Unit 1: Generating Random Variables

Chapter 3 in "Statistical Computing with R"

Anna Ly

Department of Mathematical and Computational Sciences
University of Toronto Mississauga

January 5, 2026

Overview

- 1. The Inverse Transform Method
- 2. The Acceptance-Rejection Method
- 3. Transformation and Convolution Methods
- 4. Mixtures Methods

Strictly speaking, it is impossible to get random numbers from a computer; but programs can produce pseudo-random numbers.

In this course we assume that a suitable uniform pseudo-random number generator is available. (The methods for creating pseudo-randomness is not the focus of this course, and shall be omitted.)

Refer to 'help(.Random.seed)' for details about the default random number generator in R.

Theorem 3.1 (Probability Integral Transform)

If X is a continuous random variable with cdf $F_X(x)$ then $U = F_X(x) \sim \textit{Uniform}(0,1)$.

Proof.

Corollary

Let $U \sim Uniform(0,1)$. Define $X = F^{-1}(U)$, where F is a cdf. Then, F is the cdf of X.

Proof.

The inverse transform method (continuous case) can be summarized as follows:

- 1. Find the cdf, $F_X(x)$.
- 2. Define the inverse function $F_X^{-1}(u)$.
- 3. For each random variate required:
 - a Generate a random u from Uniform(0,1).
 - b Deliver $x = F_X^{-1}(u)$.

Warning: we should only use this method if a closed form of $F_X^{-1}(x)$ exists!

Example

Use the inverse transform method to simulate a random sample from the distribution with density:

$$f_X(x) = 3x^2, \quad 0 < x < 1.$$

Additionally, write the R code.

Example

Use the inverse transform method to simulate a random sample from the exponential distribution, which has the density:

$$f_X(x) = \frac{1}{\theta}e^{-\frac{1}{\theta}x}, \quad x > 0.$$

Additionally, write the R code.

Example

Use the inverse transform method to simulate a random sample from the Weibull distribution, which has the density:

$$f_X(x) = egin{cases} rac{lpha}{eta} \left(rac{x}{eta}
ight)^{lpha-1} \mathrm{e}^{-\left(rac{x}{eta}
ight)^{lpha}} & x \geq 0, lpha > 0, eta > 0, \ 0 & ext{otherwise}. \end{cases}$$

To make life easier, we'll consider the case where $\beta = 1$.

- 1. Additionally, write the R code.
- 2. Find $\mathbb{E}[X]$, the theoretical mean, and check that the simulated mean is close to the theoretical mean.

If we just want to generate a random variable X with pmf:

$$\mathbb{P}(X=x_i)=p_i,\ i\in\mathbb{N},\ \sum_i p_i=1,$$

then inverse transform method (discrete case) can be summarized as follows:

- 1. Generate a random u from Uniform(0, 1).
- 2. Transform u into X as follows:

$$X = x_j$$
 if $F_X(x_{j-1}) < u \le F_X(x_j)$

3. It follows that,

$$X = \begin{cases} x_1 & u \leq F_X(x_1), \\ x_2 & F_X(x_1) < u \leq F_X(x_2), \\ \dots & \\ x_j & F_X(x_{j-1}) < u \leq F_X(x_j), \\ \dots & \end{cases}$$

In other words, discrete random variables can be generated by slicing up the interval (0,1) into subintervals which define a partition on (0,1):

$$(0, F_X(x_1)], (F_X(x_1), F_X(x_2)], (F_X(x_2), F_X(x_3)], \dots, (F_X(x_{k-1}), 1].$$

We can also define:

$$p_1 = F_X(x_1), \quad p_2 = F_X(x_2) - p_1, \quad \dots, \quad p_j = F_X(x_j) - \sum_{i=1}^{j-1} p_i$$

Proof of Previous Algorithm

Given X that was defined in the algorithm of the previous slide, Prove that $\mathbb{P}(X = x_i) = p_i$.

Example

Use the inverse transform method to simulate a random sample from the Bernoulli distribution with p=0.4. Additionally, write the R code.

Example

Let X be a discrete random variable with the following pmf:

Find $F_X(x)$. Additionally, write the R code.

Generalized Inverse Function

For a discrete random variable X with cdf $F_X(x)$, the inverse CDF $F_X^{-1}(p)$, also called the quantile function, is defined as:

$$F_X^{-1}(x) := \inf\{x : F_X(x) \ge p\}, \quad 0$$

Note that there isn't a unique x where F(x) = p for every $p \in (0,1)$.

Example

From the previous example,

- Find $F_X^{-1}(0.1)$.
- Find $F_X^{-1}(0.5)$.
- Find $F_X^{-1}(0.85)$.

Example

Use the inverse transform method to simulate a random sample from the Geometric distribution with pmf:

$$\mathbb{P}(X=i)=pq^i,\ i\in\mathbb{N},\ q=1-p.$$

Additionally, write the R code.

Remember that now we are slicing up the interval (0,1) into subintervals which define a partition on (0,1):

$$(0, F_X(x_1)], (F_X(x_1), F_X(x_2)], (F_X(x_2), F_X(x_3)], \dots, (F_X(x_{k-1}), 1].$$

Which basically means we are trying to evaluate $F_X(x_i)$ for $i \in \mathbb{N}$.

- However, sometimes it's hard to obtain a closed form for $F_X(x_i)$.
- Thus, it is more useful to find a recursive formula.

Example

Use the inverse transform method to simulate a random sample from the Binomial distribution with pmf:

$$p_i := \mathbb{P}(X=i) = \binom{n}{i} p^i (1-p)^{n-i}, \quad i=0,1,\ldots,n.$$

1. First, derive the following recursive formula:

$$p_{i+1}=\left(\frac{n-i}{i+1}\right)\left(\frac{p}{1-p}\right)p_i, \ i=0,1,\ldots,n.$$

2. Write the R code to simulate the algorithm.

Example

Use the inverse transform method to simulate a random sample from the logarithmic distribution with pmf:

$$p_i := \mathbb{P}(X = i) = \frac{a\theta^i}{i}, \ i \in \mathbb{N}.$$

Where $0 < \theta < 1$ and $a = (-\ln(1 - \theta))^{-1}$.

1. First, derive the following recursive formula:

$$p_{i+1} = \left(\frac{\theta i}{i+1}\right) p_i, \ \ i \in \mathbb{N}.$$

2. Write the R code to simulate the algorithm.

In general:

$$X \Rightarrow F_X^{-1}(x) \Rightarrow F_X^{-1}(u)$$

However, this only works if we can define the inverse. We can think of many different functions where the inverse would be hard to find: the Gaussian distribution, beta, etc...

The Acceptance-Rejection Method

Suppose we want to generate the random variable X with target density f using the acceptance-rejection method.

1. Find another random variable, Y with trial/candidate/envelope density g where there exists $c \in \mathbb{R}$ such that:

$$\frac{f(t)}{g(t)} < c.$$

- 2. For each random variate required:
 - 2.1 Generate y from the distribution with density g.
 - 2.2 Generate u from the Uniform(0,1) distribution.
 - 2.3 If

$$u<\frac{f(y)}{cg(y)}$$

accept y and deliver x = y. Otherwise, reject y and generate a random variate again.

Probability of Accepting

Given the acceptance-rejection algorithm, evaluate the probability of acceptance for any iteration (see part 2.3 in the previous slide).

Proof.

Probability of Accepting

Given the acceptance-rejection algorithm, prove that the accepted sample has the same distribution as X.

Proof.

The Choice of c

Given the acceptance-rejection algorithm, show that that $c \geq 1$.

- Ideally, you want g to be easy to sample from, consistent with the support of f.
- Theoretically, as long as you know that f indeed has longer tails than g, you can choose c to be ridiculously large and this will still yield a valid algorithm.
- Since the acceptance rate is equal to 1/c, you will have to, on average, generate $c \times n$ draws from the trial distribution and from the uniform distribution just to get n draws from the target distribution.
- So choosing c to be too large will yield an inefficient algorithm.
- Ideally: choose c close to 1; so f and g are similar.

The Distribution of N

Let N represent the number of iterations that the acceptance-rejection algorithm needs to successfully generate one value of X. What is the distribution of N?

Example

Use the acceptance-rejection method to simulate a random sample from the distribution with density:

$$f_X(x) = 3x^2, \quad 0 < x < 1.$$

Let the trial density be Uniform(0,1). Write the R code to simulate the algorithm. Compare the number of iterations to the value of $\frac{1}{c}$.

Example

Use the acceptance-rejection method to simulate a random sample from the beta distribution with density:

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 < x < 1.$$

Assume $\alpha=2,\beta=4$. Let the trial density be Uniform(0,1). Write the R code to simulate the algorithm. Compare the number of iterations to the value of $\frac{1}{c}$.

Example

Use the acceptance-rejection method to simulate a random sample from the distribution with density:

$$f_X(x) = egin{cases} rac{2}{\pi}\sqrt{1-x^2} & |x| < 1, \ 0 & ext{otherwise.} \end{cases}$$

Let the trial density be Uniform(-1,1). Write the R code to simulate the algorithm. Compare the number of iterations to the value of $\frac{1}{6}$.

You've done transformations or convolution methods before (or at least I hope!)

- If $X_i \sim Exponential(a)$ with $i \in \{1, 2, ..., n\}$ then $\sum_i X_i \sim Gamma(n, a)$.
- If $U \sim Gamma(r, \lambda)$ and $V \sim Gamma(s, \lambda)$ and $U \perp V$ then

$$X := \frac{U}{U+V} \sim \textit{Beta}(r,s).$$

- If $Z \sim N(0,1)$ then $V := Z^2 \sim \chi^2(1)$.
- If $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ and $U \perp V$ then

$$\tilde{F}:=\frac{U/m}{V/n}\sim F(m,n).$$

• If $Z \sim N(0,1)$ and $V \sim \chi^2(n)$ and $Z \perp V$ then:

$$\tilde{T}:=\frac{Z}{\sqrt{V/n}}\sim t(n).$$

Example

Use rexp() to generate the $Gamma(\alpha=10,\beta=1/2)$ distribution.

Example

Use rexp() to generate the $Beta(\alpha=2,\beta=3)$ distribution.

Mixture Methods

Mixture Methods

Finite Mixture Model

A finite mixture model is a statistical model that represents a probability distribution as a mixture of several component distributions. Mathematically, given k component distributions $f_1(x), ..., f_k(x)$, each with associated mixing probabilities (also known mixing weights) $\pi_1, ..., \pi_k$, a finite mixture model f(x) is defined as:

$$f(x) := \sum_{i=1}^k \pi_i f_i(x),$$

where $0 \le \pi_i \le 1$ and $\sum_{i=1}^k \pi_i = 1$.

Mixture Model Properties

We want to show that f(x) satisfies the properties of a density function. That is, show that f(x) is non-negative and $\int_{-\infty}^{\infty} f(x) dx = 1$.

Mixture Model CDF

Compute F(x).

Mixture Model Expected Value

Let $\mu_i := \mathbb{E}[X|i] = \int_{-\infty}^{\infty} x f_i(x) dx$; this represents the mean for the *i*-th component distribution. Compute $\mu := \mathbb{E}[X]$. What does it represent?

Mixture Model Variance

Let $\sigma_i^2 := \mathbb{V}[X|i]$ represent the standard deviation for the *i*-th component distribution. Show that:

$$\sigma^2 := \mathbb{V}[X] = \sum_{i=1}^k \pi_i \sigma_i^2 + \sum_{i=1}^k \pi_i (\mu_i - \mu)^2$$

What does it represent?

Convolutions and mixtures look similar but the represented distributions differ!

Example

Suppose $X_1 \sim N(0,1)$, $X_2 \sim N(3,1)$, and $X_1 \perp X_2$.

Convolution representation:

$$S := 0.4X_1 + 0.6X_2$$

Mixture representation:

$$F_X(x) := 0.4F_{X_1}(x_1) + 0.6F_{X_2}(x_2)$$

Note: for the convolution, the coefficients in front of the random variables do not necessarily have to add to one; we could have done $S := aX_1 + bX_2$ for any $a, b \in \mathbb{R}$. However, for finite mixture models, these coefficients must add to 1.

Simulating a variable from a finite k-mixture distribution is typically carried out by the composition method: Consider $F(x) = \sum_{i=1}^{k} \pi_i F_{X_i}(x)$. Then,

Composition Method

• Generate an integer $I \in \{1, ..., k\}$ such that:

$$\mathbb{P}(I=i)=\pi_i, \quad i\in\{1,2,\ldots,k\}.$$

• Deliver X with cdf $F_{X_l}(x)$.

Example

Suppose $X_1 \sim N(0,1)$, $X_2 \sim N(3,1)$, and $X_1 \perp X_2$. Simulating the following using R:

$$F_X(x) := 0.4F_{X_1}(x_1) + 0.6F_{X_2}(x_2)$$

Then, compare the above to the following convolution counterpart:

$$S := 0.4X_1 + 0.6X_2$$

The first two methods we discussed, inverse-transform and acceptance-rejection method, depend on the uniform distribution. Similarly, we can do the same for generating finite mixture models. Consider $F(x) = \sum_{i=1}^{k} \pi_i F_{X_i}(x)$. Then:

Modified Composition Method

- Generate u from the Uniform(0,1) distribution.
- If:

$$\sum_{i=1}^{l-1} \pi_i \le u < \sum_{i=1}^{l} \pi_i$$

then generate a random x from $F_{X_l}(x)$ where $l=1,\ldots,k$ with the convention $\sum_{i=1}^{0} \pi_i = 0$.

Example

Using the alternative method... Suppose $X_1 \sim N(0,1)$, $X_2 \sim N(3,1)$, $X_3 \sim N(5,1)$, and assume they're all independent of each other. Code the following algorithm using R:

$$F_X(x) := 0.4F_{X_1}(x_1) + 0.3F_{X_2}(x_2) + 0.3F_{X_3}(x_3)$$