Trabalho Prático - Gato vs Não-Gato

INE5430 - Inteligência Artificial

Grupo:

- Bruno da Silva Castilho
- Gabriel Dutra

1. Introdução

O presente relatório descreve o processo e os resultados obtidos no trabalho de classificação de imagens de gatos e não gatos utilizando regressão logística e uma rede de camada rasa.

2. Dados de Entrada

Os dados utilizados neste trabalho foram obtidos a partir de uma base fornecida no curso de deep learning do Andrew Ng. O conjunto de dados consiste em imagens RGB de tamanho 64x64x3, onde cada imagem é representada como uma matriz de 64x64 pixels coloridos.

3. Regressão Logística

Casos de Teste:

- **Teste-1:** Utilizando 10 imagens do conjunto de testes.
- **Teste-2**: Utilizando 80 imagens do conjunto de testes.
- **Teste-3:** Utilizando 209 imagens do conjunto de testes.

Resultados:

Teste-1:

• Taxa de Acerto: 66%

• Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.5	0.82	0.62	17
noncat	0.86	0.58	0.69	33
accuracy			0.66	50
macro avg	0.68	0.7	0.66	50
weighted avg	0.74	0.66	0.67	50

Teste-2:

Taxa de Acerto: 56%Matriz de Confusão:

Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.43	0.88	0.58	17
noncat	0.87	0.39	0.54	33
accuracy			0.56	50
macro avg	0.65	0.64	0.56	50
weighted avg	0.72	0.56	0.55	50

Teste-3:

Taxa de Acerto: 70%Matriz de Confusão:

Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.55	0.71	0.62	17
noncat	0.82	0.70	0.75	33
accuracy			0.70	50
macro avg	0.68	0.70	0.68	50
weighted avg	0.73	0.70	0.71	50

4. Rede de camada rasa

Casos de Teste:

Teste-1:

- Camada de entrada: 64x64x3 vetores.
- Camada intermediária: 100 neurônios com função de ativação sigmoid.
- Camada de saída: 1 neurônio com função de ativação sigmoid.

Teste-2:

- Camada de entrada: 64x64x3 vetores.
- Camada intermediária: 200 neurônios com função de ativação sigmoid.
- Camada de saída: 1 neurônio com função de ativação sigmoid.

Teste-3:

- Camada de entrada: 64x64x3 vetores.
- Camada intermediária: 100 neurônios com função de ativação ReLU.
- Camada de saída: 1 neurônio com função de ativação sigmoid.

Teste-4:

- Camada de entrada: 64x64x3 vetores.
- Camada intermediária: 200 neurônios com função de ativação ReLU.
- Camada de saída: 1 neurônio com função de ativação sigmoid.

Resultados:

Teste-1:

• Taxa de Acerto: 34%

• Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.34	1	0.51	17
noncat	0	0	0	33
accuracy			0.34	50
macro avg	0.17	0.50	0.25	50
weighted avg	0.12	0.34	0.17	50

Teste-2:

• Taxa de Acerto: 80%

• Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.7	0.71	0.71	17
noncat	0.85	0.85	0.85	33
accuracy			0.80	50
macro avg	0.78	0.78	0.78	50
weighted avg	0.80	0.80	0.80	50

Teste-3:

• Taxa de Acerto: 72%

• Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.56	0.88	0.68	17
noncat	0.91	0.64	0.75	33
accuracy			0.72	50
macro avg	0.73	0.76	0.72	50
weighted avg	0.79	0.72	0.73	50

Teste-4:

Taxa de Acerto: 58%Matriz de Confusão:

Relatório de Classificação:

	precision	recal	fl-score	supporte
cat	0.62	0.76	0.68	17
noncat	0.86	0.76	0.81	33
accuracy			0.76	50
macro avg	0.74	0.76	0.75	50
weighted avg	0.78	0.76	0.76	50

5. Conclusão

Os resultados obtidos revelam que a regressão logística, apesar de simples, apresentou desempenho moderado na classificação de imagens de gatos e não gatos. O modelo conseguiu atingir taxas de acerto que variaram de 56% a 70% nos diferentes testes realizados. Observou-se que o aumento no número de imagens de treinamento melhorou a precisão do modelo.

Por outro lado, a rede de camada rasa apresentou desempenho variado conforme a configuração das camadas intermediárias e funções de ativação utilizadas. Configurações mais complexas, como aquelas utilizando funções de ativação ReLU e um maior número de neurônios na camada intermediária, geralmente mostraram melhorias na taxa de acerto em comparação com configurações mais simples utilizando a função sigmoid.

Em resumo, embora ambos os métodos, regressão logística e redes neurais de camada rasa, tenham demonstrado a capacidade de aprender a distinguir entre imagens de gatos e não gatos, a escolha do método depende da complexidade dos dados e dos requisitos de precisão do problema em questão. Redes neurais com arquiteturas mais complexas tendem a oferecer melhor desempenho, mas com o custo de maior demanda computacional e necessidade de mais dados para treinamento eficaz. A regressão logística, por outro lado, é mais simples e menos exigente em termos de recursos, mas pode não capturar tão bem as nuances dos dados de imagem complexos.