Enzymatic link prediction for biochemical route synthesis via learning graph representations of biochemical networks

Julie Jiang¹, Li-Ping Liu¹, and Soha Hassoun^{1,2}

¹Department of Computer Science, Tufts University, Medford, MA

²Department of Chemical and Biological Engineering, Tufts University, Medford, MA

Indicates best overall

Motivation

Problem: No complete characterization of enzymatic reactions

The curation of enzyme functions and the reactions they catalyze remains elusive, hindering biological engineering and discovery.

Goal: Predict enzymatic transformations

- Enhance biological discovery of undocumented enzymatic reactions
- Plan synthesis routes using previously undocumented enzymatic transformations

Approach Overview

Graph Embedding

Nodes=molecules Edges = reactions Adapted from [1]

Use learned embeddings

Graph Construction

- Use reactions in the KEGG [2] database
- all reactions are reversible; remove cofactors
- Every molecule is a node
- Each substrate-product pair within a reaction is an undirected edge
- Edge attributes: enzyme commission (EC) number or reaction class (RC)
- Node attributes: fingerprints (MACCS [3] or PubChem [4])

Enzymatic Link Prediction (ELP)

Embedding Propagation on Graph

We use Embedding Propagation [5], a graph embedding method, to learn embedding vectors of nodes

All embeddings are randomly initialized:

• Connectivity-based node embeddings $\{\mathbf{u}_i\}$,

Neighbors

of node i

- Fingerprint embeddings $\{\mathbf{v}_k\}$, one for each fingerprint entry
- Enzyme embeddings $\{z_r\}$, one for each enzyme label
- Fingerprint-based node embeddings are constructed from fingerprint embeddings
- Reconstruct node embedding $(\widetilde{\mathbf{u}}_i)$ from the embeddings of its neighbors
- Margin-based ranking loss.
- Aim to maximize the similarity between the reconstruction of node embedding $\widetilde{\mathbf{u}}_i$ with node embedding \mathbf{u}_i

$$\mathcal{L} = \sum_{i \in V} \sum_{j \in V, j \neq i} \max \{ \gamma - \tilde{\mathbf{u}}_i^{\top} \mathbf{u}_i + \tilde{\mathbf{u}}_i^{\top} \mathbf{u}_j, 0 \}$$

of node *j*

Random node j as the negative example for each node in every iteration

Node embedding Enzyme embedding

of the edge (i, j)

• Concatenate \mathbf{u}_i and \mathbf{u}_i^{fp} to form final node embedding vectors

Link Prediction Using **Embedding Vectors**

Train a logistic regression model using deep neural nets to predict the likelihood of an edge between two nodes

Experiments & Results

Transductive Learning

- Model is trained on all nodes and evaluated for edge recovery on a held out set of test edges.
- Training graph must be connected

		Mod	del			AUC		
	Method	Connectivity Embedding	Node Attribute	Edge Attribute	0.1	Test Ratios 0.3	0.5	Bold value indicates best result.
		* Indicates best overa						
	ELP	Yes	nnectivity-bas –	_	0.801	0.789	0.761	results
	node2vec	Yes	_	_	0.824	0.736	0.776	rodano
Baseline:	→ DeepWalk	Yes	_	_	0.847	0.763	0.749	
other		B. Conn	ectivity and o	ne additiona	l attribute			
embedding	ELP	Yes	MACCS	_	0.953*	0.935*	0.900	
_	ELP	Yes	PubChem	_	0.891	0.882	0.864	,
methods	ELP	Yes	_	EC	0.795	0.808	0.810	
	ELP	Yes	_	RC	0.810	0.798	0.810	
		C. Connectiv	ity with one n	ode and one	edge attri	bute		
	ELP	Yes	MACCS	EC	0.941	0.933	0.922*	
	ELP	Yes	MACCS	RC	0.942	0.929	0.895	
	ELP	Yes	PubChem	EC	0.892	0.879	0.867	
	ELP	Yes	PubChem	RC	0.892	0.876	0.859	
		D. Embe	dding based o	on MACCS fi	ngerprints	3		
	ELP	No	MACCS	_	0.931	0.916	0.898	
	ELP	No	MACCS	EC	0.940	0.925	0.913	
	ELP	No	MACCS	RC	0.939	0.904	0.896	
Baseline: no		E. Embede	dings based o	n PubChem	fingerprin	ts		
	ELP	No	PubChem	_ `	0.665	0.709	0.682	
connectivity	ELP	No	PubChem	EC	0.745	0.707	0.728	
embedding \	ELP	No	PubChem	RC	0.728	0.706	0.720	
		F. Jaccard i	ndex similarit	y scoring; no	o embeddi	ngs		
	Jaccard	No	MACCS	_	0.808	0.778	0.767	
	Jaccard	No	PubChem	_	0.542	0.526	0.535	

Inductive Learning

- Model is trained to predict possible interactions for out-of-sample nodes excluded from training
- This type of prediction is made possible by only using fingerprint-based node embeddings Method Connectivity Embedding Node Attribute AUC

Method	Connectivity Embedding	Node Attribute	AUC
	A. Embeddings based on r	ode attributes	
ELP	Yes	MACCS	0.921
ELP	Yes	PubChem	0.605
	B. Jaccard index simila	rity scoring	
Jaccard	No	MACCS	0.744
Jaccard	No	PubChem	0.553

Other applications of embeddings: Visualization of Metabolites within Pathways using t-SNE

Conclusion

ELP learns molecular representations that capture graph connectivity, enzymatic properties, and structural molecular properties

- ELP shows high accuracy in link prediction when using both graph connectivity and molecular attributes
- ELP can be used as a guide to identifying catalyzing enzymes when constructing novel synthesis pathways or predicting interaction between microbes and human hosts
- ELP can enhance link prediction in chemical networks, where previously rulebased and path-based link prediction respectively yielded 52.7% and 67.5% prediction accuracy [6]

References

- 1. Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1616-1637
- 2. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2015). Kegg as a reference resource for gene and protein annotation. Nucleic acids research, 44(D1), D457–D462.
- Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002). Reoptimization of mdl keys for use in drug discovery. Journal of chemical information and computer sciences, 42(6), 1273–1280.
- 4. Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., et al. (2015). Pubchem substance and compounddatabases. *Nucleic acids research*, **44**(D1), D1202–D1213.
- Duran, A. G. and Niepert, M. (2017). Learning graph representations with embedding propagation. In Advances in neural information processing systems, pages 5119–5130.
- Segler, M. H., & Waller, M. P. (2017). Modelling chemical reasoning to predict and invent reactions. Chemistry-A European Journal, 23(25), 6118-6128.

Acknowledgements

This research is supported by NSF under Award Number CCF-1909536 and also by NIGMS of the National Institutes of Health under Award Number R01GM132391. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.