AC CIRCUITS

Series Resonance Circuit

- At resonance: $X_L = X_C \Longrightarrow Z_{\min} = R$
- Phase difference: $\phi = 0^{\circ} \Rightarrow \cos \phi = 1$
- Resonant frequency: $v_0 = \frac{1}{2\pi\sqrt{LC}}$

Q-factor of Series Resonant Circuit

Q-factor =
$$\frac{V_L}{V_R}$$
 or $\frac{V_C}{V_R} = \frac{\omega_0 L}{R}$ or $\frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$

Series RLC-Circuit

- Voltage: $V = \sqrt{V_R^2 + (V_L V_C)^2}$
- Impedance : $Z = \sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}$
- · Phase difference :

$$\phi = \tan^{-1} \frac{V_L - V_C}{V_R} = \tan^{-1} \frac{X_L - X_C}{R}$$

Purely Inductive Circuit

- Voltage: $V = V_0 \sin \omega t$
- Current: $I = I_0 \sin(\omega t \pi/2)$
- Phase difference: +(π/2) Phasor diagram
- Impedance: $X_L = \omega L$ (Voltage leads
- current by $\pi/2$) Peak current: $I_0 = V_0/X_t$

Combined RL circuit

Phasor

(Series RL-Circuit)

- Applied voltage : V = √V_R² + V_L²
- Impedance : $Z = \sqrt{R^2 + 4\pi^2 v^2 L^2}$
- Current: I = I₀ sin(ωt φ)
- Phase difference: φ = tan⁻¹ ωL
- Power factor: cos \u00f3 = -

Quality Factor (Q-factor)

$$Q
-factor = \frac{Resonant\ frequency}{Band\ width} = \frac{\omega_0}{2\Delta\omega}$$

 $V = V_0 \sin \omega t$

Phasor diagram

(Both current and

ALTERNATING CURRENT AND VOLTAGE V_{rms} V_{rm}

Parallel Resonance Circuit

- At resonance: $I_C = I_L$; $Z_{\text{max}} = R$
- Phase difference: $\phi = 0^{\circ} \Rightarrow \cos \phi = 1$
- Resonant frequency: $v_0 = \frac{1}{2\pi\sqrt{LC}}$

Q-factor of Parallel Resonant Circuit

$$Q$$
-factor = $R\sqrt{\frac{C}{L}}$

Parallel RLC Circuits

- Current: $I = \sqrt{I_p^2 + (I_C I_I)^2}$
- Phase difference: $\phi = \tan^{-1} \frac{(I_C I_L)}{I_L}$
- Impedance: $Z = 1/\sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_s} \frac{1}{X_c}\right)^2}$

Purely Capacitive Circuit

- Voltage: $V = V_0 \sin \omega t$
 - Current: $I = I_0 \sin(\omega t + \pi/2)$
- Phase difference: -(π/2)
- Impedance: $X_C = 1/\omega C$
 - (Current leads
- Peak current: $I_0 = V_0/X_C$

voltage by π/2)

Combined RC circuit

- Current: $I = I_0 \sin \omega t$
- Phase difference: zero
- Impedance: R
- voltage are in same phase)

Peak current: $I_0 = V_0/R$

Power in AC Circuit

- · Power factor: It may be defined as cosine of the angle of lag or lead (i.e., coso)
- Average power (P_{av}):

 $P_{av} = V_{rms}I_{rms}\cos\phi = (V_0I_0/2)\cos\phi$

(Series RC-Circuit)

- Applied voltage: V = √V_R² + V_C²
- Impedance: $Z = \sqrt{R^2 + (1/\omega C)^2}$
- Current : I = I₀ sin(ωt + φ)
- Phase difference: φ = tan⁻¹(1/ωCR)

