Prefix (prefix ID) In both IPv4 and IPv6, this term refers to the number that identifies a group of IPv4 or IPv6 addresses, respectively. Another term for subnet identifier.

prefix length In IPv6, the number of bits in an IPv6 prefix.

prefix mask A term to describe an IPv4 subnet mask when represented as a slash (/) followed by a decimal number. The decimal number is the number of binary 1s in the mask.

prefix notation (IP version 4) A shorter way to write a subnet mask in which the number of binary 1s in the mask is simply written in decimal. For example, /24 denotes the subnet mask with 24 binary 1 bits in the subnet mask. The number of bits of value binary 1 in the mask is considered to be the prefix length.

primary root This term refers to the switch configured with the primary keyword on the spanning-tree vlan x root (primary | secondary) command. At time of configuration, this command causes the switch to choose a new priority setting that makes the switch become the root switch in the network.

private addresses IP addresses in several Class A, B, and C networks that are set aside for use inside private organizations. These addresses, as defined in RFC 1918, are not routable through the Internet.

private IP network Any of the IPv4 Class A, B, or C networks as defined by RFC 1918, intended for use inside a company but not used as public IP networks.

protected access credential (PAC) Special-purpose data that is used as an authentication credential in EAP-FAST.

Protected EAP (PEAP) An authentication method that uses a certificate on the AS for outer authentication and a TLS tunnel for inner authentication. Clients can provide their credentials through either MS-CHAPv2 or GTC.

Protected Management Frame (PMF) A service provided by WPA3 that protects a set of 802.11 robust management and action frames, to prevent spoofing of AP functions.

protocol data unit (PDU) A generic term referring to the header defined by some layer of a networking model, and the data encapsulated by the header (and possibly trailer) of that layer, but specifically not including any lower-layer headers and trailers.

Protocol Type field A field in a LAN header that identifies the type of header that follows the LAN header. Includes the DIX Ethernet Type field, the IEEE 802.2 DSAP field, and the SNAP protocol Type field.

public IP address An IP address that is part of a registered network number, as assigned by an Internet Assigned Numbers Authority (IANA) member agency, so that only the organization to which the address is registered is allowed to use the address. Routers in the Internet should have routes allowing them to forward packets to all the publicly registered IP addresses.

public IP network Any IPv4 Class A, B, or C network assigned for use by one organization only, so that the addresses in the network are unique across the Internet, allowing packets to be sent through the public Internet using the addresses.

Public Key Infrastructure (PKI) An enterprisewide system that generates and revokes digital certificates for client authentication.

PVST+ An STP option in Cisco switches that creates an STP instance per VLAN. Cisco proprietary.

O-R

quartet A term used in this book, but not in other references, to refer to a set of four hex digits in an IPv6 address.

RADIUS server An authentication server used with 802.1x to authenticate wireless clients.

RAM Random-access memory. A type of volatile memory that can be read and written by a microprocessor.

Rapid PVST+ An STP option in Cisco switches that creates an RSTP instance per VLAN. Cisco proprietary.

Rapid Spanning Tree Protocol (RSTP) Defined in IEEE 802.lw. Defines an improved version of STP that converges much more quickly and consistently than STP (802.Id).

reference bandwidth In OSPF, a configurable value for the OSPF routing process, used by OSPF when calculating an interface's default OSPF cost metric, calculated as the interface's bandwidth divided by the reference bandwidth.

Regional Internet Registry An organization (five globally) that receives allocations of public IPv4 addresses from IANA and then manages that address space in their major geographic region, performing public address allocations to ISPs and assignments directly to companies that use the addresses.

repeater A device that repeats or retransmits signals it receives, effectively expanding the wireless coverage area.

resident subnet Each IP subnet contains a number of unicast IP addresses: that subnet is the resident subnet for each of those addresses—that is, the subnet in which those addresses reside.

reverse route From one host's perspective, for packets sent back to the host from another host, the route over which the packet travels.

RFC Request For Comments. A document used as the primary means for communicating information about the TCP/IP protocols. Some RFCs are designated by the Internet Architecture Board (IAB) as Internet standards, and others are informational. RFCs are available online from numerous sources, including http://www.rfc-editor.org.

RIP Routing Information Protocol. An interior gateway protocol (IGP) that uses distance vector logic and router hop count as the metric. RIP version 2 (RIPv2) replaced the older RIP version 1 (RIPv1), with RIPv2 providing more features, including support for VLSM.

RIR See Regional Internet Registry.

RJ-45 A popular type of cabling connector used for Ethernet cabling. It is similar to the RI-11 connector used for telephone wiring in homes in the United States, RI-45 allows the connection of eight wires.

roaming The process a wireless client uses to move from one AP to another as it changes location.

ROAS See Router-on-a-Stick.

ROM Read-only memory. A type of nonvolatile memory that can be read but not written to by the microprocessor.

ROMMON A shorter name for ROM Monitor, which is a low-level operating system that can be loaded into Cisco routers for several seldom-needed maintenance tasks, including password recovery and loading a new IOS when flash memory has been corrupted.

root bridge See root switch.

root cost The STP cost from a nonroot switch to reach the root switch, as the sum of all STP costs for all ports out which a frame would exit to reach the root.

root port In STP and RSTP, the one port on a nonroot switch in which the least-cost Hello is received. Switches put root ports in a forwarding state.

root switch In STP and RSTP, the switch that wins the election by virtue of having the lowest bridge ID and, as a result, sends periodic Hello BPDUs (default, 2 seconds).

routed port A port on a multilayer Cisco switch, configured with the no switchport command, that tells the switch to treat the port as if it were a Layer 3 port, like a router interface.

routed protocol A protocol that defines packets that can be routed by a router. Examples of routed protocols include IPv4 and IPv6.

Router Advertisement (RA) A message defined by the IPv6 Neighbor Discovery Protocol (NDP), used by routers to announce their willingness to act as an IPv6 router on a link. These can be sent in response to a previously received NDP Router Solicitation (RS) message.

router ID (RID) In EIGRP and OSPF, a 32-bit number, written in dotted-decimal notation, that uniquely identifies each router.

router LSA In OSPF, a type of LSA that a router creates to describe itself and the networks connected to it.

Router-on-a-Stick (ROAS) Jargon to refer to the Cisco router feature of using VLAN trunking on an Ethernet interface, which then allows the router to route packets that happen to enter the router on that trunk and then exit the router on that same trunk, just on a different VLAN.

Router Solicitation (RS) A message defined by the IPv6 Neighbor Discovery Protocol (NDP), used to ask any routers on the link to reply, identifying the router, plus other configuration settings (prefixes and prefix lengths).

routing protocol A set of messages and processes with which routers can exchange information about routes to reach subnets in a particular network. Examples of routing protocols include Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest Path First (OSPF), and Routing Information Protocol (RIP).

routing table A list of routes in a router, with each route listing the destination subnet and mask, the router interface out which to forward packets destined to that subnet, and as needed, the next-hop router's IP address.

routing update A generic reference to any routing protocol's messages in which it sends routing information to a neighbor.

RSTP See Rapid Spanning Tree Protocol.

running-config file In Cisco IOS switches and routers, the name of the file that resides in RAM, holding the device's currently used configuration.

S

same-layer interaction The communication between two networking devices for the purposes of the functions defined at a particular layer of a networking model, with that communication happening by using a header defined by that layer of the model. The two devices set values in the header, send the header and encapsulated data, with the receiving devices interpreting the header to decide what action to take.

secondary root This term refers to the switch configured with the secondary keyword on the **spanning-tree vlan x root** {**primary | secondary**} command. At time of configuration, this command causes the switch to set its base priority to 28,762.

Secure Shell (SSH) A TCP/IP application layer protocol that supports terminal emulation between a client and server, using dynamic key exchange and encryption to keep the communications private.

segment In TCP, a term used to describe a TCP header and its encapsulated data (also called an L4PDU). Also in TCP, the process of accepting a large chunk of data from the application layer and breaking it into smaller pieces that fit into TCP segments. In Ethernet, a segment is either a single Ethernet cable or a single collision domain (no matter how many cables are used).

serial cable A type of cable with many different styles of connectors used to connect a router to an external CSU/DSU on a leased-line installation.

serial interface A type of interface on a router, used to connect to some types of WAN links, particularly leased lines and Frame Relay access links.

service set identifier (SSID) A text string that is used to identify a wireless network.

shared Ethernet An Ethernet that uses a hub, or even the original coaxial cabling, that results in the devices having to take turns sending data, sharing the available bandwidth.

shortest path first (SPF) algorithm The name of the algorithm used by link-state routing protocols to analyze the LSDB and find the least-cost routes from that router to each subnet.

Simultaneous Authentication of Equals (SAE) A strong authentication method used in WPA3 to authenticate wireless clients and APs and to prevent dictionary attacks for discovering pre-shared keys.

single-mode fiber A type of fiber cable that works well with transmitters like lasers that emit a single angle of light into the core of the cable, allowing for a smaller core in comparison to multimode fiber cables.

site-local scope A concept in IPv6 for which packets sent to an address using this scope should be forwarded by routers, but not forwarded over WAN links to other sites.

SOHO router A term to describe the general role of a router that exists as part of the enterprise network but resides at an employee's home or at a smaller business site, possibly with a short-term lease compared to larger enterprise sites. These sites typically have few devices, so it makes sense to use one device that integrates routing, switches, wireless, and other features into a single device (the SOHO router) and are more likely to justify Internet access as the primary WAN access method.

solicited-node multicast address A type of IPv6 multicast address, with link-local scope, used to send packets to all hosts in the subnet that share the same value in the last six hex digits of their unicast IPv6 addresses. Begins with FF02::1:FF00:0/104.

Spanning Tree Protocol (STP) A protocol defined by IEEE standard 802.ID. Allows switches and bridges to create a redundant LAN, with the protocol dynamically causing some ports to block traffic, so that the bridge/switch forwarding logic will not cause frames to loop indefinitely around the LAN.

split-MAC architecture A wireless AP strategy based around the idea that normal AP functions are split or divided between a wireless LAN controller and lightweight APs.

SSH See Secure Shell.

standard access list A list of IOS global configuration commands that can match only a packet's source IP address, for the purpose of deciding which packets to discard and which to allow through the router.

star topology A network topology in which endpoints on a network are connected to a common central device by point-to-point links.

startup-config file In Cisco IOS switches and routers, the name of the file that resides in NVRAM memory, holding the device's configuration that will be loaded into RAM as the running-config file when the device is next reloaded or powered on.

stateful DHCPv6 A term used in IPv6 to contrast with stateless DHCP. Stateful DHCP keeps track of which clients have been assigned which IPv6 addresses (state information).

stateless address autoconfiguration (SLAAC) A feature of IPv6 in which a host or router can be assigned an IPv6 unicast address without the need for a stateful DHCP server.

stateless DHCPv6 A term used in IPv6 to contrast with stateful DHCP. Stateless DHCP servers don't lease IPv6 addresses to clients. Instead, they supply other useful information, such as DNS server IP addresses, but with no need to track information about the clients (state information).

static access interface A LAN network design term, synonymous with the term *access* interface, but emphasizing that the port is assigned to one VLAN as a result of static configuration rather than through some dynamic process.

static route An IP route on a router created by the user configuring the details of the route on the local router.

station (STA) An 802.11 client device that is associated with a BSS.

STP Shielded twisted-pair. This type of cabling has a layer of shielded insulation to reduce electromagnetic interference (EMI).

straight-through cable In Ethernet, a cable that connects the wire on pin 1 on one end of the cable to pin 1 on the other end of the cable, pin 2 on one end to pin 2 on the other end, and so on.

subinterface One of the virtual interfaces on a single physical interface.

subnet Subdivisions of a Class A, B, or C network, as configured by a network administrator. Subnets allow a single Class A, B, or C network to be used instead of multiple networks, and still allow for a large number of groups of IP addresses, as is required for efficient IP routing.

subnet address See subnet number.

subnet broadcast address A special address in each IPv4 subnet, specifically the largest numeric address in the subnet, designed so that packets sent to this address should be delivered to all hosts in that subnet.

subnet ID (IPv4) *See* subnet number.

subnet ID (IPv6) The number that represents the IPv6 subnet. Also known as the IPv6 prefix, or more formally as the subnet-router anycast address.

subnet ID (prefix ID) *See* subnet number.

subnet mask A 32-bit number that numerically describes the format of an IP address, by representing the combined network and subnet bits in the address with mask bit values of 1, and representing the host bits in the address with mask bit values of 0.

subnet number In IPv4, a dotted-decimal number that represents all addresses in a single subnet. Numerically, the smallest value in the range of numbers in a subnet, reserved so that it cannot be used as a unicast IP address by a host.

subnet part In a subnetted IPv4 address, interpreted with classful addressing rules, one of three parts of the structure of an IP address, with the subnet part uniquely identifying different subnets of a classful IP network.

subnet router anycast address A special anycast address in each IPv6 subnet, reserved for use by routers as a way to send a packet to any router on the subnet. The address's value in each subnet is the same number as the subnet ID.

subnet zero An alternative term for *zero subnet*. *See* zero subnet.

subnetting The process of subdividing a Class A, B, or C network into smaller groups called subnets.

summary LSA In OSPFv2, a type of LSA, created by an Area Border Router (ABR), to describe a subnet in one area in the database of another area.

supplicant An 802.1x entity that exists as software on a client device and serves to request network access.

switch A network device that filters, forwards, and floods Ethernet frames based on the destination address of each frame.

switched Ethernet An Ethernet that uses a switch, and particularly not a hub, so that the devices connected to one switch port do not have to contend to use the bandwidth available on another port. This term contrasts with *shared Ethernet*, in which the devices must share bandwidth, whereas switched Ethernet provides much more capacity, as the devices do not have to share the available bandwidth.

switched port A port on a multilayer Cisco switch or a Layer 2 switch, configured with the normal default interface setting of switchport, that tells the switch to treat the port as if it were a Layer 2 port, resulting in the switch performing switch MAC learning, Layer 2 forwarding, and STP on that interface.

switched virtual interface (SVI) Another term for any VLAN interface in a Cisco switch. *See also* VLAN interface.

symmetric A feature of many Internet access technologies in which the downstream transmission rate is the same as the upstream transmission rate.

synchronous The imposition of time ordering on a bit stream. Practically, a device will try to use the same speed as another device on the other end of a serial link. However, by examining transitions between voltage states on the link, the device can notice slight variations in the speed on each end and can adjust its speed accordingly.

system ID extension The term for the formatting applied to the original 16-bit STP priority field to break it into a 4-bit priority field and a 12-bit VLAN ID field.

T

T1 A line from the telco that allows transmission of data at 1.544 Mbps, with the ability to treat the line as 24 different 64-kbps DS0 channels (plus 8 kbps of overhead).

TCP Transmission Control Protocol. A connection-oriented transport layer TCP/IP protocol that provides reliable data transmission.

TCP/IP Transmission Control Protocol/Internet Protocol. A common name for the suite of protocols developed by the U.S. Department of Defense in the 1970s to support the construction of worldwide internetworks. TCP and IP are the two best-known protocols in the suite.

telco A common abbreviation for *telephone company*.

Telnet The standard terminal-emulation application layer protocol in the TCP/IP protocol stack. Telnet is used for remote terminal connection, enabling users to log in to remote systems and use resources as if they were connected to a local system. Telnet is defined in RFC 854.

Temporal Key Integrity Protocol (TKIP) A wireless security scheme developed before 802.11i that provides a MIC for data integrity, a dynamic method for per-frame WEP encryption keys, and a 48-bit initialization vector. The MIC also includes a time stamp and the sender's MAC address

three-tier design. See core design.

topology database The structured data that describes the network topology to a routing protocol. Link-state and balanced hybrid routing protocols use topology tables, from which they build the entries in the routing table.

trace Short for traceroute. A program available on many systems that traces the path that a packet takes to a destination. It is used mostly to troubleshoot routing problems between hosts.

traceroute A program available on many systems that traces the path that a packet takes to a destination. It is used mostly to debug routing problems between hosts.

trailer In computer networking, a set of bytes placed behind some other data, encapsulating that data, as defined by a particular protocol. Typically, only data-link layer protocols define trailers.

transceiver A term formed from the words transmitter and receiver. The hardware used to both send (transmit) energy over some communications medium (e.g., wires in a cable), as well as to process received energy signals to interpret as a series of 1s and 0s.

transparent bridge The name of a networking device that was a precursor to modern LAN switches. Bridges forward frames between LAN segments based on the destination MAC address. Transparent bridging is so named because the presence of bridges is transparent to network end nodes.

trunk In campus LANs, an Ethernet segment over which the devices add a VLAN header that identifies the VLAN in which the frame exists.

trunk interface A switch interface configured so that it operates using VLAN trunking (either 802.1Q or ISL).

trunking Also called *VLAN trunking*. A method (using either the Cisco ISL protocol or the IEEE 802.1Q protocol) to support multiple VLANs, allowing traffic from those VLANs to cross a single link.

trunking administrative mode The configured trunking setting on a Cisco switch interface, as configured with the switchport mode command.

trunking operational mode The current behavior of a Cisco switch interface for VLAN trunking.

twisted-pair Transmission medium consisting of two insulated wires, with the wires twisted around each other in a spiral. An electrical circuit flows over the wire pair, with the current in opposite directions on each wire, which significantly reduces the interference between the two wires.

two-tier design *See* collapsed core design.

U

UDP User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery.

unicast address Generally, any address in networking that represents a single device or interface, instead of a group of addresses (as would be represented by a multicast or broadcast address).

unicast IP address An IP address that represents a single interface. In IPv4, these addresses come from the Class A, B, and C ranges.

unified WLC deployment A wireless network design that places a WLC centrally within a network topology.

unique local address A type of IPv6 unicast address meant as a replacement for IPv4 private addresses.

unknown unicast frame An Ethernet frame whose destination MAC address is not listed in a switch's MAC address table, so the switch must flood the frame.

up and up Jargon referring to the two interface states on a Cisco IOS router or switch (line status and protocol status), with the first "up" referring to the line status and the second "up" referring to the protocol status. An interface in this state should be able to pass data-link frames

update timer The time interval that regulates how often a routing protocol sends its next periodic routing updates. Distance vector routing protocols send full routing updates every update interval.

user mode A mode of the user interface to a router or switch in which the user can type only nondisruptive EXEC commands, generally just to look at the current status, but not to change any operational settings.

UTP Unshielded twisted-pair. A type of cabling, standardized by the Telecommunications Industry Association (TIA), that holds twisted pairs of copper wires (typically four pair) and does not contain any shielding from outside interference.

variable-length subnet mask (VLSM) The capability to specify a different subnet mask for the same Class A, B, or C network number on different subnets. VLSM can help optimize available address space.

virtual LAN (VLAN) A group of devices, connected to one or more switches, with the devices grouped into a single broadcast domain through switch configuration. VLANs allow switch administrators to separate the devices connected to the switches into separate VLANs without requiring separate physical switches, gaining design advantages of separating the traffic without the expense of buying additional hardware.

virtual private network (VPN) The process of securing communication between two devices whose packets pass over some public and unsecured network, typically the Internet. VPNs encrypt packets so that the communication is private, and authenticate the identity of the endpoints.

VLAN See virtual LAN.

VLAN configuration database The name of the collective configuration of VLAN IDs and names on a Cisco switch.

VLAN interface A configuration concept inside Cisco switches, used as an interface between IOS running on the switch and a VLAN supported inside the switch, so that the switch can assign an IP address and send IP packets into that VLAN.

VLAN Trunking Protocol (VTP) A Cisco-proprietary messaging protocol used between Cisco switches to communicate configuration information about the existence of VLANs, including the VLAN ID and VLAN name.

voice VLAN A VLAN defined for use by IP Phones, with the Cisco switch notifying the phone about the voice VLAN ID so that the phone can use 802.1Q frames to support traffic for the phone and the attached PC (which uses a data VLAN).

VoIP Voice over IP. The transport of voice traffic inside IP packets over an IP network.

VTP *See* VLAN Trunking Protocol.

VTP client mode One of three VTP operational modes for a switch with which switches learn about VLAN numbers and names from other switches, but which does not allow the switch to be directly configured with VLAN information.

VTP server mode One of three VTP operational modes. Switches in server mode can configure VLANs, tell other switches about the changes, and learn about VLAN changes from other switches.

VTP transparent mode One of three VTP operational modes. Switches in transparent mode can configure VLANs, but they do not tell other switches about the changes, and they do not learn about VLAN changes from other switches.

WAN See wide-area network.

web server Software, running on a computer, that stores web pages and sends those web pages to web clients (web browsers) that request the web pages.

wide-area network (WAN) A part of a larger network that implements mostly OSI Layer 1 and 2 technology, connects sites that typically sit far apart, and uses a business model in which a consumer (individual or business) must lease the WAN from a service provider (often a telco).

Wi-Fi Alliance An organization formed by many companies in the wireless industry (an industry association) for the purpose of getting multivendor certified-compatible wireless products to market in a more timely fashion than would be possible by simply relying on standardization processes.

Wi-Fi Protected Access (WPA) The first version of a Wi-Fi Alliance standard that requires pre-shared key or 802.1x authentication, TKIP, and dynamic key management; based on parts of the 802.11i amendment before it was ratified.

wildcard mask The mask used in Cisco IOS ACL commands and OSPF and EIGRP network commands.

window Represents the number of bytes that can be sent without receiving an acknowledgment.

Wired Equivalent Privacy (WEP) An 802.11 authentication and encryption method that requires clients and APs to use a common WEP key.

wired LAN A local-area network (LAN) that physically transmits bits using cables, often the wires inside cables. A term for local-area networks that use cables, emphasizing the fact that the LAN transmits data using wires (in cables) instead of wireless radio waves. See also wireless LAN.

wireless LAN A local-area network (LAN) that physically transmits bits using radio waves. The name "wireless" compares these LANs to more traditional "wired" LANs, which are LANs that use cables (which often have copper wires inside).

wireless LAN Controller (WLC) A device that cooperates with wireless lightweight access points (LWAP) to create a wireless LAN by performing some control functions for each LWAP and forwarding data between each LWAP and the wired LAN.

WLAN client A wireless device that wants to gain access to a wireless access point for the purpose of communicating with other wireless devices or other devices connected to the wired internetwork.

workgroup bridge (WGB) An AP that is configured to bridge between a wired device and a wireless network. The WGB acts as a wireless client.

WPA Version 2 (WPA2) The second version of a Wi-Fi Alliance standard that requires preshared kev or 802.1x authentication, TKIP or CCMP, and dynamic encryption key management; based on the complete 802.11i amendment after its ratification.

WPA Version 3 (WPA3) The third version of a Wi-Fi Alliance standard introduced in 2018 that requires pre-shared key or 802.1x authentication, GCMP, SAE, and forward secrecy.

7

zero subnet For every classful IPv4 network that is subnetted, the one subnet whose subnet number has all binary 0s in the subnet part of the number. In decimal, the zero subnet can be easily identified because it is the same number as the classful network number.

Index

Symbols

? command, 94-95 :: (double colon), 531

Numbers

2-way state (OSPF), 453-454, 457 2.4-GHz band, 626 5-GHz band, 626 10BASE-T, 37, 42-45 10GBASE-T, 37 100BASE-T, 37, 42-45 802.11, 628-629 BSS, 614-616 DS, 616-618 ESS. 618 IBSS, 619 WLAN, 614 802.1D STP, 228, 232 802.1Q, 182 802.1w RSTP, 228-232 802.1x, EAP integration, 658 1000BASE-LX, 37 1000BASE-T, UTP cabling pinouts, 45-46

A

AAA (Authentication, Authorization, and Accounting) servers, 136 abbreviating IPv6 addresses, 531-532

ABR (Area Border Routers), 460-461 access CLI, 87-94, 128-139, 355-356 protected credentials, 659 WPA, 662-663 WPA2, 662-663 WPA3, 662-663 access interfaces, 185 access points. See AP access switches, 241 ad hoc wireless networks. See IBSS addresses BIA. 52 broadcast addresses, 50-52 calculating hosts and subnets in networks, 313-315 classless versus classful addressing, 312-313 Ethernet addresses, 50-52 exhaustion, 525 experimental, 290 first usable, 293-294 group addresses, 51 host addresses, 293 IPv4 addresses. See individual entry IPv6 addresses. See individual entry LAN addresses, 52 last usable, 293-294 loopback address, 295 MAC addresses, 50-52, 111-114,

117-124, 218

NAT. 277

multicast addresses, 50-52, 290

network broadcast addresses, 293-295

network numbers, 293-295	ESS, 618
NIC addresses, 52	fake, 654
prefix part, 309-311	Flex+Bridge mode, 647
private addresses, 542	FlexConnect mode, 647
public addresses, 542	IBSS, 619
range of subnet addresses, finding,	LAP, 638-640
331	Local mode, 647
sender MAC, 661	management interface, 674
subnet addresses, 272, 283, 324-327,	Monitor mode, 647
334-338	multiple SSID, supporting, 617
unicast addresses, 50-52, 290, 322	noninfrastructure modes, 620-622
universal addresses, 51	passing through, 615
adjacencies (OSPF neighbors), trouble-	roaming, 618
shooting, 510-516	Rogue Detector mode, 647
adjacent-layer interaction, 21-22	SE Connect mode, 647
adjacent neighbors, 457	Sniffer mode, 647
administrative distance, 382-383, 448-449, 594-595	SSID, 615
•	VLAN, 668
administrative mode, trunking, 191	WLAN, 668-669
administratively shutdown interfaces, 217	application layer (TCP/IP), 19-20
AES (Advanced Encryption Standard),	architectures
661	autonomous, 634-635, 638
aging MAC address tables, 121-122	centralized, 642-643
algorithms	cloud-based
AES, 661	AP, 636-637
CSMA/CD, 55	WLC deployments, 643
Dijkstra SPF, 451	networking, 16
IGP routing protocol algorithm, 445	split-MAC, 638-642
key mixing, 661	area design (OSPF), 459-462
RC4 cipher, 657	ARIN (American Registry for Internet
SPF, 457-459	Numbers), 445
STA, 216	ARP (Address Resolution Protocol),
alternate ports, 229-232	72, 77, 378-379
anycast addresses (IPv6), 574-576	AS (Authentication Servers), 658
AP (Access Points), 35, 614, 629	AS (Autonomous Systems), 444-445
authentication, 654	ASN (AS Numbers), 445
autonomous, 634-635, 638	assigning
Bridge mode, 647	IPv6 addresses to hosts, 550
BSSID, 615	IPv6 subnets to internetwork
cloud-based AP architectures, 636-637	topology, 549
cioud-based Ar architectures, 636-637	subnets to different locations, 285

authentication. See also security	bandwidth command, 492, 496
AP, 654	Basic Service Areas. See BSA
AS, 658	Basic Service Sets. See BSS
clients, 653	BDR (Backup DR), 456-457, 504-506
EAP, 657-658	Bellman-Ford protocols. See distance
EAP-FAST, 659	vector protocols
EAP-TLS, 660	Berners-Lee, Tim, 20
external authentication servers,	BGP (Border Gateway Protocol), 445
135-136	BIA (Burned-In Addresses), 52
LEAP, 659	BID (Bridge ID)
open authentication, 656	STP, 218-219
PEAP, 659	system ID extensions, 243-244
web (WebAuth), 657	bidirectional communication, 613
WEP, 657	binary/hexadecimal conversion chart
WLAN, 682	(IPv6), 531
WLC, 642	binary masks, 304-308
WPA, 662-663	binary subnet analysis, 326
WPA2, 662-663	binary practice problems, 328-329
WPA3, 662-663	Boolean math, 331
authenticators, 658	finding
auto-cost reference-bandwidth	range of addresses, 331
command, 493, 496	subnet ID, 327
auto-mdix, 45	shortcut for binary process, 330
autonegotiation, 158-162	blocking state, interfaces, 215-217
autonomous AP (Access Points),	blueprint (networking), 16
634-635, 638	Boolean AND, 331
autonomous architectures, 634-635,	Boolean math, 331
638	Boolean OR, 331
autonomous systems. See AS	borrowing host bits to create subnet
auxiliary ports (routers), 362	bits, 280-281
В	BPDU (Bridge Protocol Data Units),
В	218, 225
	BPDU Guard, 236
backbone areas, 460-461	BPDU tunneling, 247
backbone routers, 461	bridge ID. See BID
backup ports, 230, 233	Bridge mode (AP), 647
bandwidth	bridges. See switches
frequencies, 626-627	bridging tables. See MAC address
reference, 492	tables
router serial interfaces, 361	broadcast addresses, 50-52, 325-327

broadcast network type (OSPF),	cells. See BSA
500-506	centralized architectures, 642-643
broadcast storms, 213-215	centralized controllers
BSA (Basic Service Areas), 614	dynamic interfaces, creating, 678
BSS (Basic Service Sets), 614-618, 629	RADIUS servers, configuration, 676
AP, 614	WLAN security, 682
associations, 615	certificate authorities. See CA
BSSID, 615	CFN (Cisco Feature Navigator), 404
DS, 616-618	channel-group command, 248-249,
IBSS, 619	259
stations, 615	EtherChannels, 416
traffic flows, 615	Layer 3 EtherChannels, trouble-
burned-in MAC addresses, 218	shooting, 413
С	channel-group number mode on command, 411
<u> </u>	channels, 627
CA (Certificate Authorities), 659	dynamic assignment, 642
cables	nonoverlapping, 628
CLI, cabling console connections,	CIDR (Classless Interdomain Routing)
88-90	subnet masks, 305
enterprise networks, 351	circuits. See leased-line WAN
Ethernet, 35	Cisco Binary Game, 306
fiber-optic cabling, 38, 46-49	Cisco Catalyst switches, 86
IP telephony, 197	Cisco integrated services routers, 352
leased-line cabling, 62-63	cladding (fiber-optic cable), 47
physical console connections, 88-90	Class A networks, 290-295, 312
	Class B networks, 290-293, 312
pinouts	Class C networks, 290-295, 312
rollover pinouts, 89	Class D networks, 290
straight-through cable pinout, 42-45	Class E networks, 290
UTP, 37-46, 49	classful IP addresses, 312-313
caches (ARP), 77	classful IP networks, 289, 296-297
	address formats, 291-292
CAM (Content-Addressable Memory) tables. See MAC address tables	before subnetting, 279-280
candidate default routes, 384	calculating hosts per network, 293
CAPWAP (Control and Provisioning	classes in, 290-291
of Wireless Access Points) tunneling	default masks, 292
protocol, 639-640	
carrier sense multiple access with col-	network ID, 293-295
lision detection (CSMA/CD), 55	number of, 291
CCMP (Counter/CBC-MAC Protocol),	octet values, 290
661	size of, 291

subnet masks, 302	commands
unusual addresses, 295	?, 94-95
classful networks, 276-279	auto-cost reference-bandwidth, 496
classful routing protocols, 447-448	bandwidth, 496
classless addressing, 312-313	channel-group, 248-249, 259, 413, 416
classless routing protocols, 447-448	channel-group number mode on, 411
clear ip arp [ip-address] command,	clear ip arp [ip-address], 378, 391
378, 391	clear ip ospf process, 481, 497
clear ip ospf process command, 481, 497	clear mac address-table dynamic, 122, 125
clear mac address-table dynamic	com?, 94
command, 122, 125	command, 495
CLI (Command-Line Interface)	command ?, 94
accessing, 87-94	command parm?, 94
cabling console connections, 88-90	command parm <tab>, 94</tab>
Cisco Catalyst switches, 86	command parm1?, 94
command edit and recall, 95	configure terminal, 97, 101, 104, 132,
common command prompts, 98	189, 355
configuration files, 99-102	copy, 356
configuration mode, 96-97	copy running-config startup-config,
configuration submodes and contexts,	102-104
97-99	copy startup-config running-config,
help, 94-95	104
overview, 84-86	crypto key, 137
privileged EXEC mode, 91-93	crypto key generate rsa, 137-139, 148
router CLI, 355-356	debug, 96
security, 128-139	default-information originate, 489, 496
user EXEC mode, 91-93	
clients	default-information originate always, 490
authentication, 653, 656-660	delete vlan.dat, 117
load balancing, 642	description, 153, 170, 363
roaming, 642	disable, 104
Telnet clients, 91	duplex, 152-154, 165, 170, 355, 363
WLAN, 684	enable, 91, 104, 130
CLN (Cisco Learning Network), 306	enable password, 131
clock rates, router serial interfaces,	enable secret, 131, 148
361	enable secret love, 94
cloud-based architectures, 636-637, 643	encapsulation, 397-398
collisions, 167	encapsulation dot1q, 415
Combions, 107	encapsulation dot1q, 413 encapsulation dot1q vlan id, 397
	encapsulation dot1q viaii_id, 597

encapsulation dot1q vlan-id, 401 ip ssh version 2, 139 end, 104, 355 ipv6 address, 557, 560, 564-568, 576-578, 583 erase nyram, 104 ipv6 address dhcp, 578 erase startup-config, 104, 117 ipv6 address eui-64, 563 exec-timeout, 145, 148 ipv6 address link-local, 568 exit, 98, 101-103, 355 ipv6 enable, 568-569, 576-578 history size, 145, 148 ipv6 route, 586-597, 604 hostname, 99-103, 117, 138, 148 hostname Fred, 97 ipv6 unicast-routing, 558, 578 line aux 0, 362 how interfaces status, 156 line con 0, 130-131 interface, 97, 103, 169, 185, 198, 356, 363, 391, 415 line console 0, 97-98, 103, 147, 356 interface ethernet, 357 line vty, 132, 147 interface fastethernet, 357 logging console, 145, 148 interface gigabitethernet, 357 logging synchronous, 145, 148 interface loopback, 470, 481, 496 login, 94, 103, 130-132, 147 interface port-channel, 416 login local, 147 interface port-channel number, 411 mac-address, 564 interface range, 154, 169, 187 maximum-paths, 494-496 interface type number.subint, 397 name, 185, 207 interface vlan, 148, 415 ndp -an, 600 interface vlan 1, 142 netsh interface ipv6 show neighbors, 600 interface vlan vlan id, 403 network, 473-475, 480-486, 511 ip -6 neighbor show, 600 no debug all, 104 ip address, 142, 148, 360, 363, 381, 391-392, 397-398, 470 no description, 157, 170 ip address address mask, 397, 403, 411 no duplex, 157, 170 ip address dhcp, 148 no ip address, 412 ip default-gateway, 142, 148 no ip domain-lookup, 146 ip domain-name, 139 no logging console, 145, 148 no passive-interface, 487, 496 ip mtu, 515 ip name-server, 142, 148 no password, 134 ip ospf, 495 no shutdown, 142, 155-157, 170, 207, 253, 356, 363, 399, 403-405 ip ospf cost, 492, 496 [no] shutdown vlan number, 201 ip ospf dead-interval, 517 no speed, 157, 170 ip ospf hello-interval, 517 no switchport, 408, 411-415 ip ospf process-id, 511 passive-interface, 487, 496, 517 ip ospf process-id area area-id, 483-485 passive-interface default, 488 ip route, 367, 376, 380-385, 391 password, 97, 103, 130-132, 147 ip routing, 391, 402-404, 415 password faith, 94

497

ping, 78, 419-429, 587 show ip ospf interface, 486-488, 496, 503-505, 510-513, 517 port-channel load-balance method, show ip ospf interface [brief], 254 479-480, 511 quit, 104 show ip ospf interface brief, 488, 491, reload, 91-92, 102-104, 117, 402-404 496, 503, 5.5, 508-510, 514, 517 router-id, 470, 496 show ip ospf interface G0/0, 505 router ospf, 470, 495 show ip ospf neighbor, 452-453, 457, router ospf 1, 472, 480 475, 480, 497, 502, 505, 508-517 router ospf process-id, 480, 510 show ip ospf neighbor interface brief, sdm prefer, 402-404 513 sdm prefer lanbase-routing, 402, 415 show ip protocols, 479, 485, 496, 517 show, 95, 166, 361, 480, 508 show ip route, 324, 356, 367, 376-391, show crypto key mypubkey rsa, 149 400-402, 408, 416, 449, 475-478, show dhcp lease, 143-144, 149 497, 585 show etherchannel, 248, 259, 416 show ip route address, 388 show etherchannel 1 summary, 250 show ip route [connected], 398 show etherchannel summary, 413 show ip route EXEC, 404 show history, 145, 149 show ip route ospf, 387, 497 show interfaces, 119-120, 156, show ip route static, 380, 490 162-164, 167-170, 357-358, 361, show ip ssh, 139, 149 364, 376, 408, 416, 515-517, 583 show ipv6 interface, 558-559, 567, show interfaces description, 162, 170 570-573, 579 show interfaces interface-id trunk, show ipv6 interface brief, 558-560, 203-205 567, 575, 579 show interfaces status, 118, 125, 153, show ipv6 route, 566, 579, 585-590, 162-165, 408, 412 605 show interfaces switchport, 192-199, show ipv6 route connected, 560, 586 202-203, 208 show ipv6 route local, 585-586 show interfaces trunk, 193-194, show ipv6 route static, 587-590, 593, 199-205, 208, 401 595 show interfaces type number show mac address-table, 120, 125, 356 switchport, 199 show mac address-table aging-time. show interfaces type number trunk, 200 122, 125 show interfaces vlan, 143-144, 149, show mac address-table count, 122, 416 125 show ip arp, 391 show mac address-table dynamic, 96, show ip default-gateway, 144, 149 117, 123-125, 170 show ip interface brief, 357-361, 364, show mac address-table dynamic 406 address, 125 show ip ospf, 481, 496, 510-511, 517 show mac address-table dynamic show ip ospf database, 450, 462, 475, interface, 120-121, 125

show mac address-table dynamic vlan, switchport trunk allowed vlan, 204, 125 207 show mac address-table static, 170 switchport trunk encapsulation, 191, show mac address-table vlan, 121 switchport trunk native vlan, 207 show protocols, 361, 364 switchport trunk native vlan vlan-id. show running-config, 93, 101, 104, 205 132-133, 143, 149, 155, 158, 170, 398, 479, 488, 511, 584 switchport voice vlan, 198-199, 207 show running-config | interface, 170 switchport voice vlan vlan-id, 200 show spanning-tree, 249, 259 terminal history size, 145, 149 test etherchannel load-balance EXEC, show spanning-tree vlan, 259 255 show spanning-tree vlan vlan-id, 204 traceroute, 428-432, 587 show ssh, 139, 149 show startup-config, 101, 104, 158 transport input, 138, 148, 356 transport input all, 139 show vlan, 201, 208 transport input none, 139 show vlan brief, 186-189, 202 transport input ssh, 139 show vlan id, 187 transport input telnet ssh, 139 show vlans, 398-401, 416 undebug all, 104 show vtp status, 190, 208 username, 134 shutdown, 143, 155, 170, 207, 253, 356, 359, 363, 399-401, 405 username secret, 134, 147 shutdown command, 163 vlan, 185, 198, 207 spanning-tree, 259 vlan number, 201 spanning-tree mode, 242-243, 259 vtp mode, 207 spanning-tree vlan, 244 vtp mode off, 190 spanning-tree vlan x root primary, vtp mode transparent, 190 244-245 write erase, 104 spanning-tree vlan x root secondary, communication 244-245 bidirectional, 613 speed, 98-99, 152-154, 165, 170, 355, passing through, 615 363 unidirectional, 613 switchport, 408, 415 configuration BPDU. See Hello BPDU switchport access vlan, 185-189, configuration changes (STP topology, 198-199, 207 influencing), 223 switchport mode, 191, 207 configuration files, 99-102 switchport mode access, 185, 188, configuration mode (CLI), 96-97 198-199 configure terminal command, 97, 101, switchport mode dynamic auto, 202 104, 132, 189, 355 switchport mode dynamic desirable, connected routes, 366, 376-378, 193 583-585 switchport mode trunk, 191, 203, 396

switchport nonegotiate, 195, 203, 207

connectors	crosstalk, 40
pins, 40	crypto key command, 137
RJ-45, 41	crypto key generate rsa command,
console connections, cabling, 88-90	137-139, 148
console passwords, 129	CSMA/CD (Carrier Sense Multiple
console ports, 672	Access with Collision Detection),
context-setting commands, 97	55, 167
control plane (cloud-based AP archi-	CUCM (Cisco Unified Communication
tectures), 637	Manager), 196
controllers	cycles, waves, 625
centralized, 676-678, 682	
dynamic interfaces, 674-675	D
interfaces, 673, 681	
management interfaces, 674	DAD (Duplicate Address Detection),
ports, 672-673	598, 602
redundancy management, 674	data
service port interfaces, 674	decryption, 655
virtual interfaces, 674	encapsulation 20
VLANs, mapping, 673	OSI terminology, 30
WLAN controller configuration, 685	TCP/IP terminology, 27-28
WLC, 639-642	integrity, 656
convergence, 216, 443	privacy, 655
converting subnet mask formats,	privacy/integrity methods, 660-661
305-309	data centers, 108
copy command, 356	data link layer
copy running-config startup-config	Ethernet, 38-39, 49-50
command, 102-104	TCP/IP, 25-26
copy startup-config running-config	data-link protocols, leased-line WAN, 63-64
command, 104	data paths, autonomous wireless
cores (fiber-optic cable), 47	networks, 635
costs (metrics)	data plane (cloud-based AP archi-
EIGRP, 446	tectures), 637
IGP, 446-447	Data VLAN (Virtual Local Area
OSPF, 491-493	Networks), 197-199
ports, 247	DDN (Dotted-Decimal Notation), 24,
IEEE default, 223	305-309
STP, 221	de-encapsulating IP packets, 373-374
RIPv2, 446-447	Dead Interval timers, 455
CRC (Cyclic Redundancy Checks), 167-168	dead timers, troubleshooting, 512-513
crossover cable pinouts, 44-45	debug command, 96
crossover cable pillouts, 44-45	decimal masks. See DDN

decimal subnet analysis, 331	discovering
difficult masks, 334-338	duplicate addresses, 602
easy masks, 332	neighbor link addresses, 598-600
finding	routers, 600-601
subnet broadcast addresses,	distance vector protocols, 446
336-338	distributed architectures, 634-638
subnet IDs, 334-336	distribution switches, 241
predictability in interesting octets,	distribution system ports, 672-673
333-334	distribution systems. See DS
reference table: DDN mask values and	DNS (Domain Name Systems), 76-77
binary equivalent, 338-339	documentation, subnet plans, 267
decrypting data, 655	double colon (::), 531
default gateways, 70, 370-372	DP (Designated Ports), 217, 222-223,
default-information originate always command, 490	230
default-information originate	DR (Designated Routers)
command, 489, 496	BDR, 456-457
default OSPF routes, 489-491	elections, configuration with
default routers, 70, 370-372	broadcast network type (OSPF),
default routes, 379, 383-384	504-506 DRAM (Dymamic Bandom Access
default VLAN (Virtual Local Area	DRAM (Dynamic Random-Access Memory), 99
Networks), 186	DROthers routers, 457
delete vlan.dat command, 117	DS (Distribution Systems), 616-618
description command, 153, 170, 363	DTP (Dynamic Trunking Protocol), 203
designated ports. See DP	dual stacks, 529, 556
DHCP (Dynamic Host Configuration	duplex command, 152-154, 165, 170,
Protocol), 143, 286	355, 363
diagrams (networking), 15, 26	duplexes
difficult subnet masks, 334-338	configuration on switch interfaces,
digital certificates, split-MAC architectures, 640	152-154
Dijkstra SPF algorithm, 451	mismatches, 161
directed broadcast addresses, 283	troubleshooting, 161-166
disable command, 104	Duplicate Address Detection. See DAD
disabling	dynamic auto trunking, 191
autonegotiation, 160	dynamic desirable trunking, 191
DTP, 203	dynamic EtherChannels, configuration,
ports, 230	250-251
switch interfaces, 155-156	Dynamic Host Configuration Protocol (DHCP), 143, 286
VLAN, troubleshooting, 201-202	dynamic interfaces, 674-675, 678
WLAN, 680	dynamic IP address configuration,
discarding state (RSTP), 229-230	DHCP, 143

dynamic ranges per subnet, choosing, 286-287	enterprise LAN (Local Area Networks), 36-37
dynamic unicast address configuration	enterprise mode (WPA), 663
(IPv6), 564	enterprise networks, 15, 268, 350-352
_	enterprise routers, 350-353
E	EoMPLS (Ethernet over MPLS), 66
	erase nvram command, 104
E-Line, 66	erase startup-config command, 104,
EAP (Extensible Authentication	117
Protocol), 657-660	erasing switch configuration files, 102
EAP-FAST (EAP Flexible Authenti-	errors
cation by Secure Tunneling), 659	detection, FCS field, 53
EAP-TLS (EAP Transport Layer Security), 660	TCP error recovery rates, 21
easy subnet masks, 332	ESS (Extended Service Sets), 618
echo requests/replies (ICMP), 78, 419	EtherChannel, 234, 407
edge ports, 233	configuration, 247-257
EGP (Exterior Gateway Protocol), 444	dynamic EtherChannels, 250-251
EIGRP (Enhanced Interior Gateway	Layer 3 EtherChannels, 392, 410-414
Routing Protocol), 446	load distribution, 253-257
EIGRPv6 (EIGRP for IPv6), 529	manual Layer 2 EtherChannels,
electric waves, traveling, 624	248-250
embedded WLC deployments, 644	troubleshooting, 251-253
enable command, 91, 104, 130	Ethernet, 26
enable mode, 91-93	addresses, 52
enable passwords, 130-131	cables, 35
enable secret command, 131, 148	E-Line, 66
enable secret love command, 94	emulation, 66-68
encapsulation	EoMPLS, 66
IPv4, 70	GBIC, 42
OSI terminology, 30	IPv6 static routes over Ethernet links, 591
TCP/IP terminology, 27-28	
encapsulation command, 397-398	LAN. See also subnets enterprise LAN, 36-37
encapsulation dot1q command, 415	enterprise LAN, 36-37 enterprise networks, 350
encapsulation dot1q vlan id command,	Ethernet addressing, 50-52
397, 401	9
encoding schemes, 39	Ethernet data link protocols, 38-50
encryption (data), 655	Ethernet frames, 38
end command, 104, 355	Ethernet physical layer
end-user perspectives on networking,	standards, 37
14-15	Ethernet ports, 40

Ethernet Type field, 52 FCS field, 53	F
FCS field, 53 full-duplex logic, 53-56 half-duplex logic, 54-56 overview, 32-34 SOHO LAN, 35 switches, 35, 106-124, 152-162 troubleshooting, 162-168 UTP cables, 37-46, 49 VLAN, 179-205 links, 40 OSPF	failed interfaces, 217 fake AP, 654 Fast Ethernet, 37 FCS (Frame Check Sequence) field, 53 fiber-optic cables, 37-38, 46-49 finding IPv6 prefixes, 533-536 MAC address table entries, 120-121 mismatched Hello/dead timers, 512 range of subnet addresses, 331
Ethernet links, 456-457 Ethernet WAN, 506-508 point-to-point, 56	routers best routes, 451 subnet broadcast addresses, 327, 336-338
shared media, 56	subnet ID, 327, 334-336
switches, fiber-optic cables, 48 WAN enterprise networks, 350	first octet values, classes by, 290 first usable IP addresses, deriving, 293-294
EoMPLS, 66	flash memory, 100
Ethernet emulation, 66-68	Flex+Bridge mode (APs), 647
overview, 65-66	FlexConnect mode (APs), 647
point-to-point network type (OSPF), 506-508	floating static routes, 381-383, 593-595
Ethernet Alliance web page, 38	flooding, 114, 450
EtherType, 52	Forward delay timers (STP), 225
EUI-64 (extended unique identifier),	forward secrecy, 663
560-564	forward-versus-filter decisions, 113
EXEC modes	forwarding, 115
privileged EXEC mode, 91-93 simple password configuration,	data. See routes/routing
130-133	IP packets, 68-75, 374-375 known unicast frames, 110-113
user EXEC mode, 91-93	forwarding state, interfaces, 215-217
exec-timeout command, 145, 148	frames, 26-28, 38
exit command, 98, 101-103, 355	broadcast storms, 213-215
expanding IPv6 addresses, 532	CRC, 167
experimental addresses, 290	flooding, 114
extended ping command, 423-426	giants, 167
extended traceroute command,	IP routing, 373-376
431-432 external authentication servers, 135-136	looping frames, 213-215

HDLC, 63

HTTP, 20 packet output errors, 167 runts, 167 IP headers, 73 Hello BPDU, 218, 225 unknown unicast frames, 114 frequencies, 613, 625-627 Hello Interval timers, 455 Hello messages, 219, 452 full addresses (IPv6), 530 full duplex logic, 53-56 Hello timers, 225, 512-513 full VLAN configuration example. hexadecimal/binary conversion chart 186-188 (IPv6), 531 fully adjacent neighbors, 457, 502 history buffer commands, 144-145 history size command, 145, 148 G hopping (VLAN), 205 host addresses, calculating number per network, 293 G0/0 status code, 359 host bits, 272 G0/1 status code, 359 host forwarding logic (IPv4), 69 gateways (default), 370-372 host part (of IP addresses), 292, 302, GBIC (Gigabit Ethernet Interface Con-311 verter), 42 host routes, 378-379 GCMP (Galois/Counter Mode Protocol), 661 IPv4 routing process, 370 Get IEEE 802 program, 228 static host routes, 381 hostname command, 97-103, 117, GET requests (HTTP), 20 138, 148 GHz (Gigahertz), 625 hostnames, 76, 427-428 giants, 167 hosts, 68 Gigabit Ethernet, 37 analyzing subnet needs, 269-271 global routing prefix (IPv6), 543-544 assigning addresses to, 550 global unicast addresses, 542-550 calculating, 313-315 global unicast next-hop addresses, 589 host bits, 272 group addresses, 51 IP settings, 24, 140-142 groupings (IP address), 70 NDP, 598-603 GTC (Generic Token Cards), 660 subnets, 268-271 HTTP (Hypertext Transfer Protocol), Н 19-20 hubs half-duplex logic, 54-56 autonegotiation, 161-162 HDLC (High-Level Data Link Control), LAN hubs, 54-56 63-64 Hypertext Transfer Protocol (HTTP), headers 19-20 Ethernet header fields, 50 Hz (Hertz), 625

<u> </u>	interface gigabitethernet command, 357
ANA (Internet Assigned Numbers	interface ID, 547
Authority), 445, 540	interface loopback command, 470, 481, 496
(BSS (Independent Basic Service Sets), 619. See also BSS	interface port-channel command, 416
ICANN (Internet Corporation for Assigned Names and Numbers), 540	interface port-channel number command, 411
CMP (Internet Control Message Protocol), 78, 419	interface range command, 154, 169, 187
CMPv6 (Internet Control Message Protocol version 6), 526	interface type number.subint command, 397
(D (identification)	interface vlan command, 148, 415
ID numbers, WLAN, 680	interface vlan 1 command, 142
interface ID, 547	interface vlan vlan_id command, 403
subnet ID, 272, 283, 324, 327, 330,	interfaces, 87
334-336, 548	administratively shutdown, 217
system ID extensions, 245-246	blocking state, 215
VLAN ID, 180	controllers, 673, 681
EEE (Institute of Electrical and Elec-	dynamic interfaces, 674-675, 678
tronic Engineers), 18	EtherChannels, adding, 251-253
802.1D Spanning-Tree states, 227	failed interfaces, 217
802.1D standard, 228	forwarding state, 215
802.1w amendment, 228	Layer 1 problems, 166-168
802.1x, EAP integration, 658	learning state, 227
default port costs, 223	listening state, 227
Get IEEE 802 program, 228	management interfaces, 674
IGP (Interior Gateway Protocol), 444-448	OSPF metrics, 493
GRP (Interior Gateway Routing	passive interfaces, 487-488
Protocol), 446	OSPFv2 configuration, 483-486
nferior Hello messages, 219	physical interface configuration,
nfrastructure mode, 614	251-253
nput errors, 166-167	ports, compared, 671
ntegrated services routers (Cisco), 352	routed interfaces, Layer 3 (multilayer)
nterarea routes, 461	switches, 407-409
nteresting octets, predictability in, 333-334	routers, 356-357 bandwidth, 361
nterface command, 97, 103, 169,	clock rates, 361
185, 198, 356, 363, 391, 415	IP addresses, 360-361
nterface ethernet command, 357	status codes, 358-359
nterface fastethernet command, 357	service port interfaces 674

speed and duplex issues, 163-166	IP forwarding, 374-375, 386-389
states, 216-217, 227	IPv4 routing process, 369-371
status codes, 162-163, 358-359	troubleshooting, 419-434
subcommands, 97	routing tables, 70-72, 388-389
subinterfaces, 396-397	telephony, 196-200
SVI, 392, 401-406	ip -6 neighbor show command, 600
switch interface configuration, 152-162	ip address address mask command, 397, 403, 411
troubleshooting, 162-168 virtual interfaces, 674	ip address command, 142, 148, 360, 363, 381, 391-392, 398
VLAN interfaces, 402	IP addresses on loopback interfaces,
	470
WLC interfaces, 673-675	subinterfaces, 397
working interfaces, 217	ip address dhcp command, 148
interference, simultaneous trans- missions, 613	ip address subcommand, 376
internal routers, 461	ip address parameter, network
Internal Potters, 401 Internet Protocol, See IP	command, 473
internet Protocol. 322 11	ip default-gateway command, 142, 148
intra-area routes, 461	ip domain-name command, 139
intrusion protection, WLC, 642	ip mtu command, 515
IOS configuration, 96-102	ip name-server command, 142, 148
	ip ospf command, 495
IP (Internet Protocol), 22. See also IPv4; IPv6	ip ospf cost command, 492, 496
addresses	ip ospf dead-interval command, 517
management, 635	ip ospf hello-interval command, 517
ping command, 427-428	ip ospf process-id area area-id
subnets, 283-284	command, 483-485
forwarding	ip ospf process-id command, 511
IP packets, 374-375	ip route command, 367, 376, 379-385,
longest prefix matches, 386-389	391, 402-404, 415
IGP metrics, 446-447	ip ssh version 2 command, 139
routing, 366	IPv4 (Internet Protocol Version 4). See
ARP tables, 378-379	also IP
	address exhaustion, 525
de-encapsulating IP packets, 373-374	ARP, 72, 77
encapsulating IP packets in new frames, 375	calculating hosts and subnets in network, 313-315
example of, 371-376	classes in, 290-291
frames, 373-376	classful IP networks, 289-297
bost forwarding of IP packets	classless versus classful addressing, 312-313
to default routers (gateways), 372	configuration on switch, 142-143

DNS, 76-77	IPv6 (Internet Protocol Version 6). See
dynamic IP address configuration with	also IP
DHCP, 143	abbreviating addresses, 531-532
headers, 73	address configuration summary, 576
hosts, 24, 140-142	assigning subnets to internetwork
networks, 70-73, 293-295	topology, 549
overview, 22-23, 68	dual-stack strategies, 556
private addresses, 542	dynamic unicast address configuration, 564
public addresses, 542	expanding addresses, 532
router support	-
auxiliary ports, 362	global routing prefix, 543-544
CLI access, 355-356	global unicast addresses, 542-550
interfaces, 356-361	hexadecimal/binary conversion chart, 531
routing, 24-25, 369-371	history of, 524-525
logic, 68-72	interface ID, 547
protocols, 74-75	link-local addresses, 566-569
subnets, 70, 73, 264-267, 322-339	loopback addresses, 574
hosts, 268-271	multicast addresses, 569-576
multiple subnet sizes, 274	NDP, 573-574, 598-603
number of hosts, 271	overview, 524
number of subnets, 270	prefix length, 533-536
one-size subnets, 273	protocols, 526-527
single-size subnets, 273	representing full IPv6 addresses, 530
size of, 272-274	
subnet addresses, 272	routing, 527-530, 583-598
subnet ID, 272	static unicast address configuration, 557-564
subnet masks, 272, 275, 279-283,	subnets, 543
302-312, 315	global unicast addresses,
subnet numbers, 272	545-549
switch settings, 140-142	router anycast addresses, 549
testing connectivity, 78	unique local addresses, 551-552
troubleshooting tools	unicast addresses, 556
ping command, 419-429	unique local addresses, 542, 551-553
SSH, 432-434	unknown addresses, 574
Telnet, 432-434	ipv6 address command, 557, 560,
traceroute command, 428-432	564-568, 576-578, 583
unusual addresses within classes, 295	ipv6 address dhcp command, 578
verifying on switch, 143-144	ipv6 address eui-64 command, 563
VLSM, 275	ipv6 address link-local command, 568
	ipv6 enable command, 568-569, 576-578

 ipv6 route command, 586-597, 604 ipv6 unicast-routing command, 558, 578 IS-IS (Integrated Intermediate System to Intermediate System), 446 ISL (Inter-Switch Link), 182 ISO (International Organization for Standardization), 17 IV (Initialization Vectors), 661 J - K 	LAN switching, 106-124 neighbors, testing, 425-426 redundancy, 210, 214 STP security exposures, 236 switching, 35 analyzing, 116 flooding, 114 interface configuration, 152-162 MAC address table, 113-114, 117-124
keys forward secrecy, 663 mixing algorithm, 661 PKIs, 660	overview, 106-109 STP, 114-115 summary, 115-116 switch forwarding and filtering decisions, 110-113
shared-key security, 657 TKIP, 660-661 WEP, 657	switch interfaces, 118-120, 152-162 switching logic, 109-110 verifying, 116
kHz (kilohertz), 625 kilohertz (kHz), 625	VLAN
known unicast frames, forwarding, 110-113	AP, 668 configuration, 185-195, 198-199 Data VLAN, 197-199 default VLAN, 186
LACP (Link Aggregation Control Protocol), 250	disabled VLAN, 201-202 IP telephony, 196-200 native VLAN, 183, 205
LAG (link aggregation group), 673 LAN (Local-Area Networks). <i>See also</i> subnets addresses, 52	overview, 179-180 routing, 183-184 supported VLAN list on trunks, 203-205
definition of, 179 DP on each segment, choosing, 222-223 enterprise LAN, 36-37	tagging, 181-182 troubleshooting, 201-205 trunking, 180-182, 189-195
Ethernet LAN, 32-46, 49-56 enterprise networks, 350 LAN switching, 106-124	undefined VLAN, 201-202 VLAN ID, 180 Voice VLAN, 197-199
switch interface configuration, 152-162 troubleshooting, 162-168 hubs, 54-56, 161-162	VTP, 189-190 WLAN, 32 802.11 WLAN, 614 advanced settings 684-685

advanced settings, 684-685

AP, 668-669	line console 0 command, 97-98, 103,
BSS, 614-616	147, 356
client session timeouts, 684	line vty command, 132, 147
configuration, 675-678, 681-685	link-local addresses (IPv6), 566-569
controller configuration, 685	link-local next-hop address, 589-590
creating, 679-681	link-state protocols, 446
creating too many, 676	list of subnets
defined, 675	building, 283-284
displaying list of, 679	IPv6 subnets, 548-549
DS, 616-618	listening state, interfaces, 227
ESS, 618	load balancing
IBSS, 619	clients, 642
limiting, 676	OSPF, 494
management access, 685 mesh networks, 622	load distribution, EtherChannel, 253-257
outdoor bridges, 621-622	Local mode (AP), 647
QoS, 683-684	local routes, 378, 583-586
repeaters, 620-621	local scope multicast addresses,
security, 681-684	569-573
topologies, 614-622	logging console command, 145, 148
WGBs, 621	logging synchronous command, 145,
•	148
WLCs, 669-675	logical networks, user segregation, 676
LAP (Lightweight Access Points), 639-642	login command, 94, 103, 130-132, 147
last usable IP addresses, deriving, 293-294	login local command, 147
late collisions, 167	loopback address, 295, 574
Layer 1 problems, troubleshooting,	looping frames, 213-215
166-168	loops, avoiding with STP, 114-115
Layer 2 switches, 141, 183	LSA (Link-State Advertisements), 449,
Layer 3 EtherChannel, 392	454
Layer 3 (multilayer) switches, 141, 184	flooding, 450
routed ports, 406-414	LSDB relationship, 450
SVI, 401-406	network LSA, 464
LEAP (Lightweight EAP), 659	OSPF, 454-456, 459-464
learning state, interfaces, 227	router LSAs, 463
leased-line WAN (Wide Area	LSDB (Link-State Database)
Networks), 61-65	area design, 461-462
lightweight AP (Access Points), 638	best routes, finding, 451
line aux 0 command, 362	LSA relationship, 450
line con 0 command, 130-131	OSPF/LSDB neighbor exchanges, 454-456

magnetic waves, traveling, 624 man-in-the-middle attacks, 654 management access (WLAN), allowing,

management interfaces (controllers), 674

management IP addresses, autonomous AP. 635

manual Layer 2 EtherChannels, 248-250

mapping VLAN, 673 MaxAge timer (STP), 225

maximum-paths command, 494-496

memory, 99-100 Meraki, 636-637

mesh networks, 622

messages

685

Hello, 219 Hello BPDU, 218, 225 inferior Hello, 219

integrity, 656, 660-661

OSPF Hello, 452

privacy, 655, 660-661

RSTP, 232

sending, 623-624

superior Hello, 219

metrics (costs)

EIGRP, 446

IGP, 446-447

OSPF, 491-493

ports, 247

IEEE default, 223

STP. 221

RIPv2, 446-447

MHz (Megahertz), 625

MIC (Message Integrity Checks), 656, 660-661

Mobility Express WLC deployments,

models, networking

OSI, 17, 28-30

TCP/IP, 16-29

modified EUI-64 (Extended Unique Identifier-64), 560-564

Monitor mode (AP), 647

MP BGP-4 (Multiprotocol BGP version 4), 529

MSCHAPv2 (Microsoft Challenge Authentication Protocol version 2), 660

MSTP (Multiple Spanning Tree Protocol), 242-243

MTU (Maximum Transmission Units), 50, 515

multiarea OSPF (Open Shortest Path First), 482

multicast addresses, 50-52, 290, 569-576

multilayer switches, 141, 184, 401-414

multimode fiber-optic cables, 47-49

N	network numbers, 293-295
	network types (OSPF)
NA (Neighbor Advertisement), 599	broadcast, 500-506
name command, 185, 207	point-to-point, 500-501, 506-508
NAT (Network Address Translation), 277, 542	troubleshooting mismatched network types, 515-516
native VLAN (Virtual Local-Area	networks
Networks), 183, 205, 398	architectures, 16
NDP (Neighbor Discovery Protocol),	blueprint, 16
526, 573-574, 598-603	broadcast addresses, 293-295
ndp -an command, 600	classful IP networks, 289-297
neighbors	classful networks, 276-278
adjacent neighbors, 457	definition of, 268
fully adjacent neighbors, 457, 502	diagrams, 15, 26
link addresses, discovering, 598-600	end-user perspectives, 14-15
NA, 599	enterprise networks, 15, 268, 350-352
NS, 599	internetworks, 268
OSPF, 451	IP networks, 70-73, 292, 302, 312
broadcast network type, 502-506	logical networks, user segregation, 67
LSA exchanges, 454-456	LSA, 464
LSDB exchanges, 454-456	masks, 376
requirements, 508-510	mesh, 622
RID, 452	NAT, 277
states, 453, 457	networking model overview, 16
troubleshooting adjacencies,	OSI, 17, 28-30
510-516	overview, 12-14
testing, 425-426	private IP networks, 277-278
netsh interface ipv6 show neighbors	public IP networks, 276-278
command, 600	routes, 379
network command, 473-475, 480-486,	SOHO networks, 15
495, 511	subnets versus, 324
network ID. See network numbers	TCP/IP, 16-29
network layer, 22-25	VLAN switches, 140
ARP, 77	WAN, 60
DNS, 76-77	Ethernet WAN, 65-68
protocols, identifying with Ethernet	leased-line WAN, 61-65
Type field, 52	wireless networks, 628-629, 662-663
routing	next-hop IPv6 addresses, 589-590
LAN/WAN, 70-72	NIC addresses, 52
logic, 68-70 testing connectivity, 78	NIM (Network Interface Modules), 352

no debug all command, 104	OSPF (Open Shortest Path First), 450
no description command, 157, 170	2-way state, 453-454, 457
no duplex command, 157, 170	area design, 459-462
no ip address command, Layer 3 Ether-	backbone areas, 460
Channels, 412	broadcast network type, 500-506
no ip domain-lookup command, 146	calculating best routes with SPF,
no logging console command, 145, 148	457-459
no network network-id area area-id	configuration, 472, 479-481
subcommands, 483	default routes, 489-491
no passive-interface command, 487, 496	Dijkstra SPF algorithm, 451
	DR, 456-457
no password command, 134	Ethernet links, 456-457
no shutdown command, 142, 155-157, 170, 207, 253, 356, 363, 399,	Hello/dead timers, 512-513
403-405	Hello messages, 452
[no] shutdown vlan number command,	interfaces, 493
201	load balancing, 494
no speed command, 157, 170	LSAs, 450, 459-464
no switchport command, 408, 411-415	metrics, 446-447, 491-493
nonoverlapping channels, 628	mismatched network types, 515-516
nonworking states, troubleshooting,	MTU mismatched settings, 515
162-163	multiarea OSPF, 482
NS (Neighbor Solicitation), 599	neighbors, 451
numbers	broadcast network type, 502-506
DDN, 24	LSA exchanges, 454-456
magic number, 334	LSDB exchanges, 454-456
SEQ, 21	requirements, 508-510
subnet numbers, 272, 283, 324, 327,	RIDs, 452
334-336	states, 453, 457
NVRAM (nonvolatile RAM), 100	troubleshooting adjacencies, 510-516
0	passive interfaces, 487-488
	point-to-point network type, 500-501,
one-size subnets, 273-274	506-508
open authentication, 656	process-id, 472
operational view of subnetting,	processes, shutting down, 513-514
267-268	RID, 480-481, 511
optical transmitters (fiber-optic cable),	verifying
47	configuration, 479-480
OSI (Open Systems Interconnection), 17, 28-30	operation, 475-478

OSPFv2 (OSPF version 2), 440, 463	PEAP (Protected EAP), 659
interface configuration, 483-486	permanent keywords, 385
load balancing, 494	personal mode (WPA), 663
metrics, 493	physical console connections, 88-90
single-area configuration, 470-475	physical interfaces, configuration,
OSPFv3 (OSPF version 3), 526, 529	251-253
outdoor bridges, 621-622	physical layer (TCP/IP), 25-26
outgoing interfaces, IPv6 static routes	ping command, 78, 419-429, 587
with, 587-588	pinouts (cables)
_	10BASE-T, 42-45
P	100BASE-T, 42-45
	1000BASE-T, 45-46
PAC (Protected Access Credentials),	rollover pinouts, 89
659	pins (connectors), 40
packets, 28	PKIs (Public Key Infrastructures), 660
data packets, routing VLAN, 184	point-to-multipoint outdoor bridges,
IP packets	622
de-encapsulating, 373-374	point-to-point (Ethernet), 56
encapsulating in new frames, 375	point-to-point edge ports, 233
forwarding, 68-75, 374-375	point-to-point lines. <i>See</i> leased-line WAN
hot forwarding to default routers	., ,
(gateways), 372	point-to-point network type (OSPF), 500-501, 506-508
output errors, 167 PAGE (Port Aggregation Protocol), 250	point-to-point outdoor bridges, 622
PAgP (Port Aggregation Protocol), 250	point-to-point ports, 233
passing through (communications), 615 passive-interface command, 487, 496,	policies, WLAN client exclusion, 684
517	Port Aggregation Protocol. See PAgP
passive-interface default command,	port-channel load-balance method
488	command, 254
password command, 97, 103,	PortChannels. See EtherChannel
130-132, 147	PortFast, 235
password faith command, 94	ports, 87
passwords	802.1w RSTP roles, 230
CLI, 93-94, 130-135	alternate, 229-232
console passwords, 129	backup, 230
enable passwords, 130	blocking, choosing, 212
shared passwords, 130	console ports, 672
Telnet passwords, 129	controllers, 672-673
path selection, 69, 442	costs, 247
PBX (Private Branch Exchange), 196	IEEE default, 223
PDU (Protocol Data Units), 30	STP, 221

disabled ports, 230	private lines. See leased-line WAN
distribution system ports, 672-673	privileged EXEC mode, 91-93
DP, 217, 222-223, 230	problem isolation, traceroute
Ethernet ports, 40	command, 429-431
interfaces, compared, 671	process-ids (OSPF), 472
redundancy ports, 672	proprietary routing protocols, 446
RJ-45, 40	protected access credentials. See PAC
routed ports, VLAN routing, 406-414	protocols
router auxiliary ports, 362	BGP, 445
RP, 217, 220, 230	BPDU, 218, 225
RSTP	CAPWAP, 639
backup, 233	CCMP, 661
roles, 230	definition of, 16
service ports, 672-674	distance vector, 446
states, 232	DTP, 203
switch ports, 110	EAP, 657-658
switch roots, choosing, 220-221	EAP-FAST, 659
USB ports, 89	EAP-TLS, 660
WLC ports, 672-673	GCMP, 661
postal service forwarding, 22	IGRP, 446
predictability in interesting octet,	LACP, 250
333-334	LEAP, 659
prefixes	link-state, 446
IP addresses, 292, 302	LWAPP, 639
defined, 309-310	MSTP, 242-243
dividing into network and subnet	NDP, 573-574
parts, 312	OSPF, 450
host part and, 311	2-way state, 453-454, 457
length of, 533-536	area design, 459-462
masks, 305-309	backbone areas, 460
routing, 378	broadcast network type, 500-506
primary root switches, 247	calculating best routes with SPF,
priority, switches, 245-246	457-459
privacy	configuration, 472, 479-481
CCMP, 661	default routes, 489-491
data, 655	Dijkstra SPF algorithm, 451
GCMP, 661	DR, 456-457
TKIP, 660-661	Ethernet links, 456-457
private addresses (IPv4), 542	Hello/dead timers, 512-513
private branch exchange. See PBX	Hello messages, 452
private IP networks, 277-278	interfaces, 493

load balancing, 494	LAN segment DP, 222-223
LSAs, 450, 459-464	link types, 233
metrics, 446-447, 491-493	looping frames, preventing, 213
mismatched network types, 515-516	multiple spanning tree support, 246
MTU mismatched settings, 515	need for, 213-215
multiarea OSPF, 482	ports, 212, 230-233
neighbors, 451-457, 502-516	processes, 232
passive interfaces, 487-488	purpose of, 215-217
point-to-point network type, 500-501, 506-508	root switches, 218, 247 STA, 216
process-id, 472	standards, 228
processes, shutting down,	steady-state operation, 225
513-514	STP, compared, 229-230
RID, 480-481, 511	switches, 219-221, 247
verifying operation, 475-478	topology influences, 223-225
OSPFv2, 440, 463	STA, 216
interface configuration, 483-486	STP, 114-115
load balancing, 494	802.1D standard, 228
metrics, 493	BID, 218-219, 243-244
single-area configuration,	BPDU, 218, 225
470-475	configurable priority values, 244
OSPFv3, 526, 529	configuration, 240, 243-244
PAgP, 250	convergence, 216
PEAP, 659	EtherChannels, 234, 247-251
PVST+, 242-243	Forward delay timer, 225
RIP, 446 routable protocols, 442	forwarding or blocking criteria, 216-217
routed protocols, 442	Hello timer, 225
routing protocols, 376-378, 442-449	interface states, changing, 227
RPVST+, 242-243, 246	LAN redundancy, 210, 214
RSTP, 228, 242-243	LAN segment DP, 222-223
alternate ports, 230-232	looping frames, 213
backup port role, 233	MaxAge timer, 225
BID, 218	modes, 242
BPDU, 218, 225	multiple STP, 241
configurable priority values, 244	need for, 213-215
configuration, 240	PortFast, 235
discarding state, 229	ports, 212, 221, 232
forwarding or blocking criteria,	purpose of, 215-217
216-217	roles, 227

root switches, 218-219	RA (Router Advertisement), 600
RSTP, 229-230	radio frequencies. See RF
security, 236	radios, selecting WLAN, 680
STA, 216	RADIUS servers
standards, 242	configuration, 676
states, 227	WLAN authentication, 682
steady-state operation, 225	RAM (Random Access Memory), 99
switch reactions to changes, 226-227	ranges for global unicast addresses, 544-545
switch RP, 220-221	RC4 cipher algorithm, 657
system ID extensions, 243-244	receivers, communication, 613
timers, 226-227	redundancy
topology influences, 223-225	LAN, 210, 214
TCP, 20-21	management, 674
TCP/IP	ports, 672
application layer, 19-20	reference bandwidth, defined, 492
compared to OSI, 29	registered private IP networks,
data encapsulation terminology,	277-278
27-28	registered public IP networks, 276-278
data-link layer, 25-26	reload command, 91-92, 102-104,
history of, 16-17	117, 402-404
HTTP, 19-20	remote subnets, 375
<i>IPv4</i> , 22-25, 68-78, 140-144	repeaters, 620-621
network layer, 22-25, 68-72,	replies
76-78	ARP replies, 77
overview, 18	HTTP, 20
physical layer, 25-26	ICMP echo replies, 78
RFC, 18	requests
transport layer, 20-22	ARP requests, 77
TKIP, 660-661	ICMP echo requests, 78
public addresses (IPv4), 542	reserved multicast addresses, 569-571
public IP networks, 276-278	resident subnets, 322
Public Key Infrastructures. See PKIs	reverse routes, testing, 423-425
PVST+ (Per VLAN Spanning Tree),	RF (Radio Frequencies), 613, 626, 642
242-243	RID (Router ID)
O D	defined, 470
Q - R	OSPF, 511
0-5 (0-11	neighbors, 452
QoS (Quality of Service), WLAN, 683-684	RID configuration, 480-481
quit command, 104	troubleshooting, 511
quit commune, 10 i	

RIP (Routing Information Protocol), 446	auxiliary ports, 362		
RIPng (RIP next generation), 529	backbone, 461		
RIPv2 (Routing Information Protocol	best routes, finding, 451		
version 2), 446-447	candidate default routes, 384		
RIR (Regional Internet Registries), 524	Cisco integrated services routers, 3		
RJ-45 connectors, 41	classful versus classless, 313		
RJ-45 ports, 40	CLI, 355-356		
roaming	connected routes, 366, 376-378		
AP, 618	default routers, 70, 370-372		
clients, 642	default routes, 379, 383-384		
ROAS (Router-On-A-Stick), 392,	discovering with NDP, 600-601		
396-401	DR, 456-457		
Rogue Detector mode (AP), 647	DROthers, 457		
roles alternate ports, 230-232	dynamic unicast address configuration, 564		
ports, 230, 233	enterprise routers, 350-353		
RSTP port, 230	floating static routes, 381-383		
STP, 227	flooding, 450		
rollover pinouts (cables), 89	host routes, 378-379		
ROM (Read-Only Memory), 100	logic, 370		
root bridge ID, 218	static host routes, 381		
root costs, switches, 216	installation, 350-354		
root ports. See RP	interfaces, 356-361		
root switches, 217	internal routers, 461		
electing, 218-219	IP routing, 366, 369		
RSTP root switches, 247	ARP tables, 378-379		
timer values, 218	de-encapsulating IP packets,		
routable protocols, 442	373-374		
route redistribution, 448	encapsulating IP packets in new		
routed ports, VLAN routing, 406	frames, 375		
EtherChannels, 410-414	example of, 371-376		
routed interfaces, 407-409	forwarding, 374-375, 386-389		
routed protocols, 442	host forwarding of IP packets		
router-id command, 470, 496	to default routers (gateways), 372		
router ospf command, 470, 495			
router ospf 1 command, 472, 480	IPv4 routing, 24-25, 68-75, 355-362, 369-371, 527		
router ospf process-id command, 480, 510	IPv6 routing, 527-530, 558, 583-598		
routers/routing, 35	processing incoming frames, 373		
ABR, 460-461	tables, 388-389		
ARP tables, 378-379	140103, 300 307		

transmitting frames, 376	troubleshooting, 400-401
troubleshooting, 419-434	verifying, 398-400
link-local address configuration,	SOHO routers, 354
566-569	static unicast address configuration,
local routes, 378	557-564
logic	static routes, 367, 376
host routing, 370	configuration, 379-384
IPv4 routing, 371	default routes, 379
LSA, 463	floating static routes, 381-383
network masks, 378	host routes, 379-381
network routes, 379	static default routes, 383-384
OSPF interface costs, 493	static network routes, 379
overview, 348	troubleshooting, 385-386
path selection, 69	subnet router anycast addresses, 576
prefixes, 378	VLAN routing, 183-184, 395
protocol codes, 378	Layer 3 (multilayer) switch
protocols, 376	routed ports, 406-414
administrative distance, 448-449	Layer 3 (multilayer) switch SVI, 401-406
algorithms, 445	ROAS, 396-401
AS, 444	WAN, 64-65
classful versus classless, 313	
classless/classful, 447-448	RP (Root Ports), 217, 220-221, 230 RPVST+ (Rapid Per VLAN Spanning
convergence, 443	Tree+), 242-243, 246
defined, 442	RS (Router Solicitation), 600
distance vector, 446	RSTP (Rapid Spanning Tree Protocol)
EGP, 444	228, 242-243
EIGRP, 446	alternate ports, 230-232
functions, 443	backup port role, 233
IGP, 444-448	BID, 218
link-state, 446	blocking criteria, 216-217
OSPF, 446-447, 450-464,	BPDU, 218, 225
475-482, 487-491	configurable priority values, 244
path selections, 442	configuration, 240
proprietary, 446	discarding state, 229
RIPv2, 446-447	forwarding criteria, 216-217
route redistribution, 448	LAN segment DP, 222-223
remote subnets, 375	link types, 233
reverse routes, testing, 423-425	looping frames, preventing, 213
ROAS	multiple spanning tree support, 246
configuration, 396-398	need for, 213-215
subinterfaces, 399-401	

ports, 233	intrusion protection, 642		
blocking, 212	MIC, 656		
roles, 230	privacy/integrity methods, 660-66		
states, 232	shared-key, 657		
processes, 232	STP, 236		
purpose of, 215-217	transmissions reaching unintended		
root switches, 218, 247	recipients, 652		
STA, 216	WLAN, 681-684		
standards, 228	WLC authentication, 642		
steady-state operation, 225	WPA, 662-663		
STP, compared, 229-230	WPA2, 662-663		
switches	WPA3, 662-663		
electing, 219	self-healing coverage, 642		
priority, 247	sender MAC addresses, 661		
RP, choosing, 220-221	SEQ (Sequence Numbers), 21		
topology influences, 223-225	sequence counters (TKIP), 661		
running-config file, 100	sequence numbers (SEQ), 21		
runts, 167	serial lines. See leased-line WAN		
	Serial WAN (Wide Area Networks),		
S	350		
	servers		
60/0/0 status code, 359	AAA servers, 136		
ame-layer interaction, 21-22	AS, 658		
scopes of multicast addresses,	external authentication servers, 135-136		
571-572	RADIUS, 676, 682		
dm prefer command, 402-404	Telnet servers, 91		
dm prefer lanbase-routing command,	service ports, 672-674		
402, 415	service set identifiers. See SSID		
SE Connect mode (APs), 647	session timeouts (WLAN), 684		
secondary root switches, 247	SFP (Small Form Pluggable), 42, 48		
Secure Shell. See SSH	SFP+ (Small Form Pluggable Plus), 42,		
security. See also authentication	48		
attacks, 654	shared-key security, 657		
CLI, 93-94, 128-139	shared media (Ethernet), 56		
data integrity, 656	shared passwords, 130		
data privacy, 655	shared ports, 234		
decryption, 655	shorter VLAN configuration example,		
encryption, 655	189		
fake AP, 654	Shortest Path First algorithm. See SPF		
forward secrecy, 663	algorithm		

show arp command, 391 show command, 95, 166, 361, 480, 508 show crypto key mypubkey rsa command, 149 show dhcp lease command, 143-144, 149 show etherchannel 1 summary command, 250 show etherchannel command, 248, 259, 416 show etherchannel summary command, 413 show history command, 145, 149 show interfaces command, 119-120. 156, 162-164, 167-170, 357-358, 361, 364, 376, 408, 416, 515-517, 583 show interfaces description command, 162, 170 show interfaces interface-id trunk command, 203-205 show interfaces status command, 118, 125, 153, 156, 162-165 Layer 3 EtherChannels, 412 routed ports, 408 show interfaces switchport command, 192-195, 199, 202-203, 208 show interfaces trunk command, 193-194, 199-200, 203-205, 208, 401 show interfaces type number switchport command, 199 show interfaces type number trunk command, 200 show interfaces vlan command, 143-144, 149, 416 show ip arp command, 391 show ip default-gateway command, 144, 149 show ip interface brief command, 357-361, 364, 406

show ip ospf command, 481 defined, 496, 517 duplicate OSPF RID, 511 OSPF neighbors, troubleshooting, 510 show ip ospf database command, 450, 462, 475, 497 show ip ospf interface brief command. 479-480, 488, 491, 503-505, 508, 511, 514 defined, 496, 517 OSPF neighbors, troubleshooting, 510 show ip ospf interface command, 488, 503-505, 513 defined, 496, 517 Hello/dead timer mismatches, 512 OSPF neighbors, troubleshooting, 510 OSPFv2 interface configuration, 486 show ip ospf interface G0/0 command, 505 show ip ospf neighbor command, 452-453, 457, 475, 480, 497, 502, 505, 508-511, 513-517 show ip ospf neighbor interface brief command, 513 show ip protocols command defined, 496, 517 OSPFv2 interface configuration, 485 show ip route address command, 388 show ip route command, 324, 356, 367, 376, 378-391, 400-402, 408, 475-478, 585 administrative distance, 449 defined, 497 routing tables, displaying, 416 show ip route [connected] command, 398 show ip route EXEC command, 404 show ip route ospf command, 387, show ip route static command, 380, show ip ssh command, 139, 149

show ipv6 interface brief command, 558-560, 567, 575, 579 show ipv6 interface command, 558-559, 567, 570-573, 579 show ipv6 route command, 566, 579, 585-590, 605 show ipv6 route connected command. 560, 586 show ipv6 route local command, 585-586 show ipv6 route static command, 587-590, 593-595 show mac address-table aging-time command, 122, 125 show mac address-table command, 120, 125, 356 show mac address-table count command, 122, 125 show mac address-table dynamic address command, 125 show mac address-table dynamic command, 96, 117, 123-125, 170 show mac address-table dynamic interface command, 120-121, 125 show mac address-table dynamic vlan command, 125 show mac address-table static command, 170 show mac address-table vlan command. 121 show protocols command, 361, 364 show running-config | interface command, 170 show running-config command, 93, 101, 104, 132-133, 143, 149, 155, 158, 170, 398, 479, 488, 511, 584 show spanning-tree command, 249, 259 show spanning-tree vlan command, 259 show spanning-tree vlan vlan-id

command, 204

show ssh command, 139, 149

104, 158 show vlan brief command, 186-189, 202 show vlan command, 201, 208, 398-401, 416 show vlan id command, 187 show vtp status command, 190, 208 shutdown command, 143, 155, 163, 170, 207, 253, 356, 359, 363, 399-401, 405 signals sending messages, 623 waves, 623-627 single-area OSPF, 459 single-area OSPFv2, 470-475 single-mode fiber-optic cables, 47-49 single-size subnets, 273-274 SLAAC (Stateless Address Auto Configuration), 560, 598, 601 slash masks, 305 small office/home office (SOHO) LANs. 35 small office/home office (SOHO) networks, 15 SNA (Systems Network Architecture), Sniffer mode (APs), 647 software configuration common command prompts, 98 configuration files, 99-102 configuration mode, 96-97 configuration submodes and contexts, 97-99 SOHO (Small Offices/Home Offices) LAN, 35 networks, 15 routers, 354 solicited-node multicast addresses, 573-574 source MAC addresses, 113

show startup-config command, 101,

spanning-tree algorithm. See STA	floating static routes, 381-383,
spanning-tree commands, 259	593-595
spanning-tree mode command, 242-243, 259	global unicast next-hop address, 589 host routes, 379-381
Spanning Tree Protocol. See STP	link-local next-hop address, 589-590
spanning-tree vlan command, 244	outgoing interface, 587-588
spanning-tree vlan x root primary command, 244-245	over Ethernet links, 591 overview, 586
spanning-tree vlan x root secondary command, 244-245	static default routes, 383-384, 592-593 static host routes, 593
speed, switch interface configurations, 152-154	static network routes, 379 troubleshooting, 385-386, 595-598
speed command, 98-99, 152-154, 165, 170, 355, 363	static unicast address configuration (IPv6)
SPF (Shortest Path First) algorithm Dijkstra SPF, 451	configuration full 128-bit address, 557-558
OSPF best routes, calculating, 457-459	enabling IPv6 routing, 558
split-MAC architectures, 638-643	generating unique interface ID with
SSH (Secure Shell), 91, 136-139,	modified EUI-64, 560-564
432-434	verifying, 558-560
SSID (Service Set Identifiers), 615	status codes
broadcasting, 681	routers, 358-359
multiple on one AP, supporting, 617	troubleshooting, 162-163
STA (spanning-tree algorithm), 216	STP (Spanning Tree Protocol),
startup-config file, 100	114-115, 210, 243
state change reactions (STP topology), 224-225	802.1D standard, 228
· -	BID, 218-219, 243-244
Stateless Address Auto Configuration. See SLAAC	blocking criteria, 212, 216-217 BPDU, 218, 225
states	configurable priority values, 244
discarding, 230	configuration, 240, 243-244
interfaces, 215-217, 227	convergence, 216
ports, 232	EtherChannels, 234, 247-251
STP, 227	Forward delay timer, 225
static default routes (IPv6), 592-593	forwarding criteria, 216-217
static host routes (IPv6), 593	Hello timer, 225
static ranges per subnet, choosing, 286-287	interface states, changing, 227
static routes, 367, 376	LAN
configuration, 379-384	redundancy, 210, 214
default routes, 379	segment DPs, choosing, 222-223

looping frames, preventing, 213	easy masks, 332
MaxAge timer, 225	formats for, 304-305
modes, 242	hosts
multiple STP, 241	borrowing bits to create subnet
need for, 213-215	bits, 280-281
PortFast, 235	calculating in network, 313-315
ports	choosing bits, 281
blocking criteria, 212, 216-217	mask formats, 282-283
cost, 221	prefix part, 309-312
states, 232	sample design, 282
purpose of, 215-217	VLSM, 275
roles, 227	subnet numbers, 272, 283, 334-336
root switches, electing, 218-219	subnets, 543. See also subnet masks
RSTP, compared, 229-230	addresses, 272, 283, 324, 327,
security, 236	334-336
STA, 216	analyzing
standards, 242	subnet needs, 269, 271
states, 227	with decimal math, 332, 339
steady-state operation, 225	assigning to different locations, 285
switch reactions to changes, 226-227	binary math, 326
switch RP, choosing, 220-221	Boolean math, 331
system ID extensions, 243-244	finding range of addresses, 331
timers, 226-227	finding subnet IDs, 327
topology influences, 223-225	practice problems, 328-329
straight-through cable pinouts, 42-45	shortcut for binary process, 330
subcommands, 97	Boolean math, 331
auto-cost reference-bandwidth, 493	broadcasts, 272, 283, 325-327,
bandwidth, 492	336-338
ip address, 376	building list of, 283-284
no network network-id area area-id,	calculating, 313-315
483	decimal math, 331
switchport trunk allowed vlan, 204	difficult masks, 334-338
subdivided networks. See subnets	easy masks, 332
subinterfaces, 396-401	finding subnet broadcast
subnet masks, 272, 302. See also	addresses, 336-338
subnets	predictability in interesting octet, 333-334
classful IP networks before subnetting,	reference table: DDN mask
279-280	values and binary equivalent,
converting between formats, 305-309	339
difficult masks, 334-338	definition of, 267, 322

design choices, 276-284 design views, 267-268	static ranges, choosing, 286-287 subnet numbers, 272, 283, 324, 327,
dynamic ranges, choosing, 286-287	334-336
examples of	VLSM, 275
networks with four subnets,	superior Hello messages, 219
322-323	supplicants, 658
simple example, 267	SVI (Switched Virtual Interfaces), 392,
hosts, 268-271	401-406
ID, 272, 283, 324, 330	switch ports, 110
finding with binary math, 327	switches
finding with decimal math,	access switches, 241
334-336	alternate ports, 229
<i>IPv4</i> , <i>548</i>	auto-mdix, 45
IPv6, 548	backup ports, 230
IP addresses, 283-284, 302, 312	BID, 218, 243-244
IPv4, 70, 73, 545	BPDU, 218, 225
IPv6	Cisco Catalyst switches, 86
assigning to internetwork	configuration files, 99-102
topology, 549	DHCP, 143
interface ID, 547	distribution switches, 241
listing, 548-549	EtherChannels, 234
with global unicast addresses,	Ethernet switches, 48
545-549	filtering decisions, 110-113
with unique local addresses, 551-552	forwarding decisions, 110-113
multiple subnet sizes, 274	history buffer commands, 144-145
networks versus, 324	interfaces, 87, 110, 118-120
number of hosts, 271	autonegotiation, 158-162
number of subnets, 270	description, 152-154 duplex, 152-154, 163-166
one-size subnets, 273	enabling/disabling interfaces,
operational view, 267-268	155-156
overview, 266	Layer 1 problems, 166-168
plan documents, 267	multiple interfaces, 154-155
planning implementations, 284-287	overview, 152
range of usable addresses, 325	removing configuration, 157-158
remote subnets, 375	speed, 152-154, 163-166
resident subnets, 322	status codes, 162-163
router anycast addresses, 549, 576	troubleshooting, 162-168
simple example, 267	IPv4, 140-144
single-size subnets, 273	LAN segment DP, choosing, 222-223
size of, 272-274	

LAN switches, 35	VLAN configuration, 140
analyzing, 116	voice switches, 196
flooding, 114	switching tables. See MAC address
interface configuration, 152-162	tables
MAC address table, 113-114, 117-124	switchport access vlan command, 185-189, 198-199, 207
overview, 106-109	switchport command
STP, 114-115	Layer 3 switches, 415
summary, 115-116	routed ports, 408
switch forwarding and filtering decisions, 110-113	switchport mode access command, 185, 188, 198-199
switch interfaces, 118-120,	switchport mode command, 191, 207
152-162	switchport mode dynamic auto
switching logic, 109-110	command, 202
verifying, 116	switchport mode dynamic desirable
Layer 2 switches, 141, 183	command, 193
Layer 3 (multilayer) switches, 141, 184, 401-414	switchport mode trunk command, 191, 203, 396
links, 233	switchport nonegotiate command, 195,
MAC address tables, 111, 214-215	203, 207 switchport trunk allowed vlan
management	command, 204, 207
DHCP, 143	switchport trunk encapsulation
history buffer commands,	command, 191, 207
144-145	switchport trunk native vlan command,
<i>IPν</i> 4, 140-144	207
overview, 126	switchport trunk native vlan vlan-id
security, 128-139	command, 205
multilayer switches, 184	switchport voice vlan command,
PortFast, 235	198-199, 207
ports, 87, 230-233	switchport voice vlan vlan-id command,
priority, 245-246	200
root costs, 216	system ID extensions, 243-246
root switches, 217-219, 247	_
RP, choosing, 220-221	
RSTP switch priority, 247	
security, 128-139	T1. See leased-line WAN
STP	tables
reacting to changes, 226-227	ARP tables, 77, 378-379
topology influences, 223-225	IP routing tables, 70-72, 388-389
system ID extensions, 245-246	MAC address tables, 111-124,
unknown unicast frames, 114	214-215

tagging (VLAN), 181-182	topologies
TCP (Transmission Control Protocol),	AP noninfrastructure modes, 620-622
20-21	STP, 223-225
TCP/IP (Transmission Control	WLAN, 614-622
Protocol/Internet Protocol)	traceroute command, 428-432, 587
application layer, 19-20	traffic flows, BSS, 615
data encapsulation terminology, 27-28	trailer fields (Ethernet), 50
data-link layer, 25-26	transmissions
history of, 16-17	bidirectional communication, 613
HTTP, 19-20	interference, 613
IPv4, 22-25, 68-78, 140-144	unidirectional communication, 613
network layer, 22-25	unintended recipients, 652
ARP, 77	transmitters, communication, 613
DNS, 76-77	transmitting
routing, 68-72	frames, IP routing, 376
testing connectivity, 78	optimizing transmit power, 642
OSI, compared, 29	transport input all command, 139
overview, 18	transport input command, 138, 148,
physical layer, 25-26	356
RFC, 18	transport input none command, 139
transport layer, 20-22	transport input ssh command, 139
Telnet, 90-91, 129, 432-434	transport input telnet ssh command,
terminal history size command, 145,	139
149	transport layer (TCP/IP), 20-22
test etherchannel load-balance EXEC	troubleshooting
command, 255	EtherChannels, 251-253
testing	Ethernet LAN, 166-168
IPv4 connectivity, 78	Hello/dead timers, 512-513
LAN neighbors, 425-426	interfaces, 162-168
reverse routes, 423-425	IP routing
WAN neighbors, 427	ping command, 419-429
three-area OSPF (Open Shortest Path	SSH, 432-434
First), 460	Telnet, 432-434
time stamps, 661	traceroute command, 428-432
timers	Layer 3 EtherChannels, 413-414
Hello/dead mismatches, trouble-	Layer 3 (multilayer) switch SVI,
shooting, 512-513	404-406
Hello messages, 455	native VLAN, 205
STP, 226-227	neighbor adjacencies, 510-516
TKIP (Temporal Key Integrity Protocol), 660-661	OSPF

mismatched MTU settings, 515 mismatched network types,	U
shutting down processes, 513-514 ping command, 419-429, 587 RID, 511	UDP (User Datagram Protocol), 20 unabbreviated addresses (IPv6), 530 undebug all command, 104 undefined VLAN, troubleshooting, 201-202 unicast addresses, 50-52, 290, 322,
ROAS, 400-401	540, 556-564
SSH, 432-434 static IPv6 routes, 595-598 static routes, 385-386	unidirectional communication, 613 unified architectures. <i>See</i> centralized architectures
Telnet, 432-434 traceroute command, 428-432, 587 VLAN, 201-205	unique local addresses, 542, 551-553 universal addresses, 51
trunking	unknown addresses (IPv6), 574 unknown unicast frames, 114
802.1Q, 182 administrative mode, 191	URI (Universal Resource Identifiers), 20
configuration, 191-195	URL (Uniform Resource Locators), 20
dynamic auto mode, 191	USB ports, 89
dynamic desirable mode, 191	User Datagram Protocol (UDP), 20
ISL, 182	user EXEC mode, 91-93
overview, 180-181	user mode
type of, 191 VLAN	external authentication servers, 135-136
mismatched native VLAN, 205	passwords, 130-135
mismatched trunking operational	usernames, 133-135, 147
states, 202-203	users, segregating into logical
supported VLAN list on trunks,	networks, 676
203-205	UTP (Unshielded Twisted-Pair) cables, 37
tagging, 181-182	cabling pinouts, 42-49
VTP, 189-190	overview, 39-40
TTL (Time To Live), 429	UTP Ethernet links, 40-41
TTL Exceeded (Time-to-Live Exceeded), 429-431	uWGB (Universal Workgroup Bridges),
tunneling, CAPWAP, 639-640	621
two-switch topology, 123-124	

verifying Data VLAN, 198-199 EtherChannel configuration before adding interfaces, 251-253 Ethernet switching, 116 IPv4 on switch, 143-144 Layer 3 (multilayer) switch SVI, 403-404 OSPF configuration, 479-480 operation, 475-478 OSPFv2 interface configuration, 485-486 ROAS, 398-400 static unicast address configuration, 558-560 Voice VLAN, 198-199 virtual interfaces (controllers), 674 VLAN (Virtual Local Area Networks) AP, 635, 668 configuration, 185-195, 198-199 Data VLAN, 197-199 default VLAN, 186 disabled VLAN, troubleshooting, 201-202 dynamic interface ID, 678 hopping, 205 ID, 180 interfaces, 402 IP telephony, 196-200 LAN trunking, 182 mapping, 673 native VLAN, 183, 205, 398 overview, 179-180 PVST+, 242-243 routing, 183-184, 395-414 split-MAC architecture, 640 supported VLAN list on trunks.

203-205

switches, 140 tagging, 181-182 troubleshooting disabled VLAN, 201-202 supported VLAN list on trunks, 203-205 trunking, 202-205 undefined VLAN, 201-202 trunking, 180-182, 189-195 **VLAN ID. 180** Voice VLAN, 197-199 vlan command, 185, 198, 207 vlan number command, 201 VLSM (Variable Length Subnet Masks), 275 voice switches, 196 VTP (VLAN Trunking Protocol), 189-190 vtp mode command, 207 vtp mode off command, 190 vtp mode transparent command, 190

624

WAN (Wide Area Networks), 32, 60
Ethernet WAN, 65-68

enterprise networks, 350

point-to-point network type
(OSPF), 506-508
leased-line WAN, 61-65
neighbors, testing, 427
Serial WAN, enterprise networks, 350

waves

continuous pattern, 623
cycles, 625
electric/magnetic, 624
electromagnetic, 624
frequency, 625-627
propagation with idealistic antenna,

WebAuth (Web Authentication), 657	management access, allowing, 685		
WEP (Wired Equivalent Privacy), 657	mesh networks, 622		
WGB (Workgroup Bridges), 621	outdoor bridges, 621-622		
wildcard masks, 473-475	QoS, 683-684		
wired LAN. See Ethernet, LAN	RADIUS server, configuration, 676		
wired networks, 612-613	repeaters, 620-621		
wireless band frequencies, 627	security, 681-684		
wireless LAN, 32	too many, creating, 676		
wireless networks	topologies, 614-622		
802.11 standard, 628-629 waves, 625	user segregation into logical networks, 676		
wired networks, compared, 612-613	WGB, 621		
WPA, 662-663	WLC, 669-675		
WPA2, 662-663	WLC (Wireless LAN Controllers)		
WPA3, 662-663	activities, 642		
WLAN (Wireless Local Area	centralized, 642-643		
Networks)	cloud-based architectures, 643		
802.11 WLAN, 614	dynamic interfaces, 674-675		
advanced settings, 684-685	embedded deployments, 644		
AP, 668-669	interfaces, 673-675		
BSS, 614-616	LAP, 639-640		
client session timeouts, 684	management interfaces, 674		
configuration, 675 advanced settings, 684-685	Mobility Express WLC deployments, 645		
controller configuration, 685	ports, 672-673		
dynamic interfaces, 678	redundancy management, 674		
QoS, 683-684	service port interfaces, 674		
RADIUS servers, 676	virtual interfaces, 674		
security, 681-682	WLAN, 669-675		
creating, 679-681	working interfaces, defined, 217		
defined, 675	WPA (Wi-Fi Protected Access),		
DS, 616-618	662-663		
dynamic interfaces, creating, 678	WPA2 (Wi-Fi Protected Access		
ESS, 618	version 2), 662-663		
IBSS, 619	WPA3 (Wi-Fi Protected Access		
limiting, 676	version 3), 662-663		
listings of, displaying, 679	write erase command, 104		

REGISTER YOUR PRODUCT at CiscoPress.com/register Access Additional Benefits and SAVE 35% on Your Next Purchase

- Download available product updates.
- Access bonus material when applicable.
- Receive exclusive offers on new editions and related products.
 (Just check the box to hear from us when setting up your account.)
- Get a coupon for 35% for your next purchase, valid for 30 days.
 Your code will be available in your Cisco Press cart. (You will also find it in the Manage Codes section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page under Registered Products.

CiscoPress.com – Learning Solutions for Self-Paced Study, Enterprise, and the Classroom Cisco Press is the Cisco Systems authorized book publisher of Cisco networking technology, Cisco certification self-study, and Cisco Networking Academy Program materials.

At CiscoPress.com you can

- Shop our books, eBooks, software, and video training.
- Take advantage of our special offers and promotions (ciscopress.com/promotions).
- Sign up for special offers and content newsletters (ciscopress.com/newsletters).
- Read free articles, exam profiles, and blogs by information technology experts.
- Access thousands of free chapters and video lessons.

Connect with Cisco Press – Visit CiscoPress.com/community Learn about Cisco Press community events and programs.

Cisco Press

APPENDIX D

Practice for Chapter 12: Analyzing Classful IPv4 Networks

Practice Problems

The practice problems in this appendix require that you determine a few basic facts about a network, given an IP address and an assumption that subnetting is not used in that network. To do so, refer to the processes described in Chapter 12 of *CCNA 200-301 Official Cert Guide*, *Volume 1*.

NOTE You may also elect to do this same set of practice problems using the "Practice Exercise: Analyzing Classful IPv4 Networks" application on the companion website.

In particular, for the upcoming list of IP addresses, you should identify the following information:

- Class of the address
- Number of octets in the network part of the address
- Number of octets in the host part of the address
- Network number
- Network broadcast address

Find all these facts for the following IP addresses:

- **1.** 10.55,44.3
- **2.** 128.77.6.7
- **3.** 192.168.76.54
- **4.** 190.190.190.190
- **5.** 9.1.1.1
- **6.** 200.1.1.1
- **7.** 201.1.77.5
- **8.** 101.1.77.5
- **9.** 119.67.99.240
- **10.** 219.240.66.98

Answers

The process to answer these problems is relatively basic, so this section reviews the overall process and then lists the answers to problems 1–10.

The process starts by examining the first octet of the IP address:

- If the first octet of the IP address is a number between 1 and 126, inclusive, the address is a Class A address.
- If the first octet of the IP address is a number between 128 and 191, inclusive, the address is a Class B address.
- If the first octet of the IP address is a number between 192 and 223, inclusive, the address is a Class C address.

When no subnetting is used:

- Class A addresses have one octet in the network part of the address and three octets in the host part.
- Class B addresses have two octets each in the network and host part.
- Class C addresses have three octets in the network part and one octet in the host part.

After determining the class and the number of network octets, you can easily find the network number and network broadcast address. To find the network number, copy the network octets of the IP address and write down 0s for the host octets. To find the network broadcast address, copy the network octets of the IP address and write down 255s for the host octets.

Table D-1 lists all ten problems and their respective answers.

Table D-1 Answers to Problems

IP Address	Class	Number of Network Octets	Number of Host Octets	Network Number	Network Broadcast Address
10.55.44.3	A	1	3	10.0.0.0	10.255.255.255
128.77.6.7	В	2	2	128.77.0.0	128.77.255.255
192.168.76.54	C	3	1	192.168.76.0	192.168.76.255
190.190.190.190	В	2	2	190.190.0.0	190.190.255.255
9.1.1.1	A	1	3	9.0.0.0	9.255.255.255
200.1.1.1	С	3	1	200.1.1.0	200.1.1.255
201.1.77.55	C	3	1	201.1.77.0	201.1.77.255
101.1.77.55	A	1	3	101.0.0.0	101.255.255.255
119.67.99.240	A	1	3	119.0.0.0	119.255.255.255
219.240.66.98	С	3	1	219.240.66.0	219.240.66.255

APPENDIX E

Practice for Chapter 13: Analyzing Subnet Masks

This appendix begins with 23 mask conversion problems, followed by the matching answers and explanations. After that, the appendix lists 10 mask analysis problems, with the matching answers to follow.

NOTE You may also perform this same set of practice problems using the "Analyzing Subnet Masks" and "Mask Conversion" applications on the companion website.

Mask Conversion Problems

The problems in this appendix require you to convert dotted-decimal subnet masks to prefix format and vice versa. To do so, feel free to use the processes described in Chapter 13 of *CCNA 200-301 Official Cert Guide*, *Volume 1*.

Many people use the information in Table E-1 when converting masks. The table lists the nine dotted-decimal notation (DDN) mask values, the binary equivalent, and the number of binary 1s in the binary equivalent.

Tabla F 4	Nine Possible \	/-! in One (~ + - + - f - f	2la.a.a.b. M.a.a.l.
I anie F-1	INIDE POSSIDIE I	/allies in Cine (octet of a :	SUDDET MASK

Binary Mask Octet	DDN Mask Octet	Number of Binary 1s
0000000	0	0
10000000	128	1
11000000	192	2
11100000	224	3
11110000	240	4
11111000	248	5
11111100	252	6
11111110	254	7
11111111	255	8

Convert each DDN mask to prefix format and vice versa:

- 1. 255.240.0.0
- **2.** 255.255.192.0
- **3.** 255.255.255.224
- **4.** 255.254.0.0.

- 6. /30
- **7.** /25
- **8.** /11
- **9.** /22
- **10.** /24
- **11.** 255.0.0.0
- **12.** /29
- **13.** /9
- **14.** 255.192.0.0
- **15.** 255.255.255.240
- **16.** /26
- **17.** /13
- **18.** 255.255.254.0
- **19.** 255.252.0.0
- **20.** /20
- **21.** /16
- **22.** 255.255.224.0
- **23.** 255.255.128.0

Answers to Mask Conversion Problems

Mask Conversion Problem 1: Answer

The answer is /12.

The binary process for converting the mask from dotted-decimal format to prefix format is relatively simple. The only hard part is converting the dotted-decimal number to binary. For reference, the process is as follows:

- **Step 1.** Convert the dotted-decimal mask to binary.
- **Step 2.** Count the number of binary 1s in the 32-bit binary mask; this is the value of the prefix notation mask.

For problem 1, mask 255.240.0.0 converts to the following:

11111111 11110000 00000000 000000000

You can see from the binary number that it contains 12 binary 1s, so the prefix format of the mask will be /12.

You can find the same answer without converting decimal to binary if you have memorized the nine DDN mask values, and the corresponding number of binary 1s in each, as listed earlier in Table E-1. Follow these steps:

- Start with a prefix value of 0. Step 1.
- (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s. Step 2.
- Step 3. (2nd octet) Add 4 because the second mask octet of 240 includes four binary 1s.
- Step 4. The resulting prefix is /12.

Mask Conversion Problem 2: Answer

The answer is /18.

For problem 2, mask 255.255.192.0 converts to the following:

11111111 11111111 11000000 00000000

You can see from the binary number that it contains 18 binary 1s, so the prefix format of the mask will be /18.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Start with a prefix value of 0. Step 1.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- Step 3. (2nd octet) Add 8 because the second mask octet of 255 includes eight bina-
- Step 4. (3rd octet) Add 2 because the third mask octet of 192 includes two binary 1s.
- Step 5. The resulting prefix is /18.

Mask Conversion Problem 3: Answer

The answer is 1/2.7.

For problem 3, mask 255.255.255.224 converts to the following:

11111111 11111111 11111111 11100000

You can see from the binary number that it contains 27 binary 1s, so the prefix format of the mask will be /27.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- (2nd octet) Add 8 because the second mask octet of 255 includes eight Step 3. binary 1s.
- Step 4. (3rd octet) Add 8 because the third mask octet of 255 includes eight binary 1s.
- Step 5. (4th octet) Add 3 because the fourth mask octet of 224 includes three binary 1s.
- Step 6. The resulting prefix is /27.

Mask Conversion Problem 4: Answer

The answer is /15.

For problem 4, mask 255.254.0.0 converts to the following:

11111111 11111110 00000000 00000000

You can see from the binary number that it contains 15 binary 1s, so the prefix format of the mask will be /15.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- **Step 1.** Start with a prefix value of 0.
- **Step 2.** (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- **Step 3.** (2nd octet) Add 7 because the second mask octet of 254 includes seven binary 1s.
- **Step 4.** The resulting prefix is /15.

Mask Conversion Problem 5: Answer

The answer is /21.

For problem 5, mask 255.255.248.0 converts to the following:

11111111 11111111 111111000 000000000

You can see from the binary number that it contains 21 binary 1s, so the prefix format of the mask will be /21.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- **Step 1.** Start with a prefix value of 0.
- **Step 2.** (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- **Step 3.** (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.
- **Step 4.** (3rd octet) Add 5 because the third mask octet of 248 includes five binary 1s.
- **Step 5.** The resulting prefix is /21.

Mask Conversion Problem 6: Answer

The answer is 255.255.255.252.

The binary process for converting the prefix version of the mask to dotted-decimal is straightforward, but again requires some binary math. For reference, the process runs like this:

- **Step 1.** Write down x binary 1s, where x is the value listed in the prefix version of the mask
- **Step 2.** Write down binary 0s after the binary 1s until the combined 1s and 0s form a 32-bit number.

Convert this binary number, 8 bits at a time, to decimal, to create a dotted-Step 3. decimal number: this value is the dotted-decimal version of the subnet mask. (Refer to Table E-1, which lists the binary and decimal equivalents.)

For problem 6, with a prefix of /30, you start at Step 1 by writing down 30 binary 1s, as shown here:

```
11111111 11111111 11111111 111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 11111100
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 7: Answer

The answer is 255,255,255,128.

For problem 7, with a prefix of /25, you start at Step 1 by writing down 25 binary 1s, as shown here:

```
111111111 111111111 11111111 1
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 10000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 8: Answer

The answer is 255.224.0.0.

For problem 8, with a prefix of /11, you start at Step 1 by writing down 11 binary 1s, as shown here:

```
11111111 111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11100000 00000000 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 9: Answer

The answer is 255.255.252.0.

For problem 9, with a prefix of /22, you start at Step 1 by writing down 22 binary 1s, as shown here:

```
11111111 11111111 111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

11111111 11111111 111111100 00000000

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 10: Answer

The answer is 255,255,255.0.

For problem 10, with a prefix of /24, you start at Step 1 by writing down 24 binary 1s, as shown here:

```
11111111 11111111 11111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 11: Answer

The answer is /8

For problem 11, mask 255.0.0.0 converts to the following:

```
1111111 00000000 00000000 00000000
```

You can see from the binary number that it contains 8 binary 1s, so the prefix format of the mask will be /8.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s. Step 2.
- (2nd octet) Add 0 for the other octets because each mask octet of 0 includes Step 3. zero binary 1s.
- Step 4. The resulting prefix is /8.

Mask Conversion Problem 12: Answer

The answer is 255.255.255.248.

For problem 12, with a prefix of /29, you start at Step 1 by writing down 29 binary 1s, as shown here:

```
11111111 11111111 11111111 11111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

11111111 11111111 11111111 11111000

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time

Mask Conversion Problem 13: Answer

The answer is 255.128.0.0.

For problem 13, with a prefix of /9, you start at Step 1 by writing down 9 binary 1s, as shown here-

111111111

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

11111111 10000000 00000000 00000000

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 14: Answer

The answer is /10.

For problem 14, mask 255.192.0.0 converts to the following:

1111111 11000000 00000000 00000000

You can see from the binary number that it contains 10 binary 1s, so the prefix format of the mask will be /10.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s. Step 2.
- Step 3. (2nd octet) Add 2 because the second mask octet of 192 includes two binary 1s.
- Step 4. The resulting prefix is /10.

Mask Conversion Problem 15: Answer

The answer is /28.

For problem 15, mask 255.255.255.240 converts to the following:

11111111 11111111 11111111 11110000

You can see from the binary number that it contains 28 binary 1s, so the prefix format of the mask will be /28.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.

- (2nd octet) Add 8 because the second mask octet of 255 includes eight Step 3. binary 1s.
- Step 4. (3rd octet) Add 8 because the third mask octet of 255 includes eight binary 1s.
- (4th octet) Add 4 because the fourth mask octet of 240 includes four binary 1s. Step 5.
- The resulting prefix is /28. Step 6.

Mask Conversion Problem 16: Answer

The answer is 255,255,255,192.

For problem 16, with a prefix of /26, you start at Step 1 by writing down 26 binary 1s, as shown here-

```
11111111 11111111 11111111 11
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 11000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 17: Answer

The answer is 255.248.0.0.

For problem 17, with a prefix of /13, you start at Step 1 by writing down 13 binary 1s, as shown here:

```
11111111 11111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111000 00000000 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 18: Answer

The answer is /23.

For problem 18, mask 255.255.254.0 converts to the following:

```
11111111 11111111 11111110 00000000
```

You can see from the binary number that it contains 23 binary 1s, so the prefix format of the mask will be /23.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.

- (2nd octet) Add 8 because the second mask octet of 255 includes eight Step 3. binary 1s.
- Step 4. (3rd octet) Add 7 because the third mask octet of 254 includes seven binary 1s.
- Step 5. The resulting prefix is /23.

Mask Conversion Problem 19: Answer

The answer is /14.

For problem 19, mask 255.252.0.0 converts to the following:

11111111 11111100 00000000 00000000

You can see from the binary number that it contains 14 binary 1s, so the prefix format of the mask will be /14.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s. Step 2.
- Step 3. (2nd octet) Add 6 because the second mask octet of 252 includes six binary 1s.
- Step 4. The resulting prefix is /14.

Mask Conversion Problem 20: Answer

The answer is 255.255.240.0.

For problem 20, with a prefix of /20, you start at Step 1 by writing down 20 binary 1s, as shown here:

```
11111111 11111111 1111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11110000 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 21: Answer

The answer is 255.255.0.0.

For problem 21, with a prefix of /16, you start at Step 1 by writing down 16 binary 1s, as shown here:

```
11111111 11111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

11111111 11111111 00000000 00000000

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Mask Conversion Problem 22: Answer

The answer is /19.

For problem 22, mask 255.255.224.0 converts to the following:

11111111 11111111 11100000 000000000

You can see from the binary number that it contains 19 binary 1s, so the prefix format of the mask will be /19.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Step 1. Start with a prefix value of 0.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- Step 3. (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.
- Step 4. (3rd octet) Add 3 because the third mask octet of 224 includes three binary 1s.
- Step 5. The resulting prefix is /19.

Mask Conversion Problem 23: Answer

The answer is 17.

For problem 23, mask 255.255.128.0 converts to the following:

11111111 11111111 10000000 00000000

You can see from the binary number that it contains 17 binary 1s, so the prefix format of the mask will be /17.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

- Start with a prefix value of 0. Step 1.
- Step 2. (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
- Step 3. (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.
- Step 4. (3rd octet) Add 1 because the third mask octet of 128 includes one binary 1.
- Step 5. The resulting prefix is /17.

Mask Analysis Problems

This appendix lists problems that require you to analyze an existing IP address and mask to determine the number of network, subnet, and host bits. From that, you should calculate the number of subnets possible when using the listed mask in the class of network shown in the problem, as well as the number of possible host addresses in each subnet.

To find this information, you can use the processes explained in Chapter 13 of CCNA 200-301 Official Cert Guide, Volume 1. When doing the problems, Table E-1, earlier in this appendix, which lists all possible DDN mask values, can be useful.

Each row of Table E-2 lists an IP address and mask. For each row, complete the table. Note that for the purposes of this exercise you can assume that the two special subnets in each network, the zero subnet and broadcast subnet, are allowed to be used.

Table E-2 Mask Analysis Problems

Problem Number	Problem	Network Bits	Subnet Bits	Host Bits	Number of Subnets in Network	Number of Hosts per Subnet
1	10.66.5.99, 255.255.254.0					
2	172.16.203.42, 255.255.252.0					
3	192.168.55.55, 255.255.255.224					
4	10.22.55.87/30					
5	172.30.40.166/26					
6	192.168.203.18/29					
7	200.11.88.211, 255.255.255.240					
8	128.1.211.33, 255.255.255.128					
9	9.211.45.65/21					
10	223.224.225.226/25					

Answers to Mask Analysis Problems

Table E-3 includes the answers to problems 1–10. The paragraphs following the table provide the explanations of each answer.

Table E-3 Answers to Problems in This Appendix

Problem Number	Problem	Network Bits	Subnet Bits	Host Bits	Number of Subnets in Network	Number of Hosts per Subnet
1	10.66.5.99, 255.255.254.0	8	15	9	215 = 32,768	$2^9 - 2 = 510$
2	172.16.203.42, 255.255.252.0	16	6	10	$2^6 = 64$	$2^{10} - 2 = 1022$
3	192.168.55.55, 255.255.255.224	24	3	5	$2^3 = 8$	$2^5 - 2 = 30$
4	10.22.55.87/30	8	22	2	$2^{22} = 4,194,304$	$2^2 - 2 = 2$
5	172.30.40.166/26	16	10	6	210 = 1024	$2^6 - 2 = 62$
6	192.168.203.18/29	24	5	3	$2^5 = 32$	$2^3 - 2 = 6$
7	200.11.88.211, 255.255.255.240	24	4	4	24 = 16	$2^4 - 2 = 14$
8	128.1.211.33, 255.255.255.128	16	9	7	2° = 512	$2^7 - 2 = 126$
9	9.211.45.65/21	8	13	11	213 = 8192	$2^{11} - 2 = 2046$
10	223.224.225.226/25	24	1	7	$2^1 = 2$	$2^7 - 2 = 126$

Mask Analysis Problem 1: Answer

Address 10.66.5.99 is in Class A network 10.0.0.0, meaning that 8 network bits exist. Mask 255.255.254.0 converts to prefix /23, because the first 2 octets of value 255 represent 8 binary 1s, and the 254 in the third octet represents 7 binary 1s, for a total of 23 binary 1s. Therefore, the number of host bits is 32 - 23 = 9, leaving 15 subnet bits (32 - 8) network bits – 9 host bits = 15 subnet bits). The number of subnets in this Class A network, using mask 255.255.254.0, is $2^{15} = 32,768$. The number of hosts per subnet is $2^9 - 2 = 510$.

Mask Analysis Problem 2: Answer

Address 172.16.203.42, mask 255.255.252.0, is in Class B network 172.16.0.0, meaning that 16 network bits exist. Mask 255.255.252.0 converts to prefix /22, because the first 2 octets of value 255 represent 8 binary 1s, and the 252 in the third octet represents 6 binary 1s, for a total of 22 binary 1s. Therefore, the number of host bits is 32 - 22 = 10, leaving 6 subnet bits (32 - 16 network bits - 10 host bits = 6 subnet bits). The number of subnets in this Class B network, using mask 255.255.252.0, is $2^6 = 64$. The number of hosts per subnet is $2^{10} - 2 = 1022$.

Mask Analysis Problem 3: Answer

Address 192.168.55.55 is in Class C network 192.168.55.0, meaning that 24 network bits exist, Mask 255.255.255.224 converts to prefix /27, because the first 3 octets of value 255 represent 8 binary 1s, and the 224 in the fourth octet represents 3 binary 1s, for a total of 27 binary 1s. Therefore, the number of host bits is 32 - 27 = 5, leaving 3 subnet bits (32) - 24 network bits - 5 host bits = 3 subnet bits). The number of subnets in this Class C network, using mask 255.255.255.224, is $2^3 = 8$. The number of hosts per subnet is $2^5 - 2 = 30$.

Mask Analysis Problem 4: Answer

Address 10.22.55.87 is in Class A network 10.0.0.0, meaning that 8 network bits exist. The prefix format mask of /30 lets you calculate the number of host bits as 32 – prefix length (in this case, 32 - 30 = 2). This leaves 22 subnet bits (32 - 8 network bits - 2 host bits = 22subnet bits). The number of subnets in this Class A network, using mask 255.255.255.252, is $2^{2^2} = 4,194,304$. The number of hosts per subnet is $2^2 - 2 = 2$. (Note that this mask is popularly used on serial links, which need only two IP addresses in a subnet.)

Mask Analysis Problem 5: Answer

Address 172.30.40.166 is in Class B network 172.30.0.0, meaning that 16 network bits exist. The prefix format mask of /26 lets you calculate the number of host bits as 32 – prefix length (in this case, 32 - 26 = 6). This leaves 10 subnet bits (32 - 16 network bits -6 host bits = 10 subnet bits). The number of subnets in this Class B network, using mask /26, is 2^{10} = 1024. The number of hosts per subnet is $2^6 - 2 = 62$.

Mask Analysis Problem 6: Answer

Address 192.168,203.18 is in Class C network 192.168,203.0, meaning that 24 network bits exist. The prefix format mask of /29 lets you calculate the number of host bits as 32 – prefix length (in this case, 32 - 29 = 3). This leaves 5 subnet bits, because 32 - 24 network bits - 3 host bits = 5 subnet bits. The number of subnets in this Class C network, using mask /29, is $2^5 = 32$. The number of hosts per subnet is $2^3 - 2 = 6$.

Mask Analysis Problem 7: Answer

Address 200.11.88.211 is in Class C network 200.11.88.0, meaning that 24 network bits exist. Mask 255.255.250.240 converts to prefix /28, because the first three octets of value 255 represent 8 binary 1s, and the 240 in the fourth octet represents 4 binary 1s, for a total of 28 binary 1s. This leaves 4 subnet bits (32 - 24 network bits - 4 host bits = 4 subnet bits). The number of subnets in this Class C network, using mask /28, is $2^4 = 16$. The number of hosts per subnet is $2^4 - 2 = 14$.

Mask Analysis Problem 8: Answer

Address 128.1.211.33, mask 255.255.255.128, is in Class B network 128.1.0.0, meaning that 16 network bits exist. Mask 255.255.255.128 converts to prefix /25, because the first 3 octets of value 255 represent 8 binary 1s, and the 128 in the fourth octet represents 1 binary 1, for a total of 25 binary 1s. Therefore, the number of host bits is 32 - 25 = 7, leaving 9 subnet bits (32 – 16 network bits – 7 host bits = 9 subnet bits). The number of subnets in this Class B network, using mask 255.255.255.128, is 29 = 512. The number of hosts per subnet is $2^7 - 2 = 126$.

Mask Analysis Problem 9: Answer

Address 9.211.45.65 is in Class A network 10.0.0.0, meaning that 8 network bits exist. The prefix format mask of /21 lets you calculate the number of host bits as 32 - prefix length (in this case, 32 - 21 = 11). This leaves 13 subnet bits (32 - 8 network bits - 11 host bits = 13 subnet bits). The number of subnets in this Class A network, using mask /21, is 2^{13} = 8192. The number of hosts per subnet is $2^{11} - 2 = 2046$.

Mask Analysis Problem 10: Answer

Address 223.224.225.226 is in Class C network 223.224.225.0, meaning that 24 network bits exist. The prefix format mask of /25 lets you calculate the number of host bits as 32 - prefix length (in this case, 32 - 25 = 7). This leaves 1 subnet bit (32 - 24 network bits - 7 host bits = 1 subnet bit). The number of subnets in this Class C network, using mask /25, is 21 = 2. The number of hosts per subnet is $2^7 - 2 = 126$.

APPENDIX F

Practice for Chapter 14: Analyzing Existing Subnets

Practice Problems

This appendix lists practice problems related to Chapter 14, "Analyzing Existing Subnets." Each problem asks you to find a variety of information about the subnet in which an IP address resides. Each problem supplies an IP address and a subnet mask, from which you should find the following information:

- Subnet number
- Subnet broadcast address
- Range of valid IP addresses in this network

To find these facts, you can use any of the processes explained in Chapter 14.

In addition, these same problems can be used to review the concepts in Chapter 13, "Analyzing Subnet Masks." To use these same problems for practice related to Chapter 13, simply find the following information for each of the problems:

- Size of the network part of the address
- Size of the subnet part of the address
- Size of the host part of the address
- Number of hosts per subnet
- Number of subnets in this network

Feel free to either ignore or use the opportunity for more practice related to analyzing subnet masks.

Solve for the following problems:

- **1.** 10.180.10.18, mask 255.192.0.0
- **2.** 10.200.10.18, mask 255.224.0.0
- **3.** 10.100.18.18, mask 255.240.0.0
- **4.** 10.100.18.18, mask 255.248.0.0
- **5.** 10.150.200.200, mask 255.252.0.0
- **6.** 10.150.200.200, mask 255.254.0.0
- **7.** 10.220.100.18, mask 255.255.0.0
- **8.** 10.220.100.18, mask 255.255.128.0
- **9.** 172.31.100.100, mask 255.255.192.0

- **10.** 172.31.100.100, mask 255.255.224.0
- **11.** 172.31.200.10, mask 255.255.240.0
- **12.** 172.31.200.10, mask 255.255.248.0
- **13.** 172.31.50.50, mask 255.255.252.0
- **14.** 172.31.50.50, mask 255.255.254.0
- **15.** 172.31.140.14, mask 255.255.255.0
- **16.** 172.31.140.14, mask 255.255.255.128
- **17.** 192.168.15.150, mask 255.255.255.192
- **18.** 192,168,15,150, mask 255,255,255,224
- **19.** 192.168.100.100, mask 255.255.255.240
- **20.** 192.168.100.100, mask 255.255.255.248
- **21.** 192.168.15.230, mask 255.255.255.252
- **22.** 10.1.1.1, mask 255.248.0.0
- **23.** 172.16.1.200, mask 255.255.240.0
- **24.** 172.16.0.200, mask 255.255.255.192
- **25.** 10.1.1.1 mask 255.0.0.0

Answers

This section includes the answers to the 25 problems listed in this appendix. The answer section for each problem explains how to use the process outlined in Chapter 14 to find the answers. Also, refer to Chapter 13 for details on how to find information about analyzing the subnet mask.

Answer to Problem 1

The answers begin with the analysis of the three parts of the address, the number of hosts per subnet, and the number of subnets of this network using the stated mask, as outlined in Table F-1. The binary math for subnet and broadcast address calculation follows. The answer finishes with the easier mental calculations for the range of IP addresses in the subnet.

Table F-1 Question 1: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.180.10.18	_
Mask	255.192.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	22	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2number-of-subnet-bits
Number of hosts	$2^{22} - 2 = 4,194,302$	2number-of-host-bits – 2

Table F-2 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-2 Question 1: Binary Calculation of Subnet and Broadcast Addresses

Address	10.180.10.18	00001010 10110100 00001010 00010010
Mask	255.192.0.0	11111111 11000000 00000000 00000000
AND result (subnet number)	10.128.0.0	00001010 10000000 00000000 00000000
Change host to 1s (broadcast address)	10.191.255.255	00001010 10111111 11111111 11111111

To get the first valid IP address, just add 1 to the subnet number; to get the last valid IP address, just subtract 1 from the broadcast address. In this case:

```
10.128.0.1 through 10.191.255.254
10.128.0.0 + 1 = 10.128.0.1
10.191.255.255 - 1 = 10.191.255.254
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. The key parts of the process are as follows:

- The interesting octet is the octet for which the mask's value is not a decimal 0 or 255.
- The magic number is calculated as the value of the IP address's interesting octet, subtracted from 256.
- The subnet number can be found by copying the IP address octets to the left of the interesting octet, by writing down 0s for octets to the right of the interesting octet, and by finding the multiple of the magic number closest to, but not larger than, the IP address's value in that same octet.
- The broadcast address can be similarly found by copying the subnet number's octets to the left of the interesting octet, by writing 255s for octets to the right of the interesting octet, and by taking the subnet number's value in the interesting octet, adding the magic number, and subtracting 1.

Table F-3 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 14 for the detailed processes.

Table F-3 Question 1: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	192	0	0	
Address	10	180	10	18	
Subnet Number	10	128	0	0	Magic number = 256 – 192 = 64
First Address	10	128	0	1	Add 1 to last octet of subnet
Last Address	10	191	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	191	255	255	128 + 64 - 1 = 191

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 180 but not higher than 180. So, the second octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 64 - 1 = 191.

Answer to Problem 2

Table F-4 Question 2: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.200.10.18	_
Mask	255.224.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	21	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2number-of-subnet-bits
Number of hosts	$2^{21} - 2 = 2,097,150$	2 ^{number-of-host-bits} – 2

Table F-5 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.200.10.18	00001010 11001000 00001010 00010010
Mask	255.224.0.0	11111111 11100000 00000000 00000000
AND result (subnet number)	10.192.0.0	00001010 11000000 00000000 00000000
Change host to 1s (broadcast address)	10.223.255.255	00001010 11011111 11111111 11111111

Table F-5 Question 2: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.192.0.1 through 10.223.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-6 shows the work for this problem, with some explanation of the work following the table.

Table F-6 Question 2: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	224	0	0	
Address	10	200	10	18	
Subnet Number	10	192	0	0	Magic number = 256 – 224 = 32
First Address	10	192	0	1	Add 1 to last octet of subnet
Last Address	10	223	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	223	255	255	192 + 32 - 1 = 223

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - 284 = 32) and the case (256 - 284 = 32) in this case (256 - 284value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 192 is the multiple of 32 that is closest to 200 but not higher than 200. So, the second octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 192 + 32 - 1 = 223.

Answer to Problem 3

Table F-7 Question 3: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.100.18.18	_
Mask	255.240.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	20	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	24 = 16	2number-of-subnet-bits
Number of hosts	$2^{20} - 2 = 1,048,574$	2 ^{number-of-host-bits} – 2

Table F-8 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-8 Question 3: Binary Calculation of Subnet and Broadcast Addresses

Address	10.100.18.18	00001010 01100100 00010010 00010010
Mask	255.240.0.0	11111111 11110000 00000000 00000000
AND result (subnet number)	10.96.0.0	00001010 01100000 00000000 00000000
Change host to 1s (broadcast address)	10.111.255.255	00001010 01101111 11111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.96.0.1 through 10.111.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-9 shows the work for this problem, with some explanation of the work following the table.

Table F-9 Question 3: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	240	0	0	_
Address	10	100	18	18	_
Subnet Number	10	96	0	0	Magic number = $256 - 240 = 16$
First Address	10	96	0	1	Add 1 to last octet of subnet
Last Address	10	111	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	111	255	255	96 + 16 - 1 = 111

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's) value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 16 - 1 = 111.

Answer to Problem 4

Table F-10 Ouestion 4: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.100.18.18	_
Mask	255.248.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	19	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^{19} - 2 = 524,286$	2number-of-host-bits – 2

Table F-11 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-11 Question 4: Binary Calculation of Subnet and Broadcast Addresses

Address	10.100.18.18	00001010	01100 100	00010010	00010010
Mask	255.248.0.0	11111111	11111000	0000000	0000000
AND result (subnet number)	10.96.0.0	00001010	01100 000	0000000	0000000
Change host to 1s (broadcast address)	10.103.255.255	00001010	01100 111	11111111	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.96.0.1 through 10.103.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-12 shows the work for this problem, with some explanation of the work following the table.

osing the outside onare					
	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	248	0	0	_
Address	10	100	18	18	_
Subnet Number	10	96	0	0	Magic number = 256 – 248 = 8
First Address	10	96	0	1	Add 1 to last octet of subnet
Last Address	10	103	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	103	255	255	96 + 8 - 1 = 103

Table F-12 Ouestion 4: Subnet. Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 - mask's) value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 8 - 1 = 103.

Answer to Problem 5

Table F-13 Question 5: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.150.200.200	_
Mask	255.252.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	18	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2number-of-subnet-bits
Number of hosts	$2^{18} - 2 = 262,142$	2 ^{number-of-host-bits} – 2

Table F-14 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

	,	
Address	10.150.200.200	00001010 10010110 11001000 11001000
Mask	255.252.0.0	11111111 11111100 00000000 00000000
AND result (subnet number)	10.148.0.0	00001010 10010100 00000000 00000000
Change host to 1s (broadcast address)	10.151.255.255	00001010 10010111 11111111 11111111

Table F-14 Question 5: Binary Calculation of Subnet and Broadcast Addresses

10.148.0.1 through 10.151.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-15 shows the work for this problem, with some explanation of the work following the table.

Table F-15 Ouestion 5: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	252	0	0	_
Address	10	150	200	200	_
Subnet Number	10	148	0	0	Magic number = 256 – 252 = 4
First Address	10	148	0	1	Add 1 to last octet of subnet
Last Address	10	151	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	151	255	255	148 + 4 - 1 = 151

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 252 = 4 in this case (256 – mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 148 is the multiple of 4 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 148.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 148 + 4 - 1 = 151.

Table F-16 Ouestion 6: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.150.200.200	_
Mask	255.254.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	17	Always defined as number of binary 0s in mask
Number of subnet bits	7	32 – (network size + host size)
Number of subnets	$2^7 = 128$	2number-of-subnet-bits
Number of hosts	$2^{17} - 2 = 131,070$	2 ^{number-of-host-bits} – 2

Table F-17 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-17 Question 6: Binary Calculation of Subnet and Broadcast Addresses

Address	10.150.200.200	00001010 10010110 11001000 11001000
Mask	255.254.0.0	11111111 11111110 0000000 00000000
AND result (subnet number)	10.150.0.0	00001010 10010110 00000000 00000000
Change host to 1s (broadcast address)	10.151.255.255	00001010 10010111 11111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.150.0.1 through 10.151.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-18 shows the work for this problem, with some explanation of the work following the table.

Table F-18 Question 6: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	254	0	0
Address	10	150	200	200
Subnet Number	10	150	0	0
First Valid Address	10	150	0	1
Last Valid Address	10	151	255	254
Broadcast	10	151	255	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 254 = 2 in this case (256 - mask's) value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 150 is the multiple of 2 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 150.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 150 + 2 - 1 = 151.

Answer to Problem 7

Table F-19 Ouestion 7: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.220.100.18	_
Mask	255.255.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	16	Always defined as number of binary 0s in mask
Number of subnet bits	8	32 – (network size + host size)
Number of subnets	28 = 256	2 number-of-subnet-bits
Number of hosts	$2^{16} - 2 = 65,534$	2 ^{number-of-host-bits} – 2

Table F-20 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-20 Question 7: Binary Calculation of Subnet and Broadcast Addresses

Address	10.220.100.18	00001010 11011100 01100100 00010010
Mask	255.255.0.0	11111111 11111111 00000000 00000000
AND result (subnet number)	10.220.0.0	00001010 11011100 00000000 00000000
Change host to 1s (broadcast address)	10.220.255.255	00001010 11011100 11111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.220.0.1 through 10.220.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-21 shows the work for this problem.

Table F-21 Question 7: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	0	0
Address	10	220	100	18
Subnet Number	10	220	0	0
First Valid Address	10	220	0	1
Last Valid Address	10	220	255	254
Broadcast	10	220	255	255

This subnetting scheme uses an easy mask because all the octets are a 0 or a 255. No math tricks are needed.

Answer to Problem 8

Table F-22 Question 8: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.220.100.18	_
Mask	255.255.128.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	15	Always defined as number of binary 0s in mask
Number of subnet bits	9	32 – (network size + host size)
Number of subnets	2 ⁹ = 512	2number-of-subnet-bits
Number of hosts	$2^{15} - 2 = 32,766$	2number-of-host-bits _ 2

Table F-23 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-23 Question 8: Binary Calculation of Subnet and Broadcast Addresses

Address	10.220.100.18	00001010 11011100 01100100 00010010
Mask	255.255.128.0	11111111 11111111 10000000 00000000
AND result (subnet number)	10.220.0.0	00001010 11011100 00000000 00000000
Change host to 1s (broadcast address)	10.220.127.255	00001010 11011100 01111111 11111111

10.220.0.1 through 10.220.127.254

Table F-24 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 14 for the detailed processes.

Table F-24 Question 8: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	128	0
Address	10	220	100	18
Subnet Number	10	220	0	0
First Address	10	220	0	1
Last Address	10	220	127	254
Broadcast	10	220	127	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 128 = 128 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 128 - 1 = 127.

This example tends to confuse people, because a mask with 128 in it gives you subnet numbers that just do not seem to look right. Table F-25 gives you the answers for the first several subnets, just to make sure that you are clear about the subnets when using this mask with a Class A network.

Table F-25 Ouestion 8: First Four Subnets

	Zero Subnet	2nd Subnet	3rd Subnet	4th Subnet
Subnet	10.0.0.0	10.0.128.0	10.1.0.0	10.1.128.0
First Address	10.0.0.1	10.0.128.1	10.1.0.1	10.1.128.1
Last Address	10.0.127.254	10.0.255.254	10.1.127.254	10.1.255.254
Broadcast	10.0.127.255	10.0.255.255	10.1.127.255	10.1.255.255

Table F-26 Question 9: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.100.100	_
Mask	255.255.192.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	14	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2 number-of-subnet-bits
Number of hosts	$2^{14} - 2 = 16,382$	2 ^{number-of-host-bits} – 2

Table F-27 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-27 Question 9: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.100.100	10101100 00011111 01100100 01100100
Mask	255.255.192.0	11111111 11111111 11000000 00000000
AND result (subnet number)	172.31.64.0	10101100 00011111 01000000 00000000
Change host to 1s (broadcast address)	172.31.127.255	10101100 00011111 01111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.64.1 through 172.31.127.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-28 shows the work for this problem, with some explanation of the work following the table.

Table F-28 Question 9: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	192	0
Address	172	31	100	100
Subnet Number	172	31	64	0
First Valid Address	172	31	64	1
Last Valid Address	172	31	127	254
Broadcast	172	31	127	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 64 is the multiple of 64 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 64.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 64 + 64 - 1 = 127.

Answer to Problem 10

Table F-29 Ouestion 10: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.100.100	_
Mask	255.255.224.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	13	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2number-of-subnet-bits
Number of hosts	$2^{13} - 2 = 8190$	2number-of-host-bits – 2

Table F-30 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-30 Question 10: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.100.100	10101100	00011111	011 00100	01100100
Mask	255.255.224.0	11111111	11111111	11100000	0000000
AND result (subnet number)	172.31.96.0	10101100	00011111	01100000	0000000
Change host to 1s (broadcast address)	172.31.127.255	10101100	00011111	011 11111	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.96.1 through 172.31.127.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-31 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4		
Mask	255	255	224	0		
Address	172	31	100	100		
Subnet Number	172	31	96	0		
First Valid Address	172	31	96	1		
Last Valid Address	172	31	127	254		
Broadcast	172	31	127	255		

Table F-31 Question 10: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - mask's valuein the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 32 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky parts, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 32 - 1 = 127.

Answer to Problem 11

Table F-32 Ouestion 11: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.200.10	_
Mask	255.255.240.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	12	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 number-of-subnet-bits
Number of hosts	$2^{12} - 2 = 4094$	2 number-of-host-bits _ 2

Table F-33 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

• • • • • • • • • • • • • • • • • • • •	,	
Address	172.31.200.10	10101100 00011111 11001000 00001010
Mask	255.255.240.0	11111111 11111111 11110000 00000000
AND result (subnet number)	172.31.192.0	10101100 00011111 11000000 00000000
Change host to 1s (broadcast	172.31.207.255	10101100 00011111 11001111 11111111
address)		

Table F-33 Ouestion 11: Binary Calculation of Subnet and Broadcast Addresses

172.31.192.1 through 172.31.207.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-34 shows the work for this problem, with some explanation of the work following the table.

Table F-34 Question 11: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	240	0
Address	172	31	200	10
Subnet Number	172	31	192	0
First Valid Address	172	31	192	1
Last Valid Address	172	31	207	254
Broadcast	172	31	207	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 192 is the multiple of 16 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 192 + 16 - 1 = 207.

Table F-35 Ouestion 12: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.200.10	_
Mask	255.255.248.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	11	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^{11} - 2 = 2046$	2number-of-host-bits – 2

Table F-36 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-36 Question 12: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.200.10	10101100 00011111 11001000 00001010
Mask	255.255.248.0	11111111 11111111 111111000 00000000
AND result (subnet number)	172.31.200.0	10101100 00011111 11001000 00000000
Change host to 1s (broadcast address)	172.31.207.255	10101100 00011111 11001111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.200.1 through 172.31.207.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-37 shows the work for this problem, with some explanation of the work following the table.

Table F-37 Question 12: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	248	0
Address	172	31	200	10
Subnet Number	172	31	200	0
First Valid Address	172	31	200	1
Last Valid Address	172	31	207	254
Broadcast	172	31	207	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 200 is the multiple of 8 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 200.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 200 + 8 - 1 = 207.

Answer to Problem 13

Table F-38 Question 13: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.50.50	_
Mask	255.255.252.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	10	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2number-of-subnet-bits
Number of hosts	$2^{10} - 2 = 1022$	2number-of-host-bits – 2

Table F-39 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-39 Question 13: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.50.50	10101100	00011111	001100 10	00110010
Mask	255.255.252.0	11111111	11111111	11111100	0000000
AND result (subnet number)	172.31.48.0	10101100	00011111	001100 00	0000000
Change host to 1s (broadcast address)	172.31.51.255	10101100	00011111	001100 11	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.48.1 through 172.31.51.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-40 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4		
Mask	255	255	252	0		
Address	172	31	50	50		
Subnet Number	172	31	48	0		
First Valid Address	172	31	48	1		
Last Valid Address	172	31	51	254		
Broadcast	172	31	51	255		

Table F-40 Question 13: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 252 = 4 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 48 is the multiple of 4 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 48.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 48 + 4 - 1 = 51.

Answer to Problem 14

Table F-41 Ouestion 14: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.50.50	_
Mask	255.255.254.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	9	Always defined as number of binary 0s in mask
Number of subnet bits	7	32 – (network size + host size)
Number of subnets	$2^7 = 128$	2 number-of-subnet-bits
Number of hosts	$2^9 - 2 = 510$	2number-of-host-bits – 2

Table F-42 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

г	
	_

• • • • • • • • • • • • • • • • • • • •	,				
Address	172.31.50.50	10101100	00011111	00110010	00110010
Mask	255.255.254.0	11111111	11111111	11111110	00000000
AND result (subnet number)	172.31.50.0	10101100	00011111	00110010	0000000
Change host to 1s (broadcast	172.31.51.255	10101100	00011111	0011001 1	11111111
address)					

Table F-42 Ouestion 14: Binary Calculation of Subnet and Broadcast Addresses

172.31.50.1 through 172.31.51.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-43 shows the work for this problem, with some explanation of the work following the table.

Table F-43 Ouestion 14: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	254	0
Address	172	31	50	50
Subnet Number	172	31	50	0
First Valid Address	172	31	50	1
Last Valid Address	172	31	51	254
Broadcast	172	31	51	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 254 = 2 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 50 is the multiple of 2 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 50.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 50 + 2 - 1 = 51.

Table F-44 Question 15: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.140.14	_
Mask	255.255.255.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	8	Always defined as number of binary 0s in mask
Number of subnet bits	8	32 – (network size + host size)
Number of subnets	$2^8 = 256$	2 number-of-subnet-bits
Number of hosts	$2^8 - 2 = 254$	2 ^{number-of-host-bits} – 2

Table F-45 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-45 Question 15: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.140.14	10101100	00011111	10001100	00001110
Mask	255.255.255.0	11111111	11111111	11111111	0000000
AND result (subnet number)	172.31.140.0	10101100	00011111	10001100	0000000
Change host to 1s (broadcast address)	172.31.140.255	10101100	00011111	10001100	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-46 shows the work for this problem.

Table F-46 Question 15: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	0
Address	172	31	140	14
Subnet Number	172	31	140	0
First Valid Address	172	31	140	1
Last Valid Address	172	31	140	254
Broadcast	172	31	140	255

This subnetting scheme uses an easy mask because all the octets are a 0 or a 255. No math tricks are needed.

Table F-47 Ouestion 16: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.140.14	_
Mask	255.255.255.128	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	7	Always defined as number of binary 0s in mask
Number of subnet bits	9	32 – (network size + host size)
Number of subnets	2 ⁹ = 512	2 number-of-subnet-bits
Number of hosts	$2^7 - 2 = 126$	2number-of-host-bits – 2

Table F-48 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-48 Question 16: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.140.14	10101100	00011111	10001100	00001110
Mask	255.255.255.128	11111111	11111111	11111111	10000000
AND result (subnet number)	172.31.140.0	10101100	00011111	10001100	0000000
Change host to 1s (broadcast address)	172.31.140.127	10101100	00011111	10001100	01111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.126

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-49 shows the work for this problem, with some explanation of the work following the table.

Table F-49 Question 16: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	128
Address	172	31	140	14
Subnet Number	172	31	140	0
First Valid Address	172	31	140	1
Last Valid Address	172	31	140	126
Broadcast	172	31	140	127

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 128 = 128 in this case (256 mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 14 but not higher than 14. So, the fourth octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 128 - 1 = 127.

Answer to Problem 17

Table F-50 Question 17: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	192.168.15.150	_
Mask	255.255.255.192	_
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	6	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2number-of-subnet-bits
Number of hosts	$2^6 - 2 = 62$	2 ^{number-of-host-bits} – 2

Table F-51 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-51 Question 17: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.15.150	11000000	10101000	00001111	10 010110
Mask	255.255.255.192	11111111	11111111	11111111	11000000
AND result (subnet number)	192.168.15.128	11000000	10101000	00001111	10000000
Change host to 1s (broadcast address)	192.168.15.191	11000000	10101000	00001111	10 111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.129 through 192.168.15.190

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-52 shows the work for this problem, with some explanation of the work following the table.

н	٠	
н	•	
ш		

Using the Subhet Chart	Josing the Subhet Chart					
	Octet 1	Octet 2	Octet 3	Octet 4		
Mask	255	255	255	192		
Address	192	168	15	150		
Subnet Number	192	168	15	128		
First Valid Address	192	168	15	129		
Last Valid Address	192	168	15	190		
Broadcast	192	168	15	191		

Table F-52 Question 17: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's) value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 64 - 1 = 191.

Answer to Problem 18

Table F-53 Ouestion 18: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	192.168.15.150	_
Mask	255.255.255.224	_
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	5	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2 ^{number-of-subnet-bits}
Number of hosts	$2^5 - 2 = 30$	2 ^{number-of-host-bits} – 2

Table F-54 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

	<u> </u>				
Address	192.168.15.150	11000000	10101000	00001111	100 10110
Mask	255.255.255.224	11111111	11111111	11111111	11100000
AND result (subnet number)	192.168.15.128	11000000	10101000	00001111	10000000
Change host to 1s (broadcast address)	192.168.15.159	11000000	10101000	00001111	100 11111

Table F-54 Question 18: Binary Calculation of Subnet and Broadcast Addresses

192.168.15.129 through 192.168.15.158

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-55 shows the work for this problem, with some explanation of the work following the table.

Table F-55 Question 18: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	224
Address	192	168	15	150
Subnet Number	192	168	15	128
First Valid Address	192	168	15	129
Last Valid Address	192	168	15	158
Broadcast	192	168	15	159

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - 266 = 226) and 256 = 226 = 32 in this case (256 = 266 = 226). value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 32 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 32 - 1 = 159.

Table F-56 Question 19: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	192.168.100.100	_
Mask	255.255.255.240	_
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	4	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	24 = 16	2number-of-subnet-bits
Number of hosts	$2^4 - 2 = 14$	2 ^{number-of-host-bits} – 2

Table F-57 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-57 Question 19: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.100.100	11000000 10101000 01100100 0110 0100
Mask	255.255.255.240	11111111 11111111 11111111 11110000
AND result (subnet number)	192.168.100.96	11000000 10101000 01100100 01100000
Change host to 1s (broadcast address)	192.168.100.111	11000000 10101000 01100100 0110 1111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.110

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-58 shows the work for this problem, with some explanation of the work following the table.

Table F-58 Question 19: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	240
Address	192	168	100	100
Subnet Number	192	168	100	96
First Valid Address	192	168	100	97
Last Valid Address	192	168	100	110
Broadcast	192	168	100	111

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 16 - 1 = 111.

Answer to Problem 20

Table F-59 Question 20: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	192.168.100.100	_
Mask	255.255.255.248	_
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	3	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^3 - 2 = 6$	2number-of-host-bits – 2

Table F-60 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-60 Question 20: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.100.100	11000000	10101000	01100100	01100 100
Mask	255.255.255.248	11111111	11111111	11111111	11111000
AND result (subnet number)	192.168.100.96	11000000	10101000	01100100	01100 000
Change host to 1s (broadcast address)	192.168.100.103	11000000	10101000	01100100	01100 111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.102

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-61 shows the work for this problem, with some explanation of the work following the table.

coming the cubility chart					
	Octet 1	Octet 2	Octet 3	Octet 4	
Mask	255	255	255	248	
Address	192	168	100	100	
Subnet Number	192	168	100	96	
First Valid Address	192	168	100	97	
Last Valid Address	192	168	100	102	
Broadcast	192	168	100	103	

Table F-61 Question 20: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 8 - 1 = 103.

Answer to Problem 21

Table F-62 Ouestion 21: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	192.168.15.230	_
Mask	255.255.255.252	_
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	2	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2number-of-subnet-bits
Number of hosts	$2^2 - 2 = 2$	2number-of-host-bits – 2

Table F-63 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	192.168.15.230	11000000 10101000 00001111 111001 10
Mask	255.255.255.252	11111111 11111111 11111111 111111100
AND result (subnet number)	192.168.15.228	11000000 10101000 00001111 11100100
Change host to 1s (broadcast address)	192.168.15.231	11000000 10101000 00001111 111001 11

Table F-63 Question 21: Binary Calculation of Subnet and Broadcast Addresses

192.168.15.229 through 192.168.15.230

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-64 shows the work for this problem, with some explanation of the work following the table.

Table F-64 Question 21: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	252
Address	192	168	15	230
Subnet Number	192	168	15	228
First Valid Address	192	168	15	229
Last Valid Address	192	168	15	230
Broadcast	192	168	15	231

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 252 = 4 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 228 is the multiple of 4 that is closest to 230 but not higher than 230. So, the fourth octet of the subnet number is 228.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 228 + 4 - 1 = 231.

Table F-65 Ouestion 22: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.1.1.1	_
Mask	255.248.0.0	_
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	19	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2 number-of-subnet-bits
Number of hosts	$2^{19} - 2 = 524,286$	2number-of-host-bits – 2

Table F-66 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-66 Question 22: Binary Calculation of Subnet and Broadcast Addresses

Address	10.1.1.1	00001010	00000001	0000001	0000001
Mask	255.248.0.0	11111111	11111000	0000000	00000000
AND result (subnet number)	10.0.0.0	00001010	0000000	0000000	0000000
Change host to 1s (broadcast address)	10.7.255.255	00001010	00000111	11111111	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.0.0.1 through 10.7.255.254

Take a closer look at the subnet part of the subnet address, as shown in bold here: 0s, making this subnet a zero subnet.

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-67 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4	
Mask	255	248	0	0	
Address	10	1	1	1	
Subnet Number	10	0	0	0	
First Valid Address	10	0	0	1	
Last Valid Address	10	7	255	254	
Broadcast	10	7	255	255	

Table F-67 Question 22: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 8 that is closest to 1 but not higher than 1. So, the second octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 8 - 1 = 7.

Answer to Problem 23

Table F-68 Question 23: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.16.1.200	_
Mask	255.255.240.0	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	12	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 number-of-subnet-bits
Number of hosts	$2^{12} - 2 = 4094$	2number-of-host-bits – 2

Table F-69 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.16.1.200	10101100 00010000 00000001 11001000
Mask	255.255.240.0	11111111 11111111 11110000 00000000
AND result (subnet number)	172.16.0.0	10101100 00010000 00000000 00000000
Change host to 1s (broadcast address)	172.16.15.255	10101100 00010000 00001111 11111111

Table F-69 Ouestion 23: Binary Calculation of Subnet and Broadcast Addresses

172.16.0.1 through 172.16.15.254

Take a closer look at the subnet part of the subnet address, as shown in bold here: 0s, making this subnet a zero subnet.

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-70 shows the work for this problem, with some explanation of the work following the table.

Table F-70 Question 23: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	240	0
Address	172	16	1	200
Subnet Number	172	16	0	0
First Valid Address	172	16	0	1
Last Valid Address	172	16	15	254
Broadcast	172	16	15	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 16 that is closest to 1 but not higher than 1. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 16 - 1 = 15.

Table F-71 Ouestion 24: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.16.0.200	_
Mask	255.255.255.192	_
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	6	Always defined as number of binary 0s in mask
Number of subnet bits	10	32 – (network size + host size)
Number of subnets	$2^{10} = 1024$	2number-of-subnet-bits
Number of hosts	$2^6 - 2 = 62$	2 ^{number-of-host-bits} – 2

Table F-72 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-72 Question 24: Binary Calculation of Subnet and Broadcast Addresses

Address	172.16.0.200	10101100	00010000	00000000	11001000
Mask	255.255.255.192	11111111	11111111	11111111	11000000
AND result (subnet number)	172.16.0.192	10101100	00010000	00000000	11000000
Change host to 1s (broadcast address)	172.16.0.255	10101100	00010000	0000000	11 111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.16.0.193 through 172.16.0.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-73 shows the work for this problem, with some explanation of the work following the table.

Table F-73 Question 24: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	192
Address	172	16	0	200
Subnet Number	172	16	0	192
First Valid Address	172	16	0	193
Last Valid Address	172	16	0	254
Broadcast	172	16	0	255