1. Seja X uma v.a. discreta com função de probabilidade

Xi	0	2	3	6	Outros x
$f(x_i)=P(X=x_i)$	а	0.3	0.2	b	0

Sabendo que P(X>2)=0,3:

- a) Calcule o valor de a e de b.
- b) Determine a função de distribuição da v.a X.
- c) Calcule o valor esperado e a variância da v.a X.
- d) Calcule o valor esperado e a variância da função Y=2X-3.
- 2. Um equipamento é constituído por 3 componentes A, B e C funcionando de forma independente. Sabe-se que a probabilidade de cada um dos componentes funcionarem, durante o período de teste, é igual a 0.9, 0.7 e 0.6, respetivamente.
 - a) Determine a função de probabilidade da v.a. que representa o número de componentes em funcionamento durante o período de teste.
 - b) Determine a função de distribuição do número de componentes em funcionamento durante o período de teste.
 - c) Calcule a probabilidade de mais de um componente funcionar durante o período de teste.
 - d) Sabendo que pelo menos um componente funciona calcule a probabilidade de funcionarem menos de 3.
 - e) Calcule a probabilidade do número de componentes em funcionamento durante o período de teste exceder a média em mais de 1 desvio padrão.
 - f) Vão ser testados dois equipamentos. Calcule a probabilidade de ambos terem todos os componentes a funcionar.

3. O número diário de encomendas é uma v.a. X com a seguinte função de distribuição de probabilidade:

$$F(x) = \begin{cases} 0 & , & x < 0 \\ 0.4 & , & 0 \le x < 1 \\ 0.7 & , & 1 \le x < 2 \\ 0.95 & , & 2 \le x < 3 \\ 1 & , & x \ge 3 \end{cases}$$

Calcule:

$$a)P(X \leq 2)$$

b)
$$P(X > 1)$$

c)
$$P(0 < X \le 2)$$

b)
$$P(X > 1)$$
 c) $P(0 < X \le 2)$ d) $P(X = 1)$ e) $P(X < \mu)$

- 4. Lançam-se dois dados. Representando por X a v.a. que representa a soma dos pontos dos dados.
 - a) Defina o quadro de distribuição de probabilidade da v.a X
 - b) Defina a função de distribuição da v.a. X
 - c) Calcule P(3<X<7)
 - d) Calcule o valor esperado da v.a X.
- 5. Um jogo tem início com o lançamento de 2 dados. Se a soma dos pontos obtidos for 7, lançase uma moeda. Se sair cara ganha-se 3 €. Caso contrário perde-se 1 euro. Se a soma for 6 ou 8, lançam-se 2 moedas. Por cada cara ganha-se 1.5 € e por cada coroa perde-se 0.5 €. Em todos os outros casos, ganha-se 0.5 € se a soma for par e perde-se 0.5 € se a soma for ímpar.
 - a) Seja X a variável aleatória que representa o ganho obtido no final de um jogo. Calcule o valor esperado e a variância de X.
 - b) Calcule a probabilidade de num jogo se ganhar 3 euros, sabendo que saiu soma par.
- 6. Retira-se de uma caixa que contém 4000 condensadores perfeitos e 1000 defeituosos uma amostra de 15 condensadores, escolhidos aleatoriamente, com reposição. Calcule a probabilidade de se obterem:
 - Apenas três condensadores defeituosos. a)
 - b) Pelo menos 4 condensadores defeituosos.
 - c) Menos de 6 condensadores defeituosos.
 - d) Mais de 2 e no máximo 10 condensadores defeituosos.

Soluções TP1

1. **a)** a=0.4, b=0.1 **b)**
$$F(x) = \begin{cases} 0 & , & x < 0 \\ 0.4 & , & 0 \le x < 2 \\ 0.7 & , & 2 \le x < 3 \text{ c) } \mu = 1.8; \sigma^2 = 3.36; \textbf{d}) E(Y) = \\ 0.9 & , & 3 \le x < 6 \\ 1 & , & x \ge 6 \end{cases}$$

$$0.6; V(Y) = 13.44;$$

$$2. \quad \textbf{a)} \ f(x) = \begin{cases} 0.012 & , & x = 0 \\ 0.154 & , & x = 1 \\ 0.456 & , & x = 2 \quad \textbf{b)} \ F(x) = \begin{cases} 0 & , & x < 0 \\ 0.012 & , & 0 \leq x < 1 \\ 0.166 & , & 1 \leq x < 2 \text{ c}) 0.834 \quad \textbf{d)} \ 0.6174 \\ 0.622 & , & 2 \leq x < 3 \\ 1 & , & x \geq 3 \end{cases}$$

$$\textbf{e)} \ \mu = 2.2, \sigma = 0.7348, P(X > 2.2 + 0.7348) = P(X > 2.9348) = p(X = 3) = 0.378 \text{ f}) \ 0.1429$$

3. a) 0.95 b) 0.3 c)0.55 d) 0.3 e) 0.4

4.	a)	Xi	2	3	4	5	6	7	8	9	10	11	12
	- /		1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36
	ļ	p_i		2/30		_	3/30	0/30	3/30	4/30	3/30	2/30	1/30
			$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,	x < 2								
			1/36	,	$2 \le x <$: 3							
			3/36		$3 \le x <$								
			6/36	,	$4 \le x <$: 5							
		10/3	6,	$5 \le x <$	6								
b) $F(x)$		7.4	15/3	6,	$6 \le x <$	7							
		f(x) =	121/3	6,	$7 \le x <$	8 :							
			26/3	6,	$8 \le x <$: 9							
			30/3	6,9	$0 \le x < 1$	10							
			33/3	6,1	$0 \le x <$: 11							
			35/3	6,1	$1 \le x <$: 12							
			(1	,	$x \ge 1$	2							

- c) 12/36 d) E(X)=7
- 5. **a)** $\mu \approx 0.3889 \in \sigma^2 \approx 1.6543 \in b$ 0.1388;
- 6. **a)** 0.2501 **b)** 0.3518 **c)** 0.9389 d) 0.3 **d)** 0.6020