Model Documentation of the Kapitza's Pendulum

1 Nomenclature

1.1 Nomenclature for Model Equations

- γ Dampening factor
- l length of the pendulum
- g acceleration due to gravity
- φ angle of deflection from the equilibrium position
- a magnitude of the harmonic oscillation of the suspension point
- ω frequency of the harmonic oscillation of the suspension point

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2)^T = (\varphi \ \dot{\varphi})^T$$
$$u = \emptyset$$

System Equations:

$$\dot{x}_1 = x_2 \tag{1a}$$

$$\dot{x}_2 = -2\gamma x_2 - \left(\frac{g}{l} - \frac{a}{l}\omega^2 \cos(\omega t)\right) \sin(x_1) \tag{1b}$$

Parameters: ω , a, l, g, γ

Outputs: φ

2.1 Assumptions

1. Mass of the pendulum is a pointmass.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
Pendulum length	l	0.3	cm
acceleration due to gravitation	g	9.81	$\frac{m}{s^2}$
Amplitude of Oscillation	a	0.2l	$^{ m cm}$
Frequency of Oscillation	ω	$16\omega_0$	$_{\mathrm{Hz}}$
Dampening Factor	γ	$0.1\omega_0$	$_{\mathrm{Hz}}$
- v	$\omega \ \gamma$	0	

with $\omega_0 = \sqrt{\frac{g}{l}}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 1: Simulation of the Kapitza's Pendulum.

References

[1] Butikov, E. I.: Kapitza's Pendulum: A Physically Transparent Simple Treatment, published 2017.