

深度學習 Deep Learning

Convolutional Neural Networks (CNN)

Instructor: 林英嘉 (Ying-Jia Lin)

2025/10/08

Outline

- Images [10 min]
- Convolutional Neural Networks [50 min]
- CV (Computer Vision) in PyTorch [40 min]
- HW2 [30 min]
- Quiz [20 min]

什麼是機器學習?(以電腦視覺為例)

Machine Learning function!

LeNet-5: Early Convolutional Neural Networks

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Examples of Convolutions

Padding = 0, stride = 1

Padding = 0, stride = 2

Images

MNIST

CIFAR-10

airplane	
automobile	
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

RGB Images (彩色影像)

• RGB 代表紅色 (Red)、綠色 (Green) 及藍色 (Blue)

Gray-scale Images (灰階影像)

• 灰階影像只有一個 channel

Example shape:

(1, 128, 128)

width

channels height

Image inputs are too big for an MLP

Convolutional Neural Networks

CNN

卷積層有兩個重要的設定參數

https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

- stride (int): 步長,代表卷積一次走幾個像素點
- padding (int): 影像的四個邊要不要補 0

Padding = 0, stride = 2

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	7	0
0	0	-1

Filter

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	~	0
0	0	1

Filter

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	7	0
0	0	-1

Filter

1	1	1

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	1	0
0	0	-1

Filter

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	1	0
0	0	-1

Filter

1	1	1	2
1			

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	7	0
0	0	-1

Filter

1	1	1	2
_1	1		

1	1	1	1	0	0
0	7	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	1	0
0	0	1

Filter

沒有 padding	沒有	padding
------------	----	---------

1	1	1	2
-1	1	1	0
0	0	1	2
0	0	1	2

feature map

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

沒有 padding

1 1

	1	1	1	1	0	0
	0	1	1	0	1	0
lack	0	0	1	1	0	0
	0	0	1	1	1	0
	0	0	0	1	1	0
	0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

1	1
0	

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	1

Filter

		\rightarrow					
0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

ا:	ا ا	_	
ΓΓI		9	
LII			

1	0	0
0	7	0
0	0	-1

Filter

有 padding

				\rightarrow			
0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

有 padding

0 1

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

有 padding

0 1 0

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	~	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	1	0
0	0	-1

Filter

0	1	0
0		

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

7	0	0
0	1	0
0	0	-1

Filter

0	1	0
0	1	

padding=1

0	0	0	0	0	0	0	0
0	1	1_	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

~	0	0
0	1	0
0	0	-1

0	1	0
0	1	0

Filter

padding=1

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	7	0
0	0	7

Filter

0	1	0
0	1	0
0		

padding=1

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0_	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	7	0
0	0	-1

Filter

0	1	0
0	1	0
0	0	

padding=1

0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0
0	0	1	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stride = 2

1	0	0
0	7	0
0	0	-1

Filter

0	1	0
0	1	0
0	0	2

Filters 數目與 output_channels 的關係

- Filters 的數目可以調整
- 對輸入層來說,1個 filter 照顧3個 channels 的資料,輸出1個 feature map
- 使用 64 個 filters,就會輸出 64 個 feature maps
- 可調整參數為: num_filters * input_channels * filter_size * filter_size

Convolutions (RGB)

filters 數值可能都是不同的!(為了方便計算,簡報使用一樣的數字)

1	0	0
0	~	0
0	0	-1

(R)	Filter
-----	--------

1	0	0
0	1	0
0	0	-1

(G) Filter

1	0	0
0	1	0
0	0	-1

(B) Filter

1	1	1
0	1	1
0	0	1

1	0	1
0	1	1
0	0	1

1	0	0
0	1	1
1	0	1

先各自與Filter 做內積後相加

Convolutional layer is not fully-connected

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

1	0	0
0	1	0
0	0	7

Filter, stride=1

h_1	h_2	h_3	h_4
h_5	h_6	h_7	h_8
h_9	h_{10}	h_{11}	h_{12}
h_{13}	h_{14}	h_{15}	h_{16}

feature map

Convolutional layer vs. FC layer 參數量

FC: fully-connected

Grayscale images	參數量比較 (不算 bias 數)
FC layer	36 * 16 = 576
Conv layer	3 * 3 = 9

Convolutional layer vs. FC layer 參數量

FC: fully-connected

RGB images	參數量比較 (不算 bias 數)
FC layer	3 * 128 * 128 * 16 = 786,432
Conv layer (num_filter = 1)	3 * 3 * 3 = 27
Conv layer (num_filter = 16)	3 * 3 * 3 * <mark>16 = 432</mark>

Implementation in PyTorch

- 我們使用 torch.nn.Conv2d
- Why not 3d?

2d 卷積僅沿著空間維度 (Height, Width) 進行

Pooling (example of Max Pooling)

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

參數:

- kernel_size=2
- stride = 2

3	2
1	2

Pooling (example of Average Pooling)

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

• kernel_size=2

• stride = 2

參數:

1	1
0.25	1

Pooling (example of Max Pooling)

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

參數:

- kernel_size=2
- stride = 1

3	3	2
1	1	1
1	1	2

2D Pooling on RGB Images

224 x 224 x 64 (H x W x C)

參數:

- kernel_size=2
- stride = 2

112 x 112 x 64 (H x W x C)

[Important Notes] Meaning of Pooling

- To maintain the most relevant information
 - Summarizing the features within the region covered by the filter
- Shortage:
 - No theoretical guarantee for making better model performance

CNN 的結局

- 通常不會只有一層的 Convolutional Layer
- 隨著層數增加,通常 Feature map 會越來越小,因為:
 - Convolutional Layer 可能會縮小 feature map (如果沒有 padding)
 - Pooling 也會縮小 feature map
- 經過了多次的 Convolution + Pooling 後的 feature map 為壓縮後的重要資訊

The whole CNN

Fully-connected Networks

- 常被稱為全連接層 (Fully-connected layers, FC)
- Multi-layer perceptron (MLP) 即是由 FC 所構成
- 注意! CNN 不是全連接層

Why Flatten?

- 以分類任務來說,我們需要 Fully-connected layers
- CNN 常被用於分類任務

CNN Summary

- 為影像資料量身定做,用來捕捉空間資訊 (Spatial Information)
- Parameter sharing (參數共享機制)
 - 降低用 MLP 來進行影像任務的參數量

ConvNets are everywhere

Object Detection with YOLO

Figure source: https://pjreddie.com/darknet/yolo/

Style Transfer with CNN

Figure source: Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style transfer using convolutional neural networks." CVPR. 2016.

Advanced CNNs

- [ResNet] Deep Residual Learning for Image Recognition
 - https://arxiv.org/abs/1512.03385
- [DenseNet] Densely Connected Convolutional Networks
 - https://arxiv.org/abs/1608.06993
- https://slazebni.cs.illinois.edu/spring17/lec04_advanced_cnn.pdf

Additional Links

PyTorch CNN example:

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Batch Normalization:

- https://wandb.ai/wandb_fc/GroupNorm/reports/Group-Normalization-in-Pytorch-With-Examples---VmlldzoxMzU0MzMy
- https://towardsdatascience.com/batch-norm-explained-visually-how-itworks-and-why-neural-networks-need-it-b18919692739/

Thank you!

Instructor: 林英嘉

yjlin@cgu.edu.tw

TA: 劉美辰

m1461014@cgu.edu.tw