Lista de Exercícios

Sistemas de Numeração e Códigos Binários

1) Indique o MSB e o LSB nos seguintes números e converta cada um no seu equivalente decimal:

a) 101₂

b) 110111₂

c) **1**10111**0**₂

d) 1011,101₂

e) **1**101110,10**1**₂

f) 10011₂

g) 111011₂

2) Converta o número decimal 647,75 no seu equivalente para cada uma das seguintes bases:

- a) Binário =
- b) Octal =
- c) Hexadecimal =

3) Converta o número binário 1111001010,01 em decimal, octal, hexadecimal e BCD:

4) Converta cada um dos seguintes números no equivalente decimal e binário:

- a) 375,6₈
- b) 3AD,8₁₆
- c) $12,35_8$
- d) 4D6,C1₁₆
- b) 328,31₁₀

5) Converta os seguintes números para binário:

- a) 55
- b) 102
- c) 45,675
- c) -88
- d) 1026
- e) 12,36
- f) 12,3698855
- g) -852
- h) 1258426622

a) 55 b) -88
 Qual é o número decimal equivalente para cada um dos seguintes números binários com sinal: a. 11011100 representado em complemento de 1 b. 11101000 representado em complemento de 2
8) Escreva a representação em BCD dos seguintes números decimais:
a) 473 b) 19
8) Qual o número decimal cuja representação em BCD É 100110000000
Aritmética Binária
1) Efetue as seguintes operações considerando que os operadores são números binários sem sinal
a) 1011,01 + 10,011 b) 11001,1 +0,0001 c) 1011.10 - 10.01 d) 1101 - 10 e) 101,1 x 11,11 f) 11101,01 x 1,11 g) 10110 / 10
2) Converter os seguintes números para decimal a) $347_8 =$ b) $2201_3 =$ c) AF2 ₁₆ =
3) Converter de binário para hexadecimal a) 0101101011111011 b) 10010001110000101 c) 1111000011110000 d) 010101011010101
4) Converter de hexadecimal para binário a) FFFF = c) 55AA = b) 01AC = d) 3210 =

6) Exprima cada um dos seguintes números decimais com sinal como binários de 8 bits usando as representações sinal e módulo e complemento de 1:

Álgebra de Boole

- 1) Realizar as seguintes operações:
 - a) 1 + 0 =
 - b) 1 + 1 =
 - c) $1 \times 0 =$
 - d) $1 \times 1 =$
 - e) A + 0 =
 - $f)^{'}$ A + 1=
 - g) A x 1=
 - h) $A \times 0=$
 - i) A + A =
 - j) A x A=
 - k) $A + \overline{A} =$
 - I) $A \times \overline{A} =$
 - \dot{m}) A + AB =
 - n) A(A + B) =
 - o) A+AB+B =
- 2) Utilizando propriedades e teoremas da Álgebra de Boole, comprove a seguinte simplificação:

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} \Rightarrow F = \overline{AC} + \overline{BC}$$

- 3) Aplicar as leis de DeMorgan nos seguintes casos:
- $\overline{A(B+C)}$
- 2) $\overline{AB + CD} \times E$
- 3) $\overline{(AB+CD)\times E}$
- 4) Obter o valor das seguintes funções booleanas, em todos os possíveis casos.
- 1) F = A + B
- 2) $F = A + \overline{B}$
- 3) $F = \overline{A} \times B + C$

5) Dadas as seguintes funções booleanas obter sua tabela verdade correspondente

1)
$$F = A + B$$

2)
$$G = AB + \overline{A}B$$

3)
$$H = X \times Y \times \overline{Z} + \overline{X} \times \overline{Y} \times Z$$

$$_{4)} S = E_3 E_2 E_1 E_0 + E_3 \overline{E_2}$$

6) Escreva a expressão booleana correspondente ao seguinte circuito lógico:

7) Recorrendo aos teoremas da Álgebra de Boole simplifique, tanto quanto possível, as seguintes expressões lógicas:

1)
$$F = \overline{X}Z + \overline{X}\overline{Z} + XY$$

₂₎
$$F = (X + \overline{Y} + X\overline{Y})(XY + \overline{X}Z + YZ)$$