

IM5603/IM5623 **Electrically Programmable** 1024 Bit Bipolar Read **Only Memory**

FEATURES

- . Uses Patented AIM Programming Element for
 - Superior Reliability
 - High Programming Yield
 - Fast Programming Speed < 1 sec
 TTL Processing Compatibility
- Low Power Consumption 439 μW/bit
- **Operating Speed**
- Address to Output 60nS
- Chip Enable to Output 35nS
- Large Output Drive 16mA @ 0.45V
- TTL Compatible Inputs & Outputs
- Two Output Designs
- 5603 Open Collector **Bus Organized Systems**
- 5623 Active Pull-up Chip Enables Facilitate Memory Expansion and Use in

APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- **Character Generation**

GENERAL DESCRIPTION

The Intersil IM5603 and IM5623 are high speed, electrically programmable, fully decoded, bipolar 1024 bit read only memories organized as 256 words by 4 bits. On-chip address decoding, chip enable inputs and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.

Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic

The following companies make programmers approved by Intersil:

- 1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
- 2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER NUMBER
IM5603	16 Pin Flatpack	0°C to +75°C Commercial -55°C to +125°C Military	IM5603CFE IM5603MFE*
	16 Pin Plastic DIP	0°C to +75°C	IM5603CPE
	16 Pin Cerdip DłP	0°C to +75°C Commercial -55°C to +125°C Military	IM5603CJE IM5603MJE*
IM5623	16 Pin Flatpack	0°C to +75°C Commercial -55°C to +125°C Military	IM5623CFE IM5623MFE*
	16 Pin Plastic DIP	0°C to +75°C	IM5623CPE
	16 Pin Cerdip DIP	0°C to +75° C Commercial -55°C to +125°C Military	IM5623CJE IM5623MJE*

* If 883B processing is desired add /883B to order number.

TRUTH TABLE

ADDRESS INPUTS		NABLE UTS	ANY OUTPUT
A ₀ -A ₇	CE ₁	CE ₂	01-04
Any one of 256 possible addresses	L	L	H-if the bit uniquely associated with this output and address has been electrically programmed. L-if it has not been programmed.
Any one of 256 possible addresses	H X	Х Н	All outputs are forced to a high impedance state regardless of address.
X = Don't Care			

1M51003 are 200"A" you

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0V
Input Voltage Applied	1.5V to 5.5V
Output Voltage Applied	0.5V to +Vcc
Output Voltage Applied (Programming Only)	
Current Into Output (Programming Only)	
Storage Temperature	65°C to +150°C
Operating Temperature Range*	
(IM5603C and IM5623C)	0°C to +75°C
(IM5603M and IM5623M)	55°C to +125°C

^{*}Operating temperature is defined as ambient temperature for the DIP and case temperature for flatpack. Case temperature is measured directly below the die.

DC CHARACTERISTICS

		LIMITS V _{CC} = 5.0V ±5% T = 0°C to +75°C		LIMITS V _{CC} = 5.0V ±10% T = -55°C to +125°C					
SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
IFA	Address Input Load Current		0.63	-1.0		− 0.63	-1.0	mA'	V _A = 0.4V
lFE	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		V _{CE} = 0.4V
IRA	Address Input Leakage Current		5	40		5	60	μΑ	V _A = 4.5V
IRE	Chip Enable Input Leakage Current		5	40		5	60] #^	V _{CE} = 4.5V
VoL	Output Low Voltage		0.3	0.45		0.3	0.45		$I_{OL} = 16 \text{ mA},$ VCE1 = VCE2 = 0.4V '0' bit is addressed.
VIL	Input Low Voltage			0.8			8.0	l v	
V _{IH}	Input High Voltage	2.0			2.0] '	
Vc	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5	_	I _{IN} = -10 mA
BViN	Input Breakdown Voltage	5.5	6.5		5.5	6.5		l	I _{IN} = 1.0 mA
lcc	Power Supply Current		90	130		90	130	mA	Inputs Either Open or at Ground
lo (High R Stat	te)Output Leakage Current		<1	40		<1	100	μА	$V_0 = 5.5V$ $V\overrightarrow{CE}_1$ or
o (High R Stat	te)Output Leakage Current		<-1	-40		<-1	-100	_	$V_0 = 0.4V V_{CE2} = 2.4 $
Cin	Input Capacitance		5			5]	$V_{IN} = 2.0V$, $V_{CC} = 0V$
Cout	Output Capacitance		7			7		pF	$V_0 = 2.0V, V_{CC} = 0V$

The following are guaranteed characteristics of the output high level state when the chip is enabled (CE1 and CE2 = 0.4V) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

lolk	Output Leakage Current	[<1	100		<1	100	μΑ	$V_0 = 5.5V$
VOH (IM5603)	Output High Voltage	2.4	3.3		2.4	3.3			I _{OH} = -0.4 mA
V _{OH} (IM5623)	Output High Voltage	2.4	3.2		2.4	3.2		V	$I_{OH} = -2.4 \text{ mA}$ (IM5623C) $I_{OH} = -1.0 \text{ mA}$ (IM5623M)
Isc (IM5603)	Output Short Circuit Current	-1.0	-3.0	-6.0	-1.0	-3.0	-6.0	mA	$V_0 = 0V$
Isc (IM5623)	Output Short Circuit Current	-15	-30	-60	-15	-30	-60		$V_0 = 0V$

NOTE: Typical characteristics are for $V_{CC} = 5.0 V T_A = 25^{\circ} C$.

SWITCHING CHARACTERISTICS

		V _{CC} :	IITS = 5.0V 25°C	V CC = !	MITS 5.0V ±5% c to +75°C	V _{CC} = 5.0 T _A = -55° C	OV ±10%	
SYMBOL	CHARACTERISTICS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
t _{aa}	Access Time (Via Address Inputs) (See Figure 1)	20	60	20	70	20	80	
t _{dis}	Output Disable Time* (See Figure 2)	10	35	10	50	10	60	ns
t _{en}	Output Enable Time* (See Figure 2)	5	35	5	50	5	60	

*NOTE: Output disable time is the time taken for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a ΔV of 0.5V from the active output level.

SWITCHING WAVEFORMS

FIGURE 1: Access Time Via Address Inputs

FIGURE 2: Output Enable And Disable Times

8

SWITCHING TIME TEST CONDITIONS

FICI	IDE	a.	O	Lood	Cinnella
FIGL	JHE	3:	Output	Load	Circuit

SWITCHING		IM5603			IM5623			
PARAMETER	R ₁	R ₂	CL	R ₁	R ₂	CL		
taa	300Ω	600Ω	30 pF	300Ω	600Ω	30 pF		
t _{dis '1'}	∞	3.3 KΩ	10 pF	∞	600Ω	10 pF		
tdis ′0′	300Ω	600Ω	10 pF	300Ω	600Ω	10 pF		
t _{en '1'}	∞	3.3 KΩ	30 pF	∞	600Ω	30 pF		
t _{en '0'}	300Ω	600Ω	30 pF	300Ω	600Ω	30 pF		

INPUT CONDITIONS

Amplitude — 0V to 3V Rise and Fall Time — 5 ns From 1V to 2V Frequency — 1 MHz

8-44

TYPICAL SWITCHING CHARACTERISTICS

IM5603 CHIP ENABLE TO OUTPUT ACCESS DELAY (ten) VS

IM5603 CHIP ENABLE TO OUTPUT DISABLE TIME DELAY (tbis) VS TEMPERATURE

IM5623 ADDRESS TO OUTPUT ACCESS DELAY (1AA) VS TEMPERATURE

IM5623 CHIP ENABLE TO OUTPUT ACCESS DELAY (ten) VS TEMPERATURE

IM5623 CHIP ENABLE
TO OUTPUT DISABLE TIME
DELAY (tois) VS
TEMPERATURE

IM5603 DELAY INCREASE WITH LOAD CAPACITANCE

IM5623 DELAY INCREASE WITH LOAD CAPACITANCE

8-45

IM5603/IM5623

TYPICAL DC CHARACTERISTICS

IM5603 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)

IM5603 OR IM5623 CHIP ENABLE INPUT **CURRENT VS INPUT VOLTAGE**

IM5623 OUTPUT LOW CURRENT (IOL) VS OUTPUT LOW VOLTAGE (VOL)

IM5623 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)

IM5603 OR IM5623 ADDRESS INPUT **CURRENT VS INPUT VOLTAGE**

8-46

OUTPUT

OUTPUT STAGE SCHEMATICS

(CE1•CE2)

IM5623