Problem Set 7

Noella James

04/17/2017

collaborators: none

Problem 7-2: Reductions and Algorithms

Reduction

Finding a satisfiable assignment for boolean formula ϕ is a SAT problem. We develop a reduction to reduce a SAT formula to a 3SAT formula. ϕ could have clauses of various length and we provide reduction for clauses of various length. There are 4 cases to consider. For the purpose of simplicity, we have used x_j , but we could replace it with its negation x'_j .

Case 1: k = 1

Assume there is a clause C_i which has only one variable x. We can transform this clause C_i by converting it into 4 clauses and by introducing 2 new variables z_1 and z_2 . The clause C_i can now be written as $\{x \vee z_1 \vee z_2\}$, $\{x \vee z_1 \vee z_2\}$, $\{x \vee z_1 \vee z_2\}$, and $\{x \vee z_1' \vee z_2'\}$. The only way these clauses can simultaneously satisfied is if x is true. This also means that the original clause C_i will be satisfied.

Case 2: k = 2

Assume there is a clause C_i which has two variables x_1 and x_2 . We create a new variable z and two new clauses $\{x_1 \lor x_2 \lor z\}$ and $\{x_1 \lor x_2 \lor z'\}$. The only way to satisfy both of these clauses is for one of x_1 or x_2 to be true. This also means that the original clause C_i will be satisfied.

Case 3: k = 3

This implies that $C_i = \{x_1 \lor x_2 \lor x_3\}$. Thus, the clause is in 3SAT form and be transferred as is.

Case 4: $k \ge 4$

Let C_i be equal to $\{x_1 \vee x_2 \vee \ldots \vee x_k\}$. We create k-3 new variables and k-2 new clauses in a chain where for $2 \leq j \leq j-3$, $C_{i,j} = \{z_{i,j-1} \vee x_{j+1} \vee z'_{i,j}\}$, $C_{i,1} = \{x_1 \vee x_2 \vee z'_{i,1}\}$, and $C_{i,k-2} = \{z_{i,k-3} \vee x_{k-1} \vee x_k\}$

If none of the original literals in C_i is true, then there are not enough free variables to be able to satisfy all of the new subclasses. If you satisfy $C_{i,1}$ by setting $z_{i,1}$ to false, it would require $z_{1,2}$ = false and so on until $C_{i,k-2}$ cannot be satisfied and thus the clause cannot be satisfied. However, if any of the single literal x_i is equal to true, then we have k-3 free variables and k-3 remaining clauses, and thus each of the clauses can be satisfied. Thus, C_i can be satisfied.

Complexity

Assume that there are n clauses and m total literals, the total complex of the transformation is O(m+n).

Algorithm

- 1. Convert a SAT problem to 3SAT as per the reduction steps listed above.
- 2. Pass the 3SAT problem thus reduced to the Black Box that can solve 3SAT problems.
- 3. If the Black Box returns that a satisfiable assignment of variables exists, then return that a satisfiable assignment exists for φ .
- 4. Else return that a satisfiable assignment for φ does not exist.