Regression Assignment

1. Name of the Project:

Insurance Prediction

2.Stage 1:

Domain: Machine Learning

Stage 2:

Learning: Supervised Learning

Stage 3:

Regression

1. Multiple Linear Regression:

Find the Best Model for **Multiple Linear Regression** using different Parameter to get different R2 Value: (Hyper Tunning Parameter)

R2value for the Model $= \frac{0.7894790349867009}{0.7894790349867009}$

2. <u>Support Vector Machine</u>:

Find the Best Model for **Support Vector Machine** using different Parameter to get different R2 Value: (Hyper Tunning Parameter)

S.No	Hyper Tunning Parameter	Linear	rbf	Poly	Sigmoid
1	C=10	0.46246841 4233968	- 0.0322732939 0671052	0.038716222 760231456	0.039307143782743 47
2	C=100	0.62887928 57320358	0.3200317832 050832	0.617956962 4059795	0.527610354651040
3	C=1000	0.74141889 77179843	0.8102064908 497452	0.856648767 5946568	0.287470694869768
4	C=10000	0.74142301 32435738	0.8779952394 739162	0.859171507 9473909	- 34.15153597849625 6
5	C=100000	0.74141889 77179843	0.8724984441 820819	0.857788113 2290369	- 3432.318749807744 6

R2 value for the Support Vector Machine=0.8591715079473909

Regression Assignment

3.Descison Tree:

Find the Best Model for **Decision Tree** using different Parameter to get different R2 Value: (Hyper Tunning Parameter)

S.NO	Criterion	Splitter	Max_Features	R2 Value
1.	squared_error	best	auto	0.6895790751354043
2.	friedman_mse	best	auto	0.6963806349923684
3.	absolute_error	best	auto	0.6563665324826058
4.	Poisson	best	auto	0.6765277216587837
5.	squared_error	random	auto	0.7310709719271218
6.	friedman_mse	random	auto	0.6957290959782847
7.	absolute_error	random	auto	0.7158032209785774
8.	Poisson	random	auto	0.6685531227801922
9.	squared_error	best	sqrt	0.6679876711117958
10.	friedman_mse	best	sqrt	0.7275632815217836
11.	absolute_error	best	sqrt	0.6724664869263924
12.	Poisson	best	sqrt	0.6397891283331316
13.	squared_error	random	sqrt	0.705478741987095
14.	friedman_mse	random	sqrt	0.5646967613838199
15.	absolute_error	random	sqrt	0.5646967613838199
16.	Poisson	random	sqrt	0.6370670965924758
17.	squared_error	best	log2	0.7488790203888427
18.	friedman_mse	best	log2	0.6752179584365661
19.	absolute_error	best	log2	0.7617606229934244
20.	Poisson	best	log2	0.7109588520250636
21.	squared_error	random	log2	0.6347575260245089
22.	friedman_mse	random	log2	0.6802753879963074
23.	absolute_error	random	log2	0.6290054031170031
24.	Poisson	random	log2	0.6157505915205015

R2 Value for the Decision Tree = $\frac{0.7617606229934244}{0.7617606229934244}$

Regression Assignment

4.Random Forest Regressor: n_estimators=100

Find the Best Model for **Random Forest Regressor** using different Parameter to get different R2 Value: (Hyper Tunning Parameter)

S.NO	Criterion	Max_Features	R2 Value
1.	squared_error	<mark>sqrt</mark>	0.871463478275109
2.	friedman_mse	sqrt	0.8713498947989694
3.	absolute_error	sqrt	0.8712764184015294
4.	Poisson	sqrt	0.8292506547085357
5.	squared_error	log2	0.871463478275109
6.	friedman_mse	log2	0.8713498947989694
7.	absolute_error	log2	0.8712764184015294
8.	Poisson	log2	0.8292506547085357
9.	squared_error	1.0	0.8537036640729467
10.	friedman_mse	1.0	0.8541706813493263
11.	absolute_error 1.0		0.8517950369800487
12.	Poisson	1.0	0.8331354385838652

Final Model for insurance, pre.csv Random Forest Regressor (criterion='squared_error', n_estimators=100, Maxfeature='sqrt')

Final Model - R2 value=0.871463478275109