

RAA228236

Digital Dual Output, 12-Phase Controller

The RAA228236 is a digital dual output multiphase (X+Y ≤ 12) PWM controller with an Adaptive Voltage Scaling Bus (AVSBus) interface.

The RAA228236 controller can be configured to support any needed phase assignment up to a maximum of 12 phases across the two outputs (X+Y). For example, 11+1, 10+2, 9+3, 6+6, or even single output operation as a 12+0 configuration are supported. Increased power density, combined with support for the PMBus V1.3 and Adaptive Voltage Scaling Bus (AVSBus) interfaces, allows the RAA228236 to support any demanding power supply requirement.

The RAA228236 AVSBus interface complements PMBus by providing a common high-speed interface that accelerates point-to-point communication. The communication occurs between the controller and the load to statically and dynamically control the processor voltage, which delivers a balanced power-efficient design.

The RAA228236 uses the proprietary Renesas digital synthetic current modulation scheme to achieve the industry-best combination of transient response, ease of tuning, and efficiency across the full load range. Diode emulation and automatic phase add/drop features allow you to extract maximum efficiency from the converter regardless of load conditions. You can use the intuitive Renesas PowerNavigator™ software to configure and monitor the device.

With minimal external components, easy configuration, robust fault management, and highly accurate regulation capability, implementing a high-performance, multiphase regulator has never been easier.

Applications

- Artificial Intelligence/accelerator cards (FPGA, ASIC)
- Network equipment
- Server/storage equipment
- Telecom/datacom equipment
- Point-of-load power supply (DSP, ASIC, FPGA)

Features

- Advanced linear digital modulation scheme
 - · Auto phase add/drop with PFM mode for excellent load vs efficiency profile
 - · Dual edge modulation with optional diode braking for faster transient response
 - Excellent V_{OUT} transition performance
 - Zero latency synthetic current control for excellent high-frequency current balance
- Supports the TLVR topology for capacitance reduction in high transient applications
- Flexible phase assignment from 0 to 12 phases per
- Up to 2MHz switching frequency operation for high density designs
- Differential remote voltage sensing supports ±0.5% closed-loop system accuracy over load, line, and temperature
- Highly accurate current sensing for excellent load-line regulation and accurate OCP
- Supports the full range of Renesas Smart Power Stage (SPS) devices
- Comprehensive fault management enables high reliability systems
 - Pulse-by-pulse (per phase) and total output current limiting
 - · Black Box status recording capability with first fault indicator
- Intuitive configuration using PowerNavigator
- SMBus/PMBus V1.3 and AVSBus compatible
- Up to four user configurations stored in device Non-Volatile Memory (NVM)

Contents

1.	Over	view	6
	1.1 1.2	Typical Applications	
2.	Pin Ir	nformation	9
	2.1 2.2	Pin Assignments Pin Descriptions	
3.	Spec	ifications	11
	3.1 3.2 3.3 3.4 3.5	Absolute Maximum Ratings ESD Ratings Thermal Information Recommended Operating Conditions Electrical Specifications	11 11 11
4.	Initia	lizing the Device	14
	4.1 4.2 4.3 4.4	Power-On Reset (POR) Selecting the PMBus Address and User Configuration NVM User Configurations Configuring the Device	15 16 16
5.	Oper	ating the Device	
	5.1 5.2 5.3 5.4 5.5 5.6	Input Voltage Sensing Lossless Input Current and Power Sensing VMON Voltage Sensing	17 17 17 17
	5.7	Diode Emulation and PFM Operation	
	5.8 5.9	Diode Braking	
	5.10 5.11	Output Current Sensing	19
6.		Monitoring and Protection	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Power-Good Signals Overvoltage/Undervoltage Protection Output Overcurrent Protection Smart Power Stage OC Fault Detect Thermal Protection and nVRHOT nALERT Black Box Recorder	20 20 21 22 22 23 23
7.	•	ut and Design Considerations	
	7.1	Pin Noise Sensitivity, Design, and Layout Consideration	
8.		us Command Summary	
9.	9.1 9.2 9.3	us Protocol	29 29

RAA228236 Datasheet

	9.4	Group Command Protocol	
	9.5	Alert Response Address	
	9.6	PMBus Use Guidelines	
	9.7	PMBus Data Formats	
		9.7.1 Direct	
		9.7.2 Linear 16 Unsigned (L16U)	31
		9.7.3 Linear 16 Signed (L16S)	31
		9.7.4 Linear 11 (L11)	31
		9.7.5 Bit Field (Bit)	31
		9.7.6 Custom (Cus)	31
10.	PMB	us Command Detail	32
		PAGE (00h)	
		OPERATION (01h)	
		ON_OFF_CONFIG (02h)	
		CLEAR_FAULTS (03h)	
		= · · ·	
		PHASE (04h)	
		PAGE_PLUS_WRITE (05h)	
		PAGE_PLUS_READ (06h)	
		WRITE_PROTECT (10h)	
		CAPABILITY (19h)	
		SMBALERT_MASK (1Bh)	
		VOUT_MODE (20h)	
	10.12	VOUT_COMMAND (21h)	39
	10.13	S VOUT_TRIM (22h)	40
	10.14	· VOUT_CAL_OFFSET (23h)	40
	10.15	5 VOUT_MAX (24h)	41
	10.16	5 VOUT_MARGIN_HIGH (25h)	41
	10.17	VOUT_MARGIN_LOW (26h)	42
	10.18	VOUT_TRANSITION_RATE (27h)	42
		VOUT_DROOP (28h)	
		O VOUT MIN (2Bh)	
		FREQUENCY_SWITCH (33h)	
		POWER MODE (34h)	
		3 VIN_ON (35h)	
		VIN_OFF (36h)	
		VOUT_OV_FAULT_LIMIT (40h)	
		VOUT_OV_FAULT_RESPONSE (41h)	
		VOUT_UV_FAULT_LIMIT (44h)	
		S VOUT_UV_FAULT_RESPONSE (45h)	
		OIOUT_OC_FAULT_LIMIT (46h)	
		OIOUT_OC_FAULT_RESPONSE (47h)	
		OT_FAULT_LIMIT (4Fh)	
		OT_FAULT_RESPONSE (50h)	
		OT_WARN_LIMIT (51h)	
	10.34	UT_FAULT_LIMIT (53h)	55
	10.35	UT_FAULT_RESPONSE (54h)	56
	10.36	VIN_OV_FAULT_LIMIT (55h)	57
	10.37	VIN_OV_FAULT_RESPONSE (56h)	58
	10.38	S VIN_OV_WARN_LIMIT (57h)	59

RAA228236 Datasheet

59
60
61
62
63
64
64
65
65
66
67
68
69
70
71
72
73
74
74
75
75
76
76
77
77 77
78
78
79
79
79
79
80
80
80
81
81
82
82
83
83
84
85
86
87
87
88
88 88

RAA228236 Datasheet

			C_FILT_COUNT (EBh)	
			FG (F0h)	
			RE_CFG (F2h)	
11.	Adap	tive Volta	age Scaling (AVSBus) Functionality and Operation	. 94
	11.1	AVSBus	Master Send Subframe	. 94
	11.2	AVSBus	Slave Response Subframe	. 94
			Command Detail	
		11.3.1	TARGET RAIL VOLTAGE (0h)	. 95
		11.3.2	VOUT TRANSITION RATE (1h)	. 95
		11.3.3	RAIL CURRENT (2h)	. 96
		11.3.4	RAIL TEMPERATURE (3h)	. 96
		11.3.5	RESET RAIL VOLTAGE (4h)	. 97
		11.3.6	POWER MODE (5h)	. 97
		11.3.7	AVSBus STATUS (Eh)	. 98
		11.3.8	AVSBus VERSION (Fh)	. 98
12.	Pack	age Outli	ine Drawing	. 99
13.	Orde	ring Info	rmation	100
11	Povis	sion Hist		100

CONFIDENTIAL

1. Overview

1.1 Typical Applications

Figure 1.8 + 4 Solution using Smart Power Stage

Figure 2. 12 + 0 Solution using Smart Power Stage

1.2 Internal Block Diagram

Figure 3. Internal Block Diagram

2. Pin Information

2.1 Pin Assignments

2.2 Pin Descriptions

See Table 2 for design layout considerations.

Pin Number	Pin Name	Description
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	PWMn	Pulse-Width Modulation (PWM) outputs. Connect these pins to the PWM input pins of 3.3V logic-compatible smart power stages, driver ICs, or DrMOS. Leave floating if not used.
13	PMSDA	Serial data signal pin for the SMBus interface.
14	PMSCL	Serial clock signal pin for the SMBus interface.
15 nPMALERT		Open-drain output pin for alerting the SMBus host.
16, 20 PGn		Open-drain, power-good indicator for outputs.
17, 24	ENn	Input pin used for enable control of outputs. Connect to ground if not used.
18	nVRHOT	Indicator for high VR temperature. This open-drain output is pulled low if over-temperature is sensed.
19 AVS_VDDIO AVSBus reference voltage input pin. Tie to VCC if not used.		AVSBus reference voltage input pin. Tie to VCC if not used.
21	AVS_MDA	AVSBus data input pin. Connect to ground if not used.

Pin Number	Pin Name	Description
22	AVS_CLK	Synchronous clock signal input of the AVSBus. Connect too ground if not used.
23	AVS_SDA	AVSBus data output pin. Leave open if not used.
25, 40	VSENn	Positive differential voltage sense input for outputs. Connect to the positive remote sensing point. Place a 3300pF capacitor across the VSEN and RGND pair at the pins. Connect to ground if not used.
26, 39	RGNDn	Negative differential voltage sense input for outputs. Connect to the negative remote sensing point. Place a 3300pF capacitor across the VSEN and RGND pair at the pins. Connect to ground if not used.
		Current-sense inputs to individual phase amplifiers. Unused phases should have their respective current-sense inputs grounded. Referenced to the VCCS supply. Support of smart power stage current sense.
41	nALERT Warning Indicator selectable through a configuration file setting.	
42 ADDR_CFG		SMBus/PMBus address and NVM configuration selection pin. Attach a resistor from the pin to GND.
43	TEMP0	Input pin for sensing external temperature measurement at output0. Supports smart power stage sensing. Decouple with a 470pF capacitor to ground at the pin. Connect to ground if not used.
44	TEMP1	Input pin for sensing external temperature measurement at output1. Supports smart power stage sensing. Decouple with a 470pF capacitor to ground at the pin. Connect to ground if not used.
45	VMON	Input voltage sense pin for driver supply voltage. Connect to ground if not used.
46	VINSEN	Input voltage sense pin for the VIN supply voltage. Connect to ground if not used.
47	VCC	Primary bias input. Connect this pin directly to a +3.3V supply with a 1µF or greater MLCC bypass capacitor.
48	VCCS	Internally generated 1.2V LDO logic supply from VCC. Decouple with a 4.7µF or greater MLCC (X5R or better).
EPAD	GND	The package pad serves as the GND return for all IC functions. Connect directly to the system GND plane with multiple vias.

3. Specifications

3.1 Absolute Maximum Ratings

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Parameter	Pins	Minimum	Maximum	Unit
	VCC		+4.3	V
Input Voltage Pange	vccs		+1.6	V
Input Voltage Range	VINSEN	GND - 0.3	18	V
	All Other Pins	GND - 0.3	V _{CC} + 0.3	V

3.2 ESD Ratings

ESD Test/Model	Rating	Unit
Human Body Model (Tested per JS-001-2017)	2	kV
Charged Device Model (Tested per JS-002-2018)	750	V
Latch-Up (Tested per JESD-78E; Class 2, Level A)	100	mA

3.3 Thermal Information

Package Description 48 Ld 6x6 QFN Package	Thermal Resistance (Typical)		
Package Description	θ _{JA} (°C/W) ^[1]	θ _{JC} (°C/W) ^[2]	
48 Ld 6x6 QFN Package	29	2.5	

^{1.} θ_{JA} is measured in free air with the component mounted on a high-effective thermal conductivity test board with direct attach features. See TB379.

^{2.} For θ_{JC} , the case temperature location is the center of the exposed metal pad on the package underside.

Parameter	Minimum	Maximum	Unit
Maximum Junction Temperature		+150	°C
Maximum Storage Temperature Range	-65	+150	°C
Pb-Free Reflow Profile		see TB493	

3.4 Recommended Operating Conditions

Parameter	Minimum	Maximum	Unit
Supply Voltage, V _{CC}	2.97	3.63	V
Junction Temperature	-40	+125	°C
Output Voltage	0	3.05	V

3.5 Electrical Specifications

Recommended operating conditions, V_{CC} = 3.3V, unless otherwise specified. **Boldface limits apply across the operating ambient temperature range -40°C to +85°C.**

Parameter	Test Conditions	Min ^[1]	Тур	Max ^[1]	Unit
V _{CC} Supply Current			I I		
Nominal Supply Current	V_{CC} = 3.3 V_{DC} , all phases assigned, EN = V_{IH} , f_{SW} = 500kHz		57		mA
Shutdown Supply Current	$V_{CC} = 3.3V_{DC}$; EN = 0V, no switching		8		mA
VCCS LDO Supply	,		1		
Output Voltage			1.22		V
Maximum Current Capability	Excluding internal load		20		mA
Power-On Reset (POR)			1		
V _{CC} Rising Threshold			2.935		V
V _{CC} Falling (Brownout) Threshold			2.9		V
Enable Input High Level		2.0			V
Enable Input Low Level				0.8	V
Configurations Stored in Memory			<u> </u>		-!
Number of Configuration Write Slots		28			
Number of Unique Configurations Stored		4			
POR to Initialization	NIELBENI	T 1 A			
POR to Initialization Complete Time		1 7	10		ms
DAC (VID + Offset)					-
	Closed loop DAC = 1.00V to 3.05V	-0.5		0.5	%VID
System Accuracy ^[2]	Closed loop DAC = 0.8V to 0.999V	-5		5	mV
	Closed loop DAC = 0.25V to 0.799V	-8		+8	mV
Voltage Sense Amplifier					•
Open Sense Current	Only at VSEN open detection during initialization period		220		μA
Input Impedance (VSEN-RGND)			140		kΩ
Maximum Common-Mode Input			V _{CC} - 0.2		V
Differential Input Range (VSEN-RGND)			V _{CC} - 0.2	3.05	V
Output Current-Sense and Overcurrent	Protection				•
Current-Sense Accuracy	Voltage mode IMON	-1		1	%
Current-Sense Offset	Relative to configured rail full scale current	-1		1	%
Average Overcurrent Threshold Resolution			0.1		А
Cycle-by-Cycle Current Limiting Threshold Resolution			0.4		А

Recommended operating conditions, V_{CC} = 3.3V, unless otherwise specified. Boldface limits apply across the operating ambient temperature range -40°C to +85°C. (Cont.)

Parameter	Test Conditions	Min ^[1]	Тур	Typ Max ^[1]	
Digital Droop	L				
Droop Resolution			0.01		mV/A
Oscillators					
Accuracy of Switching Frequency Setting			±2		%
Switching Frequency Range		0.2		2.0	MHz
PWM Outputs					
Output High Level	I _{OUT} = 4mA	V _{CC} - 0.4			V
Output Low Level	I _{OUT} = 4mA			0.4	V
Tri-State Leakage (pin forced high)	V _{PWM} = V _{CC}			1	μA
Tri-State Leakage (pin forced low)	V _{PWM} = 0V	-1			μA
Thermal Monitoring and Protection					
Temperature Sensor Range		-50		150	°C
Temperature Sensor Accuracy			±4.5		%
nVRHOT Output Low Impedance			9		Ω
Power-Good and Protection Monitors					
PG Output Low Voltage	I _{OUT} = 4mA load			0.2	V
PG Leakage Current	With pull-up resistor externally connected to VCC	ΤΙΔ	10		μA
Overvoltage Protection Threshold Resolution		1 17	1		mV
Undervoltage Protection Threshold Resolution			1		mV
Input Voltage Sense				-	
Input Voltage Accuracy	VINSEN to ADC accuracy		±2.5		%
Input Overvoltage Threshold Resolution			16		mV
AVSBus		1			
AVSBus VDDIO Input Voltage Range		0.9		3.63	V
AVSBus CLK, MDA Input High Level		0.6×V _{VDDIO}			V
AVSBus CLK, MDA Input Low Level				0.4×V _{VDDIO}	V
AVSBus SDA Output High Level	I _{OUT} = 4mA	0.8×V _{VDDIO}			V
AVSBus SDA Output Low Level	I _{OUT} = 4mA			0.2×V _{VDDIO}	V
AVSBus CLK Frequency Range		5		50	MHz
nALERT		<u> </u>			
Output Low Level	I _{OUT} = 8mA			0.4	V
Input Power Alert Duration	Threshold = PWRIN_MAX, programmable	100			ms

Recommended operating conditions, V_{CC} = 3.3V, unless otherwise specified. **Boldface limits apply across the operating ambient temperature range -40°C to +85°C. (Cont.)**

Parameter	Test Conditions	Min ^[1]	Тур	Max ^[1]	Unit
SMBus/PMBus					
nPMALERT, PMSDA Output Low Level	I _{OUT} = 20mA			0.4	V
PMSCL, PMSDA Input High Level		1.35			V
PMSCL, PMSDA Input Low Level				0.8	V
PMSCL, PMSDA Input Hysteresis			80		mV
PMSCL Frequency Range		0.01		2.00	MHz

- 1. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.
- 2. These parts are designed and adjusted for accuracy with all errors in the voltage loop included. Verified by design and/or characterization.

4. Initializing the Device

4.1 Power-On Reset (POR)

RAA228236 initialization begins after V_{CC} crosses its rising POR threshold. When POR conditions are met, basic digital subsystem integrity checks begin. During this process, the controller starts the telemetry subsystem, configures its PMBus address, and loads the selected user configuration from NVM according to the ADDR_CFG pin resistor value, checks fault status, and prepares for regulation. The PWM pins are held in tri-state until the device is commanded to regulate. Figure 4 shows the device initialization sequence.

Figure 4. Simplified PMBus Initialization Timing Diagram

4.2 Selecting the PMBus Address and User Configuration

The ADDR_CFG pin reads the value of a resistor connected to GND to determine the NVM configuration to load and the PMBus address to use during host communication. Table 1 shows the R_{ADDR_CFG} values to specify the configuration ID and the PMBus slave address (7-bit).

Table 1. Resistor Value to PMBus Address and User Configuration ID Map

R Value (Ω)	PMBus Address	Configuration ID
0	60	0
162	60	1
316	60	2
487	60	3
681	61	0
887	61	1
1130	61	2
1370	61	3
1650	62	0
1960	62	1
2320	62	2
2670	62	3
3090	63	0
3570	63	1
4120	63	2
4640	63	3
5230	72	0
5900	72	1
6650	72	2
7500	72	3
8450	74	0
9530	74	1
10700	74	2
12100	74	3
13700	75	0
15400	75	1
17400	75	2
19600	75	3
22100	76	0
24300	76	1
27400	76	2
30100	76	3

4.3 NVM User Configurations

The RAA228236 supports four distinct configuration identifiers selected by the ADDR_CFG pin. Table 1 provides the R_{ADDR_CFG} value corresponding to each configuration identifier. A total of 28 one-time programmable non-volatile memory locations are available to store new user configurations or overwrite existing ones. With this flexibility, all four unique configurations can be written up to seven times, one configuration ID can be written up to 28 times, or any combination of configuration IDs can be written until the 28-write limit is reached. Only the most recent configuration for a given configuration ID can be loaded. When all 28 memory locations have been written, the RAA228236 no longer accepts attempts to write to NVM. PowerNavigator provides a simple interface to store and load configurations.

4.4 Configuring the Device

Configure the RAA228236 to generate a configuration file using PowerNavigator to either directly load the device RAM or program to the device NVM. During device initialization, the IC attempts to load a configuration from NVM. If no configuration is found, the device remains in a wait state with the PWM pins tri-stated. The device ignores attempts to enable and waits until a configuration is directly loaded using PowerNavigator. The IC features and functions described in this datasheet are all configured using PowerNavigator. The datasheet provides a fundamental understanding of device behavior and design information. Additional detail regarding the configuration process is provided in PowerNavigator.

5. Operating the Device

After the RAA228236 initializes and a configuration is loaded, it is ready for operation.

The RAA228236 has several performance-enhancing features that enable it to meet the most stringent voltage regulation and efficiency demands. The synthetic current modulator provides excellent transient response to support the latest generation of ASICs and CPUs. Automatic phase dropping, diode emulation, and PFM operation improve efficiency across the load range. The RAA228236 supports Smart Power Stage (SPS) current sense. The device also supports a full complement of high-resolution telemetry. The following sections provide more detail about using these features.

5.1 Input Voltage Sensing

Input voltage is monitored using the VINSEN pin. Connect the VINSEN pin, as shown in Figure 5.

Figure 5. Input Voltage Sense Configuration

Input voltage is monitored continuously, and regulation is stopped anytime the sensed input voltage falls outside the boundaries established by configuration settings associated with the parameters V_{IN} ON, V_{IN} OFF, V_{IN} Overvoltage Fault Limit, and V_{IN} Undervoltage Fault Limit.

5.2 Lossless Input Current and Power Sensing

Input current telemetry is provided per rail using an input current synthesizer. By using the ability of the RAA228236 to precisely determine its operational conditions, the input current can be synthesized to a high degree of accuracy without the need for a lossy sense resistor. With a precise knowledge of the input current and voltage, the input power can be computed.

5.3 VMON Voltage Sensing

The VMON input pin provides a secondary input voltage sense with several selectable voltage ranges. The VMON input pin can be used to inhibit rail operation when the sensed voltage falls outside the boundary established by the configuration settings that are associated with the parameters VMON_ON and VMON_OFF. If a rail is prevented from operating due to a VMON excursion, the rail restarts if the sensed voltage returns to the specified range. The use of this feature is optional for each rail. A typical use case for this voltage sensing feature is monitoring the bias supply voltage associated with the power stages and preventing operation if this voltage is below the configured range. The connection of the VMON pin for sensing the 5V SPS bias voltage is shown in Figure 6.

Figure 6. VMON Configuration

5.4 Enabling and Soft-Starting the Device

The RAA228236 outputs are enabled using the enable pin or PMBus. When the RAA228236 is commanded to regulate an output voltage, it begins its soft-start sequence. Soft-start moves V_{OUT} smoothly to the programmed output voltage. Soft-start timing is programmed with the TON_DELAY (60h) and TON_RISE (61h) PMBus commands.

If a pre-existing voltage bias exists on the output, the PWM signals are held in tri-state until the soft-start ramp reaches the pre-bias level. The tri-state prevents the converter from sinking current and pulling the pre-bias down. No special configuration is required to enable this operation.

5.5 Disabling the Device

Similar to the enabling process, outputs can be disabled using the enable pin or PMBus on a per-rail basis. The RAA228236 can be configured to disable in two ways:

- Immediate OFF: Immediately ceases regulation and tri-state PWM pins.
- Soft OFF: Actively ramps the output voltage down to 0V before ceasing activity at a programmable rate.

5.6 Phase Configuration and Automatic Phase Dropping

The RAA228236 supports two regulated outputs that control its 12 phases. Each rail is capable of controlling up to 12 phases, but the rails can be configured for fewer phases. Unused phases should have their CS pins grounded.

The RAA228236 supports Automatic Phase Dropping (APD) to optimize efficiency across the load range. Figure 7 shows the typical characteristic of efficiency versus load current as the phase count is varied. The diagram shows that optimal efficiency is achieved by using fewer phases as the load current decreases.

Figure 7. Efficiency vs Phase Number

The RAA228236 continuously monitors output current, and if APD is enabled, the device drops or adds phases from use as the load current varies.

Phases are dropped one at a time with a user-programmed delay between drop events. For example, if the delay is set to 1ms, eight phases are active, and the load suddenly drops to a level needing only one phase; the RAA228236 begins by dropping a single phase after 1ms. An additional phase is dropped each millisecond until only one phase remains active. On Rail 0, phases are dropped beginning with the highest assigned phase. On Rail 1, phases are dropped beginning with the lowest assigned phase.

Phases are automatically returned to service when load conditions require more phases. The phases are returned to service in the opposite order they were dropped. Conditions that result in phase adding include increased load current, rapid change sensed on the output voltage, and V_{OUT} transition events. When rapid change is sensed on the output voltage, the RAA228236 Fast Phase Add function prepares all dropped phases for activation, so there is no delay if all phases are needed to support a load transient.

Any command to change the output voltage set point uses all phases, including V_{OUT} transition events. After the output voltage change is complete, phases begin dropping as configured.

To ensure dropped phases have sufficient bootstrap capacitor charge to turn on the high-side MOSFET after a long period of inactivity, a bootstrap refresh function periodically turns on the low-side MOSFET of each dropped phase to refresh the bootstrap capacitor.

5.7 **Diode Emulation and PFM Operation**

As described in Phase Configuration and Automatic Phase Dropping, the RAA228236 supports APD to optimize phase usage as load demand decreases. When the regulator drops to 1-phase operation, it supports diode emulation and Pulse Frequency Modulation (PFM) operation to further maximize efficiency performance. Traditionally, use of such efficiency boosting techniques has come at the expense of transient response, but the RAA228236 is able to meet all transient demands directly from diode emulation/PFM operation.

Diode emulation and PFM operation are supported when a single phase is active. If constant frequency operation is needed at light loads, the feature can be disabled. If enabled, the low-side MOSFET conducts when the current is flowing from source-to-drain and does not allow a reverse current, emulating an ideal diode. As Figure 8 shows, when the inductor current is positive, the LGATE is held on, allowing current to flow in the low resistance channel of the LFET. When current reaches zero, the LFET is turned off to prevent a reverse current in the inductor. The controller modulates the LFET state through the PWM pin of the respective regulator channel by tri-stating the PWM when the load current reaches zero, which commands the MOSFET driver to turn off both the HFET and LFET.

Figure 8. Diode Emulation PWM Signaling

In single-phase diode emulation operation, the IC delivers inductor current pulses with a user-programmed pulse width. By programming the pulse width, the output voltage ripple can be tuned to meet expectations for any system type. Pulse frequency is then modulated to maintain output voltage regulation, which is depicted in Figure 9. The transition from single-phase PFM to multiphase constant frequency operation is managed seamlessly by the IC.

Figure 9. Single-Phase Light-Load PFM Operation

5.8 Diode Braking

Applications that support loads with large transient current demands often have significant output voltage overshoot when the load current demand drops suddenly. In some cases, diode braking may allow overshoot reduction at the expense of thermal dissipation in the low-side MOSFET.

5.9 Switching Frequency

Switching frequency is independently programmable on each rail from 200kHz to 2MHz.

5.10 Output Current Sensing

The RAA228236 supports Smart Power Stage (SPS) current sensing. Connection to the SPS is accomplished through the CS pins, the SPS IMON output is connected to the corresponding RAA228236 CSn input. CS pins are referenced to the VCCS supply which must be connected to the SPS current sense reference voltage. For connection details, see the typical application diagram shown in Figure 1.

5.11 Temperature Sensing

The RAA228236 monitors internal die temperature in addition to external SPS temperature sense. All SPS on a configured rail have their TMON/FLT pin connected together and tied to the RAA228236 TEMPn pin.

6. Fault Monitoring and Protection

The RAA228236 includes an extensive fault management system that integrates with high performance host controllers, supporting unprecedented remote system management and debugging capability. If a fault condition occurs, the IC de-asserts the PG pin associated with the faulted rail and alerts the host using the nPMALERT pin. You can optionally configure the Catastrophic Failure Protection (CFP) to assert on select faults for additional protection measures at the system level. The RAA228236 also provides a black box recorder with extensive fault logging to support system level debug.

Fault controls are independently enabled and associated fault responses are user configurable. Response type is independently configurable by fault type. Response types supported are:

- Alert only The rail continues to operate.
- Shut down immediately The rail is latched off until commanded on.
- Shut down and retry with variable retry delay The rail attempts to retry indefinitely until the condition clears or the rail is commanded off.

If a fault condition has been declared, clear the fault by issuing a CLEAR_FAULTS command or by cycling the EN pin of the faulted rail.

6.1 Power-Good Signals

The PG pins are open-drain, power-good outputs that indicate completion of the soft-start sequence and output voltage of the associated rail within the expected regulation range. If a fault occurs, the PG pin of the associated rail is pulled low. PG is also pulled low immediately upon a rail disable.

6.2 Overvoltage/Undervoltage Protection

Output voltage is measured at the load sensing points differentially for regulation, and the same measurement is used for OVP and UVP. Figure 10 shows a simplified OVP/UVP block diagram. The output voltage comparisons are done in the digital domain.

Figure 10. OVP, UVP Comparators

The device responds to an output overvoltage condition by disabling the output, declaring a fault, setting the nPMALERT pin, pulling the PG pin low, and pulsing the LFET until the output voltage drops below the threshold. Similarly, the device responds to an output undervoltage condition by disabling the output, declaring a fault, setting the nPMALERT pin, and pulling the PG pin low. The output does not restart until the EN pin is cycled (unless the device is configured to retry).

The RAA228236 also features open pin-sensing protection to detect an open on the output voltage sensing circuit. When this condition is detected, the controller operation is suspended.

6.3 Output Overcurrent Protection

The RAA228236 provides a comprehensive overcurrent protection scheme that monitors the total output current, peak phase current, and the valley phase current. The scheme allows you to eliminate inductor saturation and limit the total output current. The RAA228236 supports shutdown and retry response types for OC faults. The response configuration applies to all output current fault mechanisms such as phase peak overcurrent and total output overcurrent.

Figure 11 shows the block diagram of the output overcurrent protection scheme.

Figure 11. OCP Functional Diagram

Phases are protected from both overcurrent and undercurrent using a pulse-by-pulse scheme that acts instantly on a PWM signal if a detected phase current reaches its threshold. Thresholds for overcurrent and undercurrent allow you to precisely limit phase currents so the inductors never saturate. Phase current limiting behavior can be configured to either shut down the device after a user-determined number of consecutive events or continue indefinitely. If configured to continue indefinitely, the converter behaves much like a current source. Figure 12 and Figure 13 show per-phase current limiting when the device is configured to shutdown after a user-determined number of consecutive events.

Figure 12. Peak OC Operation

Figure 13. Peak UC Operation

In addition to phase-based current limiting, the device supports a total output current limit that has a user-adjustable response delay. The sum current limit allows you to permit high maximum output current for an adjustable short period of time. This mechanism does not restrict the maximum output current until the current has exceeded a threshold for the response delay time. For example, suppose the device is configured with a Sum OC limit of 500A, a response delay of 50µs, and a shutdown response type. Next, suppose a 550A load is placed on the regulator. 550A is supplied to the load for 50µs, and the device shuts down as shown in Figure 14.

Figure 14. Total Output Current Protection

The RAA228236 also has an nALERT pin that can be configured to function as an output overcurrent warning indicator pin. When configured as nIOUTALERT, This pin is an open-drain output that is pulled low when the user-adjustable low pass filter output current exceeds the user-adjustable nIOUTALERT threshold as shown in Figure 15.

Figure 15. IOUT Warning Indicator

6.4 Smart Power Stage OC Fault Detect

Renesas Smart Power Stage (SPS) devices output a large signal on their IMON lines if peak current exceeds their preprogrammed threshold; for more details about this functionality, see the relevant SPS datasheet. The RAA228236 detects this fault flag by sensing signals that exceed the current-sense ADC full scale range and immediately shuts the rail off.

SPS devices that conform to the industry common footprint, such as the ISL99380, do not use the IOUT pin for signaling overcurrent faults. All faults are signaled using their TOUT/FLT pins, and the RAA228236 provides a detector on each TEMP pin to support this method.

6.5 Thermal Protection and nVRHOT

The RAA228236 supports a comprehensive scheme for thermal alerting and protection. The RAA228236 supports over-temperature and under-temperature faults in addition to over-temperature warning. The IC die temperature is monitored to support telemetry and thermal shutdown. Shutdown occurs at approximately +130°C.

The nVRHOT pin is used at the system level to inform the powered device to reduce its power consumption. nVRHOT is an open-drain output; an external pull-up resistor is required. This signal is valid only after the controller is enabled. nVRHOT is pulled low when the sensed temperature for any rail reaches the PMBus OT_WARN_LIMIT (51h) threshold, providing the powered device with an advance warning of the thermal status of the IC.

Figure 16 shows the behavior of nVRHOT and shows an over-temperature fault shutdown.

Figure 16. nVRHOT and Over-Temperature Shutdown

6.6 nALERT

The nALERT pin is an open-drain output that is pulled low based on how the pin configured. The pin can be configured to support Catastrophic Failure Protection (CFP) or as an output current warning indicator (nIOUTALERT). When configured for CFP functionality, the pin activates if a catastrophic fault detection occurs. The function is typically used to immediately disable the input supply to protect the entire system. The CFP function can be configured to respond to output overvoltage, input overvoltage, and/or output overcurrent faults. When configured as nIOUTALERT, This pin is pulled low when the user-adjustable low pass filter output current exceeds the user-adjustable nIOUTALERT threshold

6.7 Black Box Recorder

Black Box is a powerful diagnostic tool that captures all telemetry and status information when any fault occurs. The RAA228236 continuously monitors all rail and phase information along with the time duration that the rail has been regulating, and the tool captures that data when a fault is registered. Next, the tool reports the first fault bit that occurred to cause the shutdown. This diagnostic data is stored in RAM, and Black Box can be configured to additionally write to NVM for retrieval when the system loses input power as a fault occurs. The RAM record is updated every time a fault occurs. Black Box can write to NVM up to 10 times and provides an option to limit NVM writing to once per power cycle to avoid filling up the available NVM space inadvertently.

7. Layout and Design Considerations

The following layout and design strategies help minimize noise coupling and the impact of board parasitic impedances on converter performance, and they optimize the heat dissipating capabilities of the Printed Circuit Board (PCB). Follow these practices during the layout and design process.

7.1 Pin Noise Sensitivity, Design, and Layout Consideration

Table 2 provides general guidance on best practices related to pin noise sensitivity. Use of good engineering judgment is required to implement designs based on criteria specific to the situation.

Table 2. Pin Design and/or Layout Consideration

Pin Name	Noise Sensitive	Description
VINSEN	Yes	Filter with 100nF capacitor when sensing VIN directly. Use 10nF when using a resistor divider.
RGNDn VSENn	Yes	Treat each of the remote voltage sense pairs as differential signals in the PCB layout. Route them side-by-side on the same layer. Do not route them in proximity to noisy signals like PWM or Phase. Place a 3.3nF capacitor across the signals directly at the pins on the top layer.
PGn	No	Open-drain. Avoid connecting pull-up resistor to a rail voltage higher than VCC. Tie it to ground when not used.
AVS_CLK, AVS_SDA, AVS_MDA	Yes	Route this high-speed bus carefully. Provide 20 mils of spacing within AVS_CLK,AVS_SDA, and AVS_MDA, and more than 30 mils to all other signals. Tie CLK and MDA to ground when not used.
PMSCL, PMSDA, nPMALERT	Yes	Up to 2MHz signals should pair up with nPMALERT and be routed carefully between devices and back to the host. Provide 20 mils of spacing within PMSDA, nPMALERT and PMSCL, and more than 30 mils to all other signals. See the SMBus design guidelines and place proper terminated (pull-up) resistance for impedance matching. Tie to ground when not used. Avoid connecting pull-up resistor to a rail voltage higher than VCC.
TEMPn	Yes	Place a filter capacitor no greater than 500pF between each TEMP pin and ground near the IC. Tie to ground if not used.
nVRHOT, nALERT	No	Open drain. Avoid connecting the pull-up resistor to a rail voltage higher than VCC.
VCC	Yes	Place a 1µF MLCC decoupling capacitor (X5R or better) directly at the pin.
VCCS	Yes	Place a 4.7µF MLCC decoupling capacitor (X5R or better) directly at the pin.
PWMn	No	Avoid routing near noise sensitive analog lines such as current sense or voltage sense. Leave floating if not used.
CSn	Yes	Avoid routing near noisy signals like PWM or Phase. Proper routing of current sense is perhaps the most critical of all the layout tasks. Tie to ground if not used.
GND	Yes	This EPAD is the ground for all IC signals as well as the heatsink. Use four or more vias to directly connect the EPAD to the ground plane. Never use only a single via or a 0Ω resistor connection to the power ground plane. Split ground planes are not advised.
General Comments		The layer next to the top or bottom layer should be a ground layer. The signal layers should be sandwiched between the ground layers if possible.

8. PMBus Command Summary

Code	Command Name	Description	Туре	Data Format	Default Value	Default Setting
00h	PAGE (00h)	Rail selector	R/W	Bit	00h	Page 0
01h	OPERATION (01h)	Enable/disable, V _{OUT} source	R/W	Bit	08h	Immediate off, Act on fault
02h	ON_OFF_CONFIG (02h)	On/off configuration settings	R/W	Bit	16h	ENABLE pin control, active high, immediate off
03h	CLEAR_FAULTS (03h)	Clears all fault bits in all registers and releases the nPMALERT pin	Write	N/A	N/A	N/A
04h	PHASE (04h)	Phase selector	R/W	Direct	00h	Phase 0
05h	PAGE_PLUS_WRITE (05h)	Allows page and command write in single transaction	Block Write	Bit	N/A	N/A
06h	PAGE_PLUS_READ (06h)	Allows page and command read in single transaction	Block Write/read /process call	Bit	N/A	N/A
10h	WRITE_PROTECT (10h)	Write protection to sets of commands	R/W	Bit	00h	No write protection
19h	CAPABILITY (19h)	Reports PMBus capability	Read	Bit	D4h	See detail
1Bh	SMBALERT_MASK (1Bh)	Mask status bits from SMBALERT signal	Block R/W	Bit	00h	No bits masked
20h	VOUT_MODE (20h)	Defines format for output voltage related commands	Read	Bit	40h	Direct format
21h	VOUT_COMMAND (21h)	Output voltage set by PMBus	R/W	Direct	0384h	900mV
22h	VOUT_TRIM (22h)	Applies trim voltage to V _{OUT} set-point	R/W	Direct	0000h	0mV
23h	VOUT_CAL_OFFSET (23h)	Applies offset voltage to V _{OUT} set-point	R/W	Direct	0000h	0mV
24h	VOUT_MAX (24h)	Absolute maximum voltage setting	R/W	Direct	0BEAh	3050mV
25h	VOUT_MARGIN_HIGH (25h)	Sets voltage target during margin high	R/W	Direct	03B1	945mV
26h	VOUT_MARGIN_LOW (26h)	Sets voltage target during margin low	R/W	Direct	0357	855mV
27h	VOUT_TRANSITION_RATE (27h)	Slew rate setting for V _{OUT} ramp	R/W	Direct	09C4h	25mV/µs
28h	VOUT_DROOP (28h)	Sets the load-line (V/I slope) resistance for the output	R/W	Direct	0000h	0μV/A

Code	Command Name	Description	Туре	Data Format	Default Value	Default Setting
2Bh	VOUT_MIN (2Bh)	Absolute minimum voltage setting	R/W	Direct	0000h	0mV
33h	FREQUENCY_SWITCH (33h)	Sets PWM switching frequency	R/W	Direct	0258h	600kHz
34h	POWER_MODE (34h)	Sets the power conversion mode	R/W	Bit	03h	Maximum power
35h	VIN_ON (35h)	Sets the V _{IN} startup threshold	R/W	Direct	02BCh	7000mV
36h	VIN_OFF (36h)	Sets the V _{IN} shutdown threshold	R/W	Direct	01F4h	5000mV
40h	VOUT_OV_FAULT_LIMIT (40h)	Sets the V _{OUT} OV fault limit while disabled	R/W	Direct	0C1Ch	3100mV
41h	VOUT_OV_FAULT_RESPONSE (41h)	Configures the V _{OUT} OV fault response	R/W	Bit	84h	Latch off
44h	VOUT_UV_FAULT_LIMIT (44h)	Sets the V _{OUT} UV fault limit	R/W	Direct	0000h	0mV
45h	VOUT_UV_FAULT_RESPONSE (45h)	Configures the V _{OUT} UV fault response	R/W	Bit	84h	Latch off
46h	IOUT_OC_FAULT_LIMIT (46h)	Sets the I _{OUT} OC fault limit	R/W	Direct	12Ch	30A
47h	IOUT_OC_FAULT_RESPONSE (47h)	Configures the I _{OUT} OC fault response	R/W	Bit	C4h	Latch off
4Fh	OT_FAULT_LIMIT (4Fh)	Sets the OT fault limit	R/W	Direct	007Dh	125°C
50h	OT_FAULT_RESPONSE (50h)	Configures the OT fault response	R/W	Bit	84h	Latch off
51h	OT_WARN_LIMIT (51h)	Sets the OT warning limit	R/W	Direct	006Eh	110°C
53h	UT_FAULT_LIMIT (53h)	Sets the UT fault limit	R/W	Direct	FFD8h	-40°C
54h	UT_FAULT_RESPONSE (54h)	Configures the UT fault response	R/W	Bit	84h	Latch off
55h	VIN_OV_FAULT_LIMIT (55h)	Sets the V _{IN} OV fault limit	R/W	Direct	0640h	16000mV
56h	VIN_OV_FAULT_RESPONSE (56h)	Configures the V _{IN} OV fault response	R/W	Bit	84h	Latch off
57h	VIN_OV_WARN_LIMIT (57h)	Sets the V _{IN} OV warning limit	R/W	Direct	2710h	100000mV
58h	VIN_UV_WARN_LIMIT (58h)	Sets the V _{IN} UV warning limit	R/W	Direct	0000h	0mV
59h	VIN_UV_FAULT_LIMIT (59h)	Sets the V _{IN} UV fault limit	R/W	Direct	0000h	0mV
5Ah	VIN_UV_FAULT_RESPONSE (5Ah)	Configures the V _{IN} UV fault response	R/W	Bit	84h	Latch off
5Bh	IIN_OC_FAULT_LIMIT (5Bh)	Sets the I _{IN} OC fault limit	R/W	Direct	1388h	50A

Code	Command Name	Description	Туре	Data Format	Default Value	Default Setting
5Ch	IIN_OC_FAULT_RESPONSE (5Ch)	Configures the I _{IN} OC fault response	R/W	Bit	04h	Ignore
5Dh	IIN_OC_WARN_LIMIT (5Dh)	Sets the I _{IN} OC warning limit	R/W	Direct	7FFFh	327.67A
60h	TON_DELAY (60h)	Sets turn-on delay time	R/W	Direct	0000h	0µs
61h	TON_RISE (61h)	Sets turn-on rise time	R/W	Direct	1F4h	500µs
64h	TOFF_DELAY (64h)	Sets turn-off delay time	R/W	Direct	0000h	0µs
65h	TOFF_FALL (65h)	Sets turn-off fall time	R/W	Direct	1F4h	500µs
78h	STATUS_BYTE (78h)	First byte of STATUS_WORD	Read	Bit	N/A	N/A
79h	STATUS_WORD (79h)	Summary of critical faults	Read	Bit	N/A	N/A
7Ah	STATUS_VOUT (7Ah)	Reports V _{OUT} warnings/faults	Read	Bit	N/A	N/A
7Bh	STATUS_IOUT (7Bh)	Reports I _{OUT} warnings/faults	Read	Bit	N/A	N/A
7Ch	STATUS_INPUT (7Ch)	Reports input warnings/faults	Read	Bit	N/A	N/A
7Dh	STATUS_TEMPERATURE (7Dh)	Reports temperature warnings/faults	Read	Bit	N/A	N/A
7Eh	STATUS_CML (7Eh)	Reports communication, memory, logic errors	Read	Bit	N/A	N/A
80h	STATUS_MFR_SPECIFIC (80h)	Reports other specific faults	Read	Bit	N/A	N/A
88h	READ_VIN (88h)	Reports input voltage measurement	Read	Direct	N/A	mV
89h	READ_IIN (89h)	Reports input current measurement	Read	Direct	N/A	А
8Bh	READ_VOUT (8Bh)	Reports output voltage measurement	Read	Direct	N/A	mV
8Ch	READ_IOUT (8Ch)	Reports output current measurement	Read	Direct	N/A	А
8Dh	READ_TEMPERATURE_1 (8Dh)	Reports power stage temperature measurement	Read	Direct	N/A	°C
8Eh	READ_TEMPERATURE_2 (8Eh)	Reports internal temperature measurement	Read	Direct	N/A	°C
96h	READ_POUT (96h)	Reports output power	Read	Direct	N/A	W
97h	READ_PIN (97h)	Reports input power	Read	Direct	N/A	W
98h	PMBUS_REVISION (98h)	Reports the PMBus revision used	Read	Bit	33h	P1 R1.3, P2 R1.3
99h	MFR_ID (99h)	Stores Inventory Information	Block R/W	Bit	00000000h	Empty

Page 27

Code	Command Name	Description	Type	Data Format	Default Value	Default Setting
9Ah	MFR_MODEL (9Ah)	Stores Inventory Information	Block R/W	Bit	00000000h	Empty
9Bh	MFR_REVISION (9Bh)	Stores Inventory Information	Block R/W	Bit	00000000h	Empty
9Dh	MFR_DATE (9Dh)	Stores Inventory Information	Block R/W	Bit	00000000h	Empty
ADh	IC_DEVICE_ID (ADh)	Reports device identification information	Block Read	Bit	49D2AE00	
AEh	IC_DEVICE_REV (AEh)	Reports device revision information	Block Read	Bit		Release revision
C5h	DMAFIX (C5h)	Fixed DMA transactions	R/W	Bit	00000000h	0
C6h	DMASEQ (C6h)	Sequential DMA transaction	R/W	Bit	00000000h	0
C7h	DMAADDR (C7h)	Sets the address for DMA transactions	R/W	Bit	0000h	0
C8h	READ_VMON_IINSEN (C8h)	Reports VMON pin telemetry	Read	Direct	N/A	N/A
CDh	PEAK_OC_LIMIT (CDh)	Sets peak per-phase OC limit	R/W	Direct	0258h	60A
CEh	PEAK_UC_LIMIT (CEh)	Sets peak per-phase UC limit	R/W	Direct	FDA8	-60A
D0h	VMON_ON (D0h)	Sets the VMON startup threshold	R/W	Direct	01C2h	4500mV
D1h	VMON_OFF (D1h)	Sets the VMON shutdown threshold	R/W	Direct	0190h	4000mV
DDh	COMPPROP (DDh)	Configures proportional gain	R/W	Bit	C9E7C7C4h	See detail
DEh	COMPINTEG (DEh)	Configures integral gain	R/W	Bit	006400A9h	See detail
DFh	COMPIDFF (DFh)	Configures differential gain	R/W	Bit	00000000h	See detail
E0h	COMPCFB (E0h)	Configures AC current feedback	R/W	Bit	0560h	See detail
E3h	HS_BUS_CURRENT_SCALE (E3h)	Sets the high speed bus current scaling	R/W	Direct	0000h	1.0
E4h	PHASE_CURRENT (E4h)	Reports per-phase current	Read	Direct	N/A	А
E9h	PEAK_OCUC_COUNT (E9h)	Sets the count limit before fault	R/W	Bit	0606h	6 cycles for OC & UC
EAh	IOUT_ALERT_THRESHOLD (EAh)	Sets nIOUTALERT threshold	R/W	Direct	C8h	20A
EBh	SUM_OC_FILT_COUNT (EBh)	Configures the sum OC filter	R/W	Bit	0696h	Filter = 10.6µs, Delay = 100µs
ECh	IOUT_ALERT_FILT_COUNT (ECh)	Sets the nIOUTALERT filter	R/W	Bit	0606h	Filter = 10.6µs

Code	Command Name	Description	Туре	Data Format	Default Value	Default Setting
F0h	LOOPCFG (F0h)	Defines loop operating configuration	R/W	Bit	10A061F2h	See detail
F2h	RESTORE_CFG (F2h)	Identifies configuration to be restored from NVM	R/W	Bit	00h	

9. PMBus Protocol

The PMBus Protocol includes the Send Byte, the Write Byte/Word, Read Byte/Word, Group Command, and Alert Response Address protocols.

PMBus Protocol Legend

S: Start Condition
A: Acknowledge ("0")
N: Not Acknowledge ("1")
W: Write ("0")
RS: Repeated Start Condition
R: Read ("1")
PEC: Packet Error Checking
P: Stop Condition

Acknowledge or DATA from Slave,

Controller

9.1 Send Byte Protocol

Example command: 03h Clear Faults This clears all of the bits in Status Byte for the selected rail.

Figure 17. Send Byte Protocol

9.2 Write Byte/Word Protocol

Example command: 21h VOUT_COMMAND

Figure 18. Write Byte/Word Protocol

9.3 Read Byte/Word Protocol

Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).

Note: The STOP (P) bit is NOT allowed before the repeated START condition when reading contents of a register.

Figure 19. Read Byte/Word Protocol

9.4 Group Command Protocol

Note: No more than one command can be sent to the same Address

Figure 20. Group Command Protocol

9.5 Alert Response Address

Figure 21. Alert Response Address (ARA, 0001_1001, 25h) for SMBus and PMBus

9.6 PMBus Use Guidelines

All commands can be read at any time.

9.7 PMBus Data Formats

9.7.1 **Direct**

The Direct data format is a 2-byte binary integer.

9.7.2 Linear 16 Unsigned (L16U)

The L16u data format uses a fixed exponent (hard-coded to N = -9h) and a 16-bit unsigned integer mantissa (Y) to represent the real world decimal value (X). The relation between the real world decimal value (X), N, and Y is: $X = Y \cdot 2^{-9}$.

9.7.3 Linear 16 Signed (L16S)

The L16S data format uses a fixed exponent (hard-coded to N = -9h) and a 16-bit signed integer mantissa (Y) to represent the real world decimal value (X). The relation between the real world decimal value (X), N, and Y is: $X = Y \cdot 2^{-9}$.

9.7.4 Linear 11 (L11)

The L11 data format uses 5-bit two's complement exponent (N) and 11-bit two's complement mantissa (Y) to represent the real world decimal value (X).

Figure 22. Linear 11 Data Format

The relation between the real world decimal value (X), N, and Y is: $X = Y \cdot 2^{N}$.

9.7.5 Bit Field (Bit)

A description of Bit Field is provided in the PMBus Protocol.

9.7.6 **Custom (Cus)**

Custom format

10. PMBus Command Detail

10.1 PAGE (00h)

Definition: Selects the communication path to Rail 0, Rail 1, both rails, or individual phases. All paged commands following this command are received and acted on by the selected destination path. Paged commands that are writable can be written globally, but can only be read on a specific page unless otherwise specified. Global commands remain global regardless of the value of this command. Individual phase access is available by setting this command to 80h and setting the individual phase value using the PHASE command.

Access: Global

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 00h

Command		PAGE (00h)										
Format		Bit Field										
Bit Position	7	7 6 5 4 3 2 1										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Function		See Following Table										
Default Value	0	0	0	0	0	0	0	0				

Bit Value	Setting
00h	Page 0 (Rail 0)
01h	Page 1 (Rail 1)
80h	Individual phase (set by the PHASE command)
FFh	Global (All Rails)

CONFIDENTIAL

10.2 **OPERATION** (01h)

Definition: Sets Enable state when configured for PMBus enable. Sets the source of the target V_{OUT} . The following table reflects the valid settings for the device.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 08h (Immediate off, Act on fault)

Command		OPERATION (01h)										
Format		Bit Field										
Bit Position	7	6	5	4	3	2	1	0				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Function		See Following Table										
Default Value	0	0	0	0	1	0	0	0				

Bit Number	Purpose	Bit Value	Meaning
7	Enable/Disable	0	Disable
1	Output	1 - 1 - 1	Enable
6	Disable Behavior	0	Immediate off (decay with PWM tri-state)
Ů	Disable Deliavior	1	Soft off (Use TOFF_DELAY and TOFF_FALL)
		00	VOUT_COMMAND
5:4	V _{OUT} Source	01	VOUT_MARGIN_LOW
5.4		10	VOUT_MARGIN_HIGH
		11	AVSBus target rail voltage
3:2	Margin Response	01	Ignore V _{OUT} OV, UV faults when margined.
3.2	wargiii ixesponse	10	Act on V _{OUT} OV, UV faults when margined.
1	AVSBus to PMBus	0	Slew to PMBus V _{OUT}
	transition Control	1	Copy AVSBus V _{OUT} to PMBus V _{OUT}
0	Not Supported	Х	Not supported

10.3 ON_OFF_CONFIG (02h)

Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 16h (ENABLE pin control, active high, soft off)

Command	ON_OFF_CONFIG (02h)							
Format	Bit Field							
Bit Position	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	See Following Table							
Default Value	0	0	0	1	0	1	1	0

Bit Number	Purpose	Bit Value	Meaning
7:5	Not Supported	000	Not supported
		0XX	Output enables any time power is present regardless of pin or OPERATION command state.
4:2	Sets the source of enable	101	Output enables from the enable pin only.
4.2		110	Output enables from the OPERATION command only.
		111	Output enables from the enable pin AND the OPERATION command. Both must be set to enable.
1	Polarity of ENABLE	0	Active low
,	pin	1	Active high
0	ENABLE pin action when commanding	0	Use the configured TOFF_DELAY and TOFF_FALL settings.
	the unit to turn off	1	Turn off the output immediately (decay with PWM tristate).

10.4 CLEAR_FAULTS (03h)

Definition: Clears all fault status bits in all registers and releases the nPMALERT pin (if asserted) simultaneously. If a fault condition still exists, the bit(s) reasserts immediately. This command does not restart a device if it is shut down, it only clears the faults.

Access: Paged

Data Length in Bytes: 0

Data Format: N/A

Type: Write only

10.5 PHASE (04h)

Definition: Sets the individual phase address for reading from PHASE_CURRENT (E4h). The PAGE command must also be set to access phase information.

Access: Global

Data Length in Bytes: 1

Data Format: Direct

Type: R/W

Default Value: 00h (phase 0) **Equation:** PHASE = (direct value)

Range: Phase 0 to 19

Command	PHASE (04h)							
Format	Direct							
Bit Position	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Unsigned Integer							
Default Value	0 0 0 0 0 0 0							

10.6 PAGE_PLUS_WRITE (05h)

Definition: Sets the page within a device, sends a command, and sends the data for the command in one packet.

Access: Global

Data Format: Bit Field

Type: Block Write

The PAGE_PLUS_WRITE command uses the WRITE BLOCK protocol.

Figure 23 shows an example of the PAGE_PLUS command sending a command that has two data bytes to be written and a PEC byte.

Figure 23. PAGE_PLUS_WRITE Command with a PEC Byte

10.7 PAGE_PLUS_READ (06h)

Definition: Sets the page within a device, sends a command, and reads the data returned by the command in one packet.

Access: Paged

Data Format: Bit Field

Type: Block Read

The PAGE_PLUS_READ command uses the BLOCK WRITE - BLOCK READ PROCESS CALL protocol.

Figure 24 shows an example of the PAGE_PLUS command sending a command that has two data bytes to be read and a PEC byte.

Figure 24. PAGE_PLUS_READ Command with a PEC Byte

10.8 WRITE_PROTECT (10h)

Definition: Sets the write protection of certain configuration commands.

Access: Global

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 00h (enable all writes)

Command	WRITE_PROTECT (10h)							
Format		Bit Field						
Bit Position	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	See Following Table							
Default Value	0	0	0	0	0	0	0	0

Bits 7:0 ^[1]	Protection			
1000 0000	Disable all writes except to WRITE_PROTECT command.			
0100 0000	Disable all writes except to WRITE_PROTECT, OPERATION, and PAGE.			
0010 0000	Disable all writes except to WRITE_PROTECT, OPERATION, PAGE, ON_OFF_CONFIG, and VOUT_COMMAND.			
0000 0010	Disable all writes except to WRITE_PROTECT, OPERATION, PAGE, ON_OFF_CONFIG, VOUT_COMMAND, and DMA.			
0000 0000	Enable all writes			

^{1.} Any settings other than the five shown result in an invalid data fault.

10.9 **CAPABILITY (19h)**

Definition: Reports PMBus capabilities of the device.

Access: Global

Data Length in Bytes: 1 Data Format: Bit Field

Type: Read Only

Default Value: D4h, PEC supported, bus speed 1MHz, SMBALERT supported, Linear/Direct numeric data,

AVSBus supported

Command				CAPABIL	.ITY (19h)										
Format				Bit F	Field										
Bit Position	7	7 6 5 4 3 2 1 0													
Access	R	R	R	R	R	R	R	R							
Function				See Follo	wing Table										
Default Value	1	1	0	1	0	1	0	0							

Bit Number	Purpose	Bit Value	Meaning
7	PEC Support	1	PEC supported
,	PEC Support	0	PEC not supported
		11	Not supported
6:5	Maximum Bus Speed	10	1MHz
0.5	Maximum bus Speed	01	400kHz
		00	100kHz
4	SMBALERT Support	1	SMBALERT pin and response protocol is supported.
· •	ONIBALLINI Gupport	0	SMBALERT pin and response protocol is not supported.
3	Numeric Format	1	Numeric data, IEEE half precision floating point format
3	Numeric i offiat	0	Numeric data, Linear/Direct
2	AVSBus Support	1	AVSBus supported
1:0	Not Supported	00	Not supported

10.10 SMBALERT_MASK (1Bh)

Definition: Prevents a warning or fault condition from asserting the SMBALERT# signal. Can be used on the following PMBus status commands: STATUS_VOUT, STATUS_IOUT, STATUS_INPUT, STATUS_TEMPERATURE, STATUS_CML, and STATUS_MFR_SPECIFIC.

Access: Paged

Data Format: Bit Field

Type: Block R/W

Default: 00h

Figure 25 and Figure 26 show the command format blocking a status bit or bits from causing the SMBALERT# signal to be asserted. The bits in the mask byte align with the bits in the corresponding status register. For example, if the STATUS_TEMPERATURE command code is sent with the mask byte 01000000b, an over-temperature warning condition would be blocked from asserting SMBALERT#.

Note: Figure 25 shows the command format used by the host to determine the SMBALERT_MASK setting for a given status register.

Figure 25. SMBALERT_MASK Command Packet Format

Figure 26. Retrieving the SMBALERT_MASK Setting for a Given Status Register

10.11 VOUT_MODE (20h)

Definition: Returns the supported V_{OUT} mode. Direct mode, 1mV per LSB.

Access: Global

Data Length in Bytes: 1

Data Format: Bit Field

Type: Read Only

Default Value: 40h

Command				VOUT_M	ODE (20h)									
Format				Bit F	Field									
Bit Position	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R	R	R	R						
Function		Mode				Exponent								
Default Value	0	1	0	0	0	0	0	0						

10.12 VOUT_COMMAND (21h)

 $\textbf{Definition:} \ \, \textbf{Sets the value of V}_{\textbf{OUT}} \ \, \textbf{when the OPERATION command is configured for PMBus nominal operation.} \\$

NFIDENTIAL

1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0384h (900mV)

Units: mV

Equation: V_{OUT} Command = (Direct value)

Range: 0mV to 3050mV

Command							VOU	г_сом	MAND	(21h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							U	Insigne	d Intege	er						
Default Value	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0

10.13 VOUT_TRIM (22h)

Definition: Applies a fixed trim voltage to the output voltage command value. This command typically calibrates a device in the application circuit. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h

Units: mV

Equation: V_{OUT} Trim = (Direct value)

Range: Any value that results in the V_{OUT} target being between 0V and VOUT_MAX

Command							V	OUT_TI	RIM (22	!h)						
Format								Dir	ect							
Bit Position	15															
Access	R/W															R/W
Function							Two's	Comple	ement I	nteger						
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.14 VOUT_CAL_OFFSET (23h)

Definition: Applies a fixed offset voltage to the output voltage command value. This command typically calibrates a device in the application circuit. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h

Units: mV

Equation: V_{OUT} Cal Offset = (Direct value)

Range: Any value that results in the V_{OUT} target being between 0V and VOUT_MAX

Command							VOUT	CAL_C	OFFSE	T (23h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							Two's	Comple	ement I	nteger						
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.15 VOUT_MAX (24h)

Definition: Sets the absolute maximum V_{OUT} regulation value regardless of any other commands or

combinations.1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0BEAh (3050mV)

Units: mV

Equation: V_{OUT} Max = (Direct value)

Range: 0mV to 3050mV

Command							V	OUT_M	AX (24	h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W															R/W
Function							U	Insigne	d Intege	er						
Default Value	0	0	0	0	1	0	1	1	1	1	1	0	1	0	1	0

10.16 VOUT_MARGIN_HIGH (25h)

Definition: Sets the value of V_{OUT} when the OPERATION command is configured for margin high. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 03B1h (945mV)

Units: mV

Equation: V_{OUT} Margin High = (Direct value)

Range: 0mV to 3050mV

Command						,	VOUT_	MARG	IN_HIG	H (25h))					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							U	Insigne	d Intege	er						
Default Value	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	1

10.17 VOUT_MARGIN_LOW (26h)

Definition: Sets the value of V_{OUT} when the OPERATION command is configured for margin low. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0357h (855mV)

Units: mV

Equation: V_{OUT} Margin Low = (Direct value)

Range: 0mV to 3050mV

Command							VOUT_	MARG	IN_LO\	N (26h))					
Format								Dir	ect							
Bit Position	15															0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Function							U	nsigne	d Intege	er						
Default Value	0	0	0	0	0	0	1	1	0	1	0	1	0	1	1	1

10.18 VOUT_TRANSITION_RATE (27h)

Definition: Defines the output voltage rate of change during regulation. 0.01mV/µs per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 09C4h (25mV/µs)

Units: mV/µs

Equation: V_{OUT} Transition Rate = (Direct value) / 100

Range: 10µV/µs to 100mV/µs

Command						VC	UT_TF	RANSIT	ION_R	ATE (2	7h)					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							U	nsigne	d Intege	er						
Default Value	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0

10.19 VOUT_DROOP (28h)

 $\textbf{Definition:} \ \ \text{Sets the rate at which output voltage changes relative to output current during regulation.} \ \ 10\mu\text{V/A per}$

LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (0µV/A)

Units: µV/A

Equation: V_{OUT} Droop = (Direct value) x 10

Range: $0\mu V/A$ to $16000\mu V/A$

Command							VO	UT_DR	OOP (2	.8h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W															
Function							U	Insigne	d Intege	er						
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.20 VOUT_MIN (2Bh)

Definition: Sets the absolute minimum voltage that is delivered to the output during regulation. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h

Units: mV

Equation: V_{OUT} Min = (Direct value)

Range: 0mV to 3050mV

Command							V	OUT_N	IIN (2B	h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W R/W <td< td=""></td<>														
Function							U	nsigne	d Intege	er						
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.21 FREQUENCY_SWITCH (33h)

Definition: Sets the PWM switching frequency during regulation. 1kHz per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0258h (600kHz)

Units: kHz

Equation: Frequency Switch = (Direct value)

Range: 200kHz to 2MHz

Command						i	FREQU	ENCY_	SWITC	H (33h)					
Format		Direct														
Bit Position	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Unsigned Integer														
Default Value	0	0 0 0 0 0 0 1 0 0 1 0 0														

10.22 POWER_MODE (34h)

Definition: Sets the power conversion mode.

- Maximum Efficiency Mode (0):
 - · Voltage down transitions happen immediately with decay (PWM tri-state).
 - · Phase dropping is enabled irrespective of the APD setting in the LOOPCFG command.
 - · Diode emulation can be enabled using LOOPCFG[6].
- Maximum Power Mode (3) defaults:
 - Voltage down transitions happen as programmed in the TOFF_DELAY and TOFF_FALL commands.
 - Phase automatic add/drop is enabled using LOOPCFG[0].
 - · Diode emulation can be enabled using LOOPCFG[28].
- MFR Defined (4) defaults:
 - · Voltage down transitions happen immediately with decay (PWM tri-state).
 - Phase dropping is enabled irrespective of the APD setting in the LOOPCFG command.
 - Diode emulation can be enabled using LOOPCFG[6] and LOOPCFG[28].

Access: Paged

Data Length in Bytes: 1 Data Format: Bit Field

Type: R/W

Default Value: 03h, Maximum Power

Command				POWER_N	IODE (34h)								
Format	U			Bit F	ield		1						
Bit Position	7	7 6 5 4 3 2 1 0											
Access	R/W	R/W	R/W	R/W R/W R/W R/W R/W									
Function		See Following Table											
Default Value	0 0 0 0 0 1												

Bit Value	Setting
04h	MFR defined
03h	Maximum power
00h	Maximum efficiency

RENESAS

10.23 VIN_ON (35h)

Definition: Sets the input voltage rising threshold at which the output can be enabled. 10mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 02BCh (7000mV)

Units: mV

Equation: V_{IN} On = (Direct value) x 10

Range: -327680mV to 327670mV

Command								VIN_O	N (35h)							
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W											R/W			
Function		Two's Complement Integer														
Default Value	0	0 0 0 0 0 1 0 1 0 1 1 1 1 0 0														

10.24 VIN_OFF (36h)

Definition: Sets the input voltage falling threshold at which the output disables. 10mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 01F4 (5000mV)

Units: mV

Equation: V_{IN} Off = (Direct value) x 10

Range: -327680mV to 327670mV

Command							'	/IN_OF	F (36h)						
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W														
Function		Two's Complement Integer														
Default Value	0	0 0 0 0 0 0 1 1 1 1 1 0 1 0 0														

10.25 VOUT_OV_FAULT_LIMIT (40h)

Definition: Sets the disabled rail overvoltage threshold. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0C1Ch (3100mV)

Units: mV

Equation: V_{OUT} OV Fault Limit = (Direct value)

Range: 0mV to 3050mV

Command						V	OUT_C	V_FAL	ILT_LIN	/IIT (40	h)					
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W														
Function		Unsigned Integer														
Default Value	0	0 0 0 0 1 1 0 0 0 0 1 1 1 0 0														

10.26 VOUT_OV_FAULT_RESPONSE (41h)

Definition: Configures the output overvoltage fault response. For a fault to be considered cleared, the output must drop by 100mV.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command			VOUT	_OV_FAULT	_RESPONSE	(41h)									
Format				Bit F	Field										
Bit Position	7	7 6 5 4 3 2 1 0													
Access	R/W	R/W R/W R/W R/W R/W R/W R/W													
Function		See Following Table													
Default Value	1	1 0 0 0 0 1 0 0													

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01	Not supported
7:6	• Pulls PMALRT low	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the rail is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	0ms delay (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
		111	Delay 175ms

10.27 VOUT_UV_FAULT_LIMIT (44h)

Definition: Sets the output undervoltage fault threshold. 1mV per LSB. This fault is masked during ramp or when

disabled.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0V

Units: mV

Equation: V_{OUT} UV Fault Limit = (Direct value)

Range: 0V to 3.05V

Command						V	OUT_U	V_FAU	ILT_LIN	/IIT (44	h)					
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Unsigned Integer														
Default Value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														

10.28 VOUT_UV_FAULT_RESPONSE (45h)

Definition: Configures the output undervoltage fault response. This fault is masked during ramp or when

disabled.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command			VOUT	T_UV_FAULT	_RESPONSE	(45h)									
Format				Bit F	Field										
Bit Position	7	7 6 5 4 3 2 1 0													
Access	R/W	R/W R/W R/W R/W R/W R/W R/W													
Function	See Following Table														
Default Value	1 0 0 0 1 0 0														

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01	Not supported
7:6	 Pulls PMALRT low 	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the rail is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
		111	Delay 175ms

10.29 IOUT_OC_FAULT_LIMIT (46h)

Definition: Sets the fast sum output overcurrent fault threshold. 0.1A per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 12Ch (30A)

Units: A

Equation: I_{OUT} OC Fault Limit = (Direct value) / 10

Range: 0A to 3276.7A

Command						IC	O_TUC	C_FAU	LT_LIN	IIT (461	1)					
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W														
Function		Unsigned Integer														
Default Value	0	0 0 0 0 0 0 1 0 0 1 0 0														

10.30 IOUT_OC_FAULT_RESPONSE (47h)

Definition: Configures the output overcurrent fault response for all I_{OUT} OC detection methods. This response setting is also applied to output undercurrent faults.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: C4h (latch off)

Command		IOUT_OC_FAULT_RESPONSE (47h)							
Format		Bit Field							
Bit Position	7	6	5	4	3	2	1	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function		See Following Table							
Default Value	1	1 1 0 0 1 0 0							

Bit	Field Name	Value	Description				
	ResponseBehavior	00	Continue without interruption.				
	During a fault, the device:	01-10	Not supported				
7:6	Pulls PMALRT low Sets the related fault bit in the status registers.		Disable and retry as set in Bits [5:3]				
		000	No retry. The output remains disabled until the rail is restarted.				
		001-110	Not supported				
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].				
		000	Delay 0ms (not recommended)				
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB				
	ŕ	111	Delay 175ms				

10.31 OT_FAULT_LIMIT (4Fh)

Definition: Sets the power stage over-temperature fault limit. 1°C per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 007Dh (125°C)

Units: °C

Equation: OT Fault Limit = (Direct value)

Range: 0°C to +150°C

Command							OT_F	AULT_	LIMIT	(4Fh)						
Format								Dir	ect							
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Unsigned Integer														
Default Value	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1

10.32 OT_FAULT_RESPONSE (50h)

Definition: Configures the power stage over-temperature fault response. For a fault to be considered cleared, the temperature must drop 5°C below the OT fault threshold value.

Access: Paged

Data Length in Bytes: 1 Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command		OT_FAULT_RESPONSE (50h)							
Format		Bit Field							
Bit Position	7	6	5	4	3	2	1	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function		See Following Table							
Default Value	1	1 0 0 0 0 1 0 0							

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01	Not supported
7:6	 Pulls PMALRT low 	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the rail is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
		111	Delay 175ms

10.33 OT_WARN_LIMIT (51h)

Definition: Sets the power stage over-temperature warning limit. 1°C per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 006Eh (110°C)

Units: °C

Equation: OT Warn Limit = (Direct value)

Range: 0°C to 150°C

Command							OT_\	WARN_	LIMIT	(51h)						
Format								Dir	ect							
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Function							Two's	Comple	ement I	nteger						
Default Value	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0

10.34 UT_FAULT_LIMIT (53h)

Definition: Sets the power stage under-temperature fault limit. 1°C per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: FFD8h (-40°C)

Units: °C

Equation: UT Fault Limit = (Direct value)

Range: -50°C to 150°C

Command							UT_F	AULT_	LIMIT	(53h)						
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	0

10.35 UT_FAULT_RESPONSE (54h)

Definition: Configures the power stage under-temperature fault response. For the fault to be considered cleared, the temperature must rise 5°C above the UT fault threshold value.

Access: Paged

Data Length in Bytes: 1 Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command		UT_FAULT_RESPONSE (54h)							
Format		Bit Field							
Bit Position	7	6	5	4	3	2	1	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function		See Following Table							
Default Value	1	1 0 0 0 0 1 0 0							

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01	Not supported
7:6	 Pulls PMALRT low 	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the device is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously without limitation until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
	j	111	Delay 175ms

10.36 VIN_OV_FAULT_LIMIT (55h)

 $\textbf{Definition:} \ \, \textbf{Sets the V}_{\text{IN}} \ \, \textbf{overvoltage fault threshold.} \ \, \textbf{10mV per LSB}.$

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0640h (16000mV)

Units: mV

Equation: V_{IN} OV Fault Limit = (Direct value) x 10

Range: -327680mV to 327670mV

Command						,	VIN_O\	/_FAUL	T_LIM	IT (55h)					
Format								Dir	ect							
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	0	0 0 0 0 0 1 1 0 0 1 0 0 0														

10.37 VIN_OV_FAULT_RESPONSE (56h)

Definition: Configures the input overvoltage fault response. For a fault to be considered cleared, the input voltage must drop by 1/16th of the OV fault threshold value.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command		VIN_OV_FAULT_RESPONSE (56h)								
Format		Bit Field								
Bit Position	7	6	5	4	3	2	1	0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function				See Follo	wing Table					
Default Value	1	1 0 0 0 0 1 0 0								

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption
	During a fault, the device:	01	Not supported
7:6	 Pulls PMALRT low 	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the device is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously without limitation until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
	,	111	Delay 175ms

10.38 VIN_OV_WARN_LIMIT (57h)

Definition: Sets the V_{IN} undervoltage fault threshold. 10mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 2710h (100000mV)

Units: mV

Equation: V_{IN} OV Warn Limit = (Direct value) x 10

Range: 0mV to 327670mV

Command						,	VIN_O\	/_WAR	N_LIMI	IT (57h)					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	0	0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0														

10.39 VIN_UV_WARN_LIMIT (58h)

Definition: Sets the V_{IN} undervoltage warning threshold. 10mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (0mV)

Units: mV

Equation: V_{IN} UV Warn Limit = (Direct value) x 10

Range: 0mV to 327670mV

Command							VIN_U\	/_WAR	N_LIM	IT (58h))				
Format								Dir	ect						
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/													
Function		Two's Complement Integer													
Default Value	0	Two's Complement Integer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													

10.40 VIN_UV_FAULT_LIMIT (59h)

 $\textbf{Definition:} \ \, \textbf{Sets the V}_{\textbf{IN}} \ \, \textbf{undervoltage fault threshold.} \ \, \textbf{10mV per LSB.} \ \, \textbf{If using VIN_ON and VIN_OFF commands,} \\$

set this command to 0V.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (0mV)

Units: mV

Equation: V_{IN} UV Fault Limit = (Direct value) x 10

Range: -327680mV to 327670mV

Command						,	VIN_U\	/_FAUL	T_LIMI	IT (59h))					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.41 VIN_UV_FAULT_RESPONSE (5Ah)

Definition: Configures the input undervoltage fault response. For a fault to be considered cleared, the input voltage must rise by 1/16th of the UV fault threshold value.

Access: Paged

Data Length in Bytes: 1 Data Format: Bit Field

Type: R/W

Default Value: 84h (latch off)

Command			VIN	_UV_FAULT_I	RESPONSE (5Ah)								
Format				Bit F	Field									
Bit Position	7	7 6 5 4 3 2 1 0												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Function				See Follow	wing Table									
Default Value	1	0	0	0	0	1	0	0						

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01	Not supported
7:6	 Pulls PMALRT low 	10	Disable and retry according to the setting in Bits [5:3].
	Sets the related fault bit in the status registers.	11	Not supported
		000	No retry. The output remains disabled until the device is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
	,	111	Delay 175ms

10.42 IIN_OC_FAULT_LIMIT (5Bh)

Definition: Sets the input overcurrent fault threshold for the synthesized input current reading at READ_IIN.

10mA per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 1388h (50A)

Units: A

Equation: I_{IN} OC Fault Limit = (Direct value) / 100

Range: -327.68A to 327.67A

Command							IIN_OC	_FAUL	T_LIMI	T (5Bh))					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/														
Function		Two's Complement Integer														
Default Value	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0

10.43 IIN_OC_FAULT_RESPONSE (5Ch)

Definition: Configures the input overcurrent fault response for the synthesized input current reading at

READ_IIN.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 04h (ignore)

Command			IIN_	OC_FAULT_F	RESPONSE (5Ch)							
Format				Bit I	Field								
Bit Position	7	7 6 5 4 3 2 1 0											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Function				See Follo	wing Table								
Default Value	0	0	0	0	0	1	0	0					

Bit	Field Name	Value	Description
	Response Behavior	00	Continue without interruption.
	During a fault, the device:	01-10	Not supported
7:6	Pulls PMALRT low Sets the related fault bit in the status registers.		Disable and retry as set in Bits [5:3].
		000	No retry. The output remains disabled until the device is restarted.
		001-110	Not supported
5:3	Retry Setting	111	Attempts to restart continuously, without limitation, until it is commanded OFF (by the CONTROL pin or OPERATION command), bias power is removed, or another fault condition causes the unit to shut down. The time between retries is set by Bits [2:0].
		000	Delay 0ms (not recommended)
2:0	Delay Time before Retry	001-110	Delay 25ms per LSB
	,	111	Delay 175ms

10.44 IIN_OC_WARN_LIMIT (5Dh)

Definition: Sets the input overcurrent warn threshold. 10mA per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 7FFFh (327.67A)

Units: A

Equation: I_{IN} OC Warn Limit = (Direct value) / 100

Command							IIN_OC	_WAR	N_LIMI	T (5Dh))					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	0	Two's Complement Integer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														

10.45 TON_DELAY (60h)

Definition: Sets the delay time from when the device is enabled to the start of V_{OUT} rise. 10µs per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (0µs)

Units: µs

Equation: t_{ON} Delay = (Direct value) x 10

Range: 0µs to 655534µs

Command							TC	N_DEI	-AY (60	h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Unsigned Integer														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.46 TON_RISE (61h)

Definition: Sets the rise time of V_{OUT} during enable. 1µs per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 1F4h (500µs)

Units: µs

Equation: t_{ON} Rise = (Direct value)

Range: 0µs to 10000µs

Command							Т	ON_RI	SE (611	1)					
Format								Dir	ect						
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
Access	R/W														
Function		Unsigned Integer													
Default Value	0	Unsigned Integer 0 0 0 0 1 1 1 1 0 1 0 0													

10.47 TOFF_DELAY (64h)

Definition: Sets the delay time of V_{OUT} during disable when configured for soft off. 10µs per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (0µs)

Units: µs

Equation: t_{OFF} Delay = (Direct value) x 10

Range: 0µs to 655534µs

Command							то	FF_DE	LAY (6	4h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function		Unsigned Integer														
Default Value	0	0														

10.48 TOFF_FALL (65h)

Definition: Sets the fall time of V_{OUT} during disable when configured for soft off. 1µs per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: Default Value: 1F4h (500µs)

Units: µs

Equation: t_{OFF} Fall = (Direct value)

Range: 0µs to 10000µs

Command		TOFF_FALL (65h)														
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Unsigned Integer														
Default Value	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0

10.49 STATUS_BYTE (78h)

Definition: Returns a summary of the device status. Based on the information in this byte, the host can get more information by reading the appropriate status registers. Depending on the setting of the PAGE command, this command returns information about individual rails or a global summary of all rail statuses.

Access: Paged and Global

Data Length in Bytes: 2

Data Format: Bit Field

Type: Read Only

Command		STATUS_BYTE (78h)								
Format		Bit Field								
Bit Position	7	7 6 5 4 3 2 1 0								
Access	R	R R R R R R								
Function		See Following Table								

Bit Number	Status Bit Name	Meaning
7	BUSY	A fault was declared because the device was busy and unable to respond.
6	OFF	This bit is asserted if the unit is not providing power to the output, regardless of the reason, including simply not being enabled.
5	VOUT_OV_FAULT	An output overvoltage fault occurred.
4	IOUT_OC_FAULT	An output overcurrent fault occurred.
3	VIN_UV_FAULT	An input undervoltage fault occurred.
2	TEMPERATURE	A temperature fault or warning occurred.
1	CML	A communications, memory, or logic fault occurred.
0	None of the Above	A fault other than those listed above occurred.

10.50 STATUS_WORD (79h)

Definition: Returns a summary of the device status. Based on the information in these bytes, the host can get more information by reading the appropriate status registers. Depending on the setting of the PAGE command, this command returns information about individual rails or a global summary of all rail statuses. The low byte of the STATUS_WORD is the same as the STATUS_BYTE (78h) command.

Access: Paged and Global

Data Length in Bytes: 2

Data Format: Bit Field

Type: Read Only

Command		STATUS_WORD (79h)														
Format		Bit Field														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Sec	e Follov	wing Ta	ble						

Bit Number	Status Bit Name	Meaning
15	V _{OUT}	An output voltage fault or warning occurred.
14	I _{OUT}	An output current fault occurred.
13	INPUT	An input voltage fault or warning occurred.
12	MFR_SPECIFIC	A manufacturer specific fault or warning occurred.
11	POWER_GOOD#	The POWER_GOOD signal is negated ^[1] .
10:9	Not Supported	Not supported
8	Unknown	A fault other than those described in Bits[15:9] occurred.
7	Busy	Device busy and unable to respond.
6	OFF	This bit is asserted if the unit is not providing power to the output, regardless of the reason, including simply not being enabled.
5	VOUT_OV_FAULT	An output overvoltage fault occurred.
4	IOUT_OC_FAULT	An output overcurrent fault occurred.
3	VIN_UV_FAULT	An input undervoltage fault occurred.
2	TEMPERATURE	A temperature fault or warning occurred.
1	CML	A communications, memory, or logic fault occurred.
0	None of the Above	A status change other than those listed above occurred.

^{1.} If the POWER_GOOD# Bit is set, this indicates that the POWER_GOOD signal is signaling that the output power is not good.

10.51 STATUS_VOUT (7Ah)

Definition: Returns a summary of output voltage status.

Access: Paged

Type: Read Only

Data Length in Bytes: 1

Data Format: Bit Field

Command		STATUS_VOUT (7Ah)								
Format		Bit Field								
Bit Position	7	7 6 5 4 3 2 1 0								
Access	R	R R R R R R								
Function		See Following Table								

Bit Number	Status Bit Name	Meaning
7	VOUT_OV_FAULT	Indicates an output overvoltage fault occurred.
6:5	Not Supported	Not supported
4	VOUT_UV_FAULT	Indicates an output undervoltage fault occurred.
3	VOUT_MAX Warning	Indicates an output voltage maximum warning occurred.
2:0	Not Supported	Not supported

10.52 STATUS_IOUT (7Bh)

Definition: Returns a summary of output current status.

Access: Paged

Type: Read Only

Data Length in Bytes: 1

Data Format: Bit Field

Command		STATUS_IOUT (7Bh)									
Format		Bit Field									
Bit Position	7	7 6 5 4 3 2 1 0									
Access	R	R	R	R	R	R	R	R			
Function				See Follo	wing Table		•				

Bit Number	Status Bit Name	Meaning
7	IOUT_OC_FAULT	An output overcurrent fault occurred.
6	Not Supported	Not supported
5	Not supported	Not supported
4	IOUT_UC_FAULT	An output undercurrent fault occurred.
3	Current Share Fault	A current share fault occurred.
2:0	Not Supported	Not supported

10.53 STATUS_INPUT (7Ch)

Definition: Returns a summary of input status.

Access: Paged

Data Length in Bytes: 1
Data Format: Bit Field
Type: Read Only

Command		STATUS_INPUT (7Ch)								
Format		Bit Field								
Bit Position	7	7 6 5 4 3 2 1 0								
Access	R	R R R R R R								
Function				See Follo	wing Table					

Bit Number	Status Bit Name	Meaning
7	VIN_OV_FAULT	An input overvoltage fault occurred.
6	VIN_OV_WARN	An input overvoltage warning occurred.
5	VIN_UV_WARN	An input undervoltage warning occurred.
4	VIN_UV_FAULT	An input undervoltage fault occurred.
3	VIN_ON/OFF	Disabled due to insufficient input voltage. This could be VIN or VMON.
2	IIN_OC_FAULT	An input overcurrent fault occurred.
1	IIN_OC_WARN	An input overcurrent warning occurred.
0	Not Supported	Not supported

10.54 STATUS_TEMPERATURE (7Dh)

Definition: Returns a summary of temperature status.

Access: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: Read Only

Command		STATUS_TEMPERATURE (7Dh)								
Format		Bit Field								
Bit Position	7	7 6 5 4 3 2 1 0								
Access	R	R	R	R	R	R	R	R		
Function		See Following Table								

Bit Number	Status Bit Name	Meaning
7	OT_FAULT	An over-temperature fault occurred.
6	OT_WARN	An over-temperature warning occurred.
5	Not Supported	Not supported
4	UT_FAULT	An under-temperature fault occurred.
3:0	Not Supported	Not supported

10.55 **STATUS_CML** (7Eh)

Definition: Returns a summary of any communications, logic, and/or memory errors.

Access: Global

Type: Read Only

Data Length in Bytes: 1

Data Format: Bit Field

Command				STATUS_	CML (7Eh)									
Format				Bit F	Field									
Bit Position	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R	R	R	R						
Function				See Follo	wing Table	•	•							

Bit Number	Status Bit Name	Meaning
7	IUCR	Invalid or unsupported PMBus command was received. This bit sets during device discovery when using PowerNavigator.
6	IUDR	The PMBus command was sent with invalid or unsupported data.
5	PECF	A packet error check failure was detected in the PMBus command.
4	MFD	Memory fault detected. This bit sets if the selected NVM configuration location is empty or invalid.
3	PFD	Processor fault detected.
2	Not Supported	Not supported
1	OCF	A communication fault other than the ones listed in this table occurred.
0	OMLF	A memory or logical fault not listed previously was detected.

Page 73

10.56 STATUS_MFR_SPECIFIC (80h)

Definition: Returns a summary of the manufacturer specific status.

Access: Global

Data Length in Bytes: 1
Data Format: Bit Field
Type: Read Only

Command			ST	ATUS_MFR_	SPECIFIC (8	Oh)								
Format				Bit F	Field									
Bit Position	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R	R	R	R						
Function				See Follo	wing Table	•	•							

Bit	Status Bit Name	Meaning
7	ADCUNLOCK	ADC clock unlock detected.
6	Not Supported	Not supported
5	CFP Fault	A CFP fault occurred.
4	Internal Temperature Fault	The controller internal temperature exceeded 130 °C.
3	BBEVENT	A Black Box event occurred.
2	LMSEvent	A Last Man Standing event occurred.
1	SPSFault	An SPS overcurrent and/or over-temperature event occurred.
0	Not Supported	Not supported

10.57 READ_VIN (88h)

Definition: Returns the input voltage reading. Scaled as 10mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct
Type: Read Only

Units: mV

Equation: Read V_{IN} = (Direct value) x 10

Command							R	EAD_\	/IN (88	h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	Integer						

10.58 READ_IIN (89h)

Definition: Returns the synthesized input current reading. 10mA per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: Read Only

Units: A

Equation: Read I_{IN} = (Direct value) / 100

Command							R	EAD_I	IN (89I	1)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	nteger						•

10.59 READ_VOUT (8Bh)

Definition: Returns the output voltage reading. 1mV per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: Read Only

Units: mV

Equation: Read V_{OUT} = (Direct value)

Command							RE	AD_V	B) TUC	Bh)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							U	nsigne	d Integ	er						

10.60 READ_IOUT (8Ch)

Definition: Returns the output current reading. 0.1A per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: Read Only

Units: A

Equation: Read I_{OUT} = (Direct value) / 10

Command							RE	AD_IO	OUT (80	Ch)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	Integer			•			

10.61 READ_TEMPERATURE_1 (8Dh)

Definition: Returns the temperature reading of the hottest power stage per configured rail. 1°C per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: Read Only

Units: °C

Equation: Temperature 1 = (Direct value)

Command						RE	AD_TE	MPER	ATUR	E_1 (8	Dh)					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	Integer						

10.62 READ_TEMPERATURE_2 (8Eh)

Definition: Returns the internal controller temperature reading. 1°C per LSB.

Access: Global

Data Length in Bytes: 2

Data Format: Direct **Type:** Read Only

Units: °C

Equation: Read Temperature 2 = (Direct value)

Command						RE	AD_TE	MPER	RATUR	E_2 (8	Eh)					
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	Integer						

10.63 READ_POUT (96h)

Definition: Returns the output power. 1W per LSB.

Access: Paged

Data Length in Bytes: 2

Type: Read Only

Units: W

Equation: Read P_{OUT} = (Direct value)

Command							RE	AD_P	OUT (9	6h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	nteger						

10.64 READ_PIN (97h)

Definition: Returns the input power. 1W per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct **Type:** Read Only

Units: W

Equation: READ_PIN = (Direct value)

Command							R	EAD_F	PIN (97	h)						
Format								Dir	ect							
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function							Two's	Comple	ement	Integer						

10.65 PMBUS_REVISION (98h)

Definition: Returns the revision of the PMBus specification to which the device is compliant.

Access: Global

Data Length in Bytes: 1

Data Format: Bit Field

Type: Read Only

Default Value: 33h (Part 1 Revision 1.3, Part 2 Revision 1.3)

Command				PMBUS_RE	VISION (98h))						
Format				Bit F	ield							
Bit Position	7	7 6 5 4 3 2 1 0										
Access	R	R	R	R	R	R	R	R				
Function	See Following Table											
Default Value	0	0	1	1	0	0	1	1				

Bits 7:4	Part 1 Revision	Bits 3:0	Part 2 Revision
0000	1.0	0000	1.0
0001	1.1	0001	1.1
0010	1.2	0010	1.2
0011	1.3	0011	1.3

10.66 MFR_ID (99h)

Definition: Stores inventory information during manufacturing of end products. 4 bytes of space with no defined

format.

Access: Global

Data Length in Bytes: 4

Data Format: Bit Field

Type: Block R/W

Default Value: 00000000h (empty)

10.67 MFR_MODEL (9Ah)

Definition: Stores inventory information during manufacturing of end products. 4 bytes of space with no defined

format.

Access: Global

Data Length in Bytes: 4

Data Format: Bit Field

Type: Block R/W

Default Value: 00000000h (empty)

10.68 MFR_REVISION (9Bh)

Definition: Stores inventory information during manufacturing of end products. 4 bytes of space with no defined

format.

Access: Global

Data Length in Bytes: 4

Data Format: Bit Field

Type: Block R/W

Default Value: 00000000h (empty)

10.69 MFR DATE (9Dh)

Definition: Stores inventory information during manufacturing of end products. 4 bytes of space with no defined

format.

Access: Global

Data Length in Bytes: 4

Data Format: Bit Field

Type: Block R/W

Default Value: 00000000h (empty)

10.70 IC_DEVICE_ID (ADh)

Definition: Reports device identification information.

Access: Global

Data Length in Bytes: 4 Data Format: Bit Field Type: Block Read

Default Value: 49D2AE00

Command		IC_DEVIC	E_ID (ADh)	
Format		Bit F	Field	
Byte Position	3	0		
Function	MFR Code	ID High Byte	ID Low Byte	Reserved
Default Value	49h	D2h	AEh	00h

10.71 IC_DEVICE_REV (AEh)

Definition: Reports device revision information.

Access: Global

Data Length in Bytes: 4 Data Format: Bit Field

Default Value: Based on the revision released

Type: Block Read

Command		IC_DEVICE_REV (AEh)	
Format		Bit Field	
Bit Position	31:24	23:8	7:0
Function	Hardware Revision	Reserved	Firmware Revision

10.72 DMAFIX (C5h)

Definition: Location for DMA access when performing a fixed address memory access. There is no physical storage for this register.

Access: Global

Data Length in Bytes: 4 Data Format: Bit Field

Type: R/W

Default Value: 00000000h

Units: N/A

10.73 DMASEQ (C6h)

Definition: Location for DMA access when performing a auto-increment address memory access. A series of reads or writes accesses sequential memory locations, with the value of DMAADDR incremented with each access. The reads or writes can be singular 32-bit transfers or unlimited bursts. There is no physical storage for this register.

Access: Global

Data Length in Bytes: 4

Data Format: Bit Field

Type: R/W

Default Value: 00000000h

Units: N/A

10.74 DMAADDR (C7h)

Definition: Specifies the target address of a DMA read or write to system memory. This command is used for indirect access to any system memory.

Access: Global

Data Length in Bytes: 2

Data Format: Bit Field

Type: R/W

Default Value: 0000h

Units: N/A

Command		DMAADDR (C7h)												
Format		Bit Field												
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
Access	R/W	R/W												
Function		See Following Table												
Default Value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												

CONFIDENTIAL

Bit	Field Name	Meaning
15:13	REGION	000 - RAM
12:0	DMAADDR	The 13-bit target address

10.75 READ_VMON_IINSEN (C8h)

Definition: Returns the input voltage or current reading from the VMON pin depending on configuration. 10mV

per LSB for VMON.

Access: Global

Data Length in Bytes: 2

Data Format: Direct Type: Read Only

Units: mV or mA depending upon configuration

Equation: READ_VMON_IINSEN = (Direct value) × 10

Command						F	READ_	VMON.	_IINSE	N (C8h	1)					
Format		Direct														
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function		Two's Complement Integer														

10.76 PEAK_OC_LIMIT (CDh)

Definition: Sets the peak overcurrent limit thresholds for each phase within a rail. 0.1A per LSB.

Access: Paged

Data Length in Bytes: 2

FIDENTIAL Data Format: Direct

Type: R/W

Equation: Peak Phase OC Limit = (Direct value) / 10

Units: A

Default Value: 0258h (60A)

Range: Depends on configuration

Command		PEAK_OC_LIMIT (CDh)												
Format		Direct												
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
Access	R/W	R/W												
Function		Two's Complement Integer												
Default Value	0	0 0 0 0 0 0 1 0 0 1 0 0 0												

10.77 PEAK_UC_LIMIT (CEh)

Definition: Sets the peak undercurrent limit thresholds for each phase within a rail. 0.1A per LSB.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Equation: Peak Phase UC Limit = (Direct value) / 10

Units: A

Default Value: FDA8 (-60A)

Range: Depends on configuration

Command		PEAK_UC_LIMIT (CEh)														
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W														
Function		Two's Complement Integer														
Default Value	1	1	1	1	1	1	0	1	1	0	1	0	1	0	0	0

10.78 VMON_ON (D0h)

Definition: Sets the VMON pin input voltage rising threshold at which the output can be enabled. 10mV per LSB.

Access: Global

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 01C2h (4500mV)

Units: mV

Equation: VMON On = (Direct value) × 10

Range: 0mV to 32767mV

Command		VMON_ON (D0h)														
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W
Function		Unsigned Integer														
Default Value	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0

10.79 VMON_OFF (D1h)

Definition: Sets the VMON pin input voltage falling threshold at which the output disables. 10mV per LSB.

Access: Global

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0190h (4000mV)

Units: mV

Equation: VMON_OFF = (Direct value) × 10

Range: 0mV to 32767mV

Command							۷N	ION_C	FF (D	lh)						
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W
Function		Unsigned Integer														
Default Value	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0

CONFIDENTIAL

10.80 COMPPROP (DDh)

Definition: Sets the proportional gain of the compensation loop.

Access: Paged

Data Length in Bytes: 4

Data Format: Bit Field

Type: R/W

Default Value: C9E7C7C4h

Command							CC	MPPR	OP (DE)h)						
Format								Bit F	ield							
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		See Following Table														
Default Value	1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	1
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	See Following Table															
Default Value	1	1	0	0	0	1	1	1	1	1	0	0	0	1	0	0

Bit Position	Function
31:28	Proportional gain mantissa >7-phase override, use normal P gain if value = 0 and shift = 0
27:25	Proportional gain exponent >7-phase override, use normal P gain if value = 0 and shift = 0
24:21	Proportional gain mantissa 2-phase override, use normal P gain if value = 0 and shift = 0
20	Not used
19:17	Proportional gain exponent 2-phase override, use normal P gain if value = 0 and shift = 0
16:13	Proportional gain mantissa 1-phase override, use normal P gain if value = 0 and shift = 0
12	Not used
11:9	Proportional gain exponent 1-phase override, use normal P gain if value = 0 and shift = 0
8	FIR filter length, 0 = none or 1 = ON Must be set if using D term for PID, optional if not using D term
7:4	Proportional gain mantissa is (value/8), all phase counts, if value = 0 gain is 0
3	Not used
2:0	Proportional gain exponent is 2^(shift-3), all phase counts, if value = 0 and shift = 0 gain is 0

10.81 COMPINTEG (DEh)

Definition: Sets the integral gain of the compensation loop.

Access: Paged

Data Length in Bytes: 4

Data Format: Bit Field

Type: R/W

Default Value: 006400A9h

Command	COMPINTEG (DEh)															
Format								Bit F	ield							
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		See Following Table														
Default Value	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		See Following Table														
Default Value	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1

Bit Position	Function
31:16	Not used
22:19	Proportional gain mantissa 13-19 phase override, use COMPPROP[31:28], if value = 0 shift = 0
18:16	Proportional gain exponent 13-19 phase override, use COMPPROP[27:25] if value = 0 and shift = 0
15:12	Delay time for stepping down gain towards shift. Dcm when in DCM, in 16×clkTs per gain step
11:8	Gain when in DCM for a while
7:4	Maximum gain used when Integral movement detected Gain is 2^(-shift-1)
3:0	Gain is 2^(-shift-1)

10.82 COMPIDFF (DFh)

Definition: Sets the differential gain of the compensation loop.

Access: Paged

Data Length in Bytes: 4

Data Format: Bit Field

Type: R/W

Default Value: 00000000h

Command	COMPDIFF (DFh)															
Format		Bit Field														
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Access	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W	R/ W
Function		See Following Table														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R/ W	R/ W	R	R	R/ W	R/ W	R	R/ W						
Function		See Following Table														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit Number	Setting
23:21	Differentiator gain mantissa for between 13-20 phase override, use normal P gain if value = 0 and shift = 0
20:19	Differentiator gain exponent for between 13-20 phase override, use normal P gain if value = 0 and shift = 0
18:15	Differentiator gain mantissa for between 8-12 phase override, use normal P gain if value = 0 and shift = 0
14:13	Differentiator gain exponent for between 8-12 phase override, use normal P gain if value = 0 and shift = 0
12	FIR filter length 0 or 1
11:8	Differentiator gain mantissa for 1 phase override, use normal P gain if value = 0 and shift = 0
7:6	Differentiator gain exponent for 1 phase override, use normal P gain if value = 0 and shift = 0
5:2	Differentiator gain mantissa for between 1 and 8 phases, (value/8)
1:0	Differentiator gain exponent for between 1 and 8 phases, 2^(shift+1 + P-shift) range 0:3

10.83 COMPCFB (E0h)

Definition: Sets the AC current feedback gain of the compensation loop.

Access: Paged

Data Length in Bytes: 2

Data Format: Bit Field

Type: R/W

Default Value: 0560h

Command		COMPCFB (E0h)														
Format		Bit Field														
Bit Position	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							Se	e Follo	wing Ta	ble						
Default Value	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0

Bit Number	Function
15:8	High-pass filter coefficient for current feedback
7:0	Current feedback gain, low droop cases

10.84 HS_BUS_CURRENT_SCALE (E3h)

Definition: Sets the scaling value for the high speed bus output current reporting. 16 bits with 14 fractional bits. A value of 0x4000 is a scale factor of 1.0. A value of 0x0000 is also interpreted as a scale factor of 1.0.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: 0000h (1.0)

Units: Scale Factor

Equation: HS Bus Current Scale = (Direct value) x 2-14

Range: 0 to 4.0

Command		HS_BUS_CURRENT_SCALE (E3h)														
Format		Direct														
Bit Position	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							U	Insigne	d Intege	er						
Default Value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														

10.85 PHASE_CURRENT (E4h)

Definition: Returns the individual phase current reading for the phase selected in PHASE (04h). 0.1A per LSB.

Access: Global

Data Length in Bytes: 2

Data Format: Direct

Type: Read Only

Units: A

Equation: Phase current = (Direct value) / 10

Command		PHASE_CURRENT (E4h)														
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function		Two's Complement Integer														

10.86 PEAK_OCUC_COUNT (E9h)

Definition: Sets the number of consecutive switch cycles that can exceed the peak per-phase overcurrent limit threshold before generating a fault within a rail. A value of 0 disables the fault shutdown and produces a constant current effect.

Access: Paged

Data Length in Bytes: 2

Data Format: Bit Field

Type: R/W

Equation: Peak UC Count = (Direct value [15:8]), Peak OC Count = (Direct value [7:0])

Units: Cycles

Default Value: 0606h (6 cycles OC and 6 cycles UC)

Range: 1 cycle to 255 cycles

Command	PEAK_OCUC_COUNT (E9h)															
Format		Bit Field														
Bit Position	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							Se	e Follo	wing Ta	ble						
Default Value	0	0 0 0 0 1 1 0 0 0 0 0 1 1 0														

Bit Number	Meaning
15:8	Number of consecutive switch cycles exceeding peak UC limit before fault
7:0	Number of consecutive switch cycles exceeding peak OC limit before fault

10.87 IOUT_ALERT_THRESHOLD (EAh)

Definition: Sets the threshold where nIOUTALERT is triggered.

Access: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: C8h (20A)

Units: A

Equation: Slow I_{OUT} OC Limit = (Direct value) / 10

Range: 0A to 3276A

Command		IOUT_ALERT_THRESHOLD (EAh)														
Format		Direct														
Bit Position	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														
Default Value	0	0 0 0 0 0 0 0 1 0 0 0 0														

10.88 SUM_OC_FILT_COUNT (EBh)

Definition: Sets the sum output overcurrent fault filter settings.

Access: Paged

Data Length in Bytes: 2

Data Format: Bit Field

Type: R/W

Default Value: 0696h (Filter = 10.6μs, Delay = 100μs)

Command						S	UM_O	C_FILT	COUN	IT (EBI	1)					
Format		Bit Field														
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function			•				Se	e Follov	wing Ta	ble						
Default Value	0	0 0 0 0 1 1 0 1 0 1 0														

Bit Number	Purpose	Setting
15:12	Not Used	Not used
11:8	Filter Setting	Time constant = 166.7ns × 2^direct value. Range is 167ns to 5.46ms.
7:0	Delay Setting	Delay 0.667μs × direct value before a fault is generated. Range is 0μs to 170μs.

10.89 IOUT_ALERT_FILT_COUNT (ECh)

Definition: Sets the IOUT ALERT indicator filter settings.

Access: Paged

Data Length in Bytes: 2

Data Format: Bit Field

Type: R/W

Default Value: 0606h (Filter = 10.6µs)

Command		IOUT_ALERT_FILT_COUNT (ECh)														
Format		Bit Field														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							Se	e Follo	wing Ta	ble						
Default Value	0	0 0 0 0 0 1 1 0 0 0 0 0 1 1 0														

Bit Number	Purpose	Setting
15:12	Not Used	Not used.
11:8	Filter Setting	Time constant = 166.7ns × 2 ^{direct} value. Range is 167ns to 5.46ms.
7:0	Not Used	Not used.
	CON	IFIDENTIAL

10.90 LOOPCFG (F0h)

Definition: Configures various rail settings. To make a change, read the value, modify only the desired bits, and write the value while preserving the bit settings.

Access: Paged

Data Length in Bytes: 4

Data Format: Bit Field

Type: R/W

Default Value: 10A061F2h

Command							L	OOPCI	FG (F0l	1)						
Format								Bit F	ield							
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function						•	Se	e Follo	wing Ta	ble		•		•		
Default Value	0	0 0 0 1 0 0 0 0 1 0 1 0 0 0												0		
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function							Se	e Follo	wing Ta	ble						
Default Value	0	0 1 1 0 0 0 1 1 1 1 1 0 1 0												0		
		CONFIDENTIAL														

Bit Position	Field	Function
31	Not Used	Not used
30:29	Reserved	Reserved
28	Diode Emulation Mode	1 = Enable diode emulation for power_mode 3
27:13	Reserved	Reserved
12:8	Minimum Phase Count	Minimum phase count, 0-19
7	Reserved	Reserved
6	Diode Emulation Enable	1 = Enable diode emulation
5:4	Reserved	Reserved
3:1	Reserved	Reserved
0	APD enable	1 = Enable auto phase add/drop

10.91 RESTORE_CFG (F2h)

Definition: Identifies the user configuration ID to be restored from NVM and loads the store settings into the active memory of the device. *Note:* Only use this command while all outputs are disabled. Restore takes 3ms to complete.

Access: Global

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 00h

Command		RESTORE_CFG (F2h)												
Format		Bit Field												
Bit Position	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R/W	R/W	R/W	R/W						
Function				See Follow	wing Table									
Default Value	0	0 0 0 0 0 0 0												

Bit Number	Status Bit Name	Meaning
7:4	Reserved	Reserved
3:0	CONFIG	Selected user configuration ID to restore, 0-15.
	COL	HIDLINIAL

11. Adaptive Voltage Scaling (AVSBus) Functionality and Operation

The AVSBus interface provides a high speed (up to 50MHz) serial interface to the RAA228236 allowing implementation of advanced voltage scaling functions supporting increased system efficiency and performance. Devices equipped with AVSBus master capability can use the interface to enable rapid supply voltage changes to support low power consumption modes and high performance modes. Because of the advanced digital regulation loop employed, the RAA228236 is well equipped to support very rapid transition rates. All commands are readable at all times, but they cannot be written to unless the device is set to AVSBus control.

11.1 AVSBus Master Send Subframe

Function	Start Code	R/W	Command Type	Command Code	Rail Select	Command Data	CRC
Size (bits)	2	2	1	4	4	16	3
				0h = Target Rail Voltage			
		00b = Write		1h = Target Rail V _{OUT} Transition Rate			
		data and Commit		2h = Rail Current	0h = Rail 0	Read = FFh	
Setting	01b	01b = Write data, but do not	0b = AVSBus Data	3h =Rail Temperature	1h = Rail 1	Write = See	
		commit		4h = Reset Rail Voltage	Fh = Broadcast	Command Detail section	
		11b = Read Data	NIFI	5h = Power Mode	ΠΔΙ		
			1 41 1	Eh = AVSBus Status	1/ _		
				Fh = AVSBus Version			

11.2 AVSBus Slave Response Subframe

Function	Slave ACK	0b	Status Response	Command Data	Not Used	CRC
Size (bits)	2	1	5	16	5	3
	00b = Good CRC, Command acknowledged, Action Taken 01b = Good CRC, Command acknowledged,		Bit 4 = V _{DONE} . Sets to 1 when V _{OUT} target is reached Bit 3 = Status Alert. Sets to 1 if a bit in AVSBus Status register (excluding from	Write = FFh		
Setting	No action 10b = Bad CRC, No	0b	V _{DONE}) has set Bit 2 = AVSBus Control. Sets to 1 when	Read = See AVSBus Command Detail section	Not used 11111b	
	Action 11b = Invalid Request, No Action		AVSBus control is enabled on any of the rails Bits 1:0 = Not used	2 2 3 3 3 1		

11.3 AVSBus Command Detail

11.3.1 TARGET RAIL VOLTAGE (0h)

Definition: Sets or reads the target rail voltage set point. 1mV per LSB. The initial set point is copied from the

PMBus command VOUT_COMMAND when AVSBus operation is selected.

Paged or Global: Paged

Data Length in Bytes: 2

Data Format: Direct

Type: R/W

Default Value: Value of PMBus VOUT_COMMAND

Units: mV

Equation: TARGET RAIL VOLTAGE = (Direct value)

Range: Limited to the values of the VOUT_MIN and VOUT_MAX PMBus commands

Command		TARGET RAIL VOLTAGE (0h)														
Format		Direct														
Bit Position	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		Two's Complement Integer														

11.3.2 VOUT TRANSITION RATE (1h)

Definition: Sets or reads the rise and fall transition rates. 1mV/µs per LSB. The initial value matches PMBus transition rates until updated through AVSBus.

Paged or Global: Paged
Data Length in Bytes: 2
Data Format: Direct

Type: R/W

Default Value: Value of PMBus VOUT_TRANSITION_RATE for rise and fall

Units: mV/µs

Equation: TRANSITION RATE = (Direct value)

Command							TRAI	NSITIO	N RATE	E (1h)						
Format		Direct														
Bit Position	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Ri	ise Trar	nsition F	Rate, tw	o's con	npleme	nt integ	er	F	all Tran	sition F	Rate, tw	o's con	plemer	nt integ	ər
Default Value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														

11.3.3 RAIL CURRENT (2h)

Definition: Returns the output current reading. 10mA per LSB. A filter is applied to this reading, and it is

configurable in PowerNavigator.

Paged or Global: Paged Data Length in Bytes: 2

Data Format: Direct
Type: Read Only
Default Value: N/A

Units: A

Equation: RAIL CURRENT= (Direct value) / 100

Command		RAIL CURRENT (2h)														
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function		Two's Complement Integer														

11.3.4 RAIL TEMPERATURE (3h)

Definition: Returns the power stage temperature reading from the TEMP pins. 0.1°C per LSB.

Paged or Global: Paged

Data Length in Bytes: 2

Data Format: Direct
Type: Read Only
Default Value: N/A

Units: °C

Equation: TEMPERATURE = (Direct value) / 10

Command		RAIL TEMPERATURE (3h)														
Format		Direct														
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function		Two's Complement Integer														

11.3.5 RESET RAIL VOLTAGE (4h)

Definition: Sets TARGET RAIL VOLTAGE to match that of the VOUT_COMMAND PMBus command.

Paged or Global: Paged
Data Length in Bytes: 2
Data Format: Direct

Type: Write Only
Default Value: 00h

Units: N/A

Command		RESET RAIL VOLTAGE (4h)														
Format	Direct															
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Function		Send all 0's														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.3.6 **POWER MODE (5h)**

Definition: Sets the power conversion mode. The operation is the same as POWER_MODE PMBus command (34h). Please see more details in the Definition section of the (34h) PMBus command.

Paged or Global: Paged

Data Length in Bytes: 1

Data Format: Bit Field

Type: R/W

Default Value: 03h

Command		POWER MODE (5h)								
Format		Bit Field								
Bit Position	7	6	5	4	3	2	1	0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	See Following Table									
Default Value	0	0	0	0	0	0	1	1		

Bit Value	Setting
04h	MFR Defined
03h	Maximum Power
00h	Maximum Efficiency

11.3.7 AVSBus STATUS (Eh)

Definition: Returns the device status. V_{DONE} indicates that V_{OUT} has reached the set point. OT Warn indicates that one or more of the measured temperatures of the device have exceeded the over temperature warning threshold set by the OT_WARN_LIMIT PMBus command. UV Warn indicates that one or more output voltages of the device have exceeded the undervoltage warning threshold set by the UV_WARN_LIMIT PMBus command. The device sets the AVS_SDA line low to notify the host any time a bit in this register has been set.

Paged or Global: Paged
Data Length in Bytes: 2
Data Format: Bit Field

Type: Read Only

Default Value: N/A

Units: N/A

Command	AVSBUS STATUS (Eh)										
Format		Bit Field									
Bit Position	15	14	13	12	11:0						
Access	R	R	R	R	R						
Function	VDONE	Not Used	VOUT UV WARN	OT Warn	Not Used						
Default Value	N/A	0	0	N/A	0						

11.3.8 AVSBus VERSION (Fh)

Definition: Returns the version of the AVSBus specification to which the device is compliant. This device complies with Version 1.3.

Paged or Global: Global

Data Length in Bytes: 2

Data Format: Bit Field

Type: Read Only

Default Value: 00h

Units: N/A

12. Package Outline Drawing

For the most recent package outline drawing, see L48.6x6B.

L48.6x6B 48 Lead Quad Flat No-Lead Plastic Package Rev 0, 9/09

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
- 3. Unless otherwise specified, tolerance: Decimal ± 0.05
- 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature.

13. Ordering Information

Part Number ^{[1][2]}	Part Marking	Package Description (RoHS Compliant)	Pkg. Dwg. #	Carrier Type ^[3]	Junction Temperature	
RAA228236GNP#HA0	RAA 228236	48 Ld QFN6x6	L48.6x6B	Reel, 4k	-40 to +125°C	

These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020.

- 2. The Moisture Sensitivity Level (MSL) rating is 3. For more information about MSL, see TB363.
- 3. See TB347 for details about the reel specifications.

Table 3. Power Stage Recommendations

Part Number	Rating (A)	Туре	TOUT	TREF	REFIN	FAULT#	Package Dwg. #	Pin-to-Pin Compatible	Typically Used With		
5.0V PWM Pov	5.0V PWM Power Stage Family										
ISL99360B	60	SPS	Yes	No	Yes	Yes	L32.5x5W	N/A	5V PWM cannot be		
ISL99380B	80	SPS	Yes	No	Yes	No	L39.5x6A	ISL99390	driven directly by Digital Controllers ISL68/69xxx; use with Phase Doublers ISL6617A		
ISL99390B	90	SPS	Yes	No	Yes	No	L39.5x6A	ISL99380			
3.3V PWM Pov	ver Stage F	amily						ΛΙ			
ISL99390	90	SPS	Yes	No	Yes	No	L39.5x6A	ISL99380	Full Digital		
ISL99360	60	SPS	Yes	No	Yes	Yes	L32.5x5W	N/A	Controllers:		
ISL99380	80	SPS	Yes	No	Yes	No	L39.5x6A	ISL99390	ISL68/69xxx		

14. Revision History

Rev.	Date	Description
1.00	Dec 1, 2022	Initial release

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/