Diseases of the Central Nervous System

Dr. sc. Linard Filli
Department of Neurology
University Hospital Zürich

Contact: Ifilli@ethz.ch

Schedule: «Disease of the central nervous system»

Diseases of the CNS: Introduction, Stroke	13.11.2017
Neurodegenerative diseases: Parkinson's Disease	20.11.2017
Autoimmune diseases of the CNS: Multiple Sclerosis	27.11.2017

Handout & Lecture

Purves, Neuroscience, 4th edition (5th):

Parts of chapters 17, 19, 25, 27, Appendix p. 833-842 (p. 735-744)

Diseases of the Central Nervous System

Most structures of our body display high capacity for tissue regeneration and compensation

- bone fracture / skin incision / muscle scissor etc.
- you can survive with 1 kidney, and <50% of your liver
- peripheral nerve fibers are capable of regeneration

The CNS has only a limited capacity for regeneration and plasticity

Physiological facts about the brain

The human brain account for only 2% of total body weight, but

- consumes ~20% of all oxygen → continuous oxygen supply needed.
 - -> cardiac arrest: unconsciousness within 10 seconds! Damage to neurons first reversible, then permanent after longer deprivation of blood supply.
- consumes ca. 25% of total energy consumption (mainly glucose) of body
 neurons show a very high metabolism rate
- Blood-brain-barrier: maintenance of CNS homeostasis, immune-privilege
 -> limited access of systemic medications to CNS
- No pain receptors (nociceptors) in CNS parenchyma (only in meninges)

Stroke: Definition

WHO-Definition of Stroke Hatano (1976):

"Stroke is <u>rapidly</u> developing clinical symptoms and / or signs of <u>focal</u> and at times <u>global loss of cerebral function</u> with symptoms <u>lasting more than twenty-four hours</u> or leading to <u>death</u> with no apparent cause other than that of vascular origin."

TIA: transitory ischemic attack (German: Streifung): symptoms similar or identical to stroke (mostly less severe). Dysfunctions are transient and disappear within < 24 hours

Stroke: epidemiology

- Stroke is the **4th largest cause of death** (behind cardiological diseases, cancer and respiratory diseases).
- 50% of stroke patients are > 65 years old, 10% < 40 years
- > 4 million people life with the consequences of stroke in the United States
- Stroke is expensive: 78 billion dollars for medication and therapy in USA in 2010
- 15-20% of stroke patients die within 4 weeks
- Surviving patients:
 - 1/3 of the surviving stroke patients recovers well
 - 1/3 shows deficits (hemiplegia, speech problems), but copes well with daily life
 - 1/3 needs life-long care

Stroke: classification of stroke types

Stroke is a vascular disease!

Stroke: ischemia, infarction

thrombotic:

- caused by a **thrombus** (blood clot built in arteries suppling the brain with blood).
- frequently correlated with atheroscleoris (though e.g. high cholesterol level) and increasing age
- thrombotic strokes are often preceded by TIA

embolic:

- caused by an **embolus** (loose blood clot) which travels from the periphery (mostly from the heart) to the brain and finally occludes a cerebral vessel.
- embolic stroke often results from **heart failures** (e.g. heart dysrhythmia) or after heart surgeries.
- often occurs without sign (i.e. TIA)

Stroke: hemorrhagic

Heart and Stroke Foundation of Canada

hemorrhagic:

- caused by a vessel rupture which leads to bleeding into the brain tissue.
- Bleeding leads to **pressure and swelling** of the tissue against the skull. This can lead to mechanical damage of neurons.
- rupture of cerebral vessels can result from **hypertension**, from **aneurysms** (figure at bottom), from malformation of vessels or from direct traumatic (mechanical) injury to the vessels or the brain.

Stroke: early symptoms

Early signs:

Stroke: diagnosis

Computed axial tomography (CT)

- Based on x-rays
- <u>Fast</u>, good availability
- Less spatial resolution
- Rule out hemorrhage or tumor

Magnetic Resonance Imaging (MRI)

- Based on magnetic fields
- Expensive, less abundant
- Good spatial resolution
- Can be used to diagnose ischemic, hemorrhagic stroke

Stroke: diagnosis

Cerebral angiography

www.pcronline.com

- Blood vessels are normally not clearly seen in x-ray: -> injection of contrast dye to visualize vessels
- Specific investigation of occluded or ruptured vessels and visualization of structural changes: e.g.
 signs of atherosclerosis
- Angiography starts to be applicable to MRI
- Stroke or TIA?
- Ischemic or hemorrhagic stroke?
- Location and extent of stroke?

tumors are other very fast proceeding problems - has to be differentiated from strokes, using imaging techniques

Stroke: primary pathomechanism

Ischemia: inadequate blood supply of an organ due to mechanical obstruction

Hemorrhage: heavy release of blood from an organ/body

Neurons in the stroke-affected brain regions are **deprived of blood**, and therefore of **oxygen and nutrients** (primarily glucose)

Stroke: primary pathomechanism

Time is brain:

Estimated Pace of Neural Circuitry Loss in Typical Large Vessel, Supratentorial Acute Ischemic Stroke

	Neurons Lost	Synapses Lost	Myelinated Fibers Lost	Accelerated Aging
Per Stroke	1.2 billion	8.3 trillion	7140 km/4470 miles	36 y
Per Hour	120 million	830 billion	714 km/447 miles	3.6 y
Per Minute	1.9 million	14 billion	12 km/7.5 miles	3.1 wk
Per Second	32 000	230 million	200 meters/218 yards	8.7 h

Saver, 2006, Stroke

15 mins for the brain to perform at full capacity when there is no blood supply (very short time). after 4 mins, brain shows no activity (braindead - not a death case, but brain has no detectable activity)

Stroke most frequently occurs in forebrain

Bioenergetic failure

brain needs large amount of glucose & oxygen
 (ca. 70% to restore ionic gradients across membrane)

Na⁺/K⁺-ATPase

Ca²+-ATPase

- 2min after global ischemia, missing ATP synthesis in mitochondria leads to:
 - membrane depolarization by passive influx (diffusion) of Na⁺-ions
 - -> (malfunctioning of Na⁺/K⁺-ATPase)
 - intracellular excess of Ca²⁺ (1. depolarization; 2. malfunctioning of Ca²⁺-ATPase)

Excitotoxicity

too much excitation in the systems - caused by too much Na+ in the intracellular space

- High levels of intracellular Na⁺ lead to a disturbed glutamate gradient
 - Normal situation: high Glu intracellular low Glu extracellular
 - Ischemia: Na⁺ dependent glutamate transporters lead to destruction of gradient
 - Further membrane depolarization (via NMDA-, AMPA-recepotors) and increasing Ca²⁺ influx into neurons
 - Ca²⁺ influx leads to further neurotransmitter release

Blocking of glutamte binding sites on NMDA and AMPA-R is neuroprotective in animal models.

Excitotoxicity II

- High levels of intracellular Ca²⁺ lead to:
- 1. Facilitated neurotransmitter release (excitatory)
- 2. Activation of Ca²⁺-dependent <u>proteases</u>, <u>lipases and DAases</u>
 - -> protein degradation, membrane lysis (cytotoxic edema), cell death
- 3. Production of free radicals and reactive oxygen species (ROS)

Acidosis

- Anaerobic metabolism through ischemia
- Lactate production decreases pH in environment
- Activation of Na⁺-selective acid-sensing ion channels (ASICs) by extracellular protons

ASICs are permeable to Ca²⁺

Acidosis leads to production of free radicals

Oxidative stress (and nitrative stress)

High levels of intracellular Ca^{2+,} Na⁺ and ADP

mitochondria produce a lot of reactive oxygen species (ROS)

- Brain has low levels of endogenous antioxidants -> vulnerable to ROS
- ROS cause destruction of cellular macromolecules and induce apoptosis
- Ischemia activates nitric acid synthase (NOS):
 - NOS produces nitric oxide (NO)

Stroke: core zone and penumbra

Ischemic core zone and penumbra

www.ajnr.org

Core zone:

results in fast necrosis of neurons and glial cells and irreversible damage

rad.desk.nl

Ischemic penumbra (peri-infarct area):

ischemica tissue potentially destined for infarction but not yet irreversibly injured and the target of acute therapies

this zone can still be recovered

Stroke: early treatment

Two main strategies

- Reperfusion: restoration of normal blood supply
- Neuroprotection: protect ischemic tissue (penumbra)

Remember: TIME IS BRAIN

Every 30 minutes delay in reperfusion is a 10% relative reduction in the probability of good clinical outcome

Stroke: early treatment-thrombolysis

Tissue plasminogen activator: t-PA

- t-PA is the **only approved treatment** for acute ischemic stroke
- has to be applied within 4.5 h after stroke onset (USA: 3 h)
 - -> only a few patients (ca. 5%) qualify for this treatment due to the narrow time window
- Only for ischemic stroke, not hemorrhagic stroke (increases bleeding actually, but we want to seal the rupture, so dont do it)
 - -> obligate imaging with CT (computed tomography) or MRI (magnetic resonance imaging)

Stroke: cerebrovascular system

most often occluded in human stroke

Distal occlusion of MCA: Damage restricted to cerebral cortex

Stroke: hemiplegic gait

Hemiparetic gait: One affected body side, 1 nearly-intact body side

ARM AND LEG ON ONE SIDE (HEMIPLEGIC)

Leg:

- Extension (spastic, stiff) mostly of distal joints (knee, ankle)
- Internal rotation
- Circumduction of leg

Arm:

- Shoulder adducted
- Elbow flexed
- Pronation of wrist

nsmec.wordpress.com

Stroke: spontaneous functional recovery

usually some degreeof spontaneous functional recovery three epochs of functional recovery:

- 1. acute epoch: inital hours after stroke
- 2. subacute epoch: first days to weeks after stroke
- 3. chronic epoch: weeks to months after stroke

highest amount of spontaneous sensorimotor recovery usually takes place within the first 3 weeks after stroke

Stroke: spontaneous functional recovery

Cramer SC, 2008

mild deficits show faster recovery of functions most improvement occurs within 30 days after stroke more severe deficits can take up to 90 days to recovery DAY 7 clinical assessment is most predictive of final outcome

80% of patients showed max revoery around 3 weeks (plateau) 95% showed max recoery around 6 weeks (plateau)

http://www.homehealthofmontana.com

Molecular and cellular level:

- Data mainly from preclinical studies (animal models) due to invasive methodology
- Associated with recovery of secondary pathomechanisms (discussed before)

Neural network level: <u>restoration</u> of function in ischemic brain area

1. Reduced neural activity locally (at or close to infarct area)

Functinoal MRI study: Zemke et al., 2003

rad.desk.nl

Neural network level: <u>compensation</u> of function by secondary brain areas

- 2. Increased neural activity at areas distant from core zone
 - i) Enhance activity in CNS areas distant from, but connected to core zone:

Functinoal MRI study: Cramer et al., 1997

Neural network level: <u>compensation</u> of function by secondary brain areas

- 2. Increased neural activity at areas distant from core zone
 - ii) Reduced laterality of neural motor control (more contralesional activity after stroke)

Neural network level: <u>compensation</u> of function by secondary brain areas

- 2. Increased neural activity at areas distant from core zone
 - ii) Reduced laterality of neural motor control (more contralesional activity after stroke)

Neural network level: <u>compensation</u> of function by secondary brain areas

- 2. Increased neural activity at areas distant from core zone
 - ii) Reduced laterality of neural motor control (more contralesional activity after stroke)

Neural network level: <u>compensation</u> of function by secondary brain areas

2. Increased neural activity at areas distant from core zone

Stroke: later treatment – rehabilitative training

Depending on deficits:

- Physiotherapy
- Occupational therapy
- Speech therapy
- Psychological care

Stroke: constraint-induced movement therapy

M D1

Improvement forelimb function

Increase corticospinal fibers in denervated spinal cord

Maier et al., 2008

Lower-Functioning
Participants
△ Usual Care
○ CIMT
Higher-Functioning
Participants
▲ Usual Care
● CIMT

