

Prof. Dr. Georg Umlauf

Content

- §5.1 Basics
- §5.2 Sampling and sampling theorem
- §5.3 Quantization

§5.1 Basics

From analog to digital signals

Analog signal x(t)

- **Sampling**
 - Time (or space) is discretized
- Quantization
 - Values are discretized

§5.1 Basics

Confusion of terms in different applications

	Audio	Graphics/Video/Image
Sampling	Is called sampling	Is called resolution
Quantization	Is called resolution	Is called color depth

§5.1 Basics

Example: Typical setting for audio data

Quantization	Application
8-12 bit	PC
16 bit	CD/PC
24 bit	Sound studio

Sampling rate	Application
8 kHz	Video conference, ISDN
11 kHz	PC (Voice & Games)
22 kHz	PC (Voice & Music)
32 kHz	Broadcasting
44,1 kHz	CD, digital video
48 kHz	DAT, DVD
96-192 kHz	Sound studio, DVD, dolby-surround

Data size for a 60 minute stereo recording:

Content

- §5.1 Basics
- §5.2 Sampling and sampling theorem
- §5.3 Quantization

Sampling

- Input: Time- and value-continuous (band-limited) signal x(t), that contains only frequencies up to a maximal frequency f_{\max} .
- **Output:** Time discrete and value continuous signal x[n].
- Sampling rate, sampling frequency = number of samples per second

Sampling frequency

Reconstruction from samples (1)

- $f_{\text{sample}} < f_{\text{max}}$
 - Example: $f_{\text{sample}} = \frac{1}{3} f_{\text{max}}$
- $f_{\text{sample}} = f_{\text{max}}$

Reconstruction from samples (2)

- $f_{\text{max}} < f_{\text{sample}} < 2f_{\text{max}}$
 - Example: $f_{\text{sample}} = \frac{6}{5} f_{\text{max}}$

 $f_{\text{sample}} = 2f_{\text{max}}$

Reconstruction from samples (3)

- $f_{\text{sample}} > 2f_{\text{max}}$
 - Example: $f_{\text{sample}} = 4f_{\text{max}}$

Sampling theorem (Nyquist/Shannon) (1)

An analog (band-limited) signal x(t) can be perfectly reconstructed from the samples, if the sampling frequency $f_{\rm sample}$ is larger than the double maximal signal frequency $f_{\rm max}$

$$f_{\text{sample}} > 2 \cdot f_{\text{max}}$$
.

- Otherwise aliasing will occur, e.g. high frequencies will be interpreted as low frequencies.
 - Signal needs to be filtered with an ideal low-pass filter before the sampling.
- Samples have to be exact.
 - ▶ Ideal sampling is necessary.

Sampling theorem (Nyquist/Shannon) (2)

- **Example 1:** For speech recognition the sampling frequency is usually 16 kHz, because speech signals contain only frequencies up to 7 kHz.
- **Example 2:**

Ideal low-/high-pass filter (1)

- The transfer function characterizes the shape of the filter in the frequency domain.
- **Low-pass filter:** Frequencies larger than a limit frequency ω_1 are removed, lower frequencies can pass the filter.
 - The transfer function has the form: $H(\omega) = \begin{cases} 1, \text{ for } |\omega| \leq \omega_1 \\ 0, \text{ for } |\omega| > \omega_1 \end{cases}$.

Ideal low-/high-pass filter (2)

- **High-pass filter:** Frequencies smaller than a limit frequency ω_0 are removed, higher frequencies can pass the filter.
 - The transfer function has the form: $H(\omega) = \int 1$, for $|\omega| \ge \omega_0$

form: $H(\omega) = \begin{cases} 1, \text{ for } |\omega| \ge \omega_0 \\ 0, \text{ for } |\omega| < \omega_0 \end{cases}$

- **Band-pass filter:** Frequencies **outside** a frequency band $[\omega_0, \omega_1]$ are removed, frequencies inside the band can pass the filter.
 - The transfer function has the form:

$$H(\omega) = \begin{cases} 1, \text{ for } |\omega| \in [\omega_0, \omega_1] \\ 0, \text{ for } |\omega| \notin [\omega_0, \omega_1] \end{cases}.$$

Real low-/high-pass filter (1)

- Real transfer functions do not have vertical flanks.
- Low-pass filter: Frequencies above a limit frequency ω_1 are damped, lower frequencies can pass the filter.

- High-pass filter: Frequencies below a limit frequency ω_0 are damped, higher frequencies can pass the filter.
- Frequency ω_0
- **Band-pass filter:** Frequencies **outside** a frequency band $[\omega_0, \omega_1]$ are **damped**, frequencies inside the band can pass the filter.

Real low-/high-pass filter (2)

- Real transfer functions do not have vertical flanks.
- → Perfect reconstruction from the frequency space representation is not possible, because ideal low-pass filters do not exist
 - The slopes of the flanks are bounded.
 - Over-sampling.

Ideal sampling

- The signal is evaluated exactly at sampling time T.
 - Mathematically this corresponds to a multiplication of the signal x(t) with a function δ , that attains its only non-zero value at time T:

$$x_s(t) = x(t) \cdot \sum_n \delta(t - nT)$$
 with $\delta(t) = \begin{cases} 1, & \text{for } t = 0 \\ 0, & \text{otherwise} \end{cases}$.

Real sampling

- Signal is accumulated over a short period of time around the ideal sampling time (sample-and-hold).
 - The Dirac-delta δ is replaced with a rectangular function ρ of width t_0

$$\tilde{x}_s(t) = \sum_n x(nT) \cdot \rho((t - nT)/t_0)$$

with
$$\rho(t) = \begin{cases} 1, & \text{for } t \in [0, t_0) \\ 0, & \text{otherwise} \end{cases}$$
.

Over-sampling

Sampling of a signal with more than the double signal frequency.

Up-sampling

 Conversion of a digital signal with low sampling frequency to a digital signal with higher sampling frequency

$$x'[n] = \begin{cases} y[n/L], & \text{for } n = m \cdot L, m \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

and subsequent interpolation.

Sub-sampling

- Sampling of a signal with less than the double signal frequency.
 - Copy from signal x[n] only every M-th value: $y[n] = x[n \cdot M]$.
 - ightharpoonup The sampling frequency is decreased to $f_y = f_x/M$.
 - Might yield aliasing.

Down-sampling

- Sampling of a signal with less than the double signal frequency.
 - Copy from signal x[n] only every M-th value: $y[n] = x[n \cdot M]$.
 - → The sampling frequency is decreased to $f_y = f_x/M$.
 - ▶ Use band-pass filter to limit frequency $f_g = (f/2)/M$ to avoid aliasing.
 - \Rightarrow The new values y[n] are averages of the old values.
 - This approach is called decimation.

Content

- §5.1 Basics
- §5.2 Sampling and sampling theorem
- §5.3 Quantization

- Goal: Representation of continuous values on the computer
 - Reduction of irrelevant information.
- Assumption: Amplitude of the signals is bounded.
- Quantization is a two-stage mapping Q of a value-continuous signal $x \in \mathbb{R}$ to a value-discrete signal:
 - 1. The range of the values is subdivided into sub-intervals $[x_i, x_{i+1})$.
 - 2. Each signal value is mapped to its interval index:

$$Q: \mathbb{R} \to \underbrace{\{x_0, x_1, \dots, x_{q-1}\}}_{\subset \mathbb{R}} \to \mathbb{Z}.$$

- The values x_i are called quantization stages.
- They define the quantization intervals $[x_i, x_{i+1}), i = 0, ..., q 2$.
- The interval index i of the interval, that contains x, is the so-called quantization symbol.
- The width of the quantization intervals is given by $\Delta_i = x_{i+1} x_i$.
- The accuracy of the quantization is given by the number of quantization stages q and the width of the quantization intervals Δ_i .
 - Audio: q is called resolution [in bits].
 - Images: q is called color depth [in bits].

- **De-quantization** is a mapping Q^{-1} of a value-discrete signal to a value-continuous:
 - The interval index i is mapped to a representative reconstruction value y_i from the corresponding quantization interval

$$Q^{-1}: \mathbb{Z} \to \mathbb{R}, i \mapsto y_i \in [x_i, x_{i+1}).$$

The quantization error of a signal x is given by

$$e(x) = |x - Q^{-1}(Q(x))|$$

with $Q^{-1}(Q(x)) = y_i$.

Uniform quantization

Quantization: The signal values x are mapped to q intervals with equal widths $\Delta = x_{i+1} - x_i$, for i = 0, ..., q - 1, i.e.

$$Q: x \mapsto Q(x) = \left[\frac{|x|}{\Delta} + \frac{1}{2}\right] \cdot \operatorname{sign}(x).$$

- All quantization intervals have the same width ∆.
- De-quantization:

$$Q^{-1}(y) = y \cdot \Delta.$$

→ The reconstruction value is the midpoint of the quantization intervals.

Characteristic curve

Quantization error

Uniform quantization (example)

256 levels

8 levels

32 levels

4 levels

16 levels

2 levels

Source: Paul W. Cuff

- Because quantization is lossy, the exact de-quantization is impossible.
 - There is no analog to the sampling theorem for quantization .
- Because in practice every signal is noisy, exact de-quantization is not necessary.

Original signal

Quantized signal

Quantization error

- **But:** If the signal *x* is noisy, does the information about the noise in the signal gets lost in the quantization error?
 - How do you chose the quantization, such that noise information does not get lost?
- What is the optimal ratio $\gamma = \sigma/\Delta$ of
 - ullet signal noise (with standard deviation σ) and
 - quantization accuracy ∆?

- What is the optimal ratio $\gamma = \sigma/\Delta$ of signal noise (with standard deviation σ) and quantization accuracy Δ ?
 - For $\gamma \ll 1$ the noise is much smaller than the quantization intervals.
 - The noise information is lost.
 - \rightarrow The average of the values has an error of up to $\pm \Delta/2$.
 - For $\gamma\gg 1$ the noise is much larger than the quantization intervals.
 - The noise information is preserved.
 - How fine do we have to sample the noise to capture all noise information?

The quantization theorem

The distribution of a **band-limited** signal with limit frequency f can be completely reconstructed from the quantized signal, if $\frac{2\pi}{\Delta} \ge 2f$.

Results:

- After quantization the signal contains signal noise and pseudo-noise from the quantization.
 - The pseudo-noise has variance of approximately $0.3 \cdot \Delta$.
- The optimal uniform quantization is at $\Delta \approx 2 \cdot \sigma$, i.e. $\gamma = 0.5$.
- Uniform Quantization with n bits yields a SNR of ca. 6n dB.
 - **Example:** CD-player quantization: 16 bit, i.e. SNR $6 \cdot 16 = 96$ dB.
 - Perception up to 130 dB, depending on the spectrum and amplitude.

Non-uniform quantization

- Perception based: Quantization error does not correspond necessarily to perceived signal distortion.
 - Perception of distortion depends on amplitude.
 - Determine quantization intervals by experiment to minimize perceived signal distortion.
- pdf-optimized: Adapt interval widths to probability distribution function (pdf) to minimize quantization error energy.
 - Frequent signal values are quantized more densely.

Non-uniform quantization (example)

original

Histogram of original image and non-uniform/uniform breakpoints

4 non-uniform levels

4 uniform levels

Source: Paul W. Cuff

Vector quantization

- Combine n values to a feature vector and quantize these vectors.
 - 1. Assign to each feature vector one vector from a table (code book), that is most similar to the feature vector.
 - 2. Store/send the index of the most similar vector.
- Approach:
 - Training: Generate code book from most frequent feature vectors.
 - Quantization: Determine for each vector the closest code book vector.
- De-coder: Requires the same code book.

Goals

- What is sampling?
- What is the difference between sampling and quantization?
- What is the essence of the sampling theorem?
- What happens if a signal is sampled using a too small/large sampling frequency?
- What is a low pass filter and what is the shape of its transfer function?
- What is quantization?
- What is uniform quantization?
- What is the essence of the quantization theorem?
- What is perception based quantization?