School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 4

1. Consider the following 10 instances, given so-called "gold standard" labels (assuming a 3-class problem), and the output of four supervised machine learning models:

Instance	Gold		2	3	$\overline{4}$
1	A	A	A or B	Α	A
2	В	A	B or C	A	?
3	A	Α	A	Α	A
4	С	C	B or C	A	?
5	В	В	A or B or C	A	?
6	С	Α	A or C	A	?
7	С	A	A or B or C	A	?
8	A	С	A or B	A	A
9	A	Α	A	A	?
10	A	A	A or C	A	A

- (a) Where possible, calculate the **accuracy** and **error rate** of the four models.
- (b) Where possible, calculate the **precision** and **recall**, treating class A as the "positive" class. Do the same for the B and C classes, in turn, and then calculate the **macro-averaged precision** and **recall**.
- 2. What is the difference between evaluating using a **holdout** strategy and evaluating using a **cross-validation strategy**?
 - (a) What are some reasons we would prefer one strategy over the other?
- 3. For the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY			
	Training Instances							
A	S	h	h	F	N			
В	S	h	h	T	N			
С	0	h	h	F	Y			
D	r	m	h	F	Y			
Ε	r	С	n	F	Y			
F	r	С	n	Т	N			
TEST INSTANCES								
G	0	С	n	Т	?			
Н	S	m	h	F	?			

- (a) Classify the test instances using the method of 0-R.
- (b) Classify the test instances using the method of 1-R.
- (c) Classify the test instances using the ID3 Decision Tree method:
 - i. Using the **Information Gain** as a splitting criterion
 - ii. Using the Gain Ratio as a splitting criterion

1. Consider the following 10 instances, given so-called "gold standard" l	abels (assuming a 3-class
problem), and the output of four supervised machine learning models:	

Instance	Gold	1	2	3	4	
1	A	A	A or B	Α,	A	
2	В	A	B or C	Α	?	
3	A	A	A	A	A	. les e
4	C	С	B or C	A	?	multi-class
5	В	В	A or B or C	A	?	
6	C	A	A or C	A	?	
7	C	A	A or B or C	A	?	
8	A	C	A or B .	A,	A	
9	A	A	A	A	?	
10	A	A	A or C	A	A	

- (a) Where possible, calculate the accuracy and error rate of the four models.
- (b) Where possible, calculate the precision and recall, treating class A as the "positive" class. Do the same for the B and C classes, in turn, and then calculate the macro-averaged precision

i)
$$acc = \frac{b}{10}$$
 $ER = 1 - \frac{b}{10} = \frac{4}{10}$

ii)
$$ACC = \frac{TP = 10 + TN = 0}{10 + FP = 10 + 0 + FN = 0} = \frac{10}{20}$$
 $ER = 1 - \frac{10}{20} = \frac{10}{20}$

iv) acc =
$$\frac{TP = 4 + TN = 0}{4 + FP = 0 + 0 + FN = 6} = \frac{4}{10}$$
 ER = $1 - \frac{4}{10} = \frac{6}{10}$

(b) Pricison =
$$\frac{TP}{TP+FP}$$
 Recall = $\frac{TP}{TP+FN}$

Assume A as interesting class.
i)
$$P = \frac{4}{7}$$
 $R = \frac{4}{5}$

ii)
$$b = \frac{2}{2}$$
 $b = \frac{2}{2}$

- 2. What is the difference between evaluating using a **holdout** strategy and evaluating using a **cross-validation strategy**?
 - (a) What are some reasons we would prefer one strategy over the other?
- hold-out: partition data into train and fest set, build the model on former, evaluate the model later.
- Cross-validation: do the same above, but we partition the data set into several partition to set into several partition as test set and rest as train set.

as prefer cross-validation

For hold out :

- 1. random variation, depending on which data split to train, which to test set.
 - 2. Any instance in train set is excluded in test set. This means our estimate of performance may may off.
 - 3. Result may change a lot

For Cross-Validation;

- 1. Cross- validation solve this question by averaging the values.
- 2. each instance is used for testing, but appears in train set in other partitions.
- 3. Take a long time.

3. For the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY			
	TRAINING INSTANCES							
A	s	h	h	F	N			
В	s	h	h	T	N			
С	0	h	h	F	Y			
D	r	m	h	F	Y			
Ε	r	С	n	F	Y			
F	r	С	n	T	N			
	TEST INSTANCES							
G	0	С	n	T	?			
Н	s	m	h	F	?			

- (a) Classify the test instances using the method of 0-R.
- (b) Classify the test instances using the method of 1-R.
- (c) Classify the test instances using the ID3 Decision Tree method:
 - i. Using the Information Gain as a splitting criterion
 - ii. Using the Gain Ratio as a splitting criterion

(a) N (need break-tie which is better)

--- find smallest error attribute

total = 1

I-R: choose attribute with the smallest error rate in tree stump. (Simiply counting error made in trainning set)

D-R: mojority class.

- (c) Classify the test instances using the ID3 Decision Tree method:
 - i. Using the Information Gain as a splitting criterion
 - ii. Using the Gain Ratio as a splitting criterion
- (C) Information Gain: the difference between the entropy of the parent node, and the overage entropy across its daughter node.

 (Mean information)

Mutual Information = $\sum_{i=1}^{M} P(x_i) H(x_i)$

MI $(s,0,r) = \frac{2}{6}(0) + \frac{1}{6}(0) + \frac{3}{6}(0.9183) = 0.4592$ IG (Dutl|R) = H(R) - MI(s,0,r) = 1 - 0.4592 = 0.5408.

注: 算所有 columns 过后. ID has the best IG, but each daughter is purely of a single class - However we could get an useless classifier, Since ID is unique.

1 total instance

$$GR(A) = \frac{IG(A)}{SI(A)}$$

$$\triangle$$
 split information \cdot SI $(A) = -\sum_{i \in A} P(A=i) \log_2 P(A=i)$

For Out1:
$$SI(Out1) = -(\frac{2}{6}\log_2\frac{2}{6} + \frac{2}{6}\log_2\frac{2}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 1.459$$

$$GR(Out1) = \frac{0.5408}{1.459} = 0.3707$$

Procedure same as i) IG