(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 July 2003 (31.07.2003)

PCT

(10) International Publication Number WO 03/061564 A2

(51) International Patent Classification7:

A61K

(21) International Application Number: PCT/US02/40718

VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

20 December 2002 (20.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/341,815 60/343,185 21 December 2001 (21.12.2001) US 31 December 2001 (31.12.2001)

(71) Applicants (for all designated States except US): GENE LOGIC, INC. [US/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). LG BIOMEDICAL INSTITUTE [US/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KOH, Sang, Seok [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). LIU, Oing [CN/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). CHUNG, Hyun-Ho [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). ZENG, Wen [CN/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). LEE, Bogman [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). YERAMILLI, Subrahmanyam [US/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). SONG, Si, Young [KR/KR]; 111-401 Samsung Apt., Baegma-maeul, Madu 1-dong, ilsan-gu, Goyang-si, Gyeonggi-do 411-351 (KR).

Bockius LLP, 1111 Pennsylvania Avenue NW, Washington,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

DC 20004 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

(74) Agents: TUSCAN, Michael, S. et al.; Morgan, Lewis &

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GENE EXPRESSION PROFILES IN LIVER DISEASE

(57) Abstract: The present invention results from the examination of tissue from hepatic carcinomas to identify genes differentially expressed between cancerous liver tissue and diseased but non-cancerous liver tissue. The invention includes diagnostic, screening, drug design and therapeutic methods using these genes, as well as solid supports comprising oligonucleotide arrays that are complementary to or hybridize to the differentially expressed genes.

GENE EXPRESSION PROFILES IN LIVER DISEASE

INVENTORS: Sang Seok KOH, Qing LIU, Hyun-Ho CHUNG, Wen ZENG, Bogman LEE, Subrahmanyam YERRAMILLI, Si Young SONG

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Applications 60/341,815 and 60/343,185, both of which are herein incorporated by reference in their entirety.

5

10

15

20

25

30

FIELD OF THE INVENTION

The invention relates generally to the changes in gene expression in liver tissue from patients with hepatic carcinomas. The invention specifically relates to a set of human genes that are differentially expressed in cancerous liver tissue compared to diseased, but non-cancerous liver tissue.

BACKGROUND OF THE INVENTION

Liver Disease

Generally, liver disease is classified as a disorder that causes the liver to malfunction or cease functioning all together. Cirrhosis, for example, is a group of chronic liver diseases in which liver cells are damaged and then replaced with scar tissue, thereby decreasing the amount of normal liver tissue. While it is most often caused by alcohol abuse, patients with hepatitis infections and other biliary diseases can also develop cirrhosis. Chronic hepatitis-B infection, hepatitis-C infection, and cirrhosis have all been shown to have strong associations with primary liver cancer, although the mechanisms involved are still not fully understood (Wu et al. (2001), Oncogene, 20: 3674-3682). About 10-20% chronic hepatitis-B infections result in primary liver cancer. Other factors such as alcohol consumption, poor nutrition and aflatoxins (carcinogens produced by molds, which are found in spoiled foods such as peanuts, corn, grains and seeds) are also linked to the development of primary liver cancer and cirrhosis.

In primary liver cancer, liver cells become abnormal, grow out of control and form malignant tumors. This disease is also called hepatocellular carcinoma (HCC) or malignant hepatoma. Cancer that spreads to the liver from another part of the body as a result of metastasis is not the same disease. HCC is difficult to detect at an early stage because the symptoms are not specific. They include loss of appetite and weight, fever,

WO 03/061564

2

PCT/US02/40718

fatigue and weakness. As the cancer progresses, pain may develop in the upper abdomen, extending to the back and right shoulder. Swelling or a palpable mass may also be present in the upper abdomen, along with jaundice and darkened urine. When the cancer metastasizes, it typically targets the lungs and brain.

5

Diagnosis of HCC may be made by blood tests, in particular, tests for tumor markers such as alpha-fetoprotein. About 50-70% of HCC patients show elevated levels of alpha-fetoprotein. Additional diagnostic methods include non-radioactive imaging (abdominal or chest x-rays, angiograms, CT scans and MRIs), liver scans using radioactive materials and liver biopsies. Treatment of HCC is often not successful, because detection is often too late, but methods include surgical removal of the cancer, chemotherapy and radiation, alone or in combination. Although HCC is not very common in the United States, it is very prevalent in parts of Asia and Africa, largely due to the higher incidence of infection with hepatitis viruses (http://cis.nci.nih.gov/; http://cancer.med.upenn.edu/disease/liver/intro_liver.html).

15

10

The number of new cases of acute and chronic viral hepatitis has been estimated at approximately 200,000 per year in the United States. The viruses that commonly cause hepatitis are hepatitis A, hepatitis B (which is also oncogenic), hepatitis D (or delta hepatitis, a "defective" RNA virus that is infective only in the presence of hepatitis B virus), hepatitis C, hepatitis E (or epidemic non-A non-B hepatitis), hepatitis F and G (epidemic non-A non-B non-C variants which may be mutants of hepatitis B, but which do not express the B antigens), cytomegalovirus, Epstein-Barr virus and herpes simplex virus. The last three are prominent in patients receiving immunosuppressive treatments following liver, kidney or bone marrow transplants. Hepatitis viruses B, C and D are typically associated with chronic viral hepatitis.

25

30

20

Among hepatitis viruses, hepatitis B is associated with the greatest mortality. This virus is a double-shelled DNA virus with an endogenous DNA polymerase and a single, circular molecule of DNA 3200 base pairs in length. The virus replicates via an RNA intermediate requiring reverse transcriptase. In patients infected with hepatitis B, three types of particles can be detected in the serum, 20 nm spheres, tubules 20 nm in diameter and 100 nm in length, and complex, 42 nm Dane particles. Similar to the human hepatitis B virus are hepatitis B viruses found in ducks, herons, squirrels and woodchucks.

10

15

20

25

30

Diagnosis of hepatitis B is usually made by finding the surface antigen (HBsAg) in serum. The presence of HBsAg for six months or more signifies a carrier state or chronic infection. Anti-HBs (HBsAb) accounts for recovery and immunity.

Although the core antigen (HBcAg) is not detectable in the blood, the antibody can be detected. In cases of acute hepatitis, an IgM antibody to the core antigen (HBcAg) is found. But, if this antibody persists, it is an indication of chronic viral hepatitis. Another indication of chronic infection is a high level of IgG HBcAb, without HBsAb, but with HBsAg.

HBeAg correlates with active viral synthesis and infectivity. Appearance of the antibody (HBeAb) is a sign of reduced infectivity and that the patient will recover.

Only about 2-8% of adults infected with hepatitis B develop chronic infection, but about 90% of infected neonates become carriers. Chronic hepatitis B infection is associated with cirrhosis, as well as with liver carcinomas, as about 25% of these patients eventually develop cirrhosis. Although there is no universally effective treatment for either chronic or acute hepatitis B infection, current treatment methods involve administration of interferon alpha-2a, at dosages of, e.g., 10 million units 3 times a week for 16 weeks, or 5 million units daily for 4 months.

Hepatitis C virus is considered to be the major cause of post-transfusion hepatitis. Another important source of infection is intravenous drug use. This virus is classified in the togavirus family of lipid envelope viruses, producing particles of 30-60 nm. It is a single-stranded RNA virus with a genome of about 10.5 kb. About 50% of patients infected with hepatitis C develop chronic infections, and about 20% of patients chronically infected develop cirrhosis. As mentioned above, it has been noted that many hepatitis C patients go on to develop liver cancer, but the percentage has not yet been established. Efforts at treating hepatitis C have been frustrated by the results that current antivirals, including alpha interferon, have not been very effective (http://www.arens.com/brian/viral.htm).

Cirrhosis of the liver, typically caused by toxins, inflammation or metabolic disorders, is characterized by widespread nodules combined with fibrosis. Damaged or dead liver cells are replaced by fibrous scar tissue, which to leads to fibrosis. Liver cells regenerate in an abnormal pattern, producing nodules surrounded by fibrous tissue. The fibrosis and nodule formation cause distortion and blockage of the liver's structural components, causing impaired blood flow and biochemical function.

15

20

25

30

In the circulatory system, blood from the intestines and spleen flows to the liver via the portal vein, before returning to the heart via the hepatic vein. Blood also flows directly to the liver from the hepatic artery. In the esophagus, stomach, small intestine and rectum, the body's systemic circulation is connected to the liver's portal circulation, and, under normal conditions, there is no backflow from the portal circulation into the systemic circulation. In cirrhosis, however, the fibrous scar tissue decreases blood flow to and through the liver. Blood then backs up in the portal vein and portal circulation, causing complications in other organs, such as enlargement of the spleen with sequestered blood cells, reduced platelet count and abnormal bleeding. Backflow of blood into the systemic circulation can cause varicose veins in the esophagus, stomach and rectum, which can rupture and bleed profusely. Hypertension in the portal circulation can also produce fluid accumulation in the abdomen (ascites) and surrounding tissue (peripheral edema), while decreased bilirubin secretion can lead to elevated levels of bilirubin in the blood and jaundice. Abnormal biochemical changes due to cirrhosis include decreased levels of albumin (which aggravates the ascites and edema), decreased levels of clotting factors, gynecomastia in men (impaired estrogen metabolism), and decreased metabolism of sugars, triglycerides and cholesterol. In advanced stages of cirrhosis, abnormalities in the brain can occur, because toxic substances normally removed by the liver flow to the brain. Changes include decreased mental function (concentration and cognitive abilities), stupor, coma, brain swelling and death.

In patients displaying some of the above symptoms, diagnosis of cirrhosis is usually easy, but cirrhosis may be difficult to detect in its early stages. Subtle changes occurring in the early stages include red palms, red spots on the upper body that blanch, hypertrophy of the parotid glands, fibrosis of the tendons in the palms and gynecomastia. X-rays and radioactive tracer tests may be effective, but diagnosis must often be by liver biopsy.

The structural damage to the liver is irreversible, although the underlying causes may be treated to stop progression of the disease (alcoholism in particular). The sequelae of the disease may also be treated (such varicose veins, ascites and edema). In alcoholics who have stopped drinking for extended periods of time, liver transplants have been successful (http://cpmcnet.columbia.edu/dept/gi/cirrhosis.html).

Molecular Changes in Liver Disease

Little is known about the molecular changes in liver cells associated with the development and progression of liver disease. Accordingly, there exists a need for the investigation of the changes in global gene expression levels as well as the need for the identification of new molecular markers associated with the development and progression of liver disease. Furthermore, if intervention is expected to be successful in halting or slowing down liver disease, means of accurately assessing the early manifestations of liver disease need to be established. One way to accurately assess the early manifestations of liver disease is to identify markers which are uniquely associated with disease progression (see for example Kim *et al.* (2001) *Oncogene* 20: 4568-4575). Likewise, the development of therapeutics to prevent or stop the progression of liver disease relies on the identification of genes responsible for the cancerous transformation of liver cells and the growth of cancerous liver cells.

To date, researchers have been able to identify a few genetic alterations believed to underlie tumor development. These genetic alterations include amplification of oncogenes and mutations that result in the loss of tumor suppressor genes. Tumor suppressor genes are genes that, in their wild-type alleles, express proteins that suppress abnormal cellular proliferation. When the gene coding for a tumor suppressor protein is mutated or deleted, the resulting mutant protein or the complete lack of tumor suppressor protein expression may fail to correctly regulate cellular proliferation, and abnormal proliferation may take place, particularly if there is already existing damage to the cellular regulatory mechanism. A number of well-studied human tumors and tumor cell lines have missing or nonfunctional tumor suppressor genes. Examples of tumor suppressor genes include, but are not limited to, the retinoblastoma susceptibility gene or RB gene, the p53 gene, the deletion in colon carcinoma (DCC) gene and the neurofibromatosis type 1 (NF-1) tumor suppressor gene (Weinberg, R. A. Science, 1991, 254:1138-1146). Loss of function or inactivation of tumor suppressor genes may play a central role in the initiation and/or progression of a significant number of human cancers.

Classification of heterogeneous populations of tumor types is a daunting task; yet, initial studies utilizing gene expression patterns to identify subtypes of cancer produced rather intriguing results (see Perou et al., Proc Natl Acad Sci USA 96:9212-9217, 1999; Golub et al., Science 286:531-537, 1999; Alizadeh et al., Nature 403:503-511, 2000; Alon et al. Proc Natl Acad Sci USA 96:6745-6750, 1999; and Bittner et al., Nature 406:536-540, 2000). Molecular classification of B-cell lymphoma by gene

6

expression profiling elucidated clinically distinct diffuse large-B-cell lymphoma subgroups (see Alizadeh supra). Stratification of patients based on their distinctive gene expression profiles may allow researchers to precisely group similar patient populations for evaluating chemotherapeutic agents. The more homogenous population of patients decreases the variability of patient-to-patient responses leading to the development of agents capable of eradicating specific subtypes of cancers previously unknown using standard classification techniques.

5

10

15

20

25

30

The utilization of gene expression profiles to classify tumors, to identify drug targets, to identify diagnostic markers and/or to gain further insights into the consequences of chemotherapeutic treatments could facilitate the design of more efficacious patientspecific stratagems for treating a variety of cancers. In breast cancer, studies utilizing limited numbers of genes (8,102 genes) have classified tumors into subtypes based on gene expression profiles, and this study indicated a diversity of molecular phenotypes associated with breast tumors (Perou et al., Nature 406:747-752, 2000). The advent of cDNA and oligonucleotide arrays has enabled researchers to map tissue-specific expression levels for thousands of genes (Alon et al., Proc Natl Acad Sci USA 96:6745-6750, 1999; Iyer et al., Science 283:83-87, 1999; Khan et al., Cancer Res 58:5009-5013, 1998; Lee et al., Science 285:1390-1393, 1999; Wang et al., Gene 229:101-108, 1999; Whitney et al., Ann Neurol 46:425-428, 1999). The study by Martin et al. (Cancer Res 60:2232-2238, 2000) used a custom microarray composed of 124 genes discovered by differential display associated with either normal breast epithelial cells or from the MDA-MB-435 malignant breast tumor cell line. Using the custom microarray, researchers examined the relationship between expression patterns discovered by clustering a number of genes with clinical stages of breast cancer indicating that gene expression patterns were capable of grouping breast tumors into distinct categories (Martin et al., supra).

Although these studies have demonstrated that expression profiling may be used to produce improvements in diagnosis of human diseases such as cancer, as well as in the development of improved therapeutic strategies, further studies are needed. Accordingly, there remains a need in the art for materials and methods that permit a more accurate diagnosis of hepatic carcinomas, as well as of other chronic liver diseases. In addition, there remains a need in the art for methods to treat and methods to identify agents that can effectively treat liver disease. The present invention meets these and other needs.

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention is based on the discovery of the genes and their expression profiles associated with various types and stages of liver disease, in particular hepatocellular carcinoma (HCC), chronic hepatitis (CH) and liver cirrhosis (LC).

The invention includes methods of diagnosing liver disease in a patient comprising the step of detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of liver disease. The invention also includes methods of detecting the progression of liver disease. For instance, methods of the invention include detecting the progression of liver disease in a patient comprising the step of detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of liver disease progression. In some preferred embodiments, PCA analysis based on all or a portion of the group of genes identified in Table 1 may be used to differentiate between the different stages of liver disease, such as in the metastasis of liver carcinomas. In some preferred embodiments, one or more genes may be selected from Table 1.

In some aspects, the present invention provides a method of monitoring the treatment of a patient with liver disease, comprising administering a pharmaceutical composition to the patient, preparing a gene expression profile from a cell or tissue sample from the patient and comparing the patient gene expression profile to a gene expression from a cell population comprising normal liver cells, or to a gene expression profile from a cell population comprising disease state liver cells, or to both. In some preferred embodiments, the gene profile will include the expression level of one or more genes in Table 1.

Another aspect of the present invention includes a method of treating a patient with liver disease, comprising administering to the patient a pharmaceutical composition, wherein the composition alters the expression of at least one gene in Table 1, preparing a gene expression profile from a cell or tissue sample from the patient comprising diseased cells and comparing the patient expression profile to a gene expression profile from an untreated cell population comprising disease state liver cells.

In another aspect, the present invention provides a method of detecting the progression of carcinogenesis in a patient, comprising detecting the level of expression in

10

15

20

25

30

a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of hepatic carcinogenesis.

The invention further includes methods of screening for an agent capable of modulating the onset or progression of liver disease, comprising the steps of exposing a cell to the agent; and detecting the expression level of one or more genes from Table 1. In some embodiments, the liver disease may be a hepatocellular carcinoma. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Table 1. In some preferred methods, it may be desirable to detect all or nearly all of the genes in the tables.

The invention further includes compositions comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Table 1, as well as solid supports comprising at least two probes, wherein each of the probes comprises a sequence that specifically hybridizes to a gene in Table 1. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Table 1.

The invention further includes computer systems comprising a database containing information identifying the expression level in liver tissue of a set of genes comprising at least two genes in Table 1 and a user interface to view the information. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Table 1. The database may further include sequence information for the genes, information identifying the expression level for the set of genes in non-cancerous liver tissue and in cancerous liver tissue and may contain links to external databases such as GenBank.

Lastly, the invention includes methods of using the databases, such as methods of using the disclosed computer systems to present information identifying the expression level in a tissue or cell of at least one gene in Table 1, comprising the step of comparing the expression level of at least one gene in Table 1 in the tissue or cell to the level of expression of the gene in the database. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Table 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Many biological functions are accomplished by altering the expression of various genes through transcriptional (e.g., through control of initiation, provision of RNA

9

precursors, RNA processing, etc.) and/or translational control. For example, fundamental biological processes such as cell cycle, cell differentiation and cell death, are often characterized by the variations in the expression levels of groups of genes.

Changes in gene expression also are associated with pathogenesis. For example, the lack of sufficient expression of functional tumor suppressor genes and/or the over expression of oncogene/protooncogenes could lead to tumorgenesis or hyperplastic growth of cells (Marshall, *Cell* 64:313-326, 1991; Weinberg, *Science*, 254:1138-1146, 1991). Thus, changes in the expression levels of particular genes (*e.g.*, oncogenes or tumor suppressors) serve as signposts for the presence and progression of various diseases.

5

10

15

20

25

30

Monitoring changes in gene expression may also provide certain advantages during drug screening and development. Often drugs are pre-screened for the ability to interact with a major target without regard to other effects the drugs have on cells. Often such other effects cause toxicity in the whole animal, which prevent the development and use of the potential drug.

Using pairs of samples from subjects, applicants have examined samples from diseased but non-cancerous liver tissue and from cancerous liver tissue to identify global changes in gene expression between tumor biopsies and surrounding non-cancerous tissue. Diseased but non-cancerous liver tissue was either inflamed tissue from chronic viral hepatitis patients or fibrotic tissue from liver cirrhosis patients. Non-cancerous tissue was removed from a point in the liver adjacent to a tumor biopsy site. These global changes in gene expression, also referred to as expression profiles, provide useful markers for diagnostic uses as well as markers that can be used to monitor disease states, disease progression, drug toxicity, drug efficacy and drug metabolism.

The gene expression profiles described herein were derived from diseased liver biopsy samples from Korean patients 34-65 years old. These patients had been diagnosed with chronic hepatitis or cirrhosis and, in each case, had subsequently developed liver cancer. The disease state associated with each sample is indicated in Table 2.

The present invention provides compositions and methods to detect the level of expression of genes that may be differentially expressed dependent upon the state of the cell, *i.e.*, non-cancerous versus cancerous. These expression profiles of genes provide molecular tools for evaluating toxicity, drug efficacy, drug metabolism, development, and disease monitoring. Changes in the expression profile from a baseline profile can be used as an indication of such effects. Those skilled in the art can use any of a variety of known

10

techniques to evaluate the expression of one or more of the genes and/or gene fragments identified in the instant application in order to observe changes in the expression profile in a tissue or sample of interest.

Definitions

5

10

15

20

25

30

In the description that follows, numerous terms and phrases known to those skilled in the art are used. In the interest of clarity and consistency of interpretation, the definitions of certain terms and phrases are provided.

As used herein, the phrase "detecting the level of expression" includes methods that quantify expression levels as well as methods that determine whether a gene of interest is expressed at all. Thus, an assay which provides a yes or no result without necessarily providing quantification of an amount of expression is an assay that requires "detecting the level of expression" as that phrase is used herein.

As used herein, oligonucleotide sequences that are complementary to one or more of the genes described herein, refers to oligonucleotides that are capable of hybridizing under stringent conditions to at least part of the nucleotide sequence of said genes. Such hybridizable oligonucleotides will typically exhibit at least about 75% sequence identity at the nucleotide level to said genes, preferably about 80% or 85% sequence identity or more preferably about 90% or 95% or more nucleotide sequence identity to said genes.

"Bind(s) substantially" refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target polynucleotide sequence.

The terms "background" or "background signal intensity" refer to hybridization signals resulting from non-specific binding, or other interactions, between the labeled target nucleic acids and components of the oligonucleotide array (e.g., the oligonucleotide probes, control probes, the array substrate, etc.). Background signals may also be produced by intrinsic fluorescence of the array components themselves. A single background signal can be calculated for the entire array, or a different background signal may be calculated for each target nucleic acid. In a preferred embodiment, background is calculated as the average hybridization signal intensity for the lowest 5% to 10% of the probes in the array, or, where a different background signal is calculated for each target gene, for the lowest 5% to 10% of the probes for each gene. Of course, one of skill in the

art will appreciate that where the probes to a particular gene hybridize well and thus appear to be specifically binding to a target sequence, they should not be used in a background signal calculation. Alternatively, background may be calculated as the average hybridization signal intensity produced by hybridization to probes that are not complementary to any sequence found in the sample (e.g., probes directed to nucleic acids of the opposite sense or to genes not found in the sample such as bacterial genes where the sample is mammalian nucleic acids). Background can also be calculated as the average signal intensity produced by regions of the array that lack any probes at all.

The phrase "hybridizing specifically to" refers to the binding, duplexing or hybridizing of a molecule substantially to or only to a particular nucleotide sequence or sequences under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA.

10

15

20

25

30

Assays and methods of the invention may utilize available formats to simultaneously screen at least about 100, preferably about 1000, more preferably about 10,000 and most preferably about 1,000,000 or more different nucleic acid hybridizations.

The terms "mismatch control" or "mismatch probe" refer to a probe whose sequence is deliberately selected not to be perfectly complementary to a particular target sequence. For each mismatch (MM) control in a high-density array there typically exists a corresponding perfect match (PM) probe that is perfectly complementary to the same particular target sequence. The mismatch may comprise one or more bases that are not complementary to the corresponding bases of the target sequence.

While the mismatch(s) may be located anywhere in the mismatch probe, terminal mismatches are less desirable as a terminal mismatch is less likely to prevent hybridization of the target sequence. In a particularly preferred embodiment, the mismatch is located at or near the center of the probe such that the mismatch is most likely to destabilize the duplex with the target sequence under the test hybridization conditions.

The term "perfect match probe" refers to a probe that has a sequence that is perfectly complementary to a particular target sequence. The test probe is typically perfectly complementary to a portion (subsequence) of the target sequence. The perfect match (PM) probe can be a "test probe", a "normalization control" probe, an expression level control probe and the like. A perfect match control or perfect match probe is, however, distinguished from a "mismatch control" or "mismatch probe."

12

As used herein a "probe" is defined as a nucleic acid, preferably an oligonucleotide, capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, U, C or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in probes may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages.

The term "stringent conditions" refers to conditions under which a probe will hybridize to its target subsequence, but with only insubstantial hybridization to other sequences or to other sequences such that the difference may be identified. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.

10

15

20

25

30

Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotide). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

The "percentage of sequence identity" or "sequence identity" is determined by comparing two optimally aligned sequences or subsequences over a comparison window or span, wherein the portion of the polynucleotide sequence in the comparison window may optionally comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical subunit (e.g., nucleic acid base or amino acid residue) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Percentage sequence

identity when calculated using the programs GAP or BESTFIT (see below) is calculated using default gap weights.

Homology or identity may be determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (Karlin et al., Proc Natl Acad Sci USA 87:2264-2268, 1990 and Altschul, J Mol Evol 36:290-300, 1993, fully incorporated by reference) which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance. For a discussion of basic issues in similarity searching of sequence databases, see Altschul et al., (Nature Genet 6:119-129, 1994) which is fully incorporated by reference. The search parameters for histogram, descriptions, alignments, expect (i.e., the statistical significance threshold for reporting matches against database sequences), cutoff, matrix and filter are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., Proc Natl Acad Sci USA 89:10915-10919, 1992, fully incorporated by reference). Four blastn parameters were adjusted as follows: Q=10 (gap creation penalty); R=10 (gap extension penalty); wink=1 (generates word hits at every winkth position along the query); and gapw=16 (sets the window width within which gapped alignments are generated). The equivalent Blastp parameter settings were Q=9; R=2; wink=1; and gapw=32. A Bestfit comparison between sequences, available in the GCG package version 10.0, uses DNA parameters GAP=50 (gap creation penalty) and LEN=3 (gap extension penalty) and the equivalent settings in protein comparisons are GAP=8 and LEN=2.

25 Uses of Differentially Expressed Genes

10

15

30

The present invention identifies those genes differentially expressed between cancerous and non-cancerous liver tissue. One of skill in the art can select one or more of the genes identified as being differentially expressed in Table 1 and use the information and methods provided herein to interrogate or test a particular sample. For a particular interrogation of two conditions or sources, it may be desirable to select those genes which display a great deal of difference in the expression pattern between the two conditions or sources. In other instances, it may be appropriate to select genes whose expression

changes only slightly between the two conditions. At least a 1.5-fold difference may be desirable, but a three-fold, five-fold or ten-fold difference may be preferred in some instances. The data are subjected to statistical evaluation to ensure that the observed differences and the disease association are statistically significant. Interrogations of the genes or proteins can be performed to yield different information.

Diagnostic Uses for the Liver Cancer Markers

5

10

15

20

25

30

As described herein, the genes and gene expression information provided in Table 1 may be used as diagnostic markers for the prediction or identification of a disease state of liver tissue. For instance, a liver tissue sample or other sample from a patient may be assayed by any of the methods known to those skilled in the art, and the expression levels from one or more genes from Table 1 may be compared to the expression levels found in non-cancerous liver tissue, cancerous liver tissue or both. Expression profiles generated from the tissue or other samples that substantially resemble an expression profile from non-cancerous or cancerous liver tissue may be used, for instance, to aid in disease diagnosis. Comparison of the expression data, as well as available sequence or other information, may be done by a researcher or diagnostician or may be done with the aid of a computer and databases as described herein.

Use of the Liver Cancer Markers for Monitoring Disease Progression

Molecular expression markers for liver disease can be used to confirm the type and progression of disease made on the basis of morphological criteria. For example, non-cancerous liver tissue could be distinguished from cancerous tissue based on the level and type of genes expressed in a tissue sample. In some situations, identifications of cell type or source is ambiguous based on classical criteria. In these situations, the molecular expression markers of the present invention are useful for identifying the region of the liver from which a sample came, as well as whether or not normal levels of gene expression have been altered (signs of metabolic disturbances).

In addition, progression of hepatic carcinoma to new areas of the liver can be monitored by following the expression patterns of the involved genes using the molecular expression markers of the present invention. Monitoring of the efficacy of certain drug regimens can also be accomplished by following the expression patterns of the molecular expression markers.

15

As described above, the genes and gene expression information provided in Table 1 may also be used as markers for the direct monitoring of disease progression, for instance, the development of liver cancer. A liver tissue sample or other sample from a patient may be assayed by any of the methods known to those of skill in the art, and the expression levels in the sample from a gene or genes from Table 1 may be compared to the expression levels found in non-cancerous liver tissue, tissue from a hepatic carcinoma or both. Comparison of the expression data, as well as available sequence or other information may be done by a researcher or diagnostician or may be done with the aid of a computer and databases as described herein.

10

5

Use of the Liver Cancer Markers for Drug Screening

According to the present invention, potential drugs can be screened to determine if application of the drug alters the expression of one or more of the genes identified herein. This may be useful, for example, in determining whether a particular drug is effective in treating a particular patient with liver disease. In the case where a gene's expression is affected by the potential drug such that its level of expression returns to normal, the drug is indicated in the treatment of liver cancer. Similarly, a drug which causes expression of a gene which is not normally expressed by healthy liver cells may be contra-indicated in the treatment of liver cancer.

20

15

According to the present invention, the genes identified in Table 1 may also be used as markers to evaluate the effects of a candidate drug or agent on a cell, particularly a cell undergoing malignant transformation, for instance, a liver cancer cell or tissue sample. A candidate drug or agent can be screened for the ability to stimulate the transcription or expression of a given marker or markers (drug targets) or to down-regulate or inhibit the transcription or expression of a marker or markers. According to the present invention, one can also compare the specificity of a drug's effects by looking at the number of markers affected by the drug and comparing them to the number of markers affected by a different drug. A more specific drug will affect fewer transcriptional targets. Similar sets of markers identified for two drugs indicates a similarity of effects.

30

25

Assays to monitor the expression of a marker or markers as defined in Table 1 may utilize any available means of monitoring for changes in the expression level of the nucleic acids of the invention. As used herein, an agent is said to modulate the expression

WO 03/061564 PCT/US02/407<u>1</u>8

of a nucleic acid of the invention if it is capable of up- or down-regulating expression of the nucleic acid in a cell.

Agents that are assayed in the above methods can be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of a protein of the invention alone or with its associated substrates, binding partners, etc. An example of randomly selected agents is the use a chemical library or a peptide combinatorial library, or a growth broth of an organism.

5

10

15

20

25

30

As used herein, an agent is said to be rationally selected or designed when the agent is chosen on a nonrandom basis which takes into account the sequence of the target site and/or its conformation in connection with the agents action. Agents can be selected or designed by utilizing the peptide sequences that make up these sites. For example, a rationally selected peptide agent can be a peptide whose amino acid sequence is identical to or a derivative of any functional consensus site.

The agents of the present invention can be, as examples, peptides, small chemical molecules, vitamin derivatives, as well as carbohydrates, lipids, oligonucleotides and covalent and non-covalent combinations thereof. Dominant negative proteins, DNA encoding these proteins, antibodies to these proteins, peptide fragments of these proteins or mimics of these proteins may be introduced into cells to affect function. "Mimic" as used herein refers to the modification of a region or several regions of a peptide molecule to provide a structure chemically different from the parent peptide but topographically and functionally similar to the parent peptide (see Grant, in Molecular Biology and Biotechnology, Meyers (ed.), VCH Publishers, 1995). A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

Use of the Liver Cancer Markers as Therapeutic Agents

Agents that up- or down-regulate or modulate the expression of the nucleic acid molecules of Table 1, or at least one activity of a protein encoded by the nucleic acid molecules of Table 1, such as agonists or antagonists, may be used to modulate biological and pathologic processes associated with the function and activity of the proteins encoded by these nucleic acid molecules. The agents can be the nucleic acid molecules of Table 1

17

themselves, the encoded proteins, or portions of these molecules, such as all or part of the open reading frames of these nucleic acid molecules.

5

10

15

20

25

30

Anti-sense oligonucleotide molecules derived from the nucleic acid sequences of Table 1 may also be used to down-regulate the expression of one or more of the genes in Table 1 that are expressed at elevated levels in liver cancer, the use of antisense gene therapy being an example. Down-regulation of expression of one or more of the genes of Table 1 is accomplished by administering an effective amount of antisense oligonucleotides. These antisense molecules can be fashioned from the DNA sequences of these genes or sequences containing various mutations, deletions, insertions or spliced variants. Isolated RNA or DNA sequences derived from these genes may also be used therapeutically in gene therapy. These agents may be used to induce gene expression in liver cancers associated with an absence of or considerably decreased expression of one or more of the proteins encoded by genes in Table 1.

As used herein, a subject can be any mammal, so long as the mammal is in need of modulation of a pathological or biological process mediated by a gene of the invention. The term "mammal" is defined as an individual belonging to the class Mammalia. The invention is particularly useful in the treatment of human subjects.

Pathological processes refer to a category of biological processes which produce a deleterious effect. For example, expression of a gene of the invention may be associated with hyperplasia in the liver, in particular malignant hyperplasia. As used herein, an agent is said to modulate a pathological process when the agent reduces the degree or severity of the process. For instance, liver cancer may be prevented or disease progression modulated by the administration of agents which up- or down-regulate or modulate in some way the expression or at least one activity of a gene of the invention.

The agents of the present invention can be provided alone, or in combination with other agents that modulate a particular pathological process. For example, an agent of the present invention can be administered in combination with other known drugs. As used herein, two agents are said to be administered in combination when the two agents are administered simultaneously or are administered independently in a fashion such that the agents will act at the same time.

The agents of the present invention can be administered via parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes. Alternatively, or concurrently, administration may be by the oral route. The dosage

18

administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

The present invention further provides compositions containing one or more agents which modulate expression or at least one activity of a protein of the invention. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. Typical dosages comprise 0.1 to $100 \,\mu\text{g/kg}$ body wt. The preferred dosages comprise 0.1 to $10 \,\mu\text{g/kg}$ body wt.

5

10

15

20

25

In addition to the pharmacologically active agent, the compositions of the present invention may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically for delivery to the site of action. Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, e.g., sesame oil, or synthetic fatty acid esters, e.g., ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers. Liposomes can also be used to encapsulate the agent for delivery into the cell.

The pharmaceutical formulation for systemic administration according to the invention may be formulated for enteral, parenteral or topical administration. Indeed, all three types of formulations may be used simultaneously to achieve systemic administration of the active ingredient.

Suitable formulations for oral administration include hard or soft gelatin capsules, pills, tablets, including coated tablets, elixirs, suspensions, syrups or inhalations and controlled release forms thereof.

In practicing the methods of this invention, the compounds of this invention may

be used alone or in combination, or in combination with other therapeutic or diagnostic
agents. In certain preferred embodiments, the compounds of this invention may be
coadministered along with other compounds typically prescribed for these conditions

19

according to generally accepted medical practice. The compounds of this invention can be utilized in vivo, ordinarily in mammals, such as humans, rats, mice, dogs, cats, sheep, horses, cattle and pigs, or in vitro.

Assay Formats

5

10

15

20

25

30

The genes identified as being differentially expressed in liver disease may be used in a variety of nucleic acid detection assays to detect or quantify the expression level of a gene or multiple genes in a given sample. For example, traditional Northern blotting, nuclease protection, RT-PCR and differential display methods may be used for detecting gene expression levels. In methods where small numbers of genes are assayed, such as 5-50 genes, high-throughput PCR may be used.

The protein products of the genes identified herein can also be assayed to determine the amount of expression. Methods for assaying for a protein include Western blot, immunoprecipitation and radioimmunoassay. In some methods, it is preferable to assay the mRNA as an indication of expression. Methods for assaying for mRNA include Northern blots, slot blots, dot blots, and hybridization to an ordered array of oligonucleotides. Any method for specifically and quantitatively measuring a specific protein or mRNA or DNA product can be used. However, methods and assays of the invention are most efficiently designed with array or chip hybridization-based methods for detecting the expression of a large number of genes.

Any hybridization assay format may be used, including solution-based and solid support-based assay formats. A preferred solid support is a high density array also known as a DNA chip or a gene chip. One variation of the DNA chip contains hundreds of thousands of discrete microscopic channels that pass completely through it. Probe molecules are attached to the inner surface of these channels, and molecules from the samples to be tested flow throughout the channels, coming into close proximity with the probes for hybridization. In one assay format, gene chips containing probes to at least two genes from Table 1 may be used to directly monitor or detect changes in gene expression in the treated or exposed cell as described herein.

The genes of the present invention may be assayed in any convenient sample form. For example, samples may be assayed in the form mRNA or reverse transcribed mRNA. Samples may be cloned or not, and the samples or individual genes may be amplified or not. The cloning itself does not appear to bias the representation of genes

20

within a population. However, it may be preferable to use polyA+RNA as a source, as it can be used with less processing steps. In some embodiments, it may be preferable to assay the protein or peptide expressed by the gene.

The sequences of the expression marker genes of Table 1 are available in the public databases. Table 1 provides the Accession number, Sequence Number ID and name for each of the sequences. The sequences of the genes in GenBank are herein expressly incorporated by reference in their entirety (see www.ncbi.nim.nih.gov).

5

10

15

20

25

30

Additional assay formats may be used to monitor the ability of the agent to modulate the expression of a gene identified in Table 1. For instance, as described above, mRNA expression may be monitored directly by hybridization of probes to the nucleic acids of the invention. Cell lines are exposed to an agent to be tested under appropriate conditions and time and total RNA or mRNA is isolated by standard procedures such those disclosed in Sambrook *et al.*, Molecular Cloning - A Laboratory Manual, Third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. In some embodiments, it may be desirable to amplify one or more of the RNA molecules isolated prior to application of the RNA to the gene chip. Using techniques well known in the art, the RNA may be reverse transcribed and amplified in the form of DNA or may be reverse transcribed into DNA and the DNA used as a template for transcription to generate recombinant RNA. Any method that results in the production of a sufficient quantity of nucleic acid to be hybridized effectively to the gene chip may be used.

In another format, cell lines that contain reporter gene fusions between the open reading frame and/or the 3' or 5' regulatory regions of a gene in Table 1 and any assayable fusion partner may be prepared. Numerous assayable fusion partners are known and readily available including the firefly luciferase gene and the gene encoding chloramphenical acetyltransferase (Alam et al., Anal Biochem 188:245-254, 1990). Cell lines containing the reporter gene fusions are then exposed to the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of the nucleic acid.

In another assay format, cells or cell lines are first identified which express one or more of the gene products of the invention physiologically. Cells and/or cell lines so identified would preferably comprise the necessary cellular machinery to ensure that the transcriptional and/or translational apparatus of the cells would faithfully mimic the

10

15

20

25

30

response of normal or cancerous liver tissue to an exogenous agent. Such machinery would likely include appropriate surface transduction mechanisms and/or cytosolic factors. Such cell lines may be, but are not required to be, derived from liver tissue. The cells and/or cell lines may then be contacted with an agent and the expression of one or more of the genes of interest may then be assayed. The genes may be assayed at the mRNA level and/or at the protein level.

In some embodiments, such cells or cell lines may be transduced or transfected with an expression vehicle (e.g., a plasmid or viral vector) containing an expression construct comprising an operable 5'-promoter containing end of a gene of interest identified in Table 1 fused to one or more nucleic acid sequences encoding one or more antigenic fragments. The construct may comprise all or a portion of the coding sequence of the gene of interest which may be positioned 5'- or 3'- to a sequence encoding an antigenic fragment. The coding sequence of the gene of interest may be translated or untranslated after transcription of the gene fusion. At least one antigenic fragment may be translated. The antigenic fragments are selected so that the fragments are under the transcriptional control of the promoter of the gene of interest and are expressed in a fashion substantially similar to the expression pattern of the gene of interest. The antigenic fragments may be expressed as polypeptides whose molecular weight can be distinguished from the naturally occurring polypeptides.

In some embodiments, gene products of the invention may further comprise an immunologically distinct tag. Such a process is well known in the art (see Sambrook et al., supra). Cells or cell lines transduced or transfected as outlined above are then contacted with agents under appropriate conditions; for example, the agent comprises a pharmaceutically acceptable excipient and is contacted with cells comprised in an aqueous physiological buffer such as phosphate buffered saline (PBS) at physiological pH, Eagles balanced salt solution (BSS) at physiological pH, PBS or BSS comprising serum or conditioned media comprising PBS or BSS and serum incubated at 37°C. Said conditions may be modulated as deemed necessary by one of skill in the art. Subsequent to contacting the cells with the agent, said cells will be disrupted and the polypeptides of the lysate are fractionated such that a polypeptide fraction is pooled and contacted with an antibody to be further processed by immunological assay (e.g., ELISA, immunoprecipitation or Western blot). The pool of proteins isolated from the "agent-

contacted" sample will be compared with a control sample where only the excipient is contacted with the cells and an increase or decrease in the immunologically generated signal from the "agent-contacted" sample compared to the control will be used to distinguish the effectiveness of the agent.

Another embodiment of the present invention provides methods for identifying agents that modulate the levels, concentration or at least one activity of a protein(s) encoded by the genes in Table 1. Such methods or assays may utilize any means of monitoring or detecting the desired activity.

In one format, the relative amounts of a protein of the invention produced in a cell population that has been exposed to the agent to be tested may be compared to the amount produced in an un-exposed control cell population. In this format, probes such as specific antibodies are used to monitor the differential expression of the protein in the different cell populations. Cell lines or populations are exposed to the agent to be tested under appropriate conditions and time. Cellular lysates may be prepared from the exposed cell line or population and a control, unexposed cell line or population. The cellular lysates are then analyzed with the probe, such as a specific antibody.

Probe design

5

10

15

20

25

30

Probes based on the sequences of the genes described herein may be prepared by any commonly available method. Oligonucleotide probes for assaying the tissue or cell sample are preferably of sufficient length to specifically hybridize only to appropriate, complementary genes or transcripts. Typically the oligonucleotide probes will be at least 10, 12, 14, 16, 18, 20 or 25 nucleotides in length. In some cases longer probes of at least 30, 40, or 50 nucleotides will be desirable.

One of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention. The high density array will typically include a number of probes that specifically hybridize to the sequences of interest. See WO 99/32660 for methods of producing probes for a given gene or genes. In addition, in a preferred embodiment, the array will include one or more control probes.

High density array chips of the invention include "test probes." Test probes may be oligonucleotides that range from about 5 to about 500 or about 5 to about 50 nucleotides, more preferably from about 10 to about 40 nucleotides and most preferably from about 15 to about 40 nucleotides in length. In other particularly preferred

10

15

20

30

embodiments, the probes are about 20 or 25 nucleotides in length. In another preferred embodiment, test probes are double or single strand DNA sequences. DNA sequences may be isolated or cloned from natural sources or amplified from natural sources using natural nucleic acid as templates. These probes have sequences complementary to particular subsequences of the genes whose expression they are designed to detect. Thus, the test probes are capable of specifically hybridizing to the target nucleic acid they are to detect.

In addition to test probes that bind the target nucleic acid(s) of interest, the high density array can contain a number of control probes. The control probes fall into three categories referred to herein as (1) normalization controls; (2) expression level controls; and (3) mismatch controls.

Normalization controls are oligonucleotide or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample. The signals obtained from the normalization controls after hybridization provide a control for variations in hybridization conditions, label intensity, "reading" efficiency and other factors that may cause the signal of a perfect hybridization to vary between arrays. In a preferred embodiment, signals (e.g., fluorescence intensity) read from all other probes in the array are divided by the signal (e.g., fluorescence intensity) from the control probes thereby normalizing the measurements.

Virtually any probe may serve as a normalization control. However, it is recognized that hybridization efficiency varies with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes present in the array, however, they can be selected to cover a range of lengths. The normalization control(s) can also be selected to reflect the (average) base composition of the other probes in the array, however in a preferred embodiment, only one or a few probes are used and they are selected such that they hybridize well (i.e., no secondary structure) and do not match any target-specific probes.

Expression level controls are probes that hybridize specifically with constitutively expressed genes in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level controls. Typical expression level control probes have sequences complementary to subsequences of constitutively

expressed "housekeeping genes" including, but not limited to the β -actin gene, the transferrin receptor gene, the GAPDH gene, and the like.

Mismatch controls may also be provided for the probes to the target genes, for expression level controls or for normalization controls. Mismatch controls are oligonucleotide probes or other nucleic acid probes identical to their corresponding test or control probes except for the presence of one or more mismatched bases. A mismatched base is a base selected so that it is not complementary to the corresponding base in the target sequence to which the probe would otherwise specifically hybridize. One or more mismatches are selected such that under appropriate hybridization conditions (e.g., stringent conditions) the test or control probe would be expected to hybridize with its target sequence, but the mismatch probe would not hybridize (or would hybridize to a significantly lesser extent). Preferred mismatch probes contain a central mismatch. Thus, for example, where a probe is a twenty-mer, a corresponding mismatch probe may have the identical sequence except for a single base mismatch (e.g., substituting a G, a C or a T for an A) at any of positions 6 through 14 (the central mismatch).

Mismatch probes thus provide a control for non-specific binding or cross hybridization to a nucleic acid in the sample other than the target to which the probe is directed. Mismatch probes also indicate whether a hybridization is specific or not. For example, if the target is present the perfect match probes should be consistently brighter than the mismatch probes. In addition, if all central mismatches are present, the mismatch probes can be used to detect a mutation. The difference in intensity between the perfect match and the mismatch probe (I(PM) - I(MM)) provides a good measure of the concentration of the hybridized material.

Nucleic Acid Samples

5

10

15

20

25

As is apparent to one of ordinary skill in the art, nucleic acid samples used in the methods and assays of the invention may be prepared by any available method or process. Methods of isolating total mRNA are also well known to those of skill in the art. For example, methods of isolation and purification of nucleic acids are described in detail in Chapter 3 of Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 24, Hybridization With Nucleic Acid Probes: Theory and Nucleic Acid Probes, P. Tijssen (ed.) Elsevier Press, New York, 1993. Such samples include RNA samples, but also include cDNA synthesized from a mRNA sample isolated from a cell or tissue of interest.

25

Such samples also include DNA amplified from the cDNA, and an RNA transcribed from the amplified DNA. One of skill in the art would appreciate that it may be desirable to inhibit or destroy RNase present in homogenates before homogenates can be used.

Biological samples may be of any biological tissue or fluid or cells from any organism as well as cells raised *in vitro*, such as cell lines and tissue culture cells. Frequently the sample will be a "clinical sample" which is a sample derived from a patient. Typical clinical samples include, but are not limited to, liver tissue biopsy, sputum, blood, blood-cells (e.g., white cells), tissue or fine needle biopsy samples, urine, peritoneal fluid, and pleural fluid, or cells therefrom. Biological samples may also include sections of tissues, such as frozen sections or formalin fixed sections taken for histological purposes.

Solid Supports

5

10

. 15

20

25

30

Solid supports containing oligonucleotide probes for differentially expressed genes can be any solid or semisolid support material known to those skilled in the art. Suitable examples include, but are not limited to, membranes, filters, tissue culture dishes, polyvinyl chloride dishes, beads, test strips, silicon or glass based chips and the like. Suitable glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/11755). Any solid surface to which oligonucleotides can be bound, either directly or indirectly, either covalently or non-covalently, can be used. In some embodiments, it may be desirable to attach some oligonucleotides covalently and others non-covalently to the same solid support.

A preferred solid support is a high density array or DNA chip. These contain a particular oligonucleotide probe in a predetermined location on the array. Each predetermined location may contain more than one molecule of the probe, but each molecule within the predetermined location has an identical sequence. Such predetermined locations are termed features. There may be, for example, from 2, 10, 100, 1000 to 10,000, 100,000 or 400,000 of such features on a single solid support. The solid support, or the area within which the probes are attached may be on the order of a square centimeter.

Oligonucleotide probe arrays for expression monitoring can be made and used according to any techniques known in the art (see for example, Lockhart *et al.*, *Nat Biotechnol* 14:1675-1680, 1996; McGall *et al.*, *Proc Nat Acad Sci USA* 93: 13555-13460, 1996). Such probe arrays may contain at least two or more oligonucleotides that are

WO 03/061564

5

10

15

20

25

30

complementary to or hybridize to two or more of the genes described herein. Such arrays my also contain oligonucleotides that are complementary or hybridize to at least 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 70 or more the genes described herein.

Methods of forming high density arrays of oligonucleotides with a minimal number of synthetic steps are known. The oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling, and mechanically directed coupling (see Pirrung *et al.*, (1992) U.S. Patent No. 5,143, 854; Fodor *et al.*, (1998) U.S. Patent No. 5,800,992; Chee *et al.*, (1998) 5,837,832).

In brief, the light-directed combinatorial synthesis of oligonucleotide arrays on a glass surface proceeds using automated phosphoramidite chemistry and chip masking techniques. In one specific implementation, a glass surface is derivatized with a silane reagent containing a functional group, e.g., a hydroxyl or amine group blocked by a photolabile protecting group. Photolysis through a photolithogaphic mask is used selectively to expose functional groups which are then ready to react with incoming 5' photoprotected nucleoside phosphoramidites. The phosphoramidites react only with those sites which are illuminated (and thus exposed by removal of the photolabile blocking group). Thus, the phosphoramidites only add to those areas selectively exposed from the preceding step. These steps are repeated until the desired array of sequences have been synthesized on the solid surface. Combinatorial synthesis of different oligonucleotide analogues at different locations on the array is determined by the pattern of illumination during synthesis and the order of addition of coupling reagents.

In addition to the foregoing, additional methods which can be used to generate an array of oligonucleotides on a single substrate are described in Fodor *et al.* WO 93/09668. High density nucleic acid arrays can also be fabricated by depositing pre-made or natural nucleic acids in predetermined positions. Synthesized or natural nucleic acids are deposited on specific locations of a substrate by light directed targeting and oligonucleotide directed targeting. Another embodiment uses a dispenser that moves from region to region to deposit nucleic acids in specific spots.

Hybridization

Nucleic acid hybridization simply involves contacting a probe and target nucleic acid under conditions where the probe and its complementary target can form stable

10

15

20

30

hybrid duplexes through complementary base pairing (see Lockhart et al., (1999) WO 99/32660). The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA-DNA, RNA-RNA or RNA-DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches. One of skill in the art will appreciate that hybridization conditions may be selected to provide any degree of stringency. In a preferred embodiment, hybridization is performed at low stringency, in this case in 6× SSPE-T at 37°C (0.005% Triton x-100) to ensure hybridization and then subsequent washes are performed at higher stringency (e.g., 1× SSPE-T at 37°C) to eliminate mismatched hybrid duplexes. Successive washes may be performed at increasingly higher stringency (e.g., down to as low as 0.25× SSPET at 37°C to 50°C) until a desired level of hybridization specificity is obtained. Stringency can also be increased by addition of agents such as formamide. Hybridization specificity may be evaluated by comparison of hybridization to the test probes with hybridization to the various controls that can be present (e.g., expression level control, normalization control, mismatch controls, etc.).

In general, there is a tradeoff between hybridization specificity (stringency) and signal intensity. Thus, in a preferred embodiment, the wash is performed at the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity. Thus, in a preferred embodiment, the hybridized array may be washed at successively higher stringency solutions and read between each wash. Analysis of the data sets thus produced will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest.

Signal Detection

The hybridized nucleic acids are typically detected by detecting one or more labels attached to the sample nucleic acids. The labels may be incorporated by any of a

number of means well known to those of skill in the art (see Lockhart et al., (1999) WO 99/32660).

Databases

5

10

15

20

25

30

The present invention includes relational databases containing sequence information, for instance for one or more of the genes of Table 1, as well as gene expression information in various liver tissue samples. Databases may also contain information associated with a given sequence or tissue sample such as descriptive information about the gene associated with the sequence information, descriptive information concerning the clinical status of the tissue sample, or information concerning the patient from which the sample was derived. The database may be designed to include different parts, for instance a sequence database and a gene expression database. The databases of the invention may be stored on any available computer-readable medium. Methods for the configuration and construction of such databases are widely available, for instance, see Akerblom *et al.*, (U.S. Patent 5,953,727), which is specifically incorporated herein by reference in its entirety.

The databases of the invention may be linked to an outside or external database. In a preferred embodiment, as described in Table 1, the external database is GenBank and the associated databases maintained by the National Center for Biotechnology Information or NCBI (http://www.ncbi.nlm.nih.gov/Entrez/). Other external databases that may be used in the invention include those provided by Chemical Abstracts Service (http://stnweb.cas.org/) and Incyte Genomics (http://www.incyte.com/sequence/index.shtml).

Any appropriate computer platform may be used to perform the necessary comparisons between sequence information, gene expression information and any other information in the database or provided as an input. For example, a large number of computer workstations are available from a variety of manufacturers, such has those available from Silicon Graphics. Client-server environments, database servers and networks are also widely available and appropriate platforms for the databases of the invention.

The databases of the invention may be used to produce, among other things, electronic Northern blots (E-Northerns) to allow the user to determine the cell type or tissue in which a given gene is expressed and to allow determination of the abundance or

29

expression level of a given gene in a particular tissue or cell. The E-northern analysis can be used as a tool to discover tissue specific candidate therapeutic targets that are not over-expressed in tissues such as the liver, kidney, or heart. These tissue types often lead to detrimental side effects once drugs are developed and a first-pass screen to eliminate these targets early in the target discovery and validation process would be beneficial.

The databases of the invention may also be used to present information identifying the expression level in a tissue or cell of a set of genes comprising at least one gene in Table 1, comprising the step of comparing the expression level of at least one gene in Table 1 in the tissue to the level of expression of the gene in the database. Such methods may be used to predict the physiological state of a given tissue by comparing the level of expression of a gene or genes in Table 1 from a sample to the expression levels found in normal liver tissue, tissue from liver carcinomas or both. Such methods may also be used in the drug or agent screening assays as described herein.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The preceding working examples therefore, are illustrative only and should not be construed as limiting in any way the scope of the invention.

Examples

5

10

15

20

25

30

Example 1: Preparation of Liver Disease Profiles

Tissue Sample Acquisition and Preparation

The patient tissue samples were derived from ten Korean patients, aged 34 to 65, and classified into two groups of five patients each. Each group contained samples from four men and one woman. One group of consisted of patients who had been diagnosed with chronic viral hepatitis B and who later developed hepatic carcinomas. The second group of patients had been diagnosed with cirrhosis of the liver. These people also later developed hepatic carcinomas. For each patient, tissue was obtained from two areas of the liver to produce a set of biopsy samples. In the first patient group (cancer/hepatitis), samples were removed from liver tumors and from the non-cancerous surrounding area composed of inflamed tissue (inflammation due to hepatitis). In the second group

10

15

20

30

(cancer/cirrhosis), liver tissue was removed from tumors and from the non-cancerous surrounding area composed of fibrotic tissue (areas of fibrosis due to cirrhosis).

Histological analysis of each of the tissue samples was performed and samples were segregated into either non-cancerous or cancerous categories.

With minor modifications, the sample preparation protocol followed the Affymetrix GeneChip Expression Analysis Manual. Frozen tissue was first ground to powder using the Spex Certiprep 6800 Freezer Mill. Total RNA was then extracted using Trizol (Life Technologies). The total RNA yield for each sample (average tissue weight of 300 mg) was 200-500 μg. Next, mRNA was isolated using the Oligotex mRNA Midi kit (Qiagen). Since the mRNA was eluted in a final volume of 400 μl, an ethanol precipitation step was required to bring the concentration to 1 μg/μl. Using 1-5 μg of mRNA, double stranded cDNA was created using the SuperScript Choice system (Gibco-BRL). First strand cDNA synthesis was primed with a T7-(dT₂₄) oligonucleotide. The cDNA was then phenol-chloroform extracted and ethanol precipitated to a final concentration of 1 μg/μl.

From 2 µg of cDNA, cRNA was synthesized according to standard procedures. To biotin label the cRNA, nucleotides Bio-11-CTP and Bio-16-UTP (Enzo Diagnostics) were added to the reaction. After a 37°C incubation for six hours, the labeled cRNA was cleaned up according to the Rneasy Mini kit protocol (Qiagen). The cRNA was then fragmented (5× fragmentation buffer: 200 mM Tris-Acetate (pH 8.1), 500 mM KOAc, 150 mM MgOAc) for thirty-five minutes at 94°C.

U95 set of arrays for twenty-four hours at 60 rpm in a 45°C hybridization oven. The chips were washed and stained with Streptavidin Phycoerythrin (SAPE) (Molecular Probes) in Affymetrix fluidics stations. To amplify staining, SAPE solution was added twice with an anti-streptavidin biotinylated antibody (Vector Laboratories) staining step in between. Hybridization to the probe arrays was detected by fluorometric scanning (Hewlett Packard Gene Array Scanner). Following hybridization and scanning, the microarray images were analyzed for quality control, looking for major chip defects or abnormalities in hybridization signal. After all chips passed QC, the data was analyzed using Affymetrix GeneChip software (v3.0), and Experimental Data Mining Tool (EDMT) software (v1.0).

31

Gene Expression Analysis

5

10

15

20

25

30

All samples were prepared as described and hybridized onto the Affymetrix Human Genome U95 array. Each chip contains 16-20 oligonucleotide probe pairs per gene or cDNA clone. These probe pairs include perfectly matched sets and mismatched sets, both of which are necessary for the calculation of the average difference. The average difference is a measure of the intensity difference for each probe pair, calculated by subtracting the intensity of the mismatch from the intensity of the perfect match. This takes into consideration variability in hybridization among probe pairs and other hybridization artifacts that could affect the fluorescence intensities. Using the average difference value that has been calculated, an absolute call for each gene is made.

The absolute call of present, absent or marginal is used to generate a Gene Signature, a tool used to identify those genes that are commonly present or commonly absent in a given sample set, according to the absolute call.

The Gene Signature Curve is a graphic view of the number of genes consistently present in a given set of samples as the sample size increases, taking into account the genes commonly expressed among a particular set of samples, and discounting those genes whose expression is variable among those samples. The curve is also indicative of the number of samples necessary to generate an accurate Gene Signature. As the sample number increases, the number of genes common to the sample set decreases. The curve is generated using the positive Gene Signatures of the samples in question, determined by adding one sample at a time to the Gene Signature, beginning with the sample with the smallest number of present genes and adding samples in ascending order. The curve displays the sample size required for the most consistency and the least amount of expression variability from sample to sample. The point where this curve begins to level off represents the minimum number of samples required for the Gene Signature. Graphed on the x-axis is the number of samples in the set, and on the y-axis is the number of genes in the positive Gene Signature. As a general rule, the acceptable percent of variability in the number of positive genes between two sample sets should be less than 5%.

For the purposes of this study, the following statistical methods were used for the data analysis. A gene set consists of genes that have a certain percentage of present calls in at least one group of samples. These genes are analyzed, and others are excluded. For example, a gene having 40% present calls (2 out of 5 samples) in at least in one sample group, cancerous cells from either hepatitis or cirrhosis patients, or non-cancerous cells

from either type of patient, is included in the analysis if 40% is above the lower limit for percent present calls. Also, the genes are divided into two groups depending on their expression values across samples. For the genes in the high expression group, the average difference value is transformed to log scale before the analysis. For the genes in the low expression group, the original values are used in the analysis. An Analysis of Variance (ANOVA) method is used for data analysis (Steel et al., Principles and Procedures of Statistics: A Biometrical Approach, Third Ed., McGraw-Hill, 1997). Prior to the final analysis, a leave-one-out approach is used for outlier detection. One sample is left out of the ANOVA analysis to see whether omitting a specific sample from the analysis has any significant effect on the final result. If so, that particular sample is excluded from the final analysis. After outlier detection, the final analysis produces a list of genes that are differentially expressed with a p-value ≤ 0.001 as determined by the contrast from the ANOVA.

Differentially expressed genes were discovered by comparing biopsy samples from cancerous and non-cancerous regions of the same liver in patients with chronic viral hepatitis (CH) or liver cirrhosis (LC) who went on to develop primary liver cancer (hepatocellular carcinoma or HCC). Genes which showed no difference in expression level between a the cancerous and non-cancerous samples were not included in Table 1. Group 1 of Table 1 (23 genes) lists the genes that were found to be differentially expressed when the level in liver tumor cells was compared to the level in non-cancerous cells from inflamed areas or from fibrotic areas. Group 2 (12 genes) lists the genes whose expression level differed in liver tumor cells compared to cells from areas of inflammation, and group 3 contains those genes whose expression level differed in liver tumor cells compared to cells from fibrotic regions of the liver (74 genes).

25 Fold Change analysis

10

15

20

30

The data was first filtered to exclude all genes that showed no expression in any of the samples. The ratio (cancerous/non-cancerous, HCC/CH or HCC/LC) was calculated by comparing the mean expression value for each gene in the cancerous sample set against the mean expression value of that gene in the non-cancerous sample set. Genes were included in the analysis if they had a fold change ≥ 1.5 in either direction, and a p-value < 0.0007 as determined by an Analysis of Variance Test (ANOVA). According to the criteria of the test, differences having p-values below 0.0007 were determined to be

statistically significant. Out of the ~60,000 genes surveyed by the Human Genome U95 set, 109 genes were present in the overall fold change analysis. In Table 1, numbers representing a comparison, or fold change, between the level of expression of a gene in two disease state liver biopsy samples can be positive or negative. Positive values indicate a higher expression level in the cancerous sample compared to the non-cancerous sample (up-regulation), while negative values indicate a lower expression level in the cancerous sample compared to the non-cancerous sample (down-regulation).

Expression Profies of Genes Differentially Expressed in Liver Disease

10

15

20

25.

30

Using the above described methods, genes that were predominantly over-expressed in liver cancer, or predominantly under-expressed in liver cancer, were identified. Genes with consistent differential expression patterns provide potential targets for broad range diagnostics and therapeutics.

Table 1 lists the genes determined to be differentially expressed in cancerous liver tissue compared to non-cancerous liver tissue, with the fold change value for each gene. More specifically, the level of expression of the genes of Table 1 in liver cancer cells was compared to the level of expression in tissue from inflamed and/or fibrotic areas of the liver. The set of genes in each group, along with their relative expression levels, creates a profile for the diseases examined, chronic hepatitis with hepatic carcinoma and cirrhosis with hepatic carcinoma.

These genes or subsets of these genes confirm an overall liver disease gene expression profile. The genes in Table 1 may be used alone, or in combination with the methods, compositions, databases and computer systems of the invention.

Example 2: Diagnostic Subset of Liver Disease Associated GeneCluster Analysis

Table 1 lists the members of diagnostic subsets of genes selected by p-value in groups 2 and 3 (12 and 74 genes, respectively). In addition to their diagnostic, monitoring, drug screening and therapeutic uses, these groups of genes can be used to differentiate between liver tumor samples from subjects with chronic hepatitis and liver tumor samples from subjects with cirrhosis. Assays measuring the expression level of these genes are capable of distinguishing between carcinomas arising in chronic hepatitis patients versus carcinomas arising in cirrhosis patients.

10

The gene subsets of Table 1 can, therefore, be used to identify the presence of a malignant tumor in liver tissue from chronic hepatitis or cirrhosis patients, to monitor the progression of the tumor (e.g., during cancer treatment or combined disease treatments), to evaluate the effects of therapeutic agents for treating the tumor or to distinguish the origin or predisposing condition of the tumor.

Although the present invention has been described in detail with reference to examples above, it is understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims. All cited patents and publications referred to in this application are herein incorporated by reference in their entirety.

Table 1- Genes Differentially Expressed in Liver Cancer

				Description			p-Values for	
Fragment Name	Seq. ID	Accession Number	UniGene ID		нсс/сн	HCC/LC	нсс/сн	HCC/LC
Group 1: HCC/CH and HCC/LC	CH and F	ICC/IC			4 40	/a c	0 0000	0.0000
33428_s_at	_	AF034957	Hs.194019	attractin	5.70	3.49	0.0002030	0.0000150
36785_at	7	Z23090	Hs.76067	heat shock 27kD protein 1	7.7.	3.55	0.0001182	0.000034
74893_g_at	က	AA928646	Hs.75864	endoplasmic reticulum glycoprotein	200	4.74	0.000170	0.000647
51788_at	4	AW023096	Hs.3887	proteasome (prosome, macropain) 26S subunit, non-ATPase, 1	2.03 1.65	1.74	0.000407	0.00038
44143_at	ည	AA399076	Hs.46743	McKusick-Kaufman syndrome	8 4	3 6	0.00000	0.000274
832_at	9	U39317	Hs.108332	ubiquitin-conjugating enzyme E2D 2 (homologous to yeast UBC4/5)	S 2	5.03	0.000222	0.00056
57042_at	7	W74749	Hs.285818	similar to Caenorhabditis elegans protein C42C1.9		17.7	0.00009	0
55107_at	&	Al916306	Hs.87125	EH-domain containing 3	1.9	20.02	0.000039	0.00001
33766_at	တ	<i>111111</i> X	Hs.198726	vasoactive intestinal peptide receptor 1	50.6-	. 4	0.000016	4.00E-06
37206_at	9	X63359	Hs.294039	UDP glycosyltransterase 2 family, polypeptide B10	2.67	-1034	0.000679	0.000872
37059_at	=	Z 48475	Hs.89771	glucokinase (hexokinase 4) regulatory protein	-2.77	-3.31	0.000064	0.00003
533_g_at	12	U17418	Hs.1019	parathyroid hormone receptor 1	2 62	5 8	1 00F-06	0
35803_at	13	S82240	Hs.6838	ras homolog gene family, member E	-3.02 4.27	יין אַנ אַנ	0.000161	0 000757
33862_at	14	AF017786	Hs.173717	phosphatidic acid phosphatase type 2B	14.21 F 65	12.22		
44982_s_at	15	AI985046	Hs.24395	small inducible cytokine subfamily B (Cys-X-Cys), member 14 (BRAK)	-0.00	5.4 5.4	0.000041	0.000012
32666_at	16	U19495	Hs.237356	stromal cell-derived factor 1	-0:4	22.54	0.000032	0.000165
35118_at	17	M12625	Hs.325507	lecithin-cholesterol acyltransferase	7.50	-23.54	0.000099	7.00E-06
55063_at	8	AL042399	Hs.75668	glutamate decarboxylase 1 (brain, 67kD)	7 54	10.65	0.000032	00000
34602_at	9	D63160	Hs.54517	ficolin (collagen/fibrinogen domain-containing lectin) 2 (hucolin)	- - - - - - - - - - - - - - - - - - -	24.74	0.00007	0 000059
34708_at	8	D88587	Hs.333383	ficolin (collagen/fibrinogen domain-containing)-3 (Hakata anugen)	0.07	35.75	0.000089	3.00E-06
39120_at	77	AA224832	Hs.94360	metallothionein 1L	-3.3/	28.66	0.000023	0.000914
45943_at	22	AI052592	Hs.35718	cytochrome P450, subfamily VIIIB (sterol 12-apha-nydroxylase), polypepude 1 -11.33	40.00	- F6 74	0.00000	0.00097
56641_at	ಜ	AI937227	Hs.8821	liver-expressed antimicrobial peptide	06.61-		9	
Group 2: HCC/CH	C/CH				, V	2.44	0.000396	,
45313_at	74	AA167715	Hs.296244	fatty acid synthase	1 00	2.74	0.000318	
85972_at	52	AI424433	Hs.306000	solute carrier family 4 (anion exchanger), member 1, adapter protein	76.1 40 t	1 88	0.000705	•
1840_g_at		HG1112-HT11Hs.10842	11Hs.10842	RAN, member RAS oncogene family	27.	5.5	0.000879	
33667_at	3 6	X52851	Hs.182937	peptidylprolyl isomerase A (cyclophilin A)	<u> </u>	20.7	0.000253	
53474_at	27_	AF072812	Hs.7765	chromosome 16 open reading frame 5	5:	į		-

Table 1- Genes Differentially Expressed in Liver Cancer

				Description			p-Values for	
Fragment Name	Seq. ID	Accession Number	UniGene ID		нсс/сн	HCC/LC	нсс/сн	HCC/LC
34367_at	78	AF006043	Hs.3343	phosphoglycerate dehydrogenase	4.06	-2.72	0.000976	
38862_at	23	Y11215	Hs.19126	src kinase-associated phosphoprotein of 55 KDa	5.5	5.6	0.00000	•
40325_at	ළ	AB014460	Hs.66196	nth (E.coli endonuclease III)-like 1	76.7-		0.000012	
32727_at	ઝ	AF037062	Hs.172914	retinol dehydrogenase 5 (11-cisand 9-cis)	5.4. r	2.4.6	0.000210	
37319_at	32	M35878	Hs.77326	insulin-like growth factor binding protein 3	ئ ئى د	ر د د	0.000053	
35063_at	33	D50030	Hs.104	HGF activator	 	67.6 67.6	0.00000	
1391_s_at	34	L04751	Hs.1645	cytochrome P450, subfamily IVA, polypeptide 11	-1./0 6.33	-14.30	0.000024	•
32966_at	ઝ	127050	Hs.2388	apolipoprotein F	5.5	200	20000	
Group 3: HCC/LC	;rc			•	4	07.40		VZ80000
37482_at	38	U37100	Hs.116724	aldo-keto reductase family 1, member B11 (aldose reductase-like)	S :- C	21.13		0,0000
33404_at	37	U02390	Hs.296341	adenylyl cyclase-associated protein 2	7.0 1.0	7.7		0.0002
63545_at	38	AW006831	Hs.337478	RAB, member of RAS oncogene family-like 2B	3.71	۲.۶		0.0001 93
				procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase),	c L	5		0.000044
34390 at	93	U90441	Hs.3622	alpha polypeptide il	3.58	6.27		0.000211
33873_at	\$	D43642	Hs.2430	transcription factor-like 1	2.29	8 8 8 8 8		0.000472
893 at	4	M91670	Hs.174070	ubiquitin carrier protein	2.51	5.83	•	0.000200
ļ				solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator),				000000
59749 at	42	AI478190	Hs.324178	member 6		5.18		0.000088
39749_at	43	U51007	Hs.148495	proteasome (prosome, macropain) 26S subunit, non-ATPase, 4	2.01	۲.4 د د		0.000266
44695 at	44	A1953020	Hs.324618	HSPC142 protein	2.71	9.7		0.000133
43836 s at	45	Al971969	Hs.282997	glucosidase, beta; acid (includes glucosylceramidase)	1.91	f.2.4		9.00E-00
39801_at	46	AF046889	Hs.153357	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3	3.32	1.4		0.000237
44219 at	47	A1937030	Hs.287883	X11L-binding protein 51	1.44	5.92		0.0005
37256 at	48	AI829890	Hs.78524	TcD37 homolog	1.79	3.76		0.00004
1				aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid	0 53	2 76		4 005-06
37399_at	49	D17793	Hs.78183	dehydrogenase, type II)	2.33	2.0	•	0.000-00
35820_at	20	X62078	Hs.289082	GM2 ganglioside activator protein	2.10 2.76	5.03 60.0		0.00034
1100_at	51	L76191	Hs.182018	interleukin-1 receptor-associated kinase 1	0.70 00 F	3.00		0.00057
146_at	25	U81802	Hs.154846	phosphatidylinositol 4-kinase, catalytic, beta polypeptide	5. 1	3.42	•	0.000167
77990_at	23	AW004018	Hs.268281	CGI-201 protein	0/:1	60.0		J-00000

Table 1- Genes Differentially Expressed in Liver Cancer

				Description			p-Values for	
Fragment Name	Seq. ID	Accession Number	UniGene ID		нсс/сн	HCC/LC	нсс/сн	HCC/LC
32799 at	25	AF023268	Hs.200600	secretory carrier membrane protein 3	1.81	3.25	•	0.00009
32260 at	32	X86809	Hs.194673	phosphoprotein enriched in astrocytes 15	2.14	3.1/		0.000399
497 at	92	U32680	Hs.194660	ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)	1.97	3.14	•	0.00013
33154 at	24	D26600	Hs.89545	proteasome (prosome, macropain) subunit, beta type, 4	1.62	3.08		0.000019
39062 at	28	AL008726	Hs.118126	protective protein for beta-galactosidase (galactosialidosis)	2.18	3.05		0.00004
56378 at	29	W22366	Hs.337078	NICE-5 protein	1.45	3.02	•	0.000292
45155 at	: 69	AI433892	Hs.38738	claudin 15	2.14	2.95		0.000669
44082 at	61	AA029831	Hs.238928	HT002 protein; hypertension-related calcium-regulated gene	 	2.94	•	0.00004
57136 at	62	AI279571	Hs.23528	HSPC038 protein	1.54	2.93		0.000293
64501 at	33	Al982714	Hs.93832	putative membrane protein	1.97	2.70		0.000498
34835 at	: 25	D87442	Hs.4788	nicastrin	1.62	2.69		0.000332
41322 s at	. 55	AI816034	Hs.23990	nucleolar protein family A, member 2 (H/ACA small nucleolar RNPs)	1.89	2.61		0.000756
4/821 at	8 %	A1634570	Hs.301005	minine-rich element binding protein B	1.96	2.58	•	0.000034
44021_at	3 6	AI023344	Hs 12865	772	1.51	2.56		0.000807
שביים שני	5 8	744000	He 35384	ring finger protein 1	1.43	2.52	٠	0.000061
33003_at	8 6	A A 622300	Hs 65648	DNA binding mofff protein 84	1.58	2.40	٠	0.000325
04880_at	3 6	A4632300	113.03040 Un 183004	DADO (S. sambo) bomolog	1.77	2.38		0.000159
/45//_s_at	2 ;	AI7 307 43	113, 103334	Olino 4 colination on the principal of t	1.52	2.30		0.000214
45/12_at	= i	H98166	US.2/9000	SOMICHI acuvaling entryine subulint	1.40	2.28	•	0.000854
90637_at	7.7	AAUSSBSS	HS./ 101		1.98	2.20		0.00049
1659_s_at	23	D78132	Hs.2/9903	Kas homolog enriched in Drain Z	203	2.14		0.000546
38719_at	74	003985	Hs.108802	N-ethylmaleimide-sensitive ractor		213		0.000082
37669_s_at	22	016799	Hs. 78629	ATPase, Na+/K+ transporting, beta 1 polypeptide	8 8	21.	•	0.000599
45255_at	92	Al354351	Hs.237924	CGI-69 protein	5 2	1 0 2		0.000106
1309 at	11	D26598	Hs.82793	proteasome (prosome, macropain) subunit, beta type, 3	<u>.</u>	3 5	•	0.00000
33659 at	8/	X95404	Hs.180370	cofilin 1 (non-muscle)	<u>z</u>	3.5		0.0000
35752 s at	62	M15036	Hs.64016	protein S (alpha)	-1.42	-2.03		0.000865
64360 s at	2 &	AA219354	Hs 282804	centoniasmin (ferroxidase)	-1.79	-2.31	•	0.000802
0+200_s_at	3 8	M16447	Hs 75438	oninoid dibydronferidine reductase	-1.76	-2.65		0.000586
40082 at	5 &	D10040	Hs.154890	fatty-acid-Coenzyme A ligase, long-chain 2	-1.26	-2.98	•	0.000059
46746 s at	8 E	W42636	Hs.5326	porcupine	-1.34	-3.05	•	0.000074
	;							

Table 1- Genes Differentially Expressed in Liver Cancer

				Description	,		p-Values for	
Fragment Name	Seq. ID	Accession Number	UniGene ID		нсс/сн	HCC/LC	нсс/сн	HCC/LC
90033 at	28	T66157	Hs.154437	phosphodiesterase 2A, cGMP-stimulated	-2.22	-3.41		0.000467
36097 at	22	M62831	Hs.737	immediate early protein	-1.64	4.02		0.000036
74184 at	8 %	T98839	Hs 30299	IGE-II mRNA-binding protein 2	-1.48	4.78		0.000181
37022 at	8 %	1141344	Hs. 76494	proline arcinine-rich end leucine-rich repeat protein	-2.63	4.89		0.000047
58322 at	5 &	A1765890	Hs.16341	MAWD hinding protein	-1.45	-5.43		0.000166
55867 at	3 8	AI 043089	Hs.3807	EXYD domain-containing ion transport regulator 6	-1.70	-5.44		0.000143
38634 at	8 6	M11433	Hs.101850	refinol-binding protein 1, cellular	-6.44	-5.51		0.00016
38772 at	8 5	Y11307	Hs.8867	cysteine-rich, andiogenic inducer, 61	-4.09	-5.72		0.000487
46694 at	;	AI078144	Hs 9315	HNOFI -iso profein	4.66	-5.88		0.000875
48502 at	មួន	AA122235	Hs 113052	RNA cyclase homolog	-3.30	-6.27		0.000765
64390 at	8 8	Al342377	Hs.44281	CDK4-binding protein p34SEI1	-2.10	-6.59	•	0.000087
1212 at	. સ્	1186529	Hs 26403	olinathione fransferase zeta 1 (maleylacetoacetate isomerase)	-3.51	-7.30		0.000367
42363 r af	8 8	A1680350	Hs.296176	STAT induced STAT inhibitor 3	-1.71	-7.37		0.000016
91311 at	2 6	AA576961	Hs.82101	pleckstrin homology-like domain, family A, member 1	-2.77	-7.52		0.000083
37972 at		U75744	Hs.88646	deoxyribonuclease I-like 3	-3.21	-7.76	•	0.000691
1379 at	8	M59371	Hs.171596	epithelial receptor protein-tyrosine kinase	-1.67	-7.95	•	0
35925 at	19	AF040639	Hs.284236	aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase)	-2.65	-9.29	•	0.000105
34638 r at	101	M12963	Hs.73843	alcohol dehydrogenase 1 (class I), alpha polypeptide	-1.85	-0.83 -0.		0.00081
1				coagulation factor IX (plasma thromboplastic component, Christmas disease,	•	•		1000
35556 at	102	K02402	Hs.1330	hemophilia B)	-1.84	-10.42		0.00065
41376 i at	103	J05428	Hs.10319	UDP givcosyltransferase 2 family, polypeptide B7	-3.64	-10.49	•	0.000071
61370 at	104	AI819354	Hs.301528	L-kynurenine/albha-aminoadipate aminotransferase	-3.46	-10.90	•	0.000621
33564 at	55	132140	Hs.531	afamin	-1.72	-11.83		0.000065
34622 f at	<u> </u>	M10943	Hs 203936	metallothionein 1F (functional)	-3.56	-11.84	•	0.000364
35730 at	102	X03350	Hs 4	alcohol dehydrogenase 2 (class I), beta polypeptide	4.24	-13.10	•	0.000706
37394 at	108	103507	Hs.78065	complement component 7	-3.50	-15.87		0.000247
31623 f at	6 6	K01383	Hs.173451	metallothionein 1A (functional)	-5.12	-32.78		0.000409

Table 1- Genes Differentially Expressed in Liver Cancer

Mean(HCC from LC)	42.36 956.77 710.79 714.14 04.33 742.01 772.25 52.43 87.81 22.34 22.34 22.34 30.93 36.44 30.93 43.7 32.48 51.6 51.6 590.69 84.41 730.83	14
Mear	142.36 3956.77 3710.79 1714.14 404.33 242.01 472.25 152.43 20 170.46 31.33 37.81 52.34 30.93 43.7 32.48 61.6 144.85 154.45 239.9	195
Mean(LC)	50.05 1133.51 1647.94 987.9 265.76 143.41 1278.17 506.63 48.58 799.12 322.94 125.26 429.09 1035.68 244.6 238.32 728.59 1028.8 345.97 1337.08 5124.11 4117.95 16004.11 37.62	398.43
Mean(HCC from CH)	151.48 3526.56 3404.95 1470.84 319.1 227.89 485.4 203.24 20 107.34 69.68 58.27 243.42 27.03 31.94 72.38 65.7 34.51 80.76 226.61 140.37 203.69 667.72 46.33 691.4	128 65
Mean(CH)	36.39 1300.25 1381.07 725.34 193.1 151.86 875.09 3875.09 38.63 39.13 386.63 258.26 192.89 211.11 1039.82 152.67 206.74 469.05 494.25 2259.52 1674.55 4054.26 158.25 24.11	246.2
HCC(CC) HCC(CH) /	1.06 1.08 1.09 1.12 1.00 1.00 1.13 1.35 1.35 1.36 1.10 1.10 1.13 1.13 1.13 1.13 1.13 1.13	1.52
CH/LC	CG/LC -1.35 -1.15 -1.19 -1.19 -1.26 -1.26 -1.27 -2.07 -1.25 -1.26	. 6
Seq. ID	CC/CH and H 2 3 3 3 4 4 4 4 4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 20 20 20 20 20 20 20 20 20 20	3 5
Fragment Name	Group 1: HCC/CH and HCC/LC 33428_s_at 1 -1.35 36785_at 2 1.15 74893_g_at 3 -1.19 51788_at 4 -1.36 44143_at 5 -1.38 832_at 6 1.06 57042_at 7 -1.46 55107_at 8 -1.24 37206_at 10 -2.07 37059_at 11 -1.25 33862_at 14 1.00 44982_s_at 15 -1.60 32666_at 16 -1.15 35803_at 12 -2.03 34708_at 19 -1.33 34708_at 20 -1.75 55063_at 20 -1.75 55041_at 20 -1.75 45943_at 22 -2.44 56641_at 23 -3.95 6roup 2: HCC/CH -1.55 45313_at 24 -1.55 45313_at 25 -1.156 45313_at 26 -1.156	52474 pt

Table 1- Genes Differentially Expressed in Liver Cancer

34367_at 28 -1.04 -1.55 605.74 149.24 3862_at 29 -1.14 -1.38 93.76 25.12 40325_at 30 1.14 1.43 211 83.67 32727_at 31 1.17 -1.12 89.92 20 37319_at 32 -1.02 -1.46 2159.87 404.88 35063_at 34 -1.42 1.82 2159.87 404.88 32966_at 34 -1.42 1.82 371.31 58.66 Group 3: HCC/LC 2.68 -6.18 30.34 357.74 33404_at 36 -2.68 -6.18 30.34 357.74 33404_at 37 1.27 -2.36 25.3 65.78 33873_at 40 1.39 -1.15 52.84 196.23 34390_at 39 -1.12 -1.95 22.56 80.76 39749_at 42 2.80 -1.53 100.08 120.75 39801_at 45 1.15 -1.01 34.2 92.53 44895_at 45 1.15 -1.01 34.2 92.53 37239_at 49 -1.23 -1.84 83.99 192.43 37399_at 49 -1.23 -1.83 642.62 1628.75 37399_at 50 1.78 1.01 91.39 192.04 1100_at 51 -1.07 -1.01 45.26 86.08 1100_at 51 -1.07 -1.03 65.69	Fragment Vame	Seq. ID	CH/LC	нсс(сн) / нсс(сн) /	Ŧ	Mean(HCC from CH)		Mean(HCC from LC)
1.14	34367_at	78	-1.04	-1.55	605.74	149.24	630.02	231.53
1.14 1.43 211 89.92 -1.02 -1.46 2159.87 -1.12 89.92 2 2159.87 -1.48 5.71 1096.07 -1.42 1.82 371.31 5.71 1096.07 -1.42 1.82 371.31 5.71 1096.07 6.139 -1.68 52.84 1.49 -1.56 52.84 1.39 -1.59 642.62 1.39 -1.69 1.32 -1.69 17.34 17.7 1.01 91.39 17.34 17.7 1.01 91.39 17.34 17.7 1.01 91.39 17.34 17.7 1.01 91.39 17.54 1.01 91.39 17.71 1.11 1.16 1.25 1.15 1.15 1.10 1.15 1.10 1.10 1.10 1.1	38862_at	83	-1.14	-1.38	93.76	25.12	106.98	34.66
1.17 -1.12 89.92 2.15.02 -1.46 2159.87 4.23.71 1096.07 6.148 5.71 1096.07 6.142 1.82 371.31 5.268 -6.18 30.34 3.39 1.15 - 1.68 52.84 1.39 -1.59 58.78 1.00.08 1.04 -2.34 108.86 1.71 -1.01 34.2 1.15 -1.95 100.08 1.32 -2.06 173.41 1.15 -1.92 46.64 1.32 -2.06 173.41 1.78 1.01 91.39 -1.51 1.71 -1.01 44.77 1.11 -1.03 41.77 1.11 -1.03 41.77 1.11 -1.03 41.77 1.11 -1.03 41.77	10325 at	8	1.14	1.43	211	83.67	185.74	58.46
-1.02 -1.46 2159.87 -1.25 1.66 423.71 -1.48 5.71 1096.07 -1.42 1.82 371.31 -2.68 -6.18 30.34 1.27 -2.36 25.3 1.15 - 1.68 52.84 1.39 -1.84 83.99 1.49 -1.56 83.99 1.71 -1.01 34.2 1.15 -1.95 100.08 1.71 -1.01 484.14 1.15 -1.02 484.14 1.15 -1.03 17.64 1.32 -2.06 173.41 1.13 -1.03 46.64 1.23 -1.59 46.64 1.24 1.01 91.39 -1.07 -1.03 41.77 1.11 -1.01 45.26	32727 at	34	1.17	-1.12	89.92	20	77.01	22.5
-1.25	37319 at	32	-1.02	-1.46	2159.87	404.88	2196.02	591.49
-1.48 5.71 1096.07 -2.68 -6.18 30.34 1.27 -2.36 25.3 1.151.68 52.84 -1.12 -1.95 22.56 1.39 -1.84 83.99 1.49 -1.56 58.78 2.80 -1.53 100.08 1.71 -1.01 34.2 1.15 -1.08 157.64 1.32 -2.06 173.41 1.32 -2.06 173.41 1.32 -1.59 46.64 -1.23 -1.83 642.62 1.78 1.01 91.39 -1.07 -1.03 41.77 1.11 -1.61 45.26	35063 at	æ	-1.25	1.66	423.71	106.19	529.69	63.87
-1.42	1391 s at	8	-1.48	5.71	1096.07	622.87	1625.85	109.13
-2.68 -6.18 30.34 1.27 -2.36 25.3 1.151.68 52.84 -1.12 -1.95 52.56 1.39 -1.84 83.99 1.49 -1.56 83.99 1.04 -2.34 108.86 1.71 -1.01 34.2 1.15 -1.08 157.64 1.15 -1.08 157.64 1.15 -1.08 173.41 1.13 -2.06 173.41 1.32 -2.06 173.41 1.32 -1.59 46.64 1.32 -1.59 46.64 1.32 -1.61 45.26	32966_at	32	-1.42	1.82	371.31	58.66	525.9	32.26
2.68 -6.18 30.34 1.27 -2.36 25.3 1.151.68 52.84 -1.12 -1.95 22.56 1.39 -1.56 83.99 1.49 -1.56 58.78 2.80 -1.53 100.08 1.71 -1.01 34.2 1.15 -1.92 484.14 1.15 -1.08 157.64 1.32 -2.06 173.41 1.32 -1.59 46.64 -1.23 -1.83 642.62 1.78 1.01 91.39 -1.07 -1.03 41.77 1.11 -1.61 45.26	Group 3: HC	CILC						
1.27 -2.36 25.3 1.151.68 52.84 -1.12 -1.95 52.56 1.39 -1.56 83.99 1.49 -1.56 83.99 1.04 -2.34 100.08 1.71 -1.01 34.2 1.15 -1.92 484.14 1.15 -1.08 157.64 1.32 -2.06 173.41 1.32 -1.59 46.64 1.32 -1.59 46.64 1.32 -1.59 46.64 1.32 -1.59 46.64 1.31 -1.61 45.26	37482 at	36	-5.68	-6.18	30.34	357.74	81.37	2212.61
1.151.68 52.84 -1.12 -1.95 22.56 1.39 -1.84 83.99 1.49 -1.56 83.99 1.04 -2.34 108.86 1.71 -1.01 34.2 1.15 -1.92 484.14 1.15 -1.92 484.14 1.15 -1.08 157.64 1.32 -2.06 173.41 1.32 -1.59 46.64 -1.23 -1.83 642.62 1.78 1.01 91.39 -1.07 -1.03 41.77 1.11 -1.61 45.26	33404 at	37	1.27	-2.36	25.3	65.78	8	155.35
-1.12 -1.95 22.56 1.39 -1.84 83.99 1.49 -1.56 58.78 2.80 -1.53 100.08 1.04 -2.34 108.86 1.71 -1.01 34.2 1.15 -1.92 484.14 1.15 -1.08 157.64 1.32 -2.06 173.41 1.32 -1.59 46.64 -1.23 -1.59 46.64 1.37 -1.03 41.77 1.11 -1.61 45.26	63545_at	88	1.15	-1.68	52.84	196.23	45.81	329.84
40 1.39 -1.84 83.99 41 1.49 -1.56 58.78 42 2.80 -1.53 100.08 43 1.04 -2.34 108.86 44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.01 45.26	34390 at	95	-1.12	-1.95	22.56	80.76	25.18	157.82
42 2.80 -1.55 58.78 43 1.04 -2.34 108.86 44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.01 91.39 52 1.11 -1.61 45.26	33873 at	8 8	1.39	28.	83.99	192.42	60.26	354.05
42 2.80 -1.53 100.08 43 1.04 -2.34 108.86 44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	803 at	41	1 49	-1.56	58.78	147.44	39.34	230.06
42 2.80 -1.53 100.08 43 1.04 -2.34 108.86 44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.61 45.26 52 1.11 -1.61 45.26	037_al	F	<u> </u>	2				
43 1.04 -2.34 108.86 44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	59749 at	42	2.80	-1.53	100.08	120.75	35.71	184.96
44 1.71 -1.01 34.2 45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	39749 at	43	1.02	-2.34	108.86	219.04	104.32	511.93
45 1.15 -1.92 484.14 46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	44695 at	44	1.71	-1.01	34.2	92.53	8	93.12
46 1.15 -1.08 157.64 47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	43836 s at	45	1.15	-1.92	484.14	924.31	422.21	1775.62
47 1.32 -2.06 173.41 48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	39801 at	46	1.15	-1.08	157.64	524.07	137.41	564.88
48 1.32 -1.59 46.64 49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	44219 at	47	1.32	-2.06	173.41	250.32	131.61	515.98
49 -1.23 -1.83 642.62 50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	37256_at	48	1.32	-1.59	46.64	83.47	35.25	132.39
50 1.78 1.01 91.39 51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	37399 at	49	-1.23	-1.83	642.62	1628.75	791.81	2974.46
51 -1.07 -1.03 41.77 52 1.11 -1.61 45.26	35820 at	20	1.78	1.01	91.39	192.04	51.31	189.52
52 1.11 -1.61 45.26	1100 at	2	-1.07	-1.03	41.77	157.11	44.84	161.26
C C C C C C C C C C C C C C C C C C C	146 at	22	1.	-1.61	45.26	86.08	40.62	138.85
55 1.51 1.51	77990_at	23	1.31	-1.47	92.53	163.29	70.82	240.01

Table 1- Genes Differentially Expressed in Liver Cancer

Fragment Name	Seq. ID	CH/LC	нсс(сн) / нсс(сн) /	Mean(CH)	Mean(HCC from CH)	Mean(LC)	Mean(HCC from LC)
32799_at	55	1.13	-1.59 -1.26	201.78	365.98 460.32	179.36	582.69 581.74
497_at	293	45.	-1.53	163.55	323.01	157.23	493.58
33154_at	27	-1.01	-1.92	476.51	771.16	481.66	1481.48
39062_at	28	-1.01	-1.42	323.59	705.43	328.02	1000.16
56378_at	29	1.10	-1.89	586.6	847.94	530.86	1603.61
45155_at	99	1.39	1.01	509.58	1088.23	367.1	1081.19
44082_at	61	1.05	-1.71	145.39	237.67	138.47	407.05
57136_at	62	-1.02	-1.94	856.14	1320.28	873.09	2557.79
64501_at	83	-1.16	-1.59	939.04	1846.8	1086.52	2938.37
34835_at	54	1.02	-1.63	289.56	469.17	284.43	766.35
41322_s_at	65	1.03	-1.34	84.42	159.51	81.92	213.73
44821_at	99	-1.08	-1.43	389.21	762.25	421.21	1088.69
48913_at	29	1.06	-1.60	380.42	575.38	358.46	918.11
35685_at	89	1.64	-1.07	289.35	413.86	176.34	443.67
64886_at	69	-1.48	-2.25	442.13	97.6	654	1568.34
74577_s_at	29	-1.07	-1.44	1553.52	2748.37	1669.16	3966.04
45712_at	71	-1.01	-1.53	336.68	512.07	340.41	782.95
90637_at	72	1.41	-1.15	216.23	302.5	153.02	348.45
1659_s_at	73	1.15	1.04	265.54	526.93	230.24	506.23
38719_at	74	. 1.1	-1.17	56.48	114.7	62.54	134.02
37669_s_at	75	-1.03	-1.38	1005.93	1588.92	1034.68	2197.29
45255_at	9/	1.15	1.09	1106.18	2205.3	960.49	2029
1309_at	11	-1.20	-1.15	416.77	795.57	500.68	914.19
33659_at	. 82	-1.00	1.01	1604.43	2635.01	1605.92	2620.97
35752_s_at	29	-1.06	1.34	266.49	187.67	283.7	139.98
64369_s_at	88	-1.23	1.05	1096.17	613.12	1345.19	582.06
260_at	æ	-1.50	1.00	330.36	187.35	494.66	186.66
40082_at	82	-2.20	1.07	456.38	360.83	1003.4	336.73
46746_s_at	83	-1.96	1.16	889.16	664.38	1739.7	571.32

Table 1- Genes Differentially Expressed in Liver Cancer

Mean(HCC from LC)	190.08 249.96 82.7	51.46 1004.8	394.41	82.61	30.51 37.53	245.00	243.00	26.32	48.29	416.23	132.35	6.77	8	34.54	92.25	139.35	291.7	26.03	59.9	572.84	75.05	45.9	207.38
Mean(LC)	648.03 1004.81 395.36	251.61 5453.68	2143.83	455.03	1/3.31	101./8	1535.00	451.21	352.4	3065.8	994.75	604.69	158.9	320.94	912.75	1452.17	3061.38	283.6	708.95	6782.49	982.94	728.66	6798.83
Mean(HCC from CH)	268.41 522.96 107.88	119.91	1527.55	106.06	47.36	69.24	283.76	128.48	106.47	496.58	120.6	140.24	29	61.72	189.82	337.88	303.33	46.57	137.46	1009.05	127.19	144.63	686.61
Mean(CH)	596.98 860.22 159.53	315.21	25002.05 2602.05	682.93	193.88	322.34	935.83	269.34	374.12	851	334.15	450.49	48.46	163.57	351.38	621.13	1104.52	161.16	237.07	3587.58	539.69	506.19	3516.77
(С)) (С) (С)	1.41 2.09 1.30	2.33	1.12 3.87	1.28	1.56	2.52	1.16	1.88	2.20	1.19	-1.10	1.80	1.45	1.79	2.06	2.42	1.04	1 79	2.29	1.76	169	3.15	3.31
CH/LC	-1.09 -1.17 -2.48	1.25	-2.1 <i>/</i> 1.21	1.50	1.12	1.99	1.64	-1.68	1.06	-3.60	-2.98	-1.34	-3.28	-1.96	-2.60	-2.34	27.7	-176	66.6-	28	. 1.83	4	-1.93
Seq. ID	25 28 28	84 87	8 8 8 8	6	91	35	83	94	8	96	26	86	සි	9	10	102	103	2 5	70,	£ 5	5 5	<u> </u>	109
Fragment Name	90033_at 36097_at 74184_at	37022_at	58322_at 65867_at	38634_at	38772_at	46694_at	48502_at	64390_at	1212 at	42363 r at	91311 at	37972 at	1379 at	35925 at	34638_r_at	35556 at	41376 i of	41370 at	33561 at	34622 f at	31022_1_at	37394 at	31623_f_at

Table 2: Patient Information

				1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	The state of the s	The second of th
Sample ID	Doñor. Gender	Donor Race	Donor-Age at Excision	Donor Donor-Age Date of Pugan/ Race at Excision Collections Fluid	Organ/ Fluid	Tissue Site	Normal or Diseased	SpecimenDiagnosis
MC 034-04	Male	Korean	42	4/2/2001	Liver	left lobe	Diseased	Liver cirrhosis (HBV)
VI IMC-034-02	Male	Korean	42	4/2/2001	Liver	left lobe	Malignant	Hepatoma
YUMC-035-01	Male	Korean	34	1/29/2001	Liver	right lobe	Diseased	Chronic hepatitis B
YUMC-035-02	_	Korean	34	1/29/2001	Liver	right lobe	Malignant	Hepatoma
YUMC-036-01	<u> </u>	emale Korean	43	2/16/2001	Liver	left lobe	Diseased	Liver cirrhosis (HBV)
YUMC-036-02	Female	Korean	43	2/16/2001	Liver	left lobe	Malignant	Hepatoma
YUMC-037-01	Female	Korean	65	2/14/2001	Liver	right lobe	Diseased	Chronic hepatitis B
YUMC-037-02	Female	Korean	65	2/14/2001	Liver	right lobe	Malignant	Hepatoma
VI IMC-038-01	Male	Korean	37	2/21/2001	Liver	right lobe	Diseased	Liver cirrhosis (HBV)
YLIMC-038-02	 -	Korean	37	2/21/2001	Liver	right lobe	Malignant	Hepatoma
VI IMC-039-01	↓_	Korean	62	4/5/2001	Liver	right lobe	Diseased	Liver cirrhosis (HBV)
VI IMC-039-02	╄	Korean	62	4/5/2001	Liver	right lobe	Malignant	Hepatoma
VI IMC-040-01	╁┈	Korean	40	3/30/2001	Liver	right lobe	Diseased	Liver cirrhosis (HBV)
YUMC-040-02	╄-	Korean	40	3/30/2001	Liver	right lobe	Malignant	Нератота
YUMC-042-01	↓_	Korean	61	12/18/2000	Liver	left lobe	Diseased	Chronic hepatitis B
YUMC-042-02	Male	Korean	61	12/18/2000	Liver	left lobe	Malignant	Hepatoma
YUMC-043-01	1 Male	Korean	63	3/27/2001	Liver	left lobe	Diseased	Chronic hepatitis B
VI IMC-043-02	Male	Korean	63	3/27/2001	Liver	left lobe	Malignant	Hepatoma
YUMC-059-01	ـــ	Korean	62	3/26/2001	Liver	right lobe	Diseased	chronic hepatitis B
YUMC-059-02	2 Male	Korean	62	3/26/2001	Liver	right lobe	Malignant	hepatocellular carcinoma

44

What is claimed is:

1.

5

A method of diagnosing liver cancer in a patient, comprising:

- (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of liver cancer.
- A method of detecting the progression of liver cancer in a patient, comprising: 2.
- (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of liver cancer progression.
- A method of monitoring the treatment of a patient with liver cancer, comprising: 10 3.
 - administering a pharmaceutical composition to the patient; (a)
 - preparing a gene expression profile of one or more of the genes in Table 1 from a cell or tissue sample from the patient; and
- comparing the patient gene expression profile to a gene expression profile from a cell population selected from the group consisting of non-cancerous liver cells and 15 cancerous liver cells.
 - A method of treating a patient with liver cancer, comprising: 4.
 - administering to the patient a pharmaceutical composition; (a)
- preparing a gene expression profile of one or more of the genes in Table 1 (b) from a cell or tissue sample from the patient; and 20
 - comparing the patient expression profile to a gene expression profile selected from the group consisting of non-cancerous liver cells and cancerous liver cells.
 - A method of typing liver disease in a patient, comprising: 5.
- (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of a type of 25 liver disease selected from a group consisting of chronic hepatitis with hepatic carcinoma and cirrhosis with hepatic carcinoma.
 - A method of detecting the presence or progression of liver cancer in a patient with 6. chronic hepatitis, comprising:

5

15

20

- (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of chronic hepatitis with liver cancer.
- 7. A method of detecting the presence or progression of liver cancer in a patient with cirrhosis, comprising:
 - (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of cirrhosis with liver cancer.
- 8. A method of diagnosing liver cancer according to claim 1, wherein the liver cancer is accompanied by chronic hepatitis or cirrhosis.
 - 9. A method of differentiating liver cancer related to chronic hepatitis from liver cancer related to cirrhosis in a patient, comprising:
 - (a) detecting the level of expression in a tissue sample of one or more genes from Table 1; wherein differential expression of the genes in Table 1 is indicative of either liver cancer related to chronic hepatitis or liver cancer related to cirrhosis.
 - 10. A method of screening for an agent capable of modulating the onset or progression of liver cancer, comprising:
 - (a) preparing a first gene expression profile of a cell population comprising cancerous liver cells, wherein the expression profile comprises the expression level of one or more genes from Table 1;
 - (b) exposing the cell population to the agent;
 - (c) preparing second gene expression profile of the agent-exposed cell population; and
 - (d) comparing the first and second gene expression profiles.
- 25 11. The method of claim 10, wherein the liver cancer is chronic hepatitis with liver cancer.
 - 12. The method of claim 10, wherein the liver disease is cirrhosis with liver cancer.

46

- 13. A composition comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Table 1.
- 14. A composition according to claim 13, wherein the composition comprises at least 3 oligonucleotides.
- 5 15. A composition according to claim 13, wherein the composition comprises at least 5 oligonucleotides.
 - 16. A composition according to claim 13, wherein the composition comprises at least 7 oligonucleotides.
- 17. A composition according to claim 13, wherein the composition comprises at least
 10 oligonucleotides.
 - 18. A composition according to any one of claims 13-17, wherein the oligonucleotides are attached to a solid support.
 - 19. A composition according to claim 18, wherein the solid support is selected from a group consisting of a membrane, a glass support, a filter, a tissue culture dish, a polymeric material, a bead and a silica support.
 - 20. A solid support comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Table 1.

15

- 21. A solid support according to claim 20, wherein the oligonucleotides are covalently attached to the solid support.
 - 22. A solid support according to claim 20, wherein the oligonucleotides are non-covalently attached to the solid support.
 - 23. A solid support according to claim 20, wherein the support comprises at least about 10 different oligonucleotides in discrete locations per square centimeter.
- 25 24. A solid support according to claim 20, wherein the support comprises at least about 100 different oligonucleotides in discrete locations per square centimeter.

- 25. A solid support according to claim 20, wherein the support comprises at least about 1000 different oligonucleotides in discrete locations per square centimeter.
- 26. A solid support according to claim 20, wherein the support comprises at least about 10,000 different oligonucleotides in discrete locations per square centimeter.
 - 27. A computer system comprising:
 - (a) a database containing information identifying the expression level in liver tissue of a set of genes comprising at least one gene in Table 1; and
 - (b) a user interface to view the information.
- 10 28. A computer system of claim 27, wherein the database further comprises sequence information for the genes.
 - 29. A computer system of claim 27, wherein the database further comprises information identifying the expression level for the genes in normal liver tissue.
- 30. A computer system of claim 27, wherein the database further comprises information identifying the expression level for the genes in tissue from a hepatic carcinoma.
 - 31. A computer system of claim 30, wherein the hepatic carcinoma is from a patient with chronic hepatitis.
- 32. A computer system of claim 30, wherein the hepatic carcinoma is from a patient with cirrhosis.
 - 33. A computer system of any of claims 27-32, further comprising records including descriptive information from an external database, which information correlates said genes to records in the external database.
 - 34. A computer system of claim 33, wherein the external database is GenBank.
- 25 35. A method of using a computer system of any one of claims 27-34 to present information identifying the expression level in a tissue or cell of at least one gene in Table 1, comprising:

- (a) comparing the expression level of at least one gene in Table 1 in the tissue or cell to the level of expression of the gene in the database.
- 36. A method of claim 35, wherein the expression level of at least two genes are compared.
- 5 37. A method of claim 35, wherein the expression level of at least five genes are compared.
 - 38. A method of claim 35, wherein the expression level of at least ten genes are compared.
- 39. A method of claim 35, further comprising displaying the level of expression of at least one gene in the tissue or cell sample compared to the expression level in liver disease.
 - 40. A method of claim 39, wherein the liver disease is hepatic carcinoma, chronic hepatitis or cirrhosis.
- 41. A therapeutic agent for slowing or halting the progression of liver cancer, wherein the agent is selected from the group consisting of the genes in Table 1, functional fragments of the genes in Table 1, proteins encoded by the genes in Table 1 and functional fragments of said proteins.
 - 42. A method of treating a patient with liver cancer, comprising:
- (a) administering to a patient with liver cancer a pharmaceutical composition comprising all or a portion of at least one gene in Table 1, or a protein encoded therein.

SEQUENCE LISTING

<110> KOH, Sang Seok
LIU, Qing
CHUNG, Hyun-Ho
ZENG, Wen
LEE, Bogman
YERRAMILLI, Subrahmanyam
SONG, Si Young
Gene Logic, Inc.
LG Chem Ltd.

<120> GENE EXPRESSION PROFILES IN LIVER DISEASE

<130> 44921-5109-WO

<150> US 60/341,815 <151> 2001-12-21

<150> US 60/343,185 <151> 2001-12-31

<160> 109

<170> PatentIn Ver. 2.1

<210> 1 <211> 3597

<212> DNA

<213> Homo sapiens

<220>

<223> Genbank Accession No. AF034957

<400> 1

atggtggccg cagcggcggc aactgaggca aggctgagga ggaggacggc ggcgacggca 60 gegetegegg geaggagegg egggeegeac tgtgteaacg geggtegetg caaccetgge 120 accggccagt gcgtctgccc cgccggctgg gtgggcgagc aatgccagca ctgcgggggc 180 cgcttcagac taactggatc ttctgggttt gtgacagatg gacctggaaa ttataaatac 240 aaaacgaagt gcacgtggct cattgaagga cagccaaata gaataatgag acttcgtttc 300 aatcattttg ctacagagtg tagttgggac catttatatg tttatgatgg ggactcaatt 360 tatgcaccgc tagttgctgc atttagtggc ctcattgttc ctgagagaga tggcaatgag 420 actgtccctg aggttgttgc cacatcaggt tatgccttgc tgcatttttt tagtgatgct 480 gettataatt tgactggatt taatattact tacagttttg atatgtgtcc aaataactgc 540 tcaggccgag gagagtgtaa gatcagtaat agcagcgata ctgttgaatg tgaatgttct 600 gaaaactgga aaggtgaagc atgtgacatt cctcactgta cagacaactg tggttttcct 660 catcgaggca totgcaattc aagtgatgtc agaggatgct cotgettetc agactggcag 720 ggtcctggat gttcagttcc tgtaccagct aaccagtcat tttggactcg agaggaatat 780 tctaacttaa agctccccag agcatctcat aaagctgtgg tcaatggaaa cattatgtgg 840 gttgttggag gatatatgtt caaccactca gattataaca tggttctagc gtatgacctt 900 gettetaggg agtggettee actaaaccgt tetgtgaaca atgtggttgt tagatatggt 960 cattetttgg cattatacaa ggataaaatt tacatgtatg gaggaaaaat tgattcaact 1020 gggaatgtga ccaatgagtt gagagttttt cacattcata atgagtcatg ggtgttgttg 1080 acceptaagg caaaggagca gtatgcagtg gttgggcact ctgcacacat tgttacactg 1140 aagaatggcc gagtggtcat gctggtcatc tttggtcact gccctctcta tggatatata 1200 agcaatgtgc aggaatatga tttggataag aacacatgga gtatattaca cacccagggt 1260 gecettgtge aagggggtta eggecatage agtgtttaeg accataggae cagggeceta 1320 tacgttcatg gtggctacaa ggctttcagt gccaataagt accggcttgc agatgatctc 1380 taccgatatg atgtggatac ccagatgtgg accattetta aggacageeg attttteegt 1440 tacttgcaca cagctgtgat agtgagtgga accatgctgg tgtttggggg aaacacacac 1500 aatgacacat ctatgagcca tggcgccaaa tgcttctctt cagatttcat ggcctatgac 1560

```
attgcctgtg accgctggtc agtgcttccc agacctgatt ccaccatgat gtcaacagat 1620
ttggccattc cagcagtctt acacaacagc accatgtatg tgttcggtgg tttcaatagt 1680
ctectectea gegacatect ggtatteace teggaacagt gtgatgegea teggagtgaa 1740
gccgcttgtt tagcagcagg acctggtatt cggtgtgtgt ggaacacagg gtcgtctcag 1800
tgtatctcgt gggcgctggc aactgatgaa caagaagaaa agttaaaatc agaatgtttt 1860
tccaaaagaa ctcttgacca tgacagatgt gaccagcaca cagattgtta cagctgcaca 1920
gccaacacca atgactgcca ctggtgcaat gaccattgtg tccccaggaa ccacagctgc 1980
tcagaaggcc agatctccat ttttaggtat gagaattgcc ccaaggataa ccctatgtac 2040
tactgtaaca agaagaccag ctgcaggagc tgtgccctgg accagaactg ccagtgggag 2100
ccccggaatc aggagtgcat tgccctgccc gaaaatatct gtggcattgg ctggcatttg 2160
gttggaaact catgtttgaa aattactact gccaaggaga attatgacaa tgctaaattg 2220
ttctgtagga accacaatgc ccttttggct tctcttacaa cccagaagaa ggtagaattt 2280
gtccttaagc agctgcgaat aatgcagtca tctcagagca tgtccaagct caccttaacc 2340
ccatgggtcg gccttcggaa gatcaatgtg tcctactggt gctgggaaga tatgtcccca 2400
tttacaaata gtttactaca gtggatgccg tctgagccca gtgatgctgg attctgtgga 2460
attttatcag aacccagtac tcggggactg aaggctgcaa cctgcatcaa cccactcaat 2520
ggtagtgtet gtgaaaggee tgeaaaceae agtgetaage agtgeeggae accatgtgee 2580
ttgaggacag catgtggaga ttgcaccagc ggcagctctg agtgcatgtg gtgcagcaac 2640
atgaagcagt gtgtggactc caatgcctat gtggcctcct tcccttttgg ccagtgtatg 2700
gaatggtata cgatgagcac ctgccccct gaaaattgtt caggctactg tacctgtagt 2760
cattgcttgg agcaaccagg ctgtggctgg tgtactgatc ccagcaatac tggcaaaggg 2820
aaatgcatag agggtteeta taaaggacca gtgaagatge ettegeaage eeetacagga 2880
aatttctatc cacagcccct gctcaattcc agcatgtgtc tagaggacag cagatacaac 2940
tggtctttca ttcactgtcc agcttgccaa tgcaacggcc acagtaaatg catcaatcag 3000
agcatctgtg agaagtgtga gaacctgacc acaggcaagc actgcgagac ctgcatatct 3060
ggettetacg gtgateceae caatggaggg aaatgteage catgeaagtg caatgggeae 3120
gcgtctctgt gcaacaccaa cacgggcaag tgcttctgca ccaccaaggg cgtcaagggg 3180
gacgagtgcc agctatgtga ggtagaaaat cgataccaag gaaaccctct cagaggaaca 3240
tgttattata ctcttcttat tgactatcag ttcaccttta gtctatccca ggaagatgat 3300
cgctattaca cagctatcaa ttttgtggct actcctgacg aacaaaacag ggatttggac 3360
atgttcatca atgcctccaa gaatttcaac ctcaacatca cctgggctgc cagtttctca 3420
gctggaaccc aggctggaga agagatgcct gttgtttcaa aaaccaacat taaggagtac 3480
aaagatagtt tetetaatga gaagtttgat tttegeaace acccaaatat caetttettt 3540
gtttatgtca gtaatttcac ctggcccatc aaaattcagg tgcaaactga acaatga
<210> 2
<211> 1231
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. Z23090
<400> 2
gagggaactg gtaatagaat ttattcaaat gtgccttaat ataggcgctg gggcttgccc 60
atggtgctct tgatatataa ggcccggaca ttctgccagt ttttcttgag caatgacacc 120
aagaagttga cagccaggtg aatgttatac acaagctcat cgtctgtcat cttcacgtga 180
ccaacagcta cagccagaca taacaccttc ttcatttgga acttgattgt ggacttcacc 240
ttatttaaac ctgggccgag gattcgtgga atctgcttga tcagagactc tgaggccaaa 360
acgcatcata cttcttggcc agcttcttga ccagtttttt attcttgttg agttttttca 420
gegeetegat gtecatgtgg gggatateca eggeettage etegteaaga eccaeaceag 480
 agtcagccag catgaccgag cgccgcgtcc ccttctcgct cctgcggggc cccagctggg 540
 accccttccg cgactggtac ccgcatagcc gcctcttcga ccaggccttc gggctgcccc 600
ggctgccgga ggagtggtcg cagtggttag gcggcagcag ctggccaggc tacgtgcgcc 660
ccctgccccc cgccgccatc gagagccccg cagtggccgc gcccgcctac agccgcgcgc 720
 tcagccggca actcagcagc ggggtctcgg agatccggca cactgcggac cgctggcgcg 780
 tgtccctgga tgtcaaccac ttcgccccgg acgagetgac ggtcaagacc aaggatggcg 840
 tggtggagat caccggcaag cacgaggagc ggcaggacga gcatggctac atctcccggt 900
 getteacgeg gaaatacaeg etgeceeeg gtgtggaeee cacceaagtt teeteeteee 960
 tgtcccctga gggcacactg accgtggagg cccccatgcc caagctagcc acgcagtcca 1020
```

```
acgagatcac catcccagtc accttcgagt cgcgggccca gcttgggggc ccagaagctg 1080
caaaatccga tgagactgcc gccaagtaaa gccttagccc ggatgcccac ccctgctgcc 1140
gccactggct gtgcctcccc cgccacctgt gtgttctttt gatacattta tcttctgttt 1200
ttctcaaata aagttcaaag caaccacctg t
<210> 3
<211> 488
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AA928646
<220>
<221> unsure
<222> (1)..(488)
<223> n = a or c or g or t
<400> 3
tgggtatttc actttattta gcaaacggtc acactcggcc ccaccacac gcgcctgcag 60
ceteacttga geatetgtet caggaageag etcagggtga acaggaagge etgggtttee 120
acgtcctcag gagcccaccc cagtgtggtc cgggggacgc tccagtgttc aacagctgcc 240
tgcaggggcc acagccagtc tgtagacaca ggccctggca cgaggcggtc ccgggtgtac 300
cacaaggcga tgcgtnctcc atggaggttc ttcttccctg tgccgtggac tttgaagtgg 360
acgtgcattt cccagtcttt gaggaagcac ggctggtggt tccagataga gccctctttg 420
ctgcgcccgt caggggtcag acgtacgtac tggctcgtga gcatagtgct gccctggaag 480
ttccagag
 <210> 4
 <211> 521
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AW023096
 <220>
 <221> unsure
 <222> (1)..(521)
 \langle 223 \rangle n = a or c or g or t
 <400> 4
 gcacgagece agecegagtt atgeetgeec agettaaggt cetaaccatg ceggagacet 60
 gtngatacca gcctttnaaa ccactctcta ttggaggcat catcattctg aaggatacca 120
 gtgaanacat tgaggagctg gtggaacctg tggcagcaca tggcccaaaa atcgaggagg 180
 aggaacaaga gccagaaccc ccagaaccat ttgagtatat tgatgattaa nggccagagg 240
 atctcacttg cttatctgaa gaagattgtc caggctcata ttgggaatgc ttatgaggaa 300
 atteatgeeg agacetgeta tteaatgeat gtategttge etetgeactg acetgaagaa 360
 ccctgtcttc caagtctttt ggttgaaaga gaagatatan tgactgttng agttgtggct 420
 cttttacaag aaacnttngn ntttcaaata aatattaaag atctttccng atggacnngg 480
 aaaaanatta aacacttatt ttcctcgagg gggggggccc c
 <210> 5
 <211> 619
 <212> DNA
 <213> Homo sapiens
 <223> Genbank Accession No. AA399076
```

```
<400> 5
caactagggg gaaaacactt taggttgagt gctgagagaa aggctctctg agtaggtgac 60
atctgaacta agagctgaag cagaagaata agccatcctc tgtggaccaa aggggacaag 120
attetetact tttetgetac geactaggaa tatageagag aagacaagtg getgetacet 180
tetgttateg tgggtggcag tgactagttt ttetagatet tgactecetg cegtaactaa 240
agatggagta cactgatgct gaagtactat gagccttcgg aacttgtgga gagactacaa 300
agttttggtt gttatggtcc ctttagttgg gctcatacat ttggggtggt acagaatcaa 360
aagcagccct gttttccaaa tacctaaaaa cgacgacatt cctgagcaag atagtctggg 420
actttcaaat cttcagaaga gccaaatcca ggggaagtag caggcttgca atcttcaggt 480
aaagaagcag ctttgaatct gagcttcata tcgaaagaag agatgaaaaa taccagttgg 540
attagaaaga actggcttct tgtagctggg atatctttca taggtgtcca tcttggaaca 600
tactttttgc agaggtctg
<210> 6
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U39317
gcacgggtca ccgcatcaca ccatggctct gaagagaatc cacaaggaat tgaatgatct 60
ggcacgggac cctccagcac agtgttcagc aggtcctgtt ggagatgata tgttccattg 120
gcaagctaca ataatggggc caaatgacag tccctatcag ggtggagtat ttttcttgac 180
aattcatttc ccaacagatt accccttcaa accacctaag gttgcattta caacaagaat 240
ttatcatcca aatattaaca gtaatggcag catttgtctt gatattctac gatcacagtg 300
gtetecagea ctaactattt caaaagtact ettgtecate tgttetetgt tgtgtgatec 360
caatccagat gatcctttag tgcctgagat tgctcggatc tacaaaacag atagagaaaa 420
gtacaacaga atagctcggg aatggactca gaagtatgcg atgtaattaa acaaattatt 480
ggataacctc tacaaataaa gatagggga
<210> 7
<211> 591
<212> DNA
<213> Homo sapiens
<223> Genbank Accession No. W74749
 <220>
 <221> unsure
 <222> (1)..(591)
 \langle 223 \rangle n = a or c or g or t
 gatagtaaaa taattttatt tagtttctta ttttaaaaaa ggtagcattt caacatataa 60
 atttagactc aagattacag tgtatatttg ccaaaaggaa caccccgaaa gacggccagc 120
 ctcagagctg agagggcaca gggaggcaca ctcctcacac atggagttta agcagaagtg 180
 ctttaagact tcacagcggc atttccctgt tcctcagccc cgcctccagg gccatcactt 240
 tggggcaaca gcttttgctc atgtaactat aaaacatctc taggaatgaa agcacagagg 300
 tcaatgatcc agattttcca caacaatcat ctgcagcaac aattcgacag gtaaagattt 360
 tatttttata attcaaaagt tottttaagg agaactaaag aacacaaaat toatttataa 420
 agagatttat agaattaaat ggagccaaaa tggaaaaatt attttcccca tattaccaat 480
 ggcctctata nggataaggn ccagggggga agacccattt ccaatctggg ctttcccttc 540
 cccaataagt gttttgggca caacccacaa ctggtcatga gctgncaggc c
 <210> 8
 <211> 532
 <212> DNA
 <213> Homo sapiens
```

```
<220>
<223> Genbank Accession No. AI916306
<400> 8
ttaccaattt aataaatgta ctgtattaac atgaagacta atgacaaatg cactgcagta 60
gtaagcacgt catagatgca tagaatattc tctatatagt ctgaatatgg atataaaata 120
agttatactc attttgtttt ccatcacagt aggagcatag catacaaagt gattggttca 180
gtggccatga agcaagccag gggagagacc acagaagaga atgtagggca ttgagtacag 240
tggggatttg ccaaggacac tgcagagtcc ctgggggaccc tctggggaac aaggccccaa 300
accteteaag ttageettet gagaatagta tgaggteeca ettgacaaga gacagtgget 360
gcatctgagc tgggatgatt caggcaactg ggtgggaggc agagcaggga caggcacgaa 420
cagcatccag caggctagcc cactctcctg ctggtgctgt tggatgtcta tgatgctggg 480
aatatggggc gcagagccag aaggcacggt ttgcttctgt gacgtgacag at
<210> 9
<211> 2834
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X77777
<400> 9
teggageetg eggagggtgg tggtggtggt ggtggtggee etegeeegee teaeteatge 60
ctectectec tetgeteteg etcaggegee teggteggeg ttggteggeg gttacgegge 120
tggtggtege ggeggeeggg getegetete ggggaggeeg gggeggatet egeggegeag 180
geggeggegg cegaggtggg gtegegege ggaggegget egagettegt getgegeget 240
cgctcttggg ctcctcgctg caggaggagt gtgactatgt gcagatgatc gaggtgcagc 300
acaagcagtg cetggaggag geccagetgg agaatgagac aataggetge agcaagatgt 360
gggacaacct cacctgctgg ccagccaccc ctcggggcca ggtagttgtc ttggcctgtc 420
ccctcatctt caagetette tectecatte aaggeegeaa tgtaageege agetgeaceg 480
acgaaggctg gacgcacctg gagcctggcc cgtaccccat tgcctgtggt ttggatgaca 540
aggcagcgag tttggatgag cagcagacca tgttctacgg ttctgtgaag accggctaca 600
ccattggcta cggcctgtcc ctcgccaccc ttctggtcgc cacagctatc ctgagcctgt 660
tcaggaagct ccactgcacg cggaactaca tccacatgca cctcttcata tccttcatcc 720
tgagggctgc cgctgtcttc atcaaagact tggccctctt cgacagcggg gagtcggacc 780
agtgeteega gggeteggtg ggetgtaagg cagecatggt ettttteeaa tattgtgtea 840
 tggctaactt cttctggctg ctggtggagg gcctctacct gtacaccctg cttgccgtct 900
cettettete tgageggaag tacttetggg ggtacatact categgetgg ggggtaceca 960
gcacattcac catggtgtgg accategeca ggatccattt tgaggattat ggtctgctca 1020
 ggtgctggga caccatcaac tectcactgt ggtggatcat aaagggcece atcetcacet 1080
 ccatcttggt aaacttcatc ctgtttattt gcatcatccg aatcctgctt cagaaactgc 1140
 ggccccaga tatcaggaag agtgacagca gtccatactc aaggctagcc aggtccacac 1200
 teetgetgat ceecetgttt ggagtacact acateatgtt egeettettt eeggacaatt 1260
 ttaageetga agtgaagatg gtetttgage tegtegtggg gtettteeag ggttttgtgg 1320
 tggctatcct ctactgcttc ctcaatggtg aggtgcaggc ggagctgagg cggaagtggc 1380
 ggcgctggca cctgcagggc gtcctgggct ggaaccccaa ataccggcac ccgtcgggag 1440
 gcagcaacgg cgccacgtgc agcacgcagg tttccatgct gacccgcgtc agcccaggtg 1500
 cocgoegoto otocagotto caagoogaag totocotggt otgaccacca ggatocoago 1560
 ccaageggcc cetecegecc etteccacte gcagcagaeg ccggggacag aggeetgecc 1620
 gggegegeca geceeggee tgggetegga ggetgeeece ggeceeetgg tetetggtee 1680
 ggacactect agagaacgea geectagage etgeetggag egtttetage aagtgagaga 1740
 gatgggaget ceteteetgg aggatgeagg tggaacteag teattagaet ceteeteeaa 1800
 aggececta egecaateaa gggcaaaaag tetacatact tteateetga etetgeeece 1860
 tgctggctct tctgcccaat tggaggaaag caaccggtgg atcctcaaac aacactggtg 1920
 tgacetgagg geagaaaggt tetgeeeggg aaggteacea geaceaacae caeggtagtg 1980
 cetgaaattt caccattget gtcaagttee tttgggttaa geattaceae tcaggeattt 2040
 gactgaagat gcagctcact accctattct ctctttacgc ttagttatca gctttttaaa 2100
 gtgggttatt ctggagtttt tgtttggaga gcacacctat cttagtggtt ccccaccgaa 2160
 gtggactggc ccctgggtca gtctggtggg aggacggtgc aacccaagga ctgagggact 2220
```

```
ctgaagcctc tgggaaatga gaaggcagcc accagcgaat gctaggtctc ggactaagcc 2280
tacetgetet ccaagtetea gtggetteat etgteaagtg ggaetetgte acaccageca 2340
ttettatete tetgtgetgt ggaagcaaca ggaatcaaga gaetgeeete ettgteeace 2400
cacctatgtg ccaactgttg taactaggct cagagatgtg cacccatggg ctctgacaga 2460
aagcagatec teaccetget acacatacag gatttgaact cagatetgte tgataggaat 2520
gtgaaagcac ggactcttac tgctaacttt tgtgtatcgt aaccagccag atcctcttgg 2580
ttatttgttt accacttgta ttattaatgc cattatccct gaattcccct tgccacccca 2640
ccctcctgg agtgtggctg aggaggcctc catctcatgt atcatctgga taggagcctg 2700
ctggtcacag cctcctctgt ctgcccttca ccccagtggc cactcagctt cctacccaca 2760
cetetgecag aagateeet caggactgea acaggettgt gcaacaataa atgttggett 2820
ggaaaaaaaa aaaa
<210> 10
<211> 2799
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X63359
<400> 10
ctgcacaagg atggctctga aatggactac agttctgctg atacaactca gtttttactt 60
tagetetggg agttgtggaa aggtgetggt atgggeegea gaatacagee tttggatgaa 120
tatgaagaca atcctgaaag aacttgttca gagaggtcat gaggtgactg tactggcatc 180
ttcagcttcc attctttttg atcccaacga ctcatccact cttaaacttg aagtttatcc 240
tacatcttta actaaaactg aatttgagaa tatcatcatg caattggtta agagattgtc 300
agaaattcaa aaagatacat tttggttacc tttttcacaa gaacaagaaa tcctgtgggc 360
aattaatgac ataattagaa acttotgtaa agatgtagtt toaaataaga aacttatgaa 420
aaaactacaa gagtcaagat ttgacatcgt ttttgcagat gcttatttac cctgtggtga 480
getgetgget gagetattta acataccett tgtgtacagt cacagettca gteetggeta 540
ctcatttgaa aggcacagtg gaggatttat tttccctcct tcctacgtac ctgttgttat 600
 gtcaaaatta agtgatcaaa tgactttcat ggagagggta aaaaatatgc tctatgtgct 660
 ttattttgac ttttggttcc aaatatttaa tatgaagaag tgggatcagt tttacagtga 720
 agttttagga agacccacta cattatctga gacaatgagg aaagctgaca tatggcttat 780
 gcgaaactcc tggaatttta aatttcctca tccattctta ccaaatgttg attttgttgg 840
 aggactccac tgcaaacctg ccaaacccct acctaaggaa atggaggagt ttgtacagag 900
 ctctggagaa aatggtgttg tggtgttttc tctggggtca atggtcagta acatgacaga 960
 agaaagggcc aacgtaattg caacagcct tgccaagatc ccacaaaagg ttctttggag 1020
 atttgatggg aataaaccag atgccttagg tctcaatact cgactgtaca agtggatacc 1080
 ccagaatgac cttctaggtc atccaaaaac cagagctttt ataactcatg gtggagccaa 1140
 tggcatctat gaggcaatct accatgggat ccctatggtg ggcattccat tgttttttga 1200
 tcaacctgat aatattgctc acatgaaggc caagggagca gctgttagag tggacttcaa 1260
 cacaatgtcg agtacagacc tgctgaatgc actgaagaca gtaattaatg atccttcata 1320
 taaagagaat attatgaaat tatcaagaat tcaacatgat caaccagtga agcccctgga 1380
 tegageagte ttetggattg aatttgteat gegeeacaaa ggageeaaac atettegagt 1440
 tgcagcccac aacctcacct ggttccagta ccactctttg gatgtgattg ggttcctgct 1500
 ggettgtgtg geaacegtge tatttateat cacaaagtgt tgtetgtttt gttetggaa 1560
 gtttgctaga aaaggaaaga agggaaaaag ggattagtta tatctgagat ttgaagctgg 1620
 ggaattccgt ttattgaaga ttcaggttaa cctgaatcaa gttaacccag tctcaaatgc 1680
 teacttatee tateteettg geacaaatet eteeteteet ggattgeeaa agaaaattea 1740
 aattattett caattagtea ggatgatttg actateagea gtteatagta eccatettea 1800
 taactaagcc acctagggat ccggcagaaa aaaaagggat gcaggggagt catcatacag 1860
 ggggtggatc atttaccagg atccacactt cctacaaagc ggttgtaata ttaaataaca 1920
 aaactgtttt ttattccaat cttcacataa aacaggaata attgtatact ttcttactaa 1980
 tgtgttccat ggagttttc ctccaagaag tggcttaggg gaaaatgagc cccagtaatg 2040
 ctctgtggca tccaatcctt ctaccccgac cctttgactt tctgccccag cccctcttag 2100
 ttetectaga attaggacta aggttaagtg ceetettggg atatgaette ettecettee 2160
 tettgataca aaaagageet attaccaace etcatacaca caagagttee ettectagtt 2220
 gcagactett etgetecage tggactecee tagetetgga eteccaetag ateacaeagg 2280
 ggtccctgca tgtcagtaaa ctttggatga ccttgggaga ccaaaaaatg gaatatcatt 2340
 ttttgatcta aacaaaatag tttcctgatt taacactggc caggaaggtg ggctgcaccc 2400
```

```
tcagtctctc tctcccatca tggttttcac atgatatcaa aggactctca taacagtctg 2460
attettatga gttgggcate etgtgtttee etttagggee tgetteette aaatagagga 2520
gatgggtgct atgaaaccta ttcactctgg acttgggatg gctcttctcc atcttcccaa 2580
aaggcatgtt cctgttctgc ccccaaattg accttactaa cagtgagaac ttggaggagt 2700
cttcgggtct tgggaaatcc aagttttccc ggaaacgttt tgttgtaaac agtgtccaca 2760
                                                                 2799
ctctttgctc caataaagct cggttcctta agggaattc
<210> 11
<211> 2194
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. Z48475
<400> 11
gtgaccagag gggtttgtgt ggctgaagag gcaggaggaa cagtgtatcc acagcgtggg 60
accatgccag gcacaaaacg gtttcaacat gtcattgaga ccccggagcc tggcaagtgg 120
gagttgtctg ggtacgaggc agctgtgcca atcacggaga agtcaaaccc actgacccag 180
gatctagaca aagcagatgc tgagaacatt gttcgactgc tagggcaatg tgatgctgag 240
atcttccagg aggagggca agccctgtcc acataccaga gactctacag cgaatccatt 300
ctgaccacca tggtacaggt ggctgggaaa gttcaggaag tgctgaagga gccagatggg 360
gggctggttg tgctgagtgg agggggcacc tctggccgga tggcattcct catgtcggtg 420
tcctttaatc agctgatgaa aggtctggga cagaaacctc tttacaccta cctcattgca 480
ggtggtgaca ggtctgtggt ggcctctagg gaggggacag aagatagtgc cttgcacggg 540
attgaggaac tgaagaaggt ggctgccggg aagaagagag tgattgtcat tggcatttct 600
gtgggactct ctgctccctt tgtggcaggc cagatggact gctgcatgaa caacacagct 660
gtettettge cagteetggt tggetteaat ceagtgagea tggeeagaaa tgaececatt 720
gaagactgga gttcaacatt ccgacaagta gcagagcgga tgcagaaaat gcaggagaaa 780
cagaaagett ttgtgetcaa teetgecate gggeeegagg gteteagegg eteeteeegg 840
atgaaaggtg gaagtgccac caagattctg ctggaaaccc tgttattagc agcccataag 900
actgtggacc agggcattgc agcatctcaa agatgcctcc tggaaatctt gcggacattt 960
gagcgagctc atcaggtgac ctacagccaa agccccaaga ttgccaccct gatgaagagt 1020
gtcagcacca gtctggagaa gaaaggccac gtgtacctgg ttggctggca gaccctgggt 1080
atcattgcca tcatggatgg agtagagtgc atccacacct ttggtgctga tttccgagat 1140
gtccgtggct ttctcattgg tgatcacagt gacatgttta accagaaggc tgagctcacc 1200
aaccagggtc cccagttcac cttctcccag gaggacttcc cgacttccat ccttccctct 1260
ctcacggaaa tcgatactgt ggtcttcatt ttcaccctgg atgacaacct cacggaggtg 1320
 cagactatag tggagcaggt gaaagagaag accaaccaca tccaggccct ggcacacagc 1380
acceptgggtc agacettgcc gatecetetg aagaagetet tteeeteeat cateageate 1440
 acatggccac tgcttttctt tgaatatgaa gggaacttca tccagaagtt ccagcgtgag 1500
 ctaagcacca aatgggtgct gaatacagtg agtacaggtg ctcatgtgct tcttggtaag 1560
 atcctacaaa accacatgtt ggaccttcgg attagcaact ccaagctctt ctggcgggcg 1620
 ctggccatgc tgcagcggtt ctctggacag tccaaggctc gatgcatcga gagcctcctc 1680
 cgagcgatcc actttcccca gccactgtca gatgatattc gggctgctcc catctcctgc 1740
 cgtgtccagg ttgcacatga gaaggaacag gtgataccca tcgccttgct gagcctccta 1800
 ttccggtgct cgatcactga ggctcaggca cacctggctg cagctccttc tgtctgtgag 1860
 getgtcagga gtgctcttgc tgggccaggt cagaagcgca ctgcggaccc cctcgagatc 1920
 ctagagcctg acgttcagtg aacccatgtt tctgggtggg tgaaaggggc ccaaccctgc 1980
 ccacttcagc ccagcccgcc caaggggact tgtgccagca gaacatgtgg gaggaagaag 2040
 ccccgtttcc agggcatccg cagcccaggg tagggagaaa tattctctcc actttggggg 2100
 agagttettg etetegacet agtggtttet acteteaceg acttattetg attteagaaa 2160
 taaaatgaaa tgtcttattt tggaaaaaaa aaaa
 <210> 12
 <211> 2171
 <212> DNA
 <213> Homo sapiens
```

<220>

<223> Genbank Accession No. U17418

```
<400> 12
tcaacacgtg aattcccaca gaagctgctc agggactatc catggcctcc ccgtggccaa 60
cttgagtetg ctctgcagct ttaggcccga cttggaaggc ccatgggctg cagatgagga 120
aactgaggtc cagacagccg aagagtggta gtgtccagga cacacaactg ggccggcggc 180
ggeggetgee cegagggaeg eggeeetagg eggtggegat ggggaeegee eggategeae 240
ceggeetgge getectgete tgetgeeceg tgeteagete egegtaegeg etggtggatg 300
cagatgacgt catgactaaa gaggaacaga tcttcctgct gcaccgtgct caggcccagt 360
gcgaaaaacg gctcaaggag gtcctgcaga ggccagccag cataatggaa tcagacaagg 420
gatggacatc tgcgtccaca tcagggaagc ccaggaaaga taaggcatct gggaagctct 480
accetgagte tgaggaggae aaggaggeae ceaetggeag caggtacega gggegeeeet 540
gtctgccgga atgggaccac atcctgtgct ggccgctggg ggcaccaggt gaggtggtgg 600
ctgtgccctg tccggactac atttatgact tcaatcacaa aggccatgcc taccgacgct 660
gtgaccgcaa tggcagctgg gagctggtgc ctgggcacaa caggacgtgg gccaactaca 720
gegagtgtgt caaatttctc accaatgaga ctcgtgaacg ggaggtgttt gaccgcctgg 780
gcatgattta caccgtggc tactccgtgt ccctggcgtc cctcaccgta gctgtgctca 840
teetggeeta etttaggegg etgeaetgea egegeaacta catecacatg cacetgttee 900
tgtccttcat gctgcgcgcc gtgagcatct tcgtcaagga cgctgtgctc tactctggcg 960
ccacgettga tgaggetgag egecteaceg aggaggaget gegegeeate geecaggege 1020
cecegeegee tgccacegee getgeegget acgegggetg cagggtgget gtgacettet 1080
teetttaett eetggecace aactactaet ggattetggt ggaggggetg tacetgcaca 1140
gcctcatctt catggccttc ttctcagaga agaagtacct gtggggcttc acagtcttcg 1200
getggggtet geeegetgte ttegtggetg tgtgggteag tgteagaget accetggeea 1260
acaccgggtg ctgggacttg agctccggga acaaaaagtg gatcatccag gtgcccatcc 1320
tggcctccat tgtgctcaac ttcatcctct tcatcaatat cgtccgggtg ctcgccacca 1380
agetgeggga gaccaacgcc ggccggtgtg acacacggca gcagtaccgg aagetgetca 1440
aatccacgct ggtgctcatg cccctctttg gcgtccacta cattgtcttc atggccacac 1500
catacaccga ggtctcaggg acgctctggc aagtccagat gcactatgag atgctcttca 1560
actectteca gggatttttt gtegeaatea tatactgttt etgeaacgge gaggtacaag 1620
ctgagatcaa gaaatcttgg agccgctgga cactggcact ggacttcaag cgaaaggcac 1680
gcagcgggag cagcagctat agctacggcc ccatggtgtc ccacacaagt gtgaccaatg 1740
teggeeceg tgtgggaete ggeetgeece teageeceeg cetaetgeec aetgeeacea 1800
ccaacggcca ccctcagctg cctggccatg ccaagccagg gaccccagcc ctggagaccc 1860
tegagaccae accaectgee atggetgete ccaaggacga tgggtteete aacggeteet 1920
geteaggeet ggacgaggag geetetggge etgageggee acetgeeetg etacaggaag 1980
agtgggagac agtcatgtga ccaggcgctg ggggctggac ctgctgacat agtggatgga 2040
cagatggacc aaaagatggg tggttgaatg atttcccact cagggcctgg ggccaagagg 2100
2171
aaaaaaaaa a
<210> 13
<211> 833
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. S82240
 <400> 13
 cagaaattat ccagcaaatc tatcatggat cctaatcaga acgtgaaatg caagatagtt 60
 gtggtgggag acagtcagtg tggaaaaact gcgctgctcc atgtcttcgc caaggactgc 120
 ttccccgaga attacgttcc tacagtgttt gagaattaca cggccagttt tgaaatcgac 180
 acacaaagaa tagagttgag cctgtgggac acttcgggtt ctccttacta tgacaatgtc 240
 egececetet ettaccetga tteggatget gtgetgattt getttgacat cagtagacca 300
 gagaccetgg acagtgteet caaaaagtgg aaaggtgaaa tecaggaatt ttgtecaaat 360
 accaaaatgc tcttggtcgg ctgcaagtct gatctgcgga cagatgttag tacattagta 420
 gageteteca ateacaggea gaegecagtg tectatgace agggggeaaa tatggecaaa 480
 cagattggag cagctactta tatcgaatgc tcagctttac agtcggaaaa tagcgtcaga 540
 gacatttttc acgttgccac cttggcatgt gtaaataaga caaataaaaa cgttaagcgg 600
 aacaaatcac agagagccac aaageggatt tcacacatgc ctagcagacc agaactctcg 660
```

```
gcagttgcta cggacttacg aaaggacaaa gcgaagagct gcactgtgat gtgaatcttt 720
cattatcttt aatgaagaca aaggaatcta gtgtaaaaaa caacagcaaa caaaaaggtg 780
agtctaaatg aagtgcacag ccaaagtcat gtataccaga ggcttaggag gcg
<210> 14
<211> 1445
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AF017786
<400> 14
gagttggggc tggcgctccg gagttgctgg gctcagcgca gctcccattc attaaggaac 60
cagetgegga ggaaggtgge egagegeeg egetgeecae tegetegete gegeaeteag 120
acgegegeca caacagegeg ecceaagetg egeagetetg caaaagttte tgetegggat 180
ctggctctct tccccttgga ctttagaacg atttagggtt gacagaggaa agcagaggcg 240
cgcaggagga gcagaaaaca ccaccttctg cagttggagg caggcagccc cggctgcact 300
ctagccgcct gggtgtgtgg ctgctgttgc gggacgtctt cgcggggcgg gaggctcgcg 360
cegeagecag egecatgeaa aactacaagt acgacaaage gategteeeg gagageaaga 420
acggcggcag cccggcgctc aacaacaacc cgaggaggag cggcagcaag cgggtgctgc 480
teatetgeet egacetette tgeetettea tggegggeet eccetteete ateategaga 540
caagcaccat caagccttac caccgagggt tttactgcaa tgatgagagc atcaagtacc 600
cactgaaaac tggtgagaca ataaatgacg ctgtgctctg tgccgtgggg atcgtcattg 660
ccatcctcgc gatcatcacg ggggaattct accggatcta ttacctgaag aagtcgcggt 720
cgacgattca gaacccctac gtggcagcac tctataagca agtgggctgc ttcctctttg 780
getgtgccat cagecagtet ttcacagaca ttgccaaagt gtccataggg cgcctgcgtc 840
ctcacttctt gagtgtctgc aaccctgatt tcagccagat caactgctct gaaggctaca 900
ttcagaacta cagatgcaga ggtgatgaca gcaaagtcca ggaagccagg aagtccttct 960
tetetggeca tgeeteette teeatgtaca etatgetgta tttggtgeta tacetgeagg 1020
cccgcttcac ttggcgagga gcccggctgc tccggcccct cctgcagttc accttgatca 1080
tgatggcett ctacacggga ctgtctcgcg tatcagacca caagcaccat cccagtgatg 1140
ttctggcagg atttgctcaa ggagccctgg tggcctgctg catagttttc ttcgtgtctg 1200
acctetteaa gactaagaeg acgeteteee tgeetgeeee tgetateegg aaggaaatee 1260
 tttcacctgt ggacattatt gacaggaaca atçaccacaa catgatgtag gtgccaccca 1320
 cetectgage tgtttttgta aaatgactge tgacageaag ttettgetge tetecaatet 1380
 catcagacag tagaatgtag ggaaaaactt ttgcccgact gatttttaaa aaaaaaaaa 1440
 aaaaa
 <210> 15
 <211> 388
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AI985046
 <400> 15
 tttttttaca tttcaaatat attttattac tttccatctt agaaagaata tgaaacctgc 60
 atgcaatgct aatggtttct gacatgtaca tagcatataa cacagcagta caatgcggca 120
 tatactgggg ggcagtgtgt ggaggggggg ttcttaaggg tatatgtaca gaggaaaggg 180
 cgcatggtca tcttagcttt cgaaagagga ctgcactgtt taacattgaa gaattacatg 240
 gggaatcaca aatatattgc tttagtactg catgttctgt tgtggtgagg gaaagaaaca 300
 tgctttgaag gttttccctt gtcaacagaa tgtgtgtctg tagctgtgta ttgcgcatgt 360
                                                                    388
 attcatatat ttttaagttt tctcctaa
 <210> 16
 <211> 2244
 <212> DNA
 <213> Homo sapiens
```

<220> <223> Genbank Accession No. U19495 gcacgggaca ggccgggcca cacccaccgg ggcgagctcg gagggcggcg ctctgggcgg 60 agggcccggc ggctcggccc agggcgcgtt acctcgtcgc cggggccgga gagggcgggc 120 ggaggcacgg ggcctggagg cgccaggcgg aggatgcggg cgacacggtg gcggcggcga 180 ggatctgtcg aggaaaaatc ttgcggccgg cgattccccg ccttttaagc gcagcctgca 300 ctcccccac cccacgcagg ggcggcctt ccccaacgcg ggcgcccact ggccgccgcg 360 egeogetece etecageteg eetgegeete teacteteeg teageogeat tgecegeteg 420 gegteeggee ceegaceege getegteege cegecegeege gecatgaacg 480 ccaaggtcgt ggtcgtgctg gtcctcgtgc tgaccgcgct ctgcctcagc gacgggaagc 540 ccgtcagcct gagctacaga tgcccatgcc gattcttcga aagccatgtt gccagagcca 600 acgtcaagca totcaaaatt otcaacacto caaactgtgo cottcagatt gtagocoggo 660 tgaagaacaa caacagacaa gtgtgcattg acccgaagct aaagtggatt caggagtacc 720 tggagaaagc tttaaacaag taagcacaac agccaaaaag gactttccgc tagacccact 780 cgaggaaaac taaaaccttg tgagagatga aagggcaaag acgtggggga gggggcctta 840 accatgagga ccaggtgtgt gtgtggggtg ggcacattga tctgggatcg ggcctgaggt 900 ttgccagcat ttagaccctg catttatagc atacggtatg atattgcagc ttatattcat 960 ccatgccctg tacctgtgca cgttggaatt tttattactg gggtttttct aagaaagaaa 1020 ttgtattatc aacagcattt tcaagcagtt agttccttca tgatcatcac aatcatcatc 1080 atteteatte teatttttta aateaacgag taetteaaga tetgaatttg gettgtttgg 1140 agcatetect etgeteeet ggggagtetg ggcacagtea ggtggtgget taacagggag 1200 ctggaaaaag tgtcctttct tcagacactg aggctcccgc agcagcgccc ctcccaagag 1260 gaaggeetet gtggeaetea gatacegaet ggggetggge geegeeaetg eetteaeete 1320 ctettteaac cteagtgatt ggetetgtgg getecatgta gaagceacta ttactgggac 1380 tgtgctcaga gacccctctc ccagctattc ctactctctc cccgactccg agagcatgca 1440 ttaatcttgc ttctgcttct catttctgta gcctgatcag cgccgcacca gccgggaaga 1500 gggtgattgc tggggctcgt gccctgcatc cctctcctcc cagggcctgc cccacagctc 1560 gggccctctg tgagatccgt ctttggcctc ctccagaatg gagctggccc tctcctgggg 1620 atgtgtaatg gtccccctgc ttacccgcaa aagacaagtc tttacagaat caaatgcaat 1680 tttaaatctg agagctcgct ttgagtgact gggttttgtg attgcctctg aagcctatgt 1740 atgccatgga ggcactaaca aactctgagg tttccgaaat cagaagcgaa aaaatcagtg 1800 aataaaccat catcttgcca ctaccccctc ctgaagccac agcagggttt caggttccaa 1860 tcagaactgt tggcaaggtg acatttccat gcataaatgc gatccacaga aggtcctggt 1920 ggtatttgta actttttgca aggcattttt ttatatatat ttttgtgcac atttttttt 1980 acgtttcttt agaaaacaaa tgtatttcaa aatatattta tagtcgaaca attcatatat 2040 ttgaagtgga gccatatgaa tgtcagtagt ttatacttct ctattatctc aaactactgg 2100 caatttgtaa agaaatatat atgatatata aatgtgattg cagcttttca atgttagcca 2160 cagtgtattt tittcacttgt actaaaattg tatcaaatgt gacattatat gcactagcaa 2220 taaaatgcta attgtttcat ggta <210> 17 <211> 1744 <212> DNA <213> Homo sapiens <220> <223> Genbank Accession No. M12625 tgaggeetga ettttteaat aaaacattgt gtagttetgg geeteetget geeceggete 60

```
tgtttcccct ggcgccaaga gaagaaggcg gaactgaacc caggcccaga gccggctccc 120
tgaggetgtg cecettteeg geaatetetg gecacaacce ceaetggeea ggeegteeet 180
cecactggec ctagggecec teccactece acaccagata aggacagece agtgeegett 240
tetetggcag taggcaccag ggctggaatg gggccgcccg gctccccatg gcagtgggtg 300
acgetgetge tggggetget geteceteet geegeeeet tetggeteet caatgtgete 360
ttccccccgc acaccacgcc caaggctgag ctcagtaacc acacacggcc cgtcatcctc 420
gtgcccggct gcctggggaa tcagctagaa gccaagctgg acaaaccaga tgtggtgaac 480
tggatgtgct accgcaagac agaggacttc ttcaccatct ggctggatct caacatgttc 540
```

```
ctaccccttg gggtagactg ctggatcgat aacaccaggg ttgtctacaa ccggagctct 600
gggctcgtgt ccaacgcccc tggtgtccag atccgcgtcc ctggctttgg caagacctac 660
tctgtggagt acctggacag cagcaagctg gcagggtacc tgcacacact ggtgcagaac 720
ctggtcaaca atggctacgt gcgggacgag actgtgcgcg ccgccccta tgactggcgg 780
ctggagcccg gccagcagga ggagtactac cgcaagctcg cagggctggt ggaggagatg 840
cacgetgeet atgggaagee tgtetteete attggeeaca geeteggetg tetacaettg 900
ctctatttcc tgctgcgcca gccccaggcc tggaaggacc gctttattga tggcttcatc 960
tetettgggg etecetgggg tggetecate aageceatge tggtettgge eteaggtgae 1020
aaccagggca tececateat gtecageate aagetgaaag aggageageg cataaccaec 1080
acctcccct ggatgtttcc ctctcgcatg gcgtggcctg aggaccacgt gttcatttcc 1140
acacccaget teaactacae aggeogtgae ttecaaeget tetttgeaga cetgeaettt 1200
gaggaaggct ggtacatgtg gctgcagtca cgtgacctcc tggcaggact cccagcacct 1260
ggtgtggaag tatactgtct ttacggcgtg ggcctgccca cgccccgcac ctacatctac 1320
gaccacggct tcccctacac ggaccctgtg ggtgtgctct atgaggatgg tgatgacacg 1380
gtggcgaccc gcagcaccga gctctgtggc ctgtggcagg gccgccagcc acagcctgtg 1440
cacctgctgc ccctgcacgg gatacagcat ctcaacatgg tcttcagcaa cctgaccctg 1500
gagcacatca atgccatcct gctgggtgcc taccgccagg gtccccctgc atccccgact 1560
gccagcccag agcccccgcc tcctgaataa agaccttcct ttgctaccgt aagccctgat 1620
qqctatqttt caqqttqaaq qqaqqcacta qaqtcccaca ctaqqtttca ctcctcacca 1680
qccacaqqct caqtqctqtq tqcaqtqaqg caagatgggc tctgctgagg cctgggactg 1740
agct
<210> 18
<211> 686
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AL042399
<220>
<221> unsure
<222> (1)..(686)
\langle 223 \rangle n = a or c or g or t
<400> 18
gtgcctgtca tcttcgttgc tgcccacatg atgtcatctg gctgctcttg ggcagggctg 60
ggagccactt tggggttctg ggaagggcag gaggggctct gtggctctaa agcacctccc 120
tttaaccccc tttqtccatc cacagctctc ggccacttta accattccca tctggcagtg 180
gttcttgacc cggtttggca agaagacagc tgtatatgtt gggatctcag tgagtggggt 240
tgaagagcag agcctgggtt gagttgggat gtctggtggg aacctcccag ctgattcatc 300
ttcctgcacc cccttcccta gtcagcagtg ccatttctca tcttggtggc cctcatggag 360
agtaacctca tcattacata tgcggtagct gtggcagctg gcatcagtgt ggcagctgcc 420
ttettactac cetqqtecat getgeetgat gteattgacg acttecatet gaageagece 480
cacttecate gaaccgages catettette teettetate tettetteac caagtttgcc 540
totggagtgt cactgggcat ttotaccotc agtotggact ttgcagggta ccagaccogt 600
qqctqctcqc aqccqqaacq tqtcaaqttt acactgaaca tqctcgtgac catggcttnc 660
cataagttct catcctgctg ggcctc
<210> 19
<211> 364
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D63160
<400> 19
cctgcacagg agattccctg acgttccaca acaaccagtc cttctccacc aaagaccagg 60
acaatqatct taacaccgga aattgtgctg tgatgtttca gggagcttgg tggtacaaaa 120
actgccatgt qtcaaacctg aatggtcgct acctcagggg gactcatggc agctttgcaa 180
```

```
atggcatcaa ctggaagtcg gggaaaggat acaattatag ctacaaggtg tcagagatga 240
aggtgcgacc tgcctagccc aggccggcct cagggtcagg acgcctccac acatagttgg 300
ttggggggta gggtttggga gcttggccct acggtttgta aaagaaacac atgtcgtgat 360
tcta
<210> 20
<211> 1564
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D88587
cgggcaggcc cagccttgta gtctgcaaag accatgcaag ccttggttga taaaccggga 60
ttctactgga agtttgcact ttccccacat cagccaagat gggtaaactg ccttaacaca 120
aaagtcacat gccccacaaa atatttcctt ctatctcaaa acagtattag cttctttaat 180
ctaagaaggt aatgagaggt ttttaaaact gagttaagtc agcagttcag caagtgctta 240
cgaaagacag tcaaaatata ggcaagttac tttaaatggg tattatttgt ccttactttc 300
ccaatgtagg caagtgcctg tgatataaca atttagggaa taatgggaga ataaaaagca 360
tattagtttc aatcagattt cctggcatat atcacagacc ctaaggaatt acaaagacaa 420
aaaagcaagc tetttggttt etgeatggtt etttgeagae tacaaggetg eecetgeaag 480
cacttggatg aaaagaccgg gattctactg gaagtttgca ctttccccac atcagccaag 540
ctgaagaccc aggaacaccc cagctgccca ggacccaggg aactggaagc cagcaaagtt 660
gtectectge ceagttgtee eggageteca ggaagteetg gggagaaggg ageceeaggt 720
cctcaagggc cacctggacc accaggcaag atgggcccca agggtgagcc aggagatcca 780
gtgaacctgc tccggtgcca ggaaggcccc agaaactgcc gggagctgtt gagccagggc 840
gccaccttga gcggctggta ccatctgtgc ctacctgagg gcagggccct cccagtcttt 900
tgtgacatgg acaccgaggg gggcggctgg ctggtgtttc agaggcgcca ggatggttct 960
gtggatttet teegetettg gteeteetae agageaggtt ttgggaacea agagagtgaa 1020
ttctggctgg gaaatgagaa tttgcaccag cttactctcc agggtaactg ggagctgcgg 1080
gtagagetgg aagaetttaa tggtaaccgt actttegece actatgegae etteegeete 1140
cteggtgagg tagaccacta ccagetggca etgggcaagt teteagaggg caetgeaggg 1200
gattccctga gcctccacag tgggaggccc tttaccacct atgacgctga ccacgattca 1260
agcaacagca actgtgcagt gattgtccac ggtgcctggt ggtatgcatc ctgttaccga 1320
tcaaatctca atggtcgcta tgcagtgtct gatgctgccg cccacaaata tggcattgac 1380
tgggcctcag gccgtggtgt gggccacccc taccgcaggg ttcggatgat gcttcgatag 1440
ggcactctgg cagccagtge cettatetet cetgtacage tteeggateg teagecacet 1500
tgcctttgcc aaccacctct gcttgcctgt ccacatttaa aaataaaatc attttagccc 1560
                                                                  1564
 tttc
 <210> 21
 <211> 447
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AA224832
 <220>
 <221> unsure
 <222> (1) .. (438)
 <223> n = a or c or g or t
 <400> 21
 agcaggccan catactacta ctaanttcgc ggccngtcng actctgtccc gctgcgtgtt 60
 ctcctctcag atcggggact cctgcttctc cttgccanta aatggacccc aactgctcct 120
 getegeetgt tggeteetgt geetgtgeeg geteetgeaa atgeaaagag tgeaaatgea 180
 cetectgcaa gaagagetge tgeteetget geeetgtgng tgetgccaag tgtgcccagg 240
 gctgcatctg caaagggacg tcagacaaag tgcagctgct gtgcctgatt gccaggacag 300
```

```
ctgtgctnct cagatgtaaa taagagcaac ctatataaac ctggattttt tttttttt 360
ttttttgtac aaccetgace egtttggcaa atetttttt etatgaaata tgtgaatggg 420
                                                                    447
caataaattc atctagacta aaaaaaa
<210> 22
<211> 567
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI052592
<220>
<221> unsure
<222> (1)..(567)
\langle 223 \rangle n = a or c or g or t
<400> 22
caggitteta acatttaate tecaettagg gaattggagg teagaaatga ataaaatace 60
atgececagt aggetecagt etagggaagt gggeageagg cagaaaceaa gacacagaaa 120
gcaacgacac ataacagata tgctatgata caaatggtgc tgcaggagct gcacagttcg 180
gaggccattt ctggccagag gatgggatgc gtgaaatcca ggaaggcttc caggaaggag 240
tagetggeac tgggatggge aggaacagca atgtetetac tgatggggtn ttttttncca 300
aaatttttt tttggagaaa gctggcaaag ttgagaagtt tggagactaa ccgtgacaaa 360
atttaaacat caggtatgtg aaggcaaggg ggaccaactg tgacaaaatg taaacgtcaa 420
gtgtgtgaag tcaaagggga accaggaaag taaaagagtg acaatcagca gtgcttttgg 480
caaaaaggcc tctggcagca gtgtagaaga gaaacgcaga gatcacaggt ataagaatga 540
cagtaggaga ggggaggagg gtacata
<210> 23
<211> 430
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI937227
tttttggaa atcaaaagaa ccagccattt tattccaaga ggggtgtttt ggggcagcag 60
gaataaataa ggaagggagg ggacgggggc agggcaggta ggttctacgt cttgcagcac 120
atcccacact ttgatcgatg acagcagccg cagcagaaaa tgcagatggg gaagtgggtg 180
tetegeetee ttegeetetg gaacatggge atceagetgg ecetggetee agetetgtee 240
tggggttgca gctctgcaag ttgtcccgtc tgttgtggga aaacagagcc actggtcagg 300
ctggcgagga ggaggaggag caggaggcaa gcggcccaga tctgggagct cagtgccatc 360
gtgccgtctg tctggctgtc ccactgctgg gtcttgagct tgctctggtg tctgggaccg 420
agtgacagtc
 <210> 24
 <211> 630
 <212> DNA
 <213> Homo sapiens
 <223> Genbank Accession No. AA167715
 <220>
 <221> unsure
 <222> (1)..(630)
 \langle 223 \rangle n = a or c or g or t
 <400> 24
```

```
ttttttttt tttttttt ttttttttt ttttttaaa tttcaagaca actttatcca 60
gacaggcgcc tcncaaatag aacacaggga agttaggcag cagttactaa aatacagtcn 120
gggccnctat ctcacagggc ctgagtcaag ccagcccgcc ctgcaaggca gggctgacct 240
gcaageggag ateteactte etettacece aaatteatac etecatttte eeegeeecea 300
tototococa gggtoctcaa gtgggaaagg gagaggtago atcoctogga tocaggocoa 360
ctccactccg tctccggcac cagtgggcag gctgagtctg ggcctcaagg ggcctgggct 420
tagggtatct atggcagtag gaaaatgaca tggacaggct cttcaggggt aggctaaagt 480
cctctggcca gcagtaccca gagaaaatgg gcagcagcag gtaaaccagc caggaggtgg 540
agtectetga anccacagea ganeceacet etggecagee etgnecaaat tgggggtaag 600
                                                               630
acatgaaatc tggtaagaaa tggtgcctca
<210> 25
<211> 489
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI424433
<400> 25
cctcttcctc ctcctcttct acttcaggct catctttcat tctcattaga gttggaggga 60
gttctggacg cttggggggt aacttcccta ctgttccagt ttttaatttg aatttgcttc 120
ctcctttcat ggcaccaaat agaggcaatg taagcttttt agctttgttt tctgcacctg 180
tagtctgagt ttcagtcttt tttagttctg gaatctctgc tggctttaca atttttatta 240
accetttaag tetetgttgt tettteetea gtteaaaagt teteaggtga agtttettee 300
gggacacacc atctaatgta ctgcctgatt tcatttctga catgaacgca tctaaagaat 360
cetgagatgg agactetgat agaacttggc ttgaggettt caatetetca gaaatttcag 420
aaagttccct ctcagcatca tttaattttg caaccaatga ttcaaaggtc tctggcttct 480
catcaatct
<210> 26
<211> 6711
<212> DNA
<213> Homo sapiens
<220>
 <223> Genbank Accession No. X52851
 <400> 26
 atttttgttt atttatttga gacggagtct cttgtctctc aggctggagt gcagtggcgc 120
catctctgct cgctgcaacc tccacctcct gggttccagc gattctcctg cctcagcctc 180
ccgaggggt agctgggact acaggtgcgc accaccatgc ccagctaatt ttgtattttt 240
 cgtagagatg gggtttcacc atgttgtcca ggctggtctt gaactcctga cctcaggtga 300
 tectecegee teggeetece aaagtgetgg aattacagge gtgatecace geaceeggee 360
 tattttttga gagagggtca cactctgtcg tcccggctgg aatgcagtga tgcgatcacc 420
geccactaca geetegacet eegggeteaa geaateetee eegeccagee teetgagtag 480
 cgagcgcctc gacgcccagc taatttttat ttttatttat ttttttgtag agacggcgtc 540
 tetetaagat geceaggetg gtggeeggtg tegaacteet aagatgaage gateeteeee 600
 ggccttggcc tccgcgcctc ctaaagcgcc aggtatgagc caccgcgcct ggcctacaag 660
 tgcattttaa ttaaagtatt attaatgtct ttgcctgaag aaattcgctt ttaaattgtg 720
 acttatcttt cacccaaaaa tcaaagcaca attcagcccc gaggcggggg cggtaggagc 780
 tgggcgggc ggggcaggg aaagaccagg agcagagatt caaaaaagagt aagagggcaa 840
 aatgtgcata atgcatcttc acaggtaaga gcctggccag gctcctgttt taatggcttc 900
 ctcctgaaga agattcaagc agagtgtaag atattttcgg aaagtagagc attttgaaag 960
 cattteataa teteteaaaa eeggagaetg eteetgteee aeetegttag agaaaaeage 1020
 gatgctcaaa ggcaacctcc ttcctgacat tgcctggtag gacgcgacgt ggtgtttgcc 1080
 cgcgcggaat gcggacgcaa ggctgctcct aggtctcggg gacgcgccat ccccatttcc 1140
 getegeggag gegtagggte egggegeggg acceeagteg acettgactg geggegegae 1200
 cttgaggcct gcgttcgcct cagttgcccc ctctgtgcaa tggggagacg cgcctcatcg 1260
```

	gccgaagagc	agegggett	ccatctccca	catacacaca	ccatgctgcc :	1320
cttgacaacg	ccgcactgac	agtagagaat	acccacate	ccgtactgcc	geeeegeeee :	1380
caccecegue	ccgcaccgac	cacascaasa	cccacaaaca	ggaacctgcc	teegegegtt :	1440
gagteceatg	cgcgcctcat	eteteeteee	catcacccc	gacttccatc	tataggccag :	1500
agegegeaeg	actctggcga	actecacee	caccagogo	adascadeda	cacaagacca	1560
atgcactgtc	actetggega	agregeagae	cedareages	ggggggggg	ataccattt	1620
ggttgcgggc	ggggccgaac	giggialaaa	atattaggga	tootcaaccc	caccatatte	1680
gcagacgcca	ccgccgagga	aaaccgtgta	ccaccagcca	cettteacet	caaacaaaca	1740
ttcgacattg	ccgtcgacgg	cgagcccttg	ggeegegeee	cacatagata	caaacaccc	1800
gcggcgtgcg	ggaatggggc	ccagaaagtg	ggeeggggee	ggggcgggcg	tacaacacce	1860
aaaggcccgg	gcgcggggcg	accetgettg	aggggcgagc	gegggeggge	cacascaca	1920
tttcctgacg	aggggccatt	ttgggaggtc	cgcgagtcgc	gggaggaggc	cgggacgcgg	1980
cggacaaagg	caggcggggc	ggctgcgagg	ccgrrggggg	agggggcccg	agacactcaa	2040
cccgcctcat	gtggccgcgc	cctgtcctgt	ccgacgcacg	tgeteggegg	cogogocoag	2110
gtccgcgcct	tgagagtcgt	tgtccgccct	agettggeet	gggcgccgca	gaccggagcc	2160
agaagcacgc	tcgcgggggc	ttgcgaccgc	cttcctggga	agetgteeee	cggcaggcac	2220
agatacttta	catcctgage	taggaagetg	tttqcttgag	ggtttttttt	aaggaccgag	2220
acacaatata	addeddteda	tactcaatcc	tqtaqatccc	gggaggccac	gccacaaaag	2200
gagagttggt	gggatgtgac	gggttgccac	ttgaaatatc	ttccatttgg	acaaaycayy	2340
aatatttata	catotocccc	aaacotccct	ccatatcccc	cacccccaag	cggaaatgtg	2400
aaaataaaaa	ttacctttac	taatacccaa	ggaccgcctt	ccactgcagt	gacggcgctg	2400
acadadaaad	cactattaaa	cccctcccqa	ttgtccctct	gcctagcaag	Caageege	2320
ataaaaaaaa	gacagacata	ttcccaccaa	ggtggattac	cagugattac	Ctaattaget	2500
ttaaaaacat	taaatgagtt	cttaaagatc	agttgtaatt	atagcatagt	acctadactt	2040
	ttassartta	aatattgagt	acdattccdt	tocaquiaac	atggatagat	4700
cttagggagt	agcgaaatag	gatgttagtg	gttttattcc	tttaaattat	acticaaaag	2/00
accaccaata	actaatttaa	atcttattcc	gaaaatagat	Lyallicat	gcagcccccg	2020
tragracada	gegattteet	tattacctac	cctqtccata	gtgcctggca	Calaggeact	2000
gaaacactgc	atottaatco	acaccccacc	ccacctatga	gtgtagtcaa	agerggraag	2340
tasessaaae	tttcgtggaa	acttggcctg	acctaatqtt	gggcatcagg	LLacccaaag	3000
agetteaggg	aaatgagaaa	ggacttgcag	gtcttgatga	gaatggaggg	graactycca	3000
atgagggett	tagetttage	gaaagtetga	aaqqqaaqcc	ataggaactt	adacycaccy	3220
actataaago	tctgagaaaa	actaatatt	tagaaagacc	atacatteta	ggtacaaata	2100
cctasaaact	aaaaaataaq	tacattaaca	aqqcqggcgg	atcacgaagi	caygagactg	3240
agaggatggt	agacccctag	toaaacccca	cctctattaa	. aaatacaaaa	accagologgg	3300
cataataaca	cttacctata	atctcagcta	ctctaqaqqc	: tgaggcagga	gategettga	3300
accccaaaaa	cadadactac	agtgagccga	gatcgtgcca	ctgcactcca	geerggraac	J420
aggragacto	ttgtctcaaa	aaaaaaaaaq	_l tacattgcta	i taagagaagi	gcacacggac	3400
agegagaeee	aattcagtca	catctgtgaa	atagettata	aaatgctact	tttaaacaag	3540
accaguage	gaaagggctt	gtaaatgttt	atggtattta	agctacctct	ctagccataa	3600
catattatac	attcaagaaa	ggttcaaaac	cagatatact	: agaaaccaat	ctttatttt	3660
taggagaga	ctaggtaagg	gcctggatac	caagaagtga	ctgctcatct	aatccataaa	3720
~~+~+~++	carattrara	dtagtagcat	: tttcattaca	i aqtqactaaa	agaacagery	3700
tttaggggt	atcgtgcagc	agtacttact	gttccttage	attttgcctt	gtaagttcta	3840
~~+~~~~*++c	, aaaaataata	aradacatti	aadaaqccat	, acacecee	aguageagge	
atastat sat	· aaaantttoa	gacactttct	: agaagtctca	a ctatttaagt	. tatgactage	3900
	· taacatatct	- ttaaattta	i totttcttaa	i cecaactgee	Lycayyycci	4020
	, aggaggagtt	- cttgggaatt	- aaagtaatta	i ctgaagaagt	acculayiya	4000
	. <i>-</i>	. assacccct:	a aadacatuu	ı tactaaucaa	Cadaacaagc	4140
	. +aagtgtaat	· +++	' acctottto	: agacaaggic	Cuadayacay	4200
agatyttaat	cattttctaa	gtttaacaa	antottcca	a'ttataacaat	: ttgtgtgtgt	4260
cagginggin	atatatttt	: atatatatat	atatotott	aattttttt	taaacagaaa	4320
grgrgratat	totgagcact	. argeatgeat	gatttaatta	a taagggttcc	: tgctttcaca	4380
attttcgtgc	agggtttate	, yyayayaaa	g gaaatttad	t gaattttatt	: ttatttqqqt	4440
gaattattc	agggtttatg atttgggatt	, ryccayyrad	- attracca	t acacatatot	gaactottac	4500
tgctccctt	c accegggact c cggttctatt	. yayuuayaa	t atteagttte	g aacttgggtt	taaaqtttqa	4560
tctaccatti	t eggitetati a titggeacad	. taacccttc	tattataa	a agtgacatti	ttcctatato	4620
accttgcag	a titggeacad t ggtgacttca	angagata	a taccactan	t agcanateca	tctatqqqq	4680
ttgacaggg ¹	t ggtgacttca a gatgagaact	- tactactac	a radicacead.	t cctaarate	tatecataac	4740
gaaatttga	a gatgagaact a cccaacacaa	. ccatcctaa	a guaracyyy	c tacactacc	agactgagtg	4800
aaatgctgg	a cccaacacaa c aacatggca	a alggitede	a gullulati	a aaaaattac	ctggggggaa	4860
gtaagggta	c aacatggcad c actactttt	actaaccac	t agttagage	g actitites	ccctaagata	4920
cggaacaaa	c actactiti	c ccaacctt	L gottocaca	y acceptation.		

```
ctagaagaag agcatacata aatgacaaat atagccaatg tgatacagaa tgtcagatac 4980
tatgatagaa acttggccct tagctgggtg gttgaattag gtgctacttt tttgagatgg 5040
agttttgctc tgttgccagg ttggagtgca gtggcacaat ctgggctcac tgcaacctct 5100
geotectggg ttcaagegat tetectgeet tggeeteetg agtagetgag aatacagatg 5160
tgtgccagca tgcctggcta attttttgta tttttgtgga gacggggttt catcatgttg 5220
gecaagetgg tettgaacte gtgacttaag gtgaaccace tgeettggee eeccaaagtg 5280
ctgggatttc aggcatgagc cactgcgccc aaccaattaa gtgctttttt tttttttt 5340
cttttctcag actggatctc gctcttatct cccaggttgg agtgcagtgg tgccatctca 5400
geteactgca acctectece gggttcaage aattettetg ceteageete teaagtaget 5460
ggaactacag gcatgcacca ccactcccag ctaaattgtg tattattagt agagcgggat 5520
ttaccatgtt gtccaggctg gtctcgaact cctgggctca agtgatctgc ctgccttgac 5580
cccccgaag tgctgggatt acaggcatga gccactgtgc ccacccaatt aagtgctgct 5640
tttatgttac tattaataac atgcggttgg ttgggttttt tgtttctttg gggtttttgt 5700
tttgttttgt ttgtttttgg gggaggggg cgcaattcat tctatatgtg taactctttt 5760
ttgagatgga gtttcgctct gtcgcccagg ctggagtgca gtggcgcgat ctcggctcac 5820
tgcaagetee geeteceagg ttcaegecat teteetgeet cageeteeeg agtagetggg 5880
actataggca catgccacca tgcccggcta attttttgta tttttagtag agacagggtt 5940
teacegtgtt agecaggatg gtetegatet cetgaceteg tgateegeec geettggeet 6000
cccaaagtgc tgggattaca ggcgtgagcc accgcacccg gcctatatgt gtaactcttt 6060
aatggtaatt ggagaatcat gtttaatgac atttagtaca aaaggcttca gttaaaaaaa 6120
aaaaaaaaa gctacctttc tcgtcttggt tcatgacaca tggaggctgc ttgtttgtgg 6180
ttgccagtca taatgattgt tcttcctttt caaggttgga tggcaagcat gtggtgtttg 6240
gcaaagtgaa agaaggcatg aatattgtgg aggccatgga gcgctttggg tccaggaatg 6300
gcaagaccag caagaagatc accattgctg actgtggaca actcgaataa gtttgacttg 6360
tgttttatct taaccaccag atcattcctt ctgtagctca ggagagcacc cctccacccc 6420
atttgctcgc agtatcctag aatctttgtg ctctcgctgc agttcccttt gggttccatg 6480
ttttccttgt tccctcccat gcctagctgg attgcagagt taagtttatg attatgaaat 6540
aaaaactaaa taacaattgt cctcgtttga gttaagtgtt gatgtaggct ttattttaag 6600
cagtaatggg ttacttctga aacatcactt gtttgcttaa ttctacacag tacttagatt 6660
ttttttactt tccagtccca ggaagtgtca atgtttgttg agtggaatat t
 <210> 27
 <211> 542
 <212> DNA
 <213> Homo sapiens
 <220>
 <223 > Genbank Accession No. AF072812
 <400> 27
 ggttgtgcgc gcaaagccgc gcggggctga gggtcttgtt ctgccggcgc ctgtccggac 60
 cegggecett eteegettte ggeeggeete gggeaceggg ettetggage teeeggagee 120
 etgectgtte cetgtecate caggecagea getgaaggag ceteacetge etceettete 180
 tgagtagcac ggatttgagg agaagcagcg aagatgtcca gcgagcctcc ccctccttat 240
 cetgggggcc ccacagccc acttctggaa gagaaaagtg gagccccgcc caccccaggc 300
 cgttcctccc cagetgtgat gcageccct ccaggeatgc cactgcccc tgcggacatt 360
 ggcccccac cctatgagcc gccgggtcac ccaatgcccc agcctggctt catcccacca 420
 cacatgagtg cagatggcac ctacatgcct ccgggtttct accetectcc aggececcac 480
 ccacccatgg gctactaccc cccagggccc tacacgccag ggccctaccc tggccctggg 540
 gg
 <210> 28
 <211> 2478
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AF006043
 <400> 28
 cacettteeg egggeegeg ggatggegge geagggegta gggeetggge eggggtegge 60
```

```
ggcgccccg gggctggagg cggcccggca gaagctggcg ctgcggcgga agaaggtgct 120
gagcaccgaa ggagatggag ctgtacgagc tggcgcaggc ggcgggcggc gctatcgacc 180
ccgacgtgtt caagatcctg gtggacctgc tgaagctgaa cgtggccccc ctcgccgtct 240
tecagatget caagtecatg tgtgeeggge agaggetage gagegageee caggaceetg 300
eggeegtgte tetgeecacg tegagegtge eegagaceeg agggagaaac aaaggeageg 360
ctgccctcgg gggagcattg gccctggcgg aacgcagcag ccgcgaagga tccagccaga 420
ggatgccacg ccagcccagc gctaccaggc tgcccaaggg gggcgggcct gggaagagcc 480
ctacacgggg cagcacctag gatggggcag agacttgttg catctttgtc cccagcaaag 540
gctacatgtt acctccttca attgataata aacctttctg agatgcaaac tcgagaatac 600
tgcccagtta ctctagcgcg ccaggccgaa ccgcagcttc ttggcttagg tacttctact 660
cacagoggco gattoogagg coaactocag caatggottt tgcaaatotg oggaaagtgc 720
tcatcagtga cagcetggac cettgetgee ggaagatett gcaagaggga gggetgeagg 780
tggtggaaaa gcagaacctt agcaaagagg agctgatagc ggagctgcag gactgtgaag 840
geettattgt tegetetgee accaaggtga cegetgatgt cateaacgca getgagaaac 900
tccaggtggt gggcagggct ggcacaggtg tggacaatgt ggatctggag gccgcaacaa 960
ggaagggcat cttggttatg aacaccccca atgggaacag cctcagtgcc gcagaactca 1020
cttgtggaat gatcatgtgc ctggccaggc agattcccca ggcgacggct tcgatgaagg 1080
acggcaaatg ggagcggaag aagttcatgg gaacagagct gaatggaaag accctgggaa 1140
ttettggeet gggeaggatt gggagagagg tagetacceg gatgeagtee tttgggatga 1200
agactatagg gtatgacccc atcatttccc cagaggtete ggceteettt ggtgttcage 1260
agetgeeest ggaggagate tggeetetet gtgattteat eactgtgeae acteetetee 1320
tgccctccac gacaggcttg ctgaatgaca acacctttgc ccagtgcaag aagggggtgc 1380
gtgtggtgaa ctgtgcccgt ggagggatcg tggacgaagg cgccctgctc cgggccctgc 1440
agtetggcca gtgtgccggg gctgcactgg acgtgtttac ggaagagccg ccacgggacc 1500
gggeettggt ggaccatgag aatgteatea getgteecea eetgggtgee ageaccaagg 1560
aggeteagag eegetgtggg gaggaaattg etgtteagtt egtggacatg gtgaagggga 1620
aateteteac gggggttgtg aatgeecagg ceettaccag tgeettetet ceacaccac 1680
ageettggat tggtetggea gaagetetgg ggacaetgat gegageetgg getgggteee 1740
ccaaagggac catccaggtg ataacacagg gaacatccct gaagaatgct gggaactgcc 1800
taageceege agteattgte ggeeteetga aagaggette caageaggeg gatgtgaact 1860
tggtgaacgc taagctgctg gtgaaagagg ctggcctcaa tgtcaccacc tcccacagcc 1920
ctgctgcacc aggggagcaa ggcttcgggg aatgcctcct ggccgtggcc ctggcaggcg 1980
ccccttacca ggctgtgggc ttggtccaag gcactacacc tgtactgcag gggctcaatg 2040
gagetgtett caggecagaa gtgeetetee geagggaeet geeeetgete etatteegga 2100
ctcagacctc tgaccctgca atgctgccta ccatgattgg cctcctggca gaggcaggcg 2160
tgeggetget gtectaccag actteactgg tgteagatgg ggagacetgg caegteatgg 2220
gcatctcctc cttgctgccc agcctggaag cgtggaagca gcatgtgact gaagccttcc 2280
 agttccactt ctaaccttgg agctcactgg tccctgcctc tggggctttt ctgaagaaac 2340
ccacccactg tgatcaatag ggagagaaaa tccacattct tgggctgaac gcgggcctct 2400
gacactgctt acactgcact ctgaccctgt agtacagcaa taaccgtcta ataaagagcc 2460
                                                                   2478
 tacccccaaa aaaaaaaa
 <210> 29
 <211> 1524
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. Y11215
 <400> 29
 gtegeettee agecegteeg cetecegaee agggeeegeg ceeegteeeg ceteteteee 60
 geccagecaa atgeaggecg eegeceteee tgaggagate egttggetee tggaagatge 120
 tgaagagttt ctggcagaag gtttgcggaa tgagaacctc agcgctgttg caagggatca 180
 cagagaccat attctacggg gctttcagca aatcaaagcc aggtactatt gggattttca 240
 gccccaaggg ggagacattg gacaggacag ctctgatgat aatcacagcg ggactcttgg 300
 cetgtecete acateegatg caccettttt gteagattat caggatgagg gaatggaaga 360
 catcgtaaaa ggagctcaag aacttgataa cgtaatcaag caaggatact tggagaagaa 420
 aagcaaagat catagtttct ttggatcgga gtggcagaag cgatggtgtg ttgtcagcag 480
 aggtetette tactactatg etaatgagaa gageaageag eecaaaggga eetteeteat 540
 taagggctac agtgtacgga tggcccccca cctgcgaaga gattccaaga aagaatcctg 600
```

```
ctttgaactg acctcccagg ataggcgcac gtatgagttt acagctacta gtccagcaga 660
agccagagac tgggtggatc aaataagttt cttgttaaag gatctgagct ccttaaccat 720
tecatatgaa gaggatgagg aggaagaaga aaaagaagag acatatgatg atattgatgg 780
ttttgactcc ccaagttgtg gttcccagtg cagacccact atcttgcctg ggagtgtggg 840
gataaaagag cctacagagg agaaagaaga agaagatatt tatgaagtct tgccagatga 900
agagcatgat ctagaagagg atgagagtgg cactcgacga aaaggagtag actatgccag 960
ttactaccag ggcctatggg attgccatgg tgaccagcca gatgaactgt ccttccaacg 1020
gggtgacctc atccgtattc tgagcaagga gtataacatg tatggctggt gggtgggaga 1080
actgaacage etegttggga ttgttccaaa ggagtatete accaetgeet ttgaagtgga 1140
agaaagatga aacccaggaa atatattett ecetetetee teetttatga ggaaactgat 1200
catcaaaagt teccaeteee taettetgea eccaecaaeg cetgaeteet etetttgetg 1260
aagagaccca agtctcttga cacctcagag tgactgtaag ctaccagtaa gacaagtggg 1320
aagaggcacg ttcatcaaac ctgttactaa accagcctag tcatagctca tccccatgtg 1380
taaatgtgtc cacacaacca catctgcctt ttccacaagc ttttcacaaa gaaggtgaga 1440
gagaaggaaa ccttgggagg aggacattac tggttgttct ggctggtttg aaaagcacaa 1500
ataaacttgg gatgtggttc cttg
<210> 30
<211> 19798
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AB014460
<400> 30
gatctcaatt cttttcttac tgaaccatcc ttgcgatgta ctcgtcgagg taacagctat 60
tgaatttgac caagttcacc agcaccagaa ggaattccga ggacaagcca acatccatcc 120
actgcaggac aaagtcagct aggggagaag cggcggcagt ttgcgaggac gccgaatcta 180
cateteccae teacetecce etecceege aggacagtgt gtecaaacce gteactgeca 240
gaaaccccat catcagtccc ccggcagcaa cagacagacc acgcactggg cccgaagagg 300
ctcaggggag cccagggcag gccggctacg cacggacact aggatctacc gcccctgggg 360
ctgcacagag ggtctgtgcc gaggcggcag cagaagtgtg tatgccgtac actcagggcc 420
caacccgagg ctgggagacg ccgacatcac cagactcctg ggcgttcccc acccccagca 480
gagagegget eggaggagac gtgtgeacac ttggetgeeg geeacgteac etcagacagg 540
aaacctgacg gtaggcacct ggccggcacc tgtcctgcag gcagcccagc cactgaggcc 600
cttttctggg cgacagaaca gcaaagccag agtcagaccg atctcttcct cctctttctc 660
tacttcccag aatcatgaca cagagaccca agactaatgg aaacctccca ccacaggatg 720
gcaggaggaa ggtccacaaa gtggagaaag gaggaggaag acgggaccag tacgctccgg 780
ttgagaccaa gtcagcagca ccacctccca gtgacagaac tcgcccagct cctgccgttg 840
cagaggtgtt cggaggcccc aagccccaga gactcacagt cagcaggtct ggggtgaagg 900
ccaggactet gcatttttaa cacgtgeete aggggeacte eggecaegea ggtgageeca 960
ggtgcatgaa gcagggtggg cataccegct gcaggccatc cctgagaacg gcagccctc 1020
 cccagccca ggtccttccc atccaggtta cacttgatcg tcaaggccag agaaacctcc 1080
 aacccaaggt ggcacccacc cagetettee tecaagtagg tgatgtgtet cecattgtet 1140
 gtgagggcct tgaaaacctc cagcctttcg tgaaggtctt cgttggaagg gtaatccttg 1200
 atgaccttaa agaagaggc tetgaggacc cccaaacgct cgccctaaag acaaaagcca 1260
 caggatcage agageetgee agegtegeec acaeggetge caagaagtee etgaagtgea 1320
 ggggcacccg gactccagcc ctggacccct ctccttccca cagaggcgcc ctgcaagaga 1380
 caggtetgca geateageat tgtacaggge agggggeegg atgeacegge egacegeaga 1440
 geggegtatg gggagcaact ggtgtgtgtc gggacctggc acagcgggtg gcgcagagca 1500
 ggggatgaca cagttcatgc ccgacccctg caatcggtgc agggcagaca gcgttgtgat 1560
 cagagagtga ggacaaggcc tgagtggggg aaacccagga gagcctgtga gagtggacgg 1620
 cccttctgag cagctgggac atgaaggagt agaagtggcc gaccagggga ggcaggaaca 1680
 ccaagaggcc tgggtgttca gggtcagcca agaccagcac agatggaatg cagtgagcag 1740
 gggagtggcc ccgaaagggt gcaagggcaa aacaacaccg tagccccaca ccagctgcca 1800
 ggtacgatct cagcactctg cgacaactgc ctcatatgat ccccagaaca tcccataaga 1860
 ggaaggtgca gtgaccatct gtttacaggc gaggaggcag tgcctacggt cacacagacc 1920
 tcatgacacc aggagacccc acaggccatc cagctccaga gcccatcagc ccctagaccc 1980
 tgtgcccagc aactcaccga ggcaggagtc caaacacggc ccagcaggga caggacagtc 2040
 agtgggcage ctgacgtcac ccateccage gtegecetgg geettacetg eccetgeacg 2100
```

atggccttca	acadaaccad	caccacatac	cagacctcca	geggeegete	cggctgcaac 2	2160
acggeeccea	ccaccttcca	gagtgcttcc	actgcqtqct	qtcaccagca	gaggggacag 2	2220
agattegega	atacteteca	agaaccctgg	ccccqqcaac	tggagcagtg	ccgtgagcgg 2	2280
cggtgaggat	gegeeeeea	agacttataa	ctgagagccc	cacctccaaa	gctcgtatct :	2340
aggacaggga	ctacaaccta	agatgaccac	aggettegta	cagggaacgg	ctcagagctt :	2400
actassaga	carcaratec	ctttaactcc	caccaqqtqa	cayactyggg	guugugug .	
ccccaaaccc	cagcaggece	aatootoo	tcacctggac	caggaggag	tcccactaga :	2520
cagcagcaag	testesses	aacggcggcc	acagteteag	aaccacaaqt	gcacactaag	2580
gctgccggaa	cgccggcagg	cagaatcct	acttataact	ctcctctagt	gaacacacca	2640
ccctaggect	geacetgace	tagaaccccc	caacetetae	tacctaccta	acctgctgag	2700
geategggee	acatagastt	ctcaaatctc	cctcctctaa	ctaccaccca	gcctgtgagg	2760
aaagageget	testesstaa	actaccada	atcagtetca	ctcqqcaqqq	gtttgggctg	2820
ggeteatece	cgeteectaa	tocacattaa	ccaacagcca	caactttcaa	accacagget	2880
geteteacea	ettoeteete	taaggaggg	aactaaaatq	accatattcc	ggccaagtgc	2940
catteetgge	agetateata	tcaccacttc	agatagcaga	ggggagaggg	tcacgtcagc	3000
ggtggeteae	accigiaacc	tagaacac	agtgagaccc	tatcacaaca	aaaaatacaa	3060
ccaggagttt	cagactagec	tacataccta	tagtcccagc	tacttgagag	gctaaagtag	3120
aacttagcca	ggegeggege	agattaagac	tataataaac	catgattgtg	acactgcacc	3180
gaggateaeg	tgageeegge	aggetgugge	totaaccaaa	taataacaaa	atggccgtgt	3240
ccggcctggg	ctactagageg	caacatccca	accactogca	ctctcacctc	ctttgtctca	3300
tetttagat	greatetyat	++++++++	+++++ttttt	ttgagacgga	gtctcgctct	3360
ttgacaatac	-certification	gactgcagtg	gcgcaatctc	ggctcactgc	aagctccgct	3420
gtcgcccagg	eeggaetgeg	cctccctcac	cctccccagt	agctgggact	acaggcgccc	3480
tecegggtte	acgecattet	ttttatatt	ttagtagaga	cggggtttca	ccttgttagc	3540
gccaccgcgc	ceggeraare	gacctcatga	todaccodco	teggeetece	aaagtgctgg	3600
caggatggtc	tegateteet	gaccccatga	ctcattgaca	atactcttac	cgttgcaacc	3660
gattacaggc	grgagecace	acacacacac	caggaccate	ccagectegg	aggectattt	3720
tgagetgeaa	agaceegryg	atacagggee	aaacaacttt	cagaacagga	tgcaggacgc	3780
atccactcac	aggetgeece	tracacacto	ttactctatt	acccagacta	cagtgcaatg	3840
ttgttcttt	- catagacac	aacctctcc	tectgagttt	aagcgattct	cctccctcag	3900
gcacaatctc	ageteaceae	addataccc	gacaccatgo	ccagctaatt	tttgtatctt	3960
cccccaage	agetgggatt	gagattggcc	aggcgggt.ct	cgaactcctc	acctcaggtg	4020
tagtagaaac	agggccccgc	cacactggco	ggattagagg	cataaaccac	tgcgcccggc	4080
atceatecae	tattattta	acctatett	ggtagtgtag	ggccagcacg	tttcagatga	4140
taaggacacc	ragitericat	cactetecte	ttagcagato	tgagcatgag	aggtccaggt	4200
	+444424242	aaatoctooo	caaggcaagg	geagageeee	caggegeee	1200
ctcactgctc	tagactecca	aaatgaccac	ttectatect	gtccacaagt	catcagggaa	4320
accagcaacc	tatttaccca	aaataaatat	ttctatqtc	gtgaggtcgc	ccaataccac	4380
agtetggeaa	cactaccasa	atogcaccaa	gaccagcgto	cctaggattg	ttctctgtgg	4440
egaccagcca	ttattattt	ttcttaacct	gaacttgtaa	caggagagag	cgagtgagca	4500
tagatttata	tcaccgacta	caaactctto	cttttttt	tttttgagac	agagtettge	4560
Feagtarage	. acactocact	· acaataaaa	: gatctcqqci	: cactgcaacc	: LgLgCCCCC	4020
~~~++aaaa	. asttataata	: cctcagcct0	ccaaqtaqci	gqqattacay	, gcatgtgcta	4000
agataccccc	, ctcatcatct	· tttagtagag	, acqqqqttt	gccatgtt99	Cuagaguggu	4/40
a++a==a+ac	, tageeteate	r atccacccac	: ctcqqcc.cc	, caaaguucu	. 9944444	
dataadcccc	- cacaccccc	r ctcggcatac	r aaatccttt	e tagtatigei	. agaaaagccc	4000
+ccc+++c	, ctccccattt	· ccacactta	f fradfecer	c aayguuguau		
+ - a a a t a a a t	· taccastca	r tacqatqaaa	gctaaattc	c cctaaaacag	, tycaaactyy	4200
	· taaataaaa	- ctataatee	: adcactttq	a daddccaas	, cacacaggeee	
	, asattassa:	a ccadcctdd	caacatqqc	y adalicity i	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-4	- accordentation	, raacacata	. crotaatco	c auctactuas	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
	- aattassee	~ accacacaca	adctacaal	u aqccaagaci	, 9090009000	
	, accenter	~ afctcaaaaa	aaaaaaaaa	a aaaaayiyi		
L	, aatatassa	- atorrecta:	a aaaaaucaa	a Cicayyere	, 544445	
	a tataataaa	t caactggat:	aacctaccu	C LLCaaalli	2 66334666	,
		t atcatccdd:	racaallal	L daddccaca.		
	~ ~~~~~+~~~	a maamaaaaa	4 aaaccautu	C LCAGGCCAC	9 9	
		- aaamamtmm	r actocalle	L CCAGACCAS	~ J	
	- ~~~~+~~~~	, ttc2cttc2	* manccucuu	L ddcccagge	• • • • • • • • • • • • • • • • • • • •	
	~ ~~~~~	a saaraasa	a ccauauulu	a uuduuuuu	5	
ccaacatoa	t gaaacccto	t ctctactaa	a aatacaaaa	a atttgctgg	g cgtggtggtg	g 5760
	J					

ggcgtctata	atcccagcta	ctcgggagag	tgaggcagga	gaatcccttg	aacccaggag	5820
gcggagattg	cagtgagccg	agatcgcgcc	cctgcgctcc	agcctgggtg	acaagagcga	5880
aactcootct	caaaaaaaaa	aaaaaaaaa	gatttactga	ggggctttac	tgctccatcc	5940
cgaggagttg	agaatgtgca	atttttttc	acaactgcaa	atgttgtatt	gagataaaac	6000
ataacatgaa	atacaatttc	aaactgcaca	atttttttt	agacggagtt	ttgctcttct	6060
tececaggat	ggagtgcagt	ggcgcgatca	cggctcactg	aaacctccqc	ctcccgggtt	6120
caaccaattc	trateteage	cccccaata	gctggaatta	caggcgccca	ccactatgac	6180
caagcaaccc	ttaatattt	tagtagagag	ggggtttcgc	catattaacc	aggetggtet	6240
cogctaatte	acatcacata	atccacccc	ctcggcctcc	caaagtgctg	ggatgacagg	6300
catacacac	accecaggeg	cadatocac	tatattttat	tcatcagttg	atgaacgttt	6360
togtgagecae	tanatagaaa	actttacaac	tgcaaaaatt	caccatttac	tcatgggcaa	6420
cagtigitte	caagtagaaa	tananaga	acaaacacac	ataaaagata	acqacctage	6480
aacacaatge	caggeacgeg	ctataataa	acaaacacac	acadaagaca	cagacagate	6540
ccatgtgcga	Eggeteatge	cigiaacccc	agcactttgg	tassactaca	tetetactaa	6600
acetgaggte	agcagilicaa	gaccagcccg	gccaagatag	ctcccccta	ctcaccaccac	6660
aaatacaaaa	attaaatggg	Lgtggtggta	cgtgtctgta	gececageta	agattatacc	6720
tgaggcagga	gaaccacttg	aaactgggag	gcagaggtag	cagcgagcag	taaataaa	6780
actgcactcc	agcctaggca	acagagcaag	actcagtctc	aadadadaa	taataataaag	6840
aacctacttc	tcccaggaac	tcacatctta	tcatgtaaca	cccggacata	angatatana	6000
tgaagatgat	gatactcagg	cctcatctat	aagatgggct	ttettteate	addatctgaa	6960
tagtaactca	agtgtgcctg	aaccaggtca	ccaagatcct	gaetttegaa	geeteetgag	7020
gaaggacatg	teggeeteca	agtactggag	acagcattcc	tgtgtagaca	gttgccagca	7020
accegtetee	cacagaacct	ggtgcaagac	caaacccagc	cttctctgca	tttccctcta	7080
gcctagcaaa	gacacaggta	gctcactcac	tctcagtatt	tccgcggtga	tgataaactc	7140
cgtctgttta	ccctctgcag	acctgggatt	tggcctcggt	gttcccagtc	ccaacagaat	7200
cttaaacttc	tccttcaagc	ctgaatcttt	gcttgttggt	ttggccatgg	tggaccagga	7260
cgcaccagaa	aacccctctg	tgcaaacgaa	acaggaatgg	ggacatctga	gcaacacctc	7320
tqcccacctt	ccccactgcg	gacctccagc	cgtcaggacc	ctgggtctct	ggtgggcata	7380
acctttcctc	ccacactccc	tgggagaact	caactacagc	ccagctgacc	agctcgcaaa	7440
caggcaccta	ggaaagcccg	ggagacacca	ggcctggtct	agagagctct	ctactcagac	7500
actaccacca	gccccgcccg	actcagtgca	cgggttagga	ctgccgccgc	gaagtcctgg	7560
gagccccgac	gtttgccgtc	tctcctctac	ccatgtgaag	caggagctgt	cacggagccg	7620
cctgcagcag	agacccgttc	gcacccgcca	tgacttaaaa	ctaagggatg	ctcggagctc	7680
cagaatcaga	ttqcaqtqqq	cqcqqqtgag	ggcccgggac	ccggacactg	cggggtccgc	7740
ctctctaggc	cactacccca	tggggaccgc	cacttgcccc	gtggggaccg	ccacttaccc	7800
cacaccacac	caccacactc	cadaccaccc	cgacgcggag	aaaggcgcac	cccctggcc	7860
ccaaaacacc	accadaaaca	cgacccgcac	ttccggtagc	ggcattgcgc	ggagggccgc	7920
cttgggagct	tactagaagt	totaottcto	tgccgccctc	tggcggaaag	gccggcgatc	7980
cttgcatcac	ataacaaaac	cgcatgggc	gccgggatgt	gtagtccgca	ggagtccggc	8040
atraccocct	taaacacaaa	gatgctgacc	cggagccgga	gcctgggacc	cggggctggg	8100
ccacaaaat	ataggaaga	acceaaacet	ctccggagaa	gagaggetge	agcaggtagc	8160
accacaccat	gactagaaca	taggaggagg	cgggataggg	gctgcaggct	qqaqtcccgg	8220
geegegeege	ggccggagcg	actacacaa	caggggctgc	aaacccggca	gccgcgaacg	8280
gttgccccc	geggeeetac	atteceacet	tgcgcctttt	tcccaaagat	tacaatccac	8340
agggggggg	tttcaaacac	tecactecae	tgcccccttt	cgccccaagc	aagaaaacgc	8400
thatttccc	accactetat	ccccccccc	ccactccagg	ctctataaat	cccatccccq	8460
gggtggtgg	gtgaacttgc	tatactaga	gaggctgggt	gccaaggaca	cacqcaqcca	8520
	gegaaceege	- agacasagat	gcctctgagg	gaaaacagga	aagggcatgg	8580
gaageeegee	atttatata	gggggaggg	ggacctgctg	dadaccasac	actocaotoa	8640
Cacttattat	actuature	cageegeege	. ggaccegoeg	taggacttct	gcagaattgg	8700
gcagcgaggg	acacygacag	ggeeceegeg	ctagtcccgc	tagtggacccc	tatoocaga	8760
ccaaagttgg	atteceatag	geaeccaggg	accccagggg	cageceaaac	e accascette	8820
ggaactggtg	cagetgggag	caggeaggig	gtgatgccag	ccagggegge	aggageeetg	8880
atgccaggat	agagtttgga	gtttattatg	acagtaaacg	gaagicaaic	aggaggeeee	8940
gttgtttgtt	ttgagatcgg	gtettgetet	gtcacccagg	, ccgcagcgga	gigilgigal	0000
ctcagctcac	tgcaacctcc	gcccccagg	ttcaagcagt	teteetgeet	. cagectecca	9060
agtagctgag	actataggco	cctgccacca	cacccggcta	acttttgtat	. ccccagcaga	2000
gatggggttt	tgccatattg	gecaggetge	tcttgaacto	ctgacctcaa	gegatecacc	2120
cacctcggcc	tcccaaagtg	r ctgggattac	aggettgate	caccgcgccc	ggccggccag	3780
gatttttaa	aagggagtga	cacaacctga	ı tgtgggtgtt	: agcagactgt	: ctctggtgca	9240
gtatagaaga	tgtattgggg	gcaccttggt	: acaggctgtt	: gctagagtcc	: tcatgagcta	9300
acatogacct	: tqtcaqqqtc	: qctqqcataa	. ggagggccca	ı cataccccaç	, actgcagagg	9360
gcagagcacc	: ccaagtgtat	: tagatgatgg	acagttgtgg	g catgaacgag	, tgaggggtga	9420

gctagcaggc	gggatggcac	ccctacccta	ccttcacctg	tggccccacc	agagggactg	9480
cataataatt	tttgcagaag (	cgaggaaaag	ccacaqcccc	gtgaagegte	cgcggaaagc	3340
acadadactd	catataacct :	atgagggtt	ggacagtgag	aaaggcgagg	gggctgagcc	5000
cctcaaggtg	ccagtctggg .	agccccagga	ctqqcagcaa	cagetggtea	acatecgige	9000
catgaggaac	aaaaaggatg	cacctqtqqa	ccatctgggg	actgagcact	getatgaete	3120
cartaccccc	ccaaaggtag	acadadaccc	catctgccca	aatgaceeee	Catcttagca	2700
aggteettat	tttcttcta	cccaataact	tttqqctqqc	accetecee	gcagacagca	3040
ccttaggagg	atggacaccc	aataccccaa	agcatcgcct	gcatcactgt	agceaeceag	9900
cadataadaa	caccagtggt	ttadddcctc	gractcgaac	Licigoddag	Lycayycycy	JJ00
acctggggtt	tototoatat	caggaaggaa	qaqttccttt	tgcttcacgg	Leccagggee	10020
tassacatt	agaccaaget	gagttctaat	ccctattctg	Ctaccaygig	geeeggaeae	10000
agggetetet	gageeteagt	ttacttatct	ataaaataa	tagtatgggc	caggeatggt	TOTAO
aattaaaacc	totaateeea	gcacttcggg	aggccaaggc	gggtggatta	cccgaggcca	10200
accepteded	accadected	ccaatgtggc	gaaaccacgc	Ciciaciaaa	aatacaaaaa	10200
ttagccaggt	atagtagcag	acacctataa	ccccaqctac	ttaggagggc	gaggcaggaa	10320 .
aatcocttoa	accccggagg	cagagattac	aqtgagccaa	gatggcacca	CCacacccca	10300
acataaataa	aagagtgata	ctocatotoa	aaaaaaaaaa	tttgttttaa	acgggtagtg	TOZZO
tgatgattga	cgaagcaatc	ataataqtaq	tggccaatgg	ctgttcagta	gcgacgggcc	10300
agatacgate	atattaaatt	ttttttqaq	accaagtctt	getettgttg	CCCaggccgg	10200
agtgcagtgg	tgaaatctta	actcactaca	accttcgcct	ccgaggttca	aditation	10020
ctacctcaac	checegagta	actaggatta	caqqcatgca	ccaccgcacc	cayctaatyt	10000
ttatatttt	agtagagacg	agatttcacc	acqttgatca	ggctggtctc	aaactcctga	70/40
cttcaggtga	tecacetace	ttaacctccc	qaaqtgctgg	gatgacgggt	gegageeace	10000
acacccaacc	acatacqatt	ctaagcactg	agataattca	tttaagcttc	acattactcc	10000
agtgagtgag	gtactattat	tatectaata	ttgtagatga	ccaaacatac	CCaaaccaga	10320
cetecceace	ccacagggg	aggetgatge	ctcaaqtgtg	geeeagggea	acaaaccagg	20500
atatataaaa	aacaaaaaac	agageetage	caqqqaatca	cccaggaccc	geegeeacee	77040
acatacatat	cactocacaa	acadatacac	aggtaccagg	tgetgetgte	actgatgett	11100
tecarecasa	ccaaagacca	aataacaaca	ggcgccatgc	agegaetgeg	ggcgcggggc	11100
atascaataa	acadeatect	acadacadat	gatgccacgc	Lgggcaagcc	Cattlacte	1111
atcaatttct	ggagggtgag	ccctacctat	ggcaacgggg	gccgggcggc	agiggeeiga	11200
gagagagata	agaaggetga	aaaaaataac	qacqqtqcag	gaagtgaggg	Ccaagcaccc	77740
cadactagg	gaateceet	gaageceee	ccaggccgtg	gggccctgay	geergaegee	TTAOO
carteceage	ageteettag	ccttcctqtt	cqcatcctcc	CEECCEECCE	ergerrece	11400
acateaceac	ctacccaccc	ttcctcaccq	ccaaqqctqc	ctgcccaccc	geeeeeee	11720
ttgtttactg	ctagectete	ccggtgtgtc	acccctcct	gteeagagee	etecaccett	11640
- asaasaacat	- aaaaaaaacta	ctccccaacc	ccqccqaqca	Ciggaigging	9-999-994-	22020
ctgttgaaag	cagettggtg	agragaacca	cttccccttg	geaeeegege	. gggccgcage	11760
ttctcagato	ggttttaaat	agccctctcc	actcaggcac	aggatgggaa	ccaccoggea	11820
ggcctggcag	ctggtgggga	agccccagct	ccagccccc	canatagata	cycayyuya	11880
gccaagcccc	actcctggga	geggetggee	tgettggeet	. ggeetgggeg	, ecagodagaa	11940
atgacgggca	ggggaacccc	agccagagcc	tacacgige	toggettatt	. cccacctcct	12000
gaggagggg	tcaggcctac	erraggeere	targetgeet	, cacqtaget	toogcoccto	12060
agagaacaaa	ggctgagctt	geacacgccc	ttagtaggtg	caggiages cectteeet	: caaggctgaa	12120
tgggtctcct	gggggctgca	teeteeeagg	tagggergre	, suscesses	catcctccac	12180
cccacccctg	tctttcagag	caaygugaaa	cacaccaage	taataacact	accagatatt	12240
cagcactac	g gtggggacat a tggcacacct	gggtatgggt	. gragecagage	gactatat	aggcattggt	12300
gggcccaaga	i tggcacaccc i gggcggggct	ggctatggct	. geggeeeggs	tettaggati	cccacatc	12360
gagtagagga	gggeggggee g tgactccact	togaccage	tactggcoge	cccagcccat	agagtcagaa	12420
ttgtgacctg	agggtggagc	cadcacac	ccactcaga	acaggtgct	qqqcaqqaq	12480
aggtgeteed	tgagcaccts	ctccctcc	, coaccoagas	asaacccca	agetggaete	12540
tcacatggg	gtattcggg	gaaatgtgcag	gcgaggaatt	cccactca	ggagtggaaa	a 12600
catctgegt	t gtatteggga t tgtgcagggt	getettaaa	a cotagetta	gecagge	tctgggaag	12660
ccctgatgg	t cateetteac	. godddigggg	a cadadcaad	taggataag	caggccaage	12720
ccccaagg	g tgttcccago	. adaaddaact	gcatchgta	a aaccatgat	g cgagagagag	12780
ggaggaagt	c aggaagttct	. agaataaas	- gaggggagaga	tagagagat	a aggactgag	12840
	a secentatico	: cctcagcago	r tagaataaa	a aqqqayyry	- cggggggac	1 12/00
agggaggag	g gtggggagg	a aggetetee		g gggaatggt	a gggagggag	12960
	, staaaaaaaa	i addaraaaa;	a addaddcuc	L YYYAYYXY	3 33334333°	
egerggggg	g tgctgcgggg	, -232-2222,	agaattaaa	a gggagaaga	g gggagggtg	g 13080
gagagggag	g -99-55:	,	, <del></del>			

			tanataattt	taggagatec	tagtatetet	13140
ggatggaggc	actgggggga	gggeeetteet	chaccece	accatage	ttaaaataaa	13200
tcctagcacc	ggaggcttct	rggcagttgg	gtgeagaeag	aboutegggt	reggggeggg	13260
gctgcctcct	cctcggcttt	gtccagagga	tttggggete	ctaaggccac	acgcagccgg	12220
gcccagccag	tccagaaacc	agggcttggc	cctgccctct	graracccc	aceceaggee	13320
cctttgggac	tcctgcaggg	ggcctgtgcc	ggaggcgggg	ggcttgcagc	actttetggt	13360
ggggaagg	gccaccaagg	accadadacc	tctattctga	gccggggcca	cctggtgagg	13440
chaacaacc	acagcagccc	caaaqaqcca	qaqccaggcc	aggtgcgccg	gggcagggcc	13200
tectecegae	tgagactccc	agcgtcacca	cctgccagcc	tctcagtgga	cacttgaget	12200
tatctgggcg	actatacta	actacccata	tecetggggt	gctgcatcgt	ggttgggcag	13620
aactataaa	gaaggtccct	gcccgcagcc	aggcagggaa	cqqqctttgg	gagcagcggg	13680
9900909999	agccatgtgg	aaatacctcc	ctctccaqqt	atctataggc	ctgaccacct	13740
cacaagagac	cccagggctg	cctcctaggg	gttccccgaa	agagaaacgc	tctcagttaa	13800
geaaggagae	ctggctgggt	cccccaggg	aacctotaa	toccaggact	ttggaaggcc	13860
aatgtcagag	erggergggr	acaagggccc	tagacataa	cctggccaac	gtggtgaaac	13920
gaggtatgtg	gatcacctga	ggccaggagc	accetataca	caccataat	gactcacaca	13980
ccgctctcta	ctaaaaatac	aaaaaccagc	egggegege	caggegegge	adatcaadac	14040
tgtaatccca	gcactttggg	aggccgaggc	aggeagatea	cgaggccagg	ttagggggg	14100
catccaggct	aagatggtga	aaccccgtct	Ctactaaaaa	acacaaaaaa	ccagccagge	14160
attgtgtcag	gcgcctgttg	teccagetae	tcgggaggct	gaggcaggag	aacagcgcga	14100
acctgggagg	tggggcttgc	agtgagctga	gatcgcgcca	gtgtactcca	geetgggega	14220
caaagcgtga	ctccgtctca	ccaaaaaaaa	aaaaattagc	cgggcgtggt	ggcaggagcc	14280
totaattoca	actecteaga	aggetgagge	aggagaatcg	cttgaaaccc	agaggcgaaa	T#340
gttgcactga	gtggagatcg	caccattqtc	tgtatccagc	ctgggtgaca	gagcaagact	14400
ccgtttaaaa	aaaaaaaaaa	atqccacagc	cataaattgc	tggctccggt	cecagetetg	14400
cacctcctgg	ctgagtgact	ctgggccagg	cccttggctt	ctctaagctc	tggccacaaa	14220
ataaataaaa	cagtcctcgt	cattcactqt	ccaggtgggc	aggaggctca	cacaacgtga	14200
gcgggcgcgg	ctcagccttg	aagcatggcc	acttccqtqt	tacagaggag	gaaactgagg	14640
characte	caggggtgtg	accetteage	cettataate	tcccacacc	ctcggacacc	14700
ttttataa	cagcagcgaa	agaactagta	cagacataga	ctttctcttt	gggaaacacg	14760
	gcagggctgg	ggagaagag	aaccaaaacc	accagataga	agaagggagc	14820
ggaggaggag	geagggeegg	ggctgcagct	+ asaaaaaaa	addadccada	acccaggtgg	14880
cccagtgage	agacgcctgg	ggrggccagc	cgaggggagc	cctaeccact	acaataacaa	14940
acagcagctg	cggccggcca	gggcatgete		gggagggtg	ttaccaccca	15000
gtgctaggtc	tgcaggcagt	gacctcatgc	eggeetgeea	ggcagagecg	regecaceca	15060
gcctggtgcc	cagagccagt	gettatgeeg	agaggageet	caggecacag	gagacagaca	15120
gagggaagco	tggatggacc	cttccgggga	cagggccacg	tttctgggga	ggccgagggc	15120
tgagaggtgd	ttcggagtcg	ggatcctgcc	gggcctcggt	ttcagcatec	graggacece	15100
atgaggacto	actgagctgg	ccaatctctc	tggcagggtc	tggcccccag	caagegeeg	15240
tccaagggag	ctatcactat	tattqtqqqq	aatagagctc	caagcagagc	cgagtcatca	15300
cccccaggc	ctacccaaaq	cagagacccc	accacccaca	catccaacta	. gcaccagugu	. 13360
taggagtagg	cageceagaa	cagageeeee	caggetgget	. caggtgatgg	gagagaggcc	15420
tocaccccaa	cagagggctc	agcccctgcc	ccagcacctc	: aggggcagcc	aagatggtca	12400
catotagoct	tacaaccaaa	actttacaat	tccaatgtct	. aactggaggg	ceaegggggu	13340
aataacaaa	: tcacctctaa	acaaaaaaaa	gcacgggcta	ı ggctggtgga	gtgtgeeeet	. 15600
atteacccc	rettageetee	cagcagcagt	qqacacgcat	: gtgcacagaa	tegecaacag	12000
actagaataa	accaagaagg	caaccaagto	cccagaggag	accegegeeg	ccctggagga	15720
geogaggogg	aggtatgagt	atataaaaaa	cttcctagge	agaagagcto	accccgcccg	15780
geggeegee	gcactgaccc	addccccacc	cccacaggga	gctgtggcac	gagatcaatg	15840
~~atcttaat	gggcttcggc	cagcagacct	atctacctat	gcaccctcqc	tgccacgcct	15900
gactetegge	agccctctgc	cagoagaco	agggtctctc	atggccgcat	gactatagaca	: 15960
geeceaacea	tgtggccacc	atatatass	taactttac	cttcaggaag	ccacqcctqt	16020
gaggtgeege	: tgtggecace	ttaaaastaa	, cascecaca	, atototototo	ctgaggggg	16080
tgaataaago	tttggtgtgt	Ligidagatgg	gatteggets	, acgeotycet	acatateta	16140
agagagcctg	ggaatcgcat	acaaggatgt	. guluguacac	tetagtatat	. actradoca:	16200
agcagggctg	cctgggaggc	cggctgggga	cgcgacaato	- colyclaty	. tacaaagggag	16260
ggggagggg	g tgtgcatgaa	cctgggaggg	aggaagtggg	gagagecage	. Lycaycoayc	16220
tgttggaagi	ccgctgggga	agcaagcago	ccccgggcag	g crggcrggg	accetggece	16320
ctcatgctat	ccaccaccaa	cccccaqct	: tcccagccc	g gacaccgcca	a geteetgaad	70380
++t.catgccc	: tcaaagccca	acctctqcca	e gagtcccaco	cctgtttace	a gagetaceeg	10440
accttgaaag	a qqacactqqq	dacccaqqca	aggcgccaca	a gggtacaaag	g citgacetgi	7 70200
gactgctaga	a qatcacaqqq	r tqaattgggg	: aaagggtgg	c ccgrgrggg	. gruguguggg	9 10200
accagatag	c ttcacaggga	aggtgaaggt	: qqqaggctg	a grergeeaa	a caagagaga	T0070
gggcatggg	c ccaggatgto	ccacacage	a qqqqqtccc	a tgggggtcag	g cgggggagai	70000
ggaggaggg	tgggagcaga	tggatgcag	gcacgggct	c aggaacgaga	a ccgtttcca	g 16740
دود و رو	202 2 3					

```
ctgctgagac tcggggaggg ggctccctga aacagcctca tccctccacc cctctcaccc 16800
cacggggagg aggctcagaa aagacagagg cgtgtgggtc ccaggcaggg cctgtttatc 16860
ctgagagege geatgegeta tggettaega ggeaacageg gtgeeggteg ateggtggte 16920
ggttcggggg tgcggggccc gggagggaag tgcaaagtca acagggtgtc cacgggggag 16980
cccgccaagc agggctgagc caaaggccag gcgtccttcc cgggtgccgc tctcacacac 17040
ctacgttccc caggcctggg agctgccgcg cggaatgagg ggcctgtcca aaggccgccc 17100
teetegggga ettggggeet ceatecteag geeetegga aageceagge ceeeageagg 17160
gcacaggcgc acagggtacc tgggtgggga gcagggtgtg gcctagggac ccccacacca 17220
gggcaggtgg gcaggggcag ctcctacggc cacatcaggc ctccctggcc ttacccaagg 17280
tececacaaa aaggetggge geeccaactt ggeeactggg aagteecagg gaeteecact 17340
caggacggcc gctgctgagg ggaggggcg gggaggaaat ggtttgcaga gaaaggtttg 17400
ttttattgca attatttaga gcgcgtccca agggggaggg gaagggggag gggaaggggg 17460
gggggtctct ggtattaagt ggaaacatgt gtggagctgg agatcttttt ggaaaaaaag 17520
caaaaacaca aattcctttc agtcagcagg ccccggcaga gcagcaaagg ccctcgcccc 17580
ctctgtctct gtctctgact ctctctcaca tctctgggtc tctctccccc tatcttgctg 17700
ccacaggece ccagtacetg gtgggeaggg geaggatggg ggeteaeegg ggetgggget 17760
gatttctggg caatggcagg accaccctcc agtccactga ggctggggga gctcggggca 17820
ggctgaggcc caaggtccgt gcgggagggg tcccagggtc ccgagacagg caggaagggg 17880
ctcagaagtt gctgaagatt tcacgcttcc tgttccagtc catctgtggc gcgcgcttgt 17940
tgactcgcat ggctcgagcc ttctccttgg cctcggccgc cgtggggctc aggtggaggc 18000
cgctctcctg gaagggatct tgcttccagg cactgccatc ctggggtgag cacggtgggt 18060
ggggtgtctg gagtgagccc tagtcccaca ccccagacgg tggcccctcc tagggagcaa 18120
ccaacagagg ctgcctgctg gggctggggc tcacgaggac ttcctgaaca gagaccccac 18180
tgcccgggct gacatctcca cagacgccta ccccaaggcc tctagcaacc ccacgtgtga 18240
gctcaggagt ggagaacatc catacctcag tgtccttgtc ggaaccaggc aggtcacttc 18300
gggacgagca cgcagagcca ccattgagct gggaaaccaa gggcagattg tggtttcaca 18360
gacacacaca acacctgcac acgcacacat gtgcacagag gcacaccccc ccccagtgtg 18420
tgctcctcca ctcggcaggg ggcctcgggc ctctggtgga ctccagatgc ggcggggcag 18480
gcaccgggcg cctggcagtg acaggcaggt ggcctggccg gctcatggtg cagagggggt 18540
tcaggtgcag gaatggccgg cgtgagcaac gcctggggtg aggccaccgc cagctccctg 18600
aggaggcaga gactggaggg caactcctta ccaggtggtg cccaggagag gacagaaggc 18660
agtggccccg accccagggg ccccacgtgg cttgtgtgtg gcacgaccca ggatgagacc 18720
cacaggggca ttaaagggag gtgacagggc taaaatcggg tgtcactagc acacctcgag 18780
gacggatete cagggagaag ggggeetetg tegggeetgg gtacceccag aggeaccetg 18840
tgtctcatgg gcaccccacc ctcttacctg ggcagggctg gttccattgg tgacgggtga 18900
cggcagagga cctgtgggga cagcgtgtca gtggctgctc agccaccaca ccgcacccac 18960
cctgtgccct gggccgtggc ccaccttcca cgtgctcctc ggtgggtgtg acccgaagcc 19020
gettgaagtg ttcatetgte teggggteea egaceageag eegggeeteg teeteeegtg 19080
cettgatget ggccaccace teageatgge geagteeete caeattetge eegtteacet 19140
geegecacca geatgtatea geecegecat gggeecagae ageececaac geegegtgge 19200
caggtgtggc atcaaatatt catcacagcc accgcccacc gaggcagcag gaggcgcacc 19260
ageteaggtt eccagegtet eccteeteec tgeaaggace cagggeecca gtgtggacag 19320
gtgcggggca ctcggcaccc cgcagccctg gtgggccggt acctcaatga gccggtcctg 19380
ggcgcggagg ccagagcggg cggcaggtga gcccgggtcc acagagcgga tgtactggcc 19440
gggccgggac ttgtcactat gcaggttgaa cccatagccc tgaggtccct ttcgcaggtg 19500
 gcagagccga gggcgcaget ccctcagggg cccactgaca tcctgcaggc ccaacggaca 19560
 gggtcagtct cttgctccag cctcccgcct ccagaggcca ctccccggtg gtgccgccac 19620
 tgcccaaact cggtaccgtg cccccacgg gcaggcccag gtctcagtgg caaacactcc 19680
 gggcacccag gctgcctgtg acagagcttt agctgtggga acttgggcaa agcctgtttt 19740
 caaacccaga agcctccccg acgggcccag ccgccttccc gggttgctgg gagaattc
 <210> 31
 <211> 6330
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AF037062
```

<220>

<221> unsure <222> (1)..(6330) <223> n = a or c or g or t

<400> 31 ccaggttttc cctcccttcc cccactcagc tgcaggaact cctttttggg gtttggatct 60 ggtatttttc tattcagctc cgagcttggc tctcctgggg aatcctggga gtgaaaggaa 120 ggagctgggt ttatttgcat gtactggtag tcatttgcat cacatccaaa aatggccaaa 180 attataaccc ctgattcttg gctgaactgg gactgctgca atggaatatt attcccggaa 240 accaecccca actagetgga getaatetee teceteetee aaccecccat tttggcccag 300 gcctacataa accaaaaaaa gctggaccat aaggtgaaaa ccctacaggt ccaggctgcc 360 caatttgcca agcaaacagg ccattggatc gaaatggtga aaaacttcaa ccaggcactc 420 aaggtgggcc atactcccta cctcaccacc ccaatcctgg gcccccattg gctgcctcca 480 gtcaggttac ctcaggttta ggttaaggag gaagtagggt ggtcccagaa accccatcta 540 tagccccagt gtcagaaaag gttgagaaag aaagaaaagc agttggtggg tccaagttaa 600 agcettttcc aggagatgaa taaaacttat teeccaatgg aagceatagt etacceatte 660 tgattcctgg gtcccaactc ctctccccct ttccaggaaa ttggggatgt ggagaatggg 720 cttggagcat tgagctggaa atgcgcacca ttgccaatgc aatggaatat gtttacaaag 780 ggcagctgca gtttgcccct tcctagcccc tgttccctcc cccaacccta tccctcctac 840 ctcacccgca gggggaagga gggaggctga caagccttga ataaaaaaca agcctccgtt 900 tttttgtggt gtgtttcaga gaggtaatag ctccagtgtc gggggtggga gtggaaggtt 960 caaaggtggt ttccctgagg gacaggtacc ttttggggag agggtggaaa tagcttcctt 1020 ttactatccc aaatttttt tcctccatgg cccttgtgca ggtgtttgtt aggcaagcag 1080 agggtgggag ttcccatccc tcctgagaga aggtcctagt agccctgccc caagcttcct 1140 aattcaggaa ttgtttccta cagaagagaa acaaggcaag tacacctggt ccccagctct 1200 ggetttetge etetecaegt geteatggee tetececagg etaactetaa geagtgteat 1260 gagtetgage caggtgggag attaatteet gggggeaett cagggetgag aagggggagg 1320 aatgacaggt ccagtaaccg ttaccaacag agcagtgcag ctgccatcct tgacagctcc 1380 ctcctccttg gagaccatga catagatggt caggaaccca ggctgagaaa gacagccaag 1440 gggtgggggg agcctaggca aatctggcct ctgccaagtc ctggcttcag ccaggcaagc 1500 tecageetee etggeteete etecteetea gteetateee caccetqtea cacatacact 1560 taatacgcct ggcatccaag tccacccact ccggactttg gccttagcag tagttagtgt 1620 gggaggctgg gaagactggg agcagtctct taaacaaaaq caaaaqaata agcttcqqqc 1680 getgtagtac etgecagett tegecacagg aggtaagtgg atetgggage tgggggaact 1740 gagaagacta gccagatatt acatgtattg ccaactcaaa actttcagct tttaacatgc 1800 ttcctcacac attatcccct ttgatcctcc acaactctga ggtggacctg gtgggtctta 1860 gccccacttg gtagatgaga aaataggttg agagagacag tgagatgctc agtatcacac 1920 agcaaacctc ttggccctat acatcattcc aaacacaaga cccaggttgc atatagaagg 1980 ttcagtgtcc ctggtttaga aggagaggtg gtgtgaggca agcaagaaga tgcctctgct 2040 ctgctccata cagcaggtct gtacacagga tctggctcat gtggttttag ttaagttagc 2160 cacaaataca gggtctgccc acatctttgc tttgaacaga tgagccatgg ttggccaatt 2220 atctgccaac cagataattt ctcaatatgc tcacaccaga tgcttccagc tagggagggt 2280 attaggggaa agggcttgag ggccacagta aactggacaa gtttttctgc ccagcctagg 2340 ctgccacctg taggtcactt gggctccagc tatgtggctg cctcttctgc tgggtgcctt 2400 actetgggca gtgetgtggt tgeteaggga eeggeagage etgeeegeea geaatgeett 2460 tgtcttcatc accggctgtg actcaggctt tgggcgcctt ctggcactgc agctggacca 2520 gagaggette egagteetgg ceagetgeet gaccecetee ggggeegagg acetgeageg 2580 ggtggcctcc tcccgcctcc acaccaccct gttggatatc actgatcccc agagcgtcca 2640 gcaggcagcc aagtgggtgg agatgcacgt taaggaagca ggtaagtatg gtagaccacc 2700 aggaatatgg tgtggggtgt cctgatcccc acagtcaccc caggagtcac ctgcaagggc 2760 tgtggtaagc taaagggaca atttgaggag aagcagtttt cagatgctcc caggaagaag 2820 agggagctgt gggagtgcct cacctacccc cagcatcctt ttcatctccc cacagggctt 2880 tttggtctgg tgaataatgc tggtgtggct ggtatcatcg gacccacacc atggctgacc 2940 cgggacgatt tccagcgggt gctgaatgtg aacacaatgg gtcccatcgg ggtcaccctt 3000 gccctgctgc ctctgctgca gcaagcccgg ggccgggtga tcaacatcac cagcgtcctg 3060 ggtcgcctgg cagccaatgg tgggggctac tgtgtctcca aatttggcct ggaggccttc 3120 totgacagoo tgaggtgagg ggtacagggc totgagttec aggactaaca gcagcocact 3180 caacaaacgt gggccagcag aggtggttaa aatacaqcac attqqaataq ttaaaaaqaq 3240 acagtttagg gctaaacttc atgggttcaa tgaaqtctac ccttatgtaa gctttgtgac 3300 cataagtaga ttacttctct ttacccattt ttaacgtgtt tgttttttgt tttttgagat 3360

```
ggagtettge tetgtegeca ggetggagtg cagtggegeg atettggete accaeaattt 3420
ccaccccgg ggttcaagcg attctcctgc ctcagcctcc cgagtagctg ggactacagg 3480
catgegecae catgeetgge taatttttgt atttttagta gagacagggt tteactatgt 3540
tggccaggtt ggtctcaaac tcctgacctc gtgatccgcc cacctcagcc tcccaaagtg 3600
ctgggattac aggtgtgagc caccacgccc ggccttgcct ctcgtcttta aacaataagg 3660
ttcaaagttc cgtgggagca caaaggagac atgatgagga caacgggagt tagggcctga 3720
gtttttttgg ttttttttt ttaagcgttt tgctcttgtt gcctaggctg gagtgcaatg 3780
gegagatete ageteacage aacceetgee teteaggtte atgtgattet cetgeeteag 3840
cctcccgatt agctgggctt acaggcacgt gccaccactc ccagctaaat ttttaggtag 3900
agatggagtt tataccatgt ggccagggtg ggtttgaatt cctgacctca cctgatccac 3960
cggaccggcc ttcccaaagt gctgggatta caggcatgag ccaccacaca cggcccaagg 4020
cctgagttct tagcaggagt ataaggcgcc taagcttagt ctaccttcta aggaagcctg 4080
cgtttgtcac catcactcag caaataaccg gaattgtctc ctgtctctca gccttaattt 4140
ttcaggcage atcatgggac acatactttt agttttgaga caaggccttg ctctcaccca 4200
gggtggagtg cagtggtgca gtcacggccc actgaacttc aaactcctag gctcaagcag 4260
ctcaagcgat atccgcctca gcctcctgag tagctgagac cacaggcgcg tgccagcatg 4320
cetggetagt atttttttac agatggggte ttgetgtggt gaccagaett gtetecaaet 4380
cccggcctca agcgatgctt ccgcctgggc ctcccaaagt gttgggatta taggtgtgag 4440
ccactgcata ctggaacaca tactttatac ttgaattttt ttttatcccc ttccttcgtg 4500
ctcctaacct atacttggat ttctacatct gtgccagggc agtgggatgt atccccactt 4560
tececateag ettaceetce ageaaataeg agactatace etteaatate cageaeteag 4620
ggctcaacca tgtgttttgg gagcaaggga atggggttcc tctaggtcag gaatcggcaa 4680
actcagtact caagccagat ttggccagct gcctacaagc tgataatggt tttttttatt 4740
tttaaatggt tacattgtaa actgttatat aagtacctga taatatcatt aattttgttt 4800
cttggcctgc catgcttaaa atattaactc tctggccctt taagaaaaaa acgtgctgac 4860
ccctgctcta gatcaaagaa aacaaacctc aaaaatactt tcctccctct accccacttg 4920
accettgtcc cggggcagta ggcatctccg tcaaaactct tgtccctggt ctgtggtaac 4980
tttctcagct ccccaaccca tgtccctcaa agtcccctcc ctatagggca agaacccagc 5040
aacttegete tgeeeegaet etaggeggga tgtageteat tttgggatae gagteteeat 5100
cgtggagect ggettettee gaaceeetgt gaccaacetg gagagtetgg agaaaaceet 5160
gcaggcctgc tgggcacggc tgcctcctgc cacacaggcc cactatgggg gggccttcct 5220
caccaagtgt gagtagccag gcccacacag gggcacatga agggaaacaa gtaccagaaa 5280
ggccagtcct gcataagcct gctaggaggt gggtggggca cccagggcag ggttgagggt 5340
gaacaggatg ttacaanagt gcccaggcca tgtggaacct gcccactccc cacactgagg 5400
aggggactga gggtgacaag cccagggccc caaaaaaacag tacctaanat gggctggagt 5460
gaggaaggga aactgattgc aaccacctat ggggctgcag acctgaaaat gcaacagcgc 5520
atcatgaacc tgatctgtga cccggaccta accaaggtga gccgatgcct ggagcatgcc 5580
ctgactgctc gacacccccg aacccgctac agcccaggtt gggatgccaa gctgctctgg 5640
ctgcctgcct cctacctgcc agccagcctg gtggatgctg tgctcacctg ggtccttccc 5700
aageetgeee aageagteta etgaateeag eetteeagea agagattgtt ttteaaggae 5760
aaggactttg atttatttet geceecacee tggtaetgee tggtgeetge cacaaaataa 5820
gcactaacaa aagtgtattg tttaaaaaat aaaaagaagg tgggcagaaa tgtgcccagt 5880
ggaaggetga ecceatttaa gtgeeaacta etecaaaceg acatgeteae ggtetetgge 5940
 ctgttcagtc cctgcaaaac agctagcacc cacagtgggg cgccagggaa ctgcctcaca 6000
 totacagotg cacgtogggg agtggccatc aaagggcact ttaatacatt tocottattt 6060
 tetgaagggg agtaaggttg caattcagtg tetgtactgg gaatggtett catatttett 6120
 gggggagaag agcaggtgat gagggttctg ggccaggctg ggtggcttcc atggaagaaa 6180
 aggcaatatt cacataaatt ctcctgctaa ggacactgac cacacaggtg tgcaaggcaa 6240
 cttatcatac ttcgaaagga gctggatccc ttgaggattg gccaggaagg gaggtgctgg 6300
 gcccttagcg gtgcacagaa ggccaggaag
 <210> 32
 <211> 10884
 <212> DNA
 <213> Homo sapiens
 <223> Genbank Accession No. M35878
 <400> 32
 ctgcagacct gggacctcaa gaattgcatt tgatgccgaa cccagctcta atttcagagt 60
```

		2200220002	tataaaceta	ggggattcgt	tttatttcct	120
caaggtetet	gegageater	aaggaacgga	tattagatat	caacgcagat	actagaagga	180
tcaattttcc	aatgaaatca	gagacecege	accettates	caacgcagat	totagaagga	240
ggtgatacaa	gagaaaggaa	acagcaagcg	acgattatgg	cacggtttcc	atracrater	300
gttgagtgta	gccacagcct	gagcactgtg	ggagaagage	tcataagaaa	tttatttata	360
tgggccttcg	tcaccccggg	gecetecatt	getetegtet	ttggtctctt	tagattataa	420
gaggtccaat	tatttattta	tttagtacaa	gagggaacga	aattgatctt	atamagaa	400
aaggagagta	tatatgtata	aaaggaagct	gtatagatat	gggggaagag	grggaraggg	E40
ggaaaagggg	agaggacgag	agagagaaag	ggagggagag	ggacaaggag	agacactggg	C00
cgagagatcg	attaggagag	acagaaatga	tgaatgaaga	ttaacttcac	ccaaggette	600
gtcgctggag	gggaatggag	gagctcctga	tttgctatta	ctactccaaa	ctgcaaaggg	990
ctccttcaag	tcacctatcc	acctcctaag	gcaagcgtcc	aatttcaaca	gcgttcagga	720
aagteteete	ccacaaaaat	ctcaccgctt	cccactccac	ccccacaaac	tetttggaaa	780
agtgccttga	aaaatttaat	cctcaatcca	atcctggacc	accagcgtcc	tetgttggte	840
accgaaggag	qqqqtqcqca	gacaaaactg	aagaaactcg	agtgccagag	aaggccgaca	900
ggagttacag	cgacctcagc	gcgcaattgc	gccccgaact	ttactgaaaa	gtgtttagat	960
tgcagagata	agctagaatc	ccaacqcatc	gagaatacag	taatacgaag	tegeetteaa	1020
aaaatgacaa	tgaaaattgc	ctattaaagg	actatttggt	taattacgtt	tcagcagtgc	1080
ccagtttatt	atctttatta	ttcttttgtc	gtgggtgtaa	actccatttg	aaaacataat	T140
cagggagaat	acccaaqaca	agaagaacag	ttgtcattta	aaatatttga	aaagccctgc	1200
cttaaggagg	attcqcttqc	cqqtccactc	ttaattgggg	acttgcggtg	tagcaacacg	1260
tgagagtett	cttgcgttga	gaagtaagcc	tggaaaggcg	aaggccccgg	ggcatcttca	1320
gatgcgtatt	tatagacccc	tggggatata	aacagcccag	cgggtgtaaa	ttaaaccccg	1380
cagtacetta	getecetgag	acccaaatqt	aaqtcaqaaa	tgtcccaaga	cttcgcctgc	1440
caacacaatt	aaattttaga	aagctccacg	aggtacacac	gaatgcggag	cgctgtatgc	1500
cadeggaacc	gacaccggct	caccacaaaa	agacctcacc	ccgagagcgg	aaggggtaag	1560
cageeeeeee	tcaaggagat	caaaaatact	gagttggcca	ggagtgactg	gggtgaccgg	1620
ggcggcgggg	ataacetaa	ataccagat	aaccaaacsc	accttggttc	ttqtaqacqa	1680
gggtgctgag	geggeeegga	gegeeggggg	agaggaggta	cccgggcgag	tctcgagctg	1740
caaggugacg	ageteeggge	caactactca	addcasadcs	cgggccccgc	agccatacct	1800
caegeeeeeg	ageteggeee	caacccccac	tectagaeae	gcgttccggg	acatateeta	1860
gegeegaeee	geeeeeeeee	caacccccac	ccccgggcgc	cgcccagatg	caaacactac	1920
ggccaccccg	gettetatat	acgggccggc	gegeeeggge	acacttcac	accatatact	1980
ggctgggcgc	tgaggateag	eegetteetg	angaaggta	acagettege	aggcgtcatg	2040
gtcgccccat	ccctgcgcgc	ceageergee	aagcagcgcg	ccccggttgc	actccacaa	2100
cagegggege	gacccacgct	etgggeeget	gegetgatte	tgctggtgct	geretgeggg	2160
cegeeggtgg	cgcgggctgg	egegageteg	gggggcrcgg	gtcccgtggt	cacaaaacta	2220
ccgtgcgacg	cgcgtgcact	ggcccagtgc	gegeeteege	ccgccgtgtg	cgcggagccg	2280
gtgcgcgagc	cgggctgcgg	ctgctgcctg	acgtgegeac	tgagcgaggg	ccagccgcgc	2340
ggcatctaca	ccgagcgctg	tggctccggc	cttegetgee	agccgtcgcc	taacataaac	2400
cgaccgctgc	aggcgctgct	ggacggccgc	gggctctgcg	tcaacgctag	geegeeage	2460
cgcctgcgcg	cctacctgct	gccagcgccg	ccagctccag	gtgagccgcc	- cgccaggcgc	2520
gctgcgtgca	gcaccgccac	tggcgccgaa	. gggcctgggg	gttgctgggt	geegetgegg	2520
gagactccgc	ttttcttctc	actggagata	. atatgtgggg	aaactgaagg	r cgctccggga	2560
aaggtgaagg	cggtcgccga	gggaccetec	ccagccggcc	ctctacttgc	e tegattetet	2040
aagtgcagag	tacttqtaaa	ttqcaaagcg	ctttcagtga	l aaatgggtaa	aggilledgg	2700
agetgaggg	agcggtaccg	, atqtttaqct	. gttggaaaga	l tcctggacac	: aggagattct	2/60
ceteggeeeg	cacaaataca	cacqqactqc	: aatcccaggg	, atgcttgggg	, atggggggat	2020
atagggggat	ttggaccaac	, qaaqqtqqqt	: aggcacgttg	, taggaaatag	, tacctctctt	2000
ttaaaatact	gactttqcac	: agccttttgc	, tttgcaaagc	: aatgtctagt	: cccggtatgt	2940
ccaaaaacaa	gtaaagtgga	ı ttcqqqtttt	: gatatcttct	; gcggttggaa	aacctgaage	3000
tgaaaaagaa	gtaacttctt	: aaggttacco	: aqcqgccaca	a acagagtgta	i ggtttgaact	. 3000
ccacatacca	ctttcaqtaq	: cataccattc	: ttacaactc <u>c</u>	g ggccacccci	geacetgege	3120
coacctcaaa	caaacttcca	ı aatacataat	: qqqtqcqqq	: aatgtggact	. aagtcaatti	. 3100
caatgacacg	r gcaagggaat	: tqqaatcaqt	: cctaggctgt	; ctcccttctt	: aacctgaaat	3240
aaaaaaaaa	r aatgagatgt	: tqttaaqqq	, aqccccagaa	a gaggaaaaat	geaaacatti	. 3300
accedentta	ceetettaet	: tagccactat	: caqtatcaqq	, cagacagega	a ccccggcaag	3300
ggcatcacat	: tattecetta	a aaaaaaqqaq	i caaaaattai	ttaaalyyai	: cuggeagety	3420
trotttcaac	r cattettage	caqcctcacc	: tagttatatg	g agaaataaag	g treetgeeri	. 3400
gracegratus	aggetagga	aatteteee	atcctaatt	cccaactc	c ccaacgatca	3540
gcacagooga	atoteacto	a desdacece	atctagggct	agcaggatga	a acagtccctt	3600
tataatttat	, algocaoly:	agttecaege	ccaaataaa	ttattttct	g gctcggcaac	3660
rataratata	ttcacccct	agaaatocto	g gattcatgg	aaggcaagai	t gcctgaaaca	3720
gergerere	, ccaccet	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

tacactggct ctggtcagct gttaaagctg ctggaggcat ttgtctctcg gggcaaagtt 3780 atgtcatttg ccaagtgtcg tacattattg tgcattttgg ggtattcaaa aagtgatctt 3840 agaaatactg atacacatcg tcattcttgg gctttagcaa tcatcatgat taccacctta 3900 gtagcactgt agtataggtt gatgtgagtt ataagattat aaaaagatct aagtgacttc 3960 tagaatctat ttgacaaaaa aaggtaaatt ttcgacagtc aaaagtcaca attatctgtt 4020 gcttaaatag aactgttttg tcttcatgcc ctagtctgca gcccaggcat taagaagaaa 4080. ccaaggaaat ttaagaaatt actcaaggtt cttagaaaag aagtataaat acgtttattt 4140 acatgttctt agagtattta cattcttagt atctctttta tctcagtatt tccttgaaaa 4200 agaaagcaag ctaagattaa aagaaattga aaccaaatcc tcgcaggtag ggacctcctc 4260 tgtgaggctc tgtgctggac cctgggaatg tgtgcttccc aaggtatgaa accccttggg 4320 gaactttaca gcaggacctc agtgagctgt ttggcaggtg aggaaactaa gacccagaga 4380 ggagaggac tttcctaagg ccctggtgag tgacctgcca gtagccactt ccaggggaga 4440 gcagagcatc tgcagccaaa tcattgcagc cccaggtagc tttctagata gactgtggac 4500 cagatgggcc acctgagctc cctgctaggg ttacacatta tagccctgtt tgtgtagtag 4560 agaaatttca tgactctcaa ttgtggactt aagccgatgc ctccagacct tggcatggtc 4620 cacaggeeet gggageatgg getetgaatg tageetttga teeccatage ggtettacag 4680 cccctccaag ttcattctga agaaggaatg gagtgagaat cctggctgca gatccagtct 4740 tgaatttagt catatactta aaattccaat tcaactgtta acattccagc atccatttta 4800 agcatcagac tttcttcatt tagcactttt tattataaaa gggagatctg ctggaggggg 4860 atttctccta ccccacccc acccagggaa ggaaaagctc tttggcactt agaagtctga 4920 gccgtgagtg ggactttggc attgtctgca tccatgtgct gctgtgttca cccggggtga 4980 aaaggactca cttaggcagg caccagcaag atgcacaggg tctgtgtaga ccttgagttt 5040 tagagatgta acggggacct agaaaacaag ccaccaacat gcttgcatga ttctgagccc 5100 ctgaggcaaa acgctttgca ggtaataatt cagttttccc atctgagctg gacaccaagc 5160 tottataago gtgtttacct ggtagcattg aggacggtac tggtcaacct tggaattccc 5220 ataagggett gttacaacte agactegtge egecacteea gegttteegg agtggagaat 5280 gtgcatttct tccaagtccc cgggctgccg ctgctcccgc gggtgggagg accacattg 5340 gagttgactg caaaatttct gagccggcgc tgcagcagcc tcccgtggct caggtctgcc 5400 ccctgccggt ggaagatgaa gcatactgcc ttcacctact gaggggcact gaagcgtttg 5460 tetgeettet ttagttgeag ctaettagga agageacetg teagattgae ttteaaacag 5520 ataacttctt gaggtagagc aaccaccatg tagtgagtag tatgatggaa taatacttca 5580 tegaggtatt taaaaaaaaa acctcacttg gattgccaac taatattgtc atttacatgt 5640 gacctggttg caacgttaag atttttacaa gactgtgata gatattgatg actctcatgt 5700 gtttgtctct cttgggcgtt ttaaggaaat gctagtgagt cggaggaaga ccgcagcgcc 5760 ggcagtgtgg agagcccgtc cgtctccagc acgcaccggg tgtctgatcc caagttccac 5820 ccctccatt caaagataat catcatcaag aaagggcatg ctaaagacag ccagcgctac 5880 aaagttgact acgagtctca gagcacagat acccagaact tctcctccga gtccaagcgg 5940 gagacagaat atgtgagage ttttcctctt gttaaaggag gagggcaaga cctgccaagc 6000 ctgggtactc agagcctctt gagggcaatt cttactcaac aaaccccagc gcctggctga 6060 tgggtgggca acccctagcc cctctgtgcc ctacctctct cctctcctta cataaagaat 6120 attgaccett ttggagaate ttatgaggat caagetgaaa taacactett aaaagcatat 6180 gggatgtcat aaagacctct gcagataatg aaaatattct cataaagata gttttattta 6240 cttcatcctc tatgcttgtt gacctgctat tggttccatg ccagcttctg tgccttactc 6300 tgggaagagc aaaaaggaga cagggagtga tggttagctt attcgggggga ctttcgtgct 6360 acatcagaca taaggtatct gaggagcaaa ttacaggtcc cacttttggt agttgtgcag 6420 catcgtaaga tttttaaagc acacattcta gagtaaaaac tgtgactctg ttgctctggt 6480 cetteetgat ecceagggte cetgeegtag agaaatggaa gacacactga atcacetgaa 6540 gttcctcaat gtgctgagtc ccaggggtgt acacattccc aactgtgaca agaagggatt 6600 ttataagaaa aagcaggtga gtgaggtcct cagtgtgttt tetteetett etgttgacae 6660 agaggagaaa cccatgtcac cagcgcccag gctcttgtgg ccatagctct aactctgagc 6720 ctgtgcagca ccagtgccca ggacttggtg ccagtctcag gaggtcagac caagggctgc 6780 tttgacttgt tgctctgagt gctgctatat tggccataat cctcaaccct agtgcctttc 6840 caccaccege tteccactee tgteetttea atggtteace cacaggegga caagatgetg 6900 cccagtggca ccctttataa actgcaagtg gacatgttaa cacatttgtt aatgctgcgt 6960 cagggagtga catttcaaac aactattata gtcagtttcc aagaagtgtg acatgaggtc 7020 ataccacaaa aaagettace etgaaateee acaategtee cettteetac tgatgeette 7080 ccgatagtga gcaggttgca atattaagat tttgaaaagg ctgttgctag atgttggtga 7140 ctcgtgtgtc tctgtctccc ttgggctttt caaggaaatg ctagtgagtg gggggatgac 7200 tgcagcatgg ccagcttgga gagcccagcc atccccagca cataccaggt gtctgtcttg 7260 gcgtggaggg gatggaactt gaaatcagac actcggtcca tgctggggat ggccagtctc 7320 tocaaactgg catgtggtot toctocgagt cactggcatt tocctagaaa gtocaagtga 7380

gaagaaggca tgagagtcat caacatcaaa caacagtctt ttcaaaatct ttatattgca 7440 acatagtccc attcetggaa aaggaatgga gtgagaatcc tgaaaaatga tcacaacaaa ttcaaaaaatggaatattaaa gctgaaaaa aaattgattct ataggcttg ttcaaatgga gccacagtgg cctcagggg accatatact gaggattcata aggattata gtaatattaa gtatattca attcaacaaa gtcatactga accatatact caaggattga agaattcata gcagaagtcat ttcaaacaaa gtcatactga gaaggtgtca aggattcata ggagttcatactgaagtga cctcaaggca gaggggggaagtcaacacaaca
atgtagtcat tgctaaaat cccaattaac ctgaaattga teaataata 7620 gtaatattaa gctgtaataa atatgcttct ataggctttg tgttatgtga tggcactatt 7620 caattagctat ttctaattgg acaattgata ctatgctatc tacagaattg gcctttggag 7680 acctaagtga gccacagtgg cctcagggtg accatatact aggattcata gcagtggcca 7740 agtcaagaag cctaagcttt cctccattgc cattgctogt ttataccacg tttctgcaa 7800 agtcatattc atcaacaaa gccagggca gcgggatgtc tacaagggct gagggggggggg
tcaattggct ttctaattgg acaattgata ctatgctatc tataggctttg tgttatggag tggadtatt 7620 acaattggct ttctaattgg acaattggta cattaggag 7680 acctaagtga gccacagtgg cctcagggtg accaataact aggattcata gcagtggcca 7740 aggatcaattc atcaacaaa gcattacaa gccatatact aggattcata gcagtggcca 7800 caaaagtcat accaaagtcat agctgtgaca tccacaggag gagggatgtt ctcagttcaa ggagggggg cattggaga gggggatgtt cacactcagg gggcctaggc ggggatgtt cacacacaga accacacaga accacagaca accacagaca cattggaga ggaggtgagacaggagacaggagagacaggagagacaggagaacagagagaacagagagaacaaaagaa accaagaca aaggtggaacaacaaa accagagaa accaaaacaaaggaacaaaaagaa atttaaaacag aagaatttaa agaatggaaa aagaagaacaaaaagaa atttaaaaca atttaaacag aagaggaacaaacaaaagaagaacaaaaagaaa atttaaacag aagaggagaacaacacaaacaaacaaacaaaca
tcaattggct tcaattgg acaattgata ctatgctatc tacagaattg gecttggag 7680 acctaagtga gcacaagtgg cctcagggtg accatatact aggattcata gcacaagtga cctcaagtgg accatatact aggattcata gcagtggcca 7740 caggacaaagtca attcaacaaa gcattgcac cattgctcgt ttataccacg tttctgcaa 7800 caaaagtcat agctgtgaca tcgcaggca ggggatgtc acggggatgtc acggggatgtc acceactcage gggcctaggc accecect tcttggagca ggaggtcacc accacacga agcgtgccc accecectgt tcttggagca ggaggttcacc cacacacga agcgtgccc tcctggagca ggggggggct tcaacacaagca accaggaa ggaggagact cacacacaca caaggggaa ggaggacgt cacacacacacacacacacacacacacacacacacaca
acctaagtga cctaagtgd cctcagggtg accatatact aggattcata gragtggda 7400 agtcatatte attcaacaaa cctcaagtga attcaacaaa gaaggtgtca tgtgaggct gatgtggaca ttcgcaagggtg accatatact aggaggtgtca tttctgtcaa 7800 gatgtggaca 7860 ctcaaggcaa gagggtgtca tgtgaggctg gatgtggagg 7920 aaagagtcag caagaggttc tacaagggc ggggatgt ctcaagtca agaagtcag caacaccagac ggggctaggc ggggatgtacaccacacacacacacacacacacacacaca
agtcagaag cetaagettt etecattge gaaggtgtea tggaggetg gatgtggget 7860 ceaaagteat agctgtgaca ttegcaggea gegggatgtt etecagteea eattggeag 7920 agaagtcagt caagaggtte tacaaggge gegggatgtt etetageege gaagagteeace etetageege ageggatgte etetageege ggggetggget
agtcatattc attcaacaa gtcatactga gaaggtgtca tgtgaggctg gatgtcga 7920 agaagtcat agctgtgaca ttegcaggca gegggatgtt ctcagttcca catttggcag 7920 agaagtcagt caagaggttc tacaagggct ggtgtcacc ttatactcct agaaacacaa 7980 actgcccc cacccegett tettggagca ggaagttaca cccacacgca tgcacaggcg 8040 gctttctcag gggcctaggc cattctctg tettgtgcc caccacacgca ttctgtgtg 8100 gctttctcag catageagag tcacgctggc aaaccatcat gggccetggc caccgacctg 8160 ggctacacca caggaggat ctctgtggg ggaggatgt ctctgtgtg agtatgggac gggggatgac cccaaggggg ggggagacgtg cactgctaca gggctacacca caggggggg gggggggggg
agaagtcagt caagaggttc tacaagggca gggggatgtt ctcaggtcad agaacacaa 7980 acctgcccc acccccctt tettgagca ggaagttaca cccacacagca ttctgggg ggaagttaca cccacacagca ttctgtgtg ttgtgttgcc ttagctgaa acccacaggg ggctteteag catagcagag tcacgetgg aaaccatcat gegccctggc caccgacctg ggtacacca caccaaggaa ggaaggagga cccaaggggaa cccaaggggaa ccagggggaga cccaagagggaa cccaacaaac aaggggaaa cccaacaaac caagaggaa cccaacaaac caacaaaca
agaagtcagt caagaggtte tacaaggget ggtgtccace ttatacteet agaateeted 7980 aactgeecee acceegett tettggagea ggaagttaca eccacacagea tgeacaggeg 8040 gettteteag catageagag teacgetgge aaaccateat gegeeettgge eactgetgge acceegacet tettgtgtt ettetgtte tettetget eacteeteg tettetgtt ettetgetge aggetacacea ecaaggggaa ggaggacgtg eactgetaca geatgeagag eactgetaca gggtgagtac ecaaggggga eactgetaca gggtgagtac eaggaggggg eageettgge eactgetaca gggtgagtac eaggaggggg eageettgge eaggaggget eaggagggget eaggaggget eaggaggget eaggaggget eaggaggget eaggaggget eaggagggggggggg
aactgeceee acceegett tettggagea ggaagttaca eecaacagea tgeataggeg 8040 eacacteage gggeetagge agegtggete ttgtgttgee ttagetgaaa tttetgttgt 8100 gettteteag catageagag teaegetgge aaaceateat gegeeetgge eacegacetg 8220 teeaaaggea ggaageggg ettetgtgt tettetgtt eteteecaea gtgteegeet 8220 ggetacaeca eeaaggggaa ggaggaegtg eactgetaea geatgeagag eactgetaea gggteagaa gggtgagtae teaggagggg eactgetaea gggteagaa gggtggeeae teggeetteee eagggeet eactgetaea gggeeagaaa ggeeaaagea aataggaeag aggaeettaea gagagggaga eeceaaaaa eagagggagaa eeceaaaaa eagaggggagaa eeceaaaaa eagagaggagaa eeceaaaaa aagagaaaaaaaaaa
cacactcagc gggcctaggc agcgtggctc ttgtgttgcc ttagctgaa tttctgttgt 8100 gctttctcag catagcagag tcacgctggc aaaccatcat gcgccctggc caccgacctg 8160 acaccagacc caggagcatt cacttctctg tcttctgttt ctctcccaca gtgtcccc 8220 ggctacacca ccaaggggaa ggaggacgtg cactgctaca gcatgcagag caagtagacg ggaccagcct caggggctag cactgctaca gcatgcagag caagtagacg ggaccagcct caggggctgg cactgctacc cagggcttaca ggccagaaa gagcaaagca aataggacag agccctcaga ggccagaaa gagcaaagca aataggacag aaggaggaga ccccatcaac ccaaccaaac aagtgtgggg aaggagggc caaggaggaga ctctgctta tctcagatac ctcacagcac ctaagctac aagatttca aagttaggct ttacccgtga gtctggaggt cattatcta 8840 gcaacaaagtga aagattttca aagttaggct ttacccgtga gtctggaggt cattatcta 8840 aagcctaaagtg aagattttca aagttaggct ttacccgtga gtctggaggt cattatct 8700 cacagagaac gtttatcgca gactgctaag aagtgcagct ttttttctgt caaatatata 8820 aagaatattc tgttagtctg tggctaatat aattttaata aagttaattt tataccagt cttcttttt 8940 cttttaataa aattttaaaa attataaaa aattataa aagaataaa attataaaa attataaaa aaggaataaa tacattttct ttcattttt 8940 cttttaataa aaggaaac tattgggga aaggaataaa tacattttct ttcattttat 9000
acaccagace caggageatt cactetety tettetytt cteteccaca gtgteecet 8220 tecaaaggea ggaageggg cttetgety tgtgtggata agtatgggea geetetece aggetacaca ccaaggggaa ggaggaegty cactgetaca geatgeaggg cactgetaca gggteagaca eaggggety gegtegecac tggeettece caggettaca gggeeaggag ggaggaegag aataggaeggg aggaggggaga ceccateaac ccaaccaaca aagtgtgggg aggaggggg cactgetaca aggaggggag ceccateaac ccaaccaaca aagtgtgggg aaggaggeeg gecaggaeggg gaaggaggaac ctetgetta tetcaggatac cteacagaac ctaaggaaca gagatttea aagttagget ttaccegtga gtetggaggt cattatett 8700 cacagagaac getegttgga gactcagttg aagtgeaget ttattety taataaca gteatatet tggaaaaatgaa atttaaaca ataatttaa aggaatgetat tatatecagt ctettttta taaaca attttaata aagttaattt tatatecagt ctettttta taaaca attttaata aggaatgetat tatatecagt ctettttt taaaca attttaata aagttaattt tatatecagt ctettttt taataa aagttaattt tatatecagt ctettttttaataa attttaataa aaggaataaa tacattttet ttetttttat 9000
acaccagace caggageatt cacticity tettetytt etetecaa ytytegeett 8220 tecaaaggea ggaageggg ettetgetgy tytytygata agtatyggea geeteteeca 8280 ggetacacca ecaaggggaa ggaggaegty cactyetaca geatycagag eageetygeet eagggeet eagggeet eagggeet eaggeetteec eagggeett eaggagggg ggetacace tegaggeetteec eagggeettaca ggecaggagagagagagagagagagagagagagagagaga
ggatacacca ccaaggggaa ggaggacgtg cactgctaca gcatgcagag caagtagacg 8340 cctgccgcaa gggtgagtac tcaggagggg cagcctgggc cactgctaca ggaccaggct caggggctgg cagcctgggc caggcttaca gagccaggag 8460 ctgcagctca gggccagaaa gagcaaagca aataggacag aaggagggaga ccccatcaac ccaaccaaac aagtgtgggg aaggagggcg gccagtgcac 8580 ctcagggaca ctctgctta tctcagatac ctcacagcac ctaagctac aagatttca aagttaggct ttacccgtga gtctggaggt catttatcta 8700 cacagagaac gtttatcgca gactgctaag aatacatgtc taattaagat gtgatgtgag 8760 aaggctgaat gcctgttgga gactcagttg aagtgcagct tttttctgt caaatatata 8820 aagaatattc tgttagtctg tggctaatat aattttaata aagttaattt tataccagt cttcttttt 8940 cttttaataa aagggagaac tattgggga aaggaataaa tacattttct ttcatttat 9000
ggctacacca ccaaggggaa ggaggacgtg cactgctaca gcatgcagag cactgtagacg cactgcagag ggatgagtac tcaggagggg cagcctgggc tccagggcct cactgtcctt 8400 ggaccagcct caggggctgg gcgtggccac tggccttccc caggcttaca ggaccaggag 8460 aggaggggaga ccccatcaac ccaaccaaac aagtgtgggg aaggaggccg gccagtgcac 8580 ctcagggaca ctctgctta tctcagatac ctcacagcac ctaagctact aggatttca aagttaggct ttacccgtga gtctggaggt cattatcta 8700 cacagagaac gtttatcgca gactgctaag atacatgtc taattaagat gtgatgtgg gactcagttg aagtgcagct tttttctgt caaatatata 8820 atgaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa atgaggaac tattgggga aaggaataaa tacattttct tccattttat 59000
ggaccagcet caggggetgg gegtggccac tggcettece caggettaca gacccaggag 8460 ctgcagctca gggccagaaa gagcaaagca aataggacag agccetcaga agggtgcag 8520 gagagggaga ccccatcaac ccaaccaaac aagtgtgggg aaggaggccg gccagtgcac 8580 ctcagggaca ctctgctta tctcagatac ctcacagcac ctaagctate attcatcac 8640 aacacaaagtg aagatttca aagttagget ttacccgtga gtctggaggt catttatct 8700 cacagagaac gtttatcgca gactgctaag atacatgtte taattaagat gtgatgtgag 8760 aacgctgaat gctcgttgga gactcagttg aagtgcagct tttttctgt caaatatata 8820 atgaatatte tgttagtctg tggctaatat aattttaata aagttaattt tataccagt cttcttttt 8940 cttttaataa atgaggaac tattgggga aaggaataaa tacattttct ttcatttat 9000
ggaccagcet caggggetgg gcgtggccac tggccttccc caggcttaca gaccaggag 8520 ctgcagctca gggccagaaa gagcaaagca aataggacag aggcctcaga agggtgcagg 8520 gagaggggaga ccccatcaac ccaaccaaac aagtgtgggg aaggaggccg gccagtgcac 8580 ctcagggaca ctctgcttta tctcagatac ctcacagcac ctaagctatc attcatccac 8640 acacaaagtg aagatttca aagttagget ttacccgtga gtctggaggt catttatctt 8700 cacagagaac gtttatcgca gactgctaag atacatgttc taattaagat gtgatgtgag 8760 aacgctgaat gctcgttgga gactcagttg aagtgcagct tttttctgt caaatatata 8820 atgaatattc tgttagtctg tggctaatat aattttaata aagttaattt aaatctgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa aagggaac tattggggga aaggaataaa tacattttct ttcatttat 9000
etgeagetea gggceagaaa gagcaaagea aataggacag ageeteaga agggtgeagg 8520 gagagggaga ecceateaac ecaaceaac aagtgtgggg aaggaggeeg gecagtgeac 8580 etcagggaca etctgettta teteagatac etcacageac etaagetate atteateaca 8640 acacaaagtg aagatttea aagttagget ttaceegtga gtetggaggt eatttatett 8700 eaaggagaac gtttategea gactgetaag atacatgtte taattaagat gtgatgtgag 8760 aacgetgaat getegttgga gacteagttg aagtgeaget tttttetgt eaaatatata 8820 atgaatatte tgttagtetg tggetaatat aattttaata aagttaattt aaatetgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgetat tatateeagt ettettttt 8940 ettttaataa aaggaagaac tattggggga aaggaataaa tacattttet tteatttat 9000
gagagggaga ccccatcaac ccaaccaaac aagtgtgggg aaggaggeg gccagtgac 8380 ctcagggaca ctctgcttta tctcagatac ctcacagcac ctaagctatc attcatcac 8640 acacaaagtg aagatttca aagttagget ttacccgtga gtctggaggt catttatctt 8700 cacagagaac gtttatcgca gactgctaag atacatgttc taattaagat gtgatgtgag 8760 aacgctgaat gctcgttgga gactcagttg aagtgcagct tttttctgt caaatatata 8820 atgaatattc tgttagtctg tggctaatat aattttaata aagttaattt aaatctgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa atgagggaac tattggggga aaggaataaa tacattttct ttcattttat 9000
acacaaagtg aagatttca aagttagget ttacccgtga gtctggaggt catttatctt 8700 cacagagaac gtttatcgca gactgctaag atacatgttc taattaagat gtgatgtgag 8760 aacgctgaat gctcgttgga gactcagttg aagtgcagct tttttctgt caaatatata 8820 atgaatattc tgttagtctg tggctaatat aattttaata aagttaattt aaatctgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa atgagggaac tattgggga aaggaataaa tacattttct ttcattttat 9000
acacaaagtg aagattttca aagttagget ttacccgtga gtetggaggt catttatett 8700 cacagagaac gtttategca gactgetaag atacatgtte taattaagat gtgatgtgag 8760 aacgetgaat getegttgga gactcagttg aagtgeaget tttttetgt caaatatata 8820 atgaatatte tgttagtetg tggetaatat aattttaata aagttaattt aaatetgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgetat tatatecagt ettettttt 8940 ettttaataa atgagggaac tattggggga aaggaataaa tacattttet tteattttat 9000
cacagagaac gtttatcgca gactgctaag atacatgttc taattaagat gtgatgtgag 6760 aacgctgaat gctcgttgga gactcagttg aagtgcagct ttttttctgt caaatatata 8820 atgaatattc tgttagtctg tggctaatat aattttaata aagttaattt aaatctgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa atgagggaac tattggggga aaggaataaa tacattttct ttcattttat 9000
aacgctgaat gctcgttgga gactcagttg aagtgcagct ttttttctgt caadtatata 8820 atgaatattc tgttagtctg tggctaatat aattttaata aagttaattt aaatctgata 8880 gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttcttttt 8940 cttttaataa atgagggaac tattggggga aaggaataaa tacattttct ttcattttat 9000
atgaatatto tgttagtotg tggotaatat aattttaata aagttaattt aaatotgata 6660 gaaaaatgaa attttaaacg ataattttag agaatgotat tatatocagt ottottttt 8940 gttttaataa atgaggaac tattggggga aaggaataaa tacattttot ttoattttat 9000
gaaaaatgaa attttaaacg ataattttag agaatgctat tatatccagt cttctttt 6940 cttttaataa atgaggaac tattggggga aaggaataaa tacattttct ttcattttat 9000
cttttaataa atgaggaac tattggggga aaggaataaa tacattttct ttcatttlat 9000
cttttaataa atgagggaac tattggggga aaggaataaa tattatta
which the transfer of the tran
taagacaaat ttagtaagca gaagaaattt gcatgtttag ttataagggt ttctttttc 9060
cttacaagtt ggaaaaaata attctaattt aagggtaact ctttgacaat gaacactgtg 9120
agcagcatct ggtactcgtt gctttgtttg aaaacatgag ttgagacccc agccgcactt 9180 gcagcctagt gccattagcc tgcaggctgt gctggatatc tcagggcaag agtcgagccc 9240
ttttgatttt ggggggatta tttcaatata tttgcttttt ctttttgttt tagttaatgt 9300
ttttgattit ggggggatta tittaatata titgettesa ggacatgacc agcagtagc 9360
ggagctcaaa tatgccttat tttgcacaaa agactgccaa ggacatgacc agcagctggc 9360 tacagcctcg atttatattt ctgtttgtgg tgaactgatt ttttttaaac caaagtttag 9420
tacagetteg attractable telegiting typactegate acceptance telegiting 1480
aaagaggttt ttgaaatgcc tatggtttct ttgaatggta aacttgagca tcttttcact 9480 ttccagtagt cagcaaagag cagtttgaat tttcttgtcg cttcctatca aaatattcag 9540
agactegage acageaceca gaetteatge geoegtggaa tgeteaceae atgttggteg 9600
agactegage acageaced gattetate geographet tacetatata aggaacacgc 9660
aageggeega ceaetgaett tgtgaettag geggetgtgt tgeetatgta gagaacaege 9660 tteaececea eteecegtae agtgegeaca ggetttateg agaataggaa aacetttaaa 9720
ttcacccca ctccccgtac agugggataa tactagaaat cacaaacttc tataatatca 9780
ccccggtcat ccggacatcc caacgcatgc tcctggagct cacagcettc tgtggtgtca 9780 tttctgaaac aagggcgtgg atccctcaac caagaagaat gtttatgtct tcaagtgacc 9840
tgtactgctt ggggactatt ggagaaaata aggtggagtc ctacttgttt aaaaaatatg 9900
tatctaagaa tgttctaggg cactctggga acctataaaa gcaagtattt cgggccctcc 9960
tetteaggaa tetteetgaa gacatggeee agtegaagge ceaggatgge tettgetgeg 10020
gcccgtggg gtaggagga cagagagacg ggagagtcag cctccacatt cagaggcatc 10080
acaagtaatg gcacaattet teggatgact gcagaaaata gtgttttgta gttcaacaac 10140
tcaagacgaa gcttatttct gaggataagc tctttaaagg caaagcttta ttttcatctc 10200
tcatcttttg tcctccttag cacaatgtaa aaaagaatag taatatcaga acaggaagga 10260
ggaatggett getggggage ccatecagga caetgggage acatagagat tcaeccatgt 10320
ttgttgaact tagagtcatt ctcatgcttt tctttataat tcacacatat atgcagagaa 10380
gatatgttot tgttaacatt gtatacaaca tagccccaaa tatagtaaga tctatactag 10440
ataatcctag atgaaatgtt agagatgcta tatgatacaa ctgtggccat gactgaggaa 10500
aggageteae geceagagae tgggetgete teeeggagge caaacceaag aaggtetgge 10560
aggageteae geedagagae teggeetgete teeeggagge edddeeddag acagetgeat 10620 aaagteagge teagggagae tetgeeetge tgeagacete ggtgtggaca caegetgeat 10620
adagedayye coayyyayae cocycocyc cycayaccoc sacasaca casacas
aggregation transpagate aggregation aggregation octaoctatt agettitett 10680
agagetetee theasasese aggestetes agaesteet ectaectatt agettetet 10000
agagetetee tigaaaacag agggaaaagta tittigagaa gittgietig caatgiatit 10740
agagetetee tigaaaacag aggggtetea agacattetg cetacetatt agettitett 10000 tattititta aettitiggg gggaaaagta tittigagaa gittigietig caatgtatit 10740
agagetetee tigaaaacag agggaaaagta tittigagaa gittgietig caatgiatit 10740

<210> 33

<211> 8322

```
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D50030
<400> 33
gaattccgtg actccagcac catcccaggc cccagggtac ctggcccagg gttgtgctgc 60
cgcagacttg gcctgtacca tccaggcggc ggtggggagc tggggttgga aaggcttctt 120
ggagtggact cctgggtctg tctgggagac ggggaggaag ggacactctg aacatcacca 180
ggggctgctg gggggccctg gccaccccca gagtcagaac aggcaggtgg ggcaggatct 240
caggicated tatgetacad teagecattg egtggeeect etecteeetg tgeetggeet 300
tttggccagc cctggggcca ccgagaggat gcagcaccga accctccagg agcccccagt 360
gctgccgtct gtgggacagg gacaatccca tccccactgc tactgtctgt gctgtgctgg 420
gcacagaget ggacacetec aaggeecage gecegtagtg geteteatea tggacaatte 480
acaggcagat ggtggccagc tctgtggcct gcagggactg ggagcggcgc cagaccatct 540
aggccccaac ctatctgcat tatcctggaa gacttcctgg aggaggcttc taagctgagg 600
cccaaggacc atgtcaggtc taggactagg accagtgcag gccgaggcca gagagacagc 660
tgggetteca ggtagggtea aagtgaggtg ggeageaggt gtgggggeea ggggaetegg 720
ggaetteete teeggetggg eeegeetgae gtgggaggea geeagggtta ateattteea 780
cgaagcettg accecacetg cettggeege tetggaggge geteceactg ceceteagge 840
cageteagga gecatgggge getgggeetg ggteeceage eeetggeece eacegggget 900
gggccccttc ctcctcctcc tcctgctgct gctgctgctg ccacgggggt tccagcccca 960
gcctggcggg gtgagcactg accttgtcgc agtgcgcaca gaggttccca gtggctactt 1020
gggaggaggc cagagggagg gtcgccgcag agctggggat ttgagggggc gggggtccga 1080
gcaggggct tacgttgaaa gctggccctc acagggcagg tgggtgctgg actggccttg 1140
gaggetgggg cetgggetea eggageeeca eetggggget gteatecetg tgeggeetgg 1200
cctgggcccc tatgggtctg ggggctgccc cctctctctg gacctctgtt gggtctggat 1260
gcgtgaggtt gggggaacct cccagggcct cctagctgct cccatcacca aaaactgacg 1320
tcagggttta agcttggtgg gtagcagtgc ctgggcctgg gcagtgaccc tgagcaggtg 1380
ttaactaggg gccgagggcg gggaaggtgt cagggcctgg ctgaggcctc aggaatgtcg 1440
tgtgtctcct ggaacctgct ccgagatctg ggggccccag tatggaaaca ggctcagggc 1500
tgtgacctcc tgcccggcag gacctgagtg tgagggtctg tcccacactg acaccctttc 1560
tgctcctcct agaaccgtac ggagtcccca gaacctaatg ccacagegac ccctgcgatc 1620
cccactatcc tggtgacctc tgtgacctct gagaccccag caacaagtgc tccagaggca 1680
gagggacccc aaagtggggg gctcccgccc ccgcccaggg cagttccctc gagcagtagc 1740
ccccaggccc aaggtgggtc aggtgggcct gggaggaggt gtcgtgcttc accttagggc 1800
tgggtgggag gagcatggct gcggctggag gtcctgaggg gctcgggtgc ccctcgaggg 1860
agccctgacc ctgccacccc ctccccacag cactcaccga ggacgggagg ccctgcaggt 1920
teccetteeg etacgggge egeatgetge atgeetgeac tteggaggge agtgeacaca 1980
ggaagtggtg ggtccgggca gccggggcac ccgagctggg gtcacctgcc ccacgctgcc 2040
tgcttttctg ggagccgggc acacagtagg cgctcaccac gcagcaggcg gacccagtga 2100
acceagagac cetecagggt ggtggggtgg ggtgggggc etetgeetgg gacceceatg 2160
cacgcaggtg tcgccccca ggtgtgccac aactcacaac tacgaccggg acagggcctg 2220
gggetactgt gtggaggcca cecegeetee agggggeeca ggtgggtget gggttgggta 2280
gcctggggcg agcagggggc actgggccag gccagaaggg ccaaggggag gatggggcg 2340
accegggcag gggtcctggc tggaggggag cagaagagga gctctgggat taaccceggt 2400
gggtgccact tagggccaga gcctctccca ggtgggacct gcgtctcatg gtgcgtgcgc 2460
ggccatcgct ggggccaagg cgccgcctgg tggtgaggcc gggccctgca gccacacagg 2520
cgtgccccag gcaggggaca ggtgggcagg gtctgtgggg tgcggtgcca gccgccctgc 2580
tcacatgggt cctgggacac atgggagggg tctgctgcct gacagtgtgg gtgtcaggct 2640
tccaggaagc cacgtgcaca gctgggccag tggcccaggt gttgagtggg ggacgctggg 2700
aggaaggga ggtctgtgcc cctcccaggg accttgcacc ccgaggggcg tagagaggc 2760
ccetttgetc tcagagcccc tcactgacct gatggacgcc ttagcaagca gagaatgtca 2820
cagagggacc ctgagcctcc cagtccgccc ctcacatccc ctcccgcatg tccccagctg 2880
ccctggatcc ctgtgcctcc ggcccctgcc tcaatggagg ctcctgctcc aatacccagg 2940
acceccagte etateactge agetgeeece gggeetteae eggeaaggae tgeggeacag 3000
gtgagctggg cccggaggtc cgcagggtcc aggggccgga gcaagtcccg gaggatggga 3060
gaacaggtgg ctcccgagtg cagggcaggg gccctgcacg gggacagcag gtggcagggt 3120
gtgagggett actgtgcacc cetcagagaa atgetttgat gagacceget acgagtacet 3180
```

~~~~~~~						
994999999	gaccgctggg	cccgcgtgcg	ccagggccac	gtggaacagt	gcgagtgctt	3240
cgggggccgg	acctggtgcg	aaggcacccg	acatacaggt	gcgccacggg	gtgtgagccq	3300
tgccactgac	ccctgacggg	tgtccctgtc	cacacccgag	taggaggaat	ggcctgaggt	3360
		-3			330003035	2200
cacccagaaa	caayyyacaa	ggggtggacc	ceggeeeega	creegerare	grggggaet	3420
gcgcggcccc	tggcccagct	cctcggccct	gcccccagct	tgtctgagca	gcccttgcct	3480
gaacgggggc	acctgccacc	tgatcgtggc	caccgggacc	accetetete	cctgcccacc	3540
aggetteget	ggadggdtdt	gcaacatcgg	taaataaatc	adcccccdd	agtaccetaa	3600
aggagtagg	33-0330000	300000000			9909000099	3000
ggcagcgccg	ggtggaceca	ccgtgggccg	geereaerge	cectetgeee	geagageerg	3660
atgagcgctg	cttcttgggg	aacggcactg	ggtaccgtgg	cgtggccagc	acctcagcct	3720
cgggcctcag	ctgcctggcc	tggaactccg	atctgctcta	ccaggagctg	cacgtqqact	3780
ccataaacac	cacaacceta	ctgggcctgg	gececcatec	ctactgccgg	tcagcaccaa	3840
caccacteca	adcadada		gazaattt	testestess	20000000	2020
~========	ggccgccgca	cgcggggcag	geaggacttt	ccctggtgag	aggueeeeeg	3900
		ggccatctcc				
gaggetgeee	gagggagggc	cactctcttc	ccgctgctcc	aggtgcgggg	aaccgccctg	4020
		tccccatgcc				
gccccactt	atoraccora	ggaatccgga	caatracraar	aggeret agt	actacatact	4140
32222222	acgeaccgea	ggaaccegga	caacgacgag	aggeceegge	getacgiggi	4140
		gggagtactg				
ggggggtgct	gccttgggcc	ccaccgaggt	cacagcagtt	ttccccgtga	tcctcctagc	4260
ccctctgcac	acctggctac	tgcatctctg	acaaatgggg	aaactggagc	tcacgggatc	4320
aggetggtee	aaggtcacgc	agtgggtcgg	tactggggtc	acagtgggga	agcagcccgc	4380
tacsaaaaaa	taatcaacaa	acas cacat	caaataaa	catacagaga	ataasaasta	4440
		gcgacggcct				
		ctttcaggga				
agaggccacc	tgcttcctgc	cctggggaga	ggccccccgg	ctccctagga	ccccggcggg	4560
gccacccggg	gctctcatgt	gggggtctct	gactgtgctg	agactaacta	tagaattcca	4620
gactactasa	gggggggaaa	aggcctccgt	atateceace	cctctaaccc	tracaracco	1680
ccgggaccgg	gcatcaaacc	ccattctaca	gatttggaaa	ctgagggcag	aggtgagtgg	4740
gcgccagggc	ctgagcagcg	tggacagggg	gtccggccat	ggccctctgc	agcgcctcct	4800
gccgggtagg	gcctgtgtgt	ggaagggggc	tggccctgtg	aaccccaggg	gtgtgacccg	4860
gtgacctttg	ctcccagaat	ccctcaccag	agtccaactg	tcaccggatc	tectagegae	4920
cctacctasa	ccaccataca	cadadadada	agagtagaa	2002003300	2022330300	4000
		cggggcgcca				
		teggeggete				
ggccgccatc	tacategggg	acagettetg	cgccgggagc	ctggtccaca	cctgctgggt	5100
ggtgtcggcc	gcccactgct	tctcccacag	gtgcacctcc	tctgggcccc	agtcacctgc	5160
cctgaggccc	cacacaccat	ccagcgtcac	tatgcgcctg	tecceaceca	cttacaaacc	5220
ccatcccat	acctatacta	20000++000	cacacaca	at a same to the	cccgcggacc	5220
t-active	gcccccgccg	accettece	ggggtccccg	graacccccc	ctgacecete	5280
rgggrerrgg	ggctcagtcc	tgagctgggc	atgcatggac	actccagaaa	ccctgtccct	5340
attgagggag	gccaggggtc	agtggcattt	ccacagagga	cccagcgcct	gcggagagtg	5400
cagtgggcca	ggtcctgtcc	tccccgcagc	cccqcccctc	ccagagtcct	ggctctcagt	5460
adddadccad	agaggggagt	acaatgcgtc	adadddtad	asaaaassaa	22222222	5520
22224244	ggagogcagc	acaacgcgcc	agageeetag	gageccaage	acagccaggg	3320
aaactgagge	ceageceaet	cagccggctc	ccctcagtgg	gggcgcacag	ccacccaggc	5580
ccacactctg	ggaggcgggc	ctcgagtggg	gagaccctga	gacggagcag	cctgggccag	5640
acgcccttcc	accttcgatg	ggcaccccag	tgattagggg	caggggtccg	gccagccgag	5700
gatetgaega	cctttcgagg	accacagete	ccagggtagg	atectacata	accetacada	5760
acctggaggg	gacgtctcct	gggcctgcaa	atacacacac	accetteete	actotaga	5020
astagaatta	gaogeoece	9990009000	acggggccag	ageceeeee	agegeggaga	5020
aacggggccc	cccacatgga	gcccagggca	ggaggccgag	gcagggcgga	gogaceteca	5880
cacagcagat	gggagccagg	ctcaggggcc	caggetetgt	gcccagcagg	agtgagggct	5940
gcatctgggg	accccacaat	gtggatggaa	gctggggcag	ggcctgagca	ggccaggtct	6000
ccacccactc	qqqtcqqcct	tgcagccgat	cctacctaga	cttggcctga	gactccccc	6060
agggettata	accaptotto	tcaggaggga	taggacaga	cttcacetcc	catacataga	6120
tataaaaata	accagegeeg	coaggagga		-t-t	tatgeergga	0120
cergggggeg	accygeaaca	gcccctgctt	ggrggreeet	grereceag	caccaacage	6180
ccacacccag	gcacctgctc	agacccctcc	ccgggaccag	ggtcccacac	cattggcctc	6240
cgtgggcctg	acagggggtg	gggagaggtg	agcccggtgg	ctgggggagg	gctggtccat	6300
		cacagccccc				
agtactett	atactguacy	acggacgtga	cycayacctt	cygcaccyag	aaytacatcc	0420
cgracaccct	gractcggtg	ttcaacccca	gcgaccacga	cctcggtgag	crccggcgtg	6480
tegtggetge	actctgggca	ggtgggccct	gtgctcccca	ggccaggccc	agacaggggc	6540
aggagctggg	cagacatqtq	gtgcggggga	agctgggggc	agggcaggga	ggacagggac	6600
catacettet	ggatchccca	ggctgccctg	togacccac	taactaccct	coctocacca	6660
		ttcagcccgc				
gateagteet	gatccggctg	aagaagaaag	gggaccgctg	tgccacacgc	rcgcagttcg	6780
tgcagcccat	ctgcctgccc	gagcccggca	gcaccttccc	cgcaggacac	aagtgccaga	6840
		- -		-		

```
ttgcgggctg gggccacttg gatgagagtg agttgggagg ggggcgccca gcgtccgcca 6900
ggtggacagg tggccagcca cagtgtggtg tcacgctgag ggcattgtgt ccacagacgt 6960
gageggetae tecageteee tgegggagge cetggteece etggtegeeg accaeaagtg 7020
cagcagccct gaggtctacg gcgccgacat cagccccaac atgctctgtg ccggctactt 7080
cgactgcaag teegacgeet gecaggtgag etggtgeeeg ceceaceagg accegactgg 7140
tgggggctca gctggtcctg agtctccgag atgcttgccc ctggggagcc cagagcctgg 7200
cggcacccca acctggcagg gccagccagg gacccctggg cagggagcac acttactgtc 7260
ggtggccagg cacccaggg ccacccagag ccctgccgga agggcatcct cctcacacag 7320
aaggggagac ccaggctctg agagggcct ggggtcccac agagcccgga cagttcctgg 7380
ctgtccagcc caaggcagtg ctttccgtgt gacactaggc accaaaggcc cctttgcccc 7440
gagttetete aageeagete tteaacette aataagttet teaacettea ataageecaa 7500
cageecaace aegteetggg etetgeagee tgtgtgetea gegeaegeae etgeatgega 7560
cggctctctt atgccccatt tatagctggg gagactgagc cccaggcagt caattcactc 7620
ttccaaggcc acaaagccca ggagtggtag agtgggtagg gcttgtcact ggacctcgat 7680
aagggaagtc aggatggttt cctggaggag ggagtgtttg cactggtcct gagtgatgcg 7740
taggagtttt ccagggagtg aagaagtcat ttcaggaggt gctgggacac agggtggctg 7800
tgtggtccac acagggttca tgctggtggg gagaggggga ccgtggcttc aggaagggga 7860
ataacgtggt tggatgccct ggcccagcca gtgctgcccc cagggaatga gacacctttt 7920
catgaggttc aggagagtgg atcagctccc ttgctcagaa atgcctttgt cctctgtccc 7980
caagctgcca cttggggtag aggggtgtcc ctgaaccagg cccctgggag ggtggctctg 8040
accaacgtct ctgcccaggg ggactcaggg gggcccctgg cctgcgagaa gaacggcgtg 8100
gcttacctct acggcatcat cagctggggt gacggctgcg ggcggctcca caagccgggg 8160
gtctacaccc gcgtggccaa ctatgtggac tggatcaacg accggatacg gcctcccagg 8220
cggcttgtgg ctccctcctg accctccagc gggacaccct ggttcccacc attccctgcc 8280
ttgctgacaa taaagatatt tccaagaacc cggcccacgc tg
                                                                  8322
<210> 34
<211> 2576
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. L04751
<400> 34
gaattccgca gagatccagc aggtgctgca ccatgagtgt ctctgtgctg agccccagca 60
gacteetggg tgatgtetet ggaateetee aageggeete cetgeteatt etgettetge 120
tgctgatcaa ggcagttcag ctctacctgc acaggcagtg gctgctcaaa gccctccagc 180
agttcccgtg ccctccctcc cactggctct tcgggcacat ccaggagctc caacaggacc 240
aggagetaca aeggatteag aaatgggtgg agacatteee aagtgeetgt ceteattgge 300
tatggggagg caaagttcgt gtccagctct atgaccctga ctatatgaag gtgattctgg 360
ggagatcaga cccgaaatcc catggttcct acagattcct ggctccatgg attgggtacg 420
gettgeteet gttgaatggg cagacatggt tecageateg acggatgetg accecageet 480
tecaetatga cateetgaag ceetatgtgg ggeteatgge agaetetgta egagtgatge 540
tggacaaatg ggaagagete ettggecagg atteceetet ggaggtettt cageacgtet 600
ccttgatgac cctggacacc atcatgaagt gtgccttcag ccatcagggc agcatccagg 660
tggacaggaa ttctcagtcc tacatacagg ccattagtga cctgaacaac ctggttttt 720
eccgtgtgag gaatgeettt caccagaatg acaccateta cageetgace tetgetggee 780
getggacaca cegegeetge cagetggeee atcagcacac agaccaagtg atccaactga 840
ggaaggctca actacagaag gagggggagc tggagaagat caagaggaag aggcatttgg 900
attttetgga tateeteete ttggeeaaaa tggagaatgg gageatettg teagaeaagg 960
acctccgtgc tgaggtggac acgttcatgt ttgagggcca cgacaccaca gccagtggga 1020
tetectggat cetetatget etggecacae acceeaagea teaggagagg tgeegggagg 1080
agatecaeag ceteetgggt gatggageet ceateacetg gaaceacetg gaceagatge 1140
cctacaccac catgtgcatt aaggaggcac tgaggctcta cccaccggtg ccaggcattg 1200
gcagagaget cagcactece gtcacettee etgatgggeg etecttgece aaaggtatea 1260
tggtcctcct ctccatttat ggccttcacc acaacccaaa agtgtggccc aacccagagg 1320
tgtttgaccc tttccgtttt gcaccgggtt ctgctcaaca cagccacgct ttcctgccct 1380
tctcaggagg atcaaggaac tgcattggga aacaatttgc catgaacgag ctgaaggtgg 1440
ecacggccct gaccctgctc cgctttgagc tgctgcctga tcccaccagg atccccatcc 1500
ccattgcacg acttgtgttg aaatccaaaa atggaatcca cctgcgtctc aggaggctcc 1560
```

```
ctaaccettg tgaagacaag gaccagettt gagggeetee acctgeeqte etqtetteet 1620
gacceccgct tetgteecct teetgtetge ceatateetg ttttetgtet geecacette 1680
cettettece acetgeetge tgtececcag tetgeetgee ettetetet teacetttet 1740
ccaggetece tacetgettg tetacetgte tectacecae etgtatetet tgttgggaga 1800
aaagctgagt gttgggagaa gctgaggccg agcttgcatg tctgacataa tgtaaaaqaq 1860
tottgaatca tgtccaggat ccagggtcta aaaccccttg tggcctttgg aacaccaagc 1920
tctgtgctga agggtggaag gctaccctga cgcaccataa tctaagcccg gggcataaaa 1980
cccctcgtgg cttggataga atccagggct cgtggctctg gaatgtgtct ggacttgctg 2040
gctccttgct ccttgctctc ccaggatcaa ttgtatcttg agttaaaaga acctgctctc 2100
cattatetea agtaacagag cagatgetaa accgteacag etgtaaattg tgtgettaat 2160
gcaacatgcc ctttcgaccc acccccatt ctcaccacct gtttctttgt ttgatcacca 2220
ataaataatc tgcacttcca gagetegggg cetteacage etceateett agettttggeg 2280
ccctggaccc actttctctc tcaaactgtc ttttctcact gctttgactc tgccggactt 2340
tgtcaccccc acgacctggt gttgggtctg aacaccccaa catccctgaa tctccaccca 2400
cctcccaaac tcctgcctgc cctccagact gtctgcccat acacctgtct ccttcttcct 2460
gcctggcttg tctgttccta tattagtttc ctattactgc tgtaataaac tatcacaatc 2520
<210> 35
<211> 1719
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. L27050
<400> 35
caaacacata caggaagcga tcaaacctac caaggcagtc tcacttctca atgactggac 60
tgtgtgggta ctctgctcca gacatgcgtg gcctcagact catcatgata ccagttgagc 120
tgctactttg ctacctcctg ctgcaccctg tggatgccac ttcatatgga aagcaqacaa 180
atgtettgat geactitece ttgteettgg aateceagae accetectea gacceettgt 240
cctgccaatt tctgcaccca aagtcactgc ctggtttcag ccacatggcc cctctaccca 300
agttettggt aageetgget etaaggaatg eeetggagga agetggttgt eaggetgatg 360
tttgggctct acagctacag ctctaccgcc agggtggtgt gaatgctaca caggtcctca 420
tccagcatct tcgagggctc cagaaaggca gaagcacaga gaggaacgtg tcagtggaag 480
ccctggcctc tgctctgcag ctgttagcca gggagcagca aagcacagga agggtcgggc 540
gctccctccc gacagaggac tgtgagaatg agaaggagca agctgtgcac aatgtagtcc 600
agetgetgee aggagtggga acettetaca acetgggeae agetttgtat tatgetacte 660
aaaactgcct gggcaaggcc agggaacgag gccgagatgg ggccatagat ctgggatatg 720
acettetgat gaccatgget gggatgteag gggggeetat gggtetageg ateagtgetg 780
cacttaaacc tgcattaagg tctggggttc agcagttgat ccagtattac caagatcaga 840
aagacgcaaa catctctcag ccggagacca ccaaggaggg tttgagggcc atctcagatg 900
tgagtgactt ggaagaaaca actactctgg cttctttcat atcagaagta gtaaqttcag 960
etcectactg ggggtgggcc ataatcaaga gctatgactt agatectggg gctgggagte 1020
ttgagatata aaagaatgtg gtaaccacag aattaataac tgtctaccct gacaagctat 1080
atacatgtct tcaaaatttt aatctgattt atccaggagg aaggctgtac agtaaaacgt 1140
aagaacgtaa atgtttgggt gttgaagtca cagggtttgg tttcgaatct aggctccact 1200
tgttagagcc tcggtgatca ctgaatagta acttctttct tgaactaaga tcagttttga 1260
agtttctaaa ggagatagaa tgattttaac ctcaatgagt tgccctgtaa atttaaaatg 1320
atacaatgaa totaaaatgo ttatcacagt actttcaata aatagotatt agocaggtgo 1380
ggtggctcac gcctgtaatc ccagcactgt gagaggctga ggcgggatga tcacctgagg 1440
tcaggagttc aagatcagcc tgcgcaacat ggcgaaaccc cgtctctaca ataaatagca 1500
aaaaattatc ctggcggagt tatgcacgct tgtagtccca actacctggg aggctgaggc 1560
gggagaatca cctgagcctg ggaggctgag gcgggagaat cacctgagcc tgggaggtcg 1620
aggetgeage gageegagat egegeegetg catteeagee tgggtgacag agegagacea 1680
tgtctcaaaa aataaaaata aaaaaaaatt qttttcatt
<210> 36
<211> 1337
<212> DNA
<213> Homo sapiens
```

```
<220>
<223> Genbank Accession No. U37100
<400> 36
caaaaacagc aacagaaagc aggacgtgag acttctacct gctcactcag aatcatttct 60
gcaccaacca tggccacgtt tgtggagctc agtaccaaag ccaagatgcc cattgtgggc 120
ctgggcactt ggaagtctcc tctcggcaaa gtgaaagaag cagtgaaggt ggccattgat 180
gcaggatatc ggcacattga ctgtgcctat gtctatcaga atgaacatga agtgggggaa 240
gccatccaag agaagatcca agagaaggct gtgaagcggg aggacctgtt catcgtcagc 300
aagttgtggc ccactttctt tgagagaccc cttgtgagga aagcctttga gaagaccctc 360
aaggacctga agctgagcta tctggacgtc tatcttattc actggccaca gggattcaag 420
tetggggatg acetttteec caaagatgat aaaggtaatg ceateggtgg aaaageaacg 480
ttcttggatg cctgggaggc catggaggag ctggtggatg aggggctggt gaaagccctt 540
ggggtctcca atttcagcca cttccagatc gagaagctct tgaacaaacc tggactgaaa 600
tataaaccag tgactaacca ggttgagtgt cacccatacc tcacgcagga gaaactgatc 660
cagtactgcc actccaaggg catcaccgtt acggcctaca gcccctggg ctctccggat 720
agacettggg ccaagecaga agaceettee etgetggagg ateccaagat taaggagatt 780
gctgcaaagc acaaaaaaac cgcagcccag gttctgatcc gtttccatat ccagaggaat 840
gtgattgtca tccccaagtc tgtgacacca gcacgcattg ttgagaacat tcaggtcttt 900
gactttaaat tgagtgatga ggagatggca accatactca gcttcaacag aaactggagg 960
geetgtaacg tgttgcaate etetcatttg gaagactate cettegatge agaatattga 1020
ggttgaatct cctggtgaga ttatacagga gattctcttt cttcgctgaa gtgtgactac 1080
ctecactcat gteccatttt agecaagett atttaagate acagtgaact tagteetgtt 1140
atagacgaga atcgaggtgc tgttttagac atttatttct gtatgttcaa ctaggatcag 1200
aatatcacag aaaagcatgg cttgaataag gaaatgacaa ttttttccac ttatctgatc 1260
agaacaaatg tttattaagc atcagaaact ctgccaacac tgaggatgta aagatcaata 1320
aaaaaaataa taatcat
<210> 37
<211> 1517
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U02390
<400> 37
attetttggg gaggeaacta ggatggtgtg geegaeeaeg gatttgeatt geegaggaeg 60
ggaccccagg gcagcgaagc agaatggcca acatgcaggg actggtggaa agactggaac 120
gagetgteag eegeetggag tegetgtetg cagagteeca caggeeceet gggaactgeg 180
gggaagtcaa tggtgtcatt gcaggtgtgg caccctccgt ggaagccttt gacaagctga 240
tggacagtat ggtggccgag tttttaaaga acagtaggat ccttgctggg gacgtggaga 300
eccatgcaga aatggtgcac agtgctttcc aggcccagcg ggctttcett ctgatggcct 360
ctcagtacca acaaccccac gagaatgacg tggccgcact tctgaaaccc atatcggaaa 420
agattcagga aatccaaact ttcagagaga gaaaccgggg gagtaacatg tttaatcatc 480
tttcggccgt cagcgaaagc atccctgccc ttggatggat agctgtgtct cccaaacctg 540
gtccttatgt caaggagatg aatgacgctg ccacctttta cactaacagg gtcttaaagg 600
 actacaaaca cagtgatttg cgtcatgtgg attgggtgaa gtcatatttg aacatttgga 660
gtgaacttca agcatacatc aaggaacacc acaccacggg cctcacatgg agcaaaacag 720
gtcctgtage atccacagta tcagcgtttt ctgtcctctc ctctgggcct ggccttcctc 780
 caccccctcc tectetgeet ectecagge cacctccact tttegagaat gaaggeaaaa 840
 aagaggaatc ttctccttca cgctcagctt tatttgccca acttaaccag ggagaagcaa 900
 ttacaaaagg gctccgccat gtcacagatg accagaagac atacaaaaat cccagcctgc 960
 gggctcaagg agggcaaact caatctccca ccaaaagtca cactccaagt cccacatctc 1020
 ctaaatctta tccttctcaa aaacatgccc cagtgttgga gttggaagga aagaaatgga 1080
 gagtggagta ccaagaggac aggaatgacc ttgtgatttc agagactgag ctgaaacaag 1140
 tggcttacat tttcaaatgc gaaaaatcaa ctattcagat aaaagggaaa gtaaactcca 1200
 ttataattga caactgtaag aaactcggcc tggtgtttga caatgtggtg ggcattgtgg 1260
 aagtgatcaa ctcccaggac attcaaatcc aggtaatggg gagagtgcca acaatttcca 1320
 ttaataagac agaaggttgc cacatatacc tcagtgaaga tgcattagac tgtgagatcg 1380
```

```
tgagcgccaa gtcatctgaa atgaacatac ttatccctca ggatggtgat tatagagaat 1440
ttcccattcc tgaacagttc aagacagcat gggatggatc caagttaatc actgaacctg 1500
                                                                  1517
cagaaattat qqcctaa
<210> 38
<211> 536
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AW006831
<400> 38
tttttctgga attcttttt tttttttt ttttgaggat tttgtgtggc taatgtgttc 60
tagaagcaga gactccaggg agaaccagaa tttatgaagc ctcgtgcaac atggtgcttt 120
ctcaccgagg tcatatgcct ggctgctgct gttccactca gctccatgag ccacgtttgt 180
tattttatgt ttcttctgtg cttttgctca tttccaccca tgtgtttata gacctttttt 240
cagccctttt tctttgttcc tttccctcat ctttttgcct caggtagaat ccatcagttt 300
tecteccet ccaaatgact gtgtacetec agetgeteag gaetttggag gtggggggg 360
ggcctgggga tctacccttc taaaaaactc tccaagtaat tctgatacca ataaagtggg 420
agacetecat ttttgaggee tatttgcaag catgteteee teeettteca tggettttte 480
gtttctcgca tgttccactg ctttgcactg tctagacagg aaacctagga agatgt
<210> 39
<211> 2194
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U90441
ggggaaggaa cactgtaggg gatagctgtc cacggacgct gtctacaaga ccctggagtg 60
agataacgtg cctggtactg tgccctgcat gtgtaagatg cccagttgac cttcgcagca 120
ggagcctgga tcaggcactt cctgcctcag gtattgctgg acagcccaga cacttccctc 180
tgtgaccatg aaactctggg tgtctgcatt gctgatggcc tggtttggtg tcctgagctg 240
tgtgcaggcc gaattettca cetetattgg gcacatgact gacetgattt atgcagagaa 300
agagetggtg cagtetetga aagagtacat cettgtggag gaagecaage tttecaagat 360
taagagetgg gecaacaaaa tggaageett gactageaag teagetgetg atgetgaggg 420
ctacctggct caccctgtga atgcctacaa actggtgaag cggctaaaca cagactggcc 480
tgcgctggag gaccttgtcc tgcaggactc agctgcaggt tttatcgcca acctctctgt 540
gcagcggcag ttcttcccca ctgatgagga cgagatagga gctgccaaag ccctgatgag 600
acttcaggac acatacaggc tggacccagg cacaatttcc agaggggaac ttccaggaac 660
caagtaccag gcaatgctga gtgtggatga ctgctttggg atgggccgct cggcctacaa 720
tgaaggggac tattatcata cggtgttgtg gatggagcag gtgctaaagc agcttgatgc 780
cggggaggag gccaccacaa ccaagtcaca ggtgctggac tacctcagct atgctgtctt 840
ccagttgggt gatctgcacc gtgccctgga gctcacccgc cgcctgctct cccttgaccc 900
aagccacgaa cgagctggag ggaatctgcg gtactttgag cagttattgg aggaagagag 960
agaaaaaacg ttaacaaatc agacagaagc tgagctagca accccagaag gcatctatga 1020
gaggeetgtg gaetacetge etgagaggga tgtttaegag ageetetgte gtggggaggg 1080
tgtcaaactg acaccccgta gacagaagag gcttttctgt aggtaccacc atggcaacag 1140
ggccccacag ctgctcattg cccccttcaa agaggaggac gagtgggaca gcccgcacat 1200
cgtcaggtac tacgatgtca tgtctgatga ggaaatcgag aggatcaagg agatcgcaaa 1260
acctaaactt gcacgagcca ccgttcgtga tcccaagaca ggagtcctca ctgtcgccag 1320
ctaccgggtt tccaaaagct cctggctaga ggaagatgat gaccctgttg tggcccgagt 1380
aaatcgtcgg atgcagcata tcacagggtt aacagtaaag actgcagaat tgttacaggt 1440
tgcaaattat ggagtgggag gacagtatga accgcacttc gacttctcta ggaatgatga 1500
gcgagatact ttcaagcatt tagggacggg gaatcgtgtg gctactttct taaactacat 1560
gagtgatgta gaagctggtg gtgccaccgt cttccctgat ctgggggctg caatttggcc 1620
 taagaagggt acagctgtgt totggtacaa cotottgcgg agcggggaag gtgactaccg 1680
 aacaagacat gctgcctgcc ctgtgcttgt gggctgcaag tgggtctcca ataagtggtt 1740
```

34

1

```
ccatgaacga ggacaggagt tcttgagacc ttgtggatca acagaagttg actgacatcc 1800
 ttttctgtcc ttccccttcc tggtccttca gcccatgtca acgtgacaga cacctttgta 1860
 tgttccttgt atgttcctat caggctgatt tttggagaaa tgaatgtttg tctggagcag 1920
 agggagacca tactagggcg actcctgtgt gactgaagtc ccagcccttc cattcagcct 1980
 gtgccatccc tggccccaag gctaggatca aagtggctgc agcagagtta gctgtctagc 2040
 gcctagcaag gtgcctttgt acctcaggtg ttttaggtgt gagatgtttc agtgaaccaa 2100
 agttctgata ccttgtttac atgtttgttt ttatggcatt tctatctatt gtggctttac 2160
 caaaaaataa aatgtcccta ccagaagcct taaa
 <210> 40
 <211> 1324
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. D43642
 <400> 40
 ctggtgaggg gctgcaggtg gcggcgcagt ctcggtaggc ggtatgagtt tggctggggg 60
 ccgggcaccc cggaagaccg ctgggaaccg gctttctggg cttttggagg cagaggagga 120
 agatgagttc taccagacga cttatggggg tttcacagag gaatccggag atgatgagta 180
 tcaaggggac cagtcagaca cagaggacga agtggactct gactttgaca ttgatgaagg 240
ggatgaacca tccagtgatg gagaagcaga agagccaaga aggaagcgcc gagtagtcac 300
 caaggeetat aaggaacete teaagagett aaggeetega aaggteaaca eeeeggetgg 360
 tageteteag aaggegegag aagagaagge actaetgeea ttagaactae aagatgaegg 420
 ctctgacagt cggaagtcta tgcgtcagtc tacagctgag catacacgac aaacgttcct 480
 tegggtacag gagaggcagg gccagtcaag acggcgaaag gggccccact gtgagcggcc 540
 actaacccag gaggaactgc teegggagge caagateaca gaagagetta atttaeggte 600
 actggagaca tatgagcggc tcgaggctga taaaaagaag caggttcata agaagcggaa 660
 gtgcccggg cccataatca cctatcattc agtgacagtg ccacttgttg gggagccagg 720
 ccccaaggaa gagaacgttg acatagaagg acttgatcct gctccctcgg tgtctgcatt 780
 gactecteat getgggactg gaccegteaa ecceectget egetgeteae gtacetteat 840
 cacttttagt gatgatgcaa ctttcgagga atggttcccc caagggcggc ccccaaaagt 900
 ccctgttcgt gaggtctgtc cagtgaccca tcgtccagcc ctataccggg accctgttac 960
 agacataccc tatgccactg ctcgagcctt caagatcatt cgtgaggctt acaagaagta 1020
 cattactgcc catggactgc cgcccactgc ctcagccctg ggccccggcc cgccacctcc 1080
 tgagcccctc cctggctctg ggccccgagc cttgcgccag aaaattgtca ttaaatgaag 1140
 agatgtctag tcctcagaaa cttctttcct gccctgattg gggctcttgc tgttccgttt 1200
  cttctccctg cttctcccct ttgtcatctc tgatctttgc ctaatctgtt tctttttcct 1260
  tttcccctag ttcttacagg tttcgttgtg ttttttaatc taataaaata gaaagatccc 1320
                                                                    1324
  tttt
  <210> 41
  <211> 890
  <212> DNA
  <213> Homo sapiens
  <220>
  <223> Genbank Accession No. M91670
  <400> 41
  ggcggaccga agaacgcagg aagggggccg gggggacccg cccccggccg gccgcagcca 60
  tgaactccaa cgtggagaac ctacccccgc acatcatccg cctggtgtac aaggaggtga 120
  cgacactgac cgcagaccca cccgatggca tcaaggtctt tcccaacgag gaggacctca 180
  cegaceteca ggteaceate gagggeeetg aggggaeeee atatgetgga ggtetgttee 240
  gcatgaaact cctgctgggg aaggacttcc ctgcctcccc acccaagggc tacttcctga 300
  ccaagatett ccaecegaae gtgggegeca atggegagat etgegteaae gtgeteaaga 360
  gggactggac ggctgagctg ggcatccgac acgtactgct gaccatcaag tgcctgctga 420
  tecacectaa eccegagtet geacteaacg aggaggeggg cegeetgete ttggagaact 480
  acgaggagta tgcggctcgg gcccgtctgc tcacagagat ccacgggggc gccggcgggc 540
  ccagcggcag ggccgaagcc ggtcgggccc tggccagtgg cactgaagct tcctccaccg 600
```

```
accetgggge cecaggggge cegggaggg ctgagggtee catggeeaag aagcatgetg 660
gcgagcgcga taagaagctg gcggccaaga aaaagacgga caagaagcgg gcgctgcggg 720
cgctgcggcg gctgtagtgg gctctcttcc tccttccacc gtgaccccaa cctctcctgt 780
cccctccctc caactctgtc tctaagttat ttaaattatg gctggggtcg gggagggtac 840
agggggcact gggacctgga tttgtttttc taaataaagt tggaaaagca
<210> 42
<211> 457
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI478190
<220>
<221> unsure
<222> (1)..(457)
\langle 223 \rangle n = a or c or g or t
<400> 42
ttttttttt tttttttt ttttttttt tggggattta tatgactttt attttaatat 60
cattttaata togaatatgt cacaagattt aatgaccaaa ttagtcattt acatttttca 120
aagtatctaa atataaaatt gctaaaaatt caaatacaga tagcaagcta caaatatttc 180
ttttgttttt ggggggggg taggaatgga agacattaaa aaaggacgct cctgttggct 240
gaacaaagat cagaatgaaa gaagaattca tcagcntgac cccttgtgca aagaaataca 300
ctcagcttta agatgctgtt ttagacacat ctcttcctgt acaacaattt aaaaaatgtt 360
tctaatgcag gtcctcagtg aaacacccct ctccctgaaa cgtgagaaac agcagctttc 420
cgcctgcttg aaaaaggagg caggcgctgt aaggaga
<210> 43
<211> 1330
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U51007
 <400> 43
 aattoccaaa tgacctttta tttcatacag agatacaaag gcaactatgt gcagcaacaa 60
tetgatggge agtecaaact ettgggagga agtaaattea tggtaaatgt catgatggeg 120
gtcgggaggg aggaaggtgg caagatggtg ttggaaagca ctatggtgtg tgtggacaac 180
 agtgagtata tgcggaatgg agacttetta cccaccagge tgcaggccca gcaggatget 240
 gtcaacatag tttgtcattc aaagacccgc agcaaccctg agaacaacgt gggccttatc 300
 acactggcta atgactgtga agtgctgacc acactcaccc cagacactgg ccgtatcctg 360
 tocaagctac atactgtcca acccaagggc aagatcacct totgcacggg catccgcgtg 420
 geccatetgg etetgaagea eegacaagge aagaateaca agatgegeat cattgeettt 480
 gtgggaagcc cagtggagga caatgagaag gatctggtga aactggctaa acgcctcaag 540
 aaggagaaag taaatgttga cattatcaat tttggggaag aggaggtgaa cacagaaaag 600
 ctgacagcct ttgtaaacac gttgaatggc aaagatggaa ccggttctca tctggtgaca 660
 gtgcctcctg ggcccagttt ggctgatgct ctcatcagtt ctccgatttt ggctggtgaa 720
 ggtggtgcca tgctgggtct tggtgccagt gactttgaat ttggagtaga tcccagtgct 780
 gatectgage tggcettgge cettegtgta tetatggaag ageageggea geggeaggag 840
 gaggaggccc ggcgggcagc tgcagcttct gctgctgagg ccgggattgc tacgactggg 900
 actgaagact cagacgatgc cctgctgaag atgaccatca gccagcaaga gtttggccgc 960
 actgggcttc ctgacctaag cagtatgact gaggaagagc agattgctta tgccatgcag 1020
 atgtccctgc agggagcaga gtttggccag gcggaatcag cagacattga tgccagctca 1080
 gctatggaca catccgagcc agccaaggag gaggatgatt acgacgtgat gcaggacccc 1140
 gagtteette agagtgteet agagaacete ceaggtgtgg ateceaacaa tgaageeatt 1200
 cgaaatgcta tgggctccct ggcctcccag gccaccaagg acggcaagaa ggacaagaag 1260
 gaggaagaca agaagtgaga ctggagggaa agggtagctg agtctgctta gggactgcat 1320
                                                                    1330
 gggggaattc
```

```
<210> 44
<211> 776
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI953020
<220>
<221> unsure
<222> (1)..(776)
<223> n = a or c or g or t
<400> 44
geggeegeea tetegeegte gteeegeggg gtgeeegggg egttgeteag geeggeeaeg 60
gegeeggggg aactettegg caaccegtee atgtegeeeg ageceággga teegtteacg 120
tggtgagget ccategeget catggeggec atggggecet cegggecagg gccgageggg 180
aaattagece tgeeggegee etgeeegatg gggtteatga tagtgtacat gttttegetg 240
gagttggtgg aatctccagg gctaggcatg atgggtgttc caggggggccc acctcctcct 300
gggggtccgg tgtagctgcc gggggatgag gaggagtagg ggatcgagtt tccactgggg 360
ctggcccacg ggccacgaac tcctgggccc atgttcatgg caggcaggcc tgggccggcg 420
agggagttgg gtgggggtcg catgccacct ccatagctct ggggccccac gctggccatg 480
ccacgaggag gcgtcaccct ctgcattgng ccgcccatgc tcggatgccc ctgggctcgt 540
ggggagget ccatggcgcc agggaggagg ggctggggag ccaggaggcc tgcgggaggc 600
tgacnntcgc atccgcaggg tggccgnang cccnctgnga agcgcggtga catgaagggg 660
ctgggagage cangeegeat ggageetgen gneattgtgt caeetgggge catacteene 720
ataaccgggg ctgnggcggc tgcagcacta tagtnctgga aggncntggn ctcngc
<210> 45
<211> 476
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI971969
<400> 45
tttttttttt gagctgactc tgtcccttta atgcccaggc tgagcccagt gcctccttga 60
gtatctgctc catcactggc gacgccacag gtaggtgtga atggagtagc caggtgagat 120
tgtctccagg aagcccacag caggatcctt gatggtaaga ggcacatcct tagaggagcg 180
gtttagcacg accacaacag cagagccatc gggatgcatc agtgccactg cgtccaggtc 240
gttcttctga ctggcaacca gccccactct ctgggagccc tcaggaatga acttgctgaa 300
gtggccaagg tggtagaaca tgggctgttt gtaaaacgtg tccttggtga tgtctacaat 360
gatgggactg tcgacaaagt tacgcaccca attgggtcct ccttcggggt tcagggcaag 420
gttccagtcg gtccagccga ccacatggta caggaggttt gttgatgaat gctgtg
 <210> 46
 <211> 2745
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AF046889
 <400> 46
 acaatecteg cettgtetgt ggegeeggea tetggagett tetgtageet eeggataege 60
 cttttttca gggcgtagcc cctagccaag ctgctccccg cggcggccgc acagcagccc 120
 gagegeecce tttecagage teceeteegg agetgggate caggegegta geggagatee 180
 caggatectg ggtgetgttt gggeeegete eccaccatga ceteeteggg geetggaeee 240
 eggtteetge tgetgetgee getgetgetg ecceetgegg ceteageete egaceggeee 300
```

```
cggggccgag acccggtcaa cccagagaag ctgctggtga tcactgtggc cacagctgaa 360
accgagggt acctgcgttt cctgcgctct gcggagttct tcaactacac tgtgcggacc 420
ctgggcctgg gagaggagtg gcgagggggt gatgtggctc gaacagttgg tggaggacag 480
aaggtccggt ggttaaagaa ggaaatggag aaatacgctg accgggagga tatgatcatc 540
atgtttgtgg atagctacga cgtgattctg gccggcagcc ccacagagct gctgaagaag 600
ttegtecaga gtggcageeg cetgetette tetgcagaga gettetgetg geeegagtgg 660
gggctggcgg agcagtaccc tgaggtgggc acggggaagc gcttcctcaa ttctggtgga 720
ttcatcggtt ttgccaccac catccaccaa atcgtgcgcc agtggaagta caaggatgat 780
gacgacgacc agetgtteta cacacggete tacetggace caggactgag ggagaaacte 840
agocttaato tggatoataa gtotoggato tttoagaaco toaacggggo tttagatgaa 900
gtggttttaa agtttgatcg gaaccgtgtg cgtatccgga acgtggccta cgacacgctc 960
cccattgtgg tccatggaaa cggtcccact aagctgcagc tcaactacct gggaaactac 1020
gtccccaatg gctggactcc tgagggaggc tgtggcttct gcaaccagga ccggaggaca 1080
ctcccggggg ggcagcctcc ccccgggtg tttctggccg tgtttgtgga acagcctact 1140
cegtttctgc cccgcttcct gcagcggctg ctactcctgg actatccccc cgacagggtc 1200
accettttee tgcacaacaa cgaggtette catgaaccec acategetga etectggeeg 1260
cagetecagg accaettete agetgtgaag etegtgggge eggaggagge tetgagecea 1320
ggcgaggcca gggacatggc catggacctg tgtcggcagg accccgagtg tgagttctac 1380
ttcagcctgg acgccgacgc tgtcctcacc aacctgcaga ccctgcgtat cctcattgag 1440
gagaacagga aggtgatcgc ccccatgctg tcccgccacg gcaagctgtg gtccaacttc 1500
tggggegece tgageeega tgagtactae geeegeteeg aggaetaegt ggagetggtg 1560
cageggaage gagtgggtgt gtggaatgta ccatacatet cecaggeeta tgtgateegg 1620
ggtgataccc tgcggatgga gctgcccag agggatgtgt tctcgggcag tgacacagac 1680
ccggacatgg ccttctgtaa gagctttcga gacaagggca tcttcctcca tctgagcaat 1740
cagcatgaat ttggccggct cctggccact tccagatacg acacggagca cctgcacccc 1800
gacetetgge agatettega caacecegte gactggaagg ageagtacat ceaegagaae 1860
tacagccggg ccctggaagg ggaaggaatc gtggagcagc catgcccgga cgtgtactgg 1920
ttcccactgc tgtcagaaca aatgtgtgat gagctggtgg cagagatgga gcactacggc 1980
cagtggtcag geggceggca tgaggattca aggctggctg gaggctacga gaatgtgccc 2040
accytygaca tccacatgaa gcaggtyggg tacgaggacc agtygctyca gctyctycgg 2100
acgtatgtgg gcccatgac cgagagcctg tttcccggtt accacaccaa ggcgcgggcg 2160
gtgatgaact ttgtggttcg ctaccggcca gacgagcagc cgtctctgcg gccacaccac 2220
gactcatcca cettcaccet caacgttgcc ctcaaccaca agggcctgga ctatgaggga 2280
ggtggctgcc gcttcctgcg ctacgactgt gtgatctcct ccccgaggaa gggctgggca 2340
ctectgeace ceggeegeet caeceactae caegaggge tgecaacgae etggggeaca 2400
cgctacatca tggtgtcctt tgtcgacccc tgacactcaa ccactctgcc aaacctgccc 2460
tgccattgtg cetttttagg gggcctggcc cccgtcctgg gagttggggg atgggtctct 2520
ctgtctcccc acttcctgag ttcatgttcc gcgtgcctga actgaatatg tcaccttgct 2580
 cccaagacac ggccctctca ggaagctccc ggagtccccg cctctctcct ccgcccacag 2640
gggttcgtgg gcacagggct tctggggact ccccgcgtga taaattatta atgttccgca 2700
                                                                   2745
 gtctcactct gaataaagga cagtttgtaa atcttaaaaa aaaaa
 <210> 47
 <211> 524
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AI937030
 <220>
 <221> unsure
 <222> (1)..(524)
 \langle 223 \rangle n = a or c or g or t
 <400> 47
 ggaagggacc actgccttta ttgcctctgt gctggggtcc cagcctgggg ttcagaggcc 60
 tetgggggca ataggtgace etggacecaa attattgeta ettggecagg teacettggg 120
 getteccata etgecetgag aatgggtggg atgagggeat geaaacgata tgeaaatgae 180
 atgcaaacca acccagaggc ctctggcaca tccatgggtg ctggaagagt caaagcctan 240
 tggcctggga gggcgacggg gcacccagct caggcccagc ctcggaggca aggtttgagg 300
```

```
gttggggggt ccctgagcat cagccctgct tctgccgctg gctgaggagg agcagaagcc 360
tggtcccaag acagcaggaa gaaagcagga ccctcgctag gcggccagat ggcctgaggc 420
ccacccagac agggacggga cctgccctgn gtcgctcagc caggcaggga cagcagggac 480
cagaatccag gtctcctgag ccaggcagaa gccaaagtag cttg
<210> 48
<211> 571
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI829890
<220>
<221> unsure
<222> (1)..(571)
\langle 223 \rangle n = a or c or g or t
<400> 48
tttttttaac aggaaaaaat tatttaatag tataacaaaa tgcgaaataa agtacccaag 60
ttacaaaaca taaattoott tggttcatga tcacaccact atttttacct tccacatagc 120
tacagacatc acaccctcaa agtgaagtca aactgtcccc ctcatactga agatgtcatg 180
ccaaaaccat cacatacccc actgttcagt gaaactgttg gcaacttaca tggaacagag 240
ctgtggggta ggaaaaaggg gaaagggttg cgttaaaaaa aatggggaga ctctacacat 300
gcanaacaag ttagtgggag ggagtgctct gctgggtcaa cacgccatga accacacccc 360
tattcgtgct acatgaggct gagtccttgc tacaaccaca cagaaataca gacaatcaag 420
tgaacctgag cacccccagg gataacagaa gaaaaataca gagaagcaga ggagagaaag 480
aatggcagca agaggcagat cacagaatac cagggaacac ctagtccaaa ccctgtttta 540
                                                                   571
cagatgggga aagtgagacc tggagtagtg a
<210> 49
<211> 1204
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D17793
<400> 49
ctctgaggag aagcagcagc aaacatttgc tagtcagaca agtgacaggg aatggattcc 60
aaacagcagt gtgtaaagct aaatgatggc cacttcatgc ctgtattggg atttggcacc 120
tatgcacctc cagaggttcc gagaagtaaa gctttggagg tcacaaaatt agcaatagaa 180
gctgggttcc gccatataga ttctgctcat ttatacaata atgaggagca ggttggactg 240
gccatccgaa gcaagattgc agatggcagt gtgaagagag aagacatatt ctacacttca 300
 aagetttggt ccaettttca tegaccagag ttggteegae cageettgga aaacteaetg 360
 aaaaaagctc aattggacta tgttgacctc tatcttattc attctccaat gtctctaaag 420
 ccaggtgagg aactttcacc aacagatgaa aatggaaaag taatatttga catagtggat 480
 ctctgtacca cctgggaggc catggagaag tgtaaggatg caggattggc caagtccatt 540
 ggggtgtcaa acttcaaccg caggcagctg gagatgatcc tcaacaagcc aggactcaag 600
 tacaagcctg tctgcaacca ggtagaatgt catccgtatt tcaaccggag taaattgcta 660
 gatttctgca agtcgaaaga tattgttctg gttgcctata gtgctctggg atctcaacga 720
 gacaaacgat gggtggaccc gaactccccg gtgctcttgg aggacccagt cctttgtgcc 780
 ttggcaaaaa agcacaagcg aaccccagcc ctgattgccc tgcgctacca gctgcagcgt 840
 ggggttgtgg tcctggccaa gagctacaat gagcagcgca tcagacagaa cgtgcaggtt 900
 tttgagttcc agttgactgc agaggacatg aaagccatag atggcctaga cagaaatctc 960
 cactatttta acagtgatag ttttgctagc caccctaatt atccatattc agatgaatat 1020
 taacatggag agetttgeet gatgtetace agaageeetg tgtgtggatg gtgacgcaga 1080
 ggacgtctct atgccggtga ctggacatat cacctctact taaatccgtc ctgtttagcg 1140
 acttcagtca actacagctg agtccatagg ccagaaagac aataaatttt tatcattttg 1200
                                                                    1204
```

```
<210> 50
<211> 2436
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X62078
<400> 50
aaggeacete tgeegeeaca gaeettgeag ttaaeteege eetgaeeeae eetteeegat 60
geagteeetg atgeaggete eceteetgat egeeetggge ttgetteteg egaceeetge 120
gcaagcccac ctgaaaaagc catcccagct cagtagcttt tcctgggata actgtgatga 180
agggaaggac cctgcggtga tcagaagcct gactctggag cctgacccca tcgtcgttcc 240
tggaaatgtg acceteagtg tegtgggeag caccagtgte eccetgagtt etectetgaa 300
ggtggattta gttttggaga aggaggtggc tggcctctgg atcaagatcc catgcacaga 360
ctacattggc agctgtacct ttgaacactt ctgtgatgtg cttgacatgt taattcctac 420
tggggagccc tgcccagagc ccctgcgtac ctatgggctt ccttgccact gtcccttcaa 480
agaaggaacc tactcactgc ccaagagcga attcgttgtg cctgacctgg agctgcccag 540
ttggctcacc accgggaact accgcataga gagcgtcctg agcagcagtg ggaagcgtct 600
gggctgcatc aagatcgctg cctctctaaa gggcatataa catggcatct gccacagcag 660
aatggagcgg tgtgaggaag gtcccttttc ctctgttttg tgtttgccaa ggccaaactc 720
ccactctctg cccccttta atcccctttc tacagtgagt ccactaccct cactgaaaat 780
cattttgtac cacttacatt ttaggctggg gcaagcagcc ctgacctaag ggagaatgag 840
ttggacagtt cttgatagcc cagggcatct gctgggctga ccacgttact catccccgtt 900
aacattetet etaaagagee tegtteattt eeaaageagt taaggaatgg gaaceagagt 960
gttttaggac ctgaagaatc tttatgactc tctctctttc actcttttt ttttttgtca 1020
ctaagttaaa agcgaagtga gagtattaac gtttttgttc tcctccggcc ccctgttaca 1080
atgaaggggc aaaagtattt gctcttagtc tattcctccc ttaacttctg tgactaattt 1140
ttatttcctt tctagatttg cccaattaat actagggtgc agtgtatcct ggagaggtag 1200
ggtgtgtggg ggaggaatcc cttgggggag atattaggag tgctctgttg tttacaaact 1260
cacggtaccc gcagggccta gcaagagact taaatgactg ataagaaccg tgagaaacat 1320
gttgcttcca ggcttgattt cgatttttcg cttttttttt ttttgagaca gaatctcact 1380
ttgtcaccag gctggagtgc agtggtgcaa tctcacctca ctgcaacctc cgcctcctgg 1440
gttcaagcaa ttctcctgcc tcagcctccc aagtagcttg gactacaggc cctgccacca 1500
cgcccggcta atttgtgtat ttttagtaga gatggggttt caccatgttg gccaggatgg 1560
tetegatete ttgacetegt gatetgteea cettggeett geaaageget ggattacagg 1620
catgagccac tacacccagc cgatttttcc tttttgatta aagatgctat tacaatgtaa 1680
atatttctta cacagaaagt cacagcacat gtgcccattg atacaaggct gctgaggcct 1740
ggtctccagt tggaaatata attaagggtg gcaaggactg gagtcagttg gagagtgcat 1800
agccagtctg tgaagacaac tgccagatac tggcaatact ccagcctggt gacagagtga 1860
gactctgtct caaaaaaaaa gtttcaatgt ttactcctag agaagccaaa aatccagatt 1920
tgtatatgaa atcttaccat tttaaaagat tggcagctaa ttatttttt aaaaagctgt 1980
gcagtgtgat gtgtcccaaa cggactggct catgggtggc cacgtcacaa cctctgatct 2040
cagaccgtgc atgccttgtc ctcttaagac aactcctgtg gcaccgtttc tccctccaca 2100
gggccaaagc catagtgtcc ggtcccaagg acaaggctct tccagtgcta ggagaggtat 2160
gagcagcete teacetgtga getgtgggga teacaagget geetgeetea gtettggagt 2220
cctgttgggt gaatgaggca gatgggaaag agcctcacca gcagctgctt ttggagcagg 2280
ggtccaagga agagaggtg gcctcgacat caaactgcct ggatttttct accaccctgt 2340
tacatcataa caacttctga aacacacac agccctgagt tctgggctca tttgaagcct 2400
ggaatagcaa taaatctttt taacttgcgg acagtt
 <210> 51
 <211> 3590
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. L76191
 <400> 51
 cgcggacccg gccggcccag gcccgcgccc gccgcggccc tgagaggccc cggcaggtcc 60
```

cggcccggcg	~~~~~~	taaccaaaaa	accaaaccca	aaaaaaccca	cageceegg	120
cgcccagcac	ttattataca	acctaccacc	ctagatcata	taccacttct	acaaagtgat	180
ggacgccctg	coccacca	actootocca	atteaceace	ctgatcgtgc	gcgaccagac	240
cgagctgcgg	gagecegeeg	actggtgtta	acacacaaca	agcatcctat	ggccctggat	300
cgagetgegg	aggage	ccaectcat	gcacatecte	acacacctac	agctgctccg	360
taaccycaac	atataacaa	cctaccaccc	teccacceca	cttccatccc	caggcaccac	420
tgegegggae	accaccacag	tecetacace	caccasaacc	gaggcctgga	gcccccggaa	480
tgeeeegagg	tanagataga	cetteetete	cccagctttt	ccaggeteee	agacccattc	540
gregecaree	ctageeeca	ttccaaccc	tacttcccta	tagcetecae	cgccatctcc	600
agggeetgag	totaggeergg	caddece	gageteagtg	tecetectee	agggagcccg	660
agecectict	tttaccaage	ccctctctcta	gagotoagog	ggcacccaca	acttctcgga	720
gangatana	ategggggg	ataactttaa	gtacatatac	cagacaataa	tgaggaacac	780
ggagereaag	atcagagaaga	tgaaggagaa	cactaaccta	gagtggactg	cagtgaagca	840
ggcgtacgct	accaagataa	aggaggggag	caggtttcgt	cacccaaaca	ttgtggactt	900
tagtagetag	tatactcaga	accepta	ctacctaata	tacqqcttcc	tgcccaacgg	960
ctcactaga	gegetetge	actgccagac	ccaggcctgc	ccacctctct	cctggcctca	1020
accactages	atcettetgg	gtacagcccg	ggcaattcag	tttctacatc	aggacagccc	1080
caccetcate	catggagaga	tcaagagttc	caacqtcctt	ctggatgaga	ggctgacacc	1140
cagceteace	gactttggcc	taacccaatt	cagecgettt	geegggteea	gccccagcca	1200
caageeggga	ataacccaaa	cacagacagt	gcggggcacc	ctggcctacc	tgcccgagga	1260
gagcagcacg	acadasadc	taactataaa	cacqqacacc	ttcagctttg	gggtggtagt	1320
gcacaccaag	ttaactaatc	agagggctgt	gaagacgcac	ggtgccagga	ccaagtatct	1380
getagagate	atagaagaa	aggetgagga	ggctggagtg	gctttgagaa	gcacccagag	1440
cacactocaa	acagatetag	ctgcagatgc	ctaggetget	cccatcgcca	tgcagatcta	1500
cacacageaa	ctogacccca	aacccaaacc	ctgcccacct	gagetgggee	tgggcctggg	1560
caagaagaa	tactactacc	tgcaccgccg	ggccaaaagg	aggcctccta	tgacccaggt	1620
gtacgagagg	ctagagaagc	tgcaggcagt	ggtggcgggg	gtgcccgggc	atttggagge	7000
caccaactac	atccccctt	ccccgcagga	gaactcctac	gtgtccagca	etggeagage	1/40
ccacagtggg	actactccat	ggcagcccct	ggcagcgcca	tcaggagcca	grgeecagge	1900
agragagcag	ctgcagagag	gccccaacca	gcccgtggag	agtgacgaga	geetaggegg	1000
ceteteteet	accetacact	cctggcactt	gactccaagc	tgccctctgg	acceageace	1920
cctcagggag	accaactate	ctcaqqqqqa	cacggcagga	gaatcgagct	gggggagcgg	1900
cccaggatcc	caaccacaa	ccqtqqaagg	actggccctt	ggcagctctg	catcatcgtc	2040
atcagagcca	ccgcagatta	tcatcaacco	tqcccgacag	aagatggtcc	agaagetgge	2100
cctgtacgag	gatggggcc	tggacagcct	gcagctgctg	tegtecaget	cccccagg	2160
ettaggeeta	gaacaggaca	gqcaqqqqc	cgaagaaagt	gatgaattic	agagetgatg	2220
tattcaccta	ggcagatccc	ccaaatccgg	aagtcaaagt	teteatggte	agaagttete	2200
atggtgcacg	agtecteage	actctqccqq	cagtgggggt	gggggcccat	geeegegggg	2340
dadagaagga	aataacccta	ctattctage	r ctctgtgggc	ataggcaggc	agagtggaac	2400
cctgcctcca	taccaacato	: tqqqqqcaag	gaaggctggc	atcatccagt	gaggaggerg	2400
gcgcatgttg	gaaggetget	ggctgcacag	acccgtgagg	r ggaggagagg	ggergergrg	2320
cangggtgtg	gagtagggag	r ctaactcccc	: tgagagccat	. gcagggcgtc	tgeageedag	2500
acctictagea	gcagetettt	: acccatctct	: ttqqacagtg	gccaccctgc	acaatggggc	2040
cdacdaddcc	tagggcctc	: ctacctqctt	: acaatttgga	aaagtgtgg	cgggcgcggc	2/00
aactcacacc	tgtaatccca	gcactttqq	aggccaaggc	: aggaggatcy	Ciggageeca	2/00
gtaggtcaag	accagccagg	g gcaacatgat	: gagaccctgt	ctctgccaaa	aaattttta	2880
aactattago	: ctggcgtggt	. agcgcacgc	tgtggtccca	gergergggg	aggetgaagt	2000
aggaggatca	tttatgcttg	, ggaggtcgag	gctgcagtga	gtcatgattg	tatgactgca	3000
ctccagcctg	ggtgacagag	g caagaccctg	tttcaaaaag	aaaaaccccc	ggaaaagtga	3060
agtatggctg	, taagtctcat	ggttcagtco	tagcaagaag	tottangation	gagateetee	3120
agaaagtcga	gcagcaccca	a cctccaacct	. egggecagtg	ateceteee	: ttactgggga	3180
cctgcgagct	: ggcctaatgt	ggtggcctg	aageeaggee	acecerggge	gccacagacg	3240
agctccgago	caggccagg	treggagge	acaageeeag	adacctactt	aggcactgat	3300
tgtggcagag	gggccacta	ccaaggteta	a golaggooda	ayacctaytt	acccagacag	3360
tgagaagcco	ctggaaggc	a gaaaagttg	g gageatgge	. yacayyyaay	ggaaacattt gtaaccgagt	3420
tcagggaaaa	gacatgtate	acatycctt	ayaaydaayt	. addcttcac	gtaaccgagt	3480
gtcctcttgc	grgrccaaa	a grageeeag	g googlageac	, aggetteate	a gtgattttgt a cgtccaggtt	3540
gttcagccgt	gagtcacact	- totalgecec	. grgaagurg	a aaaddaatt	a cgtccaggtt :	3590
grccrtgagt	aataaaaac	y Latylecce	t aaaaaaaaaa	, aaayyaacc	-	

<211> 3068

<212> DNA <213> Homo sapiens <220> <223> Genbank Accession No. U81802 gaagteeeta teagattaca ettggttgae taeteeggag cagecaetaa gagggatgaa 60 caggeetgeg tggaaattga atgagattag ttgagtecae getecatgag aatgetgaae 120 accatecaaa gcagcaaatt gagatteett gatttgggga agaggtttgg gaggaaceet 180 tcaataattg gcatgggaca agaggggacc cagtccaagt gtatttggga ctcgcagtag 240 ggaggaacaa ttcagagaga gcttggaagc tcgaagtctg gctgtggcca tgggagatac 300 agtagtggag cctgcccct tgaagccaac ttctgagccc acttctggcc caccagggaa 360 taatgggggg tccctgctaa gtgtcatcac ggagggggtc ggggaactat cagtgattga 420 ccctgaggtg gcccagaagg cctgccagga ggtgttggag aaagtcaagc ttttgcatgg 480 aggcgtggca gtctctagca gaggcacccc actggagttg gtcaatgggg atggtgtgga 540 cagtgagatc cgttgcctag atgatccacc tgcccagatc agggaggagg aagatgagat 600 gggggccgct gtggcctcag gcacagccaa aggagcaaga agacggcggc agaacaactc 660 agctaaacag tottggotgo tgaggotgtt tgagtcaaaa ctgtttgaca totccatggo 720 catttcatac ctgtataact ccaaggagcc tggagtacaa gcctacattg gcaaccggct 780 cttctgcttt cgcaacgagg acgtggactt ctatctgccc cagttgctta acatgtacat 840 ccacatggat gaggacgtgg gtgatgccat taagccctac atagtccacc gttgccgcca 900 gagcattaac ttttccctcc agtgtgccct gttggttggg gcctattctt cagacatgca 960 catttccact caacgacact cccgtgggac caagctacgg aagctgatcc tctcagatga 1020 gctaaagcca gctcacagga agagggagct gccctccttg agcccggccc ctgatacagg 1080 getgtetece tecaaaagga etcaceageg etctaagtea gatgeeactg ecageataag 1140 teteageage aacetgaaac gaacagecag caaccetaaa gtggagaatg aggatgagec 1200 tgttcgactg gctcctgaga gagaattcat caagtccctg atggcgatcg gcaagcgggt 1260 ggtcacgctc cccaccaaag agcagaaaac acagaggctg atctcagagc tctccctgct 1320 caaccataag ctccctgccc gagtctggct gtccactgct gggtttgacc accacgtggt 1380 ccgtgtaccc cacacagg ctgttgtcct caactccaag gacaaggctc cctacctgat 1440 ttatgtggaa gtccttgaat gtgaaaactt tgacaccacc agtgtccctg cccggatccc 1500 cgagaaccga attcggagta cgaggtccgt agaaaacttg cccgaatgtg gtattaccca 1560 tgagcagcga gctggcagct tcagcactgt gcccaactat gacaacgatg atgaggcctg 1620 gteggtggat gacataggeg agetgeaagt ggageteece gaagtgeata ceaacagetg 1680 tgacaacatc tcccagttct ctgtggacag catcaccagc caggagagca aggagcctgt 1740 gttcattgca gcaggggaca tccgccggcg cctttcggaa cagctggctc ataccccgac 1800 agcetteaaa egagaceeag aagateette tgeagttget eteaaagage eetggeagga 1860 gaaagtacgg cggatcagag agggctcccc ctacggccat ctccccaatt ggcggctcct 1920 gtcagtcatt gtcaagtgtg gggatgacct tcggcaagag cttctggcct ttcaggtgtt 1980 gaagcaactg cagtccattt gggaacagga gcgagtgccc ctttggatca agccatacaa 2040 gattettgtg attteggetg atagtggeat gattgaacca gtggteaatg etgtgteeat 2100 ccatcaggtg aagaaacagt cacagctctc cttgctcgat tacttcctac aggagcacgg 2160 cagttacacc actgaggcat tcctcagtgc acagcgcaat tttgtgcaaa gttgtgctgg 2220 gtactgcttg gtctgctacc tgctgcaagt caaggacaga cacaatggga atatcctttt 2280 ggacgcagaa ggccacatca tccacatcga cttcggcttc atcctctcca gctcaccccg 2340 aaatctgggc tttgagacgt cagcctttaa gctgaccaca gagtttgtgg atgtgatggg 2400 eggeetggat ggegacatgt teaactacta taagatgetg atgetgeaag ggetgattge 2460 cgctcggaaa cacatggaca aggtggtgca gatcgtggag atcatgcagc aaggttctca 2520 getteettge ttecatgget ccagcaccat tegaaacete aaagagaggt tecacatgag 2580 catgactgag gagcagctgc agctgctggt ggagcagatg gtggatggca gtatgcggtc 2640 tatcaccacc aaactctatg acggcttcca gtacctcacc aacggcatca tgtgacacgc 2700 tectcagece aggagtggtg gggggtecag ggcaccetec etagagggee ettgtttgag 2760 aaaccccaaa ccaggaaacc ccacctaccc aaccatccac ccaagggaaa tggaaggcaa 2820 gaaacacgaa ggatcatgtg gtaactgcga gagcttgctg aggggtggga gagccagctg 2880 tggggtccag acttgttggg gcttccctgc ccctcctggt ctgtgtcagt attaccacca 2940 gactgactcc aggactcact gccctccaga aaacagaggt gacaaatgtg agggacactg 3000 gggcetttet teteettgta ggggtetete agaggttett tecacaggee atcetettat 3060 3068 tccgttct

```
<210> 53
<211> 662
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AW004018
<400> 53
tttttttttc caaacaatta atttataaaa ataacaaaac atttgtctat gaaaaaaaga 60
tcaggattca ctctcatcga cgtcctcatc tggatggggc tcagcatcct ccttttcctg 120
atcttctgga aagatgtaat caaagtattc ttcccagcct gcatcagacc catcatcagt 240
ctggaccttt cttctcttct tgactttctc tggcatgagt ttgtctactc tctccttatc 300
tgaagetgtt ccaaattett etteaaaaet tegecaagat teeageagea taagtetete 360
ttccttttct tcacagtttc gcatggtttt gttagcttct tcataaattt gtctgcattt 420
agtcaaactt ccttctttc ctgaagacaa ctcaaactga gcaaagctga tccatacctt 480
acatgctgcg tccgttgaag caaccgccgg taaaggtttc gtgttctttc tgtttcttcc 540
tgctcaattt caaaatcaat atatgatttc caaagcacct ctggcatgtc taaacgtggc 600
tgactgatgg ctaattcata gattgcccgg gctctgtcaa tatcaccaag gattgtctct 660
aa
<210> 54
<211> 75270
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AF023268
<400> 54
teccagggte cegggttggg ggggtggage ageatttegt egeegegggg gtgeegggae 60
teeggeegea gtgtegeege cateaeggae tteetgtggg acaagegeae gggeetegee 120
gccagaacgg tgagcgcgc ggttggctgg ccgcgcgaaa agatggcgac cgcggggcgg 180
gcggggttag gcttgggttg ggggcaaggg acgggggcga gatttggaga ggaggagagt 240
tgagacctac gaagcgacgg agtagggaga tgagggggaa ggaggtcggc ctgcgttaga 300
tgtaccaaga agacctgtag gaagcttggg cggaaccaga ctagaaggga tgatagagta 360
aggatgggag tggttccaga gatgtgaagg agtggaatat caaagttgga ctcgggtcca 420
atcaaagctg gaggggagga atacatcacc gtgtcacttg gaacatgcag gaagaatttg 480
cctgtaggag ttctggattt tctgagtaag aaaggaaaaa gcaaaagatt tcaaacttga 540
gaaaggtagg ctagtgatgt tttgagggga cagtgctgtg aggccgtttg atggtagtat 600
gtggtgagat ggcatttatg tggctatgct gattaggata actatgctgg gaaaatcttg 660
tgcttgcagc ttggtatgct accggcccca gttacaccaa gaatgcatca aataccaccc 720
tectcaattt ggggaggttg ggaagaagtg tatacagaat ggtggtcaga categgaate 780
attaaacctt ttgcatacgc gattctcata cacccccacc aagacttatg tccctgggcc 840
tgtttcattt tattgtgcct tcctattctc atcttcctgg attgtgacag tgatttttct 900
ctttttcct tgaaggaaaa aaaggatttg tgaaccatcc cattccaatt ccattaactg 960
gaaggtggcc agctgtcagc taagtagggc tgatattaat taaaaaccac ttactggcca 1020 ,
ggcgcggtgg ctcacatctg taatcccagc actttgggag gccaaggcgg gcggatcacc 1080
 tgaggttggg agttcgagac cagcctgacc aacatggaga aaccctgtct ctactaaaaa 1140
 tacaaaatta getgggegtg geggegeatg cetgtaatee eagetacteg ggaggetgag 1200
 gcaggagaat cgcttgaacc ctgcaggcgg aggttatggt gagccgagat tgcgccattg 1260
 gaaacagttg ttatctacgt cttaagcaca agagtggagg ggccagatgg gatgctgact 1380
 gtattttgtg gcctactaca ttaaaacctc tcaagggaga gttggccaaa gatgtgagag 1440
 atgattaagt taattcaagg ggcccgaccc agatccctgg agctgatagt atttggcgtt 1500
tacctggtat atgtagaaac ctgggagact ggattcctac cctcaggaca ctgatagtct 1560
acttgaggag atgagatgta ctcttaatga gtgtacaaca tttatcataa ctgtaaacca 1620
 aagctttact ctattgactt gtgaggaact cagcatcaca cagatctata tcttagatcc 1680
 tgaacgggga tacactgtgg cagtctccat cggtcgtcat acactttgct ctgtagtgaa 1740
 ctgtgtccta gacctgaagg tcttcatgga gctgtgtttg aagaaaataa ggatagaaca 1800
```

cttgaactgg	ctagatacaa	tageteacge	ctgtaatccc	agcactttgg	gaggccgagg	1860
caggaggatc	acqaqtcaqq	agtttgagac	catcctggcc	aacatggtga	aaccccgtct	1920
ctactaaaaa	tataaaaatt	agccaggagt	ggtggtgcgt	gcctgtaatc	ccagctacac	1980
aggaggetga	ggcaggagag	ttgcttgaac	ctgggaagtg	gaggttgcag	tgagccgaga	2040
ttotoccact	gcactccagc	ctggccacac	agcgagactc	tgtctcaaga	ataaaataag	2100
aacacttgaa	ctgaggggtg	ggtaatgagg	gatgggtttg	ggggctttct	agagtttcag	2160
ccagagttag	taggtagcta	tactccaata	aggaggaatt	gtaagtacag	aggaagactg	2220
aggagetag	acctagtasa	aagaggcaga	aataaqaqqq	gaaagcagct	tagcatcttt	2280
aggaagaaca	gtccttggag	gagatttctg	aaaactcqaa	actttcctat	ttccgctttc	2340
cettacette	cadataccac	atcctcgaag	gtaccactcc	tcagagcgag	gcagccgggg	2400
gagttaccgt	gaacactatc	ggagccgaaa	gcataagcga	cgaagaagtc	gctcctggtc	2460
aagtagtagt	gaccggacac	gacggcgtcg	gcgagaggac	agctaccatg	tccgttctcg	2520
aaggtgagge	ctcaggaaga	gatactcaaa	cacagggtca	ctcgctcatt	cctttgttca	2580
acaaatactt	attoottata	toctaaaacc	attgccttaa	gtagctggct	gaaggtaatg	2640
tcgggataga	taaccacaga	agccatttgg	gctgcagtgt	taagtgttag	aatacataat	2700
gaggaactga	ggacgtaccc	agtgcgtttg	gttggagtgg	ggcaggatgt	taattcagat	2760
aaaacattgc	agaaagcaac	atctgtatat	gtctggagga	caagtagagt	caggtggggg	2820
aagtgtcttt	gggcagaggg	aaagcatgtg	caaaggactg	ggagctacag	gtaactaata	2880
agctaacaga	taaqacaaaq	ttagatcttt	gtgtttttaa	ttttttaaaa	attttaaaat	2940
atcatttatt	tatttttqaq	acagagtttc	actctgttgc	ccaggctgga	gtgcagtggc	3000
aagatctcag	ctcactgcaa	actctatggc	cccaggttca	agttgattct	tgtgcctcag	3060
cctcccaaqt	tacctqqqac	tacaggcatg	cgccatcatg	cctggctaat	tttttttt	3120
tttttttqta	tttttagtag	agacaggatt	tcaccatgtt	ggcctcaaac	tcctgacctc	3180
aagtgctcca	cctgccttgg	cctcccaaag	tgctgggatt	acaggcgtga	gccactgtgc	3240
ccggcccagt	tttaatattt	tagtggtatg	ttcagtggaa	agaatgggtt	aaggatggtt	3300
tagagcaagg	ggggatttca	ttcaggaaag	cttgagaaaa	aaatggctct	ttgtttcttt	3360
gtatcactgc	agcgggaaaa	aggccccaat	agggagtggt	tctgcagatg	ccttttcaga	3420
aattttaata	acatggcaga	tatacttagt	taacctcaac	ttcttctggt	cccttggtcc	3480
tetecagtga	ctcaaacaag	totctgagaa	cagtttttct	tagcattcac	tctttgtcct	3540
cactaaqqca	ggaccttgtc	acagggtatg	gtagggaatg	tgatctgaac	agatacacct	3600
cattggtatt	tqttatccaa	cagcagttat	gatgatcgtt	cgtccgaccg	gagggtgtat	3660
gaccggcgat	actgtggcag	ctacagacgc	aacgattata	gccgggatcg	gggagatgcc	3/20
tactatgaca	cagactatcg	gcattcctat	gaatatcagc	gggagaacag	cagttaccgc	3/80
agccagcgca	gcagccggag	gaagcacaga	cggcggagga	ggcgcagccg	gacatttagc	3840
cgctcatctt	cggtgagtgc	cagcccaggc	cetteetete	cccactcttc	tgcaggccct	3900
ctaggactct	ggtaagtgag	cagtatectt	gttctcagct	gaacattggg	gcatgaacac	3960
tgaggtgggc	actgagtttg	cctactttct	tggaagetet	ccgactcttg	aagggccctg	4020
gatctgcttt	. ggagatggat	gggcacggag	catttgtgac	ccccagtgct	ctccctggca	4140
tgttgggctt	. attgtgttgg	gagcagcttc	tccgccccag	cggcctccac	tetttaatgg	4140
ggaccttgct	tgttgaactg	cctttttccc	ccaagccctg	ggctctgtag	attatatage	4200
aggcgggctt	. gggtggggg	aaggggagat	etgtgtetge	ccggaagggc	actguguaga	4320
gcatggggtt	: gtgggtgaca	ttggcaacaa	caccacttct	ctgctctgcc	tatasasasa	4380
cctgttcctg	ttttgggttt	ggggacttgg	garrargege	cgctctctct	tetetecece	4440
atccacctta	ctgcatctga	egtgtteeet	. cccaccgccc	cccatcatcg	ctccaaccc	4500
ctggctgggc	geetgtgaet	ggtgacccci	ccaccaccca	ccccgcctcc	agcacagcag	4560
eggeteegaa	cactgggctt	ggtteggaac	taaaaaccac	ccccgacago ctcatctacc	agededgedg	4620
ccggagagcc	aagagtgtag	aggacgacgc	. cgagggeeac	ctatageetg	taatootccc	4680
etggeracae	gagegalgla	. caayccaaac	. egtaacaacc	tottgccttt	tactcaataa	4740
aragedated	: caacgiceca	t agecaaceeg	ttaagaatta	acctctgttg	tccactccca	4800
tetaagg	. cryggrygri	. cgagccgccg	, cogagaacog	aggggttttc	ttcccctata	4860
geteteacys	tatattaga	. aaaygiggig	tocaccecae	gttgctgtcc	cetttttet	4920
todacotyte	. ctcattccc	accttctctc	cotocctete	cccgaccctg	ctctcttca	4980
tttranstra	aatcottecc	accttagga	aggggacctt	cggccgagtt	gtacaatqtq	5040
ttracratro	a caodtaact	r teadteect	cctactatet	ggggctaaag	agatggttgg	5100
ggttatata	g aactttttt	r ctaattaac	tqaqqtaqaa	tttcttagto	ccctacago	5160
cctattcatt	ttgagagati	cttgagaaco	caqcaaaag	ctctcctgc	aacttacago	5220
agtagaacta	gagttgggg	gaagatcatt	aagaatgta	g agaagtacaa	a ggaagcagct	5280
caacttaac	a teaacotori	agagaaaato	aatqaqaaa	accetgacaa	a caagaagtaa	5340
gcaagcaag	aagtgtgta	qqaqqctqaq	g agececaaco	cctacacggg	g agagatteet	5400
agacctggti	t taggcagaca	a gggggaatc	tagaccttc	catccattca	a tcttttgttc	5460
	٠٠ د - د د	22300	•			

		aataaaaata	aassaaaaa	agaaccata	acattcctta	5520
atcatcttag	agtagtagaa	catcagggta	ggaaaggggg	ggggcccatg	cagoctagaa	5580
atccactccc	cttgttttca	gggaagttag	acceptage	cgtttgaccc	cctcatcgaa	5640
tggcttctgt	agagatatae	cetggacata	beetestase	tgagcatcaa	tttatacaat	5700
caatgaatta	agetttata	agtagaacta	Lgctgataag	gccacagaca	accaacata	5760
aatattttgt	tcacatacat	tcacagtcca	aaaatagaat	aaggacttta	atatcaccac	5820
tgaggccagt	aggtataaat	aggagcccag	eggeagerag	tggtgaatga	tatactottt	5880
ttgggctggg	gtttgggatt	taggatggac	agtttgatga	ttccaggatc	acactgeet	5000
ggagcttggc	actccacage	tcttccagca	aatagttttt	gaactattta	aaatgacgca	5000
ggaagatatt	ttgaaacttg	ggctgggcat	ggtggctcac	gcctgtaatc	ccagcacccc	6060
ggaggccgag	gcgggtggat	cacaatgtca	ggagttcgag	accagcctgg	ccaatatggt	6120
gaaaccccgt	ctgtactaaa	aataaaaaaa	ttagccgggc	atggtggtgg	acaactgtag	6100
tcccagctac	ttggaaggct	gaggcaggag	aatcgcttga	acaggaggca	gagguigeag	0100
tgagccaaga	tcgcgccact	gcactccagc	ctgggtgaca	gagtgagacg	ccatctcaaa	6240
aacaaaaaag	aaaaaaacat	ggcagatagt	accatttctt	tettgggtet	ggtagagget	6300
actccttagc	tgaactgaat	tttggtgtta	gtactagctg	gcatggtttt	acacaagtta	6430
tgtggaatca	acagctatga	agtacctcct	tgttggatgg	ctgatgggca	gatgggaget	6420
catcagacaa	tccccttcc	cccatctctc	ttctcagcct	ctgtgtccag	atgtttgact	6480
ggtttgacta	ccatggccac	atgtgtatct	cctttgagct	tctgggcctt	agcaccttcg	6540
atttcctcaa	agacaacaac	tacctgccct	accccatcca	ccaagtgcgc	cacatggcct	6600
tccagctgtg	ccaggctgtc	aagtgtgagt	ggggtgggcc	gaagtggact	ctggggcagt	6660
ccctcccttc	attggatctc	ttctgtcggt	tgtgcactgg	tgaagcccct	aaacagtcag	6/20
ctotototta	tctgcagttc	tttgatttac	tgtcatcttg	aaacgtcttc	tgacttaact	6/80
ccttgactga	tgtctttatc	gtcactgatt	gctcttactc	tacacctagc	ctagcagcag	6840
ctagaagaga	aagcctttgg	aatcaaagca	cttaattacc	ctcccctttt	CCTTTCTCCC	6900
tttcttggga	aagcatcagt	cagacagcaa	acataaagag	acaaaaatac	actccttagg	6960
gtaaaggett	acatttqtct	gggatgagat	gttcattcac	agcaaaggag	atgggaacac	7020
agagtatgta	gttcagctaa	gaaqcaaqqt	ggggaattca	aagaaatata	tcattcctct	7080
ggagtgatga	aaataataca	gtttcacaga	attgagttaa	cataatgcca	gctagacaca	1140
tatcaaaata	totacacact	acaactcaaa	gcaaactttt	tttttttta	cateaguiga	1200
gctacatatg	tatcttacat	taqaaagagc	agagcttctt	agaccaggca	ttecatttag	1200
acotagaged	gaaagcagcc	ctaqtgattc	tggacctgtc	tecteactgg	etttgeecta	1320
ggtaaccagg	cctggggtca	gctgatacca	gttagctctg	gecaectgea	ccaagcctga	7380
cctggccttc	teceetacaq	tcctccatga	taacaagctg	acacatacag	acctcaagcc	7440
tgaaaatatt	ctatttataa	attcagacta	tgageteace	tacaacctag	agaaggtaag	7500
atggataggg	tetaceetta	qttactqqqq	gcaggcagct	gcaccacttt	geettetgee	1560
gaggggtttg	ttttctccct	tttatttcgt	cctcccacat	tttctccctg	actggctcca	1620
actogotaaa	actaaatagg	r ttqaaaqqqa	. gaaatctctt	aagaagactt	aaattgggag	7000
ataacttqta	caggggactt	. cagataactt	tccagtagag	tgaaagtttt	taaggttett	1/40
aatttaaact	ttatttattt	: atttatttat	ttatttattt	atttatttga	gacagagtet	7800
cactctqttq	cccagactga	tgtgcagtgg	cataatctcg	, gctcactgca	acctctacct	7860
cccaggitta	agtgattctc	ctacctcaac	: ctctggagta	. gctggggtta	caggcacccg	7920
ccaccacgcc	. togctagttt	: ttatatttt	. agtagagatg	, gggttttgcc	atgttggcca	7980
gactagtete	gaacccctaa	ı cctcaqqtqa	tetgeetgte	: tcgggctccc	agaatgetgg	8040
gattacgggt	atgagecaca	i atacctaacc	: cggacttctt	: ttttgagatg	tgtatttttg	9100
traggtagga	aagetegget	: cctttqacta	ı actqqaqata	ı atgaagatct	cagacctaaa	9700
gaagetetee	ctcctttgag	: ccctttqcta	ı catgttacat	: atttttagag	aaactccttt	8220
actacatatt	acatttttc	agaaaaaccc	: atttqctaca	tgttacattt	tttcagaaaa	0200
acceatttq	: tacatottac	: atgttttcac	, aataactata	l tatetggeae	ttgagtgtag	0340
tetteagate	r cttacagato	ı tacacactat	: tctataatca	l tetettaate	cttttgetee	0400
cotactteta	. aaagtattat	: actagatata	, ataqaaqct	, taaaacagga	acticoccayy	0400
cttataaaa	: caggcaggag	ı atcacaqtaq	: cttttttaag	g gctcagaago	aatgtagaga	0520
atactggtgg	r aatctcaqt	: tagatacaa	a qqttcatcci	CEEFFG COLOCIO	Lycecciaga	. 6560
agragatas	acacaatata	aagagcacac	i ctatacgagi	ggtagacttt	ggcagtgcca	. 0040
cotttcacca	tgaggaggai	: agcaccatto	ı tctccactc	, ccattaccga	. gcaccagaag	8/00
testecttee	taagggagg	r caaggetgte	caaqtqtqtq	g agalyalyig	aggguggggu	0/00
anact anacc	· trataacaco	e titicocto	catteteace	cagaguuygu	, cuggucacag	0020
cetteteate	r tatagagtai	t aggetgeato	: atctttqaa	, actatgtggg	, atteacecte	: 0000
ttccaddtaa	atgatgggai	t gtcttactt	actocctoo	attettetat	: cugguuddu	. 0340
tatttcta	- taaggaeet	r cctactcadi	t tctccacati	geolycell	: crygcagerg	9000
a++-aa-	, taccetttt	r adtocoatdo	: tcactttct	T EEECCGELLU	: ccagaccca.	. 3000
gacaacagag	g agcatctag	c catgatgga	a aggatcttg	ggtcctatccc	: ttcccggatg	J 9120
_	1					

atecgaaaga	caaggtgaac	cttgaggggg	cactagttaa	ctcttttcct	tttctctcca	9180
cagaattggt	chatttcaca	tcattttctt	ttttctttga	tacctcctct	cccccagtt	9240
actttcacat	ccccaaataa	gggaattgta	acaaqqqtqa	ccttctgatt	cctcaacctc	9300
contracant	ggggaaacaa	gaaatatttt	taccagaatc	gcctggattg	ggatgagaac	9360
agatagata	gaggatatat	tcataagaac	tgcaaaccgc	tacagataaa	ctgggctcgg	9420
acattagety	ggcgccacgc	cagaagtcac	ttccttctta	agataattac	cccctggaat	9480
gataaatagt	geceacegee	attaggeege	dadddadda	aagctgaaag	aagacatctt	9540
getetteaac	aagccagagg	agaggaaag	attttacaaa	aadaaaaaa	ttagacagcc	9600
tggtcaacag	aggaaacaca	ayayyyaycy	tatactagat	tctttaggtc	agacagaaaa	9660
taaccttgag	acaaccagag	accadaycaa	taatgaggaa	ctaaagaaga	ttcatgaagt	9720
gaataaacta	cccttgaaga	gertacattt	gaaagattat	ccaaagaaga	tgctagaggg	9780
tgacaaggat	atacaagtag	adayaacccc	ttaatactaa	tataatcata	attaggtage	9840
aaggtaggtt	gagetataat	accagaaacg	tetecaagaa	taaaaataa	gttaggtagc	9900
cttcaaattg	gttgcaagca	gageerrage	cetttttcct	accetectec	ggtcttgaag	9960
aaggcagggt	ttgtaaggca	teetgeetea	agtattagat	ctcattcaaa	accageggta	10020
tctgacctca	gaggcagagg	aacaccacca	tanagagatt	cagactgada	gcatgctaga	10080
gtatgaacca	gctaagcggc	tgaccttggg	tgaagecett	gaggatatea	tcttcgcccg	10140
ccttcgggct	gageegeeca	acaagttgtg	ggaetecagt	tatacaatac	gtcggtgacg	10200
atcaggccct	gggcccccct	gcatcttta	tageagragg	catactaget	aggacactgg	10260
tgctttttta	tacaagagaa	cgagccagag	tteactectt	agetateaget	ctctatatac	10320
ctgtgaatat	gtgaaatagt	graaatatga	aagaacttgt	taractacc	tcaacccctg	10380
ccttgtacat	aatactattc	catccacaca	gttteeacce	-caccigitt	cctcatacgg	10440
agttggatgg	gggccgagtg	aggtaaccag	geggeateta	ceceatguic	tataaggaat	10500
tttgtacagt	ctttgtgaaa	taaaataacg	Egetteattt	gacccccatc	cctggagttg	10560
gaggtttggg	aatgctgggg	tggagggatg	aaactattgg	caaactttcc	gagtttgggt	10500
atgaagggag	tcctccttac	cctccaaaat	gaagcacagc	caggetacca	tttatttccc	10620
ctgtccacct	tatcatatgg	gagggtagtg	atgggtgggg	cagcatttet	ttcagattaa	10740
aacagagaag	tgttatgagg	tggcacttct	cggatgtgga	attatgagag	ttgggaagat	10000
rtgactccta	gagtcattag	accacaaccc	agtatagagc	cagaaactca	ggilgaaaac	10000
atactcaacc	taactectaa	agaggattac	caggaccggt	cagaaggete	eegtegteea	10000
tetegggaga	ctaggaaggc	cogattccta	cqcgaggcct	gctgggaagt	gtagttcgtt	10320
agtggaagga	agtcacatgg	aaqaqqqqqq	gtagttggtt	grgggcacrg	ggttagaggt	10300
atcacqtqqq	ggcactttcg	tcttagcttt	tggacaagac	gcaggcgcaa	acceacygee	11040
actacaaaaa	atcettataa	ccctttccqq	tcqqtqqaac	caatccgtgc	aacagagaag	11100
caaaacaaac	taaaacaaat	gaagtggact	ctgagggcta	. ccgctaccgc	cactgotgcg	11100
aceaaaaacat	ggagggaga	agaccacaa	gqccgcagtt	gcaaacatgg	cccagagcag	11220
adacddcdda	aacccattca	ccgagcccag	cgagettgae	aacccctttc	aggigacitg	11200
caccaaticaa	cetetttaa	acaatcaaat	tgattcttcc	: cggttctgta	gggteggget	11240
aacttotato	cccatttqtq	acatttgatc	ctgggaagag	r ccgccacgtg	gggtgacagt	11400
gactccagac	cagtgaggag	tctaaaaaac	gqqccctgcc	: ccttaatggg	erggryeryy	T7#00
cagtattaga	tgatggattt	gaggtaaatg	ttgtcccagt	: cctgggacaa	eggegrygee	11520
ccasagataa	agtacttgga	gccacaggca	gtttgggaat	: ggtccctggg	aaccccccca	11200
gatageacta	gataccaact	gagacccggg	tctctgccct	: caggacccag	Cigigatica	11040
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	accederact	atoccacoco	tgacgtctac	: aacccttttg	agacccggga	11/00
aataaactac	togagagcat	aggagttcaa	qqaaqqqaaq	ggtttgccag	tgagacaagt	11/00
taacttaaat	acaggggact	tttctqcatq	cacaqqaaqq	, aayayycact	. grgareerag	
ttccctgaga	gaggetagte	agccatggga	tqcctcatcc	; ttctagggcc	: accagggcca	. 11000
ccaacccaaa	. taatttaaac	tctaaaaqtc	aqtcctqqqa	a agatetggag	, gergeraagg	77740
cottaaccaa	. Hattetatat	gagaaggett	. tcttqaaqaa	a aataaaggtu	. ggggctggtc	12000
ggagtttagg	r ttaaatatac	aatttaaaaq	, caaqgaatga	a ggaggactac	acceguing	12000
cccactggat	· tagaagatgg	taaattataa	qaatttaagg	ggttttcats	gractiaaaa	12120
c+taaaaaaa	aaagccaagc	ataatataca	ı tacctataaı	ccactegge	, aggctgaggt	. 12100
gggaggatte	r cttgagggga	ggaatttgat	, ggagaccato	ctgggcaaca	gegagaeeee	. 12240
catctcttga	, gacgttttaa	aaattqqcta	i gatatagtgg	g cacatgcci	glagiccing	. 12300
tacttgggag	, actaggatag	aaaqactqct	tqqqcccagg	g agtttgagg	; cccgacgage	. 12300
- dataattaca	- ccactgract	ccagectgge	, taacaaaaa	acaacccca	; acceptation	, 1242V
caggagaaa	gagaaaaaaa	aaacacaqtt	: aaqtqqggag	g atatggtaad	Lyagegacee	. 12400
gagtecteac	r taaggaatto	gatatqaqqq	r atgataagg	c tgctacagg	, caccacagag	, 12340
++ctctgaca	a gaaattcaac	agaagaacta	a getteetaa	c aaalggggg	aaggeegee	. 12000
cottacate:	- taaattataa	ı atctaaaggt	: attcaaqcaq	q actatagat	. cctgtgttat	. 12000
~~aaaaaataa	r stastasats	aggtettte	: ctcaacagc	c accaccago	, cacgageee	. 12/20
cagecceto	cccattocct	ccaccctcac	a ctccctcct	t gcagccctc	g agaaagctca	12780
04900009			-		,	

~~~~~~~~~	acctaagaac	tatooctcat	acagcactica	ggtacaggag	atatacaaat	12840
gccccacaga	gagaagggcc	actoctocco	cccagggctc	acatotoogt	ctoctcacac	12900
tacasasas	tcagctgcag	agccccgggg	taaactacta	aagaaacagg	aggageteaa	12960
cgggcaggcc	gaggagttgg	agecacage	acasasacta	caccatacta	ccctagagag	13020
ceggaaggea	aagtaataga	ataggga	acatataaa	atttaaaaaa	agcaaaaaca	13080
cacagetagt	gcctgggctc	gcggggaaga	gataactaac	acctataatc	ccagcacttt	13140
ggtcttaagg	geergggere	tanagagata	aggaggeteae	geetacaace	ccatcctage	13200
gggaggetga	ggtgggcgga	teaegaggte	acgaggccaa	gaaaccgaga	actagacata	13260
caacatggtg	aaaccctgtg	tetaetaaaa	acacacacac	acaaaaacca	tocattana	13320
gtggcgcgca	cctgtagtcc	cagetacteg	ggaggetgag	gcaygyayaa	cetectgaac	12200
ccgggaggtg	gaggttgcag	tgatccgaaa	taegegeeae	egeaccedag	ctcggcgaca	13300
gaaatgagac	tccatctcaa	aaaaaaaaa	acacaaacct	gggetetgga	gttagattgt	13500
tgagtttgaa	ttttagagat	actgettact	aaccatgage	ctttagggaa	gctacctaat	13560
cttgaatgcc	tcagtttccc	tatttataaa	atgaaaacca	egttigeate	ttagatett	13630
ggttgttgtg	aaggttaaac	aaaatatatg	tgaagtactt	ggcacagtgc	agggaaaatt	13620
taaataataa	taaacagtat	taatttttcc	acteteactt	greceerigg	ttaanaaatt	13740
ggagataaaa	gagaggatcc	agggctgggt	atggtgcctc	acgeetgtaa	cetegacacc	13000
ttgggaggcc	gaggcaggca	ggttgcttga	gttcaggagt	tagagaccaa	cetggacaac	13000
atagtgagat	cctgcctcca	aaacattaat	gaaaaaaatt	ageagggeat	gatgtacctg	13000
tctgtagtcc	tagctcctca	agaagctgag	grggacggcc	aggegeeggg	geteatgeet	13320
gtaatcccag	cactctggga	ggccaaggcg	ggtggatcac	etgaggteag	gagttcagga	13300
ccagccaaca	tggtgaaacc	ctgtctctac	taaaaataca	aaaattaget	gggcgtggtg	14140
gcatgtgccc	ataatcccag	ctactcagga	gactgaggca	ggagaattac	ttgaacccgg	14100
gaggcggaga	ttgcactgag	ccaagatcac	accactgcac	tccaacctgg	gcaacaagag	14100
cgaaactcta	tctcaggaga	aaaaaaaaa	aaaaaaaag	ctgaggtggg	agggttgett	14220
gagcccagga	ggttgaggct	acagtgaacc	atgatcatac	cactaccttc	cagcctgaac	14280
aacagagacc	ctatctcaaa	aaaaaaaaa	aaaaaaaag	agaggatcca	gggatggaga	14340
gaagggggag	tgattccttt	gttggtctct	gttttacttc	tggggtccac	ctgtttttg	14400
gcgccttaca	gctcgacaga	acaattggcc	ccctctacct	tctttttgtc	cagttcagcc	14460
ctgctttttc	caggacatct	ccatggagat	ccccaagaa	tttcagaaga	ctgtatccac	14520
catgtactac	ctctggatgt	gtgagtagtg	agaagccttt	tggaggaagt	tacaggtaga	14580
tctcttaact	gccctggggt	ccgctcacca	agaaccaaac	acttcacctc	tatttagaac	14640
tcaccagcct	gctagcaaat	gttcttgccc	tctccccact	ttttattgtc	catatgcagg	14700
aatatatttt	gaattcttta	gatgtctttg	ggctgggtgc	agtggtatac	gcctgtaatc	14760
ccagcacttt	gggaagctga	ggtgggtgga	taacctgagg	tcagaagttt	gagactagcc	14820
tgatcaacat	ggagaaaccc	catctctact	aaaaatacaa	aattacctgg	gcgtggtggc	14880
acatgcctgt	aatcctagct	actcaggagg	ctgaagcagg	agaatcactt	gaacccggga	14940
agtggaggtt	gcaatgagcc	aagatcatgc	cattgcactc	cagcctgggc	aacaagagca	15000
aaactccatc	tcaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaggc	cgggcacggt	15060
ggctcacacc	tqtaatccca	gcactttggg	aggcccaggt	gggcagaaca	tgaggttagg	15120
agatcaacac	catcctggct	aacacggtga	aaccccgtct	ctactacaaa	tacaaaaaat	15180
tagccgggcg	tggtggcggg	tgcctgtagt	cccagctact	taggaggctg	aggtaggaga	15240
atgagaatga	acccaggagg	cagagettge	aqtqaqccga	gatectgeca	ctgcactcca	15300
gcctgggcga	cagagcgaga	ttccatctca	aaaaaaaaa	aagaaaaaaa	aaaattagct	15360
aggegtggtg	gcgggcgcct	gtagtcccag	ctactctgga	ggctgaggca	ggagaatggc	15420
gtgaaccggg	gaggcggagc	ttgcagtaag	ctgagattgc	gccactgcac	tccagcctgc	15480
gcgacagagc	cagactccgt	ctcaaaaaaa	aaaatgtctt	tgcaagggga	tcacacatta	15540
ttgacatttg	ctttctccat	ctcccctgtt	gaggattcca	tgaaggcagc	agctgccttc	15600
atttccttac	tctgccatgt	ttggtgaata	ttataggatg	agcatagatg	ggaaggagcc	12000
ttcattgcag	tccagaaggg	ctcctcatcc	tgtccctctg	ccccttaggc	agcacgctgg	15720
ctcttctcct	gaacttcctc	geetgeetgg	ccagcttctg	tgtggaaacc	aacaatggcg	15780
caggetttgg	gctttctatc	ctctgggtcc	tccttttcac	tccctgctcc	tttgtctgct	15840
ggtaccgccc	catgtataag	gctttccggt	aagtgtgtta	. gtggtgggag	agtgatggag	15900
acctgggatg	ggccccacgt	ctgcccatcc	ttcagctcta	attcttctcc	caccctcccc	15960
attttttcc	tctttqtagg	agtgacagtt	cattcaattt	: cttcgctttc	ttcttcaatt	16020
tettegacca	ggatgtgctc	tttqtcctcc	aggccattgg	, tatcccaggt	tggggattca	16080
gatttataag	gctgttatcc	accctcacct	ttccctctag	, atccagccag	cactgggtgc	16140
tagataggag	ttattcagaa	aaaggaaatg	tggttttaat	: ccttgggagg	tactagttta	16200
atgagataca	agacatactt	ccaqqataga	gcgcagacag	, cactcttgac	: acatatagat	16260
tgaagggaag	aatqctqcat	ttggccaatc	: taaggtggct	: tcctggagga	. ggcatagaac	16320
catggttgaa	aqqaqqaaqa	agaatcccca	gatgagtgcc	: tggaagagct	: tggagagctc	16380
aggactaato	gttcagaaac	tggaattaaa	ctatgaagag	, attagataca	gtttgggatt	16440
-555						

			aasaasata	ctcatacasa	gggtaggaac	16500
gtggtgcttg	gaatgctgct	cgattgatag	agataagaa	ccgatgggaa	ctggtacatc	16560
aggggatgct	ggtgacataa	ccagcggaga	tactactaca	CCCCCCCCCC	acagcagtat	16620
cttcccttta	cagtggctgg	acecetgete	tagatgata	tactatacta	ggaattgtga	16680
ccgtgctcat	gctgctggtc	geeetgetet	teactggcat	atagtagat	catacataca	16740
tgctgaaacg	ggtgagggct	gtgtcgaagg	character	teaggegagae	agattattet	16800
caggggcgtg	ggtggaacat	ccaggagcaa	ccggcacagg	tatatatact	gggcegeee	16860
cagctaatgg	acctctgggg	tgtgtgtttc	tgtgtgtgag	racataget	gggcagcagg	16920
ctgctgagtg	gtagtgatgc	tgttaggctg	ggggtgggga	accaguggee	ggaacgggcg	16980
gtaatgtctt	tgtcctctac	ttgcagatcc	actecttata	cegeegeaca	gtgccagcc	17040
ttcagaaggc	ccagcaagaa	tttgctgctg	grgrerrere	caaccctgcg	tanagaataa	17100
gagctgccaa	tgcagccgct	ggggctgctg	aaaatgcctt	eegggeeeeg	atazaatata	17160
ctgggatgcc	ctggccctgc	tacttgaggg	agetgaetta	geteeegtee	atactataca	17220
tgggacttgg	agagacatca	ctaactgatg	geteeteegt	agegetecca	accetatgge	17280
catgactgct	gaacctgaca	ggcgtgtggg	gagttcactg	tgaectagte	tagazagat	17340
gccacactgc	tgccacctct	cacacgcccc	aacccagctt	ecctolgolg	agetttagta	17400
gttgcttcgg	ttatttaaat	aaaaagaaag	aggaactgga	accyacaccc	gaggtgggaa	17460
aatcttcatt	gggaattagg	ccttatgaaa	gagaaaggag	agtgtggagt	gaggegggaa	17520
ggtcggaccc	ggctttagtg	taaactggga	gagagatgag	gggeggggeg	geggageeeg	17580
agtggctggc	gcaggaagga	ggtgggaagt	ccacggaaac	gegaaaceeg	gagacgccag	17640
ggagccctgc	tcccaccc	tctccattaa	tgacggggaa	gageeacege	actoracocc	17700
aacgccaagg	aatacgcggg	cctggagcct	gaaaagetgg	atggggetea	agragagget	17760
caaaggatca	ctagcagcct	agccagggtc	cagagcgagg	cagggactgg	aggagegeee	17820
atccgactgc	ctcgccctgc	cgcgggatcc	cccaaccccg	acagggtete	agreecegaac	17880
tacaactccc	ggggtgcacc	gcgccggccc	tegeegeeat	geeeeceece	cccgcaccac	17940
ccccattccc	atccccttc	tctagtcccc	gacctgcggc	ageeggaget	cggggagcgg	19000
agcgtggtgg	ggagggagc	gggacaggcg	acacaggaga	cageggegee	geggeetete	19060
cccaccaggc	ggcccggat	cctactggac	gccctgaggg	cacacegace	tagagettt	19120
agtcacccca	cgccgacccc	tecetette	tctagactta	tttecatect	teeegettet	19120
accctcccca	cccgtccctg	ggctccaggc	cgccgcccc	tecteactee	rggaccggcc	18240
cttctcggtg	ccctcttcc	ctagggagat	gcgatgagcc	ggtgeeeeg	tagggggtag	18300
gtcgccccgg	gcacggtgcc	cgtccagtgc	ccgtggtggg	gagggagcac	atacagagaa	18360
ctccgtgacg	cccctcgctt	ggccccccc	acagetggeg	teeeteggee	acgeeecagg	18420
ggacccagcc	agggggtggg	ctctagagcg	agtggggtgg	agaggagaaa	ggacggggcc	18480
ttgggggcct	ctgagatgct	cccaagtgcc	agggagggcc	gagegaggeg	caggeaaceg	19540
ggcagcaggc	atgatgccct	cgcctagtga	. ctccagccgc	tegetgacea	tacttacact	18600
caccaggggc	cttacccacc	teegeeteea	ccgaccctgg	ctgeaggeee	tagaatatta	18660
ggggctggtc	caagtgctcc	tgggcatcct	ggtggtcacc	ttcagcatgg	tatagatasa	19720
cgtcaccacc	accgagagca	tcaagaggtc	ctgcccgtct	tgggetgggt	deceggigag	18780
ttgggtgcac	agttgttggg	tgggggaggd	tectegggee	ccacceteca	accayecye	18840
aagtccacat	gcttgcctct	cctccctctc	ctggtcctct	geeteettae	agggerggge	18900
gcatcctgtg	gtgaggggct	cactcaggag	recteecetg	ccaggergag	geographe	18960
ctctgtcccc	agctggcgtt	ctccggggtg	gttggcattg	. gccccggaa	geggeeacee	19020
actctagtgg	taggtgccag	ggtccagtgc	: ccactgggag	geaggegeee	agcacgcaag	19080
gggaagccca	tttatgacct	caagaaggga	actggeteec	: cagccggcgc	tcatcaccct	19140
ggcacgaagt	tctgtgaagg	agggggactc	tgtccgtggc	: agaggagtat	. ccatgaggge	19200
cccagccctg	agtetgeace	etgtttteet	cagateteet	. cocceeta	traactoocc	19260
ctctgtgtca	tgcttagcat	ggetggetet	gttetetetet	. graagaarge	. ccaaccggcc	19320
cgagacttcc	aacagtgctc	tetggtgaga	tetgaggagg	gagageegge	ccctccctac	19380
tgggggaggt	gtgcaggaca	cctcagtttg	tgetgaete	t ggetgettet	. ccaaccatat	19440
tccactcago	aaggaaaggt	etgtgtgtg	tgteeetetg	g cocceece	. ecggeceege	19500
ccagagtcgg	ggcaggaact	gaaagttged		ttataacta	tacctacact	19560
gccctcaagg	tgagcttgca	ccctgcaaac	atectecigg	atctcctca	tectetecte	19620
gctggggato	tcacaggccc	acaatgtgtg	gaacctage	traccattt	toccoctata	19680
ctttcccttc	cccagaacct	getetteage	greegeggg	- totocotoos	g cotootoost	19740
atctgtacac	tctctgctat	geetgetge	acceatate	. tadaaaaaaa	a aatatatata	19800
acggtgagaa	gggagcaggg	gccagggca	geaggeaegg	. +++dadcac	: aggggctate	19860
ctgagactt	cctgagggaa	tattacae	ayacceyycu	- automomano	atgagaagg	19920
ggttatctat	tatcctcatc	. caccggagga	a acyyatytt	- ad-222222;	aggatacttt	19980
gagatggcag	ggagtgagtt	. aagtatgtg	t coccocce	, ctatoctoo	g cacqqtqqqt	20040
agagaatgg	actggatggt	. ggggtagagi	c caayaayytt	r ggatgacgt	a addccaddac	20100
cattcctgta	atcccagcac	, crrgagagg	c ccayycayy	. 994004000	,	,

ttaaaaacc	acctggccaa	catggggaaa	ccctatctct	attaaaaata	caaaaatcgg	20160
accaagaccc	gtggctcgtg	cctataatcc	cagcactttg	ggaggctgag	gagggcagat	20220
geegggegea	caggagatcg	agactatect	ggctaacatg	gtgaaacccc	atctctacta	20280
caccigagai	aaattagcca	agactactec	caaacaccta	tagtaccaga	tactcgggag	20340
aacatacaaa	gagaatggca	tanaaataaa	addagaaact	tacaataaac	tgagatagtg	20400
gctgaggcag	gagaatggca	-cgaacccggg	aggeagagee	trassassas	aacaaacgaa	20460
ccactgcact	ccagcctggg	cgacagagca	agactecate	ccaaaaaaca	tacaaateta	20520
atacaaaaat	tagccaagtg	rggrggcggg	tgcctgtaat	atanastana	atactaccac	20580
aggcaggaaa	attgcttgaa	ccggggagtc	agaggetgea	grgagergag	acggraceac	20500
tgcattccag	cctgggcgac	aagagcacag	acteegtete	adadadada	tagaaaaaaa	20700
aaaaaaaata	tatatatata	tatatatata	tatatatata	cacacaaaac	Lacadaact	20700
aggctgggct	ccgtggctca	tgcctgtaat	cccagcactt	tgggaggcca	aggeaggagg	20700
atcaccagat	atcaggagtt	tgacaccagc	ctggccaaca	tggcgaaacc	ctatctctac	20020
taaaaataca	aaaattatcc	gggtgtggtg	gcgggtgcct	gtaatcccag	ctactcggaa	20880
gactgaggct	ggagaatcgc	ttgaacctgg	gaggcagagg	ttgcagtgag	ctgagatgta	20940
gccattgtac	tecageetgg	gcgacaagag	tgaaacttcg	tctcgaaata	ataataataa	21000
taataattag	ctagacatag	ttqcacaccc	ttataattcc	tgctactcag	gaggatgagg	71000
catgggaatt	acttaatett	qqqaqqtqqq	ggttgcagtg	agctgagatc	gegeeaetge	21120
actccagcaa	cagagtcaga	ctctgtctca	aaaaaaaaaa	gaaggtccta	gatggaggtg	21100
aggetaaagg	gtggacattc	ctqtgaagac	acagaatgtg	tggagcttct	ggatggaggt	21240
ggggccataa	agaggaattt	ataggtgggc	agggccagag	gctagaggta	cagggtgacg	21300
gtggggttaa	ggagagctga	ttttgggtga	gggaggggcc	agaataagag	cttctctcag	21360
gagataggg	cagaaaaaat	aatgtagatg	agagaggagt	ttggggccca	ggaggagctg	21420
tattcccaga	atccagactt	actgacctgc	tcqcttcccc	agcagctggc	ccctgagcgg	21480
tcagtctcag	gcccactggg	acctctgggc	tacacatece	cgccccagc	ccctctccta	21540
caageceaag	tggacctgga	ggaatttgtc	ccacctatac	cccaccqcc	ctactatccc	21600
cacaccacge	cctgcagctc	agaaccagat	gcacagaggt	aaggeetggt	agagtettae	21660
ccagagtata	aaggaagggg	aguadagae	gacctgastt	actagagaga	gggatctttg	21720
tgggggaget	attatttctc	acceggggceg	cctcttcctc	atctgccage	atcacotaca	21780
tggagggga	actatttete	ctacactgac	aggatagga	ttaccccct	tettatgagg	21840
atggctccat	ggacagccca	gracectrat	tananagaga	geaccactta	agacagacta	21900
cagtcatggg	actacgagga	gacagecagg	rgagagcaca	gcacggcccg	aggegggeeg	21960
gggagccggg	ttgtagcctg	gaaagetgaa	caggergrag		ttacateaa	22020
cagtggtcaa	ggtctttaca	gcaccagcat	geceaetget	geettegate	cccccagag	22020
cctggtgagg	tgagtgggtt	ggaagctatc	atttctgcca	tacagacgtg	gaageegagg	22140
- ctgcacaatt	aagtgacttg	tacaaaggga	caaggctggt	ctggaatcta	agteteeaga	22140
gctctgtcta	gcacatgggg	gtgttcagtg	tgtagggctg	aacccttgac	cetgtgtett	22200
ctgcaggcca	ctctcttga	ccctcagctt	cacgatggct	cgtgcatctg	tgaacgagtg	22200
geetecatte	tagacggtga	qcaqggcgta	atgaggggtg	_l gacaagggcg	gggetgeeag	22320
ggatagctgc	, aataaataaa	gacaatagaa	ggggaaaaca	ı aggcggagtt	ggcggcttgg	22300
ggacatagga	agactatage	aacttggaac	cctggactta	tttttctcct	ctgagataaa	22440
actagaagaa	a caqtqqcccc	tagaggctgg	gcttgggaga	ı agaggaactg	cctgggcagg	22500
gctaggccag	a accadactad	toctacacag	cgccccctgc	:/cgcccacagt	grecarggae	22360
aggggtete	: taatactatc	agccattggt	gacctccctg	ggggctctag	r cccgtcggag	22620
gactcgtgc	: tactagaaget	acadadetee	gtgcgctccg	, tggactacgt	tetetttege	22680
tecatecage	: acaaccatac	cggctactgc	ctcagcctgg	g actgtggcct	. geggggeeee	22/40
ttcgaggaaa	a accecetace	acqqcqcccc	ccacgggctg	g cccgctccta	tteetgetet	. 22000
gcccctgaac	ctccacccc	actgggtgcc	cccacagctg	g cccgcagcts	, ccaccygrig	22000
aaaaactaa	e caccctaaat	gggaccctgc	ttccccgago	: tgaggcggcg	ggteeeeegg	22920
aasaaaaaa	gcccagccgc	agccccqccc	acccgagccc	cgactcgtcg	g cttcagcgat	22980
ageteaggti	ccctcacccc	accogggcac	caacctcctc	atccggcato	cccaccaccg	23040
ctactacta	c cacggtccca	cagegaeeea	ggcatcacga	a cctccagtga	a cactggtgag	23100
cccctccc	c gactgcccag	geteaggaga	gggtaggcag	tqqqagttag	gtggccagtg	23160
ataccccc.	a ggattggggc	acadttgagg	tagataaga	a ggaagaaag	gtgagttcac	23220
t action action	a gacattctca	ggtactcacc	trrtaggga	agaacatcc	tagettagea	23280
could by the	g gagaattttt	++++++++	. dadacddad	ctctaactct	gtcgccago	23340
gccaaaaaa	g gagaattitt a gtggcatgat	attacatas	, tacasaccat	t tteecaaati	caagtgact	23400
ctggagtgc	a geggeatgat	erregereat	. Lycaaccegi	tacaccaca	tgaccggcta	23460
tereerger	t cageetgeeg	agragerygg	, accadayyu	t ctataecac	gactagaata	23520
atattttt	t tttttttt	tttgagaco	gigicicoget	attendere	- partagrace	23580
cagccgcgc	g atctgggcto	actgcaactc	geeteeeg	g gullacged	dtacadato	23640
ggttcacgc	c atteteette	ctcagcctcc	: cgagtagtga	a grayuryyy	accoratte	23700
ctgccacca	c gcccggctat	tttttgtatt	cttagtagag	acygygric	- casantonto	23760
ccaggatgg	t ctcaatctcc	tgacctcgtg	g atotgecego	e eleggeere	_ caaagegees	23/00

					20222224	22020
					agagacaggt	
					cccgcctcgg	
cctcccaaaa	ggatttattt	tttgaaacca	gttccacagc	tctcagcttg	gtccacttat	23940
ctatectece	caagetteag	ctgtcacttg	ttaacatota	taataatagt	acttcacgcc	24000
					ggtggatcac	
gggcacggcg	gerigeacer	gcaaccccag	caccycygya	agecgaggeg	ggcggaccac	24120
ctaggtcggg	agttcgagac	cagcctggct	aacatggtga	aaccctatct	ctactaaaaa	24120
tacaaaaatt	agccaggtgt	ggtggagcgc	gcctgtaatt	ccagctacta	acgagagagg	24180
ctaaggcagg	agaatcgctt	gaacctggaa	agcaggggtt	gccgtgagcc	aagatcatgc	24240
cactgcactc	caqcctqqqt	qacaqaqaca	cactccatct	caaaaacaca	aacaaacaaa	24300
caaaaaacat	gtataataac	agtacttcag	ccataggcat	totactcgaa	gatgctgaga	24360
aagaagagtg	20000000000	ctattcacac	ctataggene	agractttgg	aggccaaggc	24420
aagaacagcg	gegggeaagg	cegeeeacae	ccacaacccc	ageaeccess	a3320aa330	24480
aggrggarca	eccgaggcea	ggagttcaag	accagectag	ccaacacggc	gaaaccccca	24400
tctctactaa	aaattgaaaa	attagctggg	ccrggrggrg	gacgcctgta	atcccagcta	24540
ctagggaggc	tgaggcagga	gaatcgcttg	aacctgggag	gcggaggttg	cagtgagctg	24600
agatcgtacc	actgcactcc	ggcctgggca	acacagtgag	actccatctc	aaaaaaataa	24660
qaaaqqaqat	agtactgggg	aacqctcaqc	actgtgcgcc	aggtgctgaa	caacaccact	24720
gcagtccttg	ttataataaa	ttgtaccatc	tagttgctgg	ctaatatqqa	cagagatgct	24780
gacattta	ttaaaataa	adcatagaaa	ctgtgaaagc	tectetagae	ttgagttccc	24840
ggccccccga	ccggggacgg	agegegggag	togoguaugo	costatatac	ctttctctct	24900
acaggagggc	gggegtgtee	acagaacacc	cccactcact	tecegeeee	actacttata	24060
tctccccagc	tgacttcagg	gacctttata	ccaaagtgct	tgaggaagaa	gctgcttctg	24700
tttcctctgc	agatacaggt	caggcatgtg	gtttgcgccc	cagggatggg	gattgggcat	25020
ggctgcccag	cccctctcc	accctacaat	accattctct	tatctctgtc	tctctgcagg	25080
gctctgctct	gaagcctgcc	tcttccgcct	agcccgctgc	ccttccccca	agttgctacg	25140
tacccaatca	gccgagaaac	aacaccctat	gcccaccttc	caaaaaqttc	ccctgccctc	25200
agaccataca	cetacceact	ccctaaaaa	cctaaagggc	agetggeeag	gtcggggcct	25260
gggccccgca	ttastasas	totaggggga	20000000000	agaagtaaas	atacaactca	25320
ggtcactcgt	tteetteaga	Lacceaggaa	agecedagae	cccageggga	ctggagctca	25320
tggacataag	caggtaggaa	ttcggggagc	caggaaagat	gtttgggaaa	gcgtggagct	25380
tcagattgag	ccttattgat	gatgcccttt	cttgtgtccc	tgtccaggtg	ccccggagcc	25440
tgtggggccg	gcctggccga	gagagcctcc	accttcgcag	ctgcggagat	ctgagctcta	25500
gctcttccct	gcggcgtctc	ctgtctggcc	gcaggctgga	gcgtggtacc	cgccccaca	25560
geeteageet	caacaaaaac	agccgggaga	ctagactcta	acctaggett	cttgtcacac	25620
tgaagagatg	cadcacada	caccadeted	ttaaaaccaa	cadeceecad	catcctcttg	25680
cgaacacacc	cagecaeagg	accaractat	2+2000000	aagtataaat	ttccctccta	25740
cacuggetgg	Cacaaaaaya	aaccigcigc	acaccccca	aagtgtttt	ttccctccta	25740
cctctggggt	ctcttgctgc	ttgcctctgc	tgetetggte	tgggagaget	tctgtcctgt	25800
gctgcatggg	tatttagact	gtgggggaga	tgccccttct	tatagcactg	gaggaggaaa	25860
acaaattctt	gtccccctca	gaatgagagt	ggctctttct	gatttgcaag	ggcactatgg	25920
tcagggcaaa	ggcatggccc	aggtgtttaa	gtacagggtg	acgtgtgcct	atgcaatggg	25980
gtggtaaggc	aggcacgaag	agtccaaaaa	atctaggtgg	cctctcaqct	ctgccacctc	26040
tanctacata	accttgggca	agctatgtaa	ccccaattgc	ctgctccatt	aaagactgtg	26100
agetgeacy	atttatanaa	atattaacaa	tatataaaaa	ttcaataaat	ttcagttttc	26160
aaggtagaat	guuguaaag	ctcttaacag	catgeauget	attataatat	atatastatt	26220
cccttgttt	cttgatcatt	ctctgtcacc	agegaaactt	getecagege	ctctcatatt	20220
taagaaaact	ctttcaggac	tgggtatggt	ggctcacacc	tataatccta	gcactttggg	26280
aggccgaagc	aagaggatcg	cctgagccta	ggaattcaag	accagcctgg	gcaacatagt	26340
gagaccctgt	ctctacaaaa	aacaaaaaat	tagccaggca	tggtgggaca	cgcctgtagt	26400
cccaactact	caggtggcta	aggtgagagg	atcacttgag	cttgggaagt	ccaggctgca	26460
gtaagctgtg	attgagccac	tgcactacag	cctqqqcaac	agagcaagac	catgtctcaa	26520
32222222	aaaanaaaaa	agaaactttc	aagacactct	ttccaaccac	taattgtaac	26580
tataataata	cttttcacac	gaataggttt	tettttet	ccctccacta	ttaaacatcc	26640
Letgettett	cccccacag	caataggett	sttessetat	stttsssss	ccactgctct	26700
attetetet	cacccacccc	catcagacte	CLLCCCCCAL	CLUCCACAG	-tt	26700
					ctgcctgcat	
ctcacttgac	ctcgaggcag	caattaatac	ccataatcag	catcttcttg	aatttgtccc	26820
tttgaaaagg	gaaatattgg	ctcttctact	ttgtcctgct	gaactgctta	acattggagg	26880
acccagaac	cctcacctaa	gccctctttc	ctacctccac	tctttctata	ggtggcccta	26940
ctactagagt	ccatgggttt	aaataccatc	tttctatqtq	ttaatccato	actccagcct	27000
tracctrore	tgaggggget	ccaactcacc	atatetaett	ggatgtctaa	tgggcatttc	27060
ngattanaa.	tagagagaaa	tassatette	attencence	2245266644	tatttttcca	27120
agactcaaca	-t	Lyadetettg	accededed	atton	stancer-	27100
ctgttcccat	ctcaatggca	ccccattac	ccatttgeac	accodaaaag	ctcaggaacc	2/180
atggtgactt	cttttcccat	atccaacaca	accaatccta	tcctgaattc	atccacatcc	27240
caccacctcc	ccagctacct	agctccagcc	atcctctctc	cacaacctct	gaatcagtct	27300
ttcacttttc	ccagcaatcc	attctccact	cagcaaaatg	atgataaagc	acgtcacatc	27360
aaggetetge	ctcaatttaa	tggcttccca	ttgtatttag	aatcatctcc	aaactcccag	27420
~~_J J -					-	

agactatggt	cgagctacaa	tetggeceae	cttctgttcc	agccaaattt	cctcacagca	27480
caaggacgtt	tgcacctgct	gttttgccaa	gcatgaaacc	cttggcccct	atatctggtg	27540
ctatcaccta	atatcaggtt	ttageteeat	tctcaccatt	tcagtgagca	cccaatcccc	27600
ataccactca	ttctatcaca	tagccatgtt	ttttttatt	tgtttgtttc	attttqtctt	27660
ttttaaaa	aggatettae	tttattaccc	agget ggagt	gcagtggtgt	gatttgggct	27720
anataanaa	ttaaaaataa	taatcaaac	aatteteeta	cctcagcctc	ccgagtagct	27780
cactguace	agaggatag	contracta	ccacctaaat	tttgtatttt	tagaagagat	27840
gggattacag	gegeeegeee	aggeetge	coagetaate	acctcaagta	atccacctac	27900
agggttteae	catgitygee	aggegggeee	tatazataza	accectage	cacataccca	27960
creggreree	caaagtgctg	ggattacagg	cycyacteac	cgcgcctggc	tatataataa	28020
tggtttcagc	atgtateact	atctaaaatt	attactcctg	tttatatatc	taacactcad	28080
catagaaggt	taaggtccca	agattagaaa	tenantage	gcagtgggtc	ctctaaacac	28140
taggtcctca	acaaacattc	gttaagatac	caaaytyyca	gggtggggcc	saccascas	28200
cttcaggagc	ttcaggaccc	tgtgcttgta	ggggcaacgc	ggtgccctcc	ttgaataatt	28260
gggaggrggg	aggagcactg	cccagagacg	gegeeaggee	gcaagacttc	aaacattagg	28320
cagcatcata	acaacccagc	ctcaggaagg	gatagggcac	ggccaggacg	tacctaacct	28380
aggcgatgga	caatgggatt	cccacggggc	agettetgeg	cactggacgt	gagtgagtgt	28440
gaggetetet	aaagaggaag	gttaggaatc	ctctgagett	cggtgggctg	gacccaccgc	28500
gggaattcaa	tegeececat	ccaccaacag	tgtgctggcg	ggaaaacgcc	gacacgcacg	20500
cgtagttctc	gegeeggete	ctctctctct	ctctctct	ctcgctcgct	etetegetet	20500
ctcgctctct	ctcgctcgct	ctctcgctct	cgctctctct	ctctctccgg	ecegecageg	20020
acacttgttc	gttcaacttg	accaatgaga	cttgaggaag	ggctctgagt	ecegeetety	20000
catgagtgac	cgtctcttt	ccaatccagg	teegeeegae	tccccagggc	tgettttete	20/40
gcggctgcgg	tgatcggtcg	ggctgcatcc	tgccttcaga	gtcttactgc	geggggeeee	28800
agtctccagt	cccgcccagg	cgcctttgca	ggctgcggtg	ggatttcgtt	ttgcctccgg	28860
ttaaaactac	tatttctctt	cgccgacggt	aggcgtaatg	aatatttcga	cctttggatc	28920
ttagctgtcc	cctccctqcq	ttcgcactta	acctttttca	ccattattat	tattattgtt	28980
attattatta	ttttttgagg	gagtctcgcc	ctgtcgccca	ggctggagtg	taatggcgcc	29040
ttcttggctc	actgcaacct	ccgcctcccg	ggttcaggcg	attctccgac	ctcagcctcc	29100
caaqtacqtq	ggattacagg	cacccgccac	cacgcacggc	taattttttg	tatettttag	29100
tagagacggg	gtttcaccat	gttggtcagg	ctggtctcca	attcctgacc	tcgtgatccg	29220
cccacctcaa	cctqccaaac	agctgtgatt	ataggcgtga	gccaccgcgc	ccggccaacc	29280
atcattatta	tttttaacqq	taaqqatggt	cagattttac	taatgaagaa	gagattataa	29340
aatcttcaag	tctttatatc	cacttgcttt	ttgaggggtg	gagtgggaag	aaggttatgt	29400
aattcatacq	ttcttcagag	atgtgacaaa	cattcacgga	gccggacgac	gtcgggttgg	29460
attcgcactg	gagetgeaga	tgggtgccag	gatggactgg	tccctaccct	ccgcttgaac	29520
ctaggaggcg	gaggttgcag	tgaaccgaga	tcgtgccact	gcactccagc	ctgggtgaca	29580
gagatactcc	gtctcaaaaa	aaaaaacaaa	acaaaaaaca	agcggactgg	gcgcagtgcc	29640
tcaccctgta	atcccaqcac	tttqcaaagc	caaggcggga	ggatcctttg	agtttaggag	29/00
tttgagacca	acctgcgcaa	cacagtaaga	ccccgtctct	acaaaaaata	cagaaattag	29760
ccaggtgtgg	taatatacac	ctatagtccc	agctattctg	gaggctgagg	tgggaggatt	29820
acttattcta	gaggcagagg	ttgcactgag	ccgaaatcaa	. gctactacac	tccatccagg	29880
gcaacatacg	gagaccetgt	ctcaaacaaa	caaacaaaaa	. attgctcagt	acctggccaa	29940
aaaagaagag	gctcactatq	cagaggggaa	gtggaaggag	atgtttggac	ttctaaactc	30000
aatagagcag	gagaggcaaa	tgtagaatgt	gctcaggaaa	tatctgtgag	atgaatgaac	30060
ttgagggaag	taaggtacta	gatattacct	gecetaceca	gaacaaatcc	tgtgcaatgt	30120
ttccttgaaa	agtgagaagt	ctggaagggg	tggctactga	catagtgaag	caactagttc	30180
aattotadaa	cttgacagct	accetatace	aggetateta	cgaggatact	tagaatgcat	30240
aagacattcc	ttcaaggaac	tccaggaaca	gaggcctgac	atgttgcaat	gtttagtgtc	30300
aagcagtgta	ctagagacac	attatcacac	tcaaacctca	caacaattct	gtgaggtagg	30360
acttatcact	cccttttat	agatgaaaca	gaggettaga	gtgattgatt	tattgaaagt	30420
caaacagcca	gtaaatggtg	tagccaggat	tccaaactto	ctgtctcact	gagactgtac	30480
ttaattacto	. dedddaecdd	atataataa	tcattoctat	aatcccaaca	ccttgggagg	30540
ctaacactac	tagateacet	gagatcado	gttcgagacc	agcctggcca	acatggtgaa	30600
acccatcto	tactasasat	acaaaaatta	gctgagcate	gtggtgggct	cctgtaatco	30660
accounted.	. caecaaaaaa	gcaggggaat	tacttaaacc	gagatcacac	tgcactccaq	30720
ageracica	. Adadaccasa	tetatetee	aaccaaaaaa	aaaaaaatta	ctqqaqqaac	30780
cergggeaac	. agggcaagac	ttttacttac	agtgtatcta	gaaagactto	actgagatca	30840
tttagaagaag	, aaalyallaa	actagaata	, aggradtadr	tcatgcctgt	aatcccagca	30900
cccaaayaac	, aaaaayyacy	agatraceto	. aggtecagae	tttcagacca	gcctggccaa	30960
cucuggata	. ccaayycayc	actaeeeet	, agguetagas	ctgagcatgt	tggagggaa	31020
catagigada	acctacttcc	gaggetgage	r caddadaatt	actogaacco	aggaggtaga	31080
Cigidatece	, agecaceegg	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		55 55 55	_

aattacaata	agccaagate	acgccactgc	actccaqcct	qqqcaacaga	gtgagactct	31140
ggccgcagcg	acaacaacaa	caaaaaatac	aaacaaqaqa	caagtagttc	ccaggtgcct	31200
aggazgtagt	cadcadtac	acttacctca	ctgactgcag	taaccaccct	ttgaggttgt	31260
accaagegge	caggeacege	acaaaaaaa	gggctgagag	ctgggattag	tcaggtcatg	31320
ggeattgete	cacccccag	taaateteat	ttgatgtggt	tcatgaggcc	acaccatgga	31380
actgratege	attatatas	ctgaggatat	ggetttgtac	aacactttgg	tttttgaacg	31440
cagetteete	estacatata	ttatasaas	adaadaacad	ttattaccat	ctgcatctga	31500
actttacaaa	ceteeetgte	cogogaggaa	ggaagaacag	ctccctccct	ccagtcctgt	31560
tgatgaaaca	agggacgctg	cagaggagcc	gcactgacca	tractorcta	ataaccccc	31620
catcccactg	ccagtgteec	acceletige	taattaaaa	cccaccaata	ataacccccc	31680
tcactttttc	ccccgcgaag	ccatcctgga	agettteta	tetttateta	gtccctcctc	31740
atctcagaga	getetecatg	cacaccigii	tatagggggg	agactatat	taaatatctg	31800
tgtgtctgac	ttccatgcct	cacacaccic	Latayyycaa	attatatcac	aaacatcttg	31860
gtagtgtcag	tattttgcac	agtgaagttt	tetecetaa	attactaccag	ctttatttgt	31920
acctttttga	catttctatc	aaaaaagaag	cgtgtctgtt	gtaggtttt	tcctctggga	31980
tttaggagcc	tctaccccat	tetecatgea	aatetgtgtt	tatataaaa	cctaaagttg	32040
tcacccatac	atgccctcca	gagttttata	gggcatataa	testatata	atgagaggaa	32100
gccaattgcc	ctttagaaat	atggctgtga	ttgcctcact	trattageag	tgtgacgctc	32160
ctagtcatca	catgacccat	ccacatcggg	aageeggaat	thoctgoage	gctaacctag	32220
tgcctatagc	taaggcaggt	acctgcatcc	ttgttttgt	ccagiggacc	ctctatcctt	32280
cagagactct	ggaacccctg	tggtcttctc	ttcatctaat	gaccetgagg	ggatggagtt	32340
ttcaagtcct	tccagagagg	taagagagag	agctcccaat	cagcattgic	acagtgcttc	32400
tggaatcctg	gcactggaat	ttaatgaatg	acagactete	tttgaateca	gggccatcat	32460
ggctctttga	gcaaggcaca	gatggaggga	ggggtcgaag	ttgaaatggg	tgggaagagt	32520
ggtggggagc	atcctgattt	ggggtgggca	gagagttgtc	accagaaggg	ttgcagggag	32520
agctgcaccc	aggtttctgt	gggccttgtc	ctaatgaatg	tgggagaccg	ggccatgggc	32500
acccaaaggc	agctaagccc	tgcccaggag	agtagttgag	gggtggagag	gggcttgctt	22700
ttcagtcatt	cctcattctg	tcctcaqqaa	tgtcccaage	ctttgagtag	ggcaagcacc	32/00
atgactaaca	geeteacagg	attocttcta	cttcaggcag	tgtcgtgggc	accaggigag	32700
tgagtcaagg	cagtggggag	gtagcacaga	gcctcccttc	tgcctcatag	tcctttggta	32020
accttccaat	aagetggtgg	tagactttta	gtaggtgctc	aataaatcct	tttgagtgac	32000
traraccaac	tttggggtga	ggattttgtt	ttttttctt	tgaaacagay	Luctations	32340
ttacctagge	tagagtacag	taatacaatt	ttggctcatt	. ccaacctctg	cctcccagat	33000
traarcratt	chattactta	agetteccag	qtaqctqqqa	ı ttacaggcgg	ccaccactac	33000
acceactes	tttttgtatt	tttagtagag	acqqqqtttc	: accatgctgg	caaggcaggu	33120
ctcasactcc	tracctragg	tgatccgccc	acctcqqcct	: cctaaagtgc	taggattata	22700
aatataaacc	- cetacaceca	accaaggggt	gaggaattt	. gaaaccytyt	ccagccccc	33210
ctaggagatg	totocattot	ccatatette	atcagaccto	: actetgetty	Lactocccc	33300
ctcccaggtg	ceeggeeeta	catccctaaa	aqcttcggct	: acageteggi	ggigigigic	33300
tocaatocca	catactotoa	ctcctttqac	cccccgacct	: ttcctgccci	Lygiacette	33420
agregetato	agagtacacg	cagtagacaa	cqqatqqagq	: tgagtatggg	geceatecay	33400
actaatcaca	cgggcacagg	taaccattac	acccctcacc	: ccctgggcca	ggalggglad	22240
tectagaggt	aaatoototo	agtgatcacc	atqqaqttt	: ccgctgggta	Cigalaccci	33600
+attecetat	rastatecte	aggeetgeta	ctgaccctg	aqccagaaca	gaayttccay	22000
agantraago	r gatttggagg	gaccataaca	gatgetgete	g ctctcaacau	. Colligiolity	33/20
+ an according	, cccssssttt	- octacttaaa	tcotacttc	Ctqaaqaagg	Lyayyayyaa	
aaaaaaaaaa	tgacatagag	ccattgaaac	: ttttcqtcti	t Ctttttttt	, LLLLadaall	33040
- +++++aaaaa	· adaatctcac	tetacccatt	ctatcaaca	a qacayyayu	, cageggegeg	33200
ateteceete	· acaddaacct	ctocctccca	gactataqte	atteteety	; Cleagettet	33700
+ dagtagete	r gaattatagg	catacaccac	taccacctq	g ctaatttii	, caccecage	34040
agagagaga	r tttcatcato	ttgaccagg	: taqtcttaa	a ctcctgacci	. Caaacgacac	. 34000
acctacctto	r geeteeegaa	gtactagaat	tacaaqtqt	q agccaccgag	, cewageagae	. 34140
acttttctt	· +++c+++++	htttttaac	acagagtet	c gcactgtca	: ccaggcigge	34200
atacaataa	: acaatctcaq	r ctcactqcaa	e cctccacct	c ccgggttcag	gugaccecc	. 34200
tateteage	r totogagtac	ctgggattac	: addtdcctd	c caccacgcc	ggccaaccc	. 34320
++atatttt	- agtagagaca	gaatttaact	atattaacc	a ggatgattg	; gaactcctg	1 24200
acticataata	r todocadato	: ggcctcccaa	a agtgctggg	a ttacatgcy	, gagecacege	1 24440
ascttttct!	- taccctttct	ttggaccetc	, acttctqcc	c attcctgac	a congression	. 34300
~++ttaatqq	- cctataaaat	aagatttcg	cocctatca	t ctgctaaci	y ccacggacus	24700
acceteaca:	a addectded	· ttcacccado	i taccaacci	c cacayyruu	, aacccaggas	, 51020
	, ottoggeet	· dactcadaca	- chattagga	c toocaayiy	a Laageagaga	24000
cccatactc	t cctattcact	cogactacca	a tatcttgat	c atcettte	t gtaggaatc	34740
5553555			_			

gatataacat	catccgggta	cccatggcca	gctgtgactt	ctccatccgc	acctacacct	34800
atgcagacac	ccctgatgat	ttccaqttqc	acaacttcag	cctcccagag	gaagatacca	24000
adctcaaddt	aggeatteta	actttttcag	gccctgaggg	ccctgatgtc	cgggggttga	34740
gaaactgtag	ggtaggtctg	cttqtacaga	cattttgtcc	cctgctgttt	rgreergggg	34900
ataaaaaaat	ggaggctaat	ggctgaaccg	gatgcactgg	ttgggctagt	atgtgttcca	33040
actctgggtg	cttctctctt	cactaccttt	gtctctagat	acccctgatt	caccgagecc	32100
tacaattaac	ccagcgtccc	gtttcactcc	ttqccagccc	ctggacatca	cccacttggc	32100
tcaagaccaa	tagaacaata	aatqqqaaqq	ggtcactcaa	gggacagccc	ggagacatet	35220
accaccagac	ctgggccaga	tactttqtqa	agtaagggat	cagcaaggat	grgggarcag	35200
gactggcctc	ccatttagcc	atactaatct	gtgtcccaac	cctcaaccta	gttecactte	35340
cagatetgee	tatcctcaac	tcacctttct	accttctggg	cctttcagec	ctgggcctgt	33400
caatcttgcc	cactccatca	aacttcctgt	teteteggte	tggcccactt	Countries	33460
tttcttcttt	tttttttt	taaaaaqaaq	tctctctctc	tgtcacccag	gctggagtgc	35520
tataacacca	tcttcactca	ctotaacctc	tgcctcctga	gttcaagcaa	tteteetgee	35500
teageettee	aagtagctgg	gattataggc	geetgeeace	aggcccagct	gattttttta	33040
tttttagtag	agacggggtt	tcgccaggct	gttctcgaac	tcctgaactc	aagtgateea	35/00
cctacctcaa	cttcccaaag	tactaggatt	acagtgtgag	ccaccacacc	cagctggtct	35/60
ggtccacttt	cttaaccaaa	tcattcatga	cctttctctt	gccaggttcc	Eggatgeeta	33020
tactaaacac	aagttacagt	tctgggcagt	gacagetgaa	aatgagcctt	cegeegggee	33000
attaaataaa	taccccttcc	agtgcctggg	cttcacccct	gaacatcagc	gagacttcat	33340
tacccatasc	ctaggtccta	ccctcqccaa	cagtactcac	cacaatgtcc	geetaeteat	30000
gctggatgac	caacgcttgc	tgctgcccca	ctgggcaaag	gtggtaaggc	ctggacctcc	36060
atootoctcc	agtgaccttc	aaatccagca	tccaaatgac	tggctcccaa	acttagageg	30120
atttctctac	ccaactatgg	attcctagag	caccattccc	ctggacctcc	agggtgccat	20100
ggatcccaca	attatcactt	gaaacctttc	taggggctgg	gcgaggtggc	teacteatge	36240
aaacccagca	ctttgggaag	ccgaggcggg	tgatcacctg	aggtcaggag	tttaagacca	30300
ccctggccaa	catattaaaa	ccctatatct	actaaaatac	aaaaaaaaa	aattatctgg	30300
gcatgatggt	agatatetat	aatcccaqct	actcaggagg	ctgagaaggg	agaatcagtt	36420
gaacccggga	gatggtggtt	gcqqtqaqcc	gagatcgcgc	cactgcactc	cagcctggga	36460
gactgagcga	gactccatct	cqaaacaaaa	caaaacaaaa	ctatctagge	rgggggrggr	20240
ggttcatgta	tatatatata	tatacatata	. tatgtgttta	. tatgtatata	tatatacaca	30000
cacacacata	catacacaca	catacacaca	caaattagct	gggtgtggca	cccgtgtagt	30000
cccagetact	caggaggeta	atataaaaa	atcagttgac	cctaggaagt	caaggetgea	30/20
atazateata	attacaccac	tqtactccag	cccgagtgac	agagtgacat	cctgteteaa	36/60
aaacaaaaaa	aaatctcccc	aaacctctct	agttgcattc	ttcccgtcac	ccaactccag	30040
gattectaca	acaggaacta	qaaqttccag	_i aagcctgtgt	. gcaaggtcca	. ggatcagtty	30300
chetteettt	gcaggtactg	acagacccag	_l aagcagctaa	. atatgttcat	ggcartgerg	30300
tacattggta	cctggacttt	ctggctccag	ccaaagccac	: cctaggggag	acacacegee	3/020
tottccccaa	caccatoctc	tttqcctcaq	aggeetgtgt	: gggctccaag	trergggage	3/000
agagtataco	actaggetee	taggatcgag	qqatgcagta	ı cagccacago	accaccacgg	3/140
taagccaccc	cagteteet	tcctqcaaaq	caqacctcag	g acctettaet	agtttcacca	3/200
aagactgaca	gaagecette	ctatccaact	: ttccccagct	: agcctgccct	tttgagcaac	3/200
tetagagaac	: catgattccc	tatcttccct	: ttccttcaca	ı ggtetgeaca	. eercartgee	3/320
cettttacaa	ctactgagge	acttqcaqct	geeteagaet	: tctcagctcc	ccttgagatg	3/300
cctggatctt	cacaccccca	actccttago	tactaaggaa	tgtgcccct	acagggctga	27500
cctacccaca	gctgcctctc	ccacatgtga	cccttaccta	a cactetetge	ggacececas	37560
tgttgagcct	ttgtctcttt	gcctttgtco	ttaccctaga	a acctcctgta	ceatgiggic	37500
ggctggaccg	actggaacct	tgccctgaac	cccgaaggag	gacccaatto	ggtgcgtaac	. 37620
tttgtcgaca	gtcccatcat	tgtagacato	accaaggaca	a egetteacaa	acayeccacy	37740
ttctaccacc	ttggccactt	caggtgagtg	gagggcggg	acceceatte	cataccagge	37800
ctatcatct	ctacatcgga	tggcttacat	cactctacac	c cacgagggag	g caggaaggug	37860
ttcagggtgg	g aacctcggaa	gaggcacaco	cateceetti	tgeaceatge	aggcaggaag	37000
tgactaggta	gcaacagaaa	acccaatgo	ctgaggctg	accecgate	ayaaaaycag	37000
ggtcagtgc	cagcagcatg	getecagge	tagagagcca	a gygcagagco	, cougoayyay	38040
ttatggggtg	ggtccgtggg	, tgggtgactt	cttagatgag	y ggcttcatgg	gaggtacccc	38100
gagggactc	gaccatctgt	: tcccacatto	agcaagttc	a todocgayge	- destaces	- 38160
gtggggctg	g ttgccagtca	gaagaacga	ctggacgca	y cyycaetyai	, gcaccocyai	38220
ggctctgct	ttgtggtcgt	gctaaaccg	g tgagggcaa	c ggcgaggcci	- gggaagtgg	38280
ctgaagaca	g cgttggggg	cttggcagg	a tcacactct	t agetteteet	tactaceae	38340
tagctcctc	t aaggatgtgc	ctcttacca	caaggatee	t gargagga t cacceatae	t ddaddadat	38400
aatctcacc	t ggctactcca	t tcacacct	a couguages	- ogcoagoga	- Jougeagae	

ctcaaddadd	cactgggctc	ageetgggga	ttaaagggac	agagtcagct	cacacgctgt	38460
ctataactaa	adadddcaca	acadaaccaa	tataaactta	cagcgacgta	agcccagggg	38520
caatggtttg	ggtgactcac	tttcccctct	aggtagtacc	aggggctgga	ggcccctaga	38580
aaaaaatcaa	taagccccag	tatacacaa	acccccatac	ttatgtgaac	atgcgctgtg	38640
tactacttac	tttggaaact	agacctagat	ccaggcctag	ggtgagctca	ctgtccgtac	38700
aaacacaaca	tcaggaatga	gggtaaggaa	aagaagagac	taggaaagct	gggcccaaaa	38760
ctacacaaga	tttatctttc	ctggagatgc	agaactgggc	ccgtggagca	gcagtgtcag	38820
catcaccac	gaageettaa	accaccacca	agtataccca	ggcacccaga	tgattcctat	38880
caccagggcg	aggeeeda	ageageageg	aaggagaaaa	tgtttgagcc	cagtcagtgt	38940
ggcaccagcc	aggaaaaacg	geageeeee	atatecaact	gtaccaacaa	cgaggaggca	39000
gageggeete	tagestaget	gaagaacaa	aaaccagtet	tgggagcgtg	aggacaaatc	39060
attastatta	atestes	accataccca	agatecagat	gcctggggcc	cgagcaggcg	39120
ttagagata	accececa	atacaataa	gggcccggg	gcccaccatg	actaccaatc	39180
atagasasa	gatggagata	tagttgccga	accoatataa	ctcctcctca	atctctagac	39240
atastastat	agacaggacc	agtacteage	cactgagg	tcaaggaagg	aaggtgtgtt	39300
ctgctggtgt	attattaast	cactacacac	teteceagg	gctgcccctc	ccatctccc	39360
ayyayaacca	tagaagggaa	agtagagagt	generator	gtacaatagg	cacagaggtt	39420
cttaceteca	cccagggga	agtagagatt	cccactagg	agctttgcct	acaacaacaa	39480
grgeageeea	cycayycyya	agggatgea	adaddcaddd	ctggagcaga	gagagaaggg	39540
ggecaagtag	ctgaagacga	aggegeeeaa	ggaggcaggg	ggagctggag	gaagagtcag	39600
Lgggalggag	tagaatataa	ggggtagaag	accaccaca	aaggacagga	cacacagtto	39660
ccccgggagg	tgggetetgg	geageaggeg	gccaccaggg	aaccctaaat	agggetetat	39720
tagacctggt	atggggagag	acceccagge	ggcgccagct	ggccctgaat	trectatace	39780
cecagggerg	cataaagggc	acactcageg	atatasassa	cttcaggccc	cacacacac	39840
tggctgccct	cecacectac	betetetete	aggagaag	getetggeee	ctaaaccaac	39900
cccactgtca	ccagggccag	tatetgtete	agggacecce	tatccagage	ccaagccagc	39960
cccagcccca	gccccagctc	cagetgetee	atetgaacet	gtatcttctt	gagggagg	40020
cattaccctc	ttggagtcag	acteaegeat	ciccaaagaa	gaacttttga	gageceagge	40080
gctgagagag	cagggtcaga	cacteeegag	-celeteggta	cagctgtagg	attecteece	40140
gtaggcttgc	agetgeggga	acagtgccac	ecegeaeet	aagcactccc	taattataa	40240
agcatccttg	gggctcatct	catacaatag	ceeeeggeee	cagagetace	tagatatact	40260
getetteete	gtcctcaggc	ctgtgeteee	cagteageag	ctgtagccgt	tataastaa	40330
gccgctgcat	gcggccaggc	aggaagaagt	tgaggggaaa	gggcatagcc	agetggatace	40320
acttccgggt	cacttctacg	tagttettgg	Egectateca	aaaagtatgt	acceggaceg	40440
ggtgggcagg	aagaaacagg	caggtctgag	ccagtgcacc	tgtctgattc	aaggtgggct	40500
tetgaeetee	atgeteteet	gagtetetgt	gragarerar	gtgttcccgt	ecectececy	40560
gctggccatg	gatgctggga	ggtctgggca	cactcaccag	caccgggatc	tastastasa	40630
ccaggagaga	catgaaggcc	agggtgtctg	ccccttgctg	agctgacaga	ccataattag	40640
cattgtactt	ctgtggagga	aatatccatg	gegrggaege	tggggagctg	caagggcact	40000
tcaccaggga	ggaaggagtc	ctgtctggta	CCCCCCCCC	tggcctctga	gcgcagcgga	40740
ggtacagcaa	ggaacttttc	ctgccaaggc	ccccttgcct	gggcccagcc	agtageetgt	40000
tgctgttggc	aaaaagcctg	ggccttggag	cccgctggcc	gtcaaggtcc	tgggcccatt	40000
gagaagaagg	aagaaaggtt	gggccgcaaa	ctaggagcag	ctcccagaat	ttecatggaa	40000
agctggaaca	atgcctgctg	acagcaactt	tctaacagta	actttcccga	eccagacacc	41040
acaaagctag	cacaacggag	ctcagatgca	ggctaggact	cggtccatgc	eccaggaacc	41100
agggaaagcc	atcctcacac	tccctggatc	cagggaaccc	acgcccaggg	ceceecaget	41100
tgttccctca	gtgcccagct	cttggctatt	tettteaett	cattccatcg	cecagacaec	41100
attaccacat	acacattcca	tecatacece	caggtctcag	cctgccctac	cttcccagge	41220
tccagtccct	gttcctcagc	atccccacc	acatcctgag	taagctttgt	ccccagataa	41280
cctcttcago	atgatcctta	aatctcccta	agcctcagtt	tctcccctgt	ggaatggggg	41340
taagaatctc	tttctctgaa	tgcccctgtg	ttaggaaata	atttagaata	cttcggaaac	41400
aaaaagctct	gttcacacct	aagcaatcag	ggcagtggcc	tggccttgcc	aggaacttag	41460
gcttttatct	ggatectett	tccaggcctc	tcaattaatt	cccaggtcc	ttaacctttg	41520
ggaaattaga	aattaggaag	agtgtcccac	ttctgacact	gtgttccctc	ttggaacctg	41580
accgtcaatg	ctagaagaac	ccttggaaaa	catgetggee	: cagccctcta	gttttacaaa	41040
taagggagtg	cacageeetg	agaggttaca	. tggcctgccc	: aagatcacgc	agtcaatggc	41700
agagtaaaga	gcatagccta	ggcctcccca	. ctcctctagt	aatgctcttt	catcttctcc	41760
aacctggctc	: taagccttgt	ccatcctgag	ccccatatct	agcccaacct	agtccctgaa	41820
aacaagaagt	ggcccttaga	aatctctctc	cagtcccact	atcagaggco	aactgctgtc	41880
ttccagtctc	cttcagcctg	tgctcctctc	cctccctgac	: tgacaggcag	r aaggtaccgt	41940
gcctctggat	: atccccacag	tgccctgago	tgcatctctt	geegaetget	ctaatacato	42000
acagtgacat	: tgtgtgtgtc	tctgccacca	gactattgct	: ccttgatgct	. crgggtcacc	42060

taastatsaa	atggcatata	totagtgete	aataaatgtg	tattgtacgg	aattgactga	42120
agttatatas	ctggcagccc	cctctatcca	aatcacccac	ctctttttga	aggtgggtga	42180
hantattata	tggtactgag	ataacetete	catgactggt	ccaaagggca	ggcagggttc	42240
cgatettgtg	gagaaaagta	taggecece	gaccttagct	gcctatccat	acqtaqttqc	42300
etgataetga	tgcctatctc	atacttatac	tettetacae	accettecte	acccccaagg	42360
aacacattee	acctgaaggg	atatagaaaa	anttactast	cttgtgctat	atootocaca	42420
gatactgggt	accegaaggg	anathtan	gacacacttt	ccaaccacaa	attetatete	42480
agaaactttt	aagaaaaaag		ttattaata	caaccacga	catccattct	42540
tgctcctttt	catagcaata	ggetetetete		ttaagggagt	actetaces	42600
cttatcaccc	accccatca	gactecttee	cetgtgttte	tttagecacc	tacatttcac	42660
aaatttgagt	gaccaaaagt	ggtgtcagac	ccagugacca	tetteratt	ttccctttca	42720
ttgaccttga	agcagcaatt	aatctccata	atcagcatct	nanatttac	acctetecta	42780
ggacattgct	cttctacttt	gegetetggt	tateetttae	adactiticat	ttttatttt	42840
aactggttaa	cagtagaggg	ccccaagggt	ctcacgtaag	etattaatat	attacccaa	42900
tttcttttct	tttattttt	atatatttt	ttgagacgga	grettgerer	ttcatcctat	42960
ctggagtgca	gttgcacgat	ctcggctcac	tgcaagetet	geereeragg	tacatacata	43020
tctcctgcct	cagceteeeg	agtagctggg	actacaggtg	cetgeeacea	ctatagatat	43020
attttctgta	ttttaacag	agacagggat	acaccatgtt	agecaggacg	greetegatet	43140
cctgacctcg	tgatctgccc	acctcagcct	cccaaaatgc	tgggattaca	ggegegagee	43300
actgctccca	gccgtcattt	ttattttatt	ttatttattt	ttttgagatg	gagteriger	43200
cttttgccag	gctggagtgc	atggtgcgat	ctcggctcat	tgcaaccccc	geeteedagg	43200
ttcaagcgat	tctcctgcct	cagcctcctg	agtggctggg	actacaggtg	cetgteacta	43320
tgcctggcta	attttctgta	ttttagcttg	agacacggtt	ttcaccttgt	tagccaggat	43300
ggtctcgatc	tgtgagcctc	gtgatctgcc	tgcgtcggcc	tcccaaagtg	ctgggattag	43440
caggcagtga	gccactgcac	ccggccatca	attttttt	tttttaaatg	gagtettget	43500
ctgtcaccca	ggttggagtg	taacagtgca	atcttggctc	attgcaacct	ccgcctcttg	43560
ggttcaagcg	attctccagc	ctcaqcctcc	tgagtagctg	ggactacagg	tgcatgccac	43640
cacacccggc	tagtttttgt	atttttagta	qagacggggt	ttcaccatgt	tgtccaggat	43000
ggtctcaaac	tectgaeete	aaatgatgtg	cctgccttga	ccttccaaag	tgctgggatt	43/40
agaggggtga	accacattqc	ccaccqtaaq	ccctctttc	tacttccact	ctttctgtag	43000
gtggcctac	tactaacqtc	catggcttta	agtaccatct	ttctatgtgt	taatgcataa	43860
gtccagcctt	gacctctctt	gagcgccatc	caactcagca	tatctggttg	gatgtctaat	43920
gagtatttca	aattcaacat	ggccacaact	gaactaactg	aactctttt	tttttttagg	43980
cagagetete	ctcttattac	ccaqqctqqa	gtgcaatggc	gagatettgg	ctcactgcaa	44040
cetetgeete	cagggttcaa	gcgattctcc	tgcctcagcc	tcccgagtag	atgggattat	44100
aggeceget	acccggctaa	tqtttttqta	tttttagtag	agacagggtg	ttgccatatt	44100
gaccaggetg	gtctgcaaat	cctgacctca	ggtgatcccc	ctgcctcggc	ctcccaaagt	44220
getggaatta	caggcgtgag	tcactgcccc	ggccacacaa	. ctgagctctt	cattcccacc	44280
ccagcaccgg	ttattttcc	actqttccca	tctcaatggc	acctccatta	. cccatttgca	44340
cattccaaaa	gcccaggaac	catqqtqact	tcttttccca	tatccaacac	aaccaatcct	44400
atcttgaatt	catccacqtc	ccaccacctc	cccagctacc	: tagttccago	caccetetet	44460
ccacaacctc	tgaatcaatc	tttcactttt	cccagcaato	: cattctccac	tcagcaaaat	44520
gatgataaag	cacatracat	caaggetetg	cctcaattta	atgacttccc	attgtattta	44580
gaatcatctc	: caaqctctca	gagactatgg	tcagctacaa	tetggeecae	cttctgttcc	44640
agccaaattt	ceteacagea	caaqqacqtt	tqcacctgct	. allicidaay	Cacgaaaccc	44/00
traggragat	atatctggtg	ctqtcaccta	. atttcaggtt	: ttaactccac	tctcaccatt	44760
tragtgagga	ı cctaatcccc	atcqcaqtca	. ttctatcaca	ı tagetttatt	ttattttatt	44020
++atttttt	: ttgagataca	atctaactct	ctcacccagg	, ctggagtgca	i geggegegat	44880
ctgggctcac	: tgcaaacttc	catctcctgc	: gttcaagcga	l ttctcctgcc	teagetteec	44940
gagtagetge	, qattacaqqt	gtctgccatc	: acgcctgact	: aagttttgta	i ttttcagtag	45000
agacggggtt	: ttqccatqtt	agccaggctg	gtctcgaact	ccttgacctc	: aagtgateea	45060
cctqcctcac	r cctcccacaa	tgttggattt	: acaggcgtga	a gecaetgete	c ceggecacat	45120
agccatgttt	taagcatgta	tcactatcta	aaattattt	ttgtttatac	gtttgtgtcg	45180
teetgtagaa	a totaaootca	caaqatcaqq	, qacttgctca	a ttgcactggg	, tetaacacac	45240
agtochtcas	a caaacactcg	ttaagatact	aacqtqqcaq	agtggggcct	tgtaaacagt	45300
ttcaggagg	tgtgcttgta	agagcaacgt	gataccete	caaggaaga	agggaggatg	45360
cadaacact	gcccagagat	ggcgtcagg	tgcaagacat	cttgaataat	tcaccatcgt	45420
aadaadddad	g ceteaggaag	agatagaaa	aggccagaac	gaaacatta	g gtaagaggc	45480
atagacaata	g ggattcccac	agggcagcht	ttaaacacto	gacgttccct	aacctgagg	45540
tetetaaaa	a ggaaggttag	gaateetete	agettegate	ggctggacte	actgtgggaa	a 45600
ttcaatcgc	c cccccccacc	cactaagggt	atactaaca	gaaagcgct	g agacgcatgo	45660
gtagttete	g cgtctggcac	ccactacatt	tccaataco	ttgcgcccc	g tetgtgetad	45720
30030000	, -3-0099040					

~~~taataaa	ggagagttgt	ccgtcttcaa	atogaccaat	gagacttgtg	gaggggctct	45780
ggatggttag	tctggatgag	tgaccgtctc	ttttccaagt	gaggcccgcc	cgcctcccca	45840
gageceegee	tetegeggea	caaataataa	aactacttct	tgacttccgc	gcctagtgcg	45900
gggccgcccc	ttctccagtc	ccacccacac	gcctttggag	actacaataa	gatttccttt	45960
taaattaaat	tggggctgct	atttatatta	accaacaata	ggcattataa	atatttcgcc	46020
rgeetteggt	tagctctccc	ctcccaacat	togcacttag	cctttttcat	cattatcatt	46080
ctttgaattt	gtaaggatgg	tassettta	ctaatgaage	gattataaaa	tcttcaaqtc	46140
atttttaatg	cttgcttttt	gaggataga	ctaacgaage	aggtatataa	ttcattcatt	46200
tttgtateca	cttgettttt	gagggccgga	gegggaagaa	acaccaatat	cacaatacac	46260
cttcggacat	gtgacaaacg		geggeaacga	ccctacccta	cccactasca	46320
actggggctg	cacatgggag	ccaggargga	aggatataa	taccattaaa	ccatttgtac	46380
attggcaggc	cactgccttt	gatgagetgg	pegecataat	agastageta	addcddadda	46440
aattaatcac	aacagtgata	agagegacaa	tagageeace	aggaggaga	tototoaaaa	46500
tcttttgagc	ctaggagttc	gagaeeagee	tagagatat	gagtttgcgt	tagaggaggt	46560
aaagggggag	aaaaagtgac	aaagaageeg	attattatta	gageeegege	catccgggct	46620
gtgtgaggtg	gggaggcggc	agggggcgcg	-casastasa	gagaaagega	atatactas	46680
aattttgaaa	gaataagtgt	taactagget	aageggeggg	aaayagtagt	tagtatacat	46740
ggaagggaag	aggaacctgg	caagtteatg	geaggeerge	aaccygacgc	cttaaaaata	46800
ccacacttga	ctcctacagt	ctgatttcta	cacagoacco	taatttcca	tettagaaca	46860
cacatgtgat	cttgtcactt	cccagcacca	aactctacag	atetegeete	ccaatttcct	46920
aaattcagac	tccttaccat	ggccaccaag	accetacaca	atteteee	actctctatg	46980
tttccaaggt	caccttttac	cactatecat	CtCactCaca	tttatttta	tttctttctt	47040
cttttattt	tctttcttcc	tetttette	-ttttttttt	tattttt	tttttagga	47100
teetteette	tctctctc	tetteettt	ettttetett	natatanaga	cacaccacto	47160
tgcagtcttg	ctctgtcacc	caggtgtgtg	atettggete	actigicaacc	tagageageg	47220
ggggtgatct	tggctcactg	cagcctccgc	cttecaggtt	caagcaatte	ttagtagee	47280
tcctgagtag	cagggattag	cgccatcagt	cccagctaat	cccgcaccc	ccagcagaga	47340
tttcatcatg	ttgtccaggc	tggtctcgaa	ctcctgactt	caagigaici	tatttattt	47400
gcctcctaaa	gtgctgagat	tacaggcagg	agccaccaca	cerggereag	cactegeete	47460
atttttgttg	tgtttattta	tttagagaca	aggtettget	etgitgetea	ggctggagtg	47520
ctgtggcagg	aacacagctc	actgcagcct	ccactacctc	aatteaggeg	tttaccatct	47580
ctcagctgag	actacaggtg	tgcatcacca	tgeetggtta	accettege	ctcaccatgt	47540
tggccaggtt	tgtctcgaac	tcttgggctc	tgctgtcctc	ctaccttage	ccccaaagu	47700
gctaggattg	taggcgtgag	ccactgtgcc	cagctggtgt	teagraticy	tastatata	47760
tcctgtagcc	gcaaccaaag	ttccactgtt	aggteteact	ttgactttaa	caactgract	47820
caggctgggc	acactggctc	aagcctgtaa	teteageage	ttgggagged	gaggugggug	47880
gatcacatga	ggtcaggtgt	ttgagaccag	cctgtccaac	atggcgaaac	aggtagttag	47940
ctaaaaatac	aaaacattct	ccgatcgtag	tggcgggcgc	e etgtaateet	agecaeeegg	48000
gaggctgaag	gaggagaatt	gcttgaacct	gggaggcaga	ggttgeagtg	ageggagaee	48060
acgtcattgo	actccagcct	gggctacaga	gcgagactct	geeccaacaa	gtaaataaat	48120
aaataaataa	ataaataaat	aaataaataa	ttgtgttcgg	agicagcaic	accettesst	48180
aagttcacca	ctcctttgcc	aagaacactt	cctgaaacac	tgacaagcag	, tattttgtgg	48240
aatggggtat	ggttggtaac	aactcactca	ttcaacaaac	tagageace	. cactttccct	48300
ttgcctctaa	atgaagagct	ggttgtatta	tttattttt	taggigadag	ggerecee	48360
atgttgccca	ggttcgtctc	aaactcctgg	gctcaaaaga	a coccatoti	, cttaagtggt	48420
tgaatataca	cgctccagcg	accatgcctg	gctgaatgaa	t gagettegag	acticigaagu	48480
aacaggaaco	atgaaatttg	ctttgcaact	gtttgcaaco	citaaygaag	, accyanagy	48540
cattcctgaa	gcatgtgaga	agcagtctgt	gtgacctga	gactcagaac	ttatataaat	48600
ttagattagg	acagatatga	gcttaggctt	cactetgee	. cacacccaa	- caccacacact	48660
cttagtttt	ttttctttt	ttttttt	gagacggag	tagacacti	. cacccagge	48720
ggagtgcagt	ggcacgatct	tggctcactg	caageteege	andadagan	. catgocato	48780
tcctgcctca	gccacccgag	r tagoggggao	tacagtcgca	a caccyccac	e teastatas	48840
tttttgtatt	tttagtagag	, acgggtttca	ccgtgttage	caggarggr	- etgacecec	48900
aaccttgtg	tecgeceget	: teggeeteed	: aaagtgttg	g gattataggi	gugaguau	48960
acatetaaca	. tctaaqtctt	: aattttctta	l tctqtaatg	t agagttgtc	a ggetagtge	40300
totaataag	: actcatgaaa	ı qactqactat	: tatcttgcga	a aaaattgga	a gagattatai	. 49020
gaggtagaag	_r gacettecat	: ctacactaa	r ctqtacatt	g aatgutgtg	g ttactgrige	4 49000
agcattggta	a aatcacatga	a atccaatggt	aaaaccaca	c cctaaggcc	a gacteagige	4 40200
atcacact	r taattecage	: actttqqqaa	accaaqqca	a gaggactgc	c tgagettagg	49200
agttcgata	cagtetagge	: aacctqtttc	: tataaaaag	t taaaaaatt	a gettggtgt	4 4 7 2 0 0
ataatataa:	a cttctqqtcc	e caqctactca	a ggaggctaa	g grggyagga	t coollyayo	3 49340
caggtggtc	g aggctgcagt	c gagccaggat	cacaccart	g carrecage	c cygacyacas	JJ00

tgtgaggccc tgtcttaaaa aagacaaaaa caaaccaaaa aaacccacac cctagtgggt 49440 aaggggcagc agaggtccca cccaagagtg aaatcatttt tggtgtcagt aatcagggag 49500 agtaatatac cctcaggcca gaaactagag gtgagtgatg gctcacgcct ataatcccag 49560 caccttggga ggctgaggca ggtggattgc ttgacctcag gaattcgaga ccagcctggg 49620 caacatagga agaccccatc tctaaaaata aatttcaaaa attagttggg catggtggca 49680 tgtacctgta gtcccagcta ctatggaggc tgaggtggga ggatccaatt gagcctgaga 49740 tacaattaaa aactagagct gaaaggacag gttctaggtt aactggtagt agttgttcat 49860 tcatctgtat aaaaagtact tttttgagca cctactctgt gctgtgcatg gaatgaacaa 49920 atgtctttat ttgacttgaa cacagaccat agaagtaact aacagtggaa ctgggagtgg 49980 cactetecat gggacetaaa gacetaggag cetgtgatat gatacetgte agtgtgaaag 50040 tcaaaattgc tgctgggtca gccgaactat ttttgtactt ctgcttttca cttatattta 50160 tgtcttccct aggtatatag ctgtcttttt ttgtttgctt gtttttctga gtcagagtct 50220 tgctctgtca ctcaggctgg agtgcagtgg cgcgtctcgg ctcactgcaa catccacctc 50280 gggttcaaac gattctcctg cctcagattc ccgagtagct aggattacag gtgcccacca 50340 ccatgcccgg ctaatttttt gtatttttaa tagagatggg gtttagtaga gacagggttc 50400 actgtgttat ccaggatggt ctccatctcc tgacctcgtg atctgcccgc ctcagcttcc 50460 caaagtgctg ggattacagg catgagccac tgcgcccggc cactggagac cccttttcta 50520 tatgttgccc aggctggtct tgaactcctg gcctcaaggg atcctcttgt ctcagcttct 50640 taaaatgatg gggttacagg catgagccac cgtaccaggc cttagcaaac tctttttcaa 50700 gtgctataca aaggggacag aggaacgtga ttgtggccac ctagtatgcc cctattggcc 50760 actgcagtga ggcctaggtg tttgaagaga ggcacctagg gtagtggctc tcaggcacac 50820 cctaggggca ttttgggaaat ttgtggggca tctttaatag agacaatgat taggaggcac 50880 tttgagaatt tagtggatgg agcccaggaa aggtagacat tctgcaacat gtagtacatt 50940 catacacaag gaagaattca ctcatttcac ctgacttaca aatataaaat caaatataaa 51000 tcagtaggac tttattataa aatattgcag aaaagtttca caagaatttt ttgtagaaaa 51060 agcccaatca gggccgggca tggtggctca tgcctgtaat ctcaggactt tgggaggccg 51120 aggegggtga atcacetgag gteaggagtt tgggacaage etggecaaca tggtaaaace 51180 ccgtcttgac taaaaataca aaaatcagcc aggcatggtg gtgtgcgtct gtaatcccag 51240 gtactcggga ggctgaggca ggagaatcgc ttgaacccag gaggcggggt ttgcagtgag 51300 ccaagatcaa gccactgtgc tccagcctgg gtgaaagagc aagactccgt cgaaagaaag 51360 atccagtcga gatcgttaaa tttgttgtaa ttttgtcttt ggcacaataa acattagtcc 51540 ttattaaaac taactttact tagaaaataa aatagaaaat cctcaaggac aaatcacatt 51600 gtacaggaaa tatgaaatgt gaaataatat ccaccttgga aattttttt ttttgaaaca 51660 gagtgttact ctgtctccca ggctggagtg cagtggcaca atcttgggtc tctgcaacct 51720 ctgactcctg ggttcaagtg attctcgtac ctcagcttcc caagtagctg ggattacagg 51780 cgtgcaccac cacacccage taatttttgt attttcattt cagatgggat tttgccatgt 51840 tggccatgaa cacctgtcct caagctatcc actgcctcag cctcccaaag tgctgggatt 51900 ataggcatga gctaccgtgc ccagccaccc tggaaaaatt ttacaaaatg aagtataaaa 51960 agaagaaaag agggggggc atggtgcctt gtgcgtgtaa tcctagaact ctgcaaagcc 52020 gaggcaggag atcctttggg tttaggagtt tgagaccaac ctgcacaaca tagcaagacc 52080 ctatttctac aaaaaataca gacactaggc tgggcgtggt ggctcacgtg taatcccagc 52140 actttgggaa gctgaggcca gcagatcacg aggtcaggag atggagacca tcctggctaa 52200 catagtgaaa ccctgtctct actaaaaata caaaaaatta gccgggtgtg gtggcaggcg 52260 cctgtagtcc cagctactca ggaggctgag gcaggagaat ggcgtgaatc cgggaggcgg 52320 agcttgcagt gagccgagat cgtgccactg cactccagcc tgggagacag agcaagactc 52380 cgtctcaaaa aaaaaaaat tttgctcagt acctggccaa aaaagaagca gctcactccc 52440 tgtacacaga ggggtaagag aaaggagatg gttgaacttc taaactcgct aaagcaggag 52500 aggcaaatgt ggaatgtgct caggaaatat ctgtgagatg aatgaatttg agggaagtaa 52560 ggtactagat aattacctgc cctacccaga acaaatcctg tgcaacgttt ccttgaagag 52620 caggaagtca ggccgggtgc tgtgctcacg cctgtaatcc cagccctttg ggaggccaaa 52680 gtgtgcgaat cacctgaggt caggagattg agaccagtct ggctaacatg gtgaaacccc 52740 atctctacta aaatacaaaa attagccggg cgtggtggtg cgtgcctgta gtcccaacta 52800 cttgggaggc tgaggcagga gaattgcttg aacctgggag gcagaggttg cggtgagctg 52860 agatcggcca ctgcactcca gactgggtga cagagtgaga caacatctca aaaaaacaaa 52920 aaaaaaagag aaaagcagga agtctggaag gggtggctac tgacatagtg aagcaactag 52980 ttcaattcta caacttgaca actacccctg tgccaggctg tctacaagga tatttagaat 53040

atai	raadada	ttccttcaag	gaactccagg	aacagaggcc	tgacatgttg	caatgtttag	53100
tat	raagaca	tgtactagag	acacattato	acactcaaac	ctcacaacaq	ttctatgagg	53160
tac	racttat	cactcccctt	ttatagatga	aatagaggct	tagagtgatt	gatttactga	53220
agg	tassaas	gccagtaaat	catatagasa	ggattccaac	cttaccatct	cactaaaact	53280
ayy		agatacaaac	aacacacaaa	tagttcccag	acacctccca	agttgccagg	53340
gra	taaaaaa	acctcactga	cccctttgag	attataacat	tocctccatt	ttctaggtga	53400
Cac	cgcaccc	tgagagetgg	cottettgag	atcatgacta	tatataccac	toccaccaaa	53460
gga	aataggc	tgtggttcat	ggccagcccg	gccacgaceg	cttccttcac	atotocacta	53520
	cattiga	cttttacaac	gaggcaaacg	ttetesacta	ctttaaaacc	tcactgtcct	53580
agc	atatgge	aagaacagtt	acticity	gastatagas	accaattacc	ctttagagat	53640
gtg	aggaagg	ttgcctcact	accacaccc	tatazetete	casaaccatt	aatgagtaaa	53700
atg	gctgcaa	tgcagggag	geetgegeea	cactecete	cctccactcc	taccacccca	53760
tga	ggggtgc	tgcaggggag	ttaagetgae	cacttcactc	actaataacc	cccctcactt	53820
ctg	ccagtgt	cccaccctcc tgaaggcatc	ctgegeecta	caccccaccg	geedaedaee	tecteatete	53880
כככ	cctgtgt	ccatgcacac	ctggataatt	ttatatttt	acctotaaat	atctgtgtct	53940
aga	gagetet	cttcatgcac	etgttactgt	casagetet	atcttaaaca	tcacggtage	54000
gac	ttccatg	cttcatgeac	ccccataggg	caaagactgc	tttattttt	ttttggtatt	54060
CEC	agcatgt	tgtgcaatga gtatcatttt	agguttutt	terranana	accataccta	charactec	54120
agc	tttattt	gatttaggaa	tatttaggg	atteteete	caagtgtgt	tttcgtattc	54180
cat	cctctgg	gatttaggaa	cetttaeeeg	taggetgaag	aattttatad	actotataat	54240
tag	gctcttc	ctaaagttgt	catteacata	tacceccag	tagetagest	tacatacat	54300
ctg	taacaac	tcggaggaag	ccaattgccc	tttagaaata	ggctgcaat	agccagaatt	54360
cct	gtgtcat	gtgactctcc	tagtcatcac	atgacecate	tactactag	ttattttta	54420
act	tgcagga	gtaacctagt	geetataget	atggcaggta	stastattat	catastataa	54480
ttt	agtggat	cctctatcct	teagagaete	tggaacccct	gtgetettet	gaggtggaa	54540
tga	ccctgag	gtgatggagt	tttcaagtcc	ttccagagag	gtaagagaga	gagetectaa	54600
tca	gcattgt	cacagtgctt	ctggaatcct	ggcactggaa	tttaatgaat	gadagadtet	54660
ctt	tgaatcc	agggccatca	tggctctttg	agcaaggcac	agarggaggg	aggggccgaa	54000
gtt	gaaatgg	gtgggaagag	tggtggggag	catcctgatt	tggggtgggc	agagaguugu	54720 E4780
cat	cagaagg	gttgcaggga	gagetgeace	caggtgtctg	rgggeerrgr	cccaacgaac	54700
gtg	ggagacc	aggccatggg	cacccaaagg	cagctaagcc	ctgcccggga	gagtagttga	24040
ggg	gtggaga	gggacttgct	tttcagtcat	tecteattet	gccccagga	acgreecaag	54500
cct	tcgggta	gggtaagcat	catggctggc	agcctcacag	gattgettet	acticaggea	54300
tgt	:cgtgggc	agtcagatga	gtgagtcaag	gcagtgggga	ggtagcacag	agcetecett	55020
cto	gcctcata	gtcctttggt	agccttccag	taagctggtg	gragacttt	agtaggtgct	55000
caa	taaatcc	ttttgagtga	ctgagaccaa	ctttggggtg	aggattttg	aaaccgcccc	22740
cag	gtetetee	aaacagctgt	gtccgttctc	cacateettg	teagacetea	ectetgettg	55200
tgo	tccctcc	ctcccaggtg	gtgcccctgc	atccctaaaa	gcttcagtac	ageteggtgg	55260
tct	gtgtctg	caatgccaca	tactgtgact	cttgacccc	cgacctttcc	tgccctaggt	55320
gco	ttcagcc	gctacaagag	cagaagcagt	gggcattgga	. tggagctgag	tacaggacca	55360
tac	caggctaa	ttgcaccggc	acaggtaacc	attacaccct	tcaccccccg	ggccaggctg	55440
ggt	cctccta	gaggtaaacg	gtgtcagtga	tcaccatgga	gtttctccct	gggcactgat	55500
aad	cctgtgg	atgtcctcag	gcctgctact	gatectgeag	ccagaagtto	cagaaagtga	55500
agg	ggatttgg	aggggccgtg	acagatgcag	gtgccctcaa	cateettgee	ctgtcacccc	55620
cto	gcccagaa	tttgctactt	aaatggtact	tctctgaaga	agatgaggag	gaaggggaca	55000
gga	atgacata	gagccactga	cacttttctt	tgccaattct	tgtggaccct	gaettetgee	55/40
cat	ccctgac	atttggttcc	tgtcttaatg	ccagtgaaat	aagatttcgc	cgcctatcat	55800
ct	gctaactg	ctacggactc	aggctcagaa	aggcctgcgc	ttcacccagg	tgecageete	22860
cad	caggttcc	aacccaggag	cccaagttcc	ttttggccct	: gactcagaca	ctattaggac	55920
tg	gcaagtga	taagcagagt	cccatactct	. cctattgact	: cggactacca	tatettgate	55980
ato	ccttttct	gtaggaatcg	gatataacat	. catctgggta	cccatggcca	getgtgaett	56040
cto	ccatccqc	acctacacct	atgcagacac	: ccctgatgat	: ttccagttgo	: acaacttcag	20100
CC	tcccagag	gaagatacca	agctcaaggt	aggcattcta	gctttttcag	gccctgaggg	20100
cce	stgatgto	: tagagaattaa	gaaactgtag	ggtaggtctg	g cttgtacaga	cattttgtcc	56220
CC.	Factattt	tateetaaaa	ataaaaaaat	: qqqggctaat	: ggctgaaccg	g gatgcactgg	20280
++	gaactaat	·atqtqttcca	actctqqqtc	, cttctctctt	: cactaccttt	gtctctagat	56340
ac	ccctgatt	caccgageee	tacaattaa	: ccagcgtccc	gtttcactco	ttgccagecc	50400
ct	ggacatca	cccacttggc	tcaagaccaa	qqqaqcqggg	g aatgggaagg	g ggccactcaa	56460
aa	gacageee	: agagacatct	accaccagac	: ctgggccaga	i tacattgtga	agtaagggat	. 50520
ca	acaaqqat	: qtqqqatcaq	gactggcctc	: ccctttggc	c atgctgatct	grgrcccaac	: 56580
CC	rcaacete	r attecaette	cadatctdcc	: tgtcctcago	tcacctttct	accttctggg	30040
CC	tttcaaac	ttggatctgt	cagtcttgcc	cactccatca	a ggcttcctgt	teteteggte	; 56700

tggcccactt		ataactaata	acctttctct	taccagatto	ctqqatqcct	56760
atgctgagca	essettagg	ttctccccac	tgacagetga	aaatgagcct	tctgctgggc	56820
tgttgagtgg	caagitacag	catacataa	getteacece	tgaacatcag	cgagacttca	56880
tgttgagtgg	ataccccttc	cagegeeegg	accetactea	ccacaatote	cacctactca	56940
ttgcccgtga	cctaggtcct	accettycea	acygraceca	actactaga	cctggacctc	57000
tgctggatga	ccaacgcttg	etgetgeeee	attagaaataa	ttaactccca	aacttagagg	57060
catggtgctc	cagtgacctt	caaatccagc	acccaaacga	aggaectcc	agggtgggg	57120
gatttttcta	cccaactatg	gatectagag	caccatteec	atagtageta	atogotataa	57180
ggatcccaca	gttgggactt	gaaacctctc	taggetgggg	gradiance	ttcaacatca	57240
ttccagcact	ttgggaaccc	aaggtgggtg	gatcacttga	acctaaggag	attagggga	57300
gcctgggaaa	catggtgaaa	ccctaactct	acaaaaaaa	adatagaaaa	accepted	57360
tgtggtggtg	gcacgcctat	agtcccaagt	attetggagg	ctaaggeggg	aggeetatata	57420
asaaatsaas	tttcaggctg	cagtgageta	tgattgtgcc	actiguactic	agecegegeg	3,120
acagagggag	accetgtete	aaaaacaaaa	acaaaaaatc	CCCCCaaaa	bbassassass	57540
tgcattcttc	ccaccaccta	attcaggatt	cctacaagag	gaactagaag	aggagge	57500
atataggiag	aatccaaaat	gacttgttct	tcctttqcag	gtactgacag	acccagaage	37000
aggtaagtat	atteateata	ttactataca	ttqqtacccq	gactttttgg	ccccagccaa	3,000
aggaggat a	accustacec	accacctott	ccccaacacc	atgetettig	CCCCagaggc	31120
atatataaat	tacasattat	gggaggagag	tatacaacta	qqctcctggg	accyayyyac	37700
acactacacc	cacaccatca	tcacagtaag	ccaccccagt	600000000000000000000000000000000000000	gcaaaggagg	3.010
	antheateat	ctcaccaaag.	actgatagaa	qcccttcctg	LCCagccccc	3,200
	ataccetttt	ggggaactct	agagaaccat	qattccctgt	CLLGCCLLCC	3/200
attasasaat	ctocacacct	cattgcccct	tttqcaacta	Cigaggiaci	cgcagccgco	500-0
tagagattat	cadctcccct	taagatacct	qqatcttcac	acciccaacc	ccccagccac	
taaggaatgt	acceteacaa	ggctgaccta	cccacagetg	CCTCTCCCAC	acgugacccu	20140
L	atataaaaaa	ccccagtgtt	acacctttat	ctctttqcct	Ligitatiat	30200
	cototaccat	ataatcaact.	agaccaactq	qaacccacca	Ligiagacae	50200
0200220020	acottttaca	aacaccccat	gttctaccac	Citygocacc	ccaggegage	5055
aasaaaaaaa	gcaccccat	tecataccag	gcctatcatc	Luctacateg	gatggtttat	50500
ataaatataa	accacgaggg	agcaggaagg	tattcagggt	ggaacctcgg	aagaggcaca	30440
aggatagact	tttgcaccat	ggagggagga	agtgactagg	tagcaacaga	adaccccaac	30300
acatasaaat	ggactgcgat	gcagaaaagc	agggtcagtg	cccagcagca	Lygotocayy	30300
	cadddcadad	cctttacagg	agttatqqqq	tgggtccgtg	ggcgggcgac	50020
	accetttest	aggaggtacc	ccgagggact	ctgaccatcu	gillicacat	50000
tangata	cattcctgag	ggctcccaga	gagtggggct	ggttgccagt	cagaagaacg	58740
ccagcaagcc	agtggcactg	atgcatcccg	atgactate	tattatagt	gtcctaaacc	58800
acceggaege	atggtgaggt	ctaggaaata	ggctgaagac	agcattaggg	gccttggcag	58860
ggtgagggta	tcagcttctc	ctcctactc	cctagetect	ctaaggatgt	gcctcttacc	58920
gattacatte	ctgctgtggg	cttcctggag	acaatctcac	ctggctactc	cattcacacc	58980
atcaaggatc	gtcgccagtg	atagaacaga	tactcaagga	gacactaga	tcagcctggg	59040
tacctgtggc	acagagtcag	ctcacacact	atctataact	aaagagggca	caacagggco	59100
cattaaaggg	tacagagecag tacagegacg	taacccac	gocaatoott	tagatgacto	actttcccct	59160
agegegagee	ccaggggctg	gaggggggta	ggoddoggod	agtaagccc	agtgtcccc	: 59220
ctaggtggtg	gettatgtga	acatococto	r tatactacti	gctttggaaa	ctgggcctgg	59280
cagececcat	agggtgagct	acatgugues	acaaacacaa	gatcagggct	gagggtaagg	59340
gtccaggcct	agggtgaget actaggaaag	ctaaaccaa	aactggagag	tatttatct	tectggagat	59400
aaaagaagag	gcccgtggag	cagggeeeac	accatcagg	cggaagcctt	aaagcagcag	59460
gcagaactgg	caggcaccca	gatgattgct	. agcaccagg;	r ccaggaaaaa	a tggcagctct	59520
cgggtgtgc	e caggeaecea a aatgtttgag	gatgatteet	. atggedeed:	r rrattetgg	tggcagcac	59580
taaaggagaa	g ctgtaccaac	nagagagaga	, dedadedde	- totagaatg	atgagagtag	59640
ccgtgtccg	ctgtaccaac cttgggagcg	t dacgaggagg	tacygygyc	t teatected	cagccatgc	59700
aaaaaccagt	cttgggagcg	Lyayyacaa	catterer.	r tagatagagi	a caatgccgcl	59760
cagggtccgg	gtgcctgggg	ceegageage	g egitgeeeg	c eggaeggag	a totaattoo	59820
gagcaaggc	g tageceases	tggctgccag	g teetgecage	t atagacags	t acaataata	59880
gcgccggtat	ggctcctcct	. cagtetetge	y georgergg	c tacttette	a atecetace	59940
ctcagctgag	ggtcaaggaa	ggaaggtgtg	, ccaggagaa	a cateccaece	a daadtadad	a 60000
	. aaaatacccc	' receaterd	r cccttaccu	C Callecann	, 2~~2~~2~ <u>~</u>	
	- ~~~+><>>	n aacacaaaa	T ECCEOCAGO	c cacycuss -	5 5~~~~ <u>~</u>	
	~ ~~~~~+++~	, ctacaacaa	~ adddccaau	L adrigace	o 3mm33c3co	
	~ ~~~+~~~~	n dadadadaa	a daradaara	y ayyagaace	~ ~~>>>	
	~ atacadetac	i addaadadti	e adcelluuu	a qqcgggccc	- 33333	9
		i dacacacad	r recaudect	4 46463335~	J ~J~~~~~	5
gtggcgcca	g ggaaggacu g ctggccctga	a atagggete	t atcccaggg	Lycaraaay	J Juniacion	

taaaaaaaaa	ctcttcaggc	ccctcctata	cctaactacc	ctcccaccct	accettttgt	60420
agetetages	aggetetgge	cccacacad	tcacactgtc	actagggcca	gtttctatcc	60480
acceccigaga	ctatccagag	cctaaaccaa	ccccaacccc	agccccagct	ccaqctqctc	60540
cayggacece	tgtatcttct	tccaagccag	ccattaccct	cttogagtca	gactcacqca	60600
tatagaacc	agaacttttg	acacccac	cactaaaaaa	acaggatcag	acactcccga	60660
ccccaaaga	acagetgtag	agageeeagg	agtagactta	caactataga	aacagtgcca	60720
geeteteggt	taagcactcc	gggcgacaca	carcatectt	agaactcatc	tcatacaata	60780
cctccccacc	tcagagctac	cacccccggc	agetetteet	catactaga	cctatactcc	60840
geeeeeggee	gctgtagccg	ttaatataa	taccactace	tacaaccaaa	caddaadaad	60900
ccagccagca	agggcatagc	ctctacgtac	cacttcccc	tracttorac	gtagttcttg	60960
ttgaggggaa	aaaaagtatg	taggtagatt	agatagacaa	gaagaagag	gtaggtctga	61020
grgreraree	ctgtctgatt		ttatasacca	catoctttcc	taaacctata	61080
gccagtgcac	ctgtctgatt	caaggrgggc	gggtggggat	gastactaga	aggtetagag	61140
tgtgggtetg	tgtgttcccg	aacectcccc	tacaggecae	acatosaggo	cagggtgtct	61200
acactcacca	gcaccgggag	caacttttt	acattatact	tetatagaga	aaatatccat	61260
gccccttgcc	gagctgacag	accataatca	ttaaggagg	accasacaat	cctatctaat	61320
ggcgtggaca	ctagggagct ctggcctctg	geaagggeac	acctaccaggg	aggaaggagt	cctgccaagg	61380
accccccca	etggeetetg.	agracagrage	ttactattaa	cgaaaagcct	agacettaga	61440
cccccttgcc	tgggcccagc	caguageeeg	tagaaaaaa	cadadasaac	teegeegeaa	61500
gcctcctggc	cgtgaaggtc	tttaattaa	aggraga	aacacccact	gacggcaact	61560
actaggagca	gctcccagaa	ccccacgga	aageeggaae	acacacaca	gctcagatgc	61620
ttctaacagt	aacttccccg	acceagacac	cacaaageea	catcctcaca	ctccctggat	61680
aggctaggac	teggtecatg	cettaggaac	ttattaaata	actoccaoa	tettagetat	61740
ccagggaacc	cacgcccagg	geeeeceage	anthogona	tagagattcc	acccataccc	61800
ttettteact	tcattccatc	geteagaeae	callactaca	tattactcaa	catececete	61860
ccaggtctca	gcctgcccta	cetteecagg	ecedageece	catcatcatt	aaatctccct	61920
cacatcctga	gtaagctttg	tececagata	accucucay	catgatete	atacccctat	61980
aagcctcagt	ttctcccctg	tggaatgggg	gtaagaattt	tatattana	cctaaccaat	62040
gttaggaaat	aatttagaat	actttggaaa	ctggaaaagc	etatagetaa	tetetttee	62100
cagggcagtg	gcctcggctc	tgccaggaac	cccggcccc	attiggatte	acceptece	62160
ggcctctcaa	ttaattcccc	aggtcctcaa	cctttgggaa	gulagaaacg	gaagagagag	62220
tectaettet	gacactgttc	cetettggaa	eetgaeegte	aatgetagaa	cctgagaggt	62280
aaaacatgct	ggcccagccc	tetagttta	caaacaaggg	agracatage	cctagggggc	62340
tacatggcct	gcccgagatc	acatagtcaa	eggeagagea	aayaycacay	ttatacatac	62400
cccactcctc	tagtaatgct	CEEECAECEE	ecceaecty	getttaaget	tagaaatctc	62460
tgagccccat	atctagccca	acctagtccc	tgaaaacagg	tataattaaa	cayadaceee	62520
tctccagtcc	caccatcaga	ggccaactgc	tgtetteeac	gaggagtagt	ttaatacatc	62580
teteecteec	tgcctcacag	tgccctaagt		geegaeegee	ctaacacaca	62640
acagtgacat	tgtgtgtgtc	tctgccacaa	gactgttgtt	tattgtatatag	ecgggccacc	62700
tgcatctagc	atggcatata	tetggtgete	aataaatyty	cattytatay	adctgdctgd	62760
acttctctca	ctggcagccc	cctctatcca	agteacetae	gggaaggg	aggegggega	62820
tgatcttgtg	tggaactgag	argaectete	catgactggt	ccgaagggca	ggcagagcco	62880
ctgatattga	gagggaagta	taccaaccag	accettaget	geetageeat	acacageege	62940
aacacattcc	tgcctatttc	ttgettetee	cettgtacac	attatataca	treaters	63000
gatactgggt	acctgaaggg	ctctgccagg	ggttgttgat	, eccycycacc	. cccagaggca	63060
caccagtaaa	tctggcatag	gtetgeaggg	taaggaagcag	tastacett	atotoccatt	63120
tgtcccccac	agtggtatca	agaagagaaa	. taacatttat	tgaataccet	ttctattta	63180
ccctatactt	agtatcttag	tetegaaaaa	aaagggggag	stataatta	aggacagcca	63240
caaatggaca	acacagggct	cagagagatt	ceggacacgu	. ccgcgaccac	tetecteage	63300
ggaaaatcct	ttcctctatc	teetetettg	ccatctacct	. gglgaacatt	ctctttagca	63360
agetttteet	aaccagtatc	cetettettg	gaagcaccga	taatgeeee	. tttatttgct	63420
gtatctgtgg	tctgttccta	ctttaactta	tatgtgaata	atttattatta	tetttaeete	63480
tacctatctg	cctttctgta	aactegaagg	gaggaaccaa	t acceptance	, actraatos	63540
gcaatgttta	atatttggaa	gaaacctaac	. agaicetell	. caaagcaagg	, ctatazateo	63600
taaatgaago	aaaggaagtc	cgattgctaa	gerecetata	t taaageeegg	, coacadaaco	63660
tttggtctaa	caaacaatag	cctcagtaaa	tgctgttaag	, ceteracies	, tecaceetse	63720
gggctgagga	gaaggcagga	attccaaget	. agagtaggt	. cocyayacas	, cooligoooag	63780
taaacctccc	g aatggagaaa	aaaaatgccc	aaagagaaag	, gatterest	. aggeoacatet	63840
gccagtgaat	ggatgagcaa	ggaccagaac	ccatcacct	aduluudda	tatrocces	63900
ttcattgctg	cattaagcct	agaaaactac	agcataggg	, accyayyoda , taataaata	r ccctaacee	63960
gtacgctctt	tgactgcctc	agtttcccc	actgcgcccg	, egorgagias	, susagacac	64020
gtttggatgo	ttggctagtt	. cggccccct	: cccagccatt	. agggcacage		

	atanaanaa	caaccaaact	atccagatcc	actgacggca	gccccaqcc	64080
ggegeeaeee	cccaccagca	ccataaacac	caccatetta	cccaccctct	gtcccqqaaa	64140
ceetgaedag	tataattata	ccatecceta	cctagaccca	cccccgcca	ccacccctcc	64200
cactteetty	-t	atacacacat	cccaaaaa	gcgaggcttc	ttctaaccca	64260
gategttgeg	greaggggge	ccggggagac	acaaacetca	ggggagggcg	accaccaacc	64320
actggcagct	gaactgeggg	ggaccgggcc	cactatcaac	22324222	toggagtato	64380
catccagagg	tggcccacgt	agegggaeag	cactassaac	ceggegegee	chagagagag	64440
acggcgcctc	grccaagrgg	ageceegaac	coccyaagge	gcggcaggct	agertatact	64500
gggtcttgtg	cgcctgggcc	aggtetgggg	gereregeta	aactgcacgt	ccccaacaa	64560
gctccagggc	cccttggggc	tegteceega	geggggaetg	cgggggggtc	accetageag	64620
catgttttcc	acagcgcgtt	atgtttggag	egggeeetge	gccgcctgtc	gccacggaaa	64680
caaaacaggg	gcggtggcgg	cggccggagc	ggaggceggg	ctggggcttg	ggtgggggag	64740
gggaagagag	gctcgcaggc	tgtcgcttag	gtgacgggaa	ctcaggcgcc	cettegette	64900
atccgggtca	cggcccgtcc	gctagtaccc	acagtgttcc	acagtctggt	ttttaattt	64860
tcgcctgtac	ccctggtctt	ctgcgcctgt	ccctggtgtc	cctttcctct	atasasaat	64920
cttcactctg	acctcactga	ccactgcttt	agattetee	ttcagttccc	greagacger	64080
tccagactcc	caagctttcc	tacgaatgag	ggaaaatgga	gaaacaggca	cccgccaggg	65040
gacccccacc	ctaataaaga	gcacttgctc	cgccagaaca	gcaaaattca	tgccatgtgg	65040
gcatccctgg	gcactatagc	aagctagttg	cggccactcc	cttggcatcc	tttcctgcca	65160
gctgtggaat	aatgcccact	gtctagcact	gcccctgcca	ggggttcttg	ccttccacaa	02100
teatagette	cagaaaacag	tagcattcgg	tagegetgtg	tgccgagacc	cccaacaatg	05220
atmactmong	agagggaggc	acctggggg	aggatcatta	gggagaggta	gaaagcaggg	05200
aggecticeag	gattetttee	cagtgcccct	ggttcccaga	gctgatgatg	cetecagggt	03340
gattgggagg	tetttattte	agcccccct	cacccgcctg	ctggccccc	Ctecaattet	03400
atcecteege	cccccaactc	ctactctctc	cgcctagcct	tttcccctcc	eagetgeetg	03400
cctgccaggg	gtagtgagcc	ggctgagagg	catggagacg	caggaacttc	ggggggccc	03520
aactettete	ctcctttqct	ttttcacatc	tgccagtcag	gatctgcagg	gtaageetgt	65560
ctccatcctc	ttagaccgct	ctctqcttct	tccccatttg	ccctcagccc	aagtagcaga	02040
gaacatgtgg	acaaqqqqaq	aqqqqaagag	tccagaaatt	gagccagagg	aaaacttaag	65/00
actgcctaga	gttggtgaaa	ttatqqcctq	gtggagagga	gtgggcaccg	gagagtagtg	65/60
aaaaaactaa	aacaggacag	ggtcaggcat	gaggccaggg	cagaggactc	aggaactgga	03020
tactcagact	acctaactaa	agtagttcct	gagcatctgt	aggcacccta	gggtctggga	03000
gaggagggtg	aaggtggggg	tactgtaggt	ccctgggctt	cgtccccctg	ggereergge	03740
tacccaagga	caggggggg	gtggggacca	. aqaagcctgg	gctctcccgg	aggtctggtg	66000
ataggatagg	ccgatggatg	taggagaggt	agctggagca	. gatgacacag	gcatagattc	00000
tttactggct	ggagggaaaa	ccacagattg	gccaggacac	: aggaggcaga	ggagetgggt	00120
cctacattcc	cataggagat	agcccagatg	ı gtgggagggt	tagagteete	agcgggcagc	99190
tottottato	cagagcgagt	atactacaca	: cctaggatgg	r gaggagggga	. actagggtgt	00240
adaacdaacc	aaacccagga	gtggaaagag	aagctgcctt	ccatttctac	gttgtggaca	66300
ccadatacca	ctcctataga	ggatcagcac	agcatctcct	ttgcgccacc	tggtggggg	66360
atctcaaatt	tataaaatac	tatttctato	tttccaaqtq	agteteaaae	ctgcaggttc	66420
ctggaaggta	gtaataggca	ataatgggga	aaqqaaqqca	cagtgcctct	gtcctctgag	66480
accaacaaca	gttgaggttt	ttttttattt	teattttate	: tttttgagat	ggagtttcac	66540
tettattace	caggetggag	tacaataaca	caatctcaac	: tcactgcaac	: ctccacctct	66600
caccttcaac	casatetect	gcctcagcct	cctgagtage	tgggattaca	ggtgcccgcc	66660
200200000	actagatagt	tttttttct	tttttattat	tgtttttgta	tttttagtag	66720
accacgeeeg	tcaccatatt	gaccagacto	gtctcgaact	cctgacctta	ggcgatccac	66780
atacygggcc	ctcccaaggt	gttgggatta	caggtgcgag	ccaccatgc	cagccaaggg	66840
ttgaatttta	, eccedagge	cactaccta	taataaaaat	agggggtgat	gtgggctcgg	66900
gaaccetg	cettageatt	tgatcccatt	ctctaacctt	gataacccct	geetgaccag	66960
ggagggcaca	ceteageact	gaccaatct	gacagatagt	agctgtggca	gagaagatco	67020
taattgacct	. gotgaotgeg	ggcgagccc	acctcttate	caccttccg	ctaccccca	67080
ggacagccic	. goldadeget	. ggggacacci	ctcaccaaa	a caacactcga	tggctggagg	67140
agcagggtgg	. agadaadaa	. ggggggggatt	actootooo	atctcctttc	ttgcaatggt	67200
cctctgttgt	. aggcaagatt	. aacaaayyt	o cttcccaad	r acttectest	teteettaa	67260
gacctcctta	ageactete	. decatecet	t ataggaaga	t getteeteat	cctggtatgg	67320
ctccattagg	gaccaaggto	. ccarcagge	r taggeddagai	atcaggggca	cttgagtect	67380
ggtgcttata	aggtgcttt	yyagcccat	g caccadacac	a tagggtgagg	. gagggatgt	67440
gatatttata	gggatgggag	gregtactt	g gggatgeet;	g gaaggagggt	. cagtogccac	67500
tetgtgeete	agcggtgata	a cagaaaggt	a actestate	c ctggaacagt	a gactaagaa	67560
aaaaccagct	greacectag	y gagaggata	agicately	a taccaatgaa	a cctadacta	67620
gtatttgtct	ctaaaccaat	. cattlette	a aatyyaytt	t tgetttgte t eetgaatte	a aggaathch	67680
agtgcagtg	tacaatctca	a goldactgo	a acciding	t cctgggttc		

atatataaaa	chactaaata	actaggacta	caggtgccca	ccaccatqcc	tggctaactt	67740
thatctcage	artaraaca	gaattttacc	atgttgacca	aactattctc	gaacttctga	67800
astanastan	totagaaaca	ttaacettet	aaaatactaa	gattacaggt	gtgagccacc	67860
ceteaagtga	tetgeccace	tttcaaaaac	atttattata	tacctattaa	atacaaggtg	67920
gtgeetggee	cctaaagcaa	ttagggatag	acccaccaca	gatgtggtat	ctagcagagt	67980
ttgagageea	catagtagaa	reagggacag	tacacatta	caccatact	gatctcccct	68040
tgatccaagg	cccagciggg	aggeaggggg	agggggacag	agtccacacc	gtgaacctac	681.00
cctgggcagt	actggtgcga	taccageggg	aggatggtaa	agtecaegee	gtgaacctac	68160
agcaagcggg	cctggctgat	gggcgcacac	acacagueee	actectace	cgaggtccct	68220
ccagacccag	ccctgcccta	catctctacg	tggactgcaa	accyggcyac	caacatgcag	68280
geettecage	actggccccc	attectecag	cggaggtcga	rastatasat	attaggactg	68340
gacagaaggc	gtatttgagg	atgcaggtga	gccgggagga	geetetgagt	tctgtggaaa	68400
tagagtttgc	accagctggg	gaaggggttg	gtagacette	beestasts	ctgctgctat	68460
cccccaggg	ctttgtggaa	tctatgaaaa	ttattctggg	tgggtccatg	gcccgggtag	68520
gagccctgag	tgagtgtcca	ttccaagggg	acgagtccat	ccacagugua	ggtaacacag	68580
agacttgttt	gctgacattg	gaccacggat	cctgtggcct	ttggtgactc	ctgtcttctt	68640
gatetecete	tcccttaaaa	cccattcctt	tggctcacct	gtteetaggg	tttctaaccc	69700
tgttattcca	aatctttcac	ctgactccac	aatctccaat	acacccatcc	gagaaaaaaa	60760
gtgatctaag	agaagaattg	gttaattgct	tggccttggc	tgaccaagag	atactggtct	60700
cgagtatttt	tttttttt	ggtgatggag	tettgteetg	ttgcccaggc	cggagtgcag	60020
tggtgcaatc	tgggtcactg	cagtctccac	tgagttcaag	tgattetet	gcctcagcct	60000
cccaagcagc	tgggattaca	ggcggccctc	caccatgcct	agctaattt	gcattttag	60940
tagagatggg	atttcaccac	gttggccagg	ctggtctcaa	acacctaatc	tcaagtgatg	69000
cacccacctc	ggcctctcaa	agtgctggga	ttacaggcgt	aagccaccgc	gcccggcctg	69060
atctcaaatc	ttttataqtt	ctcactggca	gctgtcacca	gcaatttctc	tgagtgttgc	69170
ccatctgcct	aateteteta	acagggatgt	tcagaagctc	tcacctaaat	aaaagaccca	03100
cctttcccag	atatttgagg	gagagetett	qaagaaggga	atgggatggc	gggtgtggtg	69240
geteacacet	gtaatcccag	cactttqqqa	ggctgaggtg	ggctgatccc	teaaggteeg	9300
gagttcaaga	ccaqcctqqc	caacactgtg	aaacctcctc	tctactaaaa	aatacaaaaa	09300
attagctggg	cataataata	ggcacctgta	gtcccagcta	cttgggaggc	ggaggcagga	09420
gagttgcttg	aacccaqqaq	gtggaggttg	tggtgagcag	agatcacgcc	actgeattee	09400
ageetgggaa	acagagcaag	actecqaete	aaaaaaaaaa	aaaatgggga	tatactgggg	09340
ccctaaccct	actttaaatc	catcccttct	gccactacca	tgcctaggaa	ccaggaggat	09000
<ul> <li>ttgggttcta</li> </ul>	acttcctqtq	aaqcaactcc	cttagagggc	cttttgcccc	acagaaggag	09000
ctggcactgc	ttatctacca	getetgeeet	cccagcatcc	agcaccccat	ctttattctg	69/20
gagetecage	cctatcccta	tcctcacctt	ccttcctcct	tctcaccaac	caggcctctc	69/80
ttcacttcac	ctcacccctc	tgactatgtt	ttcttctcct	ctccagtgac	caatgcactg	69840
cactccattc	taggtgagta	gaccacacta	aaqcqqaagc	ggggagcggg	gaggaggeee	09900
caggetetgg	cagetgeetg	aaactaagtc	ctcttcagtc	aggaatgtag	taggtttaaa	69960
aacaaaaata	agcagccata	gcaggtactg	gcttattgcc	: catggagggc	ccaggactgg	70020
toctccagta	ctgaacccct	cacaccctgg	gtcccgacag	, gggagcagac	caaggegetg	70080
gtcacccaac	tcaccctctt	caaccagatc	ctggtggagd	: tgcgggatga	tatacgagac	10140
caggtttggg	tagactagca	aaqqqtggca	. ctgattctgg	, ggtagggtgg	cagatgtcaa	70200
gtgctgactc	ctccccatcc	ttctccaggt	. gaaggaaatg	, tccctgatcc	gaaacaccat	/0260
tatggagtgt	caggtgtgcg	qtqaqtqqqa	gagcagggga	i ggetecacat	gadegegeda	10320
cattcccacc	attaacttta	gctttccctt	ctggtggctt	: aaatagtgac	caccgggtag	70380
ctctgactgt	gtccacccct	caggetteca	tgagcagcgt	: tcccactgca	geceeaatee	70440
ctacttccaa	. aatataaact	gcatggaagt	gtacgagtac	ccaggctacc	gergragaee	70500
ctaccccct	: aacctacaaa	gcaacqqcac	: ccactgcagt	: gacatcaatg	r aggcgaggga	70560
ggtcagagcc	: cagaagggta	cagaaaactg	ı qqqtqaqqat	: gtcaggaggc	: acccaagagg	70620
gtgggataaa	l tactaatcca	qaqqaqaqqa	ı atctggagtt	: taggagaggt	. cagaggcaag	70680
agaaatgcaa	ı gatgggagag	acagaaggco	: tggggcaaag	g actgaaggco	: atacagggaa	. /0/40
ggaget.ggg	r aaactgcagg	gaagacttaa	ı qatqqcqaco	: agtggcatgg	, ggagggagag	70800
agggaacccc	: gagggaagtg	qqqtggggac	: caggagcaca	a aggcagttgt	: grggggagag	/0060
ctocacaaa	g gggagaccto	gagcaatggt	tectqqatea	a caggcaggga	cctgagttto	70920
ccagagggg	g gcctgacctg	toccttctca	tctggtccc	agtgtgctca	cgctgacccc	70980
tatttccca	g goodgaacte	catcaacaca	atgcccaact	tccactgtga	ggcctgtcct	71040
cgagggtaca	a agggcacaca	aatatetaat	: qtqqqcattq	g actatgeces	, ggccagcaa	r \TTOO
cadatcaca	taaateatat	atatagacas	gggatetta	ccttgtagag	gccaggggct	71160
tetaaatta	acatoooaco	cttgtgatgs	atgggacat	gatggcttt	catcggcttt	71220
gaatetaaa	: ttaatottoa	tottcacaos	taaggccata	a ccagtgtcct	ctgctgtato	71280
	caccataget	ctaattccad	ccaaagtct	cccttcage	g totgcaatga	71340
Lyuyyayacı	Juccucugge	. 5-55		_	_	

catcoatosa	tgcaacgatg g	gcaacaatgg	taactataac	ccaaactcca	tctgcaccaa	71400
caccgacgaa	agctgaatat	cctgagtgta	ttctaaaata	gtgggaatgg	taaaacccca	71460
caccycygcy	cttcttacct	tcaaatttcc	tactacettt	cctcctccc	agggcactac	71520
accececycec	tgttcacatg	aacttaattt	ggaatactgg	tttacctctt	gctagctctt	71580
acagactagg	tttaactttt	gacccggccc	acttactat	ctgaaaactg	aggetgttat	71640
tagcaggtta	aggttgtcat	cegageeeea	aggagatact	gatatoccto	gcataactga	71700
ccaccctgaa	cacactccgc	gacaacccaa	atactactac	tagataceta	gtagactcac	71760
gtgcccagcc	cacactecge	aggiggagea	ttagggggg	ttcaactoto	atacataca	71820
cctccttcct	aagatgctgc	cccccaccc	standtann	acceangeges	accacaaacc	71880
cctgggtttc	ctgggcaacc	agagecaggg	etgeeteeea	geceggaeee	gtacagtata	71940
agcccacagc	ccctgccaca	tecatgetea	etgtetett	gaacgcaacg	gegeagegee	72000
ctgccaggtg	agctaggctt	caggegraga	aggaaaaggg	agggcccggg	cctacaccca	72060
gggctatgtt	tagggcctgg	gttgggggte	ccataggag	agaaygcggg	ccraaacaac	72120
ggaactgttt	ggtggggaga	ataggacctg	aagcagggaa	tatacaggga	ggaggggagc	72180
cagaccaaac	tgctagctcc	taccettege	gttgeeetag	tgtaacgtgg	gergggergg	72240
gaatgggaac	gtgtgtggga	ctgacacaga	categatgge	Tacccagacc	aagcaccgcc	72300
ctgcatggac	aacaacaaac	actgcaaaca	ggtgcaggga	geaggeggge	tanatttaa	72360
agtggggagc	ccaagctggg	tcaggccaga	actcatccat	CCTCTTCCCC	tagtatagaa	72420
gacaactgcc	ttttgacacc	caactctggg	caggaagatg	ctgataatga	rggrgrgggg	72420
gaccagtgtg	atgatgatgc	tgatggggat	gggatcaaga	atgttgaggt	gaetteeaga	72540
ctgccctgcc	ccttgaagct	ceteteceet	cctcctgtcc	tetetgtgee	caectaect	72570
catctggcag	ctctctagta	agggccaaat	actccaaatc	agggaggcaa	aaaccccgcg	72660
cccaggacaa	ggaggctggg	tggģtgggac	tgtactgagc	agtttgtcca	tcacaagggt	72000
gtgatcttag	aaaaggatac	agagacaagg	taggtgcaag	atgacaagtg	atttagggga	72720
gacctgaccc	ttcccctccc	accetetgee	caggacaact	geeggetgtt	ccccaacaaa	72700
daccadeada	actcagatac	agattcattt	ggtgatgcct	gtgacaattg	ccccaacgii	12040
cccaacaatg	accagaagga	cacagatggc	aatggggaag	gagatgcctg	tgacaacgac	12900
ataaataaaa	atggtgcagg	cctagaacta	aaggggtggc	tgggggacct	grgagaarri	12900
ggatgaggtg	gggatgaagc	agggaagcta	qqaagtctct	gtgaaatagg	gaggcaggcu	13020
tatagacatt.	aacctaaata	aggagagatt	acctgcagca	gatgtcaata	ggaacgigag	13000
gtaggggta	gtgttaggca	gagtgtggac	tagagggtga	gacaagaaac	aggcagattt	12140
cctggccagt	tatectetaa	atagggagac	aaagttcggg	actttcacca	acctagaaga	13200
gagaatatgg	catottctag	taacaacctt	gtgctaccca	tgtcttctag	gcatecccaa	/3200
tagattagac	aattocccta	aaqtccccaa	cccactacag	n acagacaggg	atgaggacgg	13320
gatagagat.	gettgegaea	actaccctaa	aatgagcaat	cctacccagg	tacagggaga	13360
taataaggac	aggggaggga	tgagggtact	qatggatgaa	. gccccagccc	tttggatgga	/3440
aagtggtgag	atcaccctct	tcagagttat	caaqaggaga	tggtgagaac	aggicectici	73300
ctctcagaca	gatgcagaca	acaacctaat	qqqqgatgtc	: tgtgatacta	atgaagacag	/3500
gtaaggtett	ggtcaagaga	cacaagatet	ttcttttt	: tgtcttctg	agacggctty	73020
ctctatcacc	taggctggag	tacaqtqqca	cgatcttggc	: tcactgcaac	creegreree	/3000
caddatcaad	tgattctcat	gcctcaacct	ccctgagtgg	, ctaggattac	aggeatgtge	/3/40
taccaageee	agctaattct	tgtattttca	gtagagacag	g ggtttcacca	tgttggccag	73000
actaatetea	aactccttac	ctcaggtgat	ccqccagcct	: ctgcctccca	aagtgetgtg	/3000
attacaggtg	tgagccactg	taccaacaa	atgcaaggto	: ttatagggga	tattttattt	13320
tectetagta	tateetttt	ttttttt	tqagacggag	, tettgetetg	tegeceagge	13360
tagagtagag	tagcatgatc	teggeteact	. gcaagctcca	a cctcccgagt	teacgecatt	74040
cttctgcctc	: agcctcccaa	ataactaaa	ctacaggcgc	c ctgccaccac	geeeggetaa	/4T00
	: ttttagtaga	aacaaaattt	: cactgtgtta	a accaggatgg	tetegatete	74700
ctcatctcgt	: gatttgcctg	cctcagcctc	: ccaaagtgct	: gggattacag	gegtgageea	74220
ccatacccas	, cctcctttt	ttttttqaqa	tggagtette	g ctctgtcact	. caagerggag	74200
tacaataata	tcggctcact	acaacctcca	ı cctccagggi	t tcaagcgatt	tteetgeete	14340
agreteccas	: tagctggatt	acaggggggt	: qctaccaago	c tcagctaatt	: tttgtgtttt	74400
tantagagag	: agggtttcat	catattaaca	: aggctggtci	t cgaactectg	acercaygry	74400
atetadeceae	: cttaacctcc	caaaqtacto	, qqaatacagg	g catgagecac	: Egrgcccagy	74520
ccatagtata	n ttctaaattc	cttctatgat	ttagcctta	a ttctctattg	, ctattcayca	/4500
ggaatttatt	: cttacagtca	tecetecatt	: cctactgcc	a gaccttcacc	: teacetgget	74040
gactgccago	r aatctaatta	tatogagagg	aqqctccaga	a gactcccagg	, cagaagcgaa	. /4/00
gggaggaga	aggagtacct	ttaaatcctt	: tatttggta	c ctgttcttci	: gattagcgat	. /4/60
aaaaataaa	r atcaggacac	caaggacaag	tqcccacag	c tgccaaatag	g ctcccagcig	14020
ggggarggg	a acgatggact	tagagatoa	tatgataga	g atgatgacaa	tgatggcatc	74880
acacattato	, tacctacta	r tecegataaq	tqccqcctg	g tacccaatco	: caatcagaag	14340
gartagatt	g gtaagcctgc	dasccaaa	cacqttaga	- c tggtgttqc	tttgcccago	75000
yacccagac		350000030	,			

```
tggaggcagc aagccctgtt gggaagtgag gaagggcaag gtgggaaaga tgtcaggaat 75060
gcaggcccaa cagatggtat tgttgcctaa tggcagtggc cagggccttc ctgagcaccc 75120
agceteacte tgeccaggea atggegttgg tgatgtgtg gaggatgaet ttgacaatga 75180
tgctgtggtc gaccccctgg atgtgtgtcc tgaaagtgca gaggtaacgc ttacggattt 75240
                                                                  75270
tegggeetat cagacegteg teetggatee
<210> 55
<211> 2385
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X86809
<400> 55
gccagagcgc gcggggcagt gtgcgcggga gccgaggagg aggttccgga cgctgcttag 60
gaaccgggga ctcaggagtg cccgcgccct gagcgctcag ctccagaggc gtcatggttg 120
agtacgggac cetetttcaa gacctgacca acaacatcac cettgaagat ctagaacage 180
tcaagtcggc ctgcaaggaa gacatcccca gcgaaaagag tgaggagatc actactggca 240
gtgcctggtt tagcttcctg gagagccaca acaagctgga caaagacaac ctctccatca 300
ttgagcacat ctttgagatc tcccgccgtc ctgacctact cactatggtg gttgactaca 360
gaacccgtgt gctgaagatc tctgaggagg atgagctgga caccaagcta acccgtatcc 420
ccagtgccaa gaagtacaaa gacattatcc ggcagccctc tgaggaagag atcatcaaat 480
tgggtccccc accgaagaag gcctgagcaa gggggaggaa gaggaggaag gttggacctt 540
catcagacca cttccttccc ccatcctcca ggagaggggg caagggcaac ccaccatcta 600
cccacttact aacctggtcc taaccccctt actgtgcgcg tgtgtgtgcg tgtgcgcagc 660
tetggetgtt tgtetatatg tetageteat etagtteete ttettaaggg gatgggggte 720
aggggctagg ggagggggct gagtttcccc actttaggag gaggtggggg ctatttctat 780
gcaaatagaa atcagcacat tcctcctact tccctttcct ccactccccc catatcttta 840
aagtgtggaa gcagaaagga cctgcatttt cctacattga ggagctgaca taggggtaag 900
gtatgggaga ggtaggtgga tccagggaaa agcagtgggg acggaaggca aagagaccac 960
ttaaccccca cctggaaggg gcaaagaaaa gccagagttc catgtttgta ctcctgtgct 1020
ggactgtttc ctgagtacca gcaggtccct ttttgtctct catgggccta gcataggtat 1080
gagccaggga teettteetg gteectaaga teaaaeeeea tggagcagee agegttagat 1140
gcccccaccc acctgtactc tggagagact gtgctgggaa catgtaccac tgagcctgag 1200
atggggatga gggcagagag aggggagccc cctcttccac tcagttgttc ctactcagac 1260
tgttgcactc taaaccttag ggaggttgaa agaattgaga cccttaggtt ttaacaacga 1320
atcctgacaa caccatctat tagggtccca aattggttat tgtaggcaac cttccctctt 1380
ttcttggtga agaacatccc aagccagaaa gaagttaact acagtgtttt cctttgcacc 1440
gatccccacc ccaattcaat cccggaaggg acttacttag gaaacccttc tttactagat 1500
atcetggece cetgggettg tgaacacete ctagecacat caetacagta cagtgagtga 1560
ccccagcete etgectacce caagatgeee etccccacce tgaccgtget aactgtgtgt 1620
 acatatatat tetacatata tgtatattaa aactgcactg ccatgtctgc ccttttttgt 1680
ggtgtctagc attaacttat tgtctaggcc agagcgggg tgggagggga atgccacagt 1740
 gaagggagtg gcagaatcaa attgctacat agtccaaaca aaaaagaagg ctttttcaaa 1800
 aaacattaaa ttcacatgca gtctcagaga ctttttagac aaagttcaag ttaggagctt 1860
 ttaggatgtg ggagtaaaac tttaatggga ggggagggct ggctgctgga agaaggaaga 1920
 agccagactg gttagacagt actcttaact cctagcccag cctagcgtgc cctgccctc 1980
 tggccactgc tgcagacacc tgccttaaca cacacacctc taggactcca cagttttgcc 2040
 ttaaaggacc ttcccaagtc tccctttccc tgtctggctt ctcccttaag aagagagaa 2100
 tacttgtaga attgggtggg gggaatgagc atgaactgtc cttccatttg ggatatgtta 2160
 cattagagtg agagagaga taaggagcct ttcttatgga agaaatggga gaagagagac 2220
 agggttcttt tcagcagagt ctagtagttt ctctgtaagg caaaataatc taaaaagact 2280
 aacetgecea eccaeteett atattgetgt gagattgece etatettgtg etettetgte 2340
                                                                   2385
 tgcagtgtgc acggccttgt tctaacccgg aataaaggtg attga
 <210> 56
 <211> 1689
 <212> DNA
 <213> Homo sapiens
```

```
<220>
<223> Genbank Accession No. U32680
cccctagaca agccggagct gggaccggca atcgggcgtt gatccttgtc acctgtcgca 60
gaccetcate cetecegtgg gagececett tggacactet atgaccetgg accetegggg 120
gacctgaact tgatgcgatg ggaggctgtg caggctcgcg gcggcgcttt tcggattccg 180
agggggagga gaccgtcccg gagccccggc tccctctgtt ggaccatcag ggcgcgcatt 240
ggaagaacgc ggtgggcttc tggctgctgg gcctttgcaa caacttctct tatgtggtga 300
tgctgagtgc cgcccacgac atccttagcc acaagaggac atcgggaaac cagagccatg 360
tggacccagg cccaacgccg atcccccaca acagctcatc acgatttgac tgcaactctg 420
tototacggo tgotgtgoto otggoggaca tootococac actogtoato aaattgttgg 480
ctectettgg cetteacetg etgecetaca geceegggt tetegteagt gggatttgtg 540
ctgctggaag cttcgtcctg gttgcctttt ctcattctgt ggggaccagc ctgtgtggtg 600
tggtcttcgc tagcatctca tcaggccttg gggaggtcac cttcctctcc ctcactgcct 660
tctaccccag ggccgtgatc tcctggtggt cctcagggac tgggggagct gggctgctgg 720
gggccetgte ctacctgggc ctcacccagg ccggcctctc ccctcagcag accctgctgt 780
ccatgctggg tatccctgcc ctgctgctgg ccagctattt cttgttgctc acatctcctg 840
aggeccagga ccetggaggg gaagaagaag cagagagege ageceggeag cceetcataa 900
gaaccgaggc cccggagtcg aagccaggct ccagctccag cctctccctt cgggaaaggt 960
ggacagtatt caagggtctg ctgtggtaca ttgttccctt ggtcgtagtt tactttgccg 1020
agtatttcat taaccaggga ctttttgaac tcctcttttt ctggaacact tccctgagtc 1080
acgeteagea atacegetgg taccagatge tgtaccagge tggegtettt geeteeeget 1140
cttctctccg ctgctgtcgc atccgtttca cctgggccct ggccctgctg cagtgcctca 1200
acctggtgtt cctgctggca gacgtgtggt tcggctttct gccaagcatc tacctcgtct 1260
tectgateat tetgtatgag gggeteetgg gaggegeage etaegtgaae acetteeaca 1320
acategeeet ggagaceagt gatgageace gggagtttge aatggeggee acetgeatet 1380
ctgacacact ggggatctcc ctgtcggggc tcctggcttt gcctctgcat gacttcctct 1440
gccagctctc ctgatactcg ggatcctcag gacgcaggtc acattcacct gtgggcagag 1500
ggacaggtca gacacccagg cccaccccag agaccctcca tgaactgtgc tcccagcctt 1560
cccggcaggt ctgggagtag ggaagggctg aagccttgtt tccttgcagg ggggccagcc 1620
attgtctccc acttggggag tttcttcctg gcatcatgcc ttctgaataa atgccgattt 1680
tqtccatgg
<210> 57
<211> 925
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D26600
 <400> 57
ttttttctgc taccgtgact aagatggaag cgtttttggg gtcgcggtcc ggactttggg 60
cggggggtcc ggccccagga cagttttacc gcattccgtc cactcccgat tccttcatgg 120
 atccggcgtc tgcactttac agaggtccaa tcacgcggac ccagaacccc atggtgaccg 180
ggacctcagt cctcggcgtt aagttcgagg gcggagtggt gattgccgca gacatgctgg 240
gatectacgg ctccttggct cgtttccgca acateteteg cattatgcga gtcaacaaca 300
 graceatget gggtgeetet ggegaetaeg etgattteea gratttgaag caagtteteg 360
 gccagatggt gattgatgag gagcttctgg gagatggaca cagctatagt cctagagcta 420
 ttcattcatg gctgaccagg gccatgtaca gccggcgctc gaagatgaac cctttgtgga 480
 acaccatggt catcggaggc tatgctgatg gagagagctt cctcggttat gtggacatgc 540
 ttggtgtagc ctatgaagcc ccttcgctgg ccactggtta tggtgcatac ttggctcagc 600
 ctctgctgcg agaagttctg gagaagcagc cagtgctaag ccagaccgag gcccgcgact 660
tagtagaacg ctgcatgcga gtgctgtact accgagatgc ccgttcttac aaccggtttc 720
 aaaccgccac tgtcaccgaa aaaggtgttg aaatagaggg accattgtct acagagacca 780
 actgggatat tgcccacatg atcagtggct ttgaatgaaa tacagatgca ttatccagaa 840
 ctgaagttgc cctactttta actttgaact tggctagttc aaagatagac tcttcttttg 900
                                                                   925
 taaagtaaat aaattcttca aaatg
```

<210> 58

<211> 86080

<212> DNA <213> Homo sapiens <220> <223> Genbank Accession No. AL008726 gatcagagta gtaaagggtg aggcagcatg gtaaaatggg gagagtacaa gccttgaagt 60 ccaaaaccca agatccaagg ccagcctctg cgagttgtgt gaccttgggc cggtagcagt 120 gcctctctga gccatttctt catctgtggg attggacctg tctgtggggt ctccctcaca 180 gagagaccat ggtaaatggg aacccgggta taagtcacct agcttgtgct gggtacacag 240 cgttggtgct tggcaagagg aatgtcccgt ctttgaacca tggtaagggg caggggatag 300 gaggagaaag tgacaggtag gccactgttt actgaacccc atgacgtgcc acacactgtg 360 ctaagcattt taacatgatc tcatctagtg ctcctcctat gaggtagcaa cgattatccc 420 cacttgactg cagagetttg taaattataa aggtetatac teactetgte accaaggetg 480 atgtgcagtg gtgctattat agctcactgc agcctctatc tcctgggctc aagtgatcct 540 cccacttcag cctcccgagt agctgggact agaggtgcac caccaccct ggctttttt 600 ttttttgtat ttttatagag atggggtttc accatgttgc ccaggctggt ctcgaactcc 660 taggeteagg ggateettee acettggttt eccaaagtge tagaattaca gteatgagge 720 accatgccca cccatgttga tgattcttat tattaatcct gactggaggg aagttgggac 780 gatgtgcatt tggaggagaa ataatcattg aaagcaaaga tccttctctg aaagttacct 900 tctccaggga aagggtgttt ggattcactt tttttgaagt aaggagtagg caggggaagg 960 ttotttaagt ggtaaaagga cagotggooo ottootagag otcagtgaag aaatotggto 1020 atctggggag taaaggggtg ggcagaccaa gtccagaggg agcccaacct gagaatccac 1080 aaggtgcagg ctgggcactg gggagtaggc aaggcttgta gacagtggct acgtggacag 1140 aaagagcacc aagacaaccg atagcaggct ctggggccag gaaagggggg ctggacacca 1200 aggaatgcag atggacagtg gcaactgggc tgccccttc ccctatatat agacattccc 1260 aaggaaagct cagcagggct gggccaagct aaataaggcc tcccccaggc aggcagggtg 1320 ccaaagggtg agggagaccc atgggattcc aatttagttt ttattgtttt ttggttttt 1380 ggggttttgt ttttgagaca gactctcact ctgtcaccca ggctggaatg cagtggcaca 1440 atcteggete actgeacect eegectecta ggtteaagtg atteteatge etcageette 1500 tgagtagcta ggattacagg cacataccac tacgcccagc taatttttgt ttttggtttt 1560 ttttttttt ttttttgag acagagtttt gctcttgttg cccaggctgg agtacaatgg 1620 tgcaatctcg gctcaccaca acctccgcct cttgggttca agcaattctc ctgcctcagc 1680 ctcccgagta gccggaatta caggcatgag ccaccatgcc cggctaattt tgtattttta 1740 gtagagacag ggtttctcca tgttggtcaa gctggtctca aactcccaac ctcaggtgat 1800 ccgcccacct cagcctccca aagcactggg attacaggtg tgagctacca cacccggcaa 1860 attttttact ttttgtagag acaaggtttc atcgaccggg cacggtggct caggcctgta 1920 atcccaccac tttgggaggc tgagatgggc ggatcacgag gtcaggagat cgagaccatc 1980 ctggctaaca cagtgaaacc ccatctctac taaaaataca aaaaaattag ccgggcatgg 2040 tggtgggcgc ctgtagtccc agctacttgg gaggctgagg ctgaggcagg agaatggtgt 2100 gaacctggga ggcagagctt gcagtgagcc gagatcacac cactgcactc cagcctgggc 2160 aacagagcaa gaccccgtct caaaaaaaaa aaaagtttca tcatgttggc caggctggtc 2220 tcaaactcct gacctcaagt gatccgcctg cctcagcctc ctaaagtgct aggattacag 2280 gcatgagccc ctgagcccag cctttgttct tttgtttatt caagggatta ggtaaggccc 2340 aaattgctta atgtagccaa gcaaggtccc attggccctt ctaatctcac tccttccctc 2400 cacatcatgt tgctgtctgc tctgatcaga ctttaaaata ctgctctagg ctgggcacgg 2460 tggctcatgc ctgtaatccc agcattttgg gaggtgcagg ctggcagatc acgaggtcag 2520 gagttcgaga ccatcctggc cagcatggtg aaaccctgtc tctactaaaa atacaaaaaa 2580 ttgctgctgg gtgtggtggt gggcgcctgt agtcccagct acttgggaag ctgaggcaga 2640 agaatcactt gaacctggca ggcgaaggtt gcactgagcc aagatcatgc cactgctctc 2700 cageetggge gacaaaagga gactgeatet caaaaaaaaa aaaaaaaaa aaaagaetae 2760 tctaaacacc accttctatg aaccttcaag cctttgcaca tgctgttttt ttctgccaga 2820 aactcccatc tttcctctct tcatctgtct acttccctat catctttcta agctctaaca 2880 tcacttcctc ggggatcctt cccccactgt gtccagacca gggagtccaa ggtggtctct 2940 agtagtttcc tcaatcatag cactgagcat accttatgct cacaacccat tctatgttct 3000 acagatcatc acatttccca gtgctcagca cttgctatgt agcaggtgtt caacagatat 3060 tatattctac ataagaataa ctgaactgga tggtatttag ttcaatataa gggggaactt 3120 cctaatagtc atagttgaac aataatggga acaggtggcc tcaggaggta atgagctccg 3180

+-+a+a	tatacccasa	caggagctag	atgaccattt	ctcagggagg	ctqtaqqqag	3240
caccaccyag	agastttaag	aatgggggca	gtggctcaca	cttttaatcc	tagcacattg	3300
atatecatae	agaacccaag	ctcttgagcc	caggagttca	ataccagect	gggcaacatg	3360
ggaagetgag	geaggeggae	aaaaaattaa	aataaaacaa	agaatggtgg	gtggtagctc	3420
gcgagacget	bassassass	ttgggaggca	aacataaaaa	gatetettea	gaccaagagt	3480
atacttgtaa	teceageaca	atgcaacccc	acctttacaa	aaaataaaat	actaccacc	3540
tcaagatcag	cetgggeaac	agtcccagat	acttccacaa	ctaaaataaa	agaatcactt	3600
catggtgggc	acatatetgt	agreecagar	atcatcacac	ccctccactc	cagceteaca	3660
gagcccagga	gtttgagget	gcagtgagct	acgaccgcac	agtagateat	gtctctaatc	3720
acagagtgag	actetgtete	tgaaagaaga	tastttasaa	tragrantto	gagaccagcc	3780
ccagcacttt	gggaggetga	ggcaggtgga	assatadas	aaattagccg	gatataataa	3840
tggccaacat	ggtgaaacce	catctctact	tacttctaat	tocarctact	taggattact	3900
cacatgcctg	taatteeage	tacttgggat	atacacatta	tagtgaggga	agagtatacc	3960
tgaggcagga	aaaccgcccg	aacccaggag	acygaggeeg	22222222	aaataaataa	4020
attggactcc	ageetgggtg	atggagtaag	accccgcccc	dagaaaaaaa	agaagaagaa	4080
aaataaataa	aaaaggaaga	agaagcagga gcaaccttca	ggaggaagaa	ttctgactgt	ttatatgacc	4140
ataataatag	tggagaatge	actaageete	agactaccta	tetetaaaat	ggaggtgata	4200
cagcataagc	ecttececte	ctcctgctct	agaccaccca	gatttcatga	agaccagett	4260
ggccagattt	etgaggggee	atataccgaa	ggagagetta	ttttttaacc	aatggttggt	4320
tgtgcccaga	catgtaagge	acacaccyaa	ggacaagcca	tttatcccaa	tatcttgccc	4380
gaatgagtga	gtgttgaatt	aatgaatgaa	geacyccccc	aaactggcca	agcacagtag	4440
ataagccaaa	tgaagagtaa	ttcgaggttt actttgggag	gaaaccgcgc	gtggatgact	tgaggcagg	4500
ctcacgcctg	taateeeage	aatatggtga	aaccccacct	ctactaaaaa	tacaaaaatt	4560
tgttccagat	cageetggee	atataggega	adccccaccc	gaggetgagg	caggagaatt	4620
agccgcatgg	tggcacatge	ctgtagtccc	agccacccag	gaggeegagg	actocagoot	4680
gcttgaacct	gggaggcaga	ggttacagtg	agecaagaee	ataaataaat	aaataaaatt	4740
gggcgacaga	gcaagactct	gtctccctct	tetatttee	acadacadac	cttggggaag	4800
gcacaaactt	aggettaaaa	teccageece	atagagatt	agacycygac	tacageetet	4860
tcactttgcc	teagtttett	catcttgaaa	argyaccare	cctacaccac	gatgtagaaa	4920
tccccaggac	gctgtgaggg	agagatgtga	tttataataa	cetagageag	cagggaggtg	4980
gtggaccctc	agaaaataag	aaccccagcc	caaaaaaaat	teteteetat	gccactcaga	5040
aaataccttc	tgettateee	aaggcatttt	atttatta	ttatattata	taactatcaa	5100
aagggtagga	getaettegg	agagattttg	tatascaca	accacaata	actttttctt	5160
aatctgccct	aacaactgat	acctaggett	anagaaagga	adacacacac	tgagattatc	5220
gacctgcagc	tgeeetgegg	ataaaagata gggcagtatg	caccadagee	cctagactee	aggccccata	5280
aggeetgetg	cacaggaaaa	gcagaggcag	gtggatgagg	tgagcccagg	aattcgagac	5340
ctcagaaacc	cctgagggag	aatcccatct	ctacaaaaaa	tacaaaaatt	agctgggtgt	5400
cagcetggge	aacatggcca	ctagctactg	ccacaaaaaa	aataaaaaaa	atgacctgag	5460
ggtggcgaac	geetetatee	agtaagcaga	gagagagaga	ctocactcca	gcctaggtga	5520
cccagggagg	cggaggitge	. aaagagaaag	aaadaaadaa	agagagagag	agaaagaaag	5580
cagagugaga	occeatica.	agaaagaaac	ctctggcaag	ctatataatt	aagccaagta	5640
aaagagagag	ayayaaayaa	agtttccctg	tttgcctact	teceatgtgt	gaggttcaaa	5700
acteaceete	gaaggtata	aacactgtag	aaacaataat	cattatqtaa	gtgatcattt	5760
catagaccatt	tactctatac	caggcacggg	acgagcgtto	ttacaagago	tgcaaaatta	5820
cyttagette	tattottoct	gttttacata	tgagaaaacc	taggeteage	gaggtcagat	5880
togaaccaac	ccaaatcacc	catcttctcc	taaccettca	ttttctctcg	ggagacatgg	5940
cctacctact	attocataat	tactttgtga	agttaaagag	cattaggtag	aaatgagtgg	6000
gagagattg	acegoacato	ggtggggtgg	gaggattcaa	qqaqqgtacq	cgcctggccg	6060
gacagacegg	, aguegaege	aggcctggga	ctccctcago	ccgacccagg	cttcccaagt	6120
cactactac	uccaagggg	: cgggattctc	agacaactco	qqcqagcggg	r cggggcagga	6180
George	. caacaaaaaa	ctgcccgago	agcactcta	gcggcctgag	cccggcggag	6240
ggcggggcgs	. caacaacaa	ctccatggg	tacaaaaaa	tqcacccgga	ccctgggg	6300
acaacacacac	cctgaatgc	ccgtgggacg	caggaggtag	aggegeacga	ggcggcgcaa	6360
geggegege	. gagggteete	g ageceeteeg	gggaggaac	cggtcctagg	ctgagtgggt	6420
tagacaccys	g graatacta	g ctgggtcccc	tggttcgcaa	gaceteggad	tgccagggg	6480
tagagacta	ccacacccct	: ccctctccqc	r ttegggeee	gececteete	: ctcctgcgcc	: 6540
aggggcccc	accetect	cgggatccgg	tacacagegt	t cgcgcgctco	ccccagggt	6600
ccatogoct	coagetest	g caccggctgc	ggcacgcctt	ggccggcgad	ggccccgggg	6660
addcadcad	cagtccaga	g gccgagcagt	: ttccggagag	g ctcagagcts	g gaggacgacg	3 6/20
accccaagg	r cetatecte	c cqactcaqco	gcaccctcag	g cttcaccago	: geegaggaeg	9 6/60
acdaddacd	a cgaggacga	g gacgacgag	aggetagee	c tgaccagcto	g cccctcgggg	6840
~~5~55~69	5-555-					

atacaa cata	addadaadac	gcaggcgagt	gcaggaggag	ggaggggga	accctggggc	6900
trasttagge	ctccatccca	accacattcc	cagagcatcc	agggcgctaa	gttgatccag	6960
ctgactagge	cacacttett	aaaggggctg	ggcgacctct	taactatata	accttgagag	7020
actottaaco	cacacacaca	ccaagttttc	ccttgtgtca	agtagagaa	ctcactctca	7080
tataaaaatt	actacaaaca	ttaaatotac	aggacttagg	atccgaatgg	aaatgatgta	7140
ttaacqatat	tttgaggta	gagetattaa	tttagcccct	actotctocc	aggcacggtg	7200
tttaacgacac	castacetet	ctctccctca	gtttccattt	ctgtaaaaag	ggggtaagtc	7260
ataaataaa	chacasacat	gagtgaggg	acatcaataa	ttgatgtcga	ccctggccct	7320
cigocicaca	ctgggaggac	tastatatat	acgccagegg	deceeeee	tgatgggcag	7380
aggeeeactg	acatgactgg	agagagagata	geagaacgga	gaaagaagta	ccggaacacc	7440
tggggcagtc	ageteetige	geggeageeg	accarrecta	acattatcaa	ggacccgccc	7500
taggeacece	tagtggctgct	gggtgtagag	accagegeea	atgaatccaa	aagtatggct	7560
cccaagtacg	rggrgagrga	gggtctagaa	gagggteta	tataattata	aatggttacc	7620
aggagcaagt	agggaagacc	tanaatana	aaggggcca	aacttgagga	aatcctcaca	7680
cigiciacaa	tttaattaa	agtgagtgaa	atagagatta	aggacettee	tcttaacctg	7740
caagacttag	taggagaga	actgactgaa	cttcccacc	cagcccacaa	ggtttttgca	7800
greetgagae	nantatana	tagagagaga	cacatottat	ctgggtcaaa	cttgagatcc	7860
aactgtagta	agatgcgaga	tacagagaga	ggetttegat	ccagaccaat	cttgactccc	7920
aagttgtatg	agetggtage	statagataa	attatttaac	cttggtcatc	ttccgtttcc	7980
acttatttcc	agecgeecga	atacagaaga	ttacaccacc	agttaaatga	gacaatggac	8040
teattatage	tagaggaaa	acycagaaga	tracagoagg	aatgaaatgg	tagctatgtc	8100
aaaaagccct	tagcagugug	tassastatt	tatastataa	aacguaacgs	gtccttataa	8160
accattattt	aaccccgggc	coadacec	accttatece	taagggtag	acttagaggg	8220
cgcacaggtc	aaccagttet	gaggaatgt	acceegeece	ttagagtee	ttgctgtttt	8280
ttggtggagg	ctaggatgaa	gaycaacycc	ggggaggacc	cctttaatgc	ccacagcgac	8340
ccttgctgtt	gagagactga	citygagaat	tassaccea	ctaaactaac	cactcctgtc	8400
tcctgctcca	geceettte	aggeeaggee	ctattaacca	ccgagetgge	cctctgactc	8460
agtggcagct	ctecatetet	cactececce	ateteggeet	ctccccctt	ttctattact	8520
agcaggaggg	ggeetggage	ceagueecau	gastagtaga	atttcaccec	ttctgttgct	8580
greageaage	aagggccaca	cccatggggt	gaccaccca	tactcagcag	ggaccgactc	8640
cgattattga	gtettttaaa	addatttttg	aggeeggeg	cagagagaga	cgcctgtaat	8700
cccagcactt	tgggaageeg	aggegggegg	accacgagge	gacgagacta	teetggataa	8760
cacggtgaaa	cccgtctct	accaaaaaca	caaaaaaaca	gccgggcacg	gtggcaggcg	8820
cctgtagtcc	cagttacttg	ggaggetgag	gcaggagaac	tgggggaacc	caggaggcag	8880
agtttgcagt	gageegagat	cgagecaetg	cagteeggee	. cgggcaacag	agcgagactc	8940
cgtctcaaaa	aaaaaaaaa	aaaaaaaaaa	atacatagas	acayyyeete	gttctgtcac	9000
tcaggctgga	gtgcagtggt	gcagtcataa	ggagtagag	tataaaccac	ggetcaaget	9060
atcctcccac	ctcagcctcc	caagtageta	ggactacage	gettestace	cacgtgtggc	9120
caatgatgaa	gtctgaagtg	gcaaaggtet	cagaactctg	ggtttatata	ctggaagggg	9180
acaccaagga	atagttcaga	ggctgagagg	aatgggggcg	accycygyca accetatata	cctggatggg	9240
aagggatgac	aagatagagc	aggatggcca	agtatgeece	ggcctgtgtc	tggagaagca	9300
aggcacctcc	tgtgtacaat	ggggacccca	ttaantaaa	. caactegtgg	gggtgaagag	9360
cacaggettt	ggaatcagat	caacetgagt	tagaatatt	taaaaataat	tttccagctg	9420
tgtgacttac	ggcaagtett	tgageeeee	ttataataat	. tgagcceget · taaatmaaat	tcctcagctg cacagatgta	9480
tcagagataa	ggacetteet	rgcagtgctg	ctgigalgal	. caaacgaaac	actactgtca	9540
aagagtgett	ggtacaacag	gaggcacagg	tcaatgeet	. gggtaatgga · aatogataca	aaatgtaaac	9600
ttatcaccca	tetggetgea	ttotataagg	ceatchatat	taaggatata taaggatata	tggtgtccta	9660
tagatgaaca	taaaggetta	tratacagac	. cagtgtgtet	. eguuguuuuc . aactatttat	aaataaaggt	9720
aagtgtgtee	tgcagaaaac	ragiteeteg	gaacgetaac	. agcegeetee . aatacaataa	gtttctttat	9780
tttgcaggca	tttastaat	agaatgcaga	tacactotos	atcttcaaga	ggacagagta	9840
	- cttaateect	aatagtgata	atettatae	ttccacaga	caaatgtgag	9900
agcaaaccta	actgaccagg	agragatas	tttaacatct	. aacactaatt	aactctcctt	9960
agaaagatet	ggatttggtg	ttatagggtgcc	atrostatto	. addactyget	aactctcctt	10020
ttaaacctgt	Lygereggea	teataggica	tettaassa	, agguerag	acctgggagg ccaatacctc	10080
cggggaactt	cgtgatcatc	cegeceages	thatatast	· ttcttctta	cattttttctt	10140
cctgattctt	greerateta	aaaacgccac		, tettetaaa	catttttctt cagagtcttg	10200
taaatgaacc	caccccccc	. couttatect		, turutuyaya	ctccacctcc	10260
ctctgttgcc	caggetggag	cgcagtggtg	caalulday	taccettace	ggtgcccacc	10320
taggttcaag	caatcctccc	geeleageel	, todagagtage	, cayyaccaca	tggccaggct	10380
accatgeetg	getaaetttt	. goatteteag	, cayayacyyy	, gullicaligu	gttgggatta	10440
ggttttgaac	. coccgaectc	aagigaldig	, togetteage	t ottaaataan	tttatcgaga	10500
caggigigag	, ccaccacycc	. caycogaaco			,	

cagaatetta	ctctgtcgcc	taggctggag	tgcagtggcg	tgatcatagc	tcactgcagc	10560
cttcaactca	tgggctcaca	tgattctctg	cctcaqcctc	ctgagtagct	gggaccacaa	10620
atagaacceg	aattctttt	ctttttcttt	ttctttttt	tagagacagg	gtcttgccat	10680
gtgcccaacc	ctggtctcga	actectedec	ttaagctgtt	ctcctgcctc	agceteceaa	10740
grigeceagg	ttacaggtat	acceceggee	accestant	taagtaattt	taaaagacaa	10800
agtactggga	ctaccgtacg	tagecactge	gectacece	caadagaagc	tagccataaa	10860
cttcatagca	ctaecgtacg	cggaaagtet	tataataaa	gagagaga	aggetaaggt	10920
aataaaaggt	gaggcacggt	ggeteacacc	rgcaaccccc	geacceggg	daaaccccda	10980
gggcagatca	cctgaggtca	ggagttcaag	accayeetgg	ccaacacagge	tacasacts	11040
cactactaaa	aatacaaaaa	ttagccggat	grggrggrag	gegeetgtaa	actoragecae	11100
tcgggagatt	gaggcaggag	aattgcttga	acccaggagg	cagagginge	agrgagegga	11160
gattgtgcca	ctgcatgcca	gcctgggcga	cagggcgaga	ctaaataaat	adatadayta	11220
aataagtaag	tagtgaaaat	gaaacgtcat	taaatcttgc	ctagatgttg	Legeetgaag	11220
gaggccctga	cctgagatcc	actttctgac	tetttetaa	aaatggagat	gagaagtgtt	11260
agagaagtac	tttttttt	ttttttgag	agagagtttc	actittggtg	cccaggctcg	11340
agtgccatga	gcaatctcgg	ctcaccacaa	cctccacctc	ccaggttcaa	gcaattctcc	11400
tacctéaacc	tcccaagtag	ctgggattac	aggcatgtgc	caccacgcct	ggctaatttt	11460
gcatttttag	tagagacagg	gtttctccat	gttggtcagc	ctggtctcga	actctcaacc	TT270
tcaggtgatc	cacctqcctc	agcctcccaa	agtgctgaga	ttacaggtgt	gtgtgtgagc	TT280
cactgcaacc	tocccaaqaa	gtcctttttt	taaaaccaaa	ctgagagctg	gecaggegeg	11640
gtggctcaca	cctataatcc	caqcactctg	ggaggcaaag	gcgggcggat	cacaaggtca	TT 100
ggagat.cgag	accatcctqq	ctaacacagt	gaaaccccgt	ctctactaaa	aaatacaaaa	11/00
aattagccgg	acataataac	aggcgcctgt	agtcccagct	actcgggagg	ccgaggcagg	T1970
agaatggagt	gaacccagga	qqcqqaqctt	gcagtgagcc	gagatcgtgc	cactgtactc	11000
cagcactcca	acctagacaa	caqaqcgaga	ctccgtctca	aaaaaaataa	aaaaataaaa	11940
aaaccccaac	aaaaccaaac	tgagagette	tcaatttgta	gccagaaaga	ttaaaaaaca	12000
attaggctgg	gtgtggtgct	catgcctgta	atcttagcac	tttgggaagc	ctagctagga	12060
agattgttca	aggccaggag	ttcaaqqcca	gccctagcaa	catagtgaga	cccccctca	12120
tetecataca	aaaaaaaaa	aaaaaatttt	tttaaataqc	tgagtgtggt	ggtgcatgcc	12180
tatactecta	gctacttggg	aggetgagge	aggaggaatg	cttcagccca	ggaggttgaa	12240
actageceea	gctatgattg	taccagtgta	ctccaacctq	gccaacagtg	agaccctgtc	12300
tessasasta	ataattaaaa	addagcaac	ctcctgatac	agtgatattt	actctagtgc	12360
acaccaccta	aaaacctcag	gtaccaatac	ttgtacatgt	ctcatttttg	gacaaacact	12420
acaccaccca	agcacttcct	tcactagaaa	cagaagtgga	cccagaggg	gactcccttg	12480
gattegates	acagagaagg	agtagctgac	ctggggttag	aacttgagtc	ctaggccagt	12540
atacttta	cagttatggc	agttgtggt	atctacagac	ctatecteta	ggtctagttt	12600
gganagget	gaccagggat	atagagacca	ggtgtccaaa	gtggaacaag	ctccaagctg	12660
gyaaaagccc	agccccaaga	gattagctag	gatttcaact	tatgtctggt	tttccagagg	12720
guccuaaagg	aagaactaat	actetatoro	aagggagtag	aaaaaaaggg	gcagcagccc	12780
gggetgteag	agctcatctc	tatatttata	tettettact	accttagacc	tagatcattt	12840
cgggcactga	tcaggtaaga	tagazetaga	cttccccgcc	actococado	agctcccqcc	12900
cagacaaacc	ctgtcccagg	cgggaccggg	adadatada	aggtacagct	aggagtatag	12960
ctcctgggtg	aggatgggga	ggtgaaagga	agaggegggg	cttacattta	ccctgacacc	13020
gggatgggga	gcagctctac	gggaacgggc	tastagacca	aggaccgcca	gattgccagc	13080
cacceteect	ctctcgccgt	tactereset	ttgaccggccc	деассоваас	ctacaacaac	13140
cagcccagat	cccaatggct	gantatat	teccecetaa	acaactacaa	cogaattta	13200
aatteegggg	cattgcccgc	getaceece	cctttgagga	attttaaat	cacctgcagg	13260
ctgcagagac	eattgcccgc	cgcagccggg	tanagasett	cttcatacta	ccggagetge	13320
cagtgcctga	gctgcgccat	geeeeggaee	tgcaggacco	. ccccgtgccg	ctctgggcca	13380
ggcgggcaca	gagcctcacc	tgtactggcc	caractete	. cccacaccc	ccctacta	13440
atgcctggca	gctgcaagcc	cagetgggea	ceeeeeeeegg	cccagaccgc	ccccagacat	13500
ccctggctgg	gctggccgtg	tgccaccagg	agetggaage	ccccggagag	ctagescat	13560
gctgtgagaa	ggccctgcag	ctgcttgggg	acaagagcci	. ccacccccc	ceggeacece	13620
ttctggaggo	ccatgtccgg	ctctcctggc	geetgggeet	. ggacaaacg	. caaccagagg	13680
ctcggctcca	agccctgcag	gaggcaggcc	ttacccccac	accacccccc	. agicicaaag	13740
aattoctcat	· caaqqaqqtq	ctogactaac	ccttqcctag	g atttaagged	: accgryagga	13/40
asaaaatta	cccagaaggg	aggggaagga	cctgatgaga	a acagaatago	; tgggaggctg	1,2000
cadaddatad	: taggaggggg	: tagaaqttcc	: aaaaqagaat	. gtgaagcaga	Ccaaggaaac	: T2000
ttctattaac	: ctaggeteac	, aataaacttt	: aactaggggti	geeettgtgt	. agcacaggga	1 13920
agtetgacac	- agecteteca	geetataaac	: agccqqqqq9	g ctytygcaca	i ggilggggc	1 13300
atottccctt	: attaataaac	: ccccaaqctc	r gcaaggcct	e trggergaag	g gecagggaci	. T#0#0
ataccccta	r agtectogae	r ttaaqqqatc	, aaggcaagg	e Egoaggeoug	, geceayggg	TATOO
attaaaagc	agccactcca	gtggtatcag	tctctttati	t ggatgtgagg	g gccaaaaggg	3 14100

		+	astaaasaat	tettgaagee	ccaggcgaag	14220
actgtaactc	ctgteteagg	aatyyyyata	gacgggaggc	cttcactccc	atcacacact	14280
ctggtacctc	tggctacage	ttgctctctg	agaccugggg	anagagaga	atcacgccct	14340
cctgggcaca	ggtcacagct	aggactecat	eetgaegeea	cageegeeea	tggaccagcc	14400
cccgagagcc	acctgtgggt	gaggtgaagg	gegatgatgg	cetgetteag	aacagccaaa	14460
tacacttttt	tttttttcc	tgaaacagag	tctcactaag	ttgeeagget	ggtctcaagc	14520
gcctgggttc	aagggatcct	cccgcctcag	cctcctgagc	agetgggatt	acaggcgcac	14520
atcaccatgc	ccaacctcca	agtggacttc	ttgcaaaggg	tetggeecag	ggcagggctg	14500
ccccacacaa	gggtgcactg	agtgtcgtgg	ctgctccaaa	tgccccttca	tgagcttatt	14040
atggaccgtc	attgaggggt	aactcctccc	acaggaaccc	cagttgacag	tttaaaagca	14700
ctttcacacc	tctcctcgct	tcctcaaaaa	gatcacagag	ggaggagctc	tgagaacagt	14760
ctccttcaac	agttcggcca	agcagaactg	ctgtacctct	gaccacttgt	gttaggaaaa	14820
ctateggete	cctgtataat	aaatcaagcc	aggtcctcca	agtggtaatt	catgaaaaat	14000
atececacta	ccaccaccaa	qqqqaaqaaa	ggactcagaa	gagaggactt	gaggccatga	14940
gatetageet	cttccctccc	catctqqaqa	ctctttctcc	cttgctggct	ttgggcccaa	12000
gtttgatgtt	tatgaggatg	attqctqqtt	tcccttacac	atagcagagc	teacteaget	T2000
ctcacagtag	ccaaatgaag	cagttatgtg	ttgtccagtt	ttccagacca	ggactgaaat	12120
ccagagaggg	tcaggaattt	ggccccatga	tgaagccaaa	tctgaaccca	tgtcctcact	TPTRO
tcaaggttat	caatcttqqa	ttqtqatgct	attggtactt	gagaataccc	cttatctgag	15240
tataaagaat	ccttgagttt	tgtccttggt	ttatcaagca	aagcttttct	tcatttgaaa	12300
totactccct	tggaaaggag	gtcagggttc	tgaagctaga	cattgatgaa	cgagtcttgt	T2300
tteteteece	tocaaggaag	gtccaagcag	gcccttaggg	accactgaat	gccccgatcc	15420
caatcaggtt	aatcagaatc	acttagagaa	cttaaaaata	cagtttcctg	gacettatee	13400
aagacctact	gagtgagaat	cttgagggtg	gaatcagaat	ctattttgaa	aaggcateee	13340
caaatggcag	tetgatggae	tacaaattta	gataccactg	ctgtaatgta	accetettig	12000
tttagatgag	gaaactgagg	ttcaqatqqa	agatatgatt	tgcctattgt	aatacaaaga	T2000
atctgaactg	attttaggac	tagaactggg	tccctgggag	aaggtgaatc	acatttccay	15/20
cacattctag	aaatttagag	cagagcaggt	gtcccggcct	caccctctca	ttttgaagat	T2\00
gaagatgcca	aagcetggga	gggaaggaaa	ggaagtgacc	tgtgcagcgc	cacacaggaa	15840
gtcgggaaat	cagcatcacc	caaqaaaqca	ggeteetgee	actcaaggtc	agtgcccttg	12300
teccacacgg	ccccacactc	accggcccag	gggctctcgc	attcatagag	catceagtgg	12300
tcagetegga	agggggggtg	gaaccacatg	gaatggtcca	gtgagaccat	gaagtgeace	10020
tratactace	actootoago	caqcaqtqca	gtgcccaaga	aggcatagtc	ggagatatag	10090
acaacaacac	aggagtggat	cttcatqtcq	ccctcgcctg	caacaggtcc	ccatcagccc	16140
taggeteeta	ggctttccag	ctcaggacct	gcacggaggt	agggggaaaa	gggactcccg	16200
tacatagata	tacagactag	ttactacaca	agagcgcttg	gcctacagtg	tgtgtgtgtg	16260
ataggggaga	agtgagatgg	cgacttgggg	agggcagggg	ı tgagcaggga	ctgaaattca	16320
atetteacea	cccaagtete	ccactctagg	ccccaaaagg	ggtgtcttct	tccaatttgc	16380
acaaagatac	tttatagtta	gcagcaaagc	tggacaacaa	cccagcgag	gtgccttttg	16440
cetteeteag	aaaggccttg	tatcaggatt	ataqtcatct	: ccaccttctc	cccatgcaaa	10200
adactasasa	aacccaaata	agaagctaag	ccaacttccc	catcatgcag	ataaggaaac	16560
addcccadad	aagggaactc	atgtgcccaa	ggccacacag	caaatgagtg	gtagacccct	16620
tagagagtag	tttcctccca	tccatqqqqt	actcttacca	atatagcccc	gggctcgcac	T0000
ccagaacato	tatttagact	ccattctctc	cagetggete	: aggggggatg	ggtttactgg	16740
cttgatctca	atogggacct	cctgagcagc	: aattcggttg	, agegeeaaty	ggtacctctt	10000
ttagaggtta	gggtccctga	aaqtaaaqqq	ı aaqagggtcg	g gggtgagacc	: caggaagaga	10000
gggagtgaga	tetacattac	ctcttctqac	: tcccctcatt	: cttccacagg	gaeceetgat	10920
atcccaaao	ctacataca	ctataacaa	caggatagt	g cagcgtttga	atcccttctt	16980
ggcgacttac	gagccatgtg	ateteatact	aattagtaat	ctgagtctat	tttcccatct	17040
ggccaccac	gageedegeg	gtaacctacc	tcataaccaa	a cactgtgaag	acaagatcat	17100
geadaceges	ccaacacatc	atagtaataa	ggcataccct	gtaatatgca	ctgttctaag	17160
cattotacat	acaatagtat	tcctcacaac	aaccctqtq	a gataggtact	attatcacco	17220
catttcatc	agtgaaataa	gcacagagto	caggtagctt	gcttaaaaat	tggagagaca	17280
ggatttgga	tcaggraate	taggtccaca	gtatgattat	tttctattt	tttagagaca	17340
acctectet	. ctcaggcaacc	ctggagtaga	gtagcacaat	t cageteacte	cagteteca	17400
ayyeeyeet	. caaccatca	tettacette	geeteecaa	tagctggga	tagaggtgta	17460
caccactata	, caagecacee	attttatta	tttctttati	t ttgagacgga	gtctagctct	17520
atcaccacc	, cttggctaac	ataatacaat	ctcagctgag	c tgcaacctco	geeteecage	17580
ttcaactcage	tetectacet	cageeteee	agtagetgg	attacaggc	cctgccacca	17640
taccaagugat	attttatet	gtttagtag	gatggggtti	t cactetett	g gccagggtgg	17700
tetegaatte	, chgacctcat	gatccccc	r cctcaqcct	c ccaaaacyc	, gggactatti	. 1//00
++ac+++++	. ttatamanat	gaaatetet	tatottocc	c aggetggtet	caaaatcct	17820
LLAULLLLLL	, regragagae			55 -5		

	at act act ac	ttoageetee	caaactocto	ggattacagg	agtgaggtgg	17880
geettaagtg	accountactac	ttttageecce	traaraaara	ggctgcctga	cttggcctga	17940
tgtgcccagc	cacticatia	ceccaacac	ccaagaaaca	adecadeaca	acceptice	18000
gttaccaaac	cctacacage	agggaacacc	gcatccccc	agggggagga	cctaccattt	18060
aggaactccc	ttcaatacag	rgacaaccac	agazget	ctgcacaggt	aatgcctatc	18120
tcacccctat	cccctggagt	getgitggae	agaacccccc	atgatgatgg	gaaatgtggc	18180
tgcacagcac	actatggtag	ccactageca	catgugacta	tggagcacct	ttattttt	18240
taatgcaact	gaggaacaga	attgttcatt	ctactgactt	tggtttttt	castattact	18300
ttttttaaga	cggaatctcg	ctctgttgcc	cagtcaggag	tgcagtgact	caaccccgcc	10360
tactgcaacc	tetgeceet	gggtccaagc	gacteteetg	cctcagcctc	ctgagtaget	10/20
gggattacag	gcacgggcca	ccacgcctgg	Ctaattttt	tgtgtgtgta	cctccaacay	10420
agatgaggtt	tcaccatgtt	ggccaggctg	grcrcaaact	cctgaccttg	ggtgagetat	105/0
ccgccttggc	ctcccaaagt	actgggatta	caggcatgaa	ccactgcgcc	eggaectatt	10500
taattttaat	taatgtaata	tagccacgag	tggctagaga	ctaccttatt	aacagcacag	10660
atctaaattc	aaggtccttt	aacaatgtct	tcctttcatt	tcagcaaaca	cttgtcgaac	10720
tgcaaccaca	caccaggccc	tgtgttttt	ctgttaatag	tgatataact	acaattcact	10700
gccattgtgc	tagttagtac	tagcacgcta	agtgcctttt	ctctcttatt	taatcctcac	10040
agcagcctta	tgaggtagga	atatgattag	caccatttta	taatggtgag	tactggctca	18840
gagtgggaaa	gcaacttgcc	caaactcaca	cagctagtag	ggacaaaatc	tagaattgaa	18300
tccaggcctt	tcaggttccc	aaacccacat	ccatcccgtc	atactctgct	gcctccccag	18960
tatctaacac	gagatagaga	cattctctcc	ttatgataca	gctaagaagt	aggcagggca	19020
gaaatgagca	ttcccatttt	ttagaagaag	aaactagggc	cctggggagt	tgggcactgt	19080
cccacagcag	gtgagcattc	acagaggcac	agccctggac	agaatccatg	tgtctatcct	19140
ttqtctqqac	ccagagetet	ttcccctgta	ccagcatttt	tcaaacttga	ttaggtgtga	19200
tccaaataaa	tatattttac	caggtattca	aaatatctaa	catgctccct	ggtggtctaa	19260
taattaaaaa	aaaatacata	tttgtatttt	tgtacatatg	ttttatatac	ataaaacatg	19320
tggccgggca	cggtggctca	cgcctgtaat	cccagcactt	tgagagacca	aggcaggtcg	19380
atcacttgag	gtcaggagtt	caagaccagc	ctggtcaaca	tagcgaaacc	tggtctctac	19440
taaaaaaata	caaaaattaq	ccaggcatgg	tggcatgtgc	ctgtaatcac	agctgcttgg	19500
, gaggetgagg	cacqqqaatt	gcttgaacct	gggaggcaga	ggttgcagtg	agccgagatc	19560
atoccactoc	actccaqcct	aggcaacagg	gcgagactct	gtctcaaaac	aaacaaacaa	19620
acaaaaacat	gcactaatgc	aaaggcagtg	accaaacata	ggccatagcg	ctgcagctct	19680
ccagaggaca	ctcactcctq	gtgtgcatta	agtcctaagt	tgctggacca	ggggcctggg	19/40
ggagaggg	aatcacttag	qqqqctqqqq	aggtggtact	taacaagtgg	ttacggaagt	19800
atttctatat	acatatatat	ataaaatata	tatatggttt	tttttcccag	gtatggtggc	19860
tcatgcctat	aatcccaqca	ctttaggagg	tcaaggtggg	tggatcacct	gagatcaaga	19920
gtttgagacc	agectggata	gcatggtgaa	acgccatctc	tactaaaaat	acaaaattag	19980
ctgggcatgg	tagcaggtgc	ctqtaatccc	agctacttgg	gaggctgagg	cgggaggatc	20040
acttgagtct	gggagtcaga	ggctgcagtg	agccgagatg	gtgtcactgc	actccagcct	20100
aggeageag	agcaagactc	catctcaaaa	acaaacaaac	atgtatatat	ataaacaaca	20160
acaaaatata	tattctttt	ttctttttc	agacagagto	ttgctcttgt	tgcccaggct	20220
ggaggagag	aacacgatct	caactcacta	cagcctccac	ctcccaggct	caagtgatcc	20280
cccccctca	gcctcccaag	tagctgggac	tacagacaca	tgccccgaca	cccggctaat	20340
tttatatt	tttatagaga	cagggtttca	ccatqttqcc	caggetggto	ttgaactcct	20400
gaactcaaat	gatectecca	cttgggcttc	ccaaaqtqtt	attataggta	tgagccccca	20460
dadeceaacce	cagcettatt	tttaaåttag	agatggagto	ttgctatgtt	ggcgaggcta	20520
gtatccaact	cctaatctca	agcaatcctc	ctaccttage	ttcccaaagt	gctgggatta	20580
taggtatgcg	ccactocacc	caaccaaacc	cttcatttta	taccatgaco	cagtacagac	20640
caggeacgeg	aacacacato	actaaacctc	aagtttcaca	aaaggattct	tgcccttaat	20700
acacaccaga	tattcactcc	agtatettet	tttctaatct	gtatttaaa	aatgctggtc	20760
acacacacac	aaaggattet	atgacccaca	aacagatag	agctgcattt	tgaaaagtct	20820
aagacccacc	ctccacatct	ctcaccttaa	atactootca	atgagggtct	cacaqtcaaq	20880
gecatggage	agtagtaga	cactererat	ggagaactg	tgctgcatgg	aactaaacta	20940
atactac	ggrggrggca	ggcgggcac	ggagaactt	ccatgttgca	cooccttcac	21000
ggeetgetgg	aayyayycct	gycayacydd	tatecacte	acttggtac	gtactggcag	21060
agagegeaee	. gagaageteg	acconguing	acadtooct	cacaggeeet	gtcatcatca	21120
cttcgggtcc	. cergeagtgg	gcacaaggac	, acayeyyyc , ttccattcc	tttcatctca	gtgactacta	21180
caacgcctga	caygeaetet	actactcatc	, coccacocc	. caccacocce	: tatcatcacc	21240
actgaggtct	. gctaaggtcc	aggeceaggg	acacayaya - aaracayaya	caccaggcco	. cattoacage	21300
CTTCTCCCTC	, ugcaggtgga	. gouttietet	, aacaycaca	a acagcagaga	: cacttetete	21360
ttccttgcat	. tcaaatcctg	getecaceac	, ccaccayec	g tgtgaccctt	caggatttt	21420
agcagtgtgc	ctatttgcaa	accggggatc	accarggige	tcatcgctta	r cacatacte	21480
atgataatga	aacgaatccg	Lagtigtaaa	guguudaga	a taatatctgg	,	

agaststata	tgtgtttgtt	aaataaaatt	aatactcctt	gcttctatct	tgctccatct	21540
atacctagaa	tcttgtcatc	agtccaaaac	cattattcta	gatcagggag	cagtaaatct	21600
accetacace	ctgtttactg	tttattctqt	tattatttc	ttttttgaga	acaaacaaag	21660
agecegeage	cagcgcttgt	tetttttt	gtttgtttga	gatggagtct	tgctctgtca	21720
gecaectae	agtacagtgg	tgtaatctcg	geteactgea	acctccacct	ctcaggttca	21780
aggattest	gtgactcagc	ctcctgagtg	ggggggact	acaggggtgc	atgaccatac	21840
agegaceeee	tttttttt	ttttaagaga	cagtttcgct	gggtcaccga	gactgaagtg	21900
ccayccaacc	atctgggctc	actocaacct	ctgcctccca	ggttcaagcc	atactcatac	21960
cagtggeget	taagtagctg	accycaaccc	catacaccac	tacacccaac	aaatttttgt	22020
ctcagcctcc	gagatggggt	ttasatatat	taccasaact	catatooaac	tectgacete	22080
atttttgta	cccaccttgg	cctaccgcgc	tattaaaatt	acaccatca	accactacac	22140
aactgateca	agagcttgtt	ataggagga	atcaaccacc	atcacttoct	tttggcagag	22200
ccagccaatc	agageteget	gtagtaggaa	tetateataa	assassagge	ttcagggatg	22260
acttagaggc	aggcaaagga	argggaarge	ctattagtag	actactaca	agcatgacac	22320
ctcccattgc	aggctgttgg	catggggaag	tegeragest	ttaggagget	gaggggggag	22380
ctggctgggc	acggtggctc	acaccigiaa	antagagaac	atagaaagaa	cctctctcta	22440
gatettetga	gaccaggagt	ccaagaccag	tagasasas	ctctaatcct	adctactcdd	22500
ctaaaaatac	aaaaaattag	ceaggeetgg	rggcacacac	gggtatccc	agecaectgg	22560
gaggctgcag	caggagaatt	gettgaaget	gggaggtgga	accactacac	treacted	22620
ttgaacctgg	gaggtggagg	ctgcagtgag	ecgaaattge	tactatata	ttaattaaaa	22680
ggaacaagag	tgaaactctg	tctcaaaaaa	gagugggaca	coccacgiga	aattaqqqq	22740
gtacatattt	ggctttctcc	ggttggtcct	aagttggaag	tattagagtaaa	atcattattt	22800
gctatcagtt	attaatcaag	tcctggcttt	ggaggccaat	tgttacagtg	greattataa	22860
ggcttgctgg	actggttggt	aaagatagtg	gtctgacttc	ctacaagtct	gacttgtgga	22000
tagtaggctg	gcttcctgtg	ctggttgctg	ctattgtgcg	tcagagttct	gettetetae	22320
atggtctagc	cattgtctgt	ttgtatattc	agcetetece	aggcaagggc	cactgleage	22300
cacttcaccc	ctgatgtata	tggaagccat	ttggtccttc	actgtcaggt	gtetetgete	23040
caaagcagag	tggaagagcc	taggcaacac	agggagaccc	tgtttctaca	aaaaacaaaa	23160
aataaaaatt	agctggacat	ggtggcatgt	gcctatagtc	ccagctaatc	aagaggetga	73700
ggcggaagga	tcacttgagg	ccaggagatc	aaggetgeag	tgagccatga	etgegteact	23220
gtgctccagc	ctaggtgaca	gagcaagacc	ttgtctcaaa	aacaacaaga	ccaccaccac	23200
cagagtagaa	agcactagcc	agggataagg	cagccaacaa	caagcaggtg	agggaagatt	23340
tagagaggaa	gagaacttcc	ctaatttccc	tqaaqttctc	actttgtctg	agreaggerg	23400
accttgagga	accctgacat	ctgggccatg	agacatcttg	gggatgactt	tcaaccttca	23460
gatgaaagaa	acagatetag	agaagtgttg	cttccttcac	tctgatccaa	atggggagte	23520
aaccaggcac	cagggctcaa	tcaacagcaa	taaacatcac	tgtctgaggt	caactggctt	23580
gctcagctct	ctattatcag	gcactgccac	cagcagcact	. tctatcagag	tgegagetee	23640
tcaaggttaa	aggcatttga	qaaqqqctta	ccaagagtcc	agacactaga	caaagttact	23/00
tatacaatct	gctttcagac	actgggaatg	aagtcttcct	ccctaccacc	aaacttgggg	23/60
ggaaaaaaca	aaaaaaaacc	tctaatccaa	teettggtet	. gcaggtaagc	taaagtgcag	23820
attectgagg	aggatcacag	aaacttcagt	actctggtct	acctttcagt	gtgaatgagt	23880
tecageeeta	ttcttqaaaa	ttgttattgg	aacagagcag	, gtaggecetg	aggcatattg	23340
aagggagtta	atgattatgg	agtgatgcag	gatacctaac	: agcattggac	aggagggtat	24000
attttatat	attaatata	caataactat	. atagagccac	tcttacccc	attgtacaga	. 24000
tgaggaaact	attaccttaa	aatacaattt	ttttqtaata	ı aagteatget	aactegeeea	. 24120
catattgtct	atagttgctt	tcactggcaa	aacctaaaat	gtttactatc	tggccctttc	24180
tagaatgttt	actaacctta	ttctgaattc	: ttcaaqctct	: aaatttacct	. ctgtagagaa	24240
aaactaaaaa	caaaacaaaa	acccaactaa	ttcacattct	: ttcctgggct	tttagaaaaa	24300
gaactgattt	gataaatggc	caaggaccaa	ccctcccct	: cccccataac	atcttttatt	24360
tttaaaatgt	aattgaaaca	tctcttttt	: attttattt	: tttgagatgg	agtctcgatc	24420
tateacces	ataggagtag	agtggcgcag	r ttttaqctca	a ctgcgacctc	: cagccgccgg	24480
gttcaagcaa	tteteettge	ctcagcctca	geeteageet	: cccgagtagc	: tgggatcacg	24540
gactaaggto	accacqccca	gctaattttc	: ctttttttt	: ttagatggag	, tettgetetg	24600
tracccagg	togagtacag	tagcacgato	: tcaqctcact	: gcaacctcca	ı cctccagggt	24660
tasaacastt	chectgaete	agectectga	ı ataactaaqa	a ctacaggtgt	: gcaccaccac	24/20
acctggctaa	tttttatata	tattttttt	: ttttaqtaga	a gatggagttt	: cgccacattg	24780
tecaggetae	rtctcgaactc	ttgacctcac	r ccaatctac	c cgcctcggcd	tcccaaagto	24840
ctgggattag	· aggcataagg	cacatoccca	ı gccaaaaaa	c agcattggtt	: ttaatatctg	24900
atatagetge	r cagagtcaca	ccacaaacac	ataaqaqcto	c teceetttti	: gccttgcago	24960
gaggagget	· agaactaaac	: cttgtatgaa	actocaaca	a tatggcttag	, ccaaatttt	25020
taacataata	<ul> <li>getteteea</li> </ul>	aatcccatta	a ctactggcci	t aatgtcctt	: gacttttaat	25080
attcccataa	taactaccaa	ttattttag	tatcttgcag	g cctttcaaga	a cacaagcaag	25140
		_				

ggcacaaata	attatttta	tttatttatt	tatttttgat	ggagacaaga	gtctcgctct	25200
	ctggagtaca					
	tctcctacct					
tgcctggcta	atttttagta	ttttagtaga	gactgggttt	caccatgttg	cccaggctgg	25380
tctcgaactc	ctgagctcag	gtgatccgcc	cacctcaact	tcccaaagtg	ctaggattac	25440
	caccacgccc					
	acgctgctcc					
acctgggatg	ggtaccctgg	cagctctctc	attgtttaga	attattgccc	aagagcgaag	25620
	ggaaagagtt					
	gggcactgtg					
gtaagaatga	tggcaggaat	gcctgccacc	catgtttact	tatgaagact	aaacaagata	25800
atgcacacaa	ctatgctctg	tatcatgcaa	attttaatta	ttcccataaq	ttaatcatca	25860
	atatttatgg					
	cattgaattc					
	acaaaagaaa					
aaaaggctgg	tacttacaaa	caaattaaag	aaacaaagca	catatttact	cccaactagc	26100
	gaacctggct					
	aagaggggg					
	aaaagtgtat					
ggggaaaccc	catggttttc	ttaatacaaa	tcacatactg	taaaggtcca	caaactcttc	26340
tcagctgggg	atctacgcag	aacacatgag	ggcatctgct	ctgggggtaa	cagggaagga	26400
	tgagggtttt					
	ttttttgtag					
cctgggttcc	aacaattctc	cgcattggcc	tcccaatgtg	cggggattat	aggcatgagc	26580
caccacacat	aggtttttg	tttttgagac	agagtctcgc	tetgttgccc	aggctggagt	26640
	gctggagtgc					
	ttctcctgcc					
	aatttttta					
tggtcccgat	ctcctgacct	cgtgatccgc	ccgccttggc	ctccaaagtg	ctgggattac	26880
aggcgtgagc	caccgcgccc	ggcctcacac	ataggtttta	agttacatta	tctgacccca	26940
	aagctgtaga					
	gaagtaaacc					
taaattatgg	acaaaactga	agctaggccc	tacatctttg	gtttgttttt	attgacccta	27120
tgctcagttg	acaaaagaag	ccttagatcc	cttgactctc	aggctggtgc	tctcttctcc	27180
	gccctacctc					
	ccgcaccagg					
	caaagtcttg					
gcaggtgtga	ggtccaaggc	tcattgttag	ccccagacct	cgttccaccc	tagacacctc	27420
ttagggtggt	agtgtccgcc	acccctcccc	ttqtcttcca	atctccctct	cttccctttt	27480
	cccaaggcca					
	ttacctgccc					
actcacagac	ttggctgcag	ccaccagggc	ctggcccacg	atctgaccac	caaacagcct	27660
cttggccggt	acccagtaat	gccttcctct	gtagggagag	ggggaaagag	ggaaagactt	27720
	ccaaattcta					
	aagatccttt					
	gcataaaaat					
cactttggga	ggccgaggca	ggtggatcat	ttgagatcag	gagttcaaga	gcagcctggc	27960
caacatggtg	aaactccatc	tctactaaaa	atacaaaaat	tagctggacg	tggtggcatg	28020
	cccagctact					
	gtgagccaag					
	aaaataaaat					
acatcaagtc	taactccttc	agtgtacaga	tgagaaaact	gcagcttggc	cccagagatg	28260
	cccagaatgt					
	tgtttggcat					
	ctcgcctgta					
cctgagccca	tgagttcaaa	accagcctgg	gctccaaagt	ggggcctcat	gtctactaaa	28500
aataaaaaag	ttagctggat	gtggtggcaa	gcgcttatgg	tcccagctaa	acgggagact	28560
	ggtcacttgg					
	gcctggacaa					
	gttatttaca					
ttccagtaaa	gccaggagaa	gccttggagg	tcaaagctgt	tagaagcctt	gctgcagggg	28800

actagacaca	gtggctcatg	cctgtaatcc	tagcactttg	gcagaggtgg	gcagattaca	28860
aggtcaggag	ttcgagacca	gcctggccaa	cacggtgaaa	ccccgtctct	actaaaagaa	28920
gttaaaaaat	tagctgggct	gtggcgcgcc	tgtatgtccc	agctaatcag	gaggctgagg	28980
caggagaaat	gcttgaaccc	gggaggcgga	ggttgcactg	agccgagatc	gcaccactgc	29040
actccaqcct	gggcaacaga	gcaagactcc	gcctcaaaga	aagaaagaaa	cccttgctgc	29100
agtcaagaac	ttcagcgatg	ctgggaaaga	aaaaacatg	cttaggcctc	agaataagta	29160
atgagaaacc	agacccacca	aatggtactg	ggggcgggat	attgtgagaa	gaaaaggata	29220
ctgaagacac	aaggagctgc	ggcgtcggtt	ttaaggctga	tccatcagct	gtgtgccctt	29280
gggcaaatca	ctgccctctc	tgggctagct	ccccgtgaa	ggcttagggc	aggctgccga	29340
gcagggtctc	tcaggtcacc	actatatttg	ctcagctgtg	cagacctcgc	agcgcggaga	29400
qqaaqqqaqq	aagccagagc	agagaggaca	gctctgttgg	gggcgagttc	tctcctaatc	29460
gtggcagagg	gtgcatccca	cgcagagcca	tactagtccc	ggagccaggg	gccccgggcg	29520
gcggcagtca	agatcaagtt	tctgccctaa	aggaggggat	gctgggcagg	agctgccggc	29580
tacctgaaga	gatcctcgtc	cagcggctcg	aggttgagca	cggtcgtgac	caagacgcta	29640
cqqaqqtccc	cagggggatc	gccgcggtcg	ccacagccct	gcccatcttc	tggggcctgc	29700
qqqqacqaca	tctagttcaa	tgctgcaggc	cctgcacacc	cgctccgcgg	aagacgcgga	29760
gacatacaca	gaacctgact	cttccggcag	attgccctag	taaccggaag	tctcctgcag	29820
accccgggaa	ggaggaatct	aggttatgat	tggtcaggac	tcctgtcagt	ccgctggtgg	29880
ctgtggccct	ctttctctag	caattggaga	aaatgaatgc	caatctgcga	atcctgtgtg	29940
tgactggata	tgtcgctgag	gaggcggaac	ctcgggactg	gataatatgg	actgagtgtc	30000
atttcccctg	tcagatagca	aatacacccc	cttcctcttg	taacccggtc	aggcctaggg	30060
ttcctccctg	agttccagaa	taggccaccc	agttggggcg	gacccttaag	gcattctggg	30120
cccacgcctg	cctataaacc	ctcatagtgt	gacctttgac	ccctggtgtg	atcttgggcc	30180
cgggctggga	ccagccccta	gtgtgggttg	tgggggcggc	catggagetg	ggcagctgct	30240
tcaagaccta	tgaggacttc	aaggagtgct	tcagcgccta	caaaagggag	aacaggtgct	30300
ccttcattct	cagggactgc	gtctccgtcc	gcttccacaa	cctcaaccat	ggcacctcca	30360
tccgcgaaga	catcctgtaa	agacaaacaa	ggcggggcgg	gccaagaggg	tggggaggag	20420
gctggacctc	cggagggctg	cctggaggag	gaggggtgca	caggeaegea	ttgggctgcg	30540
tggccattca	ttcaacaggc	actcattgag	caccegeege	tarataratt	aagagagcta	30540
agectecacg	gccattggtt	tttgaccacc	tattttaaa	aggtggagg	cacaggettt	30660
tctggaattt	ataactgcag	cetececat	agettagage	taattteett	acccaaatac	30720
aaagtatgge	tttcataaac	ggataaaac	accitygcya	cattcattca	catcagtctc ttcagttttt	30780
cceccacaa	tattatta	aggregatet	cactetetee	cccagactag	agtgcagtgg	30840
agttettata	tactiguiga	ttcaactcct	gggctcaage	gatectees	cctcagcctc	30900
tasaatsatt	ggaetgagee	atacacacca	ccatacctaa	ctaattattt	gattttgtac	30960
agactagata	ttattatat	gagaaagaaa	ttcccagact	cctggactaa	gcgatctttc	31020
agactgggtt	agtattagaa	ttacaggcat	gagccactat	gcctggtcta	ttcattcatt	31080
ttataaataa	tttttgaggt	ccttatatta	accettttca	aacactttcc	atgtgccagg	31140
cagtattete	tatocatoct	ttaccctgca	gggcttttt	ttcagaatta	tagataaatg	31200
ttatttttt	gcatttgaca	gatgagaaga	tttgacagat	gagaagtcag	gcttagaggt	31260
taagacagga	gttgaaaact	caaatgcctt	cagggattag	gtgaaacaac	ccaatgtaag	31320
aaagttttaa	ctttgaattt	tactttaaga	aaaagaatga	tgaaatagca	accaacacca	31380
gatetttata	ctagggacaa	cagaagtgtg	aaatgggcca	. aatggagagt	agatgccatc	31440
taatcagctc	cagctgatgg	ctgccatatg	aaaataaaga	tctagtgttg	ccagaatttt	31500
gggcaagagt	tqtcaqaaat	ccacacttta	tgtggatttt	cccatttaaa	aaaattgaat	37260
caqttcaaat	tttaactcaq	agcatgcggg	ccaactcaga	ı gttaaagcat	atccgagttt	31620
gagacttgga	ttgagatgct	caaccaaagc	tcctcaatta	. gacagccagg	ctatattctt	37680
tccactgttc	tgaagtccag	tgctatgctg	ggtataggtg	_l acataaagat	gaataagtgt	31740
tcaaactatc	cccagagaac	taggataaac	ttgaactcaa	ı gcaaactggt	gtgtgataaa	31800
tgctttaaaa	ggaatgtgga	aaaaaaaaaa	. aaaaaagaaa	ı tgtacggaga	. aagaaatgaa	3TRP0
tgacaaatgc	ctgggaggtg	ggggaagtct	tcacactgga	ı attgatggtt	teectggget	31920
gtgaatgaat	gtagagtgct	agagtagato	: tgtggttaat	: tactgagtac	catggaggca	31780
tttgaccaga	agttgctgtg	cagaaggacc	: tacaggagca	aagacaaaga	tacatgaaag	32040
aaggttggca	tgttagagta	acagtgaggg	, ataccatgtt	. tggcaggaga	tgaagtcatt	32100
tgcagtctaa	gggtctttag	ggaccattgt	gaggtgtttg	gaccttgtcc	tttatgggta	22220
ggaccttgct	aagcaatgag	aggaatacaa	aaaaaaaaa	aaaaaaaaaa	aaccacagtt	32220
gcccgtaaac	acccttcagg	aagaccatct	. caggtggcta	gcacaaggtg	tggcccatag	30240
caggcattaa	ataattattg	aatgagtgag	ttatcaagta	ccaaccatgt	gattcaggga	32400
aataggtgct	gcgggaactc	agaagagaaa	aaccactgcg	, ayutayayat . cacaacetet	gtaagagtga attggtttt	32460
aagggaggct	. rgagetggge	: ccccaaayat	. ggagagetgt	. cayaayycy	: attggttttc	

tatttaccec	tctagtgaat	taccacaagt	ttaatggtgc	aaaqcaacac	aaatttatta	32520
tettagaett	atttaggtta	gaagtcaggc	acaggtetta	gcaggctaaa	tcaaqatqtc	32580
tacaaaata	tatttcttc	tagaateeet	gggtaagaat	ccatttcccq	ccgggtgcag	32640
tacatastas	ctgtaatccc	agcactttgg	gaggcgaagg	tagacagatc	acttgaggtc	32700
aggagetesa	gaccatcctg	accaacataa	tgaaaccccg	tctctactaa	aaatacaaaa	32760
attaggtega	cgaggtggca	catacccata	atcccagcta	ctcaggaggc	tgaggcagca	32820
gasttggagg	cgggaggtgg	aggttgggt	gagccaagat	cataccatta	cactccagcc	32880
tagganaaa	agcgagactc	catctcaaaa	222222222	22222222	agaatccttt	32940
toggcaacag	ttccacctcc	taceccaada	ccaacacaca	ttagatcata	accccttcc	33000
tagatattas	aagccagcag	tagaggetge	agtcatcaca	teactetgae	cttacttcta	33060
tentenesta	tctgactccc	tattatacat	cctcttcca	cttttaagga	tecttotoat	33120
tatattagge	ccacccagat	aatcccacat	aatttcccta	ttttgaagtc	agctgatagc	33180
catattgggc	ctatctgcaa	actteettet	cctttcccat	gtaacctaac	gtattcacag	33240
caccttaatt	taggacaagg	acatottoaa	gagaggattc	tacctaccac	aagaagatta	33300
agectaggat	ggtaaaaatg	atatazata	gggaccaccc	aaacatgacg	tocttctatt	33360
acaaeeegga	gatgggctgg	gegegageea	tracacttot	aatcctaata	ctttgggagg	33420
agaaaacagt	gacgggccgg	gcacggcggc	atttaaaacc	accccacact	ataateetgg	33480
ctaagacagg	gagattccccg	tatacacaaa	acasastta	aaattagggg	ccaggttgtg	33540
gcaacaaaat	cgtataattc	coccacaaa	ataggataga	adaccagggg	gacttgaggg	33600
gcagcccaca	agaccagcct	cagcaccctg	gcaggccgag	atctgtadaa	aaaatacaaa	33660
caggeattet	gcatagtggt	gggcaacacg	agtaggaggt	actotagaaa	ctacaacaaa	33720
aagtagccag	gcatagtggt	gtgtgtttt	ageaceagee	atcatcacac	cactgcacac	33780
aggattgett	gatcccagga cctgggcaac	gccagaggcc	geagegagee	ctasasasa	aaaaaaaaac	33840
tacattttag	ectgggeaac	aacayagtaa	aaaaaaaata	aggagaggtg	cttagctaga	33900
aagcagtgat	gtatgtttgc	acgeacacac	adaagccacg	aggagacceg	acaaattaat	33960
aggaaggatt	tatgctggag	Cagcaggaaa	ggaaactgga	gggttgataa	cccaggccggc	34020
gggttgggat	ttgttttgtt	cgttttagga	gacaagguct	cgccccatcg	actaatetta	34080
agtacagtgg	gagggtcata	gtttactgta	accityaaac	accepted	agcaacccca	34140
ctacctcagc	ctcctaagta	getaggaeta	caggiaigea	attacagaga	ctaatettaa	34200
tttttttca	atttttgtg	tagagacagg	gcettgecat	grigedeagg	ttagagatat	34260
actcctaggc	tcaagctgtc	etectgeete	agecteccaa	agigitggga	agtatttta	34320
gaaccaccat	gctggacctg	tttttgttt	rgaaggrgaa	attacaataa	agegeeeeg	34380
ggccaggcac	aattcaatca	ettgaaccca	ggaggeggag	totosasata	antanatana	34440
tgccactaca	ctccagcctg	ggcgacacag	cgagacterg	ttttaaaaa	atacaacaaa	34500
aagtgtttt	gtgtttgagt	ggttaacata	attaaaaata	ttttcaaaaa	++++++++	34560
gactaaaagg	gtcacctcca	etgeattage	tagagtagaa	tagagagata	ttaactcccc	34620
gagagatgga	gtttcgctct	guegeeagge	ctactacata	aggegegace	ataactaaaa	34680
gcaacctttg	actccctggt	teaagegatt	etectgeete	tttagtagag	acagggtttc	34740
ttacaggcac	gcaccacccc	acccagetaa	tectiguate	tttagtagag	ctcagggcccc	34800
accatgtttg	cgaggaaggt	ctcaatctcc	rgacecggrg	accoaccege	tttatctatt	34860
cctgctggga	ttacagatgt	gagecacege	geecageetg	attttaacet	ggagtettge	34920
tatttatttc	attttattt	atttacttac	ctacttactt	accicyagac	teteecteec	34980
tetgteacce	aggctggagt	gcagtggtgc	aaccctggct	. cactgcaacc	gcatgcacca	35040
gggttcaagt	gattctcctg	teteageete	ccaaggagcu	. yayactacay	ttaactaaca	35100
ccacgcctgg	ctaattgttg	tatttttagt	agagacaggg	gasttage	aggetagge	35160
tggtgttgaa	ctcctgacct	caagttatat	acceatetta	atttttatt	ttatagagat	35220
tacagetgtg	aggtgccacg	cecageetat	tanatacta	gactcaactc	atcetcecte	35280
gaggtctcac	tatgttgccc	aaactgatat	cgaaccccca	totocctoo	ccactccatt	35340
ctcggccttg	gaaagtgcta	ggattacagg	targagecae	. tgcgcccggc	caacagcacc	35400
attatataga	ggcaatcagc	gttaccttcc	tgagagacac	tgaggergaa taaaaaaata	ctatttagac	35460
ttgtatatgc	atttgcatct	ttttgttgtt	LLaacacaag	. cggcagcatg	ttacccagae	35520
atageettet	gtacctgctg	tacctggctc	tecteactia	ccaacacac	tetttatt	35580
tgccaccgta	tgggcaattt	gatttgactt	-teatigate	. coccycttec	tccatactaa	35640
gtttgtttgt	ttttttgttt	getetetegea	gregeraace	. tactottata	. cocacyccyy	35700
tgtctggaga	tacgttgttg	aaaaatataa	accyaatoco	, tagticulging	. Grassurass	35760
ctaatctata	atcacagaaa	caataatttc	tananattat	taytayayci	, ccaaayyaaa	35820
aacccagggt	gccctgtgga	ygggcgatgg	. cgacactcat	. cotgactyce	. ayyuavayyy	35880
tgggggtgct	ggttgacacc	ccaaccaac	. gcaggctctt	. yuuuayaada . tattaaataa	. accepticage	35940
cctgagattt	tgcagatact	LLacaaagca	cattoacett	. caccaccigo	tacatotaee	36000
tgaataacct	tgtcagaggc	tagataga	. guldddadla	. aaccaycoad . aatsttatst	· tattttacec	36060
gtgcttacag	cagtgccttg	cagatggaaa	. ataytooaca	. aucaccycal	. cgcccacag	36120
atggggagac	agagccagga	gaagccaaac	accaayaya	, addiagitte	. 3330003	, 50120

				~~~~~~~	atracetoso	36180
cagtggctca	tgcctgtaat	cccagcactt	tgggagacca	gggcagacag	atcacctgag	30100
gtcaggagtt	cgagaccagc	caggccaaca	tggtgaaacc	ctttctctac	Laadaalaaa	36240
aaaattagcc	aggcatggtg	gtacgtgcct	gtaatcccag	ctactcagga	ggctgaggca	36300
ggagaatcac	tttaacccag	gaagaggagg	ctgcagtgag	ctgagatggc	accactgcac	36360
tccaqcctqa	qcaqcaqaqc	gagactctgt	ctcaaaacaa	cagcataaat	aactgaaaat	36420
tagacccagc	ctatttactq	acagagetet	taattqttqt	acttagccac	tgggctctaa	36480
tagttttcta	atgtcacttg	tccatttttc	cctcaacaaa	cttgtggtaa	gaggctaagt	36540
atttacasta	aaccaaaat	acaaanatna	actagagtac	aaagatgagg	aaattgtagg	36600
atacaccacg	ggccaggage	adaaaataaa	atacttacc	angragtasa	ttcatgagca	36660
ctecaceeet	yayyacaaca	geggaeegag	actagettata	atottataaa	ggacattctt	36720
gcacaggtct	ttageagaaa	caagttgact	getggttgtg	tattagactt	ggacattctt	36780
ggatcattta	ctgcaaactg	getetgtgca	gageteaetg	tettgggeee	tttgagtgat	36940
acgtgggtgt	cttgggggac	tggagggttg	grggggaaa	tgettttagg	aggtaattta	36040
gtacatgttt	ctgcagccaa	atacacatat	tactgggtgg	tcaggtgaga	tgatattaat	36900
acttatgtga	aaatgtagac	ataaagttcc	ttgataagca	aagtaaagca	agtgaactaa	36960
tttaaagaaa	accatttaca	gctggatgtt	gctcacgcct	ataatcccaa	cactttggga	37020
ggtcgaggcg	ggcggatcac	ttaaagtcgg	gagtttgaga	ccagcctgcc	cgacatggtg	37080
aaaccaactc	tactaaaaat	acataaatta	gccaggcacg	gtgatgggca	tctataatcc	37140
cagctactca	gggggctgag	gcaggaggat	cccttgaacc	cgagaggcgg	aggctgcagt	37200
gagetgagat	cacqccactg	cactccagcc	tgggtgacag	agtgagactc	catctcaaaa	37260
aaatttttga	aaataatggt	qcaqqqcqq	gcgtggtggc	tcacgcctgt	aatcccagca	37320
ctttgggagg	cccaggtggg	tagatcatga	gqtcaggaga	tcaagaccat	cctggctaac	37380
acccagaaac	cctatatata	ctaaaaatac	aaaaaattta	tccaggcatg	tagccggggc	37440
acggagaaac	acacctotaa	tcccagcaat	ttgggaggcc	gaggggggg	gatcacttga	37500
gcagcggccc	tasaasaaa	cctcagcaac	atogogaaac	cccatctcta	ctaaaaatac	37560
ggtcaggagt	taagaccag	cccggccaac	tacaatacaa	actacttaga	aggctgaggc	37620
aaagaacagc	rgggrgrggr	ggegeacacc	attagaataa	gccacceggg	tatcattaca	37680
aggagaatcg	cttgaacctg	ggaggcagag	gttgtagtga	gccaagacca	tgtcattgca	37740
ctccagccta	ggcaacaaga	geaaaactet	gteteaaaa	~~~	aaaattatcc	37900
aggcctggtg	gcgggcgcct	gtagtcccag	ctactcagaa	ggetgaggea	ggagaatggc	37000
gtgaacccgg	gaggcggagc	ttgcagtgag	ccaagatcgt	gccactgtac	tccagcctgg	37000
gtgacagagt	gagactccat	ttcaaaaaat	aaaaagaaaa	gaatagtgca	aatattatat	3/920
gggtggctat	ggcagatgta	aaggtgattg	gcaattcttt	ttctggaaaa	gctggcccaa	37980
gggttaaaag	qaaqaqctct	ggagtgaaag	agactgcctt	tgcccttgac	cttgggtaaa	38040
acttaacctc	ttcacatagt	ttcatccttt	acaaaatgag	aagggtgtgg	caatgattaa	38100
gaaaaattca	qqqctqqqcq	tggtggctca	tgcttgtaat	cccagcactt	tgagaggccg	38160
aggcgggcag	atcacgaggt	caggagattg	agaccatcct	agctaacacg	gtgaaacccc	38220
atctctacta	aaaatacaat	tagctgggcg	tagtagcagg	cgcctgtaat	cccagctact	38280
ccaaaaata	aggcaggaga	attoctogaa	cctgggaggc	agaggttgca	gtgagccgag	38340
atcacccat	tacacttcaa	cctggatgac	agagtgagac	tctgtctcaa	aaaaaaaaa	38400
222222222	Cacacacaca	attcaggcta	agagacatac	ctottatccc	agcacttggg	38460
aaaagaaaaa	gaaaaaaaaa	cttgagggga	ggagttcaag	accagectgg	ccaacatggt	38520
aggecaaage	gggaggaccg	tacacaaatt	agtegeedag	aataataaac	acctataatc	38580
gaaaccgccc	CLactadaa	cacacaaacc	tartttare	320320333	ttacaataaa	38640
ccagctactc	agggggctga	ggcaggagga	chaccegaac	ceggeagagg	ttgcagtgag	38700
ctgagatete	accactgeac	ccaguetty	gryacagage	tagaccccat	ctcaaaaaat	38760
aaaattgaaa	ataatagtgc	aaatattata	tgggtggeta	. cggcagatgt	aaaggtcatt	38820
gggaattett	tttctacaaa	actggcctaa	cggttaaaag	gaagagetet	ggagtaaaaa	30020
agacccccc	ttgcccttga	ccttgggcaa	aacttaacct	cttgacacag	tttcatcctt	30000
tacaaaatga	gaagggtgtg	gggatgatta	aggaaattca	ggctaggggc	agtggctcat	38940
gcctgtaatc	ccagcacttg	ggagaccaag	gtgggaggat	tgcttgagcc	cagaagttca	39000
agaccggcct	gggcaacata	gcgagacccc	atttctacaa	. aaaataaatt	aactggtcgt	39060
ggtgacatgt	tcttqtqqtc	ccagctactc	aggaggctga	. agccggagga	. tcacttgagc	39120
ccaggagttt	gaagctacag	tgagccatgc	ttgcaccact	gcactcctac	: ctgagcaaca	33180
gagaccctgt	ctcaaaaaaa	gagagaaaga	agaaaaggaa	aggaaaatgo	tegtageace	39240
taaaacaqtq	ctcaqtaaat	gtttgctgaa	. gctgtaacta	. tagtatgtag	r tagaaagtgg	39300
tagttattto	aaagagagtc	aaagatacgt	gctctqqqaa	ttaccactaa	atgaccaaaa	39360
attracatra		atcagatcaa	gttagaaatt	tttttttt	ttttttttg	39420
adadadaa	tcactcttct	cacccagget	ggagtgcagt	gacgctatct	ctgctcactg	39480
ayacayaacc	attoracett	caaggaatto	tratarates	geetectgae	tagctgggat	39540
taacccccgc	artecegagee	cagcaactc	++++++++++++	ttagtagaga	cagggtttca	39600
racaggrace	egicaccacg	togasetest	. coolegeage	. catccaccca	cctcagcctc	39660
ccatgttggg	caggetggte	atatasasas	gaccicaagt	, galleacea	cctcagcctc	39720
ccaaagttct	gggattacag	grgrgageea	. cegeaceigg	, ccayaaaaac	ttttattatg	39780
cacacaaaag	aacagttgga	gactagecag	algelecage	. caccycayce	g agggcagtgt	. 55,00

tentanaga	taaggaagga	tttgaggtt	ttttataatt	gactattata	cattaadaat	39840
taataaagcc	ccagtagagc	tattassact	atttatata	tagttgattc	ctttaatttt	39900
ctgtttatag	gctgacaagg	abetaaaet	ttatattata	tttatgattg	attagageta	39960
actgaattat	gctgacaagg	acguaaaguu	acceptates	actatagacca	attagageta	40020
catttcaggg	aatcaggata	CCLLadallC	eggeracgeg	geegeggea	atcaactoo	40080
gagtatatet	aaactgtggc	ctccactttc	attttttttt	tttataaaaa	ttattttt	40140
aagagtatgt	gactttatgc	ccagtttccc	ctctcagatt	tecatgacgg	agetatatat	40300
ttttgttatg	ccatttgagg	gattgatgtt	tcttaaacta	tgaagtactt	ggeegeeee	40200
ctccattgct	gttcaggtta	acagccacca	tttgtaaaca	ccccgccgga	geteatteet	40200
tctctgctag	gaactttaca	agaattgtct	caatcctacc	acacettigg	caggaccctt	40320
gttatcagag	ttttcattat	ccatgtatcc	atagttacaa	ggctatatag	aaaagcaaaa	40380
gtcatcacac	aagaatcttg	ctaacaaact	acttataaaa	ttagtcacta	cttaaccatc	40440
cctctgctta	tccctgccag	tcccattaac	atgtttggta	gtcaatttct	ggctgatgaa	40500
gagatacatt	aagcatcaag	gtaatgcaaa	tgtaaataaa	actgactgta	gactgaaatg	40560
gcacatctcc	caaaacttgt	aggactaggc	gaaatccctg	caagtgatga	tagaaaacct	40620
tcaqccttat	accagttaac	aaaggaagaa	gggaaatcaa	caaagatgat	gagatggtaa	40680
aaacttgaaa	agtagaggat	ttgcctagga	aaaattaagc	ccttcggaaa	cttagtaaag	40740
ctaaqqaata	ttttqqcaaa	accatctttt	gtatgttgca	aaagtgagac	aggaaatgaa	40800
gtatagtgtt	tgggaatttt	tttttttga	gatagagtct	tgctctcctg	tccaggccgg	40860
agtgcagtgg	tgcgaccttg	gctcactgca	gcctcagcct	cctgagtagc	tgggattaca	40920
agcatacacc	accacacccg	gctaattttt	gtatttttag	tagagacagg	gtttcaccat	40980
attaaccaaa	ctggtcttga	actcctgacc	tcaggtgatc	cactcgcctc	ggtctcccaa	41040
agtgttggga	ttacaggcat	qaaccactgc	acctggccta	gtgtttggga	aaactatact	41100
aggaaaagaa	tagttgcttt	aagtcattct	ttgattattc	tgagaattgg	catatagctg	41160
ccattataac	ctacttttgc	taaatataat	aataataatc	attattttta	ttttttgaga	41220
cagggtcttg	ttttgtcacc	ccaactagaa	tgaagtggcg	caatctcqqc	tcactgcaac	41280
ctccacctcc	gggtgcaagc	aattctcctg	cctcagcctc	ttgagtagct	aggattacag	41340
ggagaggga	tcatgcccag	ctaatttttg	tatttttagt	agagacaggg	tttcaccatq	41400
ttaataaaa	tggtcttgaa	ctcctgacct	caggtgatcc	accedected	gcctcccaaa	41460
ctggtcaggt	tacaggcgtc	acceptata	cccaacceta	ctaaatataa	tattaacttt	41520
gtgetgggat	tctcattttc	caccadate	ttattatca	ctatctgggt	ggtagtgata	41580
acaatttag	cagatettgt	ttatcactat	tecetateaa	atatttctaa	ataaccaaac	41640
aagttecace	atgcctataa	taataaaaat	ttaggaagga	aegececegg	gattgcttga	41700
geagegggee	atgeetataa	actagaac	tagtgaggee	ctatcactac	taaaaataca	41760
ggcccggagt	tcaaaaccag	ectggccaca	tggtgaaacc	actactac	acctasacc	41820
aaaaattagc	caggcatgat	ggtgggcgcc	cttaacccca	gccaccoggg	taccacaca	41880
aggagaatca	cttgaatctg	ggaggcaggg	gregeagega	ggcgagacca	gecaeggea	41940
ctccagactg	ggcaataaga	gcaaaactcc	gtctcaaaag	aaaaaaaaaa	tattagagat	42000
tgggtatgtt	tttggctgca	attagctgaa	aaccetgact	caaaatggct	cattgtagat	42060
acttagaagc	ccagaggtgg	gcctccaaag	greattgret	cagtggcetg	gaetetgeat	42120
ttttccactc	tgccatgttc	aggtctcagc	tttgtcctta	ggaaggetee	ccatgtggca	42120
caaatgcagg	agtcacatcc	agaagaagaa	geettettg	ccgggcgrgg	tggeteaeae	42100
ctgtaatccc	agtgctttgg	gaggctgagg	tgggtggatc	acgaggtcag	gagttcaaga	42240
ccagcctggc	caacatgatg	aaacccccat	ctctactaaa	actacaaaaa	ttaaccaggc	42300
gtggtggcgg	gcacctgtaa	tcccagctac	tcgggaggct	aagccaggag	aatcgctgga	42360
acccaggagg	cggaggttac	agtgagtcga	gatcttgcca	. ctgcactcca	gactgggcaa	42420
cagggcaaaa	ctccgtctca	agaaaaaaa	aaaaaaaag	aaaaggccaa	gcgtggtggc	42480
tgtaatccta	gcactttggg	aggctaaggc	aggcagatca	. cgaggtcagg	agtttgagac	42540
caqcctgacc	aacatggtaa	aaccctgtct	ctactaaaaa	tacaaaaatt	agccgggcac	42600
ggtagcatgc	ctqtaqtccc	agctactcgg	gaggctgagg	r caggagaatc	gcttgaaccc	42660
gggagggga	ggttgcagtg	agccaagacc	gtgccagtgc	: attccaacct	gggtgacaga	42720
gggagactcc	gtctcaaaaa	aaaaaaagcc	ttccttggtt	: tcctgccaat	ttcctgtcat	42780
atttctttqt	cccgaattgg	gccaatatcc	atgcccattc	: ctaatacaat	taccttaatt	42840
gacttagatt	agccctgaag	catgtagtga	. tgtgggggag	, gaatgacaac	tgaagaaaat	42900
agaaaagaag	ggacaaaggt	tattgagttg	gcaaccaaca	attcctgtta	tagcttttta	42960
aattaattca	ctttaagtgg	tactgattat	tcatattgtt	: atttccatgt	. atagagagag	43020
aagaaattgg	aggettagag	gaagtgaagt	gacttgtcca	aggtcacata	gctaagtgga	43080
atttatttt	tttttttta	cttttctqaq	acaaagtete	actetgtege	ccaggctgga	43140
atacaataa	gtgatcttga	ctcactgcaa	cetetgeete	ctgggttcaa	gtgattcttc	43200
#acctcaacc	acccgagtag	ctgagattac	aggtgtgcac	cagcatgece	ggctaatttt	43260
ttgtatttt	agtagagatg	gagtttctcc	atgttggcca	ggctggtcat	gaactcttgg	43320
cctcaactca	tccacctacc	ttgacetee	aaaatqctac	gattacaggt	gtgagccacg	43380
acacccaact	actggaagtc	atgatgcaec	ctattattt	aatcatqaat	tccaaactta	43440
gcgcccagct	. accygaagic	acgacgcaag	,	,		

. hasabaats	ggttgaagtt	attttttt	tattteeett	aatcttctat	tgagatataa	43500
acyaycycca	agcacagaca	tetttteeaa	gaattcattg	aggagtatag	ttatattcat	43560
catgtattga	ageacagaca	atanaggat	anatagett	caacatcccc	acatootttt	43620
ctgtacttac	tgtctccctg	graaaggcar	adactecett	caagacgggg	astatagaaa	43680
atactttcct	gaatctcctt	tagtgcttat	atetaaeage	acctaaccag	tttataatat	43740
gggtcaacca	gtcttgcttc	cttccaatct	actetgtaga	tgtttgtgtt		43740
aactatagag	gtaaaggagc	caatggtgtt	tccagtgtct	ggcacataat	aggigeteta	43800
tgaatgtcaa	atgaatgact	gaggcataaa	aagttcttcc	tatgacataa	gragraraar	43860
aggaagatca	ctgggataga	attttcttag	aagacgtggc	tcctagtcct	agcactatta	43920
ctcttactga	ctataacttt	ggacaagtca	tttgtttaat	ttcaaacatt	tactgaattc	43980
tatataccaa	atactqtaca	agttgttcaa	aaggctacag	agtctctact	ctcaaagtct	44040
agtcaggga	gagattacac	aggagtgaaa	ccccatctct	actaaaaaaa	aaaaaaagaa	44100
agaaaaaaat	agccaggcat	ggtggcaggc	acctgtaatc	ccagctcttg	ggaggctgag	44160
gragaagaat	tgcttgaacc	caggagggag	aggttgcagt	gagtcaagat	cacactactg	44220
cactccacc	tgggcaacag	aacgaatatc	totctcaaaq	aaaaaaaaa	aaagaaaaaa	44280
asactatet	tagagateet	taaggaagtt	ttgaacctat	ccaatatqtt	gggagtcaag	44340
ataagcacgcc	taaaagtagg	aattcagaga	aaggataaat	attttqaaqq	aaggcagcat	44400
acgaggaggg	tagtcagact	aacccagaga	aaggactaca	aatcccatgt	teccaggtet	44460
aatggttaac	attaaatccc	gcagacadac	cattagagaaa	ctctttaage	ttattttccc	44520
tagctggagg	attaaateee	agattettat	ttttaataat	gtasatgat	acacattaga	44580
atctgtaaaa	tgtagatgat	aatagaatee	-t-cottact	gradaacgac	tagggagaga	44640
ggcttcatgt	agccagatat	ataataaacc	ctcaatacat	graycagrag	caggggagaa	44700
ctaaaagact	tgttaacata	ttggatgtag	gtgagaaaga	agaatcaaaa	agaatateea	44760
ggttcccgcc	ctgggagggg	cagacataaa	tggagccagg	aatggtacaa	ggagetttgt	44760
ggtgggcact	cactagtacc	tttctttgga	atagctcaac	aaatgttcac	taagtacaca	44820
taaagtcaat	ataacttgat	gagctagagt	taggctaaga	tgttgagtta	gcagaagagt	44880
agtacccaac	taagggcttg	aggaaggctt	cctagaaaag	ataatgggtg	cacgtagtcc	44940
tgaaggatga	gcaaggcttg	cgaggaggga	aggtaggaag	ggcattccag	acaaagggac	45000
aaacatqcac	aaaqqtqaga	cagagcatgg	tgaacacaca	aagttgtagg	cattttgtct	45060
ttctaggaca	caaaaaacaa	ggtgatgaaa	acaaggctgg	agagacaagc	ggagaccaca	45120
agtggtcacc	cctcactggc	ctcqctqtac	tactggactg	ctccagccct	tcctggccca	45180
geggeeace	tggcaccacc	cccacactat	gcacacaata	ggtacagaca	ctctcagccc	45240
gagecagaga	cagcctgtta	ctgtgagact	cacacatcct	gttttcccaa	gcttgcccca	45300
caaacccccc	aaactggacc	acctomatta	gagtatttgg	aaaagtgcag	gtggagtttc	45360
tagggtgage	cacgtcaggc	carrorates	gastatttt	cetteceeta	atctttagac	45420
taggetatge	cctgaggagg	cagggggcga	accetcce	cccattaata	gtccatgatc	45480
tggggcactc	gtacatcatc	gaggggcgcg	tactaracca	. cccaceggeg	ctcacacata	45540
catteateea	gracarcarc	cataagcatc	ggggagetg	tasaatasaa	agttcaagac	45600
taatcccagc	actttgggag	geegaggegg	geggateate	tagaggccagg	ageceaugue	45660
cagcctggcc	aacatggtga	aaccccgccc	CLactadaa	. cacaaaacct	geegggeacg	45720
gtggcgcatg	cctgtaatcc	cagctactcg	ggaggergae	acayyayaac	teresanasa	45720
caggaggcag	aggttgcagt	gagtcgagat	cgagccatcg	cactecaged	cgggcaacaa	45700
gagtgaaacg	ccatctcaaa	aaaaaagca	tctgctgaag	gcacagtatt	gtgttagagg	45040
cttggactac	cctgaggaat	aatagtcctg	acacttgagg	acatececat	ccaattggaa	45900
aggcactgga	taaacatcta	agaaaatgtc	acaaggcata	. aaagctgtaa	taataatagc	45960
taacttqtat	ttagggtaaa	caaaaggctg	aatcaggctt	: tggactaaat	attttgcctg	46020
taactcattt	aatcttaata	acaaccataa	. gattatctca	ttttatgatg	aggaaactgt	46080
atacagagag	gtgattgact	tgcctaaggt	tgaacagctt	: atgagtagta	gagccagtat	46140
tcaaatccag	tcagcctcca	gtgtcccctc	: tctttagtca	. ttagatatag	tgctacccag	46200
agaatetget	aagccttata	gataaatgct	atqaattcag	, aggcaggagc	aattactgtg	46260
acttagagaga	atccacaaag	actttctaag	gtggtgacac	: ctgatttggg	ccttgaaact	46320
ggttgaatag	agataagaaa	agaacagata	atcaatttaa	l ctgccgttgt	gttttgaatc	46380
atcactttaa	gcctagaatg	acaaagctgg	aaaagaccct	: aaatatcatc	tagcccagtg	46440
attatcaaat	tttcttagga	totogacatt	tttctttaaa	tgaaacatga	gtagaagcca	46500
getaceaaa	ctcatgcctg	taatcccaac	tacttgggag	actaaqqtqa	gaggattgct	46560
gatgeagtgg	agttggacac	caacctoodd	aacqqtqaqa	ccttatctca	aaaaaqaaaq	46620
caaguudaga	agggcggtgg agctggacac	ctcacccagg	taateteade	actttagga	gctgacgcg	46680
aaayaggccg	: tgaggtggtgg : tgaggtcagg	gattagaga	, caacctaac	gacatogtos	. aaccetgact	46740
grggarcact	. Lyayyttagg	ggttcgagac	, cagocoggo	- acctatasta	ccagctacto	46800
ctactgaaaa	tacaaaaatt	agccaggcgc	aguyouyoat	, goodgecald	tasantasas	46860
gagaggctga	ggcaggagaa	cegettgaac	: cccagaggtg	, yayyıtycaç	, cyayccyaya	46920
ttacaccact	acactccago	ctgggtgaca	gagtgagact	aada	. aaayaaayat	46000
gagcagtaat	cttgtctctt	aaaaaggagg	accaaacatt	. ccccagccc	. addataticc	. 40300 . 47040
ctgaaaagtt	cagttgagaa	ccactgatct	agtccaatg	. cougggate	. cogocicial	. 73 / U%U
ctttgctato	tggagaagga	agagacagc	g gragttccc	a aaayacacaa	acaatyyyya	7 - 7 / TOO

cattttaaac	aaaaataacc	adctaadcac	tetactacta	ctacttatct	atttqccctc	47160
ttgtcctgcc	taaggataaa	ttattaacaa	ctacaaatgg	caaccaagag	agaatggagt	47220
tggggcttag	anatagagaa	gaggaatatg	esacadacta.	gagttggaga	ggctcttaaa	47280
gaaagagctg	aagugugugua	gaggaacacg	ttaatotaaa	tetettetta	attcatagag	47340
attttgttgt	tattatty	tteceestes	cacacguaa	aggagatect	gagaacacgt	47400
gccctgattt	acceptant	ttaattttaa	Cttttttt	tttttt	ttttgacaga	47460
gtctcactct	ggggggggcc	ctaattttaa	atagagagat	cttaactcac	tacaaacaaa	47520
gteteaetet	gtcacccagg	coggagogeg	gradesacct	cccaactacc	tgggactaca	47580
creegecree	egggtteaeg	ccattettett	tetattt	atagagaga	catttcacta	47640
ggcgcctgcc	accacaccca	getaattttt	startenta	accordeted	acctcccaaa	47700
tgttageeag	aatggteteg	accecegae	cccgcgaccc	attettt	gcctcccaaa	47760
grggrgggar	tacaggegtg	agecaetgta	corggodaaa	teccacette	aattagagac	47820
agtetettge	tgtgttgeee	aggetgatet	caagcagttc	attatttaat	gcctcccaaa	47880
gtgctgggat	tacaggegta	agetatagea	ettteesest	gagatattag	taattctatt	47940
ttttttttg	tttgtttgtt	cattegette	ccctrgagac	tatacataca	actgttgcct	48000
gggctggagt	acaatagcgt	gatetegget	ecetgeaace	ataataaa	aggttcaagg	48060
gattctcctg	cctcagcctc	ccgagtaget	gggattatag	gtgcctgcca	ccatgcctgg	48120
ctaattttt	gtattttaa	cagagacagg	getteactat	taggagatt	ctagtctcaa	48180
actcctgacc	ttgtgatetg	cccccctgg	testatatas	staatttat	acaggcatga	48240
gccaccatgc	ccagccttcc	ttaattetat	taatatatga	accettecet	ttttttaaa	48300
aaaaagagat	agactettga	tetgttgett	aggerggagr	geageggeac	aaatcagagc	48360
taactgcagc	ctcaaactcc	tgagttcaag	caattecteca	geettagtet	cccgagtagt	48420
tgggaccaca	gttgggaacc	actacacttg	gecetactae	gggtttttcc	tgtttgtttg	49480
ttttttgttt	ttttgtttt	ttgtttttt	gttttgagac	ggaagtttgc	tetegttgee	40400
caggctggag	tgcaatggcg	cgateteage	tcactgcage	eccegectec	cgggttcaag	40340
cgattctcct	gcctcagcct	cccgagtagc	tgggactaca	ggcatgcact	accatgcccg	40660
gctaattttg	tatttttagt	agagtcgggg	tttctccatg	ttggtagtca	ggctggtctt	40000
caactcctga	cctctggtga	teegeceate	teggtetece	aaagtgctgg	gattacaggt	40720
gtgagccacc	gcgcccagct	gtttgtttt	ttgagatagg	gtctcactct	gttgcccagg	40700
ctggagtgca	gtggcatgaa	catggcttac	tgcagcctta	acttcccagg	ctcaagcgat	48840
cctcccttct	ctgcctcctg	aatagctggg	accacaggaa	tacaccacca	cacctggctg	48900
atttttaaat	tttttgtaga	gccagggtct	ctccatgttg	cccaggctgg	tctcagactc	40000
ctgggctcaa	gtgatcctcc	cacctcagcc	tcccaaagtg	ctggggttat	aggcatgagc	49020
cactgtaccc	agcccccttc	agggtcttat	ctttataagg	ggtgggggt	ggtcagcacc	49080
tttctcattg	ttacctctac	cttccctagg	tatgtgcagg	tgaaatttgt	ctgcattcgg	49140
acccaatcaa	acaggaagag	aacgcgggag	gcagacatgt	gcccagcgta	cttgctccta	49200
aggtacaacg	agagactaga	tagactattt	atcagtgaac	taaacacaca	gcacatacat	49200
ggtgactcta	aagtggctag	tcctggagga	gacaccactg	gcaaatctca	aaagacaatg	49320
tgcctgcaga	gactccagcc	tgtgcagccc	acaaccaaaa	aagaccttga	cactgccgag	49380
aagtccctgg	ttgagccatc	gttttgccta	gataaggtac	aagtgtcctc	aaagccagag	49440
caggaaggca	tcactccttc	tgacctggcc	aagatagcaa	aagtgatgaa	gaactttctt	49500
aaggtagatg	agggttccat	ggcttccttc	agtgtgggtg	acagccagca	cctggaccgg	49560
ctcagcttcc	agagcagtaa	gatgaccgac	ctgttcatcc	gcttcccaga	gaatctcttg	49620
ctacaccggg	tggagaacac	ccagggccac	atcctctatg	cttcttggt	ggagaacaag	49660
gaacgagaaa	gtcgagtggt	gcactttgct	gtgctcaagg	cggagacagt	cacctctgtg	49740
gccaagatgc	tgagcatctt	cacagagttc	aactccgatt	ggcccaaggt	caaggtggtc	49800
tttgtggacc	cttcattcca	ttaccgggct	atcctgcagg	agatettee	tgctgcccgc	40000
atcctccttt	ccatctacca	cacaacccga	ctcttggaga	agaagttgca	. tcgtagttca	49920
gcaaatccat	cctttaaaag	gctcatgaag	gaagccctgc	gggaggccgt	gtttgtcact	49980
tctgaagcca	gcctgaaaaa	tetetgecag	atgtcccagg	ccgtactgga	tgaggatete	50040
ttcaacttcc	tgcaggccca	ctggttcacc	tgtgaactgc	tgtggtacat	gcatgttagg	50100
aagggcctgc	ttgcgtgtaa	cacctacatg	gacagcctag	acattgtcac	cagcaaggtg	20100
tcaagcctct	ttcgggaaca	gcagtcgctg	ctggactgca	tectetgett	tgtggattac	50220
atagacttct	ttaataccaa	aggcttgaag	aacttgccca	cacctcctcc	caaattaaag	50280
agagetegge	cggcaagcat	gccactgaag	tccaagaagg	r cttttggaat	: ctgtggagag	50340
agccttacca	geeteeetge	agaagagacc	aagccagacg	cacagcaggt	acaggtacag	50400
cagcagtcac	aagtgccgcc	ctcgcaggtt	ggcatgctgg	, acaccttgca	ccagagtggc	50460
tctgaactag	cctacaagct	gtgccacaat	gagtgggagg	, tggtacagaa	ctccacccac	50520
ctggtggaca	tggctggctc	ttcagtggac	gttcagctgc	: tagaggacto	tcaccaggtt	. 50580
agcaaagatg	gctgtagctg	cagctgttcc	: tttcaacaat	: ggtaccacct	: gccatgccga	1 50640
cacattttgg	ctctgctgca	caccagccag	cagccggttg	, gtgaagccat	ggtgtgccgc	50700
cggtggcaga	agaagtacca	. gtacctcctt	gggcccaatg	gggagctcca	ggatcgtggt	. 50/60

atooteceaa	acacaggcca	gcctgagaag	caaqqacqqa	acqacatqat	tcaggaccta	50820
accadddadt	tagcaaacct	actcatacaa	accgagggc	cagagetgga	ggaacgctac	50880
treacreter	gcaagattgt	ggatatctgg	actaacccct	cccaccatc	tgagctcttt	50940
caccaccac	gagactttaa	agacatagac	cacatacatt	tectetagaa	aaagcaagaa	51000
assaggasag	gattccctcc	tactacaact	gtgatgcatt	attgaagcac	tttagctgaa	51060
gaaggggagg	acaaacactt	ctccttagaa	gtgtgagagt	ttaaagtggg	caggacatac	51120
taggacc	cattttagcc	aatotottoo	tanatanaac	taggaatatt	gttacagtag	51180
Lagggillag	aactccactg	tatananata	ctttcaatct	accetttte	agccctactt	51240
agaggaaggg	ttgggagcct	anattattat	tasaggggs	agttatctcc	atactacaaa	51300
ttggcattcc	tegggageet	caguiguigu	tanastatta	tttaatataa	aaaratraat	51360
greacectet	tcctcccca	geeeeegaga	cagacetta	naggagatat	tttcagggac	51420
ccctgcctca	ggttagggtg	agacaaaacc	ggcctggtaa	tanagatet	tatttataac	51480
aaagggaacg	aggatgatct	ttggctgttg	engenerica	rgaagaaccc	attetactta	51540
tttttattca	tattaaagtt	gettetaata	taggagtaga	ayyyaaacyt	accesactors	51600
atcagggaag	gaagaggaat	tgcatagcaa	caggactega	ccccacaget	aggaagegge	51660
tgctctaggt	ggatttatta	attttaaaga	aaactgagge	caggegeage	ggcccacact	51720
cataatccca	gcactttggg	atgtegagge	gggtggatgg	accategag	agattagga	51780
cgagaccagc	ctggccaaca	tggcgaaacc	etgttetaet	aaaaacacaa	acattageta	51940
ggcgtggtgg	cgcacctgta	atcccagctt	errgggagge		gaaccyctty	51010 E1000
aacccaggag	gcggaggttg	cagtgagcct	agategtgee	accgcactcc	ageetgggtg	51900 E1060
acagagtgag	actctatctc	aagcaaaaaa	caacaacaaa	aaaaaaagaa	aagaaaacta	27300
agtattagca	acctaatggg	gttgtggagc	caaatagaac	ctgatgcctc	acattcaagg	52020
atttggcaat	ctgcgtctta	atttgcctcc	ttcctacaac	taagccttca	aggttgattt	52080
caggtttcct	tatattctag	cgggaagagg	ccaaatagac	tggagggtgt	gggggaaaaa	52140
cctgaatctt	agacttgact	gccagcaact	tgctggggaa	ctgtgggcaa	tttctttgac	52200
ctcagtttcc	tctgtaaaaa	ttagcatgtt	ggcctgttct	aatcccagat	ttcccctcta	52260
ggtttacata	agcacctttt	tgttttttgt	tttgagatgg	agtttcgctc	ttgttgcttg	52320
ttgcccaggc	tagagtgcaa	tggcagaatc	tcggctcact	gcaacctctg	cctactgggt	52380
tcaagcgatt	ctgcctcagc	ctcttgagta	gctgggatta	taagcatgtg	ccaccacgcc	52440
tgcctaattt	tttgtattta	gagatggggt	ttcaccatgt	tggtcgggct	ggtcttgaac	52500
tcccgatctc	aggcaatcca	cctgcctcag	cctctcaaag	tgctgggatt	aaagggatga	52560
cctactgcac	ccagcccaat	aacattttcg	atgcgtaagt	accaacactg	atttgatgtt	52620
gctagttggt	aatcttaatc	ctccaaggcc	tggtaaacac	ccagttttct	aagtctgcca	52680
tcttcaaggg	aactgaggac	aagagaccag	ttagtaggcc	cttgcactac	tgtagtagga	52740
ccctaaataa	gtcatggcat	cattctgtag	aatactggag	ggggttgggc	tagagaatgc	52800
caaqttttqq	cttqtttaag	gggatctgga	tttcctcagc	tctaaaagtt	gggctcctga	52860
tccccgaagg	aggagtagaa	tttgagacct	ggaactcagt	ttccccataa	ggtagaatat	52920
gcgttatgac	tatatatgca	ctgtttccta	aattccaggg	gctttagagt	ttcacacaca	52980
cacacacaac	aaaacaaaac	ccgcggtggc	tcacgcctgt	aatcccagca	ctttgggagg	53040
ctgaggtggg	cgaatcacga	ggccaggagt	tcgagaccag	cctggccaac	agggtgaaac	53100
cccqtctcta	ctaaaaatac	aaaaaattaa	ctgggcgtgg	tggcgggtgc	ctgtaatccc	53160
agctactcag	gaggetgagg	caggagaatc	atcgcttgaa	cctgggaggc	ggaggttgct	53220
ataaatcaaa	atcttqccac	tgcactccat	cccaggcgac	agtgcgagac	tccatctcaa	53280
aaaaaqaaaa	aqaaaaaata	tatatataac	tgctatttat	tttccttttc	attttctgct	53340
tttgagggag	tttccatagt	aacgtgtcct	tccagtcgcc	tagcctgaag	ggaagccccg	53400
gagetecage	ttcaaggctc	agctctccca	gatgcaagta	. tctttacctc	cagccagctc	53460
cttqtaaccc	tggcaacacg	gcccgcccgc	gaatcgtcac	gctacgattg	gtccgtggtg	53520
ctaaaqcctq	aaagcgaatt	cctcagacat	tggtccgagt	. cactgcgatg	ctgacgctgt	53580
gattaataaq	tttggatgtc	agtcagagtc	ggaggcaggg	r tcaaataggg	agaaatggcg	53640
acggagcctg	gctgtgggtg	agtgcttcct	gaaggggtga	. aagtgtgaga	cagcggatca	53700
ccgcagttag	ccgtcacaca	gctcccaaag	ggatgggagg	gaggttttct	tctcatccgg	53760
ctccagctgg	actctgggaa	tgtcagacat	ccacatctcc	cacccaggtt	agaggtgaga	53820
ggtcaaaggc	cgtattccct	ctattaattt	ttggacccca	ggtactgtgg	acagcagtca	53880
ggatcccgaa	ccaaagactc	aactttcagc	tacttacaga	gtaatggtgg	gcaagtcact	53940
tagcttcttt	gageettagt	ttatcatctg	· taaaatgagg	, acagtaacto	ggtctggggc	54000
caaatagagg	aaacaatgga	atagagtatt	gctgctaaaa	gagggatata	gtagaggcag	54060
gagaagetat	gcacatttgt	tagccatatt	ttatqqtqqa	agggattgag	gctcagagag	54120
gagaastaac	ttgcccaaga	taacacagca	agtttggagg	aattgcagtt	ctcttataca	54180
taccaddacc	aaaggaaaga	atggatgcca	atcactcatt	: tataaatata	aaatcgtatt	54240
tetatttat	tttattttt	gagacagagt	ttcactctot	cacccagage	tggagtgcag	54300
taacacaata	tcggctcact	gcaacctcag	cctcctagat	tcaagcaggt	ctcctgcctc	54360
addet deces	gtagctgaga	ctacacacat	gggccaccat	accegetaa	ttctttttgt	54420
agcoccego	. Junguuga			33	3	

atttttagta	gagacgggtt	ttcaccatgt	tagccaggct	ggtctcgaac	tcccaacctc	54480
aagttatctg	cccaccttgg	cctcccaaag	tactqqqatt	acaggtgtga	gccactgcac	54540
ctaactagaa	toctattttt	ttaaaaggcc	atatgcagct	ctggccatac	ctatttaaat	54600
ccctagaa	catatettte	catagctaac	ttcttatcat	ttagatttca	gctccaatgt	54660
catcettete	ccctgagagg	ccttccatta	ccactttaac	taaaqtatcc	ctcccttccc	54720
caccttactc	tetgaeatgt	tactcaggtt	tatootcttt	gtaagcttca	ttattggata	54780
tatatttact	tatttattta	catgtttatt	gtgtatette	ccctagaaca	gtgctgacat	54840
atacticger	ttanagenea	attgtgtgga	tgaataattg	aagagccagg	tccctactat	54900
atagtaagtg	statattast	ctccataggc	ccatctttag	aaaaaaaatc	taggaatgat	54960
tatatagast	agaggetase	cttacttgat	acttaagaga	ctcaaagccc	cataatcaac	55020
tagastagas	agazagtatt	ttgaccttgg	catttqqaca	geteceatet	ctcccatggc	55080
cgccccgcaa	ayaaaycacc	tcctgattaa	agactcaage	ccacctatec	tactacacca	55140
cctgacaatg	actagagaga	tagatacctt	caactaccad	agctgcttta	tacaaaatat	55200
ggttaacaag	tteestees	tcttatttat	caaccaccag	tataacccaa	agagtaaggt	55260
ctttgattat	tteeteetee	atggacctcg	gatacaacta	gagggtcatc	ttgcccgage	55320
cttatatace	cccccggcgg	ccaaggagga	ggcgcagccg	ctaaccaaa	tottccaagt	55380
agtetaettt	gecateeetg	catgggagag	actoratec	atceteatea	atcctcattt	55440
acccaagaag	tttaateeag	ctatggagtt	agecegeace	gaggtccttc	teteageett	55500
ccttccactg	cetateetag	ccatggagtt	gtatgaggtg	tecetteaac	aacccataaa	55560
ccacatttgt	aagttcctcc	aggccaagtt	astataataa	accectedate	ggeeegegga	55620
aaggetgete	ctgacctccc	tgcagagcac	aacycyccca	gecacageag	agetteacte	55680
aaagttgtat	acactcctga	gcaactgcat	gastanaga	tagagagaga	garctgarag	55740
acactggctg	ctcaacgacc	gcatctggct	ggeteaeege	changeaget	tettteetae	55800
cagccactac	ttccagagcc	tcgaggtcac	cacccacacc	tagecage	agaagtgtgc	55860
caccccatct	gagaaacaag	gtatggcttc	tergreege	natactacta	agaaccccgc	55920
agacaaggca	aacttcaacc	agggcctgtg	tgcccagaac	aaccatgete	netengtona	55920
catccccgaa	agccccaaac	tggagcagct	ggtagaatcc	cacatecage	tecteccicaa	55560
tgccatctgc	acagggccag	cagcccaact	grgccrgggc	gagettgetg	tggtccagaa	56040
atccacacac	ctcattggct	ctggctcaga	aaagatgaac	atacagatee	Lygaayacac	56100
ccataaggtg	cagccccagc	cccctgccag	ctgcagctgc	tactttaacc	aggeetteca	20100
cctgccctgc	cgccacatcc	tagccatgct	cagtgcccgc	cgccaggtgc	tecagecega	56220
catgctgccg	gctcagtgga	cggcaggctg	tgctaccagt	ctagacagca	teetgggeag	30200
caagtggagt	gagaccctgg	ataagcacct	ggcagtgact	cacctcaccg	aggaggtggg	56340
tcagctgttg	cagcactgca	ccaaggagga	gtttgagcgg	aggtatagca	ecctgeggga	56460
actggccgac	agctggattg	ggccttatga	gcaggtccaa	ctctgattat	tetegatgee	56460
cagagatgct	catgcacctg	tgcacactca	catccaccca	tacacacaca	cacacacaca	56520
cacacacaca	cacacacact	cccttacact	gttgtacttc	cgtgggccct	cetteeagaa	56560
caaggacaac	aaggacaagg	ttgaagggtc	ttctcatcta	ccatggcctg	ctacctagca	56640
tgtgtctagc	tcaatgagac	aggagtcagc	aaatcttaat	ctgtttagtt	tactcaggtg	56700
gccacataca	gtctctgttg	tatattcttg	gttttgtttt	aatattttt	CCCCCCCCC	56760
tttttttt	ttttttgaga	aggagtctgt	ctccgtcacc	caggctggag	tgcagtggcg	56820
caatctctgc	tcactgcaag	ctccacctcc	tgggttcaca	ccattctcct	gcctcagcct	56880
cccgagtato	tgggactaca	ggcgcccgcc	acaatgccgg	gctaattttt	tgtatttta	56940
gtagagacgg	ggtttcaccg	tgttagccag	gatggtctcg	atctcctgac	ttcgtgatct	57000
gcccgcctcg	gcctcccaaa	gtgctgggat	tacaggcgtg	agccatcgca	. cccggcctgt	57060
tttaacattt	tcataaggta	aaaacctttc	ttagctcaaa	ggtctttaaa	aaagcaggca	5/120
atccagctgg	gcatggtggc	tcacgcctgt	aatcccagca	ttttgggagg	ctgaggtgga	5/180
cagatgactt	gaggtcagga	gttcaagacc	agcctggcca	acatagtgaa	accetgtete	57240
tactaaaaat	: acacaaatta	gccaggtgtg	gtggcggggg	ccctgtaatc	ccagctacto	57300
gggaggctga	ı ggcaggagaa	tcgcttgaac	ctgggaggca	gaggttgcag	taggccaaga	57360
tectactace	: actgcactcc	agcctgggag	ggtgagacto	: catctaaaaa	. aaataaaata	57420
aatggcaaco	: cctggtctaa	gataagagat	aaaacatcag	, gtggtgaggt	tgaggtttgg	57480
gacttagtag	cagttqcccc	agtcatgaga	. tgactcactt	: aacccgtctc	: ctttaagtga	5/540
actagactag	gaggettect	acaggggaag	aggecetet	: ggggagctga	ı ctcagccagg	57600
ctccctgaac	: ttttttcctt	gtcccatcct	. ggggtcaata	ı aaactgaatç	, ttgcatattc	57660
tagcacttgt	: ctagttttt	ttttgttcca	. tagaaggcag	, tttagggtat	: atcatggaga	1 57720
gaatagactt	: tagagtgtta	. tacaacatgt	gaatcctggt	: tggttccttc	: cctgcttgat	57780
ttttatacct	: aattctacct	tttactagct	atgagactta	ttaggataag	ttacccctct	57840
aaacctcaac	ctgattatct	. gtaaaaatgg	ggatctccac	: agggtatgtt	: cacagagcag	57900
gcatacctac	, tagatacte	attaaqtatt	aattttcctt	: ccttgcctat	: ggtcctatga	1 57960
cetacettea	a acatoctogo	, aaatttaaqq	caaqaqqaqa	attcaaatac	: ctaggactta	1 58020
atataagaaa	a ttctggccag	gcatggtggc	: tcacacctgt	aatcccagca	ctttgggagg	58080

ccaaaacaaa	cogatcacct	gaggtcggga	gtttgagacc	agcctgacca	acatggtgaa	58140
accoratete	tactaaaaat	acaaaaatta	qccgggcgta	gtggcaggca	cctgtaatcc	58200
cagetatteg	ggaagctgag	qcaqqaqaat	cacttgaacc	tgggagacgg	aggttgcagt	58260
dadccaadat	catgccattg	cactccaqcc	taggtgacag	agcaagactc	tgtctaaaag	58320
ataaaaatta	aaaaaaaaa	attetgggta	ggccaggtac	ggcgtctcac	gcctctaatc	58380
ccaacacctt	gggaggccaa	aacaggcaga	ttggagcagc	ctgggcaaca	tggcaaaacc	58440
ccttctctac	aaaaaataca	aaaattagct	ggatgtagca	cqtqcctgta	gtcccagcta	58500
ctcaccacac	ctgaggtagg	aagatcactt	gagcccagga	ggttgaggct	gcagtgagct	58560
atasttatac	cactgractc	cagcattoot	gacacagtga	gaccctatct	caaaaaaaaa	58620
assasttctc	atcaagtctt	casaacaaca	taaaaqcaqc	cttaactctc	caagcagggg	58680
acceptacete	acetaatttc	cattgtatct	acctgacaaa	acctatctcc	tgtcttagtg	58740
gtatgtggg	agacaacccc	atctggaagt	ccctgatgaa	ggactggaat	ttgtcagaat	58800
grateragag	ccacctctat	ccccatccct	gccataggcc	ctcctcccaa	ccctgtctgc	58860
ggeteaacea	taggggggaaaa	ccaccctaca	tatctggtgc	tatttcatcc	atctacaagc	58920
oggaggagg	aggagaaa	cttttagatc	tcactaggg	catcttccca	gaggctgtgt	58980
aggagecagg	atactacaa	cacacacacat	ccacagcacc	ctctaactcc	ggatgggcca	59040
tastassaga	ttgaacaac	cadatcaddt	cetetteeca	aactcctqqq	acgggcacgg	59100
taaaaataa	aggateate	ataacaagaa	tgaggatgca	gatatcaggc	tgggagctgg	59160
rggggargee	cactacctca	gagggaggg	gtagaacccg	tggtgacage	ccacacagca	59220
teresesses	aggetecta	gagggcaccs	gatcagaga	tctacttcta	gagtagccat	59280
teaggggeet	aggeetgeeg	agetgeetea	catocoogaa	tttataacaa	tttcggctgt	59340
tgteedagee	tagtetetee	carctartcc	ccccadaca	accectaact	tgtggcattg	59400
actectteeg	angegeeeee	tagacagaa	ataccaccta	ctcagctttc	tggctcagtg	59460
ceagggetgg	geeecaggee	accaccacto	actctacage	actacagagg	ccaagggaca	59520
ggeetgttee	accagaggcc	accaccacca	caggaatgaa	atggaacgtt	attctcagtt	59580
agectggaga	ageageeeea	cccgcagaga	atoggaacgaa	aggtagga	cgtaactaag	59640
ctttgaggag	ggggcectga	ggggcagggc	acgggagcag	ttactcatat	ccacactccc	59700
accagececa	geggaetgte	tagaggccgg	gaactaggtg	aattaatgaa	tagtgagcaa	59760
agtccccaac	acggagtagg	cgacggagaa	gagatagatt	ttcttctaaa	agaattgatt	59820
gcgggtagtt	attgattggc	aaggatgttt	ggaacggccc	cccadadcca	gaaagcaact	59880
ctagggccag	ccccaaacg	cccagcagaa	ttgctactcc	cccagageca	ccttggccgg	59940
teteagggga	agetgeegea	atttataaa	tagtaggege	ggacatggct	tccccaaagc	60000
aaggcagagg	acctggatga	guuggag	cototoctoc	cttcttcacc	cttctagaat	60060
cccggtttgt	gagggaatag	etteresett	ggaatggagt	ttacagcgtt	gacctattca	60120
gtcacctcat	agaccccccc	cttcacactc	ggaattaaaga	dcaccagogoc	gacctattca aggagctggg	60180
ttctagaacc	tggacatgac	aacaggacga	ggttaaaaga	atactuguos	teettgatat	60240
tgttctaggt	rettgeeeta	testesetes	gecacccag	attaggagtt	tccttgatat	60300
ccttatctgt	aaagtgtgtc	tgatgattga	deactaceee	accaggagee	ttgaggatga ccaagtgctt	60360
aatgagatca	tttgtatgga	agcagacgac	. cagagacgga	ggtattttc	ccaagtgctt	60420
cgtgccttgt	agagtaagac	tetagggccag	acccagcacc	. tagaatacaa	tttttcttt	60480
tttgagacag	agteteaett	estactage	testeesatt	ctcctacctc	gagcaagacc	60540
tcagctcact	gcaacctctg	cettetgggt	. ccatgcaatt	cttttgtet	agcctcccga	60600
gtagctggga	. ctacaggaac	ctgccaccac	acciggotae	tracctcaar	tttagtagag	60660
acagggtttc	accatgitgg	teenggergge	gaggagatat	: taatatttt	tgatctgccc	60720
acctcggcct	cccaaagtgc	rgggattace	accttttt	tagggacata	caaaattcct	60780
caagtgatta	taatatatya	cadagityge	ttttagaaa	. cagggaoact	aggeetaatt	60840
ctggctgtac	acgagaaccc	cttgagaage	, etccacaaa	r caecacegood	aggcctaatt	60900
tcccaacaa	tcaaatacga	accectaggs	, acgggacgeg	cetectett	actetttaca tgeteegaee	60960
tatcctaaga	tgactctaac	aagcagccag	, ectagggaco	r actataggg	caaggagacc	61020
tgctgacctg	g cagugattet	aaacgaagcg	tttatttctc	g geegeaggg	caaggagacd	61080
ttccagtgat	caagatgtca	gealeggers	tagaactcc	g gccccggoc <u>s</u>	gcagcaatgt	61140
ggccaactt	ggaccagcca	gecacagge	. cggggcccc	ttetttagg	gtgctctggt	61200
gcactgtggg	; tcttcactca	tacttgcage	t tttatatat	, tagggggg	aggtggagco	61260
catcaatgg	cageeggtge	accatgeted	. cocycatod	, sactonaco	agagtetgea taggtetgae	61320
gggatggcad	cgtgggaaga	agactgtgaa	aggedaact	g aactyyayys F cattamatot	tgggtctgag	61380
gccaagatco	agaaggtcta	ggtcatggt	- agggetase	a rearracet	gggcaagtco	61440
ttactgctct	ctgggcccag	cctgcttcai	_ ggggctgaga	a gaagtatti	ttcctgagag	61500
ctgccacaa	a gctgcagcco	cgtttatate	- acaacaccii	a guadaacco	ttccccattc	61560
acttagcago	ttctggggg	aggggtagt	y cocyactogo	t cateraate	gaageeteea	61620
gcacaggccl	ggcacaaaga	gggttctgg	z astostact	c cacyadacy.	gatgagaggt	61680
ataactgcaa	a tgcttaccac	ggctataat	g adicacact	c casototaty	a agctctcagt r agcatgttt	61740
ctggggttt	g ctatgeeteg	aagecaaca	y CcaacacyC	c caugeocue;	g agcatgttto	

	ttctttttt	++++++>+++	nenenenee	agtettacte	totcacccag	61800
	agtgctcagt	gaagtggagg	cttcaattct	tagactcaaa	cgatcctcct	61860
getgaagtge	cccaaatagc	taganataga	ccccaacccc	accatocco	gataattatt	61920
geettageet	cccaaatagc	chatacatt	ggcacgcacc	attangetea	ctaccttact	61980
taatttttg	tacagatggg	gteteactet	statetett	atttttt	tcagagtett	62040
tgettgettg	ctttctctct	cttcctctct	coccicce	atanttagaa	catacacata	62100
gctctgttgc	ctaggctgga	grgeaerggr	gagacecegg	etecatigua	taggagatag	62160
tcgggttcaa	gtgactctcc	tgeeteagee	ttetgaatag	ccgggaccac	tattagagag	62220
caccacaccc	agctactttt	tgtatttta	gtagagacag	gettteacca	tgittggccag	62220
gctggtctcg	aactcctggc	ctcaagtgat	ctgcctgcct	cececteeca	aagtgetggg	62200
attacaggtg	tgagccactg	tgcccggcca	agcatgtttc	taagaaaagg	gcaaacaacc	62340
ctcaaagagg	cccctaatat	ctaaaattgg	tttagaatcc	ctgccctagg	tgaatacagg	62400
aaacactatc	aaaactaaaa	gggaacttgt	agggcatett	aatcaatcaa	ccaagatagg	62460
taccaaggcc	caaaaccatg	tagaggettg	tgcaagatca	caagcagagg	tgcaatttga	62520
agctagattc	tcccactctt	aaactagtgc	cggacagacg	aaggcctagc	acatgggcta	62580
cggagcccta	gtagattcca	gtccccacac	tgagccagga	ggggtcgctg	cccagggata	62640
cctacagcca	tactcgagct	ggacaaggcg	cacgctcttt	gtggaagcaa	acacgtccac	62700
caccgcgtag	aggggctgcg	cagctggcag	tccccgggcg	ctcgggccca	tgtcctcgcc	62760
gttgatgatg	atgtgcatgt	cggccgtgcc	atcggggcgc	gggcaaaaga	ggacacccag	62820
gcggctacgg	cgcgcggtcg	gaggcagcac	gttcagctca	tagagctggt	ccaagagatg	62880
gctgtagagc	cctggccggc	tgcggcccac	caggcggtcc	cggggaatgc	gaaactgctc	62940
aatgcgcaga	tatggttcca	cgaggagggt	tggaggtcgg	ctgggggccg	ctgcctccgc	63000
ctccgggcgg	ccctcccggg	gcacgcggtt	gtggtggcgc	gtgatggcga	agacccaggt	63060
gtggcccagg	ttgaccagat	cgggcagaga	aaactcggga	acgggggcca	gactggcggg	63120
gtccagcgcg	gtcagaccga	gacgcagatg	tccgcaccag	cccagctctt	tctcctcgat	63180
ctcgaccagg	aagacctggc	ccggggccag	cggctcgcgg	ctgaagcaca	cgccgtgggc	63240
gaagetetee	acgcgtgtgg	cccgcgtccc	agaggggtcc	acgcggatgt	tggcaccgtg	63300
cacccgatgg	aagcgggtgg	gagggggctc	cgggcgctcg	agtccccaga	gtgcacccga	63360
atccacgggc	tcggaggcag	cagccatctc	tcggccatag	ggcaggccag	ctggcgccgg	63420
gggctatttt	gggcgggg	caatgatggt	gaccgcaagg	cgaccttgta	aggcatttcc	63480
cccctgactc	ccttccccga	gcctctgccc	gggggtccta	gcgccgcttt	ctcagccatc	63540
ccqcctacaa	cttagccgtc	cacaacagga	tcatctgatc	gcgtgcgccc	gggctacgat	63600
ctacaaaacc	cgcggacctt	gacccggcat	tgaccgccac	cgcccccag	gtccgtaggg	63660
accaaaqaaq	gggcgggagg	aagactgtca	cgtggcgccg	gagttcacgt	gactcgtaca	63720
catgacttcc	agtccccggg	cgcctcctgg	agagcaagga	cgcgggggag	cagaggtgag	63780
ctggcaccgg	aggetggagg	ggatccccga	gcccgggatc	ggtgcgcggc	agaggaggct	63840
cacaaataaa	agctggcgct	ggggccgggg	cttccctcgc	ggaggcgccg	ccagcaactc	63900
cccaagaact	gctgcacgga	agcqctqaqq	agcgagtcaa	cageceetet	getgeeteee	63960
gtagatgatc	cgagccgcgc	caccaccact	gttcctgctg	ctgctgctgc	tgctgctgct	64020
agtgtcctgg	gcgtcccgag	acaaaacaac	ccccqaccag	gacgagatcc	agcgcctccc	64080
cagactaacc	aagcagccgt	ctttccqcca	gtactccggc	tacctcaaag	gctccggctc	64140
caagcacctc	cactactggt	ctaccaccct	gccttctggg	cgggattggg	agaagagatg	64200
acqqatqaqq	gatggggggt	agttctgcag	acccctgagg	atgcctggga	gccgggaggg	64260
ctggaaaggg	cccctccaac	tgcgccaacc	ctqccctgac	cccctccca	ggtttgtgga	64320
gtcccagaag	gatcccgaga	acagecetgt	ggtgctttgg	ctcaatgggg	gtcccggctg	64380
cageteacta	gatgggctcc	tcacagagca	tggccccttc	ctggtgagtg	gacagcaggg	64440
ggaaagcaca	gttcccaaag	taaaaggctg	gggaaagcga	gagaggggct	ttgtgatttt	64500
ccaaaaagtt	tccttccttc	taagcctcgg	gattttcctc	tatgccattg	gctttgctgc	64560
ctgtacctct	cagaggtttt	acccacatgt	aaagtgcctc	tcatggtggc	cctttccctc	64620
cacccagetg	gcccttggga	cttactcage	catctcttc	ctcctcaggt	ccagccagat	64680
ggtgtcaccc	tggagtacaa	cccctattct	tggaatctgg	tatagetgga	gctgtgggtg	64740
tatctagaca	cttggatggg	gtggcattta	gctaatttt	ccctcccctc	tagattgcca	64800
atotottata	cctggagtcc	ccagctggg	tagacttete	ctactccgat	gacaagtttt	64860
atgcaactaa	tgacactgag	gtgagtctgg	tgcctgccca	tctgccccaq	geteeceggt	64920
cotocatoca	tggcatgatg	ctgggagaga	gagcatggc	ttggagtcta	cttttcgctc	64980
tataatataa	tattgtggta	taataaccaa	teacttecte	ttgcacaaat	agggtgggtt	65040
aatotoatta	tctctgaagt	tettteeaet	tcaaatacca	aagcttcctc	attccctctq	65100
tettacteta	ccatccccag	gtcgcccaga	gcaattttqa	ggcccttcaa	gatttcttcc	65160
acctetttee	ggagtacaag	aacaacaaa	ttttcctgac	: cggggagag	: tatgctggca	65220
totacatoco	caccetggce	atactaatea	tacaaaatco	cagcatqaac	cttcaggtqc	65280
addatadete	caggagggaa	gagaaataac	ttgaggctgt	ggccttacac	ttagcaaggt	65340
cadactdact	ggtcaatgtc	cccaticcaac	ccagettect	gcataaccto	cccaccacco	65400
cagaccgacc	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5000000000		_	-	

getgeectag	atctatctat	gtgcctccca	cacaggaaac	tcacctgtca	ggctgccagc	65460
tctatatttt	gcattgagtg	geeteteata	cccaccqqcc	tacataaacc	accctgggtt	65520
tcagcttccg	gattactasa	gatctagata	gtagggtgag	ggaggctctt	cctttttgcc	65580
ctccacatca	actagacgaa	ctagatattt	cacaggggct	agctatagac	aatggactct	65640
cctcctatga	gcegageaec	aactccctgg	tctactttqc	ctactaccat	ggccttctgg	65700
ggaacaggta	taggatagga	cagttgggca	atctctgggg	tgaggcaggt	cacatgatct	65760
cacatctata	ctccacacac	atgatatgac	aggccagcc	caggtttatg	agcagcaggt	65820
aggtetgee	aacaacctac	tactaaaaaa	ccaaagaata	gagatcagtt	tttctttctt	65880
tottttt	tttttaaaa	cadattetta	ctttatcacc	cagactagag	tgcagtggca	65940
ccatcttacc	tractoraac	ctccacctcc	caggttcaag	caattctcat	gcctcagact	66000
cccacacac	taggactaca	agcacatacc	accacacctg	cctaattttt	tgtattttta	66060
ateaeataa	cattttacta	tattaaccaa	actagactta	aactcctggc	ctcaaatgat	66120
cttcccaaa	tactagastt	acaggcatga	gctacagcgc	ccagccagaa	atcagatttt	66180
aaaggaagta	aggaggcctg	tctgtatgac	cctagaacac	ctctttqqqa	gctagcttag	66240
atracataca	gaccacaccc	totgatatet	ttcccagtct	cctagggtca	gggaggttgg	66300
tagacacaca	gaggtatact	cacctectet	accttcctct	tcccaccage	agctgatgcg	66360
cttttcactc	tcatctccta	caggetttgg	tettetetee	agacccactg	ctgctctcaa	66420
aacaaqtqta	acttctatga	caacaaagac	ctggaatgcg	tgaccaatgt	gaggttctgc	66480
catcactttq	catgagetet	cccatcccta	atcctgagaa	caggaccaca	ttccctcctt	66540
aggaactect	tattetecat	ccctcattgc	tttcttqcac	ctttaaqcaa	tttagtgttc	66600
tctgggacat	gtgtctaagt	gtgtattccc	accaccacct	cctatggtgg	caaatcccat	66660
aacctccata	accacaaaaa	acttetteac	atttatcaaa	cacctgcaac	gtggcaggca	66720
ctatactasa	ctgtgtctat	gtagattatt	taagetteaa	gattccccct	caaatgagat	66780
catactaccc	acattttcca	gataaggaaa	ctgagggcta	tgaattttga	aatcactgtc	66840
tasattaca	atattaggag	gcagtgatgc	taggatttgg	acccaggtct	gggaagattc	66900
ctaccactaa	acctcaattt	ccctacctgt	gaaaaaaagt	gagtgaagag	gtgaaatcca	66960
agaggagtaa	atcttgggac	aacttggtgg	gatcatagaa	aggetgggga	tctgtaaagc	67020
atagtagta	ggtgtatcat	tocaocttca	ggaagtggcc	cacatcataa	gcaactctgg	67080
cctcaacatc	tacaatctct	ataccccata	tactagaaga	gtgcccagcc	attttaggta	67140
gatactacta	gataccccta	gagccaaccc	cagccccatc	tggaggctcc	acacccattc	67200
cccacctca	cattgcaggt	atgagaagga	cactattata	gtccaggatt	tgggcaacat	67260
cttcactcgc	ctoccactca	agcagatata	gcatcaggtg	tacaaaaaa	tgggcttcct	67320
cctggtgagg	tagagacaga	gggagggga	qqqaaqcaqa	ggccctgacc	cactgtctgt	67380
gccttccagg	cactgctgcg	ctcaggggat	aaagtgcgca	tggacccccc	ctgcaccaac	67440
acaacagctg	cttccaccta	cctcaacaac	ccgtacgtgc	ggaaggccct	caacatcccg	67500
gagcagctgc	cacaatggga	catgtgcaag	tgaggttccg	tggccacctg	tgacttgggg	67560
taataaatta	ctagaactta	tgggcatcgg	caggtttctc	agggatcttc	tgtgtagagt	67620 ·
ttctcaatga	gatgagetgt	agaggatgtt	taacatccat	ccctgacccc	tcagtggatt	67680
gagagtcagc	caattcattc	ttttatcttt	tttaaattta	aaatttttt	gtttgagaca	67740
aggteteact	ctqtcaccta	ggctggagtg	cagtggtgtg	atcatagctc	actgcagcct	67800
caaactcatq	ggctcaagca	atcctcccac	ctccccagta	gctgggacta	cagacgcacc	67860
accaccccca	acaaqttttt	gtatttttg	tacagatggt	gttttaccac	attgctcagg	67920
ctggttttga	actctggggc	tcaagtgatc	tgcccatttc	agcctcccaa	agtactggga	67980
ttacaggcat	gagccacccc	gcccagcccc	atttcattac	gtagccacat	tggttgttgt	68040
ttcacaqttc	actacagect	caacctccta	ggctcaagcg	atcctcccac	cttagtctac	68100
tgagtagctg	ggtctacagg	cacatgccac	cattcctggc	taatttttaa	aaaatttttt	68160
tqtagagaca	gggtctcact	atgttgtcca	ggttggtctc	aaactcttgg	tctcaagcaa	68220
tectecetee	ttggcctccc	aaagtgctgg	gattacaggo	gagggtcccc	acacccggcc	68280
atcacattqq	ttaataacta	ttacttccga	ctgggcgcag	tggttcacgc	ctgtaatcct	68340
agcacttttg	gaggctgagg	tgggggaatc	acctgaggtc	aggagttcga	gaccagcctg	68400
gccaacatga	agaaacccca	tctctactaa	. aaatacaaca	attagccagg	tgtgctgttg	68460
ggcacctgta	atcccagcta	ttcaggaggc	: tgagggagga	gaatcgcttg	aacccaggag	68520
gcagaggttg	cagtgagctg	agatcatgct	actgcactcc	agcctgggca	acaaaagtga	68580
aactccatct	caaacaacaa	taacaaactg	ttaacttcca	. tgtccagtct	cctgtggcca	68640
cccccccca	caaccccaag	taaaagggta	acactgggcc	cagcagggct	gctcaggtcc	68700
attttqattq	gtcagtgctc	acactctacc	ctgttgtatg	ttgtgactco	cacacctgct	68760
ggcccctaga	cactaaatgc	cagatgcate	: ccagtcctcg	taacaaccaa	. aatgcgtccc	68820
ttqtacattt	: ctttttcttt	tttttttga	. gatggagtct	tgctgtcact	. caggctggag	68880
tacaatacta	cqatcttqgc	tcactgcaac	: ctccgcctcc	: cgggttcaag	, tgattctcct	68940
gcctcagcct	: tctgagtagc	tgggactaca	ggcacgcacc	accacgcctg	gctaatttt	69000
gtatttttt	: ttttagtaga	gacggggttt	caccatgttg:	gtcaggctgg	tctcgaactc	69060

ctgacctcgt	gatccactca	cctcaatctc	ccaaagtgct	aggattacag	gcgtgagcca	69120
ccacgcccag	catccctgta	cctttctaaa	tggtggtgag	ttgaggctgt	ctgaatccca	69180
gcccatccag	cccaacatcc	aagtcagtcc	tagagaggtg	gcccccccc	aaaaagggga	69240
gtggaaccca	actatetace	ttctagatta	gagettggag	ataggagaga	aggtctgatc	69300
tgttgactac	ttttcacccc	gacctggtct	tcctqqqqcc	tgctcgtatg	ttcccggcag	69360
ctttctggta.	aacttacaqt	accoccatct	ctaccgaage	atgaactccc	agtatctgaa	69420
actactteac	tcacaggtga	atagagagag	cacagetgga	tcaccaqcag	ccttaggacc	69480
ccadadtadc	acagcaagct	gagagacatt	gagacttcct	gtcaggacaa	gggaagctga	69540
aactcccaaa	ggcgaagccc	aggatectat	gattggtggg	gtcagaattt	gaacctgggt	69600
ttatcacac	ccatgctgtc	ctoctatago	aggectaggg	gtctgcatca	gccacggagt	69660
cttaaccata	agaagagctt	cattcatgcc	aaaaatgggc	cagcagaggt	ccagggtggg	69720
aggaggg	gcacaaggtg	atataggaag	cactggcagg	gccaagttag	gactaggttc	69780
tatagagacaa	agtggttaat	accatoggacs	ctagaatcac	atgacctaga	tqcaaqtccc	69840
totocageae	acataatctt	agacaggget	cttaaatatg	agecteaggt	tctccatctg	69900
tanantagaa	ataataatga	tatctacctt	cacagataaa	acatttagta	gaatactgga	69960
caaaacgggg	gtcgttagaa	aacatgaaaa	ttccctaatt	catattatct	agettggccc	70020
catgoagtaa	ctgaggggta	accettaaac	tagggaaggg	ctggggactg	gacttattcc	70080
agaggatas	tttttacccc	atcctccttt	agaaatacca	gatcctatta	tataatggag	70140
atatagagat	ggcctgcaat	ttcatgggg	atgagtggtt	tatagattcc	ctcaaccaga	70200
acguagacat	gagattcctg	accetagast	aggggtgct	gtggaggatt	gagagagagt	70260
aggraaggra	gtggccagct	gactactaa	ctctggccca	cagagggcaa	gtgtggagga	70320
atgeetggga	ctaaggtctt	actactact	ataagcaaga	atgcagctgc	tatagactaa	70380
acteecagee	ggtggggcag	atagaaatac	addacadaca	ctgattagta	aagtacgggg	70440
tgtettteet	gcagattgcc	acggaggege	aggagttete	ccacatcgcc	tttctcacga	70500
acagegggga	gactgggcct	ggccccgcga	aggagaacca	daddcaaadd	agcaggaccc	70560
ccaaggragg	tccctctggc	tacattttaa	actagatest	gaggeacat	ctaaccccta	70620
accegtectt	ttttttgga	gaggataga	geegggeeae	gggccactaa	aggatttggg	70680
tatgggcaag	tgcccccgag	tanagagetta	tatagagaaaa	agggaatggt	ggggtcagga	70740
atgaaggaat	attgctcctc	rgageageea	ccacataatt	cccaccaaca	aggggetege	70800
geteaegaae	atgttctccc	agggegeegg	ccacacggcc	tactgatgac	cacagcaacc	70860
tgccttcacc	cctgatgcag	gerreergaa	caagcagcca	taggagagte	ctcttctaag	70920
ageteeaegg	ctgcaggccg	gattatacaa	cceccecege	ccccttccca	gagecetgta	70980
caaagtgccc	ctgcaggccg	ggctctgctg	ccaggactgc	ggggaagtta	gcactttatt	71040
catcccagac	tgggcccagg	geeteecata	gacageeegg	tacttaaaaa	atgcccttta	71100
cccgcagcag	ttcctgaatg	gggtggcccg	gececetee	. dacadeceae	aggaaggtag	71160
tgatgcactg	attccatccc	aggaacccaa	cagageeeag	tagatacaa	ttcaaatccc	71220
tggacggact	gtaattgata	gattgattat	ggaactaaac	cgggcdcagc	taggaaaaga	71280
gtettetetg	tggcactggg	ggttagaggg	ggcactacag	cttaagaatt	gagggctcag	71340
ggggctgaga	ggggttgggg	ccccgaacga	cageegeeag	cetggggaee	ccaattette	71400
acagetgetg	tggacggtgt	gggggcagcg	tagagataa	caccagcagg	gaggaatccc	71460
tcaatcacct	ctcgcagccc	stasttatt	cattcactta	ttgaggcag	agtttagaga	71520
tgtgttgggg	agagggagc	atttacas	cacccagcca	togaggeeug	catotcaago	71580
tcaagagaca	gagtgtttgt aggctgtagg	actataggaa	ataggtata	aggacaactt	cttggaggag	71640
tgttaaaatg	aggetgtagg	tanacastta	ataggtgtt	. aggaggggaga	agagtgctcc	71700
gegaeeeeeg	agtgtgtgca	agggettta	gaaggaace	attaaaatgo	gaggggggag	71760
aagaagtcac	ggagctgggg	tcaggeteete	. ggugeeeuus	gggagctata	gagagaggg	71820
tggtaatggg	ctccttcccc	atastass	cactcacco	, atgattcato	accacctcat	71880
aaggeeetee	gatgccctca	accerace	tetecacego	, acggeoge	cactetata	71940
gcacaaagu	cccgctcagt	ggcagcggga	ccegtaceca	. ceteettet	tectecates	72000
gtgggagcac	geettaceat	taaacataac	. catcacccc	atctgcagca	tootetteac	72060
tcacacccca	aatgggatca	cgagcacggg	, acasaacac	r aaacagggca	gtgagtcag	72120
aggggcccgc	cctttagctg	gergggaggg	, accacttata	tasaasaaa	gagataata	72180
gregggeeeg	ctcacgaacc	coogragges	, usousceate	tocccactca	a cadecadeda	72240
gggtcaggat	gaatggttgg	, caycocayco	gaacctccc	a daaadaaad	agccctgtgc	72300
ctccagtgca	tggaageted : tggaageted	aatayatto	a decadecade	, gadagadags	agaggtgtct	72360
gcayyaaycc	ctcagatgcc	. decidence	cctttccae	r toctacaact	ttccadatat	72420
gagetgeage	gtcattgctg	. cacctagge	ctcctttca	- ccaagacto	tacttttat	72480
cctcggggca	cctcttttt	, ccacciggg	- ttttttt	ttgagacac	atctcactat	72540
ttattgagca	ctggagtgca	. LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	- ctcaactce	r tactccatc	. cccaaatte	72600
grogocoaco	ctggagtgca ctggctcago	. graggagaga	actoogett	taggtgggg	z ccaccaage	72660
cgccactctc	tttgtgtttt	. tadtadadio	- accyyyact	c catattaac	aggatggtct	72720
cagctaattt	. cccgcgcctt	. caytagagat	- ggggccca	. cycycuaec		

cggatttcct	gaccttgtga	tecacceate	tcaacctccc	aaagtgctgg	gattacaggc	72780
	acgcccggcc					
	gttatttatt					
	tttattttct					
	ctggagggca					
	ctcccacctc					
	cttttaaatt					
	ctggcctcaa					
	cactgcaccc					
	accaactggt					
	atttatagat					
	ctggaaagtg					
	accttagaac					
	actatggtag					
	tatttaatta					
	gatagcacag					
	gaggcctaga					
	tgggaggcta					
	aagtgagacc					
	tcccagttac					
	agtgagctat					
ctctgtctca	aaaataaata	aatacaataa	aataaggcca	agcacagtgg	ctcataccta	74040
taatcccagc	actttgggag	gccggggcag	gtgaatcacc	tgaggtcagg	agtttgagac	74100
cagcctgacc	aatatggtga	aaccctgtct	ctactaaaaa	tgcaaaaatt	agccgggcgt	74160
ggtggcgcac	acctgtaatc	ccagctactc	aggaagctga	ggcagaattg	cctaaacccg	74220
	gtggcagtga					
	ttctcaaaaa					
	gtcacaaagc					
	tgactgtggg					
	ccctgcctgc					
	ggcatgcatt					
	aagcgcaaca					
	gcgcctgcct					
	ttggcgctga					
	gtcagtaacc					
	cgtaccatag					
	gtgacgctag					
	gccaggaccc					
	agcagcaggg					
	aggaaggcag				•	
	tctggcttcc					
	caggaatgtg					
	aatccagact					
	tgtttttgat					
	ctcactgcaa					
	tgagattaca					
	gtttcgccat					
	tacaggcatg					
	ttttttgag					
	ctgcagcctc					
	gaccacaggt					
	ttgcttttgt					
	cctgggctca					
	ccaccgtgcc					
	aaggaatact					
	atgtgttggt					
	tttgttgttg					
	gcttgaaccc					
	ggtgacagag					
	tttcaataga					
Gigggereaa	gcaattttcc	Lacertgace	LULUAAAYLL	cccagagtat	aggegtgage	70380

antantaga	agccatatcc	ccatttttga	gatggggaaa	ttgaggcaca	gataggttaa	76440
cattatgete	gaggttatgt	anttactcan	tttcagaact	aggettgaag	cccaggcagt	76500
gtaactigta	agaccctgcc	ataccatasa	ttagatgata	ataatgactg	aattatttct	76560
ctgacaatag	gtaattctgc	togecacaaa	agatasaca	totaatoota	gcactttggg	76620
tttaaaattt	tgggtgatca	attanaaaa	ggcccacacc	geagectga	gcaacataat	76680
aggccaaaaa	tgggtgatea	totogageeea	aggggccaag	gatageotga	gcctgtaatt	76740
gaaactctgt	ctcaacaaaa	tataaaaatt	terettere	ggtggcacaa	agaggttgga	76800
ccagctactc	aagaggctga	agcaggagga	tggettgage	anatanaa	tettatetea	76860
gtgagcctag	attgtgccac	tgcattccaa	cttgggtgat	aaagcgagac	22222222	76920
aaaaaaaaa	taaataaaat	gtgtaactct	tacteteete	cccaacacac	atacatacta	76980
aagtatatgt	gaattattat	taaagccctc	acacttgcaa	agettggget	agaggatta	77040
ctcacagcag	ctctgcgaag	gagatggggc	aggaaggagc	aggaaggage	agaeegeeee	77100
acagacagga	acagccatga	caaggcgagg	gggattggcc	acagacaaga	ggccagggcc	77100
ctgtctgcgt	ggctgccact	gggggcccca	cctgcacccc	tccttggtct	cactggtgtg	11100
caggtggccc	tatccctqcc	cccqccaqca	ctcaccagca	ggacaatgct	cccaaagtag	11220
gtggccctca	gcagcatgtc	caggtcgtgg	ggcacctgaa	caggggaatc	aggagrgagg	77280
gagtgagete	totcacagac	cttctcttqc	ccatcccaca	aacaggccat	gacatacett	//340
gtcccccacc	agcaacagct	gcagggcccc	cgcccggaag	tagctctcca	tggcagagtc	//400
gaagaagaac	tcagagaagg	ccacatacac	catccgctct	tectectgea	gerggggere	//400
cactgcccgg	ttagagagac	tccaqttcct	ctcagtcagg	gggaagaagg	ccccctgggg	77520
tagagaatta	acagtcaggg	tcaaqqcaqa	ctggcctggc	acctggactg	acageaggeg	//500
teteccagee	ccatactaga	cactgtgggg	ggatggtggg	aacccagctg	etgttettgg	11040
aggattcaca	agcacatctc	ttaaaaqqca	ttggaaggag	gacacctgct	accagggggc	///00
gagecegtea	aactaaaaaa	qqqaqqqtca	ggaaaggttt	cagggaagag	grgacaterg	///60
agtagacctt	gaaagctaga	ggcagtaaca	acagctactg	tttacatata	ttgtgcatac	11020
tcatgettet	ttgccaagta	ctctaagctc	ttcacataga	tcgacttctt	taatctgcat	77880
aacaacatat	gttttcttac	tagattattt	ccatttacat	gttaggaaac	tggccaactg	77940
aaaacttato	cttagggccg	tocaoctaot	caqtqqcaqa	gctaggattt	gaacttcagg	78000
cattetttt	ctctttgtag	agaaggaggt	ctcactatga	tgcccaagct	ggtctcaaac	78060
testagasts	aagcgatcct	ctcacctaga	cctcccaaaq	tattqqqatt	acaggcatga	78120
accaptacac	ccgactgatt	ctageteegg	agtetgeact	ctgaaactgc	tatactcctc	78180
tagananaa	aaggtagtgg	ctacacacto	actatataac	cttgggcaag	tgacgtcacc	78240
tgggagacca	agtctccaca	ttcctaaaat	taggatgatg	ttagtacctg	actcacaggg	78300
tetatgagta	atgaaatgag	attatttata	tagaaattta	tatccaactc	cttcqqqqqa	78360
ttgtgagaga	ggccgtgcat	accaccegea	cctgaggtgg	gaagccaggg	tccaatttgg	78420
gttggggaaa	ctgcaaagaa	gagcaaaggc	atataaaaa	taaaaccaaa	taagattaac	78480
gaaagagcag	ctgcaaagaa	acaggacgag	acacaaaagg	tgtagtaaca	gggagccata	78540
aggggctcaa	atgccagacc	caggaggetg	aacctaacct	ttaagaagta	aaatettgea	78600
gcattctcag	taatgggagt	ggccccacca	gagergege	. ctaagaagca	ccaagcaget	78660
acttagcaga	gaaagaggtc	ttgttaggaa	gccagaggcc	. acatactage	tgagggaata	78720
cacccggaag	tccatgtcca	ggttgetggt	. ggaagecaca	ggaeceeeca	caagtcactc	78780
gtcaatgcca	acaagctcgt	ccacagaact	gegeaetge	, aataaaaaaa	ccacccataa	78840
acggctgtgt	gatgtgggat	aaggtgctta	acctctccag	geteagagge	tataassaa	78900
aatgaggata	catccttcac	agggttgtca	tgagggtcaa	accagicica	ttactaccac	78960
acttagggcc	tggtgtgtag	ttaggtgctc	attaatgtta	- gulatiatia	catactaccac	79020
tatagaggtt	tcaaaaaaat	aactaaacaa	gatggcatgg	gggggeegeg	accegece	79080
cacacctgta	atcccagcac	ttagggaggt	: caaggcggg	ggateacery	aggicaggig	79140
ttcgagacca	gcctggtcca	ccacggtgaa	accccgtctc	: tactaaaaa	. acaaaaacca	70200
gttgggcatg	gtggtgggcg	cctgtaatcc	cagctactca.	ggaggctgag	gcayyayaat	79200
cgcttgatco	tgggaggtgg	aggttgcagg	g gagccaggat	tgcaccactg	t cactedaged	79200
tgggtgacag	agcgagactc	catctcaaaa	a aaaaaaaaa	a aaaaaaaaga	tggcatgagg	70200
tteetttee	: ttaatttete	ctacctcctc	cttcqcttcc	: catgeetgte	, tgttaggtgt	19300
gatgggaaaa	. tacctttqcc	ccacagtaga	a cagaggtcat	ggcttayaaa	aayyyaaccc	12440
2+444422444	- acadtaacta	atocctataa	a teccaqeact	ttqqqaggc	: aaggugggca	/9500
ratraggagg	tcaggagate	gagaccatco	c cqqccaacat	: ggtgaaacc	: egiciciaci	. /9560
222272722	a aaactaqttq	adcatddtad	r cdcacdccr	, Lagicicage	. caccegagae	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
actagaacaa	, gagaattgct	tgaacccgg	aggtggagai	tgcagtgagt	: cgagaccgcg	13000
ccactggact	- ccagcctggc	: aacaqaqtqa	a qactqtaaga	a ctccgtgcae	i aaaaaaaaaa	19140
222002200	aaaagaaaaa	gggaattcat	t qttaattgag	g cacciatias	, argeraggic	1 7 3 0 0 0
atgaagagaa	a atoggatocc	: aqtqatcaq	c atqcacata	t tgaggatti	. gacaactati	. /5000
atatasast:	atcotoacac	rcaaccccad	r accaccac	t dccadccaa?	, cyayyaaaca	1 /3320
aggagetteg	r ccadacadaa	atgagcacti	t cacccaaaa	t cgcacaacac	gucagucuca	1 /3300
adaaccaca	t ttgaacccag	gactgttca	a cagcagggc	t cggaagggg	c ctgctctgag	80040
33330000			5 455			

atactacata	acagctgcac	acccagactc	acccqccacc	aactcaccag	gcacggtgtc	80100
acaccacca	ttgagcagga	ccatccctac	ataataaaa	acagggcaga	tctgcgaggt	80160
caggagggag	gtcagggcct	tctcaaaqtq	agagcatgcc	caccettgcc	accetgegae	80220
ctatcactac	ccacacctgc	taattaaaaa	ggaagcgcat	ccctgaggtg	atgaacgtgg	80280
agagagata	atacaccttc	ctatasaasa	aggagaggcc	ggatgagccc	agaacctgcc	80340
tacagaaaacc	tccaggtcca	adadaatca	ataactagga	aaatagtggc	agtaggagtc	80400
cedaceceag	gcctgaataa	cactcctcc	acctaccttt	tccaagaacc	aggcccaaat	80460
beengettea	gtctaattct	cageteetee	tracctacto	tetaateeea	tcagtcaaat	80520
tccctctcca	acattgcctc	caagaccccc	tgaccatccc	cacatccatc	ggcttactga	80580
gaatccaccc	tccgccctct	aaacccaccc	tatatattt	cccatctgag	ctcagatgct	80640
tgecetecet	ggcagtcttc	geacteetae	atastatass	tcccaaagc	attttcttag	80700
tectetteca	ggcagtcttc	totagatteet	ttttactcc	agataggete	tgaggtggtt	80760
teettetete	caggccctga	tateaaatgt	-thtestess	tanataatac	tgagagagatata	80820
cctgcatcct	cagggactgg	catacacttt	gtttgatgaa	ctattacaca	cagonacas	80880
ccaacaccag	gttataatcc	accatectet	eteeeceate	granattagt	caccetata	80940
tatccccttc	tcagcagcaa	aaataaaaa	ataggeeggg	cacaguiges	tttgagacca	81000
atcccagcac	tttggtaggc	cgaggcggac	agaccacctg	agaccaggag	agttagagat	81060
gcgtggccaa	tatggcgaaa	ccctgtctct	actaaaaata	caaaaaaagt	tagtttgggcac	91120
ggtggtgcat	gcctgtagtc	ccagctactt	gggaggctga	ggcaggagaa	ctgcttgaac	01120
ccaggaggtg	gaggttgcag	taaaccgaga	tggcgccact	gcactccagg	etgggtgaca	01340
cagtgagact	ccctctcaaa	aaaaaaatta	ttatttttgt	tattattatt	tagagatacc	01300
aattattgag	aatccagtac	atggccaaat	gtgcatatca	gatagtcctc	acagttactc	01300
ttatctaagt	ggccagcact	taaatataca	tttatcatat	gccaggtgct	gttctaaatt	81300
tttttttt	ttttttttg	agatggaatc	ttgctctgtc	accaggctgg	agtgcagtgg	81420
cacgatetea	actcactaca	acctccqcct	cccgggttca	agcgattctc	ctgcctcagc	81480
ctcccacqta	actaggacta	caggcacgtg	ccaccacgcc	cagctaattt	ttgtatttt	81340
agtagagatg	gggtttcacc	atgttggcca	ggatgatctc	gatctgttaa	ccttgtgatc	81600
cacccaccca	gacctcccaa	attactagaa	tttcaggcat	gagccaccac	agecageett	81000
gttctaaata	ttttttacat	ataccaacac	aaataatcct	gacaacgatc	ttataaaata	81/20
ggatettata	aaatgaggat	attgaggcac	caagetteag	tgacttggcc	acgttcacac	91/90
agccaggaag	tgacagagct	gagetttgga	cccagttggt	ctgattccca	ggcctatgca	81840
ctttgcattg	cactaggcag	atgagetgtg	gggctcgaaa	agggtgagct	ggggrrgggg	91300
ctggggctta	cttgaaggtt	cccccqaaqq	ccgcgtgcat	tctggagaca	gaggeergge	97300
aggagacatt	ggacactttc	atccgtccag	cgggatcccg	ggagagetee	agaccagtyc	02020
ggatggacac	acceteaget	gaggcgttga	tgtagccccc	atcatagctg	ccaggggggt	82080
taatattcac	tccaggtagg	ageteaattg	agtcttcagt	gcccccatgc	accaccatac	82140
ctcttaataa	gatttcacct	ctttccacac	atcctaccaa	accttcctat	caactegtat	02200
gaaatgcata	tgcctgtttc	tottacacag	atgaagaaac	ggaaactcag	gaaggctaag	82260
agaactacca	acagececae	agcacctcca	gccctcctga	ccactctcc	actcccctga	82320
ggggatactaaa	tccttacaag	aaccagtaga	gcagctgtct	ccggaagcgc	agccccaagg	82380
aggegetaga	gatttgaagc	atcagctcct	actataacta	gaaatcgagc	tcggaagatg	82440
tracttorac	ctctgtgacc	ttcaccctac	aggaggcctc	agggtcagat	ccagggccaa	82500
ceageegeag	cttcccccaa	cgacaggaaa	tttatctact	ccctttcaa	gtccaggcct	82560
daragasaca	gagtgggtgg	aatgaattct	tccattqtcc	ctcaagtgcc	caacttagac	82620
ttaaataact	caaagttgaa	cttgggtgg	tgagagagga	ggtetteetg	atccaggtgt	82680
taaaaatgag	cttcacccca	tcgcttaaaa	atcttattte	tttgtttgcc	aggtgcggtg	82740
gtggctcate	cctgtaatcc	cagcacttta	ggaggcgag	gagggggat	cacttgaggt	82800
geggeeeteg	agaccagtct	ggccaacata	gtgaaaccc	tctctaccaa	aaatacaaaa	82860
caggageeeg	cgtggtggca	cacacatata	gtcctagcta	ctcqqqaqqq	: tgaggcagga	82920
anategette	, egeggegget , aactcgggat	acagaaatta	cagtgagcca	agatcgcgc	actgcactct	82980
adactgcccg	acagaacaag	actecetete	agaaaaaaa	aaaaaaaaa	tettgtttge	83040
ageceggge	tcccctccca	caccetagg	ttactacac	caatcttta	atagagtccg	83100
ttgeacccc	ctccatcacc	taccetgggg	ctcacatctc	aatteettat	teccetece	83160
ttcacttige	cuccattact	caageteege	ttctccecc	ctccgattaa	ctccacccc	83220
tcatcctaa	ccatacttag tccactctca	ageceteage	. coccoccic	ctccaccttt	ctattattat	83280
tgcccgagac	: cccactctca	cecaetggga	. Ayuuduuga	a december	cattttcaac	83340
tcgaccacgo	ctcacatcca	ctggtcctgc	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- +aaaa+++=+	cttttcaac	83400
gccacgccca	tctgcctggt	cccgcctate	atgactggct	, cygodictal	, actracert	83460
ccatccggtt	tcttaagtct	rgcccarc	attiggeead	a accordance	, coccagood	83520
cagtctccc	g agaccctgag	atttctcggg	ceeegeere	- accyclyage	, accttatte	7 83580
gatcgcgag	cccccccc	cacttactca	a gagatgttg	. aytayaayt	, georgeograph	83640
ccccgcaggt	ccggaatggt	gatagtete	agetettge	- ctagaaagt	, thousans	82700
tgcttcact	g aagcagcaga	gaaaccctta	cttagetee	, gegeecact	, ccaaaaacaac	. 55,00

```
cccaaccccg tccgctcccg tccgtccctg tctgcccctg cgccttaccc agctccagcg 83760
ccttggaggt gacgcggatc ttgcagcctg ggaactctgc atgtgcgcct gccagcagcg 83820
ctaggaagag ggccccgaag agggccatgg cgagcgggcc tgggggtggg gtggggtcgc 83880
aggagttatc tgagccgctt aaacccattc cttggacgtc caaccataag tgggaactag 83940
cctggatcgt taccctccag ataactcttc ggggaacttg gaaccaataa tcttgcctcc 84000
atatggcaga tgtggaaact gaggctcaga gaggcgatgc gacttgcgtt ctggctccca 84060
gaggatttgg gacacggggg aggggacgtt cccagttccc tcgtgctacc gccgcgtgat 84120
gagtttggac ctccagggga ccagccccca cacccccaac aacctcccct ttcctttagc 84180
ggtgggccca tgcaggcttg cacgttgcca cggcaacgac tgcacgcgca ttcttggagg 84240
gtggcttgcg gtctcatagg cctcgcgccc ggggaggaga ggaggtggcc gaccagaccg 84300
tgggctcccg ggtctcccgg ctccctcagg tcctaaatct ctcccattag agattctgcc 84360
tggagecece atgttagegt teteetteat eggeteteet ecceaegeeg getteagtge 84420
accacgegge teggegaggg actgggaacg ggatagggae gegeeecaac teacteageg 84480
gtggagctgg ggggcggcgc ggtcacgtgg gatggcggc agctcagggg atccgggcga 84540
cggggtctgg cgggcagggt tgttccagcc gcctttataa agccggcctc cccgacccct 84600
cctcctctct gcagctctcc cctcctccct tgggggctgg gaggggacgg ggcgggacgc 84660
tggcagccgg gagagtggaa aaggctgcac agagccccgt gacaagcccg gccgctgtct 84720
ggacaagtgg gagacccaag cccagggaga gggaaggaaa tgcaggagcc ggcccactca 84780
gccccaacaa tcccactttg ctgggacctt ggttcaaatt acaattatcc atgtcttcct 84840
gcatgatctt 'gggcaagtca cttcacttgg gtcactgacc ctcagtttct tccttcagcg 84900
aaatgtgcac gatgatagga actacctctt gggcctttat tacaaccagg tccaggcaca 84960
aagtcaagga atattttttc tttccctgcc acccacaatc atctcgggac ctccttgcct 85020
ggctttgcta tgggcccccc tacctgtctc tgtgtcacca cctggggacc ttaaggtccc 85080
agagacettt cccaettggg aaagcaagae tagacaagtg etgteageee aggaacatae 85140
cacaccggct gaaatcagaa ggaggtctgc catttatcgt ggctggtgga ttgttttttc 85200
tattttttt atttttattt tttgagacgg agtctcgctc tgtcccccag gctggagtgc 85260
agtggcgcga tctcggctcc ctgcaagccc cgcctcccgg gttcacgcca ttctcctgcc 85320
tcagcctccc cagcagctgg ggctacaggc gcacgctgcc acgcccggct aattttttt 85380
gtatttttag tagagacggg gtttcaccgt gttagccagg atggtctcga tctcctgacc 85440
ttgtgatccg cccgcctcgg cctcccaaag tgctgggatt aaaggcatga gccaccgcgc 85500
ccggtccact ggtggatttt ttaatgaacc cttggagcaa ggtgctctga acagcatccc 85560
cgccccacc cccacccca cctccatcta ctgcttacag ggttcccgga ccctaggaca 85620
gggcacagag tgggtgcttg ccaccttttt gttgccaaat ggacgaaaga aaggggaagc 85680
aataatcatg tctgctgagc atgtatttag caccaaacac tcatctagga aggatgacta 85740
actcatcctg atttgcctag gactttcccc attgtgtctt ttttttctga tataatccac 85800
agattcacaa aaatagttcc atttcctttt ttatttaatt aattaattaa tttttttgag 85860
acacagtcgt gctctgtcac caggctgcag tgcggtggtg tgatcttggc tcactgcaac 85920
ctctgcctcc tgggttcaag tgattctcct gcctcagcct cccaagtagc tgggactaca 85980
gccatgtgcc accacacctg gctaattttt gtatttttag tggagacagg gttttgccat 86040
tttggccagg ctggtcttga actcctgccc tcaagtgatc
<210> 59
<211> 804
<212> DNA
<213> Homo sapiens.
<220>
<223> Genbank Accession No. W22366
 <220>
 <221> unsure
 <222> (1)..(804)
 \langle 223 \rangle n = a or c or g or t
<400> 59
 tttnggccag cngtgctggg gagggaggaa gggtgatact ccagggttag ccgtcttctt 60
ttgggggtgt gtaccagccg ntttttcgt ggatctgcac caaggacttg taggactgct 120
 gtgetettgt cagactgtat tgagatttgt tggetecaaa etgeactegt gettteecet 180
 tcaccagtgt ggcactgatc tgcatgatca ctgactctat ggagtaggca ctgctccagc 240
 cetgtttggt gagaagttcc atgcagatgg cccctccgcc cagaacatac cctccagaga 300
 ggactggaga cacaaccctg acaaatgggg ggtcaaaggg aaagttatct ttaaaggaaa 360
```

```
aagttaagta ggaattgaag togggntoot totttotott tgganggato tttggagato 420
gnnggnggca aaaggngntt gtcccngggg ncaaactttn gggggggagg gttgggnnaa 480
atcccaantc aaatncaaag acntttgcca antnccaaac ggagntttcc gggcntttta 540
aatttgggnt ttccccnccc cctnnggggg aaaacntccn ttngggnaac cccgggggat 600
ttttttttt ttccccccga aaagnntttc cccttnncca aaanaaaaaa nccccgggnc 660
caaaaaaggg ggggcccccc nnnaaacccc cngggggccc caaagagnna nnattttnna 720
aacneeccaa annnnnnnng gggggnaaan nenntttggg geeceecent eggggggnee 780
cccctttnn nnnnaaannc tctn
<210> 60
<211> 691
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI433892
<221> unsure
<222> (1)..(691)
<223> n = a or c or g or t
<400> 60
cacaatatgc atttattaat gaatgtattt atacacaata caaacgtgcg gggacaccgt 60
ccccttcaca gcccagaacc cagggtcaga agatgaggga tccagcctca gaggggagat 120
atgcgacttc ccaagagcag ttcttggcct ggaggggcca tgagagtgca agacacgggg 180
ccgtggccgg ggcggggcta cgggagcggg gcgtggccgg cccctgaggt tactataggg 240
gaatgggccc cggccaggtc ccctctcctt ggggcagtgg gaagacagcg gggcccacgg 300
gccagagctg ctacacgtag gcgtttctgc cgtatttgcc aaagctgctg tcgccttctt 360
ggtccgaggt ggcgacgggc atcacggaca cgggagcctg gtagggccgc cgggcgctgg 420
cggctgggtc ctcgtcagag ccgcagcagc aggcggagca gaggcagagg ccacccagga 480
ntgagatcag tgaggcgctc caccccaggt agagggcggt gcccagctcg tacttggttn 540
ccgggtacaa ggggtccgag aagtccccgg gtgatgtgna gggcgtacan gaggatggca 600
ccatcccgca gatacccggc aagattgtga ggggcccctg cgtggcccgc agcttggctt 660
tcctgagagc tcaggccccc aatgtggtgc a
<210> 61
<211> 537
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AA029831
<220>
<221> unsure
<222> (1)..(537)
\langle 223 \rangle n = a or c or g or t
<400> 61
ctggtgatag tcacagtggc cgagtgagtt tcttgggggc ccagcttcct ccagaggtgg 60
cagcaatggc ccggctacta ggggacctag acaggagcac gttcagaaag ttgctgaagt 120
ttgtggtcag cagcctgcag ggggaggact gccgagantg ttgcagcgtc ttggggtcag 180
cgccaacctg ccggagagca gctgggtgcc ctgctggcag gcatgcacac actgctccag 240
caggecetee gtetgeecee caccageetg aageetgaca cetteaggga ccagetecag 300
gagetetgea teccecaaga eetggteggg gaettggeea gegtggtatt tgggageeag 360
cggccctcct tgattctgtg gccagcagca gggggctggc tgccgcatgt tgcttgactt 420
 teggttggeg ggtggatgta acaateteea ecagtgeeet ggetegetne etgeageega 480
gcgtnctgat gcagctgaag ctttcagatg ggtcagatac cgctttgagg tccccac
```

<210> 62

1

```
<211> 592
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI279571
<220>
<221> unsure
<222> (1)..(592)
\langle 223 \rangle n = a or c or g or t
<400> 62
tcgtaaatca aagtactatt ttattaaatg agttatttta cacaatatga acatcaatat 60
aattacaatt gtaaaaaaat tttttataac aaggatggac tgattttcat atttccaaat 120
cagagtcaac tgtacattta cacagaattg tctttgcatg aagcccaaga gggaacagca 180
taaaaatgag tgtttctgta gcccctttat ttttgctgat caacagtttg ttagaaaagc 240
agctgcaggt atgttaccta aggtctgaga cagtagaaga gtcaaaggtg tcatgaattc 300
acctgtaaac aaccttatgc ctgaacatca gctaattctg gaggaagtgg agtcttagga 360
tgcttgctct caaagtgctg cttgaaggtc ttagggtctg gcatttgtgt cctacagaca 420
gtgcaggtat atattaaggc agctttggca gcagcctttt ggtcatgtcc ttgtttcttc 480
ttttgtccag cttgcttttt ggcatttttc tgctgagact gaattttctg ctgtccacga 540
gccatatccg ggccgngaca gtcttgcgtc ggagagacag tgcagcgcga ga
<210> 63
<211> 460
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI982714
<400> 63
tcatttttat ttatttattt atatttaatt ttttttcaga catcagtgtt acttgccaag 60
acceteattt ttaaacteea acgagttatt acgtteettt ceaetettge tttecaatte 120
ctacaccaag acaactctgt attttgagta tatgagtcaa gtatggcaaa aagtacagta 180
cettaaaaac ttttattta gtccttcctg gcccatgcta aaacttatat ctagaaatac 240
ggcaaaacaa aatgaaacag atctctcctt gtacataaaa cagctaaaaa tttggcctct 300
acaagggtta aacaaactaa atttttcttc taaatctcta aatgctcata gacagccaac 420
                                                                 460
ttqcagggca tacacagtgc cttgagagtc ggtcccacag
<210> 64
<211> 2805
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D87442
<400> 64
ggctacggca gggggtggct ctggggctga cccgggaagt cggggtctcc ttcgccttct 60
gtetttetge gteetactag caggtttgtg caggggaaac teagtggaga ggaagatata 120
 tateceetta aataaaacag eteeetgtgt tegeetgete aacgeeacte ateagattgg 180
 ctgccagtct tcaattagtg gagacacagg ggttatccac gtagtagaga aagaggagga 240
 cctacagtgg gtattgactg atggccccaa cccccttac atggttctgc tggagagcaa 300
 gcattttacc agggatttaa tggagaagct gaaagggaga accagccgaa ttgctggtct 360
 tgcagtgtcc ttgaccaagc ccagtcctgc ctcaggcttc tctcctagtg tacagtgccc 420
 aaatgatggg tttggtgttt actccaattc ctatgggcca gagtttgctc actgcagaga 480
 aatacagtgg aattcgctgg gcaatggttt ggcttatgaa gactttagtt tccccatctt 540
 tottottgaa gatgaaaatg aaaccaaagt catcaagcag tgotatcaag atcacaacct 600
```

```
gagtcagaat ggctcagcac caaccttccc actatgtgcc atgcagctct tttcacacat 660
gcatgctgtc atcagcactg ccacctgcat gcggcgcagc tccatccaaa gcaccttcag 720
catcaaccca gaaatcgtct gtgaccccct gtctgattac aatgtgtgga gcatgctaaa 780
gcctataaat acaactggga cattaaagcc tgacgacagg gttgtggttg ctgccacccg 840
getggatagt cgttcctttt tetggaatgt ggccccaggg getgaaagcg cagtggette 900
ctttgtcacc cagctggctg ctgctgaagc tttgcaaaag gcacctgatg tgaccaccct 960
gccccgcaat gtcatgtttg tcttctttca aggggaaact tttgactaca ttggcagctc 1020
gaggatggtc tacgatatgg agaagggcaa gtttcccgtg cagttagaga atgttgactc 1080
atttgtggag ctgggacagg tggccttaag aacttcatta gagctttgga tgcacacaga 1140
tcctgtttct cagaaaaatg agtctgtacg gaaccaggtg gaggatctcc tggccacatt 1200
ggagaagagt ggtgctggtg tccctgctgt catcctcagg aggccaaatc agtcccagcc 1260
tctcccacca tcttccctgc agcgatttct tcgagctcga aacatctctg gcgttgttct 1320
ggctgaccac tctggtgcct tccataacaa atattaccag agtatttacg acactgctga 1380
gaacattaat gtgagctatc ccgaatggct gagccctgaa gaggacctga actttgtaac 1440
agacactgcc aaggccctgg cagatgtggc cacggtgctg ggacgtgctc tgtatgagct 1500
tgcaggagga accaacttca gcgacacagt tcaggctgat ccccaaacgg ttacccgcct 1560
gctctatggg ttcctgatta aagccaacaa ctcatggttc cagtctatcc tcaggcagga 1620
cetaaggtcc tacttgggtg acgggcctct tcaacattac atcgctgtct ccagcccac 1680
caacaccact tatgttgtac agtatgcctt ggcaaatttg actggcacag tggtcaacct 1740
caccegagag cagtgccagg atccaagtaa agtcccaagt gaaaacaagg atctgtatga 1800
gtactcatgg gtccagggcc ctttgcattc taatgagacg gaccgactcc cccggtgtgt 1860
gcgttctact gcacgattag ccagggcctt gtctcctgcc tttgaactga gtcagtggag 1920
ctctactgaa tactctacat ggactgagag ccgctggaaa gatatccgtg cccggatatt 1980
teteategee ageaaagage ttgagttgat caccetgaca gtgggetteg gcatecteat 2040
cttctccctc atcgtcacct actgcatcaa tgccaaagct gatgtccttt tcattgctcc 2100
cegggageca ggagetgtgt catactgagg aggaceceag ettttettge cageteagea 2160
gttcacttcc tagagcatct gtcccactgg gacacaacca ctaatttgtc actggaacct 2220
ccctgggcct gtctcagatt gggattaaca taaaagagtg gaactatcca aaagagacag 2280
ggagaaataa ataaattgcc tcccttcctc cgctcccctt tcccatcacc ccttccccat 2340
ttcctcttcc ttctctactc atgccagatt ttgggattac aaatagaagc ttcttgctcc 2400
tgtttaactc cctagttacc caccctaatt tgcccttcag gacccttcta ctttttcctt 2460
cetgecetgt acctetetet getecteace eccaeceetg tacceageea cetteetgac 2520
tgggaaggac ataaaaggtt taatgtcagg gtcaaactac attgagcccc tgaggacagg 2580
ggcatctctg ggctgagcct actgtctcct tcccactgtc ctttctccag gccctcagat 2640
ggcacattag ggtgggcgtg ctgcgggtgg gtatcccacc tccagcccac agtgctcagt 2700
tgtacttttt attaagctgt aatatctatt tttgtttttg tctttttcct ttattctttt 2760
tgtaaatata tatataatga gtttcattaa aatagattat cccac
                                                                  2805
<210> 65
<211> 737
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI816034
<220>
<221> unsure
 <222> (1)..(737)
 \langle 223 \rangle n = a or c or g or t
 <400> 65
 ttctacagga aatggcactg atggacagaa gactagcatt accttcatga aagggctgtt 120
 agagetgeet gggaagaagg egtgeettgg ggaactggga agatgeegte agtgtgggtg 180
 ggcaggagga cagccagtcg tectgetgee ageccaatag ettecagegg caggtgeeca 240
 ggtgctaccg gagcccctca taggggtagg ggcagggact gcacctcctc caggcactca 300
 togtaagect cotggtacto ctcatggggc ttgaccatta tcacacaggt ggggcgcttg 360
 gagectgegg etgeacecag gteegtetta gaggggatat agacataggg caaatttegg 420
 tecteacaca tgactgggag atggcagtat accteaatgg gcagtgtgte tectgccaaa 480
 accatgatcc ctttttctcc tttgttgaca aatttctgaa cctctttcac cccgcgccga 540
```

```
atctgcttct gcttcaccgc tttcttgatg catttgtaga gctttcgcgt gaggcggcga 600
gaagcccagg gctgcgccga tgggttctgg ttgacagcag cttcctgtag gtgcgcttcc 660
ccgaacacgc ctncgcctga gcctngggcc cccgtcgatc tggcctttaa tttgtcatcg 720
cageggeege tgaaace
<210> 66
<211> 505
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI634570
<400> 66
ttttttaat tttgtaaaaa atggtttatc aattccattt ttgtataaaa cacacgggag 60
aaacctagcc aatcaacaca caactgtcac cacatgaaaa ggtactttta tcaaacttcg 120
agtctaagaa catacaaatg tttcttttat catgtctaca gtaattgtct atgcttttcc 180
atttaactgt tgttaaaaat tccacatatc cccattattt cttctgtccc agttacagta 240
caatgacggg gaggaagagg gttggttaaa gcatccctct aagcagtttt ctgctgtccc 300
ttctttccaa tcagagattt gtggatgtga gggatcacac ctctgcagtg aggtactcca 360
gaatcgcagc actgtacacg gcagcagtgg cacccaccct tccatggctt gtggtgcgag 420
tottcaagtg totgtggatg cggcccacag gaaactgtag cccagetete tgtgagegag 480
atactgcctt agccttggcc tttcc
<210> 67
<211> 805
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI023344
<220>
<221> unsure
<222> (1)..(805)
\langle 223 \rangle n = a or c or g or t
<400> 67
ttcattaaag tccatggatc atcacaaaaa cccaggaaat gcaactaagg agaaaacaaa 60
cgtccaacca agatctaaga acccagaget atggaggaga cgttgcactg gactgctggg 120
tgtgcacaag ggggcaggag gggcgatccc catggggcat ggccactggc catgggaaac 180
acaggaggga ggccaggcag ctggctgggc ggttatgtta accgctgcac gatgacagca 240
ttgagcaggt tggcttcctt cagggtctgg ctctcatcag ccagctcttt gttcgggaaa 300
gtagtcatga ggataaagct ggtggcagcc atggctggcc gggcatccac gatgaagagt 360
cggatgtcgc tgatcctgtg gctgtggtta aatttctgca ccagcctccc gccgtctgca 420
agccgaattt ggatgtttgt ggtaggctct gattcgtcga ttaagatgga agagctggct 480
ttggcttcat tttctgcctg ttgggctgga gagctggtac tcaacacctg gggggcagtg 540
ctgcccagtt tctgaccctc gccagtgaag gctttgaagg ctcctttggg cttcacaaag 600
tectegtece gatggteete catatecaag tteacetgte cacegtgage tageeteega 660
agetetgetg geacetecee tetgeggata gaetecagaa aetgggeatt ggatgggnet 720
tgtagcttct gaggtctcca ttatcccagc tggatccact cttccaaagg ttcatactac 780
 atgaaccatc ttgcttgaaa tgctg
 <210> 68
<211> 1529
<212> DNA
 <213> Homo sapiens
 <223> Genbank Accession No. Z14000
```

```
<400> 68
ggctgctgtt tctaaaaccc ctttccctct aacccacacc acctttctac tcactgatgc 60
cttcaggaag ccataatgga tggcacagag attgctgttt cccctcggtc actgcattca 120
gaactcatgt gccctatctg cctggacatg ctgaagaata cgatgaccac caaggagtgc 180
ctccacagat tctgctctga ctgcattgtc acagccctac ggagcgggaa caaggagtgt 240
cctacctgcc gaaagaagct ggtgtccaag cgatccctac ggccagaccc caactttgat 300
gccctgatct ctaagatcta tcctagccgg gaggaatacg aggcccatca agaccgagtg 360
cttatccgcc tgagccgcct gcacaaccag caggcattga gctccagcat tgaggagggg 420
ctacgcatgc aggccatgca cagggcccag cgtgtgaggc ggccgatacc agggtcagat 480
cagaccacaa cgatgagtgg gggggaagga gagcccgggg agggagaagg ggatggagaa 540
gatgtgaget cagaeteege eectgaetet geeceaggee etgeteecaa gegaeeeegt 600
ggagggggg cagggggag cagtgtaggg acggggggag gcggcactgg tggggtgggt 660
gggggtgccg gttcggaaga ctctggtgac cggggaggga ctctgggagg gggaacgctg 720
ggcccccaa gccctcctgg ggcccccagc ccccagagc caggtggaga aattgagctc 780
gtgttccggc cccacccct gctcgtggag aagggagaat actgccagac gaggtatgtg 840
aagacaactg ggaatgccac agtggaccac ctctccaagt acttggccct gcgcattgcc 900
ctcgagcgga ggcaacagca ggaagcaggg gagccaggag ggcctggagg gggcgcctct 960
gacaccggag gacctgatgg gtgtggcggg gagggtgggg gtgccggagg aggtgacggt 1020
cctgaggagc ctgctttgcc cagcctggag ggcgtcagtg aaaagcagta caccatctac 1080
ategeacetg gaggeggge gtteacgaeg ttgaatgget egetgaeeet ggagetggtg 1140
aatgagaaat tetggaaggt gteeeggeea etggagetgt getatgetee caccaaggat 1200
ccaaagtgac cccaccaggg gacagccaga ggaaggggac catggggtat ccctgtgtcc 1260
tggtctatca ccccagcttc tttgtccccc agtaccccca gcccagccag ccaataagag 1320
gacacaaatg aggacacgtg gcttttatac aaagtatcta tatgagattc ttctatattg 1380
tacagagtgg ggcaaaacac gcccccatct gctgcctttt ccattgccct gcaacgtccc 1440
atctatacga ggtgttggag aaggtgaaga acceteceat teaegeeege etaecaacaa 1500
caaacgtgct tttttcctct ttgaaaaaa
<210> 69
<211> 549
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AA632300
<400> 69
tagaaaacaa aaatggaaca tttattcgca actcaaatac tacgcatata cggtaagaga 60
ttaaatataa acacagcaag ttccacccca gtcctatttg tccaaggctg catggtcaaa 120
tggaatcttg aagagaacac ctggacaaca gaggacctgt cagcgacgtc tccggtctgg 180
acttetgetg cgtettegge caceteteet ettgeetttt ggtggaeece gaacaaaaca 240
ccagtcaacg ctgatgggct gtcccatcaa atcctggcca ttgagtccct ccatagcagc 300
ctgggcttcc ttgtatgttt catattcaac tagagtatac cccttcagat atcctgttcg 360
cctgtcgaag ttgagatgaa tgtttttaat ttccccatat tctgcgaatt tgtcgtgtat 420
gtettetteg gtggetteet catggactee agttacaaag agaateeage etteaacaga 480
gegttgtggt cegggtteat egecateetg etceaegetg teataateet caegeateeg 540
                                                                   549
cgctcggga
 <210> 70
 <211> 460
 <212> DNA
 <213> Homo sapiens
 <220×
 <223> Genbank Accession No. AI798743
 gagaatccag ctttgatctt tattcaagag accagatggg tgggcgcagg atccggctgc 60
 cagecetgag gecaageacg getggagace caegacetgg cetgeegttg ceetgagetg 120
 cagectegge eccaggatee tgeteacagt cacegeaggt geaggeagga ageagecetg 180
 ggggactgga cgctgctatt gattcattaa aaaaagaaaa gaaaaataca cccaggcctc 240
```

```
aagtttcccc gtaacagtag ggcctgaggg gtcggcggtc ttgaggatct ggaaagagca 300
catgagggtc tcgtccacac tcatcatggc gccagcattg tcaaactcgc cacagtagtt 360
gggagctgag aaaagtgtca ccagctgccg cttggcaaag aactcgtagc cgtcttctac 420
cacctggtgt gctcggcaga tgaggtccaa gtcgtgcttg
<210> 71
<211> 635
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. H98166
<220>
<221> unsure
<222> (1)..(626)
\langle 223 \rangle n = a or c or g or t
<400> 71
cctaaagcaa gtaactttat tatcattcct ttaaaaagaa ccaaggaaaa ttcacaacat 60
atgtgaaaca caaacagctg tggtttagga ggtaaacaaa ggaccaacat agccctgaaa 120
tgcaacagcc tctgagtgac ttgagccgca tgtgactggg gttctgttaa aagggcaggc 180
nectecetee tagecetgaa geeccaggaa eetgeettga aagacaaget etetaataet 240
caacttgcag ggtctcgccc taacatccaa gacttggtag catctccttt ctcccaaaac 300
ccagctggaa ctcaactaat cctaaaccga aaactcaaga acagcacacc agatgccacc 360
tgttgtttgt cagggtcttc aaacttccag aggaaatggc atttgcctgt catggttttc 420
ctctctaagg gcacctgtct gaacttggag ctgtgcttcc actggtgcct catggggcct 480
ggggctactc tccacctgaa ttcacacttt tcnctataag ggatcaggtg gggaataagt 540
ccagaaggtg acaagagggt cccgggcaaa gagcttgnca ttcctggnag ggatttccca 600
aatggcccg anggttggcg aggcgggaag naaaa
<210> 72
<211> 534
<212> DNA
<213> Homo sapiens
 <223 > Genbank Accession No. AA039699
 <220>
 <221> unsure
 <222> (1)..(534)
 \langle 223 \rangle n = a or c or g or t
<400> 72
ggtgagggcg ggcggagatg tagacccggt agtgttgtgc cttgtggtga caactggcgg 60
 cacgegeegg ggeeegagae ttagtetege acnantngge caageagtee acgagageet 120
 ctacttcaat cccatgatgn nccaatgggg ttgtgcacgc caatgtgttc ggcatcaagg 180
 actgggtgac ngccgtacaa gatcgcggtg ctggtgctgc tgaacgagat gagccgcaca 240
 ggcaagnggc gccgtccagc ctcatggang cggcggagnc tcaaccagct gctcctgccc 300
 ctgcttgcag ggcccaggat attacacttg tcaaaacttt acaagttaat tgaagagtct 360
 tgtccacagc ttggcaaatt cagtgcagat cagaatcaaa cttgatggct tgaaagcgag 420
 tttgaangat attggaacag tttttttgat gacctttcag attctttctc tggaactgaa 480
 ccagaagttt cacaaaacaa gtgtagtaag gttgttttct gcgtcaaatg atct
 <210> 73
 <211> 981
 <212> DNA
 <213> Homo sapiens
 <220>
```

<223> Genbank Accession No. D78132

```
<400> 73
ctgaggaggc cgccaagatg ccgcagtcca agtcccggaa gatcgcgatc ctgggctacc 60
ggtctgtggg gaaatcctca ttgacgattc aatttgttga aggccaattt gtggactcct 120
acgatccaac catagaaaac acttttacaa agttgatcac agtaaatgga caagaatatc 180
atcttcaact tgtagacaca gccgggcaag atgaatattc tatctttcct cagacatact 240
ccatagatat taatggctat attcttgtgt attctgttac atcaatcaaa agttttgaag 300
tgattaaagt tatccatggc aaattgttgg atatggtggg gaaagtacaa atacctatta 360
tgttggtttg gaataagaaa gacctgcata tggaaagggt gatcagttat gaagaaggga 420
aagetttggc agaatettgg aatgeagett ttttggaate ttetgetaaa gaaaateaga 480
ctgctgtgga tgtttttcga aggataattt tggaggcaga aaaaatggac ggggcagctt 540
cacaaggcaa gtcttcatgc tcggtgatgt gattctgctg caaagcctga ggacactggg 600
aatatattet acetgaagaa geaaactgee egtteteett gaagataaae tatgettett 660
gttaactctg agtctgtcca aatgagttca cttccatttt caaattttaa gcaatcatat 780
tttcaattta tatattgtat ttcttaatat tatgaccaag aattttatcg gcattaattt 840
ttcagtgtag tttgttgttt aaaataatgt aatcatcaaa atgatgcata ttgttacact 900
actattaact aggetteagt atateagtgt ttattteatt gtgttaaatg tataettgta 960
aataaaatag ctgcaaacct c
<210> 74
<211> 2263
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U03985
gageeggaeg tgtgegegaa gatggeggge eggageatge aageggeaag atgteetaca 60
gatgaattat ctttaaccaa ttgttcagtt gtgaatgaaa aggatttcca gtctggccag 120
catgtgattg tgaggacctc tcccaatcac aggtacacat ttacactgaa gacacatcca 180
teggtggtte cagggagcat tgcattcagt ttacctcaga gaaaatgggc tgggctttct 240
attgggcaag aaatagaagt ctccttatat acatttgaca aagccaaaca gtgtattggc 300
acaatgacca tcgagattga tttcctgcag aaaaaaagca atgactccaa cccttatgac 360
accgacaaga tggcagcaga atttattcag caattcaaca accaggccta ctcagtggga 420
caacagettg tetttagett caatgaaaag etttttgget taetggtgaa ggacattgaa 480
tocatggato otagoatoot gaagggagag cotgogacag ggaaaaggca gaagattgaa 540
gtaggactgg ttgttggaaa cagtcaagtt gcatttgaaa aagcagaaaa ttcgtcactt 600
aatcttattg gcaaagctaa aaccaaggaa aatcgccaat caattatcaa tcctgactgg 660
aactttgaaa aaatgggaat aggaggtcta gacaaggaat tttcagatat tttccgacga 720
gcatttgcct tccgagtatt tcctccagag attgtggagc agatgggttg tatacatgtt 780
aaaggcatcc tgttatatgg acccccaggt tgtggtaaga ctctcttggc tcgacagatt 840
ggcaagatgt tgaatgcaag agagcccaaa gtggtcaatg ggccagaaat ccttaacaaa 900
tatgtgggag aatcagaggc taacattcgc aaactttttg ctgatgctga agaggagcaa 960
aggaggettg gtgetaacag tggtttgcac atcatcatct ttgatgaaat tgatgecate 1020
tgcaagcaga gagggagcat ggctggtagc acgggagttc atgacactgt tgtcaaccag 1080
ttgctgtcca aaattgatgg cgtggagcag ctaaacaaca tcctagtcat tggaatgacc 1140
 aatagaccag atctgataga tgaggctctt cttagacctg gaagactgga agttaaaatg 1200
gagatagget tgccagatga gaaaggeega etacagatte ttcacateca cacageaaga 1260
 atgagagggc atcagttact ctctgctgat gtagacatta aagaactggc cgtggagacc 1320
 aagaatttca gtggtgctga attggagggt ctggtgcgag cagcccagtc cactgctatg 1380
 aatagacaca taaaggccag tactaaagtg gaagtggaca tggagaaagc agaaagcctg 1440
 caagtgacga gaggagactt ccttgcttct ttggagaatg atatcaaacc agcctttggc 1500
 acaaaccaag aagattatgc aagttacatt atgaacggta tcatcaaatg gggtgaccca 1560
 gttactcgag ttctagatga tggggagctg ctggtgcagc agactaagaa cagtgaccgc 1620
 acaccattgg tcagcgtgct tctggaaggc.cctcctcaca gtgggaagac tgctttagct 1680
 gcaaaaattg cagaggaatc caacttcccg ttcatcaaga tctgttctcc tgataaaatg 1740
 attggctttt ctgaaacagc caaatgtcag gccatgaaga agatctttga tgatgcgtac 1800
 aaatcccagc tcagttgtgt ggttgtggat gacattgaga gattgcttga ttacgtccct 1860
```

```
attggccctc gattttcaaa tcttgtatta caggctcttc tcgttttact gaaaaaggca 1920
cetecteagg geogeaaget tettateatt gggaccacta geogeaaaga tgteetteag 1980
gagatggaaa tgcttaacgc tttcagcacc accatccacg tgcccaacat tgccacagga 2040
gagcagctgt tggaagcttt ggagcttttg ggcaacttaa aggataagga acgcaccaca 2100
attgcacage aagtcaaagg gaagaaggte tggataggaa tcaagaagtt actaatgctg 2160
atcgagatgt ccctacagat ggatcctgaa taccgtgtga gaaaattctt ggccctctta 2220
agagaagaag gagctagccc ccttgatttt gattgaaaat gaa
<210> 75
<211> 1476
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U16799
<400> 75
gccacccacc ctccggaccg cggcagctgc tgacccgcca tcgccatggc ccgcgggaaa 60
gccaaggagg agggcagctg gaagaaattc atctggaact cagagaagaa ggagtttctg 120
ggcaggaccg gtggcagttg gtttaagatc cttctattct acgtaatatt ttatggctgc 180
ctggctggca tcttcatcgg aaccatccaa gtgatgctgc tcaccatcag tgaatttaag 240
cccacatatc aggaccgagt ggccccgcca ggattaacac agattcctca gatccagaag 300
actgaaattt cetttegtee taatgateee aagagetatg aggeatatgt actgaacata 360
gttaggttcc tggaaaagta caaagattca gcccagaggg atgacatgat ttttgaagat 420
tgtggcgatg tgcccagtga accgaaagaa cgaggagact ttaatcatga acgaggagag 480
cgaaaggtct gcagattcaa gcttgaatgg ctgggaaatt gctctggatt aaatgatgaa 540
acttatggct acaaagaggg caaaccgtgc attattataa agctcaaccg agttctaggc 600
ttcaaaccta agcctcccaa gaatgagtcc ttggagactt acccagtgat gaagtataac 660
ccaaatgtcc ttcccgttca gtgcactggc aagcgagatg aagataagga taaagttgga 720
aatgtggagt attttggact gggcaactcc cctggttttc ctctgcagta ttatccgtac 780
tatggcaaac teetgeagee caaatacetg cageceetge tggcegtaca gtteaceaat 840
cttaccatgg acactgaaat tcgcatagag tgtaaggcgt acggtgagaa cattgggtac 900
agtgagaaag accgttttca gggacgtttt gatgtaaaaa ttaaatttta agtgacacta 960
cagaaaaaca caaaaaggtg atgggttgtg ttatgcttgt attgaatgct gtcttgacat 1020
ctettgeett gteeteeggt atgttetaaa getgtgtetg agatetggat etgeecatea 1080
ctttggctag tgacagggct aattaatttg ctttatacat tttcttttac tttcctttt 1140
tectttetgg aggeateaea tgetggtget gtgtetttat gaatgtttta accattttea 1200
 tggtggaaga attttatatt tatgcagttg tacaatttta tttttttctg caagaaaaag 1260
 tgtaatgtat gaaataaacc aaagtcactt gtttgaaaat aaatctttat tttgaacttt 1320
 ataaaaagca atgcagtacc ccatagactg gtgttaaatg ttgtctacag tgcaaaatcc 1380
 atgttctaac atatgtaata attgccagga gtacagtgct cttgttgatc ttgtattcag 1440
 tcaggttaaa acaacggtca ataaaagaat gaacac
 <210> 76
 <211> 825
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AI354351
 <400> 76
 tgaagttcat catctttaga cttaaggaat taacaagggt cagggagact acaccaggct 60
 gagggettet tggtteetgg agacatgeec agetacagea aacacaggga aacacgaagg 120
 gggcagctgg aagatttggt cttgaacttg gggggtgggt aagtgatgat ccccacgact 180
 ggagcagcag gaagaagttg tgtctgagga agtgctgggc cgcccagagg gacagccctg 240
 ccctggagct tgtcgccggg agggaaggga aacaagcccc ctccctcagt gctgaggaaa 300
 aggeacttgg cctgggtctc ctcctgccct ctccccatcc gtgggagaga cggggtcctt 360
 gesteettge coettteage egescagaag eeggteetgg tteagestet ggaagaaget 420
 tttgccgaac tcataggtgc tgatcatgat ggcacaggag ggggcagcct tgatgatccg 480
 aggaaggaag cctgcaaaga gtcccttgtt gcccgactcg gaccggatcc ttcgcagcag 540
```

```
cagccaggtq gagtccacat gccaggagtt cacttttcca gcctccatcg ctccccagac 600
gacctggccq ttggtcttta ccacgtcaaa gggtagaagt aagaactgcg cccaccgccc 660
tgagatgcca ccagcccaca aagctcaggc ccacagaagt cttgttcttt cggctgagcc 720
cattgaccca gtttttcacc agctctaggt taacccagaa egggcttgaa aagccacatt 780
tecgaaggee agtggggeet ageceageea cagggaaege cagee
<210> 77
<211> 692
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D26598
<400> 77
cctagtacac cgcaatcatg tctattatgt cctataacgg aggggccgtc atggccatga 60
aggggaagaa ctgtgtggcc atcgctgcag acaggcgctt cgggatccag gcccagttgg 120
tgaccacgga cttccagaag atctttccca tgggtgaccg gctgtacatc ggtctggccg 180
ggctcgccac tgacgtccag acagttgccc agcgcctcaa gttccggctg aacctgtatg 240
agttgaagga aggtcggcag atcaaacctt ataccctcat gagcatggtg gccaacctct 300
tgtatgagaa acggtttggc ccttactaca ctgagccagt cattgccggg ttggacccga 360
agacetttaa geeetteatt tgetetetag aceteategg etgeeecatg gtgactgatg 420
actttgtggt cagtggcacc tgcgccgaac aaatgtacgg aatgtgtgag tccctctggg 480
agcccaacat ggatccggat cacctgtttg aaaccatctc ccaagccatg ctgaatgctg 540
tggaccggga tgcagtgtca ggcatgggag tcattgtcca catcatcgag aaggacaaaa 600
tcaccaccag gacactgaag gcccgaatgg actaaccctg ttcccagagc ccacttttt 660
ttctttttt gaaataaaat agcctgtctt tc
<210> 78
<211> 1059
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X95404
<400> 78
qctctcqtct tctqcgqctc tcggtqccct ctccttttcg tttccggaaa catggcctcc 60
ggtgtggctg tctctgatgg tgtcatcaag gtgttcaacg acatgaaggt gcgtaagtct 120
tcaacgccag aggaggtgaa gaagggcaag aaggeggtgc tcttctgcct gagtgaggac 180
aagaagaaca tcatcctgga ggagggcaag gagatcctgg tgggcgatgt gggccagact 240
gtcgacgatc cctacgccac ctttgtcaag atgctgccag ataaggactg ccgctatgcc 300
ctctatgatg caacctatga gaccaaggag agcaagaagg aggatctggt gtttatcttc 360
tgggcccccg agtctgcgcc ccttaagagc aaaatgattt atgccagctc caaggacgcc 420
atcaagaaga agctgacagg gatcaagcat gaattgcaag caaactgcta cgaggaggtc 480
aaggaccgct gcaccctggc agagaagctg gggggcagtg cggtcatctc cctggagggc 540
aagcetttgt gageecette tggeeceetg eetggageat etggeageee caeaectgee 600
cttgggggtt geaggetgee ceetteetge cagaceggag gggetggggg gateecagea 660
qqqqqaggca atcccttcac cccagttgcc aaacagaccc cccaccccct ggattttcct 720
teteceteca tecettgacg gttetggeet teceaaactg ettttgatet tttgatteet 780
cttgggctga agcagaccaa gttccccca ggcacccaag ttgtggggga gcctgtattt 840
tttttaacaa catccccatt ccccacctgg tcctccccct tcccatgctg ccaacttcta 900
accgcaatag tgactctgtg cttgtctgtt tagttctgtg tataaatgga atgttgtgga 960
gatgacccct ccctgtgccg gctggttcct ctcccttttc ccctggtcac ggctactcat 1020
ggaagcagga ccagtaaggg accttcgatt aaaaaaaaa
                                                                   1059
<210> 79
<211> 3309
<212> DNA
<213> Homo sapiens
```

<220>
<223> Genbank Accession No. M15036

<400> 79 ctgcaggggg ggggggggg gggggggggg cagcacggct cagaccgagg 60 cgcacaggct cgcagctccg ggcgcctagc gcccggtccc cgccgcgacg cgccaccgtc 120 cctgccggcg cctccgcgcc ttcgaaatga gggtcctggg tgggcgctgc ggggcgccgc 180 tggcgtgtct cctcctagtg cttcccgtct cagaggcaaa ccttctgtca aagcaacagg 240 cttcacaagt cctggttagg aagcgtcgtg caaattcttt acttgaagaa accaaacagg 300 gtaatcttga aagagaatgc atcgaagaac tgtgcaataa agaagaagcc agggaggtct 360 ttgaaaatga cccggaaacg gattattttt atccaaaata cttagtttgt cttcgctctt 420 ttcaaactgg gttattcact gctgcacgtc agtcaactaa tgcttatcct gacctaagaa 480 gctgtgtcaa tgccattcca gaccagtgta gtcctctgcc atgcaatgaa gatggatata 540 tgagctgcaa agatggaaaa gcttctttta cttgcacttg taaaccaggt tggcaaggag 600 aaaagtgtga atttgacata aatgaatgca aagatccctc aaatataaat ggaggttgca 660 gtcaaatttg tgataataca cctggaagtt accactgttc ctgtaaaaat ggttttgtta 720 tgctttcaaa taagaaagat tgtaaagatg tggatgaatg ctctttgaag ccaagcattt 780 gtggcacagc tgtgtgcaag aacatcccag gagattttga atgtgaatgc cccgaaggct 840 acagatataa totcaaatca aagtottgtg aagatataga tgaatgctot gagaacatgt 900 gtgctcagct ttgtgtcaat taccctggag gttacacttg ctattgtgat gggaagaaag 960 gattcaaact tgcccaagat cagaagagtt gtgaggttgt ttcagtgtgc cttcccttga 1020 accttgacac aaagtatgaa ttactttact tggcggagca gtttgcaggg gttgttttat 1080 atttaaaatt tcgtttgcca gaaatcagca gattttcagc agaatttgat ttccggacat 1140 atgattcaga aggegtgata etgtacgcag aatetatega teactcageg tggeteetga 1200 ttgcacttcg tggtggaaag attgaagttc agcttaagaa tgaacataca tccaaaatca 1260 caactggagg tgatgttatt aataatggtc tatggaatat ggtgtctgtg gaagaattag 1320 aacatagtat tagcattaaa atagctaaag aagctgtgat ggatataaat aaacctggac 1380 ccctttttaa gccggaaaat ggattgctgg aaaccaaagt atactttgca ggattccctc 1440 ggaaagtgga aagtgaactc attaaaccga ttaaccctcg tctagatgga tgtatacgaa 1500 gctggaattt gatgaagcaa ggagcttctg gaataaagga aattattcaa gaaaaacaaa 1560 ataagcattg cctggttact gtggagaagg gctcctacta tcctggttct ggaattgctc 1620 aatttcacat agattataat aatgtatcca gtgctgaggg ttggcatgta aatgtgacct 1680 tgaatattcg tccatccacg ggcactggtg ttatgcttgc cttggtttct ggtaacaaca 1740 cagtgccctt tgctgtgtcc ttggtggact ccacctctga aaaatcacag gatattctgt 1800 tatctgttga aaatactgta atatatcgga tacaggccct aagtctatgt tccgatcaac 1860 aatctcatct ggaatttaga gtcaacagaa acaatctgga gttgtcgaca ccacttaaaa 1920 tagaaaccat ctcccatgaa gaccttcaaa gacaacttgc cgtcttggac aaagcaatga 1980 aagcaaaagt ggccacatac ctgggtggcc ttccagatgt tccattcagt gccacaccag 2040 tgaatgcctt ttataatggc tgcatggaag tgaatattaa tggtgtacag ttggatctgg 2100 atgaagccat ttctaaacat aatgatatta gagctcactc atgtccatca gtttggaaaa 2160 agacaaagaa ttottaaggo atottttoto tgottataat accttttoot tgtgtgtaat 2220 tatacttatg tttcaataac agctgaaggg ttttatttac aatgtgcagt ctttgattat 2280 tttgtggtcc tttcctggga tttttaaaag gtcctttgtc aaggaaaaaa attctgttgt 2340 gatataaatc acagtaaaga aattottact totottgota totaagaata gtgaaaaata 2400 acaattttaa atttgaattt ttttcctaca aatgacagtt tcaatttttg tttgtaaaac 2460 taaattttaa ttttatcatc atgaactagt gtctaaatac ctatgttttt ttcagaaagc 2520 aaggaagtaa actcaaacaa aagtgcgtgt aattaaatac tattaatcat aggcagatac 2580 tattttgttt atgtttttgt ttttttcctg atgaaggcag aagagatggt ggtctattaa 2640 atatgaattg aatggagggt cctaatgcct tatttcaaaa caattcctca gggggaccag 2700 ctttggcttc atctttctct tgtgtggctt cacatttaaa ccagtatctt tattgaatta 2760 gaaaacaagt gggacatatt ttcctgagag cagcacagga atcttcttct tggcagctgc 2820 agtctgtcag gatgagatat cagattaggt tggataggtg gggaaatctg aagtgggtac 2880 attttttaaa ttttgctgtg tgggtcacac aaggtctaca ttacaaaaga cagaattcag 2940 ggatggaaag gagaatgaac aaatgtggga gttcatagtt ttccttgaat ccaactttta 3000 attaccagag taagttgcca aaatgtgatt gttgaagtac aaaaggaact atgaaaacca 3060 gaacaaattt taacaaaagg acaaccacag agggatatag tgaatatcgt atcattgtaa 3120 tcaaagaagt aaggaggtaa gattgccacg tgcctgctgg tactgtgatg catttcaagt 3180 ggcagtttta tcacgtttga atctaccatt catagccaga tgtgtatcag atgtttcact 3240 gacagttttt aacaataaat tottttcact gtattttata toacttataa taaatoggtg 3300 3309 tataatttt

```
<210> 80
<211> 604
<212> DNA
<213> Homo sapiens
<223> Genbank Accession No. AA219354
<220>
<221> unsure
<222> (1)..(604)
\langle 223 \rangle n = a or c or g or t
<400> 80
gaatacaatg atgtatttct ttattttcac atacactcta gctaaaagag caagagtaca 60
catcaacaaa aatggaaaca aggctttggc tgaaaaaaac atgcatttga caaatcatgt 120
taatagctag acaagaagaa agttagcttt gtaaacttct acttcatttg attcagagaa 180
acagagcatg agttttctta aaagtaacaa gaaaaggaac aaaaaaaatg aggtttgaaa 240
tcttttacca tggcaaaaca ttaacatctt tctcaaaaac atagagaaat ctggaaaaat 300
caagaagata aaattctgga ccagttagtg acattctttc aagcatactt gtaaaatgtt 360
tccttaaagt gttcttggga tgaaaatgat tgtcatgtct ccaacaacag tgaactgatg 420
ttgttccttg gaataaaagt caatccccac cttaaaaaat gtatggcttc tttgaggaat 480
tottatggot taaagaottt ttacattota gaccattaaa ttgattgagg notaaattaa 540
gaagtgaata gttacnctac acggtaaggt agcagcctga agcattggna ccaanagggt 600
qtgg
<210> 81
<211> 1550
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. M16447
<400> 81
gtggcctacc atggtttcaa cgggtaacgg ggaataaggg ttcgattcgg agctgcggga 60
tggtgtacgg cggcaggggc gctctgggtt ctcgatgcgt gcaggctttt cgggcccgca 180
actggtgggt tgccagcgtt gatgtggtgg agaatgaaga ggccagcgct acgatcattg 240
ttaaaatgac agactcgttc actgagcagg ctgaccaggt gactgctgag gttggaaagc 300
tcttgggtga agagaaggtg gatgcaattc tttgcgttgc tggaggatgg gccgggggca 360
atgccaaatc caagtetete tttaagaact gtgacetgat gtggaagcag agcatatgga 420
categaceat etecageeat etggetacea ageateteaa ggaaggagge etectgacet 480
tggctggcgc aaaggctgcc ctggatggga ctcctggtat gatcgggtac ggcatggcca 540
agggtgctgt tcaccagctc tgccagagcc tggctgggaa gaacagcggc atgccgcccg 600
gggcagccgc catcgctgtg ctcccggtta ccctggatac cccgatgaac aggaaatcaa 660
tgcctgaggc tgacttcagc tcctggacac ccttagaatt cctagttgaa actttccatg 720
actggatcac agggaaaaac cgaccgagct caggaagcct aatccaggtg gtaaccacag 780
aaggaaggac ggaactcacc ccagcatatt tttaggcctc atctcagtgc ctatgagggg 840
cetgecagaa aagteactaa eetgteteag tgtggeettg tecageettg tgttttetgt 900
aacccctgtt tgtggtacga gataatgagt cctatttttc tctcacataa tatgcatttg 960
ctctcctagg gacaagtgta atacatttat gtgaagtaag acaatgcgag actggtggcc 1020
gtcaaatagc atccgtcaat ctgtgttaac tgcataggag gctctcgata gcacctgcta 1080
tageggtgte atgttggate getttgtgae tgtteatetg teettgacag tggetgteat 1140
cttgactact ttgttgattt gttggtattg gggacatttt aaaggctgag ttatttttga 1200
atgtcatgtt tatgtcatag acgtagaaaa cgcatccttg aattaaactg ccttaactcc 1260
 ttttgtggta taagcaaact acatggactc tgtccctggt atccttttcc tgtgtggttg 1320
 cccctgtgcc tgtggtctgg cctaggttaa gtgtgcaaga taactactcg tgagttattc 1380
 agaatgttgt toctaataaa tgcacttgtt gtctgtcttc tttaatcaaa tcacatctta 1440
 tatacagcag tcagagatga gtatactaga atcatggatt gctggaggtc ttttaatctg 1500
                                                                  1550
 atgttctcag aagggggtgg atttaaatcc tgaaataaat atttcaacac
```

<210> 82

```
<211> 3634
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. D10040
<400> 82
tcaacacagg acaatgcaag cccatgagct gttccggtat tttcgaatgc cagagctggt 60
tgacttccga cagtacgtgc gtactcttcc gaccaacacg cttatgggct tcggagcttt 120
tgcagcactc accaccttct ggtacgccac gagacccaaa cccctgaagc cgccatgcga 180
cctctccatg cagtcagtgg aagtggcggg tagtggttggt gcacgaagat ccgcactact 240
tgacagcgac gagcccttgg tgtatttcta tgatgatgtc acaacattat acgaaggttt 300
ccagagggga atacaggtgt caaataatgg cccttgttta ggctctcgga aaccagacca 360
accetatgaa tggettteat ataaacaggt tgcagaattg teggagtgca taggeteage 420
actgatccag aagggettea agactgeece agateagtte attggeatet ttgeteaaaa 480
tagacctgag tgggtgatta ttgaacaagg atgctttgct tattcgatgg tgatcgttcc 540
actttatgat accettggaa atgaagceat cacgtacata gtcaacaaag ctgaactete 600
tctggttttt gttgacaagc cagagaaggc caaactctta ttagagggtg tagaaaataa 660
gttaatacca ggccttaaaa tcatagttgt catggatgcc tacggcagtg aactggtgga 720
acgaggccag aggtgtgggg tggaagtcac cagcatgaag gcgatggagg acctgggaag 780
agccaacaga cggaagccca agcctccagc acctgaagat cttgcagtaa tttgtttcac 840
aagtggaact acaggcaacc ccaaaggagc aatggtcact caccgaaaca tagtgagcga 900
ttgttcagct tttgtgaaag caacagagaa tacagtcaat ccttgcccag atgatacttt 960
gatatettte ttgeeteteg eccatatgtt tgagagagtt gtagagtgtg taatgetgtg 1020
tcatggagct aaaatcggat ttttccaagg agatatcagg ctgctcatgg atgacctcaa 1080
ggtgcttcaa cccactgtct tccccgtggt tccaagactg ctgaaccgga tgtttgaccg 1140
aattttcgga caagcaaaca ccacgctgaa gcgatggctc ttggactttg cctccaagag 1200
gaaagaagca gagcttcgca gcggcatcat cagaaacaac agcctgtggg accggctgat 1260
cttccacaaa gtacagtcga gcctgggcgg aagagtccgg ctgatggtga caggagccgc 1320
ceeggtgtet gecactgtge tgacgtteet cagageagee etgggetgte agttttatga 1380
aggatacgga cagacagagt gcactgccgg gtgctgccta accatgcctg gagactggac 1440
cgcaggccat gttggggccc cgatgccgtg caatttgata aaacttgttg atgtggaaga 1500
aatgaattac atggctgccg agggcgaggg cgaggtgtgt gtgaaagggc caaatgtatt 1560
tcagggctac ttgaaggacc cagcgaaaac agcagaagct ttggacaaag acggctggtt 1620
acacacaggg gacattggaa aatggttacc aaatggcacc ttgaaaatta tcgaccggaa 1680
aaagcacata tttaagctgg cacaaggaga atacatagcc cctgaaaaga ttgaaaatat 1740
ctacatgcga agtgagcctg ttgctcaggt gtttgtccac ggagaaagcc tgcaggcatt 1800
teteattgca attgtggtac cagatgttga gacattatgt teetgggeec aaaagagagg 1860
atttgaaggg tcgtttgagg aactgtgcag aaataaggat gtcaaaaaag ctatcctcga 1920
agatatggtg agacttggga aggattctgg tctgaaacca tttgaacagg tcaaaggcat 1980
cacattgcac cctgaattat tttctatcga caatggcctt ctgactccaa caatgaaggc 2040
gaaaaggcca gagctgcgga actatttcag gtcgcagata gatgacctct attccactat 2100
caaggtttag tgtgaagaag aaagctcaga ggaaatggca cagttccaca atctcttctc 2160
ctgctgatgg ccttcatgtt gttaattttg aatacagcaa gtgtagggaa ggaagcgttc 2220
gtgtttgact tgtccattcg gggttcttct cataggaatg ctagaggaaa cagaacaccg 2280
 cettacagte accteatgtt geagaceatg tttatggtaa tacacacttt ceaaaatgag 2340
 ccttaaaaat tgtaaagggg atactataaa tgtgctaagt tatttgagac ttcctcagtt 2400
 taaaaagtgg gttttaaatc ttctgtctcc ctgcttttct aatcaagggg ttaggacttt 2460
 gctatctctg agatgtctgc tacttgctgc aaattctgca gctgtctgct gctctaaaga 2520
 gtacagtgca ctagagggaa gtgttccctt taaaaaataag aacaactgtc ctggctggag 2580
aateteacaa geggaccaga gatetttta aatecetget actgteeett etcacaggea 2640
 ttcacagaac cettetgatt egtaagggtt acgaaactca tgttettete cagteceetg 2700
 tggtttctgt tggagcataa ggtttccagt aagcgggagg gcagatccaa ctcagaacca 2760
 tgcagataag gagcctctgg caaatgggtg ctcatcagaa cgcgtggatt ctctttcatg 2820
 gcagaatgct cttggactcg gttctccagg cctgattccc cgactccatc ctttttcagg 2880
 ggttatttaa aaatctgcct tagattctat agtgaagaca agcatttcaa gaaagagtta 2940
 cctggatcag ccatgctcag ctgtgacgcc tgaataactg tctactttat cttcactgaa 3000
 ccactcactc tgtgtaaagg ccaacagatt tttaatgtgg ttttcatatc aaaagatcat 3060
```

```
gttgggatta acttgccttt ttccccaaaa aataaactct caggcaagca tttctttaaa 3120
gctattaagg gagtatatac ttgagtactt attgaaatgg acagtaataa gcaaatgttc 3180
ttataatgct acctgatttc tatgaaatgt gtttgacaag ccaaaattct aggatgtaga 3240
aatctggaaa gttcatttcc tgggattcac ttctccaggg attttttaaa gttaatttgg 3300
qaaattaaca gcagttcact ttattgtgag tctttgccac atttgactga attgagctgt 3360
catttgtaca tttaaagcag ctgttttggg gtctgtgaga gtacatgtat tatatacaag 3420
cacaacaggg cttgcactaa agaattgtca ttgtaataac actacttggt agcctaactt 3480
catatatgta ttcttaattg cacaaaaagt caataatttg tcaccttggg gttttgaatg 3540
tttgctttaa gtgttggcta tttctatgtt ttataaacca aaacaaaatt tccaaaaaca 3600
                                                                  3634
atgaaggaaa ccaaaataaa tatttctgca tttc
<210> 83
<211> 377
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. W42636
cactatgtac aaaaacattt taattgaaat acctgtataa aaaaatatga tetecagaca 60
teteaetttt gaactgaaag aacceccate tgegatgeet geacacaceg catteacaca 120
aacacaggta ctgaataaat taaacgctca ggctctggcc ccaccccagc tttcagagcc 180
cacaagcaga ctgtacaaag tcaataattt aaaacccaaa ccctgggcac agtgcctgga 240
agtgtcaggg tcacccactc cccttaagtt agccactata catgttcatc ttctgacagg 300
cggggccagg acagacgcca ggcacaggga atcaggggct gggggtccct tggaccacag 360
gccaaccccc tcccctt
<210> 84
<211> 418
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. T66157
<220>
<221> unsure
 <222> (1)..(418)
 <223> n = a or c or g or t
 <400> 84
 tttttagaaa gaaatagatt tattctcatg tacaaagcgg tcacccacgg gaccatatac 60
gacagttgca cagagtccta gaaaaacgca tctntctaaa ggcaactcag aaaggtaagg 120
caggtggacc ccctcccca ccccacaacg cacacagant gaaacggaga aaaagagaga 180
 agccagtgnc ngggntgacc caagatteec ggccctatgg ggttteecaa gccccagggc 240
 acaggtggnt atggccttna agagagagcc ctgccaggtt nanggccagg tttttcattg 300
 gctgcaggnt tgggtaaggg gntcaggcca aggggaacan tcagggggcc tntnagacan 360
 teaggnttgg gntetetgtg cettaggggt ttgcagaaac attecatage etetgetg
 <210> 85
 <211> 1811
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. M62831
 <400> 85
 ggtttgtgta gagaggcgtg cagagcccgt tgtccggagt gcacctgctg cctgttctgt 60
 cecteceggg ageceeegee getgtegeeg tegagtegee atggaagtge agaaagagge 120
```

```
acagogoato atgaccotgt oggtgtggaa gatgtatoac tocogoatgo agogoggtgg 180
cetgeggetg caceggagte tgcagetgte getggtcatg egcagegece gggageteta 240
ceteteggee aaggtggagg ceetegagee egaggtgteg ttgeeggeeg ceeteecete 300
tgaccetege etgeaceege ecegagaage egagteeaeg geegagaeag egaceeega 360
cggtgagcac ccgtttccgg agccaatgga cacgcaggag gcgccgacag ccgaggagac 420
ctccgcctgc tgtgccccgc gccccgccaa agtcagccgc aaacgacgca gcagcagcct 480
gagcgacggc ggggacgttg gactggtccc gagcaagaaa gcccgtctgg aagaaaagga 540
agaagaggag ggagcgtcat ccgaagtcgc cgatcgcctg cagcccctc cgggccaagc 600
ggagggcgcc tttcccaacc tggcccgcgt cctgcagagg cgcttctccg gcctcctgaa 660
ctgcagcccc geggecectc cgaeggegec gecegegtge gaggeaaage cegettgeeg 720
cccggcggac agcatgctca acgtgctcgt gcgggccgtg gtggccttct gaggaccccg 780
ageggegetg eeggageeca gagegegegt egaacegteg geeegaggge geagacetga 840
ggcgaggcca ccccctcca tcctggggga agcgcccgcg aaaaccgtgg agagaagccg 900
ccgcccgggc tgctgagagg cccggagagg actctgtccc cggggagcca tcgccttcag 960
tgtgcaggga cggcaccgag gagtctgagc cgggcgcggg cgccttccgc agagacctgc 1020
gcccacaggt gctgtcttag tggactggga cgtgaacctt tcgctctcct tctggactgg 1080
tcctcagggt cggacttcat tttgtactgt gggctgtgct ggccctttca aggtttttca 1200
agagttggtt ttgcgtttcc aacctcggag aattccaggc actccccttc cccctccgct 1260
gacatacttg tataageggt categttgeg teatggggca ggegtgggga getteetgte 1320
gcettggctg ggtgtgggcc tggaggaagg tcctggggcg tgcactcgcc tgggcagtgg 1380
ggaggagagt ggcctgagtt acttcacccc cgcgtgctgc tggttaatgt cccgcgtctc 1440
tgcaccttcg ggtgggagcg gggactgatc tactttcaca ttctcaagtt tttctcatct 1500
gcattagagg tccccagtag gttcccaggt tccagcgtgc ccctccctca gacacacgga 1560
cacaatcagc cgagaagttc ctggtctgaa tcacgagaat gtggaggggt ggggggtgtc 1620
agtggaaagg cataaggctg agctgagacc agttgctggt gaaactgggc caatctgggg 1680
aggggaacat ccttgccagg gagtttctga gggtctgctt tgtttacctt tcgtgcggtg 1740
gattetttt aacteegtet acetggegtt ttgttagaaa tgtcagatag gaaaataaaa 1800
                                                               1811
accatttgag t
<210> 86
<211> 372
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. T98839
<220>
<221> unsure
<222> (1)..(372)
\langle 223 \rangle n = a or c or g or t
agagacagag aattatatag cagtatgcaa aaaaccagtt taaaacctgt gaagcaaaga 120
 gaaatgggtg tatgagctag acaggcatga ggagtgacag agtttcctct tcaaggagac 180
ggtatccctt ctgttgacat acacaggtga tccagaactn ccgtgagtgt ccttcccgac 240
 gagatttccc tctggggtga attttgtgcg gggtggccct caaagctcct ctctaccacc 300
 cgtgaggacc ctccccaaag actttttatt ctttttaaag tcttgggaaa agccctgctt 360
                                                                372
 ttcctccttt ta
 <210> 87
 <211> 924
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. U41344
 <400> 87
```

```
agttcagaga gaagtctaca gtccttgtct cggggtgtct tcccccttcc ccttcctcat 60
cttccccgcc agcctccact cccttctgat ttctcgtctt ctttttccgt agaaatcaac 120
ggaacccaga tttgccccaa cgacctagtg gcgttccatg acttctcctc ggacctggag 180
aacgtgccac acctgcgcta cctgcggctg gatggaaact acttgaagcc gcccatcccg 240
ctqqacctca tqatqtqctt ccgcctcctg cagtccgtgg tcatctaggc cctactccgc 300
caccggatet getetgaceg cacttgaagg etggggeeca ggacetgtge eggeeatteg 360
ttttctctct ctccctttct ttctcccagc tttgcctcct tatgccacct cgaggcaggg 420
aaaagccatc tatacttctg cagcctaagg agcgagactt caaggactca gtttggttcc 480
acccagttga aagacaccca gtgcacaccc aaactcctgg ccttctgtgg tttccctttg 540
ctccagaaac acagatgtgt ctaaagactt ggtgtcccct tctctctcct cccccacccg 600
ccactcctgg gtacatctgg gccgtggact atctgatctt ggtcctggcc gagaaacagc 660
ccggagtaag gttcagaaag tccccctggg gactcctcca tcttcggcag ctctggctca 720
aagaggcega gaaacccagt teteetggge caaggateee ttetggcaaa getgetgete 780
cgccgcttgg ttccccggca ccagacatcg ccctggccct gctggcccgg gtatcggaag 840
gaggagegag ggaatgaegg aggtagggtg cagggtaagg geteecaggt etteatetgg 900
ccaqcaqqac acagggatct aagg
<210> 88
<211> 511
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI765890
<400> 88
tgcttttgaa ttattgattt attgcacatc aggagaaaca caagattact gctataataa 60
attcactctt acatgcttta gcaaaaatca gtaaaaatag aaaacatggt aacaattaaa 120
gtgaaaaaat tggggtcatt aaagaatgtc tgactgatta gcttgcagtt tttgagacgg 180
ctgagaacta ccatcaatga gatcacctta aacaaacact cttaatgact tgaaaaagtc 240
cccatcccaa agtcaactat aggtattcaa tattgtatat ttaactgaat ttaaagttat 300
gttaaaaccc attttattga agtaagagaa gaattccttt tacattatca ttctcaagcc 360
atatatcaag aaaaagattg aaattacatt ccttttttt tttttaatag agacaagttc 420
tegetgtgtt geceaggetg gtetegaact cetaggttea agtgateete etgeettgte 480
ctgccaaagt gctgggatta caggcatgag c
<210> 89
<211> 318
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AL043089
<220>
<221> unsure
<222> (1)..(318)
<223> n = a or c or g or t
<400> 89
gtgggttgga gactcagcag gctccgtgca gcccttggga acagtgagag gttgaaggtc 60
ataacgagag tgggaactca acccagatcc cgcccctcct gtcctctgtg ttcccgcgga 120
aaccaaccaa accgtgcgct gtgacccatt gctgttctct gtatcgtgat ctatcctcaa 180
318
ggatccaagc ttacgtnc
<210> 90
<211> 716
<212> DNA
<213> Homo sapiens
```

```
<220>
<223> Genbank Accession No. M11433
<400> 90
ggggggggc ggagggcgct catttccggg ccgcccacca cccgcgtagc accggcagcc 60
gctgtcccgg cagtctccag ccgtcccgcc cgcttgtggc caaactggct ccagtcactc 120
ccgaaatgcc agtcgacttc actgggtact ggaagatgtt ggtcaacgag aatttcgagg 180
agtacctgcg cgccctcgac gtcaatgtgg ccttgcgcaa aatcgccaac ttgctgaagc 240
cagacaaaga gatcgtgcag gacggtgacc atatgatcat ccgcacgctg agcactttta 300
ggaactacat catggacttc caagttggga aggagtttga ggaggatctg acaggcatag 360
atgaccgcaa gtgcatgaca acagtgagct gggacggaga caagctccag tgtgtgcaga 420
agggtgagaa ggagggggt ggctggaccc agtggatcga gggtgatgag ctgcacctag 480
agatgagagt ggaaggtgtg gtctgcaagc aagtattcaa gaaggtgcag tgaggcccaa 540
gcagacaacc ttgtcccaac caatcagcag gatgtgtgag ccaggatccc tctttgcaca 600
gcatgaggca aaaatgtcca gccaccccta ggcatctgtt agcagagtct gtctcttggc 660
tttgtcactt ttccttttct taaaacaaag ccatgccaat aaagtgacct gtgttc
<210> 91
<211> 2052
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. Y11307
<400> 91
geggeegegt egacgegeec eegageageg eeegegeeet eegegeette teegeeggga 60
cctcgagcga aagacgcccg cccgccgccc agccctcgcc tccctgccca ccgggcacac 120
cgcgccgcca ccccgacccc gctgcgcacg gcctgtccgc tgcacaccag cttgttggcg 180
tetteqteqe egeqeteqee eegggetaet cetgegegee acaatgaget eeegcatege 240
caqqqqqtc qccttaqtcq tcacccttct ccacttgacc aggctggcgc tctccacctg 300
ccccgctgcc tgccactgcc ccctggaggc gcccaagtgc gcgccgggag tcgggctggt 360
ccgggacggc tgcggctgct gtaaggtctg cgccaagcag ctcaacgagg actgcagcaa 420
aacgcagccc tgcgaccaca ccaaggggct ggaatgcaac ttcggcgcca gctccaccgc 480
tctgaagggg atctgcagag ctcagtcaga gggcagaccc tgtgaatata actccagaat 540
ctaccaaaac ggggaaagtt tccagcccaa ctgtaaacat cagtgcacat gtattgatgg 600
cgccgtgggc tgcattcctc tgtgtcccca agaactatct ctccccaact tgggctgtcc 660
caaccetegg etggteaaag ttacegggea gtgetgegag gagtgggtet gtgaceagga 720
tagtatcaag gaccccatgg aggaccagga cggcctcctt ggcaaggagc tgggattcga 780
tgcctccgag gtggagttga cgagaaacaa tgaattgatt gcagttggaa aaggcagctc 840
actgaagcgg ctccctgttt ttggaatgga gcctcgcatc ctatacaacc ctttacaagg 900
ccagaaatgt attgttcaaa caacttcatg gtcccagtgc tcaaagacct gtggaactgg 960
tatotocaca ogagttacca atgacaacco tgagtgoogo ottgtgaaag aaaccoggat 1020
ttgtgaggtg cggccttgtg gacagccagt gtacagcagc ctgaaaaagg gcaagaaatg 1080
cagcaagacc aagaaatccc ccgaaccagt caggtttact tacgctggat gtttgagtgt 1140
gaagaaatac cggcccaagt actgcggttc ctgcgtggac ggccgatgct gcacgcccca 1200
gctgaccagg actgtgaaga tgcggttccg ctgcgaagat ggggagacat tttccaagaa 1260
cqtcatgatg atccagtcct gcaaatgcaa ctacaactgc ccgcatgcca atgaagcagc 1320
gtttcccttc tacaggctgt tcaatgacat tcacaaattt agggactaaa tgctacctgg 1380
gtttccaggg cacacctaga caaacaaggg agaagagtgt cagaatcaga atcatggaga 1440
aaatgggcgg gggtggtgtg ggtgatggga ctcattgtag aaaggaagcc ttgctcattc 1500
ttgaggagca ttaaggtatt tcgaaactgc caagggtgct ggtgcggatg gacactaatg 1560
cagccacgat tggagaatac tttgcttcat agtattggag cacatgttac tgcttcattt 1620
tggagcttgt ggagttgatg actttctgtt ttctgtttgt aaattatttg ctaagcatat 1680
tttctctagg ctttttcct ttggggcttc tacagtcgta aaagagataa taagattagt 1740
tggacagttt aaagctttta ttcgtccttt gacaaaagta aatgggaggg cattccatcc 1800
cttcctgaag ggggacactc catgagtgtc tgtgagaggc agctatctgc actctaaact 1860
gcaaacagaa atcaggtgtt ttaagactga atgttttatt tatcaaaatg tagcttttgg 1920
ggagggaggg gaaatgtaat actggaataa tttgtaaatg attttaattt tatattcagt 1980
gaaaagattt tatttatgga attaaccatt taataaagaa atatttacct aaaaaaaagt 2040
```

```
2052
cgacgcggcc gc
<210> 92
<211> 748
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI078144
<220>
<221> unsure
<222> (1)..(748)
\langle 223 \rangle n = a or c or g or t
<400> 92
ttttgtggat tttcctttta atgcaaaatg ttgcaataca aaacaatgtg gagaaagtcc 60
tgttcctcag gacactgaag ggaggagtga ggaagagagg acagagctgg acgtctcctc 120
ctatttctcc ctccccaagt cactctgagg ggaagaacac tgctgcctgc tccctgggcc 180
tgcccgcata caaggttaga gccctgggtc tggggcatcc ttagcctgaa atttgttgac 240
atggggcagg agagcaggag ggaacattga gggttttgac tcttcgggct ctaaaaggat 300
tactcaggat ctggagttcc gtatgaaaca aaggagctga aagaatttga ttgccattgg 360
ctaaaaatat agaggatttg agccacaact ggcccacatt tgaagaatga ggaacaagaa 420
atttagtggg gatataatat aaatgtatgg gagtgagaaa gatgcaaaaa acaaggctag 480
ctcctcaaac ctcctcctct ttcttcctca tctccagctt atagacaatc tggtagccat 540
catcccaggc atagagetgg cgttctcggg ggttatagcg gaggetggca tgggcaccat 600
atctgcggng aaaataaggg agtgctgccc gttcaggggt cagggtgccg ctggcatcaa 660
aggagcactg gatgcgggcc cgactggcag gacgggtgtt atagacgaca tagaaggtcc 720
                                                                    748
cacagatgac aaaggcagcc tcagcatt
<210> 93
<211> 602
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AA122235
<220>
<221> unsure
<222> (1)..(602)
\langle 223 \rangle n = a or c or g or t
<400> 93
gggagattaa aaccttggat tctaggtggt agaggataat ttttttttga atgaatttct 60
ttttatttat ttatttattt ttttcctttt taggatagaa tttttgcggc atttgaagag 120
cttttccag attatgttta aaattgaaac caagccatgt ggtgaagaac tcaagggtgg 180
ggataaagtg ctgatgacct gtgttggcat tggtttctcc aaccttagca agaccctcaa 240
gtgataacca tcacaagata aggccccaat gcctacagac aaagcagaag ctgccacgga 300
caccaatggg accaagtcca aatggattaa tccaggacag aatagccact tgcttaattt 360
totgtgaaga aatatcaata tacaaataaa agacatccct gtagcatatg gtttccagct 420
gtttctccag tggcattgca ttgcccagga gggnccagtc accatgagag ctcccttgcc 480
ttacctggag gaagaatgtg cttcaggcac agtcgtgctg ctagaacagt ctcatagctg 540
cagttcantg tetteetcag etactateat angtteetca gecetgteat atgetgttte 600
                                                                    602
ca
<210> 94
<211> 674
<212> DNA
<213> Homo sapiens
```

.

```
<220>
<223> Genbank Accession No. AI342377
<220>
<221> unsure
<222> (1)..(674)
\langle 223 \rangle n = a or c or g or t
<400> 94
gagatttccc aggactggct ttaatttgaa aaatctgatt ggggtctctt cccgtatcag 60
agaaggaaca gcccaagcta tgaccccagg gccagggaat tcagtcccca ccagaccctg 120
tcattccatc actagggggt aattccaggc tccccctgcc agccctgaga caggaggacg 180
gatgtgaagt tgcccaggac tagattctgt ctctccaaag tggcccaagc cctgttctct 240
gtactaggga agccagctgt gtcttttcga ggacagttgg tccagccagc aggctcagtt 300
cagataccag acaaccattc cagcacgagg getcagegec etggeceegg eggtegetee 360
agtgcctgtg tgcccaccag cacatccatg aggtagtcca attcggcctc gtccagctcc 420
ggagetteet cettgeeegg cecateetea gggeetggtt tgaggeeete agaggetggt 480
geccanagtt cattgtcata catagaggtg tcaatatect caaacaggec ctcaagccca 540
tcgtccagta gacagccagt ggctgggccc agcaggtcca aggcacccag gctgggcgct 600
geteeceega tgetactgge etgtgggeee etegtetgee aagggttggg ageetgaete 660
angecetteg tgee
<210> 95
<211> 1155
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U86529
<400> 95
aagacacggg cctgattcgt cgagtctcac tgagccttag tcgtcggcag gtcccaggcg 60
cgaagtttct cggcctggag gagggggtcg cgcgaagtgc cagatgcagg cggggaagcc 120
catcetetat tectatttee gaageteetg eteatggaga gttegaattg etetggeett 180
gaaaggcatc gactacaaga cggtgcccat caatctcata aaggataggg gccaacagtt 240
ttctaaggac ttccaggcac tgaatcctat gaagcaggtg ccaaccctga agattgatgg 300
aatcaccatt caccagtcac tggccatcat tgagtatcta gaggagacgc gtcccactcc 360
gcgacttctg cctcaggacc caaagaagag ggccagcgtg cgtatgattt ctgacctcat 420
cgctggtggc atccagcccc tgcagaacct gtctgtcctg aagcaagtgg gagaggagat 480
gcagctgacc tgggcccaga acgccatcac ttgtggcttt aacgccctgg agcagatcct 540
acagagcaca gcgggcatat actgtgtagg agacgaggtg accatggctg atctgtgctt 600
ggtgcctcag gtggcaaatg ctgaaagatt caaggtggat ctcacccct accctaccat 660
cagetecate aacaagagge tgetggtett ggaggeette caggtgtete acceetgeeg 720
gcagccagat acacccactg agctgagggc ctagctccca aatcctgccc cgttggcaca 780
gggccacagg agcagaagct gggtgggctg aagaggcctg gaaacgagag tcttaattga 840
ggagatggga gactcgaact ctagccctgg atctgccttc ctgctgaaac ttgttccacc 900
tcagtcccct catctgtcac acgcatgtgg ggtggagtag ggagatgcgg ggagcagggt 960
gggcaggaat actgttatct atgtgacggg gcagtcgtga ggctgagatg agaatgcgga 1020
 ttaaaatgec tggcgtgetc accgtaacac cacggggaag getgtgtgec ttttctcatc 1080
 cgcttttgtt gtgtgtgact ccaaagaatg cccgcgctga aatttggcgt gaattaaact 1140
                                                                    1155
gaagcccagg cctct
 <210> 96
 <211> 391
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. AI680350
 <220>
```

```
<221> unsure
<222> (1)..(391)
\langle 223 \rangle n = a or c or g or t
<400> 96
tttttcatta aaaaataggg ctctttatta taaattactg aaatgtttct tttctgaata 60
taaatataaa tatgtgcaaa gtttgacttg gattgggatt ttgttgagtt cttcaagcat 120
ctcctaatag cctcaagggc ctgagtaggg gggaggagag aggactggag gtggaatctt 180
tataaaagac agagtgattg aggcagattg taaacattat taaaaaacaa gaaacaaaca 240
aaaaaataga gaaaaaaacc accccaacac acaactgccc tgtccagccc aatacctgac 300
acagaatact ntgtgtttgt ttagttgccc cccccacaa aaacaaaaac aaaacaaaa 360
acaaaaaact gttccaggta attccatcgc t
<210> 97
<211> 620
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AA576961
gtttttttt tttttaatat cagagtttta atttcaacca gctggcacaa caatgaaagt 60
gtcagacttt ctgaaagtac tcgagaaata atgaataaat tcttaatgtt ttcccctcca 120
ccgccctttt ttattctcca agattaggaa ttactacgga ttaggttttt gaaaataaag 180
tttccttttt ggaaaatggt ctacattcag aaatgtctta gaacaagcat ttaaaaaaaa 240
ctaataaata atcataaatc aaaatacatt aaaataaaat tacagtacat catcgctcct 300
agaaaattca ccatacaaga cgatcctttc aaaggttcat aaataaaagt cttcttgact 360
cgaaatcgtt tcctgcatcg tgatgaaaag tatgcagaaa actaagaaga atcgcaagtt 420
ttcagtaggg tgatgtccaa actacttgat ctggtgcggg gcggagagac tgttttgctt 480
ttgatccaag tgaagacaat agaaatgtgc tcgtcccact tcctcaagtc ctcaaaacct 540
tgtcttgccc gggagctgcc cctttcaggc agagttggag gtgctgcgga gaagccggtg 600
cccgtgcggc tgcgagtgcg
<210> 98
<211> 1108
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. U75744
<400> 98
ggcagagcag gggtagactt agcatgtaag ggagggtcag ttggtcctgc aacaggtagg 60
acateceteg ggtacaatgg agcagcacca ggatgteacg ggagetggee ceaetgetge 120
ttctcctcct ctccatccac agcgccctgg ccatgaggat ctgctccttc aacgtcaggt 180
cctttgggga aagcaagcag gaagacaaga atgccatgga tgtcattgtg aaggtcatca 240
aacgctgtga catcatactc gtgatggaaa tcaaggacag caacaacagg atctgcccca 300
tactgatgga gaagctgaac agaaattcaa ggagaggcat aacgtacaac tatgtgatta 360
gctctcggct tggaagaaaa acatataaag aacaatatgc ctttctctac aaggaaaagc 420
tggtgtctgt gaagaggagt tatcactacc atgactatca ggatggagac gcagatgtgt 480
tttccaggga gccctttgtg gtctggttcc aatctcccca cactgctgtc aaagacttcg 540
tgattatccc cctgcacacc accccagaga catccgttaa ggagatcgat gagttggttg 600
aggtctacac ggacgtgaaa caccgctgga aggcggagaa tttcattttc atgggtgact 660
tcaatgccgg ctgcagctac gtccccaaga aggcctggaa gaacatccgc ttgaggactg 720
accccaggtt tgtttggctg atcggggacc aagaggacac cacggtgaag aagagcacca 780
actgtgcata tgacaggatt gtgcttagag gacaagaaat cgtcagttct gttgttccca 840
agtcaaacag tgtttttgac ttccagaaag cttacaagct gactgaagag gaggccctgg 900
atgtcagcga ccactttcca gttgaattta aactacagtc ttcaagggcc ttcaccaaca 960
gcaaaaaatc tgtcactcta aggaagaaaa caaagagcaa acgctcctag acccaagggt 1020
ctcatcttat taaccatttc ttgcctctaa ataaaatgtc tctaacagat atgaactgct 1080
```

ccctgtactt aggaaaaaaa aaaaaaaa

WO 03/061564 PCT/US02/40718

1108

<210> 99 <211> 3921 <212> DNA <213> Homo sapiens <220> <223> Genbank Accession No. M59371 <400> 99 cggaagttgc gcgcaggccg gcgggcggga gcggacaccg aggccggcgt gcaggcgtgc 60 gggtgtgcgg gagccgggct cggggggatc ggaccgagag cgagaagcgc ggcatggagc 120 tccaggcagc ccgcgcctgc ttcgccctgc tgtggggctg tgcgctggcc gcggccgcgg 180 cggcgcaggg caaggaagtg gtactgctgg actttgctgc agctggaggg gagctcggct 240 ggctcacaca cccgtatggc aaagggtggg acctgatgca gaacatcatg aatgacatgc 300 cgatctacat gtactccgtg tgcaacgtga tgtctggcga ccaggacaac tggctccgca 360 ccaactgggt gtaccgagga gaggctgagc gtaacaactt tgagctcaac tttactgtac 420 gtgactgcaa cagcttccct ggtggcgcca gctcctgcaa ggagactttc aacctctact 480 atgccgagtc ggacctggac tacggcacca acttccagaa gcgcctgttc accaagattg 540 acaccattgc gcccgatgag atcaccgtca gcagcgactt cgaggcacgc cacgtgaagc 600 tgaacgtgga ggagcgctcc gtggggccgc tcacccgcaa aggcttctac ctggccttcc 660 aggatategg tgeetgtgtg gegetgetet eegteegtgt etaetacaag aagtgeeeeg 720 agetgetgea gggeetggee caetteeetg agaccatege eggetetgat geacetteee 780 tggccactgt ggccggcacc tgtgtggacc atgccgtggt gccaccgggg ggtgaagagc 840 cccgtatgca ctgtgcagtg gatggcgagt ggctggtgcc cattgggcag tgcctgtgcc 900 aggcaggcta cgagaaggtg gaggatgcct gccaggcctg ctcgcctgga ttttttaagt 960 ttgaggcatc tgagagcccc tgcttggagt gccctgagca cacgctgcca tcccctgagg 1020 gtgccacctc ctgcgagtgt gaggaagget tetteeggge aceteaggae ccagegtega 1080 tgccttgcac acgaccccct tccgccccac actacctcac agccgtgggc atgggtgcca 1140 aggtggaget gegetggaeg ecceeteagg acageggggg eegegaggae attgtetaca 1200 gcgtcacctg cgaacagtgc tggcccgagt ctgggggaatg cgggccgtgt gaggccagtg 1260 tgcgctactc ggagcctcct cacggactga cccgcaccag tgtgacagtg agcgacctgg 1320 agccccacat gaactacacc ttcaccgtgg aggcccgcaa tggcgtctca ggcctggtaa 1380 ccageegeag etteegtaet gccagtgtea gcateaacca gacagageee cccaaggtga 1440 ggctggaggg ccgcagcacc acctcgctta gcgtctcctg gagcatcccc ccgccgcagc 1500 agageegagt gtggaagtae gaggteactt acegeaagaa gggagaetee aacagetaca 1560 atgtgcgccg caccgagggt ttctccgtga ccctggacga cctggcccca gacaccacct 1620 acctggtcca ggtgcaggca ctgacgcagg agggccaggg ggccggcagc aaggtgcacg 1680 aattccagac gctgtccccg gagggatctg gcaacttggc ggtgattggc ggcgtggctg 1740 toggtgtggt cotgottotg gtgctggcag gagttggctt ctttatccac cgcaggagga 1800 agaaccageg tgecegecag teceeggagg aegtttaett etecaagtea gaacaaetga 1860 agcccctgaa gacatacgtg gacccccaca catatgagga ccccaaccag gctgtgttga 1920 agttcactac cgagatccat ccatcctgtg tcactcggca gaaggtgatc ggagcaggag 1980 agtttgggga ggtgtacaag ggcatgctga agacatcctc ggggaagaag gaggtgccgg 2040 tggccatcaa gacgctgaaa gccggctaca cagagaagca gcgagtggac ttcctcggcg 2100 aggccggcat catgggccag ttcagccacc acaacatcat ccgcctagag ggcgtcatct 2160 ccaaatacaa gcccatgatg atcatcactg agtacatgga gaatggggcc ctggacaagt 2220 tccttcggga gaaggatggc gagttcagcg tgctgcagct ggtgggcatg ctgcggggca 2280 tegeagetgg catgaagtac etggecaaca tgaactatgt geacegtgac etggetgeec 2340 gcaacatcct cgtcaacagc aacctggtct gcaaggtgtc tgactttggc ctgtcccgcg 2400 tgctggagga cgaccccgag gccacctaca ccaccagtgg cggcaagatc cccatccgct 2460 ggaccgcccc ggaggccatt tcctaccgga agttcacctc tgccagcgac gtgtggagct 2520 ttggcattgt catgtgggag gtgatgacct atggcgagcg gccctactgg gagttgtcca 2580 accacgaggt gatgaaagcc atcaatgatg gcttccggct ccccacaccc atggactgcc 2640 cctccgccat ctaccagctc atgatgcagt gctggcagca ggagcgtgcc cgccgcccca 2700 agttegetga categteage atcetggaca ageteatteg tgeceetgae teecteaaga 2760 cootggotga otttgaccoo ogogtgtota tooggotoco cagcacgago ggotoggagg 2820 gggtgccctt ccgcacggtg tccgagtggc tggagtccat caagatgcag cagtatacgg 2880 agcacttcat ggcggccggc tacactgcca tcgagaaggt ggtgcagatg accaacgacg 2940 acatcaagag gattggggtg cggctgcccg gccaccagaa gcgcatcgcc tacagcctgc 3000

```
tgggactcaa ggaccaggtg aacactgtgg ggatccccat ctgagcctcg acagggcctg 3060
gagececate ggccaagaat acttgaagaa acagagtgge etceetgetg tgccatgetg 3120
ggccactggg gactttattt atttctagtt ctttcctccc cctgcaactt ccgctgaggg 3180
gtctcggatg acaccctggc ctgaactgag gagatgacca gggatgctgg gctgggccct 3240
ctttccctgc gagacgcaca cagctgagca cttagcaggc accgccacgt cccagcatcc 3300
ctggagcagg agccccgcca cagccttcgg acagacatat aggatattcc caagccgacc 3360
ttccctccgc cttctcccac atgaggccat ctcaggagat ggagggcttg gcccagcgcc 3420
aagtaaacag ggtacctcaa gccccatttc ctcacactaa gagggcagac tgtgaacttg 3480
actgggtgag acccaaagcg gtccctgtcc ctctagtgcc ttctttagac cctcgggccc 3540
catectcate cetgactgge caaaccettg ettteetggg cetttgcaag atgettggtt 3600
gtgttgaggt ttttaaatat atattttgta ctttgtggag agaatgtgtg tgtgtggcag 3660
ggggccccgc cagggctggg gacagagggt gtcaaacatt cgtgagctgg ggactcaggg 3720
accggtgctg caggagtgtc ctgcccatgc cccagtcggc cccatctctc atcettttgg 3780
taatttatta tttttttat atttattgtt agaaaatgac ttatttctgc tctggaataa 3900
agttgcagat gattcaaacc g
<210> 100
<211> 1247
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AF040639
<220>
<221> unsure
<222> (1)..(1238)
\langle 223 \rangle n = a or c or g or t
<400> 100
ggaattegee geeegeteeg ageetggtge tteegacege tgegegege teetgggetg 60
tcacagtete cegttgeege egtcatgtee eggcagetgt egegggeeeg gecageeacg 120
gtgctgggcg ccatggagat ggggcgccgc atggacgcgc ccaccagegc cgcagtcacg 180
cgcgccttcc tggagcgcgg ccacaccgag atagacacgg ccttcgtgta cagcgacggc 240
cagtccgaga ccatccttgg cggcctgggg ctccggctgg gcggcagcga ctgcagagtg 300
aaaattgata ccaaggccat tccactgttt gggaactccc tgaagcctga cagtctccgg 360
ttccagctgg agacgtcact gaagcggctg cagtgtcccc gagtggacct cttctacctg 420
catatgccag accacagcac cccggtggaa gagacactgc gtgcctgcca ccagctgcac 480
caggagggca agttcatgga gcttggcctc tccaactatg cagcctggga agtggccgag 540
atotgtacco totgcaagag caacggotgg atootgcoca otgtgtacca gggcatgtac 600
aatgccatca cccggcaggt ggaaacggag ctcttcccct gcctcaggca ctttggactg 660
aggttctatg ccttcaaccc tctggctggg ggcctgctga ccggcaagta caagtatgag 720
gacaaggatg ggaaacagcc tgtgggccgc ttctttggga atacctgggc agagatgtac 780
 aggaatcgct actggaagga gcaccacttt gagggcattg ccctggtgga gaaggccctg 840
 caggoogogt atggogocag ogcococago atgacotogg coaccotocg gtggatgtac 900
 caccactcac agetgeaggg tgeccaeggg gaegeggtea teetgggeat gtecageetg 960
 gagcagctgg agcagaactt ggcagcggca gaggaagggc ccctggagcc ggctgtcgtg 1020
 gacgcettta atcaageetg geatttggtt geteacgaat gteecaacta etteegetag 1080
 geceategtt teteaggetg eccaaggete ttetgtaaca tettttgtta etcacatttt 1140
 ctttaattta gaactgcctc agtaaattct tagggatgga agtntttgga caaaaaccta 1200
 atagaagagt caccaccaaa tgaagaataa aactcccaaa aaaaaaa
 <210> 101
 <211> 1450
 <212> DNA
 <213> Homo sapiens
 <223> Genbank Accession No. M12963
```

```
<400> 101
gatgcacttg agcagggaag aaatccacaa ggactcacca gtctcctggt ctgcagagaa 60
gacagaatca acatgagcac agcaggaaaa gtaatcaaat gcaaagcagc tgtgctatgg 120
gagttaaaga aaccetttte cattgaggag gtggaggttg cacctectaa ggcccatgaa 180
gttcgtatta agatggtggc tgtaggaatc tgtggcacag atgaccacgt ggttagtggt 240
accatggtga ccccacttcc tgtgatttta ggccatgagg cagccggcat cgtggagagt 300
gttggagaag gggtgactac agtcaaacca ggtgataaag tcatcccact cgctattcct 360
cagtgtggaa aatgcagaat ttgtaaaaac ccggagagca actactgctt gaaaaacgat 420
gtaagcaatc ctcaggggac cctgcaggat ggcaccagca ggttcacctg caggaggaag 480
cccatccacc acttccttgg catcagcacc ttctcacagt acacagtggt ggatgaaaat 540
gcagtagcca aaattgatgc agcctcgcct ctagagaaag tctgtctcat tggctgtgga 600
ttttcaactg gttatgggtc tgcagtcaat gttgccaagg tcaccccagg ctctacctgt 660
gctgtgtttg gcctgggagg ggtcggccta tctgctatta tgggctgtaa agcagctggg 720
gcagccagaa tcattgcggt ggacatcaac aaggacaaat ttgcaaaggc caaagagttg 780
ggtgccactg aatgcatcaa ccctcaagac tacaagaaac ccatccagga ggtgctaaag 840
gaaatgactg atggaggtgt ggatttttca tttgaagtca tcggtcggct tgacaccatg 900
atggcttccc tgttatgttg tcatgaggca tgtggcacaa gtgtcatcgt aggggtacct 960
cctgattccc aaaacctctc aatgaaccct atgctgctac tgactggacg tacctggaag 1020
ggagctattc ttggtggctt taaaagtaaa gaatgtgtcc caaaacttgt ggctgatttt 1080
atggctaaga agttttcatt ggatgcatta ataacccatg ttttaccttt tgaaaaaata 1140
aatgaaggat ttgacctgct tcactctggg aaaagtatcc gtaccattct gatgttttga 1200
gacaatacag atgttttccc ttgtggcagt cttcagcctc ctctacccta catgatctgg 1260
agcaacagct gggaaatatc attaattctg ctcatcacag attttatcaa taaattacat 1320
ttgggggctt tccaaagaaa tggaaattga tgtaaaatta tttttcaagc aaatgtttaa 1380
aatccaaatg agaactaaat aaagtgttga acatcagctg gggaattgaa gccaataaac 1440
cttccttctt
<210> 102
<211> 38059
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. K02402
<400> 102
gtatatctag aaaaccccat tgtctcattc caaaatcacc ttaagatgga taggcaactt 60
cagcaaagtc tcaggataac aaaatcaatg tgcaaaaatc acaggcattc ttatacacca 120
atagcagaca aacagacagc caaatcatga gtgaactccc attcacaatt gcttcaaaga 180
gaataaaata cctaggaatc ctacttacaa gggatgtgaa ggacctcttc aaggagaact 240
acaaaccact gctcaatgaa ataaaagagg atacaaacaa atggaagaac attacatgct 300
catgggtagg aagaatcaat atcatgaaaa tggccataat gcccaaggta atttatagat 360
tcaatgccat ccccatcaag ctaccaatga ctttcttcac agaattggaa aaaactactt 420
taaagttcat atggaaccaa aaaagagccc gcatcgccaa gtcaatccta agccaaaaga 480
acaaagetgg aggeateatg ctacetgact teaaactata etacaagget acagtaacca 540
aaacagcatg gtactggtac caaaacagag atacagacca atggaacaga acagagccct 600
caqaaataat gccacatatc tacaactatc tgatctttga aaaacctgac aaaaacaaga 660
aatggggaaa ggaatcccta attaataaat ggtgctggga aaactggcta gccatatgta 720
gaaagetgaa aetggateee tteettatae ettatacaaa aattaattea agatggatta 780
aagacttcat tgttagacct aaaaccataa aaaccctaga agaaaaccta ggcaatacca 840
ttcaggacat aggcatgggc ttggacttca tgtctaaaac accaaaagca atggcaacaa 900
aagccaaaat tgacaaatgg gatcaaatga aactaaagag cttctgcaca gcaaaagaaa 960
ctaccatcag agtgaacagg caacctaaag aatgggagaa aatttttgca atctactcat 1020
ctgtccaagg gctaatatct agaatctaaa atgaactcaa acaaatttac agaaaaaaac 1080
aaacaacccc atcaacaagt gggtgaagga tatgaacaga cacttctcaa aagaagacat 1140
ttatgcagcc aacagacaca tgaaaaaatg ctcagcatca ccggccatca gagaaatgca 1200
aatcaaaacc acaatgagat accatctcac acaagttaga atggcgatca tcaaaaactc 1260
aggaagcaac aggtgctgga gaggatgtgg agaaatagga acactttgac actgttggtg 1320
ggactgtaaa ctagttcaac cattgtggaa gtcagtgtgg cgattcctca gggatctaga 1380
cctagaaata ccatctgacc cagccatccc attattgggt atataccaaa gtattataaa 1440
tcatgctgct ataaagacac atgcacacgt atgtttattg cggcactttt cacaatagca 1500
```

atgacttgga accaacccaa atgtccaaca atgatagact ggattaagaa aatgtggcac 1560 atatacacct aggaatacta ggcagccata aaaagaaaat gagttcatgt cctttgtagg 1620 gcatggatga agctagaaac catcattctc agcaaactat cgcaaggaca aaaaaccaaa 1680 caccgcatgt tctcactcat aggtgggaac tgaacaatga gaacacttgg acacaggaag 1740 gggatatacc taatgctaaa tgacgagtta atgggtacag cacaccaaca tggcacatgt 1860 atacatatgt aacaaacctg ctcgttgtgc acatgtaccc taaaacttaa agtataataa 1920 taaaaaaaag atcattctaa aatttataca agcccttaga acagttaaaa atatcttacc 1980 aaaagaagaa taaagttgga ggaatcactc tacctaatat aaagtcttac tacatagcta 2040 cagtaattat gacagtgtta tattggcaga gggataaata catcaatggc acaaagaata 2100 gatagagaaa ctggaagtag acccaaaaca atatggttaa ctgacttacg aaaaaatttc 2160 agaagccatt cagtcgagga aggatagggt ggtattgttg ttttttgttt taacaaattg 2220 tgctggataa attggacata cctatggaaa aaaaaatgaa gtttgaccta aacatcatac 2280 tttacacaaa tattaactca aaatggagca tgggcataaa tctaaaactt caaactgtaa 2340 aacatttaga aaaaaatagg aaaaaaacta tcaggatcta gtgttagtgg aagagttcta 2400 aatgtgatcc ataaaacaaa aacaaataaa ctggactaca tcaaaactaa aaaattctac 2460 tctgtgaaag acctaattaa gaggacaaaa gacaagctac aggctggaga caatatattt 2520 aatccacgta tctatgaaag gattcatatc tagaatatat aaacaacctt aagaatctga 2580 cagtaaaaaa aaaaaatcag actaactgga ccactcatac attgctgatg gaaatgtaaa 2640 gtggtacagc cattttggta aacatcattg ctctctgaca aagatacggt gggtcccact 2700 gatgaactgt gctgccacag taaatgtagc cactatgcct atctccattc tgaagatgtg 2760 tcacttcctg tttcagactc aaatcagcca cagtggcaga agcccacgaa atcagaggtg 2820 aaatttaata atgaccactg cccattctct tcacttgtcc caagaggcca ttggaaatag 2880 tccaaagacc cattgaggga gatggacatt atttcccaga agtaaataca gctcagcttg 2940 tactttggta caactaatcg accttaccac tttcacaatc tgctagcaaa ggttatgcag 3000 cgcgtgaaca tgatcatggc agaatcacca ggcctcatca ccatctgcct tttaggatat 3060 ctactcagtg ctgaatgtac aggtttgttt ccttttttaa aatacattga gtatgcttgc 3120 cttttagata tagaaatatc tgatgctgtc ttcttcacta aattttgatt acatgatttg 3180 acaqcaatat tgaagagtct aacagccagc acgcaggttg gtaagtactg gttctttgtt 3240 agctaggttt tettettett catttttaaa actaaataga tegacaatge ttatgatgca 3300 tttatgttta ataaacactg ttcagttcat gatttggtca tgtaattcct gttagaaaac 3360 attcatctcc ttggtttaaa aaaattaaaa gtgggaaaac aaagaaatag cagaatatag 3420 tgaaaaaaaa taaccacatt atttttgttt ggacttacca ctttgaaatc aaaatgggaa 3480 acaaaagcac aaacaatggc cttatttaca caaaaagtct gattttaaga tatatgacat 3540 ttcaaggttt cagaagtatg taatgaggtg tgtctctaat tttttaaatt atatatcttc 3600 aatttaaagt tttagttaaa acataaagat taacctttca ttagcaagct gttagttatc 3660 accaaagctt ttcatggatt aggaaaaaat cattttgtct ctatgtcaaa catcttggag 3720 tttgattatt tggggaaaca caatactcag ttgagttccc taggggagaa aagcaagctt 3780 aagaattgac ataaagagta ggaagttagc taatgcaaca tatatcactt tgttttttca 3840 caactacagt gactttatgt atttcccaga ggaaggcata cagggaagaa attatcccat 3900 ttggacaaac agcatgttct cacaggaagc atttatcaca cttacttgtc aactttctag 3960 aatcaaatct agtagctgac agtaccagga tcaggggtgc caaccctaag caccccaga 4020 aagetgactg geeetgtggt teccaeteca gacatgatgt cagetgtgaa atcagactga 4080 aatgctgaaa taacgataaa aaaaaataca gaggttaaac tagcaaagtg agtaaagtca 4140 agggataaag aaaatttgtt ggaaaactca caaagcagga cataaagcaa ggccattaga 4200 tatatctcat tagtgtgaca tctgggagga caaagcatcc aaaccctttc ttctatataa 4260 gtggtgagat gatgaaggtt gtaagaggct tctgccccct tgaagacttc agatgctggg 4320 gaaaggatag ataagaataa ggatgaacct ggcttttgga gcctgggaaa taatgactag 4380 cgataaacct gaagggaagt taagtatacg atccccagat aatactaagg agaaaggcaa 4440 tgtgattctg cagccattgt agccagagat aataagccct tgaggaaggg gccaggggaa 4500 tttttctaag gatagacagt attaatgcag cactctcttc tgctattaaa ctctcattgg 4560 cttctaaaag gagtttcggt gagtgatttg ctgagatgtt tgcattttca tgctgctgcc 4620 tttaggttat tattgcaaca gtttggaatt ttgaaattaa aacagttctg taaaaccagt 4680 ttagttttgt aaagtgtatg catcaaagat gtccttcatt cagacattac tgagttacaa 4740 ctacggtgcc aggtactgtg tcagggtact aggggtatgg ggataaacca gactccctct 4800 ttgatctaaa gcagcatgag gccaggtgag aggtttcaat atatgtgata aaatgtgcac 4860 taggtactaa gggatcatag agaaaggaac acattaaatg gggaaacaat tgatagagag 4920 agaatatttt catctgggtc ttaaaagatg agtaggcgtt ctctctcttt aaatgtctga 4980 tataagggca ttttatgcaa agaaggatca ctcgtgcaaa gactcagctt tgcaagaacg 5040 tgaggtattt caggagtttt gtatggttcc atatggacta tgacaagtga gacaggtaaa 5100 ctaggcagag ctggtcatca gataatgaag tcattaacct aaggagattg gacaataaaa 5160

.						
					gatttaggat	
gcccagtctg	gcaacacgct	aatgaaatga	tagtggggga	gggggccgta	ccaagactag	5280
gagagagcag	tcctgagact	attgcaatta	tctgcgggag	acataaaggc	tagaacctga	5340
					gaagtggtat	
					ttgtgtttga	
					gactgccaga	
gtctgaatcc	tgaatgtttt	agtatgttac	cttgcaaagc	ccttagcctc	tatgaatcta	5580
tcttcctcat	ttataaaaat	aagatgacag	tgcctatctc	gtgggacttt	tgtgaggatg	5640
					aagcattaca	
					aaagataatc	
					ttctgtaaac	
					gatacctagt	
					tcagggccgg	
actagactgt	ggtaagcaag	gcctgtaggg	cataaatata	cttgtatgcc	ccgagaagtg	6000
aggacctctt	aaatattgtg	ccctacatgc	cttgtttggt	tcactcttgt	cccagcccta	6060
					gaaccctgga	
					tggataacag	
					tttcctaaaa	
					aactcaaaat	
					tgtgattaag	
gaaggaaaag	agctacacag	aagttattaa	agagctaaag	agaattgaga	aatttaaaac	6420
agaagaaagt	agggccaaca	tgaaaggagt	agggagaaaa	agagataacc	agcatattgt	6480
					gttaaaccta	
					tcacaggtct	
					aagtctgttt	
				_	acagattcaa	
					actgaacatg	
tacagactct	tttatctttc	attattccct	aaacaataca	gcataacaac	tatttacata	6840
gcatttacat	tgtattagct	attaagagaa	acctagagat	gatttaaagt	acaaaggagg	6900
					gagcatccac	
					aggaacgact	
					aatgagttgc	
					catctgcatt	
					gaaggcagat	
ggctgctcca	atttaggggc	taggattgca	gggtgggcac	agcattgcaa	acgagtgaag	7260
gaaattgaga	aatatggcca	atgaagagtt	gaagagaggc	ctggcatggt	ggctcacacc	7320
					ggagttcgac	
					tacaaaaatt	
					ggcaggagaa	
					gcactccagc	
					agtctaggct	
					aagcagggat	
gtcaagggac	tagaacactc	cataaagtga	acagctgcaa	tgaaaataag	ggaagaaagt	7740
ttagttcatc	teegtttett	tcctttcctt	tttactttcc	tttctcttcc	tttttggagt	7800
tagtcaggaa	gtagtcccaa	ataccccaga	aagttcatct	tataaqccct	tggtcctctt	7860
					ggcaacttct	
					tgaaaacaca	
					attctgagaa	
					acctaaacct	
					tcctaggctc	
ctgggctgca	aacctgtaca	gcatgtgact	gtactgaaca	ctgtaggcaa	tggtaacagt	8220
ggtatttgtg	tatctaaaca	tagaaaaggt	acaqtqaaaa	tacagtatta	taaccttatg	8280
					agcaaatgat	
					tgtatatatg	
					tatgtacaca	
					tatatgtata	
					gagagaga	
gagaggagag	gagaggaagg	agggagggaa	ggagaaatat	gattcagata	gagacatcta	8640
tcctccagag	ttcaggagtg	tctcttcaga	ctaggtagat	gtagcttaaa	aaaaacatat	8700
					ccaaccaaag	
					taacatctag	
J-JJJ4						

						0000
				aggcttctgt		
				cagcccagcc		
				tgacaaagtg		
				caaatatgat		
				gaattttaat		
				ctccatgccc		
ttggctttca	gattatttgg	attaaaaaca	aagactttct	taagagatgt	aaaattttca	9240
tgatgttttc	ttttttgcta	aaactaaaga	attattcttt	tacatttcag	tttttcttga	9300
tcatgaaaac	gccaacaaaa	ttctgaatcg	gccaaagagg	tataattcag	gtaaattgga	9360
agagtttgtt	caagggaacc	ttgagagaga	atgtatggaa	gaaaagtgta	gttttgaaga	9420
agcacqaqaa	gtttttgaaa	acactgaaag	aacagtgagt	atttccacat	aatacccttc	9480
agatgcagag	catagaatag	aaaatcttta	aaaagacact	tctctttaaa	attttaaagc	9540
				ggaaatcaat		
				agactgaatt		
tatottoota	agcaattcat	tttatcctct	agctaatata	tgaaacatat	gagaattatg	9720
tagattttt	ctctgcataa	atagataata	tattaaactt	tgtcaaaagg	actcagaaag	9780
				tacagggtta		
				ttcacaaaga		
accesacea	actacasaca	agecedacee	atgattgtgt	cttagaacct	aatgaaagtt	9960
tacattacta	agtasaatca	gaaactacta	attgacttaa	atgtttatag	cttcaaagtc	10020
ataataatta	tastagagas	gagaccgctg	catgattata	cttccccacc	ctccccatta	10080
cccccacca	stactatast	gaageceeee	tacgacegee	ggctccagcc	accetageet	10140
tastatasat	tattagagag	tetaggaate	atagaaattt	ggaggcttta	teteectet	10210
teetgteaet	restations	cctaggaatg	gagatasata	cctcacctcc	tteggetgtt	10260
tetettattt	ggetgtteee	additioning	gggctgactc	tatattaata	attanagata	10200
tgcccaaatg	ttaccatett	aatgaggeet	accitcacca	tctattaata	tttaaacceg	10320
ccccagtage	cttaccactc	tagacacctg	tacagaactc	cactctactt	tttaatayay	10360
				ctatttatca		
				ttcaattgtt		
atatattcct	agcacctaga	acagtatctg	gaaaagaggt	actcagtaaa	tatttatcaa	10560
atgaattgac	caaaagaagg	aaaactcaaa	actttaatga	caactaactt	taaagctaca	10620
				tttcaaagat		
aagactatct	gcataaataa	aaagaaatta	atccagacaa	caaattcacc	aacttccatc	10740
				gagacactac		
tttactctca	taactcataa	ctcctccact	tttgttttta	aatcatgaga	gaaaaagagt	10860
tgactctgtt	atattgtttt	atctaccttt	ccttgatctt	agaaacgaat	actaccatac	10920
cagcttctac	tgaggtgccc	cctaaagtta	gtccaaatag	gtctttgcaa	tctccattcc	10980
cgcagaattt	agaactttga	atcacatgat	ttatttctaa	aagtaaatcc	atgccgattt	11040
tccccaccaa	aaaattcctg	actattaaac	tcctacaatc	ccttcattgc	tcactcccca	11100
ccccaggat	catattttaa	agttgggccc	ttgccttttg	ggtcacatag	gtacactgtt	11160
tgctatacca	caggtatagc	tatctggaaa	acatggaggg	tattattctg	ttactactgc	11220
ttcgtcaacc	aaaaaataaa	acaaaacaag	aacaaaaaag	aaacaaactc	cctgcctctt	11280
ttcacttgca	gtcaaggttc	ctaaccacta	caaaattagc	ctatgtttct	tcttgcacat	11340
agtagaaacc	caagcttctc	actgctgtgc	tattctgtac	catcaactca	tcacataaag	11400
agcctggttg	aagaatgatt	gtccaaccac	attactagca	tctgtcaaga	ctttccagtt	11460
tacaaaaggc	ctatcacatt	taaccctcac	accatccttg	tgaccaaagc	attattaact	11520
ccattttaca	ggagagtaaa	ctgaagctta	gggaagttaa	aagaactgcc	aaaggtctcc	11580
cagttgggga	gtcatgaagc	ccagaagaga	agccaaattc	tetgetgete	aaccccttgc	11640
tttcactatt	acacctcagg	gccttcaaat	ctaaatgcag	ttattcatta	aacaggaacc	11700
tggtagtctt	aaacaggaat	ctctcacttg	gtaagatctt	gtctcttgtt	gtatttgacc	11760
ccaactqtct	atggctttgc	ctgaacccaa	agtacacaca	gcctagaaac	caaaggagaa	11820
ccaaatgtgg	gataaaatga	cactcatttt	aacgacatgt	ctcagcaaat	gagttcctgt	11880
gtagctggct	gaaagcccag	accetttcag	taaaacatcc	tgaataattc	acatttgttg	11940
gtctataata	taaagggcaa	atgtagctca	tttttagacc	agttctgaac	atcaatagta	12000
acaaaccaga	gataaccgat	tttgttttca	tagaattgga	acaaattaga	gtatctgtgc	12060
aaaagcatat	cagatctagg	agcagaggg	acaaggteta	atttttaaat	aagcaaattt	·12120
tccagggagg	gactacttat	qataaaqqaa	tattagtctc	ttagtcaacg	gaacctggat	12180
acacccttct	gacagagaag	agggagaata	ggcaggaatc	tacacaccag	atgtcaagga	12240
gatttgcttt	aaaatacgac	tgataattag	aaatttetea	gtttccccct	tttccctcat	12300
tetttgatte	ttattattat	ctttatctct	tactectite	tttctcatat	attgagtctt	12360
acadatcaac	ctcccatttt	tttcttcagg	ggtathtttc	tagttcaaag	tgcctaccat	12420
ctcccttctc	attetattea	teettetete	ccaaagetee	tttagaagtg	tggattaagg	12480
cccccccg	geeceacea		Journage Coo		JJ	

						10540
cagagcacta	agaaaccaga	cttaaagatt	cccttctcat	tetgaetttt	ctcctttcac	12540
ctattccttc	ctcctgtttt	cttaccatca	gtgtcttcaa	aggctttcaa	gtacacggta	12600
aatgcagaaa	cttcaagaaa	ggcagaatgg	aaacataacc	aatgcataca	taaataaagc	12660
acactgtaga	atctttttaa	attctgtatg	atatatcgaa	tgctgtctct	cacattacct	12720
agaccatttg	aaaccgaatt	tgtaaaacat	agactatctt	taagtagtaa	cagatgcttc	12780
tgacatgttt	tctattqtct	tgaaccatta	ctgcatatga	tacatcaaaq	ttaagtgaca	12840
atacaacaaa	gcagattcat	ttactcccta	cctaggccgt	cagttcctaa	agtggaaacg	12900
ccatatatta	tetageteag	tttactctac	aagacctgca	atagageett	gtgtgacata	12960
gagataatta	ttattanaa	aattaaattt	gagacocgea	taactctccc	atcattctat	13020
gagataatat	tracestast	tataaaactc	tastastata	atacatttat	atacaaaaac	13080
aaggaaggat	tgaaaateet	teteaceetg	cyclyacaca	gtaccttcct	acacaaaaac	12140
greerrere	CECEFCCCE	ggattgcata	aactatgtac	atgeetteet	caggggcact	13240
tttctaggac	agtgtcagcc	taaggatett	rgtttgggtg	gettttagaa	actcaggaag	13200
acaggagcat	catatgccta	taggcagctg	gcttccaggt	cagtagtttt	gctctgaccc	13260
taaaatcaga	ctcccatccc	aatgagtatc	tacaggggag	gaccgggcat	tctaagcagt	13320
ttacgtgcca	attcaatttc	ttaacctatc	tcaaagatgg	agatcagtgt	gagtccaatc	13380
catgtttaaa	tggcggcagt	tgcaaggatg	acattaattc	ctatgaatgt	tggtgtccct	13440
ttggatttga	aggaaagaac	tgtgaattag	gtaagtaact	attttttgaa	tactcatggt	13500
tcaaagtttc	cctctgaaac	aagttgaaac	tggaaaatgc	aatattggtg	tatcataatt	13560
tttcttaaaa	acataccttt	gatgcttata	aacatttcat	ttgtagtgat	agttttcagg	13620
atatgagttc	aagaagctac	attaaaatca	ataacaatat	ttggtaacta	atattaagta	13680
ataatgatgt	tecgaeteae	cttattaatc	tttaatacaa	ccqtatqtqq	ttagtactat	13740
cattatacac	attotatoca	gatgagaaaa	ccccaactcc	aacggccaaa	aattacagag	13800
acetacgege	tttagagaga	acttagactt	cagtgtgacc	aaaacccatq	cttctaacta	13860
gtataaacgg	andtonage	asschassee	cagagagatto	aaatcatgac	taaattgcta	13920
tassastass	tanceragaga	ttaagtagag	andragacta	taactaagae	attatcccat	13980
tcaacatagg	tgaaagtcaa	ctaagtacag	attestates	tanacttott	gagagatte	14040
ataatgggaa	ttetecacat	gtacaaacca	therebes	taaacttgtt	gacaacattc	14100
aaagctcatc	cctgaatttg	actatattga	ttacatcgaa	aatgttacat	agcaacctta	14160
gaatccttgt	gtaccttttc	ttctcaaagc	ctagattatt	tetttteeg	acgttttcag	14160
taattggagc	agtaaacccc	agtgtccctt	acctacttgt	ttattacctc	cagatgcaat	14220
attactggta	ctgtgattga	gaaacgcaca	cagtgctaat	gaggaattca	ctttctactc	14280
tgacactctg	gaagaataga	gatgcaatcc	taaggaagaa	tttaacacca	caggctacat	14340
gactaaggat	aaagagtaga	aaattagcag	gactctatta	accgattaca	gcaatccacc	14400
tgacagatga	aaaaggcatg	aaatgaaatg	aaatgtagca	gctacactcg	tcctattgag	14460
aaaggaaaaa	agtcacctgt	aatgttgttc	agaaatcctt	tcagtactaa	aaaattcatt	14520
gaccatcttc	ctttagtctc	gaaaatttct	tagaaggtaa	aaaaaggaaa	aggtgacagg	14580
gcaaagacat	ttgaaaagaa	agaaaagagt	gaatgaactt	gcacacctgg	cttggactcc	14640
ccattcccct	taggtttcca	ttataaaaa	caaactaatq	cctgggttac	ctttcttgag	14700
agtgtgttaa	ttgattcaat	atctctgaag	toctactttc	atctgaaagg	ttataatttg	14760
agagagaaa	ttacctggat	aaatttgatc	ttoctattat	ggaaacctct	agaaatcctt	14820
ggagtagtta	ctcattatca	acttaaataa	tatageeggt	ggaggtgagg	gaatgagtaa	14880
ggagcagcca	ctcactacca	actosacoc	acattattat	aaactataat	tgaaaacata	14940
cicaactage	cccagctaca	222242222	tactttass	adaccasada	aatagccctg	15000
aatatettta	cctagictaa	aaaacaaaya	goodagagt	tactacatat	gtggctgtgt	15060
aggaatgtaa	atataagcac	adadeceea	taacagagee	tecategie	catattaga	15120
tecacecage	aaaaatgeta	agreracaae	Lyacacaacc	cogacacccc	catgttccca	15120
cattttggtt	tggtcaaggc	tgtgeagttg	tactgcaggc	caccaccacc	cctggcctct	15240
acagtatatt	gatetgacee	accaatctga	tcaaggttta	gaaaaacacc	ttcagcccag	15240
ttagctcaca	aacaaaatga	gaattcccac	aaattgctct	ttatctcaga	caacagagga	12300
aagctacagc	aaaagcataa	acaaattacc	atttaagttt	gttgcttcaa	attaaagact	15360
aattgcaaca	gctactagat	agcacagttt	atggggcatc	tcggccccaa	gtcttttgtc	15420
ttataaggtc	ttgaaaaaaa	gaaaggagat	tttcatcaat	aagagttttt	tgttatcttt	15480
ttcccttgtt	catcaggccc	ttcactgcga	gagagaggtg	taaacgttca	gggcatgcat	15540
tctagttaaa	gaatattaat	tggctattgg	gtccctttgg	ttagaataaa	gacctctgta	15600
tgatgtccct	agctgtacat	caaacccaaa	tatctctcag	ataaatgaag	gtctgtaaga	15660
atttggtcat	tectgtetet	tctaaagagt	aacagaggca	ttttcccgca	gtaaagtaga	15720
atggaaagaa	aacaaaaatc	acaagcctat	aaacaccttc	ttcaattttc	ccagcatgtc	15780
acagacacta	ctgtcttatt	tactacqtat	ttctgaggag	taaaaaaaqq	aaatatgttg	15840
agtttaggtg	aadacacadca	tattttgtgg	taaacttott	aaataaaaca	tcttttgtcc	15900
aagetttagt	tatcacacaa	gtggatatat	caggaaatat	aaaggcagaa	taaactaaag	15960
cadaacatac	taacatttot	agtaggrate	aagggaatta	gaaagtgtt	gtgttaacat	16020
adaddacacac	acaacacata	ctttgagatg	ttetteaaca	gatattetag	gcactgagac	16080
22~2224299	accayacy	accestates	accacactac	ctgacacata	aatgctcagt	16140
decereggg	uccayayaya	Josephon	accacageae	2032240404		

aattgataaa tgagtcccat tctaactgtt ccttagccct gctctatgga actctcccct 16200 gaattccttg tgccattatt ttatttctgg aatcttcagc cttttagctg agggcaaaag 16260 attgctgatt aggaagcaat atttcccacc tcctgcgcaa aacaagccaa agatcaacag 16320 cagcagcaac atactgagcc ctaaagggca atgacaaatg tggagaatga tacagaggtc 16380 tggttacttc ttagccaatg acacagaatc acaattgaga aaacacagag tttattcatt 16440 cccattgtgc atgccctgga caaaccaagc tgcacctttc gtaacttatc acaatctcat 16500 attgacggaa cactttctac aggtaatgtt tgatttggct gaacacttta gcattgcttc 16560 gtagcaacaa aatgatagct agtaacagaa aaagatccag ggatattacc actgttagtg 16620 aggagaaagg ccttttaatt aattaattaa ttaattaata ggaccaagtg ccatcttttt 16680 ggatcatgec cttagtggat tattggtagc aaaggttaaa getcaagetg gtteetttgt 16740 ccccctggca acagttgatt tgcctccctt atctcctgaa gtaccgtaag gactaagagc 16800 caattattac atttggctat gctagcatat gtaaaataga gtttaaaagt ttagattcat 16860 cactcaaaaa ttcatattct ccaaaaccat acagtcactc tgttagcctg tgttccccca 16920 gaaaaaaagt cacaagctta ttattaacat gtgcaatcca ggggcaagag aaaggaactg 16980 aaqatqaqqc aqaaaqqaaa aqaaaqccaa taaqaqqatq agttatcaaa ctactcgttt 17040 cttaacagca actgattgct taacttcctg ggactgtctc caataagtca aattggcctc 17100 aggttagtcc acctgagtgg gaagaagcgg tgaaagaatt tgtctgtcag tatctgtctc 17160 tcattggtta gaagttcgac ttatggggaa ttaactccct cacatttcct agttggatag 17220 cttgggtacc agaggcatat ggcatccatg ctcagcatga acagggaagc ttcaaggcaa 17280 aagacacata gtgcagctat gagccaaggc aattcaagga tacacccata ggaggctggt 17340 tgacatccac ccagagctaa tcaccaccat gctggaaaaa gacacaggtg aagctgagaa 17400 gaatgaaggt ggtgcatagg aggtatctaa tacagtcact cattttcaaa ctttccatgt 17460 tatgattgca ctgaccactg aggatttcta ttgaaagttt tactgttgtc aaacacgtac 17520 acaaggggaa aggtgtctta cattgtttat gttcctgtgc tgctctagaa acagaaatag 17580 gctcaagagc agagcctgtt tttcttaatt cagcaggtct aagctaacaa gtcctgaaac 17640 atggtacttc ctgttattgg tattgcatag gagaaacaaa gggaaagcac agtaattaga 17700 aaatacaaac aagatggcag gaataagcca aaaatatcag gaaacacaat tattgtgaat 17760 tgggattaaa ctaatctatt aataatgaca actttcagct tggagttaaa aatttaattg 17820 tatactgtta acgaaagtga tacctaaaat aaaattacac tgggaggcca aaatgaaggg 17880 atgtgaaaag aactatcagg taaaaactaa caaaaagaaa ctagcaaagc aatcttaata 17940 tcagacaaaa tagaatccaa gaggaaaatc atttcaaaag acaagagatt ttttttatta 18000 ataaggggaa ttgcatagga gagtaaagaa aatgtgggcc actggaatgc ttagcactaa 18060 tqacatattq qtctttqqtc ttcaqttacc ttacaggacc ctatttcatt ctcttatgtt 18120 tgatatgtaa ccacctcagc cagcttcaag ttgctttttg gccctaatgg acttcctagc 18180 actataattt ctttttttt aaatgtttta ttttaggttt aggggtacat gtgaaggttt 18240 gttacataga taaacatgtg tcacaggggt ttgttgtaca tattattaca tgacgcagat 18300 attragetra gtaccaaata gtgatetttt etgeteetet geeteateee acceteetee 18360 ctcaagtaga ctccagtatc tgttgtttcc ttctttgtgt ttataagttc ttaacactta 18420 getecegett acaagtgaga acctgeagta tttgattttt gtteetaege tagttteeta 18480 aggatgatag cctccagctc cattcatatt cccacaaaag acataatctc cttctttct 18540 atggctgcat aatattccat ggtatatatg aaccacattt tctttatcca gtctgtcatt 18600 gatgggcatt taggttgatt ccatgtctgc tattctaaca ctgtaatttc taaagacttc 18660 cagattctac ttttataggt aacctgttaa acagtctagc tctggaagcc aagcaatttc 18720 tagaataact aagcaataga aattacactt caatgcagaa aggcagtatc tacatgagat 18780 tatgaaattg cggttgcttt ttgtgttcac tgaaaaaaat aagtaaaact gtaactttca 18840 gaaaaaatga ttgtacatat agaaaaccca aagcatctaa acaattaaaa taaataagta 18900 tagaaagatt actggataca gagtcaacat acaaatatca attgtatgtc tatataccag 18960 caacgattca aaaatgattt ttataatagc attaaaaatt agacgcttag taataaatgt 19020 gagaaagatg tgcaagaact ctacataaaa aattatgaga cgttattgag aaaaattaag 19080 gaaaacctaa ataaatgaat gaataggcaa tgtttatcat taaaggatac aatatagtaa 19140 atatatcaaa tgtttactaa tggattcaat gcaataccaa agtgccagca ggcttttttg 19200 gtggtgggag gtcgggcagg attcataagc taattataaa atgcatatgg aaatgcaaag 19260 agccaaggat agccaagaca gttttgagga agaataaact tgtactactt acactaccag 19320 atgtcaagac ttattatcga gttacattta ttaagacagt gtggtactga cacaaggata 19380 gacaaataga tcagtgaaac acactagagt gctcagaagc acacctgtac atatataaag 19440 gcttgattta tgatagaggt gccagtgcag tagagaagga aattattggt gttttcaata 19500 aaaagtgata ggtcaattag atattcatat ggcatgaagt atgaaacaat aacaatttat 19560 attcataact tgcagaaagc aaaaatttct taaaatacaa aaagtgatca ccataaagga 19620 aaagattgat aaactggact atattaaaac taaggactcc tgttcagcaa aagacactac 19680 ttcgactgaa aagacaagtc acagagtgag acaagatatc tgcaatacag atacctaata 19740 actgaacccc atacagtgat ggtgggaatt taagttcgta caatcatttt agaaaattgc 19800

•					,	
ttggcagtat	ctactagatc	tgaacatgtg	atccagtaat	tacactcata	attataagcc	19860
					tacactatta	
					atgaataaat	
aaaagctgta	atagtaatac	agtggaatac	tacacagcaa	tgtaaatgaa	ctactgctgt	20040
					agacgagtac	
atattgcgaa	cttctgttta	taattcaaga	actggcaaga	actgtttact	gtgttagaag	20160
tccaggtaat	ggtaacctat	aaaaaggaaa	aagggtggaa	tgattgggag	ggggcatctt	20220
ctggggtctt	gataatgtgc	tatgtattgg	tcagtttagt	gtttaaacag	gctcatttac	20280
					acattaataa	
atagggtttt	taaacctgta	gttcataatt	tagtgaaagt	agaatatcca	aacatttagt	20400
tttaaaccaa	tcaattatag	tgctaccatc	atttttatgc	attattgaga	agtttatttt	20460
acctttcttt	ccactcttat	ttcaaggctc	caaaatttct	ctccccaacg	tatattgggg	20520
gcaacatgaa	tgccccaat	gtatatttga	cccatacatg	agtcagtagt	tccatgtact	20580
ttttagaaat	gcatgttaaa	tgatgctgtt	actgtctatt	ttgcttcttt	tagatgtaac	20640
atgtaacatt	aagaatggca	gatgcgagca	gttttgtaaa	aatagtgctg	ataacaaggt	20700
ggtttgctcc	tgtactgagg	gatatcgact	tgcagaaaac	cagaagtcct	gtgaaccagc	20760
aggtcataat	ctgaataaga	ttttttaaag	aaaatctgta	tctgaaactt	cagcatttta	20820
acaaacctac	ataattttaa	ttcctacttg	aatctgcttc	cttttgaaat	catagaaaat	20880
atcagtagct	tgaattagac	caattaattt	tctagattgc	atcatatttt	aaatataact	20940
atgtaatcat	ctacaacctg	aattctttct	gtgtccaatt	tgtccaattt	ttttctctaa	21000
					taattcatca	
					agtgataggc	
ttctagtata	aggacggtaa	gtttgaagca	tgattctatc	tgggctggct	agtttactct	21180
					tgtcagaatg	
					atatggctgt	
gaacaaaaca	atgtttccca	gtcataccaa	ccatgccacc	attttaacag	ctgattagtg	21360
tattcagaac	atctccactc	catgttcgta	tggctgttat	ctaaagatga	aagcagtaga	21420
cacttttatt	ttttgaaaaa	tttaggctct	gcagggtcaa	ttatatttga	taaatgaggg	21480
gcttttttga	agcaaactag	atataatttc	ttttgcattt	ctaaagcctg	atatcttatt	21540
					gtctcagcac	
tataccaggc	agaagaaata	aagaaagaac	cagtgccaga	tcagcttggt	caggagaccc	21660
taatcctgcg	gcactagagg	aattaaagac	acacacacag	aaatatagag	tatggagtgg	21720
					tacccacata	
					gaaataaagg	
					tcacttatgc	
					gccaggtgtt	
ccttgccctc	attctggtaa	acccacaacc	ttccagtgtg	gatatcaagg	ccatcacgag	22020
catatcacag	tgctgcagag	attttgttta	tggccagttt	tggggccagt	ttatggccag	22080
atttggaggc	ctgttcccaa	caaaccagaa	gctaggaata	tatatcctgc	aaataaaatg	22140
					ttcacataca	
					gtgtgtctgt	
gtattttaac	cttaaaaacc	taacttccag	tatagacaga	tggcatacta	gctaaaccct	22320
tacaagttct	tctatgctat	aaaagagaaa	cagaattgag	aaccacctcc	aactattaag	22380
tgttatattt	gaatatagcc	ttagctttag	cagaataagt	aggccaaact	taaaataagc	22440
ttttctgcct	tttcaatgat	aaaggtccct	tttctgtagc	cattgttgat	tgtgtacact	22500
					cttcatgata	
					tgaaggaaag	
tgataaatga	aaatgaaatg	tgaagtgact	ttgtttgact	acaaattccc	attctggtag	22680
tccccagtgt	atcaatacat	tatttttctt	tagaaaataa	accaacccaa	ggaaaaatgg	22740
					tggctaatat	
					aaatgcacct	
					gcagcagaag	
tcccatttac	caaattggaa	agttaaagtt	acaaagcatc	aatcatcaga	cttccattca	22980
					tcattagact	
ctgtaaaagt	cttaccaaat	ttgattctgg	aacacctatt	ctatttccgt	aaagatgatg	23100
aattcggagc	caaatgttct	tttcatgaag	gatttgaaaa	ctgtccatga	aaataacgca	23160
atcaaccttt	tagcttgaga	ctctattcac	tgattagatt	tttttaaata	ctgatgggcc	23220
					atgttccatt	
tgccaatgag	aaatatcagg	ttactaattt	ttcttctatt	tttctagtgc	catttccatg	23340
tggaagagtt	tctgtttcac	aaacttctaa	gctcacccgt	gctgaggctg	tttttcctga	23400
tgtggactat	gtaaattcta	ctgaagctga	aaccattttg	gataacatca	ctcaaagcac	23460

					caggtcaatt	
cccttggcag	gtactttata	ctgatggtgt	gtcaaaactg	gagctcagct	ggcaagacac	23580
aggccaggtg	ggagactgag	gctattttac	tagacagacc	tattgggatg	tgagaagtat	23640
					agttggtgaa	
					aggaaacagc	
					aaaggtcgca	
					gagagttgga	
					gactcaagga	
					gtcttgatct	
					gcaaattctc	
ctgctctaca	ctagacctac	caaatcagaa	tatctagggg	gtggggccca	gcagtctgtg	24120
cgcaaacaag	cactgcaggt	gattttgatg	cacattatag	tttgaaaact	aggccaggtg	24180
cagtggctca	tgccaataat	cccagcactt	tgggagactg	agacgggagg	attgcttaaa	24240
					ttaaaaaaaa	
tacaaaaatt	agctaggtgt	gatggctccc	acctqtqctc	ccaqctattc	aggaggctga	24360
ggtgggagaa	tcacctgage	ctggaaagtc	gaggetgeag	tgaattgtga	tcacaccact	24420
					agaaaaacac	
					ataatgcact	
					tgcaaacaac	
					tacatttgta	
					tctgtgagaa	
					tccttatata	
					ttaaattaac	
					tttaagcaca	
					atagaacact	
ctattactgc	agaaatttct	attggatagc	acttataata	gtttagtgta	acttaaaact	25020
ccctagttgc	cacagtcatg	atttagtagt	aatttcatgg	atttctctac	tgaggttaga	25080
					gtgacaattt	
					ggactagctg	
totatctatc	caggattett	gagaatgcct	gccatttttc	aacataatqq	atgtaaggta	25260
ttacacatat	acctggggat	aaaaaaataa	gtataattgc	acaagcattg	tggagaatgg	25320
					tttgcttttt	
					tgtatgttcc	
					cttacctacc	
					taatattgac	
					attatgcctt	
					gttctcatgt	
					aagatcctac	
					agtaggggat	
					aagtccaaga	
					caaaaataca	
aaaaattagc	ccggcgtggt	ggcaggcgcc	tatagtccca	gctacacggg	aggctgaggc	25980
aggagaatgg	cgtgaaccgg	ggaggcggag	ctggcagtga	gccgagatcc	cgccactgca	26040
ctccagcctg	ggcgacagag	cgagactccg	tctcaaaaaa	aaaaaaaaa	aaaaagtcca	26100
agattttaaa	aaaaaaaaaa	aaaaggatgt	ctactttata	agtttagcat	tgtctccttg	26160
tcattccaga	aatgaaatgg	caaatacatt	taaatcagaa	ctaaaaaqqq	gaacagggta	26220
taaaggctca	atttagtcac	atcatttccq	tttctcaccc	accccttta	aaccagatgt	26280
ttaccaatac	attaacaato	cagatotttc	ctgaaagaaa	atttagtaac	tcaagcagac	26340
accttattt	attttaaaa	agacacact	atgagatgat	aattataatt	gttccgggag	26400
					tgcacactta	
tagitatigi	acctgttgtc	-t	caageetage	caayaccacc	tggaatgttc	20520
					tccctatttc	
atccacatga	actaagatta	ctgatgtgta	cagattcaaa	geaetttat	tcttttccaa	20040
aggcaagaag	ctgagctact	ttccagaata	gttgtgaaag	accctgtcat	acttctgcat	26700
tgtttcctcc	acaccacctc	catccagttc	cttatgaatg	gttactggtt	ttcaaaaata	26760
tgagataaat	tgagtgtata	aaagtcattt	ttagacaaaa	tgaaacagga	aatgaaagaa	26820
accagaatct	ctcctcattt	gtggatgggc	cagctccacc	atgtcatggt	taatctgcag	26880
ggaggaaata	ctagatttga	ttgcagatca	gactgcagca	aacctgctgt	gactaaggca	26940
tcaagagaaa	gcaagcaaca	gactggggct	tcagtggtga	aaacattata	tatctagctt	27000
tgaaatatga	aatactgttt	agcagtgtca	cctagaaaag	agtgtttcaa	aatgctgatg	27060
cttcataaga	acctttctct	tcagagttgg	tttctttat	ctttcaaatt	agccagggtg	27120
-					_	

					gagttcactt	
					aaagaaaagg	
					tttgtggact	
					agcccaaacc	
aaccaacaac	cactgggttg	gttacgcagg	ttgggcagca	ttgggagcaa	atgttgattg	27420
aacaaatgtt	tgtcggaatt	gttgacttaa	agagctgttc	tgtcactggg	gacagcagcg	27480
gctagatagc	cccattcagg	gagagggcat	ttgttcacct	ggccagagat	cagagcaggc	27540
taagggactg	ctgggatcct	gtccagcttt	gagaccctac	agagccatgt	tcacctagca	27600
					acctcagctt	
					gcttcccagg	
					tcctaaagcc	
					gttccggaca	
					cccagcgatg	
					atacttcagg	
					gagtttttct	
					tgcataccgc	
					tgcaacgcct	
					agcaacaccg	
					cctgccagct	
					cgaagaacta	
					aggcctcagt	
				_		
					ttagattaaa	
					ttaagttgta	
					gggaaatggt	
					cattttcccc	
					ccctgtacaa	
					taggacacat	
					tttttcctta	
					tgaaaaagcc	
					acgtgacatg	
					ttatcctcta	
					aagtgagcat	
					atctgtgggc	
					gagcaaacac	
					gaaatcgcag	
					gctgttgttc	
					ttgtagaagc	
					ggctcccatt	
agactatgac	taacaaaaat	gtttgacaga	ttataactca	gatgtcttac	tcagagcata	29460
tgccttccca	ttttccccat	tattccccaa	catgatgtct	ttaagaactt	gtccttgacc	29520
gagcagacat	ctcatacccc	aaatagctaa	tattttgata	gctatgatcc	tgaacggcca	29580
aacattccaa	aaccaagtag	tttgtaatat	ctttaatgca	aatatattt	aggccttttc	29640
cttggcaagg	atgtttggtc	aggggttggc	aaaaataatg	ctcttcagac	ttaaaagaac	29700
acaaccatat	ttcttagcca	tccaccagaa	agtagtagaa	cgctccagga	agcaagtctt	29760
					gatgtcatcc	
atcctggcct	aactagccta	ctgagctgag	agatgtccaa	tttcccccca	atacactaac	29880
cagaggagaa	ggaccgtgat	atcattgcat	gtgaattctt	aattccaatt	gcttaaacaa	29940
					ttttattgat	
					tacttacgca	
					tttgttttgt	
					tccctgcagc	
					ccctaccacc	
					actgccaccc	
					ccactcccct	
					gtgcacgtgc	
					aatgcgccac	
					ttcaggcatg	
					cttgattgcc	
					cagtgtcctg	
					tgcacttcct	
					ggagcaaaat	
222	2~222000	account	Caaacacccc	Jacyccagaa	JJ - J - L L L L L L L L L L L L L L L L	30,00

attaaatggc aaattttaaa aatgtaacaa gatgggttgc aaaagagact acagaggaaa 30840 gcaaaagttt tgtattttag tatcttccat ggcacttttc ttcctagctt ttgaacaagg 30900 ggccccacat ttttatttct cactgagccc cacaaagtat gtagccattc ctgcccggag 30960 tgaggacttt taaaacataa agattatcaa gtcttggaaa ttctgattca gtagatatat 31020 aacaggtete aaacttaatt atgtaaagaa tattetggag agetteettt tacceagtee 31080 cacccaccaa atattctgat aaattaagct tcgattagcc cccagatctg cattttataa 31140 ggatccccag atgattctac tgcaattggt ccacagacca tgcctggacc gaatttgggt 31200 gcttaggagc acaaattctg gagccgggca gacttgagtt tgcttcctag ctttaccaac 31260 tgateteagg ggagttaatg tttaceteta aaetttaget eatgeateta taaataaata 31320 tattaatatc atgtcataag gatattatgt tgtattaaat gtctttaaaa caccacaatg 31380 attagcccaa agtaaacact caataaatgt tcaaaaattt aggaaaattg ttaagactgg 31440 gttgtatgca cactggtgtt tattatatta tgtagttttt tctgtatttt tacaacattt 31500 cagaattaaa agcaacagct agaaaaagag ggaaatggcc gggtgcagtc gtcacgcctg 31560 taatcccagc actttgggag gccaaggcgg gcggatcacg aggtcgagag atcgagacca 31620 tcctggccaa catggtgaaa ccccatctct actaaaaata caaaaattaa ctgggcatgg 31680 tggcatgcgc ctgtagtccc aggagaattg cttgaacctg ggaggcggag gttgcagtga 31740 gccaagatct caccactgct ctccagcctg gtgacagggc aagactccgt caaaaaaaaa 31800 aaagagaggg agagccagag tatgaaaaag gaagtcagag ccctttaatg agtcagcttt 31860 gtaggtctcc aggtaggagg ctagtgcttc agtgtctagg acatagtagg tgttcagtaa 31920 attaaattca ggacaaaaag aacatgcccc aaggaccatc tgatatccac ttaaagtgat 31980 ggactacctc gtttcccttg tttatgaatg ggttcatgcc taagactgtg tgcactttaa 32040 tacaaqqqca qtcqttcaqa actaqtcaqq tcctqaaaaq qatttaccaa atqttqaqtg 32100 tgccctctag tgttcacact tcccagcttt cttcctataa aggtggatca aggcacttgc 32160 ttacaactgg aactgaaatc ctccaagtcg atctagacat tgagatggag aaaatattca 32220 ttgtcgactg taattatgca acgaatatcc agttgagata atggacttgc ctcttatcta 32280 ataataccca ggctcaatgc gtcactgctt tgtccacttt gcccaaaatt caagcacagc 32340 taagttgata ttttaggaca aaggcagctt actatccagc cagaggggag tagaatatgg 32400 ttaagagaga gtggaaagaa tgaatgagcc ctgctattcc tcactgcctg gatggctata 32460 agcacagece ttatggagge ettaggtett getteacaat attecagttt gaaaagggtt 32520 tgaaaagacc tcctagaaaa atcagtagtt tttctctttt gagtaacatg tagcaaaaaa 32580 aatttcatca tgtaggtaca gggaacaccc tagtaactat taatctcaag gagtcaagcc 32640 agtgtgtttc ctaatgtatc tgctgtatcc ccatgaagca aattttgcca tcagagaaac 32700 tgactcatgg ggaaaaaatc caaggacctc aaatcaccaa aagaagccat tcctcagatt 32760 tgcctaagct taagcttccc tgtctctcat tgtgtgttgc tttcaatgca gttacataaa 32820 tggctttttt gtttatgcac caaaaacact aattcatctg caaagctcac atttccagaa 32880 acattccatt tctgccagca cctagaagcc aatattttgc ctattcctgt aaccagcaca 32940 catatttatt tttttctaga tcaaatgtat tatgcagtaa gagtcttaat tttgttttca 33000 caggttgttt tgaatggtaa agttgatgca ttctgtggag gctctatcgt taatgaaaaa 33060 tggattgtaa ctgctgccca ctgtgttgaa actggtgtta aaattacagt tgtcgcaggt 33120 aaatacacag aaagaataat aatctgcagc accactagct ctttaatatg attggtacac 33180 catattttac taaggtctaa taaaattgtt gttgaataaa ttgggctaaa ggcagaaggg 33240 teataattte agaaceeacg tegeacegte etecaageat ceatagttet titgatatae 33300 ccctattatc actcatttca gtgaggtaca attagttctt gatgtagcca tttccatacc 33360 agaaggcctt cccaaaaatc agtgtcatgt caccgatect tttatctctg gtgcttggca 33420 caacctgtag caggtcctca gaaaacaaac atttgaatta atggccaaat gagtttgtgc 33480 tcaaaaaagg ggtgaggata cttgaaattt ggaaaatcta ggataattca tgactagtgg 33540 atteattate accaatgaaa ggettataac agcatgagtg aacagaacca tetetatgat 33600 agtcctgaat ggctttttgg tctgaaaaat atgcattggc tctcattaca tttaaccaaa 33660 attatcacaa tataagaatg agatctttaa cattgccaat taggtcagtg gtcccaagta 33720 gtcacttaga aaatctgtgt atgtgaaata ctgtttgtga cttaaaatga aatttatttt 33780 taataggtga acataatatt gaggagacag aacatacaga gcaaaagcga aatgtgattc 33840 gaattattcc tcaccacac tacaatgcag ctattaataa gtacaaccat gacattgccc 33900 ttctggaact ggacgaaccc ttagtgctaa acagctacgt tacacctatt tgcattgctg 33960 acaaggaata cacgaacatc ttcctcaaat ttggatctgg ctatgtaagt ggctggggaa 34020 gagtetteca caaagggaga teagetttag ttetteagta cettagagtt ceaettgttg 34080 accgagccac atgtcttcga tctacaaagt tcaccatcta taacaacatg ttctgtgctg 34140 gettecatga aggaggtaga gatteatgte aaggagatag tggggggacce catgttactg 34200 aagtggaagg gaccagtttc ttaactggaa ttattagctg gggtgaagag tgtgcaatga 34260 aaggcaaata tggaatatat accaaggtat cccggtatgt caactggatt aaggaaaaaa 34320 caaagctcac ttaatgaaag atggatttcc aaggttaatt cattggaatt gaaaattaac 34380 agggcctctc actaactaat cactttccca tcttttgtta gatttgaata tatacattct 34440

	ctttttctct					
tagaaaatgg	aaccactaga	ggaatataat	gtgttaggaa	attacagtca	tttctaaggg	34560
cccagccctt	gacaaaattg	tgaagttaaa	ttctccactc	tgtccatcag	atactatggt	34620
	ggcaactaac					
	cttctccaac					
	actctatcac					
	taaaactcat					
gergagagge	taaaacccac	caaaaacacc	terettette	tattatta	teetteate	34000
	tccaaatccc					
	tccatggtcg					
	tacatgtcta					
agaacatagg	gatgaagtaa	ggtgcctgaa	aagtttgggg	gaaaagtttc	tttcagagag	35100
ttaagttatt	ttatatatat	aatatatata	taaaatatat	aatatacaat	ataaatatat	35160
agtgtgtgtg	tgtatgcgtg	tgtgtagaca	cacacgcata	cacacatata	atggaagcaa	35220
	taagagcttg					
	atatcattgt					
	aataataata					
	gactttgagg					
	gaagttgcct					
	tggagaaggg					
	cttttctggt					
	atcttctaga					
	tgttctggtt					
	tttgatgatg					
	cctgccccaa					
gttcttttag	tcaatatatt	tttgtcttcg	catataagta	taaataaaca	tatttttaaa	35940
tttcttggct	gggcccagtg	gctcacgcct	ataatcccag	cacttctgga	ggccaaggtg	36000
ggcggatcac	ctgaggttag	gagtttcagg	ccagcctggc	caacatggtg	aaaccctgtc	36060
	atagaacaat					
	aggcaggaga					
	atcgcaccag					
	aataaataaa					
	aacaccacat					
	gatttgatgc					
	acagtggtct					
	aataagtcac					
	aggatgctct					
	attccttcat					
	cattaaattg					
	tttgtgagtg					
agctgaatca	gaatccatgt	ttatcccaga	gtagcaatta	gtcttgcatc	gagtatcgtg	36840
aaagaaggcc	acacttaaat	aagaataatg	cctggggttt	aggttttatg	aaaaaatgaa	36900
	ttctgctttt					
gtctgcctca	gatttaagga	ggaggctaat	tcatgcatta	aacacgttac	ttcaaatttg	37020
	ggtctgtagc					
ttotttccat	agagaccacc	ccttacaaag	gcaccaatgg	gaaactggcc	tcaggactcc	37140
	cttctctgtg					
cacttettt	tgccatgggc	trasasatra	ttgaattcat	catgagggag	ctataacata	37260
ttaccacact	aaacatgtgg	ggcgtttaag	ctcactaaga	accestatet.	tragagggaaa	37320
	attctaccta					
	tagatacttt					
	aatagaactc					
	tgtttaagtg					
	gaagtactgt					
	tgaaccaaaa					
	tgcttacagt					
	actccactca					
ccaagataac	acaatgacag	ccaggactag	agctcaagtc	tcccaccctg	cactttgaaa	37860
gaataatgct	ttcaactgga	gtacattaac	tctactqtct	atatttttag	ggcagctggg	37920
gcattetgca	ttggtggcaa	tcctctcaac	aaccctqqqa	ctgaaaactg	cctggaattc	37980
	ttctctaatt					
cttggaaagc			3 - 3			38059

```
<210> 103
 <211> 1855
 <212> DNA
 <213> Homo sapiens
 <220>
 <223> Genbank Accession No. J05428
 <400> 103
 tgcattgcac caggatgtct gtgaaatgga cttcagtaat tttgctaata caactgagct 60
 tttgctttag ctctgggaat tgtggaaagg tgctggtgtg ggcagcagaa tacagccatt 120
ggatgaatat aaagacaatc ctggatgagc ttattcagag aggtcatgag gtgactgtac 180
tggcatcttc agcttccatt ctttttgatc ccaacaactc atccgctctt aaaattgaaa 240
tttatcccac atctttaact aaaactgagt tggagaattt catcatgcaa cagattaaga 300
gatggtcaga ccttccaaaa gatacatttt ggttatattt ttcacaagta caggaaatca 360
tgtcaatatt tggtgacata actagaaagt tctgtaaaga tgtagtttca aataagaaat 420
ttatgaaaaa agtacaagag tcaagatttg acgtcatttt tgcagatgct atttttccct 480
gtagtgagct gctggctgag ctatttaaca taccctttgt gtacagtctc agcttctctc 540
ctggctacac ttttgaaaag catagtggag gatttatttt ccctccttcc tacgtacctg 600
ttgttatgtc agaattaact gatcaaatga ctttcatgga gagggtaaaa aatatgatct 660
atgtgcttta ctttgacttt tggttcgaaa tatttgacat gaagaagtgg gatcagtttt 720
atagtgaagt totaggaaga cocactacgt tatotgagac aatggggaaa gotgaogtat 780
ggcttattcg aaactcctgg aattitcagt ttcctcatcc actcttacca aatgttgatt 840
ttgttggagg actccactgc aaacctgcca aacccctgcc taaggaaatg gaagactttg 900
tacagagete tggagaaaat ggtgttgtgg tgttttetet ggggteaatg gteagtaaca 960
tgacagaaga aagggccaac gtaattgcat cagccctggc ccagatccca caaaaggttc 1020
tgtggagatt tgatgggaat aaaccagata ccttaggtct caatactcgg ctgtataagt 1080
ggatacccca gaatgacctt ctaggtcatc caaagaccag agcttttata actcatggtg 1140
gagccaatgg catctacgag gcaatctacc atgggatccc tatggtgggg attccattgt 1200
ttgccgatca acctgataac attgctcaca tgaaggccag gggagcagct gttagagtgg 1260
acttcaacac aatgtcgagt acagacttgc tgaatgcatt gaagagagta attaatgatc 1320
cttcatataa agagaatgtt atgaaattat caagaattca acatgatcaa ccagtgaagc 1380
ccctggatcg agcagtcttc tggattgaat ttgtcatgcg ccacaaagga gctaaacacc 1440
ttcgggttgc agcccacgac ctcacctggt tccagtacca ctctttggat gtgattgggt 1500
tectgetggt etgtgtggca actgtgatat ttategteac aaaatgttgt etgttttgtt 1560
tctggaagtt tgctagaaaa gcaaagaagg gaaaaaatga ttagttatat ctgagatttg 1620
aagctggaaa acctgatagg tgagactact tcagtttatt ccagcaagaa agattgtgat 1680
gcaagatttc tttcttcctg agacaaaaaa aaaaaaaaaga aaaaaaaatc ttttcaaaat 1740
ttactttgtc aaataaaaat ttgtttttca gagatttacc acccagttca tggttagaaa 1800
tattttgtgg caatgaagaa aacactacgg aaaataaaaa ataagataaa gcctt
<210> 104
<211> 547
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. AI819354
ttttatgttt agtttaagaa ttttattta aaggaatttc tgtggcataa cataaggttt 60
atggtacttt tactaaaagt cacttataat gaccaaatta taacaatttt tgcaataagc 120
tctcattaaa ttttcctaaa agtagaaaaa gtacacatta tataccattt tgcacttaat 180
tacttcttta aaatctcaaa ataattcagt gtaaaatgtt agtttcaaag acaatttatg 240
ggaaattaca aagcaactac aaagttcttc ataataaatc caagataaaa gtaacttttt 300
acaggttgaa agtttttcaa aatgcctaag tggattataa atacagtttg gccatctgat 360
gaatttagag gcactttaaa aggtgtctag ttgaactact acagatagga catgtttgag 420
gaaatttaat ctttaagtct aataccagtg ttcatttctt cctgccaaaa caagaaattt 480
attggaaaaa tecatgagea geatgattag tttgatttet ttetetttt ttagagaeag 540
ggtcttg
```

```
<210> 105
<211> 2282
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. L32140
<400> 105
ccccgagtct ctgcgccttc acatagttgt cacaggacta aagcaaattg atccaggggg 60
aaacactgta gaccgtgtat ataaaaacac tctataaact gcaatgctca attcttagta 120
taactattgt tgttgtattg atatttatta gtattggtgc tcacaaaaag agtctaaatt 180
ccataagtet ttatatteag getactettt atttttgaaa acteatttte tateacettt 240
ttctatttta ctccatattg aggcctcata aatccaattt tttatttctt tcttttgtaa 300
atgtggtttc tacaaagatg aaactactaa aacttacagg ttttattttt ttcttgtttt 360
ttttgactga atccctaacc ctgcccacac aacctcggga tatagagaac ttcaatagta 420
ctcaaaaatt tatagaagat aatattgaat acatcaccat cattgcattt gctcagtatg 480
ttcaggaagc aacctttgaa gaaatggaaa agctggtgaa agacatggta gaatacaaag 540
acagatgtat ggctgacaag acgctcccag agtgttcaaa attacctaat aatgttttac 600
aggaaaaaat atgtgctatg gaggggctgc cacaaaagca taatttctca cactgctgca 660
gtaaggttga tgctcaaaga agactctgtt tcttctataa caagaaatct gatgtgggat 720
ttctgcctcc tttccctacc ctggatcccg aagagaaatg ccaggcttat gaaagtaaca 780
gagaatccct tttaaatcac tttttatatg aagttgccag aaggaaccca tttgtcttcg 840
cccctacact tctaactgtt gctgttcatt ttgaggaggt ggccaaatca tgttgtgaag 900
aacaaaacaa agtcaactgc cttcaaacaa gggcaatacc tgtcacacaa tatttaaaag 960
cattttcttc ttatcaaaaa catgtctgtg gggcactttt gaaatttgga accaaagttg 1020
tacactttat atatattgcg atactcagtc aaaaattccc caagattgaa tttaaggagc 1080
ttatttctct tgtagaagat gtttcttcca actatgatgg atgctgtgaa ggggatgttg 1140
tgcagtgcat ccgtgacacg agcaaggtta tgaaccatat ttgttcaaaa caagattcta 1200
tctccagcaa aatcaaagag tgctgtgaaa agaaaatacc agagcgcggc cagtgcataa 1260
ttaactcaaa caaagatgat agaccaaagg atttatetet aagagaagga aaatttactg 1320
acagtgaaaa tgtgtgtcaa gaacgagatg ctgacccaga caccttcttt gcgaagttta 1380
cttttgaata ctcaaggaga catccagacc tgtctatacc agagctttta agaattgttc 1440
aaatatacaa agatctcctg agaaattgct gcaacacaga aaaccctcca ggttgttacc 1500
gttacgcgga agacaaattc aatgagacaa ctgagaaaag cctcaagatg gtacaacaag 1560
aatgtaaaca tttccagaat ttggggaagg atggtttgaa ataccattac ctcatcaggc 1620
tcacgaagat agctccccaa ctctccactg aagaactggt gtctcttggc gagaaaatgg 1680
tgacagettt cactacttgc tgtacgctaa gtgaagagtt tgcctgtgtt gataatttgg 1740
cagatttagt ttttggagag ttatgtggag taaatgaaaa tcgaactatc aaccctgctg 1800
tggaccactg ctgtaaaaca aactttgcct tcagaaggcc ctgctttgag agtttgaaag 1860
ctgataaaac atatgtgcct ccacctttct ctcaagattt atttaccttt cacgcagaca 1920
tgtgtcaatc tcagaatgag gagcttcaga ggaagacaga caggtttctt gtcaacttag 1980
tgaagctgaa gcatgaactc acagatgaag agctgcagtc tttgtttaca aatttcgcaa 2040
atgtagtgga taagtgctgc aaagcagaga gtcctgaagt ctgctttaat gaagagagtc 2100
caaaaattgg caactgaagc cagctgctgg agatatgtaa agaaaaaagc accaaaggga 2160
aggettecta tetgtgtggt gatgaatege attteetgag aacaaaataa aaggattttt 2220
ctgtaactgt cacctgaaat aatacattgc agcaagcaat aaacacaaca ttttgtaaag 2280
tt
                                                                  2282
<210> 106
<211> 1935
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. M10943
<400> 106
tctagacagt ggcgcaagag actggggttg cactgggact ccaggaaagg cttagctgtt 60
gacgaaggac cgggggggg ccgggggggg gggcgaaggc caggatetec aggtacccgg 120
```

```
aaccccaagg ggcgggtgta gcaggcaatc ttggcgaaac tgggaagggc gggcaggagg 180
gcagggaagc cgctcaccca ggcacaaagc gcctcccgct tgagcggact ccaaagggac 240
ggtccgcggt gtgcagcgag ctgcgctcag gggaccttgc gcccggccct tctgctgcac 300
acageceace caggacetee egeagegetg acaggegggg egggtgeaaa gaeggggegg 360
ggtetetgeg eeeggeeece teecetgaet ateaaageag eggeeggetg tttgggteea 420
ccacgccttc cacctgcccc actgcttctt cgcttctctc ttggaaagtc cagtctctcc 480
teggettgea atggaeecca actgeteetg egeegetggt aaggaaegee gggtteegtg 540
cctggggatg ctcgattccc agacaccata gagagtgttc ctgggttttga gaaggtcgta 600
ttttgagatc tcaactgtag gggactcctt gacttagtcc agtgctttcc tcttggccaa 660
gatectgaga geattteett cetetetgtg eetetgtgte agegttgagg gtaetgagge 720
teaaggetgt cetgeteeac gteatgeggt ttgteceagg getgttgget gageeceagt 780
getetgacca ggetttgage ageaggatta gataggagge aggggacatt geetettegg 840
ggttcaggac agaaagtcga agtcgccgtc ttcccaggct gtgcctggag cctgggactt 900
teetttggag tgcaaacagg aggetgettg geetteecag catgaaggga gaggacatgg 960
ggettetett cetetgetet gagtgggaaa ggagetetga gggetggeee egeacagagg 1020
agggggcaat ggagactcat taactcactg ctgtacctcc tgcaggtcac tcgccgctca 1080
ctggcttttt tttctctttc tcgcaggtgt ctcctgcacc tgcgctggtt cctgcaagtg 1140
caaagagtgc aaatgcacct cctgcaagaa gagtgagtgt gaggccatct ccatggtctg 1200
gggctgtggc taaggttggg atggaaccca aggctggccc tgagtgcatg cttctgggga 1260
actggccttc ctttgtcccc gtaggttgtc actgcctttc tagtcttctg ccctgtgcag 1320
ggcgcctggg cagctttctc ataggaagac ccacccaqa tatttcccaq ttqtctcctq 1380
acaaagccat accetectga actgagggte etttgtgget ggaggetetg ttgggggeet 1440
ctgttgggga gggaggtccc tgggcaagtt ggctgtgacc tctcatgctc ctcttcttcc 1500
ecaggetget geteetgetg cecegtggge tgtageaagt gtgeecaggg etgtgtttge 1560
aaaggggcgt cagagaagtg cagetgetge gactgatgee aggacaacet tteteccaga 1620
ctacattcct tttcctgtga aatatgtgag tgataattaa acactttaga cctgattctg 1740
acttcagttt cccttatgtg cttcagaaat cagagactgg ggtggggggat cgaactaggg 1800
ttgcagactc ctgggctcta aatggaaatc tgagtcccta acaatcagag tgcattaagg 1860
caagccaggc tgcctcactg tgcttcctct tctgtagaat ggaataacac ttcatcaggt 1920
cattggtggg gatcc
<210> 107
<211> 2532
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. X03350
<400> 107
agtgcactca agcagagaag aaatccacaa agactcacca gtctgctggt gggcagagaa 60
gacagaaacg acatgagcac agcaggaaaa gtaatcaaat gcaaagcagc tgtgctatgg 120
gaggtaaaga aaccetttte cattgaggat gtggaggttg caceteetaa ggettatgaa 180
gttegcatta agatggtggc tgtaggaatc tgtegcacag atgaccacgt ggttagtggc 240
aacctggtga cccccttcc tgtgatttta ggccatgagg cagccggcat cgtggagagt 300
gttggagaag gggtgactac agtcaaacca ggtgataaag tcatcccqct ctttactcct 360
cagtgtggaa aatgcagagt ttgtaaaaac ccggagagca actactgctt gaaaaatgat 420
ctaggcaatc ctcgggggac cctgcaggat ggcaccagga ggttcacctg cagggggaag 480
cccattcacc acttccttgg caccagcacc ttctcccagt acacggtggt ggatgagaat 540
gcagtggcca aaattgatgc agcctcgccc ctggagaaag tctgcctcat tggctgtgga 600
ttctcgactg gttatgggtc tgcagttaac gttgccaagg tcaccccagg ctctacctgt 660
gctgtgtttg gcctgggagg ggtcggccta tctgctgtta tgggctgtaa agcagctgga 720
gcagccagaa tcattgcggt ggacatcaac aaggacaaat ttgcaaaggc caaagagttg 780
ggtgccactg aatgcatcaa ccctcaagac tacaagaaac ccatccagga agtgctaaag 840
gaaatgactg atggaggtgt ggatttttcg tttgaagtca tcggtcggct tgacaccatg 900
atggetteec tgttatgttg teatgaggea tgtggeacaa gegteategt aggggtacet 960
cotgottoco agaacctoto aataaaccot atgotgotac tgactggacg cacctggaag 1020
ggggctgttt atggtggctt taagagtaaa gaaggtatcc caaaacttgt ggctgatttt 1080
atggctaaga agttttcact ggatgcgtta ataacccatg ttttaccttt tgaaaaaata 1140
aatgaaggat ttgacctgct tcactctggg aaaagtatcc gtaccgtcct gacgttttga 1200
```

```
ggcaatagag atgccttccc ctgtagcagt cttcagcctc ctctacccta cgagatctgg 1260
 agcaacagct aggaaatatc attaattcag ctcttcagag atgttatcaa taaattacac 1320
 atgggggctt tccaaagaaa tggaaattga tgggaaatta tttttcagga aaatttaaaa 1380
 ttcaagtcag aagtaaataa agtgttgaac atcagctggg gaattgaagc caacaaacct 1440
 tecttettaa ceattetaet gtgteacett tgecattgag gaaaaatatt eetgtgaett 1500
 cttgcatttt tggtatcttc ataatcttta gtcatcgaat cccagtggag gggacccttt 1560
 tacttgccct gaacatacac atgctgggcc attgtgattg aagtcttcta actctgtctc 1620
 agttttcact gtcgacattt tcctttttct aataaaaatg taccaaatcc ctggggtaaa 1680
 agctagggta aggtaaagga tagactcaca tttacaagta gtgaaggtcc aagagttcta 1740
 aatacaggaa atttcttagg aactcaaata aaatgcccac attttactac agtaaatggc 1800
 agtgttttta tgacttttat actatttctt tatggtcgat atacaattga ttttttaaaa 1860
 taatagcaga tttcttgctt catatgacaa agcctcaatt actaattgta aaaactgaac 1920
 tattcccaga atcatgttca aaaaatctgt aattttgctg atgaaagtgc ttcattgact 1980
aaacagtatt agtttgtggc tataaatgat tatttaggat gatgactgaa aatgtgtata 2040
 agtaattaaa agtaatatgg tggctttaag tgtagagatg ggatggcaaa tgctgtgaat 2100
 gcagaatgta aaattggtaa ctaagaaatg gcacaaacac cttaagcaat atattttcct 2160
 agtagatata tatatacaca tacatatata cacatataca aatgtatatt tttgcaaaat 2220
 tgttttcaat ctagaacttt tctattaact accatgtctt aaaatcaagt ctataatcct 2280
 agcattagtt taatattttg aatatgtaaa gacctgtgtt aatgctttgt taatgctttt 2340
 cccactetca titigitaatg citticccact cicaggggaa ggattigcat titigagctit 2400
 atctctaaat gtgacatgca aagattattc ctggtaaagg aggtagctgt ctccaaaaat 2460
gctattgttg caatatctac attctatttc atattatgaa agaccttaga cataaagtaa 2520
aatagtttat ca
<210> 108
<211> 3890
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. J03507
. <400> 108
atgaaggtga taagcttatt cattttggtg ggatttatag gagagttcca aagtttttca 60
agtgcctcct ctccagtcaa ctgccagtgg gacttctatg ccccttggtc agaatgcaat 120
ggctgtacca agactcagac tcgcaggcgg tcagttgctg tgtatgggca gtatggaggc 180
cageettgtg ttggaaatge ttttgaaaca cagteetgtg aacetacaag aggatgteea 240
acagaggagg gatgtggaga gcgtttcagg tgcttttcag gtcagtgcat cagcaaatca 300
ttggtttgca atggggattc tgactgtgat gaagacagtg ctgatgaaga cagatgtgag 360
gactcagaaa ggagacette etgtgatate gataaacete etectaacat agaacttact 420
ggaaatggtt acaatgaact cactggccag tttaggaaca gagtcatcaa taccaaaagt 480
tttggtggtc aatgtagaaa ggtgtttagt ggggatggaa aagatttcta caggctgagt 540
ggaaatgtcc tgtcctatac attccaggtg aaaataaata atgattttaa ttatgaattt 600
tacaatagta cttggtctta tgtaaaacat acgtcgacag aacacacatc atctagtcgg 660
aagogotoot titttagato ticatoatot tottoacgoa gitatactic acataccaat 720
gaaatccata aaggaaagag ttaccaactg ctggttgttg agaacactgt tgaagtggct 780
cagttcatta ataacaatcc agaattttta caacttgctg agccattctg gaaggagctt 840
teccacetee cetetetgta tgactacagt geetacegaa gattaatega ccagtacggg 900
acacattatc tgcaatctgg gtcgttagga ggagaataca gagttctatt ttatgtggac 960
tcagaaaaat taaaacaaaa tgattttaat tcagtcgaag aaaagaaatg taaatcctca 1020
ggttggcatt ttgtcgttaa attttcaagt catggatgca aggaactgga aaacgcttta 1080
aaagctgctt caggaaccca gaacaatgta ttgcgaggag aaccgttcat cagaggggga 1140
ggtgcaggct tcatatctgg ccttagttac ctagagctgg acaatcctgc tggaaacaaa 1200
aggcgatatt ctgcctgggc agaatctgtg actaatcttc ctcaagtcat aaaacaaaag 1260
ctgacacctt tatatgagct ggtaaaggaa gtaccttgtg cctctgtgaa aaaactatac 1320
ctgaaatggg ctcttgaaga gtatctggat gaatttgacc cctgtcattg ccggccttgt 1380
caaaatggtg gtttggctac tgttgagggg acccattgtc tgtgccattg caaaccgtac 1440
acatttggtg cggcgtgtga gcaaggagtc ctcgtaggga atcaagcagg aggggttgat 1500
ggaggttgga gttgctggtc ctcttggagc ccctgtgtcc aagggaagaa aacaagaagc 1560
cgtgaatgca ataacccacc tcccagtggg ggtgggagat cctgcgttgg agaaacgaca 1620
gaaagcacac aatgcgaaga tgaggagctg gagcacttga ggttgcttga accacattgc 1680
```

```
tttcctttgt ctttggttcc aacagaattc tgtccatcac ctcctgcctt gaaagatgga 1740
 tttgttcaag atgaaggtcc aatgtttcct gtggggaaaa atgtagtgta cacttgcaat 1800
 gaaggatact ctcttattgg aaacccagtg gccagatgtg gagaagattt acggtggctt 1860
 gttggggaaa tgcattgtca gaaaattgcc tgtgttctac ctgtactgat ggatggcata 1920
 cagagtcacc cccaaaaacc tttctacaca gttggtgaga aggtgactgt ttcctgttca 1980
 ggtggcatgt ccttagaagg tccttcagca tttctctgtg gctccagcct taagtggagt 2040
 cctgagatga agaatgcccg ctgtgtacaa aaagaaaatc cgttaacaca ggcagtgcct 2100
 aaatgtcagc gctgggagaa actgcagaat tcaagatgtg tttgtaaaat gccctacgaa 2160
 tgtggacctt ccttggatgt atgtgctcaa gatgagagaa gcaaaaggat actgcctctg 2220
 acagtttgca agatgcatgt tctccactgt cagggtagaa attacaccct tactggtagg 2280
 gacagetgta etetgeetge eteagetgag aaagettgtg gtgeetgeee aetgtgggga 2340
 aaatgtgatg ctgagagcag caaatgtgtc tgccgagaag catcggagtg cgaggaagaa 2400
gggtttagca tttgtgtgga agtgaacggc aaggagcaga cgatgtctga gtgtgaggcg 2460
ggcgctctga gatgcagagg gcagagcatc tctgtcacca gcataaggcc ttgtgctgcg 2520
 gaaacccagt aggctcctgg aggccatggt cagcttgctt ggaatccagc aggcagctgg 2580
 ggctgagtga aaacatctgc acaactgggc actggacagc ttttccttct tctccagtgt 2640
 ctaccttcct cctcaactcc cagccatctg tataaacaca atcctttgtt ctcccaaatc 2700
 tgaatcgaat tactcttttg cctccttttt aatgtcagta aggatatgag cctttgcaca 2760
 ggctggctgc gtgttcttga aataggtgtt accttctctg ggccttggtt ttttaaaatc 2820
 tgtaaaatta gaggattgca ctagagaaac ttgaatgctc cattcaggcc tatcatttta 2880
 ttaagtatga ttgacacagc ccatgggcca gaacacactc tacaaaatga ctaggataac 2940
agaaagaacg tgatctcctg attagagagg gtggttttcc tcaatggaac caaatataaa 3000
gaggacttga acaaaaatga cagatacaaa ctatttctat cctgagtagt aatctcacac 3060
ttcatcctat agagtcaacc accacagata ggaattcctt attcttttt taatttttt 3120
aagacagagt ctcactttgt tgcccagget ggagcgcagt ggggtgatct catctccctg 3180
caacctccgc ctcctgggtt gaagcgattc ttgtgcctca gcttcccaag cagctgggat 3240
tacaggtgcc cgccaccacg cccagctaat ttttgcattt ttagtagaga tgggtttcac 3300
catgttggcc atgctcgtct ccaactcctg acctcaggta atccgtctgc cttggcctcc 3360
caaatgctgg gattacagac atgaaccacc acgcctggct ggaatactta ctcttgtcgg 3420
gagattgaac cactaaaatg ttagagcaga attcattatg ctgtggtcac aggggtgtct 3480
tgtctgagaa caaatacaat tcagtcttct ctttggggtt ttagtatgtg tcaaacatag 3540
gactggaagt ttgcccctgt tctttttct tttgaaagaa catcagttca tgcctgaggc 3600
atgagtgact gtgcatttga gatagttttc cctattctgt ggatacagtc ccagagtttt 3660
cagggagtac acaggtagat tagtttgaag cattgacett ttatttattc ettatttetc 3720
tttcatcaaa acaaaacagc agctgtggga ggagaaatga gagggcttaa atgaaattta 3780
aaataagcta tattatacaa atactatete tgtattgtte tgaceetggt aaatatattt 3840
caaaacttca gatgacaagg attagaacac tcattaagat gctattcttc
                                                                  3890
<210> 109
<211> 2941
<212> DNA
<213> Homo sapiens
<220>
<223> Genbank Accession No. K01383
<400> 109
gaattcatgc ttggactaca gcttcccgcc acctccccca tcttgctttt tagtttaaag 60
cagggtcagc acatcacatg aagtcatctc ctttttaggg gatatcccac atgccaagac 120
taccaagcgg tagggggtg gccggctagg ctgtggggag cacggagatt tatttgcaaa 180
ggaggaccta gacaaaagag cccccacatc ctctcaggcg aggagaatgg acgagagtga 240
gaggeegace egtgtteeeg tgttaetgtg taeggagtag tgggteegag ggaeetaggt 300
gtggacaggg acaggcaagg cgacagcgag gagaaacgaa aatcacatcg gtggcggttg 360
ctctgcacac aaactccgct cgctaccgca cgctccacgc tctgcactac gccgaccggg 420
gacaggagca ggaggctgtg gctgcactca gacttcggga caggccgagc tgaaaaccgt 480
gagagggtg gggtggaggc gaccgaaacg ccaaggctgg gttcccggaa cgcgcgggga 540
ccagggtgga aggcaacttc ggggaaacgg gaaaggcgac cgggacctcg gggacgcccc 600
gtaccccggg cgtaaactca ctcccgcgtt agcgggcgcc aaagcgggga gggggtggtc 660
ccgtggtccg cacccagggg agctcagtgg actgtgcgcc ttgcctttct gctgcgcaaa 720
gcccagtcca ggtcatcacc tcgggcgggg cggactcggc tgggcggact cagcggggcg 780
ggcgcaggcg cagggcgggt cctttgcgtc cggccctctt tcccctgacc ataaaagcag 840
```

ccactaacta	ctgggcccta	ccaagccttc	cacgtgcgcc	ttatagcctc	tcaacttctt	900
acttaggate	tecaacetea	ccacaactca	aaatggaccc	caactgctcc	tgegeeacty	900
ataaaaata	chaggtttct	aatccttaaa	atacctattt	ccccgccaca	ggalagalgi	1020.
ccctagggacg	agaggtgttt	tttgagttct	agctaagtgg	agtcatttat	ttcattgatc	1080
tagtacttt	ccactcacca	ccttcatcat	ccctagaaca	ttcctattct	aatgcctccc	1140
atttcaagag	acasasaas	tcaggctcat	aattctcctg	ctccatgtca	cccaggtagt	1200
caaaaactac	tagggggggg	ccagtactct	gcgcagttcc	tgggcggatg	ggcgacacgg	1260
acttatteet	ttttcgggat	taaggacata	agcccatcct	agcctctaca	gatagaagta	1320
acctactggt	catotogggat	gagttggaca	ggagctatct	atcaggcctg	gcaatgcact	1380
agactageee	catttgttga	ccaactgctg	ttatcttctq	tgtaaagttc	actgcctttt	1440
tetetteett	acadataact	cctgcacctg	cactggctcc	tgcaaatgca	aagagtgcaa	1500
atagaagtag	+acaadaada	atasatacaa	ggccatctct	aggaactggg	gctgagccaa	1560
atgraactee	cacaaaccaaa	actagactag	gaggagtagg	ccaatgatcc	atttcccaca	1620
taattaaa	ggaaaccaga	caggatcaga	gccagatctt	tagacgtgat	ggattcccaa	1680
attracted	taaatadac	aaactgagge	caagagagtg	caccaaccta	ccaaacacaa	1740
geetegeee	taaggacttt	cctcccctaa	atatataatt	ctggggagcc	agccttcctt	1800
tataattata	acccactca	ctacetttee	ageettetge	caggtctggg	gctcagatgg	1860
ngatanggt	ttcacageca	accetcacte	gaaagatcca	ccacttatct	cccatctccg	1920
agacaageee	ccacagaag	ctaagtgtcc	tetagageta	gggacagagc	ttgggccagg	1980
acagugeacg	gggggggaa	teceggteaa	atctagtctg	acctctcact	ctcccttctt	2040
ecceteteggg	ggcagggaag	tacccataa	gctgtgccaa	gtgtgcccag	ggctgcatat	2100
ceeeaggerg	atazazaa	tacaactact	gtacctaata	teeggacage	cctgctcgaa	2160
gcaaaggggc	accayayaay	cacaaactto	gaatttttt	tccatacaac	cctgacccat	2220
gatatagaaa	tttttaata	aaatatotoa	atgataataa	aagttgctga	cttaatgctg	2280
ctactgtatt	tetttatata	ccttgaaata	agggaccata	caacagagct	gggatggtgg	2340
getetggtet	gagtgagaga	cctagatact	gggacettgt	gctattatct	tacacactgg	2400
actgeattya	gagccagaga	cotyggegee	traggtragt	ttcttaaata	aaaatgtaag	2460
aggeetgtta	aggedaatea	astaccego	gaatctgtca	cagacttaag	ctttggtaag	2520
agcgtgatga	cagatgatat	aatgccacag	accaaatcca	tttttatat	tgaacaggac	2580
ataaaatcta	ttagtatgac	aaaaaaaaa	ggaaaataa	aattacacta	cacatttqtt	2640
aatttcagta	aatatatgga	agacaagaca	. cacacactco	cccagtatg	tagatcacac	2700
ctggatgtat	atteagaett	ggaaacagcc	tacagacegg	agtettage	tatccagata	2760
accttcaaca	ccagccaaga	catececaca	tagaaccacc	agtettggee	tgaatcttcg	2820
actgatgtga	tacttggtat	. ccctgagagc	, cocacyccyc	gacttgtctc	cttggttaat	2880
gaagtttctc	cctaggtcat	getgaaatee	, goodeleece	: aagtccagcc	ccagcaagct	2940
tcaggcaagc	aaagtgactg	ggggagrggg	gyaaactacc	: caggatecto		2941
g						-

REVISED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 31 July 2003 (31.07.2003)

(10) International Publication Number WO 2003/061564 A2

- (51) International Patent Classification7: A01N 37/18, 43/04, C12P 19/34, C12M 1/34, C12Q 1/68, G01N 33/00,
- 33/566
- (21) International Application Number:

PCT/US2002/040718

(22) International Filing Date:

20 December 2002 (20.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/341,815 21 December 2001 (21.12.2001) 60/343,185 31 December 2001 (31.12.2001)

- (71) Applicants (for all designated States except US): GENE LOGIC, INC. [US/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). LG BIOMEDICAL INSTITUTE [US/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KOH, Sang, Seok [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). LIU, Qing [CN/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). CHUNG, Hyun-Ho [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). ZENG, Wen [CN/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). LEE, Bogman [KR/US]; Suite 101, 3252 Holiday Court, La Jolla, CA 92037 (US). YERAMILLI, Subrahmanyam [US/US]; 708 Ouince Orchard Road, Gaithersburg, MD 20878 (US). SONG, Si, Young [KR/KR]; 111-401 Samsung

Apt., Baegma-maeul, Madu 1-dong, ilsan-gu, Goyang-si, Gyeonggi-do 411-351 (KR).

- (74) Agents: TUSCAN, Michael, S. et al.; Morgan, Lewis & Bockius LLP, 1111 Pennsylvania Avenue NW, Washington, DC 20004 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority
- (48) Date of publication of this revised version:

17 March 2005

(15) Information about Correction:

see PCT Gazette No. 11/2005 of 17 March 2005, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a), Rule 13ter.1(c) and 39)

Applicant's or agent's file reference	TO THE PARTY AND A		Date of mailing (day/month/year)
44921-5109WO	IMPORTANT DECLA		0 4 JUN 2003
International application No.	International filing date (day/mor	nth/year)	(Earliest) Priority date (day/month/year)
PCT/US02/40718	20 December 2002 (20.12.2002)		21 December 2001 (21.12.2001)
International Patent Classification (IPC)	or both national classification and	IPC	
IPC(7): A01N 37/18, 43/04; C12P 19/34 94; 702/19; 514/2, 44	4; C12M 1/34; C12Q 1/68; G01N	33/00, 33/566 a	and US Cl.: 435/4,6,91.2, 287.2; 436/501,
Applicant			
GENE LOGIC, INC.			
This International Searching Authority has will be established on the international	ereby declares, according to Article application for the reasons indicate	ie 17(2)(a), that ed below.	no international search report
1. The subject matter of the inter-	ernational application relates to:		
a. scientific theories.	**		
b. mathematical theor	ies .		
c. plant varieties.			
d. animal varieties.			
	processes for the production of al	ante and animal	s, other than microbiological processes
and the products of	f such processes.	ants and annina	s, oner than interoblological processes
f. schemes, rules or r	nethods of doing business.		
g. schemes, rules or i	nethods of performing purely men	tal acts.	
	nethods of playing games.		
	ent of the human body by surgery	or therapy.	
	ent of the animal body by surgery		
	practised on the human or animal		
l. mere presentations			
m. computer program.	s for which this International Search	ching Authority	is not equipped to search prior art.
2 The failure of the following	parts of the international application	on to comply wi	th prescribed requirements prevents a
meaningful search from bein	C.2		1
the description	the claims	L_	the drawings
3. The failure of the nucleotide	and/or amino acid seguence listin	r ta samplu misi	h the standard provided for in Annex C
of the Administrative Instruc	ctions prevents a meaningful search	h from being car	ried out:
the written form ha	as not been furnished or does not o	comply with the	standard.
the computer reads	ible form has not been furnished o	r does not comp	ly with the standard.
			,
Further comments: Please See Continuation Sheet			
Trease see Continuation Gleet			
Name and mailing address of the ISA	A/IIIS	Authorized offi	CONT A A
Commissioner of Patents and Trad		. souloi izou OIII	" 1 10c 1/2 1 Sc .
Box PCT Washington, D.C. 20231		Bradley L. Sis	son UMAI THE
Facsimile No. (703)305-3230		Talanhana M	(703) 20P 010C
Form PCT/ISA/203 (July 1998)		relephone No.	(703) 308-0196

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT Form PCT/ISA/203 (July 1998)

International application No. PCT/US02/40718

4. Further comments: The claimed methods, compositions, solid suports, and computer systems all require the use of the "at lest one gene in Table 1." A review of Table 1, pages 35-42 of the disclosure, finds a listing of various nucleic aicd "fragments" by name, SEQ ID NO., etc. A review of the associated Sequence Listing finds that none of the disclosed "genes" are in fact any gene. All of the sequences disclosed are nucleic acid in composition, thereby precluding any meaningful search for polypeptides or functional fragments thereof. The nucleic acid sequences disclosed are incapable of encoding any polypeptide as they (1) lack any promoter; (2) lack a start site; (3) lack a stop codon; and/or (4) are out of reading frame. While some claims are directed to methods and compositions of the genes or functional fragments thereof, the disclosure does not identify which, if any fragment, is useful or what the desired function is. Accordingly, no meaningful search can be established.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.