Stochastik I

Blatt 7

Aufgabe 1 (3+3=6 Punkte)

Seien $(\Omega_i, \mathcal{A}_i, \mu_i)$ (i = 1, 2) zwei σ -endliche Maßräume. Weiter seien reellwertige, nichtnegative messbare Funktionen X_i auf $(\Omega_i, \mathcal{A}_i, \mu_i)$ (i = 1, 2) gegeben.

(a) Beweisen Sie, dass die durch

$$u_i(A_i) := \int_{A_i} X_i \ d\mu_i, \quad A_i \in \mathcal{A}_i, \quad i = 1, 2$$

definierten Maße σ -endlich sind.

(b) Zeigen Sie, dass das Produktmaß $\nu_1 \otimes \nu_2$ die Dichte $X(\omega_1, \omega_2) := X_1(\omega_1) X_2(\omega_2)$ bezüglich des Produktmaßes $\mu_1 \otimes \mu_2$ besitzt.

Aufgabe 2 (7 Punkte)

Seien F und G zwei maßerzeugende Funktionen auf \mathbb{R} und μ_F bzw. μ_G die von ihnen erzeugten Maße. Weiter seien $a, b \in \mathbb{R}$ mit a < b. Zeigen Sie

$$F(b)G(b) = F(a)G(a) + \int_{(a,b]} F(t-) \ \mu_G(dt) + \int_{(a,b]} G(s) \ \mu_F(ds)$$

Hinweis:

Hierbei könnte es sich als nützlich erweisen, die beiden Integrale

$$\int_{(a,b]^2} \mathbb{1}_{\{s < t\}} \ \mu_F \otimes \mu_G(d(s,t)) \quad \text{und} \quad \int_{(a,b]^2} \mathbb{1}_{\{s \ge t\}} \ \mu_F \otimes \mu_G(d(s,t))$$

mit Hilfe des Satzes von Fubini zu berechnen.

Aufgabe 3 (4+3=7 Punkte)

Seien $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und X eine reellwertige, nichtnegative Zufallsvariable auf (Ω, \mathcal{A}) .

(a) Zeigen Sie (zum Beispiel mit Hilfe des Satzes von Fubini) die Formel

$$\int_{\Omega} X^p \ d\mathbb{P} = \int_{(0,\infty)} p \ t^{p-1} \ \mathbb{P}(\{X \ge t\}) \ \lambda(dt).$$

(b) Seien nun X_1, \ldots, X_n unabhängige, reellwertige und nichtnegative Zufallsvariablen auf $(\Omega, \mathcal{A}, \mathbb{P})$, so dass jedes X_i $(i = 1, \ldots, n)$ die Verteilungsfunktion F besitzt. Benutzen Sie Teil (a), um zu zeigen

$$\mathbb{E}\left[\max_{i=1,\dots,n} X_i\right] = \int_{(0,\infty)} \left(1 - F(t)^n\right) \ \lambda(dt).$$

Berechnen Sie weiter den obigen Erwartungswert im Fall $F(t) = \mathbbm{1}_{[0,1]}(t) \cdot t.$