ไฟฟ้าสถิต

โครงสร้างของสสาร และ ประจุไฟฟ้า

สสารประกอบด้วยอะตอมหนึ่งตัว เช่น ทองแดง Cu เหล็ก Fe หรือ ประกอบด้วยอะตอมมากกว่า หนึ่งตัว เช่น น้ำประกอบด้วย H2O ก๊าซไฮโดรเจน H2 ก๊าซออกซิเจน O2 อะตอมประกอบด้วย อนุภาคมูล ฐาน อนุภาคที่หนักสุดคือ นิวตรอน 1.675 10^-27 kg รองลงมาคือ โปรตรอน 1.673 10^-27 kg และ อิเล็กตรอน 9.11 10^-31 kg นิวตรอน และ โปรตอน อยู่ร่วมกันเป็นแกนของอะตอมเรียกว่านิวเคลียส อิเล็กตรอนโคจรรอบ ๆ ขนาดของนิวเคลียส 10^-15 m วงโคจรของอิเล็กตรอนมีขนาด 10^-10 ต่างกัน ประมาณ 100,000 เท่า และ ขนาดของอะตอมกำหนดโดยวงโคจรของอิเล็กตรอน

เมื่อเทียบอะตอมกับ อำเภาศรีราชา (616.4 ตารางกิโลเมตร) นิวเคลียสเทียบได้กับอย่างลบก้อนหนึ่ง อยู่บริเวณตำบลหนองขาม (ตรงกลางอำเภอ)

อะตอมปกติจะมีนิวตอน โปรตอนและอิเล็กตรอนจำนวนเดียวกัน นิวตอนเป็นกลางทางไฟฟ้า อิเล็กตรอน และ โปรตอน มีประจุไฟฟ้าจำนวนเท่ากันแต่ต่างชนิดกัน อิเล็กตอนมีประจุ บวก แรงที่ยึดให้นิวเคลียสและอิเล็กตรอนให้อยู่ร่วมกันคือแรงระหว่างประจุต่างชนิดกันซึ่งจะดูดกัน เป็น ระหว่างประจุบวกในนิวเคลียส กับ ประจุลบของอิเล็กตรอน ภายในนิวเคลียสโปรตอนแต่ละตัวจะผลักกัน แรงที่ยึดให้โปรตอนอยู่ร่วมกันเป็นนิวเคลียสคือแรงนิวเคลียร์ (ซึ่งเรายังไม่ใส่ใจ)

กฎการอนุรักษ์ประจุและประจุส่วนเกิน

"ประจุในจักวาลมีจำนวนคงที่จำนวนหนึ่ง"

"ประจุไหลเข้าสสารหนึ่งเท่ากับประจุไหลออกจากสสารอีกสสารหนึ่ง"

เป็นหลักในการพิจารณาหลักหนึ่งทางฟิสิกส์ ซึ่งสามารถใช้ได้กับหลายปรากฏการณ์ อย่างเช่น การ ถูแท่งแก้วด้วยผ้าใหมถ้าเราถูนานพอจะพบว่าผ้าใหมและแท่งแก้วออกแรงคูดกัน โดยหลักการนี้เราเข้าได้ว่า มีการแลกเปลี่ยนประจุระหว่างผ้าใหมกับแท่งแก้วโดยมีประจุลบออกจากผ้าใหมเข้าไปอยู่ในแท่งแก้วผลคือ ผ้าใหมขาดประจุลบจึงมีประจุบวกจึงเกิน ส่วนแท่งแก้วมีประจุลบเกิน แรงคูดระหว่างสสารจึงเป็นแรง ระหว่างประจุส่วนเกิน

ฉนวน ตัวนำ และ การเกิดขั้วไฟฟ้า

ถ้าแบ่งสสารตามสมบัติทางไฟฟ้า เรา แบ่งออกเป็น สามประเภท คือ ฉนวน ตัวนำ และ สารกึง ตัวนำ สสารที่เป็นฉนวนอย่างเช่น แก้ว กระดาษ ผ้า น้ำ ฯลฯ ไม่มีอิเล็กตรอนอิสระ ซึ่งหมายความว่า อิเล็กตรอนในอะตอมของฉนวนจะอยู่ในอะตอมของมันไม่สามารถเคลื่อนที่ไปอะตอมอื่น

สสารที่เป็นตัวนำอย่างเช่น ทองแดง เหล็ก ทองคำ ฯลฯ มีอิเล็กตรอนบางส่วนเป็นอิสระ ซึ่ง หมายความว่าบางอิเล็กตรอนในอะตอมของตัวนำสามารถเคลื่อนที่จากอะตอมหนึ่งไปยังอีกอะตอมหนึ่งได้ (คล้ายกับว่ามีทะเลอิเล็กตรอน)

สสารกึ่งตัวนำ เป็นฉนวน (เช่นทราย) ที่มีสสารอื่นปนอยู่ ซึ่งอาจเกิดขึ้นโดยธรรมชาติ หรือ อาจ สร้างขึ้น สารกึ่งตัวนำปกติจะเป็นฉนวน และ เมื่ออยู่ในอำนาจไฟฟ้า(สนามไฟฟ้า)ที่เหมาะสมจะเป็นตัวนำ

โดยปกติสสารไม่แสดงอำนาจของขั้วไฟฟ้าเนื่องจาก ประจุลบและบวกในสสารมีจำนวนเท่ากัน และ ประจุเหล่านั้นกระจายตัวอย่างสม่ำเสมอสารมีขั้วได้สองวิธี วิธีแรกคือมีประจุส่วนเกิน (ประจุลบและ บวกไม่เท่ากัน) ซึ่งอาจเกิดขึ้นได้โดยการถ่ายโอนประจุ (อาจโดยการเสียดสี หรือ กลไกลอื่น ๆ) และ ถ้าไม่มี ประจุสวนเกิน ประจุที่มีอยู่ในสสารจะต้องกระจ่ายตัวไม่สม่ำเสมอ ซึ่งอาจเกิดขึ้นได้เมื่อ สสารอยู่ภายใต้ อำนาจไฟฟ้าของประจุอื่น ดังแสดง ในภาพ

กฎของคูลอมป์ และ หน่วยวัดประจุ

กฎของคูลอมป์ เป็น กฎของแรง กล่าวถึงทิศและขนาดของแรงระหว่างประจุ ดังนี้

ทิศ

แรงกระทำระหว่างจุดประจุสองจุด อยู่ในแนวเส้นตรงที่เชื่อมสองจุด เป็นแรงคึงเข้าหา กันถ้าเป็นประจุ ต่างชนิดกัน เป็นแรงผลักถ้าเป็นประจุชนิดเคียวกัน

ขนาด

ขนาคของแรงผลักหรือคึงขึ้นแปรผันตรงกับประจุทั้งสอง q_1,q_2 และแปรผกผันกับ กำลังสองขอระยะระหว่างจุคประจุ r^2 ตามสมการ

$$F = \frac{k|q_1q_2|}{r^2}, k = 8.99 \times 10^9 \frac{Nm^2}{C^2}$$
 (1)

ในสมการ (1) ประจุ q_1 และ q_2 วัดเป็นคูลอมป์ (\mathcal{C}) จากสมการนี้เราทราบได้ว่าประจุหนึ่งคูลอมป์อยู่ห่างกัน หนึ่งเมตรจะออกแรงกระทำต่อกัน $8.99\times10^9~N$ ซึ่งเท่ากับน้ำหนักของมวล $8.99\times10^8~$ กิโลกรัม หรือ ประมาณ เก้าแสนตัน

กฎของคูลอมป์ในแบบเว็กเตอร์

เราสนใจแรง \vec{F} ซึ่งเป็นแรงที่จุดประจุที่สองทำต่อจุดประจุที่หนึ่งจากระยะห่าง r จุดประจุที่สองจะ ออกแรงกระทำได้สองแบบคือ ผลัก (ออกจากตัวมัน) หรือ ดึง (ดึงเข้าหาตัวมัน) เราสามารถบอกทิศว่าผลัก หรือดึงได้โดยใช้เว็กเตอร์หนึ่งหน่วช \hat{r} ดังรูป

$$\begin{array}{ccc}
q_1 & \overrightarrow{r} \\
q_2
\end{array}$$

$$\begin{array}{ccc}
q_1 & \overrightarrow{r} \\
\end{array}$$

$$\begin{array}{ccc}
F = F(-\overrightarrow{r})
\end{array}$$

หรือเขียนกฎของคูลอมป์ในแบบเว็กเตอร์ได้ดังนี้

$$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r} \tag{2}$$

โดยให้ q_1 หรือ q_2 มีค่าเป็นลบเมื่อเป็นประจุชนิดลบ และ มีค่าบวกเมื่อประจุเป็นชนิดบวก

การซ้อนทับกันของแรง (การรวมแรง)

เมื่อจุดประจุหนึ่งอยู่ใกล้กลุ่มจุดประจุอื่น จะถูกแรงจากแต่ละประจุในกลุ่มกระทำ (อาจเป็นแรงดึง หรือผลัก) แรงเหล่านี้จะซ้อนทับกันบนประจุที่มาอยู่ใกล้รวมเป็นแรงลัพธ์แรงหนึ่ง ตัวอย่างเช่น ประจุ q_3 เข้ามาอยู่ใกล้กลุ่มประจุที่ประกอบด้วยสองจุดประจุลบ คือ q_1 และ q_2 ดังแสดงในรูปผลคือมีสองแรงซ้อน กันบน q_3 เป็นแรงดึงทั้งคู่ และ รวมกันเป็นแรงลัพธ์ \vec{F}

ตัวย่างการคำนวณแรงลัพธ์

ตัวอย่าง 1.

มีกลุ่มประจุ q_1,q_2 ประจุทั้งสองห่างกันเป็นระยะ d และมีประจุขนาดเดียวกัน Q แต่ต่างชนิดกัน จงหาแรงที่ กลุ่มประจุนี้ทำต่อจุดประจุบวก q_3 ซึ่งอยู่ห่างจากประจุทั้งสองในกลุ่มเป็นระยะเท่ากัน คือ a ดังแสดงในรูป

กลุ่มประจุในตัวอย่างนี้เรียกว่า ไดโพล (Dipole) ซึ่งเป็นระบบประจุที่พบบ่อยครั้งในธรรมชาติ จากตัวอย่าง นี้จะเห็นว่าแรงที่ Dipole ทำกับประจุอื่น q_3 จะลดลงไวมากเมื่อประจุขับห่างออกไป (a มาก) ซึ่งจะ แปรผกผันกับระยะทางกำลังสาม

ตัวอย่างของระบบประจุแบบนี้ คือ โมเลกุลของน้ำ ดังแสดงในรูป

สนามไฟฟ้า

นิยามของสนามไฟฟ้า

สนามไฟฟ้า \vec{E} นิยามโดยอาศัยแรงไฟฟ้าลัพธ์ \vec{F} ของกลุ่มประจุ ที่กระทำต่อประจุบวกหนึ่งหน่วย ซึ่งอยู่ที่ใดที่หนึ่ง(ไม่ห่างจากกลุ่มประจุนั้นมากนัก) สนามไฟฟ้าของกลุ่มประจุหาได้จาก แรง $\overrightarrow{F_0}$ ซึ่งเป็นแรง ที่กลุ่มประจุกระทำกำประจุทดสอบ q_0 (ซึ่งเป็นประจุบวก) ที่อยู่ที่ตำแหน่ง (x,y,z) ตามสมการ

$$\vec{E}(x,y,z) = \frac{\vec{F_0}}{q_0} \tag{3}$$

โคยนิยามนี้ ถ้าเราทราบสนามของกลุ่มประจุที่ตำแหน่งใด เราจะรู้ว่ามีแรงเท่าใดถ้ามีประจุอื่นไปอยู่ ที่ตำแหน่งนั้น ถ้าประจุ q อยู่ในที่ตำแหน่ง (x,y,z) ใกล้ๆกลุ่มประจุ ถ้าเรารู้สนามไฟฟ้าของกลุ่มประจุที่ ตำแหน่งนั้น $\vec{E}(x,y,z)$ เราจะหาแรงที่กลุ่มประจุกระทำต่อประจุ q ได้ตามสามการ

$$\vec{F} = q\vec{E}(x, y, z), \quad \vec{F}$$
 คือแรงที่สนามทำกับประจุ q (4)

ดังนั้นสนามไฟฟ้าคือตัวแทนของระบบ(กลุ่ม)ประจุ การบอกว่าสนามไฟฟ้าออกแรงกระทำกับ ประจุใด ก็เท่ากับบอกว่าระบบประจุออกแรงกระทำกับประนั้น

องค์ประกอบของเว็กเตอร์ และ ระบบพิกัด

ในทางคณิตศาสตร์สนามไฟฟ้าคือ เว็กเตอร์ที่เป็นฟังก์ชันของตำแหน่ง (หนึ่งตำแหน่ง x,y,z มี หนึ่งเว็กเตอร์) ในระบบพิกัด x,y,z เขียนได้ว่า $\vec{E}(x,y,z)=E_x\hat{x}+E_y\hat{y}+E_z\hat{z}$ หมายความว่าเว็กเอตร์ส นามเป็นผลบวกของเว็เตอร์สนามสามเว็กเตอร์คือ เว็กเอตร์ในแนวแกน \hat{x} คือ $E_x\hat{x}$ ในแนว \hat{y} คือ $E_y\hat{y}$ และ ในแนว \hat{z} คือ $E_z\hat{z}$ ตามลำดับ

ในการบอกตำแหน่งเราสามารถเลือกระบบพิกัดแบบอื่นนอกจากแบบระบบพิกัดแกนฉาก (x,y,z) จะเลือกแบบใดขึ้นอยู่กับลักษณะของระบบประจุ ระบบพิกัดที่นิยมคือ ระบบระนาบ ระบบทรงกระบอก และ ระบบทรงกลม ดังแสดงในรูป

ระบบพิกัด ระนาบ

ระบบพิกัดทรงกระบอก

E(r,0,2) = Er + + E + + E + + E22

ระบบพิกัคทรงกลม

