SOME RESULTS ON LOCAL COHOMOLOGY MODULES

AMIR MAFI

ABSTRACT. Let R be a commutative Noetherian ring, \mathfrak{a} an ideal of R, and let M be a finitely generated R-module. For a non-negative integer t, we prove that $H^t_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite whenever $H^t_{\mathfrak{a}}(M)$ is Artinian and $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < t. This result, in particular, characterizes the \mathfrak{a} -cofiniteness property of local cohomology modules of certain regular local rings. Also, we show that for a local ring (R,\mathfrak{m}) , f – depth (\mathfrak{a},M) is the least integer i such that $H^i_{\mathfrak{a}}(M) \ncong H^i_{\mathfrak{m}}(M)$. This result in conjunction with the first one, yields some interesting consequences. Finally, we extend the non- vanishing Grothendieck's Theorem to \mathfrak{a} -cofinite modules.

1. Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring, \mathfrak{a} an ideal of R, and that M is an R-module. Let t be a non-negative integer. Grothendieck [4] introduced the local cohomology modules $H_{\mathfrak{a}}^t(M)$ of M with respect to a. He proved their basic properties. For example, for a finitely generated module M, he proved that $H_{\mathfrak{m}}^t(M)$ is Artinian for all t, whenever R is local with maximal ideal \mathfrak{m} . In particular, it is shown that $\operatorname{Hom}_R(R/\mathfrak{m}, H^t_{\mathfrak{m}}(M))$ is finitely generated. Later Grothendieck asked in [5] whether a similar statement is valid if \mathfrak{m} is replaced by an arbitrary ideal. Hartshorne gave a counterexample in [6], where he also defined that an R-module M (not necessarily finitely generated) is \mathfrak{a} -cofinite, if $\operatorname{Supp}_R(M) \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}_R^t(R/\mathfrak{a},M)$ is a finitely generated R-module for all t. He also asked when the local cohomology modules are α -cofinite. In this regard, the best known result is that when either \mathfrak{a} is principal or R is local and dim $R/\mathfrak{a}=1$, then the modules $H_{\mathfrak{a}}^t(M)$ are \mathfrak{a} -cofinite. These results are proved in [8] and [3], respectively. Melkersson [15] characterized those Artinian modules which are \mathfrak{a} -cofinite. For a survey of recent developments on cofiniteness properties of local cohomology, see Melkersson's interesting article [16]. One of the aim of this note is to show that,

²⁰⁰⁰ Mathematics Subject Classification. 13D45.

Key words and phrases. local cohomology, cofinite.

2 MAFI

for a finitely generated module M, the module $H^t_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite whenever the modules $H^i_{\mathfrak{a}}(M)$ are \mathfrak{a} -cofinite for all i < t and $H^t_{\mathfrak{a}}(M)$ is Artinian. This result, in particular, characterizes the \mathfrak{a} -cofiniteness property of local cohomology modules of certain regular local rings (see Remark 2.3(ii)). Next, we assume that R is local with maximal ideal \mathfrak{m} . We prove that $f - \text{depth}(\mathfrak{a}, M)$, which was introduced in [14], is the least integer i such that $H^i_{\mathfrak{a}}(M) \ncong H^i_{\mathfrak{m}}(M)$. This result together with our first mentioned result, in turn yields some interesting consequences. Finally, we extend the non-vanishing Grothendieck's Theorem for \mathfrak{a} -cofinite R-modules.

2. The results

The following theorem describes the behaviour of the cofiniteness and Artinian property on local cohomology modules.

Theorem 2.1. Let M be finitely generated such that $H^t_{\mathfrak{a}}(M)$ is Artinian and that $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < t. Then $H^t_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite.

Proof. In view of [16, Proposition 4.1], it is enough to prove that $\operatorname{Hom}_R(R/\mathfrak{a}, H^t_{\mathfrak{a}}(M))$ is of finite length. To prove this, by [18, Theorem 11.38], we consider the Grothendieck spectral sequence

$$E_2^{i,j} = \operatorname{Ext}_R^i(R/\mathfrak{a}, H^j_{\mathfrak{a}}(M)) \Longrightarrow \operatorname{Ext}_R^{i+j}(R/\mathfrak{a}, M).$$

Since $E_r^{0,t} \cong E_\infty^{0,t}$ for r sufficiently large, $E_\infty^{0,t}$ is isomorphic to a subquotient of $\operatorname{Ext}_R^t(R/\mathfrak{a},M)$ and, furthermore, $\ker d_{r-1}^{0,t} \cong E_\infty^{0,t}$ for all $r \geq 3$, where $\ker d_{r-1}^{0,t} = \ker(E_{r-1}^{0,t} \longrightarrow E_{r-1}^{r-1,t-r+2})$, we can deduce that $\ker d_{r-1}^{0,t}$ is finitely generated for r sufficiently large. Next, for all $r \geq 3$, we have the exact sequence

$$0 \longrightarrow \ker d^{0,t}_{r-1} \longrightarrow E^{0,t}_{r-1} \longrightarrow E^{r-1,t-r+2}_{r-1}.$$

Therefore, since $E_{r-1}^{r-1,t-r+2}$ is a subquotient of $E_2^{r-1,t-r+2}$, our hypothesis give us that $E_{r-1}^{0,t}$ is finitely generated for r sufficiently large. continuing in this fashion, we see that $E_2^{0,t}$ is finitely generated; and hence it is of finite length. \square

The following corollary is immediate.

Corollary 2.2. Let M be finitely generated. Suppose that the local cohomology module $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < t and that it is Artinian for all $i \geq t$. Then $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i.

Remarks 2.3. (i) There is an example in [7, Example 3.4] which shows that $H^t_{\mathfrak{a}}(R)$ is not \mathfrak{a} -cofinite for $t = \operatorname{grade}(\mathfrak{a})$. However, by the above Theorem, $H^t_{\mathfrak{a}}(R)$ is \mathfrak{a} -cofinite, whenever it is Artinian.

(ii) Let (R, \mathfrak{m}) be a regular local ring of characteristic p(>0) and of dimension n. Suppose that R/\mathfrak{a} is a generalized Cohen-Macaulay local ring of dimension d(>0). Then, by [20, Corollary 1.7] and Theorem 2.1, the local cohomology modules $H^i_{\mathfrak{a}}(R)$ are \mathfrak{a} -cofinite if and only if $H^{n-d}_{\mathfrak{a}}(R)$ is \mathfrak{a} -cofinite.

Let R be a local ring with maximal ideal \mathfrak{m} and let M be a finitely generated. Following [9], a sequence x_1, \ldots, x_n of elements of R is said to be an M-filter regular sequence if, for all $\mathfrak{p} \in \operatorname{Supp}(M) \setminus \{\mathfrak{m}\}$, the sequence $x_1/1, \ldots, x_n/1$ of elements of $R_{\mathfrak{p}}$ is a poor $M_{\mathfrak{p}}$ -regular sequence. For an ideal \mathfrak{a} of R, the f – depth of \mathfrak{a} on M is defined as the length of any maximal M-filter regular sequence in \mathfrak{a} , denoted by f – depth(\mathfrak{a}, M). Here, when a maximal M-filter regular sequence in \mathfrak{a} does not exist, we understand that the length is ∞ . For some basic applications of these sequences see [2].

Lemma 2.4. Let (R, \mathfrak{m}) be a local ring and suppose that M is finitely generated. Then $f - \operatorname{depth}(\mathfrak{a}, M) = \min\{i \in \mathbb{N}_0 : \operatorname{Supp}_R H^i_{\mathfrak{a}}(M) \nsubseteq \{\mathfrak{m}\}\}.$

Proof. Let x_1, \ldots, x_n be a maximal M-filter regular sequence in \mathfrak{a} . If there exists $\mathfrak{p} \in \operatorname{Supp}_R(H^i_{\mathfrak{a}}(M)) \setminus \{\mathfrak{m}\}$ for some $0 \leq i \leq n-1$, then $x_1/1, \ldots, x_n/1$ is an $M_{\mathfrak{p}}$ -regular sequence contained in $\mathfrak{a}R_{\mathfrak{p}}$. Hence $H^i_{\mathfrak{a}}(M)_{\mathfrak{p}} = 0$, which is a contradiction. It therefore follows that

$$f - \operatorname{depth}(\mathfrak{a}, M) \le \min\{i \in \mathbb{N}_0 : \operatorname{Supp}_R H^i_{\mathfrak{a}}(M) \nsubseteq \{\mathfrak{m}\}\}.$$

Next, by assumption on x_1, \ldots, x_n , there exists $\mathfrak{p} \in \mathrm{Ass}_R(M/(x_1, \ldots, x_n)M) \setminus \{\mathfrak{m}\}$ with $\mathfrak{a} \subseteq \mathfrak{p}$. Now $\mathfrak{p} \in \mathrm{Ass}_R(\mathrm{Hom}_R(R/\mathfrak{a}, M/(x_1, \ldots, x_n)M))$; and hence $\mathfrak{p} \in \mathrm{Ass}_R(\mathrm{Ext}_R^n(R/\mathfrak{a}, M)) \setminus \{\mathfrak{m}\}$. Therefore, by [11, Proposition 1.1], $\mathfrak{p} \in \mathrm{Supp}(H_{\mathfrak{a}}^n(M)) \setminus \{\mathfrak{m}\}$, and this completes the proof. \square

Theorem 2.5. (see [9, Theorem 3.10] and [14, Theorem 3.1]) Let (R, \mathfrak{m}) be a local ring and suppose that M is finitely generated. Then $f - \operatorname{depth}(\mathfrak{a}, M) = \min\{i \in \mathbb{N}_0 : H^i_{\mathfrak{a}}(M) \ncong H^i_{\mathfrak{m}}(M)\}.$

4 MAFI

Proof. If $\operatorname{Supp}_R(M/\mathfrak{a}M) \subseteq \{\mathfrak{m}\}$, then $\sqrt{\mathfrak{a} + Ann(M)} = \mathfrak{m}$; and hence $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{m}}(M)$ for all $i \geq 0$. Therefore $\min\{i \in \mathbb{N}_0 : H^i_{\mathfrak{a}}(M) \ncong H^i_{\mathfrak{m}}(M)\} = \infty = f - \operatorname{depth}(\mathfrak{a}, M)$; and the result follows. So, we may assume that $\operatorname{Supp}_R(M/\mathfrak{a}M) \nsubseteq \{\mathfrak{m}\}$. Let $t = f - \operatorname{depth}(\mathfrak{a}, M)$ and let x_1, \ldots, x_t be an M-filter regular sequence in \mathfrak{a} . Then, by [19, Lemma 1.19], $H^i_{\mathfrak{a}}(M) \cong H^i_{(x_1,\ldots,x_t)}(M) \cong H^i_{\mathfrak{m}}(M)$, for all i < t. On the other hand, by Lemma 2.4, the R-module $H^i_{\mathfrak{a}}(M)$ is not isomorphic with $H^t_{\mathfrak{m}}(M)$. It therefore follows, by [9, Theorem 3.10]. \square

Remarks 2.6. Let M be finitely generated. Then

- (i) in view of Theorem 2.1 and Theorem 2.5, it is clear that if (R, \mathfrak{m}) is a local ring, then $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i less than f depth (\mathfrak{a}, M) ;
- (ii) it follows immediately from [9, Theorem 3.10] and Theorem 2.5 that if (R, \mathfrak{m}) is local and $H^i_{\mathfrak{a}}(M)$ is Artinian for all i < t, then $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{m}}(M)$ for all i < t.

The following lemma is needed in the proof of the next theorem. Note that if we replace \mathfrak{a} by the zero ideal in the lemma, then the Grothendieck's Theorem [4, p.88] immediately follows.

Lemma 2.7. Let M be \mathfrak{a} -cofinite. Then for every maximal ideal \mathfrak{m} of R and for all t, $H^t_{\mathfrak{m}}(M)$ is Artinian.

Proof. Since $H_{\mathfrak{m}}^t(M)$ is an \mathfrak{a} -torsion module, by [13, Theorem 1.3], it is enough to prove $0:_{H_{\mathfrak{m}}^t(M)}\mathfrak{a}$ is Artinian. Let $\Phi(-)$ denote the composite functor $\operatorname{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{m}}^0(-))$. We get a spectral sequence arising from the composite functor as:

$$E_2^{i,j} = \operatorname{Ext}_R^i(R/\mathfrak{a}, H^j_{\mathfrak{m}}(M)) \Longrightarrow (R^{i+j}\Phi)(M).$$

Now, we use induction on j (with $0 \le j \le t$) to show that $E_2^{0,t}$ is Artinian. Let $0 \le j < t$ and suppose that the result has been proved for smaller values of j.(Note that the case j = 0 was proved in [15, Corollary 1.8].) We can apply [15, Theorem 1.9] and use a similar argument as in the proof of Theorem 2.1, to see that $\ker d_{r-1}^{0,j+1}$ is Artinian for r sufficiently large. On the other hand, by induction, $E_{r-1}^{r-1,j-r+3}$ is

Artinian. It now follows that $E_2^{0,j+1}$ is Artinian. This complete the inductive step. In particular $E_2^{0,t}$ is Artinian. \square

In the next result, we will use the concept of attached prime ideals. For more details in this subject the reader is referred to [10] or the appendix to $\S 6$ in [12].

Theorem 2.8. Let (R, \mathfrak{m}) be a local ring and let M be a module of dimension d. If $H^d_{\mathfrak{m}}(M)$ is an Artinian module, then if \mathfrak{p} is any of its attached prime ideals, one has $\dim R/\mathfrak{p} \geq d$.

Proof. From the right exactness of $H^d_{\mathfrak{m}}(-)$ on modules of dimension $\leq d$, we get $H^d_{\mathfrak{m}}(M/\mathfrak{p}M) \cong H^d_{\mathfrak{m}}(M)/\mathfrak{p}H^d_{\mathfrak{m}}(M)$, which is $\neq 0$, since \mathfrak{p} is an attached prime ideal of $H^d_{\mathfrak{m}}(M)$. But $M/\mathfrak{p}M$ is a module over R/\mathfrak{p} . Therefore dim $R/\mathfrak{p} \geq d$. \square

In the following theorem, which establishes the non-vanishing Grothendeick Theorem for \mathfrak{a} -cofinite modules.

Theorem 2.9. Let (R, \mathfrak{m}) be a local ring and let M be a non-zero \mathfrak{a} -cofinite Rmodule of dimension n. Then $H^n_{\mathfrak{m}}(M) \neq 0$.

Proof. Firstly note that, in view of the hypotheses, $0:_M \mathfrak{a}$ is a finitely generated R-module of dimension n. Now, we prove the theorem by induction on $n(\geq 0)$. If n=0, then $0:_M \mathfrak{a}$ is Artinian; and hence, by [13, Theorem 1.3], M is Artinian. Therefore $H^0_{\mathfrak{m}}(M)=M\neq 0$.

Suppose, inductively, that $n \geq 1$ and the result has been proved for n-1. We may assume that M is \mathfrak{m} -torsion free. Also, by [15, Corollary 1.4], we may assume that $\mathrm{Ass}(M)$ is a finite set. Then, there exists a non-zero divisor $x \in \mathfrak{m}$ on M. Suppose the contrary that $H^n_{\mathfrak{m}}(M) = 0$. Then, for any such x, we can consider the exact sequence $0 \longrightarrow M \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0$ to see that $H^{n-1}_{\mathfrak{m}}(M)/xH^{n-1}_{\mathfrak{m}}(M) \cong H^{n-1}_{\mathfrak{m}}(M/xM)$,

 $n-1=\dim(0:_M\mathfrak{a})/x(0:_M\mathfrak{a})\leq \dim(0:_{M/xM}\mathfrak{a})=\dim M/xM\leq n-1,$ and that, by [15, Remark(a)], M/xM is \mathfrak{a} -cofinite. Therefore, by induction hypothesis, $H^{n-1}_{\mathfrak{m}}(M)/xH^{n-1}_{\mathfrak{m}}(M)\neq 0.$ Note that, by Lemma 2.7, $H^{n-1}_{\mathfrak{m}}(M)$ is Artinian. If $\mathfrak{m}\notin \operatorname{Att} H^{n-1}_{\mathfrak{m}}(M)$, then, for any

$$y \in \mathfrak{m} \setminus \bigcup_{\mathfrak{p} \in \operatorname{Att} H^{n-1}_{\mathfrak{m}}(M)} \mathfrak{p} \bigcup \bigcup_{\mathfrak{q} \in \operatorname{Ass}(M)} \mathfrak{q},$$

6 MAFI

we have $H^{n-1}_{\mathfrak{m}}(M) = yH^{n-1}_{\mathfrak{m}}(M)$, which is a contradiction. Thus $\mathfrak{m} \in \operatorname{Att} H^{n-1}_{\mathfrak{m}}(M)$. Let $\operatorname{Att} H^{n-1}_{\mathfrak{m}}(M) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_t, \mathfrak{m}\}$ and let $z \in \mathfrak{m} \setminus \bigcup_{i=1}^t \mathfrak{p}_i \bigcup \bigcup_{\mathfrak{q} \in \operatorname{Ass}(M)} \mathfrak{q}$. Then, by the above argument, we have $H^{n-1}_{\mathfrak{m}}(M)/zH^{n-1}_{\mathfrak{m}}(M) \cong H^{n-1}_{\mathfrak{m}}(M/zM)$. Hence, by [17, Proposition 5.2], $\operatorname{Att} H^{n-1}_{\mathfrak{m}}(M/zM) = \operatorname{Supp}(R/(zR)) \cap \operatorname{Att} H^{n-1}_{\mathfrak{m}}(M) = \{\mathfrak{m}\}$. Therefore, by [1, Corollary 7.2.12], $H^{n-1}_{\mathfrak{m}}(M/zM)$ has finite length. If we show that $H^{n-1}_{\mathfrak{m}}(M/zM) = 0$, then we achieved at the required contradiction. To this end, first let n = 1. Then we have the exact sequence

$$0 \to H^0_{\mathfrak{m}}(M) \stackrel{z}{\to} H^0_{\mathfrak{m}}(M) \to H^0_{\mathfrak{m}}(M/zM) \to H^1_{\mathfrak{m}}(M).$$

By our hypothesis $H^0_{\mathfrak{m}}(M) = 0 = H^1_{\mathfrak{m}}(M)$; and so $H^0_{\mathfrak{m}}(M/zM) = 0$. Now, we assume that n > 1. Then, Theorem 2.8 implies that attached prime ideals of $H^{n-1}_{\mathfrak{m}}(M/zM)$ is empty; and so $H^{n-1}_{\mathfrak{m}}(M/zM) = 0$. \square

Acknowledgment: The author is deeply grateful to the referee for his or her careful reading of the manuscript. The author also thank the referee for proposing Theorem 2.8.

References

- [1] M. P. Brodmann and R. Y. Sharp, Local cohomology-an algebric introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [2] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen- Macaulay- Moduln, Math. Nachr. 85(1978), 57-73.
- [3] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Alg. 121(1997), 45-52.
- [4] A. Grothendieck, Local cohomology, Lecture Notes in Math., vol 41, Springer, Berlin, 1967.
- [5] A. Grothendieck, Cohomologie locale des faisceaux et théorèmes Lefshetz cohérents locaux et globaux, Noth-Holland, Amsterdam, 1968.
- [6] R. Hartshorne, Affine duality and cofiniteness, Inven. Math. 9(1970), 145-164.
- [7] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc.Camb. Phil. Soc. 110(1991), 421-429.
- [8] K. I. Kawasaki, Cofiniteness of local cohomology modules for principle ideals, Bull. London. Math. Soc. 30(1998), 241-246.
- [9] R. Lü and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. 130(7)(2001), 1905-1912.
- [10] I. G. Macdonald, Secondary representations of modules over a commutative ring, Sympos. Math., vol. 11, Academic Press, London and New York, 1973, pp. 23-43.

- [11] T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math. **104**(4)(2001), 519-525.
- [12] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
- [13] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Camb. Phil. Soc. 107(1990), 267-271.
- [14] L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Alg. 101(3)(1995), 291-303.
- [15] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Camb. Phil. Soc. 125(3)(1999), 417-423.
- [16] L. Melkersson, Modules cofinite with respect to an ideal, J. Alg. 285(2)(2005),649-668.
- [17] L. Melkersson and P. Schenzel, *The co-localization of an artinian module*, Proc. Edinburgh Math. Soc. **38**(2)(1995), 121-132.
- [18] J. Rotman, An introduction to homological algebra, Academic Press, Orlando, 1979.
- [19] P. Schenzel, On the use of local cohomology in algebra and geometry, Lectures at the summer school of commutative algebra and algebraic geometry, Ballaterra, 1996, Brikhä user. Verlag, 1998.
- [20] R. Y. Sharp, The Frobenius homomorphism, and local cohomology in regular local rings of positive characteristic, J. Pure Appl. Alg. **71**(1991), 313-317.

A. Mafi, Arak University, Beheshti St., P.O. Box:879, Arak, Iran *E-mail address*: a-mafi@araku.ac.ir