Attention

Course Instructor: Chandresh Al Lab Coordinator @IIT Indore

Course Content

Module I: History of Deep Learning, Sigmoid Neurons, Perceptrons, and learning algorithms. Multilayer Perceptrons (MLPs), Representation Power of MLPs,.

Module II: Feedforward Neural Networks. Backpropagation. first and second-order training methods. NN Training tricks, Regularization

Module III: Introduction to Autoencoders and their characteristics, relation to PCA, Regularization in autoencoders, and Types of autoencoders, Variational Autoencoder

Module IV: Architecture of Convolutional Neural Networks (CNN), types of CNNs. Image classification, Pre-training vs fine-tuning.- representation learning, Object Detection and Semantic Segmentation

Module V: Architecture of Recurrent Neural Networks (RNN), Word Embeddings, Encoder-Decoder Models, **Attention Mechanism**. Advanced Topics: Transformers and BERT. Nodule VI: Gen Al- Deep generative models: VAE, GAN,

Acknowledgement

- Russ Salakhutdinov and Hugo Larochelle's class on Neural Networks
- Neural Networks and Deep Learning course by Danna Gurari University of Colorado Boulder

Today's Topics

Motivation: machine neural translation for long sentences

Encoder

Decoder: attention

• Performance evaluation

Today's Topics

Motivation: machine neural translation for long sentences

Encoder

• Decoder: attention

Performance evaluation

Task: Machine Translation

Which type of sequence problem is this: one-to-many, many-to-one, or many-to-many?

Pioneering Neural Network Approach

Image source: https://smerity.com/articles/2016/google_nmt_arch.html seq2seq: Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Pioneering Neural Network Approach

Image source: https://smerity.com/articles/2016/google_nmt_arch.html Sutskever et al. Sequence to Sequence Learning with Neural Networks. Neurips 2014.

Analysis of Two Models

What performance trend is observed for inputs (source) and outputs (reference) as the number of words in each sentence grows?

Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

Analysis of Two Models

Performance drops for longer sentences!

Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

Problem: Performance Drops As Sentence Length Grows

Image source: https://smerity.com/articles/2016/google_nmt_arch.html Cho et al. On the Properties of Neural Machine Translation: Encoder—Decoder Approaches. SSST 2014.

Decoder decides which inputs are needed for prediction at each time step; e.g., "hard attention" focuses on one input

Note: while word order between the input and target align in this example, it can differ

Decoder decides which inputs are needed for prediction at each time step; e.g., "hard attention" focuses on one input

Limitations: a target word relies on information about one input word and "hard attention" is not differentiable

"Soft" Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step; e.g., "soft attention" uses a weighted combination of the input

How should weights be chosen for each input?

"Soft" Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step; e.g., "soft attention" uses a weighted combination of the input

Could collect manual annotations and then incorporate into the loss function that predicted weights should match ground truth weights... but this approach is impractical

"Soft" Attention: Challenge

Decoder decides which inputs are needed for prediction at each time step; e.g., "soft attention" uses a weighted combination of the input

Input

Instead, have the model learn how to weight each input!

Target

Er liebte zu essen

t = 1 t = 2 t = 3 t = 4

Solution

- 3. At each decoder time step, a prediction is made based on the weighted sum of the inputs
- 2. At each decoder time step, attention weights are computed that determine each input's relevance for the prediction

1. Encoder produces hidden state for every input

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Today's Topics

• Motivation: machine neural translation for long sentences

Encoder

• Decoder: attention

Performance evaluation

Solution

1. Encoder produces hidden state for every input

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Popular Choices for Encoding Input

• Bi-directional RNN (Bahdanau)

Stacked RNNs (Luong)

Bi-directional and Stacked RNN (Google)

Historical Context

Popular Choices for Encoding Input

• Bi-directional RNN (Bahdanau)

Stacked RNNs (Luong)

Bi-directional and Stacked RNN (Google)

• Two RNNs where input is fed forward and backward respectively and then the hidden states (typically) are concatenated into a hidden state

What are advantages of a bi-directional RNN compared to a single RNN?

• Two RNNs where input is fed forward and backward respectively and then the hidden states (typically) are concatenated into a hidden state

Can use information from the past and **future** to make predictions: e.g., can resolve for "Teddy is a ...?" if Teddy refers to a "bear" or former US President Roosevelt

• Two RNNs where input is fed forward and backward respectively and then the hidden states (typically) are concatenated into a hidden state

What are disadvantages of a bi-directional RNN compared to a single RNN?

• Two RNNs where input is fed forward and backward respectively and then the hidden states (typically) are concatenated into a hidden state

Entire sequence must be observed to make a prediction (e.g., unsuitable for text prediction)

• Two RNNs where input is fed forward and backward respectively and then the hidden states (typically) are concatenated into a hidden state

Bahdanau's method encodes input with a bidirectional GRU

Popular Choices for Encoding Input

Bi-directional RNN (Bahdanau)

Stacked RNNs (Luong)

Bi-directional and Stacked RNN (Google)

Luong's Neural Machine Translation: Encoder

Luong's method encodes input with a 2-layer stacked LSTM

Popular Choices for Encoding Input

Bi-directional RNN (Bahdanau)

Stacked RNNs (Luong)

Bi-directional and Stacked RNN (Google)

Google's Neural Machine Translation:

Encoder

8 layers with 1rst layer bi-directional and skip connections between layers (greater level of abstraction for input)

Wu et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016.

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#df28

Popular Choices for Encoding Input

Bi-directional RNN (Bahdanau)

Stacked RNNs (Luong)

Bi-directional and Stacked RNN (Google)

Today's Topics

Motivation: machine neural translation for long sentences

Encoder

• Decoder: attention

Performance evaluation

Solution

- 3. At each decoder time step, a prediction is made based on the weighted sum of the inputs
- 2. At each decoder time step, attention weights are computed that determine each input's relevance for the prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

How many inputs are in this example?

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

How to measure the similarity between hidden states of the decoder and input?

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

• Many options (function should be differentiable)

Many options (function should be differentiable)

What model parameters must be learned when using dot-product?

Many options (function should be differentiable)

What model parameters must be learned when using bilinear?

• Many options (function should be differentiable)

What model parameters must be learned when using multi-layer perceptron?

Many options (function should be differentiable)

Model parameters that must be learned

After computing the similarity scores for each input, then apply softmax to all scores so all inputs' weights sum to 1

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

We now have our attention weights!

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Measuring Each Input's Influence on the Prediction

Intuitively:

Input

He loved to eat

The model can weight each input at each time step!

Target

Er liebte zu essen

t = 4

Solution

- 3. At each decoder time step, a prediction is made based on the weighted sum of the inputs
- 2. At each decoder time step, attention weights are computed that determine each input's relevance for the prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Word Prediction

We compute at time step *t* for all *n* inputs a weighted sum:

$$\mathbf{c}_t = \sum_{i=1}^n \alpha_{t,i} \boldsymbol{h}_i$$

The influence of inputs are amplified for large attention weights and repressed otherwise

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Word Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Word Prediction

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Bahdanau method

Many options exist for how to use the context vector with the decoder's output at the previous time step to produce an output at each decoder time step

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Google method

Many options exist for how to use the context vector with the decoder's output at the previous time step to produce an output at each decoder time step

Decoder predicts not only using its output at the previous time step and previous hidden state, but also with a context vector

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Luong method

Many options exist for how to use the context vector with the decoder's output at the previous time step to produce an output at each decoder time step

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Decoder

What stays the same at each decoder time step?

- input's hidden state

What changes at each decoder time step?

- decoder's hidden state
- (and so) attention weights and context vector
- decoder's output word at the previous time step

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3

Summary: Attention (Computations at Each Decoder Step)

Decoder decides which inputs are needed for prediction at each time step with "soft attention", which results in a weighted combination of the input

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Summary: Attention (Computations at Each Decoder Step)

All parts are differentiable which means end-to-end training is possible

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Today's Topics

• Motivation: machine neural translation for long sentences

Encoder

• Decoder: attention

Performance evaluation

Analysis of Attention Models

What performance trend is observed as the number of words in the input sentence grows?

Analysis of Attention Models

Performance no longer drops for longer sentences!

Input sentence

Values are 0 to 1, with whiter pixels indicating larger attention weights

Input sentence

What insights can we glean from these examples?

Input sentence

While a linear alignment between input and output sentences is common, there are exceptions (e.g., order of adjectives and nouns can differ)

Input sentence

Output words are often informed by more than one input word; e.g., "man" indicates translation of "the" to I' instead of Ie, Ia, or Ies

Input sentence

It naturally handles different input and output lengths (e.g., 1 extra output word for both examples)

Today's Topics

• Motivation: machine neural translation for long sentences

Encoder

• Decoder: attention

Performance evaluation

The End