REPRESENTATIONS OF Aff(\mathbf{F}_q) **AND** Heis(\mathbf{F}_q)

KEITH CONRAD

For each prime power q, we will construct all irreducible representations over \mathbb{C} of the groups $\mathrm{Aff}(\mathbb{F}_q)$ and $\mathrm{Heis}(\mathbb{F}_q)$. To find all of them, there are three parts:

- Build as many irreducible representations as the number of conjugacy classes.
- Check a representation is irreducible by checking its character has inner product 1 with itself (1-dimensional representations are automatically irreducible).
- Check irreducible representations that are not 1-dimensional are nonisomorphic by checking their characters are different (distinct 1-dimensional representations are automatically nonisomorphic).

1. Representations of $Aff(\mathbf{F}_q)$

Let F be any field. In Aff(F), the group law is

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a' & b' \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} aa' & ab' + b \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1/a & -b/a \\ 0 & 1 \end{array}\right).$$

Two subgroups of Aff(F) are

$$\left\{\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right): a \neq 0\right\}, \quad \left\{\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right): b \in F\right\},$$

which are isomorphic to F^{\times} and F as groups. Matrices in Aff(F) decompose into a product of elements in these subgroups as

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right),$$

and the formula in alphabetical order doesn't quite work:

$$\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & ab \\ 0 & 1 \end{array}\right).$$

Conjugation in Aff(F) is

$$\left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} a & bx - y(a-1) \\ 0 & 1 \end{array}\right)$$

In particular, Aff(F) has trivial center unless $F = \mathbf{F}_2$, in which case Aff(F) is abelian. Here are the conjugacy classes in Aff(F):

• the identity matrix

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \right\},\,$$

• the set

$$\left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) : b \in F^{\times} \right\},$$

• for each $a \in F$ with $a \neq 0$ and $a \neq 1$, the set

$$\left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) : b \in F \right\}.$$

So in Aff(\mathbf{F}_q) there are a total of 1+1+(q-2)=q conjugacy classes and thus there are q irreducible representations of Aff(\mathbf{F}_q) over \mathbf{C} .

One-dimensional representations: Since the upper left entry in $\mathrm{Aff}(\mathbf{F}_q)$ behaves multiplicatively in the group law, for each homomorphism $\chi\colon \mathbf{F}_q^\times\to \mathbf{C}^\times$ we get a one-dimensional representation $\mathrm{Aff}(\mathbf{F}_q)\to \mathbf{C}^\times$ by

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) \mapsto \chi(a).$$

Since \mathbf{F}_q^{\times} is cyclic of order q-1, there are q-1 such χ , so we get q-1 one-dimensional representations of $\mathrm{Aff}(\mathbf{F}_q)$.

Remaining irreducible representation: From the count of conjugacy classes there is one more irreducible representation of Aff(\mathbf{F}_q). Letting d denote its degree, from $q-1+d^2=|\operatorname{Aff}(\mathbf{F}_q)|=q(q-1)$ we get d=q-1, so we seek a (q-1)-dimensional representation.

Consider the complex vector space V of functions $f : \mathbf{F}_q \to \mathbf{C}$. This is q-dimensional. Let each $g \in \mathrm{Aff}(\mathbf{F}_q)$ act on V as a linear change of variables using $g^{-1} : (\rho_V(g)f)(x) = f(g^{-1}x)$. We need g^{-1} rather than g in the formula to get $\rho_V(gh) = \rho_V(g)\rho_V(h)$. Explicitly,

$$(\rho_V(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix})f)(x) = f\left(\frac{1}{a}x - \frac{b}{a}\right).$$

The constant functions in V form a one-dimensional subspace on which $Aff(\mathbf{F}_q)$ acts trivially. Another $Aff(\mathbf{F}_q)$ -stable subspace of V is

$$W = \left\{ f \in V : \sum_{x \in \mathbf{F}_q} f(x) = 0 \right\}$$

and $\rho_V = \rho_W \oplus 1$, where ρ_W is the restriction of ρ_V to W. The dimension of W is q-1.

To show W is irreducible, we compute its character from that of V: $\chi_V = \chi_W + 1$. A basis of V is the q delta-functions $\delta_t \colon \mathbf{F}_q \to \mathbf{C}$ for $t \in \mathbf{F}_q$, where $\delta_t(x)$ is 0 for $x \neq t$ and $\delta_t(t) = 1$. Since $\rho_V\left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right)\delta_t = \delta_{at+b}$, the matrix for $\rho_V\left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right)$ with respect to the delta-basis of V is a permutation matrix based describing how $t \mapsto at + b$ permutes \mathbf{F}_q . Thus

$$\chi_V\left(\begin{array}{cc}a&b\\0&1\end{array}\right)=\#\{t\in\mathbf{F}_q:at+b=t\text{ in }\mathbf{F}_q\}=\begin{cases}1,&\text{if }a\neq1,\\q,&\text{if }a=1\text{ and }b=0,\\0,&\text{if }a=1\text{ and }b\neq0.\end{cases}$$

Therefore

$$\chi_W \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \chi_V \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} - 1 = \begin{cases} 0, & \text{if } a \neq 1, \\ q - 1, & \text{if } a = 1 \text{ and } b = 0, \\ -1, & \text{if } a = 1 \text{ and } b \neq 0. \end{cases}$$

The inner product of χ_W with itself is

$$\frac{1}{q(q-1)} \sum_{q} \chi_W(g) \overline{\chi_W(g)} = \frac{1}{q(q-1)} ((q-1)^2 + (q-1)(-1)^2) = \frac{(q-1)^2 + (q-1)}{q(q-1)} = 1,$$

so W is irreducible. It is a new irreducible representation since it's not 1-dimensional, except if q=2, in which case ρ_W is nontrivial while the single one-dimensional representation constructed earlier (q-1=1 if q=2) is trivial (note Aff(\mathbf{F}_2) $\cong \mathbf{F}_2$).

2. Representations of $\text{Heis}(\mathbf{F}_q)$

For a field F, the group law in the Heisenberg group Heis(F) is

(1)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+a' & b+b'+ac' \\ 0 & 1 & c+c' \\ 0 & 0 & 1 \end{pmatrix}$$

with inverse formula

$$\left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{array}\right).$$

Three subgroups of Heis(F) are

$$\left\{ \left(\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) : a \in F \right\}, \quad \left\{ \left(\begin{array}{ccc} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) : b \in F \right\}, \quad \left\{ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right) : c \in F \right\},$$

which are each isomorphic to F as groups. Note the subset

$$\left\{ \left(\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) : a, c \in F \right\}$$

is not a subgroup of Heis(F) since it's not closed under multiplication.

Matrices in Heis(F) decompose into a product of matrices in the three subgroups as

(2)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

while it doesn't quite work in alphabetical order:

$$\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a & b + ac \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

Conjugation in Heis(F) is

$$\left(\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & a & b - az + cx \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right).$$

In particular, the center of Heis(F) is

$$\left\{ \left(\begin{array}{ccc} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) : b \in F \right\}.$$

Here are the conjugacy classes in Heis(F):

• for each $b \in F$, the single matrix

$$\left\{ \left(\begin{array}{ccc} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \right\},\,$$

• for each pair $(a, c) \in F^2 - \{(0, 0)\}$, the set

$$\left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) : b \in F \right\}.$$

When $F = \mathbf{F}_q$, there are $q + (q^2 - 1) = q^2 + q - 1$ conjugacy classes, and thus $q^2 + q - 1$ irreducible representations of $\text{Heis}(\mathbf{F}_q)$ over \mathbf{C} .

One-dimensional representations: Let $\psi \colon \mathbf{F}_q \to \mathbf{C}^{\times}$ be a nontrivial homomorphism. An example is $\psi(x) = e^{2\pi i \operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(x)}$, where \mathbf{F}_q has characteristic p and $\operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p} \colon \mathbf{F}_q \to \mathbf{F}_p$ is the trace map. (If q = p then $\psi \colon \mathbf{F}_p \to \mathbf{C}^{\times}$ by $\psi(x) = e^{2\pi i x/p}$.) Since the a and c terms of a matrix in $\operatorname{Heis}(\mathbf{F}_q)$ combine additively under matrix multiplication, for each $(a, c) \in \mathbf{F}_q^2$ there is a representation $\psi_{a,c} \colon \operatorname{Heis}(\mathbf{F}_q) \to \mathbf{C}^{\times}$ given by

$$\psi_{a,c} \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} = \psi(ax + cz).$$

Check as an exercise that $\psi_{a,c}$ changes if the pair (a,c) changes, so we have q^2 irreducible representations of degree 1.

Remaining irreducible representations: We need q-1 more irreducible representations, and their degrees $\{d_i\}$ must satisfy $q^2 + \sum d_i^2 = |\operatorname{Heis}(\mathbf{F}_q)| = q^3$, so $\sum d_i^2 = q^3 - q^2 = (q-1)q^2$. We will find q-1 nonisomorphic irreducible representations with degree q.

Let V, as before, be the q-dimensional vector space of functions $f \colon \mathbf{F}_q \to \mathbf{C}$. We will define three actions of \mathbf{F}_q on V, and composing them in a suitable order will give an action of the group $\mathrm{Heis}(\mathbf{F}_q)$ on V. For $a, b, c \in \mathbf{F}_q$, define the linear maps $\sigma_a \colon V \to V$, $\tau_b \colon V \to V$, and $\varphi_c \colon V \to V$ by

$$(\sigma_a f)(x) = f(x+a), \quad (\tau_b f)(x) = \psi(b)f(x), \quad (\varphi_c f)(x) = \psi(cx)f(x),$$

where $\psi \colon \mathbf{F}_q \to \mathbf{C}^{\times}$ is the same function we used to build one-dimensional representations above. For $t \in \mathbf{F}_q$, note τ_t multiplies each function in V by the number $\psi(t)$ while φ_t multiplies each function in V by the function $\psi(tx)$.

Check $\sigma_a \circ \sigma_{a'} = \sigma_{a+a'}$, $\tau_b \circ \tau_{b'} = \tau_{b+b'}$, and $\varphi_c \circ \varphi_{c'} = \varphi_{c+c'}$ as functions $V \to V$, so $a \mapsto \sigma_a$, $b \mapsto \tau_b$, $c \mapsto \varphi_c$ are actions of \mathbf{F}_q on V by linear maps. Check τ_b commutes with both σ_a and φ_c , while σ_a and φ_c commute with each other up to scaling by a root of unity:

(3)
$$\sigma_a \circ \tau_b = \tau_b \circ \sigma_a, \quad \varphi_c \circ \tau_b = \tau_b \circ \varphi_c, \quad \sigma_a \circ \varphi_c = \psi(ac)\varphi_c \circ \sigma_a = \tau_{ac} \circ \varphi_c \circ \sigma_a.$$

Using (3), the 3-fold composites $\sigma_a \circ \tau_b \circ \varphi_c$ compose as follows:

$$(\sigma_{a} \circ \tau_{b} \circ \varphi_{c}) \circ (\sigma_{a'} \circ \tau_{b'} \circ \varphi_{c'}) = \sigma_{a} \circ \tau_{b} \circ (\varphi_{c} \circ \sigma_{a'}) \circ \tau_{b'} \circ \varphi_{c'}$$

$$= \sigma_{a} \circ \tau_{b} \circ (\tau_{-a'c} \circ \sigma_{a'} \circ \varphi_{c}) \circ \tau_{b'} \circ \varphi_{c'}$$

$$= \sigma_{a} \circ \tau_{b-a'c} \circ \sigma_{a'} \circ \tau_{b'} \circ \varphi_{c} \circ \varphi_{c'}$$

$$= \sigma_{a} \circ \sigma_{a'} \circ \tau_{b-a'c} \circ \tau_{b'} \circ \varphi_{c} \circ \varphi_{c'}$$

$$= \sigma_{a+a'} \circ \tau_{b+b'-a'c} \circ \varphi_{c+c'} .$$

This is almost like the way matrices in $\operatorname{Heis}(\mathbf{F}_q)$ multiply in (1), and it would match matrix multiplication if $\tau_{b+b'-a'c}$ were $\tau_{b+b'+ac'}$. Matrices in $\operatorname{Heis}(\mathbf{F}_q)$ decompose in (2) using reverse alphabetical order, which suggests looking at $\varphi_c \circ \tau_b \circ \sigma_a$ instead. By calculations as above,

$$(\varphi_{c} \circ \tau_{b} \circ \sigma_{a}) \circ (\varphi_{c'} \circ \tau_{b'} \circ \sigma_{a'}) = \varphi_{c} \circ \tau_{b} \circ (\sigma_{a} \circ \varphi_{c'}) \circ \tau_{b'} \circ \sigma_{a'}$$

$$= \varphi_{c} \circ \tau_{b} \circ (\tau_{ac'} \circ \varphi_{c'} \circ \sigma_{a}) \circ \tau_{b'} \circ \sigma_{a'}$$

$$= \varphi_{c} \circ \tau_{b+ac'} \circ \varphi_{c'} \circ \tau_{b'} \circ \sigma_{a} \circ \sigma_{a'}$$

$$= \varphi_{c} \circ \varphi_{c'} \circ \tau_{b+ac'} \circ \tau_{b'} \circ \sigma_{a} \circ \sigma_{a'}$$

$$= \varphi_{c+c'} \circ \tau_{b+b'+ac'} \circ \sigma_{a+a'} .$$

This is exactly how matrices in $\text{Heis}(\mathbf{F}_q)$ multiply, so we get a q-dimensional representation ρ_{ψ} of $\text{Heis}(\mathbf{F}_q)$ on V by

$$g = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto \rho_{\psi}(g) = \varphi_c \circ \tau_b \circ \sigma_a.$$

As a formula, for $f \in V$

$$(\rho_{\psi}(g)f)(x) = (\varphi_c \tau_b \sigma_a f)(x) = \psi(cx)(\tau_b \sigma_a f)(x) = \psi(cx)\psi(b)f(x+a) = \psi(cx+b)f(x+a).$$

Let's compute the character of ρ_{ψ} . Using the basis $\{\delta_t : t \in \mathbf{F}_q\}$ of V, we have

$$g = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \Longrightarrow (\rho_{\psi}(g)\delta_t)(x) = \psi(cx+b)\delta_t(x+a) = \begin{cases} \psi(c(t-a)+b), & \text{if } x = t-a, \\ 0, & \text{if } x \neq t-a, \end{cases}$$

so

$$\rho_{\psi}(g)\delta_t = \psi(c(t-a)+b)\delta_{t-a}.$$

- If $a \neq 0$, the matrix of $\rho_{\psi}(g)$ with respect to the delta-basis has 0's on the main diagonal, so $(\text{Tr } \rho_{\psi})(g) = 0$.
- If a=0, the matrix of $\rho_{\psi}(g)$ with respect to the delta-basis has diagonal entries $\psi(ct+b)$, so $(\text{Tr }\rho_{\psi})(g)=\sum_{t\in\mathbf{F}_q}\psi(ct+b)$, which is $q\psi(b)$ if c=0 and 0 if $c\neq 0$.

Thus the character χ_{ψ} of ρ_{ψ} is

$$\chi_{\psi} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{cases} q\psi(b), & \text{if } a = c = 0, \\ 0, & \text{otherwise} \end{cases}$$

so the inner product of χ_{ψ} with itself is

$$\frac{1}{q^3} \sum_g \chi_{\psi}(g) \overline{\chi_{\psi}(g)} = \frac{1}{q^3} \sum_{b \in \mathbf{F}_q} q\psi(b) \overline{q\psi(b)} = \frac{1}{q} \sum_{b \in \mathbf{F}_q} 1 = 1.$$

We have a q-dimensional irreducible representation ρ_{ψ} for each nontrivial homomorphism $\psi \colon \mathbf{F}_q \to \mathbf{C}^{\times}$. There are q-1 choices for ψ . To prove the ρ_{ψ} 's for different ψ are nonisomorphic, we show the characters of the ρ_{ψ} 's are different. This follows from the formula

$$\psi(b) = \frac{1}{q} \chi_{\psi} \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

which shows we can recover ψ from the character of ρ_{ψ} . (Alternatively, check for different nontrivial ψ_1 and ψ_2 that the inner product of the characters of ρ_{ψ_1} and ρ_{ψ_2} is 0.)

More on the irreducible representations of $\mathrm{Aff}(\mathbf{F}_q)$ and $\mathrm{Heis}(\mathbf{F}_q)$ is in [1, Chap. 16–18].

References

[1] A. Terras, "Fourier Analysis on Finite Groups and Applications," Cambridge Univ. Press, 1999.