STUDY OF HIGH HARMONIC GENERATION IN HIGH REPETITION RATE SYSTEMS

Student
Aurelien PELISSIER
ARPE ENS Cahan

Supervisor **David JONES** *Professor*

Noble Gas target

- ✓ Create coherent XUV light
- ✓ Use a noble gas target
- √ Realization on a table-top
- ➤ Intense laser field required (~ 10¹⁴ W/cm²)
- ✗ Highly nonlinear process

- ✓ Create coherent XUV light
- ✓ Use a noble gas target
- ✓ Realization on a table-top
- ✓ Intense laser field required (~ 10¹⁴ W/cm²)
- ➤ Highly nonlinear process

High repetition rate systems

Traditional single pass HHG

- I 500 kHz
- ✓ Loose focus
- **×** Low data rates
- * High peak power

High repetition rate HHG

10 -100 MHz

- √ High data rates
- ✗ Higher plasma density
- ✗ Tight focus (less efficient)

Femtosecond Enhancement Cavity (fsEC)

I. Theory
Semi-classical model

I. Theory
Semi-classical model

II. Atoms and ions dynamic Supersonic flow physic Plasma physic

I. Theory
Semi-classical model

II. Atoms and ions dynamic Supersonic flow physic Plasma physic

III. Dipole response

Quantum mechanic

I. Theory
Semi-classical model

II. Atoms and ions dynamic Supersonic flow physic Plasma physic

III. Dipole response

Quantum mechanic

IV. Phase matching Nonlinear optic

I. Theory
Semi-classical model

II. Atoms and ions dynamic Supersonic flow physic Plasma physic

III. Dipole response

Quantum mechanic

IV. Phase matching Nonlinear optic

The three step model

Ionization

The three step model

Ionization

Acceleration

The three step model

Ionization

Acceleration

Recombination

The three step model

lonization

Acceleration

Recombination

$$\omega_q = q\omega_1$$
q is an odd number

$$E_{q,max} = 3.17U_p + I_p$$

$$U_p \propto I$$

Differences between gases

Gas	He	Ne	Ar	Kr	Xe
I_p [eV]	24.6	21.6	15.8	14.0	12.1

Required intensity to generate harmonics

Differences between gases

Gas	He	Ne	Ar	Kr	Xe
I_p [eV]	24.6	21.6	15.8	14.0	12.1

Required intensity to generate harmonics

Long and short trajectories

returning time t_r such that

$$x(t_r) = 0$$

2nd Newton law:

$$m_e \ddot{x}(t) = -eE_o \cos(\omega_1 t)$$

Energy:

$$E = p^2(t_r)/2m_e$$

2 emission times t_0 that give the same impact energy

Short trajectory if $t_0 > 18/\omega_1$

Long trajectory if $t_0 < 18/\omega_1$

Density distribution

COMSOL simulations:

The density drop is very fast (80% drop at 400um), it is hard to focus at the right spot

uncertainty on the pressure

Ionization process

Ionization process

$$\gamma = \sqrt{\frac{I_p}{2U_p}} \qquad \gamma \gg 1 \quad \text{Classical dominate} \\ \gamma \ll 1 \quad \text{Tunnelling dominate}$$

Classical ionization

Tunnel ionization

Ionization process

$$\gamma = \sqrt{\frac{I_p}{2U_p}} \qquad \gamma \gg 1 \quad \text{Classical dominate} \\ \gamma \ll 1 \quad \text{Tunnelling dominate}$$

Classical ionization

Tunnel ionization

lons recombination

lons recombination for different initial ionization fraction

lons recombination

lons recombination for different initial ionization fraction

Ambipolar diffusion

Freed electrons are moving away

lons repulsion and electron-ion attraction

$$\frac{\partial \rho}{\partial t} = -D_{\alpha} \frac{\partial^2 \rho}{\partial r^2}$$

$$= -D_{\alpha} \frac{\partial^2 \rho}{\partial r^2} \qquad D_{\alpha} = D_i \left(1 + \frac{T_e}{T_i} \right)$$

II. IONS AND ATOMS DYNAMIC

Supersonic expansion

Velocity distribution at the nozzle outlet

II. IONS AND ATOMS DYNAMIC

Supersonic expansion

Velocity distribution at the nozzle outlet

Ions recombination and diffusion through laser pulses $I = 8 \times 10^{13}$ W/cm², P = 500 mbar, V = 250 m/s

II. IONS AND ATOMS DYNAMIC

The importance of gas velocity

Ionization fraction after 16 pulses as a function of pressure for different gas velocity

Ionization at 500 mbar as a function of gas velocity

Ground state valence electron subjected to a potential $V = V_{atom} + V_{field}$

$$V_{\rm field}(x,t) = -exE_of(t)\cos(\omega_1 t)$$
 Oscillating potential of the driving field

$$V_{
m atom}(x) = -rac{1}{4\piarepsilon_o}rac{e^2}{\sqrt{x^2+X_o^2}}$$
 Coulomb potential of the atom

Ground state valence electron subjected to a potential $V = V_{atom} + V_{field}$

$$V_{\mathrm{field}}(x,t) = -exE_of(t)\cos(\omega_1 t)$$
 Oscillating potential of the driving field

$$V_{\rm atom}(x) = -\frac{1}{4\pi\varepsilon_o}\frac{e^2}{\sqrt{x^2+X_o^2}} \qquad \mbox{Coulomb potential of the atom}$$

Schrödinger equation:

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \frac{p^2}{2m_e} \psi(x,t) + V(x,t)\psi(x,t)$$

Solving with split-step Fourier method:

$$\begin{cases} \phi(x, t + dt) = \mathcal{F}\left(\psi(k, t)e^{-\frac{i}{\hbar}V(x, t)dt}\right) \\ \psi(k, t + dt) = \mathcal{F}^{-1}\left(\phi(x, t + dt)e^{-\frac{i\hbar}{2m_e}k^2dt}\right) \end{cases}$$

Ground state valence electron subjected to a potential $V = V_{atom} + V_{field}$

$$V_{\mathrm{field}}(x,t) = -exE_of(t)\cos(\omega_1 t)$$
 Oscillating potential of the driving field

$$V_{\rm atom}(x) = -\frac{1}{4\pi\varepsilon_o}\frac{e^2}{\sqrt{x^2+X_o^2}} \qquad \mbox{Coulomb potential of the atom}$$

Schrödinger equation:

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \frac{p^2}{2m_e} \psi(x,t) + V(x,t)\psi(x,t)$$

Solving with split-step Fourier method:

$$\begin{cases} \phi(x, t + dt) = \mathcal{F}\left(\psi(k, t)e^{-\frac{i}{\hbar}V(x, t)dt}\right) \\ \psi(k, t + dt) = \mathcal{F}^{-1}\left(\phi(x, t + dt)e^{-\frac{i\hbar}{2m_e}k^2dt}\right) \end{cases}$$

Time evolution of the electron wave-function in the space domain during the laser pulse.

Dipole spectrum

$$d(t) \propto \langle \psi(x,t) | x | \psi(x,t) \rangle$$

$$A(\omega) = |\mathcal{F}(d)(\omega)|$$

Dipole spectrum for different peak intensities

Harmonics dipole amplitude as a function of intensity

- → As the fundamental and harmonic field propagate, their phases can become mismatched.
- → The phase mismatch limits the efficiency of harmonic generation.

- → As the fundamental and harmonic field propagate, their phases can become mismatched.
- → The phase mismatch limits the efficiency of harmonic generation.

Phase mismatch induced by the dipole moment of the electron

$$\Phi_{\text{dipole}}(z,r) = \alpha I(z,r,t)$$

- → As the fundamental and harmonic field propagate, their phases can become mismatched.
- → The phase mismatch limits the efficiency of harmonic generation.

Phase mismatch induced by the dipole moment of the electron

$$\Phi_{\text{dipole}}(z,r) = \alpha I(z,r,t)$$

Phase mismatch induced by the Gaussian beam

$$\phi_{\text{foc}}(z,r) = kz + k\frac{r^2}{2R(z)} - \zeta(z)$$

- → As the fundamental and harmonic field propagate, their phases can become mismatched.
- → The phase mismatch limits the efficiency of harmonic generation.

Phase mismatch induced by the dipole moment of the electron

$$\Phi_{\text{dipole}}(z,r) = \alpha I(z,r,t)$$

Phase mismatch induced by the Gaussian beam

$$\phi_{\text{foc}}(z,r) = kz + k \frac{r^2}{2R(z)} - \zeta(z)$$

Index modification by neutral atoms and plasma

$$n(z,r,t,\omega) = 1 + \boxed{\frac{P(z,r)}{P_{atm}} \left(\left(1 - \boxed{\eta(z,r,t)}\right) \delta(\omega) - \boxed{\eta(z,r,t)} \frac{N_{atm}e^2}{2\omega^2 m_e \varepsilon_o} \right)}$$

$$\Delta \phi = q\phi_1 - \phi_q$$

$$q\phi_1 = qk_1n(\omega_1)z + q\phi_{\text{foc}}(\omega_1) + \Phi_{\text{dipole}} - q\omega_1t$$

$$\phi_q = k_qn(\omega_q)z + \phi_{\text{foc}}(\omega_q) - \omega_qt$$

$$\Delta k = |\vec{k}_q| - q |\vec{k}_1|$$
 with $\vec{k} = \vec{\nabla} \phi$

$$L_{\rm coh} = \frac{\pi}{\Delta k}$$

(a long coherence length correspond to a good phase matching)

Coherence length for different pressure and intensities

Phasematching at the focus:

$$\Delta k(0,0) = k_q \frac{P}{P_{\text{atm}}} \Delta \delta \left(1 - \frac{\eta}{\eta_c} \right) - \frac{q}{z_R}$$

Perfect phasematching ($\Delta k = 0$) => infinite coherence length

$$P_{\text{opt}} = \frac{P_{\text{atm}}}{k_1 z_R \Delta \delta \left(1 - \frac{\eta}{\eta_c}\right)}$$

Gas	Ar	Kr	Xe
η [%]	4,1	6, l	6,4

Critical ionization fraction for the 21rd harmonic

$$\frac{\partial E_o(z)}{\partial z} = -\frac{\rho(z)\sigma}{2}E_o(z) + i\frac{\mu_o c\omega_q}{2}A_q(z)\rho(z)[1-\eta(z)]e^{i\Delta\phi(z)}$$

$$\frac{\partial E_o(z)}{\partial z} = -\frac{\rho(z)\sigma}{2}E_o(z) + i\frac{\mu_o c\omega_q}{2}A_q(z)\rho(z)[1 - \eta(z)]e^{i\Delta\phi(z)}$$

The importance of phase matching

$$\frac{\partial E_o(z)}{\partial z} = -\frac{\rho(z)\sigma}{2}E_o(z) + i\frac{\mu_o c\omega_q}{2}A_q(z)\rho(z)[1 - \eta(z)]e^{i\Delta\phi(z)}$$

The importance of phase matching

The importance of absorbtion

Scaling with the peak intensity

Scaling with the gas pressure

Scaling with the interaction length

Nozzle position dependance for different nozzle diameter

V. SIMULATION VS MEASUREMENTS

Gas pressure

V. SIMULATION VS MEASUREMENTS

Peak Intensity

Mixing with helium

Absorption coefficient of Helium and Krypton at Latm

Helium Krypton - Fundamental - 21th 10⁰ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ wavelength [nm]

Absorption coefficient of Helium and Krypton at Latm

Does not work

Optimum harmonic amplitude as a function of helium fraction ($Io = 7 \times 10^{13} \text{W/cm}^2$)

Changing the nozzle

Changing the nozzle

CONCLUSIONS ET PERSPECTIVE

- ✓ The plasma cloud behavior between each and the atomic response have been successfully simulated
- ✓ The consequences of the phase matching effects and absorption have been demonstrated.
- ✓ The Harmonics amplitude has been calculated as a function of intensity, pressure, interaction length and nozzle position
- ✓ The optimum parameters have been highlighted considering absorption and phasematching limitation

Perspective:

- Construct a dynamic nozzle and do measurements
- Mixing with hydrogen because less absorption (but too dangerous)