Problem Set 2

Data Analysis and Interpretation (EE 223)

Instructor: Prof. Prasanna Chaporkar EE Department, IIT Bombay

- 1. \mathcal{B} is the smallest σ -field containing collection $\mathcal{A} = \{(-\infty, x] : x \in \mathcal{R}\}$ show that:
 - (a) $(x,\infty)\in\beta\ \forall\ x$ A belong then a compliment gs to
 - (b) $(-\infty, x) \in \beta \ \forall \ x$
 - (c) $\{x\} \in \beta \ \forall \ x$
 - (d) $(x_1, x_2] \in \mathcal{B} \ \forall \ x_1 < x_2$
 - (e) $[x_1, x_2] \in \mathcal{B} \ \forall \ x_1 < x_2$
 - (f) $(x_1, x_2) \in \mathcal{B} \ \forall \ x_1 < x_2$
- 2. Consider $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}, n < \infty$ and \mathcal{F} is the power set of Ω . Argue that assigning values to singletons $\{\omega_k\}$ is enough to describe a probability measure \mathcal{P} completely.
 - (a) Let X be any random variable, then show that $\{A: \exists B \in \mathcal{B} \text{ s.t. } X^{-1}(B) = A\} = X^{-1}(B)$ is a σ -field on Ω .
 - (b) Find $X^{-1}(B)$ when

 - i. $X=\mathbbm{1}_A$ indicator random variable ii. $X=\sum_{k=1}^\infty \alpha_k \mathbbm{1}_{A_k}$ where $\alpha_k\in\mathcal{R}$ & $\{A_1,...,A_n\}$ partition Ω .
- 3. Find the mean and variance of
 - (a) A Gamma RV
 - (b) A Geometric RV
- 4. Find the pdf of
 - (a) $Y = e^X$, where X is a normal RV given by,

$$f_X(x) = \frac{1}{\sqrt{2\sigma^2}} e^{-\frac{x^2}{2}}$$

- (b) $Y = aX^2$, where X is a uniformly distributed RV between [1 4].
- 5. Consider X to be a Poisson RV given by

$$f_X(x) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Text

and $Y = ba^X$, where a & b are positive constants. Find E[Y].

6. Let $F_X(.)$ is as shown below. Write X as a linear combination of the continuous and discrete random variables.

7. Show that if X > 0, then $E(X) = \int_{-\infty}^{\infty} (1 - F_X(x)) dx$.