Tota	l No.	of Questions : 5] SEAT No. :	
P-5	780	[Total	No. of Pages : 3
		[6120] 102	
		M.C.A. (Management)	
	ľ	Γ-12 : DATA STRUCTURE AND ALGORIT	HMS
		(2020 Pattern) (Semester - I)	
	27		1.5 1. 50
Time : 2½ Hours] [Mo Instructions to the candidates:			ax. Marks: 50
111311	<i>1</i>)	All questions are compulsory.	
	<i>2</i>)	Figures to the right indicate full marks.	
		6.V	
<i>Q1</i>)	a)	Write an algorithm to reverse the nodes from singly link	
	b)	Write an algorithm to copy elements from queue to stac	k. [4]
	7	OR	
	a)	Write an algorithm to calculate sum of data of alternate no linked list.	odes of doubly [6]
	b)	Discuss the use of priority queue	[4]
	0)	Discuss the use of priority queue	[.,]
<i>Q</i> 2)	a)	Construct binary search tree with following traversals.	[6]
~	,	Preorder Traversal: 22, 15, 4, 17, 16, 19, 58, 82	
		Inorder Traversal: 4, 15, 16, 17, 19, 22, 58, 82	
	b)	Write adjacency matrix and DFS for following graph.	
		[Starting vertex A]	[4]
		(B)	9.
)
		OR OR	
	a)	Construct segment tree (sum of range) for following dat	a. [6]
	1 \	14, 11, 12, 16, 17, 21, 28	F 43
	b)	Explain has collision with suitable example.	[4]
		\swarrow	<i>P.T.O.</i>

- *Q3*) a) Apply the rain terrace algorithm to the following problem. Input: [3, 0, 3, 0, 4, 2]. Draw the figure & find the solution.
 - Describe the rules for solving N queen problem. [4] b)

OR

- Apply the maximum subarray algorithm to the input : [-4, -7, -1, 4,a) [2, -3, 5] and find sum of maximum subarray. [6]
- Explain combination sum problem with example. [4] b)
- kstra's algorithm to find shortest path for following graph. **Q4**) a)

Apply Euclidean algorithm to find GCD of 60 and 36. b)

OR

- Sort the following data using Mergesort algorithm [20, 55, 30, 4, a) 13, 24]. **[6]**
- Explain fast powering with suitable example. **[4]** b)
- Find the length of longest common substring using dynamic **Q5**) a) programming for following strings. [7]

X = "congratulations" and Y = " gratitude"

How dynamic programming is used to find unique paths. b) [3]

OR

$$n = 4$$
, $m = 8$, $p = (1, 2, 5, 6)$, $w \in (2, 3, 4, 5)$

J. 1 Knapsack problem.

1, 2, 5, 6), w = (2, 3, 4, 5)

2 ynamic programming determine the optimal profit and solution vector.

b) Explain regular expression matching using dynamic programming.

[3] Using dynamic programming determine the optimal profit and the

[3]

[6120]-102

And the state of t