Esercizio 13. I Pescatori Padovani vogliono conoscere il peso medio dei rutili, detti anche gardon, presenti nel canale Battaglia. Ne fanno catturare e pesare 900 esemplari. Indichiamo con X_i il peso dell'esemplare i-esimo (espresso in grammi). Possiamo supporre che le X_i siano delle variabili aleatorie indipendenti e identicamente distribuite. Indichiamo con μ il comune valor medio, con σ^2 la comune varianza, e con

$$\Rightarrow \bar{S} \doteq \frac{1}{900} \sum_{i=1}^{900} X_i$$

la media campionaria. Mentre il valore di μ è incognito, supponiamo che la deviazione standard σ (espressa in grammi) non superi 60. Utilizzando l'approssimazione normale, si trovi $\delta>0$ (il più piccolo possibile) tale che l'intervallo aleatorio

$$\rightarrow$$
 $(\bar{S} - \delta, \bar{S} + \delta)$

contenga μ con probabilità almeno del 95%.

$$(5-5,5+5) \ge 0.95$$

$$2 \frac{1}{300} \sum_{i=1}^{300} x_i \le 5$$

$$P \sum_{i=1}^{300} x_i$$

$$P(\mu \in (5-3,5+5))$$

$$= P(5-3 < \mu < 5+5)$$

$$= P(-3 < \mu - 5 < 5)$$

$$= P(-3 < \mu - 5 < 5)$$

$$= P(\frac{3}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}}}}}} < \frac{5}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{5}}}}}})$$

Per il Teorema del Limite Centrale, con n = 900 (grande), la media campionaria S ha distribuzione approssimativamente normale:

Standardizzando:
$$\bar{S} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N\left(\mu, \frac{\sigma^2}{900}\right)$$

$$\text{Standardizzando:}$$

$$Z = \frac{\bar{S} - \mu}{\sigma/\sqrt{900}} = \frac{\bar{S} - \mu}{\sigma/30} \sim N(0, 1)$$

| note:
$$E[\overline{S}] = \mu_1$$
 $var(\overline{S}) = \frac{1}{900^2} \cdot 900 \cdot \sigma^2 \Rightarrow near(x_1) \sim \text{Rer}$

| $var(\overline{S}) = \frac{\sigma}{30}$

Il professore standardizza correttamente la media campionaria:

$$P\left(\frac{\bar{S} - \mu}{\sqrt{\operatorname{Var}(\bar{S})}} < \frac{\delta}{\sqrt{\operatorname{Var}(\bar{S})}}\right)$$

Siccome per il TLC abbiamo $Z \sim N(0,1)$, e per simmetria della normale:

$$P(-a < Z < a) = \Phi(a) - \Phi(-a) = \Phi(a) - (1 - \Phi(a)) = 2\Phi(a) - 1$$

Quindi: $2\Phi\left(\frac{30\delta}{\sigma}\right)-1=0.95$

Da cui: $\Phi\left(\frac{30\delta}{\sigma}\right) = 0.975 \rightarrow \frac{30\delta}{\sigma} = 1.96$

Applicando le proprietà della varianza:

$$egin{align} ext{Var}(ar{S}) &= ext{Var}\left(rac{1}{900}\sum_{i=1}^{900} X_i
ight) \ &= \left(rac{1}{900}
ight)^2 \cdot ext{Var}\left(\sum_{i=1}^{900} X_i
ight) \ &= rac{1}{900^2} \cdot \sum_{i=1}^{900} ext{Var}(X_i) \ &= rac{1}{900^2} \cdot 900 \cdot \sigma^2 = rac{\sigma^2}{900} \ \end{split}$$

Spiegazione dei fattori:

- $\frac{1}{900^2}$: viene dal coefficiente $\frac{1}{900}$ elevato al quadrato (proprietà: $\mathrm{Var}(cX) = c^2\mathrm{Var}(X)$)
- 900: è il numero di variabili indipendenti che stiamo sommando
- σ^2 : è la varianza comune di ciascun X_i

Il risultato finale è $\sqrt{{
m Var}(\bar{S})}=\frac{\sigma}{30}$, che è esattamente quello che il professore ha usato.

Esercizio 4. Siano $X,Y\in L^2(\Omega,\mathcal{F},\mathbf{P})$. Supponiamo che X,Y siano indipendenti e identicamente distribuite. Si mostri che allora

$$\operatorname{var}(X) = \operatorname{var}(Y) = \frac{1}{2} \mathbf{E} \left[(X - Y)^2 \right].$$

$$\frac{1}{2} \delta (x^2 + y^2 - 2xx) = \frac{1}{2} \delta x^2 + \frac{1}{2} \delta x^2$$

$$= 5 [x] \cdot 6 [x] =$$

Hai semplicemente usato l'ipotesi «identicamente distribuite», cioè

$$\operatorname{var}(Y) = \operatorname{var}(X)$$
.

Quindi

$$rac{1}{2}\operatorname{var}(X) + rac{1}{2}\operatorname{var}(Y) = rac{1}{2}\operatorname{var}(X) + rac{1}{2}\operatorname{var}(X) = \operatorname{var}(X).$$

Allo stesso modo, sostituendo in var(Y) si ottiene var(Y)=var(X). In pratica non c'è nessun passaggio "misterioso": è solo sostituire var(Y) con var(X) perché sono uguali per identica distribuzione.

Esercizio 6. Sia ξ una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$ con distribuzione uniforme continua su (0,1). Si trovi una funzione $\phi:(0,1)\to\mathbb{N}$ tale che la variabile aleatoria $Y\doteq\phi(\xi)$ abbia la seguente distribuzione discreta:

$$P(Y=n) = \begin{cases} 1/12 & \text{se } n=1, \\ 1/6 & \text{se } n=2, \\ 1/4 & \text{se } n=3, \\ 1/12 & \text{se } n=4, \\ 1/4 & \text{se } n=5, \\ 1/6 & \text{se } n=6, \\ 0 & \text{altrimenti,} \end{cases}$$

$$P(Y=1) = \frac{1}{12}$$
 $P(Y=2) = 2 \cdot \frac{1}{12} = \frac{1}{6}$
 $P(Y=3) = 3 \cdot \frac{1}{12} = \frac{1}{4}$
 $P(Y=4) = \frac{1}{12}$

Definizmo o: [0,1] -> M tranite	Verifica, ad esempio n=5:
	$P(Y=5) = P(\phi(5)=5)$
$\phi(x) = \begin{cases} 1 & \text{se } x \in [0, \frac{1}{12}], \\ 2 & \text{se } x \in (\frac{1}{12}, \frac{3}{12}), \end{cases}$	$= P\left(\S \in \left(\frac{7}{12}, \frac{10}{12}\right)\right)$
3 se $\times \in \left(\frac{3}{12}, \frac{6}{12}\right]$	=
$\operatorname{Luif}(0,1)$ 4 se $\times \left(\frac{6}{12}, \frac{7}{12}\right)$	$= \mathcal{F}_{\xi} \left(\frac{ o }{i2} \right) - \mathcal{F}_{\xi} \left(\frac{\lambda}{i2} \right)$
$S \leq \times \epsilon \left(\frac{7}{12}, \frac{10}{12}\right),$	$\frac{1}{\sqrt{2}} \int_{\mathbb{R}^{n}} \int_{$
6 se xe(\frac{10}{12},1].	$=\frac{10}{12}-\frac{7}{12}=\frac{3}{12}=\frac{1}{4}$
P(Y=1) = P(Q(3)=1)	~> P(Y=5) = 1/4.
P(ge loi1)	F(0) =0-1[0,1]+
2 ((3 ± 0) - P(5 = 12)	•
= (a) - F(1)	$= 0 + 1 + 1 = 1$ $= 0 + 1 + 1 + \frac{1}{12} = \frac{1}{12}$
P(Y=2) = P(\$(3)=2)=1	0(36 [4] 3])z
P(3 4 2) - P(3 4 12) (GRAND) PICO	$\frac{1}{1} + \frac{1}{2} = \frac{1+2=3}{1}$

Esercizio 7. Siano $X,\,Y$ variabili aleatorie reali indipendenti su $(\Omega,\mathcal{F},\mathbf{P}).$ Si determinino allora

- a) la funzione di ripartizione di $\min\{X,Y\}$ in termini delle funzioni di ripartizione di X e Y;
- b) la funzione di ripartizione di $\max\{X,Y\}$ in termini delle funzioni di ripartizione di X e Y.

a) Funzione di ripartizione di min{X,Y}

Sia Z = $min{X,Y}$. Vogliamo trovare $F_Z(z) = P(Z \le z)$.

Approccio tramite evento complementare:

L'evento $\{\min\{X,Y\} \le z\}$ si verifica quando almeno una tra $X \in Y \stackrel{.}{e} \le z$.

È più semplice considerare il complementare: $\{\min\{X,Y\} > z\} \Longleftrightarrow \{X > z \cap Y > z\}$

Per l'indipendenza di X e Y:

$$P(\min\{X,Y\}>z)=P(X>z,Y>z)=P(X>z)\cdot P(Y>z)$$

$$=(1-F_X(z))(1-F_Y(z))$$

Quindi:

$$F_{\min\{X,Y\}}(z) = 1 - (1 - F_X(z))(1 - F_Y(z))$$

Sviluppando:

$$F_{\min\{X,Y\}}(z) = F_X(z) + F_Y(z) - F_X(z)F_Y(z)$$

b) Funzione di ripartizione di max{X,Y}

Sia W = $max{X,Y}$. Vogliamo trovare $F_W(w) = P(W \le w)$.

L'evento $\{\max\{X,Y\} \le w\}$ si verifica quando entrambe $X \in Y$ sono $\le w$: $\{\max\{X,Y\} \le w\} \iff \{X \le w \cap Y \le w\}$

(IIIIII(22,1) = ₩) ↔ (22 = ₩ 1 1 =

Per l'indipendenza di X e Y:

$$F_{\max\{X,Y\}}(w) = P(X \leq w, Y \leq w) = P(X \leq w) \cdot P(Y \leq w)$$

$$F_{\max\{X,Y\}}(w) = F_X(w) \cdot F_Y(w)$$

Risultati finali:

a)
$$F_{\min\{X,Y\}}(z) = F_X(z) + F_Y(z) - F_X(z)F_Y(z)$$

b)
$$F_{\max\{X,Y\}}(w) = F_X(w) \cdot F_Y(w)$$

Esercizio 9. Sia X una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$ con distribuzione esponenziale di parametro $\lambda > 0$. Poniamo

$$Y(\omega) \doteq \sqrt{X(\omega)}, \quad \omega \in \Omega.$$

Si calcoli la funzione di ripartizione di Y e si decida se Y è assolutamente continua o meno.

Soluzione

1. Funzione di ripartizione di X (esponenziale)

Ricordiamo che per $X \sim \operatorname{Exp}(\lambda)$: $F_X(x) = \{0 \quad \text{se } x < 0 \ 1 - e^{-\lambda x} \quad \text{se } x \geq 0 \}$

2. Calcolo della funzione di ripartizione di Y

Per trovare $F_Y(y) = \mathbf{P}(Y \leq y) = \mathbf{P}(\sqrt{X} \leq y)$, distinguiamo due casi:

Caso 1: y < 0

 $F_Y(y) = \mathbf{P}(\sqrt{X} \leq y) = 0$ poiché $\sqrt{X} \geq 0$ sempre.

Caso 2: $y \ge 0$

$$F_Y(y) = \mathbf{P}(\sqrt{X} \leq y) = \mathbf{P}(X \leq y^2) = F_X(y^2)$$

Sostituendo la funzione di ripartizione di X:

st
 Se $y=0$: $F_Y(0)=F_X(0)=0$
 st Se $y>0$: $F_Y(y)=F_X(y^2)=1-e^{-\lambda y^2}$

0 backlinks // 547 words 2.884 charact

$$F_Y(y) = \mathbf{P}(\sqrt{X} \leq y) = \mathbf{P}(X \leq y^2) = F_X(y^2)$$

Sostituendo la funzione di ripartizione di X:

$$\circ$$
 Se $y=0$: $F_Y(0)=F_X(0)=0$ \circ Se $y>0$: $F_Y(y)=F_X(y^2)=1-e^{-\lambda y^2}$

3. Funzione di ripartizione completa di Y

$$F_Y(y) = egin{cases} 0 & ext{se } y < 0 \ 1 - e^{-\lambda y^2} & ext{se } y \geq 0 \end{cases}$$

4. Verifica se Y è assolutamente continua

Per verificare se Y è assolutamente continua, calcoliamo la derivata di $F_Y(y)$:

Per y < 0:

$$F_Y'(y)=0$$

Per y > 0:

$$F_Y'(y) = rac{d}{dy}[1-e^{-\lambda y^2}] = \lambda \cdot 2y \cdot e^{-\lambda y^2} = 2\lambda y e^{-\lambda y^2}$$

0 backlinks / 547 words

In y = 0:

Verifichiamo la derivabilità: $\lim_{h \to 0^+} rac{F_Y(h) - F_Y(0)}{h} = \lim_{h \to 0^+} rac{1 - e^{-\lambda h^2}}{h}$

Usando l'espansione di Taylor $e^{-\lambda h^2}pprox 1-\lambda h^2$ per h piccolo: $\lim_{h o 0^+}rac{\lambda h^2}{h}=\lim_{h o 0^+}\lambda h=0$

5. Densità di probabilità di Y

Poiché F_Y è derivabile ovunque, Y è assolutamente continua con densità:

$$f_Y(y) = egin{cases} 0 & ext{se } y \leq 0 \ 2\lambda y e^{-\lambda y^2} & ext{se } y > 0 \end{cases}$$

6. Verifica che f_{Y} sia una densità

Controlliamo che $\int_{-\infty}^{\infty}f_{Y}(y),dy=1$:

$$\int_0^\infty 2\lambda y e^{-\lambda y^2}, dy$$

Sostituzione: $u=\lambda y^2$, quindi $du=2\lambda y, dy$

$$\int_0^\infty e^{-u}, du = [-e^{-u}]_0^\infty = 0 - (-1) = 1$$
 \checkmark