WHAT IS CLAIMED IS:

l	1. A method of making probe chips comprising the steps of:
2	forming a plurality of probe arrays on a substrate;
3	separating said substrate into a plurality of chips, each of said chips comprising at
1	least one probe array thereon; and
5	mating at least one of said chips to a package, said package comprising a reaction
5	chamber, said reaction chamber comprising inlets for flowing fluid therein, said at least one
7	probe array in fluid communication with said reaction chamber.
1	2. The method as recited in claim 1 wherein said package is made by the steps
2	of:
3	injection molding first and second halves of said package; and
4	mating said first and second halves together.
1	3. The method as recited in claim 2 wherein one of said halves comprises flow
2	channels therein, said flow channels in communication with said inlets.
1	4. The method as recited in claim 3 further comprising the step of applying a
2	reenterable seal to flow channels in said package.
1	5. The method as recited in claim 1 wherein said substrate comprises alignment
2	marks for forming said probe arrays thereon in a desired position, and wherein said
3	alignment marks are used to identify locations for said separating of said substrate into chips.
1	6. The method as recited in claim 1 wherein said package comprises an
2	alignment structure thereon, wherein said step of mating said chip to said package uses said
3	alignment structures to position said package at a desired position.
1	7. The method as recited in claim 1 wherein said package comprises an
2	alignment structure thereon, and further comprising the step of identifying the location of at
3	least one target on said probe array in a scanner, wherein said package is placed at a desired
4	location in said scanner using said alignment structure.

1 8. The method as recited in claim 1 wherein said step of forming a plurality of 2 probe arrays comprises the steps of: 3 selectively exposing said substrate to light; 4 coupling selected monomers to said substrate where said substrate has been exposed 5 to light. 1 9. The method as recited in claim 1 wherein said step of separating comprises 2 the steps of: 3 scribing said substrate in desired locations; 4 breaking said substrate along said scribe lines. 1 10. The method as recited in claim 1 wherein said step of forming a plurality of 2 probe arrays on said substrate is a step of forming a plurality of oligonucleotide probe arrays 3 on said substrate. 1 The method as recited in claim 10 further comprising the steps of flowing 2 labeled oligonucleotide target molecules through said reaction chamber and identifying 3 where said target molecules have bound to said substrate. 1 12. The method as recited in claim 11 wherein said package comprises a 2 temperature probe and further comprising the step of monitoring and adjusting a temperature 3 in said reaction chamber. 1 13. The method as recited in claim 1 wherein said package is formed by the steps 2 of: 3 forming first and second package portions; and 4 acoustically welding said first and second package portions together. 1 14. The method as recited in claim 1 wherein said step of mating said chips to 2 packages comprises the step of binding said chips to said package with an adhesive. 1 15. The method as recited in claim 14 wherein said packages comprise a recessed 2 region thereon, whereby said chips do not extend above a surface of said packages.

1	16.	The method as recited in claim 1 further comprising the step of flowing target
2	molecules the	rough said reaction chamber
1	17.	An apparatus for packaging a substrate, said apparatus comprising:
2	a subs	strate having a first surface and a second surface, said first surface comprising a
3	probe array;	
4	a bod	y having a mounting surface with a fluid cavity, said second surface attached to
5	said cavity; a	nd
6	a cov	er attached to said mounting surface for sealing said cavity.
1	18.	The apparatus of claim 17 wherein said cavity comprises an inlet port and an
2	outlet port, sa	aid inlet and outlet ports permitting fluids to circulate into and through said
3	cavity.	
1	19.	The apparatus of claim 18 wherein said inlet and outlet ports comprise a
2	reenterable se	
-		
1	20.	The apparatus of claim 17 wherein said probe array comprises an array of
2	oligonucleoti	ide probes.
1	21.	An apparatus for packaging a substrate, said apparatus comprising:
2	a sub	strate having a first surface and a second surface, said first surface comprising a
3	probe array a	and said second surface being an outer periphery of said first surface;
4	a bod	y having a mounting surface, an upper surface, and a cavity bounded by said
5	mounting sur	rface and said upper surface, said second surface being attached to said cavity
6	and said first	surface being within said cavity; and
7	a cov	er attached to said mounting surface for defining an upper boundary to said
8	cavity;	
9	wher	ein said cavity comprises a diffuser and a concentrator, said diffuser and said
10	concentrator	permitting laminar fluid flow through said cavity.
1	22.	The apparatus of claim 21 wherein said probe array comprises an array of

oligonucleotide probes.

- 1 23. The apparatus of claim 21 wherein said cover comprises a depression for receiving a temperature control element to maintain a reaction temperature in said cavity.
- 1 24. The apparatus of claim 21 wherein said cover comprises a first half mated to a second half.
- The apparatus of claim 24 wherein said first half comprises a first channel and a second channel, said first channel being in fluid communication with said diffuser and said second channel being in fluid communication with said concentrator.
- 1 26. The apparatus of claim 25 wherein said second half comprises a third channel 2 and a fourth channel, said third channel being in fluid communication with said first channel, 3 and said fourth channel being in fluid communication with said second channel.
 - 27. The apparatus of claim 26 wherein said first channel and said second channel comprise re-enterable seals for sealing fluid in said cavity.
- 1 28. An apparatus for mixing a fluid, the apparatus comprising:

2

2

4

5 6

8

9

1

4

5

6

7

- a first substrate comprising a first inner surface functionalized with a microarray of reactive moieties;
 - a substantially parallel second substrate also comprising a second inner surface, wherein said first and second inner surfaces bound a closed chamber there between, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both surfaces;

7 at least one bubble disposed within said chamber; and

- means for moving the chamber so that the bubble moves relative to the fluid to effect mixing of the fluid.
 - 29. An apparatus for mixing a fluid, the apparatus comprising:
- 2 a first substrate comprising a first inner surface functionalized with a microarray of 3 reactive moieties;
 - a substantially parallel second substrate also comprising a second inner surface, wherein said first and second inner surfaces bound a closed chamber there between, said chamber adapted to retain a quantity of fluid so that the fluid is in contact with both surfaces;
 - at least one bubble disposed within said chamber, wherein said bubble is a magnetic

^		
8	particle;	and
o	Dai ucic.	anu

2

1 2

1

2

1 1

1

1

2

1

1

2

1

1 2

1

2

1

2

3

2

- 9 means for moving the bubble relative to the fluid to effect mixing of the fluid.
- 30. The apparatus of claim 28, wherein the closed chamber has a thickness of less 1 2 than about 2 millimeters.
 - 31. The apparatus of claim 29, wherein the closed chamber has a thickness of less than about 2 millimeters.
 - 32. The apparatus of claim 28, wherein both inner surfaces are functionalized with reactive moieties.
 - 33. The apparatus of claim 29, wherein both inner surfaces are functionalized with reactive moieties.
 - 34. The apparatus of claim 28, wherein the bubble comprises a gas.
 - 35. The apparatus of claim 28, wherein the bubble comprises nitrogen.
 - 36. The apparatus of claim 29, wherein said magnetic particle is a magnetic bead.
- 1 37. The apparatus of claim 28, wherein the bubble is produced by introducing a 2 volume of the fluid that is less than the total volume of the closed chamber.
 - 38. The apparatus of claim 28, further including a flexible seal between the inner surface of the first substrate and the inner surface of the second substrate.
 - 39. The apparatus of claim 38, wherein said flexible seal includes a gasket.
 - 40. The apparatus of claim 29, further including a flexible seal between the inner surface of the first substrate and the inner surface of the second substrate.
 - 41. The apparatus of claim 40, wherein said flexible seal includes a gasket.
 - 42. The apparatus of claim 28, further comprising means for introducing fluid into the closed chamber.
 - 43. The apparatus of claim 29, further comprising means for introducing fluid into the closed chamber.
 - 44. The apparatus of claim 28, wherein the first substrate and the second substrate are individually comprised of a material selected from the group consisting of glass, silicon, fused silica, plastic, and a combination thereof.
- 1 45. The apparatus of claim 29, wherein the first substrate and the second substrate are individually comprised of a material selected from the group consisting of glass, silicon, 3 fused silica, plastic, and a combination thereof.

1 46. The apparatus of claim 28, wherein the first substrate is comprised of glass. 47. The apparatus of claim 29, wherein the first substrate is comprised of glass. l 48. The apparatus of claim 28, wherein the means for moving the bubble is selected 1 2 from the group consisting of rotating the apparatus about an axis, rolling the apparatus, and 3 reciprocally shaking the apparatus. 1 49. A method for mixing a fluid, comprising: 2 providing an apparatus according to claim 28; 3 introducing a fluid into the closed chamber; 4 introducing a bubble within the fluid; and 5 moving the bubble in the fluid to effect mixing of the fluid. 1 50. A method for mixing a fluid, comprising: 2 providing an apparatus according to claim 29; 3 introducing a fluid into the closed chamber; 4 introducing a bubble within the fluid; and 5 moving the bubble in the fluid to effect mixing of the fluid. 1 51. A method for mixing a fluid, comprising: 2 providing an apparatus according to claim 30; 3 introducing a fluid into the closed chamber, 4 introducing a bubble within the fluid; and 5 moving the bubble in the fluid to effect mixing of the fluid. 52. A method for mixing a fluid, comprising: 1 providing an apparatus according to claim 31; 2 introducing a fluid into the closed chamber; 3 4 introducing a bubble within the fluid; and 5 moving the bubble in the fluid to effect mixing of the fluid. 1 53. A method for mixing a fluid, comprising: 2 providing an apparatus according to claim 36; 3 introducing a fluid into the closed chamber; 4 introducing a bubble within the fluid; and

moving the bubble in the fluid to effect mixing of the fluid.

5

1	54. A method for mixing a fluid, comprising:
2	providing an apparatus according to claim 48;
3	introducing a fluid into the closed chamber;
4	introducing a bubble within the fluid; and
5	moving the bubble in the fluid to effect mixing of the fluid.
1	55. An apparatus for mixing a fluid, comprising:
2	a first substrate and a second substrate having inner surfaces that define a closed
3	chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is
4	in contact with both inner surfaces;
5	means for creating bubbles in the fluid within the apparatus, whereby each bubble
6	displaces the fluid resulting in mixing; and
7	means for moving a bubble in the fluid.
1	56. The apparatus of claim 55, wherein the first substrate comprises a material
2	selected from the group consisting of glass, silicon, fused silica, and plastic.
1	57. An apparatus for mixing a fluid, comprising:
2	a first substrate and a substantially parallel second substrate having inner surfaces that
3	define a closed chamber therebetween, said chamber adapted to retain a quantity of fluid so
4	that the fluid is in contact with both inner surfaces;
5	means for providing bubbles in the fluid within the apparatus, whereby each said
6	bubble displaces the fluid resulting in mixing; and
7	means for moving a bubble in the fluid.
1	58. An apparatus for mixing a fluid, comprising:
2	a first substrate and a second substrate having inner surfaces that define a closed
3	chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is
4	in contact with both inner surfaces; and
5	means for creating bubbles in the fluid at selected locations within the apparatus,
6	whereby each bubble displaces the fluid resulting in mixing; and wherein at least one of said
7	inner surfaces is functionalized with reactive moieties.

1	59. The apparatus of claim 58 wherein the reactive moieties comprise monomeric
2	species covalently bound to said inner surface, each of the monomeric species having at least
3	one reactive site.
1	60. The apparatus of claim 59 wherein the monomeric species are nucleotides.
1	61. The apparatus of claim 60 wherein the monomeric species are amino acids.
1	62. The apparatus of claim 61 wherein the reactive moieties comprise reactive sites
2	of monomeric species present at the terminus of a surface-bound polymer.
1	63. The apparatus of claim 62 wherein the surface-bound polymer comprises a
2	polynucleotide.
1	64. The apparatus of claim 62 wherein the surface-bound polymer comprises a
2	polyribonucleotide.
1	65. The apparatus of claim 64, wherein the surface-bound polymer comprises a
2	polypeptide.
1	66. A method comprising:
2	providing a first substrate and a second substrate having inner surfaces that define a
3	closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the
4	fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is
5	functionalized with polynucleotides, polypeptides, or polysaccharides;
6	introducing a fluid containing a plurality of components into the closed chamber so a
7	to provide a quantity of fluid therein in contact with both inner surfaces;
8	providing a bubble in the fluid; and
9	moving a bubble within the fluid to result in mixing.
1	67. A method according to claim 66, wherein the polynucleotide is a
2	polyribonucleotide.
1	68. A method according to claim 66, wherein the chamber is adapted to retain a film
2	of fluid in contact with both inner surfaces.
1	69. A method according to claim 66 wherein the inner surfaces of the first and
2	second substrates are substantially parallel.
1	70. A method according to claim 66, wherein the chamber is less than two
2	millimeters in thickness.

1	/1. A method according to claim 66 further including using heat for said mixing.
I	72. A method according to claim 66 further including using ultrasonic radiation for
2	said mixing.
1	73. A method of claim 66, wherein the at least one of said inner surfaces is
2	functionalized with polynucleotides.
1	74. A method of 66, wherein the at least one of said inner surfaces is functionalized
2	with polypeptides.
1	75. A method comprising:
2	providing a first substrate and a second substrate having inner surfaces that define a
3	closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the
4	fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is
5	functionalized with an array of RNA or DNA probes;
6	introducing a fluid sample containing DNA or RNA into the closed chamber so as to
7	provide a quantity of fluid therein in contact with both inner surfaces;
8	providing a bubble in the fluid;
9	moving a bubble within the fluid to result in mixing;
10	after hybridization is complete, removing the sample from the apparatus; and
11	analyzing the functionalized inner surface for DNA or RNA that has hybridized.
1.	76. A method according to claim 75 additionally comprising heating the DNA or
2	RNA containing sample fluid while in the closed chamber.
1	77. A method according to claim 76 additionally comprising washing the
2	functionalized inner surface prior to the analyzing.
1	78. A method according to claim 75, wherein the bubble is moved in a circular
2	pattern.
i	79. A method according to claim 78, wherein the bubble is moved in the circular
2	pattern that includes exiting the closed chamber.
1	80. A method comprising:
2	providing a first substrate and a second substrate having inner surfaces that define a
3	closed chamber therebetween, said chamber adapted to retain a quantity of fluid so that the
4	fluid is in contact with both inner surfaces, and wherein at least one of said inner surfaces is
5	functionalized with an immobilized biological polymer;

O	introducing a fluid containing a plurality of components into the closed chamber so as
7	to provide a quantity of fluid therein in contact with both inner surfaces;
8	providing a bubble in the fluid; and
9	moving a bubble within the fluid to result in mixing.
1	81. A method according to claim 80, wherein said biological polymer includes a
2	polynucleotide.
1	82. A method according to claim 81, wherein said polynucleotide is a
2	polyribonucleotide.
1	83. A method according to claim 80, wherein said biological polymer includes
2	polypeptides.
1	84. A method according to claim 80, wherein said biological polymer includes
2	polysaccharides.
1	85. A method for mixing a film of fluid, comprising:
2	providing a first substrate and a substantially parallel second substrate having inner
3	surfaces that define a closed chamber therebetween, said chamber adapted to retain a quantity
4	of fluid so that the fluid is in contact with both inner surfaces;
5	introducing a fluid containing a plurality of components into the closed chamber so as
6	to provide a film of fluid therein; and
7	nucleating a bubble within the film of fluid, whereby, as the bubble is nucleated and
8	dispelled, the fluid is displaced resulting in mixing.
1	86. The method of claim 85, wherein the dispelling comprises moving the bubble.
1	87. An apparatus for mixing a fluid, comprising:
2	a first substrate and a second substrate having inner surfaces that define a closed
3	chamber therebetween, said chamber adapted to retain a quantity of fluid so that the fluid is
4	in contact with both inner surfaces;
5	means for nucleating bubbles in the fluid comprising discrete sources for creating
6	individual bubbles at selected locations within the apparatus, whereby, as each bubble is
7	nucleated and dispelled, the fluid is displaced resulting in mixing; and
8	means for moving a bubble in the fluid.