- 10. Buscarlet, M., and Stifani, S. (2007) The 'Marx' of Groucho on development and disease. *Trends Cell Biol* **17**, 353-361
- Jennings, B. H., Pickles, L. M., Wainwright, S. M., Roe, S. M., Pearl, L. H., and Ish-Horowicz, D. (2006) Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. *Mol Cell* 22, 645-655
- 12. Song, H., Hasson, P., Paroush, Z., and Courey, A. J. (2004) Groucho oligomerization is required for repression in vivo. *Mol Cell Biol* **24**, 4341-4350
- 13. Chodaparambil, J. V., Pate, K. T., Hepler, M. R., Tsai, B. P., Muthurajan, U. M., Luger, K., Waterman, M. L., and Weis, W. I. (2014) Molecular functions of the TLE tetramerization domain in Wnt target gene repression. *EMBO J* 33, 719-731
- 14. Chen, G., Nguyen, P. H., and Courey, A. J. (1998) A role for Groucho tetramerization in transcriptional repression. *Mol Cell Biol* **18**, 7259-7268
- 15. Pinto, M., and Lobe, C. G. (1996) Products of the grg (Groucho-related gene) family can dimerize through the amino-terminal Q domain. *J Biol Chem* **271**, 33026-33031
- 16. Chen, G., Fernandez, J., Mische, S., and Courey, A. J. (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. *Genes Dev* **13**, 2218-2230
- 17. Choi, C. Y., Kim, Y. H., Kwon, H. J., and Kim, Y. (1999) The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription. *J Biol Chem* **274**, 33194-33197
- 18. Winkler, C. J., Ponce, A., and Courey, A. J. (2010) Groucho-mediated repression may result from a histone deacetylase-dependent increase in nucleosome density. *PLoS One* **5**, e10166
- 19. Turki-Judeh, W., and Courey, A. J. (2012) The unconserved groucho central region is essential for viability and modulates target gene specificity. *PLoS One* 7, e30610
- 20. Hasson, P., Egoz, N., Winkler, C., Volohonsky, G., Jia, S., Dinur, T., Volk, T., Courey, A. J., and Paroush, Z. (2005) EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. *Nat Genet* **37**, 101-105
- 21. Nuthall, H. N., Joachim, K., and Stifani, S. (2004) Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. *Mol Cell Biol* **24**, 8395-8407
- Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M., and Uversky, V. N. (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. *FEBS J* **272**, 5129-5148
- 23. Uversky, V. N., and Dunker, A. K. (2010) Understanding protein non-folding. *Biochim Biophys Acta* **1804**, 1231-1264
- 24. Tantos, A., Han, K. H., and Tompa, P. (2012) Intrinsic disorder in cell signaling and gene transcription. *Mol Cell Endocrinol* **348**, 457-465
- 25. Bondos, S. E., and Hsiao, H. C. (2012) Roles for intrinsic disorder and fuzziness in generating context-specific function in Ultrabithorax, a Hox transcription factor. *Adv Exp Med Biol* **725**, 86-105
- Damgaard, C. K., Kahns, S., Lykke-Andersen, S., Nielsen, A. L., Jensen, T. H., and Kjems, J. (2008) A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell 29, 271-278
- 27. Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., and Spiegelman, B. M. (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. *Mol Cell* **6**, 307-316
- 28. Furger, A., O'Sullivan, J. M., Binnie, A., Lee, B. A., and Proudfoot, N. J. (2002) Promoter proximal splice sites enhance transcription. *Genes Dev* **16**, 2792-2799
- 29. Kwek, K. Y., Murphy, S., Furger, A., Thomas, B., O'Gorman, W., Kimura, H., Proudfoot, N. J., and Akoulitchev, A. (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. *Nat Struct Biol* **9**, 800-805