Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Learning Objectives

- 1. Describe the concepts of selection and screening
- 2. Identify the main methods for evolving binders
- Critically evaluate the use of screening/selection methods for a given application
- 4. Identify methods for linking phenotype and genotype

The overall process of directed evolution

A key part of directed evolution is choosing the

best variants

Screening is the process of going through all variants and picking up the best one

Fluorescence can be used for screening

Fluorescence can be used for screening

Many enzymatic assays are screening-based

When you perform **selection**, only the fit variants survive

Antibiotic plates are the most common method for selection

The outcome of evolution studies heavily depend on your selection/screening method

The outcome of evolution studies heavily depend on your selection/screening method

The outcome of evolution studies heavily depend on your selection/screening method

In-class activity: You get what you select for ...

The selected variants need to be amplified to

create the next parents

Selection happens at the protein level

Selection happens at the protein level, but **amplification** is at the DNA level

Selection happens at the protein level, but amplification is at the DNA level

We need a way to link the phenotype (protein) to genotype (DNA)

In low-throughput assays ...

In low-throughput assays, you can take note of the phenotype-genotype link

Row ID	Activity	Sequence
A1	90%	LKNMGFTHILKDFSA
A2	25%	LKQMGFSHILKDWSA
A3	40%	IRNMGYTHIVKDFSA
H12	35%	LRNCGWTHIIKDFTV

Containment: Keeping the activity inside the cell where the DNA is!

Antibiotic resistance is an example of contained activities

Fluorescent protein signals are contained within the cytosol

Oil-water emulsions can be used to contain the phenotype and genotype within the same droplet

Display: Covalently linking the protein to the DNA source

Yeast surface display is the method of choice for most protein engineering approaches

Yeast surface display can be linked with FACS to obtain best binders

Proteins can be displayed on the surface of bacteria

Proteins can be displayed on the surface of bacteria

Ribosome display can also be used for displaying

proteins

mRNA display is attracting attentions as a method for selecting peptide binders

Each method has its limitations/applications

	Phage display	Eukaryotic display	Prokaryotic display	Ribosome display	mRNA/cDNA display
Host organism	Filamentous phages, M13, T4, T7, lambda, phagemid	S. cerevisiae, P. pastoris	E. coli, B. subtilis, L. bacillus, S. camosus	In vitro	In vitro
Library size Highest affinity K_d (M) a Typical enrichment factor per round Nucleic acid selected Transformation required Library form					
Proteins to be displayed					
Covalent link Surface anchorage					
Post translational machinery					

Each method has its limitations/applications

	Phage display	Eukaryotic display	Prokaryotic display	Ribosome display	mRNA/cDNA display
Host organism	Filamentous phages, M13, T4, T7, lambaa,	S. cerevisiae, P. pastoris	E. coli, B. subtilis, L. bacillus, S. camosus	In vitro	In vitro
T.:	phagemid 10 ^{9a}	10 ⁷	108-10	10 ¹³⁻¹⁴	10 ¹³⁻¹⁴
Library size Highest affinity K_d (M) ^a	10 10 ⁻¹¹	10^{-14}	10^{-13}	10^{-12}	10^{-10}
Typical enrichment factor per round	10^{2-4}	10 ²⁻³	10^{2-3}	10 ¹⁻³	10 ¹⁻³
Nucleic acid selected	DNA	DNA	DNA	mRNA	mRNA/cDNA
Transformation required	Yes	Yes	Yes	No	No
Library form	Plasmid	Plasmid	Plasmid	PCR fragment or mRNA	mRNA/cDNA, plasmid
Proteins to be displayed	Soluble, nontoxic, compatible with crossing membranes	Soluble and membrane, nontoxic, compatible with crossing membranes	Soluble and membrane, nontoxic, compatible with crossing membranes	Most proteins including cytotoxic, chemically modified and membrane proteins	Soluble, including cytotoxic, chemically modified
Covalent link	No	No	No	No	Yes (synthetic)
Surface anchorage	Capsid proteins	Agglutination proteins, flocculation proteins	Lpp-OmpA, autotransporter proteins, ice nucleation proteins	Ribosome	In vitro
Post translational machinery	Simple	Sophisticated	Moderate	Moderate	Simple

Continuous evolution methods combine diversification, selection and amplification

Phage-Assisted Continuous Evolution (PACE)

For the next lecture:

- Pre-class assessment for the next lecture
 Needs to be done before the start of class, will be available after this class
- Post-class assignment Write up questions for our panelists
- 3. Second journal: Will be discussed next week

Next lecture: The challenging case of enzymes

