

LAB 8 - OPERAÇÃO DO MOSFET COMO CHAVE.

1. Objetivos:

Verificar e identificar as características de funcionamento do MOSFET como chave na região de corte e tríodo.

- Identificar os terminais do transistor MOSFET
- Identificar as características do transistor na região de tríodo.
- Constatar a diferença entre BJT e MOSFET.

2. Material:

Laboratório	A ser providenciado pela equipe
01 fonte CC variável;	1 MOSFET 2N7000 e respectivo datasheet *
01 protoboard	01 Reed Switch ou ampola reed
01 multímetros	01 Resistor de 1 kΩ ¼ W ou ½ W
	02 Resistores de 10 kΩ ¼ W ou ½ W
	01 led, cor a escolher
	Pontas de prova b-b, pontas de prova banana-jacaré (b-j), jumpers,
	alicate corte, alicate bico, estilete

^{*}Equivalentes MOSFET 2N7000: NTE 491, IRF540N

3. Reconhecimento e inspeção dos componentes:

3.1.	. Usando a função teste semicondutor do MD, identifique os terminais do led:					
		$Vj = \underline{\hspace{1cm}}$				
3.2.	Meça os resistores e anote os valores:					
	R1k =	R10k =				

3.3. Caso tenha utilizado outro transistor atualize os valores do datasheet e teóricos do pre-lab

4. Circuito 1: CARGA EM SÉRIE COM O TERMINAL DE DRENO

Figura 1. Circuito 1 contendo sensor magnético para ativação de carga (diodo led) em série com o terminal de dreno.

- 4.1. Monte o circuito da Figura 1 usando os valores do descritos na atividade do moodle.
- **4.2.** Na Tabela 1 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 1 na situação **SEM** campo magnético.
- 4.3. Meça as grandezas da Tabela 1.
- 4.4. Com base nos valores medidos calcule as correntes do transistor.

Item	VGS (V)	VDS (V)	VR _G (V)	VR _D (V)	VLED (V)	IG (mA)	ID (mA)	IS (mA)
Teórico								
Experimental						-	-	-
Baseado no experimental	-	-	-	-	-			

Tabela 1. Grandezas relativas às medidas da montagem do circuito 1 sem campo magnético

- 4.5. Na Tabela 2 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 1 na situação **COM** campo magnético.
- 4.6. Meça as grandezas da Tabela 2.
- 4.7. Com base nos valores medidos calcule as correntes do transistor.

Item	VGS (V)	VDS (V)	VR _G (V)	VR _D (V)	VLED (V)	IG (mA)	ID (mA)	IS (mA)
Teórico								

Experimental						-	-	-
Baseado no experimental	-	-	-	-	-			

Tabela 2. Grandezas relativas às medidas da montagem do circuito 1 com campo magnético

4.8. Na situação que o transistor tem corrente (chave fechada) calcule a resistência de canal R_{DS}(on), escreva os valores teóricos e experimentais na Tabela 3

Item	$R_{DS}(on)$
Teórico	
Baseado no	
experimental	

Tabela 3. Ron do circuito 1 funcionando como chave fechada

5. Circuito 2: MEDIDA DA TENSÃO LIMIAR (V_{TH})

Figura 2. Circuito 2, circuito de teste para medida de Vth.

- 5.1. Monte o circuito da Figura 2.
- 5.2. Meça a tensão sobre o resistor de Dreno e ajuste Vcc para obter uma corrente I_D=1mA (ou 250μA se usar outro transistor)

Vcc para obter uma corrente I_D=____mA é: _____ Vm

5.3. Meça a tensão V_{GS} e complete os valores da Tabela 4.

Item	Condições	$V_{GS(th)}(V)$
Teórico	$V_{DS} = V_{GS}$, $I_D = \underline{\qquad} mA$	
Baseado no experimental	$V_{DS} = V_{GS}$, $I_D = \underline{\qquad} mA$	

Tabela 4. V_{th} medida com o circuito 2

6. Circuito 3: MEDIDA DA TENSÃO DE CONDUÇÃO DO DIODO BODY-DRAIN (V_{SD})

Figura 3. Circuito 3, circuito de teste para medida de V_{SD}.

- 6.1. Monte o circuito da Figura 3.
- 6.2. Ajuste VCC para 10V e meça a tensão V_{SD} e complete os valores da Tabela 4.

7. Item	Condições	$V_{SD}(V)$
Teórico	$V_{GS} = 0V, I_D = \underline{\qquad} mA$	
Baseado no experimental	$V_{GS} = 0V, I_D = \underline{\qquad} mA$	

Tabela 5. V_{th} medida com o circuito 3

7.3. Apresente seus cálculos, conclusões e resultados (Checkpoint).