# **CMOS Process**



# Design Rules

- Interface between designer and process engineer
- Guidelines for constructing process masks
- Unit dimension: Minimum line width
  - scalable design rules: lambda parameter
  - absolute dimensions (micron rules)

# Intra-Layer Design Rules



# **Transistor Layout**



# Vias and Contacts



# 45nm Process

| Layer    | Purpose                                     |
|----------|---------------------------------------------|
| Active   | Active for NMOS and PMOS                    |
| Poly     | Polysilicon line for NMOS/PMOS              |
| Nwell    | Nwell region for PMOS                       |
| Pwell    | Pwell region for NMOS                       |
| Nimplant | Implant N+ to source/drain for NMOS         |
| Pimplant | Implant P+ to source/drain for PMOS         |
| Contact  | Contacts - connect Metal1 to Poly or active |
| vthg     | General use threshold implant               |
| vthh     | High threshold implant                      |

### 45nm Process

| Layer           | Purpose                                        |
|-----------------|------------------------------------------------|
| Metal1 and Via1 | Metal 1 and Via 1 to connect Metal1 to Metal2  |
| Metal2 and Via2 | Metal 2 and Via 2 to connect Metal2 to Metal3  |
| Metal3 and Via3 | Metal 3 and Via 3 to connect Metal3 and Metal4 |
| Metal4          | Metal 4                                        |

You should not need more than 4 levels of metals for the project

### NFET – Process View



You need to identify the gate and source-drain -> Poly and Active Poly-> gate,

Active -> total diffusion area nimplant -> N+ implant for Source/Drain Poly & nimplant overlap -> Transistor You need to add P-well contact

### **Create NFET**



### PFET – Process View



You need to identify the gate and source-drain -> Poly and Active Poly -> gate,
Active -> total diffusion area pimplant -> P+ implant for Source/Drain Poly & pimplant overlap -> Transistor You need to add N-well contact

# **Create PFET**



# **NFET** with p-well Contact





### **PFET with n-well Contact**







Set pitch of the cell using the power and ground buses.





Connect the input/output lines



Add the p-well and n-well contacts

# **Design Error Check**

- Design Rule Checker (DRC)
  - Check whether design has validated any design rules
  - Ensures 'manufacturability of design'
- Layout vs Schematic (LVS)
  - Ensures your layout matches with your schematic
  - Checks for shorts opens etc. in layout
  - Transistors and wire connections

# **Design Extraction**

 Circuit extraction extracts a schematic representation of a layout, including transistors, wires, and possibly wire and device resistance and capacitance.



Circuit extraction is used for LVS, and for spice simulation of layouts

### Verification

- Schematic simulation
  - Ensures functionality and provides an approximate estimate of timing
- Simulation of extracted layout
  - Ensures timing in the presence of parasitic capacitances/resistances (wires, junctions stc.)
  - Provides 'more accurate' estimation of timing
- Formal verification
  - Mathematically verify the functionality of the circuit from its logic level description
  - Very important for large circuits where circuit simulation will take long time

# Physical Design: Logic Cells to Small Systems

### Physical Design for Large Number of Cells





### Wiring channels.



### Weinberger image array.



Primitive polygon-level library entries.



# Expanding the library with more complex cells.



### Cell hierarchy



# Large Design Layout: Example: SRAM Important for Project















### Basic 'Standard Cell' for Array – 4 Cells



### Basic 'Standard Cell' for Array – 4 Cells



### Array Construction $-4 \times 4 = 16$ Cells



Next repeat this block for 8 x 8 array, and so on

### **Array Construction – Substrate/N-well contacts**



- Normally, to save area n-well and substrate contacts are not present in every SRAM cell.
- The DRC rules specifies the maximum allowable distance between a NMOS (or PMOS) device and substrate (or n-well) contact.
- In array design, normally contacts are placed only to satisfy the constraints so that area can be lower.

### **Array Construction – Supply Network**



- Only horizontal supply and ground lines are not enough as these lines are not connected to each other
  - Lower stability and higher variability in supply network
- A network is supply is normally used with vertical lines connecting the horizantal lines

### System Level Physical Design of the Array



- Each decoded bit the row decoder needs to fit within the height of the memory cell.
- Width of the column circuit need to fit the pitch of 4 columns (if using a 4 x 1 column multiplexer)