

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A2	(11) International Publication Number:	WO 98/46776
C12N 15/82, 15/54		(43) International Publication Date:	22 October 1998 (22.10.98)

(21) International Application Number:	PCT/US98/07114	(81) Designated States:	AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date:	9 April 1998 (09.04.98)	Published	
(30) Priority Data:	60/041,815 11 April 1997 (11.04.97) US	Without international search report and to be republished upon receipt of that report.	
(71) Applicant (for all designated States except US):	CALGENE LLC [US/US]; 1920 Fifth Street, Davis, CA 95616 (US).		
(72) Inventor; and			
(75) Inventor/Applicant (for US only):	DEHESH, Katayoon [US/US]; 521 Crownpointe Circle, Vacaville, CA 95687 (US).		
(74) Agent:	SCHWEDLER, Carl, J.; Calgene LLC, 1920 Fifth Street, Davis, CA 95616 (US).		

(54) Title: PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from *Cuphea* species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LJ	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR
PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

5

INTRODUCTION

Field of Invention

The present invention is directed to genes encoding
10 plant fatty acid synthase enzymes relevant to fatty acid
synthesis in plants, and to methods of using such genes in
combination with genes encoding plant medium-chain
preferring thioesterase proteins. Such uses provide a
method to increase the levels of medium-chain fatty acids
15 that may be produced in seed oils of transgenic plants.

Background

Higher plants synthesize fatty acids via a common
metabolic pathway. In developing seeds, where fatty acids
20 attached to triglycerides are stored as a source of energy
for further germination, the fatty acid synthesis pathway is
located in the plastids. The first step is the formation of
acetyl-ACP (acyl carrier protein) from acetyl-CoA and ACP
catalyzed by a short chain preferring condensing enzyme, β -
25 ketoacyl-ACP synthase (KAS) III. Elongation of acetyl-ACP
to 16- and 18- carbon fatty acids involves the cyclical
action of the following sequence of reactions: condensation
with a two-carbon unit from malonyl-ACP to form a longer β -
ketoacyl-ACP (β -ketoacyl-ACP synthase), reduction of the

keto-function to an alcohol (β -ketoacyl-ACP reductase), dehydration to form an enoyl-ACP (β -hydroxyacyl-ACP dehydrase), and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP (enoyl-ACP reductase). β -ketoacyl-ACP synthase I (KAS I), is primarily responsible for elongation up to palmitoyl-ACP (C16:0), whereas β -ketoacyl-ACP synthase II (KAS II) is predominantly responsible for the final elongation to stearoyl-ACP (C18:0).

Genes encoding peptide components of β -ketoacyl-ACP synthases I and II have been cloned from a number of higher plant species, including castor (*Ricinus communis*) and *Brassica* species (USPN 5,510,255). KAS I activity was associated with a single synthase protein factor having an approximate molecular weight of 50 kD (synthase factor B) and KAS II activity was associated with a combination of two synthase protein factors, the 50 kD synthase factor B and a 46 kd protein designated synthase factor A. Cloning and sequence of a plant gene encoding a KAS III protein has been reported by Tai and Jaworski (*Plant Physiol.* (1993) 103:1361-1367).

The end products of plant fatty acid synthetase activities are usually 16- and 18-carbon fatty acids. There are, however, several plant families that store large amounts of 8- to 14-carbon (medium-chain) fatty acids in their oilseeds. Recent studies with *Umbellularia californica* (California bay), a plant that produces seed oil rich in lauric acid (12:0), have demonstrated the existence of a medium-chain-specific isozyme of acyl-ACP thioesterase

in the seed plastids. Subsequent purification of the 12:0-ACP thioesterase from *Umbellularia californica* led to the cloning of a thioesterase cDNA which was expressed in seeds of *Arabidopsis* and *Brassica* resulting in a substantial accumulation of lauric acid in the triglyceride pools of these transgenic seeds (USPN 5,512,482). These results and subsequent studies with medium-chain thioesterases from other plant species have confirmed the chain-length-determining role of acyl-ACP thioesterases during de novo fatty acid biosynthesis (T. Voelker (1996) *Genetic Engineering*, Ed. J. K. Setlow, Vol. 18, pgs. 111-133).

DESCRIPTION OF THE FIGURES

Figure 1. DNA and translated amino acid sequence of *Cuphea hookeriana* KAS factor B clone chKAS B-2 are provided.

Figure 2. DNA and translated amino acid sequence of *Cuphea hookeriana* KAS factor B clone chKAS B-31-7 are provided.

Figure 3. DNA and translated amino acid sequence of *Cuphea hookeriana* KAS factor A clone chKAS A-2-7 are provided.

Figure 4. DNA and translated amino acid sequence of *Cuphea hookeriana* KAS factor A clone chKAS A-1-6 are provided.

Figure 5. DNA and translated amino acid sequence of *Cuphea pullcherrima* KAS factor B clone cpuKAS B/7-8 are provided.

Figure 6. DNA and translated amino acid sequence of *Cuphea pullcherrima* KAS factor B clone cpuKAS B/8-7A are provided.

Figure 7. DNA and translated amino acid sequence of *Cuphea pullcherrima* KAS factor A clone cpuKAS A/p7-6A are provided.

Figure 8. Preliminary DNA sequence of *Cuphea pullcherrima* KAS factor A clone cpuKAS A/p8-9A is provided.

Figure 9. DNA and translated amino acid sequence of *Cuphea hookeriana* KASIII clone chKASIII-27 are provided.

Figure 10. The activity profile for purified cpUKAS B/8-7A using various acyl-ACP substrates is provided.

5 Figure 11. The activity profile for purified chKAS A-2-7 and chKAS A-1-6 using various acyl-ACP substrates is provided.

Figure 12. The activity profile for purified castor KAS factor A using various acyl-ACP substrates is provided.

10 Figure 13. The activity profile for purified castor KAS factor B using various acyl-ACP substrates is provided.

Figure 14. A graph showing the number of plants arranged according to C8:0 content for transgenic plants containing CpFatB1 versus transgenic plants containing CpFatB1 + chKAS

15 A-2-7 is provided.

Figure 15. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.

20 Figure 16. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.

Figure 17. Graphs showing the %C10/%C8 ratios in transgenic 25 plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 18. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in

plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 19. Graphs showing the %C12:0 in transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from 5 crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 20. Graph showing the relative proportions of C12:0 and C14:0 fatty acids in the seeds of transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from 10 crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 21. Graphs showing the %C18:0 in transgenic plants containing Garm FatB1 (5266) and in seeds of plants resulting from crosses with wild type (X WT) and with lines expressing 15 Ch KAS A-2-7.

Figure 22. The activity profile of Ch KAS A in protein extracts from transgenic plants containing Ch KAS A-2-7. Extracts were pretreated with the indicated concentrations of cerulenin.

20

SUMMARY OF THE INVENTION

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase (KAS) are provided. Also of interest are methods and compositions of amino acid and 25 nucleic acid sequences related to biologically active plant synthase(s).

In particular, genes encoding KAS protein factors A and B from Cuphea species are provided. The KAS genes are of interest for use in a variety of applications, and may be

used to provide synthase I and/or synthase II activities in transformed host cells, including bacterial cells, such as *E. coli*, and plant cells. Synthase activities are distinguished by the preferential activity towards longer and shorter acyl-ACPs as well as by the sensitivity towards the KAS specific inhibitor, cerulenin. Synthase protein preparations having preferential activity towards medium chain length acyl-ACPs are synthase I-type or KAS I. The KAS I class is sensitive to inhibition by cerulenin at concentrations as low as 1 μ M. Synthases having preferential activity towards longer chain length acyl-ACPs are synthase II-type or KAS II. The KAS enzymes of the II-type are also sensitive to cerulenin, but at higher concentrations (50 μ M). Synthase III-type enzymes have preferential activity towards short chain length acyl-ACPs and are insensitive to cerulenin inhibition.

Nucleic acid sequences encoding a synthase protein may be employed in nucleic acid constructs to modulate the amount of synthase activity present in the host cell, especially the relative amounts of synthase I-type, synthase II-type and synthase III-type activity when the host cell is a plant host cell. In addition, nucleic acid constructs may be designed to decrease expression of endogenous synthase in a plant cell as well. One example is the use of an anti-sense synthase sequence under the control of a promoter capable of expression in at least those plant cells which normally produce the enzyme.

Of particular interest in the present invention is the coordinate expression of a synthase protein with the

expression of thioesterase proteins. For example, coordinated expression of synthase factor A and a medium-chain thioesterase provides a method for increasing the level of medium-chain fatty acids which may be harvested from transgenic plant seeds. Furthermore, coordinated expression of a synthase factor A gene with plant medium-chain thioesterase proteins also provides a method by which the ratios of various medium-chain fatty acids produced in a transgenic plant may be modified. For example, by expression of a synthase factor A, it is possible to increase the ratio of C10/C8 fatty acids which are produced in plant seed oils as the result of expression of a thioesterase having activity on C8 and C10 fatty acids.

15

DETAILED DESCRIPTION OF THE INVENTION

A plant synthase factor protein of this invention includes a sequence of amino acids or polypeptide which is required for catalyzation of a condensation reaction between an acyl-ACP having a chain length of C₂ to C₁₆ and malonyl-ACP in a plant host cell. A particular plant synthase factor protein may be capable of catalyzing a synthase reaction in a plant host cell (for example as a monomer or homodimer) or may be one component of a multiple peptide enzyme which is capable of catalyzing a synthase reaction in a plant host cell, i.e. one peptide of a heterodimer.

Synthase I (KAS I) demonstrates preferential activity towards acyl-ACPs having shorter carbon chains, C₂-C₁₄ and is sensitive to inhibition by cerulenin at concentrations of 1μM. Synthase II (KAS II) demonstrates preferential

activity towards acyl-ACPs having longer carbon chains, C₁₄-C₁₆, and is inhibited by concentrations of cerulenin (50μM). Synthase III demonstrates preferential activity towards acyl-CoAs having very short carbon chains, C₂ to C₆, and is 5 insensitive to inhibition by cerulenin.

Synthase factors A and B, and synthase III proteins obtained from medium-chain fatty acid producing plant species of the genus *Cuphea* are described herein. As described in the following Examples, synthase A from *C. hookeriana* is naturally expressed at a high level and only in the seeds. *C. hookeriana* synthase B is expressed at low levels in all tissues examined. Expression of synthase A and synthase B factors in *E. coli* and purification of the resulting proteins is employed to determine activity of the 10 various synthase factors. Results of these analyses indicate that synthase factor A from *Cuphea hookeriana* has the greatest activity on 6:0-ACP substrates, whereas synthase factor B from *Cuphea pullcherrima* has greatest activity on 14:0-ACP. Similar studies with synthase factors 15 A and B from castor demonstrate similar activity profiles between the factor B synthase proteins from *Cuphea* and castor. The synthase A clone from castor, however, demonstrates a preference for 14:0-ACP substrate.

Expression of a *Cuphea hookeriana* KAS A protein in 20 transgenic plant seeds which normally do not produce medium-chain fatty acids does not result in any detectable modification of the fatty acid types and contents produced in such seeds. However, when *Cuphea hookeriana* KAS A protein is expressed in conjunction with expression of a

medium-chain acyl-ACP thioesterase capable of providing for production of C8 and C10 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain 5 thioesterase alone are observed. In addition, where significant amounts of C8 and C10 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a *Cuphea* KAS A protein also results in an alteration of the proportion of the C8 and C10 fatty acids 10 that are obtained. For example, an increased proportion of C10 fatty acids may be obtained by co-expression of *Cuphea hookeriana* ChFatB2 thioesterase and a chKAS A synthase factor proteins.

Furthermore, when *Cuphea hookeriana* KAS A protein is 15 expressed in conjunction with expression of a medium-chain acyl-ACP thioesterase capable of providing for production of C12 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are also 20 observed. In addition, where significant amounts of C12 and C14 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a *Cuphea* KAS A protein also results in an alteration of the proportion of the C12 and C14 fatty acids that are obtained. For example, 25 an increased proportion of C12 fatty acids may be obtained by co-expression of *Uc* FatB1 thioesterase and a chKAS A synthase factor proteins.

However, when *Cuphea hookeriana* KAS A protein is expressed in conjunction with the expression of a long-chain

acyl-ACP thioesterase capable of providing for production of C18 and C18:1 fatty acids in plant seed oils, no effect on the production of long chain fatty acids was observed. Furthermore, when plants transformed to express a long chain acyl-ACP thioesterase from mangosteen (*GarmFatA1*, U.S. Patent Application No. 08/440,845), which preferentially hydrolyzes C18:0 and C18:1 fatty acyl-ACPs, are crossed with nontransformed control plants, a significant reduction in the levels of C18:0 is obtained. Similar reductions are also observed in the levels of C18:0 in the seeds of plants resulting from crosses between plants transformed to express the *GarmFatA1* and plants expressing the *Cuphea hookeriana* KAS A protein.

Thus, the instant invention provides methods of increasing and/or altering the medium-chain fatty acid compositions in transgenic plant seed oils by co-expression of medium-chain acyl-ACP thioesterases with synthase factor proteins. Furthermore, various combinations of synthase factors and medium-chain thioesterases may be achieved depending upon the particular fatty acids desired. For example, for increased production of C14 fatty acids, synthase protein factors may be expressed in combination with a C14 thioesterase, for example from *Cuphea palustris* or nutmeg may be employed (WO 96/23892). In addition, thioesterase expression may be combined with a number of different synthase factor proteins for additional effects on medium-chain fatty acid composition.

Synthases of use in the present invention include modified amino acid sequences, such as sequences which have

been mutated, truncated, increased and the like, as well as such sequences which are partially or wholly artificially synthesized. The synthase protein encoding sequences provided herein may be employed in probes for further 5 screening or used in genetic engineering constructs for transcription or transcription and translation in host cells, especially plant host cells. One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and 10 used to screen and recover synthases and/or synthase nucleic acid sequences from other sources. Typically, a homologously related nucleic acid sequence will show at least about 60% homology, and more preferably at least about 15 70% homology, between the *R. communis* synthase and the given plant synthase of interest, excluding any deletions which may be present. Homology is determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions.

Recombinant constructs containing a nucleic acid 20 sequence encoding a synthase protein factor or nucleic acid sequences encoding a synthase protein factor and a medium-chain acyl-ACP thioesterase may be prepared by methods well known in the art. Constructs may be designed to produce synthase in either prokaryotic or eukaryotic cells. The 25 increased expression of a synthase in a plant cell, particularly in conjunction with expression of medium-chain thioesterases, or decreasing the amount of endogenous synthase observed in plant cells are of special interest.

Synthase protein factors may be used, alone or in combination, to catalyze the elongating condensation reactions of fatty acid synthesis depending upon the desired result. For example, rate influencing synthase activity may 5 reside in synthase I-type, synthase II-type, synthase III-type or in a combination of these enzymes. Furthermore, synthase activities may rely on a combination of the various synthase factors described herein.

Constructs which contain elements to provide the 10 transcription and translation of a nucleic acid sequence of interest in a host cell are "expression cassettes". Depending upon the host, the regulatory regions will vary, including regions from structural genes from viruses, plasmid or chromosomal genes, or the like. For expression 15 in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as *E. coli*, 20 *B. subtilis*, *Saccharomyces cerevisiae*, including genes such as β -galactosidase, T7 polymerase, trp-lac (lac), trp E and the like.

An expression cassette for expression of synthase in a plant cell will include, in the 5' to 3' direction of 25 transcription, a transcription and translation initiation control regulatory region (also known as a "promoter") functional in a plant cell, a nucleic acid sequence encoding a synthase, and a transcription termination region. Numerous transcription initiation regions are available

which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the desaturase structural gene. Among transcriptional initiation regions used for plants are such regions 5 associated with cauliflower mosaic viruses (35S, 19S), and structural genes such as for nopaline synthase or mannopine synthase or napin and ACP promoters, etc. The transcription/ translation initiation regions corresponding to such structural genes are found immediately 5' upstream 10 to the respective start codons. Thus, depending upon the intended use, different promoters may be desired.

Of special interest in this invention are the use of promoters which are capable of preferentially expressing the synthase in seed tissue, in particular, at early stages of 15 seed oil formation. Examples of such seed-specific promoters include the region immediately 5' upstream of a napin or seed ACP genes such as described in USPN 5,420,034, desaturase genes such as described in Thompson et al (*Proc. Nat. Acad. Sci.* (1991) 88:2578-2582), or a Bce-4 gene such 20 as described in USPN 5,530,194. Alternatively, the use of the 5' regulatory region associated with the plant synthase structural gene, i.e., the region immediately 5' upstream to a plant synthase structural gene and/or the transcription termination regions found immediately 3' downstream to the 25 plant synthase structural gene, may often be desired. In general, promoters will be selected based upon their expression profile which may change given the particular application.

In addition, one may choose to provide for the transcription or transcription and translation of one or more other sequences of interest in concert with the expression or anti-sense of the synthase sequence,
5 particularly medium-chain plant thioesterases such as described in USPN 5,512,482, to affect alterations in the amounts and/or composition of plant oils.

When one wishes to provide a plant transformed for the combined effect of more than one nucleic acid sequence of
10 interest, a separate nucleic acid construct may be provided for each or the constructs may both be present on the same plant transformation construct. The constructs may be introduced into the host cells by the same or different methods, including the introduction of such a trait by
15 crossing transgenic plants via traditional plant breeding methods, so long as the resulting product is a plant having both characteristics integrated into its genome.

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for
20 expression in a host and providing for selection of transformed cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number
25 of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

The manner in which the DNA construct is introduced into the plant host is not critical to this invention. Any method which provides for efficient transformation may be employed. Various methods for plant cell transformation 5 include the use of Ti- or Ri-plasmids, microinjection, electroporation, liposome fusion, DNA bombardment or the like. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more 10 particularly the right border. This is particularly useful when the construct uses *A. tumefaciens* or *A. rhizogenes* as a mode for transformation, although the T-DNA borders may find use with other modes of transformation.

The expression constructs may be employed with a wide 15 variety of plant life, particularly plant life involved in the production of vegetable oils. These plants include, but are not limited to rapeseed, peanut, sunflower, safflower, cotton, soybean, corn and oilseed palm.

For transformation of plant cells using *Agrobacterium*, 20 explants may be combined and incubated with the transformed *Agrobacterium* for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate 25 plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

EXAMPLES

Example 1 Cuphea KAS Factor A and B Gene Cloning

Total RNA isolated from developing seeds of *Cuphea hookeriana* and *Cuphea pullcherrima* was used for cDNA synthesis in commercial λ-based cloning vectors. For cloning each type of KAS gene, approximately 400,000-500,000 unamplified recombinant phage were plated and the plaques transferred to nitrocellulose. For KAS factor B cloning from *C. hookeriana*, a mixed probe containing *Brassica napus* KAS factor B and *Ricinus communis* (Castor) KAS factor B radiolabeled cDNA's was used. Similarly, a mixed probe containing *Brassica napus* KAS factor A and *Ricinus communis* KAS factor A cDNA clones was used to obtain *C. hookeriana* KAS factor A genes. For KASIII, a spinach KASIII cDNA clone obtained from Dr. Jan Jaworski was radiolabeled and used as a probe to isolate a KASIII clone from *C. hookeriana*. For KAS B and KAS A cloning from *C. pullcherrima*, *C. hookeriana* KAS B and KAS A genes chKAS B-2 and chKAS A-2-7 (see below) were radiolabeled and used as probes.

DNA sequence and translated amino acid sequence for *Cuphea* KAS clones are provided in Figures 1-9. *Cuphea hookeriana* KAS factor B clones chKAS B-2 and chKAS B-31-7

are provided in Figures 1 and 2. Neither of the clones is full length. *Cuphea hookeriana* KAS Factor A clones chKAS A-2-7 and chKAS A-1-6 are provided in Figures 3 and 4. chKAS A-2-7 contains the entire encoding sequence for the KAS factor protein. Based on comparison with other plant synthase proteins, the transit peptide is believed to be represented in the amino acids encoded by nucleotides 125-466. chKAS A-1-6 is not a full length clone although some transit peptide encoding sequence is present. Nucleotides 1-180 represent transit peptide encoding sequence, and the mature protein encoding sequence is believed to begin at nucleotide 181.

Cuphea pullcherrima KAS factor B clones cpuKAS B/7-8 and cpuKAS B/8-7A are provided in Figures 5 and 6. Both of the clones contain the entire encoding sequences for the KAS factor B proteins. The first 35 amino acids of cpuKAS B/7-8 are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 233. The first 39 amino acids of cpuKAS B/8-7A are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 209. *Cuphea pullcherrima* KAS factor A clones cpuKAS A/p7-6A and cpuKAS A-p8-9A are provided in Figures 7 and 8. Both of the clones contain the entire encoding sequences for the KAS factor A proteins. Translated amino acid sequence of cpuKAS A/p7-6A is provided. The mature protein is believed to begin at the lysine residue encoded 595-597, and the first 126 amino acids are believed to represent the transit peptide. The DNA sequence of KAS A clone cpuKAS A-p8-9A is preliminary.

Further analysis will be conducted to determine final DNA sequence and reveal the amino acid sequence encoded by this gene.

DNA and translated amino acid sequence of *Cuphea hookeriana* KASIII clone chKASIII-27 is provided in Figure 9. The encoding sequence from nucleotides 37-144 of chKASIII-27 are believed to encode a transit peptide, and the presumed mature protein encoding sequence is from nucleotides 145-1233.

Deduced amino acid sequence of the *C. hookeriana* KAS factor B and KAS factor A cDNA's reveals strong homology to the *Brassica napus* and *Ricinus communis* clones previously reported. The *C. hookeriana* KAS factor B clone is more homologous to the *Ricinus* and *Brassica* KAS factor B clones (94% and 91% respectively) than it is to the *Ricinus* and *Brassica* KAS factor A clones (60% for both). Furthermore, the *C. hookeriana* KAS factor A clone is more homologous to the *Ricinus* and *Brassica* KAS factor A clones (85% and 82% respectively) than it is the *Ricinus* and *Brassica* KAS factor B clone (60% for both). The *C. hookeriana* KAS factor B cDNAs designated as chKAS B-2 and chKAS B-31-7 are 96% identical within the mature portion of the polypeptide. Similarly, the deduced amino acid sequence of the mature protein regions of the *C. hookeriana* KAS factor A clones chKAS A-2-7 and chKAS A-1-6 are 96% identical. The *C. pullicherrima* KAS clones also demonstrate homology to the *R. communis* and *Brassica napus* KAS clones. The mature protein portion of all of the KAS factor A family members in the different *Cuphea* species are 95% identical. Similarly the

mature protein portion of the KAS factor B genes in *Cuphea* are also 95-97% identical with each other. However there is only approximately 60% sequence identity between KAS factor B and KAS factor A clones either within the same or
5 different species of *Cuphea*.

Example 2 Levels and Patterns of Expression

To examine tissue specificity of KAS expression in *Cuphea hookeriana*, Northern blot analysis was conducted
10 using total RNA isolated from seed, root, leaf and flower tissue. Two separate but identical blots were hybridized with either chKAS B-31-7 or chKAS A-2-7 coding region probes. The data from this RNA blot analysis indicate that KAS B is expressed at a similar level in all tissues
15 examined, whereas KAS A expression is detected only in the seed. These results also demonstrate a different level of expression for each of the synthases. KAS A is an abundant message, whereas KAS B is expressed at low levels.
Furthermore, even under highly stringent hybridization
20 conditions (65°C, 0.1 X SSC, 0.5% SDS), the KAS A probe hybridizes equally well with two seed transcripts of 2.3 and 1.9 kb. The larger hybridizing band is likely the transcript of the KAS A-2-7 gene since the size of its cDNA
25 is 2046bp, and the number of clones obtained from cDNA screening corresponds well with the apparent mobility of the mRNA and its abundance on the blot.

Example 3 Expression of Plant KAS Genes in E.coli

DNA fragments encoding the mature polypeptide of the *Cuphea hookeriana* KAS A cDNAs and the *Cuphea pullcherrima* 5 KAS B cDNAs were obtained by PCR and cloned into a QIAexpress expression vector (Qiagene). Experimental conditions for maximum level of expression were determined for all of these clones and the parameters for highest level of soluble fraction were identified. Cells are grown in 10 ECLB media containing 1M sorbitol and 2.5 mM betaine overnight and subcultured as a 1:4 dilution in the same medium. Cells are then grown for 2 hours (to approximately .6-.8 O.D.) and induced with 0.4 mM IPTG and allowed to grow for 5 more hours.

15 Enzyme activity of the affinity purified recombinant enzymes obtained from over-expression of the chKAS A-2-7 and cpuKAS B/8-7A clones was measured using a wide range of acyl-ACP substrates (6:0- to 16:1-ACP). The activity profile for cpuKAS B/8-7A is provided in Fig.10. The data 20 demonstrate that the enzyme is active with all acyl-ACP substrates examined, although activity on 6:0 to 14:0-ACP substrates is substantially greater than the activity on 16:0 and 16:1 substrates.

The activity profile of the *C. hookeriana* KAS A clones 25 chKAS A-2-7 and chKAS A-1-6 is provided in Figure 11. The *C. hookeriana* KAS A clones are most active with C:6, and have the least activity with C:16:0 substrates. However, the activity of this clone on even the preferred C6:0 substrate

is 50 fold lower than the activity of the *C. pullcherrima* KAS B clones.

A fragment containing the mature protein encoding portion of a *R. communis* KAS factor A clone was also cloned 5 into a QIAexpress expression vector, expressed in *E. coli* and the enzyme affinity purified as described above. The activity profile for castor KAS A is provided in Figure 12. Highest activity is observed with C14:0 substrates, although some activity is also seen with C6:0 and C16:1. In 10 comparison, the activity profile obtained from purified *R. communis* KAS factor B also using the QIAexpress expression system is provided in Figure 13. The KAS B clone demonstrates substantially higher levels of activity (10 fold and higher) than the *R. communis* KAS A clone. The 15 preference of the KAS factor B for 6:0- to 14:0-ACP substrates is consistent with the previous observations that this protein provides KAS I activity.

Example 4 KAS and TE Expression in Transgenic Seed

Both the CpFatB1 (*C. hookeriana* thioesterase cDNA; 20 Dehesh et al. (1996) *Plant Physiol.* 110:203-210) and the chKAS A-2-7 were PCR amplified, sequenced, and cloned into a napin expression cassette. The napin/cp FatB1 and the 25 napin/KAS A-2-7 fusions were ligated separately into the binary vector pCGN1558 (McBride and Summerfelt (*Pl.Mol.Biol.* (1990) 14:269-276) and transformed into *A. tumefaciens*, EHA101. The resulting CpFatB1 binary construct is pCGN5400 and the chKAS A-2-7 construct is pCGN5401. *Agrobacterium* mediated transformation of a *Brassica napus* canola variety

was carried out as described by Radke et al. (*Theor. Appl. Genet.* (1988) 75:685-694; *Plant Cell Reports* (1992) 11:499-505). Several transgenic events were produced for each of the pCGN5400 and pCGN5401 constructs.

5 A double gene construct containing a napin/cpFatB1 expression construct in combination with a napin/chKAS A-2-7 expression construct was also assembled, ligated into a binary vector and used for co-cultivation of a canola *Brassica* variety. The binary construct containing the
10 chFatB1 and chKAS A-2-7 expression constructs is pCGN5413.

Fatty acid analysis of 26 transgenic lines containing chKAS A-2-7 (5401 lines) showed no significant changes in the oil content or profile as compared to similar analyses of wild type canola seeds of the transformed variety.

15 Fatty acid analysis of 36 transgenic lines containing cpFatB1 (5400 lines) showed increased levels of C:8 and C:10 in transgenic seeds. The highest level of C:8 observed in a pool seed sample was 4.2 mol%. The C:10 levels were between 30 and 35% of the C:8 content. Fatty acid analysis of 25
20 transgenic lines containing the TE/KAS A tandem (5413 lines) demonstrated an overall increase in both C:8 and C:10 levels relative to those observed with TE containing lines (5400) alone. In lines containing the cpFatB1 construct alone, the average level of C:8 average were 1.5 mol%, whereas the C:8
25 average levels in TE/KAS A tandem containing lines was 2.37 mol%. The ratio of C:8 to C:10 remained constant in both populations. The number of transgenic events relative to the C:8 content are presented in Figure 14. These data show that the transgenic events with tandem TE/KAS A construct

yield more lines with higher levels of C:8 than those events with single TE construct. For example, several lines containing nearly 7 mole% C8 were obtained with the TE/KAS A pCGN5413 construct, whereas the highest C8 containing line 5 from the pCGN5400 TE alone transformation contained 4.2 mole% C8.

Half seed analysis of the T3 generation of transgenic canola plants expressing a ChFatB2 (*C. hookeriana* thioesterase; Dehesh et al. (1996) *The Plant Journal* 9:167-10 172) indicate that these plant can accumulate up to 22 weight% (33 mol%) of 8:0 and 10:0 fatty acids (4804-22-357). Segregation analysis shows that these transformants contain two loci and that they are now homozygous. Selected plants grown from these half seeds were transferred into the 15 greenhouse and later crossed with T1 transformants that had been transformed with either *Cuphea hookeriana* KAS A (5401) alone or KAS A/CpFatB1 double constructs (5413).

Fatty acid analysis of several events resulting from the crosses between transgenic lines containing ChFatB2 20 (4804-22-357) and chKAS A-2-7 (5401-9), reveal an increase in the ratio of C:10/C:8 levels (Figure 15). This C:10/C:8 ratio in nearly all of the transgenic events containing ChFatB2 TE alone fluctuates between 3 and 6, whereas in the F1 generation of transgenic containing both the TE and the 25 KAS A-2-7, the ratio can be as high as 22. This increase in C:10 levels is accompanied by an increase in the total C:8 and C:10 content (Figure 16). The sum of the C:8 and C:10 fatty acids in the heterozygous F1 lines is as high as those in the homozygous parent line (4804-22-357), whereas the

heterozygous lines usually contain substantially less C:8 and C:10 than the homozygous lines.

Similar results were observed in F1 generation seeds resulting from crosses performed between 4804-22-357 (ChFatB2) and the 5413-17 event (CpFatB1 and chKAS A-2-7 tandem). Levels of C:8 and C:10 in the 5413-17 line were 6.3 and 2.8 mol% respectively. Data presented in Figure 17 show that there is shift towards C:10 fatty acids as was observed with the 4804-22-357 (ChFatB2) x 5401-9 (chKAS A-2-7) crosses. Furthermore, Figure 18 indicates the presence of two separate populations of heterozygotes. Those containing approximately 9-11 weight percent C:10 + C:8 are believed to represent offspring containing a single copy of the ChFatB1 TE gene and no copies of the CpFatB1 and chKAS A genes from 5413. Those plants containing approximately 15-20 weight percent C:10 + C:8 are believed to represent the heterozygotes containing a single ChFatB1 TE gene as well as the CpFatB1 and chKAS A genes from 5413. Thus, the level of the C:10 + C:8 fatty acids does not decrease to 50% of that detected in parent lines when a copy of the ChKAS A gene is present.

To further characterize the chain length specificity of the *Cuphea hookeriana* KAS A enzyme, crosses between transgenic *Brassica napus* lines containing a California Bay (*Umbellularia californica*) 12:0 specific thioesterase, Uc FatB1 (USPN 5,344,771) and chKAS A-2-7 (5401-9) were made. Half seed analysis of transgenic plants containing Uc fatB1 have previously indicated that these plants can accumulate up to 52 mol% C12:0 in the seed oil of homozygous dihaploid

lines (LA86DH186). Crosses between the line LA86DH186 and untransformed control *Brassica* demonstrated a decrease in the C12:0 levels.

However, crosses between LA86DH186 and the 5401-9 hemizygous line led to an accumulation of up to 57 mol% C12:0 in the seed oil of F1 progeny (Figure 19). Interestingly, in crosses with LA86DH186 x untransformed control line and LA86DH186 x 5401-9, levels of C14:0 in the seeds of the F1 progeny decreased to 50% of the levels obtained in homozygous LA86DH186 lines (Figure 20). Furthermore, increases in the proportion of C12:0 fatty acid resulted in a substantial decline in the proportions of all the long-chain fatty acyl groups (C16:0, C18:0, C18:2, and C18:3). These results indicate that the ChKAS A-2-7 is an enzyme with substrate specificity ranging from C6:0 to C10:0-ACP, and that its over-expression ultimately reduces the longer chain acyl-ACP pools.

Further evidence is obtained in support of the chain length specificity of the ChKAS A-2-7 in crosses of the 5401-9 line with a transgenic line (5266) expressing an 18:1/18:0 TE from *Garcinia mangostana* (GarmFatA1, US patent application No. 08/440,845). Transgenic *Brassica* line 5266 has been shown to accumulate up to 24 mol% C18:0 in the seed oil of homozygous lines (Figure 21). However, in the seed oil of F1 progeny of crosses between 5266 and 5401-9 levels of C18:0 were reduced to approximately 12 mol%.

Furthermore, levels of C16:0 generated from these crosses was similar to the levels obtained from the seed oil of nontransgenic control plants.

Example 5 In vitro Analysis of Plant KAS Enzymes

Seed extracts were prepared from developing seeds of nontransgenic controls or transgenic *Brassica* expressing chKAS A-2-7 as described in Slabaugh et al. (*Plant Journal*, 5 1998 in press) and Leonard et al. (*Plant Journal*, 1998, in press). *In vitro* fatty acid synthesis assays were performed as described by Post-Beittenmiller (*J. Biol. Chem.* (1991), 266:1858-1865). Extracts were concentrated by ammonium sulfate precipitation and desalting using P-6 columns (Bio-10 Rad, Hercules, CA). Reactions (65 μ l) contained 0.1M Tris/HCl (pH 8.0), 1 mM dithiothreitol, 25 mM recombinant spinach ACPI, 1 mM NADH, 2 mM NADPH, 50 μ M malonyl-CoA, 10 μ M [1-¹⁴C]acetyl-CoA (50 mCi/mmol), 1mg/ml BSA, and 0.25 mg/ml seed protein. Selected seed extracts were 15 preincubated with cerulenin at 23°C for 10 min. Reaction products were separated on an 18% acrlamide gel containing 2.25M urea, electroblotted onto to nitrocellulose and quntitated by phosporimaging using Image QuaNT software (Molecular Dynamics, Sunnyvale, CA). Authentic acyl-ACPs 20 were run in parallel, immunoblotted and finally detected by anti-ACP serum to confirm fatty acid chain lengths.

The results (Figure 22) indicate that the fatty acid synthesis capabilities of transgenic *Brasica* (5401-9) seed extracts was greater than that obtained from in the 25 nontransgenic controls as measured by the relative abundance of C8:0- and C10:0-ACP at all time points tested. In addition, pretreatment of the extracts with cerulenin, markedly reduced the synthesis of longer chain fatty acids in both the transgenic and nontransgenic control seed

extracts. However, the extension of the spinach-ACP was much less inhibited in the seed extracts from the transgenic lines than in the seed extracts of nontransgenic control *Brassica*.

5 These data further support that Ch KAS A-2-7 is a condensing enzyme active on medium chain acyl-ACPs, and that expression of this enzyme in plants results in enlarged substrate pools to be hydrolyzed by medium-chain specific thioesterases. Furthermore, these data suggest that chKAS
10 A-2-7 also is a cerulenin-resistant condensing enzyme.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains.

15 All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

20 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

WO 98/46776

PCT/US98/07114

28

MISSING UPON TIME OF PUBLICATION

13. The construct of Claim 5 wherein said encoding sequence is cpuKAS A/p8-9A.

14. The construct of Claim 5 wherein said encoding sequence is chKASIII-27.

5 15. An improved method for producing medium-chain fatty acids in transgenic plant seeds by expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant,

the improvement comprising expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of said plant medium-chain thioesterase, whereby the percentage of medium-chain fatty acids produced in seeds expressing both a plant synthase factor protein and a plant medium-chain thioesterase protein is increased as compared to the percentage of medium-chain fatty acids produced in seeds expressing only said plant medium-chain thioesterase protein.

16. The method of Claim 15 wherein said medium-chain thioesterase protein is a ChFatB2 protein.

20 17. The method of Claim 15 wherein said medium-chain thioesterase protein is a CpFatB1 protein.

18. The method of Claim 15 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.

25 19. The method of Claim 15 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.

20. The method of Claim 19 wherein said synthase factor A protein is from a Cuphea species.

21. The method of Claim 20 wherein said *Cuphea* species is *C. hookeriana* or *C. pullcherrima*.

22. A method of altering the medium-chain fatty acid composition in plant seeds expressing a heterologous plant
5 medium-chain preferring thioesterase, wherein said method comprises

providing for expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of a plant medium-chain thioesterase protein
10 heterologous to said transgenic plant, whereby the composition of medium-chain fatty acids produced in said seeds is modified as compared to the composition of medium-chain fatty acids produced in seeds expressing said plant medium-chain thioesterase protein in the absence of expression of said plant
15 synthase factor protein.

23. The method of Claim 22 wherein said medium-chain thioesterase protein is a ChFatB2 protein.

24. The method of Claim 22 wherein said medium-chain thioesterase protein is a CpFatB1 protein.

20 25. The method of Claim 22 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.

26. The method of Claim 22 wherein said plant synthase factor protein is expressed from a construct according to Claim
25 1.

27. The method of Claim 26 wherein said synthase factor A protein is from a *Cuphea* species.

28. The method of Claim 27 wherein said *Cuphea* species is *C. hookeriana* or *C. pullcherrima*.

29. The method of Claim 22 wherein said fatty acid composition is enriched for C10 fatty acids.

30. The method of Claim 22 wherein said fatty acid composition is enriched for C12 fatty acids.

5 31. The method of Claim 22 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.

32. The method of Claim 31 wherein said enriched fatty
10 acid is C12 and said decreased fatty acid is C14.

y66

AGC TCC ACC GCG GTG GCG GCC GCT CTA GAA CTA GTG GAT CCC CCG GGC
 Ser Ser Thr Ala Val Ala Ala Leu Glu Leu Val Asp Pro Pro Gly 48

TGC AGG AAT TCG GCA CGA GCC GAT CTC GGT GCC GAC CGC CRC TCC AAG
 Cys Arg Asn Ser Ala Arg Ala Asp Leu Gly Ala Asp Arg Leu Ser Lys 96

ATC GAC AAG GAG AGA GCC GGA GTG CTG GTC GGA ACA GGA ATG GGT GGT
 Ile Asp Lys Glu Arg Ala Gly Val Leu Val Gly Thr Gly Met Gly Gly 144

CTG ACT GTC TTC TCT GAC GGG GTT CAG TCT CTT ATC GAG AAG GCT CAC
 Leu Thr Val Phe Ser Asp Gly Val Gln Ser Leu Ile Glu Lys Gly His

CGG AAA ATC ACC CCT TTC ATC CCC TAT GCC ATT ACA AAC ATG GGG
 Arg Lys Ile Thr Pro Phe Phe Ile Pro Tyr Ala Ile Thr Asn Met Gly 240

TCT GCC CTG CTC GCT ATC GAA TTT GGT CTC ATG GGC CCA AAC TAT TCA
 Ser Ala Leu Leu Ala Ile Glu Phe Gly Leu Met Gly Pro Asn Tyr Ser 288

ATT TCC ACT GCA TGT GCC ACT TCC AAC TAC TGC TTC CAT GCT GCC GCT
 Ile Ser Thr Ala Cys Ala Thr Ser Asn Tyr Cys Phe His Ala Ala Ala 336

AAT CAT ATC CGC CGT GGT GAG GCT GAT CTT ATG ATT GCT GGA GGC ACT
 Asn His Ile Arg Arg Gly Glu Ala Asp Leu Met Ile Ala Gly Gly Thr 384

FIGURE 1
 1 OF 4

2/66

GAG GCC GCA ATC ATT CCA ATT GGG TTG GGA GGC TTT GTG GCT TGC AGG Glu Ala Ala Ile Ile Pro Ile Gly Leu Gly Phe Val Ala Cys Arg	432
GCT TTG TCT CAA AGG AAC GAT GAC CCG CAG ACT GCC TCT AGG CCC TGG Ala Leu Ser Gln Arg Asn Asp Asp Pro Gln Thr Ala Ser Arg Pro Trp	480
GAT AAA GAC CGT GAT GGT TTT GTG ATG GGT GAA GGT GCT GGA GTG TTG Asp Lys Asp Arg Asp Gly Phe Val Met Gly Glu Gly Ala Gly Val Leu	528
GTG ATG GAG AGC TTG GAA CAT GCA ATG AGA CGA GCA CCG ATT ATT Val Met Glu Ser Leu Gly Ala Ile Asn Cys Asp Ala Arg Gly Ala Pro Ile Ile	576
GCA GAG TAT TTG GGA GGT GCA ATC AAC TGT GAT GCT TAT CAC ATG ACT Ala Glu Tyr Leu Gly Ala Ile Asn Cys Asp Ala Tyr His Met Thr	624
GAT CCA AGG GCT GAT GGT CTT GGT GTC TCT TGC ATT GAG AGT AGC Asp Pro Arg Ala Asp Gly Leu Gly Val Ser Ser Cys Ile Glu Ser Ser	672
CTT GAA GAT GCT GGC GTC TCA CCT GAA GAG GTC AAT TAC ATA AAT GCT Leu Glu Asp Ala Gly Val Ser Pro Glu Val Glu Asn Tyr Ile Asn Ala	720
CAT GCG ACT TCT ACT CTA GCT GGG GAT CTC GCC GAG ATA AAT GCC ATC His Ala Thr Ser Thr Leu Ala Gly Asp Leu Ala Glu Ile Asn Ala Ile	768

FIGURE 1

2 OF 4

3/66

AAG AAG GTT TTC AAG AAC ACA AAG GAT ATC AAA ATT AAT GCA ACT AAG
 Lys Lys Val Phe Lys Asn Thr Lys Asp Ile Lys Ile Asn Ala Thr Lys 816

TCA ATG ATC GGA CAC TGT CTT GGA GCA TCT GGA GGT CTT GAA GCT ATA
 Ser Met Ile Gly His Cys Leu Gly Ala Ser Gly Gly Leu Glu Ala Ile 864

GCG ACT ATT AAG GGA ATA AAC ACC GGC TGG CTT CAT CCC AGC ATT AAT
 Ala Thr Ile Lys Gly Ile Asn Thr Gly Trp Leu His Pro Ser Ile Asn 912

CAA TTC AAT CCT GAG CCA TCG TCG GAG TTC GAC ACT GTC GCC AAC AAG
 Gln Phe Asn Pro Glu Pro Ser Val Glu Phe Asp Thr Val Ala Asn Lys 960

AAG CAG CAA CAC GAA GTT AAC GTT GCG ATC TCG AAT TCA TTC GGA TTT
 Lys Gln His Glu Val Asn Val Ala Ile Ser Asn Ser Phe Gly Phe 1008

GGA GGC CAC AAC TCA GTC GTG GCT TTC TCC GCT TTC AAG CCA TGATTA
 Gly Gly His Asn Ser Val Val Ala Phe Ser Ala Phe Lys Pro 1056

CCCATTTCAC AAGGTACTTG TCATGAGAA TACGGATTAT GAACTTGCAG AGTAATTTC
 CCATGTTTGT CGGAAGAGCA TATTACCACG GTTGTCCGTC AAACCCATT AGGATACTGT 1116
 1176

FIGURE 1
 3 OF 4

4166

TCTATGTAAT AAAACTAAGG ATTATAATT TCCCTTTAA TCCTGTCTCC AGTTTGAGCA 1236
TGAATTTATA TTATTTAT CTTAGAAAGG TCAATAAGA TTTTGTTTA CCTCTGTAAA 1296
ACTTTTGTTT GTATTGGAAA GGAAAGTGCAG TCTCAAAAAA AAAAAAAA AA 1348

FIGURE 1
4 OF 4

5/66

Sequence Range: 1 to 1704

	10	20	30	40
AAA TTA ACC CTC ACT AAA GGG AAC AAA AGC TGG AGC TCC ACC GNG GTG	Lys Leu Thr Leu Thr Lys Lys Asn Lys Ser Trp Ser Ser Thr Xxx Val>			
50	60	70	80	90
GCG GCC GCT CTA GAA CTA GTG GAT CCC CCC GGC TGC AGG AAT TCG GCA	Ala Ala Ala Leu Glu Leu Val Asp Pro Pro Gly Cys Arg Asn Ser Ala>			
100	110	120	130	140
CGA GCC GGC ATG GGC CTC GTC TCC GTA TTC GGC TCC GAC GTC GAC TCT	* Arg Ala Gly Met Gly Leu Val Ser Val Phe Gly Ser Asp Val Asp Ser>			
150	160	170	180	190
TAT TAC GAA AAG CTC CTC TCC GGC GAG AGC GGG ATC AGC TTA ATC GAC	* Tyr Tyr Glu Lys Leu Leu Ser Gly Glu Ser Gly Ile Ser Leu Ile Asp>			
200	210	220	230	240
CGC TTC GAC GCT TCC AAG TTC CCC ACC AGG TTC GGC GGC CAG ATC CGG	* Arg Phe Asp Ala Ser Lys Phe Pro Thr Arg Phe Gly Gly Gln Ile Arg>			
250	260	270	280	
GGA TTC AAC GCG ACG GGA TAC ATC GAC GGG AAG AAC GAC AGG AGG CTC	Gly Phe Asn Ala Thr Gly Tyr Ile Asp Gly Lys Asn Asp Arg Arg Leu>			
90	300	310	320	330
GAC GAT TGC CTC CGC TAC TGC ATT GTC GCC GGG AAG AAG GCT CTC GAA	* Asp Asp Cys Leu Arg Tyr Cys Ile Val Ala Gly Lys Lys Ala Leu Glu>			

FIGURE 2
1/5

6/66

340	350	360	370	380
AAT TCC GAT CTC GGC EGT GAA AGC CTC TCC AAG ATT GAT AAG GAG AGA Asn Ser Asp Leu Gly Glu Ser Leu Ser Lys Ile Asp Lys Glu Arg>	*			
390	400	410	420	430
GCT GGA GTG CTA GTT GGA ACT GGT ATG GGT GGC CTA ACC GTC TTC TCT Ala Gly Val Leu Val Gly Thr Gly Met Gly Gly Leu Thr Val Phe Ser>	*			
440	450	460	470	480
GAC GGG GTT CAG AAT CTC ATC GAG AAA GGT CAC CCG AAG ATC TCC CCG Asp Gly Val Gln Asn Leu Ile Glu Lys Gly His Arg Lys Ile Ser Pro>				
490	500	510	520	
TTT TTG ATT CCC TAT GCC ATT ACA AAC ATG GGG TCT GCT CTG CTG GCC Phe Phe Ile Pro Tyr Ala Ile Thr Asn Met Gly Ser Ala Leu Leu Ala>				
30	540	550	560	570
ATC GAT TTG GGT CTG ATG GGC CCA AAC TAT TCG ATT TCA ACT GCA TGT Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser Ile Ser Thr Ala Cys>	*			
580	590	600	610	620
GCT ACT TCC AAC TAC TGC TTT TAT GCC GCT GCC AAT CAT ATC CGC CGA Ala Thr Ser Asn Tyr Cys Phe Tyr Ala Ala Ala Asn His Ile Arg Arg>	*			
630	640	650	660	670
GGC GAG GCT GAC CTC ATG ATT GCT GGA GGA ACT GAG GCT GCA ATC ATT Gly Glu Ala Asp Leu Met Ile Ala Gly Gly Thr Glu Ala Ala Ile Ile>	*			

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

7/66

	680	690	700	710	720
CCA ATT GGG TTA GGA GGG TTC GTT GCC TGC AGG GCT TTA TCT CAA AGG Pro Ile Gly Leu Gly Phe Val Ala Cys Arg Ala Leu Ser Gln Arg>					*
AAT GAT GAC CCT CAG ACT GCC TCA AGG CCG TGG GAT AAG GAC CGT GAT Asn Asp Pro Gln Thr Ala Ser Arg Pro Trp Asp Lys Asp Arg Asp>	730	740	750	760	
70	780	790	800	810	
GGT TTT GTG ATG GGC GAA GGG GCT GGA GTA TRG GTT ATG GAG AGC TTG Gly Phe Val Met Gly Glu Gly Ala Gly Val Leu Val Met Glu Ser Leu>					
γ 820	830	840	850	860	
GAA CAT GCA ATG AAA CGA GGA GCG CCG ATT ATT GCA GAA TAT TTG GGA Glu His Ala Met Lys Arg Gly Ala Pro Ile Ile Ala Glu Tyr Leu Gly>		*			
870	880	890	900	910	
GGT GCA GTC AAT TGT GAT GCT TAT CAT ATG ACT GAT CCA AGG GCT GAT Gly Ala Val Asn Cys Asp Ala Tyr His Met Thr Asp Pro Arg Ala Asp>			*		
920	930	940	950	960	
GGG CTT GGT GTC TCC TCT TGC ATT GAG AGC AGT CTG GAA GAT GCT GGG Gly Leu Gly Val Ser Ser Cys Ile Glu Ser Ser Leu Glu Asp Ala Gly>				*	
970	980	990	1000		
GTC TCA CCT GAA GAG GTC AAT TAC ATA AAT GCT CAT GCG ACT TCC ACT Val Ser Pro Glu Glu Val Asn Tyr Ile Asn Ala His Ala Thr Ser Thr>					

FIGURE 2
3/5

8/66

10	1020	*	1030		1040		1050	
CTT GCT GGG GAT CTT GCC GAG ATA AAT GCC ATC AAG GGT TTC AAG Leu Ala Gly Asp Leu Ala Glu Ile Asn Ala Ile Lys Val Phe Lys>								
1060	1070	*	1080	*	1090		1100	
AAC ACC AAG GAA ATC ACA ATC AAT GCA ACT AAG TCG ATG ATC GGA CAC Asn Thr Lys Glu Ile Thr Ile Asn Ala Thr Lys Ser Met Ile Gly His>								
1110	1120		1130	*	1140		1150	
TGT CTT GGA GCA TCA GGG GGT CTT GAA GCC ATT GCG ACA ATT AAG GGA Cys Leu Gly Ala Ser Gly Gly Leu Glu Ala Ile Ala Thr Ile Lys Gly>								
1160	1170		1180		1190		1200	*
ATA ACC ACC GGC TGG CTT CAT CCC AGC ATA AAC CAA TTC AAT CCC GAG Ile Thr Thr Gly Trp Leu His Pro Ser Ile Asn Gln Phe Asn Pro Glu>								
1210	1220		1230		1240			
CCA TCA GTG GAA TTC GAC ACA GTT GCC AAC AAG CAG CAA CAT GAA Pro Ser Val Glu Phe Asp Thr Val Ala Asn Lys Lys Gln Gln His Glu>								
50	1260	*	1270		1280		1290	
GTG AAT GTT GCT ATC TCA AAT TCA TTC GGA TTC GGA GGC CAC AAC TCA Val Asn Val Ala Ile Ser Asn Ser Phe Gly Phe Gly Gly His Asn Ser>								
1300	1310	*	1320	*	1330		1340	
GTT GTA GCT TTC TCA GCC TTC AAG CCA TGA TTA CTC GGT TCA AAT GCA Val Val Ala Phe Ser Ala Phe Lys Pro								

FIGURE 2
4/5

9/66

AATTGGTGC TGAGACAGTG AGCTCAACT TGCAGAGCAA TTTTTACAT GCCTTGTGCGT
CGGAAGAGCG TAATAACGGG ATAGTTCCTT GATAGTTCAT TTAGGATGTT TTACTGCAAT
AATCGAAAGAT TATTCCATT CTAATCCAGT CTCCGNCGAG TTTGAGAATC TATCTGTTTG
TATTAGAAAG AACGAGGCAA GATTGGTGT CATGTTGTG TTTGTATAC TTTCTTTTTC
CCCTTGTCAA TGGCATTAA GATAAGCTTA TAAAAAAA AAAACTCGAG
GGGGGGCCCG GTACCCAATT CGCCCTATAG TGAGTCGTAT GACAATTCAC TGTCCGTGG

FIGURE 2
5/5

10/66

10	20	30	40	50	60
ACTAAAGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGA ACTAGTGGAT					
70	80	90	100	110	120
CCCCGGGCT GCAGGAATTG GGACACGAGTT TCTCTTACTTG GGTCTGGCTCA GCTCAGGGTGT					
130	140	150	160		*
TCCA ATG GCG ACC GCT TCT TGC ATG GTT GCG TCC CCT TTC TGT ACG TGG					
Met Ala Thr Ala Ser Cys Met Val Ala Ser Pro Phe Cys Thr Itp					
170	180	190	200	210	
CTC GTA GCT GCA TGC ATG CCC ACT TCA TCC GAC AAC GAC CCA CGT TCC					
Leu Val Ala Ala Cys Met Pro Thr Ser Ser Asp Asn Asp Pro Arg Ser					
220	230	240	250	260	
CTT TCC CAC AAG CGG CTC CGC CTC TCC CGT CGC CGG AGG ACT CTC TCC					
Leu Ser His Lys Arg Leu Arg Leu Ser Arg Arg Arg Arg Thr Leu Ser					
270	280	290	300	310	
TCC CAT TGC TCC CTG CGC GGA TCC ACC TTC CAA TGC CTC GAT CCT TGC					
Ser His Cys Ser Leu Arg Gly Ser Thr Phe Gln Cys Leu Asp Pro Cys					
320	330	340	350	360	*
AAC CAG CAA CGC TTC CTC GGG GAT AAC GGA TTC GCT TCC CTC TTC GGA					
Asn Gln Gln Arg Phe Leu Gly Asp Asn Gly Phe Ala Ser Leu Phe Gly					

11/66

TCC	AAG	CCT	CGT	TCA	AAT	CGC	GGC	CAC	CTG	AGG	CTC	GGC	CGC	ACT	
Ser	Lys	Pro	Leu	Arg	Ser	Asn	Arg	Gly	His	Leu	Arg	Leu	Gly	Arg	
370	380	390	390	390	390	390	390	390	390	390	390	390	390	400	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
410	420	430	440	440	450										
TCC	CAT	TCC	GGG	GAG	GTC	ATG	GCT	GTG	GCT	ATG	CAA	CCT	GCA	CAG	GAA
Ser	His	Ser	Gly	Glu	Val	Met	Ala	Ala	Ala	Met	Gln	Pro	Ala	Gln	Glu
460	470	480	480	480	480	480	480	480	480	480	480	480	480	480	
GTC	TCC	ACA	AAT	AAG	AAA	CCT	GCT	ACC	AAG	CAA	AGG	CGA	GTA	GTT	GTC
Val	Ser	Thr	Asn	Gly	Lys	Pro	Ala	Thr	Lys	Gln	Arg	Arg	Val	Val	Val
510	520	530	530	530	530	530	530	530	530	530	540	540	540	550	
ACA	GGT	ATG	GGC	GTG	GTG	ACT	CCT	CTA	GGC	CAT	GAC	CCC	GAT	GTT	TAC
Thr	Gly	Met	Gly	Val	Val	Thr	Pro	Leu	Gly	His	Asp	Pro	Asp	Val	Tyr
560	570	580	580	580	580	580	580	580	580	580	590	590	590	600	
TAC	AAC	AAT	CTC	CTA	GAC	GGG	ATA	AGT	GGC	ATA	AGT	GAG	ATA	GAG	AAC
Tyr	Asn	Asn	Leu	Leu	Asp	Gly	Ile	Ser	Gly	Ile	Ser	Glu	Ile	Glu	Asn
610	620	630	630	630	630	630	630	630	630	630	640	640	640	640	
TTC	GAC	TGC	TCT	CAG	TTT	CCC	ACG	AGA	ATT	GCC	GGA	GAG	ATC	AAG	TCT
Phe	Asp	Cys	Ser	Gln	Phe	Pro	Thr	Arg	Ile	Ala	Gly	Glu	Ile	Lys	Ser
650	660	670	670	670	670	670	670	670	670	670	680	680	680	690	
TTT	TCC	ACA	GAT	GGC	TGG	GTG	GCC	CCA	AAG	TTC	TCC	GAG	AGG	ATG	GAC
Phe	Ser	Thr	Asp	Gly	Trp	Val	Ala	Pro	Lys	Phe	Ser	Glu	Arg	Met	Asp

12/66

	700	710	720	730	740										
AAG	TTC	ATG	CTT	TAC	ATG	CTG	ACT	GCA	GCC	AAG	AAA	GCA	TTA	GCA	GAT
Lys	Phe	Met	Leu	Tyr	Met	Leu	Thr	Ala	Gly	Lys	Ala	Leu	Ala	Leu	Asp
750		760		770	*	780		790							
GGT	GGA	ATC	ACT	GAA	GAT	GCG	ATG	AAA	GAG	CTC	AAT	AAA	AGA	AAG	TGT
Gly	Gly	Ile	Thr	Glu	Asp	Ala	Met	Lys	Glu	Leu	Asn	Lys	Arg	Lys	Cys
800		810		820		830		840	*						
GGA	GTT	CTC	ATT	GGC	TCC	GGA	TTG	GGC	GGT	ATG	AAG	GTA	TTC	AGC	GAT
Gly	Val	Leu	Ile	Gly	Ser	Gly	Leu	Gly	Gly	Met	Lys	Val	Phe	Ser	Asp
850		860		870		880									
TCC	ATT	GAA	GCT	CTG	AGG	ACT	TCA	TAT	AAG	ATC	AGT	CCC	TTT	TGT	
Ser	Ile	Glu	Ala	Leu	Arg	Thr	Ser	Tyr	Lys	Ile	Ser	Ile	Pro	Phe	Cys
890		900	*	910		920		930							
GTA	CCT	TTT	TCT	ACC	ACA	AAT	ATG	GGA	TCC	GCT	ATT	CTT	GCA	ATG	GAC
Val	Pro	Phe	Ser	Thr	Thr	Asn	Met	Gly	Ser	Ala	Ile	Leu	Ala	Met	Asp
940		950	*	960	*	970		980							
TRG	GGA	TGG	ATG	GGC	CCT	AAC	TAT	TCG	ATA	TCA	ACT	GCC	TGT	GCA	ACA
Leu	Gly	Trp	Met	Gly	Pro	Asn	Tyr	Ser	Ile	Ser	Thr	Ala	Cys	Ala	Thr
990		1000		1010		1020	*	1030							
AGT	AAC	TTC	TGT	ATA	CTG	AAT	GCT	GCG	AAC	CAC	ATA	ATC	AAA	GGC	GAA
Ser	Asn	Phe	Cys	Ile	Leu	Asn	Ala	Ala	Asn	His	Ile	Ile	Lys	Gly	Glu

1040	1050	1060	1070	1080
[*] GCA GAC ATG ATG CTT TGT GGT GGC TCG GAT GCG GCC GTT TTA CCT GTC Ala Asp Met Met Leu Cys Gly Ser Asp Ala Ala Val Pro Val				
1090	1100	1110	1120	
GGT TTG GGA GGT TTC GCA TGC CGA GCT TTG TCA CAG AGG AAT AAT Gly Leu Gly Phe Val Ala Cys Arg Ala Leu Ser Gln Arg Asn Asn				
1130	1140	1150	1160	1170
[*] GAC CCT ACC AAA GCT TCG AGA CCA TGG GAC AGT AAT CGT GAT GGA TTT Asp Pro Thr Lys Ala Ser Arg Pro Trp Asp Ser Asn Arg Asp Gly Phe				
1180	1190	1200	1210	1220
[*] GTG ATG GGA GAA GGA GCT GGA GTT TTA CTT CTT GAG GAG TTA GAG CAT Val Met Gly Glu Gly Ala Ser Arg Val Leu Leu Glu Glu Leu His				
1230	1240	1250	1260	1270
[*] GCA AAG AAA AGA GGT GCA ACC ATT TAT GCG GAA TTT CTA GGT GGG AGT Ala Lys Arg Gly Ala Thr Ile Tyr Ala Glu Phe Leu Gly Gly Ser				
1280	1290	1300	1310	1320
[*] TTC ACT TGC GAC GCC TAC CAC GAG CCT CAC CCT GAA GGA GCT Phe Thr Cys Asp Ala Tyr His Met Thr Glu Pro His Pro Glu Gly Ala				
1330	1340	1350	1360	
GGT GTG ATC CTC TGC ATA GAG AAG GCC TTG GCT CAG TCC GGA GTC TCG Gly Val Ile Leu Cys Ile Glu Lys Ala Leu Ala Gln Ser Gly Val Ser				

14/6

1370	1380	*	1390	1400	1410										
AGG	GAA	GAC	GTA	AAT	TAC	ATA	AAT	GCG	CAT	GCA	ACT	TCC	ACT	CCT	GCT
Arg	Glu	Asp	Val	Asn	Tyr	Ile	Asn	Ala	His	Ala	Thr	Ser	Thr	Pro	Ala
1420		1430	*	1440		1450		1460							
GGA	GAT	ATC	AAG	GAA	TAC	CAA	GCT	CTC	GCC	CAC	TGT	TTC	GGC	CAA	AAC
Gly	Asp	Ile	Lys	Glu	Tyr	Gln	Ala	Leu	Ala	His	Cys	Phe	Gly	Gln	Asn
1470		1480	*	1490		1500	*	1510							
AGT	GAG	CTG	AGA	GTG	AAT	TCC	ACC	AAA	TCG	ATG	ATC	GGT	CAC	CTT	CTT
Ser	Glu	Leu	Arg	Val	Asn	Ser	Thr	Lys	Ser	Met	Ile	Gly	His	Leu	Leu
1520		1530	*	1540		1550	*	1560							
GGA	GGA	GCT	GGT	GGC	GTA	GAA	GCA	GTT	GCA	GTA	GTT	CAG	GCA	ATA	AGG
Gly	Gly	Ala	Gly	Gly	Val	Glu	Ala	Val	Ala	Val	Val	Gin	Ala	Ile	Arg
1570		1580	*	1590		1600	*	1600							
ACA	GGA	TGG	ATC	CAT	CCA	AAT	ATT	AAT	TTG	GAA	GAC	CCG	GAC	GAA	GGC
Thr	Gly	Trp	Ile	His	Pro	Asn	Ile	Asn	Leu	Glu	Asp	Pro	Asp	Glu	Gly
1610		1620	*	1630		1640	*	1650							
GTG	GAT	GCA	AAA	CTG	CTG	GTC	GGC	CCT	AAG	AAG	GAG	AAA	CTG	AAG	GTC
Val	Asp	Ala	Lys	Leu	Leu	Val	Gly	Pro	Lys	Lys	Glu	Lys	Leu	Lys	Val
1660		1670	*	1680	*	1690	*	1700							
AAG	GTC	GGT	TTG	TCC	AAT	TCA	TTT	GGG	TTC	GGC	GGC	CAT	AAC	TCA	TCC
Lys	Val	Gly	Leu	Ser	Asn	Ser	Phe	Gly	Phe	Gly	Gly	His	Asn	Ser	Ser

15/66

1710	1720	1730	1740	1750	1760
ATA CTA TTT GCC CCC TGC AAC TAG A	AAAGAGTCTG	TGGAAAGCCGA	GAGTCTTTGA		
Ile Leu Phe Ala Pro Cys Asn	***				
1770	1780	1790	1800	1810	1820
GAACCTCATGC	ACGTTAGTAG	CTTCCTTATGC	CTCTGAAACC	GAGATAGACC	GGCTACTCGA
1830	1840	1850	1860	1870	1880
GGGGATGCCA	AGATACTCC	TTGCCGGTAT	TGGTGTAAAG	AGATCACTGC	TTGTCCCCTT
1890	1900	1910	1920	1930	1940
TATTTCTTC	TTCTTTGAG	AGCTTTAACCC	GAGGTAGTCG	TATTTTCGAG	CTTTTCGAAT
1950	1960	1970	1980	1990	2000
ACATGGTTCGT	TATCGGATCA	ATGGTGTTCCT	TCTAAGATCA	TTTGTAAATGC	ATATTTGAA
2010	2020	2030	2040	*	
AAACCAACATC	TCAGTATGCA	AAATAAAAAA	AAAAAAA	AAAAAA	

FIGURE 3 6 OF 6

16/66

Sequence Range: 1 to 1921

10	20	30	40	50	60
CGGCACGAGG TCACCTCTTA CCTCGCCTGC TTTCGAGCCCT GCCATGACTA CTACACCCTCC					*
70	80	90	100	110	120
GCATCCTTGT TCGGATCCAG GCCCATCCGC ACCACCCGCA GGCACGGAG GCTCAATCGA					*
130	140	150	160	170	180
GCTTCCCCTT CGGGGAGGC AATGGCTGTG GCTCTGAAAC CTGCACAGGA AGTTACCA					*
190	200	210	220		
AAG AAG CCA AGT ATC AAA CAG CGG CGA GTA GTC ACT GGA ATG					
Lys Lys Pro Ser Ile Lys Gln Arg Val Val Thr GLY Met>					
230	240	250	260	270	
GGT GTG ACT CCT CTA GGC CAT GAC CCT GAT GTT TTC TAC AAT AAT					
Gly Val Val Thr Pro Leu Gly His Asp Pro Asp Val Phe Tyr Asn Asn>					
280	290	300	310	320	
CTG CTT GAT GGA ACG AGT GGC ATA AGT GAG ATA GAG ACC TTT GAT TGT					
Leu Leu Asp Gly Thr Ser Gly Ile Ser Glu Ile Glu Thr Phe Asp Cys>					
330	340	350	360	370	
GCT CAA TTT CCT ACG AGA ATT GCT GGA GAG ATC AAG TCT TTC TCC ACA					
Ala Gln Phe Pro Thr Arg Ile Ala Gly Glu Ile Lys Ser Phe Ser Thr>					

17/66

380	390	400	410	420
GAT GGT TGG GTG GCC CCG AAG CTC TCC AAG AGG ATG GAC AAG TTG ATG				*
Asp Gly Trp Val Ala Pro Lys Leu Ser Lys Arg Met Asp Lys Phe Met>				
430	440	450	460	
CTT TAC ATG CTG ACT GCC GGC AAG AAA GCA TTA ACA ATT GGT GGA ATC				
Leu Tyr Met Leu Thr Ala Gly Lys Lys Ala Leu Thr Asn Gly Gly Ile>				
470	480	490	500	510
ACC GAA GAT GTG ATG AAA GAG CTA GAT AAA AGA AAA TGC GGA GTT CTC				
Thr Glu Asp Val Met Lys Glu Leu Asp Lys Arg Lys Cys Gly Val Leu>				
520	530	540	550	560
ATT GGC TCA GCA ATG GGT GGA ATG AAG GTA TTC AAT GAT GCC ATT GAA				
Ile Gly Ser Ala Met Gly Gly Met Lys Val Phe Asn Asp Ala Ile Glu>				
570	580	590	600	610
GCC CTA AGG ATT TCA TAT AAG AAG ATG AAT CCC TTT TGT GTA CCT TTC				
Ala Leu Arg Ile Ser Tyr Lys Lys Met Asn Pro Phe Cys Val Pro Phe>				
620	630	640	650	660
GCT ACC ACA AAT ATG GGA TCA GCT ATG CTT GCA ATG GAC TTG GGA TGG				*
Ala Thr Thr Asn Met Gly Ser Ala Met Leu Ala Met Asp Leu Gly Trp>				
670	680	690	700	
ATG GGC CCC AAC TAC TCG ATA TCT ACT GCT TGT GCA ACG AGT AAC TTT				
Met Gly Pro Asn Tyr Ser Ile Ser Thr Ala Cys Ala Thr Ser Asn Phe>				

FIGURE 4
2/6

18/66

710	720	*	730	740	750
TGT ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT GTG Cys Ile Leu Asn Ala Ala Asn His Ile Ile Arg Gly Glu Ala Asp Val>					
760	770	*	780	790	800
ATG CTT TGC GGG GGC TCA GAT GCG GTA ATC ATA CCT ATT GGT ATG GGA Met Leu Cys Gly Ser Asp Ala Val Ile Ile Pro Ile Gly Met Gly>					
810	820	*	830	840	850
GGT TTT GTT GCA TGC CGA GCT TTT TCA CAG AGA AAT GCC GAC CCT ACT Gly Phe Val Ala Cys Arg Ala Leu Ser Gln Arg Asn Ala Asp Pro Thr>					
860	870	*	880	890	900
AAA GCT TCA AGA CCA TGG GAC AGT AAT CGT GAT GGA TTT GTT ATG GGG Lys Ala Ser Arg Pro Trp Asp Ser Asn Arg Asp Gly Phe Val Met Gly>					
910	920	*	930	940	
GAA GGA GCT GGA GTG CTA CTA CTA GAG GAG TTA GAG CAT GCA AAG AAA Glu Gly Ala Gly Val Leu Leu Leu Glu Leu Glu His Ala Lys Lys>					
950	960	*	970	980	990
AGA GGT GCG ACT ATT TAC GCA GAA TTT CTA GGT GGA AGT TTC ACT TGC Arg Gly Ala Thr Ile Tyr Ala Glu Phe Leu Gly Ser Phe Thr Cys>					
1000	1010	*	1020	1030	1040
GAT GCC TAC CAC ATG ACC GAG CCT CAC CCT GAT GGA GCT GGA GTG ATT Asp Ala Tyr His Met Thr Glu Pro His Pro Asp Gly Ala Gly Val Ile>					

FIGURE 4
3/6

19/26

1050	1060	1070	1080	1090
CTC TGC ATA GAG AAG GCT TTG GCA CAG TCA GGA GTC TCT AGG GAA GAC			*	
Leu Cys Ile Glu Lys Ala Leu Ala Gln Ser Gly Val Ser Arg Glu Asp >				
1100	1110	1120	1130	1140
GTA AAT TAC ATA AAT GCA CAT GCC ACA TCC ACT CCA GCT GGA GAT ATC				
Val Asn Tyr Ile Asn Ala His Ala Thr Ser Thr Pro Ala Gly Asp Ile >				
1150	1160	1170	1180	
AAA GAG TAC CAA GCT CTT ATC CAC TGT TTC GGC CAA AAC GAG TTA				
Lys Glu Tyr Gln Ala Leu Ile His Cys Phe Gly Gln Asn Asn Glu Leu >				
1190	1200	1210	1220	1230
1240	1250	1260	1270	1280
GGT GGT GTG GAA GCA GTT TCA GTA GTT CAG GCA ATA AGG ACT GGG TGG				
Gly Gly Val Glu Ala Val Ser Val Val Gln Ala Ile Arg Thr Gly Trp >				
1290	1300	1310	1320	*
ATC CAT CCG AAT ATT AAT TTG GAA AAC CCA GAT GAA GGC GTG GAT ACC				
Ile His Pro Asn Ile Asn Leu Glu Asn Pro Asp Glu Gly Val Asp Thr >				
1340	1350	1360	1370	1380
AAA TTG CTC GTG GGC CCT AAG AAG GAG AGA CTG AAC ATT AAG GTC GGT			*	
Lys Leu Leu Val Val Gly Pro Lys Lys Glu Arg Leu Asn Ile Lys Val Gly >				

FIGURE 4
4/6

20/66

TTG TCT AAT TCA TTC GGG TTT GGT GGG CAC AAC TCG TCC ATA CTC TTC	1390	1400	1410	1420
Leu Ser Asn Ser Phe Gly Phe Gly His Asn Ser Ser Ile Leu Phe >				
1430 * 1440 1450 1460 1470 1480				
GCC CCT TAC AAC TAG GCGGTTT CATGTGTGGA ATTCTACTCA ATCTATCAA				
Ala Pro Tyr Asn * * * >				
1490 1500 * 1510 1520 1530 1540				
GCTGAAGTT TGAGGACTCC AGCATGTTGG TAGCTCCTTA CGTCTCTAGA CATGCCATG				
1550 1560 * 1570 1580 1590 1600				
AGTTTGTGT CGGGAGCTGT AGTCGGAACCC ATGACGGATT GAGTACTCAT GGGGACACAG				
1610 1620 * 1630 1640 1650 1660				
GATATACTCC TTGCTAGGAAT TGGTAGAGCA CTATTCATTA TCCCCATTTTT TTTCTGAAAT				
1670 1680 * 1690 1700 1710 1720				
CTCCCTCCTT ACGGTAGTTG TACTTTGAG CGTTTCATCG AGTCAGTGA GAAGAGAACAA				
1730 1740 * 1750 1760 1770 1780				
AAGCTAACTC GGGCACGTAG TAACCATTG CCCTTTGTT TGCTCTCTAT TTTATGCCCG				
1790 1800 * 1810 1820 1830 1840				
TTTTGTGGGT TAAAATTGT AAAACTAGAC GACTGGTTTG TTTTCTCTTG ATCATTGGAG				

FIGURE 4
5/6

21/66

1850 1860 1870 1880 1890 1900
ATGTATGGCC ATATTTGCC TTTCATTGATG ATAAAAAAA AAAAAAAA AAAAAAAA
1910 1920 *
AAAAAAA AAAAAAAA A

FIGURE 4
6/6

22/66

CTGGTACGCC	TGAGGTACC	GGTCGGGAAT	TCCCGGGTCG	ACCCACGGGT	CCGTCTTCCC	60
ACTCCGATCG	TTCTTCTTCC	ACCGCATCTC	TTCTCTCTC	TTGGTTCTC	CGCCATCCTC	120
CGCCGCC	ATG CAT TCC CTC CAG TCA CCC TCC CTT CGG GCC TCC CCG CTC					169
Met His Ser Leu Gln Ser Pro Ser Leu Arg Ala Ser Pro Leu	5	10				
GAC CCC TTC CGC CCC AAA TCA TCC ACC GTC CGC CCC CTC CAC CGA GCA						217
Asp Pro Phe Arg Pro Lys Ser Ser Thr Val Arg Pro Leu His Arg Ala	15	20	25	30		
TCA ATT CCC AAC GTC CGG GGC GCT TCC CCC ACC GTC TCC GCT CCC AAG						265
Ser Ile Pro Asn Val Arg Ala Ala Ser Pro Thr Val Ser Ala Pro Lys	35	40	45	50		
CGC GAG ACC GAC CCC AAG AAG CGC GTC GTG ATC ACC GGA ATG GGC CTT						313
Arg Glu Thr Asp Pro Lys Lys Arg Val Val Ile Thr Gly Met Gly Leu	50	55	60			
GTC TCC GTT TGC GGC TCC GAC GTC GAT GCG TAC TAC GAC AAG CTC CTG						361
Val Ser Val Phe Gly Ser Asp Val Asp Ala Tyr Tyr Asp Lys Leu Leu	65	70	75			
TCA GGC GAG AGC GGG ATC GGC CCA ATC GAC CGC TTC GAC GCC TCC AAG						409
Ser Gly Glu Ser Gly Ile Gly Pro Ile Asp Arg Phe Asp Ala Ser Lys	80	85	90			
TTC CCC ACC AGG TTC GGC GGC CAG ATT CGT GGC TTC AAC TCC ATG GGA						457
Phe Pro Thr Arg Phe Gly Gly Gln Ile Arg Gly Phe Asn Ser Met Gly	95	100	105	110		
TAC ATT GAC GGC AAA AAC GAC AGG CGG CTT GAT TGC CTT CGC TAC						505
Tyr Ile Asp Gly Lys Asn Asp Arg Arg Leu Asp Asp Cys Leu Arg Tyr	115	120	125			

FIGURE 5
1/4

23/66

TGC ATT GTC GCC GGG AAG TCT CTT GAG GAC GCC GAT CTC GGT GCC	553
Cys Ile Val Ala Gly Lys Ser Leu Glu Asp Ala Asp Leu Gly Ala	
130	140
GAC CGC CTC TCC AAG ATC GAC AAG GAG AGA GCC GGA GTG CTG GTC GGG	601
Asp Arg Leu Ser Lys Ile Asp Lys Glu Arg Ala Gly Val Leu Val Gly	
145	150
ACA GGA ATG GGT GGT CTG ACT GTC TTC TCT GAC GGG GTT CAA TCT CTT	649
Thr Gly Met Gly Leu Thr Val Phe Ser Asp Gly Val Gln Ser Leu	
160	170
ATC GAG AAG GGT CAC CGG AAA ATC ACC CCT CCT TTC ATC CCC TAT GCC	697
Ile Glu Lys Gly His Arg Lys Ile Thr Pro Phe Phe Ile Pro Tyr Ala	
175	180
ATT ACA AAC ATG GGG TCT GCC CTG CTC GCT ATT GAA CTC GGT CTG ATG	745
Ile Thr Asn Met Gly Ser Ala Leu Leu Ala Ile Glu Leu Gly Leu Met	
195	200
GGC CCA AAC TAT TCA ATT TCC ACT GCA TGT GCC ACT TCC AAC TAC TGC	793
Gly Pro Asn Tyr Ser Ile Ser Thr Ala Cys Ala Thr Ser Asn Tyr Cys	
210	215
TTC CAT GCT GCT AAT CAT ATC CGC CGT GAG GCT GAT CTT ATG	841
Phe His Ala Ala Asn His Ile Arg Arg Gly Glu Ala Asp Leu Met	
225	230
ATT GCT GGA GGC ACT GAG GCC GCA ATC ATT CCA ATT GGG TTG GGA GGC	889
Ile Ala Gly Gly Thr Glu Ala Ala Ile Ile Pro Ile Gly Leu Gly Gly	
240	245
	250

FIGURE 5
2/4

24/66

TTC	GCT	TGC	AGG	GCT	CTG	TCT	CAA	AGG	AAC	GAT	GAC	CCT	CAG	ACT	937	
Phe	Val	Ala	Cys	Arg	Ala	Leu	Ser	Gln	Arg	Asn	Asp	Pro	Gln	Thr	255	
															260	
															265	
GCC	TCT	AGG	CCC	TGG	GAT	AAA	GAC	CGT	GAT	GGT	TTT	GTG	ATG	GAA	985	
Ala	Ser	Arg	Pro	Trp	Asp	Lys	Asp	Arg	Asp	Gly	Phe	Val	Met	Gly	Glu	
															275	
															280	
															285	
GGT	GCT	GGG	GTG	TTG	GTG	CTG	GAG	AGC	TTG	GAA	CAT	GCA	ATG	AAA	CGA	1033
Gly	Ala	Gly	Val	Leu	Val	Leu	Glu	Ser	Leu	Glu	His	Ala	Met	Lys	Arg	
															300	
GGA	GCA	CCT	ATT	ATT	GCA	GAG	TAT	TTG	GGA	GGT	GCA	ATC	AAC	TGT	GAT	1081
Gly	Ala	Pro	Ile	Ile	Ala	Glu	Tyr	Leu	Gly	Gly	Ala	Ile	Asn	Cys	Asp	
															310	
GCT	TAT	CAC	ATG	ACT	GAC	CCA	AGG	GCT	GAT	GGT	CTC	GTC	TCC	TCT	1129	
Ala	Tyr	His	Met	Thr	Asp	Pro	Arg	Ala	Asp	Gly	Leu	Gly	Val	Ser	Ser	
															320	
TGC	ATT	GAG	AGC	CTT	GAA	GAT	GCT	GGC	GTC	TCA	CCT	GAA	GAG	GTC		
Cys	Ile	Glu	Ser	Ser	Leu	Glu	Asp	Ala	Gly	Val	Ser	Pro	Glu	Glu	Val	
															330	
AAT	TAC	ATA	AAT	GCT	CAT	GCG	ACT	TCT	ACT	CTA	GCT	GGG	GAT	CTC	GCC	1224
Asn	Tyr	Ile	Asn	Ala	His	Ala	Thr	Ser	Thr	Leu	Ala	Gly	Asp	Leu	Ala	
															340	
GAG	ATA	AAT	GCC	ATC	AAG	AAG	GTC	TTC	AAG	AAC	ACA	AAG	GAT	ATC	AAA	1272
Glu	Ile	Asn	Ala	Ile	Lys	Lys	Val	Phe	Lys	Asn	Thr	Lys	Asp	Ile	Lys	
															375	
															380	

FIGURE 5
3/4

25/66

ATT AAT GCA ACT AAG TCA ATG ATC GGA CAC TGT CTT GGA GCC TCT GGA	1320
Ile Asn Ala Thr Lys Ser Met Ile Gly His Cys Leu Gly Ala Ser Gly	
385 390 395	
GGT CTT GAA GCT ATA GCG ACT ATT AAG GGA ATA AAC ACC GGC TGG CTT	1368
Gly Leu Glu Ala Ile Ala Thr Ile Lys GLY Ile Asn Thr Gly Trp Leu	
400 405 410	
CAT CCC AGC ATT AAT CAA TTC AAT CCT GAG CCA TCC GTG GAG TTC GAC	1416
His Pro Ser Ile Asn Gln Phe Asn Pro Glu Pro Ser Val Glu Phe Asp	
415 420 425 430	
ACT GTT GCC AAC AAG AAG CAG CAA CAC GAA GTT AAT GTT GCG ATC TCG	1464
Thr Val Ala Asn Lys Lys Gln Gln His Glu Val Asn Val Ala Ile Ser	
435 440 445	
AAT TCA TTT GGA TTC GGA GGC CAC AAC TCA GTC GTG GCT TTC TCG GCT	1512
Asn Ser Phe Gly Phe Gly His Asn Ser Val Val Ala Phe Ser Ala	
450 455 460	
TTC AAG CCA TGA TTACC CATTACCAA GGCACCTTGTC ATTGAGAGTA CGGTTGTTG	1569
Phe Lys Pro	
465	
TCAAAACCAT TTAGGATACT GTTCTATGTA AAAAAGTA AGGATTATCA CTTCCTCCCTTC	1629
TAATCCCTGTC TCCAGTTGCA GAATGAAATT ATATTATT TAAAAAAA AAAAAAGGGC	1689
GGCCGGCTCTA GAGGATCCAA GCT	
	1712

FIGURE 5
4/4

26/66

Sequence Range: 1 to 1802

	10	20	30	40	50	60
GGTCCACCCA CGCGTCGGG CTTCCGACC ACATTTCAATT TCTTGCCCTCG TTATCTCGCC					*	
	70	80	90	100	110	
CGCTCCTCCG CGGTCTTCG CGGCCGGCGC C ATG CAA TCC CTC CAC TCC CCT TCC						
				Met Gln Ser Leu His Ser Pro Ser		
	120	130	140	150	160	
CTC CGC CCC TCC CCT CTC GAG CCC TTC CGC CTC AAT TCC CCC TCC TCC						
Leu Arg Pro Ser Pro Leu Glu Pro Phe Arg Leu Asn Ser Pro Ser Ser						
	170	180	*	190	200	210
GCC GCG GCT CTC CGC CCC CTC CGT CGC GCC AGC CTC CCC GTC ATC CGT						
Ala Ala Leu Leu Arg Pro Leu Arg Arg Ala Ser Leu Pro Val Ile Arg						
	220	230	*	240	250	
GCT GCC ACC GCC TCC GCC CCC AAG CGC GAG TCC GAC CCC AAG AAG CGG						
Ala Ala Thr Ala Ser Ala Pro Lys Arg Glu Ser Asp Pro Lys Lys Arg						
	260	270	280	*	290	300
GTC GTC ATC ACC GGC ATG GGC CTC GTC TCC GTC TCC GGC TCC GAC GTC					*	
Val Val Ile Thr Gly Met Gly Leu Val Ser Val Phe Gly Ser Asp Val						
	310	320	330	*	340	350
GAC GCC TAC TAC GAC AAG CTG CTC TCC GGC GAG AGC GGC ATC AGC CTA						
Asp Ala Tyr Tyr Asp Lys Leu Leu Ser Gly Glu Ser Gly Ile Ser Leu						

27 / 66

360	*	370	380	390	380	390	400
ATC GAC CGC TTC GAC GCT TCC AAA TTC CCC ACC AGG TTC GCC GGC CAG							
Ile Asp Arg Phe Asp Ala Ser Lys Phe Pro Thr Arg Phe Ala Gly Gln							
410	420	*	430	440	440	450	450
ATC CGT GGC TTC AAC GCG ACG GGC TAC ATC GAC GGC AAG AAC GAC CGG							
Ile Arg Gly Phe Asn Ala Thr Gly Tyr Ile Asp Gly Lys Asn Asp Arg							
460	470	*	480	490	490		
CGG CTC GAC GAT TGC CTC CGC TAC TGC ATT GTC GCC GGC AAG AAG GCT							
Arg Leu Asp ASP Cys Leu Arg Tyr Cys Ile Val Ala Gly Lys Lys Ala							
500	510	520	*	530	540	*	
CTC GAA GAC GCC GAT CTC GCC GGC CAA TCC CTC TCC AAG ATT GAT AAG							
Leu Glu Asp Ala Asp Leu Ala Gly Gln Ser Leu Ser Lys Ile Asp Lys							
550	560	570	*	580	590	*	
GAG AGG GCC GGA GTG CTA GTT GGA ACC GGT ATG GGT GGC CTA ACT GTC							
Glu Arg Ala Gly Val Leu Val Gly Thr Gly Met Gly Gly Leu Thr Val							
600	610	620	*	630	640	*	
TTC TCT GAC GGG GTT CAG AAT CTC ATC GAG AAA GGT CAC CGG AAG ATC							
Phe Ser Asp Gly Val Gln Asn Leu Ile Glu Lys Gly His Arg Lys Ile							
650	660	*	670	680	690	*	
TCC CCG TTT TTC ATT CCA TAT GCC ATT ACA AAC ATG GGG TCT GCG CTG							
Ser Pro Phe Phe Ile Pro Tyr Ala Ile Thr Asn Met Gly Ser Ala Leu							

FIGURE 6
2/5

28/66

700	710	720*		730
CTT GCC ATC GAT TGT GGT CTC ATG GGC CCA AAC TAT TCG ATT TCA ACT Leu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser Ile Ser Thr				
740	750	760	770	780*
GCA TGT GCT ACT TCC AAC TAC TGC TTT TAT GCT GCC GCC AAT CAT ATC Ala Cys Ala Thr Ser Asn Tyr Cys Phe Tyr Ala Ala Asn His Ile				
790	800	810	820	830
CGC CGA GGT GAG GCT GAC CTG ATG ATT GCT GGA GGA ACT GAG GCT GCG Arg Arg Gly Glu Ala Asp Leu Met Ile Ala Gly Gly Thr Glu Ala Ala				
840	850	860	870	880
GTC ATT CCA ATT GGT TTA GGA GGA TTC GTT GCC TGC AGG GCT TTA TCT Val Ile Pro Ile Gly Leu Gly Phe Val Ala Cys Arg Ala Leu Ser				
890	900*	910	920	930
CAA AGG AAT GAT GAT CCT CAG ACT GCC TCA AGG CCG TGG GAT AAG GAC Gln Arg Asn Asp Pro Gln Thr Ala Ser Arg Pro Trp Asp Lys Asp				
940	950	960	970	
CGT GAT GGC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG GTT ATG GAG Arg Asp Gly Phe Val Met Gly Glu Gly Ala Gly Val Leu Val Met Glu				
980	990	1000	1010	1020*
AGC TTG GAG CAT GCA ATG AAA CGG GGA CGG CCG ATT ATT GCA GAA TAT Ser Leu Glu His Ala Met Lys Arg Gly Ala Pro Ile Ile Ala Glu Tyr				

FIGURE 6
3/5

29/66

1030	1040	1050	1060	1070
TTG GGA GGT GCA GTC AAC	TGT GAT GCT TAT CAT ATG ACT GAT CCA AGG			
Leu Gly Ala Val Asn Cys Asp Ala Tyr His Met Thr Asp Pro Arg				
1080	1090	1100	1110	1120
*				
GCT GAT GGG CTT GGT GTC TCC TCG TGC ATT GAG AGC AGT CTC GAA GAT				
Ala Asp Gly Leu Gly Val Ser Ser Cys Ile Glu Ser Ser Leu Glu Asp				
1130	1140	1150	1160	1170
*				
GCC GGG GTC TCA CCT GAA GAG GTC AAT TAC ATA AAT GCT CAT GCG ACT				
Ala Gly Val Ser Pro Glu Glu Val Asn Tyr Ile Asn Ala His Ala Thr				
1180	1190	1200	1210	
*				
TCT ACT CTT GCT GGG GAT CTT GCC GAG ATA AAT GCC ATT AAG AAA GTT				
Ser Thr Leu Ala Gly Asp Leu Ala Glu Ile Asn Ala Ile Lys Lys Val				
1220	1230	1240	1250	1260
*				
TTC AAG AAC ACC AAG GAA ATC AAA ATC AAT GCA ACT AAG TCA ATG ATC				
Phe Lys Asn Thr Lys Glu Ile Lys Ile Asn Ala Thr Lys Ser Met Ile				
1270	1280	1290	1300	1310
GGA CAC TGT CTT GGA GCA TCA GGA GGT CTT GAA GCC ATC GCA ACC ATT				
Gly His Cys Leu Gly Ala Ser Gly Gly Leu Glu Ala Ile Ala Thr Ile				
1320	1330	1340	1350	1360
*				
AAG GGA ATA ACC ACC GGC TGG CTT CAT CCC AGC ATT AAT CAA TTT AAT				
Lys Gly Ile Thr Thr Gly Trp Leu His Pro Ser Ile Asn Gln Phe Asn				

FIGURE 6
4/5

1370	1380	*	1390		1400		1410
CCC GAG CCA TCG GTG GAC TTC AAC ACT GTT GCC AAC AAA AAG CAG CAA							
Pro Glu Pro Ser Val Asp Phe Asn Thr Val Ala Asn Lys Lys Gln Gln							
1420	1430	1440	*	1450			
CAT GAA GTG AAC GTC GCT ATC TCG AAT TCT TTT GGA TTT GGA GGG CAC							
His Glu Val Asn Val Ala Ile Ser Asn Ser Phe Gly Phe Gly Gly His							
1460	1470	1480	*	1490	1500	*	1510
AAC TCG GRT GRG GCA TRC TCA GCT TRC AAG CCA TGA ATTCT ACTTGGTTCA							
Asn Ser Val Val Ala Phe Ser Ala Phe Lys Pro ***							
1520	1530	1540	1550	*	1560	1570	
AAATGCACAC CAGTTGCTGA GATAAGGGCTT CAACTTGCTAG AGCAATTCTT TAATGCTT							
1580	1590	1600	1610	*	1620	1630	
GTCGGAAAGAG CGTAATAACCG GAATAGGTG GTCCCTTGAT AGTTCTCTCGA AGCCATTAG							
1640	1650	1660	1670	*	1680	1690	
GATGATGTTT TACTGTAATA ATCGAAGATG ATTCCCATTT TAATCTAGT CTCGTATTAA							
1700	1710	1720	1730	*	1740	1750	
TGTATTAGAA AGACCAATGA AAGATTGGT GTCATGTTTG TGTTGTCAAT GTTATTTAAG							
1760	1770	1780	1790	*	1800	*	
ATAAAGCAA AAAAAGAAA AAGGGGGCCC GCTCTAGAGG ATCCAGCTTA CT							

FIGURE 6
5/5

31/66

Sequence Range: 1 to 2369

10	20	30	40	50	60
GTACGGCTGC AGGTACCGGT CCGGAATTCC CGGGTCGACC CACGGTCCG CATAAAGAG					*
70	80	90	100	110	120
AGAGAGAGGG ATCCATCGAA TGCGGCCAAC CTCCCTTCAT CTTCGATTCA TTACCATACC					*
130	140	150	160	170	180
ATTCCGGCTGA TCCATTTCGC GCTTTTCG GGTCCTTCAT CCCAAAGGGT ATCCTTTCT					*
190	200	210	220	230	
ATCCATCTT CTCAAAGGGT CAGTCAGTTC CCTCCA ATG CCT GCC TCT TCC					
					Met Pro Ala Ser Ser >
240	250	260	270	280	
CTG CTC GCT TCC CCT CTC TGT ACG TGG CTC CTT GCC GCC TGC ATG TCT					
Leu Leu Ala Ser Pro Leu Cys Thr Trp Leu Leu Ala Ala Cys Met Ser >					
290	300	*	310	320	330
ACC TTC CAC CCC TCC GAC CCT CCT CCG CCT TCC ATC TCC TCT CCT					
Thr Ser Phe His Pro Ser Asp Pro Leu Pro Ser Ile Ser Ser Pro >					
340	350	*	360	370	
CGC CGA CGC CTC TCC CGC CGG ATT CTC TCC CAA TGC GCC CCA CTA					
Arg Arg Arg Leu Ser Arg Arg Arg Ile Leu Ser Gln Cys Ala Pro Leu >					

FIGURE 7
1/7

32/66

380	390	400	410	420
CCT TCT GCT TCC TCC GCC CTC CGC GGA TCC AGT TTC CAT ACC CTC GTC				*
Pro Ser Ala Ser Ser Ala Leu Arg Gly Ser Ser Phe His Thr Leu Val >				
430	440	450	460	470
ACC TCT TAC CTC GCC TGC TTC GAG CCC TGC CAT GAC TAC TAT ACA TCC				
Thr Ser Tyr Leu Ala Cys Phe Glu Pro Cys His Asp Tyr Tyr Thr Ser >				
480	490	500	510	520
GCA TCC TTG TTC GGA TCC AGA CCC ATT CGC ACC ACC CGC AGG CAC CGG				
Ala Ser Leu Phe Gly Ser Arg Pro Ile Arg Thr Thr Arg Arg His Arg >				
530	540	550	560	570
AGG CTC AAT CGA GCT TCC CCT TCC AGG GAG GCA ATG GCC GTG GCT CTG				
Arg Leu Asn Arg Ala Ser Pro Ser Arg Glu Ala Met Ala Val Ala Leu >				
580	590	600	610	
CAA CCT GAA CAG GAA GTT ACC ACA AAG AAG AAG CCA AGT ATC AAA CAG				
Gln Pro Glu Gln Glu Val Thr Thr Lys Lys Pro Ser Ile Lys Gln >				
620	630	640	650	660
CGG CGA GTA GTT GTG ACT GGA ATG GGT GTG ACT CCT CTA GGC CAT				*
Arg Arg Val Val Val Thr Gly Met Gly Val Val Thr Pro Leu Gly His >				
670	680	690	700	710
GAC CCT GAT GTT TTC TAC AAT AAT CTG CTT GAT GGA ACG AGT GGC ATA				
Asp Pro Asp Val Phe Tyr Asn Asn Leu Leu Asp Gly Thr Ser Gly Ile >				

FIGURE 7
2/7

33/66

720	730	740	750	760
AGC GAG ATA GAG ACC TTT GAT TGT GCT CAA TTT CCT ACG AGA ATT GCT Ser Glu Ile Glu Thr Phe Asp Cys Ala Gln Phe Pro Thr Arg Ile Ala>				
770	780	790	800	810
GGA GAG ATC AAG TCT TTC TCC ACA GAT GGT TGG GTG GCC CCG AAG CTC Gly Glu Ile Lys Ser Phe Ser Thr Asp Gly Trp Val Ala Pro Lys Leu>				
820	830	840	850	
TCT AAG AGG ATG GAC AAG TTC ATG CTA TAC ATG CTG ACC GCT GGC AAG Ser Lys Arg Met Asp Lys Phe Met Leu Tyr Met Leu Thr Ala` Gly Lys>	*	*		
860	870	880	890	900
AAA GCA TTA ACA GAT GGT GGA ATC ACC GAA GAT GTG ATG AAA GAG CTA Lys Ala Leu Thr Asp Gly Gly Ile Thr Glu Asp Val Met Lys Glu Leu>			*	
910	920	930	940	950
GAT AAA AGA AAA TGC GGA GTT CTC ATT GGC TCA GCA ATG GGT GGA ATG Asp Lys Arg Lys Cys Gly Val Leu Ile Gly Ser Ala Met Gly Gly Met>				
960	970	980	990	1000
AAG GTA TTC AAT GAT GCC ATT GAA GCC CTA AGG ATT TCA TAT AAG AAG Lys Val Phe Asn Asp Ala Ile Glu Ala Leu Arg Ile Ser Tyr Lys Lys>	*			
1010	1020	1030	1040	1050
ATG AAT CCC TTT TGT GTA CCT TTC GCT ACC ACA AAT ATG GGA TCA GCT Met Asn Pro Phe Cys Val Pro Phe Ala Thr Thr Asn Met Gly Ser Ala>	*			

FIGURE 7
3/7

34/66

1060	1070	1080	*	1090
ATG CTT GCA ATG GAC TTG GGA TGG ATG GGG CCC AAC TAC TCG ATA TCT Met Leu Ala Met Asp Leu Gly Trp Met Gly Pro Asn Tyr Ser Ile Ser>				
1100	1110	1120	1130	1140
ACT GCT TGT GCA ACG AGT AAC TTT TGT ATA ATG AAT GCT GCG AAC CAT Thr Ala Cys Ala Thr Ser Asn Phe Cys Ile Met Asn Ala Asn His>				*
1150	1160	1170	1180	1190
ATA ATC AGA GGC GAA GCA GAT GTG ATG CTT TGC GGG GGC TCA GAT GCG Ile Ile Arg Gly Glu Ala Asp Val Met Leu Cys Gly Ser Asp Ala>				
1200	1210	1220	1230	1240
GTA ATC ATA CCT ATT GGT ATG GGA GGT TTT GTC CGA GCT TTG Val Ile Ile Pro Ile Gly Met Gly Gly Phe Val Ala Cys Arg Ala Leu>				
1250	1260	1270	1280	1290
TCC CAG AGA AAT TCC GAC CCT ACT AAA GCT TCA AGA CCA TGG GAC AGT Ser Gln Arg Asn Ser Asp Pro Thr Lys Ala Ser Arg Pro Trp Asp Ser>				
1300	1310	1320	*	1330
AAT CGT GAT GGA TTT GTC ATG GGG GAA GGA GCT GGA GTC CTA CTA CTA Asn Arg Asp Gly Phe Val Met Gly Glu Gly Ala Gly Val Leu Leu Leu>				
1340	1350	1360	1370	1380
GAG GAG TTG GAG CAT GCA AAG AAA AGA GGT GCG ACT ATT TAC GCA GAA Glu Glu Leu Glu His Ala Lys Lys Arg Gly Ala Thr Ile Tyr Ala Glu>			*	

FIGURE 7
4/7

35 / 66

1390	1400	1410	1420	1430
TTT CTA GGT GGG AGT TTC ACT TGC GAT GCC TAC CAC ATT ACC GAG CCT				
Phe Leu Gly Gly Ser Phe Thr Cys Asp Ala Tyr His Met Thr Glu Pro>				
1440	1450	1460	1470	1480
*				
CAC CCT GAT GGA GCT GGA GTG ATT CTC TGC ATA GAG AAG GCT TTG GCT				
His Pro Asp GLY Ala GLY Val Ile Leu Cys Ile Glu Lys Ala Leu Ala>				
1490	1500	1510	1520	1530
*				
CAG TCA GGA GTC TCT AGG GAA GAC GTC ATT TAC ATA ATT GCC CAT GCC				
Gln Ser GLy Val Ser Arg GLU Asp Val Asn Tyr Ile Asn Ala His Ala>				
1540	1550	1560	1570	
*				
ACA TCC ACT CCG GCT GGA GAT ATC AAA GAG TAC CAA GCT CTT ATC CAC				
Thr Ser Thr Pro Ala GLy Asp Ile Asn Lys GLU Tyr Gln Ala Leu Ile His>				
1580	1590	1600	1610	1620
*				
TGT TTC GGC CAA AAC AGA GAG TTA AAA GTT AAT TCA ACC AAA TCA ATG				
Cys Phe GLy Gln Asn Arg Glu Leu Lys Val Asn Ser Thr Lys Ser Met>				
1630	1640	1650	1660	1670
ATT GGT CAC CTT CTC GGA GCA GGC GGT GGT GAA GCA GTC TCA GTA				
Ile GLy His Leu Leu GLy Ala Ala GLy GLy Val GLu Ala Val Ser Val>				
1680	1690	1700	1710	1720
*				
GTT CAG GCA ATA AGG ACT GGG TGG ATC CAT CCG ATT AAT TTG GAA				
Val Gln Ala Ile Arg Thr GLy Trp Ile His Pro Asn Ile Asn Leu Glu>				

FIGURE 7
5/7

36166

1730	1740	*	1750	1760	1770	
AAC CCA GAT GAA GGC GTG	GAT ACA AAA TTG CTC GTG GGT CCT AAG AAG					
Asn Pro Asp Glu Gly Val Asp	Thr Lys Leu Val Gly Pro Lys Lys>					
1780	1790	*	1800	1810		
GAG AGA CTG AAC GTT AAG GTC	GGT TTG TCT AAT TCA TTT GGG TTT GGT					
Glu Arg Leu Asn Val Lys Val	Gly Leu Ser Asn Ser Phe Gly Phe Gly>					
1820	1830	*	1840	1850	1860	1870
GGG CAC AAC TCG TCC ATA CTC	TTC GCC CCT TAC ATC TAG GAC GTTTCCGTGT					
Gly His Asn Ser Ser Ile	Phe Ala Pro Tyr Ile ***>					
1880	1890	*	1900	1910	1920	1930
GTGGAATTCT ACTCAACATA TCAAAGCTGA	AGTTTTGAGG ACTCCAGCAT GTTGGTAGCT					
1940	1950	1960	1970	1980	1990	
CCTTACGTCT CTAGACATGC COATGAGTT	TGTGTCCGGA GCTTTAGTCG GAACCATGAC					
2000	2010	2020	2030	2040	2050	
GGATTGAGTA CTCATGGCGA CACTTGATAT	ACTCCCTTGCT AGAATTGTTG GTAGAGCAAT					
2060	2070	2080	2090	2100	2110	
ATTCAATTATC TCATATTTC TTTTCTCTG	AAATCTCCCT CCTTGCAATA GTTGTACTTT					
2120	2130	2140	2150	2160	2170	
CGAGCTTTTC ATCGAGTCAG	TGAAGAAGAG AACAAAGCTG TTAACCTCGGG CACGTAGTAA					

FIGURE 7
6/7

37/66

2180 2190 2200 2210 2220 2230
CCATTGGCC TTTGTTTGC TCTCTATTTC ATCACCGTTT TGTGGTTTA AAATTTGTAA
2240 2250 2260 2270 2280 2290
AACTAGAAGA CTGGTTAGA TTGGTTTGT TTCTCATGTA TAATTGGGR ATGTATGTT
2300 2310 2320 2330 2340 2350
TGGAATAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
2360 AGGGGGCCG CTCTAGAGG

FIGURE 7
7/7

38 / 66

Sequence Range: 1 to 2374

10	20	30	40	50	60
-A-CNTGGTC CGGAATTCCC GGGTGCACCC	ACGGGTCCGC	GACGCCAAC	CACACAAAC	*	
70	80	90	100	110	120
TTCCTCAGCT TCTCTTCTCA AGACGGACGC	CATTGGCAGC	AGACAGACAG	ACAGACAGAC	*	
130	140	150	160	170	180
CCATAAAAGA GAGAGAGGG GATCCATCGA	ATGGGGCAC	CCTCCTTTCA	TCTTCGATTC	*	
190	200	210	220	230	240
ATTACCATAC CATTCCGCTG ATCCATTTC	CGCCCTTTCC	GGGTCTTTCA	TCCCCAAGGG	*	
250	260	270	280	290	300
TATCCTATCT TCTCAAAGGG TCAGTCAGTT	CCCTCCAATG	CCTGCCGCC			
310	320	330	340	350	360
CTTCCCTGCT CGCTTCCCT CTCTGTACGT	GGCTCCCTTGC	CGCCTGCATG	TCTACCTCCT	*	
370	380	390	400	410	420
TCCACCCCTC CGACCCTCTT CCGCCTTCA	TCTCCCTCTCC	TCGCCGACGC	CTCTCCGCC	*	
430	440	450	460	470	480
GCCGGATTCT CTCCCCAATGC GCCCCACTAC	CTTCTGCTTC	CTCCGCCCTC	CGCGGATCCA	*	

FIGURE 8
1/5

39166

490	500	510	520	530	540
GTTTCATAC	CCTCGTCACC	TCTTACCTCG	CCTGCTTCGA	GCCCTGCCAT	GACTACTATA
550	560	570	580	590	600
CATCCGGCATC	CTTGTTCGGA	TCCAGACCCA	TTCGCACCCAC	CCGCAGGCAC	CGGAGGCTCA
610	620	630	640	650	660
ATCGAGCTTC	CCCTTCCAGG	GGAGGCAATG	GCCGTGGCTC	TGCAAACCTGA	ACAGGAAGTT
670	680	690	700	710	720
ACCACAAAGA	AGAACCCAAG	TATCAAACAG	CGGGGAGTAG	TTGTGACTGG	AATGGGTGTG
730	740	750	760	770	780
GTGACTCCTC	TAGGCCATGA	ACCTGATGTT	TTTCTACAAT	AATCTGCTTG	ATGGAACCGAG
790	800	810	820	830	840
TGGCATAAGC	GAGATAGAGA	CCCTTGATG	TGCTCAATT	CCTACGAGAA	TTCCTGGAGA
850	860	870	880	890	900
GATCAAGTCT	TTCTCCACAG	ATGGTTGGGT	GGCCCCGAAAG	CTCTCTAAGA	GGATGGACAA
910	920	930	940	950	960
GTTCATGCTA	TACATGCTGA	CTGCTGGCAA	GAAGGCAATT	ACAGATGGTG	GAATCACCGA
970	980	990	1000	1010	1020
AGATGTGATG	AAAGAGCTAG	ATAAAAGAAA	ATGCGGGAGTT	CTCATGGCT	CAGCAATGGG

FIGURE 8
2/5

40/66

TGGAAATGAAAG	GTATTCAATG	ATGCCATTGA	AGCCCTAAGG	ATTCATATA	AGAAGATGAA	*
1090	1100	1110	1120	1130	1140	*
TCCCTTTTGT	GTACCTTCG	CTACCACAAA	TATGGGATCA	GCTATGCTTG	CAATGGACTT	
1150	1160	1170	1180	1190	1200	*
GGGATGGATG	GGGCCCAACT	ACTCGATATC	TACTGCTTGT	GCAACGGAGTA	ACTTTTGTAT	
1210	1220	1230	1240	1250	1260	*
AATGAATGCT	GCGAACCCATA	TAATCAGAGG	CGAAGCAGAT	GTGATGCTTT	GCGGGGGCTC	
1270	1280	1290	1300	1310	1320	*
AGATGCGGTA	ATCATACCTA	TGGTATGGG	AGGTTTTGTT	GCATGCCGAG	CTTGTGTCCCA	
1330	1340	1350	1360	1370	1380	*
GAGAAATTCC	GACCCTACTA	AAGCTTCAAG	ACCATGGGAC	AGTAATCGTG	ATGGATTGT	
1390	1400	1410	1420	1430	1440	*
TATGGGGAA	GGAGCTGGAG	TGCTACTACT	AGAGGAGTTG	GAGCATGCAA	AGAAAAGAGG	
1450	1460	1470	1480	1490	1500	*
TGCGACTATT	TACGGAGAAT	TTCTAGGTGG	GAGTTTCACT	TGGGATGCCT	ACACATGAC	

FIGURE 8
3/5

41/66

1510	1520	1530	1540	1550	1560	*
CGAGCCTCAC	CCTGATGGAG	CTGGAGTGT	TCTCTGCATA	GAGAAGGCTT	TGGCTCAGTC	
1570	1580	1590	1600	1610	1620	*
AGGAGTCTCT	AGGAAAGACG	TAAATTACAT	AAATGCCAT	GCCACATCCA	CTCCGGCTGG	
1630	1640	1650	1660	1670	1680	*
AGATATCAA	GAGTACCAAG	CTCTTATCCA	CTGTTTCGGC	CAAACAGAG	AGTTAAAGT	
1690	1700	1710	1720	1730	1740	*
TAATTCAACC	AAATCAATGA	TGGTCACT	TCTGGAGCA	GCCGGTGGTG	TGGAAGCCAGT	
1750	1760	1770	1780	1790	1800	*
TTCAGTAGTT	CAGGCAATAA	GGACTGGGTG	GATCCATCCG	AATATTAAATT	TGGAAAACCC	
1810	1820	1830	1840	1850	1860	*
AGATGAAGGC	GTGGGATACAA	ATTGCTCGT	GGGTCCCTAAG	AAGGAGAGAC	TGAACGTTAA	
1870	1880	1890	1900	1910	1920	*
GGTCGGTTTG	TCTAATTCAAT	TGGGGTTGG	TGGGCACAAC	TCGTCACATAC	TCTTCGCC	
1930	1940	1950	1960	1970	1980	*
TTACATCTAG	GACGTTTCGT	GTGTGGAATT	CTACTCAACA	TATCAAAGCT	GAAGTTTGTA	
1990	2000	2010	2020	2030	2040	*
GGACTCCAGC	ATGTTGGTAG	CTCCCTTAACGT	CTCTAGACAT	GCCCCATGAGT	TTTGTGTCGG	

FIGURE 8
4/5

42166

2050	2060	2070	2080	2090	2100
GAGCTTTAGT	CGGAACCATG	ACGGATTGAG	TACTCATGGC	GACACTTGAT	ATACTCCCTG
2110	2120	2130	2140	2150	2160
CTAGAATTGT	TGGTAGAGCA	ATATTCAATTA	TCTCATATT	TTTTTTCTC	TGAATTC
2170	2180	2190	2200	2210	2220
CTCCTTGCAA	TAGTTGTA	TTCGAGCTT	TCATCGAGTC	AGTGAAAGAAG	AGAACAAAGC
2230	2240	2250	2260	2270	2280
TGTTAACTCG	GGCACGTAGT	AACCATTGCG	CCTTTGTTT	GCTCTCTATT	TCATCACCGT
2290	2300	2310	2320	2330	2340
TTTGTGGTTT	TAAAATTGT	AAAACATAGAA	GACTGGTTA	GATTGGTTTG	TTTTCTCAAA
2350	2360	2370			
AAAAAAA	AAGGGGGGCC	GCTCTAGAGG	ATCC		

FIGURE 8
5/5

Sequence Range: 1 to 1580

1.0 CCTGAAATCGG ATTCAAGAGA GAGTTTCGGT GCTGGG ATG GCG AAT GCA TCT GGG
20 * 70 80 90 100
50
TTT CTG GGT TCT TCA GTT CCT GCC CTG AGA AGG GCA ACT CAG CAT TCG
Phe Leu Gly Ser Ser Val Pro Ala Leu Arg Arg Ala Thr Gln His Ser >
110 120 * 130 140 150
ATT TCA TCG TCT CGT GGA TCT TCC TCG GAG TTT GTC TCC AAA AGG GTG
Ile Ser Ser Arg Gly Ser Ser Glu Phe Val Ser Lys Arg Val >
160 170 180 190
TTT TGC TGT AGT GCC GTT CAG GAT TCT GAC AGG CAG TCT TTG GGT GAT
Phe Cys Ser Ala Val Gln Asp Ser Asp Arg Gln Ser Leu Gly Asp >
200 210 220 230 240
TCT CGC TCG CCG AGG CTT GTG AGT AGA GGA TGC AAA TTA ATT GGA TCT
Ser Arg Ser Pro Arg Leu Val Ser Arg Gly Cys Lys Leu Ile Gly Ser >
250 260 270 280 290
GGT TCT GCT ATA CCA GCT CTT CAA GTC TCA AAT GAT GAT CTT GCT AAA
Gly Ser Ala Ile Pro Ala Leu Gln Val Ser Asn Asp Asp Leu Ala Lys >
300 310 320 330 340
*
ATT GTC GAC ACC AAT GAT GAA TGG ATT ACT GTC CGA ACG GGG ATC CGC
Ile Val Asp Thr Asn Asp Glu Trp Ile Thr Val Arg Thr Gly Ile Arg >

WO 98/46776 PCT/US98/07114

43/16

FIGURE 9
1/5

44/66

350	360	*	370		380		390
AAC CGA AGG GTT CTC TCA	GGT AAA GAT AGT	CTT ACA AAT TTA	GCA TCA				
Asn Arg Arg Val Leu Ser	Gly Lys Asp Ser	Leu Thr Asn Leu Ala	Ser >				
400	410	*	420		430		
GAG GCA GCA AGG AAA GCT CTA GAG ATG GCA CAG GTA GAC GCA AAT GAT							
Glu Ala Ala Arg Lys Ala	Leu Glu Met Ala	Gln Val Asp Ala	Asn Asp >				
440	450	*	460		470		480
GTG GAT ATG GTT TTG ATG TGT ACT TCT ACC CCT GAG GAC CTT TTC GGC						*	
Val Asp Met Val Leu Met Cys Thr Ser Thr Pro Glu Asp Leu Phe Gly >							
490	500	*	510		520		530
AGT GCT CCT CAG ATA TCG AAA GCA CTT GGC TGC AAA AAG AAT CCT TTG							
Ser Ala Pro Gln Ile Ser Lys Ala Leu Gly Cys Lys Asn Pro Leu >							
540	550	*	560		570		580
TCT TAC GAC ATT ACC GCT GCA TGC AGT GGA TTT GTG TTG GGT TTA GTC							
Ser Tyr Asp Ile Thr Ala Ala Cys Ser Gly Phe Val Leu Gly Leu Val >							
590	600	*	610		620		630
TCA GCT GCT TGC CAC ATT AGA GGT GGG GGT TTT AAC AAT ATT CTA GTC							
Ser Ala Ala Cys His Ile Arg Gly Gly Phe Asn Asn Ile Leu Val >							
640	650	*	660		670		
ATT GGT GCT GAT TCT CTT CGG TAT GTT GAC TGG ACC GAT CGG GGA							
Ile Gly Ala Asp Ser Leu Ser Arg Tyr Val Asp Trp Thr Asp Arg Gly >							

FIGURE 9
2/5

45 / 66

680	690	700	710	720
ACA TGT ATT CTC TTT GGA GAT GCT GCA GCT GTA GTG CAG TCA				*
Thr Cys Ile Leu Phe Gly Asp Ala Ala Gly Val Val Val Gln Ser>				
730	740	750	760	770
TGT GAT GCT GAG GAA GAT GGG CTC TTT GCT TTT GAT TTG CAT AGC GAT				
Cys Asp Ala Glu Glu Asp Gly Leu Phe Ala Phe Asp Leu His Ser Asp>				
780	790	800	810	820
GGA GAT GGG CAA AGG CAT CTA AAA GCT GCA ATC AAA GAA GAT GAA GTT				
Gly Asp Gly Gln Arg His Leu Lys Ala Ala Ile Lys Glu Asp Glu Val>				
830	840	850	860	870
GAT AAA GCC CTG GGA CAT AAT GGG TCC ATC AGA GAT TTT CCA CCA AGG				
Asp Lys Ala Leu Gly His Asn Gly Ser Ile Arg Asp Phe Pro Pro Arg>				
880	890	900	900	*
CGT TCT TCA TAC TCT TGC ATC CAA ATG AAC GGT AAA GAG GTA TTC CGC				
Arg Ser Ser Tyr Ser Cys Ile Gln Met Asn Gly Lys Glu Val Phe Arg>				
920	930	940	950	960
TTT GCT TGC CGC TCT GTG CCT CAG TCA ATC GAA TCA GCA CTT GGA AAG				*
Phe Ala Cys Arg Ser Val Pro Gln Ser Ile Glu Ser Ala Leu Gly Lys>				
970	980	990	1000	1010
GCC GGT CTT AAT GGA TCC AAC ATC GAC TGG TTG CTT CAT CAG GCA				
Ala Gly Leu Asn Gly Ser Asn Ile Asp Thr Leu Leu His Gln Ala>				

FIGURE 9
3/5

46/66

1020	1030	1040	1050	1060
AAT CAG AGG ATC ATT GAT GCA GTA GCA ACA CGT CTA GAG GTT CCT CAA Asn Gln Arg Ile Ile Asp Ala Val Ala Thr Arg Leu Glu Val Pro Gln>				
1070	1080	1090	1100	1110
GAA CGA ATT ATC TCA AAC TTG GCA AAT TAC GGG AAC ACT AGT GCG GCA Glu Arg Ile Ile Ser Asn Leu Ala Asn Tyr Gly Asn Thr Ser Ala Ala>				
1120	1130	1140	1150	
TCC ATT CCC TTG GCA CTA GAC GAA GCT GTG AGG AGT GGA AAT GTG AAG Ser Ile Pro Leu Ala Leu Asp Glu Ala Val Arg Ser Gly Asn Val Lys>				
1160	1170	1180	1190	1200
CCG GGT CAC GTG ATT GCA ACC GCA GGA TTT GGC GCC GGA CTC ACA TGG Pro Gly His Val Ile Ala Thr Ala Gly Phe Gly Ala Gly Leu Thr Trp>				
1210	1220	1230	1240	1250
GGT TCT GCT ATT ATC AGG TGG GGA TAA GACTGAA GCCGAGCCAG CACTGCAGCT Gly Ser Ala Ile Ile Arg Trp Gly ***>				
1270	1280	1290	1300	1310
TCCTCTCAA CCGATGTTTC ACAGAAATT TT GCTTCCATGA CCANAAAAG AAGAACGTCAG TCTTTATGG AGCAAGCAAC AGCACACGAT CTTCATCACA TTGCCCTTT TGTTCCCT				
1330	1340	1350	1360	1370
1380				

FIGURE 9
4/5

47/66

1390 1400 1410 1420 1430 1440
TTTCCATTAG TTTGATGATT TGCTGACAA TACAATAACCC ATAGTTCTT TTGTCCCCAA
*
1450 1460 1470 1480 1490 1500
TAAGTATTG GTTTCTTGT TAATTGTTCA GCTTTTACTT CATTITGTCT CGGGACATTG
*
1510 1520 1530 1540 1550 1560
GAGATGACAG CATAAACATC ATGTTTATAT TTGCTAAA AAAAAAAA AAAAAAAA
*
1570 1580
AAAAAAA AAAAAAAA

FIGURE 9
5/5

48/6

FIGURE 10

49/66

FIGURE 11

50/166

FIGURE 12

51/66

E328013-28

FIGURE 13

52/66

FIGURE 15

1/2

53/66

FIGURE 15
2/2

54/66

FIGURE 16

55/66

FIGURE 17
1/2

56/66

FIGURE 17

2/2

57/66

FIGURE 18
1/2

*58/66***FIGURE 18**

2/2

59/66

12:0 levels (w%)

FIGURE 19
1/3

60/66

Number of independent events

FIGURE 19
3/3

SUBSTITUTE SHEET (RULE 26)

Number of independent events

FIGURE 19
2/3.

SUBSTITUTE SHEET (RULE 26)

62/66

FIGURE 20

18:0 levels (w%)

FIGURE -21-

1/3

64/62

18:0 levels (w%)FIGURE 21
2/3

65/66

FIGURE 21
3/3

FIGURE 22

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 15/54		A3	(11) International Publication Number: WO 98/46776 (43) International Publication Date: 22 October 1998 (22.10.98)
(21) International Application Number: PCT/US98/07114 (22) International Filing Date: 9 April 1998 (09.04.98)		(81) Designated States: AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97) US		Published <i>With international search report.</i>	
(71) Applicant (<i>for all designated States except US</i>): CALGENE LLC [US/US]; 1920 Fifth Street, Davis, CA 95616 (US).		(88) Date of publication of the international search report: 6 April 2000 (06.04.00)	
(72) Inventor; and (75) Inventor/Applicant (<i>for US only</i>): DEHESH, Katayoon [US/US]; 521 Crownpointe Circle, Vacaville, CA 95687 (US).			
(74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 1920 Fifth Street, Davis, CA 95616 (US).			
(54) Title: PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS			
(57) Abstract			
<p>By this invention, compositions and methods of use related to β-ketoacyl-ACP synthase of special interest are synthases obtainable from <i>Cuphea</i> species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/US 98/07114

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/82 C12N15/54

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95 06740 A (MAX PLANCK GESELLSCHAFT ;TOEPFER REINHARD (DE); MARTINI NORBERT (D) 9 March 1995 see page 16, paragraph 1; claim 17	15,22
P, X	LEONARD, J.M., ET AL.: "A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea Fat8 thioesterases" THE PLANT JOURNAL, vol. 13, no. 5, March 1998, pages 621-628, XP002081429 see the whole document	15,22, 29-32

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

20 October 1998

02/11/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Maddox, A

INTERNATIONAL SEARCH REPORT

Int'l. Application No PCT/US 98/07114
--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DEHESH, K., ET AL.: "Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase from Cuphea hookeriana" THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 167-172, XP002081430 see page 170, column 2, paragraph 2 ---	15,22
A	DEHESH K ET AL: "TWO NOVEL THIOESTERASES ARE KEY DETERMINANTS OF THE BIMODAL DISTRIBUTION OF ACYL CHAIN LENGTH OF CUPHEA PALUSTRIS SEED OIL" PLANT PHYSIOLOGY, vol. 110, 1996, pages 203-210, XP002014020 see page 209, column 2, paragraph 2 ---	15,22
A	SLABAUGH, M.B., ET AL.: "Cuphea wrightii beta-ketoacyl-ACP synthase II (CwKASII) mRNA complete cds." EMBL SEQUENCE ACCESSION NO. U67317, 13 December 1996, XP002081431 see the whole document ---	15,22
A	FUHRMANN, J., ET AL.: "Factors controlling medium-chain fatty acid synthesis in plastids from maturing Cuphea embryos" Z. NATURFORSCH., vol. 48c, 1993, pages 616-622, XP002081432 see the whole document ---	15,22
A	SCHUCH, R., ET AL.: "Medium-chain acyl-ACP thioesterase is not the exclusive enzyme responsible for early chain-length termination in medium-chain fatty acid synthesis" GRASAS Y ACEITES, vol. 44, 1993, pages 126-128, XP002081433 see the whole document ---	15,22
A	TOEPFER R ET AL: "MODIFICATION OF PLANT LIPID SYNTHESIS" SCIENCE, vol. 268, 5 May 1995, pages 681-685, XP002014017 see page 684, column 3, paragraph 2 ---	15,22
A	MARTINI N ET AL: "MODIFICATION OF FATTY ACID COMPOSITION IN THE STORAGE OIL OF TRANSGENIC RAPESEED" BIOLOGICAL CHEMISTRY HOPPE-SEYLER, vol. 376, September 1995, page S55 XP002014021 ---	15,22

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 98/07114

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 10189 A (CALGENE INC) 11 May 1994 see page 5, line 34 - line 36 ---	15,22
A	WO 92 03564 A (CALGENE INC) 5 March 1992 see page 22, line 19 - line 23 ---	15,22
A	WO 96 23892 A (CALGENE INC ;DEHESH KATAYOON (US); VOELKER TONI ALOIS (US); HAWKIN) 8 August 1996 see the whole document ---	15,22
A	WO 95 13390 A (CALGENE INC ;VOELKER TONI ALOIS (US); YUAN LING (US); KRIDL JEAN () 18 May 1995 see the whole document ---	15,22
A	WO 94 10288 A (CALGENE INC ;VOELKER TONI ALOIS (US); DAVIES HUW MAELOR (US); KNUT) 11 May 1994 see the whole document ---	15,22
A	WO 92 20236 A (CALGENE INC) 26 November 1992 see the whole document ---	15,22
A	VOELKER, T.A., ET AL.: "Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed." THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 229-241, XP002081434 see the whole document ---	15,22
A	WO 93 10240 A (DU PONT) 27 May 1993 see the whole document ---	15,22
A	WO 95 15387 A (CALGENE INC ;METZ JAMES GEORGE (US); LARDIZABAL KATHRYN DENNIS (US) 8 June 1995 see the whole document ---	15,22
T	DEHESH, K., ET AL.: "KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme" THE PLANT JOURNAL, vol. 15, no. 3, August 1998, pages 383-390, XP002081435 see the whole document -----	15,22, 29-32

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 98/ 07114

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 1-14,19,20,21,26,27,28

Remark : Claims 1-14 were not provided to the ISA at the time of search and hence the subject matter of these claims and the dependent claims 19,20, 21,26,27,28, could not be defined.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Jonal Application No	
PCT/US 98/07114	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9506740 A	09-03-1995	AU	688377 B	12-03-1998
		AU	7739894 A	22-03-1995
		CA	2169094 A	09-03-1995
		EP	0716708 A	19-06-1996
WO 9410189 A	11-05-1994	CA	2148358 A	11-05-1994
		EP	0666865 A	16-08-1995
		JP	8502891 T	02-04-1996
WO 9203564 A	05-03-1992	US	5475099 A	12-12-1995
		CA	2087977 A	16-02-1992
		EP	0495096 A	22-07-1992
		JP	6500234 T	13-01-1994
		US	5510255 A	23-04-1996
WO 9623892 A	08-08-1996	US	5654495 A	05-08-1997
		CA	2212003 A	08-08-1996
		EP	0807182 A	19-11-1997
WO 9513390 A	18-05-1995	CA	2176137 A	18-05-1995
		EP	0728212 A	28-08-1996
		JP	9505470 T	03-06-1997
		US	5723761 A	03-03-1998
		US	5654495 A	05-08-1997
WO 9410288 A	11-05-1994	US	5455167 A	03-10-1995
		CA	2147617 A	11-05-1994
		EP	0670903 A	13-09-1995
		JP	8502892 T	02-04-1996
		US	5654495 A	05-08-1997
		US	5667997 A	16-09-1997
WO 9220236 A	26-11-1992	US	5512482 A	30-04-1996
		CA	2109580 A	26-11-1992
		EP	0557469 A	01-09-1993
		US	5639790 A	17-06-1997
		US	5455167 A	03-10-1995
		JP	7501924 T	02-03-1995
WO 9310240 A	27-05-1993	AU	3073592 A	15-06-1993

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l.	Jonal Application No
	PCT/US 98/07114

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9310240 A		CA 2123495 A		27-05-1993
		EP 0667906 A		23-08-1995
		JP 7501446 T		16-02-1995
		MX 9206540 A		01-05-1993
		US 5500361 A		19-03-1996
WO 9515387 A	08-06-1995	US 5679881 A		21-10-1997
		CA 2177598 A		08-06-1995
		EP 0731840 A		18-09-1996
		JP 9505739 T		10-06-1997

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.