

DROP TABLE

Решение кейса Curve

Постановка задачи

- Построение математической модели распределения голосов и выделения награды из общей эмиссии токенов
- Описание методов вычисления параметров модели
- Обозначение дальнейших шагов по улучшению модели

Поиск оптимального распределения голосов

- Prof функция прибыли одного пула
- Vol функция объема торгов за период
- TVL функция Total Value Locked
- С_і затрата токенов CRV для поддержания TVL на і-ом пуле.

$$f = \sum_{i=1}^{N} Prof(Vol(TVL(C_i))) \cdot (1 - R_i)$$

$$\begin{cases} f \to \max \\ \sum_{i=1}^{N} C_i \le E \end{cases}$$

Поиск оптимального размера награды

- \vec{C} результат некоторого голосования в DAO
- \vec{C}^* найденное "оптимальное" распределение голосов
- $P(\vec{C})$ прибыль платформы при заданном векторе распределения голосов

$$\Delta C = \|\vec{C}^* - \vec{C}\|$$
 $\pi = \frac{P(\vec{C})}{P(\vec{C}^*)}$
 $\Omega(L) = \pi(\Delta C(L))$

$$\varphi = \Omega(L) \cdot \sum_{i=1}^{N} Prof(Vol(TVL(C_i))) \cdot (1 - Ri)$$

$$\begin{cases} \varphi \to \max \\ \sum_{i=1}^{N} C_i \le E - L \end{cases}$$

Итерационный метод

- Нахождение оптимального вознаграждения
- Новые условия при итерациях
- Исследование метода на сходимость

Новое условие для задачи 1:

$$\sum_{i=1}^{N} C_i \le E - \mathsf{L}_1$$

Новое условие для задачи 2:

$$\sum_{i=1}^{N} C_i \le E - \mathsf{L}_2$$

Методы вычисления параметров

Параметр риска пула R_i

$$R_i = 1 - e^{-\frac{(r_i - r_f)}{\sigma_i}}$$

- r_i-средняя доходность пула в процентах
- r_f средняя доходность самого безрискового пула в процентах
- σ_i параметр, обратно пропорциональный волатильности активов в пуле

Зависимость прибыли пула от TVL

- Чем меньше проскальзывание при обмене, тем большее количество людей совершают обмены.
- Показатель TVL связан с проскальзыванием
- Прибыль пула зависит от количества обменов, так получаем зависимость прибыли пула от TVL

Зависимость TVL пула от инвестированных CRV

- Чем больше токенов CRV
 предлагает пул в качестве
 награды за предоставление
 ликвидности, тем больше
 людей вкладываются в пул
- Функция зависит от распределения токенов CRV по другим пулам
- Может быть найдена по историческим данным

Методы вычисления параметров

Метрика для вычисления **\(\Delta \)**С

- В простом случае выбираем метрику L₁ или L₂, однако в таком случае пулы для нас "безликие"
- На практике основной вклад будут вносить лишь часть наиболее важных пулов
- Разные распределения голосов могут приводить к одинаковой прибыли.

Зависимость отношения прибыли π от Δ С

- Используя исторические данные, можно вычислить и найти отношение оптимальной прибыли к реальной
- Зная результаты голосования за выбранный период можно найти **С**
- Имея данные зависимости, можно построить функцию отношения прибыли от нормы разности распределения голосов

Зависимость ∆С от инвестированных CRV

$$\Delta C = Ae^{-(\gamma L)}$$

- А, у параметры модели
- L затраченная на награждение сумма в CRV
- Значения параметров можно установить эмпирически

Преимущества нашей модели

- Абстракция
- Масштабируемость
- Интегрируемость
- Связь с реальными данными

Дальнейшие шаги развития модели

Создание модели распределения награды по участникам DAO

Добавление психологической составляющей в мат модель

Использование Quadratic Voting для оптимизации распределения

Тестирование модели на исторических данных

Команда

Буш Александр

Васюрин Кирилл

Дадашев Ролан

