1

Assignment 17

Jayati Dutta

Abstract

This is a simple document explaining how to determine the upper and lower limits of the dimension of a vector space which is the intersection of 3 subspaces of a vector space and also to check whether the former vector space is a subspace of that vector space or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let W_1 , W_2 , W_3 be 3 distinct subspaces of \mathbf{R}^{10} such that each W_i has dimension of 9. Let $\mathbf{W} = \mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3$. Then we can conclude that

- 1. W may not be a subspace of \mathbf{R}^{10}
- 2. dim $\mathbf{W} \leq 8$
- 3. dim $W \ge 7$
- 4. dim $\mathbf{W} \leq 3$

2 Solution

Given	W_1 , W_2 , W_3 are 3 distinct subspaces of \mathbf{R}^{10}
	Each W_i has dimension 9
	$\mathbf{W} = \mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3$
Statement1	\mathbf{W} may not be a subspace of \mathbf{R}^{10}
Explanation	As $W = W_1 \cap W_2 \cap W_3$ and W_1 , W_2 , W_3 are subspaces of W ,then W must be a subspace of \mathbb{R}^{10} . So the first option is false.
Statement2 Explanation	dim $\mathbf{W} \leq 8$ As \mathbf{W} be a subspace of a finite dimension vector space \mathbf{R}^{10} and dim $\mathbf{R}^{10} = 10$, so \mathbf{W} is finite dimension and

Theorem	$\dim (\mathbf{W}_1 \cap \mathbf{W}_2)$ $= \dim(\mathbf{W}_1) + \dim(\mathbf{W}_2) - \dim(\mathbf{W}_1 + \mathbf{W}_2)$
	$= \min(\mathbf{w}_1) + \min(\mathbf{w}_2) - \min(\mathbf{w}_1 + \mathbf{w}_2)$ and
	$\mathbf{W_1} \cap \mathbf{W_2}$ is also a subspace of \mathbf{R}^{10}
Proof	The minimum dimension of
	$\mathbf{W} = \mathbf{W_1} \cap \mathbf{W_2} \cap \mathbf{W_3}$
Explanation	Let us consider $\mathbf{V} = \mathbf{R}^{10}$ and $dim(\mathbf{V}) = 10$
	and $\mathbf{U} = \mathbf{W_1} \cap \mathbf{W_2}$ So, $dim(\mathbf{W_1} \cap \mathbf{W_2} \cap \mathbf{W_3}) = dim(\mathbf{U})$
	$+dim(\mathbf{W}_3) - dim(\mathbf{U} + \mathbf{W}_3)$
	or, $dim(\mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3) = dim(\mathbf{W}_1)$
	$+dim(\mathbf{W}_2)+dim(\mathbf{W}_3)$ - $dim(\mathbf{W}_1+\mathbf{W}_1)$
	$-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3)$
	Now, $(\mathbf{W_1} \cap \mathbf{W_2}) + \mathbf{W_3} \subseteq \mathbf{V}$
	$\implies dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) \le dim(\mathbf{V})$
	$\implies -dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) \ge -dim(\mathbf{V})$
	Similarly, $(\mathbf{W}_1 + \mathbf{W}_2) \subseteq \mathbf{V}$
	$\implies \dim(\mathbf{W}_1 + \mathbf{W}_2) \le \dim(\mathbf{V})$
	\implies $-dim(\mathbf{W_1} + \mathbf{W_2}) \ge -dim(\mathbf{V})$
	Considering these two inequations,
	$-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) - dim(\mathbf{W}_1 + \mathbf{W}_2)$
	$\geq -2dim(\mathbf{V})$
	or, $dim(\mathbf{W_1}) + dim(\mathbf{W_2}) + dim(\mathbf{W_3})$
	$-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) - dim(\mathbf{W}_1 + \mathbf{W}_2)$
	$\geq dim(\mathbf{W_1}) + dim(\mathbf{W_2}) + dim(\mathbf{W_3}) - 2dim(\mathbf{V})$
	or, $dim(\mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3)$
	$\geq dim(\mathbf{W_1}) + dim(\mathbf{W_2}) + dim(\mathbf{W_3}) - 2dim(\mathbf{V})$
	$\implies \dim(\mathbf{W}) \ge \dim(\mathbf{W}_1) + \dim(\mathbf{W}_2) + \dim(\mathbf{W}_3) - 2\dim(\mathbf{V})$
Statement 3	dim W ≥ 7
Explanation	As $dim(\mathbf{W}) \ge dim(\mathbf{W}_1) + dim(\mathbf{W}_2)$
	$+dim(\mathbf{W_3}) - 2dim(\mathbf{V})$
	$\implies \dim(\mathbf{W}) \ge (9+9+9) - (2\times10)$ $\implies \dim(\mathbf{W}) > 7$
	$\implies \dim(\mathbf{W}) \ge 7$ $7 \le \dim(\mathbf{W}) \le 10$

TABLE 0: Solution summary

Hence, we can conclude that $dim(\mathbf{W}) \geq 7$.