Seaborn By Virat Tiwari

October 18, 2023

1 Seaborn - Seaborn is used for data Visualization or Graphical representation of data , it is almost similar to the Matplotlib . We can easily understand the HIDDEN PATTERNS of data with the help of graphs and we get the INSIGHTS of data as well

```
[2]: # We can easily " import seaborn " with alias " sns "
import seaborn as sns
```

Note - Seaborn provide some built-in Datasets

```
[3]: # sns.load_dataset ( ) function is used for importing the dataset in python
# iris is built-in dataset that is provided by seaborn
sns.load_dataset("iris")
```

[3]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

```
[24]: # We can store dataset in variable iris
iris=sns.load_dataset("iris")
```

[37]: # to_csv ("here we write name of file that we want to save with extention") -u

-This function is used for saving the data file in our local system

iris.to_csv("iris.csv")

[25]: # sns.scatter () function is used for represent the data in scatter form or graph

sns.scatterplot(x=iris.sepal_length,y=iris.sepal_width)

[25]: <AxesSubplot: xlabel='sepal_length', ylabel='sepal_width'>

[26]: sns.scatterplot(x=iris.sepal_length,y=iris.petal_width)

[26]: <AxesSubplot: xlabel='sepal_length', ylabel='petal_width'>


```
[27]: sns.scatterplot(x=iris.petal_length,y=iris.petal_width)
```

[27]: <AxesSubplot: xlabel='petal_length', ylabel='petal_width'>


```
[29]: # histplot ( ) function is used for histogram graphs and histplot is equivalent 

→to distplot(distribution plot)

sns.histplot(iris["sepal_length"])
```

[29]: <AxesSubplot: xlabel='sepal_length', ylabel='Count'>

[30]: # Tips is built-in dataset that is provided by seaborn

sns.load_dataset () fucntion is used for importing the dataset , we pass

→name of datset inside the load_dataset dunction

tips=sns.load_dataset("tips")

[31]: tips

[31]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
		•••	•••		•••			
	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2

[244 rows x 7 columns]

[35]: # This is how we save dataset in our local file system or in our computer tips.to_csv("Tips.csv")

[38]: sns.scatterplot(x=tips.total_bill,y=tips.tip)

[38]: <AxesSubplot: xlabel='total_bill', ylabel='tip'>


```
[39]: # head ( ) function give the initial 5 data from the dataset
tips.head()
```

```
[39]:
         total_bill
                      tip
                               sex smoker
                                           day
                                                  time
                                                        size
      0
              16.99
                     1.01 Female
                                                Dinner
                                       No
                                           Sun
                                                            2
      1
              10.34 1.66
                             Male
                                           Sun
                                                Dinner
                                                            3
                                       No
      2
              21.01
                     3.50
                             Male
                                                Dinner
                                                            3
                                       No
                                           Sun
      3
              23.68
                                                            2
                     3.31
                              Male
                                           Sun
                                                Dinner
                                       No
      4
              24.59
                     3.61 Female
                                                Dinner
                                       No
                                           Sun
```

NOTE- IMPORTANT FUNCTIONS -

```
[40]: # value_counts ( ) function give the total values of numbers from the dataset
      # tips [ "here we pass the column name" ]
      # Here we find out that how many people smoke or how many are not smoke
      tips["smoker"].value_counts()
[40]: No
             151
              93
      Yes
     Name: smoker, dtype: int64
[41]: # value counts () function give the total values of numbers from the dataset
      # tips [ "here we pass the column name" ]
      # Here we find out that how many people Male or how many are Female
      tips["sex"].value_counts()
[41]: Male
                157
                 87
     Female
     Name: sex, dtype: int64
[42]: | # value_counts ( ) function give the total values of numbers from the dataset
      # tips [ "here we pass the column name" ]
      # Here we find out that how many total days of dinner and lunch
      tips["time"].value_counts()
[42]: Dinner
                176
     Lunch
                 68
      Name: time, dtype: int64
[43]: # value_counts () function give the total values of numbers from the dataset
      # tips [ "here we pass the column name" ]
      # Here we find out that how many total days of sun, mon, thur, fri in numbers from
       →the dataset
      tips["day"].value_counts()
```

[43]: Sat 87 Sun 76 Thur 62 Fri 19

Name: day, dtype: int64

```
[48]: # NOTE- IMPORTANT

# relplot ( ) is used for representing data for analysis purpose

# hue is nothing but define a colour

sns.relplot(x=tips.total_bill,y=tips.tip,data=tips,hue="smoker")
```

[48]: <seaborn.axisgrid.FacetGrid at 0x7f2b18266620>

[49]: tips.head()

```
[49]:
          total_bill
                          tip
                                   sex smoker
                                                  day
                                                          time
                                                                 size
       0
                16.99
                         1.01
                               Female
                                             No
                                                  Sun
                                                       Dinner
                                                                     2
       1
                10.34
                         1.66
                                  Male
                                                  Sun
                                                       Dinner
                                                                     3
                                             No
       2
                21.01
                         3.50
                                  Male
                                                  Sun
                                                        Dinner
                                                                     3
                                             No
       3
                                                                     2
                23.68
                         3.31
                                  Male
                                             No
                                                  Sun
                                                        Dinner
                24.59
                         3.61
                               Female
                                                  \operatorname{Sun}
                                                       Dinner
                                                                     4
                                             No
```

Note - In the below grapph , We find out or simply analysis that who paid the highest bill and that person came single or came in group

```
[52]: # style present the data in different forms
sns.relplot(x=tips.total_bill,y=tips.tip,data=tips,style="size")
```

[52]: <seaborn.axisgrid.FacetGrid at 0x7f2b183dd030>


```
[51]: tips["size"].value_counts()
```

```
[51]: 2 156
3 38
4 37
5 5
1 4
6 4
Name: size, dtype: int64
```

In the given below graph , we have seen that on which day maximum engagement generate on the restrourent so we found that maximum people came on Saturday

```
[53]: sns.catplot(x="day",y="total_bill",data=tips)
```

[53]: <seaborn.axisgrid.FacetGrid at 0x7f2b183dd2a0>


```
[54]: # joinplot ( ) function create a scatter + hsitogram graph together
sns.jointplot(x=tips.total_bill,y=tips.tip)
```

[54]: <seaborn.axisgrid.JointGrid at 0x7f2b1883d5a0>

[55]: <seaborn.axisgrid.PairGrid at 0x7f2b19379990>

[57]: # pairplot () function show all vs all , it simply plot all the pair of graphs
sns.pairplot(iris)

[57]: <seaborn.axisgrid.PairGrid at 0x7f2b18f85cf0>

THANK YOU SO MUCH!!
YOURS VIRAT TIWARI:)