Familiarization with odometry data

Visit: https://en.wikipedia.org/wiki/Rotary_encoder

Table of Contents

Load and visualize data
Plotting encoders data with respect time
Total wheel displacements profile
Wheel incremental displacements
Incremental displacements profile
Wheel velocities profile
Equivalence of Encoder Data
Recovered wheel displacements profile
Odometry
Pose integration
Displaying trajectory
Understanding Orientation
Plotting the enviroment and trajectory
Uncertanty: Adding noise
Displacement noise visualization
Pose integration with noise
Comparing trajectories

Load and visualize data

R_acu & L_acu: The microcontroller counter report; firts column time stamp, second column the total displacement of right and left wheel in meters.

```
R_acu = 3004x2
                  0
        0
                  0
   0.0200
                  0
   0.0400
                 0
   0.0600
   0.0800
                 0
   0.1000
                 0
   0.1200
                 0
   0.1400
                 0
   0.1600
                0
   0.1800
L \ acu = 3004 \times 2
     0
   0.0200
   0.0400
   0.0600
                 0
   0.0800
                 0
                 0
   0.1000
                 0
   0.1200
   0.1400
                 0
   0.1600
                 0
                 0
   0.1800
```

Ts & Tf: Sample time and total experiment time (Tf=Numbers of rows *Ts) in [s]

```
Ts = 0.0200

Tf = 60.0800

Tf = 60.0800

ts = 3003x1
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
```

r_w & W: Mobile Robot paramenters; wheel radius and distance between wheels in [m]

```
r w = 0.0947
```

```
W = 0.5200
W = 0.5200
```

Plotting encoders data with respect time

```
t = 3004 \times 1
   0.0200
   0.0400
   0.0600
   0.0800
   0.1000
   0.1200
   0.1400
   0.1600
    0.1800
t = 3004 \times 1
   0.0200
   0.0400
   0.0600
   0.0800
   0.1000
   0.1200
   0.1400
    0.1600
    0.1800
t = 3004 \times 1
  0.0200
   0.0400
   0.0600
   0.0800
   0.1000
   0.1200
   0.1400
    0.1601
    0.1801
```

Total wheel displacements profile

Wheel incremental displacements

It tell us how much displacement did the wheel during a sample time.

$$R_{\rm inc} = R_{k+1} - R_k$$

$$L_{\rm inc} = L_{k+1} - L_k$$

0

0

0 0 0

$$L_{inc} = 3003 \times 1$$

0 0 0

Incremental displacements profile

Wheel velocities profile

Velocity =
$$\frac{\Delta \text{displacemts}}{\Delta \text{time}} = \frac{\Delta e}{\Delta t} = \frac{\Delta R}{T_s} = \frac{R_{\text{inc}}}{T_s}$$

Equivalence of Encoder Data

Some time the microcontroller gives wheels increment displacement. To recover total wheel displacement

$$R_{\text{acu}_k} = \int_0^{t_k} R_{\text{inc}}(t) dt \equiv \sum_i^k R_{\text{inc}_i}$$

0 0

Recovered wheel displacements profile

Odometry

$$\delta_x = \frac{R_{inc} + L_{inc}}{2}$$

$$\delta_{\Psi} = \frac{R_{inc} - L_{inc}}{2S}$$

Pose integration

Pose as a Frame description;
$$\xi_k = \begin{pmatrix} c\theta_k & -s\theta_k & x_k \\ s\theta_k & c\theta_k & y_k \\ 0 & 0 & 1 \end{pmatrix}$$

Using post multiplication

Next pose; $\xi_{k+1} = \xi_k \tan s l_x(\delta_d) Rot_Z(\delta_\theta)$

or using

$$\xi_{k+1} = \begin{pmatrix} p_{k+1} \\ \theta_{k+1} \end{pmatrix} = \begin{pmatrix} x_k + \delta_d c \theta_k \\ y_k + \delta_d s \theta_k \\ \theta_k + \delta_\theta \end{pmatrix}$$

Initial orientation = -1.5708

$$x = 8.7000$$

y = 17.2000

 $\circ = -1.5708$

Displaying trajectory

Understanding Orientation

Think about
$$\sin\left(-\frac{\pi}{2}\right) = \sin\left(\frac{3}{2}\pi\right) = \sin\left(2\pi + \frac{3}{2}\pi\right)$$

Plotting the environent and trajectory

```
figure1 =
  Figure (7) with properties:

    Number: 7
    Name: ''
    Color: [1 1 1]
  Position: [671 661 577 433]
    Units: 'pixels'

Show all properties
```


Uncertanty: Adding noise

$$\delta_d = \frac{R+L}{2} + \nu_d$$

$$\delta_{\theta} = \frac{R - L}{2S} + \nu_{\theta}$$

Noise in the odometry displacement

```
delta_d_n = 3003x1
     0.0027
     0.0092
     -0.0113
     0.0043
     0.0016
     -0.0065
     -0.0022
     0.0017
     0.0179
     0.0138
     :
     :
}
```

Noise in the odometry change of orientation

$$delta_t_n = 3003 \times 1$$

0.0077

```
-0.0031
-0.0035
-0.0071
-0.0005
-0.0005
-0.0016
-0.0042
-0.0083
0.0151
```

Displacement noise visualization

Orientation noise visualization

Pose integration with noise

Comparing trajectories

Ellipse error

It is of interest to launch many time the dices (our trajectory with noise) and check for the last position and orientation

Visualizing the experimental ellipse error of final position

This image is with 1000 launch the dices

