

Avances en optimización de colectores solares para secado de productos agrícolas

Carlos Armando De Castro Orlando Porras Rey

Universidad de los Andes Departamento de Ingeniería Mecánica 2012

- Evita el ataque de micro-organismos.
- Mejor calidad del producto.
- Mayores tiempos de almacenamiento.
- Más facilidad en el transporte.

¿Por qué solar?

Wikipedia

- Energía gratuita.
- Limpia.
- Disponible en todo el territorio nacional (y el mundo).

- Asegura que se aproveche al máximo el recurso de la radiación solar.
- Acelera aún más los procesos del manejo post-cosecha de los agricultores.

• Vista lateral:

Sección transversal:

Rectangular

• Sección transversal:

Balance de calor sobre placa colectora:

$$(\tau \alpha)I + h_c(T_{fm} - T_p) + h_{rpc}(T_c - T_p) + h_{rps}(T_s - T_p) = 0$$

Balance de calor cubierta:

$$h_c(T_{fm} - T_c) + h_{rcp}(T_p - T_c) + h_{rcs}(T_s - T_c) + h_w(T_a - T_c) = 0$$

Sección rectangular:

$$\frac{dT_f}{dx} = \frac{h_c}{\rho_f uyc_p} \left[-2T_f + \left(T_p + T_c \right) \right]$$

$$T_{fo} = \frac{T_p + T_c}{2} + \left(T_a - \frac{T_p + T_c}{2}\right) \exp\left[-\frac{2h_c L_c}{\rho_f uyc_p}\right]$$

Sección triangular:

$$\frac{dT_f}{dx} = \frac{2h_c}{\rho_f uyc_p} \left[-\left(1 + \frac{2l}{w}\right)T_f + \left(T_p + \frac{2l}{w}T_c\right) \right]$$

$$T_{fo} = \frac{T_p + (2l/w)T_c}{1 + 2l/w} + \left(T_a - \frac{T_p + (2l/w)T_c}{1 + 2l/w}\right) \exp\left[-\frac{2h_c L_c}{\rho_f uy c_p} \left(1 + \frac{2l}{w}\right)\right]$$

Coeficientes:

$$h_{r,p-c} = \frac{\epsilon_p \epsilon_c \sigma (T_p^2 + T_c^2) (T_p + T_c)}{1 - r_{pl} r_{cl}}$$

$$h_{r,p-s} = \frac{\tau_{cl}\epsilon_p\sigma(T_p^2 + T_s^2)(T_p + T_s)}{1 - r_{pl}r_{cl}}$$

$$T_s = 0.0552T_a^{1.5}$$

$$(\tau \alpha) = \frac{\tau_{cs} \alpha_p}{1 - (1 - \alpha_p) r_{cs}}$$

Coeficientes:

$$h_w = 2.8 + 3.0V \left[W/m^2 K \right]$$

$$h_{r,c-s} = \epsilon_c \sigma (T_s^2 + T_c^2) (T_s + T_c)$$

Ra =
$$\frac{\beta g |\Delta T| y_{eq}^3}{v^2}$$
 Pr $Nu = 0.0158 Re^{0.8}$ $Nu = 7.6$

$$Nu = 1 + 1.44 \left[1 - \frac{1708}{Ra} \right] + \left[\left(\frac{Ra}{5803} \right)^{1/3} - 1 \right]$$

• Flujo interno por convección natural:

$$\frac{1}{2}\rho_{o}u^{2} = (\rho_{a} - \rho_{o})gH - \frac{1}{2}\rho_{o}u^{2}K - \frac{1}{2}\rho_{o}u^{2}f\frac{L_{T}}{D_{h}}$$

$$u = \sqrt{\frac{2gH(\rho_a/\rho_o - 1)}{1 + K + fL_T/D_h}}$$

• Psicrometría:

$$P_{sat}(T) = \frac{\exp(77.345 + 0.0057T - 7235/T)}{T^{8.2}}$$

$$W = \frac{0.6219\phi_a P_{sat}(T_a)}{P - \phi_a P_{sat}(T_a)}$$

$$\phi = \frac{WP}{(0.6219 + W)P_{sat}(T)}$$

$$\rho = \frac{P - \phi P_{sat}(T)}{R_a T} + \frac{\phi P_{sat}(T)}{R_v T}$$

$$c_p = 1005 + 1850W \left[\frac{J}{kgK}\right]$$

• Eficiencia:

$$\eta = \frac{\dot{m}c_p(T_{fo} - T_a)}{IA_c}$$

- Método iterativo de punto fijo multidimensional para la solución numérica de las ecuaciones.
- Todas las ecuaciones se resuelven de forma simultánea.

CÁLCULOS COLECTOR SOLAR CON CHIMENEA CUBIERTA TRASLÚCIDA SECCIÓN RECTANGULAR											
Propiedades del aire											
Ra [J/kgK]	Rv [J/kgK]										
287	461,496								_		
	Medidas del colector										
Lc [m]	Ls [m]	y [m]	w [m]	H [m]	K	A [m^2]	Per [m]	Dh [m]			
2,00	4,00	0,15	1,30	1,40	2,0	0,20	2,90	0,27			
	Condiciones externas										
I [W/m2]	P [Pa]	Ta [°C]	HR ext	V [m/s]	Ta [K]	Psat ext [Pa]	HE	Cp [J/kgK]	ρ ext [kg/m3]	hw [W/m2K]	Ts [K]
1200	80000	35	0,8	0	308,15	5607,27	0,037	1073,34	0,885	2,80	298,05
Pr	Propiedades ópticas de la cubiert										
TSC	ρsc	τlc	ρlc	ες							
0,733	0,265	0,6	0,398	0,002							
Propiedad	es ópticas o	le la placa	colectora								
α	ερ	ρlp	(τα)								
0,9	0,9	0,1	0,678								
				Estimacion	nes iniciales						
Tp [°C]	Tc [°C]	Tfm [°C]	To [°C]	u [m/s]	Tp [K]	Tc [K]	Tfm [K]	To [K]			
80	30	40	50	0,3	353,15	303,15	313,15	323,15			

CÁLCULOS COLECTOR SOLAR CON CHIMENEA CUBIERTA TRASLÚCIDA SECCIÓN TRIANGULAR											
Propiedades del aire											
Ra [J/kgK]	Rv [J/kgK]										
287	461,496										
	Medidas del colector										
Lc [m]	Ls [m]	y [m]	w [m]	H [m]	K	l [m]	A [m^2]	Per [m]	Dh [m]		
2,00	4,00	0,09	1,30	1,40	2,0	0,66	0,06	2,61	0,09		
	Condiciones externas										
I [W/m2]	P [Pa]	Ta [°C]	HR ext	V [m/s]	Ta [K]	Psat ext [Pa]	HE	Cp [J/kgK]	ρ ext [kg/m3]	hw [W/m2K]	Ts [K]
1200	80000	35	0,8	0	308,15	5607,27	0,037	1073,34	0,885	2,80	298,05
Pi	Propiedades ópticas de la cubierta										
τsc	ρsc	τΙς	ρlc	εc							
0,733	0,265	0,6	0,398	0,002							
Propiedades ópticas de la placa colectora											
α	ερ	ρlp	(τα)								
0,9	0,9	0,1	0,678						_		
				Estimacio	nes iniciales						
Tp [°C]	Tc [°C]	Tfm [°C]	To [°C]	u [m/s]	Тр [К]	Tc [K]	Tfm [K]	To [K]			
80	30	40	50	0,3	353,15	303,15	313,15	323,15			

To [°C]	HR	u [m/s]	m' [kg/h]	
45,92	0,45	0,50	299,3	
				•
I*Ac [W]	Q' [W]	KE' [W]	η [%]	
3120,0	974,8	0,01033	31,2%	
Tp [°C]	Tc [°C]	Tfm [°C]	Tm [°C]	To/Tm [°C]
107,8	39,0	40,8	73,39	92,07%
Re	Pr	E flot [J/m^3]	E cin [J/m^3]	% Pérdidas
6476	0,71	0,42	0,11	74,44%

Simulaciones

Simulaciones

Caso de optimización

Caso de optimización

Caso de optimización

Relaciones a maximizar

Sección rectangular

$$\frac{L_c}{y}$$

Sección triangular

$$\frac{L_c}{y}\left(1+\frac{2l}{w}\right)$$

Análisis flujo inducido

 Para flujo por convección natural inducido en chimenea en sección rectangular:

$$u = \sqrt{\frac{2gH(\rho_a/\rho_o - 1)}{1 + K} + \left[\frac{32\nu L_T}{D_h^2(1 + K)}\right]^2} - \frac{32\nu L_T}{D_h^2(1 + K)}$$

$$\frac{2gH(\rho_a/\rho_o-1)}{1+K} \ll \left[\frac{32\nu L_T}{D_h^2(1+K)}\right]^2$$

Definiendo:

$$D_{eq}^4 = \frac{512\nu^2 L_T^2 T_a}{gH(T_o - T_a)(1 + K)}$$

Análisis flujo inducido

Análisis flujo inducido

De las simulaciones se tiene:

$$\frac{L_T}{y} < 2.365 \left[\frac{gHL_T^2(T_o - T_a)(1+K)}{v^2 T_a} \right]^{0.25}$$

Conclusiones

- Modelos matemáticos obtenidos.
- Identificación de relaciones importantes en el desempeño del colector.
- Desarrollo de método de cálculo de colectores óptimos.
- Se ha determinado restricción de una relación adimensional para permitir flujo.

• Estos análisis de colectores solares no están restringidos a secado de productos agrícolas, son útiles para precalentamiento de aire en hornos, calefacción de casas y demás utilizaciones de aire caliente.

- Determinar más relaciones adimensionales importantes.
- Simular 3D por volúmenes finitos en Ansys Fluent e incluir modelos de turbulencia.

Referencias

- [1] Duffie, John and Beckman, William. Solar Engineering of Thermal Processes. 2nd edition. John Wiley & Sons. 1980.
- [2] Incropera and De Witt. Introduction to Heat Transfer. 2nd edition. John Wiley & Sons. 1990.
- [3] Swinbank, W.C. (963). Long-wave radiation from clear skies, Quarterly Journal of the Royal Meteorological Society, **89**: 339-348.
- [4] B. K. Bala. Solar Drying Systems. 1st edition. Agrotech Publishing Company. 1998.

Ing. Carlos Armando De Castro

cadecastro@gmail.com

• Ing. Orlando Porras, Dr. Sc.

oporras@uniandes.edu.co

