```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")

In [3]: data.describe()

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [4]: data.head()

Out[4]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [5]: data.shape
Out[5]: (200, 5)
In [6]: list(data)
Out[6]: ['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales']
In [7]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
            Column
                         Non-Null Count Dtype
             Unnamed: 0 200 non-null
                                         int64
                         200 non-null
         1
                                        float64
             TV
                                         float64
             radio
                         200 non-null
                         200 non-null
                                        float64
             newspaper
                         200 non-null
                                        float64
         4
             sales
        dtypes: float64(4), int64(1)
        memory usage: 7.9 KB
In [8]: data1=data.drop(['Unnamed: 0'],axis=1)
```

In [9]: data1

Out[9]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

In [10]: cor=datal.corr()

In [11]: cor

Out[11]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

```
In [12]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidth=.5,cmap='bwr')
```

Out[12]: <AxesSubplot:>


```
In [13]: y=data1['sales']
x=data1.drop('sales',axis=1)
```

```
In [14]: y
```

```
Out[14]: 0
                  22.1
                  10.4
                   9.3
          2
          3
                  18.5
                  12.9
          4
                  . . .
          195
                   7.6
                   9.7
          196
          197
                  12.8
          198
                  25.5
          199
                  13.4
```

Name: sales, Length: 200, dtype: float64

```
In [15]: list(x)
Out[15]: ['TV', 'radio', 'newspaper']
In [16]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [17]: x test.head()
Out[17]:
                TV radio newspaper
           95 163.3
                    31.6
                              52.9
           15 195.4
                    47.7
                              52.9
           30
              292.9
                    28.3
                              43.2
          158
               11.7
                    36.9
                              45.2
          128 220.3
                    49.0
                               3.2
In [18]: # LinearRegression
          from sklearn.linear model import LinearRegression
          reg=LinearRegression()
          reg.fit(x_train,y_train)
Out[18]: LinearRegression()
In [19]: ypred=reg.predict(x_test)
```

```
In [20]: | ypred
Out[20]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                13.31459455, 21.23875284, 7.38400509, 13.43971113, 15.19445383,
                 9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                 5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                 9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                 5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181,
                 9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                 6.906114781)
In [21]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[21]: 0.8555568430680086
In [22]: | from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
```

Out[22]: 3.7279283306815105

```
In [23]: # ElasticNet
         from sklearn.linear model import ElasticNet
         from sklearn.model selection import GridSearchCV
         elastic = ElasticNet()
         parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y train)
Out[23]: GridSearchCV(estimator=ElasticNet(),
                      param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                            5, 10, 201})
In [24]: elastic regressor.best params
Out[24]: {'alpha': 1}
In [25]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [26]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[26]: 0.855576715693211
In [27]: from sklearn.metrics import mean squared error
         elastic Error=mean squared error(y pred elastic,y test)
         elastic Error
Out[27]: 3.727415438800228
```

```
In [28]: x_test
```

Out[28]:

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns

```
In [29]: y_pred_elastic=elastic.predict(test)
    test=[[110,33,21]]
    y_pred_elastic
```

```
In [ ]: y_pred_elastic=elastic.predict(test)
    test=[[110,33,21]],[[220,66,13]]
    y_pred_elastic
In [ ]:
```