MATH2050A Homework 9

William Zheng

Spring, 2020

1 Q8 P148

Note that f(x) is uniformly continuous on \mathbb{R} , i.e., $\forall \epsilon_1 > 0$,

 $\exists \delta_1 > 0 \text{ s.t. } \forall x_1, x_2 \in \mathbb{R}, |x_1 - x_2| < \delta_1, \text{ we have }$

$$|f(x_1) - f(x_2)| < \epsilon_1.$$

And since g(x) is also uniformly continuous on \mathbb{R} , $\forall \epsilon_2 > 0, \exists \delta_2 > 0$ s.t. $\forall x_1, x_2 \in \mathbb{R}, |x_1 - x_2| < \delta_2$, we have

$$|q(x_1) - q(x_2)| < \epsilon_2.$$

Take $\epsilon_2 = \delta_1 > 0$. We have some $\delta_2 > 0$ s.t. $\forall x_1, x_2 \in \mathbb{R}, |x_1 - x_2| < \delta_2$, we have

$$|g(x_1) - g(x_2)| < \delta_1.$$

Note that $g(x_1), g(x_2) \in \mathbb{R}$. Then by the previous part we wrote at the beginning of the proof,

$$|f(g(x_1)) - f(g(x_2))| < \epsilon_1.$$

Hence, by the definition of uniformly continuous, f(g(x)) is uniformly continuous on \mathbb{R} .

2 Q10 P148

Note that f(x) is uniformly continuous, then $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x_1, x_2 \in A, |x_1 - x_2| < \delta$, we have

$$|f(x_1) - f(x_2)| < \epsilon.$$

Let $\epsilon = 1$ and then fix a corresponding δ .

Note that A is bounded. Hence A can be covered by a union of multiple open intervals, i.e., $\exists X_1, x_2, ..., x_n \in A, B_1 = (x_1 - \delta, x_1 + \delta), B_2 = (x_2 - \delta, x_2 + \delta), ...B_n = (x_n - \delta, x_n + \delta)$ s.t.

$$A \subset B_1 \cup B_2 \cup ... \cup B_n$$
.

 $\forall x \in A, \exists m \text{ s.t. } x \in B_m. \text{ Because } B_m = (x_m - \delta, x_m + \delta), \text{ then } |x - x_m| < \delta, \text{ which implies}$

$$|f(x) - f(x_m)| < 1.$$

Then $f(x) < f(x_m) + 1$, $f(x) > f(x_m) - 1$, which implies $\forall x \in A$,

$$f(x) < \sup\{f(x_1) + 1, ... f(x_n) + 1\} = U$$

and

$$f(x) > \inf\{f(x_1) - 1, ...f(x_n) - 1\} = L.$$

Hence, f is bounded on A.