Structure of Uncertainty

Jan Schneider

McCombs School of Business University of Texas at Austin

States of the World

- countably infinite number of states of the world
- \bullet example: rational numbers in [0,1]
- set of states:

$$S = \{s_1, s_2, s_3, \ldots\}$$

- nature chooses state $s \in S$ at beginning of time
- individuals learn slowly more about true state

Partitions

• partition $Q = \{q_1, \dots, q_N\}$ of $S = \{s_1, s_2, \dots\}$ is a collection of subsets of S such that

$$q_i \cap q_j = \emptyset$$
 for $j \neq i$ and $\bigcup_{j=1}^N q_j = \mathbf{S}$

- assumption: partitions contain a finite number of elements
- example:

Potential Information = Partition

• example (partition from previous slide):

if nature chooses $s =$	then at time t we know that $s \in$			
0.05	[0, 0.2)			
0.1	[0, 0.2)			
0.5	[0.2, 0.6)			
0.8	[0.6, 1]			
1	[0.6, 1]			

Information and Time

• example: time t+1 information

$$S = \{ \begin{array}{ccc} [0,0.2), & [0.2,0.6], & (0.6,0.9), & [0.9,1] \} \\ \hline q_1 & q_2 & q_3 & q_4 \end{array} \}$$

• then information evolves as follows:

if nature chooses $s =$	$time\ t\ info \colon s \in \qquad time\ t+1\ info \colon s \in$		
1/20	[0, 0.2)	[0, 0.2)	
1/10	[0, 0.2)	[0, 0.2)]	
1/2	[0.2, 0.6]	[0.2, 0.6]	
3/4	(0.6, 1]	$(0.6,0.9) \leftarrow new info$	
1	(0.6, 1]	$[0.9,1] \qquad \leftarrow new info$	

Filtration

- information structure at time t: $Q_t = \{q_{t1}, \dots, q_{tN_t}\}$
- no forgetting ⇒ partition becomes finer over time
- sequence of finer partitions $\{Q_0, Q_1, Q_2 \dots\}$: filtration
- each state $s \in S$ defines a unique path through the partition elements of this filtration:

$$S \supseteq q_0 \supseteq q_1 \supseteq q_2 \cdots$$

Example of a Filtration

Random Variables and Information I

- random variable: function that assigns a real number to each state $s \in S$
- Random variable Y is measurable with respect to partition Q
 if

$$s_i \in q \text{ and } s_j \in q \implies Y(s_i) = Y(s_j) \qquad \text{ for all } q \in Q.$$
 (1)

• stochastic process: sequence of random variables

$$\{Y_0, Y_1, Y_2, \dots\}$$

• stochastic process $\{Y_0, Y_1, Y_2, \dots\}$ is adapted to a filtration $\{Q_0, Q_1, Q_2 \dots\}$ if each Y_t is measurable with respect to Q_t

Adapted Process: Example

state s	Q_t	X_t	Y_t	Z_t	Q_{t+1}	X_{t+1}	Y_{t+1}	Z_{t+1}
1/10	[0, 0.2)	4	3	1	[0, 0.2)	3	7	1
1/20	[0, 0.2)	4	3	2	[0, 0.2)	3	7	1
1/2	[0.2, 0.6)	4	4	1	[0.2, 0.6)	4	8	2
3/4	[0.6, 1]	2	5	1	[0.6, 0.9]	4	9	2
1	[0.6, 1]	2	5	1	(0.9, 1]	1	10	2

Random Variables and Information II

• stochastic process $\{Y_t, Y_{t+1}\}$ generates the filtration $\{Q_t, Q_{t+1}\}$ if:

 $s_i, s_i \in q_t \iff Y_t(s_i) = Y_t(s_i)$

Probability Measure

A probability measure "prob" is a function from the power set of S to the real numbers with the following properties:

- ② prob[S] = 1

Conditional Probabilities

- probability that nature chooses a state s in q_t : prob (q_t)
- assume: $prob(q_t) > 0$
- probability of $q_{t+\tau} \subseteq q_t$ conditional on observing q_t :

$$\mathsf{prob}(q_{t+ au}|q_t) = rac{\mathsf{prob}(q_{t+ au})}{\mathsf{prob}(q_t)}$$

• we can also write this probability as

$$ext{prob}(q_{t+ au}|q_t) = rac{ ext{prob}(q_{t+1})}{ ext{prob}(q_t)} imes rac{ ext{prob}(q_{t+2})}{ ext{prob}(q_{t+1})} imes \cdots imes rac{ ext{prob}(q_{t+ au})}{ ext{prob}(q_{t+ au-1})}$$
 $ext{prob}(q_{t+1}|q_t) = ext{prob}(q_{t+1}|q_t) = ext{prob}(q_{t+1}|q_t) = ext{prob}(q_{t+1}|q_t)$ $ext{prob}(q_{t+1}|q_{t+1}) = ext{prob}(q_{t+1}|q_t)$

Expectation

• unconditional expectation of a random variables Y_t :

$$\mathsf{E}[Y_t] = \sum_{q_t \subseteq Q_t} \mathsf{prob}(q_t) imes Y_t(q_t)$$

conditional:

$$\mathsf{E}[Y_{t+ au}|q_t] = \sum_{q_{t+ au} \subseteq q_t} \mathsf{prob}(q_{t+ au}|q_t) imes Y(q_{t+ au})$$

• $E[Y_{t+\tau}|Q_t]$: random variable with realizations

$$\left\{ \mathsf{E}[Y_{t+\tau}|q_{1t}], \; \mathsf{E}[Y_{t+\tau}|q_{2t}], \; \dots \; , \; \mathsf{E}[Y_{t+\tau}|q_{N_tt}] \right\}$$

usually abbreviate:

$$E_t[Y_{t+\tau}] = E[Y_{t+\tau}|Q_t]$$

Iterated Expectation I

• consider the following sequence of expectations:

Iterated Expectation II

$$\sum_{q_{t+\tau_2} \subset q_{t+\tau_1}} \operatorname{prob}(q_{t+\tau_2}|q_{t+\tau_1}) Y(q_{t+\tau_2})$$

$$\mathsf{E}\Big[\mathsf{E}[Y_{t+\tau_2}|Q_{t+\tau_1}]\Big| q_t\Big] = \sum_{q_{t+\tau_1} \subseteq q_t} \operatorname{prob}(q_{t+\tau_1}|q_t) \, \mathsf{E}[Y_{t+\tau_2}|q_{t+\tau_1}]$$

$$= \sum_{q_{t+\tau_1} \subseteq q_t} \sum_{q_{t+\tau_2} \subseteq q_{t+\tau_1}} \operatorname{prob}(q_{t+\tau_1}|q_t) \, \mathsf{prob}(q_{t+\tau_2}|q_{t+\tau_1}) \, Y(q_{t+\tau_2})$$

$$= \mathsf{prob}(q_t) \quad \mathsf{prob}(q_t)$$

$$\sum_{q_{t+\tau_2} \subseteq q_t} \operatorname{prob}(q_{t+\tau_2}|q_t)$$

$$= \mathsf{E}[Y_{t+\tau_2}|q_t]$$