

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 5. Übungsblatt

Julian Dörfler

Aufgabe A5.1 (Wiederholung: Reguläre Sprachen) (4 Punkte)

Welche der folgenden Sprachen sind regulär. Beweisen Sie Ihre Antworten.

- (a) Die Sprache A aller Variablen in WHILE über dem Alphabet $\Sigma = \{x, 0, 1, \dots, 9\}$. Hierzu lesen wir z.B. die Variable x_{42} als das Wort x_{42} . Beachten Sie, dass Variablenbezeichner keine führenden Nullen enthalten mit der Ausnahme von x_0 .
- (b) Die Sprache B aller syntaktisch gültigen WHILE-Programme die wir auf die Variablen x_0, \ldots, x_{10} und Konstanten $0, 1, \ldots, 10$ beschränken¹.

Lösung A5.1 (Wiederholung: Reguläre Sprachen)

- (a) Diese Sprache ist regulär und wird vom regulären Ausdruck $x0 + x(dig)(dig + 0)^*$ erkannt, wobei dig = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.
- (b) Sei $n \in \mathbb{N} \setminus \{0\}$ beliebig. Wähle $uvw = (\mathbf{while} \ x_0 \neq 0 \ \mathbf{do})^n \ x_0 := 0 \ \mathbf{od}^n \in B$ mit

$$u = (\mathbf{while} \ x_0 \neq 0 \ \mathbf{do})^n \ x_0 := 0, v = \mathbf{od}^n, w = \varepsilon.$$

Sei xyz = v eine beliebige Unterteilung von v mit |y| > 0. Dann ist

$$t = uxy^0 zw = ($$
while $x_0 \neq 0$ **do** $)^n x_0 := 0$ **od** $^{n-|y|} \notin B,$

da |y| > 0. Also lässt sich B nicht pumpen, woraus $B \notin \mathsf{REG}$ folgt.

Aufgabe A5.2 (Umkehrung der Paarfunktion) (4 Punkte)

Zeigen Sie, dass die Funktionen π_1 und π_2 aus der Vorlesung FOR-berechenbar sind. Hinweis: Sie dürfen und sollten den syntaktischen Zucker aus der Vorlesung hier verwenden.

Lösung A5.2 (Umkehrung der Paarfunktion)

Wir geben beide WHILE-Programme als ein gemeinsames Program an, das mit $x_1 = \pi_1(p)$ und $x_2 = \pi_2(p)$ beide Umkehrfunktionen zeitgleich berechnet.

Input: p

$$z := 0;$$

 \triangleright finding the largest z

for p do

$$x_{tmp} := \frac{1}{2}(z+1)(z+2);$$
 if $x_{tmp} \le p$ then

¹Dies ist notwendig, da wir formal WHILE-Programme über einem unendlichen Alphabet definiert hatten, aber reguläre Sprache über endlichen Alphabeten.

```
z++ \mathbf{fi} \mathbf{od}; \mathbf{o} = x_1+x_2 x_2 := p-\frac{1}{2}z(z+1); x_1 := z-x_2
```

Aufgabe A5.3 (FOR-Programme) (4 Punkte)

- (a) Zeigen Sie, wie sich in FOR-Programmen die Anweisungen $x_i := x_j + x_k$, $x_i := x_j x_k$ und $x_i := c$ durch die Anweisungen $x_i + x_i 1$ und $x_i := 0$ ersetzen lassen.
- (b) Ersetzen Sie x_i durch andere Anweisungen, wobei Sie natürlich weder $x_i := c$ für $c \neq 0$ noch $x_i := x_j \pm x_k$ verwenden dürfen. Erlaubt sind nur FOR-Schleifen, $x_i := 0$ und $x_i + 1$ und Konkatenation.

Wichtig: In dieser Aufgabe ist außer Umbenennen der Variablen und Verwendung der Assoziativität der Konkatenation kein syntaktischer Zucker erlaubt.

Lösung A5.3 (FOR-Programme)

(a) Wir nehmen allgemein an, dass $i \notin \{j, k\}$. Ansonsten ersetzen wir x_i in der Anweisung zuerst durch eine frische Variable x_ℓ und kopiere anschliessend x_ℓ nach x_i mit dem folgenden Program:

```
x_i := 0;
\mathbf{for} \ x_\ell \ \mathbf{do}
x_i + +
\mathbf{od}

Anweisung \ _{i} x_i := x_j + x_k \text{"}:
x_i := 0;
\mathbf{for} \ x_j \ \mathbf{do}
x_i + +
\mathbf{od};
\mathbf{for} \ x_k \ \mathbf{do}
x_i + +
```

Anweisung $x_i := x_j - x_k$ ": Ähnlich wie oben, man ersetze lediglich in der zweiten FOR-Schleife das $x_i + +$ " durch $x_i - -$ ":

```
x_i := 0;

for x_j do

x_i + +

od;

for x_k do

x_i - -
```

od

Anweisung "
$$x_i = c$$
":
$$x_i := 0;$$

$$x_i + +;$$

$$\vdots$$

$$x_i + +$$

(b) $Anweisung \ "x_i - - ": \\ x_k := 0; \\ \textbf{for } x_i \ \textbf{do} \\ x_i := 0; \\ \textbf{for } x_k \ \textbf{do} \\ x_i + + \\ \textbf{od}; \\ x_k + +$

od

In diesem FOR-Programm wird eine frische Variable x_k von 0 bis zum Eingabewert hochgezählt. x_i wird dabei immer vor der Inkrementierung auf x_k gesetzt. Dadurch ist der Wert von x_i am Ende um eins niedriger.

Aufgabe A5.4 (FOR-Programme terminieren) (4 Punkte)

Beweisen Sie, dass FOR-Programme immer terminieren. Zeigen Sie dafür per struktureller Induktion, dass für jedes FOR-Programm P die Funktion Φ_P total ist.

Lösung A5.4 (FOR-Programme terminieren)

Wir zeigen pre struktureller Induktion über den Aufbau von P, dass Φ_P immer total ist.

P ist ein simple Statement: Für simple Statements ist Φ_P nach Definition immer total.

P ist " P_1 ; P_2 ": P_1 und P_2 sind kleinere FOR-Programme. Φ_{P_1} und Φ_{P_2} sind also nach Induktionsvorraussetzung total. Nun gilt

$$\Phi_P(S) = \Phi_{P_2}(\Phi_{P_1}(S))$$

Da Φ_{P_1} und Φ_{P_2} beide total sind, ist auch Φ_P total.

P ist "for x_i do P_1 od": P_1 ist ein kleineres FOR-Programm. Φ_{P_1} ist also nach Induktionsvorraussetzung total.

Wir zeigen nun, dass $\Phi_{P_1}^{(n)}(S)$ für alle $n\in\mathbb{N}$ und S definiert ist per Induktion über n

I.A. n=0 Es gilt $\Phi_{P_1}^{(0)}(S)=S$ und somit ist $\Phi_{P_1}^{(0)}(S)$ trivial definiert.

 $I.\,V.$ Sei $\Phi_{P_1}^{(n)}(S)$ für ein festes, aber beliebiges $n\in\mathbb{N}$ definiert.

I.S. $n \to n+1$ Es gilt $\Phi_{P_1}^{(n+1)}(S) = \Phi_{P_1}(\Phi_{P_1}^{(n)}(S))$. Nach Induktionsvorraussetzung ist $\Phi_{P_1}^{(n)}(S)$ definiert. Zusätzlich ist Φ_{P_1} total. Somit ist $\Phi_{P_1}^{(n+1)}(S)$ definiert. Nach Definition ist

$$\Phi_P(S) = \Phi_{P_1}^{(\sigma_i)}(S)$$

Da $\sigma_i \in \mathbb{N}$ gilt aber, dass $\Phi_P(S)$ für alle S definiert ist. Φ_P ist also total.