Zadanie 1

Treść

Rozważmy jezyk $L = \{w0s : |s| = 9\}$, złożony z tych słów nad alfabetem $\{0,1\}$ których dziesiąty symbol od końca to 0. Udowodnij, że DFA rozpoznający ten język ma co najmniej 1024 stany.

Rozwiązanie

Skorzystajmy z twierdzenia o indeksie, wskazując rodzinę słów o mocy 1024, z których każde jest w innej klasie abstrakcji \sim_L .

Niech R będzie zbiorem liczb od 0 do 1023 włącznie, zapisanych binarnie przy pomocy 10 bitów (pozwalamy na wiodące zera).

Weźmy dowolne $w_1, w_2 \in R$. Jako że odpowiadają one różnym liczbom to istnieje bit k taki że $w_1[k] \neq$ $w_2[k]$. Bez straty ogólności $w_1[k]=1$ oraz $w_2[k]=0$. Wtedy $w_10^{10-k}\in L$ i $w_20^{10-k}\notin L$, z czego wynika że dowolne 2 słowa z R są w innej klasie abstrakcji,

czyli automat rozpoznający L musi mieć przynajmniej |R|=1024 stanów.

Zadanie 4

Treść

(za 2 punkty) Dla danego języka $L\subseteq L^*$ przez L^* rozumiemy najmniejszy język spełniający następujące warunki:

- $\bullet \ \epsilon \in L^*$
- $\forall x, y . [x \in L^* \land y \in L] \implies xy \in L^*$

Gdzie ϵ oznacza, jak zawsze, słowo puste. Niech L będzie dowolnym podzbiorem $\{0\}^*$. Udowodnij, że L^* jest językiem regularnym.

Rozwiązanie

Mamy tutaj do czynienia z unarnym alfabetem, więc od tego momentu słowa utożsamiam z ich długością. Możemy to zrobić bo liczby naturalne są wolnym monoidem nad 1.

Rozwiążmy najpierw podprzypadek i potem uogólnijmy go na całość.

Podprzypadek

Załóżmy że istnieje $p,q\in L^*$ takie że p i q są względnie pierwsze. Wtedy z rozszerzonego algorytmu euklidesa otrzymujemy x, y spełniające $xp + yq = \gcd(p, q) = 1$ (bo p, q względnie pierwsze).

Możemy w takim razie otrzymać też wszystkie liczby od 1 do pq.

$$n(xp + yq) = n$$

Czyli otrzymaliśmy wszystkie możliwe reszty z dzielenia przez pq, oraz dodatkowo możemy się przesuwać o pq do przodu dodając p q razy. Czyli od pewnego momentu wszystkie liczby należą do języka.

Problem jest tylko taki że x, y mogą być ujemne, co nie pasuje naszej interpretacji. Ale zauważmy że jeśli dodamy p q razy, oraz q p razy, to reszta z dzielenia się nie zmieni, a współczynniki urosną.

Istnieje takie z, że dla każdego $n, nx \leq zq$ oraz $ny \leq zp$.

Czyli od liczby zxp + zyq wszystkie liczby należą do języka. A wszystkie poprzednie liczby możemy zaifować.

Skonstruujmy teraz żuczka by był zawsze szczęsliwy i jak najbardziej wybredny

Uogólnienie

Jeśli nie zachodzi podprzypadek, to istnieje $v = \gcd(L*)$. To się sprowadza do poprzedniego przypadku, tylko żuczek w każdym kroku leci o v pól do przodu.