Objective:

The main purpose of this document is to identify the best model to predict the insurance premium for the individual based on the given criteria in the dataset.

Requirements & Decisions:

Project Name	Insurance Premium Predictor			
Dataset Filename	insurance_pre.csv			
Goal	To predict the insurance premium of an individual.			

Problem Identification				
Stage1 (Domain Selection)	Machine Learning			
Stage2 (Learning Method) Supervised Learning				
Stage3 (Data Type)	Regression			

Dataset Info.					
No. of column	6				
No. of rows	1338				
INPUT Column Name	Age, Sex, BMI, Children, Smoker				
OUTPUT Column Name	Charges				

Research Values:

Based on request, the dataset was imported and the models are created using different algorithms in machine learning. The accuracy of the models are captured and documented below.

Pre-processing					
Data Type	Nominal				
Method	One Hot Encoding				
Purpose	Converting the string to numerical data				

Algorithms used to predict	1.Mutiple Linear regression 2.Support Vector Machine 3.Decision Tree Regression 4.Random Forest Regression
Evaluation Metrics	r2_score

Algorithms and R2 Values:

The R2 value for Multiple Linear Regression is 0.789479.

Multiple Linear regression	R2 Value	0.789479
----------------------------	-------------	----------

The Best R2 value for **Support Vector Machine** is <mark>0.877995</mark> using the Hyper Factor parameter **C=10000**.

Support Vector R2 Machine Value		Hyper Factor				
		linear	poly	rbf	sigmoid	(C)
	D.0	-0.010102	0.038716	-0.083382	-0.075429	1
	Value	0.462468	0.617956	-0.032273	0.039307	10
raciiiic	Value	0.628879	0.617956	0.320031	0.52761	100
		0.76493	0.856648	0.810206	0.28747	1000
		0.741423	0.859171	0.877995	-34.151535	10000

The Best R2 Value for **Decision Tree Regression** is 0.742155 using the Hyper Factor parameters criterion='sqared_error', splitter='best', max_features='log2'.

		splitter	max features	criterion			
	spiicter		squared_error	friedman_mse	absolute_error	poisson	
			sqrt	0.735031	0.69424	0.685038	0.738281
Decision Tree R2	best	log2	<mark>0.742155</mark>	0.650137	0.719249	0.693742	
Regression	Value	Э	None	0.69313	0.709051	0.670448	0.712466
		sqrt	0.67981	0.547566	0.699331	0.70492	
		random	log2	0.73104	0.690269	0.617093	0.695381
			None	0.697368	0.700833	0.703366	0.68352

The Best R2 Value for Random Forest Regression is 0.873995 using the Hyper Factor parameters criterion='absolure_error', bootstrap=TRUE, max_features='log2', n_estimators=100.

			bootstrap	bootstrap may foatures	criterion			
		n_estimators=10		max_features	squared_error	friedman_mse	absolute_error	poisson
				sqrt	0.854116	0.859664	0.854797	0.850702
			TRUE	log2	0.856894	0.845378	0.849596	0.856124
				None	0.861066	0.833268	0.836587	0.827359
				sqrt	0.839213	0.839919	0.825159	0.833108
			FALSE	log2	0.838229	0.836644	0.827215	0.823331
				None	0.697185	0.695152	0.693856	0.73614
			bootstrap	may foatures		CI	riterion	
			Dootstrap	max_features	squared_error	friedman_mse	absolute_error	poisson
				sqrt	0.871757	0.871509	0.87085	0.869206
Random Forest	R2			log2	0.869616	0.872181	0.873995	0.868791
Regression	Value			None	0.856132	0.853654	0.853985	0.8501195
				sqrt	0.846779	0.845727	0.844496	0.845195
				log2	0.845229	0.849785	0.841603	0.849873
				None	0.69947	0.70225	0.692502	0.733205
			bootstrap	hashahara ang fasi	criterion			
				max_features	squared_error	friedman_mse	absolute_error	poisson
				sqrt	0.872131	0.872363	0.873904	0.871963
		n_estimators=1000	TRUE	log2	0.872409	0.873226	0.873667	0.872535
				None	0.85634	0.85456	0.854506	0.855085
			FALSE	sqrt	0.847509	0.847112	0.846014	0.847939
				log2	0.848441	0.847606	0.84408	0.848821
				None	0.703602	0.702176	0.693536	0.732958

Research Observation:

The below table shows the best R2 value from each algorithm with the respective Hyper Factor parameters.

Algorithm	Best R2 Value	Hyper Factor Parameter
Multiple Linear regression	0.789479	_
Support Vector Machine	0.877995	C=10000
Decision Tree Regressor	0.742155	criterion='sqared_error', splitter='best', max_features='log2'
Random Forest Regressor	0.873995	criterion='absolure_error', bootstrap=TRUE, max_features='log2', n_estimators=100

Conclusion:

Based on the above research table the model created using the algorithm **Support Vector Machine** using the Hyper Factor parameter **C=10000** is having the higher R2 VALUE of **0.877995** and should be used for this project.