```
SEQUENCE LISTING
     <110> Dubin, Adrienne E
           Huvar, Arne
           Erlander, Mark G
 5
           Glass, Charles A
     <120> DNA encoding Isoforms of the human Vanilloid Receptor
10
     <130> Human VR3 receptors
     <140>
     <141>
15
     <160> 17
     <170> PatentIn Ver. 2.1
     <210> 1
20
     <211> 26
     <212> DNA
     <213> Artificial Sequence
25
     <223> Description of Artificial Sequence:
           Oligonucl eotide
     <400> 1
                                                                          26
30
     accggcctat cctctttgac atcgtg
     <210> 2
     <211> 25
35
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
40
           Oligonucl eotide
     <400> 2
                                                                          25
     tgtccgcctt cttgtggggg ttctc
45
     <210> 3
     <211> 48
     <212> DNA
50
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
           Oligonucl eotide
55
```

	<400> 3 aacgttggta	ccgc caccat	ggegg attee	agegaa ggee	ecegege g		48
5							
10	<210> 4 <211> 39 <212> DNA <213> Artif	icial Seque	nce				
1.5		iption of A nucleotide	rtificial S	sequence:			
15	<400> 4 taaagcggcc	gctt caggag	ggaca teggt	gageet cae			39
20	<210> 5 <211> 2616 <212> DNA <213> Homo	sapi ens					
25 25	<400> 5		ccccc gcgcg	gggccc gggg	aggtggctga	getecceggg	60
	gatgagagtg	gcac cccagg	tgggg aggct	tttcct ctct	cctccct ggc	caatctgttt	120
30	gagggggagg	atgg ctccct	ttcgc cctca	ccggct gatg	ccagtcgccc	tgctggcc ca	180
	ggcgatgggc	gaccaaatct	gcgca tgaag	ttccagggcg	ccttccgcaa	gggggtgccc	240
35	aaccccatcg	atct gctgga	gtcca cccta	tatgagtcct	cggtggt gcc	tgggccca ag	300
	aaagcaccca	tgga ctcact	gtttgactac	ggcacctatc	gtcaccactc	cagtgacaac	360
	aagaggtgga	ggaa gaagat	catagagaag	cagccg caga	gccccaa agc	ccctgccc ct	420
40	cagccgcccc	ccat cctcaa	agtct tcaac	cggcct atcc	tctttga cat	cgtgtcccgg	480
	ggctccactg	ctga cctgga	cgggc tgctc	ccattcttgc	tgaccca caa	gaaacgcc ta	540
45	actgatgagg	agtt tcgaga	gccat ctacg	gggaagacct	gcctgcc caa	ggccttgctg	600
	aacctgagca	atgg ccgcaa	cgaca ccatc	cctgtg ctgc	tggacat cgc	ggagcgca cc	660
E 0	ggcaacatgc	ggga gttcat	taact cgccc	ttccgt gaca	tctacta tcg	aggtcaga ca	720
50	gccctgcaca	tcgc cattga	gcgtcgctgc	aaacac tacg	tggaact tct	cgtggccc ag	780
	ggagctgatg	tcca cgccca	ggccc gtggg	cgcttcttcc	agcccaa gga	tgaggggg gc	840

	tacttctact	ttggggagct	gcccc tgtcg	ctggct gcct	gcaccaa cca	gccccacatt	900
	gtcaactacc	: tgacggagaa	ccccacaag	aaggcggaca	tgcggcgcca	. ggactcgcga	960
5	ggcaacacag 1020	tgctgcatgc	gctgg tggcc	attgct gaca	acacccgtga	gaacaccaag	
	tttgttacca 1080	agat gtacga	cctgc tgctg	ctcaagtgtg	cccgcctctt	ccccgaca gc	
10	1140					tgccaaga cg	
	1200					ggacacacgg	
	1260					gctttatgac	
15	1320					ggtgtacaac	
	1380					actgctgcgg	
20	1440	gcaa gttcgg					
	1500	tctt cactct					
25	1560	ccacggtgga					
25	1620	tctt catcac					
	1680	tcat tgatgg					
30	1740	cago cotota					
	1800	tggg ctggat					
35	1860	tcatgatcca					
- 33	1920	tcatgatcgg					
	1980	tgtgcaatga					
40	2040	agac cttcag					
	2100	agat gotgag					
45	2160	aggt stages					
13	2220	aggtctccaa ttgagcgctc					
	2280						
50	2340	tggg caagag					
	2400	actggtctca					
	2460	ccta ccagta	coacy years	cogoat accg	cyggeeg eet	cegeagggat	

cgctggtcct cggtggtacc ccgcgtggtg gaactgaaca agaactcgaa cccggacgag 2520
gtggtggtgc ctctggacag catggggaac ccccgctgcg atggccacca gcagggttac 2580
ccccgcaagt ggaggactga tgacgccccg ctctag 2616

<210> 6
10 <211> 3500
 <212> DNA
 <213> Homo sapiens

1200

<400> 6 15 caattgggat ttaaacccag ggactatcca gccccaaagc ccttcccacc acaccaggtg 60 gcctgtcctg gggccagctc tgcacacagg gcctggtgcc cccggggtgc ttgggaaqtq 120 gcagggcaga ggtgggccct gtggctgttc tggctcagct tctaaaacaa qaqcctct qc 180 20 tgggggcaga ggggccgtga acccctgaaa tgttaggcag ataccctgtg ggagctttgt 240 tetgggatge taagaacege ttgaggattt aagetttgee aetttggete eggageaagg 300 25 gcagaggctg agcagtgcag acgggcctgg ggcaggcatg gcggattcca gcgaaggccc 360 ccgcgcgggg cccggggagg tggctgagct ccccggggat gagagtggca ccccaqqtqq 420 ggaggetttt cctctctcct ccctggccaa tctgtttgag ggggaggatg gctccctttc 480 30 gccctcaccg gctgatgcca gtcgccctgc tggcccaggc gatgggcgac caaatctgcg 540 catgaagttc cagggcgcct tccgcaaggg ggtgcccaac cccatcgatc tgctggagtc 600 35 caccctatat gagt cctcgg tggtg cctgg gcccaa gaaa gcaccca tgg actcactg tt 660 tgactacggc acctatcgtc accactccag tgacaacaag aggtggagga agaagatcat 720 agagaagcag ccgcagagcc ccaaagcccc tgcccctcag ccgcccccca tcctcaaagt 780 40 cttcaaccgg cctatcctct ttgacatcgt gtcccggggc tccactgctg acctggacgg 840 gctgctccca ttcttgctga cccacaagaa acgcctaact gatgaggagt ttcgagagcc 900 45 atctacgggg aagacctgcc tgcccaaggc cttgctgaac ctgagcaatg gccgcaacga 960 caccatecet gtgctgctgg acategegga gegeaeegge aacatgeggg agtteattaa 1020 ctcgcccttc cgtgacatct actatcgagg tcagacagcc ctgcacatcg ccattgagcg 1080 tegetgeaaa caetaegtgg aaettetegt ggeecaggga getgatgtee aegeecagge 1140

ccgtgggcgc ttcttccagc ccaaggatga ggggggctac ttctactttg gggagctgcc

	cctgtcgctg 1260	gctg cctgca	ccaac cagcc	ccacat tgtc	aactacctga	cggagaaccc
	ccacaagaag 1320	gcggacatgc	ggcgc cagga	ctcgcg aggc	aacacag tgc	tgcatgcgct
5	ggtggccatt 1380	gctgacaaca	cccgt gagaa	caccaagttt	gttacca aga	tgtacgac ct
	gctgctgctc 1440	aagt gtgccc	gcctcttccc	cgacag caac	ctggagg ccg	tgctcaacaa
10	cgacggcctc 1500	tcgc ccctca	tgatg gctgc	caagac gggc	aagattggga	tctttcag ca
	catcatccgg 1560	cggg aggtga	cggat gagga	cacacg gcac	ctgtcccgca	agttcaagga
	ctgggcctat 1620	gggc cagtgt	attcc tcgct	ttatga cctc	tcctccctgg	acacgtgt gg
15	ggaagaggcc 1680	tccg tgctgg	agatcctggt	gtacaa cagc	aagattgaga	accgccacga
	1740					agttcggg gc
20	1800					tcactctcac
	1860				taccgca cca	
	1920				gtcctgt tct	
25	1980				tctctct tca	
	cttccagctg 2040	ctct acttca	tctactctgt	cctggtgatc	gtctcagcag	ccctctacct
30	2100				ctggtcctgg	
	tgccctttac 2160	ttca cccgtg	ggctgaagct	gacggg gacc	tatagca tca	tgatccagaa
	2220				ttgctct tca	
35	2280				atgaagg tgt	
	2340				gacagcg aga	
40	2400				gacctggaga	
	2460				tacatcatcc	
	2520				gtgggcc agg	
45	2580				ctggaca ttg	
	2640				gtcaccg tgg	
50	2700				gaggtga act	
	2760				aatgaga cct	-
	tggcttctcg 2820	cata ccgtgg	gccgc ctccg	caggga tcgc	tggtcct cgg	tggtaccccg

	cgt 9		gaa (ctga a	acaag	ga a	ctcg	aacco	gga	acga	ggtg	gtg	gtgc	ctc	tggad	cagcat
	9999 294		ccc (cgct	gcgat	g g	ccac	cagca	a ggg	gtta	cccc	cgca	aagt	gga	ggact	gat ga
5		cccg	ctc i	tagg	gacto	gc a	gaca	agcco	c cag	gctt	ctct	gcc	cact	cat	ttcta	agtc ca
		gcatt	tc a	agca	gtgco	ct t	ctgg	ggtgt	c cc	ecce :	acac	cct	gctti	tgg	cccc	agag gc
10	gagg		cag 1	tgga	ggtgo	cc a	ggga	ggcc	c cag	ggac	cctg	tggi	ccc	ctg	gctct	gcctc
_ •		accct	gg (ggtg	39999	ct c	ccgg	ccac	c tgt	cctt	gctc	ctat	gga	gtc	acata	aagc ca
		ccaga	agc (ccct	ccaco	ct ca	aggc	cccaç	g cc	cctg	cctc	tcca	atta	ttt	atttg	gctctg
15		cag	gaa (gcga (cgtga	ac c	cctg	cccc	a gct	.gga :	acct	ggca	agag	gcc	ttagg	gacc cc
		ccaa	gtg (cact	gadag	gg c	caag	cccc	a gc	ctca	gcct	gcg	cctg	agc	tgcat	gcgcc
20		attt	tg 9	gcag	cgtgg	gc a	gctt	tgcaa	a ggg	ggct	9 9 99	ccct	cgg	cgt	9999°	ccat gc
20		ctgtg	gtg 1	ttct	gtagt	g t	ctgg	gattt	gc	cggt	gctc	aata	aaat	gtt	tatto	catt ga
		ggaa	aaa a	aaaa	aaaaa	aa										
25	3301	,														
2.0	<213 <213	0> 7 L> 8' 2> PI	ΥT													
30			onio ;	sapi (5112											
2.5		0> 7 Ala	Asp	Ser	Ser 5	Glu	Gly	Pro	Arg	Ala 10	Gly	Pro	Gly	Glu	Val 15	Ala
35	Glu	Leu	Pro	Gly 20	Asp	Glu	Ser	Gly	Thr 25	Pro	Gly	Gly	Glu	Ala 30	Phe	Pro
40	Leu	Ser	Ser 35	Leu	Ala	Asn	Leu	Phe 40	Glu	Gly	Glu	Asp	Gly 45	Ser	Leu	Ser
	Pro	Ser 50	Pro	Ala	Asp	Ala	Ser 55	Arg	Pro	Ala	Gly	Pro 60	Gly	Asp	Gly	Arg
45	Pro 65	Asn	Leu	Arg	Met	Lys 70	Phe	Gln	Gly	Ala	Phe 75	Arg	Lys	Gly	Val	Pro 80
- 0	Asn	Pro	Ile	Asp	Leu 85	Leu	Glu	Ser	Thr	Leu 90	Tyr	Glu	Ser	Ser	Val 95	Val
50	Pro	Gly	Pro	Lys 100	Lys	Ala	Pro	Met	Asp 105	Ser	Leu	Phe	Asp	Tyr 110	Gly	Thr
55	Tyr	Arg	His 115	His	Ser	Ser	Asp	Asn 120	Lys	Arg	Trp	Arg	Lys 125	Lys	Ile	Ile

	Glu	Lys 130	Gln	Pro	Gln	Ser	Pro 135	Lys	Ala	Pro	Ala	Pro 140	Gln	Pro	Pro	Pro
5	Ile 145	Leu	Lys	Val	Phe	Asn 150	Arg	Pro	Ile	Leu	Phe 155	Asp	Ile	Val	Ser	Arg 160
	Gly	Ser	Thr	Ala	Asp 165	Leu	Asp	Gly	Leu	Leu 170	Pro	Phe	Leu	Leu	Thr 175	His
10	Lys	Lys	Arg	Leu 180	Thr	Asp	Glu	Glu	Phe 185	Arg	Glu	Pro	Ser	Thr 190	Gly	Lys
15	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
20	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
25	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
25	Leu	Val	Ala	Gln 260	Gly	Ala	Asp	Val	His 265	Ala	Gln	Ala	Arg	Gly 270	Arg	Phe
30	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
35	Thr 305	Glu	Asn	Pro	His	Lys 310	Lys	Ala	Asp	Met	Arg 315	Arg	Gln	Asp	Ser	Arg 320
40	Gly	Asn	Thr	Val	Leu 325	His	Ala	Leu	Val	Ala 330	Ile	Ala	Asp	Asn	Thr 335	Arg
40	Glu	Asn	Thr	Lys 340	Phe	Val	Thr	Lys	Met 345	Tyr	Asp	Leu	Leu	Leu 350	Leu	Lys
45	Cys	Ala	Arg 355	Leu	Phe	Pro	Asp	Ser 360	Asn	Leu	Glu	Ala	Val 365	Leu	Asn	Asn
	Asp	Gly 370	Leu	Ser	Pro	Leu	Met 375	Met	Ala	Ala	Lys	Thr 380	Gly	Lys	Ile	Gly
50	Ile 385	Phe	Gln	His	Ile	Ile 390	Arg	Arg	Glu	Val	Thr 395	Asp	Glu	Asp	Thr	Arg 400
55	His	Leu	Ser	Arg	Lys 405	Phe	Lys	Asp	Trp	Ala 410	Tyr	Gly	Pro	Val	Tyr 415	Ser

	Ser	Leu	Tyr	Asp 420	Leu	Ser	Ser	Leu	Asp 425	Thr	Cys	Gly	Glu	Glu 430	Ala	Ser
5	Val	Leu	Glu 435	Ile	Leu	Val	Tyr	Asn 440	Ser	Lys	Ile	Glu	Asn 445	Arg	His	Glu
	Met	Leu 450	Ala	Val	Glu	Pro	Ile 455	Asn	Glu	Leu	Leu	Arg 460	Asp	Lys	Trp	Arg
10	Lys 465	Phe	Gly	Ala	Val	Ser 470	Phe	Tyr	Ile	Asn	Val 475	Val	Ser	Tyr	Leu	Cys 480
15	Ala	Met	Val	Ile	Phe 485	Thr	Leu	Thr	Ala	Tyr 490	Tyr	Gln	Pro	Leu	Glu 495	Gly
	Thr	Pro	Pro	Tyr 500	Pro	Tyr	Arg	Thr	Thr 505	Val	Asp	Tyr	Leu	Arg 510	Leu	Ala
20	Gly	Glu	Val 515	Ile	Thr	Leu	Phe	Thr 520	Gly	Val	Leu	Phe	Phe 525	Ile	Thr	Asn
	Ile	Lys 530	Asp	Leu	Phe	Met	Lys 535	Lys	Cys	Pro	Gly	Val 540	Asn	Ser	Leu	Phe
25	Ile 545	Asp	Gly	Ser	Phe	Gln 550	Leu	Leu	Tyr	Phe	Ile 555	Tyr	Ser	Val	Leu	Val 560
30	Ile	Val	Ser	Ala	Ala 565	Leu	Tyr	Leu	Ala	Gly 570	Ile	Glu	Ala	Tyr	Leu 575	Ala
	Val	Met	Val	Phe 580	Ala	Leu	Val	Leu	Gly 585	Trp	Met	Asn	Ala	Leu 590	Tyr	Phe
35	Thr	Arg	Gly 595	Leu	Lys	Leu	Thr	Gly 600	Thr	Tyr	Ser	Ile	Met 605	Ile	Gln	Lys
	Ile	Leu 610	Phe	Lys	Asp	Leu	Phe 615	Arg	Phe	Leu	Leu	Val 620	Tyr	Leu	Leu	Phe
40	Met 625	Ile	Gly	Tyr	Ala	Ser 630	Ala	Leu	Val	Ser	Leu 635	Leu	Asn	Pro	Cys	Ala 640
45	Asn	Met	Lys	Val	Cys 645	Asn	Glu	Asp	Gln	Thr 650	Asn	Cys	Thr	Val	Pro 655	Thr
	Tyr	Pro	Ser	Суs 660	Arg	qaA	Ser	Glu	Thr 665	Phe	Ser	Thr	Phe	Leu 670	Leu	Asp
50	Leu	Phe	Lys 675	Leu	Thr	Ile	Gly	Met 680	Gly	Asp	Leu	Glu	Met 685	Leu	Ser	Ser
	Thr	Lys 690	Tyr	Pro	Val	Val	Phe 695	Ile	Ile	Leu	Leu	Val 700	Thr	Tyr	Ile	Ile
55	Leu	Thr	Phe	Val	Leu	Leu	Leu	Asn	Met	Leu	Ile	Ala	Leu	Met	Gly	Glu

	705					710					715					720
_	Thr	Val	Gly	Gln	Val 725	Ser	Lys	Glu	Ser	Lys 730	His	Ile	Trp	Lys	Leu 735	Gln
5	Trp	Ala	Thr	Thr 740	Ile	Leu	Asp	Ile	Glu 745	Arg	Ser	Phe	Pro	Val 750	Phe	Leu
10	Arg	Lys	Ala 755	Phe	Arg	Ser	Gly	Glu 760	Met	Val	Thr	Val	Gly 765	Lys	Ser	Ser
	Asp	Gly 770	Thr	Pro	Asp	Arg	Arg 775	Trp	Cys	Phe	Arg	Val 780	Asp	Glu	Val	Asn
15	Trp 785	Ser	His	Trp	Asn	Gln 790	Asn	Leu	Gly	Ile	Ile 795	Asn	Glu	Asp	Pro	Gly 800
0.0	Lys	Asn	Glu	Thr	Tyr 805	Gln	Tyr	Tyr	Gly	Phe 810	Ser	His	Thr	Val	Gly 815	Arg
20	Leu	Arg	Arg	Asp 820	Arg	Trp	Ser	Ser	Val 825	Val	Pro	Arg	Val	Val 830	Glu	Leu
25	Asn	Lys	Asn 835	Ser	Asn	Pro	Asp	Glu 840	Val	Val	Val	Pro	Leu 845	Asp	Ser	Met
	Gly	Asn 850	Pro	Arg	Cys	Asp	Gly 855	His	Gln	Gln	Gly	Tyr 860	Pro	Arg	Lys	Trp
30	Arg 865	Thr	Asp	Asp	Ala	Pro 870	Leu									
35	<212	> 24 2> DN	ΙA	sapi e	ens											
	<400)> 8														

atggcggatt ccag cgaagg ccccageg gggcccgggg aggtggctga gctccccggg 60

gatgagagtg gcac cccagg tggggaggct tttcctctct cctccttggc caatctgttt 120

gagggggagg atggctccct ttcgccctca ccggctgatg ccagtcgccc tgctggccca 180

ggcgatgggc gaccaaatct gcgcatgaag ttccagggcg ccttccgcaa gggggtgccc 240

aaccccatcg atctgctgga gtccacccta tatgagtcct cggtggtgcc tgggcccaag 300

aaagcaccca tggactcact gtttgactac ggcacctatc gtcaccactc cagtgacaac 360

aagaggtgga ggaagaagat catagagaag cagccgcaga gccccaaagc ccctgcccct 420

cagccgccc ccatcctcaa agtcttcaac cggcctatcc tctttgacat cgtgtcccgg 480

ggetecaetg etgaleetgga egggetgete eeattettge tgaeecaleaa gaaaegeeta 540 actgatgagg agtttcgaga gccatctacg gggaagacct gcctgcccaa ggccttgctg 600 5 aacctgagca atggccgcaa cgacaccatc cetgtgctgc tggacatcgc ggagcgcacc 660 ggcaacatgc gggagttcat taactcgccc ttccgtgaca tctactatcg aggtcagaca 720 gccctgcaca tcgccattga gcgtcgctgc aaacactacg tggaacttct cgtggcccag 780 10 ggagetgatg teca egecca ggeccgtggg egettettee ageccaa gga tgaggggg gc 840 tacttetact ttggggaget geceetgteg etgget geet geaceaacea geeceacatt 900 15 gteaactacc tgacggagaa cccccacaag aaggcggaca tgcggcgcca ggactcgcga 960 ggcaacacag tgctgcatgc gctggtggcc attgctgaca acacccgtga gaacaccaag 1020 tttgttacca agatgtacga cctgctgctg ctcaagtgtg cccgcctctt ccccgacagc 2.0 aacctggagg ccgtgctcaa caacgacggc ctctcgcccc tcatgatggc tgccaagacg ggeaagattg agaaccgcca cgagatgctg gctgtggagc ccatcaatga actgctgcgg gacaagtggc gcaagttcgg ggccgtctcc ttctacatca acgtggtctc ctacctgtgt gecatggtca tottcactot cacegootac taceagoogc tggagggcac acegoogtac ccttacegca ccaeggtgga ctacetgegg ctggctggcg aggtcattac gctcttcact 30 ggggtcctgt tcttcatcac caacatcaaa gacttgttca tgaagaaatg ccctggagtg aattetetet teattgatgg etectteeag etgetetaet teatetaete tgteetggtg 35 atogtotoag cago cotota cotgg caggg atogaggect acctggcogt gatggtottt gccctggtcc tgggctggat gaatgccctt tacttcaccc gtgggctgaa gctgacgggg acctatagea teatgateea gaagattete tteaaggace titteegatt cetgetegte 40 tacttgetet teatgategg etaegettea geeetggtet eeeteetgaa eeegtgtgee aacatgaagg tgtgcaatga ggaccagacc aactgcacag tgcccactta cccctcgtgc 45 cgtgacagcg agaccttcag caccttcctc ctggacctgt ttaagctgac catcggcatg ggcgacctgg agatgctgag cagcaccaag taccccgtgg tcttcatcat cctgctggtg 1920 acctacatea tecteacett tgtgetgete etcaacatge teattgeeet catgggegag 50 acagtgggcc aggtctccaa ggagagcaag cacatctgga agctgcagtg ggccaccacc atcctggaca ttgagcgctc cttccccgta ttcctgagga aggccttccg ctctggggag 2100

55

180

atggtcaccg tgggcaagag ctcggacggc actectgacc gcaggtggtg cttcagggtg 2160 gatgaggtga actggtctca ctggaaccag aacttgggca tcatcaacga ggacccgggc 2220 aagaatgaga ceta ceagta ttatg gette tegeataceg tgggeeg eet eegcaggg at 2280 cgctggtcct cggtggtacc ccgcgtggtg gaactgaaca agaactcgaa cccggacgag gtggtggtgc ctctggacag catggggaac ccccgctgcg atggccacca gcagggttac 10 2400 ccccgcaagt ggaggactga tgacgccccg ctctag 2436 15 <210> 9 <211> 811 <212> PRT <213> Homo sapiens 20 <400> 9 Met Ala Asp Ser Ser Glu Gly Pro Arg Ala Gly Pro Gly Glu Val Ala 5 Glu Leu Pro Gly Asp Glu Ser Gly Thr Pro Gly Gly Glu Ala Phe Pro 25 Leu Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Asp Gly Ser Leu Ser 45 30 Pro Ser Pro Ala Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg Pro Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro 35 Asn Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val 90 Pro Gly Pro Lys Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr 40 Tyr Arg His His Ser Ser Asp Asn Lys Arg Trp Arg Lys Lys Ile Ile 120 45 Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro 130 Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg 150 155 50 Gly Ser Thr Ala Asp Leu Asp Gly Leu Leu Pro Phe Leu Leu Thr His 165 Lys Lys Arg Leu Thr Asp Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys

185

	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
5	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
10	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
10	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
15	Leu	Val	Ala	Gln 260	Gly	Ala	Asp	Val	His 265	Ala	Gln	Ala	Arg	Gly 270	Arg	Phe
	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
20	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
25	Thr 305	Glu	Asn	Pro	His	Lys 310	Lys	Ala	Asp	Met	Arg 315	Arg	Gln	Asp	Ser	Arg 320
13	Gly	Asn	Thr	Val	Leu 325	His	Ala	Leu	Val	Ala 330	Ile	Ala	Asp	Asn	Thr 335	Arg
30	Glu	Asn	Thr	Lys 340	Phe	Val	Thr	Lys	Met 345	Tyr	Asp	Leu	Leu	Leu 350	Leu	Lys
	Cys	Ala	Arg 355	Leu	Phe	Pro	Asp	Ser 360	Asn	Leu	Glu	Ala	Val 365	Leu	Asn	Asn
35	Asp	Gly 370	Leu	Ser	Pro	Leu	Met 375	Met	Ala	Ala	Lys	Thr 380	Gly	Lys	Ile	Glu
40	Asn 385	Arg	His	Glu	Met	Leu 390	Ala	Val	Glu	Pro	Ile 395	Asn	Glu	Leu	Leu	Arg 400
10	Asp	Lys	Trp	Arg	Lys 405	Phe	Gly	Ala	Val	Ser 410	Phe	Tyr	Ile	Asn	Val 415	Val
45	Ser	Tyr	Leu	Cys 420	Ala	Met	Val	Ile	Phe 425	Thr	Leu	Thr	Ala	Tyr 430	Tyr	Gln
	Pro	Leu	Glu 435	Gly	Thr	Pro	Pro	Tyr 440	Pro	Tyr	Arg	Thr	Thr 445	Val	Asp	Tyr
50	Leu	Arg 450	Leu	Ala	Gly	Glu	Val 455	Ile	Thr	Leu	Phe	Thr 460	Gly	Val	Leu	Phe
55	Phe 465	Ile	Thr	Asn	Ile	Lys 470	Asp	Leu	Phe	Met	Lys 475	Lys	Cys	Pro	Gly	Val 480

	Asn	Ser	Leu	Phe	Ile 485	Asp	Gly	Ser	Phe	Gln 490	Leu	Leu	Tyr	Phe	Ile 495	Tyr
5	Ser	Val	Leu	Val 500	Ile	Val	Ser	Ala	Ala 505	Leu	Tyr	Leu	Ala	Gly 510	Ile	Glu
	Ala	Tyr	Leu 515	Ala	Val	Met	Val	Phe 520	Ala	Leu	Val	Leu	Gly 525	Trp	Met	Asn
10	Ala	Leu 530	Tyr	Phe	Thr	Arg	Gly 535	Leu	Lys	Leu	Thr	Gly 540	Thr	Tyr	Ser	Ile
15	Met 545	Ile	Gln	Lys	Ile	Leu 550	Phe	Lys	Asp	Leu	Phe 555	Arg	Phe	Leu	Leu	Val 560
	Tyr	Leu	Leu	Phe	Met 565	Ile	Gly	Tyr	Ala	Ser 570	Ala	Leu	Val	Ser	Leu 575	Leu
20	Asn	Pro	Cys	Ala 580	Asn	Met	Lys	Val	Cys 585	Asn	Glu	Asp	Gln	Thr 590	Asn	Суѕ
	Thr	Val	Pro 595	Thr	Tyr	Pro	Ser	Cys 600	Arg	Asp	Ser	Glu	Thr 605	Phe	Ser	Thr
25	Phe	Leu 610	Leu	Asp	Leu	Phe	Lys 615	Leu	Thr	Ile	Gly	Met 620	Gly	Asp	Leu	Glu
30	Met 625	Leu	Ser	Ser	Thr	Lys 630	Tyr	Pro	Val	Val	Phe 635	Ile	Ile	Leu	Leu	Val 640
	Thr	Tyr	Ile	Ile	Leu 645	Thr	Phe	Val	Leu	Leu 650	Leu	Asn	Met	Leu	Ile 655	Ala
35	Leu	Met	Gly	Glu 660	Thr	Val	Gly	Gln	Val 665	Ser	Lys	Glu	Ser	Lys 670	His	Ile
	Trp	Tàa	Leu 675	Gln	Trp	Ala	Thr	Thr 680	Ile	Leu	Asp	Ile	Glu 685	Arg	Ser	Phe
40	Pro	Val 690	Phe	Leu	Arg	Lys	Ala 695	Phe	Arg	Ser	Gly	Glu 700	Met	Val	Thr	Val
45	Gly 705	Lys	Ser	Ser	Asp	Gly 710	Thr	Pro	Asp	Arg	Arg 715	Trp	Cys	Phe	Arg	Val 720
	Asp	Glu	Val	Asn	Trp 725	Ser	His	Trp	Asn	Gln 730	Asn	Leu	Gly	Ile	Ile 735	Asn
50	Glu	Asp	Pro	Gly 740	Lys	Asn	Glu	Thr	Tyr 745	Gln	Tyr	Tyr	Gly	Phe 750	Ser	His
	Thr	Val	Gly 755	Arg	Leu	Arg	Arg	Asp 760	Arg	Trp	Ser	Ser	Val 765	Val	Pro	Arg
55	Val	Val	Glu	Leu	Asn	Lys	Asn	Ser	Asn	Pro	Asp	Glu	Val	Val	Val	Pro

770 775 780

Leu Asp Ser Met Gly Asn Pro Arg Cys Asp Gly His Gln Gln Gly Tyr 785 790 795 800

Pro Arg Lys Trp Arg Thr Asp Asp Ala Pro Leu

10 <210> 10 <211> 2229 <212> DNA

5

15

20

25

30

35

40

45

<213> Homo sapiens

<400> 10 atggeggatt ceagegaagg ceecegegeg gggeeegggg aggtggetga geteeceggg 60 gatgagagtg gcaccccagg tggggaggct tttcctctct cctcctggc caatctgttt 120 gagggggagg atggctccct ttcgccctca ccggctgatg ccagtcgccc tgctggccca 180 ggcgatgggc gaccaaatct gcgcatgaag ttccagggcg ccttccgcaa gggggtgccc 240 aaccccatcg atctgctgga gtccacccta tatgagtcct cggtggtgcc tgggcccaag 300 aaagcaccca tggactcact gtttgactac ggcacctatc gtcaccactc cagtgacaac 360 aagaggtgga ggaagaagat catagagaag cagccgcaga gccccaaagc ccctgcccct 420 cagcegecce ceatecteaa agtetteaac eggeetatee tetttgacat egtgteeegg 480 ggetecactg etgacetgga egggetgete ceattettge tgacecacaa gaaaegeeta 540 actgatgagg agtttcgaga gccatctacg gggaagacct gcctgcccaa ggccttgctg 600 aacctgagca atgg ccgcaa cgacaccatc cctgtg ctgc tggacat cgc ggagcgcacc 660 ggcaacatga gggagttcat taactcgccc ttccgtgaca tctactatcg aggtcagaca 720 gccctgcaca tcgccattga gcgtcgctgc aaacactacg tggaacttct cgtggcccag 780 ggagetgatg teca egecca ggecegtggg egettettee ageccaa gga tgagggggg 840 tacttctact ttggggagct gcccctgtcg ctggctgcct gcaccaacca gccccacatt 900 gtcaactacc tgacggagaa cccccacaag aaggcggaca tgcggcgcca ggactcgcga 960

ggcaacacag tget geatge getggtgge attget gaca acaccegtga gaacaccaag
1020

50 tttgttacca agat gtacga cetgetgetg etcaag tgtg ecegeetett eceegacage
1080
aacetggagg ecgt geteaa caacgaegge etctegeece teatgat gge tgecaagaeg
1140
ggcaagattg ggat etttea geacateate eggeggagg tgaeggatga ggaeacaegg
55 1200

n manyan nga 11

cacctgtccc gcaagttcaa ggactgggcc tatgggccag tgtattcctc gctttatgac 1260 ctctcctccc tgga cacgtg tggggaagag gcctccgtgc tggagatcct ggtgtacaac agcaagattg agaa ccgcca cgaga tgctg gctgtggagc ccatcaa tga actgctgcgg gacaagtggc gcaagttcgg ggccgtctcc ttctacatca acgtggtctc ctacctgtgt gccatggtca tcttcactct caccg cctac taccag ccgc tggaggg cac accgccgt ac 10 cettacegea ceaeggtgga ctacetgegg etggetggeg aggteattae getetteaet ggggtcctgt tcttcttcac caacatcaaa gacttgttca tgaagaaatg ccctggagtg 1620 15 aattetetet teattgatgg eteetteeag etgetetaet teatetaete tgteetggtg atogtotoag cago cotota cotgg caggg atogaggcot acotggo ogt gatggtot tt gccctggtcc tgggctggat gaatgccctt tacttcaccc gtgggctgaa gctgacgggg acctatagea teatgateea gaagattete tteaaggace tttteegatt cetgetegte tacttgetet teatgategg etaegettea gecetggtet eceteetgaa eeegtgtgee aacatgaagg tgtgcaatga ggaccagacc aactgcacag tgcccactta cocctcgtgc cgtgacagcg agaccttcag caccttcctc ctggacctgt ttaagctgac catcggcatg ggcgacctgg agat gctgag cagcaccaag taccccgtgg tetteateat cetgetggtg 30 2100 acctacatca tecteacett tgtgetgete eteaacatge teattgeeet catgggegag acagtgggcc aggtctccaa ggagagcaag cacatctgga agctgcagag cggcaggcgc 2220 35 aggctgtga 2229 <210> 11 <211> 4059 40 <212> DNA <213> Homo sapiens 45 tgtgcaggcc agggagggct ttccagagga gcccagttga gctggaacac cagtggggag 60 gagttgacca gcaaaggtgc agggatgggat cagcactttg cactggggag cagagtttgt 120 gcactgggga agtcaactca agtattggag cctcagtttc ctgttctgta aaatgggttc 180 50 atcatgacag tgtttgatga ggaaaaggac tgccggccta cacagcaagt ccacatggat 240

tttctgagec cctcctgtgc ctgaagccca cggttaatgg ttctgcctta gcaggtgctt 300

01.50

accacgtgcc aggcactgca ctgcactggc cactggactg catgttctgt ccatgaggct 360 tggatatccc catcttacag atcaggaagc tgaggctatg aaatgtcgac ttgctcaatg 420 5 tcatggaatg actaagtgtg gagcctggat ttgaacttgg ctctctgggg ctccaaagct 480 ggctttcttg gtcagcagta gggtctggga tccaagtatg gggtcccagc ttgaccttga 540 agtocaccet ctttcagcta atgcccaagg tagttggacc tggggccaat ttgtgtttcc 600 10 aggttegtga aagageteet gttgeagtte eegeetgagg ettggeggee aaceaeatet 660 gggagtggcc tccctgtgcc cctgt catta caacggtggc tttgaag cag ctggcagcac 720 15 tgetgettgt ceaegtggaa gggggettee tggageecee geecetggee gggttetgee 780 tgactcccct ttcattccct tgcaggctga gcagtgcaga cgggcctggg gcaggcatgg 840 eggattecag egaa ggeece egegeggge eegggg aggt ggetgagete eeegggga tg 900 20 agagtggcac cccaggtggg gaggcttttc ctctctcctc cctggccaat ctgtttgagg 960 gggaggatgg ctccctttcg ccctcaccgg ctgatgccag tcgccctgct ggcccaggcg 1020 25 atgggcgacc aaat ctgcgc atgaagttcc agggcgcctt ccgcaagggg gtgcccaacc ccatcgatct gctggagtcc accctatatg agtcctcggt ggtgcctggg cccaagaaag cacccatgga ctcactgttt gactacggca cctatcgtca ccactccagt gacaacaaga ggtggaggaa gaagatcata gagaagcagc cgcagagccc caaagcccct gcccctcagc egecececat ceteaaagte tteaacegge etateetett tgacategtg teeegggget 35 ccactgctga cctggacggg ctgctcccat tcttgctgac ccacaagaaa cgcctaactg atgaggagtt tegagageea tetaegggga agacetgeet geecaaggee ttgetgaace tgagcaatgg ccgcaacgac accat ccctg tgctgctgga catcgcggag cgcaccggca 40 acatgaggga gttcattaac tcgcccttcc gtgacatcta ctatcgaggt cagacagccc tgcacatcgc cattgagcgt cgctgcaaac actacgtgga acttctcgtg gcccagggag 1620 45 ctgatgtcca egec caggce cgtgggeget tettecagec caaggatgag gggggetaet tetaetttgg ggag etgece etgtegetgg etgeet geac caaccag eec cacattgt ca 1740 actacctgac ggagaacccc cacaagaagg cggacatgcg gcgccaggac tcgcgaggca 1800 acacagtgct gcatgcgctg gtggccattg ctgacaacac ccgtgagaac accaagtttg ttaccaagat gtacgacctg ctgctgctca agtgtgcccg cctcttcccc gacagcaacc 1920

tgqaggccgt gctcaacaac gacggcctct cgcccctcat gatggctgcc aagacgggca 1980 agattgggat ctttcagcac atcatccggc gggaggtgac ggatgaggac acacggcacc tgtcccgcaa gttcaaggac tgggcctatg ggccagtgta ttcctcgctt tatgacctct cctccctgga cacgtgtggg gaagaggcct ccgtgctgga gatcctggtg tacaacagca agattgagaa ccgccacgag atgctggctg tggagcccat caatgaactg ctgcgggaca 10 agtggcgcaa gttcggggcc gtctccttct acatcaacgt ggtctcctac ctgtgtgcca tggtcatctt cactctcacc gcctactacc agccgctgga gggcacaccg ccgtaccctt 15 accgcaccac ggtggactac ctgcggctgg ctggcgaggt cattacgctc ttcactgggg tectgttett etteaceaac ateaaagaet tgtteatgaa gaaatgeeet ggagtgaatt ctctcttcat tgatggctcc ttccagctgc tctacttcat ctactctgtc ctggtgatcg teteageage cetetacetg geagggateg aggeetacet ggeegtgatg gtetttgeee tggtcctggg ctggatgaat gccctttact tcacccgtgg gctgaagctg acggggacct atagcatcat gatccagaag attctcttca aggacctttt ccgattcctg ctcgtctact tgctcttcat gatcggctac gcttcagccc tggtctccct cctgaacccg tgtgccaaca tgaaggtgtg caatgaggac cagaccaact gcacagtgcc cacttacccc tcgtgccgtg 30 acagcgagac cttcagcacc ttcctcctgg acctgtttaa gctgaccatc ggcatgggcg acctggagat gctgagcagc accaagtacc ccgtggtctt catcatcctg ctggtgacct 2940 acateatect cacettigtg etgetectea acatgeteat tgeceteatg ggegagaeag 35 tgggccaggt ctccaaggag agcaa gcaca tctggaagct gcagagcggc aggcgcaggc tgtgaggete acegatgtee etectgacee teecteeceg cagtgggeca ecaccateet 40 3120 ggacattgag egeteettee eegtatteet gaggaaggee tteegetetg gggagatggt 3180 caccgtgggc aagagctcgg acggcactcc tgaccgcagg tggtgcttca gggtggatga 3240 ggtgaactgg tctcactgga accagaactt gggcatcatc aacgaggacc cgggcaagaa tgagacetae eagtattatg gettetegea tacegtggge egecteegea gggategetg gtcctcggtg gtaccccgcg tggtggaact gaacaagaac tcgaacccgg acgaggtggt 50 3420 ggtgcctctg gacagcatgg ggaacccccg ctgcgatggc caccagcagg gttacccccg caagtggagg actgatgacg coccgctcta gggactgcag cccagcccca gcttctctgc 3540

ccactcattt ctagtccage egeatttcag cagtgccttc tggggtgtcc ccccacaccc tgctttggcc ccag aggcga gggaccagtg gaggtgccag ggaggcccca ggaccctgtg gteceetgge tetgeeteec caecetgggg tgggggetee eggecacetg tettgeteet atggagtcac ataagccaac gccagagccc ctccacctca ggccccagcc cctgcctctc cattatttat ttgctctgct ctcaggaagc gacgtgaccc ctgccccagc tggaacctgg 1.0 cagaggeett aggaccccgt tecaagtgea etgeceggee aageeecage etcageetge geotgagetg catglegecal cattlettgge agegtggeag etttgealagg ggetgggglee 3960 ctcggcgtgg ggccatgcct tctgtgtgtt ctgtagtgtc tgggatttgc cggtgctcaa taaatgttta ttcattgacg gtggaaaaaa aaaaaaaaa 4059 20 <210> 12 <211> 742 <212> PRT <213> Homo sapiens 25 <400> 12 Met Ala Asp Ser Ser Glu Gly Pro Arg Ala Gly Pro Gly Glu Val Ala Glu Leu Pro Gly Asp Glu Ser Gly Thr Pro Gly Gly Glu Ala Phe Pro 25 Leu Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Asp Gly Ser Leu Ser 35 Pro Ser Pro Ala Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg Pro Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro 40 70 Asn Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val Pro Gly Pro Lys Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr 45 Tyr Arg His His Ser Ser Asp Asn Lys Arg Trp Arg Lys Lys Ile Ile 50 Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro 130 135 Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg 55 150 155

	Gly	Ser	Thr	Ala	Asp 165	Leu	Asp	Gly	Leu	Leu 170	Pro	Phe	Leu	Leu	Thr 175	His
5	Lys	Lys	Arg	Leu 180	Thr	Asp	Glu	Glu	Phe 185	Arg	Glu	Pro	Ser	Thr 190	Gly	Lys
10	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
15	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
20	Leu	Val	Ala	Gln 260	Gly	Ala	Asp	Val	His 265	Ala	Gln	Ala	Arg	Gly 270	Arg	Phe
25	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
30	Thr 305	Glu	Asn	Pro	His	Lys 310	Lys	Ala	Asp	Met	Arg 315	Arg	Gln	Asp	Ser	Arg 320
	Gly	Asn	Thr	Val	Leu 325	His	Ala	Leu	Val	Ala 330	Ile	Ala	Asp	Asn	Thr 335	Arg
35	Glu	Asn	Thr	Lys 340	Phe	Val	Thr	Lys	Met 345	Tyr	Asp	Leu	Leu	Leu 350	Leu	Lys
40	Cys	Ala	Arg 355	Leu	Phe	Pro	Asp	Ser 360	Asn	Leu	Glu	Ala	Val 365	Leu	Asn	Asn
	Asp	Gly 370	Leu	Ser	Pro	Leu	Met 375	Met	Ala	Ala	Lys	Thr 380	Gly	Lys	Ile	Gly
45	Ile 385	Phe	Gln	His	Ile	Ile 390	Arg	Arg	Glu	Val	Thr 395	Asp	Glu	Asp	Thr	Arg 400
	His	Leu	Ser	Arg	Lys 405	Phe	Lys	Asp	Trp	Ala 410	Tyr	Gly	Pro	Val	Tyr 415	Ser
50	Ser	Leu	Tyr	Asp 420	Leu	Ser	Ser	Leu	Asp 425	Thr	Cys	Gly	Glu	Glu 430	Ala	Ser
55	Val	Leu	Glu 435	Ile	Leu	Val	Tyr	Asn 440	Ser	Lys	Ile	Glu	Asn 445	Arg	His	Glu

Met Leu Ala Val Glu Pro Ile Asn Glu Leu Leu Arg Asp Lys Trp Arg 455 Lys Phe Gly Ala Val Ser Phe Tyr Ile Asn Val Val Ser Tyr Leu Cys 470 475 Ala Met Val Ile Phe Thr Leu Thr Ala Tyr Tyr Gln Pro Leu Glu Gly 490 Thr Pro Pro Tyr Pro Tyr Arg Thr Thr Val Asp Tyr Leu Arg Leu Ala 10 505 Gly Glu Val Ile Thr Leu Phe Thr Gly Val Leu Phe Phe Phe Thr Asn 520 15 Ile Lys Asp Leu Phe Met Lys Lys Cys Pro Gly Val Asn Ser Leu Phe 535 Ile Asp Gly Ser Phe Gln Leu Leu Tyr Phe Ile Tyr Ser Val Leu Val 20 555 Ile Val Ser Ala Ala Leu Tyr Leu Ala Gly Ile Glu Ala Tyr Leu Ala Val Met Val Phe Ala Leu Val Leu Gly Trp Met Asn Ala Leu Tyr Phe Thr Arg Gly Leu Lys Leu Thr Gly Thr Tyr Ser Ile Met Ile Gln Lys 30 Ile Leu Phe Lys Asp Leu Phe Arg Phe Leu Leu Val Tyr Leu Leu Phe 615 Met Ile Gly Tyr Ala Ser Ala Leu Val Ser Leu Leu Asn Pro Cys Ala 35 Asn Met Lys Val Cys Asn Glu Asp Gln Thr Asn Cys Thr Val Pro Thr 650 40 Tyr Pro Ser Cys Arg Asp Ser Glu Thr Phe Ser Thr Phe Leu Leu Asp 665 Leu Phe Lys Leu Thr Ile Gly Met Gly Asp Leu Glu Met Leu Ser Ser 45 Thr Lys Tyr Pro Val Val Phe Ile Ile Leu Leu Val Thr Tyr Ile Ile 695 Leu Thr Phe Val Leu Leu Leu Asn Met Leu Ile Ala Leu Met Gly Glu 50 Thr Val Gly Gln Val Ser Lys Glu Ser Lys His Ile Trp Lys Leu Gln 55 Ser Gly Arg Arg Arg Leu

5	<210><211><212><213>	25		
10	<220> <223>	Description of Artificial oligonucleotide	Sequence:	
15	<400> ctacct	13 gacg gagaaccccc acaag		25
20	<210><211><212><213>	26		
25	<220> <223>	Description of Artificial oligonucleotide	Sequence:	
	<400> gtagta	14 Iggcg gtgagactga agatga		26
30				
35	<210> <211> <212> <213>	51		
40		Description of Artificial oligonucleotide	Sequence:	
10	<400> aacgtt	15 ggcg gccgcgccac catggcggat	tccagcgaag gcccccgcgc g	51
45	<210><211><211><212><213>	30		
50		Description of Artificial oligonucleotide	Sequence:	
55	<400>	16		

aacgtttcta gactgggctg cagtccctag

30

	•	
5	<210> 17 <211> 233 <212> DNA <213> Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: DNA Micro Array probe	
15	<400> 17 ccaccatcct ggacattgag cgctccttcc ccgtattcct gaggaaggcc ttccgctctg	60
	gggagatggt caccgtgggc aagagctcgg acggcactcc tgaccgcagt ggtgcttcag	12
20	ggtggatgag gtgaactggt ctcactggaa ccagaacttg ggcatcatca acgaggaccc	18
20	gggcaagaat gagacctacc agtattatgg cttctcgcat accgtgggcc gcc	23