Université de Bretagne-Sud

STA 2209 : Statistique Bayésienne

Problème 8 : Analyse Bayésienne semi-paramétrique en fiabilité

Soit un échantillon (X_1, \dots, X_n) de durées i.i.d. de loi f(x) définie par :

$$f(x) = f_i$$
 pour $x \in [t_{i-1}, t_i], i = 1, \dots, m$ avec $t_0 = 0$ et $t_m = +\infty$.

Soit la fonction $\lambda(x)$ définie par :

$$\lambda(x) = \lim_{dx \to 0} \frac{P(X \le x + dx | X > x)}{dx}$$

On note, pour $x \in [t_i - 1, t_i]$, $\lambda(x) = \lambda_i$ et $R(t_i) = P(X > t_i) = R_i$, $i = 1, \dots, m$. On note (k_1, \dots, k_m) le vecteur du nombre d'observations dans chaque intervalle i.e. k_i est le nombre de durées dans dans l'intervalle $[t_i - 1, t_i]$. $\sum_{i=1}^m k_i = n$.

- 1. Montrer que $\lambda(x) = f(x)/(1 F(x))$ où F(x) est la fonction de répartition de X i.e. $\int_0^x f(t)dt$.
- 2. En considérant l'observation d'un vecteur de pannes, donner l'expression de la fonction de vraisemblance pour les paramètres (f_1, \dots, f_m) .
- 3. Donner cette expression pour les paramètres $(\lambda_1, \dots, \lambda_m)$.
- 4. En considérant une loi conjuguée pour le modèle obtenu précédemment, proposer un estimateur de Bayes du taux de survie. Commenter.
- 5. Construire une loi non informative (On pourra appliquer la règle de Jeffreys) et donner alors une estimation bayésienne du vecteur λ .

On souhaite maintenant introduire dans l'analyse l'idée a priori que le taux de survie est croissant. On pose $u_i=1-\lambda_i$. n.b. $u_i=P(X>t_i/X>t_{i-1})$. On se donne une loi a priori de type Dirichlet sur le vecteur $((y_1,\cdots,y_k)$ où $y_i=u_{i-1}-u_i,\ u_0=1$ et $y_{m+1}=1-\sum_{j=1}^m y_j=u_m$. Les paramètres $(\beta\alpha_1,\cdots,\beta\alpha_m)$ de cette loi sont tels que $\beta>0,\ \alpha_i>0$ pour tout i et $\sum_{j=1}^{m+1}\alpha_j=1$.

- 1. Montrer que l'espérance mathématique des v.a. u_i est $\sum_{j=i+1}^{m+1} \alpha_j$
- 2. En utilisant la formule du binôme de Newton, montrer qu'une estimation Bayésienne des λ_i pour la loi a priori définie ci-dessus et sous l'hypothèse d'un coût quadratique a la forme suivante :

$$\tilde{\lambda}_i = \frac{C_{i,1}}{C_0} \ , \quad i = 1, \cdots, m$$

où $C_{i,1}$ est égal à C_0 où k_i est devenu $k_i+1,\,C_0$ étant :

$$C_0 = \sum_{l=0}^{k_m} \cdots \sum_{l=0}^{k_1} \frac{k_i}{l_i} (-1)^{l_i} B(\beta \alpha_i, \xi_i)$$

où B est le coefficient bêta.

T. Mazzuchi, N. D. Singpurwalla, "A Bayesian approach to inference for monotone failure rate", Statistics and Probability Letters 3, 1985.