Working Title: A Comparison of Approaches for Unplanned Sample Sizes in Phase II Clinical Trials

By

Molly Olson

Thesis

Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

in

Biostatistics

May, 2017

Nashville, Tennessee

Approved (in progress):

Tatsuki Koyama, Ph.D.

Jeffrey Blume, Ph.D.

ACKNOWLEDGMENTS

TABLE OF CONTENTS

		Page
AC	CKNOWLEDGMENTS	. ii
LI	ST OF TABLES	. iv
LIS	ST OF FIGURES	. v
ΑF	BSTRACT	. vi
Ch	apter	
1	Introduction	. 1
2	Background	. 3
3	Deviation from Planned Sample Sizes In Second Stage	. 5
4	Deviation from Planned Sample Sizes in First Stage	. 7
	4.1 <i>Chang et al.</i> Alternative Designs and Adaptation	
5	Example	. 13
6	Results	. 15
7	Discussion and Conclusion	. 24
R	EFERENCES	. 27

LIST OF TABLES

Tabl	le	Pa	age
5.1	Stopping rules for deviations from first stage planned sample size concrete		
	example		14
6.1	Attained design characteristics from deviation of Admissible II stage design		
	$(p_0 = 0.1, p_1 = 0.25, \alpha = 0.05, \beta = 0.20)$		19
6.2	Attained design characteristics from deviation of Simon's Optimal II stage		
	design $(p_0 = 0.5, p_1 = 0.65, \alpha = 0.05, \beta = 0.2)$		19
6.3	Attained design characteristics from deviation of Simon's Minimax II stage		
	design $(p_0 = 0.75, p_1 = 0.9, \alpha = 0.05, \beta = 0.2)$		20
6.4	Attained design characteristics from deviation of Simon's Optimal II stage		
	design $(p_0 = 0.05, p_1 = 0.25, \alpha = 0.1, \beta = 0.1)$		20
6.5	Attained design characteristics from deviation of Admissible II stage design		
	$(p_0 = 0.3, p_1 = 0.45, \alpha = 0.1, \beta = 0.1) \dots$		21
6.6	Attained design characteristics from deviation of Simon's Minimax II stage		
	design $(p_0 = 0.75, p_1 = 0.9, \alpha = 0.1, \beta = 0.1)$		21

LIST OF FIGURES

Figu	ire	Page
6.1	Monte Carlo Simulation of Average Power of 20 Simon-like Designs when	
	Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} =$	
	$n_1^{**}+n_2$)	. 16
6.2	Monte Carlo Simulation of Average Power of 20 Simon-like Designs when	
	Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} =$	
	$n_1^{**}+n_2$)	. 16
6.3	Monte Carlo Simulation of Average Power of 20 Simon-like Designs when	
	Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_t)$. 22
6.4	Monte Carlo Simulation of Average Type I Error Rates of 20 Simon-like De-	
	signs when Stage I Sample Size Deviates from Planned for Attained Designs	
	$(n_t^{**}=n_t)$. 23

ABSTRACT

Oncology phase II clinical trials are often used to evaluate the initial effect of a new regimen to determine if to warrant further study in a phase III clinical trial. Simon's two-stage design is a commonly used design in specifying sample sizes and critical values in phase II oncology clinical trials. It is common, however, for attained sample sizes in these trials to be different than planned. In this thesis, we examine the problems in hypothesis testing for two stage phase II clinical trial designs when attained sample sizes differ from the planned design. We describe methods for redesigning trials when attained sample sizes that differ from planned and introduce a new method for redesigning a two stage clinical trial when the first stage sample sizes deviates from planned. These methods would primarily be used for prespecifying redesigns for the cases when the Simon-like design does not have planned accrual. We find that the Likelihood approach has more desireable characteristics for deviations from the planned design, though if one wishes to remain with a Frequentist approach, an adaptation of a method that Chang et al. proposed, may also be appropriate.

Introduction

Oncology phase II clinical trials are often used to evaluate the initial effect of a new regimen to determine if there is warrant for further study in a phase III clinical trial [1, 2, 3]. Simon's two-stage design [2] is a commonly used design that specifies sample sizes and critical values in phase II oncology clinical trials. Koyama and Chen [3] point out that it is common for actual sample sizes of these phase II trials to differ than the planned, pre-specified sample sizes. This could happen due to unanticipated accruement speed or drop-out rates and often multi-center trials can be delayed in communication of enrollment and response information. Currently, when attained sample sizes differ from planned, call these unplanned sample sizes, it is common practice to treat the attained sample sizes as planned. Though, when acheived sample sizes differ from planned, hypothesis testing using the attained sample sizes as if they were planned is not valid and hypothesis testing in these cases is not straightforward [1, 3]. Because of these reasons, extensions of Simonlike design for hypothesis testing with unplanned sample sizes is essential.

There have been proposed Frequentist methods that handle unplanned sample sizes in the second stage while using the planned stage I sample size, but our literature review found that there were only few Frequentist methods to handle unplanned sample sizes in stage I. Though, when focusing on deviations in sample sizes in the second stage, many proposed methods are adjusting the p-value calvulation rather than proposing a redesign. Likelihood based designs, which have the ability to be an extension of Simon's design, offer a nice solution to this problem because these designs offer flexibility in sample size without inflation of type I error. Because calculations of p-values are complicated when attained sample sizes are different than planned [3], we focus on methods that offer redesigns of a planned Simon-like design that will be prespecified along with the planned design.

In this paper, we discuss the different methods for Simon's design when the attained stage II sample size is different than planned and when attained sample sizes in both stages are different than planned. We review Simon-like designs in chapter 2 and illistrate redesign methods in chapters 3 and 4. In chapter 5, we review a concrete example from a Likelihood-based clinical trial, and in chapter 6, results of a numerical and theoretical study comparing Frequentist properties of approaches in the setting where stage I sample size differs from planned are presented.

Background

Simon's II stage designs for clinical trials are common designs for phase II oncology clinical trials [2]. In Simon's designs, the null hypothesis $H_0: p \le p_0$ is tested against the alternative $H_1: p > p_1$, where p is the true response probability, p_0 is the highest probability of response that would indicate that the research regimen is uninteresting and p_1 is the lowest probability of response that would indicate that the research regimen warrants further investigation. Under these hypotheses, it is required that the type I error rate remain less than α and power remain above $1-\beta$. The general framework of Simon's design includes a sample size and critical value in each of the two stages. Let n_1 denote the first stage sample size, n_t the sample size at the end of the second stage, r_1 the first stage critical value, and r_t the critical value for the end of the second stage. Let X_1 be the number of successes observed in the first stage and X_2 be the number of additional success in the second stage. In the first stage, n_1 patients are enrolled. If r_1 or fewer patients $(X_1 \le r_1)$ are successes, then the regimen is rejected and the trial is stopped for futility. If $r_1 + 1$ patients are successful, then the trial continues to the second stage. In the second stage, $n_2 = n_t - n_1$ patients are enrolled. If r_t or fewer out of the n_t patients are successful $(X_t = X_1 + X_2 \le r_t)$, the treatment is considered to be futile, otherwise if $r_t + 1$ patients succeed, the treatment is considered to be effective and will warrant further study.

Design characteristics: Let B denote the cumulative binomial distribution function and b denote the binomial probability mass function. The probability of early termination with probability p in Simon's designs is given by $PET = B(r_1, p, n_1)$. The expected sample size for probability p is then $EN = n_1 + (1 - PET)n_2$, and the probability of rejecting a drug for probability p is then $PR(p) = B(r_1, p, n_1) + \sum_{x=r_1+1}^{min[n_1, r]} b(x, p, n_1)B(r - x, p, n_2)$. It is required that $PR(p) \ge 1 - \alpha$ and $PR(p) \le \beta$. Given these constraints, it follows that un-

conditional conditional power, UCP(p), given probability p, is given by 1-PR(p)=1- $\left(B(r_1,p,n_1)+\sum_{x=r_1+1}^{min[n_1,r]}b(x,p,n_1)B(r-x,p,n_2)\right)=\sum_{r_1+1}^{n_1}\left\{\sum_{x_2=r_t-x_1+1}^{n_2}b(x_2,p,n_2)\right\}b(x_1,p,n_1),$ and $UCP(p_1)\geq 1-\beta$ and $UCP(p_0)\leq \alpha$.

Simon introduced Optimal and Minimax designs. An Optimal two-stage design is a Simon's design in which minimizes the expected sample size under the null hypothesis with response value p_0 (EN₀) while still satisfying the type I and type II error probability restrictions. The Minimax design will minimize the maximum sample size ($n_t = n_1 + n_2$). Jung *et al.* [4] introduced an extension of Simon's designs called Admissible designs that are considered a compromise between Optimal and Minimax designs because they have similar maximim sample size as the minimax design and a similar EN₀ to the optimal design. Admissible designs optimize a straight line on the (n, EN)-plane, $q \times n + (1 - q) \times EN$, for some $q \in [0,1]$ [4]. Admissible designs satisfy (α , β) constraints and obtain an expected sample size somewhere between Optimal and Minimax designs. Admissible designs may be attractive because they have agreeable properties of both the Minimax and Optimal design. Simon does not allow for early termination of the trial for efficacy [2], and we do not consider that design here. We focus this paper on extensions of Minimax, Optimal, and Admissible designs and call these Simon-like designs.

Deviation from Planned Sample Sizes In Second Stage

When over- or under-enrollment occurs, a straightforward solution is to perform an interim analysis on the planned number of first stage subjects, and adjust the testing procedure for a sample size in the second stage that is different than planned. This is possible under the assumption of non-informative dropouts; stage one is concluded when the number of non-missing patients is equal to the planned stage one sample size, and if over enrollment occurs in the first stage, they will only be considered for the second stage analysis [3]. Literature exists describing point estimation of the response rate and p-values for hypothesis testing when stage two sample size is modified. A review of these methods can be found by Porcher et al. [1]. Because Koyama and Chen have shown that the p-value in multistage trials will depend on the design and is complicated in the setting of unplanned sample sizes [3], we only focus on methods that use critical values for hypothesis testing, or redesigns, and will not focus on p-value calculations. (Basically calculating a p-value is complicated in unplanned settings, so we are just going to use critical values instead) Koyama et al. propose a method for inference when stage II sample sizes deviate from the planned stage II sample size [3]. Let $n_1, n_t, r_1, r_t, \alpha$ and β be the original design parameters. The authors let the first stage remain as planned and propose a redesign of the second stage. The authors first define conditional power, $A(x_1, n_2, p) = P_p[X_2 \ge r_t]$. Using conditional power evaluated at p_0 , they calculate a new critical value, r_t^* , by finding the value of r_t^* such that $A^*(x_1, n_2^*, p_0) \leq A(x_1, n_2, p_0) \equiv P_{p_0}[X_2^* \geq r_t^* | X_1 = x_1] \leq P_{p_0}[X_2 \geq r_t | X_1 = x_1],$ where $X_2^* \sim \text{Binomial}(n_2^*, p_0)$ and n_2^* is the attained stage II sample size. This new critical value will result in a controlled unconditional type I error rate because the new critical value gives a conditional type I error rate that is more conservative than the original conditional type I error rate. The authors comment that the new critical value, r_t^* may require a different number of total responses to reject H_0 for different values of X_1 because it is conditional on the result of the first stage.

Deviation from Planned Sample Sizes in First Stage

Because accruement of patients can often be unexpected in the first stage and some situations require early evaluation of the first stage, it's imperative that methods are available to handle situations with attained sample sizes that differ from the planned sample size. Green and Dahlberg [5] and Chen and Ng [6] propose methods for inference when first stage sample sizes differ than planned. Green and Dahlberg extended Southwest Oncology Group's inference method by suggesting to perform a hypothesis test on H_0 : $p = p_1$ versus $H_1: p < p_1$ in the first stage at the 0.02 α -level and concluding futility if the p-value is ≤ 0.02 . They then suggest testing H_0 : $p = p_0$ versus H_1 : $p < p_0$ in the second stage at the 0.05 level. Li et al. indicate that this approach controls type I error and acheives desired power, though this approach is founded on an overall α -level of 0.05, and it is unclear how this method would generalize to any α -level [7]. Chang et al. also point out that Green and Dahlberg's designs can possibly be quite different than the planned designed. Chen and Ng suggest an approach to unplanned sample sizes by considering a range of sample sizes in both the first and second stage. They search these ranges for the Minimax and Optimal designs that satisfy error constraints using the average probability of termination for all possible first stage sample sizes and average expected sample size for all possible stage I and stage II sample size combinations [6]. Some limitations of this approach are that attained sample sizes may fall outside of the ranges specified, it does not consider admissible designs, and the average characteristics are only calculated rather than a specific design. Thus, we consider new approaches to unplanned sample sizes in the first stage in both the

Frequentist and Likelihood settings. In the interest of prespecifying designs, we focus on deviation from the planned sample size only in the first stage. It is impractical to prespecify limitless combinations of unplanned sample sizes in both the first and second stages.

4.1 *Chang et al.* Alternative Designs and Adaptation

Chang *et al* [8] proposed an alternative design that is an extension of Simon-like two stage design in order to handle unplanned sample sizes in both the first and second stages. This method calculates new critical values for attained sample sizes, and thus one is able to create and pre-specify a new design based on a preferred Simon or Admissible design in defense of the events of unplanned sample sizes (**basically trying to say in order to be ready with adjusted designs for unplanned sample sizes in case they occur**). Because it's desired to stay as closely to the original design as possible, we investigate this method using only attained first stage sample sizes while maintaining the original second stage sample size or original total sample size. Again, let n_1 , n_t , r_1 , r_2 , n_3 , n_4 , n_5

Chang *et al* proposes that type II error probability spent in stage I is given by $\beta_1 = P(X_1 \le r_1 | n_1, p = p_1)$ Based on the attained sample sizes, we choose to spend type II error in the first stage established by the type II error probability spending function

$$eta(m) = \left\{egin{array}{ll} eta_1 m/n_1 & ext{if } m \leq n_1 \ eta_1 + (eta - eta_1)(m-n_1)/n_2 & ext{if } m > n_1 \end{array}
ight.$$

We then find a new stage one critical value, s_1 , using this probability spending function such that $P(X_1 \le s_1 | n_1^{**}) \approx \beta(n_1^{**})$, where \approx means "closest to." After s_1 is selected, we

then search for an integer for the second stage critical value, s_t , that satisfies

$$P(X_1 > s_1, X_t > s_t | n_1^{**}, m_2, p_0)$$

$$= \sum_{s_1}^{n_1^{**}} P(X_2 > s_t - X_1 | X_1 = x_1) P(X_1 > s_1)$$

$$\leq \alpha$$

where $m_2 = n_2$ or n_2^{**} . Chang et al.'s design can be used for any α -level and are flexible, close to the original design, and preserve, on average, the desired Frequentist type I error rate.

Because we prefer to be conservative when straying from a desired Simon or Admissible design, we modify Chang et al.'s design by selecting s_1 that is closest to the probability of early termination under the null. We select s_1 such that

$$P(X_1 \le s_1 | n_1^{**}, p_0) \approx P(X_1 \le r_1 | n_1, p_0)$$

We then select the stage two critical value, s_t , in the same fashion as Chang's design. Another option would be to be choose s_1 such that the probability of early termination with the redesign is conservative relative to the original design. In either case, the designs tend to be close when the attained sample size is close to the original, so we consider the case where the probability of early termination is closest to the original.

4.2 Likelihood Design

Briefly, the likelihood stage II design uses the likelihood ratio, as opposed to a p-value, as a measure of evidence [9]. Here, the likelihood ratio is

$$LR_n = \frac{L_n(p_1)}{L_n(p_0)}$$

$$= \frac{p_1^{x_t}(1-p_1)^{n_t-x_t}}{p_0^{x_1}(1-p_0)^{n_t-x_t}}$$

$$\in \{[0,1/k], [1/k,k], [k,\infty)\}$$

and has three evidential zones: evidence for the null hypothesis, weak evidence, and evidence for the alternative hypothesis. If the $LR_n \in [0,1/k]$, there is evidence for the null hypothesis, if $LR_n \in [1/k,k]$, there is weak evidence for either hypothesis, and if $LR_n \in [k,\infty]$, there is evidence for the alternative hypothesis. The probability of observing weak evidence is $PW_i = P(k_a \le LR_n \le k_b|H_i), k_a \le 1 \le k_b$, the probability of observing strong evidence is

$$PS_i = \begin{cases} P(LR_n > k_b | H_i) & \text{if } i = 1 \\ P(LR_n < k_b | H_i) & \text{if } i = 0 \end{cases}$$

and the probability of obseving misleading evidence is

$$PM_i = \begin{cases} P(LR_n > k_b | H_i) & \text{if } i = 0 \\ P(LR_n < k_b | H_i) & \text{if } i = 1 \end{cases}$$

. One advantage to a likelihood sequential design is that the universal bound of misleading evidence under the null hypothesis is $P(LR_n > k_b|H_0) \le \frac{1}{k_b}$ for any $n \ge 1$. The likelihood two stage design will enroll n_1 observations into the first stage. If we observe a likelihood ratio that is $k_{a_1} < LR_{n_1} < k_{b_1}$, where k_{a_1} and k_{b_1} are benchmarks for description of evidence in the first stage, we continue to the second stage. If we observe $LR_{n_1} \le k_{a_1}$, the study will stop for efficacy. Then, n_2

patients are enrolled. If the $LR_{n_t} = LR_{n_1}LR_{n_2}$ is $k_{a_t} < LR_{n_t} < k_{b_t}$, where k_{a_t} and k_{b_t} are benchmarks at the end of stage II, then the study will conclude with weak evidence. The study will conclude with evidence for the alternative hypothesis if $LR_{n_t} \ge k_{b_t}$ and evidence for the null hypothesis if $LR_{n_t} \le k_{a_t}$.

One can adapt the likelihood two stage design to emulate conventional, Simon-like designs such as optimal, minimax, or admissible designs. In order to do this, one can start with a Simon-like design and redesign with a likelihood ratio approach and set $k_{a_1} = \frac{p_1(1-p_0)^{r_1}}{p_0(1-p_1)}^{r_1} \frac{1-p_1}{1-p_0}^{n_1} = \frac{1-p_0}{1-p_1}^{r_1-n_1} \frac{p_1}{p_0}^{r_1}$, $k_{a_t} = \frac{p_1(1-p_0)^{r_t}}{p_0(1-p_1)}^{r_1} \frac{1-p_1}{1-p_0}^{n_t} = \frac{1-p_0}{1-p_1}^{r_t-n_t} \frac{p_1}{p_0}^{r_t}$, $k_{b_1} = \infty$, and $k_{b_t} = \infty$, where n_1, n_t, r_1, r_2 are Simon-like two-stage design parameters. Then, using k_{a_j} and k_{b_j} , we recalculate the critical values, s_1 and s_t , using

$$s_1 = \frac{log(k_{a_1}) - n_1^{**}log(\frac{1-p_1}{1-p_0})}{log(\frac{p_1(1-p_0)}{p_0(1-p_1)})}$$

$$s_t = \frac{log(k_{a_t}) - n_tlog(\frac{1-p_1}{1-p_0})}{log(\frac{p_1(1-p_0)}{p_0(1-p_1)})}$$

If s_1 or $s_t < 0$, set them equal to zero. It is possible for these critical values to be less than 0 when the study design has low sample sizes and deviation from the planned sample size is extreme.

add other likelihood properties here. i.e. how to calculate p(weak), p(strong), EN, and PET.

Blume and Ayers describe that likelihood designs preserve type I error rate and is bounded by $\frac{1}{k_{b_t}}$ and is equal to $O_{p_i}\left(n^{-1/2}\right)$. Under the likelihood design, error rates tend to be less of an issue because the the average of the error rates, $\frac{\alpha+\beta}{2}$, is minimized with the likelihood approach [9]. Because these designs are not restricted by error rates, and rather use the likelihood ratio, this method offers favorable flexibility for unplanned sample sizes in the first stage. Likewise, one is able to add cohorts and the end of the second stage when there proves to be weak evidence without penalization. Though, for the purpose of compar-

ing methods, we do not consider these cases and let the total sample size remain as planned similar to the Frequentist approach. We also only consider Likelihood redesign methods to emulate Frequentist designs – to calculate new critical values – and do not consider pure Likelihood method two-stage design as formerly introduced.

Example

In order to compare these new Frequentist and Likelihood methods for deviation of sample size in the first stage, we first introduce a concrete example. An actual phase II cancer clinical trial was designed using a Likelihood two-stage design In order to stick to convention, the trial would only stop early for futility. The planned design parameters are $n_1 = 17$, $n_t = 41$, $r_1 = 17$, $r_t = 21$, $p_0 = 0.4$, and $p_1 = 0.6$. This study design has an expected sample size of 25.6 and a probability of early termination under the null hypothesis of 64%. This is considered an Admissible design and meets the nominal type I error rate, $\alpha = 0.05$, and type I error rate, $\beta = 0.2$. In concordance with the Likelihood design, the authors provide alternative interim stopping rules for sample sizes that deviate from the planned design. These new designs have a probability of early termination under the null that exceed 50% and preserve type I and type II error rates. Using the original likelihood design, but varying n_1 , one can use Chang et al.'s and the adapted method to obtain similar results. We keep total sample size the equal to the planned total sample size in this case.

Generally, the stopping rules between the Chang designs and the Likelihood design are the same when n_1^{**} ranges from 16 to 23. When $n_1 = 16$, the adaptation of Chang's design gives a more conservative critical value; this is expected by design and because of the discreteness of the binomial distribution.

Table 5.1: Stopping rules for deviations from first stage planned sample size concrete example

Design	r_1	n_1	PET ₀	EN_0	Likelihood ratio favoring <i>H</i> ₀ that corresponds to Simon's futility stopping rule
Likelihood	7	17	64%	25.6	1/3.375
Chang	7	17	64%	25.6	
Chang Adaptation	7	17	64%	25.6	
Likelihood	8	19	67%	26.3	1/3.375
Chang	8	19	67%	26.3	
Chang Adaptation	8	19	67%	26.3	
Likelihood	9	21	69%	27.2	1/3.375
Chang	9	21	69%	27.2	
Chang Adaptation	9	21	69%	27.2	
Likelihood	10	23	71%	28.2	1/3.375
Chang	10	23	71%	28.2	
Chang Adaptation	10	23	71%	28.2	
Likelihood	6	16	53%	27.8	1/5.062
Chang	6	16	53%	27.8	
Chang Adaptation	7	16	72%	23.1	
Likelihood	7	18	56%	28	1/5.062
Chang	7	18	56%	28	
Chang Adaptation	7	18	56%	28	
Likelihood	8	20	60%	28.5	1/5.062
Chang	8	20	60%	28.5	
Chang Adaptation	8	20	60%	28.5	

Results

We suggest keeping the original total planned sample size or the original planned second stage sample size the same in Chang's methods. We choose to keep total sample size the same in our investigation because it better preserves the error rates (figure 6.1 and 6.2). These figures illistrate that type I error rate and power greatly depend on the direction of deviation occurs and results are often undesireable. Average type I error rate for underaccrual is well above the planned nominal type I error rate and power for overaccrual is well below the planned nominal power.

We present results that are limited to our primary problem of interest in tables 6.1 through 6.6. Did I say what our primary problem of interest is in this paper? In each design table, the planned design is specified and the first stage sample size varies from planned, while maintaining the original total sample size. We compare attained methods characteristics, in particular, type I error, power, probability of early termination under the null hypothesis, and expected sample size under the null hypothesis. We refer to the Likelihood redesign, Chang and adaptation to Chang redesigns as "attained methods."

Table 6.1 displays a planned Admissible design with varying first stage sample size \pm 10. We notice that under low p_0 and p_1 , s_1 will vary between each method. Though, power and type I error tend to be similar between and within each attained method, while expected sample size also tends to be consistent. The Likelihood and Chang method are at risk of low probability of early termination, especially when the sample size is lower than planned. Table 6.2 shows an Optimal design when p_0 is 0.5. Between attained designs, particularly when there is overaccrual, s_1 is inconsistent. We particularly see a large difference when $n_1^{**} = n_1 + 10$ between the Likelihood and Adaptation of Chang designs and the Chang de-

Figure 6.1: Monte Carlo Simulation of Average Power of 20 Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_1^{**} + n_2)$

Figure 6.2: Monte Carlo Simulation of Average Power of 20 Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_1^{**} = n_1^{**} + n_2)$

sign. When there are large deviations from the planned sample size, the PET₀ from Chang's design can stray from the planned design, as large as 0.667, while the adaptation to Chang's and the Likelihood design remain relatively close to the original. Because of this, Chang's design can also results in a large drop in expected sample size. The Likelihood design is anticonservative in type I error and conservative in type II error here, displaying a $\alpha^{**} > \alpha$ and $1 - \beta^{**} > 1 - \beta$. The Chang designs both have a conservative type I error for all sample size deviations and power that is close, but greater than the planned design. The Chang designs display a clear weakness here, which is that when these redesign methods are used when the attained sample size is the same as planned, different stopping rules can result. Because the required sample size is large in this case, we do not see a difference in PET₀ or EN₀ to three decimal places, though.

Table 6.3 displays results from a planned Minimax design when p_0 is larger than 0.5. Here, the Likelihood design has desireable properties with type I error and power consistently closed to the planned design for all deviations in sample size. Though, when the sample size is severely underaccrued, the probability of early termination nearly halves. The expected sample size is consistent between designs. The Chang designs stray from the planned nominal type I and type II errors when there is overaccrual. The PET₀ for the original Chang design varies significantly between deviations.

Table 6.4 through 6.6 display results for planned designs when $\alpha = \beta = 0.1$. Table 6.4 displays attained design characteristics for deviations in sample size when the planned first stage sample size is low. In all three attained designs, we see that as the attained sample size is lower than planned, there is a significant drop in power and a moderate to severe drop in type I error. The probability of early termination almost occurs with probability 1 when the attained sample size is $n_1^{**} = 1$. In practice, though, accrual lower than planned here is not practical. When there is overaccrual, attained design characteristics are not concerning. Table 6.5 illistrates the similarity between attained designs when $p_0 = 0.3$. All designs and their deviations are relatively consistent in type I error, power, and PET₀. Though, the

adaptation of Chang's design is most consistent in the probability of early termination with the planned design, but we see a conservative deviation in type I error for large overaccrual. Table 6.6 displays similar results as table 5.3.

Table 6.1: Attained design characteristics from deviation of Admissible II stage design ($p_0 = 0.1, p_1 = 0.25, \alpha = 0.05, \beta = 0.20$)

		$\overset{*}{\mathbf{E}}\overset{*}{\mathbf{N}_{0}^{*}}$	9.742	4.738	8.603	1.586	3.883	6.725	29.437	1.754	3.705	0.345	2.406
								•	0.482 2			.,	
	gn	$1-\beta^{**}$	0.671	0.754	0.797	0.819	0.830	0.803	0.821	0.831	0.836	0.827	0.834
	od Desi	$lpha_*^*$	0.034	0.040	0.043	0.045	0.046	0.043	0.045	0.046	0.047	0.046	0.047
	celiho	S_{f}	7	7	7	7	7	7	7	7	7	7	7
	Ě	s_1	0	0	0	0	0	_	-	-	_	7	7
		$\overset{*}{\mathrm{EN}}\overset{*}{\overset{*}{0}}$	19.742	24.738	28.603	20.079	23.602	26.725	29.437	31.754	28.032	30.345	32.406
	gn	PET_0^{**}	0.590	0.478	0.387	0.697	0.621	0.549	0.482	0.420	0.648	0.592	0.537
	ang Desigr	$-\beta^{**}$	0.671	0.754	0.797	0.718	0.771	0.803	0.821	0.831	0.814	0.827	0.834
Redesign	n of Cha	α^{**} 1							0.045				
Red	otatio	S_t	7) _	7	7	7	7	7	7) _	7	7
	Ada	s_1	0	0	0	_	_	_	_	_	7	2	7
		EN_0^*	19.742	24.738	28.603	31.586	33.883	26.725	29.437	25.480	28.032	26.469	28.783
				•	•			•	0.482	•	•	•	`
		$-\beta^{**}$ F							0.821			.785 (.810 (
	ng Design	_										_	
		α	0.0	0.0	0.0	0.0	0.0	0.0	0.045	0.0	0.0	0.0	0.0
a)		S_t	7	7	7	7	7	7	7	7	7	7	7
ole Siz	Chan	s_1	0	0	0	0	0	_	-	2	2	3	3
Sam		n_1^{**}	S	7	6	11	13	15	17	19	21	23	25
Attained Sample Siz		EN_0	26.725	26.725	26.725	26.725	26.725	26.725	26.725	26.725	26.725	26.725	26.725
		${ m PET}_0$	0.549	0.549	0.549	0.549	0.549	0.549	0.549	0.549	0.549	0.549	0.549
_		$r_1 - r_t$	7	7	7	7	7	7	7	7	7	7	7
esign		7.	-	_	_	_	_	_	_	_	_	_	
led D		и	4	41	4	41	41	4	4	4	41	4	41
Planned Design		n_1	15	15	15	15	15	15	15	15	15	15	15
		p_1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
		p_0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Table 6.2: Attained design characteristics from deviation of Simon's Optimal II stage design ($p_0 = 0.5, p_1 = 0.65, \alpha = 0.05, \beta = 0.2$)

9 48 0.062 0.894 0.044	9 48 0.062 0.894 0.044 10 48 0.062 0.894 0.049 11 48 0.062 0.894 0.055	9 48 0.062 0.894 0.044 10 48 0.062 0.894 0.049 111 48 0.062 0.894 0.055 112 48 0.062 0.894 0.061 13 48 0.062 0.894 0.061	9 48 0.062 0.894 0.044 10 48 0.062 0.894 0.044 11 48 0.062 0.894 0.055 12 48 0.062 0.894 0.061 13 48 0.062 0.894 0.061 15 48 0.062 0.894 0.128 16 48 0.062 0.894 0.128	9 48 0.062 0.894 0.044 10 48 0.062 0.894 0.049 111 48 0.062 0.894 0.055 112 48 0.062 0.894 0.061 113 48 0.062 0.894 0.061 115 48 0.062 0.894 0.128 116 48 0.062 0.894 0.134 117 48 0.062 0.894 0.134 118 48 0.062 0.894 0.134	9 48 0.062 110 48 0.062 111 48 0.062 112 48 0.062 113 48 0.062 115 48 0.062 117 48 0.062 118 48 0.062 119 48 0.062
77.914 9 48 (77.914 9 48 77.687 10 48 77.509 11 48	77.914 9 48 77.687 10 48 77.509 11 48 77.378 12 48 77.290 13 48	77.914 9 48 77.687 10 48 77.509 11 48 77.378 12 48 77.290 13 48 77.243 15 48	77.914 9 48 77.687 10 48 77.509 11 48 77.378 12 48 77.290 13 48 77.243 15 48 77.243 16 48 77.261 17 48	77.914 9 48 77.687 10 48 77.509 11 48 77.378 12 48 77.290 13 48 77.243 15 48 77.243 16 48 77.251 17 48 77.321 18 48
0.032	0.847 0.092 0.847 0.100 0.847 0.108	0.092 0.847 0.100 0.847 0.108 0.847 0.115 0.847 0.115	0.092 0.847 0.100 0.847 0.108 0.847 0.115 0.847 0.121 0.847 0.128 0.847 0.134	0.092 0.847 0.100 0.847 0.115 0.847 0.115 0.847 0.128 0.847 0.128 0.847 0.140 0.847 0.140	0.092 0.847 0.100 0.847 0.115 0.847 0.121 0.847 0.134 0.134 0.140 0.847 0.140 0.847 0.140 0.847 0.140 0.847 0.140
.039).039).039).039).039).039).039).039).039).039).039).039).039).039).039).039).039).039).039).039	80.603 10 49 0.039 0.80.383 11 49 0.039 0.77.509 12 49 0.039 0.77.378 13 49 0.039 0.77.243 15 49 0.039 0.65.009 17 49 0.039 0.65.009 17 49 0.039 0.65.335 19 49 0.039 0.
†	0.049	0.049 0.108 0.115 0.121	0.049 0.108 0.115 0.121 0.128 0.318	0.049 0.108 0.115 0.121 0.128 0.318 0.439	0.049 0.108 0.115 0.121 0.128 0.318 0.439 0.560
	49 0.039 49 0.039	49 0.039 49 0.039 49 0.039 49 0.039	49 0.039 49 0.039 49 0.039 49 0.039 49 0.039	49 0.039 49 0.039 49 0.039 49 0.039 49 0.039 49 0.039 49 0.038	10 49 0.039 0.847 12 49 0.039 0.847 13 49 0.039 0.847 14 49 0.039 0.847 15 49 0.039 0.847 18 49 0.039 0.846 20 49 0.039 0.845 22 49 0.038 0.842 23 49 0.039 0.843
	33 30	30 34 38	30 32 34 36 40	0, 2, 4, 8, 8, 9, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	77.243 30 19 77.243 32 11 77.243 34 11 77.243 36 14 77.243 40 11 77.243 44 22 77.243 44 22 77.243 44 22
02 15 10	83 15 48	83 15 48 83 15 48 83 15 48 83 15 48	83 15 48 83 15 48 83 15 48 83 15 48 83 15 48	83 15 48 83 15 48 83 15 48 83 15 48 83 15 48 83 15 48	8 83 15 48 0.128 8 83 15 48 0.128
0.65	0.65	0.65 0.65 0.65	0.65 0.65 0.65 0.65 0.65	0.65 0.65 0.65 0.65 0.65 0.65	0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38 0.5 0.65 38

Table 6.3: Attained design characteristics from deviation of Simon's Minimax II stage design ($p_0 = 0.75$, $p_1 = 0.9$, $\alpha = 0.05$, $\beta = 0.2$)

		Planned Design	d De	sign			Attained Sample Size	Sample	e Size							Ř	Redesign									
								-	Chang I	Design	J				Αdε	ıptati	on of Cha	ang Design	-		Like	lihoo	ikelihood Design			
p_0		n_1	и					n_1^{**}	s_1	S_I	$lpha_*^*$	$1 - \beta^{**}$	$\operatorname{PET}_0^{**}$	$\overset{*}{EN}^*_0$	s_1	S_I	$\boldsymbol{\alpha}_{*}^{*}$	$1 - \beta^{**}$	$\operatorname{PET}_0^{**}$	$\stackrel{*}{\mathrm{EN}}^*_0$	s_1	S_I	α_*^*	$1 - \beta^{**}$	PET_0^{**}	$\overset{*}{\mathrm{EN}}_{0}^{*}$
0.75	6.0	22 39 17	39		33			12	8	34	0.019	0.648	0.351	29.517	6	33	0.045	0.763	0.609	22.548	∞	33	0.050	0.805	0.351	29.517
0.75			36	17	33		27.499	4	10	33	0.050	0.800	0.479	27.033	11	33	0.042	0.738	0.719	21.028	10	33	0.050	0.800	0.479	27.033
0.75	6.0		36	17	33			16	12	33	0.048	0.792	0.595	25.315	12	33	0.048	0.792	0.595	25.315	11	33	0.051	0.809	0.370	30.494
0.75		. 22	36	17	33			18	13	34	0.019	0.650	0.481	28.892	14	33	0.047	0.782	0.694	24.419	13	33	0.051	0.807	0.481	28.892
0.75			36	17	33 (. 229.0	27.499	20	15	34	0.019	0.650	0.585	27.882	15	34	0.019	0.650	0.585	27.882	15	33	0.050	0.805	0.585	27.882
			36	17	33			22	17	33	0.050	0.802	0.677	27.499	17	33	0.050	0.802	0.677	27.499	17	33	0.050	0.802	0.677	27.499
	6.0		36	17	33			24	19	33	0.049	0.798	0.753	27.700	19	33	0.049	0.798	0.753	27.700	18	33	0.051	0.810	0.578	30.332
		55	36	17	33			56	21		0.048	0.791	0.816	28.397	20	34	0.019	0.650	0.663	30.383	20	33	0.051	0.810	0.663	30.383
	6.0	52	36	17	33			28	23	33	0.046	0.782	0.865	29.489	22	34	0.019	0.650	0.736	30.902	22	33	0.051	0.810	0.736	30.902
0.75	6.0	52	36	17	33		27.499	30	25	33	0.043	0.770	0.902	30.881	23	34	0.019	0.650	0.652	33.132	23	33	0.051	0.810	0.652	33.132
	6.0	22	36	17	33 (0.677	27.499	32	56	34	0.019	0.650	0.847	33.071	25	34	0.019	0.650	0.722	33.945	25	33	0.051	0.810	0.722	33.945

Table 6.4: Attained design characteristics from deviation of Simon's Optimal II stage design ($p_0 = 0.05$, $p_1 = 0.25$, $\alpha = 0.1$, $\beta = 0.1$)

				••	00	9	9	3	0	3
	EN_0^*	2.150	5.995	9.298	12.12	14.54	16.60	18.35	19.83	21.07
	$\operatorname{PET}_0^{**}$	0.950	0.857	0.774	0.698	0.630	0.569	0.513	0.463	0.418
	$-eta_{**}$	0.192	0.465	0.635	0.741	0.805	0.843	0.864	928.0	0.882
Design	_	016								.114
ihood		2 0.	0.	0.	0.	0.	0	0.	0.	2 0.
Likel	S ₁	0	0	0	0	0	0	0	0	0
	0 EN	2.150	3.995	.298	2.128	4.546	909.9	8.353	9.830	18.454
ign	PET.									0.79
nang Des	$1 - \beta^{**}$	0.200								0.842
ion of Cl	$lpha_*^*$	0.050	0.097	0.064	0.081	0.093	0.028	0.029	0.029	0.098
aptati	S_{t}	0	_	7	7	7	\mathfrak{C}	\mathcal{E}	3	2
Αd	s_1	0	0	0	0	0	0	0	0	-
	EN_0^*	2.150	5.995	9.298	12.128	14.546	16.606	18.353	16.539	18.454
	PET_0^{**}	0.950	0.857	0.774	869.0	0.630	0.569	0.513	0.829	0.792
	$ -eta^{**} $	0.200	0.484	0.635	0.741	0.805	0.714	0.727	0.802	0.842
u	- **	0.050	0.097	0.064	0.081	0.093	0.028	0.029	980.0	860.0
Jesig	S_I	0	_	7	7	7	ε	3	7	2
Chang I	s_1	0	0	0	0	0	0	0	1	1
	n_1^{**}	1	3	5	7	6	Ξ	13	15	17
	EN_0	14.546	14.546	14.546	14.546	14.546	14.546	14.546	14.546	14.546
	PET_0	0.630	0.630	0.630	0.630	0.630	0.630	0.630	0.630	0.630
	r_t	2	7	7	7	7	7	7	7	2
	7.	0	0	0	0	0	0	0	0	0
	и	24	24	24	24	24	24	24	24	24
	n_1	6	6	6	6	6	6	6	6	0.2 9 24 0 2
	p_1	0.2	0.2	0.2	0.2	0.2				0.2
	p_0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	Chang Design Adaptation of Chang Design Likelihood Design	Chang Design Adaptation of Chang Design Adaptation of Chang Design Likelihood Design $p_1 n_1 n r_1 r_t \text{PET}_0 \text{EN}_0 n_1^{**} s_1 s_t \alpha^{**} 1 - \beta^{**} \text{PET}_0^{**} \text{EN}_0^{**} s_1 s_t \alpha^{**} 1 - \beta^{**} \text{PET}_0^{**} \text{EN}_0^{**} s_1 s_1 \alpha^{**} 1 - \beta^{**} \text{PET}_0^{**}$	Chang Design Chang Design Adaptation of Chang Design Adaptation of Chang Design Adaptation of Chang Design Likelihood Design p_1 n_1 n r_1 r_1 pET_0 EN_0 n_1^* s_1 s_1 α^{**} $1-\beta^{**}$ pET_0^* EN_0^* s_1 s_1 α^{**} $1-\beta^{**}$ pET_0^* eV_0^* eV	Chang Design Chang Design Adaptation of Chang Design Adaptation of Chang Design p_1 n_1 n r_1 r_1 pET_0 EN_0 n_1^{**} s_1 s_1 α^{**} $1-\beta^{**}$ pET_0^{**} EN_0^{**} s_1 s_1 s_2 s_3 s_4 s_4 s_4 s_5 s_4 s_5 s_4 s_5	Chang Design $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chang Design $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chang Design Fig. 1 Adaptation of Chang Design Fig. 2 Adaptation of Chang Design Fig. 2 Adaptation of Chang Design Fig. 2 Adaptation of Chang Pig. 3 Ada	Chang Design Fig. 1 n_1 n_1 r_1 r_2 FET n_2 EN n_3 EN n_4 EN	Chang Design Fig. 1 Fi	PET ₀ EN ₀ i_1^* i_1^* i_2^* i_3^* i_4^* <th< td=""></th<>

Table 6.5: Attained design characteristics from deviation of Admissible II stage design ($p_0 = 0.3$, $p_1 = 0.45$, $\alpha = 0.1$, $\beta = 0.1$)

Adaptation	Adaptation
$\mathrm{PET}_0^{**} = \mathrm{EN}_0^{**} s_1 s_t$	$1-eta^{**}$ PET $_0^{**}$ EN $_0^{**}$ s_1 s_t
0.902 0.411 53.492 8 26 (0.902 0.411 53.492 8 26 (
0.897 0.479	0.897 0.479 51.416 9 26 0
0.870 0.386	0.870 0.386
0.907 0.450	0.907 0.450
0.099 0.904 0.510 53.132 10 26	0.904 0.510
0.097 0.901 0.566	0.901 0.566
0.095 0.897 0.618	0.897 0.618 51.601
0.094 0.893 0.665	0.094 0.893 0.665 51.372
6.889 0.708	6.889 0.708
0.098 0.906 0.635	0.906 0.635
0.904 0.678	0.904 0.678

Table 6.6: Attained design characteristics from deviation of Simon's Minimax II stage design ($p_0 = 0.75$, $p_1 = 0.9$, $\alpha = 0.1$, $\beta = 0.1$)

		$\overset{*}{\mathrm{EN}}\overset{0}{\overset{*}{\circ}}$	34.602	33.023	35.129	34.113	33.416	33.121	35.124	35.255	35.757	37.372	38.199
						0.346							
	_	$1 - \beta^{**}$	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.600
	ikelihood Design	**	960.0	960.0	960.0	960.0	960.0	960.0	960.0	960.0	960.0	0.096	960.0
	lihoc	S_1 S_I	33	33	33	33	33	33	33	33	33	33	33
	Like	s_1	11	13	14	16	18	20	21	23	25	26	28
		$\overset{*}{\mathrm{EN}}^{\overset{*}{*}}_{0}$	30.199	28.774	31.765	30.964	33.416	33.121	33.255	35.255	35.757	37.372	38.199
		$\operatorname{PET}_0^{**}$	0.426	0.535	0.433	0.532	0.439	0.529	0.613	0.527	909.0	0.526	0.600
	ng Design	$1 - \beta^{**}$	0.895	0.890	0.899	0.898	0.900	0.900	0.900	0.900	0.900	0.900	0.900
Redesign	on of Cha	$lpha_*^*$	0.094	0.092	0.095	0.095	960.0	960.0	960.0	960.0	960.0	0.096	960.0
Re	ptatic	S_{I}	33	33	33	7 33 (33	33	33	33	33	33	33
	Ada	s_1	12	14	15	17	18	20	22	23	25	26	28
		$\stackrel{*}{\mathrm{EN}}_0^*$	34.602	33.023	31.765	34.113	33.416	33.121	33.255	33.805	34.727	35.960	37.441
		$\operatorname{PET}_0^{**}$	0.235	0.332	0.433	0.346	0.439	0.529	0.613	0.688	0.753	0.808	0.853
		$1 - \beta^{**}$	0.900	0.900	0.899	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900
	n	$\boldsymbol{\alpha}_{*}^{*}$	960.0			960.0		960.0	960.0				
	Chang Design	S_t	33	33	33	33	33	33	33	33	33	33	33
Attained Sample Size				13	15	16	18	20	22	24	56	28	30
l Sam		n_1^{**}	17	19	21	23	25	27	53	31	33	35	37
Attained		EN_0	33.121	33.121	33.121	33.121	33.121	33.121	33.121	33.121	33.121	33.121	33.121
			_	_	_	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529
,				33	33	33	33	33	33	33	33	33	33
Planned Design		1,	50	20	20	20	20	20	20	20	20	20	20
ned I		и	27 40	40	40	40	40	40	40	40	40	4	4
Plan		n_1	27	27		27		27	27	27	27	27	27
						6.0				6.0		6.0	0.9
		p_0	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

Figure 6.3: Monte Carlo Simulation of Average Power of 20 Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_t)$

Figures 6.3 and 6.4 display Monte Carlo simulation results for type I error and power, respectively. The results are an average of 20 Simon-like designs with $\alpha = 0.05$, $\beta = 0.2$ and stage I sample size deviations with $n_t^{**} = n_t$ for each attained design method. Therefore, each point will be an average of attained type I error or power under different sample size deviations. We see that, on average, the Likelihood two-stage design has power above the nominal power and below the nominal alpha level for all sample size deviations ± 10 . Both Chang methos are conservative in type I error for all sample size deviations, but are more likely to suffer in power.

Figure 6.4: Monte Carlo Simulation of Average Type I Error Rates of 20 Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs $(n_t^{**} = n_t)$

Discussion and Conclusion

Deviations from the planned second stage sample size has been better studied than deviations from the planned first stage sample size. Many methods have been proposed on decision rules, and Koyama et al. had introduced a redesign when the first stage sample size is as planned. Because calculate of a p-value in this case is more straightforward than when stage I differs, there may be less literature proposing redesigns. Here, we focused our investigation and results on deviations from the planned first stage sample size. One argument against redesigning these trials in the first place could be that researchers always have the option to simply wait until stage I sample size is met. In practice, though, some ethical matters may arise that would give the researcher incentive to evaluate the first stage prematurely. For instance, if a new regimen appears to be more beneficial than historical treatments, but statistical requirements prevent new patients from being enrolled until all currently enrolled patients record responses, a researcher may consider this unethical. In this case, $n_1^{**} < n_1$ where n_1^{**} would be patients who have recorded responses. Having a decision rule for a case such as this would alleviate some discomfort from both the researcher and statistician, though abuse of new decision rules would be discouraged.

A numerical study suggested that it is desireable to redesign trials using the planned total sample size because it better controls type I error and power. Assuming that redesigns use the planned total sample size in the redesign, results from different Simon-like designs were presented. Chang and the adaptation of Chang methods primarily differ when there are extreme sample size shifts. This is most likely due to the nature of their methods and their primary goals of maintaining type II error spending or probability of early termination. In recommending the use of these designs in practice will depend on the desire of statis-

tical approach of the researcher. If the researcher prefers to use a Frequentist approach in hypothesis testing, it may be recommended that the adaptation of Chang's approach is used because it results in higher average power across deviations. Because it may be of concern that researchers take advantage of the ability to deviate from the planned design, the adaptation to Chang's method also penalizes deviation by resulting in a higher probability of early termination when there is underaccrual than Chang's method.

We do not consider redesigns when both the first and second stage accrual are not as planned because if one is interested in prespecifying stopping criteria for sample size deviations, the number of combinations needed to be specified in order to prespecify the exact combination that will occur is unreasonable. Though, these attained designs are able to accomodate if this is desired. One advantage to the Likelihood design is that it is able to add cohorts of patients at the end of the second stage if weak evidence is obtained without threatening Frequentist properties such as type I error. Another advantage to the Likelihood approach is that inference is more straightforward because one is not concerned with error rates or p-values. Though we don't consider calculating p-values when stage I differs from planned, it would be complicated if one wished to do so, whereas Likelihood methods would not require this. Likelihood designs are also more generalizable. The Likelihood two-stage approach could be generalized easily to three stages, whereas the Chang designs would not be able to generalize. In this paper, though, we are very much constraining the Likelihood design and not taking full advantage of its natural characteristics. One could simply use a pure Likelihood design and avoid Frequentist issues altogether.

A main concern that we have with redesigning trials for unplanned sample sizes is that researchers could take advantage of the these new stopping criteria and stray from the planned design too often. It is for this reason that one may consider adapting Chang's design using a very conservative rule in the first stage and have the probability of early termination under the null always be higher than planned. When deviations are extreme, especially where there is underacrrual, evaluating the trial early would be highly penalized

by potentially having a very high probability of early termination. Overall, intentional early or late evaluation of the first stage without sound reason is highly discouraged and will not result in optimal statistical properties.

REFERENCES

- [1] R. Porcher and K. Desseaux, "What inference for two stage phase II trials?," *BMC Medical Research Methodology*, vol. 12, p. 117, 2012.
- [2] R. Simon, "Optimal two-stage designs for phase ii clinical trials," *Controlled Clinical Trials*, vol. 10, pp. 1–10, 1989.
- [3] T. Koyama and H. Chen, "Proper inference from simon's two-stage designs," *Statistics In Medicine*, vol. 27, pp. 3145–3154, 2008.
- [4] S.-H. Jung, Y. Lee, K. Kim, and S. L. George, "Admissible two-stage designs for phase ii cancer clinical trials," *Statistics In Medicine*, vol. 23, pp. 561–569, 2004.
- [5] S. Green and S. Dahlberg, "Planned versus attained design in phase ii clinical trials," *Statistics in Medicine*, vol. 11, pp. 853–862, 1992.
- [6] T. Chen and T. Ng, "Optimal flexible designs in phase ii clinical trials," *Statistics in Medicine*, vol. 17, pp. 2301–2312, 1998.
- [7] Y. Li, R. Mick, and D. Heitjan, "A bayesian approach for unplanned sample sizes in phase ii clinical trials," *Clinical Trials*, vol. 9, pp. 293–302, 2012.
- [8] M. Chang, Y. Li, and Q. An, "Alternative designs for phase ii clinical trials when attained sample sizes are different from planned sample sizes," *Biometrics and Bio-statistics*, vol. 6, p. 229, 2015.
- [9] J. Blume and D. Ayers