ISOMORPHISMS IN A CATEGORY OF PROPOSITIONS AND PROOFS

Greg Restall*

Philosophy Department, The University of Melbourne

restall@unimelb.edu.au

MELBOURNE LOGIC SEMINAR * 2 MARCH 2018

I aim to show how a category of propositions and *classical* proofs can give rise to finely grained hyperintensional notions of sameness of content. One notion is *very* finely grained (distinguishing p and $p \land p$), others less so. I show that one notion amounts to equivalence in Angell's logic of analytic containment [1].

THE CATEGORY OF CLASSICAL PROOFS

Four different derivations, and two proofs.

$$\frac{\frac{p \succ p}{p \land q \succ p} \land^{L}}{p \land q \succ p \lor q} \land^{R} \approx \frac{\frac{p \land q}{p}}{p \lor q} \approx \frac{\frac{p \succ p}{p \succ p \lor q} \lor^{R}}{\frac{p \succ p \lor q}{p \land q \succ p \lor q} \land^{L}}$$

$$\frac{\frac{q \succ q}{p \land q \succ q} \land^{L}}{p \land q \succ p \lor q} \land^{R} \approx \frac{\frac{p \land q}{q}}{\frac{q \succ p \lor q}{p \land q \succ p \lor q}} \land^{R}$$

MOTIVATING IDEA: Proof terms are an invariant for derivations under rule permutation. δ_1 and δ_2 have the same term iff some permutation sends δ_1 to δ_2 .

A proof term for $\Sigma \succ \Delta$ encodes the flow of information in a proof of $\Sigma \succ \Delta$. They can be represented as directed graphs on sequents [2].

$$\begin{array}{c}
p \wedge (q \vee r) \\
(p \wedge q) \vee (p \wedge r)
\end{array}$$

$$\begin{array}{c}
p \nearrow p & q \nearrow q \\
\hline
p, q \nearrow p \wedge q & p \nearrow p & r \nearrow r \\
\hline
p, q \vee r \nearrow p \wedge q, p \wedge r
\end{array}$$

$$\begin{array}{c}
p, q \vee r \nearrow (p \wedge q) \vee (p \wedge r) \\
\hline
p, q \vee r \nearrow (p \wedge q) \vee (p \wedge r) \\
\hline
p \wedge (q \vee r) \nearrow (p \wedge q) \vee (p \wedge r)
\end{array}$$

More examples:

Links wholly internal to a premise or a conclusion are called cups () and caps ().

FACTS: Not every directed graph on occurrences of atoms in a sequent is a proof term. \P They typecheck. [An occurrence of p is linked only with an occurrence of p.] \P They respect polarities. [Positive occurrences of atoms in premises and negative occurrences of atoms in conclusions are inputs. Negative occurrences of atoms in premises and positive occurrences of atoms in conclusions are outputs.] \P They must satisfy an "enough connections" condition, amounting to a non-emptiness under every switching. [e.g. the obvious linking between premise $p \vee q$ and conclusion $p \wedge q$ is not connected enough to be a proof term.]

Cut is chaining of proof terms, composition of graphs.

Cut elimination is *confluent* and *terminating*. [So it can be understood as a kind of *evaluation*.] ¶ Cut elimination for proof terms is *local*. [So it is easily made parallel.]

 ${\mathfrak C}$ is the Category of Classical Proofs. OBJECTS: Formulas — A, B, etc. ARROWS: Cut-Free Proof Terms — $\pi: A \rightarrow B$. Composition: Composition of derivations with the elimination of Cut — If $\pi: A \rightarrow B$ and $\tau: B \rightarrow C$ then $\tau \circ \pi: A \rightarrow C$. IDENTITY: Canonical identity proofs — $\operatorname{Id}(A): A \rightarrow A$.

$$\frac{p \succ p}{p - p \succ} \xrightarrow{R} \frac{q \rightleftharpoons q}{q \supset p, q \succ p} \supset L$$

$$\frac{p \succ p}{\neg p \succ} \xrightarrow{R} \xrightarrow{R} \frac{q \rightleftharpoons p \succ p}{q \supset p, q \succ} \supset R$$

$$\frac{p \succ p}{\neg p \succ} \xrightarrow{R} \xrightarrow{R} \frac{q \rightleftharpoons q}{q \supset p, q \succ} \xrightarrow{R} \xrightarrow{R} \frac{p \succ}{\neg p \lor (q \supset p)}$$

$$\frac{p \succ p}{\neg p \succ} \xrightarrow{R} \xrightarrow{R} \frac{q \rightleftharpoons q}{q \supset p, q \succ} \xrightarrow{R} \xrightarrow{P} V (q \supset p)$$

$$\frac{p \succ p}{\neg p \succ} \xrightarrow{R} \xrightarrow{R} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{P} V (q \supset p)$$

The category $\mathfrak C$ is *symmetric monoidal* and *star autonomous*, but not *cartesian*, with structural *monoids* and *comonoids*, and is enriched in *SLat* (the category of semilattices). Being enriched in *SLat* means that proofs terms come ordered by \subseteq , and compose under \cup , and these interact sensibly with composition.

$$\begin{array}{cccc} \pi \subseteq \pi' & \Rightarrow & \pi \circ \tau \subseteq \pi' \circ \tau \\ \tau \subseteq \tau' & \Rightarrow & \pi \circ \tau \subseteq \pi \circ \tau' \\ \pi \circ (\tau \cup \tau') & = & (\pi \circ \tau) \cup (\pi \circ \tau') \\ (\pi \cup \pi') \circ \tau & = & (\pi \circ \tau) \cup (\pi' \circ \tau) \end{array}$$

& is just classical propositional logic, in a categorical setting. (The sequent calculus is playing no essential role here. You can define proof terms on other proof systems, e.g. natural deduction, Hilbert proofs, tableaux, resolution.)

^{*}Thanks to Rohan French, Dave Ripley, and Shawn Standefer for helpful conversations on this material. ¶ This research is supported by the Australian Research Council, through Grant DP150103801. ¶ Resources available at http://consequently.org/presentation/2018/logicmelb-isomorphisms/.

2 ISOMORPHISMS

 $f: A \to B$ is an *isomorphism* in a category iff it has an *inverse* $g: B \to A$, where $g \circ f = id_A: A \to A$ and $f \circ g = id_B: B \to B$. (If g and g' are inverses, $g = id_A \circ g = (g' \circ f) \circ g = g' \circ (f \circ g) = g' \circ id_B = g'$, so any inverse is unique. We can call it f^{-1} .)

If A and B are isomorphic in a category C, then what we can do with A (in C) we can do with B, too.

If A and B are isomorphic in \mathfrak{C} , then they agree not only on *provability*, but also, on *proofs*. The distinctions drawn when you analyse how something is *proved* (from premises), are not far from what you want to understand when you ask how something is *made true*.

Isomorphisms in \mathfrak{C} : $\mathfrak{p} \wedge \mathfrak{q} \cong \mathfrak{q} \wedge \mathfrak{p}$; $\neg(\mathfrak{p} \wedge \mathfrak{q}) \cong \neg \mathfrak{p} \vee \neg \mathfrak{q}$

Non-isomorphisms in \mathfrak{C} : $p \land (q \lor \neg q) \not\cong p$; $p \land p \not\cong p$; $p \land (q \lor r) \not\cong (p \land q) \lor (p \land r)$; $p \land (p \lor q) \not\cong p \lor (p \land q)$

$$\begin{array}{ccc}
p \wedge (q \vee \neg q) & p \wedge (q \vee \neg q) \\
p & & \\
p \wedge (q \vee \neg q) & p \wedge (q \vee \neg q)
\end{array}$$

Occurrence Polarity Condition: If A is isomorphic to B in $\mathfrak C$ then each variable occurs positively [negatively] in A exactly as many times as it occurs positively [negatively] in B. (This condition is necessary, not sufficient: $p \land (p \lor q) \not\cong p \lor (p \land q)$.)

A is isomorphic to B iff A and B are equivalent in the following calculus:

$$\begin{array}{lll} A \wedge B \leftrightarrow B \wedge A, & A \wedge (B \wedge C) \leftrightarrow (A \wedge B) \wedge C. \\ A \vee B \leftrightarrow B \vee A, & A \vee (B \vee C) \leftrightarrow (A \vee B) \vee C. \\ \neg (A \vee B) \leftrightarrow \neg A \vee \neg B, & \neg (A \wedge B) \leftrightarrow \neg A \vee \neg B. \\ \neg \neg A \leftrightarrow A. & A \leftrightarrow B \Rightarrow C(A) \leftrightarrow C(B). \end{array}$$

(This allows for a *negation normal form*, but not DNF or CNF.) *Proof Sketch* (Došen and Petrić, 2012 [3]).

If $A \leftrightarrow B$ holds in the calculus, A and B are isomorphic. \P A is isomorphic to B iff there are diversified A' and B' where A' and B' are isomorphic, and $A = \sigma A'$ and $B = \sigma B'$ for some substitution σ . \P A is isomorphic to B iff their negation normal forms are isomorphic. (If A is diversified, so is its negation normal form.) \P If A and B are diversified, isomorphic, and in negation normal form, if A m is a conjunction in A (A m in interals), a substitution argument (substituting A m and A for the other atoms) shows that A m and A m must be conjunctively joined in A m in A and A m in the syntactic calculus for isomorphic formulas.

Isomorphism is a very tight constraint: If A and B are isomorphic, they can play essentially the same role in proof. \P Replacing A by B in a proof (as a premise or conclusion) not only gives you something that is also a proof (mere logical equivalence would do that), but it gives you a proof which is essentially the same. \P Not even A and \P A are equivalent in this sense. \P Yet, A and A \P seem to have identical subject matter (insofar as we understand that notion). \P Can we use the fine-grained tools of proof theoretical analysis to generalise this notion of subject matter to arbitrary statements?

3 MORE PROOFS FROM A TO A

$$Id(p \lor (p \land \neg p)) \qquad \begin{matrix} p \lor (p \land \neg p) \\ \downarrow & \downarrow & \uparrow \\ p \lor (p \land \neg p) \end{matrix}$$

In Id(A), each occurrence of an atom in the premise is linked with every its corresponding occurrence of in the conclusion. Different occurrences of atoms in A are treated differently.

$$Mx(p \lor (p \land \neg p)) \qquad \bigvee_{p \lor (p \land \neg p)} \bigvee_{p \lor (p \land \neg p)} \uparrow$$

In Hz(A), each positive [negative] occurrence of an atom in the premise is linked with every positive [negative] occurrence in the conclusion. We treat occurrences of an atom in A—with the same polarity—equally.

$$Hz(p \lor (p \land \neg p)) \qquad \begin{array}{c} p \lor (p \land \neg p) \\ p \lor (p \land \neg p) \end{array}$$

In Mx(A), each syntactically possible linking is included. We treat all occurrences of an atom in A equally.

Note: Hz(A) is Mx(A) with the caps and cups removed.

Let's look at relations like isomorphism, but which erase distinctions, up to Hz or Mx.

Let's say that A and B Hz-MATCH, when there are proofs $\pi: A \succ B$ and $\pi': B \succ A$ where $\pi' \circ \pi = Hz(A)$ and $\pi \circ \pi' = Hz(B)$. We write " \approx_{Hz} " for the Hz-matching relation, and we write " $\pi, \pi': A \approx_{Hz} B$ " to say that $\pi: A \succ B$ and $\pi': B \succ A$ define a Hz-match between A and B.

Let's say that A and B Mx-MATCH, when there are proofs $\pi:A \succ B$ and $\pi':B \succ A$ where $\tau \circ \pi = Mx(A)$ and $\pi \circ \pi' = Mx(B)$. We write " \approx_{Mx} " for the Mx-matching relation, and we write " $\pi,\pi':A \approx_{Mx} B$ " to say that $\pi:A \succ B$ and $\pi':B \succ A$ define a Mx-match between A and B.

Isomorphism \subseteq Hz-Matching: If $\pi: A \succ B$ and $\pi^{-1}: B \succ A$, then consider $\pi' = Hz(B) \circ \pi \circ Hz(A)$ and $\tau' = Hz(A) \circ \pi^{-1} \circ Hz(B)$. These satisfy the Hz-matching criteria, $\tau' \circ \pi' = Hz(A)$ and $\pi' \circ \tau' = Hz(B)$.

Hz-Matching \subseteq Mx-Matching: If $\pi, \pi': A \approx_{Hz} B$, then consider $\tau = Mx(B) \circ \pi \circ Mx(A)$ and $\tau' = Mx(A) \circ \pi' \circ Mx(B)$. These satisfy the Mx-matching criteria, $\tau' \circ \pi' = Mx(A)$ and $\pi' \circ \tau' = Mx(B)$.

 $\label{eq:matching} \begin{array}{l} \textit{Mx-Matching} \subseteq \textit{Logical Equivalence: If } A \approx_{Mx} B \text{ then there are} \\ \textit{proofs } \pi \colon A \succ B \text{ and } \tau \colon B \succ A. \end{array}$

Matching Relations are Equivalences: Reflexive Hz(A), Hz(A): $A \approx_{Hz} A$. Mx(A), Mx(A): $A \approx_{Mx} A$. \P symmetric If $\pi, \pi': A \approx_{Hz} B$, then $\pi', \pi: B \approx_{Hz} A$. If $\pi, \pi': A \approx_{Mx} B$, then $\pi', \pi: B \approx_{Mx} A$. \P transitive If $\pi, \pi': A \approx_{Hz} B$ and $\pi, \pi': B \approx_{Hz} C$, then $(\tau \circ \pi), (\pi' \circ \tau'): A \approx_{Hz} C$. If $\pi, \pi': A \approx_{Mx} B$ and $\pi, \pi': B \approx_{Mx} C$, then $(\tau \circ \pi), (\pi' \circ \tau'): A \approx_{Mx} C$.

Matchings: $p \lor p \approx_{Hz} p \approx_{Hz} p \land p$; $p \land (q \lor r) \approx_{Hz} (p \land q) \lor (p \land r)$.

Mx-Matching \subset Logical Equivalence: If an atom p occurs positively [negatively] in A but not in B, then A and B do not Mx-match.

PROOF: Mx(A): A > A contains the link from [to] that occurrence of p in the premise A to [from] its corresponding occurrence in the conclusion A. \P No proof from A to B contains a link from [to] that occurrence to anything in B (since there is no positive [negative] occurrence in B at all). \P So, in the composition proof

from A to A, there is no link from [to] the premise occurrence to [from] the conclusion occurrence. No proof from A to B and back can recreate Mx(A).

COROLLARY: $p \not\approx_{Mx} p \land (q \lor \neg q); p \land \neg p \not\approx_{Mx} q \land \neg q.$ Hz-matching \subset Mx-matching: $(p \land \neg p) \land (q \lor \neg q) \approx_{Mx} (p \lor \neg p) \land (q \land \neg q).$

However, $(p \land \neg p) \land (q \lor \neg q) \not\approx_{Hz} (p \lor \neg p) \land (q \land \neg q)$. So:

 $Isomorphism \subset Hz$ -Matching $\subset Mx$ -Matching $\subset Logical Equivalence$

4 MATCHING & LOGICS OF ANALYTIC CONTAINMENT

Angell's Logic of Analytic Containment: [AC1] $A \leftrightarrow \neg \neg A$ [AC2] $A \leftrightarrow (A \land A)$ [AC3] $(A \land B) \leftrightarrow (B \land A)$ [AC4] $A \land (B \land C) \leftrightarrow (A \land B) \land C$ [AC5] $A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$ [R1] $A \leftrightarrow B$, $C(A) \Rightarrow C(B)$ Here, $A \lor B$ is shorthand for $\neg (\neg A \land \neg B)$. You can define $A \to B$ as $A \leftrightarrow (A \land B)$.

The first degree fragment of *Parry's* Logic of Analytic Containment is found by adding $(A \lor (B \land \neg B)) \to A$ to Angell's Logic. (Parry's logic still satisfies this relevance constraint: $A \to B$ is provable only when the atoms in B are present in A.)

First Degree Entailment (FDE) is found by adding $A \to (A \vee B)$ to Angell's Logic. \P FDE allows for a disjunctive (or conjunctive) normal form. The only difference from classical logic is that $p \vee \neg p$, and $q \wedge \neg q$ are both non-trivial, and ineliminable. \P A simple translation encodes FDE inside classical logic. Choose, for each atom p, a fresh atom p', its *shadow*. For each FDE formula A, its translation is the formula A' found by replacing the negative occurrences of atoms p in A by their shadows. An argument is FDE valid iff its translation is classically valid.

DEFINITION: Mx(A, B) is the set of all possible linkings which could occur in any proof from A to B. \P That is, it contains a link from {positive atoms in A, negative atoms in B} to matching {positive atoms in B, negative atoms in A}.

FACT: Mx(A, B) is a proof iff there is some proof from A to B. (And if so, it is the maximal such proof.)

 $Mx(p \vee \neg p, p \wedge \neg q)$ is not a proof:

$$\begin{array}{c}
p \lor \neg p \\
p \land \neg q
\end{array}$$

LEMMA: If $A \approx_{Mx} B$, then Mx(A, B) and Mx(B, A) are proofs, and Mx(A, B), Mx(B, A): $A \approx_{Mx} B$.

PROOF: If $\pi, \pi': A \approx_{Mx} B$, then $\pi \subseteq Mx(A, B)$ and $\pi' \subseteq Mx(B, A)$, so Mx(A, B) and Mx(B, A) are both proofs. \P Since $\pi' \circ \pi = Mx(A)$, we have $Mx(A) = \pi' \circ \pi \subseteq Mx(B, A) \circ Mx(A, B) \subseteq Mx(A)$, and similarly, $Mx(B) = Mx(A, B) \circ Mx(A)$, so $Mx(A, B), Mx(B, A): A \approx_{Mx} B$.

FACT: If A is classically equivalent to B, and all atoms occurring positively [negatively] in A also occur positively [negatively] in B, and *vice versa*, then A and B *Mx*-match—and conversely.

PROOF: If A is logically equivalent to B, then Mx(A, B) and Mx(B, A) are both proofs. ¶ It suffices to show that $Mx(B, A) \circ Mx(A, B) = Mx(A)$ (and similarly for B). To show this, we need

to show that each positive [negative] occurrence of an atom in A is linked to any positive [negative] occurrence of that atom in A by way of some link in Mx(A, B) composed with a link in Mx(B, A). But since that atom occurs positively [negatively] also in B at least once, the links to accomplish this occur in Mx(A, B) and Mx(B, A). ¶ Conversely, if $A \approx_{Mx} B$, we have already seen that A and B must be equivalent, and no atom occurs positively [negatively] in A but not B.

This is *not* Equivalence in Parry's Logic. A is equivalent to B in Parry's logic of analytic containment iff A is classically equivalent to B and the atoms present in A are the atoms present in B. $\P (p \land \neg p) \land q \not\approx_{Mx} (p \land \neg p) \land \neg q, \text{ but this pair satisfies Parry's variable sharing criteria.}$

QUESTION: Does the equivalence relation of *Mx*-matching occur elsewhere in the literature?

DEFINITION: Hz(A, B) is the set of all possible linkings which could occur in any proof from A to B, excluding caps and cups. \P That is, it contains a link from positive atoms in A to corresponding positive atoms in B and negative atoms in A to corresponding negative atoms in B.

 $Hz(p \land \neg p, q \lor \neg q)$ contains no links. $Hz(p \land \neg p, p \lor \neg p)$ is a proof, but not the maximal one:

$$\begin{array}{c}
p \land \neg p \\
\downarrow \\
p \lor \neg p
\end{array}$$

FACT: Hz(A, B) is a proof iff A entails B in FDE.

PROOF: From FDE-validity to Hz-proof: straightforward induction on an FDE-axiomatisation. \P From the Hz-proof Hz(A,B) to FDE-validity: Notice that no negative occurrences of atoms in A or B are linked to any positive occurrences of atoms in A or B. So, there is another Hz-proof Hz(A',B') for the FDE translations for A and B.

LEMMA: If $A \approx_{Hz} B$, then Hz(A, B) and Hz(B, A) are proofs, and Hz(A, B), Hz(B, A): $A \approx_{Hz} B$.

PROOF: If $\pi, \pi': A \approx_{Hz} B$, then then since $\pi' \circ \pi = Hz(A)$ and $\pi \circ \pi' = Hz(B)$, π and π' are cap- and cup-free, so $\pi \subseteq Hz(A,B)$ and $\pi' \subseteq Hz(B,A)$, so Hz(A,B) and Hz(B,A) are both proofs. \mathfrak{G} Since $\pi' \circ \pi = Hz(A)$, we have $Mx(A) = \pi' \circ \pi \subseteq Hz(B,A) \circ Hz(A,B) \subseteq Hz(A)$,

and similarly, $Hz(B) = Hz(A,B) \circ Hz(A)$, so $Hz(A,B), Hz(B,A) : A \approx_{Mx} B$.

FACT: If A is FDE-equivalent to A, and all atoms occurring positively [negatively] in A also occur positively [negatively] in B, and vice versa, then A and B Hz-match — and conversely.

PROOF: If A is FDE-equivalent to B, then Hz(A, B) and Hz(B, A) are both proofs. \P It suffices to show that $Hz(B, A) \circ Hz(A, B) = Hz(A)$ (and similarly for B). To show this, we need to show that each positive [negative] occurrence of an atom in A is linked to any positive [negative] occurrence of that atom in A by way of some link in Hz(A, B) composed with a link in Hz(B, A). But since that atom occurs positively [negatively] also in B at least once, the links to accomplish this occur in Hz(A, B) and Hz(B, A). \P Conversely, if $A \approx_{Hz} B$, we have already seen that A and B must be FDE-equivalent, and no atom occurs positively [negatively] in A but not B.

FACT: (Ferguson 2016 [4]; Fine [5]) A is equivalent to B in Angell's logic of analytic containment iff A is FDE equivalent to B, and any atom occurs positively [negatively] in A iff it occurs positively [negatively] in B.

So, Hz-matching \equiv Angellic Equivalence.

5 MATCHING AS ISOMORPHISM

Hz(A) and Mx(A) are Idempotents: $Hz(A) \circ Hz(A) = Hz(A)$, $Mx(A) \circ Mx(A) = Mx(A)$.

For any category \mathcal{C} , if i_A is an idempotent for each object A, we can form a new category \mathcal{C}_i with the same objects as \mathcal{C} , and with arrows $i_B \circ f \circ i_A : A \to B$. \P In this new category, the idempotents i_A are the new identity arrows. \P So, \mathfrak{C}_{Hz} and \mathfrak{C}_{Mx} are both categories — like \mathfrak{C} , but less discriminating, with fewer arrows.

Hz-matching is isomorphism in \mathfrak{C}_{Hz} .

Mx-matching is isomorphism in \mathfrak{C}_{Mx} .

 \mathfrak{C}_{Mx} and \mathfrak{C}_{Hz} are nontrivial, nonetheless.

These are each different proofs in \mathfrak{C}_{Mx} and \mathfrak{C}_{Hz} .

6 CONCLUSION

- Extending these results to include the units ⊤ and ⊥ are not difficult. (They were left out only to ease the presentation).
- Proof theoretical resources for classical logic provide tools for fine-grained hyperintensional distinctions.
- One question is how to relate these results to models of logics of content.
- Another next step is these results to first order logic is an open question.

REFERENCES

- [1] R. Angell. Three systems of first degree entailment. *Journal of Symbolic Logic*, 47:147, 1977.
- [2] Samuel R. Buss. The undecidability of k-provability. *Annals of Pure and Applied Logic*, 53:72–102, 1991.
- [3] Kosta Došen and Zoran Petrić. Isomorphic formulae in classical propositional logic. *Mathematical Logic Quarterly*, 58(1-2):5–17, 2012.
- [4] T. M. Ferguson. Faulty Belnap computers and subsystems of FDE. *Journal of Logic and Computation*, 26(5):1617–1636, 2016.
- [5] Kit Fine. Angellic content. *Journal of Philosophical Logic*, 45(2):199–226, Apr 2016.