

应用

- •手机
- •玩具
- •PC 摄像头
- •数码相机

定购信息 OV07675-A23A(彩色,无铅) 23-pin CSP3

特性

- •支持图像尺寸:
- VGA(640x480), QVGA(320x240), QQVGA(160x120)
- •输出格式支持;YCbCr422,Raw RGB, RGB565, ITU656
- •数字视频接口(DVP)并行输出接口
- •片上 PLL
- •内建 1.5V 核心电压稳压器
- •省电模式下保持所有寄存器的值
- •帧率程序可控,自动曝光/自动增益,水平/垂直翻转,窗口缩放

- •支持水平和垂直子采样
- •标准 SCCB 通讯接口
- •图像自动控制功能:自动曝光,自动白平衡和自动黑电平校正,图像质量可控: 镜头校正,去坏点和去噪
- •支持黑太阳校正
- •输入/输出驱动能力可设置
- •串行 SCCB 标准控制接口
- •支持 I/O 三态和输出极性控制
- •模组尺寸 6mm x 6mm

主要规格

- •感光阵列大小: 640×480
- •电源
- 模拟: 2.6-3.0V
- 输出/输出: 1.7-3.0V
- •功耗
- 工作: 待定
- 休眠: 待定
- •温度范围:
- 工作: -30℃到 70℃ (见表 8-1)
- 稳定图像: 0℃到50℃(见表8-1)
- •输出格式(8位):
- YUV422/YCbCr422,RGB565,CCIR656,RA W RGB
- •镜头尺寸: 1/9"
- •镜头主入射角度: 25°(见图 10-2)
- •输入时钟频率: 1.5-27MHz

- •扫描方式:逐行
- •最大帧率: (见表 2-1)
- VGA(640*480):30 帧
- QVGA(320*240):60 帧
- •灵敏度: 待定 mV/(Lux*sec)
- •快门: 电子快门
- •信噪比: 待定 dB
- •动态范围:待定 dB
- •最大曝光使间: 待定×行曝光时间
- •像素尺寸: 2.5um×2.5um
- •暗电流: 待定 mV/s@60℃
- •势阱容量: 待定 Ke⁻
- •固定图案噪音 (FPN): 待定 e⁻
- •伽玛校正: 可编程
- 感光阵列: 1640um×1220um
- •封装尺寸: 2797um×2800um

OmniVision 认证模组/镜头列表(采用 OV7675)

认证模组列表 (2009年7月30日)

OV7675版本	模组尺寸	镜头型号	模组厂	模组型号	接口
R1A	6.5*6.5*3.8	S3028	Sunny	8079J	标准PIN
R1A	6.0*6.0*3.8	S3028	Sunny	8079G	标准PIN
R1A	6.0*6.0*3.8	S3028	A-Kerr	7675FSL R1.0(090423)	标准PIN
R1A	6.0*6.0*3.8	CA513	Darling	DL030-OV7675A	标准PIN
R1A	6.0*6.0*3.8	CA513	Truly	8190	标准PIN
R1A	6.0*6.0*3.8	CA513	Sunrise	PCV767501A	标准PIN
R1A	6.0*6.0*3.8	CA513	Foxconn	1059	标准PIN

推荐镜头列表 (2009 年 7 月 30 日)

镜头厂	镜头型号	镜头结构	螺牙	相对孔径	光学总长	视场角	最大像面	模组尺寸
Hokuang	CA513	2P+IR CUT	M5*0.35P	2.8	3.1	60	2.3	6.0*6.0*3.8
Sunny	S3028	2P+IR CUT	M5*0.35P	2.8	3.1	62	2.2	6.0*6.0*3.8
Largan	9240A	2P+IR CUT	M3.5*0.35P	2.8	2.04	65	2.3	4.5*4.5*2.8
BASO	LM002	2P+IR CUT	M4*0.25P	2.8	3	59	2.32	6.0*6.0*3.7

- 1 信号描述
- 2 系统级别描述
 - 2.1 格式和帧率
 - 2.2 上电顺序
 - 2.3 电源管理
 - 2.4 上电复位产生
 - 2.5 系统时钟控制
- 3 功能模块描述
 - 3.1 像素阵列结构
- 4图像传感器数字功能
 - 4.1 水平垂直翻转
 - 4.2 图像窗口
 - 4.3 测试图案
 - 4.4 自动曝光/自动增益算法
 - 4.4.1 概要
- 5图像传感器数字功能
 - 5.1 白平衡控制
 - 5.2 自动白平衡
 - 5.3 手动白平衡
 - 5.4 伽玛控制
 - 5.5 色彩矩阵
 - 5.6 镜头校正
- 6图像传感器数字输出接口功能
 - 6.1 数字视频接口(DVP)
 - 6.1.1 概要
 - 6.1.2VGA 时序
- 7 寄存器表
- 8 电气规范
- 9 机械规范
 - 9.1 机械规范
 - 9.2 回流焊规范
- 10 光学规范
 - 10.1 传感器阵列中心
 - 10.2 镜头主入射角(CRA)

示意图索引

图 1-1	管脚图	1-1
图 2-1	OV7675 框图	2-1
图 2-2	参考设计	2-2
图 2-3	用内部 DVDD 上电	2-3
图 3-1	传感器阵列颜色滤镜图	3-1
图 4-1	垂直/镜面翻转示例	4-1
图 4-2	图像窗口	4-2
图 4-3	测试参考图	4-3
图 6-1	VGA 时序图	6-1
图 6-2	QVGA 时序图	6-2
图 6-3	QQVGA 时序图	6-3
图 9-1	封装规范	9-1
图 9-2	回流焊温度要求	9-2
图 10-1	传感器阵列中心	10-1
图 10-2	主入射脚(CRA)	10-2

图表索引

表 1-1	信号描述	1-1
表 2-1	格式及帧率	2-1
表 4-1	水平/垂直翻转控制	4-1
表 4-2	图像窗口控制	4-2
表 4-3	测试参考图选择	4-3
表 7-1	系统控制寄存器	7-1
表 8-1	极限值	8-1
表 8-2	直流特性 (-30℃ <ta<70℃)< td=""><td>8-2</td></ta<70℃)<>	8-2
表 8-3	模拟特性 (TA - 25℃, VDD-A - 2.8V, VDD-IO - 1.8V)	8-3
表 8-4	时序特性	8-4
表 8-5	SCCB 时序规范	8-5
表 9-1	封装尺寸	9-1
表 9-2	回流焊条件	9-2
表 10-1	CRA 与像高的关系	10-1

1 信号描述

表 1-1 列出 OV7675 的信号描述和相关的 PIN 脚号。封装信息请见第 9 章。

表 1-1

17.1			
管脚号	信号名称	信号类型	描述
A1	SCL	输入	SCCB 时钟
A2	SDA	输入/输出	SCCB 数据
А3	AGND	地	模拟地
A4	VREF1	参考	参考电压
A5	D0	输入/输出	数字视频接口第0位
B1	NC		空引脚
B2	AVDD	电源	模拟电源(2.6V~3.0V)
В3	PWDN	输入	休眠状态一高有效(高电平进入硬件休眠状态)
B4	D2	输入/输出	数字视频接口第2位
B5	D1	输入/输出	数字视频接口第1位
C3	VREF2	参考	参考电压
C4	XVCLK	输入	系统输入时钟
C5	D3	输入/输出	数字视频接口第3位
D1	NC		空引脚
D2	PCLK	输入/输出	像素时钟输出
D3	D6	输入/输出	数字视频接口第6位
D4	D4	输入/输出	数字视频接口第4位
D5	DGND	地	数字地
E1	HREF	输入/输出	行同步
E2	VSYNC	输入/输出	场同步
E3	D7	输入/输出	数字视频接口第7位
E4	D5	输入/输出	数字视频接口第5位
E5	DOVDD	电源	输入输出电路电源(1.7V~3.0V)

图 1-1 PIN 脚图

2 系统级描述

OV7675 是一种低功耗高性能的 1/9 英寸 VGA CMOS(彩色)图像传感器,提供全功能单芯片 VGA(640×480),使用 OmniPixel3-HS 技术小封装解决方案。通过 SCCB 接口控制,可以输出全幅、子采样和开窗口的 VGA,QVGA 和 QQVGA 格式图像。

OV7675 的图像阵列可以在 VGA 分辨率下工作在每秒 30 帧(30fps),用户可以完全控制图像质量和数据输出格式。所有需要的处理功能可以通过 SCCB 设置,包括曝光控制,伽玛,白平衡,色彩饱和度,色调,去坏点,去噪声等。另外,Ominivison 图像传感器使用独有的图像传感器技术,包括减少/去除光学/电子干扰(固定模式噪音,拖影等)来提高图像质量,得到清晰,稳定鲜亮的图像。

图 2-1 OV7675 框图

图 2-2 参考原理图 (CSP)

2.1 格式和帧率

OV7675 支持下列输出格式: RGB422, RGB raw, ITU 656 和 RGB565。

表 2-1 格式和帧率

输出格式	分辨率	帧率	缩放方法	像素时钟 (YUV/RAW)
VGA	640×480	30 帧每秒	全尺寸	24/12MHZ
QVGA	320×240	60 帧每秒	从 VGA 子采样得到	24/12MHZ
QQVGA	160×120	240 帧每秒	从 VGA 中心开窗口	24/12MHZ

2.2 上电顺序

2.2.1 上电采用内部 DVDD

当采用内部 DVDD 上电,并且在上电时 SCCB 可以工作,必须遵守以下条件:

- 1. 如果 VDD-IO 和 VDD-A 同时上电,请确保 VDD-IO 在 VDD-A 之前先稳定。
- 2. PWDN 是异步设计(不需要时钟)高有效。
- 3. PWDN 必须在上电期间拉高

- 4. 上电稳定后(AVDD稳定>=5毫秒), PWDN再拉低。
- 5. 主时钟必须在 Sensor SCCB 读写前 1 毫秒提供
- 6. Host 可以在整个上电期间读写 I2C(如果共享)。

图 2-3 用内部 DVDD 上电

VDD_IO first, then VDD_A, and rising time is less than 5 ms

note T0≥0 ms: delay from VDD_IO stable to VDD_A stable T2≥5 ms: delay from VDD_A stable to sensor power up stable if PWDN is not used, sensor SCCB is accessible after T0 + T2

7675_DS_23

2.3 电源管理

OV7675 需要 2.8V(典型值)AVDD 和 1.8V 或 2.8V DOVDD。芯片内部稳压器从 IO 电源(DOVDD)产生核心所需要的 1.5V 电压。

OV7675 包含內建电源管理电路来优化系统待机时间。只有和系统相关的功能是一直供电的。Sensor 和 ISP 功能在待机模式下是断电的。从待机模式恢复到工作模式时,这些功能在系统功能上电后也会上电。

在待机模式下,所有寄存器的值被保存下来。当 sensor 从待机模式恢复时,寄存器的值也会恢复。在待机模式下,系统提供的外部时钟可以在 Sensor 内部被关闭。

2.4 上电复位

OV7675 芯片内有上电复位功能。它会自动监测到核心电压稳定,并附为整个 Sensor。

2.5 系统时钟控制

OV7675 片内锁项环可以从 6Mhz 到 27Mhz 的外部时钟产生片内系统时钟。片内有可编程分频器产生系统所需要的各种时钟频率。如果外部时钟低于 6Mhz(1.5Mhz <= XVCLK <= 6Mhz),请将 PLL 关闭。

3 功能模块描述

3.1 像素阵列结构

OV7675 传感器有一个 656 列 504 行(330,624 个像素)的阵列。图 3-1 显示了像素阵列的横截面图。

彩色滤镜按 Bayer 格式排列,主色蓝绿/绿红每行交错排列。330,624 个像素点中,322,752(656×492)个像素可以输出正常数据。

传感器阵列的设计基于按场积分逐行读出方式和像素读出同步的电子快门。

图 3-1 传感器像素阵列及色彩滤镜排列

4图像传感器数字功能

4.1 水平垂直翻转

OV7675 提供镜面和垂直翻转模式,即分别反转数据的水平和垂直读出顺序。(见图 4-1)

图 4-1 镜面/垂直翻转图例

表 4-1 镜面/垂直翻转功能控制

功能	寄存器名称	缺省值	读/写	描述
				镜面/翻转开关
				Bit[5]: 镜像
				0: 正常图像
0x1E	MVFP	0x01	RW	1: 镜像图像
				Bit[4]: 垂直翻转
				0: 正常图像
				1: 垂直翻转图像

4.2 图像窗口

OV7675 输出窗口功能允许用户定义低分辨率应用中每帧使用的有效像素。通过选择开始/结束的行/列地址(控制输出窗口的大小和位置),并不改变输出的图像数据本身和数据率。输出窗口功能打开后,HREF 信号指示被选择的输出区域。

图 4-2 图像窗口

表 4-2 图像窗口功能控制

寄存器地址	描述
0x17[7:0], 0x32[2:0]	水平起始点
0x18[7:0], 0x32[5:3]	水平结束点
0x19[7:0], 0x03[2:0]	垂直起始点
0x1A[7:0], 0x03[5:3]	垂直结束点

4.3 测试图案

为了测试,OV7675 提供一种测试图案-彩条图 4-3 彩条测试模式

表 4-3 测试模式选择

地址	寄存器名称	缺省直 读写	描述
0x71	COM17	0 RW	Bit[7]: 测试图示开关 0: 关 1: 开

4.4 自动曝光/自动增益算法

4.4.1 概要

自动曝光控制(AEC)和自动增益控制(AGC)通过给图像传感器设置适当的曝光时间和增益使图像传感器可以在期望的范围内调整图像的亮度。除自动控制外,也可以通过外部控制手动设置曝光时间和增益。

5图像传感器数字功能

5.1 白平衡控制

OV7675 支持自动白平衡功能。白平衡电路自动调节红、绿、蓝增益,使得白色物体无论在任何光源下都呈白色。OV7675 支持自动白平衡和手动白平衡。

手动模式: 红、绿、蓝增益由手动控制。

自动模式:红、绿、蓝增益由自动白平衡电路控制。

5.2 自动白平衡

自动白平衡有两步工作:调节红、绿、蓝通道的增益和控制白平衡响应时间。

5.3 手动白平衡

后端处理器控制 OV7675 的红、绿、蓝通道增益寄存器。

5.4 伽玛

伽玛(GMA)功能的主要目的是补偿图像传感器的非线形特性。GMA 根据伽玛曲线 把不同亮度的像素点补偿后输出。非线性的伽玛曲线由不同段的近似直线构成

5.5 色彩矩阵 (CMX)

色彩矩阵(CMX)的主要功能是把RGB图像转换为YUV图像。在不同色温下,转换的参数会不同。

5.6 镜头补偿 (LENC)

镜头补偿(LENC)功能的主要目的是补偿由于镜头失光造成的光线不均匀性。根据每个像素离镜头中心的距离,计算相应的增益,补偿由于镜头曲线造成的不一致性。

6图像传感器数字输出接口功能

6.1 数字视频接口(DVP)

6.1.1 概要

数字视频接口(DVP)支持各种各式的 8 位并行数据输出。并且支持 HSYNC 模式和测试 图案。

6.1.2 VGA 时序

图 6-2 QVGA 时序图

图 6-3 QQVGA 时序图

figure 6-3 QQVGA timing diagram

7 寄存器表

下表提供 OV7675 设备控制寄存器的描述。对所有寄存器的位开关,开=1,关=0。设备的从地址 0x78 为写,0x79 为读。

表 7-1 系统控制寄存器

地址	寄存器名称	默认值	读/写	描述
0x00	GAIN	0x00	读/写	10 位自动增益控制 AGC[7:0](VREF[7:6](0x03) 是高 2 位) 增益=(0x03[7]位+1)×(0x03[6]位+1) ×(0x00[7]位+ 1)×(0x00[6]位+1)×([0x005]位+1)×([0x004]位+1) ×(0x00[3:0]位/16+1)
0x01	BLUE	0x80	读/写	AWB 蓝通道增益 范围: 1-4 倍([40]-[FF])
0x02	RED	0x80	读/写	AWB 红通道增益 范围: 1-4 倍([40]-[FF])
0x03	VREF	0x00	读/写	垂直输出指示 [7:6]位 AGC[9:8] (参见 GAIN[7:0] (0x00)) [5:4]位 测试模式 [3:2]位 VREF 结束低 2位(高 8 位在 VSTART[7:0] (0x19)) [1:0]位 VREF 开始低 2位(高 8 位在 VSTOP[7:0] (0x1A))
0x04	COM1	0x00	读/写	通用控制寄存器 1 [7]位 测试模式 [6]位 CCIR656 格式
0x05	BAVE	0x00	读/写	U/蓝通道平均值 根据芯片输出格式自动更新
0x06	BGAVE	0x00	读/写	Y/蓝行绿通道平均值 根据芯片输出格式自动更新
0x07	АЕСНН	0x00	读/写	自动曝光控制高 5 位 [7:6]位 不使用 [5:0]位 AEC[15:10] (AEC[9:2]和 AEC[1:0]参见寄存器 AECH[7:0](0x10)和 COM1[1:0](0x04))
0X08	RAVE	0x00	读/写	V/红通道平均值 根据芯片输出格式自动更新
0x09	COM2	0x01	读/写	通用寄存器 2 [7:5]位 测试模式 [4] 软待机模式 0: 正常工作 1: 待机 [3:2]位 测试模式 [1:0]位 输出驱动电流 00: 1x 01: 2x 10: 3x 11: 4x

地址	寄存器名称	默认值	读/写	描述
0x0A	PID	0x76	读	产品 ID 号高位(只读)
0x0B	VER	0x73	读	产品 ID 号低位(只读)
0x0C	COM3	0x00	读/写	通用控制寄存器 3 [7]位:测试模式 [6]位:输出数据高位/低位交换 [5]位:待机模式下时钟输出三态选项 0:待机时输出三态 1:待机时正常输出 [4]位:待机模式下数据输出三态选项 0:待机时输出三态 1:待机时正常输出 [3:0]位:测试模式
0x0D	COM4	0x00	读/写	通用控制寄存器 4 [7:6]位: 测试模式 [5:4]位: 平均选项(必须与COM17[7:6](0x42)保持一致) 00: 全窗口 01: 1/2窗口 10: 1/4窗口 11: 1/4窗口 [3:0]位: 测试模式
0x0E	测试模式	_	_	测试模式
0x0F	COM6	0x43	读/写	通用控制寄存器 6 [7]位 输出黑像素行选项 0: 不输出黑像素行 1: 输出黑像素行 [6:2]位 测试模式 [1]位 格式改变时复位全部时序 0: 不复位 1: 复位 [0]位 测试模式
0x10	AECH	0x40	读/写	自动曝光值 AEC[9:2] (AEC[15:10]和 AEC[1:0]参见寄存器 AECHH[5:0](0x07)和 COM1[1:0](0x04))
0x11	CLKRC	0x00	读/写	内部时钟 [7]位: 测试 [6]位: 直接用外部时钟(不允许预分频) [5: 0]位: 内部时钟分频系数 F(内部时钟)=F(外部时钟)/(位[5: 0]+1) 范围: [0 0000]-[1 1111]

地址	寄存器名称	默认值	读/写	描述
0x12	COM7	0x00	读/写	通用寄存器 7 [7]位: 系统寄存器复位
0x13	REG13	0x8F	读/写	通用控制寄存器 8 [7]位: 快速自动曝光/自动增益开关 [6]位: 自动曝光步长限制

地址	寄存器名称	默认值	读/写	描述
0x14	СОМЭ	0x4A	读/写	通用控制寄存器 9 [7]位:测试模式 [6: 4]位:自动增益的最大值 000:2倍 001:4倍 010:8倍 011:16倍 100:32倍 101:64倍 111:测试模式 [3:1]位:测试模式 [0]位:冻结 AGC/AEC
0x15	COM10	0x00	读/写	通用控制寄存器 10 [7]位: 测试模式 [6]位: HREF 管脚变为 HSYNC [5]位: PCLK 输出选项
0x16	未使用	_	_	未使用
0x17	HSTART	0x11	读/写	水平窗口起始点高8位(低位参见HREF[2:0](0x32))
0x18	HSIZE	0x61	读/写	水平窗口大小高8位(低位见 HREF[5:3](0x32))
0x19	VSTART	0x03	读/写	垂直窗口起始点高8位(低位参见 VREF[1:0](0x03))
0x1A	VSIZE	0x7B	读/写	垂直窗大小高 8 位 (低位参见 VREF[3:2](0x03))
0x1B	SHFT	0x00	读/写	像素点移位(D[7:0]相对于 HREF 以像素点为单位的延迟) 范围: [00](不延迟)到[FF](延迟 255 个像素)
0x1C	MIDH	0x7F	读	生产者 ID 高位
0x1D	MIDL	0xA2	读	生产者 ID 低位
0x1E	MVFP	0x01	读/写	镜像/翻转 [7:6]位: 测试模式 [5]位: 镜象
0x1F	测试模式	_	_	测试模式
0x20- 0x23	未使用	_	_	未使用

地址	寄存器名称	默认值	读/写	描述			
0x24	AEW	0x75	读/写	自动曝光/自动增益稳定范围(上限)			
0x25	AEB	0x63	读/写	自动曝光/自动增益稳定范围(下限)			
0x26	VPT	0xD4	读/写	自动曝光/自动增益快速调节范围 [7:4]位:快速调节模式的上限 [3:0]位:快速调节模式的下限			
0x27- 0x29	未使用	-	_	未使用			
0x2A	ЕХНСН	0x00	读/写	插入无效像素 [7:4]位: 水平方向插入无效像素[11:8](高 2 位在 REGCA[7:6] (0xCA), 低 8 位在 EXHCL(0x2B)) [3:2]位: HSYNC 下降沿延迟高 2 位(低 8 位参见 HSYEN[7:0](0x31)) [1:0]位: HSYNC 上升沿延迟高 2 位(低 8 位参见 HSYST[7:0](0x30))			
0x2B	EXHCL	0x00	读/写	水平方向插入无效像素[7:0](高位见 REGCA[7:6](0xCA)和 EXHCH[7:4](0x2A))			
0x2C	未使用	_	_	未使用			
0x2D	ADVFL	0x00	读/写	垂直方向插入的无效行低位(1位是1行)(高位见ADVFH)			
0x2E	ADVFH	0x00	读/写	垂直方向插入的无效行高位(1 位是 1 行)(低位见 ADVFH)			
0x2F	YAVE	0x00	读/写	Y/G 通道平均值			
0x30	HSYST	0x08	读/写	HSYNC 上升沿延迟低 8位(高 2 位参见 EXHCH[1:0](0x2A))			
0x31	HSYEN	0x30	读/写	HSYNC 下降沿延迟低 8 位 (高 2 位参见 EXHCH[3:2] (0x2A))			
0x32	HREF	0x80	读/写	HREF 控制 [7:6]位: HREF 相对于图像数据移位 [5:3]位: HREF 结束低 3 位 (高 8 位参见 HSTOP (0x18)) [2:0]位: HREF 开始低 3 位 (高 8 位参见 HSART (0x17))			
0x33 [~] 0x39	未使用	-	_	未使用			

地址	寄存器名称	默认值	读/写	描述
0x3A	TSLB	0x0D	读/写	行缓冲器测试选项 [7:6]位:测试模式 [5]位:负片开关 0:正常图像 1:负片图像 [4]位:UV输出 0:正常输出 1:使用 MANU(0x67)和 MANV(0x68)中的值,不输出图像的UV值 [3]位:输出顺序(与 COM13[0](0x3D)共同使用)
0x3B	COM11	0x00	读/写	一个 VSYNC 后调整输出窗口 通用控制寄存器 11 [7]位:夜间模式 0:关闭夜间模式 1:打开夜间模式 自动改变帧率。最低帧率由 {REFCF[3], COM11[6:5]} 决定。并且 ADVFH(0x2E) 和 ADVFL(0x2D) 自动更新 [6:5]位: RAF[1:0] 夜间模式最低帧率(高位在 REFCF[3] (0xCF))
0x3C	COM12	0x68	读/写	通用控制寄存器 12 [7]位: HREF 选项 0: 当 VSYNC 为低时无 HREF 1: HREF 一直输出 [6:0]位: 测试模式

地址	寄存器名称	默认值	读/写	描述
0x3D	COM13	0x88	读/写	通用控制寄存器 13 [7]位: 伽玛允许 [6]位: UV 饱和度 UV 饱和度自动调整,结果保存在 STACTR[3:0] (0xC9) [5:1]位: 保留 [0]位: 输出顺序(与 TSLB[3] (0x3A)共同使用) TSLB[3] COM13[0] 00: Y U Y V 01: Y V Y U 10: U Y V Y 11: V Y U Y
0x3E	COM14	0x00	读/写	通用控制寄存器 14 [7:5]位: 测试模式 [4]位: DCW 和缩放 PCLK 允许 0: 正常 PCLK 1: PCLK 由 COM14[2:0]控制 [3]位: 测试模式 [2:0]位: PCLK 分频(仅当 COM14[4]=1 时有效) 000: 除以 1 001: 除以 2 010: 除以 4 011: 除以 8 100: 除以 16 101~111: 测试模式
0x3F	REG3F	0x00	读/写	边缘增强调整 [7:5]位:测试模式 [4;0]位:边缘增强强度
0x40	COM15	0xC0	读/写	通用控制寄存器 15 [7:6]位: 数据输出范围

地址	寄存器名称	默认值	读/写	描述
0x41	COM16	0x08	读/写	通用控制寄存器 16 [7:6]位: 测试模式 [5]位: 允许 YUV 输出边缘增强自动调整(结果保存在寄存器 EDGE[4:0](0x3F)中,调整范围由 REG75[4:0](0x75)和 REG76[4:0](0x76)定义) 0: 禁止 1: 允许 [4]位: 降噪阈值自动调整(结果保存在寄存器 DNSTH(0x4C)中,调整范围由 REG77[7:0](0x77)定义) 0: 禁止 1: 允许 [3]位: AWB 增益允许 [2]位: 保留 [1]位: 颜色矩阵系数加倍 0: 不加倍 1: 加倍
0x42	COM17	0x00	读/写	通用控制寄存器 17 [7:6]位: AEC 窗口(必须与 OM4 [5:4] (0x0D) 保持一致)
0x43!0x4 B	测试模式	-	-	测试模式
0x4C	DNSTH	0x00	读/写	降噪强度
0x4D~0x4 E	测试模式	-	_	测试模式
0x4F	MTX1	0x40	读/写	色彩矩阵系数1
0x50	MTX2	0x34	读/写	色彩矩阵系数 2
0x51	MTX3	0x0C	读/写	色彩矩阵系数3
0x52	MTX4	0x17	读/写	色彩矩阵系数 4
0x53	MTX5	0x29	读/写	色彩矩阵系数 5
0x54	MTX6	0x40	读/写	色彩矩阵系数 6
0x55	BRIGHT	0x00	读/写	亮度控制
0x56	CONTRAS	0x40	读/写	对比度控制
0x57	CONTRAS CENTER	0x80	读/写	对比度中心

4 位: MTX5 (0x53) 的符号位	地址	寄存器名称	默认值	读/写	描述
x59° x61 测试模式 - 测试模式 x62 LCC1 0x00 读/写 6x3,补偿选项 1 (17)位:符号位 (6:0]位:6x3,补偿地项 2 (7)位:符号位 x63 LCC2 0x00 读/写 6x3,补偿选项 2 (7)位:符号位 0:正 1:负 (6:0)位:6x3,补偿地项 2 (7:0)位:6x3,补偿地项 3 LCC5[2](0x66)=1时,绿通道补偿系数 LCC5[2](0x66)=1时,绿通道补偿系数 LCC5[2](0x66)=0时,红绿蓝通道补偿系数 LCC5[2](0x66)=0时,红绿蓝通道补偿系数 x65 LCC4 0x30 读/写 6x3,补偿选项 4 (7:0)位:不需镜头补偿的圆半径 6x3,补偿选项 5 (7:3)位:未使用 [2]位:镜头补偿控制 0:红绿蓝通道采用不同补偿系数(LCC3(0x64)指定) 1:红绿蓝通道采用不同补偿系数(LCC7(0x95),LCC5(0x64)和 LCC6(0x94)指定) 1:1位:未使用 [0]位:镜头补偿使能 0:关闭 1:打开 x66 MANU 0x80 读/写 位(7:0):固定U值(仅当TSLB[4](0x3A)=1时有效)	0x58	MTXS	0x1E	读/写	0: 关闭。对比度中心由 CONTRAS CENTER (0x57) 定义 1: 打开。CONTRAS CENTER 自动更新 [6]位: 测试模式 [5]位: MTX6 (0x54) 的符号位 [4]位: MTX5 (0x53) 的符号位 [3]位: MTX4 (0x52) 的符号位 [2]位: MTX3 (0x51) 的符号位 [1]位: MTX2 (0x50) 的符号位
x62 LCC1 0x00 读/写 [7]位: 符号位 0: 正 1: 负 [6:0]位: 镜头补偿中心相对传感器阵列中心的水平坐标镜头补偿选项2 [7]位: 符号位 x63 LCC2 0x00 读/写 0: 正 1: 负 [6:0]位: 镜头补偿中心相对传感器阵列中心的垂直坐标镜头补偿选项3 [7:0]位: [7:0	0x59 [~] 0x61	测试模式	_	_	
x63 LCC2 0x00 读/写 0: 正 1: 负 [6:0]位: 镜头补偿中心相对传感器阵列中心的垂直坐标 镜头补偿选项3 x64 LCC3 0x50 读/写 [7:0]位: LCC5[2](0x66)=1 时, 绿通道补偿系数 LCC5[2](0x66)=0 时, 红绿蓝通道补偿系数 x65 LCC4 0x30 读/写 镜头补偿选项 4 [7:0]位: 不需镜头补偿的圆半径 数头补偿选项 5 [7:3]位: 未使用 [2]位: 镜头补偿控制 0: 红绿蓝通道采用同样补偿系数(由LCC3(0x64)指定) 1: 红绿蓝通道采用不同补偿系数(LCC7(0x95), LCC5(0x64)和LCC6(0x94)指定) [1]位: 未使用 [0]位: 镜头补偿使能 0: 关闭 1: 打开 x67 MANU 0x80 读/写 位[7:0]:固定U值(仅当TSLB[4](0x3A)=1 时有效)	0x62	LCC1	0x00	读/写	[7]位:符号位 0:正 1:负
x64 LCC3 0x50 读/写 [7:0]位:	0x63	LCC2	0x00	读/写	[7]位:符号位 0:正 1:负
x65 LCC4 0x30 读/与 [7:0]位: 不需镜头补偿的圆半径 镜头补偿选项 5 [7:3]位: 未使用 [2]位: 镜头补偿控制 0: 红绿蓝通道采用同样补偿系数(由 LCC3(0x64)指定) 1: 红绿蓝通道采用不同补偿系数(LCC7(0x95), LCC5(0x64)和 LCC6(0x94)指定) [1]位: 未使用 [0]位: 镜头补偿使能 0: 关闭 1: 打开 x67 MANU 0x80 读/写 位[7:0]:固定 U值(仅当 TSLB[4](0x3A)=1 时有效)	0x64	LCC3	0x50	读/写	[7:0]位: LCC5[2](0x66)=1 时,绿通道补偿系数
[7:3]位:未使用 [2]位:镜头补偿控制 0:红绿蓝通道采用同样补偿系数(由 LCC3 (0x64) 指定) 1:红绿蓝通道采用不同补偿系数(LCC7 (0x95), LCC5 (0x64) 和 LCC6 (0x94) 指定) [1]位:未使用 [0]位:镜头补偿使能 0:关闭 1:打开 x67 MANU 0x80 读/写 位[7:0]:固定U值(仅当 TSLB[4] (0x3A)=1 时有效)	0x65	LCC4	0x30	读/写	
	0x66	LCC5	0x00	读/写	[7:3]位:未使用 [2]位:镜头补偿控制 0:红绿蓝通道采用同样补偿系数(由LCC3(0x64)指定) 1:红绿蓝通道采用不同补偿系数(LCC7(0x95), LCC5(0x64)和LCC6(0x94)指定) [1]位:未使用 [0]位:镜头补偿使能 0:关闭
x68 MANV 0x80 读/写 位[7:0]:固定V值(仅当TSLB[4](0x3A)=1时有效)	0x67	MANU	0x80	读/写	
	0x68	MANV	0x80	读/写	位[7:0]:固定 V 值(仅当 TSLB[4](0x3A)=1 时有效)

地址	寄存器名称	默认值	读/写	描述
0x69	GFIX	0x00	读/写	固定增益控制 [7:6]位: Gr 通道固定增益
0x6A	GREEN	0x00	读/写	AWB 绿通道增益 范围: 1-4 倍([40]-[FF])
0x6B	DBLV	0x0A	读/写	[7:6]位: PLL 控制 00: 旁路 PLL 01: 输入时钟 x4 10: 输入时钟 x6 11: 输入时钟 x8 [5:0]位: 测试模式
0x6C	AWBCTR3	0x02	读/写	AWB 控制寄存器 3
0x6D	AWBCTR2	0x55	读/写	AWB 控制寄存器 2
0x6E	AWBCTR1	0xC0	读/写	AWB 控制寄存器 1
0x6F	AWBCTRO	0x9A	读/写	AWB 控制寄存器 0
0x70	SCALING_XS C	0x3A	读/写	[7]位:测试图案[0],与测试图案[1]共同使用 {SCALING_YSC[7], SCALING_XSC[7]} 00:无测试图案输出 01:移位"1" 10:8位彩色条 11:未使用 [6:0]位:未使用
0x71	SCALING_YS C			[7]位: 测试图案[1], 与测试图案[0]共同使用 {SCALING_YSC[7], SCALING_XSC[7]} 00: 无测试图案输出 01: 移位"1" 10: 8位彩色条 11: 未使用 [6:0]位: 未使用

地址	寄存器名称	默认值	读/写	描述
$0x72^{\sim}$ $0x73$	测试模式	_	_	测试模式
0x74	REG74	0x00	读/写	[7:5]位:测试模式 [4]位: DG_Manu 0: 数字增益由 VREF[7:6] (0x03) 控制 1: 数字增益由 REG74[1:0] (0x74) 控制 [3:2]位:测试模式 [1:0]: 数字增益手动控制 00: 旁路 01: 1x
0x75	REG75	0x0F	读/写	[7:5]位:未使用 [4:0]位:边缘增强下限
0x76	REG76	0x01	读/写	[7]位: 黑像素校正 0: 关闭 1: 打开 [6]位: 白像素校正 0: 关闭 1: 打开 [5]位: 未使用 [4:0]: 边缘增强上限
0x77	REG77	0x10	读/写	[7:0]位: 降噪偏移量
0x78 [~] 0x79	测试模式	-	_	测试模式
0x7A	SLOPE	0x24	读/写	Gamma 曲线最高部分斜率,计算如下: SLOPE[7:0]=(0X100-GAM15[7:0])×4/3
0x7B	GAM1	0x04	读/写	Gamma 曲线第1段
0x7C	GAM2	0x07	读/写	Gamma 曲线第2段
0x7D	GAM3	0x10	读/写	Gamma 曲线第3段
0x7E	GAM4	0x28	读/写	Gamma 曲线第4段
0x7F	GAM5	0x36	读/写	Gamma 曲线第5段
0x80	GAM6	0x44	读/写	Gamma 曲线第6段
0x81	GAM7	0x52	读/写	Gamma 曲线第7段
0x82	GAM8	0x60	读/写	Gamma 曲线第8段
0x83	GAM9	0x6C	读/写	Gamma 曲线第9段
0x84	GAM10	0x78	读/写	Gamma 曲线第 10 段
0x85	GAM11	0x8C	读/写	Gamma 曲线第 11 段
0x86	GAM12	0x9E	读/写	Gamma 曲线第 12 段
0x87	GAM13	0xBB	读/写	Gamma 曲线第 13 段
0x88	GAM14	0xD2	读/写	Gamma 曲线第 14 段
0x89	GAM15	0xE5	读/写	Gamma 曲线第 15 段
0x8A~ 0x8B	测试模式	_	_	测试模式

地址	寄存器名称	默认值	读/写	描述
0x8C	RGB444	0x00	读/写	[7:2]位:未使用 [1]位:RGB444允许(仅当COM15[4](0x40)=1时有效) 0:无效 1:有效 [0]位:RGB444格式 0:xR GB 1:RG Bx
0x8D [~] 0x91	测试模式	_	_	测试模式
0x92	DM_LNL	0x00	读/写	无效行低 8 位
0x93	DM_LNH	0x00	读/写	无效行高8位
0x94	LCC6	0x50	读/写	镜头补偿选项 6(仅当 LCC5[2](0x66)=1 时有效)
0x95	LCC7	0x50	读/写	镜头补偿选项 7(仅当 LCC5[2](0x66)=1 时有效)
0x96 [~] 0x9C	测试模式	_	_	测试模式
0x9D	BD50ST	0x7F	读/写	50Hz 条纹滤波器[7:0], 高位在 REGE1[1:0](0xE1) (仅当 COM8[5](0x13)=1 并且 COM11[3](0x3B)=1 时有效)
0x9E	BD60ST	0xC0	读/写	60Hz 条纹滤波器[7:0],高位在 REGE1[3:2](0xE1) (仅当COM8[5](0x13)=1并且COM11[3](0x3B)=0时有效)
0x9F [~] 0xA3	测试模式	_	_	测试模式
0xA4	NT_CTRL	0x00	读/写	[7:4]位:未使用 [3]位:自动帧率调整控制 0:曝光时间加倍 1:帧率减半 [2]位:未使用 [1:0]位:帧率调整起始点 00:达到2x增益时插入无效行 01:达到4x增益时插入无效行 10:达到8x增益时插入无效行
0xA5	BD50MAX	0x0F	读/写	50Hz 曝光步数限制
$0xA6^{\sim}$ $0xAA$	测试模式	_	_	测试模式
0xAB	BD60MAX	0x0F	读/写	60Hz 曝光步数限制
0xAC [~] 0xC8	测试模式	_	_	测试模式
0xC9	SATCTR	0xC0	读/写	饱和度控制 [7:4]位: UV 饱和度控制最小值 [3:0]位: UV 饱和度控制结果
0xCA	REGCA	0x00	读/写	[7:6]位:水平方向插入无效像素[13:12] (参见EXHCH[7:4](0x2A)和EXHCL[7:0](0x2B))
0xCB [~]	测试模式	_	_	测试模式

地址	寄存器名称	默认值	读/写	描述
0xCF	REGCF	0x00	读/写	[7:4]位:测试模式 [3]位: RAF[2](与 COM11[6:5](0x3B)一同使用) {REFCF[3], COM11[6:5]} 000: 正常帧率 001: 正常帧率的 1/2 010: 正常帧率的 1/3 011: 正常帧率的 1/4 1xx: 正常帧率的 1/8 [2:0]位:
$0xD0^{\sim}$ $0xD3$	测试模式	_	_	测试模式
0xD4	RADCO	0x84	读/写	ADC 控制 [7:3]位: 测试模式 [2:0]位: ADC 参考调整 000: 0.8x 100: 1x 111: 1.2x
0xD5~ 0xDB	测试模式	_	_	测试模式
0xDC	RPWC2	0x35	读/写	[7:4]位:测试模式 [3]位:内部稳压器控制 0:使用内部稳压器 1:关闭内部稳压器 [2:0]位:
0xDD [~] 0xE0	测试模式	_	- (测试模式
0xE1	REGE1	0x40	读/写	[7:4]位:测试模式 [3:2]位:60Hz 条纹滤波器[9:8] 低位在BD60ST(0x9E) (仅当COM8[5](0x13)=1并且COM11[3](0x3B)=0时有效) [1:0]位::50Hz 条纹滤波器[9:8] 低位在BD50ST(0x9D) (仅当COM8[5](0x13)=1并且COM11[3](0x3B)=1时有效)
0xE2 [~] 0xE7	测试模式	-	7	测试模式
0xE8	RDSP0	0x15	读/写	[7:1]位: 测试模式 [0]位: LCD 增益调整允许
0xE9	测试模式	_	_	测试模式
0xEA	RDSP2	0x10	读/写	[7:6]位:测试模式 [5:4]位:红通道 LCD 增益 00:不允许 01:1x 10:2x 11:不允许 [3:0]位:红通道 LCD 增益分数部分,以 1/16 计算

地址	寄存器名称	默认值	读/写	描述
				[7:6]位: 测试模式
				[5:4]位: 绿通道 LCD 增益
				00: 不允许
0xEB	RDSP3	0x10	读/写	01: 1x
				10: 2x
				11: 不允许
				[3:0]位:绿通道 LCD 增益分数部分,以 1/16 计算
				[7:6]位: 测试模式
				[5:4]位: 蓝通道 LCD 增益
				00: 不允许
0xEC	RDSP2	0x10	读/写	01: 1x
				10: 2x
				11: 不允许
				[3:0]位: 蓝通道 LCD 增益分数部分,以 1/16 计算
$0xED^{\sim}$	Stra's N Little IN			NTALA D. Letter D.
0xFF	测试模式			测试模式

8 电气规范

表 8-1 极限值

参数			极限值			
工作温度			-30℃至+70℃			
稳定工作温	温度		0℃至+50℃			
环境湿度			-40℃至+9	95°C		
供电电压	(对地)V _{DD-A}		4.5V			
	$V_{ ext{dd-IO}}$		4.5V		A	
防静电(E			2000V 200V			
+A > /+A 11 -	机器					
	电压(对地)		-0.3V 到 Vpp-	10+1 A		
IO 在任何轴	输入输出 PIN 的电流		± 200mA			
回流焊温度	度,表面贴片流程		245°C			
+ 0 - + 2.	al-t- lal					
表 8-2 直流		目.1. 仕	卅五1	見上法	光 /	
符号 	参数	最小值	典型值	最大值	单位	
电源	Idle Lar. 1. Are	0.6	2.0	2.0	X 7	
V _{DD-A}	模拟电源	2.6	2.8	3.0	V	
V _{DD-IO}	输入/输出电源	1.71	1.8	3.0	V	
I _{dd-a} I _{dd-io}	工作电流	TBD TBD	TBD TBD	TBD TBD	mA mA	
Idds-sccb	省电模式电流	TBD	TBD	TBD	mA	
DDS-PWDN	日气大人气气机	TBD	TBD	TBD	μА	
数字输入((典型条件:AVDD=2	.8V,DOVDD=	=2.8V)			
Vil	输入电压下限			0.84	V	
Vih	输入电压上限	1.96			V	
Cin	输入电容			10	pF	
数字输出((标准 25pF 负载)					
Voh	输出电压上限	2.52			V	
Vol	输出电压下限			0.28	V	
串口输入						
串口输入 V IL	SCL 和 SDA	-0.5	0	0.54	V	

表 8-3 1	摸拟特性(T _A -25℃,V _{DD-A} -2.8V	V,V _{DD-IO} -2.8	V)			
符号	参数	最小值	典型	性 最力	大值 单位	
ADC 参	> 数					
В	模拟带宽		12		MHz	Z
DLE	DC 微分线性误差		0.5		LSB	
ILE	DC 积分线性误差		1		LSB	
	软件复位时间			<1	ms	
	VGA/QVGA 模式切换时间			<1	ms	
	寄存器设置时间			<30	00 ms	
表 8-4 🛭	时序特性					
符号	参数	最小值	典型值	最大值	单位	
晶振和	1时钟输入		C ^o A			
fosc	频率(主时钟)	1.5ª	24	27	MHz	7.
Tr,tf	输入时钟上升/下降时间			5(10 ^b)	ns	

a. 6Mhz 以下,必须旁路 PLL

图 8-1 SCCB接口时序

b. 如果使用内部 PLL

表 8-5: SCCB 时序规范

符号	典型 SCL 时钟频率	SCCB 标准模式(400KHz) ^a		SCCB 标准模式(400KHz)b		
		最小值	最大值	最小值	最大值	单位
$t_{\rm HIGH}$	SCL 时钟高电平时间	TBD		TBD		ns
t_{LOW}	SCL 时钟低电平时间	TBD		TBD		ns
t_{BUF}	开始前总线空闲时间	TBD		TBD		ns
t _{HD_STA}	传输开始保持时间	TBD		TBD	A	ns
$t_{\rm SU_STA}$	传输开始建立时间	TBD		TBD		ns
$t_{\rm SU_STO}$	结束传输建立时间	TBD		TBD		ns
t_{SUDIN}	输入数据建立时间	TBD		TBD		ns
t_{HDDIN}	输入数据保持时间	TBD		TBD	\	ns
t_{HDDOUT}	输出数据传输保持时间	TBD		TBD	,	ns
t_R	SCL 时钟上升时间	TBD	/	TBD		ns
$t_{\rm F}$	SCL 时钟下降时间	TBD		TBD		ns

- a. 测试结果在 XVCLK=6Mhz, DOVDD=2.8V 时测量
- b. 测试结果在 XVCLK=27Mhz, DOVDD=2.8V 时测量

9 机械规范

9.1机械规范

图 9-1 封装尺寸

7675_CSP_DS_9_1

表 9-1 封装尺寸

Z- 1/1/	66. F		II. west Ali		V 10
参数	符号	最小值	典型值	最大值	单位
封装体 x 向尺寸	Α	2790	2815	2840	μm
封装体 y 向尺寸	В	2800	2825	2850	μm
封装高度	C	690	750	810	μm
球高度	C1	100	130	160	μm
封装体厚度	C2	575	620	665	μm
玻璃层厚度	C3	425	445	465	μm
球直径	D	220	250	280	μm
管脚数量	N		23 (2 NC)		
X 向管 <mark>脚数</mark>	N1		5		
Y 向管脚数	N2		5		
管脚 x 向倾斜	JI		500		μm
管脚 y 向倾斜	J2		500		μm
X 向管脚中心到边缘距离	S1		408	438	μm
Y向管脚中心到边缘距离	S2		413	443	μm

9.2回流焊规范

图 9-2 回流焊升温滤需求

表 9-2 回流焊调节

条件	时间
平均上升斜率 (30℃到 217℃)	每秒小于3℃
大于 100℃	330到600秒
大于 150℃	至少 210 秒
大于 217℃	至少30秒(30到120秒)
最高温度	245℃
冷却速率(最高 50°C)	至少每秒6℃
30℃到 245℃的时间	不超过 390 秒

10 光学规范

10.1 传感器阵列中心

图 10-1 传感器阵列中心

注释1: 此图不按比例,仅供参考

注释 2: 多数光学组装会使图像旋转 180 度。芯片在 PCB 上的安装方向一般为 A1 到 A5 管脚向下。

10.2 镜头主入射角(CRA)

图 10-2 主入射角 (CRA)

image height (mm)

表 10-1 CRA 与像高的关系

2 10-1 CKA - 7 队间间7人水						
范围 (%)	图像高度 (mm)	CRA (度)	最大+4	最小-4		
0	0	0.0000	4.0000	-4.0000		
0.1	0.1	1.4117	5.4117	-2.5883		
0.2	0.2	2.9757	6.9757	-1.0248		
0.3	0.3	4.7348	8.7348	0.7348		
0.4	0.4	6.6999	10.6999	2.6999		
0.5	0.5	8.8546	12.8546	4.8546		
0.6	0.6	11.1558	15.1558	7.1558		
0.7	0.7	13.5627	17.5627	9.5627		
8.0	0.8	16.0498	20.0498	12.0498		
0.9	0.9	18.6010	12.6010	14.6010		
1	1	21.2001	25.2001	17.2001		

说明:

本数据手册从英文版数据手册 1.0 版翻译。如果中文数据手册中有任何地方与英文数据手册不一致,请以英文数据手册为准。

7675 DS 10 2