MATEMÁTICAS III (MAT 023)¹

Guía n°1 - Transformaciones Lineales

2^{do} Semestre de 2015

1. Sea:

$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + 5z = 0\}$$

el subespacio de \mathbb{R}^3 tal que \mathcal{B} es una base de W. Considere $\mathcal{D} = \{(1,1), (2,1)\}$ base de \mathbb{R}^2 . Considere $T: W \to \mathbb{R}^2$ definida por T(x,y,z) = (x+y-z,3x-y+2z) tal que:

$$[T]_{\mathcal{B}}^{\mathcal{D}} = \begin{pmatrix} 1 & 2 \\ -3 & -1 \end{pmatrix}$$

Determine la base \mathcal{B} .

- 2. Sea W el subespacio de \mathbb{R}^3 generado por los vectores $\vec{v_1} = (1, -2, 1)$ y $\vec{v_2} = (0, -1, -1)$. Considere la función $T_W : \mathbb{R}^3 \to \mathbb{R}^3$ definida por $\vec{u} \mapsto T_W(\vec{u}) = \vec{v}$, donde \vec{v} es el vector $\vec{e}n$ W que se encuentra a menor distancia de \vec{u} .
 - (a) Demuestre que T_W es una transformación lineal de \mathbb{R}^3 en \mathbb{R}^3 .
 - (b) Hallar una fórmula explícita para T_W ; esto es, hallar $T_W(x, y, z)$.
 - (c) Calcule núcleo e imagen de T_W .
 - (d) Demuestre que, para todo $(x, y, z) \in \mathbb{R}^3$, se tiene que $(x, y, z) \perp (x, y, z) T_W(x, y, z)$.
 - (e) Sean \mathcal{C} la base canónica (ordenada) de \mathbb{R}^3 y $P = \begin{bmatrix} T_W \end{bmatrix}_{\mathcal{C}}^{\mathcal{C}}$. Calcule P^2 y P^T .
- 3. Considere el subespacio vectorial $W < \mathbb{R}_2[x]$ definido por:

$$W = \langle 1 - x^2, x + 2x^2 \rangle$$

Hallar explícitamente una transformación lineal $T : \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ de tal manera que la matriz asociada a T, respecto de las bases canónicas, sea diagonalizable y que -1, 1 sean sus valores propios, y además, que el espacio propio asociado a -1 sea W.

 $^{^1}$ @aam

4. Sean $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ una transformación lineal y:

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \right\}$$

una base ordenada de $M_2(\mathbb{R})$ tal que:

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix}$$

Determinar una base \mathcal{D} de $M_2(\mathbb{R})$ de modo que $[T]_{\mathcal{D}}^{\mathcal{D}}$ sea una matriz diagonal y compruebe que:

$$[T]_{\mathcal{D}}^{\mathcal{D}} = [1]_{\mathcal{B}}^{\mathcal{D}} \cdot [T]_{\mathcal{B}}^{\mathcal{B}} \cdot [1]_{\mathcal{B}}^{\mathcal{D}}$$

donde $1: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ es la transformación lineal identidad.

Indicación: El polinomio característico de T es $f_T(\lambda) = \lambda (\lambda - 4) (\lambda - 1)^2$.

5. Sea $C[-\pi, \pi]$ el espacio vectorial real de todas las funciones continuas en el intervalo $[-\pi, \pi]$. Sea W el subconjunto de $C[-\pi, \pi]$ que consta de todas las funciones f que satisfacen las tres ecuaciones:

$$\int_{-\pi}^{\pi} f(t) dt = 0, \qquad \int_{-\pi}^{\pi} f(t) \cos t dt = 0, \qquad \int_{-\pi}^{\pi} f(t) \sin t dt = 0$$

- (a) Verifique que W es un subespacio vectorial de $C[-\pi, \pi]$.
- (b) Demuestre que W contiene las funciones $f(x) = \cos(nx)$ y $f(x) = \sin(nx)$, para cada $n = 2, 3, \ldots$
- (c) Verifique que W no puede tener dimensión finita.
- (d) Sea $T:C[-\pi,\pi]\to C[-\pi,\pi]$ la transformación lineal definida por:

$$T(f) = \int_{-\pi}^{\pi} (1 + \cos(x - t)) f(t) dt, \quad f \in C[-\pi, \pi]$$

Calcule núcleo e imagen de T.

(e) Hallar todos los números reales $\lambda \neq 0$ y todas las funciones $f \neq 0$ en $C[-\pi, \pi]$ tales que $T(f) = \lambda f$.