Look over the following quantitative Sample Problem. Notice how the four-step approach is used, and then apply the approach yourself in solving the practice problems that follow.

## **SAMPLE PROBLEM F**

Calculate the volume of a sample of aluminum that has a mass of 3.057 kg. The density of aluminum is 2.70 g/cm<sup>3</sup>.

| $\mathbf{c}$ |     |   | R.I |
|--------------|-----|---|-----|
| SO           | ı u | w | IV  |

1 ANALYZE

**Given:** mass = 3.057 kg, density = 2.70 g/cm<sup>3</sup>

Unknown: volume of aluminum

2 PLAN

The density unit in the problem is g/cm<sup>3</sup>, and the mass given in the problem is expressed in kg. Therefore, in addition to using the density equation, you will need a conversion factor representing the relationship between grams and kilograms.

$$1000 \text{ g} = 1 \text{ kg}$$

Also, rearrange the density equation to solve for volume.

$$density = \frac{mass}{volume} \quad \text{or} \quad D = \frac{m}{V}$$

$$V = \frac{m}{D}$$

**3** COMPUTE

$$V = \frac{3.057 \text{ kg}}{2.70 \text{ g/cm}^3} \times \frac{1000 \text{ g}}{\text{kg}} = 1132.222 \dots \text{cm}^3 \text{ (calculator answer)}$$

The answer should be rounded to three significant figures.

$$V = 1.13 \times 10^3 \text{ cm}^3$$

4 EVALUATE

The unit of volume, cm<sup>3</sup>, is correct. An order-of-magnitude estimate would put the answer at over 1000 cm<sup>3</sup>.

$$\frac{3}{2} \times 1000$$

The correct number of significant figures is three, which matches that in 2.70 g/cm<sup>3</sup>.

## **PRACTICE**

Answers in Appendix E

- 1. What is the volume, in milliliters, of a sample of helium that has a mass of  $1.73 \times 10^{-3}$  g, given that the density is  $0.178 \ 47 \ g/L$ ?
- 2. What is the density of a piece of metal that has a mass of  $6.25 \times 10^5$  g and is 92.5 cm  $\times$  47.3 cm  $\times$  85.4 cm?
- 3. How many millimeters are there in  $5.12 \times 10^5$  kilometers?
- **4.** A clock gains 0.020 second per minute. How many seconds will the clock gain in exactly six months, assuming exactly 30 days per month?

## extension

Go to **go.hrw.com** for more practice problems that ask you to calculate using scientific notation.

