Recap

Constituents of matter { wave-like

standard models

quantum field theory

QED, QCD

Feynman Liagrams for RED, RCD

Today Feynman diagrams for Weak interaction, quantum flavor dynamics (QFD)

Two things in one?

What do you see?

- a) An old woman smiling
- b) A young lady with her head turned

P (4 2 4 5 2025.1.21 > QCD -> QFD REP * flavor strong e w (Weak) GED Basic 1 tim Given a physical process how to draw a Feynman diagram to represent that physical process? Myller scattering e de 1.1 t.1 the Ex. 2 et et -> et + et Bhabha scattering

ke- Ket

ef Yet

e Ket

Ex3. pair annihilation
ettet -> r +8

 $\frac{1}{3}$

et et

EX, 4. Pail credin 8+Y > =+et

Le Ket

EXS Compton scattering Y + e - > Tte 3 1e 8 M Feynman diagrams do me

QED Feynman diagrams do me

QC17 Vertices. External lines, the antiquark gluon Gluon Vertices

-> P+P

17

2 / x x

de l'uffer

1/1/2

J J J A

u fat to

P= Wud U = electron chars

Have completed QED, QCD diagrams 8 1 h em strong

complicated Weak interaction basic vertices, may vertices There are interaction e, g, neutral weak vertex charged week vertex Vectices Weak lepton vectices Weak quak Vertices. 2 Wt, WT,

All **em** processes can be described by patching together two or more of the primitive vertices.

Note: The primitive QED vertex

by itself does not represent a possible physical process as it violates the conservation of energy.

Some examples of electromagnetic interaction

1. Møller Scattering $e^-e^- \rightarrow e^-e^-$

2. Bhabha Scattering $e^-e^+ \rightarrow e^-e^+$

 e^- gives up a virtual photon which is absorbed by the position e^+

Particle line running backward in time (as indicated by the arrow) is interpreted as the corresponding antiparticle running forward.

 e^+e^- annihilate to produce a virtual photon γ which then pair – produces e^+e^-

Pair Production 3. $\gamma\gamma \rightarrow e^+e^-$

4. Pair Annihilation $e^+e^- \rightarrow \gamma\gamma$

5. Compton Scattering $e^- \gamma \rightarrow e^- \gamma$

(b) QCD

Only quarks and gluons involve basic vertices: Quark-gluon vertex $q \rightarrow q + g$

More exactly

Gluon vertices

Selection of the select

Interaction between two proton

Nucleons (proton or neutron) interact by exchange of π mesons.

e.g.

First u quark of LH p interacts with d and then propagates to the RH p to become the u of the RH p and also interacts with the second u of the RH p.

Similarly the first u of RH p interacts with the d and goes to become a u of the LH p and also interacts with the second u of the LH p.

The coupling constant α_s decreases as interaction energy increases (short-range)

$$\alpha_{s \, eff} = \frac{\alpha_s}{\varepsilon}$$
 $\varepsilon = \text{dielectric constant}$

known as asymptotic freedom. $\alpha_s(m_{\psi}) = 0.2$

$$\alpha_s(m_z) = 0.112$$
 $m_z = 91 \text{ GeV/c}^2$
 $\alpha_s(m_{\psi}) = 0.2$
 $m_{\psi} = 3.16 \text{ eV/c}^2$
 $\alpha_s(200 \text{ MeV}) \approx 1$

For QCD α_{s} increases as interaction energy decreases (long range)

known as infrared slavery.

(c) Weak Interaction

Two kinds, charged and neutral vertices

Leptons: primitive vertices connect members of the <u>same</u> generation Lepton number is separately conserved for each Lepton generation, that is, L_e , L_μ , L_τ separately conserved.

Charged vertex

Neutral vertex

e.g.

Quarks

Flavour not conserved in weak interaction.

Charged Vertex.

Neutral vertex

Quarks

Flavour not conserved in weak interaction **Charged Vertex**.

Semileptonic process $d + v_{\mu} \rightarrow u + \mu^{-}$

Not observable due to quark confinement

But can be observed in

Decay of
$$\pi^-
ightarrow \mu^- + \overline{v}_\mu^-$$

and neutron decay $n \rightarrow p + e^- + v_e^-$

Two quarks u, d in neutron n not participating are called spectator quarks.

Hadronic decays

observed in

$$\Delta^{\circ}(udd)$$
 $\Delta^{\circ} \to p + \pi^{-}$

Neutral vertex

e.g.

observed in

$$v_{\mu} + p \rightarrow v_{\mu} + p$$

Decays of quark by weak interaction can involve members of different generations

e.g. a strange quark can decay into an u-quark

The weak force not just couples members of the same generation

$$\binom{u}{d}$$
 or $\binom{c}{s}$ or $\binom{t}{b}$

but couples also members of different generations

$$\begin{pmatrix} u \\ d \end{pmatrix} or \begin{pmatrix} c \\ s \end{pmatrix} or \begin{pmatrix} t \\ b \end{pmatrix} \qquad \text{where} \qquad \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Cabibbo

Kobayashi – Maskawa matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.9747 - 0.9759, & 0.218 - 0.224, & 0.001 - 0.007 \\ 0.218 - 0.224, & 0.9734 - 0.9752, & 0.030 - 0.058 \\ 0.003 - 0.019, & 0.029 - 0.058, & 0.9983 - 0.9996 \end{pmatrix}$$

$$V_{ud} = \text{coupling of } u \text{ to } d$$

$$V_{us}$$
 = coupling of u to s

(d) wk and em couplings of W^{\pm} and Z

Weak couplings

Couplings involve photon γ

Summary

