

Data Boot Camp

Lesson 22.4

Congratulations!

- You've (almost) made it to the end of the course.
- You have learned many technologies used in data analytics, like SQL and Python/Pandas.
- You have acquired quantitative skills, including statistical analysis.
- You have learned the crucial skills of data visualization and data storytelling.
- The final project is an opportunity to integrate and showcase all of these skills.

Class Objectives

By the end of this lesson, you will be able to:

Set up a Databricks environment and identify its key components.

Navigate the Databricks workspace using dbutils.

Import data into a new notebook using the following sources: Parquet, CSV, and S3.

Explain the advantage of Parquet as a big-data storage format.

Perform complex data analysis using Python and SQL interfaces.

Identify two advantages of using Databricks over PySpark in data analysis.

Instructor Demonstration Introduction to Databricks

What is Databricks? Introduction to Databricks

- A cloud platform for running Apache Spark for big data analysis.
- Provides a robust system to manage and optimize clusters of computers for data analysis.
- Remember, a cluster is a network of machines that coordinate and divide up data-related tasks.

Databricks Advantages Introduction to Databricks

- Ease of use. Databricks can scale activity depending on need.
- Real-time collaboration. Multiple people can work on the same notebook simultaneously.
- Potential savings in time and cost. Pay for what you use. Eliminates need for a separate administrator.
- Flexible use of multiple languages: Python, SQL, R, Scala.

Large-scale data analytics is moving toward cloud platforms like Databricks.

Example of shared Databricks notebook

Parquet Introduction to Databricks

- Like CSV or JSON, Parquet is a data storage format.
- Parquet is commonly used with Spark.
- Unlike CSVs, where rows are read into a Pandas DataFrame, Parquet allows selective loading of columns.
- Question: What's a potential advantage of using Parquet?

Parquet Introduction to Databricks

- Traditional data formats store data by row. Therefore, if we use multiple nodes to perform Spark queries, each node would need to load a copy of all rows in a dataset. Making complete copies of our data is both slow and storage-intensive.
- Instead of storing data row-by-row, Spark can use Parquet format, which stores data in columnar format.
- Parquet allows us to store and retrieve only selected columns in the data. Loading only the specified columns can lead to savings in time and computing resources.

Optimizing Spark — Data Storage

"Columnar" refers to how the data is stored.

- In a columnar format, each column of a row is stored separately, with a reference to all of its columns.
- This allows you to query and filter a single column and return only the selected columns in your query with great efficiency.
- This also greatly reduces the amount of reading Spark needs to do.

Activity: Sign Up for Databricks

In this activity, you will sign up for a free Databricks Community Edition account.

Instructions: Activity: Sign Up for Databricks

- Sign up for a Databricks Community Edition account.
- If you finish early, continue to explore the Databricks interface.

• Bonus:

Upload the included data files to Databricks. Create a Spark DataFrame for each.

Let's Review

Instructor Demonstration Databricks Demo

Activity: Databricks Basics

In this activity, you will create a Databricks notebook and perform basic data analysis using Python and SQL interfaces.

Instructions: Activity: Databricks Basics

- Upload vehicles.csv to Databricks.
- Create a blank Databricks notebook and use dbutils to note the location of the CSV.
- Create a Spark DataFrame of the dataset and preview the DataFrame.
- Create a PySpark query to obtain the number of vehicles for sale by type of transmission.
- Create a bar chart of the results.
- Perform the same query and visualization using SQL. You will need to create a temporary table in order to do this.

Bonus:

- The same dataset is available in Parquet format.
- Load only the following columns of the dataset into a Spark DataFrame: year, manufacturer, and transmission.
- Using PySpark, obtain the number of vehicles per sale by manufacturer.

Let's Review

Instructor Demonstration Joins

Activity: Joins in Databricks

In this activity, you will perform joins on datasets, using both PySpark and SQL interfaces in Databricks.

Instructions: Activity: Joins in Databricks

- Use the S3 links to create a Spark DataFrame for each.
- Use display to preview the DataFrames. Count the number of rows in each DataFrame.
- Join the two DataFrames in order to answer the following questions using PySpark: How many birds are there in the dataset? How many rodents were recorded in 1978?
- Create a temporary table of each DataFrame. Preview the first 5 rows and perform the same queries above, this time in SQL.

Let's Review

Activity: Group Activity

In this activity, you will work in groups to perform data analysis using a database of a fictional company. You'll put together all the skills you learned today and in this course, such as loading multiple data sources, analyzing data, visualizing data, and presenting findings.

Instructions: Activity: Group Activity

- For each data file, create a Spark DataFrame and a temporary view.
- Run **spark.catalog.listTables()** to verify that the tables have been created.
- Create requested queries using SQL. Feel free to create additional queries of your own.
- Use the results of your data analysis to create a brief report (about 3 to 5 slides).
 - Make three actionable recommendations. Support each recommendation with a data finding.
 - Use visualizations where appropriate.
- Send the link of your presentation slides to your instructor.

Activity: Group Presentations

In this activity, you will present your results.

Let's Review