# A comparative study on using word embeddings to detect different types of cyberbullying

Fatma Elsafoury, Steve R. Wilson, and Naeem Ramzan

- What is cyberbullying?
  - > Spreading insults using an electronic medium.

- What is cyberbullying?
  - > Spreading insults using an electronic medium.
- Why detect cyberbullying?
  - Support victims, warn/block bullies.

- What is cyberbullying?
  - > Spreading insults using an electronic medium.
- Why detect cyberbullying?
  - ► Support victims, warn/block bullies.
- What are the types of cyberbullying?
  - The most common forms are: Racism, sexism, aggression, and toxicity.

- What is cyberbullying?
  - Spreading insults using an electronic medium.
- Why detect cyberbullying?
  - Support victims, warn/block bullies.
- What are the types of cyberbullying?
  - ▶ The most common forms are: Racism, sexism, aggression, and toxicity.
- Detecting cyberbullying
  - Mostly used Classic word embeddings: which are word embedding models that are pre-trained on formal text like news articles like word2vec or Wikipedia article like Glove.

- ► What is cyberbullying?
  - > Spreading insults using an electronic medium.
- ▶ Why detect cyberbullying?
  - Support victims, warn/block bullies.
- What are the types of cyberbullying?
  - ▶ The most common forms are: Racism, sexism, aggression, and toxicity.
- Detecting cyberbullying
  - Mostly used Classic word embeddings: which are word embedding models that are pre-trained on formal text like news articles like word2vec or Wikipedia article like Glove.
  - ▶ Recently, there have been models that were trained on less forma text which we call here "Slang-based" word embeddings.

### Slang-based word embeddings

- Slang-based word embeddings
  - Word embedding models pre-trained on text collected from social media platforms.

### Slang-based word embeddings

- Slang-based word embeddings
  - Word embedding models pre-trained on text collected from social media platforms.
- Why use slang-based word embeddings?
  - ▶ No moderation social media platforms e.g. 4Chan, and Urban Dictionary
  - Abusive and Hateful content.

### Slang-based word embeddings

- Slang-based word embeddings
  - Word embedding models pre-trained on text collected from social media platforms.
- Why use slang-based word embeddings?
  - ▶ No moderation social media platforms e.g. 4Chan, and Urban Dictionary
  - Abusive and Hateful content.
- Hypothesis:
  - Slang-based word embeddings perfrom better than classic word embeddings on the task of cyberbullying detection

Binary F1-scores of Bi-LSTM using the different word embeddings on different datasets

Slang<sub>T</sub>Based

Classic

|                       | Chan  | UD    | Glove-<br>Twitter | Glove-<br>Wikipedia | Word2Vec |
|-----------------------|-------|-------|-------------------|---------------------|----------|
| HateEval<br>(Hateful) | 0.602 | 0.560 | 0.620             | 0.586               | 0.604    |
| Kaggle<br>(insults)   | 0.727 | 0.725 | 0.587             | 0.660               | 0.614    |
| Twitter<br>(racism)   | 0.631 | 0.663 | 0.659             | 0.644               | 0.591    |
| Jigsaw<br>(Toxicity)  | 0.474 | 0.467 | 0.519             | 0.458               | 0.461    |
| Twitter (sexism)      | 0.574 | 0.678 | 0.667             | 0.699               | 0.688    |

Binary F1-scores of Bi-LSTM using the different word embeddings on different datasets

|                       | Chan  | UD    | Glove-<br>Twitter | Glove-<br>Wikipedia | Word2Vec |                                  |
|-----------------------|-------|-------|-------------------|---------------------|----------|----------------------------------|
| HateEval<br>(Hateful) | 0.602 | 0.560 | 0.620             | 0.586               | 0.604    | For 4<br>datasets, <b>slan</b> g |
| Kaggle<br>(insults)   | 0.727 | 0.725 | 0.587             | 0.660               | 0.614    | based embedd is the best         |
| Twitter<br>(racism)   | 0.631 | 0.663 | 0.659             | 0.644               | 0.591    | perfroming                       |
| Jigsaw<br>(Toxicity)  | 0.474 | 0.467 | 0.519             | 0.458               | 0.461    |                                  |
| Twitter (sexism)      | 0.574 | 0.678 | 0.667             | 0.699               | 0.688    |                                  |

- ► **Hurtlex lexicon** a multilingual lexicon containing 8228 offensive words and expressions, which are organized into 17 groups.
- ▶ We used only English lexicon and 11 groups.

| Label | Desc.                                             | Label | Desc.                                                    |
|-------|---------------------------------------------------|-------|----------------------------------------------------------|
| PS    | negative stereotypes ethnic slurs                 | ASF   | female genitalia                                         |
| DDF   | physical disabilities and diversity               | PR    | words related to prostitution                            |
| DDP   | cognitive disabilities and diversity              | OM    | words related to homosexuality                           |
| IS    | words related to social and economic disadvantage | QAS   | with potential negative connotations                     |
| ASM   | male genitalia                                    | CDS   | derogatory words                                         |
|       |                                                   | RE    | felonies and words related to crime and immoral behavior |

t-SNE of the different word embeddings of the words that belong to different groups in Hurtlex lexicon



t-SNE of the different word embeddings of the words that belong to different groups in Hurtlex lexicon



F1 scores of the KNN model with the different word embeddings on Hurtlext test set



F1 scores of the KNN model with the different word embeddings on Hurtlext test set



The percentage of the Hurtlext categories in each dataset





UD should perform the best

(a) HateEval Dataset

Binary F1-scores of the Bi-LSTM model with the different word embeddings on HateEval dataset.

Chan

Chan

Chan

Chan

Glove-Twitter

Glove-WK



(a) HateEval Dataset

Binary F1-scores of the Bi-LSTM model with the different word embeddings on the different datasets



#### Take away messages

- Slang-based word embeddings out-perform classic word embeddings on the task of cyberbullying detection.
- Some word embeddings are better at categorizing offensive words in the Hurtlex categories.
- ► However, these same embeddings do not necessarily perform the best on subsets of cyberbullying-related datasets that contain these types of words.

**Thanks** 



### Word embeddings

#### Word embedding models used in the paper

| Word embeddings (WE)  | Pre-training data                                     | Туре        |
|-----------------------|-------------------------------------------------------|-------------|
| Word2Vec              | Google news                                           | Classic     |
| Glove-Wikipedia       | Wikipedia articles                                    | Classic     |
| Glove-Twitter         | Tweets                                                | Slang-based |
| Chan                  | 4&8Chan posts                                         | Slang-based |
| Urban Dictionary (UD) | Head words &Definitions from Urban Dicitonary website | Slang-based |

|                              |                     | Most similar 5 words to the word "queer"       |
|------------------------------|---------------------|------------------------------------------------|
| Classic word                 | Word2vec            | genderqueer, LGBTQ, gay,<br>LGBT, lesbian      |
| Classic-word -<br>embeddings | Glove-<br>Wikipedia | transgender, lgbt, bisexual,<br>lesbian, lgbtq |

Binary F1-scores of Bi-LSTM using the different word embeddings on different datasets

|                       | Chan  | UD    | Glove-<br>Twitter | Glove-<br>Wikipedia | Word2Vec |                                   |
|-----------------------|-------|-------|-------------------|---------------------|----------|-----------------------------------|
| HateEval<br>(Hateful) | 0.602 | 0.560 | 0.620             | 0.586               | 0.604    | For 4<br>datasets, <b>slange-</b> |
| Kaggle<br>(insults)   | 0.727 | 0.725 | 0.587             | 0.660               | 0.614    | based embeddings is the best      |
| Twitter (racism)      | 0.631 | 0.663 | 0.659             | 0.644               | 0.591    | perfroming                        |
| Jigsaw<br>(Toxicity)  | 0.474 | 0.467 | 0.519             | 0.458               | 0.461    | 1dataset, <b>classic</b>          |
| Twitter (sexism)      | 0.574 | 0.678 | 0.667             | 0.699               | 0.688    | embeddings is the best perfroming |



Abusive words to the gay community