Case I Los dx andr), M=N+Z (so it careges) ex 50 T+xe

Definition: f(z), $z=re^{i\theta}$ tends to 0 uniformly for $\theta, \leq \theta \leq \theta_2$ as $r>\infty$ if $\int |f(z)| \leq K(r)$, $\theta, \leq \theta \leq \theta_2$ and K(r) = 0, $r>\infty$

Theorem 1: If $zf(z) \rightarrow 0$ uniformly as $|z| = R \rightarrow +\infty$, $z = Re^{i\theta}$ then kno $\int_{Ce} f(z)dz = 0$, $c_{e} = c_{e} reular, arc}, |z| = R, \theta, \leq \theta \leq \theta_{e}$

 $||x||^{2}||x||^{2}||x||^{2} = \frac{||x||^{2}}{||x||^{2}}||x||^{2} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}} = \frac{||x||^{2}}{||x||^{2}}||x||^{2}}$ 2/29-41

12, +212 | 12,1-1221

Jos dxe idx PN(x) x: red

Theorem 2: If f(z) > 0 uniformly as $|z| \rightarrow \infty$, then ① $\alpha > 0$, $\lim_{z \to \infty} \int_{c_0} e^{i\alpha z} f(z) dz = 0$ ① $\alpha < 0$, $\lim_{z \to \infty} \int_{c_0} e^{i\alpha z} f(z) dz = 0$ ② $\alpha < 0$, $\lim_{z \to \infty} \int_{c_0} e^{i\alpha z} f(z) dz = 0$ ② $\alpha < 0$, $\lim_{z \to \infty} \int_{c_0} e^{i\alpha z} f(z) dz = 0$

Theorem 3: If (z-20) f(z) -0 uniformly as |z-20| = \ -0, then

Digression: F(2) -0 uniformly when 12-20 = 2-70, if \$1F(2)1 < A(E)

Theorem 4: If z's simple pole of f(z), then (=0) cs f(z) dz=iB == f(z)

Theorem 3 is a special case of Theorem 4.