Correction TD Normalisation

Exercice I

1) Couverture minimale : Application de l'algorithme de calcul d'une couverture minimale. Etape 1. F' := F.

 $\underline{\text{Etape 2.a}}: \text{On fait en sorte d'avoir des parties droites de DF ne contenant qu'un seul \'elément}: F' = \{$

AB
$$\rightarrow$$
 C, B \rightarrow D, B \rightarrow E, BDL \rightarrow K, BHJL \rightarrow C, C \rightarrow A, C \rightarrow B CEL \rightarrow K, CIL \rightarrow G, CIL \rightarrow K, D \rightarrow B, D \rightarrow E, EIK \rightarrow C, EIK \rightarrow G EIK \rightarrow L }

Etape 2.b : On supprime des parties gauches les attributs non nécessaires.

✓ $AB \rightarrow C$: est ce qu'on peut remplacer $AB \rightarrow C$ par $A \rightarrow C$ ou $B \rightarrow C$???

- C ∈ A+?

On calcule A+:

$$A^+ = A$$
, $\Rightarrow C \notin A^+$ (1) on ne peut pas remplacer $AB \rightarrow C$ par $A \rightarrow C$

- C ∈ B+?

On calcule B+:

$$B^+=BDE \Rightarrow C \notin B^+$$
 (2) on ne peut pas remplacer $AB \rightarrow C$ par $B \rightarrow C$

- ✓ Pour $\mathbf{B} \to \mathbf{D}$ et $\mathbf{B} \to \mathbf{E}$ il n'y a rien à faire car les parties gauches ne contiennent qu'un attribut.
- \checkmark BDL → K : est ce qu'on peut remplacer BDL → K par DL → K ou BD → K ou bien BL → K ?
- $K \in (DL)^+$?

On calcule (DL)⁺:

$$(DL)^+ = DLBEK. \Rightarrow K \in (DL)^+$$

Donc en connaissent DL, on connait K. On peut donc remplacer BDL \rightarrow K par DL \rightarrow K On fait la même chose avec $DL \rightarrow K$: peut-on remplacer DL \rightarrow K par D \rightarrow K? Ou, autrement dit, $K \in D^{+}$? La réponse est non.

 $K \in L^{+}$? La réponse est non.

Alors on remplace BDL \rightarrow K par DL \rightarrow K.

Remarque ; On n'aura pas besoin de vérifier les autres possibilités (BD \rightarrow K ou bien BL \rightarrow K).

- ✓ BHJL \rightarrow C : est ce qu'on peut remplacer BHJL \rightarrow C par HJL \rightarrow C ou BJL \rightarrow C ou BHL \rightarrow C ou bien BHJ \rightarrow C ?
- C ∈ (HJL)⁺?

On calcule (HJL)⁺:

- (HJL)⁺ = HGL ⇒ C ∉ (HJL)⁺; donc on ne peut remplacer BHJL → C par HJL → C.
 De même, on vérifie pour les autres :
 - $(BJL)^+ = BGLDEK \Rightarrow C \notin (BJL)^+$; donc on ne peut remplacer $BHJL \rightarrow C$ par $BJL \rightarrow C$.
 - (BHL)⁺ = BHLDEK ⇒ C ∉ (BHL)⁺; donc on ne peut remplacer BHJL → C
 par BHL → C.
 - $(BHJ)^+ = BHGDE \Rightarrow C \notin (BHJ)^+$ donc on ne peut remplacer $BHJL \rightarrow C$ par $BHJ \rightarrow C$.

Donc la DF **BHJL** \rightarrow **C** est minimale.

Pour $C \to A$ et $C \to B$ il n'y a rien à faire car les parties gauches ne contiennent qu'un attribut.

On fait les mêmes calcules pour les DFs restantes :

- ✓ **CEL** \rightarrow **K** : Après calcul, on remplace donc CEL \rightarrow K par CL \rightarrow K car K \in CL⁺ (mais K $\not\in$ C⁺ et K $\not\in$ L⁺).
- ✓ CIL → G est minimale
- ✓ CIL \rightarrow K : Après calcul, on remplace donc CIL \rightarrow K par CL \rightarrow K qui est déjà dans F' et qu'on a déjà testé.

Pour $D \to B$ et $D \to E$ il n'y a rien à faire car les parties gauches ne contiennent qu'un attribut.

- ✓ EIK → C: C'est une DF élémentaire.
- ✓ **EIK** → **G** : C'est une DF élémentaire.
- ✓ EIK → L : C'est une DF élémentaire

<u>3ème étape</u>: On supprime une à une les DF et on regarde si on peut la retrouver à l'aide des autres.

Ici, c'est le cas de B \rightarrow E que l'on peut retrouver grace à B \rightarrow D puis D \rightarrow E.

C'est aussi le cas de CIL \rightarrow G car avec C, I, et L on obtient K (CL \rightarrow K), B (C \rightarrow B), puis D (B \rightarrow D) et E (D \rightarrow E), et enfin G par (EIK \rightarrow G)

Enfin, $CL \to K$ peut aussi être enlevée : si on connaît C et L, on a A ($C \to A$), B ($C \to B$), puis D ($B \to D$), et enfin K ($DL \to K$) La couverture minimale est donc

```
F^{0} = \{AB \rightarrow C \; ; \; B \rightarrow D \; ; \; DL \rightarrow K \; ; \; BHJL \rightarrow C \; ; \; C \rightarrow A \; ; \; C \rightarrow B \; ; \; D \rightarrow B \; ; \; D \rightarrow E \; ; \; EIK \rightarrow C \; ; \; EIK \rightarrow C \; ; \; EIK \rightarrow L\}
```

Clés candidates?

Remarque:

1- Les attributs qui se retrouves toujours à droite des DFs de F⁰ sont des attributs qui ne peuvent jamais faire partie des clés candidates ; on les appelle « attributs non clé ».

Donc attributs non clé: G

2- Les attributs qui se retrouves toujours à guache des DFs de F⁰ sont des attributs qui ne font toujours partie des clés candidates ; on les appelle : Attributs clé.

Donc attributs clé: I,J,H

On calcule (IJH)⁺,

Si le résultat est égal à l'ensemble de tous les attributs de R ; alors IJH est une clé et se sera la seule clé de R.

Sinon On augmentera IJH par l'un des attributs qui se retrouve à gauche est à droite des des DF de F^0 . Et on refait le calcul pour chaque augmentation.

- (IJH)⁺ = IJH ⇒ IJH ne suffit pas pour la clé ; on procède aux calcul par augmentation.
- (AIJH)⁺ = AIJH ⇒ AIJH n'est pas une clé ; on augmente encore avec L.
- (AIJHL)⁺ = AIJHL ⇒ AIJHL n'est pas une clé
- (BIJH)⁺ = BIJHDE ⇒ BIJH n'est pas une clé
- (BIJHL)⁺ = BIJHLDEKCAG ⇒ BIJHL est pas une première clé candidate.
- Comme on a $C \rightarrow B$ alors CIJHL est une deuxième clé candidate.

- De même : on D \rightarrow B alors DIJHL est une troisième clé candidate.
- On a aussi EIK→C et EIK→L alors EIJHK est une quatriàme clé candidate

Donc les clés candidates sont : BHIJL ; CHIJL ; DHIJL ; EIKHJ

Et enfin, après calcul o trouve :

Attributs clé: B,C,D,E,H,I,J,K,L

Attributs non clé: A, G.

La relation n'est pas en 2-NF car une partie non clé dépend que d'un morceau de la clé : $C \rightarrow A$ ou bien $EIK \rightarrow G$.

On décompose :

R1(A, B, C) qui est 3-NF car tous les attributs sont des attributs clé;

DFs associées :
$$AB \rightarrow C$$
, $C \rightarrow A$; $C \rightarrow B$

R2(E,I,K, G) qui est 3-NF; DF associée : $EIK \rightarrow G$.

R2(B,C,D,E,H,I,J,K,L) qui est en 3 FN; car tous ses attributs sont des attributs clé.

DFs associées : {B
$$\rightarrow$$
 D ; DL \rightarrow K ; BHJL \rightarrow C ; C \rightarrow B ; D \rightarrow B ; D \rightarrow E ; EIK \rightarrow C ; EIK \rightarrow L}

Exercice II

Il n'y a qu'une clé candidate (donc minimale) dans cette relation : HE.

Question 2:

Le schéma est en 2-NF mais n'est pas en 3-NF car, par exemple, la dépendance fonctionnelle $C \to P$ lie deux attributs n'appartenant pas à la clé.

Question 3:

Appliquons l'algorithme de mise sous 3-NF donné dans le C :

1/ Couverture minimale : seule la dépendance HES \rightarrow N peut être enlevée (on la retrouve via HE \rightarrow S puis HS \rightarrow C et enfin CE \rightarrow N. Aucune des autres DF ne peut être simplifiée.

2/ On se retrouve avec les groupes suivants :

$$G1 = \{C, P\}, G2 = \{H, S, C\}, G3 = \{H, P, S\}, G4 = \{C, E, N\}, G5 = \{H, E, S\}.$$

3/ On crée les relations suivantes :

 $R1 = \{C, P\}, R2 = \{H, S, C\}, R3 = \{H, P, S\}, R4 = \{C, E, N\}, R5 = \{H, E, S\}.$

4/ La clé candidate se retrouve dans la relation R5, il n'y a donc rien à faire à cette étape.

Exercice III

- 1) Par transitivité, $A \to C$. Donc $A \to B$, C. A est donc clé candidate. Comme A n'apparait pas en partie droite de dépendance fonctionnelle, il doit être dans toute clé. Or il est lui-même clé : c'est donc la seule clé candidate.
- R est en 2FN (car la clé est composé d'un seul attribut), mais pas en 3FN (car B \rightarrow C lie deux attributs qui ne sont pas dans la clé).
- 2) La DF B \rightarrow C n'est pas respectée dans l'extension de R' car (B1, C1) et (B1, C2), donc connaître la valeur de B ne permet pas de déterminer la valeur de C.
- 3) Par exemple:

4) Couverture minimale : $\{A \rightarrow B ; B \rightarrow C\}$

$$G1 = \{A \rightarrow B\}, G2 = \{B \rightarrow C\}$$

 $R1 = {\underline{A}, B}, R2 = {\underline{B}, C}$