Homogeneous Linear Equations with Constant Coefficients Continued...

In the last lecture we discussed the general solution cases of a second-order linear DE with constant coefficients. In this lecture we are going to extend that pattern for higher order linear DEs with constant coefficients.

Higher-Order Equations

In general, to solve an *n*th-order differential equation (1), where the a_i , i = 0, 1, ..., n are real constants, we must solve an *n*th degree polynomial equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0.$$
(1)

If all the roots of (1) are real and distinct, then the general solution of (1) is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x}$$
.

It is somewhat harder to summarize the analogues of Cases II and III because the roots of an auxiliary equation of degree greater than two can occur in many combinations. For example, a fifth-degree equation could have five distinct real roots, or three distinct real and two complex roots, or one real and four complex roots, or five real but equal roots, or five real roots but two of them equal, and so on. When m_1 is a root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal to m_1), it can be shown that the linearly independent solutions are

$$e^{m_1x}$$
, $x e^{m_1x}$, $x^2 e^{m_1x}$, ..., $x^{k-1}e^{m_1x}$

and the general solution must contain the linear combination

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x} + c_3 x^2 e^{m_1 x} + \dots + c_k x^{k-1} e^{m_1 x}$$
.

Finally, it should be remembered that when the coefficients are real, complex roots of an auxiliary equation always appear in conjugate pairs. Thus, for example, a cubic polynomial equation can have at most two complex roots.

EXAMPLE 3 Third-Order DE

Solve y''' + 3y'' - 4y = 0.

SOLUTION It should be apparent from inspection of $m^3 + 3m^2 - 4 = 0$ that one root is $m_1 = 1$, so m - 1 is a factor of $m^3 + 3m^2 - 4$. By division we find

$$m^3 + 3m^2 - 4 = (m-1)(m^2 + 4m + 4) = (m-1)(m+2)^2$$

so the other roots are $m_2 = m_3 = -2$. Thus the general solution of the DE is $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$.

EXAMPLE 4 Fourth-Order DE

Solve
$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0.$$

SOLUTION The auxiliary equation $m^4 + 2m^2 + 1 = (m^2 + 1)^2 = 0$ has roots $m_1 = m_3 = i$ and $m_2 = m_4 = -i$. Thus from Case II the solution is

$$y = C_1 e^{ix} + C_2 e^{-ix} + C_3 x e^{ix} + C_4 x e^{-ix}$$

By Euler's formula the grouping $C_1e^{ix} + C_2e^{-ix}$ can be rewritten as

$$c_1 \cos x + c_2 \sin x$$

after a relabeling of constants. Similarly, $x(C_3e^{ix} + C_4e^{-ix})$ can be expressed as $x(c_3\cos x + c_4\sin x)$. Hence the general solution is

$$y = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x.$$

Exercise 4.3

In Problems 15–28 find the general solution of the given higher-order differential equation.

15.
$$y''' - 4y'' - 5y' = 0$$

16.
$$y''' - y = 0$$

17.
$$y''' - 5y'' + 3y' + 9y = 0$$

18.
$$y''' + 3y'' - 4y' - 12y = 0$$

19.
$$\frac{d^3u}{dt^3} + \frac{d^2u}{dt^2} - 2u = 0$$

$$20. \frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - 4x = 0$$

21.
$$y''' + 3y'' + 3y' + y = 0$$

22.
$$y''' - 6y'' + 12y' - 8y = 0$$

23.
$$y^{(4)} + y''' + y'' = 0$$

24.
$$y^{(4)} - 2y'' + y = 0$$

25.
$$16\frac{d^4y}{dx^4} + 24\frac{d^2y}{dx^2} + 9y = 0$$

$$26. \ \frac{d^4y}{dx^4} - 7\frac{d^2y}{dx^2} - 18y = 0$$

27.
$$\frac{d^5u}{dr^5} + 5\frac{d^4u}{dr^4} - 2\frac{d^3u}{dr^3} - 10\frac{d^2u}{dr^2} + \frac{du}{dr} + 5u = 0$$

28.
$$2\frac{d^5x}{ds^5} - 7\frac{d^4x}{ds^4} + 12\frac{d^3x}{ds^3} + 8\frac{d^2x}{ds^2} = 0$$

In Problems 29–36 find the general solution of the given higher-order differential equation.

29.
$$y'' + 16y = 0$$
, $y(0) = 2$, $y'(0) = -2$

30.
$$\frac{d^2y}{d\theta^2} + y = 0$$
, $y\left(\frac{\pi}{3}\right) = 0$, $y'\left(\frac{\pi}{3}\right) = 2$

31.
$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} - 5y = 0$$
, $y(1) = 0$, $y'(1) = 2$

32.
$$4y'' - 4y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 5$

33.
$$y'' + y' + 2y = 0$$
, $y(0) = y'(0) = 0$

34.
$$y'' - 2y' + y = 0$$
, $y(0) = 5$, $y'(0) = 10$

35.
$$y''' + 12y'' + 36y' = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$

36.
$$y''' + 2y'' - 5y' - 6y = 0$$
, $y(0) = y'(0) = 0$, $y''(0) = 1$