Elementary Linear Algebra A Matrix Approach

L. Spence A. Insel S. Friedberg Second Edition

Pearson New International Edition

Elementary Linear Algebra
A Matrix Approach
L. Spence A. Insel S. Friedberg
Second Edition

Chapter 1. Matrices, Vectors, and Systems of Linear Equations

Example 1

Compute the matrices A + B, 3A, -A, and 3A + 4B, where

$$A = \begin{bmatrix} 3 & 4 & 2 \\ 2 & -3 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -4 & 1 & 0 \\ 5 & -6 & 1 \end{bmatrix}.$$

THEOREM 1.1

(Properties of Matrix Addition and Scalar Multiplication) Let A, B, and C be $m \times n$ matrices, and let s and t be any scalars. Then

(a)
$$A + B = B + A$$
.

(commutative law of matrix addition)

(b)
$$(A + B) + C = A + (B + C)$$
.

(associative law of matrix addition)

(c)
$$A + O = A$$
.

(d)
$$A + (-A) = O$$
.

(e)
$$(st)A = s(tA)$$
.

(f)
$$s(A + B) = sA + sB$$
.

(g)
$$(s+t)A = sA + tA$$
.

THEOREM 1.2

(Properties of the Transpose) Let A and B be $m \times n$ matrices, and let s be any scalar. Then

- (a) $(A + B)^T = A^T + B^T$.
- (b) $(sA)^T = sA^T$.
- (c) $(A^T)^T = A$.

Example 2

Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 5 \\ 3 \\ 0 \end{bmatrix}$. Then

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 7 \\ -1 \\ 7 \end{bmatrix}, \quad \mathbf{u} - \mathbf{v} = \begin{bmatrix} -3 \\ -7 \\ 7 \end{bmatrix}, \quad \text{and} \quad 5\mathbf{v} = \begin{bmatrix} 25 \\ 15 \\ 0 \end{bmatrix}.$$

EXERCISES

A square matrix A is called a **diagonal matrix** if $a_{ij} = 0$ whenever $i \neq j$. Exercises 67–70 are concerned with diagonal matrices.

- 67. Prove that a square zero matrix is a diagonal matrix.
- 68. Prove that if B is a diagonal matrix, then cB is a diagonal matrix for any scalar c.
- 69. Prove that if B is a diagonal matrix, then B^T is a diagonal matrix.
- 70. Prove that if B and C are diagonal matrices of the same size, then B + C is a diagonal matrix.

EXERCISES

A (square) matrix A is said to be **symmetric** if $A = A^T$. Exercises 71–78 are concerned with symmetric matrices.

- 71. Give examples of 2×2 and 3×3 symmetric matrices.
- 72. Prove that the (i,j)-entry of a symmetric matrix equals the (j,i)-entry.
- 73. Prove that a square zero matrix is symmetric.
- 74. Prove that if B is a symmetric matrix, then so is cB for any scalar c.
- 75. Prove that if B is a square matrix, then $B + B^T$ is symmetric.
- 76. Prove that if B and C are $n \times n$ symmetric matrices, then so is B + C.
- 77. Is a square submatrix of a symmetric matrix necessarily a symmetric matrix? Justify your answer.
- 78. Prove that a diagonal matrix is symmetric.

EXERCISES

- A (square) matrix A is called **skew-symmetric** if $A^T = -A$. Exercises 79–81 are concerned with skew-symmetric matrices.
 - 79. What must be true about the (i,i)-entries of a skew-symmetric matrix? Justify your answer.
 - 80. Give an example of a nonzero 2×2 skew-symmetric matrix B. Now show that every 2×2 skew-symmetric matrix is a scalar multiple of B.
 - 81. Show that every 3×3 matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

1.2 LINEAR COMBINATIONS, MATRIX—VECTOR PRODUCTS, AND SPECIAL MATRICES

Example 1

- (a) Determine whether $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
- (b) Determine whether $\begin{bmatrix} -4 \\ -2 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 6 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- (c) Determine whether $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$.

1.2 LINEAR COMBINATIONS, MATRIX—VECTOR PRODUCTS, AND SPECIAL MATRICES

IDENTITY MATRICES

Suppose we let $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and \mathbf{v} be any vector in \mathbb{R}^2 . Then

$$I_2\mathbf{v} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = v_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \mathbf{v}.$$

So multiplication by I_2 leaves every vector \mathbf{v} in \mathbb{R}^2 unchanged. The same property holds in a more general context.

Definition For each positive integer n, the $n \times n$ identity matrix I_n is the $n \times n$ matrix whose respective columns are the standard vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ in \mathbb{R}^n .

ROTATION MATRICES

Example 4

To rotate the vector $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ by 30°, we compute $A_{30^{\circ}} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$; that is,

$$\begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{3\sqrt{3}}{2} - \frac{4}{2} \\ \frac{3}{2} + \frac{4\sqrt{3}}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3\sqrt{3} - 4 \\ 3 + 4\sqrt{3} \end{bmatrix}.$$

Thus when $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is rotated by 30°, the resulting vector is $\frac{1}{2} \begin{bmatrix} 3\sqrt{3} - 4 \\ 3 + 4\sqrt{3} \end{bmatrix}$.

1.2 LINEAR COMBINATIONS, MATRIX—VECTOR PRODUCTS, AND SPECIAL MATRICES

THEOREM 1.3

(Properties of Matrix-Vector Products) Let A and B be $m \times n$ matrices, and let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n . Then

- (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$.
- (b) $A(c\mathbf{u}) = c(A\mathbf{u}) = (cA)\mathbf{u}$ for every scalar c.
- (c) $(A + B)\mathbf{u} = A\mathbf{u} + B\mathbf{u}$.
- (d) $A\mathbf{e}_j = \mathbf{a}_j$ for j = 1, 2, ..., n, where \mathbf{e}_j is the jth standard vector in \mathbb{R}^n .
- (e) If B is an $m \times n$ matrix such that $B\mathbf{w} = A\mathbf{w}$ for all \mathbf{w} in \mathbb{R}^n , then B = A.
- (f) $A\mathbf{0}$ is the $m \times 1$ zero vector.
- (g) If O is the $m \times n$ zero matrix, then Ov is the $m \times 1$ zero vector.
- (h) $I_n \mathbf{v} = \mathbf{v}$.

1.3 SYSTEMS OF LINEAR EQUATIONS

Figure 1.16

No solution

 \mathcal{L}_1 and \mathcal{L}_2 are different but not parallel. Exactly one solution

 \mathcal{L}_1 and \mathcal{L}_2 are the same. Infinitely many solutions

Figure 1.18

ELEMENTARY ROW OPERATIONS

Definition Any one of the following three operations performed on a matrix is called an **elementary row operation**:

- 1. Interchange any two rows of the matrix. (interchange operation)
- 2. Multiply every entry of some row of the matrix by the same nonzero scalar. (scaling operation)
- 3. Add a multiple of one row of the matrix to another row. (**row addition operation**)

ELEMENTARY ROW OPERATIONS

$$x_1 - 2x_2 - x_3 = 3$$

$$3x_1 - 6x_2 - 5x_3 = 3$$

$$2x_1 - x_2 + x_3 = 0$$

$$x_1 - 2x_2 - x_3 = 3$$

 $3x_2 + 3x_3 = -6$
 $-2x_3 = -6$

$$-3x_1 + 6x_2 + 3x_3 = -9 (-3 times equation 1)$$
$$3x_1 - 6x_2 - 5x_3 = 3 (equation 2)$$
$$-2x_3 = -6$$

$$x_1 - 2x_2 - x_3 = 3$$

 $3x_2 + 3x_3 = -6$
 $x_3 = 3$.

$$x_1 = -4$$

 $x_2 = -5$
 $x_3 = 3$,

$$-2x_1 + 4x_2 + 2x_3 = -6 (-2 times equation 1)$$
$$2x_1 - x_2 + x_3 = 0 (equation 3)$$
$$3x_2 + 3x_3 = -6$$

$$x_1 - 2x_2 = 6$$

 $3x_2 = -15$
 $x_3 = 3$.

$$\begin{bmatrix} -4 \\ -5 \\ 3 \end{bmatrix}$$
 is a solution

$$x_1 - 2x_2 - x_3 = 3$$
$$-2x_3 = -6$$
$$3x_2 + 3x_3 = -6$$

$$x_1 - 2x_2 = 6$$

 $x_2 = -5$
 $x_3 = 3$.

the system of equations performed on matrices

$$x_1 - 2x_2 - x_3 = 3$$

$$3x_1 - 6x_2 - 5x_3 = 3$$

$$2x_1 - x_2 + x_3 = 0$$

as the matrix equation $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & -6 & -5 \\ 2 & -1 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -1 & 3 \\ 3 & -6 & -5 & 3 \\ 2 & -1 & 1 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & -6 & -5 \\ 2 & -1 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}.$$

$$A\mathbf{u} = \begin{bmatrix} 1 & -2 & -1 \\ 3 & -6 & -5 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} -4 \\ -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \mathbf{b}.$$

augmented matrix of the system.

ELEMENTARY ROW OPERATIONS

Example 2

Let

$$A = \begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 1 & 3 \\ 3 & 1 & 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & -5 & -3 & -7 \end{bmatrix}.$$

The following sequence of elementary row operations transforms A into B:

$$A = \begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 1 & 3 \\ 3 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{\mathbf{r}_1 \leftrightarrow \mathbf{r}_2} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 1 & -1 & 3 \\ 3 & 1 & 0 & 2 \end{bmatrix}$$

Definitions A matrix is said to be in **row echelon form** if it satisfies the following three conditions:

- 1. Each nonzero row lies above every zero row.
- 2. The leading entry of a nonzero row lies in a column to the right of the column containing the leading entry of any preceding row.
- 3. If a column contains the leading entry of some row, then all entries of that column below the leading entry are 0.5

If a matrix also satisfies the following two additional conditions, we say that it is in reduced row echelon form.⁶

- 4. If a column contains the leading entry of some row, then all the other entries of that column are 0.
- 5. The leading entry of each nonzero row is 1.

Example 3

The following matrices are *not* in reduced row echelon form:

$$A = \begin{bmatrix} 1 & 0 & 0 & 6 & 3 & 0 \\ 0 & 0 & 1 & 5 & 7 & 0 \\ 0 & 1 & 0 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 4

Find a general solution of the system of linear equations

$$x_1$$
 + $2x_4 = 7$
 x_2 - $3x_4 = 8$
 $x_3 + 6x_4 = 9$.

$$x_1 = 7 - 2x_4$$

 $x_2 = 8 + 3x_4$
 $x_3 = 9 - 6x_4$
 x_4 free.

We can write the general solution in vector form as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ 9 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 3 \\ -6 \\ 1 \end{bmatrix}.$$

Example 5

Solve the following system of linear equations:

$$x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2$$

$$-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6$$

$$2x_1 + 4x_2 - 3x_3 + 2x_4 = 3$$

$$-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9$$

1.4 GAUSSIAN ELIMINATION

- Write the augmented matrix [A b] of the system.
- Find the reduced row echelon form [R c] of [A b].

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Figure 1.19 The pivot positions of the matrix R

1.4 GAUSSIAN ELIMINATION

Example 1

Solve the following system of linear equations:

$$x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2$$

$$-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6$$

$$2x_1 + 4x_2 - 3x_3 + 2x_4 = 3$$

$$-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9$$

Solution The augmented matrix of this system is

$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad x_1 + 2x_2 \qquad -x_5 = -5 x_2 \text{ free} x_3 = -3 x_4 + x_5 = 2. x_5 \text{ free} x_5 free$$

$$x_1 + 2x_2$$
 $-x_5 = -5$
 $x_3 = -3$
 $x_4 + x_5 = 2$

$$x_1 = -5 - 2x_2 + x_5$$

 x_2 free
 $x_3 = -3$
 $x_4 = 2$ $-x_5$
 x_5 free.

THE RANK AND NULLITY OF A MATRIX

The rank of a matrix equals the number of pivot columns in the matrix. The nullity of a matrix equals the number of nonpivot columns in the matrix.

Example 3

The reduced row echelon form of the matrix

$$B = \begin{bmatrix} 2 & 3 & 1 & 5 & 2 \\ 0 & 1 & 1 & 3 & 2 \\ 4 & 5 & 1 & 7 & 2 \\ 2 & 1 & -1 & -1 & -2 \end{bmatrix}$$

is

Since the latter matrix has two nonzero rows, the rank of B is 2. The nullity of B is 5-2=3.

If $A\mathbf{x} = \mathbf{b}$ is the matrix form of a consistent system of linear equations, then

- (a) the number of basic variables in a general solution of the system equals the rank of *A*;
- (b) the number of free variables in a general solution of the system equals the nullity of A.

Thus a consistent system of linear equations has a unique solution if and only if the nullity of its coefficient matrix equals 0. Equivalently, a consistent system of linear equations has infinitely many solutions if and only if the nullity of its coefficient matrix is positive.

EXERCISES

- In Exercises 1–16, determine whether the given system is consistent,
- and if so, find its general solution.
- In Exercises 17–26, determine the values of r, if any, for which
- the given system of linear equations is inconsistent.
- In Exercises 27–34, determine the values of r and s for which the
- given system of linear equations has (a) no solutions, (b) exactly
- one solution, and (c) infinitely many solutions.
- In Exercises 35–42, find the rank and nullity of the given matrix.

1.5 APPLICATIONS OF SYSTEMS OF LINEAR EQUATIONS

CURRENT FLOW IN ELECTRICAL CIRCUITS

Kirchhoff's Voltage Law

In a closed path within an electrical circuit, the sum of the voltage drops in any one direction equals the sum of the voltage sources in the same direction.

$$2I_1 - 4I_2 = 0 (7)$$

$$4I_2 + 2I_3 = 30 (8)$$

$$I_1 + I_2 - I_3 = 0.$$
 (10)

Figure 1.22 An electrical circuit

Example 1

Describe the spans of the following subsets of \mathbb{R}^2 :

$$S_1 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \qquad S_2 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \right\}, \qquad S_3 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\},$$

and

$$S_4 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$

Figure 1.23 The span of S_1

Figure 1.24 The span of S_2

Suppose that $\mathbf{v} = a \begin{bmatrix} 1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ for some scalars a and b. Then

$$\mathbf{v} = a \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 0 \begin{bmatrix} -2 \\ 2 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \end{bmatrix},$$

so every vector in \mathbb{R}^2 is a linear combination of the vectors in S_3 . It follows that the span of S_3 is \mathbb{R}^2 .

Finally, since every vector in \mathbb{R}^2 is a linear combination of the nonparallel vectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, every vector in \mathbb{R}^2 is also a linear combination of the vectors in \mathcal{S}_4 . Therefore the span of \mathcal{S}_4 is again \mathbb{R}^2 .

Example 3

Is

$$\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 5 \\ -1 \end{bmatrix} \quad \text{or} \quad \mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}$$

a vector in the span of

$$S = \left\{ \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\8\\-1\\5 \end{bmatrix} \right\}?$$

If so, express it as a linear combination of the vectors in S.

Solution Let A be the matrix whose columns are the vectors in S. The vector \mathbf{v} belongs to the span of S if and only if $A\mathbf{x} = \mathbf{v}$ is consistent. Since the reduced row echelon form of $[A \ \mathbf{v}]$ is

$$\begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

 $A\mathbf{x} = \mathbf{v}$ is consistent by Theorem 1.5. Hence \mathbf{v} belongs to the span of \mathcal{S} .

To express \mathbf{v} as a linear combination of the vectors in \mathcal{S} , we need to find the actual solution of $A\mathbf{x} = \mathbf{v}$. Using the reduced row echelon form of $[A \ \mathbf{v}]$, we see that the general solution of this equation is

$$x_1 = 1 - 3x_3$$

 $x_2 = -2 - 2x_3$
 x_3 free.

For example, by taking $x_3 = 0$, we find that

$$1 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} -1 \\ 1 \\ -2 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 8 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 5 \\ -1 \end{bmatrix} = \mathbf{v}.$$

In the same manner, w belongs to the span of S if and only if A**x** = w is consistent. Because the reduced row echelon form of $[A \ w]$ is

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

Theorem 1.5 shows that $A\mathbf{x} = \mathbf{w}$ is not consistent. Thus \mathbf{w} does not belong to the span of S.

THEOREM 1.6

The following statements about an $m \times n$ matrix A are equivalent:

- (a) The span of the columns of A is \mathbb{R}^m .
- (b) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution (that is, $A\mathbf{x} = \mathbf{b}$ is consistent) for each \mathbf{b} in \mathbb{R}^m .
- (c) The rank of A is m, the number of rows of A.
- (d) The reduced row echelon form of A has no zero rows.
- (e) There is a pivot position in each row of A.

In Exercises 29–36, an $m \times n$ matrix A is given. Determine whether the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .

$$29. \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

31.
$$\begin{bmatrix} 1 & 0 & -3 \\ -1 & 0 & 3 \end{bmatrix}$$

$$33. \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 2 \end{bmatrix}$$

35.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

30.
$$\begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$$

$$32. \begin{bmatrix} 1 & 1 & 2 \\ -1 & -3 & 4 \end{bmatrix}$$

$$34. \begin{bmatrix}
1 & 0 & -1 \\
2 & -1 & 1 \\
0 & 3 & -2 \\
1 & 1 & -3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & 1 \\
2 & 1 & 3 & 2 \\
3 & 4 & 4 & 5
\end{bmatrix}$$

Definitions A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ in \mathbb{R}^n is called **linearly dependent** if there exist scalars c_1, c_2, \dots, c_k , not all 0, such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k = \mathbf{0}.$$

In this case, we also say that the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are linearly dependent.

A set of k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is called **linearly independent** if the only scalars c_1, c_2, \dots, c_k such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k = \mathbf{0}$$

are $c_1 = c_2 = \cdots = c_k = 0$. In this case, we also say that **the vectors** $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ are linearly independent.

Figure 1.27 Linearly independent and linearly dependent sets of 3 vectors

Example 3

Determine whether the set

$$S = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

is linearly dependent or linearly independent.

THEOREM 1.8

The following statements about an $m \times n$ matrix A are equivalent:

- (a) The columns of A are linearly independent.
- (b) The equation $A\mathbf{x} = \mathbf{b}$ has at most one solution for each \mathbf{b} in \mathbb{R}^m .
- (c) The nullity of A is zero.

- (d) The rank of A is n, the number of columns of A.
- (e) The columns of the reduced row echelon form of A are distinct standard vectors in \mathbb{R}^m .
- (f) The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$.
- (g) There is a pivot position in each column of A.

Exercises

In Exercises 23–30, determine whether the given set is linearly independent.

$$23. \left\{ \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$$

$$24. \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$25. \left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\3 \end{bmatrix} \right\}$$

$$26. \left\{ \begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\1\\1\\-3 \end{bmatrix}, \begin{bmatrix} -4\\1\\3\\1 \end{bmatrix} \right\}$$

$$27. \left\{ \begin{bmatrix} 1\\0\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$$

$$28. \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0\\-3 \end{bmatrix} \right\}$$

$$29. \left\{ \begin{bmatrix} 1 \\ -1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} \right\}$$

$$30. \left\{ \begin{bmatrix} -1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\2 \end{bmatrix} \right\}$$