(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年8 月19 日 (19.08.2004)

PCT

(10) 国際公開番号 WO 2004/069044 A1

(51) 国際特許分類7:

A61B 3/10

(21) 国際出願番号:

PCT/JP2004/000794

(22) 国際出願日:

2004年1月29日(29.01.2004)

(25) 国際出願の言語:

日本語

(==) HRIHAN HILL

日本語

(26) 国際公開の言語:(30) 優先権データ:

2003年2月3日(03.02.2003)

特願2003-25428 特願2003-134829

2003年2月3日(03.02.2003) JP 2003年5月13日(13.05.2003) JP

(71) 出願人/米国を除く全ての指定国について): 株式会社 トプコン (KABUSHIKI KAISHA TOPCON) [JP/JP]; 〒174-0052 東京都 板橋区 蓮沼町 7 5 番 1 号 Tokyo (JP).

(72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 広原 陽子 (HI-ROHARA,Yoko) [JP/JP]; 〒174-0052 東京都 板橋区 蓮沼町 7 5番 1号 株式会社トプコン内 Tokyo (JP). 三橋 俊文 (MIHASHI,Toshifumi) [JP/JP]; 〒174-0052 東京都 板橋区 蓮沼町 7 5番 1号 株式会社トプコン内 Tokyo (JP).
- (74) 代理人: 橋爪 健 (HASHIZUME, Takeshi); 〒104-0061 東京都中央区 銀座 3 丁目 1 3 番 1 7 号 Tokyo (JP).

/続葉有/

(54) Title: OPHTHALMIC DATA MEASUREMENT DEVICE, OPHTHALMIC DATA MEASUREMENT PROGRAM, AND EYE CHARACTERISTIC MEASUREMENT DEVICE

(54) 発明の名称: 眼科データ測定装置、眼科データ測定プログラム及び眼特性測定装置

A...START

S101...PUPIL POSITION X, Y, Z ALIGNMENT

S103...MOVEMENT OF ORIGIN OF MOVABLE PORTION

S105...<MEASUREMENT OF PUPIL DIAMETER/ EYEBALL OPTICAL SYSTEM DATA>

S107...<EYESIGHT SIMULATION> OR < CORRECTION

IMAGE SIMULATION > S109...DATA OUTPUT

B...END

(57) Abstract: It is possible to estimate optical characteristic according to a pupil diameter in daily life of an examir.ee, correction data near to the optimal prescription value, eyesight, and sensitivity. A calculation section receives measurement data indicating refractive power distribution of an eye to be examined and pupil data on the eye and calculates lower order and higher order aberrations according to the measurement data and the pupil data (S101 to 105). For example, a pupil edge is detected from the anterior ocular segment image and a pupil diameter is calculated. By using this pupil diameter, lower order and higher order aberrations are calculated. According to the lower order and higher order aberrations obtained, the calculation section performs simulation of a retina image by using high contrast or low contrast target and estimates the eyesight by comparing the result to a template and/or obtains sensitivity (S107). Alternatively, according to the lower order and the higher order aberrations obtained, the calculation section calculates an evaluation parameter indicating the quality of visibility by the eye to be examined such as the Strehl ratio, the phase shift (PTF), and the visibility by comparison of the retina image simulation with the template. According to the evaluation parameter calculated, the calculation section changes the lower order aberration amount so as to calculate appropriate correction data for the eye to be examined (S107). The calculation section outputs data such as the eyesight, sensitivity, correction data, and the simulation result to a memory or a display section (S109).

(57) 要約: 被検者の日常生活下での瞳径に応じた光学特性、最適な処方値に近い矯正データ、視力及び感度を推測する。演算部は、被検眼の屈折力分布を示す測定データ及び被検眼の瞳データを受け取り、その測定データおよび瞳データに基づき低次及び高次収差を求める(S101~105)。例えば、前眼部像から瞳エッジを検出して瞳径を求め、この瞳径を用いて低次及び高次収差を求める。演算部は、求めた低次及び高次収差に基づき、高コントラスト又は低コントラストの視標を用いて網膜像シミュレーションを行い。その結果とテンプレートの比較によ

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL,

SZ, TZ, UG, ZM, ZW), $\mathbf{1} - \mathbf{5} \mathbf{\mathcal{P}}$ (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), $\mathbf{3} - \mathbf{0} \mathbf{\mathcal{P}}$ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

眼科データ測定装置、眼科データ測定プログラム 及び眼特性測定装置

5

25

技術分野

本発明は、適正な矯正データを測定し、及び/又は、日常生活下での視力を推測する ための眼科データ測定装置、眼科データ測定プログラム及び眼特性測定装置に関す 10 る。

背景技術

従来、眼の矯正データを測定するための技術として、レフラクトメータによるS(球面度数)、C(乱視度数)、A(軸)の測定が行われている。また、最近は高次収差まで測定できる眼特性測定装置も開発され、レフラクトメータのような例えばゆ3mmのリングなどのような線上のS、C、Aのみではなく、面上でのS、C、Aを低次収差から算出できるようになった。このような、眼特性測定装置は、特に屈折矯正手術後や病眼などにおいてはレフラクトメータより眼鏡・コンタクト等の処方値に近い値が算出されるようになった(例えば、90 特開2002-204785号公報、特開2002-209854号公報、特開2002-306416号公報、特開2002-306417号公報参照)。

また、矯正時又は裸眼での被検者の見え具合を表示する装置として、本出願人による装置が開示されている(例えば、特開2001-120504号公報、特開平7-100107号公報参照)。これらの装置では、例えば、測定した被検眼(被測定眼)の光学特性に基づいて所定の視標の見え具合を表示手段に表示させている。

発明の開示

5

10

25

しかし、従来の眼特性測定装置の他覚的算出結果と眼鏡・コンタクト・レンズ等の処方値には、まだなお適正とされる値との差が生じる場合があり、S、C、Aの評価としては不十分な場合があった。また、従来、被検眼の瞳径は固定値を用いて測定しているため、被検眼の瞳径に応じた適正な処方値が得られない場合があった。

また、従来の測定では、視標等の見え具合を表示するものの、被検者の視力を推測していなかった。さらに、見え具合の予測は、一般に用いられる視力測定条件下での見え 具合であることが多く、例えば日常生活下などの被検眼の環境における見え具合及び 視力は得られていなかった。

また、従来、単純に網膜上でのPSFやMTFを評価するだけでは、適切な評価、つまり 自覚検査に近い値を得ることは極めて困難な場合があった。

本発明は、以上の点に鑑み、被検眼の瞳径に応じた光学特性及び最適な処方値に近い矯正データを算出し、より正確な測定を行うことを目的とする。

15 また、本発明は、高次収差まで測定できる眼特性測定装置で測定した結果において、 高次収差を含む場合には、他覚的な完全矯正時にあたる低次収差を補正矯正データと せずに、例えばストレール比や位相ずれにより光学性能を評価し、ストレール比が大きく、 及び/又は、位相ずれが少なくなるような低次収差量を算出し、そのときのS、C、A等 の補正矯正データを求めることでより最適な眼鏡・コンタクト等の処方値に近い矯正デー 20 タを得ることを目的とする。

さらに、検眼用視標の見え具合のシミュレーションを行い、適正な矯正要素を求めることで、自覚値と近い矯正データを得ることを目的とする。

本発明は、日常生活下における被検者の環境にあった明るさ(例えば、白昼時や屋内)での被検眼の視力を推測することを目的とする。また、本発明は、日常生活下での被検眼の瞳径を考慮して高コントラスト及び/又は低コントラストの視標に対する視力を推測することを目的とする。本発明は、瞳径を考慮したコントラスト感度を予測することを目的とする。また、本発明は、被検者の環境にあった明るさのもとでの瞳径を用いて、そ

の環境下における最適な処方値に近い矯正データを求め、求めた矯正データによる矯正時の被検者の環境での視力を推測することも目的のひとつである。また、上記途中の過程で計算される瞳孔領域の大きさを考慮した網膜上のランドルト環などの視標のシミュレーションも単独で有効である。

5 本発明の第1の解決手段によると、

第1波長の光束を発する第1光源部と、

上記第1光源部からの光束で被検眼眼底付近に集光するように照明するための第1 照明光学系と、

被検眼眼底から反射して戻ってくる光束の一部を、少なくとも実質的に17本のビーム 10 に変換する第1変換部材を介して受光するための第1受光光学系と、

上記第1受光光学系の受光光束を受光する第1受光部と、

上記第1受光部で得られた光束の傾き角に基づいてゼルニケ解析を行い、被検眼の 光学特性を求め、(1)被検眼の環境に応じた観察条件下での被検眼の視力及び光学 特性及び感度のいずれか又は複数を推測する、又は、(2)被検眼に相応しい適正な矯 正データを算出する演算部と

を備え、

15

20

25

上記演算部は、

被検眼の屈折力分布を示す測定データと、被検眼の瞳径の値若しくは瞳径画像を含む瞳データとを得て、その測定データ及び瞳データを含む観測条件パラメータに基づき、 低次収差及び高次収差を求める第1手段と、

観測条件パラメータ、及び/又は、求められた低次収差及び高次収差に基づき、被検 眼での見え具合の質を示す評価パラメータを算出する第2手段と、

算出された評価パラメータに従い、(1)被検者の環境に応じた観測条件下での被検眼の視力及び光学特性及び感度のいずれか又は複数を推測する、又は、(2)低次収差を変化させることにより被検眼に相応しい適正な矯正データを算出する第3手段とを有する眼科データ測定装置が提供される。

本発明の第2の解決手段によると、

演算部は、被検眼の屈折力分布を示す測定データと、被検眼の瞳径の値若しくは瞳径画像を含む瞳データとを得て、その測定データ及び瞳データを含む観測条件パラメータに基づき、低次収差及び高次収差を求める第1ステップと、

演算部は、観測条件パラメータ、及び/又は、求められた低次収差並びに高次収差に基づき、被検眼での見え具合の質を示す評価パラメータを算出する第2ステップと、

演算部は、算出された評価パラメータに従い、被検者の環境に応じた観測条件下での 被検眼の視力及び光学特性及び感度のいずれか又は複数を推測する、又は、低次収 差を変化させることにより被検眼に相応しい適正な矯正データを算出する第3ステップと をコンピュータに実行させるための眼科データ測定用プログラムが提供される。

10 本発明の第3の解決手段によると、

演算部は、被検眼の屈折力分布を示す測定データを受け取り、その測定データに基づ き低次収差及び高次収差を求める第1ステップと、

演算部は、求めた低次収差及び高次収差に基づき、被検眼での見え具合の質を示す 評価パラメータを算出する第2ステップと、

15 演算部は、算出した評価パラメータに従い、低次収差を変化させることにより被検眼に 相応しい適正な矯正データを算出する第3ステップと

をコンピュータに実行させるための矯正データ測定用プログラムが提供される。

本発明の第4の解決手段によると、

第1波長の光束を発する第1光源部と、

20 上記第1光源部からの光束で被検眼眼底付近に集光するように照明するための第1 照明光学系と、

被検眼眼底から反射して戻ってくる光束の一部を、少なくとも実質的に17本のビームに変換する第1変換部材を介して受光するための第1受光光学系と、

上記第1受光光学系の受光光束を受光する第1受光部と、

25 測定環境における被検眼の瞳孔画像を含む瞳データを受け取り、受け取った瞳データに基づき、該測定環境での瞳径を算出し、算出した瞳径及び上記第1受光部からの出力信号に基づき被検眼の光学特性を求める演算部と

を備える眼特性測定装置が提供される。

図面の簡単な説明

5 図1は、眼光学特性測定装置の光学系100の構成図。

図2は、眼光学特性測定装置の電気系200の構成図。

図3は、ランドルト環の説明図。

図4は、眼科データ測定のフローチャート。

図5は、瞳径の算出及び眼球光学系データの測定についてのサブフローチャート。

10 図6は、瞳径算出の説明図。

図7は、視力シミュレーションの第1のフローチャート。

図8は、網膜像シミュレーションのフローチャート。

図9は、テンプレートマッチングの説明図。

図10は、ランドルト環テンプレートマッチングのフローチャート。

15 図11は、視力シミュレーションの第2のフローチャート(1)。

図12は、視力シミュレーションの第2のフローチャート(2)。

図13は、視力シミュレーションの第3のフローチャート。

図14は、視力シミュレーションの第4のフローチャート。

図15は、コントラスト感度の説明図。

20 図16は、テンプレートマッチングによる視力推測の表示例。

図17は、補正前と補正後の比較についての表示例。

図18は、眼鏡、コンタクト用の処方データ例の説明図。

図19は、屈折矯正手術用データ例の説明図。

図20は、環境条件が変化した時の眼鏡、コンタクト用処方データ例の説明図

25 図21は、環境条件が変化した時の瞳孔データ例の説明図。

図22は、眼鏡、コンタクト用処方データの一定瞳径による測定との比較図。

図23は、矯正画像シミュレーションのフローチャート。

図24は、最良画像条件計算の第1例についてのフローチャート。

図25は、最良画像条件計算の第2例についてのフローチャート。

図26は、最良画像表示ーストレール最適化の表示例を示す図。

図27は、最良画像表示-PTF最適化の表示例を示す図。

5 図28は、補正前と補正後の比較についての表示例を示す図。

図29は、眼鏡、コンタクト用の処方データ例の説明図。

図30は、屈折矯正手術用データ例の説明図。

図31は、環境条件が変化した時の眼鏡、コンタクト用処方データ例の説明図。

図32は、眼鏡、コンタクト用処方データの一定瞳径による測定との比較図。

10

15

20

発明を実施するための最良の形態

1. 眼光学特性測定装置

図1は、眼光学特性測定装置(眼科データ測定装置)の光学系100の構成図である。 眼光学特性測定装置の光学系100は、対象物である被測定眼60の光学特性を測定 する装置であって、第1照明光学系10と、第1受光光学系20と、第2受光光学系30と、 共通光学系40と、調整用光学系50と、第2照明光学系70と、第2送光光学系80とを 備える。なお、被測定眼60については、図中、網膜61、角膜62が示されている。

第1照明光学系10は、例えば、第1波長の光束を発するための第1光源部11と、集 光レンズ12とを備え、第1光源部11からの光束で被測定眼60の網膜(眼底)61上の 微小な領域を、その照明条件を適宜設定できるように照明するためのものである。なお、 ここでは、一例として、第1光源部11から発せられる照明用の光束の第1波長は、赤外 域の波長(例えば、780nm)である。

また、第1光源部11は、空間コヒーレンスが大きく、時間コヒーレンスが小さいものが 望ましい。ここでは、第1光源部11は、例えば、スーパールミネッセンスダイオード(SL D)であって、輝度の高い点光源を得ることができる。なお、第1光源部11は、SLDに限 られるものではなく、例えば、空間コヒーレンス、時間コヒーレンスが大きいレーザー等で

20

25

あっても、回転拡散板や偏角プリズム(Dプリズム)等を挿入し、適度に時間コヒーレンスを下げることで、利用することができる。さらに、空間コヒーレンス、時間コヒーレンスが小さいLEDであっても、光量さえ十分であれば、例えば、光路の光源の位置にピンホール等を挿入することで、利用することができる。

5 第1受光光学系20は、例えば、コリメートレンズ21と、被測定眼60の網膜61から反射して戻ってくる光束(第1光束)の一部を、少なくとも17本のビームに変換する変換部材であるハルトマン板22と、このハルトマン板22で変換された複数のビームを受光するための第1受光部23とを備え、第1光束を第1受光部23に導くためのものである。また、ここでは、第1受光部23は、リードアウトノイズの少ないCCDが採用されているが、CC Dとしては、例えば、一般的な低ノイズタイプ、測定用の1000*1000素子の冷却CC D等、適宜のタイプのものを適用することができる。

第2照明光学系70は、第2光源72と、プラチドリング71を備える。なお、第2光源72を省略することもできる。プラチドリング(PLACIDO'S DISC)71は、複数の同心輪帯からなるパターンの指標を投影するためのものである。なお、複数の同心輪帯からなるパターンの指標は、所定のパターンの指標の一例であり、他の適宜のパターンを用いることができる。そして、後述するアライメント調整が完了した後、複数の同心輪帯からなるパターンの指標を投影することができる。

第2送光光学系80は、例えば、後述するアライメント調整及び座標原点、座標軸の測定・調整を主に行うものであって、第2送光光源部31と、集光レンズ32と、ビームスプリッター33を備える。

第2受光光学系30は、集光レンズ34、第2受光部35を備える。第2受光光学系30は、第2照明光学系70から照明されたプラチドリング71のパターンが、被測定眼60の前眼部又は角膜62から反射して戻ってくる光束(第2光束)を、第2受光部35に導く。また、第2送光光源部31から発せられ被測定眼60の角膜62から反射し、戻ってくる光束を第2受光部35に導くこともできる。なお、第2送光光源部31から発せられる光束の第2波長は、例えば、第1波長(ここでは、780nm)と異なると共に、長い波長を選択できる(例えば、940nm)。

10

15

20

共通光学系40は、第1照明光学系10から発せられる光束の光軸上に配され、第1及び第2照明光学系10及び70、第1及び第2受光光学系20及び30、第2送光光学系80等に共通に含まれ得るものであり、例えば、アフォーカルレンズ42と、ビームスプリッター43、45と、集光レンズ44とを備える。また、ビームスプリッター43は、第2送光光源部31の波長を被測定眼60に送光(反射)し、被測定眼60の網膜61から反射して戻ってくる第2光束を反射し、一方、第1光源部11の波長を透過するようなミラー(例えば、ダイクロイックミラー)で形成される。ビームスプリッター45は、第1光源部11の光束を被測定眼60に送光(反射)し、被測定眼60の網膜61から反射して戻ってくる第1光束を、透過するようなミラー(例えば、偏光ビームスプリッター)で形成される。このビームスプリッター43、45によって、第1及び2光束が、互いに他方の光学系に入りノイズとなることがない。

調整用光学系50は、例えば、後述する作動距離調整を主に行うものであって、第3光源部51と、第4光源部55と、集光レンズ52、53と、第3受光部54を備える。

第3照明光学系90は、例えば、被測定眼60の固視や雲霧をさせるための視標を投影する光路を含むものであって、第5光源部(例えば、ランプ)91、固視標92、リレーレンズ93を備える。第5光源部91からの光東で固視標92を眼底61に照射することができ、被測定眼60にその像を観察させる。固視標92と眼底61とが第3照明光学系90によって、共役な関係にある。また、第5光源部91は、被測定眼60の前眼部を異なる明るさで照明する光源(前眼照明部)でもある。第5光源部91の光量を調整する事により、被測定眼60の照明状態を変化させて瞳孔の大きさを変化させることができる。なお、前眼照明部としては、第5光源部91以外にも第2光源72等、適宜の光源を用いても良い。

つぎに、アライメント調整について説明する。アライメント調整は、主に、第2受光光学系30及び第2送光光学系80により実施される。

まず、第2送光光源部31からの光束は、集光レンズ32、ビームスプリッター33、43、 25 アフォーカルレンズ42を介して、対象物である被測定眼60を略平行な光束で照明する。 被測定眼60の角膜62で反射した反射光束は、あたかも角膜62の曲率半径の1/2の 点から射出したような発散光束として射出される。この発散光束は、アフォーカルレンズ

15

42、ビームスプリッター43、33及び集光レンズ34を介して、第2受光部35にスポット像として受光される。

ここで、この第2受光部35上のスポット像が光軸上から外れている場合、眼光学特性 測定装置本体を、上下左右に移動調整し、スポット像を光軸上と一致させる。このように、 スポット像が光軸上と一致すると、アライメント調整は完了する。なお、アライメント調整 は、被測定眼60の角膜62を第3光源部51により照明し、この照明により得られた被測 定眼60の像が第2受光部35上に形成されるので、この像を利用して瞳中心が光軸と 一致するようにしてもよい。

つぎに、作動距離調整について説明する。作動距離調整は、主に、調整用光学系50 10 により実施される。

まず、作動距離調整は、例えば、第4光源部55から射出された光軸付近の平行な光東を、被測定眼60に向けて照射すると共に、この被測定眼60から反射された光を、集光レンズ52、53を介して第3受光部54で受光することにより行われる。また、被測定眼60が適正な作動距離にある場合、第3受光部54の光軸上に、第4光源部55からのスポット像が形成される。一方、被測定眼60が適正な作動距離から前後に外れた場合、第4光源部55からのスポット像は、第3受光部54の光軸より上又は下に形成される。なお、第3受光部54は、第4光源部55、光軸、第3受光部54を含む面内での光束位置の変化を検出できればいいので、例えば、この面内に配された1次元CCD、ポジションセンシングデバイス(PSD)等を適用できる。

20 つぎに、第1照明光学系10と第1受光光学系20との位置関係を説明する。

第1受光光学系20には、ビームスプリッター45が挿入されており、このビームスプリッター45によって、第1照明光学系10からの光は、被測定眼60に送光されると共に、被測定眼60からの反射光は、透過される。第1受光光学系20に含まれる第1受光部23は、変換部材であるハルトマン板22を通過した光を受光し、受光信号を生成する。

25 また、第1光源部11と被測定眼60の網膜61とは、共役な関係を形成している。被測 定眼60の網膜61と第1受光部23とは、共役である。また、ハルトマン板22と被測定眼 60の瞳孔とは、共役な関係を形成している。さらに、第1受光光学系20は、被測定眼6

10

25

Oの前眼部である角膜62、及び瞳孔と、ハルトマン板22と略共役な関係を形成している。 すなわち、アフォーカルレンズ42の前側焦点は、被測定眼60の前眼部である角膜62 及び瞳孔と略一致している。

また、第1照明光学系10と第1受光光学系20は、第1光源部11からの光束が、集光する点で反射されたとして、第1受光部23での反射光による信号ピークが最大となるように、連動して移動する。具体的には、第1照明光学系10と第1受光光学系20は、第1受光部23での信号ピークが大きくなる方向に移動し、信号ピークが最大となる位置で停止する。これにより、第1光源部11からの光束は、被測定眼60上で集光する。

また、レンズ12は、光源11の拡散光を平行光に変換する。絞り14は、眼の瞳、あるいはハルトマン板22と光学的に共役の位置にある。絞り14は、径がハルトマン板22の有効範囲より小さく、いわゆるシングルパスの収差計測(受光側だけに目の収差が影響する方法)が成り立つ様になっている。レンズ13は、上記を満たすために、実光線の眼底共役点を前側焦点位置に、さらに、眼の瞳との共役関係を満たすために、後側焦点位置が絞り14と一致するように配置されている。

15 また、光線15は、光線24とビームスプリッター45で共通光路になった後は、近軸的には、光線24と同じ進み方をする。但し、シングルパス測定のときは、それぞれの光線の径は違い、光線15のビーム径は、光線24に比べ、かなり細く設定される。具体的には、光線15のビーム径は、例えば、眼の瞳位置で1mm程度、光線24のビーム径は、7mm程度になることもある(なお、図中、光線15のビームスプリッター45から眼底61まで20 は省略している)。

つぎに、変換部材であるハルトマン板22について説明する。

第1受光光学系20に含まれるハルトマン板22は、反射光束を複数のビームに変換する波面変換部材である。ここでは、ハルトマン板22には、光軸と直交する面内に配された複数のマイクロフレネルレンズが適用されている。また、一般に、測定対象部(被測定眼60)について、被測定眼60の球面成分、3次の非点収差、その他の高次収差までも測定するには、被測定眼60を介した少なくとも17本のビームで測定する必要がある。また、マイクロフレネルレンズは、光学素子であって、例えば、波長ごとの高さピッチの

10

15

20

25

輪帯と、集光点と平行な出射に最適化されたブレーズとを備える。ここでのマイクロフレネルレンズは、例えば、半導体微細加工技術を応用した8レベルの光路長差を施したもので、高い集光率(例えば、98%)を達成している。

また、被測定眼60の網膜61からの反射光は、アフォーカルレンズ42、コリメートレンズ21を通過し、ハルトマン板22を介して、第1受光部23上に集光する。したがって、ハルトマン板22は、反射光束を少なくとも、17本以上のビームに変換する波面変換部材を備える。

図2は、眼光学特性測定装置の電気系200の構成図である。眼光学特性測定装置に関する電気系200は、例えば、演算部210と、制御部220と、表示部230と、メモリ240と、入力部270と、第1駆動部250及び第2駆動部260及び第3駆動部280とを備える。また、演算部210は、瞳データ形成部215、画像データ形成部211、判定部212、矯正要素設定部213を備えることができる。

演算部210は、第1受光部23から得られる受光信号④、第2受光部35から得られる 受光信号⑦、第3受光部54から得られる受光信号(10)を入力すると共に、座標原点、 座標軸、座標の移動、回転、瞳径、全波面収差、角膜波面収差、ゼルニケ係数、収差係 数、視力シミュレーション、ストレール比(Strehl比)、位相シフト(PTF、位相ずれ)、白色 光MTF、ランドルト環パターン、コントラスト感度等を演算する。Wilson Geislerの提案し ているようなideal observer analysisの処理を行うこともある(Geisler, W.S. 1989 Psychological Review 96, pp.267-314)。また、このような演算結果に応じた信号を、電気

Psychological Review 96, pp.267-314)。また、このような演算結果に応じた信号を、電気駆動系の全体の制御を行う制御部220と、表示部230と、メモリ240とにそれぞれ出力する。なお、演算210の詳細は後述する。

瞳データ形成部215は、前眼部像から瞳データを形成する。例えば、瞳データ形成部215は、第2受光部35から前眼部像を入力し、瞳孔のエッジ上の点、瞳孔が楕円形であるとした時の焦点、長径及び短径を算出し、瞳径を求める。瞳孔領形状が円でない楕円やさらに他の形状においては、これを特定し解析に利用できる計測値を得る。

後述するテンプレートマッチングにおける矯正データ算出又は視力シミュレーションに おいて、画像データ形成部211は、少なくとも被検眼の波面収差を示す測定データに基

10

15

20

25

づき、屈折矯正のため矯正要素を考慮して、検眼用視標の見え具合のシミュレーションを行い視標網膜画像データを形成する。被検眼の波面収差には高次収差まで含まれる。つまりすべての屈折に関する分布のパラメータが含まれる。判定部212は、画像データ形成部211で形成された視標網膜画像データに基づき、検眼用視標が見えているかどうかを判定する。

また、矯正要素設定部213は、画像データ形成部211に与える矯正要素を設定する。 さらに、判定部212は、矯正要素設定部213で設定される矯正要素により矯正され、且 つ、画像データ形成部211で形成された視標網膜画像データに基づき、適正な矯正要 素が設定されているかどうかを判定する。また、矯正要素設定部213は、判定部212 の結果に基づき矯正要素を設定し、且つ、判定部212が適正な矯正要素であると判定 するまで、矯正要素を繰り返し変化させるように構成されている。矯正要素は、球面度数、 乱視度数、乱視軸角度のいずれか一つ又は複数の組合せである。

制御部220は、演算部210からの制御信号に基づいて、第1光源部11の点灯、消灯を制御したり、第1駆動部250及び第2駆動部260を制御するものであり、例えば、演算部210での演算結果に応じた信号に基づいて、第1光源部11に対して信号①を出力し、プラチドリング71に対して信号⑤を出力し、第2送光光源部31に対して信号⑥を出力し、第3光源部51に対して信号⑧を出力し、第4光源部55に対して信号⑨を出力し、第5光源部91に対して、信号(11)を出力し、さらに、第1駆動部250及び第2駆動部260及び第3駆動部280に対して信号を出力する。

第1駆動部250は、例えば、演算部210に入力された第1受光部23からの受光信号 ④に基づいて、第1照明光学系10全体を光軸方向に移動させるものであり、図示しない 適宜のレンズ移動手段に対して信号②を出力すると共に、このレンズ移動手段を駆動 する。これにより、第1駆動部250は、第1照明光学系10の移動、調節を行うことができ る。

第2駆動部260は、例えば、演算部210に入力された第1受光部23からの受光信号

④に基づいて、第1受光光学系20全体を光軸方向に移動させるものであり、図示しない

適宜のレンズ移動手段に対して信号③を出力すると共に、このレンズ移動手段を駆動

する。これにより、第2駆動部260は、第1受光光学系20の移動、調節を行うことができる。

第3駆動部280は、例えば、第3照明光学系90の固視標92を移動させるものであり、 図示しない適宜の移動手段に対して信号(12)を出力すると共に、この移動手段を駆動 する。これにより、第3駆動部280は、第3照明光学系90の固視標92の移動、調節を 行うことができる。

2. ゼルニケ解析

つぎに、ゼルニケ解析について説明する。一般に知られているゼルニケ多項式からゼ 10 ルニケ係数C_i^{2j-i}を算出する方法について説明する。ゼルニケ係数C_i^{2j-i}は、例えば、 ハルトマン板22を介して第1受光部23で得られた光束の傾き角に基づいて被検眼60 の光学特性を把握するための重要なパラメータである。

被検眼60の波面収差W(X, Y)は、ゼルニケ係数 C_i^{2j-i} 、ゼルニケ多項式 Z_i^{2j-i} を用いて次式で表される。

$$W(X,Y) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_i^{2j-i} Z_i^{2j-i} (X,Y)$$
(1)

15

5

ただし、(X, Y)はハルトマン板22の縦横の座標である。

また、波面収差W(X, Y)は、第1受光部23の縦横の座標を(x, y)、ハルトマン板22と第1受光部23の距離をf、第1受光部23で受光される点像の移動距離を $(\Delta x, \Delta y)$ とすると、次式の関係が成り立つ。

$$\frac{\partial W(X,Y)}{\partial X} = \frac{\Delta x}{f} \tag{2}$$

20

$$\frac{\partial W(X,Y)}{\partial Y} = \frac{\Delta y}{f} \tag{3}$$

ここで、ゼルニケ多項式Z_i^{2j-i}は、以下の式(4)及び式(5)で表される。(より具体的な式は、例えば特開2002-209854を参照)

$$Z_n^m = R_n^m (r) \left\{ \frac{\sin}{\cos} \right\} \{ m\theta \}$$

$$m > 0 \quad \sin$$

$$m \le 0 \quad \cos$$
(4)

$$R_n^m(r) = \sum_{S=0}^{(n-m)/2} (-1)^S \frac{(n-S)!}{S! \left\{ \frac{1}{2} (n-m) - S \right\}! \left\{ \frac{1}{2} (n+m) - S \right\}!} r^m$$
 (5)

5 なお、ゼルニケ係数C_i^{2j-i}は、以下の式(6)で表される自乗誤差を最小にすることにより具体的な値を得ることができる。

$$S(x) = \sum_{i=1}^{data \ number} \left[\left\{ \frac{\partial W(X_i, Y_i)}{\partial X} - \frac{\Delta x_i}{f} \right\}^2 + \left\{ \frac{\partial W(X_i, Y_i)}{\partial Y} - \frac{\Delta y_i}{f} \right\}^2 \right]$$
(6)

ただし、W(X,Y): 波面収差、(X,Y): ハルトマン板座標、 $(\Delta x, \Delta y)$: 第1受光部23で 受光される点像の移動距離、f: ハルトマン板22と第1受光部23との距離。

演算部210は、ゼルニケ係数 C_i^{2j-i} を算出し、これを用いて球面収差、コマ収差、非点収差等の眼光学特性を求める。

(瞳径の正規化)

10

ゼルニケ多項式は、常に半径1の円内での形を示しており、ある瞳径(瞳孔径)でゼル ニケ解析するときは、その瞳半径で規格化する。例えば、瞳半径rpの瞳孔の中心座標を (O, O)としたときに、瞳孔内の点P(X、Y)は、ゼルニケ解析するときはP(X/rp、Y/rp) とする。ハルトマン像のスポットの重心点がPのとき、この点と対応する参照格子点 P_{ref} (X_{ref}, Y_{ref}) は、 $P_{ref}(X_{ref}/r_p, Y_{ref}/r_p)$ として点像の移動距離を求め、ゼルニケ係数を算出する。実際の波面(座標が規格化されていない波面)W(X, Y)は、次式で表される。

$$W(X,Y) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_i^{2j-1} Z_i^{2j-1} (X/r_p, Y/r_p) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_i^{2j-1} Z_i^{2j-1} (x_s, y_s)$$

ただし、(X,Y):規格化されていない座標、 (x_s,y_s) :規格化された座標である。

3. ランドルト環

5

10

15

20

図3に、ランドルト環の説明図を示す。以下に、ランドルト環の輝度分布関数Land(x,y)のデータの作成について説明する。図3には、上段に高コントラストのランドルト環、下段に低コントラストのランドルト環を示す。

ランドルト環は確認できる最小視角の逆数で表され、1分の視角を確認できる能力を、 視力1.0という。例えば、確認できる最小視角が2分なら視力は1÷2で0.5、10分な ら1÷10で0.1と定義されている。一般にランドルト環は、図に示すように外側のリング の大きさに対して1/5の大きさの隙間を空けたものを指標として用いる。

眼底に投影されるランドルト環の大きさdは、視力Vのときに

$$d = 5 \times 2 \cdot R \tan \left(\frac{1}{60 \cdot V} \times \frac{1}{2} \right) \tag{8}$$

(R: 瞳から像点(網膜)までの距離)

で計算できる。この式とランドルト環の定義をもとにランドルト環の黒い部分をO(又は1)、白い部分を1(又はO)としてランドルト環の輝度分布関数Land(x, y)を作成する。作成された輝度分布関数Land(x, y)のデータはメモリ240に記憶され、演算部210により読み出され、所定の視力に対応して設定される。

高コントラスト原画像は、例えば、ランドルト環の黒の部分と白の部分のコントラストが100%(例えば白が0に対して黒が1)のもの、又は、ランドルト環の図の部分が黒(10cd/m²以下)で背景が白(100cd/m²)であり、実際のコントラストは90%以上のもの等である。ここでコントラストは、マイケルソンコントラスト(I白ーI黒)/(I白+I黒)を%で表示したものである。一方、低コントラスト原画像は、ランドルト環の黒の部分と白の部分とコントラストが10%(例えば、白が0に対して黒が0.1)のものを用いることができる。これらのコントラストには、±1%程度の精度を有する。なお、この例以外にも適宜のコントラストの原画像を用いても良い。メモリ240に記憶される輝度分布関数Land(x、y)は、高コントラストと低コントラストのものがそれぞれ作成され、記憶される。

10

15

20

25

5

4. 眼科データ測定方法

図4に、眼科データ測定のフローチャートを示す。

まず、眼光学特性測定装置は、被測定眼60の瞳位置のX、Y、Z軸をアライメントする (S101)。次に、測定装置は、可動部の原点移動を行う(S103)。例えば、ハルトマン 板22やプラチドリング71等をゼロディオプターに合わせる。演算部210は、測定された 受光信号④、⑦及び/又は(10)に基づき、瞳径、全波面収差及びゼルニケ係数等の 眼球光学系データを測定する(S105)。演算部210は、視力シミュレーション又は矯正 画像シミュレーションを行う(S107)。

視力シミュレーションでは、例えば、演算部210は、ステップS107にて、検眼用視標の見え具合のシミュレーション結果と所定のテンプレートとの比較結果、及び/又は、被検眼の伝達特性を示すMTF (Modulation Transfer Function)を被測定眼60での見え具合の質を表す評価パラメータとして、評価パラメータに従い被検眼の視力又は感度を推測する。なお、視力としては、検眼用視標を適宜設定することで、高コントラスト視力及び低コントラスト視力を推測することができる。また、演算部210は、被検眼のMTF、点像強度分布(PSF)等の光学特性を推測する。

また、矯正画像シミュレーションでは、例えば、演算部210は、ストレール比、PTF、MTF(Modulation Transfer Function)のいずれか又は複数を被測定眼60での見え具合の

10

15

20

25

質を表す評価パラメータとして、適正な矯正データを求める。また、例えば、演算部210 は、検眼用視標の見え具合をシミュレーションし、所定のテンプレートとの比較結果を評価パラメータとして適正な矯正データを求めても良い。

なお、ステップS105及びS107の詳細は後述する。演算部210は、表示部230及び メモリ240に出力する(S109)。なお、前の処理において既にデータ出力されている場合、ステップS109の処理を省略しても良い。

図5は、ステップS105の瞳径の算出及び眼球光学系データの測定についてのサブフローチャートである。また、図6は、瞳径算出の説明図である。

まず、演算部210は、第1受光部20及び第2受光部35からハルトマン像及び前眼部像を取得する(S601)。演算部210は、第5光源部91により、所望の環境条件(観察条件)における照明状態で被測定眼60を照明させ、第1受光部20及び第2受光部35からハルトマン像及び前眼部像を取得する。例えば、演算部210は、表示部230に視力又は感度を推測する環境条件を選択する指示を表示し、選択された環境条件を入力部270から入力してもよい。環境条件としては、例えば、「昼間視」、「薄暮視」、「室内(蛍光灯下)」、「夜間視」、「通常の視力測定」等である。次に、演算部210は、例えば、予めメモリ240に記憶された環境条件と照明状態が対応したテーブルを参照し、入力した環境条件に対応する照明状態を取得する。各環境条件での照明状態としては、例えば、「通常の視力測定」の場合は50[ix]、「昼間視」は100000[ix]、「室内(蛍光灯下)」は2000[ix]等とすることができる。なお、これらの値は、その環境条件に応じた適宜の値を用いることができる。環境としては、通常より大型の固視標を用いることが望ましい。ここでは、第5光源部91により、所望の環境条件における照明状態で被測定眼60を照明させているが、被検眼の周囲の照明や、背景の照明を利用して、その照明状態を作り出すように構成しても差し支えない。

演算部210は、制御部220を介し、第5光源部91に対して取得した照明状態に応じた信号(11)を出力し、被測定眼60を照明させる。また、演算部210は、照明状態を暗い方から明るい方へ順次変化させ、複数の照明状態におけるハルトマン像及び前眼部像取得することができる。

10

15

25

なお、演算部210は、ステップS601を省略し、予め測定されメモリ240に記憶されているハルトマン像データと、前眼部像、瞳孔エッジ上の点などの瞳孔形状、瞳径のいずれかを含む瞳データとを読み込んでもよい。また、例えば、演算部210は、瞳データとして電子カルテ内にある、過去に撮影されメモリ240に記憶された写真データをメモリから読み込み、前眼部像を取得してもよい。

次に、演算部210は、取得した前眼部像に基づいて、瞳孔のエッジ上の点P₁(i=1~n)を、例えば36点(n=36)、検出する(S603)。演算部210は、画像処理の手法により、取得した前眼部像の光量の変化(画像上の濃淡)を検出し、瞳孔のエッジ上の点を求めることができる。図6において、検出点P₁は+の印で表されている点である。

次に、演算部210は、検出した瞳孔のエッジ上の点に最もフィットする楕円フィッティングを行う(S605)。まず、演算部210は、楕円の焦点(図6における点F1、F2)を求める。例えば、演算部210は、焦点の初期値として予め設定されている2点の座標をメモリ240から読み出す。次に、演算部210は、検出点Piから読み出した2点までの距離をそれぞれ求め、距離の和をLiとする。演算部210は、全ての検出点Piについて距離の和Liを求め、Liの平均値Aを求める。さらに、演算部210は、最小2乗近似等の手法を用いて、次式で表される距離の和Liと平均値Aの自乗誤差Seが最小となる2点を算出することにより、楕円の焦点を求めることができる。

$$S_e = \sum_{i=1}^{n} (L_i - A)^2 \tag{9}$$

ただし、L₁:エッジ上の点P₁から2点F1、F2までの距離の和、A:エッジ上の各点における 20 L₁の平均値、n:検出したエッジ上の点数である。なお、これ以外にも適宜の方法により、 楕円の焦点を求めてもよい。

次に、演算部210は、楕円上の1点から焦点までの距離の和Lを求める。なお、演算部210は、上述の平均値Aを楕円上の1点から焦点までの距離の和Lとしてもよい。次に、演算部210は、楕円の長軸の長さ(長径)及び短軸の長さ(短径)から、瞳径を算出する(S607)。長軸の長さ2a及び短軸の長さ2bは、次式で表すことができる。

10

15

$$2a = L$$

$$2b = 2\sqrt{\left(\frac{L}{2}\right)^{2} - c^{2}}$$

$$= 2\sqrt{\frac{L^{2}}{4} - \frac{(x^{2} - x^{1})^{2} + (y^{2} - y^{1})^{2}}{4}}$$

$$= \sqrt{L^{2} - (x^{2} - x^{1})^{2} - (y^{2} - y^{1})^{2}}$$
(10)

ただし、L:エッジ上の点から焦点までの距離の和、(x1,y1)、(x2,y2): 楕円の焦点である。 瞳径 d_p は、例えば、長軸の長さ2a及び短軸の長さ2bの平均値とすると、次式で表される。

$$d_{p} = a + b$$

$$= \frac{1}{2} \left(L + \sqrt{L^{2} - (x^{2} - x^{1})^{2} - (y^{2} - y^{1})^{2}} \right)$$
 (11)

なお、平均値を瞳径とする以外にも、短軸の長さ、長軸の長さ、短軸及び長軸の長さの中間値等、長軸の長さ2a、短軸の長さ2bに基づく適宜の値を用いてもよい。

演算部210は、例えば、楕円の焦点及び/又は長軸、短軸の長さに基づき瞳中心位置を求め、さらにリンバス中心を求めて又は設定して、リンバス中心からのずれ量等の瞳中心位置のずれ量を算出してもよい。また、演算部210は、算出したずれ量を瞳径に対応してメモリ240に記憶する。

なお、演算部210は、白昼時における瞳径とする照明状態以外に、被検者の希望する環境(例えば、事務室、教室、夜間の運転時等)における瞳径とする照明状態になるように第5光源部91の明るさを調整してもよい。また、上記環境での瞳径を予め測定しておいたものを使用して解析しても良い。これにより、被検者の希望する環境での最適な処方値を解析することができる。なお、演算部210は、ステップS601~S607の処理の代わりに、予めメモリ240に記憶された測定データ及び瞳径を読み込んでも良い。

演算部210は、瞳径及びハルトマン像に基づき、眼球光学系データを算出する(S60

9)。まず、演算部210は、ステップS601で取得したハルトマン像から各スポットの重心 点を検出する。次に、演算部210は、瞳中心を原点としたときに検出した重心点座標を 瞳半径rpで規格化する。ここで、瞳半径rp=瞳径dp/2である。すなわち、演算部210 は、瞳径の範囲内にある重心点Ps(X、Y)をPs(X/rp, Y/rp)とし、ハルトマン像のスポ ットの重心点がPsのとき、この点と対応する参照格子点Pref(Xref、Yref)を、Pref(xref/rp、 yref/rp)とする。実際の波面(座標が規格化されていない波面)W(X、Y)は、次式で表 される。

$$W(X,Y) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_i^{2j-1} Z_i^{2j-1} (X/r_p, Y/r_p) = \sum_{i=0}^{n} \sum_{j=0}^{i} c_i^{2j-1} Z_i^{2j-1} (x_s, y_s)$$
(1 2)

ここで、(X、Y):規格化されていない座標、(xs、ys):規格化された座標である。

10 演算部210は、規格化した座標を用いて、ゼルニケ係数、全波面収差等の眼球光学系データを算出する。また、演算部210は、適宜のタイミングでデータをメモリ240に記憶する。

5. 視力シミュレーション

15 5-1. 視力シミュレーションの第1のフローチャート(球面度数矯正)

図7に、視力シミュレーションの第1のフローチャートを示す。図7は、網膜像シミュレーションを行い、ランドルト環が判別できるように矯正球面度数を求め、その矯正時における視力を推測するフローチャートである。なお、以下の各フローチャートで同符号のステップは同様の処理が実行される。

20 まず、演算部210は、仮球面度数Srを算出する(S1401)。仮球面度数Srとしては、 例えば、レフ値、もしくは波面収差から算出した値などを用いてもよいし、予めメモリ240 に記憶してある値や入力部270から入力された値を用いてもよい。

次に、演算部210は、シミュレーション用球面度数Ssの設定を行う(S1451)。Ssは、 通常は、Srに対し、弱矯正に設定(例えばSs=Sr+5D)する。演算部210は、予め定

10

15

20

められた視力Vs(例えば、Vs=0.1)のランドルト環の設定を行う(S1453)。この時、まず演算部210は、高コントラスト視力又は低コントラスト視力のいずれの視力を推測するか設定する。例えば、演算部210は、入力部270からの入力又は予めメモリ240に記憶されている設定に従い高コントラスト又は低コントラストの設定しても良い。演算部210は、設定に従い、予め定められた視力Vsに応じた高コントラスト又は低コントラスト又は低コントラスト又は低コントラストのランドルト環を設定する。

演算部210の画像データ形成部211は、ランドルト環網膜像シミュレーションを行い、 視標画像データを得る(S1405)。ここで、画像データ形成部211は、まず予め定めら れたある方向(例えば上、下、右、左の方向にリングの隙間が空いたもの)のランドルト 環に対して行う。すなわち、画像データ形成部211は、ステップS105で測定された波面 収差に従い、ランドルト環がどのような見え具合であるかを示す視標画像データをシミュ レーションにより求める。このシミュレーションの具体的処理は後述する。

つぎに、演算部210の判定部212は、ランドルト環テンプレートマッチングを行う(S1407)。判定部212は、シミュレーションで得られた視標画像データとある方向のランドルト環とのテンプレートマッチングを行い、そのときの方向と一致度を示す点数nをメモリ240に記憶しておく。この具体的処理は後述する。

判定部212は、すべての方向でテンプレートマッチングしたか判断する(S1409)。ここで、Noの場合は、ステップS1407に進み、すべての方向でテンプレートマッチングするまで処理を繰返す。一方、ステップS1409でYesの場合、判定部212は、点数nが一番大きい点数nhがステップS1405でシミュレーションした視標画像データのランドルト環の方向と一致するか判断する(S1411)。ここで、Yesの場合、判定部212は、点数nhがメモリ240等に予め定められた闘値より高いか判断する(S1413)。なお、この閾値(ランドルト環が識別できたかどうかを判断する閾値)は、例えば過去に多数の正常眼の自覚値と対比して得られた値を使用することができる。

25 ステップS1411又はS1413でNoの場合、判定部212は、Ssが予め定められた許容値(例えば、Sr-5D)を超えたか判断する(S1415)。ここでNoの場合、矯正要素設定部213はSsの矯正要素を若干強く設定し(例えば、Ss-0.25D)(S1417)、画像

15

20

データ形成部211はこの矯正要素に基づきランドルト環網膜像シミュレーションを行う。 演算部210は、このシミュレーションにより得られた視標画像データについてステップS 1407以降の処理を実行する。一方、ステップS1415でYesの場合、判定部212は、ランドルト環判別不能と判断し(S1419)、このときの方向と、この方向が不可能であったことをメモリ240に記憶しておく。

ステップS1419の後又はステップS1413でYesの場合、判定部212は、ランドルト環の全ての方向でシミュレーションしたか判断する(S1421)。ここで、Noの場合、ステップS1405に戻り、演算部210は全ての方向で上述の処理を繰返す。一方、ステップS1421で、Yesの場合、判定部212は、さらに設定方向数の半分以上判別できたか判断する(S1455)。

ステップS1455でYesの場合、矯正要素設定部213は、S=Ss、V=Vsと設定し、また、視力Vs=Vs+0.1のランドルト環の設定を行う(S1457)。この時、設置するランドルト環は、上述のステップS1453での設定に従い高コントラスト又は低コントラストのランドルト環を設定する。その後、ステップS1405に進み、画像データ形成部211は、設定された矯正要素及びランドルト環に基づき網膜像シミュレーションを行い視標画像データを求め、ステップS1407以降の処理を実行する。一方、ステップS1455でNoの場合、演算部210は、データ出力を行う(S1423)。すなわち、演算部210は、例えば、このときの視力V、球面度数S=Ss、判別できたランドルト環の方向、シミュレーション結果等を表示部230に表示し、メモリ240に記憶する。なお、演算部210は、視力として少数視力を用いてもよいし、logMAR(log Minimum Angle Resolution) 視力を用いてもよい。logMAR視力は、最小視覚の対数で表される視力である。なお、表示及び記憶されるデータは、上述のものに限らず適宜のデータを表示。記憶することができる。また、上述のデータの中から適宜選択してもよい。例えば、視力Vを除いたデータを表示するようにしてもよい。

25 図8に、上記ステップS1405の網膜像シミュレーションのフローチャートを示す。まず、 演算部210は、図4のステップS105で求めた波面収差W(X、Y)及び設定された矯正 要素に基づき瞳関数f(x, y)を次式により計算する(S204)。

15

25

$$f(x,y) = e^{ikW(X,Y)}$$
(13)

演算部210は、ランドルト環(又は任意の像)の輝度分布関数Land(x, y)をメモリ24 Oを参照して計算する(S205)。演算部210は、Land(x, y)を2次元フーリエ変換して空間周波数分布FR(u, v)を求める(S207)。演算部210は、瞳関数に基づき、眼球の空間周波数分布OTFを算出し、ランドルト環(又は任意の像)の空間周波数分布FR(u, v)と眼球の空間周波数分布OTF(u, v)を次式のように掛け合わせることで、眼の光学系通過後の周波数分布OR(u, v)を求める(S209)。

 $FR(u, v) \times OTF(u, v) \rightarrow OR(u, v)$

なお、OTFの具体的算出方法については後述する。

10 つぎに、演算部210は、OR(u, v)を2次元逆フーリエ変換してランドルト環(又は、任意の像)の輝度分布画像LandImage(X、Y)を求める(S211)。

図9に、上述ステップS1407のテンプレートマッチングの説明図を示す。図示のように ランドルト環原画像(上図)に対応して、テンプレート画像(下図)を設定し、メモリ240に ランドルト環の大きさを示す識別子に対応してこのようなテンプレート画像を記憶する。

テンプレート画像は、この例では、b=1.5a、ランドルト環部の画素数をN1、画素値を1とし、ランドルト環の周囲のぼやかした点像部の画素数をN2、画素値を-N1/N2としているが、これに限らず適宜設定することができる。また、図9上段に示すランドルト原画像は、高コントラストのランドルト環原画像を示しているが、低コントラストのランドルト環原画像を用いる場合も同様のテンプレートを用いることができる。

20 図10に、上記ステップS1407のランドルト環テンプレートマッチングのフローチャートを示す。

演算部210は、設定されたランドルト環の大きさに従いテンプレート画像をメモリ240 から読み取り、その空間周波数分布Temp(x, y)を求める(S1301)。つぎに、演算部2 10は、Temp(x, y)の2次元フーリエ変換FT(u, v)を求める(S1303)。演算部210は、網膜像のシミュレーションによる視標画像データの空間周波数分布の2次元フーリエ変換OR(u, v)を求め、OR(u, v)とテンプレートの空間周波数分布FT(u, v)とを次式のよ

15

20

うに掛け合わせ、OTmp(u, v)を求める(S1305)。

 $OR(u, v) \times FT(u, v) \rightarrow OTmp(u, v)$

演算部210は、OTmp(u, v)を二次元逆フーリエ変換を行い、TmpIm(X, Y)(4a×4aの複素数行列)を求める(S1307)。演算部210は、TmpIm(X, Y)の絶対値の最大値を取得して点数nとする(S1309)。

このような相関をとることにより、シミュレーション視標画像が原画像に近ければ点数が高く、ぼやけた場合はそれに応じて点数が低くなる。

5-2. 視力シミュレーションの第2のフローチャート(乱視矯正-1)

10 図11、図12に、視力シミュレーションの第2のフローチャート(1)及び(2)を示す。図1 1、図12は、網膜像シミュレーションを行い、ランドルト環が判別できるように矯正乱視軸 A、乱視度数Cを求め、その矯正時における視力を推測するフローチャートである。この 例では、乱視度数が負の値で出る場合を示す。

演算部210は、上述のステップS1401と同様に、仮球面度数Srを算出する(S140 1)。仮球面度数Srの設定により、このとき後側焦線より前側焦線に網膜が近くなることを避けるために、ステップS1401で設定したSrより弱矯正ぎみ(例えば、Sr→Sr+O. 5D)に設定してもよい。若しくは、上述で求められたSからレフ値、若しくは波面収差から算出した乱視度数Csの1/2を引いたもの、若しくはそれらより弱矯正ぎみに設定したものを用いてもよい。つぎに、演算部210は、シミュレーション用乱視度数Csの設定を行う(S1501)。例えば、Csはレフ値、もしくは波面収差から算出した乱視度数Cなどを用いたり、予めS又はC等の矯正要素やゼルニケ係数と対応してCsを記憶した対応表をメモリ240に記憶しておき、それを参照して求めてもよい。つぎに、演算部210は、上述と同様に視力Vs(例えばVs=O. 1)のランドルト環設定を行う(S1453)。

ステップS1405~S1413では、上述と同様に、演算部210は、ランドルト環網膜像シ ミュレーション、ランドルト環テンプレートマッチング等の処理を行う。判定部212は、ステ ップS1411又はS1413でNoの場合、ランドルト環判別不能と判断し、このときの方向 と、この方向が不可能であったことをメモリ240に記憶しておく(S1419)。ステップS14

15

25

19の後、又はステップS1413でYesの場合、演算部210は、上述と同様に、ステップS 1421及びS1455の処理を実行する。

ステップS1455で設定方向数の半分以上判別できたと判断した場合、演算部210は、設定されている矯正要素をメモリ240に記憶する(S1503)。つぎに、矯正要素設定部213は、V=Vsと設定し、また、視力Vs=Vs+O. 1のランドルト環を設定する(S1505)。この時、設定するランドルト環は、上述のステップS1453での設定に従い、高コントラスト又は低コントラストのランドルト環を設定する。その後、S1405に進み、画像データ形成部211は、設定された矯正要素及びランドルト環に基づき網膜像シミュレーションを行い視標画像データを求め、ステップS1407以降の処理を実行する。

10 一方、ステップS1455でNoの場合、判定部212は、全ての乱視軸角度方向(0~18 0)でシミュレーションしたか判断する(S1507)。ここでNoの場合、矯正要素設定部21 3は乱視軸角度Asを回転する(例えば、As=As+5)(S1509)。その後、ステップS1453に進み、ステップS1453以降の処理を繰返し実行する。

つぎに、図12を参照し、判定部212がステップS1507でYesと判断した場合、演算部210の矯正要素設定部213は、乱視軸角度Aとして視力Vがもっとも大きかったときのAsを代入する(S1511)。なお、乱視軸角度Aは、もっとも大きい時のAsが複数あるときは、視力Vで判別できたランドルト環の数が最も大きいものを設定し、さらにそのAsも複数あるときは視力Vでの判別できた方向のnhの和が最大となるものを設定する。これにより、乱視軸角度Aが決定された。

20 ステップS1453、S1405~S1413では、上述の実施の形態で説明したように、設定されたSr、Cs、Aに基づき、演算部210は、ランドルト環網膜像シミュレーション、ランドルト環テンプレートマッチング等の各処理を実行する。

判定部212は、ステップS1411又はS1413でNoの場合、Csが予め定められた許容値(例えば、Cs-10D)を超えたか判断する(S1515)。ここでNoの場合、矯正要素設定部213はCsの矯正要素を若干強く設定し(例えば、Cs-0. 25D)(S1517)、画像データ形成部211は、この矯正要素に基づきランドルト環網膜像シミュレーションを行う(S1405)。演算部210は、このシミュレーションにより得られた視標画像データにつ

いてステップS1407以降の処理を繰返し実行する。一方、判定部212は、ステップS15でYesの場合、ランドルト環判別不能と判断し(S1419)、このときの方向と、この方向が不可能であったことをメモリ240に記憶しておく。

ステップS1419の後、又は、ステップS1413でYesの場合、上述と同様に、演算部210は、ステップS1421及びS1455の処理を実行する。ステップS1455でYesの場合、演算部210は、ステップS1503及びS1505の処理を実行する。各ステップの処理については上述と同様である。その後、ステップS1405に進み、画像データ形成部211は、設定された矯正要素及びランドルト環に基づき網膜像シミュレーションを行い視標画像データを求め、ステップS1407以降の処理を実行する。

10 一方、ステップS1455でNoの場合、演算部210はデータ出力を行う(S1423)。すなわち、演算部210は、このときの視力V、乱視度数C=Cs、乱視軸A、球面度数S=Sr、判別できた方向、シミュレーション結果等を表示部230に表示し、メモリ240に記憶する。

15 5-3. 視カシミュレーションの第3のフローチャート(乱視矯正-2)

図13に、視力シミュレーションの第3のフローチャートを示す。図13は、MTFを評価パラメータとして乱視軸A、乱視度数Cを求め、その矯正時における視力を推測するフローチャートである。

ステップS1401では、上述のように演算部210は、仮球面度数Srを算出する。次に、 演算部210は、乱視成分である乱視度数Cs及び乱視軸角度As、比較用数値Mhを初 期設定する(S1571)。これらの値は、メモリ240に予め記憶しておいたデータを用いて もよいし、入力部270により入力してもよい。演算部210は、例えば、Cs=0、As=0、 Mh=0に初期設定する。

演算部210は、既に求めた波面収差に基づき、MTFを算出する(S1573)。MTFの 具体的計算方法は後述する。演算部210は、設定された乱視軸角度AsでのMTF断面 から比較用数値Mを算出する(S1575)。比較用数値Mとしては、MTF断面積等を用い ることができる。演算部210は、現在設定されているAsと、例えば、MTFの総和、MTF

10

15

20

断面積、もしくは3、6、12、18cpdの和などをメモリ240に記憶しておく。

演算部210の判断部212は、M≥Mhか判断する(S1577)。ここでNoの場合、ステップS1581に進み、一方、Yesの場合、演算部210の矯正要素設定部213は、Mh≈ M、A=Asとする(S1579)。つぎに、判定部212は、Asが180以上か判断する(S1581)。ここでNoの場合、矯正要素設定部213は、乱視軸角度Asを回転する(例えばAs=As+5)(S1509)。その後、演算部210は、ステップS1575に戻って処理を繰り返すことで、0~180度の軸角度でMが最大となる方向が乱視軸角度(弱主経線又は強主経線)であり、そのときのMの値とAsの値を求める。

ステップS1581でYesの場合、即ち、乱視軸角度Aが求まると、演算部210は、乱視成分Cs、As=Aに基づき、MTFを算出する(S1585)。演算部210は、さらに、0~180度(例えば5度間隔)での各MTF断面から比較用数値Mを算出する(S1587)。

判定部212は、算出されたMが各角度で全てほぼ同じか判断する(S1589)。例えば、これは、各Mの差が予め定められた闘値tよりすべて小さくなっているかどうかで判断することができる。ステップS1589でNoの場合、演算部210は、乱視度数Csを若干(例えばCs=Cs-0.25)変化させ(S1591)、ステップS1585以降の処理を繰り返す。一方、ステップS1589でYesの場合、演算部210は、C=Csとする(S1593)。

演算部210は、求められた乱視度数C、乱視軸角度Aに基づく矯正後の視力を推測する(S1594)。例えば、演算部210は、後に示す第4のフローチャートの処理を実行することで矯正後の視力を推測する。なお、演算部210は、視力を推測する代わりに又は視力の推測に加えて、コントラスト感度を求めても良い。

演算部210は、求められた乱視度数C、乱視軸角度Aをメモリ240に記憶し、必要に応じて、表示部230に表示する(S1595)。

5-4. 視力推測

25 図14は、ステップS107の視力シミュレーションの第4のフローチャートである。また、 図14に示すフローチャートは、上述のステップS1594のサブフローチャートでもある。 まず、演算部210は、シミュレーション用の矯正データを設定する(S1452)。例えば、

20

25

演算部210は、矯正データとしてレフ値又は波面収差に基づき算出した値、若しくは、上述により得られた球面度数S、乱視度数C、乱視軸角度Aを用いることができる。また、演算部210は、矯正データの各要素をOとすることで矯正しない時の被検者の環境における視力を推測こともできる。また、例えば、演算部210は、上述のフローチャートの処理を実行することにより求められた乱視度数C、乱視軸角度A、及び/又は、球面度数Sを設定してもよい。ステップS1453以下の各ステップの処理は、上述の図7及び図11に示すフローチャートの同符号の処理と同様であるので、その詳細な説明を省略する。

5-5. コントラスト感度

10 演算部210は、ステップS107の視力シミュレーションとしてコントラスト感度を算出することができる。演算部210は、波面収差に基づき眼球光学系のMTFであるMopt(r、s)を求め、求めたMTFに基づきコントラスト感度を算出する。また、演算部210は、算出したコントラスト感度を表示部230に表示する又はメモリ240に記憶する。なお、コントラスト感度は、ステップS107の処理として算出するだけでなく、上述の第1~第4のフローチャートの処理中に算出し、表示することもできる。

(MTF算出)

まず、MTF(Modulation transfer function)の算出について説明する。

MTFは、空間周波数の伝達特性を示す指標であって、光学系の性能を表現するために広く使われている。このMTFは、例えば、1度当たり、0~100本の正弦波状の濃淡格子に対しての伝達特性を求めることで見え方を予測することが可能である。本実施の形態では、以下に説明するように、単色MTFを用いてもよいし、白色MTFを用いてもよい。

まず、単色MTFを波面収差W(x, y)から算出する。なお、W(x, y)は、入力値(測定値)であって、角膜収差に関しては、角膜形状から求めた角膜波面収差を用いることもできる。

$$f(x, y) = e^{ikW(x, y)}$$

(i: 虚数、k: 波数ベクトル(2π/λ)、λ:波長)

このとき、スタイルス・クロフォード効果を考慮して $(e^{-arp})^2(ald、例えばO.05程度)$ をかけても良い。ここで、 r_p は瞳半径である。

5 演算部210は、この瞳関数f(x, y)をフーリエ変換することにより点像の振幅分布U(u, v)を次式のように求める。

振幅
$$U(u,v) = \int_{-\infty}^{\infty} f(x,y) \exp\left[-\frac{i}{R} \frac{2\pi}{\lambda} (ux + vy)\right] dxdy$$
 (14)

(λ:波長

R:瞳から像点(網膜)までの距離

10 (u, v): 像点Oを原点とし、光軸に直行する面内での座標値

(x, y):瞳面内の座標値)

演算部210は、U(u, v)とその複素共役を掛けて、次式により点像強度分布(PSF)であるI(u, v)を求める。

 $I(u, v) = U(u, v)U^*(u, v)$

15 つぎに、演算部210は、次式のように、PSFをフーリエ変換(又は自己相関)して規格化することによりOTFを求める。

$$R(\mathbf{r}, \mathbf{s}) = \int_{-\infty}^{\infty} I(\mathbf{u}, \mathbf{v}) e^{-i2\pi(\mathbf{ru}+\mathbf{sv})} d\mathbf{u} d\mathbf{v}$$

$$(\mathbf{r}, \mathbf{s} : 空間周波数領域の変数)$$

$$OTF = \frac{R(\mathbf{r}, \mathbf{s})}{R(0,0)}$$
(15)

また、OTFの大きさがMTFであるため、

MTF(r, s) = |OTF(u, v)|

が成り立つ。

つぎに、上述のように求められた単色MTFに基づいて、白色光MTFを算出する。白色・ 光MTFを求めるには、まず、各波長でのMTFに重み付けをし、足し合わせる。ここで、 上述のMTFは、波長ごとに値が異なるため、波長 λ でのMTFをMTF $_{\lambda}$ と表すと、

$$MTF(\mathbf{r}, \mathbf{s}) = \frac{\int \omega_{\lambda} MTF_{\lambda}(\mathbf{r}, \mathbf{s}) d\lambda}{\int \omega_{\lambda} d\lambda}$$
 (1 6)

5

15

ここでは、可視光に多く重み付けをし、計算を行う。

具体的には、色の3原色(RGB)である赤、緑、青が、例えば、656. 27nm: 1、587. 56nm: 2、及び486. 13nm: 1であるとすると、

 $MTF(r, s) = (1 \times MTF_{656, 27} + 2 \times MTF_{587, 56} + 1)$

 $10 \times MTF_{486.13})/(1+2+1)$

となる。

また、白色光MTFは、一波長(840nm)のみで測定されるので、この測定結果に基づいて他の波長について校正を行い、白色に補正することにより求めてもよい。具体的には、各波長でのMTFは、眼の収差の場合、眼光学特性測定装置での測定波長が、例えば、840nmであるとき、模型眼により各波長840nmでの波面収差 $W_{840}(x, y)$ からのずれ量に相当する色収差 $W_{\Delta}(x, y)$ を測定し、この色収差 $W_{\Delta}(x, y)$ に $W_{840}(x, y)$ を足し合わせ、この波面収差によりMTFを算出することにより求められる。すなわち、

$$W_{\lambda}(x, y) = W_{840}(x, y) + W_{\Delta}(x, y)$$

となる。

20 (コントラスト感度算出)

次に、コントラスト感度について説明する。コントラスト感度は、次式で表される(Peter

20

G.J. Barten, "Contrast Sensitivity of the Human Eye and Effects on Image Quality", SPIE Optical Engineering Press 1999).

$$S(r,s) = \frac{M_{opt}(r,s)/k}{\sqrt{\frac{4}{T}\left(\frac{1}{X_o^2} + \frac{1}{X_{max}^2} + \frac{u^2}{N_{max}^2}\right)\left(\frac{1}{\eta pE} + \frac{\Phi_0}{1 - e^{-\left(\sqrt{r^2 + s^2}/u_0\right)^2}}\right)}}$$
(17)

ここで、各パラメータは以下の通りである。M_{opt}(r、s):眼球光学系のMTF、k:S/N
 比:3、T:神経系の加重時間:O. 1sec、X₀:物体の視角:3. 8deg、X_{max}:空間加重の最大視角:12deg、N_{max}:加重したときの最大周波数:15cycles、η:眼の光受容器の量子効率:O. 3、p:光源の光子換算係数(CRT):1. 24(液晶でも可)、E:網膜照度(Troland):50(cdm²)×r²π(mm)=50r²π(td)(r:瞳半径)100以下、Φ₀:神経系ノイズのスペクトル密度:3×108sec・deg²、u₀:側方抑制の空間周波数:7cycles/deg。この式を用いることにより眼球光学系によるコントラスト感度ではなく、他の要素(例えば、神経系)も加味した視覚系全体のコントラスト感度が予測できる。

図15は、コントラスト感度の説明図である。図15に示すグラフは、縦軸に上述の式を用いて算出したコントラスト感度、横軸に空間周波数を表し、原点を通るある断面での1次元グラフ(例えば、s=0とした時のグラフ)である。空間周波数に対応する視覚系全体のコントラスト感度を求めることで、例えば、縞視標の見え具合を予測することができる。また、眼科医等は、例えば、表示部に表示されたコントラスト感度と自覚測定による感度とを比較することができる。例えば、一般的な自覚測定で求められた縦の縞視標による3cpd、6cpd、9cpd、12cpdの×方向の感度と、s=0としたときの各空間周波数に対応するコントラスト感度とを比較することができる。なお、コントラスト感度は、極座標表示で回転対称である場合には角度に依存しないため、グラフの横軸を極座標表示の振

20

- 幅成分として表示することもできる。

なお、上述した第1、第2、第3、第4のフローチャート及びコントラスト感度の算出を組み合わせて使用し、球面度数、乱視度数、乱視軸の矯正値を求め、その矯正時における視力及び/又は感度を測定するようにしてもよい。乱視を考慮に入れる場合、第1のフローチャートにより算出された球面度数は、等価球面度数 S_E となるため、球面度数 S_E となるため、球面度数 S_E となるため、球面度数 S_E となるため、球面度数 S_E

- 6. 矯正画像シミュレーション
- 6-1 矯正画像シミュレーションの第1のフローチャート
- 10 図23に、上記ステップS107の矯正画像シミュレーションのフローチャートを示す。 演算部210は、最良画像条件を計算する(S201)。この詳細は後述するように、演算 部210はストレール比が最大になるように、又は、位相シフトができる限りなくなるように、 低次ゼルニケ係数を求め、補正矯正データを求める。補正矯正データとしては、例えば、 デフォーカス(Defocus)にあたる係数、乱視成分、S、C、A、高次球面収差、高次非点 収差、高次コマ収差、ストレール比等のうち適宜のデータが挙げられる。

演算部210は、最良画像条件時の波面収差W(x, y)を求め、そのW(x, y)から瞳関数f(x, y)を次式により計算する(S203)。ステップS205からS211の処理の詳細は、図8の同符号の各ステップと同様であるので説明を省略する。

つぎに、演算部210は、LandImage(X、Y)、PSF(X, Y)を表示部230に、図、グラフィックデータ、グラフ及び/又は数値等の適宜の表示方法で表示し、そのデータを適宜メモリ240に記憶する(S213)。演算部210は、補正矯正データを、必要に応じてメモリ240から読み出し、表示部230に出力する(S215)。

6-2 ストレール比に基づく矯正データ算出

25 図24に、最良画像条件計算の第1例についてのフローチャートを示す。図24は、上述のステップS201についての詳細フローチャートである。

10

15

20

まず、演算部210は、分岐条件として各収差量RMS,^{2j-1}の閾値を設定する(S401)。 例えば、この閾値は、収差の十分小さい値(例、0.1)とすることができる。演算部210 は、測定された検出波面からゼルニケの係数C,^{2j-1}を算出し、次式により収差量RMS,^{2j}-1に変換する(S403)。

$$RMS_{i}^{2j-i} = \sqrt{\frac{\varepsilon_{i}^{2j-i}}{2(i+1)}}C_{i}^{2j-i}$$

$$(\varepsilon_{i}^{2j-i} = 2 \ (2j=i) \ , \varepsilon_{i}^{2j-i} = 1 \ (2j \neq i) \)$$

演算部210は、RMS_i^{2j-i}(i>2)の値の少なくともひとつが閾値以上であるか否か判断する(S405)。ここでNoと判断された場合、ステップS419に進む。一方、ここでYesと判断されると次の処理を演算部210は実行する。

すなわち、演算部210は、収差量RMS(R_1^{2j-i})の高次球面収差量 $R_4^{\,0}$ 、 $R_6^{\,0}$ …の少なくともひとつが閾値以上であるか判断する(S407)。ここでYesの場合、演算部210は、ストレール比が最大となるように収差のデフォーカスにあたる係数($C_2^{\,0}$)を変化させ(S409)、一方、Noの場合は、ステップS411に進む。つぎに、演算部210は、非対称である高次コマ様収差成分RMS $_1^{2j-i}$ (i: 奇数)の少なくともひとつが閾値以上であるか判断する(S411)。ここで、Yesの場合、演算部210は、ストレール比が最大となるように収差のデフォーカスにあたる係数($C_2^{\,0}$)を変化させ(S413)、一方、Noの場合はステップS415に進む。さらに、演算部210は、高次非点収差量RMS $_1^{\,2j-i}$ (i: 偶数、かつ2 $_1^{\,0}$ (1)の少なくともひとつが閾値以上であるか判断する(S415)。ここで、Yesの場合、演算部210は、ストレール比が最大となるように収差に乱視成分($C_2^{\,-2}$ 、 $C_2^{\,2}$)を加え(S417)、一方、Noの場合ステップS419に進む。

こうして、演算部210は、収差からOTF(u, v)、PSF(X, Y)を算出し、さらにゼルニケ

係数から補正矯正データ(デフォーカスにあたる係数、乱視成分、S、C、A、高次球面収差、高次非点収差、高次コマ収差、ストレール比等の適宜のデータ)を算出し、メモリ24 Oに蓄えておく(S419)。

なお、デフォーカス、乱視成分のうち所望の成分のみ補正するように、各ステップS40 7及びS409、S411及びS413、S415及びS417、の組のいずれかを省略してもよいし、また、これら以外の適宜の高次収差又はゼルニケ係数を補正するようにステップを追加してもよい。例えば、4次の球面収差が高次収差に主として含まれている場合に、低次収差に相当するデフォーカス量を増加させる方向に補正することで補正矯正データを得ることができる。

10 つぎに、ステップS409、S413、S417の詳細処理について説明する。各ステップに おいて、演算部210は、次のように処理を実行する。

演算部210は、より最適な像面を求めるためにフローで1つ前に注目した高次収差量 $(RMS_4^0, RMS_6^0\cdots)$ の閾値から高次収差量と同程度の収差量分の今注目している AZ_5 でにおける低次ゼルニケ係数 C_i^{2j-i} (1 \leq i \leq 2)を波面収差W(x, y)に加える。

例えば、ステップS409では C_2^0 、ステップS413では C_2^0 、ステップS417では C_2^{-2} 、 C_2^2 である。

さらに瞳関数f(x, y)は波面収差から以下のように求める。

 $f(x, y) = e^{ikW(x, y)}$

15

(i:虚数、k:波数ベクトル(2π/λ)、λ:波長)

20 演算部210は、この瞳関数f(x, y)をフーリエ変換することにより点像の振幅分布U(u, y)を次式のように求める。

振幅
$$U(u,v) = \int_{-\infty}^{\infty} f(x,y) \exp\left[-\frac{i}{R} \frac{2\pi}{\lambda} (ux + vy)\right] dxdy$$
 (19)

(1:波長

R:瞳から像点(網膜)までの距離

(u, v): 像点Oを原点とし、光軸に直行する面内での座標値

(x, v):瞳面内の座標値)

演算部210は、U(u, v)とその複素共役を掛けて、次式により点像強度分布(PSF)であるI(u, v)を求める。

 $5 \quad I(u, v) = U(u, v)U^*(u, v)$

また、ストレール比は、無収差(W(X, Y)=0)のときのPSFの中心強度を $I_o(0, 0)$ とすると、

ストレール比=I(0,0)/I_o(0,0)

で定義されている。

20

25

6-3 位相シフトに基づく矯正データ算出

図25に、最良画像条件計算の第2の例についてのフローチャートを示す。

15まず、演算部210は、分岐条件として各収差量RMS;2j-iの閾値を設定する(S501)。例えば、この閾値は、収差の十分小さい値(例、0.1)とする。

演算部210は、測定された検出波面からゼルニケの係数C_i^{2j-i}を算出し、第1例で示した式により収差量RMS_i^{2j-i}に変換する(S503)。演算部210は、RMS_i^{2j-i}(i>2)の値の少なくともひとつが閾値以上であるか否か判断する(S505)。ここで、Noと判断された場合、ステップS519に進む。一方、ここでYesと判断されると次の処理を演算部210は実行する。

すなわち、演算部210は、高次球面収差量 R_4^0 、 R_6^0 ・・・の少なくともひとつが閾値以上であるか判断する(S507)。ここで、Yesの場合、演算部210は、位相シフトができる限りなくなるように収差のデフォーカスにあたる係数(C_2^0)を変化させ(S509)、一方、

Noの場合は、ステップS511に進む。つぎに、演算部210は、高次コマ様収差成分RM

15

20

 $S_i^{2i-1}(i:$ 奇数)の少なくともひとつが閾値以上であるか判断する(S511)。ここで、Yes の場合、演算部210は、位相シフトができる限りなくなるように収差にデフォーカスにあたる係数(C_2^0)を変化させ(S513)、一方、Noの場合はステップS515に進む。さらに、演算部210は、高次非点収差量RMS $_i^{2i-1}(i:$ 偶数、かつ2 $_i$ =0)の少なくともひとつが閾値以上であるか判断する(S515)。ここで、Yesの場合、演算部210は、ストレール比が最大となるように収差に乱視成分(C_2^{-2} 、 C_2^{2})を加え(S517)、一方Noの場合ステップS519に進む。

こうして、演算部210は、収差からOTF(u, v)、PSF(X, Y)を算出し、さらにゼルニケ係数から補正矯正データ(デフォーカスにあたる係数、乱視成分、S、C、A、高次球面収差、高次非点収差、高次コマ収差、PTF等の適宜のデータ)を算出し、メモリ240に蓄えておく(S519)。

なお、デフォーカス、乱視成分のうち所望の成分のみ補正するように、各ステップS507及びS509、S511及びS513、S515及びS517、の組のいずれかを省略してもよいし、また、これら以外の適宜の高次収差又はゼルニケ係数を補正するようにステップを追加してもよい。

つぎに、ステップS509、S513、S517の詳細処理について説明する。演算部210は、 次のように処理を実行する。

まず、ステップS409、S413、S417の詳細処理で説明したように、演算部210はゼルニケ係数から算出される他覚的な完全矯正時の波面の式から、点像強度分布(PSF)を求める。つぎに、演算部210は、次式のように、PSFをフーリエ変換(又は自己相関)して規格化することによりOTFを求める。

$$R(\mathbf{r}, \mathbf{s}) = \int_{-\infty}^{\infty} I(\mathbf{u}, \mathbf{v}) e^{-i2\pi(\mathbf{r}\mathbf{u} + \mathbf{s}\mathbf{v})} d\mathbf{u} d\mathbf{v}$$

$$(\mathbf{r}, \mathbf{s} : 空間周波数領域の変数)$$

$$OTF = \frac{R(\mathbf{r}, \mathbf{s})}{R(0.0)}$$

一般に空間周波数領域の振幅と位相の分布R(r, s)は複素数になり、実数部A(r, s)、 虚数部B(r, s)とすれば、

R(r, s) = A(r, s) + iB(r, s)

5 となり、位相のずれ(位相シフト、PTF)は、

$$\phi(r,s) = \tan^{-1} \frac{B(r,s)}{A(r,s)}$$
 (21)

で計算できる。第2の例では、演算部210は、このR(r, s)が極値を持つ値をできる限り 高周波に持っていくような即ち、位相シフトができる限りなくなるような低次ゼルニケ係数 C.^{2]-i}の値を再帰的、或いは解析的に求める。

10 なお、上述した最良画像条件計算の第1例及び第2例は、両方の処理を実行するようにしてストレール比が大きく且つ位相ずれが少ない条件を求めるようにしてもよい。

7. 表示例

7.1 視力測定時の表示例

図16は、最良画像表示ーテンプレートマッチングについて、数値データとして、補正矯正データの球面度数S、乱視度数C、乱視軸角度Axと、瞳径と、補正矯正前の測定値の球面度数S、乱視度数C、乱視軸角度Ax、矯正視力とを表示している。さらに、その矯正データにおける矯正視力を表示してもよい。この例では、高次収差成分が所定値以上あるため、補正矯正データと測定値との数値に差が生じている。これらの図では、波面収20 差、PSF、OTF、OTF(二次元表示)、S、C、Ax、ランドルト環、指標の見え具合等が表

15

20

25

示部230に表示されている。さらに、例えば図15に示すコントラスト感度を表示部230に表示してもよい。また、これらの中から適宜選択して表示するようにしてもよい。

図17は、補正前と補正後の比較についての表示例を示す図である。この図では、補正前後の矯正視力、波面収差、ランドルト環の見え方と、瞳径が表示される。図示のように、補正矯正後は波面収差を比較的均一に近づけ、ランドルト環も比較的良く見えることが示される。また、補正矯正後の被検者の環境における矯正視力が示される。

図18に、眼鏡、コンタクト用の処方データ例の説明図を示す。図19に、屈折矯正手術 用データ例の説明図を示す。

これら各データは、演算部210よりメモリ240に記憶され、及び/又は、表示部230に表示される。この例は、SCAのみを補正矯正データとする屈折矯正手術を行う場合のデータでは、補正矯正データ中Sの値を強くして、Cの値を弱くAの軸方向を若干変化させる矯正することにより、矯正視力が良くなることが示される。また、図19には、補正矯正後、図示の瞳孔径における各パラメータの予想値が示されている。

図20に、環境条件が変化した時の眼鏡、コンタクト用処方データ例の説明図を示す。例えば、各環境条件に応じた照明状態で被測定眼60の瞳径を測定し、各瞳径における矯正データ及び矯正視力を表示している。瞳径により、補正矯正データが若干異なることが示される。すなわち、被検者の環境により最適な処方値が異なることが示される。また、例えば、医師等が被検者の環境を考慮し、処方値を選択することも可能である。なお、表示する環境条件は、適宜変更することができる。

図20に示す例では、各環境条件に応じた矯正データを求め、その環境条件における 視力を表示しているが、他の環境条件下での視力を推測・表示することもできる。例え ば、白昼時の補正矯正データにより矯正した場合において、白昼時、蛍光灯下、昼間室 内での視力をそれぞれ推測し表示することもできる。

図21に、環境条件が変化した時の瞳孔データ例の説明図を示す。例えば、各環境条件に応じた照明状態で被測定眼60の瞳径を測定し、各瞳径における瞳中心のリンパス中心からのずれ量(x方向、y方向)及び矯正視力を示している。環境条件の変化により、瞳中心がずれることが示され、解析時の中心(原点)がずれることが示される。

20

図22に、眼鏡、コンタクト用処方データの一定瞳径による測定との比較図を示す。例えば、従来の測定と同様に、瞳径が4mm、6mmとした場合と、瞳径を測定した場合 (例えば、501xで照明)の矯正データ及び矯正視力が表示されている。瞳径を固定した場合と、測定した場合では、矯正データ及び矯正視力が若干異なる、なお、図21には、

5 一例として501xで照明した時の瞳径を用いたデータを示しているが、照明条件を適宜変えることにより、被検者の適宜の環境での視力を推測することが可能である。

なお、上述の図では、視力を少数視力で表しているが、logMAR視力で表示してもよい。また、表示する条件は、適宜変更することができる。

10 7.2 矯正データシミュレーションにおける表示例

図26は、最良画像表示ーストレール最適化について、数値データとして、補正矯正データの球面度数S、乱視度数C、乱視軸角度Axと、補正矯正前の測定値の球面度数S、乱視度数C、乱視軸角度Axと、矯正データの算出に用いた瞳径を表示している。この例では、高次収差成分が所定値以上あるため、補正矯正データと測定値との数値に差が生じている。

図27は、最良画像表示-PTF最適化について、数値データとして、補正矯正データの 球面度数S、乱視度数C、乱視軸角度Axと、補正矯正前の測定値の球面度数S、乱視 度数C、乱視軸角度Axと、矯正データの算出に用いた瞳径を表示している。この例では、 高次収差成分が所定値以上あるため、補正矯正データと測定値との数値に差が生じて いる。

図28は、補正前と補正後の比較についての表示例を示す図である。この図では、補 正前後の波面収差、ランドルト環の見え方、ストレール比、瞳径が表示される。図示のよ うに、ストレール比は補正後の方が高く、波面収差を比較的均一に近づけ、ランドルト環 も比較的良く見えることが示される。

25 図29に、眼鏡、コンタクト用の処方データ例の説明図を示す。図30に、屈折矯正手術 用データ例の説明図を示す。

これら各データは、演算部210よりメモリ240に記憶され、及び/又は、表示部230

10

に表示される。この例は、SCAのみを補正矯正データとする屈折矯正手術を行う場合の データでは、補正矯正データ中Sの値を強くして、Cの値を弱くAの軸方向を若干変化さ せる矯正することにより、ストレール比が高くなり、矯正効果が高くなることが示される。

図31に、環境条件が変化した時の眼鏡、コンタクト用処方データ例の説明図を示す。 例えば、各環境条件に応じた照明状態で被測定眼60の瞳径を測定し、各瞳径における 矯正データを表示している。瞳径により、補正矯正データが若干異なることが示される。 すなわち、被検者の環境により最適な処方値が異なることが示される。また、例えば、医 師等が被検者の環境を考慮し、処方値を選択することも可能である。なお、表示する環 境条件は、適宜変更することができる。

図32に、眼鏡、コンタクト用処方データの一定瞳径による測定との比較図を示す。例 えば、従来の測定と同様に、瞳径が4mm、6mmとしたときの矯正データと、瞳径を測 定した場合(例えば、50ixで照明)の矯正データが表示されている。瞳径を固定した場 合と、測定した場合では、矯正データが若干異なる、本実施の形態では、被検者の瞳径 に応じた最適矯正データを求めることが可能である。なお、表示する条件は、適宜変更 することができる。 15

8. 変形例

本発明の変形例を以下に説明する。この変形例は、図23のS201における最良画像 条件の計算方法を変形したものである。ヤコビアン行列Aのi行j列成分は、

$$A_{ij} = \frac{\partial f_i(x)}{\partial x_j} \tag{22}$$

20

である。ここで、f_i(x)は、例えば、ストレール比や適当な周波数に対応するPTFや、複数 の周波数に対応するPTFの幾つかの値である。また、ストレール比とPTFの組み合わ せでもよい。またベクトルxは、調整可能なパラメータで、ここでは、球面度(またはそれ に対応するデフォーカス)と2つの乱視に関係する成分が対応する。

20

すでに、ストレール比やPTFの計算式は与えてある。ストレール比は、1が理想である。

$$f_1(x) = f_S(hc, c_2^0, c_2^{-2}, c_2^2)$$
 (23)

がストレール比を表すものとする。ここで、f₁は式(22)内の同表示の式を表す。

5 また、例えばPTFとして、空間周波数が3cpd、6cpd、12cpd、18cpdに対応する値をとり、これは、Oが理想であり、

$$f_2(x) = f_{PTF3}(hc, c_2^0, c_2^{-2}, c_2^2)$$
 (24)

$$f_3(x) = f_{PTF6}(hc, c_2^0, c_2^{-2}, c_2^2)$$
 (25)

$$f_4(x) = f_{PTF12}(hc, c_2^0, c_2^{-2}, c_2^2)$$
 (26)

10
$$f_5(x) = f_{PTF18}(hc, c_2^0, c_2^{-2}, c_2^2)$$
 (27)

としておく。式(23)、(24)、(25)、(26)、(27)で、hcは高次収差係数のベクトル、 c_2^0 は球面度に関連するデフォーカス項の係数、 c_2^{-2} 、 c_2^2 は乱視に関係する項の係数である。hcは波面収差計側で与えられ、ここでは定数である。よって、残りの3つの係数をパラメータベクトル×として適当に動かし、 f_{PTF} を極小値に導くことがここでのタスクである。

ここで、式(22)の偏微分は、パラメータをわずかに動かし変化表を作ることで、計算でき、この系でのヤコビアン行列が求められることになる。

さて、ここでのタスクをもう一度言いなおすと、ヤコビアン、つまり偏微分係数の分かっている場合の、非線形の最適化をすれば良いので、ニュートン法系の最適化アルゴリズムを利用すれば、例題としては単純なので、解を得るのはたやすい。修正Marquardt法による具体的な解法を述べると、修正ベクトルΔ×は、

$$(A^{t}WA + \lambda I) \Delta x = A^{t}W(y - f(x))$$
 (28)

によりもとめることができる。ここで、行列の肩のtは転置行列をあらわし、Wは重み行列である。yは最初の要素がストレールに対応し、あとはPTFの4成分に対応するので

(1,0,0,0,0)とすればよい。 λ はダンピングファクターと呼ばれ、最初は大きめにとり、その 後最適化の進み方で小さくしていく。

$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 & 0 \\ 0 & 0 & w_3 & 0 & 0 \\ 0 & 0 & 0 & w_4 & 0 \\ 0 & 0 & 0 & 0 & w_5 \end{pmatrix}$$
 (29)

で、添え字はfの添え字に対応している。たとえば、ストレール比を重点的に最適化したいときは、w₁を大きくするなど、処方の目的にかなった重み付けを自由にすることが可能である。式(28)を何回か適用し、

$$S=W(y-f(x)) \tag{30}$$

が適当に小さくなったら(収束条件を満たしたら)計算をやめ、そのときのxを、解とする。 これで、最適な球面度、2つの乱視度がもとめられたことになる。

なお、最良画像条件計算は、ストレール比が極大または位相シフト(PTF)が略ゼロとなる位置を、デフォーカス量および/または乱視成分を微少量変化させながら、探すことにより行うこともできる。また良く知られているニュートンの方法を用いて、ストレール比が極大または位相シフト(PTF)が略ゼロとなる位置を求めるように構成することもできる。

15

20

10

9. 付記

本発明の眼科データ測定の装置・システムは、その各手順をコンピュータに実行させる ための眼科データ測定プログラム、眼科データ測定プログラムを記録したコンピュータ読 み取り可能な記録媒体、眼科データ測定プログラムを含みコンピュータの内部メモリにロ ード可能なプログラム製品、そのプログラムを含むサーバ等のコンピュータ、等により提 供されることができる。 また、被測定眼の屈折力分布を示す測定データは、図1で示す光学系100により求めているがこれに限定されるものでなく、他のアベロメータ等により構成することができる。

産業上の利用可能性

5

10

15

20

本発明によると、被検眼の瞳径に応じた光学特性及び最適な処方値に近い矯正データを算出し、より正確な測定を行うことができる。

また、本発明によると、高次収差まで測定できる眼特性測定装置で測定した結果において、高次収差を含む場合には、他覚的な完全矯正時にあたる低次収差を補正矯正データとせずに、例えばスレール比や位相ずれにより光学性能を評価し、ストレール比が大きく、及び/又は、位相ずれが少なくなるような低次収差量を算出し、そのときのS、C、A等の補正矯正データを求めることでより最適な眼鏡・コンタクト等の処方値に近い矯正データを得ることができる。さらに、検眼用視標の見え具合のシミュレーションを行い、適正な矯正要素を求めることで、自覚値と近い矯正データを得ることも可能である。

本発明によると、日常生活下における被検者の環境にあった明るさ(例えば、白昼時や屋内)での被検眼の視力を推測することができる。また、本発明によると、日常生活下での被検眼の瞳径を考慮して高コントラスト及び/又は低コントラストの視標に対する視力を推測することができる。本発明によると、瞳径を考慮したコントラスト感度を予測することができる。さらに、本発明によると、被検者の環境にあった明るさ(例えば、白昼時や屋内)のもとでの瞳径を用いて、その環境下における最適な処方値に近い矯正データを求め、求めた矯正データによる矯正により被検者の環境での視力を推測することができる。また、上記途中の過程で計算される瞳孔領域の大きさを考慮した網膜上のランドルト環などの視標のシミュレーションも単独で有効である。

請求の範囲

1. 第1波長の光束を発する第1光源部と、

上記第1光源部からの光束で被検眼眼底付近に集光するように照明するための第1 5 照明光学系と、

被検眼眼底から反射して戻ってくる光束の一部を、少なくとも実質的に17本のビームに変換する第1変換部材を介して受光するための第1受光光学系と、

上記第1受光光学系の受光光束を受光する第1受光部と、

上記第1受光部で得られた光束の傾き角に基づいてゼルニケ解析を行い、被検眼の 北学特性を求め、(1)被検眼の環境に応じた観察条件下での被検眼の視力及び光学 特性及び感度のいずれか又は複数を推測する、又は、(2)被検眼に相応しい適正な矯 正データを算出する演算部と

を備え、

上記演算部は、

15 被検眼の屈折力分布を示す測定データと、被検眼の瞳径の値若しくは瞳径画像を含む瞳データとを得て、その測定データ及び瞳データを含む観測条件パラメータに基づき、 低次収差及び高次収差を求める第1手段と、

観測条件パラメータ、及び/又は、求められた低次収差及び高次収差に基づき、被検 眼での見え具合の質を示す評価パラメータを算出する第2手段と、

- 20 算出された評価パラメータに従い、(1)被検者の環境に応じた観測条件下での被検眼 の視力及び光学特性及び感度のいずれか又は複数を推測する、又は、(2)低次収差を 変化させることにより被検眼に相応しい適正な矯正データを算出する第3手段と を有する眼科データ測定装置。
- 25 2. 前記瞳データは、被検者の環境に応じた観測条件に対応するデータであり、及び /又は、

前記第2手段は、被検眼での像の見え具合をシミュレートして、見え具合の質を示す評

価パラメータを算出する請求項1に記載の眼科データ測定装置。

3. 上記第1手段は、

上記演算部が、被検眼の屈折力分布を示す測定データと、測定時の又は矯正データを求める矯正環境での瞳孔画像を含む瞳データとを受け取り、受け取った瞳データに基づき観測条件下又は該矯正環境での瞳径を算出し、受け取った測定データ及び算出した瞳径に基づき低次収差と高次収差を求めるように構成されている請求項1に記載の眼科データ測定装置。

10 4. 上記第1手段は、

上記演算部が、被検眼の屈折力分布を示す測定データと、測定時の又は矯正環境での瞳孔画像を含む瞳データとを受け取る手段と、

上記演算部が、受け取った瞳データに基づき瞳孔エッジ上の点を検出する手段と、

上記演算部が、検出した点にフィットする楕円の焦点及び長径及び/又は短径を算出 15 する手段と、

上記演算部が、楕円の長径及び/又は短径に基づき被検眼の瞳径を算出する手段 と、

上記演算部が、受け取った測定データ及び算出した瞳径に基づき低次収差と高次収差を求める手段と

20 を有する請求項1に記載の眼科データ測定装置。

5. 第2波長の光束を発する第2光源と、

上記第2光源からの第2照明光束で被検眼角膜付近を所定のパターンで照明する第2 照明光学系と、

25 被検眼角膜付近から反射して戻ってくる第2照明光束を受光するための第2受光光学 系と、

上記第2受光光学系の受光光束を受光する第2受光部と、

上記第2受光部の出力から被検眼の瞳データを形成する瞳データ形成部とをさらに備え、

上記演算部は、上記瞳データ形成部により瞳データを求めるように構成されている請求項1に記載の眼科データ測定装置。

5

6. 被検眼の前眼部を所望の明るさで照明可能に構成した前眼照明部をさらに備え、

上記演算部は、上記前眼照明部を所定の観察条件又は矯正環境に応じた明るさに調整し、その照明状態における上記第1受光部の出力信号及び瞳データに基づき、被検10 眼の視力及び/又は感度を推測する、又は、被検眼に相応しい適正な矯正データを求めるように構成されている請求項1に記載の眼科データ測定装置。

- 7. 上記前眼照明部は、複数の照明状態を形成する場合に、照明状態を暗い方から明るい方へ順次変化させて測定が行われるように構成されている請求項6に記載の眼科データ測定装置。
- 8. 上記第2手段は、

上記演算部が、矯正前又は後の被検眼における検眼用視標の見え具合をシミュレートして視標画像データを形成する手段と、

20 上記演算部が、該視標画像データと該検眼用視標のパターンデータとをパターンマッ チングにより比較する手段と、

上記演算部が、パターンマッチングによる比較結果に基づき評価パラメータを算出する 手段と

を有する請求項1に記載の眼科データ測定装置。

25

15

9. 上記演算部は、コントラストの高い検眼用視標及び/又は低い検眼用視標を用い、被検眼の高コントラスト視力及び/又は低コントラスト視力を推測するように構成されて

いる請求項1に記載の眼科データ測定装置。

10. 上記第3手段は、

上記演算部が、検眼用指標の見え具合を示す評価パラメータが予め設定された基準 を満たすか判断し、基準を満たした評価パラメータに対応する検眼用視標の大きさに従 い視力を推測する請求項1に記載の眼科データ測定装置。

11. 上記演算部は、

低次収差及び高次収差に基づき、被検眼の伝達特性を示すMTF(Modulation

10 Transfer Function)のデータを求める手段と、

求められたMTFのデータに基づきコントラスト感度を推測する手段と をさらに有する請求項10に記載の眼科データ測定装置。

12. 上記第2手段は、

15 上記演算部が、低次収差及び高次収差に基づき、被検眼の伝達特性を示すMTF (Modulation Transfer Function)のデータを求め、

上記第3手段は、上記演算部が、求められたMTFのデータに基づきコントラスト感度を 推測する請求項1に記載の眼科データ測定装置。

- 20 13. 上記演算部は、受け取った瞳データに基づき、観測条件下での瞳中心位置を求め、瞳中心位置のずれ量を算出して、解析中心をずらす手段をさらに有する請求項1に記載の眼科データ測定装置。
- 14. 上記演算部は、視力、感度、矯正データ、シミュレーション結果のいずれか又は複 25 数をメモリに記憶する、又は、表示部に表示する手段 をさらに有する請求項1に記載の眼科データ測定装置。

15. 上記第3手段は、

光学特性として、被検眼のMTF(Modulation Transfer Function)、点像強度分布(PSF)を推測するように構成されている請求項1に記載の眼科データ測定装置。

5 16. 上記演算部は、

上記第2手段で算出した評価パラメータに従い、デフォーカスに対応する低次収差を変化させて被検眼に相応しい適正な矯正データを求め、該矯正データに基づく矯正時の被検眼での像の見え具合をシミュレートしてさらに評価パラメータを算出する手段をさらに有し、

10 該矯正時の視力及び/又は感度を推測するための請求項1に記載の眼科データ測定 装置。

17. 上記演算部は、

上記第2手段で算出した評価パラメータに従い、乱視成分に相当する低次収差を変化 15 させて被検眼に相応しい適正な矯正データを求め、該矯正データに基づく矯正時の被検 眼での像の見え具合をシミュレートしてさらに評価パラメータを算出する手段 をさらに有し、

該矯正時の視力及び/又は感度を推測するための請求項1に記載の眼科データ測定 装置。

20

18. 上記演算部は、

算出された矯正データに基づくランドルト環若しくは任意の像の輝度分布画像をシミュレートし、該矯正データ及び/又はシミュレーション結果をメモリに記憶する、又は、表示部に表示する第4手段

25 をさらに含む請求項1に記載の眼科データ測定装置。

19. 上記第3手段は、高次の球面収差又は非対称な高次のコマ様収差が所定値以上である場合に、上記演算部が、評価パラメータに基づきデフォーカスに対応する低次収差を変化させ、被検眼に相応しい適正な矯正データを求めることを特徴とする請求項1に記載の眼科データ測定装置。

5

- 20. 上記第3手段は、高次の非点収差が所定値以上である場合に、上記演算部が、評価パラメータに基づき乱視成分に相当する低次収差を変化させ、被検眼に相応しい適正な矯正データを求めることを特徴とする請求項1に記載の眼科データ測定装置。
- 10 21. 上記第2手段は、上記演算部が、求めた低次収差及び高次収差に基づき、評価パラメータとしてストレール比を算出し、

上記第3手段は、上記演算部が、ストレール比が大きくなるように所定の低次収差を変化させて被検眼に相応しい適正な矯正データを算出するように構成されている請求項1に記載の眼科データ測定装置。

15

20

22. 上記第2手段は、上記演算部が、求めた低次収差及び高次収差に基づき、評価パラメータとして位相シフトを算出し、

上記第3手段は、上記演算部が、位相シフトが小さくなるように低次収差を変化させて 被検眼に相応しい適正な矯正データを算出するように構成されている請求項1に記載の 眼科データ測定装置。

23. 上記第2手段は、

上記演算部が、低次収差及び高次収差に基づき、矯正後の被検眼の伝達特性を示す MTF(Modulation Transfer Function)のデータを形成する手段と、

25 上記演算部が、形成されたMTFのデータに基づき評価パラメータを算出する手段と を有する請求項1に記載の眼科データ測定装置。

15

24. 上記第2手段は、上記演算部が、低次収差と高次収差に基づき、評価パラメータとしてストレール比と位相シフトとの関係式を形成し、

上記第3手段は、上記演算部が、低次収差を変化させてストレール比を極大値に、かつ位相シフトが略ゼロとなる条件を求め、その時の低次収差を適正な矯正データとする請求項1に記載の眼科データ測定装置。

- 25. 演算部は、被検眼の屈折力分布を示す測定データと、被検眼の瞳径の値若しくは瞳径画像を含む瞳データとを得て、その測定データ及び瞳データを含む観測条件パラメータに基づき、低次収差及び高次収差を求める第1ステップと、
- 10 演算部は、観測条件パラメータ、及び/又は、求められた低次収差並びに高次収差に基づき、被検眼での見え具合の質を示す評価パラメータを算出する第2ステップと、

演算部は、算出された評価パラメータに従い、被検者の環境に応じた観測条件下での 被検眼の視力及び光学特性及び感度のいずれか又は複数を推測する、又は、低次収 差を変化させることにより被検眼に相応しい適正な矯正データを算出する第3ステップと をコンピュータに実行させるための眼科データ測定用プログラム。

26. 演算部は、被検眼の屈折力分布を示す測定データを受け取り、その測定データに基づき低次収差及び高次収差を求める第1ステップと、

演算部は、求めた低次収差及び高次収差に基づき、被検眼での見え具合の質を示す 20 評価パラメータを算出する第2ステップと、

演算部は、算出した評価パラメータに従い、低次収差を変化させることにより被検眼に相応しい適正な矯正データを算出する第3ステップとをコンピュータに実行させるための矯正データ測定用プログラム。

25 27. 第1波長の光束を発する第1光源部と、

上記第1光源部からの光束で被検眼眼底付近に集光するように照明するための第1 照明光学系と、 被検眼眼底から反射して戻ってくる光束の一部を、少なくとも実質的に17本のビーム に変換する第1変換部材を介して受光するための第1受光光学系と、

上記第1受光光学系の受光光束を受光する第1受光部と、

測定環境における被検眼の瞳孔画像を含む瞳データを受け取り、受け取った瞳データ に基づき、該測定環境での瞳径を算出し、算出した瞳径及び上記第1受光部からの出 カ信号に基づき被検眼の光学特性を求める演算部と を備える眼特性測定装置。

図

3/32

ランドルト環

高コントラスト

図3

4/32

図5

7/32

図 7

図8

図 9

図10

図 1 1

図 1 2

図13

図14

1 5

図 1 6

補正後

2000年3月2日 午前8時4分

え見の 最 イルイベア

白昼時瞳孔径:3.42mm

補正後	1.5
補正前	1.2
	矯正視力

矯正視力	
	1

東京 光子

-M

眼鏡、コンタクト用処方データ

勻唇時瞳孔径:3.42mm

	矯正データ	補正矯正データ
S	-7.00	-7.15
S	-0.5	-0.35
A	. 3	5
	-	-
矯正視力	1.2	1.5

<u>図</u> 7 00

田折手術用処方データ

-7.00	-7.15	-0.15
0.5	0.35	0.15
3	5	4
高次球面収差 0.125		0.280
高次非点収差 0.105		0.125
差 0.085		0.090
1.2	2.0 (理想值)	1.5
高次コマ収差 0.085 矯正視力 1.2	2.0	(理想値)

図 19

服飾。コンタクト用処方データ(環境条件が変化したときの比較)

屋間室内:4.35mm Fデータ 補正権正	\$ 1±	-7.31	-0.38	4	1.2	
原間壁内極下げータ		-7.18	-0.45	3	1.2	
蛍光灯下 6.54mmボート 端で様用		-7.43	-0.45	4	1.2	
黄光灯下	へ」、当要	-7.33	-0.40	4	1.0	
白昼時:3,42mm *******	無けるよ	-7.15	5E'0-	5	5'1	
日春郡	メート当 髪	-7.00	-0.5	3	1.2	
環境条件:瞳孔径		Ø	ပ	Å	矯正視力	ランドルト綴の見え (0.5)

瞳デーダ(環境条件が変化したときの比較)

環境条件:瞳孔	新	白昼時:3.42mm	蛍光灯下:6.54mm	昼間室内:4.35mm
リンパス中心	₩.	0.542	0.723	0.601
からのずれ量 (mm)	¥	0.109	0.120	0.110
矯正視力		1.5	1.2	1.2

図2

22/32

眼鏡、コンタクト用処方データ(一定瞳孔径との比較)

::0,45mm	補正矯正データ	-7.43	-0.45	4	0.1		
選に帯(5/01x);6/45mm	極正ゲータ	-7.33	-0.40	4	6.0		
8	精正矯正 千一分	-7,45	-0.43	'n	1.2		
6mm	路にゲータ	-7.30	-0.40	4	1.0		のの
4mm	権圧矯正データ	-7.18	-0,41	5	1.5		
Ψ.	矯正データ	-7.03	-0.52	3	1.2		
環境条件:顧孔径		Ø	D	A		ランドルト窓の見え (0.5)	

WO 2004/069044 PCT/JP2004/000794

23/32

図23

24/32

25/32

26/32

最良画像表示-Strehl最適化

最良画像表示-PTF最適化

28/32

29/32

眼鏡、コンタクト用処方データ

H.	矯正データ	補正矯正データ
<i>σ</i> .	-7.00	-7.15
U.	-0.5	-0.35
A 3	8	5
		·
Strehit 0	0.088	0.122

図 2 図

由折手術用処方データ

白昼時瞳孔径:3.42mm	ww.		
	測定值	補正矯正データ	補正矯正後予測值
S	-7.00	-7.15	-0.15
C	0.5	0.35	0.15
A	3	5	4
富次球面収差	0.125		0.280
富次非点収差	0.105		0.125
自次コマ収差	0.085		0.090
		-	
Strehl	0.088	0.252 (理想值)	0.198

図 の 図

31/32

眼鏡、コンタクト用処方データ(環境条件が変化したときの比較)

nm	正矯正 矯正データ 補正矯正 矯正データ 補正矯正 データ 一・データ データ	7.15 -7.33 -7.43 -7.31	0.35 -0.40 -0.45 -0.45 -0.38	5 4 4 3 4	122 0.056 0.076 0.078 0.095	
白昼時:3,42mm	矯正データ 補正矯正 データ	-7.15	-0.5 -0.35	3 5	0.088 0.122	
福培条件:瞳孔径		S	D	A	Strehlt	ランドルト緑の見え (0.5)

<u>図</u> の

32/32

眼鏡、コンタクト用処方データ(一定瞳孔径との比較)

语语名·斯·斯	41	4mm	emm9	m	测定時(50lx):6.45mm	k):.6.45mm
1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	矯正データ	精正矯正 データ	矯正データ	補正矯正 データ	矯正データ	権正矯正 データ
S	-7.03	-7.18	-7.30	-7.45	-7.33	-7.43
ű	-0.52	-0.41	-0.40	-0.43	-0.40	-0.45
A	3	5	4	5	4	4
Strehltt	0.086	0.120	0.064	0.079	0.056	0.076
ランドルト緑の 完え (0.5)						
·			図 3 2			

International application No.
PCT/JP2004/000794

	CATION OF SUBJECT MATTER A61B3/10		
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SE			
Minimum docum Int.Cl ⁷	nentation searched (classification system followed by clas A61B3/00-3/18	ssification symbols)	
Jitsuyo Kokai J	itsuyo Shinan Koho 1971-2004 Jit	roku Jitsuyo Shinan Koho ssuyo Shinan Toroku Koho	1994-2004 1996-2004
Electronic data t	ase consulted during the international search (name of d	ata dase and, where practicable, search te	rms used)
C. DOCUME	VTS CONSIDERED TO BE RELEVANT	•	
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y A	JP 2002-209854 A (Topcon Corp 30 July, 2002 (30.07.02), Full text; Figs. 1 to 20 & WO 02/32299 A1 & AU & EP 1334691 A1	9427101 A	1-4,9,11-15, 18,23,27 5,6,8 7,10,16,17, 19-22,24
Y A	JP 2002-204785 A (Topcon Corp 23 July, 2002 (23.07.02), Par. Nos. [0035], [0038] to [Figs. 1, 6 to 8, 10 & WO 02/32298 A1 & AU & EP 1332712 A1		5,6,8 7
А	JP 8-164113 A (Nidek Co., Ltd 25 June, 1996 (25.06.96), Claim 1; Par. No. [0025]; Fig & US 5684562 A		5–7
× Further d	ocuments are listed in the continuation of Box C.	See patent family annex.	
"A" document to be of par	egories of cited documents: defining the general state of the art which is not considered ticular relevance	"T" later document published after the int date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand invention
filing date "L" document cited to es	which may throw doubts on priority claim(s) or which is tablish the publication date of another citation or other	considered novel or cannot be consisted when the document is taken alone "Y" document of particular relevance; the	idered to involve an inventive claimed invention cannot be
"O" document	son (as specified) referring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than date claimed	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the document member of the same patent	step when the document is a document, such combination e art
	al completion of the international search , 2004 (11.05.04)	Date of mailing of the international sea 25 May, 2004 (25.0	rch report 5.04)
	ing address of the ISA/ ese Patent Office	Authorized officer	
Facsimile No.		Telephone No.	

International application No. PCT/JP2004/000794

tegory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	JP 11-137521 A (Nidek Co., Ltd.), 25 May, 1999 (25.05.99), Claim 3; Par. Nos. [0022] to [0024]; Fig. 4 & US 5980042 A	5-7
A	JP 2001-178679 A (Matsushita Electric Works, Ltd.), 03 July, 2001 (03.07.01), Claims 1, 5; Par. Nos. [0023] to [0027]; Figs. 5, 6 (Family: none)	5-7
	·	
·		

International application No.
PCT/JP2004/000794

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claims becaus Claims a comput Internat and PCT 2. Claims becaus	It search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 8 Nos.: 25, 26 10 they relate to subject matter not required to be searched by this Authority, namely: 25, 26 relate to an ophthalmic data measurement program for causing er to execute predetermined steps and do not require search by the cional Search Authority under the provisions of PCT Article 17(2)(a)(i) Rule 39.1(vi). 8 Nos.: 10 the following reasons: 11 to the following reasons: 12 to the following reasons: 13 to the following reasons: 14 to the following reasons: 15 to the following reasons: 16 they relate to subject matter not required to be searched by this Authority, namely: 18 to the following reasons: 18 to the following reasons: 18 to they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically:
	s Nos.: se they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
The tecrelating a first a first luminous eye to be via a fir by and r first lireceptic 1. X As all claims 2. As all	hal Searching Authority found multiple inventions in this international application, as follows: chnical feature common to claims 1 and 27 which are independent claims 3 to an ophthalmic measurement device is that "the device includes: light source section emitting a luminous flux of a first wavelength; illumination optical system for illumination so as to converge the 5 flux from the first light source section near the eyeground of the 6 examined; a first light reception optical system for receiving light 5 st conversionmember for converting a part of the luminous flux reflected 6 seturned from the eyeground into substantially at least 17 beams; a 1 cght reception section for receiving luminous flux of the first light 1 on optical system; (Continued to extra sheet) required additional search fees were timely paid by the applicant, this international search report covers all searchable 1 searchable 1 claims could be searched without effort justifying an additional fee, this Authority did not invite payment of 1 dditional fee.
3. As on	ly some of the required additional search fees were timely paid by the applicant, this international search report covers those claims for which fees were paid, specifically claims Nos.:
	equired additional search fees were timely paid by the applicant. Consequently, this international search report is cted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Pi	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2004/000794

Continuation of Box No.III of continuation of first sheet(2)

and a calculation section for obtaining pupil data including the pupil image of the eye to be examined". However, this technical feature is not novel since it is disclosed in JP 2002-209854 (see Figs 1,5 and Par. Nos. [0008], [0010], [0011], [0029], [0030], [0059], [0060]).

Accordingly, there is no technical relationship between the group

Accordingly, there is no technical relationship between the group of inventions of claims 1 to 24 and the invention of claim 27 involving the same or corresponding special technical features.

			
A. 発明の属	する分野の分類(国際特許分類(IPC))		
Int. Cl	1' A61B3/10		
カ 師本 さな	上 八 用文		
B. 調査を行 調査を行った最	小限資料(国際特許分類(IPC))		
Int. Cl	1 7 A 6 1 B 3 / 0 0 - 3 / 1 8		•
島小眼資料以外	の資料で調査を行った分野に含まれるもの		
日本国実用籍			
	実用新案公報 1971-2004年		
	実用新案公報 1994-2004年		
日本国実用新	新案登録公報 1996-2004年 		
国際調査で使用	した電子データベース(データベースの名称、	調査に使用した用語)	
	と認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると		請求の範囲の番号
X	JP 2002-209854 A	(株式会社トプコン)	1-4, 9, 11-15,
	2002.07.30,全文,図1-	- 2 0	18, 23, 27
Y	& WO 02/32299 A1		5, 6, 8
Ā	& AU 9427101 A &	EP 1334691 A1	7, 10, 16, 17,
			19-22, 24
Y	JP 2002-204785 A	(株式会社トプコン)	5, 6, 8
A	2002.07.23,段落35,38-4:		7
A	-	1,44, 21,0 0,10	'
	& WO 02/32298 A1	ED 1220710 A1	
	& AU 9427001 A &	EP 1332712 A1	
区欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献の	ハ カニ ブリー	の日の後に公表された文献	
	カステコッー 車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	された文献であって
もの		出願と矛盾するものではなく、	
	頭日前の出願または特許であるが、国際出願日	の理解のために引用するもの	
	公表されたもの	「X」特に関連のある文献であって、	
	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考	
1	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	
	埋由を付す) よる開示、使用、展示等に言及する文献	上の文献との、当業者にとって よって進歩性がないと考えられ	
	はる開示、使用、展示寺に言及りる文献 顕日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	J 042
国際調本を含	71 * 0	国際調査報告の発送日	
国際調査を完了	11.05.2004	四欧州国和日ン元区日	5. 2004
		۷,	V. 2004
国際調査機関の	の名称及びあて先	特許庁審査官(権限のある職員)	2W 8102
日本	国特許庁 (ISA/JP)	小原 博生	L
	郵便番号100-8915		rts (d) 0 0 0 0
果京	都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	Minor 3290

引用文献の	関連すると認められる文献	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 8-164113 A (株式会社ニデック) 1996.06.25,請求項1,段落25,図1、4 & US 5684562 A	5-7
A	JP 11-137521 A (株式会社ニデック) 1999. 05. 25, 請求項3, 段落22-24, 図4 & US 5980042 A	5-7
Ą	JP 2001-178679 A(松下電工株式会社) 2001.07.03,請求項1、5,段落23-27,図5、6 (ファミリーなし)	5-7
	·	
·		

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. X 請求の範囲 25、26 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲25、26は、所定のステップをコンピュータに実行させるための眼科データ測定用プログラムであり、PCT17条(2)(a)(i)及びPCT規則39.1(vi)の規定により、この国際調査機関が調査することを要しない対象に係るものである。
2. 請求の範囲
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ棚 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
眼科の測定装置に関する独立請求項である、請求の範囲1及び27に共通する構成は、「第1液長の光束を発する第1光源部と、上記第1光源部からの光束で被検眼眼底付近に集光するように照明するための第1照明光学系と、被検眼眼底から反射して戻ってくる光束の一部を、少なくとも実質的に17本のビームに変換する第1変換部材を介して受光するための第1受光光学系と、前記第1受光光学系の受光光束を受光する第1受光部と、被検眼の瞳孔画像を含む瞳データを得る演算部とを備える」点であると認められるが、該構成は特開2002-209854号公報(特に、図1、5及び段落8、10、11、29、30、59、60を参照)に記載されるように、新規なものではない。
したがって、請求の範囲1~24記載の発明群及び請求の範囲27記載の発明との間に、同一又は対応する 特別な技術的特徴を含む技術的な関係があるものとは認められない。
1. X 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. Ш 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
追加調査手数料の納付と共に田願人から英議中立でかめった。 X 追加調査手数料の納付と共に出願人から異議申立てがなかった。