Diskretna matematika II - 2018/19

8. vaje - 09. april 2019

- 1. Pokažite, da
 - (a) ne obstaja (17, 9, 2) načrt.
 - (b) ne obstaja (21, 6, 1) načrt.
- 2. Zapišite incidenčno matriko (6, 3, 2) načrta, ki ima naslednje bloke:

$$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,6\},\{1,5,6\},$$

$${2,3,6}, {2,4,5}, {2,5,6}, {3,4,5}, {3,4,6}.$$

- 3. Iz danega (v, k, λ) načrta N lahko dobimo nov načrt \overline{N} v katerem so bloki ravno komplementarni blokom načrta N. Načrtu \overline{N} pravimo komplementaren načrt načrta N.
 - Dokažite naslednji izrek: Naj bo N (v, k, λ) načrt na množici S z bloki B_1, \ldots, B_b . Potem množice $\overline{B_i} = S \setminus B_i$ tvorijo $(v, v k, \lambda')$ načrt (komplementaren načrt načrta N), kjer je $\lambda' = b 2r + \lambda$, če je le $\lambda' > 0$.
- 4. Konstruirajte (13, 4, 1) načrt s pomočjo (9, 3, 1) načrta.
- 5. (v, k, λ) načrtu z b = v pravimo simetričen načrt. Konstruirajte (13, 9, 6) načrt tako, da najprej pokažete, da je simetričen in potem za konstrukcijo uporabite (13, 4, 1) načrt, iz prejšnje naloge.
- 6. Spomnimo se, da so Steinerjevi sistemi trojk reda v (SST(v)) definirani kot (v, 3, 1) načrti.
 - (a) Koliko blokov ima SST(v)?
 - (b) Naj bo m naravno število. Poiščite vse vrednosti parametra v, za katere obstaja SST reda v, ki ima natanko mv blokov.
 - (c) Kaj ta rezultat pove o Steinerjevih sistemih trojk, ki so simetrični načrti?
- 7. Vsaka od kart v kompletu kart igre **SET** ima štiri lastnosti: število (ena, dve, tri), simbol (karo, vijuga, oval), osenčenost (polna, prazna, šrafirana) in barvo (rdeča, zelena, vijolična). Tako lahko vsako karto identificiramo z urejeno četverico (x_1, \ldots, x_4) , kjer je $x_i \in \{0, 1, 2\}$ za vsak $i \in \{1, 2, 3, 4\}$. Pravimo, da tri karte sestavljajo **set**, če za vsako od teh štirih lastnosti velja, da je bodisi pri vseh treh kartah ista bodisi pri vseh treh kartah različna.
 - (a) Naj bo S nabor vseh možnih setov iz kompleta kart igre SET. Pokažite, da množica S tvori SST.
 - (b) Koliko je možnih setov? V kolikšnem številu setov je vsebovana poljubna (fiksna) karta?

PONAVLJANJE - DELNO

- 1. Poiščite rekurzivno zvezo za število načinov na katere lahko pokrijemo pravokotna tla velikosti $2 \times n$ kvadratov $(n \in \mathbb{N})$ s ploščami, ki pokrijejo 3 kvadrate in imajo obliko črke L.
- 2. Rešite rekurzivno enačbo F(n)=4F(n-1)-3F(n-2) z začetnima pogojema F(0)=2 in F(1)=5.