Definitions

Theory

Trigonometric identities. The following identities hold for all $\theta, \phi \in \mathbb{R}$.

1.
$$\cos \theta \cos \phi = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{2}$$

$$4. \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

2.
$$\sin \theta \sin \phi = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{2}$$

$$5. \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

3.
$$\sin \theta \cos \phi = \frac{\sin(\theta - \phi) + \sin(\theta + \phi)}{2}$$

Procedures

Comment. The basic strategy for computing integrals of functions of the form $\sin^m x \cos^n x$ or $\tan^m x \sec^n x$ is to use one of the four substitutions

$$u = \sin x$$
 $u = \cos x$ $u = \tan x$ $u = \sec x$ $du = \cos x dx$ $du = -\sin x dx$ $du = \sec^2 x dx$ $du = \sec x \tan x dx$

"peel off" what is necessary for du, and express the rest of the integrand as a polynomial in u using the trigonometric identities.

$$\sin^2 x + \cos^2 x = 1$$
 $\sec^2 x = \tan^2 +1$.

Integrating $\sin^m x \cos^n x$. Let m and n be nonnegative integers. When computing

$$\int \sin^m x \cos^n x \, dx$$

the following strategies often help.

1. If m = 2k + 1 is odd, write

$$\int \sin^m x \cos^n x \, dx = \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx$$

and use the substitution $u = \sin x, du = \cos x dx$.

2. If n = 2k + 1 is odd, write

$$\int \sin^m x \cos^n x \, dx = \int \sin^m x (1 - \sin^2 x)^k \cos x \, dx$$

and use the substitution $u = \cos x$, $du = -\sin x dx$.

3. If m and n are both even use $\sin^2 x = \frac{1 - \cos 2x}{2}$ and $\cos^2 x = \frac{1 + \cos 2x}{2}$ to reduce to a lower power of $\cos 2x$.

Integrating $\tan^m x \sec^n x$. Let m and n be nonnegative integers. When computing

$$\int \tan^m x \sec^n x \, dx$$

the following strategies often help.

1. If m = 2k + 1 is odd and $n \ge 1$, write

$$\int \tan^m x \sec^n x \, dx = \int (\sec^2 x - 1)^k \sec^{n-1} x \sec x \tan x \, dx$$

and use the substitution $u = \sec x$, $du = \sec x \tan x dx$.

2. If n = 2k is even, write

$$\int \tan^m x \sec^n x \, dx = \int (\tan^2 x + 1)^{k-1} \tan^m x \sec^2 x \, dx$$

and use the substitution $u = \tan x$, $du = \sec^2 x \, dx$.

3. If m is even and n is odd, express everything in terms of $\sec x$ and possibly use integration by parts.

Examples

Compute the following indefinite integrals.

- $1. \int \sin^3 x \cos^2 x \, dx$
- $2. \int \sin^2 x \cos^4 x \, dx$
- $3. \int \sec^4 x \, dx$
- $4. \int \tan^5 x \sec^7 x \, dx$
- 5. $\int \sec^3 x \, dx$
- 6. $\int \tan^5 x \, dx$