Cálculo diferencial e Integral I Semestre 2023-1 Grupo 4031

Problemas de: números reales Torres Brito David Israel

August 21, 2022

1. Pruebe que si $a, b \in \mathbb{R}$, entonces -(a+b) = (-a) + (-b).

Demostración:

$$0 = 0 + 0$$
 Neutro aditivo
 $= (a + (-a)) + (b + (-b))$ Neutro aditivo
 $= (a + b) + ((-a) + (-b))$ Asociatividad

Debido a que el inverso aditivo es único, tenemos que (-a) + (-b) = -(a+b).

2. Pruebe que si $a, b \in \mathbb{R}$ son tales que a - b = b - a, entonces a = b.

Demostración:

$$a-b=b-a$$
 Hipótesis
$$(a-b)+b=(b-a)+b$$
 Ley de la cancelación
$$a=(b+b)-a$$
 Asociando
$$a+a=b+b$$
 Ley de la cancelación
$$2a=2b$$
 Definición
$$a=b$$
 Ley de la cancelación

3. Pruebe que si $a, b \in \mathbb{R}$, entonces -(a - b) = b - a.

Demostración:

$$-(a-b) = -(a+(-b))$$
 Notación
 $= (-a) + (-(-b))$ Por ejercicio 1
 $= (-a) + (b)$ Unicidad del inverso aditivo
 $= b-a$ Conmutatividad

4. Pruebe que si $a, b \in \mathbb{R}$ son tales que ab = 0, entonces a = 0 o b = 0.

Demostración: Primero demostraremos que si $a \in \mathbb{R}$, entonces $a \cdot 0 = 0$.

$$a \cdot 0 = a \cdot 0 + 0$$
 Neutro aditivo
 $= a \cdot 0 + (a + (-a))$ Neutro aditivo
 $= a \cdot 0 + (a \cdot 1 + (-a))$ Identidad de la multiplicación
 $= (a \cdot 0 + a \cdot 1) + (-a)$ Asociatividad
 $= (a \cdot (0+1)) + (-a)$ P. Distributiva
 $= a \cdot 1 + (-a)$ Neutro aditivo
 $= a + (-a)$ Identidad de la multiplicación
 $= 0$ Neutro aditivo

Ahora, demostramos el ejercicio 4. Supongamos que $a \neq 0$.

$$\begin{array}{ll} b=b\cdot 1 & \text{Identidad de la multiplicación} \\ =b\cdot \left(a\cdot a^{-1}\right) & \text{Inverso multiplicativo} \\ =\left(b\cdot a\right)\cdot a^{-1} & \text{Asociatividad} \\ =\left(a\cdot b\right)\cdot a^{-1} & \text{Conmutatividad} \\ =0\cdot a^{-1} & \text{Por hipótesis} \\ =a^{-1}\cdot 0 & \text{Conmutatividad} \\ =0 & \text{Probado arriba} \end{array}$$

5. Pruebe que si $a, b \in \mathbb{R}$ son tales que $a^2 = b^2$, entonces a = b o a = -b.

Demostración:

$$0 = b^2 - b^2$$

$$= a^2 - b^2$$

$$= a \cdot a - b \cdot b$$

$$= (a \cdot a - b \cdot b) + (a \cdot b - a \cdot b)$$

$$= (a \cdot a - b \cdot b) + (a \cdot b - a \cdot b)$$

$$= (a \cdot a - b \cdot b + a \cdot b) + (-a \cdot b)$$

$$= (a \cdot a + a \cdot b - b \cdot b) + (-a \cdot b)$$

$$= (a \cdot a + a \cdot b) + (-b \cdot b - a \cdot b)$$

$$= (a \cdot a + a \cdot b) + (-b \cdot b) + (-a \cdot b)$$

$$= (a \cdot a + a \cdot b) + (-b \cdot b) + (-a \cdot b)$$

$$= (a \cdot a + a \cdot b) - (b \cdot b + a \cdot b)$$

$$= (a \cdot a + a \cdot b) - (b \cdot b + a \cdot b)$$

$$= (a \cdot b) - b(b + a)$$

$$= (a + b) - b(b + a)$$
P. Distributiva
$$= (a + b) \cdot (a - b)$$
Por ejercicio 1
P. Distributiva

Por el ejercicio 4, de la igualdad anterior tenemos que a+b=0 o a-b=0. Sumando inverso aditivo de b tenemos a=-b o a=b.

6. Pruebe que si $a, b \in \mathbb{R}$ son distintos de 0 y tales que $ab^{-1} = ba^{-1}$, entonces a = b o a = -b.

Demostración:

$$ab^{-1} = ba^{-1}$$
 Por hipótesis
$$ab^{-1} \cdot b = ba^{-1} \cdot b$$
 Ley de la cancelación
$$a(b^{-1} \cdot b) = a^{-1}(b \cdot b)$$
 Asociando
$$a = a^{-1}(b \cdot b)$$
 Identidad de la multiplicación
$$a \cdot a = a^{-1}(b \cdot b) \cdot a$$
 Ley de la cancelación
$$a \cdot a = (b \cdot b)(a^{-1} \cdot a)$$
 Asociando
$$a \cdot a = b \cdot b$$
 Identidad de la multiplicación
$$a^2 = b^2$$
 Definición

Por el ejercicio 5, la igualdad anterior implica que a = b o a = -b.

- 7. Determine si las siguientes afirmaciones son falsas o verdaderas. Pruebe su respuesta.
 - (a) Si $a, b \in \mathbb{R}$, entonces a < a + b.

Respuesta: Falso.

Demostración: Contraejemplo: b = 0.

(b) Si $a, b \in \mathbb{R}$, entonces a < a + b o b < a + b.

Respuesta: Falso.

Demostración: Sea a = b = 0; tanto a < a + b como b < a + b fallan en cumplirse. \square

(c) Si $a, b, c, d \in \mathbb{R}$ son tales que a + c < b + d, entonces $a < b \ y \ c < d$.

Respuesta: Falso.

Demostración: Sea $a=0,\ b=2$ y c=d=1, tenemos que se cumple la hipótesis 0+1<2+1, pero la proposición c< d es falsa.

(d) Si $a, b, c, d \in \mathbb{R}$ son tales que ac < bd, entonces a < b y c < d.

Respuesta: Falso.

Demostración: Sea a=1, b=d=-1 y c=0, con lo que se cumple la hipótesis (1)(0)=0<1=(-1)(-1), pero la proposición a=1<-1=b y c=0<-1=d es falsa.

(e) Si $a, b \in \mathbb{R}$ son tales que ab = a, entonces b = 1.

Respuesta: Falso.

Demostración: Sea a = 0 y b = -1. En el ejercicio 4 demostramos que ab = (0)(-1) = 0, con lo que se cumple la hipótesis 0 = ab = a = 0, pero $b \neq 1$.

(f) Si $a, b \in \mathbb{R}$ son tales que $a^2 \leq b^2$, entonces $a \leq b$.

Respuesta: Falso.

Demostración: Sea a=2 y b=-2, tenemos que la hipótesis se cumple $a^2=4\leq 4=b^2$, pero la proposición $a=2\leq -2$ es falsa.

8. Pruebe que si $a, b \in \mathbb{R}$ son tales que $a \leq b$, entonces $a \leq (a+b)/2 \leq b$.

Demostración: Notemos que:

$$\begin{array}{ll} a \leq b & \text{Por hipótesis} \\ a+a \leq b+a & \text{Ley de la cancelación} \\ 2a \leq b+a & \text{Por definición} \\ 2a \cdot 2^{-1} \leq (b+a) \cdot 2^{-1} & \text{Ley de la cancelación} \\ \frac{2a}{2} \leq \frac{b+a}{2} & \text{Notación} \\ a \leq \frac{b+a}{2} & \text{Ley de la cancelación} \end{array}$$

Similarmente,

$$a \leq b \qquad \qquad \text{Por hipótesis}$$

$$a+b \leq b+b \qquad \qquad \text{Ley de la cancelación}$$

$$a+b \leq 2b \qquad \qquad \text{Por definición}$$

$$(a+b) \cdot 2^{-1} \leq 2b \cdot 2^{-1} \qquad \qquad \text{Ley de la cancelación}$$

$$\frac{a+b}{2} \leq \frac{2b}{2} \qquad \qquad \text{Notación}$$

$$\frac{a+b}{2} \leq b \qquad \qquad \text{Ley de la cancelación}$$

Por lo anterior, $a \leq (a+b)/2 \leq b$.

9. Pruebe que si $a, b \in \mathbb{R}$, entonces $2ab \le a^2 + b^2$.

Primero, demostraremos que $(-1) \cdot a = -a$.

$$-a = -a + 0$$

$$= -a + a \cdot 0$$

$$= -a + a \cdot (1 + (-1))$$

$$= -a + (a \cdot 1 + a \cdot (-1))$$

$$= -a + (a + a \cdot (-1))$$

$$= (-a + a) + a \cdot (-1)$$

$$= 0 + a \cdot (-1)$$

$$= a \cdot (-1)$$

$$= (-1) \cdot a$$
Neutro aditivo

P. Distributiva

Neutro multiplicativo

Asociatividad

Inverso aditivo

Neutro aditivo

Conmutatividad

Ahora, demostraremos que (-a)(-b) = ab.

$$(-a) \cdot (-b) = (-a) \cdot ((-1) \cdot b)$$
 Demostrado arriba
 $= ((-a) \cdot (-1)) \cdot b$ Asociatividad
 $= ((-1) \cdot (-a)) \cdot b$ Conmutatividad
 $= -(-a) \cdot b$ Demostrado arriba
 $= a \cdot b$ Unicidad del inverso aditivo

Luego, demostraremos que $\forall a \in \mathbb{R}, a^2 \geq 0$. Por casos:

a) Si $0 \le a$, tenemos

b) Si a < 0, tenemos

$$0 < -a$$
 P. de los positivos
$$0(-a) < (-a)(-a)$$
 P. de los positivos
$$0 < (-a)(-a)$$
 Demostrado en el ejercicio 4
$$0 < aa$$
 Demostrado arriba
$$0 < a^2$$
 Definición

En cualquier caso, $0 \le a^2$.

Finalmente, probaremos el ejercicio 9.

$$0 \leq (a-b)^2 \qquad \qquad \text{Demostrado arriba} \\ 0 \leq (a-b)(a-b) \qquad \qquad \text{Definición} \\ 0 \leq (a-b)(a+(-b)) \qquad \qquad \text{Notación} \\ 0 \leq a(a-b)+(-b)(a-b) \qquad \qquad \text{P. Distributiva} \\ 0 \leq a(a+(-b))+(-b)(a+(-b)) \qquad \qquad \text{Notación} \\ 0 \leq aa+a(-b)+a(-b)+(-b)(-b) \qquad \qquad \text{P. Distributiva} \\ 0 \leq aa+a(-b)+a(-b)+bb \qquad \qquad \text{Demostrado arriba} \\ 0 \leq a^2+2a(-b)+b^2 \qquad \qquad \text{Definición} \\ 0 \leq a^2+2a(-1)b+b^2 \qquad \qquad \text{Demostrado arriba} \\ 0 \leq a^2+(-1)2ab+b^2 \qquad \qquad \text{Demostrado arriba} \\ 0 \leq a^2+-2ab+b^2 \qquad \qquad \text{Demostrado arriba} \\ 2ab \leq a^2+-2ab+b^2 \qquad \qquad \text{Demostrado arriba} \\ 2ab \leq a^2+b^2 \qquad \qquad \text{Ley de la cancelación} \\ 2ab \leq a^2+b^2 \qquad \qquad \text{Inverso aditivo} \\ \end{cases}$$