# Improving Mammography Malignancy Segmentation by Designing the Training Process

Short paper #137 @ MIDL 2020

Mickael Tardy (mickael.tardy@ec-nantes.fr) <sup>1,2</sup> Diana Mateus, <sup>1</sup>







<sup>&</sup>lt;sup>1</sup>Ecole Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

<sup>&</sup>lt;sup>2</sup>Hera-MI, SAS

#### What we are looking on?

Mammography imaging is usually the initial imaging exam for breast cancer screening



Figure 1: Samples from INBreast database<sup>1</sup>

2 / 13

<sup>&</sup>lt;sup>1</sup>Inês C. Moreira et al. "INbreast: Toward a Full-field Digital Mammographic Database.". In: Academic Radiology 19.2 (2012), pp. 236-248. ISSN: 10766332. DOI: 10.1016/j.acra.2011.09.014. URL: http://www.ncbi.nlm.nih.gov/pubmed/22078258.

#### What are we trying to do?

Our aim: Find and segment malignant regions on mammograms



Figure 2: Same samples with contoured malignancies (INBreast<sup>2</sup>)

3 / 13

<sup>&</sup>lt;sup>2</sup>Inês C. Moreira et al. "INbreast: Toward a Full-field Digital Mammographic Database.". In: Academic Radiology 19.2 (2012), pp. 236-248. ISSN: 10766332. DOI: 10.1016/j.acra.2011.09.014. URL: http://www.ncbi.nlm.nih.gov/pubmed/22078258.

#### What are the challenges?

- High resolution of images:  $\approx 4000 \times 3000$  pixels and more (depends on pixel spacing)
- Small findings to segment  $\approx 5 10mm^2$ , i.e.  $< 100^2$  pixels

#### What do we propose?

#### Two-step training

- 1. Self-supervised reconstruction for an knowledge initialization<sup>3</sup>
- 2. Malignancy extraction instead of segmentation probability



Figure 3: Proposed configuration of a U-Net

<sup>&</sup>lt;sup>3</sup>Zongwei Zhou et al. "Models genesis: generic autodidactic models for 3d medical image analysis". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11767 LNCS. Springer, 2019, pp. 384–393. ISBN: 9783030322502. DOI: 10.1007/978-3-030-32251-9 42. arXiv: 1908.06912.

#### Method details

### 1st step: Reconstruction training with a U-Net<sup>4</sup>-like architecture



<sup>&</sup>lt;sup>4</sup>Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-net: Convolutional networks for biomedical image segmentation*. Tech. rep. 2015, pp. 234-241. DOI: 10.1007/978-3-319-24574-4\_28. arXiv: 1505.04597. URL: http://lmb.informatik.uni-freiburg.de/.

#### Method details

#### 2nd step: Malignancy extraction using a difference layer



#### What do we get?

#### Network output

- 1. More sensitive
- 2. More interpretable



#### What do we get?

## Network output compared to the traditional segmentation training



#### What do we get?

- Best score on INBreast: DICE = 0.61 (comparable to SOTA segmentation performances)
- Less variability in training: on 10 epochs our approach yields  $DICE_{avg} = 0.59$  vs.  $DICE_{avg} = 0.52$  with probability-based training
- Sensible to masses and calcifications
- Images of 1536x1536 (pixel spacing  $\approx 0.15mm$ ) acceptable with regards to findings (i.e.  $\approx 10mm^2$ ,  $> \approx 65pixels^2$ )

# Thank you See you in the Q&A session

#### References i



Inês C. Moreira et al. "INbreast: Toward a Full-field Digital Mammographic Database.". In: Academic Radiology 19.2 (2012), pp. 236-248. ISSN: 10766332. DOI: 10.1016/j.acra.2011.09.014. URL: http://www.ncbi.nlm.nih.gov/pubmed/22078258.



Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-net: Convolutional networks for biomedical image segmentation*. Tech. rep. 2015, pp. 234-241. DOI: 10.1007/978-3-319-24574-4\_28. arXiv: 1505.04597. URL: http://lmb.informatik.uni-freiburg.de/.



Zongwei Zhou et al. "Models genesis: generic autodidactic models for 3d medical image analysis". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11767 LNCS. Springer, 2019, pp. 384–393. ISBN: 9783030322502. DOI: 10.1007/978-3-030-32251-9 42. arXiv: 1908.06912.

# Improving Mammography Malignancy Segmentation by Designing the Training Process

Short paper #137 @ MIDL 2020

Mickael Tardy (mickael.tardy@ec-nantes.fr) 1,2 Diana Mateus, 1







<sup>&</sup>lt;sup>1</sup>Ecole Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

<sup>&</sup>lt;sup>2</sup>Hera-MI, SAS