Distributed algorithms: a formulary

Mattia Setzu

2017

1 Asynchronous systems

1.1 Broadcast

\mathbf{Model}	Description	Messages	${f Time}$
Graph	Broadcast on a general graph	$\sum_{n} deg(v) - 1 = 2m - n + 1$	n-1
Hypercube	Descending broadcast on an hypercube	n-1	n-1
Tree	Broadcast on a tree	n+1	n-1
Tree	Broadcast on a tree $(k^* \text{ initiators})$	$n + k^* - 2$	n-1

1.2 SERIALIZATION

Model	Description	Messages	Time
Graph	Sequential token on generic graph	$\geq m$	$\geq n-1$
Graph $[DF + +]$	Asynchronous system with received and ack messages	4m - n + 1	2n-2
Graph $[DF^*]$	Asynchronous system with received messages	4m - 2n + 1	2n - 12

1.3 Spanning tree formation

\mathbf{Model}	Description	Messages	\mathbf{Time}
Shout	Common knowledge eager tree formation	4m - 2n + 2	n+1
Mega-Merger	Lazy mandate, eager-absorption city formation	$5n\log n + 2m - n + 1$	2n-2
Yo-Yo	Asynchronous system with received messages	$2m+2\sum_{n}\log n+n+1$	$\overline{\log(n)}$

1.4 Minimum finding

Model	Description	Messages	Time
All the way	Wasteful minimum	$\mathcal{O}(n^2)$	\overline{n}
	finding in ring		
As far as it can	Message-efficient	$\mathcal{O}(n^2), \Theta(n), \Omega(.69 \log n)$	\overline{n}
	minimum finding in		
	ring		
Controlled distance	Controlled As far	$7n\log(n)$	$\sum_{i=0}^{\log n} 2^i$
Staged distance	Limitless distance	$2n\log n + n$	\overline{n}
	control		
Stages with feedback	Stage with feedback	$3n\log_3 n + n$ or	$\log_3(n)$
	on triples	$1.89n\log n$	
Swinging pendulum	Limitless distance	$1.44n\log n$	$\mathcal{O}(n)$
	control		

1.5 SATURATION

Model	Description	Messages	\mathbf{Time}
Saturation	Relax-contract saturation finding	2n	2n
Saturated eccentricity	Find eccentricity through saturation	4n	4n
Saturated center	Find center through saturation	4n	4n

2 Synchronous systems

2.1 As Far As It Can

\mathbf{Model}	Description	Messages	\mathbf{Time}
As Far As It Can	Exponential synchronous as far algorithm	1	$n2^{i+1}$

2.2 BIT COMMUNICATORS

Model	Description	${f Bits}$	${f Time}$
1-bit communicator	Wait $\frac{\mathcal{M}}{2}$, use bit for remainder	1	$\frac{\mathcal{M}}{2}$
2-bits communicator	Wait $\sqrt{\mathcal{M}}$, send remainder $\mathcal{M} - \sqrt{\mathcal{M}}$	2	$\mathcal{M} - \left\lceil \sqrt{\mathcal{M}} \right\rceil$

2.3 Waiting

\mathbf{Model}	Description	${f Bits}$	${f Time}$
Round-Noise	Synchronous minimum in ring	1	2min
1 error guess	Guess minimum with one noise error	-	min + 1
2 errors guess	Guess minimum with two noise errors	-	$\leq 2\sqrt{\mathcal{M}}$
(q,k) model	Guess minimum with q questions and $k-1$ overestimates	-	$\sum_{j=1}^{k} {q \choose k}$
Pipeline maximum	Compute maximum in pipeline with wait	2n	(n-1) + max

3 Sorting

3.1 Sorting

\mathbf{Model}	Description	Messages	${f Time}$
Rankselect	Randomized rank selection	$\leq 4n^2$	$\leq 4n^2$
Selectsort	Mixed sorting through edge se-	$\leq \mathcal{NC}(edgeSelect) + n$	$\leq \mathcal{NC}(edgeSelect) + 1$
	lection and internal sorting		

4 ROUTING

4.1 ROUTING

\mathbf{Model}	Description	Messages	Time
Gossip	Forward local map to every neighbour	$2mn + n\log n$	n-1
$_{\mathrm{map}}$			
Distance	Update local routing on demand	$\leq 2(n-1)nm$	$\leq (n-1)n$
vector			
Minimum	Build MST on the total shortest out-	4m	$2n^2 + 4n + 1$
Djikstra	going road		