Test di Calcolo Numerico

Ingegneria Informatica 06/02/2013

COGNOME NOME		
Μ	IATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 06/02/2013

- 1) Dire se sono possibili le seguenti affermazioni.
 - a) Se $||A||_2 = 1$ può risultare $||A||_2 + \rho(A) = 2.5$?
 - b) Se $\rho(A) = 1$ può risultare $||A||_2 + \rho(A) = 2.5$?
 - c) Se $||A||_2 = 2$ può risultare $||A^2||_2 = 5$?
 - d) Se $\rho(A^2) = 3$ può risultare $||A||_1 = 1$?
- 2) L'equazione

$$x^4 - 4x^3 + 3x^2 + 4x - 4 = 0$$

ha soluzioni

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = \alpha_4 = 2$.

Dire se sono soddisfatte le condizioni necessarie per la convergenza del metodo di bisezione ai valori α_i , i = 1, 2, 3, 4.

3) La matrice

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

è riducibile.

Determinare una matrice di permutazione P che riduce la matrice data.

4) Risolvere, nel senso dei minimi quadrati, il sistema lineare Ax = b con

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

5) Il polinomio $P(x) = 2x^3 - 3x^2 + x$ è il polinomio di interpolazione di Hermite della funzione f(x) di cui conosciamo i valori

$$f(0) = 0$$
, $f(1) = 0$, $f'(0) = 1$, $f'(1) = 1$?

SOLUZIONE

- 1) Dalle proprietà delle norme matriciali e dal Teorema di Hirsh si ha
 - a) Non risulta possibile percheé $||A||_2 + \rho(A) \le 2$;
 - b) È possibile perché $||A||_2 + \rho(A) \ge 1 + ||A||_2$;
 - c) Non risulta possibile perché $||A^2||_2 \le ||A||_2 ||A||_2 \le 4$;
 - d) Non risulta possibile perché $\rho(A) = \sqrt{3}$ e quindi $||A||_1 \ge \sqrt{3} > 1$.
- 2) Il metodo di bisezione converge se applicato per la approssimazione delle radici semplici α_1 e α_2 . Non converge per approssimare $\alpha_{3,4}$ essendo questa radice di molteplicità pari (manca il cambio di segno della funzione).
- 3) Dallo studio del grafo orientato si individua una matrice di permutazione che riduce la matrice data; per esempio, $P_1 = (\mathbf{e}^{(2)}|\mathbf{e}^{(1)}|\mathbf{e}^{(3)}|\mathbf{e}^{(4)})$. La forma ridotta della matrice

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)$$

si ottiene con $P = (\mathbf{e}^{(2)}|\mathbf{e}^{(4)}|\mathbf{e}^{(3)}|\mathbf{e}^{(1)}).$

4) La soluzione si ottiene dal sistema delle equazioni normali $A^TAx = A^Tb$

$$\left(\begin{array}{cc} 4 & 10 \\ 10 & 30 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 10 \end{array}\right)$$

la cui soluzione è $x = (1,0)^T$.

5) Il polinomio dato è il polinomio di interpolazione di Hermite poiché risulta di grado 3 (k+1) punti con k=1 \Rightarrow grado massimo 2k+1=3) e verifica le condizioni

$$P(0) = 0$$
, $P(1) = 0$, $P'(0) = 1$, $P'(1) = 1$.