Orthogonal Projections Notes

David E. James

July 25, 2025

Orthogonal Projections

Goal: if W is a subspace in \mathbb{R}^n , how do we get \hat{y} , the projection in W of \vec{y} ?

$$\hat{y} = \operatorname{proj}_{W}(\vec{y}) \tag{1}$$

Theorem (Orthogonal Decomposition Theorem)

Let W be a subspace with orthogonal basis $\{\vec{u_1} \cdots \vec{u_p}\}$. Let $\vec{y} \in \mathbb{R}^n$.

$$\hat{y} = \left(\frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}\right) \vec{u}_1 \cdots \left(\frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p}\right) \vec{u}_p \tag{2}$$

decompose...

$$\vec{y} = \hat{y} + (\vec{y} - \hat{y}) \tag{3}$$

$$\hat{y} \in W \tag{4}$$

$$(\vec{y} - \hat{y}) \in W^{\perp} \tag{5}$$

$$\hat{y} \in W \tag{4}$$

$$(\vec{y} - \hat{y}) \in W^{\perp} \tag{5}$$

Theorem (Best Approximation Theorem)

Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$, $\hat{y} = proj_W(\vec{y})$

Then
$$\hat{y}$$
 is the closest point in W to \vec{y} . (6)

and...

If
$$\vec{y} \in W$$
 then $\hat{y} = \vec{y}$ (7)

Theorem (Projection is a Linear Transform)

Let W be a subspace in \mathbb{R}^n Let $\{\vec{u}_1 \cdots \vec{u}_p\}$ be an orthonormal basis of W

Orthonormal basis means \vec{u}_i are all unit vectors, so:

$$|\vec{u}_1| = 1 \text{ and } \vec{u}_1 \cdot \vec{u}_1 = 1$$
 (8)