house price prediction

dataset description

Description	Variable
A notation for a house	id
Date house was sold	date
Price is prediction target	price
Number of bedrooms	bedrooms
Number of bathrooms	bathrooms
Square footage of the home	sqft_living
Square footage of the lot	sqft_lot
Total floors (levels) in house	floors
House which has a view to a waterfront	waterfront
Has been viewed	view
How good the condition is overall	condition
overall grade given to the housing unit, based on King County grading system	grade
Square footage of house apart from basement	sqft_above
Square footage of the basement	sqft_basement
Built Year	yr_built
Year when house was renovated	yr_renovated
Zip code	zipcode
Latitude coordinate	lat
Longitude coordinate	long
Living room area in 2015 (implies some renovations) This might or might not have affected the lotsize area	sqft_living15
LotSize area in 2015 (implies some renovations)	sqft_lot15

```
In [ ]: import pandas as pd
   import matplotlib.pyplot as plt
   import numpy as np
   import seaborn as sns
   from sklearn.preprocessing import StandardScaler,PolynomialFeatures
   from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Type *Markdown* and LaTeX: α^2

Module 1: Importing Data Sets

Using the Pandas method read_csv() to load the data from the web address.

```
In [ ]: file_name = './data.csv'
df = pd.read_csv(file_name)
```

We're using the method head to display the first 5 columns of the dataframe.

In []: df.head()

Out[83]:

	Unnamed: 0	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	fl
0	0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	5650	_
1	1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	7242	
2	2	5631500400	20150225T000000	180000.0	2.0	1.00	770	10000	
3	3	2487200875	20141209T000000	604000.0	4.0	3.00	1960	5000	
4	4	1954400510	20150218T000000	510000.0	3.0	2.00	1680	8080	

5 rows × 22 columns

```
In [ ]: df.dtypes
```

Out[84]: Unnamed: 0 int64 id int64 date object price float64 bedrooms float64 bathrooms float64 sqft_living int64 sqft_lot int64 floors float64 waterfront int64 view int64 condition int64 grade int64 sqft_above int64 sqft_basement int64 int64 yr_built yr_renovated int64 zipcode int64 lat float64 long float64 sqft_living15 int64 sqft_lot15 int64dtype: object

> Apart from the two features Unnamed and id, these features don't seem to be much effective in price prediction compared with other features:

- 1. yr_renovated
- 2. sqft_living15
- 3. sqft_lot15
- 4. view (possibly correlated with waterfront)

```
In [ ]: df.drop(columns=['Unnamed: 0' , 'id' , 'yr_renovated', 'sqft_living15' , 's
```

Using the method describe to obtain a statistical summary of the dataframe.

In []: |df.describe()

Out[86]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wat
count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21613.0
mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	0.0
std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	0.0
min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	0.0
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.0
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.0
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.0
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.(

```
In [ ]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 21613 entries, 0 to 21612
          Data columns (total 16 columns):
                               Non-Null Count Dtype
               Column
           0
               date
                                  21613 non-null object
           1
              price
                                  21613 non-null float64
               bedrooms 21600 non-null float64
bathrooms 21603 non-null float64
sqft_living 21613 non-null int64
sqft_lot 21613 non-null int64
floors 21613 non-null float64
           2
           3
           5
           6
               waterfront 21613 non-null int64 condition 21613 non-null int64 grade 21613 non-null int64
           7
           8
                                  21613 non-null int64
               grade
           10 sqft_above 21613 non-null int64
           11 sqft_basement 21613 non-null int64
           12 yr_built 21613 non-null int64
                                   21613 non-null int64
           13
                zipcode
                                   21613 non-null float64
21613 non-null float64
            14
                lat
           15
                long
          dtypes: float64(6), int64(9), object(1)
          memory usage: 2.6+ MB
```

Module 2: Data Wrangling

```
In [ ]: df.isnull().any()
Out[88]: date
                         False
         price
                         False
         bedrooms
         bathrooms
                          True
         sqft_living
                        False
         sqft_lot
                        False
         floors
                        False
         waterfront
                        False
         condition
                        False
         grade
                         False
         sqft_above
                         False
         sqft_basement
                         False
         yr_built
                         False
         zipcode
                         False
         lat
                         False
         long
                         False
         dtype: bool
         There are missing values for the columns bedrooms and bathrooms
 In [ ]: print(f"number of NaN values for the column bedrooms are {df['bedrooms'].is
```

```
In [ ]: print(f"number of NaN values for the column bedrooms are {df['bedrooms'].is
    print(f"number of NaN values for the column bathrooms are {df['bathrooms'].
```

number of NaN values for the column bedrooms are 13 number of NaN values for the column bathrooms are 10

Replacing the missing values of the column 'bedrooms' with the mean of the column 'bedrooms' using the method replace(). Don't forget to set the inplace parameter to True

```
In [ ]: df["bedrooms"].fillna(df["bedrooms"].mean(), inplace=True)
         df["bathrooms"].fillna(df["bathrooms"].mean(), inplace=True)
         df.isnull().sum()
Out[90]: date
         price
                          0
                          0
         bedrooms
         bathrooms
                          0
         sqft_living
                          0
                          0
         sqft_lot
         floors
                          0
         waterfront
                          0
         condition
                          0
         grade
                          0
         sqft_above
                          0
         sqft_basement
                          0
         yr built
                          0
         zipcode
                          0
         lat
                          0
                          0
         long
         dtype: int64
```

Converting date values to numbers.

```
In [ ]: df['date'] = df['date'].astype(str).str[:4].astype(int)
         df['date']
Out[95]: 0
                  2014
                  2014
         1
         2
                  2015
         3
                  2014
                  2015
         21608
                2014
         21609
                2015
         21610
                 2014
         21611
                 2015
         21612
                 2014
         Name: date, Length: 21613, dtype: int64
```

Module 3: Exploratory Data Analysis

Use the function <code>boxplot</code> in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

```
In [ ]: sns.boxplot(x="waterfront", y="price", data=df[["waterfront" , "price"]])
    plt.xlabel("Waterfront View")
    plt.ylabel("Price")
    plt.title("Price - Waterfront boxplot")
    plt.show()
```


1. Properties Without Waterfront View (0):

Median price: Approximately \$450000.

Interquartile range (IQR): From around 320000 to \$640000.

Outliers: Some individual points above the upper whisker.

2. Properties With Waterfront View (1):

Higher median price: Near \$1.4 million.

IQR: From about 800000 to over \$2 million.

Outliers: Also present above the upper whisker.

Using the Pandas method corr() to find the feature other than price that is most correlated with price.

```
In [ ]: correlation = df.select_dtypes(include=['number']).corr()['price'].abs()
         correlation
Out[97]: date
                         0.003576
                         1.000000
         price
         bedrooms
                        0.308797
         bathrooms
                        0.525738
         sqft_living
sqft lot
                        0.702035
         sqft_lot
                        0.089661
                        0.256794
         floors
         waterfront 0.266369
         condition
                         0.036362
         grade
                         0.667434
         sqft_above 0.605567
sqft_basement 0.323816
         yr built
                        0.054012
         zipcode
                         0.053203
                         0.307003
         long
                         0.021626
         Name: price, dtype: float64
 In [ ]: del correlation["price"]
         print(f"The feature most correlated with price is {correlation.idxmax()} wi
         The feature most correlated with price is sqft_living with a correlation
```

Module 4: Model Development

of 0.7020350546118005

It is necessary to scale the target variable (y) since we're using a model that's sensitive to the scale of the target variable.

```
In [172]: # split and standard the data in this place
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X , y = df.drop(columns = ["price"]) , df[["price"]]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

sc = StandardScaler()
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)
y_train_scaled = sc.fit_transform(y_train)
y_test_scaled = sc.transform(y_test)
```

```
In [176]: import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense
    import keras
    from keras import backend as K

model = Sequential()
    model.add(Dense(15, activation='relu', input_dim=15))
    model.add(Dropout(0.2))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(120, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(1, activation='sigmoid'))
```

Module 5: Model Train

```
In [178]: | def r2(y_true, y_pred):
       SS_res = K.sum(K.square(y_true - y_pred))
       SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
       return (1 - SS_res/(SS_tot + K.epsilon()))
     model.compile(optimizer="Adam" , loss='mean_squared_error' , metrics=[r2])
     model.fit(X_train_scaled, y_train_scaled, epochs=200, batch_size=64)
     history = model.fit(X_train_scaled, y_train_scaled, epochs=200, batch_size=
     Epoch 15/200
     2: 0.3588
     Epoch 16/200
     2: 0.3615
     Epoch 17/200
     2: 0.3621
     Epoch 18/200
     2: 0.3668
     Epoch 19/200
     2: 0.3642
     Epoch 20/200
     2: 0.3545
     Epoch 21/200
```

Module 6: Evaluate your model with test data

Module 7: visualize your model

Out[181]:


```
In [182]: # MSE plot
          plt.figure(figsize=(10, 4))
          plt.subplot(1, 2, 1)
          plt.plot(history.history['loss'], label='Training Loss')
          plt.plot(history.history['val_loss'], label='Validation Loss')
          plt.xlabel('Epoch')
          plt.ylabel('Loss(MSE)')
          plt.title('Loss(MSE) per Epoch')
          plt.legend()
          # R2 plot
          plt.subplot(1, 2, 2)
          plt.plot(history.history['r2'], label='Training Accuracy')
          plt.plot(history.history['val_r2'], label='Validation Accuracy')
          plt.xlabel('Epoch')
          plt.ylabel('Accuracy(Coefficient of determination)')
          plt.title('Accuracy(Coefficient of determination) per Epoch')
          plt.legend()
          plt.tight_layout()
          plt.show()
```


Module 8

```
In [183]: X , y = df[["waterfront" , "floors" , "sqft_living"]] , df[["price"]]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

sc = StandardScaler()
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)
y_train_scaled = sc.fit_transform(y_train)
y_test_scaled = sc.transform(y_test)
```

```
In [186]: | def r2(y_true, y_pred):
         SS_res = K.sum(K.square(y_true - y_pred))
         SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
         return (1 - SS_res/(SS_tot + K.epsilon()))
      model = Sequential()
      model.add(Dense(15, activation='relu', input_dim=3))
      model.add(Dropout(0.2))
      model.add(Dense(64, activation='relu'))
      model.add(Dropout(0.2))
      model.add(Dense(120, activation='relu'))
      model.add(Dropout(0.2))
      model.add(Dense(1, activation='sigmoid'))
      model.compile(optimizer="Adam" , loss='mean_squared_error' , metrics=[r2])
      model.fit(X_train_scaled, y_train_scaled, epochs=200, batch_size=64)
      history = model.fit(X_train_scaled, y_train_scaled, epochs=200, batch_size=
       Epoch 1/200
       2: 0.1536
      Epoch 2/200
       2: 0.2336
      Epoch 3/200
      2: 0.2394
      Epoch 4/200
       2: 0.2492
      Epoch 5/200
      2: 0.2414
      Epoch 6/200
      2: 0.2424
      Epoch 7/200
                                                 . . . . .
In [187]: mse , r2 = model.evaluate(X_test_scaled, y_test_scaled)
      print(f"R-squared (Coefficient of determination) is {r2}")
      print(f'MSE on testing set is {mse}')
       2: 0.2209
      R-squared (Coefficient of determination) is 0.22091415524482727
```

MSE on testing set is 0.8441365361213684

```
In [188]: # MSE plot
          plt.figure(figsize=(10, 4))
          plt.subplot(1, 2, 1)
          plt.plot(history.history['loss'], label='Training Loss')
          plt.plot(history.history['val_loss'], label='Validation Loss')
          plt.xlabel('Epoch')
          plt.ylabel('Loss(MSE)')
          plt.title('Loss(MSE) per Epoch')
          plt.legend()
          # R2 plot
          plt.subplot(1, 2, 2)
          plt.plot(history.history['r2'], label='Training Accuracy')
          plt.plot(history.history['val_r2'], label='Validation Accuracy')
          plt.xlabel('Epoch')
          plt.ylabel('Accuracy(Coefficient of determination)')
          plt.title('Accuracy(Coefficient of determination) per Epoch')
          plt.legend()
          plt.tight_layout()
          plt.show()
```


In []: