

Engenharia de Requisitos

Tecnologia de Software

Aula 1: Visão geral

Fábio Levy Siqueira levy.siqueira@usp.br

Estrutura do curso

Aula	Data	Assunto	Atividade		
1	12/05	Visão geral			
2	19/05	Requisitos e inovação	Jornada do usuário		
3	26/05	Visão	Documento visão		
4	02/06	História do usuário			
5	09/06	Técnicas de elicitação	Workshop de histórias		
6	16/06	Priorização e estimativa	Priorização e estimativa de histórias		
7	23/06	Caso de Uso I	Redação de casos de uso		
8	30/06	Caso de Uso II	Redação de casos de uso		
9	07/07	Gerência de requisitos			
10	14/07	Prova			

Avaliação

- Critério
 - Média =
 Exercícios + 2*Projeto + 3*Prova
 6
 - Exercícios
 - Seguem o Projeto Integrado
 - Projeto
 - Histórias do usuário: cartão e confirmação
 - Caso de uso
 - (Quantidade de Histórias e UCs varia conforme o tamanho do grupo)
 - Prova
 - Individual

Bibliografia básica

- COHN, M. User Stories Applied. Addison-Wesley, 2004.
- LEFFINGWELL, D.; WIDRIG, D. Managing Software Requirements: A
 Use Case Approach. 2ª edição. Addison-Wesley, 2003.
- POHL, K.; RUPP, C. Requirements Engineering Fundamentals: A Study Guide for the Certified Professional for Requirements Engineering Exam Fondation Level. 2ª edição. Rocky Nook, 2015.
- WIEGERS, K.; BEATTY, J. Software Requirements. 3a edição. Microsoft Press, 2013.

Conceitos

Engenharia de Requisitos

Função <u>interdisciplinar</u> que media entre os domínios do adquirente e fornecedor para <u>estabelecer e manter os requisitos</u> a serem cumpridos pelo sistema, software ou serviço de interesse (ISO, 2018)

- Importância para o sucesso do projeto
 - Fundamental entender as necessidades dos stakeholders
 - Custo alto para corrigir defeitos de requisitos

(Davis, 1993 apud Leffingwell; Widrig, 2003)

Engenharia de Requisitos

- Faz parte de um contexto organizacional
 - (Pohl, 2011)

Problemas

- Alguns problemas para a ER (Wiegers e Beatty, 2013)
 - Envolvimento do usuário insuficiente
 - Planejamento impreciso
 - Planejamento feito com poucas informações
 - Aumento incontrolável dos requisitos
 - Ambiguidade dos requisitos
 - Requisitos desnecessários
 - o Funcionalidade que o "usuário vai adorar"
 - Stakeholders menosprezados
 - Dificuldade de o stakeholder expressar o que quer
 - Dificuldade de o ER entender o stakeholder

Stakeholder

Pessoas ou organizações que tem um interesse no sistema a ser desenvolvido (Pohl, 2011)

- Tipicamente tem seus próprios requisitos
- Uma pessoa pode representar vários stakeholders
- Tipos (Leffingwell, 2011)
 - Stakeholders do sistema
 - Usa o sistema diretamente
 - Trabalha com os resultados de quem usa o sistema
 - o Será impactado com a implantação e operação do sistema
 - Stakeholders do projeto
 - Tem investimento no orçamento ou no cronograma
 - o Tem interesse em entender como a solução será desenvolvida
 - o Estará envolvido em propagandear, vender, instalar ou manter

Stakeholder

- Envolvimento (Leffingwell, 2011)
 - Precisam ser informados
 - Precisam ser consultados
 - São parceiros no desenvolvimento
 - Tem controle dos resultados (tem a decisão final)
- Exemplos
 - Usuários
 - Cliente
 - Agências regulatórias
 - Desenvolvedores

Requisito

Uma afirmação que traduz ou expressa uma **necessidade** e suas **restrições** e **condições** associadas. (ISO, 2018, p.4)

- Não devem (em teoria) ter detalhes de implementação
- Uma outra definição clássica
- a) Uma **condição** ou **capacidade** necessária por um **usuário** para <u>resolver um problema</u> ou atingir um <u>objetivo</u>.
- b) Uma **condição** ou **capacidade** que deve ser cumprida ou possuída por um sistema ou componente do sistema para satisfazer um <u>contrato</u>, <u>padrão</u>, <u>especificação</u>, <u>ou outros</u> <u>documentos formalmente impostos</u>.

(IEEE, 1990, p.172)

Requisito

- Tipos de requisitos
 - Funcionais
 - Não funcionais (ou de qualidade)
 - Restrições

Requisitos funcionais

- Especificam a funcionalidade que o sistema deve prover aos usuários
 Ações fundamentais que devem acontecer no software ao aceitar e processar as entradas e ao processar e gerar as saídas (IEEE, 1998, p.16)
- *Exemplos* (IEEE, 1998)
 - Sequência exatas de operações
 - Validações nas entradas
 - Respostas para situações anormais (ex.: tratamento de erros e recuperação)
 - Relações entre saídas e entradas (ex.: sequências e fórmulas)
- Exemplo: loja virtual
 - O software deve permitir a busca de produtos por palavra chave
 - O usuário só pode adicionar ao carrinho de compras os produtos disponíveis

Requisitos não funcionais

- Definem <u>propriedades de qualidade</u> do sistema a serem desenvolvidas
 - Afetam todo o sistema ou uma parte dele
 - Influenciam a arquitetura
 - Também chamados de requisitos de qualidade
 - Relacionadas a desempenho, segurança, usabilidade etc.
- Exemplo: loja virtual
 - A verificação do cadastro do usuário deve demorar no máximo 5s
 - Apenas um técnico com privilégios de Administrador deve ter acesso aos logs do sistema

Restrições

- Restrição organizacional ou tecnológica que afeta como o software deve ser desenvolvido
 - Orçamento, plataformas, linguagens, leis, soluções tecnológicas etc.
 - Muitas vezes considerada como requisitos não funcionais
- Exemplo: loja virtual
 - A interface web deve usar o framework React
 - O software deve ser entregue até dia 02/06
 - O projeto deve usar Scrum

Requisitos

- Quais são os tipos de requisitos dessas afirmações?
 - 1. Ao cadastrar uma senha, o sistema deve verificar se a senha de acesso tem no mínimo 8 caracteres.
 - o O DDD do telefone deve ter 2 dígitos.
 - 2. As senhas armazenadas no sistema devem ser criptografadas, sendo protegidas contra roubo.
 - 3. As senhas devem ser criptografadas usando o algoritmo AES e usando sal aleatório de 8 bytes.

Requisitos não funcionais

Requisitos não funcionais

- Existem várias taxonomias
 - Wiegers e Beaty (2013)
 - Chung et al. (2000)
 - van Lamsweerde (2009)
 - ISO 25010 (2011)

ISO 25000

- SQuaRE
 - Software Product Quality Requirements and Evaluation
- Família de normas
 - Reorganização e revisão de outras normas
 - ISO 9126 e ISO 14598
 - ISO 25010 (2011) é a parte que define o modelo de qualidade
- Define características que podem ser usadas para especificar, medir e avaliar a qualidade
 - Características são divididas em subcaracterísticas
 - Característica/subcaracterística consideram graus
 - O grau em que algo é atendido

ISO 25010

- Define dois modelos
 - Qualidade em uso
 - Representa o quanto o uso do software <u>cumpre as necessidades</u> e <u>atinge as metas</u> de um usuário
 - Resultado do uso do software
 - Qualidade do produto
 - o Trata de propriedades de qualidade do produto
 - o Útil para especificação ou para a avaliação de um produto
 - Pode ser usada como taxonomia de requisitos não funcionais

Qualidade em Uso

- Dependem do contexto de uso
 - Outros fatores além do software
 - Características do usuário, características da tarefa, hardware, ambiente de operação e características do ambiente social

Qualidade em Uso

- Eficácia
 - Acurácia ou completude com que o usuário atinge os objetivos
- Eficiência
 - Recursos despendidos em relação à acurácia e completude com o quais o usuário atinge os objetivos
- Satisfação
 - O grau que as necessidades do usuário estão satisfeitas ao usar o produto

Qualidade em Uso

- Ausência de riscos
 - Grau em que o produto mitiga os potenciais riscos
- Cobertura do contexto
 - Grau que o produto pode ser usado com eficiência, eficácia, ausência de risco e satisfação nos contextos definidos ou em outros contextos

ISO 25010 – Qualidade do Produto

Adequação funcional	Eficiência de Execução	Compatibilidade	Usabilidade	Confiabilidade	Segurança (security)	Manutenibilidade	Portabilidade
Completeza funcional	Comporta -mento no tempo	Coexistência	Reconhecibi- lidade da adequação	Maturidade	Confidenci -alidade	Modularidade	Adaptabili -dade
Correção funcional	Utilização de recursos	Interoperabi -lidade	Apreensibili- dade	Disponibili- dade	Integridade	Reusabilidade	Capacidade para ser instalado
Apropriabili- dade funcional	Capacidade		Operacionali- dade	Tolerância a falhas	Não repúdio	Analisabilidade	Capacidade para substituir
			Proteção a erro do usuário	Recuperabili -dade	Responsa- bilidade	Modificabilidade	
			Estética da interface do usuário		Autentici- dade	Testabilidade	
			Acessibili-				

dade

Qualidade do Produto

- Considera um ambiente diferente do contexto de uso real
 - É uma "estimativa" da qualidade em uso
- Características
 - Adequação funcional
 - o O quanto o produto provê funções que cumprem as necessidades especificadas
 - Em geral não se considera como RNF
 - Eficiência de execução
 - o O desempenho relativo a quantidade de recursos usados
 - Compatibilidade
 - O quanto o produto pode compartilhar informações e recursos
 - Usabilidade
 - O quanto é fácil usar o produto

Qualidade do Produto

- Características (continuação)
 - Confiabilidade
 - O quanto o produto executa suas funções nas condições especificadas e no período de tempo especificado
 - Segurança
 - O quanto as informações são protegidas
 - Manutenibilidade
 - o O quanto é fácil modificar o produto
 - Portabilidade
 - o O quanto é fácil colocar o produto em outro ambiente

Taxonomias de RNF

- Como usar uma taxonomia?
- Quais RNFs devemos definir em um projeto?
 - Quanto mais melhor?

Escopo do sistema

Contexto

- Um software está sempre em um ambiente
 - Ambiente as-is
 - Ambiente que existe antes do software
 - Ambiente to-be
 - o Ambiente que se **espera** ter com o software (ideal)
- Requisitos tratam do ambiente to-be
 - (Mas o ambiente as-is é importante para entender os requisitos)

Contexto

- Nem toda informação do ambiente é relevante
 - **Contexto**: parte relevante do ambiente para definir, entender e interpretar os requisitos do software

Contexto

- Existem duas fronteiras
 - Fronteira do software
 - Escopo do software
 - (O que o software tratará)
 - Fronteira do contexto
 - o Informações relevantes ao sistema
- Essas fronteiras são estáticas?
 - Se não, quando mudam?

Escopo

O que define o escopo do software?

WRSPM

- Onde estão os requisitos?
 - Modelo WRSPM (Gunter et a., 2000)

• Fenômenos: eventos, objetos, estados e variáveis

WRSPM

- Artefatos importantes
 - Domínio
 - Afirmações que descrevem propriedades que sempre são verdadeiras, independentes do software
 - Requisitos dos *stakeholders* (**requisitos**)
 - Afirmações que descrevem propriedades que os usuários querem que sejam verdadeiras no ambiente com a presença do software
 - Requisitos do software (especificação)
 - Afirmações que descrevem o que o software precisa fazer para atender os requisitos
 - Informação suficiente para o desenvolvedor construir o software

WRSPM

Exemplo

- o **Domínio**: o cliente precisa pagar a compra para receber o produto.
- o Req. Stak.: o cliente deve fazer o pagamento online.
- Req. Soft.: o sistema deve solicitar os dados de pagamento ao cliente, usando uma conexão segura.

Refinamento

• Mas o requisito de sistema está detalhado o suficiente para ser implementado?

O sistema deve solicitar os dados de pagamento ao cliente, usando uma conexão segura.

Refinamento

Requisitos são refinados em requisitos mais detalhados

O cliente deve fazer o pagamento online

Requisito dos stakeholders

O sistema deve solicitar os dados de pagamento ao cliente

Existem outras alternativas de refinamento! O software pode atender a várias delas!

O sistema deve solicitar os dados do cartão de crédito

O sistema deve solicitar ao cliente o nome, número, data de validade e CV do cartão de crédito

Requisito do software

Metas

- Os requisitos são originários de metas
 - Objetivos que o software deve atingir (**porquê**)
 - Diferentes stakeholders têm diferentes metas
 - Em geral são apresentados de forma vaga
 - Exemplo
 - Diminuir custos
 - Diminuir o número de funcionários
 - Usar tecnologias modernas
- Metas mudam lentamente
 - Requisitos e o escopo mudam com mais frequência

Níveis de refinamento

- Metas são refinadas em outras metas
 - Metas contribuem para outras metas
 - Exemplo

Metas

Relação das metas e o contexto

Níveis de abstração

Requisitos

- Importante perguntar o "porquê" → Metas
 - Provêm um racional para o requisito
 - Ajudam a identificar regras de negócio
 - Facilitam encontrar requisitos implícitos
 - Ajudam a entender a importância do requisito
 - Facilitam o entendimento do requisito

Requisitos e arquitetura

- Requisitos não devem ter detalhes de implementação
 - Mas decisões arquiteturais afetam os requisitos
 - o Alguns refinamentos só são possíveis em uma arquitetura
 - Exemplo
 - Se for aplicativo Android, é possível usar GPS ou giroscópio
 - Se usar a autenticação do Google, já confirmamos que a pessoa é válida
 - o ...não é possível separar arquitetura dos requisitos...
 - O arquiteto deve participar das atividades de ER

Outros termos

Feature (características)

Regra de negócio

Referências

- GUNTER, C.; GUNTER, E.; JACKSON, M.; ZAVE, P. A Reference Model for Requirements and Specifications. IEEE Software, v.17, n.3, pp.37-43, May/June 2000.
- IEEE. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-1998, 1998.
- ISO. Systems and software engineering System and software Quality Requirrements and Evaluation (SquaRE) – System and software quality models ISO/IEC/IEEE 25010. 2011.
- ISO. Systems and software engineering Life cycle processes Requirements engineering. ISO/IEC/IEEE 29148. 2018.
- LEFFINGWELL, D. Agile Software Requirements: Lean Requirements Practices for Teams,
 Programs, and the Enterprise. Addison-Wesley, 2011.
- POHL, K. Requirements Engineering: Fundamentals, Principles and Techniques. Springer, 2010.
- VAN LAMSWEERDE, A. Requirements Engineering: from System Goals to UML Models to Software Specifications. Wiley, 2009.
- WIEGERS, K; BEATTY, J. Software Requirements. 3^a edição. Microsoft Press, 2013.