Report: Titanic Dataset Analysis – Elevate Labs Task 5

Dataset Used

- Source: train.csv (Titanic dataset)
- **Purpose:** Explore passenger data to understand survival patterns and prepare for potential modeling

1. Data Exploration

- The dataset was loaded using **pandas**, and key structural details were examined:
 - o .info() revealed the data types and presence of null values.
 - o .describe() provided summary statistics of numeric columns.
 - isnull().sum() helped identify columns with missing data (e.g., Age, Cabin, Embarked).

2. Data Preprocessing

- Basic preprocessing steps were observed:
 - Handling missing values using methods such as .fillna()
 - Likely dropped or imputed non-numeric or incomplete columns
 - Potential encoding of categorical data using functions like pd.get_dummies() or LabelEncoder (though no detailed transformation was documented)

3. Data Visualization

- Visualization libraries Seaborn and Matplotlib were used to uncover trends:
 - o Plots likely included survival rates segmented by features such as:
 - Sex (e.g., higher survival rate for females)
 - Pclass (e.g., 1st class had better outcomes)
 - Age and Fare distributions
 - Possibly used bar plots, histograms, and heatmaps for correlation or missing data patterns

X 4. Missing Elements

- No Machine Learning Models were implemented:
 - o No classifiers (e.g., Logistic Regression, Random Forest)
 - No train-test splitting or performance evaluation
- The notebook is focused on exploratory data analysis (EDA) only

Recommendations for Next Steps

- 1. Model Building:
 - Try Logistic Regression or Random Forest to predict survival
 - Use train_test_split and accuracy_score for evaluation

2. Feature Engineering:

 Extract titles from names, group family members, create age categories

- Handle missing values in Cabin creatively (e.g., presence vs. absence)
- 3. Cross-Validation & Hyperparameter Tuning:
 - Use GridSearchCV to optimize models

III Plot Summaries

1. Survival Distribution python CopyEdit

sns.countplot(data=df, x='Survived')

- Purpose: Shows the overall count of survivors (1) and non-survivors (0).
- Insight: More passengers did not survive than those who did.

2. Age Distribution

python CopyEdit sns.histplot(df['Age'].dropna(), kde=True)

- Purpose: Displays the age distribution of passengers.
- **Insight:** Most passengers were between 20–40 years old, with a smooth density curve overlay.

3. Survival Count by Gender

python CopyEdit sns.countplot(x='Sex', hue='Survived', data=df)

- Purpose: Compares survival rates between male and female passengers.
- Insight: Females had a significantly higher survival rate than males.

4. Survival by Passenger Class

python CopyEdit

sns.countplot(x='Pclass', hue='Survived', data=df)

- **Purpose**: Examines survival differences across passenger classes (1st, 2nd, 3rd).
- **Insight**: Passengers in 1st class had the highest survival rate, while 3rd class had the lowest.

5. Correlation Heatmap

python CopyEdit

СОРУЕОТ

sns.heatmap(df[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']].corr())

- Purpose: Displays correlation between numeric variables.
- Insight: Fare and Pclass show the strongest relationship to Survived.

6. Boxplot of Age by Survival

python

CopyEdit

sns.boxplot(x='Survived', y='Age', data=df)

- Purpose: Visualizes the age spread for survivors vs. non-survivors.
- **Insight:** Survivors tended to be slightly younger; median age was lower for survivors.

7. Survival Rate by Embarked Port

python CopyEdit

sns.barplot(x='Embarked', y='Survived', data=df)

- Purpose: Shows average survival rate per embarkation port (C, Q, S).
- Insight: Passengers embarking from port C had the highest survival rate.

8. Fare vs. Age by Survival

python CopyEdit

sns.scatterplot(x='Age', y='Fare', hue='Survived', data=df)

- Purpose: Scatterplot of fare paid vs. age, color-coded by survival.
- **Insight**: Survivors generally paid higher fares, often associated with younger and middle-aged groups.

9. Survival Rate by Age Group

python CopyEdit

sns.barplot(x='AgeGroup', y='Survived', data=df)

- Purpose: Groups passengers into age brackets and shows average survival.
- Insight: Children had the highest survival rate, seniors had the lowest.

10. Survival by Class and Embarked Port

python

CopyEdit

sns.heatmap(df.pivot_table(index='Pclass', columns='Embarked', values='Survived'))

- **Purpose**: Heatmap of survival rates broken down by class and embarkation port.
- Insight: 1st class passengers from port C had the highest survival rates.

11. Survival by Siblings/Spouses Aboard python CopyEdit sns.countplot(x='SibSp', hue='Survived', data=df)

- Purpose: Compares survival by the number of siblings/spouses aboard.
- **Insight**: Solo travelers and those with 1 companion had better chances than those with many companions.