El método k vecinos más cercanos (KNN) Aprendizaje Estadístico, 2024/2025

UNIVERSIDAD DE MURCIA

Máster en Tecnología de Análisis de Datos Masivos - Big Data.

Juan A. Botía (juanbot@um.es)

Introducción

- Métodos sin modelo (model free)
 - No se requiere de una fase de aprendizaje
- Muy útil para clasificación y como algoritmo baseline
- No trabaja bien en problemas de alta dimensionalidad
- Cercano al clasificador bayesiano, con el que estimamos P(Y|X)
- Knn también
 - trabaja mediante estimaciones on-the-fly de P(Y|X)
 - utiliza la regla del clasificador de bayes para la inferencia
 - La clase C para la observación o es la que genera un P(C|X) máximo

El método KNN

- Dados el valor de K y una observación de test x₀ la inferencia funciona como sigue
 - Obtenemos los k puntos de los datos de training más próximos a x₀
 - Estimamos la probabilidad condicionada P(Y_i | x₀) para la clase j

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j)$$

- Aplicamos la regla de Bayes (x₀ pertenece a la clase cuya probabilidad condicionada es máxima)
- ¿Cómo localizar los puntos más próximos?
 - Si los predictores están definidos en el espacio de los reales, la distancia Euclidiana es una buena opción
 - Necesario normalizar los predictores

El método KNN (y II)

 Cuando las fronteras de decisión (decision boundaries) son irregulares, KNN se comporta muy bien, es muy flexible

Figura 2.13. Ejemplo simulado (100 puntos para cada clase)

Ejemplo: K=3

UNIVERSIDAD DE

KNN como algoritmo baseline

- Un algoritmo baseline:
 - sus sesgos, ventajas y desventajas conocemos muy bien
 - funciona razonablemente bien sin demasiados ajustes
 - Es bueno usar un algoritmo baseline como referencia, a partir de él solo podemos mejorar
- Sabemos que el ratio de error de un 1-NN no supera dos veces el error de Bayes
 - El clasificador de Bayes es óptimo

UNIVERSIDAD DE MURCIA

Error de Bayes y 1-NN

15-Nearest Neighbors

1-Nearest Neighbor

Frontera de decision de Bayes en púrpura

Error como función de K

7-Nearest Neighbors

UNIVERSIDAD DE MURCIA

La importancia de la validación cruzada para la estimación de K

• ¿Cuál es el valor de K óptimo para estos dos problemas ejemplo (chap. 13 Hastie et al.)?

$$Y=I\left(X_1>\frac{1}{2}\right);$$
 problem 1: "easy",
$$Y=I\left(\operatorname{sign}\left\{\prod_{j=1}^3\left(X_j-\frac{1}{2}\right)\right\}>0\right);$$
 problem 2: "difficult."

- 10 predictores independientes en ambos problemas, uniformemente distribuidos en [0,1]
- En 1, los dos casos son separables por el hiperplano X₁=1/2
- En 2, el hipercubo forma un patrón de tablero de ajedrez

UNIVERSIDAD DE MURCIA

KNN en problemas de alta dimensionalidad

- Sean N puntos distribuidos en el espacio formado por un cubo unidad
 - Puntos confinados en [-½, ½]^p
 - Sea R la distancia de un único vecino más próximo al centro del cubo, ¿cómo varia esa distancia

según p?

$$\operatorname{median}(R) = v_p^{-1/p} \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$

Cuando las dimensiones crecen, aunque sea un poco, los vecinos se distancian alcanzando rápidamente el borde del cubo

Referencias

- G. James, D. Witten, T. Hastie, y
 R. Tibshirani, An Introduction to
 Statistical Learning with
 Applications in R. Springer, 2013.
 - Chapter 2, pp. 39-42
- T. Hastie, R. Tibshirani, y J. Friedman, The elements of statistical learning. Springer, 2009.
 - Chapter 13, Sec. 13.3-13.5
- Transparencias basadas en el material de Manuel Mucientes.

