

ULTRA-LOW OFFSET VOLTAGE OP AMP

FEATURES

GENERAL DESCRIPTION

The OP-07 Series represents a breakthrough in monolithic operational amplifier performance-Vos of 10µV. TC Vos of $0.2\mu\text{V/}^{\circ}\text{C}$ and long term stability of $0.2\mu\text{V/month}$ are achieved by a low noise, chopper-less bipolar input transistor amplifier circuit. Complete elimination of external components for offset nulling, frequency compensation and device protection permits extreme miniaturization and optimization of system Mean-Time-Between-Failure Rates in high performance aerospace/defense and industrial applications. Excellent device interchangeability provides reduced system assembly time and eliminates field recalibrations.

True differential inputs with wide input voltage range and outstanding common mode rejection provide maximum flexibility and performance in high noise environments and non-inverting applications. Low bias currents and extremely high input impedances are maintained over the entire temperature range.

Low cost, high volume production of OP-07 is achieved by electronic adjustment of an on-chip offset trimming network during initial factory testing. The OP-07 provides unparalleled performance for low noise, high accuracy amplification of very low level signals in transducer applications. Other applications include use in

Ultra-Low Vos Drift 0.2 μV/°C

Ultra-Stable vs Time 0.2 μV/Month Ultra-Low Noise 0.35 μVp-p

No External Components Required

Replaces Chopper amps at Lower Cost

Single Chip Monolithic Construction

High Common Mode Input Range ±14.0V

Wide Supply Voltage Range ±3V to ±18V

Fits 725, 108A/308A, 741 Sockets

stable integrators, precision summing amplifiers for analog computation and test equipment and in ultra-precise voltage threshold detectors and comparators. The OP-07 is recommended as a replacement for modular and monolithic chopper-stabilized amplifiers where reductions in cost, noise, size and power consumption are required. Devices are available in chip form for use in hybrid circuitry. The OP-07 is a direct replacement for 725, 108A/308A, and OP-05 amplifiers; 741-types may be directly replaced by removing the 741's nulling potentiometer.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V	Storage Temperature Range	-65°C to +150°C
Internal Power Dissipation (Note 1)	500mW	Operating Temperature Range	and the second of the second
Differential Input Voltage	±30V	OP-07A, OP-07	-55°C to +125°C
Input Voltage (Note 2)	±22V	OP-07E, OP-07C	0°C to +70°C
Output Short Circuit Duration	Indefinite	Lead Temperature Range (Solde	ering, 60 sec) 300°C

NOTES:

Note 1: Maximum package power dissipation vs. ambient temperature.

Package Type	Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature
TO-99 (J)	80°C	7.1mW/°C
Dual-in-Line (Y)	100°C	10.0mW/°C

Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.

OFFSET VOLTAGE TEST CIRCUIT

LOW FREQUENCY NOISE TEST CIRCUIT

OPTIONAL OFFSET NULLING CIRCUIT

BURN-IN CIRCUIT

APPLICATIONS INFORMATION

OP-07 Series units may be fitted directly to 725, 108A/308A and OP-05 sockets with or without removal of external compensation or nulling components. Additionally, OP-07 may be fitted to unnulled 741-type sockets; however if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-07 operation. OP-07 offset voltage may be nulled to zero (or other desired setting) through use of a potentiometer (see diagram above).

The OP-07 provides stable operation with load capacitances up to 500pF and $\pm 10V$ swings; larger capacitances should be decoupled with a 50Ω decoupling resistor. The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

ELECTRICAL CHARACTERISTICS

OP-07A

OP-07

These specifications apply for $V_s = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	(Note 1)	Ī	10	25		30	75	μV
Long Term Input Offset Voltage Stability	V _{os} /Time	(Note 2)	T	0.2	1.0		0.2	1.0	μV/Mo
Input Offset Current	1 _{os}			0.3	2.0	, ——	0.4	2.8	nA
Input Bias Current	1 _B			±.7	±2.0		±1.0	±3.0	nΑ
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)		0.35	0.6		0.35	0.6	μV p-p
		f ₀ = 10Hz (Note 3)		10.3	18.0		10.3	18.0	
Input Noise Voltage Density	e _n	f _o = 100Hz (Note 3)	 	10.0	13.0		10.0	13.0	nV∧√H
	F 1	f _o = 1000Hz (Note 3)	l	9.6	11.0		9.6	11.0	
Input Noise Current	i _{np∙p}	0.1Hz to 10Hz (Note 3)		14	30		14	- 30	pA p-p
		fo = 10Hz (Note 3)		0.32	0.80		0.32	0.80	
Input Noise Current Density	in	fo = 100Hz (Note 3)		0.14	0.23		0.14	0.23	pA/√H
		fo = 1000Hz (Note 3)		0.12	0.17		0.12	0.17	
Input Resistance - Differential Mode	R _{in}		30	80		20	60		мΩ
Input Resistance - Common Mode	RinCM			200			200		GΩ
Input Voltage Range	CMVR		±13.0 ,	± 14.0		±13.0	±14.0	·	V
Common Mode Rejection Ratio	CMRR	V _{cM} = ±CMVR	110	126		110	126	1 1	dB
Power Supply Rejection Ratio	PSRR	V _s = ±3V to ±18V	100	110		100	110		dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega, V_{o} = \pm 10V$ $R_{L} \ge 500\Omega, V_{o} = \pm .5V$ $V_{s} = \pm 3V$	300 150	500 500		200 150	500 500		V/mV
		R _L ≥ 10kΩ	± 12.5	± 13.0		± 12.5	± 13.0		
Maximum Output Voltage Swing	v _{oM}	$R_L \geqslant 2k\Omega$	± 12.0	± 12.8		±12.0	±12.8		٧
		R _L ≥ 1kΩ	± 10.5	± 12.0		±10.5	± 12.0		
Slewing Rate	SR	$R_L \ge 2k\Omega$		0.25			0.25		V/μsec
Closed Loop Bandwidth	BW	A _{VCL} = +1.0		1.2			1.2		MHz
Open Loop Output Resistance	R _o	V _o = 0, I _o = 0		60			60		Ω
Power Consumption	Pd	V _s = ± 3V		75 4	120 6		75 4	120 6	mW
Offset Adjustment Range		R _p = 20kΩ	1	±4		 	±4	T	mV

The following specifications apply for V $_{s}$ = \pm 15V, -55°C \leq T $_{A}$ \leq +125°C, unless otherwise noted.

Input Offset Voltage	Vos	(Note 1)		25	60		60	200	μ∨
Average Input Offset Voltage Drift									
Without External Trim	TCVos			0.2	0.6		0.3	1.3	μv/°c
With External Trim	TCVosn	$R_p = 20k\Omega$		0.2	0.6		0.3	1.3	μv/°c
Input Offset Current	los			0.8	4.0		1.2	5.6	nA
Average Input Offset Current Drift	TCIos			5	25		8	50	pA/°C
Input Bias Current	l _B			±1.0	±4.0		± 2.0	±6.0	nA
Average Input Bias Current Drift	тсів			8	25		13	50	pA/°C
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	106	123	a '	106	123		dB
Power Supply Rejection Ratio	PSRR	V _s = ± 3V to ± 18V	- 94	106		94	106		dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	200	400		150	400		V/mV
Maximum Output Voltage Swing	V _{oM}	R _L ≥ 2kΩ	± 12.0	± 12.6		± 12.0	±12.6		V

NOTE 1: Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. Additionally, OP-07A offset voltage is measured five minutes after power supply application at 25°C, -55°C and +125°C.

NOTE 2: Long Term Input Offset Voltage Stability refers to the averaged trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5µV — refer to typical performance curve. Parameter is not 100% tested; 90% of units meet this specification.

NOTE 3: Parameter is not 100% tested; 90% of units meet this specification.

ELECTRICAL CHARACTERISTICS	OP-07E	OP-07C	

These specifications apply for $V_s = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	(Note 1)		30	75		60	150	μν
Long Term Input Offset Voltage Stability	V _{os} /Time	(Note 2)		0.3	1.5		0.4	2.0	μν/Μο
Input Offset Current	los			0.5	3.8		0.8	6.0	nA
Input Bias Current	I _B			± 1.2	± 4.0		± 1.8	± 7.0	nΑ
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)		0.35	0.6		0.38	0.65	μ∨ р-р
		f _o = 10Hz (Note 3)		10.3	18.0		10.5	20.0	
Input Noise Voltage Density	e _n	f _o = 100Hz (Note 3)		10.0	13.0		10.2	13.5	nV/√Hz
		f _o = 1000Hz (Note 3)		9.6	11.0		9.8	11.5	
Input Noise Current	i _{np-p}	0.1Hz to 10Hz (Note 3)		14	30		15	35	рАр∙р
		f _o = 10Hz (Note 3)		0.32	0.80		0.35	0.90	
Input Noise Current Density	in	f _o = 100Hz (Note 3)		0.14	0.23		0.15	0.27	pA/√Hz
to the		f _o = 1000Hz (Note 3)	l	0.12	0.17		0.13	0.18	
Input Resistance – Differential Mode	R _{in}		15	50		8	33		мΩ
Input Resistance Common Mode	R _{inCM}			160			120	·	GΩ
Input Voltage Range	CMVR		±13.0	± 14.0		± 13.0	± 14.0		V
Common Mode Rejection Ratio	CMRR	V _{cM} = ± CMVR	106	123		100	120		dB
Power Supply Rejection Ratio	PSRR	V _s = ± 3V to ± 18V	94	107		90	104		dB
		$R_1 \ge 2k\Omega$, $V_0 = \pm 10V$	200	500		120	400		
Large Signal Voltage Gain	A _{vo}	$R_L \geqslant 500\Omega$, $V_0 = \pm .5V$	150	500		100	400		V/mV
	100	V _s = ± 3V							
		R ₁ ≥ 10kΩ	± 12.5	± 13.0		± 12.0	± 13.0		
Maximum Output Voltage Swing	V _{oM}	R ₁ ≥2kΩ	± 12.0	± 12.8		± 11.5	± 12.8		v
		R _L ≥1kΩ	± 10.5	± 12.0			± 12.0		
Slewing Rate	SR	R _L ≥2kΩ	ļ	0.25		1	0.25		V/μsec
Closed Loop Bandwidth	BW	A _{VCL} = +1.0		1.2			1.2		MHz
Open Loop Output Resistance	R _o	V _o = 0, I _o = 0		60			60		Ω
	_			75	120		80	150	
Power Consumption	Pd	V _s = ±3V		4	6		4	8	mW
Offset Adjustment Range		R _p = 20kΩ		± 4			±4		m∨

The following specifications apply for V $_{S}$ = ± 15 V, 0°C \leqslant T $_{A}$ $\,\leqslant\,\,$ +70°C, unless otherwise noted.

Input Offset Voltage	Vos	(Note 1)		45	130		· 85	250	μ∨
Average Input Offset Voltage Drift						i di san		(Note 3)	
Without External Trim	TCVos	1. 1.		0.3	1.3		0.5	1.8	μv/°c
With External Trim	TCV _{osn}	$R_p = 20k\Omega$		0.3	1.3		0.4	1.6 (Note 3)	μν/ C
Input Offset Current	los			0.9	5.3		1.6	8.0	nA
Average Input Offset Current Drift	TCIos	(Note 3)		8	35		12	50	pA/°C
Input Bias Current	IВ			± 1.5	± 5.5		±2.2	±9.0	nΑ
Average Input Bias Current Drift	TCIB	(Note 3)		13	35		18	50	pA/°C
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		>
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	103	123		97	120		dB
Power Supply Rejection Ratio	PSRR	V _s = ± 3V to ± 18V	90	104		86	100		dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	180	450		100	400		V/mV
Maximum Output Voltage Swing	V _{oM}	$R_1 \ge 2k\Omega$,	± 12.0	± 12.6		±11.0	±12.6		~

NOTE 1: Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

NOTE 2: Long Term Input Offset Voltage Stability refers to the averaged trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5µV — refer to typical performance curve. Parameter is not 100% tested; 90% of units meet this specification.

NOTE 3: Parameter is not 100% tested; 90% of units meet this specification.

