(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-218185

(P2002=218185A)

(43)公開日 平成14年8月2日(2002.8.2)

(51) Int.Cl. ⁷	•	識別記号	FΙ	デーマコート*(参考)
H04N	1/19		G03B 27/50	A 2H108
G03B	27/50	•	H 0 4 N 1/00	E 5C062
H 0 4 N	1/00			107Z 5C072
		107	1/04	102

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号	特願2001-6805(P2001-6805)	(71)出顧人 000006747
•		株式会社リコー
(22)出願日	平成13年1月15日(2001.1.15)	東京都大田区中馬込1丁目3番6号
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者 和田 真一郎
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
	•	(74)代理人 100101177
		弁理士 柏木 慎史 (外2名)
		Fターム(参考) 2H108 AA01 CA01 CB01 FA01
		50062 AA05 AB17 AB22 AB40 AB41
•		ACO4 AC13 AC27
-	•	50072 AA05 BA05 EA05 FB23 UA06
		XAO1

(54) 【発明の名称】 画像読取装置および画像情報処理装置

(57)【要約】

【課題】 組み立てに際しての作業効率の向上を図ることができるようにする。

【解決手段】 光電変換素子12を介して取得したアナログ画像データをデジタル画像データとして外部へ向けて転送する画像読取装置1で、光電変換素子12と、タイミング信号生成回路と、画像処理回路と、アナログ/デジタル変換回路と、転送回路と、入出力回路とを単一の基板15上に設けた。これによって、組み立てに際しての作業効率の向上を図ることができる。また、光電変換素子から画像処理回路へ伝達される画像データでのノイズの発生を抑制することができる。

date NB

【特許請求の範囲】

【請求項1】 走査光学系により露光走査した原稿のア ナログ画像データを光電変換素子を介して取得し、この アナログ画像データに対して画像処理を施してデジタル 画像データを生成し、このデジタル画像データを外部装 置へ向けて転送する画像読取装置において、

前記光電変換素子と、前記走査光学系を駆動する駆動回 路と、前記光電変換素子と前記走査光学系との動作をと るタイミング信号を生成するタイミング信号生成回路 と、前記画像処理を施す画像処理回路と、前記デジタル 10 画像データを生成するアナログ/デジタル変換回路と、 前記デジタル画像データを外部装置へ向けて転送する転 送回路と、本装置内の各部からの出力値が入力されると ともに本装置内の各部に対して制御信号を出力する入出 力回路とを単一の基板上に設けたことを特徴とする画像 読取装置。

【請求項2】 前記駆動回路と、前記タイミング信号生 成回路と、前記画像処理回路と、前記アナログ/デジタ ル変換回路と、前記転送回路と、前記入出力回路とを、 単一のASICとして構成したことを特徴とする請求項 20 1記載の画像読取装置。

【請求項3】 前記ASICは、前記基板とは異なる位 置に設けられたCPUから出力された駆動信号によって 駆動されることを特徴とする請求項2記載の画像形成装

【請求項4】 前記ASICは、前記CPUからシリア ル通信によって出力された前記駆動信号によって駆動さ れることを特徴とする請求項3記載の画像読取装置。

【請求項5】 請求項2、3または4記載の画像読取装 像データに基づいてプリント動作を実行する画像形成装 置とを備える画像情報処理装置において、

前記画像形成装置が備える各部を駆動制御するとともに 前記ASICに対して駆動信号を出力するCPUを前記 画像形成装置に設けたことを特徴とする画像情報処理装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、プリンタ等の外部 装置に接続されて使用されるカラーイメージスキャナ等 40 の画像読取装置および画像情報処理装置に関する。

[0002]

【従来の技術】従来、走査光学系で露光走査した原稿の 画像をCCD等の光電変換素子により読み取ってデジタ ル画像データとするスキャナ装置と、デジタル画像デー タに基づいてプリンタエンジンを駆動するプリンタ装置 とを備えるデジタル複写機がある。

【0003】スキャナ装置が備える走査光学系は、例え ば、ランプおよび複数枚のミラーを搭載するキャリッジ で、原稿画像を露光走査する。

【0004】プリンタ装置が備えるプリンタエンジン は、例えば、電子写真方式であれば、各種モータの駆動 によって感光体や現像器等を回転駆動したり、感光体を 露光する露光ランプのON/OFF制御したりすること で、デジタル画像データに基づいた画像を用紙に形成す る。プリンタ装置は、例えば、用紙の有無に応じて出力 が変化する光センサ等の各種センサを有している。

【0005】ここで、従来のデジタル複写機が備える各 部の電気的接続について図3を参照して作用的に説明す る。デジタル複写機100のスキャナ装置101では、 走査光学系により露光走査した原稿画像からの反射光 を、センサボード102に搭載されたCCD103で光 電変換してアナログ画像データとしてアナログ処理部1 04に出力する。

【0006】アナログ処理部104では、アナログ画像 データに対して、サンプルホールド処理、黒レベル補正 等の各種画像処理を施した後、A/D変換部105へ出 力する。A/D変換部105では、入力されたアナログ 画像データをデジタル画像データに変換して画像処理部 106に出力する。画像処理部106は、所定の画像処 理を施した後、画像データバス等のバスライン107を 介して、デジタル画像データをプリンタ部108が備え る書込制御部109に伝送する。

【0007】スキャナ装置101では、上述のアナログ 処理部104、A/D変換部105、画像処理部106 が、単一の画像処理ボード110上に搭載されている。 この画像処理ボード110には、スキャナ部101が備 える各部を集中的に駆動制御するCPU111が搭載さ 置と、前記画像読取装置から転送された前記デジタル画 30 れている。CPU111は、同じく、画像処理ボード1 10に搭載されたI/O制御部112を介して、ステッ ピングモータ等の各種モータ113やハロゲンランプ1 14に出力するON/OFF信号の管理、および、原稿 のセットの有無に応じて出力が変化するセットセンサ等 の各種センサ115からの出力情報の管理等を行う。

> 【0008】プリンタ部108では、メイン制御部11 6が備えるCPU117によって、原稿セットセンサ等 の各種センサ118からの出力値を参照し、画像処理部 106から伝送された書込制御部109中のデジタル画 像データ基づいて、I/O制御部120を介して搬送口 ーラ等の各種モータ119を駆動することにより画像を 形成する。

【0009】このようなデジタル複写機100では、C PU1112CPU117との間でシリアル通信を行う ことによって、スキャナ装置101とプリンタ装置10 8との間でシーケンス制御を実現している。

【0010】ここで、近年の画像データの多値化に伴う 画像データ量の膨大化から、画像処理ボード110に搭 載されている画像処理部106は、例えば、R(Red)・

をステッピングモータ等の駆動によって走行させること 50 G(Green)・B(Blue)の3色に色分解されたデジタル画

像データを、該画像データの転送先のプリンタ装置10 8の設定色に合わせたC(Cyan)・M(Magenta)・Y(Yell ow)およびK (Black)の各色の色信号に変換する変換処理 等の複雑な制御を要するため、プリンタ装置108の近 くに配設されることが望ましい。

[0011]

【発明が解決しようとする課題】近年では、それぞれ独 立して構成されたスキャナ装置101とプリンタ装置1 08とを通信自在に接続することで、上述したデジタル 情報処理装置がある。

【0012】このような画像情報処理装置では、スキャ ナ装置101とプリンタ装置108とが、離間した位置 に配設される状況が考えられる。

【0013】スキャナ装置101とプリンタ装置108 とが離間した位置に配設される状況下では画像処理部1 06がプリンタ装置108から離間してしまうため、上 述の理由から画像処理部106をプリンタ装置108の 近くに配設するために、画像処理ボード110のみをプ リンタ装置108の近くに配設することが考えられる。 【0014】しかし、一方で、画像処理ボード110を プリンタ装置108の近くに配設した場合、CCD10 3とアナログ処理部104とが離間することとなる(図 3参照)。一般に、CCD103とアナログ処理部10 4とが離間するほど、CCD103からアナログ処理部 104へ伝送される画像データにノイズが発生しやすく なり、読み取った画像データの品質が低下する。

【0015】本発明は、読み取った画像データを外部装 置へ向けて転送する画像読取装置および画像読取装置を 備える画像情報処理装置のコストパフォーマンスの向上 30 を図ることを目的とする。

【0016】本発明は、読み取った画像データを外部装 置へ向けて転送する画像読取装置および画像読取装置を 備える画像情報処理装置の小型化を図ることを目的とす

【0017】本発明は、読み取った画像データを外部装 置へ向けて転送する画像読取装置および画像読取装置を 備える画像情報処理装置で、光電変換素子から画像処理 回路へ伝達される画像データでのノイズの発生の低減を 図ることを目的とする。

[0018]

【課題を解決するための手段】請求項1記載の発明の画 像読取装置は、走査光学系により露光走査した原稿のア ナログ画像データを光電変換素子を介して取得し、この アナログ画像データに対して画像処理を施してデジタル 画像データを生成し、このデジタル画像データを外部装 置へ向けて出力する画像読取装置において、前記光電変 換素子と、前記走査光学系を駆動する駆動回路と、前記 光電変換素子と前記走査光学系との動作をとるタイミン グ信号を生成するタイミング信号生成回路と、前記画像 50

処理を施す画像処理回路と、前記デジタル画像データを 生成するアナログ/デジタル変換回路と、前記デジタル 画像データを外部装置へ向けて転送する転送回路と、本 装置内の各部からの出力値が入力されるとともに本装置 内の各部に対して制御信号を出力する入出力回路とを単 一の基板上に設けた。

【0019】したがって、光電変換素子、駆動回路、タ イミング信号生成回路、画像処理回路、アナログ/デジ タル変換回路、転送回路および入出力回路を一部品化す 複写機100と同様の機能を実現させるようにした画像 10 ることが可能になり、組み立てに際しての作業効率の向 上を図ることができる。また、光電変換素子と画像処理 回路とが単一の基板上に設けられていることにより、光 電変換素子から画像処理回路へ伝達される画像データで のノイズの発生を抑制することができる。

> 【0020】請求項2記載の発明は、請求項1記載の画 像読取装置において、前記駆動回路と、前記タイミング 信号生成回路と、前記画像処理回路と、前記アナログ/ デジタル変換回路と、前記転送回路と、前記入出力回路 とを、単一のASICとして構成した。

【0021】したがって、駆動回路とタイミング信号生 20 成回路と画像処理回路とアナログ/デジタル変換回路と 転送回路と入出力回路とを、単一のASICとして構成 することにより、部品の小型化を図るとともに、処理速 度の向上を図ることができる。

【0022】請求項3記載の発明は、請求項2記載の画 像形成装置において、前記ASICは、外部装置からの 所定の駆動信号によって駆動される。

【0023】したがって、本装置内に、本装置の各部を 駆動制御するCPUを設ける必要がなくなるため、コス トパフォーマンスの向上を図ることができる。

【0024】請求項4記載の発明は、請求項3記載の画 像読取装置において、前記ASICは、前記CPUから シリアル通信によって出力された前記駆動信号によって 駆動される。

【0025】したがって、本装置内にCPUを有しない 場合にも、ASICのシーケンス制御を実現することが

【0026】請求項5記載の発明の画像情報処理装置 は、請求項2、3または4記載の画像読取装置と、前記 画像読取装置から転送された前記デジタル画像データに 基づいてプリンタエンジンを駆動する画像形成装置とを 備える画像情報処理装置において、前記画像形成装置が 備える各部を駆動制御するとともに前記ASICに対し て駆動信号を出力するCPUを前記画像形成装置に設け

【0027】したがって、画像形成装置側にCPUを設 けるだけで、CPUを有しない画像読取装置の各部を駆 動制御することができる。

[0028]

40

【発明の実施の形態】本発明の一実施の形態について図

1および図2を参照して説明する。本実施の形態は、画 像読取装置としてカラーイメージスキャナへの適用例を 示す。

【0029】図1は、本発明の一実施の形態のカラーイ メージスキャナを概略的に示す縦断断面図である。フラ ットベット型のカラーイメージスキャナ1は、ケーシン グ2の上面に、原稿3を載置するコンタクトガラス4を 備えている。

【0030】コンタクトガラス4の一端部側には、シェ ーディング補正用の白基準板5が設けられている。

【0031】コンタクトガラス4の下方には、原稿の露 光用のハロゲンランプ6および第1反射ミラー7を搭載 する第1キャリッジ8と、第2反射ミラー9および第3 反射ミラー10を搭載する第2キャリッジ11とが、図 示しないステッピングモータ(図2参照)の駆動により、 副走査方向(図1中矢印A方向)に往復動自在に設けられ ている。

【0032】ハロゲンランプ6は、白基準板5やコンタ クトガラス4の読取面(図1中下面)に対して所定の角度 で光を照射するように設けられている。

【0033】第3反射ミラー10からの反射光路上に は、光電変換素子であるCCDリニアイメージセンサ (以下では、単にCCDという)12と、CCD12に結 像するためのレンズユニット13とが配設されている。 CCD12は、基板としてのセンサボード15に搭載さ れている。

【0034】白基準板5または原稿3で反射した光は、 第1、第2、第3反射ミラー7,9,10およびレンズ ユニット13を経由してCCD12に入射する。CCD 12は入射光量に対応した電圧をアナログ画像データと 30 して出力する。

【0035】ここに、ハロゲンランプ6、第1、第2、 第3反射ミラー7,9,10およびレンズユニット13 によって、走査光学系14が構成されている。

【0036】カラーイメージスキャナ1は、ステッピン グモータ(図2参照)の駆動による第1および第2キャリ ッジ8、11の走行により原稿3を露光走査する。

【0037】近年、このようなカラーイメージスキャナ 1を、プリンタエンジンを備えるプリンタに対して通信 自在に拡張接続して、カラーイメージスキャナ1とプリ ンタとの間でデータ通信を行うことで、カラーイメージ スキャナ1とプリンタとによってデジタル複写機として の機能を実現させるようにした画像情報処理装置があ る。

【0038】このような画像情報処理装置が備える各部 の電気的接続について図2を参照して作用的に説明す る。

【0039】図2は、画像情報処理装置が備える各部の 電気的接続を示すブロック図である。画像情報処理装置 16は、カラーイメージスキャナ1と画像形成装置とし 50 一部品化することが可能になり、組み立てに際しての作

てのプリンタ17とを備えている。

【0040】カラーイメージスキャナ1におけるCCD 12は、走査光学系14の動作により入力された原稿3 からの反射光を、この光の強度に応じた電圧値を持つR GB各色のアナログ画像データに変換し、アナログ処理 IC18に向けて出力する。以降、画像データの流れを 太矢印で示す。

【0041】センサボード15に搭載されたアナログ処 理 I C 1 8 は、C C D 1 2 から出力されたアナログ画像 10 データをサンプリングし、連続的なアナログ画像データ を生成する。

【0042】本実施の形態では、CCD12およびアナ ログ処理 I C 1 8が単一のセンサボード 15上に搭載さ れている。これにより、CCD12とアナログ処理IC 18との間の距離が短くなるので、CCD12からアナ ログ処理IC18へ伝送されるアナログ画像データにお けるノイズの発生が防止され、読み取った画像データの 品質の向上を図ることができる。

【0043】アナログ処理IC18から出力されたアナ 20 ログ画像データは、センサボード15に搭載されたAS IC(Application Specified IC)19に入力される。

【0044】ASIC19は、走査光学系14を駆動す る駆動回路と、CCD12と走査光学系14との動作を とるタイミング信号を生成するタイミング信号生成回路 と、CCD12を介して取得した画像データに対して画 像処理を施す画像処理回路と、デジタル画像データを生 成するアナログ/デジタル変換回路と、デジタル画像デ ータを外部装置(プリンタ17)へ向けて転送する転送回 路と、各種センサからの出力値が入力されるとともに各 種モータに対して制御信号を出力する入出力回路(いず れも図示せず)が、集積された回路構成を有している。

【0045】これにより、ASIC19は、原稿3の読 み取りに際しては、タイミング信号生成回路が生成する タイミング信号によって、CCD12とアナログ処理I C18との動作タイミングがとられる。

【0046】また、ASIC19は、アナログ処理IC 18から出力されたアナログ画像データに対してA/D 変換を行い、デジタル画像データを生成する。

【0047】さらに、ASIC19は、ステッピングモ 40 ータ等の各種モータ、ハロゲンランプ6のON/OFF を制御するインバータ24等が接続された拡張PSU2 5への出力信号、あるいは、各種センサ26から出力さ れる入力情報を管理する機能が実現される。

【0048】ここで、各種センサ26は、例えば、コン タクトガラス上での原稿3の有無により出力が変化する 原稿セットセンサや、セットされた原稿3のサイズに応 じて出力が変化するサイズ検知センサ等がある。

【0049】これによって、各種回路をプリント等によ ってセンサボード15上に形成することで複数の回路を 業効率の向上を図ることができる。

【0050】また、複数の回路を一部品化することによって、これらの各種回路を配設するためのスペースの縮小化を図ることができ、カラーイメージスキャナ1の小型化を図ることができる。

7

【0052】デジタル画像データは、センサボード15 に搭載されたLDVS(Low VoltageDifferential Signa ling)インターフェイス(以降、LDVSI/Fという)20を介して、画像処理ボード21に実装されたLVDSI/F22に対してデジタル画像データを出力する。LVDSI/F20,22間は、I/Fケーブル(図示せず)で接続されている。

【0053】ここで、LDVSとは、TIA/EIA- 20644で規格化されたデータ伝送方式であり、パラレル信号を低電圧差動のシリアル信号に変換して伝送する方式である。

【0054】LDVSを用いたデータ伝送では、小さい電圧変化の差動信号でデータを高速伝送することにより外部からのノイズに強く、伝送ライン上が定電流であることにより負荷条件が変化しても安定して動作するといった特徴がある。

【0055】また、データ転送に際しての電圧の振幅が小さいため、極大または極小点間のスイッチング時間が 30 短時間でよいため、データ転送レートの向上を図ることができる。

【0056】さらに、LDVSを用いたデータ伝送では、5ボルト差動方式と比較して消費電力量が少ないという利点を有している。加えて、データ転送に際して発生する磁界が少なくなり、不平衡型伝送方式に比べてEMI(Electro Magnetic Interference)を低く抑えることができる。

【0058】LVDSI/F22は、LVDSI/F2 0から転送されたシリアルのデジタル画像データをパラ レルのデジタル画像データに変換して画像処理IC28 に向けて出力する。

【0059】画像処理IC28は、画像処理ボード21 50 ラ29とはI/F36によって通信自在に接続され、コ

に実装されており、LVDSI/F22から転送されたデジタル画像データに対して、各種画像処理を施す。公知の技術であるため説明を省略するが、画像処理IC28は、例えば、カラーイメージスキャナ1から転送されたデジタル画像データを、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色の色信号に変換する処理を行う。

【0060】画像処理ボード21には、画像処理ボード21上の各部を集中的に駆動制御するCPU27が実装されている。

【0061】これにより、例えば、R(Red)・G(Green)・B(Blue)の3色に色分解されてカラーイメージスキャナ1から出力されたデジタル画像データを、プリンタ17の設定色に合わせたC(Cyan)・M(Magenta)・Y(Yellow)およびK(Black)の各色の色信号に変換する変換処理等の複雑な処理の実行に際して、CPU27によって画像処理IC28の動作を管理することができ、膨大な量のデータの複雑な処理に容易に対応することができる。【0062】ところで、従来のデジタル複写機では、図3に示すように、スキャナ装置101を駆動制御するためのCPU111をスキャナ装置101内に備え、原稿画像の読み取りに際しては、このCPU111で発生させた割り込み処理によりステッピングモータ等の各種モータ113の駆動等を行うようにしていた。

【0063】これに対し、本実施の形態では、例えば、ステッピングモータ等の各種モータ23の駆動テーブル(図示せず)をASIC19の内部メモリ(図示せず)に記憶させておくことで、ASIC19でステッピングモータの駆動パルスを生成させ、この駆動パルスによりステッピングモータを駆動することが可能になるので、各種画像処理を行うCPU27における負荷の低減を図ることができる。また、CPU27からシリアル通信によって出力した駆動信号によってASIC19を動作させることにより、カラーイメージスキャナ1にCPUを設けることがないため、カラーイメージスキャナ1のコストパフォーマンスの向上を図ることができる。

【0064】ところで、画像情報処理装置16は、画像情報処理装置16を構成するカラーイメージスキャナ1とプリンタ17とが、物理的に離間した位置に配設されることが考えられる

【0065】本実施の形態では、LDVSによるデータ 転送を行っているため、カラーイメージスキャナ1から プリンタ17へのデジタル画像データの転送の高速化を 図ることができる。

【0066】画像処理IC28で各種画像処理が施されたデジタル画像データは、プリンタ17が備えるコントローラ29、エンジンコントローラ30を経由して、書込制御IC31に転送される。

【0067】ここで、画像処理ボード21とコントローラ29とはT/F36によって通信自在に接続され、コ

ントローラ29とエンジンコントローラ30とはI/F 37によって通信自在に接続されている。 I/F36, 37は、ボードとボードとを接続するインターフェイス である。

【0068】 コントローラ29、 エンジンコントローラ 30は、ともに、CPU32, 33を有しており、エン ジンコントローラ30のCPU33は、書込制御IC3 1の他に、プリンタエンジン(図示せず)等の用紙上への 画像形成に係る各部を集中的に駆動制御する。用紙上へ る搬送ローラを回転させる搬送モータや感光体を駆動す る駆動モータあるいはポリゴンミラーを回転させるポリ ゴンモータ等の各種モータ34、用紙位置やジャム等を 検出する光センサ等の各種センサ35等がある。

【0069】エンジンコントローラ30のCPU33 は、書込制御IC31に伝送されたデジタル画像データ に基づいて各種モータを駆動することにより、カラーイ メージスキャナ1で読み取った原稿3の画像を用紙に複 写形成する。

[0070]

【発明の効果】請求項1記載の発明の画像読取装置によ れば、光電変換素子、駆動回路、タイミング信号生成回 路、画像処理回路、アナログ/デジタル変換回路、転送 回路および入出力回路をプリント等によって一部品化す ることが可能になり、組み立てに際しての作業効率の向 上を図ることができる。また、光電変換素子と画像処理 回路とが単一の基板上に設けられていることにより、光 電変換素子から画像処理回路へ伝達される画像データで のノイズの発生を抑制することができる。

【0071】請求項2記載の発明によれば、請求項1記 30 載の画像読取装置において、駆動回路とタイミング信号 生成回路と画像処理回路とアナログ/デジタル変換回路

と転送回路と入出力回路とを、単一のASICとして構 成することにより、部品の小型化を図るとともに、処理 速度の向上を図ることができる。

1.0

【0072】請求項3記載の発明によれば、請求項2記 載の画像形成装置において、本装置内に、本装置の各部 を駆動制御するCPUを設ける必要がなくなるため、コ ストパフォーマンスの向上を図ることができる。

【0073】請求項4記載の発明によれば、請求項3記 載の画像読取装置において、本装置内にCPUを有しな の画像形成に係る各部としては、例えば、用紙を搬送す 10 い場合にも、ASICのシーケンス制御を実現すること ができる。

> 【0074】請求項5記載の発明の画像情報処理装置に よれば、画像形成装置側にCPUを設けるだけで、CP Uを有しない画像読取装置の各部を駆動制御することが できる。これによって、画像読取装置のコストパフォー マンスの向上を図ることができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態のイメージスキャナを概 略的に示す断面図である。

【図2】画像情報処理装置が備える各部の電気的接続を 20 概略的に示すブロック図である。

【図3】従来のデジタル複写機が備える各部の電気的接 続を概略的に示すブロック図である。

【符号の説明】

- 1 画像読取装置
- 12 光電変換素子
- 走查光学系 14
- 15 基板
- 画像情報処理装置 16
- 17 画像形成装置
 - 19 ASIC
 - CPU 27

【図1】

【図3】 【図2】 100 } 102 103 104 110 105 拡張 CCD ハロゲン ランプ AS I C. LVDS アナロク A/D 空換部 1/F COD #6√ L センサボード センサ 22 料御部 画像 处理部 CPU ハロゲン ランプ LVDS 1/F 画像如理 I C CPU 104 101 119 117 1/F -36 107~ (M) CPU エンジン **国公制部** i F コントローラ 1/0 センサ メイン制御部 ~108 CPU CPU 書込制御 I C 120 118 aíı

PAT-NO:

JP02002218185A

DOCUMENT-IDENTIFIER:

JP 2002218185 A

TITLE:

IMAGE READER AND IMAGE INFORMATION

PROCESSING UNIT

PUBN-DATE:

August 2, 2002

INVENTOR-INFORMATION:

NAME

WADA, SHINICHIRO

COUNTRY

N/A

ASSIGNEE-INFORMATION:

NAME

RICOH CO LTD

COUNTRY

N/A

APPL-NO:

JP2001006805

APPL-DATE:

January 15, 2001

INT-CL (IPC): H04N001/19, G03B027/50 , H04N001/00

ABSTRACT:

PROBLEM TO BE SOLVED: To enhance the assembling efficiency.

SOLUTION: The image reader 1 that transfers analog image data acquired via a

photoelectric conversion element 12 externally as digital image data, is

provided with the photoelectric conversion element 12, a timing signal

generating circuit, an image processing circuit, an analog/digital converter

circuit, a transfer circuit, and an input output circuit, which are mounted on

a single board 15. Thus, the assembling efficiency can be enhanced.

Furthermore, production of noise in image data transferred

from the photoelectric conversion element 12 to the image processing circuit can be suppressed.

COPYRIGHT: (C)2002,JPO