МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Домашнее задание №4 по математической статистике

3 курс, группа ФН11-53Б Вариант 9

Преподаватель					
		Т.В. Облакова			
«	»	2019 г.			

Построение доверительного интервала Клоппера-Пирсона

Используя выборку, сгенерированную нами в задаче 2 и считая параметр p неизвестным (k-дано), построим для уровней доверия $1-\alpha=0.9,0.95,0.98$ симметричные интервальные оценки Клоппера-Пирсона $(\underline{p}; \overline{p})$ для вероятности успеха в одном испытании p.

Решение.

Рассмотрим выборку, сгенерированную нами во второй задаче:

```
> emp_sample
[1] 6 6 4 6 5 5 8 5 5 4 8 8 7 4 8 3 8 7 5 5 7 6 3
[24] 4 6 8 7 7 6 8 7 4 6 5 7 6 8 7 5 5 6 7 6 6 5 4
[47] 5 5 3 5 8 6 6 5 7 5 4 6 6 6 7 5 7 7 4 4 8 6 5
[70] 6 5 7 5 4 6 5 4 5 6 6 8 7 3 4 6 7 6 6 5 8 7 6
[93] 6 6 6 5 6 5 5 8 6 6 7 7 5 4 4 4 5 6 7 4 2 4 6
[116] 4 6 6 7 6 4 7 6 6 7 4 6 7 7 6 7 6 7 5 8 6 5 5
[139] 4 5
```

Интервальными оценками Клоппера-Пирсона для биномиального закона будут:

$$\underline{p} = qbeta\left(\frac{\alpha}{2}, \sum_{k=1}^{n} X_k, nk - \sum_{k=1}^{n} X_k + 1\right),\tag{1}$$

$$\bar{p} = qbeta\left(1 - \frac{\alpha}{2}, \sum_{k=1}^{n} X_k + 1, nk - \sum_{k=1}^{n} X_k\right),$$
 (2)

где $qbeta(\cdots)$ – это квантильная функция (inverse CDF) бета распределения. Тогда согласно 1 и 2 имеем:

2 Доверительные интервалы по ЦПТ

Для тех же уровней найдём по ЦПТ приближенные доверительные интервалы для p.

Решение.

Рассмотрим статистику $\sum_{j=1}^{n} X_j$, где X_j представляют собой значения выборки $emp\ sample$.

```
> stat1 [1] 806
```

Рассмотрим квантили уровней $\frac{\alpha}{2}$ и $1-\frac{\alpha}{2}$ для биномиального закона для $\alpha=0.02$:

```
uup <- function(theta) qbinom(0.02/2, n*k, theta)
lou <- function(theta) qbinom(1 - 0.02/2, n*k, theta)
plot(uup, col = "red")
plot(lou, col = "blue", add = T)
abline(h = stat1, col = "green", lty = 2)
legend("bottomright",
c("Quantile 0.02", "Quantile 1-0.02", "Sum of sample values"),
lty=c(1,1,2),
fill=c("red", "blue", "green"))</pre>
```

Кроме того рассмотрим функцию:

$$foo(\theta) = \frac{\sum_{k=1}^{n} X_j - nk\theta}{\sqrt{nk\theta \cdot (1-\theta)}}$$

Верхние и нижние оценки найдём из решений соответствующих уравнений:

library(rootSolve)

```
clt_ci_LB.01_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) - qnorm(1-0.1/2)
clt_ci_UB.01_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) + qnorm(1-0.1/2)
clt_ci_LB.005_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) - qnorm(1-0.05/2)
clt_ci_UB.005_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) + qnorm(1-0.05/2)
clt_ci_LB.002_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) - qnorm(1-0.02/2)
clt_ci_UB.002_foo <- function(p) (sum(emp_sample) - n*k*p)/</pre>
(sqrt(n*k*p*(1-p))) + qnorm(1-0.02/2)
clt_ci_LB.01 <- uniroot(clt_ci_LB.01_foo, c(0.1, 0.9))$root</pre>
clt_ci_UB.01 <- uniroot(clt_ci_UB.01_foo, c(0.1, 0.9))$root</pre>
clt_ci_LB.005 <- uniroot(clt_ci_LB.005_foo, c(0.1, 0.9))$root
clt_ci_UB.005 <- uniroot(clt_ci_UB.005_foo, c(0.1, 0.9))$root</pre>
clt_ci_LB.002 <- uniroot(clt_ci_LB.002_foo, c(0.1, 0.9))$root
clt_ci_UB.002 <- uniroot(clt_ci_UB.002_foo, c(0.1, 0.9))$root</pre>
clt_cis <- as.data.frame( matrix(c(clt_ci_LB.01, clt_ci_UB.01,</pre>
clt_ci_LB.005, clt_ci_UB.005,
clt_ci_LB.002, clt_ci_UB.002),
byrow = T, ncol = 2)
colnames(clt_cis) <- c("Lower", "Upper")</pre>
rownames(clt_cis) <- c("0.1", "0.05", "0.02")
> clt_cis
alpha Lower
                 Upper
0.1 0.6970569 0.7411689
0.05 0.6926201 0.7451627
0.02 0.6874201 0.7497518
```

3 Сравнение полученных результатов

Сравним полученные в пп. 1 и 2 результаты для доверительных интервалов. Решение.

```
compare_CI <- as.data.frame(matrix(c(clt_ci_LB.01, cp_ci_LB.01,
clt_ci_UB.01, cp_ci_UB.01,
clt_ci_LB.005, cp_ci_LB.005,
clt_ci_UB.005, cp_ci_UB.005,
clt_ci_LB.002, cp_ci_LB.002,
clt_ci_UB.002, cp_ci_UB.002),
ncol = 2, byrow = T))</pre>
```

Таблица 1: CLT vs. CP CIs

α	CI	CLT	CP
a 0.1	L	0.6970569	0.6967071
α =0.1	U	0.7411689	0.7417199
- 0.05	L	0.6926201	0.6923369
$\alpha = 0.05$	U	0.7451627	0.7457898
0.00	L	0.6874201	0.6872272
$\alpha = 0.02$	U	0.7497518	0.7504854

Мы видим, что различия несущественные и все полученные интервалы содержат истинное значение параметра.

4 Построение CDF с CP CIs

Для одного из значений α построим совмещённые графики функций распределения биномиальных законов $B(k,p), B(k,p), B(k,\bar{p})$. Рассмотрим $\alpha = 0.02$.

```
theor_distr <- rbinom(n, k, p1)
distr_UB <- rbinom(n, k, cp_ci_UB.002)
distr_LB <- rbinom(n, k, cp_ci_LB.002)

plot(ecdf(theor_distr),
col = "red", lwd = 3, verticals = T, axes = F,
xlim = c(0,k+1), ylim = c(0,1.2),
xlab = "Value", ylab = "CDF", main = "CDF with CIs")</pre>
```

```
plot(ecdf(distr_LB),
col = "black", lwd = 2, verticals = T, add = T)
plot(ecdf(distr_UB),
col = "blue", lwd = 2, verticals = T, add = T)
axis(1, c(1:k))
axis(2, seq(0.0, 1.2, 0.2), las = 1)
grid(nx = k+1, ny = 1.2 / 0.2)
legend("bottomright", c("Theoretical", "Lower", "Upper"),
lty=c(1,1,1),
fill=c("red", "black", "blue"))
```

CDF with CIs

