1 Folgen

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n a| < \epsilon$
- Existiert $a \in \mathbb{R}$ Grenzwert $\Rightarrow (a_n)$ konvergent, sonst (a_n) divergent

Satz 2.3 - Rechenregeln für Grenzwerte $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Folgen, $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$
- $a_n \leq b_n$ für fast alle $n \in \mathbb{N} \to a \leq b$
- Einschließungskriterium a = b, c reelle Folge und $a_n \le c_n \le b_n$ für fast alle $n \in \mathbb{N} \Rightarrow (c_n)_{n \in \mathbb{N}}$ konvergiert gegen a

Spezialfall des Einschließungskriteriums:

 $(x_n)_{n\in\mathbb{N}}Folge, x\in R, (y_n)_{n\in\mathbb{N}}$ Nullfolge, sodass $|x_n-x|\leq y_n$ für fast alle $n\Rightarrow (x_n)_{n\in\mathbb{N}}$ konvergiert gegen x

Satz 2.4 - Eigenschaften konvergenter Folgen Sei a_n konvergente reelle Folge

- (a_n) beschränkt
- (a_n) besitzt genau einen Grenzwert

Def: 2.5 - Uneigentliche Konvergenz $(a_n)_{a\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty \Leftrightarrow \forall K>0 \exists n_0\in\mathbb{N} \forall n\geq n_0: a_n>K$ $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty \Leftrightarrow (-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz $(b_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n\to\infty}(b_n)_{n\in\mathbb{N}}=\infty, (a_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n\to\infty}a_n=a, a\in\mathbb{R}\cup\{\infty, -\infty\}$

- $a \neq -\infty \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich gegen ∞
- $a \neq 0 \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
- $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
- $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
- $a \notin \{\infty, -\infty\} \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen 0