Corrigé du devoir 1

6 février 2020

Exercice 1: Calcul matriciel

30 points

On considère les matrices suivantes.

$$A = \begin{pmatrix} 1 & -3 & 2 & 0 \\ -1 & -1 & 4 & 2 \\ 1 & -1 & 2 & -2 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & -2 & -1 \\ -1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 4 & 3 \\ -1 & -2 & -2 \\ 3 & -1 & 6 \end{pmatrix}$$

$$D = \begin{pmatrix} 3 & -8 & 5 \\ -1 & -1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

Indiquer en justifiant si chacune des opérations suivantes est bien définie et si c'est le cas, effectuer le calcul.

(a)
$$AC + D$$

(c)
$$A + B$$

(e)
$$A(B^T + D)^2$$

(6 chaque)

(b)
$$(BA)^2$$

$$(d) (B + D^T)^2$$

Solution:

(a) AC + D est bien définie car le nombre de colonnes de A est égal au nombre de lignes de C et la matrice obtenue du produit est de format 3×3 tout comme D.

$$AC + D = \begin{pmatrix} 3 & 2 & -7 \\ 3 & 14 & -1 \\ -1 & -2 & -3 \end{pmatrix} + \begin{pmatrix} 3 & -8 & 5 \\ -1 & -1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & -6 & -2 \\ 2 & 13 & 1 \\ 1 & -2 & -2 \end{pmatrix}$$

- (b) BA est bien définie car le nombre de colonnes de B est égal au nombre de lignes de A. Cependant, la résultat est une matrice 3×4 , donc $(BA)^2$ n'est pas bien défini.
- (c) A+B n'est pas définie car les matrices ne sont pas de même format.

(d) $(B+D^T)^2$ est bien définie car la transposée de D est de format 3×3 tout comme B. Leur somme va donner une matrice de même format que l'on pourra donc mettre au carré.

$$(B+D^T)^2 = \begin{pmatrix} 4 & 3 & 5 \\ -9 & -3 & -2 \\ 8 & 1 & 7 \end{pmatrix}^2 = \begin{pmatrix} 29 & 8 & 49 \\ -25 & -20 & -53 \\ 79 & 28 & 87 \end{pmatrix}$$

(e) $A(B^T + D)^2$ n'est pas bien définie car la somme $B^T + D$ donne une matrice de format 3×3 , au carré, cela reste une matrice de même format mais le nombre de colonnes de A est 4, le produit n'est donc pas défini.

Exercice 2: Jeu et matrices

10 points

(3)

Un jeu consiste à se déplacer sur la carte suivante d'une salle à l'autre afin de collecter des objets. On peut passer d'une salle i à une salle j s'il existe une porte entre les deux. Par exemple, on peut aller de la salle 1 à la salle 2. À chaque tour, un déplacement doit être effectué, on ne peut pas rester dans la même salle.

(a) On veut modéliser cette carte à l'aide d'une matrice M dont l'entrée m_{ij} vaut 1 s'il est possible de passer de la salle i à la salle j et 0 sinon. Écrire la matrice M.

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(4)

(3)

(b) Une propriété des matrices nous dit que l'entrée d'indices ij de la matrice M^n nous donne le nombre de possibilités de se rendre de la salle i à salle j en n déplacements. Combien de façons existe-t-il de se rendre de la salle 1 à la salle 2 en 2 déplacements ? (Justifier par un calcul et non avec la carte.)

Solution: Il suffit de calculer l'entrée 12 de M^2 , et on obtient 1.

$$M^{2} = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 2 \end{pmatrix}$$

Notons qu'il n'est pas nécessaire de calculer la matrice M^2 au complet, seule l'entrée 12 suffit.

(c) On ajoute maintenant une difficulté au jeu. Si on franchit une porte dans le bon sens (indiqué par une flèche), alors on gagne 1 point, sinon on en perd 1.

Pour modéliser cette carte à l'aide d'une matrice M', on va donner à l'entrée m'_{ij} la valeur 1 si on peut passer de la salle i à la salle j en gagnant 1 point, la valeur -1 si on peut passer de la salle i à la salle j en perdant 1 point et 0 sinon. Écrire la matrice M'

Solution:
$$\begin{pmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M' = \begin{pmatrix} 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

Exercice 3: Trace d'une matrice carrée

10 points

Si A est une matrice carrée d'ordre n, alors sa trace, notée tr(A), est la somme des entrées de sa diagonale :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Soient A et B deux matrices carrées d'ordre n. Montrer les égalités suivantes.

(a)
$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$

Solution: On a que $A + B = [a_{ij} + b_{ij}]$ donc

$$\operatorname{tr}(A+B) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B).$$

(b)
$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$

Solution: On a que $A^T = [a_{ij}^T] = [a_{ji}]$ et donc les entrées de la diagonale principale de A^T sont les mêmes que celles de la diagonale principale de A. D'où

$$\operatorname{tr}(A^T) = \sum_{i=1}^n a_{ii}^T = \sum_{i=1}^n a_{ii} = \operatorname{tr}(A).$$

Exercice 4 : Résolution de systèmes d'équations linéraires

30 points

Utiliser l'algorithme de Gauss-Jordan pour résoudre les systèmes d'équations linéaires suivants.

(a)
$$\begin{cases} x_1 - x_3 + x_4 &= -2 \\ x_2 - 3x_3 + 2x_4 &= 1 \\ x_2 &= 3 \\ -x_2 + x_3 + x_4 &= -9 \end{cases}$$
 (b)
$$\begin{pmatrix} -2 & 6 & -6 & 2 \\ 2 & -5 & -2 & 1 \\ 2 & -5 & -2 & 1 \\ 2 & -6 & 6 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \\ -4 \end{pmatrix}$$
 (15 chaque)

Solution:

(a) La matrice augmentée du système est

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & -1 & 1 & -2 \\
0 & 1 & -3 & 2 & 1 \\
0 & 1 & 0 & 0 & 3 \\
0 & -1 & 1 & 1 & -9
\end{array}\right).$$

Par l'algorithme de Gauss-Jordan, on obtient la matrice réduite échelonnée suivante

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & -4
\end{array}\right).$$

Le système admet donc une unique solution qui est $X_0 = \begin{bmatrix} 0\\3\\-2\\-4 \end{bmatrix}$.

Autrement dit, $x_1 = 0$, $x_2 = 3$, $x_3 = -2$ et $x_4 = -4$.

(b) La matrice augmentée du système est

$$\begin{pmatrix}
-2 & 6 & -6 & 2 & | & 4 \\
2 & -5 & -2 & 1 & | & 1 \\
2 & -5 & -2 & 1 & | & 1 \\
2 & -6 & 6 & -2 & | & -4
\end{pmatrix}.$$

Par l'algorithme de Gauss-Jordan, on obtient la matrice réduite échelonnée suivante

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & -21 & 8 & 13 \\
0 & 1 & -8 & 3 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right).$$

Les variables x_3 et x_4 sont donc des variables libres et le système admet une

infinité de solutions de la forme $X_0 = \begin{bmatrix} 13 + 21x_3 - 8x_4 \\ 5 + 8x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix}$.

Exercice 5: Les vecteurs

20 points

On donne les deux figures suivantes. Celle de gauche est un parallélipipède, les côtés sont donc tous des parallélogrammes. Celle de droite est une pyramide à base carrée, la face MNOP est donc un carré et le point Q est situé à égale distance des points M, N, O et P.

Répondez aux questions suivantes.

(a) Est-il vrai que $\overrightarrow{AE} = \overrightarrow{DH}$? Pourquoi?

(2 chaque)

- (b) Que peut-on dire de la longueur de \overrightarrow{DG} par rapport à la longueur de \overrightarrow{AB} ?
- (c) Que peut-on dire que du sens du vecteur \overrightarrow{AE} par rapport au sens du vecteur \overrightarrow{FB} ?
- (d) Que peut-on dire que de la direction du vecteur \overrightarrow{AE} par rapport à la direction du vecteur \overrightarrow{FB} ?
- (e) Écrire le vecteur \overrightarrow{DG} en fonction de \overrightarrow{CD} et \overrightarrow{DH} .
- (f) Que vaut $\overrightarrow{AB} \overrightarrow{FB}$? Donner le résultat final en utilisant les vecteurs déjà identifiés sur la figure.
- (g) Que peut-on dire que la direction du \overrightarrow{ON} par rapport à la direction du vecteur \overrightarrow{PM} ?
- (h) Que peut-on dire de la longueur du vecteur \overrightarrow{MQ} par rapport à la longueur du vecteur \overrightarrow{QP} ?
- (i) Écrire le vecteur \overrightarrow{PM} en fonction de \overrightarrow{MQ} et \overrightarrow{QP} .
- (j) Est-il vrai que $\overrightarrow{MQ} = \overrightarrow{QN}$? Pourquoi?

Solution:

- (a) Oui, $\overrightarrow{AE} = \overrightarrow{DH}$ car ils ont la même direction, le même sens et la même longueur.
- (b) La longueur de \overrightarrow{DG} est plus grande que celle de \overrightarrow{AB} .
- (c) Le vecteur \overrightarrow{AE} est de sens opposé au vecteur \overrightarrow{FB} .
- (d) Les vecteurs \overrightarrow{AE} et \overrightarrow{FB} sont la même direction.
- (e) $\overrightarrow{DG} = -\overrightarrow{CD} + \overrightarrow{DH}$
- (f) $\overrightarrow{AB} \overrightarrow{FB} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AF} = \overrightarrow{DG}$
- (g) Les vecteurs \overrightarrow{ON} et \overrightarrow{PM} ont la même direction.
- (h) Les vecteurs \overrightarrow{MQ} et \overrightarrow{QP} ont la même longueur.
- (i) $\overrightarrow{PM} = \overrightarrow{MQ} + \overrightarrow{QP}$
- (j) Non, $\overrightarrow{MQ} \neq \overrightarrow{QN}$ car ils n'ont pas la même direction.