Introduction to deep learning

APSC 8280: Machine learning applied to plant science

Outline

- Introduction to neural networks
- Types of neural network
- Hand-worked example
- Demo

Introduction to neural networks(NN)

Neurons in the brain

Neurahmoottelnetgietic unit

Activation function

NN types: activation functions

Linear neurons

Binary threshold neurons

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

NN types: activation functions

Rectified linear neurons

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} z & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid neurons

$$z = b + \sum_{i} x_{i} w_{i}$$
 $y = \frac{1}{1 + e^{-z}}$

Neural network architectures

NN: simple demonstrations

Classification: drawing decision boundaries

Activation function

x_1	x_2	$h_{\Theta}(x)$
0	0	$h_{\Theta} (-30 + 20 * (0) + 20 * (0)) = h_{\Theta} (-30) \approx 0$
0	1	$h_{\Theta} (-30 + 20 * (0) + 20 * (1)) = h_{\Theta} (-10) \approx 0$
1	0	$h_{\Theta} (-30 + 20 * (1) + 20 * (0)) = h_{\Theta}(-10) \approx 0$
1	1	$h_{\Theta} (-30 + 20 * (1) + 20 * (1)) = h_{\Theta}(10) \approx 1$

Try it yourself!

x₁ OR x₂

 x_1	x_2	$h_{\Theta}(x)$
0	0	$h_{\Theta} (-10 + 20 * (0) + 20 * (0)) = h_{\Theta} (-10) \approx 0$
0	1	$h_{\Theta} (-10 + 20 * (0) + 20 * (1)) = h_{\Theta}(10) \approx 1$
1	0	$h_{\Theta} (-10 + 20 * (1) + 20 * (0)) = h_{\Theta}(10) \approx 1$
1	1	$h_{\Theta} (-10 + 20 * (1) + 20 * (1)) = h_{\Theta}(30) \approx 1$

NOT x₁

x_1	$h_{\Theta}(x)$
0	$h_{\Theta} (10 - 20 * (0)) = h_{\Theta}(10) \approx 1$
1	$h_{\Theta} (10 - 20 * (1)) = h_{\Theta}(-10) \approx 0$

Putting it all together

Training a neural network

- Pick a network architecture
- Randomly initialize weights
- Forward propagation to get the activations
- Compute the cost function
- Backpropagation to compute partial derivatives

Neural networks

Strengths

- ✓ Perhaps the most effective method for modeling complex patterns
- ✓ Makes few assumptions about the data

Weaknesses

- × Can be extremely computationally intensive to train
- **X** Prone to overfitting
- **X** Black box model with little interpretability