Pizzaseminar zu erzeugenden Funktionen

4. Übungsblatt

Aufgabe 1: Die negative Binomialverteilung

Berechne die wahrscheinlichkeitserzeugende Funktion der negativen Binomialverteilung.

Aufgabe 2: Aussterbewahrscheinlichkeit bei geometrischer Verteilung

Sei bei einem Galton–Watson-Prozess die Zufallsgröße C der Anzahl Nachkommen geometrisch verteilt mit Trefferwahrscheinlichkeit p. Berechne die Aussterbewahrscheinlichkeit.

Hinweis: Die wahrscheinlichkeitserzeugende Funktion von C ist $G_C(s) = \frac{ps}{1-as}$.

Aufgabe 3: Simulation von Galton-Watson-Prozessen

Entwerfe in der Programmiersprache deiner Wahl ein Programm zur Simulation von Galton–Watson-Prozessen. Verwende als Verteilung der Nachkommenszahl $\mathcal C$ deine Lieblingsverteilung.

Aufgabe 4: Allgemeine Theorie zu Galton-Watson-Prozessen

Beweise die im Vortrag nur noch angegebene Proposition über Galton-Watson-Prozesse: Ist P(C=0) > 0, so ist die Aussterbewahrscheinlichkeit genau dann 1, wenn der Erwartungswert von C kleiner oder gleich 1 ist.

Tipp: Unterscheide die Fälle $G'_C(1) > 1$ und $G'_C(1) \le 1$. Skizziere in beiden Fällen die Funktion G_C auf [0,1]. Verwende den Satz von Rolle, um anschauliche Intuition rigoros machen zu können.