Signal Processing EE2S31 Stochastic Processes for EE Lecture 3

What is a process?

- Outcome of an experiment is a
 - single value: random variables
 - multiple values: random vectors
 - series of (in one way or the other) ordered values (we will mainly consider ordering in time)
- Example: binary expansion of a random number of the interval [0,1]

0.7187... = (0.)10111... random process

0.3130... = (0.)01001...

Example speech

• Experiment 's':

• Pronounce 'sss'

• Outcome: waveform X(t,s) one realization

TUDelft

ensemble

Random sinusoidal process

- \bullet Amplitude A and phase ϕ are random variables
- Random process: $X_n = A \sin(2\pi f n + \phi)$

Arrival times of packets in a network

Bit patterns in binary images

Notation and types

• Notation X(t,s) = X(t)

	amplitude of X(t)		
time axis		continuous	discrete
	continuous	continuous time continuous value	continuous time discrete value
	discrete	discrete time continuous value	discrete time discrete amplitude

TUDelft
Delft University of Technology

Notation and types

• Notation X(t,s) = X(t)

	amplitude of X(t)		
axis		continuous	discrete
	continuous	continuous time continuo $X(t)$ $\equiv X(t)$	continuous time (k) $\equiv X_k$ alue
	discrete	discrete time continu $X_n = X(n)$,	discrete time dis $n = 1,2,3,$ de

TUDelft

Description of a random process

 \bullet At any (fixed) time t_k the stochastic ${\it process}X(t_k)$ can be regarded as a random variable

$$X(t_k) \to f_{X_{t_k}}(x_{t_k}) = f_{X_k}(x_k)$$

- \bullet This pdf may be different for each $t_k \ !!$
- The joint behavior for all t is given by the joint-PDF:

$$X(t_1)...X(t_k)... \to f_{X_1,X_2,...,X_k,...}(x_1,x_2,...,x_k,...)$$

Notice that ...

$$X(t_1)...X(t_k)... \to f_{X_1,X_2,...,X_k,...}(x_1,x_2,...,x_k,...)$$

resembles a vector random variable

- ... but can be of infinite dimensionality
- ... and **ordering** (in time) of $X(t_k)$ is **essential**

With the exception of a few "special cases"

- iid random sequence/process
- Gaussian stochastic process
- Poisson stochastic process

this joint PDF is very difficult to get in practice

TUDelft

This week:

- We discuss now
 - IID process
 - Bernoulli process
 - Counting process
 - Poisson process
 - · Interarrival times with exponential pdf
 - Gaussian process
- How to characterize processes?
- Autocovariance function and autocorrelation function
- · Stationarity and wide-sense stationarity

IID random process (sequence)

- IID means
 - Independent
 - Identically
 - Distributed random process
- · This means that
 - \bullet all $X(t_k)$ are mutually independent random variables for all t_k
 - all $X(t_k)$ have the **same** pdf for all t_k

$$f_{X_1,X_2,...}(x_1,x_2,...) = f_{X_1}(x_1)f_{X_2}(x_2)...$$

= $f_X(x_1)f_X(x_2)...$

Bernoulli Process (time discrete)

• Bernoulli, for one time instance: $P_{X_k}(x_k) = \begin{cases} p & x_k = 1\\ 1-p & x_k = 0\\ 0 & \text{otherwise} \end{cases}$

21

Bernoulli Process (time discrete)

- This $P_{X_k}(x_k) = \begin{cases} p & x_k = 1 \\ 1-p & x_k = 0 \\ 0 & \text{otherwise} \end{cases}$
- can be rewritten as $P_{X_k}(x_k) = \begin{cases} p^{x_k}(1-p)^{1-x_k} & x=0,1\\ 0 & \text{otherwise} \end{cases}$
- So for two time instances:

$$P_{X_1,X_2}(x_1,x_2) = P_{X_1}(x_1)P_{X_2}(x_2)$$

$$= p^{x_1}(1-p)^{1-x_1}p^{x_2}(1-p)^{1-x_2}$$

$$= p^{x_1+x_2}(1-p)^{2-x_1-x_2}$$

∕∕ **TU**Delft

Dent

Bernoulli Process

$$P_{X_1,X_2}(x_1,x_2) = p^{x_1+x_2}(1-p)^{2-x_1-x_2}$$

• Four possible situations:

• Say, p=0.3

$$P_{X_1,X_2}(0,0) = p^{0+0}(1-p)^{2-0-0} = 0.7^2 = 0.49$$

$$P_{X_1,X_2}(0,1) = p^{0+1}(1-p)^{2-0-1} = 0.7 \cdot 0.3 = 0.21$$

$$P_{X_1,X_2}(1,0) = p^{1+0}(1-p)^{2-1-0} = 0.3 \cdot 0.7 = 0.21$$

$$P_{X_1,X_2}(1,1) = p^{1+1}(1-p)^{2-1-1} = 0.3^2 = 0.09$$

Bernoulli Process

$$P_{X_1...X_n}(x_1,...,x_n) = \begin{cases} p^{x_1+...+x_n} (1-p)^{n-(x_1+...+x_n)} & x_i = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

• Assume n=100, p=0.3

Bernoulli Process

$$P_{X_1...X_n}(x_1,...,x_n) = \begin{cases} p^{x_1+...+x_n} (1-p)^{n-(x_1+...+x_n)} & x_i = 0,1\\ 0 & \text{otherwise} \end{cases}$$

- Assume n=100, p=0.3
- Note: number of possible sequences is $2^{100} = 1.3 \cdot 10^{30}$

TUDelft
Delft University of Technology

Counting process

 A process N(k) is a counting process if every sample function (realization) of N(k) is integer valued and nondecreasing

 A simple counting process can be derived using a Bernoulli process

″ T∪Delft

• What is a proper description of the random process N(k)?

Counting

• Since we are counting the number of Bernoulli random variables with $X_i=1$ we like to know

$$P_{N(k)}(j) = P(N(k) = j)$$
 $j = 0, 1, 2, ..., k$

• This is the probability of j successes in k tries (binomial random var.!): $P_{N(k)}(j) = \binom{k}{j} p^j (1-p)^{k-j}$

Continuous time counting process

- Instead of a fixed number of 'tries', we take look at the number of arrivals in fixed amount of time.
 - N(t)=number of "arrivals" (successes, events, data packets, customers in queue, ...) in time interval [0,t].
- Instead of probability of success (p as in the binomial case), we take the average number of arrivals per time unit.
 - Rate λ (arrivals) per second

Poisson process

• Number of events in [0,t] has a Poisson PMF with rate λ per time unit

$$P[N(t) = n] = P_{N(t)}(n) = \frac{(\lambda t)^n}{n!} \exp(-\lambda t)$$

• Assume $\lambda=2$

Interarrival times

ullet In a Poisson process, the interarrival times X_i form an IID process

• Marginal pdf of the arrival times:

$$f_X(x) = \lambda \exp(-\lambda x)$$

Gaussian random variable vector

• When we have a pair of Gaussian random variables, and we write the pair $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2\pi \det(C_{\mathbf{X}})^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{\mathbf{X}})'C_{\mathbf{X}}^{-1}(\mathbf{x} - \mu_{\mathbf{X}})\right)$$

- Here, the mean vector $\mu_{\mathbf{X}}=\left(egin{array}{c} E[X_1] \\ E[X_2] \end{array}
 ight)$ and the **covariance matrix**:

$$C_{\mathbf{X}} = \left(egin{array}{cc} Var[X_1] & Cov(X_1, X_2) \ Cov(X_2, X_1) & Var[X_2] \end{array}
ight)$$

Cov. matrix of a Gaussian process?

- In principle the size of the matrix is $\infty \times \infty$ (pretty large): mathematicians don't like that.
- Mathematically speaking, you define a Gaussian process by saying:
- Given **any** set of k time points $t_1, t_2, ..., t_k$

the vector $\mathbf{X} = [X(t_1), X(t_2), ..., X(t_k)]$

has a Gaussian distribution

Characterization of a Stochastic Process

Characterization of Random Process

- Often we rely on properties, such as
 - Expected value
 - Variance
 - Covariance and correlation to summarize the behavior of a stochastic process, because the joint-pdf can not realistically be obtained
- Apply these (known) concepts to stochastic processes
- In practical cases of interest, we will use estimates of expected value, variance, and correlation

Expected value of X(t)

ullet Expected value of $X(t_k)$ at time t_k

$$\mu(t_k) = E[X(t_k)] = \int_{-\infty}^{\infty} x f_{X(t_k)}(x) dx$$

Example sinusoidal process

$$X(t) = A\sin(\omega t + \phi)$$

- Amplitude and phase are independent random variables:
- A is uniformly distributed on [-1,+1]
- ϕ is uniformly distributed on $[0, 2\pi]$

Example sinusoidal process

• Expected value of this process:

$$\mu_X(t) = E[X(t)] = E[A\sin(\omega t + \Phi)]$$
$$= E[A] \cdot E[\sin(\omega t + \Phi)]$$

• We have:

$$E[A] = 0$$

$$E[\sin(\omega t + \Phi)] = \int_0^{2\pi} \sin(\omega t + u) f_{\Phi}(u) du$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \sin(\omega t + u) du = 0$$

Variant of sinusoidal process

$$X(t) = A\sin(\omega t + \phi)$$

- Only the amplitude is a random variable:
- A is now uniformly distributed on [0,+1] (instead of [-1,+1])
- What is E[X]? (do it yourself!)

Another example

$$X(t) = \begin{cases} 0 & t < 0 \\ A_t \cdot t & t \ge 0 \end{cases} \qquad f_{A_t}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

• Random variables At are stochastically independent for all t: 10

Another example

$$X(t) = \begin{cases} 0 & t < 0 \\ A_t \cdot t & t \ge 0 \end{cases} \qquad f_{A_t}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Expected value

$$E[X(t)] = E[A_t t] = tE[A_t] = 0.5t$$
 (uhm, for t>0)

Variance

$$Var[X(t)] = Var[A_tt] = t^2Var[A_t] = \frac{1}{12}t^2$$

Another variant

 Assume that the amplitude is a random variable, but it does NOT depend on t:

$$X(t) = \begin{cases} 0 & t < 0 \\ A \cdot t & t \ge 0 \end{cases}$$
 $f_A(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$

- How do the realizations of this process look like?
- What is the expected value and variance of this process?

Autocovariance

 Joint behavior of X(t) at time t₁ and t₂ can be described by the auto-covariance function, the covariance of X(t₁) andX(t₂) for all t₁ and t₂

Auto-covariance/-correlation function

• Write down the covariance for two time instances

$$C_X(t,\tau) = Cov[X(t),X(t+\tau)]$$

$$= E[(X(t) - \mu_X(t))(X(t+\tau) - \mu_X(t+\tau))]$$

$$= E[X(t)X(t+\tau)] - E[X(t)]E[X(t+\tau)]$$
similar to $E[XY]$ similar to $E[X]E[Y]$

Autocovariance function

• Write down the covariance for two time instances

$$C_X(t,\tau) = Cov[X(t), X(t+\tau)]$$
= $E[(X(t) - \mu_X(t))(X(t+\tau) - \mu_X(t+\tau))]$
= $E[X(t)X(t+\tau)] - E[X(t)]E[X(t+\tau)]$

• What is $C_X(t, \tau = 0)$?

$$C_X(t, \tau = 0) = E[X(t)X(t)] - E[X(t)]E[X(t)]$$
$$= Var[X(t)]$$

Autocorrelation function

• Is a function of two variables:

$$R_X(t,\tau) = E[X(t)X(t+\tau)] = \iint \underset{\text{amplitude and time continuous}}{xyf_{X(t)X(t+\tau)}(x,y)dxdy}$$

$$R_X(n,k) = E[X(n)X(n+k)] = E[X_nX_{n+k}]$$

$$= \iint xy f_{X_nX_{n+k}}(x,y) dx dy$$
 amplitude continuous and time discrete

$$R_X(n,k) = E[X_n X_{n+k}]$$

$$= \sum_x \sum_y xy P[X_n = x, X_{n+k} = y]$$
 amplitude and time discrete

Example sinusoidal process

$$X(t) = A\sin(\omega t + \phi)$$

- Amplitude and phase are independent random variables:
- A is uniformly distributed on [-1,+1]
- ϕ is uniformly distributed on $[0, 2\pi]$

Example sinusoidal process

$$R_X(t,\tau) = E[X(t)X(t+\tau)]$$

$$= E[A^2 \sin(\omega t + \phi)\sin(\omega(t+\tau) + \phi)]$$

$$= E[A^2]E[\sin(\omega t + \phi)\sin(\omega(t+\tau) + \phi)]$$

$$E[\sin(\omega t + \phi)\sin(\omega(t+\tau) + \phi)]$$

$$E[\sin(\omega t + \phi)\sin(\omega(t+\tau) + \phi)] = \text{(use math fact B.2)}$$

$$= \frac{1}{2}E[\cos(-\omega\tau) - \cos(2\omega t + \omega\tau + 2\phi)]$$

$$= \frac{1}{2}E[\cos(-\omega\tau)] - \frac{1}{2}E[\cos(2\omega t + \omega\tau + 2\phi)]$$

$$= \frac{1}{2}\cos(\omega\tau)$$

$$E[\cos(-\omega\tau)] = \frac{1}{2}\cos(\omega\tau)$$

$$R_X(t,\tau) = \frac{1}{6}\cos(\omega\tau)$$

The autocorrelation function

• So we found:

TUDelft

Another example

$$X(t) = \begin{cases} 0 & t < 0 \\ A_t \cdot t & t \ge 0 \end{cases} \qquad f_{A_t}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

• Random variables At are stochastically independent for

Another example

$$X(t) = \begin{cases} 0 & t < 0 \\ A_t \cdot t & t \ge 0 \end{cases} \qquad f_{A_t}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$R_X(t,\tau) = E[X(t)X(t+\tau)] \qquad t \ge 0$$

$$= E[(A_t t)(A_{t+\tau}(t+\tau))] \qquad \text{for } \tau \ne 0$$

$$= t(t+\tau)E[A_t A_{t+\tau}]$$

$$= t(t+\tau)E[A_t]E[A_{t+\tau}] = \frac{1}{4}t(t+\tau)$$

TU Delft

Pictures of autocorrelation f.

$$R_X(t,\tau) = \frac{1}{4}t(t+\tau)$$

- Function of **two** variables
- Try a few values for variable t
- This $R_X(t,\tau)$ looks very strange indeed... (the signal is also very strange)

TUDelft

Uncorrelated processes Stationary processes Wide-sense stationary processes

Uncorrelated process

• If all pairs X(t), $X(t+\tau)$ are uncorrelated, i.e.

$$C_X(t,\tau) = egin{cases} var(t) & ext{for all } t ext{ and } & au = 0 \ 0 & ext{for all } t ext{ and } & au
eq 0 \end{cases}$$

then X(t) is called an uncorrelated process

• If all pairs
$$X(t)$$
, $X(t+\tau)$ are orthogonal, i.e.
$$R_X(t,\tau) = \begin{cases} E[X^2(t)] & \text{for all } t \text{ and } \tau=0 \\ 0 & \text{for all } t \text{ and } \tau \neq 0 \end{cases}$$

then X(t) is called an orthogonal process.

Stationary process

• A stochastic process is stationary if and only if every joint-pdf is shift invariant:

$$f_{X(t_1),X(t_2),..,X(t_k)}(x_1,x_2,..,x_k) = f_{X(t_1+\Delta t),X(t_2+\Delta t),..,X(t_k+\Delta t)}(x_1,x_2,..,x_k)$$

- Consequence I
 - The marginal pdf's are independent of t:

$$f_{X(t)}(x) = f_{X(t+\Delta t)}(x) = f_{X}(x)$$

• The marginal pdf's are identical for all t_k !!!

Stationary process

- Therefore:
 - Expected value is independent of time:

$$\mu_X(t) = E[X(t)] = \mu_X$$

• Variance is independent of time:

$$Var_X(t) = Var[X(t)] = Var[X] = \sigma_X^2$$

Stationary process

- Consequence II
 - The 2D joint-pdf is shift invariant

$$f_{X(t_1),X(t_2)}(x_1,x_2) = f_{X(t_1+\Delta t),X(t_2+\Delta t)}(x_1,x_2)$$
$$= f_{X(0),X(t_2-t_1)}(x_1,x_2)$$

- ... only the 'distance' between t_2 and t_1 matters
- Therefore

$$R_X(t,\tau) = R_X(\tau)$$

$$C_X(t,\tau) = C_X(\tau) = R_X(\tau) - \mu_X^2$$

TUDelft

Stationary processes

- Example of stationary processes
 - iid process
 - Bernoulli process
 - Poisson process
- Non-stationary processes are difficult to model and to handle in practice

Wide-Sense stationary processes

- To show that a process is stationary, we need the overall joint-pdf
 - Pretty impossible to get, except for special cases
- We can often estimate the process'
 - expected value
 - correlation function
- If (only) these functions satisfy the property of stationarity, we call this process wide sense stationary (WSS)
 - Don't know anything about other properties of the process!

'zwak stationair'

WSS Process

· A process is wide-sense stationary, if and only if

$$\mu_X(t) = \mu$$
 for all t
 $R_X(t,\tau) = R_X(\tau)$ for all t

$$\mu_X(n) = \mu$$
 for all n
 $R_X(n,k) = R_X(k)$ for all n

• Example: sinusoidal random process:

$$C_X(\tau) = R_X(\tau) = \frac{1}{6}\cos(\omega\tau)$$

Autocorrelation function

- We will work a lot with the assumption of WSS
- With random time signals, we often (sometimes even implicitly) assume E[X(k)]=0
- The autocorrelation function is the most important property used in random signal processing. When WSS:

$$R_X(0) \ge 0$$

$$R_X(k) = R_X(-k)$$

$$|R_X(k)| \le R_X(0)$$

$$\lim_{k \to \infty} R_X(k) = \mu_X^2$$

NOTE

Stationary Process

reflects properties of the joint-pdf

Wide-Sense Stationary process

reflects properties (only) of •expected value

•autocorrelation function

Covered Today

- Chapter 10
- Key terms
 - IID process
 - Bernoulli process, counting process, Poisson process, Gaussian process
 - Auto-covariance function
 - Auto-correlation function
 - Uncorrelated processes
 - Stationarity and Wide-sense stationarity

