Семинар 6

Признаки сходимости знакопостоянных рядов

Рассмотрим знакопостоянный ряд $\sum_{n=1}^{\infty} a_n$. Пусть, для определённости, его члены неотрицательны: $a_n \ge 0$ (начиная с некоторого номера).

$$\sum_{n=1}^{\infty} a_n$$
 (I) $\qquad \qquad \qquad \sum_{n=1}^{\infty} b_n$ (II)

мажорантным для ряда (I), а ряд (I) называется минорантным для ряда (II). Тогда

- а) если (II) сходится \Rightarrow (I) сходится,
- б) если (I) расходится \Rightarrow (II) расходится.

Пример 1 (Демидович № 2559). Исследовать на сходимость ряд

$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n-1} + \dots = \sum_{n=1}^{\infty} \frac{1}{2n-1}.$$

Прежде всего, проверим НУС $\lim_{n\to\infty} a_n = 0$ (поскольку оно проверяется легко, а если оно не выполняется, то дальнейшее исследование не нужно). Нетрудно видеть, что НУС выполнено: $\lim_{n\to\infty}\frac{1}{2n-1}=0$. Ряд *может* сходиться. Значит, требуется дальнейшее исследование.

Далее, сделаем для общего члена ряда *оценку снизу*:

$$\frac{1}{2n-1} > \frac{1}{2n} > 0.$$

Оба ряда, $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ и $\sum_{n=1}^{\infty} \frac{1}{2n}$, являются рядами с положительными членами. *Минорантный* ряд $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ расходится (т. к. расходится гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, см. пример 5 семинара 5) \Rightarrow исходный ряд $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ тоже расходится (по признаку сравнения).

Ответ: расходится.

Пример 2. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\arctan n}{2^n}$.

HУС выполнено: $\lim_{n\to\infty}\frac{\arctan n}{2^n}=0\Rightarrow$ ряд может сходиться.

Сделаем для общего члена ряда оценку сверху:

$$0 < \frac{\arctan n}{2^n} < \frac{\pi}{2} \cdot \frac{1}{2^n}.$$

Мажорантный ряд $\sum_{n=1}^{\infty} \left(\frac{\pi}{2} \cdot \frac{1}{2^n}\right) = \frac{\pi}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ — сходится (геометрическая прогрессия) \Rightarrow исходный ряд $\sum_{n=1}^{\infty} \frac{\arctan n}{2^n}$ тоже сходится (по признаку сравнения).

1

Ответ: сходится.

Рассмотрим ряд $\sum_{n=1}^{\infty} a_n$.

Признак Коши. Пусть $a_n \ge 0$ (начиная с некоторого номера).

1. Пусть $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = q$ (конечный или бесконечный предел). Тогда а) $q > 1 \Rightarrow$ ряд расходится,

- б) $q < 1 \Rightarrow$ ряд сходится,
- в) $q = 1 \Rightarrow$ неизвестно.
- 2. Пусть $\overline{\lim_{n\to\infty}} \sqrt[n]{a_n} = q$ (конечный или бесконечный верхний предел). Тогда
 - а) $q > 1 \Rightarrow$ ряд расходится,
 - б) $q < 1 \Rightarrow$ ряд сходится,
 - в) $q = 1 \Rightarrow$ неизвестно.
- 3. Пусть
 - a) $\exists \overline{\alpha < 1}$: $\boxed{\sqrt[n]{a_n} \leq \alpha} \ \forall n \geq n_0 \Rightarrow$ ряд сходится, б) $\boxed{\sqrt[n]{a_n} \geq 1} \ \forall n \geq n_0 \Rightarrow$ ряд расходится.

Признак Даламбера. Пусть $a_n > 0$ (начиная с некоторого номера).

- 1. Пусть $\exists \overline{\lim_{n \to \infty} \frac{a_{n+1}}{a_n}} = q$ (конечный или бесконечный предел). Тогда

 - б) $q < 1 \Rightarrow$ ряд сходится,
 - в) $q = 1 \Rightarrow$ неизвестно.
- 2. Пусть $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q$ (конечный или бесконечный верхний предел). Тогда а) $q < 1 \Rightarrow$ ряд сходится,

 - б) $q \ge 1 \Rightarrow$ неизвестно.
- 3. Пусть
 - a) $\exists \underline{\alpha < 1}$: $\underline{a_{n+1}} \leq \alpha$ $\forall n \geq n_0 \Rightarrow$ ряд сходится,
 - б) $\boxed{\frac{a_{n+1}}{a_n} \geq 1}$ $\forall n \geq n_0 \Rightarrow$ ряд расходится.

Пример 3 (Демидович № 2586). Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^2}{\left(2+\frac{1}{2}\right)^n}$.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n^{2/n}}{2 + \frac{1}{n}} = \lim_{n \to \infty} \frac{e^{2\frac{\ln n}{n}}}{2 + \frac{1}{n}} = \frac{1}{2} < 1$$

⇒ ряд сходится по признаку Коши (п. 1б).

Ответ: сходится.

Пример 4 (Демидович № 2579). Исследовать на сходимость ряд

$$\frac{(1!)^2}{2!} + \frac{(2!)^2}{4!} + \dots + \frac{(n!)^2}{(2n)!} + \dots = \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}.$$

$$a_n = \frac{(n!)^2}{(2n)!} = \frac{n! \, n!}{(2n!)}, \qquad a_{n+1} = \frac{\left((n+1)!\right)^2}{\left(2(n+1)\right)!} = \frac{(n+1)! \, (n+1)!}{(2n+2)!},$$

$$\frac{a_{n+1}}{a_n} = \frac{(2n)! \, (n+1)! \, (n+1)!}{n! \, n! \, (2n+2)!} = \frac{\frac{(2n)! \, n! \, (n+1)n! \, (n+1)}{n! \, n! \, (2n)! \, (2n+1)(2n+2)} = \frac{(n+1)(n+1)}{(2n+1)(2n+1)} = \frac{n+1}{2(2n+1)} = \frac{1+\frac{1}{n}}{2\left(2+\frac{1}{n}\right)},$$

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{4} < 1$$

⇒ ряд сходится по признаку Даламбера (п. 1б).

Ответ: сходится.

Пример 5 (самостоятельно). Исследовать на сходимость $\sum_{n=1}^{\infty} n! \left(\frac{e}{n}\right)^n$.

$$a_{n} = n! \left(\frac{e}{n}\right)^{n}, \quad a_{n+1} = (n+1)! \left(\frac{e}{n+1}\right)^{n+1},$$

$$\frac{a_{n+1}}{a_{n}} = \frac{(n+1)! e^{n+1} n^{n}}{(n+1)^{n+1} n! e^{n}} = \frac{n! (n+1) e n^{n}}{(n+1)^{n+1} n!} = \frac{e n^{n}}{(n+1)^{n}} = \frac{e}{\left(1 + \frac{1}{n}\right)^{n}},$$

 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$ — из этого ничего не следует.

Но $\left(1+\frac{1}{n}\right)^n \uparrow$ (доказали на первом курсе при выводе второго замечательного предела), поэтому $\frac{a_{n+1}}{a_n} \downarrow \Rightarrow \frac{a_{n+1}}{a_n} > 1 \ \forall n \Rightarrow$ ряд расходится по признаку Даламбера (п. 36).

Замечание. Если бы мы знали формулу *Стирлинга*: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ при $n \to \infty$ (будет доказана на лекциях позже), то мы бы сразу установили расходимость ряда (не выполнено необходимое условие сходимости). Напомним, что последовательности называются эквивалентными: $a_n \sim b_n$ при $n \to \infty$, если $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

Ответ: расходится.

Интегральный признак.

Пусть f(x) — непрерывная и монотонная функция при $\forall x \geq n_0$. Тогда

 $\sum_{n=n_0}^{\infty} f(n)$ сходится $\Leftrightarrow \exists \lim_{A \to +\infty} \int_{n_0}^A f(x) \ dx$ (конечный предел).

Замечание: требование монотонности существенно.

Пример 6. Исследовать на сходимость $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ — обобщённый гармонический ряд.

При $\alpha=1$ получается гармонический ряд $\sum_{n=1}^{\infty}\frac{1}{n}$, который расходится (см. пример 5 семинара 5).

 $f(x) = \frac{1}{x^{\alpha}} > 0$ — непрерывная и монотонная функция при $x \ge 1$.

$$\int_{1}^{A} f(x) \ dx = \int_{1}^{A} \frac{dx}{x^{\alpha}} = \int_{1}^{A} x^{-\alpha} dx = \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{A} = \frac{1}{1-\alpha} (A^{1-\alpha} - 1)$$
 при $\alpha \neq 1$.

$$\lim_{A \to +\infty} \int_{1}^{A} f(x) \, dx = \begin{cases} \frac{1}{\alpha - 1}, & 1 - \alpha < 0, \\ \infty, & 1 - \alpha > 0. \end{cases}$$

 \Rightarrow по интегральному признаку при $\alpha > 1$ ряд сходится, при $\alpha \le 1$ ряд расходится. Запомним этот важный результат.

Ответ: ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ сходится при $\alpha > 1$, расходится при $\alpha \leq 1$.

Специальный признак сравнения.

1. Если $a_n > 0$, $b_n > 0$ (начиная с некоторого номера) и $b_n \sim a_n$ при $n \to \infty$ (последовательности эквивалентны), т. е.

 $\lim_{n \to \infty} \frac{b_n}{a_n} = 1$, то ряды $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ сходятся или расходятся одновременно.

- 2. Если $a_n \sim \frac{c}{n^\alpha}$ при $n \to \infty$, где $c \ne 0$ (т. е. последовательности a_n и $\frac{1}{n^\alpha}$ имеют одинаковый порядок $n \to \infty$: $\lim_{n \to \infty} \frac{a_n}{1/n^\alpha} = c \ne 0$, это ещё записывают в виде $a_n = O^*\left(\frac{1}{n^\alpha}\right)$), то ряд $\sum_{n=1}^\infty a_n$
 - а) сходится при $\alpha > 1$,
 - б) расходится при $\alpha \leq 1$.

Пример 7. Исследовать на сходимость $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{\alpha}} \frac{\arctan \frac{1}{n}}{\ln \left(1 + \frac{1}{n^2}\right)}$.

По формуле Маклорена с остаточным членом в форме Пеано:

 $\operatorname{arctg} x = x + o(x)$ при $x \to 0$, т. е. $\operatorname{arctg} \frac{1}{n} \sim \frac{1}{n}$ при $n \to \infty$.

Также имеем: $\ln(1+x) = x + o(x)$ при $x \to 0$, т. е. $\ln\left(1 + \frac{1}{n^2}\right) \sim \frac{1}{n^2}$ при $n \to \infty$.

A также: $\sqrt{n+1} = \sqrt{n} \cdot \sqrt{1+\frac{1}{n}} \sim n^{1/2}$ при $n \to \infty$.

Тогда при $n \to \infty$:

$$a_n = \frac{\sqrt{n+1}}{n^{\alpha}} \cdot \frac{\arctan\frac{1}{n}}{\ln\left(1 + \frac{1}{n^2}\right)} \sim \frac{n^{1/2}}{n^{\alpha}} \cdot \frac{\frac{1}{n}}{\frac{1}{n^2}} = \frac{1}{n^{\alpha - 3/2}}$$

поэтому, согласно специальному признаку сравнения, ряд $\sum_{n=1}^{\infty} a_n$ сходится при $\alpha - \frac{3}{2} > 1$,

т. е. $\alpha > \frac{5}{2}$, и расходится при $\alpha - \frac{3}{2} \le 1$, т. е. $\alpha \le \frac{5}{2}$.

Ответ: сходится при $\alpha > \frac{5}{2}$, расходится при $\alpha \le \frac{5}{2}$.

ДЗ 6. Демидович 1997 г. (2003 г.) № 2558, 2560, 2564, 2581, 2589.2 (2589 в), 2595, 2597 (2597 а), 2608–2610, 2619 (2619 а), 2626, 2636.