DIGITAL SYSTEMS AND MICROPROCESSORS (ELE2002M)

LECTURE 6 - COMBINATIONAL LOGIC CONT....

Instructor:

Assoc. Prof. Dr. Edmond Nurellari

What we have done so far?

- Half and Full Adders
- Half and Full Subtractor
- Adder-Subtractor Unit
- Binary Multiplier
- Comparator
- Decoders

Today's Class

- Decoders
- Encoders
- Multiplexers
- Other Reduction Techniques

Decoder

- A n-bit binary code is capable of representing
 2ⁿ distinct elements of coded information.
- A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ outputs.
- A decoder presented here is called n-to-m-line decoder. Where $m \le 2^n$

Inputs		Outputs				
X	у		D0	D1	D2	D3
0	0		1	0	0	0
0	1		0	1	0	0
1	0		0	0	1	0
1	1		0	0	0	1

3x8 Decoder

Inp	uts		Outputs							
х	у	Z	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Complemented 2x4 Line Decoder

E	X	у	DO	D1	D2	D3
1	X	Χ	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	ī	1
0	Ĩ	0	1	1	0	1
0	1	1	1	1	ī	0

Logic Implementation using Decoders

Implement a Full adder using a 3x8 Decoder.

□ Implement a 4x16 Decoder using two 3x8 Decoders

Encoder

- An encoder is a digital circuit that performs inverse operation of a decoder.
- \square An encoder has 2^n (or fewer) input lines and n output lines.
- □ An example of encoder is the **Octal-to-Binary encoder** given below.

	Inputs								0	utpu	ts
D0	D1	D2	D3	D4	D5	D6	D7		Х	у	Z
1	0	0	0	0	0	0	0		0	0	0
0	1	0	0	0	0	0	0		0	0	1
0	0	1	0	0	0	0	0		0	1	0
0	0	0	1	0	0	0	0		0	1	1
0	0	0	0	1	0	0	0		1	0	0
0	0	0	0	0	1	0	0		1	0	1
0	0	0	0	0	0	1	0		1	1	0
0	0	0	0	0	0	0	1		1	1	1

Priority Encoder

- Includes a priority function
- If two or more inputs are '1' at the same time, the input having the highest priority will take precedence.

D0	D1	D2	D 3	X	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	Χ	1	0	1	0	1
X	Χ	Χ	1	1	1	1

Multiplexer

- The Multiplexer
 - Selects one of 2ⁿ inputs and copies it to a single output
 - The selected line is determined from the bit combination (address) on the n selection line

2-to-1 line MUX

2:1 Multiplexer

sel	Α	В	out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

sel	Α	В	out
0	0	?	0
0	1	?	1
1	?	0	0
1	?	1	1

if A is selected, don't care about b.

AB	00	01	11	10
0			1	1
1		1	1	

K map for 2:1 Multiplexer

output =
$$\overline{\text{sel.A}}$$
 + sel.B

Principal can be extended to

4:1 – 2 select lines and 4 data lines

8:1 – 3 select lines and 8 data lines and so on...

Implementing Logic using MUX

□ Implement a Boolean function $F = \sum (1,2,6,7)$ using a MUX

More Optimum Solution

X	У	z	F				
0	0	0	0	F			
0	0	1	1	F = z			
0	1	0	1	r _ ',			
0	1	1	0	F = z'			
1	0	0	0	5 - 0			
1	0	1	0	F = 0			
1	1	0	1	F = 1			
1	1	1	1	F = 1			

MUX using 3 State Gates

- A MUX can be constructed with 3-state gates.
- □ 3-states are 1,0 and Z (high impedance)
- □ 3 state gates may perform any conventional loc (such as AND or NAND).
- However, the are most commonly used for buffer gates

2x1 Line MUX

Next Lecture

□ Sequential Logic Design