

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 7. Präsenzblatt

Julian Dörfler

Aufgabe P7.1

Seien $A, B \subseteq \mathbb{N}$. Zeigen Sie:

$$A \le B \Rightarrow \overline{A} \le \overline{B}$$

Lösung P7.1

Sei f die Reduktionsfunktion von A nach B (*). Dann gilt

$$x \in \overline{A} \Leftrightarrow x \notin A \Leftrightarrow \neg(x \in A) \stackrel{(\star)}{\Leftrightarrow} \neg(f(x) \in B) \Leftrightarrow f(x) \notin B \Leftrightarrow f(x) \in \overline{B}$$

Daher ist f ebenfalls eine Reduktionsfunktion von \overline{A} nach \overline{B} , also $\overline{A} \leq \overline{B}$.

Aufgabe P7.2 (Reduktion)

Zeigen Sie $H \leq H_0$

Lösung P7.2 (Reduktion) Gegeben $\langle g, x \rangle$, geben wir die Gödelisierung des folgenden Programms P_g aus:

Gegeben m, simuliere g auf x.

Dies ist offensichtlich WHILE-berechenbar.

Sei nun $\langle g, x \rangle \in H$. Dann hält g auf Eingabe x. Daher hält P_g auf jeder Eingabe, also insbesondere bei Eingabe $g\ddot{o}d(P_g)$, also $g\ddot{o}d(P_g) \in H_0$.

Sei nun $\langle g, x \rangle \notin H$. Dann hält g nicht auf Eingabe x. Daher hält P_g auf keiner Eingabe, also insbesondere bei Eingabe göd (P_g) nicht, also göd $(P_g) \notin H_0$.

Aufgabe P7.3 (Semi-Entscheider)

Sei

$$L = \{ g \in \mathbb{N} \mid \varphi_g(42) = 1337 \}.$$

Zeigen Sie $L \in RE$.

Lösung P7.3 (Semi-Entscheider) Das folgende WHILE-Programm P berechnet χ'_L :

Gegeben g, simuliere g auf Eingabe 42. Falls diese Simulation mit Ausgabe 1337 hält, gib 1 aus, ansonsten divergiere.

Sei $g \in L$. Dann hält g bei Eingabe 42 mit Ausgabe 1337. Somit produziert P bei Eingabe g die Ausgabe 1.

Sei $g \notin L$. Dann hält g bei Eingabe 42 nicht oder mit einer anderen Ausgabe als 1337. Im ersten Fall terminiert die Simulation von g innerhalb von P schon nicht, im zweiten Fall divergiert P explizit. In beiden Fällen divergiert P bei Eingabe g.

Aufgabe P7.4 (Aufzählbare Mengen)

Welche der folgenden Eigenschaften können jeweils von einem $\mathtt{WHILE} ext{-}\operatorname{Programm}\,P$ erfüllt sein? Beweisen Sie Ihre Antworten.

- (a) dom $\varphi_P = \emptyset$
- (b) $\operatorname{im} \varphi_P = \emptyset$
- (c) dom $\varphi_P = \{42, 1337\}$
- (d) $\operatorname{im} \varphi_P = \{42, 1337\}$
- (e) dom $\varphi_P = H_0$
- (f) $\operatorname{im} \varphi_P = H_0$
- (g) dom $\varphi_P = \overline{H_0}$
- (h) im $\varphi_P = \overline{H_0}$

Lösung P7.4 (Aufzählbare Mengen) Wir verwenden für alle Teilaufgaben die Aufgabe A6.4, insbesondere die Äquivalenz der folgenden drei Aussagen:

- (RE-A) A ist rekursiv aufzählbar.
- (RE-B) Es gibt ein WHILE-Programm P mit $A = \text{dom}(\varphi_P)$.
- (RE-C) Es gibt ein WHILE-Programm P mit $A = \operatorname{im}(\varphi_P)$.

Wir wissen, dass \emptyset , $\{42, 1337\}$ und H_0 alle rekursiv aufzählbar sind, aber $\overline{H_0}$ nicht. Somit existieren entsprechende Programme P für (a)-(f), aber nicht für (g) und (h).