

Использование окулографии для оценки достоверности сообщаемой информации

Докладчик
Румянцев Андрей Николаевич
Научный руководитель
Блинов Павел Анатольевич

Обзор литературы

Джозеф Вонг "Расширение зрачка и окулография"

Гарри Бонд "Экспертиза на детекторе лжи"

Джозеф Вонг, Михаэль Специо, Колин Крамер "Использование окулографии и расширения зрачка для определения достоверности информации в экономической игре"

Постановка задачи

Гипотеза: наличие связи между движением и размером зрачка испытуемого и достоверности сообщаемой им в момент наблюдения информации

Постановка задачи

- > Задача классификации
- > Задача кластеризации

Постановка эксперимента

Постановка эксперимента

Постановка эксперимента

Вердикт интервьюера / Действие раунда	Ложь	Правда
Ложь	0 / 25	30 / 0
Правда	5 / 0	5 / 25

Задача классификации

Результаты работы моделей классификации

Логистическая регрессия с l1-регуляризацией	0.905458333333
Логистическая регрессия с 12-регуляризацией	0.882043956044
Стохастический градиентный спуск	0.817426989677
Метод опорных векторов	0.840834276834
Наивный Байесовский классификатор	0.762193362193
Градиентный бустинг	0.75038003663
Случайный лес	0.772410353535
Нейронная сеть	0.840473970474

Значимость параметров

Веса признаков

Среднее положение по оси X	0.884254925874
Выборочная дисперсия по оси X	0.285071119207
Среднее положение по оси Ү	-1.4537381405
Выборочная дисперсия по оси Ү	0.197491967092
Средний диаметр	1.02458772173
Выборочная дисперсия диаметра	1.54995051721
Средняя скорость перемещения зрачка	-0.0104773458606

Задача кластеризации

Результаты работы моделей кластеризации

Кластеризация методом k ближайших соседей	0.459909655562
Агломеративная кластеризация	0.486666666667
Спектральная кластеризация	0.543295502312

Заключение

Направления развития:

- Более тонкая настройка моделей
- Большее количество данных для обучения
- Использование более точных моделей окулографов
- Проверка гипотезы об индивидуальности реакции зрачка
- Проверка гипотезы о влиянии наличия окулографа на реакцию испытуемого

Спасибо за внимание!