Theory of Automata and Formal Language Lecture-5

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj March 31, 2021

Chomsky Hierarchy

According to Chomsky's classification, all the grammars are divided into following four categories:-

Type 0 Grammar (Unrestricted Grammar)

If there is no restriction on the production rules, then grammar is said to be type 0 grammar or unrestricted grammar.

Type 1 Grammar(Context Sensitive Grammar)

A grammar is said to be type 1 grammar or context sensitive grammar if every production rules are of the following form:-

$$\phi_1 A \phi_2 \to \phi_1 \psi \phi_2$$
, where $\phi_1, \phi_2, \psi \in (V \cup \Sigma)^*$ and $A \in V$.

Type 2 Grammar (Context Free Grammar)

A grammar is said to be type 2 grammar or context free grammar if every production rules are of the following form:-

$$A \to \psi$$
, where $\psi \in (V \cup \Sigma)^*$ and $A \in V$.

Type 3 Grammar(Regular Grammar)

A grammar is said to be type 3 grammar or regular grammar if every production rules are of the following form:-

$$A \rightarrow aB$$
 or $A \rightarrow a$, where $a \in \Sigma$ and A, B $\in V$

The Hierarchy

Class	Grammars	Languages	Automaton
Type-0	Unrestricted	Recursive Enumerable	Turing Machine
Type-1	Context Sensitive	Context Sensitive	Linear- Bound
Type-2	Context Free	Context Free	Pushdown
Type-3	Regular	Regular	Finite

Exercise

Determine the highest type of grammar in the following grammars:-

1.
$$S \rightarrow 0S1/0A1$$
, $A \rightarrow 1A/1$

2.
$$S \to 0S1/0A/0/1B/1$$
, $A \to 0A/0$, $B \to 1B/1$

3.
$$S \rightarrow 0SBA/01A$$
, $AB \rightarrow BA$, $1B \rightarrow 11$, $1A \rightarrow 10$, $0A \rightarrow 00$

4.
$$S \to 0S1/0A1$$
, $A \to 1A0/10$

5.
$$S \to 1S/0A/0/1$$
, $A \to 1A/1S/1$

Exercise

Construct context free grammars to generate the following languages:-

- 1. $L = \{0^m 1^n \mid m \neq n \text{ and } m, n \geq 1\}$
- 2. L = $\{a^lb^mc^n \mid \text{ one of l,m,n equals 1 and the remaining two are are equal }\}$
- 3. $L = \{0^m 1^n ! 1 \le m \le n\}$
- 4. $L = \{a^{I}b^{m}c^{n} ! I + m = n\}$
- 5. The set of all strings over $\{0,1\}$ containing twice as many 0's as 1's.

Exercise

Construct regular grammars to generate the following languages:-

- 1. $L = \{a^{2n} \mid n \ge 1\}$
- 2. The set of all strings over $\{a,b\}$ ending in a.
- 3. The set of all strings over $\{a,b\}$ beginning with a.
- 4. $L = \{a^l b^m c^n ! l, m, n \ge 1\}$
- 5. $L = \{(ab)^n ! n \ge 1\}$

7

AKTU Examination Questions

- 1. Construct the CFG for the language $L = \{a^{2n}b^n \mid n \geq 3\}$.
- 2. Design the CFG for the following language:

2.1 L =
$$\{0^m 1^n \mid m \neq n \text{ and } m, n \geq 1\}$$

2.2 L = $\{a^l b^m c^n \mid l + m = n \text{ and } l, m \geq 1\}$

- 3. Define alphabet, string and language.
- 4. Define Chomsky hierarchy.
- 5. Define and give the difference between positive closure and Kleene closure.
- 6. Determine the grammar for language $L = \{a^n b^m \mid n \neq m\}$. Also explain the type of this language.
- 7. Identify the language generated by context free grammar $S \to (S)/SS/($
- 8. Describe Chomsky hierarchy of languages with proper example.