Computer Vision Problem

Computer Vision Problem

Vertical edge detection

3	0	1	2	7	4		
1	5	8	9	3	1		
2	7	2	5	1	3	1007	
0	1	3	1	7	8	*	
4	2	1	6	2	8		3×3
2	4	5	2	3	9		filter

Vertical edge detection

3	0	1	2	7	4		
1	5	8	9	3	1		
2	7	2	5	1	3	17040	
0	1	3	1	7	8	*	
4	2	1	6	2	8		3×3
2	4	5	2	3	9		filter
		6×	6				

Vertical edge detection

Fill remaining cells

Vertical edge detection

3x1+1x1 +2x1+0x0+5x0+7x0+1x-1+8x-1+2x-1=-5

3	0	1	2	(2)	4		"COA	adutio	2					
1	5	8	9	3	1		ī	0	-(-5	-4	0	8
2	7	2	(5)	1	3	1	1	0	-1		-10	-2	2	3
0	1	3	1	7	8	*	1	0	-1	=	0	-2	-4	-7
4	2	1	6	2	8			3×3	-1		-3	-2	-3	-16
2	4	5	2	3	9			ilter	1			4×	4	

Vertical edge detection

Vertical edge detection

Vertical edge detection examples

Vertical and Horizontal Edge Detection

Learning to detect edges

1	0	-1		1	0	-1
1	0	-1	->	2	0	-2
1	0	-1		1	G	-1
_	_		L	Sol	sel	5:1

Learning to detect edges

1	0	-1
1	0	-1
1	0	-1

3	0	-3
10	0	-(5
3	C	-3
School	e 6	ilter

Learning to detect edges

1	0	-1
1	0	-1
1	0	-1

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Padding

6×L

n-f+1 x n-f+1 .

-> 4×4

Padding

Padding

$$\frac{6 \times L}{9 \times 8} \rightarrow 8 \times 8$$

$$n-f+1 \times n-f+1$$

6-2+1=4

Valid and Same convolutions

6x6

$$+ cxc \rightarrow \frac{n-f+1}{4} \times u-f+1$$

"Same":

Pad so that output size is the same as the input size.

Valid and Same convolutions

"Same": Pad so that output size is the same as the input size.

Valid and Same convolutions

"Valid":
$$n \times n \quad \times \quad \xi \times \xi \quad \longrightarrow \quad \frac{n - \xi + 1}{\xi} \times u - \xi + 1$$

$$6 \times 6 \quad \times \quad 3 \times 3 \quad \longrightarrow \quad \xi \times \xi$$

"Same": Pad so that output size is the same as the input size.

$$1 + 2p - f + 1 \times n + 2p - f + 1$$

$$1 \times 42p - f + 1 = pr \implies p = \frac{f - 1}{2}$$

$$2 \times 3 \times 3 \qquad p = \frac{3 - 1}{2} = 1 \qquad | S \times S \qquad p = 2$$
Activate Windows
Go to Settings to activate
Activate Windows

Click to add te Strided convolution

Click to add title

• Click to add te Strided convolution

Strided convolution

$$\frac{n + 2p - f}{S} + 1 \times \frac{n + 2p - f}{S} + 1$$

$$\frac{7 + 0 - 3}{S} + 1 = \frac{4}{3} + 1 = 3$$
Activate Windows Ga to Settings 1

Strided convolution

Strided convolution

Technical note on cross-correlation vs. convolution

Convolution in math textbook:

2	3	7	4	6	2			
6	6	9	8	7	4	3	4	5
3	4	8	3	8	9	3	4	-
7	8	3	6	6	3	 1	0	2
4	2	1	8	3	4	-1	9	7
2	2	4	1	0	0			

Technical note on cross-correlation vs. convolution

Convolution in math textbook:

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

	1	(3)	4	(5)	
×	k	1	0	2	
		-1	9	7	1
	~	_		->	.)
- [14.0			/
	7	9	-	U	
	7	9	-1	K	

Activa Go to S

2000

Convolutions on RGB images

Technical note on cross-correlation vs. convolution

Convolution in math textbook:

		-	_	_	_
27	3	7	4	6	2
62	60	91	8	7	4
35	44	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8
	6 ¹ 3 ⁵ 7	6 ² 6 ⁰ 3 ⁵ 4 ⁴ 7 8 4 2	6 ² 6 ⁰ 9 ¹ 3 ⁵ 4 ⁴ 8 ³ 7 8 3 4 2 1	6 ² 6 ⁰ 9 ¹ 8 3 ⁵ 4 ⁴ 8 ³ 3 7 8 3 6 4 2 1 8	6 ² 6 ⁰ 9 ¹ 8 7 3 ⁵ 4 ⁴ 8 ³ 3 8 7 8 3 6 6 4 2 1 8 3

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

Multiple filters

Multiple filters

