Hyukdong Kim

Lemma 1. Let $x, y \in \mathbb{Q}$. Then $x + y, xy \in \mathbb{Q}$.

Proof. Let $x = \frac{a}{b}, y = \frac{c}{d}$ such that $(a, b, c, d) \in \mathbb{Z}, (b, d) \neq 0$. Then,

$$x + y = \frac{a}{b} + \frac{c}{d} \tag{1}$$

$$= \frac{ad + bc}{bd} \in \mathbb{Q} \tag{2}$$

$$(\because ad + bc, bd \in \mathbb{Z}) \tag{3}$$

Lemma 2. Let $x \in \mathbb{Q}$, $y \in \mathbb{Q}^c$. Then (1) $x + y \in \mathbb{Q}^c$, (2) $xy \in \mathbb{Q}^c$.

Proof. (1) Suppose $y \in \mathbb{Q}$. By **Lemma 1**, $y = \underbrace{x + y}_{\in \mathbb{Q}} - \underbrace{x}_{\in \mathbb{Q}} \in \mathbb{Q}$.

(2) Suppose $y \in \mathbb{Q}$. By Lemma 1,

$$y = y \frac{x}{x} = \underbrace{\frac{\in \mathbb{Q}}{xy}}_{\in \mathbb{Q}} \in \mathbb{Q}$$

Problem 1. Show given any two number district real numbers, there is at least one retional number and one irrational number between them.

Proof.

Case 1. Let $x, y \in \mathbb{Q}$. Then, there exists $\frac{1}{2}(x+y) \in \mathbb{Q}(: \mathbf{Lemma 1})$.

Case 2. Let $x \in \mathbb{Q}^c$, $y \in \mathbb{R}$ such that x < y. Since x < y, y - x > 0 then there exists $n \in \mathbb{N}$ such that $n(y - x) > \sqrt{2}$.

$$n(y-x) > \sqrt{2} \tag{4}$$

$$\Leftrightarrow y - x > \frac{\sqrt{2}}{n} \tag{5}$$

$$\Leftrightarrow x + \frac{\sqrt{2}}{n} < y \tag{6}$$

Then,
$$x < x + \underbrace{\frac{\sqrt{2}}{n}}_{\in \mathbb{D}^c} < y$$
.

Problem 2. Show $\sqrt{2} \in \mathbb{Q}^c = I$

Proof. Suppose $\sqrt{2} \in \mathbb{Q}$. Then, There exists number a,b satisfying $\sqrt{2} = \frac{a}{b}$ such that $(a,b) \in \mathbb{Z}, \gcd\{a,b\} = 1$. Thus, $2b^2 = a^2$ is even number. Then, a is also even number. Let a = 2k, $2b^2 = a^2 = (2k)^2 = 4k^2$. Then, b is even number $(:b^2)$ is even number. a and b are even number that has common divisor 2.