Exponential Time Hypothesis and Parametrized Complexity Part 1

Aeren

October 11, 2022

Introduction

• We strongly believe that $P \neq NP$.

Introduction

- We strongly believe that $P \neq NP$.
- However, that doesn't say much about how much time will the NP-Complete problems actually take to solve.

Introduction

- We strongly believe that $P \neq NP$.
- However, that doesn't say much about how much time will the NP-Complete problems actually take to solve.
- We'll firstly focus on the kSAT problem in order to estimate their difficulties.

• There are two parameters to look at:

- There are two parameters to look at:
 - 1. n, the number of variables, and

- There are two parameters to look at:
 - 1. n, the number of variables, and
 - 2. m, the actual length of the input.

- There are two parameters to look at:
 - 1. n, the number of variables, and
 - 2. *m*, the actual length of the input.
- ullet It turns out that the parameter m doesn't affect our analysis much.

DEFINITION

A kSAT instance is called **sparse** if $m \in O(n)$

DEFINITION

A kSAT instance is called **sparse** if $m \in O(n)$

The sparsification lemma enable us to convert an arbitrary kSAT instance into a collection of sparse kSAT instances.

LEMMA (Sparsification Lemma)

LEMMA (Sparsification Lemma)

For all $k \in \mathbb{N}$ and $\epsilon \in (0,1]$, there is a constant $c(k,\epsilon)$ and an algorithm which runs in $2^{\epsilon \cdot n} \cdot poly(m)$ time such that

1. the input is a k-CNF formula ϕ ,

LEMMA (Sparsification Lemma)

- 1. the input is a k-CNF formula ϕ ,
- 2. the output is k-CNF formulae ϕ_1, \dots, ϕ_t where $t \leq 2^{\epsilon \cdot n}$,

LEMMA (Sparsification Lemma)

- 1. the input is a k-CNF formula ϕ ,
- 2. the output is k-CNF formulae ϕ_1, \dots, ϕ_t where $t \leq 2^{\epsilon \cdot n}$,
- 3. $\phi \in SAT$ if and only if $\phi_i \in SAT$ for some $1 \leq i \leq n$, and

LEMMA (Sparsification Lemma)

- 1. the input is a k-CNF formula ϕ ,
- 2. the output is k-CNF formulae ϕ_1, \dots, ϕ_t where $t \leq 2^{\epsilon \cdot n}$,
- 3. $\phi \in SAT$ if and only if $\phi_i \in SAT$ for some $1 \leq i \leq n$, and
- **4**. each ϕ_i has $\leq c(k, \epsilon) \cdot n$ clauses.

LEMMA (Sparsification Lemma)

- 1. the input is a k-CNF formula ϕ ,
- 2. the output is k-CNF formulae ϕ_1, \dots, ϕ_t where $t \leq 2^{\epsilon \cdot n}$,
- 3. $\phi \in SAT$ if and only if $\phi_i \in SAT$ for some $1 \leq i \leq n$, and
- **4**. each ϕ_i has $\leq c(k, \epsilon) \cdot n$ clauses.
- With the lemma, we're free to replace every m on the exponent with n. (HW)

LEMMA (Sparsification Lemma)

- 1. the input is a k-CNF formula ϕ ,
- 2. the output is k-CNF formulae ϕ_1, \dots, ϕ_t where $t \leq 2^{\epsilon \cdot n}$,
- 3. $\phi \in SAT$ if and only if $\phi_i \in SAT$ for some $1 \le i \le n$, and
- **4**. each ϕ_i has $\leq c(k, \epsilon) \cdot n$ clauses.
- With the lemma, we're free to replace every m on the exponent with n. (HW)
- As poly(m) factor is redundant, we'll stop writing it explicitly from now on.

The following bounds are known for exact algorithms for kSAT.

• Deterministic $O(1.3303^n)$ for 3SAT (Makino et al.)

- Deterministic $O(1.3303^n)$ for 3SAT (Makino et al.)
- Randomized $O(1.308^n)$ for 3SAT (Hertli)

- Deterministic $O(1.3303^n)$ for 3SAT (Makino et al.)
- Randomized $O(1.308^n)$ for 3SAT (Hertli)
- Determinisite $O\left(\left(2-\frac{1}{k+1}\right)^n\right)$ for kSAT (Dantsin et al.)

- Deterministic $O(1.3303^n)$ for 3SAT (Makino et al.)
- Randomized $O(1.308^n)$ for 3SAT (Hertli)
- Determinisite $O\left(\left(2-\frac{1}{k+1}\right)^n\right)$ for kSAT (Dantsin et al.)
- \bullet Randomized $O\left(2^{(1-1/k)\cdot n}\right)$ for kSAT (Paturi et al.)

The following bounds are known for exact algorithms for kSAT.

- Deterministic $O(1.3303^n)$ for 3SAT (Makino et al.)
- Randomized $O(1.308^n)$ for 3SAT (Hertli)
- Determinisite $O\left(\left(2-\frac{1}{k+1}\right)^n\right)$ for kSAT (Dantsin et al.)
- Randomized $O(2^{(1-1/k)\cdot n})$ for kSAT (Paturi et al.)

It seems likely that kSAT has a lowerbound of form $2^{s_k \cdot n}$ for some constant s_k .

DEFINITION

For all $k \geq 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } k\mathsf{SAT}\}$

DEFINITION

For all $k \ge 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } kSAT\}$

We expect 3SAT to have an exponential lowerbound. Therefore, we hypothesize the following.

DEFINITION

For all $k \ge 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } kSAT\}$

We expect 3SAT to have an exponential lowerbound. Therefore, we hypothesize the following.

HYPOTHESIS

1. **Exponential Time Hypothesis**(ETH): For all $k \ge 3$, $s_k > 0$. As $s_3 \le s_4 \le \cdots$, it is equivalent to $s_3 > 0$.

DEFINITION

For all $k \geq 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } k\mathsf{SAT}\}$

We expect 3SAT to have an exponential lowerbound. Therefore, we hypothesize the following.

HYPOTHESIS

- 1. Exponential Time Hypothesis(ETH): For all $k \ge 3$, $s_k > 0$. As $s_3 \le s_4 \le \cdots$, it is equivalent to $s_3 > 0$.
- 2. Strong Exponential Time Hypothesis(SETH): $\lim_{k\to\infty} s_k = 1$

DEFINITION

For all $k \geq 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } k\mathsf{SAT}\}$

We expect 3SAT to have an exponential lowerbound. Therefore, we hypothesize the following.

HYPOTHESIS

- 1. Exponential Time Hypothesis(ETH): For all $k \ge 3$, $s_k > 0$. As $s_3 \le s_4 \le \cdots$, it is equivalent to $s_3 > 0$.
- **2.** Strong Exponential Time Hypothesis(SETH): $\lim_{k\to\infty} s_k = 1$

We'll mostly use ETH for the remaining lecture.

THEOREM

THEOREM

Assume ETH holds.

1. If $3SAT \leq_p B_1 \leq_p \cdots \leq_p B_L$ with all of them having linear blowups, every algorithm for B_i runs in $2^{\Omega(n)}$ time for all $1 \leq i \leq L$.

THEOREM

- 1. If 3SAT $\leq_p B_1 \leq_p \cdots \leq_p B_L$ with all of them having linear blowups, every algorithm for B_i runs in $2^{\Omega(n)}$ time for all $1 \leq i \leq L$.
- 2. If 3SAT $\leq_p B_1 \leq_p \cdots \leq_p B_L$ with exactly one of them having quadratic blowup and the rest having linear blowups, every algorithm for B_i runs in $2^{\Omega(\sqrt{n})}$ time for all $1 \leq i \leq L$.

THEOREM

- 1. If $3SAT \leq_p B_1 \leq_p \cdots \leq_p B_L$ with all of them having linear blowups, every algorithm for B_i runs in $2^{\Omega(n)}$ time for all $1 \leq i \leq L$.
- 2. If 3SAT $\leq_p B_1 \leq_p \cdots \leq_p B_L$ with exactly one of them having quadratic blowup and the rest having linear blowups, every algorithm for B_i runs in $2^{\Omega(\sqrt{n})}$ time for all $1 \leq i \leq L$.
- Last week, Karuna demonstrated to us a reduction 3SAT \leq_p 3COL with linear blowup. Therefore, assuming ETH, every algorithm for 3COL runs in $2^{\Omega(n)}$ time.

THEOREM

- 1. If $3SAT \leq_p B_1 \leq_p \cdots \leq_p B_L$ with all of them having linear blowups, every algorithm for B_i runs in $2^{\Omega(n)}$ time for all $1 \leq i \leq L$.
- 2. If 3SAT $\leq_p B_1 \leq_p \cdots \leq_p B_L$ with exactly one of them having quadratic blowup and the rest having linear blowups, every algorithm for B_i runs in $2^{\Omega(\sqrt{n})}$ time for all $1 \leq i \leq L$.
- Last week, Karuna demonstrated to us a reduction 3SAT \leq_p 3COL with linear blowup. Therefore, assuming ETH, every algorithm for 3COL runs in $2^{\Omega(n)}$ time.
- He also demonstrated to us a reduction 3COL \leq_p Planar-3COL with quadratic blowup. Therefore, assuming ETH, every algorithm for Planar-3COL runs in $2^{\Omega(\sqrt{n})}$ time.

THEOREM

- 1. If $3SAT \leq_p B_1 \leq_p \cdots \leq_p B_L$ with all of them having linear blowups, every algorithm for B_i runs in $2^{\Omega(n)}$ time for all $1 \leq i \leq L$.
- 2. If $3SAT \leq_p B_1 \leq_p \cdots \leq_p B_L$ with exactly one of them having quadratic blowup and the rest having linear blowups, every algorithm for B_i runs in $2^{\Omega(\sqrt{n})}$ time for all $1 \leq i \leq L$.
- Last week, Karuna demonstrated to us a reduction 3SAT \leq_p 3COL with linear blowup. Therefore, assuming ETH, every algorithm for 3COL runs in $2^{\Omega(n)}$ time.
- He also demonstrated to us a reduction 3COL \leq_p Planar-3COL with quadratic blowup. Therefore, assuming ETH, every algorithm for Planar-3COL runs in $2^{\Omega(\sqrt{n})}$ time.
- Few more examples will be in the HW.

Parameterized Complexity

Parameterized Complexity

Recall that the following problems are NP-Complete.

Recall that the following problems are NP-Complete.

• Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

For fixed $k \in \mathbb{N}$, we define

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

For fixed $k \in \mathbb{N}$, we define

• Vertex-Cover_k = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

For fixed $k \in \mathbb{N}$, we define

- Vertex-Cover_k = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique_k = $\{(G, k)|G \text{ has a clique of size } k\}$.

Such problems are called **parameterized problems**.

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

For fixed $k \in \mathbb{N}$, we define

- Vertex-Cover_k = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique_k = $\{(G, k)|G \text{ has a clique of size } k\}$.

Such problems are called **parameterized problems**.

Both of these can be solved in time $O(n^k)$ with bruteforce, i.e. they're in P.

Recall that the following problems are NP-Complete.

- Vertex-Cover = $\{(G, k)|G \text{ has a vertex cover of size } k\}$.
- Clique = $\{(G, k)|G \text{ has a clique of size } k\}$.

For fixed $k \in \mathbb{N}$, we define

- Vertex-Cover_k = $\{(G, k) | G \text{ has a vertex cover of size } k\}$.
- Clique_k = $\{(G, k)|G \text{ has a clique of size } k\}$.

Such problems are called **parameterized problems**.

Both of these can be solved in time $O(n^k)$ with bruteforce, i.e. they're in P.

However, we don't like the k in the exponent. Can we get rid of it?

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

Let G = (V, E) be the input graph. Consider a labelled rooted binary tree where each label is of form (S, T, e) where

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

Let G = (V, E) be the input graph. Consider a labelled rooted binary tree where each label is of form (S, T, e) where

• S is the set of unscanned vertices,

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

Let G = (V, E) be the input graph. Consider a labelled rooted binary tree where each label is of form (S, T, e) where

- S is the set of unscanned vertices,
- T is the set of vertices in the vertex cover of the induced subgraph of V-S, and

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

Let G = (V, E) be the input graph. Consider a labelled rooted binary tree where each label is of form (S, T, e) where

- S is the set of unscanned vertices,
- T is the set of vertices in the vertex cover of the induced subgraph of V-S, and
- *e* is an edge in the induced subgraph of *S*, if there's any.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

We recursively construct the tree as follows.

1. The root has label (V, \emptyset, e_0) where e_0 is an arbitrary edge.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

- 1. The root has label (V, \emptyset, e_0) where e_0 is an arbitrary edge.
- 2. For a node with label (S, T, e),

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

- 1. The root has label (V, \emptyset, e_0) where e_0 is an arbitrary edge.
- 2. For a node with label (S, T, e),
- 3. if S is empty, T has to be a vertex cover of size $\leq k$, so return it.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

- 1. The root has label (V, \emptyset, e_0) where e_0 is an arbitrary edge.
- 2. For a node with label (S, T, e),
- 3. if S is empty, T has to be a vertex cover of size $\leq k$, so return it.
- 4. Otherwise, if the depth of the node is < k, at least one endpoint of e = (u, v) has to be in the vertex cover, so attach two childs with label (S − {u}, T ∪ {u}, e_l(∈ S − {u})) and (S − {v}, T ∪ {v}, e_r(∈ S − {v})). Note that at least one of u or v has to be in the final vertex cover, so this step is forced.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

- 1. The root has label (V, \emptyset, e_0) where e_0 is an arbitrary edge.
- 2. For a node with label (S, T, e),
- 3. if S is empty, T has to be a vertex cover of size $\leq k$, so return it.
- 4. Otherwise, if the depth of the node is < k, at least one endpoint of e = (u, v) has to be in the vertex cover, so attach two childs with label $(S \{u\}, T \cup \{u\}, e_l (\in S \{u\}))$ and $(S \{v\}, T \cup \{v\}, e_r (\in S \{v\}))$. Note that at least one of u or v has to be in the final vertex cover, so this step is forced.
- 5. If the algorithm fails to return a vertex cover after constructing the entire tree, report that there's no vertex cover of size < k.

THEOREM

Vertex-Cover_k can be solved in $O(2^k \cdot n)$ time.

PROOF)

There are $O(2^k)$ nodes, each of which store O(n) information. Therefore, the algorithm runs in $O(2^k \cdot n)$ time.

Is there a better result?

Is there a better result?

The answer is both "yes" and "no" depending on the meaning of "better".

Is there a better result? The answer is both "yes" and "no" depending on the meaning of "better". First, a "no".

Is there a better result?

The answer is both "yes" and "no" depending on the meaning of "better". First, a "no".

THEOREM (Cai & Juedes)

If Vertex-Cover_k can be solved in $2^{o(k)} \cdot n^L$ for some L, then 3SAT can be solved in $2^{o(k)}$ time, violating the ETH.

Is there a better result?

The answer is both "yes" and "no" depending on the meaning of "better". First, a "no".

THEOREM (Cai & Juedes)

If Vertex-Cover_k can be solved in $2^{o(k)} \cdot n^L$ for some L, then 3SAT can be solved in $2^{o(k)}$ time, violating the ETH.

We'll prove this in the upcoming lecture.

DEFINITION

• **Kernelization** is a procedure of reducing a parameterized problem X(n, k) to down to a problem X(f(k), g(k)) for some function f bounded by a computable function in k and some function g in $n^{O(1)}$ preprocessing time.

DEFINITION

- **Kernelization** is a procedure of reducing a parameterized problem X(n, k) to down to a problem X(f(k), g(k)) for some function f bounded by a computable function in k and some function g in $n^{O(1)}$ preprocessing time.
- The reduced problem is called **the kernel**, and f(k) is the size of the kernel.

DEFINITION

- **Kernelization** is a procedure of reducing a parameterized problem X(n, k) to down to a problem X(f(k), g(k)) for some function f bounded by a computable function in k and some function g in $n^{O(1)}$ preprocessing time.
- The reduced problem is called **the kernel**, and f(k) is the size of the kernel.
- A problem is **kernelizable** if a kernelization exists.

DEFINITION

- **Kernelization** is a procedure of reducing a parameterized problem X(n, k) to down to a problem X(f(k), g(k)) for some function f bounded by a computable function in k and some function g in $n^{O(1)}$ preprocessing time.
- The reduced problem is called **the kernel**, and f(k) is the size of the kernel.
- A problem is **kernelizable** if a kernelization exists.

Now we'll look at a "yes".

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

PROOF)

1. If a vertex u has degree > k, any vertex cover of size $\le k$ must contain it. Remove u from the graph along with all edges incident to it, add it to the answer, then decrease k by 1. (This step takes O(n) time.)

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

- 1. If a vertex u has degree > k, any vertex cover of size $\le k$ must contain it. Remove u from the graph along with all edges incident to it, add it to the answer, then decrease k by 1. (This step takes O(n) time.)
- 2. If k becomes 0, before exhausting all edges, output that no vertex cover of size $\leq k$ exist.

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

- 1. If a vertex u has degree > k, any vertex cover of size $\le k$ must contain it. Remove u from the graph along with all edges incident to it, add it to the answer, then decrease k by 1. (This step takes O(n) time.)
- 2. If k becomes 0, before exhausting all edges, output that no vertex cover of size $\leq k$ exist.
- 3. Now every vertex has degree $\leq k$. If there's a vertex cover of size $\leq k$, the number of edges in the graph is bounded by k^2 . So if there are more than k^2 edges, output that no vertex cover of size $\leq k$ exist.

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

- 1. If a vertex u has degree > k, any vertex cover of size $\le k$ must contain it. Remove u from the graph along with all edges incident to it, add it to the answer, then decrease k by 1. (This step takes O(n) time.)
- 2. If k becomes 0, before exhausting all edges, output that no vertex cover of size $\leq k$ exist.
- 3. Now every vertex has degree $\leq k$. If there's a vertex cover of size $\leq k$, the number of edges in the graph is bounded by k^2 . So if there are more than k^2 edges, output that no vertex cover of size $\leq k$ exist.
- 4. Repeat the branching algorithm for the vertex cover. (This step takes $O(2k^2 \cdot 2^{2k^2})$ time.)

THEOREM

Vertex-Cover_k can be solved in $O(n + 2k^2 \cdot 2^{2k^2})$ time.

PROOF)

from the graph along with all edges incident to it, add it to the answer, then decrease k by 1. (This step takes O(n) time.)

1. If a vertex u has degree > k, any vertex cover of size < k must contain it. Remove u

- 2. If k becomes 0, before exhausting all edges, output that no vertex cover of size $\leq k$ exist.
- 3. Now every vertex has degree $\leq k$. If there's a vertex cover of size $\leq k$, the number of edges in the graph is bounded by k^2 . So if there are more than k^2 edges, output that no vertex cover of size $\leq k$ exist.
- 4. Repeat the branching algorithm for the vertex cover. (This step takes $O(2k^2 \cdot 2^{2k^2}$ time.)
- (HW BOJ 20259)

Further results about vertex cover kernelizations:

Kernelization

Further results about vertex cover kernelizations:

• Lampis achieved a kernel of size $2k - c \cdot \log k$ for any constant c.

Kernelization

Further results about vertex cover kernelizations:

- Lampis achieved a kernel of size $2k c \cdot \log k$ for any constant c.
- If there exists a kernelization of Vertex-Cover_k with kernel of size $O(\log k)$, then P=NP. (HW)

Kernelization

Further results about vertex cover kernelizations:

- Lampis achieved a kernel of size $2k c \cdot \log k$ for any constant c.
- If there exists a kernelization of Vertex-Cover_k with kernel of size $O(\log k)$, then P=NP. (HW)
- If there exists $\epsilon > 0$ and a kernelization of Vertex-Cover_k with kernel of size $O(2^{2-\epsilon})$, then coNP \subseteq NP-P.

DEFINITION

A parameterized problem X(n, k) is **fixed-parameter tractable** if there exists a computable function f such that X(n, k) can be solved in time $f(k) \cdot n^{O(1)}$.

DEFINITION

A parameterized problem X(n, k) is **fixed-parameter tractable** if there exists a computable function f such that X(n, k) can be solved in time $f(k) \cdot n^{O(1)}$.

The set of fixed-parameter tractable problems is denoted by FPT.

DEFINITION

A parameterized problem X(n, k) is **fixed-parameter tractable** if there exists a computable function f such that X(n, k) can be solved in time $f(k) \cdot n^{O(1)}$.

The set of fixed-parameter tractable problems is denoted by FPT.

Recall that if a parameterized problem is kernelizble, it has an algorithm running in $n^{O(1)} + g(k)$ time for some function g, assuming it is decidable.

DEFINITION

A parameterized problem X(n, k) is **fixed-parameter tractable** if there exists a computable function f such that X(n, k) can be solved in time $f(k) \cdot n^{O(1)}$.

The set of fixed-parameter tractable problems is denoted by FPT.

Recall that if a parameterized problem is kernelizble, it has an algorithm running in $n^{O(1)} + g(k)$ time for some function g, assuming it is decidable.

The following theorem establishes an equivalence between fixed-parameter tractability and kernelizability.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Kernelizable & Decidable \rightarrow Fixed-Parameter Tractable

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Kernelizable & Decidable → Fixed-Parameter Tractable

• First, run the kernelization algorithm on the input to obtain an input of size f(k) in $n^{O(1)}$ time.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Kernelizable & Decidable → Fixed-Parameter Tractable

- First, run the kernelization algorithm on the input to obtain an input of size f(k) in $n^{O(1)}$ time.
- Second, run the algorithm for the kernel problem in g(f(k)) time. (it exists by its decidablity)

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Kernelizable & Decidable \rightarrow Fixed-Parameter Tractable

- First, run the kernelization algorithm on the input to obtain an input of size f(k) in $n^{O(1)}$ time.
- Second, run the algorithm for the kernel problem in g(f(k)) time. (it exists by its decidablity)
- The total process runs in $n^{O(1)} + g(f(k))$ time. Since g(f) is computable, every kernelizable and decidable parameterized problem is fixed-parameter tractable.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Fixed-Parameter Tractable → Kernelizable & Decidable

• If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.
- Furthermore, let A be an algorithm for the problem that runs in $f(k) \cdot n^c$ time.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.
- Furthermore, let A be an algorithm for the problem that runs in $f(k) \cdot n^c$ time.
- We can kernelize an input as follows.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.
- Furthermore, let A be an algorithm for the problem that runs in $f(k) \cdot n^c$ time.
- We can kernelize an input as follows.
 - 1. Run A for the given input for at most n^{c+1} steps.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.
- Furthermore, let A be an algorithm for the problem that runs in $f(k) \cdot n^c$ time.
- We can kernelize an input as follows.
 - 1. Run A for the given input for at most n^{c+1} steps.
 - 2. If A terminates, return I_A or I_R depending on the result.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- If the problem either accepts or rejects all inputs, then returning an empty input is a valid kernelization. Now assume neither are the case.
- Let I_A be an accepting instance and I_R a rejecting instance of the problem.
- Furthermore, let A be an algorithm for the problem that runs in $f(k) \cdot n^c$ time.
- We can kernelize an input as follows.
 - 1. Run A for the given input for at most n^{c+1} steps.
 - 2. If A terminates, return I_A or I_R depending on the result.
 - 3. Otherwise, return the input itself.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

PROOF) Fixed-Parameter Tractable → Kernelizable & Decidable

• The input returns itself if and only if $f(k) \cdot n^c > n^{c+1} \leftrightarrow f(k) > n$.

THEOREM

A parameterized problem is fixed-parameter tractable if and only if it is kernelizable and decidable.

- The input returns itself if and only if $f(k) \cdot n^c > n^{c+1} \leftrightarrow f(k) > n$.
- Therefore, the size of the kernel is bounded by $\max(|I_A|, |I_R|, f(k))$, which is clearly computable.

DEFINITION

DEFINITION

Let A and B be parameterized problems. A **parameterized reduction** of A onto B maps an instance (x, k) of A to an instance (x', k') of B such that

1. x' depends only on x

DEFINITION

- 1. x' depends only on x
- 2. k' depends only on k

DEFINITION

- 1. x' depends only on x
- 2. k' depends only on k
- 3. The function that maps x to x' can be computed in polynomial time.

DEFINITION

- 1. x' depends only on x
- 2. k' depends only on k
- 3. The function that maps x to x' can be computed in polynomial time.
- **4.** k' is bounded by a computable function of k.

DEFINITION

- 1. x' depends only on x
- 2. k' depends only on k
- 3. The function that maps x to x' can be computed in polynomial time.
- 4. k' is bounded by a computable function of k.
- 5. $(x, k) \in A$ if and only if $(x', k') \in B$

DEFINITION

Let A and B be parameterized problems. A **parameterized reduction** of A onto B maps an instance (x, k) of A to an instance (x', k') of B such that

- 1. x' depends only on x
- 2. k' depends only on k
- 3. The function that maps x to x' can be computed in polynomial time.
- 4. k' is bounded by a computable function of k.
- 5. $(x, k) \in A$ if and only if $(x', k') \in B$

Clearly, if $B \in \mathsf{FPT}$ and A is parameterized reducible to B, then $A \in \mathsf{FPT}$.

• The standard reduction from Independent-Set_k to Vertex-Cover_k maps an instance (G, k) to (G, n - k). As n - k does not just depend on k, this is not a parameterized reduction.

- The standard reduction from Independent-Set_k to Vertex-Cover_k maps an instance (G, k) to (G, n k). As n k does not just depend on k, this is not a parameterized reduction.
- The standard reduction of Independent-Set_k to Clique_k maps (G, k) to (G, k), which is clearly a parameterized reduction.

- The standard reduction from Independent-Set_k to Vertex-Cover_k maps an instance (G, k) to (G, n k). As n k does not just depend on k, this is not a parameterized reduction.
- The standard reduction of Independent-Set_k to Clique_k maps (G, k) to (G, k), which is clearly a parameterized reduction.
- It is unlikely that there's a parameterized reduction from Independent-Set_k to Vertex-Cover_k since

- The standard reduction from Independent-Set_k to Vertex-Cover_k maps an instance (G, k) to (G, n k). As n k does not just depend on k, this is not a parameterized reduction.
- The standard reduction of Independent-Set_k to Clique_k maps (G, k) to (G, k), which is clearly a parameterized reduction.
- It is unlikely that there's a parameterized reduction from Independent-Set_k to Vertex-Cover_k since
 - 1. Vertex-Cover $_k \in \mathsf{FPT}$ and

- The standard reduction from Independent-Set_k to Vertex-Cover_k maps an instance (G, k) to (G, n k). As n k does not just depend on k, this is not a parameterized reduction.
- The standard reduction of Independent-Set_k to Clique_k maps (G, k) to (G, k), which is clearly a parameterized reduction.
- It is unlikely that there's a parameterized reduction from Independent-Set_k to Vertex-Cover_k since
 - 1. Vertex-Cover $_k \in \mathsf{FPT}$ and
 - 2. Chen et al. showed that $Clique_k \in FPT$ implies ETH being false.

 $\bullet \ \ \mbox{Complexity Class W[1], W[1]-Complete, and W[1]-Hard}$

- Complexity Class W[1], W[1]-Complete, and W[1]-Hard
- W-Hierarchy

- Complexity Class W[1], W[1]-Complete, and W[1]-Hard
- W-Hierarchy
- Proof of the lowerbound for parameterized problems with ETH

- Complexity Class W[1], W[1]-Complete, and W[1]-Hard
- W-Hierarchy
- Proof of the lowerbound for parameterized problems with ETH
- And more :)

The End