EMG SPIKE SORTING

Martin Bourdev
December 10, 2023

OUTLINE

Introduction	Methods
What is EMG?	Filtering
In Practice	Spike Detection and Alignment
	Clustering
Results	Analysis
Classification	Discussion
Illustrations	Potential Improvements

IN PRACTICE

Data Collection

- Electrodes collect data from many motor neurons
- Most MUAPs are too small to distinguish
- Smaller electrodes provide more resolution

Clinical Use

- Calculate frequencies of each motor neuron
- Decode patient actions from frequencies
- Build prosthetics controlled by muscles

DATA PREPROCESSING

1010

Loading Data

- Use Python numpy library
- Sampling rate: 2000 Hz
- 40001 data points
- Two channels

Filtering Data

- scipy Butterworth filter
- 100 Hz to 999 Hz
- Filter out low frequency noise, centers data
- Chosen from literature review

Nonlinear Energy Operator

- Emphasizes spikes
- $y(t) = x^2(t) x(t-1)x(t+1)$
- Better for detection than filtered EMG data

Spike Detection

- Determine amplitude threshold from NEO
- Exclude points that are too close to each other to avoid double-counting
- Calculate indices of spike peaks

DATA PREPROCESSING

1010

Loading Data

Filtering Data

4

Nonlinear Energy Operator

Spike Detection

SPIKE ALIGNMENT

Methods

- Find the local maximum of identified spikes
- Align them with 5 data points to the left and 15 data points to the right
- Large potential for error due to misalignment

Usage

- Construct 20-dimensional matrix of spike data
- Compress using PCA
- Cluster and classify spikes based on waveform

PCA CLUSTERING

K-MEANS			
Style	Determining K	Process	
Top-Down Divide clusters using straight lines	Elbow method Inertia metric	 Randomly assign k centroids Assign data to clusters Update centroids, repeat 	

AGGLOMERATIVE			
Style	Determining K	Process	
 Bottom-Up No clear cluster boundaries 	 View dendrogram Track distance between cluster steps 	 Assign each point to its own cluster Combine two closest clusters Repeat until one cluster 	

DETERMINING K (K-MEANS)

What is inertia?

- Inertia: average squared distance between points to centroid
- Will always decrease with number of clusters
- Must balance with number of clusters

Determining k

- Plot inertia vs. k (elbow graph)
- Make continuous, take second derivative
- Find peak of the second derivative, indicating inflection point (best tradeoff between inertia and k)
- In this case, **k = 4**.

DETERMINING K (AGGLOM.)

What is a dendrogram?

- Plots the distance between each cluster when they are unified
- Logically, clusters that are more real will have larger distances between each other, indicated by the y axis of the dendrogram

Determining k

- Create dendrogram, identify distances between each cluster
- Plot the distances, find the max
- Find the largest value of k close to the max (bias toward larger k)
- In this case, **k = 4**.

K-MEANS VS. AGGLOMERATIVE

VERDICT: AGGLOMERATIVE

SPIKE CLASSIFICATION

ANALYSIS

Spike Alignment

- Classification does not appear too broad (many different waveforms of the same color)
- Classification does not appear too narrow (many colors following the same waveform)
- Red and green are probably the same waveform that were not aligned correctly
- For decoding, it is better to classify one MUAP as two instead of classifying two different MUAPs as one

ANALYSIS

Raw Data with Class Labels 0.75 0.50 0.25 -0.50 -0.50 -0.75 -1.00 0 200 400 600 800 1000

Raw Data

- Top: large red spikes are not double-counted, which has previously been a problem
- Middle: Blue spike likely erroneously as red spike
- Bottom: Blurred distinction between red and green spikes, as well as unusual blue spikes.
- Hard to visually distinguish small spikes from noise in raw data

ANALYSIS (CHANNEL 1)

- K is too large (purposeful bias)
- Red, green, and purple spikes are the same waveform
- Yellow is a small number of outliers

- Visible spikes that are not classified
- Amplitude threshold was likely too high to include them
- Difficult to find amplitude threshold that works for both files

DISCUSSION

Strengths

Clear and decipherable classification, as opposed to neural networks

Weaknesses

Sensitivity to k, amplitude threshold, spike length/delay

Poor alignment in (green and red, channel 2)

Opportunities

Smarter NEO amplitude threshold calculation mechanism

Better alignment to avoid separating one waveform into multiple

Threats

Transferability from one channel/electrode to another

OPPORTUNITIES

- Build more flexible algorithm to calculate accurate spike detection thresholds for many different electrode recordings
- Use Fourier transform or spectral power instead of raw data to remove sensitivity to precise spike alignment
- Instead of hard-coding a delay in between identified spikes to avoid double-counting, calculate correlations between spike classes to identify double counts
- Provide opportunity for algorithm to combine classes that turn out to refer to the same waveform

THANK YOU **Martin Bourdey**

UID: 205-491-049

UCLA

Bioengineering M260

December 10, 2023