Homework 11: One-to-One, Onto

Assignments should be **stapled** and written clearly and legibly. Problem 4 is optional.

- 1. §8.2, #1(c), 6, 7, 19(a)(c), 26. Make sure to justify your answer to the question asked in Exercise 7.
- 2. Let $T: V \to W$ be linear transformation, and let $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be linearly independent in V.
 - (a) Prove that if T is one-to-one, then $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly independent in W.

Hint. Begin the proof as follows:

"Suppose
$$c_1T(\mathbf{v}_1) + \cdots + c_pT(\mathbf{v}_p) = \mathbf{0}$$
. I must show that $c_1 = \cdots = c_p = 0$."

- (b) Give an example showing that if T is not one-to-one, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ need not be linearly independent in W.
- 3. Let $T: V \to W$ be a linear transformation, with dim V = n, dim W = m. Prove the following:
 - (a) $\dim(R(T)) \leq n$.
 - (b) $\dim(R(T)) = n$ if and only if T is one-to-one.
 - (c) $\dim(R(T)) = m$ if and only if T is onto.
- 4. (Challenge) Let $T: V \to V$ be a linear transformation such that $T \circ T = T$, and let **u** be a vector in V. Prove that $\{\mathbf{u}, T(\mathbf{u})\}$ is linearly dependent if and only if $T(\mathbf{u}) = \mathbf{u}$ or $T(\mathbf{u}) = \mathbf{0}$.