MATH 8510, Abstract Algebra I

Fall 2016

Exercises 6-1

Name: Shuai Wei

Collaborator: DaoZhouZhu, XiaoyuanLiu, Ben

Exercise 1 (3.5.10). Consider the alternating group A_4 . Prove that there is a chain of normal subgroups $\{(1)\}N_0 \leq N_1 \leq \cdots \leq N_k = A_4$ such that each quotient N_i/N_{i-1} is abelian. (This says that A_4 is solvable.)

Hint: Set $N = \{(1), (12)(34), (13)(24), (14)(23)\} \subseteq A_4$, and prove the following:

(a) Prove that $N \leq A_4$.

Proof. (i) It is obvious $N \subseteq A_4$

- (ii) N is not empty since $e_{A_4} = (1) \in N$.
- (iii) Since $N = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\},\$
 - $((1\ 2)(3\ 4))((1\ 3)(2\ 4)) = (1\ 4)(2\ 3) \in N$, and
 - $((1\ 2)(3\ 4))((1\ 4)(2\ 3)) = (1\ 3)(2\ 4) \in N$, and
 - $((1\ 3)(2\ 4))((1\ 4)(2\ 3)) = (1\ 2)(3\ 4) \in N.$

Similarly,

- $((1\ 3)(2\ 4))((1\ 2)(3\ 4)) = (1\ 4)(2\ 3) \in N$, and
- $((1\ 4)(2\ 3))((1\ 2)(3\ 4)) = (1\ 3)(2\ 4) \in N$, and
- $((1\ 4)(2\ 3))((1\ 3)(2\ 4)) = (1\ 2)(3\ 4) \in N.$

So N is abelian.

- (iv) $((1\ 2)(3\ 4))((1\ 2)(3\ 4)) = (1) \in N$.
 - $((1\ 3)(2\ 4))((1\ 3)(2\ 4)) = (1) \in N.$
 - $((1\ 4)(2\ 3))((1\ 4)(2\ 3))=(1)\in N.$

So the inverses of $(1\ 2)(3\ 4)$, $(1\ 3)(2\ 4)$ and $(1\ 4)(2\ 3)$ are themselves, respectively, which are obviously in N.

Thus, N is a subgroup of A_4

(b) Prove that $N \setminus \{(1)\} = \{\tau \in A_4 \mid |\tau| = 2\}.$

Proof. Let $D = \{(a \ b \ c), a, b, c \in \{1, 2, 3, 4\}, a \neq b \neq c\}.$

It is obvious that $(1) \notin D$.

Then $D \subsetneq A_4$ since $(a \ b \ c) = (a \ c)(a \ b)$.

We have $(a \ b \ c)(a \ b \ c) = (a \ c \ b) \neq (1)$ and $(a \ b \ c)(a \ b \ c)(a \ b \ c) = (1)$,

so $|(a \ b \ c)| = 3$.

Beside, we have $|D| = \frac{4!}{3} = 8$. Since $|N| + |D| = 12 = |A_4|$ and $N \cap D = \emptyset$,

 $A_4 = N \cup D$.

So we know all the elements with order 2 are in A_4 .

Moreover, all elements in N has order 2 except element (1). Thus,

$$N \setminus \{(1)\} = \{ \tau \in A_4 \mid |\tau| = 2 \}.$$

(c) Prove that for all $\sigma \in A_4$, for all $\tau \in N \setminus \{(1)\}$, the element $\sigma \tau \sigma^{-1}$ has order 2, so it is in N.

Proof. Suppose $|\sigma\tau\sigma^{-1}|=1$, then $\sigma\tau\sigma^{-1}=(1)$.

So $\sigma \tau = \sigma$.

Then $\tau = (1)$, which is a contradiction since $\tau \in N \setminus \{(1)\}$.

So $|\sigma\tau\sigma^{-1}| > 1$.

For all $\tau \in N \setminus \{(1)\}$, we have $\tau \tau = (1)$ since the order of any element of $N \setminus \{(1)\}$ is 2.

For all $\sigma \in A_4$ and all $\tau \in N \setminus \{(1)\},\$

$$(\sigma\tau\sigma^{-1})(\sigma\tau\sigma^{-1}) = \sigma\tau\tau\sigma^{-1}$$
$$= \sigma(1)\sigma^{-1}$$
$$= (1).$$

So the element $\sigma\tau\sigma^{-1}$ has order 2, and then $\sigma\tau\sigma^{-1} \in N$.

Thus, $N \subseteq A_4$.

Since $|A_4/N| = \frac{|A_4|}{|N|} = 3$ by Lagrange Theorem, A_4/N is simple and cyclic.

Then A_4/N is abelian.

As a result, we have a trivial chain $N \subseteq A_4$.

Since |N| = 4, by Jordan-Hölder theorem, there is a chain of subgroups

$$\{(1)\} = N_0 \le N_1 \dots \le N_k = N.$$

N is abelian by part (i), so $N_0, N_1, ..., N_{k-1}$ are also abelian since they are subgroups of N.

Thus, $N_1/N_0, N_2/N_1..., N/N_{n-1}$ are abelian.

Combine the chain $\{(1)\} = N_0 \leq N_1 \dots \leq N_k = N$ with the chain $N \leq A_4$, we get a new chain

$$N_0 \subseteq N_1 \dots \subseteq N \subseteq A_4$$
,

where $N_1/N_0, N_2/N_1..., N/N_{k-1}, A_4/N$ are abelian. Alternative soln: $\{(1)\} \subseteq N \subseteq A_4$.

Exercise 2 (4.1.9). Assume that G acts transitively on a finite set A, and let $H \subseteq G$. Note that H also acts on A. Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be the distinct orbits of H on A

(a) Prove that G permutes the sets $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ in the sense that for each $g \in G$ and each $i \in [r] = \{1, \ldots, r\}$, there is a j such that $g\mathcal{O}_i = \mathcal{O}_j$ where $g\mathcal{O} = \{ga \in A \mid a \in \mathcal{O}\}$. Prove that G acts transitively on $\{\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r\}$. Deduce that all orbits of H on A have the same cardinality.

Proof. For each $g \in G$, and each $i \in [r] = \{1, ..., r\}$, there exists $a_i \in A$ such that $\mathcal{O}_i = H \cdot a_i = \{h \cdot a_i \in A \mid h \in H\}$.

$$g\mathcal{O}_i = g\{h \cdot a_i \in A \mid h \in H\}$$
$$= \{gh \cdot a_i \in A \mid h \in H\}$$
$$= \{h(g \cdot a_i) \in A \mid h \in H\}$$

since $H \subseteq G$.

Besides, $g \cdot a_i \in A$, so there exists $a \in A$ such that $g \cdot a_i = a$.

There exists some $j \in [r]$ such that $a \in \mathcal{O}_j$ since $\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r$ are disjoint orbits of H on A.

Set $a_j = a$ for such $j \in [r]$ such that $a \in \mathcal{O}_j$. Let $H \cdot a_j = \mathcal{O}_j = \{h \cdot a_j \in A \mid h \in H\}$ and then $g\mathcal{O}_i = \{h(g \cdot a_i) \in A \mid h \in H\}$

$$g\mathcal{O}_i = \{h(g \cdot a_i) \in A \mid h \in H\}$$
$$= \{ha_j \in A \mid h \in H\}$$
$$= \mathcal{O}_j$$

Next we show G acts transitively on $\{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$.

Since G acts transitively on A, for any $j \in [r]$, there exists $g_j \in G$ such that $a_j = g_j a_1$, where $a_j, j \in [r]$ and a_1 is already defined by us. So for any $\mathcal{O}_j \in \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$,

$$\begin{split} \mathcal{O}_{j} &= \{ h \cdot a_{j} \in A \mid h \in H \} \\ &= \{ h \cdot g_{j} a_{1} \in A \mid h \in H \} \\ &= \{ g_{j} h \cdot a_{1} \in A \mid h \in H \} \\ &= g_{j} \{ h \cdot a_{1} \in A \mid h \in H \} \\ &= g_{j} \mathcal{O}_{1} \end{split}$$

Therefore, G acts transitively on $\{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$. Since $\mathcal{O}_j = g_j \mathcal{O}_1$ for any $j \in [r]$, we have for any $j \in [r]$,

$$|\mathcal{O}_i| = |g_i \mathcal{O}_1| = |\mathcal{O}_1|.$$

Thus, we conclude that all orbits of H on A have the same cardinality. \Box

- (b) Prove that if $a \in \mathcal{O}_1$, then $|\mathcal{O}_1| = [H: H \cap G_a]$, and prove that $r = [G: HG_a]$. Proof. We claim $H \cap G_a$ is the stablier of a in H, namely, $H_a = H \cap G_a$.
 - (a) Let $s \in H \cap G_a$, then $s \in H$ and sa = a since $s \in G_a$. So $s \in H_a$. As are result, $H \cap G_a \subset H_a$.
 - (b) Let $h \in H_a$, then $h \in H$ and ha = a. So $h \in G_a$ since $h \in H_a \subset H \subseteq G$. Thus, $h \in H \cap G_a$.

Thus, $n \in \Pi \cap G_a$.

Then $H_a \subset H \cap G_a$.

Therefore, $H_a = H \cap G_a$.

Since \mathcal{O}_1 is one of the orbits of H on A, given $a \in \mathcal{O}_1$, we have

$$|\mathcal{O}_1| = |\mathcal{O}_a|$$
$$= [H : H_a]$$
$$= [H : H \cap G_a]$$

Then we will show $r = [G : HG_a]$. Since $H \le G$ and $G_a \le G$, we have

$$|HG_a| = \frac{|H||G_a|}{|H \cap G_a|}$$
$$= \frac{|H||G_a|}{|H_a|}$$

Then (after proving $HG_a \leq G!!!!$),

$$\begin{split} [G:HG_a] &= \frac{|G|}{|HG_a|} \\ &= \frac{|G||H_a|}{|H||G_a|} \end{split}$$

We have shown $|\mathcal{O}_1| = [H : H_a]$, so $|H| = |H_a||\mathcal{O}_1|$. Then

$$[G: HG_a] = \frac{|G|}{|G_a||\mathcal{O}_1|}$$

We know all orbits of H on A have the same cardinality. So $r|\mathcal{O}_1|=|A|$.

Then

$$[G:HG_a] = \frac{|G|}{|G_a||A|}r$$

Since G acts transitively on A, for $a \in A$.

$$A = G \cdot a$$
.

Then

$$|A| = |G \cdot a|$$

$$= [G : G_a]$$

$$= \frac{|G|}{|G_a|}$$

according to what we have shown in class.

Then

$$[G:HG_a]=\frac{|G|||G_a|}{|G_a||G|}r=r.$$

Namely,

$$r = [G: HG_a]$$