Linear and Generalized Linear Models (4433LGLM6Y)

Statistical theory linear models

Meeting 4

Vahe Avagyan

Biometris, Wageningen University and Research

Statistical theory linear models (Fox, Chapters 9.1-9.3)

- Linear models in matrix form
- Linear contrasts
- Least squares estimation (quadratic form)
- Variance covariance matrix

Statistical theory linear models

- Linear models in matrix form
- Linear contrasts
- Least squares estimation (quadratic form)
- Variance covariance matrix

Linear Models in Matrix Form

- Examples of Linear Models for quantitative response variables:
 - Linear regression models (see Meeting 1)
 - Analysis of variance models (see Meeting 2)
 - Analysis of covariance models (see Meeting 3)

- These models have a lot in common:
 - Normality
 - Constant variance
 - Independence
 - Linearity in parameters, expected error zero.

We will see them in a moment.

Multiple regression model: Revisited

e.g., observed weight loss of an individual experimental unit systematic part:

e.g.,

- population mean of weight loss for exposure time x₁
- relative humidity x_2

error term is departure of observed weight loss from the mean, represents variation around the mean

Linear Models in Matrix Form

• General linear model for observation i = 1, ..., n given by:

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik} + \epsilon_{i} =$$

Linear Models in Matrix Form

Let's collecting all n observations into matrix equation

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$
• Linear models in Matrix Form:
$$\mathbf{y}_{n \times 1} = \mathbf{X}_{n \times (k+1)} \boldsymbol{\beta}_{(k+1) \times 1} + \boldsymbol{\epsilon}_{n \times 1}.$$

X is called the model matrix or design matrix.

Example: Occupational Prestige

 Occupational prestige (or job prestige) is a way for sociologists to describe the relative social class positions people have.

• Duncan's Occupational Prestige Data (from R library car or bcgam).

```
> library(car)
> head(Duncan)
                                                                 > tail(Duncan)
           type income education prestige
                                                                            type income education prestige
accountant prof
                    62
                               86
                                        82
                                                                 cook
                                                                              bc
                                                                                      14
                                                                                                22
                                                                                                         16
pilot
                    72
                               76
                                        83
           prof
                                                                 soda.clerk
                                                                                      12
                                                                                                30
                                                                              bc
                                                                                                          6
architect prof
                    75
                               92
                                        90
                                                                 watchman
                                                                                                25
                                                                              bc
                                                                                      17
                                                                                                         11
                    55
author
           prof
                               90
                                        76
                                                                 janitor
                                                                              bc
                                                                                                20
                                                                                                          8
chemist
                                        90
           prof
                    64
                               86
                                                                 policeman
                                                                                      34
                                                                                                47
                                                                              bc
                                                                                                         41
minister
                                        87
           prof
                    21
                               84
                                                                 waiter
                                                                              bc
                                                                                                32
                                                                                                         10
```

• Data on the prestige, income and education on 45 US occupations (in 1950).

Causai illouel by Fox.

 $Prestige_i = \beta_0 + \beta_1 Income_i + \beta_2 Education_i + \epsilon_i$

For each i = 1, ..., 45

• Linear model in matrix form:

> head(Duncan)

	type	income	education	prestige
accountant	prof	62	86	82
pilot	prof	72	76	83
architect	prof	75	92	90
author	prof	55	90	76
chemist	prof	64	86	90
minister	prof	21	84	87

> tail(Duncan)

```
    Dependent variables

                                                   > X <- cbind(Duncan$education, Duncan$income)</p>
                                                    > Y <- Duncan$prestige
                                                    > # Calculations through R
                                                    > pres.model <- lm(Y~X)
                                                    > # Another way
                                                    > # lm(prestige ~ education + income, data = Duncan)
                                                    > summary(pres.model)

    Response

                                                    Call:
                                                    lm(formula = Y \sim X)
                                                    Residuals:
                                                       Min
                                                                10 Median
                                                                                30
                                                                                       Max
                                                    -29.538 -6.417
                                                                     0.655
                                                                             6.605 34.641

    Estimated coefficients

                                                    Coefficient's
                                                               Estimate Std. Error t value Pr(>|t|)
                                                               -6.06466
                                                                           4.27194 -1.420
                                                    (Intercept)
                                                                                              0.163
                                                                           0.09825
                                                                                     5.555 1.73e-06 ***
                                                    X1
                                                                0.54583
                                                    X2
                                                                           0.11967
                                                                                     5.003 1.05e-05 ***
                                                                0.59873
                                                    Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 (, 1
                                                    Residual standard error: 13.37 on 42 degrees of freedom
                                                    Multiple R-squared: 0.8282, Adjusted R-squared: 0.82
                                                    F-statistic: 101.2 on 2 and 42 DF, p-value: < 2.2e-16
```

Assumptions linear models in matrix form

• For the error term ϵ

$$\epsilon \sim N_n(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$$

- Expectation: $E(\epsilon) = \mathbf{0}$
- Variance- covariance: $V(\epsilon) = E(\epsilon \epsilon') = \sigma_{\epsilon}^2 \mathbf{I}_n$.

• For the response **y**

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma_{\epsilon}^2 \mathbf{I}_n)$$

- Expectation: $\mu = E(\mathbf{y}) = \mathbf{X}\beta$ (Why?)
- Variance- covariance: $\Sigma = V(\mathbf{y}) = \sigma_{\epsilon}^2 \mathbf{I}_n$. (Why?)

Recall the linear model

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times (k+1)}\boldsymbol{\beta}_{(k+1)\times 1} + \boldsymbol{\epsilon}_{n\times 1}$$

One-way ANOVA model:

$$Y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$
 for groups $j = 1, ..., m$.

• Alternative model representations

sum-to-zero condition (sigma constraint or deviation coding):

$$Y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$
 for groups $j=1,\ldots,m$.
$$\sum_{j}^{m} \alpha_j = 0$$

• μ is the overall mean of the m types (check it!)

 \mathbf{X}_F is of full column rank

• Group means: $\boldsymbol{\mu} = [\mu_1, \mu_2, ..., \mu_m]'$

$$\begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{m-1} \\ \mu_{m} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ 1 & -1 & -1 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{m-1} \end{bmatrix}$$

$$\mu = \mathbf{X}_{B}\beta_{F}$$

- Rows of X_B form row basis of full-rank model matrix X_F
- We can solve uniquely for the constrained parameters (from *Linear Algebra*):

$$\beta_F = \mathbf{X}_{\mathrm{B}}^{-1} \boldsymbol{\mu}$$

• The solution for the constrained parameters using sigma-constraint is

$$\mu = \mu.$$

$$\alpha_1 = \mu_1 - \mu.$$

$$\alpha_2 = \mu_2 - \mu.$$
...
$$\alpha_{m-1} = \mu_{m-1} - \mu.$$

• Check it.

E.g., ANCOVA model

Model in matrix form is:

$$\begin{bmatrix} Y_{1} \\ \vdots \\ Y_{n_{1}} \\ \hline Y_{n_{1}+1} \\ \vdots \\ Y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{1} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n_{1}} & 0 & 0 \\ \hline 1 & x_{n_{1}+1} & 1 & x_{n_{1}+1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n} & 1 & x_{n} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} + \begin{bmatrix} \epsilon_{1} \\ \vdots \\ \epsilon_{n_{1}} \\ \hline \epsilon_{n_{1}+1} \\ \vdots \\ \epsilon_{n} \end{bmatrix}$$

Statistical theory linear models

- Linear models in matrix form
- Linear contrasts
- Least squares estimation (quadratic form)
- Variance covariance matrix

One-way ANOVA: Revisited

Does sweet taste differ between three types of tomato?

	taste	type
1	25.44	r
2	28.10	r
3	46.46	r
4	36.96	r
5	24.83	b
6	28.47	b
7	48.15	b
8	31.78	b
9	53.42	С
10	70.87	С
11	57.07	С
12	38.08	С

•
$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

• i = 1, 2, 3 for type and j = 1, 2, 3, 4 for tomato

• Test if the three types have the same population mean for sweet taste or not.

•
$$H_0$$
: $\tau_1 = \tau_2 = \tau_3 = 0$

is the same as

An example of contrast among the groups

•
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

Linear contrasts

• A comparison among m population means is done through **Linear contrasts**

$$l = a_1 \mu_1 + a_2 \mu_2 + \dots + a_m \mu_m = \sum_{i=1}^m a_i \mu_i$$

Where $\sum_{i=1}^{m} a_i = 0$.

- Example: for checking $\mu_1=\mu_2$, we can write $l=\mu_1-\mu_2=?$
- What are the a_i ?

Linear contrasts

Recall relationship between group means and parameters in the ANOVA model the :

$$\mu = \mathbf{X}_{\mathrm{B}}\beta_F$$

Or as a linear function of the means:

$$\beta_F = \mathbf{X}_{\mathrm{B}}^{-1} \boldsymbol{\mu}$$

• Full rank parameterizations allow easy testing of the null:

 H_0 : no differences among group means

Or

$$H_0$$
: $\mu_1 = \cdots = \mu_m$

• Sometimes, we want to formulate X_B so that individual parameters of β_F represent interesting contrasts among group means.

• Data From Friendly and Franklin's (1980) "Experiment on the Effects of Presentation on Recall"

- Memory experiment with 3 experimental conditions:
 - SFR ("standard free recall) control group
 - B ("before") experimental group
 - M ("meshed") experimental group

Condition				
SFR	В	М		
39	40	40		
25	38	39		
37	39	34		
25	37	37		
29	39	40		
39	24	36		
21	30	36		
39	39	38		
24	40	36		
25	40	30		

- Consider linear contrasts for the following two null hypotheses according to Friendly and Franklin:
- 1. The mean for the control group is no different from the average of the means for the experimental groups

$$H_0: \mu_1 = \frac{\mu_2 + \mu_3}{2} \quad \blacksquare$$

2. The means for the two experimental groups are the same

$$H_0$$
: $\mu_2 = \mu_3$

• We can code each hypothesis as parameter of model, employing the matrix $\mathbf{X}_{\mathrm{B}}^{-1}$.

Recall:

• We can write:

• Therefore,

•
$$\mu = (\mu_1 + \mu_2 + \mu_3)/3$$

• $\zeta_1 = \mu_1 - \mu_2 / 2 - \mu_3 / 2$ (First hypothesis is H_0 : $\zeta_1 = 0$)

•
$$\zeta_2 = \mu_2 - \mu_3$$
 (Second hypothesis H_0 : $\zeta_2 = 0$)

The a_i values. Check the sums.

• The rows of X_B^{-1} are orthogonal.

• Here
$$\mathbf{X_B} = \begin{bmatrix} 1 & \frac{2}{3} & 0 \\ 1 & -\frac{1}{3} & \frac{1}{2} \\ 1 & -\frac{1}{3} & -\frac{1}{2} \end{bmatrix}$$
, but we could rescale it $\mathbf{X_B} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$.

• Check $X_B^{-1}\mu$ with the scaled X_B .

Statistical theory linear models

- Linear models in matrix form
- Linear contrasts
- Least squares estimation (quadratic form)
- Variance covariance matrix

Least squares estimation

- Recall: $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$
- Find estimating values $B_0 = \hat{\beta}_0$, $B_1 = \hat{\beta}_1$ and $B_2 = \hat{\beta}_2$ estimates for β_0 , β_1 and β_2 that minimize the sum of squared errors:

$$\sum_{i=1}^{n} (y_i - (B_0 + B_1 x_{1i} + B_2 x_{2i}))^2$$

Same terminology as before:

$$\hat{y}_i = B_0 + B_1 x_{1i} + B_2 x_{2i}$$
 is a fitted value

$$e_i = y_i - (B_0 + B_1 x_{1i} + B_2 x_{2i}) = (y_i - \hat{y}_i)$$
 is a residual

• See the difference between ϵ_i and e_i .

Note: Fox uses E_i instead of e_i .

Least-squares fit: Minimize the sum of squares (SS) of distances

Carl Friedrich Gauss

Simple linear regression

Multiple linear regression

Recall the linear model:

Unknown parameters.

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
, with $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$

Unknown Errors.

• Fitting model to data gives vectors of fitted values and residuals:

$$\mathbf{y}_{n\times 1} = \mathbf{X} \begin{bmatrix} \mathbf{B}_0 \\ \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_k \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_n \end{bmatrix} = \mathbf{X}_{n\times (k+1)} \mathbf{b}_{(k+1)\times 1} + \mathbf{e}_{n\times 1}$$

- $\mathbf{b} = [B_0, B_1, ..., B_k]'$ is the vector of estimated coefficients
- $e = [e_1, ..., e_n]'$ is the vector of residuals (*distance of the observation from the line/plane*).

- Question: *how is b obtained*?
- Answer: Find **b** that minimizes residual sum of squares:

$$S(\mathbf{b}) = \sum_{i=1}^{n} e_i^2 = \begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \mathbf{e}' \mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}) =$$

$$= y'y - y'Xb - b'X'y + b'X'Xb = y'y - 2y'Xb + b'X'Xb$$

• The term (y - Xb)'(y - Xb) is called a quadratic form.

Note that $\mathbf{y}'\mathbf{X}\mathbf{b} = \mathbf{b}'\mathbf{X}'\mathbf{y}$ (why?)

• Obtain LS estimators \mathbf{b} , by minimizing $S(\mathbf{b})$.

• Set the vector of partial derivatives w.r.t. **b** to zero:

$$\frac{\partial S(\mathbf{b})}{\partial \mathbf{b}} = \mathbf{0} - 2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{0}$$

From Linear Algebra Course

Normal equations:

$$(X'X)b = X'y$$

• If X'X is nonsingular, then the unique least-squares solution is:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

• Second partial derivatives of sum of squared residuals:

$$\frac{\partial^2 S(\mathbf{b})}{\partial \mathbf{b^2}} = 2\mathbf{X}'\mathbf{X}.$$

• Note that
$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_{11} & x_{21} & \dots & x_{n1} \\ \vdots & \vdots & \dots & \vdots \\ x_{1k} & x_{2k} & \dots & x_{nk} \end{bmatrix}'_{(k+1)\times n} \begin{bmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix}_{n\times (k+1)} \geqslant 0$$

• The solution $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ represents the minimum of $S(\mathbf{b})$.

Example: Duncan data, R outcome

```
> # Calculations through R
> X <- cbind(Duncan$education, Duncan$income)
                                                                     > pres.model <- lm(Y~X)
> modX <- cbind(1, X)
                                                                     > # Another way
> Y <- Duncan$prestige
                                                                     > # lm(prestige ~ education + income, data = Duncan)
> t(modX) %*% modX
     [,1]
             [,2]
                    [,3]
                                                                     > coef(pres.model)
[1,]
             2365
                    1884
                                                                     (Intercept)
                                                                                           Х1
                                                                                                       X2
[2,] 2365 163265 122197
                                                                                    0.5458339
                                                                      -6.0646629
                                                                                                0.5987328
[3,] 1884 122197 105148
> t(modX) %*% Y
                                                                     > # Design (model) matrix
       [,1]
                                                                     > head(model.matrix(pres.model))
[1,]
       2146
                                                                        (Intercept) X1 X2
[2,] 147936
                                                                                  1 86 62
[3,] 118229
                                                                                  1 76 72
> (b <- solve(t(modX) %*% modX)%*%(t(modX) %*% Y))
                                                                                  1 92 75
            [,1]
                                                                                  1 90 55
[1,] -6.0646629
                                   \beta_0
                                                                                  1 86 64
      0.5458339
[2,]
                                                                                  1 84 21
      0.5987328
[3,]
                                   eta_1
                                   \beta_2
```

Statistical theory linear models

- Linear models in matrix form
- Linear contrasts
- Least squares estimation (quadratic form)
- Variance covariance matrix

Properties of least-squares estimator

- Least-squares estimator: $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
 - 1. **b** is a linear estimator:

$$\mathbf{b} = \mathbf{M}\mathbf{y}$$
, where $\mathbf{M} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

2. b is an unbiased estimator:

$$E(\mathbf{b}) = \beta$$

3. b has a variance-covariance matrix :

$$V(\mathbf{b}) = \sigma_{\epsilon}^2 (\mathbf{X}' \mathbf{X})^{-1}$$

4. b has a normal distribution, *if* **y** is normally distributed:

$$\mathbf{b} \sim N(\beta, \sigma_{\epsilon}^2 (\mathbf{X}'\mathbf{X})^{-1})$$

Gauss-Markov theorem

- Recall $y = X\beta + \epsilon$
- If errors ϵ_i are
 - independent
 - with zero expectation
 - constant variance

- Least-squares estimator is BLUE (Best Linear Unbiased Estimator).
- Under normality, the least-squares estimator is the most efficient of all unbiased estimators.

OLS and Maximum-likelihood estimation

- Under assumptions of linear model, LS estimator **b** is also maximum-likelihood estimator of β .
- Linear model with assumption for i-th observation Y_i :

$$Y_i \sim N(x_i'\beta, \sigma_{\epsilon}^2 \mathbf{I}_n)$$
 or $\epsilon_i \sim N(0, \sigma_{\epsilon}^2 \mathbf{I}_n)$

Probability function for observation i:

$$p(Y_i) = \frac{1}{\sigma_{\epsilon}\sqrt{2\pi}} \exp\left(-\frac{(Y_i - x_i'\beta)^2}{2\sigma_{\epsilon}^2}\right).$$

Joint probability density (i.e., likelihood function):

$$L(\beta, \sigma^2) = p(\mathbf{y}) = \prod p(Y_i) = \frac{1}{(\sigma_{\epsilon}\sqrt{2\pi})^n} \exp\left(-\frac{\sum (Y_i - x_i'\beta)^2}{2\sigma_{\epsilon}^2}\right) = \frac{1}{(\sigma_{\epsilon}\sqrt{2\pi})^n} \exp\left(-\frac{(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)}{2\sigma_{\epsilon}^2}\right).$$

OLS and Maximum-likelihood estimation

Maximum likelihood estimators (practical exercise)

$$\hat{\beta}_{MLE} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

$$\hat{\sigma}_{MLE}^2 = \frac{\mathbf{e}'\mathbf{e}}{n}.$$

• The least square estimate ${f b}$ is the same as the \hat{eta}_{MLE} .

- Minimizing sum of squared residuals maximizes the likelihood.
- The estimator $\hat{\sigma}_{MLE}^2$ is biased (although asymptotically unbiased).
- The unbiased estimator is preferred:

$$S_E^2 = \frac{\mathbf{e'e}}{n - (k+1)}$$

Estimation of error variance σ_{ϵ}^2 : Revisited

$$\hat{\sigma}_{\epsilon}^2 = (e_1^2 + ... + e_n^2) / (n - (k+1))$$

Minimized sum of squares = sum of squares for error = residual sum of squares = SSE.

degrees of freedom = number of observations n minus number of β parameters (k slopes + 1 intercept)

$$S_E^2 = \hat{\sigma}_{\epsilon}^2 = \frac{\mathbf{e}'\mathbf{e}}{n - (k+1)} = SSE/(n - (k+1))$$