Tutorial-2

Internal forced convection

5th-6th Feb 2020

Exercise 1. Hot air flows with a mass rate of $\dot{m} = 0.05$ kg/s through an uninsulated sheet metal duct of diameter D = 0.15 m. The hot air enters the duct at 103 °C and after a distance of 5 m cools to 77 °C. The heat transfer coefficient of the outer surface is 6 W/m² K and the temperature of the outside air far from the pipe is 0 °C. Find:

- The rate of heat loss for the entire length of the pipe
- The heat flux and surface temperature at x = 5 m.

Exercise 2. Engine oil is heated by flowing through a circular tube of diameter D= 50 mm and length L = 25 m. Before entering the 25 m heating section, the fluid passes through 1 m of unheated length. The surface of the tube is maintained at 150 °C. If the flow rate and inlet temperature of the oil are 0.5 kg/s and 20 °C, what is the outlet temperature $T_{m,o}$? What is the total rate of heat transfer for the entire tube?

Exercise 3. An annulus consists of the region between two concentric tubes having diameter of 4 cm and 5 cm. Ethylene glycol flows in this space at a velocity of 6.9 m/s. The entrance temperature is 20 °C and the exit temperature is 40 °C. Only the inner tube is the heating surface and it is maintained at 80 °C. Calculate the length of annulus necessary for the required heat transfer.

Exercise 4. Water at 0.4 Kg/s is to be cooled from 71° C to 32° C. Which would result in less pressure drop, to run the water through a tube of 12.5 mm diameter or through a tube of 15. mm diameter? Wall temperature of 12.5 mm diameter pipe is 4 °C and 15 mm diameter pipe is 27 °C.

Table 1: Heat Transfer Correlations for pipe flow

	1 1
Condition	Correlation
Laminar, constant wall flux, thermally and hydrodynamically fully developed	$Nu_D = \frac{hD}{k} = 4.36$
Laminar, constant wall temperature, thermally and hydrodynamically fully developed	$Nu_D = \frac{hD}{k} = 3.66$
Laminar flow, constant surface temperature, thermal entry length problem. All Prandtl number.	$\overline{Nu_D} = 3.66 + \frac{0.068Gz}{1 + 0.04Gz^{2/3}}$
Laminar flow, constant surface temperature, combined entry length problem. $Pr \gtrsim 5$	$\overline{Nu}_D = 3.66 + \frac{0.068Gz}{1 + 0.04Gz^{2/3}}$
Dittus Boelter equation	$Nu_D = 0.023 Re^{0.8} Pr^n$

TABLE A.5 Thermophysical Properties of Saturated Fluids^a

T (K)	ho (kg/m ³)	$\binom{c_p}{(\mathbf{k}\mathbf{J}/\mathbf{k}\mathbf{g}\cdot\mathbf{K})}$	$\frac{\mu \cdot 10^2}{(\mathrm{N} \cdot \mathrm{s/m}^2)}$	$\begin{array}{c} \nu \cdot 10^6 \\ (m^2/s) \end{array}$	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\frac{\alpha \cdot 10^7}{(m^2/s)}$	Pr	$\frac{\beta \cdot 10^3}{(\mathrm{K}^{-1})}$
Engine	Ingine Oil (Unused	(F						
273	899.1	1.796	385	4280	147	0.910	47,000	0.70
280	895.3	1.827	217	2430	144	0.880	27,500	0.70
290	0.068	1.868	6.66	1120	145	0.872	12,900	0.70
300	884.1	1.909	48.6	550	145	0.859	6400	0.70
310	877.9	1.951	25.3	288	145	0.847	3400	0.70
320	871.8	1.993	14.1	161	143	0.823	1965	0.70
330	865.8	2.035	8.36	9.96	141	0.800	1205	0.70
340	859.9	2.076	5.31	61.7	139	0.779	793	0.70
350	853.9	2.118	3.56	41.7	138	0.763	546	0.70
360	847.8	2.161	2.52	29.7	138	0.753	395	0.70
370	841.8	2.206	1.86	22.0	137	0.738	300	0.70
380	836.0	2.250	1.41	16.9	136	0.723	233	0.70
390	830.6	2.294	1.10	13.3	135	0.709	187	0.70
400	825.1	2.337	0.874	10.6	134	0.695	152	0.70
410	818.9	2.381	0.698	8.52	133	0.682	125	0.70
420	812.1	2.427	0.564	6.94	133	0.675	103	0.70
430	806.5	2 471	0.470	5 83	132	0.662	88	0.70

	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
	617	400	236	151	103	73.5	55.0	42.8	34.6	28.6	23.7	22.4	
	0.933	0.933	0.936	0.939	0.939	0.940	0.936	0.929	0.917	906.0	0.900	906.0	
	242	244	248	252	255	258	260	261	261	261	262	263	
	57.6	37.3	22.1	14.1	9.65	6.91	5.15	3.98	3.17	2.59	2.14	2.03	
	6.51	4.20	2.47	1.57	1.07	0.757	0.561	0.431	0.342	0.278	0.228	0.215	
$A_4(OH)_2]$	2.294	2.323	2.368	2.415	2.460	2.505	2.549	2.592	2.637	2.682	2.728	2.742	
e Glycol [C ₂]	1130.8	1125.8	1118.8	1114.4	1103.7	1096.2	1089.5	1083.8	1079.0	1074.0	1066.7	1058.5	
Ethylen	273	280	290	300	310	320	330	340	350	360	370	373	

Table A.6 Thermophysical Properties of Saturated Water^a

er-	ē, ⊗	15																			
Temper-	auure, T (K)	273.15	275	280	285	290	295	300	305	310	315	320	325	330	335	340	345	350	355	360	365
Expansion Coef- cient,	(\mathbf{K}^{-1})	-68.05	-32.74	46.04	114.1	174.0	227.5	276.1	320.6	361.9	400.4	436.7	471.2	504.0	535.5	266.0	595.4	624.2	652.3	6.769	707.1
Surface Tension,	(N/m)	75.5	75.3	74.8	74.3	73.7	72.7	71.7	70.9	70.0	69.2	68.3	67.5	9.99	65.8	64.9	64.1	63.2	62.3	61.4	60.5
Prandtl Number	Pr_g	0.815	0.817	0.825	0.833	0.841	0.849	0.857	0.865	0.873	0.883	0.894	0.901	0.908	0.916	0.925	0.933	0.942	0.951	0.960	0.969
Prandtl Number	Pr	12.99	12.22	10.26	8.81	7.56	6.62	5.83	5.20	4.62	4.16	3.77	3.42	3.15	2.88	2.66	2.45	2.29	2.14	2.02	1.91
Thermal Conductivity (W/m·K)	$k_g \cdot 10^3$	18.2	18.3	18.6	18.9	19.3	19.5	19.6	20.1	20.4	20.7	21.0	21.3	21.7	22.0	22.3	22.6	23.0	23.3	23.7	24.1
The Condt (W/n	$k \cdot 10^3$	695	574	582	590	869	909	613	620	628	634	640	645	650	959	099	664	899	671	674	<i>LL</i> 9
sity /m²)	$\mu_g \cdot 10^6$	8.02	8.09	8.29	8.49	8.69	8.89	60.6	9.29	9.49	69.6	68.6	10.09	10.29	10.49	10.69	10.89	11.09	11.29	11.49	11.69
Viscosity (N·s/m²)	$\mu \cdot 10^6$	1750	1652	1422	1225	1080	626	855	692	695	631	577	528	489	453	420	389	365	343	324	306
ic at g·K)	$c_{p,g}$	1.854	1.855	1.858	1.861	1.864	1.868	1.872	1.877	1.882	1.888	1.895	1.903	1.911	1.920	1.930	1.941	1.954	1.968	1.983	1.999
Specic Heat (kJ/kg·K)	$c_{p,}$	4.217	4.211	4.198	4.189	4.184	4.181	4.179	4.178	4.178	4.179	4.180	4.182	4.184	4.186	4.188	4.191	4.195	4.199	4.203	4.209
Heat of Vapor-ization,	$(\mathbf{kJ/kg})$	2502	2497	2485	2473	2461	2449	2438	2426	2414	2402	2390	2378	2366	2354	2342	2329	2317	2304	2291	2278
ic me (g)	v_g	206.3	181.7	130.4	99.4	2.69	51.94	39.13	29.74	22.93	17.82	13.98	11.06	8.82	7.09	5.74	4.683	3.846	3.180	2.645	2.212
Specic Volume (m³/kg)	$v \cdot 10^3$	1.000	1.000	1.000	1.000	1.001	1.002	1.003	1.005	1.007	1.009	1.011	1.013	1.016	1.018	1.021	1.024	1.027	1.030	1.034	1.038
0	$p \text{ (bars)}^b$	0.00611	0.00697	0.00990	0.01387	0.01917	0.02617	0.03531	0.04712	0.06221	0.08132	0.1053	0.1351	0.1719	0.2167	0.2713	0.3372	0.4163	0.5100	0.6209	0.7514
Tempera-	ture, I	273.15	275	280	285	290	295	300	305_{7}	310	315	320	325	330	335	340	345	350	355	360	365