L	L	Н
L	Х	X	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	X	L	Н	Н	Н	Н	Н	Н	Н	H	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = high logic level, L = low logic level, X = irrelevant

'148, 'LS148 logic diagram (positive logic)

例: 试用两片74LS148组成16线-4线优先编码器。

两片74LS148级联构成的16~4编码器真值简表

I ₁₅ ~ I ₈	I ₇ ~ I ₀	D	С	В	A
0 x x	XX	0	0	0	0
10	xx	0	1	1	1
11	0xx	1	0	0	0
11					
11	10	1	1	1	1

 $A'_{15} \sim A'_{8}$ 均无信号时,才允许对 $A'_{7} \sim A'_{0}$ 输入信号编码。

(1)片处于编码状态,(2)片被封锁。

(2)片处于编码状态

二一十进制编码器 (Decimal-to-BCD Encoder)

输入端10个,输出端4个,也称10线-4线编码器。

集成10线-4线优先编码器

输入输出均低电 平有效。

集成10线-4线优先编码器

FUNCTION TABLE - '147, 'L\$147

				INPUTS						OUTI	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	X	X	X	X	X	X	X	L	L	Н	Н	L
X	X	X	X	X	X	X	L	Н	L	Н	Н	Н
X	X	Х	X	X	Х	L	Н	Н	Н	L	L	L
Х	X	X	X	X	L	Н	Н	Н	Н	L	L	Н
Χ	X	X	X	L	Н	Н	Н	Н	Н	L	Н	L
Χ	X	X	L	Н	Н	Н	Н	Н	Н	L	Н	Н
X	X	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
Ĺ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = irrelevant

§ 4.3.2 译码器(Decoder)

译码:将二进制代码翻译成对应的输出信号的过程。译码是编码的逆过程。

实现译码操作的电路称为译码器。

常用的译码器有:二进制译码器、BCD 一十进制译码器、显示译码器三类。

一、二进制译码器(Basic Binary Decoder)

输入端: n 输出端: 2ⁿ

二进制译码器的输入端为n个,则输出端为2n个, 且对应于输入代码的每一种状态,2n个输出中只有 一个为1(或为0),其余全为0(或为1)。

2线—4线译码器74LS139(输出低电平有效)

真值表

画关于 Y_0' 的卡诺图

$$Y_0' = (A_1' \cdot A_0')' \quad Y_1' = (A_1' \cdot A_0)'$$

$$Y_2' = (A_1 \cdot A_0')' \quad Y_3' = (A_1 \cdot A_0)'$$

2-4译码器74LS139的内部线路

74LS139的功能表

$\overline{\mathbf{S}}$	A_1	A_0	$\overline{\mathbf{Y_0}}$	$\overline{\mathbf{Y}_{1}}$	$\overline{\mathbf{Y_2}}$	$\overline{\overline{\mathbf{Y}_{3}}}$
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

"-"表示低电平有效。

74LS139管脚图

一片139种含两个2-4译码器

A_2	A_1	A_0	Y_7	<i>Y</i> ₆	<i>Y</i> ₅	<i>Y</i> 4	<i>Y</i> ₃	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

输入: 3位二进制代码

输出: 8个互斥的信号(高电平有效)

	输		入				 箱	<u></u>				
使	能	光	<u>先</u>	择			ተ	וון		Ш		
S_1	$S_2' + S_3'$	A_2	A_1	A_0	Y_0'	<i>Y</i> ₁ '	<i>Y</i> ₂ '	<i>Y</i> ₃ '	Y_4'	Y_5'	Y_6'	Y_7'
0	×	X	×	×	1	1	1	1	1	1	1	1
×	1	×	X	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

M

当 $S_1=1$, $S_2'=0$, $S_3'=0$ (即S=1) 时,可得输出

$$Y_0' = (A_2' A_1' A_0')' = m_0'$$

$$Y_4' = (A_2 A_1' A_0')' = m_4'$$

$$Y_1' = (A_2' A_1' A_0)' = m_1'$$

$$Y_5' = (A_2 A_1' A_0)' = m_5'$$

$$Y_2' = (A_2' A_1 A_0')' = m_2'$$

$$Y_6' = (A_2 A_1 A_0')' = m_6'$$

$$Y_3' = (A_2' A_1 A_0)' = m_3'$$

$$Y_7' = (A_2 A_1 A_0)' = m_7'$$

例: 试用两片3线-8线译码器74HC138组成4线-16线译码器。

(1)片工作,(2)片禁止。若输入 $D_3D_2D_1D_0$ =0100时,译码器__(1)输出___11110111____。

J

(2)片工作,(1)片禁止。若输入D₃D₂D₁D₀=1101时, 译码器_(2)输出_11111011 。

应用: 利用线译码器分时将采样数据送入计算机。

工作原理: (以A₀A₁=00为例)

二、BCD一十进制译码器(BCD-to-Decimal Decoder)

输入端: 4 输出端: 10

BCD-十(二-十)进制译码器的输入是十进制数的4 位二进制编码(BCD码),分别用 A_3 、 A_2 、 A_1 、 A_0 表示;输出的是与10个十进制数字相对应的10个信号,用 Y_9 ~ Y_0 表示。

由于二一十进制译码器有4根输入线,10根输出线, 所以又称为4线-10线译码器。

集成8421 BCD码译码器74LS42

三、显示译码器

用来驱动各种显示器件,从而将用二进制代码表示的数字、文字、符号翻译成人们习惯的 形式直观地显示出来的电路,称为显示译码器。

半导体数码管

显示器件: 常用的是七段显示器件

Ya-Yg: 控制信号 高电平时,对应的LED亮 低电平时,对应的LED灭

BCD-七段显示译码器(BCD-to-7-segment decoder)

A₃-A₀: 输入数据

十进制数	$A_3A_2A_1A_0$	Y	Y	b \	/ c \	Y d	Y _e	$\mathbf{Y}_{f} \mathbf{Y}_{g}$	显示字形
0	0000	1	1	1	1	1	1	0	0
1	0001	0	1	1	0	0	0	0	1
2	0010	1	1	0	1	1	0	1	2
3	0011	1	1	1	1	0	0	1	3
4	0100	0	1	1	0	0	1	1	4
5	0101	1	0	1	1	0	1	1	5
6	0110	0	0	1	1	1	1	1	6
7	0111	1	1	1	0	0	0	0	7
8	1000	1	1	1	1	1	1	1	8
9	1001	1	1	1	0	0	1	1	9

先设计输出Ya的逻辑表示式及电路图

(Ya) A_1A_0 A_3A_2 $00 01 11 10$								
A_3A_2	00	01	11	10				
00	1	0	1	1				
01	0	1	1	0				
11	0	1	0	0				
10	1	1	0	0				

$$Y_a = (A_3' A_1' A_1' A_0 + A_3 A_1 + A_2 A_0')'$$

七段显示译码器7448引脚排列图

图4.3.18 用7448驱动BS201的连接方法

RBI和RBO配合使用,可使多位数字显示时的最高位及小数点后最低位的0不显示

67.9

§ 4.3.3 数据分配器与数据选择器

一、数据分配器

定义:将公共数据线上的信号根据需要送到多个不同通道上去的逻辑电路。

输入端:1个

输出端:2n个

框图:

数据分配器示意图

由74HC138构成的1路-8路数据分配器

定义:根据需要将多路信号中选择一路送到公共数据线上的逻辑电路(又称多路开关).

输入端: 2n个

输出端: 1个

2选1数据选择器

$$F = A'D_0 + AD_1 \qquad A \qquad F$$

$$0 \qquad D_0$$

$$1 \qquad D_1$$

集成化

$$D_0$$
 D_1
 A
 F

2、4选1数据选择器

由地址码决定从 4 路输入中 选择哪 1 路输出。

即:

$$Y = A_1' A_0' D_0 + A_1' A_0 D_1 + A_1 A_0' D_2 + A_1 A_0 D_3$$

集成电路数据选择器

型号:74HC153 双4选1数据选择器

 新	输出		
A_1	A_{θ}	S_1'	Y_1
φ	ф	1	0
0	0	0	D_{10}
0	1	0	D_{11}
1	0	0	D_{12}
1	1	0	D_{13}

$$Y_{1} = [(A'_{1}A'_{0})D_{10} + (A'_{1}A_{0})D_{11} + (A_{1}A'_{0})D_{12} + (A_{1}A_{0})D_{13}] \cdot S_{1}$$

$$Y_{2} = [(A'_{1}A'_{0})D_{20} + (A'_{1}A_{0})D_{21} + (A_{1}A'_{0})D_{22} + (A_{1}A_{0})D_{23}] \cdot S_{2}$$

集成8选 1数据选 择器 74HC151

S'=1 时,选择器被禁止,无论地址码是什么,Y总是等于 0

$$S' = 0$$

$$Y = (A'_2 A'_1 A'_0) D_0 + (A'_2 A'_1 A_0) D_1 + (A'_2 A_1 A'_0) D_2 + (A'_2 A_1 A_0) D_3$$
$$+ (A_2 A'_1 A'_0) D_4 + (A_2 A'_1 A_0) D_5 + (A_2 A_1 A'_0) D_6 + (A_2 A_1 A_0) D_7$$

H C **5** 的真值表

		Ţ	入		输	出
D	A_2	A_1	A_0	S'	Y	<i>Y'</i>
×	×	×	×	1	0	1
D_0	0	0	0	O	D_0	D_0'
D_1	0	0	1	0	D_1	D_1'
D_2	0	1	0	0	D_2	D_2'
D_3	0	1	1	0	D_3	D_3'
D_4	1	0	0	0	D_4	D_4^{\prime}
D_5	1	0	1	0	D_5	D_5'
D_6	1	1	0	O	D_6	D_6'
D_7	1	1	1	O	D_7	D_7'

扩展:

例4.3.4

用双4选1数 据选择器构 成8选1数据 选择器.

 A_2 =1时,下边一半数据选择器工作,数据 D_4 ~ D_7 选择一路输出。

2片8选1数据选择器74LS151构成16选1的数据选择器

$$A_3$$
=0时, $S_1'=0$ 、 $S_2'=1$,片(2)禁止、片(1)工作 A_3 =1时, $S_1'=1$ 、 $S_2'=0$,片(1)禁止、片(2)工作

М

数据分配器和数据选择器一起构成数据分时传送系统

§ 4.3.4 加法器

举例: A=1101, B=1001, 计算A+B

$$\begin{array}{c} 1 & 1 & 0 & 1 \\ +_1 & l_0 & l_0 & l_1 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \end{array}$$

加法运算的基本规则:

- (1) 逢二进一。
- (2) 最低位是两个数最低位的相加,不需 考虑进位。
- (3) 其余各位都是三个数相加,包括加数、 被加数和低位来的进位。
- (4) 任何位相加都产生两个结果:本位和、 向高位的进位。

1位加法器

(1) 半加器:半加运算不考虑从低位来的进位 A----加数;B----被加数;S----本位和;Co---进位。 真值表

A	В	C o	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A'B + AB' = A \oplus B$$

$$Co = AB$$

逻辑图

逻辑符号

(2) 全加器:

相加过程中,既考虑加数、被加数又考虑低位的进位。

A---加数; B---被加数; C_{i} ---低位的进位;

S---本位和; Co---进位。

逻辑状态表见下页

C i	A	В	S	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = C'_i A'B + C'_i AB' + C_i A'B' + C_i AB = C_i \oplus A \oplus B$$

$$C_o = AB + C_i A + C_i B = AB + C_i (A \oplus B)$$

课本上采用了圈0的方法

(a) 双全加器**74LS183**

多位加法器

(1) 串行进位加法器

低位全加器进位输出 ↓ 高位全加器进位输入

如图:用全加器实现4位二进制数相加。

(2) 超前进位加法器

例4.3.7

解: BCD码+0011=余3码

设输入**8421**码用变量**DCBA**表示,输出余三码用变量**Y**₃**Y**₂**Y**₁**Y**₀表示。则有

$$Y_3Y_2Y_1Y_0 = DCBA+0011$$

用一片74LS283将余三码转换成8421BCD码。

设输入余三码用变量DCBA表示,输出8421码用变量 $Y_3Y_2Y_1Y_0$ 表示。则有

$$Y_3Y_2Y_1Y_0 = DCBA + [0011]_{\nmid h}$$

= $DCBA + 1101$

全减器真值表

A---被减数;

B---减数;

C---低位的借位;

D---本位差;

J---向高位的借位。

A	В	C	D	J
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

§ 4.3.5 数值比较器

定义:对两数A、B(可以是一位,也可是多位)进行大小比较的逻辑电路。比较的结果有A>B、A<B、A=B三种结果。

一、1位数值比较器

设A>B时 $Y_1=1$; A<B时 $Y_2=1$; A=B时 $Y_3=1$ 。 得1位数值比较器的真值表。

A	В	$Y_1(A>B)$	$Y_2(A \leq B)$	$Y_3(A=B)$
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	1	0	0	1

$$Y_1 = A \cdot (AB)' = A \cdot (A' + B') = AB'$$

 $Y_2 = B \cdot (AB)' = B \cdot (A' + B') = A'B$
 $Y_3 = (AB' + A'B)' = AB + A'B'$

二、多位数值比较器

比较原则:

- 1. 先从高位比起,高位大的数值一定大。
- 2. 若高位相等,则再比较低位数,最终结果由低位的比较结果决定。

请根据这个原则设计一下: 每位的比较应包括几个输入、输出?

A、B两个多位数的比较:

每个比较环节的功能表

输入				输出			
\mathbf{A}_{i}	\mathbf{B}_{i}	$(A>B)_{i-1}$	$(\mathbf{A}=\mathbf{B})_{i-1}$	$(A \leq B)_{i-1}$	$(A>B)_i$	$(A=B)_i$	$(A \leq B)_i$
1	0	ф	ф	ф	1	0	0
0	1	ф	ф	ф	0	0	1
A _i =B _i 输出 (A>B) _i 、 (A=B) _i 和 (A <b)<sub>i 分别等于(A>B (A=B)_{i-1}和(A<b)<sub>i-1</b)<sub></b)<sub>						A>B) _{i-1} \	

四位集成电路比较器74LS85

Comparing Inputs			Cascading Inputs			Outputs			
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	X	Х	X	X	X	X	Н	L	Ľ
A3 < B3	X	X	X	X	X	X	L	Н	L
A3 = B3	A2 > B2	X	X	X	X	X	H	L	L
A3 = B3	A2 < B2	X	X	X	X	X	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	X	X	X	Н	L	
A3 = B3	A2 = B2	A1 < B1	X	X	X	X	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	X	X	X	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	X	X	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	Х	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	Н	Н	L

四位集成电路比较器74LS85

例 试用两片74LS85组成一个8位数值比较器。

例: 七位二进制数比较器。(采用两片74LS85) **A>B A>B** (A>B) (A>B) L (A=B) L $74LS85 \quad (A=B)$ 74LS85 A=BA=B(A<B) (A<B) A < BA < B B_6 B_5 B_4 B_3 B_2 B_1 B_0

M

例:设计三个四位数的比较器,可以对A、B、C进行比较,能判断:

- (1) 三个数是否相等。
- (2) 若不相等,A数是最大还是最小。

比较原则:

先将A与B比较,然后A与C比较,若A=BA=C,则A=B=C;若A>BA>C,则A最大;若A<BA<C,则A最小。

可以用两片74LS85实现。

