TETIANA PARSHAKOVA

tetianap@stanford.edu parshakova.github.io

OBJECTIVE

To develop efficient algorithms for computational problems using techniques from optimization, discrete mathematics and statistics. In particular, my research interests include

- large-scale and distributed convex optimization,
- network science, learning and inference for network data,
- numerical and randomized linear algebra,
- low rank and structured optimization,
- machine learning.

EDUCATION

Stanford University	USA
Ph.D. Computational Mathematics. Advisor Prof. Stephen Boyd	2019 – 2024
M.Sc. Computational Mathematics	2022
Korea Advanced Institute of Science and Technology	South Korea
M.Sc. Electrical Engineering	2019
B.Sc. Industrial Design	2017

WORK EXPERIENCE

Google Research 2022

Student Researcher | Google Brain Robotics

USA

 Message passing and tree-based algorithms for fast graph field integration, generalization of Fast Multipole Method to discretized manifolds.

Apple Inc. 2020, 2021

Machine Learning Research Intern | Exploratory Design Group

USA

- Accelerating the training of Neural Networks using Hessian-vector products.
- Constructive methods for Neural Networks on elementary functions.

Naver Labs Europe 2019

Machine Learning Researcher | Natural Language Processing Group

France

- Global Autoregressive Models (GAMs) combine an autoregressive component with a log-linear component, allowing the use of global a priori features to compensate for lack of data.
- Different approaches for approximating the normalized distribution given by GAMs for fast inference.

PATENTS

Interpolation Method and Apparatus for Arithmetic FunctionsApple Inc, 2022William C. Athas, Zaid M. Nadeem, Tetiana ParshakovaUS 17/085,971Methods and Systems for Producing Neural Sequential ModelsNaver Corp, 2022Tetiana Parshakova, Marc Dymetman, Jean-marc AndréoliUS 17/018,754

Stephen Boyd, <u>Tetiana Parshakova</u>, Ernest Ryu, Jaewook Suh. *Distributed Optimization: Analysis and Synthesis via Circuits*. In preparation. 2023

<u>Tetiana Parshakova</u>, Trevor Hastie, Eric Darve and Stephen Boyd. *Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank Matrices*. ArXiv preprint arXiv:2310.19214. 2023

Krzysztof Choromanski, Arijit Sehanobish, Han Lin, Yunfan Zhao, Eli Berger, <u>Tetiana Parshakova</u>, et al. *Efficient Graph Field Integrators Meet Point Clouds*. International Conference on Machine Learning. 2023

<u>Tetiana Parshakova</u>, Fangzhao Zhang and Stephen Boyd. *Implementation of an Oracle-Structured Bundle Method for Distributed Optimization*. To appear, Optimization and Engineering. 2023.

<u>Tetiana Parshakova</u>, Marc Dymetman and Jean-Marc Andreoli. *Distributional Policies for Energy-Based Sequential Models*. NeurIPS Optimization Foundations of Reinforcement Learning Workshop. 2019

<u>Tetiana Parshakova</u>, Jean-Marc Andreoli and Marc Dymetman . *Global Autoregressive Models for Data-Efficient Sequence Learning*. In Proceedings of the SIGNLL Conference on Computational Natural Language Learning, ACL. 2019

<u>Tetiana Parshakova</u>, Francois Rameau, Andriy Serdega, Inso Kweon, and Dae-Shik Kim. *Latent Question Interpretation Through Variational Adaptation*. Accepted in IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2019

<u>Tetiana Parshakova</u> and Dae-Shik Kim. *Latent Question Interpretation Through Parameter Adaptation Using Stochastic Neuron*. In Proceedings of ICML Workshop, MRC-2018, http://ceur-ws.org/Vol-2134/#paper07. 2018

<u>Tetiana Parshakova</u> and Daniel Saakes. *UMorph: Self-Change Tracker to Reflect Yourself to the Future and Past.* In Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems, ACM. 2018

<u>Tetiana Parshakova</u>, Minjoo Cho, Alvaro Cassinelli, and Daniel Saakes. *Furniture that Learns to Move Itself*. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM. 2017

<u>Tetiana Parshakova</u>, Minjoo Cho, Alvaro Cassinelli, and Daniel Saakes. *Ratchair: Furniture learns to move itself with vibration*. In ACM SIGGRAPH 2016 Emerging Technologies, ACM. 2016

PROJECTS AND RESEARCH

Research Rotations 2019 – 2021

Stanford University

USA

- with Prof. Aaron Sidford on hop constrained graph embedding onto a distribution of a dominating trees: minimax principle between probabilistic and distributional distance stretch, randomized algorithms for obtaining embeddings.
- with Prof. Amin Saberi on finding optimal strategy for the card guessing game using partially observable Markov decision process.
- with Prof. Eric Darve on deriving bounds for the number of neurons and layers of Relu NNs necessary for approximating any analytic function arbitrarily close.

Graduate Researcher 2017 – 2018

Brain Reverse Engineering and Imaging Lab, KAIST

South Korea

• Latent question interpretation through variational adaptation; visual question answering via bottom-up and top-down attention; abstractive text summarizer using Pointer generator with Seq2seq attention that constructs hybrid vocabulary distribution; sequential decision making agent for solving "Angry Birds" using deep deterministic policy gradient with attention-based LSTM.

Undergraduate Researcher

2016

Brain Reverse Engineering and Imaging Lab, KAIST

South Korea

• Machine Learning and Reinforcement Learning basics; comic style generation using NNs.

Undergraduate Researcher

2015 - 2016

My Design Lab, KAIST

South Korea

- "Ratchair", a strategy for displacing objects utilizing vibrations. Used: Python, Java, Android, OpenCV, Arduino, Inventor, Processing-Android, Myo Armband, hardware.
- "UMorph", an unobtrusive self-image capturing system for tracking self changes over time. Used: PyQt, Dragon Board 410c, OpenCV, Dlib, hardware.

HONORS AND AWARDS

The Oliger Memorial Fellowship A stipend during the Ph.D. at Stanford	2019 – 2022
Qualcomm-KAIST Innovation Awards 2018 Paper Competition Awards for Graduate Students	2018
Featured at Discovery Daily Planet Canada "Ratchair: Furniture That Learns to Move Itself" demonstration for Discovery Daily Planet	2017 net Canada
KAIST Breakthroughs Newsletter "Furniture That Learns to Move Itself" featured in KAIST Breakthroughs Newsletter	2017
Excellence Award for Bachelor's thesis Thesis "UMorph: Self-Change Tracker to Reflect Yourself to the Past and to the Future"	2017
First prize in Qualcomm-KAIST Innovation Awards Embedded Systems Awards	2016
SIGGRAPH 2016 Emerging Technologies DC EXPO Special Prize For "Ratchair: Furniture That Learns to Move Itself With Vibration"	2016
Undergraduate Research Program Excellence Award For Extraordinary Efforts and Research Outcomes	2016
KAIST International Student Scholarship A stipend during the B.Sc. and M.Sc. at KAIST	2012 – 2016, 2017 – 2019
Kyiv Capital Olympiads in Mathematics Bronze medal	2009, 2012
Regional Mathematics Olympiad Silver medal	2009
Volyn Regional Mathematics Olympiad Gold medal	2008

SKILLS

Languages: Ukrainian (native), Russian (fluent), English (fluent), Korean (elementary)

Programming: Python, Matlab, Java, Torch, Tensorflow, PyTorch, Git, LaTeX, OpenCV, Unix

Prototyping: Raspberry Pi, Arduino, Processing-Android, Autodesk Inventor, Rhino 5, Adobe Photoshop, Adobe Illustrator, Adobe After Effects, Adobe Premiere Pro

SERVICE & EXTRA-CURRICULAR

Teaching Assistant at Stanford EE364a Convex Optimization I	2023
Reviewer Energy Based Models Workshop @ ICLR2021	2021
Tutor at KAIST EE Co-op Program Taught undergraduate students basics of ML, NLP and Tensorflow	2018 South Korea
Tutor in Science Camp and English Camp Prepared schoolchildren for a science competition, taught schoolchildren English	2017, 2018 South Korea
Organizer of KAIST EE Promotion in Ukraine Helped to organize EE Visit Camp, recruited students	2017 South Korea, Ukraine
Teaching Assistant at KAIST Intro to Philosophy, English Short Stories, Philosophy of Mathematics, Logic and AI	2015 – 2016 South Korea
Volunteer at UEFA Euro 2012 Participated in closing ceremony dance performance in Kyiv	2012 Ukraine
Candidate Master of Sports Acrobatic gymnastics	2001 – 2007 Ukraine