Semestrálna práca

Modelovanie dynamiky NF- κB v bunke

Ševčovičová Zuzana

Úvod

Nukleárny faktor kappa B (NF- κ B) je kľúčový transkripčný faktor regulujúci široké spektrum bunkových procesov, vrátane imunitnej odpovede, apoptózy a bunkového cyklu. Aktivácia NF- κ B prebieha prostredníctvom signálnej dráhy zahŕňajúcej degradáciu inhibičného proteínu I κ B, čo umožňuje translokáciu NF- κ B do jadra a aktiváciu cieľových génov. Tento systém vykazuje dynamické oscilácie, ktoré sú kritické pre správne fungovanie bunky. Pri disregulácií dochádza k navodeniu patologických stavov, ako je rakovina alebo chronický zápal.

Cieľ práce: Cieľom semestrálnej práce je vytvoriť matematický model regulácie NF- κ B v bunke pomocou sústavy obyčajných diferenciálnych rovníc. Model by mal simulovať dynamickú hladinu NF- κ B, najmä jeho oscilácie v závislosti od negatívnej spätnej väzby jeho inhibičných regulačných proteínov.

Figure 1: Schéma $NF - \kappa B$ signálnej dráhy

1 Signálna dráha $NF - \kappa B$

Signálna dráha $NF - \kappa B$ môže byť formalizovaná a kvantitatívne skúmaná prostredníctvom systému obyčajných diferenciálnych rovníc. Model je typicky štruktúrovaný do dvoch hlavných kompartmentov: **aktivátory**, ktoré zahŕňajú IKK a $NF - \kappa B$, a **inhibítory**, reprezentované proteínmi $I\kappa B$.

V bunkách, ktoré sa nachádzajú v homeostatických podmienkach, bez pôsobenia stresových alebo stimulačných podnetov, zostáva $NF - \kappa B$ signálna dráha neaktívna. Nemodifikovaný inhibítor $I\kappa B$ sa viaže na $NF - \kappa B$ a vytvára komplex $NF - \kappa B: I\kappa B$. Tento komplex zabraňuje translokácii $NF - \kappa B$ do jadra a tým aj transkripcii jeho cieľových génov.

Po stimulácii extracelulárnymi ligandmi, ako sú TNF (tumor necrosis factor) alebo IL-1 (interleukin-1), dochádza k aktivácii IKK z jeho neaktívneho stavu. Aktivovaný IKK následne fosforyluje $I\kappa B$, čím sa tento inhibítor stáva cieľom pre proteazómom sprostredkovanú degradáciu. Degradáciou $I\kappa B$ sa uvoľňuje $NF - \kappa B$, ktorý exponuje svoju jadrnú lokalizačnú sekvenciu nevyhnutnú pre transport do jadra.

Po translokácii do jadra $NF - \kappa B$ indukuje transkripciu génov spojených s prozápalovou odpoveďou, ako aj génov kódujúcich $I\kappa B$. Novo syntetizovaný inhibítor $I\kappa B$ je následne translokovaný do jadra, kde sa viaže na $NF - \kappa B$ a vytvára komplex $NF - \kappa B$: $I\kappa B$. Tento komplex je exportovaný späť do cytoplazmy, čím sa uzatvára negatívna spätnoväzbová slučka signálnej dráhy.

2 Systém zohľadňujúci kompartmentalizáciu bunky

V modeli rozlišujeme cytoplazmatické a jadrové formy NF- κ B (označené ako N_c a N_n), $I\kappa$ B α (I_c a I_n) a ich komplexu ((N:I)_c a (N:I)_n) [1], [2], [3].

Regulačná a produkčná vrstva Produkcia inhibítora $I_{\kappa}B_{\alpha}$ je iniciovaná v jadre, kde dve molekuly transkripčne aktívneho $NF - \kappa B_n$ aktivujú gén pre $I_{\kappa}B_{\alpha}$, čo vedie k syntéze príslušnej mRNA (I_{mRNA}) rýchlosťou t_3 (rovnica 1). Táto mRNA následne podlieha degradácii s rýchlosťou d_5 (rovnica 2). V cytoplazme dochádza k translácii I_{mRNA} na proteín I_c rýchlosťou t_4 (rovnica 3). Vytvorený inhibítor sa môže viazať na voľný $NF - \kappa B_c$ v cytoplazme (asociácia a_1 , disociácia a_2) alebo na voľný $NF - \kappa B_n$ v jadre (asociácia a_3 , disociácia a_4), čím sa vytvára negatívna spätná väzba regulujúca aktivitu $NF - \kappa B$ (rovnice 4, 5).

$$G_{ON} + 2N_n \xrightarrow{t_3} G_{ON} + I_{mRNA} \tag{1}$$

$$I_{mRNA} \xrightarrow{d_5} \varnothing$$
 (2)

$$I_{mRNA} \xrightarrow{t_4} I_c$$
 (3)

$$N_c + I_c \underset{a_2}{\overset{a_1}{\rightleftharpoons}} (N:I)_c \tag{4}$$

$$N_n + I_n \stackrel{a_3}{\underset{a_4}{\longleftarrow}} (N:I)_n \tag{5}$$

Transportná vrstva Kľúčovým prvkom tohto modelu je transport molekúl medzi cytoplazmou a jadrom. Voľný $NF - \kappa B_c$ je transportovaný do jadra rýchlosťou k_1 (rovnica 6). Podobne, voľný inhibítor I_c vstupuje do jadra rýchlosťou k_2 (rovnica 7) a vystupuje z neho rýchlosťou k_3 (rovnica 8). Komplex $(N:I)_n$ vytvorený v jadre je exportovaný do cytoplazmy rýchlosťou k_4 (rovnica 9), čím sa z jadra odstraňuje aj aktívny $NF - \kappa B_n$.

$$N_c \xrightarrow{k_1} N_n$$
 (6)

$$I_c \xrightarrow{k_2} I_n$$
 (7)

$$I_n \xrightarrow{k_3} I_c$$
 (8)

$$(N:I)_n \xrightarrow{k_4} (N:I)_c$$
 (9)

Stimulačná vrstva Prozápalové stimuly aktivujú kinázu IKK, ktorá následne indukuje degradáciu cytoplazmatického komplexu $(N:I)_c$ rýchlosťou d_1 , čo vedie k uvoľ-

neniu voľného $NF - \kappa B_c$ do cytoplazmy, ktorý môže byť následne transportovaný do jadra. Následne jadrovo lokalizovaný $NF - \kappa B_n$ aktivuje transkripciu I_m (rovnica 1)

$$(N:I)_c + IKK \xrightarrow{d_1} N_c + IKK \tag{10}$$

Degradácia a fosforylácia Okrem transportných procesov zohľadňuje model aj degradáciu a fosforyláciu kľúčových molekúl. Cytoplazmatický inhibítor I_c je fosforylovaný aktivovaným IKK, čo vedie k jeho degradácii rýchlosťou d_1 (rovnica 11). Táto degradácia je nevyhnutná pre uvoľnenie $NF - \kappa B_c$ a jeho presun do jadra. Degradácii podlieha aj cytoplazmatický komplex $(N:I)_c$ rýchlosťou d_2 (rovnica 12), čím sa reguluje celková hladina aktívnych molekúl v bunke.

$$I_c \xrightarrow{d_1} \varnothing$$
 (11)

$$(N:I)_c \xrightarrow{d_2} \varnothing$$
 (12)

2.1 Diferenciálne rovnice modelu

Na základe vyššie opísaných reakcií môžeme odvodiť systém diferenciálnych rovníc, ktorý popisuje časovú dynamiku jednotlivých zložiek modelu:

$$\frac{dN_c}{dt} = -a_1 N_c I_c + (a_2 + d_1)(NI)_c - k_1 N_c \tag{13}$$

$$\frac{dN_n}{dt} = k_1 N_c - a_3 N_n I_n + a_4 (NI)_n \tag{14}$$

$$\frac{dI_c}{dt} = t_4 I_m - a_1 N_c I_c + a_2 (NI)_c - k_2 I_c + k_3 I_n \tag{15}$$

$$\frac{dI_n}{dt} = k_2 I_c - k_3 I_n - a_3 N_n I_n + a_4 (NI)_n \tag{16}$$

$$\frac{dI_m}{dt} = t_3 N_n^2 - d_5 I_m \tag{17}$$

$$\frac{d(NI)_c}{dt} = a_1 N_c I_c - (a_2 + d_1)(NI)_c + k_4 (NI)_n$$
(18)

$$\frac{d(NI)_n}{dt} = a_3 N_n I_n - (a_4 + k_4)(NI)_n \tag{19}$$

2.2 Analýza Dynamiky NF-κB signalizačnej dráhy

2.2.1 Default počiatočné podmienky simulácie:

- $N=1.0\,\mu M$ cytoplazmatický NF- $\kappa {\rm B}$
- $N_n = 0.0 \,\mu M$ jadrový NF- κB
- $I=0.0\,\mu M$ cytoplazmatický I $\kappa \mathrm{B}$
- $I_n = 0.0 \,\mu M$ jadrový I κ B
- $I_m = 0.0 \,\mu M \mathrm{I}\kappa\mathrm{B} \;\mathrm{mRNA}$
- $NI = 0.0 \,\mu M$ cytoplazmatický komplex NF- $\kappa {\rm B}/{\rm I}\kappa {\rm B}$
- $NIn = 0.0 \,\mu M$ jadrový komplex NF- κ B/I κ B

2.2.2 Default hodnoty parametrov:

Par.	Hodn.	Popis
$\overline{a_1}$	30.0	Rýchlosť asociácie NF- κB a I $\kappa B \alpha$ v cytoplazme
a_2	0.03	Rýchlosť disociácie komplexu NF- κ B:I κ B α v cytoplazme
a_3	30.0	Rýchlosť asociácie NF- κB a I $\kappa B\alpha$ v jadre
a_4	0.03	Rýchlosť disociácie komplexu NF- κ B: $I\kappa$ B α v jadre
d_1	0.525	Rýchlosť IKK-dependentnej degradácie
d_5	0.017	Rýchlosť degradácie I κ B α mRNA
t_3	1.03	Rýchlosť transkripcie I κ B α mRNA
t_4	0.24	Rýchlosť translácie I $\kappa B\alpha$ proteínu z mRNA
k_1	5.4	Rýchlosť importu NF- κB do jadra
k_2	0.018	Rýchlosť importu I κ B α do jadra
k_3	0.012	Rýchlosť exportu I κ B α z jadra
k_4	0.83	Rýchlosť exportu komplexu NF- $\kappa B{:}I\kappa B\alpha$ z jadra

2.2.3 Vizualizácia dynamiky:

Obrázky 2, 6, 7

- Full Dynamics graf vizualizujúci časový priebeh koncentrácie všetkých jednotlivých molekulárnych druhov v systéme.
- Total Concentrations graf zobrazujúci celkové koncentrácie jednotlivých hlavných skupín (NF- κ B, I κ B, komplexy, mRNA).
- NF- κ B vs I κ B (Totals) porovnanie celkového množstva NF- κ B a I κ B v čase.
- NF- κ B cytoplazmatický vs jadrový rozdelenie koncentrácií NF- κ B medzi cytoplazmu a jadro.
- Fractional Nuclear Activation of NF- κ B frakčný podiel NF- κ B, ktorý sa nachádza v jadre voči celkovému NF- κ B.
- Phase Portrait: Activator vs. Feedback Source fázový diagram ukazujúci vzťah medzi aktívnym NF-κB a spätnoväzobným signálom (IκB mRNA).
- Total NF- κ B Compartmental Pools graf ukazujúci rozdelenie celkového NF- κ B medzi cytoplazmatický a jadrový priestor.
- Dynamics of Complex Formation časový priebeh tvorby komplexov NF- κB a I κB v cytoplazme a jadre.

Obrázky 3, 4, 5

- Peak Nuclear NF-κB Maximálna koncentrácia, ktorú dosahuje jadrový NF-κB počas simulácie pre každú úroveň stimulácie IKK. Meranie amplitúdy počiatočnej reakcie.
- Sustained Nn Activation (Area Under Curve) Celková "dávka" jadrového NF- κ B počas celého simulačného času (integrál krivky N_n). Vysoká hodnota AUC znamená, že signál bol buď veľmi silný, trval dlho, alebo oboje.
- \bullet Final Nn Steady-Stat Koncentrácia N_n na samom konci simulácie.

Figure 2: Vizualizácia dynamiky NF- κ B signálnej dráhy pri stimulácii IKK = 0.5 μ M. Počiatočné podmienky boli nastavené ako $N(0) = 1.0 \,\mu$ M, $N_n(0) = I(0) = I_n(0) = I_m(0) = NI(0) = NIn(0) = 0.0 \,\mu$ M. Simulácia prebiehala v časovom intervale $t \in [0, 1000]$ minút (16 hodín a 40 minút).

Figure 3: S rastúcou úrovňou IKK stimulácie sa maximálna hodnota postupne zvyšuje, čo odráža závislosť medzi silou vstupného podnetu a amplitúdou jadrovej aktivácie. Vyššia stimulácia vedie k silnejšiemu počiatočnému signálu. Druhým ukazovateľom je plocha pod krivkou jadrového NF- κ B (integrál N_n v čase), ktorý zohľadňuje nielen okamžitú intenzitu, ale aj dĺžku trvania signálu. Získaná závislosť má sigmoídny charakter: pri nízkych úrovniach stimulácie je odpoveď zanedbateľná, zatiaľ čo pri stredných a vyšších stimulačných hladinách dochádza k prudkému nárastu celkovej aktivity. Tretím ukazovateľom je konečná (ustálená) koncentrácia jadrového NF- κ B po uplynutí simulácie (t=1000 min). Pri nízkych stimulačných hladinách (IKK < 0.9 μ M) hodnota klesá späť na nulu, čo indikuje schopnosť systému adaptovať sa a úplne utlmiť signál. Po prekročení kritickej prahovej hodnoty (IKK $\approx 0.9~\mu$ M) sa dynamika mení: systém už neprechádza do pokojového stavu, ale vstupuje do režimu trvalých oscilácií.

Figure 4: Dynamika jadrového NF- κ B (N_n) pri rôznych hodnotách transkripčnej rýchlosti I κ B (t_3) . Prvý graf (červená krivka) zobrazuje maximálnu koncentráciu N_n dosiahnutú počas simulácie. Výsledky poukazujú na takmer lineárnu závislosť: so zvyšujúcou sa silou spätnej väzby (vyššie t_3) klesá amplitúda počiatočnej jadrovej akumulácie NF- κ B. Pri slabej spätnej väzbe (nízke t_3) je inhibítor produkovaný pomaly, čo umožňuje nahromadenie vyššieho množstva N_n , zatiaľ čo pri silnej spätnej väzbe je signál rýchlo utlmený. Druhý graf (zelená krivka) kvantifikuje celkovú expozíciu jadra NF- κ B pomocou integrálu pod krivkou (AUC). Pozoruje sa inverzná závislosť, kde vyššia hodnota t_3 vedie k výrazne nižšej celkovej aktivite. Tretí graf (modrá krivka) zobrazuje konečnú koncentráciu N_n po 1000 minútach simulácie. Vo väčšine prípadov systém dosiahne nulovú ustálenú hodnotu, čo poukazuje na efektívne utíšenie oscilácií spätnou väzbou.

Figure 5: Citlivosť systému NF- κ B na dve protichodné transportné rýchlosti: import NF- κ B (k_1) a import I κ B (k_2). Zvýšenie rýchlosti importu NF- κ B (k_1 , fialová krivka) vedie k vyššiemu počiatočnému maximu, čo zodpovedá úlohe "akcelerátora" signálu. Naopak, zvýšenie importu inhibítora I κ B (k_2 , oranžová krivka) spôsobuje mierny pokles vrcholovej hodnoty, pretože utlmuje signál – pôsobí teda ako "brzda" odpovede. Pri vyšších hodnotách k_1 najprv dochádza k nárastu celkovej aktivity, no následne k prudkému poklesu, čo naznačuje kompromis medzi silou počiatočnej odpovede a rýchlosťou jej utlmenia spätnou väzbou. Reakcia na zmeny k_2 je vysoko nepravidelná a malé zmeny importu inhibítora ovplyvňujú frekvenciu a tlmenie oscilácií. Vo väčšine prípadov sa systém vracia k stabilnému stavu. Avšak pri určitých úzkych intervaloch hodnôt k_1 (okolo 0.7–0.8 násobku) a k_2 (na viacerých konkrétnych bodoch) sa objavujú prudké nárasty konečnej koncentrácie.

Figure 6: Vizualizácia dynamiky NF- κ B signálnej dráhy pri stimulácii IKK = 1.0 μ M, na základe 3. Počiatočné podmienky boli nastavené ako $N(0) = 1.0 \,\mu$ M, $N_n(0) = I(0) = I_n(0) = I_n(0) = NI(0) = NIn(0) = 0.0 \,\mu$ M. Simulácia prebiehala v časovom intervale $t \in [0, 1000]$ minút (16 hodín a 40 minút).

Figure 7: Obrázok zachytáva správanie systému v prípade, keď je transkripčná rýchlosť $I\kappa B$ (t_3) zdvojnásobená oproti východiskovej hodnote na základe 4. Zvýšená hodnota t_3 vedie k rýchlej produkcii inhibítora $I\kappa B$ v reakcii na jadrový NF- κB . $I\kappa B$ rýchlo viaže aktivátor, ukončuje signálny impulz a spôsobuje rýchle tlmenie oscilácií pozorované vo všetkých grafoch. Napriek tomu, že celková sila odpovede klesá, priebeh Fractional Nuclear Activation zostáva ostrý, čo naznačuje, že spätná väzba primárne reguluje trvanie a resetovanie jednotlivých pulzov.

Figure 8: Obrázok zachytáva správanie systému v prípade, keď je rýchlosť importu cytoplazmatického I κ B (k_2) do jadra 1.4 - násobná oproti východiskovej hodnote na základe 5

2.3 Záver

Analýza dynamiky NF- κ B signalizačnej dráhy v modeli zohľadňujúcom kompartmentalizáciu bunky ukázala, že systém vykazuje nelineárne správanie, ktoré je silne závislé od intenzity stimulu a parametrov spätnej väzby. Pri nižších hladinách IKK sa jadrový NF- κ B krátkodobo aktivuje, no následne sa koncentrácia rýchlo vracia k nulovej hodnote, čo poukazuje na schopnosť siete adaptovať sa a úplne utlmiť signál. S rastúcou úrovňou stimulácie dochádza k zvýšeniu maximálnej amplitúdy odpovede a k významnému nárastu celkovej aktivity (AUC), ktorá má charakteristický sigmoídny priebeh typický pre biologické systémy. Pri prekročení kritickej prahovej hodnoty stimulácie (IKK $\approx 0.9~\mu$ M) sa dynamika zásadne mení: systém stráca schopnosť návratu do pokojového stavu a prechádza do režimu trvalých oscilácií. Tento prechod predstavuje bifurkačný bod, v ktorom sa stabilný ustálený stav mení na stabilný limitný cyklus.

Analýza vplyvu transkripčnej rýchlosti inhibítora $I\kappa B$ (t_3) ukázala, že silnejšia spätná väzba vedie k rýchlejšiemu utlmeniu signálu a zníženiu celkovej jadrovej aktivity, zatiaľ čo slabšia spätná väzba umožňuje vyššie akumulačné vrcholy NF- κB .

Systém je citlivý aj na transportné parametre (import NF- κ B a I κ B). Import NF- κ B funguje ako "akcelerátor", ktorý zvyšuje amplitúdu počiatočnej odpovede, zatiaľ čo import I κ B predstavuje "brzdu", ktorá účinne potláča aktiváciu. Pre špecifické hodnoty týchto parametrov sa objavili ostré nárasty konečnej koncentrácie, ktoré indikujú ďalšie bifurkačné body a poukazujú na potenciál systému pre komplexné oscilátorické správanie.

Celkovo možno uzavrieť, že model s kompartmentalizáciou bunky zachytáva nielen základný oscilačný charakter NF- κ B dráhy, ale aj jej nelineárnu odozvu na rôzne parametre. Tento prístup umožňuje identifikovať kľúčové body citlivosti systému a sledovať mechanizmy, ktoré stoja za prechodom medzi adaptívnym a patologickým režimom správania siete.

3 Doplnkový materiál

3.1 Zjednodušený model

Stimulačná vrstva V modeli [4] uvažujeme, že každá bunka obsahuje dve kópie daného efektorového génu $(G_0 = 2)$, pričom každá kópia môže byť v aktívnom $(G_{i,ON})$ alebo inaktívnom $(G_{i,OFF})$ stave. Transkripčne aktívna kópia génu G_i vedie k syntéze mRNA kódujúcej inhibítor $I\kappa B\alpha$, pričom rýchlosť tohto procesu je určená konštantou t_3 (rovnica 20). Novo syntetizovaná mRNA podlieha degradácii s rýchlosťou d_5 (rovnica 21). Na základe translačného mechanizmu je $I\kappa B\alpha_{RNA}$ prekladaná do proteínu $I\kappa B\alpha$ s rýchlosťou t_4 (rovnica 22), zatiaľ čo samotný proteín následne degraduje podľa konštanty d_3 (rovnica 23). Tieto procesy spoločne opisujú základnú dynamiku syntézy a degradácie inhibítora.

$$G_{i,ON} \xrightarrow{t_3} G_{i,ON} + I\kappa B_{RNA}$$
 (20)

$$I\kappa B\alpha_{RNA} \xrightarrow{d_5} \varnothing$$
 (21)

$$I\kappa B\alpha_{RNA} \xrightarrow{t_4} I\kappa B\alpha$$
 (22)

$$I\kappa B\alpha \xrightarrow{d_3} \varnothing$$
 (23)

Regulačná vrstva V regulačnej vrstve modelu sa opisuje mechanizmus spätnej väzby medzi transkripčným faktorom $NF - \kappa B$ a inhibítorom $I\kappa B\alpha$. Voľná forma $NF - \kappa B$, ktorá sa nachádza v jadre, je schopná aktivovať cieľové gény. Prechod génu zo stavu OFF do stavu ON s rýchlostnou konštantou t_1 (rovnica 24). Naopak, prítomnosť jadrového $I\kappa B\alpha$ spôsobuje disociáciu $NF - \kappa B$ z promótora a inaktiváciu génu (rovnica 25 s konštantou t_2). Regulácia aktivity génu tak nepriamo ovplyvňuje produkciu $I\kappa B\alpha$, keďže prepínanie medzi stavmi ON a OFF určuje mieru transkripcie mRNA. Voľný $NF - \kappa B$ je vychytávaný inhibítorom a vytvára sa komplex $(NF - \kappa B : I\kappa B\alpha)$, pričom tento proces je vratný (rovnica 26). V malom množstve dochádza aj ku spontánnej degradácii inhibítora s rýchlosťou d_4d_3 (rovnica 27). Tieto rovnice spoločne opisujú dynamiku regulačnej slučky medzi aktiváciou a inhibíciou transkripcie sprostredkovanej $NF - \kappa B$.

$$G_{i,OFF} + NF - \kappa B \xrightarrow{t_1} G_{i,ON} + NF - \kappa B$$
 (24)

$$G_{i,ON} + I\kappa B\alpha \xrightarrow{t_2} G_{i,OFF} + I\kappa B\alpha$$
 (25)

$$NF - \kappa B + I\kappa B\alpha \stackrel{a_1}{\rightleftharpoons} (NF - \kappa B : I\kappa B\alpha)$$
 (26)

$$(NF - \kappa B : I\kappa B\alpha) \xrightarrow{d_4 d_3} NF - \kappa B \tag{27}$$

Stimulačná vrstva Stimulačná vrstva modelu zohľadňuje pôsobenie extracelulárnych prozápalových stimulov, ako sú $TNF - \alpha$ alebo LPS, ktoré aktivujú kinázu $IKK\alpha$. Aktivovaný $IKK\alpha$ fosforyluje voľný aj komplex viazaný inhibítor $I\kappa B\alpha$, čím spúšťa jeho degradáciu (rovnica 28), kde fosforylácia vedie k uvoľneniu $NF - \kappa B$ z komplexu. V prípade voľného inhibítora sa degradácia sprostredkovaná $IKK\alpha$ modeluje ako proces úmerný spontánnej degradácii, pričom rýchlosť je modifikovaná faktorom d_2 (rovnica 29).

Rôzne modely popisujú aj dynamiku samotného $IKK\alpha$: v jednoduchých prípadoch sa jeho hladina postupne vyčerpáva v dôsledku degradácie, kým komplexnejšie prístupy uvažujú o jeho interakcii s regulačnými proteínmi, ako je A20. V našom modeli sa hladina $IKK\alpha$ postupne znižuje až k nule (rovnica 30).

$$(NF - \kappa B : I\kappa B\alpha) + IKK\alpha \xrightarrow{d_1} NF - \kappa B + IKK\alpha$$
 (28)

$$I\kappa B\alpha + IKK\alpha \xrightarrow{d_2d_1} IKK\alpha$$
 (29)

$$IKK\alpha \xrightarrow{d_6} \varnothing$$
 (30)

3.2 Diferenciálne rovnice modelu

Vyjadrime si, že celková koncentrácia $NF - \kappa B$ je konštantná a normalizovaná na hodnotu 1. Ak $N = NF - \kappa B_{nuclear}/NF - \kappa B_0$, tak potom systém sa dá opísať pomocou týchto jednoduchých diferenciálnych rovníc.

$$\frac{dK}{dt} = -d_6 \cdot K \tag{31}$$

$$\frac{dN}{dt} = a_2 \cdot (1 - N) + d_4 \cdot d_3 \cdot (1 - N) + d_1 \cdot K \cdot (1 - N) - a_1 \cdot N \cdot I \tag{32}$$

$$\frac{dI}{dt} = a_2 \cdot (1 - N) - d_2 \cdot d_1 \cdot K \cdot I - a_1 \cdot N \cdot I + t_4 \cdot R - d_3 \cdot I \tag{33}$$

$$\frac{dR}{dt} = -d_5 \cdot R + t_3 \cdot G \tag{34}$$

$$\frac{dG}{dt} = t_1 \cdot N \cdot (1 - G) - t_2 \cdot I \cdot G \tag{35}$$

Par.	Hodn.	Popis
$\overline{d_6}$	0.15	rýchlosť degradácie IKK $lpha$
d_4	0.2	rýchlosť pre spontánnu degradáciu komplexu NF- $\kappa B:I\kappa B\alpha$
d_3	0.24	rýchlosť spontánnej degradácie voľného I $\kappa B\alpha$
d_1	9.0	faktor aktivity IKK α v rámci IKK α -indukovanej degradácie I $\kappa B \alpha$
a_1	200.0	rýchlosť asociácie voľného NF- κB a voľného I $\kappa B \alpha$
a_2	3.0	rýchlosť disociácie komplexu NF- κ B: $I\kappa$ B α
d_2	0.2	škálovací faktor pre IKK $lpha$ -indukovanú degradáciu voľného I κ B $lpha$
t_4	16.0	rýchlosť translácie I $\kappa B\alpha$ mRNA na I $\kappa B\alpha$ proteín
d_5	2.7	rýchlosť degradácie I $\kappa B\alpha$ mRNA
t_1	7.5	rýchlosť aktivácie génu I $\kappa B \alpha$ transkripcie jadrovým NF- κB
t_2	15.0	rýchlosť inaktivácie génu I $\kappa B\alpha$ transkripcie jadrovým I $\kappa B\alpha$
t_3	2.5	rýchlosť transkripcie génu $\mathrm{I}\kappa\mathrm{B}\alpha$ na $\mathrm{I}\kappa\mathrm{B}\alpha$ m RNA

Figure 9: Schéma zjednodušeného systému

3.3 Záver

Analýza zjednodušeného päťdimenzionálneho modelu NF- κ B signalizácie úspešne preukázala, že systém je schopný generovať tlmené oscilácie v reakcii na stimul. Tento jav je poháňaný mechanizmom časovo oneskorenej negatívnej spätnej väzby, kde jadrový NF- κ B aktivuje génovú expresiu, transkripciu mRNA a syntézu inhibítora I κ B, ktorý následne tlmí ďalšiu aktivitu. Tieto výsledky sú obdobné ako u [4], čo potvrdzuje, že náš zjednodušený model úspešne reprodukuje podstatné dynamické vlastnosti tejto signálnej dráhy.

Basal NF-kB System Dynamics

Figure 10: Dynamika NF- κ B systému pri zjednodušenom modeli. Štyri panely znázorňujú základné časové priebehy aktívneho NF- κ B, jeho inhibítora I κ B a súvisiacej spätnej väzby na úrovni génovej expresie. Po aktivácii IKK (K) sa spúšťa prudký pulz jadrového NF- κ B (N), sprevádzaný indukciou I κ B mRNA (R), proteínu I κ B (I) a génovej aktivity (G). mRNA (R) aj proteín (I) vykazujú fázu rýchlej indukcie nasledovanú tlmenými osciláciami. Tento priebeh reprezentuje klasickú negatívnu spätnú väzbu, pri ktorej inhibítor postupne obnovuje kontrolu nad NF- κ B aktivitou. Klesajúca koncentrácia aktívneho IKK (K) v kombinácii s pulznou dynamikou jadrového NF- κ B (N) demonštruje základný princíp signálnej transdukcie – krátkodobá aktivácia jadra pri trvalejšom útlme upstreamového signálu. Porovnanie simulovaných dynamík génovej aktivity (G) s kvázi-stacionárnym odhadom (G_mm) ukazuje veľmi dobrú zhodu, čo potvrdzuje, že zjednodušený model zachytáva podstatné regulačné vlastnosti systému pri zachovaní biologického realizmu.

Table 1: Porovnanie a zjednotenie parametrov pre zjednodušený systém# 1 a kompartmentalizovaný systém# 2

	# 1	# 2	Popis				
\overline{As}	Asociácia / Disociácia						
a1	\checkmark	\checkmark	Rýchl. asociácie $NF - \kappa B$ a $I\kappa B\alpha$ (cytoplazmatická).				
a2	\checkmark	\checkmark	Rýchl. disociácie komplexu $NF - \kappa B: I\kappa B\alpha$ (cytoplazmatická).				
a3	×	\checkmark	Rýchl. asociácie $NF - \kappa B$ a $I\kappa B\alpha$ (jadrová).				
a4	×	✓	Rýchl. disociácie komplexu $NF - \kappa B: I\kappa B\alpha$ (jadrová).				
De_{i}	Degradácia						
d1	\checkmark	\checkmark	Rýchl. IKK-dependentnej degradácie $I\kappa B\alpha$ v komplexe.				
d2	\checkmark	×	Škálovací faktor pre IKK-indukovanú degradáciu voľného $I\kappa B\alpha$.				
d3	\checkmark	×	Rýchl. spontánnej degradácie voľného $I\kappa B\alpha$.				
d4	\checkmark	×	Rýchl. spontánnej degradácie komplexu $NF - \kappa B: I\kappa B\alpha$.				
d5	\checkmark	\checkmark	Rýchl. degradácie $I\kappa B\alpha$ mRNA.				
d6	\checkmark	×	Rýchl. degradácie $IKK\alpha$.				
Transkripcia / Translácia							
t1	\checkmark	×	Rýchl. aktivácie génu $I\kappa B\alpha$ jadrovým $NF - \kappa B$.				
t2	\checkmark	×	Rýchl. inaktivácie génu $I\kappa B\alpha$ jadrovým $I\kappa B\alpha$.				
t3	\checkmark	\checkmark	Rýchl. transkripcie $I\kappa B\alpha$ mRNA.				
t4	\checkmark	\checkmark	Rýchl. translácie $I\kappa B\alpha$ proteínu z mRNA.				
Tro	Transport						
k1	\times	\checkmark	Rýchl. importu $NF - \kappa B$ do jadra.				
k2	\times	\checkmark	Rýchl. importu $I\kappa B\alpha$ do jadra.				
k3	\times	\checkmark	Rýchl. exportu $I\kappa B\alpha$ z jadra.				
k4	×	\checkmark	Rýchl. exportu komplexu $NF - \kappa B : I \kappa B \alpha$ z jadra.				

References

- [1] S. Krishna, M. H. Jensen, and K. Sneppen, "Minimal model of spiky oscillations in NF-B signaling," en, *Proc. Natl. Acad. Sci. U.S.A.*, vol. 103, no. 29, pp. 10840–10845, Jul. 2006, ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.0604085103. [Online]. Available: https://pnas.org/doi/full/10.1073/pnas.0604085103.
- [2] G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, and K. Sneppen, "Oscillations and temporal signalling in cells," en, *Phys. Biol.*, vol. 4, no. 2, R1–R17, May 2007, ISSN: 1478-3975. DOI: 10.1088/1478-3975/4/2/R01. [Online]. Available: https://iopscience.iop.org/article/10.1088/1478-3975/4/2/R01.
- [3] S. Krishna, "Structure and function of negative feedback loops at the interface of genetic and metabolic networks," en, *Nucleic Acids Research*, vol. 34, no. 8, pp. 2455–2462, Apr. 2006, ISSN: 0305-1048, 1362-4962. DOI: 10.1093/nar/gkl140. [Online]. Available: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl140.
- [4] S. Zambrano, M. E. Bianchi, and A. Agresti, "A simple model of NF B dynamics reproduces experimental observations," en, *Journal of Theoretical Biology*, vol. 347, pp. 44–53, Apr. 2014, ISSN: 00225193. DOI: 10.1016/j.jtbi.2014.01. 015. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0022519314000241.

Všetky skripty a zdrojové kódy použité pre simulácie sú verejne dostupné v repozitári GitHub na adrese https://github.com/Sevcoviz/Model_of_NF-kB_dynamics_in_the_cell.git