

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский госуларственный технический

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа № 4 Дисциплина: «Моделирование»

Тема: «Программно-алгоритмическая реализация моделей на основе дифференциальных уравнений в частных производных с краевыми условиями II и III рода»

Студент Овчинникова А. П.

Группа ИУ7-65Б

Оценка (баллы)

Преподаватель Градов В.М.

Цель работы

Целью данной работы является получение навыков разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.

Исходные данные

1. Задана математическая модель.

Уравнение для функции T(x):

$$c(T)\frac{\delta T}{\delta t} = \frac{\delta}{\delta x} \left(k(T)\frac{\delta T}{\delta x} \right) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x)$$
 (1)

Краевые условия

$$\begin{cases} t = 0, T(x, 0) = T_0 \\ x = 0, -k(T(0))\frac{\delta T}{\delta x} = F_0 \\ x = l, -k(T(l))\frac{\delta T}{\delta x} = \alpha_N(T(l) - T_0) \end{cases}$$
 (2)

Примем

$$p(x) = \frac{2}{R}\alpha(x) \tag{3}$$

$$f(u) = f(x) = \frac{2T_0}{R}\alpha(x) \tag{4}$$

$$F = -k(T)\frac{\delta T}{\delta x} \tag{5}$$

2. Разностная схема:

$$\widehat{A}_n \widehat{y}_{n-1} - \widehat{B}_n \widehat{y}_n + \widehat{D}_n \widehat{y}_{n+1} = -\widehat{F}_n, 1 \le n \le N - 1$$

$$\tag{6}$$

где

$$\widehat{A}_n = \widehat{\chi}_{n-1/2} \frac{\tau}{h},\tag{7}$$

$$\widehat{D}_n = \widehat{\chi}_{n+1/2} \frac{\tau}{h},\tag{8}$$

$$\widehat{B}_n = \widehat{A}_n + \widehat{D}_n + \widehat{c}_n h + \widehat{p}_n h\tau, \tag{9}$$

$$\widehat{F}_n = f_n h \tau + \widehat{c}_n y_n h. \tag{10}$$

Разностный аналог краевого условия при x=0 (получена в Лекции $\mathbb{N}^{0}14$ (14.6),(14.7)):

$$\left(\frac{h}{8} \widehat{c}_{1/2} + \frac{h}{4} \widehat{c}_{0} + \widehat{\chi}_{1/2} \frac{\tau}{h} + \frac{\tau h}{8} p_{1/2} + \frac{\tau h}{4} p_{0}\right) \widehat{y}_{0} +
+ \left(\frac{h}{8} \widehat{c}_{1/2} - \widehat{\chi}_{1/2} \frac{\tau}{h} + \frac{\tau h}{8} p_{1/2}\right) \widehat{y}_{1} =
= \frac{h}{8} \widehat{c}_{1/2} (y_{0} + y_{1}) + \frac{h}{4} \widehat{c}_{0} y_{0} + \widehat{F} \tau + \frac{\tau h}{4} (\widehat{f}_{1/2} + \widehat{f}_{0})$$
(11)

Самостоятельно надо получить интегро-интерполяционным методом разностный аналог краевого условия при x=l. При этом учесть, что поток

$$\widehat{F}_n = \alpha_N(\widehat{y}_N - T_0), \tag{12}$$

$$\widehat{F}_{N-1/2} = \widehat{\chi}_{N-1/2} \frac{\widehat{y}_{N-1} - \widehat{y}_N}{h}.$$
(13)

3. Значения параметров для отладки (все размерности согласованы).

Таблица 1: Значения параматров.

k(T) =	$a_1(b_1+c_1T^{m_1})\;{ m Bt/cm}\;{ m K}$
c(T) =	$a_2 + b_2 T^{m_2} - rac{c_2}{T^2}$ Дж/см 3 К
$a_1 =$	0.0134
$b_1 =$	1
$c_1 =$	$4.35 \cdot 10^{-4}$
$m_1 =$	1
$a_2 =$	2.049
$b_2 =$	$0.563 \cdot 10^{-3}$
$c_2 =$	$0.528 \cdot 10^5$
$m_2 =$	1
$\alpha(x) =$	$\frac{c}{x-d}$
$\alpha_0 =$	$0.05~\mathrm{Br/cm^2~K}$
$\alpha_N =$	$0.01 \; { m BT/cm^2 \; K}$
l =	10 см
$T_0 =$	300 K
R =	0.5 см
F(t) =	$50~\mathrm{Br/cm^2}$

Физическое содержание задачи

Постановки задач в данной лабораторной работе и работе №3 во многом совпадают. Отличия заключаются в следующем.

- 1. Сформулированная в данной работе математическая модель описывает нестационарное температурное поле T(x,t), зависящее от координаты x и меняющееся во времени.
- 2. Свойства материала стержня привязаны к температуре, т.е. теплоем-кость и коэффициент теплопроводности c(T), k(T) зависят от T, тогда как в работе №3 k(x) зависит от координаты, а c=0.
- 3. При x=0 цилиндр нагружается тепловым потоком F(t) , в общем случае зависящим от времени, а в работе №3 поток был постоянный.

Если в настоящей работе задать поток постоянным, т.е. F(t) = const, то будет происходить формирование температурного поля от начальной температуры T_0 до некоторого установившегося (стационарного) распределения T(x,t). Это поле в дальнейшем с течением времени меняться не

будет и должно совпасть с температурным распределением T(x), получаемым в лаб. работе №3, если все параметры задач совпадают, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3. Это полезный факт для тестирования программы.

Если после разогрева стержня положить поток F(t) = 0, то будет происходить остывание, пока температура не выровняется по всей длине и не станет равной T_0 .

При произвольной зависимости потока F(t) от времени температурное поле будет как-то сложным образом отслеживать поток.

Замечание. Варьируя параметры задачи, следует обращать внимание на то, что решения, в которых температура превышает примерно 2000K, физического смысла не имеют и практического интереса не представляют.

Задание

- 1. Представить разностный аналог краевого условия при и его краткий вывод интегро -интерполяционным методом.
- 2. График зависимости температуры $T(x, t_m)$ от координаты x при нескольких фиксированных значениях времени t_m (аналогично рисунку в лекции №14) при заданных выше параметрах. Обязательно представить распределение T(x,t) в момент времени, соответствующий установившемуся режиму, когда поле перестает меняться с некоторой точностью, т.е. имеет место выход на стационарный режим. На этой стадии левая часть дифференциального уравнения близка к нулю, и на самом деле решается уравнение из лабораторной работы №3 (отличие только в том, что там было линейное уравнение).
- 3. График зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n . Обязательно представить случай n=0, т.е. $x=x_0=0$.

Предварительные вычисления

1. Найдем c, d.

$$c = -\alpha_0 d$$

$$d = \frac{\alpha_N l}{\alpha_N - \alpha_0}$$
.

2. Получим интегро-интерполяционным методом разностный аналог краевого условия при x = l.

Запишем уравнение (1) с учетом (3), (4) и (5)

$$c(T)\frac{\delta T}{\delta x} = -\frac{\delta F}{\delta x} - p(x)T + f(T)$$
(14)

Проводим интегрирование уравнения (14) на отрезке $[x_{N-1/2};x_N]$ и на временном интервале $[t_m; t_{m+1}]$.

$$\int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} c(T) \frac{\delta T}{\delta t} dt =$$

$$= -\int_{t_m}^{t_{m+1}} dt \int_{x_{N-1/2}}^{x_N} \frac{\delta F}{\delta x} dx - \int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} p(x) T dt + \int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} f(T) dt \quad (15)$$
HIII

ИЛИ

$$\int_{x_{N-1/2}}^{x_N} \widehat{c} (\widehat{T} - T) dx = \int_{t_m}^{t_{m+1}} (F_N - F_{N-1/2}) dt - \int_{x_{N-1/2}}^{x_N} p \widehat{T} \tau dx + + \int_{x_{N-1/2}}^{x_N} \widehat{f} \tau dx \qquad (16)$$

Здесь при вычислении внутренних интегралов по t справа в уравнении (15) применен метод правых прямоугольников, тем самым следует ожидать порядок точности $O(\tau)$ по переменной t.

Вычисляем интегралы. Первый интеграл справа, как и ранее, находим методом правых прямоугольников, а остальные – методом трапеций.

$$\frac{h}{4} \left(\widehat{c}_{N} \left(\widehat{y}_{N} - y_{N} \right) + \widehat{c}_{N-1/2} \left(\widehat{y}_{N-1/2} - y_{N-1/2} \right) \right) = -(\widehat{F}_{N} - \widehat{F}_{N-1/2}) \tau - -(p_{N} \widehat{y}_{N} + p_{N-1/2} \widehat{y}_{N-1/2}) \tau \frac{h}{4} + (\widehat{f}_{N} + \widehat{f}_{N-1/2}) \tau \frac{h}{4}. (17)$$

Подставляя в данное уравнение (12) и (13), и заменяя $\widehat{y}_{N-1/2} = \frac{\widehat{y}_{N-1} + \widehat{y}_N}{2}$, $y_{N-1/2} = \frac{y_{N-1} + y_N}{2}$, найдем разностный аналог краевого условия.

$$\widehat{y}_{N-1} \left(\frac{h}{8} \widehat{c}_{N-1/2} - \frac{\tau \widehat{\chi}_{N-1/2}}{h} + \frac{h}{8} p_{N-1/2} \right) +$$

$$+ \widehat{y}_{N} \left(\frac{h}{4} \widehat{c}_{N} + \frac{h}{8} \widehat{c}_{N-1/2} + \tau \alpha_{N} + \frac{\tau \widehat{\chi}_{N-1/2}}{h} + \frac{h}{4} \tau p_{N} + \frac{h}{8} \tau p_{N-1/2} \right) =$$

$$= \frac{h}{4} \widehat{c}_{N} y_{N} + \frac{h}{8} \widehat{c}_{N-1/2} y_{N} +$$

$$+ \frac{h}{8} \widehat{c}_{N-1/2} y_{N-1} + \tau \alpha_{N} T_{0} + \frac{h}{4} \tau \left(\widehat{f}_{N} + \widehat{f}_{N-1/2} \right)$$
(18)

Отсюда ищутся начальные значения прогоночных коэффициентов.

В итоге система квазилинейных разностных уравнений примет канонический вид

$$\begin{cases}
\widehat{K}_0 \widehat{y}_0 + \widehat{M}_0 \widehat{y}_1 = \widehat{P}_0, \\
\widehat{A}_n \widehat{y}_{n-1} - \widehat{B}_n \widehat{y}_n + \widehat{D}_n \widehat{y}_{n+1} = -\widehat{F}_n, 1 \le n \le N - 1, \\
\widehat{K}_N \widehat{y}_N + \widehat{M}_{N-1} \widehat{y}_{N-1} = \widehat{P}_N.
\end{cases} (19)$$

Система (19) решается методом простых итераций. В методе простых итераций система (19) решается многократно на каждом шаге по времени, т.е. для получения решения $\widehat{y}_n, n = 0...N$ в момент времени $t = t_{m+1}$ итерационная процедура организуется по схеме (8.3) из лекции №8.

$$\widehat{A}_{n}^{s-1}\widehat{y}_{n+1}^{s} - \widehat{B}_{n}^{s-1}\widehat{y}_{n}^{s} + \widehat{D}_{n}^{s-1}\widehat{y}_{n-1}^{s} = -\widehat{F}_{n}^{s-1}, \tag{20}$$

здесь s — номер итерации.

В качестве начального приближения \widehat{y}_n^0 задается сошедшееся решение \widehat{y}_n с предыдущего шага $t=t_m$, то есть $\widehat{y}_n^0=\widehat{y}_n$.

Прекращение итераций происходит при условиями

$$max \left| \frac{\widehat{y}_n^s - \widehat{y}_n^{s-1}}{\widehat{y}_n^s} \right| \le \varepsilon. \tag{21}$$

В итоге для каждого момента времени $t=t_m, m=1,2,...M$ получаем разностное решение \widehat{y}_n . Набор таких решений для всех $t=t_m, m=1,2,...M$ оответствуетфункции двух переменных $T(x_n,t_m)$, являющейся решением исходного дифференциального уравнения (1).

Код программы

Код программы представлен в листингах 1-2.

Листинг 1: Класс МуАрр.

```
import sys
      from PyQt5 import QtWidgets
      from PyQt5.QtWidgets import QMessageBox
      from Ui mainwindow import Ui MainWindow
      from Modeller import Modeller
      class MyApp(QtWidgets.QMainWindow):
10
          def __init__(self):
11
               super(MyApp, self). init ()
               self.ui = Ui MainWindow()
13
               self.ui.setupUi(self)
14
15
               self.ui.set def button.clicked.connect(self.
16
                  set defaults)
               self.ui.run button.clicked.connect(self.run)
17
18
               self.defaults = {
19
                   "a1"
                             : 0.0134,
20
                   "b1"
                             : 1,
21
                   "c1"
                             : 4.35e-4,
22
                   "m1"
                             : 1,
23
                   "a2"
                             : 2.049,
24
                   "b2"
                             : 0.563e - 3,
25
                   "c2"
                             : 0.528e5,
26
                   "m2"
                             : 1,
27
                   "alpha0" : 0.05,
28
                   "alphaN" : 0.01,
29
                   шТш
                             : 10,
```

```
"T0"
                                : 300,
31
                     "R"
                                : 0.5,
32
                     "F0"
                                : 50,
33
                     ∥h∥
                                  0.001,
34
                     " t "
                                : 1
35
                }
36
37
                self.data = {
38
                     "a1"
                                  None,
39
                     "b1"
                                  None,
40
                     "c1"
                                  None,
41
                     "m1"
                                : None,
42
                     "a2"
                                  None,
43
                     "b2"
                                  None,
44
                     "c2"
                                  None,
45
                     "m2"
                                  None,
46
                     "alpha0"
                                  None.
47
                     "alphaN"
                                  None,
48
                     11 | 11
                                  None,
49
                     "T0"
                                  None,
50
                     "R"
                                  None,
51
                     "F0"
                                  None,
52
                     " h "
                                  None,
53
                     ПtП
                                  None
54
                }
55
56
                self.set defaults()
57
58
           def set defaults(self):
59
                self.ui.lineEdit_a1.setText(str(self.defaults.get("a1"
60
                    )))
                self.ui.lineEdit b1.setText(str(self.defaults.get("b1"
                    )))
                self.ui.lineEdit c1.setText(str(self.defaults.get("c1"
62
                    )))
                self.ui.lineEdit m1.setText(str(self.defaults.get("m1"
63
                    )))
64
                self.ui.lineEdit a2.setText(str(self.defaults.get("a2"
65
                    )))
                self.ui.lineEdit b2.setText(str(self.defaults.get("b2"
66
```

```
)))
              self.ui.lineEdit c2.setText(str(self.defaults.get("c2"
67
              self.ui.lineEdit m2.setText(str(self.defaults.get("m2"
68
                 )))
69
              self.ui.lineEdit alphaO.setText(str(self.defaults.get(
70
                 "alpha0")))
              self.ui.lineEdit alphaN.setText(str(self.defaults.get(
71
                 "alphaN")))
72
              self.ui.lineEdit | L.setText(str(self.defaults.get("|"))
73
              self.ui.lineEdit TO.setText(str(self.defaults.get("TO"
74
              self.ui.lineEdit\_R.setText(str(self.defaults.get("R"))
75
              self.ui.lineEdit F0.setText(str(self.defaults.get("F0"
76
                 )))
77
              self.ui.lineEdit h.setText(str(self.defaults.get("h"))
78
              self.ui.lineEdit t.setText(str(self.defaults.get("t"))
79
80
          def get_data(self):
              try:
                   self.data["a1"] = float(self.ui.lineEdit_a1.text()
83
                   self.data["b1"] = float(self.ui.lineEdit_b1.text()
84
                   self.data["c1"] = float(self.ui.lineEdit c1.text()
85
                   self.data["m1"] = float(self.ui.lineEdit m1.text()
86
                   self.data["a2"] = float(self.ui.lineEdit a2.text()
88
                   self.data["b2"] = float(self.ui.lineEdit b2.text()
89
                   self.data["c2"] = float(self.ui.lineEdit c2.text()
90
```

```
self.data["m2"] = float(self.ui.lineEdit m2.text()
91
92
                    self.data["alpha0"] = float(self.ui.
93
                       lineEdit alpha0.text())
                    self.data["alphaN"] = float(self.ui.
94
                       lineEdit alphaN.text())
95
                    self.data["I"] = float(self.ui.lineEdit_I.text())
96
                    self.data["T0"] = float(self.ui.lineEdit T0.text()
97
                    self.data["R"] = float(self.ui.lineEdit R.text())
98
                    self.data["F0"] = float(self.ui.lineEdit F0.text()
99
                       )
100
                    self.data["h"] = float(self.ui.lineEdit h.text())
101
                    self.data["t"] = float(self.ui.lineEdit t.text())
102
103
               except ValueError:
104
                    return False
105
               return True
107
           def run(self):
108
                if self.get data():
109
                    print("Computing . . . ")
110
                    mdlr = Modeller(self.data)
                    mdlr.compute()
112
                    print("Finish.")
113
               else:
114
                    self.msg box("Error!", "Error! Incorrect input!",
                       QMessageBox. Critical)
116
           def msg box(self, title, message, type):
117
               msg = QMessageBox(self)
118
               msg.setlcon(type)
               msg.setWindowTitle(title)
120
               msg.setText(message)
121
               msg.addButton('Ok', QMessageBox.AcceptRole)
122
               msg.exec()
123
124
```

```
125
       def main():
126
            app = QtWidgets.QApplication(sys.argv)
127
            window = MyApp()
128
            window.show()
129
            app.exec_()
130
131
132
        if ___name__ == '___main ':
133
            main()
134
```

Листинг 2: Класс Modeller.

```
import matplotlib.pyplot as plt
      import numpy as np
      from math import fabs
      class Modeller():
          def __init__(self , data) :
               self.data = data
               self.a1 = self.data.get("a1")
               self.b1 = self.data.get("b1")
               self.c1 = self.data.get("c1")
11
               self.m1 = self.data.get("m1")
12
13
               self.a2 = self.data.get("a2")
14
               self.b2 = self.data.get("b2")
15
               self.c2 = self.data.get("c2")
16
               self.m2 = self.data.get("m2")
17
18
               self.alpha0 = self.data.get("alpha0")
               self.alphaN = self.data.get("alphaN")
20
21
               self. | = self.data.get("|")
22
               self.T0 = self.data.get("T0")
23
               self.R = self.data.get("R")
               self.F0 = self.data.get("F0")
25
26
               self.h = self.data.get("h")
27
               self.t = self.data.get("t")
28
29
```

```
self.d = (self.alphaN * self.l) / (self.alphaN - self.
30
                  alpha0)
               self.c_koef = - self.alpha0 * self.d
31
32
               self.eps = 1e-2
33
34
           def c(self, T):
35
               res = self.a2 + self.b2 * (T ** self.m2) - (self.c2 /
36
                  (T ** 2)
               return res
37
               #return 0
38
39
           def f plus half(self, x, h, func):
40
               res = (func(x) + func(x + h)) / 2
41
               return res
42
43
           def f minus half(self, x, h, func):
44
               res = (func(x) + func(x - h)) / 2
45
               return res
46
47
           def old k(self, x):
               res = self.a1 / (x - self.b1)
               return res
50
51
           def k(self, T):
52
               \#res = self.old \ k(self.x)
53
               res = self.a1 * (self.b1 + self.c1 * (T ** self.m1))
54
               return res
55
56
           def alpha(self, x):
57
               return self.c koef / (x - self.d)
59
           def p(self, x):
60
               return 2 * self.alpha(x) / self.R
61
62
           def f(self, x):
               return 2 * self.alpha(x) * self.T0 / self.R
64
65
           def left boundary condition(self, T):
66
               h8 = self.h / 8
67
               h4 = self.h / 4
68
```

```
h2 = self.h / 2
69
               c p12 = self.f plus half(T[0], self.t, self.c)
70
               chi_p12 = self.f_plus_half(T[0], self.t, self.k)
71
               t 	ext{ over } h = self.t / self.h
72
73
               K0 = h8 * c_p12 + \
74
                    h4 * self.c(T[0]) + chi p12 * t over h + \
                     self.t * h8 * self.p(h2) + (self.t * self.h) / 4
76
                       * self.p(0)
77
               M0 = h8 * c p12 - chi p12 * t over h + \
78
                     self.t * h8 * self.p(h2)
79
80
               P0 = h8 * c p12 * (T[0] + T[1]) + 
81
                    h4 * self.c(T[0]) * T[0] + self.F0 * self.t + 
82
                    self.t * h8 * (3 * self.f(0) + self.f(self.h))
83
                    \#self.t * h4 * (self.f(0) + self.f plus half(T
                        [0], self.t, self.f)) #?
               return K0, M0, P0
85
86
           def __right_boundary_condition(self, T):
               h8 = self.h / 8
               h4 = self.h / 4
89
               h2 = self.h / 2
90
               c m12 = self.f_minus_half(T[-1], self.t, self.c)
91
               chi m12 = self.f minus half(T[-1], self.t, self.k)
92
93
               h8 cm12 = h8 * c m12
94
95
               KN = h4 * self.c(T[-1]) + h8\_cm12 + \
96
                    self.t * self.alphaN + self.t * chi m12 / self.h +
                   h4 * self.t * self.p(self.l) + h8 * self.t * self.
98
                      p(self.l - h2)
99
               MN = h8 cm12 - \
                      self.t * chi m12 / self.h + \
101
                     h8 * self.p(self.l - h2)
102
103
               PN = h4 * self.c(T[-1]) * T[-1] + h8 cm12 * T[-1] + h
104
                     h8 cm12 * T[-2] + \
105
```

```
self.t * self.alphaN * self.T0 + \
106
                       h4 * self.t * (self.f(self.l) + self.f(self.l -
107
                          h2))
108
                return KN, MN, PN
109
110
           def A(self, T):
111
                return self.t / self.h * self.f minus half(T, self.t,
                   self.k)
113
114
           def D(self, T):
115
                return self.t / self.h * self.f plus half(T, self.t,
116
                   self.k)
117
           def B(self, x, T):
118
                return self.A(T) + self.D(T) + self.c(T) * self.h + \setminus
                      self.p(x) * self.h * self.t
120
121
           def F(self, x, T):
122
                return self.f(x) * self.h * self.t + self.c(T) * T *
123
                   self.h
124
           def progon(self, T, K0, M0, P0, KN, MN, PN):
125
                epsilon = [0, -M0 / K0]
126
                eta = [0, P0 / K0]
127
                x = self.h
129
                n = 1
130
                while x + self.h < self.l:
131
                    An = self.A(T[n])
132
                    Bn = self.B(x, T[n])
133
134
                    newEps = self.D(T[n]) / (Bn - An * epsilon[n])
135
                     epsilon .append (newEps)
136
                    newEta = (self.F(x, T[n]) + An * eta[n]) / (Bn -
138
                       An * epsilon[n]
                     eta.append(newEta)
139
140
                    x += self.h
141
```

```
n += 1
142
143
                T = [0] * (n + 1)
144
                T[n] = (PN - MN * eta[n]) / (KN + MN * epsilon[n])
145
146
                for i in range(n-1, -1, -1):
147
                     T[i] = epsilon[i + 1] * T[i + 1] + eta[i+1]
148
                return T
150
151
            def check iter(self, T, T next):
152
                #если нагрев замедлилися
                                                   изменение
153
                   температуры
                #шаг по времени
                                      достаточно
                                                    мало
154
                max = fabs((T[0] - T next[0]) / T next[0])
155
                for i, j in zip(T, T next):
156
                     d = fabs(i - j) / j
157
                     if d > max:
158
                         max = d
159
                return max < 1
160
161
            def check epsilon(self, T, T next):
                #если
                         максимально
                                        изменившийся
                                                          элемент
163
                #изменился меньше, чем
164
                for i, j in zip(T, T_next):
165
166
                     if fabs((i - j) / j) > self.eps:
                          return True
168
                return False
169
170
           def iterate(self):
                res = []
                n = int(self.l / self.h)
173
                print(n)
174
                T = [self.T0] * (n + 1)
175
                T new = [0] * (n + 1)
176
                ti = 0
177
                res.append(T)
178
                while True:
179
                     tmp = T
180
                     self.x = self.h
181
```

```
while True:
182
                           K0, M0, P0 = self.__left_boundary_condition(
183
                              tmp)
                          KN, MN, PN = self.__right_boundary_condition(
184
                              tmp)
                           T new = self.progon(tmp, K0, M0, P0, KN, MN,
185
                           self.x += self.h
187
                           if self.check iter(tmp, T new):
188
                               break
189
                          tmp = T new
190
191
                      res.append(T new)
192
                      ti += self.t
193
                      if not self.check epsilon(T, T new):
194
                           break
195
                      T = T new
196
                 return res, ti
197
198
            def compute(self):
199
                 res, ti = self. iterate()
201
                 xes = [i for i in np.arange(0, self.l, self.h)]
202
                 \#ts = [i \text{ for } i \text{ in } range(0, int(ti), int(self.t))]
203
                 ts = [i \text{ for } i \text{ in } np.arange(0, ti, self.t)]
204
                 s = 0
206
                 for i in res:
207
                      if s \% 2 == 0:
208
                           plt.plot(xes, i[:-1])
                      s += 2
210
211
                 plt.plot(xes, res[-1][:-1], 'r')
212
                 plt.xlabel("x, cm")
213
                 plt.ylabel("T, K")
                 plt.grid()
215
                 plt.show()
216
217
                 s = 0
218
                 while s < self.l / 3:
219
```

```
p = [j[int(s / self.h)] for j in res]
plt.plot(ts, p[:-1])
s += 0.1

plt.xlabel("t, sec")

plt.ylabel("T, K")

plt.grid()
plt.show()
```

Результаты работы программы

1. Представить разностный аналог краевого условия при и его краткий вывод интегро-интерполяционным методом.

Вывод был проведен выше в разделе «Предварительные вычисления».

2. График зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n .

Рис. 1: График зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n .

3. График зависимости температуры $T(x,t_m)$ от координаты x при нескольких фиксированных значениях времени t_m .

На рисунке 2 красным цветом представлено распределение $T(x,t_m)$ в момент времени, соответсвтующий установившемуся режиму, когда поле перестает меняться с некоторой точностью (1e-2), т.е. имеет место выход на стационарный режим.

Рис. 2: График зависимости температуры $T(x,t_m)$ от координаты x при нескольких фиксированных значениях времени t_m .

Ответы на вопросы

- 1. Приведите результаты тестирования программы (графики, общие соображения, качественный анализ). Учесть опыт выполнения лабораторной работы №3.
- 1. Если после разогрева стержня положить поток F(t) = 0, то будет происходить остывание, пока температура не выровняется по всей длине и не станет равной T_0 (рисунок 3).

Рис. 3: F(t) = 0.

2. Если в настоящей работе задать поток постоянным, т.е. F(t) = const, то будет происходить формирование температурного поля от начальной-температуры T0 до некоторого установившегося (стационарного) распределения T(x,t). Это поле в дальнейшем с течением времени меняться не будет и должно совпасть с температурным распределением T(x), получаемым в лаб. работе №3, если все параметры задач совпадают, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3.

Необходимо задать $a_1 = 1.333$ и $b_1 = -3.333$, как в лабораторной №3. На рисунке 4 представлен полученный график.

График из 3 лабораторной для сравнения приведен на рисунке 5.

Рис. 4: k(x) вместо k(T).

Рис. 5: График из лабораторной №3.

2. Выполните линеаризацию уравнения (14.8) по Ньютону, полагая для простоты, что все коэффициенты зависят только от одной переменной \widehat{y}_n . Приведите линеаризованный вариант уравнения и опишите алгоритм его решения. Воспользуйтесь процедурой вывода, описанной в лекции №8.

Имеем:

$$\begin{cases}
\widehat{K}_0 \widehat{y}_0 + \widehat{M}_0 \widehat{y}_1 = \widehat{P}_0, \\
\widehat{A}_n \widehat{y}_{n-1} - \widehat{B}_n \widehat{y}_n + \widehat{D}_n \widehat{y}_{n+1} = -\widehat{F}_n, 1 \le n \le N - 1, \\
\widehat{K}_N \widehat{y}_N + \widehat{M}_{N-1} \widehat{y}_{N-1} = \widehat{P}_N.
\end{cases} (22)$$

Выполняя линеаризацию по Ньютону последовательно по неизвестным

$$\left(\widehat{A}_{n}\widehat{y}_{n-1} - \widehat{B}_{n}\widehat{y}_{n} + \widehat{D}_{n}\widehat{y}_{n+1} + \widehat{F}_{n}\right)\Big|_{(s-1)} + \\
+ \left(\frac{\delta \widehat{A}_{n}}{\delta \widehat{y}_{n}}\widehat{y}_{n-1} - \frac{\delta \widehat{B}_{n}}{\delta \widehat{y}_{n}}\widehat{y}_{n} - \widehat{B}_{n} + \frac{\delta \widehat{D}_{n}}{\delta \widehat{y}_{n}}\widehat{y}_{n+1} + \frac{\delta \widehat{F}_{n}}{\delta \widehat{y}_{n}}\right)\Big|_{(s-1)} \Delta \widehat{y}_{n}^{s} + \\
+ \widehat{D}_{n}^{s-1} \Delta \widehat{y}_{n+1}^{s} = 0 \quad (23)$$

Пусть

$$A_n = \widehat{A}_n^{s-1}, \tag{24}$$

$$B_{n} = \left(\frac{\delta \widehat{A}_{n}}{\delta \widehat{y}_{n}} \widehat{y}_{n-1} - \frac{\delta \widehat{B}_{n}}{\delta \widehat{y}_{n}} \widehat{y}_{n} - \widehat{B}_{n} + \frac{\delta \widehat{D}_{n}}{\delta \widehat{y}_{n}} \widehat{y}_{n+1} + \frac{\delta \widehat{F}_{n}}{\delta \widehat{y}_{n}} \right) \Big|_{(s-1)}, \quad (25)$$

$$D_n = \stackrel{\frown}{D}_n^{s-1} \tag{26}$$

$$F_n = \left(\widehat{A}_n \widehat{y}_{n-1} - \widehat{B}_n \widehat{y}_n + \widehat{D}_n \widehat{y}_{n+1} + \widehat{F}_n\right)\Big|_{(s-1)}$$
(27)

Тогда

$$A_n \Delta \widehat{y}_{n-1}^s + B_n \Delta \widehat{y}_n^s + D_n \Delta \widehat{y}_{n+1}^s = -F_n \tag{28}$$

Уравнение (28) решается методом прогонки, в результате находятся все Δ \widehat{y}_n^s , после чего определяются значения искомой функции в узлах на s-итерации $\widehat{y}_n^s = \widehat{y}_{n-1}^s + \Delta$ \widehat{y}_n^s . Итерационный процесс заканчивается при выполнении условия $max \left| \frac{\Delta \widehat{y}_n^s}{\widehat{y}_n^s} \right| \leq \varepsilon$, для всех n=0,1,...,N.

Вывод

Таким образом, в ходе данной работы были получены навыки разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.