Joy Ming and Alisa Nguyen (9 February 2013)

1. Decision Trees and ID3

- (a) ID3 will chose to split on A because it has a higher information gain.
 - Splitting on A will have an information gain of $Gain(X_k, A) = H(A) Remainder(X_k, A) = ??$, where $H(A) = \frac{3}{7} \log_2 \frac{7}{3} + \frac{4}{7} \log_2 \frac{7}{4} = ??$, and $Remainder(X_k, A) = \frac{4}{7} (\frac{2}{4} \log_2 2 + \frac{2}{4} \log_2 2 + \frac{3}{7} (\frac{2}{3} \log_2 \frac{3}{2} + \frac{1}{3} \log_2 3) = 0.96$
 - Splitting on B will have an information gain of $Gain(X_k, B) = H(B) Remainder(X_k, B) = ??$, where $H(B) = \frac{2}{7} \log_2 \frac{7}{2} + \frac{5}{7} \log_2 \frac{7}{5} = ??$, and $Remainder(X_k, B) = \frac{2}{7} (\frac{1}{2} \log_2 2 + \frac{1}{2} \log_2 2 + \frac{5}{7} (\frac{3}{5} \log_2 \frac{5}{3} + \frac{2}{5} \log_2 \frac{5}{2}) = 0.98$

This example shows that ID3 has an inductive bias of strongly preferring extreme partitions and larger subsets. In this case, looking at the results of the

- (b) In this example, a tree that could be formed would split first on A, then B, then C, as shown below.
- (c) By eyeballing the data

2. ID3 with Pruning

- (a) The average cross-validated training performance was:
 - Non-noisy: Training 1.0 and test 0.87
 - Noisy: Training 0.98 and test 0.78
- (b) After the pruning function:
 - i. Graph
 - ii. The cross-validated performance of the validation set pruning improves at first, as the validation increases from 1, peaks at a point around size 40 to 60, and then worsens in performance as the validation set size becomes too large and overfitting becomes an issue.
 - iii. The validation set pruning improves the cross-validated performance of ID3 on these data for all the data points leading up to the peak when comparing against validation-size. After the peak, pruning gives us similar and sometimes slightly worse results than the cross-validated performance of ID3. On the nosy data, the average cross-validated test perfromance with pruning on the non-noisy dataset is 0.8599 and without pruning 0.855.
 - iv. Overfitting is an issue for these data, as evidenced by the dropoff after a peak when the validation set size gets too large. ELABORATE.

3. Boosting

- (a) The weighted entropy of the set can be calculated: $W = 0.5 + \frac{0.5}{N-1}(N-1) = 1$ $H = 0.5 \log_2 \frac{1}{0.5} + 0.5 \log_2 \frac{1}{0.5} = \boxed{1}$
 - i. Analyze the effectiveness of boosting:
 - A. Effect of maximum depth on cross validated boosting in noisy and not noisy data

Noisy?	Max depth	R = 10	R = 30
N	1	0.82	0.84
NN	1	0.89	0.91
N	2	0.81	0.79
NN	2	0.87	0.87

B. Effect of number of boosting rounds on cross-validated performance of decision trees (graph)

This is expected based on our theoretical discussion of boosting in class because

4. Tree Analysis