TRANSFER FUNCTIONS AND INTERVENTION MODELS

Outcome: Describe the transfer functions and intervention models

Introduction

- ARIMA models can be improved by introducing certain inputs reflecting these changes in the process conditions.
- This will lead to what is known as transfer function—noise models.

Transfer Function Models

- Transfer function models are used to understand the relationship between an input time series and an output time series.
- They are particularly useful when you have leading indicators or other exogenous variables that can help improve the accuracy of your forecasts.
- These models can be seen as an extension of ARIMA (Auto-Regressive Integrated Moving Average) models, incorporating external variables to better predict future values

Transfer Function Models

Key Components

- Input Series: The external variable that influences the output series.
- Output Series: The main time series you are trying to forecast.
- **Transfer Function**: Describes how the input series affects the output series over time.

Intervention Models

- Intervention models, also known as interrupted time series analysis, are used to evaluate the impact of an intervention or event on a time series.
- This could be a policy change, a new regulation, or any significant event that might disrupt the usual pattern of the data².
- Definition: Intervention models are frameworks used to evaluate the impact of specific actions or policies aimed at changing an outcome.
- They are commonly employed in social sciences, health interventions, and program evaluations.

- Components: An intervention model typically includes:
 - Inputs: Resources, actions, or strategies implemented.
 - Outputs: Immediate results or responses from the intervention.
 - Outcomes: Long-term effects or changes in behavior, health, or conditions.

- **Types**: Common types of intervention models include:
 - **Logic Models**: Visual representations that outline the relationship between resources, activities, outputs, and outcomes.
 - **Causal Models**: Used to understand the cause-and-effect relationships in interventions.

Intervention Models

Applications

- Economics: Evaluating the impact of policy changes on economic indicators.
- Healthcare: Assessing the effect of new treatments or health policies.
- Marketing: Measuring the impact of advertising campaigns on sales.

Transfer Function Models

 Transfer function models are a powerful tool in time series analysis, used to model the relationship between an input (or exogenous) time series and an output (or dependent) time series.

Key Components

- Input Series (X): This is the external variable that influences the output series. For example, in an economic model, this could be a leading indicator like interest rates.
- Output Series (Y): This is the main time series you are trying to forecast, such as GDP or sales figures.
- **Transfer Function**: This function describes how the input series affects the output series over time. It typically includes parameters that capture the delay and the magnitude of the effect.

Mathematical Representation

• A simple transfer function model can be represented as:

$$Y_{t} = \sum_{i=0}^{q} \delta_{i} X_{t-i} + \sum_{j=1}^{p} \phi_{j} Y_{t-j} + \epsilon_{t}$$

• Where:

- (Y_t) is the output series at time (t).
- (X_{t-i}) is the input series at time (t-i).
- (\delta_i) are the coefficients that measure the impact of the input series.
- (\phi j) are the coefficients for the autoregressive part of the model.
- (\epsilon_t) is the error term.

Steps to Build a Transfer Function Model

- 1. Identify the Input and Output Series: Determine which series will be the input and which will be the output.
- **2. Preliminary Analysis**: Conduct exploratory data analysis to understand the characteristics of both series.
- **3. Model Identification**: Use techniques like cross-correlation to identify the appropriate lag structure.
- **4. Parameter Estimation**: Estimate the parameters of the transfer function using methods like maximum likelihood estimation.
- **5. Model Diagnostics**: Check the residuals of the model to ensure they behave like white noise.
- **6. Forecasting**: Use the model to make forecasts of the output series based on future values of the input series.

Example: Transfer Function Model in R

Step 1: Install and Load Necessary Packages

First, ensure you have the necessary packages installed and loaded.

R

install.packages("forecast") install.packages("tseries") library(forecast) library(tseries)

Step 2: Load and Prepare Data

Load your data into R. For this example, let's assume you have two time series: sales and ad_spend.

R

```
# Example data sales <- ts(c(100, 120, 130, 150, 160, 180, 200, 220, 240, 260), frequency = 12) ad_spend <- ts(c(10, 15, 20, 25, 30, 35, 40, 45, 50, 55), frequency = 12)
```

Example: Transfer Function Model in R

Step 3: Identify the Transfer Function Model

Use cross-correlation to identify the relationship between the input and output series.

R

ccf(ad_spend, sales)

Step 4: Fit the Transfer Function Model

Fit the transfer function model using the Arima function from the forecast package.

R

Fit ARIMA model with ad_spend as an external regressor model <-Arima(sales, xreg = ad_spend, order = c(1, 0, 0)) summary(model)

Step 5: Forecast Using the Model

Use the fitted model to make forecasts.

R

Forecast future sales with future ad_spend values future_ad_spend <ts(c(60, 65, 70), frequency = 12) forecasted_sales <- forecast(model, xreg = future_ad_spend) plot(forecasted_sales)

Transfer Function—Noise Models

- Transfer function—noise models are an extension of transfer function models that include a noise component to account for the unexplained variability in the output series.
- These models are particularly useful when the relationship between the input and output series is not perfect, and there is some residual noise that needs to be modeled separately.

Key Components

- Input Series (X): The external variable influencing the output series.
- Output Series (Y): The main time series you are trying to forecast.
- **Transfer Function**: Describes how the input series affects the output series over time.
- **Noise Component**: Captures the residual variability in the output series that is not explained by the input series.

Mathematical Representation

• A transfer function-noise model can be represented as:

$$Y_t = \sum_{i=0}^{q} \delta_i X_{t-i} + \sum_{j=1}^{p} \phi_j Y_{t-j} + N_t$$

Where:

- •(Y_t) is the output series at time (t).
- •(X_{t-i}) is the input series at time (t-i).
- •(\delta_i) are the coefficients that measure the impact of the input series.
- •(\phi_j) are the coefficients for the autoregressive part of the model.
- •(N_t) is the noise component, which can be modeled as an ARIMA process.

Steps to Build a Transfer Function—Noise Model

- 1. Identify the Input and Output Series: Determine which series will be the input and which will be the output.
- Preliminary Analysis: Conduct exploratory data analysis to understand the characteristics of both series.
- **3. Model Identification**: Use techniques like cross-correlation to identify the appropriate lag structure for the transfer function.
- 4. Fit the Transfer Function: Estimate the parameters of the transfer function.
- **5. Model the Noise Component**: Fit an ARIMA model to the residuals (noise component) of the transfer function model.
- **6. Combine Models**: Combine the transfer function and noise models to form the complete transfer function—noise model.
- 7. Model Diagnostics: Check the residuals of the combined model to ensure they behave like white noise.
- 8. Forecasting: Use the combined model to make forecasts of the output series based on future values of the input series.

Transfer Function—Noise Models in R using the tfarima package: Example

1.Install and Load the Package:

R

install.packages("tfarima") library(tfarima)

2. Prepare Your Data: Ensure your data is in a time series format. You can use the ts function to convert your data if needed.

R

data <- ts(your_data, start = c(Year, Month), frequency = 12) # Example for monthly data

Transfer Function—Noise Models in R using the tfarima package: Example

3. **Identify the Model**: Use the identifyTF function to identify the transfer function model.

R

identifyTF(data, input_series)

4. Estimate the Model: Use the estimateTF function to estimate the parameters of the transfer function model.

R

model <- estimateTF(data, input_series, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S))

Transfer Function—Noise Models in R using the tfarima package: Example

5. Diagnose the Model: Check the residuals of the model to ensure it fits well.RcheckResiduals(model)

6. Forecast Using the Model: Use the forecastTF function to make predictions.Rforecast <- forecastTF(model, h = 12) # Forecasting 12 periods ahead

plot(forecast)

Cross-correlation

- Cross-correlation is a statistical measure that describes the similarity between two time series as a function of the lag of one relative to the other.
- It's often used in signal processing, pattern recognition, and time series analysis to find the degree to which two series are correlated.

Definition

For two time series (x(t)) and (y(t)), the cross-correlation function (R_{xy}(\tau)) at lag (\tau) is defined as:

$$R_{xy}(\tau) = \sum_t x(t) \cdot y(t+\tau)$$

- Properties
- **Symmetry**: (R_{xy}(\tau) = R_{yx}(-\tau))
- Maximum Value: The maximum value of the cross-correlation function indicates the point of highest similarity between the two series.
- **Normalization**: Often, the cross-correlation function is normalized to ensure the values lie between -1 and 1.

- Applications
- Signal Processing: To detect known patterns within a signal.
- **Econometrics**: To study the lead-lag relationships between economic indicators.
- Neurophysiology: To analyze the relationship between different neural signals.
- **System Identification**: Using time series transfer functions helps in identifying dynamic relationships between variables in fields like economics, engineering, and environmental science.
- Lag Analysis: Cross-correlation can reveal how the effect of an input variable (e.g., economic policy) influences an output variable (e.g., GDP) over time, which is crucial for timing interventions.

Example in R

Here's how you can compute and plot the cross-correlation function in R:

1.Install and Load Necessary Packages:

R

install.packages("stats") library(stats)

2. Prepare Your Data: Ensure your data is in a time series format.

R

ts1 <- ts(data1, start = c(2020, 1), frequency = 12) ts2 <- ts(data2, start = c(2020, 1), frequency = 12)

3. **Compute Cross-Correlation**: Use the ccf function to compute the cross-correlation.

R

ccf(ts1, ts2, lag.max = 20, plot = TRUE)

Example Workflow

- **Data Preparation**: Collect and preprocess the time series data.
- **Estimation of Transfer Function**: Use statistical techniques (like ARIMA or state-space models) to estimate the transfer function.
- **Cross-Correlation Analysis**: Compute the cross-correlation between the input and output series to identify significant lags.
- **Interpretation**: Analyze the results to understand the causal relationships and the timing of effects.

Transfer Function—Noise Model Specification

- Understanding the Components
 - Input Series (X(t)X(t)X(t)): This is the variable that influences the output.
 - Output Series (Y(t)Y(t)Y(t)): This is the variable being predicted or analyzed.
 - Transfer Function (H(B)H(B)H(B)): This describes how the input affects the output over time.
 - Noise/Error Term (ϵ (t)\epsilon(t) ϵ (t)): Represents the random disturbances affecting the output.

Model Specification Steps:

1. Preliminary Identification:

Impulse Response Coefficients: Identify the coefficients that describe how the input affects the output over time. This involves examining the cross-correlation function between the input and output series¹.

2. Specification of the Noise Term:

Noise Model: Determine the appropriate noise model, often an ARIMA (AutoRegressive Integrated Moving Average) model, to account for the autocorrelation in the residuals¹.

3. Specification of the Transfer Function:

Transfer Function Form: Choose the form of the transfer function, which could be a simple lagged relationship or a more complex distributed lag model².

4. Estimation:

Parameter Estimation: Use statistical techniques to estimate the parameters of both the transfer function and the noise model. This often involves iterative methods to maximize the likelihood function¹.

5. Model Diagnostic Checks:

Residual Analysis: Check the residuals of the model to ensure they behave like white noise, indicating a good fit. This involves examining autocorrelation and partial autocorrelation functions of the residuals¹.

Example Workflow

- **Identify the impulse response coefficients** by examining the cross-correlation between input and output.
- Specify the noise term using an ARIMA model.
- Define the transfer function based on the identified impulse response.
- Estimate the parameters using maximum likelihood estimation.
- Perform diagnostic checks to validate the model.

Forecasting with Transfer Function—Noise Models

- Forecasting with Transfer Function—Noise Models
- Forecasting using Transfer Function—Noise (TFN) models involves several steps to ensure accurate predictions. Here's a detailed guide:

Model Identification:

• Impulse Response Analysis: Identify how the input series affects the output series over time. This involves examining the cross-correlation function between the input and output series to determine the lag structure.

Model Specification:

- **Transfer Function**: Specify the form of the transfer function, which could be a simple lagged relationship or a more complex distributed lag model.
- **Noise Model**: Specify the noise model, typically an ARIMA model, to account for the autocorrelation in the residuals.

Parameter Estimation:

• **Estimate Parameters**: Use statistical techniques such as Maximum Likelihood Estimation (MLE) to estimate the parameters of both the transfer function and the noise model.

Model Validation:

• **Residual Analysis**: Check the residuals to ensure they behave like white noise, indicating a good fit. This involves examining the autocorrelation and partial autocorrelation functions of the residuals.

Forecasting:

- **Generate Forecasts**: Use the estimated model to generate forecasts. This involves applying the transfer function to the input series and adding the noise component.
- Confidence Intervals: Calculate confidence intervals for the forecasts to quantify the uncertainty.

Example Workflow

- **Identify the impulse response coefficients** by examining the cross-correlation between input and output.
- Specify the noise term using an ARIMA model.
- **Define the transfer function** based on the identified impulse response.
- Estimate the parameters using maximum likelihood estimation.
- Perform diagnostic checks to validate the model.
- Generate forecasts and calculate confidence intervals.

Practical Application

- Let's say you have a time series of sales data (output) and advertising spend (input). You can use a TFN model to forecast future sales based on past advertising spend. The steps would be:
- Identify the relationship between advertising spend and sales.
- Specify the transfer function and noise model.
- **Estimate** the parameters.
- Validate the model.
- Forecast future sales based on projected advertising spend.

Example:

Example of how you can implement a Transfer Function—Noise (TFN)
model in R for forecasting. This example assumes you have two time
series: input_series (e.g., advertising spend) and output_series (e.g.,
sales).

```
Step-by-Step R Code Example

1.Load Necessary Libraries:

R
install.packages("forecast") install.packages("TSA") library(forecast) library(TSA)
```

2. Prepare the Data:

R

Example data input_series <- ts(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), frequency = 12) output_series <- ts(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29), frequency = 12)

3. Identify the Transfer Function:

R

Cross-correlation function to identify lags ccf(input_series, output_series)

4. Fit the Transfer Function-Noise Model:

R

Fit the transfer function model tf_model <- arimax(output_series, order = c(1, 0, 0), xtransf = input_series, transfer = list(c(0, 1))) summary(tf_model)

5. Check Residuals:

R

Check residuals to ensure they are white noise tsdisplay(residuals(tf_model))

```
6. Forecasting:
R
# Forecast future values
forecast horizon <- 12
future_input <- ts(c(11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22), frequency
= 12)
forecasts <- predict(tf_model, n.ahead = forecast_horizon, newxreg =
future_input)
plot(forecasts$pred, type = "l", col = "blue", ylim = range(c(output_series,
forecasts$pred)))
lines(output_series, col = "black")
```

Explanation

- **1.Load Necessary Libraries**: Install and load the required libraries.
- 2.Prepare the Data: Create example time series data for input and output.
- **3.Identify the Transfer Function**: Use the cross-correlation function to identify the relationship between input and output.
- **4.Fit the Model**: Fit the TFN model using the arimax function.
- **5.Check Residuals**: Ensure the residuals are white noise.
- **6.Forecasting**: Generate forecasts for future periods and plot the results.

Intervention Analysis

 Intervention analysis is a statistical technique used to evaluate the impact of an intervention or event on a time series of data. This method is particularly useful in fields like economics, public health, and social sciences to assess the effectiveness of policies, treatments, or other interventions.

Intervention Analysis

- Here are the key steps involved in conducting an intervention analysis:
- **Identify the Intervention**: Determine the point in time when the intervention occurred.
- Collect Data: Gather time series data before and after the intervention.
- Model the Data: Use statistical models (e.g., ARIMA) to understand the underlying patterns in the data.
- Estimate the Impact: Assess the change in the time series data attributable to the intervention.
- Validate the Results: Check the robustness of the findings using diagnostic tests and validation techniques.

Intervention Analysis

Step-by-Step Example:

1. Identify the Intervention:

- Intervention: Implementation of the new traffic law.
- Date of Intervention: January 1, 2023.

2. Collect Data:

• **Time Series Data**: Monthly number of road accidents from January 2020 to December 2023.

4. Model the Data:

- **Pre-Intervention Period**: January 2020 to December 2022.
- Post-Intervention Period: January 2023 to December 2023.
- Use an ARIMA model to fit the data and account for trends and seasonality.

5. Estimate the Impact:

- Compare the predicted number of accidents (based on the pre-intervention model)
 with the actual number of accidents after the intervention.
- Calculate the difference to estimate the impact of the new traffic law.

5. Validate the Results:

- Perform diagnostic checks on the model residuals to ensure they are randomly distributed.
- Use additional statistical tests (e.g., t-tests) to confirm the significance of the observed changes.

Example Data and Results:

Table

Month	Actual Accidents	Predicted Accident	s Difference
January 2023	80	100	-20
February 2023	75	95	-20
•••	•••	•••	
December 2023	60	90	-30

Let's implement an intervention analysis in R to evaluate the impact of a new traffic law on the number of road accidents.

Step-by-Step Implementation in R:

1.Load the necessary libraries:

R
library(forecast)
library(tseries)

2. Simulate the data:

```
R
```

```
set.seed(123)
pre_intervention <- rnorm(36, mean = 100, sd = 10) # Data from Jan 2020 to Dec 2022
post_intervention <- rnorm(12, mean = 80, sd = 10) # Data from Jan 2023 to Dec 2023
accidents <- ts(c(pre_intervention, post_intervention), start = c(2020, 1),
frequency = 12)
```

3. Plot the data:

R

plot(accidents, main = "Monthly Road Accidents", ylab = "Number of Accidents", xlab = "Time") abline(v = 2023, col = "red", lwd = 2) # Mark the intervention point

4. Fit an ARIMA model to the pre-intervention data:

R

```
pre_intervention_data <- window(accidents, end = c(2022, 12)) fit <- auto.arima(pre_intervention_data) summary(fit)
```

5. Forecast the post-intervention period:

R

```
forecasted <- forecast(fit, h = 12)
plot(forecasted)
lines(post_intervention, col = "red")
```

6. Compare the actual post-intervention data with the forecasted values:

R

actual_post <- window(accidents, start = c(2023, 1))

forecasted_values <- forecasted\$mean difference <- actual_post - forecasted_values difference

Interpretation:

- •The difference vector will show the difference between the actual and forecasted number of accidents for each month in the post-intervention period.
- Negative values indicate a reduction in accidents, suggesting the intervention was effective.

R Commands

Summary of Commands

- **1.Load Libraries**: library(forecast) and library(ggplot2)
- **2.Simulate Data**: Generate a synthetic time series dataset.
- 3.Intervention Variable: Create an intervention variable using ifelse().
- 4.Fit Model: Use Arima() to fit the model including the intervention.
- **5.Check Residuals**: Use checkresiduals().
- **6.Forecasting**: Use forecast() and plot with autoplot().