Mathematical Foundations Cheat Sheet

1. Sets and Set Operations

Basic Definitions

- **Set**: A collection of distinct elements (e.g., A = {1, 2, 3})
- Element:
 - \circ $\omega \in A$ (element is in set)
 - ω ∉ A (element is not in set)

Important Sets

Symbol	Name	Description
N	Natural Numbers	Positive integers (1, 2, 3,)
Z	Integers	(, -2, -1, 0, 1, 2,)
Q	Rational Numbers	Fractions p/q where p,q $\in \mathbb{Z}$, q $\neq 0$
\mathbb{R}	Real Numbers	Includes √2, π, e, etc.
C	Complex Numbers	Numbers of form $a + bi$, $i^2 = -1$

Set Operations

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• Difference: $A \setminus B = \{x \in A \mid x \notin B\}$

• Complement: If $A \subseteq \Omega$, then $A^c = \Omega \setminus A$

• Subset: A ⊆ B if all elements of A are in B

Special Cases

- Empty Set (Ø): The set containing no elements
 - ∘ Property: \emptyset ⊆ A for any set A

• **Disjoint Sets**: A ∩ B = Ø (no common elements)

Key Properties

- Density of Q in R: Between any two real numbers, there exists a rational number
- Completeness of \mathbb{R} : Every bounded subset has both a supremum (least upper bound) and infimum (greatest lower bound) in \mathbb{R}

2. Functions

Basic Definition

A **function** f: A \rightarrow B is a rule that assigns each element a \in A to exactly one element f(a) \in B.

Important Concepts

• **Image**: f(E) = {f(a) | a ∈ E} for E ⊆ A

• **Preimage**: $f^{-1}(D) = \{a \in A \mid f(a) \in D\}$ for $D \subseteq B$

Function Types

Туре	Condition	Example
Injective	$a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ (one-to-one)	f(x) = 2x
Surjective	f(A) = B (onto)	$f: \mathbb{R} \to [0,\infty), f(x)=x^2$
Bijective	Both injective and surjective (invertible)	$f: \mathbb{R} \to \mathbb{R}, f(x)=x^3$

Monotonicity

- Increasing: $X_1 < X_2 \Rightarrow f(X_1) \le f(X_2)$
- Strictly Increasing: $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

Continuity

- Topological Definition: f: $\mathbb{R}^m \to \mathbb{R}^k$ is continuous if f⁻¹(U) is open for every open $U \subseteq \mathbb{R}^k$
- Sequence Criterion: f is continuous at x iff for all sequences $x_n \to x$, we have $f(x_n) \to f(x)$

Important Properties

- Preimage respects:
 - Unions: $f^{-1}(\cup_j D_j) = \cup_j f^{-1}(D_j)$
 - Intersections: $f^{-1}(\cap_j D_j) = \cap_j f^{-1}(D_j)$
- Bijective functions have unique inverses

3. Sequences

Basic Definition

A **real sequence** $(a_n)_n \in \mathbb{N}$ is a function from \mathbb{N} to \mathbb{R} .

Convergence

We say lim $a_n=a$ if: $\forall \epsilon>0, \ \exists N\in \mathbb{N} \ \text{such that} \ \forall n\geq N, \ |a_n-a|<\epsilon$

Divergence

- $a_n \to +\infty$ if $\forall M > 0$, $\exists N$, $\forall n \ge N$, $a_n > M$
- $a_n \rightarrow -\infty$ if $\forall M < 0, \exists N, \forall n \ge N, a_n < M$

Key Properties

- **Boundedness**: Sequence is bounded if $\exists M > 0$ st $|a_n| \le M \forall n$
- Monotonic Sequences:
 - Increasing: a_{n+1} ≥ a_n
 - Decreasing: a_{n+1} ≤ a_n
 - Theorem: Monotonic + Bounded ⇒ Convergent

Subsequences

- A subsequence (a_{kn}) is obtained by selecting terms with increasing indices
- Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent