Régression Linéaire Simple

La prédiction numérique est semblable à la classification.

- On construit un modèle dans une première phase.
- On utilise ce modèle pour prédire une valeur continue pour une instance donnée.

La classification réfère à la prédiction d'une classe catégorique

La prédiction numérique modèle des fonctions à valeur continue

L'instance contient les valeurs d'attributs connues.

Certains classifieurs peuvent être adaptés pour la prédiction numérique.

Exemple: KNN K-nearest neighbor

Parmi les méthodes d'analyses de régression :

Régression linéaire simple et multiple

Régression non linéaire

Modèle linéaire généralisé : Régression de Poisson et logistique

Régression Linéaire Simple :

Implique une variable de sortie Y, et un seul attribut X (variable d'entrée)

Le modèle a la forme linéaire :

$Y = w_0 + w_1X$

w₀ et w₁ sont les coefficients de la régression

Méthode des moindres carrés : On estime la meilleure ligne droite comme étant celle qui minimise l'erreur entre les données réelles et l'estimation de la ligne.

$$w_1 = \frac{\sum_{i=1}^{|D|} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{|D|} (x_i - \bar{x})^2} \quad w_0 = \bar{y} - w_1 \bar{x}$$

D: la base d'apprentissage

X : Valeurs de la variable attribut

Y: Valeurs de la variable réponse

IDI : les points données de la forme(x1,y1),(x2,y2),...(xIDI,yIDI).

 \bar{x} : la moyenne des valeur x_i

 \bar{y} : la moyenne des valeur y_i

Exemple : Le tableau suivant montre des paires de données ou X est le nombre d'année d'expérience d'un titulaire d'un Master et Y est le salaire correspondant de ce Master.

X Années Expériences	Y Salaire (en 1000DA)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Avec ces données, nous calculons :

 $\bar{x} = 9.1$ et $\bar{y} = 55.4$

Nous avons donc:

$$w_1 = \frac{(3-9.1)(30-55.4) + (8-9.1)(57-55.4) + \cdots + (16-9.1)(83-55.4)}{(3-9.1)^2 + (8-9.1)^2 + \cdots + (16-9.1)^2} = 3.5$$

$$w_0 = 55.4 - (3.5)(9.1) = 23.6$$

Y = 23.6 + 3.5X

L'objectif de l'algorithme Régression Linéaire Simple était justement de trouver cette ligne (Modèle) qui va l'aider à prédire le salaire (classe numérique) de toute variable en entrée (années d'expériences).