MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2008 ROUND 7 TEAM QUESTIONS

ANSWERS

- A) ______ units D) _____
- B) ______ E) ____
- C) _____feet/min F)
- A) The diagram at the right illustrates possible templates for a rectangular solid (a box) with dimensions L = 58, W = 20 and H = 12. The six faces of the box are marked accordingly. Point A is located on the left face 1 unit from the top and halfway between the front and back. Point B should be located on the right face 1 unit from the bottom and halfway between the front and back.

The right face in this template could be attached in any one of four possible positions, as **w** indicated.

Position *B* appropriately on the possible right faces and compute the shortest possible length of \overline{AB} .

B) The hypotenuse c in right $\triangle ABC$ has length 10.

 \overline{CN} is an altitude and \overline{CM} is a median. Let P and Q denote the areas of ΔACB and ΔCNM respectively and let h = CN.

If h is an integer, compute all possible <u>rational</u> values of $\frac{P}{Q}$.

C) Walker Texas Ranger (Chuck Norris) travels in a rectangular path, *clockwise* starting at *A*, completing a distance of 1320 feet in 12 minutes.

We are also given the following facts:

$$2AB = 3BC$$

His velocity v is uniform between any two consecutive vertices and v_{AB} : v_{BC} : v_{CD} : v_{DA} = 1 : 2 : 4 : 40

Compute Walker's velocity between *D* and *A* in feet per minute.

