

Exploring Stroke-Related Brain Connectivity Patterns from fNIRS data

Pai-Yi Hsu

Department of Occupational Therapy, NTU

Background

Goals (previous)

1. Preprocess the fNIRS data

MNE-python

2. Visualize the data and explore the Functional connectivity

Machine learning

3. Network Deviation Score (NDS)

- NDS = 1-confidence of being "normal"
- A personalized score based on how much a subject's functional connectivity pattern deviates from the healthy network model.

Data

- 1. Dataset status: Internal use only (not published)
- **2.** Collection period: 2024/08 2025/05
- 3. Subjects: total 17 participants, 218 trails
 - Stroke patients (SP): 10
 - Healthy adults (SH): 7

4. Experiment design

- Each session includes pre/post stimulation fNIRS recordings
- Tasks: 2-minute rest + repeated handgrip (3 blocks per side)

Demographic Characteristics of Participants

Table 1.

Variable	Category	Stroke $(n = 14)$	Healthy $(n = 10)$	Total $(N = 24)$	
Sex	Male	9 (64.3%)	4 (40.0%)	13 (54.2%)	
	Female	5 (35.7%)	6 (60.0%)	11 (45.8%)	
Age (years)	_	59.1 ± 9.9	31.0 ± 11.9	47.9 ± 17.4	
Education level	High school or below (≤3)	1 (7.1%)	1 (10.0%)	2 (8.3%)	
	College/University (4–5)	11 (78.6%)	7 (70.0%)	18 (75.0%)	
	Graduate school (6)	2 (14.3%)	2 (20.0%)	4 (16.7%)	
Stroke Type	Ischemic	9 (64.3%)		9 (37.5%)	
	Hemorrhagic	5 (35.7%)		5 (20.8%)	
Affected Hemisphere	Left	9 (64.3%)		9 (37.5%)	
	Right	5 (35.7%)		5 (20.8%)	

Montage

- Based on 10–10 EEG layout
- 8 sources & 8 detectors → 22 channels

Methods

Preprocessing

Raw data → BIDS-Structure

Optodes Position

name	type	X	У	Z					
S1	source	- 0 072	1/520722	75226	0 00121	11077071777	 W WYY2601007WOE.	715	
S2	source	-							
S3	source	-							
S4	source	-							
S5	source	(
S6	source	(
S7	source	(
S8	source	(
D1	detector								2
D2	detector								5
D3	detector								9
D4	detector								1
D5	detector								1
D6	detector								2
D7	detector								6
D8	detector								7

Data Preprocessing

1. Convert to Optical Density

Long-transform light intensity to prepare for concentration estimation

```
# optical_density (raw)
```

2. Band-Pass Filtering

- Removes low-frequency drifts and high-frequency noise (e.g., heartbeat, muscle)
- Frequency range: 0.01–0.2 Hz
- Method: Butterworth filter (IIR, 4th order)

```
# filter(0.01, 0.2, method="iir", iir_params==dict(order=4, ftype="butter"), verbose=False)
```

3.Compute $\Delta[HbO]$ and $\Delta[HbR]$

```
# beer_lambert_law(od)
```

Data Preprocessing_Visualization

- Displays time-series changes in oxygenated hemoglobin (HbO) across channels
- Useful for quality control and detecting motion artifacts or bad channels

ERP analyzes

1. Add Event Labels

```
event_labels = [
    "rest1", "onset1", "task1",
    "onset2", "task2", "onset3", "task3",
    "ch_hand", "rest2",
    "onset4", "task4", "onset5", "task5", "onset6", "task6"
```

2. Data by Condition

- Define time windows: Task: 0–10s; Onset: 5–25s; Rest: 0–30s
- Epochs created for both HbO and HbR
- Ratio computed as HbO / HbR

3. ERP Analysis

- Average across epochs (Evoked)
- Extract ERP Features (Mean, Peak, AUC...)

ERP analyzes_ Visualization

- Displays brain spatial distribution at specific time points
- Red = \uparrow activation, Blue = \downarrow decrease
- Applicable to HbO, HbR, or HbO/HbR ratio data

ERP features_ Visualization

Functional Connectivity

1. Compute Correlation-Based FC

- Concatenate all epochs across time to form a $(n_channels \times total_time)$ array.
- Use Pearson correlation (np.corrcoef) to compute channel-wise connectivity.

2. Classify Connection Type

Classify each channel pair into one of four regions

LeftM1; RightM1; Interhemispheric (leftM1-right M1); Other (non-M1)

3. Statistical and Network-Level Analyses

- Healthy Subjects(SH) vs Stroke patients(SP)
- Statistical analysis, graph-theoretic analysis, functional connectivity metrices...etc

Result 1

Left M1

Result 2

Right M1

Result 3

Left M1 - RightM1

Discussion

1. Interhemispheric inhibition theory

Stroke patients showed reduced functional connectivity:

Within left and right M1

Between left and right M1 (interhemispheric)

Effects most evident during rest and movement

2. fNIRS-based connectivity

Limitations

- 1. Preprocessing took more time than expected (e.g., filtering, epoch labeling,)
 - → Did not complete the third part: machine learning
- 2. Use more precise time windows for epoching
- 3. Consider **stroke duration** and **lesion severity** as covariates
- 4. Increase sample size for better statistical power and subgroup analysis

Thanks for Listening Any Questions

Pai-Yi Hsu, f12429009@ntu.edu.tw