Group Information

Topic / Dataset: Cardiovascular

Group No: 1

Table 1: Group information

Student No	Student ID	Name	% of Contribution
1	2020-3-60-087	Md. Jihad	34%
2	2019-3-60-110	Lotifa Akan Anannya	33%
3	2020-2-60-167	Saikat Sudipta Shuva	33%

Table 2: List of datasets (DO NOT DELETE ROW 0)

			Table 2: List of datasets (Bo Not BELLTE Now o)						
No	Year: Dataset Short Name	Dataset Full Name	Datas et Link	Found by Student No	Comment				
0	2023: ABC	Absolute Branch Dataset	<u>Link1</u>	3	The dataset was downloaded and stored shared drive				
1	2020	Heart Attack Analysis & Prediction Dataset	Link	1	The dataset was downloaded and stored shared drive				
2	HDP	Heart Disease Prediction	Link	1	The dataset was downloaded and stored shared drive				
3	2019	A database for using machine learning and data mining techniques for coronary artery disease diagnosis	Link	1	The dataset was downloaded and stored shared drive				
4	2015	Cardiovascular Disease dataset	Link	2	The dataset was downloaded and stored shared drive				
5	HFCR20 20	heart_failure_clinical_recor ds_dataset	Link	2	The dataset was downloaded and stored shared drive				
6	HFPD	Heart Failure Prediction Dataset	Link	1	The dataset was downloaded and stored shared drive				
7	HDCD	Heart Disease	<u>Link</u>	1	The dataset was				

		Classification Dataset			downloaded and stored shared drive
8	2019: HDD	Heart Disease Deaths	Link	3	The dataset was downloaded and stored shared drive
9	2023	Rates and Trends in Coronary Heart Disease and Stroke Mortality Data Among US Adults (35+) by County – 1999-2018	<u>Link</u>	3	The data set size is high so the data set is not shared in drive but the link is given here.
10	2022: HAD	Heart Attack Dataset	Link	3	The dataset was downloaded and stored shared drive
11	2022	Risk Factors for Cardiovascular Heart Disease	<u>Link</u>	3	The dataset was downloaded and stored shared drive
12	2021	Framingham heart study dataset	Link	1	The dataset was downloaded and stored shared drive
13	2023: HDS	Heart Disease Statlog	Link	3	The dataset was downloaded and stored shared drive
14	2023	heart disease example dataset	Link	3	The dataset was downloaded and stored shared drive
15	2020	Prediction of Heart Disease using Machine Learning	Link	3	The dataset was downloaded and stored shared drive
16	CAD	Analysis of Coronary Artery Disease Risk Factors	Link	2	
17	FCHD	Framingham_CHD_preproc essed_data	Link	2	The dataset was downloaded and stored shared drive

Table 3: List of articles that cited the datasets in previous table (DO NOT DELETE ROW 0)

No	Paper title	Journal / conference name	Published Year: Paper Link	Citati on count	Paper Cited dataset No. x from Table 2	Foun d by Stude nt No
0	A brief history of time: an example paper name		2023: <u>Link</u>	1206	0, 5 and 6	2
1	Cardiovascular disease prediction using deep learning techniques	IOP Conference Series: Materials Science and Engineering, Volume 981, International Conference on Recent Advancements in Engineering and Management	2020: <u>Link</u>	43	1	1
2	Heart disease prediction using machine learning techniques	IOP Conference Series: Materials Science and Engineering, Volume 1022, 1st International Conference on Computational Research and Data Analytics.	2020: <u>Link</u>	41	1	1
3	Machine Learning Techniques For Heart Disease Prediction	INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8	2019: <u>Link</u>	57	2	1
4	Predicting coronary artery disease: a comparison between two data mining algorithms	BMC Public Health	2019: <u>Link</u>	88	2	1
5	A comparison of three discrete methods for classification of heart disease data	Bangladesh Journal of Scientific and Industrial Research	2015: <u>Link</u>	19	2	1

6	Heart Disease Diagnosis System Using Fuzzy Logic	International Conference on Software and Computer Applications	2018: <u>Link</u>	17	2	1
7	Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System	World Journal of Engineering and Technology	2018: <u>Link</u>	153	2	1
8	Heart Disease Prediction using Feature Selection and Ensemble Learning Techniques	Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV)	2021: <u>Link</u>	23	1	1
9	Efficient Medical Diagnosis of Human Heart Diseases Using Machine Learning Techniques With and Without GridSearchCV	IEEE Access (Volume: 10)	2022: <u>Link</u>	50	1	1
10	Machine Learning Algorithms for The Classification of Cardiovascular Disease- A Comparative Study	2021 International Conference on Information Technology (ICIT)	2021: <u>Link</u>	16	4	2
11	Comparison of machine learning methods for the classification of cardiovascular disease	Informatics in Medicine Unlocked 24	2021: <u>Link</u>	9	4	2
12	Identification of Features in ANN's Black Box using Dimensional Reduction and Correlation Analysis: A Case Study of Cardiovascular Disease Dataset	2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA)	2021: <u>Link</u>	1	4	2
13	Comparison of Machine	2019 International	2019: <u>Link</u>	26	4	2

	Learning Models in Prediction of Cardiovascular Disease Using Health Record Data	Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)				
14	Application of Machine Learning for Cardiovascular Disease Risk Prediction	Hindawi, Computational Intelligence and Neuroscience Volume 2023	2023: <u>Link</u>	15	4	2
15	An ensemble method based multilayer dynamic system to predict cardiovascular disease using machine learning approach	Informatics in Medicine Unlocked 24	2021: <u>Link</u>	24	4	2
16	hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost	Biomedical Signal Processing and Control, Volume 73	2021: <u>Link</u>	49	2	1
17	Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone	BMC Medical Informatics and Decision Making volume 20	2020: <u>Link</u>	420	5	2
18	Analysis of performance metrics of heart failured patients using Python and machine learning algorithms	Global Transitions Proceedings, Volume 2, Issue 2	2021: <u>Link</u>	18	5	2
19	A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image	Biomedical Signal Processing and Control, Volume 68	2021: <u>Link</u>	24	5	2
20	Predicting Survival of Heart Failure Patients Using Classification Algorithms.	JITCE (Journal of Information Technology and Computer Engineering), 4(02), 90-94.	2020: <u>Link</u>	22	5	2
21	Improving the Prediction of	IEEE Access (2021: <u>Link</u>	264	5	2

	Heart Failure Patients' Survival Using SMOTE and Effective Data Mining Techniques	Volume: 9)				
22	A Comprehensive Investigation of the Performances of Different Machine Learning Classifiers with SMOTE-ENN Oversampling Technique and Hyperparameter Optimization for Imbalanced Heart Failure Dataset	Hindawi Scientific Programming	2022: <u>Link</u>	33	5	2
23	Enhanced Heart Failure Prediction Using Feature Selection-based Machine Learning Models	2023 Advances in Science and Engineering Technology International Conferences (ASET)	2023: <u>Link</u>	unkno wn	5	2
24	Improving Classification Using SMOTE on Imbalanced Heart Failure Data	J. Patuakhali Sci. & Tech. Uni	2022: <u>Link</u>	unkno wn	5	2
25	IoT Based Smart Monitoring of Patients' with Acute Heart Failure	MDPI	2022: <u>Link</u>	29	5	2
26	EVALUATION OF PERFORMANCE OF CLASSIFICATION ALGORITHMS IN PREDICTION OF HEART FAILURE DISEASE	Kahramanmaras Sutcu Imam University Journal of Engineering Sciences	2022: <u>Link</u>	Unkn own	6	1
27	Prediction of Mortality from Heart Failure using Machine Learning	2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET)	2022: <u>Link</u>	19	6	1
28	Early heart disease prediction using ensemble learning techniques	Journal of Physics: Conference Series, Volume 2325,	2022: <u>Link</u>	4	2	1

		International Conference on Electronic Circuits and Signalling Technologies				
29	Development and Deployment of a Machine Learning Model for Automatic Heart Failure Prediction	Asian Conference on Innovation in Technology (ASIANCON)	2021: <u>Link</u>	8	6	1
30	COMPARISON OF ACCURACY PERFORMANCE K-NEAREST NEIGHBOR ALGORITHM AND SUPPORT VECTOR MACHINE FOR PREDICTING DEATH IN CONGESTIVE HEART FAILURE	JURNAL INFOKUM,Volume 10	2022: <u>Link</u>	Unkn	6	1
31	The Efficacy of Machine-Learning-Supporte d Smart System for Heart Disease Prediction	MDPI	2022: <u>Link</u>	27	2	1
32	Heart Disease Prediction Using Machine Learning	SpringerLink: FICTA	2023: <u>Link</u>	1	7	1
33	A SUPPORT VECTOR MACHINE BASED HEART DISEASE PREDICTION	JOURNAL OF SOFTWARE ENGINEERING & INTELLIGENT SYSTEMS	2019: <u>Link</u>	7	7	1
34	Implementation of Machine Learning Model to Predict Heart Failure Disease	International Journal of Advanced Computer Science and Applications	2019: <u>Link</u>	184	6	1
35	Heart Failure Prediction with Machine Learning: A Comparative Study	Journal of Physics: 2nd International Conference on Signal Processing and Computer Science	2021: <u>Link</u>	10	6	1
36	An intelligent heart disease prediction system using	Biomedical Signal Processing and	2023: <u>Link</u>	2	3	1

	hybrid deep dense Aquila network	Control, Volume 84				
37	WoM-based deep BiLSTM: smart disease prediction model using WoM-based deep BiLSTM classifier	SpringerLink	2023: <u>Link</u>	4	3	1
38	A cross-validation of risk-scores for coronary heart disease mortality based on data from the Glostrup Population Studies and Framingham Heart Study	International Journal of Epidemiology, Volume 31	2022: <u>Link</u>	302	12	2
39	The Framingham Heart Study and the Epidemiology of Cardiovascular Diseases: A Historical Perspective	NIH Public Access	2014: <u>Link</u>	70	12	2
40	Predicting the 30-Year Risk of Cardiovascular Disease	Circulation	2009: <u>Link</u>	1061	12	2
41	Trends in acute myocardial infarction coronary heart disease death in the United States	Journal of the American College of Cardiology	1994: <u>Link:</u>	233	9	3
42	Application of data mining techniques for early detection of heart diseases using Framingham heart study dataset	International Journal of Biomedical Engineering and TechnologyVol. 38	2020: <u>Link</u>	3	12	2
43	Feature Analysis of Coronary Artery Heart Disease Data Sets	International Conference on Communication, Management and Information Technology	2015: <u>Link</u>	156	16	3
44	Risk assessment of coronary heart disease based on cloud-random forest	Springer Link	2022: <u>Link</u>	34	17	3
45	Prediction of Heart Disease Using Machine Learning	IEEE	2018: <u>Link:</u>	153	15	3

46	Prediction of Heart Disease Using Machine Learning Algorithms	International Journal of Advanced Engineering, Management and Science (IJAEMS)	2016: <u>Link:</u>	47	15	3
47	A Hybrid Intelligent System Framework for the Prediction of Heart Disease Using Machine Learning Algorithms	Wearable Technology and Mobile Applications for Healthcare	2018: <u>Link:</u>	337	15	3
48	Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques	IEEE	2023: <u>Link:</u>	719	15	3
49	Relation of Corneal Arcus to Cardiovascular Disease (from the Framingham Heart Study Data Set) Author links open overlay panel	The American Journal of Cardiology	2009: <u>Link:</u>	25	13	3
50	The Framingham Heart Study: past, present and future	International Journal of Epidemiology	2015: <u>Link:</u>	21	13	3
51	Coronary heart disease risk factors in school children: The Muscatine study	The Journal of Pediatrics	1975: <u>Link:</u>	340	16	3
52	Evidence that triglycerides are an independent coronary heart disease risk factor	The American Journal of Cardiology	2000: <u>Link:</u>	377	16	3
53	Emergency Duties and Deaths from Heart Disease among Firefighters in the United States	The NEW ENGLAND JOURNAL of MEDICINE	2007: <u>Link:</u>	385	8	3
54	Feature Analysis of Coronary Artery Heart Disease Data Sets	Procedia Computer Science	2015: <u>Link</u>	111	14	3