Introduction to Financial Mathematics

Lecture 7: Random Walk: properties and simulations

November 30, 2024

1 Random Walk

The random walk is a simple discrete analogue of the Brownian motion. Its increments $\{x_k\}_{k=1,2,...}$ is a sequence of independent, identically distributed (i.i.d.) random variables with values in $\{-1, +1\}$ with equal probabilities, i.e.,

$$P(x_i = 1) = P(x_i = -1) = \frac{1}{2}, \quad i = 1, 2, \dots$$

For any positive integer m, set

$$Y_m = \sum_{i=1}^m x_i.$$

The process $(Y_m)_{m=0,1,...}$ is called the *random walk*. For each m, Y_m has the Binomial distribution with success probability a half, i.e.,

$$P(Y_m = 2k - m) = {m \choose k} \frac{1}{2^m} = \frac{m!}{k!(m-k)!} \frac{1}{2^m}, \qquad k = 0, 1, \dots, m.$$

Example 1.1. Suppose we get the random sequence of +1, +1, -1, +1, +1, -1, -1, -1, -1, -1, -1, +1. Then,

always
$$Y_0 = 0$$
, $x_1 = +1$, $\Rightarrow Y_1 = +1$, $x_2 = +1$, $\Rightarrow Y_2 = +2$, $x_3 = -1$, $\Rightarrow Y_3 = +1$, $x_4 = +1$, $\Rightarrow Y_4 = +2$, $x_5 = +1$, $\Rightarrow Y_5 = +3$, $x_6 = -1$, $\Rightarrow Y_6 = +2$, $x_7 = -1$, $\Rightarrow Y_7 = +1$, $x_8 = -1$, $\Rightarrow Y_8 = 0$, $x_9 = -1$, $\Rightarrow Y_9 = -1$, $x_{10} = -1$, $\Rightarrow Y_{10} = -2$, $x_{11} = -1$, $\Rightarrow Y_{11} = -3$, $x_{12} = +1$, $\Rightarrow Y_{12} = -2$.

This is a 'typical' path. But its probability is $(\frac{1}{2})^{12} = 0.00024414 = 0.024\%$. That is 24 times in 100,000.

Example 1.2. Suppose that m = 12 as in the above example. Then, $Y_{12} = -2$ means that -1's are two more than +1s, or equivalently, the number of -1s is 7, and the number of +1s is 5. But the order in which +1s or -1s appear is not important. Therefore,

$$P(Y_{12} = -2) = P(\text{there are exactly five } +1 \text{s in } 12 \text{ steps}) =?$$

Combinatorial calculations give the result. Each case has probability $(\frac{1}{2})^{12}$. Hence,

P(there are exactly five +1s in 12 steps)

= number of different ways of placing five +1s in 12 stops)
$$\left(\frac{1}{2}\right)^{12}$$
.

Also,

number of different ways of placing five +1s in 12 stops) =
$$\binom{12}{5}$$
 = $\frac{12!}{5! \, 7!}$ = $\frac{95,040}{120}$ = 792.

Hence,

$$P(Y_{12} = -2) = \frac{792}{2^{12}} = \frac{792}{4.096} = 0.19336 = 19.336\%.$$

Homework. Compute the following probabilities

- **a.** $P(Y_{10} = 5)$.
- **b.** $P(Y_{11} = 5)$.
- **c.** $P(Y_{11} > 5)$.

1.1 Definition and Properties

The random walk has several immediate properties:

Theorem 1.3 (Properties of Random Walk). For all integers 0 < m < k,

- 1. -Y is also a random walk. In particular, $-Y_m$ has the same distribution as Y_m .
- 2. Y_m is independent of $Y_k Y_m$;
- 3. $Y_k Y_m$; has the same distribution of Y_{k-m} .

Proof. Note that

$$-Y_m = -\sum_{i=1}^m x_i = \sum_{i=1}^m (-x_i),$$

and the sequence $\{-x_i\}_{i=1,2,...}$ is also an i.i.d. sequence of random variables taking values ± 1 with equal probability. Hence -Y is another random walk.

It is clear that

$$Y_k - Y_m = \sum_{i=m+1}^k x_i = \sum_{j=1}^{k-m} x_{j+(k-m)}.$$

Since $x_i's$ identical, $x_{j+(k-m)}$ has the same distribution as x_i . Hence, $Y_k - Y_m$ also has the same distribution as

$$\sum_{i=1}^{k-m} x_i = Y_{k-m}.$$

Similarly, since all x_i 's with $i \ge m+1$ are independent of x_j 's with $j \le m$,

$$Y_k - Y_m = \sum_{i=m+1}^k x_i$$

is independent of

$$Y_m = \sum_{j=1}^m x_j.$$

Example 1.4. Consider the probability $P(Y_5 = 1 \text{ and } Y_{17} = 3)$. First note that

$$P(Y_5 = 1 \text{ and } Y_{17} = 3) = P(Y_5 = 1 \text{ and } Y_{17} - Y_5 = 2).$$

As $Y_{12} - Y_5$ is independent of Y_M ,

$$P(Y_5 = 1 \text{ and } Y_{17} = 3) = P(Y_5 = 1) P(Y_{17} - Y_5 = 2).$$

Also, $Y_{12} - Y_5$ has the same distribution as $Y_{17-5} = Y_{12}$, and Y_{12} has the same distribution as $-Y_{12}$:

$$P(Y_{17} - Y_5 = 2) = P(Y_{12} = 2) = P(-Y_{12} = -2) = P(Y_{12} = -2).$$

We have calculated the probabilty above and it is equal to $\frac{792}{4,096}$ Moreover,

$$P(Y_5 = 1) = P(\text{three +1s in five steps}) = \frac{\binom{5}{3}}{2^5} = \frac{10}{32}.$$

Hence,

$$P(Y_5 = 1 \text{ and } Y_{17} = 3) = \frac{10}{32} \frac{792}{4.096} = 0.060425 = 6.0425\%.$$

Homework. Compute $P(Y_5 > 1 \text{ and } Y_{17} = 3)$.

1.2 Simulations

We may use the python program to generate paths alike above. Below are two graphs and the python is attached at the end of the notes. A typical path from that code with N=400 is given below:

2 Reflection Principle

The following property of random walk is useful. Fix a level B>0 and define the random hitting time T_B by

$$T_B = \min \{ j = 1, 2, \dots : Y_j \ge B \}.$$

This is first time the random walk Y has a value larger or equal to B. We now define the process reflected around B by,

$$R_m := \left\{ \begin{array}{ll} Y_m, & m \le T_B, \\ 2B - Y_m, & m > T_B. \end{array} \right.$$

This process has the following representation also,

$$R_m = \sum_{i=1}^m z_j,$$

where

$$z_j := \begin{cases} x_j, & j \le T_B, \\ -x_j, & j > T_B. \end{cases}$$

It is immediate that $\{z_j\}_{j=1,2,\dots}$ is also an i.i.d. sequence of random variables with values in $\{-1,+1\}$ and equal probability each. Therefore, R is also a random walk.

This construction is useful in calculating probabilities related to maximum of the random walk. In fact, it can be also used to price barrier type options. Define the *running maximum* of Y by,

$$M_m := \max\{0, Y_1, \dots, Y_m\}, \qquad m = 1, 2, \dots$$

Example 2.1. Let's take N=3 and B=1. all possibilities are given below

It is clear that the maximum value M_3 is greater or equal than 1 if and only id the hitting time T_1 is less than or equal to 4. From above picture we calculate that $P(M_3 \ge 1) = P(T_1 \ge 3) = \frac{5}{8}$.

The reflected and the original walks are equal to each until until the hitting time. Therefore, we do not see the reflected walk in the last three cases.

Let R the random walk reflected at 1 and M^R be its running maximum. Whenever $Y_3 > 1$, we have $M_3 \ge Y_3 > 1$. So,

$$\mathcal{O}_1 := \{M_3 \ge 1 \text{ and } Y_3 > 1\} = \{Y_3 \ge 1\}.$$

This happens only in case 1 above. The set $\{M_3 \ge 1 \text{ and } Y_3 < 1\}$ is the case 4. Note that this is also the only case $\{M_3^R \ge 1 \text{ and } R_3 > 1\}$. We also see that the set

$$P(M_3 \text{ and } Y_3 > 1) = P(M_3^R \text{ and } R_3 > 1) = P(M_3 \text{ and } Y_3 < 1) = \frac{1}{8}$$
.

Also $\{M_3 \text{ and } Y_3 = 1\}$ are the cases 2, 3, 5. So

$$P(M_3 \text{ and } Y_3 = 1) = \frac{3}{8}.$$

Now,

$$\begin{split} \mathrm{P}(M_3 \leq 1) &= \mathrm{P}(M_3 \; \text{and} \; Y_3 > 1) + \mathrm{P}(M_3 \; \text{and} \; Y_3 < 1) + \mathrm{P}(M_3 \; \text{and} \; Y_3 = 1) \\ &= \mathrm{P}(M_3 \; \text{and} \; Y_3 > 1) + \mathrm{P}(M_3^R \; \text{and} \; R_3 > 1) + \mathrm{P}(M_3 \; \text{and} \; Y_3 = 1) \\ &= 2\mathrm{P}(M_3 \; \text{and} \; Y_3 > 1) + \mathrm{P}(M_3 \; \text{and} \; Y_3 = 1) \\ &= \frac{2}{8} + \frac{3}{8} = \frac{5}{8}. \end{split}$$

The calculation given in the above example generalizes and we have the following result.

Theorem 2.2. For any positive integers $0 < B \le m$,

$$P(M_m \ge B) = 2P(Y_m > B) + P(Y_m = B).$$

Note that the right hand side of the above identity can be calculated by binomial coefficients.

Proof. Note that if $Y_m > B$, then $M_m \ge Y_m > B$. Hence,

$$\mathcal{O}_B:=\{M_m\geq B \text{ and } Y_m>B\}=\{Y_m>B\}\,.$$

Let R the random walk reflected at B and M^R be its running maximum. As R is a random walk itself, we have

$$P(M_m^R \ge B \text{ and } R_m > B) = P(M_m \ge B \text{ and } Y_m > B).$$

Also, for each $k \leq T_B$, $Y_k = R_k$ and consequently, $M_k = M_k^R$. Hence, on $\{T_B < N\}$,

$$M_m^R \ge M_{\tau_B}^R = B, \quad \text{and} \quad B - R_m = Y_m - B,$$

and,

$$\{M_m \ge B \text{ and } Y_m < B\} = \{M_m^R \ge B \text{ and } R_m > B\}.$$

Hence,

$$\mathrm{P}\left(M_m \geq B \text{ and } Y_m < B\right) = \mathrm{P}\left(M_m^R \geq B \text{ and } R_m > B\right) = \mathrm{P}\left(M_m \geq B \text{ and } Y_m > B\right).$$

Then,

$$\begin{split} \mathrm{P}(M_m \geq B) =& \mathrm{P}\left(M_m \geq B \text{ and } Y_m > B\right) + \mathrm{P}\left(M_m \geq B \text{ and } Y_m < B\right) \\ &+ \mathrm{P}\left(M_m \geq B \text{ and } Y_m = B\right) \\ =& 2\mathrm{P}\left(M_m \geq B \text{ and } Y_m > B\right) + \mathrm{P}\left(M_m \geq B \text{ and } Y_m = B\right) \\ =& 2\mathrm{P}\left(Y_m > B\right) + \mathrm{P}\left(Y_m = B\right). \end{split}$$

3 Applications to option pricing

As an application of the reflection principle in option pricing, consider the Binomial model with Consider a 5-step Binomial model with

$$S_0 = 1$$
, $u = \frac{3}{2}$, $d = \frac{2}{3}$, $r = \frac{1}{12}$, $n = 5$.

The risk-neutral up probability is given by,

$$p^* = \frac{1+r-d}{u-d} = \frac{\frac{13}{12} - \frac{2}{3}}{\frac{3}{2} - \frac{2}{3}} = \frac{1}{2}.$$

We know that

$$S_k = s_0 \left(\frac{u}{d}\right)^{\text{number of up movements in } k \text{ steps } d^k.$$

Let U_k be the number of up movements in k steps. Then,

$$S_k = 1 \left(\frac{9}{4}\right)^{U_k} \left(\frac{2}{3}\right)^k = \left(\frac{3}{2}\right)^{2U_k} \left(\frac{2}{3}\right)^k.$$

Take the logarithm to obatin,

$$\ln(S_k) = 2\ln(3/2) U_k - k\ln(3/2).$$

Let $x_i = +1$ is the stock movement in the *i*-th step is up and let $x_i = -1$ is the stock movement in the *i*-th step is down. Set

$$Y_k = (x_1 + \ldots + x_k) = \text{number of ups} - \text{number of downs} = U_k - (k - U_k) = 2U_5 - k$$
.

Hence,

$$\ln(S_k) = \ln(3/2) (Y_k + k) - k \ln(3/2) = \ln(3/2) Y_k.$$

3.1 Up-and-in Digital option

In this market, we consider the up-and-in option with pay-off

$$\varphi(S_0, S_1, \dots S_5) = \begin{cases} 1, & \text{if } \max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right) \\ 0, & \text{if } \max\{S_0, S_1, \dots S_5\} < \left(\frac{3}{2}\right). \end{cases}$$

Then,

price of this option =
$$\frac{1}{1+r^5} \mathbf{E}_*[\text{pay-off}].$$

But the pay-off is either one or zero, so

$$\mathbf{E}_*[\text{pay-off}] = P(\text{pay-off} = 1) = P(\max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right)).$$

Observe that

$$\max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right) \Leftrightarrow \ln(\max\{S_0, S_1, \dots S_5\}) \ge \ln(3/2)$$

$$\Leftrightarrow \max\{\ln(S_0), \ln(S_1), \dots \ln(S_5)\} \ge \ln(3/2)$$

$$\Leftrightarrow \max\{0, \ln(3/2)Y_1, \dots \ln(3/2)Y_5\} \ge \ln(3/2)$$

$$\Leftrightarrow \max\{0, Y_1, \dots Y_5\} \ge 1.$$

Note that Y is a random walk and M is running maximum. So we have shown that

$$\max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right) \quad \Leftrightarrow \quad M_5 \ge 1.$$

Therefore,

$$P(\max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right)) = P(M_5 \ge 1).$$

By reflection principle,

$$P(M_5 \ge 1) = 2P(Y_5 > 1) + P(Y_5 = 1).$$

We now calculate above probabilities: Y_5 can take values -5, -3, -1, 1, 3, 5. So,

$$P(Y_5 > 1) = P(Y_5 = 3) + P(Y_5 = 5)$$

$$= \left[{5 \choose 4} + {5 \choose 5} \right] (\frac{1}{2})^5$$

$$= \frac{5+1}{2^5} = \frac{6}{3^2}.$$

Also,

$$P(Y_5 = 1) = {5 \choose 3} \left(\frac{1}{2}\right)^5 = \frac{10}{32}$$

Hence,

$$P(M_5 \ge 1) = 2P(Y_5 > 1) + P(Y_5 = 1) = \frac{12}{32} + \frac{10}{32} = \frac{22}{32} = \frac{11}{16} = 0.6875 = 68.75\%.$$

We combine all these to compute the price of the option:

price of this option =
$$\frac{1}{1+r^5}\mathbf{E}_*[\text{pay-off}]$$

= $\left(\frac{12}{13}\right)^5\frac{11}{16}=0.46074$.

Homework. In the above market, we consider the up-and-in option with pay-off

$$\varphi(S_0, S_1, \dots S_5) = \begin{cases} 1, & \text{if } \max\{S_0, S_1, \dots S_5\} \ge \left(\frac{3}{2}\right)^3 \text{ and } S_5 \ge 1\\ 0, & \text{otherwise.} \end{cases}$$

Compute its price.

RandomWalk 7/24/22, 3:49 PM

```
In [1]: import numpy as np
import matplotlib.pyplot as plt; plt.style.use('dark_background')
```

Example

```
In [2]: N = 10
    xx=np.random.choice(2,N)
    x=xx*2-1
    Y=[sum(x[:k]) for k in range(1,N+2)]
    Y.insert(0,0)
    print(x)
    print(Y)

[-1 -1 1 1 1 1 1 1 -1 1]
    [0, -1, -2, -1, 0, 1, 2, 3, 4, 3, 4, 4]
```

Simulating a Random Path

Ploting

```
In [6]: def plotrw(Y):
    N = len(Y)
    ts = np.arange(N)
    #fig,ax = plt.subplots(figsize = (7,5))
# Use plt.step to plot piecewise constant functions
plt.step(ts,Y,color="darkred",lw=1)
plt.hlines(0,0,N+1,color="white",lw=1,alpha=.5)
#plt.ylim([*K,1.1*K])
plt.xlabel(r"time",fontsize = 13)
#plt.ylabel(r"Random Walk",rotation =0,fontsize = 13,labelpad = 20)
plt.title("A Random Trajectory")
plt.draw()
```

Example

```
In [9]: N=400
Y= randomwalk(N)
plotrw(Y)
```

about:srcdoc Page 1 of 2

RandomWalk 7/24/22, 3:49 PM

In []:

about:srcdoc Page 2 of 2