INTERACTING WITH HADWARE

Bridge the Gap

Between Bloqade and hardware!

$$\frac{H}{\hbar} = \sum_{i} \frac{\Omega(t)}{2} \left(e^{i\phi(t)} |g_i\rangle\langle r_i| + e^{-i\phi(t)} |r_i\rangle\langle g_i| \right) - \sum_{i} \Delta_i(t) n_i + \sum_{i < j} V_{ij} n_i n_j$$

BloqadeSchema.submit_to_braket

emulate!(prob)

Learning Objectives

By the end of this class, you will be able to:

- Describe the Blogade to Hardware pipeline
- Understand how to work within Hardware Constraints
- Design, Submit, and Retrieve Hamiltonians for Hardware

Big Picture

- 1. **Define** your problem
 - If you can, emulate to verify dynamics!
- 2. Transform to Hardware
- 3. Validate
- 4. Tweak problem (if necessary)
- 5. Submit!
- 6. Retrieve data

Start With A Problem

Attempt to recreate 2D Checkerboard Phase

Why Transform?

- Hardware has some important limitations to consider
 - Atoms have a minimum distance they can be placed next to eachother
 - Have finite-valued Rabi, Detunings, and Phase
 - Final waveforms on hardware must be piecewise Linear/Constant (discretization necessary)
 - Your slope or "slew rate" cannot exceed certain maximums
 - Minimum time resolution to consider (smallest increment of time you can define)

Find Hardware Constraints documented Here: https://queracomputing.github.io/Bloqade.jl/dev/capabilities/

Global Rydberg Values

Capability	Field	Value
Rydberg Interaction Constant	c6_coefficient	5.42×10 ⁶ rad/μs × μm ⁶
Minimum Rabi Frequency	rabi_frequency_min	0.00 rad/μs
Maximum Rabi Frequency	rabi_frequency_max	15.8 rad/μs
Rabi Frequency Resolution	rabi_frequency_resolution	0.0004 rad/μs
Maximum Rabi Frequency Slew Rate	rabi_frequency_slew_rate_max	250.0 rad/μs²
Minimum Detuning	detuning_min	-125.0 rad/μs
Maximum Detuning	detuning_max	125.0 rad/μs
Detuning Resolution	detuning_resolution	2.0×10 ⁻⁷ rad/μs
Maximum Detuning Slew Rate	detuning_slew_rate_max	2500.0 rad/μs²
Minimum Phase	phase_min	-99.0 rad

Objective of Transform

- MAXIMIZE your ability to design arbitrary Hamiltonians
- MINIMIZE the need to keep all considerations in mind

Validation

- Occasionally, there are certain things that can't be automatically transformed
 - Most commonly with atom position constraints
- Require some form of user intervention, this is where validation is necessary!
- Treatable as a catch-all for any incompatible Hamiltonians

Submitting

- If the Hamiltonian passes Validation, you'll need your AWS Credentials
- Upon submission, may need to wait a bit as tasks go on a queue that the machine will consume from when it's open

Tuesdays	16:00:00	to	20:00:00	UTC	
Wednesdays	16:00:00	to	20:00:00	UTC	
27)					
Thursdays	16:00:00	to	18:00:00	UTC	
*Outside of hours, tasks can be submitted to the Amazon Braket queue					

Retrieval

- Heavy lifting done by Braket.jl
- Results can be saved in HDF5-Compatible format or JSON for usage inside Python
 - JSON is the friendlier format!

Summary

- Describe the Bloqade to Hardware pipeline
- Understand how to work within Hardware Constraints
- Design, Submit, and Retrieve Hamiltonians for Hardware

