생체 신호 데이터

- 1. 프로젝트 구성
- 2. 프로젝트 설명
- 3. 데이터 탐색
- 4. 모델 구현: 방법1, 방법2, 방법3
- 5. 결론

Baseline model: 방법1과 같은 딥러닝 구조. 30초 데이터만 사용 (n=5,977)

기본 hyperparameter 고정

- max epoch =100, early stopping (validation loss 기준)
- learning rate = 1e-3

Hyper-parameter별 성능 관찰

- LSTM layer 수
- Batch normalization 적용
- Label smoothing
- Focal loss function 적용

LSTM layer 수

	LSTM layer= 1 (baseline)	LSTM layer= 2	LSTM layer= 3
Accuracy	0.810	0.814	0.809
mean F1 (total class)	0.618	0.624	0.559
F1 (Normal)	0.760	0.770	0.760
F1 (AF)	0.010	0.040	0.260
F1 (Other rhythm)	0.050	0.060	0.100
F1 (Noise)	0.230	0.220	0.220

LSTM layer 수 증가할수록 AF를 잘 맞춤 (F1 score 향상)

Batch normalization 적용

Batch normalization 적용

	BN+ (baseline)	BN -
Accuracy	0.810	0.825
mean F1	0.640	n o n
(total class)	0.618	nan
F1 (Normal)	0.760	0.760
F1 (AF)	0.010	nan
F1 (Other rythm)	0.050	nan
F1 (Noise)	0.230	nan

Batch normalization 적용하지 않으면 모두 Normal로 예측 (훈련 실패)

Label smoothing

- Mislabeling
- 특히, Binary Classification!
- Generate Huge Loss

Label Smoothing

- Smooth 한 Labeling
- Loss의 영향 감소

Label smoothing

	Label smoothing =0 (baseline)	0.2	0.4	0.6	8.0	1
Accuracy	0.810	0.805	0.755	0.771	0.750	0.750
mean F1 (total class)	0.618	nan	0.050	0.189	0.000	0.000
F1 (Normal)	0.760	0.750	0.730	0.740	0.520	0.270
F1 (AF)	0.010	nan	0.030	0.050	0.000	0.100
F1 (Other rhythm)	0.050	0.330	0.110	0.370	0.380	0.250
F1 (Noise)	0.230	0.300	0.100	0.130	0.030	0.020

Label smoothing 적용 안한 모델이 accuracy, mean F1 score는 가장 높지만,

가장 강하게 준 것이 관심있는 AF를 가장 잘 맞춤

Focal loss

	Freq Ratio
Normal	30
AF	4
Other rhythm	13
Noise	1

$$CE(p_t) = -\log(p_t)$$

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

Easy sample에는 가중치 작게 Hard sample에는 가중치 크게 어려운 예제에 학습 집중

	Focal loss - (Cross entropy)	+
Accuracy	0.810	0.739
mean F1 (total class)	0.618	0.244
F1 (Normal)	0.76	0.57
F1 (AF)	0.01	0.29
F1 (Other rhythm)	0.05	0.23
F1 (Noise)	0.23	0.09

gamma, alpha = 2, .25

Focal loss 사용한 것이 관심있는 AF를 더 잘 맞춤

결론

- 시간적 특성을 고려한 딥러닝 모델 사용 : 1D CNN + LSTM
- 신호에 대한 이해와 전처리 중요
- Hyperparameter에 따라 성능 변화 많음

