Reti combinatorie

Argomenti:

- Elementi base: porte logiche, registri, bus
- Analisi e sintesi di reti combinatorie

Materiale di studio:

- Capitoli 11.1 e 11.2
- Capitoli 11.3, 11.5 (no sezioni "The QuineMccluskey method", "synchronous counters", "Field-Programmable Gate Array")

Elementi base

Valori logici: convenzione

I valori logici sono 2.

Per indicarli useremo i nomi:

1 VERO ALTO +5 V

I nomi in ciascuna colonna sono equivalenti.

I nomi sono solo una convenzione!

Definizione di porta logica

Una **porta logica** è un dispositivo con N ingressi ed 1 uscita, che realizza un legame tra il valore presente all'uscita e quelli presenti agli ingressi, esprimibile con una funzione logica elementare

Porta NOT

Primo esempio di porta logica: la porta NOT

Produce in uscita un valore logico opposto a quello presente all'ingresso.

• N = 1 ingresso

Porte logiche AND e OR

La porta AND fa assumere all'uscita il valore logico 1 se e solo se tutti gli ingressi X_1

si trovano ad avere il valore 1 $X_2 = X_1 = X_2 = X_1 = X_2$

La porta **OR** fa assumere all'uscita il valore logico 1 se e solo se ad almeno uno degli ingressi è presente un valore logico 1

Porte logiche NAND e NOR

La porta NAND fa assumere all'uscita il valore logico

0 se e solo se tutti gli ingressi si trovano ad avere il valore 1

La porta NOR fa assumere all'uscita il valore logico 0

se e solo se ad almeno uno degli ingressi è presente un valore logico 1

$$X_1$$
 X_2
 X_N
 Y

Equivalenze tra porte logiche (1 di 3)

La funzione realizzata da una porta logica può essere ottenuta mediante opportune sequenze di altre porte logiche:

 Le porte NOR/NAND possono essere ottenute mediante una porta OR/AND e una NOT collegate in sequenza

Equivalenze tra porte logiche (2 di 3)

Ogni funzione logica può essere ottenuta impiegando solo porte OR e NOT

Ogni funzione logica può essere ottenuta impiegando solo porte AND e NOT

Equivalenze tra porte logiche (3 di 3)

Ogni funzione logica può essere ottenuta impiegando solo porte NAND

Ogni funzione logica può essere ottenuta impiegando solo porte NOR (provarlo per esercizio)

Tabelle di verità

Un secondo modo di rappresentare una porta logica è mediante la sua **tabella di verità**, che specifica il valore dell'uscita per ciascuna possibile combinazione dei valori in ingresso.

OR esclusivo

Un esempio più complesso è dato dalla porta logica che realizza la funzione di **OR esclusivo**: l'uscita Y assume il valore 1 se e solo se ai 2 ingressi sono presenti valori logici diversi

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

12

Notazione algebrica

Name	Graphical Symbol	Algebraic Function	Truth Table	
AND	A———F	$F = A \bullet B$ or $F = AB$	A B F 0 0 0 0 1 0 1 0 0 1 1 1	
OR	$A \longrightarrow F$	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1	
NOT	A—F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0	
NAND	A—————————————————————————————————————	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0	
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0	
XOR	A B F	F = A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0	

Registro da un bit

- Un registro è un dispositivo in grado di memorizzare (cioè conservare nel tempo) un valore logico.
 - Tale capacità distingue i registri dalle porte logiche.
 - E' un circuito sequenziale!

- w è il segnale di controllo
 - w=1: il valore di X viene trasferito (memorizzato) nel registro; Y=X
 - w=0: Y rimane al valore memorizzato, senza risentire di eventuali variazioni di X

Registro da un bit: diagramma temporale

Bus

- Un **bus** è un collegamento elettrico tra parti diverse di un elaboratore che consente il trasferimento di informazione.
- Un bus è composto da una o più linee; ogni linea consente di trasferire un bit.
- Per rappresentare un bus di n bit si usano i seguenti simboli grafici:

Gruppi di Bit

Un po' di nomenclatura...

4 bit: "nibble" (o nybble)

• 8 bit: "**byte**"

• 16 bit: "half-word"

• 32 bit: "word"

64 bit: "double-word"

La definizione di "word" dipende comunque dalla taglia della parola di memoria della macchina che si sta considerando.

Reti Logiche Combinatorie

Porte logiche: notazione algebrica

Nome	Simbolo grafico	Tabella di verità	Notazione algebrica
AND	$A \longrightarrow Y$	$\begin{array}{c c c c} A & B & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	Y = A·B
OR	$A \longrightarrow Y$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y = A+B
NOT	$A \longrightarrow Y$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	- Y = A
XOR	$A \longrightarrow Y$	$\begin{array}{c c c c} A & B & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	Y = A⊕B

Rete logica combinatoria: definizione

Rete logica combinatoria: è una rete logica nella quale, in ogni istante, i valori presenti alle uscite sono determinati unicamente dai valori presenti agli ingressi nel medesimo istante.

Una rete logica combinatoria è quindi:

- priva di stato: non contiene elementi di memoria;
- interamente descritta dalla sua tabella di verità, che definisce, in altrettante colonne, le funzioni logiche delle variabili di ingresso prodotte alle uscite.

Esempio: Multiplexer n/1

- Il multiplexer n/1 è una rete combinatoria con (n potenza di 2) :
 - $n + \log_2 n$ bit di input
 - 1 bit di output
- I $\log_2 n$ codificano quale delle n linee di input propagare verso l'unica linea di output.

Esempio: Multiplexer 2/1

A	В	С	Y
A	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

$$Y=A$$
 se $C=0$
 $Y=B$ se $C=1$

Esempio 2: il decodificatore $n/2^n$

- Un **decodificatore** $n/2^n$ è una rete combinatoria con:
 - n bit di input
 - 2ⁿ bit di output
- Il decodificatore attiva l'i-esima uscita se e solo se il valore binario codificato dagli ingressi è i.

Esempio 2: il decodificatore 3/8

Tabella di verità per un decodificatore con 3 ingressi e 2³=8 uscite:

X_2	X_1	X_0	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decodificatore: realizzazione

Funzioni logiche n/1

- Il numero delle diverse possibili funzioni logiche di n input e 1 output è un numero finito.
- Le funzioni logiche di n=2 input sono tante quante sono le diverse possibili tabelle di verità che le definiscono, cioè 16
 - Ci sono $2^2 = 4$ possibili input e ogni input può assumere 2 valori: $2^4 = 16$.
- Le funzioni logiche di n=3 input sono $2^8=256$.

Funzioni logiche (n/m)

 Le funzioni logiche di *n* variabili di input e una variabile di output sono 2^{2ⁿ}.

Le funzioni logiche di *n* variabili di input e
 m variabili di output sono 2^{m2ⁿ}.

Rappresentazioni di reti logiche

Le reti logiche possono essere rappresentate in tre modi **equivalenti**:

- schema grafico
- tabella di verità
- espressione algebrica

Sceglieremo in ciascun caso la rappresentazione più opportuna

Somma di prodotti

È possibile ottenere E come "somma di prodotti":

La funzione che vale 1 quando è uguale a 1 uno o l'altro dei suoi due ingressi e l'OR

Prodotto di somme

E si può ottenere anche come "prodotto di somme":

A	B	E	
0	0	1	$E=0$ so $A=0$ s $B=1$ $(A+\overline{B}=0)$
0	1	04	E=0 se A=0 e B=1 (A+B=0)
1	0	0	
1	1	1	E=0 se A=1 e B=0 (A +B=0)

$$E = (A + \overline{B}) \cdot (\overline{A} + B)$$

La funzione che vale 0 quando è uguale a 0 uno o l'altro dei suoi due ingressi e l'AND

Equivalenza tra circuiti

A	B	E
0	0	1
0	1	0
1	0	0
1	1	1

$$E = \overline{A \oplus B}$$

Diversi circuiti logici **equivalenti** realizzano la stessa funzione logica:

Algebra di Boole o booleana

L'analisi delle proprietà delle espressioni algebriche costruite da variabili binarie e operatori logici, si deve al matematico G. Boole (1815-1864), ed è nota come algebra booleana.

$$S = \overline{\overline{B \cdot (\overline{A \cdot B})} + \overline{A \cdot (\overline{A \cdot B})}}$$
?

Proprietà base dell'algebra booleana

Basic Postulates

$$A \bullet B = B \bullet A$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$

$$1 \bullet A = A$$

$$A \bullet \overline{A} = 0$$

$$A + B = B + A$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$
 $A + (B \bullet C) = (A + B) \bullet (A + C)$

$$0 + A = A$$

$$A + \overline{A} = 1$$

Commutative Laws

Distributive Laws

Identity Elements

Inverse Elements

Other Identities

$$0 \cdot A = 0$$

$$A \bullet A = A$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$1 + A = 1$$

$$A + A = A$$

$$A + (B + C) = (A + B) + C$$

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

Associative Laws

DeMorgan's Theorem

Legge di De Morgan

Legge di De Morgan:

$$A + B = A \cdot B$$
 oppure $A + B = A \cdot B$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 oppure $\overline{A \cdot B} = A + B$

Sintesi di un half-adder

A	B	S'	C'
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S' = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

 $C' = A \cdot B$

Sintesi di un full-adder (1 di 2)

A	B	C''	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = \overline{A} \cdot \overline{B} \cdot C'' + \overline{A} \cdot B \cdot \overline{C}'' + A \cdot \overline{B} \cdot \overline{C}'' + A \cdot B \cdot C''$$

$$S = (\overline{A} \cdot B + A \cdot \overline{B}) \cdot \overline{C}'' + (A \cdot B + \overline{A} \cdot \overline{B}) \cdot C''$$

$$S = (A \oplus B) \cdot \overline{C}$$
" + $(\overline{A \oplus B}) \cdot C$ " = $(A \oplus B) \oplus C$ "

$$S = S' \oplus C"$$

$$C = \overline{A} \cdot B \cdot C'' + A \cdot \overline{B} \cdot C'' + A \cdot B \cdot \overline{C}'' + A \cdot B \cdot C''$$

$$C = (\overline{A} \cdot B + A \cdot \overline{B}) \cdot C" + A \cdot B \cdot (\overline{C}" + C") = (A \oplus B) \cdot C" + A \cdot B$$

$$C = S' \cdot C'' + C'$$

Half-Adder

$$C' = A \cdot B$$

Sintesi di un full-adder (2 di 2)

0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$C = S' \cdot C'' + C'$$

Schema di un full-adder.

Sintesi di un half-adder con porte NAND

Utilizziamo l'algebra booleana e le sue proprietà per riscrivere S' utilizzando solo porte NAND:

$$S' = \overline{A \cdot B} + A \cdot \overline{B}$$

$$S' = \overline{A \cdot B} \cdot \overline{A \cdot B}$$

$$S' = (\overline{A \cdot B} + \overline{B \cdot B}) \cdot (\overline{A \cdot B} + \overline{A \cdot A})$$

$$S' = \overline{B \cdot (\overline{A} + \overline{B})} \cdot \overline{A \cdot (\overline{A} + \overline{B})}$$

$$S' = B \cdot (\overline{A \cdot B}) \cdot \overline{A \cdot (\overline{A} \cdot B)}$$

$$S' = B \cdot (\overline{A \cdot B}) \cdot \overline{A \cdot (\overline{A} \cdot B)}$$

Half-adder con sole porte NAND

S' =
$$\overline{B \cdot (\overline{A \cdot B})} \cdot \overline{A \cdot (\overline{A \cdot B})}$$

C' = $A \cdot B$

Full-adder con sole porte NAND

$$C = S' \cdot C'' + C' = \overline{S' \cdot C'' \cdot \overline{C'}}$$

Sommatore binario da 32 bit

Minimizzazione con Mappe di Karnaugh

Le seguenti proprietà dell'algebra di Boole consentono di semplificare notevolmente le espressioni booleane:

$$A \bullet B + A \bullet \overline{B} = A \bullet (B + \overline{B}) = A$$

 $A \bullet (B \bullet C + B \bullet \overline{C} + \overline{B} \bullet C + \overline{B} \bullet \overline{C}) = A$

Le mappe di Karnaugh sono una particolare forma di tabella di verità, che consente di individuare immediatamente la possibilità di fare queste semplificazioni.

Mappe di Karnaugh (1)

Ad esempio, la seguente tabella di verità della funzione Y=Y(A,B,C)

A B C	Y		Λ	0	0	1	1
0 0 0	0	può essere ridisegnata così:	C B	0	1	1	0
0 1 0	0	puo essere i raisegnara cosi.	0	0	0	1	0
1 0 0	0		1	0	1	1	1
1 U 1 1 1 0	<u> </u> 1						

Mappa di Karnaugh della funzione Y

Nelle mappe di K. i valori della funzione sono scritti dentro le caselle.

Mappe di Karnaugh (2)

Dalla tabella di verità o dalla mappa di Karnaugh è immediato ottenere l'espressione booleana della funzione Y come "somma di prodotti", cioè come OR di tanti termini AND quante sono le caselle in cui la funzione vale 1; ciascuno di questi termini AND (detti *minterm*) è costituito dall'AND delle variabili di ingresso, negate oppure no a seconda che il valore della variabile associato a quella casella sia 0 oppure 1:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Mappe di Karnaugh (3)

Nel caso di funzioni di 4 variabili, ad es. **Z=Z(A,B,C,D)**, la mappa di Karnaugh ha 4 righe e quattro colonne:

СD	A 0 B 0	0 1	1 1	1 0
00	0	0	1	0
01	1	0	1	1
11	1	1	1	1
10	1	1	1	0

Mappa di Karnaugh della funzione z

Mappe di Karnaugh (4)

CD	A 0 B 0	0 1	1 1	1 0
00	0	0	1	0
01	1	0	1	1
11	1	1	1	1
10	1	1	1	0

I valori delle variabili **A,B,C,D** individuano le "coordinate" delle caselle: le coppie di valori di **A** e **B** (di **C** e **D**) associate alle colonne (alle righe) sono ordinate in modo che tra due caselle adiacenti (della medesima riga o della medesima colonna) cambi il valore di una sola delle variabili, mentre quello di tutte le altre rimane lo stesso; ciò vale anche tra le caselle estreme di ciascuna riga e di ciascuna colonna (che possono quindi essere considerate "adiacenti", in senso circolare).

Mappe di Karnaugh (5)

In questo modo a ciascuna coppia di caselle adiacenti contrassegnate con il valore 1 corrispondono, nella espressione booleana, due termini "prodotto" (minterm) nei quali una variabile è presente negata in uno e non negata nell'altro, mentre tutte le altre variabili hanno lo stesso valore.

E` allora possibile semplificare l'espressione sostituendo quei due termini con un unico termine nel quale non è più presente la variabile che cambia valore.

Ad esempio le ultime due caselle della seconda riga nella mappa della funzione Y portano alla seguente semplificazione:

$$A \cdot B \cdot C + A \cdot \overline{B} \cdot C = A \cdot C$$

Mappe di Karnaugh (6)

Allo stesso modo, quaterne di caselle adiacenti tutte con il valore 1 (sulla stessa riga o sulla stessa colonna) corrispondono a quattro termini che si riducono ad uno; ad esempio le quattro caselle della terza riga nella mappa della funzione Z portano alla seguente semplificazione:

$$C \bullet D \bullet (\overline{A} \bullet \overline{B} + \overline{A} \bullet B + A \bullet \overline{B} + A \bullet B) = C \bullet D$$

le quattro caselle della terza colonna nella mappa della funzione Z portano alla seguente semplificazione:

$$A \cdot B \cdot (\overline{C} \cdot \overline{D} + \overline{C} \cdot D + C \cdot \overline{D} + C \cdot D) = A \cdot B$$

Mappe di Karnaugh (7)

Così pure quaterne adiacenti disposte secondo un quadrato producono un unico termine; ad esempio le quattro caselle in basso a sinistra nella mappa della funzione Z portano alla seguente semplificazione:

$$\overline{A} \cdot C \cdot (\overline{B} \cdot \overline{D} + \overline{B} \cdot D + B \cdot \overline{D} + B \cdot D) = \overline{A} \cdot C$$

Analogo discorso vale per gruppi di otto caselle adiacenti tutte con il valore 1.

Mappe di Karnaugh (8)

Per semplificare l'espressione di una funzione, si individuano, nella mappa di K., i gruppi di (2 o 4 o 8) caselle adiacenti con il valore 1. Spesso conviene sfruttare la proprietà **A+A=A**, che consente di utilizzare più volte la stessa casella (lo stesso minterm), per formare gruppi diversi e ottenere il maggior numero di semplificazioni possibile.

Individuando un insieme di gruppi (da 1, 2, 4 o 8) che copra tutte le caselle in cui compare il valore 1, si ottiene una espressione semplificata, costituita dall'OR dei termini corrispondenti a ciascun gruppo.

Mappe di Karnaugh (9)

Ad es. per la funzione **Z**, si possono individuare i gruppi segnati in figura:

Si ottiene, immediatamente, l'espressione semplificata: Z=A•C+A•B+B•D

Esempi di mappe di Karnaugh

Esempi di mappe di Karnaugh

Mappe di Karnaugh con don't care

Funzioni booleane parzialmente definite: il loro valore è specificato solo per alcune combinazioni dei valori delle variabili.

Le altre combinazioni o non si verificano mai o il valore della funzione non interessa: don't care conditions (d.c.c.).

In una mappa di K. è spesso utile inserire un valore 1 al posto di d.c.c. (per formare ulteriori raggruppamenti).

Mappe di Karnaugh con don't care (2)

Es. Funzione parzialmente definita **W** (i trattini individuano d.c.c.):

A	В	С	W
0	0	0	_
0	0	1	1
0	1	0	_
0	1	1	–
1	0	0	1
1	0	1	_
1	1	0	–
1	1	1	0

Si possono sostituire due d.c.c. con altrettanti 1:

A B C	0	0 1	1 1	1 0
0	_	_	_	1
1	1	_	0	_

si forma la quaterna con cui si ottiene l'espressione semplificata: w = B

Encoder

X_0	X_1	X_2	X_3	Y_1	Y_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

$$Y_0 = X_1 + X_3$$

Analogamente: $Y_1 = X_2 + X_3$

Multiplexer

Invia all'uscita F il valore dell'ingresso D_i selezionato dagli ingressi S_i

S2	S 1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Multiplexer

Sintesi a due livelli

A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Sintesi come "somma di prodotti"

Sintesi tramite PLA

La sintesi a due livelli è alla base della sintesi tramite PLA = "Programmable Logic Array"

Sintesi tramite PLA

All'interno ci sono collegamenti che possono essere impostati tra gli ingressi (negati e diretti) e le porte AND e da queste agli OR

Sintesi tramite PLA

Il numero p di prodotti (porte AND) che servono è uguale al numero di righe della tabella di verità in cui una funzione di uscita vale 1

A	В	C	D	Ε	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Es:
$$i = 3$$
, $o = 3$, $p = 7$

Un'evoluzione di questi dispositivi programmabili sono gli FPGA (Field Programmable Gate Array), che contengono anche elementi di memoria

PLA: Esempio

Sintesi tramite ROM (1 di 2)

Si può sintetizzare una funzione logica scrivendo in una memoria ROM i valori che la definiscono nella tabella di verità

Sintesi tramite ROM (2 di 2)

Nella ROM vi sono 2ⁱ righe: ogni riga, individuata dagli *i* ingressi, contiene 1 bit per ciascuna delle *o* funzioni di uscita

Per una rete con iinput e o output, serve una ROM di $o \times 2^{i}$ bit

Figura 2.40: Sintesi di più funzioni logiche tramite ROM.

Esercizio: Sintesi tramite ROM

Realizzare tramite una ROM la seguente tabella di verità

A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1