北京科技大学 2015—2016 学年第二学期

概率论与数理统计 试卷 (B卷)

院(系)	班级	学号	姓名
		, ,	XIA

				试卷	卷面成	结				F 280 50	Tal	
题号	_	=	=	四	五	六	七	八	小计	占课程 考核成 绩 70%	平时 成绩 占 30%	课程考 核成绩
得分											D 30%	
评阅												
审核												

注意事项:

- (1) 本试卷共八道大题, 共八页, 请认真核对。
- (2) 正确填写学院、班级、姓名、学号等个人信息, 空填或错填的试卷为无效试卷。
- (3) 请使用钢笔、签字笔或者圆珠笔答卷,使用铅笔答卷无效。

得分 一、填空题(本题共15分,每小题3分)

1.	从1-9这九个数字中任取三个,	它们的乘积是偶数的概率是	

- 2. 设事件 A 和事件 B 相互独立,发生的概率分别为 0.4 和 0.7 ,那么 A 与 B 的和事件发生的概率为 _____。
- 3. 设随机变量 X 与 Y 相互独立,且都服从区间 [0,1] 上的均匀分布,那么 D(X+Y)= _____。
- 5. 设总体 X 的一个样本 $X_1, X_2, \cdots, X_n, n > 1$,在三个统计量 $X_1, \frac{X_1 + 2X_2 + 3X_3}{6}, \frac{X_1 + X_2 + \cdots + X_n}{n}$ 中,可以作为总体期望 EX 的无偏估计量的统计量的个数是 _______.

- 1. 假设事件 $A \cap B$ 满足 P(B|A)=1 ,则 ______。
- (A) 事件 A 是必然事件

(B) $P(\overline{B}|A) = 0$

(C) $A \supset B$

- (D) $A \subset B$
- 2. 设 X,Y 是两个相互独立的随机变量,且 $X\sim N\left(\mu_1,\sigma_1^2\right),Y\sim N\left(\mu_2,\sigma_2^2\right)$,则 Z=X+2Y 服从的分
- 布是 _____。
 (A) $N(\mu_1 + \mu_2, \sigma_1^2 + 2\sigma_2^2)$

(B) $N(\mu_1 + 2\mu_2, \sigma_1^2 + 2\sigma_2^2)$

(C) $N(\mu_1 + \mu_2, \sigma_1^2 + 4\sigma_2^2)$

- (D) $N(\mu_1 + 2\mu_2, \sigma_1^2 + 4\sigma_2^2)$
- 3. 设随机变量 X,Y 同分布,分布律为 $\begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$, 且满足 $P\{XY=0\}=1$, 则

 $P\{X=Y\}=$ _______

(A) 0

(B) $\frac{1}{2}$

(c) $\frac{1}{4}$

- (D) 1
- 4. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N\left(0, 2^2\right)$ 的样本, \overline{X}, S 分别为样本均值与样本标准差, 则 _____。
 (A) $n\overline{X} \sim N(0,1)$

(B) $\overline{X} \sim N(0,1)$

(C) $\frac{\sqrt{n} \cdot \overline{X}}{C} \sim t(n-1)$

- (D) $\frac{nS^2}{4} \sim \chi^2 (n-1)$
- 5. 在假设检验中,记 H_1 为备择假设,则称 ______ 为犯第一类错误。
- (A) H 真时接受 H

(B) H_1 不真时接受 H_1

(C) H₁真时拒绝 H₁

(D) H_1 不真时拒绝 H_1

三. (本题 12 分) 在某次实验中需要测量某物体的长度。一组测量结果如下(单位:毫米) 286 285 289 284 284 287 288 283 288。

物体长度服从正态分布,其均值和方差分别记作 μ 和 σ^2 。

问题: (1) 求均值 μ 的置信区间,置信度为 0.95 ; (2) 是否可以认为物体的长度是 282 毫米? 显著性水平 $\alpha=0.05$; (3) 是否可以认为物体的长度 $\mu\leq 282$ 毫米? 显著性水平 $\alpha=0.05$ 。

已知数据: $z_{0.05} = 1.65$; $t_{0.05}(8) = 1.860$; $t_{0.05}(9) = 1.833$; $t_{0.05}(10) = 1.813$;

 $z_{0.025} = 1.96$; $t_{0.025}(8) = 2.306$; $t_{0.025}(9) = 2.262$; $t_{0.025}(10) = 2.228$; $\sqrt{4.5} = 2.12$.

四. (本题 10 分)罐子中有m(m>1) 只白球,1 只黑球。从中随机摸出一只,观察颜色后放回罐中,并同时再放入一只同一颜色的球。问:

- (1) 第二次摸出白球的概率是多少?
- (2) 连续摸出三个白球的概率是多少?
- (3) 随机模球两次, 若第二次摸出白球, 判断第一次更有可能摸出哪种颜色的球?

五. (本题 16 分) 设随机向量(X,Y)分布在三角形 $D = \{(x,y)|x,y \ge 0, x+y \le 1\}$ 上,其联合概率密度函数为 $f(x,y) = Ax^2y$ 。

- (1) 求 A 的值;
- (2) 求X,Y 的边缘分布密度函数。X与Y是否独立?为什么?
- (3) 求条件密度函数 $f_{Y|X}(y|x)$;
- (4) 求条件概率 $P\left\{Y < \frac{1}{3} \middle| X = \frac{1}{3} \right\}$ 。
- (5) 求E(X+Y)。

六. (本题 12 分) 设总体 X 分布在区间 (0,1) 上, 其概率密度为 $f(x) = (\theta+1)x^{\theta}, 0 < x < 1$, 其中 θ 是未知参数, $\theta > -1$ 。求: θ 的矩估计量和最大似然估计量。

- 得 分
- 七. (本题 14分)设随机变量 X 服从区间(0,1)上的均匀分布,记 $Z=-\ln X$ 。求:
- (1) 随机变量Z 的分布函数以及概率密度;
- (2) 概率 $P\{Z>2|Z>1\}$;
- (3) 若 Y_1, Y_2 独立且与X同分布,求 $Y = Y_1 + 2Y_2$ 的概率密度。

八. (本题 6 分)设随机变量 X 的分布函数为单调增加的连续函数 F(x),证明:随机变量 Y = F(X) 在区间 [0,1] 上服从均匀分布。