Q4 (10 points)

Decide whether the following is true or false and prove your conclusion. Statement: Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be such that for every $x \in \mathbb{R}^m$ and every unit vector $e \in \mathbb{R}^m$, the directional derivative of f at x in the direction e exists. Then f is differentiable.

$$f(x,y) = \frac{x^{3}}{x^{3}y^{3}} ?$$
If f is differentiable, the $D_{e}f$ exists for all e .

$$D_{e}f(\delta) = \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t}$$

$$= \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t}$$

$$= \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t}$$

$$= \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t}$$

$$= \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t}$$

$$= \lim_{t \to 0} \frac{f(\delta \cdot te) - f(\delta)}{t} = 0$$

$$D_{e}f(\delta) = 0$$

$$D_{e}f(\delta) = 0$$

$$D_{e}f(\delta) = 0$$

$$\int_{0}^{\infty} f(\delta) = 0$$

$$\frac{7}{4.17}: f'(x)e_{j} = \frac{1}{2}(D_{j}f_{i})(x)u_{i} \qquad f:\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$$

$$\{u_{i}\} :_{i} \text{ star bas } f_{n} \mathbb{R}^{n}$$

$$\{e_{i}\} :_{i} \text{ star bas } f_{n} \mathbb{R}^{n}$$

TF
$$f$$
 3 diff e 0, the $f'(0) = [1,0)$ by \mathbb{R} 9.17.

In the definity $f'(0) = [1,0]$ by \mathbb{R} 9.17.

In $\frac{|f(0)+|f|-|f(0)-|f(0)-|f(0)|}{|f(0)-|f(0)-|f(0)|}$
 $|f(0)-|$