Clustering data into k clusters

Given n points in \mathbb{R}^n split them into "similar" groups. This problem is tough even if the number of groups is known, which is the only case we consider.

Input: m feature vectors x_1, \ldots, x_m , and the value of k.

Output: Partitioning of the data into k classes.

There are several ways to describe the partitions. One is an index function c(i):

$$c(i) = j \Leftrightarrow x_i \text{ belongs to class } j$$

Another one is a membership function c(i, j):

$$c(i,j) = \begin{cases} 1 & x_i \text{ belongs to class } j \\ 0 & \text{otherwise} \end{cases}$$

A probabilistic, or fuzzy version of the membership function is:

$$c(i,j) = p_{i,j}$$

subject to the conditions: $p_{ij} \ge 0$, and for each $i, \sum_j p_{ij} = 1$. Here the value of p_{ij} is the probability, or the likelihood, that x_i belongs to class j.

K-means clustering

The output of K-means is sometimes called *hard partition*. Define the quantization error by:

$$E = \sum_{j=1}^{k} \sum_{c(i)=j} |x_i - u_j|^2 = \sum_{i=1}^{m} |x_i - u_{c(i)}|^2$$

Keeping c(i) unchanged, the value of u_j that minimizes E is: can be computed by taking the derivative of E with respect to to u_j and equating to 0. Observe that only the terms $|x_i - u_j|^2$ depend on u_j , and

$$\frac{\partial}{\partial u_i} |x_i - u_j|^2 = \frac{\partial}{\partial u_i} (|x_i|^2 - 2x_i^T u_j + |u_j|^2) = 2u_j - 2x_i$$

Therefore:

$$\frac{\partial}{\partial u_j} \frac{E}{2} = \sum_{c(i)=j} (u_j - x_i) = m_j u_j - \sum_{c(i)=j} x_i$$

where $m_j = \sum_{c(i)=j} 1$ is the number of points in class j. This gives:

for all
$$j$$
, $u_j = \frac{\sum_{c(i)=j} x_i}{m_j}$ (1)

Keeping u_i unchanged, the value of c(i) that minimizes E is:

for all
$$i$$
, $c(i) = \arg\min_{i} |x_i - u_j|^2$ (2)

Typical algorithm:

- **0.** Start with a guess for $u_1, \ldots u_k$, or a guess for the c(i).
- 1. Iterate until convergence the equations (1),(2).

It is easy to verify that each iteration reduced the error E, which proves convergence. Unfortunately the algorithm "almost always" gets stuck in a local minimum. The standard approach is to run it many times with different initial estimates, and select the partitioning that gives the smallest value of E.

Lloyd's algorithm

Lloyd described a specific formulation of randomizing the initial step of the algorithm. In Lloyd's version Step 0 is implemented as follows:

0. Select the initial u_i uniformly at random from x_1, \ldots, x_m .

Kmeans++

Here we spend more time on the initial step, the initial selection of u_1, \ldots, u_k .

- **0.1.** Select u_1 uniformly at random from x_1, \ldots, x_m .
- **0.2.** Assuming that u_1, \ldots, u_t are already selected, with t < k. Use the following procedure to select u_{t+1} :
 - **0.2.1** for each x_i compute the value d_i as:

$$d_i = \min_j |x_i - u_j|^2$$

0.2.2 Compute the probability values:

$$Z = \sum_{i} di, \quad p_i = \frac{d_i}{Z}$$

0.2.3 Select one of the x_i at random according to the probabilities p_i . Set it as u_{t+1} .