$|D_{s1}^*(2860)^{\pm}|$

 $I(J^P) = 0(1^-)$

OMITTED FROM SUMMARY TABLE

 J^P consitent with 1^- from angular analysis of AAIJ 14AW. Observed by AUBERT, BE 06E and AUBERT 09AR in inclusive production of DK and D^*K in e^+e^- annihilation.

$D_{s1}^*(2860)^+$ MASS

VALUE (MeV) 1 AALI $2859 \pm 12 \pm 24$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet

 2,3 AAIJ 12AU LHCB $pp \rightarrow (DK)^+X$ at 7 TeV $2866.1 \pm 1.0 \pm 6.3$ 36k 3,4 AUBERT 09AR BABR $_{e}^{+}\,_{e}^{-} \rightarrow D^{(*)}\,_{KX}$ $2862 \pm 2 + 5 \\ - 2$ 3122 ⁵ AUBERT,BE 06E BABR $e^+e^- \rightarrow DKX$ $2856.6 \pm 1.5 \pm 5.0$

$D_{\epsilon 1}^{*}(2860)^{+}$ WIDTH

 2,3 AAIJ 12AU LHCB $pp \rightarrow (DK)^+X$ at 7 TeV $69.9 \pm \ 3.2 \pm \ 6.6$ 36k 3,4 AUBERT 09AR BABR $e^+e^- \rightarrow D^{(*)}KX$ $48 \pm 3 \pm 6$ 3122 ⁵ AUBERT,BE 06E BABR $e^+e^- \rightarrow DKX$ $47 \pm 7 \pm 10$

Created: 5/30/2017 17:21

¹Separated from the spin-3 component $D_{s3}^*(2860)^-$ by a fit of the helicity angle of the $\overline{\it D}{}^0\,{\it K}^-$ system, with a statistical significance of the spin-3 and spin-1 components in

² From the combined fit of the $D^+K^0_S$ and D^0K^+ modes in the model including the $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and spin-0 $D_{sJ}^*(2860)^+$.

³ Possible contribution from the $D_{s3}^*(2860)$ state.

⁴ From simultaneous fits to the two DK mass spectra and to the total D^*K mass spec-

⁵ Superseded by AUBERT 09AR.

¹Separated from the spin-3 component $D_{s3}^*(2860)^-$ by a fit of the helicity angle of the $\overline{\it D}{}^0\,{\it K}^-$ system, with a statistical significance of the spin-3 and spin-1 components in

² From the combined fit of the $D^+K^0_S$ and D^0K^+ modes in the model including the $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and spin-0 $D_{sJ}^*(2860)^+$.

³ Possible contribution from the D_{s3}^* (2860) state.

⁴ From simultaneous fits to the two DK mass spectra and to the total D^*K mass spec-

⁵ Superseded by AUBERT 09AR.

$D_{s1}^{*}(2860)^{\pm}$ DECAY MODES

	Mode				
Γ ₁	DK				
Γ_2	D^0K^+				
Γ3	$D^+ K_S^0$				
Г	D* K				
Γ ₅	$D^{*0} K^{+}$				
Γ ₅ Γ ₆	$D^{*0}K^{+}$ $D^{*+}K^{0}_{S}$				

$D_{s1}^*(2860)^{\pm}$ BRANCHING RATIOS

$\Gamma(D^*K)/\Gamma(DK)$					Γ_4/Γ_1
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.10\pm0.15\pm0.19$	3122	¹ AUBERT	09AR BABR	$e^+e^- \rightarrow$	$D^{(*)}KX$
$^{ m 1}$ From the average o	f the cor	responding ratios wit	th $D^{(*)0}K^{+}$	and $D^{(*)+}$	κ_S^0 .

 $\Gamma(D^{*0}K^+)/\Gamma(D^0K^+)$ Γ_5/Γ_2

VALUE EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.04±0.17±0.20 2241 AUBERT 09AR BABR $e^+e^- \rightarrow D^{(*)}KX$

 1 From the $D^{*0}K^{+}$ and $D^{0}K^{+}$, where $D^{*0} \rightarrow D^{0}\pi^{0}$.

 $\Gamma(D^{*+}K^0_S)/\Gamma(D^+K^0_S)$ VALUE

EVTS

DOCUMENT ID

TECH COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

 $1.38 \pm 0.35 \pm 0.49$ 881 1 AUBERT 09AR BABR $e^{+}e^{-} \rightarrow D^{(*)} K X$ 1 From the $D^{*+}K^{0}_{S}$ and $D^{+}K^{0}_{S}$, where $D^{*+} \rightarrow D^{+}\pi^{0}$.

$D_{s1}^*(2860)^{\pm}$ REFERENCES

AAIJ 14AW PRL 113 162001 R. Aaij et al. (LHCb Collab.) JP (LHCb Collab.) AAIJ 12AU JHEP 1210 151 R. Aaij et al. (BABAR Collab.) **AUBERT** 09AR PR D80 092003 B. Aubert et al. 06E PRL 97 222001 (BABAR Collab.) AUBERT, BE B. Aubert et al.

Created: 5/30/2017 17:21