open.michigan

Author(s): Brenda Gunderson, Ph.D., 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution–Non-commercial–Share Alike 3.0 License**: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC §

105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.

PD-SELF Public Domain - Self Dedicated: Works that a copyright holder has dedicated to the public domain.

(c) ZERO Creative Commons – Zero Waiver

(cc) BY Creative Commons – Attribution License

(c) BY-SA Creative Commons – Attribution Share Alike License

(cc) BY-NC Creative Commons – Attribution Noncommercial License

(c) BY-NC-SA Creative Commons – Attribution Noncommercial Share Alike License

GNU-FDL GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.

Statistics 350 Help Card

Summary Measures

Sample Mean

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum x_i}{n}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum x_i^2 - n\bar{x}^2}{n - 1}}$$

Probability Rules

• Complement rule

$$P(A^C) = 1 - P(A)$$

• Addition rule

General: P(A or B) = P(A) + P(B) - P(A and B)

For independent events:

$$P(A \text{ or } B) = P(A) + P(B) - P(A)P(B)$$

For mutually exclusive events: P(A or B) = P(A) + P(B)

• Multiplication rule

General: $P(A \text{ and } B) = P(A)P(B \mid A)$

For independent events: P(A and B) = P(A)P(B)

For mutually exclusive events: P(A and B) = 0

• Conditional Probability

General: $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

For independent events: P(A | B) = P(A)

For mutually exclusive events: $P(A \mid B) = 0$

Discrete Random Variables

Mean

$$E(X) = \mu = \sum x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$

Standard Deviation

$$s.d.(X) = \sigma = \sqrt{\sum (x_i - \mu)^2 p_i} = \sqrt{\sum (x_i^2 p_i) - \mu^2}$$

Binomial Random Variables

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Mean

$$E(X) = \mu_X = np$$

Standard Deviation

$$s.d.(X) = \sigma_X = \sqrt{np(1-p)}$$

Normal Random Variables

• $z - \text{score} = \frac{\text{observation} - \text{mean}}{\text{standard deviation}} = \frac{x - \mu}{\sigma}$

• Percentile: $x = z\sigma + \mu$

• If X has the $N(\mu, \sigma)$ distribution, then the variable $Z = \frac{X - \mu}{\sigma}$ has the N(0,1) distribution.

Normal Approximation to the Binomial Distribution

If *X* has the B(n, p) distribution and the sample size *n* is large enough (namely $np \ge 10$ and $n(1-p) \ge 10$),

then X is approximately $N(np, \sqrt{np(1-p)})$.

Sample Proportions

$$\hat{p} = \frac{x}{n}$$

Mean

$$E(\hat{p}) = \mu_{\hat{p}} = p$$

Standard Deviation

$$\text{s.d.}(\hat{p}) = \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling Distribution of \hat{p}

If the sample size n is large enough (namely, $np \ge 10$ and $n(1-p) \ge 10$)

then \hat{p} is approximately $N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$.

Sample Means

Mean

$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

Standard Deviation

$$s.d.(\overline{X}) = \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution of \overline{X}

If X has the $N(\mu, \sigma)$ distribution, then \overline{X} is

$$N(\mu_{\overline{X}}, \sigma_{\overline{X}}) \Leftrightarrow N(\mu, \frac{\sigma}{\sqrt{n}}).$$

If X follows any distribution with mean μ and standard deviation σ and n is large,

then
$$\overline{X}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

This last result is Central Limit Theorem

Population Proportion	Two Population Proportions	Population Mean
Parameter p	Parameter $p_1 - p_2$	Parameter μ
Statistic \hat{p}	Statistic $\hat{p}_1 - \hat{p}_2$	Statistic \overline{x}
Standard Error	Standard Error	Standard Error
$s.e.(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	s.e. $(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$s.e.(\overline{x}) = \frac{s}{\sqrt{n}}$
Confidence Interval	Confidence Interval	Confidence Interval
$\hat{p} \pm z^*$ s.e. (\hat{p})	$(\hat{p}_1 - \hat{p}_2) \pm z^* \text{s.e.} (\hat{p}_1 - \hat{p}_2)$	$\overline{x} \pm t^*$ s.e. (\overline{x}) df = $n-1$
Conservative Confidence Interval		
, , z*		Paired Confidence Interval
$\hat{p} \pm \frac{z^*}{2\sqrt{n}}$		$\overline{d} \pm t^* \text{s.e.}(\overline{d})$ df = $n-1$
Large-Sample z-Test	Large-Sample z-Test	One-Sample t-Test
$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$t = \frac{\overline{x} - \mu_0}{\text{s.e.}(\overline{x})} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \qquad \text{df} = n - 1$
Sample Size $n = \left(\frac{z^*}{2m}\right)^2$	where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	Paired t-Test $t = \frac{\overline{d} - 0}{\text{s.e.}(\overline{d})} = \frac{\overline{d}}{s_d / \sqrt{n}} \qquad \text{df} = n - 1$

Two Popula	ition Means
General	Pooled
Parameter $\mu_1 - \mu_2$	Parameter $\mu_1 - \mu_2$
Statistic $\overline{x}_1 - \overline{x}_2$	Statistic $\overline{x}_1 - \overline{x}_2$
Standard Error	Standard Error
s.e. $(\overline{x}_1 - \overline{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	pooled s.e. $(\bar{x}_1 - \bar{x}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
Confidence Interval	Confidence Interval
$(\overline{x}_1 - \overline{x}_2) \pm t^* (\text{s.e.}(\overline{x}_1 - \overline{x}_2))$ df = min $(n_1 - 1, n_2 - 1)$	$(\overline{x}_1 - \overline{x}_2) \pm t^* \text{(pooled s.e.}(\overline{x}_1 - \overline{x}_2))$ $\text{df} = n_1 + n_2 - 2$
Two-Sample t-Test	Pooled Two-Sample t-Test
$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \text{df} = \min(n_1 - 1, n_2 - 1)$	$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{pooled s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad \text{df} = n_1 + n_2 - 2$

	One-Way AN	10	VA				
SS Groups = SSG = $\sum_{\text{groups}} n_i (\overline{x}_i - \overline{x})^2$	$MS Groups = MSG = \frac{SSG}{k-1}$	A	NOVA Tal	ble			
$CC = CCC = \sum_{i=1}^{n} (i - 1) = \frac{1}{n}$		$\frac{1}{2}$	Source	SS	DF	MS	F
SS Error = SSE = $\sum_{\text{groups}} (n_i - 1) s_i^2$	MS Error = MSE = $s_p^2 = \frac{\text{SSE}}{N-k}$		Groups Error	1	k-1 $N-k$	MS Groups MS Error	F
SS Total = SSTO = $\sum_{\text{values}} (x_{ij} - \overline{x})^2$	$F = \frac{\text{MS Groups}}{\text{MS Error}}$		Total	SSTO	N-1		
Confidence Interval $\bar{x}_i \pm t^* \frac{s_p}{\sqrt{n_i}}$	= df = N - k		Und	er H_0 , the F s an $F(k-$		ollows distribution.	

Regre	ession
Linear Regression Model	Standard Error of the Sample Slope
Population Version: Mean: $\mu_Y(x) = E(Y) = \beta_0 + \beta_1 x$ Individual: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ where ε_i is $N(0, \sigma)$	s.e. $(b_1) = \frac{s}{\sqrt{S_{XX}}} = \frac{s}{\sqrt{\sum (x - \overline{x})^2}}$ Confidence Interval for β_1
	$b_1 \pm t^* \text{s.e.}(b_1) \qquad \text{df} = n - 2$
Sample Version: Mean: $\hat{y} = b_0 + b_1 x$ Individual: $y_i = b_0 + b_1 x_i + e_i$	To test for β_1 To test $H_0: \beta_1 = 0$ $t = \frac{b_1 - 0}{\text{s.e.}(b_1)}$ $\text{df} = n - 2$
	or $F = \frac{MSREG}{MSE}$
Parameter Estimators $b_1 = \frac{S_{XY}}{S_{XX}} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{\sum (x - \overline{x})y}{\sum (x - \overline{x})^2}$ $b_0 = \overline{y} - b_1 \overline{x}$	Confidence Interval for the Mean Response $\hat{y} \pm t^*$ s.e.(fit) $ df = n - 2 $ where s.e.(fit) = $s \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{XX}}} $
$b_0 = \overline{y} - b_1 \overline{x}$ Residuals	Prediction Interval for an Individual Response
$e = y - \hat{y}$ = observed y – predicted y	$\hat{y} \pm t^*$ s.e.(pred) $df = n - 2$ where s.e.(pred) = $\sqrt{s^2 + (\text{s.e.(fit)})^2}$
Correlation and its square	Standard Error of the Sample Intercept
$r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$ $SSTO_{XX}SSE_{XY}SSE_{XY}$	s.e. $(b_0) = s\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{S_{XX}}}$
$r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSREG}{SSTO}$	Confidence Interval for $oldsymbol{eta}_0$
where $SSTO = S_{YY} = \sum (y - \overline{y})^2$	$b_0 \pm t^* \text{s.e.}(b_0) \qquad \text{df} = n - 2$
Estimate of σ $s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}} \text{where } SSE = \sum (y - \hat{y})^2 = \sum e^2$	To test for β_0 To test $H_0: \beta_0 = 0$ $t = \frac{b_0 - 0}{\text{s.e.}(b_0)}$ $\text{df} = n - 2$

Chi-Squ	iare Tests
Test of Independence & Test of Homogeneity	Test for Goodness of Fit
Expected Count $E = \text{expected} = \frac{\text{row total} \times \text{column total}}{\text{total } n}$	Expected Count $E_i = \text{expected} = np_{i0}$
Test Statistic $X^{2} = \sum \frac{(O - E)^{2}}{E} = \sum \frac{(\text{observed - expected})^{2}}{\text{expected}}$ $df = (r - 1)(c - 1)$	Test Statistic $X^{2} = \sum \frac{(O - E)^{2}}{E} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$ $df = k - 1$
If Y follows a $\chi^2(df)$ distribution	n, then $E(Y) = df$ and $Var(Y) = 2(df)$.

l'able entry	for z i	s the	area to	the left	of z
--------------	---------	-------	---------	----------	--------

			Table	e entry fo	or z is the	e area to	the left	of z		1
Z	.00	.01	.02	.03	.04	.05	.06	07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	` .0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1°	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015 .0021	.0015 .0021	.0014 .0020	.0014
-2.8	.0026	.0025	.0024	.0023 .0032	.0023 .0031	.0022 .0030	.0021	.0021	.0020	.0015
-2.7	.0035 .0047	.0034 .0045	.0033 .0044	.0032	.0031	.0030	.0029	.0028	.0037	.0026
-2.6 -2.5	.0047	.0060	.0059	.0043	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0800.	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.Ò	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
- 1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294 .0367
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392 .0485	.0384 .0475	.0375 .0465	.0367
-1.6	.0548	.0537	.0526 .0643	.0516 .0630	.05 05 .0618	.0495 .0606	.0594	.0582	.0571	.0559
-1.5	.0668	.0655 .0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
−1.4 −1.3	.0808 .0968	.0755	.0778	.0704	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1,1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451 .2776
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843 .3192	.2810 .3156	.3121
-0.4	.3446	.3409	.3372	.3336	.3300 .3669	.3264 .3632	.3228 .3594	.3557	.3520	.3483
-0.3	.3821	.3783	.3745 .4129	.3707 .4090	.4052	.3032	.3974	.3936	.3897	.3859
-0.2 -0.1	.4207 .4602	.4168 .4562	.4123 .4522	.4483	.4443	.4404	.4364	.4325	.4286	4247
-0.1 -0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454 .7764	.7486 .7794	.7517 .7823	.7549 .7852
0.7	.7580	.7611	.7642	.7673	,7704	,7734 .8023 .	0054	.8078	.8106	.8133
0.8	.7881	.7910 .8186	.7939 .8212	.7967 .8238	.7995 .8264	.8023 . .8289	.8315	.8340	.8365	.8389
0.9 1.0	.8159 .8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	— . 94 95	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686 .9750	.9693 .9756	.9699 .9761	.9706 .9767
1.9	.9713	.9719	.9726	.9732	.9738 .9793	.9744 .9798	.9803	.9808	.9812	.9817
2.0	9772	.9778 .9826	.9783 .9830	.9788 .9834	.9838	9842	.9846	.9850	.9854	.9857
2.1 2.2	.9821 .9861	.9864	.9868	.9871	.9875	.9878	9881	.9884	.9887	.9890
2.2	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.3 2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	,9949	.9951	.9952
2.6	.9953	.9955	.9956	,9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993 .9995
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995 .9996	.9995 .9996	.9995 .9997
3.3	.9995	.9995	.9995	.9996	.9996	.9996 .9997	.9996 .9997	.9996	.9997	.9998
3.4	.9997	.9997	.9997	.9997	.9997	וניני.	1566.	10001	.0001	.5050

From Utts, Jessica M. and Robert F. Heckard. Mind on-Statistics, Fourth Edition, 2012. Used with permission.

n the Extreme	_	•	,											
Z	-3.09	-3.72	→4.26	-4.75	-5.20	-5.61	00'9-	3.09	3.72	4.26	4.75	5.20	5.61	0.00
Probability	.000	1000	.00001	1000001	.0000001	.00000000	1000000000.	666.	6866	66666	666666	6666666	66666666	6666666666666666
													٧	P E

Table A.2 t^* Multipliers for Confidence Intervals and Rejection Region Critical Values

Note that the relisabilities with infinite of is the standard normal distribution.

100.

10.

.025

902

.02

50:

5 5

Two-tailed α One-tailed α

TABLE A.3 I One-Sided p-Values for Significance Tests Based on a f-Statistic

Double the value if the alternative hypothesis is two-sided (not equal).

			Ab	Absolute Value of t-Statistic	of t-Statisti			
đţ	1.28	1.50	1.65	1.80	2.00	2.33	2.58	3.00
	0.211	0.187	0.173	0.161	0.148	0.129	0.118	0.102
2	0.164	0.136	0.120	0.107	0.092	0.073	0.062	0.048
ю	0.145	0.115	0.099	0.085	0.070	0.051	0.041	0.029
4	0.135	0.104	0.087	0.073	0.058	0.040	0.031	0.020
rc	0.128	0.097	0.080	0.066	0.051	0.034	0.025	0.015
9	0.124	0.092	0.075	0.061	0.046	0.029	0.021	0.012
7	0.121	0.089	0.071	0.057	0.043	0.026	0.018	0.010
8	0.118	0.086	0.069	0.055	0.040	0.024	0.016	0.009
<u></u>	0.116	0.084	0.067	0.053	0.038	0.022	0.015	0.007
10	0.115	0.082	0.065	0.051	0.037	0.021	0.014	0.007
11	0.113	0.081	0.064	0.050	0.035	0.020	0.013	0.006
12	0.112	0.080	0.062	0.049	0.034	0.019	0.012	900'0
13	0.111	0.079	0.061	0.048	0.033	0.018	0.011	0.005
4	0.111	0.078	0.061	0.047	0.033	0.018	0.011	0.005
15	0.110	0.077	0.060	0.046	0.032	0.017	0.010	0.004
16	0.109	0.077	0.059	0.045	0.031	0.017	0.010	0.004
. 11	0.109	0.076	0.059	0.045	0.031	0.016	0.010	0.004
18	0.108	0.075	.0.058	0.044	0:030	0.016	6000	0.004
25	0.108	0.075	0.058	0.044	0:030	0.015	600'0	0.004
. 02	0.108	0.075	0.057	0.043	0.030	0.015	0.009	0.004
12	0.107	0.074	0.057	0.043	0.029	0.015	0.009	0.003
77	0.107	0.074	0.057	0.043	0.029	0.015	600.0	0.003
23	0.107	0.074	0:026	0.042	0.029	0.014	0.008	0.003
24	0.106	0.073	0.056	0.042	0.028	0.014	0.008	0.003
- 22	0.106	0.073	0.056	0.042	0.028	0.014	0.008	0.003
26	0.106	0.073	0.055	0.042	0.028	0.014	0.008	0.003
27	0.106	0.073	0.055	0.042	0.028	0.014	0.008	0.003
78	0.106	0.072	0.055	0.041	0.028	0.014	0.008	0.003
58	0.105	0.072	0.055	0.041	0.027	0.013	0.008	0.003
œ	0.105	0.072	0.055	0.041	0.027	0.013	0.008	0.003
40	0.104	0.071	0.053	0.040	0.026	0.012	0.007	0.002
20	0.103	0.070	0.053	0.039	0.025	0.012	900'0	0.002
99	0.103	0.069	0.052	0.038	0.025	0.012	900.0	0.002
70	0.102	0.069	0.052	0.038	0.025	0.011	0.006	0.002
88	0.102	0.069	0.051	0.038	0.024	0.011	0.006	0.002
8	0.102	0.069	0.051	0.038	0.024	0.011	0.006	0.002
100	0.102	0.068	0.051	0.037	0.024	0.011	0.006	0.002
1000	0.100	0.067	0.050	0.036	0.023	0.010	0.005	0.001
Infinite	0.1003	0.0668	0.0495	0.0329	0.0228	0.0099	0.0049	0.0013

Note that the t-distribution with infinite df is the standard normal distribution.

TABLE A.5 M Chi-square Distribution

			р =	Area to R	ight of Chi	-square Va	alue		
df	0.50	0.25	0.10	0.075	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.17	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.18	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	6.90	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	8.50	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	10.01	11.07	12.83	15.09	16.75	20.51
6	5.35	7.84	10.64	11.47	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	12.88	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	14.27	15.51	17.53	20.09	21.95	26.12
9	8.34	11.39	14.68	15.63	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	16.97	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	18.29	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	19.60	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	20.90	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	22.18	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	23.45	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	24.72	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	25.97	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	27.22	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	28.46	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	29.69	31.41	34.17	37.57	40.00	45.31
21	20.34	24.93	29.62	30.92	32.67	35.48	38.93	41.40	46.80
22	21.34	26.04	30.81	32.14	33.92	36.78	40.29	42.80	48.27
23	22.34	27.14	32.01	33.36	35.17	38.08	41.64	44.18	49.73
24	23.34	28.24	33.20	34.57	36.42	39.36	42.98	45.56	51.18
25	24.34	29.34	34.38	35.78	37.65	40.65	44.31	46.93	52.62
26	25.34	30.43	35.56	36.98	38.89.	41.92	45.64	48.29	54.05
27	26.34	31.53	36.74	38.18	40.11	43.19	46.96	49.65	55.48
28	27.34	32.62	37.92	39.38	41.34	44.46	48.28	50.99	56.89
29	28.34	33.71	39.09	40.57	42.56	45.72	49.59	52.34	58.30
30	29.34	34.80	40.26	41,76	43.77	46.98	50.89	53.67	59.70

