Ehresmann, Kozul, and Cartan connections

Linden Disney-Hogg

November 2019

Contents

1	Introduction	1
2	Fibre bundles	1
3	Principal fibre bundles	3
4	Ehresmann Connections	6
5	Kozul Connections	9
6	Curvature	13
7	Homogeneous spaces and Invariant Connections I	15
8	Invariant Connections	16
9	Cartan Connections 9.1 Reductive Cartan geometries	

1 Introduction

These are typset notes based on a small graduate lecture course given by Professor José Figueroa-O'Farrill at the University of Edinburgh in Autumn 2019.

2 Fibre bundles

Definition 2.1 (Fibre Bundle). A **fibre bundle** consists of a smooth surjection $\pi: E \to M$ between manifolds E (the **total space**) and M (the **base space**) and such that $\forall a \in M$ there exists a neighbourhood $U \ni a$ and a diffeomorphism $\varphi: \pi^{-1} \to U \times F$ (a **local trivialisation**) for some manifold F (the **typical fibre**) such that the following triangle commutes

$$\pi^{-1}(U) \xrightarrow{\varphi} U \times F$$

$$\downarrow^{\pi}_{pr_2}$$

$$U$$

We often write $F \to E \xrightarrow{\pi} M$. If we can take U = M we say that E is a **trivial bundle**. Now suppose that $(U, \varphi), (V, \psi)$ are local trivialisations with $U \cap V \neq \emptyset$. Then we have two ways to view $\pi^{-1}(U \cap V)$ as a product.

$$(U \cap V) \times F \longleftrightarrow_{\psi} \pi^{-1}(U \cap V) \xrightarrow{\varphi} (U \cap V) \times F$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$U \cap V$$

and hence

$$\psi \circ \varphi^{-1} : (U \cap V) \times F \to (U \cap V) \times F$$
$$(a, p) \mapsto (a, \Phi(a, p))$$

where $\Phi(a,\cdot): F \to F$ is a diffeomorphism, and hence it defines a **transition function** $g: U \cap V \to Diff(F)$.

Definition 2.2. Let $F \to E \xrightarrow{\pi} M$. A collection $\{(U_{\alpha}, \varphi_{\alpha})\}$ of local trivialisations where $M = \bigcup_{\alpha} U_{\alpha}$ is called a **trivialising atlas** for $E \xrightarrow{\pi} M$.

Let us introduce the notation $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$, etc. and $g_{\alpha\beta}$ the transition function defined by $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$.

Fact 2.3. The transition functions satisfy the cocycle conditions

- $\forall a \in U_{\alpha}, g_{\alpha\alpha}(a) = \mathrm{id}_F$
- $\forall a \in U_{\alpha\beta}, g_{\alpha\beta}(a)g_{\beta\alpha}(a) = \mathrm{id}_F$
- $\forall a \in U_{\alpha\beta\gamma}, g_{\alpha\beta}(a)g_{\beta\gamma}(a) = g_{\alpha\gamma}(a).$

Definition 2.4. Let $E \xrightarrow{\pi} M$, $E' \xrightarrow{\pi'} N$ be fibre bundles. A bundle map is a pair (Φ, ϕ) of smooth maps $\Phi: E \to E'$, $\phi: M \to N$ such that the following commutes

$$E \xrightarrow{\Phi} E'$$

$$\downarrow^{\pi'}$$

$$M \xrightarrow{\phi} N$$

Since π is surjective, ϕ is uniquely determined by Φ , which is said to **cover** ϕ . Notice that Φ is **fibre preserving**.

Definition 2.5. Let $f: M \to N$ be smooth and $E \stackrel{\pi_E}{\to} N$ a fibre bundle. Then we can define the **pullback** bundle $f^*E \to M$ as the categorical pullback, i.e.

$$f^*E \equiv \{(a, e) \in M \times E \mid \pi_E(e) = f(a)\}\$$

Restricting the canonical projections from $M \times E$ we get maps $\pi: f^*E \to M$, $\Phi: f^*E \to E$ making the following commute

$$f^*E \xrightarrow{\Phi} E$$

$$\downarrow^{\pi_E}$$

$$M \xrightarrow{f} N$$

Taking $a \in M$, and (V, ψ) a local trivialisation for $E \to N$ with $f(a) \in V$, then $(f^{-1}(V), \varphi)$ with $\varphi : \pi^{-1}(f^{-1}(V)) \to f^{-1}(V) \times F$ defined by $\varphi(b, e) = (b, pr_2(\psi(e)))$ is a local trivialisation for $f^*E \to M$. This shows that $f^*E \to M$ is a fibre bundle, and it has fibres $(f^*E)_a = E_{f(a)}$.

Definition 2.6. A section of a fibre bundle $F \to E \xrightarrow{\pi} M$ is a smooth map $s: M \to E$ such that $\pi \circ s = \mathrm{id}_M$.

Sections may not exist, but if the fibre bundle is trivial, then any smooth map $\sigma: M \to F$ defines a sections by $s(a) = (a, \sigma(a))$. Since fibres are locally trivial, they admit local sections $s_{\alpha}: U_{\alpha} \to \pi^{-1}(U_{\alpha})$ via local smooth maps $\sigma_{\alpha}: U_{\alpha} \to F$. A section $s: N \to E$ can be pulled back via $f: M \to N$ to give a section $f^*s: M \to f^*E$ via $(f^*s)(a) = (a, s(f(a)))$.

Definition 2.7. Consider $F \to E \xrightarrow{\pi} M$. Then the fibres $E_a = \pi^{-1}(a) \subset E$ are submanifolds of E. The tangent space at $e \in E_a$ is $\vartheta_e = \ker((\pi_*)_e : T_eE \to T_eM)$ and is called the **vertical subspace** of T_eE

In the absence of any additional structure, there is no preferred complementary subspace of T_eE .

Definition 2.8. A connection on $E \to M$ is a smooth choice of complementary subspace $\mathscr{H}_e \subset T_eE$ i.e. $T_eE = \vartheta_e \oplus \mathscr{H}_e$. That is, a connection is a distribution $\mathscr{H} \subset TE$

Note $(\pi_*)_e|_{\mathscr{H}_e}: \mathscr{H}_e \stackrel{\cong}{\to} T_{\pi(e)}M$, so \mathscr{H} gives a choice of how to lift tangent vectors, and so curves, from M to E.

Given a distribution one can ask whether it is integrable (in the sense of Frobenius), i.e. is E foliated by submanifolds whose tangent spaces are \mathscr{H} . We shall see that the obstruction to the integrability of \mathscr{H} can be interpreted as the 'curvature' of the connection.

3 Principal fibre bundles

We now specialise to principal fibre bundles, so called because the typical fibre is a principally homogeneous space for a lie group.

Definition 3.1. A Lie group consists of a manifold G which is also a group such that group multiplication $G \times G \to G$, $(g, h) \mapsto gh$, and group inversion $G \to G$, $g \mapsto g^{-1}$, are smooth maps

For $g \in G$ a Lie group, we define diffeomorphisms $L_g : G \to G$, $L_g(h) = gh$, and $R_g : G \to G$, $R_g(h) = hg$, call **left** & **right** multiplication.

Definition 3.2. Recall that given a diffeomorphism $F: M \to N$ we define the **pushforward** $F_*: \mathfrak{X}(M) \to \mathfrak{X}(N)$ by, for $\xi \in \mathfrak{X}(M)$, $f \in C^{\infty}(N)$, $(F_*\xi)(f) = \xi(f \circ F)$.

Remark. Note that given any smooth map of manifolds $F: M \to N$, the derivative $dF: TM \to TN$ gives a map $\forall a \in M$, $dF_a: T_aM \to T_{F(a)}N$ which for $\xi \in T_aM$, $f \in C^{\infty}(N)$ acts as $(dF_a(\xi))(f) = \xi(f \circ F)$. This is often written as F_* , but the two concepts are subtly different.

Definition 3.3. A vector field $\xi \in \mathfrak{X}(G)$ is **left invariant** if $\forall g \in G$, $(L_g)_*\xi = \xi$. Similarly we define right invariant.

Lemma 3.4. If ξ is a LIVF, $\xi_q = (L_q)_* \xi_e$, where $e \in G$ is the identity.

Proof. Let $f \in C^{\infty}(G)$. Then

$$(L_a)_*\xi = \xi \Rightarrow \xi(f \circ L_a) = \xi(f)$$

Now evaluating at $g \in G$, $\xi_g \in T_gG$ so $\xi_g(f \circ L_g) = ((L_g)_*\xi_e)(f)$. Result follows.

It can be shown that the lie bracket of two left invariant vector fields is also left invariant.

Definition 3.5. The vector space of left invariant vector fields is the **Lie algebra** \mathfrak{g} of G.

Since a LIVF is uniquely determined by its value at the identity, we have that $\mathfrak{g} \cong T_eG$ as a vector space, but we can also transport the Lie bracket from \mathfrak{g} to T_eG so they are isomorphic as algebras.

Definition 3.6. The maps $(L_{g^{-1}})_*: T_gG \to T_eG \cong \mathfrak{g}$ define a \mathfrak{g} -valued one form θ called the **left** invariant Maurer-Cartan one-form. If ξ is a LIVF, $\theta(\xi) = \xi_e$.

By definition, θ is left invariant.

Theorem 3.7. The MC one form satisfies the structure equation

$$d\theta = -\frac{1}{2} \left[\theta, \theta \right]$$

i.e. for $\xi, \eta \in \mathfrak{X}(G)$, $d\theta(\xi, \eta) = -[\theta(\xi), \theta(\eta)]$

Proof. We will need the following result:

Claim: For $\theta \in \Omega^1(M)$, $X, Y \in \mathfrak{X}(M)$

$$d\theta(X,Y) = X(\theta(Y)) - Y(\theta(X)) - \theta([X,Y])$$

To show this take coordinates such that $\theta = \theta_a dx^a$, $X = X^a \partial_a$, $Y = Y^a \partial_a$. Then

$$d\theta(X,Y) = (\partial_b \theta_a X^c Y^d) (dx^b \wedge dx^a) (\partial_c, \partial_d)$$

$$= \partial_b \theta_a (X^b Y^a - X^a Y^b)$$

$$= X^b \partial_b (\theta_a Y^a) - Y^b \partial_b (\theta_a X^a) - \theta_a (X^b \partial_b Y^a - Y^b \partial_b X^a)$$

$$= X(\theta(Y)) - Y(\theta(X)) - \theta([X,Y])$$

Now if X, Y are LIVFs, $\theta(X), \theta(Y)$ are constant, so on these

$$d\theta(X,Y) + \theta([X,Y]) = 0$$

Moreover for LIVFs $\theta([X,Y]) = [\theta(X), \theta(Y)]$. Now LIVFs span the space of vector fields, and all the operations are linear, so we are done.

Proposition 3.8. If G is a matrix Lie group, $\theta_q = g^{-1}dg$.

Proof. In a matrix group, we have the correspondence $X \in \mathfrak{g} \Leftrightarrow \exp(tX) \in G$. Take a basis $\{T_a\}$ of T_eG and give $g \in G$ coordinates x^a if $g = \exp(\sum_a x^a T_a)$. Then let g be constant and take a curve through g, $\gamma : \mathbb{R} \to G$, $\gamma(t) = \exp[\sum_a (x^a + t\xi^a)T_a]$ with tangent vector $g(\sum_a \xi^a T_a) \in T_gG$. Under $L_{g^{-1}}$, this is a curve through e with tangent vector $(\sum_a \xi^a T_a) \in T_eG$. Hence if we write $\xi = \sum_a \xi^a \frac{\partial}{\partial x^a}$ for the the vector generating γ we get

$$\theta_g = \sum_a T_a dx^a = g^{-1} dg$$

Every $g \in G$ defines a diffeomorphism $L_g R_{g^{-1}} : G \to G$, $h \mapsto ghg^{-1}$. Since $e = geg^{-1}$ its derivative belongs to $GL(T_eG) = GL(\mathfrak{g})$.

Definition 3.9. The adjoint representation of G on g is given by $Ad_g = (L_g)_*(R_g^{-1})_*$

Lemma 3.10. $R_q^* \theta = \text{Ad}_{g^{-1}} \theta$

Proof.

$$\begin{split} R_g^* \theta_{hg} &= \theta_{hg}(R_g)_* \\ &= (L_{(hg)^{-1}})_* (R_g)_* \\ &= (L_{g^{-1}})_* (L_{h^{-1}})_* (R_g)_* \\ &= (L_{g^{-1}})_* (R_g)_* (L_{h^{-1}})_* \\ &= \operatorname{Ad}_{g^{-1}} \theta_h \end{split}$$

Definition 3.11. The **left action** of a Lie group G on a manifold M is a smooth map $G \times M \to M$, $(g,a) \mapsto ga$ satisfying the axioms $\forall g,h \in G, \forall a \in M$

- g(ha) = (gh)a
- ea = a

Right action is defined equivalently.

Left and right actions are equivalent if we take $ga = ag^{-1}$.

Definition 3.12. An action is **transitive** if the G-orbit of any point is M, equivalently $\forall a, binM, \exists g \in G, b = ga$

Definition 3.13. An action is **free** if the only element which fixes any point is the identity.

Definition 3.14. A G-torsor (or principally homogeneous G-space) is a manifold M on which G acts freely and transitively

Given a G-torsor M, any point in M defines a diffeomorphism $g \cong M$, and as such G-torsors are said to be like a Lie group where we have 'forgotten' the identity.

Definition 3.15. A principal G-bundle is a fibre bundle $P \xrightarrow{\pi} M$ together with a smooth rights G-action $(p,g) \mapsto r_q(p)$ which preserves fibres $(\pi \circ r_q = \pi)$ and acts freely and transitively.

It follows that fibres are G-orbits and hence $M = {P}/{G}$. The condition of local triviality now says that the local trivialisation $\pi^{-1}(U) \stackrel{\varphi}{\to} U \times G$ are G-equivariant, i.e. where $\varphi(p) = (\pi(p), \gamma(p)), \ \gamma : \pi^{-1}(U) \to G$ a G-equivariant $(\gamma \circ r_g = R_g \circ \gamma)$ fibrewise diffeomorphism

Definition 3.16. A principal G-bundle is **trivial** is \exists a G-equivariant diffeomorphism $P \stackrel{\psi}{\to} M \times G$.

Proposition 3.17. A principal G-bundle $P \stackrel{\pi}{\to} M$ admits a section iff it is trivial

Proof. If $P \xrightarrow{\pi} M$ is trivial, $\psi : P \to M \times G$ defines a section $s : M \to P$ by $s(a) = \psi^{-1}(a, e)$. Conversely, is s is a section, define ψ by $\psi(p) = (\pi(p), \chi(p))$ where $\chi(p)$ is uniquely defined by $p = s(\pi(p))\chi(p)$. Notice that since $pg = s(\pi(p))\chi(p)g = s(\pi(pg))\chi(p)g$ so $\chi(pg) = \chi(p)g$.

Example 3.18. Let G be a Lie group and $H \leq G$ a closed subgroup. Then $G \stackrel{\pi}{\to} {}^G/_H$ is a principal H-bundle. Therefore homogeneous spaces are examples of principal bundles.

Since principal fibre bundles are locally trivial, they admit local sections. Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be a trivialising atlas for $G \to P \xrightarrow{\pi} M$. The canonical local sections $s_{\alpha} : U_{\alpha} \to \pi^{-1}(U_{\alpha})$ are given by $s_{\alpha}(a) = \varphi_{\alpha}^{-1}(a, e)$. On $U_{\alpha\beta}$ we have sections s_{α} , s_{β} . Writing $\varphi_{\alpha}(p) = (\pi(p), g_{\alpha}(p))$ for $g_{\alpha} : U_{\alpha} \to G$ equivariant we have that for $p \in \pi^{-1}(U_{\alpha\beta})$.

$$(\pi(p), g_{\alpha}(p)) = \varphi_{\alpha}(p) = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1} \circ \varphi_{\beta})(p) = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(\pi(p), g_{\beta}(p))$$

$$\Rightarrow (\pi(p), \underbrace{g_{\alpha}(p)g_{\beta}^{-1}(p)}_{\equiv \hat{q}_{\alpha\beta}(p)} g_{\beta}(p)) = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(\pi(p), g_{\beta}(p))$$

Note that $\hat{g}_{\alpha\beta}(pg) = g_{\alpha}(pg)g_{\beta}^{-1}(pg) = g_{\alpha}(p)gg^{-1}g_{\beta}(p) = \hat{g}_{\alpha\beta}(p)$ and so is constant along the fibres. Hence $\exists g_{\alpha\beta}: U_{\alpha\beta} \to G \text{ s.t. } \hat{g}_{\alpha\beta} = \pi^*g_{\alpha\beta}$ and $(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(a,g) = (a,g_{\alpha\beta}(a)g)$. It follows that the $g_{\alpha\beta}$ obey the cocycle

conditions.

Now note $g_{\alpha} \circ s_{\alpha} : U_{\alpha} \to G$ is a constant map taking value e, and so letting $p = s_{\beta}(a)$

$$\begin{split} g_{\alpha}(p) &= \hat{g}_{\alpha\beta}(p)g_{\beta}(p) \Rightarrow g_{\alpha}(s_{\beta}(a)) = g_{\alpha\beta}(a)(g_{\beta} \circ s_{\beta})(a) \\ &= (g_{\alpha} \circ s_{\alpha})(a)g_{\alpha\beta}(a) \\ &= g_{\alpha}(s_{\alpha}(a)g_{\alpha\beta}(a)) \\ &\Rightarrow s_{\beta}(a) = s_{\alpha}(a)g_{\alpha\beta}(a) \quad \text{as } g_{\alpha} \text{ a diffeomorphism} \end{split}$$

4 Ehresmann Connections

Let $P \stackrel{\pi}{\to} M$ be a principal G-bundle. Taking $p \in P$, the derivative $(\pi_*)_p : T_p P \to T_{\pi(p)} M$ is a surjective map.

Definition 4.1. The kernel V_p is called the **vertical subspace**. A vector field $\xi \in \mathfrak{X}(P)$ is called **vertical** if $\forall p \in P, \, \xi_p \in V_p$.

Lemma 4.2. The Lie bracket of two vertical vector fields is vertical

Lemma 4.3. The vertical subspaces span a G-invariant integrable distribution

Proof. Note $\pi \circ r_g = \pi \Rightarrow \pi_*(r_g)_* = \pi_* \Rightarrow (r_h)_* V_p = V_{pg}$ so G-invariant. Integrable by the previous lemma.

Definition 4.4. An **Ehresmann connection** on P is a smooth choice of horizontal subspaces $H_p \subset T_pP$ s.t. $T_pP = V_p \oplus H_p$ and $(r_g)_*H_p = H_{pg}$. Equivalently an Ehresmann connection is a G-invariant distribution $H \subset TP$ complementary to V.

Example 4.5. A G-invariant Riemannian metric on P defines an Ehresmann connection by $H_p = V_p^{\perp}$.

The G action on P defines a smooth map $\mathfrak{g} \to \mathfrak{X}(P)$ assigning to every $X \in \mathfrak{g}$ the fundamental vector field ξ_X defined at $p \in P$ by

$$(\xi_X)_p = \frac{d}{dt} \left(p e^{tX} \right) \Big|_{t=0}$$

Lemma 4.6. ξ_X is vertical

Proof.

$$\left.\pi_{*} \left.\xi_{X}\right|_{p} = \left.\frac{d}{dt}\pi\left(pe^{tX}\right)\right|_{t=0} = \left.\frac{d}{dt}\pi\left(p\right)\right|_{t=0} = 0$$

As the G action is free, $\forall p \in P$ the map $X \mapsto (\xi_X)_p$ is an isomorphism $\mathfrak{g} \stackrel{\cong}{\to} V_p$.

Lemma 4.7. $(r_g)_*\xi_X = \xi_{\mathrm{Ad}_{g^{-1}}(X)}$

Proof.

$$(r_g)_*(\xi_X)_p = \left. \frac{d}{dt} r_g \left(p e^{tX} \right) \right|_{t=0} = \left. \frac{d}{dt} \left(p e^{tX} g \right) \right|_{t=0} = \left. \frac{d}{dt} \left(p g g^{-1} e^{tX} g \right) \right|_{t=0} = \left(\xi_{\mathrm{Ad}_{g^{-1}}(X)} \right)_{pg}$$

Definition 4.8. The connection one form of a connection $H \subset TP$ is the \mathfrak{g} -valued one form $\omega \in \Omega^1(P;\mathfrak{g})$ defined by

$$\omega(\xi) = \begin{cases} X & \xi = \xi_X \\ 0 & \xi \in H \end{cases}$$

Proposition 4.9. The connection one form obeys $r_q^*\omega = \operatorname{Ad}_{q^{-1}} \circ \omega$

Proof. Let ξ be horizontal. Then $(r_g)_*\xi$ is also horizontal as H G-invariant. Then $(r_g^*\omega)(\xi) = \omega((r_g)_*\xi) = 0$. Note in this case $(\mathrm{Ad}_{g^{-1}} \circ \omega)(\xi) = 0$ too. Now if $\xi = \xi_X$, $(\mathrm{Ad}_{g^{-1}} \circ \omega)(\xi) = \mathrm{Ad}_{g^{-1}}(X) = \omega(\xi_{\mathrm{Ad}_{g^{-1}}(X)}) = \omega((r_g)_*\xi_X) = (r_g^*\omega)(\xi)$

It turn out we also have a converse:

Proposition 4.10. If $\omega \in \Omega^1(P;\mathfrak{g})$ satisfies $r_g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$ and $\omega(\xi_X) = X$, then $H \equiv \ker \omega$ is a connection on P.

Now define the pullback of ω along local sections to be $A_{\alpha} \equiv s_{\alpha}^* \omega \in \Omega^1(U_{\alpha}; \mathfrak{g})$.

Proposition 4.11. Let $\omega_{\alpha} \equiv \operatorname{Ad}_{g_{\alpha}^{-1}} \circ \pi^* A_{\alpha} + g_{\alpha}^* \theta$ where θ is the LI Maurer-Cartan one form on G. Then $\omega_{\alpha} = \omega|_{\pi^{-1}U_{\alpha}}$

Proof. The proof will have two steps:

Claim: ω and ω_{α} agree on the image of s_{α}

Since $\pi \circ s_{\alpha} = \operatorname{id}|_{U_{\alpha}}$, $T_{p}P = \operatorname{Im}(s_{\alpha} \circ \pi)_{*} \oplus V_{p}$ for $p = s_{\alpha}(a)$. Hence $\forall \xi \in T_{p}P, \exists ! \xi^{v} \in V_{p}$ s.t. $\xi = (s_{\alpha})_{*}\pi_{*}\xi + \xi^{v}$. Then using $g_{\alpha}(p) = (g_{\alpha} \circ s_{\alpha})(a) = e$

$$\omega_{\alpha}(\xi) = (\pi^* s_{\alpha}^* \omega)(\xi) + (g_{\alpha}^* \theta_e)(\xi) \text{ (at } p, \text{ Ad}_{g_{\alpha}^{-1}} = \text{id})$$

$$= \omega((s_{\alpha})_* \pi_* \xi) + \theta_e((g_{\alpha})_* \xi)$$

$$= \omega((s_{\alpha})_* \pi_* \xi) + \theta_e((g_{\alpha})_* \xi^v) \text{ as } (g_{\alpha})_* (s_{\alpha})_* = (g_{\alpha} \circ s_{\alpha})_* = 0$$

$$= \omega((s_{\alpha})_* \pi_* \xi) + \omega(\xi^v)$$

$$= \omega(\xi)$$

Claim: ω and ω_{α} transform in the same way under the right G action.

$$\begin{split} r_g^*(\omega_{\alpha})_{pg} &= \mathrm{Ad}_{g_{\alpha}(pg)^{-1}} \circ r_g^* \pi^* s_{\alpha}^* \omega + r_g^* g_{\alpha}^* \theta \\ &= \mathrm{Ad}_{(g_{\alpha}(p)g)^{-1}} \circ r_g^* \pi^* s_{\alpha}^* \omega + g_{\alpha}^* R_g^* \theta \\ &= \mathrm{Ad}_{g^{-1}g_{\alpha}(p)^{-1}} \circ \pi^* s_{\alpha}^* \omega + g_{\alpha}^* (\mathrm{Ad}_{g^{-1}} \circ \theta) \\ &= \mathrm{Ad}_{g^{-1}} \left(\mathrm{Ad}_{g_{\alpha}(p)^{-1}} \circ \pi^* s_{\alpha}^* \omega + g_{\alpha}^* \theta \right) \\ &= \mathrm{Ad}_{g^{-1}} \circ (\omega_{\alpha})_p \end{split}$$

Hence we are done.

Now as ω is a global one form, ω_{α} and ω_{β} must agree on $U_{\alpha\beta}$, allowing us to relate A_{α} and A_{β} , namely on $U_{\alpha\beta}$

$$A_{\alpha} = s_{\alpha}^* \omega_{\alpha} = s_{\alpha}^* \omega_{\beta} = s_{\alpha}^* \left(\operatorname{Ad}_{g_{\beta}(s_{\alpha})^{-1}} \circ \pi^* A_{\beta} + g_{\beta}^* \theta \right)$$
$$= \operatorname{Ad}_{g_{\alpha\beta}} \circ A_{\beta} + g_{\beta\alpha}^* \theta$$

Example 4.12. For matrix Lie groups, $g_{\beta\alpha}^*\theta = g_{\beta\alpha^{-1}}dg_{\alpha\beta} = -dg_{\alpha\beta}g_{\alpha\beta}^{-1}$, so

$$A_{\alpha} = g_{\alpha\beta} A_{\beta} g_{\alpha\beta}^{-1} - dg_{\alpha\beta} g_{\alpha\beta}^{-1}$$

Similarly, one can ask how $\{A_{\alpha}\}$ depends on the choice of local section.

Fact 4.13. If s'_{α} is another local section for U_{α} , $\exists h_{\alpha}: U_{\alpha} \to G$ s.t. $s'_{\alpha}(a) = s_{\alpha}(a)h_{\alpha}(a)$ and then

$$A'_{\alpha} = \operatorname{Ad}_{h_{\alpha}^{-1}} \circ A_{\alpha} + h_{\alpha}^{*} \theta$$

Idea. We now have three different ways to understand connections on a principal G-bundle $P \stackrel{\pi}{\to} M$, namely;

- 1. a G-invariant horizontal distribution $H \subset TP$
- 2. a one form $\omega \in \Omega^1(P;\mathfrak{g})$ satisfying $\omega(\xi_X) = X$ and $r_g^*\omega = \mathrm{Ad}_{g^{-1}} \circ \omega$
- 3. a family of one forms $\{A_{\alpha} \in \Omega^1(U_{\alpha}; \mathfrak{g})\}$ satisfying $A_{\alpha} = \operatorname{Ad}_{g_{\alpha\beta}} \circ A_{\beta} + g_{\beta\alpha}^* \theta$ on $U_{\alpha\beta} \neq \emptyset$

If $P \stackrel{\pi}{\to} M$ is a principal G-bundle, G-equivariant bundle diffeomorphisms are called **gauge transformations** and one can ask how an Ehresmann connection transforms. Let $H \subset TP$ be a G-invariant horizontal distribution. Then let $H^{\Phi} \equiv \Phi_* H$ be the gauge-transformed distribution.

Lemma 4.14. $H^{\Phi} \subset TP$ is an Ehresmann connection

Proof.

$$(r_g)_* H_{\Phi(p)}^\Phi = (r_g)_* \Phi_* H_p = \Phi_* (r_g)_* H_p = \Phi_* H_{pg} = H_{(\Phi(pg)}^\Phi = H_{\Phi(p)g}^\Phi$$

and H^{Φ} is complementary to V because $\Phi_*T_pP\stackrel{\cong}{\to} T_{\Phi(p)}P$ and Φ_* preserves $V=\ker\pi_*$ because $\pi\circ\Phi=\pi$

Exercise 4.15. Let Φ be a gauge transformation in a principal G-bundle $P \stackrel{\pi}{\to} M$. Let ξ_X denote a fundamental vector fields for the G-action on P. Show that ξ_X is gauge invariant, i.e. $\Phi_*\xi_X = \xi_X$. Further, show that if ω is the connection one form for an Ehresmann connection H then $(\Phi^{-1})^*\omega$ is the connection one form for H^{Φ} .

Let $\{A_{\alpha}\}$, $\{A_{\alpha}^{\Phi}\}$ be the gauge fields corresponding to the Ehresmann connections H, H^{Φ} . Since Φ preserves fibres it makes sense to restrict to $\pi^{-1}U_{\alpha}$. Applying the trivialisation $\varphi_{\alpha}(\Phi(p)) = (\pi(p), g_{\alpha}(\Phi(p)))$ which defines $\overline{\phi}_{\alpha} : \pi^{-1}U_{\alpha} \to G$ by $\overline{\phi}_{\alpha}(p) = g_{\alpha}(\Phi(p))g_{\alpha}(p)^{-1}$.

Lemma 4.16. $\overline{\phi}_{\alpha}$ is constant on the fibres

Proof.

$$\overline{\phi}_{\alpha}(pg) = g_{\alpha}(\Phi(pg))g_{\alpha}(pg)^{-1}$$

$$= g_{\alpha}(\Phi(p)g)g_{\alpha}(pg)^{-1}$$

$$= g_{\alpha}(\Phi(p))g(g_{\alpha}(p)g)^{-1}$$

$$= g_{\alpha}(\Phi(p))g_{\alpha}(p)^{-1}$$

$$= \overline{\phi}_{\alpha}(p)$$

Hence $\overline{\phi}_{\alpha}$ defines a smooth map $\phi_{\alpha}: U_{\alpha} \to G$. On overlaps $U_{\alpha\beta} \neq \phi$ we have that $\forall a \in U_{\alpha\beta}, p \in \pi^{-1}(a)$, hence

$$\phi_{\alpha}(a) = g_{\alpha}(\Phi(p))g_{\alpha}(p)^{-1}$$

$$= g_{\alpha}(\Phi(p)) \cdot \underbrace{g_{\beta}(\Phi(p))^{-1}g_{\beta}(\Phi(p))}_{e} \underbrace{g_{\beta}(p)^{-1}g_{\beta}(p)}_{e} g_{\alpha}(p)^{-1}$$

$$= g_{\alpha\beta}(a)\phi_{\beta}(a)g_{\alpha\beta}(a)^{-1} \text{ since } \pi(p) = \pi(\Phi(p)) = a$$

Remark. We will see later that $\{\phi_{\alpha}\}$ defines a section of a fibre bundle Ad P on M associated to the principal bundle P.

Exercise 4.17. Show that on U_{α} , $A_{\alpha}^{\Phi} = \operatorname{Ad}_{\phi_{\alpha}} \circ (A_{\alpha} - \phi_{\alpha}^{*}\theta) = \phi_{\alpha}A_{\alpha}\phi_{\alpha}^{-1} - d\phi_{\alpha}\phi_{\alpha}^{-1}$, which is a gauge transform

5 Kozul Connections

Definition 5.1. A real, rank k, vector bundle $E \xrightarrow{\pi} M$ is a fibre bundle whose fibres are k-dimensional real vector spaces and whose local trivialisations $\psi : \pi^{-1}U \to U \times \mathbb{R}^k$ restrict fibrewise to isomorphisms $\psi : E_a \to \{a\} \times \mathbb{R}^k$ of real vector spaces.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle and let $\rho: G \to GL(V)$ be a Lie group homomorphism (i.e. a representation of G), where V is a f.d. vector space. Since G acts freely on P, it also acts freely on $P \times V$ via the right action

$$(p, v)g = (pg, \rho(g^{-1})v)$$

We let $E \equiv P \times_G V$ denote the quotient $(P \times V)/G$ via the above action. It is the total space of a vector bundle $E \xrightarrow{\varpi} M$ where

$$\varpi: P \times_G V \to M$$

 $[(p,v)] \mapsto \pi(p)$

Definition 5.2. $E \stackrel{\overline{\sim}}{\to} M$ is called an **associated vector bundle** to the PFB $P \to M$, associated via the representation ρ .

Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be a trivialising atlas for P with transition function $\{g_{\alpha\beta}: U_{\alpha\beta} \to G\}$ obeying the cocycle conditions. We may then trivialise $P \times_G V$ on each U_{α} , and the transition functions are $\{\rho \circ g_{\alpha\beta}: U_{\alpha\beta} \to GL(V)\}$. More concretely we define $P \times_G V \equiv \sqcup_{\alpha} U_{\alpha} \times V /_{\sim}$ where $(a, v) \sim (a, \rho(g_{\alpha\beta}(a))v)$

Let $P \xrightarrow{\pi} M$ be a G-PFB and $E \equiv P \times_G V \xrightarrow{\varpi} M$ an associated VB with $\rho: G \to GL(V)$. Let $\Gamma(E) = \{s: M \to E \mid \varpi \circ s = \mathrm{id}_M\}$ denote the $C^\infty(M)$ -module of sections of E, and $C^\infty_G(P,V) = \{\zeta: P \to V \mid \forall g \in G, r_g^*\zeta = \rho(g)^{-1} \in G$. The G-equivariant functions $P \to V$. We can give $C^\infty_G(P,V)$ the structure of a $C^\infty(M)$ -module by declaring that for $f \in C^\infty(M)$, $f \subseteq \pi^* f \subseteq G$.

Proposition 5.3. There is a $C^{\infty}(M)$ -module isomorphism

$$\Gamma(E) \cong C_G^{\infty}(P, V)$$

Proof. Let $\sigma \in \Gamma(E)$. Let $\psi_{\alpha} : \varpi^{-1}U_{\alpha} \to U_{\alpha} \times V$ be a local trivialisation and define $\sigma_{\alpha} : U_{\alpha} \to V$, $(\psi_{\alpha} \circ \sigma)(a) = (a, \sigma_{\alpha}(a))$. On overlaps the local functions $\sigma_{\alpha}, \sigma_{\beta}$, are related by $\sigma_{\alpha}(a) = \rho(g_{\alpha\beta}(a))\sigma_{\beta}(a)$, where $g_{\alpha\beta}$ are the transition functions of $P \to M$. We now define $\zeta_{\alpha} : \pi^{-1}U_{\alpha} \to V$ by $\zeta_{\alpha}((\pi^*s_{\alpha})(p)) = \sigma_{\alpha}(\pi(p))$ and extend by $\zeta_{\alpha}((\pi^*s_{\alpha})(p)g) = \rho(g)^{-1}\sigma_{\alpha}(\pi(p))$.

Let $\pi(p) = a \in U_{\alpha\beta}$. Then

$$\zeta_{\beta}(p) = \zeta(s_{\alpha}(a)g_{\alpha}(p)) = \zeta(s_{\beta}(a)g_{\beta\alpha}(a)g_{\alpha}(p))
= \rho(g_{\beta\alpha}(a)g_{\alpha}(p))^{-1} \circ \sigma_{\beta}(a)
= \rho(g_{\alpha}(p))^{-1} \circ \rho(g_{\alpha\beta}(a)) \circ \sigma_{\beta}(a)
= \rho(g_{\alpha}(p))^{-1} \circ \sigma_{\alpha}(a)
= \rho(g_{\alpha}(p))^{-1} \zeta_{\alpha}(s_{\alpha}(a))
= \zeta_{\alpha}(s_{\alpha}(a)g_{\alpha}(p)) = \zeta_{\alpha}(p)$$

The $\{\zeta_{\alpha}\}$ are constructed to define a function $\zeta: P \to V$ such that $r_g^*\zeta = \rho(g)^{-1} \circ \zeta$. If $f \in C^{\infty}(M)$, then $f\sigma \in \Gamma(E)$ and $(f\sigma)_{\alpha} = f\sigma_{\alpha}$ since ψ_{α} is fibrewise linear. Then by definition

$$\rho(g_{\alpha}(p))^{-1} \circ \pi^*(f\sigma_{\alpha}) = \rho(g_{\alpha}(p))^{-1} \circ (\pi^*f)(\pi^*\sigma_{\alpha})$$
$$= (\pi^*f)\rho(g_{\alpha}(p))^{-1} \circ (\pi^*\sigma_{\alpha})$$
$$= (\pi^*f)\zeta_{\alpha}(p)$$

so the map $\Gamma(E) \to C_G^{\infty}(P, V)$, thus defined, is $C^{\infty}(M)$ -linear.

Conversely, given a G-equivariant $\zeta: P \to V$, we define $\sigma \in \Gamma(E)$ as follows: let $s_{\alpha}: U_{\alpha} \to P$ be the canonical local sections. Then let $\sigma_{\alpha} = s_{\alpha}^* \zeta$. For $a \in U_{\alpha\beta}$,

$$\sigma_{\beta}(a) = \zeta(s_{\beta}(a)) = \zeta(s_{\alpha}(a)g_{\alpha\beta}(a)) = \rho(g_{\alpha\beta}(a))^{-1}\zeta(s_{\alpha}(a)) = \rho(g_{\beta\alpha}(a))\sigma_{\alpha}(a)$$

Example 5.4. Let ω, ω' be connection one forms for Ehresmann connections $\mathcal{H}, \mathcal{H}'$ on $P \to M$. Then $r_g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$ and similarly for ω' . Now if ξ is vertical, $\omega(\xi) = \omega'(\xi)$, and hence $\tau \equiv \omega - \omega' \in \Omega^1(P; \mathfrak{g})$ is **horizontal** (i.e. $\tau(\xi) = 0$ if ξ vertical).

Now let $\tau_{\alpha} = s_{\alpha}^* \tau \in \Omega^1(U_{\alpha}; \mathfrak{g})$. Then $\tau_{\alpha} = s_{\alpha}^* \omega - s_{\alpha}^* \omega' = A_{\alpha} - A_{\alpha}'$. On $U_{\alpha\beta}$, $A_{\alpha} = \operatorname{Ad}_{g_{\alpha\beta}} \circ A_{\beta} + g_{\beta\alpha}^* \theta$, and likewise for A_{α}' , $\Rightarrow \tau_{\alpha} = \operatorname{Ad}_{g_{\alpha\beta}} \circ \tau_{\beta}$. Hence $\{\tau_{\alpha}\}$ defines $\tau \in \Omega^1(M; \operatorname{ad} P)$ where $\operatorname{ad} P \equiv P \times_G \mathfrak{g}$.

Example 5.5. Take $H \leq G$ closed and M = G/H. Then $G \xrightarrow{\pi} M$ is a principal H-bundle. Let $\rho : H \to GL(V)$ be a representation. Then $E \equiv G \times_H V \to M$ is a **homogeneous vector bundle**. Then $\Gamma(E) \cong \{f : G \to V \mid f(ph) = \rho(h)^{-1}f(p)\}$ as $C^{\infty}(M)$ -modules. On $\Gamma(E)$ we have a rep of G given by $(g \cdot f)(g_1) = f(g^{-1}g_1)$.

There is a sort of converse to the associated VB construction. If $E \xrightarrow{\pi} M$ is a real rank k vector bundle, we may associate with it a principal $GL(k,\mathbb{R})$ -bundle in one of two ways as follows:

1. Let $\{(U_{\alpha}, \psi_{\alpha})\}$ be a trivialising atlas for E, with $\psi_{\alpha} : \pi^{-1}U_{\alpha} \to U_{\alpha} \times \mathbb{R}^{k}$ and transition functions $g_{\alpha\beta} : U_{\alpha\beta} \to GL(k, \mathbb{R})$. We can then glue $U_{\alpha} \times GL(k, \mathbb{R})$ and $U_{\beta} \times GL(k, \mathbb{R})$ along $U_{\alpha\beta}$ by

$$(a, A) \sim (a, g_{\alpha\beta}(a)A)$$

which is equivariant under right multiplication by $GL(k,\mathbb{R})$. The resulting principal $GL(k,\mathbb{R})$ -bundle is denoted $GL(E) \stackrel{\varpi}{\to} M$ and it follows that $E \to M$ is the vector bundle associated to GL(E) view the identity rep

2. The PFB $GL(E) \stackrel{\varpi}{\to} M$ can understood as the **bundle of frames** of $E \stackrel{\pi}{\to} M$. Let $GL(E)_a = \{ \text{ordered bases for } E_a \}$. Let $u = (u_1, \ldots, u_n)$ be a frame for E_a . Then $\varpi(u) = a$ defines $\varpi : GL(E) \to M$. If $A \in GL(k, \mathbb{R})$, uA defined by $(uA)_i = \sum_j u_j A_{ji}$ is another frame for E_a . Given frames u, u' for E_a , $\exists ! A \in GL(k, \mathbb{R})$ s.t. u' = uA. Let (U, ψ) be a local trivialisation for E. We define a reference frame $\overline{u}(a)$ for each $a \in U$ by $\psi(\overline{u}_i(a)) = (a, e_i)$, where $\{e_i\}$ is the standard bases for \mathbb{R}^k . This defines a trivialisation $\Psi : \varpi^{-1}U \to U \times GL(k, \mathbb{R})$ by $\Psi(u) = (a, A(u))$ where u is a frame for E_a and $A(u) \in GL(k, \mathbb{R})$ is the unique element sending u to $\overline{u}(a)$. Now for $B \in GL(k, \mathbb{R})$, we have

$$\overline{u}(a)A(uB)=uB=(\overline{u}(a)A(u))B\Rightarrow A(uB)=A(u)B$$

Hence Ψ is $GL(k,\mathbb{R})$ -equivariant. Let $\{(U_{\alpha},\Psi_{\alpha})\}$ denote the reslting trivialising atlas. Then if $a \in U_{\alpha\beta}$ and u is a frame for E_a , then $\Psi_{\alpha}(u) = (a, A_{\alpha}(u))$ where $\overline{u}_{\alpha}(u)A_{\alpha}(u) = u$. Now note

$$\overline{u}_{\beta}(a)_{i} = \psi^{-1}(a, e_{i})
= \psi_{\alpha}^{-1} \circ \psi_{\alpha} \circ \psi_{\beta}^{-1}(a, e_{i})
= \psi_{\alpha}^{-1}(a, g_{\alpha\beta}(a)e_{i})
= \psi_{\alpha}^{-1}(a, \sum_{j} e_{j}(g_{\alpha\beta}(a))_{ji})
= \sum_{j} \psi_{\alpha}^{-1}(a, e_{j})g_{\alpha\beta}(a)_{ji}
= \sum_{j} \overline{u}_{\alpha}(a)_{j}g_{\alpha\beta}(a)_{ji}
\Rightarrow \overline{u}_{\beta}(a) = \overline{u}_{\alpha}(a)g_{\alpha\beta}(a)
\Rightarrow A_{\alpha}(u) = g_{\alpha\beta}(a)A_{\beta}(u)$$

Definition 5.6. Let $E \stackrel{\pi}{\to} M$ be a vector bundle. A **Kozul connection** on E is an \mathbb{R} -bilinear map

$$\nabla: \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$$
$$(X, s) \mapsto \nabla_X s$$

satisfying that, $\forall f \in C^{\infty}(M), X \in \mathfrak{X}(M), s \in \Gamma(E)$

- 1. $\nabla_{fX}s = f\nabla_X s$
- 2. $\nabla_X(fs) = X(f)s + f\nabla_X s$

Suppose that $E = P \times_G V$ for some G-PFB $P \xrightarrow{\pi} M$. Then an Ehresmann connection on P induces a Kozul connection on E. For this it is convenient to use the $C^{\infty}(M)$ -module isomorphism $\Gamma(E) \cong C_G^{\infty}(P, V)$ and we will define ∇ on $C_G^{\infty}(P, V)$:

Let $\mathscr{H} \subset TP$ be an Ehresmann connection. We define $h: T_pP \to T_pP$ to be the projector onto \mathscr{H} along $\ker(\pi_*)$. If we write $\xi \in T_pP$ as $\xi^h + \xi^v$ where $\xi^h \in \mathscr{H}_p$ and $\pi_*(\xi^v) = 0$, then $h(\xi) = \xi^h$. Let $h^*: T_p^*P \to T_p^*P$ be the dual (i.e $(h^*\alpha)(\xi) = \alpha(h(\xi))$). Let $X \in \mathfrak{X}(M)$. Then given $p \in P_a$ let $\xi \in T_pP$ be s.t. $\pi_*\xi = X(a)$. We define $\nabla_X \psi|_p = (d\psi)_p(h\xi)$, i.e. $d^{\nabla}\psi = h^*d\psi$. This is well defined because if $\pi_*\xi = \pi_*\xi'$, $h\xi = h\xi'$. Further, $\nabla_X \psi \in C^\infty_G(P, V)$ because the split $TP = \mathcal{V} \oplus \mathscr{H}$ is G-invariant, and hence $r_g^*h^* = h^*r_g^*$. Hence

$$\begin{split} r_g^* d^\nabla \psi &= r_g^* h^* d\psi \\ &= h^* r_g^* d\psi \\ &= h^* d(\rho(g)^{-1} \circ \psi) \\ &= \rho(g)^{-1} \circ h^* d\psi = \rho(g)^{-1} d^\nabla \psi \end{split}$$

Proposition 5.7. ∇ defines a Kozul connection on E

Proof.

$$\nabla_{fX}\psi = d\psi(h(f\xi))$$

$$= d\psi(h[(\pi^*f)\xi])$$

$$= \pi^*fd\psi(h\xi)$$

$$= f\nabla_X\psi$$

$$\nabla_X(f\psi) = \nabla_X[(\pi^*f)\psi]$$

$$= d[(\pi^*f)\psi](h\xi)$$

$$= (\pi^*df)(h\xi) + (\pi^*f)\nabla_X\psi$$

$$= \pi^*(df(\pi_*h\xi))\psi + f\nabla_X\psi$$

$$= \pi^*(df(\pi_*\xi))\psi + f\nabla_X\psi$$

$$= \pi^*(Xf)\psi + f\nabla_X\psi$$

$$= X(f)\psi + f\nabla_X\psi$$

We will now define a more calculationally useful formula for the Kozul connection of $P \times_G V$ induced by the Ehresmann connection on P. Let $\psi \in C_G^{\infty}(P, V)$ and let $\xi \in \mathfrak{X}(P)$. We decompose $\xi = h\xi + \xi^v$ where $\pi_* \xi^v = 0$. Then

$$d\psi(h\xi) = d\psi(\xi - \xi^v) = d\psi(\xi) - d\psi(xi^v)$$

The derivative $\xi^v \psi$ only depends on the value of ξ^v at a point, so we can take ξ^v to be the fundamental vector field $\xi_{\omega(\xi^v)} = \xi_{\omega(\xi)}$ corresponding to the G-action. Therefore

$$\xi^{v}\psi = \xi_{\omega(\xi)}\psi = \frac{d}{dt}\psi \circ r_{\exp(t\omega(\xi))}\Big|_{t=0}$$
$$= \frac{d}{dt}\rho(\exp(-t\omega(\xi))) \circ \psi\Big|_{t=0}$$
$$= -\rho(\omega(\xi)) \circ \psi$$

Therefore $d\psi(h\xi) = d\psi(\xi) + \rho(\omega(\xi)) \circ \psi$, or abstracting ξ ,

$$d^{\nabla}\psi = d\psi + \rho(\omega) \cdot \psi$$

Finally, we give a formula for $\nabla_X \sigma$, where $\sigma \in \Gamma(P \times_G V)$, now viewed as a family $\{\sigma_\alpha : U_\alpha \to V\}$ of functions transforming in overlaps as $\sigma_\alpha(A) = \rho(g_{\alpha\beta}(a))\sigma_\beta(a)$;

$$d^{\nabla}\sigma_{\alpha} = d^{\nabla}s_{\alpha}^{*}\psi = d^{\nabla}(\psi \circ s_{\alpha}) = d(\psi \circ s_{\alpha}) \circ h$$

$$= d(s_{\alpha}^{*}\psi) \circ h = s_{\alpha}^{*}(d\psi) \circ h$$

$$= s_{\alpha}^{*}d^{\nabla}\psi = s_{\alpha}^{*}(d\psi + \rho(\omega) \circ \psi)$$

$$= ds_{\alpha}^{*}\psi + \rho(s_{\alpha}^{*}\omega) \circ s_{\alpha}^{*}\psi$$

$$= d\sigma_{\alpha} + \rho(A_{\alpha}) \circ \sigma_{\alpha}$$

Hence, if $X \in \mathfrak{X}(M)$,

$$\nabla_X \sigma_\alpha \equiv X(\sigma_\alpha) + \rho(A_\alpha(X)) \cdot \sigma_\alpha$$

Exercise 5.8. Show that $\nabla_X \sigma_\alpha$ transforms like σ_α on overlaps, that is

$$\nabla_X \sigma_\alpha = \rho(g_{\alpha\beta}) \circ \nabla_X \sigma_\beta$$

Note this justifies the name covariant derivative.

In summary, given a G-PFB, $P \to M$, and a f.d. rep $\rho: G \to GL(V)$, we construct a VB $P \times_G V \to M$. Every VB is obtained in this way from its frame bundle. We then introduced the notion of a Kozul connection on a VB and showed that an Ehresmann connection on P induces a Kozul connection on $P \times_G V$. The converse is also true: a Kozul connection on E induces an Ehresmann connection on GL(E).

6 Curvature

Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $\rho: G \to GL(V)$ a Lie group homomorphism. Let $E \equiv P \times_G V \xrightarrow{\varpi} M$ be the associated VB. We saw in the last lecture that we have a $C^{\infty}(M)$ -module isomorphism

$$\left\{s: M \to E \,|\, \varpi \circ s = \mathrm{id}_M\right\} = \Gamma(E) \cong C_G^\infty(P, V) = \left\{\zeta: P \to V \,|\, r_g^* \zeta = \rho(g^{-1}) \circ \zeta\right\}$$

with module actions $f \cdot \zeta = (\pi^* f) \zeta$.

We wish to generalise this from functions to forms. We define $\Omega^k(P,V)$ to be the k-forms on P with values in V. If $p \in P$, $\omega \in \Omega^k(P,V)$, then $\omega_p : \Lambda^k T_p P \to V$ is linear. Let $\Omega^k_G(P,V) \subset \Omega^k(P,V)$ denote those V-valued k-forms ω which are both

- horizontal: $\forall \xi \text{ vertical}, i_{\xi}\omega = 0$
- invariant: $\forall g \in G, r_g^* \omega = \rho(g^{-1}) \circ \omega$.

Forms $\omega \in \Omega^k(P, V)$ are said to be basic since they come from bundle valued forms on the base. Indeed, we have

Proposition 6.1. There is an isomorphism of $C^{\infty}(M)$ -modules

$$\Omega_G^K(P,V) \cong \Omega^k(M,P \times_G V)$$

where for $\omega \in \Omega_G^k(P, V)$, $f \cdot \omega = (\pi^* f)\omega$

Proof. Similar to k=0 case. Define $\sigma \in \Omega^k(M, P \times_G V)$ locally by $\{\sigma_\alpha \in \Omega^k(U_\alpha, V)\}$ obeying $\sigma_\alpha(a) = \rho(g_{\alpha\beta}(a))\sigma_\beta(a)$. Then $\zeta_\alpha(p) = \rho(g_\alpha(p))^{-1} \circ \pi^*\sigma_\alpha$ is clearly horizontal. It can be shown to be invariant and that $\forall p \in \pi^{-1}U_{\alpha\beta}$, $\zeta_\alpha(p) = \zeta_\beta(p)$. Conversely, if $\zeta \in \Omega_G^k(P, V)$, we define $\sigma_\alpha = s_\alpha^*\zeta$ and one can show that $\forall a \in U_{\alpha\beta}$, $\sigma_\alpha(a) = \rho(g_{\alpha\beta}(a))\sigma_\beta(a)$

If $\sigma \in \Gamma(P \times_G V)$, $d^{\nabla} \sigma_{\alpha} = \rho(g_{\alpha\beta}) d^{\nabla} \sigma_{\beta}$, and hence $d^{\nabla} \sigma \in \Omega^1(M, P \times_G V)$.

Lemma 6.2. Let $\alpha \in \Omega_G^k(P, V)$. Then $h^*d\alpha \in \Omega_G^{k+1}(P, V)$.

Proof. $h^*d\alpha$ is horizontal by construction, so we check invariance;

$$r_g^*h^*d\alpha = h^*r_g^*d\alpha = h^*d(r_g^*\alpha) = h^*d(\rho(g)^{-1} \circ \alpha) = \rho(g)^{-1} \circ h^*d\alpha$$

Definition 6.3. Let $\omega \in \Omega^1(P, \mathfrak{g})$ be the connection one form of an Ehresmann connection $\mathscr{H} \subset TP$. Its curvature is $\Omega \equiv h^* d\omega$.

Lemma 6.4. $\Omega \in \Omega^2_G(P, V)$.

Proof. Horizontal by construction, and by the same calculation as the lemma above it is invariant because ω is

Proposition 6.5. $\Omega = 0$ iff $\mathcal{H} \subset TP$ is (Frobenius) integrable.

Proof. we see

$$\Omega(\xi, \eta) = d\omega(h\xi, h\eta) = h\xi \underbrace{\omega(h\eta)}_{=0} - h\eta \underbrace{\omega(h\xi)}_{=0} - \omega([h\xi, h\eta])$$
$$= \omega([h\xi, h\eta])$$

Hence

$$\begin{split} \Omega &= 0 \Leftrightarrow \forall \xi, \eta \ [h\xi, h\eta] \ \text{is horizontal} \\ &\Leftrightarrow [\mathscr{H}, \mathscr{H}] \subset \mathscr{H} \\ &\Leftrightarrow \mathscr{H} \subset TP \ \text{is integrable}. \end{split}$$

Proposition 6.6 (Structure equation). $\Omega = d\omega + \frac{1}{2} [\omega, \omega]$

Proof. We need to show $\Omega(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)]$. Let ξ, η be horizontal. Then $h\xi = \xi$ and $h\eta = \eta$, hence $\Omega(\xi, \eta) = d\omega(\xi, \eta)$ and $\omega(\xi) = 0 = \omega(\eta)$. Let η be horizontal and $\xi = \xi_X$ be vertical. Then $h\xi = 0$, $h\eta = \eta$, and $\omega(\eta)$. Hence we need

$$0 = d\omega(\xi_X, \eta) = -\eta\omega(\xi_X) - \omega([\xi_X, \eta]) = -\underbrace{\eta X}_{-0} - \omega([\xi_X, \eta])$$

i.e that $[\xi_X, \mathcal{H}] \subset \mathcal{H}$. This is the case as \mathcal{H} is invariant.

Let $\xi = \xi_X$, $\eta = \xi_Y$ vertical. Then $h\xi_X = 0 = h\xi_Y$ and $\omega(\xi_X)$, $\omega(\xi_Y) = Y$. So we must show that

$$0 = d\omega(\xi_X, \xi_Y) + [\omega(\xi_X), \omega(\xi_Y)]$$

= $\xi_X Y - \xi_Y X - \omega([\xi_X, \xi_Y]) + [X, Y]$
= $-\omega(\xi_{[X,Y]}) + [X, Y]$

so done.

Corollary 6.7 (Bianchi Identity). $h^*d\Omega = 0$

Proof.

$$h^*d\Omega = h^*d(d\omega + \frac{1}{2}[\omega, \omega]) = h^*[d\omega, \omega] = [h^*d\omega, h^*\omega] = 0$$

since $h^*\omega = 0$

Let's define $d^{\nabla}: \Omega^k_G(P,V) \to \Omega^{k+1}_G(P,V)$ by $d^{\nabla} = h^*d$. Then, unlike d, d^{∇} need not be a differential, and the obstruction is the curvature:

Proposition 6.8. $\forall \alpha \in \Omega_G^k(P, V), d^{\nabla}(d^{\nabla}\alpha) = \rho(\Omega) \wedge \alpha$

Proof.

$$\begin{split} d^{\nabla}\alpha &= d\alpha + \rho(\omega) \wedge \alpha \\ \Rightarrow d^{\nabla}(d^{\nabla}\alpha) &= d(d\alpha + \rho(\omega) \wedge \alpha) + \rho(\omega) \wedge (d\alpha + \rho(\omega) \wedge \alpha) \\ &= \rho(d\omega) \wedge \alpha - \rho(\omega) \wedge d\alpha + \rho(\omega) \wedge d\alpha + \rho(\omega) \wedge \rho(\omega) \wedge \alpha \\ &= \rho(d\omega) \wedge \alpha + \frac{1}{2} \left[\rho(\omega), \rho(\omega) \right] \wedge \alpha \\ &= \rho(d\omega + \frac{1}{2} \left[\omega, \omega \right]) \wedge \alpha \\ &= \rho(\Omega) \wedge \alpha \end{split}$$

7 Homogeneous spaces and Invariant Connections I

Let G be a Lie group acting transitively on a manifold M. Pick $a \in M$ and let $H \subset G$ be the stabiliser subgroup. It is a closed subgroup, and then $M \cong G/H$, where the diffeomorphism is G-equivariant and $G \circlearrowleft G/H$ is induced by left multiplication in G. If $g \in G$, we let $\phi_g : M \to M$ denote the corresponding diffeomorphism. If $X \in \mathfrak{g}$, we define a vector field $\xi_X \in \mathfrak{X}(M)$ by

$$(\xi_X f)(m) = \frac{d}{dt} f\left(\phi_{\exp(-tX)}(m)\right)\Big|_{t=0}$$

Then $[\xi_X, \xi_Y] = \xi_{[X,Y]}$.

Since H stabilises $a \in M$, $\forall h \in H$, $(\phi_h)_* : T_aM \to T_aM$, and we get a Lie group homomorphism $\lambda : H \to GL(T_aM)$ called the **linear isotropy representation**. We will use the same notation for the induced Lie algebra rep $\lambda : \mathfrak{h} \to \mathfrak{gl}(T_aM)$. Evaluating at $a \in M$, we get a surjective linear map $\mathfrak{g} \to T_aM$, $X \mapsto \xi_X|_a$ whose kernel is \mathfrak{h} .

Definition 7.1. We say that G_H is **reductive** if the short exact sequence

$$0 \to \mathfrak{h} \to \mathfrak{g} \to T_a M \to 0$$

splits as H-modules. In other words if $\exists \mathfrak{m} \subset \mathfrak{g}$ such that $\mathfrak{g} \oplus \mathfrak{m}$ and $\forall h \in H$, $\mathrm{Ad}_h : \mathfrak{m} \to \mathfrak{m}$. In that case $T_aM \cong \mathfrak{m}$ as H-modules.

If $g \in G$ and $\phi_g \in \text{Diff}(M)$, we define $\phi_g \cdot f = f \circ \phi_{g^{-1}}$ and $\phi_g \cdot \xi = (\phi_g)_* \xi$ where

$$((\phi_g)_*\xi)_a = ((\phi_g)_*)_{\phi_g^{-1}(a)}\xi_{\phi_g^{-1}(a)}$$

It follows that

$$\phi_g \cdot (Xf) = (\phi_g \cdot X)(\phi_g \cdot f)$$
$$\phi_g \cdot (fX) = (\phi_g \cdot f)(\phi_g \cdot X)$$

Now let ∇ be an affine connection, (i.e. $\nabla_{fX}Y = f\nabla_XY$, $\nabla_X(fY) = X(f)Y + f\nabla_XY$). Let $\phi \in \text{Diff}(M)$. Define ∇^{ϕ} by

$$\nabla_X^{\phi} Y = \phi \cdot \nabla_{\phi^{-1} \cdot X} (\phi^{-1} \cdot Y)$$

Lemma 7.2. ∇^{ϕ} is an affine connection

Proof.

$$\begin{split} \nabla_{fX}^{\phi}Y &= \phi \cdot \nabla_{\phi^{-1} \cdot (fX)}(\phi^{-1}Y) \\ &= \phi \cdot \nabla_{(\phi^{-1} \cdot f)(\phi^{-1} \cdot X)}(\phi^{-1}Y) \\ &= \phi \cdot \left(\phi^{-1} \cdot f \nabla_{\phi^{-1} \cdot X}(\phi^{-1} \cdot Y) \right) \\ &= (\phi \cdot \phi^{-1}f)(\phi \cdot \nabla_{\phi^{-1}X}(\phi^{-1} \cdot Y) \\ &= f \nabla_{X}^{\phi}Y \\ \nabla_{X}^{\phi}(fY) &= \phi \cdot \left(\nabla_{\phi^{-1} \cdot X}\phi^{-1}(fY)\right) \\ &= \phi \cdot \left(\nabla_{\phi^{-1} \cdot X}(\phi^{-1}f)(\phi^{-1}Y)\right) \\ &= \phi \cdot \left((\phi^{-1}X)(\phi^{-1}f)(\phi^{-1}Y) + (\phi^{-1}f)\nabla_{\phi^{-1}X}(\phi^{-1}Y)\right) \\ &= (\phi \cdot \phi^{-1} \cdot X(f))(\phi \cdot \phi^{-1} \cdot Y) + (\phi \cdot \phi^{-1} \cdot f)\nabla_{\phi^{-1}X}(\phi^{-1}Y) \\ &= X(f)Y + f \nabla_{X}^{\phi}Y \end{split}$$

Definition 7.3. An affine connection ∇ on a reductive homogeneous M = G/H is said to be **G-invariant** if $\forall g \in G$, $\nabla^{\phi_g} = \nabla$. i.e

$$\phi_g \cdot \nabla_X Y = \nabla_{\phi_g X} (\phi_g Y)$$

If $H = \{e\}$, M = G, then ∇ is **left invariant** if

$$L_q \cdot \nabla_X Y = \nabla_{L_q \cdot X} (L_q \cdot Y)$$

Suppose that X, Y are left invariant, so that $L_g \cdot X = X, L_g \cdot Y = Y$. In that case, the left invariance of ∇ implies that $\nabla_X Y$ is also left invariant. Now, on a Lie group we may trivialise the tangent bundle via left translations. That means that we have a global frame (X_1, \ldots, X_n) consisting of left invariant vector fields. The connection is therefore uniquely determined by n^3 numbers Γ_{ij}^k defined by

$$\nabla_{X_i} X_j = \sum_k \Gamma_{ij}^k X_k$$

These are the components relative to the basis $\{X_i\}$ of a linear map $\Lambda: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$. The torsion and curvature tensors are also left-invariant and are given in terms of Λ by

$$T(X,Y) = \Lambda_X Y - \Lambda_Y X - [X,Y]$$

$$R(X,Y)Z = [\Lambda_X, \Lambda_Y] Z - \Lambda_{[X,Y]} Z$$

for LI $X, Y, Z \in \mathfrak{X}(G)$. We see that curvature measures the failure of Λ to be a Lie algebra homomorphism. In particular, taking $\Lambda = 0$, we see that there exists a flat connection with torsion given by T(X,Y) = -[X,Y] relative to which LI vf on G are **parallel** (i.e. $\nabla X = 0$). Of course, there exists another flat connection annihilating the right-invariant vector fields.

8 Invariant Connections

What did we do last time? We were looking at Homogeneous spaces $M \equiv G/H$, $H \leq G$ a closed subgroup. We had fibre

$$H \to G \stackrel{\pi}{\to} M$$

and for $g \in G$ we have $\phi_g : M \to M$ acting by multiplication, i.e. $\phi_g(a) = g \cdot a$. As a result of the quotient have $eH = o \in M$ s.t

$$\forall h \in H \ \phi_h(o) = o$$

Then

$$(\phi_h)_*: T_oM \to T_oM$$

Hence we may make the following def:

Definition 8.1. The linear isotropy representation

$$\lambda: H \to GL(T_oM)$$

is given by $\lambda_h = (\phi_h)_*$.

We also have the map

$$\xi: \mathfrak{g} \to \mathfrak{X}(M)$$
$$X \mapsto \xi_X$$

s.t. $[\xi_X, \xi_Y] = \xi_{[X,Y]}$. Composing with evaluation yields

$$ev_o \circ \xi : \mathfrak{g} \to T_o M$$

where $\ker(ev_o \circ \xi) = \mathfrak{h} \subset \mathfrak{g}$. This is bijective so in fact

$$T_oM \cong \mathfrak{g}_{\mathfrak{h}}$$

and we get commuting diagram

$$T_{o}M \xrightarrow{\lambda_{h}} T_{o}M$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\mathfrak{g}_{h} \xrightarrow{\operatorname{Ad}(h)} \mathfrak{g}_{h}'$$

Definition 8.2. An affine connection ∇ on TM is **G-invariant** if

$$\forall g \in G, \, \nabla^{\phi_g} = \nabla$$
$$\phi_g \nabla_{\xi} \eta = \nabla_{\phi_g \xi} (\phi_g \eta)$$

If $H = \{e\}$, M = G, then ∇ is left invariant if for all left invariant vector fields $\xi_X, \xi_Y \nabla_{\xi_X} \xi_Y$ is also LI. This is then uniquely determined by its value at e. Hence ∇ defines a bilinear map

$$\mathfrak{g} \times \mathfrak{g} \stackrel{\alpha}{\to} \mathfrak{g}
(X,Y) \mapsto \nabla_{\xi_X} \xi_Y|_{\mathfrak{g}}$$

We can then **curry** a map as given $\alpha : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ we can get

$$\Lambda: \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$$
$$X \mapsto \Lambda_X$$

where $\Lambda_X(Y) = \alpha(X, Y)$.

Exercise 8.3. Show that the torsion T and curvature R of Λ are left invariant and given by

$$T(X,Y) = \Lambda_X Y - \Lambda_Y X - [X,Y]$$

$$R(X,Y)Z = [\Lambda_X, \Lambda_Y] Z - \Lambda_{[X,Y]} Z$$

Note R is the obstruction to Λ being a Lie algebra homomorphism.

<u>Claim:</u> \exists a LI connection ∇ corresponding to $\Lambda = 0$.

Such Λ is flat, but has torsion T(X,Y) = -[X,Y]. As such ∇ is characterised by \forall LI ξ , $\nabla \xi = 0$. Now let $H \neq \{e\}$ be closed and reductive: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ where $\mathrm{Ad}_H(\mathfrak{m}) \subset \mathfrak{m}$. Note $\mathfrak{m} \cong \mathfrak{g}_{\mathfrak{h}}$, so in the previous case $\mathfrak{m} \cong T_oM$

Aside. There is a "holonomy principle" that

$$\left\{ \textit{G-invariant tensor fields on } G_{/H} \right\} \overset{ev_{\theta}}{\leftrightarrow} \left\{ \operatorname{Ad}(H)\text{-invariant tensors on } \mathfrak{m} \right\}$$

This comes about, as if we take a tensor T at o, we can define a tensor field on G_{H} by

$$\mathcal{T}(a) = \phi_g T$$

for and $g \in G$ s.t. $\phi_g o = a$. Then if we have another representative g' then

$$g^{-1}g' \in H \Leftrightarrow \phi_{g^{-1}g'}o = o$$

so

$$T = \phi_{g^{-1}g'}T$$

Claim: An invariant connection ∇ is determined by a bilinear map

$$\alpha: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$$

which is H invariant, the **Nomizu map**.

We can take natural coordinates for M in the neighbourhood $V \subset \mathfrak{m}$ of o by exponentiating \mathfrak{m} . The projection π is a local diffeo on $U = \exp(V)$. In a basis for \mathfrak{m} , $\{e_i\}$,

$$V \to U$$
$$\sum x^i e_i \mapsto \exp\left(\sum x^i e_i\right)$$

Now $\forall g \in U, \pi(g) = \phi_g \cdot o$, Let $\overline{V} = \{\phi_g \cdot o | g \in U\}$. For $X \in \mathfrak{m}$ define $\xi_X \in \mathfrak{X}(\overline{V})$ by

$$(\xi_X)_{\phi_g o} \equiv ((\phi_g)_*)_o (\pi_*)_e X$$

= $((\phi_g \circ \pi)_*)_e X$
= $((\pi \circ L_g)_*)_e X = (\pi_*)_g X_g^L$

where X^L is the LIVF defined by $X^L|_e = X$. Hence ξ_X is π -related to X^L . Then $[\xi_X, \xi_Y]$ is π -related to $[X^L, Y^L] = [X, Y]^L$.

Now let $W \subset V$ s.t. $\forall h \in H$, $\mathrm{Ad}_h W \subset V$, and $\mathrm{def} \ \overline{W}$ accordingly. Then for $h \in H$, $\phi_h : \overline{W} \to \overline{V}$. As such

$$\phi_h \phi_g \cdot o = \phi_h \phi_g \phi_{h^{-1}} \phi_h \cdot o$$
$$= \phi_{hgh^{-1}} \cdot o \in \overline{V}.$$

We will now need the following lemma

Lemma 8.4. $\forall g \in \exp(W), h \in H$,

$$(\phi_h)_* \xi_X = \xi_{\mathrm{Ad}_h X}$$

at $\phi_a o$, i.e. at all point in \overline{V} .

Proof.

$$\begin{split} [(\phi_h)_* \xi_X]_{\phi_h \phi_g o} &= (\phi_h)_* (\xi_X)_{\phi_g o} \\ &= (\phi_h)_* (\phi_g)_* \pi_* X \\ &= (\phi_{hg})_* \pi_* X \\ &= (\phi_{hgh^{-1}})_* (\phi_h)_* \pi_* X \\ &= (\xi_{\mathrm{Ad}(h)X})_{\phi_{hgh^{-1}o}} = (\xi_{\mathrm{Ad}_h X})_{\phi_h \phi_g o} \end{split}$$

recalling the commuting diagram

$$T_{o}M \xrightarrow{(\phi_{h})_{*}} T_{o}M$$

$$\uparrow^{\pi_{*}} \qquad \uparrow^{\pi_{*}} \qquad \downarrow^{\pi_{*}} \qquad \downarrow^{\pi_{*}}$$

Lemma 8.5. Let $X, Y \in \mathfrak{m}$, and $\xi_X, \xi_Y \in \mathfrak{X}(\overline{V})$. Then $[\xi_X, \xi_Y]|_o = \pi_* [X, Y]_{\mathfrak{m}}$

Proof. We saw above that $[\xi_X, \xi_Y]$ is π -related to $[X^L, Y^L] = [X, Y]^L$. Hence $[\xi_X, \xi_Y] = \xi_{[X,Y]}$ and evaluating at $o \in M$ gives

$$[\xi_X, \xi_Y]|_o = \xi_{[X,Y]_{\mathfrak{h}}}|_o + \xi_{[X,Y]_{\mathfrak{m}}}|_o = \xi_{[X,Y]_{\mathfrak{m}}}|_o = \pi_* [X,Y]_{\mathfrak{m}}$$

18

Theorem 8.6 (Nomizu). There is a bijective correspondence

 $\{G\text{-}invariant affine connections on }M\} \leftrightarrow \{\mathrm{Ad}(h)\text{-}invariant bilinear maps }\alpha:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}\}$

given by $\alpha(X,Y) = \nabla_{\xi_X} \xi_Y|_{\alpha}$

Note \exists ! G-invariant connection ∇ with $\alpha = 0$, and this is called the **canonical connection**. If you curry this map again you can show

$$\begin{split} T(X,Y) &= \alpha(X,Y) = \alpha(Y,X) - [X,Y]_{\mathfrak{m}} \\ R(X,Y)Z &= \alpha(X,\alpha(Y,Z)) - \alpha(Y,\alpha(X,Z)) - \alpha([X,Y]_{\mathfrak{m}}\,,Z) - [X,Y]_{\mathfrak{h}}\,Z \end{split}$$

If $\alpha = 0$ we get

$$T(X,Y) = -[X,Y]_{\mathfrak{m}}$$
$$R(X,Y) = -[X,Y]_{\mathfrak{h}}$$

If T = 0, M is said to be **symmetric**.

9 Cartan Connections

Again consider homogeneous reductive spaces

$$\begin{array}{ccc} H & \longrightarrow & G \\ & & \downarrow^{\pi} \\ & M = & G /_{H} \end{array}$$

With a local section $\sigma: U \to G$ we can pull back the LI MC 1-form $\vartheta_G \in \Omega^1(G; \mathfrak{g})$

$$\sigma^* \vartheta_G \in \Omega^1(U;\mathfrak{g})$$

Recall the MC 1-form satisfies structure equation s

$$d\vartheta_G + \frac{1}{2} \left[\vartheta_G, \vartheta_G \right] = 0$$

Then given two such sections σ_i we have

$$\forall a \in U, \, \sigma_2(a) = \sigma_1(a)h(a)$$

for some $h: U \to H$, a uniquely defined function.

Lemma 9.1.

$$\sigma_2^* \vartheta_G = \operatorname{Ad}(h^{-1}) \cdot \sigma_1^* \vartheta_G + h^* \vartheta_H$$

Proof. We will notationally use the idea of matrix groups but in general the proof works. Then

$$\sigma^* \vartheta_q = \sigma^{-1} d\sigma.$$

Then

$$\sigma_2^* \vartheta_G = \sigma_2^{-1} d\sigma_2$$

$$= (\sigma_1 h)^{-1} d(\sigma_1 h)$$

$$= h^{-1} \sigma_1^{-1} (d\sigma_1 h + \sigma_1 dh)$$

$$= h^{-1} (\sigma_1^{-1} d\sigma_1) h + h^{-1} dh$$

so done.

As we are in the reductive case, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and we can decompose. Write $\sigma_1^* \vartheta_G = \theta_1 + \omega_1$ for $\theta_1 \in \Omega^1(U, \mathfrak{m})$, $\omega_1 \in \Omega^1(U, \mathfrak{h})$. Then

$$\theta_2 + \omega_2 = \operatorname{Ad}(h)^{-1}(\theta_1 + \omega_1) + h^*\vartheta_H$$

SO

$$\theta_2 = \operatorname{Ad}(h)^{-1}\theta_1$$

$$\omega_2 = \operatorname{Ad}(h)^{-1}\omega_1 + h^*\vartheta_H$$

decomposing. Hence θ_2 transforms as a tensor, ω_2 as a gauge field. Now if we let $\sigma = \sigma_1$ and the structure equation becomes

$$d(\theta + \omega) + \frac{1}{2} [\theta + \omega, \theta + \omega] = 0$$
$$d\theta + d\omega + \frac{1}{2} [\theta, \theta] + \frac{1}{2} [\omega, \omega] + [\omega, \theta] = 0$$

As such decomposing

$$\begin{split} d\theta + \frac{1}{2} \left[\theta, \theta \right]_{\mathfrak{m}} + \left[\omega, \theta \right] &= 0 \\ d\omega + \frac{1}{2} \left[\theta, \theta \right]_{\mathfrak{h}} + \frac{1}{2} \left[\omega, \omega \right] &= 0 \\ &\Rightarrow \qquad \qquad \Omega \equiv d\omega + \frac{1}{2} \left[\omega, \omega \right] &= -\frac{1}{2} \left[\theta, \theta \right]_{\mathfrak{h}} \end{split}$$

As such

$$\Theta(\xi_X, \xi_Y) = -[X, Y]_{\mathfrak{m}}$$

$$\Omega(\xi_X, \xi_Y) = -[X, Y]_{\mathfrak{h}}$$

Gauge fields for the canonical invariant connection on G_H are $\sigma^*\vartheta_G$.

With this motivation with us, the Cartan connections are going to be generalisation of these where in the gauge field descriptions these are local 1-forms on the base. The Cartan viewpoint is to view TM not as a linear rep of $GL(n,\mathbb{R})$, but as a homogeneous space of the affine group $A(n,\mathbb{R}) \cong GL(n,\mathbb{R}) \ltimes \mathbb{R}^n$ such that $T_aM \cong A(n,\mathbb{R}) / GL(n,\mathbb{R})$.

Definition 9.2. A Cartan gauge (def from Sharpe, Jose doesn't like) with model G_H on M is a pair (U,θ) where $U \subset M$ open and $\theta \in \Omega^1(U,\mathfrak{g})$ satisfying regularity

$$T_aM \stackrel{\theta_a}{\to} \mathfrak{g} \stackrel{pr}{\to} \mathfrak{g}/h$$

is an isomorphism $\forall a \in U$.

This is the analogue of a chart

Definition 9.3. A Cartan atlas is a collection of Cartan gauges $\{(U_{\alpha}, \theta_{\alpha})\}$ s.t

- $\bigcup_{\alpha} U_{\alpha} = M$
- on $U_{\alpha\beta}$

$$\theta_{\beta} = \operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha} + h_{\alpha\beta}^{*}\vartheta_{H}$$

for some $h_{\alpha\beta}: U_{\alpha\beta} \to H$.

This is very analogous to atlases.

Definition 9.4. Two atlases are **equivalent** if their union is an atlas.

Definition 9.5. A Cartan structure on M is an equivalence class (equivalently maximal atlas) of Cartan atlases. A Cartan geometry is a manifold M together with a Cartan structure.

Definition 9.6. The curvature of a Cartan gauge (U, θ) is $\Omega \in \Omega^2(U, \mathfrak{g})$ given by

$$\Omega = d\theta + \frac{1}{2} \left[\theta, \theta \right]$$

If I have a Cartan atlas, I can ask how respective curvatures Ω_{α} change on overlaps.

Lemma 9.7. On $U_{\alpha\beta}$

$$\Omega_{\beta} = \mathrm{Ad}(h_{\alpha\beta}^{-1})\Omega_{\alpha}$$

Proof.

$$\begin{split} \theta_{\beta} &= \operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha} + h_{\alpha\beta}^{*}\vartheta_{H} \\ \Rightarrow d\theta_{\beta} + \frac{1}{2}\left[\theta_{\beta}, \theta_{\beta}\right] = d\left(\underbrace{\operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha}}_{h_{\alpha\beta}} + h_{\alpha\beta}^{*}\vartheta_{H}\right) + \frac{1}{2}\left[\operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha} + h_{\alpha\beta}^{*}\vartheta_{H}, \operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha} + h_{\alpha\beta}^{*}\vartheta_{H}\right] \\ &= \operatorname{Ad}(h_{\alpha\beta}^{-1})d\theta_{\alpha} - \left[\operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha}, h_{\alpha\beta}^{*}\vartheta_{H}\right] - \frac{1}{2}h_{\alpha\beta}^{*}\left[\vartheta_{H}, \vartheta_{H}\right] + \frac{1}{2}\operatorname{Ad}(h_{\alpha\beta}^{-1})\left[\theta_{\alpha}, \theta_{\alpha}\right] \\ &+ \frac{1}{2}\left[h_{\alpha\beta}^{*}\vartheta_{H}, h_{\alpha\beta}^{*}\vartheta_{H}\right] + \left[\operatorname{Ad}(h_{\alpha\beta}^{-1})\theta_{\alpha}, h_{\alpha\beta}^{*}\vartheta_{H}\right] \\ &= \operatorname{Ad}(h_{\alpha\beta}^{-1})\left(d\theta_{\alpha} + \frac{1}{2}\left[\theta_{\alpha}, \theta_{\alpha}\right]\right) \end{split}$$

Hence setting $\Omega_{\alpha} = 0$ is an *extrinsic* statement of an atlas.

Definition 9.8. A Cartan structure is **flat** if $\forall \alpha, \Omega_{\alpha} = 0$

Example 9.9. Flat Cartan structures:

- $G \to G/_H$ with $(U_\alpha, \sigma_\alpha^* \vartheta_G)$
- an open subset $V \subset G/_H$ as above.
- $\Gamma \subset G$ acting by covering transformations, locally like $G/_H$.

Definition 9.10. A Klein geometry G_H has **kernel** K: the largest subgroup of H that is normal in G. If K = 1 we say that G_H is **effective**. If K is discrete we say the geometry is **locally effective**.

Lemma 9.11. If $K \neq 1$ then $\binom{G}{K}_{/(H/K)}$ is effective.

Proposition 9.12. If G_H is effective, and $\exists k: U \to H$ s.t. $\theta = \operatorname{Ad}(k^{-1}) \cdot \theta + k^* \vartheta_H$, then k = 1.

This means that, given a Cartan atlas $\{(U_{\alpha}, \theta_{\alpha})\}$ modelled on an effective $G_{/H}$, then in overlaps $U_{\alpha\beta}$, $\theta_{\beta} = \operatorname{Ad}(h_{\alpha\beta}^{-1}) \circ \theta_{\alpha} + h_{\alpha\beta}^{*} \vartheta_{H}$ for a unique $h_{\alpha\beta} : U_{\alpha\beta} \to H$. Indeed if $\theta_{\beta} = \operatorname{Ad}(\tilde{h}_{\alpha\beta}^{-1}) \circ \theta_{\alpha} + \tilde{h}_{\alpha\beta}^{*} \vartheta_{H}$, then letting $k = \tilde{h}_{\alpha\beta}^{-1} h_{\alpha\beta}$ we would have

$$\theta_{\alpha} = \operatorname{Ad}(\tilde{h}_{\beta\alpha}^{-1}) \circ \theta_{\beta} + \tilde{h}_{\beta\alpha}^{*} \vartheta_{H}$$

$$\Rightarrow \theta_{\beta} = \operatorname{Ad}(h_{\alpha\beta}^{-1}) \circ \left[\operatorname{Ad}(\tilde{h}_{\beta\alpha}^{-1}) \circ \theta_{\beta} + \tilde{h}_{\beta\alpha}^{*} \vartheta_{H} \right] + h_{\alpha\beta}^{*} \vartheta_{H}$$

$$= \operatorname{Ad}(k^{-1}) \circ \theta_{\beta} + \underbrace{\operatorname{Ad}(h_{\alpha\beta}^{-1}) \circ \tilde{h}_{\beta\alpha}^{*} \vartheta_{H} + h_{\alpha\beta}^{*} \vartheta_{H}}_{k^{*} \vartheta_{H}}$$

It follows from uniqueness then that $\{h_{\alpha\beta}: U_{\alpha\beta} \to H\}$ defines a (Cech) cocycle. Therefore they are the transition functions of a principle H-bundle $P \xrightarrow{\pi} M$, where $P = \sqcup_{\alpha} (\{\alpha\} \times U_{\alpha} \times H) / \sim$, $(\alpha, a, h) \sim (\beta, a, h_{\alpha\beta}^{-1}(a)h)$, and $\pi(\alpha, a, h) = a$. The right action is given by $r_h[(\alpha, a, \tilde{h})] = [(\alpha, a, \tilde{h}h)]$. This is well defined since the identification uses left multiplication.

Let $X \in \mathfrak{h}$. Then $X^L \in \mathfrak{X}(H)$ is the corresponding LIVF. We extend it to $U \times H$ as $(0, X^L) \equiv \xi_X \in \mathfrak{X}(U \times H)$. Since X^L is LI and the identifications involve left multiplication the vector fields ξ_X glue to give a well defined vector field $\xi_X \in \mathfrak{X}(P)$. We then have

Lemma 9.13. Let $r_h: P \to P$ denote the right action of $h \in H$ on P. Then $\forall X \in \mathfrak{h}, (r_h)_* \xi_X = \xi_{\mathrm{Ad}(h)^{-1}X}$.

Proof. It is sufficient to check locally on $U \times H$. Here $r_h = \mathrm{id} \times R_h$ where $R_h : H \to H$ is right multiplication by h. Let $L_h : H \to H$ be left multiplication and then on $U \times H$ we have

$$\begin{split} (r_h)_* \xi_X &= (\operatorname{id} \times R_h)_* (0, X^L) \\ &= (0, (R_h)_* X^L) \\ &= (0, (r_h)_* (L_{h^{-1}})_* X^L) \text{ since } X^L \text{ is LI} \\ &= (0, (\operatorname{Ad}(h^{-1}) \cdot X)^L) \\ &= \xi_{\operatorname{Ad}(h)^{-1} X} \end{split}$$

The Cartan atlas $(U_{\alpha}, \theta_{\alpha})$ does not first just give $P \stackrel{\pi}{\to} M$, but also a one-form $\omega \in \Omega^{1}(P; \mathfrak{g})$ defined locally by

$$\omega: T_{(a,h)}(U_{\alpha} \times H) \to T_a U_{\alpha} \times \mathfrak{h}) \to \mathfrak{g}$$
$$(v,y) \mapsto (v,\vartheta_H(y)) \mapsto \operatorname{Ad}(h^{-1})\theta_{\alpha}(v) + \vartheta_H(y) \equiv \omega_{\alpha}(v,y)$$

On overlaps, we also have $\omega_{\beta}(v,y) = \operatorname{Ad}(h^{-1})\theta_{\beta}(v) + \vartheta_{H}(y)$. The transition function is then $U_{\alpha\beta} \times H \stackrel{f_{\alpha\beta}}{\to} U_{\alpha\beta} \times H$ sending $(a,h) \mapsto (a,h_{\alpha\beta}(a)^{-1}h)$.

We will claim that the ω_{α} glue together properly to give a consistent ω . To prove this we will need a preparatory lemma:

Lemma 9.14. Let $\mu: H \times H \to H$ and $i: H \to H$ denote multiplication and inversion as groups maps on H. Letting $\vartheta_H \in \Omega^1(H; \mathfrak{h})$ be the LI MC one-form we have

$$\forall v \in T_{(h_1,h_2)}(H \times H), \ (\mu^* \vartheta_H)(v) = \operatorname{Ad}(h_2^{-1}) \vartheta_H((pr_1)_* v) + \vartheta_H((pr_2)_* v)$$
$$\forall v \in T_h H, \ (i^* \vartheta_H)(v) = -\operatorname{Ad}(h) \vartheta_H(v)$$

Proof. It is simpler notationally for matrix groups where $\vartheta_H|_h = h^{-1}dh$. Hence

$$i^*\vartheta_H|_h = hdh^{-1} = -hh^{-1}dhh^{-1} = -\operatorname{Ad}(h) \ \vartheta_H|_h$$

Moreover we have

$$\mu^* \ \vartheta_H|_{(h_1,h_2)} = (h_1h_2)^{-1} d(h_1h_2) = h_2^{-1} h_1^{-2} dh_1h_2 + h_2^{-1} dh_2 = \operatorname{Ad}(h_2^{-1}) \ \vartheta_H|_{h_1} + \vartheta_H|_{h_2}$$

22

Now we are ready to state what we want:

Proposition 9.15. The following diagram commutes:

$$T_{a}U_{\alpha\beta} \times T_{h}H \xrightarrow{(f_{\alpha\beta})_{*}} T_{a}U_{\alpha\beta} \times T_{h_{\alpha\beta}(a)^{-1}h}H$$

Proof. We notice that $f_{\alpha\beta}(a,h) = (a,h_{\alpha\beta}(a)^{-1}h) = (\operatorname{id} \circ pr_1, \mu \circ (i \circ h_{\alpha\beta} \circ pr_1 \times pr_2))(a,h)$, so that if $(v,y) \in T_a U_{\alpha\beta} \times T_h H$, $(f_{\alpha\beta})_*(v,y) = (v,\mu_*(i_* \circ (h_{\alpha\beta})_*v,y)) \in T_a U_{\alpha\beta} \times T_{h_{\alpha\beta}(a)^{-1}h} H$. Hence

$$(\omega_{\beta} \circ (f_{\alpha\beta})_*)(v,y) = \omega_{\beta}(v,\mu_*(i_* \circ (h_{\alpha\beta})_*v,y))$$

= $\operatorname{Ad}(h_{\alpha\beta}(a)^{-1}h)^{-1}\theta_{\beta}(v) + \vartheta_H(\mu_*(i_* \circ (h_{\alpha\beta})_*v,y))$

Using the lemma we have that

$$\vartheta_{H}(\mu_{*}(i_{*}\circ(h_{\alpha\beta})_{*}v,y)) = (\mu^{*}\vartheta_{H})(i_{*}(h_{\alpha\beta})_{*}v,y)
= \operatorname{Ad}(h^{-1})\vartheta_{H}(i_{*}(h_{\alpha\beta})_{*}v) + \vartheta_{H}(y)
\vartheta_{H}(i_{*}(h_{\alpha\beta})_{*}v) = (i^{*}\vartheta_{H})(h_{\alpha\beta}^{*}v)
= -\operatorname{Ad}(h_{\alpha\beta}(a))(h_{\alpha\beta}^{*}\vartheta_{H})(v)$$

Hence

$$(\omega_{\beta} \circ (f_{\alpha\beta})_{*})(v,y) = \operatorname{Ad}(h)^{-1} \operatorname{Ad}(h_{\alpha\beta}(a))\theta_{\beta}(v) - \operatorname{Ad}(h)^{-1} \operatorname{Ad}(h_{\alpha\beta}(a))(h_{\alpha\beta}^{*}\vartheta_{H})(v) + \vartheta_{H}(y)$$

$$= \operatorname{Ad}(h)^{-1} \operatorname{Ad}(h_{\alpha\beta}(a)) \left[\theta_{\beta}(v) - (h_{\alpha\beta}^{*}\vartheta_{H})(v)\right] + \vartheta_{H}(y)$$

$$= \operatorname{Ad}(h)^{-1} \circ \theta_{\alpha}(v) + \vartheta_{H}(y)$$

$$= \omega_{\alpha}(v,y)$$

Definition 9.16. The one-form $\omega \in \Omega^1(P; \mathfrak{g})$ is called a Cartan connection

Proposition 9.17. The Cartan connection $\omega \in \Omega^1(P;\mathfrak{g})$ obeys the following:

- 1. $\forall p \in P, \, \omega_p : T_pP \to \mathfrak{g} \text{ is a vector space isomorphism}$
- 2. $\forall h \in H, r_h^* \omega = \operatorname{Ad}(h^{-1}) \circ \omega$
- 3. $\forall X \in \mathfrak{h}, \, \omega(\xi_X) = X$

Proof. We may separate the proof:

- 1. $\dim P = \dim H + \dim M = \dim \mathfrak{h} + \dim \mathfrak{G}_{\mathfrak{h}} = \dim \mathfrak{g}$, so it suffices to show that ω_p is injective. Now if $(v,y) \in T_aU \times T_hH$ is such that $\omega(v,y) = \operatorname{Ad}(h^{-1})\theta(v) + \vartheta_H(y) = 0$, we have $\operatorname{Ad}(h^{-1})\theta(v) = -\vartheta_H(y) \in \mathfrak{h}$ and hence $\theta(v) \in \operatorname{Ad}(h)\mathfrak{h} = \mathfrak{h} \Rightarrow pr_{\mathfrak{G}_{\mathfrak{h}}}\theta(v) = 0$. By the regularity property of θ , v = 0. Hence $\vartheta_H(y) = 0$, but as ϑ_H is injective, we have y = 0
- 2. It is sufficient to check in a Cartan gauge (U, θ) . Let $(v, y) \in T_aU \times T_hH$. Then for $k \in H$:

$$(r_k^*\omega)(v,y) = \omega(v,(R_k)_*y) = \operatorname{Ad}(hk)^{-1} \circ \theta(v) + \vartheta_H((R_k)_*y)$$

and using $R_k^* \vartheta_H = \operatorname{Ad}(k^{-1}) \circ \vartheta_H$

$$\begin{split} (r_k^*\omega)(v,y) &= \operatorname{Ad}(k^{-1})\operatorname{Ad}(h)^{-1}\theta(v) + \operatorname{Ad}(k^{-1})\vartheta_H(y) \\ &= \operatorname{Ad}(k^{-1})\left[\operatorname{Ad}(h)^{-1}\theta(v) + \vartheta_H(y)\right] \\ &= \operatorname{Ad}(k^{-1})\omega(v,y) \end{split}$$

3. In a Cartan chart $\xi_X = (0, X^L) \in \mathfrak{X}(U \times H)$, hence

$$\omega(\xi_X) = \operatorname{Ad}(h)^{-1}\theta(0) + \vartheta_H(X^L) = 0 + X = X$$

Remark. Properties 2 and 3 are reminiscent of an Ehresmann connection except that ω takes values in \mathfrak{g} not \mathfrak{h} .

Notice that if $\{(U_{\alpha}, \theta_{\alpha})\}$ is a Cartan atlas trivialising P, then if $s_{\alpha}: U_{\alpha} \to P|_{U_{\alpha}}$ are the canonical sections, $s_{\alpha}(a) = [(a, e)], \ (s_{\alpha}^*\omega)(v) = \omega(v, 0) = \theta_{\alpha}(v)$. So θ_{α} are the 'gauge fields' of the Cartan connection. Let $\Omega = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(p; \mathfrak{g})$ denote the **curvature** of the Cartan connection. Then $s_{\alpha}^*\Omega = d\theta_{\alpha} + \frac{1}{2}[\theta_{\alpha}, \theta_{\alpha}]$. Hence bundle automorphisms of P (covering the identity) are the **gauge symmetries** of the Cartan geometry.

Remark. ω parallelises P, just like ϑ_G parallelises G in the Klein model. Given $X \in \mathfrak{g}$ we get a vector field $\xi_X \in \mathfrak{X}(P)$ defined by $\xi_X|_p = \omega_p^{-1}(X)$, but unlike the case of (G, ϑ_G) . this is not a Lie algebra morphism. This is despite that for $X \in \mathfrak{h}, Y \in \mathfrak{g}$ we do have $[\xi_X, \xi_Y] = \xi_{[X,Y]}$. The curvature ω is the obstruction to $X \mapsto \xi_X$ defining a Lie algebra morphism $\mathfrak{g} \to \mathfrak{X}(P)$. To see this, calculate

$$\begin{split} \omega(\xi_{[X,Y]} - \omega([\xi_X, \xi_Y]) &= [X,Y] + (d\omega(\xi_X, \xi_Y) - \xi_X \omega(\xi_Y) + \xi_Y \omega(\xi_X)) \\ &= [X,Y] + (d\Omega(\xi_X, \xi_Y) - [\omega(\xi_X), \omega(\xi_Y)]) + \xi_X Y - \xi_Y X \\ &= [X,Y] + \Omega(\xi_X, \xi_Y) - [X,Y] \\ &= \Omega(\xi_X, \xi_Y) \end{split}$$

We can now give the standard definition of a Cartan geometry modelled on a Klein geometry:

Definition 9.18. A Cartan geometry (P, ω) on M modelled on G_{H} consists of the following:

- 1. a principal H-bundle $P \to M$
- 2. $\omega \in \Omega^1(P;\mathfrak{g})$ satisfying
 - (a) $\forall p \in P \omega_p : T_p P \to \mathfrak{g}$ is a vector space isomorphism
 - (b) $\forall h \in H, r_h^* \omega = \operatorname{Ad}(h^{-1})\omega$
 - (c) $\forall X \in \mathfrak{h}, \, \omega(\xi_X) = X$

Definition 9.19. Let $\Omega = d\omega + \frac{1}{2} [\omega, \omega] \in \Omega^2(P; \mathfrak{g})$ be the curvature of ω . Then projection $pr_{\mathfrak{g}_{\mathfrak{h}}} \circ \Omega \in \Omega^2(P; \mathfrak{g}_{\mathfrak{h}})$ is the **torsion** of ω . The Cartan geometry is **torsion free** if $\Omega \in \Omega^2(P; \mathfrak{h})$

Lemma 9.20. Let (P, ω) be a Cartan geometry on M modelled on G_H . Let $\psi : P \to H$ be a smooth and $f : P \to P$ be such that $f(p) = r_{\psi(p)}(p)$. Then $f^*\omega = \operatorname{Ad}(\psi^{-1})\omega + \psi^*\vartheta_H$ and $f^*\Omega = \operatorname{Ad}(\psi) \circ \Omega$.

Proof. The expression for $f^*\Omega$ follows from that of $f^*\omega$. To calculate $f^*\omega$, we work relative to a Cartan gauge (U,θ) on $U\times H$. Then $f:U\times H\to U\times H$ by $f(a,h)=(a,h\psi(a,h))$ can be written as f=

$$(\mathrm{id} \circ pr_{1}, \mu \circ (pr_{2} \times \psi)). \text{ Hence if } (v, y) \in T_{a}U \times T_{h}H$$

$$f_{*}(v, y) = (v, \mu_{*}(y, \psi_{*}(v, y))) \in T_{a}U \times T_{h\psi(a, h)}H$$

$$\Rightarrow (f^{*}\omega)(v, y) = \omega(v, \mu_{*}(y, \psi_{*}(v, y)))$$

$$= \mathrm{Ad}(h\psi(a, h))^{-1} \circ \theta(v) + \vartheta_{H}(\mu_{*}(y, \psi_{*}(v, y)))$$

$$= \mathrm{Ad}(\psi^{-1}) \circ \mathrm{Ad}(h^{-1}) \circ \theta(v) + (\mu^{*}\vartheta_{H})(y, \psi_{*}(v, y))$$

$$= \mathrm{Ad}(\psi^{-1}) \circ \mathrm{Ad}(h^{-1}) \circ \theta(v) + \mathrm{Ad}(\psi^{-1}) \circ \vartheta_{H}(y) + \vartheta_{H}(\psi_{*}(v, y))$$

$$= \mathrm{Ad}(\psi^{-1}) \circ \left[\mathrm{Ad}(h^{-1}) \circ \theta(v) + \vartheta_{H}(y)\right] + (\psi^{*}\vartheta_{H})(v, y)$$

$$= \left[\mathrm{Ad}(\psi^{-1}) \circ \omega + \psi^{*}\vartheta_{H}\right](v, y)$$

Corollary 9.21. Ω is horizontal, i.e. if either u, v are tangent to the fibre, $\Omega(u,v)=0$.

Proof. Let $u, v \in T_pP$ and v tangent to the fibre. Let $\psi: P \to H$ be any smooth map sending $p \mapsto e$ s.t. $(\psi_*)_p v = -\omega_p(v) \in \mathfrak{h}$. define $f: P \to P$ by $f(q) = q \cdot \psi(q)$. Then from the previous lemma we have that $p \in P$

$$f^*\omega = \operatorname{Ad}(\psi^{-1})\omega + \psi^*\vartheta_H = \omega + \psi^*\vartheta_H$$
$$f^*\Omega = \Omega$$

Hence

$$\omega_p(f_*v) = \omega_p(v) + \vartheta_H(\psi_*v) = \omega_p(v) - \omega_p(v) = 0$$

$$\Rightarrow f_*v = 0$$

$$\Rightarrow \Omega(u, v) = \Omega(f_*u, f_*v) = \Omega(f_*u, 0) = 0$$

It follows that Ω defines a 2-form on $TP/\ker \pi_* \cong \pi^*TM$. Note that each fibre F of P is identified with H up to left multiplication by some element of H. Since ϑ_H is left-invariant, it defines a "Maurer-Cartan" form ϑ_F on the fibre. The fact that $\forall X \in \mathfrak{h}, \vartheta_F(\xi_X) = X$ shows that $\vartheta_F = \omega|_F$. It then follows that Ω vanishes when restricted to any fibre. As such we can interpret a Cartan geometry (P,ω) as deforming (G,ϑ_G) in a way that fibrewise we still have (H,ϑ_H) .

The tangent bundle of G_H is a vector bundle associated to $G \to G_H$ via the linear isotropy representation $\operatorname{Ad}_{\mathfrak{g}_{\mathfrak{h}}}: H \to GL(\mathfrak{g}_{\mathfrak{h}})$ s.t. $T(G_{H}) \cong G \times_h \mathfrak{g}_{\mathfrak{h}}$. In a similar way, the tangent bundle of a Cartan geometry (P,ω) modelled on G_H is isomorphic to an associated vector bundle $P \times_H \mathfrak{g}_{\mathfrak{h}}$.

Proposition 9.22. Let (P, ω) be a Cartan geometry on M modelled on G/H. There is a canonical bundle $isomorphism \ \varphi:TM \stackrel{\cong}{\to} P \times_H \ \text{\mathfrak{Y}_{\updelta}} \ such \ that \ \forall p \in \pi^{-1}(x), \ \exists \varphi_p: T_xM \to \ \text{\mathfrak{Y}_{\updelta}} \ a \ H-equivariant \ vector \ space$ isomorphism s.t. $\forall h \in H, \, \varphi_{p \cdot h} = \operatorname{Ad}(h^{-1}) \circ \varphi_p$

Proof. Consider the diagram

If $v \in T_x M$, we may write $v = (\pi_*)_p(u) = (\pi_*)_{ph}((r_h)_* u)$ for some $u \in T_p P$. Thus

$$\varphi_{ph}(v) = \varphi_{ph}((\pi_*)_{ph}((r_h)_*u))$$

$$= \rho(\omega_{ph}((r_h)_*u))$$

$$= \rho(\operatorname{Ad}(h)^{-1} \circ \omega_p(u))$$

$$= \operatorname{Ad}(h)^{-1}(\varphi_p((\pi_*)_pu))$$

$$= \operatorname{Ad}(h)^{-1}\varphi_n(v)$$

This allows us to define a bundle map

$$q: P \times \mathfrak{g} \to TM$$

 $(p, X) \mapsto (\pi(p), \varphi_p^{-1}(\rho(X)))$

Then

$$\begin{split} q(ph,\operatorname{Ad}(h)^{-1}X) &= (\pi(ph),\varphi_{ph}^{-1}(\rho(\operatorname{Ad}(h)^{-1}X))) \\ &= (\pi(p),(\operatorname{Ad}(H)\varphi_{ph})^{-1}\rho(X)) \\ &= (\pi(p),\varphi_{p}^{-1}(\rho(X))) \\ &= q(p,X) \end{split}$$

Hence q induces $\overline{q}: P \times_H \mathfrak{Y}_{\mathfrak{h}} \to TM$, which covers the identity and is a linear iso on the fibres.

Corollary 9.23. Let (P, ω) be a Cartan geometry on M modelled on $G_{/H}$. Then vector fields $\xi \in \mathfrak{X}(M)$ are in bijective correspondence with functions $\overline{\xi}: P \to \mathfrak{Y}_{\mathfrak{h}}$ such that $\forall p \in P, h \in H, \overline{\xi}(ph) = \operatorname{Ad}(h^{-1}) \circ \overline{\xi}(p)$ by

$$\xi \mapsto \overline{\xi} = \left\{ p \in P : \mapsto \varphi_p(\xi_{\pi(p)}) \in \mathfrak{g}/\mathfrak{h} \right\}$$

Definition 9.24. The curvature function $K: P \to \operatorname{Hom}(\Lambda^2 \mathfrak{g}/_{\mathfrak{h}}, \mathfrak{g})$ of a Cartan connection ω is defined by

$$\forall p \in P, \, \forall X, Y \in \mathfrak{g}, \, K(p)(X,Y) \equiv \Omega_p(\omega_p^{-1}(X), \omega_p^{-1}(Y))$$

Lemma 9.25. The curvature function is well defined and is H-equivariant, i.e.

$$\forall h \in H, K(ph)(X,Y) = Ad(h^{-1})K(p)(Ad(h)X, Ad(h)Y)$$

Proof. Fix $p \in P$ and let $\tilde{X} = X + W$, $\tilde{Y} = Y + Z$ for some $W, Z \in \mathfrak{h}$. Then $\Omega_p(\omega_p^{-1}(\tilde{X}), \omega_p^{-1}(\tilde{Y})) = \Omega_p(\omega_p^{-1}(X), \omega_p^{-1}(Y))$ since $\omega_p^{-1}(Z), \omega_p^{-1}(W)$ are tangent to the fibres and Ω is horizontal. Therefore $K(p) \in \operatorname{Hom}(\Lambda^2\mathfrak{g}/\mathfrak{h},\mathfrak{g})$. The equivariance follows from the equivariance of ω, Ω .

It follows that the curvature of a Cartan connection defines a **curvature section** of the bundle $P \times_H \operatorname{Hom}(\Lambda^2 \mathfrak{g}/\mathfrak{h}, \mathfrak{g})$.

Proposition 9.26. A Cartan connection is torsion free iff the curvature function takes values in $\operatorname{Hom}\left(\Lambda^2\mathfrak{g}_{\mathfrak{h}},\mathfrak{h}\right)\subset\operatorname{Hom}\left(\Lambda^2\mathfrak{g}_{\mathfrak{h}},\mathfrak{g}\right)$.

Exercise 9.27. Show that
$$K(p)(X,Y) = [X,Y] - \omega_p(\left[\omega_p^{-1}X,\omega_p^{-1}Y\right])$$

Lemma 9.28 (Bianchi identity). $d\Omega = [\Omega, \omega]$

Proof. Follows *Mutatis Mutandis* as for Ehresmann connections.

Let V be a vector space and $f: P \to V$ a function. A Cartan connection $\omega \in \Omega^1(P; \mathfrak{g})$ defines a universal covariant derivative as follows: if $X \in \mathfrak{g}$ and if $\xi_X = \omega^{-1}(X)$, then $\tilde{D}_X f \equiv \xi_X f$. Since this is linear in $X \in \mathfrak{g}$, we get

$$\tilde{D}: \Omega^0(P; V) \to \Omega^0(P; V \otimes \mathfrak{g}^*)$$

$$f \mapsto \tilde{D}f$$

where we define $\tilde{D}f$ by $(i_X)_*\tilde{D}f = \tilde{D}_Xf$ for

$$i_X: V \otimes \mathfrak{g}^* \to V$$

 $v \otimes \eta \mapsto \eta(X)v$

Definition 9.29. Let $\rho: H \to GL(V)$ be a representation. We define

$$\Omega^k(P;\rho) \equiv \left\{ \alpha \in \Omega^k(P;V) \,|\, \forall h \in H, \, r_h^*\alpha = \rho(h^{-1}) \circ \alpha \right\}$$

the k-forms on P transforming according to ρ .

Proposition 9.30. $\tilde{D}: \Omega^0(P;\rho) \to \Omega^1(P;\rho) \cong \Omega^0(P;\rho \otimes \mathrm{Ad}^*)$

Proof. Let $p \in P$, $X \in \mathfrak{g}$, $f \in \Omega^0(P; \mathfrak{g})$. Then

$$(i_X)_*(r_h^*(\tilde{D}f))(p) = (i_X)_*(\tilde{D}f(ph))$$
$$= (\tilde{D}_X f)(ph)$$
$$= \omega_{ph}^{-1}(X)f$$

Now $r_h^*\omega=\mathrm{Ad}(h^{-1})\circ\omega\Rightarrow\omega_{ph}\circ(r_h)_*=\mathrm{Ad}(h^{-1})\circ\omega_p\Rightarrow(r_{h^{-1}})_*\circ\omega_{ph}^{-1}=\omega_p^{-1}\circ\mathrm{Ad}(h)$ so

$$(i_X)_*(r_h^*(\tilde{D}f))(p) = \left[(r_h)_*\omega_p^{-1}(\operatorname{Ad}(h)X)\right]f$$

If $Y \in \mathfrak{X}(P)$ we have

$$((r_h)_*Y)f = Y(r_h^*f) = Y(\rho(h^{-1}) \cdot f) = \rho(h^{-1})Yf$$

so taking $Y = \omega_p^{-1}(\mathrm{Ad}(h)X)$ yields

$$\left[(r_h)_*\omega_p^{-1}(\mathrm{Ad}(h)X)\right]f=\rho(h^{-1})\omega_p^{-1}(\mathrm{Ad}(h)X)f=\rho(h^{-1})\tilde{D}_{\mathrm{Ad}(h)X}f$$

and so

$$(i_X)_*(r_h^*\tilde{D}f)(p) = \rho(h^{-1})\tilde{D}_{\mathrm{Ad}(h)X}f$$

Even if (V, ρ) is irreducible, $(V \otimes \mathfrak{g}^*, \rho \otimes \operatorname{Ad}^*)$ need not be. Decomposing $V \otimes \mathfrak{g}^*$ into irreducibles decomposes \widetilde{D} and in this way we get 'famous' differential operators such as $\partial, \overline{\partial}, \nabla \cdot, \nabla \times$.

Lemma 9.31. Let $X \in \mathfrak{h}$ and $f \in \Omega^0(P; \mathfrak{g})$. Then $(i_X)_* \tilde{D}f = -\rho_*(X)f$ where $\rho_* : \mathfrak{h} \to \operatorname{End}(V)$ is the LA hom induced by $\rho : H \to GL(V)$

$$(i_X)_*(\tilde{D}f)(p) = \omega_p^{-1}(X)f$$

$$= \frac{d}{dt}f(pe^{tX})\Big|_{t=0}$$

$$= \frac{d}{dt}\rho(e^{-tX})f(p)\Big|_{t=0}$$

$$= -\rho_*(X)f(p)$$

9.1 Reductive Cartan geometries

Now assume that (P,ω) is reductive, s.t. $\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}$ with $\mathrm{Ad}(H)\mathfrak{m}\subseteq\mathfrak{m}$. Then the Cartan connection decomposes as $\omega=\omega_{\mathfrak{h}}+\omega_{\mathfrak{m}}$, so does the Cartan gauge $\theta=\theta_{\mathfrak{h}}+\theta_{\mathfrak{m}}$, and so does $\tilde{D}=\tilde{D}_{\mathfrak{h}}+\tilde{D}_{\mathfrak{m}}$. If for $X\in\mathfrak{h},\ \tilde{D}_Xf=-\rho(X)f$, then $\tilde{D}_{\mathfrak{h}}=-\rho$. As we will see below, $\tilde{D}_{\mathfrak{m}}$ defines a Kozul connection on any associated vector bundle $P\times_H V$. It follows from the defining properties of a Cartan connection that $\omega_{\mathfrak{h}}\in\Omega^1(P;\mathfrak{h})$ is the connection one-form for an Ehresmann connection on the principal H-bundle $P\to M$. In contrast, the component $\omega_{\mathfrak{m}}\in\Omega^1(P;\mathfrak{m})$ satisfies

1. It is horizontal, i.e. $\forall X \in \mathfrak{h}, \, \omega_{\mathfrak{m}}(\xi_X) = 0$

2.
$$r_h^* \omega_{\mathfrak{m}} = \operatorname{Ad}(h^{-1}) \circ \omega_{\mathfrak{m}}$$

The above two mean that $\omega_{\mathfrak{m}}$ induces a one-form on M with values in the associated vector bundle $P \times_H \mathfrak{m}$, which is isomorphic to TM. Thus $\omega_{\mathfrak{m}}$ is a **soldering form** on P.

As ω splits, so does $\Omega = \Omega_{\mathfrak{h}} + \Omega_{\mathfrak{m}}$ where the structure equation $\Omega = d\omega + \frac{1}{2} [\omega, \omega]$ gives

$$\begin{split} \Omega_{\mathfrak{h}} &= d\omega_{\mathfrak{h}} + \frac{1}{2} \left[\omega_{\mathfrak{h}}, \omega_{\mathfrak{h}} \right] + \frac{1}{2} \left[\omega_{\mathfrak{m}}, \omega_{\mathfrak{m}} \right]_{\mathfrak{h}} \\ \Omega_{\mathfrak{m}} &= d\omega_{\mathfrak{m}} + \left[\omega_{\mathfrak{h}}, \omega_{\mathfrak{m}} \right] + \frac{1}{2} \left[\omega_{\mathfrak{m}}, \omega_{\mathfrak{m}} \right]_{\mathfrak{m}} \end{split}$$

Therefore, the \$\beta\$-component of the curvature of the Cartan connection is not necessarily the curvature of the Ehresmann connection, but receives a correction from the soldering form:

$$\Omega_{\mathfrak{h}}^{Cartan} = \Omega^{Ehresmann} + \frac{1}{2} \left[\omega_{\mathfrak{m}}, \omega_{\mathfrak{m}} \right]_{\mathfrak{h}}$$

whereas the torsion of the Cartan connection is not necessarily the torsion of the affine connection defined by $\omega_{\mathfrak{h}}$:

$$\Theta^{Cartan} = \Omega_{\mathfrak{m}}^{Cartan} = \Theta + \frac{1}{2} \left[\omega_{\mathfrak{m}}, \omega_{\mathfrak{m}} \right]_{\mathfrak{m}}$$

Let's now consider the universal covariant derivative $\tilde{D} = \tilde{D}_{\mathfrak{h}} + \tilde{D}_{\mathfrak{m}}$. The \mathfrak{m} -component defines a Kozul connection on any associated vector bundle $E \equiv P \times_H V$ for (V, ρ) a representation of H. Indeed, let $\psi : \Gamma(E) \to \Omega^0(P; \rho)$ be the $C^{\infty}(M)$ -modules isomorphism. We define $\nabla_{\zeta} : \Gamma(E) \to \Gamma(E)$ by the commutativity of the following square:

$$\Gamma(E) \xrightarrow{\nabla_{\zeta}} \Gamma(E)$$

$$\psi \downarrow \cong \qquad \cong \downarrow \psi$$

$$\Omega^{0}(P; \rho) \xrightarrow{\tilde{\zeta}} \Omega^{0}(p; \rho)$$

i.e. $\psi(\nabla_{\zeta}s) = \tilde{\zeta}\psi(s)$, where $\tilde{\zeta}$ is the **horizontal lift** of ζ , i.e the unique¹ vector field on P s.t. $(\pi_*)_p\tilde{\zeta} = \zeta_{\pi(p)}$ and $\omega_{\mathfrak{h}}(\tilde{\zeta}) = 0$

Proposition 9.32. ∇ defines a Kozul connection on E

¹Is it clear why this vector field is unique

Proof. ∇_{ζ} is \mathbb{R} -linear and if $f \in C^{\infty}(M)$, $(\pi^* f)\tilde{\zeta}$ is the horizontal lift of $f\zeta$, so we have $\nabla_{f\zeta}s = f\nabla_{\zeta}s$. Finally, to get that ∇ is a derivation, see

$$\psi(\nabla_{\zeta}(fs)) = \tilde{\zeta}\psi(fs) = \tilde{\zeta}(\pi^*f\psi(s)) = \tilde{\zeta}(\pi^*f)\psi(s) + (\pi^*f)\tilde{\zeta}\psi(s)$$
$$= \pi^*(\zeta f)\psi(s) + (\pi^*f)\psi(\nabla_{\zeta}s) = \psi((\zeta f)s) + \psi(f\nabla_{\zeta}s)$$
$$= \psi((\zeta f)s + f\nabla_{\zeta}s)$$

Proposition 9.33. Let (U, θ) be a gauge for a reductive Cartan geometry, $\sigma : U \to P|_U$ the section such that $\theta = \sigma^* \omega$, $\zeta \in \mathfrak{X}(U)$, and $\phi = \sigma^* \Phi$ where $\Phi \in \Omega^0(P; \rho)$. Then

$$\nabla_{\zeta} \phi \equiv \zeta(\phi) - \rho_*(\theta_{\mathfrak{h}}(\zeta))\phi$$

is the expression of the covariant derivative of Φ in the gauge (U, θ) .

9.2 Special geometries

We may define 'special geometries' via curvature constraints

Lemma 9.34. Let $V \subset \mathfrak{g}$ be the vector subspace spanned by the values of the curvature form Ω . Then V is a H-submodule

Proof. Let $v = \Omega_p(\xi_p, \eta_p)$. Then

$$\operatorname{Ad}(h^{-1})v = \operatorname{Ad}(h^{-1})(\Omega_p(\xi_p, \eta_p))$$
$$= (r_h^*\Omega_p)(\xi_p, \eta_p)$$
$$= \Omega_{ph}((r_h)_*\xi_p, (r_h)_*\eta_p)$$

which is a value of Ω

In particular if $V \subset \mathfrak{h}$ is s.t. the Cartan geometry is torsion-free, then V is is an ideal. If the geometry is torsion-free and the action of H on \mathfrak{h} is irreducible, there are no special geometries arising from \mathfrak{g} -curvature conditions. However, the H-modules $\operatorname{Hom}\left(\Lambda^2\left(\mathfrak{g}/\mathfrak{h}\right),\mathfrak{h}\right)$ need not be irreducible and we can define special geometries by damnding that the curvature function $K:P\to\operatorname{Hom}\left(\Lambda^2\left(\mathfrak{g}/\mathfrak{h}\right),\mathfrak{h}\right)$ takes values in a H-submodule. If H is compact, then $\operatorname{Hom}\left(\Lambda^2\left(\mathfrak{g}/\mathfrak{h}\right),\mathfrak{h}\right)$ is fully reducible

Example 9.35.
$$\mathfrak{g} = \mathfrak{so}_n \ltimes \mathbb{R}^n$$
 and $\mathfrak{h} = \mathfrak{so}_n$. Have $\operatorname{Hom}\left(\Lambda^2\left(\mathfrak{g}_{\mathfrak{h}}\right), \mathfrak{h}\right) = \operatorname{Hom}(\Lambda^2\mathbb{R}^n, \mathfrak{so}_n)$.

The subspace corresponding to those curvature functions obeying the (algebraic) Bianchi identity breaks up into three submodules: scalar, trace-free Ricci, and Weyl.

Cartan connections are special types of Ehresmann connections. Let $P \to M$, $G \to G/H$, be principal H-bundles. There is an associated fibre bundle $Q = P \times_H G$ where H acts on G by left multiplication. This is a (right) principal G-bundle and M, and we have a natural inclusion $P \subset Q$ sending $p \mapsto (p, e)$. An Ehresmann connection on Q is a \mathfrak{g} -valued one-form and its restriction to P gives a candidate for a Cartan connection on P.

Theorem 9.36. Let G_H be a Klein geometry and let P,Q be principal H,G-bundles respectively over a manifold M. Assume that $\dim P = \dim G$ and $\varphi: P \to Q$ is a H-bundle map. Then there is a bijection of sets

 $\{Ehresmann\ connections\ on\ Q,\ kernels\ not\ \varphi_*(TP)\}\xrightarrow{\varphi^*} \{Cartan\ connections\ on\ P\}$

Proof. Let $\varpi \in \Omega^1(Q; \mathfrak{g})$ be an Ehresmann connection s.t. $\varpi_*(TP) \cap \ker \varpi = 0$. It follows that $\omega = \varphi^* \varpi \in \Omega^1(p; \mathfrak{g})$ with zero kernel. Since dim $P = \dim \mathfrak{g}$, $\omega_p : T_pP \to \mathfrak{g}$ is injective and so an isomorphism.

Since $\varphi: P \to Q$ is a H-bundle map, $\forall X \in \mathfrak{h}$ the vector fields ξ_X on P and ζ_X on Q are φ -related: i.e

$$\forall p \in P, (\varphi_*)_p \xi_X(p) = \zeta_X(\varphi(p))$$

Also,

$$r_h^*\omega = r_h^*\varphi^*\varpi = \varphi^*r_h^*\varpi = \varphi^*(\mathrm{Ad}(h^{-1})\circ\varpi) = \mathrm{Ad}(h^{-1})\circ\varphi^*\varpi = \mathrm{Ad}(h^{-1})\circ\omega$$

so ω is a Cartan connection. Next we define a correspondence

{Cartan connections on P} \xrightarrow{j} {Ehresmann connections on Q, kernels not $\varphi_*(TP)$ }

Given a Cartan connection ω on P we extend it to a form $\varpi = j(\omega)$ on $P \times G$ by

$$\varpi_{(p,g)} = \operatorname{Ad}(g^{-1}) \circ \pi_P^* \omega_p + \pi_G^* \vartheta_G|_q$$

where $\pi_{P/G}: P \times G \to P/G$ are the canonical projections. We notice that $\forall X \in \mathfrak{g}, \ \varpi(0, X^L) = X$. Also, if $i: P \to P \times G$ is the injection $p \mapsto (p, e)$ then $i^*\varpi = \omega$. In particular, ϖ does not vanish on $T(P \times \{e\})$. Let $\gamma \in G$ and consider id $\times R_{\gamma}: P \times G \to P \times G$:

$$(\operatorname{id} \times R_{\gamma})^{*} \varpi_{(p,g\gamma)} = \varpi_{(p,g\gamma)} \circ (\operatorname{id} \times R_{\gamma})_{*}$$

$$= \left(\operatorname{Ad}(g\gamma)^{-1} \circ \pi_{P}^{*} \omega_{p} + \pi_{G}^{*} \vartheta_{G}\right) \circ (\operatorname{id} \times R_{\gamma})_{*}$$

$$= \operatorname{Ad}(g\gamma)^{-1} \circ \omega \circ (\pi_{P})_{*} \circ (\operatorname{id} \times R_{\gamma})_{*} + \vartheta_{G} \circ (\pi_{G})_{*} \circ (\operatorname{id} \times R_{\gamma})_{*}$$

$$= \operatorname{Ad}(g\gamma)^{-1} \circ \omega \circ (\pi_{P})_{*} + \vartheta_{G} \circ (R_{\gamma})_{*} \circ (\pi_{G})_{*}$$

$$= \operatorname{Ad}(\gamma)^{-1} \left(\operatorname{Ad}(g)^{-1} \circ \pi_{P}^{*} \omega + \pi_{G}^{*} \vartheta_{G}\right)$$

$$= \operatorname{Ad}(\gamma)^{-1} \circ \varpi_{(p,g)}$$

We now check that ϖ is basic for $P \times G \to P \times_H G$ which means that it is both horizontal and 'invariant'. The latter condition requires that for $\alpha_h : P \times G \to P \times G$, $(p,g) \mapsto (phh^{-1}g)$, we have $\alpha_h^* \varpi = \varpi$. We calculate

$$(\alpha_h^* \varpi)_{(p,g)} = \varpi_{(ph,h^{-1}g)} \circ (\alpha_h)_*$$

$$= \operatorname{Ad}(h^{-1}g)^{-1} \pi_P^* \omega \circ (\alpha_h)_* + \pi_G^* \vartheta_G \circ (\alpha_h)_*$$

$$= \operatorname{Ad}(h^{-1}g)^{-1} \omega \circ (\pi_P)_* \circ (\alpha_h)_* + + \vartheta_G \circ (\pi_G)_* \circ (\alpha_h)_*$$

$$= \operatorname{Ad}(g^{-1}) \circ \operatorname{Ad}(h) \circ \omega \circ (R_h)_* \circ (\pi_P)_* + \vartheta_G \circ (L_{h^{-1}})_* \circ (\pi_G)_*$$

$$= \operatorname{Ad}(g^{-1}) \circ \pi_P^* \omega + \pi_G^* \vartheta_G \quad (\text{as } R_h^* \omega = \operatorname{Ad}(h)^{-1} \omega \text{ and } \vartheta_G \text{ is LI})$$

$$= \varpi_{(p,g)}$$

To show ϖ is horizontal, let $X \in \mathfrak{h}$ and $\xi_X \in \mathfrak{X}(P \times G)$ corresponding to the right H-action on $P \times G$:

$$P \times G \times H \to P \times G$$

 $(p, q, h) \mapsto (ph, h^{-1}q) = ((\mu_P \times \mu_G) \circ (\mathrm{id} \times \mathrm{id} \times 1 \times \mathrm{id}) \circ (\mathrm{id} \times \Delta \times \mathrm{id}) \circ \rho)) (p, q, h)$

where we have

$$\varrho: P \times G \times H \to P \times H \times G$$

$$(p, g, h) \mapsto (p, h, g)$$

$$\mathrm{id} \times \Delta \times \mathrm{id}: P \times G \times H \to P \times H \times H \times G$$

$$(p, h, g) \mapsto (p, h, h, g)$$

$$\mathrm{id} \times \mathrm{id} \times \mathrm{id}: P \times H \times H \times G \to P \times H \times H \times G$$

$$(p, h, h, g) \mapsto (p, h, h^{-1}, g)$$

$$\mu_P \times \mu_G: P \times H \times H \times G \to P \times G$$

$$(p, h, h^{-1}, q) \mapsto (ph, h^{-1}q)$$

Then

$$\begin{split} (\xi_X)_{(p,g)} &= ((\mu_P \times \mu_G) \circ (\operatorname{id} \times \operatorname{id} \times \operatorname{id}) \circ (\operatorname{id} \times \Delta \times \operatorname{id}) \circ \varrho))_{*,(p,g,e)} (0,0,X) \\ &= (\mu_P \times \mu_G)_* \circ (\operatorname{id} \times \operatorname{id} \times \operatorname{id})_* \circ (\operatorname{id} \times \Delta \times \operatorname{id})_{*,(p,e,g)} (0,X,0) \\ &= (\mu_P \times \mu_G)_* \circ (\operatorname{id} \times \operatorname{id} \times \operatorname{id})_{*,(p,e,e,g)} (0,X,X,0) \\ &= (\mu_P \times \mu_G)_{*,(p,e,e,g)} (0,X,-X,0) \\ &= (\mu_P)_{*,(p,e)} (0,X), (\mu_G)_{*,(e,g)} (-X,0) \\ &= (\mu_P)_{*,(p,e)} (0,X), (\mu_G)_{*,(e,g)} (-X,0) \\ &= (\omega_p^{-1}(X), -(\vartheta_G)_g^{-1}(\operatorname{Ad}(g^{-1})X)) \\ \Rightarrow \varpi_{(p,g)}(\xi_X) &= \varpi_{(p,g)} (\omega_p^{-1}(X), -(\vartheta_G)_g^{-1}(\operatorname{Ad}(g^{-1})X)) \\ &= (\operatorname{Ad}(g^{-1}) \cdot (\pi_P^* \circ \omega) + \pi_G^* \vartheta_G) (\omega_p^{-1}(X), -(\vartheta_G)_g^{-1}(\operatorname{Ad}(g^{-1})X)) \\ &= \operatorname{Ad}(g^{-1})X = \operatorname{Ad}(g^{-1})X = 0 \end{split}$$

Therefore ϖ descends to $\varpi \in \Omega^1(P \times_H G, \mathfrak{g})$ and satisfies the properties of an Ehresmann connection which in addition obeys $\ker \varpi \cap \varphi_*(TP) = 0$.

Finally, we need to show that φ^* and j are mutual inverses:

$$\varphi^*(j(\omega_p)) = \varphi^* \varpi_{(p,e)} = \operatorname{Ad}(e)^{-1} \circ \varphi^* \pi_P^* \omega_p + \varphi^* \pi_G^* \vartheta_{Ge}$$
$$= (\pi_P \circ \varphi)^* \omega_p + 0 \quad \text{(since } \pi_G \circ \varphi \text{ is constant)} \qquad = \omega_p$$

shows that $\varphi^* \circ j = \text{id}$. To do the other direction, it suffices to show φ^* is injective. Now if $\varphi^* \varpi = \varphi^* \varpi_2$ then ϖ_1, ϖ_2 agree on the image $\varphi_*(TP)$ and hence on all the right translations. But ϖ_1, ϖ_2 agree on ξ_X and these two kinds of vectors span TQ

References