

[12] 发明专利申请公开说明书

[21]申请号 94113646.9

[43]公开日 1996年5月1日

[51]Int.Cl⁶
F02M 27/04

[22]申请日 94.10.25

[71]申请人 王文浩

地址 100028北京市东直门外左家庄12号

[72]发明人 王文浩

[74]专利代理机构 中国国际贸易促进委员会专利商 标事务所 代理人 刘志平

权利要求书 2 页 说明书 7 页 附图页数 4 页

[54]发明名称 高效环保节油器

[57]摘要

一种用于内燃机的磁化节油器,磁化腔内设有磁极相对的永磁体,永磁体相间隔形成 0.5—2.0mm 的过油间隙,还具有一与所述通腔相通并与所述磁化腔平行配置的磁滤腔,腔内置永磁体,磁化腔内两永磁体相对极的另一端分别设有磁路片,形成一闭合磁路,磁滤腔内的永磁体一端设有磁路片,另一端与设在磁滤腔底面上的磁路片相对,形成一闭合磁路,在永磁体与磁路片之间形成一固定过油间隙。还包括多腔和多油道的磁化节油器。

权 利 要 求 书

- 1.一种用于内燃机的磁化节油器,包括一具有纵向通腔的壳体 1,通腔两端分别密封地配置一与供油管路相通的管道接头 13和 14 具有喇叭形流道,通腔中的磁化腔内设有磁极相对的永磁体 3和 4,永磁体 3和 4 相间隔形成 0.5—2.0mm 的过油间隙,还具有一与所述通腔相通并与所述磁化腔平行配置的磁滤腔,腔内置永磁体 2,其特征在于:磁化腔内两永磁体 3和 4 相对极的另一端分别设有磁路片 7和 8,从而形成一闭合磁路;磁滤腔内的永磁体 2 一端设有磁路片 6,另一端与一设在磁滤腔底面上的磁路片 5 相对,在永磁体 2 与磁路片 5 之间形成一固定过油间隙。
- 2. 如权利要求 1 所述的磁化节油器, 其特征在于: 所述磁化腔内磁极相对的永磁体 3 和 4 可以是 N 极与 N 极相对, S 极与 S 极相对, 或 N 极与 S 极相对, 所述磁路片 7 和 8 分别设在与两相对磁极相反的另一端上。
- 3. 如权利要求1所述的磁化节油器,其特征在于:所述磁滤腔内永磁体2与磁滤腔底面上的磁路片5之间的过油间隙为1-5mm。
 - 4. 如权利要求1所述的磁化节油器,其特征在于:所述磁路片

- 5,6,7 和 8 为圆片状或圆柱体状,直径为 6-80mm,厚度为 0.3-10mm。
 - 5. 如权利要求 1 所述的磁化节油器, 其特征在于: 所述磁路片可由工业纯铁 DT4 材料或矽钢片等导磁材料制成。
 - 6. 如权利要求1所述的磁化节油器,其特征在于:所述永磁体2,3和4由NF30H材料制成,其内禀矫顽力为18000-20000 奥斯特,极面磁场强度为4000-5200高斯。
 - 7. 如权利要求1-6 所述的磁化节油器,其特征在于:所述节油器为设有多对永磁体3和4的多腔节油器。
 - 8. 如权利要求1-6 所述的磁化节油器,其特征在于:所述节油器为设有多个通腔的多油道节油器。

高效环保节油器

本发明涉及一种内燃机,特别是汽车燃油发动机的磁化节油 器。

为了降低发动机油耗,改进燃烧,已知一种燃油磁化法。该方法是使燃油流经燃油磁化装置,在磁场的作用下,提高油粒子的分散特性,改善其雾化水平,使其充分燃烧,从而达到节油目的。

ZL92206719.8号实用新型专利中公开了一种双腔磁化节油器,如图1所示,在其铝合金外壳的纵向有一通腔,通腔两端分别用螺纹连接管道接头。壳体配置一与纵向空腔垂直相通的磁化腔,磁化腔内容纳两块圆柱形永磁体;还有一磁滤腔,内置圆柱形永磁体。当两块永磁体 N 极相对装入磁化腔后,磁化腔上端由圆柱形堵头密封。该实用新型的优点是永磁体具有较高的磁能积和内禀矫顽力,无需再叠加静电场既可产生较强的磁化作用,使燃油充份燃烧,使发动机输出功率增加。同时使燃烧所产生的一氧化碳和碳氢化合物的含量下降。此外,燃油中的铁磁物质可由磁滤腔中的磁铁吸附,而减少在磁滤腔中的堆积。

但在该实用新型中,永磁体的设置不能在节油器中形成闭合的磁路,使磁场强度受到影响,所以仍存在要进一步增强磁场,以促进

燃油磁化的问题。

。 本发明的目的是对上述结构进行改进,提供一种新型的磁化节油器结构,能在节油器中形成闭合磁路,从而增强磁场强度,进一步提高燃油的磁化效果,而使燃油的燃烧效率进一步提高,增加发动机的输出功率,从而实现节油和尾气净化。同时能充分提高磁滤腔的器械磁场强度,使悬浮于燃油中的铁磁性物质完全吸附于磁滤腔中,而不再阻塞磁化腔。

本发明提供了一种用于内燃机的磁化节油器,包括一具有纵向通腔的壳体,通腔两端分别密封地配置一与供油管路相通的管道接头,该管道接头具有喇叭形流道,与通腔垂直的磁化腔内设有两块磁极相对的永磁体,永磁体相间隔形成 0.5—2.0mm 的过油间隙;还具有一与所述通腔相通并与所述磁化腔平行配置的磁滤腔,腔内设置永磁体,其特征在于:磁化腔内两永磁体相对极的另一端分别设有磁路片,从而形成一闭合磁路;磁滤腔内的永磁体一端设有磁路片,另一端与设在磁滤腔底面上的磁路片相对,从而形成一闭合磁路,在永磁体与磁路片之间形成一固定过油间隙。

与先有技术相比,由于采用了本发明的带磁路片的节油器结构,能在节油器中形成闭合式磁路,能大大提高器械磁场强度,提高了对燃油的磁化效率,而实现节油和净化尾气的目的。

图 1 是先有技术的磁化节油器剖面图;

图 2 是本发明磁化节油器的剖面图;

图 3 是本发明磁化节油器的俯视图;

图 4 是本发明磁化节油器第二实施例的剖面图;

图 5 是本发明磁化节油器第三实施例的剖面图。

下面通过实施例并参照附图对本发明进行描述。在附图中相同的部件用同一标号表示。

如图 2 所示,标号 1 表示壳体,用铝合金压铸而成。壳体 1 具有一纵向圆形通腔,通腔两端内壁分别加工出内螺纹。壳体 1 上形成一磁滤腔和磁化腔,磁滤腔和磁化腔均与壳体 1 的纵向通腔垂直设置并与其相通。通腔两端分别通过螺纹密封地连接于管道接头13 和 14,管道接头可由铝合金或黄铜制造,接头内流道的形状制成一端为向外的喇叭形,与节油器相连接,其余为直管形,与供油管,化油器,或喷油泵等相通。

磁化腔为一圆形孔,其中装有两块磁极相对的永磁体 3 和 4,永磁体 3 和 4之间形成 0.5-2.0mm 的过油间隙,永磁体 3 和 4 可以是 N 极与 N 极相对,S 极与 S 极相对,或 N 极与 S 极相对,在两永磁体 3 和 4 相对磁极的另一端分别设有磁路片 7 和 8,从而形成一闭合磁路。

磁滤腔为一台阶孔,与壳体1纵向通腔和壳体1表面相通,磁滤腔内装有一永磁体2,永磁体2一端设有一磁路片6,另一端与设在磁滤腔底面上一个的磁路片5相对,从而形成一闭合磁路。在永磁体2和磁路片5之间形成一固定的过油间隙,在本实施例中,该

间隙为大约1-5mm,最佳为2-3mm。磁路片5装在磁滤腔底部的 壳体凹部上,可用过盈配合及工业胶压粘而成。

由于在磁化腔和磁滤腔中采用了上述的磁路片装置,于是形成了具有强大磁场的闭合磁路,从而大大提高了对油路中燃油的磁化作用,具有显著的节油效果和尾气净化作用。

在本实施例中,所采用的永磁体 2,3 和 4 均为 NF30 材料制成的圆柱体,其直径和高度均可在 6—80mm 之间。永磁体的内禀矫顽力为 18000—20000 奥斯特。采用已有技术充磁后,N 极面磁场强度为 4000—5200 高斯。

在本实施例中,磁路片 5,6,7 和 8 为圆片状或圆柱体状,直径为 6-80mm,厚度为 0.3-10mm。所述磁路片 5,6,7 和 8 均可由工业 处铁 DT 4 材料,或矽钢片等导磁材料制造。

燃油发动机运转时,燃油经供油管进入双腔磁化节油器。燃油 在流经永磁体 2 与磁滤腔底部磁路片 5 之间形成的过油间隙时,过 流面积急骤发生变化,燃油流速由慢骤然变快,基本形成紊流。处于 紊流状态下的燃油分子团结构相互碰撞磨擦,在分子布朗运动作用 下,其团块结构由较稳定状态转为亚稳态。在磁滤腔中永磁体 2 与 磁路片 5 和 6 形成的闭合磁路的预磁化作用下,使亚稳态的分子团 部分地解体,油粒子细化,趋向分散,同时悬浮在燃油中的铁磁微粒 完全吸附于永磁体 2 上,使燃油净化。从该过油间隙流出的燃油经 过壳体纵向通腔进入两磁极相对的永磁体 3 和 4 间形成的过油间 隙,其过流面积由小变大又骤然变得很小,此时已成为高速紊流状态的燃油再次受到由永磁体3和4与磁路片7和8所形成闭合磅路中高密度磁力线的强烈作用,亚稳态的分于团进一步大量解体,使燃油粘度和密度降低,油粒子进一步细化,更易分散,提高燃油等化水平,显著提高了与氧气结合的条件,使燃油能更充分地燃烧,提高了发动机的输出功率,并使发动机尾气得到净化。

在装配时,应先将磁路片7和8分别置于两永磁体3和4相对极的另一端上,将永磁体3和4装入磁化腔,然后安装圆形堵头10,并用粘合剂密封粘固,保证其不泄漏。永磁体3和4之间的过油间隙应保证在0.5-2.0mm之间。安装管道接头13和14。然后将磁路片5过盈粘压在磁滤腔底部的凹坑内,磁路片5的直径应小于永磁体2约1毫米。再将永磁体2的一个磁极对着磁路片5装入磁滤腔,一个台阶限制永磁体2到一定位置,使磁路片5与磁极之间的过油间隙最好在大约2-3mm之间。最后拧紧腔盖9,使其密封粘结。

当将本发明的磁化节油器装在发动机上时,其连接位置视发动机种类稍有不同。安装在汽油发动机上时,节油器进油接口与汽油泵供油管路相连,出油接口与汽化器相连,最好直接装在汽化器上。 当装在柴油发动机上时,其进油接口与滤清器出油管相连,出油接口与喷油泵相连,最好直接安装在喷油泵进油口上。

图 4 和图 5 分别显示了本发明的第二和第三实施例。分别为多

腔和多油路的节油器,它们适用于大吨位汽车,拖拉机,铁路机车, 舰船等的大型内燃机。

图 4 中显示了一多腔磁化节油器,在其纵向通腔中垂直并平行设置(三或)多个磁化腔,内置多对带磁路片的永磁体,永磁体和磁路片的配置与第一实施例相同。设置多对永磁体是为了对燃油反复进行磁化,从而提高磁化效果。

图 5 中显示了一多油道磁化节油器,壳体中设有多个平行设置的纵向通腔,各通腔端部与共同的进出油管道接头相连,每一通腔中与第二实施例相同地设置若干成对的带磁路片的永磁体,其特别适用于大型内燃机的燃油磁化。

与先有技术相比,本发明的节油器具有下述优点:

- 1. 由于有工业纯铁或矽钢片制的磁路片的存在,使本节油器内形成闭合式磁路,大大提高了器械磁场强度,使磁滤腔内的器械磁场强度提高 50%,磁化腔内提高了 10%以上,从而充分提高了对燃油的磁化效率。
- 2. 由于采用了强化二级或多级磁化处理,其叠加效果更充分发挥了永磁体的高磁能积,高面场强度对燃油的磁化作用,而实现进一步节油和降低有害物质的排量。实验和实践表明,本发明的节油率可高达 10%—25%; CO 和 HC 下降 20%—80%, CO 平均下降 35%,最高可下降 80%; HC 平均下降 30%,最高下降 80%;烟度下降 20%以上。

3. 磁滤腔中的器械磁场的强度高达 5000 高斯,除对燃油起第一级磁化作用外,还可充分吸附燃油中的铁磁性物质微粒,可有效地避免磁化腔中永磁体上铁磁物质的堆积。

上面参照附图对本发明的实施例作了描述。本发明可有许多变化和变型,都在本发明的精神范围之中。

图 1

图 2

图 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked.

= 1211 12 = 1210 1-1-18 0 1110 110 0 110 110 110 110 110 110
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.