Geometric Algorithms Lecture 6

Practice Problem

Do these three vectors span all of \mathbb{R}^3 ?

$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$$

Answer

$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$$

full span = for any
$$\bar{v} \in \mathbb{R}^3$$
 there a_1, a_2, a_3
 $a_1, \bar{v}_1 + a_2 \bar{v} + a_3 \bar{v}_3 = \bar{v}$

$$\begin{bmatrix} -4 & -3 & -5 \\ 4 & 6 & 8 \\ 2 & -3 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -2 \\ 4 & 6 & 8 \\ -4 & -3 & -5 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -2 \\ 0 & 12 & 12 \\ -4 & -3 & -5 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -2 \\ 0 & 1 & 1 \\ 0 & -3 & -9 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Consider the matrix

$$\begin{bmatrix}
 -4 & -3 & -5 \\
 4 & 6 & 8 \\
 2 & -3 & -2
 \end{bmatrix}$$

$$\begin{bmatrix}
 -4 & -3 & -5 \\
 4 & 6 & 8 \\
 4 & -6 & -4
 \end{bmatrix}$$

$$R_3 \leftarrow 2R_3$$

$$\begin{bmatrix}
 -4 & -3 & -5 \\
 0 & 3 & 3 \\
 0 & -9 & -9
 \end{bmatrix}$$

$$R_2 \leftarrow R_2 + R_1$$

$$R_3 \leftarrow R_3 + R_1$$

$$\begin{bmatrix} -4 & -3 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_3 \leftarrow R_3 + 3R_2$$

$$\begin{bmatrix} -4 & -3 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Third row has no pivot

Outline

- » Motivate and define linear independence
- » See several perspectives on linear independence
- » If there's time: see an application of linear
 systems to network flows

Keywords

linear independence

linear dependence

homogenous systems of linear equations

trivial and nontrivial solutions

Homogeneous Linear Systems

Recall: The Zero Vector

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Recall: The Zero Vector

Recall: The Zero Vector

Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

$$A\mathbf{x} = \mathbf{0}$$

Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{0}$$

Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

Trivial Solutions

$$A \hat{O} = \hat{O}$$

Definition. For the matrix equation Ax = 0 the solution x = 0 is called the **trivial solution**

Any other solution is called *nontrivial*

Trivial Solutions

Definition. For the vector equation

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \mathbf{0}$$

the solution $\mathbf{x} = \mathbf{0}$ is called the **trivial solution**

Any other solution is called *nontrivial*

Trivial Solutions

Definition. For the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

the solution x=0 is called the *trivial solution*

Any other solution is called *nontrivial*

Questions about Homogeneous Systems

When does $A\mathbf{x} = \mathbf{0}$ have only the trivial solution?

When does $A\mathbf{x} = \mathbf{0}$ have nontrivial solutions?

What does it mean *geometrically* in each case?

An Important Feature of Homogenous Systems

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$$

An Important Feature of Homogenous Systems

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$$

What do we know about the covered column?

An Important Feature of Homogenous Systems

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -3 & -6 & 0 \end{bmatrix}$$

What do we know about the covered column?

It has to be all zeros

Definition. A set of vectors $\{\mathbf v_1, \mathbf v_2, ..., \mathbf v_n\}$ is **linearly independent** if the vectors equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0}$$

has exactly one solution (the trivial solution)

Definition. A set of vectors $\{\mathbf v_1, \mathbf v_2, ..., \mathbf v_n\}$ is **linearly independent** if the vectors equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0}$$

has exactly one solution (the trivial solution)

The columns of A are linearly independent if $A\mathbf{x} = \mathbf{0}$ has exactly one solution

Linear Dependence

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is *linearly dependent* if the vectors equation

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n = \mathbf{0}$$

has a nontrivial solution

Linear Dependence

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is *linearly dependent* if the vectors equation

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n = \mathbf{0}$$

has a nontrivial solution

A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors which equals 0

Linear Dependence (Alternative)

Definition. A set of vectors is **linearly dependent** if it is <u>not</u> linearly independent

Linear Dependence (Alternative)

Definition. A set of vectors is **linearly dependent** if it is <u>not</u> linearly independent

 $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution

 $A\mathbf{x} = \mathbf{0}$ does <u>not</u> have only the trivial solution

(compty set)
$$\vec{O} = \vec{O}$$
Lin. ind.

$$\begin{cases}
\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}
\end{cases}$$

$$x_{1} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \vec{0} \qquad 3 \times = 0 \Rightarrow x_{1} = 0 \\
-x_{1} = 0 \Rightarrow x_{1} = 0$$
Lin. Ind.

$$\begin{cases}
\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \\ -2 \end{bmatrix}
\end{cases}$$

$$\times_{1} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \times_{2} \begin{bmatrix} 4 \\ 6 \\ -2 \end{bmatrix} = \vec{0} \qquad \times_{2} = -1$$

$$\left\{ \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$x, \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$2x = 0$$

$$2x_{1} = 0$$

$$3x_{1} = 0$$

$$3x_{1} = 0$$

$$x_{2} = 0$$

$$x_{1} = 0$$

$$x_{2} = 0$$

Another Interpretation of Linear Dependence

demo (from ILA)

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

There may be vectors which lies in the plane spanned by two other vectors

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

There may be vectors which lies in the plane spanned by two other vectors

Or even two vectors which lie in the span of one of the others

Fundamental Concern

How do we classify when a set of vectors does <u>not</u> span as much as it possibly can? When it is "smaller" than it could be?

Fundamental Concern

How do we classify when a set of vectors does <u>not</u> span as much as it possibly can? When it is "smaller" than it could be?

This is the role of linear dependence

Linear Dependence (Another Alternative)

Linear Dependence (Another Alternative)

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is **linearly dependent** if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself)

Linear Dependence (Another Alternative)

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is **linearly dependent** if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself)

e.g.,
$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$

(the recap problem)

The Linear Combination Perspective

Suppose we have four vectors such that

$$\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2 + 5\mathbf{v}_4$$

what do we know about the equation

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 + x_4 \mathbf{v}_4 = \mathbf{0}$$
(2,3,-1,5)

The Linear Combination Perspective

$$\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2 + 5\mathbf{v}_4$$

Implies $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 = \mathbf{0}$ has a nontrivial solution:

$$(2,3,-1,5)$$

Suppose $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+x_4\mathbf{v}_4=\mathbf{0}$ has a nontrivial solution $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ where, say, $\alpha_2\neq 0$

Suppose $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+x_4\mathbf{v}_4=\mathbf{0}$ has a nontrivial solution $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ where, say, $\alpha_2\neq 0$

We can turn this into a linear combination

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = \mathbf{0}$$

Suppose $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+x_4\mathbf{v}_4=\mathbf{0}$ has a nontrivial solution $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ where, say, $\alpha_2\neq 0$

$$\alpha_1 \mathbf{v}_1 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = -\alpha_2 \mathbf{v}_2$$

Suppose $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 = \mathbf{0}$ has a nontrivial solution $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ where, say, $\alpha_2 \neq 0$

$$\frac{-\alpha_1}{\alpha_2}\mathbf{v}_1 + \frac{-\alpha_3}{\alpha_2}\mathbf{v}_3 + \frac{-\alpha_4}{\alpha_2}\mathbf{v}_4 = \mathbf{v}_2$$

Suppose $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+x_4\mathbf{v}_4=\mathbf{0}$ has a nontrivial solution $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ where, say, $\alpha_2\neq 0$

We get one vector as a linear combination of the others

This division only works because $\alpha_2 \neq 0$

$$\frac{-\alpha_1}{\alpha_2}\mathbf{v}_1 + \frac{-\alpha_3}{\alpha_2}\mathbf{v}_3 + \frac{-\alpha_4}{\alpha_2}\mathbf{v}_4 = \mathbf{v}_2$$

Suppose $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+x_4\mathbf{v}_4=\mathbf{0}$ has a nontrivial solution $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ where, say, $\alpha_2\neq 0$

We get one vector as a linear combination of the others

In All

Theorem. A set of vectors is linearly dependent if and only if it is nonempty and at least one of its vectors can be written as a linear combination of the others

P if and only if Q means
P implies Q and Q implies P

Linear Dependence Relation

Definition. If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent, then a *linear dependence relation* is an equation of the form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

A linear dependence relation witnesses the linear dependence

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_n$

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_n$

Solution. Find a nontrivial solution to the equation

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \mathbf{x} = \mathbf{0}$$

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_n$

Solution. Find a nontrivial solution to the equation

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \mathbf{x} = \mathbf{0}$$

(there will be a free variable you can choose to be nonzero)

Example

Write down the linear dependence relation for the following vectors

$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$$

$$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Added 0 column}$$

Where we left off

$$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_2 \leftarrow R_2/3$$

$$\begin{bmatrix} -4 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_1 \leftarrow R_1 + 3R_2$$

$$R_1 \leftarrow R_1/(-4)$$

$$x_1 = -(0.5)x_3$$
 $x_2 = -x_3$
 x_3 is free

$$x_1 = 1$$

$$x_2 = 2$$

$$x_3 = -2 \quad \text{(phy in any whe)}$$

$$\begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix} - 2 \begin{bmatrix} -5 \\ 8 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix} - 2 \begin{bmatrix} -5 \\ 8 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Note there are other solutions as well...

Simple Cases

The Empty Set

The Empty Set

{} (a.k.a. Ø) is linearly independent

The Empty Set

{} (a.k.a. Ø) is linearly independent

We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling $\mathbf{0}$

The Empty Set

{} (a.k.a. Ø) is linearly independent

We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling $\mathbf{0}$

There are none at all...

The Empty Set

{} (a.k.a. Ø) is linearly independent

We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling $\mathbf{0}$

There are none at all...

0 is in every span, even the span of the empty set

One Vector

A single vector \mathbf{v} is linearly independent if and only if it $\mathbf{v} \neq \mathbf{0}$

(Note that $x_1\mathbf{0} = \mathbf{0}$ has many nontrivial solutions)

The Zero Vector and Linear Dependence

If a set of vectors V contains the $\mathbf{0}$, then it is linearly dependent

The Zero Vector and Linear Dependence

If a set of vectors V contains the $\mathbf{0}$, then it is linearly dependent

$$(1)\mathbf{0} + 0\mathbf{v}_2 + 0\mathbf{v}_3 + \dots + 0\mathbf{v}_n = \mathbf{0}$$

There is a very simple nontrivial solution

Two Vectors

Definition. Two vectors are *colinear* if they are scalar multiples of each other

e.g.,
$$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$$
 and $\begin{bmatrix} 1.5\\1.5\\3 \end{bmatrix}$ or $\begin{bmatrix} 2\\2 \end{bmatrix}$ and $\begin{bmatrix} -1\\-1 \end{bmatrix}$

Two vectors are linearly dependent if and only if they are colinear

Three Vectors

Definition. A collection of vectors is **coplanar** if their span is a plane

Three vectors are linearly dependent if an only

if they are colinear or coplanar

Three Vectors

Definition. A collection of vectors is **coplanar** if their span is a plane

Three vectors are linearly dependent if an only

if they are colinear or coplanar

This reasoning can be extended to more vectors, but we run out of terminology

Yet Another Interpretation

If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly *independent* then we cannot write one of it's vectors as a linear combination of the others

But we get something stronger

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent if and only if for all $i \leq n$,

$$\mathbf{v}_i \not\in \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}\}$$

Increasing Span Criterion V. L. Span System (N. L. Span System)

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent if and only if for all $i \leq n$,

$$\mathbf{v}_i \not\in \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}\}$$

As we add vectors, the span gets larger

So in this case, our span keeps getting "bigger"

```
So in this case, our span keeps getting "bigger" span{} is a point {0}
```

```
So in this case, our span keeps getting "bigger" \mathsf{span}\{\} is a point \{\boldsymbol{0}\} \mathsf{span}\{\boldsymbol{v}_1\} is a line
```

```
So in this case, our span keeps getting "bigger" span\{\}\ is\ a\ point\ \{0\} span\{v_1\}\ is\ a\ line span\{v_1,v_2\}\ is\ a\ plane
```

 $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane

```
So in this case, our span keeps getting "bigger" \mathsf{span}\{\} is a point \{\bm{0}\} \mathsf{span}\{\bm{v}_1\} is a line \mathsf{span}\{\bm{v}_1,\bm{v}_2\} is a plane
```

 $span\{v_1, v_2, v_3, v_4\}$ is a 4d-hyperlane

```
So in this case, our span keeps getting "bigger"
span{} is a point {0}
span\{v_1\} is a line
span\{v_1, v_2\} is a plane
span\{v_1, v_2, v_3\} is a 3d-hyperplane
```

```
So in this case, our span keeps getting "bigger"
span{} is a point {0}
span\{v_1\} is a line
span\{v_1, v_2\} is a plane
span\{v_1, v_2, v_3\} is a 3d-hyperplane
span\{v_1, v_2, v_3, v_4\} is a 4d-hyperlane
```

- - -

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$,

 $\mathbf{v}_i \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{i-1}\}$

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$,

 $\mathbf{v}_i \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{i-1}\}$

As we add vectors, we'll eventually find one in the span of the preceding ones.

```
span{} is a point \{\mathbf{0}\} span\{\mathbf{v}_1\} is a line span\{\mathbf{v}_1,\mathbf{v}_2\} is a plane span\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} is still a plane
```

```
span{} is a point \{\mathbf{0}\} span\{\mathbf{v}_1\} is a line span\{\mathbf{v}_1,\mathbf{v}_2\} is a plane span\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} is still a plane
```

(this is an example, it may take a lot more vectors before we find one in the span of the preceding vectors)

As a Picture

span of 1 vector a line

span of 2 vector a plane

span of 3 vector still a plane

Corollary. If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ are linearly dependent, then for any vector \mathbf{v}_{k+1} , the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k, \mathbf{v}_{k+1}$ are linearly dependent

If we add a vector to a linearly dependent set, it remains linearly dependent

Question

Are the following vectors linearly independent?

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 2023 \\ 0 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0.1 \\ 7 \end{bmatrix}$$

Answer: No

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 2023 \\ 0 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0.1 \\ 7 \end{bmatrix}$$

Any three vectors can at most span a plane

The first two are not colinear, so they span a plane (\mathbb{R}^2)

Linear Independence and Free Variables

Linear Dependence Relations (Again)

When finding a linear dependence relation, we came across a system which a free variable

$$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we can take x_3 to be free

Theorem. The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>

Theorem. The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>

Remember that we choose our free variables to be the ones whose columns don't have pivots

Theorem. The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>

Remember that we choose our free variables to be the ones whose columns don't have pivots

Free variables allow for infinitely many (nontrivial) solution

Recall: General Form Solutions

$$x_1 = -(0.5)x_3$$
 $x_2 = -x_3$
 x_3 is free

Recall: General Form Solutions

$$x_1 = -0.5$$
 $x_2 = -1$
 $x_3 = 1$

Recall: General Form Solutions

$$x_1 = 0.5$$
 $x_2 = 1$
 $x_3 = -1$

Recall: General Form Solutions

$$x_1 = 1$$
 $x_2 = 2$
 $x_3 = -2$

Recall: General Form Solutions

$$x_1 = 1$$
 $x_2 = 2$
 $x_3 = -2$

The point: the solution is not unique

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Solution. Check if $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0}$ has a unique solution

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Solution. Check if $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \mathbf{x} = \mathbf{0}$ has a unique solution

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Solution. Check if the general form solution of $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{0}]$ has any free variables

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Solution. Reduce $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ to echelon form and check if has a pivot position in every column

Example: Recap Problem Again

$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$$

The reduced echelon form of $[v_1 \ v_2 \ v_3]$ is

$$\begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \text{column} \\ \text{without a} \\ \text{pivot} \end{array}$$

Linear Independence and Full Span

The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if there is a pivot in every <u>row</u>

The columns of a matrix are linearly independent if there is a pivot in every <u>column</u>

Tall Matrices

If m > n then the columns cannot span \mathbb{R}^m

```
*
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
```

Tall Matrices

If m > n then the columns cannot span \mathbb{R}^m

This matrix has at most 3 pivots, but 4 rows

Wide Matrices

If m < n then the columns cannot be linearly independent

Wide Matrices

If m < n then the columns cannot be linearly independent

This matrix as at most 3 pivots, but 4 columns

A Warning

The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if there is a pivot in every <u>row</u>

The columns of a matrix are linearly independent if there is a pivot in every <u>column</u>

Don't confuse these!

Application: Networks and Flow

Graphs/Networks

A *graph/network* is a mathematical object representing collection of *nodes* and *edges* connecting them

Graphs/Networks

A *graph/network* is a mathematical object representing collection of *nodes* and *edges* connecting them

Graphs/Networks

A *graph/network* is a mathematical object representing collection of *nodes* and *edges* connecting them

Directed Graphs

Today we focus on *directed* graphs, in which edges have a specified direction

Think of these as one-way streets

We are often interested in how much "stuff" we can push through the edges

In the above example, the "stuff" is cars/hr

I like to imagine water moving through a pipe, and splitting an joints in the pipe

Flow Network

A *flow network* is a directed graph with specified **source and sink** nodes

Flow <u>comes out of</u> and <u>goes into</u> sources and sinks. They are assigned a flow value (or variable)

Definition. The **flow** of a graph is an assignment of <u>nonnegative</u> values to the edges so that the following holds

Definition. The *flow* of a graph is an assignment of <u>nonnegative</u> values to the edges so that the following holds

conservation: flow into a node = flow out of a
node

Definition. The **flow** of a graph is an assignment of <u>nonnegative</u> values to the edges so that the following holds

conservation: flow into a node = flow out of a
node

source/sink constraint: flow into a source/out of
a sink is nonnegative

Flow Conservation

$$x_2 + x_4 = 300 + x_3$$

$$100 + 400 = x_4 + x_5$$

Flow in = Flow out

Flow Conservation

e.g.,

$$x_2 + x_4 = 300 + x_3$$

$$100 + 400 = x_4 + x_5$$

Flow in = Flow out

Flow Conservation

e.g.,

$$x_2 + x_4 = 300 + x_3$$

$$100 + 400 = x_4 + x_5$$

Every node determines a linear equation

Flow in = Flow out

How To: Network Flow

How To: Network Flow

Question. Find a general solution for the flow of a given graph

How To: Network Flow

Question. Find a general solution for the flow of a given graph

Solution. Write down the linear equations determined by <u>flow conservation</u> at non-source and non-sink nodes, and then solve

(A)
$$500 + 300 = x_1 + x_2$$

(B)
$$x_2 + x_4 = 300 + x_3$$

(C)
$$100 + 400 = x_4 + x_5$$

(D)
$$x_1 + x_5 = 600$$

(A)
$$500 + 300 = x_1 + x_2$$

(B)
$$x_2 + x_4 = 300 + x_3$$

(C)
$$100 + 400 = x_4 + x_5$$

(D)
$$x_1 + x_5 = 600$$

System of Linear Equations

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 800 \\ 0 & 1 & -1 & 1 & 0 & 300 \\ 0 & 0 & 0 & 1 & 1 & 500 \\ 1 & 0 & 0 & 0 & 1 & 600 \end{bmatrix}$$

Augmented Matrix


```
      1
      0
      0
      0
      1
      600

      0
      1
      0
      0
      -1
      200

      0
      0
      1
      0
      0
      400

      0
      0
      0
      1
      1
      500
```

Reduced Echelon Form

Note that global flow is conserved.

$$x_1 = 600 - x_5$$
 $x_2 = 200 + x_5$
 $x_3 = 400$
 $x_4 = 500 - x_5$
 x_5 is free

General Solution

How To: Max Flow Value for an Edge

How To: Max Flow Value for an Edge

Question. Find the maximum value of a flow variable in a given flow network

How To: Max Flow Value for an Edge

Question. Find the maximum value of a flow variable in a given flow network

Solution. Remember that flow values must be positive. Look at the general form solution and see what makes this hold

$$x_1 = 600 - x_5$$
 $x_2 = 200 + x_5$
 $x_3 = 400$
 $x_4 = 500 - x_5$
 x_5 is free

$$x_4 \ge 0$$
 implies $x_5 \le 500$
 $x_1 \ge 0$ implies $x_5 \le 600$

$$x_1 = 600 - x_5$$
 $x_2 = 200 + x_5$
 $x_3 = 400$
 $x_4 = 500 - x_5$
 x_5 is free

$$x_4 \ge 0$$
 implies $x_5 \le 500$
 $x_1 \ge 0$ implies $x_5 \le 600$

$$x_1 = 600 - x_5$$
 $x_2 = 200 + x_5$
 $x_3 = 400$
 $x_4 = 500 - x_5$
 x_5 is free

$$x_4 \ge 0$$
 implies $x_5 \le 500$
 $x_1 \ge 0$ implies $x_5 \le 600$

The maximum value of x_5 is 500

Summary

Linear independence helps us understand when a span is "as large as it can be"

We can reduce this seeing if a single homogeneous equation has a unique solution

Network flows define linear systems we can solve