Тема: Числовые ряды

 1^0 . Ряд и его частичные суммы. Сходящиеся ряды. Сумма ряда. 2^0 . Необходимое условие сходимости ряда. 3^0 . Свойства сходящихся рядов. Критерий Коши сходимости ряда. 4^0 . Ряды с неотрицательными членами: критерий сходимости, признак сравнения, теорема о совместной сходимости. Примеры. Гармонический ряд. Эйлерова постоянная. 5^0 . Признак сходимости Коши. Следствие: признак Коши в предельной форме. Примеры. Признак сходимости Даламбера. Следствие: признак Даламбера в предельной форме. Примеры. 6^0 . Интегральный признак сходимости монотонно убывающей числовой последовательности. Пример. 7^0 . Знакопеременные ряды. Признак Лейбница.

 4^0 . Исследуем на сходимость некоторые модельные числовые ряды.

Пример. Исследовать на сходимость ряд

$$\sum_{k=1}^{\infty} a_k$$
, где $a_k = rac{1}{k} - \ln \left(1 + rac{1}{k}
ight)$.

Решение. Согласно формуле Тейлора имеем

$$f(x)=rac{1}{x}-\ln\Bigl(1+rac{1}{x}\Bigr)=rac{1}{2x^2}+o\Bigl(rac{1}{x^2}\Bigr)$$
 при $x o\infty$.

Следовательно, $a_k = f(k) \sim \frac{1}{2k^2}$ при $k \to \infty$, при этом ряд $\sum_{k=1}^{\infty} \frac{1}{k^2}$ сходится.

В соответствии со следствием из признака сходимости ряд $\sum_{k=1}^{\infty} a_k$ также сходится.

Заметим, что для частичной суммы s_n ряда из предыдущего примера справедливо сле-

дующее представление

$$s_n = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \ln(1 + \frac{1}{k}) = \sum_{k=1}^n \frac{1}{k} - \ln(n+1).$$

Как уже установлено, существует предел s_n при $n \to \infty$, т.е. $C = \lim_{n \to \infty} s_n$. Поэтому имеет место равенство

$$\sum_{k=1}^{n}rac{1}{k}=\ln n+C+o(1)$$
 ПрИ $n o\infty$.

В частности, для частичной суммы гармонического ряда справедлива эквивалентность

$$\sum_{k=1}^{n} rac{1}{k} \sim \ln n + C$$
 при $n o \infty$.

Константа C из этого асимптотического равенства называется *эйлеровой постоянной* и для нее справедливо представление

$$C = \sum_{k=1}^{\infty} \left[\frac{1}{k} - \ln\left(1 + \frac{1}{k}\right) \right] \approx 0.577.$$

Пример. Доказать сходимость ряда

$$\sum_{k=2}^{\infty} \left[\frac{1}{(k-1)^{\alpha}} - \frac{1}{k^{\alpha}} \right] \quad \text{при} \quad \alpha > 0.$$

Решение. Для частичных сумм ряда имеем соотношения

$$\sum_{k=2}^n \left[rac{1}{(k-1)^lpha} - rac{1}{k^lpha}
ight] = 1 - rac{1}{n^lpha} o 1$$
 При $n o \infty$.

Это и означает, что ряд сходится.

Лемма. Ряд Дирихле $\sum_{k=1}^{\infty} \frac{1}{k^{\beta}}$ при $\beta > 1$ сходится, а при $\beta \leqslant 1$ расходится.

Доказательство. При $\alpha>0$ по теореме Лагранжа о среднем для любого вещественного $x\geqslant 2$ имеет место равенство

$$rac{1}{(x-1)^{oldsymbol{lpha}}}-rac{1}{x^{oldsymbol{lpha}}}=rac{lpha}{(x-1+ heta)^{lpha+1}},$$

где $\theta = \theta(x)$ — число из интервала (0,1).

Применим это равенство в предыдущем примере для последовательности значений x=k, $k=2,3,\ldots$ Тогда получим

$$\sum_{k=2}^{\infty} \left[\frac{1}{(k-1)^{\alpha}} - \frac{1}{k^{\alpha}} \right] = \alpha \sum_{k=2}^{\infty} \frac{1}{(k-1+\theta_k)^{\alpha+1}} = 1.$$

Здесь $\theta_k = \theta(k)$ — число из интервала (0,1). Таким образом, при любом $\alpha>0$ ряд

$$\sum_{k=2}^{\infty} a_k = \sum_{k=2}^{\infty} \frac{1}{(k-1+\theta_k)^{\alpha+1}}$$

сходится. Функция $f(x) = 1/x^{\alpha+1}$ монотонно убывает и поэтому при $0 < \theta_k < 1$ справедлива оценка

$$a_{m{k}} = rac{1}{(m{k}-1+ heta_{m{k}})^{lpha+1}} \geqslant rac{1}{m{k}^{lpha+1}}.$$

Суммируя эти неравенства по всем натуральным ${m k}$, получаем

$$0<\sum_{k=1}^{\infty}\frac{1}{k^{1+\alpha}}\leqslant 1+\sum_{k=2}^{\infty}a_{k}<+\infty.$$

Полагая $\beta = 1 + \alpha > 1$, заключаем, что соответствующий ряд $\sum_{k=1}^{\infty} \frac{1}{k^{\beta}}$ сходится.

Пусть теперь $\beta \leqslant 1$. Тогда при всех $k \geqslant 1$ имеет место неравенство $\frac{1}{k\beta} \geqslant \frac{1}{k}$. Следовательно, частичные суммы соответствующего ряда ограничены снизу частичными суммами

гармонического ряда:

$$\sum_{k=1}^{N} \frac{1}{k^{\beta}} \geqslant \sum_{k=1}^{N} \frac{1}{k}.$$

Но уже установлено, что гармонический ряд расходится и при этом

$$\sum_{k=1}^{N} rac{1}{k^{eta}} \geqslant \sum_{k=1}^{N} rac{1}{k} \sim \ln n + C$$
 при $N
ightarrow \infty$.

Следовательно, при $eta\leqslant 1$ ряд $\sum_{k=1}^\infty rac{1}{k^{eta}}$ расхо-

дится как и ряд гармонический.

 5^0 . В результате сравнения ряда с неотрицательными членами с некоторой геометрической прогрессией с меньшим единицы знаменаталем получаются важные *признаки сходимости Коши и Даламбера*.

Теорема (признак Коши). Пусть последовательность a_k , $k=1,2,\ldots$, неотрицательных чисел такова, что для некоторых числа q, 0 < q < 1, и номера N справедлива оценка

$$\sqrt[k]{a_k} \leqslant q < 1,$$
 где $k \geqslant N.$

Тогда ряд $\sum\limits_{k=1}^\infty a_k$ сходится. Если же $\sqrt[k]{a_k}\geqslant 1$ при $k\geqslant N$, то ряд $\sum\limits_{k=1}^\infty a_k$ расходится.

k=1

Доказательство. Из первого условия теоремы получаем

$$\sqrt[k]{a_k} \leqslant q < 1 \quad \Rightarrow \quad a_k \leqslant q^k$$
 при $k \geqslant N$.

Но ряд $\sum\limits_{k=1}^{\infty}q^k$ сходится как сумма бесконечной геометрической прогрессии со знаменателем q<1 и, следовательно, по признаку сравнения ряд $\sum\limits_{k=1}^{\infty}a_k$ также сходится.

Если же

$$\sqrt[k]{a_k}\geqslant 1$$
 при $k\geqslant N,$

то $a_k\geqslant 1$ при всех достаточно больших k и необходимое условие сходимости ряда $\sum\limits_{k=1}^\infty a_k$ не выполняется: нижний предел последовательности a_k всегда не меньше единицы. Следовательно, ряд $\sum\limits_{k=1}^\infty a_k$ расходится.

Следствие (предельный признак Коши).

Пусть последовательность неотрицательных чисел a_k , $k=1,2,\ldots$, такова, что существует предел

$$\lim_{k \to \infty} \sqrt[k]{a_k} = C.$$

Если при этом C < 1, то ряд $\sum\limits_{k=1}^{\infty} a_k$ сходится.

Если же C>1, то ряд $\sum\limits_{k=1}^{\infty}a_{k}$ расходится.

Доказательство. Пусть C < 1, тогда найдется q: C < q < 1. По определению предела, начиная с некоторого номера N будет справедливо неравенство $\sqrt[k]{a_k} \leqslant q$, $k \geqslant N$. Пользуясь признаком Коши заключаем, что в этом случае ряд $\sum_{k=1}^{\infty} a_k$ сходится.

Если же C>1, то по определению предела при всех достаточно больших k имеет место оценка $a_k\geqslant 1$. Таким образом, необходимое

условие сходимости ряда $\sum\limits_{k=1}^{\infty}a_k$ не выполняется: нижний предел последовательности a_k всегда не меньше единицы. Следовательно, ряд $\sum\limits_{k=1}^{\infty}a_k$ расходится.

Если в условии признака Коши в предельной форме C=1, то ничего определенного о сумме ряда сказать нельзя: ряд может как сходиться так и расходиться.

Пример. Доказать сходимость ряда

$$\sum_{k=1}^{\infty} \left(rac{x^2}{k}
ight)^k$$
 при $orall x \in \mathbb{R}.$

Решение. Справедливо следующее предельное соотношение:

$$\lim_{k o\infty}\sqrt[k]{a_k}=\lim_{k o\infty}rac{x^2}{k}=0$$
 при $orall\,x\in\mathbb{R}.$

По признаку Коши в предельной форме ряд сходится.

Пример. Исследовать сходимость ряда

$$\sum_{k=1}^{\infty} rac{x^{2k}}{2^k}$$
 при $orall x \in \mathbb{R}.$

Решение. Справедливо следующее предельное соотношение:

$$\lim_{k o\infty}\sqrt[k]{a_k}=\lim_{k o\infty}rac{x^2}{2}=rac{x^2}{2}$$
 при $orall\,x\in\mathbb{R}.$

В соответствии с признаком Коши в предельной форме заключаем, что ряд сходится при $|x|<\sqrt{2}$ и расходится при $|x|>\sqrt{2}$.

Если $|x| = \sqrt{2}$, то ряд, как легко видеть, также расходится.

Теорема (признак Даламбера). Пусть последовательность a_k , $k=1,2,\ldots$, неотрицательных чисел такова, что для некоторых числа q, 0 < q < 1, и номера N при $k \geqslant N$ числа a_k строго положительны и удовлетворяют оценке

$$rac{a_{k+1}}{a_{k}} \leqslant q \qquad orall k \geqslant N.$$

Тогда числовой ряд $\sum\limits_{k=1}^{\infty}a_{k}$ сходится. Если же

$$rac{a_{k+1}}{a_{k}}\geqslant 1$$
 при $orall k\geqslant N,$

то ряд $\sum\limits_{k=1}^{\infty}a_{k}$ расходится.

 \mathcal{A} оказательство. Пусть $a_{k+1}\leqslant qa_k$ при $k\geqslant N$. Тогда для любого k>N справедливы нера-

венства

$$a_k \leqslant q a_{k-1} \leqslant q^2 a_{k-2} \leqslant \ldots \leqslant a_N q^{k-N} = \left(\frac{a_N}{q^N}\right) q^k.$$

Заметим, что в силу условия 0 < q < 1 сумма ряда

$$\sum_{k=1}^{\infty} \left(\frac{a_N}{q^N}\right) q^k = \left(\frac{a_N}{q^N}\right) \sum_{k=1}^{\infty} q^k = \left(\frac{a_N}{q^N}\right) \frac{q}{1-q}$$

существует и конечна. Следовательно, согласно признаку сравнения ряд $\sum_{k=1}^{\infty} a_k$ также сходится.

Если же $a_{k+1}\geqslant a_k$ при $k\geqslant N$, то имеем следующую цепочку неравенств:

$$a_k\geqslant a_{k-1}\geqslant a_{k-2}\geqslant\ldots\geqslant a_N>0$$
 при $orall k\geqslant N.$

Следовательно, всегда существующий нижний предел последовательности a_k строго больше нуля, т.е. необходимое условие сходимости ряда не выполнено. Это означает, что ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Следствие (признак Даламбера в предельной форме). Пусть последовательность неотрицательных чисел a_k , $k=1,2,\ldots$, такова, что существует конечный предел

$$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=D.$$

Если этот предел D < 1, то ряд $\sum\limits_{k=1}^{\infty} a_k$ сходится. Если же D > 1, то ряд $\sum\limits_{k=1}^{\infty} a_k$ расходится. Если в условии следствия D = 1, то ничего определенного о сумме ряда сказать нельзя: ряд может как сходиться так и расходиться.

Пример. Доказать сходимость ряда

$$\sum_{k=1}^{\infty} \frac{x^k}{k!} \quad \pi p u \quad \forall \, x > 0.$$

Решение. Справедливо следующее предель-

ное соотношение:

$$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=\lim_{k\to\infty}\frac{x}{k+1}=0.$$

В соответствии с признаком Даламбера в предельной форме заключаем, что ряд сходится при x>0.

Как можно заметить, его сумма совпадает с функцией e^x-1 .

Теорема (обобщение предельного признака Коши). Пусть неотрицательные числа a_k , $k=1,2,\ldots$, таковы, что верхний предел

$$C = \overline{\lim_{k o \infty}} \sqrt[k]{a_k}$$

строго меньше единицы: C < 1. Тогда ряд $\sum_{k=1}^{\infty} a_k$ сходится.

Если же
$$C>1$$
, то ряд $\sum\limits_{k=1}^{\infty}a_k$ расходится.

 6^{0} . Сформулируем и докажем признак сходимости ряда с образующими монотонную последовательность неотрицательными членами.

Теорема (интегральный признак Коши). *Ес-*ли неотрицательная функция f(x) монотонно убывает при $x\geqslant 1$, то числовой ряд $\sum\limits_{k=1}^{\infty}f(k)$ сходится тогда и только тогда когда сходится интеграл $\int\limits_{1}^{+\infty}f(x)\,dx$.

Доказательство. Функция f(x) монотонна и поэтому интегрируема по Риману на любом отрезке вида [1,n], где n — натуральное число, $n\geqslant 2$. При этом справедливы соотношения

$$0\leqslant \sum\limits_{k=1}^{n}f(k)\leqslant f(1)+\sum\limits_{k=2}^{n}\int\limits_{k-1}^{k}f(x)\,dx=$$

$$=f(1)+\int\limits_{1}^{n}f(x)\,dx.$$

Таким образом, если интеграл $\int_{1}^{+\infty} f(x) \, dx$ сходится, то последовательность частичных сумм ряда $\sum_{k=1}^{\infty} f(k)$ ограничена и, следовательно, сам ряд также сходится.

Возьмем теперь произвольное число $\eta>1$ и обозначим как $n=[\eta]$ его целую часть. Тогда

справедливы соотношения

$$\int\limits_{1}^{\eta}f(x)\,dx\leqslant \int\limits_{1}^{n+1}f(x)\,dx=$$

$$=\sum_{k=1}^{n}\int\limits_{k}^{k+1}f(x)\,dx\leqslant \sum_{k=1}^{n}f(k).$$

Последнее неравенство справедливо в силу монотонного убывания функции f(x). Если ряд $\sum_{k=1}^{\infty} f(k)$ сходится, то из полученного

неравенства получается оценка

$$\int\limits_{1}^{\eta}f(x)\,dx\leqslant\sum\limits_{k=1}^{+\infty}f(k).$$

Таким образом, первообразная от неотрицательной функции f(x) при $\eta \geqslant 1$ ограничена. Этого достаточно для сходимости несобственного интеграла $\int\limits_{1}^{+\infty} f(x) \, dx$.

Следствие.
$$P$$
яд $\sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}$ сходится или расхо-

дится одновременно с интегралом $\int\limits_{1}^{\cdot} \frac{1}{x^{lpha}} dx.$

Для обоснования этого следствия достаточно применить предыдущую теорему к неотрицательной монотонно убывающей функции $f(x)=rac{1}{r^{lpha}}.$

Таким образом, часто возникающий в разного рода оценках модельный числовой ряд

$$\sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}$$

при $\alpha > 1$ сходится, а при $\alpha \leqslant 1$ расходится.

 7^0 . Члены числовых рядов, возникающих в приложениях, далеко не всегда имеют одинаковый знак, т.е. не обязательно все положительны или отрицательны.

Определение. Ряд $\sum_{k=1}^{\infty} a_k$ с вещественными членами a_n , которые поочередно то положительны, то отрицательны, называется знакопеременным (или знакочередующимся) рядом.

Теорема (признак Лейбница). Пусть последовательность $\{a_k\}$ монотонна и $a_k \to 0$ при $k \to +\infty$. Тогда числовой ряд $\sum\limits_{k=1}^{\infty} (-1)^{k-1} a_k$ сходится. Если s — это его сумма, а s_n — его

частичная сумма, то справедлива оценка

$$|S-s_n| \leqslant |a_{n+1}| \qquad \forall n \in \mathbb{N}.$$

Доказательство. Без ограничения общности можем предполагать, что $\{a_k\}$ монотонно убывает и, следовательно, a_k — это неотрицательное число при любом k. Для любого

натурального p имеет место равенство

$$\left|\sum_{k=n+1}^{n+p}(-1)^{k-n-1}a_k
ight|=$$

$$= a_{n+1} - a_{n+2} + \dots + (-1)^{p-1} a_{n+p}.$$
 (1)

Если p — четное, то сумма в правой части равенства (1) — это сумма неотрицательных разностей вида $a_k - a_{k+1}$. Если же p — нечетное, то к сумме такого вида разностей

добавляется еще одно неотрицательное слагаемое a_{n+p} .

Заметим еще, что для любого натурального p справедлива оценка

$$\left| \sum_{k=n+1}^{n+p} (-1)^{k-n-1} a_k \right| \leqslant a_{n+1}. \tag{2}$$

При p нечетном оценка (2) следует из представления (1), правая часть которого запи-

сывается как сумма неотрицательного числа a_{n+1} и неположительных разностей вида $a_{k+1}-a_k$ при k от n+2 до n+p-1.

Если же p четное, то из предыдущей суммы следует еще вычесть неотрицательное число a_{n+p} . Следовательно, оценка (2) будет и в этом случае выполнена.

Оценку (2) перепишем в эквивалентном виде

$$\left|\sum_{k=n+1}^{n+p}(-1)^{k-n-1}a_k
ight|=$$

$$= \left| \sum_{k=n+1}^{n+p} (-1)^{k-1} a_k \right| \leqslant a_{n+1}. \tag{2'}$$

фундаментальна, т.е. удовлетворяет условию Коши. Таким образом, ряд $\sum\limits_{k=1}^{\infty} (-1)^{k-1}a_k$ сходится по критерию Коши.

Переходя к пределу при $p \to \infty$ в неравенстве (2'), получаем требуемую оценку погрешности.

Пример. Исследовать на сходимость знакочередующийся ряд $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}}$.

Решение. При $\alpha > 0$ выполнены условия признака Лейбница: последовательность $a_k = \frac{1}{k \cdot \alpha}$ монотонно убывает к нулю при $k \to \infty$. Следовательно, рассматриваемый ряд сходится при $\alpha > 0$. Если же $\alpha \leq 0$, то ряд расходится: не выполняется необходимое условие сходимости.

Тема: Ряды Фурье

 1^0 . Периодические функции и гармонический анализ. 2^0 . Ортогональные и ортонормированные системы функций. 3^0 . Ряды Фурье по ортогональным системам функций. 4^0 . Определение тригонометрического ряда Фурье.

 1^0 . В математике имеется отдельный раздел, в рамках которого изучаются свойства периодических функций. Этот раздел называется "гармоническим анализом".

Простейшей периодической функцией является синусоида, т.е. функция вида

$$y(t) = A\sin(\omega t + \alpha).$$

Здесь t — это вещественная независимая переменная, постоянная A — это амплитуда функции, ω — ее частота и α — это фаза синусоиды. Синусоида y = y(t) удовлетворяет следующему условию периодичности:

$$y(t+T)=y(t) \qquad orall\, t\in \mathbb{R},$$

где $T=2\pi/\omega$ — это период функции y=y(t).

Отметим, что область определения любой периодической функции— это вся числовая прямая.

Линейная комбинация любых двух периодических функций с одинаковым периодом T — это также периодическая функция с тем же периодом.

Таким образом, если сложить несколько синусоид вида $y_k(t) = A_k \sin(k\omega t + \alpha_k)$, $k=1,\ldots,N$, т.е. рассмотреть линейную комбинацию

$$\sum_{k=1}^{N} A_k \sin(k\omega t + \alpha_k),$$

то получится периодическая функция с периодом $T=2\pi/\omega$, график которой по форме существенно отличается от графика одной синусоиды.

Оказывается, что последовательность всех синусоид вида

$$y_k(t) = A_k \sin(k\omega t + \alpha_k), \quad k = 1, 2, \ldots,$$

является в пространстве всевозможных периодических функций с одним и тем же периодом $T=2\pi/\omega$ весьма представительным множеством. Точнее, любую достаточно гладкую функцию $\varphi(t)$ с условием периодичности

$$arphi(t+T)=arphi(t) \qquad orall\, t\in \mathbb{R},$$

можно разложить в ряд вида

$$A_0 + \sum_{k=1}^{+\infty} A_k \sin(k\omega t + \alpha_k), \tag{SS}$$

где $\omega = 2\pi/T$. По другому этот фундаментальный факт формулируют следующим образом:

каждое сложное колебание $\varphi(t)$ разлагается на отдельные гармонические колебания вида $y_k(t) = A_k \sin(k\omega t + \alpha_k).$

Синусоиды, входящие в разложение (SS) функции $\varphi(t)$, называются ее гармониками. В зависимости от номера k в разложении (SS) гармоника может быть первой, второй и т.д.

Процесс разложения колебания, т.е. периодической функции, в ряд по ее гармоникам, называется *гармоническим анализом* этой функции.

Преобразуем ряд (SS) к эквивалентному виду, воспользовавшись хорошо известной тригонометрической формулой

$$\sin(k\omega t + \alpha_k) = \sin\alpha_k\cos(k\omega t) + \cos\alpha_k\sin(k\omega t).$$

В результате получим разложение вида

$$a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right),$$
 (TS)

коэффициенты в котором задаются форму-лами

$$a_0 = A_0, \ a_k = A_k \sin \alpha_k, \ b_k = A_k \cos \alpha_k, \ k = 1, 2, \dots$$

Сделав в разложении (\mathbf{TS}) замену переменной $\mathbf{x} = \boldsymbol{\omega t}$, придем к *тригонометрическому* ряду

$$a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos kx + b_k \sin kx\right).$$
 (TS')

Таким образом, задача разложения сложного колебания в ряд (SS) по простым гармоникам сводится к задаче разложения периодической функции с периодом $T=2\pi$ в тригонометрический ряд (TS').

Последовательность функций

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos kx, \sin kx, \dots,$

по которой ведется разложение (TS'), называется тригонометрической системой и является простейшим примером так называемых ортогональных систем функций.

 $\mathbf{2^0}$. Пусть задана последовательность функций

$$\varphi_1(x), \ \varphi_2(x), \ldots, \varphi_n(x), \ldots$$
 (Φ)

Предположим, что области определения функций этой последовательности имеют непустое пересечение, которое также является областью.

Определение. Любой функциональный ряд вида

$$\sum_{k=1}^{\infty} a_k \varphi_k(x), \tag{S\Phi}$$

где $a_{m k}$ — числа, называется рядом по системе функций (Φ) . Числа $a_{m{k}}$ при этом называются коэффици- ентами ряда.

Степенной ряд $\sum_{k=0}^{\infty} a_k x^k$, например, является рядом по системе функций

$$1, x, x^2, \ldots, x^k, \ldots$$

Пусть коэффициенты a_k таковы, что ряд $(S\Phi)$ сходится в любой точке области опре-

деления некоторой функции f(x) и при этом

$$\sum_{k=1}^{\infty} a_k \varphi_k(x) = f(x) \qquad \forall x \in D_f.$$

Тогда говорят, что функция f(x) разложена в ряд по системе функций (Φ) .

Определение. Функции $\varphi(x)$ и $\psi(x)$, определенные на промежутке Δ , называются ортогональными на Δ , если их произведение интегрируемо на Δ и при этом справедливо равенство

$$\int\limits_{\Delta} arphi(x) \psi(x) \, dx = 0.$$

В частности, тождественно нулевая функция ортогональна любой другой функции.

Определение. Последовательность функций

$$\varphi_1(x), \ \varphi_2(x), \ldots, \varphi_n(x), \ldots$$
 (Φ)

называется ортогональной на промежутке Δ , если все эти функции определены на Δ , все произведения вида $\varphi_n(x)\varphi_m(x)$ интегрируемы на Δ и при этом справедливы равенства

$$\int\limits_{\Delta} arphi_{m{n}}(x) arphi_{m{m}}(x) \, dx = 0, \qquad n
eq m. \qquad (\Phi')$$

Если выполнены условия ортогональности (Φ') , то говорят также, что функции последовательности (Φ) попарно ортогональны на промежутке Δ .

Лемма. Тригонометрическая система функций

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos kx, \sin kx, \dots,$

ортогональна на интервале $(-\pi,\pi)$.

Доказательство. Используя формулу Ньютона — Лейбница, получаем равенства

$$\int\limits_{-\pi}^{+\pi} \cos kx \, dx = \int\limits_{-\pi}^{+\pi} \sin kx \, dx = 0, \hspace{0.5cm} k=1,2,\ldots,$$

т.е. нулевая гармоника тригонометрической системы ортогональна всем другим гармоникам этой системы.

Далее, проинтегрируем по интервалу $(-\pi,\pi)$

обе части тригонометрического равенства

$$2\sin nx\cos mx = \sin(n+m)x + \sin(n-m)x.$$

Тогда для любых натуральных m и n получим

$$\int\limits_{-\pi}^{+\pi} \sin nx \cos mx \, dx =$$

$$=rac{1}{2}\int\limits_{-\pi}^{+\pi} \sin(n+m)x\,dx + rac{1}{2}\int\limits_{-\pi}^{+\pi} \sin(n-m)x\,dx = 0.$$

Таким образом, функции $\sin nx$ и $\cos mx$ ортогональны на интервале $(-\pi,\pi)$.

Поочередно проинтегрировав по интервалу $(-\pi,\pi)$ тригонометрические равенства

$$2\cos nx\cos mx = \cos(n+m)x + \cos(n-m)x,$$

$$2\sin nx\sin mx = \cos(n-m)x - \cos(n+m)x,$$

заключаем, что для любых натуральных m и $n,\ n \neq m$, гармоники $\cos nx$ и $\cos mx$ ортогональны друг другу, равно как и гармоники $\sin nx$ и $\sin mx$.

Следствие. Тригонометрическая система

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots, \cos kx, \sin kx, \ldots$

ортогональна на любом промежутке длины 2π .

Это утверждение следует из периодичности всех функций рассматриваемой последовательности с одним и тем же периодом 2π , вследствие чего интеграл по промежутку длины 2π от произведения любых двух функций тригонометрической системы будет совпадать с интегралом по интервалу $(-\pi,\pi)$ от этого произведения.

Важным обобщением тригонометрической

системы является следующая последователь-

$$1, \cos \frac{\pi x}{l}, \sin \frac{\pi x}{l}, \dots, \cos \frac{k\pi x}{l}, \sin \frac{k\pi x}{l}, \dots$$
 (T_l)

Здесь l — положительное число. Отметим, что каждая из функций системы (\mathbf{T}_l) периодична с периодом 2l. Систему (\mathbf{T}_l) также называют тригонометрической.

Задача. Доказать, что система (\mathbf{T}_l) ортогональна на любом промежутке длины 2l.

Определение. Последовательность функций

$$\varphi_1(x), \ \varphi_2(x), \ldots, \varphi_n(x), \ldots$$
 (Φ)

определенных на промежутке Δ , называется ортонормированной на Δ , если эта система ортогональна на Δ и при этом справедливы равенства

$$\int\limits_{\Delta} |arphi_{m{n}}(x)|^2 \, dx = 1, \qquad n = 1, 2, \ldots$$
 (O_N)

Условие (o_N) часто называют *нормировкой* (или *калибровкой*) функций последовательности.

Пример. Система функций

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \dots, \frac{1}{\sqrt{\pi}}\cos kx, \frac{1}{\sqrt{\pi}}\sin kx, \dots$$
(NT)

ортонормирована на любом промежутке дли- 2π .

Аналогично, система функций

$$\frac{1}{\sqrt{2l}}, \quad \frac{1}{\sqrt{l}}\cos\frac{\pi x}{l}, \quad \frac{1}{\sqrt{l}}\sin\frac{\pi x}{l}, \dots,$$

$$\frac{1}{\sqrt{l}}\cos\frac{k\pi x}{l}, \quad \frac{1}{\sqrt{l}}\sin\frac{k\pi x}{l}, \dots \quad (NT_l)$$

ортонормирована на любом промежутке длины 2l.

Последовательности функций (NT) и (NT $_l$) называют нормированными тригонометриче-скими системами.