MATHEMATICS 1LS3 TEST 1

Day Class Duration of Examination: 60 minutes McMaster University, 1 October 2014

E. Clements, M. Lovrić, O. Sanchez

FIRST NAME (please print):	SULUTIONS
FAMILY NAME (please print):	
Student N	Vo.:

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	6	
2	6	
3	5	-
4	6	
5	4	
6	6	
7	7	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

(a)[3] Start with the graph of $y = \cos x$. Scale (expand) the graph horizontally by a factor of 3 and then shift right the graph you obtained by 6 units. Finally, expand this graph vertically by a factor of 4. The graph you obtained is

(A)
$$y = \frac{1}{4}\cos\left(\frac{x+2}{6}\right)$$
 (B) $y = \frac{1}{4}\cos\left(\frac{x-2}{6}\right)$ (C) $y = 4\cos\left(\frac{x+6}{3}\right)$ (D) $y = 4\cos\left(\frac{x}{3} - 2\right)$ (E) $y = 4\cos\left(\frac{x}{3} + 6\right)$ (F) $y = 4\cos\left(\frac{x}{3} - \frac{2}{3}\right)$

(B)
$$y = \frac{1}{4}\cos\left(\frac{x-2}{6}\right)$$

(C)
$$y = 4\cos\left(\frac{x+6}{3}\right)$$

(E)
$$y = 4\cos\left(\frac{x}{3} + 6\right)$$

$$(F) y = 4\cos\left(\frac{x}{3} - \frac{2}{3}\right)$$

(G)
$$y = \frac{1}{4} \cos\left(\frac{x+2}{3}\right)$$
 (H) $y = \frac{1}{4} \cos\left(\frac{x-6}{3}\right)$

(H)
$$y = \frac{1}{4}\cos\left(\frac{x-6}{3}\right)$$

 $\cos x \rightarrow \cos \frac{x}{3} \rightarrow \cos \frac{x-6}{3}$ $\frac{1}{3}$ 4. $\cos \frac{x-6}{3} = 4 \cos (\frac{x}{3}-2)$

(b)[3] The maximum flying speed S (in metres per second) of tropical birds living in rain forests of Cook Islands (South Pacific Ocean) is related to their body mass M (in grams) by $S = 44.5 M^{-0.35}$. Which of the following statements is/are true?

(I) S is decreasing as a function of M

- (II) If M triples, so does S \times
 - (III) S is inversely proportional to $M^{0.35}$

- (D) III only

- (A) none (B) I only (C) II only (E) I and III (G) II and III
- (H) all three

for linear finctions y=mx+b with b=0

Name:	
Student No.:	_

FALSE

2. Identify each statement as true or false (circle your choice). You do not need to justify your answer.

(a)[2] If
$$m_{t+1} = 0.8m_t$$
 and $m_0 = 1000$, then m_{10} is larger than 100.

TRUE

FALSE

 $m_t = m_0 \cdot 0.8^{t}$
 $m_{10} = 1000 \cdot 0.8^{t}$
 $m_{10} = 1000 \cdot 0.8^{t}$

(b)[2] For the linear function y = 3x + 2, the ratio of change in output over change in input is constant. TRUE

this is the slope; and the slope of a line is constant

(c)[2] The label on the milk carton which you bought in Sydney, Australia, says "energy value of one cup of milk is 609 kJ." (Australians use kJ=kilo-Joules, whereas in North America we use calories.) Knowing that 1 calorie = 4.2 kJ, you calculated that that cup of milk contains more than 150 calories. Is your calculation correct?

$$609 \text{ kJ} = \frac{609}{4.2} \text{ calvies}$$
 145

Questions 3-7: You must show work to receive full credit.

3. It has been determined that an average human body absorbs benzoylmethylecgonine (cocaine) according to $d(t) = 80e^{-0.71t}$, where d(t) is in milligrams and t is time in hours.

(a)[1] Define the term: half-life of a drug. (Avoid long explanations; one sentence suffices.)

(b)[2] Compute the half-life of benzoylmethylecgonine.

$$40 = 80e^{-0.71t}$$
 $0.5 = e^{-0.71t} \longrightarrow ln0.5 = -0.71t$
 $t = \frac{ln0.5}{-0.71} \approx 0.97626 \text{ hours}$

(c)[2] Sketch the graph of d(t) and identify the point on the graph which corresponds to the half-life. ("To identify the point" means to say what its coordinates are.)

Name:	
Student No.:	

4. (a)[1] What is the phase of the oscillation $f(t) = 3 - 2.4\cos(2t - 7)$?

$$\cos 2(t-\frac{7}{2})$$
so phase = $\frac{7}{2}$ (right shift)

(b)[2] What is the domain of the function $f(x) = 3\arcsin(2x-5)$?

$$-1 \le 2x - 5 \le 1$$
 | +5
 $4 \le 2x \le 6$ | $\div 2$
 $2 \le x \le 3$, ie, [2,3]

(c)[3] What is the range of the function $P(t) = 4.4 \left(\frac{\pi}{2} + \arctan \frac{t}{42} \right)$?

range of arctant is $(-\frac{\pi}{2}, \frac{\pi}{2})$

areture the is a huizantal hous formation, so does not affect

the varge

range of \$\frac{\pi}{2} + arctan \frac{\pi}{42} is \$\frac{\pi}{2} - \frac{\pi}{2} = 0, \$\frac{\pi}{2} + \frac{\pi}{2} = \pi\$

=> range of P(t) is (0, 4,4T)

Continued on next page

Name:	
Student No.:	

5. Based on the density of a soil sample taken from a forest floor, scientists can determine the depth it came from, by using the formula

$$d = -5\ln\left(\frac{0.7}{\rho} - 0.8\right)$$

In this formula, ρ is the density of a soil sample and d is the depth in metres (so d = 0 labels the surface, and d = 3 is 3 m below the surface).

(a)[1] In the above formula, d is a function of ρ . State (in one sentence) what question is answered by finding the inverse function of d.

(b)[3] Find a formula for the inverse function of d.

$$d = -5 \ln \left(\frac{0.7}{8} - 0.8 \right)$$

$$-0.2d = \frac{d}{-5} = \ln \left(\frac{0.7}{8} - 0.8 \right) | apply e$$

$$e^{-0.2d} = \frac{0.7}{8} - 0.8$$

$$\frac{0.7}{8} = 0.8 + e^{-0.2d} | apply | reciprocal$$

$$\frac{d}{d} = \frac{1}{0.7} = \frac{1}{0.8 + e^{-0.2d}}$$

$$\frac{d}{d} = \frac{1}{0.8 + e^{-0.2d}}$$

$$\frac{d}{d} = \frac{1}{0.8 + e^{-0.2d}}$$

Name:	
Student No.:	

6. In Linear quadratic and tumour control probability modelling in external beam radiotherapy, S.F.C. O'Rourke, H. McAneney, T. Hillen. J. Math. Biol. (2009) 58:799–817, we read predicted clonogenic survival [27,85,96]. Such a model is in popular use and may be written in the form.

$$\ln \sigma = -n(\alpha d + \beta d^2) - \lambda T, \tag{12}$$

where T is the overall exposure time (i.e. the complete timescale of the treatment

In formula (12), σ is the survival rate of cancer cells; it is a function of the applied radiation dose d. Reading the paper, we learn that all parameters are positive.

(a)[3] Assume that $n=1, \ \alpha=1, \ \beta=1, \ \lambda=0.03$ and T=1. For these values, sketch the semi-log graph of $\sigma(d)$ for $d\geq 0$.

In $\sigma = -d - d^2 - 0.03 = -d^2 - d - 0.03$ Ponabola opens

downward $(d^2 + d + 0.03 = 0)$

inter= $\begin{cases} d^2 + d + 0.03 = 0 \\ d = \frac{-1 \pm \sqrt{1 - 0.12}}{2} \end{cases}$

= both negative so not relevant here

(b)[1] Explain why $\sigma(d) < 1$ for all values of d > 0.

because lut <0 for d >0 } if lnA<0

Then A<1

(c)[2] Given that $n=1, \ \alpha=1, \ \beta=1, \ \lambda=0.03$ and $T=1, \ \text{find} \ \sigma(0)$ and interpret your answer.

lu o(0) = -0,03 - 1(0) = e 0,03 20,97

so even when no radiation is applied (d=0) some concer cells (3%) will die, as the survival rate is 0,97 = 97%

Name:.	
Student No	.:

7. Consider the dynamical system $M_{t+1} = 0.5M_t + 2.5$, where M_t represents the amount of drug (in mg) in a patient's body at time t (time t is measured in days). It is given that $M_0 = 8$ mg.

(a)[2] Explain in words the dynamics described by this system.

Initially, 8 mg of the drug are given
At early half-life, 2,5 mg are given
which is I day in this case

(b)[2] Find all equilibrium points of the system

(c)[2] Starting with $M_0 = 8$ mg, cobweb for three steps.

(d)[1] What does the cobwebbing in (c) suggest in terms of the amount of the drug in the patient's body?

It will decrease toward the equilibrium value of M*=5