Community Detection

Rajesh Sundaresan Indian Institute of Science Data Analytics

Can machines see what we see? We see two clusters

The standard k-means algorithm fails

Zachary's karate club

▶ Members of a karate club (observed for 3 years). Edges represent interactions outside the activities of the club.

Can machines see beyond what we can?

At some point, a fissure developed, and the group split into two. Can you predict the factions?

► Two clusters. One around '0' who was the Instructor. One around '32' and '33', the latter was president of the club.

Bottlenose dolphins at Doubtful Sound, New Zealand

Dolphins at Doubtful Sound (Lusseau 2003)

- ➤ A network of 62 bottlenose dolphins living around Doubtful Sound (New Zealand).
- Nodes: Dolphins. Edge: if seen together at more often than random chance meetings.
- One of the dolphins was away for some time, and the group split into two.

Two groups

Other examples

- Collaborations of scientists
- ▶ Protein-protein interaction network and its change in cancerous rats
- ▶ Word networks and categorisation, experiment with the word 'bright'

Abstraction

Given a graph (nodes and edges), partition the graph into components, subsets of nodes, such that each subset is strongly interconnected with comparatively fewer edges across subsets.

Why study?

- ► Fast isolation of communities in case of epidemics
- ► Targeted advertisements, better recommendations
- ▶ Detection of vulnerabilities in the network

- ► Main difference from previous settings
 - Unsupervised, no training samples

The generative perspective

Suppose you were to generate an instance of a graph with a few communities, and challenge your colleague's algorithm, how would you go about it?

The Stochastic Block Model SBM(p, q, (n/2, n/2))

- For a graph G = (V, E), A = adjacency graph defined by $A_{i,j} = 1$ if i and j are connected. Symmetric.
- Generate A with two communities.
 - Links within community w.p. p = 1/2
 - Links across community w.p. q = 1/8, note q < p. (Noise)

The Stochastic Block Model SBM(p, q, (n/2, n/2))

Permute, erase community labels, and send graph to your colleague.

Two equal communities

- ▶ SBM(p, q, (50, 50)), two equal-sized communities.
- ▶ This is a +1, -1 classification problem for each node
- ▶ A candidate labelling is $v = (-1, -1, \dots, -1, +1, +1, \dots, +1)^T$
- For any such balanced labelling, we know $\langle \mathbf{1}, \mathbf{v} \rangle = 0$ where $\mathbf{1}$ is the vector of all 1s.
- Since you generated using a statistical model, your colleague could use the maximum likelihood principle.

Maximum likelihood principle

- Five Given a graph generated by the stochastic block model SBM(p, q, (50, 50)):
- \triangleright If S and S^c are the two communities, we can write

$$v=\mathbf{1}_{S}-\mathbf{1}_{S^c}.$$

- ▶ Balanced: $\langle \mathbf{1}, v \rangle = 0$.
- Assign labels +1 to 50% of the nodes and -1 to 50% of the nodes to maximise likelihood of the observed graph:

$$\mathsf{Pr}\left\{ G \;\middle|\; v = \mathbf{1}_{S} - \mathbf{1}_{S^c} \;\mathsf{with}\; \langle \mathbf{1}, v
angle = 0
ight\}$$

The outcome

Theorem

The maximum likelihood assignment v solves

$$\max_{v \in \{-1,1\}^n : \langle 1,v \rangle = 0} v^T A v$$

$$\equiv \min_{v \in \{-1,1\}^n : \langle 1,v \rangle = 0} v^T L v$$

$$\equiv \min_{(S,S^c), balanced} cut(S,S^c)$$

- L = D A, Laplacian $D = diag(d_1, ..., d_n)$ $d_i = degree of node i$.
- $ightharpoonup cut(S, S^c) = \text{number of cross-linkages}.$
- ▶ Works for any 0 < q < p < 1!

Min-cut

Tough nut to crack, and a settlement for less

- Computer scientists know that this is a hard optimisation problem to solve.
- ▶ Relax $v \in \{-1,1\}^n$ to $v \in \mathbb{R}^n$. Since only sign matters, normalise v to have unit norm.

$$\begin{aligned} & \text{min} & & v^T L v \\ & \text{subject to} & & ||v|| = 1 \\ & & & \langle \mathbf{1}, v \rangle = 0. \end{aligned}$$

Look for vectors v that minimise $v^T L v$ among all unit vectors v orthogonal to $\mathbf{1}$.

Properties of L

- ► Facts:
 - L is symmetric with all eigenvalues real and nonnegative.

$$Lu_i = \lambda_i u_i$$

- $\{u_1, u_2, \dots, u_n\}$ are orthogonal and span \mathbb{R}^n .
- ▶ Order the eigenvalues as $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. The lowest eigenvalue is $\lambda_1 = 0$, with $u_1 = 1$.
- ▶ Write $v = \sum_{i=1}^{n} a_i u_i$, where u_i are the eigenvectors of L. So

$$v^T L v = \sum_{i=1}^n \lambda_i a_i^2.$$

What is the smallest value of $v^T L v$ when $\langle v, \mathbf{1} \rangle = 0$? The corresponding eigenvector?

Solution: Fiedler vector

- ▶ The minimising value is λ_2 .
- ightharpoonup The corresponding vector is u_2 and is called Fiedler vector
- Use u_2 as a surrogate for $\frac{1}{\sqrt{n}}(\mathbf{1}_S \mathbf{1}_{S^c})$.
- Order and pick the top half.
- ▶ If two communities of different sizes, use sign of u_2 , or cluster its entries into two groups, or pick the top k (if number is known).

Normalised Laplacian

One could also consider the normalised Laplacian:

$$L_{norm} = I - D^{-1/2}AD^{-1/2}.$$

- ▶ 0 is an eigenvalue of both L and L_{norm} . The corresponding eigenvectors are $\mathbf{1}$ and $D^{1/2}\mathbf{1}$, respectively.
- ▶ What if there are 2 (or more) components?

Spectrum of the Laplacian and components

Theorem

Let G be an undirected (possibly weighted) graph. Let L be its Laplacian. Let k be the multiplicity of the eigenvalue O. Then

- The number of connected components is k.
- ▶ The eigenspace of 0 is spanned by the indicators on the components.

Idea:

- ▶ If the graph has *k* components, then perfectly identified by clustering, see second part of theorem.
- ▶ If A has cross-linkages, but relatively small in number, the eigenvalues get perturbed, but perhaps not by much.
- Eigenvectors also get perturbed, but perhaps not by much.
- Exploit these regularities.

A more general spectral algorithm

Input: Adjacency matrix A and number of components k.

- ightharpoonup Compute the Laplacian or the normalised Laplacian L_{norm} .
- Find the *k* smallest eigenvalues and eigenvectors.

$$X = [u_1 \ u_2 \ \dots \ u_k].$$

- ▶ Identify node *i* with the *i*th row of *X*.
- Cluster the n points in R^k using a 'data clustering' algorithm. (Say via k-means algorithm.)
- Output : Clusters of the 'data clustering' algorithm.

Data clustering

- ▶ Suppose we are given points $x_1, x_2, ..., x_v \in \mathbb{R}^k$.
- ▶ Points in a metric space, with a notion of distance.
- ► Cluster the points into *k* groups.

One example: k-means clustering

Find a partition S_1, S_2, \ldots, S_k of the points so that the following is minimised:

$$\sum_{i=1}^k \sum_{I \in S_i} d(x_I, \overline{c}_i)^2.$$

where \overline{c}_i is the best representative (centroid) of S_i .

- ▶ A natural iterative block coordinate descent approach:
 - Start with some initial candidate centroids.
 - Given the centroids, find the best partition.
 - For each partition, find new centroids.
 - Repeat until convergence or max number of iterations.

Each of the individual steps is easy

Draw picture on board

Issues

- ▶ Objective function always goes down. Lower bounded by zero. So convergence of the objective function is clear.
- ► Could be a local minimum.
- ▶ Multiple restarts alleviates the problem to some extent.

The two circles problem

- ▶ So, how does it solve the two circles problem?
- ► Generate a complete graph with weights:

$$A(i,j) = \exp\left\{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2}\right\}$$