IDEATION PHASE

Date	25.09.2022	
Team ID	PNT2022TMID46390	
Project Name	Early detection of chronic disease using machine learning.	

Literature Survey Canvas

It is used to establishes the authors' in-depth understanding and knowledge of their field subject.

A literature surveys books, scholarly articles, and any other sources relevant to a particular issue, area of research, or theory, and by so doing, provides a description, summary, and critical evaluation of these works in relation to the research problem being investigated

LITERATURE SURVEY

S.NO	PAPER	AUTHOR	YEAR	PROPOSED METHODS AND ALGORITHMS	ACCURACY
1	Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study	Njoud Abdullah Almansour, Hajra Fahim Syed, Nuha Radwan Khayat, Rawan Kanaan Altheeb, Renad Emad Juri, Jamal Alhiyafi, Saleh Alrashed, Sunday O.Olatunji	2019	Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques	97.75%
2	Chronic Kidney Disease Prediction using Machine Learning Models	S.Revathy, B.Bharathi , P.Jeyanthi, M.Ramesh	2019	Decision Tree, Support Vector Machine (SVM) and Random Forest Classifier	98.33%

3	An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy	Bilal Khan, Rashid Naseem, Fazal Muhammad, Ghulam Abbas, and Sunghwan Kim	2020	Support Vector Machine (SVM), Logistic Regression, Naïve Bayes, Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques	98.25%
4	A Machine Learning Methodology for Diagnosing Chronic Kidney Disease	Jiongming Qin, Lin Chen, Yuhua Liu, Chuanjun Liu, Changhao Feng, and Bin Chen	2020	Logistic regression, random forest, support vector machine, k- nearest neighbour, naive Bayes classifier and feed forward neural network	99.83%
5	Prediction of Chronic Kidney Disease - A Machine Learning Perspective	Pankaj chittora, Sandeep chaurasia, Prasun chakrabarti, Gaurav kumawat , Tulika chakrabarti, Zbigniew leonowicz ,Michał jasinski, Lukasz jasinski, Radomir gono, Elżbieta jasińska, and Vadim bolshev	2021	Artificial Neural Network (ANN), C5.0, Chi-square Automatic interaction detector, logistic regression, linear support vector machine with penalty L1 & with penalty L2 and random tree	98.86%