UNIDAD DIDÁCTICA 4

DISTRIBUCIONES DE PROBABILIDAD

OBJETIVO

El objetivo de esta Unidad Didáctica es introducir:

- 1. las distribuciones de probabilidad y la esperanza matemática,
- los modelos más importantes en la práctica para variables aleatorias discretas (Binomial y Poisson) y continuas (Uniforme, Exponencial y Normal).

Contenidos

- 1. INTRODUCCIÓN Y CONCEPTOS BÁSICOS
- 1.1 Variables aleatorias. Distribuciones de probabilidad
- 1.2 Distribuciones de probabilidad discretas
- 1.3 Distribuciones de probabilidad continuas
- 1.4 Esperanza matemática
- 1.5 Valor medio: concepto y propiedades
- 1.6 Varianza: concepto y propiedades

Contenidos

2. PRINCIPALES DISTRIBUCIONES DE PROBABILIDAD

- 2.1 La distribución Binomial
- 2.2 La distribución de Poisson
- 2.3 La distribución de Uniforme
- 2.4 La distribución Exponencial
- 2.5 La distribución Normal

UD 2:

- Concepto de variable aleatoria:
 - Característica expresable numéricamente cuyo valor fluctúa de un individuo a otro de la población.

- Probabilidad de que dicha variable aleatoria tome un valor en un determinado intervalo:
 - Proporción de individuos de la población en los que el valor que toma la variable está en dicho intervalo.

- A toda variable aleatoria le corresponde una determinada forma de distribuirse dichas probabilidades en el conjunto de posibles valores distribución de probabilidad
- Función de Distribución F(x) =P(X≤x)

Polígono de frecuencias acumulada-F(x) observada

- Cuando el conjunto de valores posibles que puede tomar una variable aleatoria es discreto, finito o infinito numerable, se dice que dicha variable, o distribución de probabilidad, es de tipo discreto.
- Ejemplos de variables discretas:
- el número de puntos al lanzar un dado (6 valores posibles)
- ➤ el número de piezas defectuosas en una muestra de 20 piezas (número de valores posibles 0, 1, ..., 20, o sea 21 en total),
- > el número de accidentes mortales en los fines de semana en las carreteras españolas

Función de probabilidad

- La forma de caracterizar la distribución de probabilidad de una variable discreta es con la función de probabilidad, también denominada a veces función de cuantía o función de masa, función que da la probabilidad de cada uno de los valores posibles x_i de X. Se simboliza como: P(X)
- P(X) da la probabilidad de que $(X = x_i)$ para todo x_i cuya probabilidad es >0.

Ejemplo 1: Si X es la variable aleatoria resultado de lanzar un dado simétrico,

$$E=\{1, 2, 3, 4, 5, 6\}$$

Función de probabilidad $P(X=x_i)=1/6$

Ejemplo 2: Si X es "número de caras obtenidas al lanzar simultáneamente dos monedas simétricas",

$$E = \{0, 1, 2\}$$

La función de probabilidad P(**X**=x_i) es (por ser independientes los resultados de las dos monedas):

$$P(X=0)=P(cruz en la 1^{o})xP(cruz en la 2^{a})=$$

= (1/2)x(1/2)=1/4

Ejemplo 2.

P(
$$X=1$$
)=P(cara en la 1^a)xP(cruz en la 2^a)+
+P(cruz en la 1^a)xP(cara en la 2^a)=
=(1/2)x(1/2)+(1/2)x(1/2)=1/2

$$P(X=2)=P(cara en la 1^a)xP(cara en la 2^a)=$$

=(1/2)x(1/2)=1/4

Definición de variable aleatoria continua:

 Su conjunto de valores posibles es un infinito continuo (en la práctica si sus valores pueden apreciarse con un gran número de decimales, con un aparato de medida suficientemente preciso)

Función de densidad

 La distribución de probabilidad de variable continua X, se caracteriza con la función de densidad:

 El área comprendida bajo la función de densidad de una variable aleatoria entre dos valores "a" y "b", coincide con la probabilidad de que tome valores en dicho intervalo :

$$\int_a^b f(x) dx = P(a < X \le b)$$

 Un resultado de gran importancia práctica es que, tanto para variables aleatorias discretas como continuas, la probabilidad de que una variable tome valores dentro de un intervalo [a, b] se puede obtener como:

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$

Función de densidad e histograma de frecuencias:

Si concebimos un histograma de los valores existentes en la población, en el que la barra que se traza sobre cada tramo tenga un área igual a la proporción de observaciones en dicho tramo, dicho histograma se irá aproximando a la función de densidad a medida que vaya aumentando el número de tramos

Distribuciones continuas. Función de densidad

Distribuciones continuas. Función de densidad

Histograma para N=1000

Distribuciones continuas. Función de densidad

"Histograma" para N=∞

Esperanza matemática

- El concepto de media aritmética, o promedio, de un conjunto de valores observados, definido como la suma de todos ellos dividida por el número de valores, tiene una clara interpretación intuitiva.
- Una idealización de dicho concepto lleva a la definición de la Esperanza Matemática, o Valor Medio, de una función h(X) de una determinada variable aleatoria X.

Esperanza matemática o valor medio

- Sea X una variable aleatoria y h(X) una función de ella.
- Esperanza matemática o valor medio de h(X):
 - Si X es discreta:

$$E(h(X)) = \sum h(x_i)P(X = x_i)$$

donde el sumatorio se extiende para todos los valores x_i de probabilidad no nula.

- Si X es continua:
$$E(h(X)) = \int_{-\infty}^{+\infty} h(x)f(x)dx$$

donde los límites de integración se limitarán a la región en la que f(x) es diferente de cero.

Caso particular h(X)=X

- Esperanza matemática o valor medio de X:
 - Si X es discreta:

Media de
$$X = m = E(X) = \sum_{i} x_i P(X = x_i)$$

- Si X es continua:

Media de
$$X = m = E(X) = \int_{-\infty}^{+\infty} xf(x)dx$$

El **valor medio** o **media** en la población se simboliza como **m**.

Ejemplo 1: hallar el valor medio de la siguiente variable aleatoria: **X**= "Número de caras al lanzar al aire 2 monedas simétricas".

SOLUCIÓN:

X _i	0	1	2
$P(X=x_i)$	1/4	1/2	1/4

$$m=E(X)=0/4+1/2+2/4=1$$

Otro ejemplo:

¿Valor medio del resultado de lanzar un dado?

$$E=\{1, 2, 3, 4, 5, 6\} P(X=x_i)=1/6$$

$$m=E(X)=1x(1/6)+2x(1/6)+3x(1/6)+...+6x(1/6)=3,5$$

 Una propiedad fundamental del valor medio es que es un operador lineal, o sea que la media de una combinación lineal de variables aleatorias es la combinación lineal de las medias de las mismas:

$$E(a_0 \pm a_1 X_1 \pm ... \pm a_n X_n) = a_0 \pm a_1 E(X_1) \pm ... \pm a_n E(X_n)$$

• En particular se cumplirá, por tanto, que

si
$$Y = aX \pm b \Rightarrow E(Y) = aE(X) \pm b$$

si $Y = X_1 \pm X_2 \Rightarrow E(Y) = E(X_1) \pm E(X_2)$

Varianza: concepto y propiedades

Siendo m la media de una variable aleatoria X, se denomina varianza de dicha variable (y se simboliza como σ^2) a la esperanza matemática de la función $h(X) = (X - m)^2$

Varianza =
$$\sigma^2$$
 = E(X-m)²

Por tanto:

Varianza de una var.discreta: $\sigma^2(\mathbf{X}) = \sum_{i} (x_i - m)^2 P(X = x_i)$ Varianza de una var.continua: $\sigma^2(\mathbf{X}) = \int_{-\infty}^{+\infty} (x - m)^2 f(x) dx$

Desviación típica σ: raíz cuadrada positiva de la varianza.

Varianza: concepto y propiedades

Propiedades de la varianza:

$$\sigma^2$$
 (a+b**X**)=b² σ^2 (**X**)

Si X e Y son independientes

$$\sigma^2(\mathbf{X}\pm\mathbf{Y}) = \sigma^2(\mathbf{X}) + \sigma^2(\mathbf{Y})$$

En general, la varianza de una suma de variables aleatorias se puede obtener como:

$$\sigma^2(a_0+a_1X_1+a_2X_2)=a_1^2\sigma^2(X_1)+a_2^2\sigma^2(X_2)+2a_1a_2Cov(X_1,X_2)$$

Varianza: concepto y propiedades

Ejemplo:

¿Varianza del resultado de lanzar un dado?

E={1, 2, 3, 4, 5, 6}
$$P(\mathbf{X}=x_i)=1/6$$
 m=3,5
 $\sigma^2 = E(\mathbf{X}-m)^2 = (1-3,5)^2 \times (1/6) + (2-3,5)^2 \times (1/6) + (3-3,5)^2 \times (1/6) + ... + (6-3,5)^2 \times (1/6) = 2,917$

¿Desviación típica?
$$\sigma = \sqrt{2,917} = 1,7$$

Media y varianza

	Muestra	Población
Media	X	m
Varianza	s ²	σ^2
Desviación	S	σ
típica		