БАЗОВЫЕ ПРИНЦИПЫ МАШИННОГО ОБУЧЕНИЯ

на примере линейной регрессии

Регрессия

Дана обучающая выборка

$$X_{N} = \{(x_{1}, y_{1}), ..., (x_{N}, y_{N})\}, (x_{i}, y_{i}) \in \mathbb{R}^{P} \times \mathbb{R}$$

Цель: для всех новых значений **х** оценить значения У

Метод наименьших квадратов

• Линейная модель: рассмотрим линейную функцию

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^p x_j w_j = \mathbf{x}^\top \mathbf{w}, \quad \mathbf{x} = (1, x_1, \dots, x_p).$$

• Таким образом, по вектору входов $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ мы будем предсказывать выход y как

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^{p} x_j \hat{w}_j = \mathbf{x}^{\top} \hat{\mathbf{w}}.$$

Метод наименьших квадратов

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(\mathbf{x}_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2.$$

$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}),$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y},$$

если матрица $\mathbf{X}^{\top}\mathbf{X}$ невырожденная.

Пример: прогнозирование стоимости домов

RMSE=6.6 R^2 =0.31

Измерение ошибки в задачах регрессии

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

$$L(y, \hat{y}) = |y - \hat{y}|$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y}_{i})^{2}}$$

Многомерная регрессия

RMSE=4.7 R^2 =0.74

Регрессия, линейная по параметрам

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}).$$

Например:

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$
.

Полиномиальная регрессия

Значения RMSE

Значения коэффициентов

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

L2- Регуляризация (гребневая регрессия)

• Было (для тестовых примеров $\{(x_i, y_i)\}_{i=1}^N$):

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2$$

Стало:

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
,

где λ – коэффициент регуляризации

В регрессии, линейной по факторам:
$$\mathbf{w}^* = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

L2- регуляризация

Коэффициенты гребневой регрессии

	λ=0	$\lambda = 0.000001$	λ =1
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

L1- регуляризация (Lasso)

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{M} |w_j|.$$

Эластичная сеть:

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{i=0}^{M} |w_i| + \frac{\lambda^2}{2} ||\mathbf{w}||^2$$

Пример использования Lasso и ElasticNet

Настройка гиперпараметров

- 1) три выборки обучающая (настраиваются параметры); валидационная (настраиваются гиперпараметры) и тестовая (анализируются результаты обучения)
- 2) кросс-валидация (перекрестная проверка):

ЛИНЕЙНАЯ КЛАССИФИКАЦИЯ

Логистическая регрессия

Бинарный линейный классификатор

Дана обучающая выборка

$$X_N = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}, \quad \mathbf{x}_i \in \mathbf{R}^P, y_i \in \{-1, +1\}$$

Цель: каждый новый входной вектор х отнести к одному их двух классов – положительному «+1» или отрицательному «+1»

$$\hat{y} = \hat{y}(x, w) = sign\left(w_0 + \sum_{j=1}^p w_j x_j\right) = sign(w^T x),$$
$$x = (1, x_1, \dots, x_p)$$

Линейная модель классификации

Логистическая регрессия как линейный классификатор

- Логистическая регрессия прогнозирует вероятность *p*₊
 отнесения примера *x* к классу "+1".
- Пример: банковский скоринг

Клиент	Вероятность невозврата		
Mike	0.78		Отказ
Jack	0.45		
Larry	0.13		p*=0.15
Kate	0.06		
William	0.03		
Jessica	0.02	Ot	добрение

Логистическая регрессия

$$p_+ = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

где
$$z = w^{\mathsf{T}} x = w_0 + \sum_{j=1}^{p} w_j x_j$$

Функция потерь (ошибок классификации)

• Доля неправильных ответов:

•
$$E(W) = \frac{1}{N} \sum_{i=1}^{N} [y_i \neq \hat{y}_i] = \frac{1}{N} \sum_{i=1}^{N} [sign(w^{\mathsf{T}} x_i) \neq y_i]$$

•
$$E(W) = \frac{1}{N} \sum_{i=1}^{N} [y_i(w^{\mathsf{T}} x_i) < 0]$$

•
$$M_i = y_i(w^{\mathsf{T}}x_i)$$
 - отступ

•
$$L(M) = [M < 0] -$$
 пороговая функция

Верхняя оценка

$$L(M) \le \tilde{L}(M) = log_2(1 + \exp(-M))$$

Логистическая функция потерь

•
$$ERR(w) = \sum_{i=1}^{N} log_2 (1 + exp(-y_i(w^{\mathsf{T}}x_i)))$$

С учетом L2-регуляризации:

•
$$ERR(w) = \sum_{i=1}^{N} log_2 (1 + exp(-y_i(w^{\mathsf{T}}x_i))) + \frac{1}{\lambda} \sum_{j=1}^{p} w_j^2$$

Использование полиномиальных признаков для нелинейного разделения

Полиномиальными признаками до степени d для двух переменных x_1 и x_2 мы называем следующие:

$$\{x_1^d, x_1^{d-1}x_2, \dots x_2^d\} = \{x_1^i x_2^j\}_{i+j=d, i, j \in \mathbb{N}}$$

Например, для d=3 это будут следующие признаки:

$$1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3$$

Пример нелинейного разделения классов

Confusion matrix (матрица ошибок классификации)

	y = 1	y = 0
$\hat{y}=1$	True Positive (TP)	False Positive (FP)
$\hat{y}=0$	False Negative (FN)	True Negative (TN)

Здесь \hat{y} — это ответ алгоритма на объекте, а y — истинная метка класса на этом объекте.

Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP).

Метрики качества классификации

• Доля правильных ответов: $accuracy = \frac{TP + TN}{TP + TN + FP + FN}$

Малоинформативна в задачах с неравными классами.

Пример. Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно, и 10 спам-писем, 5 из которых классификатор также определил верно. Тогда ассuracy:

$$accuracy = \frac{5+90}{5+90+10+5} = 0.864$$

Если мы просто будем предсказывать все письма как не-спам, то получим более высокую ассuracy

$$accuracy = \frac{0+100}{0+100+0+10} = 0.909$$

Метрики качества классификации

• precision (точность) и recall (полнота).

$$precision = rac{TP}{TP + FP} \hspace{1.5cm} recall = rac{TP}{TP + FN}$$

Precision показывает долю объектов, названных классификатором положительными и при этом действительно являющимися положительными, а recall показывает, какую долю объектов положительного класса из всех объектов положительного класса нашел алгоритм.

Precision не позволяет записывать все объекты в один класс, так как в этом случае растет значение FP. Recall демонстрирует способность алгоритма обнаруживать данный класс вообще, а precision — способность отличать этот класс от других классов.

AUC-ROC –площадь под кривой ошибок

$$TPR = rac{TP}{TP + FN}$$

$$FPR = rac{FP}{FP + TN}$$

TPR - это полнота, а FPR показывает, какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Кривая ошибок или **ROC-кривая** – графичекая характеристика качества бинарного классификатора, зависимость доли верных положительных классификаций от доли ложных положительных классификаций при варьировании порога решающего правила.

Спасибо за внимание!

MOË XOBBU: ЭКСТРАПОЛИРОВАТЬ

