Exercício 3: Otimização de funções

Deve ser entregue relatório até à aula seguinte.

- 1. Corpo preso a uma mola: um corpo preso a uma mola esta sujeito a um potencial dado pela função 0.5*(x-2)².
 - a. Implemente o método do número dourado para encontrar a posição de equilíbrio do corpo. Use como intervalo inicial [a,b]={[-0.7,2.6];[0.4,1.7]}. Use como critério de convergência, $\epsilon_r=0.001\%$. Discuta o valor obtido para cada intervalo usado.
 - b. Implemente o método do Gradiente para a mesma função. Use um máximo de 10 iterações, x0=0, uma precisão de $\epsilon = 1 \times 10^{-5}$, e valores da constante $\lambda = \{0.1; 0.5; 1; 2; 2.1\}$.
 - c. Trace o gráfico dos valores do mínimo em função do número de iterações para cada λ (coloque todas as curvas no mesmo gráfico). Discuta o comportamento de cada curva.
 - d. **(opcional).** Implemente o método do gradiente em C++ e em Python, para um máximo de iterações de 1×10^{10} , uma precisão de $\epsilon=1\times 10^{-10}$ e um $\lambda=1\times 10^{-7}$. Compare o tempo de cálculo de cada linguagem de programação. Faça um gráfico do tempo de cálculo em função do λ para as duas linguagens.
 - e. **(opcional).** Implemente um método similar ao do número de ouro, mas com outros rácios em vez do número de ouro. Compare a convergência do método. Como melhorava o algoritmo dado nas aulas de forma a ser mais eficiente?
 - f. (opcional). Implemente um protocolo para otimizar o valor de λ a cada passo no método do Gradiente.
- 2. Distância em ligação iónica: O potencial de interação entre o ião Na⁺ e um ião Cl⁻ pode ser dado pela função:

$$U(r) = Ae^{-Br} - \frac{C}{r}$$

- a. Considerando A=80eV, C=10eVÅ, $B=2\text{Å}^{-1}$, e r a distância entre iões, represente graficamente a função e identifique a região onde se encontra a posição de equilíbrio entre os dois iões (mínimo).
- b. Usando o método do gradiente encontre numericamente a distância de equilíbrio. Confirme o resultado com a função FindMinimum do Mathematica. Verifique qual a precisão usada pelo Mathematica.
- c. Aplique o método de Newton para encontrar a mesma distância de equilíbrio.
- d. Trace o gráfico da posição de equilíbrio em função do número de iterações para os dois métodos (coloque as duas curvas no mesmo gráfico).
- e. Considere o potencial agora em duas dimensões, U(x,y), com $r=\sqrt{x^2+y^2}$. Implemente o método do gradiente em duas dimensões para encontrar o mínimo (x,y) da função (Dica: confirme a derivada parcial usando a função D[U(x,y),x] e D[U(x,y),y] no Mathematica) usando como condições iniciais x_0 = 5 e y_0 =-5. Trace o gráfico de y e x em função do número de interações (no mesmo gráfico) e coloque um inset (gráfico dentro de outro) com a trajetória (y em função de x). Use FindMinimum do Mathematica para confirmar o valor. Como se compara o novo mínimo encontrado com o da alínea b).
- f. Faça um gráfico de contorno em Mathematica com a equação usada em função de x e y (use a função ContourPlot []). Discuta a posição do mínimo nesse gráfico.
- g. (opcional). Implemente o método do Gradiente para U(x,y,z).