二、语法分析 (15. *LR*(1) 语法分析器)

魏恒峰

hfwei@nju.edu.cn

2024年06月07日

				GOT)				
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

不是 LR(0) 文法

				GOT	O				
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r_1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

不是 LR(0) 文法

能否消除"移入-归约"冲突?

 ${f id} + * ()$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$id + * ()$$
 \$

(1)
$$E \rightarrow E + T$$

(2)
$$E \to T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$Follow(E) = \{+, \}$$

$$id + * ()$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$Follow(E) = \{+, \},$$
 * $\notin Follow(E)$

SLR(1) 分析表

	大态			AC'	LION		==		GOTO)
_ 1	人心	id	+	*	()	\$	E	T	F
	0	 s5			s4	-		1	2	3
	1		s6				acc			
Ì	2		r2	s7		r2	r2	ĺ		
l	3		r4	r4		r4	r4	1		
ĺ	4	s5			s4			8	2	3
ì	5		ŗ6	т6		r6	r6	}	_	
(6	s5	v		s4			l	9	3
	7	s5			s 4			ļ		10
1	8		s6			s11)		
	9		r1	s7		r1	r1)		
	10	}	r3	r3		r3	r3			
	11		r5	r5		_ r5	r5			

归约:

(3) $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \text{Follow}(A)$. ACTION[i,t] = rk

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) 分析表是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

状え	 -			AC	LION			[GOTO	2
- 1A.78 	- 53	id	+	*	()	\$	E	T	F
C)	s5			s4			1	2	3
1		1	s6				acc			l
2		ļ	r2	s7		r2	r2	ĺ		
3			r4	r4		r4	r4	1		1
4		s5			s4	_		8	2	3
5		ļ	r6	r6		r6	r6			
6		s5	4.		s4			l	9	3
7		s5			54			ļ		10
8		ļ	s6			s11		1		J
9			r1	s7		r1	r1			- 1
10)	}	r3	r3		r3	r3	1		
11	i		r5	r5		r5	_r5]

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) 分析表是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

14		٦			AC	LION			[4	GOT)
- 11.	状态		id	+	*	()	\$	E	T	F
Ī	0		s5			s4			1	2	3
	1	- [s6				acc			
	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4			
	4		s5			s4			8	2	3
- .	5			r6	r6		r6	r6	}		
	6		s5	4.		s4			l	9	3
	7		s5			54			ļ		10
	8			s6			s11)		
	9			r1	s7		r1	r1)		
1	0			r3	r3		r_3	r3	1		
1	1			r5	r5		r5	r5			_

两类可能的冲突: "移入/归约"冲突、"归约/归约"冲突

非 SLR(1) 文法举例

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid id$
 $R \rightarrow L$

$$I_{0} \colon S' \to S$$

$$S \to L = R$$

$$S \to R$$

$$L \to **R$$

$$L \to **d$$

$$R \to L$$

$$I_{1} \colon S' \to S$$

$$I_{2} \colon S \to L = R$$

$$R \to L$$

$$I_{3} \colon S \to R$$

$$I_{4} \colon L \to *R$$

$$I_{5} \colon L \to id$$

$$L \to *R$$

$$L \to *R$$

$$I_{7} \colon L \to *R$$

$$I_{8} \colon R \to L$$

$$I_{9} \colon S \to L = R$$

$$I_{1} \colon L \to *R$$

$$I_{1} \colon L \to *R$$

$$[S \to L \cdot = R] \in I_2 \implies \text{ACTION}(I_2, =) \leftarrow s6$$

= $\in \text{FOLLOW}(R) \implies \text{ACTION}(I_2, =) \leftarrow r5$

 $L \rightarrow -id$

即使考虑了 $= \in \text{Follow}(R)$, 对该文法来说仍然不够因为, 这仅仅说明 = 可能跟在 R 后面, 是一种"粗糙"的**静态**估计

即使考虑了 $= \in Follow(R)$, 对该文法来说仍然不够因为, 这仅仅说明 = 可能跟在 R 后面, 是一种"粗糙"的**静态**估计

实际上,该文法没有 \mathbf{U} $R = \cdots$ **开头**的最右句型

7/33

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$ 与 $[A \to \cdot \alpha]$

在 LR(0) 自动机中, 某个项集 I_j 中包含 $[A \to \alpha \cdot]$

则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$ 与 $[A \to \cdot \alpha]$

这表明只有 $a \in FIRST(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$ 与 $[A \to \cdot \alpha]$

这表明只有 $a \in \text{First}(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

但是, 对 I_i 求闭包时, 仅得到 $[A \rightarrow \cdot \alpha]$, 丢失了 $FIRST(\gamma)$ 信息

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, \mathbf{a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, \mathbf{a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 **1**.

思想: α 在栈顶, 期望剩余输入中开头的是可以从 βa 推导出的符号串

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, \mathbf{a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

思想: α 在栈顶, 期望剩余输入中开头的是可以从 βa 推导出的符号串

$$[A \to \gamma \cdot, a]$$

只有下一个输入符号为 a 时, 才可以按照 $A \rightarrow \alpha$ 进行归约

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● からぐ

$$[A \to \alpha \cdot B\beta, {\color{red} a}] \in I \qquad (a \in T \cup \{\$\})$$

$$[A \to \alpha \cdot B\beta, \mathbf{a}] \in I \qquad (a \in T \cup \{\$\})$$

$$\forall b \in \text{First}(\beta a). [B \to \gamma, b] \in I$$

$$J = \text{Goto}(I, \mathbf{X}) = \text{Closure}\Big(\Big\{[A \to \alpha X \cdot \beta, a] \Big| [A \to \alpha \cdot X\beta, a] \in I\Big\}\Big)$$

$$(X \in N \cup T)$$

初始状态: CLOSURE($[S' \rightarrow \cdot S, \$]$)

	First	Follov
\overline{S}	$\{c,d\}$	\$
C	$\{c,d\}$	$\{c, d, \$\}$

LR(1) 分析表构造规则

(1)
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2)
$$\text{GOTO}(I_i, A) = I_j \land A \in N \implies \text{GOTO}[i, A] \leftarrow gj$$

$$(3) \ [k:A\to\alpha\cdot, {\color{red}a}]\in I_i\wedge A\neq S' \implies \text{Action}[i, {\color{red}a}]=rk$$

(4)
$$[S' \to S, \$] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

LR(1) 分析表构造规则

(1)
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2)
$$\text{GOTO}(I_i, A) = I_j \land A \in N \implies \text{GOTO}[i, A] \leftarrow gj$$

(3)
$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

(4)
$$[S' \to S, \$] \in I_i \implies ACTION[i, \$] \leftarrow acc$$

Definition (LR(1) 文法)

如果文法 G 的LR(1) 分析表是无冲突的,则 G 是 LR(1) 文法。

LR(1) 通过**不同的向前看符号**, 区分了状态对 (3,6), (4,7) 与 (8,9)

 $S' \rightarrow S$ $S \rightarrow C C$ $C \rightarrow c C \mid d$

L(G) =

 $S' \rightarrow S$ $S \rightarrow C C$ $C \rightarrow c C \mid d$

 I_0 S $S' \rightarrow \cdot S, \$$ $S' \to S', s$ $S \rightarrow CC$, \$ $C \rightarrow cC, c/d$ I_2 I_5 $C \rightarrow d, c/d$ $S \rightarrow CC$ -, \$ $S \rightarrow C \cdot C$, \$ w = ccdcd\$ $C \rightarrow cC.$ \$ $C \rightarrow \cdot d, \$$ I_{G} $S' \rightarrow S$ $\sim C \rightarrow c \cdot C.8$ $C \rightarrow cC \cdot, \$$ $C \rightarrow cC$, \$ $S \rightarrow C$ $C \rightarrow d, \$$ $C \rightarrow c C \mid d$ d $C \rightarrow d \cdot, \$$ I_3 $L(G) = c^* dc^* d$ $C \rightarrow c \cdot C, c/d$ $C \rightarrow cC \cdot, c/d$ $C \rightarrow cC, c/d$ $C \rightarrow d, c/d$ d $C \rightarrow d \cdot, c/d$

总结: LR(0)、SLR(1)、LR(1) 的<mark>归约</mark>条件

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}. \text{ ACTION}[i,t] = rk$$

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \overline{\text{Follow}(A)}. \text{ ACTION}[i,t] = rk$$

$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LALR(1): 合并具有相同核心 LR(0)项的状态 (忽略不同的向前看符号)

 $C \rightarrow c C \mid d$

 $S' \rightarrow S$

 $S \rightarrow C$

 $L(G) = c^* dc^* d$

合并 I_4 与 I_7 为 I_{47} {[$C \rightarrow d \cdot, c/d/\$$]},

合并 I_4 与 I_7 为 I_{47} {[$C \rightarrow d \cdot , c/d/\$$]}, 继续合并 (I_8, I_9) 以及 (I_3, I_6)。

 $S' \rightarrow S$

 $S \rightarrow C$

 状态	A	CTIO	GC	то	
10.01	С	d	\$	S	\overline{C}
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s4			8
4	r3	r3		İ	
5			r1		
6	s6	s7			9
7			r3	İ	
8	r2	r2			1
9			r2		

-	状态	A	CTION	GOTO		
	17.157	С	\overline{d}	\$	\mathcal{S}	C
	0	s36	s47		1	2
	1			acc	}	
	2	s36	s47			5
	36	s36	s47		1	89
	47	r3	r3	r3		
	5			r 1		
	89	r2	r2	r2		

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, b]$

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, b]$

则在 LR(1) 自动机中,

存在某状态同时包含 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, c]$ $(c \neq b)$

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, b]$

则在 LR(1) 自动机中,

存在某状态同时包含 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, c]$ $(c \neq b)$

矛盾!

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

$$\{[A \rightarrow c \cdot, d], [B \rightarrow c \cdot, e]\}$$

$$\{[A \rightarrow c \cdot, e], [B \rightarrow c \cdot, d]\}$$

$$\{[A \rightarrow c \cdot, d/e], [B \rightarrow c \cdot, d/e]\}$$

LALR(1) 语法分析器的优点

状态数量与 SLR(1) 语法分析器的状态**数量相同**

对于 LR(1) 文法, 不会产生移入/归约冲突

LALR(1) 语法分析器的优点

状态数量与 SLR(1) 语法分析器的状态**数量相同**

(LALR(1) 与 SLR(1) 都使用相同的 LR(0) 核心项)

对于 LR(1) 文法, 不会产生移入/归约冲突

Q: 但是你却通过 LR(1) 自动机构造 LALR(1) 项集族?

Q: 但是你却通过 LR(1) 自动机构造 LALR(1) 项集族?

第 4.7.5 节 (本科教学版): 高效构造 LALR(1) 语法分析表的方法

"除 LR(0) 外, 以上各种 LR 类文法对应的语言是等价的"

List of Parser Generators

Name 🔺	Parsing algorithm	Input grammar \$ notation	Output •	Grammar, ¢	Lexer ◆	Development platform	IDE ¢	License •
--------	-------------------	---------------------------------	------------	------------	---------	----------------------	-------	-----------

 ${
m Bison/Yacc/Lark}$

PEP 617 – New PEG parser for CPython

Author: Guido van Rossum < guido at python.org >, Pablo Galindo < pablogsal at

python.org>, Lysandros Nikolaou lisandrosnik at gmail.com>

Discussions-To: Python-Dev list

Status: Accepted

Type: Standards Track

Created: 24-Mar-2020

Python-Version: 3.9

Post-History: 02-Apr-2020

Rejected Alternatives

We did not seriously consider alternative ways to implement the new parser, but here's a brief discussion of LALR(1).

Thirty years ago the first author decided to go his own way with Python's parser rather than using LALR(1), which was the industry standard at the time (e.g. Bison and Yacc). The reasons were primarily emotional (gut feelings, intuition), based on past experience using Yacc in other projects, where grammar development took more effort than anticipated (in part due to shift-reduce conflicts). A specific criticism of Bison and Yacc that still holds is that their metagrammar (the notation used to feed the grammar into the parser generator) does not support EBNF conveniences like <code>[optional_clause]</code> or <code>(repeated_clause)*</code>. Using a custom parser generator, a syntax tree matching the structure of the grammar could be generated automatically, and with EBNF that tree could match the "human-friendly" structure of the grammar.

Other variants of LR were not considered, nor was LL (e.g. ANTLR). PEG was selected because it was easy to understand given a basic understanding of recursive-descent parsing.

好消息: 善用 LR 语法分析器, 处理二义性文法

好消息: 善用 LR 语法分析器, 处理二义性文法

坏消息: 二义性表现为"冲突", 需要根据某种规则进行消解

表达式文法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$
 $F
ightarrow (E) \mid \mathbf{id}$

$$E o TE'$$
 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid \mathbf{id}$

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon E'\to E\\ E\to E+E\\ E\to E+E\\ E\to E+E\\ E\to E+E\\ E\to E+E\\ E\to i\mathbf{d}$$

$$I_{1}\colon E'\to E\\ E\to E+E\\ E\to E+$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon \begin{array}{c} E'\to E\\ E\to E+E\\ E\to E+E\\ E\to E+E\\ E\to (E)\\ E\to \operatorname{id} \end{array} \qquad \begin{array}{c} I_{5}\colon E\to E*E\\ E\to E*E\\ E\to (E)\\ E\to \operatorname{id} \end{array} \qquad \begin{array}{c} E\to E*E\\ E\to (E)\\ E\to \operatorname{id} \end{array} \qquad \begin{array}{c} E\to E*E\\ E\to (E)\\ E\to \operatorname{id} \end{array} \qquad \begin{array}{c} I_{1}\colon E'\to E\\ E\to E+E\\ E\to E+E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{6}\colon E\to (E)\\ E\to E+E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{7}\colon E\to E+E\\ E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{7}\colon E\to E+E\\ E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{7}\colon E\to E+E\\ E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \qquad \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ E\to E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ E\to E*E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \end{array} \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\colon E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{c} I_{8}\to E\to E*E*E\\ \longrightarrow \begin{array}{$$

$$\{+,*\}\subseteq \mathrm{Follow}(E)$$

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon E' \to E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to (E)$$

$$E \to id$$

$$I_{1}\colon E' \to E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to E + E$$

$$E$$

$$\{+,*\}\subseteq \mathrm{Follow}(E)$$

考虑到结合性与优先级:

状态		ACTION							
7/2/23	id	+	*	()	\$	E		
0	s3			s2			1		
1		s4	s5			acc			
2	s3			s2			6		
3		r4	r4		r4	r4			
4	s3			s2			7		
5	s3			s2			8		
6		s4	s5		s9				
7		r1	s5		r1	r1			
8		r2	r2		r2	r2			
9		r3	r3		r3	r3			

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon E' \to \cdot E$$

$$E \to E + E$$

$$E \to E + E$$

$$E \to (E)$$

$$E \to id$$

$$I_{1}\colon E' \to E \cdot E$$

$$E \to E + E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

$$E \to E \cdot E \cdot E$$

 $\{+,*\} \subseteq \text{Follow}(E)$

考虑到结合性与优先级:

状态		ACTION							
1/1/23	id	+	*	()	\$	E		
0	s3			s2			1		
1		s4	s5			acc			
2	s3			s2			6		
3		r4	r4		r4	r4			
4	s3			s2			7		
5	s3			s2			8		
6		s4	s5		s9				
7		r1	s5		r1	r1			
8		r2	r2		r2	r2			
9		r3	r3		r3	r3			

id + id * id

id + id + id

条件语句文法

stmt \rightarrow if expr then stmt

other

 $S' \rightarrow S$

if expr then stmt else stmt

 $S \rightarrow i S e S + i S + a$

32 / 33

条件语句文法: 使用 SLR(1) 语法分析方法

$$S' {\rightarrow} S$$

$$S \rightarrow i S e S + i S + a$$

I_0 :	$S' \rightarrow \cdot S$ $S \rightarrow \cdot iSeS$	I_3 :	$S \rightarrow a$.
	$S \rightarrow iS$	I_4 :	$S \rightarrow iS \cdot eS$
	$S \rightarrow \cdot a$	I_5 :	$S \to iS$ $S \to iSe \cdot S$
I_1 :	S' o S	+0.	$S \rightarrow iSeS$
Io:	$S \rightarrow i \cdot SeS$		$S \rightarrow \cdot iS$
-2.	$S \to i \cdot S$		$S \to a$
	$S \rightarrow iSeS$	I_6 :	$S \to i SeS \cdot$
	$S \rightarrow iS$ $S \rightarrow a$,
_		_	

状态		GOTO			
	i	e	а	\$	S
0	s2		s3		1
1				ace	
2	s2		s3		4
3	-	r3		r3	1
4	{	s5		r2	ļ
5	s2		s3		6
6	1	r1		r1	

 $e \in \text{Follow}(S)$

ACTION[4, e] = s5

Thank You!

Office 926 hfwei@nju.edu.cn