שאלה 1 (25 נקודות)

- א. תאר אלגוריתם שסיבוכיותו $O\left(\left|V\right|^2\right)$ אשר מקבל כקלט כנ״ל ושני צמתים G=(V,E) מכי״ל ושני צמתים $S,t\in V$ ומחשב אורך מסלול קצר ביותר בין $S,t\in V$ והוכח את נכונותו.
- ב. האם האלגוריתם שתיארת בסעיף אי יפעל כהלכה גם כאשר יש לצמתים משקלות שליליים: אם כן - חוכח. אם לא - הבא דוגמה המכשילה את האלגוריתם.

שאלה 2 (25 נקודות)

יש לפחות 3 עצים פורשים $|E| \ge |V|$ ארף לא מכוון זקשיר המקיים $|E| \ge |V|$ הוכח של-G = (V,E) יש לפחות 3 עצים פורשים יהי

שאלה 3 (25 נקודות)

- m_i עם k רכיבים דו-קשירים. לכל רכיב נתון מטפר G=(V,E) נתון מטפר א. נתון גרף לא מכוון מטפר G=(V,E) נתון מטפר אהוא מספר צמתי ההפרדה ברכיב. מהו מספר צמתי ההפרדה בגרף כולוז הוכח.
- ב. מצא בדרך אלגוריתמית יעילת את צמתי החפרדת והרכיבים חדו-קשירים בגרף הבא: הראה את שלבי ביצוע האלגוריתם.

שאלה 4 (25 נקודות)

בכל אחד מהסעיפים הבאים כתוב אלגוריתם אשר מקבל כקלט גרף לא מכוון G=(V,E), כך המתואר בסעיף. סיבוכיות כל ש- |V|=n, מספר טבעי $k\leq n$ וקשת און לפלט את הערך המתואר בסעיף. סיבוכיות כל אחד מהאלגוריתמים צריכה להיות $O(k\cdot n^{\lg 7})$ ואפשר גם $O(n^{\lg 7}\cdot \lg k)$. הוכח את נכונות האלגוריתמים ונתח את סיבוכיותם.

- ℓ א. מספר המסלולים באורך ℓ אשר מתחילים בקשת
- -e אשר אינם עוברים דרך הקשת k ב. מספר המסלולים באורך

שאלה 5 (25 נקודות)

נתונה קבוצת נשים $Y=\left\{y_1,...,y_m\right\}$ קבוצת גברים $X=\left\{x_1,...,x_n\right\}$ וקבוצת אילוצים להינשא. כל אילוץ כל אילוץ $(x_i,y_j)\in C$ משמעותו כי האישה x_i והגבר כל אילוץ $C\subseteq X\times Y$ בחברה בה מדובר מותרת x_i פוליגמיה. כלומר, כל גבר יכול להינשא ל- x_i נשים לכל היותר, וכל אישה יכולה להינשא ל- x_i גברים לכל היותר, כאשר x_i הוא קבוע.

כתוב אלגוריתם המקבל כקלט את C-וY,X ומוצא את מספר השידוכים המקטימלי כאשר מותרת פוליגמית, כלומר, את חמספר המקסימלי של זוגות שיכולים להינשא זה לזו, תוך שמירה על האילוצים בקבוצה C וכאשר כל גבר וכל אישה נישאים לכל היותר k פעמים.

בהצלחה!