

12.1 Why study Dispersion

Mean or median – only locate the center of the data

- The spread of the data (spread of the distribution)
- Clustered closely around arithmetic mean
- Large dispersion → mean is not reliable
- To evaluate the reliability of two or more averages

Range

Range - simplest measure of dispersion

Range = Largest value - Smallest value

The major characteristics of the range are:

- a. Only two values are used in its calculation.
- b. It is influenced by extreme values.
- c. It is easy to compute and to understand.

Mean Absolute Deviation (MAD)

MAD - the arithmetic mean of the absolute values of the deviations from the arithmetic mean

$$\frac{4}{5}, \frac{2}{5}, \frac{8}{5}, \frac{9}{9}, \frac{10}{10} \qquad n = 6$$

$$\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{6}$$

$$\frac{1}{5}, \frac{2}{5}, \frac{8}{5}, \frac{9}{9}, \frac{10}{10} \qquad n = 6$$

$$\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

The major characteristics of MAD are:

- a. All values are used in the calculation.
- b. It is not unduly influenced by large or small values.
- c. It is easy to compute and to understand.

where

 x_i is the value of each observation.

 \bar{x} is the arithmetic mean of the data set

n is the number of observations in the sample.

Variance and Standard Deviation

Variance - the arithmetic mean of the squared deviations from the mean

The population variance:

$$\sigma^{2} = \frac{\sum (x_{i} - \mu)^{2}}{N} = \frac{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{N}}{N}$$

The sample variance:

$$S^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n-1} = \frac{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}{n-1}$$

The major characteristics of the variance are:

- a. All values are used in the calculation.
- b. It is not unduly influenced by extreme values.

Variance and Standard Deviation

Standard Deviation - the positive square root of the variance

The population standard deviation:

$$\sigma = \sqrt{\sigma^2}$$

The sample standard deviation:

$$S = \sqrt{S^2}$$

The Coefficient of Variation

COV

- a measure of relation dispersion
- useful for comparing distributions with different units

Coefficient of Variation
$$= \frac{Standard deviation}{Mean} \times 100$$

For population data:

$$CV = \frac{\sigma}{\mu} \times 100$$

For sample data:

$$CV = \frac{S}{x} \times 100$$

The Coefficient of Skewness

The coefficient of skewness measures the symmetry of a distribution.

$$Sk = \frac{3(\overline{x} - median)}{S}$$

The major characteristics are:

- a. It may range from -3.00 up to 3.00.
- b. A value near 0 means the distribution is symmetric.
- c. A value near 3 means the distribution is positive skewness or right skewness.
- d. A value near -3 means the distribution is negative skewness or left skewness.

Range

Range - simplest measure of dispersion

Range = the <u>upper</u> limit of the <u>largest</u> class – the <u>lowest</u> limit of the <u>smallest</u> class

Variance

Variance - the arithmetic mean of the squared deviations from the mean

The population variance:

$$\sigma^2 = \frac{\sum f_i (M_i - \mu)^2}{N}$$

$$\sigma^2 = \frac{\sum f_i M_i^2 - \frac{\left(\sum f_i M_i\right)^2}{N}}{N}$$

The sample variance:

$$S^2 = \frac{\sum f_i (M_i - \overline{x})^2}{n-1}$$

$$S^2 = \frac{\sum f_i M_i^2 - \frac{\left(\sum f_i M_i\right)^2}{n}}{n-1}$$

where

 M_i is the midpoint of each class.

 f_i is the frequency in each class.

N is the total number of frequencies or the population size $N = \Sigma f$

n is the total number of frequencies or the sample size $\Sigma = f$

Standard Deviation

Standard Deviation - the positive square root of the variance

The population standard deviation:

$$\sigma = \sqrt{\sigma^2}$$

The sample standard deviation:

$$S = \sqrt{S^2}$$

Z-score – making comparision between scores from two separate populations (from the same population as well) with different means and standard deviations

For population data:

For sample data:

$$z = \frac{x_i - \mu}{\sigma}$$

$$z = \frac{x_i - \overline{x}}{s}$$

Standard scores (Z-score) is used with the Empirical rule and Chebyshev's theorem to help identify unusual values within a given data set.

Chebyshev's Theorem

At least $\left(1-\frac{1}{z^2}\right)$ of the data values must be within z standard deviation of the mean.

where z is any value greater than 1

Some of the implications of this theorem, with z = 2, 3, and 4 standard deviations, follow.

- At least 0.75, or 75% of the data values must be within z = 2 standard deviations of the mean.
- At least 0.89, or 89% of the data values must be within z = 3 standard deviations of the mean.
- At least 0.94, or 94% of the data values must be within z = 4 standard deviations of the mean.

One of the advantages of Chebyshev's theorem is that it applies to any data set regardless of the shape of the distribution of the data.

Chebyshev's Theorem

Assume that the midterm test scores for 100 students in a principles of statistics course had a mean of 70 and a standard deviation of 5. How many students had test scores between 58 and 82?

Chebyshev's Theorem
$$\rightarrow \left(1-\frac{1}{z^2}\right)=\left(1-\frac{1}{(2.4)^2}\right)=0.826$$

At least 82.6% of the students must have test scores between 58 and 82

Empirical Rule

Common shape - mound-shaped or bell-shaped distribution

95% of the data .68% of the data Properties of the Entire area under Z Score Norma Distribution: 1 00 1. Symmetrica 2. Mean = 0and Standard Deviation = 1 50% or 50% or 3. Mean, median, .50 of .50 of and mode are values the to left of values equal to right mean of mean z value

The **empirical rule** can be used to determine the percentage of data values that must be within a specified number of standard deviations of the mean.

For data having a bell-shaped distribution:

- Approximately 68% of the data values will be within one standard deviation of the mean.
- Approximately 95% of the data values will be within two standard deviations of the mean.
- Almost 100% of the data values will be within three standard deviations of the mean.

Example

Liquid detergent cartons are filled automatically on a production line. Filling weights frequently have a bell-shaped distribution. If the mean filling weight is 16 ounces and the standard deviation is 0.25 ounces, we can use the empirical rule to draw the following conclusions.

- Approximately 68% of the filled cartons will have weights between 15.75 and 16.25 ounces (that is, within one standard deviation of the mean).
- Approximately 95% of the filled cartons will have weights between 15.50 and 16.50 ounces (that is, within two standard deviations of the mean).
- Almost all filled cartons will have weights between 15.25 and 16.75 ounces (that is, within three standard deviations of the mean).

Remark:

Z-scores can be used to identify outliers, a value that is inconsistent with the rest of data (sometimes it was called extreme values)

Outliers - any data value with at z-score less than - 3 or greater than + 3

Detecting Outliers with z-Scores An outlier is an extremely large or extremely small data value

relative to the rest of the data set. It may represent a data entry error, or it may be genuine data.

Median

The median is the midpoint in the data set that has been ranked in increasing order.

It means that there is about 50% of the values in data set are smaller the median and about 50% are larger than the median.

$$\frac{1}{2} = \frac{3}{3} + \frac{5}{10}$$

$$\frac{2}{3} + \frac{5}{10}$$

$$\frac{2}{3} + \frac{5}{10}$$

$$\frac{2}{3} + \frac{5}{10}$$

$$\frac{2}{3} + \frac{5}{10}$$

$$\frac{3}{4} + \frac{5}{10}$$

Quartiles

Quartiles is the measures that divide a ranked data set into four equal parts.

- The first quartile (Q₁) means that there is about 25% of the values in data set are smaller and about 75% are larger than the first quartile.
- The second quartile (Q_2) means that there is about 50% of the values in data set are smaller and about 50% are larger than the second quartile.
- The third quartile (Q₃) means that there is about 75% of the values in data set are smaller and about 25% are larger than the third quartile.

Quartiles

The calculation of the quartiles:-

- 1. Rank the given data set in increasing order.
- 2. Find the position of $Q_q = \frac{(n+1)q}{4}$.

That is position of
$$Q_1 = \frac{(n+1)}{4}$$
,

position of
$$Q_2 = \frac{(n+1)2}{4} = \frac{(n+1)}{2}$$
,

position of
$$Q_3 = \frac{(n+1)3}{4}$$
.

3. Find the value of the quartile at the position Q_q .

Percentiles

Percentiles is the measures that divide a ranked data set into 100 equal parts.

The p^{th} percentile is a value such that at least p percent (p%) of the observations are less than or equal to this value and at least (100-p) percent of the observations are greater than or equal to this value.

The calculation of the percentiles:-

- 1. Rank the given data set in increasing order.
- 2. Find the position of $P_p = \frac{(n+1)p}{100}$.
- 3. Find the value of the quartile at the position P_p .

Interquartile Range (IQR)

Interquartile Range (IQR) is the difference between the third and the first quartiles,

$$IQR = Q_3 - Q_1$$

Example 12.7 The following are the scores of 12 students in a mathematics class (total scores

- = 100 marks). 75 80 68 53 99 58 76 73 85 88 91 79
- a.) Compute the first quartile and the third quartile and interpret its value.
- b.) Find the Interquartile range and interpret its value.
- c.) Find the value of the 85th percentile and interpret its value.

```
ranked data: 53 58 68 73 75 76 79 80 85 88 91 99 order: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
```


the value of
$$Q_I = 68 + 0.25(73 - 68) = 68 + 1.25 = 69.25$$

the value of
$$Q_3 = 85 + 0.75(88 - 85) = 85 + 2.25 = 87.25$$

It means that about 25% of the students in a mathematics class have the scores smaller than 69.25 marks and about 75% of the students of the students have the scores larger than 69.25 marks.

It means that about 75% of the students in a mathematics class have the scores smaller than 87.25 marks and about 25% of the students of the students have the scores larger than 87.25 marks.

b.) Find the Interquartile range and interpret its value

$$IQR = Q_3 - Q_1 = 87.25 - 69.25 = 18$$

It means that the IQR of the mathematics scores is about 18 marks

c.) Find the value of the 85thpercentile and interpret its value.

the position of
$$P_{85} = \frac{(n+1)85}{100} = \frac{(12+1)85}{100} \neq 11.05$$

the value of
$$P_{85} = 91 + 0.05(99 - 91) = 91 + 0.4 = 91.4$$

Thus, approximately 85% of the scores are less than 91.4 marks and 15% are greater than 91.4 marks.

12.6 A Box-Plot

A box plot is a graphic display of a set of data that shows the center, spread, and skewness of a data set

Figure 12.3 The box plot for a symmetric data set

Figure 12.4 The box plot for skewed data set

12.6 A Box-Plot

- A box is drawn connecting the first and the third quartiles.
- a) A line through the inside of the box shows the median.
- b) The line segments, is called **whiskers**, from the third quartile to the largest value and from the first quartile to the smallest value shows the range of the largest 25% of the observations and the smallest 25%.
- A box plot is based on five statistics: the smallest and the largest values, the first and the third quartiles, and the median.
- It might have an asterisk(*) sign which indicates an outlier.
- a) An outlier is a value that is inconsistent with the rest of data.
- b) The standard definition of an outlier is a value that is more than $Q_3 + 1.5(Q_3 Q_1)$ or less than $Q_1 1.5(Q_3 Q_1)$.

$$\int_{-\infty}^{\infty} \frac{(10-118)^{2}+(11-118)^{2}+(11-118)^{2}---}{9} = \frac{116842}{9} = 12982.44$$

$$S^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n-1} = \frac{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}{n-1}$$

$$S = \sqrt{5^2} = \sqrt{12982.4444} = 113.94$$

5(10)16,17,38					20
Class limit	Tally	heghener	Related Frey (c/s)		Midpent
M	HM JHY	2	1000000000000000000000000000000000000	9.5—50.5 60.5—111.5 111.5—162.5	35 86 137
2 112 — 162 4 163 — 213		0	6	162-5-213-5	118 12 12 12 12
5 = 214 — 764		8	$\frac{8}{20} \times 100 = 40^{\circ}/.$		
TOTAL					

Class width =
$$\frac{\text{Yangl}}{\text{no-9 don}} = \frac{263-10}{5} = \frac{253}{5} = \frac{50.6}{5} \approx 51$$

midpint = $\frac{\text{Int} + \text{uppn hist}}{2}$
 $\frac{213+51}{2}$

Assignment

• Exercises 12