2021-February Session-02-26-2021-shift-1-16-30

AI24BTECH11031 - Shivram S

1) The value of
$$\lim_{h \to 0} 2 \left\{ \frac{\sqrt{3} \sin(\frac{\pi}{6} - h) - \cos(\frac{\pi}{6} + h)}{\sqrt{3} h(\sqrt{3} \cos h - \sin h)} \right\}$$
 is [Feb 2021]
a) $\frac{3}{4}$ b) $\frac{2}{\sqrt{2}}$ c) $\frac{4}{3}$

- 2) A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to the probability of getting 9 heads, then the probability of getting 2 heads is:

 [Feb 2021]
 - a) $\frac{15}{2^{12}}$ b) $\frac{15}{2^{13}}$ c) $\frac{15}{2^{14}}$ d) $\frac{15}{2^8}$
- 3) If (1,5,35), (7,5,5), $(1,\lambda,7)$ and $(2\lambda,1,2)$ are coplanar, then the sum of all possible values of λ is: [Feb 2021]

a)
$$-\frac{44}{5}$$
 b) $\frac{39}{5}$ c) $-\frac{39}{5}$ d) $\frac{44}{5}$

4) Let $R = \{(P, Q) \mid P \text{ and } Q \text{ are at the same distance from the origin}\}$ be a relation, then the equivalence class of (1, -1) is the set: [Feb 2021]

a)
$$S = \{(x, y) \mid x^2 + y^2 = 1\}$$

b) $S = \{(x, y) \mid x^2 + y^2 = 4\}$
c) $S = \{(x, y) \mid x^2 + y^2 = \sqrt{2}\}$
d) $S = \{(x, y) \mid x^2 + y^2 = 2\}$

5) In the circle given below, let OA = 1 unit, OB = 13 unit and PQ perpendicular to OB. Then, the area of the triangle PQB (in square units) is: [Feb 2021]

1

a) $26\sqrt{3}$ b) $24\sqrt{2}$ c) $24\sqrt{3}$ d) $26\sqrt{2}$