

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าชนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2554

วิชา PTE 421 Welding Engineering สอบวันพุธ ที่ 28 กันยายน 2554 นักศึกษาภาควิชาครุศาสตร์อุตสาหการ ปีที่ 4 เวลา 13.00 – 16.00 น.

คำชื่นจง

- 1. ข้อสอบวิชานี้มีจำนวน 11 หน้า (รวมใบปะหน้า)
- 2. ข้อสอบมีทั้งหมด 2 หมวด
- 3. ให้ทำทุกข้อลงในข้อสอบ
- 4. อนุญาติให้นำเครื่องคิดเลขตามระเบียบมหาวิทยาลัยเข้าห้องสอบได้
- 5. ไม่อนุญาตให้นำตำราและเอกสารทุกชนิดเข้าห้องสอบได้
- 6. ข้อสอบไม่มีการแก้ไขใดๆทั้งสิ้น ถ้ามีข้อสงสัยให้ใช้วิจารณญาณในการแก้ปัญหาเอง

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

Alm, 12

อาจารย์ปรัชญา เพียสุระ

ผู้ออกข้อสอบ โทร. 8554

ข้อสอบชุคนี้ได้ผ่านกรรมการวิชาการภาควิชาฯ เป็นที่เรียบร้อยแล้ว

(รศ.สันติรัฐ นั้นสะอาง)

รักษาการหัวหน้าภาควิชาครูสาสตร์อุตสาหการ

ชื่อ.....รหัสนักศึกษา.....รหัสนักศึกษา...... หมวดที่ 1 จงตอบคำถามต่อไปนี้ (40 คะแนน) 1. คำว่า *Quality และ Quality Control* ในงานวิศวกรรมการเชื่อมเหมือนและต่างกันอย่างไร (2 คะแนน) 2. Guides and Recommended practice คือ (2 คะแนน)...... 3. เนื้อหาใน ASME BPV SEC V (2 คะแนน) Subsection A. Subsection B. 4. จงอธิบายขั้นตอนในการตรวจสอบ NDT ใน ASME BPV SEC V(4 คะแนน)..... 5. จงสรุปหน้าที่ของ Manufacturer ใน ASME BPV SEC VIII UG-90 General มาโดยละเอียด (4 กะแนน)

รื่อถา	กุลรหัสนักศึกา	ยาเลขที่นั่งสามคพอสมุน 3
5. จงอธิบายการกำเนิดของรังว์ X-Ray		มหาวทยาลัยเทคโนโลยีพระจอมเคล้าเ
Gamma-Ray		
Leave		
7. จากตารางจงเติมคำลงในช่ย 	องว่างให้สมบูรณ์ มาโคยละเอียด (10 คะแนน)
หัวข้อ	รังสีเอกซ์	รังสีแกมม่า
1. ขนาคของอุปกรณ์		
2. พลังงานที่ใช้		
3. การควบคุมรังสี		
4. ค่าใช้จ่าย		
5. ความปลอคภัย		
8. จงอธิบายหลักการตรวจสอ	บบแบบอะคูสติกอิมิสชั่น มาพอสัง	เขป (4 คะแนน)
1		
4		
<u> </u>		
***************************************	······································	

ชื่อสกุลสกุล	รหัสนักศึกษา	4	
		สานกทองกรุง	
9. จงอธิบายวิธีการต่อเชื่อม (Design of We	elded Connection) พร้อมวาคภา	พป <i>ระกิจณาสัง</i> ภัส ผนิ นโลยีพระจอมเกล้าธนา	}*
รอยต่อเชื่อมที่ถ่ายแรงโดยตรง (Direct Loa	ad Transfer)		
1 X 101 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1			
	••••••••••••••••••		
	•••••••		
<u>*************************************</u>			
Activities and the Co			
รอยต่อเชื่อมที่ถ่ายแรงโคยทางฮ้อม (Indire	ect Load Transfer)		
4949999	તાં તા પ્રય		
10. ส่วนประกอบที่สำคัญในการคิคราคาใ	เนงานเชอมมอะ เรบางจงอธบา	ย (4 คะแนน)	
<u> </u>			
3			
·			
	•••••••••••		
	••••••		
	•••••••••••		
	••••••••••		
<u></u>			
y			

หื่อ	สกล	รหัสบักศึกษา	สานุกทอดินุต เลขที่นั่ง 5 5	
		มหาวิท	เลขที่นั้ง เขาลัยเทคใน โลยีพระจอบเกล้าชนบ	7

หมวดที่ 2 จงแสคงวิธีทำพร้อมหาคำตอบคั้งต่อไปนี้ (รวม 40 คะแนน)

1. จากภาพจงคำนวณออกแบบ<u>ขนาครอยเชื่อมฟิลเลท</u>ที่รับแรงแปรผันของ lifting element of fork truck โคย ทำการออกแบบให้สามารถรับแรงแปรผันให้ได้ 2,000,000 รอบ (10 คะแนน) F_h = 6,000 lbs

ชื่อ	สกุล	รหัสนักศึกษา	มหาวทย	ก็ดีที่เทา ใน โลยีพระจอบเคล้	าะบบ
3. ในการเชื่อมโค	รงสร้าง เป็นการเชื่อมแบ	บฟิลเล็ท ใช้ลวคเชื่อม	ขนาด 3.2 mm	. ขนาดความสูงของแนว	
				มกี่กล่อง ราคาลวคเชื่อม	
	ำหนคลวคเชื่อม ขนาค 3	_			
พงหมดเทา เหร ก	าหนคสาคเชยม ขนาค 3	2 mm. 1 11901 = 5 kg	า เสบรมสะ 15	0 บาท (10 คะแนน)	
	••••••			•••••••••••••••••••••••••••••••••••••••	
***************************************	••••••		•••••		
***************************************			***************************************		
			•••••		
			•••••		
***************************************		***************************************			
111110					
			••••••••••••		
***************************************	••••••••••			***************************************	

ชื่อ	สกุล	รหัสนักศึกษา	เลขที่นั่งกับกหองกุล	8
4 การก็ตักเร	24.40 24.41 (TC) ในการเสื้อเ	มต่อตัว T ผิวแขวเสื่องเขเรเ ตเจ	มหาวิทยาลัยเทคโนโลยีพระจคม มาค 3/4 นิ้ว ยาว 100 ฟุต ใช้เวลา	แกล้าขบา
			นิ้ว (3.2 มม.) ราคาปอนค์ละ 50	
บาท ค่า OF 50%	% ค่ากระแสไฟฟ้า 25 บาท/พู	ศ (10 คะแนน)		

				••••

***************************************				••••
***************************************				••••
		•••••		••••
				••••
				••••
		••••••		••••
				••••
•••••	•••••••••••••••••••••••••••••••••••••••	•••••		
•••••		••••••		
				••••
•••••				

				••••
	•••••	••••		
•••••	***************************************	• • • • • • • • • • • • • • • • • • • •	•••••••••	• • • • •

สูตร

ราคาลวคเชื่อมที่ใช้ทั้งหมค = จำนวนกล่อง x ราคาลวคเชื่อมต่อกล่อง สูตร ราคาลวคเชื่อมต่อความยาว 1 ฟุต

$$CW = WE \times CE$$

สูตร ค่าใช้จ่ายในการเชื่อมทั้งหมค/การเชื่อม 1 ฟุต

$$TC = CL + CW + CP$$

สูตร การหาค่าแรงงาน และ โอเวอร์เฮคต่อแนวเชื่อมยาว 1 ฟุต บาท/ฟุต

$$CL = T \times CR / OF$$

Plate	Size	Distance y	A = b · d in.²	$M = A \cdot y$ in.*	1. = Ay ² = My in.*	$I_{z} = \frac{b d^{3}}{12}$ in.
-------	------	------------	-------------------	----------------------	-----------------------------------	----------------------------------

$$I_{*} = I_{*} + I_{*} - \frac{M^{2}}{\Lambda}$$

Moment of Inertia

$$n = M/A$$

Natural Axis

Bending

$$f_{\bullet} = \frac{M}{S_{\bullet}}$$

Twisting

$$f_t = \frac{T c_s}{J_s}$$

Vertical shear

$$\omega = \frac{\text{actual force}}{\text{allowable force}}$$

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี FABLE 6 - ALLOWABLE FATIGUE STRESS or A7, A373 And A36 Steels And that for A7, A373 And A36 Steels And their Welds

	2,000,000 cycles	600,000 cycles	100,000 cycles	But Not to Exceed
Base Metal In Tension Connected By Fillet Welds	$\frac{1}{\sigma} = \frac{7500}{1 - 2/3 \text{ K}} \text{ psi}$	$\sigma = \frac{10,500}{1 - 2/3 \text{ K}} \text{ pst}$	$\sigma = \frac{15,000}{1-2/3 \text{ K}} \text{ psi}$	2 P. psi
But not to exceed	→ ₽\	P _i	Ρ,	
Base Metal Compression Connected	2500	4	(f)	P. psi
By Fillet Welds	$a = \frac{7500}{1 - 2/3 \text{ K}} \text{ psi}$	$a = \frac{10,500}{1 - 2/3}$ psi	$\sigma = \frac{15,000}{1 - 2/3 \text{ K}} \text{ psi}$	P _t psi
Butt Weld In Tension	$\sigma = \frac{16,000}{1 - \frac{8}{10}} \text{ ps } 1$	$\sigma = \frac{17,000}{1 - \frac{7}{10}} K^{\text{psi}}$	$\sigma = \frac{18,000}{1 - \frac{K}{2}} \text{ psi}$	P. psi
Butt Weld Compression	8 18,000 psi	18,000 psi	0 = 18,000 psi	P. psi
Butt Weld In Shear	$9 \\ 7 = \frac{9,000}{1 - \frac{K}{2}} \text{ psi}$	$\tau = \frac{10,000}{1 - \frac{K}{2}} \text{ psi}$	$r = \frac{13,000}{1 - \frac{K}{2}}$ psi	13,000 psi
Fillet Welds w= Leg Size	$f = \frac{5100}{1 - \frac{K}{2}}$ lb/in.	$f = \frac{7100 \omega}{1 - \frac{K}{2}}$ lb/in.	$f = \frac{8800 \text{ m}}{1 - \frac{K}{2}}$ lb/in.	8800 - lb/in.
A Part of the last				

Adapted from AWS Bridge Specifications.

P. . Allowable unit compressive stress for member.

P. . Allowable unit tensile stress for member.

Fillet Weld (For 1" weld leg)	Groove weld (for 1" weld thickness)	Partial Penetration ** Groove weld* (For 1" weld thickness)
NIL COLLEGE	Parallel Load	
E60 or SAW - 1 weld 9600 (AWS)	r ≈ .40 o. of base metal	E60 or SAW - 1 weld 13,600 (AISC)
E70 or SAW - 2 weld 11,200 (AWS)	(shear) (AWS)	E70 or SAW - 2 weld 15,800 (AISC)
	Transverse Load	,
E60 or SAW - 1 weld 11,200	r = .60 σ of base metal	E60 or SAW - 1 weld 13,600 (AISC)
E70 or SAW - 2 weld 13,100	(tension) (AWS)	E70 or SAW - 2 weld 15,800 (AISC)

^{*}For bevel joint, deduct first 1/8" for effective throat, if done by manual electrode.

Horizontal shear force on weld

$$f_b = \frac{Vay}{In}$$

TABLE 4 - PROPERTIES OF WELD TREATED AS LINE

Outline of Welded		
Joint d-depth	Bending (about horizontal axis x-x)	Twisting
	$S_{\omega} : \frac{d^2}{6}$ in. ²	$J_{w} = \frac{d^{3}}{12}$ in $\frac{3}{2}$
×	$S_{w} = \frac{d^2}{3}$	Jw = d(362 + d2)
, <u>—</u> <u> </u>	Su s b d	Jw = 63 + 3 bd2
M. 15-4)«	S 4bd+d ² , d ² (4b +d) 6 (2b +d) top bettom	Jw . (b+d)4 - 6b2d2
** 25 d x x - x - x - x - x - x - x - x -	S. : 68 + 42	$J_{w} = \frac{(2b+d)^{3}}{12} - \frac{b^{2}(b+d)^{2}}{(2b+d)}$
wir B-Sq v	$S_{w} = \frac{2bd + d^{2}}{3} = \frac{d^{2}(2b + d)}{3(b + d)}$	$J_w = \frac{(b+2d)^3}{12} - \frac{d^2(b+d)^2}{(b+2d)}$
*	Sw = bd + d2	Ju = (b + d)3
w, - d1 ,	$S_{a} = \frac{2bd+d^{2}}{3} = \frac{d^{2}(2b+d)}{3(b+d)}$ top bottom	$J_w = \frac{(b+2d)^3}{12} - \frac{d^2(b+d)^2}{(b+2d)}$
~, ab-o	2 1 4bd+d ² 4bd ² + d ³ top bottom	$J_w = \frac{6(b+d)}{6(b+d)} + \frac{b^3}{6}$
-11-3	Sw + bd + d2	J = 63 + 3 bd2 + d3
F	· 5 2bd + \frac{d^2}{3}	Jw = 263 + 66d2 + d3
×	. s. 11 d2	J 11 a3
· 00.	5, 11 d2 + 11 D2	

Size (in)		Weigh (lb/ft)	
	Flat	Convex	Concave
	4,		
1/8	0.032	0.039	0.037
3/16	0.072	0.087	0.083
1/4	0.129	0.155	0.147
5/16	0.201	0.242	0.230
3/8	0.289	0.349	0.331
7/16	0.394	0.475	0.451
1/2	0.514	0.620	0.589
9/16	0.651	0.785	0.745
5/8	0.804	0.970	0.920
3/4	1.16	1.40	1.32
7/8	1.58	1.90	1.80
1	2.00	2.48	2.36
1.1/8	2.60	3.14	2.98
1.1/4	3.21	3.88	3.68
1.3/8	3.89	4.69	4.45
1.1/2	4.62	5.58	5.30
1.5/8	5.43	6.55	6.22
1.3/4	6.29	7.59	7.21
1.7/8	7.23	8.72	8.28
2	8.23	9.93	9.43