Oscilaciones en Sistemas Biológicos: Testosterona

Alejandro Hernández de la Vega César Daniel Rodríguez Rosenblueth Eva Yazmín Santiago Santos

Facultad de Ciencias. UNAM

Índice

Introducción

Osciladores Biológicos Testosterona Comportamiento del Sistema

Resultados

Modelos Simples Modelo con Fuente Externa Modelo de Castración Pubertad

Referencias

Osciladores Biológicos

Su estudio se basa en ecuaciones diferenciales del tipo:

$$\frac{du}{dt} = f(u)$$

Donde, para sistemas periódicos se tiene:

$$u(t+T)=(t)$$

con el periodo T>0

En algunas ocaciones el sistema está regulado por un control de retroalimentación.

ightarrow Serie de reacciones ligadas ightarrow La primera está regulada por una función de retroalimentación.

$$\frac{du_1}{dt} = f(u_n)k_1u_1$$
$$\frac{du_r}{dt} = u_{r-1} - k_ru_r$$

$$\frac{du_r}{dt} = u_{r-1} - k_r u_r$$

con r = 2, 3, ..., n, $k_r > 0$ constantes determinadas por el sistema en cuestión y f(u) la función de retroalimentación.

Testosterona

Características

- ightarrow Es una hormona cuya función principal es estimular el desarrollo de los caracteres sexuales masculinos.
- \rightarrow Cambios de personalidad relacionados con la concentración de testosterona en la sangre.

Hombres

- \rightarrow Nivel: 10-35 nanomoles por litro de sangre
- → Oscilan con un periodo de 2 a 3 horas

Mujeres

→ Nivel: 0.7-2.7 nanomoles por litro

Secreción de Testosterona

Testosterona (T) \rightarrow Hormona Liberadora de Hormona Luteinizante (LHRH) \rightarrow Hormona Luteinizante (LH) \rightarrow Testosterona (T) Se denota a T, LH y LHRH por T(t)L(t) y R(t) respectivamente.

Comportamiento del Sistema

Está representado por las siguientes ecuaciones:

$$\frac{dR}{dt} = f(T) - b_1 R$$

$$\frac{dL}{dt} = g_1 R - b_2 L$$

$$\frac{dT}{dt} = g_2 L - b_3 T$$

 b_1 , b_2 , b_3 , g_1 , g_2 son parámetros positivos. g_1,g_2 y f(T) son las tasas de secreción g_1,g_2 son los valores de prealimentación

Puntos de Estabilidad

Las ecuaciones anteriores tienen sólución en:

$$R_0 = \frac{f(T_0)}{b_1}$$

$$L_0 = \frac{b_3}{g_2} T_0$$

Donde $T_0 > 0$ satisface $g_1g_2f(T_0) = b_1b_2b_3T_0$.

Puntos de Estabilidad

Alrededor del punto de equilibrio:

$$\frac{dx}{dt} = f'(T_0)z - b_1x$$

$$\frac{dy}{dt} = g_1x - b_2y$$

$$\frac{dz}{dt} = g_2yt - b_3T$$

Donde

$$z(t) = T(t) - T_0$$
$$y(t) = L(t) - L_0$$
$$x(t) = R(t) - R_0$$

Inestabilidad

Cuando $f'(T_0) < 0$ no hay estabilidad:

(i) si y sólo si

$$-\frac{g_1g_2f'(T_0)}{b_1} > \frac{a_1a_2}{a_3} - 1$$

Donde:

$$a_1 = b_1 + b_2 + b_3$$

 $a_2 = b_1b_2 + b_1b_3 + b_2b_3$
 $a_3 = b_1b_2b_3$

(ii) si

$$-\frac{T_0f'(T_0)}{f(T_0)} > 8$$

Modelo de Pubertad

Modelo de Pubertad

Referencias

- [1] Murray, J. D. 1989. Mathematical Biology. Volume 19.
- [2] Smith, William R. "Hypothalamic regulation of pituitary secretion of luteinizing hormone—II feedback control of gonadotropin secretion." Bulletin of Mathematical Biology 42.1 (1980): 57-78.