Sample Problems for Final Exam

Questions from Math 125a Final Exam, Spring 2006

In the following, you must prove that your answers are correct.

- 1. Let \mathbb{R} be the structure of the real numbers with 0, 1, +, \times , and <. Show that there are two countable structures \mathcal{M}_1 and \mathcal{M}_2 with the following properties.
 - $\mathcal{M}_1 \equiv \mathbb{R}$ and $\mathcal{M}_2 \equiv \mathbb{R}$
 - \mathcal{M}_1 and \mathcal{M}_2 are not isomorphic
- 2. Let \mathcal{L}_A be the language with one unary predicate symbol P. Let \mathcal{M} be the finite structure (M, I) such that $M = \{a, b, c, d, e\}$ and $I(P) = \{a, b\}$. In other words, \mathcal{M} interprets P as holding of a and b and as not holding of c, d, or e.
 - (a) Which subsets of M which are definable in \mathcal{M} without parameters?
 - (b) Which subsets of M are are definable in \mathcal{M} with parameters?
- 3. Let A be finite, let k be a natural number, and V_k be the set of sentences φ such that for all \mathcal{L}_A -structures $\mathcal{M} = (M, I)$, if M has exactly k elements then $\mathcal{M} \models \varphi$. Give an algorithm to determine when given a sentence ψ in \mathcal{L}_A whether $\psi \in V_k$.
- 4. Let $A = \{c_i : i \in \mathbb{N}\}.$
 - (a) Give an example of an \mathcal{L}_A structure \mathfrak{M} such that

$$T_{\mathfrak{M}} = \{ \varphi : \varphi \text{ is a sentence and } \mathfrak{M} \models \varphi \}$$

does not have the Henkin property.

- (b) Is there an example $\mathcal{M} = (M, I)$ such that $T_{\mathcal{M}}$ does not have the Henkin property and $\{I(c_i) : i \in \mathbb{N}\}$ is infinite?
- 5. Suppose that $\mathcal{M} \subseteq \mathcal{N}$ are infinite \mathcal{L}_{\emptyset} structures. Show that $\mathcal{M} \preceq \mathcal{N}$.
- 6. Give the proof to show that if, for every set of formulas Γ

 Γ is consistent iff Γ is satisfiable

then, for every set of formulas Γ and every formula φ

 $\Gamma \vdash \varphi$ iff every (\mathfrak{M}, ν) which satisfies Γ also satisfies φ .

Extra credit. Suppose that T is a set of sentences and that there is an $\mathbb{N} = (N, J)$ such that $\mathbb{N} \models T$ and N is infinite. Show that there is an $\mathbb{M} = (M, I)$ and an element a of M such that $\mathbb{M} \models T$ and a is not definable in \mathbb{M} without parameters.