A Stochastic Variational Inference Approach for Semiparametric Distributional Regression

Final Kolloquium MSc Applied Statistic

Sebastian Lorek

First supervisor: Prof. Dr. Thomas Kneib Second supervisor: Gianmarco Callegher

2023-11-28

Table of Contents I

Introduction

Theory

Application

Introduction

Statistical Infrence

Frequentist inference:

- ML estimation (Newton-Rhapson/Fisher-Scoring)
- Hyperparameter estimation
- REML for latent parameters (random-effects)
- SGD, Automatic differentiation in machine/deep learning

Bayesian inference:

- Conjugate models, full conditional conjugate models, non-conjugate models
- Gibbs sampling
- Rejection/Importance sampling
- MCMC (IWLS, HMC, NUTS)
- MAP estimation in combination with the Laplace approximation

Bayesian Inference

- Focal point of interest is the posterior distribution
- General posterior specification for Bayesian regression

$$\rho(\boldsymbol{\theta}|\mathbf{y}, \mathcal{D}) = \frac{\rho(\mathbf{y}, \boldsymbol{\theta}|\ \mathcal{D})}{\rho(\mathbf{y}|\mathcal{D})} \tag{1}$$

$$= \frac{p(\mathbf{y}|\ \boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})}{p(\mathbf{y}|\mathcal{D})}$$
(2)

$$= \frac{p(\mathbf{y}|\ \boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})}{\int p(\mathbf{y}|\ \boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})\ d\boldsymbol{\theta}}$$
(3)

$$\propto p(\mathbf{y}||\boldsymbol{\theta}, \mathcal{D})p(\boldsymbol{\theta})$$
 (4)

- Primary challenge is the calculation of the normalizing constant/evidence
- We need approximate methods that bypass the direct calculation of the normalizing constant

- MCMC methods have been so far the work horse for Bayesian inference in classical statistics
- Set up Markov chain (adhere to detailed balance and ergodicity) and sample . . .
- Enjoyes nice properties
 - Assurance of convergence to the true posterior
- But unfortunately does not scale well for modern applications
 - High dimensional parameter spaces (tausands of parameters)
 - Large dataset
 - Many latent and hyper-parameters
- Trade some accuracy for scalability
- Make use of SGD and automatic differentiation which works well for inference in machine/deep learning (frequentist inference)

Theory

Variational Inference

- VI is a method from machine learning to approximate probability densities (Jordan et al. 1999)
- Approximate posterior with a variational distribution $q(\theta)$ from a predefined (parametric) variational family Q

$$q(\theta) \in \mathcal{Q}$$

- Use optimization (SGD) to find a member that is as closely as possible to the true posterior
- What means close in terms of distributions ?

Kullback-Leibler divergence

 Divergence measure (Kullback and Leibler 1951) that quantifies the proximity between two probability distributions

$$D_{\mathsf{KL}} = \int q(\boldsymbol{\theta}) \ln \left(\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathbf{y}, \mathcal{D})} \right) d\boldsymbol{\theta}$$
$$= \mathsf{E}_{q(\boldsymbol{\theta})} \left[\ln \left(\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|\mathbf{y}, \mathcal{D})} \right) \right]$$

- In short $D_{KL}(q||p)$
- It holds that $D_{KL}(q||p) \ge 0$
- Has some nice properties but also drawbacks (not a distance/metric)

Optimization objective

 Use optimization to find a variational distribution that is as close as possible in terms of the divergence measure to the true posterior

$$\begin{split} q^*(\boldsymbol{\theta}) &= \mathop{\arg\min}_{q(\boldsymbol{\theta}) \in \mathcal{Q}} \mathsf{D}_{\mathsf{KL}} \left(q(\boldsymbol{\theta}) || \ p(\boldsymbol{\theta} | \mathbf{y}, \mathcal{D}) \right) \\ &= \mathop{\arg\min}_{q(\boldsymbol{\theta}) \in \mathcal{Q}} \int q(\boldsymbol{\theta}) \ln \left(\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathbf{y}, \mathcal{D})} \right) \ d\boldsymbol{\theta} \\ &= \mathop{\arg\min}_{q(\boldsymbol{\theta}) \in \mathcal{Q}} \mathsf{E}_{q(\boldsymbol{\theta})} \left[\ln \left(\frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathbf{y}, \mathcal{D})} \right) \right]. \end{split}$$

- \blacksquare Flexibility of \mathcal{Q} significantly influences the optimization
 - \blacksquare Complex $\mathcal{Q} \to$ better approximation, but increased complexity during optimization
 - lacksquare Simple $\mathcal{Q} o$ worse approximation, but simpler optimization
- Objective offers theoretical insights but remains infeasible to compute, due to containing the posterior (evidence)

Evidence Lower Bound

- Think about a way to introduce a mathematical **equivalent** objective that does not depend on the evidence
- Lets start with the log-evidence

$$\ln(p(\mathbf{y}|\mathcal{D})) = \int q(\theta|\phi) \ln(p(\mathbf{y}|\mathcal{D})) d\theta$$
 (5)

$$= \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}|\mathcal{D})p(\theta|\mathbf{y},\mathcal{D})}{p(\theta|\mathbf{y},\mathcal{D})} \right) d\theta \tag{6}$$

$$= \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}, \theta|\mathcal{D})}{p(\theta|\mathbf{y}, \mathcal{D})} \right) d\theta \tag{7}$$

$$= \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}, \theta|\mathcal{D})}{q(\theta|\phi)} \frac{q(\theta|\phi)}{p(\theta|\mathbf{y}, \mathcal{D})} \right) d\theta$$
 (8)

$$= \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}, \theta|\mathcal{D})}{q(\theta|\phi)} \right) d\theta + \int q(\theta|\phi) \ln \left(\frac{q(\theta|\phi)}{p(\theta|\mathbf{y}, \mathcal{D})} \right) d\theta \qquad (9)$$

$$= \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In} \left(\frac{p(\mathbf{y}, \theta|\mathbf{X})}{q(\theta|\phi)} \right) \right] + \mathsf{D}_{\mathsf{KL}} (q(\theta|\phi)||p(\theta|\mathbf{y}, \mathcal{D})) \tag{10}$$

Parameterize q with ϕ

Optimization objective revisited

Rewrite 10 as

$$\ln(p(\mathbf{y}|\mathbf{X})) - D_{\mathsf{KL}}(q||p) = \mathsf{E}_{q(\theta|\phi)} \left[\ln\left(\frac{p(\mathbf{y},\theta|\mathcal{D})}{q(\theta|\phi)}\right) \right] \tag{11}$$

 \blacksquare And take arg max w.r.t. ϕ

$$\begin{split} \arg\max_{\phi} \ln(p(\mathbf{y}|\mathcal{D})) - \mathrm{D}_{\mathsf{KL}}(q||p) &= \arg\max_{\phi} \mathrm{E}_{q(\theta|\phi)} \left[\ln\left(\frac{p(\mathbf{y},\theta|\mathcal{D})}{q(\theta|\phi)}\right) \right] \\ \arg\max_{\phi} - \mathrm{D}_{\mathsf{KL}}(q||p) &= \arg\max_{\phi} \mathrm{E}_{q(\theta|\phi)} \left[\ln\left(\frac{p(\mathbf{y},\theta|\mathcal{D})}{q(\theta|\phi)}\right) \right] \\ \arg\min_{\phi} \mathrm{D}_{\mathsf{KL}}(q||p) &= \arg\max_{\phi} \mathrm{E}_{q(\theta|\phi)} \left[\ln\left(\frac{p(\mathbf{y},\theta|\mathcal{D})}{q(\theta|\phi)}\right) \right] \end{split}$$

■ New optimization objective

$$\begin{split} \hat{\phi} &= \arg\max_{\phi} \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In} \left(\frac{p(\mathbf{y}, \theta|\mathcal{D})}{q(\theta|\phi)} \right) \right] \\ &= \arg\max_{\phi} \mathsf{ELBO}(\phi) \end{split}$$

■ Take a breath 🥯

■ What does the ELBO ?

$$\mathsf{ELBO}(\phi) = \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In} \left(\frac{p(\mathbf{y}, \theta|\mathcal{D})}{q(\theta|\phi)} \right) \right] \tag{12}$$

$$= \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In} \left(\frac{p(\mathbf{y}|\mathcal{D}, \theta)p(\theta)}{q(\theta|\phi)} \right) \right] \tag{13}$$

$$= \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In}(p(\mathbf{y}|\mathcal{D}, \theta)) \right] + \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In}(p(\theta)) \right] - \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In}(q(\theta|\phi)) \right]$$

$$= \mathsf{E}_{q(\theta|\phi)} \left[\mathsf{In}(p(\mathbf{y}|\mathcal{D}, \theta)) \right] - \mathsf{D}_{\mathsf{KL}} \left(q(\theta|\phi) || p(\theta) \right)$$

$$(15)$$

Actually something similar to MAP/ML

Variational family

- What is the $\mathcal Q$ and thus $q(\theta|\phi)$?
- Start simple

$$q(oldsymbol{ heta}|oldsymbol{\phi}) = \prod_{j=1}^J q_j(heta_j|oldsymbol{\phi}_j)$$

- Known as mean-field variational family
- - lacksquare Some parameteric distribution that respects the parameter space of $heta_j$
 - All model parameters are independent

Figure 1: Mean-field approximation to a 2-D multivariate normal distribution, based on Blei et al. (ibid., p. 9, figure 1).

- Augment the variational distribution to blocks of parameters
- Structured mean-field variational inference (Wainwright and Jordan 2007)

$$q(oldsymbol{ heta}|oldsymbol{\phi}) = \prod_{j=1}^J q_j(oldsymbol{ heta}_j||oldsymbol{\phi}_j)$$

■ Captures interdependencies for blocks of parameters

Coordinate ascent variational inference (side node)

- Traditional way of solving opt. objective is CAVI (Blei et al. 2017)
 - However CAVI does not scale well
 - Closely connected to Gibbs sampling
 - Only works for conditional conjugate models
 - If you search for VI CAVI is still all over the place, see f.e. wikipedia
- Of course we want to be able to also conduct inference in non-conjugate models X

Stochastic variational inference

- SGD to optimize the ELBO (Hoffman et al. 2012)
- 2 sources of stochasticity
 - lacktriangle We use a subset $\mathcal I$ of the data in each iteration (ELBO remains unbiased)
 - We need to evaluate the integral in the ELBO

$$\mathsf{ELBO}(\phi)_{\mathcal{I}} = \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}_{\mathcal{I}}, \theta|\mathcal{D}_{\mathcal{I}})}{q(\theta|\phi)} \right) d\theta \tag{16}$$

$$\nabla_{\phi} \mathsf{ELBO}(\phi) = \nabla_{\phi} \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}_{\mathcal{I}}, \theta|\mathcal{D}_{\mathcal{I}})}{q(\theta|\phi)} \right) d\theta \tag{17}$$

Common method to solve this problem is Monte Carlo integration

$$\nabla_{\phi} \mathsf{ELBO}(\phi)_{\mathcal{I}} = \nabla_{\phi} \int q(\theta|\phi) \ln \left(\frac{p(\mathbf{y}_{\mathcal{I}}, \theta|\mathcal{D}_{\mathcal{I}})}{q(\theta|\phi)} \right) d\theta \tag{18}$$

$$pprox
abla_{\phi} rac{1}{S} \sum_{s=1}^{S} \ln \left(rac{p(\mathbf{y}_{\mathcal{I}}, oldsymbol{ heta}^{s} | \mathcal{D}_{\mathcal{I}})}{q(oldsymbol{ heta}^{s} | oldsymbol{\phi})}
ight), \; oldsymbol{ heta}^{s} \sim q(oldsymbol{ heta} | oldsymbol{\phi}).$$
 (19)

- But this does not work ??
- If we change ϕ even infinitessimal the samples θ^s are invalid, which we used to calculate $\nabla_{\phi}\mathsf{ELBO}(\phi)_{\mathcal{I}}$ in the first place

Figure 2: Plate notation of the dependence structure in a Bayesian regression model for VI, when sampling from the variational distribution.

Reparameterization gradient estimator

- Reparapemeterize $\theta = \mathbf{g}_{\phi}(\epsilon)$, with a bijective function \mathbf{g}_{ϕ} such that we can use SGD with Monte Carlo integration (Kingma and Welling 2013; Kucukelbir et al. 2016; Rezende et al. 2014)
- Amounts to using the (multivariate) change of variable theorem for probability density functions

$$\begin{split} \mathbf{g}_{\phi} &: \mathbb{R}^d \to \mathbb{R}^d; \; \boldsymbol{\theta}, \boldsymbol{\epsilon} \in \mathbb{R}^d \\ &\boldsymbol{\theta} = \mathbf{g}_{\phi}(\boldsymbol{\epsilon}), \; \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ q(\boldsymbol{\theta}|\phi) &= \begin{cases} p_{\boldsymbol{\epsilon}}(\mathbf{g}_{\phi}^{-1}(\boldsymbol{\theta})) \left| \det(\mathbf{J}_{\mathbf{g}_{\phi}^{-1}}) \right|, & \text{if } \boldsymbol{\theta} \text{ is in the codomain of } \mathbf{g}_{\phi} \\ 0, & \text{else.} \end{cases} \end{split}$$

Figure 3: Plate notation of the dependence structure in a Bayesian regression model in VI, using the "reparameterization-trick".

■ This "trick" allows us to pull the gradient operator inside of the monte carlo integral and use the chain rule

$$\begin{split} \nabla_{\phi} \mathsf{ELBO}(\phi)_{\mathcal{I}} &\approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\phi} \ln \left(\frac{p(\mathbf{y}_{\mathcal{I}}, \theta = \mathbf{g}_{\phi}(\epsilon) | \mathcal{D}_{\mathcal{I}})}{q(\theta = \mathbf{g}_{\phi}(\epsilon) | \phi)} \right) \bigg|_{\theta = \theta^{s}} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\theta} \ln \left(\frac{p(\mathbf{y}_{\mathcal{I}}, \theta = \mathbf{g}_{\phi}(\epsilon) | \mathcal{D}_{\mathcal{I}})}{q(\theta = \mathbf{g}_{\phi}(\epsilon) | \phi)} \right) \bigg|_{\theta = \theta^{s}} \nabla_{\phi} \mathbf{g}_{\phi}(\epsilon^{s}), \end{split}$$
 with $\theta_{\phi}^{s} = \mathbf{g}_{\phi}(\epsilon^{s}), \ \epsilon^{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ s = 1, \dots, S$

Opens the door for backpropagation and thus automatic diff.

"Black-box" variational inference

- Using SVI with the reparameterization gradient estimator
- Researcher only formulates a probabilistic model and provides a dataset (Kucukelbir et al. 2016), inference algo. is model "agnostic"
- What is \mathbf{g}_{ϕ} ?
 - Linear and non-linear choices
 - We consider linear choice

$$egin{aligned} m{ heta}_j &= \mathbf{L}_j m{\epsilon}_j + m{\mu}_j, m{\epsilon}_j \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \ m{ heta}_j &\sim \mathcal{N}(m{\mu}_j, \mathbf{L}_j \mathbf{L}_j^{\mathrm{T}}) \end{aligned}$$

- For positive restricted parameters we need to chain another transformation layer via exp transformation
- Chaining variable transformations
 - Normalizing flows (Rezende et al. 2014)
 - lacksquare Allow for expressive $\mathcal Q$ s but are more difficult to optimize

Optimization

■ We use Adam (Kingma and Ba 2014)

$$\left. \hat{\boldsymbol{\phi}}^t = \hat{\boldsymbol{\phi}}^{t-1} + \rho_t \nabla_{\boldsymbol{\phi}} \mathsf{ELBO}(\boldsymbol{\phi})_{\mathcal{I}^t} \right|_{\boldsymbol{\phi} = \hat{\boldsymbol{\phi}}^{t-1}}$$

Full Algorithm

```
Data: \mathcal{D}_{train}; \mathcal{D}_{val}
Require: Learning rate \alpha; stopping threshold \varepsilon; mini-batch size M; share train w; num. var.
               samples S; num. epochs: E
Initialize \hat{\phi}^0; set t=1
for e = 1 to E do
        n_{\text{train}} = |\mathcal{D}_{\text{train}}| * w
        create the mini-batches, \mathcal{B} = \{\ldots, \mathcal{I}^k, \ldots\}, \ k = 1, \ldots, n_{\mathsf{train}} / / M \ (+1)
        for k = 1 to n_{train}//M (+1) do
                 sample noise, \epsilon_i^s \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ s = 1, \dots, S, \ \forall j
                calculate approx. gradient, \nabla_{m{\phi}}\mathsf{ELBO}(m{\phi})_{\mathcal{I}^k}\Big|_{m{\phi}=\hat{m{\phi}}^{t-1}}
                update variational parameters, \hat{\phi}^t = \hat{\phi}^{t-1} + \rho_t \nabla_{\phi} \mathsf{ELBO}(\phi)_{\mathcal{I}^k} \Big|_{t=2t-1}
                calculate approx. ELBO, ELBO(\hat{\phi}^t)_{\mathcal{D}_{\text{col}}}
                 t = t + 1
        end
        if t > 200 then
                 \Delta \mathsf{ELBO} = |\mathsf{ELBO}(\hat{\phi}^t)_{\mathcal{D}_{\mathsf{val}}} - \mathsf{ELBO}(\hat{\phi}^{t-200})_{\mathcal{D}_{\mathsf{val}}}|
        else
                 \Delta ELBO = \infty
        end
        if \Delta ELBO < \varepsilon then
                 break
        end
end
Result: \hat{\phi}; ELBO(\hat{\phi})_{\mathcal{D}_{\mathsf{val}}}
```

Algorithm 1: BBVI algorithm.

Impact Analysis

Figure 4: ELBO traces for 3 different SGD runs, using different initializations but the same seed. We use a batch size of 128, 64 samples from the variational distribution and a learning rate of 1e-2.

Figure 5: ELBO traces for 3 different SGD runs, using different seeds but the same initialization. Otherwise same configuration as in Figure 4.

Figure 6: ELBO traces for 3 different SGD runs, using different variational sample sizes. We use batch VI with a learning rate of 1e-2 and the same seed as in Figure 4.

Figure 7: ELBO traces for 3 different SGD runs, using different batch sizes. We use a variational sample size of 64 with a learning rate of 1e-2 and the same seed as in Figure 4.

Semiparametric distributional regression

- Not only normally distributed responses
- Linear predictors with inverse link function
- Structured addive linear predictors so fixed and smooth effects
 - B-spline basis functions
- Augmented with priors
 - Bayesian P-splines

Application

Implementation

- Developed a small python package tigerpy, which consists of two libararies
- A model building library tigerpy.model
 - Construct the model
 - Uses the idea of probabilistic graphical models
- An inference library tigerpy.bbvi
 - Runs the inference algorithm
- Aligned with concepts found in liesel (Riebl et al. 2022)

Technology

When walking about the countryside of Italy, the people will not hesitate to tell you that JAX has "una anima di pura programmazione funzionale". (JAX docs, Bradbury et al. (2018))

- There are great things about JAX ♥
 - Uses a numpy flawored API
 - Closely follows the math (jax.grad)
 - Is fast (if you follow JAXs principles)
- There are things that cause headaches ಅ
 - Pure functions
 - Tracing
 - Efficiency considerations in JIT-compiled code

- tigerpy.model constructs under the hood a DAG
- Employs the networkx package for constructing, traversing and visualizing the DAG

Figure 8: The DAG visualization for location-scale regression from the method .visualize_graph().

Simulation Studies

Open Problems

- Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (Apr. 2017). "Variational Inference: A Review for Statisticians". In: *Journal of the American Statistical Association* 112.518, pp. 859–877.
- Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang (2018). *JAX: composable transformations of Python+NumPy programs*. Version 0.3.13. URL: http://github.com/google/jax.
- Hoffman, Matt, David M. Blei, Chong Wang, and John Paisley (2012). Stochastic Variational Inference.
- Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul (1999). "An Introduction to Variational Methods for Graphical Models". In: *Machine Learning* 37.2, pp. 183–233.
- Kingma, Diederik P and Max Welling (2013). Auto-Encoding Variational Bayes.
- Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.

- Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei (2016). *Automatic Differentiation Variational Inference*.
- Kullback, S. and R. A. Leibler (Mar. 1951). "On Information and Sufficiency". In: *The Annals of Mathematical Statistics* 22.1, pp. 79–86.
- Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). Stochastic Backpropagation and Approximate Inference in Deep Generative Models.
- Riebl, Hannes, Paul F. V. Wiemann, and Thomas Kneib (2022).

 Liesel: A Probabilistic Programming Framework for Developing

 Semi-Parametric Regression Models and Custom Bayesian Inference

 Algorithms.
- Wainwright, Martin J. and Michael I. Jordan (2007). "Graphical Models, Exponential Families, and Variational Inference". In: Foundations and Trends® in Machine Learning 1.1–2, pp. 1–305.

