

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 222 491 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 15.03.95 (51) Int. Cl. 6: C12N 15/16, C07K 14/575,
(21) Application number: 86307586.7 C12P 21/02, A61K 38/22,
(22) Date of filing: 02.10.86 A61K 39/395

(54) Nucleic acid encoding the alpha or beta chains of inhibin and method for synthesizing polypeptides using such nucleic acid.

(30) Priority: 03.10.85 US 783910
07.02.86 US 827710
12.09.86 US 906729

(43) Date of publication of application:
20.05.87 Bulletin 87/21

(45) Publication of the grant of the patent:
15.03.95 Bulletin 95/11

(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(56) References cited:
WO-A-86/00078
WO-A-86/06076

Biochem. Biophys. Res. Commun., vol. 129
(1985), pages 396-403, K. Miyamoto

PROCEEDINGS OF THE NATIONAL ACADEMY
OF SCIENCES OF THE UNITED STATES OF
AMERICA, vol. 83, no.16, August 1986, Bal-
timore, USA; K.E. MAYO et al., pages
5849-5853

(73) Proprietor: GENENTECH, INC.
460 Point San Bruno Boulevard
South San Francisco
California 94080 (US)

(72) Inventor: Mason, Anthony John
1206 6th Avenue
San Francisco
California 94122 (US)
Inventor: Seeburg, Peter Horst
Erzazkerweg 5
69 Heidelberg (DE)

(74) Representative: Stuart, Ian Alexander et al
MEWBURN ELLIS
York House
23 Kingsway
London WC2B 6HP (GB)

EP 0 222 491 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

NATURE, vol. 318, 19/26 Dec. 1985, New York,
London; A.J. MASON et al, pages 659-663

NATURE, vol. 321, 19 June 1986, New York,
London; W. VALE et al., pages 776-779

NATURE, vol. 321, 19 June 1986, New York,
London, N.LING et al., pages 779-782

PROCEEDINGS OF THE NATIONAL ACADEMY
OF SCIENCES OF THE UNITED STATES OF
AMERICA, vol. 82, no. 12, June 1985, Bal-
timore, USA; C.H.LI et al., pages 4041-4044

FEBS LETTERS, vol. 175, no. 2, October 1984,
Amsterdam; N.G. SEIDAH et al., pages
349-355

Description**BACKGROUND**

5 This invention relates to methods for making proteins in recombinant cell culture which contain the α or β chains of inhibin. In particular, it relates to methods for obtaining and using DNA which encodes inhibin, and for making inhibin variants that depart from the amino acid sequence of natural animal or human inhibins and the naturally-occurring alleles thereof.

Inhibin is a protein produced in the gonad which acts specifically at the pituitary level to inhibit the secretion of follicle-stimulating hormone (FSH). The existence of inhibin was first postulated by McCullagh in 1932 ("Science" 76: 19-20). Such preferential regulation of the gonadotropin secretion has generated a great deal of interest and has prompted many laboratories in the past fifty years to attempt to isolate and characterize this substance from extracts of testis, spermatozoa, rete testis fluid, seminal plasma and ovarian follicular fluid, using various bioassays. Although many reports have appeared in the literature 10 claiming the purification of inhibin-like material with molecular weights ranging from 5,000 to 100,000 daltons, subsequent studies have shown that these substances were not homogenous, did not have the high specific activity expected of true inhibin and/or failed to exhibit the molecular characteristics of inhibin as described herein (de Jong, Inhibin-Factor Artifact, "Molecular & Cellular Endocrin." 13: 1-10 (1979); Sheth et al., 15 1984, "F.E.B.S." 165(1) 11-15; Seidah et al., 1984, "F.E.B.S." 175(2):349-355; Lilja et al., March 1985, "F.E.B.S." 182(1):181-184; Li et al., June 1985, "Proc. Nat. Acad. Sci. USA" 82:4041-4044; Seidah et al., 20 "F.E.B.S." 167(1):98-102; and Beksac et al., 1984, "Intern. J. Andrology" 7:389-397).

A polypeptide having inhibin activity was purified from bovine or ovine follicular fluid (PCT 86/00078, published January 3, 1986). This protein was reported to have a molecular weight of $56,000 \pm 1,000$ on SDS-PAGE and was dissociable into two subunits having apparent molecular weights of $44,000 \pm 3,000$ and 25 $14,000 \pm 2,000$. Amino terminal sequences for each subunit were described.

Miyamoto, K. et al., *Biochem. Biophys. Res. Comm.*, 129(2), 1985, 396-403 disclose isolation of at least four inhibin-like proteins from porcine follicular fluid. One of Mr 32K was further separated into bands I, II and III. Band II was reduced and dissociated into two bands of Mr 20K and 13K having N-terminal sequences Ser-Thr-Ala-Pro and Gly-Leu-Glu-Cys respectively.

30 EP-A-210 461 (Ajinomoto) which is part of the state of the art by virtue of Art 54(3)EPC discloses isolation of a polypeptide from malignant human monocytic cells. The polypeptide had a molecular weight of 25 ± 1 KD under non-reducing, and 16 ± 1 KD under reducing SDS electrophoresis. The amino terminal sequence and that of a cyanogen bromide cleavage fragment of the 16KD polypeptide were determined.

WO86/06076 (Biotechnology Australia) which is part of the state of the art by virtue of Art. 54(3)EPC 35 discloses DNA sequences encoding inhibin.

Two proteins both having a molecular weight of about 32,000 daltons and having inhibin activity have been successfully isolated from porcine follicular fluid. Purification of porcine inhibin to substantial homogeneity, ie. about 90% by weight of total protein in the fraction, was achieved through a combination of protein separation procedures including heparin-Sepharose affinity chromatography, gel filtration and reverse-phase, high-performance liquid chromatography (RP-HPLC).

40 These proteins were isolated to substantial homogeneity from material obtained from swine and are referred to as Protein A and Protein B. Each protein has a molecular weight of about 32,000 daltons (32K) and is composed of two polypeptide chains having molecular weights of 18,000 and 14,000 daltons, respectively, the chains being linked together in the hormonally-active protein by disulfide bonding. The amino-terminal amino acid residue sequence of the 18,000 daltons (18K) or alpha chain of both proteins was determined to be

Ser-Thr-Ala-Pro-Leu-Pro-Trp-

50 Pro-Trp-Ser-Pro-Ala-Ala-Leu-Arg-Leu-Leu-Gln-Arg-Pro-Pro-Glu-Glu-
Pro-Ala-Val.

The amino-terminal amino acid residue sequence of the 14,000 dalton (14K) or beta chain of Protein A was 55 determined to be

Gly-Leu-Glu-X-Asp-Gly-Lys-Val-Asn-Ile-X-X-Lys-Lys-Gln-Phe-
Phe-Val-Ser-Phe-Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala

5 and of Protein B was determined to be

Gly-Leu-Glu-X-Asp-Gly-Arg-Thr-Asn-
Leu-X-X-Arg-Gln-Gln-Phe-Phe-Ile-Asp-Phe-Arg-Leu.

Proteins A and B have been completely characterized. Each 32K protein exhibits inhibin activity in that it specifically inhibits the basal secretion of FSH but does not inhibit secretion of luteinizing hormone (LH).

15 The individual chains were not hormonally-active.

After the filing of the parent application hereto, inhibin B-chain dimers were shown to exist in follicular fluid as naturally-occurring substances, termed activin, which are capable of stimulating FSH release by rat anterior pituitary cells (Vale *et al.*, 1986, "Nature" 321:776-779 and Ling *et al.*, 1986, "Nature" 321:779-782).

20 The amino acid sequence of the α and β chains of inhibin from humans remained unknown until the invention herein. The large quantities of human follicular fluid required to parallel the studies conducted with animal inhibins are not readily available, nor is there any assurance that human and animal inhibins would be sufficiently similar that purification using a parallel procedure would be effective. Accordingly, methods are needed for determining the characteristics and amino acid sequence for human inhibin.

25 Also needed are economical methods for making the α and β chains of inhibin in large quantities, preferably entirely and completely free of proteins from the species homologous to the inhibin in question, which inhibin preferably also is biologically active.

These and other objects will be apparent from consideration of the invention as a whole.

SUMMARY

30 Nucleic acid now has been isolated and cloned in replicable vectors which encodes the mature porcine and human α and β chains of inhibin and their precursor prepro and pro forms. Sequencing of inhibin-encoding cDNA has led to the identification of prodomain regions located N-terminal to the mature inhibin chains that represent coordinately expressed biologically active polypeptides. The prodomain regions or 35 prodomain immunogens are useful in monitoring preproinhibin processing in transformant cell culture or in experiments directed at modulating the clinical condition or reproductive physiology of animals. Thus α or β chain nucleic acid is used to prepare prodomain sequences from the precursor forms of the inhibin chains, to transform host cells for the recombinant expression of mature inhibin α and/or β chains, and in diagnostic assays. In particular, regions from inhibins α and/or β chains are expressed in recombinant cell culture by a 40 method comprising ligating the nucleic acid encoding the region into a replicable vector under the control of a promoter, transforming a host cell with the vector, culturing the host cell and recovering the prodomain, activin or inhibin from the cultured cell. Inhibin, activin and prodomains produced by the method of this invention are entirely free of homologous source proteins and can be produced in biologically active form.

The nucleic acids identified herein encode the α , β_A and β_B chains of porcine or human inhibin. 45 Recombinant cells are transformed to express $\alpha\beta_A$ or $\alpha\beta_B$ inhibins, or to express β -chain heterodimers or homodimers (which are collectively referred to in the literature as activin). β -chain dimers as products of recombinant cells expression are free of homologous proteins with which they ordinarily are associated in nature.

Inhibin or activin and their nontoxic salts, combined with a pharmaceutically acceptable carrier to form a 50 pharmaceutical composition, are administered to mammals, including humans, for control of fertility. Administration of inhibin decreases fertility in female mammals and decreases spermatogenesis in male mammals, and administration of a sufficient amount induces infertility. Inhibin is also useful in tests to diagnose infertility. Activin has been shown in the literature to be capable of stimulating FSH release from pituitary cells and accordingly is useful as a fertility inducing therapeutic.

55 The method of this invention also facilitates the convenient preparation of inhibin, activin and prodomain variants having primary amino acid sequences and/or glycosylation differing from the native analogues, in particular fusions of immunogenic peptides with inhibin, activin or prodomain sequences.

Brief Description of the Drawings

Fig. 1A is a schematic representation of the porcine α -chain mRNA. Overlapping cDNA clones used in the sequence determination are shown above the diagram of the mRNA structure. Black boxes on the 3' ends of λ clones indicate that these clones were obtained by specific priming. Untranslated sequences are represented by a line, coding sequences are boxed. The unfilled portion represents the coding region for the signal peptide and pro-sequences, and the cross-hatched areas indicates the 134 amino acid α -chain. The scale is in nucleotides from the 5' end of the longest cDNA clone.

Fig. 1B shows the nucleotide and predicted amino acid sequence of the porcine α -chain precursor.
 10 Nucleotides are numbered at the left and amino acids are numbered throughout. The amino acid sequence underlined was used to design a long synthetic DNA probe. The 364 amino acid precursor includes a hydrophobic signal sequence, a pro-region, and the mature α -chain (amino acids 231-364). The proteolytic processing site Arg-Arg (black bar) immediately precedes the NH₂-terminus of the mature alpha chain. Several other putative dibasic processing sites present in the pro-region are indicated by open bars. The
 15 two potential N-linked glycosylation sites are shown by the cross-hatched bars. The AATAAA box close to the 3' end of the mRNA is underlined.

Fig. 2A is a schematic representation of the porcine β_A and β_B subunit mRNAs with coding sequences boxed. The β_A and β_B subunits (dashed) are encoded towards the 3' end of the coding sequences. The 3' and 5' untranslated regions are shown as a line. The length of the 5' and 3' untranslated region of the β_B subunit mRNA is inferred from the size of the mRNA (Fig. 3) and its obvious similarity to the β_A mRNA.
 20 Tentative regions of the cDNAs are shown as dashed in the diagram. The relative positions of the overlapping oligo-dT primed cDNA clones and the randomly primed clones (λ PIN β_A 5s, λ PIN β_B 1s, and λ PIN β_B 2s) are indicated. The scale is in nucleotides from the 5' end of the 4.5 kb mRNA.

Fig. 2B is the nucleotide sequence and deduced amino acid sequence of the porcine inhibin β -subunit precursors. The β_B sequence is aligned with the β_A sequence for maximum homology. The NH₂-terminal of the β -subunit precursors are indicated by bracket and arrows. Cysteine residues are shaded, possible processing sites are indicated by open bars, and a potential glycosylation site is shown by the cross-hatched box. A very GC-rich region present 3' to the termination codon intron sequences is underlined and overlined in both sequences. Amino acid sequences used to design oligonucleotide probes are underlined,
 25 as is the AATAAA polyadenylation signal. There was one nucleotide difference between λ PIN- β_A 8 and other clones covering this area. A G-to-A change causes a change of amino acid 278 from a glycine to a serine. The proteolytic processing site Arg Arg Arg Arg Arg (black bar) immediately precedes the NH₂ terminus of the mature β_A subunit, with the prosequences located upstream. The amino acids for the β_A subunit only are numbered.

35 Fig. 3 is a Northern blot analysis of porcine ovarian mRNA with α , β_A and β_B subunit cDNA hybridization probes. Lanes a, b, c, d, and f are polyA⁺ mRNA and e and g are total RNA. The position of the 28S and 18S ribosomal RNAs are shown. Lanes a, d, and e were hybridized with an α -subunit cDNA probe; lanes d, e and g with a β_A subunit specific probe, and lane c with a β_B subunit-specific probe. The α -subunit mRNA is approximately 1.5 kb, the β_A subunit mRNAs are approximately 4.5 kb. The hybridizations
 40 shown in lanes a, b, and c were performed with probes of approximately equal length and specific activity in order to judge relative mRNA levels.

Fig. 4A is a comparison of the human β -TGF amino acid sequence and porcine inhibin β_A and β_B amino acid sequences. The sequences were aligned around the cysteine residues. Identical residues are boxed, while conservative changes are designated by an asterisk.

45 Fig. 4B compares the α -subunit sequence with the β_A -inhibin sequence.

Fig. 5 depicts the construction of a representative recombinant expression plasmid for porcine inhibin.

Fig. 6 shows the nucleotide sequence and deduced amino acid sequence of the human α -inhibin cDNA. The 335 amino acid pro-or inhibin sequence is numbered from the hypothesized signal cleavage site. Sixteen amino acids of the signal sequence are numbered -1 through -16. Homology with the porcine
 50 sequence predicts a further 12 amino acid residues in the signal sequence. In this and other figures, putative dibasic processing sites are shown by the open bars, glycosylation sites indicated by cross-hatched bars, and amino terminal mature chain processing sites are depicted as black bars. The poly(A) additional signal sequence is underlined. Cysteine residues are shaded.

Fig. 7 is a comparison of the human and porcine α -inhibin protein sequences. Spaces are introduced to
 55 maximize the homology; positions of non-identity are indicated by stars. Numbering is as for the porcine sequence, which is one amino acid shorter than the human.

Fig. 8 shows that the nucleotide and deduced amino acid sequence of the human β_A inhibin signal sequence (residues -28 through -1) is 28 amino acids with the precursor being 378 amino acids in length.

The basic processing site is indicated by a black bar, and a potential glycosylation site in the precursor is indicated by a cross-hatched bar above the sequence. Cysteine residues are shaded.

Fig. 9 illustrates the nucleotide and deduced amino acid sequence of human β_B inhibin cDNA. The sequence commences at a cysteine residue (position 7), which lines up with the cysteine present at residue 5 7 in the β_A sequence (see Fig. 8). The processing site for the mature β_B inhibin is shown as a black bar and a potential glycosylation site as a cross-hatched bar. Cysteine residues are shaded.

DETAILED DESCRIPTION

10 The polypeptides of this invention are the α and β chains of inhibin, as well as their multimer forms (activin and inhibin), their prepro forms and their prodomains, together with glycosylation and/or amino acid sequence variants of each chain or form thereof. Inhibin (including alleles) from human or animal sources inhibits the basal release of FSH but not of LH from anterior pituitary cells while activin does the opposite (hereinafter referred to as "hormonally active" activin or inhibin).

15 Generally, amino acid sequence variants will be substantially homologous with the relevant portion of the porcine or human α or β chain sequences set forth in Figs. 1B, 2B, 6, 8 and 9. Substantially homologous means that greater than about 70% of the primary amino acid sequence of the candidate polypeptide corresponds to the sequence of the porcine or human chain when aligned in order to maximize the number of amino acid residue matches between the two proteins. Alignment to maximize matches of 20 residue includes shifting the amino and/or carboxyl terminus, introducing gaps as required and/or deleting residues present as inserts in the candidate. For example, see Figs. 2B and 7 where the β_A and β_B subunits or human and porcine α -inhibin sequences are aligned for maximum homology. Typically, amino acid sequences variants will be greater than about 90% homologous with the corresponding native sequences shown in Figs. 1B, 2B, 6, 8 and 9.

25 Variants that are not hormonally-active fall within the scope of this invention, and include polypeptides that may or may not be substantially homologous with either a mature inhibin chain or prodomain sequence, but which are 1) immunologically cross-reactive with antibodies raised against the native counterpart or 2) capable of competing with such native counterpart polypeptides for cell surface receptor binding. Hormonally inactive variants are produced by the recombinant or organic synthetic preparation of 30 fragments, in particular the isolated β chains of inhibin, or by introducing amino acid sequence variations so that the molecules no longer demonstrate hormonal activity as defined above.

35 Immunological or receptor cross-reactivity means that the candidate polypeptide is capable of competitively inhibiting the binding of the hormonally-active analogue to polyclonal antisera raised against the hormonally-active analogue. Such antisera are prepared in conventional fashion by injecting goats or rabbits S.C. with the hormonally-active analogue or derivative in complete Freunds adjuvant, followed by booster intraperitoneal or S.C. injections in incomplete Freunds.

40 Variants that are not hormonally active but which are capable of cross-reacting with antisera to hormonally-active inhibin, activin, or prodomains are useful (a) as reagents in diagnostic assays for the native analogues or their antibodies, (b) when insolubilized in accord with known methods, as an agent for purifying anti-native analogue antibodies from antisera, and (c) as an immunogen for raising antibodies to hormonally-active analogues.

45 This invention includes the pro and/or prepro sequences of the inhibin α or β chain precursors, or their immunologically or biologically active fragments, substantially free of the corresponding mature inhibin chains. These sequences for porcine and human inhibin are shown in Figs. 1B, 2B, 6, 8 and 9. The prepro sequence for the porcine α subunit precursor is the polypeptide comprised by residues 1 to about 230, while the β_A subunit pro sequence is comprised by residues 1 to about 308. These sequences shall be referred to herein as encompassing prodomain sequences.

50 The α and β subunit prodomain sequences are comprised of several domains bounded by proteolysis sites, any one of which is synthesized herein separately or in combination with other domains. The principal porcine β_A domains fall within residues 1 to about 70 (domain I), about 70 to about 110 (domain II), about 110 to about 180 (domain III), about 180 to about 260 (domain IV), and about 270 to about 309 (domain V). In particular, the porcine β_A domains are

GHSAAPDCPSALATLPKDVPNSQPEMVEAV,
 HILNMLHLKKRPDVTQPVPKAALLNAI, LHVGKVGENGYVELEDDIG,
 AEMNELMEQTSEIITFAEAGRARKTLRFEISKEGSDLSVVERAEIWLFKVPKANRTRTKV
 5 SIRLFQQQ, PQGSADAGEEEAEDVGFPEEKSEVLISEKVVDA,
 STWHIFPVSSSIQRLLDQGKSALDIRTACEQCETGASLVLLG, and
 GHSAAPDCPSALATLPKDVPNSQPEMVEAVKKHILNMLHLKKRPDVTQPVPKAALLNAI.

10 The porcine β_B domains comprise RAAHILLHAVRVSGWLNL as well as homologous β domains having the same sequences. The porcine α domains comprise

GPELDRELVIAKVRALFLDALGPPAVTGECCDPGV and
 15 GSEPEEEEDVSQAILFPATGARCGAEPAAAGELAREAEGLFTYVGRPSQHTHSRQVTSACQLWFHTGL
 DRQGMMAANSSGPLLALSSRGPVAVPMSLGQAPPRWAVLHLAASALPLLTHPVLVLLRCPLC
 SCSARPEATPFLVAHTRARPPSGGERA.

20 A typical combination domain polypeptide would be β_A domain II linked at its C-terminus to the NH₂-terminus of β_B domain III. In addition, these domains are fused together by the proteolysis sites found in the sequences shown in Figs. 1B or 2B, by 1 to 4 residue polypeptides that are resistant to hydrolysis (for example, glutamyl or histidyl residues), or are directly fused, whereby, in all three instances, combination domain polypeptides are produced.

25 Principal human α chain prodomains are approximately residues 30-199 and 1 to 29, human β_A prodomains are approximately residues 1-30, 32-40, 43-59, 62-80, 83-185 and 186-230 while human β_B prodomains are approximately residues 1-13, 15-30, 32-59, 62-145, 148-195 and 198-241 (referring to the numbering system adopted in Figs. 6, 8 and 9, respectively). Combination prodomain polypeptides are 30 within the scope hereof, for example, the β_A prodomain at about 43-80, and β_B prodomains at about 1-30 and about 32-145. The preferred human α , β_A and β_B chain prodomains are about residues 1-29, about 43-80 and about 1-30, respectively.

35 The intact isolated prepro or prodomain β_A , β_B or α sequences are best synthesized in recombinant cell culture. The individual subcomponent domains are synthesized by routine methods of organic chemistry or by recombinant cell culture. They then are labelled with a radioisotope or other detectable group such as an enzyme or fluorophore in accord with known methods and used in standard competitive immunoassays to detect the levels of prepro or pro forms of inhibin, including individual domains, in transformants with DNA encoding such forms or their precursors. This assay is useful in determining whether proteolytic hydrolysis of proinhibin is occurring in the host transformants or their culture media. The assay also is useful in 40 determining whether a rate limiting step in recombinant synthesis is translation of mRNA into the prepro forms or processing of the prepro forms into mature inhibin. For example, high levels of prepro or pro inhibin in cell lysates, but relatively low levels of secreted mature inhibin, would suggest that the host cell is adequately transcribing and translating the inhibin DNA, but is not processing the precursors at an adequate rate. Thus, in this case one would select an alternate host cell rather than concentrating on improving the 45 transcription or translation efficiency of the transforming plasmid, e.g., by selecting an alternate promoter. The prodomain sequences also are believed to be involved in coordinate modulation of animal physiology in reproductive cycles and fertility.

50 Amino acid sequence variants are any one of 1) hormonally-active, 2) cross reactive with antibodies raised against mature inhibin or prodomain α or β chain sequences, or 3) cross-reactive with inhibin/activin cell surface receptors, but are characterized by a primary amino acid sequence that departs from the sequence of natural inhibins or prodomain sequences. These derivatives ordinarily are prepared by introducing insertions, deletions or substitutions of nucleotides into the DNA encoding the target DNA to be modified in order to encode the variant, and thereafter expressing the DNA in recombinant cell culture. Polypeptides having up to about 100-150 residues also are conveniently prepared by in vitro synthesis. 55 Such variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation. The variants may exhibit the same qualitative biological activity as the naturally-occurring analogue or may act antagonistically towards such analogues.

While the site for introducing a sequence variation is predetermined, it is unnecessary that the mutation per se be predetermined. For example, in order to optimize the performance of mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed inhibin mutants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence is well known, for example M13 primer mutagenesis.

Mutagenesis is conducted by making amino acid insertions, usually on the order of about from 1 to 10 amino acid residues, or deletions of about from 1 to 30 residues. Deletions or insertions preferably are made in adjacent pairs, i.e. a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any subcombination may be combined to arrive at a final construct. Insertions include amino or carboxyl-terminal fusions, e.g. a hydrophobic extension added to the carboxyl terminus. Preferably, however, only substitution mutagenesis is conducted. Obviously, the mutations in the encoding DNA must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure.

Not all mutations in the DNA which encode the polypeptides herein will be expressed in the final secreted product. For example, a major class of DNA substitution mutations are those in which a different secretory leader or signal has been substituted for the native porcine or human α or β chain secretory leader, either by deletions within the leader sequence or by substitutions, wherein most or all of the native leader is exchanged for a leader more likely to be recognized by the intended host. For example, in constructing a prokaryotic expression vector the porcine or human α or β chain secretory leader is deleted in favor of the bacterial alkaline phosphatase or heat stable enterotoxin II leaders, and for yeast the leader is substituted in favor of the yeast invertase, alpha factor or acid phosphatase leaders. However, the porcine and human secretory leaders are recognized by many heterologous higher eukaryotic cells. When the secretory leader is "recognized" by the host, the host signal peptidase is capable of cleaving a fusion of the leader polypeptide fused at its C-terminus to the mature inhibin or prodomain such that mature inhibin or prodomain polypeptide is secreted.

Another major class of DNA mutants that are not expressed in final form as amino acid sequence variations are nucleotide substitutions made in the DNA to enhance expression, primarily to avoid 5' stem and loop structures in the transcribed mRNA (see de Boer et al., EP 75,444A) or to provide codons that are more readily transcribed by the selected host, e.g. the well-known preference codons for *E. coli* or yeast expression. These substitutions may or may not encode substituted amino acid residues, but preferably do not.

Insertional and deletional amino acid sequence variants are proteins in which one or more amino acid residues are introduced into or removed from a predetermined site in the target inhibin, activin, prodomain or proform of inhibin or activin. Most commonly, insertional variants are fusions of heterologous proteins or polypeptides to the amino or carboxyl terminus of the α or β chains, the prodomains or other inhibin derivatives. Immunogenic derivatives are made by fusing an immunogenic polypeptide to the target sequence, e.g. a prodomain polypeptide, by synthesis in vitro or by recombinant cell culture transformed with DNA encoding the fusion. Such immunogenic polypeptides preferably are bacterial polypeptides such as trpLE, beta-galactosidase and the like, together with their immunogenic fragments. Other insertions entail inserting heterologous eukaryotic (e.g. the herpes virus gD signal) or microbial secretion signal or protease processing sequences upstream from the NH₂-terminus of the protein to be secreted. Deletions of cysteine or other labile residues also may be desirable, for example in increasing the oxidative stability of the α or β chain. Deletion derivatives will produce α or β chain fragments. Such fragments, when biologically or immunologically active, are within the scope herein. For instance, a fragment comprising β_B or β_A residues about from 11 to 45 (numbered from mature Gly₁) is to be included within the scope herein.

Immunogenic conjugates of prodomain polypeptides, inhibin and activin are readily synthesized in recombinant cell culture as fusions with immunogenic polypeptides, e.g. beta-lactamase or viral antigens such as herpes gD protein, or by preparation of the polypeptides in unfused form (by recombinant or in vitro synthetic methods) followed by covalent cross-linking to an immunogenic polypeptide such as keyhole limpet hemocyanin or STI using a divalent cross-linking agent. The immunogenic polypeptides are formulated with a vaccine adjuvant, e.g. alum or Freunds. Methods for preparing proteins in adjuvants and for cross-linking are well-known per se and would be employed by one skilled in the art, as are methods for vaccinating animals. The immunogenic conjugates are useful in preparing antibodies to the prodomain region for use in monitoring inhibin manufacture or for in vivo vaccination with the objective of raising antibodies capable of modulating animal physiology in reproductive cycles and fertility. Typically, the prodomain or its immunogen is administered in varied doses to fertile laboratory animals or swine and the reproductive cycles and fertility of the animals monitored, together with assays of serum levels of anti-immunogen or prodomain by routine competitive or sandwich immunoassay.

Substitution derivatives are produced by mutating the DNA in a target codon, so that thereafter a different amino acid is encoded by the codon, with no concomitant change in the number of residues present in the molecule expressed from the mutated DNA. Substitutions or deletions are useful for example in increasing the stability of the proteins herein by eliminating proteolysis sites, wherein residues are substituted within or adjacent to the sites or are deleted from the sites, or by introducing additional disulfide bonds through the substitution of cysteine for other residues. Substitutions are useful for facilitating the synthesis or recovery of mature or prodomain α or β chains. For example, methionine residues within the mature inhibin sequences are substituted or deleted, prepro sequences deleted, methionine inserted at the -1 site immediately NH₂ terminal to the mature NH₂ terminal residue and another sequence inserted N-terminal to the exogenous methionine. The inhibin derivative in this case is expressed as a fusion having an intermediate methionyl residue, which in turn is cleaved at this residue by cyanogen bromide in accordance with known practice. The mature inhibin derivative released from the fusion is recovered.

Exemplary porcine inhibin derivatives are [Asn₂₆₆->Gln]Inh α (to remove the putative glycosylation site), [Cys₃₂₅ or Cys₃₂₄-> Δ]Inh α , [Cys₃₆₁ or Cys₃₆₃-> Δ]Inh α , [Lys₃₂₁ or Lys₃₂₂-> Δ]Inh β_A or [Lys₃₂₂->His or Ser]Inh β_A (to inactivate a potential proteolysis site), [Lys₃₁₅->Arg; Val₃₁₆->Thr] Inh β_A (to create a β_A/β_B hybrid), [Cys₃₈₈ or Cys₃₉₀-> Δ]Inh β_A , [Lys₄₁₁->Gln]Inh β_A , [Arg₃₁₅->Lys, Val₃₁₆->Thr]Inh β_B (to create a β_B/β_A hybrid), [Cys₃₁₉ or Cys₃₂₀-> Δ]Inh β_B [Pro₃₈₁ Gly₃₈₂-> Pro Phe Gly]Inh β_B , and [Arg₃₉₅->Gln]Inh β_B , wherein Inh is an abbreviation for inhibin and the residue members for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B).

The Inh β_A amino acid positions which are principal candidates for mutational substitution or deletion (or adjacent to which residues may be inserted) include residues 293-297, 364-376 and 387-398 (Fig. 8). Preferably, the proline, cysteine and glycine residues within these sequences are not modified. Candidates having greater potency than inhibin or activin, or which serve as inhibin or activin antagonists, are identified by a screening assay wherein the candidate is diluted into solutions containing constant amounts of inhibin or activin and the compositions assayed in the rat pituitary cell assay. Candidates which neither antagonize or agonize inhibin or activin are screened for utility in immunoassays for inhibin or activin by measuring competitive immunodisplacement of labelled inhibin or activin of the native hormones from polyclonal antibody directed against the native hormones. Exemplary contemplated sequence variants of Inh β_A include Phe₃₀₂->Ile or Leu; Gln₂₉₇->Asp or Lys; Trp₃₀₇->Tyr or Phe; Trp₃₁₀->Tyr or Phe; Ile₃₁₁->Phe or Val; Tyr₃₁₇->Trp or Thr; His₃₁₈->Lys; Ala₃₁₉->Ser; Asn₃₂₀->Gln, Tyr or His; Tyr₃₂₁->Thr or Asp, Phe₃₄₀->Tyr (a TGF- β/β_A intrachain hybrid); His₃₅₃->Asp; His₃₅₃->Lys (a β_A/β_B hybrid); Phe₃₅₆->Tyr; Val₃₆₄->Phe; Val₃₆₄->Leu; Tyr₃₇₅->Thr; Tyr₃₇₆->Trp; Asn₃₈₉->Gln, His or Lys; Ile₃₉₁->Leu or Thr; Met₃₉₀->Leu or Ser; Val₃₉₂->Phe, Glu, Thr or Ile. Comparable modifications are made in the human β_B chain. For example, Inh β_A contains a phenylalanyl residue at position 302, and Inh β_B also contains a phenylalanyl residue at a homologous position (264, Fig. 9) when aligned in the same fashion as is shown for porcine β_B in Fig. 4A. Thus, since the Phe₃₀₂ residue of β_A is described above as substituted by isoleucinyl or leucinyl, the Phe₂₆₄ of β_B is substituted with the same residues.

A factor in establishing the identity of a polypeptide as inhibin, activin or an inhibin variant is the ability of antisera which are capable of substantially neutralizing the hormonal activity of mature inhibin or activin to also substantially neutralize the hormonal activity of the polypeptide in question. However it will be recognized that immunological identity and hormonal activity are not necessarily coextensive. For example, a neutralizing antibody for inhibin may not bind a candidate protein because the neutralizing antibody happens to not be directed to specifically bind a site on inhibin that is critical to its activity. Instead, the antibody may bind an innocuous region and exert its neutralizing effect by steric hindrance. Therefore a candidate protein mutated in this innocuous region might no longer bind the neutralizing antibody, but it would nonetheless be inhibin in terms of substantial homology and biological activity.

It is important to observe that characteristics such as molecular weight, isoelectric point and the like for a native or wild type mature inhibin or activin obtained from follicular fluid or other tissue sources are descriptive only for the native form. Variants contemplated by the foregoing definition will include other polypeptides which will not exhibit all of the characteristics of native analogue. For example, inhibin derivatives like the insertion mutants, deletion mutants, or fusion proteins described above will bring inhibin outside of the molecular weight established for the corresponding native inhibin because fusion proteins with mature inhibin or proinhibin itself as well as insertion mutants will have a greater molecular weight than native, mature inhibin. On the other hand deletion mutants of native, mature inhibin will have a lower molecular weight. Finally, post-translational processing of preproinhibin chains in heterologous cell lines may not be accomplished with the fidelity exercised by the homologous host cell, thereby resulting in some variation in the amino termini of the α and/or β chains. This variation may be encountered as residual prosequence remaining with the mature protein, or the loss of several mature residues that are cleaved off

with the prosequence. The same is true with processing of the preprotein in heterologous recombinant cells.

Covalent modifications of inhibin, activin or prodomains are included within the scope hereof and include covalent or aggregative conjugates with other chemical moieties. Covalent derivatives are prepared by linkage of functionalities to groups which are found in the inhibin amino acid side chains or at the N- or C-termini, by means known in the art. For example, these derivatives will include: aliphatic esters or amides of the carboxyl terminus or residues containing carboxyl side chains, e.g., aspartyl residues; O-acyl derivatives of hydroxyl group-containing residues such as seryl or alanyl; and N-acyl derivatives of the amino terminal amino acid or amino-group containing residues, e.g. lysine or arginine. The acyl group is selected from the group of alkyl-moieties (including C3 to C10 normal alkyl), thereby forming alkanoyl species, and carbocyclic or heterocyclic compounds, thereby forming aroyl species. The reactive groups preferably are difunctional compounds known per se for use in cross-linking proteins to insoluble matrices through reactive side groups, e.g. m-Maleimidobenzoyl-N-hydroxy succinimide ester. Preferred derivatization sites are at histidine residues.

Covalent or aggregative derivatives of mature inhibin, activin or prodomain sequences are useful as reagents in immunoassay or for affinity purification procedures. For example, inhibin or prodomain is insolubilized by covalent bonding to cyanogen bromide-activated Sepharose® by methods known per se or adsorbed to polyolefin surfaces (with or without glutaraldehyde cross-linking) for use in the assay or purification of anti-inhibin or anti-prodomain antibodies or cell surface receptors. Inhibin or a prodomain sequence also is labelled with a detectable group, e.g., radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates or conjugated to another fluorescent moiety for use in diagnostic assays, especially for diagnosis of inhibin or prodomain levels in biological samples by competitive-type immunoassays.

DNA which encodes the complete α and β chains of inhibin/activin is obtained by chemical synthesis, by screening reverse transcripts of mRNA from ovary, or by screening genomic libraries from any cell. It may be more efficient to simply synthesize portions of the DNA desired since screening is required to identify DNA to cDNA or genomic libraries that encode the α and β chains. Synthesis also is advantageous because unique restriction sites can be introduced at the time of preparing the DNA, thereby facilitating the use of the gene in vectors containing restriction sites otherwise not present in the native sequence, and steps can be taken to enhance translational efficiency as discussed above, without the need to further modify the DNA as by mutagenesis or the like. cDNA encoding the α or β chains is free of untranslated intervening sequences (introns) as well as free of flanking DNA encoding other proteins homologous to their source.

DNA encoding the α and β chains is obtained from other sources than porcine and human by (a) obtaining a cDNA library from the ovary of the target animal, (b) conducting Southern analysis with labelled DNA encoding porcine or human α and β chains or fragments thereof (generally, greater than 100 bp) in order to detect clones in the cDNA library that contain homologous sequences, (c) analyzing the clones by restricting enzyme analysis and nucleic acid sequencing so as to identify full-length clones and, if full length clones are not present in the library, recovering appropriate fragments from the various clones and ligating them at restriction sites common to the clones to assemble a clone encoding the full-length molecule. As shown infra, any sequences missing from the library can be obtained by the 3' extension on ovarian mRNA of synthetic oligodeoxynucleotides complementary to cDNA identified by screening the library, or homologous sequences are supplied from known animal cDNAs. This is particularly useful in constructing pre or prepro inhibin sequences to facilitate processing of preproinhibin to mature inhibin from the desired species.

Porcine and human ovarian cDNA libraries initially were probed for DNA encoding inhibin sequences using labelled oligonucleotides whose sequence was based on the partial amino acid sequence determined from analysis of purified porcine inhibin or, in the case of human cDNA, porcine cDNA probes. However, once having described cDNA encoding human and porcine inhibin and prodomains, one skilled in the art would realize that precisely hybridizing probes can be prepared from the described sequences in order to readily obtain the remainder of the desired human or porcine gene.

Nucleotide sequence analyses of identified porcine and human cDNA clones revealed the structures of the biosynthetic precursors of both forms of inhibin. Interestingly, the two inhibin chains are not derived from a single processed precursor. Instead, the two chains are translated from separate mRNAs and then assembled into the disulfide crosslinked two-chain molecule.

Figs. 1B and 2B and 6, 8 and 9 depict the DNA encoding the polypeptide chains constituting porcine and human preproinhibin and preprotoactivin. Obviously, degenerate codons may be substituted for those disclosed in these figures where the same amino acid is encoded. The DNA of Figs. 1B, 2B, 6, 8 and 9 is mutated in order to encode the amino acid variants of the α and β chains described above. In particular, the

prepro sequences are deleted and a start codon inserted immediately 5' to the mature chain in question so that the chain is expressed directly in recombinant culture. The DNA also is labelled, e.g. with radioactive phosphorous, and used to screen ovarian cDNA libraries from other species to identify α or β chain encoding DNA from such other species as is generally described above.

5 Covalent labelling of this DNA is accomplished with a detectable substance such as fluorescent group, a radioactive atom or a chemiluminescent group by methods known *per se*. The labelled DNA is then used in conventional hybridization assays. Such assays are employed in identifying vectors and transformants as described in examples *infra*, or for *in vitro* diagnosis such as detection of mRNA in tissues.

Lengthy sequences desirably are synthesized in host cells transformed with vectors containing DNA 10 encoding them, e.g. inhibin or prodomain sequence. Vectors are used to amplify the DNA which encodes the chains, either in order to prepare quantities of DNA for further processing (cloning vectors) or for expression of the chains (expression vectors). An expression vector is a replicable DNA construct in which a DNA sequence encoding an α or β chain is operably linked to suitable control sequences capable of effecting their expression in a suitable host. Cloning vectors need not contain expression control sequences. 15 Such control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites (for prokaryotic expression), and sequences which control termination of transcription and translation. The vector should include a selection gene to facilitate the stable expression of the desired polypeptide and/or to identify transformants. However, the selection gene for maintaining α and/or β chain expression can be supplied by a separate vector in 20 cotransformation systems using eukaryotic host cells.

Vectors comprise plasmids, viruses (including phage), and integratable DNA fragments i.e., fragments 25 that are integratable into the host genome by recombination. The vectors described herein for use in eukaryotic cell expression of inhibin α and/or β chains contain plasmid sequences for cloning in microbes, where the plasmid replicates autonomously from the host genome, but the DNA is believed to integrate into the eukaryotic host cell genome upon transformation. Similarly, bacillus vectors that genetically integrate by homologous recombination in bacillus also are useful. However, all other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein.

Suitable vectors generally will contain replicon (origins of replication, for use in non-integrative vectors) 30 and control sequences which are derived from species compatible with the intended expression host. Transformed host cells are cells which have been transformed or transfected with vectors containing inhibin α and/or β chain encoding DNA. Transformed host cells contain cloned DNA and, when transformed with an expression vector, also express the α and/or β chains. The expressed polypeptides will be deposited intracellularly or secreted into either the periplasmic space or the culture supernatant, depending upon the host cell selected and the presence of suitable processing signals in the expressed protein, e.g. homologous 35 or heterologous signal sequences.

DNA regions are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a 40 preprotein which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation. Generally, operably linked means that the DNA sequences being linked are contiguous and, in the case of secretory leaders, contiguous and in reading phase.

Suitable host cells are prokaryotes, yeast or higher eukaryotic cells. Prokaryotes include gram negative 45 or gram positive organisms, for example *E. coli* or Bacilli. Higher eukaryotic cells include established cell lines of mammalian origin as described below. A preferred host cell is *E. coli* 294 (ATCC 31,446) although other prokaryotes such as *E. coli* B, *E. coli* X1776 (ATCC 31 537), *E. coli* W3110 (ATCC 27 325), pseudomonas species, or *Serratia Marcesans* are suitable.

Expression vectors for host cells ordinarily include an origin of replication (where extrachromosomal amplification is desired, as in cloning, the origin will be a bacterial origin), a promoter located upstream from 50 the inhibin coding sequences, together with a ribosome binding side (the ribosome binding or Shine-Dalgarno sequence is only needed for prokaryotic expression), RNA splice site (if the inhibin DNA contains genomic DNA containing one or more introns), a polyadenylation site, and a transcriptional termination sequence. As noted, the skilled artisan will appreciate that certain of these sequences are not required for expression in certain hosts. An expression vector for use with microbes need only contain an origin of replication recognized by the intended host, a promoter which will function in the host and a phenotypic 55 selection gene, for example, a gene encoding proteins conferring antibiotic resistance or supplying an auxotrophic requirement. Inhibin DNA is typically cloned in *E. coli* using pBR322, a plasmid derived from an *E. coli* species (Bolivar, et al., 1977 "Gene" 2: 95). pBR322 contains genes for ampicillin and tetracycline

resistance and thus provides easy means for identifying transformed cells.

Expression vectors, unlike cloning vectors, must contain a promoter which is recognized by the host organism. This is generally a promotor homologous to the intended host. Promoters most commonly used in recombinant DNA construction include the β -lactamase (penicillinase) and lactose promoter systems (Chang et al., 1978, "Nature", 275: 615; and Goeddel et al., 1979, "Nature" 281: 544), a tryptophan (trp) promoter system (Goeddel et al., 1980, "Nucleic Acids Res." 8: 4057 and EPO Appl. Publ. No. 36,776) and the tac promoter [H. De Boer et al., 1983, "Proc. Nat'l. Acad. Sci. U.S.A." 80: 21-25]. While these are the most commonly used, other known microbial promoters are suitable. Details concerning their nucleotide sequences have been published, enabling a skilled worker operably to ligate them to DNA encoding inhibin in plasmid vectors (Siebenlist et al., 1980, "Cell" 20: 269) and the DNA encoding inhibin or its derivative. Promoters for use in prokaryotic expression systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the inhibin, i.e., the S.D. sequence is positioned so as to facilitate translation. Generally, this means that the promoter and S.D. sequences located upstream from the second codon of a bacterial structural gene are substituted for the sequences of prepro inhibin located 5' to the mature α and/or β chains.

In addition to prokaryotes, eukaryotic microbes such as yeast cultures are transformed with inhibin-encoding vectors. *Saccharomyces cerevisiae*, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other strains are commonly available and useful herein. Yeast vectors generally will contain an origin of replication from the 2 micron yeast plasmid or an autonomously replicating sequence (ARS), a promoter, DNA encoding the α and/or β chain, sequences for polyadenylation and transcription termination, and a selection gene. A suitable plasmid for expression in yeast is YRp7, (Stinchcomb et al., 1979, "Nature", 282: 39; Kingsman et al., 1979, "Gene", 7: 141; Tschemper et al., 1980, "Gene", 10:157). This plasmid already contains the *trp1* gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, 1977, "Genetics", 85: 12). The presence of the *trp1* lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

Suitable promoting sequences in yeast vectors include the promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., 1980, "J. Biol. Chem.", 255: 2073) or other glycolytic enzymes (Hess et al., 1968, "J. Adv. Enzyme Reg.", 7: 149; and Holland et al., 1978, "Biochemistry", 17, 4900), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylate, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., EP 73,657A.

Other yeast promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytchrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned metallothionein and glyceraldehyde-3-phosphate dehydrogenase, as well as enzymes responsible for maltose and galactose utilization. In constructing suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3' of the inhibin or derivative coding sequences to provide termination and polyadenylation of the mRNA.

Cultures of cells derived from multicellular organisms are the preferred host cells herein because it is believed that expression of hormonally active inhibin or activin will only occur in such cells, with microbial expression resulting at most only in immunological cross-reactivity. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Propagation of vertebrate cells in culture *per se* has become a routine procedure in recent years [Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)].

Suitable host cells for expressing α or β chains in higher eukaryotes include: monkey kidney CVI line transformed by SV40 (COS-7, ATCC CRL 1651); baby hamster kidney cells (BHK, ATCC CRL 10); chinese hamster ovary-cells-DHFR (described by Urlaub and Chasin, PNAS (USA) 77: 4216, [1980]); mouse sertoli cells (TM4, Mather, J.P., Biol. Reprod. 23: 243-251 [1980]); monkey kidney cells (CVI ATCC CCL 70); african green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060652, ATCC CCL 51); rat hepatoma cells (HTC, M1, 54, Baumann, M., et al., J. Cell Biol. 85: 1-8 [1980]) and TRI cells (Mather, J.P. et al., Annals N.Y. Acad. Sci. 383: 44-68 [1982]).

The transcriptional and translation control sequences in vertebrate cell expression vectors preferably are provided from viral sources. For example, commonly used promoters are derived from polyoma, Adenovirus

2, and most preferably Simian Virus 40 (SV40). The early and late promoters of SV40 are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication (Fiers *et al.*, 1978, "Nature", 273: 113). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the viral origin of the replication is included. Further, it is also possible to utilize the genomic promoters, control and/or signal sequences normally associated with the α or β -chains, provided each control sequences are compatible with and recognized by the host cell.

An origin of replication may be provided either by construction of the vector to include an exogenous origin, such as may be obtained from SV40 or other viral (e.g. Polyoma, Adenovirus, VSV, or BFV) source, 10 or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.

Rather than using vectors which contain viral origins of replication, mammalian cells are cotransformed with DNA encoding a selectable marker and DNA encoding the α and/or β chains. An example of a suitable selectable marker is dihydrofolate reductase (DHFR) or thymidine kinase. Such markers are proteins, 15 generally enzymes that enable the identification of transformant cells, i.e., cells which had been competent to take up exogenous DNA. Generally, identification is by survival of transformants in culture medium that is toxic to untransformed cells or from which the cells cannot obtain a critical nutrient without having taken up the marker protein.

In selecting a preferred host mammalian cell for transfection by vectors which comprise DNA 20 sequences encoding both inhibin and DHFR, it is appropriate to select the host according to the type of DHFR protein employed. If wild type DHFR protein is employed, it is preferable to select a host cell which is deficient in DHFR thus permitting the use of the DHFR coding sequence as marker for successful transfection in selective medium which lacks hypoxanthine, glycine, and thymidine (hgt⁻). An appropriate host cell in this case is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, 1980, "Proc., Nat'l. Acad. Sci." (USA) 77: 4216.

On the other hand, if DNA encoding DHFR protein with low binding affinity for methotrexate (MTX) is used as the controlling sequence, it is not necessary to use DHFR resistant cells. Because the mutant DHFR is resistant to MTX, MTX containing media can be used as a means of selection provided that the host cells are themselves MTX sensitive. Most eukaryotic cells which are capable of absorbing MTX appear 30 to be methotrexate sensitive. One such useful cell line is a CHO line, CHO-K1 (ATCC No. CCL 61). Preferably, transformants are first selected for neomycin resistance (the transfection is conducted together with DNA encoding the neomycin resistance gene), followed by MTX amplification of the α and/or β chain expression as the case may be. See Kim *et al.*, "Cell" 42: 129-138 (1985) and EP 160,457A.

Other methods suitable for adaptation to the synthesis of α and/or β chains in recombinant vertebrate 35 cell culture are described in M-J. Gething *et al.*, "Nature" 293: 620-625 (1981); N. Mantei *et al.*, "Nature" 281: 40-46; and A. Levinson *et al.*, EP 117,060A and 117,058A.

The inhibin α chain is expressed in recombinant cell culture with or without either of the β -chain molecules. Similarly, host cells are transformed with DNA encoding either or both of the mature β -chains. Based on analogy to TGF- β , the mature β -chains are capable of forming homodimers or β_A/β_B 40 heterodimers upon expression in recombinant culture. These structures are not inhibin and will be referred to herein as β -chain dimers or activin. These are useful in the preparation of active inhibin, serving as sources of the β -chain, or are used as gel electrophoresis standards to detect the diversion into β -chain dimers of β -chains synthesized in α and β chain cotransformants. As will be seen in Example 4, this is not a hypothetical problem. Of course, the dimers are also useful in modulating reproduction as noted above.

β -chain hetero or homodimers are separated by *in vitro* unfolding of the individual chains followed by oxidative disulfide bond formation with the α -chain in accord with processes generally known *per se*. Preferably, however, in preparing mature inhibin the recombinant host is transformed with DNA encoding both the α and either of the β -chains. The intact hormonally active molecule is then assembled by the host 50 cell *in vivo*, and it is thus unnecessary to combing the two chains by *in vitro* processing. The DNA encoding the α and β -chains is preferably located on the same vector, and under the control of the same promoter, but this is not essential.

Certain β -chain amino acid sequence variants identified in the screening procedure will not bind to pituitary cell surface receptors nor as a consequence will they exhibit hormonal activity. Such variants, when expressed as homodimers in recombinant cell culture, are useful in immunoassays for activin when they bear immunological epitopes cross-reactive with the native β -chain. In addition, such variants are coexpressed with DNA encoding hormonally active β -chain to yield a hybrid bearing native and variant β -chain. In this case the variant serves to stabilize the structure of the native β -chain. This form of β -chain heterodimer is useful, like the homodimer, in immunoassays for activin. It may also function as an activin antagonist.

The activin/inhibin β -chains also are coexpressed with TGF- β in order to produce β -chain/TGF- β hybrids. Vectors and methods for the expression of TGF- β are known. For example, see Derynck et al., Human Transforming Growth Factor- β Complementary DNA Sequence and Expression in Normal and Transformed Cells "Nature" 316: 701-705 (1985). Contransformation of mammalian host cells by vectors bearing the TGF- β gene as described by Derynck et al. together with the β_A or β_B chains of activin/inhibin will result in secretion of a proportion of a β -chain/TGF- β hybrid dimers. This hybrid is useful in preparing TGF- β / β -chain immunogens or in immunoassays.

Inhibin, activin or prodomain sequences are recovered from transformed cells in accord with per se known procedures. When a polypeptide is expressed in recombinant bacteria as a refractile body, the desired polypeptide is recovered and refolded by conventional methods. Alternatively, the culture supernatants from transformed cells that secrete activin or inhibin, preferably mammalian cells, are simply separated from the cells by centrifugation. Then the inhibin generally is purified by successive purification procedures that include heparin-Sepharose affinity chromatography, gel filtration and at least one and preferably several RP-HPLC (reverse phase high pressure liquid chromatography) steps using different conditions in the stationary phase and/or mobile phase. Prodomain sequences produced by in vitro synthesis will be purified by conventional methods.

The prodomain polypeptides that are preferred for use herein are recovered from the culture media of recombinant cells transformed to synthesize the α and/or β chains as appropriate for the desired prodomain. Specifically, they are recovered by separating the culture medium polypeptides on native electrophoresis gel, excising bands having the predicted molecular weight and thereafter purifying the eluted polypeptides further, for example by FPLC or HPLC, followed by amino acid sequence determination for the substantially homogeneous separated polypeptides. Purified prodomain polypeptides then are used to raise antibodies, e.g., in rabbits, which when used in immunoaffinity purification will simplify the recovery of the prodomains.

In the preferred procedure for isolating porcine hormonally active inhibin, clarified transformant culture supernatant or cell lysate is first purified by heparin-Sepharose® affinity chromatography, next by gel filtration on Sephadryl® S-200 gel and then with four successive RP-HPLCs using different mobile phase gradients and/or derivatized silica supports. Preferably, stationary phases having relatively low hydrophobicity are used, with C3-C8 columns being preferred and C3-C5 and phenyl columns being particularly preferred. Solute specificity of the mobile phase is preferably adjusted by varying the concentration of an organic component, particularly acetonitrile. Although a single RP-HPLC fractionation significantly increases the purity relative to the gel-filtrated material, two or more, and preferably four, RP-HPLC purifications are generally performed subsequent to successive treatment by heparin-Sepharose chromatography and gel filtration. This method has been found to be adaptable to the purification of human inhibin from recombinant cell culture as well.

The first step of the purification is heparin-Sepharose affinity chromatography, in which the protein is adsorbed to the Sepharose-bound heparin moieties under application conditions, and the adsorbed inhibin material is recovered by 1M NaCl elution. This step greatly expedites the purification procedure for crude extracts because it allows a relatively large volume of a crude extract to be processed fairly rapidly while recovering an amount of protein exhibiting total inhibin activity equal to at least 90% of that of the crude extract.

For the detection of inhibin activity in the various column fractions, aliquots ranging from 0.01% to 0.1% by volume are removed, and after added 100 μ g human serum albumin in 100 μ l water, the solvents were evaporated in a Speed-Vac concentrator (Savant, Hicksville, N.Y.). The residue was redissolved in 3 ml 1% fetal bovine serum in HDMEM, filtered through a Millex-GS 0.22 μ m filter (Millipore Corp., Bedford, MA) and assayed in duplicate. To speed up the bioassays during the purification process, only basal inhibition of FSH secretion exerted by the inhibin activity is determined and plotted in the region where the inhibin proteins were expected to migrate in the chromatograms.

To perform the heparin-Sepharose affinity chromatography, cell debris is spun down in a Beckman J2-21 centrifuge (Beckman Instruments, Inc., Palo Alto, CA.) using a JA-20 rotor at 10,000 rpm for 30 minutes. One half of the supernatant is diluted in 10 times its volume by the addition of 0.01 M Tris-HCl containing 0.1 M NaCl, pH 7, in an Erlenmeyer flask and pumped simultaneously via silastic tubes (0.76 mm ID) into heparin-Sepharose® (Pharmacia Fine Chemicals, Piscataway, N.J.) columns (3.5 x 9 cm) by two Rabbit 4-channel peristaltic pumps (Rainin Instrument Co., Inc., Emeryville, CA) at 40 ml/hr per column. After all the fluid has been pumped through the heparin-Sepharose, the eight columns are washed simultaneously with 0.01 M Tris-HCl, pH 7, containing 0.1 M NaCl in the same manner. The adsorbed proteins with inhibin activity are removed by washing the eight columns simultaneously with 0.01 M Tris-HCl containing 1 M NaCl, pH 7, as above, and the wash is collected into fractions. The inhibin activity is monitored by the in

vitro bioassay described above. The columns are regenerated by further washing with 2M NaCl in 0.01 M Tris-HCl, pH 7, and re-equilibrated with 0.01 M Tris-HCl containing 0.1 M NaCl for purification of remaining extract.

Next, the material is fractionated by gel filtration to separate proteins generally according to their molecular weights. The fractions having inhibin activity extracted by the heparin-Sepharose columns were pooled and dialyzed overnight to remove NaCl in a 28.6 mm cylinder diameter Spectrapor No. 3 membrane tubing with M_r cutoff at 3,500 (Spectrum Medical Industries, Inc., Los Angeles, CA.) against 30% acetic acid. The retained fluid is centrifuged, as above, to remove a white precipitate, and the supernatant is divided into equal portions for applying to 5 x 100 cm Sephadryl S-200 superfine columns (Pharmacia Fine Chemicals, Piscataway, N.J.). Each column is eluted with 30% acetic acid at 20 ml for 22 min., and the column fractions are monitored by UV absorption at 280 nm and by bioassay.

The bioassay-positive protein from the S-200 columns is pooled and lyophilized. The lyophilized material is dissolved in 0.2N acetic acid (1 ml/ml) and filtered through a Millex-HA 0.45 μm filter (Millipore Corp., Bedford, MA.). The filtrate is applied directly onto a 1 x 25 cm Vydac 5- μm particle-size C4 column (The Separations Group Hesperia, CA.) and developed with a gradient of TEAP buffer. In the TEAP system, buffer A consists of 0.25 N triethylammonium phosphate pH 3, and buffer B is 80% acetonitrile in buffer A. After all the filtrate had been loaded, the column is washed with the aqueous buffer A until the UV absorption reached baseline. The fractions exhibiting inhibin activity are separated in a Beckman 332 gradient liquid chromatography system (Beckman Instruments, Inc., Berkeley, CA.) equipped with a Spectroflow 757 UV detector (Kratos Analytical Instruments, Ramsey, N.J.), a Soltec 220 recorder (Soltec Corp., Sun Valley, CA.) and a Redirac 2112 fraction collector (LKB Instruments, Inc., Gathersburg, MD). Zones of inhibin activity are detected by bioassay.

Inhibin protein containing the β_B chain is further purified free of inhibin containing the β_A species, if desired, by two more RP-HPLC steps. The first step uses a 1 x 25 cm Vydac 5- μm -particle-size C4 column and a trifluoroacetic acid (TFA) buffer system and the second step employs a 1 x 25 cm Vydac 5- μm -particle-size Phenyl column and the TEAP buffer system. In the TFA system, buffer A contains 1 ml trifluoroacetic acid in 999 ml water and buffer B is 1 ml trifluoroacetic acid in 199 ml water and 800 ml acetonitrile. The two inhibin species elute separately. Inhibin accumulated from a few batches was concentrated by RP-HPLC using a 0.46 x 25 cm Aquapore RF-300 10 μm -particle-size column (Brownlee Labs., Santa Clara, CA.) and the TFA buffer system. Ordinarily, however, this purification step will not be used with cell culture supernatants from transformants with DNA encoding only the β_A or β_B chains.

Inhibin, activin, prodomain sequences or their variants are administered in the form of pharmaceutically acceptable nontoxic salts, such as acid addition salts or metal complexes e.g., with zinc, iron or the like (which are considered as salts for purposes of this application). Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, maleate, acetate, citrate, benzoate, succinate, malate, ascorbate, tartrate and the like. Intravenous administration in isotonic saline, phosphate buffer solutions or the like is suitable.

The polypeptide herein should be administered under the guidance of a physician, and pharmaceutical compositions will usually contain an effective amount of the peptide in conjunction with a conventional, pharmaceutically-acceptable carrier. The dosage will vary depending upon the specific purpose for which the protein is being administered, and dosage levels in the range of about 0.1 to about 1 milligram per Kg. of body weight may be used when inhibin is administered on a regular basis as a male contraceptive.

Inhibin, activin, prodomain sequences or their variants desirably are administered from an implantable or skin-adhesive sustained-release article. Examples of suitable systems include copolymers of L-glutamic acid and gamma ethyl-L-glutamate (U. Sidman *et al.*, 1983, "Biopolymers" 22(1): 547-556), poly (2-hydroxyethyl-methacrylate) (R. Langer *et al.*, 1981, "J. Biomed. Mater. Res." 15: 167-277 and R. Langer, 1982, "Chem. Tech." 12: 98-105) ethylene vinyl acetate (R. Langer *et al.*, *Id.*), or poly-D(-)-3-Hydroxybutyric acid (EP 133,988A). Such articles are implanted subcutaneously or are placed into contact with the skin or mucous membranes.

In order to simplify the Examples certain frequently occurring methods will be referenced by shorthand phrases.

Plasmids are designated by a low case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are commercially available, are publicly available on an unrestricted basis, or can be constructed from publicly available plasmids or DNA in accord with published procedures. In addition, other equivalent plasmids are known in the art and will be apparent to the ordinary artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with an enzyme that acts only at certain locations in the DNA. Such enzymes are called restriction enzymes, and the sites for which each is specific is called a restriction site. "Partial" digestion refers to incomplete digestion by a restriction enzyme, i.e,

conditions are chosen that result in cleavage of some but not all of the sites for a given restriction endonuclease in a DNA substrate. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements as established by the enzyme suppliers were used. Restriction enzymes commonly are designed by abbreviations composed of a capital letter followed by other letters and then, generally, a number representing the microorganism from which each restriction enzyme originally was obtained. In generally, about 1 µg of plasmid or DNA fragment is used with about 1 unit of enzyme in about 20 µl of buffer solution. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37 °C are ordinarily used, but may vary in accordance with the supplier's instructions. After incubation, protein is removed by extraction with phenol and chloroform, and the digested nucleic acid is recovered from the aqueous fraction by precipitation with ethanol. Digestion with a restriction enzyme infrequently is followed with bacterial alkaline phosphatase hydrolysis of the terminal 5' phosphates to prevent the two restriction cleaved ends of a DNA fragment from "circularizing" or forming a closed loop that would impede insertion of another DNA fragment at the restriction site. Unless otherwise stated, digestion of plasmids is not followed by 5' terminal dephosphorylation. Procedures and reagents for dephosphorylation are conventional (T. Maniatis et al., 1982, *Molecular Cloning* pp. 133-134).

"Recovery" or "isolation" of a given fragment of DNA from a restriction digest means separation of the digest on polyacrylamide gel electrophoresis, identification of the fragment of interest by comparison of its mobility versus that of market DNA fragments of known molecular weight, removal of the gel section containing the desired fragment, and separation of the gel from DNA. This procedure is known generally. For example, see R. Lawn et al., 1981, "Nucleic Acids Res." 9: 6103-6114, and D. Goeddel et al., 1980, "Nucleic Acids Res." 8: 4057.

"Southern Analysis" is a method by which the presence of DNA sequences in a digest or DNA-containing composition is confirmed by hybridization to a known, labelled oligonucleotide or DNA fragment. For the purposes herein, unless otherwise provided, Southern analysis shall mean separation of digests on 25 1 percent agarose, denaturation and transfer to nitrocellulose by the method of E. Southern, 1975, "J. Mol. Biol." 98: 503-517, and hybridization as described by T. Maniatis et al., 1978, "Cell" 15: 687-701.

"Transformation" means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or chromosomal integrant. Unless otherwise provided, the method used herein 30 for transformation of *E. coli* is the CaCl₂ method of Mandel et al., 1970, "J. Mol. Biol." 53: 154.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (T. Maniatis et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

"Preparation" of DNA from transformants means isolating plasmid DNA from microbial culture. Unless otherwise provided, the alkaline/SDS method of Maniatis et al., Id. p. 90., may be used.

"Oligonucleotides" are short length single or double stranded polydeoxynucleotides which are chemically synthesized by known methods and then purified on polyacrylamide gels.

40 EXAMPLE 1

Isolation of Cloned Inhibin α-Subunit cDNAs

The strategy for identification of clones containing coding sequences for the porcine inhibin subunits 45 was based on the "long-probe" approach, successful in some previous instances (Anderson et al., 1983, "Proc. Nat. Acad. Sci. USA" 80:6836-6842 and Ullrich et al., 1984, "Nature" 309:418-425). Briefly, a high-complexity cDNA library constructed in λgt10 and derived from porcine ovarian mRNA by oligo-dT-primed cDNA synthesis was screened with a single 64-base-long synthetic oligodeoxynucleotide directed against the N-terminal amino acid sequence of the α-chain of porcine inhibin. It was found that the library is to be 50 prepared from fresh ovarian tissue because the inhibin chain mRNA was apparently quite labile. Approximately 1 in 2,000 plaques hybridized with this probe, and sequence analysis of several hybridizing cloned cDNAs confirmed correct probe identification. This analysis revealed that none of the characterized cDNAs contained sufficient sequence information to predict the complete structure of the α-chain precursor protein. Rather than analyzing more clones from the same cDNA library, a second library was constructed by 3' 55 extension on ovarian mRNA of a synthetic oligodeoxynucleotide complementary to a sequenced region encoding α precursor residues 60-64 (Fig. 1A). This library was screened with a suitable restriction fragment from a previously analyzed cDNA and yielded several isolates which specified the remainder of the DNA sequences encoding the N-terminal region of the α precursor. Completeness of the coding sequence was

judged from the presence of a long reading frame which specifies the porcine α -chain peptide sequence and starts with a methionine codon preceded by an in-frame stop codon and followed by a hydrophobic sequence bearing the hallmarks of a signal peptide. The full sequences for the precursor protein and its cDNA are shown in Fig. 1B. The complete protein including signal peptide has an Mr of ~40K consisting of 5 364 amino acids, of which the C-terminal 134 (M, ~14.5K) constitute the porcine inhibin α -chain. There are several Arg-Arg sequences in the proregion of the precursor, one of them directly preceding the α subunit. We believe that this latter pair of basic residues is the processing site for the proteolytic release of the α peptide. The deduced precursor sequence predicts two N-linked glycosylation sites, one within the α chain proper.

10 In addition to the coding region, the cDNA sequence contains a 3'-untranslated sequence of 167 nucleotides, including the canonical AATAAA polyadenylation signal, and a 5'-untranslated region, the proper length of which is presently unknown.

The detailed method was as follows:

Polyadenylated mRNA was prepared from freshly frozen porcine ovaries (Kaplan et al., "J. Biochem." 183: 181-184) An oligo-dT-primed cDNA library of ~6x10⁶ clones in λ gt10 (Huynh et al., 1984, DNA Cloning Techniques., Ed. D. Clover) was prepared form 5 μ g polyA⁺ mRNA as described by Wood et al., "Nature" 312: 330-337 (1984), except that the EcoRI adaptors used had the sequence

20 5' -AATTCACTCGAGACGC-3'
 3' -GTGAGCTCTGCG-5'P.

25 Approximately 1 x 10⁶ unamplified cDNA clones were screened with 5 α -subunit oligonucleotide

5' -ACCGCCCCTTGCCTTGGCCTGGTCCCTGCTGCTTGAGACTGCTGCAGAGACCTCCTGAGG-3',

30 based on the amino acid sequence underlined in Fig. 1B. Hybridization was carried out with the phosphorylated ³²P-labelled probe in 5xSSC, 40% formamide at 37 °C. Filters were washed at 50 °C with 1xSSC, 0.1% SDS. Approximately 500 hybridization positive clones were obtained, twelve of which were purified and examined for insert size. The EcoR1 inserts of five of these (λ PIN- α 2, - α 5A, - α 5, - α 9, - α 10) were subcloned into M13 derivatives (Messing et al., 1981 "Nucl. Acids Res." 9:309-321) and sequenced by the dideoxy chain termination method of Sanger et al., "Proc. Nat. Acad. Sci. USA" 74:5463-5467 (1977).

35 A specifically primed library was prepared by priming 5 μ g of polyA⁺ mRNA with the oligonucleotide 5'-CCCCACAGCATGTCTT-3' (complementary to nucleotides 248-263) and subsequent cloning into λ gt10. Approximately 2x10⁵ clones of the 1x10⁶ clones obtained were screened with the 5' 100bp EcoRI-BamHI fragment prepared from λ PIN- α 2. Twelve of the 170 hybridization positive clones obtained were purified and two (λ PIN-S12s, -S4s) were sequenced by the dideoxy method. The complete nucleotide sequences of the 40 α -subunit cDNAs were obtained by subcloning various restriction fragments with the different λ isolates into the M13 phage derivatives. Compressions were resolved by the use of deoxyinosine mixes in combination with the E. coli single stranded binding protein (Pharmacia).

Isolation of Cloned Inhibin β Subunit cDNAs

45 The cDNA sequences encoding the precursors of the inhibin β subunits were obtained from the same cDNA libraries used for the α subunit. Overlapping cDNA clones were isolated by screening first with single long synthetic oligodeoxynucleotide probes based on the two N-terminal β subunit sequences and subsequently with suitable restriction fragments derived from characterized cDNA clones which served as probes for "walking" in both 5' and 3' directions (Fig. 2A).

In more detail, approximately 2x10⁵ oligo-dT primed ovarian cDNA clones were screened with the 5' end labelled β_A oligonucleotide,

55 5' -AAGAACCACTTCTTGTGTCCTCAAGGACATTGGCTGGAATGACTGGATCATTGC-3'

based on the amino acid sequence of residues 321-339. Five hybridization positives were obtained, of which three proved to contain β_A coding sequences (λ PIN- β A2, - β A4, - β A8). A 5' end 154 bp EcoRI-HindIII

(nucleotides 158-297) fragment and a 3' end 213 bp EcoRI-Pst fragment (nucleotides 1679-1892) derived from λ PIN β A2 were used to screen 2×10^6 oligo-dT primed cDNA clones and 2×10^5 clones from the α -chain specifically primed library. Out of the sixteen clones analyzed in detail two were found to have longer 5' ends (λ PIN- β A5s, - β A22) and one clone λ PIN- β A21 contained the entire 3'-untranslated region. Porcine inhibin β B subunit cDNA clones were isolated by screening 2×10^5 clones from the specifically primed library with the β B oligonucleotide

5' - GCCCTGGAGTGTGATGGGAGAACCAACCTGTCCTGCCGCCAGGAATTTTATCGATTTCAGGCT -3',

which was based on the NH₂-terminal sequence described in Fig. 1A. Positive clones were further screened with the oligonucleotide inosine probe 5'-AAITCTATIAIAIA_CT TG_CT -3' ("I" in this sequence stands for inosine), which covers all the possibilities in the non-coding strand for the amino acid sequence QQFFIDF. Two clones (λ PIN β B-1s, -2s) were isolated and sequenced and found to code for the β B subunit. A 230 bp EcoRI-Sma (nucleotides 21-251) fragment was isolated from λ PIN β B-1 and used as a hybridization probe to screen 2×10^6 oligo-dT primed cDNA clones. Two positives were obtained (λ PIN β B-3,4). The nucleotide sequence of these overlapping clones was used to construct the sequence shown. All sequences were obtained by subcloning specific fragments into M13 phage vectors (Messing *et al.*, *op cit.*). The EcoRI restriction sites referred to above are all contained within the cDNA adaptor fragment, and do not refer to sequences present in the cDNA.

We noted that only very few clones from the oligo-dT-primed library (4 out of 2×10^5) hybridized with the synthetic probe for the β -subunit of inhibin A. Although most of these proved correct by DNA sequence analysis, none contained a full 3'-untranslated region, as judged by the absence of a polyA homopolymer at their 3' ends. Absence of polyA tails suggested the existence of a very long 3'-untranslated sequence in this mRNA species and/or structural region(s) which prove difficult to copy by the polymerases used for library construction. Unexpectedly, a higher abundance (~10-fold) of inhibin β A subunit coding sequences was found in the cDNA library made by specific priming on α -subunit mRNA. This library was screened with the synthetic probe for the β -chain of inhibin A on the subsequently refuted theory that the α precursor mRNA might also encode the β subunit. The high abundance of inhibin β A cDNA in this library was later traced to fortuitous complementarity of the specific α chain primer to a region in the 3'-untranslated portion of the corresponding mRNA.

Only four cloned cDNAs encoding the β subunit of inhibin B were found in our libraries. The sequence information obtained from these clones failed to reveal the complete structure of the corresponding precursor protein and its cDNA. The sequences of cDNAs and deduced protein structures for the precursors of the β subunits are compared in Fig. 2B. The nucleotide sequence of inhibin β A subunit cDNA is 3.6 kb in length and contains an open reading frame for a protein of 425 amino acids (Mr ~46K), the C-terminal 116 residues of which represent the β subunit proper (Mr ~13K). This reading frame begins with a methionine codon followed by a sequence that codes for a characteristic signal peptide, the true length of which is believed to be 29 residues. The encoded β subunit is preceded by a string of 5 arginines at which it is presumably proteolytically cleaved from the precursor. Similar to the α subunit precursor, this β precursor contains several additional pairs of basic residues at which hitherto unknown biologically active peptide entities are believed to be released. It also contains one possible site of N-linked glycosylation in the proregion (Asn, residue 165).

The deduced protein sequence for the β subunit of inhibin B shows high homology with the β A subunit sequence. 71 amino acid residues are identical and most changes are conservative in nature. Sequence homology, although of a lesser degree, is also found in the proregion of both β subunit precursors. Interestingly, an extremely purine-rich sequence rarely seen in coding regions but present in the cDNA encoding the inhibin β A precursor and resulting in a curious amino acid sequence is not found in the cDNA which codes for the homologous β B precursor. This results in a gap of 22 amino acid residues from the β B precursor of inhibin when protein sequences are aligned for maximal homology. Such alignment also brings about a perfect match in the cysteine positions of both precursors (see Fig. 2B).

Northern Analysis of α and β chain Precursor mRNAs

Ovarian total and polyadenylated RNAs were analyzed by the Northern procedure using the sequenced cDNAs as probes to assess size and relative abundance of the mRNAs which encode the peptide subunits α and β and β B of the heterodimeric inhibin molecule. Polyadenylated mRNA (2 μ g: lanes a, b, c, and f; 8 μ g: lane d) and total RNA (10 μ g: lanes e and g) were electrophoresed into a formaldehyde 1.2% agarose

gel and blotted onto nitro-cellulose filters. The following ^{32}P -labelled cDNA fragments were used as hybridization probes under stringent conditions. Lane a: 240 bp EcoRI-SmaI (nucleotides 134-371) from α subunit cDNA; b: 154 pb EcoRI-HindIII (nucleotides 158-297) from β_A subunit cDNA; c: 230 bp EcoRI-SmaI (nucleotides 21-251) from β_B subunit cDNA; d and e: EcoRI insert of $\lambda\text{PIN-}\alpha_2$; f and g: EcoRI insert of $\lambda\text{PIN-}\beta_A$. Filters were washed for 2 hours with 3 changes of 0.1xSSC, 0.1% SDS at 60°C.

Analysis showed (Fig. 3) that α and β mRNAs are of different size and abundance, as indicated by results obtained from cDNA cloning. From their respective band intensities the α precursor mRNA is estimated to be at least of 10-fold higher abundance than the mRNA for the β_A precursor, and approximately 20-fold higher than the mRNA for the β_B precursor.

Using ribosomal RNAs as size standards, the α precursor mRNA, which is a single species, is ~1500 nucleotides in length, a size in good agreement with the cloned cDNA sequence (Fig. 1B). β_A precursor mRNA sequences are represented by two main species of ~4.5 and ~7.2 kb in length. The relatively higher intensity of both species in polyadenylated than total RNA suggests that the 4.5 kb species does not represent 28S RNA which hybridized to the cDNA probe. Thus, the β precursor cDNA sequences shown in Fig. 2B are thought to represent the 4.5 kb mRNA, suggesting that the 5' untranslated region for the β_A mRNA is approximately 900 nucleotides long. The β_B precursor is encoded on one mRNA, of approximately 4.5 kb in size, which is present at roughly half the level of the two β_A mRNAs. Since the two β mRNAs are closely related, one can predict that both mRNAs have a similar structure and thus the β_B mRNA presumably possesses a long 5' and 3' untranslated region equivalent to that shown for the β_A mRNA.

Choice of a different polyadenylation signal might explain the existence of the 7.2 kb species.

Homology To Transforming Growth Factor- β

The mature α and β inhibin subunits contain seven and nine cysteine residues respectively. Upon alignment of the cysteine residues it is apparent that the two subunits share a similar cysteine distribution and some sequence homology exists around these residues (Fig. 4), suggesting that both types of subunits derive from one ancestral gene. Surprisingly, significant homology was found between the β chain and the primary structure of human TGF- β recently determined. As outlined in Fig. 4, both peptides are of nearly equal length (inhibin β_A subunit, 116, β_B subunit 115; TGFS, 116 residues) and show a strikingly similar distribution of their nine cysteine residues. Using this cysteine "skeleton" for alignment, the β_A and TGF- β sequences have an additional 31 residues in identical positions and show conservative changes in nine homologous places. Similar high homologies are seen upon comparison of the β_B and β -TGF. Some gaps were introduced for better alignment (Fig. 4). The overall homology reaches 35%, but approaches 60% in certain sections (cf. porcine inhibin β_A chain residues 11-45 and TGF residues 15-49), a very high degree of homology considering the difference in species. Interestingly, this homology extends beyond the termination codon for protein synthesis in the respective cDNAs. Thus, the cDNAs for TGF- β and both inhibin β subunits contain a highly G and C rich sequence in this region, and they also possess unusually long 5' and 3' untranslated regions.

One can discount the suggestion that the β subunit of inhibin is the porcine equivalent of human TGF- β , since there is almost absolute homology between human and murine β -TGFs. These findings strongly indicate that both inhibin subunits and TGF- β have a common ancestor and belong to one gene family. All three peptides are derived from similarly-sized precursors (M, ~40K) where they occupy the C-terminal 110 or so residues and are released by proteolytic cleavage at pairs of arginines. They form homo- or heterodimers, and subunits in the biologically active complex are linked by disulfide bridges. However, there is little sequence homology between TGF- β and the β subunits in the pro parts of their precursors, although the regions comprising the odd residues which precede the β subunit and TGF peptides display limited but significant sequence relatedness.

EXAMPLE 2

50 Recombinant Synthesis of Porcine Inhibin

The plasmid used for recombinant synthesis of porcine inhibin was pSVE-P α B β Inh-DHFR. The procedure to construct this plasmid is shown in Fig. 5. This plasmid was constructed as follows:

pHBS348-E (EP 0073656A) was partially digested with EcoRI, blunted with E. coli DNA polymerase I (Klenow fragment) and the four dNTPs, ligated and the ligation mixture was transformed into E. coli 294 (ATCC 31446). The transformed culture was plated on ampicillin media plates and resistant colonies selected. Plasmids were screened for the loss of the EcoRI site preceding the SV40 early promoter. A

plasmid having the site deleted is referred to as pHBS348-EII.

pHBS348-EII was digested with EcoRI and EcoRI to produce two fragments, fragment 1 containing the SV40 early promoter, pML-Amp' sequences and the HBsAg 3' untranslated region and fragment 2 containing the HBsAg (hepatitis B antigen) coding sequences.

5 λ PIN β_A 5s containing the coding region for the porcine inhibin β_A subunit was digested with EcoRI and SmaI and the 1335 bp fragment (fragment 3) containing the β_A coding region recovered by polyacrylamide gel electrophoresis. Fragment 1, recovered by agarose gel electrophoresis, was ligated to fragment 3 and the ligation mixture transformed into E. coli strain 294 (ATCC 31446). The transformed culture was plated on ampicillin media plates and resistant colonies selected. Plasmid DNA was prepared from transformants
10 and checked by restriction analysis for the presence of the correct DNA fragments. This plasmid is referred to as pSVE-p β_A Inh.

15 pHBS348-E (EP 0073656A) was partially digested with EcoRI, blunted with E. coli DNA polymerase I (Klenow fragment) and the four dNTPs, ligated to the synthetic oligonucleotide 5' GGTCGACC-3' containing the Sall recognition site. The transformed culture was plated on ampicillin media plates and resistant colonies selected. Plasmids were screened for the presence of the extra Sall restriction site. Plasmid DNA is prepared from this construction (pHBS348-ESall).

20 λ PIN α -12s and λ PIN α -2 were digested with EcoRI and BamHI. A 104 bpEcoRI-BamHI fragment from λ PIN α -12s containing the 5' coding region and a 1246 bp EcoRI-BamHI fragment from λ PIN α -2 containing the middle and 3' coding region were recovered and ligated together. The ligation mixture was digested with EcoRI, the enzyme heat denatured, and the mixture ligated to EcoRI-digested pUC9 (BRL). Recombinants were selected and confirmed by restriction analysis. DNA was prepared from the correct plasmid (pPIN α).

25 pPIN α , containing the complete coding region for porcine α -inhibin was digested with Ncol and EcoRI, filled in by Pol(I)K in the presence of 4dNTP's, the 1280 bp fragment (fragment 4) was recovered by gel electrophoresis. pHBS348-ESall was digested with SstII and HindIII, filled in by Pol(I)K in the presence of 4dNTP's, and fragment 5 containing the PML-Amp' region, SV40 early promoter and HBsAg 3' untranslated region was recovered by gel electrophoresis. Fragments 4 and 5 were ligated together and the ligation mixture used to transform E. coli 294 (ATCC 31446). Recombinants were selected by growing on Ampicillin media plates. The desired recombinant is called pSVE-P α Inh.

30 pHBS348-ESall was digested with Sall and HindIII and fragment 6 containing the pML-Amp', and SV40 early promoter was recovered by gel electrophoresis. pFD II (EP 117,060A) was digested with Sall and HindIII and fragment 7 was recovered which contains the normal mouse DHFR gene fused to the HBsAg 3' untranslated region. Fragments 6 and 7 were ligated, and the ligation mixture transformed into E. coli strain 294 (ATCC 31446). The transformed culture was plated on ampicillin media plates and resistant colonies selected. Plasmid DNA was prepared from transformants and checked by restriction analysis for the presence of the correct DNA fragments. This construction is referred to as pFDII-Sal1.

35 pSVE-P α Inh was digested with Sall and fragment 8 was recovered which contains the SV40 early promoter and the α -inhibin coding region fused to the HBsAg 3'-untranslated region. pFDII-Sall was digested with Sall and fragment 9 containing the SV40 early promoter and the mouse DHFR coding region linked to the HBsAg 3'-untranslated region was recovered. pSVE- β β Inh was linearized by Sall digestion and ligated to fragments 8 and 9 in a three part ligation. The ligation mixture was transformed into E. coli strain 294 (ATCC 31446). The transformed culture is plated on ampicillin media plates and resistant colonies selected. Transformants were screened for the presence of fragments 8 and 9 in the correct orientation such that transcription from the three SV40 early promoters will proceed in the same direction. This final 45 plasmid is designated pSVE-P α β β Inh-DHFR.

40 Plasmid pSVE-P α β β Inh-DHFR was transfected into DHFR deficient CHO cells (Urlaub and Chasin, 1980, PNAS 77,4216-4220). However, any DHFR $^{-}$ mammalian host cell is suitable for use with this plasmid. Alternatively, any mammalian host cell is useful when the host cell is cotransformed with a plasmid encoding neomycin resistance, and transformants identified by their ability to grow in neomycin-containing medium.

45 The transfected CHO cells were selected by culturing in 15 HGT $^{-}$ medium. The cells were allowed to grow to confluence in 15cm diameter plates. The cells thereafter were cultured in serum free medium for 48 hours prior to harvest. 50ml of supernatant medium was lyophilized after the addition of 100mg human serum albumin. The residue was redissolved in 3ml 1% fetal bovine serum in HDMEM (GIBCO Laboratories, Santa Clara, CA), filtered through a Millex-GS 0.22mM filter (Millipore Corp., Bedford, MA) and assayed in duplicate.

50 The inhibin hormonal activity in the transformant supernatants was determined by an *in vitro* bioassay using rat anterior pituitary monolayer culture, Vale, W. et al. Endocrinology, 91, 562-572 (1972). In brief, 21-

day-old female rat anterior pituitaries were collected, enzymatically dispersed and plated in 10% fetal bovine serum in HDMEM (GIBCO Laboratories, Santa Clara, CA) into 24-well tissue culture plates (Falcon Plastic, Oxnard, CA) on day 1. On day 2, the medium was changed to 1% fetal bovine serum in HDMEM, and the transformant medium sample was added. Incubation was continued for another 48 hours. The monolayer medium was then harvested, and the LH and FSH contents were determined by radioimmunoassay (RIA) using materials provided by The Pituitary Hormone Program of NIADDK. In this assay, the inhibin-containing CHO cell culture inhibits the basal release of FSH but not LH, as compared to control pituitary cells that received the incubation medium only. The amount of porcine inhibin detected in transformant supernatants was 20 ng/ml and exhibited a dose response curve parallel to that obtained with pure porcine ovarian inhibin.

Immunological cross-reactivity is assayed by a sandwich-type radioimmunoassay. Rabbit antisera are raised against purified porcine follicular inhibin by s.c. immunization of rabbits with the porcine inhibin in Freund's complete adjuvant. The presence of anti-inhibin in the antiserum is detected by incubation of the antiserum with purified porcine inhibin and assaying for the formation of an immune complex by conventional techniques, e.g. gel filtration. An aliquot of the antisera is coated onto goat-anti-rabbit IgG precoated polystyrene test tubes. The recombinant culture supernatant or extract is diluted into phosphate buffered saline and added to the coated tubes, incubated overnight and washed. Another aliquot of the rabbit antiserum is added to the test tubes, incubated and washed. Radioiodinated goat antirabbit IgG is added to the tubes, incubated and unbound goat antiserum removed by washing. The recombinant produced inhibin cross-reacts with the rabbit antiserum, as evidenced by bound counts on the test tubes which exceed those of controls incubated with culture medium or extracts from untransformed host cells.

EXAMPLE 3

25 Construction of Human Inhibin Vector and Expression of Human Inhibin in Recombinant Cell Culture-I

Expression of human inhibin $\alpha\beta_A$ facilitated by the discovery that the mature porcine and human β_A chains are identical. Thus, construction of a vector for the expression of human inhibin can proceed from plasmid pSVE- β_A -Inh from Example 1, which contains the porcine β_A -encoding cDNA.

A λ gt 10 library of human ovarian cDNA made from 10 μ g of ovarian mRNA was subjected to Southern analysis using radiophosphate labelled porcine cDNA encoding α , β_A and β_B chains. λ HIN α -2 was identified as containing coding regions for the human α inhibin chain. The prevalence of hybridizing clones in the case of human α inhibin was considerably less than that found for porcine α inhibin, on the order of 1 in 100,000 human clones hybridized to the 685 bp SmaI fragment of the porcine cDNA for α Inh. The β chain clones were also rare, with the β_B clones being present at about 3 times the level of β_A (1 and 3 out of about 1,000,000 clones, respectively). None of the β chain clones were full length. They were supplemented with a primed cDNA library and assembled generally as described above for the porcine cDNA. The λ inserts were recovered by EcoR1 digestion.

Plasmids pHIN α -2 is digested with NcoI and SmaI, and the 1049 bp 15 fragment (fragment 10) is recovered by gel electrophoresis. pPin α (Example 2) is digested with EcoR1 and PvuII. The 98 bp fragment (fragment 11) is recovered by gel electrophoresis. Fragments 10 and 11 are ligated to adaptor I

5' -CTGCTCCCTCTTGCTGTGGCCCCACGGAGTGGGCATGGCTGCCAGGGCCCCGAGCTGGACC-3',

45 in combination with adaptor II which is the complement of adaptor I. The resulting 1208 bp fragment (fragment 12) is treated with Klenow fragment of Pol(I) and the 4 dNTP's and ligated to pHBS348-ESall which has been restricted with HindIII and SacI and blunt-ended as described in Example 1. Alternatively, pPin α was digested with EcoR1 and HpaII with the fragment encoding upstream from the HpaII site (that is, the first 21 residues of the porcine sequence) being recovered. The adaptor used in this alternative approach was

5' CGGAGCTCGACC 3'

3' CTCGAGCTGG 5'.

A plasmid pSVE-H α Inh having the correct orientation of fragment 12 is identified by sequence analysis of transformants. This construction (pSVE-H α Inh) thus contains the first 24 residues of the porcine signal sequence with the remainder being prepro human inhibin. Plasmid pSVE-H α Inh is digested with Sall. The fragment containing the SV40 promoter and human inhibin sequence is ligated to fragment 9 and Sall digested pSVE- β _AInh (Example 2). This final plasmid designated pSVE-h α β _AInh-DHFR1 is transfected into DHFR-deficient CHO cells and selected as described in Example 2. The culture supernatant contains hormonally active human inhibin.

EXAMPLE 4

10

Construction of Human Inhibin Vector and Expression of Human Inhibin in Recombinant Cell Culture-II

This example is similar to Example 3 except that the pro sequence of human inhibin β _B was employed in the place of the porcine β _B prepro domain.

15 The lambda gt10 library of Example 3 yielded λ HIN α 2, as described in example 3, together with λ HIN β _A-5 and -14. The latter two phage were employed to construct the full length β _A coding cDNA by ligating the 311 bp EcoRI-HindIII fragment (fragment 13) of λ HIN β _A-5 to the 1101 bp HindIII-HpaI fragment (fragment 14) of λ HIN β _A-14 and ligating this mixture in an EcoR1-SmaI digested mp18 vector (Biolabs). Clones were selected and screened for the appropriate sized insert. An mp18 vector containing the correct 20 insert was treated with DNA polymerase(I) and the four dNTPs in order to render it double stranded, and thereafter digested with XbaI (which cleaves in the mp18 polylinker sequence), blunted with DNA polymerase I and the four dNTPs, and digested with EcoR1. A 1320 bp fragment (fragment 15) was ligated to the EcoR1-EcoRV fragment 1 from Example 2. This ligation mixture was used to transform *E. coli* 294 cells. Clones were screened by Southern Hybridization and confirmed by restriction analysis. The clone containing 25 the hInh β _A coding sequence was designated pSVE-hum β _AInh. A plasmid containing the human β _A coding sequences and the human α -inhibin sequences together with the DHFR gene is constructed from plasmids pSVE-hum β _AInh, pSVE-H α Inh and pFDIIISall as outlined above. Specifically, the Sal fragments from pSVE-H α Inh and pFDIIISall which contain the human alpha inhibin and the DHFR genes were ligated with Sall digested pSVE-hum β _AInh and a clone containing all three genes was identified. This plasmid, 30 designated pSVE-hum α β _AInh-DHFR2 was transfected into DHFR⁻ CHO cells and selected by culture in ght⁻ medium. 24 clones were picked, grown to confluence in ght⁻ medium under conditions conventional for CHO cells for two days, allowed to rest for 2 more days and thereafter the culture media were assayed for inhibin and activin activity using the rat pituitary cell assay described above. 4 clones were found to secrete significant levels of human α β _A inhibin (h α β _A-8, 12, 14, and 18). The levels in the culture medium 35 for each clone were, respectively, 125, 125, 200 and 250 ng/ml. Another clone (h α β _A-11) produced activin as the β _A β _A homodimer, but no detectable inhibin, as determined by biological activity and the lack of α chain immunoreactivity in the culture medium for this clone. Clone h α β _A-16 secreted only α chain and was devoid of activin or inhibin activity.

40 EXAMPLE 5

Recombinant Expression of Human Activin

As reported by Vale *et al.* (Id.) and Ling *et al.* (Id.), homodimers and heterodimers of the β chains A 45 and/or B have the opposite effect of inhibin on the pituitary, introducing rather than inhibiting FSH secretion. These proteins, collectively termed activin, are made in α and β chain cotransformants as described in Example 4. However, somewhat less screening for an appropriate transformant is needed if the initial transfection is conducted with a vector or vectors that do not contain the α chain gene. A suitable vector is readily constructed from the above-described vectors by excising the α chain gene. Plasmid pSVE-hum β _AInh from Example 4 is digested with Sall and ligated to fragment 9 (Example 2) containing the DHFR gene. The ligation mixture was used to transfect *E. coli* 294 cells and colonies selected on the basis of failure to hybridize to the α chain sequence but which did hybridize to the β chain DNA. A clone pSVE-hum β _AInh-DHFR was identified from which the α chain DNA has been deleted. This clone is transfected into 50 DHFR⁻ CHO cells as described above. Transformants are identified that secrete activin into the culture medium. Similarly, an expression vector containing a β _B coding sequence (reconstituted by ligating DNA encoding the first 34 amino acids of human β _A to the remaining coding sequence of the human β _B chain) is readily constructed and contranfected with pSVE-hum β _AInh-DHFR to produce the heterodimer. The reconstructed human β _B gene also is used in the forgoing plasmids in order to produce α β _B-inhibin which,

in the in vitro bioassay has essentially equivalent biological potency to the $\alpha\beta_A$ form of inhibin.

Although the invention has been described with regard to its preferred embodiments, which constitute the best mode presently known to the inventors, it should be understood that various changes and modifications as would be obvious to one having the ordinary skill in the art may be made without departing from the scope of the invention which is set forth in claims appended hereto.

Claims

Claims for the following Contracting States : BE, CH, DE, FR, GB, IT, LI, NL, SE

- 10 1. A method comprising culturing a host cell transformed with a vector which includes nucleic acid encoding a human or porcine inhibin α chain and/or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), or an amino acid sequence variant by way of insertion, deletion or substitution of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence but excluding bovine inhibin α chain and the partial bovine inhibin β chain of the sequence

Gly-Leu-Glu-Cys-Asp-Gly-Lys-Val-Asn-Ile-Cys-
 20 Cys-Lys-Lys-Gln-Phe-Phe-Val-Phe-Lys-Asp-Ile-Gly-Trp-
 Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-Tyr-His-Ala-Asn-Tyr-
 25 Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-Ala-Gly-Thr-Ser-Gly-
 Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-Ile-Asn-His-Tyr-Arg-
 Met-Arg-Gly-His-Ser

- 30 and
 - 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

- 35 2. A method according to claim 1 wherein the nucleic acid encodes a human or porcine inhibin α chain and/or a human or porcine β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

- 40 3. A method according to Claim 1 wherein the vector encodes an inhibin β chain, or an amino acid sequence variant thereof, other than native human or porcine β_A or the partial bovine inhibin β chain specified in claim 1.

- 45 4. A method according to claim 1 wherein the nucleic acid encodes a variant selected from: porcine inhibin derivatives (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ or Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→Δ]Inh β_A ;[Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ;[Cys₃₈₈ or Cys₃₉₀→Δ]-Inh β_A , [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

- 55 5. A method according to claim 1 wherein the nucleic acid encodes a variant of a human β_A inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr

or Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀→Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparably modified human β_B chain

- 5 6. The method of any one of the preceding claims wherein the nucleic acid encoding the inhibin α chain and/or β chain is operably linked to a promoter recognized by the host cell and including the further step of recovering inhibin or a β chain dimer from the culture medium.
- 10 7. The method of any one of the preceding claims wherein the cell is a prokaryote.
- 15 8. The method of any preceding claim wherein the vector comprises nucleic acid encoding the prepro form of an inhibin α chain or an inhibin β chain.
- 19 9. The method of claim 8 wherein the vector comprises nucleic acid encoding the prepro form of both the inhibin α chain and an inhibin β chain.
- 20 10. The method of any one of claims 1 to 6, 8 or 9 wherein the cell is a cell from a multicellular organism and hormonally active inhibin is produced.
- 25 11. The method of claim 6 wherein the promoter is a viral promoter.
- 29 12. The method of claim 11 wherein the promoter is an SV40 promoter.
- 33 13. The method of any preceding claim wherein mature porcine or human inhibin is recovered.
- 35 14. The method of any of claims 1 to 7 or 10 to 12 wherein the vector comprises nucleic acid encoding the prepro form of an inhibin β chain and a mature β -chain dimer is recovered free of the α -chain.
- 39 15. The method of claim 10 or 13 wherein the β chain is the β_A chain and the inhibin is present in a concentration greater than about 20 ng/ml in the culture medium.
- 45 16. A composition comprising human or porcine inhibin made up of an α and a β chain, the amino acid sequences of said α and β chains being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), and amino acid sequence variants by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, which variants are substantially homologous with a polypeptide of a depicted sequence, but excluding bovine inhibin α chain and 1) are cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) are cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) have like hormonal activity to a polypeptide of a depicted sequence; which composition is completely free of unidentified human or porcine proteins.
- 50 17. A composition according to Claim 16 wherein the sequences of said α and β chains are selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
- 55 18. A composition according to claim 16 wherein said variants are selected from: porcine inhibin derivatives (Asn₂₆₆→In]Glnh α ; [Cys₃₂₅ or Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ or Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₈₁→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→Δ]Inh β_B [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.
- 59 19. A composition according to claim 16 including a variant of a human β_A inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp,

Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀→Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparably modified human β_B chain.

5 20. A composition comprising a prodomain of human or porcine α or β_B inhibin as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β_B chain), Fig 6A (human α chain), and Fig 9 (human β_B chain) unassociated with native glycosylation.

10 21. A composition comprising a homodimer of mature human or porcine inhibin β_A or β_B chains, said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or of an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which composition is free of the inhibin α chain.

15 22. A composition according to Claim 21 which is a homodimer of mature human or porcine β_B chains or a said amino acid sequence variant thereof.

20 23. A composition comprising a heterodimer of mature human or porcine inhibin β_A with mature human or porcine inhibin β_B , said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or of an amino acid sequence variant by way of insertion, deletion or substitution of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which composition is free of the inhibin α chain.

25 30 24. Non-chromosomal DNA encoding a human or porcine inhibin α or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence excluding bovine inhibin α chain and the partial bovine inhibin β chain of the sequence

35

Gly-Leu-Glu-Cys-Asp-

40 Gly-Lys-Val-Asn-Ile-Cys-Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-
 Phe-Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-
 Gly-Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-
 45 Ile-Ala-Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-
 Val-Ile-Asn-His-Tyr-Arg-Met-Arg-Gly-His-Ser

50 and
 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

55 25. The DNA of claim 24 encoding a human or porcine inhibin α or a human or porcine inhibin β chain whose amino acid sequence is as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

26. The DNA of claim 24 which encodes a variant selected from: porcine inhibin derivatives (Asn₂₆₆→Gln)-Inh α ;[Cys₃₂₅ or Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ or Cys₃₉₀→Δ]Inh β_A , [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]-Inh β_B ;[Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

10 27. The DNA of claim 24 which encodes a variant of a human β inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀ →Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparable modified human β_B chain

15 28. The DNA of any of claims 24 to 27 which is free of intervening untranslated sequences.

20 29. The DNA of any one of claims 24 to 28 which is labelled with a detectable moiety.

30. A replicable vector comprising a DNA of any of claims 21 to 27.

25 31. The vector of claim 30 comprising a viral promoter operably linked to the DNA encoding the inhibin α and/or β chains.

32. The vector of claim 30 or 31 which contains DNA encoding both an inhibin α and an inhibin β chain.

30 33. The vector of claim 30 or 31 which contains DNA encoding an inhibin β chain but not the inhibin α chain.

35 34. A host cell transformed with a replicable vector comprising DNA encoding the human or porcine inhibin α and/or an inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence, excluding bovine inhibin α chain, and the partial bovine inhibin β chain of the sequence

Gly-Leu-Glu-Cys-Asp-Gly-

40 Lys-Val-Asn-Ile-Cys-Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-Phe-
 Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-
 45 Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-
 Ala-Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-
 50 Ile-Asn-His-Tyr-Arg-Met-Arg-Gly-His-Ser

and

55 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

35. A host cell according to claim 34 wherein the DNA encodes a human or porcine inhibin α and/or an inhibin β chain, the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B

(porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

36. A host cell according to claim 34 wherein the DNA encodes a variant selected from: porcine inhibin derivatives (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ or Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ or Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

10

37. A host cell according to claim 34 wherein the DNA encodes a variant of a human β_A inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀→Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparably modified human β_B chain

20

38. The cell of any of claims 34 to 37 which is a eukaryotic cell.

39. A cell-free composition that is free of mature α chain polypeptide containing a human or porcine inhibin α chain prodomain polypeptide sequence as depicted in Fig 1B (porcine α chain) or Fig 6A (human α chain) or an amino acid sequence variant by way of insertion, deletion or substitution of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

40. A cell-free composition containing

30 a) a polypeptide comprising the human inhibin β_A chain prodomain sequence

HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (Amino acids 1-40
 35 of Fig 8), PDVTQPVPKAALLNAIRKLHVGVKGENGYVEIEDDIG (amino acids 44-80 of Fig 8.),
 40 AEMNELMEQTSEIIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-
 RTRTKVTIRLFQQQKHPQGSIDTGEAAEVGLKGERSELLLSEKVVDA (amino acids 83-185 of Fig 8), STWHVFPVSSSIQRLLD-
 45 QGKSSLVDVRIACEQCQESGASLVLLG (amino acids 188-230 of Fig 8),

or naturally occurring mammalian amino acid sequence variants thereof;
 50

b) a polypeptide comprising the human inhibin β_B chain prodomain sequence

CTSCGGFRRPEELGRVDGDFLEAV, (amino acids

5 7-30 of Fig 9),

HILSRLQMRGRPNITHAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

10 GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS

(amino acids 33-145 of Fig 9),

15 VRVKVYFQEQQGHGDRWNMVEKRVDLKRSGWHTFPPLTEAIQALFERGE (amino
acids 149 - 195 of Fig 9),

20 LNLDVQCDSCQELAVVPVFVDPGEESHRFVQQARLGDSRHRI (amino acids
198-241 of Fig 9),

25 or naturally occurring mammalian amino acid sequence variants thereof; or
c) a polypeptide free of the mature α chain amino acid sequence comprising the human inhibin α
chain prodomain sequences

KVRALFLDALGPPAVTREGGDPGV (amino

30 acids 1 - 24 of Fig 6),

35 HALGGFTHRGSEPEEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFR -

PSQHTRSRSRQVTSAQLWFHTGLDRQGTAAASNSEPLLGLLALSPGGPVAVPMSLGH -

APPHWAVLHLATSALSLLTHPVLVLLLRCPLCTCSARPEATPFLVAHTRTRPPSGGERA

40 (amino acids 32 - 199 of Fig 6),

45 or naturally occurring mammalian amino acid sequence variants thereof.

41. A cell-free composition containing a human or porcine inhibin β chain prodomain polypeptide of a sequence as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion, or substitution of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence, and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

42. The composition of claim 41 wherein the β chain is the β_A chain and the composition is free of mature β_A chain sequence.

43. The composition of claim 41 wherein the β chain is the β_B chain and the composition is free of mature β_B chain sequence.

44. The composition of claim 40 wherein the variant is the corresponding porcine amino acid sequence, the composition containing:

- a) a polypeptide comprising the porcine inhibin β_A chain prodomain sequence depicted at: amino acids 28 to 58; amino acids 61 to 87; amino acids 90 to 108; amino acids 111 to 179; amino acids 182 to 213; amino acids 216 to 258; or amino acids 28 to 87 of Fig 2B; or
- b) a polypeptide free of the mature α chain amino acid sequence comprising the porcine inhibin α chain prodomain polypeptide sequences depicted at: amino acids 20 to 54; or amino acids 70 to 228 of Fig 1B.

10 45. The composition of any of claims 39 to 44 wherein the polypeptide is unaccompanied by native glycosylation.

15 46. The composition of any of claims 39 to 45 which is sterile and wherein the polypeptide further comprises an immunogenic polypeptide.

15 47. The use of a composition of any of claims 39 to 46 in the preparation of an antibody capable of binding said polypeptide.

20 48. The composition of any of claims 39 to 46 wherein the polypeptide is conjugated to a detectable group.

20 49. The composition of claim 48 wherein the group is an enzyme, fluorophore or radioisotope.

25 50. The composition of any of claims 39 to 44, 48 or 49 which is insolubilized by non-covalent absorption or covalent cross-linking to a water insoluble support.

25 51. The composition of any of claims 39 to 46, 48 or 49 further comprising a physiologically acceptable implantable matrix for controlled release of the polypeptide into the tissues of an animal.

Claims for the following Contracting State : LU

30 1. A method comprising culturing a host cell transformed with a vector which includes nucleic acid encoding a human or porcine inhibin α chain and/or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), or an amino acid sequence variant by way of insertion, deletion or substitution of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence but excluding bovine inhibin α chain and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

40 2. A method according to Claim 1 wherein the nucleic acid encodes a human or porcine inhibin α chain and/or a human or porcine β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

45 3. A method according to Claim 1 wherein the vector encodes an inhibin β chain, or an amino acid sequence variant thereof, other than native human or porcine β_A .

50 4. A method according to claim 1 wherein the nucleic acid encodes a variant selected from: porcine inhibin derivatives ($\text{Asn}_{266} \rightarrow \text{Gln}$) $\text{Inh}\alpha$; [Cys_{325} or $\text{Cys}_{324} \rightarrow \Delta$] $\text{Inh}\alpha$; [Cys_{361} or $\text{Cys}_{363} \rightarrow \Delta$] $\text{Inh}\alpha$; [Lys_{321} or $\text{Lys}_{322} \rightarrow \Delta$] $\text{Inh}\beta_A$; [$\text{Lys}_{322} \rightarrow \text{His}$ or Ser] $\text{Inh}\beta_A$; [$\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_A$; [Cys_{388} or $\text{Cys}_{390} \rightarrow \Delta$] $\text{Inh}\beta_A$; [$\text{Lys}_{411} \rightarrow \text{Gln}$] $\text{Inh}\beta_A$; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_B$; [Cys_{319} or $\text{Cys}_{320} \rightarrow \Delta$] $\text{Inh}\beta_B$; [Pro_{381} $\text{Gly}_{382} \rightarrow \text{Pro Phe Gly}$] $\text{Inh}\beta_B$; [$\text{Arg}_{395} \rightarrow \text{Gln}$] $\text{Inh}\beta_B$, wherein Inh is an abbreviation of inhibin and the residue numbers for $\text{Inh}\beta_B$ are those used for the corresponding $\text{Inh}\beta_A$ residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

5. A method according to claim 1 wherein the nucleic acid encodes a variant of a human β_A inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀→Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparably modified human β_B chain

10. The method of any one of the preceding claims wherein the nucleic acid encoding the inhibin α chain and/or β chain is operably linked to a promoter recognized by the host cell and including the further step of recovering inhibin or a β chain dimer from the culture medium.

15. The method of any one of the preceding claims wherein the cell is a prokaryote.

16. The method of any preceding claim wherein the vector comprises nucleic acid encoding the prepro form of an inhibin α chain or an inhibin β chain.

20. The method of claim 8 wherein the vector comprises nucleic acid encoding the prepro form of both the inhibin α chain and an inhibin β chain.

25. The method of any one of claims 1 to 6, 8 or 9 wherein the cell is a cell from a multicellular organism and hormonally active inhibin is produced.

30. The method of claim 6 wherein the promoter is a viral promoter.

35. The method of claim 11 wherein the promoter is an SV40 promoter.

40. The method of any preceding claim wherein mature porcine or human inhibin is recovered.

45. The method of any of claims 1 to 7 or 10 to 12 wherein the vector comprises nucleic acid encoding the prepro form of an inhibin β chain and a mature β -chain dimer is recovered free of the α -chain.

50. The method of claim 10 or 13 wherein the β chain is the β_A chain and the inhibin is present in a concentration greater than about 20 ng/ml in the culture medium.

55. 16. A composition comprising human or porcine inhibin made up of an α and a β chain, the amino acid sequences of said α and β chains being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), and amino acid sequence variants by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, which variants are substantially homologous with a polypeptide of a depicted sequence, but excluding bovine inhibin α chain and 1) are cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) are cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) have like hormonal activity to a polypeptide of a depicted sequence; which composition is completely free of unidentified human or porcine proteins.

60. 17. A composition according to Claim 16 wherein the sequences of said α and β chains are selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

65. 18. A composition according to claim 16 wherein said variants are selected from: porcine inhibin derivatives (Asn₂₆₆→Inh)Gln α ; [Cys₃₂₅ or Cys₃₂₄→ Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→ Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→ Δ]Inh β_A ; [Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ or Cys₃₉₀→ Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₉₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→ Δ]Inh β_B [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

19. A composition according to claim 16 including a variant of a human β_A inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp; Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His or Lys; Ile₃₉₁→Leu or Thr; Met₃₉₀→Leu or Ser; Val₃₉₂→Phe, Glu, Thr or Ile; or comparably modified human β_B chain.

5 20. A composition comprising a prodomain of human or porcine α or β_B inhibin as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β_B chain), Fig 6A (human α chain), and Fig 9 (human β_B chain) unassociated with native glycosylation.

10 21. A composition comprising a homodimer of mature human or porcine inhibin β_A or β_B chains, said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or of an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which composition is free of the inhibin α chain.

15 22. A composition according to Claim 21 which is a homodimer of mature human or porcine β_B chains or a said amino acid sequence variant thereof.

20 23. A composition comprising a heterodimer of mature human or porcine inhibin β_A with mature human or porcine inhibin β_B , said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or of an amino acid sequence variant by way of insertion, deletion or substitution of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which composition is free of the inhibin α chain.

25 24. Non-chromosomal DNA encoding a human or porcine inhibin α or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence excluding bovine inhibin α chain and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of depicted sequence.

30 25. The DNA of claim 24 encoding a human or porcine inhibin α or a human or porcine inhibin β chain whose amino acid sequence is as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

35 26. The DNA of claim 24 which encodes a variant selected from: porcine inhibin derivatives (Asn₂₆₆→Gln)-Inh α ; [Cys₃₂₅ or Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ or Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ or Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His or Ser]Inh β_A ; [Lys₃₁₅→Arg]; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ or Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys]; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ or Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]-Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_A are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.

40 27. The DNA of claim 24 which encodes a variant of a human β inhibin chain selected from Phe₃₀₂→Ile or Leu; Gln₂₉₇→Asp or Lys; Trp₃₀₇→Tyr or Phe; Trp₃₁₀→Tyr or Phe; Ile₃₁₁→Phe or Val; Tyr₃₁₇→Trp or Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr or His; Tyr₃₂₁→Thr or Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp;

45 50 55

$\text{His}_{353} \rightarrow \text{Lys}$ (a β_A/β_B hybrid); $\text{Phe}_{356} \rightarrow \text{Tyr}$; $\text{Val}_{364} \rightarrow \text{Phe}$; $\text{Val}_{364} \rightarrow \text{Leu}$; $\text{Tyr}_{375} \rightarrow \text{Thr}$; $\text{Tyr}_{376} \rightarrow \text{Trp}$; $\text{Asn}_{389} \rightarrow \text{Gln}$, His or Lys; $\text{Ile}_{391} \rightarrow \text{Leu}$ or Thr; $\text{Met}_{390} \rightarrow \text{Leu}$ or Ser; $\text{Val}_{392} \rightarrow \text{Phe}$, Glu, Thr or Ile; or comparable modified human β_B chain

- 5 28. The DNA of any of claims 24 to 27 which is free of intervening untranslated sequences.
29. The DNA of any one of claims 24 to 28 which is labelled with a detectable moiety.
30. A replicable vector comprising a DNA of any of claims 21 to 27.
- 10 31. The vector of claim 30 comprising a viral promoter operably linked to the DNA encoding the inhibin α and/or β chains.
32. The vector of claim 30 or 31 which contains DNA encoding both an inhibin α and an inhibin β chain.
- 15 33. The vector of claim 30 or 31 which contains DNA encoding an inhibin β chain but not the inhibin α chain.
34. A host cell transformed with a replicable vector comprising DNA encoding the human or porcine inhibin α and/or an inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence, excluding bovine inhibin α chain, and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.
- 20 35. A host cell according to claim 34 wherein the DNA encodes a human or porcine inhibin α and/or an inhibin β chain, the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
36. A host cell according to claim 34 wherein the DNA encodes a variant selected from: porcine inhibin derivatives ($\text{Asn}_{266} \rightarrow \text{Gln}$)Inh α ; [Cys_{325} or $\text{Cys}_{324} \rightarrow \Delta$]Inh α ; [Cys_{361} or $\text{Cys}_{363} \rightarrow \Delta$]Inh α ; [$\text{Lys}_{321} \rightarrow \Delta$]Inh β_A ; [$\text{Lys}_{322} \rightarrow \Delta$]Inh β_A ; [$\text{Lys}_{322} \rightarrow \text{His}$ or Ser]Inh β_A ; [$\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] Inh β_A ; [$\text{Cys}_{388} \rightarrow \Delta$]-Inh β_A ; [$\text{Lys}_{411} \rightarrow \text{Gln}$]Inh β_A ; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$]Inh β_B ; [Cys_{319} or $\text{Cys}_{320} \rightarrow \Delta$]Inh β_B ; [$\text{Pro}_{381} \rightarrow \text{Gly}_{382} \rightarrow \text{Pro}$ Phe Gly]Inh β_B ; [$\text{Arg}_{395} \rightarrow \text{Gln}$]Inh β_B , wherein Inh is an abbreviation of inhibin and the residue numbers for Inh β_B are those used for the corresponding Inh β_A residue (see Fig. 2B); human inhibin β_A chain variants having variations which are substitution or deletion at, or insertion next to, a residue selected from residues 293-297, 364-376 and 387-398 of the sequence depicted in Fig. 8; and variants of human α chain which are greater than 90% homologous with the sequence depicted in Fig. 6A.
- 40 37. A host cell according to claim 34 wherein the DNA encodes a variant of a human β_A inhibin chain selected from $\text{Phe}_{302} \rightarrow \text{Ile}$ or Leu; $\text{Gln}_{297} \rightarrow \text{Asp}$ or Lys; $\text{Trp}_{307} \rightarrow \text{Tyr}$ or Phe; $\text{Trp}_{310} \rightarrow \text{Tyr}$ or Phe; $\text{Ile}_{311} \rightarrow \text{Phe}$ or Val; $\text{Tyr}_{317} \rightarrow \text{Trp}$ or Thr; $\text{His}_{318} \rightarrow \text{Lys}$; $\text{Ala}_{319} \rightarrow \text{Ser}$; $\text{Asn}_{320} \rightarrow \text{Gln}$, Tyr or His; $\text{Tyr}_{321} \rightarrow \text{Thr}$ or Asp, $\text{Phe}_{340} \rightarrow \text{Tyr}$; $\text{His}_{353} \rightarrow \text{Asp}$; $\text{His}_{353} \rightarrow \text{Lys}$ (a β_A/β_B hybrid); $\text{Phe}_{356} \rightarrow \text{Tyr}$; $\text{Val}_{364} \rightarrow \text{Phe}$; $\text{Val}_{364} \rightarrow \text{Leu}$; $\text{Tyr}_{375} \rightarrow \text{Thr}$; $\text{Tyr}_{376} \rightarrow \text{Trp}$; $\text{Asn}_{389} \rightarrow \text{Gln}$, His or Lys; $\text{Ile}_{391} \rightarrow \text{Leu}$ or Thr; $\text{Met}_{390} \rightarrow \text{Leu}$ or Ser; $\text{Val}_{392} \rightarrow \text{Phe}$, Glu, Thr or Ile; or comparably modified human β_B chain
- 50 38. The cell of any of claims 34 to 37 which is a eukaryotic cell.
39. A cell-free composition that is free of mature α chain polypeptide containing a human or porcine inhibin α chain prodomain polypeptide sequence as depicted in Fig 1B (porcine α chain) or Fig 6A (human α chain) or an amino acid sequence variant by way of insertion, deletion or substitution of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

40. A cell-free composition containing

a) a polypeptide comprising the human inhibin β_A chain prodomain sequence

5 HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (Amino acids 1-40

of Fig 8), PDVTQPVPKAALLNAIRKLHVGVKGENGYVEIEDDIG (amino

10 acids 44-80 of Fig 8.),

AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEWLFLKVPKAN-

15 RTRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVVDA (amino

acids 83-185 of Fig 8), STWHVFPVSSSIQRLLD-

QGKSSLDVRIACEQCQESGASLVLLG (amino acids 188-230 of Fig 8),

20

- or naturally occurring mammalian amino acid sequence variants thereof;

b) a polypeptide comprising the human inhibin β_B chain prodomain sequence

25

CTSCGGFRRPEELGRVDGDFLEAV, (amino acids

7-30 of Fig 9),

30

HILSRLQMRGRPNITHAVPKAACMTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

GQERVSEIISFAETDGLASSRVRLYFFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS

(amino acids 33-145 of Fig 9),

35

VRVKVYFQEQQGHGDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino

acids 149 - 195 of Fig 9),

40

LNLDVQCDSCQELAVVPVFVDPGEESHRFVQQARLGDSRHRI (amino acids

198-241 of Fig 9),

45

- or naturally occurring mammalian amino acid sequence variants thereof; or
c) a polypeptide free of the mature α chain amino acid sequence comprising the human inhibin α chain prodomain sequences

50

KVRALFLDALGPAPAVTREGGDPGV (amino

acids 1 - 24 of Fig 6),

55

HALGGFTHRGEPEEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFRE-

PSQHTRSRQVTSAQLWFHTGLDRQGTAASNSEPLLGLLALSPGGPVAVPMSLGH-

5 APPHWAVLHLATSLLTHPVVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSGGERA

(amino acids 32 - 199 of Fig 6),

10 or naturally occurring mammalian amino acid sequence variants thereof.

- 11 41. A cell-free composition containing a human or porcine inhibin β chain prodomain polypeptide of a sequence as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion, or substitution of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence, and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.
- 12 42. The composition of claim 41 wherein the β chain is the β_A chain and the composition is free of mature β_A chain sequence.
- 13 43. The composition of claim 41 wherein the β chain is the β_B chain and the composition is free of mature β_B chain sequence.
- 14 44. The composition of claim 40 wherein the variant is the corresponding porcine amino acid sequence, the composition containing:
 - a) a polypeptide comprising the porcine inhibin β_A chain prodomain sequence depicted at: amino acids 28 to 58; amino acids 61 to 87; amino acids 90 to 108; amino acids 111 to 179; amino acids 182 to 213; amino acids 216 to 258; or amino acids 28 to 87 of Fig 2B; or
 - b) a polypeptide free of the mature α chain amino acid sequence comprising the porcine inhibin α chain prodomain polypeptide sequences depicted at: amino acids 20 to 54; or amino acids 70 to 228 of Fig 1B.
- 15 45. The composition of any of claims 39 to 44 wherein the polypeptide is unaccompanied by native glycosylation.
- 16 46. The composition of any of claims 39 to 45 which is sterile and wherein the polypeptide further comprises an immunogenic polypeptide.
- 17 47. The use of a composition of any of claims 39 to 46 in the preparation of an antibody capable of binding said polypeptide.
- 18 48. The composition of any of claims 39 to 46 wherein the polypeptide is conjugated to a detectable group.
- 19 49. The composition of claim 48 wherein the group is an enzyme, fluorophore or radioisotope.
- 20 50. The composition of any of claims 39 to 44, 48 or 49 which is insolubilized by non-covalent absorption or covalent cross-linking to a water insoluble support.
- 21 51. The composition of any of claims 39 to 46, 48 or 49 further comprising a physiologically acceptable implantable matrix for controlled release of the polypeptide into the tissues of an animal.

Claims for the following Contracting State : GR

- 52 1. A method comprising culturing a host cell transformed with a vector which includes nucleic acid encoding a human or porcine inhibin α chain and/or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), or an amino acid sequence variant by way of

insertion, deletion or substitution of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

- 5 2. A method according to Claim 1 wherein the nucleic acid encodes a human or porcine inhibin α chain and/or a human or porcine β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
- 10 3. A method according to Claim 1 wherein the vector encodes an allelic variant of human or porcine inhibin α and/or β chain.
- 15 4. The method of any one of the preceding claims wherein the nucleic acid encoding the inhibin α chain and/or β chain is operably linked to a promoter recognized by the host cell and including the further step of recovering inhibin α chain, inhibin β chain, inhibin or a β chain dimer from the culture medium.
- 20 5. The method of any one of the preceding claims wherein the cell is a prokaryote.
- 25 6. The method of any one of the preceding claims wherein the vector comprises nucleic acid encoding the prepro form of an inhibin α chain or an inhibin β chain.
- 30 7. A method according to claim 6 wherein the vector comprises nucleic acid encoding the prepro forms of both the inhibin α chain and an inhibin β chain.
- 35 8. The method of any one of claim 1 to 4, 6 or 7 wherein the cell is a cell from a multicellular organism and hormonally active inhibin is produced.
- 40 9. The method of claim 4 wherein the promoter is a viral promoter.
- 45 10. The method of claim 9 wherein the promoter is an SV40 promoter.
- 50 11. The method of any preceding claims wherein mature porcine or human inhibin is recovered.
- 55 12. The method of any of claims 1 to 5 or 8 to 10 wherein the vector comprises nucleic acid encoding the prepro form of an inhibin β chain and a mature β -chain dimer is recovered free of the α -chain.
- 60 13. The method of claim 8 or 11 wherein the β chain is the β_A chain and the inhibin is present in a concentration greater than about 20 ng/ml in the culture medium.
- 65 14. A method according to Claim 4 wherein the inhibin is human or porcine inhibin made up of an α and a β chain, amino acid sequences of said α and β chain being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), and amino acid sequence variants by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, which variants are substantially homologous with a polypeptide of a depicted sequence and 1) are cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) are cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) have like hormonal activity to a polypeptide of a depicted sequence; which composition is completely free of unidentified human or porcine proteins.
- 70 15. A method according to Claim 14 wherein the inhibin is human or porcine inhibin made up of an α and a β chain, the amino acid sequences of said α and β chain being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
- 75 16. A method according to Claim 4 wherein the recovered inhibin chain is a prodomain of human or porcine α or β_B inhibin as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β_B chain), Fig 6A

(human α chain), and Fig 9 (human β_B chain) unassociated with native glycosylation.

17. A method according to Claim 4 wherein a β chain dimer is recovered which is a homodimer of mature human or porcine inhibin β_A or β_B chains, said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which dimer is free of the inhibin α chain.
18. A method according to Claim 17 wherein a homodimer of mature human or porcine β_B chains or a said amino acid sequence variant thereof is recovered.
19. A method according to Claim 4 wherein a β chain dimer is recovered which is a heterodimer of mature human or porcine inhibin β_A with mature human or porcine inhibin β_B , said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which dimer is free of the inhibin α chain.
20. Non chromosomal DNA encoding a human or porcine inhibin α or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.
21. A DNA according to Claim 20 encoding a human or porcine inhibin α or a human or porcine inhibin β chain whose amino acid sequence is as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
22. The DNA of claim 20 or 21 which is free of intervening untranslated sequences.
23. The DNA of any one of Claims 20 to 22 which is labelled with a detectable moiety.
24. A replicable vector comprising a DNA of claim 20 or 21.
25. The vector of Claim 24 comprising a viral promoter operably linked to the DNA encoding the inhibin α and/or β chains.
26. The vector of claim 24 or 25 which contains DNA encoding both an inhibin α and an inhibin β chain.
27. The vector of claim 24 or 25 which contains DNA encoding an inhibin β chain but not the inhibin α chain.
28. A host cell transformed with a replicable vector comprising DNA encoding the human or porcine inhibin α and/or an inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a depicted sequence; or 3) having like hormonal activity to a depicted sequence.

29. A host cell according to Claim 28 wherein the DNA encodes a human or porcine inhibin α and/or an inhibin β chain, the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

5 30. The cell of claim 28 or 29 which is a eukaryotic cell.

31. A method according to Claim 4 wherein the recovered inhibin chain is a cell-free composition, free of mature α chain sequence, containing a human or porcine inhibin α chain prodomain polypeptide sequence as depicted in Fig 1B (porcine α chain) or Fig 6A (human α chain) or an amino acid sequence variant by way of insertion, deletion or substitution of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

10 32. A method according to claim 4 wherein the recovered inhibin chain is a cell-free composition containing
15 a) a polypeptide comprising the human inhibin β_A chain prodomain sequence

HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (amino acids 1-

20
40 of Fig 8), PDVTQPVPKAALLNAIRKLHVGVKGENGYVEIEDDIG
(amino acids 44-80 of Fig 8).

25 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEWLFLKVPKAN-
RTRTKVTIRLFQQQKHPQGS LTDGEAAEVGLKGERSELLLSEKVVDA (amino
30 acids 83-185 of Fig 8),

35 STWHVFPVSSSIQRLLDQGKSSL DVRIACEQCQESGASLVLLG (amino acids
188-230 of Fig 8),

or naturally occurring mammalian amino acid sequence variants thereof;
b) a polypeptide comprising the human inhibin β_B chain prodomain sequence

40 CTSCGGFRRPEELGRVDGDFLEAV, (amino
acids 7-30 of Fig 9),

45 HILSRLQMRGRPNI THAVPKAAMVTALRKLHAGKVREDCRVEIPHLDGHASPGAD-
GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYV-
LEKGS (amino acids 33-145 of Fig 9),

50 VRVKVYFQE QGHDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino
acids 149 - 195 of Fig 9),

55 LNLDVQCDSCQELAVVPVFDPGEESHRPFVVVQARLGDSRHRI (amino
acids 198-241 of Fig 9),

or naturally occurring mammalian amino acid sequence variants thereof; or

c) a polypeptide free of the mature α chain amino acid sequence comprising the human inhibin α chain prodomain sequences

KVRALFLDALGPPAVTREGGPGV (amino acids

5

1 - 24 of Fig 6),

HALGGFTHRGSEPEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMF-

10

PSQHTRSRQVTSAQLWFHTGLDRQGTAAKSSEPLLGLLALSPGGPVAVPMSLGH-

APPHWAVLHLATSALLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSG-

15

GERA (amino acids 32 - 199 of Fig 6),

or naturally occurring mammalian amino acid sequence variants thereof.

20

33. A method according to Claim 4 wherein the recovered inhibin chain is a cell-free composition containing a human or porcine inhibin β chain prodomain polypeptide of a sequence as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion, or substitution of a said prodomain polypeptide of a sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

25

34. The method of claim 33 wherein the β chain is the β_A chain and the composition is free of mature β_A chain sequence.

30

35. The method of claim 33 wherein the β chain is the β_B chain and the composition is free of mature β_B chain sequence.

35

36. The method of claim 32 wherein the variant is the corresponding porcine amino acid sequence, the composition containing:

a) a polypeptide comprising the porcine inhibin β_A chain prodomain sequence depicted at: amino acids 28 to 58; amino acids 61 to 87; amino acids 90 to 108; amino acids 111 to 179; amino acids 182 to 213; amino acids 216 to 258; or amino acids 28 to 87 of Fig 2B; or

40

b) a polypeptide free of the mature α chain amino acid sequence comprising the porcine inhibin α chain prodomain polypeptide sequences depicted at: amino acids 20 to 54; or amino acids 70 to 228 of Fig 1B.

45

37. The method of any of claims 31 to 36 wherein the polypeptide is unaccompanied by native glycosylation.

46

38. The method of any one of claims 31 to 37 wherein the composition is sterile and further comprising coupling the polypeptide with an immunogenic polypeptide.

50

39. The use of a composition of any of claims 31 to 38 in the preparation of an antibody capable of binding said polypeptide.

55

40. The method of any of claims 31 to 38 further comprising conjugating the polypeptide to a detectable group.

56

41. The method of claim 40 wherein the group is an enzyme, fluorophore or radioisotope.

57

42. The method of any of claims 31 to 38, 40, or 41 wherein the composition is insolubilized by non-covalent absorption or covalent cross-linking to a water insoluble support.

43. The method of any of claims 31 to 38 or 40 to 41 further comprising mixing the composition with a physiologically acceptable implantable matrix for controlled release of the polypeptide into the tissues of an animal.

5 **Claims for the following Contracting States : AT, ES**

1. A method comprising culturing a host cell transformed with a vector which includes nucleic acid encoding a human or porcine inhibin α chain and/or a human or porcine inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), or an amino acid sequence variant by way of insertion, deletion or substitution of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.
2. A method according to claim 1 wherein the nucleic acid encodes a human or porcine inhibin α chain and/or a human or porcine β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).
3. A method according to claim 1 wherein the vector encodes an allelic variant of human or porcine inhibin α and/or β chain.
4. The method of any one of the preceding claims wherein the nucleic acid encoding the inhibin α chain and/or β chain is operably linked to a promoter recognized by the host cell and including the further step of recovering inhibin α chain, inhibin β chain, inhibin or a β chain dimer from the culture medium.
5. The method of any one of the preceding claims wherein the cell is a prokaryote.
6. The method of any one of the preceding claims wherein the vector comprises nucleic acid encoding the prepro form of an inhibin α chain or an inhibin β chain.
7. A method according to claim 6 wherein the vector comprises nucleic acid encoding the prepro forms of both the inhibin α chain and an inhibin β chain.
8. The method of any one of claim 1 to 4, 6 or 7 wherein the cell is a cell from a multicellular organism and hormonally active inhibin is produced.
9. The method of claim 4 wherein the promoter is a viral promoter.
10. The method of claim 9 wherein the promoter is an SV40 promoter.
11. The method of any preceding claims wherein mature porcine or human inhibin is recovered.
12. The method of any of claims 1 to 5 or 8 to 10 wherein the vector comprises nucleic acid encoding the prepro form of an inhibin β chain and a mature β -chain dimer is recovered free of the α -chain.
13. The method of claim 8 or 11 wherein the β chain is the β_A chain and the inhibin is present in a concentration greater than about 20 ng/ml in the culture medium.
14. A method according to claim 4 wherein the inhibin is human or porcine inhibin made up of an α and a β chain, the amino acid sequences of said α and β chain being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains), and amino acid sequence variants by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, which variants are substantially homologous with a polypeptide of a depicted sequence and 1) are cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) are cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or

3) have like hormonal activity to a polypeptide of a depicted sequence; which composition is completely free of unidentified human or porcine proteins.

5 15. A method according to claim 14 wherein the inhibin is human or porcine inhibin made up of an α and a β chain, the amino acid sequences of said α and β chain being selected from those depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

10 16. A method according to claim 4 wherein the recovered inhibin chain is a prodomain of human or porcine α or β_B inhibin as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β_B chain), Fig 6A (human α chain), and Fig 9 (human β_B chain) unassociated with native glycosylation.

15 17. A method according to claim 4 wherein a β chain dimer is recovered which is a homodimer of mature human or porcine inhibin β_A or β_B chains, said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which dimer is free of the inhibin α chain.

20 18. A method according to claim 17 wherein a homodimer of mature human or porcine β_B chains or a said amino acid sequence variant thereof is recovered.

25 19. A method according to claim 4 wherein a β chain dimer is recovered which is a heterodimer of mature human or porcine inhibin β_A with mature human or porcine inhibin β_B , said chains being as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; which heterodimer is free of the inhibin α chain.

35 20. A method for the production of non chromosomal DNA encoding a human or porcine inhibin α or a human or porcine inhibin β chain as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence; the method comprising chemical synthesis, screening mRNA from ovary, or screening genomic libraries of any cell.

40 21. A method according to claim 20 wherein the DNA encodes a human or porcine inhibin α or a human or porcine inhibin β chain whose amino acid sequence is as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

45 22. The method of claim 20 or 21 wherein the non-chromosomal DNA is free of intervening untranslated sequences.

50 23. The method of any one of claims 20 to 22 further comprising the step of labelling the non-chromosomal DNA with a detectable moiety.

55 24. A method for the production of a replicable vector, the method comprising inserting a DNA of claim 20 or 21 in a cloning vector.

55 25. The method of claim 24 wherein the DNA is inserted into a vector which has a viral promoter operably linked to the DNA encoding the inhibin α and/or β chains thereby to produce an expression vector.

26. The method of claim 24 or 25 wherein DNA encoding both an inhibin α and an inhibin β chain is inserted into the vector.

27. The method of claim 24 or 25 wherein DNA encoding an inhibin β chain but not the inhibin α chain is inserted into the vector.

28. A host cell transformed with a replicable vector comprising DNA encoding the human or porcine inhibin α and/or an inhibin β chain the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a polypeptide of a said depicted sequence, the variant being substantially homologous with a polypeptide of a depicted sequence and 1) being cross reactive with antibodies raised against a polypeptide of a depicted sequence; or 2) being cross reactive with cell surface receptors for a polypeptide of a depicted sequence; or 3) having like hormonal activity to a polypeptide of a depicted sequence.

29. A host cell according to claim 28 wherein the DNA encodes a human or porcine inhibin α and/or an inhibin β chain, the amino acid sequences of which are as depicted in Fig 1B (porcine α chain), Fig 2B (porcine β chains), Fig 6A (human α chain) and Figs 8 and 9 (human β chains).

30. The cell of claim 28 or 29 which is a eukaryotic cell.

31. A method according to claim 4 wherein the recovered inhibin chain is a cell-free composition free of mature α chain sequences containing a human or porcine inhibin α chain prodomain polypeptide sequence as depicted in Fig 1B (porcine α chain) or Fig 6A (human α chain) or an amino acid sequence variant of a said prodomain sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

32. A method according to claim 4 wherein the recovered inhibin chain is a cell-free composition containing
a) a polypeptide comprising the human inhibin β_A chain prodomain sequence

HSAAPDCPSCALAAALPKDVPNSQPEMVEAVKKHILNMLHL (amino acids 1-

35 40 of Fig 8, PDVTQPVPKAALLNAIRKLHVGKVGENGYVEIEDDIG (amino acids 44-80 of Fig 8).

AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-
40 TRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVVDA, amino acids 83-185 of Fig 8),

45 STWHVFPVSSSIQRLLDQGKSSLVDVRIACEQCQESGASLVLLG (amino acids 188-230 of Fig 8),

50 or naturally occurring mammalian amino acid sequence variants thereof;

b) a polypeptide comprising the human inhibin β_B chain prodomain sequence

CTSCGGFRRPEELGRVDGDFLEAV, (amino

5 acids 7-30 of Fig 9),

HILSRLQMRGRPNITHAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-
10 GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYV-
LEKGS (amino acids 33-145 of Fig 9),

15 VRVKVYFQEQQHDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino
acids 149 - 195 of Fig 9),

20 LNLDVQCDSCQELAVVPVFVDPGEESHRPFVVVQARLGDSRHRI (amino
acids 198-241 of Fig 9),

or naturally occurring mammalian amino acid sequence variants thereof; or

c) a polypeptide free of the mature α chain amino acid sequence comprising the human inhibin α chain prodomain sequences

25

KVRALFLDALGPPAVTREGGPGV (amino acids

30 1 - 24 of Fig 6),

HALGGFTHRGSEPEEEEEDVSQAILFPATDASCEDKSAARGLAQEAEEGLFRYMF-
PSQHTRSRQVTSAQLWFHTGLDRQGTAAASNSEPLLGLLALSPGGPVAVPMSLGH-
35 APPHWAVLHLATSALSLLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSG-

GERA (amino acids 32 - 199 of Fig 6),

or naturally occurring mammalian amino acid sequence variants thereof.

40

33. A method according to claim 4 wherein the recovered inhibin chain is a cell-free composition containing a human or porcine inhibin β chain prodomain polypeptide of a sequence as depicted in Fig 2B (porcine β chains) and Figs 8 and 9 (human β chains) or an amino acid sequence variant by way of insertion, deletion or substitution of a said prodomain polypeptide of a sequence, the variant being substantially homologous with a polypeptide of a said sequence and being cross reactive with antibodies raised against a polypeptide of a depicted sequence.

45

34. The method of claim 33 wherein the β chain is the β_A chain and the composition is free of mature β_A chain sequence.

50

35. The method of claim 33 wherein the β chain is the β_B chain and the composition is free of mature β_B chain sequence.

55

36. The method of claim 32 wherein the variant is the corresponding porcine amino acid sequence, the composition containing:

a) a polypeptide comprising the porcine inhibin β_A chain prodomain sequence depicted at: amino acids 28 to 58; amino acids 61 to 87; amino acids 90 to 108; amino acids 11 to 179; amino acids 182 to 213; amino acids 216 to 258; or amino acids 28 to 87 of Fig 2B; or

b) a polypeptide free of the mature α chain amino acid sequence comprising the porcine inhibin α chain prodomain polypeptide sequences depicted at: amino acids 20 to 54; or amino acids 70 to 228 of Fig 1B.

5 37. The method of any of claims 31 to 36 wherein the polypeptide is unaccompanied by native glycosylation.

38. The method of any one of claims 31 to 37 wherein the composition is sterile and further comprising coupling the polypeptide to an immunogenic polypeptide.

10 39. The use of a polypeptide of any of claims 31 to 38 in the preparation of an antibody capable of binding said polypeptide.

15 40. The method of any of claims 31 to 38 further comprising conjugating the polypeptide to a detectable group.

41. The method of claim 40 wherein the group is an enzyme, fluorophore or radioisotope.

20 42. The method of any of claims 31 to 38, 40 or 41 wherein the composition is insolubilized by non-covalent absorption or covalent cross-linking to a water insoluble support.

25 43. The method of any of claims 31 to 38 or 40 or 41 further comprising mixing the composition with a physiologically acceptable implantable matrix for controlled release of the polypeptide into the tissues of an animal.

25 Patentansprüche

Patentansprüche für folgende Vertragsstaaten : BE, CH, DE, FR, GB, IT, LI, NL, SE

30 1. Verfahren, umfassend das Kultivieren einer Wirtszelle, die mit einem Vektor transformiert wurde, der Nukleinsäure enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Löschung oder Substitution einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette und der partiellen Rinder-Inhibin- β -Kette mit der Sequenz

35

Gly-Leu-Glu-Cys-Asp-Gly-Lys-Val-Asn-Ile-Cys-
 40 Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-Phe-Lys-Asp-Ile-Gly-Trp-
 Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-Tyr-His-Ala-Asn-Tyr-
 45 Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-Ala-Gly-Thr-Ser-Gly-
 Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-Ile-Asn-His-Tyr-Arg-
 Met-Arg-Gly-His-Ser

50 und wobei die Variante

ist; oder 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

55

2. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B.

(Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

3. Verfahren nach Anspruch 1, worin der Vektor für eine Inhibin- β -Kette oder für eine Aminosäuresequenz-Variante davon kodiert, die von der nativen menschlichen oder Schweine- β_A -Kette oder der in Anspruch 1 spezifizierten, partiellen Rinder-Inhibin- β -Kette verschieden ist.
4. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine Variante kodiert, ausgewählt aus: den Schweine-Inhibinbinderivaten (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ oder Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ oder Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ oder Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His oder Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr]Inh β_A ; [Cys₃₈₈ oder Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ oder Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für Inh β_B die für den entsprechenden Inh β_A -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder Löschung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.
5. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder eine vergleichbar modifizierte menschliche β_B -Kette kodiert.
6. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Nukleinsäure, die für die Inhibin- α -Kette und/oder - β -Kette kodiert, mit einem von der Wirtszelle erkannten Promotor operabel verbunden ist, und das den weiteren Schritt der Gewinnung von Inhibin oder einem β -Ketten-Dimer aus dem Kulturmedium umfaßt.
7. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Zelle ein Prokaryot ist.
8. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- α -Kette oder einer Inhibin- β -Kette kodiert.
9. Verfahren nach Anspruch 8, worin der Vektor eine Nukleinsäure umfaßt, die sowohl für die Präpro-Form einer Inhibin- α -Kette als auch einer Inhibin- β -Kette kodiert.
10. Verfahren nach irgendeinem der Ansprüche 1 - 6, 8 oder 9, worin die Zelle eine Zelle aus einem vielzelligen Organismus ist und hormonal aktives Inhibin produziert wird.
11. Verfahren nach Anspruch 6, worin der Promotor ein viraler Promotor ist.
12. Verfahren nach Anspruch 11, worin der Promotor ein SV40-Promotor ist.
13. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin reifes Schweine- oder menschliches Inhibin gewonnen wird.
14. Verfahren nach irgendeinem der Ansprüche 1 - 7 oder 10 - 12, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- β -Kette kodiert, und ein reifes β -Ketten-Dimer frei von der α -Kette gewonnen wird.
15. Verfahren nach Anspruch 10 oder 13, worin die β -Kette die β_A -Kette ist und das Inhibin in einer Konzentration von über etwa 20 ng/ml im Kulturmedium vorliegt.

16. Zusammensetzung, umfassend menschliches oder Schweine-Inhibin, das aus einer α - und einer β -Kette besteht, wobei die Aminosäuresequenzen der α - und β -Ketten aus jenen in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellten ausgewählt werden, und durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltenen Aminosäuresequenz-Varianten, wobei die Varianten im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz sind, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette, und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz sind; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzen; wobei die Zusammensetzung vollständig frei von nichtidentifizierten menschlichen oder Schweine-Proteinen ist.

17. Zusammensetzung nach Anspruch 16, worin die Sequenzen der α - und β -Ketten aus jenen ausgewählt werden, die in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

18. Zusammensetzung nach Anspruch 16, worin die Varianten ausgewählt werden aus: den Schweine-Inhibinderivaten ($\text{Asn}_{266} \rightarrow \text{Inh}\beta\text{Inh}\alpha$; [Cys_{325} oder $\text{Cys}_{324} \rightarrow \Delta$]Inh α ; (Cys_{361} oder $\text{Cys}_{363} \rightarrow \Delta$)Inh α ; [Lys_{321} oder $\text{Lys}_{322} \rightarrow \Delta$]Inh β_A ; [$\text{Lys}_{322} \rightarrow \text{His}$ oder $\text{Ser} \rightarrow \text{Inh}\beta_A$; [$\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] Inh β_A ; [Cys_{388} oder $\text{Cys}_{390} \rightarrow \Delta$]Inh β_A ; [$\text{Lys}_{411} \rightarrow \text{Gln} \rightarrow \text{Inh}\beta_A$; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$]Inh β_B ; [Cys_{319} oder $\text{Cys}_{320} \rightarrow \Delta$]Inh β_B [$\text{Pro}_{381} \text{ Gly}_{382} \rightarrow \text{Pro Phe Gly}$]Inh β_B ; [$\text{Arg}_{395} \rightarrow \text{Gln} \rightarrow \text{Inh}\beta_B$, worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für Inh β_B die für den entsprechenden Inh β_A -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder Löschung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz, sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

19. Zusammensetzung nach Anspruch 16, umfassend eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus $\text{Phe}_{302} \rightarrow \text{Ile}$ oder Leu ; $\text{Gln}_{297} \rightarrow \text{Asp}$ oder Lys ; $\text{Trp}_{307} \rightarrow \text{Tyr}$ oder Phe ; $\text{Trp}_{310} \rightarrow \text{Tyr}$ oder Phe ; $\text{Ile}_{311} \rightarrow \text{Phe}$ oder Val ; $\text{Tyr}_{317} \rightarrow \text{Trp}$ oder Thr ; $\text{His}_{310} \rightarrow \text{Lys}$; $\text{Ala}_{319} \rightarrow \text{Ser}$; $\text{Asn}_{320} \rightarrow \text{Gln}$, Tyr oder His ; $\text{Tyr}_{321} \rightarrow \text{Thr}$ oder Asp ; $\text{Phe}_{340} \rightarrow \text{Tyr}$; $\text{His}_{353} \rightarrow \text{Asp}$; $\text{His}_{353} \rightarrow \text{Lys}$ (a β_A/β_B hybrid); $\text{Phe}_{356} \rightarrow \text{Tyr}$; $\text{Val}_{364} \rightarrow \text{Phe}$; $\text{Val}_{364} \rightarrow \text{Leu}$; $\text{Tyr}_{375} \rightarrow \text{Thr}$; $\text{Tyr}_{376} \rightarrow \text{Trp}$; $\text{Asn}_{389} \rightarrow \text{Gln}$, His oder Lys ; $\text{Ile}_{391} \rightarrow \text{Leu}$ oder Thr ; $\text{Met}_{390} \rightarrow \text{Leu}$ oder Ser ; $\text{Val}_{392} \rightarrow \text{Phe}$, Glu , Thr oder Ile ; oder eine vergleichbar modifizierte menschliche β_B -Kette.

20. Zusammensetzung, umfassend eine Prodomäne von menschlichem oder Schweine- α - oder - β_B -Inhibin, wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β_B -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 9 (menschliche β_B -Kette) dargestellt, die nicht mit nativer Glykosylierung assoziiert ist.

21. Zusammensetzung, umfassend ein Homodimer von reifen menschlichen oder Schweine-Inhibin- β_A -oder - β_B -Ketten, wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder einer durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei die Zusammensetzung vollständig frei von der Inhibin- α -Kette ist.

22. Zusammensetzung nach Anspruch 21, die ein Homodimer von reifen menschlichen oder Schweine- β_B -Ketten oder einer der Aminosäuresequenz-Varianten davon ist.

23. Zusammensetzung, umfassend ein Heterodimer von reifem menschlichem oder Schweine-Inhibin- β_A mit reifem menschlichem oder Schweine-Inhibin- β_B , wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder einer durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz

gebildeten Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei die Zusammensetzung frei von der Inhibin- α -Kette ist.

5 24. Nicht-chromosomal DNA, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Lösung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen ist, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette und der partiellen Rinder-Inhibin- β -Kette mit der Sequenz

Gly-Leu-Glu-Cys-Asp-

15 Gly-Lys-Val-Asn-Ile-Cys-Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-
Phe-Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-
20 Gly-Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-
Ile-Ala-Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-
Val-Ile-Asn-His-Tyr-Arg-Met-Arg-Gly-His-Ser
25

und wobei die Variante

30 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

35 25. DNA nach Anspruch 24, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette kodiert, deren Aminosäuresequenz wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt ist.

40 26. DNA nach Anspruch 24, die für eine Variante kodiert, ausgewählt aus: den Schweine-Inhibinderivaten (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ oder Cys₃₂₄→ Δ]Inh α ; [Cys₃₆₁ oder Cys₃₆₃→ Δ]Inh α ; [Lys₃₂₁ oder Lys₃₂₂→ Δ]Inh β _A; [Lys₃₂₂→His oder Ser]Inh β _A; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β _A; [Cys₃₈₈ oder Cys₃₉₀→ Δ]Inh β _A; [Lys₄₁₁→Gln]Inh β _A; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β _B; [Cys₃₁₉ oder Cys₃₂₀→ Δ]Inh β _B; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β _B; [Arg₃₉₅→Gln]Inh β _B, worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für Inh β _B die für den entsprechenden Inh β _A-Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β _A-Ketten-Varianten, die Variationen aufweisen, die Substitution oder Lösung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

50 27. DNA nach Anspruch 24, die für eine Variante einer menschlichen β -Inhibin-Kette, ausgewählt aus Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β _A/ β _B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder eine vergleichbar modifizierte menschliche β _B-Kette kodiert.

55 28. DNA nach irgendeinem der Ansprüche 24 - 27, die frei von intervenierenden untranslatierten Sequenzen ist.

29. DNA nach irgendeinem der Ansprüche 24 - 28, die mit einer feststellbaren Gruppe markiert ist.

30. Replizierbarer Vektor, umfassend eine DNA nach irgendeinem der Ansprüche 21 - 27.

5 31. Vektor nach Anspruch 30, umfassend einen viralen Promotor, der mit der für die Inhibin- α - oder - β -Ketten kodierenden DNA operabel verbunden ist.

10 32. Vektor nach Anspruch 30 oder 31, der DNA enthält, die sowohl für eine Inhibin- α - als auch eine Inhibin- β -Kette kodiert.

15 33. Vektor nach Anspruch 30 oder 31, der DNA enthält, die für eine Inhibin- β -Kette, jedoch nicht für eine Inhibin- α -Kette kodiert.

20 34. Wirtszelle, die mit einem replizierbaren Vektor transformiert wurde, der DNA enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette und der partiellen Rinder-Inhibin- β -Kette mit der Sequenz

Gly-Leu-Glu-Cys-Asp-Gly-

25 Lys-Val-Asn-Ile-Cys-Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-Phe-
 Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-
 30 Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-
 Ala-Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-
 Ile-Asn-His-Tyr-Arg-Met-Arg-Gly-His-Ser

35

und wobei die Variante

40 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

45 35. Wirtszelle nach Anspruch 34, worin die DNA für eine menschliche oder Schweine-Inhibin- α - und/oder eine -Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schwein- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

50 36. Wirtszelle nach Anspruch 34, worin die DNA für eine Variante kodiert, ausgewählt aus: den Schweine-Inhibinderivaten (Asn₂₆₆ \rightarrow Gln]Inh α ; [Cys₃₂₅ oder Cys₃₂₄ Δ]Inh α ; [Cys₃₆₁ oder Cys₃₆₃ \rightarrow Δ]Inh α ; [Lys₃₂₁ oder Lys₃₂₂ \rightarrow Δ]Inh β _A;[Lys₃₂₂ \rightarrow His oder Ser]Inh β _A; [Lys₃₁₅ \rightarrow Arg; Val₃₁₆ \rightarrow Thr] Inh β _A;[Cys₃₈₈ oder Cys₃₉₀ \rightarrow Δ]Inh β _A; [Lys₄₁₁ \rightarrow Gln]Inh β _A; [Arg₃₁₅ \rightarrow Lys; Val₃₁₆ \rightarrow Thr]Inh β _B; [Cys₃₁₉ oder Cys₃₂₀ \rightarrow Δ]Inh β _B; [Pro₃₈₁ Gly₃₈₂ \rightarrow Pro Phe Gly]Inh β _B; [Arg₃₉₅ \rightarrow Gln]Inh β _B, worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für Inh β _B die für den entsprechenden Inh β _A-Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β _A-Ketten-Varianten, die Variationen aufweisen, die Substitution oder Löschung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

37. Wirtszelle nach Anspruch 34, worin die DNA für eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus: Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp; Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder einer vergleichbar modifizierten menschlichen β_B -Kette kodiert.

38. Zelle nach irgendeinem der Ansprüche 34 - 37, die eine eukaryotische Zelle ist.

39. Zellfreie Zusammensetzung, die frei von reifem α -Ketten-Polypeptid ist, die eine menschliche oder Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenz, wie in Fig. 1B (Schweine- α -Kette) oder Fig. 6A (menschliche α -Kette) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Sequenzen erhaltene Aminosäuresequenz-Variante enthält, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzreaktiv mit gegen ein Polypeptid mit einer der dargestellten Sequenzen gebildeten Antikörpern ist.

40. Zellfreie Zusammensetzung, umfassend

a) ein Polypeptid, umfassend die menschliche Inhibin- β_A -Ketten-Prodomänensequenz

20

HSAAPDCPS CALA ALPKDVPNSQ PEMVE AVKKH ILNMLHL

(Aminosäuren 1 - 40 aus Fig. 8)

25

PDVTQP VPKA ALLNAIRKLHVGKV GENG YVEIEDD IIG

(Aminosäuren 44 - 80 aus Fig. 8)

AEMNELME QTSEI ITFAES GTARKTLHFEISKE GS DLSV VERA EVWLFL KVPKAN-

30

RTRTKV TIRLFQQQKHPQGS LDTGE EAEEV GLKG ERSELL LSEKVV DA

(Aminosäuren 83 - 185 aus Fig. 8) STWHVFPVSSSIQRLLD-

35

QGKSSL DVRI ACEQC QES GASL VL LG

(Aminosäuren 188 - 230 aus Fig. 8)

40

oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon;

b) ein Polypeptid, umfassend die menschliche Inhibin- β_B -Ketten-Prodomänensequenz

45

CTSCGGF RRPEEL GRVDGF LEAV

(Aminosäuren 7 - 30 aus Fig. 9)

50

55

HILSRLQMRGRPNITHAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

5 GQERVSEIISFAETDGLASSRVRFLYFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS

(Aminosäuren 33 - 145 aus Fig. 9)

VRVKVYFQEQQHGDRWMVEKRVDLKRSGWHTFPLTEAIQALFERGE

10 (Aminosäuren 149 - 195 aus Fig. 9)

LNLDVQCDSCQELAVVPVFVDPGEESHRPFVVVQARLGDSRHRI

(Aminosäuren 198 - 241 aus Fig. 9)

15 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon; oder
c) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend die menschlichen Inhibin- α -Ketten-Prodomänensequenzen

20 KVRALFLDALGPPAVTREGGDPGV

(Aminosäuren 1 - 24 aus Fig. 6)

HALGGFTHRGSEPEEEEVSQAILFPATDASCEDKSAARGLAQEAEEGLFRYMFR -

PSQHTRSQRVTSQQLWFHTGLDRQGTAASNSEPLLGLALSPGGPVAVPMSLGH -

APPHWAVLHLATSALSLLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSGGERA

30 (Aminosäuren 32 - 199 aus Fig. 6)

oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon.

35 41. Zellfreie Zusammensetzung, umfassend ein menschliches oder Schweine-Inhibin- β -Ketten-Prodomänen-Polypeptid mit einer Sequenz, wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzaktiv mit gegen ein Polypeptid mit einer der dargestellten Sequenzen gebildeten Antikörpern ist.

40 42. Zusammensetzung nach Anspruch 41, worin die β -Kette die β_A -Kette und die Zusammensetzung frei von reifer β_A -Ketten-Sequenz ist.

45 43. Zusammensetzung nach Anspruch 41, worin die β -Kette die β_B -Kette und die Zusammensetzung frei von reifer β_B -Ketten-Sequenz ist.

44. Zusammensetzung nach Anspruch 40, worin die Variante die entsprechende Schweine-Aminosäuresequenz ist, wobei die Zusammensetzung enthält:

50 a) ein Polypeptid, umfassend die Schweine-Inhibin- β_A -Ketten-Prodomänensequenz, die dargestellt wird durch die Aminosäuren: 28 - 58; 61 - 87; 90 - 108; 111 - 179; 182 - 213; 216 - 258; oder 28 - 87 aus Fig. 2B; oder

b) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend die Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenzen, die dargestellt werden durch die Aminosäuren:

55 20 - 54 oder 70 - 228 aus Fig. 1B.

45. Zusammensetzung nach irgendeinem der Ansprüche 39 - 44, worin das Polypeptid nicht von nativer Glykosylierung begleitet wird.

46. Zusammensetzung nach irgendeinem der Ansprüche 39 - 45, die steril ist, und worin das Polypeptid weiters ein immunogenes Polypeptid umfaßt.

5 47. Verwendung einer Zusammensetzung nach irgendeinem der Ansprüche 39 - 46 zur Herstellung eines Antikörpers, der in der Lage ist, das Polypeptid zu binden.

10 48. Zusammensetzung nach irgendeinem der Ansprüche 39 - 46, worin das Polypeptid an eine feststellbare Gruppe konjugiert ist.

15 49. Zusammensetzung nach Anspruch 48, worin die Gruppe ein Enzym, Fluorophor oder Radioisotop ist.

20 50. Zusammensetzung nach irgendeinem der Ansprüche 39 - 44, 48 oder 49, die durch nicht-kovalente Absorption oder kovalente Vernetzung an einen wasserunlöslichen Träger unlöslich gemacht ist.

25 51. Zusammensetzung nach irgendeinem der Ansprüche 39 - 46, 48 oder 49, weiters umfassend eine physiologisch annehmbare, implantierbare Matrix zur gesteuerten Freisetzung des Polypeptids in die Gewebe eines Tieres.

Patentansprüche für folgenden Vertragsstaat : LU

20 1. Verfahren, umfassend das Kultivieren einer Wirtszelle, die mit einem Vektor transformiert wurde, der Nukleinsäure enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette, und wobei die Variante 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

25 2. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

30 3. Verfahren nach Anspruch 1, worin der Vektor für eine andere Inhibin- β -Kette als die native menschliche oder Schweine- β_A -Kette oder für eine Aminosäuresequenz-Variante davon kodiert.

35 4. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine Variante, ausgewählt aus: den Schweine-Inhibinderivaten ($\text{Asn}_{266} \rightarrow \text{Gln}$] $\text{Inh}\alpha$; [Cys_{325} oder $\text{Cys}_{324} \rightarrow \Delta$] $\text{Inh}\alpha$; [Cys_{361} oder $\text{Cys}_{363} \rightarrow \Delta$] $\text{Inh}\alpha$; [Lys_{321} oder $\text{Lys}_{322} \rightarrow \Delta$] $\text{Inh}\beta_A$; [$\text{Lys}_{322} \rightarrow \text{His}$ oder Ser] $\text{Inh}\beta_A$; [$\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_A$; [Cys_{388} oder $\text{Cys}_{390} \rightarrow \Delta$] $\text{Inh}\beta_A$; [$\text{Lys}_{411} \rightarrow \text{Gln}$] $\text{Inh}\beta_A$; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_B$; [Cys_{319} oder $\text{Cys}_{320} \rightarrow \Delta$] $\text{Inh}\beta_B$; [Pro_{381} $\text{Gly}_{382} \rightarrow \text{Pro}$ Phe Gly] $\text{Inh}\beta_B$; [$\text{Arg}_{395} \rightarrow \text{Gln}$] $\text{Inh}\beta_B$, worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für $\text{Inh}\beta_B$ die für den entsprechenden $\text{Inh}\beta_A$ -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder Löschung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind, kodiert.

40 5. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus $\text{Phe}_{302} \rightarrow \text{Ile}$ oder Leu ; $\text{Gln}_{297} \rightarrow \text{Asp}$ oder Lys ; $\text{Trp}_{307} \rightarrow \text{Tyr}$ oder Phe ; $\text{Trp}_{310} \rightarrow \text{Tyr}$ oder Phe ; $\text{Ile}_{311} \rightarrow \text{Phe}$ oder Val ; $\text{Tyr}_{317} \rightarrow \text{Trp}$ oder Thr ; $\text{His}_{318} \rightarrow \text{Lys}$; $\text{Ala}_{319} \rightarrow \text{Ser}$; $\text{Asn}_{320} \rightarrow \text{Gln}$, Tyr oder His ; $\text{Tyr}_{321} \rightarrow \text{Thr}$ oder Asp , $\text{Phe}_{340} \rightarrow \text{Tyr}$; $\text{His}_{353} \rightarrow \text{Asp}$; $\text{His}_{353} \rightarrow \text{Lys}$ (a β_A/β_B hybrid); $\text{Phe}_{356} \rightarrow \text{Tyr}$; $\text{Val}_{364} \rightarrow \text{Phe}$; $\text{Val}_{364} \rightarrow \text{Leu}$; $\text{Tyr}_{375} \rightarrow \text{Thr}$; $\text{Tyr}_{376} \rightarrow \text{Trp}$; $\text{Asn}_{389} \rightarrow \text{Gln}$, His oder Lys ; $\text{Ile}_{391} \rightarrow \text{Leu}$ oder Thr ; $\text{Met}_{390} \rightarrow \text{Leu}$ oder Ser ; $\text{Val}_{392} \rightarrow \text{Phe}$, Glu , Thr or Ile ; oder eine vergleichbar modifizierte menschliche β_B -Kette kodiert.

6. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Nukleinsäure, die für die Inhibin- α -Kette und/oder - β -Kette kodiert, mit einem von der Wirtszelle erkannten Promotor operabel verbunden ist, und das den weiteren Schritt der Gewinnung von Inhibin oder einem β -Ketten-Dimer aus dem Kulturmedium umfaßt.

5 7. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Zelle ein Prokaryot ist.

8. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- α -Kette oder einer Inhibin- β -Kette kodiert.

10 9. Verfahren nach Anspruch 8, worin der Vektor eine Nukleinsäure umfaßt, die sowohl für die Präpro-Form einer Inhibin- α -Kette als auch einer Inhibin- β -Kette kodiert.

15 10. Verfahren nach irgendeinem der Ansprüche 1 - 6, 8 oder 9, worin die Zelle eine Zelle aus einem vielzelligen Organismus ist und hormonell aktives Inhibin produziert wird.

11. Verfahren nach Anspruch 6, worin der Promotor ein viraler Promotor ist.

12. Verfahren nach Anspruch 11, worin der Promotor ein SV40-Promotor ist.

20 13. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin reifes Schweine- oder menschliches Inhibin gewonnen wird.

25 14. Verfahren nach irgendeinem der Ansprüche 1 - 7 oder 10 - 12, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- β -Kette kodiert, und ein reifes β -Ketten-Dimer frei von der α -Kette gewonnen wird.

30 15. Verfahren nach Anspruch 10 oder 13, worin die β -Kette die β_A -Kette ist und das Inhibin in einer Konzentration von über etwa 20 ng/ml im Kulturmedium vorliegt.

35 16. Zusammensetzung, umfassend menschliches oder Schweine-Inhibin, das aus einer α - und einer β -Kette besteht, wobei die Aminosäuresequenzen der α - und β -Ketten aus jenen in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellten ausgewählt werden, und durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Varianten im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette, und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz sind; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzen; wobei die Zusammensetzung vollständig frei von nichtidentifizierten menschlichen oder Schweine-Proteinen ist.

40 17. Zusammensetzung nach Anspruch 16, worin die Sequenzen der α - und β -Ketten aus jenen ausgewählt werden, die in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

45 18. Zusammensetzung nach Anspruch 16, worin die Varianten ausgewählt werden aus: den Schwein-Inhibinderivaten ($\text{Asn}_{266} \rightarrow \text{Inh}$) $\text{Gln}\alpha$; [Cys_{325} oder $\text{Cys}_{324} \rightarrow \Delta$] $\text{Inh}\alpha$; [Cys_{361} oder $\text{Cys}_{363} \rightarrow \Delta$] $\text{Inh}\alpha$; [Lys_{321} oder $\text{Lys}_{322} \rightarrow \Delta$] $\text{Inh}\beta_A$; [$\text{Lys}_{322} \rightarrow \text{His}$ oder Ser] $\text{Inh}\beta_A$; [$\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_A$; [Cys_{388} oder $\text{Cys}_{390} \rightarrow \Delta$] $\text{Inh}\beta_A$, [$\text{Lys}_{411} \rightarrow \text{Gln}$] $\text{Inh}\beta_A$; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$] $\text{Inh}\beta_B$; [Cys_{319} oder $\text{Cys}_{320} \rightarrow \Delta$] $\text{Inh}\beta_B$ [Pro_{381} $\text{Gly}_{382} \rightarrow \text{Pro}$ Phe Gly] $\text{Inh}\beta_B$; [$\text{Arg}_{395} \rightarrow \text{Gln}$] $\text{Inh}\beta_B$, worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für $\text{Inh}\beta_B$ die für den entsprechenden $\text{Inh}\beta_A$ -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder Löschung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

19. Zusammensetzung nach Anspruch 16, umfassend eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp; Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B Hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder einer vergleichbar modifizierten menschlichen β_B -Kette.

5 20. Zusammensetzung, umfassend eine Prodomäne von menschlichem oder Schweine- α - oder - β_B -Inhibin, wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β_B -Kette), Fig. 6A (menschliche α -Kette) und Fig. 9 (menschliche β_B -Kette) dargestellt, die nicht mit nativer Glykosylierung assoziiert ist.

10 21. Zusammensetzung, umfassend ein Homodimer von reifen menschlichen oder Schweine-Inhibin- β_A - oder - β_B -Ketten, wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder einer durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche 15 hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei die Zusammensetzung frei von der Inhibin- α -Kette ist.

20 22. Zusammensetzung nach Anspruch 21, die ein Homodimer von reifen menschlichen oder Schweine- β_B -Ketten oder einer der Aminosäuresequenz-Varianten davon ist.

25 23. Zusammensetzung, umfassend ein Heterodimer von reifem menschlichem oder Schweine-Inhibin- β_A mit reifem menschlichem oder Schweine-Inhibin- β_B , wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder einer durch Einfügung, Löschung oder Substitution einer der dargestellten Sequenzen erhaltenen Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche 20 hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei die Zusammensetzung frei von der Inhibin- α -Kette ist.

30 24. Nicht-chromosomal DNA, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, jedoch unter Ausschluß der Rinder-Inhibin- α -Kette, und wobei die Variante 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche 35 hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei die Zusammensetzung frei von der Inhibin- α -Kette ist.

35 25. DNA nach Anspruch 24, die für eine menschliche oder Schwein-Inhibin- α - oder eine menschliche oder Schwein-Inhibin- β -Kette kodiert, deren Aminosäuresequenz wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt ist.

40 26. DNA nach Anspruch 24, die für eine Variante kodiert, ausgewählt aus: den Schweine-Inhibinbinderivaten (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ oder Cys₃₂₄→ Δ]Inh α ; [Cys₃₆₁ oder Cys₃₆₃→ Δ]Inh α ; [Lys₃₂₁ oder Lys₃₂₂→ Δ]Inh β_A ; [Lys₃₂₂→His oder Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ oder Cys₃₉₀→ Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ oder Cys₃₂₀→ Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , worin Inh eine Abkürzung für Inhibin ist und die 45 Nummern der Reste für Inh β_B die für den entsprechenden Inh β_A -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder

50 55

Lösung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

5 27. DNA nach Anspruch 24, die für eine Variante einer menschlichen β -Inhibin-Kette, ausgewählt aus Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr; Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder einer vergleichbar modifizierten menschlichen β_B -Kette kodiert.

10 28. DNA nach irgendeinem der Ansprüche 24 - 27, die frei von intervenierenden untranslatierten Sequenzen ist.

15 29. DNA nach irgendeinem der Ansprüche 24 - 28, die mit einer feststellbaren Gruppe markiert ist.

30. Replizierbarer Vektor, umfassend eine DNA nach irgendeinem der Ansprüche 21 - 27.

20 31. Vektor nach Anspruch 30, umfassend einen viralen Promotor, der mit der für die Inhibin- α - oder - β -Ketten kodierenden DNA operabel verbunden ist.

25 32. Vektor nach Anspruch 30 oder 31, der DNA enthält, die sowohl für eine Inhibin- α - als auch eine Inhibin- β -Kette kodiert.

30 33. Vektor nach Anspruch 30 oder 31, der DNA enthält, die für eine Inhibin- β -Kette, jedoch nicht für eine Inhibin- α -Kette kodiert.

35 34. Wirtszelle, die mit einem replizierbaren Vektor transformiert wurde, der DNA enthält, die für eine menschliche oder Schweine-Inhibin- α - und/oder eine -Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Lösung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, jedoch unter Ausschuß der Rinder-Inhibin- α -Kette, und wobei die Variante 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

40 35. Wirtszelle nach Anspruch 34, worin die DNA für eine menschliche oder Schweine-Inhibin- α - und/oder eine -Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

45 36. Wirtszelle nach Anspruch 34, worin die DNA für eine Variante kodiert, ausgewählt aus: den Schweine-Inhibinderivaten (Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ oder Cys₃₂₄→ Δ]Inh α ; [Cys₃₅₁ oder Cys₃₅₃→ Δ]Inh α ; [Lys₃₂₁ oder Lys₃₂₂→ Δ]Inh β_A ; [Lys₃₂₂→His oder Ser]Inh β_A ; [Lys₃₁₅→Arg; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ oder Cys₃₉₀→ Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ oder Cys₃₂₀→ Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→ Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , worin Inh eine Abkürzung für Inhibin ist und die Nummern der Reste für Inh β_B die für den entsprechenden Inh β_A -Rest verwendeten sind (siehe Fig. 2B); den menschlichen Inhibin- β_A -Ketten-Varianten, die Variationen aufweisen, die Substitution oder Lösung eines Restes oder Einfügung neben einem Rest, ausgewählt aus den Resten 293 - 297, 364 - 376 und 387 - 398, der in Fig. 8 dargestellten Sequenz sind; und den Varianten menschlicher α -Ketten, die zu mehr als 90% homolog zu der in Fig. 6A dargestellten Sequenz sind.

55 37. Wirtszelle nach Anspruch 34, worin die DNA für eine Variante einer menschlichen β_A -Inhibin-Kette, ausgewählt aus: Phe₃₀₂→Ile oder Leu; Gln₂₉₇→Asp oder Lys; Trp₃₀₇→Tyr oder Phe; Trp₃₁₀→Tyr oder Phe; Ile₃₁₁→Phe oder Val; Tyr₃₁₇→Trp oder Thr; His₃₁₈→Lys; Ala₃₁₉→Ser; Asn₃₂₀→Gln, Tyr oder His; Tyr₃₂₁→Thr oder Asp, Phe₃₄₀→Tyr; His₃₅₃→Asp; His₃₅₃→Lys (a β_A/β_B hybrid); Phe₃₅₆→Tyr;

Val₃₆₄→Phe; Val₃₆₄→Leu; Tyr₃₇₅→Thr; Tyr₃₇₆→Trp; Asn₃₈₉→Gln, His oder Lys; Ile₃₉₁→Leu oder Thr; Met₃₉₀→Leu oder Ser; Val₃₉₂→Phe, Glu, Thr oder Ile; oder eine vergleichbar modifizierte menschliche β_B -Kette kodiert.

5 38. Zelle nach irgendeinem der Ansprüche 34 - 37, die eine eukaryotische Zelle ist.

10 39. Zellfreie Zusammensetzung, die frei von reifem α -Ketten-Polypeptid ist, die eine menschliche oder Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenz, wie in Fig. 1B (Schweine- α -Kette) oder Fig. 6A (menschliche α -Kette) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Sequenzen erhaltene Aminosäuresequenz-Variante enthält, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzreaktiv mit gegen ein Polypeptid mit einer der dargestellten Sequenzen gebildeten Antikörpern ist.

15 40. Zellfreie Zusammensetzung, umfassend
a) ein Polypeptid, umfassend die menschliche Inhibin- β_A -Ketten-Prodomänensequenz

HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL

20 (Aminosäuren 1 - 40 aus Fig. 8)

PDVTQPVPKAALLNAIRKLHVGVKGENGYVEIEDDIG

(Aminosäuren 44 - 80 aus Fig. 8)

25 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-

RTRTKVTIRLFQQQKHGPQSLDTGEEAEEVGLKGERSELLSEKVVDA

(Aminosäuren 83 - 185 aus Fig. 8) STWHVFPVSSSIQRLLD-

30 QGKSSLDVRIACEQCQESGASLVLLG

(Aminosäuren 188 - 230 aus Fig. 8)

35 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon;
b) ein Polypeptid, umfassend die menschliche Inhibin- β_B -Ketten-Prodomänensequenz

40 CTSCGGFRRPEELGRVDGDFLEAV

45 (Aminosäuren 7 - 30 aus Fig. 9)

HILSRLQMGRGRPNITHAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

50 GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS

(Aminosäuren 33 - 145 aus Fig. 9)

55 VRVKVYFQEQQHGDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE

50 (Aminosäuren 149 - 195 aus Fig. 9)

LNLDVQCDSCQELAVVPVFVDPGEESHRPFVVVQARLGDSRHRI

(Aminosäuren 198 - 241 aus Fig. 9)

55 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon; oder
c) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend menschlichen Inhibin- α -Ketten-Prodomänensequenzen

KVRALFLDALGPPAVTREGGDPGV

(Aminosäuren 1 - 24 aus Fig. 6)

HALGGFTHRGSEPEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFR -

PSQHTRSRQVTSAQLWFHTGLDRQGTAASNNSPELLGLALSPGGPVAVPMSLGH -

APPHWAVLHLATSALLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSGERA

¹⁰ (Aminosäuren 32 - 199 aus Fig. 6)

oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon.

- 15 41. Zellfreie Zusammensetzung, umfassend ein menschliches oder Schwein-Inhibin- β -Ketten-Prodomänen-Polypeptid mit einer Sequenz, wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Sequenzen erhaltene Aminosäuresequenz-Variante, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzaktiv mit gegen ein Polypeptid mit einer der dargestellten Sequenzen gebildeten Antikörpern ist.
- 20 42. Zusammensetzung nach Anspruch 41, worin die β -Kette die β_A -Kette und die Zusammensetzung frei von reifer β_A -Ketten-Sequenz ist.
- 25 43. Zusammensetzung nach Anspruch 41, worin die β -Kette die β_B -Kette und die Zusammensetzung frei von reifer β_B -Ketten-Sequenz ist.
- 30 44. Zusammensetzung nach Anspruch 40, worin die Variante die entsprechende Schweine-Aminosäuresequenz ist, wobei die Zusammensetzung enthält:
 - a) ein Polypeptid, umfassend die Schweine-Inhibin- β_A -Ketten-Prodomänensequenz, die beschrieben wird durch die Aminosäuren: 28 - 58; 61 - 87; 90 - 108; 111 - 179; 182 - 213; 216 - 258; oder 28 - 87 aus Fig. 2B; oder
 - b) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend die Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenzen, die beschrieben werden durch die Aminosäuren: 20 - 54 oder 70 - 228 aus Fig. 1B.
- 35 45. Zusammensetzung nach irgendeinem der Ansprüche 39 - 44, worin das Polypeptid nicht von nativer Glykosylierung begleitet wird.
- 40 46. Zusammensetzung nach irgendeinem der Ansprüche 39 - 45, die steril ist, und worin das Polypeptid weiters ein immunogenes Polypeptid umfaßt.
- 45 47. Verwendung einer Zusammensetzung nach irgendeinem der Ansprüche 39 - 46 zur Herstellung eines Antikörpers, der in der Lage ist, das Polypeptid zu binden.
- 48. Zusammensetzung nach irgendeinem der Ansprüche 39 - 46, worin das Polypeptid an eine feststellbare Gruppe konjugiert ist.
- 50 49. Zusammensetzung nach Anspruch 48, worin die Gruppe ein Enzym, Fluorophor oder Radioisotop ist.
- 55 50. Zusammensetzung nach irgendeinem der Ansprüche 39 - 44, 48 oder 49, die durch nicht-kovalente Absorption oder kovalente Vernetzung an einen wasserunlöslichen Träger unlöslich gemacht ist.
- 56 51. Zusammensetzung nach irgendeinem der Ansprüche 39 - 46, 48 oder 49, weiters umfassend eine physiologisch annehmbare, implantierbare Matrix zur gesteuerten Freisetzung des Polypeptids in die Gewebe eines Tieres.

Patentansprüche für folgenden Vertragsstaat : GR

1. Verfahren, umfassend das Kultivieren einer Wirtszelle, die mit einem Vektor transformiert wurde, der Nukleinsäure enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, und wobei die Variante 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.
2. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.
3. Verfahren nach Anspruch 1, worin der Vektor für eine allelische Variante von menschlicher oder Schweine-Inhibin- α - und/oder - β -Kette kodiert.
4. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Nukleinsäure, die für die Inhibin- α -Kette und/oder - β -Kette kodiert, mit einem von der Wirtszelle erkannten Promotor operabel verbunden ist, und das den weiteren Schritt der Gewinnung der Inhibin- α -Kette, Inhibin- β -Kette, von Inhibin oder einem β -Ketten-Dimer aus dem Kulturmedium umfaßt.
5. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Zelle ein Prokaryot ist.
6. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- α -Kette oder einer Inhibin- β -Kette kodiert.
7. Verfahren nach Anspruch 6, worin der Vektor eine Nukleinsäure umfaßt, die sowohl für die Präpro-Form einer Inhibin- α -Kette als auch einer Inhibin- β -Kette kodiert.
8. Verfahren nach irgendeinem der Ansprüche 1 - 4, 6 oder 7, worin die Zelle eine Zelle aus einem vielzelligen Organismus ist und hormonell aktives Inhibin produziert wird.
9. Verfahren nach Anspruch 4, worin der Promotor ein viraler Promotor ist.
10. Verfahren nach Anspruch 9, worin der Promotor ein SV40-Promotor ist.
11. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin reifes Schweine- oder menschliches Inhibin gewonnen wird.
12. Verfahren nach irgendeinem der Ansprüche 1 - 5 oder 8 - 10, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- β -Kette kodiert, und ein reifes β -Ketten-Dimer frei von der α -Kette gewonnen wird.
13. Verfahren nach Anspruch 8 oder 11, worin die β -Kette die β_A -Kette ist und das Inhibin in einer Konzentration von über etwa 20 ng/ml im Kulturmedium vorliegt.
14. Verfahren nach Anspruch 4, worin das Inhibin menschliches oder Schweine-Inhibin ist, das aus einer α - und einer β -Kette, wobei die Aminosäuresequenzen der α - und β -Ketten aus jenen in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellten ausgewählt werden, und durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltenen Aminosäuresequenz-Varianten besteht, wobei die Varianten im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten

Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz sind; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzen; wobei die Zusammensetzung vollständig frei von nicht-identifizierten menschlichen oder Schweine-Proteinen ist.

- 5 15. Verfahren nach Anspruch 14, worin das Inhibin menschliches oder Schweine-Inhibin ist, das aus einer α - und einer β -Kette besteht, wobei die Sequenzen der α - und β -Ketten aus jenen ausgewählt werden, die in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.
- 10 16. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine Prodomäne von menschlichem oder Schweine- α - oder - β_B -Inhibin, wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β_B -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 9 (menschliche β_B -Kette) dargestellt, ist, die nicht mit nativer Glykosylierung assoziiert ist.
- 15 17. Verfahren nach Anspruch 4, worin ein β -Ketten-Dimer gewonnen wird, das ein Homodimer von reifen menschlichen oder Schweine-Inhibin- β_A - oder - β_B -Ketten, wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei das Dimer frei von der Inhibin- α -Kette ist.
- 20 18. Verfahren nach Anspruch 17, worin ein Homodimer von reifen menschlichen oder Schweine- β_B -Ketten oder eine der Aminosäuresequenz-Varianten davon gewonnen wird.
- 25 19. Verfahren nach Anspruch 4, worin ein β -Ketten-Dimer gewonnen wird, das ein Heterodimer von reifem menschlichem oder Schweine-Inhibin- β_A mit reifem menschlichem oder Schweine-Inhibin- β_B , wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei das Dimer frei von der Inhibin- α -Kette ist.
- 30 20. Nicht-chromosomal DNA, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.
- 35 21. DNA nach Anspruch 20, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette kodiert, deren Aminosäuresequenz wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt ist.
- 40 22. DNA nach Anspruch 20 oder 21, die frei von intervenierenden untranslatierten Sequenzen ist.
- 45 23. DNA nach irgendeinem der Ansprüche 20 - 22, die mit einer feststellbaren Gruppe markiert ist.
- 50 24. Replizierbarer Vektor, umfassend eine DNA nach Anspruch 20 oder 21.

25. Vektor nach Anspruch 24, umfassend einen viralen Promotor, der mit der für die Inhibin- α - oder - β -Ketten kodierenden DNA operabel verbunden ist.

5 26. Vektor nach Anspruch 24 oder 25, der DNA enthält, die sowohl für eine Inhibin- α - als auch eine Inhibin- β -Kette kodiert.

10 27. Vektor nach Anspruch 24 oder 25, der DNA enthält, die für eine Inhibin- β -Kette, jedoch nicht für eine Inhibin- α -Kette kodiert.

15 28. Wirtszelle, die mit einem replizierbaren Vektor transformiert wurde, der DNA enthält, die für eine menschliche oder Schweine-Inhibin- α - und/oder eine -Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; oder 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

20 29. Wirtszelle nach Anspruch 28, worin die DNA für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine -Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

25 30. Zelle nach Anspruch 28 oder 29, die eine eukaryotische Zelle ist.

30 31. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, die frei von reifer α -Ketten-Sequenz ist, die eine menschliche oder Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenz, wie in Fig. 1B (Schweine- α -Kette) oder Fig. 6A (menschliche α -Kette) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Sequenzen erhaltene Aminosäuresequenz-Variante enthält, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist.

35 32. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, umfassend
a) ein Polypeptid, umfassend die menschliche Inhibin- β_A -Ketten-Prodomänensequenz

USAABDCBSCALAAILPKDVPNSOPEMVEAVKKHTLNMILHI

(Aminosäuren 1 - 40 aus Fig. 8)

50

55

PDVTQPVPKAALLNAIRKLHVGVGKVGNGYVEIEDDIG

(Aminosäuren 44 - 80 aus Fig. 8)

5 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-

RTRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVVDA

10 (Aminosäuren 83 - 185 aus Fig. 8)

15 STWHVFPVSSSIQRLLDQGKSSLDVRIACEQCQESGASLVLLG

(Aminosäuren 188 - 230 aus Fig. 8)

20 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon;

b) ein Polypeptid, umfassend die menschliche Inhibin- β_B -Ketten-Prodomänensequenz

CTSCGGFRRPEELGRVDGDFLEAV

25 (Aminosäuren 7 - 30 aus Fig. 9)

HILSRQLQMRGRPNITHAVPKAACMTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

GQERVSEIISFAETDGLASSRVRFLYFFISNEGNQNLFVVQASLWLYLKLLPYV-

30 LEKGS (Aminosäuren 33 - 145 aus Fig. 9)

35 VRVKVYFQEQQGHDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE

(Aminosäuren 149 - 195 aus Fig. 9)

40 LNLDVQCDSCQELAVVPVFDPGEESHRPFVVVQARLGDSRHRI

(Aminosäuren 198 - 241 aus Fig. 9)

45 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon; oder

c) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend menschlichen Inhibin- α -Ketten-Prodomänensequenzen

50 KVRALFLDALGPPAVTREGGPGV

(Aminosäuren 1 - 24 aus Fig. 6)

HALGGFTHRGSEPEEEEEDVSQAILFPATDASCEDKSAARGLAQEAEEGLFRYMFR-

55 PSQHTRSRSQVTSQQLWFHTGLDRQGTAASNSEPLLGLLALSPGGPVAVPMSLGH-

APPHWAVLHLATSALLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSG- GERA

(Aminosäuren 32 - 199 aus Fig. 6)

60 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon.

33. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, umfassend ein menschliches oder Schweine-Inhibin- β -Ketten-Prodomänene-Polypeptid mit einer Sequenz, wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänene-Polypeptide mit einer dieser Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzreaktiv mit gegen ein

Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist.

34. Verfahren nach Anspruch 33, worin die β -Kette die β_A -Kette und die Zusammensetzung frei von reifer β_A -Ketten-Sequenz ist.
- 5 35. Verfahren nach Anspruch 33, worin die β -Kette die β_B -Kette und die Zusammensetzung frei von reifer β_B -Ketten-Sequenz ist.
- 10 36. Verfahren nach Anspruch 32, worin die Variante die entsprechende Schweine-Aminosäuresequenz ist, wobei die Zusammensetzung enthält:
 - a) ein Polypeptid, umfassend die Schweine-Inhibin- β_A -Ketten-Prodomänensequenz, die beschrieben wird durch die Aminosäuren: 28 - 58; 61 - 87; 90 - 108; 111 - 179; 182 - 213; 216 - 258; oder 28 - 87 aus Fig. 2B; oder
 - b) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend die Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenzen, die beschrieben werden durch die Aminosäuren: 20 - 54 oder 70 - 228 aus Fig. 1B.
- 15 37. Verfahren nach irgendeinem der Ansprüche 31 - 36, worin das Polypeptid nicht von nativer Glykosylierung begleitet wird.
- 20 38. Verfahren nach irgendeinem der Ansprüche 31 - 37, worin die Zusammensetzung steril ist, und weiters umfassend das Verbinden des Polypeptids mit einem immunogenen Polypeptid.
- 25 39. Verwendung einer Zusammensetzung nach irgendeinem der Ansprüche 31 - 38 zur Herstellung eines Antikörpers, der in der Lage ist, das Polypeptid zu binden.
- 40 40. Verfahren nach irgendeinem der Ansprüche 31 - 38, weiters umfassend das Binden des Polypeptids an eine feststellbare Gruppe.
- 30 41. Verfahren nach Anspruch 40, worin die Gruppe ein Enzym, Fluorophor oder Radioisotop ist.
42. Verfahren nach irgendeinem der Ansprüche 31 - 38, 40 oder 41, worin die Zusammensetzung durch nicht-kovalente Absorption oder kovalente Vernetzung an einen wasserunlöslichen Träger unlöslich gemacht ist.
- 35 43. Verfahren nach irgendeinem der Ansprüche 31 - 38, 40 oder 41, weiters umfassend das Mischen der Zusammensetzung mit einer physiologisch annehmbaren, implantierbaren Matrix zur gesteuerten Freisetzung des Polypeptids in die Gewebe eines Tieres.
- 40 **Patentansprüche für folgende Vertragsstaaten : AT, ES**
1. Verfahren, umfassend das Kultivieren einer Wirtszelle, die mit einem Vektor transformiert wurde, der Nukleinsäure enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz ist, und wobei die Variante 1) kreuzreakтив mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist; oder 2) kreuzreakтив mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.
- 45 2. Verfahren nach Anspruch 1, worin die Nukleinsäure für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine menschliche oder Schweine-Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.
- 50 55

3. Verfahren nach Anspruch 1, worin der Vektor für eine allelische Variante von menschlicher oder Schweine-Inhibin- α - und/oder - β -Kette kodiert.
4. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Nukleinsäure, die für die Inhibin- α -Kette und/oder - β -Kette kodiert, mit einem von der Wirtszelle erkannten Promotor operabel verbunden ist, und das den weiteren Schritt der Gewinnung der Inhibin- α -Kette, Inhibin- β -Kette, von Inhibin oder einem β -Ketten-Dimer aus dem Kulturmedium umfaßt.
5. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin die Zelle ein Prokaryot ist.
6. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- α -Kette oder einer Inhibin- β -Kette kodiert.
7. Verfahren nach Anspruch 6, worin der Vektor eine Nukleinsäure umfaßt, die sowohl für die Präpro-Form einer Inhibin- α -Kette als auch einer Inhibin- β -Kette kodiert.
8. Verfahren nach irgendeinem der Ansprüche 1 - 4, 6 oder 7, worin die Zelle eine Zelle aus einem vielzelligen Organismus ist und hormonell aktives Inhibin produziert wird.
9. Verfahren nach Anspruch 4, worin der Promotor ein viraler Promotor ist.
10. Verfahren nach Anspruch 9, worin der Promotor ein SV40-Promotor ist.
11. Verfahren nach irgendeinem der vorangegangenen Ansprüche, worin reifes Schweine- oder menschliches Inhibin gewonnen wird.
12. Verfahren nach irgendeinem der Ansprüche 1 - 5 oder 8 - 10, worin der Vektor Nukleinsäure umfaßt, die für die Präpro-Form einer Inhibin- β -Kette kodiert, und ein reifes β -Ketten-Dimer frei von der α -Kette gewonnen wird.
13. Verfahren nach Anspruch 8 oder 11, worin die β -Kette die β_A -Kette ist und das Inhibin in einer Konzentration von über etwa 20 ng/ml im Kulturmedium vorliegt.
14. Verfahren nach Anspruch 4, worin das Inhibin menschliches oder Schweine-Inhibin ist, das aus einer α - und einer β -Kette, wobei die Aminosäuresequenzen der α - und β -Kette aus jenen in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellten ausgewählt werden, und durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltenen Aminosäuresequenz-Varianten besteht, wobei die Varianten im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz sind; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzen; wobei die Zusammensetzung vollständig frei von nicht-identifizierten menschlichen oder Schweine-Proteinen ist.
15. Verfahren nach Anspruch 14, worin das Inhibin menschliches oder Schweine-Inhibin ist, das aus einer α - und einer β -Kette besteht, wobei die Sequenzen der α - und β -Ketten aus jenen ausgewählt werden, die in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.
16. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine Prodomäne von menschlichem oder Schweine- α - oder - β_B -Inhibin, wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β_B -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 9 (menschliche β_B -Kette) dargestellt, ist, die mit der nativen Glykosylierung nicht assoziiert ist.
17. Verfahren nach Anspruch 4, worin ein β -Ketten-Dimer gewonnen wird, das ein Homodimer von reifen menschlichen oder Schweine-Inhibin- β_A - oder - β_B -Ketten, wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung

oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreakтив mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei das Dimer frei von der Inhibin- α -Kette ist.

18. Verfahren nach Anspruch 17, worin ein Homodimer von reifen menschlichen oder Schweine- β_B -Ketten oder eine der Aminosäuresequenz-Varianten davon gewonnen wird.

19. Verfahren nach Anspruch 4, worin ein β -Ketten-Dimer gewonnen wird, das ein Heterodimer von reifem menschlichem oder Schweine-Inhibin- β_A mit reifem menschlichem oder Schweine-Inhibin- β_B , wobei die Ketten wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei das Heterodimer frei von der Inhibin- α -Kette ist.

20. Verfahren zur Herstellung von nicht-chromosomaler DNA, die für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette, wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt, oder für eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; oder 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt; wobei das Verfahren chemische Synthese, Screenen von mRNA aus dem Eierstock oder Screenen der genomischen Sammlungen jeder Zelle umfaßt.

21. Verfahren nach Anspruch 20, worin die DNA für eine menschliche oder Schweine-Inhibin- α - oder eine menschliche oder Schweine-Inhibin- β -Kette kodiert, deren Aminosäuresequenz wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt ist.

22. Verfahren nach Anspruch 20 oder 21, worin die nicht-chromosomale DNA frei von intervenierenden untranslatierten Sequenzen ist.

23. Verfahren nach irgendeinem der Ansprüche 20 - 22, weiters umfassend den Schritt des Markierens der nicht-chromosomal DNA mit einer feststellbaren Gruppe.

24. Verfahren zur Herstellung eines replizierbaren Vektors, wobei das Verfahren das Einfügen einer DNA nach Anspruch 20 oder 21 in einen Klonungsvektor umfaßt.

25. Verfahren nach Anspruch 24, worin die DNA in einen Vektor eingefügt wird, der einen viralen Promotor besitzt, der mit der für die Inhibin- α - und/oder - β -Ketten kodierenden DNA operabel verbunden ist, um dadurch einen Expressionsvektor zu produzieren.

26. Verfahren nach Anspruch 24 oder 25, worin DNA, die sowohl für eine Inhibin- α -als auch eine Inhibin- β -Kette kodiert, in den Vektor eingefügt wird.

27. Verfahren nach Anspruch 24 oder 25, worin DNA, die für eine Inhibin- β -Kette, jedoch nicht für eine Inhibin- α -Kette kodiert, in den Vektor eingefügt wird.

28. Wirtszelle, die mit einem replizierbaren Vektor transformiert wurde, der DNA enthält, die für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine -Inhibin- β -Kette, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind, oder für eine durch Einfügung, Löschung oder Substitution eines Polypeptids mit einer der dargestellten Sequenzen erhaltene Aminosäuresequenz-Variante kodiert, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer dargestellten Sequenz und 1) kreuzreakтив mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern; oder 2) kreuzreaktiv mit Zelloberflächen-Rezeptoren für ein Polypeptid mit einer dargestellten Sequenz ist; oder 3) ähnliche hormonelle Aktivität wie ein Polypeptid mit einer dargestellten Sequenz besitzt.

5
10
15

29. Wirtszelle nach Anspruch 28, worin die DNA für eine menschliche oder Schweine-Inhibin- α -Kette und/oder eine -Inhibin- β -Kette kodiert, deren Aminosäuresequenzen wie in Fig. 1B (Schweine- α -Kette), Fig. 2B (Schweine- β -Ketten), Fig. 6A (menschliche α -Kette) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt sind.

15
20
25

30. Zelle nach Anspruch 28 oder 29, die eine eukaryotische Zelle ist.

31. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, die frei von reifer α -Ketten-Sequenz ist, die eine menschliche oder Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenz, wie in Fig. 1B (Schweine- α -Kette) oder Fig. 6A (menschliche α -Kette) dargestellt, oder eine Aminosäuresequenz-Variante einer dieser Prodomänen-Sequenzen enthält, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist.

25
30

32. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, umfassend
a) ein Polypeptid, umfassend die menschliche Inhibin- β_A -Ketten-Prodomänensequenz

30 **HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL**

(Aminosäuren 1 - 40 aus Fig. 8)

35 **PDVTQPVPKAALLNAIRKLHVGVKGENGYVEIEDDIG**

(Aminosäuren 44 - 80 aus Fig. 8)

AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSSVVERAEVWLFLKVPKAN-

40 **TRTKVТИRLFQQQKHPQGS LDTGEEAEEVGLKGERSELLLSEKVVD**

(Aminosäuren 83 - 185 aus Fig. 8)

STWHVFPVSSSIQRILLDQGKSSL DVRIACEQCQESGASLVLLG

45 (Aminosäuren 188 - 230 aus Fig. 8)

oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon;

50

55

b) ein Polypeptid, umfassend die menschliche Inhibin- β_B -Ketten-Prodomänensequenz

CTSCGGFRRPEELGRVDGDFLEAV

5 (Aminosäuren 7 - 30 aus Fig. 9)

HILSRLQMRGRPNITHAVPKAACMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

GQERVSEIISFAETDGLASSRVRLYFFISNEGQNQLFVVQASLWLYLKLLPYV-

10 LEKGS (Aminosäuren 33 - 145 aus Fig. 9)

VRVKVYFQEQQGHDRWMVEKRVDLKRSGWHTFPPLTEAIQALFERGE

15 (Aminosäuren 149 - 195 aus Fig. 9)

LNLDVQCDSCQE LA VVPVFVDPGEESH RPFVVVQARLGDSRHRI

(Aminosäuren 198 - 241 aus Fig. 9)

20 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon; oder
c) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend menschlichen Inhibin- α -Ketten-Prodomänensequenzen

25 (Aminosäuren 1 - 24 aus Fig. 6)

HALGGFTHRGSEPEEEEEDVSQAI LF PATDASCEDKSAARGLAQEAEEGLFRYMFR-

PSQHTRSRQVTS AOLWFHTGLDRQGTAASN SSEPLLGLLALSPGGPVAVPMSLGH-

30 APPHWAVLHLATSALSLLTHPVLVLLLRCPLCTCSARPEATPFLVAHTRTRPPSG- GERA

(Aminosäuren 32 - 199 aus Fig. 6)

35 oder natürlich vorkommende Säugetier-Aminosäuresequenz-Varianten davon.

33. Verfahren nach Anspruch 4, worin die gewonnene Inhibin-Kette eine zellfreie Zusammensetzung ist, umfassend ein menschliches oder Schweine-Inhibin- β -Ketten-Prodomänen-Polypeptid mit einer Sequenz, wie in Fig. 2B (Schweine- β -Ketten) und Fig. 8 und 9 (menschliche β -Ketten) dargestellt, oder eine durch Einfügung, Löschung oder Substitution einer dieser Prodomänen-Polypeptide mit einer dieser Sequenzen erhaltene Aminosäuresequenz-Variante ist, wobei die Variante im wesentlichen homolog zu einem Polypeptid mit einer der dargestellten Sequenzen und kreuzreaktiv mit gegen ein Polypeptid mit einer dargestellten Sequenz gebildeten Antikörpern ist.

45 34. Verfahren nach Anspruch 33, worin die β -Kette die β_A -Kette und die Zusammensetzung frei von reifer β_A -Ketten-Sequenz ist.

35. Verfahren nach Anspruch 33, worin die β -Kette die β_B -Kette und die Zusammensetzung frei von reifer β_B -Ketten-Sequenz ist.

50 36. Verfahren nach Anspruch 32, worin die Variante die entsprechende Schweine-Aminosäuresequenz ist, wobei die Zusammensetzung enthält:

a) ein Polypeptid, umfassend die Schweine-Inhibin- β_A -Ketten-Prodomänensequenz, die beschrieben wird durch die Aminosäuren: 28 - 58; 61 - 87; 90 - 108; 111 - 179; 182 - 213; 216 - 258; oder 28 - 87 aus Fig. 2B; oder

b) ein Polypeptid, das frei von der reifen α -Ketten-Aminosäuresequenz ist, umfassend die Schweine-Inhibin- α -Ketten-Prodomänen-Polypeptidsequenzen, die beschrieben werden durch die Aminosäuren: 20 - 54 oder 70 - 228 aus Fig. 1B.

37. Verfahren nach irgendeinem der Ansprüche 31 - 36, worin das Polypeptid nicht von nativer Glykosylierung begleitet wird.

38. Verfahren nach irgendeinem der Ansprüche 31 - 37, worin die Zusammensetzung steril ist, und weiters umfassend das Verbinden des Polypeptids mit einem immunogenen Polypeptid.

5 39. Verwendung eines Polypeptids nach irgendeinem der Ansprüche 31 - 38 zur Herstellung eines Antikörpers, der in der Lage ist, das Polypeptid zu binden.

10 40. Verfahren nach irgendeinem der Ansprüche 31 - 38, weiters umfassend das Konjugieren des Polypeptids an eine feststellbare Gruppe.

41. Verfahren nach Anspruch 40, worin die Gruppe ein Enzym, Fluorophor oder Radioisotop ist.

15 42. Verfahren nach irgendeinem der Ansprüche 31 - 38, 40 oder 41, worin die Zusammensetzung durch nicht-kovalente Absorption oder kovalente Vernetzung an einen wasserunlöslichen Träger unlöslich gemacht ist.

20 43. Verfahren nach irgendeinem der Ansprüche 31 - 38, 40 oder 41, weiters umfassend das Mischen der Zusammensetzung mit einer physiologisch annehmbaren, implantierbaren Matrix zur gesteuerten Freisetzung des Polypeptids in die Gewebe eines Tieres.

Revendications

Revendications pour les Etats contractants suivants : BE, CH, DE, FR, GB, IT, LI, NL, SE

25 1. Procédé comprenant la culture d'une cellule hôte transformée avec un vecteur qui renferme un acide nucléique codant pour une chaîne α d'inhibine humaine ou porcine et/ou pour une chaîne β d'inhibine humaine ou porcine dont les séquences d'aminoacides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcine), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), ou un variant de séquence d'amino-acides formé par insertion, déletion ou substitution 30 d'une des séquences représentées, le variant étant fortement homologue avec un polypeptide d'une séquence représentée mais excluant la chaîne α d'inhibine bovine et la chaîne β partielle d'inhibine bovine de séquence

35 Gly-Leu-Glu-Cys-Asp

Gly-Lys-Val-Asn-Ile-Cys-Cys-Lys-Gln-Phe-Phe-Val-Ser-Phe-
 Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-Tyr-
 His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-Ala-Gly-
 40 Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-Ile-Asn-His-
 Tyr-Arg-Met-Arg-Gly-His-Ser,

45 et

1) présentant une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) présentant une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée, ou 3) présentant une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

50 2. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour une chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

55 3. Procédé suivant la revendication 1, dans lequel le vecteur code pour une chaîne β d'inhibine, ou un de ses variants de séquence d'amino-acides, autre que la chaîne β_A humaine ou porcine naturelle ou la chaîne β d'inhibine bovine partielle spécifiée dans la revendication 1.

4. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃→Δ]-Inh α ; [Lys₃₂₁ ou Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His ou Ser]Inh β_A ; [Lys₃₁₅→Arg ; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys ; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , dans lesquel Inh est une abréviation d'inhibine et les numéros des résidus pour la Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondant (voir figure 2B) ; les variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de la chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

5 5. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour un variant d'une chaîne d'inhibine β_A humaine choisi entre Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys (à un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₆→Trp ; Asn₃₈₉→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₀→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

10 6. Procédé suivant l'une quelconque des revendications précédentes, dans lequel l'acide nucléique codant pour la chaîne α et/ou la chaîne β d'inhibine est lié de manière fonctionnelle à un promoteur reconnu par la cellule hôte et contenant l'étape supplémentaire de séparation de l'inhibine ou d'un dimère de chaîne β du milieu de culture.

15 7. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la cellule est un procaryote.

20 8. Procédé suivant l'une quelconque des revendications précédentes, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne α d'inhibine ou d'une chaîne β d'inhibine.

25 9. Procédé suivant la revendication 8, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro de la chaîne α d'inhibine et de la chaîne β d'inhibine.

30 10. Procédé suivant l'une quelconque des revendications 1 à 6, 8 et 9, dans lequel la cellule est une cellule provenant d'un organisme pluricellulaire et une inhibine douée d'activité hormonale est produite.

35 11. Procédé suivant la revendication 6, dans lequel le promoteur est un promoteur viral.

40 12. Procédé suivant la revendication 11, dans lequel le promoteur est un promoteur de SV40.

45 13. Procédé suivant l'une quelconque des revendications précédentes, dans lequel de l'inhibine porcine ou humaine mature est recueillie.

50 14. Procédé suivant l'une quelconque des revendications 1 à 7 ou 10 à 12, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne β d'inhibine et un dimère de chaîne β mature est recueilli en l'absence de chaîne α .

55 15. Procédé suivant la revendication 10 ou 13, dans lequel la chaîne β est la chaîne β_A et l'inhibine présente à une concentration supérieure à environ 20 ng/ml de milieu de culture.

60 16. Composition contenant de l'inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'amino-acides desdites chaînes α et β étant choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), et des variants de séquence d'amino-acides engendrés par insertion, délétion ou substitution d'un polypeptide d'une desdites séquences représentées, variants qui sont fortement homologues avec un polypeptide d'une séquence représentée, mais à l'exclusion de la chaîne α d'inhibine bovine, et 1) qui présentent une réactivité croisée avec des anticorps engendrés

contre un polypeptide d'une séquence représentée ; 2) qui présentent une réactivité croisée avec les récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui possèdent une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est totalement dépourvue de protéines humaines ou porcines non identifiées.

5 17. Composition suivant la revendication 16, dans laquelle les séquences des chaînes α et β sont choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaîne β porcine), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

10 18. Composition suivant la revendication 16, dans laquelle les variants sont choisis entre : des dérivés d'inhibine porcine ($\text{Asn}_{266} \rightarrow \text{Inh}$) Glnh_α ; [Cys_{325} ou $\text{Cys}_{324} \rightarrow \Delta$] Inh_α ; [Cys_{361} ou $\text{Cys}_{363} \rightarrow \Delta$] Inh_α ; [Lys_{321} ou $\text{Lys}_{322} \rightarrow \Delta$] Inh_β_A ; [$\text{Lys}_{322} \rightarrow \text{His}$ ou Ser] Inh_β_A ; $\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] Inh_β_A ; [Cys_{388} ou $\text{Cys}_{390} \rightarrow \Delta$] Inh_β_A , [$\text{Lys}_{411} \rightarrow \text{Gln}$] Inh_β_A ; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$] Inh_β_B ; [Cys_{319} ou $\text{Cys}_{320} \rightarrow \Delta$] Inh_β_B - [Pro_{381} $\text{Gly}_{382} \rightarrow \text{Pro}$ Phe Gly] Inh_β_B ; [$\text{Arg}_{395} \rightarrow \text{Gln}$] Inh_β_B , dans lesquels Inh représente une abréviation d'inhibine et les numéros des résidus pour Inh_β_B sont ceux utilisés pour le résidu Inh_β_A correspondant (voir figure 2B) ; des variants de chaîne β_A d'inhibine humaine β_A possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

15 19. Composition suivant la revendication 16, comprenant un variant d'une chaîne d'inhibine β_A humaine choisi entre $\text{Phe}_{302} \rightarrow \text{Ile}$ ou Leu ; $\text{Gln}_{297} \rightarrow \text{Asp}$ ou Lys ; $\text{Trp}_{307} \rightarrow \text{Tyr}$ ou Phe ; $\text{Trp}_{310} \rightarrow \text{Tyr}$ ou Phe ; $\text{Ile}_{311} \rightarrow \text{Phe}$ ou Val ; $\text{Tyr}_{317} \rightarrow \text{Trp}$ ou Thr ; $\text{His}_{318} \rightarrow \text{Lys}$; $\text{Ala}_{319} \rightarrow \text{Ser}$; $\text{Asn}_{320} \rightarrow \text{Gln}$, Tyr ou His ; $\text{Tyr}_{321} \rightarrow \text{Thr}$ ou Asp , $\text{Phe}_{340} \rightarrow \text{Tyr}$; $\text{His}_{353} \rightarrow \text{Asp}$; $\text{His}_{353} \rightarrow \text{Lys}$; (un hybride β_A/β_B) ; $\text{Phe}_{356} \rightarrow \text{Tyr}$; $\text{Val}_{364} \rightarrow \text{Phe}$; $\text{Val}_{364} \rightarrow \text{Leu}$; $\text{Tyr}_{375} \rightarrow \text{Thr}$; $\text{Tyr}_{376} \rightarrow \text{Trp}$; $\text{Asn}_{389} \rightarrow \text{Gln}$, His ou Lys ; $\text{Ile}_{391} \rightarrow \text{Leu}$ ou Thr ; $\text{Met}_{390} \rightarrow \text{Leu}$ ou Ser ; $\text{Val}_{392} \rightarrow \text{Phe}$, Glu , Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

20 20. Composition comprenant un prodomaine d'inhibine α ou β_B humaine ou porcine représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaîne β_B porcine), la figure 6A (chaîne α humaine) et la figure 9 (chaîne β_B humaine) non associé à une glycosylation naturelle.

25 21. Composition comprenant un homodimère de chaînes β_A ou β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines), ou d'un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'un polypeptide d'une des séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est dépourvue de la chaîne α d'inhibine.

30 22. Composition suivant la revendication 21, qui est un homodimère de chaînes β humaine ou porcine mature ou d'un de ses variants de séquence d'amino-acides.

35 23. Composition comprenant un hétérodimère d'inhibine β_A humaine ou porcine mature avec l'inhibine β_B humaine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines), ou d'un variant de séquence d'aminoacides engendré par insertion, délétion ou substitution d'une des séquences représentées, le variant présentant une forte homologie avec un polypeptide d'une séquence représentée et 1) présentant une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) présentant une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) présentant une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est dépourvue de la chaîne α d'inhibine.

40 24. ADN non chromosomique codant pour une chaîne α d'inhibine humaine ou porcine ou d'une chaîne β d'inhibine humaine ou porcine dont les séquences d'amino-acides sont décrites sur les figures 1B

(chaîne α porcine), 2B (chaînes β porcines), 6A (chaîne α humaine) et 8 et 9 (chaînes β humaines) ou pour un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, le variant présentant une forte homologie avec un polypeptide d'une séquence représentée, à l'exclusion de la chaîne α d'inhibine bovine et de la chaîne β d'inhibine bovine partielle de séquence

Gly-Leu-Glu-Cys-Asp-Gly-Lys-Val-Asn-Ile-Cys-Cys-Lys-
Lys-Gln-Phe-Phe-Val-Ser-Phe-Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-
Ile-Ile-Ala-Pro-Ser-Gly-Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-
Cys-Pro-Ser-His-Ile-Ala-Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-
His-Ser-Thr-Val-Ile-Asn-His-Tyr-Arg-Met-Arg-Gly-His-Ser,

15

et

- 1) présentant une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) présentant une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée, ou 3) présentant une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.
- 25. ADN suivant la revendication 24, codant pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine dont la séquence d'amino-acides est représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).
- 30. 26. ADN suivant la revendication 24, qui code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ ou Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His ou Ser]Inh β_A ; [Lys₃₁₅→Arg ; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀→Δ]Inh α , [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys ; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , dans lesquel Inh est une abréviation d'inhibine et les numéros des résidus pour la Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondants (voir figure 2B) ; les variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de la chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.
- 35. 27. ADN suivant la revendication 24, qui code pour un variant d'une chaîne β d'inhibine humaine choisi entre Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys (à un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₆→Trp ; Asn₃₈₉→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₀→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.
- 40. 28. ADN suivant l'une quelconque des revendications 24 à 27, qui est dépourvu de séquences non traduites intermédiaires.
- 45. 29. ADN suivant l'une quelconque des revendications 24 à 28, qui est marqué avec un groupement détectable.
- 50. 30. Vecteur répllicable comprenant un ADN suivant l'une quelconque des revendications 21 à 27.
- 55. 31. Vecteur suivant la revendication 30, comprenant un promoteur viral lié de manière fonctionnelle à l'ADN codant pour les chaînes α et/ou β d'inhibine.
- 32. Vecteur suivant la revendication 30 ou 31, qui contient un ADN codant à la fois pour une chaîne α d'inhibine et une chaîne β d'inhibine.

33. Vecteur suivant la revendication 30 ou 31, qui contient un ADN codant pour une chaîne β d'inhibine, mais pour la chaîne α d'inhibine.

5 34. Cellule hôte transformation avec un vecteur réplicable comprenant l'ADN codant pour la chaîne α et/ou la chaîne β d'inhibine humaine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'un polypeptide d'une telle séquence représentée, le variant étant pratiquement homologue avec un polypeptide d'une séquence représentée, à l'exclusion de la chaîne α d'inhibine bovine et de la chaîne β d'inhibine bovine partielle de séquence

Gly-Leu-Glu-Cys-
Asp-Gly-Lys-Val-Asn-Ile-Cys-Cys-Lys-Lys-Gln-Phe-Phe-Val-Ser-
15 Phe-Lys-Asp-Ile-Gly-Trp-Asn-Asp-Trp-Ile-Ile-Ala-Pro-Ser-Gly-
Tyr-His-Ala-Asn-Tyr-Cys-Glu-Gly-Glu-Cys-Pro-Ser-His-Ile-Ala-
Gly-Thr-Ser-Gly-Ser-Ser-Leu-Ser-Phe-His-Ser-Thr-Val-Ile-Asn-
20 His-Tyr-Arg-Met-Arg-Gly-His-Ser,

et

25 1) présentant une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) présentant une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée, ou 3) présentant une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

30 35. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour une chaîne α et/ou une chaîne β d'inhibine humaine porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

35 36. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆ \rightarrow Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄ \rightarrow Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃ \rightarrow Δ]Inh α ; [Lys₃₂₁ ou Lys₃₂₂ \rightarrow Δ]Inh β_A ; [Lys₃₂₂ \rightarrow His ou Ser]Inh β_A ; [Lys₃₁₅ \rightarrow Arg ; Val₃₁₆ \rightarrow Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀ \rightarrow Δ]Inh β_A ; [Lys₄₁₁ \rightarrow Gln]Inh β_A ; [Arg₃₁₅ \rightarrow Lys ; Val₃₁₆ \rightarrow Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀ \rightarrow Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂ \rightarrow Pro Phe Gly]Inh β_B ; [Arg₃₉₅ \rightarrow Gln]Inh β_B , dans lesquel Inh est une abréviation d'inhibine et les numéros des résidus pour la Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondant (voir figure 2B) ; les variants de chaîne β_A d'inhibine humaine possédant des variations 40 qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293-297, 364-376 et 387-398 de la séquence représentée sur la figure 8 ; et des variants de la chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

45 37. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour un variant d'une chaîne β_A d'inhibine humaine choisie entre Phe₃₀₂ \rightarrow Ile ou Leu ; Gln₂₉₇ \rightarrow Asp ou Lys ; Trp₃₀₇ \rightarrow Tyr ou Phe ; Trp₃₁₀ \rightarrow Tyr ou Phe ; Ile₃₁₁ \rightarrow Phe ou Val ; Tyr₃₁₇ \rightarrow Trp ou Thr ; His₃₁₈ \rightarrow Lys ; Ala₃₁₉ \rightarrow Ser ; Asn₃₂₀ \rightarrow Gln, Tyr ou His ; Tyr₃₂₁ \rightarrow Thr ou Asp, Phe₃₄₀ \rightarrow Tyr ; His₃₅₃ \rightarrow Asp ; His₃₅₃ \rightarrow Lys (à un hybride β_A/β_B) ; Phe₃₅₆ \rightarrow Tyr ; Val₃₆₄ \rightarrow Phe ; Val₃₆₄ \rightarrow Leu ; Tyr₃₇₅ \rightarrow Thr ; Tyr₃₇₆ \rightarrow Trp ; Asn₃₈₉ \rightarrow Gln, His ou Lys ; Ile₃₉₁ \rightarrow Leu ou Thr ; Met₃₉₀ \rightarrow Leu ou Ser ; Val₃₉₂ \rightarrow Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

50 38. Cellule suivant l'une quelconque des revendications 34 à 37, qui est une cellule eucaryotique.

55 39. Composition acellulaire qui est dépourvue d'un polypeptide de chaîne α mature, contenant une séquence polypeptidique de prodomaine de chaîne α d'inhibine humaine ou porcine représentée sur la figure 1B (chaîne α porcine) ou la figure 6A (chaîne α humaine) ou un variant de séquence d'amino-acides engendré par une insertion, délétion ou substitution d'une telle séquence de prodomaine, le

variant présentant une forte homologie avec un polypeptide d'une desdites séquences présentant une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

40. Composition acellaire contenant

5 a) un polypeptide comprenant la séquence de prodomaine de chaîne β d'inhibine humaine

HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (aminoacides 1 à 40

10

de la figure 8), PDVTQPVPKAALLNAIRKLHVGKVGENGYVEIEDDIG (aminoacides 44 à 80 de la figure 8),

15 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-RTRTKVTIRLFQQQKHQPQSLDTGEEAEEVGLKGERSELLLSEKVVDA (aminoacides 83 à 185 de la figure 8), STWHVPPVSSSIQRLLDQGKSSLVDVRIACEQCQESGASLVLLG (amino-acides 188 à 230 de la figure 8),

20

ou un de ses variants de séquence d'amino-acides naturels de mammifère ;

b) un polypeptide comprenant la séquence de prodomaine de chaîne β_B d'inhibine humaine

25

CTSCGGFRRPEELGRV-

DGDFLEAV (amino-acides) 7-30 de la figure 9,

HILSRLQMGRPNITHAVPKAACMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-

30

GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS (amino-acides 33 à 5 de la figure 9),

VRVKVYFQEQQHGDRWMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino-acides

35

149 à 195 de la figure 9),

LNLDVQCDSCQELAVVPVFVDPGEESHRFVVVQARLGDSRHRI (amino-acides 198 à 241 de la figure 9),

40

ou un de leurs variants de séquence d'amino-acides naturels de mammifère ; ou

c) un polypeptide dépourvu de la séquence d'amino-acides de chaînes α mature comprenant les séquences de prodomaine de chaîne α d'inhibine humaine

45

KVRALFLDALGPPAVTREGGDPGV (aminoacides 1 à 24 de la figure 6),

HALGGFTHRGSEPEEEEVSQAILFPATDASCEDKSAARGLAQEAEEGLFRYMFR-PSQHTRSQRVTSQQLWFHTGLDRQGTAASNSEEPLLGLALSPGGPVAVPMSLGH-

50

APPHWAVLHLATSALLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSGGERA (amino-acides 32 à 199 de la figure 6),

ou un de leurs variants de séquence d'amino-acides naturels de mammifère.

55

41. Composition acellaire contenant un polypeptide de prodomaine de chaîne β d'inhibine humaine ou porcine d'une séquence représentée sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'une desdites séquences de prodomaine, variant qui présente une forte homologie avec un polypepti-

de d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

- 5 42. Composition suivant la revendication 41, dans laquelle la chaîne β et la chaîne β_A et la composition est dépourvue de séquence de chaîne β_A mature.
- 10 43. Composition suivant la revendication 41, dans laquelle la chaîne β est la chaîne β_B et la composition est dépourvue de séquence de chaîne β_B mature.
- 15 44. Composition suivant la revendication 40, dans laquelle le variant est la séquence d'amino-acides porcine correspondante, composition contenant :
 - a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine porcine représentée par : les amino-acides 28 à 58 ; les amino-acides 61 à 87 ; les amino-acides 90 à 108 ; les amino-acides 111 à 179 ; les amino-acides 182 à 213 ; les amino-acides 216 à 258 ; ou les amino-acides 28 à 87 de la figure 2B ; ou
 - b) un polypeptide dépourvu de la séquence d'amino-acides de chaîne α mature comprenant les séquences de polypeptides de prodomaine de chaîne α d'inhibine porcine représentées par : les amino-acides 20 à 54 ; ou les amino-acides 70 à 228 de la figure 1B.
- 20 45. Composition suivant l'une quelconque des revendications 39 à 44, dans laquelle le polypeptide est non accompagné par une glycosylation naturelle.
- 25 46. Composition suivant l'une quelconque des revendications 39 à 45, qui est stérile et dans laquelle le polypeptide comprend en outre un polypeptide immunogène.
- 30 47. Utilisation d'une composition suivant l'une quelconque des revendications 39 à 46 dans la préparation d'un anticorps capable de se lier audit polypeptide.
- 35 48. Composition suivant l'une quelconque des revendications 39 à 46, dans laquelle le polypeptide est conjugué à un groupe détectable.
- 40 49. Composition suivant la revendication 48, dans laquelle le groupe est un enzyme, un fluorophore ou un radioisotope.
- 45 50. Composition suivant l'une quelconque des revendications 39 à 44, 48 et 49, qui est insolubilisée par une absorption non covalente ou une réticulation covalente à un support insoluble dans l'eau.
- 50 51. Composition suivant l'une quelconque des revendications 39 à 46, 48 et 49, comprenant en outre une matrice implantable physiologiquement acceptable pour la libération contrôlée du polypeptide dans les tissus d'un animal.

Revendications pour l'Etat contractant suivant : LU

- 45 1. Procédé comprenant la culture d'une cellule hôte transformée avec un vecteur qui renferme un acide nucléique codant pour une chaîne α d'inhibine humaine ou porcine et/ou pour une chaîne β d'inhibine humaine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), ou un variant de séquence d'amino-acides formé par insertion, délétion ou substitution d'une des séquences représentées, le variant étant fortement homologue avec un polypeptide d'une séquence représentée mais excluant la chaîne α d'inhibine bovine et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.
- 55 2. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour une chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne

α humaine) et les figures 8 et 9 (chaînes β humaines).

3. Procédé suivant la revendication 1, dans lequel le vecteur code pour une chaîne β d'inhibine, ou un de ses variants de séquence d'amino-acides, autre que la β_A humaine ou porcine naturelle.
4. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ ou Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His ou Ser]Inh β_A ; [Lys₃₁₅→Arg ; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀→Δ]Inh β_B ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys ; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , dans lesquel Inh est une abréviation d'inhibine et les numéros des résidus pour la Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondant (voir figure 2B) ; les variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de la chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.
5. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour un variant d'une chaîne d'inhibine β_A humaine choisi entre Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys. (à un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₇→Trp ; Asn₃₈₉→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₀→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.
6. Procédé suivant l'une quelconque des revendications précédentes, dans lequel l'acide nucléique codant pour la chaîne α et/ou la chaîne β d'inhibine est lié de manière fonctionnelle à un promoteur reconnu par la cellule hôte et contenant l'étape supplémentaire de séparation de l'inhibine ou d'un dimère de chaîne β du milieu de culture.
7. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la cellule est un procaryote.
8. Procédé suivant l'une quelconque des revendications précédentes, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne α d'inhibine d'une chaîne β d'inhibine.
9. Procédé suivant la revendication 8, dans lequel le vecteur comprend un acide nucléique codant pour la forme de pré-pro de la chaîne α d'inhibine et de la chaîne β d'inhibine.
10. Procédé suivant l'une quelconque des revendications 1 à 6, 8 et 9, dans lequel la cellule est une cellule provenant d'un organisme pluricellulaire et une inhibine douée d'activité hormonale est produite.
11. Procédé suivant la revendication 6, dans lequel le promoteur est un promoteur viral.
12. Procédé suivant la revendication 11, dans lequel le promoteur est un promoteur de SV40.
13. Procédé suivant l'une quelconque des revendications précédentes, dans lequel de l'inhibine porcine ou humaine mature est recueillie.
14. Procédé suivant l'une quelconque des revendications 1 à 7 ou 10 à 12, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne β d'inhibine et un dimère de chaîne β mature est recueilli en l'absence de chaîne α .
15. Procédé suivant la revendication 10 ou 13, dans lequel la chaîne β est la chaîne β_A et l'inhibine présente à une concentration supérieure à environ 20 ng/ml de milieu de culture.
16. Composition contenant de l'inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'amino-acides desdites chaînes α et β étant choisies entre celles représentées sur la

figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), et des variants de séquence d'amino-acides engendrés par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variants qui sont fortement homologues avec un polypeptide d'une séquence représentée, mais à l'exclusion de la chaîne α d'inhibine bovine, et 1) qui présentent une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présentent une réactivité croisée avec les récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui possèdent une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est totalement dépourvue de protéines humaines ou porcines non identifiées.

10 17. Composition suivant la revendication 16, dans laquelle les séquences des chaînes α et β sont choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaîne β porcine), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

15 18. Composition suivant la revendication 16, dans laquelle les variants sont choisis entre : des dérivés d'inhibine porcine ($\text{Asn}_{266} \rightarrow \text{InhGln}\alpha$; [Cys_{325} ou $\text{Cys}_{324} \rightarrow \Delta$]Inh α ; [Cys_{361} ou $\text{Cys}_{363} \rightarrow \Delta$]Inh α ; [Lys_{321} ou $\text{Lys}_{322} \rightarrow \Delta$]Inh β_A ; [$\text{Lys}_{322} \rightarrow \text{His}$ ou Ser]Inh β_A ; $\text{Lys}_{315} \rightarrow \text{Arg}$; $\text{Val}_{316} \rightarrow \text{Thr}$] Inh β_A ; [Cys_{388} ou $\text{Cys}_{390} \rightarrow \Delta$]Inh β_A , [$\text{Lys}_{411} \rightarrow \text{Gln}$]Inh β_A ; [$\text{Arg}_{315} \rightarrow \text{Lys}$; $\text{Val}_{316} \rightarrow \text{Thr}$]Inh β_B ; [Cys_{319} ou $\text{Cys}_{320} \rightarrow \Delta$]Inh β_B - [Pro_{381} $\text{Gly}_{382} \rightarrow \text{Pro}$ Phe Gly]Inh β_B ; [$\text{Arg}_{395} \rightarrow \text{Gln}$]Inh β_B], dans lesquels Inh est une abréviation d'inhibine et les numéros des résidus pour Inh β_B sont ceux utilisés pour le résidu Inh β_A correspondant (voir figure 2B) ; des variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

20 19. Composition suivant la revendication 16, comprenant un variant d'une chaîne d'inhibine β_A humaine choisi entre Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys ; (un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₆→Trp ; Asn₃₈₉→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₁→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

30 20. Composition comprenant un prodomaine d'inhibine α ou β_B humaine ou porcine représenté sur la figure 1B (chaîne α porcine), la figure 2B (chaîne β_B porcine), la figure 6A (chaîne α humaine) et la figure 9 (chaîne β_B humaine) non associé à une glycosylation naturelle.

35 21. Composition comprenant un homodimère de chaînes β_A ou β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines), ou d'un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une des séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est dépourvue de la chaîne α d'inhibine.

40 22. Composition suivant la revendication 21, qui est un homodimère de chaînes β_B humaine ou porcine mature ou d'un de ses variants de séquence d'amino-acides.

45 23. Composition comprenant un hétérodimère de chaîne β_B d'inhibine humaine ou porcine mature avec une chaîne β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines), ou d'un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un

polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est dépourvue de la chaîne α d'inhibine.

5 24. ADN non chromosomal codant pour une chaîne α d'inhibine humaine ou porcine ou d'une chaîne β d'inhibine humaine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée à l'exclusion de la chaîne α d'inhibine bovine et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

10 25. ADN suivant la revendication 24 codant pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine dont la séquence d'aminoacides est représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

15 26. ADN suivant la revendication 24, qui code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ ou Lys₃₂₂→Δ]-Inh β_A ; [Lys₃₂₂→His ou Ser]Inh β_A ; [Lys₃₁₅→Arg ; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀→Δ]Inh β_A ; [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys ; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , dans lesquels Inh est une abréviation d'inhibine et les numéros des résidus pour la Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondant (voir figure 2B) ; des variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une délétion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

20 27. ADN suivant la revendication 24, qui code pour un variant d'une chaîne d'inhibine β humaine choisi entre ; Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys (à un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₆→Trp ; Asn₃₈₉→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₀→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

25 28. ADN suivant l'une quelconque des revendications 24 à 27, qui est dépourvue de séquences non traduites intermédiaires.

30 29. ADN suivant l'une quelconque des revendications 24 à 28, qui est marquée avec un groupement détectable.

35 30. Vecteur répliable comprenant un ADN suivant l'une quelconque des revendications 21 à 27.

40 31. Vecteur suivant la revendication 30, comprenant un promoteur viral lié de manière fonctionnelle à l'ADN codant pour les chaînes α et/ou β d'inhibine.

45 32. Vecteur suivant la revendication 30 ou 31, qui contient un ADN codant à la fois pour une chaîne α d'inhibine et une chaîne β d'inhibine.

50 33. Vecteur suivant la revendication 30 ou 31, qui contient un ADN codant pour une chaîne β d'inhibine mais non pour la chaîne α d'inhibine.

34. Cellule hôte transformée avec un vecteur réplicable comprenant un ADN codant pour la chaîne α d'inhibine et/ou la chaîne β d'inhibine humaine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée, à l'exclusion de la chaîne α d'inhibine bovine, et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée, ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

5

35. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour une chaîne α d'inhibine et/ou une chaîne β d'inhibine humaine ou porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines) la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

10

36. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour un variant choisi entre : des dérivés d'inhibine porcine [Asn₂₆₆→Gln]Inh α ; [Cys₃₂₅ ou Cys₃₂₄→Δ]Inh α ; [Cys₃₆₁ ou Cys₃₆₃→Δ]Inh α ; [Lys₃₂₁ ou Lys₃₂₂→Δ]Inh β_A ; [Lys₃₂₂→His ou Ser]Inh β_A ; [Lys₃₁₅→Arg ; Val₃₁₆→Thr] Inh β_A ; [Cys₃₈₈ ou Cys₃₉₀→Δ]Inh β_A , [Lys₄₁₁→Gln]Inh β_A ; [Arg₃₁₅→Lys ; Val₃₁₆→Thr]Inh β_B ; [Cys₃₁₉ ou Cys₃₂₀→Δ]Inh β_B ; [Pro₃₈₁ Gly₃₈₂→Pro Phe Gly]Inh β_B ; [Arg₃₉₅→Gln]Inh β_B , dans lesquels Inh est une abréviation d'inhibine et les numéros des résidus pour Inh β_B sont ceux utilisés pour le résidu de Inh β_A correspondant (voir figure 2B) ; des variants de chaîne β_A d'inhibine humaine possédant des variations qui consistent en une substitution ou une déletion au niveau d'un, ou une insertion après un, résidu choisi entre les résidus 293 à 297, 364 à 376 et 387 à 398 de la séquence représentée sur la figure 8 ; et des variants de chaîne α humaine qui présentent une homologie de plus de 90 % avec la séquence représentée sur la figure 6A.

15

37. Cellule hôte suivant la revendication 34, dans laquelle l'ADN code pour un variant d'une chaîne d'inhibine β_A humaine choisi entre Phe₃₀₂→Ile ou Leu ; Gln₂₉₇→Asp ou Lys ; Trp₃₀₇→Tyr ou Phe ; Trp₃₁₀→Tyr ou Phe ; Ile₃₁₁→Phe ou Val ; Tyr₃₁₇→Trp ou Thr ; His₃₁₈→Lys ; Ala₃₁₉→Ser ; Asn₃₂₀→Gln, Tyr ou His ; Tyr₃₂₁→Thr ou Asp, Phe₃₄₀→Tyr ; His₃₅₃→Asp ; His₃₅₃→Lys (à un hybride β_A/β_B) ; Phe₃₅₆→Tyr ; Val₃₆₄→Phe ; Val₃₆₄→Leu ; Tyr₃₇₅→Thr ; Tyr₃₇₆→Trp ; Asn₃₈₃→Gln, His ou Lys ; Ile₃₉₁→Leu ou Thr ; Met₃₉₀→Leu ou Ser ; Val₃₉₂→Phe, Glu, Thr ou Ile ; ou une chaîne β_B humaine modifiée de manière comparable.

20

38. Cellule suivant l'une quelconque des revendications 34 à 37, qui est une cellule eucaryotique.

25

39. Composition acellulaire qui est dépourvue de polypeptide de chaîne α mature, contenant une séquence polypeptidique de prodomaine de chaîne α d'inhibine humaine ou porcine représentée sur la figure 1B (chaîne α porcine) ou la figure 6A (chaîne α humaine) ou un variant de séquence d'amino-acides engendré par une insertion, déletion ou substitution d'une desdites séquences de prodomaine, variant qui présente une forte homologie avec un polypeptide d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

30

40. Composition acellulaire contenant

45

a) un polypeptide comprenant la séquence de prodomaine de chaîne β d'inhibine humaine

5 HSAAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (amino-acides 1 à 40
de la figure 8), PDVTQPVPKAALLNAIRKLHVGVGENGYVEIEEDDIG
(aminoacides 44 à 80 de la figure 8),
10 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-
RTRTKVTIRLFQQQKHPQGSMDTGEEAEVGLKGERSELLLSEKVVDA (amino-
acides 83 à 185 de la figure 8), STWHVFPVSSSIQRLLDQGKSSLDVD-
IACEQCQESGASLVLLG (amino-acides 188 à 230 de la figure 8),

15 ou un de ses variants de séquence d'amino-acides naturels de mammifère ;

b) un polypeptide comprenant la séquence de prodomaine de chaîne $\beta\beta$ d'inhibine humaine

CTSCGGFRRPEELGRVD-

20 GDFPLEAV (amino-acides) 7 à 30 de la figure 9,
HILSRLQMGRGPNTAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-
GQERVSEIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYV-
LEKGS
25 (amino-acides 33 à 145 de la figure 9),
VRVKVYFQEQQGHGDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (aminoacides
149 à 195 de la figure 9),
LNLDVQCDSCQELAVVPVFVDPGEESHRFVQQARLGDSRHRI (amino-acides
30 198 à 241 de la figure 9),

ou un de leurs variants de séquence d'amino-acides naturels de mammifère ; ou

35 c) un polypeptide dépourvu de la séquence d'amino-acides de chaîne α mature comprenant les
séquences de prodomaine de chaîne α d'inhibine humaine

KVRALFLDALGPPAVTREGGDPGV (amino-acides 1 à 24 de la figure
6),

40

HALGGFTHRGSEPEEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFR-
45 PSQHTRSRSRQVTSAQLWFHTGLDRQGTAASNSEPLLGLALSPGGPVAVPMPSLGH-
APPHWAVLHLATSALSLLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSG-
GERA
50 (amino-acides 32 à 199 de la figure 6),

ou un de leurs variants de séquence d'aminoacides naturels de mammifère.

55 41. Composition acellulaire contenant un polypeptide de prodomaine de chaîne β d'inhibine humaine ou
porcine d'une séquence représentée sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes
 β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution
d'une desdites séquences de prodomaine, variant qui présente une forte homologie avec un polypepti-
de d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés

contre un polypeptide d'une séquence représentée.

42. Composition suivant la revendication 41, dans laquelle la chaîne β est la chaîne β_A et la composition est dépourvue de séquence de chaîne β_A mature.
- 5 43. Composition suivant la revendication 41, dans laquelle la chaîne β est la chaîne β_B et la composition est dépourvue de séquence de chaîne β_B mature.
- 10 44. Composition suivant la revendication 40, dans laquelle le variant est la séquence d'amino-acides porcine correspondante, composition contenant :
 - a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine porcine représentée par : les amino-acides 28 à 58 ; les amino-acides 61 à 87 ; les amino-acides 90 à 108 ; les amino-acides 111 à 179 ; les amino-acides 182 à 213 ; les amino-acides 216 à 258 ; ou les amino-acides 28 à 87 de la figure 2B ; ou
 - b) un polypeptide dépourvu de la séquence d'amino-acides de chaîne α mature comprenant les séquences polypeptidiques de prodomaine de chaîne α d'inhibine porcine représentées par : les amino-acides 20 à 54 ; ou les amino-acides 70 à 228 de la figure 1B.
- 20 45. Composition suivant l'une quelconque des revendications 39 à 44, dans laquelle le polypeptide est non accompagné par une glycosylation naturelle.
- 25 46. Composition suivant l'une quelconque des revendications 39 à 45, qui est stérile et dans laquelle le polypeptide comprend en outre un polypeptide immunogène.
- 30 47. Utilisation d'une composition suivant l'une quelconque des revendications 39 à 46 dans la préparation d'un anticorps capable de se lier audit polypeptide.
- 35 48. Composition suivant l'une quelconque des revendications 39 à 46, dans laquelle le polypeptide est conjugué à un groupe détectable.
- 40 49. Composition suivant la revendication 48, dans laquelle le groupe est un enzyme, un fluorophore ou un radioisotope.
- 50 50. Composition suivant l'une quelconque des revendications 39 à 44, 48 et 49, qui est insolubilisée par une absorption non covalente ou une réticulation covalente à un support insoluble dans l'eau.
- 55 51. Composition suivant l'une quelconque des revendications 39 à 46, 48 et 49, comprenant en outre une matrice implantable physiologiquement acceptable pour la libération contrôlée du polypeptide dans les tissus d'un animal.

40 Revendications pour l'Etat contractant suivant : GR

1. Procédé comprenant la culture d'une cellule d'une cellule hôte transformée avec un vecteur qui comprend un acide nucléique codant pour une chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (-chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), ou un variant de séquence d'amino-acides formé par insertion, délétion ou substitution d'une des séquences représentées, le variant étant fortement homologue avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée, ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.
- 45 2. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour une chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine ou porcine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).
- 50 55

3. Procédé suivant la revendication 1, dans lequel le vecteur code pour un variant allélique d'une chaîne α et/ou d'une chaîne β d'inhibine humaine ou porcine.
4. Procédé suivant l'une quelconque des revendications précédentes, dans lequel l'acide nucléique codant pour la chaîne α et/ou la chaîne β d'inhibine est liée de manière fonctionnelle à un promoteur reconnu par la cellule hôte et comprenant l'étape supplémentaire consistant à séparer la chaîne α d'inhibine, la chaîne β d'inhibine, l'inhibine ou un dimère de chaîne β du milieu de culture.
5. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la cellule est un procaryote.
6. Procédé suivant l'une quelconque des revendications précédentes, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne α d'inhibine ou d'une chaîne β d'inhibine.
7. Procédé suivant la revendication 6, dans lequel le vecteur comprend un acide nucléique codant pour les formes pré-pro de la chaîne α d'inhibine et d'une chaîne β d'inhibine.
8. Procédé suivant l'une quelconque des revendications 1 à 4, 6 et 7, dans lequel la cellule est une cellule provenant d'un organisme pluricellulaire et de l'inhibine douée d'activité hormonale est produite.
9. Procédé suivant la revendication 4, dans lequel le promoteur est un promoteur viral.
10. Procédé suivant la revendication 9, dans lequel le promoteur est un promoteur de SV40.
11. Procédé suivant l'une quelconque des revendications précédentes, dans lequel de l'inhibine porcine ou humaine mature est recueillie.
12. Procédé suivant l'une quelconque des revendications 1 à 5 ou 8 à 10, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne β d'inhibine et un dimère de chaîne β mature est recueilli en l'absence de chaîne α .
13. Procédé suivant la revendication 8 ou 11, dans lequel la chaîne β et la chaîne β_A et l'inhibine est présente à une concentration supérieure à environ 20 ng/ml dans le milieu de culture.
14. Procédé suivant la revendication 4, dans lequel l'inhibine est une inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'amino-acides desdites chaînes α et β étant choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), et des variants de séquence d'amino-acides engendrés par insertion, délétion ou substitution d'un polypeptide d'une desdites séquences représentées, variants qui sont fortement homologues avec un polypeptide d'une séquence représentée, et 1) qui présentent une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présentent une réactivité croisée avec les récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui possèdent une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est totalement dépourvue de protéines humaines ou porcines non identifiées.
15. Procédé suivant la revendication 14, dans lequel l'inhibine est une inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'amino-acides desdites chaînes α et β étant choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).
16. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est un prodomaine d'inhibine α ou β_B humaine ou porcine représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β_B porcines), la figure 6A (chaîne α humaine) et la figure 9 (chaînes β humaines), non associé à une glycosylation naturelle.
17. Procédé suivant la revendication 4, dans lequel est recueilli un dimère de chaîne β qui est un homodimère de chaînes β ou β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant

représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; dimère qui est dépourvu de la chaîne α d'inhibine.

5 18. Procédé suivant la revendication 17, dans lequel un homodimère de chaînes β_B humaines ou porcines matures ou d'un d'un de leurs variants de séquence d'amino-acides est recueilli.

10 19. Procédé suivant la revendication 4, dans lequel est recueilli un dimère de chaîne β qui est un hétérodimère de chaîne β_A d'inhibine humaine ou porcine mature avec une chaîne β_B d'inhibine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; dimère qui est dépourvu de la chaîne α d'inhibine.

15 20. ADN non chromosomique codant pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1)

20 qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

25 21. ADN suivant la revendication 20, codant pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine, dont la séquence d'amino-acides est représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

30 22. ADN suivant la revendication 20 ou 21, qui est dépourvue de séquences non traduites intermédiaires.

35 23. ADN suivant l'une quelconque des revendications 20 à 22, qui est marqué avec un groupement détectable.

40 24. Vecteur répliable comprenant un ADN suivant la revendication 20 ou 21.

45 25. Vecteur suivant la revendication 24, comprenant un promoteur viral lié de manière fonctionnelle à l'ADN codant pour les chaînes α et/ou β d'inhibine.

50 26. Vecteur suivant la revendication 24 ou 25, qui contient un ADN codant à la fois pour une chaîne α d'inhibine et une chaîne β d'inhibine.

55 27. Vecteur suivant la revendication 24 ou 25, qui contient un ADN codant pour une chaîne β d'inhibine, mais non pour la chaîne α d'inhibine.

60 28. Cellule hôte transformée avec un vecteur répliable comprenant un ADN codant pour la chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine humaine ou porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines),

la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'une séquence représentée.

5 29. Cellule hôte suivant la revendication 28, dans laquelle l'ADN code pour une chaîne α et/ou une chaîne β d'inhibine humaine ou porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

10 30. Cellule suivant la revendication 28 ou 29, qui est une cellule eucaryotique.

15 31. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est une composition cellulaire, dépourvue de séquence de chaîne α mature, contenant une séquence polypeptidique de prodomaine de chaîne α d'inhibine humaine ou porcine représentée sur la figure 1B (α porcine) ou la figure 6A (chaîne α humaine) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'une desdites séquences de prodomaine, variant qui présente une forte homologie avec un polypeptide d'une desdites séquences représentées et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

20 32. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est une composition acellulaire contenant
25 a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine humaine

30 HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (aminoacides 1 à 40
de la figure 8), PDVTQPVPKAALLNAIRKLHVGKVGENGYVEIEDDIG
(aminoacides 44 à 80 de la figure 8),
35 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-
RTRTKVTIRLFQQQKHPQGS LTDGEAAEVGLKGERSELLLSEKVVDA (aminoacides
83 à 185 de la figure 8), STWHVFPVSSSIQRLLDQGKSSL DVRIACEQ-
CQESGASLVLLG (amino-acides 188 à 230 de la figure 8),

40 ou un de ses variants de séquence d'amino-acides naturels de mammifère ;
b) un polypeptide comprenant la séquence de prodomaine de chaîne β_B d'inhibine humaine

CTSCGGFRRPEELGRVDG-
45 DFLEAV (amino-acides) 7 à 30 de la figure 9,
HILSRLQMRGRPNITHAVPKAACMTALRKLHAGKVREDGRVEIPHLDGHASPGAD-
50 GQERVSEIIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYVLEKGS
(amino-acides 33-145 de la figure 9),
55 VRVKVYFQEQQHGDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino-acides
149 à 195 de la figure 9),
LNLDVQCDSCQELAVVPVFVDPGEESHRPFVVVQARLGDSRHRI (amino-acides
198 à 241 de la figure 9),

ou un de leurs variants de séquence d'amino-acides naturels de mammifère ; ou

c) un polypeptide dépourvu de la séquence d'amino-acides de chaînes α mature comprenant les séquences de prodomaine de chaîne α d'inhibine humaine

5 KVRALFLDALGPPAVTREGGDPGV (amino-acides 1 à 24 de la figure 6),

HALGGFTHRGSEPEEEEDVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFR-

10 PSQHTRSRQVTSAQLWFHTGLDRQGTAAASNSEPLLGLLALSPGGPVAVPMSLGH-

APPHWAVLHLATSALSLLTHPVLVLLRCPLCTCSRPEATPFLVAHTRTRPPSGGERA

15

(amino-acides 32 à 199 de la figure 6),

ou un de leurs variants de séquence d'amino-acides naturels de mammifère.

20

33. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est une composition acellulaire contenant un polypeptide de prodomaine de chaîne β d'inhibine humaine porcine d'une séquence représentée sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'une desdites séquences polypeptidiques de prodomaine, variant qui présente une forte homologie avec un polypeptide d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

30

34. Procédé suivant la revendication 33, dans lequel la chaîne β est la chaîne β_A et la composition est dépourvue de séquence de chaîne β_A mature.

35. Procédé suivant la revendication 33, dans lequel la chaîne β est la chaîne β_B et la composition est dépourvue de séquence de chaîne β_B mature.

35

36. Procédé suivant la revendication 32, dans lequel le variant est la séquence d'amino-acides porcine correspondante, la composition contenant :

a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine porcine représentée par : des amino-acides 28 à 58 ; les amino-acides 61 à 87 ; les amino-acides 90 à 108 ; les amino-acides 111 à 179 ; les amino-acides 182 à 213 ; les amino-acides 216 à 258 ou les amino-acides 28 à 87 de la figure 2B ; ou

b) un polypeptide dépourvu de la séquence d'amino-acides de chaîne α mature, comprenant les séquences polypeptidiques de prodomaine de chaîne α d'inhibine porcine représentées par : les amino-acides 20 à 54 ; ou les amino-acides 70 à 228 de la figure 1B.

45

37. Procédé suivant l'une quelconque des revendications 31 à 36, dans lequel le polypeptide est non accompagné par une glycosylation naturelle.

38. Procédé suivant l'une quelconque des revendications 31 à 37, dans lequel la composition est stérile, et comprend en outre le couplage du polypeptide à un polypeptide immunogène.

50

39. Utilisation d'une composition suivant l'une quelconque des revendications 31 à 38 dans la préparation d'un anticorps capable de se lier au polypeptide.

55

40. Procédé suivant l'une quelconque des revendications 31 à 38, comprenant en outre la conjugaison du polypeptide à un groupe détectable.

41. Procédé suivant la revendication 40, dans lequel le groupe est un enzyme, un fluorophore ou un radioisotope.

42. Procédé suivant l'une quelconque des revendications 31 à 38, 40 et 41, dans lequel la composition est insolubilisée par une absorption non covalente ou une réticulation covalente à un support insoluble dans l'eau.

5 43. Procédé suivant l'une quelconque des revendications 31 à 38 ou 40 à 41, comprenant en outre le mélange de la composition à une matrice implantable physiologiquement acceptable pour la libération contrôlée du polypeptide dans les tissus d'un animal.

Revendications pour les Etats contractants suivants : AT, ES

10 1. Procédé comprenant la culture d'une cellule hôte transformée avec un vecteur qui renferme un acide nucléique codant pour une chaîne α d'inhibine humaine ou porcine et/ou pour une chaîne β d'inhibine humaine ou porcine dont les séquences d'aminoacides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines), ou un variant de séquence d'amino-acides formé par insertion, délétion ou substitution d'une des séquences représentées, le variant étant fortement homologue avec un polypeptide d'une séquence représentée et 1) qui présente une activité croisée avec les anticorps engendrés contre un polypeptide d'une séquence représentée ; ou 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.

15 2. Procédé suivant la revendication 1, dans lequel l'acide nucléique code pour une chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine humaine ou porcine dont les séquences d'aminoacides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

20 3. Procédé suivant la revendication 1, dans lequel le vecteur code pour un variant allélique de chaîne α et/ou de chaîne β d'inhibine humaine ou porcine.

25 4. Procédé suivant l'une quelconque des revendications précédentes, dans lequel l'acide nucléique codant pour la chaîne α et/ou la chaîne β d'inhibine est lié de manière fonctionnelle à un promoteur reconnu par la cellule hôte, et comprenant l'étape supplémentaire de séparation de la chaîne α d'inhibine, de la chaîne β d'inhibine, de l'inhibine ou d'un dimère de chaîne β du milieu de culture.

30 5. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la cellule est un procaryote.

35 6. Procédé suivant l'une quelconque des revendications précédentes, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne α d'inhibine ou d'une chaîne β d'inhibine.

40 7. Procédé suivant la revendication 6, dans lequel le vecteur comprend un acide nucléique codant pour les formes pré-pro de la chaîne α d'inhibine et d'une chaîne β d'inhibine.

45 8. Procédé suivant l'une quelconque des revendications 1 à 4, 6 et 7, dans lequel la cellule est une cellule provenant d'un organisme pluricellulaire et une inhibine douée d'activité hormonale est produite.

50 9. Procédé suivant la revendication 4, dans lequel le promoteur est un promoteur viral.

10. Procédé suivant la revendication 9, dans lequel le promoteur est un promoteur de SV40.

55 11. Procédé suivant l'une quelconque des revendications précédentes, dans lequel une inhibine porcine humaine mature est recueillie.

12. Procédé suivant l'une quelconque des revendications 1 à 5 ou 8 à 10, dans lequel le vecteur comprend un acide nucléique codant pour la forme pré-pro d'une chaîne β d'inhibine et un dimère de chaîne β mature est recueilli en l'absence de chaîne α .

13. Procédé suivant la revendication 8 ou 11, dans lequel la chaîne β est la chaîne β_A et l'inhibine est présente à une concentration supérieure à environ 20 ng/ml dans le milieu de culture.

14. Procédé suivant la revendication 4, dans lequel l'inhibine est une inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'amino-acides desdites chaînes α et β étant choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine), et les figures 8 et 9 (chaînes β humaines), et les variants de séquence d'amino-acides engendrés par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variants qui présentent une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présentent une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présentent une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide d'une séquence représentée ; ou 3) qui présentent une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; composition qui est totalement dépourvue de protéines humaines ou porcines identifiées.

15. Procédé suivant la revendication 14, dans lequel l'inhibine est une inhibine humaine ou porcine constituée d'une chaîne α et d'une chaîne β , les séquences d'aminoacides desdites chaînes α et β étant choisies entre celles représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).

20. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est un prodomaine d'inhibine α ou β_B humaine ou porcine représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaîne β_B porcine), la figure 6A (chaîne α humaine) et la figure 9 (chaîne β_B humaine) non associé et à une glycosylation naturelle.

25. Procédé suivant la revendication 4, dans lequel est recueilli un dimère de chaîne β qui est un homodimère de chaîne β_A ou β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant représentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représenté ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; dimère qui est dépourvu de la chaîne α d'inhibine.

30. Procédé suivant la revendication 17, dans lequel un homodimère de chaînes β_B humaines ou porcines matures ou un de ses variants de séquence d'amino-acides est recueilli.

35. Procédé suivant la revendication 4, dans lequel est recueilli un dimère de chaîne β qui est un hétérodimère de chaîne β_A d'inhibine humaine ou porcine mature avec la chaîne β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant présentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'aminoacides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représenté ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; homodimère qui est dépourvu de la chaîne α d'inhibine.

40. Procédé suivant la revendication 4, dans lequel est recueilli un dimère de chaîne β qui est un homodimère de chaîne β_A d'inhibine humaine ou porcine mature avec la chaîne β_B d'inhibine humaine ou porcine mature, lesdites chaînes étant présentées sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représenté ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée ; homodimère qui est dépourvu de la chaîne α d'inhibine.

45. Procédé de production d'un ADN non chromosomique codant pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, déletion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représentée ; ou 3)

qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée, procédé comprenant une synthèse chimique, une sélection d'ARNm d'ovaires ou une sélection de banques génomiques de n'importe quelle cellule.

- 5 21. Procédé suivant la revendication 20, dans lequel l'ADN code pour une chaîne α d'inhibine humaine ou porcine ou une chaîne β d'inhibine humaine ou porcine dont la séquence d'amino-acides est représentée sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcine), la figure 6A (chaîne α humaine) ou la figure 8 ou 9 (chaînes β humaines).
- 10 22. Procédé suivant la revendication 20 ou 21, dans lequel l'ADN non chromosomique est dépourvu de séquences non traduites intermédiaires.
- 15 23. Procédé suivant l'une quelconque des revendications 1 à 22, comprenant en outre l'étape de marquage de l'ADN non chromosomique avec un groupement détectable.
- 20 24. Procédé de production d'un vecteur répliable, procédé comprenant l'insertion d'un ADN suivant la revendication 20 ou 21 dans un vecteur de clonage.
- 25 25. Procédé suivant la revendication 24, dans lequel l'ADN est inséré dans un vecteur qui possède un promoteur viral lié de manière fonctionnelle à l'ADN codant pour la chaîne α et/ou la chaîne β d'inhibine afin de produire ainsi un vecteur d'expression.
- 30 26. Procédé suivant la revendication 24 ou 25, dans lequel un ADN codant à la fois pour une chaîne α d'inhibine et une chaîne β d'inhibine est insérée dans le vecteur.
- 35 27. Procédé suivant la revendication 24 ou 25, dans lequel un ADN codant pour une chaîne β d'inhibine mais non pour la chaîne α d'inhibine est inséré dans le vecteur.
- 40 28. Cellule hôte transformée avec un vecteur répliable comprenant un ADN codant pour la chaîne α d'inhibine humaine ou porcine et/ou une chaîne β d'inhibine dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'un polypeptide d'une desdites séquences représentées, variant qui présente une forte homologie avec un polypeptide d'une séquence représentée et 1) qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée ; 2) qui présente une réactivité croisée avec des récepteurs de surface cellulaire pour un polypeptide de séquence représentée ; ou 3) qui présente une activité hormonale similaire à celle d'un polypeptide d'une séquence représentée.
- 45 29. Cellule hôte suivant la revendication 28, dans laquelle l'ADN code pour une chaîne α d'inhibine et/ou une chaîne β d'inhibine humaine ou porcine, dont les séquences d'amino-acides sont représentées sur la figure 1B (chaîne α porcine), la figure 2B (chaînes β porcines), la figure 6A (chaîne α humaine) et les figures 8 et 9 (chaînes β humaines).
- 50 30. Cellule suivant la revendication 28 ou 29, qui est une cellule eucaryotique.
- 55 31. Procédé suivant la revendication 4, dans lequel la chaîne inhibine recueillie est une composition acellulaire dépourvue de séquences de chaîne α mature, contenant une séquence polypeptidique de prodomaine de chaîne α d'inhibine humaine ou porcine représentée sur la figure 1B (chaîne α porcine) ou la figure 6A (chaîne α humaine) ou un variant de séquence d'amino-acides d'une desdites séquences de prodomaine, variant qui présente une forte homologie avec un polypeptide d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.
- 60 32. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est une composition acellulaire contenant

a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine humaine

HSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHL (amino-acides 1 à 40
 5 de la figure 8), PDVTQPVKAALLNAIRKLHVGKVGENGYVEIEDDIG
 (aminoacides 44 à 80 de la figure 8),
 AEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKAN-
 10 RTRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVDA (amino-
 acides 83 à 185 de la figure 8), STWHVFPVSSSIQRLLDQGKSSLDVD-
 IACEQCQESGASLVLLG (amino-acides 188 à 230 de la figure 8),

15 ou un de ses variants de séquence d'amino-acides naturels de mammifère ;

b) un polypeptide comprenant la séquence de prodomaine de chaîne β_B d'inhibine humaine

CTSCGGFRRPEELGRVD-

20 GDFLEAV (aminoacides) 7 à 30 de la figure 9,
 HILSRLQMRGRPNITHAVPKAAMVTALRKLHAGKVREDGRVEIPHLDGHASPGAD-
 GOERVSEIIISFAETDGLASSRVRLYFFISNEGNQNLFVVQASLWLYLKLLPYV-
 LEKGS
 25 (amino-acides 33 à 145 de la figure 9),
 VRVKVYFQEKGDRWNMVEKRVDLKRSGWHTFPLTEAIQALFERGE (amino-acides

30 149 à 195 de la figure 9),

LNLDVQCDSCQELAVVPVFVDPGEESHRPFVVVQARLGDSRHRI (amino-acides
 198 à 241 de la figure 9),

35 ou un de leurs variants de séquence d'amino-acides naturels de mammifère ; ou
 c) un polypeptide dépourvu de la séquence d'amino-acides de chaînes α mature comprenant les
 séquences de prodomaine de chaîne α d'inhibine humaine

40 KVRALFLDALGPPAVTREGDPGV (amino-acides 1 à 24 de la figure
 6), HALGGFTHRGSEPEEEEVSQAILFPATDASCEDKSAARGLAQEAEGLFRYMFR-
 PSQHTRSRSQVTSQQLWFHTGLDROGTAASNSSEPLLGLLALSPGGPVAVPMSLGH-
 45 APPHWAVLHLATSALSLLTHPVLVLLRCPLCTCSARPEATPFLVAHTRTRPPSG-
 GERA
 (amino-acides 32 à 199 de la figure 6),

50 ou un de leurs variants de séquence d'amino-acides naturels de mammifère.

33. Procédé suivant la revendication 4, dans lequel la chaîne d'inhibine recueillie est une composition acellulaire contenant un polypeptide de prodomaine de chaîne β d'inhibine humaine porcine d'une séquence représentée sur la figure 2B (chaînes β porcines) et les figures 8 et 9 (chaînes β humaines) ou un variant de séquence d'amino-acides engendré par insertion, délétion ou substitution d'une desdites séquences polypeptidiques de prodomaine, variant qui présente une forte homologie avec un polypeptide d'une desdites séquences et qui présente une réactivité croisée avec des anticorps engendrés contre un polypeptide d'une séquence représentée.

34. Procédé suivant la revendication 33, dans lequel la chaîne β est la chaîne β_A et la composition est dépourvue de séquence de chaîne α_A mature.
- 5 35. Procédé suivant la revendication 33, dans lequel la chaîne β est la chaîne β_B et la composition est dépourvue de séquence de chaîne β_B mature.
- 10 36. Procédé suivant la revendication 32, dans lequel le variant est la séquence d'amino-acides porcine correspondante, la composition contenant :
 - a) un polypeptide comprenant la séquence de prodomaine de chaîne β_A d'inhibine porcine représentée par : les amino-acides 28 à 58 ; les amino-acides 61 à 87 ; les amino-acides 90 à 108 ; les amino-acides 111 à 179 ; les amino-acides 182 à 213 ; les amino-acides 216 à 258 ou les amino-acides 28 à 87 de la figure 2B ; ou
 - b) un polypeptide dépourvu de la séquence d'amino-acides de chaîne α mature, comprenant les séquences polypeptidiques de prodomaine de chaîne α d'inhibine porcine représentées par : les amino-acides 20 à 54 ; ou les amino-acides 70 à 228 de la figure 1B.
- 15 37. Procédé suivant l'une quelconque des revendications 31 à 36, dans lequel le polypeptide est non accompagné par une glycosylation naturelle.
- 20 38. Procédé suivant l'une quelconque des revendications 31 à 37, dans lequel la composition est stérile, et comprenant en outre le couplage du polypeptide à un polypeptide immunogène.
- 25 39. Utilisation d'une composition suivant l'une quelconque des revendications 31 à 38 dans la préparation d'un anticorps capable de se lier au polypeptide.
- 40 40. Procédé suivant l'une quelconque des revendications 31 à 38, comprenant en outre la conjugaison du polypeptide à un groupe détectable.
- 30 41. Procédé suivant la revendication 40, dans lequel le groupe est un enzyme, un fluorophore ou un radioisotope.
- 35 42. Procédé suivant l'une quelconque des revendications 31 à 38, 40 et 41, dans lequel la composition est insolubilisée par une absorption non covalente ou une réticulation covalente à un support insoluble dans l'eau.
43. Procédé suivant l'une quelconque des revendications 31 à 38 ou 40 à 41, comprenant en outre le mélange de la composition à une matrice implantable physiologiquement acceptable pour la libération contrôlée du polypeptide dans les tissus d'un animal.

40

45

50

55

Fig. 1A.

Fig. 1B(I)

1 TGTGGGCCAGACCCTGACAGAAGGGCACAGGGCTGGGTTCACCGGGCAGGTGAAC
 1 met trp pro gln leu leu leu leu ala pro
 10 ATG TGG CCT CTC CTC CTG TTG CTG TTG GCC CCA
 10 met trp pro gln leu leu leu leu ala pro
 10 ATG TGG CCT CTC CTC CTG TTG CTG TTG GGA CCC
 20 arg ser gly his **CYS** gln gly pro glu leu asp arg glu leu val
 20 108 CCG AGT GGG CAT GGC **TGC** CAG GGC CCG GAG CTC GAC CGG CTC CTT GTC GAG CTC GAC CGC CTC GCT GTC AAG GTG AGG GCT CTG TTC GAT GCC TTG GGA CCC
 30 pro ala val thr gly glu gly asp pro gly val **arg** leu pro **arg** his ala val gly gly phe met arg
 30 198 CCG GCA GTG ACT GGG GAA GGT GGG GAT CCT GGA GTC AGG CGT CTG CCC CGA AGA CAT GCT GTC GGG GGC TTC ATG CGC AGG GGC TCT GAG
 40 pro ala val thr gly glu gly asp pro gly val **arg** leu pro **arg** his ala val gly gly ser glu
 40 288 CCC GAG GAG GAT GTC TCC CAG GCC ATC CTT TIC CCG GCT ACA GGT GCC **GTC** GGG GAC GAG CCA GCT GTC GCA GAG CTG GCC CGG
 50 pro glu glu glu asp val ser gln ala ile leu phe pro ala thr gly ala **arg** **CYS** gly asp glu pro ala ala ala arg
 50 378 GAG GCT GAG GAG GGC CTC TTC ACA TAT GTA TCC CAG CAC ACA CAC AGC CAC CAG GTG ACT TCA GCT CAG CTG TGG TTC CAC
 60 glu ala glu glu gly met ala ala ala asn ser ser gly pro leu leu asp leu ala leu ser ser arg gly pro val ala
 60 468 ACG GGA CTG GAC AGA CAG GGG ATG GCC AAT AGC TCT GGG CCC CTG GAC CTG GCA CTA TCA TCC AGG GGT CCT GTG GCT
 70 val pro met ser leu gln gln ala pro pro arg trp ala val leu his leu ala ala ser ala leu pro leu leu thr his pro val leu
 70 558 GTG CCC ATG TCA CTG GGC CCG CCC CCT GGC CAG GCG CTC CTC CCT TTG ACC CAC CAC CCA GTC CTG

Fig. 1B(II)

α subunit

648	val leu leu arg cys pro leu cys ser cys pro leu cys ser ala arg pro glu ala thr pro phe leu val ala his thr arg ala arg pro pro	200	210	220
	TGT CTG CTG CGC TCT CCT CTC TGT TCC TGA TCA GCC CGG CCC GAG GCC ACC CCC TTC CTG GTG GCC CAC ACT CGG GCC AGG CCA CCC			
738	ser gly gly glu arg ala arg ser thr ala pro leu pro trp pro trp ser pro ala ala leu arg leu glu pro pro glu	230	240	250
	AGC GGA GGG GAG GCC CGA CGC TCC ACC GCA CGC TGC CAC AGA GCT TCC CTC AAC ATC TCC TTC CAG GAG CTC GCG TGG GAC CGG TGG ATC GTG CAC CCT CCC			
828	glu pro ala val his ala asp cys his arg ala ser leu asn ile ser phe gln glu leu gly trp asp arg trp ile val his pro pro	260	270	280
	GAA CCC GCT GTG CAC GCC GAC TGC CAC AGC GTC AAC ATC TCC AAC ATC TCC TTC CAG GAG CTC GCG TGG GAC CGG TGG ATC GTG CAC CCT CCC			
918	ser phe ile phe his tyr cys his gly gly cys gly leu pro thr leu pro asn leu pro leu ser val pro gly ala pro thr pro	290	300	310
	AGT TTC ATC TTC CAC TAC TGT CAC GGG GGC TGC TGC GGG CTC CCC AAC CTG CCC AAC CTG CCC CTG TCT GTC CCT GCT GTC TCT GTC CCT CCC CCT ACC CCT			
1008	val gln pro leu leu val pro gly ala gln pro cys cys ala ala leu pro gly thr met arg ser leu arg val arg thr thr ser	320	330	340
	GTC CAG CCC CTG TTG GTG CCA GGG GCT CAG CCC TGC TGC GCT GTC CTC CCG GGG ACC ATG AGG TCC CTA CGC GTT CGC ACC ACC TCG			
1098	asp gly gly tyr ser phe lys tyr glu thr val pro asn leu thr gln his cys ala cys ile OC	350	360	364
	GAT GGA GGT TAC TCT TTC AAG TAC GAG ACG GTG CCC AAC CTT CTC ACC CAG CAC TGT GCC TGC ATC TAA GGTTGTCCCCGCTGGCCGAGCTCCC			
1119	ACAGGGCACCAAGCTGGAGGAAGGGAGAGTTCCACCTCCCTTCTCCGGCTCTCCCTGGCATGGGTAAATGTGACAATAAACAGCAT			
1312	AGTGCAGATGACTCGGTGCGAAAAAA			

Fig. 2A.

Fig. 2B(I)

Fig. 2B(II)

448	glu ile ser lys glu gly ser asp ieu ser val GAG ATC TCC AAA GAG GGC AGT GAC CTC TCC GTC TTC ATC TCC AAC GAG GGT AAC CAG AAG GCG phe ile ser asn glu gly asn glu asn glu phe val	140	val glu arg ala glu ile trp leu phe leu lys val GAG CGC GAA ATC TGG CTC TCC CCC AAG GCC CTG AAA GTC TTT CTG AGT CTG TGG CTC TAC CTG AAG CTG AAG CTG CTG	150	160	170	180	190	200	210	220	230	240	250	260	270	280
538	thr lys val ser ile arg leu phe glu gln gln ACC AAA GTC TCC ATC CGT CTC TTT CAA CAG CAG --- --- --- CCT TAC GTT CTG GAG AAG GGC AGC pro tyr val leu glu lys gly ser arg	170	arg pro gln gly ser ala asp ala glu gln GAG CGC CCG CAA GGC AGC GAC GCA GGG GAC CGG CGG CGG CGC CGC --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---	180	190	200	210	220	230	240	250	260	270	280	290	300	310
628	glu glu lys ser glu val leu ile ser glu lys GAG GAG AAG AGC GAA GTG CTG ATT TCG GAG GGC CAC GGC GAC CGC TGG GAC GTG GAG CTT gly his gly asp arg trp asp val val glu lys	200	val val asp ala arg lys ser thr trp his GTC GTC GAT GCG AAG ACC ACC TGG CAC ATC GAG CAG CTC AAG CGC AGC GGC TGG CAC ACC leu asp val arg val lys arg ser gly trp his arg	210	220	230	240	250	260	270	280	290	300	310	320	330	340
718	arg leu asp gln gln lys ser ala leu asp CCG TTG CTG GAC GAG AAG AGC GCG CTC AAC GCC CTG TTT GAG CGG GGC GAG glu arg glu ala leu phe glu arg glu arg glu asp val	230	cys cys glu gln cys his glu gln cys his TGC TGC GAG CAG TGC GAC TGC GAG CAG GAG cys cys asp gln cys asp gln cys glu leu ala ala	240	250	260	270	280	290	300	310	320	330	340	350	360	370
808	lys lys lys lys glu glu ala glu arg AAG AAG AAG AAG AAG AAG GAG GAG GAG GAG --- --- --- --- --- --- --- --- --- --- --- ---	280	asp glu glu lys arg asp glu glu ala glu GAC GAG GAG AAG AAG GAG GAG GAG GAG GTG GAC CCG GGC --- --- --- --- --- --- val asp pro gly glu glu ser his arg	290	300	310	320	330	340	350	360	370	380	390	400	410	420

Fig. 2B(III)

			β_A subunit	β_B subunit
290	pro phe	leu met leu	gln ala arg gln ser glu	glu gln ser glu gln
898	CCT TTC CCC	ATG CTC GTC	CAG CGC CGC	CAC GAA GAG
	pro phe	val val val	CGA CGG CGG	GAC AGC AGG
320	cys cys	lys lys gln phe phe	val ser phe val	arg gln ser gln
988	TGC TGT	AAG AAG CAG	TTC TTT GTC	ATC AAG GAC
	TGT TGC	AGG CAA CAG	ATC ATC GAC	ATC TGG AGT
	cys cys	arg gin gin	phe phe	asp phe
350	glu 91y GAG	ser pro his ile	ala gly thr	ser 91y ser
93	GAG GGC	TGC CCC	AGC AAC CAC	GGC ACG TCC
	GAG GGC	TGT AGC	TAC TCC CCG	TCA GGC TCC
		cys pro	ala tyr leu	ala gly val
380	glu 91y GAG	ser gln	gly ser	gly ser
1078	91y GAG	ser	ala gly	ala gly
988	91y GAG	ser	val pro	val pro
			gly thr	gly thr
410	his ser	pro ala asn	leu lys	cys cys
1168	CAC AGC	TTC GGC	ACC CTC AAG	TCC TGC
	CTG AAC	CCC ---	AAC GTG AAC	TCC TGC
	leu asn	pro	gly	ser
420	ile lys	asp 91y	met ser	met ser
1258	ATC AAG	ATC AAG	ATG ATC	ATG ATC
	GTC AAG	GAC ATC	GTC GAG	GTC GAG
	val lys	CGG GAC	CCC AAC	GTG AAC
		arg asp	val pro	val met
440			ile val	ile val
			glu glu	glu glu
			cys cys	cys cys
			asp asp	asp asp
470			asp	asp
			amino	amino

Fig. 2B(IV)

Fig. 3.

Fig. 4A.

p. β A-Inh:
h. β -TGF:
p. β B-Inh:

G[LE-----D[GKVNI-[GGKKQ[FY[S[F]-KD]I[GWNDWI[IAP|SGY
* ALDTNY[GFSST[EKNCGVRQLYIDFRKD[L[GWK-WIHEPKGY
* G[LE-----DGRT[NL-[GGRQQFFIDFR[L-I[GWSDWI[IAP|TY
* * *

p. β A-Inh:
h. β -TGF:
p. β B-Inh:

H[AN[Y[GEGE[GSHIAGTSASSL_SFHSTVINHYRMRG[HSPFA
* HANF[G[GP[GPIWSDLT----QYSKVLAL-Y[NQ--HNP[G
* Y[GN[Y[GEGS[GPAYLAGVPGSASSSFHTAVVNQYRMRGLNPG-
* * *

p. β A-Inh:
h. β -TGF:
p. β B-Inh:

NLKSGG[VPTKL[RPMMSMLYYDD[GQNIIKKDIQNMIV[E[GCS
* SAAPCC[V[PQALEPLPIVYYV-[GRKPKVEQLSNMIV[RSC[GCS
* TVNSCC[PTKL[STMMSMLYFDDEYNIVKRDVPPNMIV[E[GCS
* * *

Fig. 4B.

<p>p.βA-Inh:</p> <p>p. α-Inh:</p>	<p>1 GLECDGK[VNI-CCKQFFV[SF[KDIDGWNDWI[A[PSSGYHANY RPPEEPAV[HADGCHRASLNISFQELGWDRWI[VHPPSFI[FHY 19 58</p>	<p>39</p>
<p>p.βA-Inh:</p> <p>p. α-Inh:</p>	<p>40 [GEGEGCPSHIAGTSGSSSLSFHSTVINHYRMRGHSPFANLKS CHGGCGLPTLPNLPLSVPGAPPTPVQPLLLVPGAQ---P 59 94</p>	<p>79</p>
<p>p.βA-Inh:</p> <p>p. α-Inh:</p>	<p>80 C[VPTKLRRPM[SMLYY--DDGQ-NI1KKDIQNMIIVEEG[G]S CAAALPGTMRS[LVRRTTSDGGYSFKYETVPNLLTQHCAEI 95 134</p>	<p>116</p>

Fig. 6A.

-16 -10 -1 +1

16 Gly Val Ser Ser Gln Gly Leu Glu Leu Ala Arg Glu Leu Val Ala Lys Val Arg Ala Leu Phe Leu Asp
1 GT GGG GTC AGC AGC CAG GGG CTG CTC GCC CGG GAA CTT GTT CTC GGC AAG GTG AGG GCC CGG CCT TTC TTG GAT

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Ala Leu Gly Pro Pro Ala Val Thr Arg Glu Gly Asp Pro Gly Val Arg Arg Leu Pro Arg Arg His Ala Leu
75 GCC TTG GGG CCC CCC GCG GTG ACC AGG GAA GGT GGG GAC CCT GGA GTC AGG CGG CTG CCC CGA AGA CAT GCC CTG

Gly Gly Phe Thr His Arg Gly Ser Glu Pro Glu Glu Glu Asp Val Ser Gln Ala Ile Leu Phe Pro Ala Thr
150 GGG GGC TTC ACA CAC AGG GGC TCT GAG CCC GAG GAA GAG GAT GTC TCC CAA GCC ATC CTT TTC CCA GCC ACA

Asp Ala Ser [redacted] Glu Asp Lys Ser Ala Ala Arg Gly Leu Ala Gln Glu Ala Glu Gly Leu Phe Arg Tyr Met
225 GAT GCC AGC [redacted] GAG GAC AAG TCA GCT GCC AGA GGG CTG GCC CAG GAG GCT GAG GAG GGC CTC TAC ATG

Phe Arg Pro Ser Gln His Thr Arg Ser Arg Gln Val Thr Ser Ala Gln Leu Trp Phe His Thr Gln Leu Asp Arg
300 TTC CGG CCA TCC CAG CAT ACA CGC AGC CGC CAG GTG ACT TCA GCC CAG CTG TGG TTC CAC ACC GGG CTG GAC AGG

Gln Gly Thr Ala Ala Ser Asn Ser Ser Glu Pro Leu Leu Gly Leu Ala Leu Ser Pro Gly Gln Pro Val Ala
375 CAG GGC ACA GCA GCC TCC AAT AGC TCT GAG CCC CTG CTA GGC CTG GCA CTG TCA CCG GGA CCC GTG GCT

Val Pro Met Ser Leu Gly His Ala Pro Pro His Trp Ala Val Leu His Leu Ala Thr Ser Ala Leu Ser Leu Leu
450 GTG CCC ATG TCT TTG GGC CAT GCT CCC CCT CAC TGG GCC GTG CTG CAC CTG GCC ACC TCT GCT CTC TCT CTG CTG

Thr His Pro Val Leu Val Leu Leu Arg [redacted] Pro Leu [redacted] Ser Ala Arg Pro Glu Ala Thr Pro Phe
525 ACC CAC CCC GTC CTG GTC CTG CTC GGC ACC CCC CCT GAG CGG CCT GAG GCC ACG CCC TTC

Fig. 6B.

EP 0 222 491 B1

$\rightarrow \alpha$ subunit

190	Leu Val Ala His Thr Arg Thr Arg Pro Pro Ser Gly Gly Glu Arg Ala Arg Arg Ser Thr Pro Leu Met Ser Trp
600	CTG GTG GCC CAC ACT CGG ACC AGA CCA CCC AGT GGA GGG GAG AGA GCC CGA CGC TCA ACT CCC CTG ATG TCC TGG
210	Pro Trp Ser Pro Ser Ala Leu Arg Leu Leu Gln Arg Pro Pro Glu Glu Pro Ala His Ala Asn His Arg
675	CCT TGG TCT CCC TCT GCT CTG CGC CTG CAG AGG CCT CCG GAG GAA CCG GCT GCC CAT GCC AAC TGC CAC AGA
220	Val Ala Leu Asn Ile Ser Phe Gln Glu Leu Gly Trp Glu Arg Trp Ile Val Tyr Pro Pro Ser Phe Ile Phe His
750	GTA GCA CTG AAC ATC TCC TTC CAG GAG CTG GGC TGG GAA CGG TGG ATC GTG TAC CCT CCC AGT TTC ATC TTC CAC
230	Tyr His Gln Gly Cys Gln Gln His Ile Pro Asn Leu Ser Leu Pro Val Gly Ala Pro Pro Thr Pro
825	TAC TGT CAT GGT GGT GGG CTG CAC ATC CCA AAC CTG TCC CTT CCA GTC CCT GCT GGG GCT CCT ACC CCT ACC CCA
240	Ala Gln Pro Tyr Ser Leu Leu Pro Gln Ala Gln Pro Cys Cys Ala Ala Leu Pro Gly Thr Met Arg Pro Leu His
900	CCC TAC TCC TTG CTG CCA GGG GCC CAG CCC TAT GCT GCT CTC CCA GGG ACC ATG AGG CCC CTA CAT
250	Val Arg Thr Thr Ser Asp Gln Gln Tyr Ser Phe Lys Tyr Glu Thr Val Pro Asn Leu Thr Gln His Cys Ala
975	GTC CGC ACC ACC TCG GAT GGA GGT TAC TCT TTC AAG TAT GAG ACA GTG CCC AAC CTT CTC ACG CAG CAC TGT GCT
260	Ile OC* TAA GGG TGGGGGGTCTTCTTAACTCCCATGGCTGGGCCACGCCACCATCATGGCTGGAGGGAAAGGAGAGTTGGGAAATA
1050	1146 GATGGCTCCACTCTCCCTCTTCACTTCTCTGCTATGGGTACCCCTCCCCACCCACTCTATCTCAATAAGAACACAGTGATATG polyA

Fig. 7A.

pin.alpha hin.alpha	-30 MWPQLLLLLAPRSGHGCGQGP ELDRELVLA KVRALFL DALGPPAVTGE GG GVSSSQGLELARELVLA KVRALFL DALGPPAVTRE GG * * * * *	+1 20 DVGVRRLP RRRH A VGGF MRRGSE PEEE - DVS Q A I I L F P AT G A R C G D E P A A G E DVGVRRLP RRRH ALGG FTHRGSE PEEE E DV S Q A I I L F P AT D A S C E D K S A A R G * * * * *	40 60 LAREAAE EGLFTYVFRPSQ H T H S R Q V T S A Q L W F H T G L D R Q G M A A A N S S G P L LAQEAAE EGL FRYMFRPSQ H T R S R Q V T S A Q L W F H T G L D R Q G T A A S N S S E P L * * * *	80 100 120 L DLL A L S S R R G P V A V P M S L G Q A P P R W A V L H L A A S A L P L L T H P V L V L L R C P L GLL A L S P G G P V A V P M S L G H A P P H W A V L H L A T S A L S L L T H P V L V L L R C P * * * *
--------------------------------------	--	--	---	---

Fig. 7B.

pin. alpha hin. alpha	180 LCSCSARPEATPFLVAHTRRARPPSGGERARRSTAPLP-WPWSPAALRLLQ LCTCSARPEATPFLVAHTRTRPSPSGGERARRST-PLMSWPWSPSALRLLQ * * *	200 RPPEEPAVHADCHRASLNISFQELGWDRWIVHPPSFIFHYCHGGCGLPTL RPPEEPAAHANCHRVALNISFQELGWERWIVYPPSF1FHCHGGCGLHIP * * * *	220 PNLPLSVPGAPPTPVQPLLVPGAQPCCAALPGTMRSLRVRRTTSDDGGYSF PNLSLVPVGAPPTPAQPYSLLPGAQPCCAALPGTMMRPLHVRRTTSDDGGYSF * * * *	240 300 320 334	260 300 320 334

Fig. 8A.

TTTAAAAAGGCAATCACAACTTTGCCAGG -28
 201 Met Pro Leu Leu Trp Leu Arg Gly Phe Leu Leu Ala Ser Cys Trp
 ATG CCC TTT TGG CTG AGA GGA TTT CTG TTG GCA AGT TGC TGG
 -10
 Ile Ile Val Arg Ser Ser Pro Thr Pro Gly Ser Glu Gly His Ser Ala Ala Pro ASP
 282 ATT ATA GTG AGG AGT TCC CCC ACC CCA GGA TCC GAG GGG CAC AGC GCG GCC CCC GAC
 20
 Ala Ala Leu Pro Lys Asp Val Pro Asn Ser Gln Pro Glu Met Val Glu Ala Val Lys Lys His Ile Leu Asn Met
 357 GCC CTC CCA AAG GAT GTA CCC AAC TCT CAG CCA GAG ATG GTG GAG GCC GTC AAG AAG CAC ATT TTA AAC ATG
 40
 Leu His Leu Lys Lys Arg Pro Asp Val Thr Gln Pro Val Pro Lys Ala Ala Leu Leu Asn Ala Ile Arg Lys Leu
 432 CTG CAC TTG AAG AAG CCC GAT GTC ACC CAG CCG GTA CCC AAG GCG CTT CTG AAC GCG ATC AGA AAG CTT
 70
 His Val Gly Lys Val Gly Asn Gly Tyr Val Glu Ile Glu ASP ASP Ile Gly Arg Arg Ala Glu Met Asn Glu
 507 CAT GTG GGC AAA GTC GGG GAG AAC GAC GGG TAT GTG GAG ATA GAG GAT GAC ATT GGA AGG GCA GAA ATG AAT GAA
 80
 Leu Met Glu Gln Thr Ser Glu Ile Ile Thr Phe Ala Glu Ser Gly Thr Ala Arg Lys Thr Leu His Phe Glu Ile
 582 CTT ATG GAG CAG ACC TCG GAG ATC ATC ACG TTT GCC GAG TCA GGA ACA GCC AGG AAG ACG CTG CAC TTC GAG ATT

Fig. 8B.

Fig. 8C.

→ β_A subunit

270	Pro Phe Leu Met Leu Gln Ala Arg Gln Ser Glu Asp His Pro His Arg Arg Arg Gly Leu Glu Cys Asp	
1107	CCT TTC CTC ATG CTG CAG CGG CAG TCT GAA GAC CAC CCT CAT CGC CGG CGT CGG CGG GGC TTG GAG TGT GAT	
290	300	310
1182	Gly Lys Val Asn Ile CYS Lys Lys Gln Phe Phe Val Ser Phe Lys Asp Ile Gly Trp Asn Asp Trp Ile Ile	
	AAG GTC AAC ATC TGT AAG AAA CAG TTC TTT GTC AGT TTC AAG GAC ATC GAC AAT GAC TGG ATT GTC ATT	
320	330	340
1257	Ala Pro Ser Gly Tyr His Ala Asn Tyr CYS Glu Gly Glu CYS Pro Ser His Ile Ala Gly Thr Ser Gly Ser	
	GCT CCC TCT GGC TAT CAT GCC AAC TAC TGT GAG GGT GAG CCG AGC CAT ATA GCA GGC ACG TCC GGG TCC TCA	
350	360	370
1332	Leu Ser Phe His Ser Thr Val Ile Asn His Tyr Arg Met Arg Gly His Ser Pro Phe Ala Asn Leu Lys Ser CYS	
	CTG TCC CAC TCA ACA GTC ATC AAC CAC TAC TCC ATG CGC CGG GGC CAT AGC CCC TTT GCC AAC CTC AAA TCG TGT	
380	390	400
1407	CYS Val Pro Thr Lys Leu Arg Pro Met Ser Met Leu Tyr Tyr Asp Asp Gly Gln Asn Ile Ile Lys Lys Asp Ile	
	GTG CCC ACC AAG CTG AGA CCC ATG TCC ATG TTG TAC TAT GAT GAT GGT CAA AAC ATC ATC AAA AAG GAC ATT	
398	408	418
1482	Gln Asn Met Ile Val Glu Gln CYS Gly CYS Ser AM*	
	CAG AAC ATG ATC GTG GAG GAG TGA TAG AGTTGCCAGCCCCAGGGAAAGGGAGCAAGAGTTGTCAGAGAAAGACAGTG	
1570	1580	1590
	GCAAAATGAAAGAAATTCTTAAGGTTCTGAGTTAACCGAGAAAATAGAAAATAAAAACAAAAACA polyA	

Fig. 9A.

EP 0 222 491 B1

1 CC	7	Thr Ser Ser Sys Glu Glu Phe Arg Arg Pro Glu Leu Gly Arg Val Asp Glu Asp Phe Leu Glu Ala Val	10	20
		GGC GGC TCG TCG	30	
	40	██████████	40	50
75 AAG	Lys Arg His Ile Leu Ser Arg Leu Glu Met Arg Glu Arg Pro Asn Ile Thr His Ala Val Pro Lys Ala Ala Met	50		
CGG CAC ATC TTG AGC CGC CTG CAG ATG CGG GGC CCC AAC ATC ACG CAC GCC GTG CCT AAG GCC GCC ATG				
150 GTC ACG GCC CGC CTG CGC AAG CTG CAC GCG GGC CAG GGC GAG GTG CGC GAG GAC GGC CGC GTG GAG ATC ATC AGC GAT GTC GAC GGC	60	Val Thr Ala Leu Arg Lys Leu His Ala Glu Lys Val Arg Glu Asp Gly Arg Val Glu Ile Pro His Leu Asp Gly Leu Ala	70	80
225 CAC GCC AGC CGC GGC GGC GAC GGC CAG GGC GAG GTG CGC GAG GAC GGC CGC GTG GAG ATC ATC AGC GAT GTC GAC GGC	90	His Ala Ser Pro Glu Ala Asp Gly Gln Glu Arg Val Ser Glu Ile Ser Phe Ala Glu Thr Asp Gly Leu Ala	100	
300 TCC TCC CGG CTG TAC TAC TCC TTC ATC TCC AAC GAA GCA GGC AAC CAG AAC CTC TCC GTC GTC CAG GCC AGC CTC GGC	110	Ser Ser Arg Val Arg Leu Tyr Phe Ile Ser Asn Glu Gly Asn Asn Leu Phe Val Val Gln Ala Ser Leu	120	130
375 TGG CTT TAC CTG AAA CTC CTC CCC TAC GTC GAG AAG GGC AGC CGG CGG AAG GTG CGG GTC GTC CAG GCC AGC CTC GGC	140	Trp Leu Tyr Leu Lys Leu Pro Tyr Val Leu Glu Lys Gly Ser Arg Arg Lys Val Arg Val Lys Val Tyr Phe	150	
450 CAG GAG CAG GGC CAC GGT GAC AGG TGG AAC ATG GTG GAG AAG GTC AAA GTC AAA GTG TAC TAC TCC	160	Gln Glu Gln Glu His Gly Asp Arg Trp Asn Met Val Glu Lys Arg Val Asp Leu Lys Arg Ser Gly Trp His Thr	170	180
		CAG CTC AAG CGC AGC CGC AGC CGC TGG CAT ACC		

Fig. 9B.

190 Phe Pro Leu Thr Glu Ala Ile Gln Ala Leu Phe Glu Arg Gly Glu Arg Leu Asn Leu Asp Val Gln **Glu** Asp
 525 TTC CCA CTC ACG GAG GCC ATC CAG CCC TGG TTT GAG CGG GGC GAG CGG CGA CTC AAC CTA GAC GTG CAG **GAC**
 210 Ser **Gln** Glu Leu Ala Val Val Pro Val Phe Val Asp Pro Glu Glu Ser His Arg Pro Phe Val Val Val
 600 AGC **TGG** CAG GAG CTG GCC GTG GTG CCC GTG TTC GTG GAC CCA GGC GAA GAG TCG CAC CGG CCC TTT GTG GTG GTG
 220 **Gln** Ala Arg Leu Gly Asp Ser Arg His Arg Ile Arg Lys Arg Gly Leu Glu **Gly** Asp Gly Arg Thr Asn Leu
 675 CAG GCT CGG CTG GGC GAC AGC AAG CAC CGC ATT CGC AAG CGA GGC CTG GAG **GAT** GGC CGG ACC AAC CTC
 240 **Gly** Arg Leu Gly Asp Ser Arg His Arg Ile Arg Lys Arg Gly Leu Glu **Gly** Asp Gly Arg Thr Asn Leu
 750 AGG CAA CAG TTC TTC ATT GAC TTC CGC CTC ATC GGC TGG AAC GAC TGG ATC ATA GCA CCC ACC GGC TAC TAC
 260 **Arg** Gln Gln Phe Phe Ile Asp Phe Arg Leu Ile Gly Trp Asn Asp Trp Ile Ala Pro Thr Gly Tyr Tyr
 270 **Gly** Arg **Gln** Gln Phe Phe Ile Asp Phe Arg Leu Ile Gly Trp Asn Asp Trp Ile Ala Pro Thr Gly Tyr Tyr
 750 AGG CAA CAG TTC TTC ATT GAC TTC CGC CTC ATC GGC TGG AAC GAC TGG ATC ATA GCA CCC ACC GGC TAC TAC
 290 Pro Ala Tyr Leu Ala Gly Val Pro Gly Ser Ala Ser Ser Phe His Thr Ala
 825 GGG AAC TAC **Glu** Gly Ser **Gly** Ser Pro Ala Tyr Leu Ala Gly Val Pro Gly Ser Ala Ser Ser Phe His Thr Ala
 310 Val Val Asn Gln Tyr Arg Met Arg Gly Leu Asn Pro Gly Thr Val Asn Ser **Gly** Ile Pro Thr Lys Leu Ser
 900 GTG GTG AAC CAG TAC CGC ATG CGG GGT CTG AAC CCC GGC ACG GTG AAC TCC **GAT** CCC ACC AAG CTG AGC
 340 Thr Met Ser Met Leu Tyr Phe Asp Asp Glu Tyr Asn Ile Val Lys Arg Asp Val Pro Asn Met Ile Val Glu Glu
 975 ACC ATG TCC ATG CTG TAC TTC GAT GAT GAG TAC AAC ATC GTC AAG CGG GAC GTG CCC AAC ATG ATT GTG GAG GAG

→ **β_B subunit**

Fig. 9C.

359

G1y A1a OP*
 1050 GGC TGA CAGTCAAGGCAGGGCACGGTGGGTGGGACGGAGGGCAGTCCGGGTGGCTTCAGCCCCGGGAACGGGGT

1145 ACACGGTTGGGCTGAGTACAGTCATTCTGTTGGGATAGTGCAGGGTGCGGCCTGAGATAATTCTACAGGTTCATAGAGCAACAGTCAA
 1245 ACCAGAGGGAGAACCTCAACTGACATGAAATACTTTAAATGACACAGTGCACAGCCAGACGGCACTTGCCACCCACAGCAGGCCAGGA
 1345 TACCAAGAAATGGATGCGGTGACAAATGGCAGCTTAGCTACAAATGCCTGTCAGTCGAGAATGGGGTGAAGCCACATTCCACAGCTGGCCGG
 1445 CCACGTCTCGAAGTTGCGCCTCCCGAGCACATAAAAGCACAAAGACAGAGACGCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
 1545 GTGGGGAGGGCAGCTGGGGAGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
 1645 CGTGCCTCAAGGGCTGGGGAGGCTGTCCCTCATGCCCTTGTCGAGGAAAGAGACACAAACCGTCAGAGACCTGGGAGCAGGGGCAAT
 1745 GACCGTTGACTGTTGGCTGGGCTTGACATGACTTATGTTGTTGGGGGGAGGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
 1845 GCTTTAACCTGATCTCCAACAGTTGACAGTCATCCCTGGCAAGTTACCAAGTTGATAACTGAAAAGGACTTTCTACAGGTATGACCTTTAAGTGA
 1945 TTGTTCTAAATGAAAAAGAAAAA