DRINKING WATER SURVEILLANCE PROGRAM

WALLACEBURG WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

WALLACEBURG WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994
This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

WALLACEBURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Wallaceburg water treatment plant is a conventional treatment plant which treats water from the St. Clair River via the Chenal The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Chlorine dioxide is generated as part of the disinfection process and powder activated carbon is added on a continuous basis. This plant has a rated capacity of 11.8 x 1000 m³/day. The Wallaceburg water treatment plant serves a population of approximately 11,300.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Wallaceburg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A '.' INDICATES THAT NO SAMPLE WAS TAKEN

			310NI A	AIES INAI	NO SAR	A INDICALES THAT NO SAMPLE WAS TAKEN							
		TREA	TREATMENT PLANT		TREATME) TREATED	TREATMENT PLANT TREATED	•	DIST. SYSTEM ROBERT ST	SYSTEM ST		DIST. SYSTEM THOMAS AVE	SYSTEM	
	SCAN	TESTS	TESTS POSITIVE %POSITIVE	OSITIVE	TESTS	IESTS POSITIVE %POSITIVE TESTS POSITIVE %POSITIVE TESTS POSITIVE %POSITIVE	SITIVE	TESTS	TESTS POSITIVE %POSITIVE	POSITIVE	TESTS	TESTS POSITIVE %POSITIVE	OSITIVE
	BACTERIOLOGICAL	30	58	%	12	M	52	Ξ	-	٥	7	m	75
	CHEMISTRY (FIELD)	36	. 38	100	72	22	100	130	128	86	84	84	100
	CHEMISTRY (LABORATORY)	281	239	85	277	506	7.2	877	907	06	584	252	88
	METALS	288	8	31	288	25	92	206	216	75	322	114	35
	CHLOROAROMATICS	140	0	0	140	0	0	112	0	0	20	0	0
	CHLOROPHENOLS	57	0	0	54	0	0	•		•	•		•
	PESTICIDES AND PCB	360	0	0	375	0	0	177	0	0	110	0	0
	PHENOL ICS	12	2	16	=	0	0	•		٠	•	٠	•
	POLYAROMATIC HYDROCARBONS	51	0	0	. 51	0	0	51	0	0	. 12	0	0
	SPECIFIC PESTICIDES	76	0	0	76	a,	0	-	0		2	0	0
	VOLATILES	360	0	0	360	25	13	298	39	13	202	58	13
	RADIONUCL 10ES	28	9	21	28	7	52		*	٠	•	•	•
TOTAL		1,704	705		1,732	410		1,734	240	,	1,135	481	

DRINKING WATER SURVEILLANCE PROGRAM

WALLACEBURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Wallaceburg water treatment plant in summer of 1985 as part of a survey of the St. Clair/Detroit River area. Previous DWSP annual reports have been published for 1986, 1987, 1988, 1989 and 1990.

PLANT DESCRIPTION

The Wallaceburg water treatment plant is a conventional treatment plant which treats water from the St. Clair River via the Chenal Ecarte. The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C . Chlorine dioxide is generated as part of the disinfection process and powder activated carbon is added on a continuous basis. This plant has a rated capacity of 11.8 x 1000 m^3/day . The Wallaceburg water treatment plant serves a population of approximately 11,300.

The sample day flows were reported as 9.6 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line. Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER:
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 9 of 29 treated and distributed water samples with a maximum reported value of 23.0°C.

CHEMISTRY (LABORATORY)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 3 of 30 treated and distributed water samples with a maximum reported value of 8.5 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 2 of 30 treated and distributed water samples with a maximum reported value of 418 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 27 of 30 treated and distributed water samples with a maximum reported value of 170.0 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as

aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 3 of 30 treated and distributed water samples with a maximum reported value of 190 ug/L.

Iron exceeded the ODWO Aesthetic Objective of 300 ug/L in 1 of 30 treated and distributed water samples with a maximum reported value of 490 ug/L.

Manganese, in high concentrations, can contribute to laundry staining and undesirable tastes.

Manganese exceeded the ODWO Aesthetic Objective of 50.0~ug/L in 1 of 30 treated and distributed water samples with a maximum reported value of 71.0~ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

The results of the phenolics test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 29 treated and distributed water samples analyzed with a maximum level of 39.5 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available quidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Wallaceburg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

WALLACEBURG WTP

220003341

UTM #:

173833904713920

DISTRICT: REGION:

SARNIA SOUTHWEST

DISTRICT OFFICER:

O. WIGLE

SUPERINTENDENT:

LEO DENYS

ADDRESS:

LIBBY RD.

WALLACEBURG, ONTARIO

519-627-4191

MUNICIPALITY:

WALLACEBURG

AUTHORITY: MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

5.817 (X 1000 M3)

DESIGN CAPACITY:

13.500 (X 1000 M3/DAY)

RATED CAPACITY: 11:820 (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

WALLACEBURG

11,295

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	TREATED	HOURLY
FLUORIDE	TREATED	2 TIMES/DAY
PH	TREATED	2 TIMES/DAY
TEMPERATURE	TREATED	HOURLY
TURBIDITY	RAW TREATED	HOURLY HOURLY

Page 10

TABLE 3 DRINKING WATER SURVEILLANCE PROGRAM WALLACEBURG WTP SAMPLE DAY CONDITIONS AND TREATMENT CHEMICAL DOSAGES FOR 1991. AND 1992

COAGULATION A10 POLYELECTROLYTE								. 25				
POST CHLORINATION ORINE SODIUM CHLORITE	,	٠	.38	35.	.35	1.10	1.02	1.00				
POST C		.38										
TASTE AND ODOUR ACTIVATED CARBON POWDER		5.00	5.00	5.00	. 5.00		5.00	5.00	5.00	5.00	5.00	5.00
COAGULATION ALUM LIQUID		15.00	15.00	15.00	15.00	15.00	15.00	8.50	15.00	15.00	15.00	15.00
PRE CHLORINATION CHLORINE		1.00	1.00	1.03	.92	07.	07.	04.	1.01	1.01	. 1.01	1.04
3	(1000M3)	9.682	9.682	9.682	9.682	9.682	9.682	9.682	9.682	9.682	9.682	9.682
* PE	DATE TIME(HRS)	91 JAN 16 13.00	I MAR 13 13.00	MAY 15 13.00	JUL 10 13.00	SEP 11 13.00	NOV 14 13.00	! FEB 12 13.00	JUN 10 13.00	2 AUG 19 13.00	2 OCT 15 13.00	DEC 16 13.00
	0	6	ö	ō	ò	ö	ò	8	36	8	8	92

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurement Amount
< T	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
! BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U .	No Data: Sample Unsuitable For Analysis
! UB	No Data: Bottle Broken

No Data: Result Unreliable

!UN ·

LUK NO Data. Ulipteserved pampie required Α Approximate Value A3C Approximate, Total Count Exceeded 300 Colonies A> Approximate Value, Exceeded Normal Range APS Additional Peak, Less Than, Not Priority Pollutant ARO Additional Information In Laboratory Report CRO Calculated Result Only NAF Not All Required Tests Found RID Ioncal Calculated on Incomplete Data Set RMP P and M-Xylene Not Separated RRR Result Obtained by Repeat Analysis Rerun Verification RRV SFA Sample Filtered: Filtrate Analyzed SIL Sample Incorrectly Labelled SPS Several Peaks, Small, Not Priority Pollutant U48 Unreliable: Sample Age Exceeded 48 Hours Unreliable: Sample Age Exceeded Limit UAL Unreliable: Sample Age Unknown UAU UCS Unreliable: Contamination Suspected WSD Wrong Sample Description On Bottle

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

•	Tite 10 Title 1 to 10	THE PERSON AND PROPERTY.		MUTOVO TOTO	MITTONO TOTA	HILLONG FORG
· •	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	NI DISI. SYSIEM ROBERT ST FREE FLOW	DISI. SYSIEM ROBERT ST STANDING	DIST. STSTEM THOMAS AVE FREE FLOW	DISI. STSIEM THOMAS AVE STANDING
CAL COLIFORM N	BACTERIOLOGICAL FECAL COLIFORM MF (CT/10DML)	AL	DET'N LIMIT = 0	ਰ	GUIDELINE = 0 (A1)	
1991 JAN	89	•	•	•	•	•
1001	92		•	•		•
	0,7					•
	2					
	160					
	60					
1992 JUN	, α					
1992 AUG	56	•	•	•	,	
1992 OCT	10		•	•		•
	14			•		•
STANDRD PLATE CNT MF (CT/ML	IT MF (CT/ML	•	DET'N LIMIT = 0	<u>ত</u>	GUIDELINE = 500 (A3)	
1991 JAN		2 <=	<=> () <=>	٠	1 <=>	•
1991 MAR			· · · · · · · · · · · · · · · · · · ·		<=> 7	•
1991 MAY	•	12	<=> 7	•	10	•
1991 JUL		* 0	<=> 7 · <=>		330	
		-	-			
	•		-	•	<=> 0	•
1992 FEB	•		<:>	٠	•	•
	•				<=> 0	•
			<=> 0 . <=>	•		•
	•	20	\cdot > \cdot	•		
1992 OCT		290	25			•
1992 DEC			<=>	٠		٠
TAL COLIFORM !	TOTAL COLIFORM MF (CT/100ML)		DET'N LIMIT = 0	ថ	GUIDELINE = 5/100ML (A1)	(A1)
1991 JAN	610 A3C					
1991 JUL	<=> 007	•			•	•
1991 SEP	500 A3C				•	
	2200 A3C	•	•	•	•	•
	44000 A3C				•	
1992 APR	230	•	•	•	•	
1992 JUN	620 A3C	. •			•	•
1992 AUG	500 A3C	•				
1992 OCT	754 007	•	•			

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

	; ,														:														:														
DIST. SYSTEM THOMAS AVE STANDING		.100	.050	.050	050	050.	050	usu.		.200	•					100	001	90.	99	001.	.100	.050		.050	•		٠				027	5.5	001	. 061.	.150	.100		.250		•		•	***************************************
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	.050	.050	.050	050	0.00	000.	060.	•	.100					GUIDELINE = N/A	300	150	202	000	051.	051.	.250		.150					GUIDELINE = N/A	350	000	052.	965	002.	007	.300		.250					
DIST SYSTEM ROBERT ST STANDING	3109	.100	.050	.050	050	050	900	001.	.100	:	.050	.050	000.	.050	מחומ	050	100		000	000.	001.	.100	90.		.10	.100	050	.050	100	150	0.51	021	500	001.	051.	500	.200		.150	.150	.050	.100	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0	.050	.050	.050	050	050	0.00	050.	050.		.050	.050	000.	.100	DET'N LIMIT = 0	. 250	002	200	021	051.	051.	. 300	.200		.150	.150	.050	. 100	DET'N LIMIT = 0	200	55.	250	25.	002.	007:	350	.250	•	.200	. 200	.050	.200	
TREATMENT PLANT TREATED		.100	.100	.150	051	002	207.	004.	070	.100	. 100	.100	100	.100		1.000	1 000	1 030	000	. 900	000.1	006.	006.	1.000	1.000	1.000	1.000	1.100		1 100	100	1 150	050	000.	1.200	1.300	.920	1.100	1.100	1.100	1.100	1.200	
TREATMENT PLANT RAW	CHEMISTRY (FIELD)		•					•	•	•					REE (MG/L)			•	•	•	•		•						TOTAL) (MG/L		•	•	•	•	•					•			
	CHEMIST CHLORINE (COMB) (MG/L		1991 MAR	1991 MAY		1001 SED								1992 DEC	FLD CHLORINE FREE (MG/L	1991 JAN	1001 MAR	1001 MAY	1001		1991 SEP						1992 OCT		FLD CHLORINE (TOTAL) (MG/L	1001 IAN	1991 MAR									1992 AUG		1992 DEC	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

.	:																																							
DIST. SYSTEM THOMAS AVE STANDING		(A4)	7.200	7.000	7.200	7.400	7.300	7.200		7.200		•	•			12.000	15,000	16.000	21,000	20.000	13.000	•	13.000	•	•	•	•		.880		160	027	097	1.000		. 540				
DIST. SYSTEM THOMAS AVE FREE FLOW		GUIDELINE = 6.5-8.5 (A4)	7.100	9.900	7.200	7.200	7.500	7.300		7.000					GUIDELINE = 15 (A3)	8.000	5.000	14.000	22,000	20.000	14.000		8.000			٠		GUIDELINE = 1.0 (A1)	.540	. 870	150	. 850	280	004.		.280				
DIST. SYSTEM ROBERT ST STANDING		ช	7.000	6.800	7.200	7.200	7.200	7.200	6.800		7.500	7.600	7.200	007.7	ਤ	7,000	2.000	11.000		18,000	12.000	000.6		15.000	20.000	17.000	12.000	19	1.600	1.700	.850	190	.630	700	3.000		.500	060	1.500	1.900
01ST. SYSTEM ROBERT ST FREE FLOW		DET'N LIMIT = N/A	7.200	7.000	7.000	7.000	7.400	007.7	6.800		7.200	7.400	7.200	007.7	DET'N LIMIT = N/A	9,000	9.000	8,000		23.000	13.000	900.9		16.000	22.000	17.000	8.000	DET'N LIMIT = N/A	.980	1,100	009	.720	099.	009.	2,000		.550	060.	.630	1,000
TREATMENT PLANT TREATED	ELD)		7.000	7.000	7.000	7.000	7.300	7.200	6.800	7.000	7.200	7.300	7.300	/ . 200		3.000	2.000	10.000	20.000	22,000	8.000	3.000	3.000	13.000	18.500	14.000	7.000		.190	. 190	. 140	.120	. 150	.130	009.	.130	.080	.120	060.	. 110
TREATMENT PLANT RAW	CHEMISTRY (FIELD)	S)	7.400	7.400	7.300	7.300	7.500	7.800	7.400	3.200	005.7	00/.	7.500	004.7	(DEG.C)	2.000	2.000	12.000	20.000	22.000	8.000	2.000	2.000	3.000	18.500	14.000	900.9	FTU)	007.	3.700	7.700	5.000	4.700	1.500	95.000	5.500	7.000	3.500	3.000	2.000
		FLD PH (OMNSLESS				1991 JUL		VON 1991	1992 FEB	1992 APR				1992 UEC	FLD TEMPERATURE (DEG.C	1991 JAN	1991 MAR	_				1992 FEB					1992 DEC	FLD TURBIDITY (FTU	1991 JAN	1991 MAR			1991 SEP		1992 FEB		1992 JUN	1992 AUG		1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM DIST. SYSTEM DOST. SYSTEM ROBERT ST THOMAS AVE THOMAS AVE STANDING FREE FLOW STANDING	GUIDELINE = 5 (A3)		6.500 1.000 <7 1.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000 <7 5.000	5.000	000 6	000:3	13 000.	7.000	•	1.500 1.500	3.000	3.000	1,000	10.000	GUIDELINE = 400 (F2)	236	526	236 237 238	237	236	232	,	. 234 232	,	577	237	232	GUIDELINE = 5.0 (A3)		1.200	1.100	1.000	000	000.1	1,400	1.200 1.000 1.100 1.200 1.000 1.100		1.000	1.000	00001	1,000
DIST. SYSTEM DIST ROBERT ST ROBE FREE FLOW STAN	DET'N LIMIT = 0.50	600	2.500	2 000 <1	\$ 500	002:1	000	2.000	8.500		3.500	3.000	7,000	9.000	DET'N LIMIT = 1.0	23.7	258	235	237	236	230	401	•	243	240	240	233	0ET'N LIMIT = 0.10	300	1,500	1.500	1.000	1.000	1/1/2	007.	1.000	1.000	1.000	1.000 1.000 1.000	1.000	2.1000 2.1000 1.000 1.1000
TREATMENT PLANT TREATED	30RATORY)	ē	80L 801	500 <t< td=""><td>500 ×T</td><td>1, 005</td><td></td><td>900</td><td>000.4</td><td>80F</td><td>80F</td><td>3.000</td><td>.500 <t< td=""><td>.500 <t< td=""><td>1</td><td>232</td><td>255</td><td>237</td><td>536</td><td>234</td><td>525</td><td>418</td><td>. 238</td><td>542</td><td>240</td><td>231</td><td>235</td><td>1</td><td>•</td><td>004.1</td><td>. 500</td><td>000.1</td><td>000.</td><td></td><td>000</td><td>1.100</td><td>1.100</td><td>1.100 2.800 1.000</td><td>1.100 2.800 1.000</td><td>2.800 1.000 1.100</td><td>2.800 2.800 1.000 1.100 1.200</td></t<></td></t<></td></t<>	500 ×T	1, 005		900	000.4	80F	80F	3.000	.500 <t< td=""><td>.500 <t< td=""><td>1</td><td>232</td><td>255</td><td>237</td><td>536</td><td>234</td><td>525</td><td>418</td><td>. 238</td><td>542</td><td>240</td><td>231</td><td>235</td><td>1</td><td>•</td><td>004.1</td><td>. 500</td><td>000.1</td><td>000.</td><td></td><td>000</td><td>1.100</td><td>1.100</td><td>1.100 2.800 1.000</td><td>1.100 2.800 1.000</td><td>2.800 1.000 1.100</td><td>2.800 2.800 1.000 1.100 1.200</td></t<></td></t<>	.500 <t< td=""><td>1</td><td>232</td><td>255</td><td>237</td><td>536</td><td>234</td><td>525</td><td>418</td><td>. 238</td><td>542</td><td>240</td><td>231</td><td>235</td><td>1</td><td>•</td><td>004.1</td><td>. 500</td><td>000.1</td><td>000.</td><td></td><td>000</td><td>1.100</td><td>1.100</td><td>1.100 2.800 1.000</td><td>1.100 2.800 1.000</td><td>2.800 1.000 1.100</td><td>2.800 2.800 1.000 1.100 1.200</td></t<>	1	232	255	237	536	234	525	418	. 238	542	240	231	235	1	•	004.1	. 500	000.1	000.		000	1.100	1.100	1.100 2.800 1.000	1.100 2.800 1.000	2.800 1.000 1.100	2.800 2.800 1.000 1.100 1.200
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	Id	BNI	1.000 <1	1.000 <t< td=""><td></td><td></td><td>1> 006.</td><td>15.500</td><td>000.7</td><td>80r</td><td>2.000</td><td>.500 <t< td=""><td>T> 005.</td><td>UMHO/CM)</td><td>522</td><td>231</td><td>228</td><td>228</td><td>527</td><td>222</td><td>390</td><td>228</td><td>239</td><td>228</td><td>221</td><td>227</td><td>N (MG/L)</td><td>007</td><td>700</td><td>7,00</td><td>000.</td><td>006.1</td><td>006.1</td><td>007</td><td>1.400</td><td>1.400</td><td>1,400</td><td>1,400 6,400 1,400</td><td>1.400 6.400 1.400 1.700</td><td>1.400 6.400 1.400 1.700 1.500</td></t<></td></t<>			1> 006.	15.500	000.7	80r	2.000	.500 <t< td=""><td>T> 005.</td><td>UMHO/CM)</td><td>522</td><td>231</td><td>228</td><td>228</td><td>527</td><td>222</td><td>390</td><td>228</td><td>239</td><td>228</td><td>221</td><td>227</td><td>N (MG/L)</td><td>007</td><td>700</td><td>7,00</td><td>000.</td><td>006.1</td><td>006.1</td><td>007</td><td>1.400</td><td>1.400</td><td>1,400</td><td>1,400 6,400 1,400</td><td>1.400 6.400 1.400 1.700</td><td>1.400 6.400 1.400 1.700 1.500</td></t<>	T> 005.	UMHO/CM)	522	231	228	228	527	222	390	228	239	228	221	227	N (MG/L)	007	700	7,00	000.	006.1	006.1	007	1.400	1.400	1,400	1,400 6,400 1,400	1.400 6.400 1.400 1.700	1.400 6.400 1.400 1.700 1.500
	COLOUR (HZU	1001	1001 MAR						1992 FEB					1992 DEC	CONDUCTIVITY (UMHO/CM	1991 JAN	1991 MAR			1991 SEP	1991 NOV				1992 AUG		1992 DEC	DISS ORG CARBON (MG/L	1001			1991 MAT	1991 201	IAA I SEP	1001	1991 NOV	1991 NOV 1992 FEB	1991 NOV 1992 FEB 1992 APR	1991 NOV 1992 FEB 1992 APR 1992 JUN	1991 NOV 1992 FEB 1992 APR 1992 JUN 1992 AUG	1991 NOV 1992 FEB 1992 APR 1992 JUN 1992 AUG 1992 OCT

ΤP	
LLACEBURG W	
1992 WA	
91 AND	
ROGRAM 1991	
NCE PROC	
SURVEILLA	
WATER	
DRINKING	

DIST. SYSTEM THOMAS AVE STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1	.960 .820 .880 .1.000 .980 .980 .900	10. 200 117.400 117.400 105.100 101.300 106.800 100.200	1.258 1.581 1.581 3.21 2.651 4.154 . 968 NAF
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIOELINE = 1.5 (A1)	. 960 . 820 . 640 1 . 060 1 . 1 . 1 . 1 . 2	GUIOELINE = 80-100 (A4) 104.000 115.300 115.300 105.200 101.700 106.000 100.200	GUIDEL INE = N/A .996 1.095 1.355 .808 2.888 3.181 .105 NAF
DIST. SYSTEM ROBERT ST STANDING	-	.940 .820 .920 .960 .960 .1.120 .920 .920 .930 .1.080	115.100 115.100 103.200 104.200 105.000 105.000 106.100 105.000	2.625 2.641 0.05 0.05 2.253 2.253 3.697 2.175 2.070 2.070 3.584
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.01	. 960 . 820 . 1020 1 . 1020 1 . 1040 1 . 200 1 . 200	0ET'N LIMIT = 0.5 102.000 111.700 105.700 105.700 105.000 106.000 106.000 106.000 107.000	DET'N LIMIT = N/A 1.291 1.743 1.092 846 4.957 4.354 1.576 1.789 1.789 2.161 1.295
TREATMENT PLANT TREATED	30RATORY)	. 980 . 800 . 980 1 . 140 1 . 140 1 . 120 . 960 1 . 100 1 . 320	103.900 110.500 105.900 103.400 100.800 170.000 170.000 100.500 104.000	3,423 .105 .105 .105 .1,48 .1,748 .1,183 .647 .1056 .1,056
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	.080 .080 .080 .080 .080 .080 .080 .080	103.900 108.600 108.600 105.000 97.700 97.500 174.000 98.100	1.782 1.782 1.914 1.190 4.314 6.148 5.096 1.134 1.134 2.937 2.937 2.937 2.936
~~~	FLUORIDE (MG/L	1991 JAN 1991 MAR 1991 MUL 1991 SEP 1992 SEB 1992 APR 1992 JUN 1992 OUD	HARDNESS (MG/L 1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 SEP 1992 APR 1992 APR 1992 APR 1992 OCT	100/CAL (DMNSLESS ) 1991 JAN 1991 MAY 1991 MAY 1991 MAY 1991 NOV 1992 FEB 1992 AFB 1992 AUG 1992 OCT

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

			FREE FLOW	STANDING	FREE FLOW	STANDING
	CHEMISTRY (LABORATORY)	BORATORY)				
POTASSIUM (MG/L	^		DET'N LIMIT = 0.01	ng	GUIDELINE = 10 (F2)	
	.890	.930	.950	1.200	.950	.950
1991 MAR	066.	026.	1.000	1.170	1.040	1.100
	1.030	1.040	1.030	1.060	1.020	1.050
191 JUL	1.090	096.	.890	1,120	. 950	.920
	0%6	.950	.880	.950	.510	.890
	096.	.930	006.	.950	.650	.800
	2.940	2.920	2.690	2.730		٠
1992 APR	026.	006.			.920	926
1992 JUN	.980	.930	.920	1.070	•	
1992 AUG	.982	276.	276.	696.		
92 OCT	006.	.890	096.	.920		
	276.	.933	. 931	.945		
LIERS INDEX	LANGELIERS INDEX (DMNSLESS )	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = N/A	No	GUIDELINE = N/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
91 JAN	.216	129	126	011	067	870
	.308	158	.017	.031	.054	780.
	.202	. 139	090	.023	012	500.
	.267		. 181	019	. 125	- 109
1991 SEP	.246		013	.022	002	.027
	980.		185	-,062	0.070	102
	.472 RID	307	-,635	253		
	. 268	.132			077	090
	.393	.125	.158	.213		•
	.312	860	.178	.114		
1992 OCT	.118	.028	011	-, 195		
	.120	-,334	160	077	٠	•
MAGNESIUM (MG/L	^	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.1	N9	GUIDELINE = 30.0 (F2)	
1991 JAN	7.500	7.450	7.100	7.500	7.200	7.200
791 MAR	7.750	7.950	7.850	8.150	8.150	8.350
1991 MAY	7.900	7.850	2,600	7.750	7.750	7.550
1111	7,350	2.400	7.700	7 500	7 650	7 700
1001 SFP	7.850	7 950	000 8	7 000	A 050	010 8
	2.400	7.300	200.2	7 500	2 600	2 600
	10.300	0 750	0 300	099 0		
	7 330	7 380			7 510	7 7.90
	076 2	7 87.0	. 850	7 850	2	2
	7 510	067.2	7 64.0	7 530		
	7 57.0	7 570	2 / 20	7 5 50		
	1.740	1.270	065.7	7.300		
			164			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING		7,600	6.400	9-99	5 800	6 100	2.000	0	. 540		•				ā	018	BDI	1> 900.	.010	80r		. 108		••		•	) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	801	. 108	801		.002 <1			.003 <t< th=""><th></th><th></th><th></th><th>•</th></t<>				•
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 200 (A4)	5.000	6.200	9.600	5.800	6.100	5.200		075.9		٠. •			GUIDELINE = 0.05 (F2)	ī	.016	- G	.010	. 004 <t< td=""><td>BOL</td><td>•</td><td>1&gt; 900.</td><td></td><td></td><td></td><td></td><td>GU10ELINE = 1.0 (A1)</td><td>108</td><td>B0L</td><td>.001 <t< td=""><td></td><td></td><td>B0L</td><td></td><td>1&gt; 400.</td><td></td><td>•</td><td>•</td><td></td></t<></td></t<>	BOL	•	1> 900.					GU10ELINE = 1.0 (A1)	108	B0L	.001 <t< td=""><td></td><td></td><td>B0L</td><td></td><td>1&gt; 400.</td><td></td><td>•</td><td>•</td><td></td></t<>			B0L		1> 400.		•	•	
DIST. SYSTEM ROBERT ST STANDING	GUID	4.800	009.9	6.700	5.900	6.100	5.000	8.820		6.400	6.650	5.800	5.590	0109	660	30.		.002 <1	BOL	BDL	. 032		.008 <t< td=""><td>. 010</td><td>042</td><td>.002 <t< td=""><td>6010</td><td>.001 <t< td=""><td>.002 <t< td=""><td>B0L</td><td>.003 &lt;1</td><td>.002 <t< td=""><td>BOL</td><td>.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 010	042	.002 <t< td=""><td>6010</td><td>.001 <t< td=""><td>.002 <t< td=""><td>B0L</td><td>.003 &lt;1</td><td>.002 <t< td=""><td>BOL</td><td>.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	6010	.001 <t< td=""><td>.002 <t< td=""><td>B0L</td><td>.003 &lt;1</td><td>.002 <t< td=""><td>BOL</td><td>.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>B0L</td><td>.003 &lt;1</td><td>.002 <t< td=""><td>BOL</td><td>.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<></td></t<></td></t<>	B0L	.003 <1	.002 <t< td=""><td>BOL</td><td>.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<></td></t<>	BOL	.004 <t< td=""><td></td><td></td><td>.002 <t< td=""><td></td><td>.003 &lt;1</td></t<></td></t<>			.002 <t< td=""><td></td><td>.003 &lt;1</td></t<>		.003 <1
DIST. SYSTEM DIS ROBERT ST ROB FREE FLOW STA	DET'N LÍMIT = 0.20	5.800	6.200	9.600	5.900	9,000	5.200	7.660		6.170	6.560	5,700	5.580	DET'N LIMIT = 0.002	ī	.002 <1	108	. 000 × T	T> 900.	.002 <t< td=""><td>.028</td><td></td><td>. 002 <t< td=""><td></td><td>T&gt; 900.</td><td></td><td>DET'N LIMIT = 0.001</td><td>80r</td><td>. BOL .</td><td>BDL</td><td>.001 &lt;1</td><td>.003 &lt;1</td><td>BDL</td><td>.002 &lt;1</td><td></td><td>.002 <t< td=""><td></td><td>.002 &lt;⊺</td><td></td></t<></td></t<></td></t<>	.028		. 002 <t< td=""><td></td><td>T&gt; 900.</td><td></td><td>DET'N LIMIT = 0.001</td><td>80r</td><td>. BOL .</td><td>BDL</td><td>.001 &lt;1</td><td>.003 &lt;1</td><td>BDL</td><td>.002 &lt;1</td><td></td><td>.002 <t< td=""><td></td><td>.002 &lt;⊺</td><td></td></t<></td></t<>		T> 900.		DET'N LIMIT = 0.001	80r	. BOL .	BDL	.001 <1	.003 <1	BDL	.002 <1		.002 <t< td=""><td></td><td>.002 &lt;⊺</td><td></td></t<>		.002 <⊺	
TREATMENT PLANT TREATED	IORATORY)	2.600	9.000	9,600	5.900	6.100	5,300	7.760	6.330	6.200	6.570	6.150	5.650		ĬŪ	.002 <1			.008 <t< td=""><td>B01</td><td>210.</td><td></td><td>. 004 <t< td=""><td>.004 <t< td=""><td>.006 <t< td=""><td>B0L</td><td></td><td>. BOL</td><td>BOL</td><td>BDL</td><td>B01</td><td>B01</td><td>BDL</td><td>. 001 <t< td=""><td></td><td>.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B01	210.		. 004 <t< td=""><td>.004 <t< td=""><td>.006 <t< td=""><td>B0L</td><td></td><td>. BOL</td><td>BOL</td><td>BDL</td><td>B01</td><td>B01</td><td>BDL</td><td>. 001 <t< td=""><td></td><td>.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<></td></t<></td></t<></td></t<></td></t<>	.004 <t< td=""><td>.006 <t< td=""><td>B0L</td><td></td><td>. BOL</td><td>BOL</td><td>BDL</td><td>B01</td><td>B01</td><td>BDL</td><td>. 001 <t< td=""><td></td><td>.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<></td></t<></td></t<></td></t<>	.006 <t< td=""><td>B0L</td><td></td><td>. BOL</td><td>BOL</td><td>BDL</td><td>B01</td><td>B01</td><td>BDL</td><td>. 001 <t< td=""><td></td><td>.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<></td></t<></td></t<>	B0L		. BOL	BOL	BDL	B01	B01	BDL	. 001 <t< td=""><td></td><td>.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<></td></t<>		.002 <t< td=""><td>.001 &lt;⊺</td><td>BDL</td><td>80L</td></t<>	.001 <⊺	BDL	80L
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	5.400	5.800	6.500	5.800	5.100	7.900	7.660	6.690	6.350	5.590	5,470	5.610	(MG/L )	T> 400	. 008 <1	.024	.020	.016	.010	.014	. NU8 <t< td=""><td>.018</td><td>.004 <t< td=""><td>.010</td><td>. 004 <t< td=""><td>^</td><td>.002 <t< td=""><td>.002 &lt;⊤</td><td>.003 <t< td=""><td>500.</td><td>500.</td><td>. 100.</td><td>660.</td><td>.005</td><td>800.</td><td>800.</td><td>. 00% <t< td=""><td>.002 &lt;⊤</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.018	.004 <t< td=""><td>.010</td><td>. 004 <t< td=""><td>^</td><td>.002 <t< td=""><td>.002 &lt;⊤</td><td>.003 <t< td=""><td>500.</td><td>500.</td><td>. 100.</td><td>660.</td><td>.005</td><td>800.</td><td>800.</td><td>. 00% <t< td=""><td>.002 &lt;⊤</td></t<></td></t<></td></t<></td></t<></td></t<>	.010	. 004 <t< td=""><td>^</td><td>.002 <t< td=""><td>.002 &lt;⊤</td><td>.003 <t< td=""><td>500.</td><td>500.</td><td>. 100.</td><td>660.</td><td>.005</td><td>800.</td><td>800.</td><td>. 00% <t< td=""><td>.002 &lt;⊤</td></t<></td></t<></td></t<></td></t<>	^	.002 <t< td=""><td>.002 &lt;⊤</td><td>.003 <t< td=""><td>500.</td><td>500.</td><td>. 100.</td><td>660.</td><td>.005</td><td>800.</td><td>800.</td><td>. 00% <t< td=""><td>.002 &lt;⊤</td></t<></td></t<></td></t<>	.002 <⊤	.003 <t< td=""><td>500.</td><td>500.</td><td>. 100.</td><td>660.</td><td>.005</td><td>800.</td><td>800.</td><td>. 00% <t< td=""><td>.002 &lt;⊤</td></t<></td></t<>	500.	500.	. 100.	660.	.005	800.	800.	. 00% <t< td=""><td>.002 &lt;⊤</td></t<>	.002 <⊤
	SODIUM (MG/L	1991 JAN				1991 SEP								AMMONIUM TOTAL (MG/L	1001	1991 MAR	1991 MAY			1991 NOV	1992 FEB				1992 OCT	1992 DEC	NITRITE (MG/L	1991 JAN			1991 JUL	1991 SEP		1992 FEB	1992 APR			1992 OCT	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

	:														;														:													
DIST. SYSTEM THOMAS AVE STANDING		ř	555	260.	.395	.335	. 265	.300		380		•	•			110	011	2.0	031.		0 0	001.	• •	٠١.				•	A4)	8.020	8.080	8 050	2 060	8 120	20.50		. 050 8	0000		•		•
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 10.0 (A1)	ř	9.50	029.	.390	.320	. 260	.300		380		•			GUIDELINE = N/A	1> 090		130	00.0			2	. 120						GUIDELINE = 6.5-8.5 (A4)	8.000	8.070	8.050	076.2	8 090	000	0000	. N 030		•			
DIST. SYSTEM ROBERT ST STANDING	) 	450	052	027.	395	.330	.260	.300	7.680		567	072	2000	.320	ome	300	230	120	180		020	003.	. 300		047.	021.	.200	0.41.	0109	8.050	8.040	8,100	8.050	8.110	010	7 720		8 260	8 180	2 900	010	2
DIST. SYSTEM D ROBERT ST R FREE FLOW S	0ET'N LIMIT = 0.005	072	049	000.	.380	.330	.255	.295	7,850	•	.430	572	280	.330	DET'N (IMIT = 0.02	110	.080 <t< td=""><td>130</td><td>130</td><td>100</td><td>100</td><td>091:</td><td>000.</td><td>130</td><td>001.</td><td>- 1001</td><td>.090 . 150 et</td><td>. 100</td><td>DET'N LIMIT = N/A</td><td>7.960</td><td>8.040</td><td>8,000</td><td>7.890</td><td>8,100</td><td>7 890</td><td>7.410</td><td></td><td>8.210</td><td>8.240</td><td>8 050</td><td>070.2</td><td>) i</td></t<>	130	130	100	100	091:	000.	130	001.	- 1001	.090 . 150 et	. 100	DET'N LIMIT = N/A	7.960	8.040	8,000	7.890	8,100	7 890	7.410		8.210	8.240	8 050	070.2	) i
TREATMENT PLANT TREATEO	BORATORY)	350	57.5	20.5	686.	. 345	.265	.295	0.050	007	.455	175	305	.320	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T> 090.		.080 ×T		1> 000	1001	097	120	021	021.	001.	1> 0/0.	1× 080.		7.950	7.880	7.930	7.890	8.060	8 060	7.730	8.240	8.190	2.990	8.060	7 760	
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) (MG/L )	352	527	000	000.	.365	. 260	. 290	9.350	.395	577	375	300	.315	ELD (MG/L )	.200	.160	.180	. 220	200	180	1 180	180	27.0	047.		071.	001.		8.230	8.280	8.210	8.280	8.300	8.140	8.220	8.330	8.390	8.370	8.150	8.170	
_	CHE NITRATE (TOTAL) (MG/L	1001	1001 MAD			100 1061	1991 SEP			1992 APR					NITROGEN TOT KJELD (MG/L	1991 JAN	1991 MAR	1991 MAY	1991 Jul	1991 SFP			1992 APR				1992 001		PH (DMNSLESS )	1991 JAN		1991 MAY	1991 JUL				1992 APR			1992 OCT		

			FREE FLOW S	STANDING	FREE FLOW	STANDING
CHEMISTR PHOSPHORUS FIL REACT (MG/L	CHEMISTRY (LABORATORY) REACT (MG/L )	BORATORY)	DET'N LIMIT = 0.0005		GUIDELINE = N/A	
1991 JAN		T> 000.	•		•	٠
1991 SEP						• •
	. 001 <1					
		. 001 <t< td=""><td></td><td>٠</td><td></td><td></td></t<>		٠		
	.002 <1					
	BDL	T> 100.			•	
1992 AUG	.001 <t< td=""><td>900.</td><td></td><td></td><td></td><td></td></t<>	900.				
1992 DEC	. 001 <t< td=""><td>.002 <t< td=""><td></td><td></td><td></td><td></td></t<></td></t<>	.002 <t< td=""><td></td><td></td><td></td><td></td></t<>				
PHOSPHORUS TOTAL (MG/L	r (MG/L )		DET'N LIMIT = 0.002	· · · · · · · · · · · · · · · · · · ·	GUIDELINE = 0.40 (F2)	
1991 JAN	T> 900.	.002 <1	•			•
1991 MAR	1> 700.	BOL				
1991 MAY	T> 800.	.002 <₹	•			
	.010					
1991 SEP	.012	.003 <⊤	•		•	
	1> 700.	80F	•		•	
	.320	1> 400.	•		•	
	T> 900.	BOL	•			
	.011	. 002 <t< td=""><td>•</td><td>•</td><td>٠</td><td></td></t<>	•	•	٠	
	110.		, (			
1992 OCT	.010	.002 <1	•			
	.008 <t< td=""><td>.003 <t< td=""><td>•</td><td></td><td></td><td></td></t<></td></t<>	.003 <t< td=""><td>•</td><td></td><td></td><td></td></t<>	•			
RESIDUE FILTRATE (MG/L	E (MG/L )	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = N/A	IND	GUIDELINE = 500 (A3)	
1001	000 000 471	000 151	757	153 000 000	167 000	161
			124.000 CRU	132.000 CKO	155.000	000.151
		157, 000 CRU	152 000 CRU	152 000 CK0	155.000 CRO	1/8.000 CRO
		157 000 CRO	17, 000 080	155.000 CKO	124.000	000.001
	148.000 CKU	155.000 CR0	154.000 CRO	155.000 CRO	154.000	155.000
	140.000 CRO	132.000 CKO	155.000 CKU	154.000 CRO	155.000	154.000
	144.000 CKO	149.000 CKC	150.000 CR0	150.000 CRO		150.000
1002 APB	1/8 000 CRO	155 000 CRO	261.UUU CRU	266.000 CRO		•
		150 000 050			202.000 LKU	151.000 CKU
		159.000 CRO	156.000 CRU	150.000 CKO		
		150,000 CKU	156.000 CR0	159.000 CRO		
1992 001			156.000 CRO	154.000 CRO		•
	148.000	153.000	151.000	151.000		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

		ואבאובט	ROBERT ST FREE FLOW	ROBERT ST STANDING	THOMAS AVE FREE FLOW	THOMAS AVE STANDING
SULPHATE (MG/L	CHEMISTRY (LABORATORY)	ABORATORY)	DET'N LIMIT = 0.20		GUIDELINE = 500 (A3)	1
1991 JAN	16.540	23.900	23.420	24,390	23.130	24.230
1991 MAR	16.640	27.290	29.830	27.110	31.640	28.780
91 MAY	16.850	25.070	24.180	24.590	24.760	24.780
	17,170	24.940	24.640	24.240	24.240	24, 700
1991 SEP	16.970	24.980	24.920	25.130	25.650	24.820
	17.550	25.320	24,140	23.860	24, 220	24 110
1992 FEB	34.570	77.880	75.050	70.150		
	16.390	23.540	•	•	23,350	23.330
1992 JUN	16.680	24.580	24.140	24.060		
	16.240	21.850	21.520	21.930	•	•
1992 OCT	16.830	23.910	22.570	30,370		
	16.480	24.070	23.150	23.130		
TURBIOITY (FTU	^	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.05		GUIDELINE = 1.0 (A1)	
1991 JAN	3.100	.300	.560	1,700 RRV		.560
1991 MAR	3.800	. 130	906.	096.		.710
91 MAY	3,300	.590	097.	.840	027	760
	7.000	.240	027	.850	7.50	200
	4.200	.330	.500	.520	290	380
1991 NOV	1.980	.330	.420	.880	.620	720
	200.000	.340	.550	1,160 RRV		
	7.500	.310			.320	027
	6.200	.370	097.	.830	:	
	2.400	.980	.710	.720		
	5.100	.250	.950	1.670 RRV	•	•
	000					

	ΝIP
	1992 WALLACEBURG
	1992
	AND
	1991
ABLE 4	PROGRAM 1991
	SURVEILLANCE
	WATER
	DRINKING WATER

DIST. SYSTEM THOMAS AVE STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	801 901 906 1080 1080 108 108 108 108 108		14,000 28,000 54,000 68,000 68,000 17,000 17,000 17,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	108 108 108 108 108	GUIDELINE = 100 (A4)	15.000 25.000 28.000 58.000 63.000 17.000 63.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000 17.000
DIST. SYSTEM ROBERT ST STANDING	OIND	801 801 .060 .060 .000 801 801 801	מחמ	22.000 39.000 88.000 35.000 110.000 110.000 65.000 13.00 13.00 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.
DIST. SYSTEM - 4 ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	801 801 907 907 908 108 108 108 108 108 108	DET'N LIMIT = 0.10	18.000 32.000 79.000 34.000 95.000 110.000 61.000 24.000 110.000 24.000 110.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.00000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.00000 24.0000 24.0000 24.0000 24.0000 24.00000 24.0000 24.0000 2
TREATMENT PLANT TREATED		801 108 109 109 108 108 108 108 108 108 108		22.000 40.000 98.000 36.000 74.000 74.000 75.000 70.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000 40.00000 40.00000 40.00000 40.000000 40.00000 40.000000 40.00000000
TREATMENT PLANT RAW	METALS	108 108 108 108 108 108 108	^	28.000 41.000 72.000 72.000 72.000 18.000 18.000 75.000 55.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000 75.000
	SILVER (UG/L	1991 JAN 1991 MAY 1991 JUL 1991 SEP 1992 FEB 1992 APR 1992 AUN 1992 OCT 1992 OCT	ALUMINUM (UG/L	1991 JAN 1991 MAR 1991 JAN 1991 SEP 1991 MOV 1992 AR 1992 OCT 1992 OCT 1991 JAN 1991 JAN 1991 MAR 1991 MAR 1991 MAR 1991 MAR 1991 MAR 1991 MAR 1991 SEP 1992 AR 1993 AR 1993 OCT 1992 OCT

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

	1		. :	;	
DIST. SYSTEM THOMAS AVE STANDING		13.000	16,000 13,000 15,000 14,000	16.000 17.000 18.000 13.000 14.000 13.000 15.000 15.000 17.000	901 801 801 801 801 801 . 130 
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 1000 (A2)	13.000	15,000 14,000 16,000 13,000	GUIDELINE = 5000 (A1) 16.000 <1 18.000 <1 18.000 <1 18.000 <1 15.000 <1 15.000 <1 13.000 <1	GUIDELINE = 6800 (04)  801  801  801  801  801  801  801  80
DIST, SYSTEM ROBERT ST STANDING	GUIO	13.000	15.000 13.000 16.000 27.000 17.000 16.000	35.000 15.000 1 34.000 1 15.000 1 15.000 1 22.000 28.000 28.000 18.000	108 1 > 089. 108 9. 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108
ROBERT STEM FREE FLOW	0ET'N LIMIT = 0.05	13.000	15.000 15.000 16.000 27.000 17.000 15.000 15.000	16.000 <1 19.000 <1 19.000 <1 19.000 <1 19.000 <1 19.000 <1 25.000 <1 28.000 <1 28.000 <1 16.000 <1	DET'N LIMIT = 0.05  BOL BOL BOL BOL BOL BOL BOL BOL BOL BO
TREATMENT PLANT TREATED	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.000	15,000 14,000 16,000 28,000 17,000 17,000 14,000	17.000 <1 16.000 <1 18.000 <1 18.000 <1 15.000 <1 12.000 <1 12.000 <1 18.000 <1 17.000 <1 18.000 <1 18.000 <1 18.000 <1	108 108 108 108 108 108 108 108 108
TREATMENT PLANT RAW	METALS )	15.000	14,000 15,000 15,000 16,000 16,000 15,000 15,000 14,000	75,000 c7 15,000 c7 13,000 c7 13,000 c7 12,000 c7 11,000 c7 17,000 c7 17,000 c7 17,000 c7 18,000 c7 18,000 c7	1. ) 801 801 801 801 801 801 801 801 801 801
	BARIUM (UG/L	1991 JAN 1991 MAR 1991 MAY	1991 JUL 1991 SEP 1991 NOV 1992 FEB 1992 JUN 1992 AUR 1992 OCT 1992 OCT	1991 JAN 1991 JAN 1991 MAY 1991 MAY 1991 SEP 1991 SEP 1992 APR 1992 APR 1992 APR 1992 APR 1992 OCT	BERYLLIUM (UG/L 1991 JAN 1991 MAR 1991 MAY 1991 MOV 1991 NOV 1992 FEB 1992 APR 1992 UNN 1992 OCT 1992 OCT

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

THOMAS AVE STANDING		į	BUL	801	BDL	ICE	2 6	901	BDL		80r		•				2.000	BDL	T> 060.	.140 <t< th=""><th>.080 <t< th=""><th>.090 <t< th=""><th>•</th><th>.040 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th>2,900 &lt;1</th><th>T&gt; 069.</th><th>.560 &lt;1</th><th>1.500 <t< th=""><th>1&gt; 079.</th><th>.570 &lt;1</th><th></th><th>iO8</th><th>3</th><th></th><th>•</th><th>•</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	.080 <t< th=""><th>.090 <t< th=""><th>•</th><th>.040 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th>2,900 &lt;1</th><th>T&gt; 069.</th><th>.560 &lt;1</th><th>1.500 <t< th=""><th>1&gt; 079.</th><th>.570 &lt;1</th><th></th><th>iO8</th><th>3</th><th></th><th>•</th><th>•</th><th></th></t<></th></t<></th></t<></th></t<>	.090 <t< th=""><th>•</th><th>.040 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th>2,900 &lt;1</th><th>T&gt; 069.</th><th>.560 &lt;1</th><th>1.500 <t< th=""><th>1&gt; 079.</th><th>.570 &lt;1</th><th></th><th>iO8</th><th>3</th><th></th><th>•</th><th>•</th><th></th></t<></th></t<></th></t<>	•	.040 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th>2,900 &lt;1</th><th>T&gt; 069.</th><th>.560 &lt;1</th><th>1.500 <t< th=""><th>1&gt; 079.</th><th>.570 &lt;1</th><th></th><th>iO8</th><th>3</th><th></th><th>•</th><th>•</th><th></th></t<></th></t<>	•					2,900 <1	T> 069.	.560 <1	1.500 <t< th=""><th>1&gt; 079.</th><th>.570 &lt;1</th><th></th><th>iO8</th><th>3</th><th></th><th>•</th><th>•</th><th></th></t<>	1> 079.	.570 <1		iO8	3		•	•	
THOMAS AVE FREE FLOW	GUIDELINE = 5.0 (A1)	i	BUL	BDL	BDL	ICR	1,000	1. 060.	BDL		BDL					GUIDELINE = N/A	2.000	108	.070		T> 090.	150 <1	•	T> 080.					GUIDELINE = 50.0 (A1)	3,100 <t< td=""><td>1,000 <t< td=""><td>T&gt; 047.</td><td>1.600 <t< td=""><td>1.800 &lt;1</td><td>1&gt; 079</td><td></td><td>. G</td><td>3</td><td>•</td><td></td><td>•</td><td></td></t<></td></t<></td></t<>	1,000 <t< td=""><td>T&gt; 047.</td><td>1.600 <t< td=""><td>1.800 &lt;1</td><td>1&gt; 079</td><td></td><td>. G</td><td>3</td><td>•</td><td></td><td>•</td><td></td></t<></td></t<>	T> 047.	1.600 <t< td=""><td>1.800 &lt;1</td><td>1&gt; 079</td><td></td><td>. G</td><td>3</td><td>•</td><td></td><td>•</td><td></td></t<>	1.800 <1	1> 079		. G	3	•		•	
ROBERT ST T	GUIDEL		1> 017.	. 090 ×T	BDL	070 <1		100	.080	.320 <1		80F	BDL	1.300	.250 <1	 GUIDEL	1,900	G	1> 080	110 <1	.080 <t< td=""><td>T&gt; 090.</td><td>.370 <t< td=""><td></td><td>.150 &lt;1</td><td>. 100 <t< td=""><td>.220 &lt;1</td><td>2.700</td><td>130105</td><td>3.000 <t< td=""><td>1,600 <t< td=""><td>890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 090.	.370 <t< td=""><td></td><td>.150 &lt;1</td><td>. 100 <t< td=""><td>.220 &lt;1</td><td>2.700</td><td>130105</td><td>3.000 <t< td=""><td>1,600 <t< td=""><td>890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.150 <1	. 100 <t< td=""><td>.220 &lt;1</td><td>2.700</td><td>130105</td><td>3.000 <t< td=""><td>1,600 <t< td=""><td>890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<>	.220 <1	2.700	130105	3.000 <t< td=""><td>1,600 <t< td=""><td>890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<></td></t<></td></t<>	1,600 <t< td=""><td>890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<></td></t<>	890 <t< td=""><td>1.700 &lt;1</td><td>BDL</td><td>1&gt; 055.</td><td></td><td></td><td>700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<></td></t<>	1.700 <1	BDL	1> 055.			700 <t< td=""><td>7 008 1</td><td>1,007, 6</td><td>1,004.7</td><td>.560 &lt;1</td></t<>	7 008 1	1,007, 6	1,004.7	.560 <1
ROBERT ST ROI FREE FLOW ST/	DET'N LIMIT = 0.05		BDL	. BDL	BDL	ida	2 6	BUL	BDL	BDL	•	BDL	BDL	1> 070	BDL	 DET'N LIMIT = 0.02	1.900	IGB	T> 090.			1> 080			1> 001.	120 <1	. 100 ×T	2.800	DET'N LIMIT = 0.50	3.200 <t< td=""><td>1.600 &lt;1</td><td>1&gt; 085.</td><td>1,700 &lt;1</td><td>BDL</td><td>.540 <t< td=""><td>CB</td><td></td><td>710 sT</td><td>1 200 1</td><td></td><td>BUL</td><td>BDL</td></t<></td></t<>	1.600 <1	1> 085.	1,700 <1	BDL	.540 <t< td=""><td>CB</td><td></td><td>710 sT</td><td>1 200 1</td><td></td><td>BUL</td><td>BDL</td></t<>	CB		710 sT	1 200 1		BUL	BDL
TREATED			BDL	BDL	BDL	i ca	726	BUL	BDL	BDL	BDL	BDL	BDI	BDL	T> 090.	 _	2 200	I GB	1> 050					T> 090.	. 160 <t< td=""><td>.200 <t< td=""><td>1&gt; 080.</td><td>1&gt; 071.</td><td>1</td><td>3.400 <t< td=""><td>1&gt; 077.</td><td>B0L</td><td>1,600 &lt;1</td><td>1&gt; 055.</td><td></td><td></td><td>3 6</td><td>560 cT</td><td>7, 001, 6</td><td>2 500 7</td><td>3.300</td><td>. 770 &lt;1</td></t<></td></t<></td></t<>	.200 <t< td=""><td>1&gt; 080.</td><td>1&gt; 071.</td><td>1</td><td>3.400 <t< td=""><td>1&gt; 077.</td><td>B0L</td><td>1,600 &lt;1</td><td>1&gt; 055.</td><td></td><td></td><td>3 6</td><td>560 cT</td><td>7, 001, 6</td><td>2 500 7</td><td>3.300</td><td>. 770 &lt;1</td></t<></td></t<>	1> 080.	1> 071.	1	3.400 <t< td=""><td>1&gt; 077.</td><td>B0L</td><td>1,600 &lt;1</td><td>1&gt; 055.</td><td></td><td></td><td>3 6</td><td>560 cT</td><td>7, 001, 6</td><td>2 500 7</td><td>3.300</td><td>. 770 &lt;1</td></t<>	1> 077.	B0L	1,600 <1	1> 055.			3 6	560 cT	7, 001, 6	2 500 7	3.300	. 770 <1
RAW	METALS )		BDL	BDL	BDI	i ca	200	BDL	BDL	1> 060.	BDL	BDL	ED.	G	T> 080.	•	000 6	1> 030	210 <t< td=""><td>150 <t< td=""><td>190 &lt;1</td><td>.130 &lt;1</td><td>1.800</td><td>T&gt; 090.</td><td>.170 <t< td=""><td>.250 &lt;1</td><td>1&gt; 071.</td><td>.280 <t< td=""><td>(</td><td>3.500 <t< td=""><td>1,600 &lt;7</td><td>801</td><td>1&gt; 055.</td><td>T&gt; 045.</td><td>.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	150 <t< td=""><td>190 &lt;1</td><td>.130 &lt;1</td><td>1.800</td><td>T&gt; 090.</td><td>.170 <t< td=""><td>.250 &lt;1</td><td>1&gt; 071.</td><td>.280 <t< td=""><td>(</td><td>3.500 <t< td=""><td>1,600 &lt;7</td><td>801</td><td>1&gt; 055.</td><td>T&gt; 045.</td><td>.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	190 <1	.130 <1	1.800	T> 090.	.170 <t< td=""><td>.250 &lt;1</td><td>1&gt; 071.</td><td>.280 <t< td=""><td>(</td><td>3.500 <t< td=""><td>1,600 &lt;7</td><td>801</td><td>1&gt; 055.</td><td>T&gt; 045.</td><td>.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <1	1> 071.	.280 <t< td=""><td>(</td><td>3.500 <t< td=""><td>1,600 &lt;7</td><td>801</td><td>1&gt; 055.</td><td>T&gt; 045.</td><td>.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<></td></t<></td></t<>	(	3.500 <t< td=""><td>1,600 &lt;7</td><td>801</td><td>1&gt; 055.</td><td>T&gt; 045.</td><td>.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<></td></t<>	1,600 <7	801	1> 055.	T> 045.	.510 <t< td=""><td>2 800 cT</td><td></td><td>880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<></td></t<>	2 800 cT		880 <t< td=""><td>1, 000 c</td><td>1 007 2</td><td>2.000.0</td><td>1.500 &lt;1</td></t<>	1, 000 c	1 007 2	2.000.0	1.500 <1
	CADMIUM (UG/L		1991 JAN	1991 MAR	1001 MAY	1001	1991 301	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 ALIG	1992 DCT	1992 DEC	COBALT (UG/L	1001 JAN	1001 MAD	1001 MAY	1001	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	CHROMIUM (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1007 FFR	1007 APR	1007	1002 Atte	1002 001	130 266	1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

1 1 1 1 1 1 1	KAW		RUBERI SI FREE FLOW	STANDING	FREE FLOW	STANDING
COPPER (UG/L	METALS )		0ET'N LIMIT = 0.50		GUIDELINE = 1000 (A3)	
1991 JAN	1.800 <t< td=""><td></td><td>4.300 <t< td=""><td>000.76</td><td>4.800 <t< td=""><td>14.000</td></t<></td></t<></td></t<>		4.300 <t< td=""><td>000.76</td><td>4.800 <t< td=""><td>14.000</td></t<></td></t<>	000.76	4.800 <t< td=""><td>14.000</td></t<>	14.000
1991 MAR	1.900 <t< td=""><td>1.600 <t< td=""><td>3.700 &lt;1</td><td>250.000</td><td></td><td>72.000</td></t<></td></t<>	1.600 <t< td=""><td>3.700 &lt;1</td><td>250.000</td><td></td><td>72.000</td></t<>	3.700 <1	250.000		72.000
		2.700 <t< td=""><td>4.300 <t< td=""><td>98.000</td><td>38.000</td><td>9.200</td></t<></td></t<>	4.300 <t< td=""><td>98.000</td><td>38.000</td><td>9.200</td></t<>	98.000	38.000	9.200
1991 JUL	2.600 <t< td=""><td></td><td>3.200 &lt;1</td><td>160.000</td><td>8.200</td><td>17.000</td></t<>		3.200 <1	160.000	8.200	17.000
		1,700 <t< td=""><td>3.300 <t< td=""><td>45.000</td><td>5.300</td><td>20.000</td></t<></td></t<>	3.300 <t< td=""><td>45.000</td><td>5.300</td><td>20.000</td></t<>	45.000	5.300	20.000
1991 NOV	2.300 <t< td=""><td>1.700 &lt;1</td><td>2.900 &lt;1</td><td>49.000</td><td>7&gt; 008.4</td><td>8.300</td></t<>	1.700 <1	2.900 <1	49.000	7> 008.4	8.300
		5.100 <1	000.7	180.000		•
1992 APR	1.800 <1	1.000 5			5.100	27.000
	1 400 41	13:000.2	1> 006.7	70.000		
	2 200 <		2 200	29.000	•	
	3.000 <t< td=""><td>1.600 <t< td=""><td>4.500 <t< td=""><td>170.000</td><td></td><td></td></t<></td></t<></td></t<>	1.600 <t< td=""><td>4.500 <t< td=""><td>170.000</td><td></td><td></td></t<></td></t<>	4.500 <t< td=""><td>170.000</td><td></td><td></td></t<>	170.000		
IRON (UG/L		* * * * * * * * * * * * * * * * * * *	DET'N LIMIT = 6.00		GUIDELINE = 300 (A3)	
1991 JAN	37.000 <t< td=""><td>12.000 <t< td=""><td>120.000</td><td>220.000</td><td>T&gt; 000 - 75</td><td>50 000 ct</td></t<></td></t<>	12.000 <t< td=""><td>120.000</td><td>220.000</td><td>T&gt; 000 - 75</td><td>50 000 ct</td></t<>	120.000	220.000	T> 000 - 75	50 000 ct
	87.000	7.500 <1	220.000	310,000	180,000	
	94.000	10.000 <t< td=""><td>75.000</td><td>100.000</td><td>62.000</td><td>51.000 &lt;1</td></t<>	75.000	100.000	62.000	51.000 <1
	120.000	BDL	150.000	160.000	100.000	42.000 <t< td=""></t<>
	140.000	10.000 <t< td=""><td>100.000</td><td>98.000</td><td>16.000 &lt;1</td><td></td></t<>	100.000	98.000	16.000 <1	
	45.000 <t< td=""><td>6.300 <t< td=""><td>75.000</td><td>91.000</td><td>95.000</td><td>120.000</td></t<></td></t<>	6.300 <t< td=""><td>75.000</td><td>91.000</td><td>95.000</td><td>120.000</td></t<>	75.000	91.000	95.000	120.000
1992 FEB	1800.000	43.000 <t< td=""><td>780.000</td><td>460.000</td><td>. :</td><td></td></t<>	780.000	460.000	. :	
	000.001				50,000 <1	52.000 <t< td=""></t<>
	80 000	7 200 <1	140 000	170.000		
	97.000	1, 203.	210 000	290,000		
1992 DEC	47.000 <1	11.000 <t< td=""><td>220.000</td><td>510.000</td><td>• •</td><td></td></t<>	220.000	510.000	• •	
MERCURY (UG/L	(	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = 0.02	OUI	GUIDELINE = 1.0 (A1)	
24 SAMPLES	108	108		•		
MANGANESE (UG/L	^		DET'N LIMIT = 0.05	* * * * * * * * * * * * * * * * * * *	GUIDELINE = 50.0 (A3)	
1991 JAN	2.400	.390 <t< td=""><td>7.100</td><td>13.000</td><td>3.900</td><td>3.500</td></t<>	7.100	13.000	3.900	3.500
1991 MAR	3.900	. 780	12.000	11.000	080.72	22.000
1991 MAY	3.400	.380 <1	7.600	2.400	5.900	3.600
	7.900	.210 <t< td=""><td>0.600</td><td>0.500</td><td>14.000</td><td>5 200</td></t<>	0.600	0.500	14.000	5 200
	5.400	.510	12,000	12.000	5.600	2000
	2.300	.540	7.300	8.500	14,000	21.000
	75.000	12.000	71,000	58.000		
	7.000	T> 091.			7.200	9.000
	5.200	T> 006.	12.000	13.000		
	7.600	.570	17.000	15.000		
1992 OCT	4.100	. 100 <t< td=""><td>19.000</td><td>20.000</td><td></td><td></td></t<>	19.000	20.000		
1000	000	4/0	45 000			

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

HETALS	œ	RAW	KEA EU	FREE FLOW	STANDING	INUMAS AVE FREE FLOW	STANDING
1, 400 ct   .510   .580   .440 ct   .520   .680   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430   .430	MOLYBDENUM (UG/L			DET'N LIMIT = 0.05	100	DELINE = N/A	*  1
1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,			.510	.580	T> 044.	.520	1> 057
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		T> 054.	.590	.570	009.	089.	.620
1,480 <   1,540   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,550   1,		.430 <t< td=""><td>.540</td><td>1&gt; 057.</td><td>.520</td><td>.620</td><td>1&gt; 067</td></t<>	.540	1> 057.	.520	.620	1> 067
V		.480 <t< td=""><td>.540</td><td>.530</td><td>.550</td><td>.520</td><td>.590</td></t<>	.540	.530	.550	.520	.590
V   1,500 < 1   5,40		.430 <t< td=""><td>1&gt; 067.</td><td></td><td>1&gt; 074.</td><td>T&gt; 097</td><td>1&gt; 067.</td></t<>	1> 067.		1> 074.	T> 097	1> 067.
No.   1.800   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500   1.500		T> 067.	:540		T> 087.	1> 02.	1> 087
1,200 <		.390 <t< td=""><td>1.800</td><td>1.600</td><td>1.500</td><td>٠</td><td></td></t<>	1.800	1.600	1.500	٠	
1,200 < 7			1> 087		•	. 580	1> 067
C			.330 <1	.200 <	. 220 <1		
1, 1, 6, 0   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			.680	.540	.580		•••
C			.540	.630	1,100		
N			.560				
N	CUG/L	^		DET'N LIMIT = 0.20	109 101		
BDL   BDL   BDL   BDL   1,200 <1		9.900	7.600	007.9	8.800	008.9	7 000
Bill		ED!	I CB	, CB	1 200 cT	100	1, 01,
1,200 ct   1,300 ct   3,300 ct		BDL	BOL	108 108		500 <1	, DI #:
1.200 ct   1.000 ct   920 ct   1.300 ct   670 ct     801		1> 054.	108	.720 <1	1.500 <t< td=""><td>320 &lt;1</td><td>490 &lt;1</td></t<>	320 <1	490 <1
Box   Box   Box   Box   C 5.000		1.200 <⊤		920 <t< td=""><td>1 300 1</td><td>870 .1</td><td>2,000</td></t<>	1 300 1	870 .1	2,000
1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,500 < 1   1,50		BOL	80L	80F	2.600	25.	901.7 IUB
1.500 <		6.800	2.100	2.400	6.300	3	3
Sec   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1   1,300 < 1		1.600 <t< td=""><td>1,500 &lt;7</td><td>•</td><td></td><td>1,300 <t< td=""><td>.000 \$</td></t<></td></t<>	1,500 <7	•		1,300 <t< td=""><td>.000 \$</td></t<>	.000 \$
1		.270 <1	108	108	1.300 <t< td=""><td></td><td></td></t<>		
BDL   BDL   BDL   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.800   3.		.860 <t< td=""><td>.&gt; 017.</td><td>1&gt; 099.</td><td>1&gt; 096.</td><td></td><td>•</td></t<>	.> 017.	1> 099.	1> 096.		•
BDL   BDL   B.200   B.600   B.600   B.500		BDL	BDL	BDL	3.800		•
Section   Sect		BDL	BOL	8.200	8.600		
JAN 320 <1 2.60 <1 2.70 <1 2.700 1.60 <1 4.600 1.80 <1 3.80 <1 2.700 1.60 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 1.80 <1 4.900 <1	UG/L )		· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT = 0.05	100		
MAR 300 cf 180 cf 100 cf 4,900 180 cf	1 JAN	.320 <1	.260 <t< td=""><td>.270 &lt;1</td><td>2.700</td><td>1,160 &lt;1</td><td>300 &lt;1</td></t<>	.270 <1	2.700	1,160 <1	300 <1
MAY 570 .210 <t 1,900="" 1.00="" 1.80="" 1.80<="" 2.300="" 4.400="" 4.80="" 801="" 900="" <t="" jul="" td=""><td></td><td>.300 &lt;1</td><td>.180 <t< td=""><td>.100 &lt;⊺</td><td>7.900</td><td>180 <t< td=""><td>000 5</td></t<></td></t<></td></t>		.300 <1	.180 <t< td=""><td>.100 &lt;⊺</td><td>7.900</td><td>180 <t< td=""><td>000 5</td></t<></td></t<>	.100 <⊺	7.900	180 <t< td=""><td>000 5</td></t<>	000 5
JUL 480 <1 B0L 0.90 <1 4,400 180 <1 80		.570	.210 <t< td=""><td>.100 &lt;1</td><td>2.300</td><td>1,900</td><td>150 &lt;1</td></t<>	.100 <1	2.300	1,900	150 <1
SEP 510 190 <t 100="" 190="" 20="" 210="" 250="" 2<="" 3.300="" 3.500="" <t="" td=""><td></td><td>1&gt; 084.</td><td>B0L</td><td>1&gt; 060.</td><td>4.400</td><td>180 &lt;1</td><td>12 077</td></t>		1> 084.	B0L	1> 060.	4.400	180 <1	12 077
NOV .400 <1 .220 <1 .180 <1 1.700 .233 <1		.510		190 <1	3.300	210 <1	1> 067
FEB 4.600 390 <t 3.500<="" td=""><td></td><td>T&gt; 004</td><td></td><td>180 <t< td=""><td>1 700</td><td>230 41</td><td>1, 035</td></t<></td></t>		T> 004		180 <t< td=""><td>1 700</td><td>230 41</td><td>1, 035</td></t<>	1 700	230 41	1, 035
APR . 260 <t bdl<="" td=""><td></td><td>7.600</td><td></td><td>1&gt; 060.</td><td>3.500</td><td></td><td>. 253:</td></t>		7.600		1> 060.	3.500		. 253:
JUN .440 <t .120="" .130="" .170="" .310="" .340="" .400="" .450="" .450<="" .910="" 1.300="" 2.200="" 350="" 4.700="" <t="" ang="" bbl="" ff="" oot="" td=""><td></td><td>.260 &lt;</td><td>B0L</td><td>•</td><td></td><td>T&gt; 040.</td><td>7&gt; 087</td></t>		.260 <	B0L	•		T> 040.	7> 087
AUG 340 <t 001="" 005="" 130="" 170="" 180="" 400="" 801="" 910="" <t="" ct="" ct<="" td=""><td></td><td>T&gt; 044.</td><td></td><td></td><td>2.200</td><td></td><td></td></t>		T> 044.			2.200		
00T . 910 BDL . 400 <t< td=""><td></td><td>. 340 &lt;1</td><td></td><td></td><td>1.300</td><td>•</td><td>•</td></t<>		. 340 <1			1.300	•	•
NEC 350 <1 140 <1 100 <1		.910			7007		•
		750 AT					

TABLE 4 ORINKÍNG WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

	N Y		FREE FLOW S	STANDING	FREE FLOW	STANDING
ANTIMONY (UG/L	METALS )		DET'N LIMIT = 0.05	กับ	GUIDELINE = 146 (04)	
1991 JAN	.520	.590	079.	.630	1> 074.	.620
1991 MAR	.520	.520	1> 067.	.620	.570	.580
	.500 <t< td=""><td></td><td>1&gt; 077°</td><td>1&gt; 007</td><td>1&gt; 074.</td><td></td></t<>		1> 077°	1> 007	1> 074.	
	T> 074.	1> 057.	.630	.620	.560	.880
1991 SEP	.380 <t< td=""><td></td><td>.510</td><td>079.</td><td>089.</td><td>.520</td></t<>		.510	079.	089.	.520
1991 NOV	.610	1> 067	.560	.650	009.	.910
	.250 <t< td=""><td>.580</td><td>.820</td><td>.880</td><td></td><td></td></t<>	.580	.820	.880		
	1> 077	1> 02.5	•		089	720
			510	550	)	
			025	T> 025		
	530		000	000		
	. 860		1> 025.	089	•	
SELENIUM (UG/L	^		DET'N LIMIT = 1.00	ing.	GUIDELINE = 10 (A1)	
1991 JAN	1.400 <1	3.300 <1	4.500 <1	4.800 <t< td=""><td>4.300 <t< td=""><td>1&gt; 005.7</td></t<></td></t<>	4.300 <t< td=""><td>1&gt; 005.7</td></t<>	1> 005.7
1991 MAR	108	BDL	1.100 <t< td=""><td>BOL</td><td>108</td><td>1,300 &lt;1</td></t<>	BOL	108	1,300 <1
1991 MAY	BDL	BDL	BDL	BOL	80F	108
	BDL	BDL	B0L	BOL	801	1,200 <1
1991 SEP	BDL	BDL	BDL	BDL	801	BDI
	BOL	BOL	80F	108	BOL	108
1992 FEB	1.500 <t< td=""><td>1.500 &lt;1</td><td>1,300 <t< td=""><td>1,100 <t< td=""><td>•</td><td>,</td></t<></td></t<></td></t<>	1.500 <1	1,300 <t< td=""><td>1,100 <t< td=""><td>•</td><td>,</td></t<></td></t<>	1,100 <t< td=""><td>•</td><td>,</td></t<>	•	,
1992 APR	BDL	1,700 <1	•		108	801
1992 JUN	BDL	801	BOL	108		
1992 AUG	1.600 <1	2.400 <1	1.600 <1	1.600 <t< td=""><td></td><td>•</td></t<>		•
	BDL	108	801	1.800 <7	•	•
1992 DEC	900	BOL	801	108	•	• •
STRONTIUM (UG/L		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.10	פחו	GUIDELINE = N/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1991 JAN	96.000	000.66	000.96	000.76	96.000	000.96
1991 MAR	100.000	100.000	110,000	110.000	110.000	110.000
1991 MAY	100,000	100.000	100.000	100.000	110 000	100 000
1991 JUL	98.000	000.66	000.96	000 66	000 26	100 000
	000 76	000 90	000 %	000 %	000 001	000.20
	100 000	100 000	100	110 000	110,000	35,000
	150 000	1,000	120.000	000.01	000.01	110,000
	000.76	000.02	200:03	000.04	. 000	, 000
1007 IIIN	120 000	130 000	130 000	120 000	76.000	77.000
	110.000	110,000	000.031	130.000	•	,
1992 AUG	110.000	000.011	000.011	110.000	•	٠
1992 001	110,000	110.000	100.000	100.000		,
	000	414				

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

1,				:
DIST. SYSTEM THOMAS AVE STANDING	·	8.400 4.800 <t 1.800 <t< th=""><th>. 890 &lt;1 1,500 &lt;1 1,900 &lt;1 3,300 &lt;7</th><th>108 108 108 108 108 109 100 100 100 100 100 100 100 100 100</th></t<></t 	. 890 <1 1,500 <1 1,900 <1 3,300 <7	108 108 108 108 108 109 100 100 100 100 100 100 100 100 100
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	7.600 4.500 <t 1.900 <t< td=""><td>1.100 &lt;1 1.200 &lt;1 1.700 &lt;1 3.500 &lt;1</td><td>GUIDELINE = 13 (04)  BUL BUL BUL BUL BUL BUL BUL COLOR COLOR</td></t<></t 	1.100 <1 1.200 <1 1.700 <1 3.500 <1	GUIDELINE = 13 (04)  BUL BUL BUL BUL BUL BUL BUL COLOR
DIST. SYSTEM ROBERT ST STANDING	GUIDEL	8.100 5.000 <t 2.000 <t< td=""><td>1.800 <t 1.700 <t 2.100 <t 4.100 <t 4.400 <t 4.400 <t 4.400 <t 10.000</t </t </t </t </t </t </t </td><td>GUIDEL  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1</td></t<></t 	1.800 <t 1.700 <t 2.100 <t 4.100 <t 4.400 <t 4.400 <t 4.400 <t 10.000</t </t </t </t </t </t </t 	GUIDEL  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1  90.1
DIST. SYSTEM DIS ROBERT ST ROF FREE FLOW STA	DET'N LIMIT = 0.50	7.800 4.500 <t 2.300 &lt;1</t 	1.000 <1 2.000 <1 4.200 <1 4.200 <1 1.500 <1 1.500 <1	BOL
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1		1,200 <1 1,700 <1 1,700 <1 2,900 <1 1,900 <1 1,100 <1 3,100 <1	901 901 901 901 901 901 901 901 901 901
TREATMENT PLANT RAW	METALS )	6.900 4.500 <t 2.600 <t< td=""><td>2.500 &lt;7 1.500 &lt;7 1.000 &lt;7 4.400 &lt;7 2.800 &lt;7 2.400 &lt;7 3.300 &lt;7</td><td>901 901 901 901 901 901 901 901</td></t<></t 	2.500 <7 1.500 <7 1.000 <7 4.400 <7 2.800 <7 2.400 <7 3.300 <7	901 901 901 901 901 901 901 901
	TITANIUM (UG/L		1991 JUL 1991 SEP 1991 NOV 1992 APR 1992 JUN 1992 OCT 1992 OCT	1991 JAN 1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 JUL 1992 ARR 1992 JUN 1992 DEC 1991 JAN 1991 JAN 1991 JAN 1991 MAR 1991 MAR 1991 JUL 1992 EEB 1993 ARR 1991 JUL 1993 PEB 1993 ARR 1991 JUL 1993 PEB 1993 ARR 1993 ARR 1994 ARR 199

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

	RAW RAW	TREATED	DIST. SYSTEM ROBERT ST FREE FLOW	DIST. STSTEM ROBERT ST STANDING	DISI. SYSTEM THOMAS AVE FREE FLOW	DIST. SYSTEM THOMAS AVE STANDING
VANADIUM (UG/L	METALS )		DET'N LIMIT = 0.05		GUIDELINE = N/A	
1991 JAN	1> 021.	.320 <1		075.	.290 <1	.300 <1
1991 MAR	.280 <t< td=""><td>.520</td><td>.370 &lt;7</td><td>1&gt; 057.</td><td>.380 &lt;1</td><td>390 &lt;1</td></t<>	.520	.370 <7	1> 057.	.380 <1	390 <1
	HD1	1> 080.	BDL	801		
	. 110 <t< td=""><td>1 &lt; 20 &lt; 1</td><td>.320 &lt;1</td><td>T&gt; 094.</td><td></td><td></td></t<>	1 < 20 < 1	.320 <1	T> 094.		
	.290 <1	.610	T> 084.		1> 070	.360 <⊺
1991 NOV	.080 <t< td=""><td>.240 &lt;1</td><td>.200 &lt;1</td><td>7&gt; 012.</td><td></td><td></td></t<>	.240 <1	.200 <1	7> 012.		
1992 FEB	3.200	.500 <t< td=""><td>1&gt; 065.</td><td>.590</td><td>٠</td><td></td></t<>	1> 065.	.590	٠	
	. 130 <t< td=""><td>. 180 <t< td=""><td></td><td></td><td>801</td><td>801</td></t<></td></t<>	. 180 <t< td=""><td></td><td></td><td>801</td><td>801</td></t<>			801	801
	108	BDL	80F	108		
	.370 <t< td=""><td>.630</td><td>.510</td><td>.520</td><td></td><td></td></t<>	.630	.510	.520		
1992 OCT	.300 <t< td=""><td>.580</td><td>.530</td><td>1.800</td><td></td><td></td></t<>	.580	.530	1.800		
1992 DEC	1> 091.	. 290 <7	.560	1.100		
ZINC (UG/L			DET'N LIMIT = 0.20		GUIDELINE = 5000 (A3)	,
1991 JAN	2.800	3.700	3,300	58.000	2.900	7.000
1991 MAR	3.100	3.900	3.100	86.000	2.700	20,000
	3.700	3.800	2.900	36.000	11.000	2.500
	3.800	2.300	3.100	27.000	3.000	5.800
1991 SEP	3.000	2.800	2.200	33.000	1,700 <1	9.800
	2.700	2.600	1.800 <1	18.000	2.200	2.600
	19.000	9.800	7.600	95.000		•
	2.700	1.500 <t< td=""><td></td><td></td><td>5.400</td><td>15.000</td></t<>			5.400	15.000
	2.100	2.900	1,700 <1	33.000	•	
	3.200	2.100	1.600 <1	12,000		
1992 OCT	4.100	2.100	4.800	85.000		
	5.300	7.600	5.700	94.000		, ,

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

*														:		:									
DIST. SYSTEM THOMAS AVE.	-\$-			•	•		•			•	9				٠	• • • • • • • • • •			•	1			٠		٠
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 450 (04)	ā	901	33	- AL	AA.	108	•	108					GUIDELINE = N/A	108	GUIDELINE = N/A	BDL	GUIDELINE = N/A	108	GUIDELINE = 10000 (I)	BDL	GUIDELINE = 38000 (D4)	BDL .	GUIDELINE = N/A	108
DIST. SYSTEM ROBERT ST STANDING				•		•	•	•	•	•	•		•	1 1 2 4 1 3 4 4 4	•		٠		٠		٠	• • • • • • • •	•		٠
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 1.000	. =	K7:	2 2	- AM	I AN	BDL	BDL		80F	108	BDL	. 801	DET'N LIMIT = 5.000	80r	DET'N LIMIT = 1.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	BOL	DET'N LIMIT = 5.000	BOL
TREATMENT PLANT TREATED	S	ē	100	3 2	I AV	i Av	BDL	BDL	108	90r	BDL	BDL	108		BDL		BDL		BDL		BDL		BDL		80L
TREATMENT PLANT RAW	CHLOROAROMATICS IE (NG/L )	ā	2 000 Z	2 000 <t< td=""><td>MY.</td><td>AM</td><td>900</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>80F</td><td>108</td><td>NE (NG/L )</td><td>108</td><td>NE (NG/L )</td><td>108</td><td>NE (NG/L )</td><td>BDL</td><td>NE (NG/L )</td><td>108</td><td>NE (NG/L )</td><td>BDL</td><td>NE (NG/L )</td><td>BDL</td></t<>	MY.	AM	900	BDL	BDL	BDL	BDL	80F	108	NE (NG/L )	108	NE (NG/L )	108	NE (NG/L )	BDL	NE (NG/L )	108	NE (NG/L )	BDL	NE (NG/L )	BDL
. TRE.	HEXACHLOROBUTADIENE (NG/L	1001		1001 MAY								1992 OCT	1992 DEC	123-TRICHLOROBENZENE (NG/L	33 SAMPLES	1234-TETCLOROBENZENE (NG/L	33 SAMPLES	1235-TETCLOROBENZENE (NG/L	33 SAMPLES	124-TRICHLOROBENZENE (NG/L	33 SAMPLES	1245-TETCLOROBENZENE (NG/L	33 SAMPLES	135-TRICHLOROBENZENE (NG/L	33 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

DAROMATICS  DAROMATICS  DAROMATICS  DETIN LIMIT = 1.000  DETIN LIMIT = 5.000  DETIN LIMIT = 5.000	ROBERT ST THOMAS AVE STANDING FREE FLOW	THOMAS AVE STANDING
11	000 GUIDELINE = 10 (C1)	
801 801 801 801 801 801 801 801 801 801	. 801	
May   May	. 801	
AM	. 801	
AM		
SOU	NY i	
BDL   BDL   BDL	. 801	
801 801 801 801 801 801 801 801 801 801		
BDL   BDL   BDL	. BDL	
BDL   BDL   BDL		
SDL		
BDL   BDL		
) DET'N LIMIT = 1.000  80L 80L 80L 80L 80L 80L 80L 80L 80L		
SDL   SDL   SDL   SDL     SDL   SDL   SDL     SDL   SDL   SDD     SDL   SDL   SDD     SDL   SDL   SDL     SDL   SDL   SDL	000 GUIDELINE = 190D (04)	
801 801 114 114 114 114 114 115 1100 114 114 114 114 114 114 114 114 11		
801 801 1000 < 1 1AM	. 801	٠
Section   2.000 < 7   1.44	. 801	
AM	. 801	
AM		
80L	. iAv	•
BDL   BDL   BDL	. 4.000 <	
1,000 <		•
801 1,000 <t 80l="" 80l<="" td=""><td>. 80</td><td></td></t>	. 80	
80L		
80L 2.000 <t 80l<="" td=""><td></td><td></td></t>		
80L 80L 80L 80L 80L 67.N LIMIT = 1.000 67L ) DET'N LIMIT = 1.000 67L ) DET'N LIMIT = 5.000 67L ) DET'N LIMIT = 5.000 67L ) DET'N LIMIT = 5.000		
DET'N LIMIT = 1.000   DET'N LIMIT = 1.000   DET'N LIMIT = 1.000   DET'N LIMIT = 1.000   DET'N LIMIT = 5.000   DET'N LIMIT   DET'N LIMIT = 5.000   DET'N		
) DET'N LIMIT = 1.000  1 BDL BDL  1 DET'N LIMIT = 1.000  1 BDL BDL  1 DET'N LIMIT = 5.000  1 BDL  1 DET'N LIMIT = 5.000		
DL BDL BDL	000 GUIDELINE = N/A	
TOLUENE (NG/L ) DET'N LIMIT = 1.000  10LUENE (NG/L ) DET'N LIMIT = 5.000  10LUENE (NG/L ) DET'N LIMIT = 5.000	. 801	
8DL 8DL ) DET'N LIMIT = 5.000	000 GUIDELINE = 74000 (04)	( )
) DET'N LIMIT = 5.000 BDL BDL	. 80L	
. BDL 80L ) 0ET'N LIMIT = 5.000	000 GUIDELINE = N/A	
) DET'N LIMIT = 5.000	108	
	000 GUIDELINE = N/A	1
33 SAMPLES BDL BDL .	. 801	

	2 WALLACEBURG WTP
	1992
	AND
	1991
TABLE 4	PROGRAM
	SURVE I L L ANCE
	WATER
	DRINKING

,		
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM DIST. SYSTEM DIST. SYSTEM THOMAS AVE THOMAS AVE THOMAS AVE RAW STANDING FREE FLOW STANDING FREE FLOW		
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	BDL
DIST. SYSTEM ROBERT ST STANDING	.000	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 5.000	BDL
TREATMENT PLANT TREATED		BDL
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW REGET ST FREE FLOW	CHLOROAROMATICS '	BDL
	CHLOROARD Z6A-TRICHLOROTOLUENE (NG/L	33 SAMPLES

Page 30

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

DIST. SYSTEM THOMAS AVE STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	•	· · · · · · · · · · · · · · · · · · ·	•	) } ! !	•	) 	•
DIST. SYS THOMAS AN STANDING	! ! ! !				1		04)				~	
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE ∓ N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (D4)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	•
DIST. SYSTEM ROBERT ST STANDING							**************************************		0 0 0 0 0 0 0 1 1	•		•
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET 'N LIMIT = 100.0		DET'N LIMIT = 20.0	i	DET'N LIMIT = 10.00	
TREATMENT PLANT TREATMENT PLANT RAW TREATED	_	108		108		BDL		108		108		BDL
PLANT	HENOLS	_	^	_	^	_	^	_	^	_	^	_
TWENT	CHLOROPHENOLS	BDL	L (NG/	BDL	L (NG/	BDL	(NG/L	BDL	(NG/L	108	NG/L	BDL
TREA	CHLOROPI 234-TRICHLOROPHENOL (NG/L	8 SAMPLES	2345-TETCHLOROPHENOL (NG/L	8 SAMPLES	2356-TETCHLOROPHENDL (NG/L	8 SAMPLES	245-TRICHLOROPHENOL (NG/L	8 SAMPLES	246-TRICHLOROPHENOL (NG/L	8 SAMPLES	PENTACHLOROPHENOL (NG/L	8 SAMPLES
	234-1	80	2345	80	2356	<b>6</b> 0	245-	80	546-	89	PENT/	80

		٠
	/TP	
	WALLACEBURG W	
	1992	
	AND	
	1991	
1700	PROGRAM	
	SURVEILLANCE	
	ATER	
	DRINKING	

3.3 SAMPLES   SOL   SO		TREATMENT PLANT RAW	TREATED TREATED	DIST. SYSTEM ROBERT ST FREE FLOW	DIST. SYSTEM OIST. SYSTEM ROBERT ST THOMAS AVE STANDING FREE FLOW	DIST. SYSTEM THOMAS AVE STANDING
BOL   BOL   BOL   BOL	ALDRIN (NG/L	PESTICIDES AN	0 PCB	DET'N LIMIT = 1.000	. GUIDELINE = 700 (A1)	
1   1   1   1   1   1   1   1   1   1	33 SAMPLES	BOL	BOL	108	108	
2.000 <t 1.000="" 1.000<="" <t="" td=""><td>ALPHA BHC (NG/L</td><td>^</td><td></td><td>DET'N LIMIT = 1.000</td><td>GUIDELINE = 700 (G)</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t>	ALPHA BHC (NG/L	^		DET'N LIMIT = 1.000	GUIDELINE = 700 (G)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SDC   SDC		2.000 < T		ira	1,000 <1	
2.000 <1 BDL		BDL	BDL	BOL	108	
AAA   AAA		2.000 <t< td=""><td>BDL</td><td>BDL</td><td>. BDL</td><td></td></t<>	BDL	BDL	. BDL	
HAN   HAN		I AU	A P	I AW	. i AW	•
BDL   BDL		i Av	AV.	NA:	. i AW	
1.000 <		108	108	80F	. 801	
BOL   BOL		1 000 <1	100	PUL		•
BDL   BOL   BOL   BOL     1.000 < T   BOL   BOL     1.000 < T   BOL   BOL     1.000 < T   BOL   BOL     BOL   BOL   BOL     BOL   BOL   BOL     BOL   BOL   BOL     C (NG/L   )   DET'N LIMIT = 1.000   GUIDELINE     BOL   BOL   BOL   BOL     C (NG/L   )   DET'N LIMIT = 2.000   GUIDELINE     BOL   BOL   BOL     BOL   BOL   BOL     BOL   BOL   BOL     BOL   BOL   BOL     BOL   BOL     BOL   BOL   BOL     BOL   BOL   GUIDELINE     BOL   BOL   BOL     BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL   BOL   BOL   BOL     BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL		108	108	. 108	100	•
1,000 < T   80L   80L   80L     1,000 < T   80L   80L     1,000 < T   80L   80L     80L   80L     80L   80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L   80L     80L   80L     80L   80L     80L     80L   80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L     80L		BDL	108 108	108		•
1,000 <1 BDL BDL BDL BDL	1992 OCT	BOL	BOL	. 108		
BOL   BOL   BOL   BOL	1992 DEC	1.000 <t< td=""><td>BOL .</td><td>108</td><td></td><td></td></t<>	BOL .	108		
BOL   BOL   BOL   BOL	SETA BHC (NG/L	^	)  ()  ()  ()  ()  ()  ()  ()  ()  ()	DET'N LIMIT = 1.00	GUIDELINE = 300 (G)	*
BHC) (NG/L   )   DET'N LIMIT = 1.000 GUIDELINE	33 SAMPLES	BOL	BOL	BDL	108	
BDL   BDL   BDL   GUIDELINE	INDANE (GAMMA	BHC) (NG/L )		DET'N LIMIT = 1.000	GUIDELINE = 4000 (A1)	
E (MG/L ) DET'N LIMIT = 2.000 GUIDELINE BDL BDL BDL GUIDELINE  NG/L ) DET'N LIMIT = 2.00 GUIDELINE BDL BDL BDL  NG/L ) DET'N LIMIT = 5.00 GUIDELINE BDL BDL  NG/L ) DET'N LIMIT = 5.0 GUIDELINE BDL  NG/L ) DET'N LIMIT = 5.0 GUIDELINE BDL  NG/L ) DET'N LIMIT = 5.0 GUIDELINE BDL  NG/L ) BDL	33 SAMPLES	BOL	BOL	BOL	108	•
E (NG/L ) DET'N LIMIT = 2.000 GUIDELINE BDL BDL BDL .  E (MG/L ) DET'N LIMIT = 2.00 GUIDELINE BDL BDL BDL GUIDELINE NG/L ) DET'N LIMIT = 5.0 GUIDELINE NG/L ) DET'N LIMIT = 5.0 GUIDELINE BDL BDL GUIDELINE BDL BDL GUIDELINE BDL BDL GUIDELINE BDL BDL GUIDELINE						
BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   BOL   GUIDELINE   GUID	LPHA CHLORDANE	( NG/L )		DET'N LIMIT = 2,000	GUIDELINE = 7000 (A1)	
E (NG/L ) DET'N LIMIT = 2.00 GUIDELINE  BDL BDL BDL  BDL BDL  BDL BDL  BDL  BD	33 SAMPLES	BOL	BDL	BOL	108	
BDL   BDL   BDL   BDL     SBL   BDL   BDL   GUIDELINE     NG/L	AMMA CHLORDANE	( NG/L )		DET'N LIMIT = 2.00	GUIDELINE = 7000 (A1)	
) DET'N LIMIT = 2.00 GUIDELINE BDL BDL BDL NG/L ) DET'N LIMIT = 5.0 GUIDELINE NG/L ) DET'N LIMIT = 2.00 GUIDELINE BDL BDL BDL BDL BDL	33 SAMPLES	108	108	BDL	. 80L	
BOL   BOL   BOL   BOL	IELDRIN (NG/L	^		DET'N LIMIT = 2.00	GUIDELINE = 700 (A1)	
) DET'N LINIT = 5.0 GUIDELINE  BOL BDL BDL  ) DET'N LINIT = 2.00 GUIDELINE  BOL BDL	33 SAMPLES	108	B0L	. B0L		
80L 80L 8DL ) DET'N LIMIT = 2.00 80L 8DL	ETHOXYCHLOR (N	IG/L )		DET'N LIMIT = 5.0	GUIDELINE = 900000 (A	M)
) DET'N LIMIT = 2.00 BDL BDL BDL	33 SAMPLES	BOL	B0L	BOL	108	•
. 108 PDF . 108	NDOSULFAN 1 (N	IG/L )		DET'N LIMIT = 2.00	GUIDELINE = 74000 (D4	
	33 SAMPLES	108	BDL	BDL	. 801	

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

		באר האור	ROBERT ST FREE FLOW	ROBERT ST STANDING	THOMAS AVE FREE FLOW	THOMAS AVE STANDING
ENDOSULFAN II (NG/L	PESTICIDES AND PCB	AND PCB	0ET'N LIMIT = 5,000	1	GUIDELINE = 74000 (04)	
33 SAMPLES	BDL	300	108		108	
ENDRIN (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = 1600 (03)	
33 SAMPLES	BDL	108	BDL	•	BDL	
ENDOSULFAN SULPHATE (NG/L	ATE (NG/L		DET'N LIMIT = 5.00		GUIDELINE = N/A	
33 SAMPLES	BDL	108	108		BDL	
HEPTACHLOR EPOXIDE (NG/L	IDE (NG/L	^	DET'N LIMIT = 1.000		GUIDELINE = 3000 (A1)	
27 SAMPLES	108	108	BDL		BDL	
HEPTACHLOR (NG/L	^		DET'N LIMIT = 1.000	0 0 0 0 0 0 0 0	GUIDELINE = 3000 (A1)	
33 SAMPLES	108	108	BOL		80F	
MIREX (NG/L	^		DET'N LIMIT = 5.000	* * * * * * * * * * * * * * * * * * *	GUIDELINE = N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 SAMPLES	BDL	108	BOL		BDL	•
OXYCHLORDANE (NG/L	١ )،		DET'N LIMIT = 2.000	1	GUIDELINE = N/A	0 0 0 0 0 0 0 0 0 0 0 0
33 SAMPLES	BDL	108	BOL		108	•
0, P-0DT (NG/L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 5.000	1	GUIDELINE = 30000 (A1)	1)
33 SAMPLES	BDL	108	BDL		BDL	
PCB (NG/L )			0ET'N LIMIT = 20.00	1 1 1 1 1 1	GUIDELINE = 3000 (A2)	
27 SAMPLES	BDL	108	BOL		901	
P, P-DDD (NG/L	^		DET'N LIMIT = 5.000	* * * * * * * * * * * * * * * * * * *	GUIDELINE = 30000 (A1)	1)
33 SAMPLES	BDL	108	BDL		108	
P,P-DDE (NG/L	^		DET'N LIMIT = 1.000	1	GUIDELINE = 30000 (A1)	1)
33 SAMPLES	108	108	BOL	•	BDL	
P,P-DDT (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = 30000 (A1)	1)
ST CAMPIES	- 10	6				

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

																			,							
DIST. SYSTEM THOMAS AVE STANDING	G		(03)	٠	12)	•	•	• •	•.				•		• • • • • • • • • • • • • • • • • • •		42)		42)		A2)		33)		(03)	
DISJ. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 5000 (A1)	• BOL	GUIDELINE = 300000 (03)	•	ĠUIDELINE = 60000 (A2)				•	•			•		GUIDELINE = N/A		GUIDELINE = 10000 (A2)	٠	GUIDELINE = 60000 (A2)		GUIDELINE = 10000 (A2)		GUIOELINE = 52500 (D3)	٠	GUIDELINE = 700000 (03)	
DIST. SYSTEM ROBERT ST STANDING	5		ō	•	ē									• •	5		9			•	g		9		٠	•
DIST. SYS ROBERT ST STANDING	0. 00		0.0		0.0										0.0		0.00		0.0	•	0.00		0.000		000.00	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 500.0	BOL	0ET'N LIMIT = 50.0	•	DET'N LIMIT = 50.0	•				•	. ,			• •.	DET'N LIMIT = 50.0		DET'N LIMIT = 100.0	٠	DET'N LIMIT = 200.0	•	DET'N LIMIT = 200.0	٠	DET'N LIMIT = 50.000	•	DET'N LIMIT = 50.000	
TREATMENT PLANT TREATED		BOL		BDL	1	. B0L	B0L	BDL	BDL	B0L 740.000 <t< td=""><td>BDL</td><td>BDL</td><td>80F</td><td>BDL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BDL</td><td>, —</td><td>108</td><td>_</td><td>BDL</td><td>_</td><td>BDL</td><td></td><td>BOL</td><td></td><td>B0L</td></t<>	BDL	BDL	80F	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	, —	108	_	BDL	_	BDL		BOL		B0L
TREATMENT PLANT RAW	PESTICIDES AND PCB	108	^	BOL	^	. B0L	110.000 <t< td=""><td>80L</td><td>i AW</td><td>BDL 300.000 <t< td=""><td></td><td>50.000 <t< td=""><td>80F</td><td>50.000 <t< td=""><td>(</td><td>B0L</td><td>(NG/L )</td><td>BDL</td><td>(NG/L )</td><td>B0L</td><td>(NG/L )</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	80L	i AW	BDL 300.000 <t< td=""><td></td><td>50.000 <t< td=""><td>80F</td><td>50.000 <t< td=""><td>(</td><td>B0L</td><td>(NG/L )</td><td>BDL</td><td>(NG/L )</td><td>B0L</td><td>(NG/L )</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>BDL</td></t<></td></t<></td></t<>		50.000 <t< td=""><td>80F</td><td>50.000 <t< td=""><td>(</td><td>B0L</td><td>(NG/L )</td><td>BDL</td><td>(NG/L )</td><td>B0L</td><td>(NG/L )</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>BDL</td></t<></td></t<>	80F	50.000 <t< td=""><td>(</td><td>B0L</td><td>(NG/L )</td><td>BDL</td><td>(NG/L )</td><td>B0L</td><td>(NG/L )</td><td>BOL</td><td>^</td><td>B01.</td><td>^</td><td>BDL</td></t<>	(	B0L	(NG/L )	BDL	(NG/L )	B0L	(NG/L )	BOL	^	B01.	^	BDL
TRE	TOXAPHENE (NG/L	26 SAMPLES	AMETRINE (NG/L	23 SAMPLES	ATRAZINE (NG/L	1991 JAN	1991 MAR			1991 NOV 1992 FFR			1992 AUG		ATRATONE (NG/L	21 SAMPLES	CYANAZINE (BLADEX) (NG/L	23 SAMPLES	DESETHYL ATRAZINE (NG/L	. 23 SAMPLES	DESETHYL SIMAZINE (NG/L	23 SAMPLES	PROMETONE (NG/L	23 SAMPLES	PROPAZINE (NG/L	23 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

RAW TREATED	IREATED	ROBERT ST ROBERT ST FREE FLOW STANDING	THOMAS AVE FREE FLOW	THOMAS AVE STANDING
PESTICIDES AND PCB	PC8	DET'N LIMIT = 50.000	GUIDELINE = 1000 (A2)	
BDL	108			
METRIBUZIN (SENCOR) (NG/L )		DET'N LIMIT = 100.0	GUIDELINE = 80000 (A1)	
BDL	108			
		DET'N LIMIT = 50.00	GUIDELINE = 10000 (A2)	
3DL	BDL			
BDL	BDL			
BDL	BDL			
80T	108			
'AU	108	•		•
801	B0F			
60.000 <1	108			
80L 801	108 108 108 108 108 108 108 108 108 108	•		
ROI	i Ga			
B0L	80L			•
BDL	108			
^		DET'N LIMIT = 500.0	GUIDELINE = 5000 (A2)	
BOL	108			•
		DET'N LIMIT = 500.0	GUIDELINE = 50000 (A2)	
BDL	BDL	•		
HEXACLCYCLOPENTADIEN (NG/L )	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DET'N LIMIT = 5.00	GUIDELINE = 206000 (D4)	^
BDL	80r	B0L	108	٠

The athent plant treatment plant does to be a standard does to b			DRINKING WATER	SURVEILLANCE PRO	ROGRAM 1991 AND 194	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP	,
T BDL	ພັສ	ATMENT PLANT	TREATMENT PLANT TREATED	DIST. SYSTEM ROBERT ST FREE FLOW	DIST. SYSTEM ROBERT ST STANDING	DIST. SYSTEM THOMAS AVE FREE FLOW	DIST. SYSTEM THOMAS AVE STANDING
T	: -	PHENOL I CS		· · · · · · · · · · · · · · · · · · ·			
		^		DET'N LIMIT =		IDELINE = N/A	
		7> 009.	BDL		٠		
		BOL	BDL	`			
		1.200	1,000,<		•		٠.
		1.000	108			•	•
		BDL	T> 000.		•	•	
		BDL	BDL			•	•
		T> 004.	108				•
		BDL	B01			•	
		BDL	BDL	•	•		
		BOL	BOL	•			
		BDL		•			
		1> 007.	T> 009.	•			

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

48	RAW RAW	TREATED	ROBERT ST REFREE FLOW	ROBERT ST THOMAS AVE STANDING FREE FLOW	SICH DISH: STSLEM NVE THOMAS AVE DW STANDING
PHENANTHRENE (NG/L	POLYAROMATIC L )	POLYAROMATIC HYDROCARBONS	DET'N LIMIT = 10.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL '	BDL	BDL		BDL
ANTHRACENE (NG/L	^		DET'N LIMIT = 1.0	GUIDELINE = N/A	1/A
12 SAMPLES	BDL	BDL	BDL		BDL .
FLUORANTHENE (NG/L	٦ )		DET'N LIMIT = 20.0	GUIDELINE = 4	42000 (04)
12 SAMPLES	BDL	BDL	BDL	*	BDL
PYRENE (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		. BDL .
BENZO(A)ANTHRACENE (NG/L	E (NG/L )	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 20.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		BDL .
CHRYSENE (NG/L	^		DET'N LIMIT = 50.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		. 801
DIMETH. BENZ(A)ANTHR (NG/L	THR (NG/L	(	DET'N LIMIT = 5.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		
BENZO(E) PYRENE (NG/L	NG/L )	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT = 50.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		. 901
BENZO(B) FLUORANTHEN (NG/L	HEN (NG/L	^	DET'N LIMIT = 10.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		BDL .
PERYLENE (NG/L	^		DET'N LIMIT = 10.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	BDL		
BENZO(K) FLUORANTHEN (NG/L	HEN (NG/L	^	DET'N LIMIT = 1.0	GUIDELINE = N/A	//A
12 SAMPLES	BDL	BDL	ВОГ		BDL .
BENZO(A) PYRENE (NG/L	NG/L )		DET'N LIMIT = 5.0	GUIDELINE = 1	= 10 (A1)
12 CAMPLES	6				

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

TREATM RAW	ENT PLANT	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED ROBERT ST FREE FLOW	DIST. SYSTEM ROBERT ST FREE FLOW	DIST. SYSTEM ROBERT ST STANDING	DIST. SYSTEM THOMAS AVE FREE FLOW	DIST. SYSTEM THOMAS AVE STANDING
POLYAROMATI BENZO(G,H,1) PERYLEN (NG/L	YAROMATIC (NG/L	POLYAROMATIC HYDROCARBONS -EN (NG/L )	DET'N LIMIT = 20.0	) ( ) ( ) ( ) ( ) ( )	GUIDELINE = N/A	
12 SAMPLES	BDL	BDL	BDL	٠	BDL	
DIBENZO(A, H) ANTHRAC (NG/L	(NG/L	(	DET'N LIMIT = 10.0		GUIDEL'INE = N/A	
12 SAMPLES	BDL	BDL	BDL	٠	BDL	
INDENO(1,2,3-C,D) PY (NG/L	CNG/L	(	DET'N LIMIT = 20.0		GUIDELINE = N/A	
12 SAMPLES	BDL	BDL	BOL	٠	BDL	•
BENZO(B) CHRYSENE (NG/L	, , , , ,		DET'N LIMIT = 2.0		GUIDELINE = N/A	
12 SAMPLES	BDL.	BDL	BDL	٠	BDL	
CORONENE (NG/L )			DET'N LIMIT = 10.0		GUIDELINE = N/A	
12 SAMPLES	BDL	BDL	BDL		BDL	

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

			FREE FLOW STANDING	FREE FLOW STANDING
TOXAPHENE (NG/L	SPECIFIC PESTICIDES	ICIDES	DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)
7 SAMPLES	BOL	108	BOL	BOL
2,4,5-T (NG/L	(	• • • • • • • • • • • • • • • • • • •	0ET'N LIMIT = 50.0	GUIDELINE = 280000 (A1)
8 SAMPLES	108	BDL		
2,4-D (NG/L	,		DET'N LIMIT = 100.0	GUIDELINE = 100000 (A1)
8 SAMPLES	BDL	BDL		
2,4-DB (NG/L	^		DET'N LIMIT = 200.0	GUIDELINE = N/A
8 SAMPLES	108	BOL		
2,4 D PROPIONIC ACID (NG/L	ACID (NG/L		DET'N LIMIT = 100.0	GUIOELINE = N/A
8 SAMPLES	BOL	BDL		
DICAMBA (NG/L	^	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 50.0	GUIDELINE = 120000 (A1)
8 SAMPLES	BDL	BDL	•	
2,4,5-TP (SILVEX) (NG/L	( NG/L )		DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)
8 SAMPLES	BOL.	BDL		
DIAZINON (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 20000 (A1)
6 SAMPLES	BOL	BOL		
DICHLOROVOS (NG/L	ال )	1	DET'N LIMIT = 20.0	GUIDELINE = N/A
6 SAMPLES	BOL	, BOL		
CHLORPYRIFOS (NG/L	( )		DET'N LIMIT = 20.0	GUIDELINE = N/A
6 SAMPLES	BOL	BDL		
ETHION (NG/L	^	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 20.0	GUIDELINE = 35000 (G)
6 SAMPLES	BOL	BOL	•	
MALATHION (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 190000 (A1)
A CAMDIES	č	č		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

3/L		,	FREE FLOW STANDING	FREE FLOW.	STANDING
	SPECIFIC PESTICIDES )	ICIDES	DET*N LIMIT = 20.0	GUIDELINE = N/A	
o SAMPLES	BDL	BOL	•		
METHYL PARATHION (NG/L	٦ )		DET'N LIMIT = 50.0	GUIDELINE = 9000 (D3)	0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
6 SAMPLES	BDL	108	·.		
METHYLTRITHION (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = N/A	
6 SAMPLES	BDL	108			
PARATHION (NG/L )			DET'N LIMIT = 20.0	GUIDELINE = 50000 (A1)	
6 SAMPLES	BDL	108			
PHORATE (NG/L )	; ; ; ; ;		DET'N LIMIT = 20.0	GUIDELINE = 2000 (A2)	1
6 SAMPLES	BDL	108			
RELDAN (NG/L )	1		DET'N LIMIT = 20.0	GUIDELINE = N/A	1 1 1 1 1 1 1 1 1 1 1 1
6 SAMPLES	. PDF	BDL	•	٠	
RONNEL (NG/L )			DET'N LIMIT = 20.0	GUIDELINE = N/A	
6 SAMPLES	BDL	BDL			
CARBOFURAN (NG/L	•	; ; ; ; ; ;	DET'N LIMIT = 2000.0	GUIDELINE = 90000 (A1)	
8 SAMPLES	BDL	108			
CHLORPROPHAM (CIPC) (NG/L	NG/L )		DET'N LIMIT = 2000.0	GUIDELINE = 350000 (G)	0
8 SAMPLES	BOL	108	•	•	
DIALLATE (NG/L )			DET'N LIMIT = 2000.0	GUIDELINE = N/A	
8 SAMPLES	BDL	BOL			٠
EPTAM (NG/L )			DET'N LIMIT = 2000.0	GUIDELINE = N/A	1
8 SAMPLES	BOL	BOL		٠	•
IPC (NG/L )		·	DET'N LIMIT = 2000.0	GUIDELINE = N/A	, , , , , , , , , , , , , , , , , , ,
8 SAMPLES	BDL	.108	. •		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

	RAW	RAW TREATED ROBERT ST FREE FLOW	ROBERT ST FREE FLOW	ROBERT ST STANDING	THOMAS AVE FREE FLOW	THOMAS AVE STANDING
PROPOXUR (NG/L	SPECIFIC PESTICIDES	101068	SPECIFIC PESTICIDES  DET'N LIMIT = 2000.0 GUIDELINE = 140000 (03)	ייס פתו	GUIDELINE = 140000 (03)	03)
8 SAMPLES	108		•	•		
CARBARYL (NG/L	CARBARYL (NG/L )	:	DET'N LIMIT = 200.0 GUIDELINE = 90000 (A1)	0 GUI	GUIDELINE = 90000 (A1)	1)
8 SAMPLES	BDL	108 .	•			
BUTYLATE (NG/L	(	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BUTYLATE (NG/L ) DET'N LIMIT = 2000.0 GUIDELINE = 245000 (D3)	0 GUI	GUIDELINE = 245000 (D3)	03)
8 SAMPLES	BOL	108				

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

																											•										•			:
DIST. SYSTEM THOMAS AVE STANDING														: : : : : : : : : :							•	•	٠.		•											•		•		
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 5 (A1)	ā	i 6	801	801	.050 <t< td=""><td>901</td><td></td><td>BDL</td><td></td><td>•</td><td></td><td>•</td><td>GUIDELINE = 24 (A3)</td><td>901</td><td>BDL</td><td>108</td><td>108</td><td>.150 &lt;1</td><td>T&gt; 001.</td><td></td><td>BDL</td><td></td><td></td><td>•</td><td></td><td>GUIDELINE = 2.4 (A3)</td><td>ï</td><td>80 18</td><td>108</td><td>.050 &lt;1</td><td>. 050 -</td><td>100 ×1</td><td></td><td>1&gt; 050</td><td></td><td></td><td>•</td><td></td><td></td></t<>	901		BDL		•		•	GUIDELINE = 24 (A3)	901	BDL	108	108	.150 <1	T> 001.		BDL			•		GUIDELINE = 2.4 (A3)	ï	80 18	108	.050 <1	. 050 -	100 ×1		1> 050			•		
DIST. SYSTEM ROBERT ST STANDING			•		•	•	•		•		•				٠	•	•	•	•		. •			•					•	•	•			. •	٠	•				
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	ica	30.5	108	B0F	. BDL	BDL	BDL		iEF	BDL	BDL	BDL	DET'N LIMIT = 0.05	1> 050	BDL	108	BDL	100 <⊤	T> 050.	B0L	•	<u>19</u>	T> 050.	BOL	BOL	DET'N LIMIT = 0.05	ia	30F	100	100 <	BDT	.100 <1	100 .		EE	.050 <⊤	108	.150 <1	
TREATMENT PLANT TREATED		ī	3 6	80F	BOL	1> 001.	BDL	BOL	BDL	BDL	BDL	BDL	BDL	1	BDL	BDL	BDL	T> 050.	.250 <t< td=""><td>BDL</td><td>109</td><td>BOL</td><td>BDL</td><td>T&gt; 050.</td><td>BDL</td><td>BDL</td><td></td><td>ida</td><td>108 BDF</td><td>050 <t< td=""><td></td><td>.200 &lt;1</td><td>100 &lt;1</td><td>1&gt; 050</td><td>.050 &lt;</td><td>100 &lt;1</td><td>1,050 &lt;⊤</td><td>BD1</td><td>.100 &lt;</td><td></td></t<></td></t<>	BDL	109	BOL	BDL	T> 050.	BDL	BDL		ida	108 BDF	050 <t< td=""><td></td><td>.200 &lt;1</td><td>100 &lt;1</td><td>1&gt; 050</td><td>.050 &lt;</td><td>100 &lt;1</td><td>1,050 &lt;⊤</td><td>BD1</td><td>.100 &lt;</td><td></td></t<>		.200 <1	100 <1	1> 050	.050 <	100 <1	1,050 <⊤	BD1	.100 <	
TREATMENT PLANT RAW	VOLATILES )	1001	1> 050	BDL	BDL	BOL	1> 050.	BDL	BDL	. 050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>(</td><td>. 100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BDL</td><td>901</td><td>. 100 <t< td=""><td>BDL</td><td>B0L</td><td>.100 ≺</td><td>. 100 <t< td=""><td>108</td><td>BOL</td><td>( )</td><td>T&gt; 050</td><td>BDL</td><td>Š</td><td>BDL</td><td>108</td><td>.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	BDL	(	. 100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BDL</td><td>901</td><td>. 100 <t< td=""><td>BDL</td><td>B0L</td><td>.100 ≺</td><td>. 100 <t< td=""><td>108</td><td>BOL</td><td>( )</td><td>T&gt; 050</td><td>BDL</td><td>Š</td><td>BDL</td><td>108</td><td>.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>BDL</td><td>BDL</td><td>901</td><td>. 100 <t< td=""><td>BDL</td><td>B0L</td><td>.100 ≺</td><td>. 100 <t< td=""><td>108</td><td>BOL</td><td>( )</td><td>T&gt; 050</td><td>BDL</td><td>Š</td><td>BDL</td><td>108</td><td>.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	901	. 100 <t< td=""><td>BDL</td><td>B0L</td><td>.100 ≺</td><td>. 100 <t< td=""><td>108</td><td>BOL</td><td>( )</td><td>T&gt; 050</td><td>BDL</td><td>Š</td><td>BDL</td><td>108</td><td>.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<></td></t<></td></t<>	BDL	B0L	.100 ≺	. 100 <t< td=""><td>108</td><td>BOL</td><td>( )</td><td>T&gt; 050</td><td>BDL</td><td>Š</td><td>BDL</td><td>108</td><td>.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<></td></t<>	108	BOL	( )	T> 050	BDL	Š	BDL	108	.150 <t< td=""><td>801</td><td>108</td><td>.100 &lt;1</td><td>T&gt; 050</td><td>108</td><td>.100 ≺</td><td></td></t<>	801	108	.100 <1	T> 050	108	.100 ≺	
,	BENZENE (UG/L	1001	1001 MAP	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 001	1992 DEC	TOLUENE (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG		1992 DEC	ETHYLBENZENE (UG/L	1001	1991 MAR	1001 MAY	1991 JUL	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

DIST. SYSTEM THOMAS AVE STANDING	13*)	•									•		(3*)	٠	(3*)		•	. •	•	•	•	•	•			•	01)										
EM DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 300 (A3*)	. BOL	108	108	. 801	. BDL	. BDL		. 800				GUIDELINE = 300 (A3*)	. 8DL	GUIDELINE = 300 (A3*)	G	108		. 801	. 801	. 601						GUIDELINE = 100 (D1)	. BDL	T> 050.	. 801	. BDL		. 2007.	· 6			
DIST. SYSTEM DIST. SYSTEM ROBERT ST REE FLOW STANDING	DET'N LIMIT = 0.10	BDL	ADL	BDL	80L	BDL	BDL	BDL	• !	EF	BUL	80L	DET'N LIMIT = 0.10	108	DET'N LIMIT = 0.05	IGN	ide .	BDL	BDL	801	801	BDL	. 11	108	BDL	BDL	DET'N LIMIT = 0.05	BDL	.050 <t< td=""><td>. 150 <t< td=""><td>BDL</td><td>BDL</td><td>1&gt; 055.</td><td>. 203:</td><td></td><td>BDL</td><td>ica</td></t<></td></t<>	. 150 <t< td=""><td>BDL</td><td>BDL</td><td>1&gt; 055.</td><td>. 203:</td><td></td><td>BDL</td><td>ica</td></t<>	BDL	BDL	1> 055.	. 203:		BDL	ica
TREATMENT PLANT' TREATED		80F	BDL	108 801	80L	> 007	BDL	108	80F	108	BDL	BDL		BDL		BDI	108	80r	BDL	.100 <7	7 G	108	108 108	80r	BDL	BDL		BDL	BDL	BDL	BDL	80F	108	300	BDL	BDL	100
TREATMENT PLANT RAW	VOLATILES )	BOL	108	108 201	. BDL	BDL	BDL	108	BDL	BDL	108	80r	•	BDL	(	Ide	BDI	BDL	BOL	80F	301	BOL	30 E	80L	BDL	BDL	^	T> 050.	BDL	BDL	BDL	80L	1> 062.	3 G	.050 <t< td=""><td>T&gt; 050.</td><td>14.6</td></t<>	T> 050.	14.6
	P-XYLENE (UG/L		TYY MAR	1991 MAY	1991 301	1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 DEC	M-XYLENE (UG/L	41 SAMPLES	O-XYLENE (UG/L	1001 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 FEB	1992 JUN	1992 AUG	1992 001	1992 DEC	STYRENE (UG/L		1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1002 APR	1992 JUN	1992 AUG	1002 nrT

DIST. SYSTEM THOMAS AVE STANDING	0		(1)		11)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					•						A1+)		٠				•	•	•			•
M DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 7 (D1)	BDL	GUIDELINE = 50 (A1)	BDL	GUIDELINE = 70 (D1)	BDL	GUIDELINE = N/A	BDL	108 108	901	108	108		30F	•	•	,	GUIDELINE = 350 (A1+)	2.600	2.400	4.800	8.700	14.000	004.4	3.600			•	
DIST. SYSTEM ROBERT ST STANDING	0.100		0.50	•	0.10	•	0.100	•	•	•		•	•	•	•	•	•	0.10	•	•	•	•		•	•		•	•	•
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.50	10 <b>8</b>	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.100	BDL	80L	1 E	80L	BDL	BDL		<u>.</u>	80L	BDL BDL	DET'N LIMIT = 0.10	2.300	4.500	7.400	6.800	12.600	17.500		iEr	000.6	8.300	
TREATMENT PLANT TREATMENT PLANT RAW TREATED		BOL		108	• • • • • • • • • • • • • • • • • • •	BOL		BDL	80L	Bu	80	BDL	<b>B</b> 01	B0L	BDL	B01	BDL		4.200	2.600	6.500	9.100	16.100	21 200	7.700	11.500	10.800	10.500	
EATMENT PLANT	VOLATILES ENE (UG/L )	BDL	E (UG/L )	BOL	ENE (UG/L )	BDL	E (UG/L )	BDL	.100 <t< td=""><td>. I</td><td>BOL</td><td>. BDL</td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>80L</td><td>BDI</td><td>BOL</td><td>(</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>80F</td><td>7 6</td><td>108</td><td>3DF</td><td>108</td><td>B0L</td><td></td></t<>	. I	BOL	. BDL	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80L	BDI	BOL	(	BDL	BDL	BDL	BDL	80F	7 6	108	3DF	108	B0L	
R T R	VOLATILE: 1,1-DICHLOROETHYLENE (UG/L	41 SAMPLES	METHYLENE CHLORIDE (UG/L	41 SAMPLES	T12-DICHLOROETHYLENE (UG/L	41 SAMPLES	1,1-DICHLOROETHANE (UG/L	1991 JAN	1991 MAR 1001 MAY		1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN 1001 LUC	1002 AUG	1992 DEC	CHLOROFORM (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1007 FEB	1992 APR	1992 JUN	1992 AUG	1992 oct	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

																	:					;			<u>:</u>													
DIST. SYSTEM THOMAS AVE STANDING													•			•								•											•	•		
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 200 (01)	BDI	1> U40	7 7 7 8	901	BOL	TOB	BDL	•	BDL		٠	•		GUIDELINE = 5 (A1)	Bol		GUIUELINE = 5 (AI)	BDL .	GUIDELINE = 5 (01)	BOL	GIIDELINE = 50 (A1)		BOL	GUIDELINE = 350 (A1+)	3.800	009.7	2.600	7.000	9.300	4.300		5.100			•	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DIST. SYSTEM ROBERT ST STANDING					•	•		•	•			•			<b>5</b>			3		ੱ <b>ਰ</b>		2	5	•	ಠ	•		•	•	•	•							
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.02	BOL		1> 071	7	901	BOL	BOL	BDL		13i	BDL	i B	80r	DET'N LIMIT = 0.05	108	00 0 1 11111 11111	02.0 = 11M11 = 0.20	B0L	DET'N LIMIT = 0.05	B0L	0ET'N LIMIT = 0.10		BOL	DET'N LIMIT = 0.05	3.600	4.250	5.150	6.400	9.250	4.150	3.650		IEF	8.700	5.750	4,750	
TREATMENT PLANT TREATED	1	BDL	108	BUI	100	100	901	BOL	<b>8</b> 01	<b>B</b> 01	BDL	B01	RDI	901 BOL		BDL			BDL		BDL			BDL		7.800	7.200	8.650	7.900	11.000	6.750	7.550	10.300	8.100	9.700	6.500	9.900	
TREATMENT PLANT RAW	VOLATILES INE (UG/L )	BDL	BDL	BDI	2 2	2 4	2 2	BUL	BDL	BDL	108	.080 <1	BDL	B0L	E (UG/L )	BDL	105 (115.41	105 (06/1 )	108	NE (UG/L )	BDL	(ng/L )		BDL	ANE (UG/L )	80r	BDL	BOL	BDL	BDL	BOL	108	108	108	BDL	108	BOL	
T.R.A.R.A.R.A.R.A.B.A.B.A.B.A.B.A.B.A.B.A	VOLATIL 111, TRICHLOROETHANE (UG/L	1991 JAN	1991 MAR	1991 MAY		1901 550			1992 FEB		1992 JUN		1992 OCT		 1,2 DICHLOROETHANE (UG/L	41 SAMPLES	CADBON TETDACHIODIO		41 SAMPLES	1,2-DICHLOROPROPANE (UG/L	41 SAMPLES	TRICHLOROETHYLENE (UG/L		41 SAMPLES	DICHLOROBROMOMETHANE (UG/L		1991 MAR										1992 DEC	

TABLE 4 ORINKJNG WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

	<u> </u>	;					,							:		;																,
DIST. SYSTEM THOMAS AVE STANDING	·						•	•				٠											•	•	•	•		•		٠		٠
DISI. SYSIEM THOMAS AVE FREE FLOW	GUIDELINE = 0.6 (04)	BDL	GUIDELINE = 350 (A1+)	4.300	2.800	5.900	000.4	2.500		5.300			•		GUIDELINE = 65 (A5)	B0L	GUIDELINE = 350 (A1+)	1> 009.	1> 007.	1.200 <1	108	1× 008.	708	· ION	-			•	GUIDELINE = 0.17 (04)	108	GUIDELINE = 2 (01)	108
DISI: STSIEM ROBERT ST STANDING		٠		•	•	•	•	•			•		•	•				٠	•	•	•	•	•	•.			-			٠		
ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.10	4.200	2.900	5.800	3.900	2.400	.500 -1	•	13	2.600	2.900		DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.20	1> 009.	T> 009.	1.200 <t< td=""><td>80F</td><td>T&gt; 008.</td><td>1 A</td><td>POL</td><td>EF</td><td>1.800 <t< td=""><td>108</td><td>T&gt; 000.</td><td>DET'N LIMIT = 0.05</td><td>B0L</td><td>DET'N LIMIT = 0.100</td><td>80L</td></t<></td></t<>	80F	T> 008.	1 A	POL	EF	1.800 <t< td=""><td>108</td><td>T&gt; 000.</td><td>DET'N LIMIT = 0.05</td><td>B0L</td><td>DET'N LIMIT = 0.100</td><td>80L</td></t<>	108	T> 000.	DET'N LIMIT = 0.05	B0L	DET'N LIMIT = 0.100	80L
TREATED		108		006.9	. 4.300	2.400	4.300	9.100 \$ 700	.800 <1	8.300	7.900	7.600	3.000			BDL		1> 008.	T> 009.	1,400 <t< td=""><td>BDL</td><td>. 500 cī</td><td>108</td><td>108</td><td>108</td><td>1,600 &lt;1</td><td>108</td><td>T&gt; 007.</td><td></td><td>108</td><td></td><td>BOL</td></t<>	BDL	. 500 cī	108	108	108	1,600 <1	108	T> 007.		108		BOL
	HES /	108	( 1/9	BOL	BDL	BOL	80F	- N	80L	B0L	B0L	B0L	80L		( T/	BOL		BOL	BOL	BOL	BOL	80F	80L	- PO-	801	B0L	108	B0L	( )	80r	^	B0L
TREATMENT PLANT RAW	VOLATILES 112-TRICHLOROETHANE (UG/L	41 SAMPLES	CHLORODIBROMOMETHANE (UG/L	1991 JAN			1991 JUL	1991 SEP					1992 OCT	1775 050	TETRACHLOROETHYLENE (UG/L	41 SAMPLES	BROMOFORM (UG/L )	1991 JAN	1991 MAR			1991 SEP		1992 FEB:			1992 OCT	1992 DEC	1122-TETCHLOROETHANE (UG/L	41 SAMPLES	VINYL CHLORIDE (UG/L	17 SAMPLES

	RAM TREATED TREATED	ROBERT ST ROBERT ST FREE FLOW STANDING	ST THOMAS AVE G FREE FLOW	THOMAS AVE STANDING
^		DET'N LIMIT = 0.100	GUIDELINE = $70 (D1)$	
	. BDL	B0L	. 801	
		DET'N LIMIT = 0.10	GUIDELINE = 1510 (D3)	
	BOL	BOL	. 80L	٠
. ~		DET'N LIMIT = 0.10	GUIDELINE = 5 (A1)	
	. BDL	BOL	. 801	٠
: ~		DET*N LIMIT = 0.10	GUIDELINE = 3750 (03)	
	BDL	901	. 801	٠
		DET'N LIMIT = 0.05	GUIDELINE = 200 (A1)	
	BOL	BDL	. 801	٠
		DET'N LIMIT = 0.05	GUIDELINE = 50 (D1)	
	108	108	. 801	-
		DET'N LIMIT = 0.50	GUIDELINE = 350 (A1)	
	19.550	10.600	. 11.200	
	17.800	12.200	13.200	
	24.050	16.500		
	33.800	17,100	19.700	
	16.850	10.550	. 11.200	
	39.550	21.750		٠
	26.300	•	. 14.000	٠
	24.500	iEF		
	29.700	27.100		
	20.000	16.950		
	10.500	13,250		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

RADIONUCLIDES		FREE FLOW	STANDING
108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 10	DET'N LIMIT = 0.70	GUIDELINE = N/A	
108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 ( 108 (			•
108 108 108 108 108 108 108 108 108 108	DET'N LIMIT = 0.70	GUIDELINE = N/A	
108 108 108 108 108 108 108 108 108 108			
108 108 108 108 108 108 108 108 108 108	DET'N LIMIT = 0.70	GUIDELINE = 50 (A1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
108 108 108 108 108 108 108 108 108 108		.•	
108 108 108 108 108 108 108 108 108 108	DET'N LIMIT = 0.04	GUIDELINE = 0.55 (D1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
080 0.00 070 0.00 080 0.00 080 0.00 080 0.00 080 0.00 080 0.00 080 0.00 080 0.00			
. 080 . 070 . 070 . 090 . 090 . 090 . 090 . 090 . 090 . 090	DET'N LIMIT = 0.04	GUIDELINE = N/A	
108 )			
801	DET'N LIMIT = 7.00	GUIDELINE = 40000 (A1)	
1991 SEP BDL BDL 1992 JUN 7.000 8.000 1992 AUG 11.000 8.000			
IODINE 131 (BQ/L ) DET	DET'N LIMIT = 0.70	GUIDELINE = 10 (A1)	Ō
8 SAMPLES BOL BOL			·

# TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	Ō	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	D	5/100ML	(A1)
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD PH	DMNSLESS	N/A	6.5-8.5	(A4)
FIELD TEMPERATURE	DEG.C	N/A	15.0	(A3)
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
CHEMISTRY (LAB)				
ALKALINITY	MG/L	0.20	30-500	(A4)
AMMONIUM TOTAL	MG/L	0.002	0.05	
CALCIUM	MG/L	0.20	100.0	
CHLORIDE	MG/L	0.20	250.0	(A3)
COLOUR	TCU	0.50	5.0	(A3)
CONDUCTIVITY	UMHO/CM	1.00	400.0	(F2)
CYANIDE	MG/L	0.001	0.2	(A1)
DISSOLVED ORGANIC CARBON	MG/L	0.10	5.0	(A3)
FLUORIDE	MG/L	0.01		(A1)
HARDNESS	MG/L	0.50	80-100	(A4)
IONCAL	DMNSLESS	N/A	N/A	
LANGELIERS INDEX	DMNSLESS	N/A	N/A	4535
MAGNESIUM	MG/L	0.10	30.0	(F2)
NITRATES (TOTAL) NITRITE	MG/L	0.005	10.0	(A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.001 0.02	1.0	(A1)
PH	MG/L DMNSLESS	0.02 N/A	N/A 6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	(44)
PHOSPHORUS TOTAL	MG/L	0.0003	0.4	(F2)
POTASSIUM .	MG/L MG/L	0.002	10.0	(F2)
RESIDUE FILTRATE (CALCULATED TOS)	MG/L	N/A	500.0	(A3)
SODIUM	MG/L	0.20	200.0	(A4)
SULPHATE	MG/L	0.20	500.0	(A4)
TURBIDITY	FTU	0.05	1.0	(A1)
TURBIDITY	FTU	0.05	1.0	(A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS				
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(04)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,4,5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTADIENE	NG/L	1.0	450	(04)
HEXACHLORGETHANE	NG/L	1.0	1900	(04)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

# TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

9				
SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
B / F		100.0	2600000	(D4)
2,4,5-TRICHLOROPHENOL	NG/L	100.0	5000	(A1)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	60000	(A1)
PENTACHLOROPHENOL	NG/L	1.0.0	80000	(A1)
METALS				
ALUMINUM	UG/L.	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L ·	0.02	N/A	
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L .	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL	UG/L	0.20	350	(03)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	,
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE '	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	· N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1·)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	N/A	4445
P,P-DDD	NG/L	5.0	30000	(A1)
O,P-DDT	NG/L	5.0	30000 30000	(A1) (A1)
P,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDE	NG/L	1.0 2.0	N/A	(AT)
OXYCHLORDANE	NG/L NG/L	20.0	3000	(A2)
PCB PROMETONE	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(D3)
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
	110, 2	300.0	,,,,	(,,,,
PHENOLICS	100.41	0.2	N/A	
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	n/^	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A 280000	(41)
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	100000	(A1)
2,4-D1CHLOROBUTYRIC ACID (2,4-D) 2,4-D1CHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	100.0 200.0	N/A	(A1)
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	
MEVINPHOS	NG/L	20.0	. N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(03)
RELDAN RONNEL	NG/L NG/L	20.0 20.0	N/A N/A	
VOLATILES	•			
1,1-D1CHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5 5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05		(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750 5	(D3) (A1)
1,4-DICHLOROBENZENE	UG/L UG/L	0.10 0.02	200	(D1)
1,1,1-TRICHLOROETHANE	UG/L	0.02		6 (D4)
1,1,2-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	UG/L	0.05		17 (D4)
1,1,E,E-TETRACHEOROGINAME	00/ L	0.03	٠.	(04)

# TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

CCANADANETED	UNIT	DETECTION LIMIT	GUIDELINE	
SCAN/PARAMETER	UNII	LIMIT	0010221112	
BENZENE	UG/L	0.05	5	(A1)
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	· UG/L	0.20	5	(A1)
CHLOROBENZENE	UG/L	0.10	1510	(D3)
CHLORODIBROMOMETHANE	UG/L	0.10	350-	(A1+)
CHLOROFORM	UG/L	0.10	350	(A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350	(A1+)
ETHYLENE DIBROMIDE	UG/L	0.05	50	(D1)
ETHYLBENZENE	UG/L	0.05	2.	4 (A3)
M-XYLENE	UG/L	0.10	300	(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L .	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE	, UG/L,	0.10	2	(D1)
RADIONUCLIDES				
TRITIUM	BQ/L	7.0	40000	(A1)
GROSS ALPHA COUNT ·	BQ/L	0.04	0.	55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50	(A1)
IODINE 131	BQ/L	0.70	10	(A1)

# Equal to 15.0 Picocuries/litre

## DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

## PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

## DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

## PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

## Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

## 1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

## 2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

## 3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

## 4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

## 5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

## 6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- $\mbox{iii}/\mbox{ the sample tap must be in a clean area of the plant, preferably a lab area; and$
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

#### 7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

## Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

## Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

## Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

## Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

## Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

## Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

## Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

#### FIG.1

#### PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C6H6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 µg/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12
MELTING POINT: 5.5°C (27)
BOILING POINT: 80.1°C (27)
SPECIFIC GRAVITY: 0.8790 AT 20°C (27)

VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

## DWSP SAMPLING GUIDELINE

## i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC),(OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization

-1 L amber glass bottle; instructions

(GC/MS - once per year)

as per organic -250 mL glass bottle

(PBVOL),(PBEXT) -250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

## Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

## ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO3) (Caution: HNO3 is corrosive)

## Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

## iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added
-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate)

-45 mL glass vial with septum

(OPOPUP)

(teflon side must be in contact with sample)
-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles ·

Organics

-1 L amber glass bottle per scan

(OWOC)

-do not rinse bottle
-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

## Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.



