Klausur zu Diskrete Strukturen, WS 2010/2011 B.Sc.-Modulprüfung/Scheinklausur

Dr. A. Niemeyer, Lehrstuhl D für Mathematik, RWTH Aachen

Matrikelnummer: _____

Name: __

Gruppe A Dauer: 120 min. Gesamtpunk	tzahl: 50 Mindestpunk	atzahl zum Bestehen: 25	
Aufgabe 1. Gegeben seien die	folgenden Relationen auf	<u>6</u> :	(8 Punkte)
*, , , , ,		3, 3), (3, 4), (4, 1), (4, 4), (5, 5, 4), (5, 4), (5, 4), (5, 4), (5, 5, 4), (5, 5, 4), (5, 6, 6), (5, 6, 6), (6, 6, 6),	. ,
Bestimmen Sie:			
 (b) die Äquivalenzklassen (c) welche der Eigenschaft R₂ besitzt. (Tragen Sie (d) ob R₂ eine Totalordnun zu einer der obigen Abl 	von S . ten reflexiv (R), symmetri die zutreffenden Abkürzu g (T), partielle Ordnung (F	sch (S), transitiv (T) und anungen in das Kästchen ein.) P) oder keine dieser Ordnungenalen Elemente, falls R_2 eine	ne Äquivalenzrelation ist. (2 P.) (2 P.) tisymmetrisch (A) die Relation (2 P.) en (X) ist. Tragen Sie zusätzlich partielle Ordnung ist, oder das (2 P.)
(a)	(b)	(c)	(d)
des Wortes TREPPE be (b) Ein Autor hat 10 verschikeiten gibt es eine Lesej enthalten soll? (c) Wieviele Farbzusamme rote, gelbe, pinke und b soll? (Hierbei spielt die (d) Wieviele Möglichkeiter leer ist und Ede und Ka	Worte kann man bilden, destehen? iedene Bücher geschrieber probe aus 3 Buchtiteln zus enstellungen gibt es um e blaue Blumen zur Auswah e Reihenfolge, in der die F en gibt es 5 Sträflinge auf 4 alle sich keine Zelle teilen	lie nicht mit R beginnen und n, davon sind 4 Kochbücher usammenzustellen, wenn diese inen Blumenkasten mit 4 B l gibt und der Kasten höchstarben im Blumenkasten auft 4 nummerierte Zellen zu ver	(12 PUNKTE) die genau aus den Buchstaben (3 P.) and 6 Krimis. Wieviele Möglich- Probe mindestens zwei Krimis (3 P.) lumen zu bepflanzen, wenn es ens eine gelbe Blume enthalten reten, keine Rolle.) (3 P.) teilen, so dass keine der Zellen (3 P.)
Aufgabe 3. Gegeben seien die	Permutationen		(7 Punkte)
	$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 4 & 5 & 6 \end{pmatrix} u$	and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.
Wir definieren $\psi = \sigma \circ \tau$.	dulatura distrutatan 7-da	1	(2 D)
 (a) Schreiben Sie ψ als Pro (b) Berechnen Sie das Sign (c) Sei k₀ das kleinste k ∈ 	num von ψ .		(3 P.) (2 P.) (2 P.)
$\psi = $	$\operatorname{sgn}(\psi)$ =	$k_0 =$	

(a) Berechnen Sie $a = gg1(490, 155)$ und $\lambda, \mu \in \mathbb{Z}$ init $a = \lambda \cdot 490 + \mu \cdot 155$. (b) Finden Sie die kleinste natürliche Zahl a mit $a \equiv 3 \cdot 5^4 \cdot 11 \cdot 13^3 \pmod{7}$.	(3 P.) (2 P.)
(c) Lösen Sie die Gleichung $\underline{x} \cdot \overline{155} = \overline{10}$ in \mathbb{Z}_{490} .	(2 P.)
$d=oxed{egin{array}{c c} \lambda= & & & & & & & & & & & & & & & & & & $	
Aufgabe 5. Gegeben sei der folgende gewichtete Graph:	(5 PUNKTE)
Aurgabe 3. degeben ser der folgende gewichtete Graph.	(STONKIE)
(a) Hat der Graph eine Eulertour? ☐ Ja ☐ Nein	(2 P.)
(b) Bestimmen Sie einen minimalen Spannbaum des gewichteten Graphen. Tragen Sie die Läng des Spannbaums in aufsteigender Reihenfolge in das nachfolgende Kästchen ein.	en der Kanten
des Spannbaums in aufsteigender Kememorge in das nachforgende Kastenen ein.	(0 D)
	(3 P.)
Aufgabe 6.	(5 PUNKTE)
(a) Bestimmen Sie das Inverse der reguären Matrix $B \in \mathbb{R}^{3 \times 3}$ mit	(3 P.)
$B = \begin{pmatrix} 4 & 3 & 0 \\ 2 & 0 & -2 \\ 1 & 1 & 0 \end{pmatrix}. \qquad B^{-1} = $	
(b) Gegeben sei ein homogenes lineares Gleichungssystem über \mathbb{Z}_{17} , mit Koeffizientenmatrix $A\in$	$\in \mathbb{Z}_{17}^{7 imes 8}$.
(i) Die Stufenzahl r von A ist höchstens:	(1 P.)
(ii) Falls A maximale Stufenzahl hat, dann ist die Anzahl der verschiedenen Lösungen de	es Gleichungs-
systems:	(2 P.)
Aufgabe 7. Diese Aufgabe ist schriftlich zu bearbeiten und, mit ausführlicher Begründung, auf einer Blatt abzugeben.	m gesonderten (6 PUNKTE)
(a) Für $a,b\in\mathbb{Z}$ sei $d=ggT(a,b)$. Seien weiter $x,y\in\mathbb{Z}$ mit $a=dx$ und $b=yd$. Zeigen	Sie, dass dann
ggT(x,y)=1 ist. (b) Beweisen Sie, dass $n^3\equiv n\pmod 6$ für alle natürlichen Zahlen $n\in\mathbb{N}$ gilt.	(2 P.) (2 P.)
 (c) Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind. Falls sie richtig sind, geinen Beweis an, falls sie falsch sind, geben Sie ein Gegenbeispiel an. 	\ /
(i) Sei $B \in \mathbb{R}^{n \times n}$ mit $B \neq 0$. Falls $B^2 = B$ dann ist $B = E_n$. (ii) Seien $A, B \in \mathbb{R}^{n \times n}$. Falls A und B regulär sind, so ist auch $(A^{-1}B)^t$ regulär.	(1 P.) (1 P.)
(ii) Selen $A, D \in \mathbb{R}$. Land A und D regular sind, so let auch $(A \cap D)$ regular.	(1 1.)

Viel Erfolg!

(7 Punkte)

Aufgabe 4.