

Introduction

- → The Dataset:
 - ◆ From Kaggle
 - Stats from each game played in the 2016 MLB season
 - Time, date, weather
 - Home team, away team
 - Runs, hits, errors during game by each team
- → Our Expectations + Goals:
 - Predict who will win a game only on pre-game factors
 - Ignore runs, hits, errors
 - Difficult task
 - Goal of 55% prediction accuracy

Preprocessing

- → The Base Model:
 - After reducing the Kaggle dataset to only include pre-game factors:
 - Attendance, away team, date, field type, game type (day or night), home team, start time, day of week, temperature, wind speed, wind direction, sky, and season (regular or post-season).
 - ♦ Best accuracy was 52%
- → Our Additions:
 - Number of hits and runs for and against each team in the season so far
 - Winning % up to the day of the game
 - Home and away winning percentages splits
 - ◆ Ballpark factor
 - Run differential
 - Pythagorean Winning Percentage

Ricardo's Model

Dataset:

- Feature Selection
 - Environmental
 - Game percentages
 - Ballpark Factor
 - Regular Season
- Model
 - Logistic Regression
- Hyperparameters
 - \circ C = 0.01
 - Penalty = "l2"
 - Solver = "saga"

Results:

- Accuracy
 - Training/Validate 53%
 - o Testing 54%
- F1 Score
 - 0.69

Sid's Model

- Dataset:
 - Kept Rob's additions but then used L1 regularization to drop insignificant features
 - Normalization of feature data
 - Split data into 60% training, 20% development and 20% test set.
- Perceptron:
 - Ran a "grid search" to determine the best learning rate and used 50 epochs.
- Adaline:
 - Ran a "grid search" to determine the best learning rate and used 50 epochs.

```
Best Perceptron Accuracy on Dev: 0.5182926829268293
Best LR on Dev: 0.001
This is Perceptron accuracy on Test: 0.565922920892495
Best Adaline Accuracy on Dev: 0.5223577235772358
Best ETA on Dev: 0.0001
This is Adaline accuracy on Test: 0.5679513184584178
```

Kristin's Model

- The Dataset:
 - Calculated differences
 - Win percentage to date, AVG runs by and against, and AVG hits by and against
 - Ordered team indices
 - By record in the 2015 season
- The Models:
 - Basic NN with Keras
 - 4 densely connected layers, 10 epochs
 - 53-55% accuracy depending on random seed
 - Grid search over SVM + Logistic Regression
 - Best was SVM
 - C = 0.1, kernel = 'linear', and tolerance = 1
 - Accuracy:
 - Train: 0.569 Test: 0.553

Melchor's Model

- Dataset
 - Kept Rob's additions
 - o 80 / 20 split
 - Dropped insignificant variables
 - In-game statistics
 - Date, Time
 - Qualitative data changed to Categorical data type
 - Strings → numbers that represent each value respectively
 - Quantitative data scaled
- Model 1
 - Support vector classifier
 - 10-fold CV Grid Search
 - Best parameters:
 - C:1
 - Gamma: 0.01
 - Train Accuracy = 59%, Test Accuracy: 56%
- Model 2
 - o 90 / 10 split
 - Same exact process
 - Best Parameters:
 - C:100
 - Gamma: 0.001
 - Train Accuracy: 63%, Accuracy: 63%
- Model 3
 - Applied parameters to 80 / 20 split (model 1)
 - Accuracy: 57%

The Best Approach - SVM

- → Kristin's SVM accuracy = 55.3%, Melchor's SVM accuracy = 57.0%
 - ◆ 1.7% difference
 - Similar performance
- → Differences in Methods
 - Elimination of additional features
 - Original dataset = 42 columns
 - Processed dataset = 28 columns
 - Radial Kernel vs Linear Kernel
 - 10-fold vs 5-fold cross-validation
 - Higher fold → train on larger data → test on smaller data
 - 90/10 training/testing split on the data
 - Should not use due to overfitting
 - More data → better fitting → higher accuracy
 - Led to finding better parameters
- → Overall best method for classifying home team wins with this data: SVM

```
Grid search results:
Classifier: SVM
Parameters: [0.1, 'linear', 1]
TRAIN SUCCESS 0.5697615423642821
TEST SUCCESS 0.55284552845
```

Improvements to Make

- Increasing the amount of data
 - ♦ Look at years prior to 2016
- → Factoring in player stats
 - For the people in the starting lineups
 - ◆ ERAs, batting averages, etc.
- → Exploring more with NNs
 - CNNs, optimization
- → Testing only on data from later in the season
 - Stats used as features could be less accurate at the beginning of the season

Conclusions

- → Predicting win/loss based on pre-game factors is difficult
 - Hard problem in general
 - Makes it hard for a model to do with a ton of accuracy
- → Better than dummy classifiers
 - More accurate and consistent
- → In all, there's a reason a baseball game is played, not predicted
 - So many things can happen in-game to change odds
 - Hard to know who will win before the game is played

