Association of Neoadjuvant Immunotherapy with Postoperative Major Morbidity After Oncologic Surgery

Daniel R. S. Habib BA¹, Matthew Shou BA¹, Kamran Idrees MD², Aimal Khan MD²

¹ Vanderbilt University School of Medicine, ² Vanderbilt University Medical Center Department of Surgery

Background

- Neoadjuvant immunotherapy (NI) has revolutionized cancer treatment.¹
- Extensive research on the impact of neoadjuvant chemotherapy² but not NI on surgical outcomes across cancer types
- Understanding the effect of NI on surgical complication risk informs patient selection for oncologic surgery.

Methods

- National Cancer Database (NCDB): patients aged 18-90
 who underwent non-palliative oncologic surgery for
 rectal, colon, anal, esophageal, lung (non-small cell), and
 oral cavity cancer between 2010-2020
- Primary outcome: major morbidity = hospital length of stay within top decile of each surgery subtype, unplanned 30-day readmission, or 30-day mortality
- Multivariable logistic regressions to calculate odds ratios of major morbidity from NI by cancer type
 - Controls: patient demographics, Charlson-Deyo comorbidity index, clinical cancer staging, procedure type, surgical approach, and other treatment (e.g., chemotherapy or radiotherapy)

SCAN ME

Results Figure 1. Flowchart of Inclusion Criteria for Cancer Surgery Patients by Neoadjuvant Immunotherapy Cancer diagnosis after 2010 and had oncologic surgery (N = 1,348,334)• Age <18, >=90 (N = 25,966) • Palliative (N = 16,962) Excluded Radiation [colon only] (N = 14,811) Adjuvant immunotherapy (N = 19,387) Laparoscopic/robotic procedures [oral cavity only] (N = 11,926) Non-major (i.e., local ablation) site-specific surgeries (N = 305,670) Included (N = 953,612)No Immunotherapy Immunotherapy (N = 4,771)(N = 948,841)

			Lower Risk of Major Morbidity Major Morbidity
Cancer Type	Adjusted OR (95% CI)	P-value	
Pooled	0.98 (0.81-1.19)	0.852	— ÷
Rectal	0.83 (0.60-1.16)	0.282	
Colon	1.27 (0.87-1.85)	0.220	—————————————————————————————————————
Anal	1.90 (0.16-23.15)	0.615	
Esophageal	0.35 (0.08-1.49)	0.156	
Lung (non-small cell)	1.06 (0.65-1.73)	0.821	
Oral Cavity	1.10 (0.61-2.00)	0.743	——————————————————————————————————————
			0.05 0.1 0.3 1 5 10 20 30 aOR (95% CI)

Discussion / Conclusions

- No association between NI and increased surgical complication risk for rectal, colon, anal, esophageal, non-small cell lung, and oral cavity cancers
- Increasingly relevant finding as more surgeons are considering operating on patients who have recently completed or are currently undergoing immunotherapy
- <u>Limitations</u>: lack of detailed surgical complication information for each cancer type, small sample size for anal cancer, and use of NCDB to study surgical outcomes
 - However, our method of applying NCDB outcome variables to create a major morbidity variable as a surgical complication proxy has been previously validated.³
- As immunotherapy becomes more prevalent, understanding its impact on surgical outcomes is crucial for optimizing patient care.

References

- 1. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. *Cell Mol Immunol.* 2020;17(8):807-821. doi:10.1038/s41423-020-0488-6
- 2. Kraut J, Gippetti J, Peterson D, et al. Chemotherapy use near end of life (EOL): Measuring real world benchmarks. *J Clin Oncol*. 2017;35(8_suppl):228-228. doi:10.1200/JCO.2017.35.8_suppl.228
- 3. Wong L-Y, Liou DZ, Backhus LM, Lui NS, Shrager JB, Berry MF. The impact of neoadjuvant immunotherapy on perioperative outcomes and survival after esophagectomy for esophageal cancer. *JTCVS Open*. 2023;14:547-560. doi:10.1016/j.xjon.2023.03.015

