Kapitola 1

Měření teplotního součinitele délkové roztažnosti

1.1 Úkol měření

- 1. Stanovte teplotní součinitel délkové roztažnosti pro alespoň dva různé materiály.
- 2. Pro měřené vzorky zhotovte graf závislosti jejich prodloužení na změně teploty.

1.2 Teoretický úvod

Všechny látky, ať už se jedná o pevné látky, kapaliny, nebo plyny, mění při změně teploty své rozměry, ty se ve většině případů s rostoucí teplotou zvětšují¹. My se v tomto textu zaměříme na látky pevné.

1.2.1 Podstata teplotní roztažnosti u pevných látek

Pevné látky drží pohromadě díky vazebným silám, za které je zodpovědná elektrostatická interakce záporně nabitých elektronů s kladně nabitými ionty krystalové mříže. Tyto síly mohou být jak přitažlivé, tak odpudivé, jejich rovnováha znamená stabilitu, tedy určuje rovnovážnou vzdálenost mezi jednotlivými atomy. Průběh potenciální energie U vazebných sil v závislosti na meziatomové vzdálenosti r je naznačen na obrázku 1.1.

Vztah mezi sílou ${m F}$ a potenciální energií můžeme psát ve tvaru

$$m{F} = -rac{\partial U}{\partial r}m{r}_0,$$

Odtud je zřejmé, že rovnovážná poloha se nachází v minimu potenciální energie. Pokud dojde k jakékoliv výchylce z rovnovážné polohy, potenciální energie vždy naroste a vazebná síla bude působit proti výchylce, ve směru rovnovážné polohy.

Obrázek 1.1: Vazebná energie meziatomových sil.

 $^{^1}$ Výjimku tvoří například na Zemi nejrozšířenější kapalina – voda, jejíž objem v teplotním intervalu $0\,^\circ\mathrm{C}$ – $4\,^\circ\mathrm{C}$ s rostoucí teplotou klesá (anomálie vody).

Materiál	$\alpha \ [10^{-6} {}^{\circ}\mathrm{C}^{-1}]$	Materiál	$\alpha \ [10^{-6} s\mathrm{C}^{-1}]$
tavený křemen	0,5	beton	12
Invar ²	1,6	měď	17
sklo (obyčejné)	8,5	mosaz	19
ocel	11	hliník	23

Tabulka 1.1: Průměrný teplotní součinitel délkové roztažnosti některých materiálů v intervalu 0 až 100 °C.

Atomy v krystalové mříži nejsou v klidu, vykonávají tepelné kmity, přičemž energie těchto kmitů s teplotou roste. Jelikož funkce potenciální energie není symetrická kolem rovnovážné vzdálenosti, viz obrázek 1.1, s rostoucí teplotou narůstá maximální vzdálenost, do které se atomy v poli vazebných sil mohou vychýlit, rychleji, než minimální vzdálenost, na jakou se mohou navzájem přiblížit. Tímto dochází k nárůstu střední vzdálenosti atomů v krystalové mříži s rostoucí teplotou a tedy k teplotní roztažnosti. Kdyby funkce potenciální energie byla symetrická vzhledem k rovnovážné vzdálenosti, k teplotní roztažnosti by nedocházelo.

1.2.2 Délková teplotní roztažnost

Díky výše popsaným jevům mění pevné látky v důsledku změny teploty své rozměry. Relativní změnu lineárních rozměrů nějakého tělesa (například délku tyčky) můžeme vyjadřovat pomocí tzv. teplotního součinitele délkové roztažnosti α' , který lze definovat jako

$$\alpha' = \frac{1}{l_0} \frac{\mathrm{d}l}{\mathrm{d}t},\tag{1.1}$$

kde l=l(t) je délka při dané teplotě t a l_0 je délka při nějaké zvolené teplotě, např. 0 °C. Jednotkou³teplotního součinitele délkové roztažnosti je °C⁻¹ = K⁻¹. Ukazuje se, že součinitele α' , který je materiálovou vlastností, se s teplotou příliš nemění, takže jej lze (alespoň v nepříliš velkém rozsahu teplot) považovat za konstantu. Integrací vztahu (1.1) tak dostaneme

$$dl = l_0 \alpha' dt \quad \Rightarrow \quad \int_{l_0}^l dx = \alpha' l_0 \int_0^t d\tau \quad \Rightarrow \quad l - l_0 = \alpha' l_0 t \quad \Rightarrow \quad l = l_0 (1 + \alpha' t). \tag{1.2}$$

Jelikož jsme za dolní mez dosadili ve stupních Celsia $(0 \,^{\circ}\text{C})$, musíme do vzorce (1.2) za teplotu t dosazovat rovněž ve stupních Celsia. Při větších rozsazích teplot již lineární vzorec (1.2) nemusí být dostatečně přesný, je však možné zpřesnit jej doplněním kvadratického (případně i kubického, ...) členu do tvaru

$$l = l_0 \left(1 + \alpha_1' t + \alpha_2' t^2 \right). \tag{1.3}$$

Například pro měď platí $\alpha_1'=1.48\cdot 10^{-5}\,^{\circ}\mathrm{C}^{-1},\ \alpha_2'=1.85\cdot 10^{-8}\,^{\circ}\mathrm{C}^{-2}$. Kdybychom do druhého a třetího členu vzorce (1.3) pro měď dosadili například $t=100\,^{\circ}\mathrm{C}$, zjistili bychom, že

$$\frac{\alpha_2't}{\alpha_1'} = 0.125,$$

takže zanedbáním kvadratického členu bychom se dopustili chyby 12,5 %. Pokud bychom tedy chtěli používat lineární vzorec v nějakém větším rozsahu teplot, je možné použít průměrnou hodnotu

 $^{^2}$ Invar je niklová ocel (64 % Fe, 36 % Ni) s velmi malou teploní roztažností.

³Tato rovnost vyplývá ze skutečnosti, že ve jmenovateli vzorce (1.1) je rozdíl teplot. Celsiova a termodynamická teplotní stupnice jsou vůči sobě pouze posunuty, velikost jednoho Celsiova stupně a jednoho kelvinu jsou stejné.

teplotního součinitele délkové roztažnosti α na daném teplotním intervalu a psát

$$l_2 = l_1 \left[1 + \alpha (t_2 - t_1) \right]$$
 nebo zkráceně $\Delta l = \alpha l \Delta t.$ (1.4)

Příklady teplotních součinitelů délkové roztažnosti pro některé materiály jsou uvedeny v tabulce 1.1.

1.2.3 Objemová teplotní roztažnost

Dochází-li u pevných látek se změnami teploty ke změnám jejich délkových rozměrů, dochází samozřejmě i ke změnám jejich objemu. Jestliže je těleso vyrobeno z izotropního materiálu, nebo má-li ve všech směrech stejný teplotní součinitel délkové roztažnosti, je výpočet objemové teplotní roztažnosti velmi snadný.

Předpokládejme, že při teplotě t_1 má hranol objem $V_1 = a_1b_1c_1$. Pro objem hranolu při teplotě t_2 tedy můžeme s využitím vzorce (1.4) psát

$$V_2 = a_2 b_2 c_2 = a_1 b_1 c_1 (1 + \alpha \Delta t)^3 = V_1 \left[1 + 3\alpha \Delta t + 3(\alpha \Delta t)^2 + (\alpha \Delta t)^3 \right] \approx$$

$$\approx V_1 \left(1 + 3\alpha \Delta t \right) = V_1 \left(1 + \beta \Delta t \right) \quad \Rightarrow \quad \Delta V = \beta V \Delta t, \quad (1.5)$$

kde $\beta=3\alpha$ je teplotní součinitel objemové roztažnosti. Při odvození vzorce (1.5) byly zanedbány kubický a kvadratický člen, což lze za předpokladu, že $\alpha\Delta t\ll 1$ a to, pokud rozdíl teplot Δt není příliš velký, platí.

Zkušenost ukazuje, že rovnoměrné zahřátí nevyvolává v homogenním tělese mechanická napětí. Odtud plyne, že všechny vrstvy tělesa se roztahují nezávisle jedna na druhé a tudíž stejně. Pokud by se tedy v tělese nacházela dutina, roztahovala by se stejně, jako by byla vyplněna materiálem, který tvoří její stěny.

1.3 Měřicí aparatura

Měření, na základě kterého je možné stanovit teplotní součinitel délkové roztažnosti, se provádí pomocí dilatometru, viz obrázek 1.2. Ten se skládá z topného tělesa 2 opatřeného termostatem, teploměru, nádržky na vodou 1 sloužící jako tepelný rezervoár, lavice pro upevnění měřených vzorků 4, indikátorových hodinek 3 pro měření prodloužení vzorků a přívodních hadiček. Měřené vzorky 5 mají tvar dutých tyček, skrz něž proudí horká voda, která je zevnitř ohřívá na požadovanou teplotu.

Obrázek 1.2: Měřicí aparatura.

1.4 Postup měření

Postup měření je stejný pro všechny vzorky. Měření proveďte alespoň pro dva různé materiály.

1. Do nádržky nalijte co nejchladnější vodu z vodovodu cca 2 cm pod okraj. Upevněte měřený vzorek (tyčku) do upínací lavice v maximální možné vzdálenosti 600 mm. Na konce tyčky nasaďte přívodní hadičky a ujistěte se, že drží dostatečně pevně. Na konec upínací lavice opatrně připevněte indikátorové hodinky a ujistěte se, že jejich měřicí hrot se opírá o měřený vzorek.

- 2. Termostat nastavte na nejnižší možnou teplotu a pomocí vypínače na přední straně jej zapněte. Měřeným vzorkem začne proudit voda. Počkejte chvíli, dokud nedojde k vyrovnání teplot a poznamenejte si počáteční teplotu t_0 a hodnotu l_0 , kterou ukazují indikátorové hodinky. Od tohoto okamžiku se měřeného vzorku ani indikátorových hodinek nedotýkejte, aby nedošlo k jejich nežádoucímu posunutí.
- 3. Termostat nastavte na teplotu cca o 5 °C vyšší oproti údaji na teploměru. Pokud se lázeň ohřívá, pak na termostatu svítí oranžová kontrolka jasně. V případě, že se teplota lázně blíží k požadované nastavené teplotě, pak se ohřev lázně zpomalí, což je indikováno zeslabením svitu kontrolky. V případě, že ohřev lázně skončil, kontrolka zhasne. Na teploměru odečtěte teplotu lázně (a vzorku) t_i a údaj na indikátorových hodinkách l_i .
- 4. Předchozí krok opakujte až do teploty cca 60 °C.
- 5. Vypněte topení a čerpadlo a vypusťte vodu z nádržky do kbelíku. Z upínací lavice opatrně odstraňte indikátorové hodinky a uložte je do krabičky. Z měřeného vzorku odstraňte přívodní hadičky **takovým způsobem, aby na stůl nevytekla zbylá voda** upínací lavici se vzorkem zdvihněte tak, aby tato voda vytekla do nádržky. Z upínací lavice odstraňte měřený vzorek. Vodu z kbelíku vylijte do umyvadla.
- 6. Pokud pokračujete v měření, vyberte si další vzorek a pokračujte bodem 1, pokud jste hotovi, utřete pracovní stůl.

1.5 Zpracování výsledků měření

Pro každý měřený vzorek vypočtěte teplotní součinitel délkové roztažnosti a jeho nejistotu. To můžete udělat tak, že naměřené hodnoty $(\Delta t_i, \Delta l_i)$ pomocí metody nejmenších čtverců proložíte přímkou a teplotní součinitel délkové roztažnosti vypočtete jako

$$\alpha = \frac{A}{L},$$

kde A je směrnice lineární závislosti a $L=(600\pm1)\,\mathrm{mm}$ je délka měřeného vzorku. Všechny naměřené hodnoty $(\Delta t_i,\Delta l_i)$, proložené přímkami, vyneste do jednoho grafu. Jak k výpočtům, tak ke zhotovení grafů můžete použít Univerzální nástroj pro kreslení grafů dostupný na serveru Herodes (http://herodes.feld.cvut.cz/mereni/).

1.6 Použitá literatura

- 1. J. B. Slavík a kol., Základy fysiky I., ČSAV, Praha, 1962.
- 2. D. Ilkovič, Fyzika pre študujúcich na vysokých školách technických, SVTL, Bratislava, 1962.

6. září 2011, Milan Červenka, Ilona Ali Bláhová, milan.cervenka@fel.cvut.cz