Non-triviality condition

Suzie Brown

April 27, 2020

Multinomial resampling: neutral case

Lemma 1. For all $N \geq 2$, for all t,

$$\mathbb{E}\left[c_N(t)\middle|\mathbf{w}=\left(\frac{1}{N},\ldots,\frac{1}{N}\right)\right]=\frac{1}{N}.$$

Proof.

$$\mathbb{E}\left[c_N(t)|\mathbf{w} = (1/N, \dots, 1/N)\right] = \frac{1}{(N)_2} \sum_{i=1}^N \mathbb{E}\left[(\nu_t^{(i)})_2 \mid \mathbf{w} = (1/N, \dots, 1/N)\right]$$
$$= \frac{1}{(N)_2} \sum_{i=1}^N (N)_2 \left(\frac{1}{N}\right)^2 = \sum_{i=1}^N \frac{1}{N^2} = \frac{1}{N}$$

Lemma 2. For all $N \ge 4$, for all t,

$$\mathbb{E}\left[(c_N(t))^2\middle|\mathbf{w}=\left(\frac{1}{N},\ldots,\frac{1}{N}\right)\right]=\frac{N+2}{N^3}.$$

Proof.

$$\begin{split} &\mathbb{E}\left[(c_N(t))^2\big|\mathbf{w}=(1/N,\ldots,1/N)\right] = \frac{1}{(N)_2^2} \sum_{i=1}^N \sum_{j=1}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2\big|\mathbf{w}=(1/N,\ldots,1/N)\right] \\ &= \frac{1}{(N)_2^2} \left\{\sum_{i=1}^N \sum_{j\neq i}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2\big|\mathbf{w}=(1/N,\ldots,1/N)\right] + \sum_{i=1}^N \mathbb{E}\left[(\nu_t^{(i)})_2^2\big|\mathbf{w}=(1/N,\ldots,1/N)\right]\right\} \\ &= \frac{1}{(N)_2^2} \left\{\sum_{i=1}^N \sum_{j\neq i}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2\big|\mathbf{w}=(1/N,\ldots,1/N)\right] + \sum_{i=1}^N \mathbb{E}\left[(\nu_t^{(i)})_4 + 4(\nu_t^{(i)})_3 + 2(\nu_t^{(i)})_2\big|\mathbf{w}=(1/N,\ldots,1/N)\right]\right\} \\ &= \frac{1}{(N)_2^2} \left\{\sum_{i=1}^N \sum_{j\neq i}^N (N)_4 \left(\frac{1}{N}\right)^2 \left(\frac{1}{N}\right)^2 + \sum_{i=1}^N \left((N)_4 \left(\frac{1}{N}\right)^4 + 4(N)_3 \left(\frac{1}{N}\right)^3 + 2(N)_2 \left(\frac{1}{N}\right)^2\right)\right\} \\ &= \frac{1}{(N)_2^2} \left\{N(N-1)(N)_4 \frac{1}{N^4} + N(N)_4 \frac{1}{N^4} + 4N(N)_3 \frac{1}{N^3} + 2N(N)_2 \frac{1}{N^2}\right\} \\ &= \frac{(N-2)(N-3)}{N^4} + \frac{(N-2)(N-3)}{N^4(N-1)} + \frac{4(N-2)}{N^3(N-1)} + \frac{2}{N^2(N-1)} \\ &= \frac{1}{N^4(N-1)} \left[(N-2)(N-3)(N-1+1) + 4N(N-2) + 2N^2\right] \\ &= \frac{1}{N^3(N-1)} \left[N^2 - 5N + 6 + 4N - 8 + 2N\right] = \frac{N^2 + N - 2}{N^3(N-1)} = \frac{(N+2)(N-1)}{N^3(N-1)} = \frac{N+2}{N^3}. \end{split}$$

Lemma 3. For all $N \ge 4$, for all t,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \left(\frac{1}{N}, \dots, \frac{1}{N}\right)\right] \ge \left(1 - \frac{2}{N}\right)^2 \frac{N}{N+2}.$$

Proof. We apply the Paley-Zygmund inequality,

$$\mathbb{P}\left[c_N(t) > \theta \,\mathbb{E}[c_N(t)|\mathbf{w} = (1/N, \dots, 1/N)]|\mathbf{w} = (1/N, \dots, 1/N)\right] \ge (1-\theta)^2 \frac{\mathbb{E}[c_N(t)|\mathbf{w} = (1/N, \dots, 1/N)]^2}{\mathbb{E}[(c_N(t))^2|\mathbf{w} = (1/N, \dots, 1/N)]}.$$

Setting $\theta = 2/N$ and using Lemmata 1–2,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = (1/N, \dots, 1/N)\right] \ge \left(1 - \frac{2}{N}\right)^2 \frac{(1/N)^2}{(N+2)/N^3} = \left(1 - \frac{2}{N}\right)^2 \frac{N}{N+2}.$$

NB: We actually have an exact expression for the above probability, which is $1 - N!N^{-N}$ (see for example the proof of Lemma 4 below). Perhaps it would be better to use that... although the asymptotics seem a bit more obscure then? This could save a page of workings though so probably a good idea in the end.

Theorem 1. In the neutral case (i.e. when all weights are equal at every time step) with multinomial resampling, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. Let us rewrite the event of interest in a different way.

$$\mathbb{P}[\tau_N(t) = \infty] = 0 \Leftrightarrow \mathbb{P}[\tau_N(t) < \infty] = 1$$

$$\Leftrightarrow \mathbb{P}\left[\min\left\{s > 1 : \sum_{r=1}^s c_N(r) < t\right\} < \infty\right] = 1$$

$$\Leftrightarrow \mathbb{P}\left[\exists s < \infty : \sum_{r=1}^s c_N(r) < t\right] = 1$$

It is sufficient to show that, for all $N>N_0$, $c_N(r)$ is bounded away from zero infinitely often in r. We consider the sequence of events $E_r:=\{c_N(r)>2/N^2\}$ for $r\in\mathbb{N}$. In the neutral case, the resampled family sizes at each generation are independent, hence the events E_r are independent. By the second Borel-Cantelli lemma, E_r occurs infinitely often if $\sum_{r=1}^{\infty}\mathbb{P}(E_r)=\infty$. A lower bound on $\mathbb{P}(E_r)$ is given in Lemma 3. For any fixed $N\geq 4$, the bound is strictly positive and constant in r, so the Borel-Cantelli condition is satisfied, thus we conclude that E_r occurs infinitely often. Hence, taking $N_0=3$, we have that $\mathbb{P}[\tau_N(t)=\infty]=0$ for all $N>N_0$ and all finite t, as required.

Multinomial resampling: non-neutral case

Lemma 4. For all $N \geq 2$, for all t, for any weight vector (w_1, \ldots, w_N) ,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = (w_1, \dots, w_N)\right] \ge \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \left(\frac{1}{N}, \dots, \frac{1}{N}\right)\right].$$

That is, the probability of having at least one merger is minimised by the vector of equal weights.

Proof. Fix arbitrary t and $N \geq 2$. Firstly notice that

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = (w_1, \dots, w_N)\right] = 1 - \mathbb{P}[c_N(t) = 0 \mid \mathbf{w} = (w_1, \dots, w_N)]$$
$$= 1 - \mathbb{P}[\nu_t^{(1:N)} = (1, \dots, 1) \mid \mathbf{w} = (w_1, \dots, w_N)].$$

Since, conditional on the weights, $\nu_t^{(1:N)} \sim \text{Multinomial}(N, (w_1, \dots, w_N))$, the probability of interest is

$$\mathbb{P}[\nu_t^{(1:N)} = (1,\dots,1) \mid \mathbf{w} = (w_1,\dots,w_N)] = N! \prod_{i=1}^N w_i.$$
(1)

We will show that the global maximum of this function on the simplex S_{N-1} is attained at $\mathbf{w} = (1/N, \dots, 1/N)$. This weight vector will therefore minimise the probability of the complementary event, implying the desired result.

First, since we are working on the simplex, we encode the constraint $\sum w_i = 1$ by rewriting the function to optimise as

$$f(\mathbf{w}) := \prod_{i=1}^{N} w_i = \left(1 - \sum_{j=1}^{N-1} w_j\right) \prod_{i=1}^{N-1} w_i$$

where we have also dropped the constant positive factor N!. Now, for every $k \in \{1, ..., N-1\}$, we solve

$$\frac{\partial f(\mathbf{w})}{\partial w_k} = \left(1 - w_k - \sum_{j=1}^{N-1} w_j\right) \prod_{i \neq k}^{N-1} w_i = 0.$$

The product over $i \neq k$ is constant for each k, so this reduces to solving

$$w_k = 1 - \sum_{j=1}^{N-1} w_j = w_N$$

for all k. The unique solution is $w_1 = w_2 = \cdots = w_N = 1/N$.

To verify that this critical point is a maximum, we calculate the Hessian H:

$$H_{kl}(\mathbf{w}) = \begin{cases} -2 \prod_{i \neq k}^{N-1} w_i & k = l \\ \left(1 - w_k - w_l - \sum_{j=1}^{N-1} w_j\right) \prod_{i \neq k, l}^{N-1} w_i & k \neq l \end{cases}$$

$$H_{kl}((1/N, \dots, 1/N)) = \begin{cases} -2 \left(\frac{1}{N}\right)^{N-2} & k = l \\ -\left(\frac{1}{N}\right)^{N-2} & k \neq l \end{cases}$$

and show that H is negative semi-definite: for any $\mathbf{x} \in \mathbb{R}^{N-1}$,

$$\mathbf{x}^{T}H\mathbf{x} = \sum_{k=1}^{N-1} \left[-2\left(\frac{1}{N}\right)^{N-2} x_{k}^{2} - \sum_{l \neq k}^{N-1} \left(\frac{1}{N}\right)^{N-2} x_{k} x_{l} \right] = \left(\frac{1}{N}\right)^{N-2} \left[-\sum_{k=1}^{N-1} 2x_{k}^{2} - \sum_{k=1}^{N-1} \sum_{l \neq k}^{N-1} x_{k} x_{l} \right]$$
$$= \left(\frac{1}{N}\right)^{N-2} \left[-\sum_{k=1}^{N-1} x_{k}^{2} - \sum_{k=1}^{N-1} \sum_{l=1}^{N-1} x_{k} x_{l} \right] = \left(\frac{1}{N}\right)^{N-2} \left[-\sum_{k=1}^{N-1} x_{k}^{2} - \left(\sum_{k=1}^{N-1} x_{k}\right)^{2} \right] \leq 0.$$

Theorem 2. With multinomial resampling, conditional on any sequence of weight vectors $\mathbf{w}_r^{(1:N)} \in \mathcal{S}_{N-1}; r \in \mathbb{N}$, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. As in Theorem 1, denote the sequence of events $E_r := \{c_N(r) > 2/N^2\}$ for $r \in \mathbb{N}$. We know from Theorem 1 that, in the neutral case, E_r occurs infinitely often. Lemma 4 tells us that $\mathbb{P}[E_r \mid \mathbf{w} = (w_1, \dots, w_N)] \geq \mathbb{P}[E_r \mid \mathbf{w} = (1/N, \dots, 1/N)]$ for all r. Therefore, by a coupling argument, we conclude that E_r occurs infinitely often in the non-neutral case as well.

Conditional SMC with multinomial resampling: optimal weights

NB: The exposition below is more explicit than necessary, in order to reduce dependencies between sections. The expectations under CSMC-mn do not really need to be calculated directly, as they are equal to the expectations under standard-mn, where (N-1) replaces N everywhere except in the leading $(N)_2$ factors. It is probably also possible to infer Theorem 3 by a direct modification of Theorem 1, without the need to calculate moments and apply the PZ inequality again.

Define $\mathbf{w}^* := \frac{1}{N-1}[(1,\ldots,1) - \mathbf{e}_{i^*}]$, where i^* is the immortal index at generation t, and \mathbf{e}_i denotes a 1-hot vector.

Lemma 5. For all $N \geq 2$, for all t,

$$\mathbb{E}\left[c_N(t) \mid \mathbf{w} = \mathbf{w}^*\right] = \frac{N-2}{N(N-1)}.$$

Proof. Since the immortal particle has weight zero, the remaining offspring counts are distributed as Multinomial $(N-1,(1/(N-1),\ldots,1/(N-1)))$. We can apply the usual formula for factorial moments of the Multinomial distribution:

$$\mathbb{E}\left[c_N(t) \mid \mathbf{w} = \mathbf{w}^*\right] = \frac{1}{(N)_2} \sum_{i=1}^N \mathbb{E}\left[(\nu_t^{(i)})_2 \mid \mathbf{w} = \mathbf{w}^*\right] = \frac{1}{(N)_2} \sum_{i \neq i^*}^N (N-1)_2 \left(\frac{1}{N-1}\right)^2 = \frac{N-2}{N(N-1)}.$$

Lemma 6. For all $N \geq 4$, for all t,

$$\mathbb{E}\left[(c_N(t))^2\big|\mathbf{w}=\mathbf{w}^*\right] = \frac{(N+1)(N-2)^2}{N^2(N-1)^3}.$$

Proof.

$$\begin{split} &\mathbb{E}\left[(c_N(t))^2 \mid \mathbf{w} = \mathbf{w}^*\right] = \frac{1}{(N)_2^2} \sum_{i=1}^N \sum_{j=1}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2 \middle| \mathbf{w} = \mathbf{w}^*\right] \\ &= \frac{1}{(N)_2^2} \sum_{i \neq i^*}^N \sum_{j \neq i^*}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2 \middle| \mathbf{w} = \mathbf{w}^*\right] \\ &= \frac{1}{(N)_2^2} \left\{ \sum_{i \neq i^*}^N \sum_{j \neq i, i^*}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2 \middle| \mathbf{w} = \mathbf{w}^*\right] + \sum_{i \neq i^*}^N \mathbb{E}\left[(\nu_t^{(i)})_2^2 \middle| \mathbf{w} = \mathbf{w}^*\right] \right\} \\ &= \frac{1}{(N)_2^2} \left\{ \sum_{i \neq i^*}^N \sum_{j \neq i, i^*}^N \mathbb{E}\left[(\nu_t^{(i)})_2(\nu_t^{(j)})_2 \middle| \mathbf{w} = \mathbf{w}^*\right] + \sum_{i \neq i^*}^N \mathbb{E}\left[(\nu_t^{(i)})_4 + 4(\nu_t^{(i)})_3 + 2(\nu_t^{(i)})_2 \middle| \mathbf{w} = \mathbf{w}^*\right] \right\} \\ &= \frac{1}{(N)_2^2} \left\{ \sum_{i \neq i^*}^N \sum_{j \neq i, i^*}^N (N - 1)_4 \left(\frac{1}{N - 1}\right)^4 + \sum_{i \neq i^*}^N \left((N - 1)_4 \left(\frac{1}{N - 1}\right)^4 + 4(N - 1)_3 \left(\frac{1}{N - 1}\right)^3 + 2(N - 1)_2 \left(\frac{1}{N - 1}\right)^2 \right) \right\} \\ &= \frac{1}{(N)_2^2} \left\{ \sum_{i \neq i^*}^N \sum_{j \neq i, i^*}^N (N - 1)_4 \left(\frac{1}{N - 1}\right)^4 + \sum_{i \neq i^*}^N \left((N - 1)_4 \left(\frac{1}{N - 1}\right)^4 + 4(N - 1)_3 \left(\frac{1}{N - 1}\right)^3 + 2(N - 1)_2 \left(\frac{1}{N - 1}\right)^2 \right) \right\} \\ &= \frac{1}{(N)_2^2} \left\{ \sum_{i \neq i^*}^N \sum_{j \neq i, i^*}^N (N - 1)_4 \left(\frac{1}{N - 1}\right)^4 + \frac{4(N - 1)(N - 1)_3}{(N - 1)^3} + \frac{2(N - 1)(N - 1)_2}{(N - 1)^2} \right\} \\ &= \frac{(N + 1)(N - 2)^2}{N^2(N - 1)^3}. \end{split}$$

Lemma 7. For all $N \geq 4$, for all t,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \mathbf{w}^*\right] \ge \left(1 - \frac{2(N-1)}{N(N-2)}\right)^2 \frac{N-1}{N+1}.$$

Proof. We apply the Paley-Zygmund inequality, with $\theta = \frac{2(N-1)}{N(N-2)}$:

$$\mathbb{P}\left[c_{N}(t) > \theta \,\mathbb{E}[c_{N}(t)|\mathbf{w} = \mathbf{w}^{*}]|\mathbf{w} = \mathbf{w}^{*}\right] \geq (1 - \theta)^{2} \frac{\mathbb{E}[c_{N}(t)|\mathbf{w} = \mathbf{w}^{*}]^{2}}{\mathbb{E}[(c_{N}(t))^{2}|\mathbf{w} = \mathbf{w}^{*}]}$$

$$= \left(1 - \frac{2(N-1)}{N(N-2)}\right)^{2} \frac{(N-2)^{2}}{N^{2}(N-1)^{2}} \frac{N^{2}(N-1)^{3}}{(N+1)(N-2)^{2}} = \left(1 - \frac{2(N-1)}{N(N-2)}\right)^{2} \frac{N-1}{N+1}.$$

Theorem 3. In conditional SMC with multinomial resampling, in the optimal case where the weight vector is equal to \mathbf{w}^* at every time step, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. The proof is exactly the same as for Theorem 1; Lemma 7 provides the bound on $P(E_r)$ which is strictly positive and constant in r.

Suzie Brown 4

Conditional SMC with multinomial resampling: general weights

Lemma 8. For all $N \geq 2$, for all t, for any weight vector (w_1, \ldots, w_N) ,

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = (w_1, \dots, w_N)\right] \ge \mathbb{P}\left[c_N(t) > \frac{2}{N^2} \middle| \mathbf{w} = \mathbf{w}^*\right].$$

Proof.

$$\mathbb{P}\left[c_N(t) > \frac{2}{N^2} \mid \mathbf{w} = (w_1, \dots, w_N)\right] = 1 - \mathbb{P}[\nu_t^{(1:N)} = (1, \dots, 1) \mid \mathbf{w} = (w_1, \dots, w_N)] = (N-1)! \prod_{i \neq i^*}^N w_i$$

since the immortal particle i^* is automatically assigned one offspring. This is equivalent to the expression we had in the standard case (1), except with N-1 particles rather than N. As we saw in Lemma 4, this function is maximised at the vector of equal weights, in this case $\mathbf{w}_{-i^*} = \frac{1}{N-1}(1,\ldots,1)$. This leaves zero weight for the immortal particle, so overall the maximum is attained at $\mathbf{w}^* = \frac{1}{N-1}\{(1,\ldots,1) - \mathbf{e}_{i^*}\}$ as required.

Theorem 4. In conditional SMC with multinomial resampling, conditional on any sequence of weight vectors $\mathbf{w}_r^{(1:N)} \in \mathcal{S}_{N-1}; r \in \mathbb{N}$, there exists N_0 such that for all $N > N_0$, for all finite t, $\mathbb{P}[\tau_N(t) = \infty] = 0$.

Proof. As in Theorem 1, denote the sequence of events $E_r := \{c_N(r) > 2/N^2\}$ for $r \in \mathbb{N}$. We know from the argument behind Theorem 3 (which is completely analogous to Theorem 1) that, in the neutral case, E_r occurs infinitely often. Lemma 8 tells us that $\mathbb{P}[E_r \mid \mathbf{w} = (w_1, \dots, w_N)] \ge \mathbb{P}[E_r \mid \mathbf{w} = \mathbf{w}^*]$ for all r. Therefore, by a coupling argument, we conclude that E_r occurs infinitely often in the general case as well.