OpenShift 4.x Architecture Workshop

CoreOS and OpenShift 4.x

July 2019

CoreOS

Container Host Vision

An Ideal Container Host would be	Red Hat CoreOS	
Minimal	Only what's needed to run containers	
Secure	Read-only & locked down	
Immutable	Immutable image-based deployments & updates	
Always up-to-date	OS updates are automated and transparent	
Updates never break my apps	Isolates all applications as containers	
Updates never break my cluster	OS components are compatible with the cluster	
Supported on my infra of choice	Inherits majority of the RHEL ecosystem	
Simple to configure	Installer generated configuration	
Effortless to manage	Managed by Kubernetes Operators	

Red Hat CoreOS

Adapting for the next wave of innovation in distributed systems

Combining the innovations of Container Linux and Atomic with the stability and ecosystem of RHEL

Fully integrated and delivered via OpenShift.

- Small footprint, derived from RHEL
 - ∘ ~400 packages
- Fast provisioning: clusters deploy in minutes
- Simplified, cluster-centric updates and upgrades
- Managed and automated via operators

Red Hat CoreOS

Built for stability, scale, and hands-free operation

- Full support for the RHEL ABI & container ecosystem
- An immutable host, delivered and managed via OpenShift
 - Aligned lifecycle and release cadence
 - Updates & upgrades deployed via operators
- UX inspired by Container Linux
 - Read-only OS binaries in /usr
 - Integrated container & kubernetes stack
 - One-touch provisioning with Ignition

One Touch provisioning via Ignition

Machine generated; machine validated

Ignition applies a declarative node configuration early in the boot process.

- Generated via openshift-install
- Similar in scope to cloud-init
- Configures storage, systemd units, users, & remote configs
- Executed in the initramfs
- v3.0 spec is in progress

```
"ianition": {
 "confia": {}.
 "timeouts": {}.
 "version": "2.1.0"
"passwd": {
 "users": [
   "name": "core".
   "passwordHash": "$6$43y3tkl...",
   "sshAuthorizedKeys": [
    "kev1"
"storage": {},
"systemd": {}
```


Transactional Updates via rpm-ostree

Versioning and Simplifying OS Updates

Transactional updates ensure that the Red Hat CoreOS is never altered during runtime. Rather it is booted directly into an always "known good" version.

- OS binaries (/usr) are read-only
- Updates encapsulated in container images
- file system and package layering available for hotfixes and debugging

Over-the-air Updates - Delivery Mechanism

For Hosted and on-prem Deployments

- Updates can be driven from either cloud.openshift.com and/or the Cluster Console
- Updates are delivered via OCI images
- Auto-update support
- Manual updates will be supported for disconnected environments
 - Tooling to automate updates will be added in later release

Low-level Debugging via Toolbox

Bring your tools with you!

Toolbox is a simple script that provides a persistent privileged container for the following use cases:

- Low-level troubleshooting /debugging environment
- Collecting sosreports
- Install additional utilities not available as part of RHCOS

Container Stack

OCI tooling to create, run, and manage, Linux Containers with a cluster-friendly life cycle

Light-weight runtime for the Kube CRI

A docker-compatible CLI for containers

Inspect, push/pull, & signing of OCI images

- OCI compliant and docker compatible
- Leverages runC
- CLI via crictl
- Improved performance and scalability

- Remote management
 API via Varlink
- Image/container tagging
- Advanced namespace isolation

- Inspect image manifests
- Can transfer images between multiple registries.

OpenShift 4.x

OPENSHIFT 4.x THEMES

Integrate CoreOS technology for a better install, re-config and upgrade experience.

Bring over-the-air upgrades to the platform.

Introduce Red Hat CoreOS as an immutable OS option. Enhance "infrastructure as code" throughout the platform.

Provide tools, guidance and automation for customers and partners to deliver smart software on top of OpenShift

OPENSHIFT 4.x WORKSTREAMS

AWS Installer + bootstrapping
Autoscale out of the box
MachineSet node pools

Red Hat CoreOS

Discourage SSH/node mutation

Ignition for Machine config

OPENSHIFT 3

- Manually provision RHEL, bring to cluster
- Rely on admin to correctly configure OS
- Configuration drift over time
- Upgrades control the platform and limited parts of the node

OPENSHIFT 3

OPENSHIFT 4

For Day 2 management, the cluster needs full control over the nodes.

For Day 2 management, the cluster needs full control over the nodes.

Immutability = repeatability

Immutability **=** auditability

For Day 2 management, the cluster needs full control over the nodes.

Immutability = repeatability

Immutability = auditability

Immutability **#** static clusters

Immutability **#** no config changes

OPENSHIFT 4.x THEMES

INFRASTRUCTURE PROVISIONING

	OpenShift 3	OpenShift 4
User Provisioned Infrastructure	Default	Optional
Installer Provisioned Infrastructure	not possible	Default

MACHINE CONFIGURATION

- Red Hat CoreOS uses Ignition for configuration
- Ignition only runs once, on the first boot
- Ignition runs before systemd starts
 - Configure networking
 - Provision disks/RAID

CLUSTER API OBJECTS

- New API objects to declaratively manage the cluster
 - MachineDeployment
 - MachineSet
 - Machine

POSSIBLE CLUSTER ARCHITECTURE

CLUSTER ARCHITECTURE

- Scale Deployments independently
- Desired state managed by cluster
- Autoscale is no effort at all
- Rolling Machine config updates

Special GPU = MachineDeployment

Special security **=** MachineDeployment

Special \$anything

MachineDeployment

DAY 2 OPERATIONS

Machine Operators

Cluster Operators

Update Operators

Thank you!

