L1 - 31/07/2024

Instructor - Prof. Ronnie Sebastain

Reference book - Analysis I by

Terence Tao

(first 8 chapters)

Quiz - one per week - Friday (40% weightage)

Mandatory attendance

Mid Sem & End Sem - 30% each

Q. Show φ: N - Z>0, φ(n)= n-1 is injective & surjective $\varphi(n_1) = \varphi(n_2)$; $n_1, n_2 \in \mathbb{N}$

Proof: 1. Injectivity $\eta_1 - 1 = \eta_2 - 1$ $n_1 = n_2$

: $\varphi(n_1) = \varphi(n_2) \Rightarrow n_1 = n_2$ injective.

a. Surjectivity Consider m E Z/20 & n=m+| Clearly n E N. $\varphi(n) = n - 1 = (m + 1) - 1 = m$

· · Ym & Zzo, In & N s.t $\varphi(n) = m$

Proof - Let
$$\alpha = f$$
; $p,q \in \mathbb{Z}$, $q \neq 0$

s.t $GCO(p,q)=1$

By Aef^n ; $\alpha^2 = 2 \Rightarrow (f^2)^2 = 2$
 $\Rightarrow p^2 = 2q^2$

Now, $2|RHS \Rightarrow 2|LHS \Rightarrow 2|p^2$ $\Rightarrow 2|p$ $\Rightarrow 3|K \in \mathbb{Z} \text{ s.t. } p=2k$

Substituting back,
$$p^2 = 2q^2$$

$$\Rightarrow (2k)^2 = 2q^2$$

$$\Rightarrow 2k^2 = q^2$$
Now, $2 \mid LHS \Rightarrow 2 \mid RHS \Rightarrow 2 \mid q^2$

Contidⁿ

$$d \in \mathbb{Q} \text{ s.t. } \alpha^2 = 2$$

$$\therefore \ \, \not \mid \alpha \in \mathbb{Q} \quad \text{s.t.} \quad \alpha^2 = 2$$