Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 2_3

Дисциплина: Автоматизация проектирования дискретных устройств (на английском языке).

Выполнил студент гр. 5130901/10101	(подпись)	_ Д.Л. Симоновский
Руководитель	(подпись)	_ А.А. Федотов
		" <u>07</u> " февраля 2024 г.

Санкт-Петербург

Оглавление

1.	Список иллюстраций:	2
2.	Задача:	3
3.	Решение:	3
4	Вывол:	5

1. Список иллюстраций:

Рис. 2.1. Схема разрабатываемого устройства	.3
Рис. 3.1. Код модуля верхнего уровня lab2 3.	
Рис. 3.2. RTL Viewer модуля lab2 3.	
Рис. 3.3. Код теста первого класса для модуля lab2 3.	
Рис. 3.5. Результат моделирования.	

2. Задача:

На языке Verilog разработать устройство по следующей схеме:

Рис. 2.1. Схема разрабатываемого устройства.

Выводы:

- *1) Входы:*
 - а) *CLK* тактовый сигнал.
 - b) aRSTin вход асинхронного сброса (активный уровень для сброса 1).
 - с) [7:0] Din вход данных для управления ШИМ.
- 2) Выходы:
 - а) РWМ выход ШИМ.

Модули:

- 1) *CNT* счетчик, создаваемый с помощью IP модуля LPM COUNTER:
 - а) Разрядность: 8 бит.
 - b) Двоичный счетчик на сложение.
 - с) Выход переноса (carry_out).
 - d) Вход асинхронного сброса (clear).
- 2) *СМР* модуль сравнения, создаваемый с помощью IP модуля LPM COMPARE:
 - а) Два входа по 8 бит.
 - b) a < b
 - с) Без знаковый.
 - d) Без конвейеризации.
- 3) RG регистр, описываемый на Verilog в файле верхнего уровня:
 - a) arst вход асинхронного сброса (активный уровень 1) устанавливает 8'd128.
- 4) *DFF* триггеры, описываемые на Verilog в файле верхнего уровня:
 - a) aset вход асинхронно устанавливает триггер в 1.

3. Решение:

Создадим модуль верхнего уровня на языке Verilog. Его код будет выглядеть следующим образом:

Puc. 3.1. Код модуля верхнего уровня lab2 3.

Первый блок always описывает два триггера DFF для сигнала асинхронного сброса. Поскольку сброс асинхронный, always реагирует не только на фронт clk, но и на фронт сигнала сброса. Блок RG реализует регистр на выходе сравнителя. Поскольку регистр должен иметь асинхронный сигнал сброса, поэтому always реагирует не только на фронт clk, но и на фронт сигнала сброса.

Блок CNT передает параметры IP-модулю счетчика, полученного из IP-модулей Quartus Prime. Блок CMP, аналогично CNT, передает параметры IP-модулю сравнителя.

Блок DFF_out — регистр на выходе сравнителя, реагирует как на clk, так и на сигнал асинхронного сброса, устанавливая значение в 1.

Проверим корректность разработанной схемы, используя RTL Viewer:

Puc. 3.2. RTL Viewer модуля lab2 3.

Интересным тут является разделение блока регистров Dint на два. Один блок для регистров с 6 по 0, а второй отдельно для седьмого. Если посмотреть на то, что записывается в Dint, видно, что вход D инвертирован. Это свзяно с тем, что при сигнале сброса в Dint должно записываться значение 128, именно поэтому регистр хранит инвертированное значение, чтоб при сбросе автоматически устанавливалось значение 128. В остальном схема соответствует ожиданиям. Далее разработаем тесты первого класса для разработанного модуля:

```
timescale 1ns / 1ns
module tb_lab2_3;
 parameter PERIOD = 10;
            CLK = 0;
            aRSTin = 0;
 reg [7:0] Din = 0;
            PWM;
   forever #(PERIOD / 2) CLK = ~CLK;
   .CLK (CLK),
    .aRSTin(aRSTin).
   .Din (Din[7:0]),
   .PWM(PWM)
    Din = 8'd64;
    #(PERIOD * (256 + 128));
    Din = 8'd200;
    #(PERIOD * (256 + 128 + 10));
   $stop;
```

Puc. 3.3. Код теста первого класса для модуля lab2 3.

В начале устанавливаем значение 64, однако в регистр модуля оно запишется только когда счетчик досчитает до максимума и даст сигнал сагту_out. Поэтому подождем 256 тактов. После этого ждем еще 128 тактов и меняем значение на 200, однако запись произойдет еще через 128 тактов. Смотрим на результат 256 + 10 тактов, чтоб увидеть, как выход сбросится опять до 0. Запустим тестовый файл средствами Quartus Prime.

Результат запуска выглядит следующим образом:

Рис. 3.4. Результат моделирования.

Как видно, получившаяся waveform полностью соответствует ожиданиям и техническому заданию, что свидетельствует о корректно разработанном устройстве.

4. Вывод:

В ходе лабораторной работы было разработано устройство на языке Verilog в соответствии с схемой. Получившееся устройство полностью соответствует техническому заданию. Разработанное устройство – обычный ШИМ (широтно-импульсный модулятор), что видно по выходу PWM. Оно принимает на вход Din величину ШИМ, которая записывается по сигналу t_cout, чтоб не происходило каких-либо помех при смене этого значения в процессе вывода сигнала.

В процессе разработки использовались IP-модули из библиотеки Quartus Prime, стоит отметить, что они сильно ускорили процесс и помогли избавиться от написания стандартных модулей, дав возможность сосредоточиться на основном задании.