

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICAL LITERACY P2/WISKUNDIGE GELETTERDHEID V2

2023

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

Symbol/Kode	Explanation/Verduideliking
M	Method/Metode
MA	Method with accuracy/Metode met akkuraatheid
CA	Consistent accuracy/Volgehoue akkuraatheid
A	Accuracy/Akkuraatheid
C	Conversion/Herleiding
S	Simplification/Vereenvoudiging
RT	Reading from a table/a graph/document/diagram/Lees vanaf tabel/grafiek/diagram
SF	Correct substitution in a formula/Korrekte vervanging in formule
0	Opinion/Explanation/Reasoning / Opinie/Verduideliking/redenasie
P	Penalty, e.g. for no units, incorrect rounding off, etc./Penalisasie, bv. vir geen eenhede/verkeerde afronding, ens.
R	Rounding off/Afronding
NPR	No penalty for correct rounding/Geen penalisasie vir korrekte afronding nie
AO	Answer only/Slegs antwoord
MCA	Method with constant accuracy/Metode met volgehoue akkuraatheid
RCA	Rounding consistent with accuracy/Afronding met volgehoue akkuraatheid

These marking guidelines consist of 17 pages. *Hierdie nasienriglyne bestaan uit 17 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- NOTE: consistent accuracy (CA) does not apply in cases of a breakdown.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra item presented.
- As a general marking principle, if a candidate has incurred one mistake and there is evidence of sound mathematics thereafter, then that candidate should lose one mark only.
- Rounding is an independent mark.
- In order to award the verification / conclusion mark the candidate must have scored at least one mark in the calculations preceding the final conclusion.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek (kanselleer) en nie oordoen nie, sien die doodgetrekte (gekanselleerde) poging na.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyne toegepas, dit hou op by die tweede berekeningsfout.
- Let wel: volgehoue akkuraatheid (CA) geld nie in die geval van 'n afbreuk nie.
- Wanneer 'n kandidaat aflesings vanaf 'n grafiek, tabel, uitlegplan en kaart geneem en ekstra antwoorde gee, penaliseer vir elke ekstra item.
- 'n Algemene nasienbeginsel is dat indien 'n kandidaat een fout maak en daarna voortgaan met korrekte wiskunde, dat die kandidaat slegs een punt verloor.
- Afronding tel as 'n afsonderlike punt.
- Ten einde die verifikasie/ gevolgtrekking punt toe te ken moes die kandidaat ten minste een punt gekry het in die berekeninge wat lei tot die finale gevolgtrekking.

Note: Questions marked with * refers to the notes.

Questions where the numbers are encircled are the ones where we have a tolerance range.

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
			M
*1.1.1	E ✓✓A	2A correct option (2)	L1 E
			M
*1.1.2	C ✓✓A	2A correct option	L1
		(2)	E MP
*1.1.3	I ✓✓A	2A correct option	L1
		(2)	Е
			MP
*1.1.4	B ✓✓A	2A correct option	L1
		(2)	Е
			P
*1.1.5	G ✓✓A	2A correct option	L1
		(2)	Е

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	✓RT ✓RT ✓RT		MP
1.2.1	Potatoes, Onions and Cucumber	3RT correct partner	L1
	Aartappels, Uie en Komkommer	(3)	Е
1.0.0	G: /G /C / DT	2000	MP
1.2.2	Six /Ses (6) ✓✓ RT	2RT correct number	L1 M
		(2)	MP
1.2.3	Beans /Bone ✓✓ RT	2RT correct partner	L1
1.2.3	Beans/Bone VV KI	2KT correct partner	M
		(2)	141
			MP
*1.2.4	South East OR SE $\checkmark \checkmark$ RT	2RT correct direction	L1
	Suidoos OF SO		M
		(2)	
	√√RT ✓ RT		MP
*1.2.5	3 and 7	2RT 1 st correct number label	L1
		1RT 2 nd correct number label	E
		(3)	
1 2 1	C OR/OF $\pi \times r^2 \times h$ $\checkmark \land RT$		M
1.3.1	C ONOT KATAN	2A correct option (2)	L1 E
		(2)	M
1.3.2	$\text{mm}^3 \checkmark \checkmark \text{A}$	2A correct unit	L1
1.5.2	mm · · · · · · · · · · · · · · · · · ·	(2)	E
	/0		M
1.3.3	mm to metre = $124 \div 1000$	1C correct conversion/dividing by	L1
	mm tot meter	1 000	Е
	$= 0.124 \text{ m} \checkmark \text{A}$	1A answer in metres	
		(2)	
		[28]	

QUES	TION/VRAAG 2 [24 MARKS/PUNTE]		
Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
2.1.1	5 ✓✓ A	2A correct number (2)	MP L1 E
2.1.2	Tripod/ <i>Driepoot</i> ✓✓ A	2A correct item (2)	MP L1 E
2.1.3	Clockwise/ <i>Kloksgewys</i> ✓✓ A	2A correct direction (2)	MP L1 E
2.1.4 (a)	H ✓✓A	2 A correct choice (2)	MP L2 M
2.1.4 (b)	G ✓✓A	2 A correct choice (2)	MP L2 M
2.2.1	65 km × 100 000 = 6 500 000 cm ✓ C	1C conversion	MP L2 D
	Distance on the map /Afstand op kaart $= \frac{6500000}{250000} \checkmark MA$ $= 26 \text{ cm} \checkmark CA$	1MA division by 250 000 1CA simplification	
	OR/OF 65 km × 1 000 000	OR/OF	
	= 65 000 000 mm ✓C	1C conversion	
	Distance on the map /Afstand op kaart $= \frac{65000000}{250000} \checkmark MA$	1MA division by 250 000	
	= 260 mm ✓CA	1CA simplification OR/OF	
	OR/OF Map: Reality Kaart: Werklikheid 1: 250 000	ONOF	
	Map Dist/ <i>Kaart afstand</i> : 65 km Map distance = $\frac{65}{250000}$	1MA division by 250 000	
	Kaart afstand = 0,00026 km = (0,00026 × 100 000) cm = 26 cm ✓ CA	1C conversion 1CA simplification	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF 1 cm: 250 000 cm ∴ 1 cm: 2,5 km ✓ C ∴ 1: 2,5 km Map Dist/Kaart afstand: 65 km	1C conversion	
	Map distance /Kaart afstand $= \frac{65}{2.5} \qquad \checkmark MA$ $= 26 \text{ cm} \qquad \checkmark CA$	1MA division by 2,50 1CA simplification (3)	
2.2.2	Bar scale or line scale or Graphic Scale Staafskaal/ Balkskaal of lynskaal of Grafiese skaal	2A correct scale (2)	MP L1 E
*2.3.1	Number of reams lengthwise/ Getal rieme in die lengte $ \frac{\checkmark \text{ MA}}{\text{27,94 cm}} = \frac{\checkmark \text{ A}}{3,65} \approx 3 \checkmark \text{ R} $	1MA dividing lengths 1A simplification 1R rounding down	MP L3 M
	Number of reams widthwise / Getal rieme in die breedte $= \frac{44 \text{ cm}}{21,59 \text{ cm}} = 2,04 \approx 2 \checkmark \text{ MCA}$	1MC A reams widthwise	
	Number of reams heightwise/Getal rieme in die hoogte $= \frac{39 \text{ cm}}{6,35 \text{ cm}} = 6,14 \approx 6 \checkmark \text{ A}$	1A reams heightwise	
	Total number of reams/Totale getal rieme $= 3 \times 2 \times 6 \checkmark \text{ MCA}$ $= 36 \checkmark \text{ CA}$	1MCA multiplying the values 1CA total number of reams (7)	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	√√O		MP
2.3.2	To keep them dust free/Om stof af te keer		L4
	To keep the reams dry/ moisture free		E
	Om die rieme droog te hou		
	OR/OF		
	To keep them safe for later use.		
	Om hulle veilig te bêre vir latere gebruik		
	om muie veing ie bere vir tuiere gebruik		
	OR/OF		
	Glass door - For learners to see that the teacher is using		
	their reams of paper		
	– Easy to see how many reams are left (record		
	keeping).		
	Glasdeure - Sodat leerders kan sien hul onderwyser		
	gebruik hulle rieme papier		
	maklik om te sien hoeveel rieme is oor (hou rekord)		
	OR/OF	2O reason	
	Convenient		
	-Paper is in the class for later usage.		
	-Keeps the teacher's table clear/more space on		
	teacher's table		
	-Easily accessible when needed.		
	-Effective use of space		
	Gerieflik:		
	- die papier is in die klas gereed vir later gebruik		
	- Hou die onderwyser se tafel skoon /meer spasie op		
	die onderwyser se tafel		
	– Maklike toegang te hê		
	– Effektiewe gebruik van spasie		
	OR/OF		
	Keeps the classroom neat and in order.		
	Hou die klaskamer netjies en skep orde.		
	The are mashamer negres on shep orac.	(2)	
		[24]	

QUEST	ΓΙΟΝ/VRAAG 3 [31 MARKS/PUNTE]		
Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
3.1.1	Surface area wall $1 = \text{length} \times \text{width}$ Oppervlakte muur $1 = \text{lengte} \times \text{breedte}$		M L2 M
	$=4.8 \text{ m} \times 2.75 \text{ m} \qquad \checkmark \text{SF}$	1SF substitution	
	$= 13.2 \text{ m}^2 \checkmark \text{CA}$	1CA simplification	
	Surface area wall $2 = length \times width$ Oppervlakte muur $2 = lengte \times breedte$		
	$= 3,50 \text{ m} \times 2,75 \text{ m}$		
	$= 9,6250 \text{ m}^2 \checkmark \text{A}$	1A simplification	
	Total surface area / Totale oppervlakte		
	$= (13,2+9,625) \text{ m}^2$		
	$= 22,8250 \text{ m}^2 \checkmark \text{CA}$	1CA simplification	
	OR/OF	OR/OF	
	✓SF T SA/ TO = (4.8 m × 2.75 m) + (3.5 m × 2.75 m) $ ✓CA $ $ = 13.2 m2 + 9.6250 m2 ✓A$	1SF substitution 1CA simplification 1A simplification	
	$= 22,8250 \text{ m}^2 \checkmark \text{CA}$	1CA simplification	
	OR/OF	OR/OF	
	Surface Area = $(3.5 \text{ m} + 4.8 \text{ m}) \times 2.75 \text{ m}$ $\checkmark \text{SF}$ = 8.3×2.75 $\checkmark \text{CA}$	1A adding both wall dimensions 1SF substitution 1CA simplification	
	$= 22,825 \text{ m}^2 \checkmark \text{CA}$	1CA simplification NPR (4)	
*3.1.2	Volume = Area of wall \times thickness of plaster Volume = Opp van muur \times dikte van pleister	CA from 3.1.1	M L3 D
	$= (22,8250 \times 10\ 000) \times \frac{12}{10} \checkmark \text{C}$	2C conversion 1SF substitution	
	$= 228 \ 250 \ \text{cm}^2 \times 1.2 \ \text{cm}$	1CA simplification	
	$= 273 900 \text{ cm}^3 \checkmark \text{CA}$	1CA simplification	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF		
	12 mm = 1,2 cm ✓C	1C conversion mm to cm	
	$22,825\text{m}^2 = (22,825 \times 100 \times 100) \text{ cm}^2 \checkmark \text{C}$ $= 228 \ 250 \text{ cm}^2 \checkmark \text{CA}$	1C conversion m ² to cm ² 1CA simplification	
	Volume = Area of wall × thickness of plaster Volume = Opp van muur × dikte van pleister = 228 250 cm ² × 1,2 cm ✓ SF = 273 900 cm ³ ✓ CA	1SF substitution 1CA simplification	
	OR/OF	OR/OF	
	$12 \text{ mm} = (12 \div 1\ 000) \\ = 0.012 \text{ m} \checkmark \text{C}$	1C conversion m	
	Volume = $22,825 \times 0,012$ ✓SF = $0,2739 \text{ m}^3$ ✓CA = $(0,2739 \times 100 \times 100 \times 100)$ ✓C = $273 900 \text{ cm}^3$ ✓CA	1SF substitution 1CA simplification 1C conversion m ³ to cm ³ 1CA simplification	
	OR/OF	OR/OF	
	Volume = $22\ 825\ 000\ \text{mm}^2 \times 12\ \text{mm} \checkmark \text{SF}$	1C conversion mm ² 1SF substitution	
	= 273 900 000 mm ³ ✓CA	1CA simplification	
	$= 273 900 \text{ cm}^3 $ $\checkmark \text{CA}$	1C conversion cm ³ 1CA simplification (5)	
2.1.2	Number of bags/ Getal sakke	CA from 3.1.2	M
3.1.3	$=\frac{273\ 900\ \text{cm}^3}{\text{MCA}}$	1MCA dividing	L2 M
	$ \begin{array}{c c} - & 15 & 000 \text{ cm}^3 \\ = & 18,26 & \checkmark \text{ CA} \end{array} $	1CA simplification	
	≈ 19 ✓ R	1R rounding up (3)	
3.1.4	Perimeter / Omtrek		M L2
J.1.T	$ \begin{array}{c} \checkmark RT \\ = 2 \times (4.8 + 3.5) \text{ m} \end{array} $	1SF substitution 1RT correct values	E
	= 16,6 m ✓CA	1CA simplification	
	OR/OF	OR/OF	

\mathbf{Q}/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	Perimeter/ <i>Omtrek</i> = 4,8 m + 3,5 m + 4,8 m + 3,5 m ✓ MA ✓ RT = 16,6 m ✓ CA OR/OF	1MA adding all 4 sides 1RT correct values 1CA simplification OR/OF	
	Perimeter/Omtrek \checkmark MA = 2(3,5 m) + 2(4,8 m) \checkmark RT = 16,6 m \checkmark CA	1MA adding all 4 sides 1RT correct values 1CA simplification AO (3)	
3.2.1	$P = \frac{1}{5} \checkmark A or/of \ 0.2 or/of \ 20\%$	1A numerator 1A denominator AO (2)	P L2 E
*3.2.2	P(not appear/ nie verskyn) = $1 - 0.75$ \checkmark MA = 0.25 or/of $\frac{1}{4}$ or/of	1MA subtracting from 1 1A simplification AO (2)	P L2 M
3.2.3	Less likely /kleiner kans ✓✓A	CA from Q3.2.2 2A correct likelihood (2)	P L2 E
*3.3.1	Starting time /Begin tyd \checkmark MA $= 08:05 - 2 \text{ min} - 3 \text{ min} - 4 \text{ min}$ $= 07:56 \checkmark \text{CA}$	1MA subtract minutes 1A all the minutes 1CA simplification	M L2 M
	OR/OF Total time to prepare:	OR/OF	
	$= 4 \min + 3 \min + 2 \min$		
	= 9 min ✓ A	1A all the minutes	
	Starting time /Begin tyd		
	= $08:05 - 9 \text{ min}$ $\checkmark MA$ = $07:56$ or 4 minutes to eight in the morning	1MA subtract minutes 1CA simplification AO (3)	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
3.3.2	Total volume of water /totale volume water $\checkmark MA$ = $7 \ell \times 5 = 35 \ell$	1MA multiplying with 5	M L2 M
	1 gallon/gelling = 3,78541 ℓ Number of gallons /Getal gellings = $\frac{35}{3,78541}$ \checkmark C	1C converting	
	$= 9,24602619 \approx 9,25 \checkmark R$	1R rounded answer	
	OR/OF	OR/OF	
	1 gallon/gelling = 3,78541 ℓ n = 7 ℓ		
	Number of gallons /Getal gellings $= \frac{7}{3,78541} \checkmark C$	1C converting	
	= 1,849205 \approx 1,85 For 5 bags/Vir 5 sakke \checkmark MA \checkmark R = 1,85 \times 5 = 9,25 gallon / gelling	1MA multiplying with 5 1R rounded answer (3)	
3.3.3			M L2
	$73.4 - 32^{\circ} = (1.8 \times {^{\circ}C})$ $73.4 - 32^{\circ} = (1.8 \times {^{\circ}C})$ $41.4^{\circ} = 1.8 \times {^{\circ}C}$	1SF correct substitution 1S simplification	M
	$^{\circ}$ C = 41,4° ÷ 1,8 \checkmark MCA	1MCA dividing by 1,8	
	= 23 °C ✓CA	1CA simplification (4)	
		[31]	

Solution/Oplossing 12 ✓✓ RT	Explanation/Verduideliki	ng	T/L
10 // pm	i .		MP
	2RT number of houses		L2
12 VV KI	2K1 humber of houses	(2)	E
		(2)	L
✓✓ RT ✓ RT	2RT 1 st house label or		MP
1, $2 \text{ or/of } 12$			L2
	1RT second		M
Any two /Enige twee		(3)	
			M
The depth 1m or it is shallow/ not too deep. $\checkmark \checkmark O$	2O explanation		L4
Die diepte is 1m of dit is vlak/ nie te diep nie.		(2)	M
		(2)	3.6
Consider the manifestance and of water the most one			M
			L1 M
			IVI
•	2A concept		
	27 Concept		
with water.			
Kapasiteit is die mate van spasie wat die swembad met			
water vul.			
		(2)	
√A ✓ SE			M
Volume _(cylinder) = 3,142 $\times (\frac{7}{2} \text{ m})^2 \times 1 \text{ m}$	1SF correct substitutions		L3
			M
= 3,142 × (3,3m) × 1m			
$= 38,4895 \text{ m}^3 \checkmark \text{CA}$	1CA simplification		
	10/1 simplification		
V. 1	1SE correct values		
Volume $_{\text{(rectangular)}} = 6.2 \text{ m} \times 3.25 \text{ m} \times 1.65 \text{ m}$	151 Collect values		
- 22 2475 m³ √C∆	1CA rectangular volume		
= 55,2475 III • CA	<i>B</i>		
Difference / <i>Verskil</i> = $38,4895 \text{ m}^3 - 33,2475 \text{ m}^3 \checkmark MCA$	1MCA subtracting		
	1.04 1.00		
$= 5,242 \text{ m}^3 \qquad \checkmark \text{CA}$	ICA difference		
= 5.242 f ✓C	1C conversion		
- J 272 V			
OR/OF	OR/OF		
	Any two /Enige twee The depth 1m or it is shallow/ not too deep. Die diepte is 1m of dit is vlak/ nie te diep nie. Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad kan hou. OR/OF Capacity: a measure of space covered by pool structure with water. Kapasiteit is die mate van spasie wat die swembad met water vul. Volume(cylinder) = 3,142 × (7/2 m)^2 × 1m SF = 3,142 × (3,5m)^2 × 1m = 38,4895 m³ CA Volume (rectangular) = 6,2 m × 3,25 m × 1,65 m SF = 33,2475 m³ CA Difference / Verskil = 38,4895 m³ - 33,2475 m³ MCA = 5, 242 m³ CA	Any two /Enige twee The depth 1m or it is shallow/ not too deep. Die diepte is 1m of dit is vlak/ nie te diep nie. Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad kan hou. OR/OF Capacity: a measure of space covered by pool structure with water. Kapasiteit is die mate van spasie wat die swembad met water vul. Volume(cylinder) = 3,142 × (⁷ / ₂ m) ² × 1m = 31,42 × (3,5m) ² × 1m = 38,4895 m ³ ✓ CA Volume (rectangular) = 6,2 m × 3,25 m × 1,65 m ✓ SF = 33,2475 m ³ ✓ CA Difference / Verskil = 38,4895 m ³ – 33,2475 m ³ ✓ MCA = 5,242 m ³ ✓ CA 1CA simplification IMCA subtracting 1CA difference 1CA difference 1C conversion	Any two /Enige twee Any two /Enige twee The depth 1m or it is shallow/ not too deep. Die diepte is 1m of dit is vlak/ nie te diep nie. Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad kan hou. OR/OF Capacity: a measure of space covered by pool structure with water. Kapasiteit is die mate van spasie wat die swembad met water vul. Any two /Enige twee Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad met water vul. Any of the maximum in this in the mumber 1RT second Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad met water vul. Any of the maximum in the mumber 1RT second Capacity: the maximum amount of water the pool can hold/contain. Kapasiteit is die maksimum hoeveelheid water wat die swembad met water vul. Any of the maximum in the first second Capacity: the maximum amount of water the pool can hold/contain. An oncept Capacity: a measure of space covered by pool structure with water. Kapasiteit is die maksimum hoeveelheid water wat die swembad met water vul. An oncept Capacity: a measure of space covered by pool structure with water. An oncept Capacity: a measure of space covered by pool structure with water. An oncept Capacity: a measure of space covered by pool structure wat die swembad met water wat die swembad met water vul. Capacity: a measure of space covered by pool structure water val die swembad met water wat die swembad met water val die swembad met water val lies oncept. Capacity: a measure of space covered by pool structure water val die swembad met water val die

\mathbf{Q}/V	Solution/Oplossing		Explanation/Verduideliking	T/L
	Volume _(cylinder) = $3,142 \times (3,5m)^2 \times 1$ = $38489,5 \ell$ \checkmark C	A	1A radius 1SF correct substitutions 1C conversion 1CA simplification	
	Volume $_{\text{(rectangular)}} = 6,2 \text{ m} \times 3,25 \text{ m} \times $ = 33 247,5 ℓ \checkmark ($\checkmark SF 1,65 m \times 1 000 \ell/m^3$	1SF correct values 1CA rectangular volume	
	Difference / $Verskil = 38 489,5 \ell - 33$	3 247,5 ℓ ✓MCA	1MCA subtracting	
	= 5 242 ^l	/CA	1CA difference NPR	
			(8)	M
4.2.4 (a)	To accommodate cutting the tiles or lead curved surfaces or keep spares for late <i>Om voorsiening the maak die sny van breekskade</i> of <i>die gekurfde oppervlak hou vir latere gebruik.</i>	er usage. Liteëls of	2O reason (2)	M L4 E
	or and the second secon		CA radius form 4.2.3	M
*4.2.4 (b)	$SA_{\text{(open cylinder)}}/BO = 3,142 \times \text{radius} \times (\text{r}$ = 3,142 × 3,5 m × (3,5 m + 2	$2 \times 1 \text{ m}$) \checkmark SF	1SF substitution	L4 D
	$= 3,142 \times 3,5 \text{ m} \times 5,5 \text{ m} = 6$	50,4835 m ² . ✓ CA	1CA area of pool	
	Area of one tile/ Opp van 1 teël $= \frac{20}{100} \text{m} \times \frac{20}{100} \text{m} \checkmark \text{C}$ $= 0.2 \times 0.2 \text{ m}^2 = 0.04 \text{ m}^2. \checkmark \text{CA}$		1C conversion 1CA area of a tile	
	Number of tiles needed / Getal teëls n $= \frac{\text{Area to be tiled}}{\text{Area to be tiled}}$	odig		
	Area of single tile $= \frac{60,4835}{0,04} \checkmark MCA$ $= 1512,0875 $		1MCA finding number of tiles 1CA simplification	
		Or rounded up:		
	Plus 10% $= \frac{10}{100} \times 1512,0875 + 1512,0875$	1 513 × 110%	1MCA calc. 10% and adding it or multiply with 1,10	
	= 1 663,29625 tiles /teëls	= 1 664,3 ≈ 1665		
	≈ 1 664 tiles /teëls ✓CA		1CA number of tiles	
	Number of boxes / Getal bokse = 1 664 ÷ 16 ✓ MCA	Boxes = 1 665 ÷ 16 = 104,06	1MCA dividing	
	= 104 ✓CA	≈ 105	1CA number of boxes	
	VALID/ <i>GELDIG</i> ✓O		10 conclusion	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF		
	$SA_{\text{(open cylinder)}}/BO = 3,142 \times \text{radius} \times (\text{radius} + 2 \times \text{height})$ = 3,142 × 3,5 m × (3,5 m + 2 × 1 m)	1SF substitution 1CA SA of pool	
	Area of one tile/ Opp van 1 teël $= \frac{20}{100} \text{m} \times \frac{20}{100} \text{m} \checkmark \text{C}$ $= 0.2 \times 0.2 \text{ m}^2 = 0.04 \text{ m}^2. \checkmark \text{CA}$	1C conversion 1CA area of a tile	
	Number of tiles needed / Getal teëls nodig $= \frac{\text{Area to be tiled}}{\text{Area of single tile}}$ $= \frac{60,4835}{0,04} \checkmark \text{MCA}$ $= 1512,0875 \qquad \mathbf{OR}/\mathbf{OF} \approx 1513$	1MCA finding number of tiles 1CA simplification	
	Number of boxes/ <i>Getal bokse</i> = 1 512,0875 ÷ 16	1MCA dividing 1CA number of boxes	
	Increased number/ <i>Verhoogde getal</i> = 94,505 × 110% ✓ MCA = 103,95 ≈ 104 ✓ CA VALID/ <i>GELDIG</i> ✓ O	1MCA calc. 10% and adding it or multiply with 1,10 1CA number of boxes 1O conclusion	
	OR/OF	OR/OF	
	$SA_{\text{(open cylinder)}}/BO = 3,142 \times \text{radius} \times (\text{radius} + 2 \times \text{height})$ = 3,142 × 3,5 m × (3,5 m + 2 × 1 m) ✓ SF = 3,142 × 3,5 m × 5,5 m = 60,4835 m ² . ✓ CA	1SF substitution 1CA area of pool	
	Area of one tile/ Opp van 1 teël $= \frac{20}{100} \text{m} \times \frac{20}{100} \text{m} \checkmark \text{C}$ $= 0.2 \times 0.2 \text{ m}^2 = 0.04 \text{ m}^2. \checkmark \text{CA}$	1C conversion 1CA area of a tile	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	Continue		
	Area covered by one box/Opp wat een boks bedek	1MCA finding area of box of	
	$= 0.04 \text{ m}^2 \times 16 $ $\checkmark \text{ MCA}$	tiles	
	$= 0.64 \text{ m}^2 \qquad \checkmark \text{ CA}$	1CA simplification	
	Number of boxes/Getal bokse		
	$=\frac{60,4835}{0.000}$ \checkmark MCA	1MCA dividing	
	0,64 WCA	1CA number of boxes	
	=94,505 ✓ CA		
	T 1 1 / T 1 1	1MCA calc. 10% and adding	
	Increased number/ Verhoogde getal	it or multiply with 1,10	
	= 94,505 × 110% ✓ MCA		
	= 103,95 ≈ 104 ✓ CA	1CA number of boxes	
	VALID/GELDIG ✓ O	10 conclusion	
	OR/OF	OR/OF	
	$SA_{\text{(open cylinder)}}/BO = 3,142 \times \text{radius} \times (\text{radius} + 2 \times \text{height})$		
	= $3,142 \times 3,5 \text{ m} \times (3,5 \text{ m} + 2 \times 1 \text{ m})$ \checkmark SF	1SF substitution	
	$= 3,142 \times 3,5 \text{ m} \times 5,5 \text{ m} = 60,4835 \text{ m}^2. \checkmark \text{CA}$	1CA area of pool	
	Increased area/Vergrote opp	1MCA calc. 10% and adding	
	= 60,4835 × 1,1	it or multiply with 1,10	
	$= 66,53185 \checkmark CA$	1CA simplification	
	- 66,53165 V CA		
	Area of one tile/ Opp van 1 teël	1C conversion	
	$= \frac{20}{100} \text{m} \times \frac{20}{100} \text{m} \qquad \checkmark \text{C}$	1C conversion	
		1CA area of a tile	
	$= 0.2 \times 0.2 \text{ m}^2 = 0.04 \text{ m}^2.$ \checkmark CA	Terraica of a the	
	Area covered by one box/Opp wat een boks bedek		
	$= 0.04 \text{ m}^2 \times 16 \checkmark \text{ MCA}$	1MCA finding area of box of	
	$= 0.64 \text{ m}^2 \checkmark \text{CA}$	tiles	
	V CA	1CA simplification	
	Number of boxes/Getal bokse		
	66,53185	1MCA dividing	
	$={0.64}$ \checkmark MCA	11.1011 di viding	
	= 103,956	1CA number of boxes	
	≈ 104		
	VALID/GELDIG ✓ O	10 conclusion	
		(11)	
		[30]	

QUESTION/VRAAG 5 [37 MARKS/PUNTE]			
Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
5.1.1	R617 ✓✓RT	2RT correct road (2)	MP L1 E
5.1.2	6 km ✓✓RT	2RT correct distance (2)	MP L1 E
5.1.3	Left /Links ✓✓A	2A correct direction (2)	MP L1 E
5.1.4	Dist. = $16 \text{km} - \text{dist.}$ Hotel to Mkomazana – dist. Himeville to turn $\checkmark \text{RT}$ $Afstand = 16 \text{km} - 4.4 \text{km} - 2 \text{km} \checkmark \text{M}$ = $9.6 \text{km} \checkmark \text{CA}$	1RT 2 km 1M subtracting of at least one correct value 1CA simplification (3)	M L2 M
5.2.1	The owners need to clean, put fresh linen on the beds and get the cottage ready early for the next booking. **O** Die eienaars moet die plek skoon maak, skoon beddegoed opsit en die kothuis vroeg gereed kry vir die volgende bespreking. OR/OF To encourage spending more days at the venue. Om kliënte aan te moedig om meer dae oor te bly. OR/OF Breaking a long stay. To justify renting out the cottage for one night while someone else might have stayed longer. Dit onderbreek 'n lang oorbly. Om dit te regverdig om die kothuis uit te verhuur vir een nag terwyl iemand anders langer kon oorbly.	2O reason (2)	MP L4 M
5.2.2	Valley Cottage OR Coot Cottage Vallei kothuis OF Bleshoender kothuis ✓✓O These cottages sleeps 6 persons OR can accommodate 5 to six OR they are 5 OR Cheaper option / Price of 6 sleeper accommodation is more reasonable (R2 640 ÷ 6 = R440 pp) compared to the 2 sleeper (R1 150 ÷ 2 = R575 pp) / Hierdie kothuise is vir 6 persone OF hulle kan 5 tot 6 persone huisves OF die groep is 5 OF Dit is die goedkoper opsie / Koste per persoon vir die 6- persoon is goedkoper (R2 640 ÷ 6 = R440 pp) vergeleke met 2-persoon (R1 150 ÷ 2 = R575 pp) .	1A one correct cottage 2O reason (3)	MP L4 E

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
*5.2.3	6 sleeper / slaper:	CA from 5.2.2	M/F L4
	Total cost / totale koste \checkmark RT \checkmark RT $=$ R2 640 + R2 730 \times 2 \checkmark MA	1RT correct rate, Thursday 1RT correct rate, weekend	M
	= R8 100 ✓CA	1MA multiplying with 2 1CA simplification	
	VALID/ GELDIG ✓O	10 conclusion (5)	
5.3.1 (a)	False, the map shows other roads also have toll gates. ✓O Onwaar, die kaart toon ook ander tolhekke	1A correct option 1O reason (2)	MP L4 E
5.3.1 (b)	True/ Waar ✓✓ A	2A correct option (2)	MP L4 E
5.3.2	Top view or aerial view or bird's eye view or satellite view Bo-aansig of vanuit die lug aansig of voël-aansig of satelliet aansig.	2O correct view (2)	MP L1 E
5.3.3	Distance/Afstand = speed/spoed × time/tyd 588 km = speed/spoed × 7 h ✓SF	1SF substitution	M L2 M
	Speed/spoed = $\frac{588 \text{ km}}{7 \text{ h}}$ \checkmark A	1A change subject of formula	
	= 84 km/h ✓ CA	1CA simplification (3)	
*5.3.4	Expense for tolls / <i>Tol-fooie</i> : \checkmark_{RT} = R56,00 + R77,00 + R82,00 + R58,00	CA from 5.2.3 1 RT correct 4 tolls	M/F L3 D
	= R273 ✓CA	1CA simplification	
	Fuel used/Brandstof verbruik = $588 \text{ km} \div 100 \text{ km} \times 6,42 \checkmark \text{MA}$ = $37,7496 \checkmark \text{A}$	1MA fuel consumption rate 1A simplification	
	Fuel cost / <i>Brandstofkoste</i> = 37,7497 × R21,40 = R807,84 ✓ CA	1CA fuel cost	
	Total cost / Totale koste = R8 100 + R807,84 × 2 + R273,00 × 2	1MCA return trip 1CA total cost for 3 items	
	Cost per person / Koste per person = R10 261,68 ÷ 5 ✓ MCA = R2 052,34 ✓ CA	1MCA dividing by 5 1CA simplification	

Q/V	Solution/Oplossing	Explanation/Verduideliking	T/L
	OR/OF Round trip/ Heer en terug 588 km \times 2 = 1176 km Fuel used/Brandstof verbruik = 1 176 km \div 100 km \times 6,42 ℓ \checkmark MA = 75,4992 ℓ \checkmark A	1MA fuel consumption rate 1A simplification	
	Fuel cost / Brandstofkoste = 75,4992 × R21,40 = R1 615,68 ✓ CA Cost per person/Koste per persoon = R1 615,68 ÷ 5 ✓ MA = R323,14	1CA fuel cost 1MA dividing by 5	
	Toll fees / Tol-fooie: $= R56,00 + R77,00 + R82,00 + R58,00 $	1 RT correct 4 tolls 1CA simplification 1MCA return trip	
	Total per person/ <i>Totaal per persoon</i> = R323,14 + R109,20 + R1 620 ✓ MCA = R2 052,34 ✓ CA	1MCA adding all the values 1CA total cost	
	OR/OF Toll Expenses / Tol-fooie: \checkmark MCA $= 2(R56,00 + R77,00 + R82,00 + R58,00)$ $= R546,00 \checkmark CA$ Fuel Cost /Brandstof koste	OR/OF 1MCA return trip 1 RT correct 4 tolls 1CA simplification	
	Total Distance/Afstand = $588 \text{ km} \times 2 = 1176 \text{ km}$ $\checkmark \text{MA} \qquad \checkmark \text{A}$ Fuel used/Brandstof: $\frac{1176}{100} \times 6,42 = 75,4992 \ell$ $\text{Cost/Koste: } 75,4992 \times \text{R21},40 = \text{R1 615},68 \qquad \checkmark \text{CA}$	1MA fuel consumption rate 1A simplification 1CA fuel cost	
	Total Cost/ <i>Totale koste</i> : R8 100 + R546,00 + R1 615,68 = R10 261,68 MCA Cost PP/ Koste PP: R10 261,68 ÷ 5 = R2 052,34	1CA total cost for 3 items 1MCA dividing by 5 1CA simplification (9)	
		[37]	
		TOTAL/TOTAAL: 150	