Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Afsaneh Mastouri* 1

Yuchen Zhu^{* 1} Limor Gultchin ²⁴ Anna Korba ⁵ Ricardo Silva ¹ Matt J. Kusner ¹

Arthur Gretton^{† 1} Krikamol Muandet^{† 3}

¹University College London

²University of Oxford ³Max Planck Institute for Intelligent Systems ⁴The Alan Turing Institute

Proximal Causal Learning

Estimate Average Treatment Effect (ATE)

Method 1

 $\mathbb{E}[Y \mid do(A)]$

Method 2

Kernel Proxy Variable (KPV) input $\{a, z, x, w\} \sim P(A, Z, X, W)$ data $\{a,z,x,y\} \sim P(A,Z,X,Y)$

Proxy Maximum Moment Restriction (PMMR)

 $\{a, z, x, w, y\} \sim P(A, Z, X, W, Y)$

Proximal Setting vs. Instrumental Variable Setting

The Proximal Problem

$\mathbb{E}[Y|A,X,Z] = \int_{\mathcal{W}} h(A,X,W) \, dF(W|A,X,Z)$

Learn h, solution to above Fredholm integral equation. It follows:

$$\mathbb{E}[Y|do(A) = a] = \mathbb{E}_{X,W} h(a, X, W)$$

Contributions

Kernel Algorithms: KPV + PMMR

- f 1 Proposed two kernel-based algorithms related by duality of the loss objective; derived their connection and demonstrated our methods can be applied to a more general class of inverse problems that involve a solution to a Fredholm integral equation.
- 2 Derive convergence guarantees for two proposed algorithms.

Algorithm 1: Two-stage Kernel Proxy Variable (KPV)

Stage 1 Learn expected value of feature of W as function of A, X, Zvia Kernel Ridge Regression: $\mu_{W|A,X,Z} := \mathbb{E}[\phi(W) \mid A,X,Z]$

Stage 2 $\hat{\boldsymbol{h}} = \arg\min_{h} \mathbb{E}[(Y - \langle \boldsymbol{h}, \psi(A, X) \otimes \mu_{W|A, X, Z} \rangle_{\mathcal{H}_{AXW}})^2]$ via KRR

Flexibility h can be inferred from sub-samples A, X, W and A, X, Z

Algorithm 2: Proximal Maximum Moment Restriction (PMMR)

A single-step solution

Transfer minimising the discrepancy between the two sides of (1) into working with a weighted regression objective:

 $\min_{h} \mathbb{E}[(Y - h(A, W, X))(Y' - h(A', W', X'))k((A, Z, X), (A', Z', X'))]$

Empirical Results

Example 1: Synthetic Simulation

Example 2: Grade Retention on Cognitive Outcome

References

- [1] Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. Identifying causal effects with proxy variables of an unmeasured confounder Biometrika, 105(4):987--993, 2018
- [2] Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to proximal causal learning. arXiv preprint