Eksploracja Danych 2022 - Projekt

Autorzy: K. Jarek, P. Witek

Zbiór: "Concrete Data"

Link do zbioru danych

Hipotezy:

- 1. Im wyższa wartość czynnika Cement i Superplasticizer oraz im więcej dni mineło od wylania betonu (im wyższa wartość Age) tym wyższą wartość będzie miał Concrete compressive strength (wytrzymałość na ściskanie).
- 2. Im wyższa wartość czynnika Fine Aggregate, Fly Ash i Blast Furnace Slag tym wyższą wartość będzie miał Concrete compressive strength.
- 3. Im mniejsza wartośc czynnika Water i Fine Aggregate oraz im więcej cementu (Cement) tym wyższą wartość będzie miał Concrete compressive strength.

Analiza statystyczna (Statistical analisys)

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')

In [2]: plt.style.use('fivethirtyeight')

In [3]: df = pd.read_excel ("Concrete_Data.xls")

In [4]: df.head(20)
```

Out[4]:

	Cement (component 1)(kg in a m^3 mixture)	Blast Furnace Slag (component 2)(kg in a m^3 mixture)	Fly Ash (component 3)(kg in a m^3 mixture)	Water (component 4)(kg in a m^3 mixture)	Superplasticizer (component 5) (kg in a m^3 mixture)	Coarse Aggregate (component 6)(kg in a m^3 mixture)	Fi Aggrega (compone 7)(kg ir m' mixtui
0	540.0	0.0	0.0	162.0	2.5	1040.0	676
1	540.0	0.0	0.0	162.0	2.5	1055.0	676
2	332.5	142.5	0.0	228.0	0.0	932.0	59₄
3	332.5	142.5	0.0	228.0	0.0	932.0	594
4	198.6	132.4	0.0	192.0	0.0	978.4	82!
5	266.0	114.0	0.0	228.0	0.0	932.0	670
6	380.0	95.0	0.0	228.0	0.0	932.0	594
7	380.0	95.0	0.0	228.0	0.0	932.0	594
8	266.0	114.0	0.0	228.0	0.0	932.0	670
9	475.0	0.0	0.0	228.0	0.0	932.0	594
10	198.6	132.4	0.0	192.0	0.0	978.4	82!
11	198.6	132.4	0.0	192.0	0.0	978.4	825
12	427.5	47.5	0.0	228.0	0.0	932.0	59₄
13	190.0	190.0	0.0	228.0	0.0	932.0	670
14	304.0	76.0	0.0	228.0	0.0	932.0	670
15	380.0	0.0	0.0	228.0	0.0	932.0	670
16	139.6	209.4	0.0	192.0	0.0	1047.0	806
17	342.0	38.0	0.0	228.0	0.0	932.0	670
18	380.0	95.0	0.0	228.0	0.0	932.0	594
19	475.0	0.0	0.0	228.0	0.0	932.0	594

Out[5]: Index(['Cement', 'Blast Furnace Slag', 'Fly Ash', 'Water', 'Superplasticizer', 'Coarse Aggregate', 'Fine Aggregate', 'Age', 'Concrete compressive strength'], dtype='object')

In [6]: df.dtypes

float64 Cement Out[6]: float64 Blast Furnace Slag Fly Ash float64 Water float64 float64 Superplasticizer Coarse Aggregate float64 Fine Aggregate float64 Age int64 Concrete compressive strength float64 dtype: object

In [7]: df.isnull().sum()

Cement 0 Out[7]: Blast Furnace Slag 0 Fly Ash 0 Water 0 Superplasticizer 0 Coarse Aggregate 0 0 Fine Aggregate Age 0 Concrete compressive strength

dtype: int64

In [8]: df.shape

Out[8]: (1030, 9)

In [9]: df.drop_duplicates(inplace=True)
 df.head(10)

Out[9]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Concrete compressive strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075
5	266.0	114.0	0.0	228.0	0.0	932.0	670.0	90	47.029847
6	380.0	95.0	0.0	228.0	0.0	932.0	594.0	365	43.698299
7	380.0	95.0	0.0	228.0	0.0	932.0	594.0	28	36.447770
8	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.854291
9	475.0	0.0	0.0	228.0	0.0	932.0	594.0	28	39.289790

```
In [10]: df.reset_index(inplace=True,drop=True)
```

In [11]: print('Shape:', df.shape)
 df.tail()

Shape: (1005, 9)

t[11]:		Cement	Blast Furnace Slag	Fly Ash	Water	Superp	lasticizer	Aggre	oarse egate	Aggre	Fine egate	Ane (compr	ncrete essive ength
-	1000	276.4	116.0	90.3	179.6		8.9		870.1		768.3	28	44.2	84354
	1001	322.2	0.0	115.6	196.0		10.4		817.9		813.4	28	31.1	78794
	1002	148.5	139.4	108.6	192.7		6.1		892.4		780.0	28	23.6	96601
	1003	159.1	186.7	0.0	175.6		11.3		989.6		788.9	28	32.7	68036
	1004	260.9	100.5	78.3	200.6		8.6		864.5		761.5	28	32.4	01235
														•
2]:	df.des	scribe(i	include=	'all')										
.2]:		Cen	nent	Blast Furnace Slag	•	Fly Ash	W	ater S	uperpl	asticiz	er	Coar Aggrega		Aggre
	count	1005.000	0000 100	5.000000	1005	.000000	1005.000	0000	100	5.00000	00 1	005.0000	00 10	005.00
	mean	278.629	9055 7	2.043134	55.	.535075	182.074	4378		6.03164	47	974.3764	68	772.68
	std	104.345	5003 8	6.170555	64	.207448	21.340	0740		5.91955	59	77.5795	34	80.33
	min	102.000	0000	0.000000	0.	.000000	121.750	0000		0.00000	00	801.0000	00 5	594.00
	25%	190.680	0000	0.000000	0.	.000000	166.610	0000		0.00000	00	932.0000	00	724.30
	50%	265.000	0000 2	0.000000	0.	.000000	185.700	0000		6.10000	00	968.0000	00	780.00
	75%	349.000	0000 14	2.500000	118	.270000	192.940	0000	1	0.00000	00 1	031.0000	00 8	322.20
	max	540.000	0000 35	9.400000	200.	.100000	247.000	0000	3	2.20000	00 1	145.0000	00 9	992.60
														•
L3]:	df.med	dian()												
3]:	Fly As Water Superp Coarse Fine A Age Concre	Furnace sh plastici Aggregat	zer gate e e	streng		265.000 20.000 0.000 185.700 6.100 968.000 780.000 28.000 33.798	9000 9000 9000 9000 9000 9000							
14]:	df.mod	de()												
.4]:	Cen	nent Fu	rnace _	ly sh	er Sup	erplastic	izer Ag	Coarse gregate		Fine regate	Δα	e comp	oncret oressiv trengt	e
	0 25	51.37	0.0	.0 192	.0		0.0	932.0		594.0) 2	8 31.	.35047	4
5]:	df.var	r()												

Cement 10887.879601 Out[15]: Blast Furnace Slag 7425.364576 Fly Ash 4122.596436 Water 455.427169 Superplasticizer 35.041179 6018.584052 Coarse Aggregate 6454.491667 Fine Aggregate Age 4062.110923 Concrete compressive strength 265.194960 dtype: float64

In [16]: plt.rcParams['figure.figsize'] = [20, 14] hist = df.hist()


```
In [17]: import statsmodels.api as sm
import statsmodels.formula.api as smf
import scipy.stats as stats
```

```
In [18]: formula = "Q('Concrete compressive strength') ~ Cement + Q('Blast Furnace Slag') -
formula += " + Water + Superplasticizer + Q('Coarse Aggregate') + Q('Fine Aggregate')
anova_model = smf.ols(formula=formula, data=df).fit()
anova_table = sm.stats.anova_lm(anova_model, typ=1)
anova_table
```

Out[18]:

	df	sum_sq	mean_sq	F	PR(>F)
Cement	1.0	63480.787961	63480.787961	599.397190	5.236427e-104
Q('Blast Furnace Slag')	1.0	18542.677648	18542.677648	175.083348	6.156798e-37
Q('Fly Ash')	1.0	21075.391608	21075.391608	198.997696	2.478336e-41
Water	1.0	10337.111905	10337.111905	97.604898	5.054884e-22
Superplasticizer	1.0	1310.945365	1310.945365	12.378185	4.539953e-04
Q('Coarse Aggregate')	1.0	201.232668	201.232668	1.900076	1.683794e-01
Q('Fine Aggregate')	1.0	2.299374	2.299374	0.021711	8.828880e-01
Age	1.0	45821.207599	45821.207599	432.652208	4.373652e-80
Residual	996.0	105484.086039	105.907717	NaN	NaN

In [19]: anova_model.summary()

9.06.2022, 00:42

Out[19]:

OLS Regression Results

Dep. Variable:	Q('Concrete compressive strength')	R-squared:	0.604
Model:	OLS	Adj. R-squared:	0.601
Method:	Least Squares	F-statistic:	189.8
Date:	Wed, 08 Jun 2022	Prob (F-statistic):	2.58e-194
Time:	21:42:57	Log-Likelihood:	-3764.5
No. Observations:	1005	AIC:	7547.
Df Residuals:	996	BIC:	7591.
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-17.7481	26.419	-0.672	0.502	-69.592	34.096
Cement	0.1172	0.008	13.799	0.000	0.101	0.134
Q('Blast Furnace Slag')	0.0994	0.010	9.790	0.000	0.080	0.119
Q('Fly Ash')	0.0856	0.012	6.862	0.000	0.061	0.110
Water	-0.1526	0.040	-3.835	0.000	-0.231	-0.075
Superplasticizer	0.2834	0.093	3.049	0.002	0.101	0.466
Q('Coarse Aggregate')	0.0156	0.009	1.676	0.094	-0.003	0.034
Q('Fine Aggregate')	0.0183	0.011	1.713	0.087	-0.003	0.039
Age	0.1122	0.005	20.800	0.000	0.102	0.123

Omnibus:	4.034	Durbin-Watson:	1.329
Prob(Omnibus):	0.133	Jarque-Bera (JB):	3.923
Skew:	-0.150	Prob(JB):	0.141
Kurtosis:	3.062	Cond. No.	1.05e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
corr = df.corr()
In [20]:
         corr.style.background_gradient(cmap='coolwarm').set_precision(2)
```

```
Out[20]:
                                       Blast
                                               Fly
                                                                                             Fine
                                                                                Coarse
                                                    Water
                           Cement Furnace
                                                           Superplasticizer
                                                                                                    Age c
                                               Ash
                                                                            Aggregate Aggregate
                                        Slag
                               1.00
                                              -0.39
                                                                      0.06
                                                                                                    0.09
                  Cement
                                       -0.30
                                                     -0.06
                                                                                             -0.25
             Blast Furnace
                              -0.30
                                              -0.31
                                                                      0.02
                                                                                 -0.28
                                                                                             -0.29
                                        1.00
                                                      0.13
                     Slag
                   Fly Ash
                              -0.39
                                        -0.31
                                               1.00
                                                                      0.41
                                                                                              0.09
                                                                                                   -0.16
                                              -0.28
                                                                                                    0.28
                    Water
                              -0.06
                                        0.13
                                                      1.00
                                                                      -0.65
                                                                                 -0.21
                                                                                             -0.44
           Superplasticizer
                               0.06
                                        0.02
                                              0.41
                                                     -0.65
                                                                       1.00
                                                                                 -0.24
                                                                                              0.21
                                                                                                   -0.19
                   Coarse
                                       -0.28
                                              -0.03
                                                     -0.21
                                                                      -0.24
                                                                                  1.00
                Aggregate
           Fine Aggregate
                               -0.25
                                       -0.29
                                              0.09
                                                     -0.44
                                                                      0.21
                                                                                 -0.16
                                                                                              1.00
                                                                                                   -0.16
                               0.09
                                                      0.28
                                                                                                    1.00
                                                                      -0.19
                      Age
                 Concrete
                                                                      0.34
                                                                                 -0.14
              compressive
                               0.49
                                        0.10
                                                                                                    0.34
                 strength
In [21]:
           chisquare_stats = stats.chisquare(df, f_exp=None)
           print('Statystyka:', chisquare_stats.statistic, '\np-value:', chisquare_stats.pvalue:')
                                                                                   2511.33016344
           Statystyka: [ 39232.91894428 103480.58984564 74531.03916632
              5832.7924004
                                6201.56437323
                                                   8386.72430923 88937.01262856
              7553.29585965]
           p-value: [0.00000000e+000 0.00000000e+000 0.00000000e+000 4.38388802e-130
            0.00000000e+000 0.00000000e+000 0.0000000e+000 0.00000000e+000
            0.00000000e+000]
           df.loc[:, df.columns != 'Coarse Aggregate'].boxplot(rot=30, figsize=(12, 8))
In [22]:
           <AxesSubplot:>
```

Out[22]:


```
In [25]: plt.plot(df['Age'], df['Concrete compressive strength'], 'go')
   plt.xlabel('Age [day]')
   plt.ylabel('Concrete compressive strength [MPA]')
   plt.title('Age/Concrete compressive strength')

plt.show()
```



```
In [26]: plt.plot(df['Superplasticizer'], df['Concrete compressive strength'], 'ro')
  plt.xlabel('Superplasticizer [kg/m^3]')
  plt.ylabel('Concrete compressive strength [MPa]')
  plt.title('Superplasticizer/Concrete compressive strength')
```


Wnioski:

- Predyktory Cement i Superplasticizer są pozytywnie skorelowane z Concrete compressive strength, co potwierdza hipotezę nr 1 i 3.
- Predyktory Water i Fine Aggregate są negatywnie skorelowane z Concrete compressive strength, co potwierdza hipotezę nr 3 i falsyfikuje hipotezę nr 2.
- Predyktory Blast Furnace i Fly Ash nie wykazują korelacji z Concrete compressive strength, co falsyfikuje hipotezę nr 2.
- Cement ma najsilniejszy wpływ na Concrete compressive strength.
- Zmienne objaśniające są ze sobą słabo skorelowane.
- Jednoznacznie trudna jest do określenia zależność danych występująca w ramach zbioru danych. Dla większości zmienych nie da się określeić jej jako liniowej, natomiast dla Cementu pojawia się lionowa rosnąca zależność.

Decision Tree Classifier

```
In [27]: from sklearn.tree import DecisionTreeRegressor, plot_tree
    from sklearn import metrics
    from sklearn.model_selection import train_test_split

In [28]: X = df.loc[:, df.columns != 'Concrete compressive strength']
    y = df['Concrete compressive strength']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

In [29]: dt = DecisionTreeRegressor(min_samples_leaf=0.035, random_state=23)
    dt = dt.fit(X, y)
    dt.get_params()
```

```
{'ccp_alpha': 0.0,
Out[29]:
           'criterion': 'squared error',
           'max depth': None,
           'max_features': None,
           'max_leaf_nodes': None,
           'min_impurity_decrease': 0.0,
           'min_samples_leaf': 0.035,
           'min_samples_split': 2,
           'min_weight_fraction_leaf': 0.0,
           'random_state': 23,
           'splitter': 'best'}
In [30]: tree_predictions = dt.predict(X_test)
         tree_predictions
         array([27.78806009, 15.60173106, 35.04133878, 46.82405996, 46.65087442,
                27.53028999, 46.82405996, 27.53028999, 10.94206178, 46.82405996,
                15.60173106, 33.58741673, 58.81126859, 55.49065003, 10.94206178,
                55.49065003, 46.9038388, 14.95611339, 39.52880486, 35.04133878,
                 36.54258158, 36.54258158, 35.04133878, 65.82922257, 10.94206178,
                32.62452195, 27.53028999, 58.81126859, 46.9038388, 37.44360952,
                35.04133878, 27.78806009, 46.82405996, 33.58741673, 46.82405996,
                 35.04133878, 35.04133878, 58.81126859, 46.9038388, 20.43707585,
                20.43707585, 27.78806009, 27.53028999, 36.54258158, 36.54258158,
                10.94206178, 65.82922257, 20.43707585, 27.91922801, 27.53028999,
                46.65087442, 46.65087442, 39.52880486, 20.43707585, 35.04133878,
                10.94206178, 27.53028999, 35.04133878, 32.62452195, 27.53028999,
                32.62452195, 37.44360952, 65.82922257, 20.43707585, 15.60173106,
                46.65087442, 32.62452195, 20.43707585, 46.65087442, 27.78806009,
                27.78806009, 14.95611339, 46.9038388 , 46.82405996, 33.58741673,
                35.04133878, 58.81126859, 35.04133878, 14.95611339, 33.58741673,
                 39.52880486, 46.82405996, 27.53028999, 37.44360952, 37.44360952,
                39.52880486, 46.82405996, 37.44360952, 37.44360952, 10.94206178,
                27.78806009, 55.49065003, 32.62452195, 24.07132153, 46.65087442,
                27.53028999, 35.04133878, 46.65087442, 32.62452195, 58.81126859,
                 37.44360952, 58.81126859, 39.52880486, 55.49065003, 24.07132153,
                27.91922801, 33.58741673, 46.9038388 , 24.07132153, 10.94206178,
                 27.91922801, 27.78806009, 58.81126859, 39.52880486, 37.44360952,
                65.82922257, 58.81126859, 20.43707585, 46.65087442, 14.95611339,
                27.91922801, 55.49065003, 46.65087442, 46.9038388 , 24.07132153,
                14.95611339, 14.95611339, 46.65087442, 65.82922257, 10.94206178,
                39.52880486, 35.04133878, 46.9038388, 37.44360952, 10.94206178,
                46.82405996, 20.43707585, 65.82922257, 27.91922801, 46.65087442,
                46.65087442, 39.52880486, 24.07132153, 46.82405996, 46.9038388,
                27.78806009, 32.62452195, 46.9038388, 46.65087442, 20.43707585,
                20.43707585, 37.44360952, 65.82922257, 20.43707585, 37.44360952,
                37.44360952, 33.58741673, 46.65087442, 46.9038388, 39.52880486,
                33.58741673, 20.43707585, 55.49065003, 39.52880486, 24.07132153,
                46.9038388 , 27.91922801, 32.62452195, 14.95611339, 27.78806009,
                36.54258158, 27.78806009, 27.78806009, 39.52880486, 46.65087442,
                35.04133878, 46.9038388 , 46.9038388 , 24.07132153, 58.81126859,
                 33.58741673, 33.58741673, 14.95611339, 46.9038388 , 46.65087442,
                10.94206178, 27.53028999, 46.9038388, 33.58741673, 39.52880486,
                65.82922257, 46.82405996, 46.9038388, 33.58741673, 55.49065003,
                 35.04133878, 46.65087442, 36.54258158, 65.82922257, 20.43707585,
                24.07132153])
         plt.figure(figsize=(80,60))
         plot_tree(dt,filled=True,feature_names=df.columns)
         plt.show()
```



```
In [32]: r_square = metrics.r2_score(y_test, tree_predictions)
print("Błąd R^2 Dla drzewa regresyjnego:", r_square)
```

Błąd R^2 Dla drzewa regresyjnego: 0.7410287339452174

Reguły oparte na drzewie klasyfikacynym dla najbardziej wyrazistych klas:

- Cement mający powyżej 21 dni oraz zawierający powyżej 355.5 Concrete i zawierający wody w przedziale <155.5; 183> ma wysoką wytrzymałość na średnim poziome 66.124 MPa
- Cement mający powyżej 21 dni oraz zawierający Concrete w przedziale <164.8; 355.5> oraz powyżej 162.7 Blast Furnance Slag ma wytrzymałość o średnim poziomie 19.312
 MPa
- Cement mający więcej niż 21 dni ale nie mniej niz 5 dni oraz zawierający mniej niż 354.5
 Concrete i zawierający mniej niż 7.85 Superplasticizer ma niską wytrzymałość na średnim poziome 12.032 MPa

Analiza skupień (Clustering)

```
In [34]: from sklearn.cluster import KMeans
    from sklearn.mixture import GaussianMixture
    from mpl_toolkits.mplot3d import Axes3D
    from skstab import StadionEstimator
    from matplotlib.colors import LogNorm
```

By skorzystać z pakietu **skstab** konieczne jest wykorzsytanie komendy: python3 setup.py install

```
In [35]: feature_1 = 'Cement'
  feature_2 = 'Superplasticizer'
  feature_3 = 'Concrete compressive strength'
  X_cluster = df[[feature_1, feature_2, feature_3]]
```

Zmienne Cement, Superplasticizer, Concrete compressive strength zostały wybrane z racji na wykazywaną pomiędzy sobą nawzajem wyższą korelację niż inne zmienne, czy też z racji na wskazania największego znaczenia dwóch pierwszych zmiennych dla ostatniej rozpoznaną za pomocą użycia drzewa decyzyjnego.

Walidacja 10-krotna:

```
score_val_knn = stab.score(strategy='max', crossing=True)
In [37]:
         k_best = stab.select_param()[0]
         print('Stadion-max scores:\n', score_val_knn)
         print('Uzyskana liczba najbardziej dopasowanych klastrów: k =', k best)
         Stadion-max scores:
          [[0.00410932]
          [0.01089761]
          [0.01520808]
          [0.02442832]
          [0.03357868]
          [0.01984942]
          [0.02970264]
          [0.03048916]
          [0.03203187]
          [0.01961758]]
         Uzyskana liczba najbardziej dopasowanych klastrów: k = 5
         kmeans model = KMeans(n clusters=k best)
In [38]:
         kmeans_model.fit(X_cluster)
         CC = kmeans_model.cluster_centers_
         kmeans_T = X_cluster.values
         kmeans_labels = kmeans_model.labels_
         print('Centroidy:\n', CC)
         print('Przypisanie poszczególnych rekordów do klastrów:', kmeans labels)
         Centroidy:
          [[383.71719745 7.39127389 42.91697253]
          [160.10722222
                         6.20944444 26.65424584]
          [306.12078189 5.25798354 37.6450633 ]
          [489.19684211 7.09442105 51.52233723]
          [232.03583333 5.30485417 31.03975315]]
         Przypisanie poszczególnych rekordów do klastrów: [3 3 2 \dots 1 1 4]
In [39]: color_cluster = ['red', 'green', 'blue', 'purple', 'cyan', 'magenta', 'yellow', 'b'
         fig = plt.figure()
         ax = fig.add_subplot(projection='3d')
         ax.set_title('KMeans')
         ax.set_xlabel(feature_1)
         ax.set_ylabel(feature_2)
         ax.set zlabel(feature 3)
         sample_colors = [ color_cluster[kmeans_labels[i]] for i in range(len(kmeans_T)) ]
         ax.scatter(kmeans_T[:, 0], kmeans_T[:, 1], kmeans_T[:, 2], c=sample_colors, marker:
         ax.scatter(CC[:, 0], CC[:, 1], CC[:, 2], marker='.', s=169, linewidths=3, zorder=10
         for i in range(len(CC)):
             ax.text(CC[i, 0], CC[i, 1], CC[i, 2], str(i), fontsize=16, color=color_cluster
```


Wnioski:

Jak na podstawie wizualizacji można zauważyć to mimo przeprowadzonej walidacji granice między klastrami są mało wyraźne i ciężko podjąć się precyzyjnego opisu poszczególnych zgrupowań z racji na efemeryczny charakter wyników.

Jednak, co można zauważyć analizując współrzędne centroidów:

- dla parametru Cement wynoszącego 383.71719745 i Superplasticizer wynoszącego
 7.39127389 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącego
 42.91697253, co świadczy, że dany klaster grupował próbki o nieco wyższej
 wytrzymałości niż średnia populacji,
- dla parametru Cement wynoszącego 160.10722222 i Superplasticizer wynoszącego
 6.20944444 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącego
 26.65424584, co świadczy, że dany klaster grupował próbki o wytrzymałości jednoznacznie niższej od średniej (słabe),
- dla parametru Cement wynoszącego 306.12078189 i Superplasticizer wynoszącego
 5.25798354 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącego

37.6450633, co świadczy, że dany klaster grupował próbki o wytrzymałości zbliżonej do średniej całej populacji,

- dla parametru Cement wynoszącego 489.19684211 i Superplasticizer wynoszącego
 7.09442105 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącego
 51.52233723, co świadczy, że dany klaster grupował próbki o wysokiej wytrzymałości na ściskanie,
- dla parametru Cement wynoszącego 232.03583333 i Superplasticizer wynoszącego
 5.30485417 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącego
 31.03975315, co świadczy, że dany klaster grupował próbki o wytrzymałości zbliżonej
 do średniej, ale jednak od niej niższej (słabsze).
- Na podstawie powyższych można rozpoznać, że wyższe wartości dwóch perwszych zmiennych korespondują z wyższą wartością trzeciej zmiennej, co pokazuje, że powyższa analiza skupień potwierdza hipotezę nr 1.

```
Średnie dla komponentów:
         [[294.618214
                         4.63264661 35.56097713]
          [433.79452559 9.38265035 48.65184372]
          [178.15320756 5.91657158 27.83302482]]
         Macierz kowariancji:
         [[[ 2.56303338e+03 -6.12981530e+01 1.30339349e+02]
           [-6.12981530e+01 2.26543607e+01 3.80408207e+01]
           [ 1.30339349e+02 3.80408207e+01 2.38198631e+02]]
          [[ 4.02172982e+03 -1.61449302e+02 2.56079031e+02]
           [-1.61449302e+02 7.08076369e+01 2.47093257e+01]
           [ 2.56079031e+02 2.47093257e+01 2.32200568e+02]]
          [[ 1.21375458e+03 6.50697118e-01 1.07951634e+02]
           [ 6.50697118e-01 2.24932185e+01 7.85913406e+00]
           [ 1.07951634e+02 7.85913406e+00 1.64016808e+02]]]
         Macierz precyzji:
         [[[ 0.00047961  0.00237543 -0.0006418 ]
           [ 0.00237543  0.07208177 -0.01281142]
           [-0.0006418 -0.01281142 0.00659537]]
          [[ 0.00031084  0.00086034  -0.00043436]
           [ 0.00086034  0.01704863  -0.00276302]
           [-0.00043436 -0.00276302 0.00507967]]
          [ 0.00017907  0.04525145 -0.00228616]
           [-0.00058503 -0.00228616 0.00659153]]]
In [42]: fig = plt.figure()
         ax = fig.add_subplot(projection='3d')
         labels = gmm.predict(X_cluster)
         frame = pd.DataFrame(X_cluster)
         frame['cluster'] = labels
         frame.columns = [feature_1, feature_2, feature_3, 'cluster']
         for k in range(gmm_components):
             data = frame[frame['cluster']==k]
             plt.scatter(data[feature 1], data[feature 2], data[feature 3], c=color cluster
         ax.set_xlabel(feature_1)
         ax.set_ylabel(feature_2)
         ax.set_zlabel(feature_3)
         ax.set_title("Gaussian Mixture")
         plt.show()
```


Wnioski:

Jak powyżej można zauważyć to na podstawie przeprowadzonego badania z wykorzystaniem Gaussian Mixture zmienne Cement i Superplasticizer pozwalają dokonać selekcji trzech jednoznacznie prezentujących się klastrów, grupujących się elipsoidalnie. Jednak, co można zauważyć analizując współrzędne punktów odpowiadających punktom średnim:

- dla parametru Cement wynoszącego 294.618214 i Superplasticizer wynoszącego
 4.63264661 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącej
 35.56097713, co świadczy, że dany klaster grupował próbki o wytrzymałości zbliżonej
 do średniej populacji,
- dla parametru Cement wynoszącego 433.79452559 i Superplasticizer wynoszącego
 9.38265035 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącej
 48.65184372, co świadczy, że dany klaster grupował próbki o wyższej wytrzymałości niż średnia populacji,
- dla parametru Cement wynoszącego 178.15320756 i Superplasticizer wynoszącego
 5.91657158 udało się uzyskać wartość wytrzymałości na ściskanie betonu wynoszącej

27.83302482, co świadczy, że dany klaster grupował próbki o wytrzymałości o wiele niższej niż średnia populacji.

Na podstawie powyższych można rozpoznać, że wyższe wartości dwóch perwszych
parametrów korespondują z wyższą wartością trzeciej zmiennej, co pokazuje, że
powyższa analiza skupień z wykorzystaniem Gaussian Mixture potwierdza hipotezę nr 1.

Over-Sampling

```
In [43]: |
         from sklearn.preprocessing import StandardScaler
         try:
             import smogn
         except ImportError:
             !pip install smogn
             import smogn
In [44]:
         df.shape
         (1005, 9)
Out[44]:
In [45]: df = smogn.smoter(
             data = df
             y = 'Concrete compressive strength',
             k = 9
             samp_method = 'extreme',
             rel_{thres} = 0.80,
             rel_method = 'auto',
             rel_xtrm_type = 'high',
             rel_coef = 1.7
         dist_matrix: 100% | ######## | 42/42 [00:00<00:00, 43.39it/s]
         synth_matrix: 100% | ######## | 42/42 [00:02<00:00, 17.79it/s]
         r_index: 100%|########| 37/37 [00:00<00:00, 333.52it/s]
In [46]: X = df.loc[:, df.columns != 'Concrete compressive strength']
         y = df['Concrete compressive strength']
In [47]: | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
         print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
         (1539, 8) (385, 8) (1539,) (385,)
In [48]: scaler = StandardScaler() # ewentulnie MinMaxScaler
In [49]: scaler.fit(X_train)
         X train = scaler.transform(X train)
         X_test = scaler.transform(X_test)
```

Artificial Neural Network (ANN)

```
In [50]: from sklearn.tree import DecisionTreeRegressor, plot_tree
from sklearn import metrics
In [51]: from tensorflow.keras.models import Sequential
```

from tensorflow.keras.layers import Dense In [52]: model = Sequential([Dense(64, activation='relu', input_shape=(X_train.shape[1],)), Dense(64, activation='relu'), Dense(1, activation='elu'),]) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mean_squared_error']) hist = model.fit(X_train, y_train, epochs=100, validation_data=(X_test, y_test), validation_data=(X_test, y_ In [53]: plt.plot(hist.history['loss']) In [54]: plt.plot(hist.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Val'], loc='best') plt.show() Model loss 3000 2500 2000 SSO 1500 1000 500

Wnioski:

- Sieć posiada dwie warstwy 64 neuronów, opytamlizowana jest funkcją: adam oraz zastosowana została funkcja aktywacji: elu.
- Sieć o dwóch warstwach 64 neuronów nauczyła się w oparciu o zbiór i jej błąd wynosi 150.
- Tempo uczenia sieci jest zadowalajace, nauka prowadzona była w 100 epokach.

Random Forest

```
In [55]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.model_selection import GridSearchCV
In [56]: param_grid = {
              'bootstrap': [True],
              'max_depth': [3, 5, 7],
              'max_features': [3, 4, 5],
              'min_samples_leaf': [3, 4, 5],
              'min_samples_split': [8, 10, 12],
              'n_estimators': [50, 70, 90, 140, 200]
         rfr = RandomForestRegressor()
         grid_search = GridSearchCV(estimator = rfr, param_grid = param_grid, cv = 3, n_job.
In [57]: grid_search.fit(X_train, y_train)
         GridSearchCV(cv=3, estimator=RandomForestRegressor(), n_jobs=-1,
Out[57]:
                      param_grid={'bootstrap': [True], 'max_depth': [3, 5, 7],
                                   'max_features': [3, 4, 5],
                                   'min_samples_leaf': [3, 4, 5],
                                   'min_samples_split': [8, 10, 12],
                                   'n_estimators': [50, 70, 90, 140, 200]})
         grid_search.best_params_
In [58]:
         {'bootstrap': True,
Out[58]:
          'max depth': 7,
          'max_features': 5,
          'min_samples_leaf': 3,
          'min_samples_split': 8,
          'n_estimators': 200}
         rfr = RandomForestRegressor(**grid_search.best_params_)
In [59]:
         rfr.fit(X_train, y_train)
         RandomForestRegressor(max_depth=7, max_features=5, min_samples_leaf=3,
Out[59]:
                               min_samples_split=8, n_estimators=200)
In [60]: def evaluate(model, test_features, test_labels):
             predictions = model.predict(test_features)
             errors = abs(predictions - test labels)
             mape = 100 * np.mean(errors / test_labels)
             accuracy = 100 - mape
             print('Wydajność modelu:')
             print('Błąd MAE: {:0.4f} stopni.'.format(np.mean(errors)))
             print('Dokładność = {:0.2f}%.'.format(accuracy))
             return accuracy
         grid_accuracy = evaluate(rfr, X_test, y_test)
         Wydajność modelu:
         Błąd MAE: 3.7549 stopni.
         Dokładność = 89.20\%.
In [61]:
         rfr.score(X_train, y_train)
         0.9617797725947305
Out[61]:
         importances = list(rfr.feature_importances_)
In [62]:
         feature_importances = [(col_name, round(importance * 100, 2))
                                      for col name, importance in zip(df.columns[:-1], import
```

```
feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = 1
[print('Zmienna: {:18} ,istotność: {}%'.format(*pair)) for pair in feature_importar
Zmienna: Cement
                           ,istotność: 40.56%
Zmienna: Age
                           ,istotność: 25.78%
                           ,istotność: 20.4%
Zmienna: Water
Zmienna: Superplasticizer
                           ,istotność: 3.44%
Zmienna: Blast Furnace Slag ,istotność: 2.91%
Zmienna: Fly Ash
                         ,istotność: 2.7%
Zmienna: Fine Aggregate
                          ,istotność: 2.25%
Zmienna: Coarse Aggregate ,istotność: 1.96%
```

Wnioski (na podstawie feature_importances_):

- Jak można zauważyć to Cement i Age mają nawiększy wpływ na Concrete compressive strength (wytrzymałość na ściskanie), co potwierdza hipotezę nr 1.
- Jak można zauważyć to Fine Aggregate, Fly Ash i Blast Furnace Slag mają pomijalny wpływ na Concrete compressive strength, co falsyfikuje hipotezę nr 2.
- Jak można zauważyć to wysoka wartość Water obala hipotezę nr 3, natomiast znikomo mała Fine Aggregate i najwyższa Cement ją potwierdza.

```
In [63]: x_axis_values = list(range(len(importances)))

plt.bar(x_axis_values, importances)
plt.xticks(x_axis_values, df.columns[:-1])
plt.ylabel('Istotność')
plt.xlabel('Zmienna')
plt.title('Zmienne - Random Forest')
plt.show()
```



```
In [64]: estimators = np.arange(10, 200, 10)
scores = []

for n in estimators:
```

```
rfr.set_params(n_estimators=n)
    rfr.fit(X_train, y_train)
    scores.append(rfr.score(X_test, y_test))

plt.title("Efektywność n drzew")
plt.xlabel("Liczba drzew")
plt.ylabel("R^2")
plt.plot(estimators, scores)
plt.show()
```



```
In [65]: vector1 = scaler.transform(np.array([[500,72.04,55.54,182.07,30,974.38,772.69,365])
    vector2 = scaler.transform(np.array([[110,80,80,182.07,6.03,974.38,880,45]]))
    vector3 = scaler.transform(np.array([[500,72.04,55.54,121.75,6.03,974.38,594,100]])
    print(rfr.predict(vector1))
    print(rfr.predict(vector2))
    print(rfr.predict(vector3))

[61.78400557]
    [36.35682921]
    [63.80947458]
```

Powyższe wyniki potwierdzają hipotezę 1 i 3 oraz falsyfikują hipotezę 2

Wnioski:

- RandomForestRegressor pozwolił na zbudowanie modelu dającego wysoką dokładność predycji wyników dla problemu predykcji wytrzymałości na ściskanie betonu.
- GridSearchCV jest bardzo użytecznym narzędziem służącym przeprowadzaniu automatycznego poszukawania modelu o najlepszych hiperparametrach.

Podsumowanie:

- Hipotezę nr 1 została potwierdzona.
- Hipotezę nr 2 została sfalsyfikowana.
- Hipotezę nr 3 została potwierdzona.