Star Tracker Concept

Two operation modes:

Image acquisition and processing

4 MPixel Sensor

- large data

Hardware implementation with software additions:

- parallel computing
- pipelining
- lower energy consumption
- scalability
- high performance

Processing steps:

- Image correction:
 - Dark frame subtraction
 - Lens correction
- Star detection (acquisition of xy coordinates):
 - Image thresholding
 - Formation of star clusters
 - Image centroiding (possible techniques: Weighted Sum, Maximum Likelihood Estimator)

Star tracking and attitude computing

Relative motion tracking

Star catalogue search

- operating on xy coordinates

- operating on celestial coordinates (requires transformation from xy coordinates)
- Pattern matching (possible techniques: Angle Matching, Spherical Triangle Pattern Matching, <u>Planar Triangle Pattern Matching</u>, Rate Matching)
- compares patterns between two frames
- preforms serach in on-board reduced star catalog (k-vector technique)
- requires preliminary knowledge of attitude
- error propagation

- no preliminary knowledge required

- Determining the attitude quaternion (possible techniques: The Predictive Attitude Determination, QUEST, TRIAD, The Singular Value Decomposition, The Fast Optimal Attitude Matrix)

Platform

Actual platform:

- CMOS CMV4000 (2048 x 2048 pixel)
- SOC FPGA Xilinx ZYNQ 7020 (2 x ARM Cortex A9)

Target platform:

- Space grade FPGA
- LEON microprocessor core (based on the SPARC-V8 RISC architecture, VHDL)