1. Let $\mathcal{F}:\mathbb{C}^N\to\mathbb{C}^N$ be the operator defined by

$$\begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix} \mapsto \begin{bmatrix} X_0 \\ \vdots \\ X_{N-1} \end{bmatrix}$$

where

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}.$$

This is the discrete Fourier transform. Define the map $\mathcal{D}: \mathbb{C}^N \to \mathbb{C}^N$ given by

$$\begin{bmatrix} X_0 \\ \vdots \\ X_{N-1} \end{bmatrix} \mapsto \begin{bmatrix} x_0 \\ \vdots \\ x_{N-1} \end{bmatrix}$$

where

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i2\pi kn/N}.$$

Construct the matrices with respect to the standard basis (for both the domain and codomain) for both \mathcal{D} and \mathcal{F} on \mathbb{C}^4 and use these matrices to show \mathcal{F} is invertible and its inverse is \mathcal{D} .

Hint: $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

Solution: Before we dive into a solution let's see where the discrete Fourier transform comes from. Let $C^1(\mathbb{T})$ denote the set of complex valued (or real valued) functions with domain [0,1] which are continuously differentiable and periodic, i.e.

$$C^1(\mathbb{T}) = \{x: [0,1] \to \mathbb{C} | x \text{ is continuously differentiable }, x(0) = x(1)\}$$

For a function in this space it is possible to represent it with a Fourier series, i.e.

$$x(t) = \sum_{n \in \mathbb{Z}} X[n]e^{i2\pi nt}$$

where

$$X[n] = \int_{0}^{1} x(t)e^{-i2\pi nt}dt$$
 (1)

Equation 1 is called the *Fourier transform* of the function x(t). The Fourier transform is interpreted as transforming a function over the *time domain* into a function over the *frequency domain*. Some applications include signal analysis and solving differential equations. The formula

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}$$

can be considered the Riemann sum approximation to the Fourier transform of x(t) where the function x(t) was sampled at a finite number of evenly spaced points. To find out more about the Fourier transform and the discrete Fourier transform consider looking here:

https://en.wikipedia.org/wiki/Fourier_transform

Now, onto the solution of problem 1. To construct the matrix of a linear transformation we apply the transformation to each basis element. For clarity, our basis is the following:

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

Below we expand out our formula for the entries of our vector.

$$\begin{split} X_0 &= x_0 e^{\frac{-i2\pi\cdot0\cdot0}{4}} + x_1 e^{\frac{-i2\pi\cdot0\cdot1}{4}} + x_2 e^{\frac{-i2\pi\cdot0\cdot2}{4}} + x_3 e^{\frac{-i2\pi\cdot0\cdot3}{4}} \\ X_1 &= x_0 e^{\frac{-i2\pi\cdot1\cdot0}{4}} + x_1 e^{\frac{-i2\pi\cdot1\cdot1}{4}} + x_2 e^{\frac{-i2\pi\cdot1\cdot2}{4}} + x_3 e^{\frac{-i2\pi\cdot1\cdot3}{4}} \\ X_2 &= x_0 e^{\frac{-i2\pi\cdot2\cdot0}{4}} + x_1 e^{\frac{-i2\pi\cdot2\cdot1}{4}} + x_2 e^{\frac{-i2\pi\cdot2\cdot2}{4}} + x_3 e^{\frac{-i2\pi\cdot2\cdot3}{4}} \\ X_3 &= x_0 e^{\frac{-i2\pi\cdot3\cdot0}{4}} + x_1 e^{\frac{-i2\pi\cdot3\cdot1}{4}} + x_2 e^{\frac{-i2\pi\cdot3\cdot2}{4}} + x_3 e^{\frac{-i2\pi\cdot3\cdot3}{4}} \end{split}$$

Upon inspection, we see that the matrix for the discrete Fourier transform is given by:

$$[\mathcal{F}] = \begin{bmatrix} e^{\frac{-i2\pi \cdot 0 \cdot 0}{4}} & e^{\frac{-i2\pi \cdot 0 \cdot 1}{4}} & e^{\frac{-i2\pi \cdot 0 \cdot 2}{4}} & e^{\frac{-i2\pi \cdot 0 \cdot 3}{4}} \\ e^{\frac{-i2\pi \cdot 1 \cdot 0}{4}} & e^{\frac{-i2\pi \cdot 1 \cdot 1}{4}} & e^{\frac{-i2\pi \cdot 1 \cdot 2}{4}} & e^{\frac{-i2\pi \cdot 1 \cdot 3}{4}} \\ e^{\frac{-i2\pi \cdot 2 \cdot 0}{4}} & e^{\frac{-i2\pi \cdot 2 \cdot 1}{4}} & e^{\frac{-i2\pi \cdot 2 \cdot 2}{4}} & e^{\frac{-i2\pi \cdot 2 \cdot 3}{4}} \\ e^{\frac{-i2\pi \cdot 3 \cdot 0}{4}} & e^{\frac{-i2\pi \cdot 3 \cdot 1}{4}} & e^{\frac{-i2\pi \cdot 3 \cdot 2}{4}} & e^{\frac{-i2\pi \cdot 3 \cdot 3}{4}} \end{bmatrix}$$

Applying Euler's Formula gives us the following:

$$[\mathcal{F}] = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & -i & -1 & i \ 1 & -1 & 1 & -1 \ 1 & i & -1 & -i \end{bmatrix}.$$

A similar process for \mathcal{D} gives us

$$[\mathcal{D}] = rac{1}{4} egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & i & -1 & -i \ 1 & -1 & 1 & -1 \ 1 & -i & -1 & i \end{bmatrix}.$$

Since a linear transformation is invertible if and only if its matrix is invertible, a quick matrix multiplication shows,

$$[\mathcal{F}][\mathcal{D}] = \mathrm{Id}$$

$$[\mathcal{D}][\mathcal{F}]=\mathrm{Id}.$$

Hence \mathcal{F} is an invertible transformation and \mathcal{D} is its inverse.

2. Let $\mathcal{A}(\mathbb{R})$ be the space of "formal" power-series over the reals i.e.

$$\mathcal{A}(\mathbb{R}) = \left\{ f(x) = \sum_{n=0}^{\infty} a_n x^n \, \middle| \, a_i \in \mathbb{R} \right\}$$

with the usual operations of addition and scalar multiplication on powerseries. Let $\frac{d}{dx}: \mathcal{A}(\mathbb{R}) \to \mathcal{A}(\mathbb{R})$ be the linear map of "differentiation", i.e.

$$\frac{d}{dx}(f(x)) = \sum_{n=1}^{\infty} na_n x^{n-1}.$$

Let $\mathcal{A}_{n.c}(\mathbb{R})$ be the space of formal power series without a constant term, i.e.

$$\mathcal{A}_{n.c}(\mathbb{R}) = \left\{ f(x) = \sum_{n=1}^{\infty} a_n x^n \, \middle| \, a_i \in \mathbb{R} \right\}$$

Construct an explicit isomorphism $T: \mathcal{A}_{n.c}(\mathbb{R}) \to \mathcal{A}(\mathbb{R})/\text{null}(\frac{d}{dx})$.

MATH 3210 Exam 1

Solution: As noted in class a possible candidate for our isomorphism is the following:

$$T: \sum_{n=1}^{\infty} a_n x^n \mapsto \sum_{n=1}^{\infty} a_n x^n + \text{null}\left(\frac{d}{dx}\right).$$

For notational convenience, let $\left[\sum_{n=0}^{\infty} b_n x^n\right]$ denote the element $\sum_{n=0}^{\infty} b_n x^n + \text{null}\left(\frac{d}{dx}\right)$ in the quotient space $A(\mathbb{R})/\text{null}\left(\frac{d}{dx}\right)$. Note that

$$\left[\sum_{n=0}^{\infty} b_n x^n\right] = \left[\sum_{n=0}^{\infty} c_n x^n\right]$$

if and only if there exits a constant $k \in \mathbb{R}$ such that

$$k = \sum_{n=0}^{\infty} b_n x^n - \sum_{n=0}^{\infty} c_n x^n.$$

Under this notation the map T looks rather natural since

$$T: \sum_{n=1}^{\infty} a_n x^n \mapsto \left[\sum_{n=1}^{\infty} a_n x^n \right] = \left[\sum_{n=0}^{\infty} a_n x^n \right]$$

where a_0 is any constant. We will now show that T is well-defined, linear, onto, and one to one.

T is well-defined:

Proof. This proof is more or less obvious, since if $\sum_{n=1}^{\infty} b_n x^n = \sum_{n=1}^{\infty} c_n x^n$ then $b_n = c_n$ for all $n \ge 1$. Hence, $0 = \sum_{n=1}^{\infty} b_n x^n - \sum_{n=1}^{\infty} c_n x^n$ and $[\sum_{n=1}^{\infty} b_n x^n] = [\sum_{n=1}^{\infty} c_n x^n]$.

T is linear:

Proof. Again, this proof is more or less obvious. By the definition of addition in the quotient space we have that for all $\lambda \in \mathbb{R}$.

$$\lambda \sum_{n=1}^{\infty} b_n x^n + \sum_{n=1}^{\infty} c_n x^n = \sum_{n=1}^{\infty} (\lambda b_n + c_n) x^n \mapsto \left[\sum_{n=1}^{\infty} (\lambda b_n + c_n) x^n \right] = \left[\lambda \sum_{n=1}^{\infty} b_n x^n + \sum_{n=1}^{\infty} c_n x^n \right]$$

and

$$\left[\lambda \sum_{n=1}^{\infty} b_n x^n + \sum_{n=1}^{\infty} c_n x^n\right] = \lambda \left[\sum_{n=1}^{\infty} b_n x^n\right] + \left[\sum_{n=1}^{\infty} c_n x^n\right].$$

MATH 3210 Exam 1

T is onto:

Proof. Let $\left[\sum_{n=0}^{\infty} a_n x^n\right] \in A(\mathbb{R})/\text{null}\left(\frac{d}{dx}\right)$. It is clear that $\sum_{n=1}^{\infty} a_n x^n$ maps to $\left[\sum_{n=0}^{\infty} a_n x^n\right]$ under T.

T is one to one:

Proof. Suppose $\sum_{n=1}^{\infty} b_n x^n \neq \sum_{n=1}^{\infty} c_n x^n$. There exists an $n \geq 1$ such that $b_n \neq c_n$. Hence there does not exist a constant $k \in \mathbb{R}$ such that $k = \sum_{n=1}^{\infty} b_n x^n - \sum_{n=1}^{\infty} c_n x^n$. Thus, $\left[\sum_{n=0}^{\infty} b_n x^n\right] \neq \left[\sum_{n=0}^{\infty} c_n x^n\right]$.

3. Determine the dimension of $U = \{[a_1, \dots, a_n]^\top | \sum_{i=1}^n a_i = 0\}$ as a subspace of \mathbb{R}^n .

Hint: Consider the linear map $S: \mathbb{R}^n \to \mathbb{R}$ given by $S([a_1, \dots, a_n]^\top) = \sum_{i=1}^n a_i$.

Solution: We will prove the result directly using rank-nullity.

Proof. Let S be the linear map $S: \mathbb{R}^n \to \mathbb{R}$ given by $S([a_1, \dots, a_n]^\top) = \sum_{i=1}^n a_i$. Notice that U = null(S). By rank-nullity,

$$\dim(\mathbb{R}^n) = \dim(\operatorname{ran}(S)) + \dim(\operatorname{null}(S)).$$

Note that $1 \in \operatorname{ran}(S)$ since $[1/n, \dots, 1/n]^{\top} \mapsto 1$ under S. Hence $\operatorname{dim}(\operatorname{ran}(S)) = 1$. Thus $\dim(U) = \dim(\operatorname{null}(S)) = n - 1 \text{ since } \dim(\mathbb{R}^n) = n.$

4. Let $P_n(x) = \{p(x) = a_n x^n + \ldots + a_1 x + a_0 \mid a_i \in \mathbb{R}, p : [0,1] \to \mathbb{R}\}$ be the space of polynomials of degree $\leq n$. Let $P_{per}(x)$ be the subspace of polynomials in $P_n(x)$ with periodic boundary conditions, i.e.

$$P_{\text{per}}(x) = \{ p \in P_n(x) \mid p(0) = p(1) \}.$$

Determine the dimension of $P_{per}(x)$ as a subspace of $P_n(x)$.

Hint: Try to construct a basis for $P_{per}(x)$ as a subspace of $P_2(x)$ and then generalize the argument for an arbitrary n. Alternatively, reduce to the above problem.

MATH 3210 Exam 1

Solution: We claim that if $P_{per}(x) \subseteq P_n(x)$ has dimension n. We will prove the result in two ways. One by constructing a basis and one by reducing to the above problem.

Solution 1: We will use the following lemma, the proof of which is easily seen from the fundamental theorem of algebra.

Lemma 1: Suppose p(x) is a non-constant polynomial with real coefficients. If p(x) has a zero at x = c then p(x) = (x - c)s(x) for some polynomial s(x) (with real coefficients).

We can now prove our main result. We will do so by constructing a basis for $P_{per}(x)$.

Proof. Note that $P_n(x)$ is an n+1 dimensional vector space. We claim $P_{per}(x)$ is n dimensional and that

$$\{v_0(x) = 1, v_1(x) = x(x-1), v_2(x) = x^2(x-1), \dots, v_{n-1}(x) = x^{n-1}(x-1)\}$$

is a basis for the space. Let $p(x) \in P_{per}(x)$ where p(x) is a non-constant polynomial. By our lemma,

$$p(x) = x(x-1)s(x)$$

where $deg(s(x)) \leq n-2$. We have that $s(x) = a_{n-2}x^{n-2} + \ldots + a_1x + a_0$, where each $a_i \in \mathbb{R}$ for each $0 \leq i \leq n-2$. Hence, if p(x) is a non-constant polynomial then

$$p(x) = x(x-1)s(x) = a_{n-2}x^{n-1}(x-1) + \dots + a_1x^2(x-1) + a_0x(x-1).$$

If p(x) is a constant polynomial then $p(x) = a \cdot 1$ for some $a \in \mathbb{R}$. Hence, $\{v_0(x), v_1(x), \dots, v_{n-1}(x)\}$ generates $P_{per}(x)$. Moreover $\{v_0(x), v_1(x), \dots, v_{n-1}(x)\}$ is a linearly independent set since if

$$0 = c_0 v_0(x) + c_1 v_1(x) \dots + c_{n-1} v_{n-1}(x)$$

is a n degree polynomial which is 0 for all $x \in [0, 1]$ then $c_0v_0(x) + c_1v_1(x) \dots + c_{n-1}v_{n-1}(x)$ must be the zero polynomial and $c_0 = c_1 = \dots = c_{n-1}$.

Solution 2: We will now give a solution by reduction to the above problem. Suppose $p(x) = a_n x^n + \ldots + a_1 x + a_0$ is a polynomial of degree n such that p(0) = p(1). Thus,

$$a_0 = p(0) = p(1) = a_n + \ldots + a_1 + a_0$$

i.e.

$$a_1 + \ldots + a_n = 0.$$

Hence, $p(x) = a_n x^n + \ldots + a_1 x + a_0$ has the property that p(0) = p(1) if and only if $a_1 + \ldots + a_n = 0$. Define a linear isomorphism $T: P_n(x) \to \mathbb{R}^{n+1}$ by

$$T(a_0 + a_1 x + \ldots + a_n x^n) = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

Let $U \subseteq \mathbb{R}^n$ be the subspace defined by

$$U = \left\{ [a_0, a_1, \dots, a_n]^\top \middle| \sum_{i=1}^n a_i = 0 \right\}.$$

Note that $T(P_{per}(x)) = U$. This is now similar to the previous problem. Construct a linear operator $S: \mathbb{R}^{n+1} \to \mathbb{R}$ given by

$$S([a_0, a_1, \dots, a_n]) = \sum_{i=1}^n a_i$$

and note U = null(S). By rank-nullity

$$n + 1 = \dim(\operatorname{ran}(S)) + \dim(\operatorname{null}(S))$$

Hence U is n-dimensional and its isomorphic image, $P_{\rm per}(x)$, is n-dimensional.