1: Deterministic Construction

(a)

(b) $Q = \{q_0, q_1, q_2, q_3, q_4\}$ $\sum = \{0, 1\}$ $q_0 = q_0$ $F = \{q_1, q_2, q_3\}$ $\delta = \text{See Table 1}$

	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_3	q_1
q_3	q_4	q_1
q_4	q_4	q_1

Table 1: Transition Function

2: Nondeterministic Construction

3: NFA to DFA Conversion

:: Assume that state AB is equivalent to state $\{A,\,B\}$

4: Closure in Reverse

Proof:

Suppose that the language L is regular. We should prove that the reverse is also regular. We know that if a language is regular, then there is some NFA that decides that language. Since L is regular, there is an NFA that decides L. We can call the NFA of L, M_L .

 \therefore We must show that there is also an NFA that decides the reverse of L, which we will call M_R .

To construct M_R , we will use the 5-tuples of L.

 $Q_R = Q$ (i.e we shall use the same states).

 $\sum_R = \sum$ (i.e we shall use the same alphabets)

 $F_R = q_0$ (i.e the start state of L will be our final state in M_R)

 $q_R = q_0 \cup F$ (i.e the set of final states of L will be our start states connected using epsilon.)

The arrow directions should be swapped but everything else remains the same in the transition function.

For example, take M_L ::

As a result, $M_R ::$

In conclusion, we've shown that the reverse of L is also regular by creating M_R .