Statistical Analysis of the Cleveland Heart Disease Dataset

Master's in Clinical Bioinformatics Master's in Medical Statistics

Fundamentals of Medical Statistics

Prof. Vera Afreixo

Afonso Duarte do Fundo Ruela Branco Carreira (107988)

Daniel Machado de Melo (107444)

Marta Francisca dos Santos Carvalho (107664)

Tomás Vasconcelos Branco Serras Geraldes (107508)

Cardiovascular Disease

Number one cause of death in the world. 25 million deaths projected worldwide, in 2030.

Frequent comorbidity with other diseases, such as diabetes and obesity

Many treatment obstacles: race, ethnics. socioeconomics

Risk factors: age, lifestyle, nutrition, smoking, diabetes, hypertension, etc.

Wide spectrum of the disease and hard monitorization

Cardioinformatics: a promising approach?

Union of the fields of cardiology and bioinformatics, through the usage of techniques such as machine learning and integration of various areas of biology and medicine.

Aims to: Allow achievement of the most personalized and precise treatment options possible.

How? Using ML techniques such as the development of heart failure prediction and classification models.

Main problems:

- → Personal data concerns.
- → Increasing size and complexity of datasets.
- → Many databases and resources have been discontinued, are not well-maintained or are very archaic

The article: Ciu and Oetama, 2020

Ciu and Oetama provide a comprehensive description of a logistic regression model that was trained from a set of patients' data from Cleveland (Ohio, United States of America):

Available raw data and database creation.

Our methodology.

Exploratory Data Analysis

Inferential Statistics

Assessment of possible correlations

Logistic model creation and validation

In a perspective not related to the original article, we opted for the inclusion of several plots, adequate to the nature of the variables, that allowed a better understanding of the variables and possible correlations between these.

Various statistical tests are applied to our dataset in order to measure possible robustness of the data, alongside the choice of the best methods to apply for data treatment.

The correlations between variables were assessed, in order to give clues about the variables which will be of importance in the logistic regression model.

A logistic regression model will be created and trained in order to infer and predict the outcome of heart disease. We modulated the relation between heart disease presence in patients, and variables of importance. An analysis of quality, meaning and further validation was also applied to the model.

Qualitative Variables

Sex

	Se		
	Female	Male	Total
Heart Disease			
No	72	92	164
Yes	25	114	139
Total	97	206	303

Comparison of Heart Disease Diagnosis Across Gender

 $\log_{e}(\mathrm{BF}_{01})\!=\!-10.01,\ \widehat{V}_{\mathrm{Counter}}^{\mathrm{posterfor}}\!=\!0.27,\ \mathrm{C}_{\mathrm{Strin}}^{\mathrm{ETI}}\,[0.16,\ 0.37],\ a_{\mathrm{Gunel-Dickey}}\!=\!1.00$

(n = 139)

0% -

(n = 164)

Fasting Blood Sugar

	Fasting Blood Su	Fasting Blood Sugar > 120 mg/dL			
	No	Yes	Total		
Heart Dise	ease				
No	141	23	164		
Yes	117	22	139		
Total	258	45	303		

Comparison of Fasting Blood Sugar by Heart Disease Diagnosis

Exercise-induced angina

	Exercise-Ind	Exercise-Induced Angina		
	No	Yes	Total	
Heart Dise	ease			
No	141	23	164	
Yes	63	76	139	
Total	204	99	303	

Comparison of Exercise-Induced Angina by Heart Disease Diagnosis

 $\chi^2_{\rm Pearson}(1) = 56.52, \, \rho = 5.56 {\rm e} - 14, \, \widehat{V}_{\rm Cramer} = 0.43, \, {\rm Cl}_{95\%} \, [0.31, \, 0.54], \, n_{\rm obs} = 303$

Qualitative Variables

Chest Pain Type

Chest Pain Type Typical angina Atypical angina Non-anginal pain Asymptomatic Total **Heart Disease** No 39 68 16 164 Yes 105 18 139 144 Total 86 23 303

Comparison of Chest Pain by Heart Disease Diagnosis

$$\chi^2_{\text{Pearson}}(3) = 81.82, p = 1.25\text{e-}17, \ \widehat{V}_{\text{Cramer}} = 0.51, \ \text{Cl}_{95\%}[0.39, 0.62], \ n_{\text{obs}} = 303$$

Resting ECG

		Resting ECG				
	Normal	ST-T wave abnormality	Left ventricular hypertrophy	Tota		
Heart Disease						
No	95	1	68	164		
Yes	56	3	80	139		
Total	151	4	148	303		

Comparison of Resting ECG by Heart Disease Diagnosis

 $\chi^2_{\text{Pearson}}(2) = 10.05, p = 6.57\text{e-}03, \ \widehat{V}_{\text{Cramer}} = 0.16, \ \text{Cl}_{95\%} \ [0.00, 0.28], \ n_{\text{obs}} = 303$

Slope

	Slope of pea	Slope of peak exercise ST segment				
	Upsloping	Flat	Downsloping	Total		
Heart Dise	ase					
No	106	49	9	164		
Yes	36	91	12	139		
Total	142	140	21	303		

Comparison of Slope peak exercise ST segment by Heart Disease Diagnosis

 $\chi^2_{\text{Pearson}}(2) = 45.78, p = 1.14e-10, \widehat{V}_{\text{Cramer}} = 0.38, \text{Cl}_{98\%}[0.26, 0.49], n_{\text{obs}} = 303$

Qualitative Variables

Major vessels colored by fluoroscopy

	Number of ma	Number of major vessels colored by fluoroscopy					
	0	1	2	3	Total		
Heart Dise	ease						
No	133	21	7	3	164		
Yes	47	44	31	17	139		
Total	180	65	38	20	303		

Comparison of no. of major vessels colored by Heart Disease Diagnosis

 $\chi^2_{\text{Pearson}}(3) = 72.62, p = 1.17\text{e-}15, \ \widehat{V}_{\text{Cramer}} = 0.48, \ \text{Cl}_{95\%} \ [0.36, 0.59], \ n_{\text{obs}} = 303$

Thallium-201 stress scintigraphy

	Thalli	Thallium-201 Stress Scintigraphy				
	Normal	Reversible defect	Fixed defect	Total		
Heart Dise	ase					
No	130	28	6	164		
Yes	38	89	12	139		
Total	168	117	18	303		

Comparison of Thallium-201 stress scintigraphy levels by HD Diagnosis

 $\chi^2_{\text{Pearson}}(2) = 82.68, p = 1.11e-18, \widehat{V}_{\text{Cramer}} = 0.52, \text{Cl}_{95\%} [0.40, 0.63], n_{\text{obs}} = 303$

 $\log_{\rm e}({\rm BF_{01}}) = -39.82, \ \widehat{V}_{\rm Cramer}^{\rm posterior} = 0.51, \ {\rm Cl_{95\%}^{ETI}} \ [0.41, 0.60], \ a_{\rm Gunel-Dickey} = 1.00$

Quantitative Variables

Age

Resting Blood Pressure

Serum Cholestrol

Quantitative Variables

Maximum heart rate (BPM)

Comparison of Maximum Heart Rate by Heart Disease Diagnosis

ST variable depression

Comparison of ST variable depression by Heart Disease Diagnosis

Inferential Statistics

Assessment of normality in groups of variables:

 H_0 : the population is normally distributed vs. H_1 : the population is not normally distributed.

Group	P-value	
Age	0.006069	
Resting BP	1.802e-06	
Cholesterol levels	5.912e-09	
Thalach heart rate	6.996e-05	
ST variable depression	2.2e-16	

The population is not normally distributed.

Inferential Statistics

Assessment of differences in groups of continuous variables:

The population is not normally distributed.

Non-Parametric Approach (Mann-Whitney U test)

 H_0 : the distribution of the groups are equal vs. H_1 : the distribution of the groups are not equal.

	Mann-Whitney U test (comparison of patients w/ HD diagnosis)						
	Resting BP	Serum Cholesterol	Maximum thalach frequency	ST wave depression			
p-value	0.02597	0.03536	1.861e-13	6.813e-13			

The distribution of the groups are not equal - there is a significant difference between groups.

Inferential Statistics

Assessment of differences in groups of categorical variables:

H₀: there is no significant difference between the proportions of groups. vs. H₁: there is a significant difference between the proportions of groups.

	Chi-Squared Test (comparison of patients w/ HD diagnosis)								
	Gender	Chest Pain Type	Fasting Blood Sugar	Resting ECG	Exercise-Induc ed Angina	Slope	Major vessels colored	Thallium-201	
p-value	2.667e-06	2.2e-16	0.7813	0.006567	1.414e-13	1.143e-10	1.174e-15	2.2e-16	
	•	•		•	•	•	•	•	

- There is no significant difference between the proportions of the groups.
- There is a significant difference between the proportions of the groups.

The correlation plot.

Plot of the correlation between quantitative variables, with Spearman correlation, due to the groups not having a normal distribution (i.e.: non-parametric).

Medium negative correlation between Oldpeak ~ Thalach and Thalach ~ Age;

Weak positive correlation between Oldpeak~Age, Trestbps~Age.

X = non-significant at p < 0.05 (Adjustment: Holm)

Logistic Regression.

- → Sex, CP, Trestbps, Slope, Ca, and Thal show a clear association with CVD diagnosis.
- → Exang does not demonstrate statistical significance (p-value > 0.05).

Male: OR=4.34

Trestbps: OR=1.02

Thal (7): OR=3.86

Characteristic	OR	95% CI	p-value
Sex			
Female	-	-	
Male	4.34	1,67, 12.1	0.004
CP			
Asymptomatic	-	900	
Atypical angina	0.30	0.10, 0.86	0.029
Non-anginal pain	0.11	0.04, 0.27	<0.001
Typical angina	0.08	0.02, 0.28	<0.001
Trestbps	1.02	1.00, 1.05	0.024
Exang			
No		200	
Yes	2.20	0.95, 5.12	0.065
Oldpeak	1.60	1.04, 2.55	0.038
Slope			
Upsloping	-	-	
Flat	4.30	1.81, 10.7	0.001
Downsloping	1.87	0.31, 10.3	0.484
Ca			
0	-6	_	
1	9.79	3.89, 26.5	<0.001
2	18.8	4.81, 84.8	<0.001
3	9.17	1.91, 65.2	0.012
Thal			
3			
6	0.78	0.18, 3.63	0.748
7	3.86	1.71, 8.95	0.001

Logistic Regression Output.

```
Call:
qlm(formula = HD ~ Sex + CP + Trestbps + Exang + Oldpeak + Slope +
   Ca + Thal, family = "binomial", data = dados)
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -6.29895
                           1.59799 -3.942 8.09e-05 ***
SexMale
                  1.46823 0.50287 2.920 0.003503 **
CPAtypical angina -1.21300
                             0.55570 -2.183 0.029048 *
CPNon-anginal pain -2.24632
                             0.50498 -4.448 8.65e-06 ***
CPTypical angina -2.56372
                             0.69016 -3.715 0.000203 ***
Trestbps
                  0.02429
                             0.01079 2.251 0.024393 *
ExangYes
                  0.78911
                             0.42794 1.844 0.065184 .
                  0.47263
                             0.22770 2.076 0.037926 *
Oldpeak
SlopeFlat
                  1.45851
                             0.45213 3.226 0.001256 **
SlopeDownsloping
                  0.62358
                             0.89161 0.699 0.484309
Ca1
                   2.28110
                             0.48637 4.690 2.73e-06 ***
                  2.93647
Ca2
                             0.73021 4.021 5.79e-05 ***
Ca3
                  2.21626
                             0.88666 2.500 0.012435 *
Thal6
                  -0.24514
                             0.76275 -0.321 0.747912
Thal7
                  1.35042
                             0.41971
                                     3.218 0.001293 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 417.98 on 302 degrees of freedom
Residual deviance: 192.24 on 288 degrees of freedom
AIC: 222.24
Number of Fisher Scoring iterations: 6
```

ROC curve and 10-fold cross-validation.


```
Generalized Linear Model
303 samples
 12 predictor
  2 classes: 'No', 'Yes'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 272, 273, 273, 272, 273, 273, ...
Resampling results:
  ROC
            Sens
                        Spec
  0.8936854 0.8595588 0.7978022
Average AUC: 0.894
Accuracy: 0.875
```

LOOCV Validation.

```
Generalized Linear Model
303 samples
  8 predictor
  2 classes: 'No', 'Yes'
No pre-processing
Resampling: Leave-One-Out Cross-Validation
Summary of sample sizes: 302, 302, 302, 302, 302, 302, ...
Resampling results:
  ROC Sens
                       Spec
  0.9139323 0.8841463 0.8273381
```

Confusion Matrix:

```
Reference
Prediction No Yes
      No 130 17
      Yes 8,95
              Accuracy: 0.9
                95% CI: (0.8559, 0.9342)
   No Information Rate: 0.552
   P-Value [Acc > NIR] : <2e-16
                Kappa : 0.7963
Monemar's Test P-Value: 0.1096
           Sensitivity: 0.9420
           Specificity: 0.8482
        Pos Pred Value: 0.8844
        Neg Pred Value: 0.9223
            Prevalence: 0.5520
        Detection Rate: 0.5200
  Detection Prevalence: 0.5880
     Balanced Accuracy: 0.8951
       'Positive' Class : No
```

```
LogisticPred 0 1
          0 78 12
          1 19 104
              Accuracy: 0.8545
                95% CI: (0.7998, 0.8989)
   No Information Rate: 0.5446
   P-Value [Acc > NIR] : <2e-16
                 Kappa: 0.7048
Mcnemar's Test P-Value: 0.2812
           Sensitivity: 0.8041
           Specificity: 0.8966
        Pos Pred Value: 0.8667
        Neg Pred Value: 0.8455
            Prevalence: 0.4554
        Detection Rate: 0.3662
   Detection Prevalence: 0.4225
      Balanced Accuracy: 0.8503
       'Positive' Class: 0
```

Conclusions.

- The logistic regression demonstrated excellent performance, with an **AUC of 0.94**, indicating **very good predictive capability**. The results of the 10-fold cross-validation further support the model's quality, showing **high sensitivity** and **accuracy**.
- The model identified clinically relevant risk factors that can assist in decision-making and patient management, especially in stratifying risks based on significant variables .
- Variables such as Sex Male (OR = 4.34, p = 0.004), Trestbps (OR = 1.02, p = 0.0024) and Thal 7 (OR = 3.86, p = 0.001) showed a significant association with the development of CVD, serving as potential important clinical indicators.

In comparison to Ciu and Oetama:

Exploratory Data Analysis

Visual representations not contemplated in Ciu and Oetama.

A general overview of the association of variables with heart disease can be seen.

Inferentia Statistics Statistical analysis not contemplated in Ciu and Oetama.

Groups are not normally distributed: All groups of continuous variables are significantly different (in terms of patients w/HD and patients w/o HD); Almost all groups of categorical variables are significantly different in proportions (in terms of patients w/HD and patients w/o HD).

In comparison to Ciu and Oetama:

Assessment of possible correlations

Ciu and Oetama state a strong correlation between Slope ~ Oldpeak (0.6). Besides, Thalac, Exhang, Oldpeak, and Slope variables have moderate correlation with each other. Weak-Moderate correlation also applies to variables Exang, Cp, and Thalac.

Medium negative correlation between Oldpeak ~ Thalach and Thalach ~ Age; Weak positive correlation between Oldpeak~Age, Oldpeak~Trestbps, Chol~Age and Trestbps~Age.

Logistic model creation and validation

Ciu and Oetama conclude that the accuracy (85.45%) reflects a successful logistic regression algorithm.

We achieved a 90% accuracy with the model, also concluding that the logistic regression algorithm is effective.

Thank You!