1. **Intersections and unions of subgroups.** Prove that if H and K are subgroups of G, then so is $H \cap K$. On the other hand, prove $H \cup K$ is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$.

Proof. Suppose $H, K \leq G$. Consider $H \cap K$.

Note that $1 \in H, K$ by the definition of groups, so $1 \in H \cap K$. Hence, $H \cap K \neq \emptyset$

Now let $x, y \in H \cap K$. Then $x, y \in H$ and $x, y \in K$, both of which are groups. Hence, $y^{-1} \in H$ and $y^{-1} \in K$, which implies $xy^{-1} \in H$ and $xy^{-1} \in K$. Thus, $xy^{-1} \in H \cap K$.

As a result, $H \cap K$ satisfies the subgroup criterion and is hence a subgroup of G.

Now consider $H \cup K$. Suppose for contraposition that $H \not\subset K$ and $K \not\subset H$. Then $\exists x \in H$ such that $x \notin K$ and $\exists y \in K$ such that $y \notin H$.

Then we have $y^{-1} \notin H$ and $x \notin K$, so $xy^{-1} \notin H$, K. Hence $xy^{-1} \notin H \cup K$ and so $H \cup K$ does not satisfy the subgroup criterion.

As a result, we have that $H \cup K$ subgroup of G implies that $H \subset K$ or $K \subset H$.

Now for the other direction of the proof. Suppose $H \subset K$.

Then $\forall x \in H$ we have $x \in K$. Hence, $H \cup K = K$. Since $K \leq G$, we have $H \cup K \leq G$ as well.

2. Homomorphisms and isomorphisms.

(a) Show that the map

$$\varphi: G \to G$$
 defined by $\varphi: g \mapsto g^{-1}$

is a homomorphism if and only if G is abelian. Give an example of a (non-abelian) group G, and verify by example that this map is not a homomorphism.

Proof. Suppose φ is a homomorphism. Then $\varphi(xy) = \varphi(x)\varphi(y)$ for every $x,y \in G$. By the definition of φ we have

$$\varphi(xy) = y^{-1}x^{-1}$$
$$= \varphi(x)\varphi(y)$$
$$= x^{-1}y^{-1}$$

Hence $y^{-1}x^{-1} = x^{-1}y^{-1}$ for every $x, y \in G$. Thus, G is abelian.

Now suppose G is abelian. Then for every $x, y \in G$, we have that

$$xy = yx$$

Define the map $\varphi: G \to G$ by $\varphi: g \to g^{-1}$

Then we have,

$$\varphi(xy) = (xy)^{-1}$$
$$= y^{-1}x^{-1}$$

and

$$\varphi(x)\varphi(y) = x^{-1}y^{-1}$$

Since G abelian, we can rewrite

$$\varphi(x)\varphi(y) = x^{-1}y^{-1}$$
$$= y^{-1}x^{-1}$$

Hence we have that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in G$, so φ is a homomorphism.

- (b) Let $\varphi: G \to H$ be an isomorphism of groups. For the following, you may use the facts that (1) a function is a bijection if and only if it has an inverse, and (2) an invertible function is a homomorphism if and only if its inverse is a homomorphism (which implies that $G \cong H$ if and only if $H \cong G$).
 - (i) Show |G| = |H|.

Proof. Since $\varphi: G \to H$ is an isomorphism, we know that it is a bijection from G to H. Suppose |G| < |H|. Since φ is injective, then each element of G is mapped to exactly one element of H.

Since |H| > |G|, there exists $y \in H$ such that there is no $x \in G$ with $\varphi(x) = y$. However, we assumed φ was bijective, so this cannot be the case. So $|G| \ge |H|$.

However, now assume that |G| > |H|. Since φ is a bijection, we can take the inverse bijection φ^{-1} and apply the same argument as above. Thus, |H| cannot be greater than |G|.

As a result, the only remaining option is that |G| = |H|.

(ii) Show G is abelian if and only if H is also abelian.

Proof. Suppose G is abelian. Then $\forall x, y \in G$, we have xy = yx. Thus, we have $\varphi(xy) = \varphi(yx)$ (1)

In addition, by the definition of φ as an isomorphism, we have that $\varphi(xy) = \varphi(x)\varphi(y)$ and $\varphi(yx) = \varphi(y)\varphi(x)$.

Hence, from (1) and the above, we get

$$\varphi(x)\varphi(y) = \varphi(y)\varphi(x)$$

for every $x, y \in G$. Since φ is a bijection, for every element $y \in H$, $\exists x_y \in G$ such that $\varphi(x_y) = y$. Hence, this shows that H is an abelian group as well.

Now suppose H is abelian. Consider φ^{-1} , which is a bijection from $H \to G$ and a homomorphism (hence an isomorphism). Then we can apply the same argument as above, just swapping the H and G.

Hence, H abelian \implies G abelian, and we get G abelian \iff H abelian.

(iii) Show that for any $g \in G$, $|g| = |\varphi(g)|$. [Show $g^n = 1$ if and only if $\varphi(g)^n = 1$.]

Proof. Suppose $g^n = 1$.

Then $\varphi(g^n) = \varphi(1)$.

Note that for every $x \in G$, we have

$$\varphi(1x) = \varphi(1)\varphi(x)$$
$$= \varphi(x)$$

Hence $\varphi(g^n) = \varphi(1)$ must map to the identity in H (ie. 1).

In addition, we have

$$\varphi(g^n) = \varphi(g \cdot g \cdot g \cdot g)$$

$$= \varphi(g) \cdot \varphi(g) \cdot \varphi(g)$$

$$= \varphi(g)^n$$

$$= 1$$

as required.

Now suppose $\varphi(q)^n = 1$. Then

$$\varphi(g)^n = \varphi(g) \cdot \varphi(g) \cdots \varphi(g)$$

= $\varphi(g^n) = 1$

So $g^n = 1$ if and only if $\varphi(g)^n = 1$.

Thus, if $g^m \neq 1$ for some m, then $\varphi(g)^m \neq 1$ as well. So if |g| = n, then every power g^k with $k \in \{1, \dots, n-1\}$ is such that $g^k \neq 1$ and $\varphi(g)^k \neq 1$

In addition, from what we have proved above, we have $g^n = 1 \implies \varphi(g)^n = 1$. Since we showed that neither g^k nor φ^k are 1 for any $k \in \{1, \dots, n-1\}$, we have that $|g| = |\varphi(g)| = n$

- (c) Show that the following groups are *not* isomorphic. [If you use the previous part, these will all be short answers.]
 - (i) The multiplicative groups \mathbb{R}^{\times} and \mathbb{C}^{\times} ;

Answer. There are only 2 elements in \mathbb{R}^{\times} with order less than ∞ : |1| = 1 and |-1| = 2. However, there are 4 in \mathbb{C}^{\times} : |1| = 1, |-1| = 2, |i| = 4, |-i| = 4.

Since there are no elements in \mathbb{R}^{\times} with order 4, these two groups cannot be isomorphic.

.....

(ii) $\mathbb{Z}/24\mathbb{Z}$ and S_4 ;

Answer. We know that $\mathbb{Z}/24\mathbb{Z}$ is abelian since

$$\overline{x} + \overline{y} = \overline{x + y}$$

$$= \overline{y + x}$$

$$= \overline{y} + \overline{x}$$

for every $\overline{x}, \overline{y} \in \mathbb{Z}/24\mathbb{Z}$. However, S_4 is not abelian because

$$(23)(13) = (123)$$

but

$$(13)(23) = (132)$$

.....

(iii) $D_{2\cdot 12}$ and S_4 ;

Answer. The order of $r \in D_{2\cdot 12}$ is 12. However, there is no element in S_4 with order 12.

.....

(iv) S_m and S_n , with $m \neq n$.

Answer. We have $|S_m| = m!$ and $|S_n| = n!$. Since $n \neq m$, we have $|S_m| \neq |S_n|$

Direct Products As defined in Example 6 on page 18 if (A +) and $(B \diamond)$ are groups, we can

3. **Direct Products.** As defined in Example 6 on page 18, if (A, \star) and (B, \diamond) are groups, we can form a new group $A \times B$, called their *direct product*, whose elements are those in the Cartesian Product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

and whose operation is defined component-wise:

$$(a_1,b_1)(a_2,b_2)=(a_1\star a_2,b_1\diamond b_2).$$

For example, if $A = B = \mathbb{R}$ and $\star = \diamond = +$, then $\mathbb{R} \times \mathbb{R}$ is the familiar \mathbb{R}^2 .

(a) Verify the group axioms for $A \times B$.

Proof. Let $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A \times B$. Then,

$$[(a_1, b_1) \cdot (a_2, b_2)] \cdot (a_3, b_3) = (a_1 a_2, b_1 b_2) \cdot (a_3, b_3)$$

$$= (a_1 a_2 a_3, b_1 b_2 b_3)$$

$$= (a_1, b_1) \cdot (a_2 a_3, b_2 b_3)$$

$$= (a_1, b_1) \cdot [(a_2, b_2) \cdot (a_3, b_3)]$$

Now let 1 = (1, 1). Then,

$$(a_1, b_1) \cdot (1, 1) = (a_1 \cdot 1, b_1 \cdot 1)$$

= (a_1, b_1)

and

$$(1,1) \cdot (a_1,b_1) = (1 \cdot a_1, 1 \cdot b_1)$$
$$= (a_1,b_1)$$

Finally, we know that if $a_1, b_1 \in \mathbb{R}$, then $a_1^{-1}, b_1^{-1} \in \mathbb{R}$. Let $(a_1, b_1)^{-1} = (a_1^{-1}, b_1^{-1})$. Then,

$$(a_1, b_1)^{-1} \cdot (a_1, b_1) = (a_1^{-1}, b_1^{-1}) \cdot (a_1, b_1)$$
$$= (a_1^{-1} a_1, b_1^{-1} b_1)$$
$$= (1, 1)$$

and,

$$(a_1, b_1) \cdot (a_1, b_1)^{-1} = (a_1, b_1) \cdot (a_1^{-1}, b_1^{-1})$$
$$= (a_1 a_1^{-1}, b_1 b_1^{-1})$$
$$= (1, 1)$$

Hence, $A \times B$ is a group.

(b) Verify that $\pi: A \times B \to A$ defined by $(a, b) \mapsto a$ is a homomorphism, and compute its kernel. (Note: A similar proof would show that the projection $\pi_B: A \times B \to A$ defined by $(a, b) \mapsto b$ is a homomorphism, with a corresponding kernel.)

Proof. Let $(a_1,b_1),(a_2,b_2) \in A \times B$. Then,

$$\varphi((a_1, b_1) \cdot (a_2, b_2)) = \varphi((a_1 a_2, b_1 b_2))$$

$$= a_1 a_2$$

$$= \varphi((a_1, b_1)) \cdot \varphi((a_2, b_2))$$

Hence, φ is a homomorphism.

(c) Verify that $A \times 1 = \{(a, 1) \mid a \in A\}$ is a subgroup of $A \times B$ and that $A \times 1 \cong A$. (Note: A similar proof would show that $1 \times B$ is a subgroup of $A \times B$ isomorphic to B.)

Proof. We know that $A \times 1$ is non-empty because $1 \in A$, so $(1,1) \in A \times 1$.

Now note that for every element $(a,1) \in A \times 1$, we have that $a \in A$ and $1 \in B$. Hence, $A \times 1 \subset A \times B$.

Now let $(a_1, 1), (a_2, 1) \in A \times 1$. We have that $(a_2, 1)^{-1} = (a_2^{-1}, 1)$. We know $a_2^{-1} \in A$, so $(a_2^{-1}, 1) \in A \times 1$. Now consider,

$$(a_1,1) \cdot (a_2^{-1},1) = (a_1 a_2^{-1},1)$$

Since A is a group and $a_1, a_2^{-1} \in A$, then $a_1 a_2^{-1} \in A$ and we have that $(a_1 a_2^{-1}, 1) \in A \times 1$.

As a result $A \times 1$ satisfies the subgroup criterion and hence $A \times 1 \leq A \times B$.

4. Normalizers and Centralizers of subgroups.

Let $H \leq G$ (recall that \leq means "subgroup").

(a) Show that $H \leq N_G(H)$.

Proof. Recall that $N_G(H) = \{g \in G | gHg^{-1} = H\}$

Suppose $g_1 \in H$. Then $g_1 \in G$ since $H \leq G$. Moreover, $g_1^{-1} \in H$, G. Hence, for every $h \in H$, we have

$$g_1hg_1^{-1} \in H$$

Now fix $h_1, h_2 \in H$ and suppose

$$g_1 h_1 g_1^{-1} = g_1 h_2 g_1^{-1}$$

This implies that

$$g_1^{-1}(g_1h_1g_1^{-1})g_1 = g_1^{-1}(g_1h_2g_1^{-1})g^1)g_1$$

$$\iff h_1 = h_2$$

Now suppose $\exists x \in H$ such that there is no $h_x \in H$ with $g_1 h_x g^{-1} = x$.

Then the domain has |H| = n elements, and the co-domain has at most n-1 elements. By the pigeonhole principle, there must be at least one $h_0 \in H$ such that $g_1 h_0 g_1^{-1} = g_1 h_k g_1^{-1}$ for some $h_k \in H$.

However, as we proved above, $g_1h_0g_1^{-1}=g_1h_kg_1^{-1} \Longrightarrow h_0=h_k$. Hence, there cannot be an element $x\in H$ such that there is no $h_x\in H$ with $g_1h_xg^{-1}=x$.

Thus, if we define $\varphi_g: H \to H$ by $\varphi_g: h \to ghg^{-1}$, we see from the above that φ is a bijection from $H \to H$. This is precisely a permutation of the elements in H.

Hence, for every $g \in H$, we have that $\varphi_q(H) = H$. So $g \in N_G(H)$.

Thus, we have that $H \subset N_G(H)$. Now need to show that $N_G(H)$ is a group in order to establish that $H \leq N_G(H)$.

We can do this by showing that $N_G(H) \leq G$. First, $N_G(H) \neq \emptyset$ because $1 \in H \implies 1 \in N_G(H)$.

Now assume $x, y \in N_G(H)$. That is, $xHx^{-1} = H$ and $yHy^{-1} = H$.

Note that, if we multiply on the left by y^{-1} and on the right by y in the second equality, we get

$$H = y^{-1}Hy$$

Hence, $y^{-1} \in N_G(H)$ and $N_G(H)$ is closed under inverses. Now

$$(xy)H(xy)^{-1} = (xy)H(y^{-1}x^{-1})$$

= $x(yHy^{-1})x^{-1}$
= H

so $xy \in N_G(H)$ and $N_G(H)$ is closed under product. Hence $N_G(H) \leq G$ and so $N_G(H)$ is a group.

Since $H \leq G$, we know H is a group, and since $H \subset N_G(H)$ and $N_G(H)$ group, we have that

$$H \leqslant N_G(H)$$

as required.

(b) Give an example where A is not a subgroup of G and $A \subseteq N_G(A)$. Answer. Let $G = S_3$, and $A = \{(1\ 2\ 3), (2\ 3)\}.$

G is clearly a group, and A clearly is not a subgroup of G because $1 \notin A$.

Now observe that

$$(1 2 3)(1 2 3)(1 2 3)^{-1} = [(1 2 3)(1 2 3)](1 3 2)$$
$$= (1 3 2)(1 3 2)$$
$$= (1 2 3)$$

but

$$(1\ 2\ 3)(2\ 3)(1\ 2\ 3)^{-1} = (1\ 2\ 3)(2\ 3)(1\ 3\ 2)$$

= $(1\ 2\ 3)(1\ 2)$
= $(1\ 3)$

So $(1\ 2\ 3)A(1\ 2\ 3)^{-1}\neq A$ and hence $(1\ 2\ 3)\notin N_G(A)$. Hence, $A\nsubseteq N_G(A)$

as required

(c) Show $H \leq C_G(H)$ if and only if H is abelian.

Proof. Suppose $H \leq C_G(H)$. Fix $h_1 \in H$. We know $h_1 \in C_G(H)$ since $H \leq C_G(H)$. Hence, for every $h \in H$,

$$h_1 \cdot h \cdot h_1^{-1} = h$$

Thus, we have that,

$$h_{1} \cdot h \cdot h_{1}^{-1} = h_{1} \cdot h_{1}^{-1} \cdot h$$

$$= h_{1}^{-1} \cdot h_{1} \cdot h$$

$$= h \cdot h_{1} \cdot h_{1}^{-1}$$

$$= h \cdot h_{1}^{-1} \cdot h_{1}$$

$$= h$$

for every $h \in H$. That is, every $h \in H$ commutes with h_1, h_1^{-1} . Since h_1 was arbitrary, this applies for every element of H. Hence, H is abelian.

Now suppose that H is an abelian group. Fix $h_2 \in H$. Then for every $h \in H$, we have

$$h_2 \cdot h \cdot h_2^{-1} = h_2 \cdot h_2^{-1} \cdot h$$
$$= h$$

Hence, $h_2 \in C_G(H)$. Since h_2 was arbitrary, we have that every element of H is in $C_G(H)$

Hence, $H \subset C_G(H)$. We know $C_G(H) \leq G$, so $C_G(H)$ is a group and we have $H \leq C_G(H)$.

(d) For any nonempty $A \subseteq G$, define $N_H(A) = \{h \in H \mid hAh^{-1} = A\}$. Show that $N_H(A) = H \cap N_G(A)$ and deduce $N_H(A) \leq H$.

Proof. We have that $N_G(A) = \{g \in G | gAg^{-1} = A\}.$

Hence, $H \cap N_G(A) = \{g \in G | gAg^{-1} = A \text{ and } g \in H\}.$

Since $H \leq G$, every element $h \in H$ is an element of G, so we can rewrite the above definition as,

$$H \cap N_G(A) = \{ h \in H | hAh^{-1} = A \}$$

But this is precisely the definition of $N_H(A)$. Hence,

$$N_H(A) = H \cap N_G(A)$$

Clearly then, $N_H(A) \subset H$ by definition of intersections.

Next, we know $1 \in N_H(A)$ because $1 \in H$ since H is a subgroup and $1A1^{-1} = A$ trivially. Now let $x, y \in N_H(A)$. Then,

$$(xy)A(xy)^{-1} = xyAy^{-1}x^{-1}$$

= $x(yAy^{-1})x^{-1}$
= xAx^{-1}
= A

So $xy^{-1} \in N_H(A)$ for every $x,y \in N_H(A)$

Hence, $N_H(A) \subset H$ and satisfies the subgroup criterion, so

$$N_H(A) \leqslant H$$

as required. \Box