MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 15th February 2018 D1 - Lecture 19

Summary: Diagonalizability

Let *A* be $n \times n$.

- A is diagonalizable $\Leftrightarrow \mathbb{R}^n$ has a basis, say $\mathcal{B} = \{v_1, \dots, v_n\}$, of eigenvectors of A, associated to eigenvalues $\lambda_1, \dots, \lambda_n$. In this case, $P^{-1}AP = \Lambda$, where $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ and Λ is a diagonal matrix with entries $\lambda_1, \dots, \lambda_n$.
- If A is diagonalizable, and T is the linear operator defined by Tx = Ax, then $[T]_{\mathcal{B}}^{\mathcal{B}} = \Lambda$. Thus diagonalization of A is the same as finding a basis w.r.t. which the matrix of T (defined by Tx = Ax) is diagonal.
- Eigenvectors associated to distinct eigenvalues are linearly independent. In particular, if *A* has *n* distinct eigenvalues, *A* is diagonalizable.
- If v is an eigenvector of A with respect to eigenvalue λ , then v is also an eigenvector of A^k w.r.t. eigenvalue λ^k for $k \ge 0$. In particular, if A is diagonalizable, and $P^{-1}AP$ is diagonal, the same holds for $P^{-1}A^kP$. These statements hold for all $k \in \mathbb{Z}$ if A is invertible.

Complex Eigenvalues

Ex: Rotation by 90° in \mathbb{R}^2 is given by $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

 $Qe_1 = 1$ and $Qe_2 = 1$. It has no eigenvectors since rotation by 90° changes the direction. It has no real eigenvectors.

Q has eigenvalues, but they are not real. $\det(Q - \lambda I) = \lambda^2 + 1 \Rightarrow \lambda_1 = i$ and $\lambda_2 = -i$, where $i^2 = -1$. Let us compute the eigenvectors.

$$(Q-iI)x_1 = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} x_1 = 0 \Rightarrow x_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

$$(Q+iI)x_2 = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} x_2 = 0 \Rightarrow x_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

The eigenvalues, though imaginary, are distinct, hence eigenvectors are linearly independent.

If
$$P = \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
, then $P^{-1}QP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

Complex Vectors

Conclusion: We need complex numbers \mathbb{C} even if we are working with real matrices. Over \mathbb{C} , an $n \times n$ matrix A always has n eigenvalues.

Reason: [Fundamental theorem of Algebra]

Every polynomial over \mathbb{C} of degree n has n roots in \mathbb{C} .

For a complex number x = a + ib, its conjugate is $\bar{x} = a - ib$ and $|x|^2 = \bar{x} \cdot x = a^2 + b^2 \in \mathbb{R}$ is the length (or modulus) of x. If $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n) \in \mathbb{C}^n$ are complex vectors, define $(x \cdot y = \bar{x_1}y_1 + \cdots + \bar{x_n}y_n) \in \mathbb{C}$. Then

- $x \cdot x = |x_1|^2 + \cdots + |x_n|^2 \in \mathbb{R}$ and is > 0.
- $\bullet x \cdot x = 0 \Leftrightarrow x = 0$
- For $c \in \mathbb{C}$, $x \cdot cx = \bar{x_1}cx_1 + \cdots + \bar{x_n}cx_n = (x \cdot x)c$.

This defines a *complex inner product* (or dot product) on \mathbb{C}^n .

Inner product on \mathbb{R}^n

Define the **inner product** (dot product) of two vectors $v, w \in \mathbb{R}^n$ as

$$v \cdot w = v^T w$$

For v, w in \mathbb{R}^n and c in \mathbb{R}

$$\bullet \ v \cdot w = v^T w = v_1 w_1 + \cdots + v_n w_n = w^T v = w \cdot v.$$

• (Bilinearity)

$$(v + w) \cdot z = (v + w)^T z = v^T z + w^T z = v \cdot z + w \cdot z$$

 $cv \cdot w = (cv)^T w = c(v^T w) = v^T (cw) = v \cdot cw.$

• $v \cdot v = v^T v \ge 0$ and $v^T v = 0$ if and only if v = 0.

Define **length** (or norm) of v in \mathbb{R}^n to be $||v|| = \sqrt{v \cdot v}$.

The length in \mathbb{R}^n is compatible with the vector space structure.

Let $v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then,

- $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0
- $\|cv\| = |c|\|v\|$
- $||v + w|| \le ||v|| + ||w||$ (Triangle Inequality)

Henceforth we will use $v^T w$ directly to write the dot product.

Reading : Length of a vector in \mathbb{R}^3 and \mathbb{R}^n

Let v = (2,3,2). By Pythagoras theorem, ||v||

$$= \sqrt{||(2,3,0)||^2 + ||(0,0,2)||^2}$$
$$= \sqrt{2^2 + 3^2 + 2^2} = \sqrt{17}.$$

Generalize by induction: Let
$$v = (x_1, \dots, x_n)^T \in \mathbb{R}^n$$
. Define $||v|| = \sqrt{||(x_1, \dots, x_{n-1}, 0)||^2 + ||(0, 0, \dots, x_n)||^2} = \sqrt{x_1^2 + \dots + x_{n-1}^2 + x_n^2} = \sqrt{v^T v}$.

The length (or norm) of a vector in \mathbb{R}^n is compatible with the vector space structure. Let $v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$ then,

- $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0
- $\|cv\| = |c|\|v\|$
- $||v + w|| \le ||v|| + ||w||$ (Triangle Inequality)

Orthogonal vectors in \mathbb{R}^n

We say vectors v and w in \mathbb{R}^n are orthogonal (perpendicular) \Leftrightarrow they satisfy the Pythagoras theorem \Leftrightarrow $||v||^2 + ||w||^2 = ||v - w||^2$

$$\Leftrightarrow ||v||^{2} + ||w||^{2} = (v - w)^{T}(v - w)$$

$$= (v^{T} - w^{T})(v - w)$$

$$= v^{T}v - w^{T}v - v^{T}w + w^{T}w$$

$$= ||v||^{2} - 2v^{T}w + ||w||^{2} \text{ (since } w^{T}v = v^{T}w \text{)}$$

Therefore, v and w are said to be *orthogonal* if and only if $v^T w = 0$.

Q: What can be said about Span $\{v\}$ and Span $\{w\}$ when v and w are orthogonal to each other in \mathbb{R}^3 ?

Orthogonal and Orthonormal Sets

Defn. A set of *non-zero* vectors $\{v_1, \dots, v_k\} \subset \mathbb{R}^n$, is said to be an **orthogonal set** if $v_i^T v_j = 0$ **for all** $i, j = 1, \dots, n$, $i \neq j$.

Examples:
$$\{(1,3,1),(-1,0,1)\} \subset \mathbb{R}^3,$$
 $\{(2,1,0,-1),(0,1,0,1),(-1,1,0,-1)\} \subseteq \mathbb{R}^4,$ $\{(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}),(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})\} \subseteq \mathbb{R}^3,$ $\{e_1,\cdots,e_n\} \subseteq \mathbb{R}^n.$

Of these, the last two examples have all unit vectors (vectors of length one).

Defn. An orthogonal set $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ with all unit vectors, i.e., $\|v_i\| = 1$ for all i, is called an **orthonormal set**.

Note: If $\{v_1, \dots, v_k\}$ is an orthogonal set, then $\{u_1, \dots, u_k\}$ is orthonormal, for $u_i = v_i/||v_i||$.

Orthogonality and Linear Independence

Theorem: An orthogonal set in \mathbb{R}^n is linearly independent.

Proof. Let $\{v_1, \cdots, v_k\}$ be an orthogonal set in \mathbb{R}^n , i.e. $v_i \neq 0$ and $v_i^T v_j = 0$ for $i \neq j$. Note that for i = j, $v_i^T v_i = ||v_i||^2 \neq 0$. Assume for some $a_1, \cdots, a_k \in \mathbb{R}$,

$$a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k} = 0$$

$$\Rightarrow (a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k})^{T}v_{1} = 0 \quad v_{1} = 0$$

$$\Rightarrow (a_{1}v_{1}^{T} + a_{2}v_{2}^{T} + \dots + a_{k}v_{k}^{T}) \quad v_{1} = 0$$

$$\Rightarrow a_{1}v_{1}^{T}v_{1} + a_{2}v_{2}^{T}v_{1} + \dots + a_{k}v_{k}^{T}v_{1} = 0$$

$$\Rightarrow a_{1}||v_{1}||^{2} = 0$$

$$\Rightarrow a_{1} = 0 \text{ since } v_{1} \neq 0$$

Similarly, we can show that $a_2 = \cdots = a_n = 0$. Hence the set $\{v_1, \cdots, v_k\}$ is linearly independent.

Matrices with Orthogonal Columns

True/False: Any matrix whose columns form an orthogonal set is invertible. Why?

examples of such matrices!

Let $A = [v_1 \cdots v_n]$ be $m \times n$. If $\{v_1, \dots, v_n\}$ form an *orthonormal* set in \mathbb{R}^m , then $A^T A = \begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix} \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} = \begin{pmatrix} v_1^T v_1 & \dots & v_1^T v_n \\ \vdots & & \vdots \\ v_n^T v_1 & \dots & v_n^T v_n \end{pmatrix} = I_n$.

H. Ananthnaravan D1 - Lecture 19 10 / 11

Orthogonal Matrices

Defn. A square matrix A whose column vectors form an orthonormal set is called an **orthogonal** matrix.

If $Q = [u_1 \cdots u_n]$ is an orthogonal matrix, then

- $\{u_1, \ldots, u_n\}$ is an orthonormal set (by definition)
- $Q^TQ = I = QQ^T$ Why?
- $\bullet \|Qx\| = \sqrt{(Qx)^T(Qx)} = \sqrt{x^TQ^TQx} = \sqrt{x^Tx} = \|x\|.$
- Row vectors of Q are orthonormal (since $QQ^T = I$).

Examples: 1.
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
. 2. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.