Matrix Completion from a Few Entries

Raghunandan Keshavan, Sewoong Oh and Andrea Montanari

Stanford University

International Symposium on Information Theory
Seoul - June 29, 2009

Motivating Example: Recommender System

• Netflix Challenge

The Model

1. Low-rank matrix M.

2. Uniformly random sample E.

Goal : Estimation $\hat{M}(E, M^E)$ that minimizes

$$\label{eq:RMSE} \textit{RMSE} \equiv \left(\frac{1}{n^2 M_{\rm max}^2} \sum_{i,j} \left(M_{ij} - \hat{M}_{ij}\right)^2\right)^{1/2} \;.$$

- 1. Low-rank matrix M.
- 2. Uniformly random sample *E*.

Goal: Estimation $\hat{M}(E, M^E)$ that minimizes

$$\label{eq:RMSE} \textit{RMSE} \equiv \left(\frac{1}{\textit{n}^2 M_{\rm max}^2} \sum_{i,j} (M_{ij} - \hat{M}_{ij})^2 \right)^{1/2} \; .$$

Q1. How many samples do we need to get $RMSE \leq \delta$?

$$(1+\alpha)rn \leq |E| = O(n)$$

$$n \log n \leq |E| = O(n \log n)$$

Q1. How many samples do we need to get $RMSE \leq \delta$?

$$(1+\alpha)rn \lesssim |E| = O(n)$$

$$n \log n \lesssim |E| = O(n \log n)$$

Q1. How many samples do we need to get $RMSE \leq \delta$?

$$(1+\alpha)$$
rn $\lesssim |E| = O(n)$

$$n \log n \lesssim |E| = O(n \log n)$$

Q1. How many samples do we need to get $RMSE \leq \delta$?

$$(1+\alpha)$$
rn $\lesssim |E| = O(n)$

$$n \log n \lesssim |E| = O(n \log n)$$

Pathological Example

$$M = e_1 e_1^T$$

$$n \downarrow \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Pathological Example

$$M = e_1 e_1^T$$

$$n \downarrow \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Incoherence Property

M is (μ_0, μ_1) -incoherent if

A1.
$$M_{\text{max}} \leq \mu_0 \sqrt{r}$$
,

A2.
$$\sum_{a=1}^{r} U_{ia}^{2} \leq \mu_{1} \frac{r}{n}, \quad \sum_{a=1}^{r} V_{ja}^{2} \leq \mu_{1} \frac{r}{n}.$$

[Candés, Recht 2008]

Previous Work

Theorem (Candés, Recht 2008)

Let M be an $n \times n\alpha$ matrix of rank r satisfying (μ_0, μ_1) -incoherence condition. If

$$|E| \geq C(\alpha, \mu_0, \mu_1) r n^{6/5} \log n$$
,

then w.h.p. Semidefinite Programming reconstructs M exactly.

Main Contribution

Open Questions	Main Results
1. Complexity?	Low complexity
2. $RMSE \leq \delta$?	E = O(n)
3. Optimality?	$ E = O(n \log n)$

Algorithm not based on the Convex Relaxation

Main Contribution

Open Questions	Main Results
1. Complexity?	Low complexity
2. $RMSE \leq \delta$?	E = O(n)
3. Optimality?	$ E = O(n \log n)$

Algorithm not based on the Convex Relaxation

Main Contribution

Open Questions	Main Results
1. Complexity?	Low complexity
2. $RMSE \leq \delta$?	E = O(n)
3. Optimality?	$ E = O(n \log n)$

Algorithm not based on the Convex Relaxation

Naïve Approach

$$\mathsf{M}^{E}_{ij} = \left\{ egin{array}{ll} \mathsf{M}_{ij}^{E} & ext{if } (i,j) \in E \ , \\ 0 & ext{otherwise}. \end{array}
ight.$$
 $\mathsf{M}^{E} = \sum_{k=1}^{n} x_{k} \sigma_{k} y_{k}^{T}$

Rank-*r* projection :

$$\mathcal{P}_r(\mathsf{M}^E) \equiv \frac{n^2 \alpha}{|E|} \sum_{k=1}^r x_k \sigma_k y_k^T$$

Naïve Approach Fails

- Define : $deg(row_i) \equiv \#$ of samples in row i.
- For |E| = O(n), spurious singular values of $\Omega(\sqrt{\log n/(\log \log n)})$.
- Solution : Trimming

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{M}^{E}_{ij} \quad \textit{otherwise}. \end{array} \right.$$

Naïve Approach Fails

- Define : $deg(row_i) \equiv \#$ of samples in row i.
- For |E| = O(n), spurious singular values of $\Omega(\sqrt{\log n/(\log \log n)})$.
- Solution : Trimming

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{M}^{E}_{ij} \quad \textit{otherwise}. \end{array} \right.$$

Naïve Approach Fails

- Define : $deg(row_i) \equiv \#$ of samples in row i.
- For |E| = O(n), spurious singular values of $\Omega(\sqrt{\log n/(\log \log n)})$.
- Solution : Trimming

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{c} 0 \quad \text{if } \textit{deg}(\textit{row}_i) > 2\mathbb{E}[\textit{deg}(\textit{row}_i)] \;, \\ 0 \quad \text{if } \textit{deg}(\textit{col}_j) > 2\mathbb{E}[\textit{deg}(\textit{col}_i)] \;, \\ \mathsf{M}^{E}_{ij} \quad \textit{otherwise}. \end{array} \right.$$

The Algorithm

OPTSPACE

Input: sample positions E, sample values M^E , rank r **Output**: estimation \hat{M}

- 1: Trim M^E , and let \widetilde{M}^E be the output;
- 2: Compute rank-r projection $\mathcal{P}_r(\widetilde{\mathsf{M}}^E) = X_0 S_0 Y_0^T$;
- 3:

Main Result

Theorem (Keshavan, Montanari, Oh, 2009)

Let M be an $n \times n\alpha$ matrix of rank-r bounded by $M_{\rm max}$. Then

$$\frac{1}{n\mathsf{M}_{\max}}||\mathsf{M}-\mathcal{P}_r(\widetilde{\mathsf{M}}^E)||_{\mathrm{F}} = \mathrm{RMSE} \leq C(\alpha)\sqrt{\frac{nr}{|E|}}\;,$$

with probability larger than $1 - 1/n^3$.

The Algorithm

OPTSPACE

Input: sample positions E, sample values M^E , rank r

Output: estimation \hat{M}

1: Trim M^E , and let \widetilde{M}^E be the output;

2: Compute rank-r projection $\mathcal{P}_r(\widetilde{\mathsf{M}}^E) = X_0 S_0 Y_0^T$;

3: Minimize RMSE by gradient descent starting at (X_0, S_0, Y_0) .

Main Result

Theorem (Keshavan, Montanari, Oh, 2009)

Assume r = O(1), and let M be an $n \times n\alpha$ matrix satisfying (μ_0, μ_1) -incoherence with $\sigma_1(M)/\sigma_r(M) = O(1)$. If

$$|E| \geq C' n \log n$$
,

then OPTSPACE returns, w.h.p., the matrix M.

Comparison: Theory

Theorem (Candés, Tao, 2009 March)

Assume strongly incoherent matrix M.

If $|E| \ge C r n (\log n)^6$ then

SEMIDEFINITE PROGRAMMING returns, w.h.p., the matrix M.

Comparison: Implementation

- rank = 10, $\alpha = 1$, n = 1000
- M is recovered if $RMSE < 10^{-4}$

Comparison: Ill-conditioned matrices

- rank = 5, $\alpha = 1$, n = 1000
- condition number = 10

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- ① Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})?$ Suboptimal bound
- Noise? Order-optimal results

[KMO2009b]

Main Results

• Complexity?
$$O(r|E|\log n)$$

What's left?

① Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)

- $r = \Theta(n^{\beta})?$ Suboptimal bound
- Noise?
 Order-optimal results

KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- **1** Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})?$ Suboptimal bound
- Noise?
 Order-optimal results

[KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})?$ Suboptimal bound
- Noise?
 Order-optimal results

KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})?$ Suboptimal bound
- Noise?
 Order-optimal results

KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})$? Suboptimal bound
- Noise?
 Order-optimal results

[KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})$? Suboptimal bound
- Noise? Order-optimal results

[KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})$? Suboptimal bound
- Noise? Order-optimal results

[KMO2009b]

Main Results

- Complexity? $O(r|E|\log n)$

What's left?

- Prior knowledge of rank? RANKESTIMATION is exact for |E| = O(n)
- $r = \Theta(n^{\beta})$? Suboptimal bound
- Noise? Order-optimal results

[KMO2009b]

Comparison: Noisy Samples

- rank = 2, $\alpha = 1$, n = 600
- Noise Variance = 1

Proof

