Troels Henriksen (athas@sigkill.dk)

DIKU University of Copenhagen

29-11-2021

Preliminaries

Material

- *The Third Homomorphism Theorem* (Gibbons; 1995)
- Construction of List Homomorphisms by Tupling and Fusion (Hu, Iwasaki, Takeichi; 1996)

Approach

- This material is dense.
- Do not get dissuaded!
 - Ask about notation that is unclear.
- Proofs in the papers, not the lecture.
- We focus on intuition about working algebraically with (parallel!) programs.
- My notation is slightly difference than in the papers.
 - ▶ I write *hom* for homomorphisms (and leave out neutral elements).
 - ▶ I write map f instead of f *.

Definitions and properties

Homomorphism theorems
Applying the third homomorphism theorem

Deriving efficient almost homomorphisms

Almost homomorphisms
Deriving initial almost homomorphisms by tupling
Fusion theorems for homomorphisms
Fusion of mss

Conclusions

Definition: list homomorphism

A function h is called a list homomorphism if there exists a binary operator \odot such that for all finite lists x, y

$$h(x + y) = h x \odot h y$$

where # means list concatenation.

- Intuitively, homomorphisms are functions where we can split the input arbitrarily, solve the subproblems, and combine the partial results.
- Each "split" can be solved in parallel.

Examples of list homomorphisms

Summation

$$sum [] = 0$$

 $sum [x] = x$
 $sum (x + y) = sum x + sum y$

Length

$$\begin{array}{ll} len \ [] & = 0 \\ len \ [x] & = 1 \\ len \ (x + y) & = len \ x + len \ y \end{array}$$

Observations

$$h(x + y) = h x \odot h y$$

- ⊙ is necessarily associative because # is associative.
- $h \mid$ is necessarily a neutral element for \odot .

For concision, we write

$$hom (\odot) f$$

for a list homomorphism h, where

$$f x = h [x]$$
$$0_{\odot} = h [$$

Examples

$$sum = hom (+) id$$

 $length = hom (+) (const 1)$

Reductions

Reductions are homomorphisms

A function of the form

 $hom (\odot) id$

is called a *reduction* with operator \odot .

- Equivalent to what we would write as reduce $0 \cdot 0$ in Futhark.
- For concision we will abbreviate as follows:

$$red \odot = hom (\odot) id$$

▶ Given \odot , the neutral element 0_{\odot} is always unique (think about why).

Maps

Maps are homomorphisms

A function of the form

$$hom (++) ([\cdot] \circ f)$$

is called a map with function f.

- [·] is the function $\lambda x \to [x]$ that turns x into [x].
- We'll write this as map f.
- Really is just what you expect, no surprises here.

Leftwards and rightwards functions

A function on lists h is \oplus -leftwards if and only if for all elements a and lists y,

$$h([a] + y) = a \oplus h y$$

- ⊕ need not be associative.
- Intuitively, what does this say about h?

Leftwards and rightwards functions

A function on lists h is \oplus -leftwards if and only if for all elements a and lists y,

$$h([a] + y) = a \oplus h y$$

- ⊕ need not be associative.
- Intuitively, what does this say about *h*?
- Suppose

$$h \mid \mid = e$$

then

$$h[a,b,c] = a \oplus (b \oplus (c \oplus e))$$

- A \oplus -leftwards function is a right-to-left *fold*, denoted by *foldr* (\oplus) *e*.
- Symmetrically, for an an \otimes -rightwards function h,

$$h(y + [a]) = hy \otimes a$$

which we denote by foldl (\otimes) e.

Definitions and properties

Homomorphism theorems

Applying the third homomorphism theorem

Deriving efficient almost homomorphisms

Almost homomorphisms
Deriving initial almost homomorphisms by tupling
Fusion theorems for homomorphisms
Fusion of mss

Conclusions

First Homomorphism Theorem

Every monomorphism can be written as the composition of a reduction and a map.

$$hom (\odot) f = hom (\odot) id \circ map f$$

Conversely, every such composition is a homomorphism.

- This is why map reduce compositions are so crucial.
- Sometimes it is easiest to invent parallel algorithms by thinking "homormorphism-style" in terms of recursively splitting and combining subresults.
 - Can turn this into data-parallel map-reduce code mechanically.

Second Homomorphism Theorem

If \odot is associative, then

$$hom \ (\odot) \ f = foldr \ (\oplus) \ 0_{\odot} \quad \text{where } x \oplus y = f \ x \odot y$$

= $foldl \ (\otimes) \ 0_{\otimes} \quad \text{where } x \otimes y = x \odot f \ y$

That is, every homomorphism is both a leftwards and a rightwards function.

- Intuition: as a homomorphism allows us to split "however we want", we can also split consistently with a left (or right) bias.
- What about the other direction?

Third Homomorphism Theorem

If h is leftwards and rightwards, then h is a homomorphism.

- Why this is useful: If we can come up with left-folds and right-folds that both solve the problem, then a homormorphism must also exist.
- **Put another way:** If a problem can be solved with both a *foldr* and a *foldl*, then a parallel algorithm for the problem also exists.

Third Homomorphism Theorem

If h is leftwards and rightwards, then h is a homomorphism.

- Why this is useful: If we can come up with left-folds and right-folds that both solve the problem, then a homormorphism must also exist.
- **Put another way:** If a problem can be solved with both a *foldr* and a *foldl*, then a parallel algorithm for the problem also exists.
- Unfortunately:
 - Not all homomorphisms are usefully parallel.
 - ► The proof does not tell us how to *construct* a practical homomorphism from the left and right folds.

Proof sketch (full details in Gibbons' paper)

The statement to prove

If h is leftwards and rightwards, then h is a homomorphism.

Steps:

1. Prove that

$$h v = h x \wedge h w = h y \Rightarrow h (v + w) = h (x + y)$$

► Rough steps:

$$h (v + w) = \dots$$
 $= h (v + y)$ (By treating h as leftwards function.)
 $= \dots$
 $= h (x + y)$ (By treating h as rightwards function.)

2. Prove that this means h is a homomorphism.

The function h is a homomorphism if and only if the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v + w) = h (x + y)$$

If h is a homomorphism then for all a, b there is a \oplus such that,

holds for all lists v, w, x, y.

"Only if" part

$$h(a+b) = ha \oplus hb$$

and then

$$h(v + w) = h v \oplus h w$$
 (Def. of homomorphism)
= $h x \oplus h y$ (LHS of implication)
= $h(x + y)$ (Def. of homomorphism)

The function \boldsymbol{h} is a homomorphism if and only if the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v + w) = h (x + y)$$

holds for all lists v, w, x, y.

"If" part

■ Choose
$$g$$
 such that $h \circ g \circ h = h$ and define

- (We'll show that g exists in a moment.)
 We have h x = h (g (h x)) and h y = h (g (h y)).
- With v = g(hx) and w = g(hy) then

$$h(x + y) = h(g(h x)) + g(h y)$$
$$= h x \odot h y$$

 $a \odot b = h (g a + g b)$

Existence of g

Given h, we must construct g such that

$$h \circ g \circ h = h$$

- Can we be sure such a g exists for any h?
 - **Yes:** To compute g(x), enumerate domain of h and produce first y such that h(y) = x.
 - ► Theoretically sound, but not really practical.
 - ► When we apply the Third Homomorphism Theorem we better come up with a more reasonable *g* than this.

Definitions and properties
Homomorphism theorems
Applying the third homomorphism theorem

Deriving efficient almost homomorphisms

Almost homomorphisms
Deriving initial almost homomorphisms by tupling
Fusion theorems for homomorphisms
Fusion of mss

Conclusions

Consider sorting

We can define

$$sort = foldr ins []$$

where

$$ins \ a \ [] = [a]$$
 $ins \ a \ (b:x) = \begin{cases} a:b:x & \text{if } a \leq b \\ b:ins \ a \ x & \text{otherwise} \end{cases}$

That is, $ins \ a \ l$ inserts a at the appropriate location in the sorted list l.

Consider sorting

We can define

$$sort = foldr ins$$

where

$$ins \ a \ [] = [a]$$
 $ins \ a \ (b:x) = \begin{cases} a:b:x & \text{if } a \leq b \\ b:ins \ a \ x & \text{otherwise} \end{cases}$

That is, ins a l inserts a at the appropriate location in the sorted list l.

$$sort = foldl ins'$$

where

$$ins' x a = ins a x$$

As *sort* is both leftwards and rightwards, there is a homomorphic sorting algorithm.

Homomorphic sorting

By the Third Homomorphism Theorem, we get a homomorphism $hom \odot [\cdot]$ where

$$u \odot v = sort (unsort u + unsort v)$$

for some function *unsort* such that

$$sort \circ unsort \circ sort = sort$$

Can you think of such a function?

Homomorphic sorting

By the Third Homomorphism Theorem, we get a homomorphism $hom \odot [\cdot]$ where

$$u \odot v = sort (unsort u + unsort v)$$

for some function *unsort* such that

$$sort \circ unsort \circ sort = sort$$

Can you think of such a function?

$$unsort = id$$

This gives

$$u \circ v = sort (u + v)$$

Is this a good sorting algorithm?

Homomorphic sorting

By the Third Homomorphism Theorem, we get a homomorphism $hom \odot [\cdot]$ where

$$u \odot v = sort (unsort u + unsort v)$$

for some function *unsort* such that

$$sort \circ unsort \circ sort = sort$$

Can you think of such a function?

$$unsort = id$$

This gives

$$u \circ v = sort (u + v)$$

Is this a good sorting algorithm?

Homomorphic sorting in words

"To sort the concatenation of two sorted lists u and v, concatenate u and v and then sort the result using some other sorting algorithm."

Improving the homomorphic sort

■ In the paper, Gibbons goes on to mechanically derive a more efficient \odot , based on the property that u will be sorted.

$$u \odot v = sort (u + v)$$

= foldl ins' $[] (u + v)$
= foldl ins' (foldl ins' $[] u)v$
= foldl ins' (sort u) v
= foldl ins' u v

- Now $u \odot v$ merges two sorted lists in O(n) time.
- lacktriangledown By also assuming v is sorted, Gibbons eventually derives mergesort.
 - Read the paper!
- **Not parallel**, but we could in principle have derived a parallel ⊙ instead.

Definitions and properties
Homomorphism theorems
Applying the third homomorphism theorem

Deriving efficient almost homomorphisms Almost homomorphisms

Deriving initial almost homomorphisms by tupling Fusion theorems for homomorphisms Fusion of *mss*

Conclusions

Almost homomorphisms

Some functions are not homomorphisms.

• Knowing the means of arrays x and y does not let us compute the mean of x + y.

But they can be turned into homomorphisms if we compute a little extra information.

■ Knowing the means x_{mean} , y_{mean} and sizes x_n , y_n of x, y lets us compute the mean and size of x + y.

This is called an *almost homomorphism*.

mean as an almost homomorphism

mean
$$[]$$
 = $(0,0)$
mean $[x]$ = $(x,1)$
mean $(x + y)$ = $(\frac{x_{mean} \cdot x_n + y_{mean} \cdot y_n}{x_n + y_n}, x_n + y_n)$
where
 $(x_{mean}, x_n) = mean x$
 $(y_{mean}, y_n) = mean y$

To compute the mean we then project out a component

$$\pi_1 \circ mean$$

Definitions and properties
Homomorphism theorems
Applying the third homomorphism theorem

Deriving efficient almost homomorphisms

Almost homomorphisms

Deriving initial almost homomorphisms by tupling

Fusion theorems for homomorphisms Fusion of *mss*

Conclusions

The maximum segment sum problem

Problem statement

Given a list A, find the largest sum of a subsequence A[i:j].

Examples

$$mss [0, 3, -2] = 3$$

 $mss [4, -1, 0] = 4$
 $mss [0, 3, -2, 4, -1, 0] = 5$

Not a homomorphism

- Knowing mss x and mss y is not enough to give us mss(x + y).
- E.g. x = [0, 3, -2], y = [4, -1, 0] as above.

But is an almost homomorphism

- With human creativity we can come up with an associative operator on 4 — tuples that lets us solve MSS as an almost homomorphism.
- But can we also derive it systematically?

Specification of *mss*

$$mss = max^s \circ (map^s \ sum) \circ segs$$

Note that max^s and map^s are set operations.

```
= max^{s} \circ (map^{s} sum) \circ segs
mss
                                         = \{ \}
segs
segs [x]
                                        = \{ [x] \}
segs (xs + vs)
                                         = segs xs \cup segs ys \cup (tails xs <math>\mathcal{X}_{++} inits ys)
inits [
                                         = \prod
inits [x]
                                        = [[x]]
inits (xs + ys)
                                        = inits xs + map (xs+) (inits ys)
tails []
                                         = \Pi
tails [x]
                                        = [[x]]
tails (xs + vs)
                                        = map (+vs) (tails xs) + tails vs
[x_1, \cdots, x_n] \mathcal{X}_{\oplus} [y_1, \cdots, y_m] = \{x_1 \oplus y_1, \cdots, x_1 \oplus y_m, \cdots, x_n \oplus y_1, \cdots, x_n \oplus y_m\}
```

Tupling

$$(f \triangle g) x = (f x, g x)$$

So $f \triangle g$ is a function that applies both f and g to its argument.

$$a(\oplus \triangle \otimes)b = (a \oplus b, a \otimes b)$$

Example

$$(+1) \vartriangle (\cdot 2) \vartriangle (-3) = \lambda x \rightarrow (x+1, x \cdot 2, x-3)$$

$$(+) \vartriangle (\cdot) \vartriangle (-) = \lambda(x,y) \longrightarrow (x+y,x\cdot y,x-y)$$

Tupling

$$(f \triangle g) x = (f x, g x)$$

So $f \triangle g$ is a function that applies both f and g to its argument.

$$a(\oplus \triangle \otimes)b = (a \oplus b, a \otimes b)$$

Example

$$(+1) \triangleq (\cdot 2) \triangleq (-3) = \lambda x \rightarrow (x+1, x \cdot 2, x-3)$$

$$(+) \triangle (\cdot) \triangle (-) = \lambda(x,y) \rightarrow (x+y,x\cdot y,x-y)$$

$$\Delta_1^n f_i = f_1 \land \cdots \land f_n$$

So Δ_1^n tuples the *n* functions f_i :

$$(\Delta_1^n f_i) x = (f_1 x, \cdots, f_n x)$$

Tupling of homomorphisms

Let h_1, \dots, h_n be mutually defined as follows:

$$\begin{array}{ll} h_j \ [] & = 0_{\bigoplus_j} \\ h_j \ [x] & = f_j \ x \\ h_j \ (xs + ys) & = \left(\left(\Delta_1^n h_i\right) \ xs\right) \oplus_j \left(\left(\Delta_i^n h_i\right) \ ys\right) \end{array}$$

Then

$$\Delta_1^n h_i = hom \ (\Delta_1^n \oplus_i) \ (\Delta_1^n f_i) \ (0_{\oplus_1}, \cdots, 0_{\oplus_n})$$

Implication: tupling mutually recursive functions that *traverse the same list in a specific way* will produce a list homomorphism.

Notation reminder

$$(\Delta_1^n f_i) x = (f_1 x, \cdots, f_n x)$$

Writing segs in the required form

We have

```
segs [] = \{\}
segs [x] = \{[x]\}
segs (xs + ys) = \underbrace{segs \ xs} \cup \underbrace{segs \ ys} \cup (\underbrace{tails \ xs} \ \mathcal{X}_{+} \ \underline{inits \ ys})
```

and want n mutually recursive functions

$$\begin{array}{ll} h_j \ [] & = 0_{\bigoplus_j} \\ h_j \ [x] & = f_j \ x \\ h_j \ (xs + ys) & = ((\Delta_1^n h_i) \ xs) \oplus_j ((\Delta_i^n h_i) \ ys) \end{array}$$

- segs must be tupled with tails because segs and tails traverse the same list xs.
- segs must be tupled with *inits* because segs and *inits* traverse the same list xs.

Considering *inits* **and** *tails*

```
 \begin{array}{ll} inits \ [ \ ] & = \ [ \ ] \\ inits \ [x] & = \ [[x]] \\ inits \ (xs + ys) & = \ \underline{inits} \ xs + map \ (\underline{xs} +) \ (inits \ ys) \\ tails \ [ \ ] & = \ [ \ ] \\ tails \ [x] & = \ [[x]] \\ tails \ (xs + ys) & = map \ (+\underline{ys}) \ (tails \ xs) + \underline{tails} \ ys \\ \end{array}
```

We need to tuple with *id*:

$$id [] = []$$

$$id [x] = [x]$$

$$id (xs + ys) = id xs + id ys$$

To summarise, our tupled function will be

Tupling *segs* \triangle *inits* \triangle *tails* \triangle *id*

Still need to phrase this in the form

$$h_{j} \begin{bmatrix} \vdots & = 0_{\bigoplus_{j}} \\ h_{j} [x] & = f_{j} x \\ h_{j} (xs + ys) & = ((\Delta_{1}^{n} h_{i}) xs) \bigoplus_{j} ((\Delta_{i}^{n} h_{i}) ys) \end{bmatrix}$$

l.e. derive f_1, \oplus_1 for $segs, f_2, \oplus_2$ for $inits, f_3, \oplus_3$ for tails, f_4, \oplus_4 for id.

Actually straightforward: pick corresponding recursive calls from the tuples.

Deriving f_1 **and** \oplus_1

Original

$$segs [] = \{\}$$

$$segs [x] = \{[x]\}$$

$$segs (xs + ys) = \underline{segs \ xs} \cup \underline{segs \ ys} \cup (\underline{tails \ xs} \ \mathcal{X}_{++} \ \underline{inits \ ys})$$

Goal

$$h_1 [] = 0_{\bigoplus_1}$$

 $h_1 [x] = f_1 x$
 $h_1 (xs + ys) = ((\Delta_1^n h_i) xs) \bigoplus_1 ((\Delta_i^n h_i) ys)$

Derivation

$$\begin{array}{ll} f_1 x & = \{[x]\} \\ (s_1, i_1, t_1, d_1) \oplus_1 (s_2, i_2, t_2, d_2) & = s_1 \cup s_2 \cup (t_1 \mathcal{X}_{++} i_2) \end{array}$$

All derivations

Skeleton as a reminder

$$h_1 \begin{bmatrix} & = 0_{\bigoplus_1} \\ h_1 [x] & = f_1 x \\ h_1 (xs + ys) & = ((\Delta_1^n h_i) xs) \bigoplus_1 ((\Delta_i^n h_i) ys) \end{bmatrix}$$

Derivation

$$\begin{array}{lll} f_1 \, x & = \{[x]\} \\ (s_1,i_1,t_1,d_1) \oplus_1 (s_2,i_2,t_2,d_2) & = s_1 \cup s_2 \cup (t_1 \, \mathcal{X}_+ \, i_2) \\ f_2 \, x & = [[x]] \\ (s_1,i_1,t_1,d_1) \oplus_2 (s_2,i_2,t_2,d_2) & = i_1 + map \, (d_1+) \, i_2 \\ f_3 \, x & = [[x]] \\ (s_1,i_1,t_1,d_1) \oplus_2 (s_2,i_2,t_2,d_2) & = map \, (d_2+) \, t_1 + t_2 \\ f_4 \, x & = [x] \\ (s_1,i_1,t_1,d_1) \oplus_2 (s_2,i_2,t_2,d_2) & = d_1 + d_2 \end{array}$$

The almost homomorphism

$$segs = \pi_1 \circ hom \ (\Delta_1^n \oplus_i) \ (\Delta_1^n f_i)$$

List homomorphisms

Definitions and properties
Homomorphism theorems
Applying the third homomorphism theorem

Deriving efficient almost homomorphisms

Almost homomorphisms
Deriving initial almost homomorphisms by tupling
Fusion theorems for homomorphisms
Fusion of mss

1 031011 01 11133

Conclusions

Fusion

Reminder of where we are

$$mss = max^s \circ (map^s sum) \circ segs$$

where

$$segs = \pi_1 \circ hom \ (\Delta_1^4 \oplus_i) \ (\Delta_1^4 f_i)$$

Fusion

Merging adjacent operations to avoid intermediate structures or to allow further simplification.

Example of fusion

$$map \ f \circ map \ g = map \ (f \circ g)$$

Can we fuse segs into $(map^s sum)$?

Fusion theorem for homomorphisms

Let h and hom (\oplus) f be given. If there exists \otimes such that

$$\forall x, y. \ h \ (x \oplus y) = h \ x \otimes h \ y$$

then

$$h \circ hom \oplus f = hom (\otimes) (h \circ f)$$

Example of applying fusion theorem

- Suppose $h = (2 \times), (\oplus) = (\uparrow), f = abs$.
- Must find ⊗ such that

$$\forall x, y. \ 2(x \uparrow y) = 2x \otimes 2y$$

(↑ is the "max" operator)

Example of applying fusion theorem

- Suppose $h=(2\times), (\oplus)=(\uparrow), f=abs$. († is the "max" operator)
- Must find ⊗ such that

$$\forall x, y. \ 2(x \uparrow y) = 2x \otimes 2y$$

We fiddle a bit and find

$$x \otimes y = x \uparrow y$$

Which means we can fuse as

$$(2\times) \circ hom \ (\uparrow) \ abs = hom \ (\uparrow) \ ((2\times) \circ abs)$$
$$= red \ (\uparrow) \circ map \ ((2\times) \circ abs)$$

Sadly this is not yet enough

Reminder:

$$mss = max^s \circ (map^s sum) \circ segs$$

where

$$segs = \pi_1 \circ hom \ (\Delta_1^4 \oplus_i) \ (\Delta_1^4 f_i)$$

- We want to fuse *segs* into (*map^s sum*)
- Since segs is not a homomorphism but an almost homomorphism, we cannot apply the fusion theorem.

Fortunately:

- There is also a fusion theorem for almost homomorphisms.
- Idea is to create a function H that "contains" h and "respects" π_1 .

Fusion theorem for almost homomorphisms

Let h and $hom\ (\Delta_1^n \oplus_i)\ (\Delta_1^n f_i)$ be given. If there exists $\otimes_i\ (i=1,\cdots,n)$ and a function $H=h_1\times\cdots\times h_n$ where $h_1=h$ such that for all i,

$$\forall x, y. \ h_i(x \oplus_i y) = H \ x \otimes_i H \ y$$

then

$$h \circ \pi_1 \circ hom \ (\Delta_1^n \oplus_i) \ (\Delta_1^n f_i) = \pi_1 \circ hom \ (\Delta_1^n \otimes_i) \ (\Delta_1^n (h_i \circ f_i))$$

Notation note: crossing functions, sometimes called maps

$$(h_1 \times \cdots \times h_n) (x_1, \cdots, x_n) = (h_1 x_1, \cdots, h_n x_n)$$

Example of applying almost fusion theorem

Suppose we want to fuse

$$log \circ \pi_1 \circ hom \ (\Delta_1^2 \oplus_i) \ (\Delta_1^2 f_i)$$

where

$$f_1 x = x \quad (x_{mean}, x_n) \oplus_1 (y_{mean}, y_n) = \frac{x_{mean} \times x_n + y_{mean} \times y_n}{x_n + y_n}$$

$$f_2 x = 1 \quad (x_{mean}, x_n) \oplus_2 (y_{mean}, y_n) = x_n + y_n$$

We must define

$$h_1 = log$$

 $h_2 = ?$
 $\bigotimes_1 = ?$
 $\bigotimes_2 = ?$

such that

$$h_1 (x \oplus_1 y) = (h_1 \times h_2) x \otimes_1 (h_1 \times h_2) y$$

 $h_2 (x \oplus_2 y) = (h_1 \times h_2) x \otimes_2 (h_1 \times h_2) y$

Finding h_2, \otimes_2

With

$$(x_{mean}, x_n) \otimes_2 (y_{mean}, y_n) = x_n + y_n$$

 $h_2 x = x$

then

$$h_2 (x \oplus_2 y) = x_n + y_n$$

$$= (log x_{mean}, h_2 x_n) \otimes_2 (log y_{mean}, h_2 y_n)$$

$$= (log \times id) x \otimes_2 (log \times id) y$$

$$= H x \otimes_2 H y$$

Finding \otimes_1

With

$$(x_{mean}, x_n) \otimes_1 (y_{mean}, y_n) = log \left(\frac{exp \ x_{mean} \times x_n + exp \ y_{mean} \times y_n}{x_n + y_n} \right)$$

$$h_1 \ x = log \ x$$

$$h_2 \ x = x$$

then

$$h_1 (x \oplus_1 y) = h_1 ((x_{mean}, x_n) \oplus_1 (y_{mean}, y_n))$$

$$= log (\frac{x_{mean} \times x_n + y_{mean} \times y_n}{x_n + y_n})$$

$$= (log x_{mean}, x_n) \otimes_1 (log y_{mean}, y_n)$$

$$= (log \times id) x \otimes_1 (log \times id) y$$

$$= H x \otimes_1 H y$$

Applying almost fusion

So we can fuse

$$log \circ \pi_1 \circ hom \ (\Delta_1^2 \oplus_i) \ (\Delta_1^2 f_i)$$

to

$$\pi_1 \circ hom \ (\Delta_1^2 \otimes_i) \ (\Delta_1^2 (h_i \circ f_i))$$

where

$$h_1 x = log x$$

$$h_2 x = x$$

$$(x_{mean}, x_n) \otimes_1 (y_{mean}, y_n) = log \left(\frac{exp x_{mean} \times x_n + exp y_{mean} \times y_n}{x_n + y_n}\right)$$

$$(x_{mean}, x_n) \otimes_2 (y_{mean}, y_n) = x_n + y_n$$

Back to mss

$$mss = max^s \circ (map^s sum) \circ \pi_1 \circ hom (\Delta_1^4 \oplus_i) (\Delta_1^4 f_i)$$

We need to find $h_1,h_2,h_3,h_4,\otimes_1,\otimes_2,\otimes_3,\otimes_4$ that solve these equations $(j=1,\cdots,4)$:

$$h_{j} ((s_{1}, i_{1}, t_{1}, d_{1}) \oplus_{j} (s_{2}, i_{2}, t_{2}, d_{2})) = (h_{j} s_{1}, h_{2} i_{1}, h_{3} t_{1}, h_{4} d_{1}) \otimes_{j} (h_{j} s_{s}, h_{2} i_{2}, h_{3} t_{3}, h_{4} d_{2})$$

Procedure: calculate LHS of equation j by promoting h_j into result and determine h_j, \otimes_j by matching with its RHS.

Example for j = 1

Equation

```
map^{s} sum ((s_{1}, i_{1}, t_{1}, d_{1}) \oplus_{1} (s_{2}, i_{2}, t_{2}, d_{2})) = (map^{s} sum s_{1}, h_{2} i_{1}, h_{3} t_{1}, h_{4} d_{1}) \otimes_{1} (map^{s} sum s_{s}, h_{2} i_{2}, h_{3} t_{3}, h_{4} d_{2})
```

Calculation

```
map^{s} sum ((s_{1}, i_{1}, t_{1}, d_{1}) \oplus_{1} (s_{2}, i_{2}, t_{2}, d_{2}))
= (map^{s} sum) (s_{1} \cup s_{2} \cup (t_{1} \mathcal{X}_{+} i_{2}))
= map^{s} sum s_{1} \cup map^{s} sum s_{2} \cup map^{s} sum(t_{1} \mathcal{X}_{+} i_{2}))
= map^{s} sum s_{1} \cup map^{s} sum s_{2} \cup (t_{1} \mathcal{X}_{map^{s} sum + i_{2}})
= map^{s} sum s_{1} \cup map^{s} sum s_{2} \cup (map sum t_{1} \mathcal{X}_{+} map sum i_{2})
```

Matching last expression with RHS of the equation gives

$$h_2 = h_3 = map \ sum$$

 $(s_1, i_1, t_1, d_1) \otimes_1 (s_2, i_2, t_2, d_2) = s_1 \cup s_2 \cup (t_1 \ \mathcal{X}_+ \ i_2)$

Example for j = 2

Equation

```
map sum ((s_1, i_1, t_1, d_1) \oplus_2 (s_2, i_2, t_2, d_2)) =

(map sum s_1, h_2 i_1, h_3 t_1, h_4 d_1) \otimes_2 (map sum s_s, h_2 i_2, h_3 t_3, h_4 d_2)
```

Calculation

```
map \ sum \ ((s_1, i_1, t_1, d_1) \oplus_2 (s_2, i_2, t_2, d_2))
= map \ sum \ (i_1 + map \ (d_1 +) \ i_2)
= map \ sum \ i_1 + map \ sum \ (map \ (d_1 +) \ i_2)
= map \ sum \ i_1 + map \ (sum \circ (d_1 +)) \ i_2
= map \ sum \ i_1 + map \ (sum \ d_1 +) \ (map \ sum \ i_2)
```

Matching last expression with RHS of the equation gives

$$h_4 = sum$$

 $(s_1, i_1, t_1, d_1) \otimes_2 (s_2, i_2, t_2, d_2) = i_1 + map(d_1 +) i_2$

If we continue

```
h_1 = map^s sum

h_2 = map sum

h_3 = map sum

h_4 = sum
```

$$(s_1, i_1, t_1, d_1) \otimes_1 (s_2, i_2, t_2, d_2) = s_1 \cup s_2 \cup (t_1 \mathcal{X}_+ i_2)$$

 $(s_1, i_1, t_1, d_1) \otimes_2 (s_2, i_2, t_2, d_2) = i_1 + map (d_1 +) i_2$
 $(s_1, i_1, t_1, d_1) \otimes_3 (s_2, i_2, t_2, d_2) = map (+d_2) t_1 + t_2$
 $(s_1, i_1, t_1, d_1) \otimes_4 (s_2, i_2, t_2, d_2) = d_1 + d_2$

The f parts

To apply the almost homomorphism fusion theorem we also need fused f functions:

$$f_{1} x = \{[x]\}$$

$$f_{2} x = [[x]]$$

$$f_{3} x = [[x]]$$

$$f_{4} x = [x]$$

$$f'_{1} x = ((map^{s} sum) \circ f_{1}) x = \{x\}$$

$$f'_{2} x = ((map sum) \circ f_{2}) x = [x]$$

$$f'_{3} x = ((map sum) \circ f_{3}) x = [x]$$

$$f'_{4} x = (sum \circ f_{4}) x = [x]$$

And finally we obtain:

$$map^s \ sum \circ \pi_1 \circ hom \ (\Delta_1^4 \oplus_i) \ (\Delta_1^4 f_i) = \pi_1 \circ hom \ (\Delta_1^4 \otimes_i) \ (\Delta_1^4 f_i')$$

Finishing up

$$mss = max^s \circ \pi_1 \circ hom \ (\Delta_1^4 \otimes_i) \ (\Delta_1^4 f_i')$$

We can fuse max^s with the remaining almost homomorphism with

$$H = max^s \times max \times max \times id$$

and get the final almost homomorphism

$$mss = \pi_1 \circ hom \ (\Delta_1^4 \otimes_i') \ id$$

where

$$(s_1, i_1, t_1, d_1) \otimes'_1 (s_2, i_2, t_2, d_2) = s_1 \uparrow s_1 \uparrow (t_1 + i_2)$$

$$(s_1, i_1, t_1, d_1) \otimes'_2 (s_2, i_2, t_2, d_2) = i_1 \uparrow (d_1 + i_2)$$

$$(s_1, i_1, t_1, d_1) \otimes'_3 (s_2, i_2, t_2, d_2) = (t_1 + d_2) \uparrow t_2$$

$$(s_1, i_1, t_1, d_1) \otimes'_4 (s_2, i_2, t_2, d_2) = d_1 + d_2$$

What has been accomplished?

We went from

$$mss = max^s \circ (map^s \ sum) \circ segs$$

to

$$mss = \pi_1 \circ hom \ (\Delta_1^4 \otimes_i') \ id$$

- Specification was an inefficient $O(n^2)$ algorithm involving computationally difficult objects (sets).
- Final derivation has only (tuples of) scalars as intermediate values.
 - You could easily translate the final bit into Futhark or any other parallel language.

Takeaways

What do we make of all this?

- Easy to get lost in the details of formalisms.
- These theorems and techniques do not give us algorithms for free.
- They help us structure our search.
- Usually easier to find small functions that satisfy specific properties than to come up with algorithms from scratch using sheer creativity.
- (But maybe some of this could be mechanised? Maybe a fun (research) project!)