About Video data

Images, text, video and generative models

Spyros Samothrakis Research Fellow, IADS University of Essex

February 7, 2017

				1 / 38			
Авоит	Video data	TEXT	Generating data	Conclusion			
Аво	OUT						
	***			,			
•	 We will now turn o structure 	ur attention	on data that has les	s clear			
•	► Sometimes called unstructured data						
	► VS structured da	ata, i.e. databa	ase like tables				
•	Is there anything sp	pecial about	this data?				
	► It's the default of	data humans p	perceive and generate!				
•	 Most machine learn datasets 	ning benchma	arks are on text or in	mage			
•	Neural networks ex	cel, but there	e are other approach	ies			

				4/30
About	VIDEO DATA	Text	Generating data	Conclusion
IMAGE D ► Each ► Pixe ► Also ► So in ► Wid	ATA i image is comels have differently, three channe	posed of a nu nt intensities ls (RGB) ve a three din Channels x Ir	mber of pixels nensional structure	4 / 38

RGB EXAMPLE

 $^{1} \rm http://triplelift.com/2013/07/02/the-complexity-of-image-analysis-part-2-colors/$

5/38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

MNIST

Very popular benchmark

60,000 training examples, 10,000 test examples, 256 different pixel values, 10 digits,

6 / 38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

COMMON IMAGE PREPROCESSING STEPS

- ► 28*28 = 784 features
- ► Naive solution
 - ► Throw the features to a classifier/regressor
 - \blacktriangleright Subtract the mean, divide by the standard deviation
 - ► fit/predict
- ► This might not work that well

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

Data trumps algorithms

- ► It is often tempteing to try to find a better algorithm to solve a certain problem
- ▶ But it has been shown time and time again that one much better off by adding more data
- \blacktriangleright Problems with neat solutions are very rare, more data
- ► Physics envy ²
 - \blacktriangleright "An informal, incomplete grammar of the English language runs over 1,700 pages"
- ► We are modelling human perception as much as we are modelling cars or numbers!

²Halevy, Alon, Peter Norvig, and Fernando Pereira. "The unreasonable effectiveness of data." IEEE Intelligent Systems 24.2 (2009): 8-12.

About Video data Text Generating data Conclusion

DATA AUGMENTATION

```
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
   samplewise_center=False,
   featurewise_std_normalization=False,
   samplewise_std_normalization=False,
   zca_whitening=False,
   rotation_range=0.,
   width_shift_range=0.,
   height_shift_range=0.,
   shear_range=0.,
   zoom_range=0.,
   channel_shift_range=0.,
   fill_mode='nearest',
   cval=0.,
   horizontal_flip=False,
   vertical_flip=False,
   rescale=None,
   dim_ordering=K.image_dim_ordering())
```

10/38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

CIFAR-10 DATA AUGMENTATION

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

Keras Code

11/38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

OUTSIDE KERAS

for i, (X_batch, Y_batch) in enumerate(datagen.flow(X_train, Y_train, batch_size=32)):
 ## break once you are happy or use an incremental regressor classifier
 ##.partial_fit

Can you do the same data augmentation operations on MNIST images?

About Video data Text Generating data Conclusion

CONVOLUTIONAL LAYERS

- ► Another common approach is to constraint the number of parameters
- ► In a layer type in neural networks become very popular due to huge successes in computer vision
- ► It tries to learn different filters
 - ► Have you ever played with photohop filters?

14/38

VIDEO DATA Conclusion About Text 2D CONVOLUTIONS (4×0) (0×0) Center element of the kernel is placed over the (0×0) source pixel. The source pixel is then replaced (0×0) with a weighted sum of itself and nearby pixels. (0 x 1) (0×1) (0×0) Source pixel (0×1) (-4×2) Convolution kernel (emboss) New pixel value (destination pixel) https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ ConvolutionOperations/ConvolutionOperations.html 15 / 38

Text

Learnning 2D convolutions

VIDEO DATA

13 / 38

ABOUT

- ► You pass the filter over the whole imeage
 - ► Some way of treating borders
 - $\,\blacktriangleright\,$ Padding with zeros
 - ► Do not calculate values if the kernel cannot fit http://deeplearning.stanford.edu/wiki/index.php/ Feature_extraction_using_convolution
- ▶ Notice that now the size of the image doesn't matter as much
- ► 3x3 kernels very common

VIDEO DATA About ${\rm Text}$ GENERATING DATA Code model = Sequential() model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=X_train.shape[1:])) model.add(Activation('relu')) model.add(Convolution2D(32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) 19 / 38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

VIDEO DATA

- ► Video is effectively a stream of images
- ► It has a time component
- ▶ Multiple ways of attaking this
- ▶ You can unfold and create a really large image!
- ► Or, 3D convolutions!
- ► Not too many benchmarks
 - ► It's hard to annotate video https://www.kaggle.com/c/youtube8m/

About	Video data	Техт	Generating data	Conclusion	About	VIDEO DATA	Техт	Generating data	Conclusion
Техт					▶ " <u>'</u>	DDING LAYER The quick brown onvert each to we	fox jumps ov	er the brown lazy dog" eger	
 ► There are multiple ways to treat text ► We will only see the ones here that require minimal pre-processing 					The quick brown	1 2 3			
	You can createThese things ar	-	-process ly under an NLP module				$\begin{array}{c} \text{fox} \\ \text{jumps} \end{array}$	4 5	
▶ `	We treat text as da	ata					over	6	

							lazy dog	7 8	
				21 / 38					22 / 38
UT	Video data	Техт	Generating data	Conclusion	About	Video data	Техт	Generating data	Conclusion
	()								

23 / 38

Training (1)

ABOUT

- ► A weight matrix W is created as usual with size (n_words, n_neurons)
- ► Each row represents a word

- ► Each column is a specific feature/neuron
- ▶ These weights are what is passed to the follow-up layers
- ► What is the supervised signal?

Training (2	4

- ► Continuous bag of words
 - \blacktriangleright You are given as input n previous words and n follow up words and you try to predict the one in the middle
- $lacktriangledown W["Paris"] W["France"] + W["Italy"] \simeq W["Rome"]$

the

brown 3

- \blacktriangleright $W["king"] W["man"] \simeq W["queen"] W["woman"]$
- ► You don't need to use pre-trained vectors

ABOUT Conclusion VIDEO DATA

Code - Preprocessing

```
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
```

25 / 38

ABOUT VIDEO DATA Text Code model = Sequential() model.add(Embedding(max_features, embedding_dims, input_length=maxlen, dropout=0.2)) model.add(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', activation='relu', subsample_length=1)) model.add(GlobalMaxPooling1D()) # We add a vanilla hidden laver: model.add(Dense(hidden_dims)) model.add(Dropout(0.2)) model.add(Activation('relu'))

About VIDEO DATA Text

CAN WE DO IT WITHOUT NEURAL NETWORKS?

- ► Easy solution create feature vector
- ▶ Very recent solution which somewhat works
 - ► Break the sentence/images into windowed sequences
 - ▶ i.e. generate more examples from each data point
 - ► Classify each of these examples
 - ► Combine the results into of the classifiers using a third classifier

VIDEO DATA ABOUT Text

EXAMPLE

X[0] = "This film is the worst film I have ever watched. I hate the director and all the actors should be fired"

$$y = 1$$

▶ Window length of 4 (and obviously you need to turn words into numbers)

```
"This film is the", 1
"film is the worst", 1
\ldots, 1
```

27 / 38

28 / 38

About Video data **Text** Generating data Conclusion

RECURRENT NETWORKS

- ▶ You can use convolutions to processes sequences
- ► You can just flatten the sequence
- ▶ But often sequences have different length
 - ► You can pad
- ► How about arbitrary long sequences
 - ► E.g. a book?
 - ► Very long videos?
- ► Use a recurrent layer
 - ► Takes input of type (n_timesteps,n_features)

EQUATION

About

$$\mathbf{h}_t = (\mathbf{W} * \mathbf{h}_{t-1} + \mathbf{U} * x_t)$$

▶ h_{t-1} is the previous state

VIDEO DATA

- ightharpoonup is your internal weight matrix
- ightharpoonup U your external weight matrix
- $ightharpoonup x_t$ is the input
- ► Come in multiple variants GRUs, LSTMS etc

Text

29 / 38

31/38

30 / 38

Conclusion

Conclusion

ABOUT	VIDEO DATA	1 EXT	GENERATING DATA	CONCLUSION
Code				
model.add(model.add(model.add(<pre>quential() Embedding(max_features, 12 LSTM(128, dropout_W=0.2, d Dense(1)) Activation('sigmoid'))</pre>			

AUTOENCODERS

About

- ► Your goal is to learn the data
- ► There is no other supervisory signal, but the data

Text

Generating data

ightharpoonup I'll give you an image as X

VIDEO DATA

- ► You will produce the same image as output
- ► Applications?
 - \blacktriangleright Image de-noising
 - ► Compression!

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

Example code

```
# this is the size of our encoded representations
encoding_dim = 32

# this is our input placeholder
input_img = Input(shape=(784,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)
autoencoder = Model(input=input_img, output=decoded)
```

About Video data Text Generating data Conclusion

GENERATING TEXT

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

▶ Pushed the popularity of generative methods sky-high

Text

Generating data

► Learn to generate text, given some examples

34 / 38

Conclusion

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

EXAMPLE

- ► Try to predict characters one by one
- ► You input a character
 - ► You call .fit
 - ► Network is stateful
 - ▶ i.e. it remembers where you left off!
- ▶ This way you can process super-long sequences iteratively

Code

About

33 / 38

keras.layers.recurrent.Recurrent(weights=None, return_sequences=False, go_backwards=False, stateful=False, unroll=False, consume_less='cpu', input_dim=None, input_length=None)

VIDEO DATA

35 / 38

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

GANs

- ▶ Claims of being the most important advance of in AI for years
- ► Define a game of sorts
 - ightharpoonup One network G generates an image/text/video
 - ightharpoonup Another network D tries to discriminate between real and artificial examples!
 - ► G is trained as to produce images that D cannot differentiate! https://www.youtube.com/watch?v=PmC6ZOaCAOs&feature=youtu.be

ABOUT VIDEO DATA TEXT GENERATING DATA CONCLUSION

CONCLUSION

37 / 38

- ▶ There is more to data than just tables
- ► Arguably, the most interesting data is in a table format
- ► Again, we have just touched upon the subject
- ► What about sound?
 - ► Wavenet