### Electromagnetic Potentials

we use potentials as a mathematical trick to make Maxwell's equations easier to solve.

#### Electrostatic pokulial

We define 
$$E = -\nabla \phi_E$$

when there is so magnetic field

which gives as the results:

$$\nabla \times \nabla \phi = 0$$
 (from  $\nabla \times E = 0$ )

$$-\nabla^2 \phi = \frac{\mathcal{J}}{\varepsilon_0} \quad \left( \text{from } \nabla \cdot \vec{E} = \frac{\mathcal{J}}{\varepsilon_0} \right)$$

By integrating, we find: φ = - ∫ E.dL

we can now do some examples to see where this is useful. Example 1: Infinite Parabel capacitor

φ=V φ=0

between the plates, there is no charge to  $-\nabla^2\phi = \frac{\partial}{\partial x}$  reduces to:  $\nabla^2\phi = 0$ 

 $\nabla^2 \phi = 0 \Rightarrow \frac{d^2}{dx^2} \phi = 0$ since we are working only with no Integrating twice  $\phi = Ax + C$  with A, C constants. setting \$ =0 at x =0 and \$ = V at x = d, we obtain:

$$\phi = \frac{v}{d} x$$

And finally we obtain the electric field  $E = - \nabla \Phi_E$ = (-\frac{1}{2},0,0)

Example 2: Coaxial cable



inside the cable, three are no charges so 
$$-\nabla^2 \phi = \frac{\rho}{\epsilon_0}$$
 reduces to  $\nabla^2 \phi = 0$ 

$$\nabla^2 = \frac{1}{r} \frac{d}{dr} \left( r \frac{d}{dr} \right)$$

fixing 
$$\phi = 0$$
 at  $r = b$  and  $\phi = V$  at  $r = a$ 

We can now use  $E = -\nabla \Phi_E$  to work out the field.

## Magnetic vector Potential

Since Vx B = Mo I

we could use a scalar potential such as  $B = \nabla \phi$  since  $\nabla \times \nabla \phi = 0$  instead of  $\mu \cdot D$ . So we need the magnetic potential to be a vector.

so the magnetic vector potential is:

$$B = \nabla \times A$$

### A New Electric Potential

You may notice we used  $2 \times E = 0$  in our definition of electric potential. But  $2 \times E = -\frac{3B}{3E}$ , so our current electric potential only works in the absence of magnetic fields. Perhaps we can find a more general expression for electric potential.

we find 
$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$

$$B = \nabla \times A$$

$$\Psi \times E = -\mathcal{D} \times \mathcal{D} \phi - \frac{\partial}{\partial t} (\mathcal{D} \times \Delta)$$

$$= -\frac{\partial \mathcal{E}}{\partial t} \omega \text{ required}$$

and 
$$\nabla \cdot \mathbf{E} = -\nabla^2 \phi - \frac{d(\nabla \cdot \mathbf{A})}{dt} = \frac{3}{2}$$

Let's finally try 
$$\Sigma \times \mathcal{E} = \Sigma \times \Sigma \times \overline{\mathcal{A}}$$

$$= \Sigma (\Sigma \cdot \overline{\mathcal{A}}) - \nabla^2 \overline{\mathcal{A}} \quad \text{(from an identity)}$$

$$= \nabla \times \Sigma + \mathcal{A} \times \overline{\mathcal{A}} \quad \text{(from an identity)}$$

this best eyn is hard to solve so we will make we of younge invariances explained overleat.

# Gauge Transformations

If we make the transformations  $A \rightarrow A + Q P$ or  $\varphi \rightarrow \varphi - \frac{\partial Q}{\partial t}$ 

E and B are invariout, we can make use of this fact to solve the equation on the previous page.

if we do  $\nabla \cdot \underline{A} \rightarrow \nabla \cdot (\underline{A} + \nabla \Psi) = \nabla \cdot \underline{A} + \nabla^2 \Psi$  we can choose  $\psi$  to aid is in solving our equations.

if we choose it such that

thu the equation  $-\nabla^2 \phi - d(\underline{\nabla} \cdot \underline{A}) = \frac{f}{\epsilon_0}$  simplifies to:  $-\nabla^2 \phi + M_0 \epsilon_0 \frac{\partial^2 \phi}{\partial t^2} = \frac{f}{\epsilon_0}$ 

ad the equation  $-\nabla^2 \underline{A} + \mu_0 \varepsilon_0 \frac{\partial^2 \underline{A}}{\partial t^2} = \mu_0 \underline{J} - \underline{\nabla} (\underline{\nabla} \cdot \underline{A} + \mu_0 \varepsilon_0 \frac{\partial \underline{O}}{\partial t})$ Simplifies to:

$$-\nabla^2 \underline{A} + Mo \varepsilon_0 \frac{\partial^2 \underline{A}}{\partial t^2} = Mo \underline{J}$$

Notice that in free space where J=0 and P=0, there equations are:  $\nabla^2 \phi = M_0 \mathcal{E}_0 \frac{\partial^2 \phi}{\partial t^2} \quad \text{and} \quad \nabla^2 A = M_0 \mathcal{E}_0 \frac{\partial^2 A}{\partial t^2}$ 

wave equations! There have solutions  $A(C,t) = A_0 e^{i(\omega t - \underline{v} \cdot \underline{c})}$  where  $\frac{\omega^2}{K^2} = C^2 = \frac{1}{N_0 \cdot \epsilon_0}$  we have found the wave equations  $C = \frac{1}{1 N_0 \cdot \epsilon_0}$