Esercitazione Sistemi Digitali

25/10/2022

Esercizio 1- Traccia

 Disegna il circuito logico della seguente espressione Booleana usando solo porte NAND a 2 input:

$$X_1X_2 + X_2X_3$$

Soluzione esercizio 1

Esercizio 2- Traccia

 Disegna il circuito logico della seguente espressione Booleana usando solo porte NAND a 2 input:

$$(AB+\bar{A}\bar{B})\cdot(C\bar{D}+\bar{C}D)$$

Soluzione esercizio 2

Esercizio 3- Traccia

 Data la seguente mappa di Karnaugh scrivere la corretta espressione Booleana minima

		CD					
		00	01	11	10		
АВ	00	0	1	1	0		
	01	0	0	1	0		
	11	1	1	1	0		
	10	1	1	0	0		

Esercizio 3- Soluzione

$$F = \bar{A}\bar{B}D + BCD + A\bar{C}$$

Esercizio 4- Traccia

Semplifica la seguente funzione Booleana usando le mappe di Karnaugh

$$F(A, B, C, D) = \sum (1, 2, 3, 5, 7, 9, 10, 11, 13, 15)$$

Esercizio 4- Soluzione

$$F = D + \bar{B}C$$

Esercizio 5- Traccia

 Usando il corretto numero di half hadders progetta un circuito combinatorio che somma 1 ad un numero binario di 4 bits. Ad esempio, se l'input del circuito è 1101 l'output sarà 1110.

Esercizio 5- Soluzione

Sia
$$A_3A_2A_1A_0 + 1 = S_4S_3S_2S_1S_0$$

Esercizio 6- Traccia

- Un circuito combinatorio produce la somma binaria di due numeri binari a 2 bits X_1X_0 e Y_1Y_0 . Outputs del circuito sono la somma S_1S_0 e il riporto C.
 - 1 Fornire la tabella di verità del circuito
 - Progettare il circuito usando full adders

Esercizio 6- Soluzione

x ₁	X ₀	y ₁	y ₀	С	S ₁	S ₀
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0 1 0	0	0	0
0 0 0	0 0	1	1	0 0 0	1	1
		0	0		0	1
0	1	0	0 1 0	0	0 1 1	0
0	1	1	0	0	1	1
0 0 0	1	1	1	1	0	0
1	0	0	0	0		0
1 1 1	0	0	0 1 0	0	1 1 0	1
1	0		0	1	0	0
1	0 0	1	1	1	0	1
1	1	0	0	0	1	1
1 1 1	1	0	0	1	1	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Esercizio 7- Traccia

Analizzare il seguente circuito

- 1 Determinare le espressioni booleane per F e G in forma SoP
- 2 Semplificare le espressioni ottenute per F e G tramite le mappe di Karnaugh

Esercizio 7- Soluzione (1)

$$T1 = B \cdot C$$

$$T2 = \overline{A \cdot D}$$

$$T3 = \overline{A} \cdot T2$$

$$T4 = \overline{A} + T1$$

$$F = T3 \cdot T4 = (\overline{A} \cdot \overline{T2}) \cdot (\overline{A} + T1) =$$

$$= (\overline{A} \cdot (\overline{A} \cdot \overline{D})) \cdot (\overline{A} + (B \cdot C)) = (A + (\overline{A}D)) \cdot (\overline{A} + (B \cdot C)) =$$

$$= (A + D)(\overline{A} + BC) = ABC + BCD + \overline{A}D$$

$$G = T4 \cdot T2 = (\bar{A} + T1) \cdot (\bar{A} \cdot \bar{D}) = (\bar{A} + (B \cdot C)) \cdot (\bar{A} \cdot \bar{D}) =$$
$$= (\bar{A} + (B \cdot C)) \cdot (\bar{A} + \bar{D}) = \bar{A}\bar{D} + BC\bar{D} + ABC$$

Esercizio 7- Soluzione (2)

$$F = \overline{ABC} + BCD + A'D$$

Esercizio 7- Soluzione (2)

$$G = ABC + BCD' + A'D'$$

