UFOP (Universidade Federal de Ouro Preto)

PROFESSOR:

Vinicius Martins

PRÁTICA 2- BCC265-31P:

Augusto Ferreira Guilarducci (20.1.4012)

Gabriel Catizani Faria Oliveira (20.1.4004)

Paulo Vitor de Castro Magalhães Corrêa (20.1.4036)

Portas Lógicas Básicas

Ouro Preto, Minas Gerais

25 de janeiro de 2021

1. Objetivo

Os principais objetivos dessa prática foi entendermos como utilizarmos as Leis de Ohm e as leis Lei de Kirchhoff para encontramos os valores de corrente total e de corrente dividida para cada nó, de cada resistência e da resistência total e das quedas de tensão em cada resistor utilizando circuitos online no Tinkercad

2. Material utilizado

- . Tinkercad circuitos: (https://www.tinkercad.com/things/4GoCIZfZknT-brilliant-stantia/editel?tenant=circuits)
 - Conexões
 - Placa de ensaio pequena
 - · Fonte de energia
 - Resistores
 - Multímetros

3. Introdução

O professor Vinicius falou para testarmos três circuitos diferentes: dois eram divisores de tensão, porém com experiências diferentes e o último foi um circuito com uma malha de resistores para comprovar a segunda de Lei de Kirchhoff

3.1 Divisor de tensão

O divisor de tensão é um tipo de circuito com resistores em série, que permite dividir a tensão de entrada em tensões de saída diversas, proporcionais aos valores das resistências.

3.2 2° Lei de Kirchhoff

A segunda Lei de Kirchhoff descreve que a corrente total de entrada do nó é igual a somatória das correntes de saída desse mesmo nó. Um nó é um ponto de conexão de três ou mais condutores.

4. Desenvolvimento

1° PARTE

Usando o circuito proposto na atividade 2, usamos a fórmula de Divisão de Tensão para calcular os valores das resistências:

$$V_{out} = V_{in} * (R1 / R1 + R2)$$

Desse modo, foi notado que ao usar 2 resistências era possível atingir 30% da tensão de entrada ao usar valores de resistência proporcionais a fração $\frac{7}{3}$. Sendo assim, ao utilizar dois resistores, de 300Ω e 700Ω , respectivamente, foi possível notar que a tensão de saída era 30% da tensão de entrada, finalizando a atividade com sucesso.

2° PARTE

Antes de montarmos o divisor de tensão no Tinkercad, usando as resistências e a bateria propostas na imagem da prática, calculamos a corrente total do circuito por meio da 2° Lei de Ohm ($V = R \times i$) e encontramos um valor de 6,92 mA. Logo após isso, encontramos a queda de tensão em cada resistor: O primeiro teve uma queda de 2,08V e no segundo de 6,92V, resultando na tensão total de 9V. Depois verificamos esses valores no simulador e encontramos exatamente os mesmos.

3° PARTE

Para montarmos o circuito de acordo com a 2° Lei de Kirchhoff, colocamos os amperímetros em série com os resistores para pegar a corrente em cada ponto. Observamos que no nó houve uma divisão da corrente em duas: uma de valor 2,7 mA para o resistor de $2k\Omega$ e outra de valor 1,8 mA para os três resistor de $1k\Omega$, o que dá uma corrente total de valor 4,5 mA que passa no resistor de $1k\Omega$ e na último resistor de $0.47k\Omega$.

5. Conclusão

Frente ao que realizamos, comprovamos que o circuito divisor de tensão é bastante útil quando temos uma ddp(diferença de potencial) fixa como uma pilha ou bateria e precisamos de um valor menor com apenas resistores à mão, pois com a fórmula mencionada na primeira parte é possível conseguir qualquer valor menor que a tensão fixa total. Concluímos também que a corrente total do circuito se altera de acordo com a quantidade de resistores que existem no sistema e também com o valor da resistência de cada um. Também conclui-se que por meio da 1° Lei de ohm (V = R x i) é possível encontrar o valor da corrente total e quanto é a queda de tensão em cada resistor. Por fim, comprovamos a 2° Lei Kirchhoff e percebemos que é bem útil para circuitos extensos e com muitos nós.