Undergrad Complexity

Ben Chaplin

Contents

1	Prir	mitive Recursive Functions	1
	1.1	Various functions and operators	1
		Definition and examples	
	1.3	Computability	2

1 Primitive Recursive Functions

1.1 Various functions and operators

Definition. The constant function C_n^k is defined for all $n, k \in \mathbb{N}$ as $C_n^k(x_1, \dots, x_k) = n$.

Definition. The successor function S is defined for all $x \in N$ as S(x) = x + 1.

Definition. The **projection function** P_i^k is defined for all $i, k \in \mathbb{N}$, $1 \le i \le k$ as $P_i^k(x_1, \dots, x_k) = x_i$.

Definition. Given an m-ary function h and m k-ary functions g_1, \ldots, g_m , the **composition operation** \circ is defined:

$$f = h \circ (g_1, \dots, g_m)$$

$$f(x_1, \dots, x_k) = h(g_1(x_1, \dots, x_k), \dots, g_m(x_1, \dots, x_k))$$

Definition. Given a k-ary function g and a (k+2)-ary function h, the **primitive recursion operator** ρ is defined:

$$f = \rho(g, h)$$

$$f(0, x_1, \dots, x_k) = g(x_1, \dots, x_k)$$

$$f(S(y), x_1, \dots, x_k) = h(y, f(y, x_1, \dots, x_k), x_1, \dots, x_k)$$

1.2 Definition and examples

Definition. The constant function, successor function and projection function are **primitive recursive** functions, as well as any finite number of composition or primitive recursive operations on those functions.

Example. $Add: \mathbb{N}^2 \to \mathbb{N}$ is primitive recursive, as it can be defined by: $Add = \rho(P_1^1, S \circ P_2^3)$.

$$Add(0, x) = P_1^1(x)$$

 $Add(S(y), x) = S \circ P_2^3(y, f(y, x), x)$

Let's run Add(2,3):

$$Add(2,3) = \rho(P_1^1, S \circ P_2^3)(S(1), 3)$$

$$= (S \circ P_2^3)(1, Add(1, 3), 3)$$

$$= S(Add(1, 3))$$

$$= S(\rho(P_1^1, S \circ P_2^3)(S(0), 3))$$

$$= S((S \circ P_2^3)(0, Add(0, 3), 3))$$

$$= S(S(Add(0, 3)))$$

$$= S(S(P_1^1(3)))$$

$$= S(S(3))$$

$$= S(4)$$

$$= 5$$

Example. $Mult: \mathbb{N}^2 \to \mathbb{N}$ is primitive recursive, as it can be defined by: $Mult = \rho(C_0^1, Add \circ (P_2^3, P_3^3))$.

$$Mult(0,x) = C_0^1$$

$$Mult(S(y),x) = Add \circ (P_2^3, P_3^3)(y, Mult(y,x), x)$$

1.3 Computability

It's pretty clear that all primitive recursive functions are computable, but are there computable functions that aren't primitive recursive?

Theorem 1. There exists a computable function which is not primitive recursive.

Proof. Roughly: enumerate primitive recursive functions, diagonalization argument.