

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (V1)

FEBRUARY/MARCH/FEBRUARIE/MAART 2016

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 16 pages. *Hierdie memorandum bestaan uit 16 bladsye.*

QUESTION 1/VRAAG 1

1.1 B $\checkmark\checkmark$ (2)

1.2 $\mathsf{D}\,\checkmark\!\checkmark$ (2)

1.3 B $\checkmark\checkmark$ (2)

1.4 $\mathsf{D} \checkmark \checkmark$ (2)

 $1.5 \qquad A \checkmark \checkmark \tag{2}$

 $1.6 \qquad C \checkmark \checkmark \tag{2}$

1.7 B√√ (2)

1.8 B ✓ ✓ (2)

1.9 $C \checkmark \checkmark$ (2)

1.10 A $\checkmark\checkmark$ (2) [20]

QUESTION 2/VRAAG 2

2.1 For the 5 kg mass/Vir die 5 kg massa:

2.1.1
$$T - f = ma$$

$$T - (0,4)(5)(9,8)\checkmark = 5a\checkmark....(1)$$

NOTE/LET WEL:

1 mark for any of the 2 formulae 1 punt vir enige van die 2 formules

For the 20 kg mass/Vir die 20 kg massa

$$mg - T = ma$$

$$20(9.8) - T = 20a\checkmark....(2)$$

$$176,4 = 25a$$

$$(1) + (2)$$

∴a = 7,06 (7,056) m·s⁻²
$$\checkmark$$

(5)

ACCEPT/AANVAAR (4 marks/4 punte)

$$F_{net} = ma$$

$$Mg - f = (M + m) a \checkmark$$

$$[20(9,8) - (0,4)(5)(9,8)]\checkmark = 25a\checkmark$$

(4)

2.1.2 POSITIVE MARKING FROM QUESTION 2.1.1 POSITIEWE NASIEN VANAF VRAAG 2.1.1

OPTION 1/OPSIE 1

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

$$= 0\checkmark + (2)(7,056)(6)\checkmark$$

$$v_f = 9.20 \text{ m} \cdot \text{s}^{-1} \checkmark$$

POSITIVE MARKING FROM QUESTION 2.1.1 POSITIEWE NASIEN VANAF VRAAG 2.1.1 OPTION 2/OPSIE 2

The 5 kg mass travels as fast as the 20 kg mass

Die 5 kg massa beweeg net so vinnig soos die 20 kg massa

 $W_{net} = \Delta K \checkmark$

 $(5)(7,056)(6\cos 0^{\circ})\sqrt{=\frac{1}{2}(5)}(v_f^2-0)\sqrt{}$

 $v_f = 9.20 \text{ m} \cdot \text{s}^{-1} \checkmark$

OPTION 3/OPSIE 3

For the 20 kg mass/Vir die 20 kg massa

$$W_{net} = \Delta K \checkmark$$

$$Mg - T = Ma$$

$$(20)(9,8) - T = (20)(7,056)$$

T = 54.88 N

$$W_{net} = \Delta K$$

$$W_T + W_q = \frac{1}{2}m(v_f^2 - v_i^2)$$

 $(54,88)(6)(\cos 180) + 20(9,8)(6)(\cos 0) = \frac{1}{2}(20) (v_f^2 - 0)$

 $v_f = 9,202 \text{ m} \cdot \text{s}^{-1} \checkmark$

OPTION 4/OPSIE 4

$$\begin{split} W_{nc} &= \Delta K + \Delta U \checkmark \\ W_{nc} &= f_k \Delta x cos\theta = \mu_k \ N \Delta x cos\theta = \Delta U + \Delta K \\ \underline{(0,4)(5)(9,8)(6)cos180^{\circ}}\checkmark &= (20)(9,8)(0-6) + \frac{1}{2} (25)(v_f^2 - 0) \checkmark \\ -117,6 &= (20)(9,8)(-6) + \frac{1}{2} (25)(v_f^2 - 0) \\ v_f &= 9.202 \ m \cdot s^{-1} \checkmark \end{split}$$

(4)

2.1.3 6 m√ (1)

2.2

2.2.1 Each body in the universe attracts every other body with a <u>force that is</u> directly proportional to the product of their masses ✓ and <u>inversely proportional to the square of the distance between their centres</u>. ✓

Elke liggaam in die heelal trek elke ander liggaam aan met 'n <u>krag wat direk eweredig is aan die produk van hul massas</u> ✓ en <u>omgekeerd eweredig is aan die kwadraat van die afstand tussen hul middelpunte</u>. ✓

(2)

2.2.2 $F = \frac{Gm_1m_2}{r^2} \checkmark$

On the mountain/Op die berg

$$F_g = \frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})(65)}{(6.38 \times 10^6 + 6 \times 10^3)^2 \checkmark}$$
= 627,2 N

= 9.8 N√

(6) **[18]**

QUESTION 3/VRAAG 3

3.1

3.1.1 **OPTION 1/OPSIE 1**

Upwards positive/Opwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $v_f^2 = (-2)^2 + 2(-9.8)(-45) \checkmark$
 $v_f = 29.76 \text{ m} \cdot \text{s}^{-1} \checkmark$

Downwards positive/Afwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $v_f^2 = (2)^2 + 2(9.8)(45) \checkmark$
 $v_f = 29.76 \text{ m·s}^{-1} \checkmark (29.77 \text{ m·s}^{-1})$

OPTION 2/OPSIE 2

Upwards positive/Opwaarts positief:

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \sqrt{1}$ for either equation/vir beide vergelykings - $45 = -2\Delta t + \frac{1}{2}(-9.8)\Delta t^2$ - $4.9 \Delta t^2 - 2\Delta t + 45 = 0$ $4.9 \Delta t^2 + 2\Delta t - 45 = 0 \sqrt{1}$ $\Delta t = 2.83$

$$v_f = v_i + a \Delta t$$

 $v_f = 0 + (-9.8)(2.83)$
 $v_f = -29.73 \text{ m s}^{-1} \checkmark$

Downwards positive/Afwaarts positief:

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ for either equation/vir beide vergelykings $45 = 2\Delta t + \frac{1}{2}(9,8)\Delta t^2$ $4,9 \Delta t^2 + 2\Delta t - 45 = 0 \checkmark$ $\Delta t = 2.83$

 $v_f = v_i + a \Delta t$ $v_f = 0+(9,8)(2,83)$ $v_f = 29,73 \text{ m s}^{-1} \checkmark$

OPTION 3/OPSIE 3

Downwards positive/Afwaarts positief:

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$ for either equation/vir beide vergelykings $45 = 2\Delta t + \frac{1}{2}(9.8)\Delta t^2$ $4.9 \Delta t^2 + 2\Delta t - 45 = 0$

$$\Delta t = 2.83$$

$$\Delta v = \left(\frac{v_i + v_f}{\Delta t}\right) \Delta t$$

$$45 = \frac{2 + v_f}{2} 2,83$$

$$v_f = 29,80 \text{m s}^{-1} \checkmark$$

Upwards positive/Opwaarts positief:

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ for either equation vir beide vergelykings $-45 = -2\Delta t + \frac{1}{2} (-9,8) \Delta t^2$ $-4,9 \Delta t^2 - 2\Delta t + 45 = 0$ $4,9 \Delta t^2 + 2\Delta t - 45 = 0$ $\Delta t = 2,83$ $\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$ $-45 = \frac{-2 + v_f}{2} \quad 2,83 \checkmark$

$$v_f = -29.80 \text{m s}^{-1} \checkmark$$

OPTION 4/OPSIE 4

E_{mech at top} = E mech at surface of water $\frac{1}{2} \text{ mv}_i^2 + \text{mgh}_i = \frac{1}{2} \text{ mv}_f^2 + \text{mgh}_f \checkmark$ $\frac{1}{2} (2)^2 + 9.8(45) = \frac{1}{2} \text{ v}_f^2 + 0 \checkmark$ $\text{v}_f = 29.76 \text{ m·s}^{-1} \checkmark$

OPTION 5/OPSIE 5

 $\overline{W}_{net} = : \Delta K \checkmark$ $F_g \Delta h \cos \theta = \frac{1}{2} m (v_f^2 - v_i^2)$ $mg \Delta h \cos \theta = \frac{1}{2} m (v_f^2 - v_i^2)$ $9.8(45) \cos 0 = \frac{1}{2} (v_f^2 - 2^2) \checkmark$ $v_f = 29.76 \text{ m} \cdot \text{s}^{-1} \checkmark$

(3)

3.1.2 POSITIVE MARKING FROM 3.1 POSITIEWE NASIEN VANAF 3.1 OPTION 1/OPSIE 1

Upwards positive/Opwaarts positief:

The balls hit the water at the same instant./Die balle tref die water gelyktydig

 $v_f = v_i + a\Delta t \checkmark$

Ball/Bal A

 $-29.76 = -2+(-9.8) \Delta t$

 $\Delta t = 2.83 \, s \, \checkmark$

∴ for ball/vir bal B

 $\Delta t_{\rm B} = 2.83 - 1 = 1.83 \, {\rm s}$

∴ for ball/vir bal B

 $\Delta t_B = 2.83 - 1 = 1.83 \text{ s} \checkmark$

POSITIVE MARKING FROM 3.1 POSITIEWE NASIEN VANAF

3.1

OPTION1/OPSIE 1

Downwards positive/Afwaarts positief

The balls hit the water at the same instant./Die balle tref die water gelyktydig

 $v_f = v_i + a\Delta t \checkmark$

Ball/Bal A

 $29,76 = 2 + (9,8) \Delta t$

 $\Delta t = 2.83 s$ ✓

∴ for ball/vir bal **B**

 $\Delta t_B = 2.83 - 1 = 1.83 \text{ s}$

∴ for ball/vir bal B

 $\Delta t_{\rm B} = 2.83 - 1 = 1.83 \, {\rm s} \, \checkmark$

OPTION 2

Upwards positive/Opwaarts positief:

Ball/Bal A

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$-45 = -2\Delta t + \frac{1}{2}(-9.8)\Delta t^2$$

$$-4,9 \Delta t^2 - 2\Delta t + 45 = 0$$

$$4.9 \Delta t^2 + 2\Delta t - 45 = 0$$

∴ for ball/vir bal B

 $\Delta t_{\rm B} = 2.83 - 1 = 1.83 \, {\rm s} \, \checkmark$

Downwards positive/Afwaarts positief:

 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$

 $45 = 2\Delta t + \frac{1}{2}(9.8)\Delta t^2$

 $4.9 \Delta t^2 + 2\Delta t - 45 = 0$

Δt = 2,83 ✓

∴ for ball/vir bal B

 $\Delta t_{\rm B} = 2.83 - 1 = 1.83 \, {\rm s} \, \checkmark$

OPTION 3

Downwards positive/Afwaarts positief:

Ball/Bal A

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$45 = \frac{2+29,76}{2} \Delta t$$

∴ for ball/vir bal B

$$\Delta t_B = 2.83 - 1 = 1.83 \text{ s} \checkmark$$

Upwards positive/Opwaarts positief:

Ball/Bal A

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$-45 = \frac{-2 - 29,76}{2} \Delta t$$

$$\Delta t = 2.83 \checkmark$$

∴ for ball/vir bal B

$$\Delta t_{\rm B} = 2.83 - 1 = 1.83 \, \text{s} \, \checkmark$$

(3)

(5)

3.1.3 **POSITIVE MARKING FROM**3.2/POSITIEWE NASIEN VANAF 3.2

Upwards positive/Opwaarts positief:

$$\Delta t_B = 1.83s \checkmark$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$-45 \checkmark = v_i (1.83) + \frac{1}{2} (-9.8)(1.83)^2 \checkmark$$

$$v_i = -15,62 \text{ m} \cdot \text{s}^{-1} \checkmark$$

Downwards positive/Afwaarts positief:

$$\Delta t_B = 1.83s \checkmark$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$45 \checkmark = v_i (1.83) + \frac{1}{2}$$

$$(9.8)(1,83)^2 \checkmark$$

$$v_i = 15,62 \text{ m} \cdot \text{s}^{-1} \checkmark$$

3.2
POSITIVE MARKING FROM 3.1.2; 3.1.3/POSITIEWE NASIEN VANAF 3.1.2; 3.1.3
CONSIDER MOTION DOWNWARD AS POSITIVE/BESKOU BEWEGING AFWAARTS
AS POSITIEF

CRITERIA FOR MARKING/KRITERIA VIR NASIEN		
1 mark for each initial velocity shown/1 punt vir elke		
beginsnelheid aangedui	√ √	
(For/Vir A 2 m·s ⁻¹ for/vir B 15,62 m·s ⁻¹)		
Time of release of ball/Tyd van vrystelling van bal B t= 1s	✓	
Time of flight for both balls must be indicated as same on time		
axis/Vlugtyd van beide balle moet op dieselfde tydas aangetoon	V	
word (2,83 s)		
Shape: Lines must be parallel or nearly so/Vorm: Lyne moet	✓	
parallel of amper parallel wees	,	

CONSIDER MOTION UPWARD AS POSITIVE/BESKOU OPWAARTSE BEWEGING AS POSITIEF

CRITERIA FOR MARKING/KRITERIA VIR NASIEN		
1 mark for each initial velocity shown/1 punt vir elke beginsnelheid		
aangedui	√ √	
(For/Vir A -2 m·s ⁻¹ for/vir B -15,62 m·s ⁻¹)		
Time of release of ball/Tyd van vrystelling van bal B t= 1s	✓	
Time of flight for both balls must be indicated as same on time		
axis/Vlugtyd van beide balle moet op dieselfde tydas aangetoon	✓	
word (2,83 s)		
Shape: Lines must be parallel or nearly so/Vorm: Lyne moet parallel		
of amper parallel wees	ľ	

(5) **[16]**

QUESTION 4/VRAAG 4

4.1 <u>The total linear momentum in a closed system</u>✓ <u>remains constant</u>./is conserved ✓/<u>Die totale lineêre momentum in 'n geslote stelsel</u>✓ <u>bly</u> konstant/bly behoue. ✓

OR/OF

In a closed/isolated system, the total momentum before a collision is equal to the total momentum after the collision./In 'n geslote/geïsoleerde stelsel is die totale momentum voor 'n botsing gelyk aan die totale momentum na die botsing.

(2)

4.2

4.2.1
$$\sum p_i = \sum p_f \checkmark$$

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$

$$(m_1 + m_2) v_i = m_1 v_{1f} + m_2 v_{2f}$$

$$0\checkmark = (0.4)v_{1f} + 0.6 (4)\checkmark$$

 $v_{1f} = -6 \text{ m}\cdot\text{s}^{-1}$
= 6 m·s⁻¹ to the left/na links✓

NOTE: Mark for final answer to be forfeited if direction is not given/ **LET WEL:** Punt vir finale antwoord word verbeur indien rigting nie gegee word nie.

(4)

4.2.2 **OPTION 1/OPSIE 1**

$\Delta p = F_{\text{net}} \Delta t \checkmark$
$[(0,6)(4)-0]\checkmark = F_{\text{net}}(0,3)\checkmark$
F _{net} = 8 N√

OPTION 2/OPSIE 2

$$v_f = v_i + a \Delta t$$

 $4 = 0 + a(0,3)$
 $a = 13,33 \text{ m} \cdot \text{s}^{-2}$

OR/OF

$$\overline{m(v_f - v_i)} = F_{\text{net}} \Delta t \checkmark$$

$$0.6(4 - 0) \checkmark = F_{\text{net}}(0.3) \checkmark$$

$$F_{\text{net}} = 8 \text{ N} \checkmark$$

 $\boldsymbol{F}_{net} = \boldsymbol{ma}$

= 0,6(13,33)
$$F_{net} = 8 \text{ N} \checkmark$$

OPTION 3/OPSIE 3

$$\overline{\Delta p} = F_{\text{net}} \Delta t \checkmark$$

$$[(0,4)(6) - 0] \checkmark = F_{\text{net}} (0,3) \checkmark$$

$$F_{\text{net}} = 8 \text{ N} \checkmark$$

OPTION 4/OPSIE 4

$$v_f = v_i + a \Delta t$$

6 = 0 + a(0,3)
a = 20 m·s⁻²

OR/OF

$$\frac{\text{O(Vof)}}{\text{m(v}_f - \text{v}_i)} = \text{F}_{\text{net}} \Delta \text{t} \checkmark$$

$$0.4(6 - 0) \checkmark = \text{F}_{\text{net}}(0.3) \checkmark$$

$$\text{F}_{\text{net}} = 8 \text{ N} \checkmark$$

 $F_{net} = ma$

$$= 0.4(20)$$

F_{net} = 8 N \checkmark

4.3 No/Nee✓

(1) **[11]**

(4)

QUESTION 5/VRAAG 5

5.1 It is a ratio of two forces ✓ (hence units cancel out)./Dit is 'n verhouding van twee kragte ✓ (dus word eenhede uitgekanseleer) (1)

of

5.2 The net work done on an object is equal ✓ to the change in kinetic energy of the object ✓ / Die netto arbeid wat op 'n voorwerp verrig word, is gelyk ✓ aan die verandering in kinetiese energie van die voorwerp ✓

(2)

5.3

(4)

5.4 Fsin20° + N = mg \checkmark N = mg - Fsin20°

 $W_{fk} = fk\Delta x \cos \theta = \mu_k N\Delta x \cos \theta \checkmark$ $= \mu_k (mg - F\sin 20)(3)\cos\theta$ $= (0,2)[200(9,8) - F\sin 20](3)\cos180^{\circ} \checkmark$ $= (-1176 + 0,205 F) J \checkmark$ (4)

5.5 $W_{tot} = [W_g] + W_f + W_F \checkmark$ $0 \checkmark = [0] + [(-1176 + 0,205 F)] + [F (cos 20) (3) (cos 0)] \checkmark$ $F = 388.88 N \checkmark$

NOTE: Do not penalise if value of W_g is not indicated/

LET WEL: Moenie penaliseer indien die waarde van W_g nie aangedui word nie. (4)

[15]

QUESTION 6/VRAAG 6

6.1
$$v = f\lambda \checkmark$$

= $(222 \times 10^3)(1.5 \times 10^{-3})\checkmark$
= $333 \text{ m.s}^{-1} \checkmark$ (3)

6.2

(1)

6.2.2 POSITIVE MARKING FROM QUESTION 6.1/POSITIEWE NASIEN VANAF VRAAG 6.1

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{v}{v - v_{s}} f_{s} \checkmark$$

$$230,3 = \frac{333}{333 - v_{s}} (222) \checkmark$$

 $76689.9 - 230.3 v_s = 73926$

 $v = 12 \text{ m.s}^{-1} \checkmark$ (towards bat/na die vlermuis toe)

Notes/Notas:

• Any other Doppler formula, e.g./Enige ander Doppler-formule, bv.:

$$f_L = \frac{v - v_L}{v - v_s}$$
 - Max./Maks. $\frac{3}{4}$

• Marking rule 1.5: No penalisation if zero substitutions are omitted./Nasienreël 1.5: Geen penalisering indien nulvervangings uitgelaat is nie.

(6) [**10**]

QUESTION 7/VRAAG 7

- 7.1 The magnitude of the charges are equal ✓/ The balls repel each other with the same/identical force or force of equal magnitude ✓/ Die grootte van die ladings is gelyk ✓/ Die balle stoot mekaar af met dieselfde/identiese kragte of krag van dieselfde grootte. ✓
 - dieselfde grootte. ✓ (1)
- 7.2 The electrostatic force of attraction between two point charges is <u>directly</u> proportional to the product of the charges ✓ and <u>inversely proportional to the</u> square of the distance between them. ✓ /Die elektrostatiese aantrekkingskrag tussen twee puntladings is <u>direk eweredig aan die produk van die ladings</u>✓ en omgekeerd eweredig aan die kwadraat van die afstand tussen hulle.✓ (2)

7.3

7.3.1
$$T\cos 20^{\circ} = w\checkmark$$

= mg
= $(0,1)(9,8)\checkmark = 0.98 \text{ N}$
 $\therefore T = 1,04 \text{ N}\checkmark$ (3)

7.3.2 POSITIVE MARKING FROM 7.3/POSITIEWE NASIEN VANAF 7.3

$$F_{\text{electrostatic/elektrostaties}} = T \sin 20^{\circ} \checkmark$$

$$\frac{kQ_{1}Q_{2}}{r^{2}} \checkmark = (1,04)\sin 20^{\circ}$$

$$\frac{kQ_{1}Q_{2}}{r^{2}} = 0,356$$

$$\frac{(9 \times 10^{9})(250 \times 10^{-9})(250 \times 10^{-9})}{r^{2}} \checkmark = 0,356 \checkmark$$

$$\therefore r = 0,0397 \text{ m} \checkmark$$
(5)

QUESTION 8/VRAAG 8

8.1

Correct drawing of vectors E_{Q1} and $E_{Q2} \checkmark / Korrekte$ tekening van vektore E_{Q1} en $E_{Q2} \checkmark / I$

The fields due to the two charges add up because they come from the same direction. Hence the field cannot be zero./Die velde as gevolg van die twee ladings word bymekaar getel omdat hulle uit dieselfde rigting inwerk. Die veld kan dus nie nul wees nie.

(4)

8.2
$$E = k \frac{Q}{r^2} \checkmark$$

$$E_{-2,5\mu C} = k \frac{Q}{r^2} = \frac{(9 \times 10^9)(2.5 \times 10^{-6})}{(0.3)^2} = 250\ 000\ N.C^{-1}$$
 to the left/na links

$$E_{6 \mu C} = k \frac{Q}{r^2} = \frac{(9 \times 10^9)(6 \times 10^{-6})}{(1,3)^2} = 31 952,66 \text{ N.C}^{-1} \text{ to the left/} na links}$$

$$E_{P} = E_{6\mu C} + E_{-2,5\mu C} \checkmark$$
= 31 952,66 + 250 000
= 281 952,66 N.C⁻¹ \checkmark to the left/na links \checkmark (6)
[10]

QUESTION 9/VRAAG 9

9.1 9.1.1 $V = IR\sqrt{ }$ $= (0,2)(\underline{4+8})\sqrt{ }$

= 2,4 V√ (3)

9.1.2 **POSITIVE MARKING FROM QUESTION 9.1.1/POSITIEWE NASIEN VANAF** *VRAAG 9.1.1*

TNAAC 3.1.1	
V = IR	OR
2,4 =I ₂ (2) ✓	$I_2 = 6 \times 0.2 \checkmark$
I _{2Ω} = 1,2 A√	I ₂ = 1,2 A√
$I_T = I_2 + 0.2 \text{ A}\checkmark$	$I_T = I_2 + 0.2 \checkmark$
= 1,4 A√	= 1,4 A√

9.1.3 POSITIVE MARKING FROM QUESTION 9.1.2/POSITIEWE NASIEN VANAF VRAAG 9.1.2

VIVAAO 3.11.E	
OPTION 2/OPSIE 2	OR/OF
$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark$	$R_{P} = \frac{R_{1}R_{2}}{R_{1} + R_{2}} \checkmark$
$\frac{1}{R_p} = \frac{1}{12} + \frac{1}{2}$	$R_P = \frac{(12)(2)}{12+2}$
$R_P = 1.72 \Omega \checkmark$ $\varepsilon = I(R+r) \checkmark$	= 1,71 Ω√
= 1,4(1,72+ 0,5) \(\)	ε = I(R+r) √
= 3,11 V√	= 1,4(1,71+0,5) \(
	= 3,09 V√

OPTION 2/OPSIE 2

$$V_{int} = Ir\sqrt{10,10}$$

= (1,4)(0,5)
= 0,7 V\sqrt{10}
 $\epsilon = V_{ext/eks} + V_{int}$ \sqrt{10}
= 2,4 +0,7\sqrt{10}
= 3,1 V\sqrt{10}

(5)

(4)

Removing the 2 Ω resistor increases the total resistance of the circuit. \checkmark Thus the <u>total current decreases</u>, <u>decreasing the V_{int} (V_{lost}).</u> \checkmark Therefore the voltmeter reading increases. $V \checkmark / Wanneer$ die 2 Ω -resistor verwyder word, verhoog dit die totale weerstand van die kring. \checkmark Dus <u>verklein die totale stroom</u>, <u>wat die V_{int} (V_{verloor}) verlaag.</u> \checkmark Dus verhoog die voltmeterlesing V. \checkmark

(3) **[15]**

QUESTION 10/VRAAG 10

10.1

10.1.1 North pole/*Noordpool*✓ (1)

10.1.2 Q to $P\checkmark$ (1)

10.2

10.2.1 **OPTION 1/OPSIE 1**

$$I_{rms} = \frac{I_{max}}{\sqrt{2}} \checkmark$$

$$I_{rms} = \frac{8}{\sqrt{2}} \checkmark$$

$$= 5,66 \text{ A}$$

$$V_{rms} = I_{rms} \text{ R} \checkmark$$

$$220 = (5,66) \text{R} \checkmark$$

$$R = 38,87 \Omega \checkmark$$

$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$

$$220 = \frac{V_{max}}{\sqrt{2}} \checkmark$$

 $V_{max} = 311,12 V$

 $V_{max} = I_{max} R \checkmark$ 311,12 = (8)R ✓

 $R = 38,89 \Omega \checkmark$

10.2.2 **POSITIVE MARKING FROM QUESTION 10.4.1/POSITIEWE NASIEN** *VANAF VRAAG 10.4.1*

OPTION 1/OPSIE 1

$$P_{average} = V_{rms}I_{rms} \checkmark$$

= (220)(5,66) \checkmark
= 1 245,2 W

$$1245,2 = \frac{W}{7200} \checkmark$$

W = 8 965 440 J 🗸

$$P_{\text{average}} = I_{\text{rms}}^{2} R$$
= (5,66)²(38,89)
= 1245,86
E = Pt

= (1245,86)(7200) = 8970192J

1020

(5)

(5)

OPTION 2/OPSIE 2
$$P_{average} = I_{rms}^{2} R \checkmark$$

$$= (5,66)^{2} (38,87) \checkmark$$

$$= 1 245,22 W \checkmark$$

$$1245,22 = \frac{W}{7200} \checkmark$$

$$W = 8 965 584 J \checkmark$$

$$\frac{\text{OPTION 3/OPS/E 3}}{P_{\text{average}}} = \frac{V_{\text{rms}}^2}{R} \checkmark$$

$$P_{\text{average}} = \frac{220^2}{38,87} \checkmark$$

$$= 1245,18 W$$

$$P = \frac{W}{\Delta t} \checkmark$$

$$1245,18 = \frac{W}{7200} \checkmark$$

$$W = 8 965 296 J \checkmark$$

$$P_{\text{average}} = \frac{V_{\text{rms}}^2}{R}$$

$$P_{\text{average}} = \frac{220^2}{38,89}$$

$$= 1244,54 W$$

$$E = Pt$$

$$= (1244,54)(7200)$$

$$= 8960688 J$$

OPTION 3/OPSIE 3
$$W = I_{rms}^{2} R\Delta t$$

$$= \left(\frac{I_{max}}{\sqrt{2}}\right)^{2} R\Delta t$$

$$= \left(\frac{8}{\sqrt{2}}\right)^{2} (38,87)(7200)$$

$$W = 8 965 296 J \checkmark$$

(5) **[12]**

QUESTION 11/VRAAG 11

- 11.1 It is the minimum energy that an electron in the metal needs to be emitted from the metal surface. \(\sqrt{Dit} \) is die minimum energie wat 'n elektron in die metaal benodig om elektrone uit die metaaloppervlak vry te stel. ✓
- (2)

11.2 Frequency/Intensity √/Frekwensie/Intensiteit

- (1)
- 11.3 The minimum frequency required to remove an electron from the surface of the metal \(/ \) Die minimum frekwensie benodig om 'n elektron vanaf die oppervlak van die metaal te verwyder√
- (2)

11.4 POSITIVE MARKING FROM QUESTION 11.4/ POSITIEWE NASIEN VANAF VRAAG 11.4

$$\begin{array}{l} E = W_0 + E_k \\ \text{hf} = \text{hf}_0 + E_k \\ (6,63 \times 10^{-34})(6,50 \times 10^{14})\checkmark = (6,63 \times 10^{-34})(5,001 \times 10^{14}) \checkmark + \frac{1}{2}(9,11 \times 10^{-31})v^2 \checkmark \\ \therefore v = 4,67 \times 10^5 \text{ m} \cdot \text{s}^{-1} \checkmark \end{array}$$

$$E_{K} = \frac{1}{2} \, \text{mv}^{2} \, \checkmark$$

$$V = \sqrt{\frac{2E_{k}}{m}} = \sqrt{\frac{(2)(9.94 \times 10^{-20})}{9.11 \times 10^{-31}}} \checkmark$$

$$V = 4.67 \times 10^{5} \, \text{m} \cdot \text{s}^{-1} \, \checkmark$$
(5)

11.5 The photocurrent is directly proportional to the intensity of the incident light. ✓ ✓ / Die fotostroom is direk eweredig aan die intensiteit van die invallende

(2)[12]

TOTAL/TOTAAL: 150