<u>Claims</u>

5

1. A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof,

wherein in (I) C is a biaryl group C'-C"

where C' and C'' are independently aryl or heteroaryl rings such that the group C is represented by any one of the groups D to O below:

5

wherein the groups D to O are attached to rings A and B orientation [(A-C') and (C''-B)] shown and

wherein A and B are independently selected from

and

i) ii) N

wherein i) and/or ii) are linked as shown in (I) via the 3-position to group C and substituted in the 5-position as shown in (I) by -CH₂-R₁a and -CH₂-R₁b;

R₂b and R₆b are independently selected from H, F, Cl, OMe, Me, Et and CF₃;

- R₂b' and R₆b' are independently selected from H, OMe, Me, Et and CF₃;
 R₂a and R₆a are independently selected from H, Br; F, Cl, OMe, SMe; Me, Et and CF₃;
 R₂a' and R₆a' are independently selected from H, OMe, SMe; Me, Et and CF₃;
 R₃a and R₅a are independently selected from H, (1-4C)alkyl, Br, F, Cl, OH, (1-4C)alkoxy, -S(O)_n(1-4C)alkyl (wherein n = 0,1,or 2), amino, (1-4C)alkylcarbonylamino, nitro, cyano,
- -CHO, -CO(1-4C) alkyl, -CONH₂ and -CONH(1-4C)alkyl;
 R₃a', R₅a' are independently selected from H, (1-4C)alkyl, OH, (1-4C)alkoxy,
 (1-4C)alkylthio, amino, (1-4C)alkylcarbonylamino, nitro, cyano, -CHO, -CO(1-4C)alkyl,
 -CONH₂ and -CONH(1-4C)alkyl;

wherein any (1-4C)alkyl group may be optionally substituted with F, OH, (1-4C)alkoxy,

-S(O)_n(1-4C)alkyl (wherein n = 0,1,or 2) or cyano; wherein at least one of R₂a', R₆a', R₃a, R₅a, R₃a', and R₅a' is not H; wherein when ring C' is a pyridine ring (ie when group C is group H, I, J, K, N or O) the ring nitrogen may optionally be oxidised to an N-oxide;

R₁a and R₁b are independently selected from hydroxy, -OSi(tri-(1-6C)alkyl) (wherein the 3 (1-6C)alkyl groups are independently selected from all possible (1-6C)alkyl groups), -NR₅C(=W)R₄, -OC(=O)R₄,

a)
$$\stackrel{\mathsf{R5}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}{\overset{\mathsf{I}}}}$$

wherein W is O or S;

R₄ is hydrogen, amino, (1-8C)alkyl, -NHR₁₂, -N(R₁₂)(R₁₃), -OR₁₂ or -SR₁₂, (2-4C)alkenyl, (1-8C)alkylaryl, mono-, di-, tri- and per-halo(1-8C)alkyl, -(CH₂)p(3-6C)cycloalkyl or -(CH₂)p(3-6C)cycloalkenyl wherein p is 0, 1 or 2; and wherein at each occurrence, alkyl, alkenyl, cycloalkyl cycloalkenyl in substituents in R₄ is optionally substituted with one two

- 5 alkenyl, cycloalkyl cycloalkenyl in substituents in R₄ is optionally substituted with one, two, three or more F, Cl or CN;
 - R_5 is hydrogen, (3-6C)cycloalkyl, phenyloxycarbonyl, tert-butoxycarbonyl, fluorenyloxycarbonyl, benzyloxycarbonyl, (1-6C)alkyl (optionally substituted by cyano or (1-4C)alkoxycarbonyl), -CO₂R₈, -C(=O)R₈, -C(=O)SR₈, -C(=S)R₈, P(O)(OR₉)(OR₁₀) and
- 10 -SO₂R₁₁, wherein R₈, R₉, R₁₀ and R₁₁ are as defined hereinbelow;
 - HET-1 is selected from HET-1A and HET-1B wherein:
 - HET-1A is a C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S; which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom
- by one or two substituents selected from RT as hereinafter defined and/or on an available nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl; HET-1B is a C-linked 6-membered heteroaryl ring containing 2 or 3 nitrogen heteroatoms, which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom by one, two or three substituents selected
- 20 from RT as hereinafter defined and/or on an available nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
 - HET-2 is selected from HET-2A and HET-2B wherein
 - HET- 2A is an N-linked 5-membered, fully or partially unsaturated heterocyclic ring, containing either (i) 1 to 3 further nitrogen heteroatoms or (ii) a further heteroatom selected
- 25 from O and S together with an optional further nitrogen heteroatom; which ring is optionally substituted on a C atom, other than a C atom adjacent to the linking N atom, by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom, other than a C atom adjacent to the linking N atom, by a substituent selected from RT as hereinafter defined and/or on an available nitrogen atom, other than a N atom adjacent to the linking N atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
- HET-2B is an N-linked 6-membered di-hydro-heteroaryl ring containing up to three nitrogen heteroatoms in total (including the linking heteroatom), which ring is substituted on a suitable C atom, other than a C atom adjacent to the linking N atom, by oxo or thioxo and/or which

ring is optionally substituted on any available C atom, other than a C atom adjacent to the linking N atom, by one or two substituents independently selected from RT as hereinafter defined and/or on an available nitrogen atom, other than a N atom adjacent to the linking N atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;

- 5 RT is selected from a substituent from the group:
 - (RTa1) hydrogen, halogen, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, (3-6C)cycloalkenyl, (1-4C)alkylthio, amino, azido, cyano and nitro; or
 - (RTa2) (1-4C)alkylamino, di-(1-4C)alkylamino, and (2-4C)alkenylamino;
- 10 or RT is selected from the group
 - (RTb1) (1-4C)alkyl group which is optionally substituted by one substituent selected from hydroxy, (1-4C)alkoxy, (1-4C)alkylthio, cyano and azido; or
 - (RTb2) (1-4C)alkyl group which is optionally substituted by one substituent selected from (2-4C)alkenyloxy, (3-6C)cycloalkyl, and (3-6C)cycloalkenyl;
- 15 or RT is selected from the group
 - (RTc) a fully saturated 4-membered monocyclic ring containing 1 or 2 heteroatoms independently selected from O, N and S (optionally oxidised), and linked via a ring nitrogen or carbon atom;
 - and wherein at each occurrence of an RT substituent containing an alkyl, alkenyl, alkynyl,
- 20 cycloalkyl or cycloalkenyl moiety in (RTa1) or (RTa2), (RTb1) or (RTb2), or (RTc) each such moiety is optionally substituted on an available carbon atom with one, two, three or more substituents independently selected from F, Cl, Br, OH and CN;
 - R_6 is cyano, -COR₁₂, -COOR₁₂, -CONHR₁₂, -CON(R₁₂)(R₁₃), -SO₂R₁₂, -SO₂NHR₁₂, -SO₂N(R₁₂)(R₁₃) or NO₂, wherein R₁₂ and R₁₃ are as defined hereinbelow;
- 25 R₇ is hydrogen, amino, (1-8C)alkyl, -NHR₁₂, -N(R₁₂)(R₁₃), -OR₁₂ or -SR₁₂, (2-4C)alkenyl, (1-8C)alkylaryl, mono-, di-, tri- and per-halo(1-8C)alkyl, -(CH₂)p(3-6C)cycloalkyl or -(CH₂)p(3-6C)cycloalkenyl wherein p is 0, 1 or 2;
 - R₈ is hydrogen, (3-6C)cycloalkyl, phenyl, benzyl, (1-5C)alkanoyl, (1-6C)alkyl (optionally substituted by substituents independently selected from (1-5C)alkoxycarbonyl, hydroxy,
- 30 cyano, up to 3 halogen atoms and -NR₁₅R₁₆ (wherein R₁₅ and R₁₆ are independently selected from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for

WO 2004/048370 PCT/GB2003/005082

- 68 -

any $N(R_{15})(R_{16})$ group, R_{15} and R_{16} may additionally be taken together with the nitrogen atom to which they are attached to form a pyrrolidinyl, piperidinyl or morpholinyl ring); R_9 and R_{10} are independently selected from hydrogen and (1-4C)alkyl; R_{11} is (1-4C)alkyl or phenyl;

- 5 R₁₂ and R₁₃ are independently selected from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for any N(R₁₂)(R₁₃) group, R₁₂ and R₁₃ may additionally be taken together with the nitrogen atom to which they are attached to form a pyrrolidinyl,
- piperidinyl or morpholinyl ring which ring may be optionally substituted by a group selected from (1-4C)alkyl, (1-4C)cycloalkyl, (1-4C)acyl, -COO(1-4C)alkyl, S(O)n(1-4C)alkyl (wherein n = 1 or 2), -CS(1-4C)alkyl and -C(=S)O(1-4C)alkyl.
- A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo
 hydrolysable ester thereof, as claimed in claim 1 wherein group C is represented by any one of groups D, E, H and I.
- 3. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 1 or claim 2, wherein group C is represented 20 by group D.
 - 4. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 1 or claim 2, wherein group C is represented by group H.

25

- 5. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 3 wherein R_3a is methoxy, methyl or fluoro and R_5a is hydrogen.
- 30 6. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 4 wherein R₃a is methoxy, methyl or fluoro and R₂a' and R₆a' are hydrogen; or R₃a and R₂a' are hydrogen and R₆a' is methyl or methoxy.

7. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein $R_{1}a$ and $R_{1}b$ are independently selected from -NHCO(1-4C)alkyl, -NHCO(1-4C)cycloalkyl, -NHCS(1-4C)alkyl, -N(R_{5})-HET-1 and HET-2.

5

- 8. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims, wherein $R_{1}a$ and $R_{1}b$ are independently selected from hydroxy, -NHCO(1-4C)alkyl, and HET-2.
- 10 9. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims, wherein HET-2A is selected from the structures (Za) to (Zf) below:

- 15 wherein u and v are independently 0 or 1.
 - 10. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 9 wherein RT is selected from
 - (a) hydrogen;
- 20 (b) halogen;
 - (c) cyano;
 - (d) (1-4C)alkyl;
 - (e) monosubstituted (1-4C)alkyl;
 - (f) disubstituted (1-4C)alkyl, and
- 25 trisubstituted (1-4C)alkyl.

15

20

- 11. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein at least one of A and B is an oxazolidinone.
- 5 12. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein both A and B are oxazolidinones.
- 13. A compound of the formula (Ia) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any preceding claim.

- 14. A pro-drug of a compound as claimed in any one of the preceding claims.
- 15. A method for producing an antibacterial effect in a warm blooded animal which comprises administering to said animal an effective amount of a compound of the invention as claimed in any one of claims 1 to 14, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof.
- 16. A compound of the invention as claimed in any one of claims 1 to 14, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, for use as a medicament.
- 25 17. The use of a compound of the invention as claimed in any one of claims 1 to 14, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, in the manufacture of a medicament for use in the production of an antibacterial effect in a warm blooded animal.

20

- 18. A pharmaceutical composition which comprises a compound of the invention as claimed in any one of claims 1 to 14, or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof, and a pharmaceutically-acceptable diluent or carrier.
- 5 19. A process for the preparation of a compound of formula (I) as claimed in claim 1 or pharmaceutically acceptable salts or in-vivo hydrolysable esters thereof, which process comprises one of processes (a) to (h); and thereafter if necessary:
 - i) removing any protecting groups;
 - ii) forming a pro-drug (for example an in-vivo hydrolysable ester); and/or
- 10 iii) forming a pharmaceutically-acceptable salt; wherein said processes (a) to (h) are:
 - (a) modifying a substituent in, or introducing a substituent into another compound of the invention by using standard chemistry;
- (b) reaction of a molecule of a compound of formula (IIa) with a molecule of a compound of formula (IIb), wherein X and X' are leaving groups useful in palladium coupling and are chosen such that an aryl-aryl, heteroaryl-aryl, or heteroaryl-heteroaryl bond replaces the aryl-X (or heteroaryl-X) and aryl-X' (or heteroaryl-X') bonds;

c) reaction of a (hetero)biaryl derivative (IIIa) or (IIIb) carbamate with an appropriately substituted oxirane to form an oxazolidinone ring at the undeveloped aryl position

WO 2004/048370 PCT/GB2003/005082

- 72 -

or by variations on this process in which the carbamate is replaced by an isocyanate or by an amine or/and in which the oxirane is replaced by an equivalent reagent $X-CH_2CH(O-I)$

- 5 optionally protected)CH₂R₁a or X-CH₂CH(O-optionally protected)CH₂R₁b where X is a displaceable group;
 - d) reaction of a (hetero)biaryl derivative (IVa) or (IVb) to form an isoxazoline ring at the undeveloped aryl position;

OHC
$$C$$
 B H_2N-OH $HO-N$ C B H_2N-OH $HO-N$ HO

or by variations on this process in which the reactive intermediate (a nitrile oxide IVa'' or IVb'') is obtained other than by oxidation of an oxime (IVa') or (IVb');

- (e) for HET as optionally substituted 1,2,3-triazoles, compounds of the formula (I) by cycloaddition via the azide to acetylenes, or to acetylene equivalents such as optionally substituted cylcohexa-1,4-dienes or optionally substituted ethylenes bearing eliminatable
 5 substituents such as arylsulfonyl;
 - (f) for HET as 4-substituted 1,2,3-triazole compounds of formula (I) by reacting aminomethyloxazolidinones with 1,1-dihaloketone sulfonylhydrazones

$$\begin{array}{c|c} & & & & \\ & &$$

- 10 (g) for HET as 4-substituted 1,2,3-triazole compounds of formula (I), by reacting azidomethyl oxazolidinones with terminal alkynes using Cu(I) catalysis to give 4-substituted 1,2,3-triazoles
- (h) for HET as 4-halogenated 1,2,3-triazole compounds of formula (I) may also be made
 15 by reacting azidomethyl oxazolidinones with halovinylsulfonyl chlorides at a temperature between 0 °C and 100 °C either neat or in an inert diluent, as shown below

20. A pharmaceutical composition as claimed in claim 18, wherein said composition 20 includes a vitamin.

WO 2004/048370 PCT/GB2003/005082

21. A pharmaceutical compositionas claimed in claim 20 wherein said vitamin is Vitamin B.

- 74 -

- 5 22. A pharmaceutical composition as claimed in claim 18, wherein said composition comprises a combination of a compound of the formula (I) and an antibacterial agent active against gram-positive bacteria.
- 23. A pharmaceutical composition as claimed in claim 18, wherein said composition comprises a combination of a compound of the formula (I) and an antibacterial agent active against gram-negative bacteria.