Scheduler Specification

Embedded Systems

Francisco Martinez Chavez 20-Aug-18

First version by

Abraham Tézmol Otero

Specification updated by

Francisco Martínez Chávez

Date

20-Aug-18

1. TABLE OF CONTENTS

1.	TABLE OF	CONTENTS	. 1
2.		NAL SPECIFICATION	
۷.	FUNCTIO	NAL SPECIFICATION	- 4
3.	API SPECI	IFICATION	4
3	.1. Type	DEFINITIONS	. 2
Ū		Private Data Types	
		Public Data Types	
2		CTION DEFINITIONS	
3			
		SchM_Init	
		SchM_Start	
	3.2.3.	SchM_Stop	
		SchM_Scheduler	
		SchM_Callback	
		SchM_ActivateTask	
3			
		Scheduler Initialization & Operation	
		Scheduler Task State Machine	
		SchedulePoint	

2. FUNCTIONAL SPECIFICATION

This software module provides 4 non-preemptive execution threads as follows:

- 1ms thread
- 10ms thread
- 50ms thread
- 100ms thread

In order to balance CPU workload, this module implements two independent execution threads as follows:

- 2ms A thread
- 2ms B thread

Such threads share execution time with the previously defined execution threads as per the following arrangement:

PRIMARY THREAD	DEPENDENT THREAD
1ms thread	100ms thread
2ms a thread	50ms thread
2ms B thread	10ms thread

Due to the non-preemptive nature of the task scheduler and the periodicity of the fastest execution thread (1ms), each combination of primary thread and dependent thread has an assigned **500us** of execution time in total. Depending upon system configuration, assigned execution time varies linearly as follows:

SYSTEM CLOCK	EXECUTION TIME (CYCLES)
40 MHz	20000
20 MHz	10000
16 MHz	8000
10 MHz	5000
8 MHz	4000

To accomplish CPU workload balancing, execution time is partitioned among the different threads using a time slicing approach as described in the following table:

	TIME SLICING SCHEME					
TIME (MS)	1ms Tasks	2MS A TASKS	2MS B TASKS	10 MS TASKS	50 MS TASKS	100 MS TASKS
0						
0.5	Х					
1.0		X				
1.5	Х					
2.0			X			
2.5	Х					
3.0		Х				
3.5	Х					
4.0			Х			
4.5	Х					
5.0		Х				

5.5	Х					
6.0			Х			
6.5	Х					
7.0		X				
7.5	Х					
8.0			Х			
8.5	Х					
9.0		X				
9.5	X					
10.0			Х	Х		
•••	•••		•••	•••	•••	
49.0		X			Х	
99.5	Х					X
•••	•••	•••		•••		

The task scheduler uses a hardware timer interrupt to provide a **500us** time base. The microcontroller processes this periodic interrupt and set/clear the appropriate thread flags to be processed by the "SchM_Callback()" function, who is in charge of calling each of the software tasks both from low-level and application-level.

3. API SPECIFICATION

This section describes the API from the Task Scheduler module functions.

3.1. Type Definitions

3.1.1. PRIVATE DATA TYPES

Task state types, task transitions can be found in Scheduler State Machine chapter.

The task control type is an internal data used by the scheduler.

3.1.2. Public Data Types

This data type provides support to configure the task id, task priority and task function pointer.

3.2. Function Definitions

3.2.1. SCHM_INIT

Service Name	SchM_Init	SchM_Init				
Syntax	void SchM_Init (S	void SchM_Init (SchMTaskType *TaskArray)				
Sync/Async	Synchronous	Synchronous				
Reentrancy	Non-reentrant	Non-reentrant Non-reentrant				
Param (in)	SchMTaskType	*TaskArray				
Param (out)	None					
Return Value	None					
Description	This function performs the basic initialization of the Periodic Interrupt based on the SysTick Module of the microcontroller. It causes a periodic interrupt every 500us.					

3.2.2. SCHM_START

Service Name	SchM_Start			
Syntax	void SchM_Start (void)			
Sync/Async	Synchronous			
Reentrancy	Non-reentrant Non-reentrant			
Param (in)	None			
Param (out)	None			
Return Value	None			
Description	This function kick starts the PIT Module of the microcontroller. It allows the timer to freely run to cause periodic interrupt as per the previously configured count.			

3.2.3. SCHM_STOP

Service Name	SchM_Stop				
Syntax	void SchM_Stop (void)				
Sync/Async	ynchronous				
Reentrancy	lon-reentrant				
Param (in)	None				
Param (out)	None				
Return Value	None				
Description	This function stops the execution of the SysTick module of the microcontroller. It disables the timer, thus halting the time-				
	base of the task scheduler.				

3.2.4. SCHM_SCHEDULER

Service Name	SchM_Scheduler		
Syntax	void SchM_Scheduler (void)		
Sync/Async	Synchronous		
Reentrancy	Non-reentrant		
Param (in)	None		
Param (out)	None		
Return Value	None		
Description	Multi-thread round robin task Scheduler (non-preemtive). It calls the different tasks based on the status of		
	'SchM_Task_ID_Activated".		

3.2.5. SCHM_CALLBACK

Service Name	SchM_Callback
Syntax	void SchM_Callback (void)
Sync/Async	Synchronous
Reentrancy	Non-reentrant Non-reentrant
Param (in)	None
Param (out)	None
Return Value	None
Description	Periodic callback function to be called by the main timer ISR. This interrupt is the core of the task scheduler. It is executed

every 500us.
It defines 3 basic threads from which other 3 threads are derived:
a) 1ms thread (basic) -> 100ms thread (derived)
b) 2ms A thread (basic)-> 50ms thread (derived)
c) 2ms B thread (basic)-> 10ms thread (derived)
It partitions core execution time into time slices (500us each one). This arrangement assures core will have equal task loading
across time.

3.2.6. SCHM_SCHEDULEPOINT

Service Name	SchM_SchedulePoint		
Syntax	void SchM_SchedulePoint (void)		
Sync/Async	Synchronous		
Reentrancy	lon-reentrant		
Param (in)	None		
Param (out)	None		
Return Value	None		
Description	This function allows activated higher priority tasks to run.		

3.2.7. SCHM_ACTIVATETASK

Service Name	SchM_ActivateTask	
Syntax	void SchM_ActivateTask (SchMTaskIdType TaskId)	
Sync/Async	Synchronous	
Reentrancy	Non-reentrant	
Param (in)	SchMTaskIdType	TaskId
Param (out)	None	
Return Value	None	
Description	This function supports the tasks activation	

3.3. SEQUENCE & STATE MACHINE DIAGRAMS

3.3.1. SCHEDULER INITIALIZATION & OPERATION

This sequence diagram depicts the general behavior of the scheduler functionality and its interaction with the external HW interrupts to activate the time triggered tasks (internally activated by the scheduler) and the event triggered tasks (external functionality of the scheduler).

3.3.2. SCHEDULER TASK STATE MACHINE

This state diagram depicts the internal transitions of a task in the scheduler.

3.3.3. SCHEDULEPOINT

This sequence diagram shows the general behavior of the Schedule Point function.

