

TD4

A.U. 2023-2024

Nadia HMIDA

Exercice 1 -

On se place dans \mathbb{R}^2 muni de sa base canonique. On notera X=(x,y) et X'=(x',y').

1. Montrer que

$$\varphi(X, X') = xx' - 2(xy' + x'y) + 6yy'$$

est un produit scalaire sur \mathbb{R}^2 .

- 2. Soit F la droite engendrée par le vecteur (3,2). Trouver une base de F^{\perp} l'orthogonal de F par rapport à φ .
- 3. En déduire une base \mathfrak{B} de \mathbb{R}^2 orthonormée au sens de φ .
- 4. La base \mathfrak{B} est-elle orthogonale au sens du produit scalaire canonique sur \mathbb{R}^2 ?

- Exercice 2 -

Dans \mathbb{R}^4 muni de sa base canonique $\mathfrak{B}=(e_1,e_2,e_3,e_4)$, on considère le plan P engendré par les vecteurs $\mathfrak{u}=e_1+e_2$ et $\mathfrak{v}=e_2-e_4$.

- 1. Construire par l'algorithme de Gram-Schmidt une base orthonormée (w_1, w_2) de P.
- 2. Exprimer la projection orthogonale Π sur P en fonction de w_1 et w_2 .
- 3. Calculer la distance du vecteur (1,2,1,8) au plan ${\sf P}.$

— Exercice 3 ———

Soit $(\mathsf{E};\langle\ ,\ \rangle)$ un espace euclidien.

Soit $\mathcal{B}=(e_1,e_2,e_3)$ une base orthonormée de E et soit $\mathfrak{p}\in\mathcal{L}(E)$ défini par:

$$mat(p, B) = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}.$$

Montrer que p est une projection orthogonale sur un plan dont on précisera une équation.

Soit (E, \langle, \rangle) un espace vectoriel euclidien de dimension n. On suppose qu'il existe p vecteurs u_1, \dots, u_p de E unitaires $(p \leq n)$ tels que

$$\forall x \in E; \quad \|x\|^2 = \sum_{i=1}^p \langle x, u_i \rangle^2.$$

- 1. Montrer que pour tout $i \neq j$ on a $\langle u_i, u_j \rangle = 0$
- 2. Soit F le sous-espace vectoriel de E engendré par $\mathfrak{u}_1,\cdots,\mathfrak{u}_p$ et Π la projection orthogonale sur F.
 - (a) Montrer que $\forall x \in E$; $\|\Pi(x)\| = \|x\|$.
 - (b) En déduire en utilisant le théorème de Pythagore que

$$\forall x \in E; \ \Pi(x) = x.$$

(c) Conclure que (u_1,\cdots,u_p) est une base orthonormée de E.

- Exercice 5 -

Soit $E = \mathbb{R}_n[X]$ l'espace des polynômes à coefficients réels de degré $\leq n$ avec $n \geq 4$ muni de sa base canonique $\mathfrak{B} = (1, X, \cdots, X^n)$ et soit $F = \mathbb{R}_2[X]$ le sous-espace des polynômes à coefficients réels de degré ≤ 2 .

I- Pout tout $P=\sum_{i=0}^n\,\alpha_iX^i$ et $Q=\sum_{i=0}^n\,b_iX^i$ deux polynômes dans E, on pose

$$\langle P, Q \rangle = \sum_{i=0}^{n} a_i b_i.$$

- 1. Montrer que \langle , \rangle est un produit scalaire sur E.
- 2. Montrer que ${\mathfrak B}$ est orthonormée pour ce produit scalaire.
- 3. Calculer la projection orthogonale sur F du polynome $\mathsf{P}(X) = X^3.$

II- Pout tout $P=\sum_{i=0}^n \alpha_i X^i$ et $Q=\sum_{i=0}^n b_i X^i$ deux polynômes dans E, on définit le produit scalaire sur E

$$\Psi(P,Q) = \int_0^{+\infty} e^{-X} P(X) Q(X) dX.$$

- 1. Calculer $\Psi(X^n, 1)$. $\mathfrak B$ est-elle orthonormée pour Ψ ?
- 2. Par l'algorithme de Gram-Schmidt, construire une base orthonormée de F.
- 3. Calculer alors la projection orthogonale sur F du polynôme. $P(X) = X^3$

Exercice 6 -

Soit (E; <, >) un espace Euclidien et f une isométrie de E $(f \in \mathfrak{L}(E); ||f(u)| = ||u|| pour tout <math>u \in E)$.

1. Montrer que pour tout $(u,v) \in E^2$, on a:

$$\langle f(u), f(v) \rangle = \langle u, v \rangle.$$

2. Soit \mathfrak{B} une base orthonormée de E . Montrer que f est une isométrie $\Leftrightarrow \mathsf{A} = \mathsf{mat}(\mathsf{f}, \mathfrak{B})$ est orthogonale

.

- 3. On se place dans $E = \mathbf{R}^3$.
 - (a) Montrer que f admet au moins une valeur propre réelle λ .
 - (b) Montrer que $|\lambda| = 1$.
 - (c) Soit E_λ l'espace propre associé à cette valeur propre λ . Montrer que E_λ^\perp est stable par f.
- 4. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique est

$$A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}.$$

- (a) Montrer que f est une isométrie.
- (b) Montrer que $\lambda=1$ est une valeur propre de f et donner la dimension de l'espace propre associé E_{λ} .
- (c) Montrer que f est la symétrie orthogonale par rapport à E_{λ} .

- Exercice 7 –

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ l'ensemble des fonctions continues de [-1,1] vers \mathbb{R} .

Pour tout $(f, g) \in E^2$, on pose

Pour tout $(f,g) \in E^2$, on pose

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

- 1. Montrer que $\langle \ , \ \rangle$ est un produit scalaire sur $\mathsf{E}.$
- Soit f_i(x) = xⁱ pour i ∈ N.
 Montrer que la famille {f₀, f₁, f₂} est libre mais pas orthogonale.
- 3. Déterminer par le procédé de Gram-Schmidt une base orthonormée de $\mathsf{F} = \mathsf{Vect}(\mathsf{f}_0,\mathsf{f}_1,\mathsf{f}_2).$
- 4. calculer la distance de f_3 à F.
- 5. Soient ${\mathcal P}$ l'ensemble des fonctions paires de E et ${\mathcal I}$ l'ensemble des fonctions impaires de E.
 - (a) Montrer que $\mathcal{I} = \mathcal{P}^{\perp}$.
 - (b) Soit l'application

$$\begin{array}{cccc} \psi: & E & \to & E \\ & f & \mapsto & \tilde{f} \end{array}$$

Avec $\tilde{f}(x) = f(-x)$.

Montrer que ψ est la symétrie orthogonale par rapport à \mathcal{P} .