

Occine (six
$$\frac{5}{2}\pi$$
) NoN $\frac{5}{2}\pi$!!

Substite accine (x) $\in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Six $\frac{5}{2}\pi = \sin\left(2\pi + \frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$

accord ($\sin\frac{\pi}{2}\pi$) = $\arcsin\left(4\right) = \frac{\pi}{2}$

$$\sin\left(\alpha + \frac{3}{2}\pi\right)\cos(\alpha + \pi) - \frac{\tan\left(\frac{3}{2}\pi - \alpha\right)\sin\left(\frac{\pi}{2} + \alpha\right)}{\sin(-\alpha) + \cos\left(\frac{\pi}{2} + \alpha\right)} = \frac{\cos^{2}\alpha(2\sin^{2}\alpha + 1)}{2\sin^{2}\alpha}$$

= $-\cos^{2}\alpha\left(-\cos\alpha\right)$ - $-\cos\alpha$ = $-\sin\alpha$ = $-\sin\alpha$ = $-\sin\alpha$ = $-\sin\alpha$ = $-\sin\alpha$ = $-\cos\alpha$ = $-\sin\alpha$ = $-\cos\alpha$ =

$$M = -\frac{a}{b} = -\frac{12}{3} = -\frac{4}{3}$$

$$tan d = -\frac{4}{3} \implies d = autan \left(-\frac{4}{3}\right)$$

$$sind = sin \left(actor \left(-\frac{4}{3} \right) \right)$$

$$(1-\sin^2\alpha)\tan^2\alpha = \sin^2\alpha \qquad \tan^2\alpha - \sin^2\alpha \tan^2\alpha - \sin^2\alpha = 0$$

$$-\sin^2\alpha \left(\tan^2\alpha + 1\right) = -\tan^2\alpha$$

nel nostro coso:

sin (actor
$$\left(-\frac{4}{3}\right)$$
) = _

$$\sqrt{1 + \tan^2(\arctan(-\frac{4}{3}))}$$
 $\sqrt{1 + (-\frac{4}{3})^2}$