EE344: ELECTRONIC DESIGN LAB

WINDOW CLEANING DRONE

TEAM ID: MON-13

AAGAM SHAH JAY MEHTA JAINAM RAVANI KSHITIJ VAIDYA ADIT SRIVASTAVA

MILESTONE 1

CHALLENGES IN CLEANING HIGH-RISE WINDOWS

- Manual Effort and Risks: Cleaning windows of high-rise buildings is labor-intensive and involves significant safety risks for workers
- **Inefficiency**: Traditional methods are time-consuming and require specialized equipment like scaffolding or suspended platforms
- **High Costs**: Employing skilled labor and safety measures increases operational expenses for building maintenance.
- **Environmental Challenges**: Cleaning in adverse weather conditions or accessing hard-to-reach windows poses additional difficulties.

VALUE PROPOSITION

Enhanced Safety

Reduces the need for human labor in highrisk environments.

Cost Effective

Minimizes labor costs and reduces reliance on heavy equipment

Time Efficiency

Cleans large glass surfaces in significantly less time.

Adaptability

Operates efficiently in challenging conditions, efficiently reaching hard to access areas.

METHODOLOGY

The solution includes a Hexacopter with a continuous water supply. The water is sprayed at a high pressure which would result in cleaning of the windows. Key decisions were made in choice of the mechanisms which are detailed in the following slides

QUAD VS HEXA COPTER

- Making a Quad-copter is easier compared to a Hexacopter due to easier control over the Roll-Pitch-Yaw movements.
- But a Hexa-copter increases the payload capacity due to a higher available thrust which is crucial since we need to house a motor and various transmitters on the drone.
- For these reasons, a Hexa-copter was chosen over a Quad-copter despite the possible complexities

WATER SUPPLY VS STORAGE

- Housing a water storage on the drone would be make the spraying mechanism lot simpler and also reduce risks due to water leakage onto electronic components.
- But storing water is not feasible taking the payload constraints into consideration.
- For these reasons, a continuous water supply through a pipe from ground was chosen.

GROUND MOTOR VS ON-BOARD

- For transferring water to the drone, we need a ground motor which can pump water till the drone's height.
- But the pressure due to this motor won't be significant enough to expel water at a high speed which is required for cleaning.
- To tackle this we have installed a small DC motor on the drone which will increase the speed of the water before expulsion.

TECHNICAL DETAILS

Controls

The drone is operated via Remote Control with a real time video feedback for precise maneuvering

Mechatronics

Six brushless
motors provide
life and stability,
while servos and
DC motors control
the cleaning
mechanism

Sensors

Onboard
cameras, IMU and
Barometers ensure
accurate
navigation and
obstacle
avoidance

Power

High capacity LiPo batteries support extended flight times

TARGET SPECIFICATIONS (##)

Parameter

Specifications

Payload Capacity

Upto 2kg including the weight of the suspended water column, spraying mechanism and the sensors onboard

Cleaning Mechanism

Pressure spray nozzles and wiping microfiber brushes to result in streak free cleaning

Dimensions

Compact drone design with a diagonal motor-tomotor wingspan of 600-650mm

Operating Range

Upto 100m from the operator provided line-of-sight

BLOCK DIAGRAM

System

Avionics

Navigation

Controls

Estimation

Mechanical

Communication

Telemetry

Flight Control

Sensor Modules

Chassis

Power Distribution

Radio Control

Spraying Control

Estimators

Spraying Mechanism

CIRCUIT/DATA FLOW DIAGRAM

BILL OF MATERIALS \[\bigs\]

Component	Justification	Cost (§)
S550 Hexacopter Frame	Hardware Main Body	4499
Brushless DC motors (6)	Propulsion System	3962
Pixhawk cube	Control System	Not to be purchased immediately
LiPo Battery (2)	Power sytem	4598
High Efficiency motor	Pumping Mechanism - Ground Supply	Not to be purchased immediately
Flexible Pipe	Pumping Mechanism - Water Carrier	343
12V DC Motor	Pumping Mechanism - Flow Controller	374

Raspberry Pi NoIR Camera Board	Camera for First Person View	In the EDL Inventory
Servo Motors	Pumping Mechanism - Nozzle Valve	In the EDL Inventory
RASPBERRY-PI SBC, Raspberry Pi4 B 8GB, BCM2711	Onboard Computing Module	In the EDL Inventory
FT232RL USB Module - RPi to Pixhawk Connection	Communications	319
FlySky FS-i6	Remote Control Module	4325
Propeller Blades (6)	Hardware Component	1794
	Total Cost :-	26713

GENERAL CONTROL FLOW

MULTICOPTER CONTROL ARCHITECTURE

Multicopter Control Architecture

POSITION CONTROLLER

VELOCITY CONTROLLER

ATTITUDE CONTROLLER

ANGULAR RATE CONTROLLLER

GANTT CHART

KEY RISKS AND MITIGATION MEASURES

Water leakage

Prevent water leakage onto electrical equipment by proper coverage and insulation to prevent shocks

Fall safe

Emergency protocols in case of failure of flight mechanism or hardware. Landing gear will have shock absorbers to prevent damage due to impact

DELIVERABLES

Hexacopter

Fully functional
hexacopter drone with
a spraying and
cleaning mechanism
equipped with sensors,
motors, LiPo battery
and a landing gear

Software Stack

Code and Controller software designs for operating the drone using the on-boad Pixhawk Cube

Ground Control

Drone can be
operated using
telemetry module or
radio control with a
First Person View (FPV)
Camera for enhanced
navigation

Water Supply Mechanism

Ground station has a high efficiency motor used to pump water upto the drone to ensure a continuous water supply for cleaning purposes

THANKYOU!

