Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 1

Stanislau Stankevich, Rafał Bednarz, Ostrysz Jakub

Spis treści

1.	Spra	wdzenie poprawności podanych wartości	2
2.	Odp	owiedzi skokowe	3
	2.1. 2.2.	Opowiedzi skokowe toru U-Y	3 4
	2.3. 2.4.	Charakterystyka statyczna	4 5
3.	Odp	owiedzi skokowe dla DMC	6
4.	Algo	rytm DMC	8
	4.1. 4.2. 4.3.	Strojenie regulatora	8 9 13
5 .	Regulacja z skokowym zakłóceniem		15
	5.1. 5.2. 5.3.	Bez pomiaru zakłócenia	15 16 17
6.	Regu	ılacja z skokowym zakłóceniem sinusoidalnym	18
	6.1. 6.2. 6.3.	Bez pomiaru zakłócenia	18 19 20
7.	Regulacja z skokowym zakłóceniem sinusoidalnym		
	7.1. 7.2. 7.3.	Szum nałożony na zakłócenie skokowe	21 24 27
8.	Laboratorium		28
	8.1. 8.2. 8.3. 8.4. 8.5.	Określenie wartości pomiaru temperatury w punkcie pracy	28 28 30 32 37
	0.0.	Donot baramenta D	91

1. Sprawdzenie poprawności podanych wartości

Żeby sprawdzić poprawność podanych wartości podajemy na wejscie sterowanie u=0 i patrzymy na jakiej wartości się ustali y.

Rys. 1.1. Przebieg wyjścia obiektu przy stałym wejściu: $\boldsymbol{u}=\boldsymbol{0}$

Jak możemy obersować wyjście się ustala na poprawnej wartości, czyli na 0.

2.1. Określenie wartości pomiaru temperatury w punkcie pracy

W celu określenia wartości pomiaru temperatury w punkcie pracy ustawiono moc wentylatora W1 = 50%, a moc grzałki G1 = 25%. Po czasie około 5 minut temperatura odczytywana przez czujnik temperatury zaczeła się stabilizować na poziomie $T1 = 28,2^{\circ}C$.

Niestety z powodu ciągłego ruchu powietrza związanego z przemieszczaniem się osób w sali i dużej ilości tych osób wpływających na temperaturę sali oraz czułość stanowiska pomiarowego temperatura odczytywana przez czujnik zaczeła odbiegać i lekko oscylować wokół tej temperatury.

Rys. 2.1. Pomiar temperatury w punkcie pracy

2.2. Wyznaczenie odpowiedzi skokowych

Rozpoczynając z punktu pracy wyznaczono odpowiedzi skokowe dla trzech różnych skoków sygnału zakłócenia Z=10% Z=20% i Z=30%.

Rys. 2.2. Odpowiedzi skokowe dla trzech różnych wartości sygnału sterującego

Analizując otrzymane wykresy można wywnioskować, że właściwości statyczne procesu są w przybliżeniu liniowe, zmiany wartości odpowiedzi skokowej dla tych samych chwil są w przybliżeniu proporcjonalne jak również sam kształt wykresów jest w przybliżeniu podobny. W celu sprawdzenia założeń narysowano charakterystykę statyczną procesu.

Rys. 2.3. Charakterystyka statyczna procesu

Która potwierdziła przypuszczenia, na jej podstawie można stwierdzić, że właściwości statyczne procesu są w dobrym przybliżeniu liniowe i w konsekwencji postanowiono wyznaczyć wzmocnienie statyczne procesu.

$$K_{stat} = 0{,}1890$$
 (2.1)

2.3. Przekształcenie i aproksymacja odpowiedzi skokowej

W celu przekształcenia odpowiedzi skokowej w taki sposób aby można ją było wykorzystać w algorytmie DMC skorzystano z poniższego wzoru:

$$S_i = \frac{Y(i) - Y_{pp}}{\triangle U} , \text{dla } i = 1, 2 \dots D$$
 (2.2)

Dla odpowiedzi skokowej na torze wejście-wyjście otrzymanej w wyniku zmiany sygnału sterującego z G1=25% na G1=35% a następnie dokonano jej aproksymacji używając członu inercyjnego drugiego rzędu z opóźnieniem.

Rys. 2.4. Aproksymacja odpowiedzi skokowej U-Y

Taki sam proces aproksymacji przeprowadzony został dla toru zakłócenie-wyjście dla skoku zakłócenia od Z=0 do Z=10.

Rys. 2.5. Aproksymacja odpowiedzi skokowe Z-Y

Do wyznaczenia optymalnych parametrów aproksymacji posłużono się algorytmem genetycznym o losowej populacji początkowej tak aby zminimalizować błąd dopasowania.

2.4. DMC

Prawo regulacji DMC przedstawia się następująco:

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) \tag{2.3}$$

Gdzie $\triangle U(k)$ to wektor N_u (horyzont sterowania) przyszłych wartości sterowania, $Y^0(k)$ to przewidywana odpowiedź z modelu procesu, K - macierz policzona raz na początku ze współczynników odpowiedzi skokowej, uwzględniając wybrany współczynnik λ oraz horyzonty predykcji i sterowania.

W przypadku algorytmu DMC z pomiarem zakłóce
ń $Y^0(\boldsymbol{k})$ oblicza się z następującego wzoru:

$$Y^{0}(k) = Y(k) + M^{P} \triangle U^{P}(k) + M^{Z^{P}} \triangle Z^{P}(k)$$
(2.4)

W powyższym wzorze dwa pierwsze elementy sumy odnoszą się do toru sterowanie-wyjście a ostatni element do toru zakłócenie-wyjście: M^{Z^P} macierz wyznaczana przy pomocy współczynników odpowiedzi skokowej dla zakłócenia, $\triangle Z^P(k)$ jest wektorem przyrostów mierzalnego zakłócenia.

Poniżej przedstawione są wyniki działania programu dla skoku wartości zadanej z punktu pracy 28,18 do 35 dla różnych parametrów regulatora:

Rys. 2.6. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=90,\,N_u=10,\,\lambda=0.4$

Rys. 2.7. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=90,\,N_u=10,\,\lambda=0,4$

Rys. 2.8. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=1$

Rys. 2.9. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=1$

Rys. 2.10. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=2$

Rys. 2.11. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=2$

Rys. 2.12. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=0,4$

Rys. 2.13. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=0,4$

Rys. 2.14. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$

Rys. 2.15. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$

$$E = 1,2676 * 10^3 \tag{2.9}$$

2.5. Dobór parametru D^z

W wyniku eksperymentów dobraliśmy wartość $D^z=320$.

Poniżej są przedstawione wyniki regulacji najpierw bez pomiaru zakłócenia, a potem z pomiarem dla skoków sygnału zakłócenia w chwili k=350 z wartości 0 do 30 oraz w k=600 z 30 do 10.

Rys. 2.16. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ bez pomiaru zakłócenia

Rys. 2.17. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ bez pomiaru zakłócenia

$$E = 1,4576 * 10^3 (2.10)$$

Włączamy pomiar zakłóceń.

Rys. 2.18. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ z pomiarem zakłócenia

Rys. 2.19. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ z pomiarem zakłócenia

$$E = 1,2734 * 10^3 (2.11)$$

Jak widać, regulacja z pomiarem jest bardziej precyzyjna.