Bayesian inference in simple conjugate families

A) Let $\mathbf{x} := \langle x_1, \dots, x_N \rangle$, and let k denote the number of successes in \mathbf{x} . Then

$$p(w|\mathbf{x}) \propto p(\mathbf{x}|w)p(w)$$

$$\propto w^{k}(1-w)^{N-k}w^{a-1}(1-w)^{b-1}$$

$$= w^{a+k-1}(1-w)^{b+(n-k)-1},$$

which is the kernel of a Beta distribution with parameters a + k - 1 and b + (n - k) - 1. Thus, the posterior distribution is Beta(a + k - 1, b + (n - k) - 1).

B) Let

$$Y_1 = \frac{X_1}{X_1 + X_2}$$
 and $Y_2 = X_1 + X_2$.

Then, solving for X_1 and X_2 in terms of Y_1 and Y_2 , we get

$$X_1 = Y_1 Y_2$$
 and $X_2 = (1 - Y_1) Y_2$.

Since we want to find the joint density of Y_1 and Y_2 , we start by finding the Jacobian of the transformation:

$$J = \begin{vmatrix} \partial x_1/\partial y_1 & \partial x_1/\partial y_2 \\ \partial x_2/\partial y_1 & \partial x_2/\partial y_2 \end{vmatrix}$$
$$= \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix}$$
$$= y_2(1 - y_1) + y_1 y_2$$
$$= y_2.$$

Note that since X_1 and X_2 are never negative, neither is Y_2 , and therefore |J| = J. We can now express the joint distribution function in terms of f_{X_1,X_2} as follows:

$$f_{Y_1,Y_2}(y_1, y_2) \propto (y_1 y_2)^{a_1 - 1} \cdot e^{-y_1 y_2} \left((1 - y_1) y_2 \right)^{a_2 - 1} \cdot e^{-(1 - y_1) y_2} \cdot y_2$$
$$= \left(y_1^{a_1 - 1} (1 - y_1)^{a_2 - 1} \right) \left(y_2^{a_1 + a_2 - 1} \cdot e^{-y_2} \right)$$

where the expression in the first pair of parentheses is the kernel of a Beta distribution and that in the second is the kernel of a Gamma distribution. We therefore see that

$$y_1 \sim \text{Beta}(a_1, a_2)$$
 and $y_2 \sim \text{Gamma}(a_1 + a_2, 1)$.

This provides us with a means to simulate a Beta random variable with parameters a_1 and a_2 from Gamma random variables by simulating $X_1 \sim \text{Gamma}(a_1, 1)$ and $X_2 \sim \text{Gamma}(a_2, 1)$, and then computing the ratio $X_1/(X_1 + X_2)$.

C) Let $X_i \sim N(\theta, \sigma^2)$ be independent where the variance is known and $\theta \sim N(m, v)$. Let \bar{x} denote the mean of x_1, \ldots, x_N . Then

$$p(\theta|x_1, \dots, x_N) \propto p(x_1, \dots, x_N|\theta) p(\theta)$$

$$= \left(\prod_{i=1}^N p(x_i|\theta)\right) p(\theta)$$

$$\propto \exp\left(-\sum_{i=1}^N \frac{(x_i - \theta)^2}{2\sigma^2}\right) \exp\left(\frac{-(\theta - m)^2}{2v}\right)$$

$$\propto \exp\left(\sum_{i=1}^N \frac{2\theta x_i - \theta^2}{2\sigma^2}\right) \exp\left(-\frac{\theta^2 - 2\theta m}{2v}\right)$$

$$= \exp\left(\frac{2\theta n\bar{x} - n\theta^2}{2\sigma^2} - \frac{\theta^2 - 2\theta m}{2v}\right)$$

$$= \exp\left(-\left(\frac{n}{2\sigma^2} + \frac{1}{2v}\right)\theta^2 + \left(\frac{n\bar{x}}{\sigma^2} + \frac{m}{v}\right)\theta\right)$$

This last expression is complicated, but has the form $e^{-A\theta^2+B\theta}$, with which we can work until it is further simplified. Note that we still only care about things proportional to the expression involving θ .

$$\exp(-A\theta^2 + B\theta) = \exp\left(\frac{-\theta^2 + (B/A)\theta}{1/A}\right)$$
$$\propto \exp\left(\frac{-(\theta - (B/2A))^2}{1/A}\right)$$

This is the kernel of a normal distribution with mean and variance as follows:

$$\mu_{\text{post}} = \frac{B}{2A} = \frac{\frac{nx}{\sigma^2} + \frac{m}{v}}{\frac{n}{\sigma^2} + \frac{1}{v}}$$
$$\sigma_{\text{post}}^2 = \frac{1}{2A} = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{v}}$$

D) Let $X_i \sim N(\theta, \sigma^2)$ be independent where the mean θ is known and $w := 1/\sigma^2 \sim \text{Gamma}(a, b)$. Let $\hat{\sigma}^2$ denote the standard deviation of x_1, \ldots, x_N . Then

$$= \left(\prod_{i=1}^{N} p(x_i|w)\right) p(w)$$

$$\propto w^{N/2} \exp\left(\frac{-w}{2} \sum_{i=1}^{N} (x_i - \theta)^2\right) w^{a-1} \exp(-bw)$$

$$2 \sum_{i=1}^{\infty} (w_i - v_i)$$

$$= w^{a+N/2-1} \exp(-w \cdot N\hat{\sigma}^2/2) \exp(-bw)$$

$$= w^{a+N/2-1} \exp(-(N\hat{\sigma}^2/2 + b)w).$$

This is the kernel of a Gamma distribution, namely $Gamma(a + N/2, b + N\hat{\sigma}^2/2)$. Thus, the posterior distribution for σ^2 is $IG(a + N/2, b + N\hat{\sigma}^2/2)$.

E) Let $X_i \sim N(\theta, \sigma_i^2)$ be independent where each σ_i^2 is known and $\theta \sim N(m, v)$. Then

 $p(w|x_1,\ldots,x_N) \propto p(x_1,\ldots,x_N|w)p(w)$

$$p(\theta|x_1,\ldots,x_N) \propto p(x_1,\ldots,x_N|\theta)p(\theta)$$

$$= \left(\prod_{i=1}^{N} p(x_i|\theta)\right) p(\theta)$$

$$\propto \exp\left(-\sum_{i=1}^{N} \frac{(x_i - \theta)^2}{2\sigma_i^2}\right) \exp\left(\frac{-(\theta - m)^2}{2v}\right)$$

$$\propto \exp\left(-\sum_{i=1}^{N} \frac{\theta^2 - 2x_i\theta}{\sigma_i^2}\right) \exp\left(\frac{-(\theta^2 - 2m\theta)}{2v}\right)$$

$$= \exp\left(-\frac{\theta^2 - 2m\theta}{2v} - \sum_{i=1}^{N} \frac{\theta^2 - 2x_i\theta}{\sigma_i^2}\right)$$

$$= \exp\left(-\left(\frac{1}{2v} + \sum_{i=1}^{N} \frac{1}{2\sigma_i^2}\right)\theta^2 + \left(\frac{m}{v} + \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}\right)\theta\right)$$

As in (C) above, this has the form $e^{-A\theta^2+B\theta}$, and we solve this in the same way. Thereby we find that $\theta|x_1,\ldots,x_N|$ is normally distributed with mean and variance given by

$$\mu_{\text{post}} = \frac{\frac{m}{v} + \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}}{\frac{1}{v} + \sum_{i=1}^{N} \frac{1}{\sigma_i^2}}$$

$$\sigma_{\text{post}}^2 = \frac{1}{\frac{1}{v} + \sum_{i=1}^{N} \frac{1}{\sigma_i^2}}$$

F) Suppose that $X \sim N(0, \sigma^2)$, and that $1/\sigma^2 \sim \text{Gamma}(a, b)$. Let us find f(x), the marginal distribution of x. As above, let $\omega = 1/\sigma^2$. Then:

$$f(x) = \int_0^\infty p(x|\omega) p(\omega) d\omega$$

$$\propto \int_0^\infty \omega^{1/2} e^{-\omega x^2/2} \omega^{a-1} e^{-bw} d\omega$$

$$= \int_0^\infty \omega^{a-1/2} \exp\left(-(b+x^2/2)\omega\right) d\omega \quad \text{(the integral of the kernel of a Gamma)}$$

$$\propto \frac{\Gamma(a+1/2)}{(b+x^2/2)^{a+1/2}}$$

$$\propto \frac{1}{\left(1+\frac{x^2}{2b}\right)^{a+1/2}}$$

$$\propto \frac{1}{\left(1+\frac{x^2}{(b/a)2a}\right)^{(2a+1)/2}}$$

This is a student-t distribution with v = 2a and $\sigma^2 = b/a$.

With the alternative parameterization $x|\omega \sim N(\mu, \omega^{-1})$ and $\omega \sim \mathrm{IG}(d/2, d\tau^2/2)$, we get a center μ , scale τ , and degrees of freedom d.

The multivariate normal distribution

Basics

A)

$$cov(x) := E((x - \mu)(x - \mu)^{T})$$

$$= E((x - \mu)(x^{T} - \mu^{T}))$$

$$= E(xx^{T} - \mu x^{T} - x\mu^{T} + \mu \mu^{T})$$

$$= E(xx^{T}) - E(\mu x^{T}) - E(x\mu^{T}) + E(\mu \mu^{T})$$

$$= E(xx^{T}) - \mu E(x^{T}) - E(x)\mu^{T} + \mu \mu^{T} E(I_{N})$$

$$= E(xx^{T}) - \mu \mu^{T} - \mu \mu^{T} + \mu \mu^{T}$$

$$= E(xx^{T}) - \mu \mu^{T}$$

$$= E(xx^{T}) - \mu \mu^{T}$$

$$cov(Ax + b) := E((Ax + b - E(Ax + b))(Ax + b - E(Ax + b))^{T})$$

$$= E((Ax - E(Ax))(Ax - E(Ax))^{T})$$

$$= E(A(x - \mu)(A(x - \mu))^{T})$$

$$= E(A(x - \mu)(x - \mu)^{T}A^{T})$$

$$= AE((x - \mu)(x - \mu)^{T}A^{T})$$

$$= Acov(x)A^{T}$$

B) We want first to find the joint density function for z; since its components are independent, the joint density is the product of the individual densities:

$$f(z_1, ..., z_p) = \prod_{i=1}^p \frac{e^{-z_i^2/2}}{\sqrt{2\pi}}$$
$$= \frac{\exp\left(\sum_{i=1}^p -z_i^2/2\right)}{(2\pi)^{p/2}}$$
$$= \frac{\exp(-z^T z/2)}{(2\pi)^{p/2}}$$

Now let us find the moment generating function for z. We use the independence of the components of z, as well as the fact that the moment generating function of a (univariate) standard normal random variable is $\exp(t^2/2)$:

$$M_{z}(t) := E(e^{t^{T}z})$$

$$= E\left(\exp\left(\sum_{i=1}^{p} t_{i}z_{i}\right)\right)$$

$$= E\left(\prod_{i=1}^{p} e^{t_{i}z_{i}}\right)$$

$$= \prod_{i=1}^{p} E(e^{t_{i}z_{i}})$$

$$= \prod_{i=1}^{p} e^{t^{2}/2}.$$

C) Suppose first that the moment generating function of x has the form $\exp(t^T \mu + t^T \Sigma t/2)$. Let a be a non-zero vector. Then, from Casella-Berger, for example,

$$M_{a^T x}(t) = \exp\left((a^T t)^T \mu + (a^T t)^T \Sigma (a^T t)/2\right)$$

which, with

$$\tilde{\mu} := (a^T t)^T \mu$$
, and

$$\tilde{\sigma}^2 := (a^T t)^T \Sigma (a^T t),$$

we recognize as a normally distributed random variable. This implies that x is multivariate normal.

Now suppose that $x \sim N(\mu, \Sigma)$. We must show that its moment generating function has the desired form. Letting a be any non-zero vector, we have

$$M_{a^T x}(t) = \exp((a^T t)^T \mu + (a^T t)^T \Sigma (a^T t)/2)$$

$$M_{a^T x}(1) = \exp((a^T)^T \mu + (a^T)^T \Sigma (a^T)/2).$$

We can consider this a function of a^T , which, after substituting the letter t for a^T , gives us

$$M_x(t) = \exp(t^T \mu + t^T \Sigma t/2).$$

Thus, the moment generating function has the desired form.

D) Suppose that z has a standard multivariate normal distribution, let L be a $p \times p$ matrix of full rank, and μ a vector. Let $x := Lz + \mu$. Then for any vector a,

$$a^T x = a^T L z + a^T \mu = (L^T a)^T z + a^T \mu.$$

By assumption, $(L^T a)^T z$ has a normal distribution, and therefore so does $(L^T a)^T z + a^T$. Thus, x has a multivariate normal distribution. By part (A), we know that $cov(x) = Lcov(z)L^T$.

E) Suppose that x is multivariate normal. We want to show that for some L and μ , $x = Lz + \mu$, where z is standard normal. If we can invert L, this is equivalent to saying that we can transform x to a standard normal: $z = L^{-1}(x - \mu)$. To that end, let μ denote the mean of x, and let LL^T be the Cholesky decomposition of cov(x), noting that L is invertible. Then the mean of $L^{-1}(x - \mu)$ is the zero vector, and

$$cov(L^{-1}(x - \mu)) = cov(L^{-1}x - L^{-1}\mu)$$

$$= cov(L^{-1}x)$$

$$= L^{-1}cov(x)(L^{-1})^{T}$$

$$= L^{-1}LL^{T}(L^{-1})^{T}$$

$$= L^{-1}LL^{T}(L^{T})^{-1}$$

$$= I,$$

which suffices to show that $L^{-1}(x - \mu)$ is standard normal, completing the proof.

We can therefore simulate random draws from $x \sim N(\mu, \Sigma)$ by simulating random draws from z and then applying the transformation $Lz + \mu$, where $\Sigma = LL^T$.

F) The PDF of the standard multivariate normal distribution is

$$f_Z(z) = (2\pi)^{-p/2} \exp(-z^T z/2).$$

Suppose that x is multivariate normal. Then $x = Lz + \mu$ for some invertible matrix L, and so $z = L^{-1}(x - \mu)$. By the change of variables formula,

$$f_X(x) = f_Z(L^{-1}(x-\mu)) \det(J)$$

$$= (2\pi)^{-p/2} \exp\left(-(L^{-1}(x-\mu))^T L^{-1}(x-\mu)/2\right) \det(L^{-1})$$

$$= (2\pi)^{-p/2} \det(L^{-1}) \exp\left(-(x-\mu)^T ((L^{-1})^T L^{-1})(x-\mu)/2\right)$$

which has the required form when

$$C = (2\pi)^{-p/2} \det(L^{-1}) \quad \text{and}$$

$$Q(x - \mu) = -(x - \mu)^T ((L^{-1})^T L^{-1})(x - \mu).$$

G) Let $x_1 \sim N(\mu_1, \Sigma_1)$ and $x_2 \sim N(\mu_2, \Sigma_2)$ be independent. Let A and B be matrices with full column rank such that $y = Ax_1 + Bx_2$. Then the MGF of y is the product of two known MGFs:

$$\begin{split} M_{y}(t) &:= E(e^{t^{T}y}) \\ &= E(e^{t^{T}(Ax_{1} + Bx_{2})}) \\ &= E(e^{t^{T}Ax_{1}}e^{t^{T}Bx_{2}}) \\ &= E(e^{t^{T}Ax_{1}})E(e^{t^{T}Bx_{2}}) \\ &= E(e^{(A^{T}t)^{T}x_{1}})E(e^{(B^{T}t)^{T}x_{2}}) \\ &= \exp((A^{T}t)^{T}\mu_{1} + (A^{T}t)^{T}\Sigma_{1}(A^{T}t)/2)\exp((B^{T}t)^{T}\mu_{2} + (B^{T}t)^{T}\Sigma_{2}(B^{T}t)/2) \\ &= \exp((A^{T}t)^{T}\mu_{1} + (B^{T}t)^{T}\mu_{2} + (A^{T}t)^{T}\Sigma_{1}(A^{T}t)/2 + (B^{T}t)^{T}\Sigma_{2}(B^{T}t)/2) \\ &= \exp(t^{T}A\mu_{1} + t^{T}B\mu_{2} + t^{T}A\Sigma_{1}A^{T}t/2 + t^{T}B\Sigma_{2}B^{T}t/2) \\ &= \exp(t^{T}(A\mu_{1} + B\mu_{2}) + t^{T}(A\Sigma_{1}A^{T} + B\Sigma_{2}B^{T})t/2) \end{split}$$

This is the MGF of a multivariate normal distribution; that is, $y \sim N(A\mu_1 + B\mu_2, A\Sigma_1A^T + B\Sigma_2B^T)$.

Conditionals and marginals

A) Let x, x_1 , μ , and Σ be as given. Let A denote the $k \times p$ matrix given by the partition $(I_{k \times k} \ 0_{k \times (p-k)})$. Then $x_1 = Ax$, and we can apply the results in (G) above to get

$$x_1 \sim N(A\mu, A\Sigma A^T)$$

 $\sim N(\mu_1, \Sigma_{11})$

B) We want

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

for the appropriately sized identity and zero matrices. As a system of linear equations, we have

$$\begin{split} & \Sigma_{11}\Omega_{11} + \Sigma_{12}\Omega_{21} = I \quad \text{ (i)} \\ & \Sigma_{11}\Omega_{12} + \Sigma_{12}\Omega_{22} = 0 \quad \text{ (ii)} \\ & \Sigma_{21}\Omega_{11} + \Sigma_{22}\Omega_{21} = 0 \quad \text{ (iii)} \end{split}$$

$$\Sigma_{21}\Omega_{12} + \Sigma_{22}\Omega_{22} = I \quad \text{(iv)}$$

From (iii), we get

$$\Omega_{21} = -\Sigma_{22}^{-1} \Sigma_{21} \Omega_{11} \quad (v)$$

which we can combine with (i) to get

$$I = \Sigma_{11}\Omega_{11} + \Sigma_{12} \left(-\Sigma_{22}^{-1} \Sigma_{21}\Omega_{11} \right)$$
$$= \left(\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1} \Sigma_{21} \right) \Omega_{11}$$
$$\Omega_{11} = \left(\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1} \Sigma_{21} \right)^{-1}$$

By symmetry, we also therefore have

$$\Omega_{22} = \left(\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}$$

Using this and (v), we get

$$\Omega_{21} = -\Sigma_{22}^{-1} \Sigma_{21} (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1}$$

and, again by symmetry,

$$\Omega_{12} = -\Sigma_{11}^{-1} \Sigma_{12} (\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})^{-1}.$$

C) By definition, $f(x_1|x_2) = f(x_1, x_2)/f(x_2) = f(x)/f(x_2) \propto f(x)$, so it suffices to express f(x) in terms of x_1 and x_2 and drop all terms not involving x_1 . We do this on a log scale, as recommended, and we use the decomposition of Ω found above. Our goal is to obtain a quadratic expression in x_1 . We use the notation $=_1$ to indicate equality up to a constant not depending on x_1 .

$$2\ln(f(x)) = (x - \mu)^{T} \Omega(x - \mu)$$

$$= (x_{1} - \mu_{1})^{T} \Omega_{11}(x_{1} - \mu_{1}) + (x_{2} - \mu_{2})^{T} \Omega_{21}(x_{1} - \mu_{1})$$

$$+ (x_{1} - \mu_{1})^{T} \Omega_{12}(x_{2} - \mu_{2}) + (x_{2} - \mu_{2})^{T} \Omega_{22}(x_{2} - \mu_{2})$$

$$=_{1} (x_{1} - \mu_{1})^{T} \Omega_{11}(x_{1} - \mu_{1}) + 2(x_{2} - \mu_{2})^{T} \Omega_{21}(x_{1} - \mu_{1})$$

$$=_{1} x_{1}^{T} \Omega_{11}x_{1} - x_{1}^{T} \Omega_{11}\mu_{1} - \mu^{T} \Omega_{11}x_{1} + 2(x_{2} - \mu_{2})^{T} \Omega_{21}x_{1}$$

$$= x_{1}^{T} \Omega_{11}x_{1} - 2\mu^{T} \Omega_{11}x_{1} + 2(x_{2} - \mu_{2})^{T} \Omega_{21}x_{1}$$

$$=_{1} x_{1}^{T} \Omega_{11}x_{1} - 2\left(\mu^{T} \Omega_{11} + (x_{2} - \mu_{2})^{T} \Omega_{21}\right)x_{1}, \text{ and we complete the square to get}$$

$$=_{1} \left(x_{1} - \Sigma_{11}\left(\mu^{T} \Omega_{11} + (x_{2} - \mu_{2})^{T} \Omega_{21}\right)\right)^{T} \Omega_{11}\left(x_{1} - \Sigma_{11}\left(\mu^{T} \Omega_{11} + (x_{2} - \mu_{2})^{T} \Omega_{21}\right)\right)$$

$$x_{1} x_{2} \approx N\left(\sum_{1} (\mu^{T} \Omega_{12} + (x_{2} - \mu_{2})^{T} \Omega_{21}\right), \Omega_{12}\right)$$

Thus,

$$x_1|x_2 \sim N\Big(\Sigma_{11}(\mu^T \Omega_{11} + (x_2 - \mu_2)^T \Omega_{21}), \ \Omega_{11}\Big).$$

Multiple regression: three classical principles for inference

A) Let us first find the least squares estimate. We can write the quantity that we wish to minimize as

$$f(\beta) = (y - X\beta)^{T} (y - X\beta),$$

and we can differentiate to get

$$\frac{\partial f}{\partial \beta} = -2X^T (y - X\beta).$$

Assuming that $X^T X$ is invertible, we can ignore the -2, set this equal to zero, and solve for β :

$$0 = X^{T}(y - X\beta)$$
$$X^{T}y = X^{T}X\beta$$
$$\beta = (X^{T}X)^{-1}X^{T}y$$

Thus, the least squares estimate for β is $\hat{\beta} := (X^T X)^{-1} X^T y$.

Let us now show that the maximum likelihood estimate is the same. Given our assumption about ε_i , note that $p(y_i|\beta,\sigma^2)$ is normal. In matrix notation (and unnormalized), we want to maximize

$$\exp((y - X\beta)^T \Sigma^{-1} (y - X\beta)/2)$$

where Σ is the covariance matrix—in this case, the diagonal matrix whose entries are σ^2 . We can maximize this by maximizing the logarithm of it instead, which gives us a function of β :

$$f(\beta) = (y - X\beta)^T \Sigma^{-1} (y - X\beta)/2$$

which we differentiate and set equal to zero:

$$0 = X^{T} (\Sigma^{-1} + (\Sigma^{-1})^{T}) (y - X\beta)$$
$$\beta = (X^{T} X)^{-1} X^{T} y$$

Note that we can disregard the $\Sigma^{-1} + (\Sigma^{-1})^T$ factor, since is it corresponds to multiplication by a constant. We therefore obtain the same estimate as with least squares.

Finally, let us find the estimate using the method of moments. Here it will be convenient to assume that $\bar{x} := E(x_i) = 0$ for all i. We want to have $cov(\varepsilon, x_i) = 0$ for all j, which means

$$0 = \frac{1}{n-1} \sum_{i=1}^{p} (\varepsilon_i - \bar{\varepsilon})(x_{ij} - \bar{x}_j)$$

$$= \sum_{i=1}^{p} \varepsilon_i x_{ij} - \bar{\varepsilon} \sum_{i=1}^{p} x_{ij} - \bar{x} \sum_{i=1}^{p} \varepsilon_i + \bar{x}\bar{\varepsilon}$$

$$= \sum_{i=1}^{p} \varepsilon_i x_{ij}.$$

We can express this equation in matrix form as

$$0 = X^T \varepsilon = X^T (v - X\beta),$$

which yields the same solution as above.

B) Suppose now that we want to find the weighted least squares estimate:

$$\hat{\beta} := \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_i (y_i - x_i^T \beta)^2.$$

As above, we can write this in matrix form:

$$f(\beta) = (y - X\beta)^T W(y - X\beta)$$

= $y^T Wy - y^T WX\beta - \beta^T X^T Wy + \beta^T X^T WX\beta$,

where W is the diagonal matrix of weights. Setting the derivative equal to zero, we get

$$0 = -y^T W X - X^T W y + 2X^T W X \beta$$
$$= -2X^T W y + 2X^T W X \beta$$
$$X^T W y = X^T W X \beta$$
$$\beta = (X^T W X)^{-1} X^T W y,$$

assuming that $X^T W X$ is invertible.

Now we must show that this is the same estimate as obtained using maximum likelihood under heteroscedastic Gaussian error. As in part (A), we want to maximize

$$f(\beta) = (y - X\beta)^T \Sigma^{-1} (y - X\beta)/2$$

where Σ is the covariance matrix, which is now the diagonal matrix such that $(\Sigma)_{ii} = \sigma_i^2$. We differentiate this and set it equal to zero and solve for β to get

$$0 = X^{T} (\Sigma^{-1} + (\Sigma^{-1})^{T}) (y - X\beta)$$

$$= X^{T} (2\Sigma^{-1}) (y - X\beta)$$

$$= X^{T} \Sigma^{-1} (y - X\beta)$$

$$= X^{T} \Sigma^{-1} (y - X\beta)$$

$$X^{T} \Sigma^{-1} X\beta = X^{T} \Sigma^{-1} y$$

$$\beta = (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} y.$$

Thus, we get the same solution as with the weighted least squares where the weights are given by the inverse covariance matrix; that is, the weights are the precisions: $w_i = 1/\sigma_i^2$.

Quantifying uncertainty: some basic frequentist ideas

In linear regression

A) Given $y = X\beta + \varepsilon$, where $\varepsilon \sim N(0, \sigma^2 I)$, we want to find the sampling distribution of $\hat{\beta}$. Since y is normally distributed, $\hat{\beta} = (X^T X)^{-1} X^T y$ is a linear combination of multivariate normals, so its sampling distribution is also multivariate normal. Therefore, we need only find the mean and the covariance matrix. Note that $y \sim N(X\beta, \sigma^2 I)$, and thus, since $\hat{\beta} = (X^T X)^{-1} X^T y$, the mean of $\hat{\beta}$ is

$$(X^T X)^{-1} X^T X \beta = \beta.$$

Now we find the covariance matrix:

$$cov(\hat{\beta}) = cov((X^T X)^{-1} X^T y)$$

$$= (X^T X)^{-1} X^T cov(y) ((X^T X)^{-1} X^T)^T$$

$$= (X^T X)^{-1} X^T \sigma^2 I ((X^T X)^{-1} X^T)^T$$

$$= \sigma^2 (X^T X)^{-1} X^T X ((X^T X)^{-1})^T$$

$$= \sigma^2 ((X^T X)^{-1})^T$$

$$= \sigma^2 (X^T X)^{-1}$$

Note that in the second line, we have used the fact proven above that $cov(Ax) = Acov(x)A^T$. Therefore,

$$\hat{\beta} \sim N(\beta, \sigma^2(X^T X)^{-1}).$$

B) We can use the sample variance

$$\hat{\sigma}^2 := \frac{1}{n-p-1} \sum_{i=1}^{p} (y_i - \hat{y}_i)^2$$

to approximate σ^2 , whence we get an estimated covariance matrix:

$$\widehat{\operatorname{cov}}(\hat{\beta}) = \hat{\sigma}^2 (\operatorname{cov}(\hat{\beta})).$$

The standard errors for each $\hat{\beta}_i$ are the diagonals. To find these errors, I added the following lines to the ozone.R script:

```
yhat <- x %*% betahat
sigmahat <- (1/(nrow(x)-ncol(x)-1))*sum((y-yhat)^2)
betacov = sigmahat*solve(t(x) %*% x)</pre>
```

The tables below compare the resulting estimated covariance matrix with the estimated matrix obtained by using 1m.

Results from code shown above

	V1	V5	V6	V7	V8	V9	V10	V11	V12	V13
V1	1476.74028716	-0.27803845	-2.07274385	-0.15401978	0.36040930	1.59950229	0.00112043	-0.04101012	0.42108269	-0.00305420
V5	-0.27803845	0.00005285	0.00038040	0.00002384	-0.00005535	-0.00028848	-0.00000042	0.00000643	-0.00013341	-0.00000068
V6	-2.07274385	0.00038040	0.03048385	-0.00057225	-0.00120683	-0.00216768	-0.00000472	-0.00020066	-0.00004378	-0.00011709
V7	-0.15401978	0.00002384	-0.00057225	0.00056793	0.00002838	-0.00015370	0.00000062	-0.00018582	-0.00016668	0.00004272
V8	0.36040930	-0.00005535	-0.00120683	0.00002838	0.00482742	-0.00354290	-0.00000469	-0.00051214	-0.00181817	-0.00002328
V9	1.59950229	-0.00028848	-0.00216768	-0.00015370	-0.00354290	0.01563449	-0.00002122	0.00007980	-0.00902163	0.00009527
V10	0.00112043	-0.00000042	-0.00000472	0.00000062	-0.00000469	-0.00002122	0.00000016	0.00000115	0.00003933	-0.00000017
V11	-0.04101012	0.00000643	-0.00020066	-0.00018582	-0.00051214	0.00007980	0.00000115	0.00021950	0.00060475	-0.00000282
V12	0.42108269	-0.00013341	-0.00004378	-0.00016668	-0.00181817	-0.00902163	0.00003933	0.00060475	0.01430462	-0.00002221
V13	-0.00305420	-0.00000068	-0.00011709	0.00004272	-0.00002328	0.00009527	-0.00000017	-0.00000282	-0.00002221	0.00002410

Results from ${\tt lm}$

	V1	V5	V6	V7	V8	V9	V10	V11	V12	V13
V1	1469.08878309	-0.27659784	-2.06200424	-0.15322175	0.35854189	1.59121471	0.00111462	-0.04079763	0.41890091	-0.00303838
V5	-0.27659784	0.00005258	0.00037842	0.00002372	-0.00005507	-0.00028698	-0.00000042	0.00000640	-0.00013272	-0.00000068
V6	-2.06200424	0.00037842	0.03032590	-0.00056928	-0.00120058	-0.00215645	-0.00000470	-0.00019962	-0.00004355	-0.00011648
V7	-0.15322175	0.00002372	-0.00056928	0.00056498	0.00002824	-0.00015291	0.00000062	-0.00018485	-0.00016582	0.00004249
V8	0.35854189	-0.00005507	-0.00120058	0.00002824	0.00480241	-0.00352454	-0.00000467	-0.00050949	-0.00180875	-0.00002316
V9	1.59121471	-0.00028698	-0.00215645	-0.00015291	-0.00352454	0.01555349	-0.00002111	0.00007939	-0.00897489	0.00009478
V10	0.00111462	-0.00000042	-0.00000470	0.00000062	-0.00000467	-0.00002111	0.00000016	0.00000114	0.00003913	-0.00000017
V11	-0.04079763	0.00000640	-0.00019962	-0.00018485	-0.00050949	0.00007939	0.00000114	0.00021837	0.00060161	-0.00000281
V12	0.41890091	-0.00013272	-0.00004355	-0.00016582	-0.00180875	-0.00897489	0.00003913	0.00060161	0.01423050	-0.00002209
V13	-0.00303838	-0.00000068	-0.00011648	0.00004249	-0.00002316	0.00009478	-0.00000017	-0.00000281	-0.00002209	0.00002397

The magnitudes of the differences are shown below.

Absolute differences

	V1	V5	V6	V7	V8	V9	V10	V11	V12	V13
V1	7.65150408	0.00144061	0.01073961	0.00079803	0.00186741	0.00828758	0.00000581	0.00021249	0.00218178	0.00001582
V5	0.00144061	0.00000027	0.00000197	0.00000012	0.00000029	0.00000149	0.00000000	0.00000003	0.00000069	0.00000000
V6	0.01073961	0.00000197	0.00015795	0.00000297	0.00000625	0.00001123	0.00000002	0.00000104	0.00000023	0.00000061
V7	0.00079803	0.00000012	0.00000297	0.00000294	0.00000015	0.00000080	0.00000000	0.00000096	0.00000086	0.00000022
V8	0.00186741	0.00000029	0.00000625	0.00000015	0.00002501	0.00001836	0.00000002	0.00000265	0.00000942	0.00000012
V9	0.00828758	0.00000149	0.00001123	0.00000080	0.00001836	0.00008101	0.00000011	0.00000041	0.00004674	0.00000049
V10	0.00000581	0.00000000	0.00000002	0.00000000	0.00000002	0.00000011	0.00000000	0.00000001	0.00000020	0.00000000
V11	0.00021249	0.00000003	0.00000104	0.00000096	0.00000265	0.00000041	0.00000001	0.00000114	0.00000313	0.00000001
V12	0.00218178	0.00000069	0.00000023	0.00000086	0.00000942	0.00004674	0.00000020	0.00000313	0.00007412	0.00000012
V13	0.00001582	0.00000000	0.00000061	0.00000022	0.00000012	0.00000049	0.00000000	0.00000001	0.00000012	0.00000012

These are all relative differences of 0.52%. This discrepancy was eliminated by removing the -1 term from the formula for $\hat{\sigma}^2$.

Propagating uncertainty

A) If we want to find the variance of the sum of two random variables, we can use the formula

$$Var(\theta_1 + \theta_2) = Var(\theta_1) + Var(\theta_2) + 2cov(\theta_1, \theta_2).$$

To extend this to the sum of all components of θ , we get

$$\operatorname{Var}\left(\sum_{i=1}^{p} \theta_{i}\right) = \sum_{i=1}^{p} \operatorname{Var}(\theta_{i}) + \sum_{i \neq j} \operatorname{cov}(\theta_{i}, \theta_{j}).$$

This is the same as the sum of all entries of the covariance matrix Σ .

B) To approximate the variance of a non-linear function of the components θ_i , we can use the delta method, which relies on the function being well-approximated by its first-order Taylor polynomial. In greater generality, we could use a higher-order Taylor polynomial for a better approximation.

A) The following code finds a bootstrap estimation of the covariance, and the results are shown in the table below.

```
library(mlbench)
ozone = data(Ozone, package='mlbench')
ozone = na.omit(Ozone)[,4:13]
y = ozone[,1]
x = as.matrix(ozone[,2:10])
x = cbind(1,x)
betahat = solve(t(x))
#X: design matrix
#y: observations
#B: how many bootstrap iterations to use
compute_bootstrap_cov <- function(x,y,B) {</pre>
    n \leftarrow nrow(x)
    p \leftarrow ncol(x)
    betahat_boot <- matrix(nrow=B,ncol=p)</pre>
    betahat = solve(t(x))
    yhat <- x</pre>
    residuals <- y-yhat
    #create bootstrap samples for beta estimation
    for(i in 1:B) {
        boot_sample_indexes <- sample(1:n,n,replace=TRUE)</pre>
        xtemp <- x[boot_sample_indexes,]</pre>
        ytemp <- y[boot_sample_indexes]</pre>
        betahat_boot[i,] <- solve(t(xtemp)</pre>
    #find covariance matrix of bootstrap samples
    return(cov(betahat_boot))
}
cov_boot <- compute_bootstrap_cov(x,y,10000)</pre>
```

Bootstrap variance approximation

	1 11									
	V1	V5	V6	V7	V8	V9	V10	V11	V12	V13
V1	1251.64846649	-0.23664214	-2.44215928	-0.02053864	0.43455310	1.54668643	0.00100496	-0.08001760	0.11730545	-0.00214235
V5	-0.23664214	0.00004525	0.00045440	-0.00000302	-0.00007361	-0.00027219	-0.00000041	0.00001465	-0.00008045	-0.00000027
V6	-2.44215928	0.00045440	0.02630838	-0.00044876	-0.00177515	-0.00290728	-0.00000182	-0.00025026	0.00047022	-0.00015049
V7	-0.02053864	-0.00000302	-0.00044876	0.00058862	0.00017420	-0.00061511	0.00000258	-0.00025084	0.00044579	0.00001632
V8	0.43455310	-0.00007361	-0.00177515	0.00017420	0.00430994	-0.00212684	-0.00000416	-0.00050789	-0.00230557	0.00001002
V9	1.54668643	-0.00027219	-0.00290728	-0.00061511	-0.00212684	0.01351445	-0.00002100	0.00025828	-0.00862845	0.00005335
V10	0.00100496	-0.00000041	-0.00000182	0.00000258	-0.00000416	-0.00002100	0.00000014	0.00000056	0.00003819	-0.00000009
V11	-0.08001760	0.00001465	-0.00025026	-0.00025084	-0.00050789	0.00025828	0.00000056	0.00024282	0.00036042	0.00000529
V12	0.11730545	-0.00008045	0.00047022	0.00044579	-0.00230557	-0.00862845	0.00003819	0.00036042	0.01404178	-0.00003350
V13	-0.00214235	-0.00000027	-0.00015049	0.00001632	0.00001002	0.00005335	-0.00000009	0.00000529	-0.00003350	0.00001650

B) The following code simulates drawing samples from a multivariate normal distribution with a given mean and covariance.

```
simulate_mvn <- function(m,v,n) {
    d <- nrow(v)
    cd <- t(chol(v))
    mvn_samp <- matrix(nrow=d,ncol=n)#store samples as rows
    for(i in 1:n){
        std_norm_samp <- rnorm(d)
        mvn_samp[,i] <- cd
    }
    return(mvn_samp)
}</pre>
```

To test this, let us take 10,000 samples from the bivariate normal distribution with mean and covariance given as follows:

$$\mu = \langle 4, 5 \rangle$$
 $\Sigma = \begin{pmatrix} 5 & 8 \\ 8 & 13 \end{pmatrix}$

Letting mvn_samp denote this sample, we estimate the mean and variance using MLE with the following code

```
mu_hat <- colSums(mvn_samp)/N
sigma_hat <- t(mvn_samp - mu_hat) %*% (mvn_samp - mu_hat)/N</pre>
```

This results in the following approximations:

$$\hat{\mu} = \langle 4.003, 5.012 \rangle$$
 $\hat{\Sigma} = \begin{pmatrix} 5.465 & 7.912 \\ 7.912 & 13.332 \end{pmatrix}$

The following code does a bootstrap approximation of the covariance.

```
B <- 10000
n <- nrow(mvn_samp)
p <- ncol(mvn_samp)
mvn_samp_boot <- matrix(nrow=B,ncol=p)
sigma_hat_boot <- matrix(0,nrow=p,ncol=p)
for(i in 1:B) {
    boot_sample_indexes <- sample(1:n,n,replace=TRUE)
    mvn_samp_temp <- mvn_samp[boot_sample_indexes,]
    mu_hat_temp <- colSums(mvn_samp_temp)/N
    sigma_hat_boot <- sigma_hat_boot + (t(mvn_samp_temp - mu_hat_temp))
sigma_hat_boot <- sigma_hat_boot/B</pre>
```

This results in the following approximation:

$$\hat{\Sigma}_{boot} = \begin{pmatrix} 5.456 & 7.898 \\ 7.898 & 13.313 \end{pmatrix}$$