

Deep Learning para Multi-clasificación

Máster de Ingeniería Informática

Sistemas Inteligentes para la Gestión en la Empresa

Ramón Gago Carrera

Freddy Javier Frere Quintero

Fundamentos teóricos

Red empleada

Discusión de resultados

Fundamentos teóricos

La idea...

Sobre qué se utiliza:

Eosinófilos

Linfocitos

Monocitos

Neutrófilos

Un ejemplo de multi-clasificación

Parámetros de la red

Filters

Units de agrupamiento

Sobre las capas dense, como tamaño de salida

> Grado de omisión de neuronas ocultas para que no se adapten entre sí

Dropout

Cada iteración de la red por el lote de entradas en la que haya ajuste de variables

Epochs

Steps per epoch

Número de lotes que deben producir los generadores para completar una época

Sobre las capas convolutivas 2D, como parámetro

Construcción de la red

Modelo

```
layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(150,150, 3)) %>% "Clasificacion y segmentación de imágenes" "A,A,P"
layer_activation('relu') %>% "Unidad lineal rectificada"
layer_max_pooling_2d(pool_size = c(2, 2)) %>% "Reducir # de parametros"
layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu") %>%
layer_activation('relu') %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
```

layer_activation('relu') %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>% "Aplanar - 1 d"

layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%

layer_dense(units = 256, activation = "relu") %>% 13 CCIDGS

layer_dropout(rate = 0.4) %>%

layer_dense(units = 4, activation = "softmax") "Función Exp Normalizada - Redes Multiclase"

Compilación -Función de Pérdida

MIN. LOSS

ACCURACY MÁX.

0.102

Binary_crossentropy

0.955

0.440

Categorical_crossentropy

0.873

0.014

Mean_squared_logarithmic_error

0.915

¿Qué resultados se han obtenido?

¿Qué conclusiones se pueden extraer?

Conclusiones

¡Gracias!

¿Alguna pregunta?

