14 - Diagramas polares

Rodrigo Makoto Takumi - RA: 176897 Carlos Augusto Jardim Chiarelli - RA: 165685

Ex. 14.1) Filtro passivo baseado em circuito RC em série $(R = 100 \ \Omega, \ C = 100 \ \mu\text{F})$:

- a) Obtenha a função de transferência do filtro passa-baixas $G_L(s) = V_c(s)/V_s(s)$ e do passa-altas $G_H(s) = V_R(s)/V_s(s)$;
- b) Trace os diagramas de Bode, Nyquist e Nichols e discuta os resultados.

Lei de Kirchhoff:

$$v_s(t) = v_R(t) + v_c(t)$$

Tensão no Resistor:

$$v_R(t) = Ri(t) = R\dot{q}(t)$$

Tensão no Capacitor:

$$v_c(t) = v_o(t) = \frac{1}{C}q(t)$$

$$q(t) = C v_o(t)$$

$$\frac{v_s(t)}{v_c(t)} = \frac{v_R(t)}{v_c(t)} + 1$$

$$\frac{v_s(t)}{v_c(t)} = \frac{R\dot{q}(t)}{\frac{q(t)}{C}} + 1$$
$$\frac{v_s(t)}{v_c(t)} = \frac{RC\dot{q}(t)}{q(t)} + 1$$

Filtro passa-baixas:

Aplicando a transformada de laplace:

$$G_L(s) = \frac{v_s(s)}{v_c(s)} = RCs + 1$$

$$G_L(s) = \frac{v_c(s)}{v_s(s)} = \frac{1}{RCs + 1}$$

$$M_H(w) = \frac{wRC}{\sqrt{1 + (wRC)^2}}$$

$$\phi_H(w) = \tan^{-1}(\frac{1}{wRC})$$

- Em ω = 0, M = 0 e ϕ = 0°;
- Em $\omega = 1/RC = 100 \text{ rad/s}, M = 1/\sqrt{2} \text{ e } \phi = -45^{\circ};$
- Em $\omega \rightarrow \infty$, $M \rightarrow 1 e \phi \rightarrow -90^{\circ}$.

Código:

G = tf([1], [0.01, 1]) bode(G) nyquist(G) nichols(G)

Filtro passa-altas:

Aplicando a transformada de laplace:

$$G_H(s) = \frac{v_R(s)}{v_s(s)} = \frac{RCs}{RCs + 1}$$

$$M_H(w) = \frac{wRC}{\sqrt{1 + (wRC)^2}}$$

$$\phi_H(w) = \tan^{-1}(\frac{1}{wRC})$$

- Em ω = 0, M = 0 e ϕ = 90°;
- Em ω = 1/RC = 100rad/s, M = 1/ $\sqrt{2}$ e ϕ =45°;
- Em $\omega \to \infty$, $M \to 1$ e $\phi \to 0^\circ$.

Código: G = tf([0.01, 0], [0.01, 1]) bode(G) nyquist(G) nichols(G)

Ex. 14.2) Considere um sistema de segunda ordem com $\omega_n = 500$ rad/s e $\xi = 0.1$. Plote os diagramas de Bode, Nyquist e Nichols e discuta os resultados obtidos.

$$G_s = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Sabendo que ω_n = 500 e ξ = 0.1, temos:

$$G_s = \frac{25 * 10^4}{s^2 + 100s + 25 * 10^4}$$

•
$$\sigma = \xi \omega_n = 50$$
;

•
$$\omega_d = \omega_n \sqrt{(1 - 2 * \xi^2)} = 497.97 \text{ rad/s};$$

•
$$s = -\sigma \pm j\omega d = -50 \pm 497.97j;$$

•
$$\omega_R = \omega_n \sqrt{(1 - 2 * \xi^2)} = 494.97 \text{ rad/s}.$$

Código: G = tf([250000],[1, 100, 250000]) bode(G) nyquist(G) nichols(G)

Ex. 14.3) Analise a resposta de um motor de corrente contínua sem carga considerando as plantas com saída de velocidade e de posição.

- Dados do motor (SI):
 - $R = 0.2 \Omega$;
 - L = 0.01 H;
 - $I = 1 \times 10^{-5}$;
 - B = 0.2;
 - k = 10.

Função de transferência - velocidade:

• Tipo 0:

$$G_{\omega}(s) = \frac{\omega(s)}{V(s)} = \frac{k}{(sL+R)(sJ+B) + k^2}$$

$$G_{\omega}(s) = \frac{10}{10^{-7}s^2 + 2 * 10^{-3}s + 100}$$

Código: G = tf([10], [1e-7, 2*1e-3, 100]) bode(G) nyquist(G) nichols(G)

Função de transferência - posição:

• Tipo 1:

$$G_{\theta}(s) = \frac{\theta(s)}{V(s)} = \frac{k}{s(sL+R)(sJ+B) + k^2}$$

$$G_{\theta}(s) = \frac{10}{10^{-7}s^3 + 2*10^{-3}s^2 + 100s}$$

Código: G = tf([10], [1e-7, 2*1e-3, 100, 0]) bode(G) nyquist(G) nichols(G)