Data Cleaning and Normalization

Min-Max Normalization

Definition

- Min-max normalization is a technique to rescale the values of a feature to a fixed range, usually [0, 1].
- This is done by transforming each value in the feature such that it fits within the specified range

Cipher

Formula

The formula for min-max normalization is:

$$X_{
m normalized} = rac{X - X_{
m min}}{X_{
m max} - X_{
m min}}$$

Where:

- ullet X is the original value.
- ullet X_{\min} is the minimum value in the feature.
- ullet $X_{
 m max}$ is the maximum value in the feature.
- ullet $X_{
 m normalized}$ is the normalized value.

Example

Original Value
10
15
20
25
30

Step-by-Step Calculation:

1. Identify the minimum and maximum values:

•
$$X_{\min} = 10$$

•
$$X_{\rm max} = 30$$

2. Apply the min-max normalization formula:

For each value in the dataset:

• For
$$X=10$$
:

$$X_{
m normalized} = rac{10-10}{30-10} = rac{0}{20} = 0$$

 $\bullet \quad \operatorname{For} X = 15 :$

 $X_{
m normalized} = rac{15 - 10}{30 - 10} = rac{5}{20} = 0.25$

$$ullet$$
 For $X=20$:

$$X_{
m normalized} = rac{20-10}{30-10} = rac{10}{20} = 0.5$$

$$ullet$$
 For $X=25$:

$$X_{\rm normalized} = \frac{25-10}{30-10} = \frac{15}{20} = 0.75$$

• For
$$X = 30$$
:

$$X_{
m normalized} = rac{30-10}{30-10} = rac{20}{20} = 1$$

3. Normalized Values:

Original Value	Normalized Value
10	0.0
15	0.25
20	0.5
25	0.75
30	1.0