INTRODUCTION TO GEOMETRIC ALGEBRA

DIEGO HERRERA

1. Introduction

1.1. **Engineering Vectors.** In engineering, three dimensional (3D) vectors are commonly presented under the form

$$\boldsymbol{v} = v_x \boldsymbol{i} + v_y \boldsymbol{j} + v_z \boldsymbol{k} \,,$$

where v_x , v_y and v_z are real numbers called the *components of the vector* and i, j and k unit length vectors, aka unit vectors, pointing in every direction of space.

Then, two basic operations, vector addition and multiplication by scalars, are introduced:

$$\mathbf{v} + \mathbf{w} = (v_x + w_x)\mathbf{i} + (v_y + w_y)\mathbf{j} + (v_z + w_z)\mathbf{k}$$
$$\alpha \mathbf{v} = \alpha v_x \mathbf{i} + \alpha v_y \mathbf{j} + \alpha v_z \mathbf{k},$$

where α is a real number and v and w vectors. Both of these basic operations result in a vector.

Additionally to the basic operations, two other ones are introduced: *cross product* of vectors, which results in a vector and the *inner product* of vectors, which results in a real number, instead of in a vector.

1.2. **Inner Product.** Given two 3-D vectors, say v and w, the inner product between them, $v \cdot w$, is defined by the formula

$$\boldsymbol{v} \cdot \boldsymbol{w} = v_x w_x + v_y w_y + v_z w_z .$$

2. Conventions

basis: a basis is a set of linearly independent vectors that, in a linear combination, can represent every vector in a given vector space or free module, or, more simply put, which define a "coordinate system" (as long as the basis is given a definite order). In more general terms, a basis is a linearly independent spanning set.

frame: An ordered basis.

In order to reduce cluttering and optimize vector manipulation, agree with the following

- \diamond no decoration: drop any decoration for vectors; i.e., use **u** to denote an element of \mathcal{E}^n , instead of u, \vec{u} , or alike;
- \diamond index notation: relabel the Cartesian axes according to $x \to x_1, y \to x_2$ and $z \to x_3$. The frame elements thus become γ_1, γ_2 and γ_3 . Write then $\mathbf{u} \in \mathcal{E}^3$ as a linear combination of frame elements as $\mathbf{u} = \gamma_1 u^1 + \gamma_2 u^2 + \gamma_3 u^3$ or more compactly $\mathbf{u} = \sum_{k=1}^3 \gamma_k u^k$;
- \diamond Einstein summation convention: drop the summation symbol \sum ; i.e., $\mathbf{u} = \gamma_k u^k$, where the (repeated) index k is assumed to run from 1 to 3.

Example 2.1. With these conventions, rewrite the definitions of vector addition, multiplication by scalars, inner and outer product of vectors.

 $Date \colon \mathsf{March}\ 10,\ 2013.$

Key words and phrases. geometric algebra, geometric product, scalars, vectors, multivectors, index notation.

Solution. Let $\alpha \in \mathcal{R}$, $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ and the frame $\{\gamma_k; k: 1 \dots n\}$. Then

$$\begin{array}{ll} \alpha \mathbf{u} \doteq \alpha \gamma_k u^k = \alpha u^k \gamma_k \,, & [\text{multiplication by scalars}] \\ \mathbf{u} \mathbf{v} \doteq \gamma_k u^k + \gamma_k v^k = \gamma_k (u^k + v^k) = (u^k + v^k) \gamma_k \,, & [\text{vector addition}] \\ \mathbf{u} \cdot \mathbf{v} \doteq \gamma_k u^k \cdot \gamma_l v^l = u^k (\gamma_k \cdot \gamma_l) v^l = u^k g_{kl} v^l \,, & [\text{inner product}] \\ \mathbf{u} \wedge \mathbf{v} \doteq \gamma_k u^k \wedge \gamma_l v^l = u^k (\gamma_k \wedge \gamma_l) v^l = u^k v^l (\gamma_k \wedge \gamma_l) \,. & [\text{outer product}] \end{array}$$

3. Exploratory Maths

Given two vectors, $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$, what would happen if we now multiply \mathbf{u}, \mathbf{v} term wise?

Note term-wise multiplication of \mathbf{u} and \mathbf{v} by $\mathbf{u} \otimes \mathbf{v}$.

To find the result, consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^2$ and a frame $\{\gamma_1, \gamma_2\}$ of orthonormal vectors. Term-wise multiply \mathbf{u} and \mathbf{v} :

$$\mathbf{u} \otimes \mathbf{v} = \gamma_{k} u^{k} \otimes \mathbf{v}$$
 [**u** onto frame]
$$= \gamma_{1} u^{1} \otimes \mathbf{v} + \gamma_{2} u^{2} \otimes \mathbf{v}$$
 [*k* from 1 to 2]
$$= \gamma_{1} u^{1} \otimes \gamma_{l} v^{l} + \gamma_{2} u^{2} \otimes \gamma_{l} v^{l}$$
 [**v** onto frame]
$$= \gamma_{1} u^{1} \otimes \gamma_{1} v^{1} + \gamma_{1} u^{1} \otimes \gamma_{2} v^{2} + \gamma_{2} u^{2} \otimes \gamma_{1} v^{1} + \gamma_{2} u^{2} \otimes \gamma_{2} v^{2}$$
 [*l* from 1 to 2]
$$= u^{1} v^{1} \gamma_{1} \otimes \gamma_{1} + u^{1} v^{2} \gamma_{1} \otimes \gamma_{2} + u^{2} v^{1} \gamma_{2} \otimes \gamma_{1} + u^{2} v^{2} \gamma_{2} \otimes \gamma_{2}$$
 [rearranging scalars]
$$= (u^{1} v^{1} \gamma_{1} \otimes \gamma_{1} + u^{2} v^{2} \gamma_{2} \otimes \gamma_{2}) + (u^{1} v^{2} \gamma_{1} \otimes \gamma_{2} + u^{2} v^{1} \gamma_{2} \otimes \gamma_{1})$$
 [agrouping terms]

To recover the inner product and the outer product from $\mathbf{u} \otimes \mathbf{v}$, the frame elements must satisfy

$$\gamma_1 \cdot \gamma_2 = \gamma_2 \cdot \gamma_1 = 1$$
 and $\gamma_1 \otimes \gamma_2 = \gamma_k \gamma_l = -\gamma_l \gamma_k$,

or, more abstractly,

4. Geometric Algebra

[From the middle of the nineteenth century] the primary focus [of mathematicians] was no longer on performing a calculation or computing an answer, but formulating and understanding abstract concepts and relationships. [...] Mathematical objects were no longer thought of as given primarily by formulas, but rather as carriers of conceptual properties.

— кытн devlin, Introduction to Mathematical Thinking (Fall 2012) – Background Reading

- 4.1. **Geometric Product.** Let \mathcal{L} be a linear space over \mathcal{R} and let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{L}$. Then, assume a *geometric product of* \mathbf{u} *and* \mathbf{v} , denoted $\mathbf{u}\mathbf{v}$, that satisfies
 - (1) associativity: $(\mathbf{u}\mathbf{v})\mathbf{w} = \mathbf{u}(\mathbf{v}\mathbf{w})$;
 - (2) left distributivity: $\mathbf{u}(\mathbf{v} + \mathbf{w}) = \mathbf{u}\mathbf{v} + \mathbf{u}\mathbf{w}$;
 - (3) right distributivity: $(\mathbf{v} + \mathbf{w})\mathbf{u} = \mathbf{v}\mathbf{u} + \mathbf{w}\mathbf{u}$;
 - (4) contraction: $|\mathbf{u}|^2 \doteq \mathbf{u}^2 \doteq \mathbf{u}\mathbf{u}$, where $|\mathbf{u}| \in \mathcal{R}$; i.e., a scalar.

Call vector space over \mathcal{R} a linear space \mathcal{V} where the geometric product is defined and call vectors the elements of \mathcal{V} .

Note that, since \mathbb{R}^n is a linear space, then, if the geometric product is also defined in \mathbb{R}^n , it turns \mathbb{R}^n into a vector space. Call this vector space the *n*-dimensional Euclidean space, denoted \mathcal{E}^n . In other words, \mathcal{E}^n is \mathbb{R}^n equipped with a geometric product.

4.2. Magnitude of Vectors. Consider $\mathbf{u} \in \mathcal{E}^n$. Then, call the magnitude of \mathbf{u} , denoted $|\mathbf{u}|$, the quantity

$$|\mathbf{u}|^2 \doteq \mathbf{u}^2 \doteq \mathbf{u}\mathbf{u}$$
.

Also, call $|\mathbf{u}|$ the length of \mathbf{u} . The expression $|\mathbf{u}| = 0$ implies $\mathbf{u} = \mathbf{0}$.

Equivalently, since, by axiom, $\mathbf{u}\mathbf{u} \in \mathcal{R}$, calculate the magnitude of \mathbf{u} as

$$|\mathbf{u}| = \sqrt{\mathbf{u}^2} = \sqrt{\mathbf{u}\mathbf{u}}$$
.

4.3. Inverse of Vectors. Let $\mathbf{u} \in \mathcal{E}^n$ and assume $\mathbf{u} \neq \mathbf{0}$. Then, define the *inverse of* \mathbf{u} , denoted \mathbf{u}^{-1} , by

$$\mathbf{u}^{-1} \doteq \frac{\mathbf{u}}{\mathbf{u}\mathbf{u}} = \frac{\mathbf{u}}{\mathbf{u}^2} = \frac{\mathbf{u}}{|\mathbf{u}|^2} \,.$$

Motivation. Contract the vector \mathbf{u} : $\mathbf{u}\mathbf{u} = \mathbf{u}^2$. Since, by assumption, $\mathbf{u} \neq 0$ and, by axiom, $\mathbf{u}^2 \in \mathcal{R}$, divide then both sides of $\mathbf{u}\mathbf{u} = \mathbf{u}^2$ by \mathbf{u}^2 to find

$$\mathbf{u} \frac{\mathbf{u}}{\mathbf{u}^2} = 1$$
,

which motivates the definition.

4.4. Commutator and Anticommutator. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ and $\mathbf{u}\mathbf{v}$ the geometric product of \mathbf{u} and \mathbf{v} . Then, define the *commutator of* \mathbf{u} and \mathbf{v} , denoted $[\mathbf{u}, \mathbf{v}]_-$, by

$$[\mathbf{u}, \mathbf{v}]_{-} \doteq \mathbf{u}\mathbf{v} - \mathbf{v}\mathbf{u}$$

and define the anticommutator of \mathbf{u} and \mathbf{v} , denoted $[\mathbf{u}, \mathbf{v}]_+$, by

$$[\mathbf{u}, \mathbf{v}]_{+} \doteq \mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u}$$
.

4.5. Inner Product. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Define the inner product of \mathbf{u} and \mathbf{v} , denoted $\mathbf{u} \cdot \mathbf{v}$, by

$$\mathbf{u} \cdot \mathbf{v} \doteq \frac{1}{2} [\mathbf{u}, \mathbf{v}]_{+} = \frac{1}{2} (\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u}).$$

By construction, the inner product is *symmetric*; i.e., $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.

The inner product $\mathbf{u} \cdot \mathbf{v}$ results in a scalar.

Proof. Contract (square) the vector $(\mathbf{u} + \mathbf{v})$ and multiply terms:

$$(u + v)^2 = (u + v)(u + v) = u^2 + uv + vu + v^2$$
,

Isolate $(\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u})$ to find

$$\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u} = (\mathbf{u} + \mathbf{v})^2 - \mathbf{u}^2 - \mathbf{v}^2.$$

Note that, by definition, $\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u} = 2(\mathbf{u} \cdot \mathbf{v})$, thus

$$2(\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} + \mathbf{v})^2 - \mathbf{u}^2 - \mathbf{v}^2.$$

Since, by axiom, contracting a vector produces a scalar, then $(\mathbf{u} + \mathbf{v})^2$, \mathbf{u}^2 and \mathbf{v}^2 are scalars. Therefore, $(\mathbf{u} \cdot \mathbf{v})$ is also a scalar, which was needed be proved.

4.6. Outer Product. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Define the outer product of \mathbf{u} and \mathbf{v} , denoted $\mathbf{u} \wedge \mathbf{v}$, by

$$\mathbf{u} \wedge \mathbf{v} \doteq \frac{1}{2} [\mathbf{u}, \mathbf{v}]_{-} = \frac{1}{2} (\mathbf{u} \mathbf{v} - \mathbf{v} \mathbf{u}).$$

Call $\mathbf{u} \wedge \mathbf{v}$ a bivector. By construction, the outer product is anti-symmetric; i.e., $\mathbf{u} \wedge \mathbf{v} = -\mathbf{v} \wedge \mathbf{u}$.

Note that $\mathbf{u} \wedge \mathbf{u} = 0$, where $0 \in \mathcal{R}$.

Proof. Apply the definition of the outer product to $\mathbf{u} \wedge \mathbf{u}$

$$\mathbf{u} \wedge \mathbf{u} = \frac{1}{2} [\mathbf{u}, \mathbf{u}]_{-} = \frac{1}{2} (\mathbf{u}\mathbf{u} - \mathbf{u}\mathbf{u}) = \frac{1}{2} (\mathbf{u}^{2} - \mathbf{u}^{2}).$$

Since $\mathbf{u}^2 \in \mathcal{R}$, then $\mathbf{u}^2 - \mathbf{u}^2 = 0$, which yields the result.

4.7. Fundamental Decomposition of the Geometric Product. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Write the geometric product as a function of its symmetric and anti-symmetric parts; *i.e.*, as a function of the inner and outer products,

$$\mathbf{u}\mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}]_+ + \frac{1}{2} [\mathbf{u}, \mathbf{v}]_- = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v}.$$

Call the last equation the fundamental decomposition of the geometric product.

4.8. Angle between Vectors. Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Then, define the angle θ between \mathbf{u} and \mathbf{v} by

$$2|\mathbf{u}||\mathbf{v}|\cos\theta \doteq [u,v]_{+} = \mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u}$$
.

Using the definition of the inner product, write the last equation in alternative form

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \,.$$

4.9. Magnitude of the Outer Product. Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Then, the following identity holds

$$\mathbf{u}\mathbf{v} = 2(\mathbf{u} \cdot \mathbf{v}) - \mathbf{v}\mathbf{u}$$
.

Proof. Express $\mathbf{u}\mathbf{v}$ and $\mathbf{v}\mathbf{u}$ using the fundamental decomposition of the geometric product, then, in the decomposition of $\mathbf{v}\mathbf{u}$ use the symmetric and anti-symmetric properties of the inner and outer products, respectively, to find

$$\mathbf{u}\mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v},$$

$$\mathbf{v}\mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \wedge \mathbf{u} = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \wedge \mathbf{v}.$$

Add the two equations to find

$$\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u} = 2(\mathbf{u} \cdot \mathbf{v})$$
.

Finally, isolate the product **uv** to find the desired result.

Next, consider θ to be the angle between \mathbf{u} and \mathbf{v} . Then, the magnitude of $\mathbf{u} \wedge \mathbf{v}$ is given by

$$|\mathbf{u} \wedge \mathbf{v}|^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 |\sin \theta|^2.$$

Proof. Express $\mathbf{u}\mathbf{v}$ using the fundamental decomposition of the geometric product and isolate $\mathbf{u} \wedge \mathbf{v}$:

$$\mathbf{u}\mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v},$$

$$\implies \mathbf{u} \wedge \mathbf{v} = \mathbf{u}\mathbf{v} - \mathbf{u} \cdot \mathbf{v}.$$

Then, contract both sides of the last equation and multiply termwise the right-hand side of it

$$\left(\mathbf{u}\wedge\mathbf{v}\right)^2=\left(\mathbf{u}\mathbf{v}-\mathbf{u}\cdot\mathbf{v}\right)\left(\mathbf{u}\mathbf{v}-\mathbf{u}\cdot\mathbf{v}\right)=\mathbf{u}\mathbf{v}\mathbf{u}\mathbf{v}-\mathbf{u}\mathbf{v}\left(\mathbf{u}\cdot\mathbf{v}\right)-\left(\mathbf{u}\cdot\mathbf{v}\right)\mathbf{u}\mathbf{v}+\left(\mathbf{u}\cdot\mathbf{v}\right)\left(\mathbf{u}\cdot\mathbf{v}\right).$$

Since $(\mathbf{u} \cdot \mathbf{v})$ results in a scalar, it commutes with the other members of the algebra. Thus, $\mathbf{u}\mathbf{v}(\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})\mathbf{u}\mathbf{v}$. Additionally, since $(\mathbf{u} \cdot \mathbf{v})$ results in a scalar, then $(\mathbf{u} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^2$. Therefore, the contracted outer product becomes

$$(\mathbf{u} \wedge \mathbf{v})^2 = \mathbf{u}\mathbf{v}\mathbf{u}\mathbf{v} - 2\mathbf{u}\mathbf{v}(\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{v})^2$$
.

Replace next the product $\mathbf{u}\mathbf{v}$ using the identity $\mathbf{u}\mathbf{v} = 2(\mathbf{u} \cdot \mathbf{v}) - \mathbf{v}\mathbf{u}$:

$$(\mathbf{u} \wedge \mathbf{v})^2 = \mathbf{u}\mathbf{v}(2(\mathbf{u} \cdot \mathbf{v}) - \mathbf{v}\mathbf{u}) - 2\mathbf{u}\mathbf{v}(\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{v})^2.$$

Work on the right-hand side of the last equation to find

$$(\mathbf{u} \wedge \mathbf{v})^2 = 2\mathbf{u}\mathbf{v}(\mathbf{u} \cdot \mathbf{v}) - \mathbf{u}\mathbf{v}\mathbf{v}\mathbf{u} - 2\mathbf{u}\mathbf{v}(\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{v})^2.$$

Simplify terms in the last equation and use the identity $\mathbf{u}\mathbf{v}\mathbf{v}\mathbf{u} = \mathbf{u}(\mathbf{v}\mathbf{v})\mathbf{u} = |\mathbf{u}|^2|\mathbf{v}|^2$ to have

$$(\mathbf{u} \wedge \mathbf{v})^2 = (\mathbf{u} \cdot \mathbf{v})^2 - |\mathbf{u}|^2 |\mathbf{v}|^2.$$

Using the definition of the angle between \mathbf{u} and \mathbf{v} , denoted θ , the last equations turns into

$$(\mathbf{u} \wedge \mathbf{v})^2 = (|\mathbf{u}||\mathbf{v}|\cos\theta)^2 - |\mathbf{u}|^2|\mathbf{v}|^2 = |\mathbf{u}|^2|\mathbf{v}|^2\cos^2\theta - |\mathbf{u}|^2|\mathbf{v}|^2 = |\mathbf{u}|^2|\mathbf{v}|^2(\cos^2\theta - 1).$$

Use the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$ to find

$$(\mathbf{u} \wedge \mathbf{v})^2 = -|\mathbf{u}|^2 |\mathbf{v}|^2 \sin^2 \theta.$$

Finally, take the magnitude (absolute value) in both sides of the last equation to find

$$|\mathbf{u} \wedge \mathbf{v}|^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 |\sin \theta|^2,$$

which yields the desired result.

4.10. Law of Cosines. Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{E}^n$. Consider \mathbf{a} and \mathbf{b} separated by an angle θ and consider $\mathbf{c} = \mathbf{a} - \mathbf{b}$. Then, the following identity holds

$$\mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta.$$

Call the last equation the law of cosines.

Proof. Square both sides of the equation $\mathbf{c} = \mathbf{a} - \mathbf{b}$; that is, $\mathbf{c}^2 = (\mathbf{a} - \mathbf{b})^2 = (\mathbf{a} - \mathbf{b})(\mathbf{a} - \mathbf{b})$. Multiply term by term the last equality to find $\mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - (\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a})$.

By definitions, $\mathbf{a} \cdot \mathbf{b} = \frac{1}{2}(\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a})$ and $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$. Thus, $(\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a}) = 2|\mathbf{a}||\mathbf{b}|\cos\theta$. Therefore,

$$\mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta\,,$$

which yields the desired result.

4.11. Orthogonality and Collinearity. Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Call two vectors *orthogonal* or *perpendicular* if their inner product is zero; *i.e.*, $\mathbf{u} \perp \mathbf{v} \iff \mathbf{u} \cdot \mathbf{v} = 0$.

Call two vectors collinear or parallel if their outer product is zero; i.e., $\mathbf{u} \parallel \mathbf{v} \iff \mathbf{u} \wedge \mathbf{v} = 0$.

Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ to be two orthogonal vectors. Then,

$$\mathbf{u} \cdot \mathbf{v} = 0 \iff \mathbf{u} \mathbf{v} = -\mathbf{v} \mathbf{u}$$
.

On the other hand, consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ to be two collinear vectors. Then,

$$\mathbf{u} \wedge \mathbf{v} = 0 \iff \mathbf{u}\mathbf{v} = \mathbf{v}\mathbf{u}.$$

Thus, the geometric product **uv** provides a measure of the relative direction of the vectors: commutativity means that the vectors are collinear, whereas anticommutativity means that they are orthogonal.

4.12. Magnitude of Vectors – Review. Consider $\mathbf{u} \in \mathcal{E}^n$. Since

$$|\mathbf{u}|^2 = \mathbf{u}\mathbf{u} = [\mathbf{u}, \mathbf{u}]_+ + [\mathbf{u}, \mathbf{u}]_- = \mathbf{u} \cdot \mathbf{u},$$

then, also calculate the magnitude (or length) of \mathbf{u} by

$$|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$$

4.13. Normality. Let $\mathbf{u} \in \mathcal{E}^n$. Call \mathbf{u} a normal vector (or unit vector) if its magnitude (or length) equals unity; i.e., if it satisfies

$$|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = 1.$$

4.14. **Euclidean Metric.** Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Then, define a function $d: \mathcal{E}^n \otimes \mathcal{E}^n \to \mathcal{R}$ whose formula is given by

$$d(\mathbf{u}, \mathbf{v}) = |\mathbf{u} - \mathbf{v}|.$$

Then, since d is defined in n-dimensional Euclidean space and since d satisfies the definition of metric, call thus the function d Euclidean metric or Euclidean distance function.

Moreover, let $\mathbf{a} \in \mathcal{E}^n$. Then,

$$d(\mathbf{u} + \mathbf{a}, \mathbf{v} + \mathbf{a}) = |\mathbf{u} + \mathbf{a} - (\mathbf{v} + \mathbf{a})|,$$

= $|\mathbf{u} - \mathbf{v}|,$
= $d(\mathbf{u}, \mathbf{v})$;

that is, Euclidean metric is a translation invariant metric.

Use the definition of magnitude of vectors to find

$$d(\mathbf{u}, \mathbf{v}) = |\mathbf{u} - \mathbf{v}| = \sqrt{(\mathbf{u} - \mathbf{v})(\mathbf{u} - \mathbf{v})} = \sqrt{(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}$$
.

4.15. Multivectors. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Then, the geometric product $\mathbf{u}\mathbf{v}$ is the addition of a scalar and a bivector:

$$\mathbf{u}\mathbf{v} = \underbrace{\mathbf{u} \cdot \mathbf{v}}_{\text{scalar}} + \underbrace{\mathbf{u} \wedge \mathbf{v}}_{\text{bivector}}$$

 $\mathbf{u}\mathbf{v} = \underbrace{\mathbf{u} \cdot \mathbf{v}}_{\text{scalar}} + \underbrace{\mathbf{u} \wedge \mathbf{v}}_{\text{bivector}} \ .$ In other words, geometric multiplying two vectors does not result in a vector; i.e., the algebra does not close.

To overcome this, define a *multivector* to be the addition of scalars, vectors, bivectors and so on.

4.16. **Reciprocal Frames.** Consider \mathcal{V} to be a *n*-dimensional vector space, a frame $\{\gamma_k\} \in \mathcal{V}$ whose elements need not be orthogonal and i to be the unit pseudoscalar. Then, there is a reciprocal frame $\{\gamma^k\}$ whose elements are given by

$$\gamma^k = (-1)^{(k-1)} \gamma_1 \wedge \gamma_2 \wedge \dots \wedge \check{\gamma}_k \wedge \dots \wedge \gamma_k i^{-1},$$

where $\check{\gamma}_k$ means that γ_k is to be omitted from the product and i^{-1} means the inverse of i.

4.17. Construction of the Reciprocal Frame. Example of construction of the reciprocal frame elements for the three-dimensional Euclidean space, \mathcal{E}^3 .

Consider in \mathcal{E}^3 an orthonormal frame $\{\gamma_k\}$. Then, construct the reciprocal frame elements $\{\gamma^k\}$ applying the following procedure:

- (1) Since the frame elements are orthonormal, then $\gamma_k \gamma_l + \gamma_l \gamma_k = g_{kl}$ where $g_{kl} = \delta_{kl}$; thus, $\gamma_k \gamma_l = \gamma_k \wedge \gamma_l.$
- (2) Define the shorthand notation $\gamma_{kl} = \gamma_k \gamma_l$.
- (3) Find $i = \gamma_1 \gamma_2 \gamma_3 = \gamma_{123}$ and thus $ii = \gamma_{123123} = -1$.
- (4) Find $i^{-1} = 1/i = i/ii = -i$.
- (5) Apply the equation

$$\gamma^k = (-1)^{(k-1)} \gamma_1 \wedge \gamma_2 \wedge \gamma_3(-i)$$

for each k.

For
$$k = 1$$
,

$$\gamma^1 = (-1)^{(1-1)} \wedge \gamma_2 \wedge \gamma_3(-i) = (1)\gamma_2 \wedge \gamma_3(-\gamma_{123}) = \gamma_1$$
.

Similarly, for k=2, then γ^2 and, for k=3, then $\gamma^3=\gamma_3$.

Note: As a conclusion of the previous construction. For \mathcal{E}^3 , the reciprocal frame elements equal the frame elements.

4.18. Alternate Construction of the Reciprocal Frame. Example of construction of the reciprocal frame elements for the fourth-dimensional Minkowski space, \mathcal{M}^4 .

Consider in \mathcal{M}^4 an orthonormal frame $\{\gamma_{\mu}\}$. Then, define the reciprocal frame elements $\{\gamma^{\mu}\}$ by

Using this definition, construct the reciprocal frame elements by applying:

- (1) Since the frame elements are orthonormal in \mathcal{M}^4 , then $\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = \eta_{\mu\nu}$ where the signature
- (2) Define the shorthand notation $\gamma_{\mu\nu} = \gamma_{\mu}\gamma_{\nu}$.
- (3) For the timelike reciprocal frame element, γ^0 , find $\gamma_0\gamma_0=\eta_{00}=-1$, then $\gamma^0=\gamma_0^{-1}=\gamma_0/\gamma_0\gamma_0=-1$
- (4) For the spacelike reciprocal frame elements, γ^k , find $\gamma^k \gamma^k = \eta_{kk} = 1$, then $\gamma^k = \gamma_k^{-1} = 1$ $\gamma_k/\gamma_k\gamma_k=\gamma_k.$

Note: As a conclusion of the previous construction. For \mathcal{M}^4 , the reciprocal frame spacelike elements equal the frame elements $(\gamma^k = \gamma_k)$ – just as in \mathcal{E}^3 – whereas the reciprocal frame timelike element equals the negative of the frame timelike element ($\gamma^0 = -\gamma_0$).

4.19. Representation of Vectors in Reciprocal Frames.

Exercise 4.1. Consider \mathcal{E}^n and an orthonormal frame $\{\gamma_k; k: 1...n\}$ in \mathcal{E}^n . Consider a reciprocal frame $\{\gamma^k\}$ defined by $\gamma^k \cdot \gamma_l = g_{kl}$. Then, given a vector $v \in \mathcal{E}^n$, how does it transform when we change to the reciprocal frame?

Solution. The frame is orthonormal, so, by definition, its elements satisfy $\gamma_k \cdot \gamma_l = g_{kl}$.

On the other hand, the vector v is a geometric object. Thus, it is independent of the coordinate system used to represent it; i.e., it must be the same in both frames:

$$x_k \gamma^k = x^k \gamma_k$$
.

Inner multiply both sides with γ_l to find

$$x_k \gamma^k \cdot \gamma_l = x^k \gamma_k \cdot \gamma_l$$

or, equivalently,

$$x_l = x^k g_{kl} \,,$$

where the identity $x_k \gamma^k \cdot \gamma_l = x_k g_{kl} = x^l$ was used. This yields the desired result.

4.20. **Derivatives in Spacetime.** Consider \mathcal{M}^4 and a frame $\{\gamma_k; k: 0...4\}$. Then, expand the geometric derivative ∇ onto this frame:

$$\nabla = \nabla^{\mu} \gamma_{\mu}$$

 $\nabla = \nabla^{\mu} \gamma_{\mu} ,$ where $\nabla^{1} = (\partial/\partial x^{1})$ and similarly for x^{2} and x^{3} , but $\nabla^{0} = -(\partial/\partial x^{0})$; i.e., $\nabla = -\nabla^{0} \gamma_{0} + \nabla^{k} \gamma_{k}$.

Note: As a mnemonic, to know where the minus sign goes: Imagine a dimensionless scalar field $\phi(x)$; that is, a scalar-valued function of the position vector. Positions are measured in units of length. However, the length of the gradient vector $\nabla \phi$ is not measured in the same units as the position, but in reciprocal units of length. So, using this fact, write

$$\nabla = \frac{1}{\gamma_0} \frac{\partial}{\partial x^0} + \frac{1}{\gamma_1} \frac{\partial}{\partial x^1} + \frac{1}{\gamma_2} \frac{\partial}{\partial x^2} + \frac{1}{\gamma_3} \frac{\partial}{\partial x^3}.$$

$$\nabla = \frac{1}{\gamma_0} \frac{\partial}{\partial x^0} + \frac{1}{\gamma_1} \frac{\partial}{\partial x^1} + \frac{1}{\gamma_2} \frac{\partial}{\partial x^2} + \frac{1}{\gamma_3} \frac{\partial}{\partial x^3} \,.$$
 Then, evaluate the reciprocals of $\{\gamma_k\}$ according to the results of the last section to find
$$\nabla = -\gamma_0 \frac{\partial}{\partial x^0} + \gamma_1 \frac{\partial}{\partial x^1} + \gamma_2 \frac{\partial}{\partial x^2} + \gamma_3 \frac{\partial}{\partial x^3} + = -\gamma_0 \frac{\partial}{\partial x^0} + \gamma_k \frac{\partial}{\partial x^k} \,.$$

This equation shows explicitly the crucial minus sign in front of the first term (timelike derivative) and has the basis vectors in the numerators where they normally belong.

4.21. **Product of a Vector and a Bivector.** Let \mathcal{V} be an n-dimensional vector space and $\mathcal{G} = \mathcal{G}(\mathcal{V})$ be a geometric algebra on \mathcal{V} . Let $u \in \mathcal{G}$ be a vector and $B \in \mathcal{G}$ be a bivector. Then, define the *inner product of u and B* by

$$\langle uB\rangle_1 = u \cdot B = \frac{1}{2}(uB - Bu) = -B \cdot u$$

and define the outer product of u and B by

$$\langle uB\rangle_3 = u \wedge B = \frac{1}{2}(uB + Bu) = B \wedge u$$
.

In general, if you multiply an object of grade r by an object of grade s, then the geometric product is liable to contain terms of all grades from |r-s| to |r+s|, counting by twos, as we see in the following:

Example 4.1. Let $\{\gamma_k; k: 1...4\}$ be an orthonormal frame satisfying $[\gamma_k, \gamma_l]_+ = 2[k=l]_{Iv}$. Then, calculate the geometric, inner and outer products of $A = \gamma_1 \wedge \gamma_2$ and $B = (\gamma_2 + \gamma_3) \wedge (\gamma_4 + \gamma_1)$.

Solution. Because the frame satisfies $[\gamma_k, \gamma_l]_+ = 2[k=l]_{\text{Iv}}$, then $\gamma_k \gamma_l = \gamma_k \wedge \gamma_l$. Therefore, introduce a shorthand notation:

$$\gamma_{kl} = \gamma_k \gamma_l = \gamma_k \wedge \gamma_l .$$

With this shorthand, A becomes $A = \gamma_{12}$.

Term-wise multiply the terms of B

$$B = (\gamma_2 + \gamma_3) \wedge (\gamma_4 + \gamma_1) = \gamma_{24} + \gamma_{21} + \gamma_{34} + \gamma_{31}$$
.

Both A and B are homogeneous of grade 2 – they're 2-blades. So, we expect AB to contain terms of grades from |2-2|=0 to |2+2|=4, counting by two; i.e., terms of grade 0, 2 and 4.

Then, calculate AB taking into account the orthonormality properties of the frame:

$$AB = (\gamma_{12})(\gamma_{24} + \gamma_{21} + \gamma_{34} + \gamma_{31}),$$

$$= \gamma_{1224} + \gamma_{1221} + \gamma_{1234} + \gamma_{1231},$$

$$= 1 + \gamma_{14} + \gamma_{23} + \gamma_{1234},$$

$$= 1 + \gamma_{14} + \gamma_{23} + i,$$

where, in the last equation, $i = \gamma_{1234}$ is the unit pseudoscalar.

Finally, from the definition of inner and outer products, note that

$$\begin{split} A \cdot B &= \langle AB \rangle_0 = 1 \,, \\ &= \langle AB \rangle_2 = \gamma_{14} + \gamma_{23} \,, \\ A \wedge B &= \langle AB \rangle_4 = i \,, \end{split}$$

which yields the desired result.

5. Geometric Interpretations of Multiplications

5.1. Geometric Int. of the Inner Product. Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$. Then, define the angle θ between \mathbf{u} and \mathbf{v} by

$$\cos\theta \doteq \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \,.$$

Call two vectors orthogonal or perpendicular if their inner product is zero; i.e., $\mathbf{u} \perp \mathbf{v} \iff \mathbf{u} \cdot \mathbf{v} = 0$.

5.2. Geometric Int. of the Outer Product. Since by construction the outer product is antisymmetric, then $\mathbf{u} \wedge \mathbf{u} = 0$.

Geometrically, the outer product $\mathbf{u} \wedge \mathbf{v}$ can be interpreted as an oriented plane element whose magnitude is equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v} .

Call two vectors *collinear* or *parallel* if their outer product is zero ¹; i.e., $\mathbf{u} \parallel \mathbf{v} \iff \mathbf{u} \wedge \mathbf{v} = 0$.

5.3. Geometric Int. of the Geometric Product. Consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ to be two orthogonal vectors. Then,

$$\mathbf{u} \cdot \mathbf{v} = 0 \iff \mathbf{u} \mathbf{v} = -\mathbf{v} \mathbf{u}$$
.

On the other hand, consider $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ to be two collinear vectors. Then,

$$\mathbf{u} \wedge \mathbf{v} = 0 \iff \mathbf{u}\mathbf{v} = \mathbf{v}\mathbf{u}$$
.

Thus, the geometric product **uv** provides a measure of the relative direction of the vectors: commutativity means that the vectors are collinear, whereas anticommutativity means that they are orthogonal.

6. Geometric Algebra of the Plane

Hereafter, for the sake of convenience, define the tau number τ

$$\tau \doteq 2\pi \approx 6.283185307179586...$$

where π is the *circle constant*; i.e., the ratio of a circle's circumference to its diameter.

6.1. Algebra of the Plane. Let $\mathcal{F} = \{\gamma_1, \gamma_2\}$ be a frame of orthonormal vectors in \mathcal{E}^2 . Then, the frame elements satisfy

$$\left[\gamma_k, \gamma_l\right]_+ = 2\left[k = l\right]_{\text{Iv}};$$

that is,
$$\gamma_1^2 = \gamma_2^2 = 1$$
, $\gamma_1 \cdot \gamma_2 = 0$ and $\gamma_1 \wedge \gamma_2 = \gamma_1 \gamma_2 = -\gamma_2 \wedge \gamma_1$.

Define the shorthand γ_{12}

$$\gamma_{12} = \gamma_1 \gamma_2 = \gamma_1 \wedge \gamma_2$$

and, with this, define the $unit\ pseudoscalar\ i$ by

$$i \doteq \gamma_{12} = \gamma_1 \gamma_2 = \gamma_1 \wedge \gamma_2$$
.

Note that i squares to -1:

$$i^2 = \gamma_{12}\gamma_{12} = \gamma_{1212} = -1$$
.

The unit pseudoscalar anti-commutes with vectors in \mathcal{E}^2 :

$$i\gamma_1 = \gamma_{121} = -\gamma_{112} = -\gamma_1 i$$
,
 $\gamma_1 i = \gamma_{112} = -\gamma_{121} = -i\gamma_1$,

$$i\gamma_2 = \gamma_{122} = -\gamma_{212} = -\gamma_2 i$$
,

$$\gamma_2 i = \gamma_{212} = -\gamma_{122} = -i\gamma_2$$
.

The basis set

1,
$$\{\gamma_1, \gamma_2\}$$
 and i ,

spans the full algebra. Denote this algebra by \mathcal{G}_2 .

¹ Collinearity implies that two vectors determine a parallelogram with vanishing area.

6.2. Geometry of the Plane. Left- and right-multiply γ_1 by i

$$i\gamma_1 = \gamma_{121} = -\gamma_{112} = -\gamma_2 ,$$

 $\gamma_1 i = \gamma_{112} = \gamma_2 .$

Then, left- and right-multiply γ_2 by i

$$i\gamma_2 = \gamma_{122} = \gamma_1 ,$$

 $\gamma_2 i = \gamma_{212} = -\gamma_{122} = -\gamma_1 .$

Thus, left-multiplication by i rotates vectors $\tau/4$ (90°) clockwise (i.e., negative sense), while right-multiplication by i rotates vectors $\tau/4$ counterclockwise (i.e., positive sense) ².

From the last results, it follows that two successive left (right) multiplications of a vector by i rotates the vector through $\tau/2$ (180°). This is equivalent to multiply the vector by -1 or by i^2 , for $i^2 = -1$.

APPENDIX A. FUNCTIONS

Denote by \mathcal{N} the set of natural numbers; i.e., $\mathcal{N} = \{1, 2, 3, \ldots\}$, and by \mathcal{R} the set of real numbers (aka reals or scalars).

- A.1. Cartesian Product. Consider two sets \mathcal{A} and \mathcal{B} . Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then, call Cartesian product of \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \otimes \mathcal{B}$, the set consisting of all ordered pairs (a, b). Call a and b the components of the ordered pair (a, b).
- A.2. Function. Consider two sets \mathcal{A} and \mathcal{B} . Let f be a subset of $\mathcal{A} \otimes \mathcal{B}$. Then, call f a function from \mathcal{A} to \mathcal{B} if every element of \mathcal{A} is the first component of one and only one ordered pair in the subset.

Call A the domain of f and B the codomain of f.

A.3. **Function Notation.** Denote a function f with domain \mathcal{A} and codomain \mathcal{B} by $f: \mathcal{A} \to \mathcal{B}$. Call the elements of \mathcal{A} arguments of f and call, for each argument a, the corresponding unique b in the codomain the function value at a or the image of a under f, written as f(a).

Additionally, say that f associates b with a or maps a to b. Abbreviate this by b = f(a).

To specify a function, use the \mapsto notation; e.g., $f: \mathcal{R} \to \mathcal{R}$ defined by $x \mapsto x+1$; read this: f is a function from f (the set of real numbers) to f, where f maps to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function from f (the set of real numbers) to f has a function f (the set of real numbers).

- A.4. **Metric.** Consider a set \mathcal{X} and $x, y, z \in \mathcal{X}$. Consider a function $d: \mathcal{X} \otimes \mathcal{X} \to \mathcal{R}$. Call d a metric if it satisfies
 - (1) non-negativity (separation axiom): $d(x, y) \ge 0$;
 - (2) identity of indiscernibles (coincidence axiom): d(x, y) = 0 if and only if x = y;
 - (3) symmetry: d(x, y) = d(y, x);
 - (4) subadditivity (triangle inequality): $d(x, z) \le d(x, y) + d(y, z)$.

If d is a metric, it is also called a $distance\ function$ or, simply, distance.

Consider a set \mathcal{Y} and $a, x, y \in \mathcal{Y}$. Assume an addition $+: \mathcal{Y} \otimes \mathcal{Y} \to \mathcal{Y}$ defined in \mathcal{Y} . Call d a translation invariant metric if it satisfies

$$d(x,y) = d(x+a, y+a).$$

² Mnemonic: left-multiplication by i rotates a vector in the sense of closing the left hand, while right-multiplication by i in the sense of closing the right hand.

APPENDIX B. LINEAR SPACES

B.1. Linear Space. Let \mathcal{L} be a non-empty set of objects called the *elements of* \mathcal{L} . Consider $a, b \in \mathcal{R}$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{L}$. Then, call \mathcal{L} a *linear space over* \mathcal{R} if it satisfies:

- (1) closure over addition: there is a unique element $(\mathbf{u} + \mathbf{v}) \in \mathcal{V}$ called the sum of \mathbf{u} and \mathbf{v} ;
- (2) closure by multiplication of scalars: there is a unique element $a\mathbf{u} \in \mathcal{L}$ called the *product of a and* \mathbf{u} ;
- (3) commutative law for addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- (4) associative law for addition: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$;
- (5) existence of zero element: there is an element in \mathcal{L} , denoted by $\mathbf{0}$, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$, for all $\mathbf{u} \in \mathcal{L}$;
- (6) existence of negatives: the element $(-1)\mathbf{u}$ has the property $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$;
- (7) associative law for multiplication of scalars: $a(b\mathbf{u}) = (ab)\mathbf{u}$;
- (8) distributive law for addition in V: $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$;
- (9) distributive law for addition of scalars: $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$;
- (10) existence of identity: $1\mathbf{u} = \mathbf{u}$.

B.2. Basis. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a finite subset of a linear space \mathcal{V} over \mathcal{R} and let $a^1, a^2, \dots, a^n \in \mathcal{R}$. Call \mathcal{B} a basis if it satisfies:

- (1) the linear independence property: if $a^1\mathbf{v}_1 + a^2\mathbf{v}_2 + \dots + a^n\mathbf{v}_n = 0$, then necessarily $a^1 = a^2 = \dots = a^n = 0$; and
- (2) the spanning property: for every $\mathbf{x} \in \mathcal{V}$, it is possible to choose $a^1, a^2, \dots, a^n \in \mathcal{R}$ such that $\mathbf{x} = a^1 \mathbf{v}_1 + a^2 \mathbf{v}_2 + \dots + a^n \mathbf{v}_n$.

Call the numbers a^i the components of **x** with respect to \mathcal{B} . By the first property, they are uniquely determined.

B.3. Real Linear Space. Consider $n \in \mathcal{N}$. Then, define the *n-Cartesian power of* \mathcal{R} , denoted \mathcal{R}^n , by

$$\mathcal{R}^n = \left\{ \left(x^1, x^2, \dots, x^n\right) \, : \, x^i \in \mathcal{R} \text{ for all } 1 \le i \le n \right\}.$$

Write an element of \mathbb{R}^n , say \mathbf{x} , as

$$\mathbf{x} = (x^1, x^2, \dots, x^n) ,$$

where the is in the x^i s are indices (or placeholders) rather than exponents. Call the x^i s the components of \mathbf{x} .

Sometimes, the x^i s are called the *coordinates of* \mathbf{x} and, for this reason, \mathcal{R}^n is also called *real coordinate space*.

Let $a \in \mathcal{R}$ and $\mathbf{x}, \mathbf{y} \in \mathcal{R}^n$. Then, define the operations

$$\mathbf{x} + \mathbf{y} \doteq (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n) ,$$

$$a\mathbf{x} \doteq (ax^1, ax^2, \dots, ax^n) .$$

Since \mathbb{R}^n and the operations therein defined satisfy the linear space axioms, then \mathbb{R}^n forms a linear space over \mathbb{R} . Call \mathbb{R}^n the *n*-dimensional real linear space (sometimes shortened to *n*-D space; e.g., 2-D space, 3-D space and so on).

Appendix C. Index Notation

C.1. **Einstein Summation Convention.** Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis, $\mathbf{x} \in \mathcal{V}$ be a vector and $a^1, a^2, \dots, a^n \in \mathcal{R}$ be the components of \mathbf{x} with respect to \mathcal{B} . Then, by means of the spanning property of \mathcal{B} , the components of \mathbf{x} with respect to \mathcal{B} are

$$\mathbf{x} = a^1 \mathbf{v}_1 + a^2 \mathbf{v}_2 + \dots + a^n \mathbf{v}_n.$$

Shorten the sum by using the sigma notation; i.e.,

$$\mathbf{x} = \sum_{k=1}^{n} \mathbf{v}_k a^k \,.$$

Call \sum the summation symbol and k the summation index.

Adopt Einstein summation convention: drop the summation symbol and assume the summation index k runs from 1 to n to rewrite \mathbf{x} as

$$\mathbf{x} = \mathbf{v}_k a^k$$
.

C.2. **Frames.** Consider a set $\mathcal{F} \subset \mathcal{E}^n$ of vectors $\{\gamma_k; k: 1...n\}$. Then, call \mathcal{F} a frame and its elements frame vectors if the γ_k s satisfy

$$\left[\gamma_k, \gamma_l\right]_+ = 2\left[k = l\right]_{\mathrm{Iv}} ,$$

where $[k = l]_{Iv}$ are Iverson brackets.

Note that, if k = l, then $\gamma_k \gamma_k + \gamma_k \gamma_k = 2$ (no summation implied). Thus, $\gamma_k \gamma_k = \gamma_k^2 = 1$; i.e., $|\gamma_k| = 1$. So, the frame vectors are normal vectors.

On the other hand, if $k \neq l$, then $\gamma_k \gamma_l + \gamma_l \gamma_k = 2(\gamma_k \cdot \gamma_l) = 0$, then $\gamma_k \cdot \gamma_l = 0$. Thus, by the definition of orthogonality, γ_k s are mutually orthogonal.

Therefore, since the elements of \mathcal{F} are orthogonal and normal, call them *orthonormal*. (For this reason, \mathcal{F} is called an *orthonormal frame*.)

C.3. Components of Vectors. Consider $\mathcal{F} \subset \mathcal{E}^n$ and $\mathcal{F} = \{\gamma_k; k : 1 \dots n\}$. Let $\mathbf{u} \in \mathcal{E}^n$. Then, find the the components (or coordinates) of \mathbf{x} with respect to \mathcal{F} , denoted as u^k s, by

$$u^k = \mathbf{u} \cdot \gamma_k$$
.

Thus, \mathbf{u} can be written as a function of its components onto \mathcal{F} by

$$\mathbf{u} = \gamma_k u^k$$
.

In particular, consider a set $\mathcal{F} \subset \mathcal{E}^n$ of vectors $\{\gamma_1, \gamma_2, \dots, \gamma_n\}$ defined by

$$\gamma_1 \doteq (1, 0, \dots, 0) , \qquad \gamma_2 \doteq (0, 1, \dots, 0) , \qquad \dots , \qquad \gamma_n \doteq (0, 0, \dots, n) ;$$

then, since \mathcal{F} satisfies the definition of basis, write thus any vector $\mathbf{u} \in \mathcal{E}^n$ in the form

$$\mathbf{u} = \gamma_k u^k \,.$$

Call \mathcal{F} a frame, the vectors $\{\gamma_k; k: 1...n\}$ basis vectors and the u^k s the components (or coordinates) of \mathbf{x} with respect to \mathcal{F} .

C.4. Operations with Basis Vectors. Let $\mathcal{F} = \{\gamma_k; k: 1 \dots n\}$ be a frame in \mathcal{E}^n . Consider the basis vectors to satisfy the algebra

$$[\gamma_k, \gamma_l]_+ = 2 [k = l]_{I_V} = 2g_{kl},$$

where $[k = l]_{Iv}$ are Iverson brackets and g_{kl} is Kronecker delta.

Expand the expression $[\gamma_k, \gamma_l]_+ = 2[k = l]_{\text{Iv}}$. On the one hand, if k = l,

- $\diamond \gamma_k \gamma_k + \gamma_k \gamma_k = 2$, thus $\gamma_k \gamma_k = 1$;
- $\diamond \gamma_k \cdot \gamma_k = \frac{1}{2}(\gamma_k \gamma_k + \gamma_k \gamma_k) = 1$; and
- $\diamond \ \gamma_k \wedge \gamma_k = \frac{1}{2}(\gamma_k \gamma_k \gamma_k \gamma_k) = 0.$

On the other hand, if $k \neq l$,

- $\diamond \ \gamma_k \gamma_l + \gamma_l \gamma_k = 0, \text{ thus } \gamma_k \gamma_l = -\gamma_l \gamma_k;$
- $\diamond \gamma_k \cdot \gamma_l = \frac{1}{2}(\gamma_k \gamma_l + \gamma_l \gamma_k) = 0$; and

Use the equality in the last item to define a shorthand

$$\gamma_{kl} \doteq \gamma_k \gamma_l = \gamma_k \wedge \gamma_l$$
.

Denote by u^k the components of **u** onto \mathcal{F} . Determine each u^k by

$$u^k = \mathbf{u} \cdot \gamma_k$$
;

that is, write any vector \mathbf{u} as

$$\mathbf{u} = \gamma_k u^k$$
.

Write the inner product $\mathbf{u} \cdot \mathbf{v}$ in index notation

$$\mathbf{u} \cdot \mathbf{v} = \gamma_k u^k \cdot \gamma_l v^l = u^k v^l \gamma_k \cdot \gamma_l = u^k v^l q_{kl} :$$

the outer product $\mathbf{u} \wedge \mathbf{v}$

$$\mathbf{u} \wedge \mathbf{v} = \gamma_k u^k \wedge \gamma_l v^l = u^k v^l \gamma_k \wedge \gamma_l ;$$

and finally the geometric product $\mathbf{u}\mathbf{v}$

$$\mathbf{u}\mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v} = u^k g_{kl} v^l + u^k v^l \gamma_k \wedge \gamma_l$$
.

C.5. Index Formula for the Inner Product. Let $\mathbf{u}, \mathbf{v} \in \mathcal{E}^n$ and let $\{\gamma_k; k : 1 \dots n\}$ be a frame in \mathcal{E}^n . Then, $\mathbf{u} \cdot \mathbf{v}$ becomes

$$\mathbf{u} \cdot \mathbf{v} = \gamma_k u^k \cdot \gamma_l v^l = u^k v^l \gamma_k \cdot \gamma_l = u^k v^l g_{kl}.$$

Expand the indices k and l, apply $g_{kl}=1$ for k=l and $g_{kl}=0$ for $k\neq l$ to find

$$\mathbf{u} \cdot \mathbf{v} = u^1 v^1 + u^2 v^2 + \dots + u^n v^n = \sum_{m=1}^n u^m v^m$$
.

Call the last equation the index formula for the inner product.

C.6. Index Formula for the Magnitude of Vectors. Let $\mathbf{u} \in \mathcal{E}^n$. Then, find $|\mathbf{u}|$ by

$$|\mathbf{u}|^2 = \mathbf{u}\mathbf{u},$$

 $\implies |\mathbf{u}| = \sqrt{\mathbf{u}\mathbf{u}} = \sqrt{\mathbf{u}\cdot\mathbf{u} + \mathbf{u}\wedge\mathbf{u}} = \sqrt{\mathbf{u}\cdot\mathbf{u}}.$

Let $\{\gamma_k; k: 1...n\}$ be a frame of orthonormal vectors in \mathcal{E}^n . Then, use the index for the inner product to find $\mathbf{u} \cdot \mathbf{u}$

$$\mathbf{u} \cdot \mathbf{u} = \sum_{m=1}^{n} \left(u^{m} \right)^{2}.$$

Therefore,

$$|\mathbf{u}| = \sqrt{\sum_{m=1}^{n} (u^m)^2}.$$

Call the last equation the index formula for the magnitude of vectors.

C.7. **Pseudoscalar.** Let $\{\gamma_k; k: 1...n\}$ be a frame of orthonormal vectors in \mathcal{E}^n . Then, the *unit* pseudoscalar is defined by

$$i \doteq \gamma_1 \gamma_2 \cdots \gamma_n = \gamma_{12 \cdots n}$$
.

APPENDIX D. GENERAL RELATIVITY

[Consider Newtonian theory.] Consider a particle moving through a gravitational field of intensity g. Note by t time, by x(t) the particle's position while it moves through space and by $\dot{x}(t)$ the particle's velocity. Then, calculate the particle momentum by

$$p(t) = m_i \dot{x}(t) ,$$

where m_i is the particle's inertial mass.

On the other hand, the field interaction with the particle produces a force f given by

$$f = m_g g$$
,

where m_g is the particle's gravitational mass.

Then, according with Newton's second law, we have

$$f = dp(t)/dt = d(m_i \dot{x}(t))/dt = m_i \implies m_i \ddot{x}(t) = m_g g.$$