

§ Benchpress

Run and develop structure learning algorithms using Benchpress

Felix Rios (KTH, Stockholm), Giusi Moffa (University of Basel) and Jack Kuipers (ETH, Zurich)

July 31, 2023

Markov property and graphical models

Definition (Markov property)

Let G = (V, E) be a graph where $V = \{1, ..., p\}$, $E \subset V \times V$. A probability distribution P for a random vector $Y = (Y_i)_{i=1}^p$ is said to be Markov w.r.t. G if for disjoint subsets $A, B, C \subseteq V$

$$A \perp \!\!\!\perp_G B \mid C \implies Y_A \perp \!\!\!\!\perp_P Y_B \mid Y_C.$$

Gaussian graphical models

Example of an undirected graphical model

For a multivariate Gaussian distribution with covariance matrix Σ , a graph G can be inferred from the non-zero pattern of its inverse (precision matrix), i.e.:

$$(\mathbf{\Sigma}^{-1})_{ij} \neq 0 \iff (i,j) \in G.$$

3

Structure learning in graphical models

Graph inference given a set of data is called **structure learning** (sometimes causal discovery). An NP-hard problem. Three main strategies:

- > **Score-based**: optimizes a score function defined on graphs.
- > **Constraint-based**: infers the edges by hypothesis testing.
- > **Hybrid**: score based method on a graph space restricted by a constraint based method.

Structure learning in graphical models

Most structure learning algorithms are available open-source. Comparing algorithms is challenging since:

- > Not all are implemented in the same programming language
- > Different implementations may have different formats/output
- > Large comparisons require parallel computations
- > Hard to structure results
- Many different comparison metrics
- Time consuming to implement
- > ..

Benchpress

Benchpress is a **Snakemake** workflow which addresses the problems of benchmarking.

- Runs existing open-source software (any language) in containers using **Apptainer**.
- > Separate modules for graph/parameters/data sampling, structure learning, and benchmarking.
- > Fully parallel algorithm execution (grid, multicore, ...).
- > Reproducible and interpretable results in a unified format.
- > Simple JSON-file interface.

Benchpress technology

- > Snakemake is a rule-based workflow management system for reproducible data analysis, widely used in e.g. bioinformatics. (> 7 citations a week)
- > **Apptainer** is a secure container system for high-performance computing (HPC).

Todays tutorial

Introduction to Benchpress through the documentation

Introduction to the docs

- > Installation
- Introduction to the modules
- Structure of the JSON file
- > Example studies
- > 15 min break (for questions, installation, and to run config/config.json)

Todays tutorial

Get introduced to Benchpress through the documentation

Using Benchpress

- > Run *config/config.json* according to the examples in the docs.
- Look into the results/output folder.
- > Change some parameters in the config file.
- > Add the **PC** algorithm (Spirtes P. and Glymour C., 2000) from *gCastle* to the study.

Using Benchpress

Developing using Benchpress

Adding a new algorithm

- Add a new algorithm module for **GRaSP** (Lam, W. Y., Andrews, B., Ramsey, J., 2022) and call it causallearn_grasp.
- > Try it in *config/config.json* and check the plots (TP, FP, etc.)
- > Fill out docs.rst, bibtex.bib, and info.json and update the docs.

Using Benchpress

Developing using Benchpress

Challenge 1 (R or Python)

- Improve the new_alg template for estimating an undirected Gaussian graphical model.
- > Hint: Estimate the precision matrix.
- > Tips: Use the sandbox config and the template commands from the docs.

Challenge 2 (Python)

- Use the new_alg template to add the GES algorithm (Chickering, D. M. 2022) algorithm from causal-learn (and call it causallearn_ges).
- > Tips 1: The causal-learn package is installed on the Docker image bpimages/causal-learn:0.1.3.3.
- > Tips 2: See the causal-learn documentation for how to extract the adjacency matrix from the returned objects.

Github and documentation

- https://github.com/felixleopoldo/benchpress
- > https://benchpressdocs.readthedocs.io