

Sumário

- 1. Bibliografia
- 2. Composição de Funções
- 3. Funções Injetoras, Sobrejetoras e Bijetoras: Reconhecimento através do Gráfico
- 4. Funções Inversas
- 5. Compostas e Inversas
- 6. Equações e Inequações
- 7. Aplicações

Bibliografia

Bibliografia da Aula 05

- Fundamentos da Matemática Elementar: 1 (Click para baixar)
- Fundamentos da Matemática Elementar: 2 (Click para baixar)

Composição de Funções

Compostas

Definição

Definição 1

Dadas duas funções $f: A \to B \ e \ g: B \to C$, de modo que o domínio de g coincide com o contra-domínio de f, definimos a função **composta** de g e f por

$$(g\circ f)(a)=g(f(a)).$$

Definição

- ► Como $f(a) \in B$, podemos calcular g(f(a)).
- Se tivéssemos $f(a) \notin B$, então f(a) não estaria no domínio de g e não faria sentido calcular a função nesse ponto.

Exemplo

Exemplo 1

a) Podemos fazer a composição $f \circ g$, onde $f : \mathbb{R} \to \mathbb{R}$ é dada por $f(x) = x^3$ e a função $g : (0, \infty) \to \mathbb{R}$ é dada por $g(x) = \ln x$, pois a imagem de g é o conjunto \mathbb{R} que é o domínio de f.

$$f \circ g(x) = f(g(x)) = f(\ln x) = [\ln(x)]^3.$$

b) Por outro lado, NÃO PODEMOS fazer a composição g ∘ f, pois a imagem de f é o conjunto ℝ, que não está contido no domínio de g, o conjunto (0, ∞).
 Basta tomar x = -2 e teremos g ∘ f(-2) = ln(-8), que não está definido como um número real.

Exemplo

Exemplo 2

Seja $f: \mathbb{R} \to [0,\infty)$, dada por $f(x) = x^2$, e $g: [0,\infty) \to [0,\infty)$, dada por $g(x) = \sqrt{x}$. Como o domínio de g é igual ao contra-domínio de f, podemos calcular a composta $g \circ f$.

De fato, temos que $f(x)=x^2\geq 0$ e, portanto, $f(x)\in [0,\infty)=D_g$. Logo,

$$(g \circ f)(x) = g(f(x))$$

$$= g(x^{2})$$

$$= \sqrt{x^{2}}$$

$$= |x|.$$

Observação

Lembre-se: A raiz quadrada de um número é sempre positiva e a **função modular** |x| está aqui para representar isso. Ela é definida por

$$|x| = \begin{cases} x & \operatorname{se} x \ge 0 \\ -x, & \operatorname{se} x < 0. \end{cases}$$

É INCORRETO concluir que $\sqrt{x^2} = x$. Se x é negativo, por exemplo igual a -3, temos:

$$x^2 = (-3)^2 = 9 \Rightarrow \sqrt{x^2} = \sqrt{9} = 3.$$

e não $\sqrt{(-3)^2} = -3$. Nenhuma raiz de ordem par pode gerar um número negativo! Por isso, sempre usamos a função modular, que somente gera números positivos.

Funções Injetoras, Sobrejetoras e Bijetoras: Reconhecimento através do Gráfico

Método

Basta analisar o número de pontos de interseção das retas paralelas ao eixo x, conduzidas por cada ponto (0, y) em que $y \in B$ (contradomínio de f).

Gráficos de Funções Injetoras

Se cada uma dessas retas cortar o gráfico em um só ponto ou não cortar o gráfico, então a função é **injetora**.

a) $f: \mathbb{R} \to \mathbb{R}$ f(x) = x

b) f: $\mathbb{R}_+ \to \mathbb{R}$ f(x) = x^2

Gráficos de Funções Sobrejetoras

Se cada uma das retas cortar o gráfico em um ou mais pontos, então a função é sobrejetora.

a) f: $\mathbb{R} \to \mathbb{R}$ f(x) = x - 1

b) f: $\mathbb{R} \to \mathbb{R}_+$ f(x) = x^2

Gráficos de Funções Bijetoras

Se cada uma dessas retas cortar o gráfico em um só ponto, então a função é bijetora.

- a) f: $\mathbb{R} \to \mathbb{R}$
 - f(x) = 2x

b) f: $\mathbb{R} \to \mathbb{R}$ f(x) = x \cdot |x|

Funções Inversas

Codificação

Imagine que você tenha que enviar, de forma cifrada, a seguinte mensagem "Criptografar é uma arte". Inicialmente é preciso pensar na pré-codificação, a qual requer a substituição de letras por números. Com o propósito de exemplificar esse processo, o primeiro passo consiste em converter uma mensagem que se deseja criptografar em uma sequência de números. Para tanto, veja as informações constantes na tabela a seguir.

		Corre	spond	ência e	ntre ca	da letr	a do al	fabeto	e um n	úmero	maior	ou igu	al a 10	1	
Α	В	C	D	Е	F	G	Н	-	J	K	L	М	Ν	0	Р
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Q	R	S	Т	U	٧	W	Χ	Υ	Z	_					
26	27	28	29	30	31	32	33	34	35						

Para evitar ambiguidades (11 é o número ou uma sequência de dois números 1?), optou-se por corresponder cada letra a um número maior ou igual a 10.

Codificação

Nesse contexto, a frase "Criptografar é uma arte", é convertida em:

1227182529241627101510279914993022109910272914

Na codificação da mensagem, devemos quebrar em blocos a sequência de números produzidos na pré-codificação. Assim, a sequência de números pode ser quebrada nos seguintes blocos, o que não é uma condição sine qua non.

$$12 - 2 - 71 - 8 - 25 - 29 - 2 - 41 - 62 - 7 - 10 - 15 - 10 - 27 - 9 - 9 - 14 - 9 - 9 - 30 - 22 - 10 - 9 - 9 - 10 - 2 - 72 - 9 - 14$$

Cada bloco deve ser codificado separadamente. Depois disso, não poderão mais ser unidos sob o risco de tornar impossível decodificação da mensagem.

Decodificação

- ▶ De modo geral, para codificar a mensagem precisamos de uma função f, tal que possamos encontrar os valores de x que codificou aquele bloco.
- ► Tomemos, por exemplo, a função f(x) = 3x 4 como chave de codificação.
- ▶ Desse modo, o primeiro bloco 12 é codificado por f(12) = 3 * 12 4 = 32.
- ▶ O segundo bloco é codificado por f(2) = 3 * 2 4 = 2.
- Os demais blocos também são codificados de maneira análoga. Com isso obtemos a mensagem criptografada:

$$32 - 2 - 209 - 20 - 71 - 83 - 2 - 119 - 182 - 17 - 26 - 41 - 26 - 77$$

 $-23 - 23 - 38 - 23 - 23 - 86 - 62 - 26 - 23 - 23 - 26 - 2 - 212 - 23 - 38$

Relação Inversa de uma Função

Para decodificar a mensagem criptografada, precisamos da relação inversa da função f(x) = 3x - 4.

Definição 2

Dada uma função $f: A \to B$, a relação inversa de f é denotada por

$$f^{-1} = \{(y,x) \in \mathbb{R}^2 \mid (x,y) \in f\}.$$

Antes de prosseguirmos com a função de decodificação, vejamos alguns exemplos.

Exemplo

Exemplo 3

Considere os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 3, 5, 7\}$.

Dada a função f:A o B, definida por f(x)=2x-1, a relação f é dada ao lado.

Sua relação inversa f⁻¹ é dada a seguir:

Exemplos

Note que a relação inversa f⁻¹ é uma função de B em A:

- ► Assim, $f^{-1}: B \to A$, tal que $f^{-1}(y) = x$, com y = 2x 1.
- Podemos então concluir que

$$y = 2x - 1 \Leftrightarrow 2x - 1 + 1 = y + 1$$
$$\Leftrightarrow \frac{1}{2}(2x) = \frac{1}{2}(y + 1)$$
$$\Leftrightarrow f^{-1}(y) = x = \frac{y + 1}{2}.$$

Exemplo

Exemplo 4

Considere a função $f: \mathbb{R} \to [0, \infty)$, definida por $f(x) = x^2$. A relação f^{-1} que associa elementos de $[0, \infty)$ com elementos de \mathbb{R} não é uma função.

- ► Com efeito, o elemento $y = 4 \in [0, \infty)$ está relacionado, através de f, com dois elementos de \mathbb{R} : x = 2 e x = -2.
- ▶ Portanto, $(4, -2) \in f^{-1}$ e $(4, 2) \in f^{-1}$, que resulta em um mesmo elemento do domínio de f^{-1} estar associado a dois elementos distintos do seu contra-domínio.
- ▶ Logo, f^-1 não é uma função de $[0, \infty)$ em \mathbb{R} .

Exemplo

Entretanto, restringindo o domínio de f para $A=[0,\infty)$, temos $\bar{f}:[0,\infty)\to[0,\infty)$ e a relação \bar{f}^{-1} é uma função de $[0,\infty)$ em $[0,\infty)$.

Com efeito, para cada número real não negativo x existe um único número real não negativo y tal que $x=y^2$. Com isso,

$$x = y^2 \Leftrightarrow \sqrt{x} = (\sqrt{y^2}) = |y|$$

 $\Leftrightarrow y = \sqrt{x}, \quad (|y| = y, \text{ pois } y \ge 0),$

de onde segue que $ar f^{-1}:[0,\infty) o [0,\infty)$, dada por $ar f^{-1}=\sqrt x$, é uma função.

Teorema 1

Seja $f: A \to B$. A relação f^{-1} é uma função de B em A se, e somente se, f é bijetora.

Demonstração:

- (⇒) Se f^{-1} é uma função de B em A, então f é bijetora.
 - ▶ De fato, como é função, para cada $y \in B$ existe um único $x \in A$ tal que $f^{-1}(y) = x$.
 - lsto é, $(y, x) \in f^{-1}$ e, assim, para cada $y \in B$, tem-se $(x, y) \in f$.
 - Assim, f é sobrejetora.
 - Por outro lado, se $f(x_1) = y = f(x_2)$ então $x_1 = x_2$, caso contrário

$$(y,x_1) \in f^{-1}$$
 e $(y,x_2) \in f^{-1}$,

- e f^{-1} não seria função.
- ► Logo, *f* é injetora.

Teorema 1

- (⇐) Se f é bijetora, então f^{-1} é uma função de B em A.
 - ▶ De fato, como f é sobrejetora, para cada $y \in B$ existe um $x \in A$ tal que f(x) = y.
 - Portanto, para cada $y \in B$ existe um $x \in A$ tal que $(y, x) \in f^{-1}$.
 - ► Se $y \in B$, com $(y, x_1) \in f^{-1}$ e $(y, x_2) \in f^{-1}$, então

$$(x_1,y)\in f$$
 e $(x_2,y)\in f$.

Pela injetividade de f, $x_1 = x_2$.

▶ Portanto, f^{-1} é uma função de B em A.

Definição

Se f é uma função bijetora de A em B, a relação inversa de f é uma função de B em A que denominamos **função inversa** de f e indicamos por f^{-1} .

Determinando Inversas

Regra Prática: Dada a função bijetora f de A em B, definida pela sentença y = f(x), para obtermos a sentença aberta que define f^{-1} , procedemos do seguinte modo:

A partir de y = f(x), isolamos a variável x e escrevemos uma sentença da forma $x = f^{-1}(y)$.

- 1. A função f(x) = 3x 4 é bijetora em \mathbb{R} e, em particular, em qualquer domínio contido em \mathbb{R} .
 - Com efeito, f é injetora pois dados quaisquer x_1 e x_2 em \mathbb{R} , temos

$$f(x_1) = f(x_2) \Leftrightarrow 3x_1 - 4 = 3x_2 - 4$$

$$\Leftrightarrow 3x_1 - 4 + 4 = 3x_2 - 4 + 4$$

$$\Leftrightarrow \frac{1}{3} \cdot 3x_1 = \frac{1}{3} \cdot 3x_2$$

$$\Leftrightarrow x_1 = x_2.$$

▶ f é sobrejetora, pois dado qualquer $y \in \mathbb{R}$, temos que existe $x \in \mathbb{R}$ tal que y = 3x - 4. Basta resolver

$$y = 3x - 4 \Leftrightarrow 3x = y + 4$$

 $\Leftrightarrow x = \frac{y + 4}{3}.$

Assim,
$$f\left(\frac{y+4}{3}\right) = y e Im_f = \mathbb{R}$$
.

- Portanto, a inversa da função f, bijetora em \mathbb{R} , dada por f(x) = 3x 4 é $f^{-1}(y) = \frac{y+4}{3}$.
- ► Com ela, podemos decodificar os blocos codificados.

$$f^{-1}(32) = \frac{32+4}{3} = 12.$$

$$f^{-1}(2) = \frac{2+4}{3} = 2.$$

$$f^{-1}(2) = \frac{2+4}{3} = 2$$

Até obter a sequência original:

1227182529241627101510279914993022109910272914

Com a sequência e a tabela, obtemos a mensagem dada: 'Criptografar é uma arte'.

1227182529241627101510279914993022109910272914

Correspondência entre cada letra do alfabeto e um número maior ou igual a 10																
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Q R S T U V W X Y Z			Correspondência entre cada letra do alfabeto e um número maior ou igual a 10													
Q R S T U V W X Y Z	Р	0	N	М	L	K	J	Τ	Н	G	F	Е	D	C	В	Α
4 11 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	4 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
26 27 28 29 30 31 32 33 34 35						_	Z	Υ	Χ	W	V	U	Т	S	R	Q
20 27 20 27 30 31 32 33 31 33							35	34	33	32	31	30	29	28	27	26

Para se aprofundar mais, leia 'CRIPTOGRAFIA: UMA POSSIBILIDADE PARA O ENSINO DE FUNÇÃO INVERSA' (Click para baixar)

Compostas e Inversas

Teorema 2

Seja f uma função bijetora de A em B. Se f^{-1} \acute{e} a função inversa de f, então para todo $x \in A$ e todo $y \in B$:

$$f^{-1} \circ f(x) = x$$
 e $f \circ f^{-1}(y) = y$.

Demonstração:

- ▶ De fato, seja $(x, y) \in f$. Então y = f(x) e $x = f^{-1}(y)$.
- Com isso,

$$f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}(y) = x,$$

 $f \circ f^{-1}(y) = f(f^{-1}(y)) = f(x) = y,$

como queríamos demonstrar.

Recíproca do Teorema 2

Teorema 3

Seja f uma função bijetora de A em B. Se g \acute{e} uma função de B em A, tal que para todo $x \in A$ e todo $y \in B$ tem-se

$$g \circ f(x) = x$$
 e $f \circ g(y) = y$,

então $g = f^{-1}$.

Demonstração:

- As funções g e f^{-1} possuem o mesmo domínio e o mesmo contra-domínio.
- ▶ Além disso, para todo $y \in B$, como f(x) = y, temos que

$$g(y) = g(f(x)) = x = f^{-1}(y).$$

▶ Logo, $q = f^{-1}$.

Exponenciais e Logaritmos

Exemplo 6

As funções exponenciais e logarítmicas de **mesma base** são inversas uma da outra.

Exponenciais e Logaritmos

Exemplo 6

As funções exponenciais e logarítmicas de mesma base são inversas uma da outra.

- $lackbox{ De fato, sejam }g:\mathbb{R}\to[0,\infty)\ {
 m e}\ f:[0,\infty)\to\mathbb{R}, {
 m dadas\ por}\ f(x)=\log_ax\ {
 m e}\ g(x)=a^x.$
- Temos que

$$f \circ g(x) = \log_a a^x = x \log_a a = x * 1 = x,$$

$$g \circ f(x) = a^{\log_a x} = x.$$

▶ Pelo Teorema 2, $g = f^{-1}$ e $f = g^{-1}$.

Equações e Inequações

Equações Exponenciais

Sabendo que as funções exponenciais e logarítmicas de **mesma base** são inversas uma da outra, podemos resolver equações exponenciais sem que os dois lados da equação seja escrito na mesma base.

Exemplo 7

Para resolver a equação $2^x=3$, basta calcular o logaritmo de base 2 dos dois lados da equação:

$$2^{x} = 3 \Leftrightarrow log_{2}2^{x} = log_{2}3$$
$$\Leftrightarrow x * log_{2}2 = log_{2}3$$
$$\Leftrightarrow x = log_{2}3.$$

Exercício

Exercício 1

Resolva a equação exponencial $5^{2x-3} = 3$.

Exemplo 8

Resolva a equação $\log_3(2x-3) = \log_3(4x-5)$.

Exemplo 8

Resolva a equação $log_3(2x - 3) = log_3(4x - 5)$.

Como a função $\log_3 x$ é injetiva e seu domínio é o conjunto $(0, \infty)$,

$$\log_3(2x-3) = \log_3(4x-5) \Leftrightarrow 2x-3 = 4x-5 > 0$$
$$\Leftrightarrow 4x-2x = 5-3$$
$$\Leftrightarrow 2x = 2$$
$$\Leftrightarrow x = 1.$$

Para x = 1, temos 2 * 1 - 3 = 4 * 1 - 5 = -1 < 0, logo a solução encontrada não é solução da equação proposta.

Exemplo 9

Resolva a equação $\log_2(3x+1)=4$.

Exemplo 9

Resolva a equação $log_2(3x + 1) = 4$.

Pela definição,

$$\log_2(3x+1) = 4 \Leftrightarrow 2^4 = 3x+1$$
$$\Leftrightarrow 3x = 16-1$$
$$\Leftrightarrow 3x = 15$$
$$\Leftrightarrow x = 5.$$

Inequações Exponenciais

Resolva a inequação $3^{2-3x} < \frac{1}{4}$.

Inequações Exponenciais

Exemplo 10

Resolva a inequação $3^{2-3x} < \frac{1}{4}$.

Como a = 3 > 1, a função $\log_3 x$ é crescente. Assim,

$$3^{2-3x} < \frac{1}{4} = 4^{-1} \Leftrightarrow \log_3 \left(3^{2-3x}\right) < \log_3 4^{-1}$$
$$\Leftrightarrow 2 - 3x < -\log_3 4$$
$$\Leftrightarrow 3x > 2 + \log_3 2^2$$
$$\Leftrightarrow x > \frac{2 + 2\log_3 2}{3}.$$

Obs: Há outro jeito de resolver, veja na bibliografia indicada.

Exemplo 11

Resolva a inequação $\log_{1/2}(2x-1) < \log_{1/2}6$.

Exemplo 11

Resolva a inequação $\log_{1/2}(2x-1) < \log_{1/2} 6$.

Como $a\frac{1}{2} < 1$, a função $\log_{1/2} x$ é decrescente. Assim,

$$\begin{split} \log_{1/2}(2x-1) &< \log_{1/2} 6 \Leftrightarrow 2x-1 > 6 \\ &\Leftrightarrow 2x > 7 \\ &\Leftrightarrow x > \frac{7}{2}. \end{split}$$

Aplicações

Crescimento de Bactérias - Modelo Malthusiano

Exercício 2

O crescimento de certa cultura de bactérias obedece à função $X(t) = Ce^{kt}$, em que X(t) é o número de bactérias no tempo t = 0; C e k são constantes positivas (e é a base do logaritmo neperiano). Verificando que o número inicial de bactérias X(0) duplica em 4 horas, quantas delas se pode esperar no fim de 6 horas?

Crescimento de Bactérias - Modelo Malthusiano

Exercício 2

O crescimento de certa cultura de bactérias obedece à função $X(t) = Ce^{kt}$, em que X(t) é o número de bactérias no tempo t = 0; C e k são constantes positivas (e é a base do logaritmo neperiano). Verificando que o número inicial de bactérias X(0) duplica em 4 horas, quantas delas se pode esperar no fim de 6 horas?

Resposta: O número de bactérias é $2\sqrt{2}$ vezes o valos inicial.

Decaimento Radioativo

Exercício 3

Uma substância radioativa está em processo de decaimento, de modo que no instante t a quantidade não decaída é $A(t) = A(0) \cdot e^{-3t}$, em que A(0) indica a quantidade da substância no instante t=0. Calcule o tempo necessário para que a metade da quantidade inicial se decaia.

Decaimento Radioativo

Exercício 3

Uma substância radioativa está em processo de decaimento, de modo que no instante t a quantidade não decaída é $A(t) = A(0) \cdot e^{-3t}$, em que A(0) indica a quantidade da substância no instante t=0. Calcule o tempo necessário para que a metade da quantidade inicial se decaia.

Resposta: O tempo necessário é de $ln(\sqrt[3]{2})$ u.m. (unidades de medida)

População - Modelo Logístico

Uma população com frequência cresce exponencialmente em seus estágios iniciais, seguindo o modelo de Malthus, mas em dado momento se estabiliza e se aproxima de sua capacidade de suporte por causa dos recursos limitados. Para refletir que a taxa de crescimento diminui quando a população P aumenta e torna-se negativa quando P ultrapassa sua **capacidade de suporte** K, a expressão mais simples é dada pelo modelo conhecido como Modelo Logístico

$$P(t) = \frac{K}{1 + Ae^{-kt}},$$

onde $A = \frac{K - P_0}{P_0}$, P_0 é a população inicial e k é a taxa de crescimento.

População - Modelo Logístico

Exercício 4

Um rebanho de cervos é introduzido em uma ilha. A população inicial é de 500 indivíduos e estima-se que a população que se manterá constante a longo prazo será de 2.000 indivíduos. Se o tamanho da população é dado pela função de crescimento logístico

$$N(t) = \frac{2000}{1 + 3e^{-0.05t}},$$

após quantos anos o número de cervos será aproximadamente 950 indivíduos?

População - Modelo Logístico

Exercício 4

Um rebanho de cervos é introduzido em uma ilha. A população inicial é de 500 indivíduos e estima-se que a população que se manterá constante a longo prazo será de 2.000 indivíduos. Se o tamanho da população é dado pela função de crescimento logístico

$$N(t) = \frac{2000}{1 + 3e^{-0.05t}},$$

após quantos anos o número de cervos será aproximadamente 950 indivíduos? **Resposta:** Em aproximadamente 20 anos.

Juros Compostos

Exercício 5

Uma certa quantia de dinheiro P é investida a uma taxa anual de juros de 4,5%. Quantos anos (com aproximação na ordem de décimos de ano) levaria para o montante inicial dobrar, assumindo que a capitalização dos juros seja trimestral?

Obs: Use a fórmula
$$A(t) = P\left(1 = \frac{r}{n}\right)^{nt}$$
.

Juros Compostos

Exercício 5

Uma certa quantia de dinheiro P é investida a uma taxa anual de juros de 4,5%. Quantos anos (com aproximação na ordem de décimos de ano) levaria para o montante inicial dobrar, assumindo que a capitalização dos juros seja trimestral?

Obs: Use a fórmula $A(t) = P\left(1 = \frac{r}{n}\right)^{nt}$.

Resposta: Levaria aproximadamente 15, 5 anos.