GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is h(t)= $\delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuoustime unit impulse signal.if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is (GATE IN 2023)

Solution:

Variable	Description	value
$\delta\left(t\right)$	continuous-time unit impulse signal	1 if t=0;
		0 in other cases
$h\left(t\right)$	impulse response	$\delta(t) + 0.5\delta(t-4)$
$x\left(t\right)$	input signal	$x(t) = \cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	?
$\mathcal{F}(\cos at)$	Fourier transform of $\cos at$	$0.5 \left[\delta \left(f - \frac{a}{2\pi} \right) + \delta \left(f + \frac{a}{2\pi} \right) \right]$
$X\left(f\right)$	Fourier transform of $x(t)$	$0.5 \left[\delta \left(f - \frac{7}{8} \right) + \delta \left(f + \frac{7}{8} \right) \right]$
$H\left(f\right)$	Fourier transform of $h(t)$	$1 + 0.5e^{-j8\pi f}$
$Y\left(f\right)$	Fourier transform of $y(t)$	$X\left(f\right) H\left(f\right)$
•	TABLE I	

A TABLE WITH INPUT PARAMETERS

from Table I

$$Y(f) = X(f) H(f)$$

$$= 0.5 \left[\delta \left(f - \frac{7}{8} \right) + \delta \left(f + \frac{7}{8} \right) \right] \left[1 + 0.5e^{-j8\pi f} \right]$$

$$(2)$$

Finding inverse fourier transform of Y(f):

$$y(t) = \int_{-\infty}^{\infty} Y(f) e^{j2\pi ft} df$$

$$= 0.5 \cos\left(\frac{7\pi t}{4}\right)$$
(4)

(4)

Fig. 1. Graph showing x(t) and y(t)