苏州大学 数学分析 (III) 课程试卷(A) 卷参考答案 (2006.1)

1(12 分). 计算 $\int\int_D (x+y)sin(x-y)dxdy$, 其中 $D=\{(x,y)|0\leq x+y\leq\pi,\ 0\leq x-y\leq\pi\}.$

解: 作变换: $x+y=u, x-y=v, \ |\frac{\partial(x,y)}{\partial(u,v)}|=\frac{1}{2}, \ (u,v)\in[0,\pi]\times[0,\pi],$ 于是 $I=\frac{1}{2}\int_{0}^{\pi}udu\int_{0}^{\pi}sinvdv=\frac{\pi^{2}}{2}.$

 ${f 2(12\ f 3)}$. 求 $I=\iiint_\Omega \sin\,ydxdydz$, 其中 Ω 为由平面 z=0, 平面 z=1, 和曲面 $z^2+1=a^{-2}x^2+b^{-2}y^2(a\ge b>0)$ 所围成.

解: 固定 z, 得积分区域 D_z : $a^{-2}x^2+b^{-2}y^2 \le z^2+1$, 显然 D_z 关于 y 是对称 的, 而被积函数 siny 关于 y 是奇函数, 因此 $\iint_{D_z} siny dx dy = 0$, 从而

$$I = \int_0^1 dz \int\!\int_{D_z} siny dx dy = 0.$$

3(12 分). 求 $I = \iiint_{\Omega} z dx dy dz$,其中 Ω 为由 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ 与 $z \ge 0$ 所围的区域.

解: 作广义球变换: $x=arsin\varphi cos\theta, y=brsin\varphi sin\theta, z=crcos\varphi$, 于是 $J=abcr^2sin\varphi$. 从而 $I=abc^2\int_0^{2\pi}d\theta\int_0^{\frac{\pi}{2}}d\varphi\int_0^1r^3sin\varphi cos\varphi dr=\frac{\pi abc^2}{4}$.

4(12 分). 计算 $I = \int_L (x+y)^2 dx - (x^2+y^2 siny) dy$, L 沿 $y=x^2$ 从点 (-1,1) 到点 (1,1).

解: 由 Green 公式, $I = \iint_D (-4x - 2y) dx dy + \int_{-1}^1 (x+1)^2 dx = \frac{16}{15}$, 其中 D 由 $y = x^2, y = 1$ 所围区域.

 ${f 5}$ (12 分). 计算线积分 $I=\oint_L xdy-ydx$, 其中 L 为上半球面 $x^2+y^2+z^2=1$ ($z\geq 0$) 与柱面 $x^2+y^2=x$ 的交线, 从 z 轴正向往下看, L 取逆时针方向.

解: 用 stokes 公式,S+ 表示上半球面在柱面 $x^2+y^2=x$ 内的部分之上侧,于 是 $I=\iint_{S+}2dxdy=2\iint_{x^2+y^2\leq x}dxdy=\frac{\pi}{2}.$

$$\begin{array}{ll} {\bf 6(10\ {\bf 分})}.\ {\bf H算} & I=\int\int\limits_{D}e^{max\{x^2,y^2\}}dxdy,\ \ D=[0,1]\times[0,1].\\ {\bf extbf{#}}:\ I=\int\limits_{0}^{1}dx\int\limits_{0}^{x}e^{x^2}dy+\int\limits_{0}^{1}dy\int\limits_{0}^{y}e^{y^2}dx=e-1\\ {\bf 7(10\ {\bf 分})}.\ {\bf \it U}\ S\ {\bf \it / \it b}\ z=\sqrt{x^2+y^2}\ {\bf \it id}\ x^2+y^2=2x\ {\bf \it lh}\ {\bf \it F}$$
的部分,求
$$I=\iint_{S}zdS. \end{array}$$

解:
$$I = \int \int_{D_{xy}} \sqrt{2} (x^2 + y^2)^{\frac{1}{2}} dx dy = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r^2 dr = \frac{32}{9} \sqrt{2}$$

8(10分). 计算

$$I = \iiint_{S} x dy dz + (z+1)^2 dx dy,$$

$$S$$
 为下半球面 $z=-\sqrt{1-x^2-y^2}$ 的上侧.
解: 补一有向曲面 Σ : $x^2+y^2\leq 1(z=0)$, 方向与 z 轴反向, 则 $I=\iint_{S+\Sigma}-\iint_{\Sigma}=\iint_{x^2+y^2\leq 1}dxdy-\iiint_V(3+2z)dV=-\pi-2\iiint_VzdV=-\frac{\pi}{2}$.

9(10 分) 问: xoy 平面上的力场

$$\mathbf{F} = \left(-rac{x}{(x^2 + y^2)^{rac{3}{2}}}, \; -rac{y}{(x^2 + y^2)^{rac{3}{2}}}
ight)$$

是不是一个保守场?如果是,求出原(势)函数;否则,给出不是的理由. **解**: 是保守场, 其原函数为 $g(x,y) = (x^2 + y^2)^{-\frac{1}{2}}$.