

Ethical Bias in Machine Learning

Team: Supernovas Group 3

Priyanka Murugan Akshay Prasath Aishwarya

Agenda

01 Motivation

Why is there a need for fairness in machine learning?

O2 Problem Statement

What is the problem we are trying to solve?

03 Data and its features

What are the features of data used?

04 Matching and Prediction Methodology

What are the methodologies used to prove the statement?

05 Results and Next steps

What are the findings and where do we head next?

MOTIVATION

AI bias in COMPAS

- Correctional Offender
 Management Profiling for
 Alternative Sanctions
- US court systems
- Likelihood of defendant being rearrested

What went wrong?

 Predicted twice as many false positives for black offenders than others

Gender bias in lending

- Al systems for loan approvals and amounts
- European banks

What went wrong?

- Black and Hispanics 80%
 more likely to be rejected
- Women approved amounts
 14,000 euros lower on average

Bias in hiring

- Resume ranking
- Amazon's recruiting engine
- Trained on historical data

What went wrong?

- Penalized the word "women's"
- Little significance to skills not found on men's resumes

Sources of Bias

Problem Statement

- Matching: Can the users be matched on data other than demographic?
 Spending behavior?
 Social Network?
- **Prediction:** Can we predict user behavior without using demographic data? How well?

Input data

Behavioural Features

Social Network

Identifies the user social network behavior

- Friends
- Friends of Friends
- Clustering coefficient

Transactional

Identifies the user spending behaviour

- Recency
- Frequency
- Activity

Matching Methodology

Results Comparison

Prediction Methodology

Results Comparison

Next Steps

What about new users?

Use average of existing users

 Average of transactional and social network behavior of existing users

How long to collect data?

 Compare different user lifetimes **Relevant Feature**

Social Network

- Social network activity
- Lifetime of network
- Frequency of transaction of network

Transactions

- User persona based on trend in transaction
- Remove variables correlated with demographics

Custom Metrics

User similarity

- Cosine similarity
- Euclidean distance
- Jaccard similarity

Thank You!

Questions?