Рачунарска интелигенција

Интелигенција ројева

Александар Картељ

kartelj@matf.bg.ac.rs

Ови слајдови представљају прилагођење слајдова: Eric Bonabeau, O'Reilly emerging technology conference, 2003.

Датум последње измене: 18.12.2019.

Пчеле

Пчеле

- Коопеарција у оквиру колоније
- Регулација температуре унутар саћа
- Ефикасност се постиже специјализацијом: подела рада у оквиру колоније
- Комуникација: извори хране се користе у складу са њиховом близином саћу и квалитетом

Oce

Oce (2)

- Трагачи за храном, трагачи за водом, градитељи
- Сложена гнезда
 - Хоризоналне колоне
 - Заштитне опне
 - Централни улазни хол

Термити

Термити (2)

- Конусни спољни зидови и вентилациони отвори
- Легла у централној кошници
- Спирални вентилациони отвори за хлађење
- Потпорни стубови

Мрави

Мрави (2)

- Праве "аутопутеве" до места са храном тако што остављају траг феромона
- Формирају ланце својим телима у циљу прављења моста преко лишћа и слично
- Подела посла између више и мање битних мрава

Социјални инсекти - карактеристике

• Флексибилност:

колонија савладава унутрашње претурбације, као и спољне изазове

• Робусност:

задаци се завршавају иако неке индивидуе закажу

• Децентрализованост:

не постоји централни механизам контроле нити концепт лидера

• Самоорганизованост:

путеви до решења временом искрсну, нису унапред предефинисани

Икоситем симулација

- На адреси http://www.icosystem.com/labsdemos/the-game/ се може преузети једноставна симулација
- Циљ симулације је представљање популације у којој се сви чланови воде истим правилима

Икосистем симулација (2)

Aggressor Rule

A ---- B ---- X

Each agent has chosen two random opponents, A and B. A is the "aggressor" and B the "defender". As an agent, you try to have B in between A and yourself, so that B "protects" you from A.

What would happen if you were the defender, placing yourself between A and B? Switch to defender to see!

- Сваки агент X има додељена два насумична противника A и B
- Правило за X је да се поставља тако да В буде на путу између А и X

Икосистем симулација (3)

Defender Rule

A ---- B

Each agent X has chosen two random opponents, A and B. A is the "aggressor" and B the "defender". As an agent, you try to be between A and B, so that you "protect" B from A.

A small change in the rules has led to a completely different result.

- Правило за X је промењено тако да се он сада поставља између A и B
- Видимо да је мала промена правила драстично утицала на колективно понашање!

Кретање мрава од гнезда ка храни

Кретање након увођења препреке

Путања се проширује!

Нови најкраћи пут

Прилагођавање новој ситуацији

(ретестирање актуелних путања)

Прилагођавање новој ситуацији (2)

Проблеми са интелигентним ројевима

- Овакви системи се тешко програмирају, јер је проблеме које решавамо тешко пребацити на језик интелигентних ројева
 - Решења искрсну унутар система
 - Решења су резултат понашања и интеракција између појединачних агената (јединки) унутар ситема

Главни састојци за самоорганизацију

- Позитивна повратна спрега (енг. Positive Feedback)
- Негативна повратна спрега (енг. Negative Feedback)
- Појачавање и смањивање случајности
- Ослањање на међусобне интеракције агената

Својства самоорганизације

- Креирање структура
 - Гнезда, трагови, социјално уређење (хијерархија)

- Промене су резултат постојања вишеструких путева развоја
 - Некоординисане & кооридинисане фазе

- Постојање више стабилних стања
 - На пример два једнако добра извора хране

Типови интеракције међу социјалним инсектима

- Директна интеракција
 - Размена течности и хране, визуелни контакт, хемијски контакт (феромони)
- Индиректна интеракција стигмергија (енг. Stigmergy)
 - Индивидуално понашање мења окружење, које после изазива промену понашања других индивидуа

Стигмергија

- На пример, код мрава, стигмергија елиминише потребу за директном међусобном комуникацијом
- Ефекат је да мрави спроводе координисане активности без обраћања један другом као што то раде људи

Решавање проблема интелигенцијом ројева

- Неке од популарнијих примена су:
 - Оптимизација рута
 - Кластеровање и сортирање
 - Подела посла
 - Кооперативни транспорт
 - Изградња сложених структура (гнезда)

Оптимизација рута мравима (TSP)

- d_{ii}= удаљеност између градова і и ј
- т_{іі}= количина феромона на луку (і,j)
- m агената (мрава), сваки гради независну путању
- У сваком кораку, вероватноћа одласка од града і до града ј је сразмерна $(\tau_{ii})^a(d_{ii})^{-b}$
- Феромон испарава по формули: τ (1-ρ) τ

Испаравање феромона

TSP – скуп решења

Рутирање у комуникационим мрежама

- Агенти започињу свој пут од полазног чвора ка циљном
- Сваки агент ажурира своју табелу рутирања и комуницира са осталима
- Идеја: "Ако идеш ка циљном чвору коју у којем сам ја већ био раније, даћу ти савет куда да идеш"
- Утицај агента (валидност савета) се смањује са старењем
- Агенти се вештачки успоравају на загушеним чворовима (гранама) симулација реалности

Померање мрава у правцу хране (кластеровање)

Поставка модела за кластеровање

• Изолована храна има већу шансу да буде покупљена од стране агента који не носи товар. Вероватноћа узимања товара:

$$P_p = [k_1/(k_1+f)]^2$$

- Где је f густина хране у датој околини
- Агент који носи товар има већу шансу да испусти товар уколико у близини постоје и други товари:

$$P_d = [f/(k_2 + f)]^2$$

Подела посла

- Messor barbarous мрави који живе у југоисточној Шпанији, доносе храну од извора ка гнезду у бригадама од до шесторо радника
- Најпре, најмањи мрави узимају храну са извора и носе је дуж пута док не сретну веће раднике
- Већи радници преузимају храну и носе је даље, док се мањи враћају назад до извора

Слична организација у Tacko Bell

Кооперативни транспорт

- Када појединачни мрав не може да носи велики комад хране, неколико мрава се активира
- Током почетног периода, мрави мењају позицију без очигледног напретк
- Након неког времена, успевају да помере плен и онда настављају да раде сличну активност која даје резултате

Колективна роботика

- Научници су успели да репродукују колективну координацију са групом веома једноставних робота
- Роботи су заједнички гурали кутију
- Можда није најефикаснији начин, али је потенцијално флексибилан и могућ да се прилагођава најразличитијим околностима
 - Под условом да се правила дефинишу адекватно
- http://www.cs.ualberta.ca/~kube/

Изградња сложених структура

- Агенти се померају насумично унутар 3D мреже
- Агент поставља ћелију (циглицу) сваки пут када пронађе стимулативну конфигурацију
- Постоји табела правила за стимулативне конфигурације
- Простор могућности стимулативних извдених конфигурација је огроман!

Примери конфигурација добијених различитим правилима

Нека правила могу бити опасна

- Забележен је случај да су мрави ратници применом правила међусобног праћења формирали "круг смрти"
- Круг је био обима 400 метара и сваком мраву је требало око 2 и по сата да га обиђе
- Током неколико дана, великих број мрава је угинуо, јер нису могли да изађу из круга
- Неколико мрава је ипак успело да се избави од стимулативног феромонског трага и да разбије круг

