AHP / TOPSIS / 灰色评价法:原理推导与案例全流程详解

1. AHP(层次分析法)

1.1 算法原理与详细推导

AHP的核心思想是:将复杂多目标决策问题分层,利用两两比较矩阵,量化每一层因素权重,最终递推得到最优排序。适合于"权重主观、专家评判为主"的场景。

步骤与公式

1. 层次结构建模(如:目标-准则-方案)

2. **判断矩阵A**,元素a_ij表示第i项相对于j项的重要性(1~9分制):

	交通	人才	市场	成本
交通	1	3	2	0.5
人才	1/3	1	0.5	1/3
市场	0.5	2	1	1/3
成本	2	3	3	1

1. 权重计算(几何平均法示例)

2. 交通:开4次方 $\sqrt[4]{1 \times 3 \times 2 \times 0.5} \approx 1.316$ 3. 人才: $\sqrt[4]{1/3 \times 1 \times 0.5 \times 1/3} \approx 0.375$ 4. 市场: $\sqrt[4]{0.5 \times 2 \times 1 \times 1/3} \approx 0.759$ 5. 成本: $\sqrt[4]{2 \times 3 \times 3 \times 1} \approx 2.060$

6. 总和: 4.510, 标准化为:

。 交通:0.29, 人才:0.08, 市场:0.17, 成本:0.46

7. 一致性检验:

$$CI = rac{\lambda_{max} - n}{n-1}, \qquad CR = rac{CI}{RI}$$

RI查表,n=4时RI=0.9,CR<0.1为通过。

1. **最终得分**:各方案评分×权重求和,例如A市得分= $7 \times 0.29 + 8 \times 0.08 + 6 \times 0.17 + 6 \times 0.46 = 6.45$

1

1.2 代码与案例复现

见case1_ahp_company.csv + case1_ahp.py,核心流程同上。

2. TOPSIS

2.1 算法原理与详细推导

TOPSIS思想:理想方案应"最接近正理想解、最远离负理想解"。

步骤与公式

1. **归一化**:极大型指标 $z_{ij}=rac{x_{ij}}{\sqrt{\sum x_{ij}^2}}$,极小型如成本 $z_{ij}=x_{min}/x_{ij}$

2. 加权: $v_{ij}=w_jz_{ij}$

3. 理想解A+:各列最大值;A-:最小值

4. 距离: $D_i^+ = \sqrt{\sum_j (v_{ij} - A_j^+)^2}$, $D_i^- = \sqrt{\sum_j (v_{ij} - A_j^-)^2}$

5. 综合评价: $C_i = rac{D_i^-}{D_i^+ + D_i^-}$

2.2 案例手算示范

以三家供应商A/B/C部分数据:

供应商	价格	交付周期	质量	服务
Α	6	8	7	7
В	8	6	8	6
С	7	7	6	8

- •价格/交付(成本型,越小越优):归一化A:6/6=1,B:6/8=0.75,C:6/7=0.857...
- 质量/服务(效益型):如A质量7/√(7²+8²+6²)=0.631...
- 权重0.3/0.2/0.3/0.2后相乘
- 各方案到理想解、负理想解距离、最终分值排序

2.3 代码与案例复现

见case2_topsis_suppliers.csv + case2_topsis.py

3. 灰色评价法(灰色关联分析)

3.1 算法原理与详细推导

灰色评价法适用于样本小、信息不全。核心思想是:评价对象与理想参考序列越接近,其"灰色关联度"越大,排序越靠前。

步骤与公式

1. 参考序列x0:如各项指标最大值。

2. 无量纲化(极差归一化): $x_{norm} = (x - min)/(max - min)$

3. 关联系数:

$$\xi_i(k) = rac{\Delta_{min} +
ho \Delta_{max}}{|x_0(k) - x_i(k)| +
ho \Delta_{max}}$$

ρ一般0.5。

4. **关联度**: $\gamma_i = \frac{1}{n} \sum \xi_i(k)$

3.2 案例手算演示

以A/B/C三市大气、水体、噪音部分:

城市	大气	水	噪音 ———
Α	80	70	65
В	75	80	60
С	88	75	63

- 参考序列=最大[88,80,65]
- •比如A大气Δ=|88-80|=8, minΔ=0, maxΔ=28, ξ=(0+0.5×28)/(8+0.5×28)=14/22≈0.636
- 依次算均值, y最大者为最佳

3.3 代码与案例复现

见case3_gray_environment.csv + case3_gray.py

4. 小结与建模竞赛应用建议

- •三大算法都是"先无量纲/归一/标准化,后加权/关联/距离,最终排序"
- 代码实现均——对应上述步骤
- 国赛中建议答题时"原理+公式+步骤+案例手算+代码对照"全流程写明

如需更详细拆解或公式逐步演算补充,随时可继续扩展。