ARCH & GARCH MODELS

Dr. Aric LaBarr
Institute for Advanced Analytics

History

- Until 1980's: Econometrics focused almost solely on modeling the mean of the series (actual values of the target variable)
- Mid-1980's to now: Increased focus on volatility, what influences volatility and volatility's effect on the mean values.
- "One of the funny things about the stock market is that every time one person buys, another sells, and both think they are astute."
 - William Feather

Unconditional vs. Conditional Variance

 Unconditional variance is the same standard variance calculation that we have done in the past:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$\sigma^2 = E(x - E(x))^2$$

Unconditional vs. Conditional Variance

 Unconditional variance is the same standard variance calculation that we have done in the past:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$\sigma^2 = E(x - E(x))^2$$

- Conditional variance is the measure of our uncertainty about a variable given a set of information (or data).
 - Heteroscedasticity variance depends on external factors

$$\sigma_{cond}^2 = E(x - E(x|I))^2$$

Heteroscedasticity

- Variance depends on external factors.
- Cross-sectional data:

$$Var(\varepsilon_i|\mathbf{x}_i) = \sigma_i^2$$

 Heteroscedasticity is a nuisance we try to avoid or correct.

Time series data:

$$Var(\varepsilon_t|I_t) = \sigma_t^2$$

 Heteroscedasticity is of interest, especially in finance, and we desire to model it!

WHY DO WE MODEL VOLATILITY?

- Non-stationarity of prices.
- Mean-reversion of the returns of the series.

Non-stationarity of prices.

- Non-stationarity of prices.
- Mean-reversion of the returns of the series.

- Non-stationarity of prices.
- Mean-reversion of the returns of the series.
- THIS MAKES IT HARD TO GET INFORMATION FROM FORECASTING MARKET!!!

- Thick tails more outliers than what the Normal distribution would suggest.
- Volatility clustering large changes tend to be followed by large changes.
- Leverage effects tendency for changes in stock prices to be negatively correlated with changes in volatility.
- Non-trading period effects information accumulates at a different rate when market is closed as compared to when it is open.
- Co-movements in volatility volatility is positively correlated across assets in a market and even across markets.

Constant Volatility?

Constant Volatility?

Applications

- Estimating the Value at Risk
- Optimizing Allocations of Assets
- Hedging Risk
- Pricing Multiple Assets in an Option

HOW TO MODEL VOLATILITY?

Simple Approaches

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

$$Y_{t} - Y_{t-1} = \beta_{0} + \varepsilon_{t}$$

$$\frac{Y_{t} - Y_{t-1}}{Y_{t-1}} = \frac{\beta_{0}}{Y_{t-1}} + \frac{\varepsilon_{t}}{Y_{t-1}}$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

to returns? Still a Constant
$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t \qquad \text{Still a}$$
 Normal
$$Y_t - Y_{t-1} = \beta_0^* + \varepsilon_t^*$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t$$

$$r_t = \beta_0^* + \varepsilon_t^*$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

• How do we get to returns?

$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t$$

$$r_t = \beta_0^* + \varepsilon_t^*$$

Intercept only model, $\beta_0 = \overline{Y} \approx 0$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t$$

$$r_t = \varepsilon_t^*$$

$$r_t \sim N(0, \sigma^2)$$

- Need to lay the foundation of how one can model variance over time.
- What is a reasonable model for Y, the actual price?

$$Y_t = \beta_0 + Y_{t-1} + \varepsilon_t$$

$$Y_t - Y_{t-1} = \beta_0 + \varepsilon_t$$

$$r_t = \varepsilon_t^* \qquad \text{MODEL THIS!}$$

$$r_t \sim N(0(\sigma_t^2))$$

Or...

- What IF we COULD model price?
- How would this change our model?
- All you need to do is model the RESIDUALS!

$$Y_{t} = \beta_{0} + \beta_{1}x_{1,t} + \dots + \beta_{k}x_{k,t} + \varepsilon_{t}$$

$$Y_{t} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{1,t} + \dots + \hat{\beta}_{k}x_{k,t}) = \varepsilon_{t}$$

$$\hat{\varepsilon}_{t} = \varepsilon_{t}$$

$$\hat{\varepsilon}_{t} \sim N(0, \sigma_{t}^{2})$$
MODEL THIS!

Rolling Window Calculation

Rolling Window Calculation

Rolling Window Calculation

Weighting Time Periods

- Why not weight more recent observations heavier than previous ones?
- Exponential Smoothing Models

$$\sigma_{t+1}^2 = \omega r_t^2 + (1 - \omega)\hat{\sigma}_t^2$$

Weighting Time Periods

- Why not weight more recent observations heavier than previous ones?
- Exponential Smoothing Models

Weighting Time Periods

- Why not weight more recent observations heavier than previous ones?
- Exponential Smoothing Models

Weighting Time Periods $-\omega = 0.5$

HOW TO MODEL VOLATILITY?

Not as Simple Approaches

Time Series Framework

- Weighted average of the volatility
 - Higher weights on the recent past
 - Small but non-zero weights on the distant past
- Choose weights with "ARIMA-like" approaches.

- Autoregressive time series approach to modeling volatility.
- Trying to account for time dependency and persistence.

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 r_t^2$$

- Autoregressive time series approach to modeling volatility.
- Trying to account for time dependency and persistence.

- Autoregressive time series approach to modeling volatility.
- Trying to account for time dependency and persistence.

$$\sigma_{t+1}^2 = \alpha_0 + \alpha r_t^2 + \alpha_2 r_{t-1}^2 + \cdots + \alpha_q r_{t-q+1}^2$$
 "Actual" "Actual" "Actual" Today Yesterday (q-1) Days Ago

- Autoregressive time series approach to modeling volatility.
- Trying to account for time dependency and persistence.

$$\sigma_{t+1}^2 = \alpha_0 + \alpha r_t^2 + \alpha_2 r_{t-1}^2 + \cdots + \alpha_d r_{t-q+1}^2$$
 "Actual" "Actual" "Actual" Today Yesterday (q-1) Days Ago

- Variances need to be positive, $\alpha_0 > 0$, $\alpha_i \ge 0$
- Model is a stationary one: $\sum_{i=1}^{q} lpha_i < 1$

- Autoregressive time series approach to modeling volatility.
- Trying to account for time dependency and persistence.

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 r_t^2 + \alpha_2 r_{t-1}^2 + \dots + \alpha_q r_{t-q+1}^2$$

Real World Data Needs LARGE q!

- Generalize the ARCH model
 - Similar to autoregressive (AR) model extends to the autoregressive moving average model (ARMA).

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 r_t^2 + \beta_1 \hat{\sigma}_t^2$$

- Generalize the ARCH model
 - Similar to autoregressive (AR) model extends to the autoregressive moving average model (ARMA).

GARCH(1,1) Model: Restrictions

- Given that σ_t^2 is a variance, it needs to be positive:
 - $\alpha_0 > 0$
 - $\alpha_1 > 0, \beta_1 > 0$
- Stationary model:
 - $0 < \alpha_1 + \beta_1 < 1$

Alternative Representation

 A GARCH(1,1) model is an ARMA(1,1) model on the squared returns (or residuals)!

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2 + \beta_1 r_{t-1}^2 - \beta_1 r_{t-1}^2$$

$$\sigma_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 (r_{t-1}^2 - \hat{\sigma}_{t-1}^2)$$

$$\sigma_t^2 + r_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 (r_{t-1}^2 - \hat{\sigma}_{t-1}^2) + r_t^2$$

$$r_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 (r_{t-1}^2 - \hat{\sigma}_{t-1}^2) + (r_t^2 - \hat{\sigma}_t^2)$$

Alternative Representation

 A GARCH(1,1) model is an ARMA(1,1) model on the squared returns (or residuals)!

$$\begin{split} &\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2 \\ &\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2 + \beta_1 r_{t-1}^2 - \beta_1 r_{t-1}^2 \\ &\sigma_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 \left(r_{t-1}^2 - \hat{\sigma}_{t-1}^2 \right) \\ &\sigma_t^2 + r_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 \left(r_{t-1}^2 - \hat{\sigma}_{t-1}^2 \right) + r_t^2 \\ &r_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 \left(r_{t-1}^2 - \hat{\sigma}_{t-1}^2 \right) + \left(r_t^2 - \hat{\sigma}_t^2 \right) \end{split}$$

Alternative Representation

 A GARCH(1,1) model is an ARMA(1,1) model on the squared returns (or residuals)!

$$\begin{split} &\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2 \\ &\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2 + \beta_1 r_{t-1}^2 - \beta_1 r_{t-1}^2 \\ &\sigma_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 \left(r_{t-1}^2 - \hat{\sigma}_{t-1}^2 \right) \\ &\sigma_t^2 + r_t^2 = \alpha_0 + (\alpha_1 + \beta_1) r_{t-1}^2 - \beta_1 \left(r_{t-1}^2 - \hat{\sigma}_{t-1}^2 \right) + r_t^2 \\ &r_t^2 = \alpha_0 + \delta_1 r_{t-1}^2 - \beta_1 u_{t-1} + u_t \end{split}$$

- Generalize the ARCH model
 - Similar to autoregressive (AR) model extends to the autoregressive moving average model (ARMA).

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 r_t^2 + \beta_1 \hat{\sigma}_t^2$$

- Generalize the ARCH model
 - Similar to autoregressive (AR) model extends to the autoregressive moving average model (ARMA).

$$\sigma_{t+1}^2 = \alpha_0 + \sum_{i=0}^q \alpha_i r_{t-i}^2 + \sum_{j=0}^p \beta_j \hat{\sigma}_{t-j}^2$$

- Generalize the ARCH model
 - Similar to autoregressive (AR) model extends to the autoregressive moving average model (ARMA).

$$\sigma_{t+1}^2 = \alpha_0 + \alpha r_t^2 + \beta \hat{\sigma}_t^2$$

Real World Data "Typically" Only Needs One of Each

Interpretations

- If we need to "force" the constraints about α_0 , α_1 , and β_1 its possible that our model is not appropriate and some other GARCH-type model should be used.
- The parameter α_i measures the reaction of conditional volatility to market shocks.
 - Large values (above 0.1) imply volatility is very sensitive to market events.
- The parameter β_i measures the persistence in conditional volatility.
 - Large values (above 0.9) imply volatility takes a long time to die out following a crisis in the market.

Interpretations

- The $(\alpha_i + \beta_i)$ determines the rate of convergence of the conditional volatility to the long term average level.
 - Large values (above 0.99) imply the terms structure of the volatility forecasts from the GARCH model is relatively flat.
- The constant α_0 together with $(\alpha_i + \beta_i)$ determines the level of the long term average volatility (the unconditional variance in the GARCH model).
 - The larger the value, the higher the long term volatility in the market.

TESTING FOR ARCH EFFECTS

Testing for ARCH Effects

- Just like in time series where we test for autocorrelations, we can also test for different ARCH effects, which are similar to autocorrelations across the squared residuals.
- There are two common tests for ARCH effects:
 - Lagrange Multiplier (LM) test
 - Portmanteau Q test

Testing for ARCH Effects

- Just like in time series where we test for autocorrelations, we can also test for different ARCH effects, which are similar to autocorrelations across the squared residuals.
- There are two common tests for ARCH effects:
 - Lagrange Multiplier (LM) test
 - Portmanteau Q test
- Null hypothesis for both tests is the same:

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_q = 0$

Test for ARCH Effects – SAS

```
proc autoreg data=Stocks all plots(unpack);
    model msft_r = / archtest;
run;
```

Test for ARCH Effects – SAS

Tests for ARCH Disturbances Based on OLS Residuals					
Order	Q	Pr > Q	LM	Pr > LM	
1	74.7445	<.0001	73.9627	<.0001	
2	130.8748	<.0001	112.1915	<.0001	
3	162.6548	<.0001	125.6564	<.0001	
4	210.0613	<.0001	149.3698	<.0001	
5	284.1277	<.0001	187.2482	<.0001	
6	329.7092	<.0001	199.1051	<.0001	
7	392.3084	<.0001	219.8552	<.0001	
8	418.4616	<.0001	221.6982	<.0001	
9	452.1992	<.0001	226.4152	<.0001	
10	550.9404	<.0001	267.5159	<.0001	
11	636.4519	<.0001	290.2650	<.0001	
12	665.1030	<.0001	290.3338	<.0001	

Test for ARCH Effects – R

```
arch.test(arima(stocksmsft_r[-1], order = c(0,0,0)), output = TRUE)
```

ARCH heteroscedasticity test for residuals alternative: heteroscedastic

```
Portmanteau-Q test:
```

```
order PQ p.value
[1,]
         4 208
[2,]
        8 413
[3,]
        12 657
[4,]
        16 716
[5,]
        20 829
                      0
[6,]
        24 911
                      0
```

Lagrange-Multiplier test:

```
LM p.value
     order
         4 5001
[1,]
                       0
[2,]
         8 1942
                       0
[3,]
        12 1097
                       0
[4,]
        16 810
                       0
[5,]
        20 616
                       0
            508
[6,]
        24
                       0
```

GARCH Model – SAS

GARCH Model – SAS

The AUTOREG Procedure

Ordinary Least Squares Estimates					
SSE	0.89945877	DFE	3018		
MSE	0.0002980	Root MSE	0.01726		
SBC	-15936.352	AIC	-15936.352		
MAE	0.01161738	AICC	-15936.352		
MAPE	101.145797	HQC	-15936.352		
Durbin-Watson	2.1353	Total R-Square	0.0000		

NOTE: No intercept term is used. R-squares are redefined.

Algorithm converged.

GARCH Model – SAS

The AUTOREG Procedure

GARCH Estimates					
SSE	0.89945877	Observations 3018			
MSE	0.0002980	Uncond Var	0.0002958		
Log Likelihood	8295.74749	Total R-Square	0.0000		
SBC	-16567.458	AIC	-16585.495		
MAE	0.01161983	AICC	-16585.487		
MAPE	100	HQC	-16579.009		
		Normality Test	5832.2647		
		Pr > ChiSq	<.0001		
NOTE: No intercent term is used. Disqueres are radefined					

NOTE: No intercept term is used. R-squares are redefined.

Parameter Estimates					
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t
ARCH0	1	4.523E-6	5.11E-7	8.85	<.0001
ARCH1	1	0.0495	0.003517	14.08	<.0001
GARCH1	1	0.9352	0.004417	211.75	<.0001

```
Call:
 garchFit(formula = \sim garch(1, 1), data = stocks msft_r[-1], con
orm",
    include.mean = FALSE)
Mean and Variance Equation:
 data \sim garch(1, 1)
<environment: 0x000001abd5ebbee0>
 [data = stocks$msft_r[-1]]
Conditional Distribution:
 norm
Coefficient(s):
               alpha1
                            beta1
     omega
4.5081e-06 4.9738e-02 9.3519e-01
Std. Errors:
based on Hessian
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
                 1.874e-06 2.405 0.016163 *
omega 4.508e-06
alpha1 4.974e-02 1.287e-02 3.863 0.000112 ***
beta1 9.352e-01 1.850e-02
                              50.562 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Log Likelihood:
 8295.746
            normalized: 2.748756
```

```
Call:
 garchFit(formula = ~garch(1, 1), data = stocks$msft_r[-1], con
orm",
    include.mean = FALSE)
Mean and Variance Equation:
 data \sim garch(1, 1)
<environment: 0x000001abd5ebbee0>
 [data = stocks$msft_r[-1]]
Conditional Distribution:
 norm
Coefficient(s):
                alpha1 beta1
     omega
4.5081e-06 4.9738e-02 9.3519e-01
Std. Errors:
 based on Hessian
Error Analysis:
        Estimate Std. Error t value Pr(>|t|)
omega 4.508e-06
                  1.874e-06 2.405 0.016163 *
alpha1 4.974e-02
                  1.287e-02 3.863 0.000112 ***
1.850e-02 50.562 < 2e-16 ***
beta1 9.352e-01
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Log Likelihood:
             normalized: 2.748756
 8295.746
```

Standardised Residuals Tests:

```
Statistic p-Value
                        Chi^2
                               5867.137
Jarque-Bera Test
                   R
Shapiro-Wilk Test
                               0.9430056 0
                   R
                        W
                        Q(10)
Ljung-Box Test
                               21.29929
                                          0.0191006
                   R
                                          0.03666253
                        Q(15)
Ljung-Box Test
                               26.13155
                   R
                                          0.01060077
Ljung-Box Test
                        Q(20)
                               37.35677
                   R
                        Q(10)
                                          0.9952081
Ljung-Box Test
                               2.133788
                   R^2
                        Q(15)
                               4.94395
                                          0.9925904
Ljung-Box Test
                   R۸2
                        Q(20)
Ljung-Box Test
                               7.459505
                                         0.9948826
                   R۸2
LM Arch Test
                        TR^2
                               2.373413
                                          0.9985811
                   R
```

Information Criterion Statistics:

```
AIC BIC SIC HQIC -5.495524 -5.489548 -5.495526 -5.493375
```


EXTENSIONS TO ARCH/GARCH MODELING

Extensions to GARCH Framework

- What if the distribution is not Normal?
- What if the underlying distribution is not symmetric?
- What if the variance actually affected the value of the return directly?

Extensions to GARCH Framework

- What if the distribution is not Normal?
 - Test Normality with Jarque-Berra (J-B) test.
 - Null hypothesis is that the standardized residuals follow the Normal distribution.
 - Test follows χ_2^2 .
- What if the underlying distribution is not symmetric?
- What if the variance actually affected the value of the return directly?

J-B Test of Normality – SAS

```
proc autoreg data=Stocks all plots(unpack);
    model msft_r = / normal;
run;
```

J-B Test of Normality — SAS

Miscellaneous Statistics							
Statistic	Value Prob		Label				
Normal Test	10717.2460	<.0001	Pr > ChiSq				

J-B Test of Normality – R

```
jb.test(stocks$msft_r[-1])
```

```
series 1
test stat 10717.25
p-value 0.00
```

Extensions to GARCH Framework

- What if the distribution is not Normal?
 - Bollerslev (1986) developed the t-GARCH model that has an underlying t-distribution instead of a Normal distribution.
- What if the underlying distribution is not symmetric?
- What if the variance actually affected the value of the return directly?

t-GARCH – SAS

t-GARCH - SAS

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	Variable Label	
ARCH0	1	3.7094E-6	1.1E-6	3.37	0.0007		
ARCH1	1	0.0625	0.009735	6.42	<.0001		
GARCH1	1	0.9279	0.0103	90.43	<.0001		
TDFI	1	0.2391	0.0177	13.48	<.0001	Inverse of t DF	

t-GARCH – R

t-GARCH – R

```
Error Analysis:
    Estimate Std. Error t value Pr(>|t|)
omega 3.688e-06 1.342e-06 2.748 0.00599 **
alpha1 6.287e-02 1.219e-02 5.156 2.52e-07 ***
beta1 9.280e-01 1.381e-02 67.181 < 2e-16 ***
shape 4.164e+00 3.240e-01 12.851 < 2e-16 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Log Likelihood:
8527.507 normalized: 2.825549
```

Normal GARCH or t-GARCH

- Formal test for Normality.
- Compare using Information criteria.
- Formal test for d.f. of t-distribution.
 - Likelihood Ratio (LR) test to see if inverse of d.f. ≈ 0

Extensions to GARCH Framework

- What if the distribution is not Normal?
- What if the underlying distribution is not symmetric?
 - Nelson (1991) developed the EGARCH model to account for the leverage effect in certain data sets.
 - The leverage effect is when variance increases more when a return is negative compared to when a return is positive.
- What if the variance actually affected the value of the return directly?

EGARCH - SAS

EGARCH - SAS

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
EARCH0	1	-0.1260	0.0144	-8.75	<.0001		
EARCH1	1	0.1003	0.006410	15.65	<.0001		
EGARCH1	1	0.9837	0.001767	556.78	<.0001		
THETA	1	-0.3457	0.0630	-5.49	<.0001		

EGARCH – R

```
\label{eq:continuous} \begin{tabular}{ll} EGARCH <- ugarchfit(data = stocks\$msft\_r[-1], \\ spec = ugarchspec(variance.model = list(model = "eGARCH", \\ garchOrder = c(1,1)))) \\ EGARCH \end{tabular}
```

EGARCH – R

```
GARCH Model Fit
Conditional Variance Dynamics
GARCH Model : eGARCH(1,1)
Mean Model : ARFIMA(1,0,1)
Distribution
               : norm
Optimal Parameters
       Estimate Std. Error t value Pr(>|t|)
                   0.000214 1.9824 0.047434
       0.000425
mu
                  0.043066 18.1735 0.000000
ar1
       0.782657
      -0.822819
                  0.039414 -20.8765 0.000000
ma1
omega -0.138585
                   0.002286 -60.6263 0.000000
alpha1 -0.025584
                   0.006879 -3.7191 0.000200
beta1
       0.982215
                   0.000229 4289.9173 0.000000
gamma1
       0.108548
                   0.004829
                             22.4778 0.000000
Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
       0.000425
                   0.000229 1.8539 0.063748
mu
       0.782657
                  0.023923
                             32.7162 0.000000
ar1
ma1
      -0.822819
                   0.019510
                             -42.1739 0.000000
omega -0.138585
                   0.005463 -25.3699 0.000000
                   0.015675 -1.6322 0.102634
alpha1 -0.025584
```

0.009359

0.000544 1806.8671 0.000000

11.5984 0.000000

LogLikelihood: 8317.322

0.982215

gamma1 0.108548

beta1

EGARCH – R

```
GARCH Model Fit
Conditional Variance Dynamics
GARCH Model : eGARCH(1,1)
Mean Model
               : ARFIMA(1,0,1)
Distribution
               : norm
Optimal Parameters
       Estimate Std. Error t value Pr(>|t|)
       0.000425
                   0.000214 1.9824 0.047434
mu
       0.782657
                   0.043066 18.1735 0.000000
ar1
      -0.822819
                   0.039414 -20.8765 0.000000
ma1
omega -0.138585
                   0.002286 -60.6263 0.000000
alpha1 -0.025584
                             -3.7191 \ 0.000200
                   0.006879
                   0.000229 4289.9173 0.000000
beta1
       0.982215
                             22.4778 0.000000
gamma1
       0.108548
                   0.004829
Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
                             1.8539 0.063748
       0.000425
                   0.000229
mu
   0.782657
                  0.023923
                             32.7162 0.000000
ar1
   -0.822819
                  0.019510
                             -42.1739 0.000000
ma1
omega -0.138585
                  0.005463
                             -25.3699 0.000000
alpha1 -0.025584
                  0.015675 -1.6322 0.102634
                  0.000544 1806.8671 0.000000
beta1 0.982215
gamma1 0.108548
                   0.009359 11.5984 0.000000
```

LogLikelihood: 8317.322

QGARCH Model

- An alternative model to capture the asymmetries and leverage effects.
- Introduces λ into model.

$$\sigma_t^2 = \alpha_0 + \alpha_1 (\varepsilon_t - \lambda)^2 + \beta_1 \sigma_{t-1}^2$$

QGARCH – SAS

```
proc autoreg data=Stocks OUTEST=param estimates;
  model msft r = / noint qarch=(p=1, q=1,
                    type=QGARCH) method=ml;
   output out=qgarch ht=predicted var;
  model msft r = / noint garch=(p=1, q=1,
                    type=QGARCH) dist=t method=ml;
   output out=qgarch t ht=predicted var;
run;
```

QGARCH - SAS

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	Variable Label	
QARCHA0	1	0	0				
QARCHA1	1	0.0662	0.009916	6.67	<.0001		
QARCHB1	1	0.009745	0.001019	9.57	<.0001		
QGARCH1	1	0.9170	0.0100	91.42	<.0001		
TDFI	1	0.2359	0.0168	14.07	<.0001	Inverse of t DF	

Skewed GARCH – R

Skewed GARCH – R

```
Error Analysis:
       Estimate
                 Std. Error
                             t value Pr(>|t|)
                              2.751 0.00594
      3.720e-06
                  1.352e-06
omega
alpha1 6.305e-02
                 1.225e-02
                              5.146 2.66e-07
                                             ***
beta1 9.278e-01
                 1.387e-02
                             66.878
                                     < 2e-16
                                             ***
skew 9.906e-01 2.122e-02
                             46.691 < 2e-16
                                             ***
      4.159e+00
                  3.238e-01
                             12.846
shape
                                     < 2e-16
                 ·***
                       0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Log Likelihood:
            normalized: 2.825581
8527.605
```

Extensions to GARCH Framework

- What if the distribution is not Normal?
- What if the underlying distribution is not symmetric?
- What if the variance actually affected the value of the return directly?
 - Referred to as GARCH-M models, where M stands for mean.

GARCH-M - SAS

GARCH-M - R

GARCH.M

Exponentially Weighted Moving Average

- The Exponentially Weighted Moving Average (EWMA) model can be considered a "special" GARCH(1,1) model where:
 - $\alpha_0 = 0$
 - $(\alpha_1 + \beta_1) = 1$
 - RiskMetrics database (J.P. Morgan, 1994) has been using this methodology to forecast volatility.
 - RiskMetrics sets $\beta_1 = 0.94$ since this is the value that seems to produce the best out of sample forecasts.

Exponentially Weighted Moving Average

- The Exponentially Weighted Moving Average (EWMA) model can be considered a "special" GARCH(1,1) model where:
 - $\alpha_0 = 0$ Nonstationary (called IGARCH) • $(\alpha_1 + \beta_1) = 1$
 - RiskMetrics database (J.P. Morgan, 1994) has been using this methodology to forecast volatility.
 - RiskMetrics sets $\beta_1 = 0.94$ since this is the value that seems to produce the best out of sample forecasts.

EWMA - SAS

EWMA - SAS

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
ARCH1	1	1.0537E-8	0	Infty	<.0001		
GARCH1	1	1.0000	0	Infty	<.0001		

EWMA – R

```
EWMA <- ugarchfit(data = stocks$msft_r[-1],</pre>
                  spec = ugarchspec(variance.model=list(model="iGARCH",
                                                          garchOrder=c(1,1),
                                                          variance.targeting=0),
                                     mean.model=list(armaOrder=c(0,0))))
```

EWMA

EWMA - R

```
GARCH Model Fit
Conditional Variance Dynamics
GARCH Model : iGARCH(1,1)
Mean Model : ARFIMA(0,0,0)
Distribution : norm
Optimal Parameters
       Estimate Std. Error t value Pr(>|t|)
       0.000591 0.000269 2.1961 0.028081
mu
alpha1 0.029232
                  0.002559 11.4226 0.000000
       0.970768
beta1
                        NA
                                NA
                                        NA
       0.000000
omega
                        NA
                                NA
                                        NA
Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
       0.000591 0.000339 1.7428 0.081369
mu
       0.029232 0.005749 5.0843 0.000000
alpha1
beta1
       0.970768
                                NA
                        NA
                                        NA
       0.000000
omega
                        NA
                                NA
                                        NA
```

LogLikelihood: 8263.003

Many, Many, Many GARCH Models

- AARCH
- ADCC-GARCH
- AGARCH
- ANN-ARCH
- ANST-GARCH
- APARCH
- ARCH-M
- ARCH-SM
- ATGARCH
- Aug-GARCH
- AVGARCH
- B-GARCH
- BEKK-GARCH
- CCC-GARCH
- Censored-GARCH
- CGARCH
- COGARCH
- CorrARCH
- DAGARCH
- DCC-GARCH
- Diag MGARCH
- DTARCH

- DVEC-GARCH
- **EGARCH**
- **EVT-GARCH**
- F-ARCH
- FDCC-GARCH
- FGARCH
- FIAPARCH
- FIEGARCH
- FIGARCH
- FIREGARCH
- Flex-GARCH
- GAARCH
- GARCH-Delta
- GARCH Diffusion
- **GARCH-EAR**
- GARCH-Gamma
- GARCH-M
- GARCHS
- GARCHSK
- GARCH-t
- GARCH-X
- GARCHX

- GARJI
- GDCC-GARCH
- GED-GARCH
- GJR-GARCH
- GO-GARCH
- GQARCH
- GQTARCH
- HARCH
- HGARCH
- HYGARCH
- IGARCH
- LARCH
- Latent GARCH
- Level GARCH
- LGARCH
- LMGARCH
- Log-GARCH
- MAR-ARCH
- MARCH
- Matrix EGARCH
- MGARCH
- Mixture GARCH

- MS-GARCH
- MV-GARCH
- NAGARCH
- NGARCH
- NL-GARCH
- NM-GARCH
- OGARCH
- PARCH
- PC-GARCH
- PGARCH
- PNP-GARCH
- QARCH
- QTARCH
- REGARCH
- RGARCH
- Robust GARCH
- Root GARCH
- RS-GARCH
- Robust DCC-GARCH
- SGARCH
- S-GARCH

- Sign-GARCH
- SPARCH
- Spline-GARCH
- **SQR-GARCH**
- STARCH
- Stdev-ARCH
- STGARCH
- Structural GARCH
- Strong GARCH
- **SWARCH**
- TGARCH
- t-GARCH
- Tobit-GARCH
- TS-GARCH
- UGARCH
- VCC-GARCH
- VGARCH
- **VSGARCH**
- Weak GARCH
- ZARCH

Many, Many, Many GARCH Models

- AARCH
- ADCC-GARCH
- AGARCH
- ANN-ARCH
- ANST-GARCH
- APARCH
- ARCH-M
- ARCH-SM
- ATGARCH
- Aug-GARCH
- AVGARCH
- B-GARCH
- BEKK-GARCH
- CCC-GARCH
- Censored-GARCH
- CGARCH
- COGARCH
- CorrARCH
- DAGARCH
- DCC-GARCH
- Diag MGARCH
- DTARCH

- DVEC-GARCH
- EGARCH
- **EVT-GARCH**
- F-ARCH
- FDCC-GARCH
- FGARCH
- FIAPARCH
- FIEGARCH
- FIGARCH
- FIREGARCH
- Flex-GARCH
- GAARCH
- GARCH-Delta
- GARCH Diffusion
- **GARCH-EAR**
- GARCH-Gamma
- GARCH-M
- GARCHS
- GARCHSK
- GARCH-t
- GARCH-X
- GARCHX

- GARJI
- GDCC-GARCH
- GED-GARCH
- GJR-GARCH
- GO-GARCH
- GQARCH
- GQTARCH
- HARCH
- HGARCH
- HYGARCH
- IGARCH
- LARCH
- Latent GARCH
- Level GARCH
- LGARCH
- LMGARCH
- Log-GARCH
- MAR-ARCH
- MARCH
- Matrix EGARCH
- MGARCH
- Mixture GARCH

- MS-GARCH
- MV-GARCH
- NAGARCH
- NGARCH
- NL-GARCH
- NM-GARCH
- OGARCH
- PARCH
- PC-GARCH
- PGARCH
- PNP-GARCH
- QARCH
- QTARCH
- REGARCH
- RGARCH
- Robust GARCH
- Root GARCH
- RS-GARCH
- Robust DCC-GARCH
- SGARCH
- S-GARCH

- Sign-GARCH
- SPARCH
- Spline-GARCH
- SQR-GARCH
- STARCH
- Stdev-ARCH
- STGARCH
- Structural GARCH
- Strong GARCH
- SWARCH
- TGARCH
- t-GARCH
- Tobit-GARCH
- TS-GARCH
- UGARCH
- VCC-GARCH
- VGARCH
- **VSGARCH**
- Weak GARCH
- ZARCH

Every day, self-proclaimed stock market "experts" tell us why the market just went up or down, as if they really knew. So where were they yesterday?!?

- Anonymous