Complex Inner Product

The **complex inner product** $\langle \cdot, \cdot \rangle$ on a vector space V over \mathbb{C} is a function that takes in two vectors and outputs a scalar, such that $\langle \cdot, \cdot \rangle$ is symmetric, linear, and positive-definite.

- Conjugate Symmetry: $\langle \vec{u}, \vec{v} \rangle = \overline{\langle \vec{v}, \vec{u} \rangle}$
- Scaling: $\langle c\vec{u}, \vec{v} \rangle = c\langle \vec{u}, \vec{v} \rangle$ and $\langle \vec{u}, c\vec{v} \rangle = \overline{c}\langle \vec{u}, \vec{v} \rangle$
- Additivity: $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ and $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$
- Positive-definite: $\langle \vec{u}, \vec{u} \rangle \ge 0$ with $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = \vec{0}$

For two vectors, \vec{u} , $\vec{v} \in \mathbb{C}^n$, we usually define their inner product $\langle \vec{u}, \vec{v} \rangle$ to be $\langle \vec{u}, \vec{v} \rangle = \vec{v}^* \vec{u}$. We define the **norm**, or the magnitude, of a vector \vec{v} to be $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle} = \sqrt{\vec{v}^* \vec{v}}$. For any non-zero vector, we can *normalize*, i.e., set its magnitude to 1 while preserving its direction, by dividing the vector by its norm $\frac{\vec{v}}{||\vec{v}||}$.

Adjoint of a Matrix

The **adjoint** or **conjugate-transpose** of a matrix A is the matrix A^* such that $A^*_{ij} = \overline{A_{ji}}$. From the complex inner product, one can show that

$$\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^* \vec{y} \rangle \tag{1}$$

A matrix is **self-adjoint** or **Hermitian** if $A = A^*$.

Orthogonality and Orthonormality

We know that the angle between two vectors is given by this equation $\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| ||\vec{v}|| \cos \theta$. Notice that if $\theta = \pm 90^{\circ}$, the right hand side is 0.

Therefore, we define two vectors \vec{u} and \vec{v} to be **orthogonal** to each other if $\langle \vec{u}, \vec{v} \rangle = \vec{v}^* \vec{u} = 0$. A set of vectors is orthogonal if any two vectors in this set are orthogonal to each other.

Furthermore, we define two vectors \vec{u} and \vec{v} to be **orthonormal** to each other if they are orthogonal to each other and their norms are 1. A set of vectors is orthonormal if any two vectors in this set are orthogonal to each other and every vector has a norm of 1. In fact, for any two vectors \vec{u} and \vec{v} in an orthonormal set,

$$\langle \vec{u}, \vec{v} \rangle = \vec{v}^* \vec{u} = \begin{cases} 1, & \text{if } \vec{u} = \vec{v} \\ 0, & \text{otherwise} \end{cases}$$

A **unitary** matrix is a square matrix whose columns are orthonormal with respect to the complex inner product.

$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_n \end{bmatrix}, \qquad \vec{u}_j^* \vec{u}_i = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

Note that $U^*U = UU^* = I$, so the inverse of a unitary matrix is its conjugate transpose $U^{-1} = U^*$.

Since the columns of a unitary matrix are orthonormal vectors, we can interpret these matrices as "rotation" and "reflection" matrices of the standard axes. This also implies that $\|U\vec{v}\| = \|\vec{v}\|$ for any vector \vec{v} .

1 Spectral Theorem

For a complex $n \times n$ Hermitian matrix A,

- a) All eigenvalues of *A* are real.
- b) *A* has *n* linearly independent eigenvectors $\in \mathbb{C}^n$.
- c) A has orthogonal eigenvectors, i.e., $A = V\Lambda V^{-1} = V\Lambda V^*$, where Λ is a diagonal matrix and V is a unitary matrix. We say that A is orthogonally diagonalizable.

Recall that a matrix A is Hermitian if $A = A^*$. Furthermore, if A is of the form B^*B for some arbitrary matrix B, all of its eigenvalues are non-negative, i.e., $\lambda \ge 0$.

a) Prove the following: All eigenvalues of a Hermitian matrix A are real. Hint: Let (λ, \vec{v}) be an eigenvalue/vector pair and use the definition of an eigenvalue to show that $\lambda \langle \vec{v}, \vec{v} \rangle = \overline{\lambda} \langle \vec{v}, \vec{v} \rangle$.

b) Prove the following: For any Hermitian matrix *A*, any two eigenvectors corresponding to distinct eigenvalues of *A* are orthogonal.

Hint: Use the definition of an eigenvalue to show that $\lambda_1 \langle \vec{v}_1, \vec{v}_2 \rangle = \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$.

c) Prove the following: For any matrix A, A^*A is Hermitian and only has non-negative eigenvalues.

2 Fundamental Theorem of Linear Algebra

a) Let \vec{v} be an eigenvector of nonzero eigenvalue of A^*A . Show that $\vec{v} \in \operatorname{Col}(A^*)$.

b) Show that the two subspaces Nul(A) and $Nul(A^*A)$ are equal.

c) Let \vec{u} be an eigenvector of eigenvalue 0 of A^*A . Show that $\vec{u} \in \text{Nul}(A)$.

d) If *A* is a $m \times n$ matrix of rank *k* what are the dimensions of Col(A^*) and Nul(A)?

e) Use parts (a)-(d) to show that $Col(A^*)$ is the orthogonal complement of Nul(A). Use the spectral theorem on the matrix A^*A to create an orthonormal eigenbasis of \mathbb{C}^n