

ACTIVIDADES UNIDAD 1

Realice las siguientes actividades de acuerdo a las indicaciones dadas en la Guía de la unidad 1. Encontrará las respuestas al final.

Actividad 1

Decidir si cada una de las siguientes ecuaciones determina una función f(x) = y con dominio \mathbb{R} :

a)
$$y^2 = 16x$$

b)
$$y = \sqrt{5x}$$

c)
$$x = 6$$

d)
$$y = -5$$

e)
$$x^2 + y^2 = 16$$

f)
$$y = (x+1)^2$$

g)
$$y = \frac{1}{(x+1)^2}$$

h)
$$y = \frac{1}{x^2 + 1}$$

Actividad 2

Determine el dominio de cada una de las siguientes funciones:

a)
$$a(x) = 2x + 1$$

b)
$$b(x) = 15$$

c)
$$c(x) = \sqrt[2]{x + \frac{1}{4}}$$

d)
$$d(x) = (x+1)^2$$

e)
$$e(x) = \sqrt[3]{3x-5}$$

f)
$$f(x) = \frac{1}{x+3}$$

g)
$$g(x) = -3x^2 + 10x$$

h)
$$h(x) = \frac{x+6}{x-8}$$

Actividad 3

Determinar para cada función del ejercicio anterior f(0), f(-1), y f(2a + b).

Actividad 4

Determine para cada función de la actividad 2 el conjunto de ceros y la ordenada al origen.

Actividad 5

Identificar cuáles de las siguientes representaciones gráficas corresponden a funciones.

f)

Actividad 6

Actividad obligatoria Nro 1 - Participación en el foro "Análisis gráfico de funciones". Actividad grupal

Actividad 7

Actividad obligatoria Nro 2 - Realice la actividad propuesta en el Campus y envíe sus respuestas al tutor.

Actividad 8

 a) Determine el vértice, las raíces, la ordenada al origen y la concavidad de cada una de las funciones dadas. Luego escriba la función en sus tres formas (polinómica, canónica y factorizada)

i.
$$f(x) = -2(x^2 - 2x)$$

ii.
$$f(x) = -x(8-x) + 20$$

b) Determinar para las siguientes funciones dominio, imagen, asíntotas y raíz:

i.
$$f(x) = \frac{8x-3}{6x+4}$$

$$ii. f(x) = \frac{2x+2}{x}$$

Actividad 9

Para cada par de funciones determine:

$$\sim$$
 La función $(f+g)$ y su dominio

$$\sim$$
 La función $\left(\frac{f}{g}\right)$ y su dominio

$$\sim$$
 Las funciones $f \circ g \neq g \circ f$, si es posible, y sus dominios

a)
$$f(x) = 2x^3 - 4x^2$$
 y $g(x) = x^2 - 5x$

b)
$$f(x) = \sqrt{x+1}$$
 y $g(x) = x^4 - 1$

c)
$$f(x) = \frac{x}{x-3}$$
 $y g(x) = 3x + 5$

Respuestas de las actividades

Actividad 1

- a) No es función, no verifica unicidad
- b) No es función, no verifica existencia
- c) No es función no verifica existencia ni unicidad
- d) Si es función.

- e) No es función, no verifica unicidad
- f) Si es función.
- g) No es función, no verifica existencia
- h) Si es función.

Actividad 2

- a) Dom $a = \mathbb{R}$
- **b)** $Dom b = \mathbb{R}$
- c) Dom $c = \left[-\frac{1}{4}; \infty \right)$
- **d)** $Dom d = \mathbb{R}$

- e) $Dom e = \mathbb{R}$
- **f)** $Dom f = \mathbb{R} \{-3\}$
- g) Dom $g = \mathbb{R}$
- **h)** *Dom* $g = \mathbb{R} \{8\}$

Actividad 3

a)
$$a(0) = 1$$
, $a(-1) = -1$ y $a(2a + b) = 4a + 2b + 1$

b)
$$b(0) = 15$$
, $b(-1) = 15$ y $b(2a + b) = 15$

c)
$$c(0) = \frac{1}{2}$$
, $c(-1)$ no existe y $c(2a+b) = \sqrt[2]{(2a+b) + \frac{1}{4}}$

d)
$$d(0) = 1$$
, $d(-1) = 0$ y $d(2a + b) = [(2a + b) + 1]^2$

e)
$$e(0) = \sqrt[3]{-5}$$
, $e(-1) = -2$ y $e(2a + b) = \sqrt[3]{6a + 3b - 5}$

f)
$$f(0) = \frac{1}{3}$$
, $f(-1) = \frac{1}{2}$ y $f(2a+b) = \frac{1}{(2a+b)+3}$

g)
$$g(0) = g$$
, $g(-1) = -13$ y $g(2a + b) = -3(2a + b)^2 + 20a + 10b$

h)
$$h(0) = -\frac{3}{4}$$
, $h(-1) = -\frac{5}{9}$ y $h(2a+b) = \frac{(2a+b)+6}{(2a+b)-8}$

Actividad 4

- **b)** $C_0 = \emptyset$ y ordenada al origen y = 15
- c) $C_0 = \left\{-\frac{1}{4}\right\}$ y ordenada al origen $y = \frac{1}{2}$
- **d)** $C_0 = \{-1\}$ y ordenada al origen y = 1
- a) $C_0 = \left\{-\frac{1}{2}\right\}$ y ordenada al origen y = 1 e) $C_0 = \left\{\frac{5}{3}\right\}$ y ordenada al origen $y = \sqrt[3]{-5}$
 - f) $C_0 = \emptyset$ y ordenada al origen $y = \frac{1}{3}$
 - g) $C_0 = \left\{0; \frac{10}{3}\right\}$ y ordenada al origen y = 0
 - **h)** $C_0 = \{-6\}$ y ordenada al origen $y = -\frac{3}{4}$

Actividad 5

Son funciones las relaciones correspondientes a los gráficos b), e) y f).

Actividad 8

a)

i.
$$V(1; 2)$$
, raíces: $\{0; 2\}$, ordenada al origen $y = 0$, cóncava hacia abajo $f(x) = -2x^2 + 4x = -2(x-1)^2 + 2 = -2x(x-2)$

ii.
$$V(4;4)$$
, no tiene raíces reales, ordenada al origen $y=20$, cóncava hacia arriba
$$f(x)=x^2-8x+20=(x-4)^2+4$$

b)

i.
$$Dom f = \mathbb{R} - \left\{-\frac{2}{3}\right\}$$
, $Im f = \mathbb{R} - \left\{\frac{4}{3}\right\}$; $AV: x = -\frac{2}{3}$; $AH: y = \frac{4}{3}$; raiz: $x = \frac{3}{8}$

ii. Dom
$$f = \mathbb{R} - \{0\}$$
, Im $f = \mathbb{R} - \{2\}$; AV: $x = 0$; AH: $y = 2$; raiz: $x = -1$

Actividad 9

a)
$$(f+g)(x) = 2x^3 - 3x^2 - 5x$$
, $Dom(f+g) = \mathbb{R}$

$$\left(\frac{f}{g}\right)(x) = \frac{2x^3 - 4x^2}{x^2 - 5x} = 2x, \quad Dom\left(\frac{f}{g}\right) = \mathbb{R} - \{0; 5\}$$

$$(f \circ g)(x) = 2(x^2 - 5x)^3 - 4(x^2 - 5x)^2 = 2x^6 - 30x^5 + 146x^4 - 210x^3 - 100x^2$$
, $Dom(f \circ g) = \mathbb{R}$

$$(g \circ f)(x) = (2x^3 - 4x^2)^2 - 5(2x^3 - 4x^2) = 4x^6 - 16x^5 + 16x^4 - 10x^3 + 20x^2$$
, $Dom(g \circ f) = \mathbb{R}$

b)
$$(f+g)(x) = \sqrt{x+1} + x^4 - 1$$
, $Dom(f+g) = [-1; +\infty)$

$$\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x+1}}{x^4 - 1}, \quad Dom\left(\frac{f}{g}\right) = (-1; 1) \cup (1; +\infty)$$

$$(f \circ g)(x) = \sqrt{x^4}$$
, $Dom(f \circ g) = \mathbb{R}$

$$(g \circ f)(x) = (\sqrt{x+1})^4 - 1 = (x+1)^2 - 1$$
, $Dom(f \circ g) = [-1; +\infty)$

c)
$$(f+g)(x) = \frac{x}{x-3} + 3x + 5$$
, $Dom(f+g) = \mathbb{R} - \{3\}$

$$\left(\frac{f}{g}\right)(x) = \frac{x}{(x-3)(3x+5)}, \quad Dom\left(\frac{f}{g}\right) = \mathbb{R} - \left\{-\frac{5}{3}; 3\right\}$$

No es posible determinar $f \circ g$, ya que $Im\ g$ no está incluido en el $Dom\ f$. Para poder componer, se debe restringir el domino de g al conjunto $\mathbb{R} - \left\{-\frac{2}{3}\right\}$ y en tal caso tendríamos:

$$(f \circ g)(x) = \frac{3x+5}{3x+2}, \qquad Dom(f \circ g) = \mathbb{R} - \left\{-\frac{2}{3}\right\}$$

$$(g \circ f)(x) = \frac{3x}{x-3} + 5, \qquad Dom(f \circ g) = \mathbb{R} - \{3\}$$