Lecture 8 : Continuous Dynamics

Slides were originally developed by Profs. Edward Lee and Sanjit Seshia, and subsequently updated by Profs. Gavin Buskes and Iman Shames.

Outline

- Modelling and its value
- Actor model of systems

The Value of Models

- In science, the value of a model lies in how well its behaviour matches that of the physical system.
- In engineering, the value of the physical system lies in how well its behaviour matches that of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary (but not sufficient) to be able to be able to construct a faithful physical realisation.

A Model

A Physical Realisation

Model Fidelity

To a scientist, the model is flawed.

To an engineer, the realisation is flawed.

I'm an engineer...

For CPS, we need to Change the Question

The question is *not* whether deterministic models can describe the behaviour of cyber-physical systems (with high fidelity).

The question is whether we can build cyber-physical systems whose behaviour matches that of a deterministic model (with high probability).

Deterministic models do not eliminate the need for robust, fault-tolerant designs.

In fact, they *enable* such designs, because they make it much clearer what it means to have a fault!

Modeling Techniques

Models that are abstractions of system dynamics (how system behavior changes over time)

- Modeling physical phenomena differential equations
- Feedback control systems time-domain modeling
- Modeling modal behavior FSMs, hybrid automata, ...
- Modeling sensors and actuators –calibration, noise, …
- Hardware and software concurrency, timing, power, …
- Networks latencies, error rates, packet losses, ...

Modeling of Continuous Dynamics

Ordinary differential equations, Laplace transforms, feedback control models, ... mass damper M χ $\hat{H}_1(s) = K_1 + K_2/s + K_3 s$ w(t)spring PID controller K = 0.00025 $\hat{H} = \frac{\hat{H}_1 \hat{H}_2}{1 + \hat{H}_1 \hat{H}_2}$ -0.1K < 0 K = 00.2 50 - 50 100 150

An Example: Helicopter Dynamics

The Fundamental Parts of any Helicopter

@2000 HowStuffWorks

Modeling Physical Motion

Six degrees of freedom:

Position: x, y, z

Orientation: pitch, yaw, roll

Notation

Position is given by three functions:

$$x \colon \mathbb{R} \to \mathbb{R}$$

$$y: \mathbb{R} \to \mathbb{R}$$

$$z \colon \mathbb{R} \to \mathbb{R}$$

where the domain \mathbb{R} represents time and the co-domain (range) \mathbb{R} represents position along the axis. Collecting into a vector:

$$\mathbf{x} \colon \mathbb{R} \to \mathbb{R}^3$$

Position at time $t \in \mathbb{R}$ is $\mathbf{x}(t) \in \mathbb{R}^3$.

Notation

Velocity

$$\dot{\mathbf{x}} \colon \mathbb{R} \to \mathbb{R}^3$$

is the derivative, $\forall t \in \mathbb{R}$,

$$\dot{\mathbf{x}}(t) = \frac{d}{dt}\mathbf{x}(t)$$

Acceleration $\ddot{\mathbf{x}} \colon \mathbb{R} \to \mathbb{R}^3$ is the second derivative,

$$\ddot{\mathbf{x}} = \frac{d^2}{dt^2} \mathbf{x}$$

Force on an object is $\mathbf{F} \colon \mathbb{R} \to \mathbb{R}^3$.

Newton's Second Law

Newton's second law states $\forall t \in \mathbb{R}$,

$$\mathbf{F}(t) = M\ddot{\mathbf{x}}(t)$$

where M is the mass. To account for initial position and velocity, convert this to an integral equation

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \dot{\mathbf{x}}(\tau) d\tau$$

$$= \mathbf{x}(0) + t\dot{\mathbf{x}}(0) + \frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} \mathbf{F}(\alpha) d\alpha d\tau,$$

Orientation

- Orientation: $\theta \colon \mathbb{R} \to \mathbb{R}^3$
- Angular velocity: $\dot{\theta} \colon \mathbb{R} \to \mathbb{R}^3$
- Angular acceleration: $\ddot{\theta} : \mathbb{R} \to \mathbb{R}^3$
- Torque: $\mathbf{T} \colon \mathbb{R} \to \mathbb{R}^3$

$$\theta(t) = \left[\begin{array}{c} \dot{\theta}_x(t) \\ \dot{\theta}_y(t) \\ \dot{\theta}_z(t) \end{array} \right] = \left[\begin{array}{c} \text{roll} \\ \text{yaw} \\ \text{pitch} \end{array} \right]$$

Angular version of force is torque

For a point mass rotating around a fixed axis:

- radius of the arm: $r \in \mathbb{R}$
- force orthogonal to arm: $f \in \mathbb{R}$
- mass of the object: $m \in \mathbb{R}$

$$T_{v}(t) = rf(t)$$

angular momentum, momentum

- Just as force is a push or a pull, a torque is a twist.
- Units: newton-meters/radian, Joules/radian
- Note that radians are metres/metre (2π metres of circumference per 1 metre of radius), so as units, are optional.

Rotational Version of Newton's Second Law

$$\mathbf{T}(t) = \frac{d}{dt} \left(I(t)\dot{\theta}(t) \right),\,$$

where I(t) is a 3×3 matrix called the moment of inertia tensor.

$$\begin{bmatrix} T_x(t) \\ T_y(t) \\ T_z(t) \end{bmatrix} = \frac{d}{dt} \left(\begin{bmatrix} I_{xx}(t) & I_{xy}(t) & I_{xz}(t) \\ I_{yx}(t) & I_{yy}(t) & I_{yz}(t) \\ I_{zx}(t) & I_{zy}(t) & I_{zz}(t) \end{bmatrix} \begin{bmatrix} \dot{\theta}_x(t) \\ \dot{\theta}_y(t) \\ \dot{\theta}_z(t) \end{bmatrix} \right)$$

Here, for example, $T_y(t)$ is the net torque around the y axis (which would cause changes in yaw), $I_{yx}(t)$ is the inertia that determines how acceleration around the x axis is related to torque around the y axis.

Feedback Control Problem

A helicopter without a tail rotor, like the one below, will spin uncontrollably due to the torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the tail rotor to counterbalance the torque of the top rotor.

Simplified Model

Yaw dynamics:

$$T_y(t) = I_{yy}\ddot{\theta}_y(t)$$

To account for initial angular velocity, write as

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau.$$

Actor Model of Systems

- A system is a function that accepts an input signal and yields an output signal.
- The domain and range of the system function are sets of signals, which themselves are functions.
- Parameters may affect the definition of the function S.

$$X = Y = (\mathbb{R} \to \mathbb{R})$$

Actor Model of the Helicopter

 Input is the net torque of the tail rotor and the top rotor. Output is the angular velocity around the y axis.

Parameters of the model are shown in the box. The input and output relation is given by the equation to the right.

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau$$

$$a = 1/I_{yy}$$

$$i = \dot{\theta}_y(0)$$

Helicopter

Actor Models with Multiple Inputs

$$S: (\mathbb{R} \to \mathbb{R})^2 \to (\mathbb{R} \to \mathbb{R})$$

$$\forall t \in \mathbb{R}, \quad y(t) = x_1(t) + x_2(t)$$

$$(S(x_1,x_2))(t) = y(t) = x_1(t) - x_2(t)$$

Proportional controller

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau$$

$$= \dot{\theta}_{y}(0) + \frac{K}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau$$

Note that the angular velocity appears on both sides, so this equation is not trivial to solve.

Behavior of the controller

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{K}{I_{yy}} \int_0^t (\psi(\tau) - \dot{\theta}_y(\tau)) d\tau$$

Desired angular velocity: $\psi(t) = 0$

$$\psi(t) = 0$$

Simplifies differential equation to:

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau$$

Which can be solved as follows (see textbook):

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0)e^{-Kt/I_{yy}}u(t)$$

Questions

- Can the behaviour of this controller change when it is implemented in software?
- How do we measure the angular velocity in practice?
 How do we incorporate noise into this model?
- What happens when you have failures (sensors, actuators, software, computers, or networks)?

Things to do ...

- Download the textbook and read Chapter 3
- Complete the assignment and return by Friday August 19 mid-night!
- Read over Workshop 3 and do the pre-workshop work

