### Final Project: Value-Iteration Method for MDP

#### Group 6

The Chinese University of Hong Kong, Shenzhen

Chuqiao Feng 120090272 Lang Tian 120090793 Linli Zhou 120090555 Manning Wu 120090753

April 21, 2023

### Overview

- Problems
- 2 Preliminaries
- 3 Algorithm
  - Random VI
  - CyclicVI
- Mumerical Experiments and Results
  - Maze Setting and Notations
- 5 Stochastic Approximation
- 6 Tic-Tac-Toe Game
  - MDP with Value Iteration
  - Q-learning Method
- Summary



#### Preview

- We work on implementing the value-iteration method for Markov Decision Processes.
- We ask the following question:
   Q: How to solve Markov Decision Process more efficiently?
- Our answers:(Overview)
  - A1: Value Iteration with random and cyclic strategy
  - A2: Value Iteration with state aggregation

3/41

### Motivation

- We want to optimize sequential decision-making in reality.
- Why is the topic challenging?
  - 1. Curse of dimensionality
  - 2. The trade-off between efficiency and performance.

4 / 41

# Problem Setup

#### Markov Decision Processes (MDPs)

In MDPs, we consider the following minimization problem

$$\min_{\pi \in A^{\mathcal{S}}} V_{\pi}(i) := \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} c_{a_{t}}(i_{t}) | i_{0} = i \right]$$
 (1)

where  $\{i_0, a_0, i_1, a_1, \cdots, i_t, a_t, \cdots\}$  are state-action transitions generated by the MDP under the fixed policy  $\pi$ , i.e.  $a_t = \pi_{i_t}$ , and the expectation  $\mathbb{E}_{\pi}[\cdot]$  is over the set of  $(i_t, a_t)$  trajectories.



5 / 41

### Notation

- S is finite state space, and the number of the total states is |S|
- A is finite state action space
- $\gamma \in [0,1)$  is the discounted factor
- P is the collection of state-action-state transition probabilities, with P(i'|i,a) represents the probability of going to state i' from state i when taking action a
- c is the collection of costs at different state-action pairs, i.e. we cost  $c_a(i)$  if we are currently in state i and take action a

6 / 41

# Bellman optimality equations

#### Bellman optimality equations (Bellman 1957)

The (optimal) value function achieved by the optimal policy satisfies

$$V^*(i) = \min_{a \in A_i} \left( c_a(i) + \gamma \sum_{i' \in S} P(i'|i,a) V^*(i') \right)$$
 (2)

#### Value operator

For a given MDP, the value operator  $T: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$  is defined for all  $U \in \mathbb{R}^{|S|}$  and  $i \in S$  by

$$T(U)_{i} = \min_{a \in A_{i}} \left( c_{a}(i) + \gamma \sum_{i' \in S} P(i'|i,a)U(i') \right)$$
(3)

 $V^*$  is the fixed point of T.

DDA4300

# Connection with Linear Programming(LP)

The Value operator inspires us to find an upper bound,  $V \ge T(V)$ , by considering a larger set of linear constraints.

$$V(i) \le c_a(i) + \gamma \sum_{i' \in S} P(i'|i,a)V(i') \quad \forall a \in A, i \in S$$
 (4)

Thus we can reformulate (1) as follows:

min 
$$\sum_{\forall i \in S} V(i)$$
s.t. 
$$V(i) \le c_a(i) + \gamma \sum_{i' \in S} P(i'|i,a)V(i') \quad \forall a \in A, i \in S$$
 (5)

4□▶ 4□▶ 4□▶ 4□▶ □ ♥9<</p>

### Value Iteration

### Lemma (Contraction Mapping)

For all values  $U, V \in \mathbb{R}^{|S|}$  we have that  $\|T(U) - T(V)\|_{\infty} \leq \gamma \|U - V\|_{\infty}$  and consequently  $\|T(U) - V^*\|_{\infty} \leq \gamma \|U - V^*\|_{\infty}$ , where  $V^*$  is the optimal value vector.

 Based on Lemma 1, we can use the fixed-point iteration method, which is called Value Iteration in MDPs

$$V^{k+1} = TV^k$$

• We have  $\|V^k - V^\star\|_{\infty} \le \gamma^k \|V^0 - V^\star\|_{\infty}$ 

### Lemma (Entry-wise Monotone Property)

if values  $U, V \in \mathbb{R}^{|S|}$  satisfy  $U \leq V$  entry-wise, then  $T(U) \leq T(V)$  entry-wise.

# (Vanilla) Value Iteration Algorithm

#### **Algorithm 1** vanilla value iteration(S, A, c, P, $\gamma$ )

```
Initialize V^0 \in \mathbb{R}^{|S|} arbitrarily;

for k = 0, 1, \cdots do

| for i \in S do

| V^{k+1}(i) = \min_{a \in A_i} \{c_a(i) + \gamma \sum_{i' \in S} P(i'|i, a) V^k(i')\}

end
```

end



### Random Value Iteration

**Motivation**: When |S| is huge, update is computationally expansive in each iteration.

**Solution:** Randomly select a subset of S to update.

Random Value Iteration (Random VI)

In the kth iteration, randomly select a subset of states  $B^k$  and do

$$V^{k+1}(i) = \min_{a \in \mathcal{A}_i} \{ c_a + \gamma \sum_{i'} P(i'|i, a) V^k(i') \}, \ \forall i \in B^k.$$
 (6)

**Modification (Influence Tree)**:  $B^k$  is a random subset of states which are connected by any state in  $B^{k-1}$ 

◆□▶◆□▶◆■▶◆■▶ ● 900

# Cyclic Value Iteration

#### Cyclic Value Iteration (CyclicVI)

Update one state at a time in order. In the kth iteration do

- Initialize  $\tilde{V}^k = V^k$ .
- For i = 1 to |S|

$$\tilde{V}^{k}(i) = \min_{a \in \mathcal{A}_{i}} \{ c_{a}(i) + \gamma \sum_{i'} P(i'|i,a) \tilde{V}^{k}(i') \}$$
 (7)

•  $V^{k+1} = \tilde{V}^k$ .

**Difference with Vanilla VI:** vanilla VI is synchronous (using  $V^k$  in update), but CyclicVI is asynchronous.

Modification (Randomly Permuted CyclicVI):

Update one state at a time in random order  $B^k$  during the kth iteration.

Group 6 DDA4300 April 21, 2023 12 / 41

# Maze Setting and Notations

#### Maze Setting

- Standard Maze: 2D Maze with  $m^2$  states (m = height = width)
- Terrain Maze: 3D Maze with m<sup>2</sup> states
   (Height: Initially, consider the height of each state as a random number. Then, the height of each state is updated by calculating the average of the heights around it.)

#### Example



Figure: Standard Maze



Figure: Terrain Maze

# Comparison of methods in standard maze



Figure: Convergence rates of various value iteration methods in standard maze.  $(\gamma = 0.99, 20000 \text{ runs}, \text{ random sample size/maze size} = 1)$ 

Group 6 DDA4300 April 21, 2023 14 / 41

# Comparison of methods in terrain maze



Figure: Convergence rates of various value iteration methods in terrain maze.  $(\gamma = 0.99, 20000 \text{ runs, random sample size/maze size} = 1)$ 

Group 6 DDA4300 April 21, 2023 15 / 41

#### Results

- For both standard maze and terrain maze
  - Number of iterations to converge:
     RP Cyclic VI = VI < Cyclic VI < Random VI < Influence-tree Random VI</li>
  - Random VI and Influence-tree random VI have lower computational cost.

Group 6 DDA4300 April 21, 2023 16 / 41

# More computation-efficient method?

- Difficulty: The state space *S* is huge.
- Random selection can partially reduce the computation cost, but does not utilize the problem structure information.
- New idea: state aggregation.
  - Similar states have close values (long-term rewards).
  - We can group/aggregate such states into a mega-state.
  - The state space size is reduced.
  - Mathematical meaning: piece-wise constant function approximation rather than discrete table.

17 / 41

# State Aggregation

#### Mega State

A state partition  $\{S_i\}_{i=1}^K$  on S:  $S = \bigcup_{i=1}^K S_i$  and  $S_i \cap S_j = \emptyset$  for  $i \neq j$  Denote  $W \in \mathbf{R}^K$  the cost-to-go value function for the mega state

The current value of W induces a value function  $\tilde{V}(W) \in \mathbf{R}^{|\mathcal{S}|}$  on the original state space:

$$ilde{V}(s,W)=W(j), \quad ext{for } s\in S_j$$

# Adaptive Aggregation

#### **Challenge:**

- If aggregation rule W is pre-specified, we hope (and could design W such) that  $\|\tilde{V}(W) V^*\|_{\infty}$  is small.
- But, we do not know  $V^*$  before problem-solving, so it is hard to design W.

### Solution in [Chen et al., 2021]:

- We have  $V^k \to V^*$ , so  $V^k$  is a surrogate of  $V^*$ .
- We can adaptively update the aggregation rule W based on  $V^k$ .

Group 6 DDA4300 April 21, 2023 19 / 41

# Value-based Aggregation

### Algorithm 2 Value-based Aggregation

Input: 
$$\varepsilon$$
,  $\mathbf{V} = (V(1), \dots, V(|\mathcal{S}|)^T)$   
 $b_1 = \min_{s \in |\mathcal{S}|} V(s), b_2 = \max_{s \in |\mathcal{S}|} V(s), \Delta = (b_2 - b_1)/\varepsilon;$   
for  $i = 1, \dots, \lceil \Delta \rceil$  do  
 $\bigcup \hat{S}_i = \{s | V(s) \in [b_1 + (i-1)\varepsilon, b_1 + i\varepsilon)\}, \hat{W}(i) = b_1 + (i-\frac{1}{2})\varepsilon$   
Output: Return  $\{S_i\}_{i=1}^K$  and  $W$ 

**Key idea:** Discretize  $V^k$  into intervals based on  $\min_s V^k(s)$  and  $\max_s V^k(s)$ ,

# Periodical Implementation

#### **Two-Phases Algorithms:**

- Phase 1 (with  $\mathcal{B}$ ): algorithm performs global updates on |S|.
- ullet Phase 2 (with  $\mathcal A$ ): algorithm performs state-aggregated updates.

For a pre-specified number of iterations n, the time horizon [1, n) is divided into intervals of the form  $\mathcal{B}_1, \mathcal{A}_1, \mathcal{B}_2, \mathcal{A}_2, \cdots$ .

• Example:

$$\mathcal{B}_1 = \{1, 2, 3, 4\}, \quad \mathcal{A}_1 = \{5\},$$

$$\mathcal{B}_2 = \{6,7,8,9\}, \quad \mathcal{A}_2 = \{10\}$$

### Algorithm

### Algorithm 3 Value Iteration with Adaptive Aggregation

### Continued

```
if t \in A_i then
    if t=min\{A_i\} then
     Define \{S_i\}_{i=1}^K and W_t to be the output of Algorithm 2
    for j = 1, \dots, K do
         Sample state s uniformly form collection S_i.
                           W_{t+1}(i) = (1 - \alpha_t)W_t(i) + \alpha_t T_i \tilde{V}(W)
    t_{sa} = t_{sa} + 1
 if n \in \mathcal{B}_i then
  \mid return V_n \mid
 return \tilde{V}(W_n)
```

DDA4300

# **Experiments**

### Setting

- Discount factor  $\gamma$ : 0.99
- $|A_i|$ : 2  $|B_i|$ : 5
- Learning rate  $\alpha_t$ :  $\frac{1}{\sqrt{t}}$
- ε: 0.5
- Initialization  $V_0$ : 0

#### **Experiments**

**Influence of**  $\varepsilon$ : We run experiments on a 20  $\times$  20 maze with different setting of  $\varepsilon$  to test the effect of  $\varepsilon$  on error.

**Convergence**: We test the convergence of algorithm 3 against value iteration (VI) on  $20 \times 20$  standard and terrain maze.

**Efficiency**: We compare the computation time of algorithm3 in 4000 runs against VI on large-scale terrain maze  $(50 \times 50)$  repeated for 20 times.

### Result I



Figure: Influence of  $\varepsilon$ 

 $\varepsilon$  =0.05, 0.2, and 0.5. The error  $||E_t||_{\infty} \propto \varepsilon$ .



### Result II

### orange line: Algorithm 3 blue line: Value Iteration





Figure: Standard maze

Figure: Terrain maze

The state-aggregated update  $\mathcal{B}$  will increase the  $\|E_t\|_{\infty}$ .

Group 6 DDA4300 April 21, 2023 26 / 41

### Result III



| Γime (s) SA : VI |
|------------------|
| 6.59 : 5.22      |
| 16.35 : 21.51    |
| 26.69:69.91      |
| 47.68 : 181.70   |
| 112.72 : 621.45  |
|                  |

Table: Computation Time

Figure: Efficiency test

The algorithm 3 improved efficiency in terms of computation time compared to Value Iteration.

### Tic-Tac-Toe Overview

- Value Iteration
- Q-learning (Stochastic Approximation)
- Deep Reinforcement Learning (Stochastic Approximation + Function Approximation)



Figure: Example of rewarding state in the learning process.

# Game Setting and Notations

```
Example: (part of a game trajectory)
```

States trajectory: 
$$\{[-1, 0, 1, 0, -1, 0, 1, -1, 0], [-1, 0, 1, 0, -1, 0, 1, -1, 0]\}$$

Values for X player:  $\{0.9, 0.81\}$ 

(The current condition benefits player X)

Values for O player:  $\{0.1, 0.18\}$ 

(The current condition is not beneficial for player O)

Choose Action: pick the position with the highest value in available space.

| Agent's Value Function |       |       | Agent's \ | √alue Function | 1     |
|------------------------|-------|-------|-----------|----------------|-------|
| 38.2%                  | 44.8% | 44.8% | 0         | 89.2%          | 43.8% |
| 44.7%                  | 98.8% | 63.8% | 44.2%     | 0              | 50.4% |
| 40.7%                  | 49.4% | 50.6% | 86.9%     | 28.1%          | 61.1% |

Figure: Choosing Action based on state-value function.

### Value Iteration Method

Retrieve the initialized state-value pairs (e.g. for player X)

$$\mathsf{Value} = \begin{cases} 1, \mathsf{if} \; \mathsf{X} \; \mathsf{wins} \\ 0, \mathsf{if} \; \mathsf{O} \; \mathsf{wins} \\ 0.5, \mathsf{otherwise} \end{cases}$$

- Apply Value Iteration over all the states several times
- Go until convergence (usually not more than 3 loops)

#### Value-Iteration

• 
$$V_{k+1}(s) = \max_{a} (R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V_k(s'))$$

• - Same reason as the previous problem on Bellman Equation(DP)

To retrieve the optimal policy after the value iteration:

• 
$$\pi(s) = \operatorname{argmax}_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k+1}(s')$$

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 □ □
 2 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4

### Value Iteration Method



Figure: Convergence of value iteration

◆ロト ◆個ト ◆差ト ◆差ト を めなる

# Problems on Time & Space Complexity



Figure: Cost of Memory Space on 3\*3 game



Figure: Cost of Memory Space on 4\*4 game

Group 6 DDA4300 April 21, 2023 32 / 41

# Q-learning Algorithm

Group 6

### Algorithm 4 Epsilon-Greedy Q-Learning Algorithm

```
Input: \alpha : learning rate, \gamma : discount factor, \epsilon : a small number
Result: A Q-table containing Q(S,A) pair defining estimated optimal policy
\pi^*
Initialize Q(S, A) arbitrarily, except Q(terminal, .);
Q(terminal,.) \leftarrow 0
for each episode do
    Initialize state S:
    for each step in episode do
        A \leftarrow SELECT - ACTION(Q, S, \epsilon);
         Take action A, then observe reward R and next state S':
         Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{\alpha} Q(S', a) - Q(S, A)];
```

April 21, 2023 33 / 41

DDA4300

# Q-learning Method

• 
$$Q(S, a) \leftarrow Q(S, a) + \alpha [R_a(S, S') + \gamma \max_{a'} Q(S', a')]$$





Figure: Experiment Result of Q-learning + 4 = + 4 = + = + 9 ac

Group 6 DDA4300 April 21, 2023 34 / 41

# Deep Reinforcement Learning Approach: idea



Figure: Logic of Deep Reinforcement Learning in Tic-Tac-Toe

Group 6 DDA4300 April 21, 2023 35 / 41

# Further: Deep Learning Approach

Model: "sequential"

| Layer (type)        | Output Shape | Param # |
|---------------------|--------------|---------|
| dense (Dense)       | (None, 200)  | 2000    |
| dropout (Dropout)   | (None, 200)  | 0       |
| dense_1 (Dense)     | (None, 125)  | 25125   |
| dense_2 (Dense)     | (None, 75)   | 9450    |
| dropout_1 (Dropout) | (None, 75)   | 0       |
| dense_3 (Dense)     | (None, 25)   | 1900    |
| dense_4 (Dense)     | (None, 3)    | 78      |

Input laver layer 3 Output laver

Figure: NN structure

Figure: NN structure

# **Experiment: Deep Learning Approach**

Results for player 1: Wins: 976 (97.6%) Loss: 0 (0.0%) Draw: 24 (2.4%)

Figure: Trained X v.s. Random O

Results for player 2: Wins: 735 (73.5%)

Loss: 45 (4.5%)

Draw: 220 (22.0%)

Figure: Random X v.s.

Trained O

Results for player 1: Wins: 294 (29.4%) Loss: 323 (32.3%)

Draw: 383 (38.3%)

Results for player 2: Wins: 323 (32.3%) Loss: 294 (29.4%) Draw: 383 (38.3%)

Figure: Trained X v.s.

Trained O

#### **Notice:**

- Can not perform as well as Value Iteration in this tic-tac-toe condition.

#### Possible reasons:

- Total space is not large enough for deep learning
- Neural Network has low explainability for this model

Group 6 DDA4300 April 21, 2023 37 / 41

# Summary

- We discussed the value-iteration problem and it's variance on different condions
- Key take take-away message:
  - VI with Adaptive Aggregation shows improved efficiency in terms of computation time than basic VI.
  - Random Permuted Cyclic Value Iteration, potentially leads to further improvement in convergence speed. Because it explores the development of heuristic algorithms that can predict permutation.
  - For tic-tac-toe: Q-learning is better than Value Iteration in time and space complexity, DRL only performs well in a more complicated problem
- Potential future directions and limitations: State Aggregation only shows its efficiency in large-scale problems, we can try to find a way to solve this in a small-scale problem.

Group 6 DDA4300 April 21, 2023 38 / 41

### References



Chen, G., Gaebler, J. D., Peng, M., Sun, C., and Ye, Y. (2021). An adaptive state aggregation algorithm for markov decision processes.

arXiv preprint arXiv:2107.11053.



# Acknowledgement

Thanks to the instructions from Ziniu Li



# Thank you!

