Linear Regression (I)

- 1 A simple linear model
- 2 Ordinary Least Squares (OLS)
- 3 Regression output

Nate Silver's Political Calculus

-9.7% in 1952 (Korea); negligible in 1964,1976, 2004, 2012, and null in other years.

Source: www.douglas-hibbs.com October 26 2012

To what extent can trust in government be predicted from variations in economic growth?

DV: Trust in government

"Just about always/Most of the time" (American National Election Studies)

IV: Economic performance

Change in per capita disposable income (Bureau of Economic Analysis)

Example and data provided by John Sides.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Simple linear regression

Equations

$$Y = \alpha + \beta X + \epsilon$$
 $\hat{Y} = \hat{\alpha} + \hat{\beta} X + \hat{\epsilon}$ $\epsilon = Y - \hat{Y}$

Parameters

- lacksquare Y is the dependent variable and \hat{Y} its predicted value
- \blacksquare X is the independent variable used as a predictor of Y
- \blacksquare α is the constant (intercept)
- \blacksquare β is the regression coefficient (slope)
- \bullet is the error term (residuals)

Warning

The model assumes a linear, additive relationship.

Ordinary Least Squares (OLS)

Error term

In a simple linear model $Y=\alpha+\beta X+\epsilon$, the regression coefficient β is calculated as to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \epsilon^2$$

where $Y_i - \hat{Y}_i$ is the residual (or error term) of each observation.

Parameter estimation

$$\beta = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}_X} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \quad \alpha = \bar{Y} - \beta \bar{X}$$

reg y x

. regress trust income

Source	SS	df	MS
Model Residual	1908.80221 643.906248	1 10	1908.80221 64.3906248
Total	2552.70846	11	232.064405

Number of obs = 12 F(1, 10) = 29.64 Prob > F = 0.0003 R-squared = 0.7478 Adj R-squared = 0.7225 Root MSE = 8.0244

trust	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income		1.586767	5.44	0.000	5.103836	12.17491
_cons		3.888016	6.87	0.000	18.03197	35.35805

Top left: ANOVA table. Top right: model fit.

Bottom: regression coefficients.

Interpretation of fit

Number of observations N, significance test $H_0: \beta = 0$, coefficient of determination R^2 .

Saurce	33	41	MI.	Sunder of obs		
Model 1	1966,88225	- 1	2989.86223	F(1, 18) From > F	:	25.
Residual	601, 906208	10	64,3101201	ti-squared		
Total:	2552,78808	11	232,00000	Adj R-squared Reat RSE		8.63

Goodness of fit

$$R^2=1-rac{\sum_{i=1}^n(\mathbf{Y}_i-\hat{\mathbf{Y}}_i)^2}{\sum_{i=1}^n(\mathbf{Y}_i-\hat{\mathbf{Y}}_i)^2}=rac{ ext{residual sum of squares}}{ ext{total sum of squares}}$$

As predicted variance increases, $RSS \rightarrow 0$ and $R^2 \rightarrow 1$, indicating a more efficient fit.

Number of obs = F(1. 10) = 29.64Prob > F = 0.0003R-squared = 0.7478Adj R-squared = 0.7225

Root MSE = 8.0244

Sanity check

The most important statistic here is the actual number of observations in the model.

Interpretation of regression coefficients

A regression coefficient estimates the variation in Y predicted by a change in one unit of X (recall that $Y = \alpha + \beta X + \epsilon$)

trust	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income	8.639373	1.586767	5.44	0.000	5.103836	12.17491
_cons	26.69501	3.888016	6.87	0.000	18.03197	35.35805

- The coefficient is the slope β of the regression line and the constant is its intercept, the coordinate of origin $\alpha = \hat{Y}_{X=0}$.
- The standard error, *t*-value and *p*-value test whether the coefficient is significantly different from 0.

Thanks for your attention

Project

- Correct and improve first draft
- Finalize association tests and interpretations

Readings

- Stata Guide, Sec. 11
- Making History Count, ch. 4

Practice

- Replicate do-file
- Try getting OLS results in your second draft