Professor: Dr. Luo January 17, 2023

MATH 575 Homework 1

Problem 1 For positive integers n and k, consider the graph G(n, k) which is defined as follows: the vertex set of G(n, k) is the set of subsets of [n] of size k, and two vertices are connected by an edge in G(n, k) if and only if the corresponding subsets are disjoint.

- (a) Give a drawing of the graph G(5,2).
- (b) Let G be the graph drawn below. Show that G(5,2) is isomorphic to G by relabelling the vertices of G in the drawing below.

Solution.

We have

$$V(G(5,2)) = \{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}\}\}$$

and

$$E(G(5,2)) = \{\{1,2\}\{3,4\},\{1,2\}\{3,5\},\{1,2\}\{4,5\},\{1,3\}\{2,4\},\{1,3\}\{2,5\},\{1,3\}\{4,5\},\{1,4\}\{2,3\},\{1,4\}\{2,5\},\{1,4\}\{3,5\},\{1,5\}\{2,3\},\{1,5\}\{2,4\},\{1,5\}\{3,4\},\{2,3\}\{4,5\},\{2,4\}\{3,5\},\{2,5\}\{3,4\}\}.$$

Nathan Bickel

Problem 2 A graph is called k-regular if every vertex has degree k.

- (a) Draw an example of a 3-regular graph on 6 vertices.
- (b) Draw two non-isomorphic 2-regular graphs on 7 vertices.
- (c) Prove that if k is odd, then there does not exist a k-regular graph with an odd number of vertices.

Solution.

(c) Let k be an odd number and assume there exists a k-regular graph G with an odd number of vertices n. We have from the handshaking lemma that for any graph G,

$$\sum_{v \in V(G)} d(v) = 2|E(G)|.$$

We have n vertices each with degree k, so the sum of the degrees is kn and thus $|E(G)| = \frac{kn}{2}$. However, since k and n are both odd, this is not an integer, a contradiction.

Problem 3 Prove that every graph G must contain a pair of vertices with the same degree.

Solution.

We note this is clearly only true for graphs with 2 or more vertices.

Let G be a graph with $n \geq 2$ vertices. Each vertex can have degree ranging from 0 to n-1. However, G cannot have both a vertex with degree 0 and a vertex with n-1, because the latter must connect to everything and the former must connect to nothing. Thus, the n vertices in G have n-1 possible degrees, so by the PHP there are 2 vertices with the same degree.

Problem 4 Let G be a graph with $V(G) = \{v_1, \dots, v_n\}$. Recall that the adjacency matrix of G is the $n \times n$ matrix A such that $A_{ij} = 1$ if $v_i v_j \in E(G)$ and $A_{ij} = 0$ otherwise. Use induction to prove that for all integers $k \geq 1$, the (i, j)-entry of A^k is equal to the number of v_i, v_j -walks of length k in G.

Solution.

First, let k = 1, and let $i, j \in [n]$. If v_i and v_j are neighbors, there is $v_i v_j$ -walk of length 1, and $v_i v_j$ -walks of length 1 otherwise. $A_{ij}^1 = 1$ if and only if v_i and v_j are neighbors, so the claim holds for k = 1.

Next, let $k \in \mathbb{N}$ and assume the claim holds for k. We have $A^{k+1} = (A^k)(A)$. Let $i, j \in [n]$. By definition, we have

$$A^{k+1}{}_{ij} = \sum_{m=1}^{n} A^{k}{}_{im} A_{mj}.$$

Nathan Bickel

Homework 1 MATH 575

We claim this counts the number of $v_i v_j$ -walks of length k+1. To see this, let $m \in [n]$. A^k_{im} is the number of $v_i v_m$ -walks of length k. Thus, if $v_m v_j \in E(G)$, there are A^k_{im} possible $v_i v_j$ -walks of length k+1 whose second-to-last vertices are v_m (simply walk to v_m and then to v_i). Otherwise, there are no possible $v_i v_i$ -walks of length k+1 whose second-to-last vertices are v_m .

To get the total number of $v_i v_j$ -walks of length k+1, we should sum A^k_{im} for all m such that $v_m v_j \in E(G)$. Since $A_{mj} = 1$ if and only if $v_m v_j \in E(G)$, this is equal to the sum above. So if the claim holds for k, it also holds for k+1, and therefore it is true for all $k \in \mathbb{N}$.

Problem 5 Let G be an n-vertex graph with degree sequence (d_1, d_2, \ldots, d_n) .

- (a) What is the degree sequence of \overline{G} ?
- (b) A graph G is called self-complementary if it is isomorphic to its complement. Prove that if G is selfcomplementary, then either n or n-1 is divisible by 4.
- (c) Show that for all n divisible by 4, there exists a self-complementary graph on n vertices. (Hint: generalize the structure of the path P_4 .)
- (d) Show that for all n such that n-1 is divisible by 4, there exists a self-complementary graph on n vertices. (Hint: add a vertex to a construction in part (c).)

Solution.

- (a) For each vertex, there are n-1 possible adjacent edges. In \overline{G} , each vertex must be adjacent to all n-1 edges except for the edges the vertex is adjacent to in G. Thus, the degree sequence will be $(n-1-d_1, n-1-d_2, \ldots, n-1-d_n).$
- (b) We have that $|E(\overline{G})| = \binom{n}{2} |E(G)|$, since $E(\overline{G})$ has all $\binom{n}{2}$ possible edges except the edges in E(G). If G is self-complementary, then $|E(\overline{G})| = |E(G)|$, so we have

$$\begin{split} |E(G)| &= \binom{n}{2} - |E(G)| \\ 2|E(G)| &= \frac{n(n-1)}{2} \\ 4|E(G)| &= n(n-1) \\ 4 \mid n(n-1). \end{split} \qquad (|E(G)| \in \mathbb{Z})$$

Thus, n or n-1 is divisible by 4.

(c) First, consider the path P on vertices $\{v_a, v_b, v_c, v_d\}$:

Then, consider \overline{P} :

Thus, P is self-complementary because we have an isomorphism $f_4:V(P)\to V(\overline{P})$ between P and \overline{P} . In particular, $f_4 = \{(v_a, v_c), (v_b, v_a), (v_c, v_d), (v_d, v_b)\}.$

Next, let $n \in \mathbb{N}$ such that $4 \mid n$ and assume there exists a self-complementary graph G with V(G) =

 $\{v_1, v_2, \dots, v_n\}$. Then, we have an isomorphism $f_n : V(G) \to V(\overline{G})$ between G and \overline{G} . We will show that we can construct a self-complementary graph G' by taking the following steps in $G \cup P$:

- Connect v_a to all $v \in A$, where $A = \{v_1, v_2, \dots, v_{n/2}\}.$
- Connect $f_4(v_a) = v_c$ to all $v \in C$, where $C = V(\overline{G}) f_n(A)$. Then, in $\overline{G'}$, we have that for any $v \in V(\overline{G})$, $f_4(v_a)$ will have an edge with $f_n(v)$ if and only if v_a has an edge with v.
- Connect $f_4(v_c) = v_d$ to all $v \in D$, where $D = V(\overline{G}) f_n(C)$. Similarly, for any $v \in V(\overline{G})$, $f_4(v_c)$ will have an edge with $f_n(v)$ if and only if v_c has an edge with v.
- Connect $f_4(v_d) = v_b$ to all $v \in B$, where $B = V(\overline{G}) f_n(D)$. Similarly, for any $v \in V(\overline{G})$, $f_4(v_d)$ will have an edge with $f_n(v)$ if and only if v_d has an edge with v.

Then, in G', each vertex in P connects to half of the of the vertices in G. By the way we have connected them, $f_{n+4} = f_n \cup f_4$ is an isomorphism from G' to $\overline{G'}$.

(d) Let $n \in \mathbb{N}$ such that $4 \mid n-1$. Then, from C there is a graph G on n-1 vertices such that G is self-complementary and thus there exists an isomorphism $f: V(G) \to V(\overline{G})$. Add one vertex v, and connect it to half the vertices in G. Then, v will still be connected to half the vertices in \overline{G} , and $f \cup (v, v)$ will be an isomorphism between G and G'.