

MINISTÉRIO DA EDUCAÇÃO E DESENVOLVIMENTO HUMANO INSTITUTO DE EDUCAÇÃO ABERTA E À DISTÂNCIA - IEDA

 $c^2 = a^2 + b^2$

Módulo 4

Matemática

PROGRAMA DO ENSINO SECUNDÁRIO À DISTÂNCIA (PESD) 1º CICLO

PROGRAMA DO ENSINO SECUNDÁRIO À DISTÂNCIA (PESD) 1º CICLO

Módulo 4 de: Matemática

Moçambique

FICHA TÉCNICA

Consultoria

CEMOQE MOÇAMBIQUE

Direcção

Manuel José Simbine (Director do IEDA)

Coordenação

Nelson Casimiro Zavale

Belmiro Bento Novele

Elaborador

Constantino Matsinhe

Revisão Instrucional

Nilsa Cherindza

Lina do Rosário

Constância Alda Madime

Dércio Langa

Revisão Científica

Teresa Macie

Revisão linguística

Marcos Domingos

Maquetização e Ilustração

Elísio Bajone

Osvaldo Companhia

Rufus Maculuve

Impressão

CEMOQE, Moçambique

Índice

INTRODUÇÃO	6
INTRODUÇÃO DA UNIDADE TEMÁTICA N°1	7
LIÇÃO №1: CONCEITO DE FUNÇÃO QUADRÁTICA	8
LIÇÃO N°2: FUNÇÃO DO TIPO $y=fx=ax2$, REPRESENTAÇÃO GRÁFICA ESTUDO O	COMPLETO
DA FUNÇÃO	10
LIÇÃO N°3: FUNÇÃO DO TIPO $y=ax2+c$, representação gráfica e estudo c	COMPLETO
DA FUNÇÃO	23
LIÇÃO №4: RESOLUÇÃO DE PROBLEMAS PRÁTICOS QUE ENVOLVEM FUNÇÕES QUA	DRÁTICAS.31
UNIDADE N°2: QUADRILÁTEROS	38
Lição №1: Noção de quadrilátero	
LIÇÃO N°2: CLASSIFICAÇÃO DE QUADRILÁTEROS	
LIÇÃO N°3: PROPRIEDADES DE DOS QUADRILÁTEROS	50
LIÇÃO N°4: TEOREMA SOBRE ÂNGULOS INTERNOS DE UM QUADRILÁTERO E SUA A	PLICAÇÃO.55
LIÇÃO №5: RESOLUÇÃO DE PROBLEMAS ENVOLVENDO OS QUADRILÁTEROS	58
UNIDADE N°3:	65
SEMELHANÇA DE TRIANGULOS	65
LIÇÃO №1: HOMOTETIAS, AMPLIAÇÃO E REDUÇÃO DE FIGURAS PLANAS SIMPLES	67
LIÇÃO №2: NOÇÃO DE SEMELHANÇADE TRIÂNGULOS E CRITÉRIOS DE SEMELHANÇ	CADE
TRIÂNGULOS: L.L.L; AA; .L.A.L;	73
LIÇÃO N°3: TEOREMA DE THALES E SUA APLICAÇÃO	80
LIÇÃO N°4: DEMONSTRAÇÃO DO TEOREMA DE PITÁGORAS PELA SEMELHANÇA DE	TRIÂNGULOS
	86
LIÇÃO №5: RESOLUÇÃO DE PROBLEMAS PRÁTICOS DA VIDA APLICANDO A SEMELH	ANÇA DE
TRIÂNGULOS E OS TEOREMAS DE THALES E DE PITÁGORAS	89
UNIDADE N°4: CÁLCULO DE ÁREAS E VOLUME DOS SOLIDOS GEOMÉTRICOS	95
LIÇÃO N°1: CONCEITO E CLASSIFICACÃO DE POLIEDROS	96
Lição n°2: RELAÇÃO DE EULER	104
LICÃO №3: CONCEITO DE PRISMA. ELEMENTOS DE UM PRISMA E CLASSIFICAÇÃO DE	EPRISMAS 107

MENSAGEM DA SUA EXCELÊNCIA MINISTRA DA EDUCAÇÃO E **DESENVOLVIMENTO HUMANO**

CARO ALUNO!

Bem-vindo ao Programa do Ensino Secundário à Distância (PESD).

É com grata satisfação que o Ministério da Educação e Desenvolvimento Humano coloca nas suas mãos os materiais de aprendizagem especialmente concebidos e preparados para que você e muitos outros jovens e adultos, com ou sem ocupação profissional, possam prossseguir com os estudos ao nível secundário do Sistema Nacional de Educação, seguindo uma metodologia denominada por "Ensino à Distância".

Com este e outros módulos, pretendemos que você seja capaz de adquirir conhecimentos e habilidades que lhe vão permitir concluir, com sucesso, o Ensino Secundário do 1º Ciclo, que compreende a 8ª, 9ª e 10ª classes, para que possa melhor contribuir para a melhoria da sua vida, da vida da sua família, da sua comunidade e do País. Tendo em conta a abordagem do nosso sistema educativo, orientado para o desenvolvimento de competências, estes módulos visam, no seu todo, o alcance das competências do 1º ciclo, sem distinção da classe.

Ao longo dos módulos, você irá encontrar a descrição do conteúdo de aprendizagem, algumas experiências a realizar tanto em casa como no Centro de Apoio e Aprendizagem (CAA), bem como actividades e exercícios com vista a poder medir o grau de assimilação dos mesmos.

ESTIMADO ALUNO!

A aprendizagem no Ensino à Distância é realizada individualmente e a ritmo próprio. Pelo que os materiais foram concebidos de modo a que possa estudar e aprender sózinho. Entretanto, o Ministério da Educação e Desenvolvimento Humano criou Centros de Apoio e Aprendizagem (CAA) onde, juntamente com seus colegas se deverão encontrar com vários professores do ensino secundário (tutores), para o esclarecimento de dúvidas, discussões sobre a matéria aprendida, realização de trabalhos em grupo e de experiências laboratoriais, bem como da avaliação formal do teu desempenho, designada de Teste de Fim do Módulo (TFM). Portanto, não precisa de ir à escola todos dias, haverá dias e horário a serem indiçados para a sua presença no CAA.

Estudar à distância exige o desenvolvimento de uma atitude mais activa no processo de aprendizagem, estimulando em si a necessidade de rnuita dedicação, boa organização, muita disciplina, criatividade e sobretudo determinação nos estudos.

Por isso, é nossa esperança de que se empenhe com responsabilidade para que possa efectivamente aprender e poder contribuir para um Moçambique Sempre Melhor!

POM TRABALHO!

Maputo, aos 13 de Dezembro de 2017

CONCEITA ERNESTO XAVIER SORTANE MINISTRA DA EDUCAÇÃO E **DESENVOLVIMENTO HUMANO**

Av. 24 de Julho 167-Telefone nº21 49 09 98-Fax nº21 49 09 79-Caixa Postal 34-EMAIL: L_ABM!NEDH@minedh.gov.mz ou L_mined@mined.gov.mz mfm

INTRODUÇÃO

Bem-vindo ao módulo de Matemática

O presente módulo está estruturado de forma a orientar claramente a sua aprendizagem dos conteúdos

Estão apresentados nele conteúdos, objectivos gerais e específicos bem como a estratégia de como abordar cada tema desta classe.

ESTRUTURA DO MÓDULO

Este móduloé constituído por 4 (Quatro) unidadestemáticas, nomeadamente:

Unidade nº 1: FUNÇÃO QUDRÁTICA

Unidade n° 2: QUADRILATEROS

Unidade n°3:SEMELHANCA DE TRIÂNGULOS

Unidade n°4:CÁLCULO DE ÁREAS E VOLUME DOS SOLIDOS GEOMÉTRICOS

OBJECTIVOS DE APRENDIZAGEM

No final do estudo deste modulo, esperamos que você seja capaz de:

- -Fazer o estudo completo de uma função quadrática;
- Determinar os ângulos internos de quadriláteros aplicando os teoremas;
- Aplicar as teorias de semelhança de triângulos na resolução de problemas;
- Resolver problemas concretos aplicando a geometria.

ORIENTAÇÕES PARA O ESTUDO

Estimado estudante, para ter sucesso no estudo deste módulo, é necessário muita dedicação, portanto aconselhamos o seguinte:

-Reserve pelo menos 3horas por dia para o estudo de cada lição e resolução dos exercícios propostos;

- Procureum lugar tranquilo que disponha de espaço e iluminação apropriada, pode ser em casa, no Centro de Apoio e Aprendizagem (CAA) ou noutro lugar perto da sua casa;
- Durante a leitura, façaanotações no seu caderno sobre conceitos, fórmulas e outros aspectos importantes sobre o tema em estudo;
- Aponte também as duvidas a serem apresentadas aos seus colegas, professor ou tutor de forma a serem esclarecidas;
- Faca o resumo das matérias estudadas, anotando as propriedades a serem aplicadas;
- Resolva os exercícios e só consulte a chave-de-correcção para confirmar as respostas. Caso tenha respostas erradas volte a estudar a lição e resolve novamente os exercícios por forma a aperfeiçoar o seu conhecimento. Só depois de resolver com sucesso os exercícios poderá passar para o estudo da lição seguinte. Repita esse exercício em todas as lições.

Ao longo das lições você vai encontrar figuras que o orientarão na aprendizagem:

CONTEÚDOS

REFLEXÃO

TOME NOTA

AUTO-AVALIAÇÃO

CHAVE-DE-CORRECÇÃO

CRITÉRIOS DE AVALIAÇÃO

Ao longo de cada lição de uma unidade temática são apresentadas actividades de auto-avaliação, de reflexão e de experiências que o ajudarão a avaliar o seu desempenho e melhorar a sua aprendizagem. No final de cada unidade temática, será apresentado um teste de auto-avaliação, contendo os temas tratados em todas as lições, que tem por objectivo o preparar para a realização da prova. A autoavaliação é acompanhada de chave-de-correcção com respostas ou indicação de como deveria responder as perguntas, que você deverá consultar após a sua realização. Caso você acerte acima de 70% das perguntas, consideramos que está apto para fazer a prova com sucesso.

INTRODUÇÃO DA UNIDADE TEMÁTICA N°1.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar Função quadrática. Esta unidade está estruturada de seguinte modo: Contem 4 (Quatro) lições.

OBJECTIVOS DE APRENDIZAGEM

- Definir função quadrática;
- Construir gráfico de função quadrática;
- Fazer o estudo completo de uma função quadrática;
- Resolução de problemas práticos que envolvem funções quadráticas.

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidade sobre Função quadrática,

Você:

- Define função quadrática;
- Constrói gráfico de função quadrática;
- Faz o estudo completo de uma função quadrática;
- Resolve problemas práticos que envolvem funções quadráticas.

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 24horas.

Para melhor desenvolver o seu estudo você necessita de: Uma sebenta, esferográfica, lápis, borracha e régua.

INTRODUÇÃO A LIÇÃO:

Caro estudante, a abordagem de Equações quadráticas na unidade 4, vai sustentar bastante, o estudo de Funções quadráticas. Nesta lição vamos abordar Funções quadráticas operadas no conjunto de números reais.

OBJECTIVOS DE APRENDIZAGEM

- Definir função quadrática;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.1.1 Conceito de função quadrática

Função quadrática - é toda expressão de segundo grau que se representa na forma

$$f(x) = ax^2 + bx + c$$
Ou $y = ax^2 + bx + c$. Portanto, $f(x) = y$, onde:

a, b e c, São coeficientes reais e $a \neq 0$, o xé a variável em estudo.

Ex: a)
$$f(x) = 2x^2 + 3x - 1$$
; $a = 2$; $b = 3$ e $c = -1$

b)
$$g(x) = -3x^2 + \frac{1}{2}x$$
; $a = -3$; $b = \frac{1}{2}ec = 0$

c)
$$h(x) = \sqrt{3}x^2 + 1$$
; $a = \sqrt{3}$; $b = 0$ $ec = 1$

$$d)i(x) = x^2$$
; $a = 1$; $b = 0$ e $c = 0$

ACTIVIDADE DA LIÇÃO Nº 1

Caro estudante, depois de termos abordado Conceito de função quadrática, Você pode efectuar os exercícios propostos:

1. Indique o valor lógico (V) as funções quadráticas e (F) as funções que não são quadráticas:

a)
$$f(x) = 2^2x + 3x + 1$$

b)
$$y = 7x^2$$

c)
$$h(x) = 40 + x^3$$

d)
$$y = x^{-2} - 4x + 1$$

e)
$$i(x) = 23x^2 + 2x + 1$$

f)
$$y = -x + 3 - 20x^2$$

$$g) \quad f(x) = -x^2 - 3x$$

2. Indica os valores de *a*, *b e c*nas funções seguintes:

a)
$$y = x^2$$

b)
$$f(x) = -x^2$$

c)
$$y = x^2 - 1$$

d)
$$y = -2x^2 + 1$$

e)
$$y = (x + 1)^2$$

CHAVE-DE-CORRECÇÃO N° 1

- 1. a) F b) Vc) Fd) Fe) Vf) Vg) V
- 2. Indica os valores de *a, bec*nas funções seguintes:

a)
$$a = 1$$
; $b = 0$; $c = 0$ b) $a = -1$; $b = 0$; $c = 0$ c) $a = 1$; $b = 0$; $c = -1$

d)
$$a = -2$$
; $b = 0$; $c = 1$ e) $a = 1$; $b = 2$; $c = 1$

Lição nº2:

FUNÇÃO DO TIPO $y = f(x) = ax^2$, REPRESENTAÇÃO GRÁFICA ESTUDO COMPLETO DA FUNÇÃO

Função do tipo $y = f(x) = ax^2$

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Função do tipo $y = f(x) = \alpha x^2$, Representação gráfica e Estudo completo da função.

OBJECTIVOS DE APRENDIZAGEM

- Definir função do tipo $y = f(x) = ax^2$;
- Construir gráfico da função tipo $y = f(x) = ax^2$;
- Fazer o estudo completo da função.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.2.1 Função do tipo $y = f(x) = ax^2$

Função do tipo $y=ax^2$, é toda função
quadrática em que $a\neq 0$; b=0 e c=0.

Portanto, os coeficientes **b** e **c**são iguais a zero.

Ex: a)
$$y = x^2$$
 b) $y = -3x^2$ c) $y = -x^2$ d) $y = \frac{1}{2}x^2$

1.2.2 Gráfico da função do tipo $y = ax^2$

Para construir o gráfico da função do tipo $y = ax^2$, devemos determinar alguns pares ordenados, a partir de um dado intervalo dos números inteiros, e representa-los no sistema cartesiano ortogonal.

Ex1: Construamos o gráfico da seguinte função: $y = f(x) = x^2$:

Primeiro, devemos preencher a tabela abaixo a partir dos valores de \boldsymbol{x} determinamos os valores de \boldsymbol{y} , vamos escolher os números inteiros compreendidos entre -3 à +3. Assim:

$$x y = f(x)$$

-3	9
-2	4
-1	1
0	0
1	1
2	4
-3	9

$$f(-3) = (-3)^2 = (-3) \times (-3) = +9$$

$$f(-2) = (-2)^2 = (-2) \times (-2) = +4$$

$$f(-1) = (-1)^2 = (-1) \times (-1) = +1$$

$$f(0) = (0)^2 = (0) \times (0) = 0$$

$$f(1) = (1)^2 = (1) \times (1) = 1 ; f(2) = (2)^2 = (2) \times (2) = 4$$

$$f(3) = (3)^2 = (3) \times (3) = 9$$

Passo seguinte, vamos desenhar o sistema de coordenadas cartesianas e construirmos o gráfico. Assim:

1.2.3 Portanto, gráfico que construímos, chama-se **parábola**. Depois da construção do mesmo, devemos fazer o estudo completo da função. **Estudo completo da função** $y = f(x) = x^2$

1°- Determinamos o **Domínio da função**, representa-se por, **Df**.

Domínio da função – \acute{e} o conjunto dos valores de \boldsymbol{x} que são objectos da função.

Para função acima:Df: $x\epsilon$] $-\infty$; $+\infty$ [= R.

2°- Determinamos o Contradomínio da função, representa-se por, D'f.

Contradomínio da função – é o conjunto dos valores de yque são imagens da função.

$$D'f:x\epsilon[0;+\infty[=R_0^+]$$

3° - Determinamos os **Zeros da função** -que são os valores em o gráfico corta o eixo **ox**, ou eixo das abcissas. Para o exemplo acima, o zero da função é igual a zero. Isto é:

 $\mathbf{x} = \mathbf{0}$. Portanto os valores de zeros da função são aqueles que calculamos nas equações quadráticas, isto é: $\mathbf{x_1} e \ \mathbf{x_2}$.

4° - Determinamos Ordenada na origem – que é o valor em que o gráfico corta o eixo das ordenadas ou eixo oy. É aquele que se verifica quando os valores de x, é zero.

Para exemplo anterior, ordenada na origem é igual a zero. Isto é, y = 0.

5° - Vértice de gráfico ou da parábola – é o ponto de gráfico cuja ordenada é um valor mínimo (se o gráfico estiver voltada para cima) ou máximo (se o gráfico estiver voltada para baixo). Representa-se por, V(x; y). Na função $f(x) = x^2$, o vértice éV(x; y) = V(0; 0).

6° - Monotonia da função - é o crescimento ou decrescimento da função. Vamos considerar uma tabela abaixo:

x]–∞; 0[0]0; +∞[
у	•	0	

Portanto no intervalo de menos infinito até zero, o gráfico é **monótona decrescente**, indicamos o decrescimento com uma seta inclinada de cima para baixo.

No intervalo de zero até mais infinito, gráfico sobe isto é, é **monótona crescente**, indicamos o crescimento com uma seta que começa de baixo para cima.

7° - Verificamos a **variação de sinal** – que é a parte positiva isto é aparte do gráfico que está acima do eixo das abcissas, ou a parte negativa do gráfico que é aquela que está abaixo do eixo das abcissas.

Para o gráfico anterior, a função está acima do eixo das abcissas menos no ponto $\mathbf{x}=\mathbf{0}$. Portanto a função é positiva em todo \mathbf{R} diferente de zero. Isto é $f(x) \geq \mathbf{0} \setminus \{\mathbf{0}\}$. Pode-se representar a variação do sinal numa tabela. Assim:

x]-∞;0[0]0; +∞[
у	+	0	+

 8° - Eixo de simetria – é a recta vertical que divide a parábola em dois ramos simétricos. Isto é: é a recta que contem o ponto de coordenadas (d; 0). Onde (d) é abcissa do vérticeda parábola. No gráfico acima o eixo de simetria é igual a zero. Isto é: (x = 0).

9° - Concavidade de gráfico – o gráfico terá concavidade voltada para cima se o valor de coeficiente a for maior que zero. Isto é: a > 0.

O gráfico terá concavidade voltada para baixo se o valor de a for menor que zero. Isto é: a < 0

Para o gráfico anterior, o mesmo, tem concavidade voltada para cima, porque a>0. Portanto,

 $f(x) = x^2$; a = 1; 1 > 0.Então, concavidade voltada para cima.

Ex2: construamos o gráfico da função $g(x) = -x^2$.

Primeiro, devemos preencher a tabela abaixo a partir dos valores de \boldsymbol{x} determinamos os valores de \boldsymbol{y} , vamos escolher os números inteiros compreendidos entre -3 à +3. Assim:

x	y = g(x)
-3	-9
-2	-4
-1	-1
0	0
1	-1
2	-4
-3	-9

$$g(-3) = -(-3)^2 = -(-3) \times (-3) = -9$$

$$g(-2) = -(-2)^2 = -(-2) \times (-2) = -4$$

$$g(-1) = -(-1)^2 = -(-1) \times (-1) = -1$$

$$g(0) = (0)^2 = (0) \times (0) = 0$$

$$g(1) = -(1)^2 = -(1) \times (1) = -1 ; g(2) = -(2)^2 = -(2) \times (2) = -4$$

$$g(3) = -(3)^2 = -(3) \times (3) = -9$$

1.2.4. Estudo completo da função $y = g(x) = -x^2$

1°- Determinamos o **Domínio da função**, representa-se por, **D**g.

Domínio da função – é o conjunto dos valores de x que são objectos da função.

Para função $g(x) = -x^2$ acima: $Dg: x \in]-\infty; +\infty[=R.$

 2° - Determinamos o Contradomínio da função, representa-se por, D'g.

Contradomínio da função – é o conjunto dos valores de yque são imagens da função.

$$D'g:x\epsilon]-\infty;0]=R_0^-$$

- **3°** Determinamos os **Zeros da função** que são os valores em o gráfico corta o eixo **ox**, ou eixo das abcissas. Para o exemplo acima, o zero da função é igual a zero. Isto é:
- x = 0. Portanto os valores de zeros da função são aqueles que calculamos nas equações quadráticas, isto é: x_1e x_2 .
- **4°** Determinamos **Ordenada na origem** que é o valor em que o gráfico corta o eixo das ordenadas ou eixo **oy.** É aquele que se verifica quando os valores de **x**, <u>é zero</u>.

Para exemplo anterior, ordenada na origem é igual a zero. Isto é, y = 0.

- 5° Vértice de gráfico ou da parábola V(x; y) = V(0; 0).
- **6° Monotonia da função** é o crescimento ou decrescimento da função. Vamos considerar uma tabela abaixo:

x]–∞; 0[0]0;+∞[
у		0	

Portanto no intervalo de menos infinito até zero, o gráfico é **monótona crescente**, indicamos o crescimentocomeça de baixo para cima.

No intervalo de zero até mais infinito, gráfico sobe isto é, é **monótona decrescente**, indicamos o decrescimento com uma seta inclinada de cima para baixo.

7° - Verificamos a **variação de sinal** – que é a parte positiva isto é aparte do gráfico que está acima do eixo das abcissas, ou a parte negativa do gráfico que é aquela que está abaixo do eixo das abcissas.

Para o gráfico anterior, a função está abaixo do eixo das abcissas menos no ponto x=0. Portanto a função é negativa em todo R diferente de zero. Isto é $f(x) \le 0 \setminus \{0\}$. Pode-se representar a variação do sinal numa tabela. Assim:

x]-∞;0[0]0;+∞[
у		0	_
	-		_

8° - Eixo de simetria – é a recta vertical que divide a parábola em dois ramos simétricos. Isto é: é a recta que contem o ponte de coordenadas (d; 0). Onde (d) é abcissa do vertesse da parábola. No gráfico acima o eixo de simetria é igual a zero. Isto é: (x = 0).

9° - Concavidade de gráfico – o gráfico terá concavidade voltada para cima se o valor de coeficiente a for maior que zero. Isto é: a > 0.

O gráfico terá concavidade voltada para baixo se o valor de \boldsymbol{a} for menor que zero. Isto é: $\boldsymbol{a} < 0$

Para o gráfico da função $g(x) = -x^2$, o mesmo, tem concavidade voltada para baixo, porque a < 0. Portanto,

 $g(x) = -x^2$; a = -1; -1 < 0. Então, concavidade voltada para baixo.

Nota Bem: quando o valor de coeficiente **a**aumenta a abertura do gráfico diminui, e quando o valor de **a**diminui a abertura do gráfico aumenta.

Ex: Vamos representar os gráficos das funções $f(x) = 2x^2 e g(x) = \frac{1}{2}x^2$, no mesmo sistema de coordenadas cartesianas:

Primeiro, devemos preencher as tabelas de f(x) eg(x)a partir dos valores de x determinamos os valores de y, vamos escolher os números inteiros compreendidos entre -3 à +3. Assim:

х	$f(x)=2x^2$
-3	18
-2	8
-1	2
0	0
1	2

	2	8				
	-3	18	$f(-3) = 2 \times (-3)^2 = 2 \times (-3) \times (-3) = 18$			
	$f(-2) = 2 \times (-2)^2 = 2 \times (-2) \times (-2) = 8$					
$f(-1) = 2(-1)^2 = 2(-1) \times (-1) = 2$						
$f(0) = 2 \times (0)^2 = 2 \times (0) \times (0) = 0$						
$f(1) = 2 \times (1)^2 = 2 \times (1) \times (1) = 2$; $f(2) = 2 \times (2)^2 = 2 \times (2) \times (2) = 8$						
	$f(3) = 2 \times (3)^2 = 2 \times (3) \times (3) = 1$					

e $g(x) = \frac{1}{2}x^2$, no mesmo sistema cartesiano ortogonal. Assim:

Conclusão: Veja que a abertura do gráfico da função $f(x)=2x^2$, é menor em relação a abertura do gráfico da função $g(x)=\frac{1}{2}x^2$. Isto é, a abertura do gráfico de $g(x)=\frac{1}{2}x^2$ é maior em relação à abertura do gráfico da função $f(x)=2x^2$. Isto, porque o coeficiente de, $f(x)=2x^2$ é maior em relação ao coeficiente de $g(x)=\frac{1}{2}x^2$, $2>\frac{1}{2}$.

ACTIVIDADE DA LIÇÃO N° 2

Caro estudante, depois de termos abordado Função do tipo $y = f(x) = ax^2$, Você pode efectuar os exercícios propostos abaixa:

1. Para cada uma das funções abaixo represente-as separadamente no sistema cartesiano ortogonal e faça o estudo completo de cada função, isto é determine: domínio da função, contradomínio da função, zeros da função, ordenada na origem, monotonia da função, variação de sinal, eixo de simetria e concavidade.

a)
$$y = 3x^2$$
 b) $y = -2x^2$ c) $y = -\frac{1}{2}x^2$

CHAVE-DE- CORRECÇÃO nº 2

x	$y=3x^2$
-3	27
-2	12
-1	3
0	0
1	3
2	12
-3	27

Estudo completo da função: $y = 3x^2$

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ} - D'y : x\epsilon]0; +\infty] = R_0^+$$

 3° - Zeros da função:x = 0.

 4° - Ordenada na origem: $y=0;5^{\circ}$ -vértice da função: V(x;y)=V(0;0)

6° - Monotonia da função:

x]–∞; 0[0]0;+∞[
у		0	

7° - Variação de sinal:

x]–∞; 0[0]0; +∞[
у	+	0	+

 8° - Eixo de simetria: x = 0.

 9° - Concavidade de gráfico: a > 0; 3 > 0; concavidade voltada para cima.

b)

X

-8

24	$f(\alpha) = 2\alpha^2$
x	$f(x) = -2x^2$
-3	-18
-2	-8
-1	-2
0	0
1	-2
2	-8
-3	-18

Estudo completo da função: $y = -2x^2$

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y:x\epsilon]-\infty;0]=R_0^-$

 3° - Zeros da função:x = 0.

 4° - Ordenada na origem:y = 0; 5° -vértice da função: V(x;y)=V(0;0)

 6° - Monotonia da função:

x]–∞; 0[0]0;+∞[
у		0	

7° - Variação de sinal:

x]–∞; 0[0]0; +∞[
у	-	0	-

 8° - Eixo de simetria: x = 0.

 9° - Concavidade de gráfico:a < 0; -2 < 0; concavidade voltada para baixo.

b)

X

--2

-3

x	$g(x) = -\frac{1}{2}x^2$
-3	$-\frac{9}{2}$
-2	-2
-1	$-\frac{1}{2}$
0	0
1	$-\frac{1}{2}$

-3

Estudo completo da função: $y = -\frac{1}{2}x^2$

$$1^{\circ}$$
- Dy : $x\epsilon$] $-\infty$; $+\infty$ [= R

$$2^{\circ}$$
- $D'y:x\epsilon]-\infty;0]=R_0^-$

 3° - Zeros da função:x = 0.

 4° - Ordenada na origem: $y = 0.5^{\circ}$ - Vértice da função:V(0; 0).

6° - Monotonia da função:

x]-∞;0[0]0;+∞[
У		0	

7° - Variação de sinal:

x]-∞;0[0]0; +∞[
у	-	0	-

 8° - Eixo de simetria: x = 0.

9° - **Concavidade de gráfico:**a < 0; $-\frac{1}{2} < 0$; concavidade voltada para baixo.

Lição nº3:

FUNÇÃO DO TIPO $y = ax^2 + c$, REPRESENTAÇÃO GRÁFICA E ESTUDO COMPLETO DA FUNÇÃO

INTRODUÇÃO A LIÇÃO:

Caro estudante nesta lição vamos abordar Função do tipo $y=ax^2+c$, Representação gráfica e Estudo completo da função operadas no conjunto de números reais.

OBJECTIVOS DE APRENDIZAGEM

- Definir Função do tipo $y = ax^2 + c$;
- Construir gráficos de funções do tipo $y = ax^2 + c$;
- Fazer o estudo completo de funções do tipo $y = \alpha x^2 + c$;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.3.1 Funções do tipo $y=ax^2+c$, são todas aquelas cujo valor de b é igual a zero. Isto é. b=0.

O valor de ${\it c}$ é igual à o da ordenada na origem.

Ex: De funções do tipo tipo $y = ax^2 + c$:

a)
$$y = x^2 - 1$$

b)
$$y = -2x^2 + 4$$

c)
$$y = x^2 + 9$$

d)
$$y = -\frac{2}{3}x^2 + 1$$

e)
$$y = x^2 - 4$$

1.3.2 Gráfico da função $y = ax^2 + c$

Para construir o gráfico da função do tipo $y = ax^2$, devemos determinar alguns pares ordenados, a partir de um dado intervalo dos números inteiros, e representa-los no sistema cartesiano ortogonal.

Ex: Representemos o gráfico da função $y = x^2 - 4$ e façamos o estudo completo da função:

Primeiro, devemos preencher a tabela abaixo a partir dos valores de x determinamos os valores de y, vamos escolher os números inteiros compreendidos entre -3 à +3. Assim:

х	$y(x)=x^2-4$
-3	-5
-2	0
-1	-3
0	-4
1	-3
2	0
-3	5

$$y(-3) = (-3)^{2} - 4 = 5$$

$$y(-2) = (-2)^{2} - 4 = 0$$

$$y(-1) = (-1)^{2} - 4 = -3$$

$$y(0) = (0)^{2} - 4 = 0 - 4 = -4$$

$$y(1) = (1)^{2} - 4 = 3; y(2) = (2)^{2} - 4 = 0$$

$$y(3) = (3)^{2} - 4 = 5$$

Passo seguinte, vamos desenhar o sistema de coordenadas cartesianas e construirmos o gráfico. Assim:

Estudo completo da função: $y = x^2 - 4y$

1°-
$$Dy$$
: $x\epsilon$] $-\infty$; $+\infty$ [= R

$$2^{\circ}$$
- $D'y$: $x \in]-4; +\infty]$

3° - Zeros da função: $x_1 = -2 \ \alpha_2 = +2$.

 4° - Ordenada na origem: y = -4.

 5° - Vértice da parábola: V(x; y) = V(0; -4)

6° - Monotonia da função: na coluna de meio na tabela, colocamos as coordenadas de vértice. Assim:

x]-∞;0[0]0; +∞[
у	•	-4	

7° - Variação de sinal: devemos considerar os intervalos delimitados pelos zeros da função, $x_1 = -2$ e $x_2 = 2$; portanto, quando $x_1 = -2$ o valor de y = o; se $x_2 = 2$ o valor de y = o. Isto é: (-2; 0) e (+2; 0).

Portanto, de menos infinito $(-\infty)$ até,(-2); o gráfico está acima de eixo das abcissas então, é positivo. Representamos pelo sinal positivo(+);

De menos dois (-2) até mais dois (+2); o gráfico está abaixo de eixo das abcissas então, é negativo. Representamos pelo sinal negativo (-);

De mais dois (+2) até mais infinito $(+\infty)$; o gráfico está acima de eixo das abcissas então, é positivo. Representamos pelo sinal positivo(+); então, podemos preencher a tabela abaixo:

x]-∞; -2[-2]-2; +2[+2]+2;+∞[
у	+	0	-	0	+

 8° - Eixo de simetria: x = 0.

 9° - Concavidade de gráfico: a > 0; 1 > 0; concavidade voltada para cima.

ACTIVIDADE DA LIÇÃO N° 3

Caro estudante, depois de termos abordado Função do tipo $y = ax^2 + c$, Você pode efectuar os exercícios propostos abaixa:

1. Construa os gráficos das funções abaixo e faça o estudo completo das mesmas:

a)
$$y = -x^2 + 1$$

b)
$$y = \frac{1}{2}x^2 + 2$$

c)
$$y = -2x^2 + 6$$

CHAVE-DE- CORRECÇÃO N° 3

1. a)
$$y = -x^2 + 1$$

x	$y=-x^2+1$
-3	-8
-2	-3
-1	0
0	1
1	0
2	-3
-3	-8

Estudo completo da função: $y = -x^2 + 1$

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y$: $x \in]-\infty; +1]$

 3° - Zeros da função: $x_1 = -1$ $x_2 = +1$.

 4° - Ordenada na origem: y = +1.

 5° - Vértice da parábola: V(x; y) = V(0; +1)

6° - Monotonia da função: na coluna de meio na tabela, colocamos as coordenadas de vértice. Assim:

	х]-∞;0[0]0; +∞[
•	у		+1	

 7° - Variação de sinal:

x]-∞; -1[-1]-1;+1[+1]+1;+∞[
у	-	0	+	0	-

 8° - Eixo de simetria: x = 0.

-3

 $-\infty$

 9° - Concavidade de gráfico:a < 0; -1 < 0; concavidade voltada para baixo.

x	$y = \frac{1}{2}x^2 + 2$
-3	$\frac{13}{2}$
-2	4
-1	5 2
0	2
1	5 2
2	4
-3	$\frac{13}{2}$

Estudo completo da função: $y = \frac{1}{2}x^2 + 2$

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y$: $x \in [2; +\infty[$

3° - Zeros da função: Não tem zeros da função, não corta o eixo das abcissas.

 4° - Ordenada na origem: y = +2.

 5° - Vértice da parábola: V(x; y) = V(0; +2)

6° - Monotonia da função: na coluna de meio na tabela, colocamos as coordenadas de vértice. Assim:

x]-∞;0[0]0; +∞[
у		+2	

 7° - Variação de sinal: a função é positiva em todo R. y > 0 para, $x \in R$.

x]-∞;0[0]0;+∞[
У	+	+2	+

 8° - Eixo de simetria: x = 0.

9° - **Concavidade de gráfico:**a > 0; $\frac{1}{2} > 0$; concavidade voltada para cima.

x	$y = -2x^2 + 6$
-3	-12
-2	-2
-1	4
0	6
1	4
2	-2
-3	-12

Estudo completo da função: $y = -2x^2 + 6$

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y$: $x\epsilon$] $-\infty$; 6]

3° - Zeros da função: neste caso em que os zeros da função não são números inteiros, mas sim são números reais, deve se calcular. Para tal iguala-se a função à zero e calculase a equação aplicando qualquer regra abordada na resolução de equações quadráticas.

Assim:
$$y = o \leftrightarrow -2x^2 + 6 = 0 \leftrightarrow -2x^2 = -6 \leftrightarrow x^2 = \frac{6}{2} \leftrightarrow x^2 = 3$$

$$\leftrightarrow x_{1;2} = \pm \sqrt{3} \ \leftrightarrow x_1 = -\sqrt{3} \ v \ x_2 = +\sqrt{3}$$

 4° - Ordenada na origem: y = +6.

 5° - Vértice da parábola: V(x; y) = V(0; +6)

 $\mathbf{6}^{\circ}$ - Monotonia da função: na coluna de meio na tabela, colocamos as coordenadas de vértice. Assim:

x]–∞; 0[0]0; +∞[
у		+6	

 7° - Variação de sinal:

x	$]-\infty;-\sqrt{3}[$	$-\sqrt{3}$	$]-\sqrt{3};+\sqrt{3}[$	$+\sqrt{3}$	$]+\sqrt{3};+\infty[$
у	-	0	+	0	-

 8° - Eixo de simetria: x = 0.

 9° - Concavidade de gráfico:a < 0; -2 < 0; concavidade voltada para baixo.

Lição nº4: RESOLUÇÃO DE PROBLEMAS PRÁTICOS QUE ENVOLVÉM FUNÇÕES QUADRÁTICAS

INTRODUÇÃO A LIÇÃO:

Caro estudante nesta lição vamos abordar Resolução de problemas práticos que envolvem funções quadráticas operados no conjunto de números reais.

Objectivos de aprendizagem

- -Equacionar um problema em forma de função quadrática;
- -Resolver problemas práticos do quotidiano aplicando funções quadráticas;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.4.1 Resolução de problemas práticos que envolvem funções quadráticas

Caro estudante, no nosso dia-a-dia há vários problemas que se relacionam com funções quadráticas. Por exemplo: ao atirarmos uma pedra dum ponto para o outro, ao projectar um jacto de agua com mangueira numa rega na machamba, os arcos feitos numa ponte, as antenas parabólicas etc. São exemplos práticos de aplicação funções quadráticas.

Ex1: A distancia ao solo de um helicóptero em função do tempo, em segundos é dada por:

 $S(t) = \frac{1}{2}gt^2$, Onde g representa a aceleracao de gravidade que se considera igual aproximadamente igual a $10\frac{m}{s^2}$.

- a) Represente graficamente a situação apresentada.
- b) Determine o instante em que o helicóptero lançou uma caixa de alimentos pelo ar sabendo que o fez quando se encontrava a uma distância do solo, igual a **300m**.

Resolução: a) A função quadrática é : $S(t) = \frac{1}{2}gt^2$; podemos substituir gpor, $10\frac{m}{c^2}$. Assim:

 $S(t) = \frac{1}{2}gt^2 \leftrightarrow S(t) = \frac{1}{2}10t^2 \leftrightarrow S(t) = 5t^2$; agora podemos preencher uma tabela que tem os valores de, $t \in S$. Como o tempo é sempre positivo vamos escolher um intervalo de [0; 4] (Assim:

		$S(0) = 5(0)^2 = 0$
t	$S(t)=5t^2$	$S(1) = 5(1)^2 = 5$
0	0	$S(2) = 5(2)^2 = 20$
1	5	$S(3) = 5(3)^2 = 45$
2	20	$S(4) = 5(4)^2 = 80$
3	45	S(m) 300
4	80	
7,745	300	80 — //
		60 —
		40
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		•

b)
$$S(t) = 5t^2$$
; substituímos $S(t) = 300 \leftrightarrow 300 = 5t^2 \leftrightarrow 5t^2 = 300 \leftrightarrow t^2 = \frac{300}{5}$
 $t^2 = 60 \leftrightarrow t_{1;2} = \pm \sqrt{60} = \pm 7.745s$; portanto o valor que nos interessa é o positivo $t = 7.745s$.

ACTIVIDADE DA LIÇÃO Nº 4

Caro estudante, depois de termos abordado Resolução de problemas práticos que envolvem funções quadráticas, Você pode efectuar os exercícios propostos abaixa:

1. Um estudante de ensino a distancia, depois de ter prestado uma lição de matemática, foi jogar futebol com os amigos. Durante o jogo fez um remate, a velocidade inicial da bola foi de, $40 \frac{m}{s}$. A altura dada pela bola ao fim de t segundos é dada pela lei

$$h(t) = 40t - 5t^2.$$

- a) Em que instante a bola bate no solo?
- b) Se a bola permanecer 2 segundos no ar, qual seria a altura nesse instante?
- c) Se o adversaria saltasse e intersectasse a bola com a cabeça a uma altura de **2**metros, em que instante alcançaria a bola?

CHAVE-DE- CORRECÇÃO N° 4

- 1. a) t = 8s
 - b) 60m
 - c) 39,748s

ACTIVIDADES UNIDADE N°-1/ PREPARAÇÃO PARA TESTE

Caro estudante, depois da revisão de toda unidade número 5, você pode prestar a seguinte actividade:

1. Indique o valor lógico (V) as funções quadráticas e (F) as funções que não são quadráticas:

a)
$$f(x) = x^2 - x + 3x + 1$$

b)
$$y = -7x^2 + \sqrt{3}$$

c)
$$h(x) = 40x^2 - x^3$$

d)
$$y = x^2 - 4x + 1$$

e)
$$i(x) = 2x + 1 - 23x^2$$

f)
$$y = 20x - x + 3^2 + 10$$

$$g) f(x) = -b^2 - 3b$$

- 2. Indica os valores de **a**, **b** e **c** nas funções seguintes que são quadráticas do exercício 1.
- 3. Para cada uma das funções abaixo represente-as separadamente no sistema cartesiano ortogonal e faça o estudo completo de cada função:

a)
$$y = -3x^2b$$
) $y = -2x^2 + 2c$) $y = \frac{1}{2}x^2 - 2$

- **4.** A Melissa atirou uma bola ao ar com uma certavelocidade inicial. A altura dada pela bola ao fim de t segundos é dada pela expressão $h(t) = 20t 5t^2$.
 - d) Em que instante a bola bate no solo?
 - e) Se a bola permanecer **3** segundos no ar, qual seria a altura nesse instante?
 - f) Se o adversaria saltasse e intersectasse a bola com a cabeça a uma altura de 2metros, em que instante alcançaria a bola?

CHAVE - DE - CORRECÇÃO DA UNIDADE 1:

1. a)
$$V$$
b) V c) F d) V e) V f) F g) V

2. a)
$$a = 1$$
; $b = 2$; $c = 1$ b) $a = 1$; $b = 2$; $c = 1$ d) $a = -7$; $b = 0$; $c = \sqrt{3}$

d)
$$a = -23$$
; $b = 2$; $c = 1$ g) $a = -1$; $b = -3$; $c = 0$

3. a)
$$y = -3x^2$$

Estudo completo da função $y = -3x^2$:

1°-
$$\mathbf{D}\mathbf{y}$$
: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y: x \in]-\infty; 0]$

 3° - Zeros da função: $x_1=x_2=0$

 $\mathbf{4}^{\circ}$ - Ordenada na origem: $\mathbf{y} = \mathbf{0}$.

 5° - Vértice da parábola: V(x; y) = V(0; 0)

x	$y = -3x^2$
-3	-27
-2	-12
-1	-3
0	0
1	-3
2	-12
-3	-27
	-

6° - Monotonia da função:

x]-∞; 0[0]0; +∞[
у		0	

7° - Variação de sinal:

x]-∞;0[0]0; +∞[
у	-	0	-

- 8° Eixo de simetria: x = 0.
- $\mathbf{9}^{\circ}$ Concavidade de gráfico:a < 0; -3 < 0; concavidade voltada para baixo.

b)
$$y = -2x^2 + 2$$

х	$y = -2x^2 + 2$
-3	-16
-2	-6
-1	0
0	20
1	0
2	-6
-3	-16

Estudo completo da função $y = -2x^2 + 2$:

1°-
$$\mathbf{D}\mathbf{y}$$
: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y:x\epsilon]-\infty;2]$

$$3^{\circ}$$
 - Zeros da função: $x_1 = -1 \, x_2 = 1$

$$4^{\circ}$$
 - Ordenada na origem: $y = 2$.

$$5^{\circ}$$
 - Vértice da parábola: $V(x; y) = V(0; 2)$

6° - Monotonia da função:

x]-∞; 0[0]0; +∞[
у		2	

7° - Variação de sinal:

x]-∞;-1[-1]-1; +1[+1]+1;+∞[
у	-	0	+	0	-

- 8° Eixo de simetria: x = 0.
- $\mathbf{9}^{\circ}$ Concavidade de gráfico:a < 0; -2 < 0; concavidade voltada para baixo.

c)
$$y = \frac{1}{2}x^2 - 2$$

$x y = -2x^2 + 2$ $-3 \frac{5}{2}$ $-2 0$
-2 0
-1 $-\frac{3}{2}$
0 -2
1 $-\frac{3}{2}$
2 0
-3 $\frac{5}{2}$

Estudo completo da função $y = \frac{1}{2}x^2 - 2$:

$$1^{\circ}$$
- $\mathbf{D}\mathbf{y}$: $\mathbf{x}\boldsymbol{\epsilon}$] $-\infty$; $+\infty$ [= \mathbf{R}

$$2^{\circ}$$
- $D'y$: $x\epsilon$] -2 ; $+\infty$]

$$3^{\circ}$$
 - Zeros da função: $x_1=-2\,x_2=2$

$$4^{\circ}$$
 - Ordenada na origem: $y = -2$.

$$5^{\circ}$$
 - Vértice da parábola: $V(x; y) = V(0; -2)$

 6° - Monotonia da função:

x]-∞;0[0]0; +∞[
У		-2	

 7° - Variação de sinal:

x]-∞;-2[-2]-2;+2[+2]+ 2 ;+∞[
у	+	0	-	0	+

 8° - Eixo de simetria: x = 0.

9° - Concavidade de gráfico:a > 0; $\frac{1}{2} > 0$; concavidade voltada para cima.

- 4. a) t = 4s
 - b) 15*m*
 - c) t = 0.103s.

Unidade n°2: QUADRILÁTEROS

INTRODUÇÃO DA UNIDADE TEMÁTICA N°2.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar **Quadrilátero**. Esta unidade está estruturada de seguinte modo: Contem 5 (cinco) lições.

OBJECTIVOS DE APRENDIZAGEM

- DefinirQuadriláteros;
- Classificar os quadriláteros;
- -Aplicar as propriedades de ângulos internos e externos na resolução de Quadrilátero;
- Resolução de problemas envolvendo quadriláteros.

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidade sobreQuadriláteros, Você:

- DefineQuadriláteros;
- Classifica os quadriláteros;
- -Aplica as propriedades de ângulos internos e externos na resolução de Quadrilátero;
- Resolve problemas envolvendo quadriláteros.

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 15horas.

Para melhor desenvolver o seu estudo você necessita de: Uma sebenta, esferográfica, lápis, borracha e régua, transferidor, compassa, etc.

Lição nº1: Noção de quadrilátero

Noção de quadrilátero

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Noção de quadriláterooperadas no conjunto de números reais.

OBJECTIVOS DE APRENDIZAGEM

-Definir quadriláteros

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.1.1 Noção de quadrilátero

Caro estudante, certamente já notou que todo o que nos rodeia tem um formato geométrico, por exemplo o livro, a mesa, o quadro, o apagador, janela porta tem formato rectangular ou quadrangular, e mais outros objectos com figuras mais complicadas. Veja que a maior parte dessas figuras tem 4 (quatro) lados. Portanto:

Quadriláteros – são todas figuras geométricas com 4 (quatro) lados iguais ou diferentes. Isto é, são polígonos com 4 (quatro) lados.

Ex: a) Rectângulo, b)quadrado, c)trapézio, d)losango, e)paralelogramo, f) e g) são quadriláteros irregulares, etc.

d)

e)

c)

g)

Osquadriláteros podem ser côncavos ou convexos.

2.1.2 Quadriláteros côncavos – se o prolongamento dos seus lados não se toca ou não se intersectam.

Ex: As figura a), b), c), d) e e) do exemplo acima.

2.1.3 Quadriláteros convexos – se o prolongamento dos seus lados intersectam-se.

Ex: as figuras f) e g), do exemplo acima.

Segmentos de rectas – são os lados dos quadriláteros.

Na figura acima os seguimentos são: \overline{AB} , \overline{BC} , \overline{CD} e \overline{AD} .

Vértices – são extremos dos segmentos dum quadrilátero.

Na figura acima os vértices são os pontos: A, B, C e D.

Vértices consecutivos– são aqueles que pertencem ao mesmo lado.

Na figura acima os vértices consecutivos são: A e B; B e C; C e D; A e D.

Vértices opostos - são aqueles que não pertencem ao mesmo lado.

Na figura acima os vértices opostos são: A e C; Be D.

Lados consecutivos – são aqueles que têm um vértice comum.

Na figura acima os lados consecutivos são: ABe BC, BC e CD, CD e AD.

Ângulos consecutivos – são aqueles que têm um lado comum.

Na figura acima os ângulos consecutivos são: Ae B; Be C, C e D, A e D.

Ângulos Opostos – são aqueles que não têm um lado comum.

Na figura acima os ângulos opostos são: Ae C; Be D.

Diagonais de um quadrilátero – são segmentos de rectas que unem dois vértices opostos.

Ex2: fig.2

No exemplo 2 acima as diagonais do trapézio são: \overline{AC} e \overline{BD} .

ACTIVIDADE N° 1

Caro estudante, depois de termos abordado Noção de quadrilátero, Você pode efectuar os exercícios propostos :

- 1. Indique o valor lógico ${\bf V}$ nas afirmações verdadeiras e ${\bf F}$ nas falsas:
- a) Quadriláteros são todas figuras geométricas só com quatro lados iguais.
- b) Quadriláteros são todas figuras geométricas só com quatro lados diferentes.
- c) Quadriláteros são todas figuras geométricas com quatro lados iguais ou diferentes.
- 1.1.Os exemplos de quadrilateros são:
- a) Um triangulo com quatro lados iguais.
- b) Dilimitacoes de um campo de futebol.
- c) O ecra rectangular de um plasma.
- d) Delimitações de uma mesa circular.
- e) Quadrilateros convexos São aqueles em que o prolongamento dos seus lados não se toca ou não se intersectam.
- f) Quadrilateros convexos S\(\tilde{a}\) aquelesem que o prolongamento dos seus lados intersectamse.
- g) **Vértices** são extremos dos segmentos dum cilindro.
- h) **Vértices consecutivos** são aqueles que pertencem ao mesmo lado.
- i) Vértices opostos são aqueles que pertencem ao mesmo lado.
- j) Lados consecutivos são aqueles que têm vértices diferentes.
- k) Ângulos consecutivos são aqueles que têm um lado comum.
- 1) Ângulos Opostos são aqueles que não têm um lado comum.

m) Diagonais de um quadrilátero – são segmentos de rectas que unem dois vértices opostos.

CHAVE-DE- CORRECÇÃO Nº 1

- 1. a) F b) F c) V
- 2. a) F b) V c) V d) F e) F f) V g) Fh) V i) F j) F k) V l) V m) V

LIÇÃO N°2: CLASSIFICAÇÃO DE QUADRILÁTEROS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamosabordar Classificação de quadriláteros operadas no conjunto de números reais.

OBJECTIVOS DE APRENDIZAGEM

- Classificar os quadriláteros

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.2.1 Classificação de quadriláteros

Os quadriláteros classificam-se em trapézios e não trapézios.

Os quadriláteros classificam-se em trapézios e não trapézios.

Os trapézios subdividem-se em trapézios propriamente ditos e em paralelogramos

Trapézio – é um quadrilátero com pelo menos dois lados paralelos.

Ex1: Fig.3

Trapézio propriamente dito – é aquele que só tem dois lados paralelos.

Ex2: a)

b)

Portanto, o lado **AB** é paralelo ao lado **CD**.O lado **EF** é paralelo ao lado **GH**

Não trapézios – são aqueles que não têm lados paralelos.

Ex3: A

D

В

Fig.6

No exemplo acima todos os lados não são paralelos. Isto é: AB não é paralelo à CD e AD não é paralelo à BC. Logo é um quadrilátero não trapézio.

Consideremos o seguinte trapézio:

Fig.7 H

As linhas notáveis de um trapézio são: bases, diagonal, atura e mediana.

Bases – são os lados opostos e paralelos de um trapézio. Ex: no trapézio acima as bases são: Os segmentos \overline{AB} e \overline{CD} .

Diagonal de um trapézio – é o segmento de recta em que os extremos são dois vértices opostos.

Ex: o segmento $\overline{\mathbf{B}}\overline{\mathbf{D}}$.

Altura de um trapézio – é o segmento de recta perpendicular às suas bases e compreendidos entre elas.

Ex: o segmento AH.

Mediana de um trapézio—é o segmento de recta em que os extremos são os pontos médios dos lados opostos não paralelos de trapézio.

Ex: O segmento EF.

2.2.3 Classificação dos trapézios (propriamente ditos)

Os trapézios classificam-se em:

- -Trapézios isósceles ou simétricos;
- Trapézios rectângulos;
- Trapézio escaleno;

Trapézios isósceles ou simétricos – são aquele em que os lados opostos não paralelos são iguais. E os ângulos adjacentes à mesma base são iguais.

Fig.8 O lado **AD**é geometricamenteigual ao lado **BC**. Isto é, **AD≅BC**.

O lado **AB** é paralelo ao lado **CD.** Isto é, **AB//CD.**

O ângulo Aé geometricamente igual ao ângulo B e o ângulo D é geometricamente igual à C. isto é, A≅B e D≅C.

Trapézios rectângulos – são aqueles em que um dos lados não paralelos é perpendicular as bases. Ou dois dos ângulos que compõem o trapézio são iguais a noventa graus 90.

Ex: A В

Trapézio escaleno – é aquele em que os lodos opostos não paralelos são diferentes.

Ex: Fig.10 A В

Portanto o segmento \overline{AD} é diferente de \overline{BC} . Isto é: $\overline{AD} \neq \overline{BC}$.

Paralelogramo – é um quadrilátero em que os seus lados opostos são paralelos.

Ex: a) Paralelogramo propriamente dito

Fig.11 A B

Portanto o lado **AD** e paralelo ao lado **BC**. Isto é,**AD**//**AD**; o lado **AB** é paralelo ao lado **CD**. Isto é, **AB**//**CD**.

2.2.4 Linhas notáveis de um paralelogramo

Fig.12**D C**

As linhas notáveis de um paralelogramo são: Base, diagonal e altura.

Base de paralelogramo – é qualquer um dos seus lados na posição horizontal.

Ex: NaFig.12, a base é o segmento \overline{CD} .

Diagonal de um paralelogramo - é o seguimento de recta cujos extremos são dois vértices opostos.

Ex: NaFig.12, a diagonal é o seguimento **BD**.

Altura de um paralelogramo – é o segmento de recta perpendicular à base compreendida entre ela e o lado paralelooposto à base.

Ex: NaFig.12, a altura é o seguimento AH.

2.2.5 Classificação dos paralelogramos

Paralelogramo (propriamente dito) – os lados paralelos são iguais e os ângulos opostos são geometricamente iguais.

Ex: Na figura 13,0 lado AB é geometricamente igual ao CDe o lado AD é geometricamenteigual à BC. Isto é, AB≅CD e CD≅AD;

O ângulo α (alfa) é geometricamente igual à γ (gama) e o ângulo β (beta) é geometricamente igual à δ (delta). Isto é: $\alpha \cong \gamma$ e $\beta \cong \delta$.

Rectângulo – é um quadrilátero com todos os ângulos iguais a 90 graus, e lados iguais dois a dois.

Portanto, o ângulo α é geometricamente igual ao ângulos β , γ e δ isto é:

$$\alpha \cong \beta \cong \gamma \cong \delta$$
.

O lado AB é geometricamente igua à CD e o lado AD é geometricamente igual à BC. Isto é:

AB≅CDeAD≅BC.

Quadrado – é um quadrilátero em que todos os ângulos e lados são geometricamente iguais.

Ex: Fig.14

Portanto, o ângulo α é geometricamente igual à β , γ e δ . Isto é: $\alpha \cong \beta \cong \gamma \cong \delta$.

O lado AB é geometricamente igual aos lados BC, CD e AD. Isto é, $AB \cong BC \cong CD \cong AD$.

Losango ou rombo—é um quadrilátero em que todos os lados são geometricamente iguais e os seus ângulos opostos também são geometricamente iguais.

Portanto, o lado AB é geometricamente igual aos lados BC,CD e AD.Isto é:

 $AB \cong BC \cong CD \cong AD$.

O ângulo α é geometricamente igual aoângulo γ e o ângulo β é geometricamente igual aoângulo δ . Isto é: $\alpha \cong \gamma$ e $\beta \cong \delta$.

ACTIVIDADE DA LIÇÃO N° 2

Caro estudante, depois de termos abordado Classificação de quadriláteros, Você pode efectuar os exercícios abaixo propostos :

1. Indique o valor lógico V, nas alíneas verdadeiras e F nas alíneas falsas:

- a) Trapézio é um quadrilátero com pelo menos quatro lados paralelos.
- b) Trapézio é um quadrilátero com todos os ângulos iguais.
- c) **Trapézio** é um quadrilátero com pelo menos dois lados paralelos.
- d) Trapézio propriamente dito é aquele que só tem um lado oblíquo.
- e) Trapézio propriamente dito é aquele que só tem dois lados iguais.
- f) Trapézio propriamente dito é aquele que só tem dois lados paralelos.
- g) Diagonal de um trapézio é o segmento de recta em que os extremos são dois vértices consecutivos.
- h) Altura de um trapézio é qualquer segmento de recta perpendicular às suas bases.
- i) Mediana de um trapézio é o segmento de recta em que os extremos são os pontos médios dos lados opostos paralelos de trapézio.
- j) Trapézios isósceles ou simétricos são aquele em que os lados opostos não paralelos são congruentes.
- k) Trapézios rectângulos são aqueles em que um dos lados não paralelos é perpendicular as bases.
- 1) Trapézio escaleno é aquele em que os lodos opostos não paralelos são geometricamente iguais.
- m) Paralelogramo é um quadrilátero em que os seus lados opostos são perpendiculares.
- n) As linhas notáveis de um paralelogramo são: Base, diagonal, largura e altura.
- o) Base de paralelogramo é qualquer um dos seus lados na posição horizontal.
- p) Diagonal de um paralelogramo é o seguimento de recta cujos extremos são dois lados opostos.
- q) Altura de um paralelogramo é o segmento de recta perpendicular à base compreendida entre ela e o lado paralelo oposto à base.
- r) Paralelogramo (propriamente dito)os lados paralelos são iguais e os ângulos opostos são geometricamente iguais.
- s) Rectângulo é um quadrilátero com todos os ângulos iguais a 180 graus, e lados iguais dois a dois.
- t) Quadrado é um quadrilátero em que todos os ângulos e lados são congruentes.

CHAVE-DE- CORRECÇÃO N° 2

- a) F b)F c) V d)Fe)Ff)Vg) Fh)Fi) Fj)V l)V m) F n) F o) V p) F q) V
- r) V s) F t) V

Lição n°3: PROPRIEDADES DE DOS QUADRILÁTEROS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Propriedadesde dos quadrilateros que vao sustentar bastante a resolucao de problemas que envolvem os quadrilateros.

OBJECTIVOS DE APRENDIZAGEM

- Identificar propriedades dos quadriláteros;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.3.1Propriedades dos trapézios isósceles

Propriedade-1. Num trapézio isósceles os ângulos da mesma base são congruentes. Isto é, são geometricamente iguais.

Ex: Fig.1

Portanto, $\alpha \cong \beta e \delta \cong \gamma$.

Propriedade-2. Num trapézio isósceles as diagonais são congruentes. Isto é são geometricamente iguais.

Ex: Fig.2

Por tanto, os lados AC e BD são geometricamente iguais. Isto é, AC≅BD.

2.3.2 Propriedades dos paralelogramos

Propriedade-1. Os lados opostos de um paralelogramo são congruentes.

Fig.3

Portanto, AB≅DC e AD≅BC.

Propriedade-2. Cada diagonal do paralelogramo divide-o em dois triângulos congruentes.

Fig.4

Portanto, o triângulo ΔABC é geometricamente igual ao triângulo ΔACD . Isto é,

 $\Delta ABC \cong \Delta ACD$.

Propriedade-3. Os ângulos opostos de um paralelogramo são congruentes.

Fig.5

Ex:A B

Portanto, $\alpha \cong \gamma e \beta \cong \delta$

Propriedade-4. As diagonais de um paralelogramo bissectam-se. Isto é cortam-se ao meio.

Fig.6

Ex: A B

Portanto, AM≅CM e BM≅DM, então as diagonais AC e BD cortam-se ao meio.

Propriedade-5. Num paralelogramo a soma dos ângulos adjacentes é igual à 180°. Isto é a soma de ângulos que estão no mesmo lado, é igual à 180°

Portanto, $\mathbf{o} \alpha \acute{\mathbf{e}}$ adjacente à $\boldsymbol{\delta}$, ângulo $\boldsymbol{\beta} \acute{\mathbf{e}}$ adjacente à $\boldsymbol{\gamma}$ e o ângulo $\boldsymbol{\gamma}$ é adjacente à $\boldsymbol{\alpha}$.

Portanto,
$$\alpha + \delta = 180^{\circ}$$
; $\alpha + \beta = 180$; $\gamma + \delta = 180$; $\beta + \gamma = 180$ e $\alpha + \beta = 180$.

Ex: Consideremos o paralelogramo da figura 7, cujo ângulo δ mede 45°. Determine o valor dos restantes ângulos de paralelogramo.

Portanto, para resolver este exercício, vamos colocar os dados no próprio paralelogramo, para facilitar a percepção do mesmo, a situação é seguinte:

Segundo a propriedade 5 de paralelogramo que diz o seguinte: Num paralelogramo a soma dos ângulos adjacentes é igual à 180°.

Então, no paralelogramo em causa, o ângulo $\boldsymbol{\delta}$ é adjacente à, $\boldsymbol{\gamma}$. Logo:

 $\delta + \gamma = 180^\circ$; podemos substituir o valor $\delta = 45$, na fórmula e teremos:

 $\delta + \gamma = 180 \leftrightarrow 45 + \gamma = 180$; resolvemos a equação, passamos o termo independente 45 do primeiro membro para o segundo membro e muda de sinal para negativo. Assim:

$$\leftrightarrow 45^{\circ} + \gamma = 180^{\circ} \leftrightarrow \gamma = 180^{\circ} - 45^{\circ} \leftrightarrow \gamma = 135^{\circ}$$
.

Para determinar os valores dos ângulos α e β , devemos aplicar a propriedade3, que diz o seguinte: Os ângulos opostos de um paralelogramo são congruentes.

Então, partindo da propriedadetrês, teremos:

O ângulo δ é oposto ao ângulo β , logo: δ é geometricamente igual à β . Isto é:

$$\delta \cong \beta \leftrightarrow \delta = \beta$$
; substituindo o $\delta = 45$, teremos: $45 = \beta \leftrightarrow \beta = 45$;

O ângulo α é oposto ao ângulo γ , logo: α é geometricamente igual à γ . Isto é:

 $\alpha \cong \gamma \leftrightarrow \alpha = \gamma$; substituindo o $\gamma = 135^\circ$, já calculado acima, teremos: $\alpha = 135^\circ$.

Então:

A B $\alpha = 135^{\circ}\beta = 45^{\circ}$ $\delta = 45^{\circ}\gamma = 135^{\circ}$ D C

ACTIVIDADE DA LIÇÃO N° 3

Caro estudante, depois de termos abordado **Propriedadesde**s dos quadrilateros, Você pode efectuar os exercícios propostos:

- 1. Indique o valor lógico V, nas alíneas verdadeiras e F nas alíneas falsas:
 - a) Num trapézio isósceles os ângulos da mesma base são semelhantes.
 - b) Num trapézio isósceles os ângulos da mesma base são congruentes.
 - c) Num trapézio isósceles as diagonais são congruentes.
 - d) Num trapézio isósceles as diagonais são iguais.
 - e) Os ângulos opostos de um paralelogramo são diferentes.
 - f) Os ângulos opostos de um paralelogramo são congruentes.
 - g) As diagonais de um paralelogramo intersectam-se.
 - h) As diagonais de um paralelogramo bissectam-se. Isto é cortam-se ao meio.
 - i) Num paralelogramo a soma dos ângulos adjacentes é igual à 360.

- j) Num paralelogramo a soma dos ângulos adjacentes é igual à,duas vezes noventa graus.
- 2. Considere o paralelogramo abaixo, o ângulo $\alpha = 120^\circ$. Determine os valores dos restantes ângulos β , γ e δ .

C

γβ
A

В

δα

CHAVE-DE- CORRECÇÃO N° 3

D

1.

a) F b)Vc) V d) V e) F f) V g) V h) V i) F j)V

 $2\boldsymbol{.}\alpha = \gamma = 120^\circ; \beta = \delta = 60.$

Lição nº4: TEOREMA SOBRE ÂNGULOS INTERNOS DE UM QUADRILÁTERO E SUA APLICAÇÃO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Teorema sobre ângulos internos de um quadrilátero e sua aplicação.

Objectivos de aprendizagem

- Enunciar o teorema dos ângulos internos de quadriláteros;
- Aplicar o teorema dos ângulos internos de quadriláteros na resolução de problemas.

Tempo de estudo:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.4.1 Teorema sobre ângulos internos de um quadrilátero e sua aplicação

O Teorema sobre ângulos internos de um quadrilátero diz o seguinte: a soma dos angulos internos de um quadrilatero é sempre igual à 360° (trezentos e sessenta graus).

Consideremos o quadrilatero abaixo:

В

Fig.1

Ex: Consideremos o quadrilátero abaixo e determinemos o valor de ângulo **A** sabendoque, ≮B=90,≮ C=150 e ≮D=83°:

Fig.2

Para resolver este problema devemos aplicar o teorema sobre ângulos internos de um quadrilátero. Que é o seguinte: $\langle A+ \langle B+ \langle C+ \langle D=360^\circ$.

Vamos substituir na fórmulapelos respectivos valores ≮B=90°, ≮C=150° e≮ D=83°, assim:

 $\angle A + \angle B + \angle C + \angle D = 360 \leftrightarrow \angle A + 90^{\circ} + 150^{\circ} + 83^{\circ} = 360^{\circ};$ Adicionamos termos independentes, teremos: ↔ < A+323°= 360°; passamos o termo independente de primeiro membro para o segundo e muda de sinal para negativo. Fica: $\leftrightarrow \not\prec A = 360^{\circ}-323^{\circ} \leftrightarrow \not\prec A = 37^{\circ}$.

ACTIVIDADE DA LIÇÃO Nº 4

Caro estudante, depois de termos abordado Teorema sobre ângulos internos de um quadrilátero e sua aplicação, Você pode efectuar os exercícios abaixo propostos :

1. Considere o trapézio abaixo, sabendo que os valores dos seus ângulos são: ≮ A=100, ∠B=145° e∠ D=70°. Determine o valor de ângulo∠ C.

2. Considere o paralelogramoabaixo e determine o valor de x e dos restantes ângulos aplicando o Teorema sobre ângulos internos de um quadrilátero.

A

117

D

CHAVE-DE- CORRECÇÃO N° 4

- 1. ≮C=45°.
- 2. $\angle x = 63^\circ; \angle A = \angle x = 63^\circ; \angle B = \angle D = 117^\circ$

Lição n°5: RESOLUÇÃO DE PROBLEMAS ENVOLVENDO OS QUADRILÁTEROS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Resolução de problemas envolvendo os quadriláteros

OBJECTIVOS DE APRENDIZAGEM

- Resolver problemas envolvendo os quadriláteros;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.4.4 Resolução de problemas envolvendo os quadriláteros

Para resolver problemas que envolvem quadriláteros, devemos aplicar as propriedades dos quadriláteros e o teorema dos ângulos internos de quadriláteros.

Ex1: Dado o paralelogramo [ABCD]: se representarmos os ângulos $A = 2x + 30^\circ e B = x - 5^\circ$, determine a medida de cada um dos ângulos do paralelogramo.

Primeiro devemos fazer o esboço do paralelogramo, e devemos colocar os dados consoante a dimensão dos ângulos, neste caso o ângulo A é maior em relação ao ângulo B, pois no ângulo A temos a soma e no ângulo B temos a diferença. Teremos:

A

В

$$2x + 30^{\circ}x - 6^{\circ}$$

Portanto, agora podemos aplicar as propriedades dos paralelogramos, neste caso será a **Propriedade-3.** Os ângulos opostos de um paralelogramo são congruentes.

Então o ângulo A é geometricamente igual à C, isto é: $\not A \cong \not C$, então, $\not A = \not C = 2x + 30$;

O ângulo **B** é geometricamente igual à **D**, isto é: $\angle B \cong \angle D$, então, $\angle B = \angle D = x - 6$.

Em seguida podemos aplicar o teorema dos ângulos internos. Assim:

 $\angle A + \angle B + \angle C + \angle D = 360^\circ$, substituindo pelos respectivos valores na formula teremos:

 $\angle A + \angle B + \angle C + \angle D = 180 \leftrightarrow (2x + 30) + (x - 6) + (2x + 30) + (x - 6) = 360$; agora podemos calcular a equação, eliminamos os parênteses e adicionamos os termos semelhantes, assim:

 \leftrightarrow 2x + 30 + x - 6 + 2x + 30 + x - 6 = 360°, passamos os termos independentes para o segundo membro. Assim: \leftrightarrow 2x + x + 2x + x = 360° - 30 - 30 + 6 + 6;

$$\leftrightarrow 6x = 312 \leftrightarrow x = \frac{312}{6} \leftrightarrow x = 52.$$

Agora podemos substituir o valor de x nos valores dos ângulos. Assim:

$$\angle A = \angle C = 2x + 30 \leftrightarrow \angle A = \angle C = 2 \times (52) + 30 \leftrightarrow \angle A = \angle C = 104 + 30 = 134^\circ$$

$$\angle B = \angle D = x - 6 \leftrightarrow \angle B = \angle D = 52 - 6 \leftrightarrow \angle B = \angle D = 46^\circ$$

Ex2: Observa a fgura abaixo:

γ

a) Se [ABCD] for um trapezio isosceles, $\theta = 85^\circ$ e $\gamma = 25^\circ$, quanto mede cada um dos angulos do trapezio?

Primeiro, os angulos θ e β são suplimentares isto é θ + β = 180°. Entao, podemos calcular o valor de angulo β . Assim:

$$\theta + \beta = 180^{\circ} \leftrightarrow 85^{\circ} + \beta = 180^{\circ} \leftrightarrow \beta = 180^{\circ} - 85 = 95^{\circ};$$

Agora podemos aplicar o teorema dos angulos internos abordados no modulo 1, que diz:

A soma dos angulos internos de um triangulo é igual à 180.

Entao, considerando o triangulo $\triangle ADB$, teremos: $\angle A + \beta + \gamma = 180^\circ$. Substituindo por, $\beta = 95^\circ$ e $\gamma = 25^\circ$ teremos: $\angle A + \beta + \gamma = 180 \leftrightarrow \angle A + 95^\circ + 25^\circ = 180^\circ \leftrightarrow \angle A = 180^\circ - 95^\circ - 25^\circ \leftrightarrow \angle A = 60^\circ$.

Como é um trapezio isosceles, entao os angulos adjacentes à mesma base são congruentes.

Então, o angulo A é geometricamente igual à B. portanto $\not A \cong \not B$. Entao $\not A = \not B = 60^\circ$.

O angulo $B = \gamma + \delta$; substituindo o $\gamma = 25^{\circ} e < B = 60^{\circ}$. Teremos:

$$\angle B = \gamma + \delta \leftrightarrow 60^\circ = 25^\circ + \delta$$
; insolamos o δ ; teremos: $\delta = 60^\circ - 25^\circ \leftrightarrow \delta = 35^\circ$.

O angulo C é geometricamente igual à D. portanto $\not \subset C \cong \not \subset D$. Entao $\not \subset C = \not \subset D$.

Podemos aplicar o teorema dos angulos internos de um quadrilatero. Assim:

 $\not < A + \not < B + \not < C + \not < D = 360^\circ \iff \text{Substituindo}, \text{ por } A = B = 60^\circ \text{ e } C = D, \text{ na formula teremos:}$

 $A + B + C + D = 360^\circ \leftrightarrow 60^\circ + 60^\circ + 4^\circ + 4^$

$$\leftrightarrow 120^{\circ} + 2C = 360^{\circ} \leftrightarrow 2C = 360^{\circ} - 120^{\circ} \qquad \leftrightarrow 2C = 240^{\circ} \leftrightarrow C = \frac{240}{2} \leftrightarrow C = 120^{\circ}; Entao,$$

$$\not < C = \not < D = 120^{\circ}.$$

Agora podemos calcular do angulos $\not \in D = 120^\circ$, $\beta = 95^\circ$ o angulo α , porque $\not \in D = \beta + \alpha$. Assim:

$$\not < D = \beta + \alpha \leftrightarrow 120^\circ = 95^\circ + \alpha \leftrightarrow \alpha = 120^\circ - 95^\circ \leftrightarrow \alpha = 25^\circ$$
.

b) Se [ABCD] for um trapézioescaleno, $\delta = 55^\circ$, $\angle D = 115^\circ$ e ADBD, quanto mede cada um dos angulos de trapezio?

Para este caso como $AD\underline{B}D$ entao o angulo β é igual à 90 graus, entao podemos calcular ovalor de angulo α , pois $\angle D=115$ °. Assim: $\angle D = \beta + \alpha$. Teremos:

$$\angle D = \beta + \alpha \leftrightarrow 115^\circ = 90^\circ + \alpha \leftrightarrow \alpha = 115^\circ - 90^\circ = 25^\circ$$
.

Aplicando o teorema dos angulos internos de triangulo ΔBCD , teremos:

 $\alpha + \delta + \not< C = 180^\circ$, como o valor de $\delta = 55^\circ$ e o de $\alpha = 25^\circ$, substituindo teremos:

$$\alpha + \delta + \not< C = 180 \leftrightarrow 25^{\circ} + 55^{\circ} + \not< C = 180^{\circ} \leftrightarrow \not< C = 180^{\circ} - 25^{\circ} - 55^{\circ} \leftrightarrow \not< C = 100^{\circ}$$
.

Passo seguinte, podemos determinar o angulo B, para tal, vamos prolongar o lodo \overline{BC} , do trapezio escaleno e vamos determinar o angulo $\varphi(fi)$, pois o angulo φ com $\angle C$ são suplementares, isto é, a sua soma é igual à 180. Assim:

$$\gamma$$
 A B

Portanto, $\varphi + \not< C = 180$ °, entao, como $\not< C = 100$ °, entao podemos substituir e teremos:

$$\varphi + \angle C = 180 \leftrightarrow \varphi + 100 = 180 \leftrightarrow \varphi = 180 - 100 \leftrightarrow \varphi = 80.$$

Portanto o angulo ϕ é geometricamente igual ao angulo B, porque são angulos corespondentes.Logo $\phi = \not\prec B = 80$.

Agora podemos aplicar o teorema dos angulos internos de um quadrilatero, para determinar o angulo **A**. Assim:

 $\angle A + \angle B + \angle C + \angle D = 360^\circ$; Substituindo pelos respectivos valores, $\angle B = 80^\circ$, $\angle C = 100^\circ \angle D = 115^\circ$. Teremos:

ACTIVIDADE N° 5

Caro estudante, depois de termos abordado a Resolucao problemas envolvendo os quadriláteros; Você pode efectuar os exercícios propostos abaixa:

- 1. Dado um paralelogramo [ABCD]: considerando os ângulos, $\angle A = 6x + 50^\circ e \angle B = x 10^\circ$, determine a medida de cada um dos ângulos do paralelogramo.
- 2. Num trapézio rectângulo um dos ângulos mede 25°. Quanto mede cada um dos outros ângulos.
- 3. Umtrapézio isósceles tem os seguintes ângulos: $2x + 15^\circ$ e $3x 25^\circ$. Determine a medida de cada um dos ângulos do trapézio.
- 4. Considere o trapézio[ABCD] abaixo, e responde as questões seguintes:

D

ed

- a) Se [ABCD]For um trapézio isósceles, $\angle c=80^\circ e \angle dd=20^\circ$, qual é a amplitude de cada um dos ângulos de trapézio?
- b) Se [ABCD]For um trapézio escaleno, $\angle Ee=60$, o ângulo $\angle D=110$ e AC\(\textstyle CB\). Determine a amplitude de cada um dos ângulos de trapézio.

CHAVE-DE- CORRECÇÃO N°5

- 1. x = 2; $\angle A = \angle C = 170^{\circ} e \angle B = \angle D = 10^{\circ}$.
- 2. $\angle A = \angle B = 90^{\circ} e \angle C = 155^{\circ}$.
- 3. $\angle x = 38^{\circ}$; 91° e 89°.
- 4. a) $a = 20^\circ$, $b = 100^\circ$; $e = 40^\circ$; $A = \angle B = 60^\circ$; $\angle D = \angle C = 120^\circ$ b) $< a = 10^\circ; < b = 90^\circ; < c = 90^\circ; < d = 10^\circ; < e = 60^\circ < A = 70^\circ; < B = 80^\circ < C = 10^\circ; < C$ 100° ; $< D = 110^\circ$.

ACTIVIDADES UNIDADE N°-2.

Caro estudante, depois da revisão de toda unidade número 6, você pode prestar a seguinte actividade:

- 1. Indica o valor lógico V na opção correcta e F na poção errada:
- a) 5 lados iguais.
- b) 7 lados diferentes.
- c) $\frac{8}{2}$ Lados.

- d) 4 Lados longos.
- 2. Qual é o quadrilátero que tem os lados paralelos dois a dois, não tem ângulos rectos e cujas diagonais bissectam-se?
- 3. Qual é o quadilatero que tem um par de lados paralelos e cujas diagonais não se cortam ao meio.
- 4. Indica o valor lógico V na opção correcta e F na poção errada:
 - a) O trapézio é um rectângulo.
 - b) O quadrado é um paralelogramo.
 - c) Um trapezio com dois angulos rectos é rectangulo.
 - d) Trapezio escaleno é aquele que tem todos lados iguais.
 - e) Trapezio isosceles é aquele que tem todos os lados iguais.
 - f) Trapézio propriamente dito é aquele que só tem dois lados paralelos.
 - g) Num paralelogramo a soma dos ângulos adjacentes é igual à 360.
 - h) Quadrado é um quadrilátero com todos os lados iguais.
- 5. Num paralelogramo [ABCD]O ângulo A mede 20° e é menor em relação ao ângulo B. determine a medida de cada um dos ângulos de paralelogramo.
- 6. Num trapezio isósceles [ABCD], dois dos seus ângulos medem, $2x + 15^{\circ}$ e $3x 25^{\circ}$. Determine a medida de cada um dos angulos de trapézio.
- 7. Observa a figura abaixo, sabendo que [ABCD] é um trapezio. Responde as alineas seguintes:

- a) Se [ABCD] For um trapézio isósceles, ≮ Cc=87 e ≮ Dd=23, qual é a amplitude de cada um dos ângulos de trapézio?
- b) Se [ABCD] For um trapézio escaleno, ≮ Ee=55,≮o ânguloD=120 e AC CB.

 Determine a amplitude de cada um dos ângulos de trapézio.

CHAVE - DE - CORRECÇÃO DA UNIDADE 6.

- 1. a)Fb)Fc)Vd)F
- 2. Paralelogramo.
- 3. Trapézio.
- 4. a)Fb)V c)Vd)F e) F f)V g)F h)V
- 5. $A = C = 20^\circ$; $B = D = 160^\circ$.
- 6. x = 38; A = D = 89; B = C = 91°
- 7. a) $a = d = 23^\circ; b = 93^\circ \ e = 41^\circ \ C = D = 116^\circ$

$$A = B = 64^{\circ}$$

b)
$$a = d = 5^{\circ}; b = 90^{\circ} \ e = 55^{\circ} \ A = 60^{\circ}; \ B = 64^{\circ}$$

$$C = 95^{\circ}; D = 120^{\circ}$$

2

Unidade nº3:

SEMELHANÇA DE TRIANGULOS

INTRODUÇÃO DA UNIDADE TEMÁTICA N°3.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar Semelhança de triângulos. Esta unidade está estruturada de seguinte modo: Contem 5 (cinco) lições.

OBJECTIVOS DE APRENDIZAGEM

- Definir a redução e ampliação de figuras;
- Verificar a semelhança de triângulos;
- -Aplicar os critérios de semelhança de triângulos;
- Aplicar o teorema de thales na resolução de triângulos;
- Demonstrar o teoremade Pitágoras pela semelhança de triângulos
- Resolver problemaspráticos da vida aplicando a semelhança de

triângulos e osteoremas de Thales e de Pitágoras

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidaden°7 sobreSemelhança de triângulos, Você:

- Define a redução e ampliação de figuras;
- Verifica a semelhança de triângulos;
- -Aplica os critérios de semelhança de triângulos;
- Aplica o teorema de thales na resolução de triângulos;
- Demonstra o teoremade Pitágoras pela semelhança de triângulos
- Resolve problemaspráticos da vida aplicando a semelhança de triângulos e osteoremas de Thales e de Pitágoras

Duração da Unidade:

Caro estudante, para o estudo desta unidade temática você vai precisar de 18horas.

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de: Uma sebenta, esferográfica, lápis, borracha e régua, transferidor, compassa, etc.

Lição nº1: HOMOTETIAS, AMPLIAÇÃO E REDUÇÃO DE FIGURAS PLANAS SIMPLES

Introdução a lição:

Caro estudante, nesta lição vamos abordar Homotetias, Ampliação e redução de figuras planas simples.

OBJECTIVOS DE APRENDIZAGEM

-Definir Homotetia, Ampliação e redução de figuras planas simples;

- Determinar a razão da homotetia.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.1.1 Homotetia

Caro estudante, podemos relacionar figuras com mesmas características mas com dimensões diferentes.

Homotetia –é a ampliação ou redução estabelecida entre a projecção de um foco de luz.

Se considerarmos o ponto O como sendo uma lanterna que está a projectar os seus raios no quadrilatero**objecto**[ABCD], aprojecçãodos pontos A,B,C e D, pode originar um novo quadrilátero**imagem**[A'B'C'D'], por sua vez este será maior em relação ao [ABCD].

Assimestamos perante uma ampliação de quadrilátero [ABCD] Para um outro[A'B'C'D']. ,E o ponto O chama-se **centro da homotetia.** Deste modo, podemos definir a razão da homotetia ou razão de semelhança.

3.1.2 Razão da homotetia – é o valor que resulta da divisão dos lados correspondentes do quadrilátero imagem $[A^{'}B^{'}C^{'}D^{'}]$, com o quadrilátero objecto[ABCD]. Isto é:

Dividimos o segmento, |A'D'| por |AD|, assim: $\frac{|A'D'|}{|AD|}$;

Dividimos o segmento, |A'B'| por |AB|, assim: $\frac{|A'B'|}{|AB|}$;

Dividimos o segmento, |B'C'| por |BC|, assim: $\frac{|B'C'|}{|BC|}$;

Dividimos o segmento, |C'D'| por |CD|, assim: $\frac{|C'D'|}{|CD|}$;

Portanto, a divisão dos seguimentos acima, resulta um valor **r**, que se **chama razão da homotetia ou razão de semelhança**. Isto é:

 $r = \frac{|A'D'|}{|AD|}$; $r = \frac{|A'B'|}{|AB|}$; $r = \frac{|B'C'|}{|BC|}$ e $r = \frac{|C'D'|}{|CD|}$, então, a razão \mathbf{r} pode ser definida de seguinte forma: $r = \frac{|A'D'|}{|AD|} = \frac{|A'B'|}{|AB|} = \frac{|B'C'|}{|BC|} = \frac{|C'D'|}{|CD|}$; como, os numeradores são maiores em relação aos denominadores, isto é: |A'D'| > |AD|; |A'B'| > |AB|; |B'C'| > |BC| e |C'D'| > |CD| então a razão será maior que 1. Isto é: r > 1. Logo trata-se de uma ampliação.

Na figura 1 o objecto [ABCD] está no mesmo lado com a imagem, [A'B'C'D'] em relação ao ponto O, assim sendo, trata-se de uma **homotetia positiva.**

Ex: Consideremos a figura 1, e os seguintes dados dos quadriláteros:

Para o quadrilátero[ABCD], |AB| = 4cm; |AD| = 3cm; |BC| = 6cm; |CD| = 1,5cm; Para o quadrilátero[A'B'C'D'], |A'B'| = 8cm; |A'D'| = 6cm; |B'C'| = 12cm; |C'D'| = 3cm. Determine a razão da homotetia.

Podemos substituir os valores nas fórmulas, assim:

$$r = \frac{|A'B'|}{|AB|} = \frac{8cnt}{4cnt} = 2; r = \frac{|A'D'|}{|AD|} = \frac{6cm}{3cm} = 2; r = \frac{|B'C'|}{|BC|} = \frac{12cm}{6cm} \neq 2 \text{ e} r = \frac{|C'D'|}{|CD|} = \frac{3cm}{1,5cm} = 2.$$

Veja que o valor da razão r é igual à 2. Isto é: r=2.e 2>1, então trata-se de uma ampliação.

Consideremos a situação em que a imagem forma-se à esquerda do ponto **O**. Isto é:

Fig.2 B

Portanto, neste caso como pode observar, a imagem do quadrilátero, [A'B'C'D'] é menor em relação ao objecto quadrilátero [ABCD]. Deste modo, trata-se de uma redução.

A imagem $[A^{'}B^{'}C^{'}D^{'}]$ formou-se à esquerda do objecto [ABCD]em relação ao ponto O. Então trata-se de uma **homotetia negativa**.

Podemos determinar também a razão da homotetia.

A razão da homotetia na redução será dada pela divisão dos lados correspondentes do quadrilátero imagem, [A'B'C'D'], com o quadrilátero objecto [ABCD]. Isto é:

 $r = \frac{|A'D'|}{|AD|} = \frac{|A'B'|}{|AB|} = \frac{|B'C'|}{|BC|} = \frac{|C'D'|}{|CD|}$; portanto, como o numerador é menor em relação ao denominador, a razão será menor que 1. Isto é: |A'D'| < |AD|; |A'B'| < |AB|; |B'C'| < |BC| e |C'D'| < |CD|, portanto, r < 1. Então, trata-se de redução.

Ex: Consideremos a figura 2, e os seguintes dados dos quadriláteros:

Para o quadrilátero [ABCD], |AB| = 2cm; |AD| = 6cm; |BC| = 4cm; |CD| = 3cm;

Para o quadrilátero [A'B'C'D'], |A'B'| = 1cm; |A'D'| = 3cm; |B'C'| = 2cm; |C'D'| = 1.5cm. Determine a razão da homotetia.

Podemos substituir os valores nas fórmulas, assim:

$$r = \frac{|A'B'|}{|AB|} = \frac{1 cnt}{2 cnt} = \frac{1}{2}; r = \frac{|A'D'|}{|AD|} = \frac{3 cm}{6 cm} = \frac{1}{2}; r = \frac{|B'C'|}{|BC|} = \frac{2 cm}{4 cm} = \frac{1}{2} e r = \frac{|C'D'|}{|CD|} = \frac{1,5 cm}{3 cm} = \frac{1}{2}.$$

Veja que o valor da razão r é igual à $\frac{1}{2}$ = 0.5. Isto é: r = 0,5. e 0,5 < 1, então trata-se de uma redução.

3.1.3 Segmentos proporcionais – são aqueles em que os seus comprimentos formam uma proporção. Isto é, a divisão entre os lados correspondentes resulta um valor constante, que é razão de semelhança.

Ex1: Consideremos os quadriláteros [ABCD] e [A'B'C'D']:

Verifique se os lados correspondentes dos dois quadriláteros são proporcionais.

Para tal, devemos determinar a razão r entre os lados correspondentes. Assim:

O lado
$$|AB|$$
 é correspondente ao lado $|A'B'|$. Então, $r = \frac{|A'B'|}{|AB|} = \frac{2.7 \text{ cm/}}{1.8 \text{ c/n}} = 1,5;$

O lado
$$|AD|$$
 é correspondente ao lado $|A'D'|$. Então, $r = \frac{|A'D'|}{|AD|} = \frac{3,75 \, cm}{2,5 \, cm} = 1,5;$

O lado
$$|BC|$$
 é correspondente ao lado $|B'C'|$. Então, $r = \frac{|B'C'|}{|BC|} = \frac{3 \, cm}{2 \, cm} = 1,5;$

O lado |CD| é correspondente ao lado |C'D'|. Então, $r = \frac{|C'D'|}{|CD|} = \frac{6c\eta l}{4c\eta l} = 1,5;$

Veja que a razão r é a mesma e é igual à 1,5 para todos os casos. Então os dois quadriláteros acima têm os seus lados correspondentes proporcionais.

Ex2: Os lados correspondentes dos triângulos abaixo são proporcionais.

Determine as medidas dos lados *a e b*.

Como já está dito que os lados correspondentes dos triângulos são proporcionais, isto significa que a razão é constante, então podemos determinar essa razão, através dos valores dos lados correspondentes facultados nos triângulos. Assim:

 $r = \frac{3.6cm}{3cm} = 1, 2$; em seguida, colocamos os dados para calcular os valores **a** e **b**. Assim:

 $r = \frac{a}{3,5cm}$; passamos o 3,5cm para o primeiro membro e passa a multiplicar com o r. Assim:

$$r = \frac{a}{3.5cm} \leftrightarrow r \times 3,5cm = acm$$
; substituímos $r = 1,2$, fica: $\leftrightarrow 1,2 \times 3,5cm = a$
 $\leftrightarrow 4,2cm = a \leftrightarrow a = 4,2cm$.

Para determinar o valor de b, teremos também o seguinte: $r = \frac{b}{3,2cm}$; passamos o 3,2cm, para o segundo membro e passa a multiplicar com o r. Assim: $r = \frac{b}{3,2cm} \leftrightarrow r \times 3.2cm = b$; substituindo o r = 1,2, teremos: $\leftrightarrow 1,2 \times 3.2cm = b \leftrightarrow 3,84cm = b \leftrightarrow b = 3,84cm$.

ACTIVIDADE N° 1

Caro estudante, depois de termos abordado a Homotetia, Ampliação e redução de figuras planas simples; Você pode efectuar os exercícios propostos :

- a) Determine a razão da homotetia.
- b) A homotetia é positiva ou negativa?
- c) A homotetia é uma redução ou ampliação?
- 2. Considere os quadriláteros seguintes:

 $D^{'}7,5mA^{'}$

Verifique se os lados correspondentes dos quadrilateros são proporcionais. E justifica.

3. Os lados correspondentes dos quadrilateros seguintes são proporcionais:

Determine a medida dos lados |A'B'|, |B'C'| e |A'D'|.

CHAVE-DE- CORRECÇÃO N° 1

1.a)r = 0,4;b) Negativa; c) Redução.

 $2.S\~{a}o\ proporcionais, r=1,25.$

3.|A'B'| = 2,4cm, |B'C'| = 2,6cm e |A'D'| = 2,8cm.

Lição nº2: NOÇÃO DE SEMELHANÇADE TRIÂNGULOS E CRITÉRIOS DE SEMELHANÇADE TRIÂNGULOS: L.L.L; AA; .L.A.L;

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Noção de semelhançade triângulos;

OBJECTIVOS DE APRENDIZAGEM

-Verificar a semelhança de triângulos;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.2.1 Semelhança de triângulos

Dois triângulos são semelhantes quando os ângulos correspondentes são congruentes e os lados correspondentes são proporcionais sendo a constante de proporcionalidade a razão de semelhança.

Ex1: Consideremos os seguintes triângulos :

_

Se: o ângulo A é geometricamente igual à E, isto é: $\not A \cong \not A$;

o ângulo B é geometricamente igual à F, isto é: $\not \in B \cong \not \in E$;

o ângulo C é geometricamente igual à D, isto é: $\not \subset C \cong \not \subset F$;

Se:o lado|AB|oé proporcional ao lado|DE|, isto é $\frac{|DE|}{|AB|} = r$:;

o lado|AC|o é proporcional ao lado|DF|, isto é: $\frac{|DF|}{|AC|} = r$;

o lado|BC|o é proporcional ao lado|EF|, isto é: $\frac{|EF|}{|BC|} = r$;

Portanto, $r = \frac{|DE|}{|AB|} = \frac{|DF|}{|AC|} = \frac{|EF|}{|BC|}$, então, podemos afirmar que:

O triangulo, $\Delta[ABC]$ é semelhante ao triangulo $\Delta[DEF]$. Isto é:

 $\Delta[ABC] \sim \Delta[DEF]$, o símbolo ~ significa semelhante.

Ex2: Considere os triângulos abaixo, com os respectivos dados e verifica se são semelhantes ou não:

Portanto, $\not A \cong \not D = 60$; $\not A \cong \not E = 90$; $\not C \cong \not A = 30$

$$r = \frac{|DE|}{|AB|} = \frac{12 \text{cyh}}{6 \text{cyh}} = 2 \; ; \; r = \frac{|DF|}{|AC|} = \frac{20 \text{cyh}}{10 \text{cyh}} = 2 \; ; \; r = \frac{|EF|}{|BC|} = \frac{16 \text{cyh}}{8 \text{cyh}} = 2$$

Portanto, $r = \frac{12cm}{6cm} = \frac{20cm}{10cm} = \frac{16cm}{8cm} = 2$, a razão é a mesma então, podemos afirmar que o

Triângulo, $\Delta[ABC]$ é semelhante ao triângulo, $\Delta[DEF]$. Isto é: $\Delta[ABC] \sim \Delta[DEF]$.

3.2.2 Critérios de semelhança de triângulos

Veja que no Ex2, temos todos os elementos dos triângulos os valores dos ângulos e os valores dos lados. Não é necessariamente que tenhamos todos os elementos dos triângulos para demonstrar a semelhança de triângulos. Por isso vamos abordar os critérios de semelhança de triângulos.

2.2.3 Critério 1: AA (ângulo, ângulo)

Se dois triângulos têm dois ângulos congruentes então, os triângulos são semelhantes.

Ex1: consideremos os triângulos abaixo:

Portanto, se o ângulo A é geometricamente igual à D, Isto é: ≮≅≮ D;

E o ângulo B é geometricamente igual à E, Isto é: $\angle B \cong \angle E$; Então, podemos afirmar Pelo critério AA, que o triângulo $\Delta[ABC]$ é semelhante ao triângulo $\Delta[DEF]$. Istoé: $\Delta[ABC] \sim \Delta[DEF]$.

Ex2: Verifique a semelhança dos triângulos abaixo:

Portanto, como pode se ver os triângulos tem ângulos iguais dois à dois. Isto é:

 $\not < B \cong \not < E = 120^\circ; \not < C \cong \not < F = 30^\circ,$ então, pelo critério AA, podemos afirmar que o triangulo

 $\Delta[ABC]$ é semelhante ao triângulo $\Delta[DEF]$. Isto é: $\Delta[ABC] \sim \Delta[DEF]$.

2.2.4 Critério L.A.L(lado, ângulo, lado)

Se dois triângulos têm dois lados correspondentes proporcionais e os ângulos formados por esses lados também são congruentes, então os triângulos são semelhantes.

Ex1: consideremos os triângulos abaixo:

Portanto, se o lado |AC| for proporcional ao lado |DF| e o lado |BC| for proporcional ao lado |EF|; isto $\acute{e}: \frac{|DF|}{|AC|} = \frac{|EF|}{|BC|} = r;$

O ângulo C for geometricamente igual ao ângulo F então, pelo critério L.A.L, podemos afirmar que o triângulo $\Delta[ABC]$ é semelhante ao triângulo $\Delta[DEF]$. Isto é: $\Delta[ABC] \sim \Delta[DEF]$.

Ex2: Consideremos os triângulos seguintes e verifique a semelhança dos mesmos:

Portanto, veja que: |AB| é proporcional à |ED|, Isto é: $\frac{|ED|}{|AB|} = \frac{9c\eta h}{6c\eta h} = 1,5;$ E |BC|é proporcional à |EF|, Isto é: $\frac{|EF|}{|BC|} = \frac{15c\eta h}{10c\eta h} = 1,5;$ neste caso: $\frac{|ED|}{|AB|} = \frac{|EF|}{|BC|} = r \leftrightarrow \frac{9c\eta h}{6c\eta h} = \frac{15c\eta h}{10c\eta h} = r = 1,5.$

O anglo B é geometricamente igual ao ângulo E, isto é: $\angle B \cong \angle E = 90$; então pelo critério L.A.L, podemos afirmar que o triangulo $\Delta[ABC]$ é semelhante ao triangulo $\Delta[DEF]$. isto é: $\Delta[ABC] \sim \Delta[DEF]$.

3.2.5 Critério 3 L.L.L (lado, lado, lado)

Se dois triângulos têm os três lados correspondentes proporcionais, então os triângulos são semelhantes.

Ex1: Consideremos os triângulos abaixo:

F

Se: o lado |AB| é proporcional ao lado |DE|, isto é: $\frac{|DE|}{|AB|} = r$;

O lado |AC|é proporcional ao lado |DF|, isto é: $\frac{|DF|}{|AC|} = r$;

O lado |BC|é proporcional ao lado |EF|, isto é: $\frac{|EF|}{|BC|} = r$;

Portanto, $r = \frac{|DE|}{|AB|} = \frac{|DF|}{|AC|} = \frac{|EF|}{|BC|}$. Então podemos afirmar que o triangulo $\Delta[ABC]$ é semelhante ao triangulo $\Delta[DEF]$. Isto é: $\Delta[ABC] \sim \Delta[DEF]$.

Ex2: Verifique se os triângulos abaixo são ou não semelhantes:

Primeiro devemos verificar a proporcionalidade dos lados dos triângulos.

Assim:

$$\frac{|DE|}{|AB|} = r \leftrightarrow r = \frac{7,2cm}{4cm} = 1,8$$
;

$$\frac{|DF|}{|AC|} = r \leftrightarrow r = \frac{5.4cm}{3cm} = 1.8;$$

$$\frac{|EF|}{|BC|}=r \leftrightarrow r=\frac{9cm}{5cm}=$$
 1,8 . Portanto, a razão é amesma e é igual 1,8 isto é, $r=$ 1,8.

Então, os lados correspondentes dos dois triângulos são proporcionais, logo pelo critério L.L.L, podemos afirmar que, o triângulo $\Delta[ABC]$ é semelhante ao triangulo $\Delta[DEF]$. Isto é: $\Delta[ABC] \sim \Delta[DEF]$.

ACTIVIDADE N° 2

Caro estudante, depois de termos abordado a Noção de semelhançade triângulos e Critérios de semelhança de triângulos: l.l.l; a.a; l.a.l; Você pode efectuar os exercícios propostos abaixa:

1. Justifica a semelhança dos triângulos abaixo em cada alínea:

a)

60° В

70°60° E

D

b)

J

c)

4cmQ P

CHAVE - DE - CORRECÇÃO N° 2

- 1. a) $B \cong E = 60^\circ$; $C \cong F = 70^\circ$; $\Delta[ABC] \sim \Delta[DEF]$; (AA).
 - b)r = 2.5; $\Delta[GHI] \sim \Delta[JLM]$; (LAL).
 - c) r = 1.8; $\Delta[MNO] \sim \Delta[PQR]$; (LLL)

Lição n°3: TEOREMA DE THALES E SUA APLICAÇÃO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Teorema de Thales e sua aplicação.

OBJECTIVOS DE APRENDIZAGEM

-Aplicar o teorema de thales na resolução de problemas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.3.1 Teorema de Thales

O teorema de thales diz o seguinte:

Quando duas rectas transversais cortam um feixe de rectas paralelas, as medidas dos segmentos delimitados pelas transversais são proporcionais.

Portanto, consideremos três rectas paralelas a, b e c:

Fig.1

a ———

b _____

c _____

Em seguida vamos cortar as rectas \mathbf{a} , \mathbf{b} e \mathbf{c} por duas rectas \mathbf{r} e \mathbf{s} transversais no ponto \mathbf{O} , assim:

Fig.2

a

Em seguida, para facilitar a interpretação, vamos colocar os pontos A,B,C,D,E e F nas intersecções das rectas. Assim:

Observando bem a figura 3, podemos extrair dela três triângulos, que são: $\angle \Delta[OAB]$; $\Delta[ODC]$ e $\Delta[OEF]$. Nos mesmos triângulos, observemos os seus ângulos. Veja a figura 4.

Portanto, os ângulos A,D e E são geometricamente iguais. Porque são correspondentes, Isto é: $\not A \cong \not A \cong \not B$.

Os ângulos B,C e F são geometricamente iguais. Porque são correspondentes, Isto é:

Os Três triângulos $\Delta[OAB]$; $\Delta[ODC]$ e $\Delta[OEF]$ têm um ângulo comum que é o ângulo **O.** Então, podemos afirmar pelo critério (A.A)que **triângulos,** $\Delta[OAB]$; $\Delta[ODC]$ $\Delta[OEF]$, semelhantes. Isto é: e são $[OAB] \sim \Delta [ODC] \sim \Delta [OEF]$. Então, os seus lados correspondentes são proporcionais. Isto é:

$$\frac{|OE|}{|OA|} = \frac{|OF|}{|OB|}; \frac{|OA|}{|OB|} = \frac{|AD|}{|BC|}; \frac{|DE|}{|CF|} = \frac{|EF|}{|AB|}; \frac{|OF|}{|OB|} = \frac{|EF|}{|AB|}; \frac{|CD|}{|AB|} = \frac{|OD|}{|OA|}; \frac{|CD|}{|AB|} = \frac{|OC|}{|OB|}; \dots$$
Podemos

relacionar infinitos segmentos consoante o número de rectas paralelas que formos a traçar, e teríamos infinidade de segmentos. Usando as relações acima podemos determinar as medidas dos segmentos.

Ex: 1. Considere a figura abaixo, sabendo que |OA| = 3cm, |OB| = 3.5cm, |DE| = 4cm,

|OE| = 12cm e |DC| = 6cm.

Fig.5

Determine: a) |AD|; b) |OF|; c) |OC|; d) |BC|; e) |CF|; f)|EF|; g) |AB|.

a) |AD| = ?

Primeiro, o segmento |OE| é igual a soma dos segmentos |OA|, |AD| e |DE|, isto é:

|OE| = |OA| + |AD| + |DE|, Portanto, substituindo com os respectivos valores, teremos: $|OE| = |OA| + |AD| + |DE| \leftrightarrow 12cm = 3cm + |AD| + 4cm$, isolámos o segmento |AD|, assim: $\leftrightarrow 12cm - 3cm - 4cm = |AD|$, calculando a soma algébrica dos termos independentes no primeiro membro, teremos:

$$\leftrightarrow 5cm = |AD| \leftrightarrow |AD| = 5cm.$$

b)
$$|OF| = ?$$

Para calcular o valor de |OF|, primeiro podemos relacionar os lados proporcionais dos triângulos $\Delta[OEF]$ $e\Delta[OAB]$, então, teremos: $\frac{|OE|}{|OA|} = \frac{|OF|}{|OB|}$, substituindo com os respectivos valores, teremos: $\frac{|OE|}{|OA|} = \frac{|OF|}{|OB|} \leftrightarrow \frac{12 cm}{3 cm} = \frac{|OF|}{3.5 cm}$, portanto, o produto dos meios é igual ao produto dos extremos. Assim:

$$\leftrightarrow \frac{12cm}{3cm} = \frac{|0F|}{3.5cm} \leftrightarrow 12cm \times 3,5cm = 3cm \times |0F| \leftrightarrow 42cm^2 = 3cm \times |0F|,$$
 passamos o coeficiente $3cm$, para o primeiro membro e passa a dividir porque estava a multiplicar no segundo membro. Assim: $\leftrightarrow \frac{42cm^2}{3cm} = |0F|$, simplificamos os centímetros, teremos: $\leftrightarrow \frac{42\cos^2}{3cm} = |0F| \leftrightarrow |0F| = 14cm.$

c) |OC| = ?

Podemos relacionar os lados proporcionais dos triângulos $\Delta[OCD] e\Delta[OAB]$. Assim: $\frac{|OD|}{|OA|} = \frac{|OC|}{|OB|}$, substituímos com os respectivos valores teremos:

 $\frac{|OD|}{|OA|} = \frac{|OC|}{|OB|} \leftrightarrow \frac{|OD|}{3cm} = \frac{|OC|}{3.5CM}$, Repara que não temos o valor de |OD|, podemos obtêlo adicionando os valores dos segmentos |OA| e |AD|, isto é: |OD| = |OA| +|AD|, substituindo com os respectivos valores teremos:

 $|OD| = |OA| + |AD| \leftrightarrow |OD| = 3cm + 5cm \leftrightarrow |OD| = 8cm$; agora podemos substituir na expressão $\frac{|OD|}{3cm} = \frac{|OC|}{3.5CM}$, teremos: $\frac{8cm}{3cm} = \frac{|OC|}{3.5cm}$, o produto dos meios é igual ao produto dos extremos. Assim:

$$\frac{8cm}{3cm} = \frac{|OC|}{3,5cm} \leftrightarrow 8cm \times 3,5cm = 3cm \times |OC| \leftrightarrow 28cm^2 = 3cm \times |OC|$$

$$\leftrightarrow \frac{28cm^2}{3cm} = |OC| \leftrightarrow 9,33cm = |OC| \leftrightarrow |OC| = 9,33cm.$$

d) |BC| = ?

O segmento |BC|, está envolvido no segment |OC|, isto é: |OC| = |OB| + |BC|, Partindo desta expressão podemos isolar o |BC|, passando o |OB| para o primeiro membro e muda de sinal para negativo. Assim:

 $|OC| = |OB| + |BC| \leftrightarrow |OC| - |OB| = |BC|$, substituindo pelos respectivos valores teremos: $\leftrightarrow 9.33cm - 3.5cm = |BC| \leftrightarrow |BC| = 5.83cm$.

e) |CF| = ?

Para determinar o valor de |CF|, repara que está envolvido no segmento|OF|, por sua vês $|OF| = |OC| + |CF| \leftrightarrow |OF| = 9,33cm + |CF|$. Podemos relacionar os triangulos $\Delta[OEF]e\Delta[OAB]$, ssim: $\frac{|OE|}{|OA|} = \frac{|OF|}{|OB|}$, substituindo com os respectivos valores teremos:

 $\frac{|OE|}{|OA|} = \frac{|OF|}{|OB|} \leftrightarrow \frac{12cm}{3cm} = \frac{|OF|}{3,5cm} \leftrightarrow \frac{12cm}{3cm} = \frac{9,33cm + |CF|}{3,5cm}$, aplicando o produto dos extremos sendo igual ao produto dos meios, teremos:

$$\leftrightarrow \frac{12cm}{3cm} = \frac{9,33cm + |CF|}{35cm} \leftrightarrow 12cm \times 3,5cm = 3cm \times (9,33cm + |CF|);$$

aplicamos a propriedade distributiva no segundo membro pelo factor3*cm*, e teremos:

$$\leftrightarrow 42cm^2 = 3cm \times 9, 33cm + 3cm \times |CF| \leftrightarrow 42cm^2$$
$$= 27,99cm^2 + 3cm \times |CF|$$

Passamos o termo $27,99cm^2$, para o primeiro membro e muda de sinal para negativo, assim: $\leftrightarrow 42cm^2 - 27,99cm^2 = 3cm \times |CF|$, passamos o coeficiente 3cm para o segundo membro à dividir, assim: $\leftrightarrow \frac{14,01cm^2}{3cm} = |CF| \leftrightarrow |CF| = 4,67$.

f) |EF| = ?

Para determinar o segmento |EF|, podemos relacionar os lados proporcionais dos triângulos $\Delta[OEF]$ $e\Delta[OCD]$, assim: $\frac{|OE|}{|OD|} = \frac{|EF|}{|DC|}$, substituindo com os respectivos valores teremos: $\frac{|OE|}{|OD|} = \frac{|EF|}{|DC|} \leftrightarrow \frac{12cm}{8cm} = \frac{|EF|}{6cm}$, o produto dos meios é igual ao produto dos extremos, assim: $\leftrightarrow \frac{12cm}{8cm} = \frac{|EF|}{6cm} \leftrightarrow 12cm \times 6cm = 8cm \times |EF|$, passamos o factor8cm à dividir no segundo membro. Assim:

$$\leftrightarrow \frac{12cm \times 6cm}{8cm} = |EF| \leftrightarrow 9cm = |EF| \leftrightarrow |EF| = 9cm.$$

g) |AB| = ?

Podemos relacionar os lados proporcionais dos triângulos $\Delta[OCD]e\Delta[OAB]$.

Teremos: $\frac{|DC|}{|AB|} = \frac{|OD|}{|OA|}$, substituímos com os respectivos valores, teremos:

$$\frac{|DC|}{|AB|} = \frac{|OD|}{|OA|} \leftrightarrow \frac{6cm}{|AB|} = \frac{8cm}{3cm} \leftrightarrow |AB| = \frac{6cm \times 3dm}{8cm} \leftrightarrow |AB| = 2,25cm.s$$

ACTIVIDADE N° 3

Caro estudante, depois de termos abordado Teorema de Thales e sua aplicação Você pode efectuar os exercícios propostos:

1. Considere a figura abaixo, sabendo que |OC| = 4cm, |EF| = 14cm, |CD| = 8cm, |OA| = 0.5cm e|BC| = 1.5cm

Determine: a) |OF|; b) |CF|; c) |OB|; d)|AD|; e) |OE|; f)|DE|; g)|AB|

CHAVE - DE - CORRECÇÃO N° 3

1. a) |OF| = 7cm; b) |CF| = 3cm; c) |OB| = 2.5cm; d)|AD| = 0.3cm;

e) |OE| = 1.4cm; f)|DE| = 0.6; g)|AB| = 1cm.

Lição nº4: DEMONSTRAÇÃO DO TEOREMA DE PITÁGORAS PELA SEMELHANÇA DE TRIÂNGULOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Demonstração do teorema de Pitágoras pela semelhança de triângulos.

OBJECTIVOS DE APRENDIZAGEM

-Demonstrar o teorema de Pitágoras aplicando a semelhança de triângulos.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.4.1 Teorema de Pitágoras

O teorema de Pitágoras diz o seguinte:

Num triângulo rectângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.

Vamos demonstrar o teorema de Pitágoras, consideremos a figura abaixo de triângulos rectângulos semelhantes:

Fig.1

Os triângulos $\Delta[ABC]$ e $\Delta[BCH]$ são semelhantes, isto é, $\Delta[ABC] \sim \Delta[BCH]$ porque tem ângulos rectos e o ângulo B é comum. Então podemos relacionar os seus lados proporcionais. Assim: $\frac{a}{n} = \frac{c}{a}$, sabendo que o produto dos meios é igual ao produto dos extremos, teremos: $\frac{a}{n} = \frac{c}{a} \leftrightarrow a \times a = n \times c \leftrightarrow a^2 = n \times c$;

Os triângulos $\Delta[ABC]$ e $\Delta[ACH]$ são semelhantes porque ambos tem ângulos rectos e um ângulo A comum. Isto é: $\Delta[ABC] \sim \Delta[ACH]$. Então, podemos relacionar os seus lados proporcionais. Assim: $\frac{b}{m} = \frac{c}{b} \leftrightarrow b \times b = m \times c \leftrightarrow b^2 = m \times c$. Se adicionarmos ambas as relações, teremos:

 $(a^2 = n \times c) + (b^2 = m \times c) \leftrightarrow a^2 + b^2 = n \times c + m \times c$, Vamos colocar em evidência o factor comum c, teremos: $\leftrightarrow a^2 + b^2 = c(n+m)$, trocamos a posição dos membros e teremos, $\leftrightarrow c(n+m) = a^2 + b^2$, portanto, n+m=c, podemos substituir na expressão e teremos: $\leftrightarrow c(n+m) = a^2 + b^2 \leftrightarrow c \times c = a^2 + b^2$,

$$\leftrightarrow c^2 = a^2 + b^2$$
, Portanto $c - \text{\'e}$ hipotenusa, $a - \text{\'e}$ cateto 1 $e b - \text{\'e}$ cateto 2.

Assim temos o teorema de Pitágoras que se tem vulgarmente escrito como:

$$\leftrightarrow c^2 = a^2 + b^2 \leftrightarrow h^2 = c_1^2 + c_2^2$$

Ex: Atendendo aos dados da figura seguinte, determine o valor de x.

9cm

Portanto, para determinar o valor de x, devemos prestar atenção no triangulo rectângulo, $\Delta[BDE]$, repara que o segmento |BE| é igual ao segmento |AC|, $\log |BE| = |BE| = 3cm$;

O segmento |AB| é igual ao segmento |CE|, $\log_0 |AB| = |CE| = 6cm$. Então, podemos determinar o segmento $|ED| = |CD| - |CE| \leftrightarrow |ED| = 9cm - 6cm \leftrightarrow |ED| = 3cm$.

Então, já temos os dois catetos do triangulo $\Delta[BDE]$, podemos aplicar o teorema de Pitágoras. Assim:

Usando a fórmula:

$$h^2 = c_1^2 + c_2^2$$
, veja que $|BE| = c_1 = 3cm$, $|ED| = c_2 = 3cm \ e \ x = h$; Substituindo na formula teremos: $h^2 = c_1^2 + c_2^2 \leftrightarrow x^2 = (3cm)^2 + (3cm)^2 \leftrightarrow x^2 = 9cm^2 + 9cm^2$ $\leftrightarrow x^2 = 18cm^2 \leftrightarrow \text{Envolvendo}$ ambos os membros por raiz quadrada teremos: $\leftrightarrow x^2 = 18cm^2 \leftrightarrow \sqrt{x^2} = \sqrt{18cm^2} \leftrightarrow x = \sqrt{9 \times 2cm^2}$, Extraímos o factor possível para fora de radical e teremos: $x = 3\sqrt{2}cm$.

ACTIVIDADE N° 4

Caro estudante, depois de termos abordado a Demonstração do teorema de Pitágoras pela semelhança de triângulos, Você pode efectuar os exercícios propostos :

1. Considere o triângulo abaixo e determine o valor de x.

x

2. Considere a figura abaixo, determine a inclinação da armadura de uma parede, tendo em conta os dados.

6*m*

 $\sqrt{8}m$

10*m*

- 1. $3\sqrt{3}m$
- 2. $2\sqrt{6}m$

Lição nº5: RESOLUÇÃO DE PROBLEMAS PRÁTICOS DA VIDA APLICANDO A SEMELHANÇA DE TRIÂNGULOS E OS TEOREMAS DE THALES E DE PITÁGORAS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar aResolução de problemas práticos da vida aplicando a semelhança de triângulos e os teoremas de Thales e de Pitágoras

OBJECTIVOS DE APRENDIZAGEM

-Aplicar a semelhança de triângulos na resolução de problemas práticos;

- Aplicar o teorema de thales na resolução de problemas práticos;
- Aplicar o teorema de Pitágoras na resolução de problemas práticos.

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.5.1 Aplicação de semelhança de triângulos na resolução de problemas práticos

Podemos aplicar a semelhança de triângulos para resolvermos problemas práticos do quotidiano, tal como podemos ver no exemplo abaixo.

Ex. Numa visita de estudo, o João reparou que a sua sombra mede 2 metros e que, no mesmo instante, a sombra de uma árvore próxima dele mede 7,2 metros. Sabendo que a altura do João é de 1,5 metros, determine a altura da árvore.

Fig.1

1,5m

7*m*

Observando a fig.1, podemos perceber que temos dois triângulos semelhantes que são: $\Delta[ABE]$ e $\Delta[ACD]$, Porque tem um ângulo comum A, e ambos são rectos pois tem ângulos iguais à 90(em B e C). Então podemos afirmar que são semelhantes (pelo critério A.A), isto é:

 $\Delta[ABE] \sim \Delta[ACD]$. Então podemos relacionar os seus lados proporcionais, assim:

$$\frac{|CD|}{|BE|} = \frac{|AC|}{|AB|}$$
, Podemos substituir com os respectivos valores e teremos: $\frac{|CD|}{|BE|} = \frac{|AC|}{|AB|} \leftrightarrow \frac{h}{1,5m} = \frac{|AC|}{|AB|}$

 $\frac{7m}{2m}$, Podemos multiplicar o produto dos meios e igualar ao produto dos extremos. Assim:

$$\leftrightarrow \frac{h}{1,5m} = \frac{7m}{2m} \leftrightarrow h \times 2m = 1,5m \times 7m \leftrightarrow h = \frac{1,5m \times 7m}{2m} \leftrightarrow h = 5,25m.$$

3.5.2 Aplicação de teorema de Thales na resolução de problemas práticos

Podemos aplicar o teorema de Thales para resolvermos problemas práticos do quotidiano, tal como podemos ver no exemplo abaixo.

Ex: Pretende-se construir uma rampa para o lançamento de um projéctil, a qual deve ser sustentada por três pilares veja a figura2. Determine as alturas x e y dos dois pilares.

Fig.2 E

Portanto, estamos numa situação de duas rectas transversais no ponto A, e os pilares são rectas paralelas, então podemos aplicar o teorema de Thales. Vamos relacionar os lados proporcionais dos triângulos. Assim: $\frac{|CF|}{|BG|} = \frac{|AC|}{|AB|}; \frac{|DE|}{|CF|} = \frac{|AD|}{|AC|}$, Então, podemos substituir pelos

respectivos valores começando com a relação, $\frac{|CF|}{|BG|} = \frac{|AC|}{|AB|} \leftrightarrow \frac{x}{1m} = \frac{8m}{4m} \leftrightarrow x = \frac{1m \times 8m}{4m} \leftrightarrow x = 2m$.

Em seguida vamos substituir na relação: $\frac{|DE|}{|CF|} = \frac{|AD|}{|AC|} \leftrightarrow \frac{y}{x} = \frac{12m}{8m}$, o valor de x já calculamos, podemos substituir, teremos: $\leftrightarrow \frac{y}{x} = \frac{12m}{8m} \leftrightarrow \frac{y}{2m} = \frac{12m}{8m} \leftrightarrow y = \frac{2m \times 12m}{8m} \leftrightarrow y = 3m$.

3.5.3 Aplicação de teorema de Pitágoras na resolução de problemas práticos

Podemos aplicar o teorema de Pitágoras para resolvermos problemas práticos do quotidiano, tal como podemos observar no exemplo abaixo.

Ex: Consideremos o mesmo exercício anterior de fig.2, depois de calcular os valores de x e y, qual será o comprimento da rampa.

Portanto, devemos considerar, o triângulo $\Delta[ADE]$, veja que o mesmo é recto, então podemos aplicar o teorema de Pitágoras. Assim:

 $h^2=c_1^2+c_2^2$, neste caso a rampa é hipotenusa que é o segmento h=|AE|=?, o cateto 1 será o segmento $|AD|=c_1=12m$, o cateto 2 será o segmento $|DE|=c_2=y=3m$, então podemos substituir na formula $h^2=c_1^2+c_2^2\leftrightarrow h^2=(12m)^2+(3m)^2$;

$$\leftrightarrow h^2 = 144m^2 + 9m^2 \leftrightarrow h = \sqrt{144m^2 + 9m^2} \leftrightarrow h = \sqrt{153m^2}$$

$$\leftrightarrow h = \sqrt{153m^2} \leftrightarrow h = 12,369m.$$

ACTIVIDADE N° 5

Caro estudante, depois de termos abordado a Resolução de problemas práticos da vida aplicando a semelhança de triângulos e os teoremas de Thales e de Pitágoras, Você pode efectuar os exercícios propostos:

Os triângulos abaixo, são semelhantes, determine a altura do prédio tendo em conta os dados:

1,4*m*

2. Deternime o valor de x na figura abaixo:D

- 1. 9,8m
- 2. 2,22m
- 3. 22,33m

ACTIVIDADES UNIDADE N°-2.

Caro estudante, depois da revisão de toda unidade número 7, você pode prestar a seguinte actividade:

1. Considere os quadriláteros [ABCD] e [A'B'C'D']:

 \boldsymbol{B}'

Verifique se os lados correspondentes dos dois quadriláteros são proporcionais.

2. Considere os triângulos $\Delta[ABC]$ e $\Delta[ADE]$ da figura abaixo cujas medidas dos lados estão em centímetro. Verifique se os lados correspondentes são proporcionais.

3. Justifica a semelhança dos triângulos abaixo:

a)

D

34

2 B

80°

 70°

4. As rectas $a \ e \ b$ são concorrentes no ponto O e as rectas r, $s \ e \ t$ são paralelas. Calcule |AB| e |0B|, Sabendo que: |OC| = 6cm; |CD| = 5cm; |CA| = 3cm; |DB| = 4cm.

ab

0

A B r

CHAVE - DE - CORRECÇÃO DA UNIDADE 2.

1. São proporcionais; r = 2.5.

2. São proporcionais; r = 1,4.

3.a) $\Delta[ABC] \sim \Delta[DEF]$; r = 2.

b) $\Delta[MNP] \sim \Delta[XYZ]$; criterioAA.

4.|AB| = 7.5cm e |OB| = 12cm.

Unidade n°4: CÁLCULO DE ÁREAS E VOLUME DOS SOLIDOS GEOMÉTRICOS

INTRODUÇÃO DA UNIDADE TEMÁTICA N°8.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar Cálculo de áreas e volume dos sólidos geométricos. Esta unidade está estruturada de seguinte modo: Contem (3) lições.

OBJECTIVOS DE APRENDIZAGEM

- -Identificar poliedros, prismas, pirâmides, elementos de umaPirâmide e de umprisma;
- -Classificar poliedros, prismas e pirâmides;
- -Aplicar a relação de Euler nocálculo do número de faces, vértices e arestasde prismas epirâmides.

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidaden°8 sobre Semelhança de triângulos, Você:

- Identifica poliedros, prismas, pirâmides, elementos de uma Pirâmide e de umprisma;
- Classifica poliedros, prismas e pirâmides;
- Aplica a relação de Euler nocálculo do número de faces, vértices e arestasde prismas epirâmides.

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 18horas.

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de: Uma sebenta, esferográfica, lápis, borracha e régua, transferidor, compassa, etc.

Lição nº1:

CONCEITO E CLASSIFICAÇÃO DE POLIEDROS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Conceito e Classificação de Poliedros.

OBJECTIVOS DE APRENDIZAGEM

- -Definir poliedros;
- -Classificar poliedros.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.1.1 Poliedros

Poliedros – são sólidos geométricos limitados apenas por superfícies planas.

Ex: prismas e pirâmides.

4.1.2 Classificação dos poliedros

Os poliedros classificam-se de acordo com a sua superfície, em poliedros e não poliedros.

Exemplo dos poliedros:

Fig.1 Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Portanto, as figures 1, 2 e 3 sao prismas;

As figuras 4 e 6 são piramedes;

Exemplos dos **nao poliedros:** são cilindros e esferas, veja as figuras abaixo.

4.1.3 Elementos de um poliedro

Os elementos de um poliedro são: faces, arrestas e os verteces.

Faces – são planos que limitam os solidos.

Arestas – são os segmentos de rectas que limitam as arestas.

Verteces – são os pontos de encontro das arestas.

Ex: consideremos o cubo abaixo:

Um cubo por exemplo tem, 6 faces, 12 arestas e 8 vérteces.

As faces de um poliedro são poligonos que têm nomes especificos conforme o seu número de lados. Veja a tabela abaixo:

Número	Nome de				
de lados	poligono				
3	Triangulo				
4	Quadrilatero				
5	Pentagono				
6	Hexágono				
7	Heptágono				
8	Octagono				
9	Eneágono				
10	Decágono				

Existem dois tipos de poliedros que são: convexos e côncavos.

Ex: Considere as figuras abaixo:

Fig.1

Fig.2

A figura 1 chama-se poliedro **convexo** e a figura 2 chama-se poliedro **côncavo**.

Poliedro convexo - é aquele que fica totalmente do mesmo lado do plano que contém qualque uma das suas faces, caso contrario diz-se côncavo.

Os poliedros convexos possuem nomes específicos de acordo com o seu número de faces. Veja a tabela abaixo:

Número	Classificação
de faces	
4	Tetraedro
5	Pentaedro
6	Hexaedro
7	Heptaedro
8	Octaedro
12	Dodecaedro
20	Icosaedro

4.1.4 Poligono regular – é todo poliedro convexo em que todas as suas faces sao poligonos regulars geometricamente iguais nos quais em cada um dos seus verteces, encontra-se o mesmo numero de arrestas.

Exemplo dos cinco poliedros regulares existentes: **tetraedro, cubo ou hexaedro, octaedro, dodecaerdo e ecosaedro.** Veja a tabela abaixo:

Polígono regular	Planificação
Tetraedro	
Cubo ou Hexaedro	

Caro estudante, depois de termos abordado Conceito e Classificação de Poliedros, Você pode efectuar os exercícios propostos abaixo:

- 1. Indique o valor lógico V, nas alíneas verdadeiras e F nas alíneas falsas:
 - a) Poliedrossão sólidos geométricos limitados apenas por superfícies planas.
 Ex:Esfera,cilindro e cone.
 - **b**) Os poliedros classificam-se de acordo com a sua superfície em poliedros e não poliedros.
 - c) Exemplo dos poliedrossao prismas e piramedes.
 - d) Exemplos dos nao poliedros: são prismas e piramedes.
 - e) Os elementos de um poliedro são: faces, arrestas e os verteces.
- 2. Indique o respectivo nome do polígono consoante o número de lados através de uma seta.

3. Os poliedros convexos possuem nomes especificos de acordo com o seu número de faces. Indique a correspondência equevalente:

Número				
de faces				
7				
20				

4. Dê exemplos de poliedro convexo em que todas as suas faces sao poligonos regulars geometricamente iguais nos quais em cada um dos seus verteces, encontra-se o mesmo numero de arrestas.

CHAVE - DE - CORRECÇÃO N°1

1. a) F; b) V; c) V; d) F; e) V

2.

Número	Nome de			
de lados	poligono			
3	Triangulo			
4	Quadrilatero			
5	Pentagono			
6	Hexágono			
7	Heptágono			
8	Octagono			
9	Eneágono			
10	Decágono			

Número	Classificação

3.

	T
de faces	
4	Tetraedro
5	Pentaedro
6	Hexaedro
7	Heptaedro
8	Octaedro
12	Dodecaedro
20	Icosaedro

4. Tetraedro, cubo ou hexaedro, octaedro, dodecaerdo e ecosaedro.

Lição n°2: RELAÇÃO DE EULER

INTRODUÇÃO A LIÇÃO:

Caro estudante nesta lição vamos abordar a Relação de Euler.

OBJECTIVOS DE APRENDIZAGEM

- Relacionar os elementos de um poliedro.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.2.1 Relação de Euler

A relação de Euler diz o seguinte:

Em qualquer poliedro convexo, a soma de número de faces (F) com o número de vértices (V) é igual à soma de número de aresta (A) com 2 (dois).

Pode-se esclarecer com a seguinte fórmula:

F + V = A + 2, Onde: F- número de faces;

V- Número de verteces;

A- Número de arestas;

Ex: Considere a figura abaixo:

Determine os valores de F, V e A. E verifica a formula: F + V = A + 2.

Portanto, F = 6; V = 8eA = 12, então, podemos substituir na formula teremos:

 $F + V = A + 2 \leftrightarrow 6 + 8 = 12 + 2 \leftrightarrow 14 = 14$. Como pode-se ver a fórmula verifica, pois o valor de primeiro membro é igual à de segundo membro que é 14.

ACTIVIDADE N° 2

Caro estudante, depois de termos abordado a Relação de Euler, Você pode efectuar os exercícios propostosabaixo:

1. Complete a seguinte tabela:

Sólido geométrico	Número de	Número	Número	F + V	A+2
	faces	de	de		
		vérteces	arestas		

CHAVE - DE – CORRECÇÃO N° 2

Sólido geométrico	Número de faces	Número de vérteces	Número	F + V	A+2
			de arestas		
	6	8	12	14	14
	5	5	8	10	10
	7	10	15	17	17

Lição n°3: CONCEITO DE PRISMA, ELEMENTOS DE UM PRISMA E CLASSIFICAÇÃO DE PRISMAS

INTRODUÇÃO A LIÇÃO:

Caro estudante nesta lição vamos abordar Conceito de prisma, Elementos de um prisma e Classificação de prismas.

OBJECTIVOS DE APRENDIZAGEM

- Definir prisma;
- Identificar os elementos dum prisma;
- Classificar os prismas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.3.1 Conceito de prisma

Prisma – é um poliedro em que as bases são dois polígonos geometricamente iguais e paralelos e as faces laterais são paralelogramos.

Ex: Fig.1 Fig.2 Fig.3

4.3.2 Elementos dum prisma

Os elementos dum prisma são: faces, bases, arestas.

Ex: consideremos a figura abaixo:

Num prisma o número de faces laterais é igual ao número de arestas das bases.

Existem dois tipos de prismas que são prismas rectos e prismas oblíquos.

A figura 5 é prisma recto e a figura 6 é prisma oblíquo.

Prisma regular- é um prisma recto cujas bases são polígonos regulares.

Exemplos de prismas regulares, as figuras 1,2 e 3.

4.3.3 Classificação dos prismas

A classificarão dos prismas dependem do polígono da base.

Se as bases forem triângulos, então o prisma será triangular;

Se as bases forem quadriláteros, então o prisma será quadrangular;

Se as bases forem pentágonos, então o prisma será pentagonal;

Se as bases forem hexágonos, então o prisma será hexagonal;

AUTO-AVALIAÇÃO N° 3

Caro estudante, depois de termos abordado oConceito de prisma, Elementos de um prisma e Classificação de prismas, Você pode efectuar os exercícios propostos abaixo:

1. Copie e complete a tabela seguinte:

Prisma	Triangular	Quadrangular	Pentagonal	Hexagonal	Heptagonal
Número de lados do					
poligono da base					
Numero de faces					

- 2. Considere um prisma pentagonal regular.
- a) Quais são os polígonos das bases do prisma?
- b) Quais são os polígonos das faces laterais do prisma?
- c) Quantas faces, arestas e vértices têm o prisma?
- d) As faces laterais podem ser triângulos?

CHAVE - DE - CORRECÇÃO N° 3

1.

Prisma	Triangular	Quadrangular	Pentagonal	Hexagonal	Heptagonal

Número de lados do poligono da base	3	4	5	6	7
Numero de faces	5	6	7	8	9

BIBLIOGRAFIA

SAPATINHA, João Carlos Sapatinha (2013) Matemática 9ª Classe, 1ª Edição, Maputo

LANGA, Heitor/ CHUQUELA, Neto João (2014)

Matemática 9ª Classe, 1ª Edição, Maputo