

Predicting Brain Activity while Listening to Stories

Subba reddy Oota, Frederic Alexandre, Xavier Hinaut

Brain Encoding vs Decoding

Haiguang Wen et al, 2017

What is fMRI?

Brain Encoding

Stimulus

Models

Brain Encoding

Brain Encoding

Vision models accurately predict human vision recordings

Most popular language models are Tranformers

Transformer language models (BERT, XML, GPT,...)

Vaswani et al. 2017

Language models based on words

Transformer language models (BERT, XML, GPT,...)

Language models based on sentences

Transformer language models (BERT, XML, GPT,...)

Can current language models deal with long-term dependencies?

- Transformer language models are unable to handle the long-term dependencies
 - sequence length is fixed to 512 words
- LSTMs still lacks investigation of the long-term memory cognitive plausibility and its link to fMRI data

What kind of language models can represent long-term dependencies?

could they also predict higher cognition while subjects are engaged in longer stories?

The data target: human brain recordings

- We use Pieman story listening:
 - 82 subjects,
 - 259 TRs (repetition time)
 - here it is 1.5 sec.

Example: "I began my illustrious carrier in journalism..."

Nastase et al. 2021 fMRI

Models considered (n = 5)

• Embedding type models: GloVe

Models considered (n = 5) Contd.

- Embedding type models: GloVe
- Recurrent type models: LSTM, RandLSTM

Models considered (n = 5) Contd.

- Embedding type models: GloVe
- Recurrent type models: LSTM, RandLSTM
- Contextualized pretrained models: ELMo, Longformer

Models considered (n = 5) Contd.

- Embedding type models: GloVe
- Recurrent type models: LSTM, RandLSTM
- Contextualized pretrained models: ELMo, Longformer

Longformer: Transformer with Global + local sliding window

Evaluation Metrics: 2V2 and Pearson

2V2 Accuracy

$$\begin{aligned} 2\text{V2 Accuracy} &= \\ \frac{1}{N_{C_2}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} I[\{cosD(Y_i, \hat{Y}_i) + cosD(Y_j, \hat{Y}_j)\} \\ &< \{cosD(Y_i, \hat{Y}_j) + cosD(Y_j, \hat{Y}_i)\}] \end{aligned}$$
 Cosine distance

Language Hierarchy in Brain

- EAC Early auditory cortex
- AAC Auditory association cortex
- TPOJ Temporo-parietooccipital junction
- DFL Dorsal frontal lobe
- PMC Posterior medial cortex

Nastase et al. 2019

Summary

- Language models with longer context better predict brain activity while subjects listening to stories.
- Future Directions:
 - Use more plausible language models than Transformers
 - Make hierarchical language models
 - Sub-part of the model predict different language levels: phonemes, words, POS, SRL

THANK YOU