A02

Q1

(1-Q42) Find the point on the plane

$$2x + y - z = 6$$

which is closest to the origin, by using Lagrange multipliers.

Solution:

To find the point on the plane 2x + y - z = 6 closest to the origin using Lagrange multipliers, minimize the square of the distance to the origin, $f(x, y, z) = x^2 + y^2 + z^2$, subject to the constraint g(x, y, z) = 2x + y - z - 6 = 0.

The gradients are:

$$abla f=(2x,2y,2z), \quad
abla g=(2,1,-1).$$

Set $\nabla f = \lambda \nabla g$:

$$2x = 2\lambda, \quad 2y = \lambda, \quad 2z = -\lambda.$$

Solving for x, y, and z:

$$x=\lambda,\quad y=rac{\lambda}{2},\quad z=-rac{\lambda}{2}.$$

Substitute into the constraint 2x + y - z = 6:

$$2(\lambda)+\left(rac{\lambda}{2}
ight)-\left(-rac{\lambda}{2}
ight)=2\lambda+rac{\lambda}{2}+rac{\lambda}{2}=2\lambda+\lambda=3\lambda=6.$$

Thus, $\lambda = 2$. Then:

$$x=2, \quad y=rac{2}{2}=1, \quad z=-rac{2}{2}=-1.$$

The point (2, 1, -1) lies on the plane since 2(2) + 1 - (-1) = 4 + 1 + 1 = 6.

The distance to the origin is $\sqrt{2^2+1^2+(-1)^2}=\sqrt{6}$, which is consistent with the distance formula for a plane.

Thus, the point on the plane closest to the origin is (2, 1, -1).

$$(2, 1, -1)$$

Q2

(3-Q5) Assume that the function F(x, y, z) satisfies the equation

$$rac{\partial F}{\partial z} = rac{\partial^2 F}{\partial x^2} + rac{\partial^2 F}{\partial y^2}$$

and the mixed partial derivatives $\frac{\partial^2 F}{\partial x \partial y}$ and $\frac{\partial^2 F}{\partial y \partial x}$ are equal. Let A be some constant and let

$$G(\gamma,t)=F(\gamma+s,\gamma-s,At).$$

Find the value of A such that

$$rac{\partial G}{\partial t} = rac{\partial^2 G}{\partial \gamma^2} + rac{\partial^2 G}{\partial s^2}.$$

Solution:

The function F(x, y, z) satisfies the partial differential equation

$$rac{\partial F}{\partial z} = rac{\partial^2 F}{\partial x^2} + rac{\partial^2 F}{\partial y^2},$$

with equal mixed partial derivatives $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$.

The function $G(\gamma, s, t)$ is defined as

$$G(\gamma,s,t)=F(\gamma+s,\gamma-s,At),$$

where $x = \gamma + s$, $y = \gamma - s$, and z = At. The goal is to find the constant A such that

$$rac{\partial G}{\partial t} = rac{\partial^2 G}{\partial \gamma^2} + rac{\partial^2 G}{\partial s^2}.$$

Using the chain rule, the partial derivatives of G are computed as follows:

• The partial derivative of G with respect to t is

$$\frac{\partial G}{\partial t} = A \frac{\partial F}{\partial z}.$$

• The second partial derivative of G with respect to γ is

$$rac{\partial^2 G}{\partial \gamma^2} = rac{\partial^2 F}{\partial x^2} + 2rac{\partial^2 F}{\partial x \partial y} + rac{\partial^2 F}{\partial y^2}.$$

• The second partial derivative of *G* with respect to *s* is

$$rac{\partial^2 G}{\partial s^2} = rac{\partial^2 F}{\partial x^2} - 2rac{\partial^2 F}{\partial x \partial y} + rac{\partial^2 F}{\partial y^2}.$$

Adding the second derivatives with respect to γ and s gives

$$rac{\partial^2 G}{\partial \gamma^2} + rac{\partial^2 G}{\partial s^2} = \left(rac{\partial^2 F}{\partial x^2} + 2rac{\partial^2 F}{\partial x \partial y} + rac{\partial^2 F}{\partial y^2}
ight) + \left(rac{\partial^2 F}{\partial x^2} - 2rac{\partial^2 F}{\partial x \partial y} + rac{\partial^2 F}{\partial y^2}
ight) = 2rac{\partial^2 F}{\partial x^2} + 2rac{\partial^2 F}{\partial y^2}.$$

The equation to satisfy is

$$rac{\partial G}{\partial t} = rac{\partial^2 G}{\partial \gamma^2} + rac{\partial^2 G}{\partial s^2},$$

so substituting the expressions yields

$$Arac{\partial F}{\partial z}=2\left(rac{\partial^2 F}{\partial x^2}+rac{\partial^2 F}{\partial y^2}
ight).$$

Given that F satisfies $\frac{\partial F}{\partial z} = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$, the right-hand side simplifies to $2\frac{\partial F}{\partial z}$. Thus,

$$Arac{\partial F}{\partial z}=2rac{\partial F}{\partial z}.$$

For this to hold, A=2.

Q3

(3-Q8) The wave equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

arises in many models involving wave-like phenomena. Let u(x,t) and $v(\xi,\eta)$ be related by the change of variables

$$u(x,t) = v(\xi(x,t),\eta(x,t))$$

$$\xi(x,t) = x - ct$$

$$\eta(x,t)=x+ct$$

- Questions:
 - Show that $\frac{\partial^2 u}{\partial x^2} \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$ if and only if $\frac{\partial^2 v}{\partial \xi \partial \eta} = 0$.
 - Show that $\frac{\partial^2 u}{\partial x^2} \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$ if and only if u(x,t) = F(x-ct) + G(x+ct) for some functions F and G.

Solution:

To show that the wave equation holds if and only if $\frac{\partial^2 v}{\partial \xi \partial \eta} = 0$, express the second partial derivatives of u with respect to x and t in terms of the derivatives of v with respect to ξ and η .

First, compute the first partial derivatives of u:

$$rac{\partial u}{\partial x} = rac{\partial v}{\partial \xi} rac{\partial \xi}{\partial x} + rac{\partial v}{\partial \eta} rac{\partial \eta}{\partial x} = rac{\partial v}{\partial \xi} (1) + rac{\partial v}{\partial \eta} (1) = rac{\partial v}{\partial \xi} + rac{\partial v}{\partial \eta}, \ rac{\partial u}{\partial t} = rac{\partial v}{\partial \xi} rac{\partial \xi}{\partial t} + rac{\partial v}{\partial \eta} rac{\partial \eta}{\partial t} = rac{\partial v}{\partial \xi} (-c) + rac{\partial v}{\partial \eta} (c) = -c rac{\partial v}{\partial \xi} + c rac{\partial v}{\partial \eta}.$$

Next, compute the second partial derivatives. For $\frac{\partial^2 u}{\partial x^2}$:

$$rac{\partial^2 u}{\partial x^2} = rac{\partial}{\partial x}igg(rac{\partial v}{\partial \xi} + rac{\partial v}{\partial \eta}igg).$$

Applying the chain rule:

$$\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial \xi} \right) = \frac{\partial^2 v}{\partial \xi^2} \frac{\partial \xi}{\partial x} + \frac{\partial^2 v}{\partial \xi \partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial^2 v}{\partial \xi^2} (1) + \frac{\partial^2 v}{\partial \xi \partial \eta} (1) = \frac{\partial^2 v}{\partial \xi^2} + \frac{\partial^2 v}{\partial \xi \partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial^2 v}{\partial \eta} \left(\frac{\partial v}{\partial \eta} \right) = \frac{\partial^2 v}{\partial \eta \partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial^2 v}{\partial \eta^2} \frac{\partial \eta}{\partial x} = \frac{\partial^2 v}{\partial \xi \partial \eta} (1) + \frac{\partial^2 v}{\partial \eta^2} (1) = \frac{\partial^2 v}{\partial \xi \partial \eta} + \frac{\partial^2 v}{\partial \eta^2} \frac{\partial \eta}{\partial x} = \frac{\partial^2 v}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial^2 v}{\partial \eta$$

assuming equal mixed partial derivatives. Thus

$$rac{\partial^2 u}{\partial x^2} = \left(rac{\partial^2 v}{\partial \xi^2} + rac{\partial^2 v}{\partial \xi \partial \eta}
ight) + \left(rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight) = rac{\partial^2 v}{\partial \xi^2} + 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}.$$

For $\frac{\partial^2 u}{\partial t^2}$:

$$rac{\partial^2 u}{\partial t^2} = rac{\partial}{\partial t}igg(-crac{\partial v}{\partial \xi} + crac{\partial v}{\partial \eta}igg) = crac{\partial}{\partial t}igg(-rac{\partial v}{\partial \xi} + rac{\partial v}{\partial \eta}igg).$$

Applying the chain rule:

$$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial \xi} \right) = \frac{\partial^2 v}{\partial \xi^2} \frac{\partial \xi}{\partial t} + \frac{\partial^2 v}{\partial \xi \partial \eta} \frac{\partial \eta}{\partial t} = \frac{\partial^2 v}{\partial \xi^2} (-c) + \frac{\partial^2 v}{\partial \xi \partial \eta} (c) = -c \frac{\partial^2 v}{\partial \xi^2} + c \frac{\partial^2 v}{\partial \xi \partial \eta} dc$$

$$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial \eta} \right) = \frac{\partial^2 v}{\partial \eta \partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial^2 v}{\partial \eta^2} \frac{\partial \eta}{\partial t} = \frac{\partial^2 v}{\partial \xi \partial \eta} (-c) + \frac{\partial^2 v}{\partial \eta^2} (c) = -c \frac{\partial^2 v}{\partial \xi \partial \eta} + c \frac{\partial^2 v}{\partial \eta^2} dc$$

Thus.

$$egin{aligned} rac{\partial}{\partial t} \left(-rac{\partial v}{\partial \xi} + rac{\partial v}{\partial \eta}
ight) &= -\left(-crac{\partial^2 v}{\partial \xi^2} + crac{\partial^2 v}{\partial \xi \partial \eta}
ight) + \left(-crac{\partial^2 v}{\partial \xi \partial \eta} + crac{\partial^2 v}{\partial \eta^2}
ight) \ &= crac{\partial^2 v}{\partial \xi^2} - crac{\partial^2 v}{\partial \xi \partial \eta} - crac{\partial^2 v}{\partial \xi \partial \eta} + crac{\partial^2 v}{\partial \eta^2} = c\left(rac{\partial^2 v}{\partial \xi^2} - 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight), \end{aligned}$$

and

$$rac{\partial^2 u}{\partial t^2} = c \cdot c \left(rac{\partial^2 v}{\partial \xi^2} - 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight) = c^2 \left(rac{\partial^2 v}{\partial \xi^2} - 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight).$$

Substitute into the wave equation:

$$egin{aligned} rac{\partial^2 u}{\partial x^2} - rac{1}{c^2} rac{\partial^2 u}{\partial t^2} \ &= \left(rac{\partial^2 v}{\partial \xi^2} + 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight) - rac{1}{c^2} igg(c^2 \left(rac{\partial^2 v}{\partial \xi^2} - 2rac{\partial^2 v}{\partial \xi \partial \eta} + rac{\partial^2 v}{\partial \eta^2}
ight)igg). \end{aligned}$$

Simplify:

$$\begin{split} &=\frac{\partial^2 v}{\partial \xi^2} + 2\frac{\partial^2 v}{\partial \xi \partial \eta} + \frac{\partial^2 v}{\partial \eta^2} - \left(\frac{\partial^2 v}{\partial \xi^2} - 2\frac{\partial^2 v}{\partial \xi \partial \eta} + \frac{\partial^2 v}{\partial \eta^2}\right) \\ &= \frac{\partial^2 v}{\partial \xi^2} + 2\frac{\partial^2 v}{\partial \xi \partial \eta} + \frac{\partial^2 v}{\partial \eta^2} - \frac{\partial^2 v}{\partial \xi^2} + 2\frac{\partial^2 v}{\partial \xi \partial \eta} - \frac{\partial^2 v}{\partial \eta^2} = 4\frac{\partial^2 v}{\partial \xi \partial \eta} \end{split}$$

The wave equation requires:

$$4rac{\partial^2 v}{\partial \xi \partial \eta}=0,$$

which implies:

$$rac{\partial^2 v}{\partial \xi \partial \eta} = 0.$$

Conversely, if $\frac{\partial^2 v}{\partial \xi \partial \eta} = 0$, then the expression is zero, satisfying the wave equation. Therefore, the wave equation holds if and only if $\frac{\partial^2 v}{\partial \xi \partial \eta} = 0$.

The wave equation is given by

$$rac{\partial^2 u}{\partial x^2} - rac{1}{c^2} rac{\partial^2 u}{\partial t^2} = 0.$$

Consider the change of variables $\xi = x - ct$ and $\eta = x + ct$, and define $u(x,t) = v(\xi,\eta)$. From the previous result, the wave equation holds if and only if

$$\frac{\partial^2 v}{\partial \xi \partial \eta} = 0.$$

Integrating $\frac{\partial^2 v}{\partial \xi \partial \eta} = 0$ with respect to ξ gives

$$rac{\partial v}{\partial \mathcal{E}} = f(\xi),$$

where f is a function of ξ only. Integrating again with respect to ξ yields

$$v(\xi,\eta)=\int f(\xi)d\xi+g(\eta),$$

where g is a function of η only. Let $F(\xi) = \int f(\xi) d\xi$ and $G(\eta) = g(\eta)$, so

$$v(\xi,\eta) = F(\xi) + G(\eta).$$

Substituting back $\xi = x - ct$ and $\eta = x + ct$,

$$u(x,t) = F(x-ct) + G(x+ct).$$

Conversely, assume u(x,t) = F(x-ct) + G(x+ct) for some functions F and G. Compute the partial derivatives:

$$rac{\partial u}{\partial x} = F'(x-ct) + G'(x+ct), \quad rac{\partial u}{\partial t} = -cF'(x-ct) + cG'(x+ct),$$

where the prime denotes the derivative with respect to the argument. The second derivatives are

$$egin{aligned} rac{\partial^2 u}{\partial x^2} &= F''(x-ct) + G''(x+ct), \ &rac{\partial^2 u}{\partial t^2} &= rac{\partial}{\partial t} igl[-cF'(x-ct) + cG'(x+ct) igr] \ &= -c \cdot (-cF''(x-ct)) + c \cdot (cG''(x+ct)) = c^2 F''(x-ct) + c^2 G''(x+ct). \end{aligned}$$

Substitute into the wave equation:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

$$= \left[F''(x - ct) + G''(x + ct) \right] - \frac{1}{c^2} \left[c^2 F''(x - ct) + c^2 G''(x + ct) \right]$$

$$= F''(x - ct) + G''(x + ct) - F''(x - ct) - G''(x + ct) = 0.$$

Thus, u(x,t) = F(x-ct) + G(x+ct) satisfies the wave equation.

Q4

(3-Q10) Find all horizontal planes that are tangent to the surface with equation

$$z=xye^{-(x^2+y^2)/2}$$

What are the largest and smallest values of z on this surface?

The surface is given by $z = xye^{-(x^2+y^2)/2}$.

Solution:

A horizontal tangent plane occurs where the partial derivatives of z with respect to x and y are both zero. The partial derivatives are:

$$rac{\partial z}{\partial x}=y(1-x^2)e^{-(x^2+y^2)/2}, \quad rac{\partial z}{\partial y}=x(1-y^2)e^{-(x^2+y^2)/2}.$$

Since the exponential factor is never zero, setting the partial derivatives to zero gives:

$$y(1-x^2)=0, \quad x(1-y^2)=0.$$

Solving this system:

- If y = 0, then the second equation implies x = 0, so (x, y) = (0, 0).
- If x=1, then the second equation implies $1-y^2=0$, so $y=\pm 1$, giving points (1,1) and (1,-1).
- If x=-1, then the second equation implies $1-y^2=0$, so $y=\pm 1$, giving points (-1,1) and (-1,-1).

The corresponding *z*-values are:

- At (0,0): $z = 0 \cdot 0 \cdot e^0 = 0$.
- At (1,1): $z = 1 \cdot 1 \cdot e^{-(1+1)/2} = e^{-1} = \frac{1}{e}$.
- At (1,-1): $z=1\cdot (-1)\cdot e^{-(1+1)/2}=-e^{-1}=-\frac{1}{e}.$
- At (-1,1): $z=(-1)\cdot 1\cdot e^{-(1+1)/2}=-e^{-1}=-\frac{1}{e}$.
- At (-1,-1): $z=(-1)\cdot (-1)\cdot e^{-(1+1)/2}=e^{-1}=\frac{1}{e}$.

Thus, the horizontal tangent planes are at $z=-\frac{1}{e}$, z=0, and $z=\frac{1}{e}$.

To find the largest and smallest values of z on the surface, note that as |x| or |y| approaches infinity, $z \to 0$ because the exponential decay dominates. The critical points yield $z = \frac{1}{e}$, 0, and $-\frac{1}{e}$. Considering $|z| = |xy|e^{-(x^2+y^2)/2}$, and using $|xy| \le \frac{x^2+y^2}{2}$ (with equality when |x| = |y|), it follows that:

$$|z| \leq rac{x^2 + y^2}{2} e^{-(x^2 + y^2)/2}.$$

Set $u=\frac{x^2+y^2}{2}$, so $|z|\leq ue^{-u}$. The maximum of ue^{-u} occurs at u=1, where the value is $e^{-1}=\frac{1}{e}$, achieved when $x^2+y^2=2$ and |x|=|y|, i.e., at points like (1,1), (-1,-1) (for maximum $z=\frac{1}{e}$) and (1,-1), (-1,1) (for minimum $z=-\frac{1}{e}$). Thus, the maximum z is $\frac{1}{e}$ and the minimum z is $-\frac{1}{e}$.

The horizontal tangent planes are $z=-\frac{1}{e},\,z=0,$ and $z=\frac{1}{e}.$ The largest value of z is $\frac{1}{e},$ and the smallest value is $-\frac{1}{e}.$

Q5

(3-Q11) Let S be the surface

$$xy - 2x + yz + x^2 + y^2 + z^3 = 7$$

- Find the tangent plane and normal line to the surface S at the point (0, 2, 1).
- The equation defining S implicitly defines z as a function of x and y. Find expressions for $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Evaluate $\frac{\partial z}{\partial y}$ at (x,y,z)=(0,2,1).
- Find an expression for $\frac{\partial^2 z}{\partial x \partial y}$.

Solution:

The surface is given by the equation $xy - 2x + yz + x^2 + y^2 + z^3 = 7$. Define the function $F(x, y, z) = xy - 2x + yz + x^2 + y^2 + z^3$, so the surface is the level set F(x, y, z) = 7.

The gradient of F is:

$$abla F = \left(rac{\partial F}{\partial x}, rac{\partial F}{\partial y}, rac{\partial F}{\partial z}
ight)$$

Compute the partial derivatives:

$$heta rac{\partial F}{\partial x} = 2x + y - 2$$

•
$$\frac{\partial F}{\partial y} = x + 2y + z$$

•
$$\frac{\partial F}{\partial z} = y + 3z^2$$

At the point (0, 2, 1):

$$\bullet \quad \frac{\partial F}{\partial u} = 0 + 2(2) + 1 = 5$$

$$\bullet \quad \frac{\partial F}{\partial z} = 2 + 3(1)^2 = 5$$

Thus, the gradient (normal vector) at (0, 2, 1) is (0, 5, 5). This can be simplified to (0, 1, 1) by dividing by 5, as the direction is the same.

Tangent Plane:

The equation of the tangent plane at (x_0, y_0, z_0) is given by:

$$\nabla F \cdot (x-x_0,y-y_0,z-z_0) = 0$$

Using the normal vector (0,5,5) and the point (0,2,1):

$$0 \cdot (x-0) + 5 \cdot (y-2) + 5 \cdot (z-1) = 0$$

Simplify:

$$5(y-2) + 5(z-1) = 0 \implies y-2+z-1 = 0 \implies y+z = 3$$

Normal Line:

The normal line passes through (0,2,1) in the direction of the normal vector (0,1,1). The parametric equations are:

$$x = 0 + 0 \cdot t = 0$$
, $y = 2 + 1 \cdot t$, $z = 1 + 1 \cdot t$

for $t \in \mathbb{R}$. Thus:

$$x=0,\quad y=2+t,\quad z=1+t$$

The point (0,2,1) satisfies the surface equation:

$$(0)(2) - 2(0) + (2)(1) + (0)^{2} + (2)^{2} + (1)^{3} = 0 - 0 + 2 + 0 + 4 + 1 = 7$$

The tangent plane and normal line are as derived.

The surface S is defined by the equation $xy - 2x + yz + x^2 + y^2 + z^3 = 7$, which implicitly defines z as a function of x and y.

To find $\frac{\partial z}{\partial x}$, differentiate the equation with respect to x, treating y as constant and z as a function of x:

$$rac{\partial}{\partial x}(xy-2x+yz+x^2+y^2+z^3)=0$$

This gives:

$$y-2+yrac{\partial z}{\partial x}+2x+3z^2rac{\partial z}{\partial x}=0$$

Solving for $\frac{\partial z}{\partial x}$:

$$(y+3z^2)rac{\partial z}{\partial x} = -(2x+y-2) \ rac{\partial z}{\partial x} = -rac{2x+y-2}{y+3z^2}$$

To find $\frac{\partial z}{\partial y}$, differentiate the equation with respect to y, treating x as constant and z as a function of y:

$$rac{\partial}{\partial y}(xy-2x+yz+x^2+y^2+z^3)=0$$

This gives:

$$x+z+yrac{\partial z}{\partial y}+2y+3z^2rac{\partial z}{\partial y}=0$$

Solving for $\frac{\partial z}{\partial y}$:

$$(y+3z^2)rac{\partial z}{\partial y} = -(x+2y+z) \ rac{\partial z}{\partial y} = -rac{x+2y+z}{y+3z^2}$$

Evaluate $\frac{\partial z}{\partial y}$ at the point (x,y,z)=(0,2,1):

$$\frac{\partial z}{\partial y} = -\frac{0+2(2)+1}{2+3(1)^2} = -\frac{5}{5} = -1$$

Thus, the expressions are:

$$rac{\partial z}{\partial x} = -rac{2x+y-2}{y+3z^2}, \quad rac{\partial z}{\partial y} = -rac{x+2y+z}{y+3z^2}$$

and at (0,2,1), $\frac{\partial z}{\partial y}=-1$.

The surface S is defined by the equation $xy - 2x + yz + x^2 + y^2 + z^3 = 7$, which implicitly defines z as a function of x and y.

The first partial derivatives of z with respect to x and y are given by:

$$rac{\partial z}{\partial x} = -rac{2x+y-2}{y+3z^2}, \quad rac{\partial z}{\partial y} = -rac{x+2y+z}{y+3z^2}.$$

To find the mixed partial derivative $\frac{\partial^2 z}{\partial x \partial y}$, differentiate $\frac{\partial z}{\partial x}$ with respect to y. Set:

$$A = 2x + y - 2$$
, $B = y + 3z^2$, $D = x + 2y + z$.

Then:

$$\frac{\partial z}{\partial x} = -\frac{A}{B}.$$

Differentiating with respect to y and applying the quotient rule, while noting that z is a function of x and y, gives:

$$rac{\partial^2 z}{\partial x \partial y} = -rac{rac{\partial}{\partial y}(A) \cdot B - A \cdot rac{\partial}{\partial y}(B)}{B^2}.$$

Compute the partial derivatives:

$$rac{\partial A}{\partial y}=1, \quad rac{\partial B}{\partial y}=1+6zrac{\partial z}{\partial y}.$$

Substitute $\frac{\partial z}{\partial y} = -\frac{D}{B}$:

$$rac{\partial B}{\partial y} = 1 + 6z \left(-rac{D}{B}
ight) = 1 - rac{6zD}{B}.$$

Now:

$$\frac{\partial}{\partial y}(A)\cdot B=1\cdot B=B,$$

$$A \cdot rac{\partial}{\partial y}(B) = A\left(1 - rac{6zD}{B}
ight) = A - rac{6AzD}{B}.$$

So:

$$rac{\partial}{\partial y}(A)\cdot B-A\cdot rac{\partial}{\partial y}(B)=B-\left(A-rac{6AzD}{B}
ight)=B-A+rac{6AzD}{B}.$$

Thus:

$$rac{\partial^2 z}{\partial x \partial y} = -rac{B-A+rac{6AzD}{B}}{B^2} = -rac{B-A}{B^2} - rac{6AzD}{B^3}.$$

Simplify B - A:

$$B-A=(y+3z^2)-(2x+y-2)=3z^2-2x+2.$$

Substitute A, D, and B:

$$rac{\partial^2 z}{\partial x \partial y} = -rac{3z^2-2x+2}{B^2} - rac{6(2x+y-2)z(x+2y+z)}{B^3}.$$

Since $B = y + 3z^2$, write as a single fraction with denominator B^3 :

$$rac{\partial^2 z}{\partial x \partial y} = rac{-B(B-A) - 6AzD}{B^3} = rac{-(y+3z^2)(3z^2-2x+2) - 6(2x+y-2)z(x+2y+z)}{(y+3z^2)^3}.$$

Q6

(3-Q16) Let the pressure P and temperature T at a point (x, y, z) be

$$P(x,y,z) = rac{x^2 + 2y^2}{1 + z^2}, \quad T(x,y,z) = 5 + xy - z^2$$

If the position of an airplane at time t is

$$(x(t),y(t),z(t))=(2t,t^2-1,\cos t)$$

- find $\frac{d}{dt}(PT)^2$ at time t=0 as observed from the airplane.
- In which direction should a bird at the point (0, -1, 1) fly if it wants to keep both P and T constant? (Give one possible direction vector. It does not need to be a unit vector.)
- An ant crawls on the surface $z^3 + zx + y^2 = 2$. When the ant is at the point (0, -1, 1), in which direction should it go for maximum increase of the temperature $T = 5 + xy z^2$? Your answer should be a vector $\langle a, b, c \rangle$, not necessarily of unit length.

Solution:

The pressure P and temperature T are given by:

$$P(x,y,z) = rac{x^2 + 2y^2}{1 + z^2}, \quad T(x,y,z) = 5 + xy - z^2.$$

The position of the airplane at time t is:

$$(x(t),y(t),z(t))=(2t,t^2-1,\cos t)$$

Define $S=(PT)^2$. The derivative $\frac{dS}{dt}$ is required at t=0.

At t=0:

$$x(0) = 0, \quad y(0) = -1, \quad z(0) = 1.$$

The derivatives of the position components at t = 0 are:

$$rac{dx}{dt}=2, \quad rac{dy}{dt}=2t=0, \quad rac{dz}{dt}=-\sin t=0.$$

Evaluate P and T at (x, y, z) = (0, -1, 1):

$$P(0,-1,1)=rac{0^2+2(-1)^2}{1+1^2}=rac{2}{2}=1,\quad T(0,-1,1)=5+(0)(-1)-1^2=4.$$

The partial derivatives of P and T at (0, -1, 1) are:

$$rac{\partial P}{\partial x}=rac{2x}{1+z^2}=0, \quad rac{\partial P}{\partial y}=rac{4y}{1+z^2}=-2, \quad rac{\partial P}{\partial z}=rac{-2z(x^2+2y^2)}{(1+z^2)^2}=-1, \ rac{\partial T}{\partial x}=y=-1, \quad rac{\partial T}{\partial y}=x=0, \quad rac{\partial T}{\partial z}=-2z=-2.$$

Now compute $\frac{dP}{dt}$ and $\frac{dT}{dt}$ at t=0:

$$rac{dP}{dt} = rac{\partial P}{\partial x}rac{dx}{dt} + rac{\partial P}{\partial y}rac{dy}{dt} + rac{\partial P}{\partial z}rac{dz}{dt} = (0)(2) + (-2)(0) + (-1)(0) = 0, \ rac{dT}{dt} = rac{\partial T}{\partial x}rac{dx}{dt} + rac{\partial T}{\partial y}rac{dy}{dt} + rac{\partial T}{\partial z}rac{dz}{dt} = (-1)(2) + (0)(0) + (-2)(0) = -2.$$

Set U = PT, so $S = U^2$. Then:

$$rac{dS}{dt} = 2Urac{dU}{dt}, \quad rac{dU}{dt} = Prac{dT}{dt} + Trac{dP}{dt}.$$

At t = 0, U = (1)(4) = 4, and:

$$\frac{dU}{dt} = (1)(-2) + (4)(0) = -2.$$

Thus:

$$\frac{dS}{dt} = 2(4)(-2) = -16.$$

The derivative $\frac{d}{dt}(PT)^2$ at t=0 is -16.

To determine the direction in which the bird should fly to keep both pressure P and temperature T constant at the point (0, -1, 1), the direction vector must be perpendicular to the gradients of both P and T. This ensures that the directional derivatives of both functions are zero in that direction, meaning the functions remain constant along the path.

The pressure and temperature functions are:

$$P(x,y,z) = rac{x^2 + 2y^2}{1 + z^2}, \quad T(x,y,z) = 5 + xy - z^2.$$

The gradient of P is:

$$abla P = \left(rac{\partial P}{\partial x},rac{\partial P}{\partial y},rac{\partial P}{\partial z}
ight) = \left(rac{2x}{1+z^2},rac{4y}{1+z^2},-rac{2z(x^2+2y^2)}{(1+z^2)^2}
ight).$$

The gradient of T is:

$$abla T = \left(rac{\partial T}{\partial x}, rac{\partial T}{\partial y}, rac{\partial T}{\partial z}
ight) = (y, x, -2z).$$

Evaluating at (x, y, z) = (0, -1, 1):

$$abla P = \left(rac{2\cdot 0}{1+1^2}, rac{4\cdot (-1)}{1+1}, -rac{2\cdot 1\cdot (0^2+2\cdot (-1)^2)}{(1+1)^2}
ight) = (0, -2, -1),
onumber \
abla T = (-1, 0, -2).$$

The direction vector is given by the cross product $\nabla P \times \nabla T$:

$$egin{aligned}
abla P imes
abla T &= egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 0 & -2 & -1 \ -1 & 0 & -2 \ \end{array} \ &= \mathbf{i}((-2) \cdot (-2) - (-1) \cdot 0) - \mathbf{j}(0 \cdot (-2) - (-1) \cdot (-1)) + \mathbf{k}(0 \cdot 0 - (-2) \cdot (-1)). \end{aligned}$$

Computing the components:

• i-component: $(-2) \cdot (-2) - (-1) \cdot 0 = 4 - 0 = 4$,

• **j**-component: $-(0 \cdot (-2) - (-1) \cdot (-1)) = -(0-1) = -(-1) = 1$,

• **k**-component: $0 \cdot 0 - (-2) \cdot (-1) = 0 - 2 = -2$.

Thus, the cross product is (4, 1, -2).

This vector is perpendicular to both gradients, as verified by the dot products:

$$(4,1,-2)\cdot (0,-2,-1)=4\cdot 0+1\cdot (-2)+(-2)\cdot (-1)=0-2+2=0,$$

$$(4,1,-2)\cdot (-1,0,-2)=4\cdot (-1)+1\cdot 0+(-2)\cdot (-2)=-4+0+4=0.$$

Therefore, the direction vector (4, 1, -2) ensures that both P and T remain constant at the point (0, -1, 1).

The ant is constrained to the surface $z^3 + zx + y^2 = 2$, and the goal is to maximize the increase of the temperature function $T(x, y, z) = 5 + xy - z^2$ at the point (0, -1, 1).

The direction of steepest ascent for T on the surface is given by the component of the gradient of T that is tangent to the surface. The gradient of T is:

$$abla T = \left(rac{\partial T}{\partial x}, rac{\partial T}{\partial y}, rac{\partial T}{\partial z}
ight) = (y, x, -2z).$$

At the point (0, -1, 1):

$$\nabla T = (-1, 0, -2).$$

The surface is defined by $g(x, y, z) = z^3 + zx + y^2 - 2 = 0$. The gradient of g is:

$$abla g = \left(rac{\partial g}{\partial x},rac{\partial g}{\partial y},rac{\partial g}{\partial z}
ight) = (z,2y,3z^2+x).$$

At the point (0, -1, 1):

$$\nabla q = (1, -2, 3).$$

The tangential component of ∇T is found by subtracting the projection of ∇T onto ∇g :

$$\mathrm{proj}_{
abla g}
abla T = rac{
abla T \cdot
abla g}{\|
abla g\|^2}
abla g.$$

First, compute the dot product:

$$\nabla T \cdot \nabla g = (-1)(1) + (0)(-2) + (-2)(3) = -1 - 6 = -7.$$

Then, $\|\nabla g\|^2 = 1^2 + (-2)^2 + 3^2 = 1 + 4 + 9 = 14$, so:

$$\frac{\nabla T \cdot \nabla g}{\|\nabla g\|^2} = \frac{-7}{14} = -\frac{1}{2}.$$

The projection is:

$$\operatorname{proj}_{
abla g}
abla T = -rac{1}{2}(1,-2,3) = \left(-rac{1}{2},1,-rac{3}{2}
ight).$$

The tangential component is:

$$abla T - \mathrm{proj}_{
abla g}
abla T = (-1,0,-2) - \left(-rac{1}{2},1,-rac{3}{2}
ight) = \left(-1+rac{1}{2},0-1,-2+rac{3}{2}
ight) = \left(-rac{1}{2},-1,-rac{1}{2}
ight).$$

To avoid fractions, multiply by -2 to get:

$$\langle -1, -2, -1 \rangle$$
.

This vector is tangent to the surface, as verified by the dot product with ∇g :

$$(1,-2,3)\cdot(-1,-2,-1)=1(-1)+(-2)(-2)+3(-1)=-1+4-3=0.$$

The directional derivative of T in this direction is positive, confirming it is the direction of maximum increase:

$$\nabla T \cdot \langle -1, -2, -1 \rangle = (-1)(-1) + (0)(-2) + (-2)(-1) = 1 + 0 + 2 = 3 > 0.$$

Thus, the direction for maximum increase of temperature is $\langle -1, -2, -1 \rangle$.

Q7

(3-Q17) Find all saddle points, local minima and local maxima of the function

$$f(x,y) = x^3 + x^2 - 2xy + y^2 - x.$$

Solution:

The critical points of the function $f(x,y)=x^3+x^2-2xy+y^2-x$ are found by setting the first partial derivatives to zero.

The partial derivative with respect to x is:

$$f_x = 3x^2 + 2x - 2y - 1$$

The partial derivative with respect to y is:

$$f_y = -2x + 2y$$

Setting $f_y = 0$ gives:

$$-2x + 2y = 0 \implies y = x$$

Substituting y = x into $f_x = 0$:

$$3x^2 + 2x - 2(x) - 1 = 0 \implies 3x^2 - 1 = 0 \implies x^2 = \frac{1}{3} \implies x = \pm \frac{\sqrt{3}}{3}$$

Thus, the critical points are $\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ and $\left(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}\right)$.

To classify these critical points, the second derivative test is used. The second partial derivatives are:

$$f_{xx} = 6x + 2, \quad f_{yy} = 2, \quad f_{xy} = -2$$

The discriminant is:

$$D=f_{xx}f_{yy}-(f_{xy})^2=(6x+2)(2)-(-2)^2=12x+4-4=12x$$

- At \$\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right)\$:

$$x = rac{\sqrt{3}}{3} > 0, \quad D = 12 \cdot rac{\sqrt{3}}{3} = 4\sqrt{3} > 0$$

$$f_{xx} = 6 \cdot rac{\sqrt{3}}{3} + 2 = 2\sqrt{3} + 2 > 0$$

Since D > 0 and $f_{xx} > 0$, this is a local minimum.

- At
$$\left(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}\right)$$
:

$$x = -rac{\sqrt{3}}{3} < 0, \quad D = 12 \cdot \left(-rac{\sqrt{3}}{3}
ight) = -4\sqrt{3} < 0$$

Since D < 0, this is a saddle point.

There are no other critical points, as $f_y = 0$ implies y = x, and substituting into $f_x = 0$ gives only the solutions above. The function has no local maxima, as the discriminant is negative at one critical point and positive with a positive second derivative at the other, and no other critical points exist.

Thus, the saddle point is at $\left(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}\right)$ and the local minimum is at $\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$.

Q8

(3-19) Find the maximum and minimum values of $f(x,y)=xy-x^3y^2$ when (x,y) runs over the square $0 \le x \le 1, 0 \le y \le 1$.

Solution:

The function is $f(x,y)=xy-x^3y^2$ defined over the square $0\leq x\leq 1,\,0\leq y\leq 1.$

The minimum value of f(x,y) is 0, achieved along the boundaries x=0 and y=0, and at the point (1,1). This is because:

- On x = 0, f(0, y) = 0 for all $y \in [0, 1]$.
- On y = 0, f(x, 0) = 0 for all $x \in [0, 1]$.
- At (1,1), $f(1,1) = 1 \cdot 1 1^3 \cdot 1^2 = 0$.
- For all other points in the square, $f(x,y)=xy(1-x^2y)\geq 0$ since $x\geq 0,\,y\geq 0$, and $1-x^2y\geq 0$ (with equality only at (1,1)).

The maximum value of f(x,y) is $\frac{2\sqrt{3}}{9}$, achieved at the point $\left(\frac{\sqrt{3}}{3},1\right)$. This is determined as follows:

- The only critical point in the interior is (0,0), where f(0,0)=0.
- On the boundary $x=1,\,f(1,y)=y-y^2,$ which has a maximum value of $\frac{1}{4}$ at $y=\frac{1}{2}$.
- On the boundary y=1, $f(x,1)=x-x^3$, which has a maximum value of $\frac{2\sqrt{3}}{9}$ at $x=\frac{\sqrt{3}}{3}$.
- On the boundaries x = 0 and y = 0, f = 0.
- For each fixed $x \in (0,1]$, the maximum over $y \in [0,1]$ is given by:

$$m(x) = egin{cases} x - x^3 & ext{if } 0 < x \leq rac{\sqrt{2}}{2}, \ & \ rac{1}{4x} & ext{if } rac{\sqrt{2}}{2} < x \leq 1. \end{cases}$$

• Maximizing m(x) over [0,1] shows that the global maximum is $\frac{2\sqrt{3}}{9}$ at $x=\frac{\sqrt{3}}{3}$ (which is less than $\frac{\sqrt{2}}{2}\approx 0.707$), with y=1.

The value $\frac{2\sqrt{3}}{9} \approx 0.3849$ is greater than the maximum values on other boundaries, and no interior point yields a higher value.

Thus, the minimum value is 0 and the maximum value is $\frac{2\sqrt{3}}{9}$.

Q9

(3-Q20) The temperature at all points in the disc $x^2 + y^2 \le 1$ is given by $T(x,y) = (x+y)e^{-x^2-y^2}$. Find the maximum and minimum temperatures at points of the disc.

Solution

The temperature function is $T(x,y)=(x+y)e^{-x^2-y^2}$ defined on the closed disk $x^2+y^2\leq 1$. To find the maximum and minimum temperatures, critical points inside the disk $(x^2+y^2<1)$ and on the boundary $(x^2+y^2=1)$ must be evaluated.

The partial derivatives are:

$$rac{\partial T}{\partial x}=e^{-x^2-y^2}[1-2x(x+y)], \quad rac{\partial T}{\partial y}=e^{-x^2-y^2}[1-2y(x+y)].$$

Setting both to zero and noting that $e^{-x^2-y^2} \neq 0$, the equations are:

$$1-2x(x+y)=0, \quad 1-2y(x+y)=0.$$

Solving, if $x + y \neq 0$, then x = y. Substituting x = y gives:

$$1-2x(2x)=1-4x^2=0 \implies x^2=rac{1}{4} \implies x=\pmrac{1}{2}, \quad y=\pmrac{1}{2}.$$

The critical points are $(\frac{1}{2}, \frac{1}{2})$ and $(-\frac{1}{2}, -\frac{1}{2})$, both satisfying $x^2 + y^2 = \frac{1}{2} < 1$, so they are inside the disk. Evaluating T:

• At
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
: $T = \left(\frac{1}{2} + \frac{1}{2}\right)e^{-\left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2} = 1 \cdot e^{-1/2} = e^{-1/2}$.

• At
$$\left(-\frac{1}{2}, -\frac{1}{2}\right)$$
: $T = \left(-\frac{1}{2} - \frac{1}{2}\right)e^{-\left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2} = (-1) \cdot e^{-1/2} = -e^{-1/2}$.

The boundary is $x^2 + y^2 = 1$. This is an equality constraint, so the method of Lagrange multipliers is appropriate. Define the constraint $g(x,y) = x^2 + y^2 - 1 = 0$. Solve $\nabla T = \lambda \nabla g$:

$$abla g=(2x,2y).$$

The gradient of T is:

$$abla T = \Big(e^{-x^2-y^2}[1-2x(x+y)], e^{-x^2-y^2}[1-2y(x+y)]\Big).$$

On the boundary, $x^2 + y^2 = 1$, so $e^{-x^2 - y^2} = e^{-1}$. The equations are:

$$e^{-1}[1-2x(x+y)] = \lambda \cdot 2x, \quad e^{-1}[1-2y(x+y)] = \lambda \cdot 2y.$$

Rearranging:

$$1-2x(x+y)=2x\lambda e,\quad 1-2y(x+y)=2y\lambda e.$$

Set $k = \lambda e$, so:

$$1 - 2xu = 2xk, \quad 1 - 2yu = 2yk,$$

where u = x + y. Assuming $x \neq 0$ and $y \neq 0$, equate the expressions for k:

$$rac{1-2xu}{2x}=rac{1-2yu}{2y}\impliesrac{1}{2x}-u=rac{1}{2y}-u\impliesrac{1}{2x}=rac{1}{2y}\implies x=y.$$

With x = y and $x^2 + y^2 = 1$:

$$2x^2=1 \implies x=\pmrac{\sqrt{2}}{2}, \quad y=\pmrac{\sqrt{2}}{2}.$$

• At
$$\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$$
: $T=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)e^{-1}=\sqrt{2}\cdot e^{-1}$.

• At
$$\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
: $T = \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)e^{-1} = -\sqrt{2} \cdot e^{-1}$.

If x = 0, then $y^2 = 1$, so $y = \pm 1$:

• At
$$(0,1)$$
: $T = (0+1)e^{-1} = e^{-1}$.

• At
$$(0,-1)$$
: $T=(0-1)e^{-1}=-e^{-1}$.

If y = 0, then $x^2 = 1$, so $x = \pm 1$:

• At
$$(1,0)$$
: $T = (1+0)e^{-1} = e^{-1}$.

• At
$$(-1,0)$$
: $T = (-1+0)e^{-1} = -e^{-1}$.

However, for x=0 or y=0, the Lagrange multiplier equations lead to contradictions (e.g., for x=0, y=1, the equation $e^{-1} \cdot 1 = \lambda \cdot 0$ implies $e^{-1}=0$, which is false). Thus, the only solutions to the Lagrange multiplier equations are when x=y, giving the points $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)$.

The extreme values on the boundary are $\sqrt{2}/e$ and $-\sqrt{2}/e$, since $|\sqrt{2}/e| > |1/e|$ and these values occur at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$.

Q10

(3-Q29) Find the point P=(x,y,z) (with x,y, and z>0) on the surface $x^3y^2z=6\sqrt{3}$ that is closest to the origin.

Solution

To find the point P=(x,y,z) with x,y,z>0 on the surface $x^3y^2z=6\sqrt{3}$ that is closest to the origin, minimize the square of the distance from the origin, $s=x^2+y^2+z^2$, subject to the constraint $g(x,y,z)=x^3y^2z-6\sqrt{3}=0$.

Using the method of Lagrange multipliers, solve $\nabla s = \lambda \nabla g$, where:

$$abla s = (2x, 2y, 2z), \quad
abla g = (3x^2y^2z, 2x^3yz, x^3y^2).$$

This gives the system of equations:

$$2x = \lambda \cdot 3x^2 y^2 z,\tag{1}$$

$$2y = \lambda \cdot 2x^3 yz,\tag{2}$$

$$2z = \lambda \cdot x^3 y^2,\tag{3}$$

with the constraint:

$$x^3y^2z = 6\sqrt{3}. (4)$$

Since x, y, z > 0, equations (1), (2), and (3) can be manipulated. Dividing equation (1) by equation (2):

$$rac{2x}{2y} = rac{\lambda \cdot 3x^2y^2z}{\lambda \cdot 2x^3yz} \implies rac{x}{y} = rac{3y}{2x} \implies 2x^2 = 3y^2 \implies y^2 = rac{2}{3}x^2 \implies y = \sqrt{rac{2}{3}}x.$$

Dividing equation (1) by equation (3):

$$rac{2x}{2z}=rac{\lambda\cdot 3x^2y^2z}{\lambda\cdot x^3y^2} \implies rac{x}{z}=rac{3z}{x} \implies x^2=3z^2 \implies z^2=rac{1}{3}x^2 \implies z=rac{1}{\sqrt{3}}x.$$

Substitute $y = \sqrt{\frac{2}{3}}x$ and $z = \frac{1}{\sqrt{3}}x$ into the constraint (4):

$$x^3 \left(\sqrt{rac{2}{3}}x
ight)^2 \left(rac{1}{\sqrt{3}}x
ight) = 6\sqrt{3}.$$

Simplifying:

$$x^3 \cdot \frac{2}{3}x^2 \cdot \frac{1}{\sqrt{3}}x = x^6 \cdot \frac{2}{3\sqrt{3}} = 6\sqrt{3}.$$

Solving for x^6 :

$$x^6 \cdot rac{2}{3\sqrt{3}} = 6\sqrt{3} \implies 2x^6 = 6\sqrt{3} \cdot 3\sqrt{3} \implies 2x^6$$

$$x=6\cdot 3\cdot 3 \implies 2x^6=54 \implies x^6=27 \implies x=27^{1/6}=\sqrt{3}.$$

Then:

$$y = \sqrt{\frac{2}{3}} \cdot \sqrt{3} = \sqrt{2}, \quad z = \frac{1}{\sqrt{3}} \cdot \sqrt{3} = 1.$$

Thus, the point is $(\sqrt{3}, \sqrt{2}, 1)$.

Q11

(3-Q30) Find the maximum value of f(x, y, z) = xyz on the ellipsoid

$$g(x, y, z) = x^2 + xy + y^2 + 3z^2 = 9$$

Specify all points at which this maximum value occurs.

Solution:

To find the maximum value of f(x, y, z) = xyz on the ellipsoid $g(x, y, z) = x^2 + xy + y^2 + 3z^2 = 9$, the method of Lagrange multipliers is used. The gradients are:

$$abla f = (yz, xz, xy), \quad
abla g = (2x+y, x+2y, 6z).$$

The equations are:

- 1. $yz = \lambda(2x + y)$
- 2. $xz = \lambda(x+2y)$
- 3. $xy = \lambda(6z)$
- 4. $x^2 + xy + y^2 + 3z^2 = 9$

Assuming $x, y, z \neq 0$, solving these equations yields critical points. Dividing the first equation by the second gives:

$$\frac{y}{x} = \frac{2x+y}{x+2y}.$$

Setting k = y/x, the equation becomes k = (2 + k)/(1 + 2k), leading to $k^2 = 1$, so k = 1 or k = -1.

- Case 1: y = x Substituting into the equations and constraint gives $z = 3\lambda$, $x^2 = 18\lambda^2$, and $x^2 + z^2 = 3$. Solving yields $\lambda = \pm 1/3$:
 - $\lambda = 1/3$: z = 1, $x^2 = 2$, so $x = y = \sqrt{2}$ or $x = y = -\sqrt{2}$, and $f = (\sqrt{2})(\sqrt{2})(1) = 2$ or $f = (-\sqrt{2})(-\sqrt{2})(1) = 2$.
 - $\lambda = -1/3$: z = -1, $x^2 = 2$, so $x = y = \sqrt{2}$ or $x = y = -\sqrt{2}$, and $f = (\sqrt{2})(\sqrt{2})(-1) = -2$ or $f = (-\sqrt{2})(-\sqrt{2})(-1) = -2$.
- Case 2: y=-x Substituting gives $\lambda=-z, x^2=6z^2$, and $x^2+3z^2=9$. Solving yields $z=\pm 1$:
 - z=1: $x^2=6$, so $x=\sqrt{6}, y=-\sqrt{6}$ or $x=-\sqrt{6}, y=\sqrt{6}$, and $f=(\sqrt{6})(-\sqrt{6})(1)=-6$ or $f=(-\sqrt{6})(\sqrt{6})(1)=-6$.
 - z=-1: $x^2=6$, so $x=\sqrt{6}, y=-\sqrt{6}$ or $x=-\sqrt{6}, y=\sqrt{6}$, and $f=(\sqrt{6})(-\sqrt{6})(-1)=6$ or $f=(-\sqrt{6})(\sqrt{6})(-1)=6$.

Cases where any variable is zero yield f = 0, which is less than 6. The ellipsoid is compact, so the maximum exists. The critical values are compared, and the maximum value of f is 6, occurring at the points where z = -1 and y = -x with $x^2 = 6$.

The points are $(\sqrt{6}, -\sqrt{6}, -1)$ and $(-\sqrt{6}, \sqrt{6}, -1)$. At both points, f = 6 and the constraint is satisfied.

The maximum occurs at the points $\left(\sqrt{6},\ -\sqrt{6},\ -1\right)$ and $\left(-\sqrt{6},\ \sqrt{6},\ -1\right)$.