2021-12-21 Besprechungsnotizen

21. Dez. 2021

Participants ⊘

- @Helen Brüggmann
- @Ragna Solterbeck
- @Felix Köpge
- @Thorsten Papenbrock

☐ Goals ∂

- Projekt Status
- Fragen zum Dynamischen Algorithmus klären
- Datengenerator

Discussion topics

Time	Item	Presenter	Notes
	Projektstatus		
	Fragen zum Dynamischen Algorithmus		Welche Algorithmus Ideen gibt es um vom statischen zum dynamischen Algorithmus über zu gehen:
			Entwickeltes System ist exakt oder eventually-consistent (approximativ)
			welche Ziele haben wir?
			approximatives System: führt zu long-term Degeneration
			SQL ist vermutlich zu langsam, eigene Datenstrukturen erfordert
			Bloom Filter: probabilistische Datenstruktur/"Sketch"
			Nur auf 1ster, 2ter, bis zu 3ter Ebene nicht überall
			Bloom Filter lassen sich schneiden
			bei INSERTs exakt, sobald DELETEs durchgeführt werden approximativ
			bei vielen DELETE's (prozeduales Limit?) Bloom Filter neu berechnen
			Sketches, die auf Kardinalitäten basieren
			Kandidaten können basiert auf Kardinalitäten ausgeschlossen werden
			exakt: bei INSERT hochzählen, bei DELETE runterzählen
			min-count-sketch: grobe Schätzung wieviele Werte pro Spalte
			contradiction-sketch: anzahl an Widersprüchen zählen, siehe FD-paper
			Batching
			große Datenmengen in Batches aufteilen
			in einzelnen Batches kann auf INDs vorgeprüft werden
			Windowing (näherungsweise immer nur einen Ausschnitt betrachten)
			mitlaufender Bloom-Filter
			Syntactic Patterns
			eine andere Form von Sketches
			MIN, MAX, null, datentyp, string-pattern.
			int <: float <: string
			 DELETEs via evidence-trail: Merken, welche Werte zu Änderungen im Pattern geführt haben. Bei Löschen der Werte rückggängig machen. Man kann sich nicht alles merken, d.h.

max-trail-size.

- Caching/LocalDataStore Actor
 - Redundante Übertragungen vermeiden: Infrastruktur anpassen, damit jede Tabelle nur einmal an jedes System übertragen wird
 - Caching Actor läuft pro (Worker-)System, fragt bei InputReader des Master-Systems direkt an
- Vertical Data Partitioning ("Vertikales Schneiden")
 - Spalten isolieren, auf Systeme verteilen
 - parititionierungs-matrix: partitionierung mit minimaler replizierung
 - räumliche Co-Allokierung auf Spalten-Kombinations-Raum

 bei unären INDs muss z.b. unter IND 'X c Y' die Spalten X und Y auf dem System coallokiert sein

Click and drag, release when you're hin

• gespielte können (B+C, C+B) rausgeschmissen werden

۰

Datengenerator	• • ecl	stehende Datensätze als Seed-Datensätze nehmen richtige Daten haben abhänigkeit, die wir bei Random Generation schwer bekommen htwelt-datensätze werden in papern referenziert => echtwelt-datensätze finden unendlicher datenstrom = ge-cyclete CSV dateien, einfach wiederholen
	• Ra koi • • Dir wa	zufällige generation = gleich-verteilte abhängigkeiten undomisiertes Einfügen von Updates, Deletes und Werte-Modifikationen (nach nfigurierbaren Limits, z.b. 5% best Case, 90% worst-case) Achtung: wenn man Spaltenweise-unabhängig generiert, gehen Abhängigkeiten verloren! bewusst Widersprüche generieren mensions-Tabellen die als Referenz-Tabelle stabil sind; Fakten-Tabellen die wachsen und uchsen => nicht gleichwertig betrachten! macht daten un-realistisch schwer. referenz-tabelle erst generieren!
Hausaufgabe		weit gut ary INDs wären noch toll