IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BOARD OF PATENT APPEALS AND INTERFERENCES

In Re Application of: Confirmation No.: 5317

Nallur, et al.

Serial No.: Group Art Unit: 2421

Filed: I Examiner:

07/21/2003 I Montoya, Oschta I.

For: Docket No.:

Seamless Transition Between Trick Modes I 60374.0015US01/A-8378

REPLY BRIEF UNDER 37 C.F.R. §41.41

Mail Stop Appeal Brief - Patents Commissioner of Patents and Trademarks P.O. Box 1450 Alexandria, Virginia 22313-1450

Sir:

The Appellants hereby submit a brief in reply to the Examiner's Answer dated June 30, 2009, in the patent application identified above.

REPLY

A. Rejection of Claims 1-14 and 16-40

1. Independent Claim 1

The Examiner's Answer states that the present application teaches "...the STT uses information provided by a video decoder within the STT to implement a trick mode beginning from a correct location within the compressed video stream to effect a seamless transition in the video presentation without significant temporal discontinuity". (Examiner's Answer, p. 15). Examiner attempts to equate this to an argument that a video decoder inherently has to provide the information for a STT to display the video.

However, *Moeller* fails to teach "using information provided by a video decoder to identify a first video picture to be decoded". For example, even assuming that presentation timestamps contain information that is used "to identify a first video picture to be decoded", the presentation timestamps in *Moeller* are not "provided by a video decoder" as required by Claim 1. *Moeller* discloses that presentation timestamps are provided from a media server 50. This media server 50 is located remotely from the subscriber and is responsible for broadcasting to all respective subscribers. (6:32-54; FIG. 1, media server 50). The media server 50 may contain an MPEG decoder 74 (8:1-23).

However, other than being listed as an *optional* feature of media server 50, the MPEG decoder 74 is not further mentioned in the specification and is clearly described as not being necessary to perform the functions described in *Moeller*, much less provide it with specific information capable of identifying a first video picture as required by Claim 1 and its associated dependent claims.

2. Independent Claim 21

In the Examiner's Answer, it is admitted that index look-up tables ensure a seamless transition between normal and trick play streams. (Examiner's Answer, p. 16-17). The Examiner's Answer also does not dispute Appellants argument that *Moeller* teaches away from embodying "index look-up tables" in a video stream. (11:17-23) ("The creation of the look-up table is independent of any particular type of video compression or MPEG representation. In the preferred embodiment where MPEG compression is used, the index look-up tables are created by scanning through the MPEG file...").

The cited portions of *Moeller* fail to disclose embodying "index look-up tables" and as such, Appellants respectfully submit that it is unreasonable to determine that the elements disclosed by *Moeller* teach receiving from the video server a second video stream configured to enable a seamless transition to the trick-mode operation as required by Claim 21 and its associated dependent claims.

3. Independent Claim 28

Moeller discloses that sequence headers containing "information relevant to the video sequence" may be transferred under the MPEG-2 standard. (Col. 3, lines 9-13). Furthermore, Moeller appears to disclose that "presentation timestamps" contained in the sequence headers may be analyzed to "provide a time base for the video sequence". (Col. 9, lines 31-35; Fig. 5, Element 104).

However, the sequence headers taught by *Moeller* are not even transport packets, much less a "stuffing transport packet" as suggested by the Examiner. Furthermore, the presentation timestamp of *Moeller* is not a time value that "corresponds to the **current video picture**" as required by Claim 28. Claim 28 requires that the current video picture is the current video picture decoded by the claimed method. Nowhere does *Moeller* disclose, teach, or suggest analyzing timestamps in conjunction with the decoding of a video picture as required by Claim 28 and its associated dependent claims. Thus, any time value that may be extracted from the

presentation timestamp in *Moeller* does not necessarily correspond to a current decoded video picture.

Appellants respectfully submit that it is unreasonable to determine that the elements disclosed by *Moeller* teach parsing a stuffing transport packet (STP) to extract a time value corresponding to the current video picture.

4. Independent Claim 35

As set forth in Section 3 above, to the extent there is similarity in claim features, Appellants note that the allegations emphasized above are inconsistent with the teachings of *Moeller*. Based on the arguments presented above, Appellants respectfully submit that it is unreasonable to allege that the elements disclosed by *Moeller* teach the capability to parse a stuffing transport packet (STP) to extract a time value corresponding to the current video picture.

Serial No.:10/623,683

Docket No.: A-8378

B. Rejection of Claim 42

Examiner argues that the disclosure of MPEG-2 in *Demas*, similar to *Moeller*, suffices to

teach parsing a STP to extract a time value corresponding to the decoded picture as required by

Claim 42 and its associated dependents. However, *Demas* appears to disclose a "TS formatted

control packet" with information capable of allowing the system to calculate an "entry point

picture" of the transport stream. (Para. [0069]). The calculated "entry point picture" is not an

extracted "time value corresponding to the decoded picture". Instead, an "entry point" in Demas

is a point in the stream that allows a pictured to be efficiently decoded.

Respectfully submitted,

MERCHANT & GOULD P.C.

P.O. Box 2903

Minneapolis, MN 55402-0903

404.954.5066

/D. Kent Stier/

Date: August 31, 2009

D. Kent Stier

Reg. No. 50,640

MIK/ak

5