CAR RESALE VALUE PREDICTION

IBM PROJECT

Submitted by

SAI MOUNISH P	142219104105
ROACH AMALAN S	142219104101
RANJITH K	142219104096
ROSHAN R	142219104103

Team ID: PNT2022TMID21699 in a partial fulfilment for the award of the degree

Of

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

SRM VALLIAMMAI ENGINEERING COLLEGE
(AN AUTONOMOUS INSTITUTION)
SRM NAGAR, KATTANKULATHUR,
ANNA UNIVERSITY: CHENNAI 600 025

NOVEMBER 2022

SI.NO	TABLE OF CONTENTS	PAGE NO.
1.	INTRODUCTION	
	1.1 Project Overview	4
	1.2 Purpose	4
2.	LITERATURE SURVEY	
	2.1 Existing Problem	18
	2.2 References	18
	2.3 Problem Statement Definition	20
3.	IDEATION AND PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	21
	3.2 Ideation & Brainstorming	21
	3.3 Proposed Solution	22 31
	3.4 Proposed Solution Fit	31
4.	REQUIREMENT ANALYSIS	
	4.1 Functional Requirements	32
	4.2 Non-Functional Requirements	33
5.	PROJECT DESIGN	
	5.1 Data Flow Diagrams	35
	5.2 Solution & Technical Architecture	36
	5.3 User Stories	37
6.	PROJECT PLANNING & SCHEDULING	38
	6.1 Sprint Planning & Estimation	38
	6.2 Sprint Delivery Schedule	39
	6.3 Reports from JIRA	
7.	CODING AND SOLUTIONING (Explain the	
	features added in the project along with code)	
	7.1 Feature 1	40
	7.2 Feature 2	40

	7.3 Database Schema (if Applicable)	40
8.	TESTING	
	8.1 Test Cases	41
	8.2 User Accept	41
9.	RESULTS	
	9.1 Performance Metrics	42
10	ADVANTAGES AND DISADVANTAGES	42
11.	CONCLUSION	42
12.	FUTURE SCOPE	43
13.	APPENDIX	
	Source Code	43
	GitHub & Project Demo Link	60
		I

1. INTRODUCTION

1.1 Project Overview

Determining whether the listed price of a used car is a challenging task, due to the many factors that drive a used vehicle's price on the market. The focus of this project is developing machine learning models that can accurately predict the price of a used car based on its features, in order to make informed purchases. We implement and evaluate various learning methods on a dataset consisting of the sale prices of different makes and models across cities in the United States. Our results show that Random Forest model and K-Means clustering with linear regression yield the best results, but are compute heavy. Conventional linear regression also yielded satisfactory results, with the advantage of a significantly lower training time in comparison to the aforementioned methods

1.2 Purpose

Deciding whether a used car is worth the posted price when you see listings online can be difficult. Several factors, including mileage, make, model, year, etc. can influence the actual worth of a car. From the perspective of a seller, it is also a dilemma to price a used car appropriately[2-3]. Based on existing data, the aim is to use machine learning algorithms to develop models for predicting used car prices.

2. LITERATURE SURVEY

SI	TITLE	JOURNAL	AUTHOR	CHALLENGES/
No				FUTURE SCOPE
•				
1.	Used car	IRJET	praful rana,	n future this machine
	price		deep pandiya,	learning model may
	prediction		dhawal kotak	bind with various
				website which can
				provide real time data
				for price prediction.
				Also we may add large
				historical data of car
				price which can help to
				improve accuracy of
				the machine learning
				model. We can build
				an android app as user
				interface for
				interacting with user.
				For better
				performance, we plan
				to judiciously design
				deep learning network
				structures, use adaptive
				learning rates and train

				on clusters of data
				rather than the whole
				dataset.
2.	used car	IARJSET	aditya	This Project In
	price		nikhade,	machine learning
	prediction		rohan borde	model that will be
	and life span			connected with may
				dataset and with
				various website which
				can provide real time
				data for price
				prediction Will Stored
				in their site or GitHub.
				Also, we may add big
				amount of data of car
				price which can help
				an improve accuracy of
				the machine learning
				model . We also trying
				to develop an android
				app as user interface
				for interacting and user
				friendly with user. For
				better performance of
				the model, we also
				plan a to use neural
				network.

vehicle	Juni Khyat	B.Lavanya,	In this paper, four
resale price	(UGC Care	Sk.Reshma,	distinctive AI
prediction	Group I Listed	N.Nikitha,	procedures have been
using	urnal)	M.Namitha,	utilized to figure the
machine		L.Kanya	cost of pre-owned
learning		Kumar,	vehicles in Mauritius.
		S.Kishore	The mean blunder with
		Babu,	direct relapse was
			about Rs 51,000 while
			for kNN it was about
			Rs 27,000 for Nissan
			vehicles and about Rs
			45,000 for Toyota
			vehicles. J48 and
			Naïve Bayes exactness
			hung between 60-70%
			for various blends of
			boundaries. The
			primary shortcoming
			of choice trees and
			credulous bayes is their
			powerlessness to deal
			with yield classes with
			numeric qualities.
			Consequently, the
			value quality must be
			ordered into classes
			which contained a
	resale price prediction using machine	resale price (UGC Care prediction Group I Listed using urnal) machine	resale price (UGC Care Sk.Reshma, prediction Group I Listed N.Nikitha, using urnal) M.Namitha, machine L.Kanya Kumar, S.Kishore

				scope of costs yet this
				clearly presented
				further justification for
				errors. The primary
				limit of this
				examination is the low
				number of records that
				have been utilized. As
				future work, we plan to
				gather more
				information and to
				utilizes further
				developed methods
				like counterfeit neural
				organizations, fluffy
				logic and hereditary
				calculations to foresee
				vehicle costs.
4.	Predicting	CS 229 Project	Kshitij	For better
	Used Car	Report	Kumbar,	performance, we plan

Prices	Pranav Gadre	to judiciously design
	and Varun	deep learning network
	Nayak	structures, use adaptive
		learning rates and train
		on clusters of data
		rather than the whole
		dataset. To correct for
		overfitting in Random
		Forest, different
		selections of features
		and number of trees
		will be tested to check
		for change in
		performance.

5.	Used Cars	International	Mukkesh	The prediction error
	Price	Journal of	Ganesh	rate of all the models
	Prediction	Engineering and		was well under the
	using	Advanced		accepted 5% of error.
	Supervised	Technology		But, on further
	Learning			analysis, the mean
	Techniques			error of the regression
				tree model was found
				to be more than the
				mean error rate of the
				multiple regression and
				lasso regression
				models. Even though
				for some seeds the
				regression tree has
				better accuracy, its
				error rates are higher
				for the rest. This has
				been confirmed by
				performing an
				ANOVA. Also, the
				post-hoc test revealed
				that the error rates in
				multiple regression
				models and lasso
				regression models
				aren't significantly
				different from each
<u> </u>		<u> </u>		

other. To get even more accurate models, we can also choose more advanced machine learning algorithms such as random forests, an ensemble learning algorithm which creates multiple decision/regression trees, which brings down overfitting massively or Boosting, which tries to bias the overall model by weighing in the favor of good performers. More data from newer websites and different countries can also be scraped and this data can be used to retrain these models to check for reproducibility.

6.	predictive	International	Ashutosh	Predicting prices of a
	analysis of	Research	Datt	used car is a
	used car	Journal of	Sharma ,Vibh	challenging task
	prices using	Modernization	or	because of a high
	machine	in Engineering	Sharma,Sahil	number of features and
	learning	Technology and	Mittal,Gauta	parameters that should
		Science	m Jain,Sudha	be considered to
			Narang	generate accurate
				results. The first and
				foremost step is data
				gathering and
				preprocessing data.
				Then a model was
				defined and created for
				implementing
				algorithms and
				generating results.
				After applying various
				regression algorithms
				on the model, it could
				be concluded that
				Decision Tree
				Algorithm was the best
				performer with highest
				r2 score of 0.95 which
				simply signified the
				fact that it generated
				the most accurate

		1' .'
		predictions as reflected
		by the Original v/s
		Prediction line graph.
		Apart from a best r2
		score, Decision Tree
		also had the least Mean
		Squared Error and
		Root Mean Squared
		Values that shows that
		the errors in
		predictions were least
		among all and
		therefore the results
		generated are highly
		accurate
 1		

7.	Price	Mid Sweden	Marcus	the best potential for
	Prediction	University.	Collard	development of a
	for Used			consumer tool for
	Cars			evaluating used cars or
				a particular subset of
				used cars. The results
				show that Random
				Forest Regression
				performed the best on
				all performance
				metrics and for all
				price percentile subsets
				of used cars. It was
				also much better able
				to approximate the
				depreciation.
8.	Car Price	TEM Journal.	Enis Gegic,	Car price prediction
	Prediction	Volume 8	Becir	can be a challenging
	using		Isakovic,	task due to the high
	Machine		Dino Keco,	number of attributes
	Learning		Zerina	that should be
	Techniques		Masetic,	considered for the
			Jasmin	accurate prediction.
			Kevric	The major step in the
				prediction process is
				collection and
				preprocessing of the
				data. In this research,

				PHP scripts were built
				to normalize,
				standardize and clean
				data to avoid
				unnecessary noise for
				machine learning
				algorithms.
9.	Used Cars	Rochester	Abdulla	Using data mining and
	Price	Institute of	AlShared	machine learning
	Prediction	Technology		approaches, this
	and			project proposed a
	Valuation			scalable framework for
	using Data			Dubai based used cars
	Mining			price prediction.
	Techniques			Buyanycar.com
				website was scraped
				using the Parse Hub
				scraping tool to collect
				the benchmark data.
				An efficient machine
				learning model is built
				by training, testing,
				and evaluating three
				machine learning
				regressors named
				Random Forest
				Regressor, Linear
				Regression, and

				Bagging Regressor. As
				a result of
				preprocessing and
				transformation,
				Random Forest
				Regress or came out on
				top with 95% accuracy
				followed by Bagging
				Regress or with 88%.
				Each experiment was
				performed in realtime
				within the Google
				environment. In
				comparison to the
				system's integrated
				Jupiter notebook and
				Anaconda's platform,
				algorithms took less
				training time in
				Google.
10.	Consumer	Transport	Fanchao	In general, the effect of
	preferences	Reviews	Liao, Eric	individualspecific
	for electric		Molin, Bert	variables on EV
	vehicles: a		van Wee	preference remains an
	Consumer			open question.
	preferences			Psychological
	for electric			variables are the
	vehicles: a			exception and have a

proven stable effect, shown by several studies. For socioeconomic and demographic variables,the impact is unclear and sensitive to small changes in model specification. The direction of the effect is also ambiguous since existing evidenceis contradictory. Other variables are only included in a few studies, therefore their effects are as yet inconclusive. In most cases, the correlation between all these variables has not been controlled for to avoid self - selection bias. More research is definitely necessary to clarify these currently fuzzy relationships and other methods are needed to add more and confidence to theresults

2.1 Existing Problem

The real reason that this problem exist is in this car resale value prediction system cant predict exact price as brand owners price. This just predicts approx. the value by interior and exterior, bs4 and bs6, petrol or diesel.

2.2 References

- [1] NATIONAL TRANSPORT AUTHORITY. 2014. Available from: http://nta.gov.mu/English/Statistics/Pages/Archive.aspx [Accessed 15 January 2014].
- [2] MOTORS MEGA. 2014. Available from: http://motors.mega.mu/news/2013/12/17/auto-market-8-decrease-sales-newcars/ [Accessed 17 January 2014].
- [3] LISTIANI, M., 2009. Support Vector Regression Analysis for Price Prediction in a Car Leasing Application. Thesis (MSc). Hamburg University of Technology.
- [4] RICHARDSON, M., 2009. Determinants of Used Car Resale Value. Thesis (BSc). The Colorado College.
- [5] WU, J. D., HSU, C. C. AND CHEN, H. C., 2009. An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference. Expert Systems with Applications. Vol. 36, Issue 4, pp. 7809-7817.

- [6] DU, J., XIE, L. AND SCHROEDER S., 2009. Practice Prize Paper PIN Optimal Distribution of Auction Vehicles System: Applying Price Forecasting, Elasticity Estimation and Genetic Algorithms to Used-Vehicle Distribution. Marketing Science, Vol. 28, Issue 4, pp. 637-644.
- [7] GONGGI, S., 2011. New model for residual value prediction of used cars based on BP neural network and non-linear curve fit. In: Proceedings of the 3 rd IEEE International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Vol 2. pp. 682-685, IEEE Computer Society, Washington DC, USA.
- [8] LEXPRESS.MU ONLINE. 2014. Available from: http://www.lexpress.mu/ [Accessed 17 January 2014]
- [9] LE DEFI MEDIA GROUP. 2014. Available from: http://www.defimedia.info/ [Accessed 17 January 2014]
- [10] GELMAN, A. AND HILL, J., 2006. Data Analysis Using Regression and Multilevel Hierarchical Models. Cambridge University Press, New York, USA.

2.3 Problem Statement Definition

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Decription
1.	Problem Statement (Problem to be solved)	The main aim of this project is
		to predict the price of used cars
		using the various Machine
		Learning (ML) models. The
		project should take parameters
		related to used car as inputs and
		enable the customers to make
		decisions by their own
2.	Feasibility of Idea	New cars of a particular make, model,
		and year all have the same retail
		price, excluding optional features.
		This price is set by the manufacturer.
		Used car, however, are subject to
		supply-and-demand pricing. Further,
		used cars have additional attributes
		that factor into the price. These
		include the condition, milage, and
		repair history, which sets cars that
		may have shared a retail price apart.
3.	Novelty	Used car price prediction is
		effectively used to determine the
		worthiness of the car by their own
		within few minutes by using various
		features such as year, model,
		mileage(km), etc
4.	Social Impact/ Customer Satisfaction	If the user wants to buy or sell a own
		car it helps users to predict the correct
		valuation by their own. A loss
		function is to be optimized and
		mainly a weak learner can make
		predictions for used cars easily.

5.	Business Model(Revenue Model)	It helps users to predict the correct
		valuation of the car remotely with
		perfect valuation and without human
		intervention like car dealers in the
		process to eliminate biased valuation
		predicted by the dealer. Using Stored
		data and dataset provided.
6.	Scalability of the Solution	Which of the models and parameters
		gives the best overall accuracy in
		making price predictions for used cars.
		The optimal parameters were
		determined in the process of
		implementing the models, and thus
		each model was implemented with the
		parameters that yielded the best
		performance by trial and error. All of
		the models approximated geometric
		appreciation, meaning that a constant
		percentage of value is lost every year
		independent of the age of the
		vehicle.Random Forest Regression had
		a significantly higher assessed average
		depreciation at approximately 13.8%,
		compared to the others with 9.7%. This
		is closer to the range of 15%-31%
		assessed by Karl Storchmann in his
		analysis of international depreciation
		rates

3.4 Proposed Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements

Functional Requirement (Epic)	Sub Requirement
	(Story / Sub-Task)
User Registration	Registration through
	Form Registration
	through Gmail
	Registration through
	LinkedIN
Core functionality	Recognize the human
	handwritten digits from
	different sources like
	images, papers, touch
	screens, etc, and
	classify them into 10
	predefined classes (0-9)
Access	Able to copy the
	recognised digits,
	Focus a part of the
	image manually.
Network	The database has to be
	updated for training for
	more accuracy.
	User Registration Core functionality Access

4.2 Non-Functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Recognising
		handwritten information
		such as reading postal
		addresses, bank check
		amounts, and forms.
NFR-2	Security	When the image is
		passed to recognise a
		particular area of
		digit(s), the image will
		not be stored at the
		backend.
NFR-3	Reliability	CNN has shown
		remarkable abilities in
		offline handwritten
		character recognition of
		Arabic language;
		handwritten Tamil
		character recognition;
		Telugu character
		recognition, handwritten
		Urdu text recognition,
		handwritten character
		recognition in Indic

		scripts [44] and Chinese
		handwritten text
		recognition.
NFR-4	Performance	Hyper-parameters are,
		namely, activation
		function, number of
		epochs, kernel size,
		learning rate, hidden
		units, hidden layers, etc.
		that are responsible for
		the performance of the
		system.
NFR-5	Availability	There is no maintenance
		time separately for the
		servers to be down or
		can be accessed offline
		also.
NFR-6	Scalability	System will be such that
		it is easy to change,
		update, or add features
		later on.

5. PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution Architecture

Technical Architecture:

5.3 User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
			registration fee, insurance cost, repair work and general upkeep.		i i	
	Create a Target List	USN-2	Once you have agreed on a budget, start making a list of requirements for your vehicle. You must also choose the type of vehicle you want. You can choose from SUVs, sedans, small cars and electric vehicles. It is recommended to check the reviews and ratings of the car you plan to purchase.		High	Sprint-1
	Research Your Options	USN-3	Used car dealerships are now presenting almost every corner of the city, everywhere in India. You can find the best dealer in town either by word of mouth or by comparing dealers online. Finding good dealers online is a fairly simple process. Just shortlist some popular second-hand car dealers and compare options available, cost, service and customer reviews before choosing the one for yourself.		Medium	Sprint-2
	Check the Vehicle's History	USN-4	Once you have explored various options and have narrowed down your search list, it is time to check the vehicle's health report. Check what kind of maintenance or repair works has it undergone. Double-check if the vehicle has ever been involved in a collision. If you are buying a used car in India, it is advisable to avoid buying a car that has been involved in an accident.		High	Sprint-1
	Call the Seller	USN-5	Contact the seller to double-check the information you have gathered about the vehicle. If you are buying from an individual seller, find out why they are selling the car and if there are any mechanical concerns. If you are considering a dealer, call to check the availability of the car. If everything goes fine, book an appointment for a test drive.		High	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	Test Drive	USN-6	A test drive will give you a clear idea about your shortlisted used car's condition. Take the car for a drive on different types of roads and cover a distance of at least four to five kilometers. You must also check the condition of the brakes and clutch while driving. Ensure that the speedometer and the distance recorder are working properly. If there is a vibration in the steering, it could mean some major issues with the engine.		High	
	Get a Professional to Inspect the Car	USN-7	When buying a used car, get a professional mechanic to inspect the car before you pay for it. If you buy a used car from a reputable dealer, the chances of receiving a damaged model are slim. Buying from a private seller, on the other hand, may necessitate a complete inspection by a skilled mechanic.		Medium	
	Double Check the Vehicle's Papers	USN-8	Before finalising the used car, it is advisable to check the papers properly. Check for the car's registration certificate; match the vehicle's engine number and chassis number. Check the insurance paper, PUC certificate along with the original sales invoice. This way, you can make sure the car you are buying is not stolen from its previous owner.		High	
	Negotiate Well	USN-9	This is when the real fun begins. Since you would have already set a budget for the car purchase, stick to it and negotiate with the seller over anything you deem important such as a major dent or bad paintwork. Since the cost of a used car is the seller's decision, make sure to negotiate well.		High	
	Used Car Finance	USN-10	Today, many financial institutions offer a loan for the purchase of used cars. If you are under a budget constraint, you may avail of this option. Before applying for a loan, compare the used car finance rates with different		Medium	

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
			lenders and check your used car loan eligibility with the lender of your choice. If you have a good profile and strong creditworthiness, you may seal a better deal on used car finance			
	Ownership Transfer	USN-11	The ownership of a car is transferred with its sale. The previous owner of the car must inform about the transfer to the RTO under which the vehicle is originally registered. This process must be initiated within 14 days along with a letter of intent and the details of the new owner.	I can access my account / dashboard	High	
Straight away	Drive Away	USN-12	Once you are done with the above formalities, it is time to announce your purchase and be a proud car owner. You can now spin off the car to your home or wherever the road calls you		High	

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Home Page	USN-1	As a user, I can view the home page of the web application.	20	Low	Sai Mounish P
Sprint-2	Car resale value display	USN-2	As a user, I can be redirected to the data entry page	20	Medium	Roach Amalan
Sprint-3	Data Entry	USN-3	As a user, I can enter my car details in the re4quired fields.	20	Medium	Ranjith K
Sprint-4	Resale Value Prediction	USN-4	As a user, I expect the application to predict the resale value of my car.	20	Medium	Roshan R

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

VELOCITY:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per unit).let's calculate the team's averge velocity (AV) per iteration unit (story points per day).

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 Reports from JIRA

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Customer Journey Map:

7. CODING AND SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

8.1 Test Cases

4	A	8	c	D	E	F	G	н	1	1	к	L	М	N
1 2 3 4					Date Team ID Project Name Maximum Marks	03-Nov-22 PNT2022TMID37881 Car resale value prediction 4 marks								
5	Test case ID	Feature Type	Componen	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Espected flexult	Actual Result	Statu	Commnets	TC for Automation(Y/N)	BUGID	Executed By
11	LoginPage_TC_OO 5	type	Fulle type	Verify the fuel content and Petrol or Olsele and Mileage	Network connection Available device for using website	1.Enter URL (https://resalevalueprice.com/) and click go 2.Enter the fuel capasity 3.Enter the fuel type 4.choose the model of car and mileage	Username: preeth 1626 password Testing 1236786867868768 76	Application should show the fule type and car model and mileage	shown	pass				
12	.oginPage_TC_OO6	machine verification	Yansmissio	verify the machine are automatic or non automatic	Network connection ,Available device for using website	1.Enter URL [https://resalevalueprice.com/) and click go 2.Enter the features 3.Enter the model type 4.choose the model	Username: preethi 1626 password: Testing1236786867868768 7	Apilication shoul show the type of version automatic and non automatic	shown	pass				
13 1	.oginPage_TC_OO7	engine condition	Engine	verify the machine quality and condition	Network connection Available device for using website	1.Enter URL [https://resalevalueprice.com/) and click go 2.Enter the features of machine 3.Enter the machine model type 4.choose the machine condition	Username: preeth/1626	Application shoul show the type of machine	shown	pass				
14 6	oginPage_TC_OO8	resale values	car price	Choose the resale car price	Network connection Available device for using website	1.Enter URL [https://resalevalueprice.com/] and click go 2.Enter the features of car value price 3.Enter the resale price of car 4.choose the available car		Application should show the resale car price	shown	pess				

8.2 User Acceptance Testing

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

Section	Total Cases	Not Tested	Fail	Pass
Login /sign in	1	0	0	1
User interface	1	0	0	1
Availability	1	0	0	1
type	1	0	0	1
condition	1	0	0	1
verification	2	0	0	2
Resale price	2	0	0	2

9. RESULTS

9.1 Performance Metrics

Car Resales Price Prediction MODEL BUILDING Choose the metrics of the model *predicting the values to test set y_pred = regressor.predict(X_test) *printing the accuracy for test set print(r2_score(Y_test,y_pred))

10. ADVANTAGES AND DISADVANTAGES

Advantages

- 1. Application is easy to use
- 2. User Friendly
- 3. No Cost
- 4. No need to commission any agent to get car resale value estimate

Disadvantages

- 5. User needs to fill every asked detail of the car
- 6. Doesn't work for cars from different distributions
- 7. Not always accurate

11. CONCLUSION

Car price prediction can be a challenging task due to the high number of attributes that should be considered for the accurate prediction. The major step in the prediction process is collection and preprocessing of the data. In this research, PHP scripts were built to normalize, standardize and clean data to avoid unnecessary noise for machine learning algorithms.

Data cleaning is one of the processes that increases prediction performance, yet insufficient for the cases of complex data sets as the one in this research. Applying single machine algorithm on the data set accuracy was less than 50%. Therefore, the ensemble of multiple machine learning algorithms has been proposed and this combination of ML methods gains accuracy of 92.38%. This is significant improvement compared to single machine learning method approach. However, the drawback of the proposed system is that it consumes much more computational resources than single machine learning algorithm. Although, this system has achieved astonishing performance in car price prediction problem our aim for the future research is to test this system to work successfully with various data sets. We will extend our test data with eBay [16] and OLX [17] used cars data sets and validate the proposed approach.

12. FUTURE SCOPE

For better performance, we plan to judiciously design deep learning network structures, use adaptive learning rates and train on clusters of data rather than the whole dataset. To correct for overfitting in Random Forest, different selections of features and number of trees will be tested to check for change in performance.

13. APPENDIX

Source Code

Car Resale Value Prediction.ipynb

#Import libraries

import datetime

import numpy as np import pandas as pd

import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score

#Read dataset

```
X_train.info()
#Index
X_train = X_train.iloc[:, 1:]
X_{test} = X_{test.iloc}[:, 1:]
#Name
X_train["Name"].value_counts()
make_train = X_train["Name"].str.split(" ", expand = True)
make_test = X_test["Name"].str.split(" ", expand = True)
X_train["Manufacturer"] = make_train[0]
X_test["Manufacturer"] = make_test[0]
plt.figure(figsize = (12, 8))
plot = sns.countplot(x = 'Manufacturer', data = X_train)
plt.xticks(rotation = 90)
for p in plot.patches:
  plot.annotate(p.get_height(),
               (p.get_x() + p.get_width() / 2.0,
               p.get_height()),
               ha = 'center',
               va = 'center',
               xytext = (0, 5),
               textcoords = 'offset points')
plt.title("Count of cars based on manufacturers")
plt.xlabel("Manufacturer")
plt.ylabel("Count of cars")
X_train.drop("Name", axis = 1, inplace = True)
X_test.drop("Name", axis = 1, inplace = True)
#Location
X_train.drop("Location", axis = 1, inplace = True)
X_test.drop("Location", axis = 1, inplace = True)
#Year
curr_time = datetime.datetime.now()
X_{train}[Year'] = X_{train}[Year'].apply(lambda x : curr_time.year - x)
```

```
X_{\text{test}}[Y_{\text{ear}}] = X_{\text{test}}[Y_{\text{ear}}].apply(lambda x : curr_time.year - x)
#Kilometers Driven
X train["Kilometers Driven"]
#Mileage
mileage_train = X_train["Mileage"].str.split(" ", expand = True)
mileage_test = X_test["Mileage"].str.split(" ", expand = True)
X_train["Mileage"] = pd.to_numeric(mileage_train[0], errors = 'coerce')
X_test["Mileage"] = pd.to_numeric(mileage_test[0], errors = 'coerce')
print(sum(X_train["Mileage"].isnull()))
print(sum(X_test["Mileage"].isnull()))
X train["Mileage"].fillna(X train["Mileage"].astype("float64").mean(), inplace =
True)
X_test["Mileage"].fillna(X_train["Mileage"].astype("float64").mean(), inplace =
True)
#Engine, Power and Seats
cc\_train = X\_train["Engine"].str.split(" ", expand = True)
cc_test = X_test["Engine"].str.split(" ", expand = True)
X train["Engine"] = pd.to numeric(cc train[0], errors = 'coerce')
X_test["Engine"] = pd.to_numeric(cc_test[0], errors = 'coerce')
bhp_train = X_train["Power"].str.split(" ", expand = True)
bhp_test = X_test["Power"].str.split(" ", expand = True)
X_train["Power"] = pd.to_numeric(bhp_train[0], errors = 'coerce')
X_test["Power"] = pd.to_numeric(bhp_test[0], errors = 'coerce')
X_train["Engine"].fillna(X_train["Engine"].astype("float64").mean(), inplace =
True)
X_test["Engine"].fillna(X_train["Engine"].astype("float64").mean(), inplace =
True)
X_train["Power"].fillna(X_train["Power"].astype("float64").mean(), inplace =
True)
X_test["Power"].fillna(X_train["Power"].astype("float64").mean(), inplace = True)
X_train["Seats"].fillna(X_train["Seats"].astype("float64").mean(), inplace = True)
X test["Seats"].fillna(X train["Seats"].astype("float64").mean(), inplace = True)
```

#New Price

```
X_train.drop(["New_Price"], axis = 1, inplace = True)
X_test.drop(["New_Price"], axis = 1, inplace = True)
#Data Processing
X train = pd.get dummies(X train,
               columns = ["Manufacturer", "Fuel_Type", "Transmission",
"Owner_Type"],
               drop_first = True)
X_test = pd.get_dummies(X_test,
               columns = ["Manufacturer", "Fuel_Type", "Transmission",
"Owner_Type"],
               drop_first = True)
missing\_cols = set(X\_train.columns) - set(X\_test.columns)
for col in missing_cols:
  X_{\text{test[col]}} = 0
X_{\text{test}} = X_{\text{test}}[X_{\text{train.columns}}]
standardScaler = StandardScaler()
standardScaler.fit(X train)
X train = standardScaler.transform(X train)
X_test = standardScaler.transform(X_test)
#Training and predicting
linearRegression = LinearRegression()
linearRegression.fit(X train, y train)
y_pred = linearRegression.predict(X_test)
r2_score(y_test, y_pred)
rf = RandomForestRegressor(n estimators = 100)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
r2_score(y_test, y_pred)
```

app.py

```
#app.py
from flask import Flask, request, url_for, redirect, render_template, isonify, session
import sqlite3 as sql
from flask cors import CORS, cross origin
import pickle
import numpy as np
import os
import pandas as pd
import joblib
app = Flask(name)
app.secret_key = "Secret Key"
# load the saved model file and use for prediction
model = pickle.load(open("CarPricePredictionModel.pkl", "rb"))
@app.after_request # blueprint can also be app~~
def after_request(response):
  header = response.headers
  header['Access-Control-Allow-Origin'] = '*'
  return response
# Insert data in database (SIGNUP)
def insertUser(username, email, password, contact):
  con = sql.connect("SignUP.db")
  cur = con.cursor()
  phone = int(contact)
  query = ("""INSERT INTO SignUP
       (username,email,password,contact)
        VALUES ('%s','%s','%s',%s)""" %
       (username, email, password, contact))
  cur.execute(query)
  con.commit()
  con.close()
```

```
# Validating data in database (LOGIN)
def validUser(email, password):
  con = sql.connect("SignUP.db")
  cur = con.cursor()
  query = ("""SELECT * FROM SignUP
       where email = '\%s' and password = '\%s'
       (email, password))
  cur.execute(query)
  data = cur.fetchall()
  con.close()
  return data
# Flask Routing
# ===========
@app.route('/')
def home111():
  return render_template('login_1.html')
# Login page
@app.route('/login_1', methods=['GET', 'POST'])
def login():
  if request.method == 'POST':
    rd = validUser(request.form['email'], request.form['password'])
    if rd:
       session['user']=rd[0]
       return render_template('homepage_1.html')
       msg="Wrong username or password"
       return render_template('login_1.html',msg=msg)
  else:
    return render_template('login_1.html')
@app.route('/logout')
def logout1():
       session.pop('user', None)
       return render_template('login_1.html')
@app.route('/s')
```

```
def student():
  if 'user' in session:
     s = session['user']
     all_data = Student.query.all()
     return render_template("homepage_1.html", all_data = all_data,user=s)
  else:
     return render_template('login_1.html')
# Signup page
@app.route('/signup/', methods=['GET', 'POST'])
def signup():
  if request.method == 'POST':
     username = request.form['username']
     email = request.form['email']
     password = request.form['password']
     contact = request.form['contact']
     insertUser(username, email, password, contact)
     msg= "account created successfully"
     return redirect(url for('login'))
  else:
     return render_template('login_1.html')
# api ison
@app.route('/sum', methods=['GET','POST'])
def sum():
  sum = 0
  a = int(request.args.get('a'))
  b = int(request.args.get('b'))
  sum = a+b
  return jsonify(sum)
@app.route('/mainpage')
def mainhome():
  return render_template("homepage_1.html")
@app.route('/contact')
def contact():
  return render_template("contact.html")
@app.route('/about')
def about():
```

return render_template("about.html")

```
@app.route("/predict", methods=['GET','POST'])
def predict():
  if request.method == 'POST':
    year = int(request.form['year'])
    km_driven=float(request.form['km_driven'])
    owner=request.form['owner']
    if(owner=='test'):
       owner=0
    elif(owner=='first'):
       owner=1
    elif(owner=='second'):
       owner=2
    elif(owner=='third'):
       owner=3
    elif(owner=='fourth'):
       owner=4
    fuel=request.form['fuel']
    if(fuel=='Diesel'):
       fuel=0
    elif(fuel=='Petrol'):
       fuel=1
    elif(fuel=='LPG'):
       fuel=2
    elif(fuel=='CNG'):
       fuel=3
    Current\_year = 2021
    years_driven = Current_year - year
    seller_type=request.form['seller_type']
    if(seller_type=='Individual'):
       seller_type=0
    elif(seller_type=='Dealer'):
       seller_type=1
    transmission=request.form['transmission']
    if(transmission == 'Mannual'):
       transmission=1
    elif(transmission == 'Automatic'):
       transmission=0
    mileage = float(request.form['mileage'])
    engine = float(request.form['engine'])
    max_power = float(request.form['max_power'])
```

```
max_power = max_power - 30
     torque = float(request.form['torque'])
     torque = torque - 40
     seats = int(request.form['seats'])
     prediction=model.predict(np.array([[year, km_driven, fuel, seller_type,
transmission, owner, mileage, engine, max_power, torque, seats, Current_year,
years_driven]]))
     #output=round(prediction[0],2)
     output1 = str(prediction)
     output = output1.strip("[].")
     #if output<0:
     # return render_template('index.html',prediction_texts="Sorry you cannot
sell this car")
     #else:
     return render_template('predict.html',prediction_text="You can sell the Car at
₹{}".format(output))
  else:
     return render template('predict.html')
if __name _ == '__main__ ':
  app.run(debug=True)
```

HTML:

1. Login.html

```
<input type="email" name="email" class="input-box" placeholder="Your</pre>
    Email Id" required><br><br>
     <input type="password" class="input-box" name="password"
    placeholder="Password" required><br><br>
     {{ msg }}
     <button type="submit" value="Login" class="submit">Lets Drive</button>
    </form>
    <hr>>
    <br>
    <h4 align="center">Haven't Registered Yet..! </h4>
    <button type="button" class="btn" onclick="openRegister()">Click here to
    Register</button>
</div>
<div class="card-back">
    <h2>REGISTER</h2>
    <form action="/signup" method="post">
     <input type="text" class="input-box" name="username"</pre>
    placeholder="Your name" required>
     <input type="email" class="input-box" name="email" placeholder="Your
    Email Id" required>
     <input type="password" class="input-box" name="password"</pre>
    placeholder="Password" required>
     <input type="tel" name="contact" class="input-box" placeholder="contact-</pre>
    no" required>
     <button type="submit" class="submit"> Submit</button>
    </form>
    <button type="button" class="btn" onclick="openlogin()">I have an account
    > LOGIN</button>
</div>
</div>
</div>
</div>
</body>
<script defer>
    var card = document.getElementById("card")
    function openRegister(){
     card.style.transform="rotateY(-180deg)";
    }
```

```
function openlogin(){
    card.style.transform= "rotateY(0deg)";
  }
</script>
  </html>
```

2. Homepage.html

```
<!DOCTYPE html>
<html>
<head>
 <title>
  Car Price Prediction
 </title>
  <meta name="viewport" content="width=device-width, initial-scale=1">
<style>
body {
  background-size: cover;
  background-repeat: no-repeat;
  background-attachment:fixed;
  background-position: center;
 margin: 0;
 font-family: Arial;
}
.topnav
 position: absolute;
 overflow: hidden;
 background-color: blue;
.topnav a {
 float: top-center;
 position: relative;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 40px;
}
```

```
.topnav a:hover {
 background-color: lightgrey;
 color: black;
.topnav a.active {
  color: black;
</style>
<title>Iqbal's Website</title>
</head>
<body div style="background-image: url('/static/car7.jpg');">
<div class="topnav">
 <div class="row">
 <div style="display: inline-block;padding: 30px"><a class="active"</pre>
href="#">Home</a></div>
 <div style="display: inline-block;padding: 30px"><a</pre>
href="/predict">Predict</a></div>
 <div style="display: inline-block;padding: 30px"><a</pre>
href="/logout">Logout</a></div>
</div>
<div style="color: black; font-size: 40px; text-align: center;"><h2>Car Price
Prediction</h2></div>
<div style="color: white; font-size: 50px; text-align: center;"><h5> Eager to
know the Re-Sale Value of your Car...Then You are at the Right
Place</h5></div>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<marquee>
<fort color=white size="2">
```

```
<h1> This is a Project for Estimating the Resale Value of any Car and
works best for Cars ranging from ₹ 50,000/- to ₹50,00,000/- </h1>
</font>
</marquee>
<br>
<br>
<br>
<br/>
</body>
</html>
```

3. Predict.html

```
<html>
<head>
<style>
body {
  background-size: cover;
  background-repeat: no-repeat;
  background-attachment:fixed;
  background-position: center;
}
 margin: 0;
 font-family: Arial;
.topnav
 overflow: hidden;
 background-color: blue;
.topnav a {
 float: top-center;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 40px;
}
.topnav a:hover {
 background-color: lightgrey;
```

```
color: black;
}
.topnav a.active {
 color: black;
</style>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Car Price Prediction</title>
  <!-- BootStrap -->
  k rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.c
ss"
    integrity="sha384-
9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcP
b1dKGj7Sk" crossorigin="anonymous">
  <!-- css -->
  <link rel="stylesheet" href="static/css/styles.css">
</head>
<body div style="background-image: url('static/car.jpg');">
<div class="topnav">
 <div class="row">
 <div style="display: inline-block;padding: 30px"><a class="active"</pre>
href="/mainpage">Home</a></div>
 <div style="display: inline-block;padding: 30px"><a</pre>
href="/predict">Predict</a></div>
 <div style="display: inline-block;padding: 30px"><a</pre>
href="/logout">Logout</a></div>
</div>
  <!-- As a heading -->
```

```
<div class="navbar-header">
         <h3 align="center" href="/">Car Re-Sale Price Prediction </h3>
      </div>
  <div class="container-fluid">
    (Please fill the
parameters below and click on Selling Price button. Scroll to the last to check
car price after clicking on Selling Price button)
    *NOTE* - Enter
Numeric Values only
    <div class="row">
    <form action="\predict" method="post">
      <div style="display: inline-grid;padding: 45px "><h3>Year of
Buying</h3><input id="first" name="year" placeholder="eg. like the year
'2010' "type="number "></div>
      <div style="display: inline-grid;padding: 45px "><h3>Kilometers
Driven</h3><input id="third" name="km_driven" placeholder="eg. 10000"
Km driven before "required="required"></div>
      <div style="display: inline-grid;padding: 45px</pre>
"><h3>Ownership</h3><select name="owner" id="fourth"
required="required">
         <option value="first">First Owner</option>
         <option value="second">Second Owner</option>
         <option value="third">Third Owner</option>
         <option value="fourth">Fourth Owner</option>
      </select></div>
      <div style="display: inline-grid;padding: 45px "><h3>Fuel
Type</h3><select name="fuel" id="fuel" required="required">
         <option value="Diesel">Diesel</option>
         <option value="Petrol">Petrol</option>
    <option value="CNG">CNG</option>
      </select></div>
```

```
<div style="display: inline-grid;padding: 45px "><h3>Dealer or
Individual</h3><select name="seller_type" id="resea" required="required">
         <option value="Individual">Individual</option>
       <option value="Dealer">Dealer</option>
    </select></div>
       <div style="display: inline-grid;padding: 45px "><h3>Transmission
Type</h3><select name="transmission" id="research" required="required">
         <option value="Mannual">Manual Car</option>
         <option value="Automatic">Automatic Car</option>
       </select></div>
  <div style="display: inline-grid;padding: 45px "><h3>Mileage
(kmpl)</h3><input id="first" name="mileage" placeholder="btw 5 to
50"type="number" ></div>
  <div style="display: inline-grid;padding: 45px "><h3>Engine
(cc)</h3><input id="first" name="engine" placeholder="600 -
3600"type="number " ></div>
  <div style="display: inline-grid;padding: 45px "><h3>Max Power
(bhp)</h3><input id="first" name="max_power" placeholder="30 -
300"type="number " ></div>
  <div style="display: inline-grid;padding: 45px "><h3>Torque
(Nm)</h3><input id="first" name="torque" placeholder="50 -
700"type="number" ></div>
  <div style="display: inline-grid;padding: 45px "><h3>Seats</h3><input</pre>
id="first" name="seats" placeholder="2-9"type="number " ></div>
  <br/>br>
  <div style="float: none; text-align: center;padding: 1px "><button</pre>
class="submit" type="submit">Click Here to Find The Selling
Price</br/>/div></div>
    </form>
    <div style="display: inline-grid;padding: 45px "><h3>{{
prediction text }}</h3></div>
    <br>
  </div>
  </div>
```

```
<!-- JavaScript -->
  <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"</pre>
    integrity="sha384-
DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+Or
CXaRkfi"
    crossorigin="anonymous"></script>
  <script
src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
    integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvox
MfooAo"
    crossorigin="anonymous"></script>
  <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
    integrity="sha384-
OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh
/kR0JKI"
    crossorigin="anonymous"></script>
  <script src="https://kit.fontawesome.com/5f3f547070.js"</pre>
crossorigin="anonymous"></script>
 <!-- Footer -->
</body>
</html>
CSS:
*{
      margin:0;
      padding:0;
}
.container{
      width: 100%;
      height: 100vh;
      font-family: sans-serif;
      background-image: url("/static/car13.jpg");
      width=100%;
      display: flex;
      align-items: center;
```

```
justify-content: center;
}
.card{
      width: 350px;
      height: 500px;
  box-shadow: 0 0 40px 20px rgba(0,0,0,0.26);
      perspective: 1000px;
.inner-box{
      position: relative;
      width: 100%;
      height: 100%;
      transform-style: preserve-3d;
      transition: transform 1s;
}
.card-front, .card-back{
      position: absolute;
      width: 100%;
      height: 100%;
      background-position: center;
      background-size: cover;
      background-image: linear-gradient(rgba(84, 201, 86, 0.7),rgba(84, 201,
86, 0.7)),url(background.png);
      padding: 55px;
      box-sizing: border-box;
      backface-visibility: hidden;
.card-back{
      transform: rotateY(180deg);
.card h2{
      font-weight: normal;
      font-size: 24px;
      text-align: center;
      margin-bottom: 20px;
.input-box{
      width: 100%;
      background: transparent;
      border: 1px solid #fff;
      margin: 6px 0;
      height: 32px;
      border-radius: 20px;
      padding: 0 10px;
```

```
box-sizing: border-box;
      outline: none;
      text-align: center;
      color: #fff;
::placeholder{
      color: black;
      font-size: 12px;
button{
      width: 100%;
      background: transparent;
      border: 1px solid #fff;
      margin: 35px 0 10px;
      height: 32px;
      font-size: 12px;
      border-radius: 20px;
      padding: 0 10px;
      box-sizing: border-box;
      outline: none;
      color: #fff;
      cursor: pointer;
}
.submit-btn{
      position: relative;
.submit-btn::after{
      content: '\27a4';
      color: #333;
      line-height: 32px;
      font-size:17px;
      height: 32px;
      width: 32px;
      border-radius: 50%;
      background: #fff;
      position: absolute;
      right: -1px;
      top: -1px;
}
span{
      font-size: 13px;
      margin-left: 10px;
}
```

```
.card .btn{
    margin-top: 70 px;
}
.card a{
        color: #fff;
        text-decoration: none;
        display: block;
        text-align: center;
        font-size: 13px;
        margin-top: 8px;
}
```

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-11196-1659276167

Project Demo Link