

teaching@ths.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2023/2024 Series 11

Exercise 1: Subtropical satisfiability

Find a satisfying assignment for $2xy^2 + x^2y - 2xy - 2x^2y^2 = 0$ using the subtropical satisfiability method as shown in the lecture. If you need to identify the real roots of a univariate polynomial of degree larger than two, please use WolframAlpha (https://www.wolframalpha.com).

Exercise 2: Subtropical satisfiability

Assume that the subtropical satisfiability method found a solution $s=(s_1,\ldots,s_d)$ for a constraint $p(x_1,\ldots,x_d)>0$ based on a separating hyperplane with normal vector $n=(n_1,\ldots,n_d)\in\mathbb{R}^d$. Further, we assume that the corresponding monomial dominates p at s. Let $i\in\{1,\ldots,d\}$.

Prove the following statements:

- 1. If $n_i > 0$ then for all $s_i' \in \mathbb{R}_{>0}$ with $s_i' > s_i$ there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $p(s_1', \ldots, s_d') > 0$.
- 2. If $n_i=0$ then for all $s_i'\in\mathbb{R}_{>0}$ there exist $s_1',\ldots,s_{i-1}',s_{i+1}',\ldots,s_d'\in\mathbb{R}_{>0}$ such that $p(s_1',\ldots,s_d')>0$.
- 3. If $n_i < 0$ then for all $s_i' \in \mathbb{R}_{>0}$ with $s_i' < s_i$ there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $p(s_1', \ldots, s_d') > 0$.