ElasticTree: Saving Energy in Data Center Networks

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma, Sujata Banerjee, Nick McKeown

Presentation by Michał Dereziński

Problem

- Data centers consume huge amounts of energy.
- Networking elements are responsible for 10-20% of power usage in a data center.
- They are typically provisioned for peak workload.
- During lower traffic, most of the network components are idle, still using power.

Problem

Solution: ElasticTree

- Network-wide energy optimizer.
- Turns off as many unneeded links and switches as possible.
- Monitors data center traffic conditions and dynamically adjusts the network.
- Keeps good performance and fault tolerance while significantly decreasing energy usage.

Example fat tree topology, k=4

Example fat tree topology, k=4

System Diagram

Optimizers

- Formal Model
- Greedy Bin-Packing
- Topology-aware Heuristic

Type	Quality	Scalability	Input	Topo
Formal	Optimal	Low	Traffic Matrix	Any
Greedy	Good	Medium	Traffic Matrix	Any
Topo-	OK	High	Port Counters	Fat
aware				Tree

Prototype Test Bed

- Smaller configuration:
 - complete k=4 fat tree topology,
 - 20 four-port virtual switches,
 - supporting 16 hosts at 1Gbps apiece.
- Larger configuration:
 - complete k=6 fat tree topology,
 - 45 six-port virtual switches,
 - supporting 54 hosts at 1 Gbps apiece.
- NetFPGA traffic generators
- Latency monitor

Power Savings Analysis

- Small tests performed on prototypes.
- Larger networks tested through simulations.
- Considered power usage:
 - number of switches powered on,
 - number of ports enabled on them.
- Ignored power usage:
 - running servers hosting ElasticTree modules,
 - o cooling components:
 - additional energy for cooling servers,
 - decreased energy for cooling switches.

Traffic Patterns

Simulations on real traffic data

- E-commerce website
- 292 servers
- Fat tree, k=12
- Tested for different levels of overall traffic

Robustness Analysis

- Network topology must be prepared for:
 - o traffic surges,
 - o network failures.
- Adding a minimum spanning tree to the power optimized topology enables one failure with no loss of connectivity.
- Additional energy cost decreases with the size of the topology.

Robustness Analysis

Performance

- Any energy saving policy should have negligible performance penalty.
- ElasticTree needs to deal with processing overheads, traffic bursts and sustained load increases.
- Safety margins are added to the traffic data to improve network latency and decrease the number of dropped packets.

Dropped packets

Latency

Processing Overhead

Practical Considerations

- Response time. When increasing network's capacity, turning the switches on takes up most of the time (ranges from 30 seconds to 3 minutes)
- Traffic prediction should significantly improve the response time. Initial tests are promising.
- Fault tolerance. In case of optimizer failure, power management should be turned off automatically.

Conclusions

- ElasticTree introduces energy proportionality in today's non-energy proportional networks.
- This highly flexible system allows for balancing between performance, robustness and energy.
- Initial results suggest very significant power benefits for networks with varying utilization.

Thank You

Questions?