Question number	Scheme	Marks
10 (a)	$(x+\frac{\pi}{3}) = \frac{\pi}{3} \text{ or } \frac{2\pi}{3} \text{ or } \frac{7\pi}{3}$	M1
	$(x+\frac{\pi}{3}) = \frac{\pi}{3}$ and $\frac{2\pi}{3}$ and $\frac{7\pi}{3}$	A1
	$x = 0, \frac{\pi}{3}, 2\pi$	A1 (3)
(b)	$\tan\theta = -\frac{5}{3}$	M1
	$\theta = -59^{\circ}, -239^{\circ}, 121^{\circ}, 301^{\circ}$	M1 A1 (3)
(c)	$1 + \sin 2y - 2(1 - \sin^2 2y) = 0$	M1
	$2\sin^2 2y + \sin 2y - 1 = 0$	A1
	$(\sin 2y + 1)(2\sin 2y - 1) = 0$	
	$\sin 2y = -1 \text{ or } \sin 2y = \frac{1}{2}$	dM1
	$2y = -90^{\circ}$, (30°) , (150°) , -330° , -210°	A1
	$y = -45^{\circ}$, -105° , -165°	A1 (5)
		[11]

Part	Mark	Additional Guidance
(a)	M1	Any one of the three indicated angles, radians only, ignore any other angles.
	A1	For all three indicated angles, ignore other angles out of the range
		$\frac{\pi}{3} \le x + \frac{\pi}{3} \le \frac{7\pi}{3}$
	A1	For all three angles, ignore angles out of range, A0 if additional angles
		in range.
(b)	M1	For $\tan \theta = k$. $k \neq 0$, $k \neq \pm 1$
	M1	Any one correct value, does not need to be to the nearest degree. Allow one correct value to imply the first M1. Ignore any other angles.
	A1	For all four angles, ignore angles out of range, A0 if additional angles in range. All four angles must be given to the nearest degree.
(c)	M1	For the correct use of $1-\sin^2 2y$ in the equation on the left or right side,
		equation doesn't need to be $= 0$.
	A1	Correct 3TQ, must be = 0 and a valid attempt to solve leading to $\sin 2y =$
	dM1	$\sin 2y = -1$ or $\sin 2y = \frac{1}{2}$ (allow $\sin 2y = a$ and b from a valid attempt to solve their 3TQ). Allow $\sin 2y$ to be x or any other variable.
	A1	For minimum of 3 of the 5 values shown, (including the ones in brackets),
	Al	ignore other angles outside the range $-360^{\circ} \le 2y \le 360^{\circ}$. Allow sight of 270 if -90° present.
	A1	For all 3 values shown. Ignore extras out of range.
		Rounding answers (where accuracy is specified in the question)
		Penalise only once per question for failing to round as instructed - ie giving more digits in the answers.

Question number	Scheme	Marks
11 (a)	b – a	B1 (1)
(b)	$\overrightarrow{OZ} = \overrightarrow{OB} + \lambda \overrightarrow{BX} (= \mathbf{b} + \lambda (-\mathbf{b} + 2\mathbf{a}))$	M1
	$= (1 - \lambda)\mathbf{b} + 2\lambda\mathbf{a}$	A1
	$\overrightarrow{OZ} = \overrightarrow{OA} + \mu \overrightarrow{AY} (= \mathbf{a} + \mu(-\mathbf{a} + 3\mathbf{b}))$	M1
	$= (1 - \mu)\mathbf{a} + 3\mu\mathbf{b}$	A1
	$(1-\lambda)\mathbf{b} + 2\lambda\mathbf{a} = (1-\mu)\mathbf{a} + 3\mu\mathbf{b}$	ddM1
	$2\lambda = 1 - \mu$ $3\mu = 1 - \lambda$	A1
	$3(1-2\lambda) = 1-\lambda$ or $2(1-3\mu) = 1-\mu$	M1
	$\lambda = \frac{2}{5}$ or $\mu = \frac{1}{5}$	A1
	$\overrightarrow{OZ} = \frac{1}{5} (4\mathbf{a} + 3\mathbf{b})$ See notes regarding alternatives	A1 (9)
(c)	$OM = p'' \frac{1}{5} (4\mathbf{a} + 3\mathbf{b})'' \text{ and } OM = 2\mathbf{a} + q(-2\mathbf{a} + 3\mathbf{b})$	M1
	$\frac{4p}{5} = 2 - 2q$ and $\frac{3p}{5} = 3q$	M1
	(Solving these equations leads to $p = \frac{5}{3}$)	
	$\overrightarrow{OM} = \frac{1}{3} (4\mathbf{a} + 3\mathbf{b})$	A1 (3)
		[13]

Part	Mark	Additional Guidance		
(a)	B1	For the indicated vector		
(b)	M1	For any correctly written vector path, must include a parameter		
	A1	For the vector shown		
	M1	For any correctly written vector path, must include a parameter		
	A1	For the vector shown		
	ddM1	Equates their 2 vectors – this mark may be implicit in the candidate		
		equating the two components of their 2 vectors, dependent on the		
		first two method marks.		
	A1	Correct equations as shown		
	ddM1	Full and correct method to solve their two simultaneous equations,		
		either by substitution as shown or by elimination. There must be no		
		errors in the method to eliminate λ or μ , dependent on the first two		
		method marks.		
	A1	Correct value for λ or μ		
	A1	Correct vector.		
	There a	re a number of alternatives for part b, all marked in the same way.		
	Examp	<u>-</u>		
	1			
	ALT1	ALT2		
	\rightarrow	ightarrow ightarrow ightarrow ightarrow ightarrow		
	μXB	and $\overrightarrow{AZ} = \overrightarrow{AX} + \mu \overrightarrow{XB}$ M1A1		
	\rightarrow	\rightarrow \rightarrow \rightarrow		
	λAY	(must use to get \overrightarrow{AB} for 2nd A1) $\overrightarrow{AZ} = \lambda \overrightarrow{AY}$ M1A1		
		\rightarrow		
	equate	e 2 vectors for \overrightarrow{AB} equate 2 vectors for \overrightarrow{AZ} ddM1		
	TD1 A 1			
		ddM1 A1 A1 following these marks should all be marked in the same way as		
(a)	M1	n mark scheme.		
(c)	IVII	For the two correct vectors shown, allow use of their OZ'		
	dM1	\rightarrow		
		Correctly equating the components of their vectors for OZ and arriving at a		
		value for p or q		
	A1	For the correct vector, as shown.		
	Can also	be done using other vectors eg finding two alternatives for \overrightarrow{OM}		
	Mark in the same way as main scheme.			
L	1.200111 111	do man severa.		

Question number	Scheme	Marks
12 (a)	$(2\cos x = 0) \qquad (x =)\frac{\pi}{2} \text{ or } 90^{\circ}$	B1 (1)
(b)	$(2\cos x = 2\sin x) \qquad \tan x = 1$	M1
	$x = \frac{\pi}{4} \text{ or } 45^{\circ}$	A1 (2)
(c)	$\int_{(0)}^{(\frac{\pi}{4})} (2\sin x) dx + \int_{(\frac{\pi}{4})}^{(\frac{\pi}{2})} (2\cos x) dx$	M1
	$ \left[-2\cos x \right]_0^{\frac{\pi}{4}} + \left[2\sin x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} $ $ \left(-\sqrt{2} + 2 \right) + \left(2 - \sqrt{2} \right) = 4 - 2\sqrt{2} $	A1
	$\left(-\sqrt{2}+2\right)+\left(2-\sqrt{2}\right)=4-2\sqrt{2}$	dM1
	$=4-\sqrt{8}$ cao	A1cao cso
		(4) [7]

Part	Mark	Additional Guidance
(a)	B1	For $\frac{\pi}{2}$ or 90 degrees. Can also be shown as a coordinate – ignore any
		incorrect y coordinate.
(b)	M1	For $\tan x = 1$
	A1	For $\frac{\pi}{4}$ or 45 degrees. Can also be shown as a coordinate – ignore any
	3.74	incorrect y coordinate.
(c)	M1	For both integrals correctly shown, with an addition sign between them.
		Limits need not be shown. Must be 2 integrals shown. Can't be shown as
		one integral with incorrect limits.
	A1	For both functions correctly integrated. Limits need not be shown.
	dM1	For their limits clearly and correctly substituted in or for the numerical
		expression(s) shown in the MS.
		If mark awarded for substitution, both integrated expressions must have both
		limits correctly substituted. 0 must be the lower limit on the first integral.
		Allow ft of their $\frac{\pi}{4}$ (must be the upper limit on the first integral and the
		lower limit on the second and can be in degrees) and their $\frac{\pi}{2}$ (must be the
		upper limit on the second integral and can be in degrees).
	A1	cao cso A0 if degrees used in part c
		Note, can also be completed as either integral doubled – symmetry.
		M1 – correct integral stated with multiply by 2 evident or implicit later.
		A1 correctly integrated
		dM1 – as for main scheme, the multiply by 2 must be clearly shown.
		A1 as main scheme