Exercises and outline solutions for MM101 tutorial in week 8

1. Suppose that the functions f and g are continuous for all $x \in [0,6]$. Determine the value of the integral

$$I = \int_1^6 (f - g)$$

given that

$$\int_0^6 f = 10,$$
 $\int_1^6 g = 4,$ and $\int_1^0 f = 2.$

(You should carefully note which definitions or theorems you are using at each stage of your argument.)

$$I = \int_{1}^{6} (f - g) = \int_{1}^{6} f + \int_{1}^{6} (-g) \quad \text{by Theorem 13.3}$$

$$= \int_{1}^{6} f - \int_{1}^{6} g \quad \text{by Theorem 13.2}$$

$$= \int_{0}^{6} f - \int_{0}^{1} f - \int_{1}^{6} g \quad \text{by Theorem 13.1}$$

$$= \int_{0}^{6} f + \int_{1}^{0} f - \int_{1}^{6} g \quad \text{by Definition 13.4}$$

$$= 10 + 2 - 4 = 8.$$

2. Without evaluating any integrals, find f'(x) for the functions defined by the following expressions.

(a)
$$f(x) = \int_{a}^{x} t^{2} dt;$$
 (b) $f(x) = \int_{x}^{a} t^{2} dt;$
(c) $f(x) = \int_{a}^{b} t^{2} dt;$ (d) $f(x) = \sin\left(\int_{a}^{x} \cos^{2} t dt\right);$
(e) $f(x) = \int_{a}^{b} x t^{2} dt;$ (f) $f(x) = \int_{a}^{x} x t^{2} dt.$

(a)
$$f'(x) = x^2$$
.

(b)
$$f(x) = -\int_{a}^{x} t^{2} dt$$
, and so $f'(x) = -x^{2}$.

(c)
$$f'(x) = 0$$
.

(d)
$$f'(x) = \cos\left(\int_a^x \cos^2 t \, dt\right) \cdot \cos^2 x$$
.

(e)
$$f(x) = x \int_a^b t^2 dt$$
, and so $f'(x) = \int_a^b t^2 dt$.

(f)
$$f'(x) = \int_{0}^{x} t^2 dt + x^3$$
.

3. For what values of the real number n do the following integrals exist?

(a)
$$\int_0^1 x^n dx$$
; (b) $\int_1^\infty x^n dx$; (c) $\int_0^\infty x^n dx$.

(a) For n > 0, x^n is bounded and continuous on [0,1] so the integral exists. For n < 0 and $n \neq -1$, x^n is only bounded on (0,1] so we have the improper integral

$$\int_0^1 x^n \, \mathrm{d}x = \lim_{a \to 0^+} \int_a^1 x^n \, \mathrm{d}x = \lim_{a \to 0^+} \frac{1 - a^{n+1}}{n+1},$$

so the integral is defined only when n > -1. For n = -1, the improper integral is

$$\int_0^1 x^{-1} dx = \lim_{a \to 0^+} \int_a^1 x^{-1} dx = \lim_{a \to 0^+} (-\ln a),$$

and is also undefined.

(b) The improper integral is defined by $\int_1^\infty x^n dx = \lim_{b \to \infty} \int_1^b x^n dx$. For $n \neq -1$, we therefore have

$$\int_{1}^{\infty} x^{n} dx = \lim_{b \to \infty} \frac{b^{n+1} - 1}{n+1},$$

while for n = -1, we have

$$\int_{1}^{\infty} x^{-1} \, \mathrm{d}x = \lim_{b \to \infty} \ln b,$$

Thus the integral is defined for n < -1 only.

(c) If the integral is defined then we can write $\int_0^\infty x^n dx = \int_0^1 x^n dx + \int_1^\infty x^n dx$. By (a), the first integral is defined if and only if n > -1. By (b), the second integral is defined if and only if n < -1. We conclude that $\int_0^\infty x^n dx$ is undefined for every real number n.