Protocollo sicuro per l'elaborazione di dati cifrati mediante una rete neurale

NNSec - Neural Network Secure

Michele Caini

Università degli Studi di Firenze, Facoltà di Ingegneria

18 Dicembre 2007

SPEED (Signal Processing in the EncryptEd Domain)

Col progetto SPEED vengono avvicinati due mondi apparentemente distanti, come:

- Tecniche di signal processing
 - Strumenti di classificazione dei dati in classi di appartenenza
 - Percettrone, reti neurali feed-forward multi-livello
- Tecniche di crittografia:
 - Sistemi dalle interessanti quanto utili proprietà omomorfiche
 - Cifrario di Paillier, generalizzazione di Damgård-Jurik

Il lavoro di tesi

Partendo dallo studio di un protocollo già esistente nella teoria.

- Algoritmi e procedure prendono vita sotto forma di classi e relazioni fra esse
 - Viene realizzato un classificatore in grado di operare con dati cifrati
- Si ottengono reti neurali capaci di lavorare in dominio cifrato

SPEED (Signal Processing in the EncryptEd Domain)

Col progetto SPEED vengono avvicinati due mondi apparentemente distanti, come:

- Tecniche di *signal processing*:
 - Strumenti di classificazione dei dati in classi di appartenenza
 - Percettrone, reti neurali feed-forward multi-livello
 - Tecniche di crittografia:
 - Sistemi dalle interessanti quanto utili proprietà omomorfiche
 - Cifrario di Paillier, generalizzazione di Damgård-Jurik

Il lavoro di tesi

Partendo dallo studio di un protocollo già esistente nella teoria:

- Algoritmi e procedure prendono vita sotto forma di classi e relazioni fra esse
- Viene realizzato un classificatore in grado di operare con dati cifrati
- Si ottengono reti neurali capaci di lavorare in dominio cifrato

SPEED (Signal Processing in the EncryptEd Domain)

Col progetto SPEED vengono avvicinati due mondi apparentemente distanti, come:

- Tecniche di signal processing:
 - Strumenti di classificazione dei dati in classi di appartenenza
 - Percettrone, reti neurali feed-forward multi-livello
- Tecniche di crittografia:
 - Sistemi dalle interessanti quanto utili proprietà omomorfiche
 - Cifrario di Paillier, generalizzazione di Damgård-Jurik

Il lavoro di tesi

Partendo dallo studio di un protocollo già esistente nella teoria

- Algoritmi e procedure prendono vita sotto forma di classi e relazioni fra esse
- Viene realizzato un classificatore in grado di operare con dati cifrati
- Si ottengono reti neurali capaci di lavorare in dominio cifrato

SPEED (Signal Processing in the EncryptEd Domain)

Col progetto SPEED vengono avvicinati due mondi apparentemente distanti, come:

- Tecniche di *signal processing*:
 - Strumenti di classificazione dei dati in classi di appartenenza
 - Percettrone, reti neurali feed-forward multi-livello
- Tecniche di crittografia:
 - Sistemi dalle interessanti quanto utili proprietà omomorfiche
 - Cifrario di Paillier, generalizzazione di Damgård-Jurik

Il lavoro di tesi

Partendo dallo studio di un protocollo già esistente nella teoria:

- Algoritmi e procedure prendono vita sotto forma di classi e relazioni fra esse
- Viene realizzato un classificatore in grado di operare con dati cifrati
- Si ottengono reti neurali capaci di lavorare in dominio cifrato

Scenario

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
- Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
- Bob e Alice non si fidano l'uno dell'altro
- Non si può o non si vuole trovare ad una terza parte fidata per entrambi

... E un caso concreto

Si immagini

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- Un capo (o ex tale) di governo con sintomi particolari

Scenario

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
 - Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
- Bob e Alice non si fidano l'uno dell'altro
 - Non si può o non si vuole trovare ad una terza parte fidata per entrambi

...E un caso concreto

Si immagini

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- Un capo (o ex tale) di governo con sintomi particolari

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
- Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
 - Bob e Alice non si fidano l'uno dell'altr
 - Non si può o non si vuole trovare ad una terza parte fidata per entrambi

...E un caso concreto

Si immagini

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- un capo (o ex tale) di governo con sintomi particolari

Scenario

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
- Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
- Bob e Alice non si fidano l'uno dell'altro
 - Non si può o non si vuole trovare ad una terza parte fidata per entrambi

...E un caso concreto

Si immagini

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- un capo (o ex tale) di governo con sintomi particolari

Scenario

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
- Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
- Bob e Alice non si fidano l'uno dell'altro
- Non si può o non si vuole trovare ad una terza parte fidata per entrambi

.. E un caso concreto

Si immagini

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- un capo (o ex tale) di governo con sintomi particolari

Gli attori...

- Bob vuole mettere a disposizione una rete neurale opportunamente allenata
- Alice vuole usufruire del servizio offerto da Bob per elaborare i propri dati
- Bob e Alice non si fidano l'uno dell'altro
- Non si può o non si vuole trovare ad una terza parte fidata per entrambi

... E un caso concreto

Si immagini:

- Una rete neurale in grado di diagnosticare una malattia più o meno grave
- Un capo (o ex tale) di governo con sintomi particolari

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Sicurezza per Bob

Consiste nel proteggere la struttura della rete neurale attraverso:

Sicurezza per Alice

- Protezione dei dati forniti in ingresso
- Protezione dei risultati ottenuti

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Sicurezza per Bob

Consiste nel proteggere la struttura della rete neurale attraverso:

- Espansione tramite aggiunta di neuroni fittizi ai livelli intermedi
- Permutazione di neuroni in uno stesso livello intermedio
- Occultamento dello stato del singolo neurone intermedio

Sicurezza per Alice

- Protezione dei dati forniti in ingresso
- Protezione dei risultati ottenuti


```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Sicurezza per Bob

Consiste nel proteggere la struttura della rete neurale attraverso:

- Espansione tramite aggiunta di neuroni fittizi ai livelli intermedi
 - Permutazione di neuroni in uno stesso livello intermedio
 - Occultamento dello stato del singolo neurone intermedio

Sicurezza per Alice

- Protezione dei dati forniti in ingresso
- Protezione dei risultati ottenuti


```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Sicurezza per Bob

Consiste nel proteggere la struttura della rete neurale attraverso:

- Espansione tramite aggiunta di neuroni fittizi ai livelli intermedi
- Permutazione di neuroni in uno stesso livello intermedio
 - Occultamento dello stato del singolo neurone intermedio

Sicurezza per Alice

- Protezione dei dati forniti in ingresso
- Protezione dei risultati ottenuti


```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Sicurezza per Bob

Consiste nel proteggere la struttura della rete neurale attraverso:

- Espansione tramite aggiunta di neuroni fittizi ai livelli intermedi
- Permutazione di neuroni in uno stesso livello intermedio
- Occultamento dello stato del singolo neurone intermedio

Sicurezza per Alice

- Protezione dei dati forniti in ingresso
- Protezione dei risultati ottenuti

Proprietà Omomorfiche

Il cifrario di Paillier ha caratteristiche molto utili e interessanti, in particolare:

Proprietà omomorfiche ...

Siano m_i messaggi in chiaro (i = 1, ..., n), $c_i = E(m_i)$ la loro versione cifrata (di conseguenza, $m_i = D(c_i)$), siano a_i un insieme di n valori interi, allora:

$$D\left(\prod_{i=1}^{n} c_i^{a_i}\right) = D\left(\prod_{i=1}^{n} E\left(m_i\right)^{a_i}\right) = \sum_{i=1}^{n} a_i \cdot m_i$$

... E reti neurali

Siano x un nodo nel j-esimo livello e \bar{x} e \bar{w} i vettori di nodi connessi e pesi associat (di lunghezza n), sia $\bar{c} = E(\bar{x})$. Il valore cifrato di attivazione d_x per x risulta da:

$$d_x = \prod_{i=1}^n c_i^{w_i} \implies a_x = D(d_x) = \sum_{i=1}^n w_i \cdot x_i$$

Proprietà Omomorfiche

Il cifrario di Paillier ha caratteristiche molto utili e interessanti, in particolare:

Proprietà omomorfiche ...

Siano m_i messaggi in chiaro (i = 1, ..., n), $c_i = E(m_i)$ la loro versione cifrata (di conseguenza, $m_i = D(c_i)$), siano a_i un insieme di n valori interi, allora:

$$D\left(\prod_{i=1}^{n} c_i^{a_i}\right) = D\left(\prod_{i=1}^{n} E\left(m_i\right)^{a_i}\right) = \sum_{i=1}^{n} a_i \cdot m_i$$

... E reti neurali

Siano x un nodo nel j-esimo livello e \bar{x} e \bar{w} i vettori di nodi connessi e pesi associati (di lunghezza n), sia $\bar{c} = E(\bar{x})$. Il valore cifrato di attivazione d_x per x risulta da:

$$d_x = \prod_{i=1}^n c_i^{w_i} \implies a_x = D(d_x) = \sum_{i=1}^n w_i \cdot x_i$$

Neuroni di ingresso

Per ogni neurone di ingresso i:

- \blacksquare Alice cifra il valore in ingresso m_i con la propria chiave pubblica
- Alice invia il valore cifrato $c_i = E(m_i)$ a Bob, il quale lo associa al corrispondente neurone di ingresso della rete neurale per l'elaborazione

Neuroni di ingresso

Per ogni neurone di ingresso i:

- \blacksquare Alice cifra il valore in ingresso m_i con la propria chiave pubblica
- Alice invia il valore cifrato $c_i = E(m_i)$ a Bob, il quale lo associa al corrispondente neurone di ingresso della rete neurale per l'elaborazione

Neuroni di ingresso

Per ogni neurone di ingresso i:

- \blacksquare Alice cifra il valore in ingresso m_i con la propria chiave pubblica
- Alice invia il valore cifrato $c_i = E(m_i)$ a Bob, il quale lo associa al corrispondente neurone di ingresso della rete neurale per l'elaborazione

Neuroni intermedi

Per ogni neurone intermedio k, Bob ricava il valore di attivazione z'_k come segue:

- Calcola il valore cifrato $d_k = E(a_k)$ e genera in modo casuale $t_j \in \{-1, 1\}$: se $t_j = -1$ allora $d'_k = d_k^{-1} = E(-a_k)$, altrimenti $d'_k = d_k$
- Invia d_{k}' ad Alice, la quale computa e ritorna: $z_{k}=E\left(g\left(D\left(d_{k}
 ight)
 ight)\right)$
 - g(a) funzione non lineare di attivazione del neurone (segno o sigmoide
 - Necessario ed unico punto di interazione fra le parti
- Se $t_j = -1$ allora $z'_k = E(1) z_k^{-1}$, altrimenti $z'_k = z_k$ (segue dalle proprietà di anti-simmetria della funzione g(a)

Neuroni intermedi

Per ogni neurone intermedio k, Bob ricava il valore di attivazione z_k' come segue:

- Calcola il valore cifrato $d_k = E(a_k)$ e genera in modo casuale $t_j \in \{-1, 1\}$: se $t_i = -1$ allora $d'_k = d_k^{-1} = E(-a_k)$, altrimenti $d'_k = d_k$
- Invia d_{k}' ad Alice, la quale computa e ritorna: $z_{k} = E\left(g\left(D\left(d_{k}\right)\right)\right)$
 - g (a) funzione non lineare di attivazione del neurone (segno o sigmoide)
 Necessario ed unico punto di interazione fra le parti
 - Se $t_j = -1$ allora $z'_k = E(1) z_k^{-1}$, altrimenti $z'_k = z_k$ (segue dalle proprietà di anti-simmetria della funzione q(a)

Neuroni intermedi

Per ogni neurone intermedio k, Bob ricava il valore di attivazione z_k' come segue:

- Calcola il valore cifrato $d_k = E(a_k)$ e genera in modo casuale $t_j \in \{-1, 1\}$: se $t_j = -1$ allora $d'_k = d_k^{-1} = E(-a_k)$, altrimenti $d'_k = d_k$
 - Invia d'_k ad Alice, la quale computa e ritorna: $z_k = E(g(D(d_k)))$
 - g (a) funzione non lineare di attivazione del neurone (segno o sigmoide Necessario ed unico punto di interazione fra le parti
 - Se $t_j = -1$ allora $z'_k = E(1) z_k^{-1}$, altrimenti $z'_k = z_k$ (segue dalle proprietà di anti-simmetria della funzione q(a))

Neuroni intermedi

Per ogni neurone intermedio k, Bob ricava il valore di attivazione z_k' come segue:

- Calcola il valore cifrato $d_k = E(a_k)$ e genera in modo casuale $t_j \in \{-1, 1\}$: se $t_j = -1$ allora $d'_k = d_k^{-1} = E(-a_k)$, altrimenti $d'_k = d_k$
- Invia d'_k ad Alice, la quale computa e ritorna: $z_k = E\left(g\left(D\left(d_k\right)\right)\right)$
 - g(a) funzione non lineare di attivazione del neurone (segno o sigmoide)
 - Necessario ed unico punto di interazione fra le parti

Se $t_j = -1$ allora $z'_k = E(1) z_k^{-1}$, altrimenti $z'_k = z_k$ (segue dalle proprietà di anti-simmetria della funzione q(a))

Neuroni intermedi

Per ogni neurone intermedio k, Bob ricava il valore di attivazione z_k' come segue:

- Calcola il valore cifrato $d_k = E(a_k)$ e genera in modo casuale $t_j \in \{-1, 1\}$: se $t_j = -1$ allora $d'_k = d_k^{-1} = E(-a_k)$, altrimenti $d'_k = d_k$
- Invia d_{k}' ad Alice, la quale computa e ritorna: $z_{k} = E\left(g\left(D\left(d_{k}\right)\right)\right)$
 - g(a) funzione non lineare di attivazione del neurone (segno o sigmoide)
 - Necessario ed unico punto di interazione fra le parti
- Se $t_j = -1$ allora $z'_k = E(1) z_k^{-1}$, altrimenti $z'_k = z_k$ (segue dalle proprietà di anti-simmetria della funzione g(a))

Neuroni di uscita

Per ogni neurone di uscita j:

- Bob computa il valore: $d_j = E(a_j)$, inviandolo poi ad Alice
- \blacksquare Alice ricava il valore di uscita del singolo nodo come: $z_{j}=g\left(D\left(d_{j}\right)\right)$

- Oscurando la rete neurale, preservandone la struttura interna
- Garantendo riservatezza per i dati di Alice

Neuroni di uscita

Per ogni neurone di uscita j:

- Bob computa il valore: $d_i = E(a_i)$, inviandolo poi ad Alice
- Alice ricava il valore di uscita del singolo nodo come: $z_j = g(D(d_j))$

- Oscurando la rete neurale, preservandone la struttura interna
 - Garantendo riservatezza per i dati di Alice

Neuroni di uscita

Per ogni neurone di uscita j:

- Bob computa il valore: $d_j = E(a_j)$, inviandolo poi ad Alice
- Alice ricava il valore di uscita del singolo nodo come: $z_j = g(D(d_j))$

- Oscurando la rete neurale, preservandone la struttura interna
- Garantendo riservatezza per i dati di Alice

Neuroni di uscita

Per ogni neurone di uscita j:

- Bob computa il valore: $d_j = E(a_j)$, inviandolo poi ad Alice
- Alice ricava il valore di uscita del singolo nodo come: $z_j = g(D(d_j))$

- Oscurando la rete neurale, preservandone la struttura interna
- Garantendo riservatezza per i dati di Alice

Neuroni di uscita

Per ogni neurone di uscita j:

- Bob computa il valore: $d_j = E(a_j)$, inviandolo poi ad Alice
- Alice ricava il valore di uscita del singolo nodo come: $z_j = g(D(d_j))$

- Oscurando la rete neurale, preservandone la struttura interna
- Garantendo riservatezza per i dati di Alice

Il software realizzato:

- Implementa praticamente il protocollo proposto
- Realizza un classificatore per dati cifrati

Inoltre, propone caratteristiche aggiuntive fra le quali:

Domanda...

- Parser integrato, linguaggio specifico
- Comunicazione fra le parti coinvolte
- Interazione multi-utente, accesso concorrente

\dots E risposta

Il software realizzato:

- Implementa praticamente il protocollo proposto
- Realizza un classificatore per dati cifrati

Inoltre, propone caratteristiche aggiuntive fra le quali:

Domanda...

- Parser integrato, linguaggio specifico
- Comunicazione fra le parti coinvolte
- Interazione multi-utente, accesso concorrente

...E risposta

- Supporto attraverso:
 - JFlex
 - JavaCUP
- Realizzazione di un analizzatore sintattico/lessicale
- Ideazione di un linguaggio ad-hoc per la descrizione di reti neurali

Il software realizzato:

- Implementa praticamente il protocollo proposto
- Realizza un classificatore per dati cifrati

Inoltre, propone caratteristiche aggiuntive fra le quali:

Domanda...

- Parser integrato, linguaggio specifico
- Comunicazione fra le parti coinvolte
- Interazione multi-utente, accesso concorrente

\dots E risposta

- Implementazione di un modello distribuito client-server
- Uso della tecnologia RMI (Remote Method Invocation)
- Comunicazione basata su messaggi scambiati fra oggetti

Il software realizzato:

- Implementa praticamente il protocollo proposto
- Realizza un classificatore per dati cifrati

Inoltre, propone caratteristiche aggiuntive fra le quali:

Domanda...

- Parser integrato, linguaggio specifico
- Comunicazione fra le parti coinvolte
- Interazione multi-utente, accesso concorrente

... E risposta

- Strutture dati e algoritmi provenienti dalla teoria dei sistemi operativi
- Pattern di progettazione presi in prestito dalle tecniche di ingegneria del software
- Uso degli strumenti messi a disposizione dal linguaggio

In NNSec le reti neurali sono gestite attraverso generici modelli unici.

Pattern Composite

Espansione e permutazione delle reti neurali:

- Espansione durante la fase di composizione
- Permutazione prima di ogni richiesta d'uso
- Interfaccia di base unica per il client

Gestore delle Reti Neurali

- Inserisce ogni rete neurale in un involucro che la espande
- Associa ad ogni rete neurale un semaforo che ne regola l'accesso concorrente
- Si preoccupa di forzare la permutazione dei neuroni
- Gestisce il recupero delle informazioni e le richieste d'uso

In NNSec le reti neurali sono gestite attraverso generici modelli unici.

Pattern Composite

Espansione e permutazione delle reti neurali:

- Espansione durante la fase di composizione
- Permutazione prima di ogni richiesta d'uso
- Interfaccia di base unica per il client

Gestore delle Reti Neurali

- Inserisce ogni rete neurale in un involucro che la espande
- Associa ad ogni rete neurale un semaforo che ne regola l'accesso concorrente
- Si preoccupa di forzare la permutazione dei neuroni
- Gestisce il recupero delle informazioni e le richieste d'uso

- Factory remota: Risponde alle necessità di interazione
 - Lavoratori: Servono richieste diverse in modo indipendente e concorrente
- Modulo di comunicazione: Impostazione d'ambiente, inoltro di richieste
- Calcolatore: Risolve il problema del riferimento circolare

... Alla Pratica Modello di Comunicazione

WorkerFactory

I Quattro Moschettieri

- Factory remota: Risponde alle necessità di interazione
 - Lavoratori: Servono richieste diverse in modo indipendente e concorrente
- Modulo di comunicazione: Impostazione d'ambiente, inoltro di richieste
- Calcolatore: Risolve il problema del riferimento circolare

- Factory remota: Risponde alle necessità di interazione
- Lavoratori: Servono richieste diverse in modo indipendente e concorrente
- Modulo di comunicazione: Impostazione d'ambiente, inoltro di richieste
- Calcolatore: Risolve il problema del riferimento circolare

Il cuore di NNSec, oltre che dal gestore delle reti neurali, comprende:

- Factory remota: Risponde alle necessità di interazione
- Lavoratori: Servono richieste diverse in modo indipendente e concorrente
- Modulo di comunicazione: Impostazione d'ambiente, inoltro di richieste

Calcolatore: Risolve il problema del riferimento circolare

- Factory remota: Risponde alle necessità di interazione
- Lavoratori: Servono richieste diverse in modo indipendente e concorrente
- Modulo di comunicazione: Impostazione d'ambiente, inoltro di richieste
- Calcolatore: Risolve il problema del riferimento circolare

Preparazione:

- Rete neurale (overfitting sui dati)
- Numero neuroni intermedi variabile
- Chiave di lunghezza 1024 bit
- Processore Quad Core (2.40GHz) e 4Gb RAM

Risultati

Preparazione:

- Rete neurale (overfitting sui dati)
- Numero neuroni intermedi variabile
- Chiave di lunghezza 1024 bit
- Processore Quad Core (2.40GHz) e 4Gb RAM

Risultati

- Crescita lineare in base al numero di neuroni intermedi
- Esistenza di un punto di taglio con uguale distribuzione del carico di lavoro
- Degenerazione più consistente lato client

Preparazione:

- Rete neurale (overfitting sui dati)
- Numero neuroni intermedi variabile
- Chiave di lunghezza 1024 bit
- Processore Quad Core (2.40GHz) e 4Gb RAM

Risultati

- Crescita lineare in base al numero di neuroni intermedi
- Esistenza di un punto di taglio con uguale distribuzione del carico di lavoro
- Degenerazione più consistente lato client

Preparazione:

- Rete neurale (overfitting sui dati)
- Numero neuroni intermedi variabile
- Chiave di lunghezza 1024 bit
- Processore Quad Core (2.40GHz) e 4Gb RAM

Risultati

- Crescita lineare in base al numero di neuroni intermedi
- Esistenza di un punto di taglio con uguale distribuzione del carico di lavoro
- Degenerazione più consistente lato client

Preparazione:

- Rete neurale (overfitting sui dati)
- Numero neuroni intermedi variabile
- Chiave di lunghezza 1024 bit
- Processore Quad Core (2.40GHz) e 4Gb RAM

Risultati

- Crescita lineare in base al numero di neuroni intermedi
- Esistenza di un punto di taglio con uguale distribuzione del carico di lavoro
- Degenerazione più consistente lato client

Un aspetto in particolare merita di essere approfondito: la degenerazione

Motivazioni possibili della degenerazione:

Lato Server

Lato Client

Fattori

Alcuni dei fattori in gioco sono:

- Macchina virtuale (Java Virtual Machine)
- Costo in termini di operazioni macchina
- Architettura degli elaboratori
- Complessità di cifratura/decifratura

Un aspetto in particolare merita di essere approfondito: la **degenerazione**

Motivazioni possibili della degenerazione:

Lato Server

- Costo dovuto ad operazioni di moltiplicazione e potenze
- Numero di operazioni superiore...
- ... Ma di complessità inferiore

Lato Client

- Costo legato principalmente alle operazioni di decifratura/cifratura
- Numero di operazioni inferiore...
 - ... Ma di complessità superiore

Fattori

Alcuni dei fattori in gioco sono:

- Macchina virtuale (Java Virtual Machine)
- Costo in termini di operazioni macchina
- Architettura degli elaboratori
- Complessità di cifratura/decifratura

Un aspetto in particolare merita di essere approfondito: la **degenerazione**

Motivazioni possibili della degenerazione:

Lato Server

- Costo dovuto ad operazioni di moltiplicazione e potenze
- Numero di operazioni superiore...
- ...Ma di complessità inferiore

Lato Client

- Costo legato principalmente alle operazioni di decifratura/cifratura
- Numero di operazioni inferiore...
- ... Ma di complessità superiore

Fattori

Alcuni dei fattori in gioco sono:

- Macchina virtuale (Java Virtual Machine)
- Costo in termini di operazioni macchina
- Architettura degli elaboratori
- Complessità di cifratura/decifratura

Un aspetto in particolare merita di essere approfondito: la **degenerazione**

Motivazioni possibili della degenerazione:

Lato Server

- Costo dovuto ad operazioni di moltiplicazione e potenze
- Numero di operazioni superiore...
- ...Ma di complessità inferiore

Lato Client

- Costo legato principalmente alle operazioni di decifratura/cifratura
- Numero di operazioni inferiore...
 - ...Ma di complessità superiore

Fattori

Alcuni dei fattori in gioco sono

- Macchina virtuale (Java Virtual Machine)
- Costo in termini di operazioni macchina
- Architettura degli elaboratori
 - Complessità di cifratura/decifratura

Un aspetto in particolare merita di essere approfondito: la **degenerazione**

Motivazioni possibili della degenerazione:

Lato Server

- Costo dovuto ad operazioni di moltiplicazione e potenze
- Numero di operazioni superiore...
- ... Ma di complessità inferiore

Lato Client

- Costo legato principalmente alle operazioni di decifratura/cifratura
- Numero di operazioni inferiore...
- ... Ma di complessità superiore

F'attori

Alcuni dei fattori in gioco sono

- Macchina virtuale (Java Virtual Machine)
- Costo in termini di operazioni macchina
- Architettura degli elaboratori
 - Complessità di cifratura/decifratura

Un aspetto in particolare merita di essere approfondito: la **degenerazione**

Motivazioni possibili della degenerazione:

Lato Server

- Costo dovuto ad operazioni di moltiplicazione e potenze
- Numero di operazioni superiore...
- ... Ma di complessità inferiore

Lato Client

- Costo legato principalmente alle operazioni di decifratura/cifratura
- Numero di operazioni inferiore...
- ... Ma di complessità superiore

Fattori Alcuni dei fattori in gioco sono: Macchina virtuale (Java Virtual Machine) Costo in termini di operazioni macchina Architettura degli elaboratori Complessità di cifratura/decifratura ...

L'obiettivo è quello di

- Avvicinare strumenti di classificazione e tecniche di crittografia
- Realizzare un classificatore per dati cifrati
- La base di partenza:
 - Interessanti proprietà omomorfiche del cifrario
 - Un protocollo che sfrutti tali caratteristiche a suo favore
- Il risultato finale:
 - Un software sviluppato in Java che implementa il protocollo proposto
 - Multi-utenza, accesso concorrente alle risorse
- Le prove sperimentali hanno rivelato infine:
 - Prestazioni accettabili in ogni caso su hardware non datato e in genere per reti neurali con un numero di neuroni intermedi contenuto
 - Possibile previsione del comportamento in base al numero di neuroni
 - Applicabilità possibile (apparentemente) a scenari reali

- L'obiettivo è quello di:
 - Avvicinare strumenti di classificazione e tecniche di crittografia
 - Realizzare un classificatore per dati cifrati
- La base di partenza:
 - Interessanti proprietà omomorfiche del cifrario
 - Un protocollo che sfrutti tali caratteristiche a suo favore
- Il risultato finale:
 - Un software sviluppato in Java che implementa il protocollo proposto
 - Multi-utenza, accesso concorrente alle risorse
- Le prove sperimentali hanno rivelato infine
 - Prestazioni accettabili in ogni caso su hardware non datato e in genere per reti neurali con un numero di neuroni intermedi contenuto
 - Possibile previsione del comportamento in base al numero di neuroni
 - Applicabilità possibile (apparentemente) a scenari reali

- L'obiettivo è quello di:
 - Avvicinare strumenti di classificazione e tecniche di crittografia
 - Realizzare un classificatore per dati cifrati
- La base di partenza:
 - Interessanti proprietà omomorfiche del cifrario
 - Un protocollo che sfrutti tali caratteristiche a suo favore
- Il risultato finale:
 - Un software sviluppato in Java che implementa il protocollo proposto
 - Multi-utenza, accesso concorrente alle risorse
- Le prove sperimentali hanno rivelato infine:
 - Prestazioni accettabili in ogni caso su hardware non datato e in genere per reti neurali con un numero di neuroni intermedi contenuto
 - Possibile previsione del comportamento in base al numero di neuroni
 - Applicabilità possibile (apparentemente) a scenari reali

- L'obiettivo è quello di:
 - Avvicinare strumenti di classificazione e tecniche di crittografia
 - Realizzare un classificatore per dati cifrati
- La base di partenza:
 - Interessanti proprietà omomorfiche del cifrario
 - Un protocollo che sfrutti tali caratteristiche a suo favore
- Il risultato finale:
 - Un software sviluppato in Java che implementa il protocollo proposto
 - Multi-utenza, accesso concorrente alle risorse
- Le prove sperimentali hanno rivelato infine
 - Prestazioni accettabili in ogni caso su hardware non datato e in genere per reti neurali con un numero di neuroni intermedi contenuto
 - Possibile previsione del comportamento in base al numero di neuroni
 - Applicabilità possibile (apparentemente) a scenari reali

- L'obiettivo è quello di:
 - Avvicinare strumenti di classificazione e tecniche di crittografia
 - Realizzare un classificatore per dati cifrati
- La base di partenza:
 - Interessanti proprietà omomorfiche del cifrario
 - Un protocollo che sfrutti tali caratteristiche a suo favore
- Il risultato finale:
 - Un software sviluppato in Java che implementa il protocollo proposto
 - Multi-utenza, accesso concorrente alle risorse
- Le prove sperimentali hanno rivelato infine:
 - Prestazioni accettabili in ogni caso su hardware non datato e in genere per reti neurali con un numero di neuroni intermedi contenuto
 - Possibile previsione del comportamento in base al numero di neuroni
 - Applicabilità possibile (apparentemente) a scenari reali