Identifying Speeches of US Presidents

W266: Natural Language Processing with Deep Learning Summer 2017

Thong Bui & Jason Vantomme

Introduction

- Motivation: How does one verify authenticity of statements, policies or quotes in an era of "fake news", click-bait headlines and articles, misquotes and plagiarism.
- Challenge: Identify the US President who spoke a given text.
- Approach: Implement a character-based model used in the PAN 2015 Author Identification task and compare its performance against other standard models.

Approach

Bagnall, Douglas. "Author Identification Using Multi-Headed Recurrent Neural Network." In *CLEF* 2015 Labs and Workshops, Notebook Papers; CEUR Workshop Proceedings. September 8-11, 2015, 2015. http://ceur-ws.org/Vol-1391/150-CR.pdf.

- Novel approach successful in the PAN 2015 Author Identification task @ the CLEF 2015 conference
- Specific steps for text-preprocessing
- Implementation of "ReSQRT" optimizer: $f(x) = \begin{cases} \sqrt{x+1} 1 & \text{if } x \ge 0 \\ 0 & \text{otherwise.} \end{cases}$
- Multiple softmax output; one per author

Hoover Roosevelt Truman Eisenhower Kennedy

G Bush Clinton GW Bush Obama Trump

Sourcing Data

Text Preprocessing

- Extract 15 US Presidents' speeches (primarily press conferences) since 1929
- Clean up dirty data and map inputs to Presidents
- Word-based models:
 - Split speeches into sentences
 - Tokenize the words for each sentence
- Character-based models:
 - Combine speeches into single text
 - Apply text scrubbing
 - Split text into fixed-length character sequences
 - One-hot encode character sequences

Data Statistics

How many speeches per presid	ent?	Approximately many words of tex	
0 : Barack Obama	148	0 : Barack Obama	860977
1 : Donald J. Trump	22	1 : Donald J. Trump	101328
2 : Dwight D. Eisenhower	194	2 : Dwight D. Eisenhower	567639
3 : Franklin D. Roosevelt	224	3 : Franklin D. Roosevelt	323789
4 : George Bush	98	4 : George Bush	346032
5 : George W. Bush	56	5 : George W. Bush	323772
6 : Gerald R. Ford	40	6 : Gerald R. Ford	124695
7 : Harry S. Truman	302	7 : Harry S. Truman	368810
8 : Herbert Hoover	268	8 : Herbert Hoover	138249
9 : Jimmy Carter	60	9 : Jimmy Carter	224639
10 : John F. Kennedy	64	10 : John F. Kennedy	239684
11 : Lyndon B. Johnson	135	11 : Lyndon B. Johnson	417045
12 : Richard Nixon	41	12 : Richard Nixon	177545
13 : Ronald Reagan	48	13 : Ronald Reagan	184895
14 : William J. Clinton	64	14 : William J. Clinton	327027
How many sentences of text per	president?	How many characters of text per	president?
: Barack Obama	41919	0 : Barack Obama	4862045
: Donald J. Trump	8284	1 : Donald J. Trump	554978
: Dwight D. Eisenhower	24607	2 : Dwight D. Eisenhower	3084215
3 : Franklin D. Roosevelt	19223	3 : Franklin D. Roosevelt	1743457
: George Bush	21279	4 : George Bush	1896536
5 : George W. Bush	20326	5 : George W. Bush	1791014
Gerald R. Ford	6053	6 : Gerald R. Ford	687272
7 : Harry S. Truman	29432	7 : Harry S. Truman	2001118
B : Herbert Hoover	5899	8 : Herbert Hoover	786184
9 : Jimmy Carter	10752	9 : Jimmy Carter	1272152
10 : John F. Kennedy	10605	10 : John F. Kennedy	1344012
11 : Lyndon B. Johnson	23118	11 : Lyndon B. Johnson	2288606
12 : Richard Nixon	7357	12 : Richard Nixon	972275
13 : Ronald Reagan 14 : William J. Clinton	9120 16222	13 : Ronald Reagan	1010291
4 : William J. Clinton	10222	14 : William J. Clinton	1784166

Models

Word-based RNN

Word-based LSTM

Character Model: Simple RNN

Character Model: Multi-Softmax

(diagram only shows 6 softmax layers to fit on screen; actual is 1 per president)

Results: Word-based RNN vs LSTM

Error Analysis: Word-based RNN vs LSTM

Results: Character-based Simple & Multi

Error Analysis: Character-based

30000

25000

20000

15000

10000

5000

0.0

0.1

Multi

0.3

0.4

Results: Char-based Multi-RNN (take 2)

Results: Char-based Multi-RNN (take 2)

Challenges

- Source text size differences presented tuning challenges.
- Target character-based approach was light on details in paper and available code was written from scratch in C.
 Most implementation examples found for char-based models are for generative purposes.
- Activation function not stable (loss -> NaN).
- Implementation and tuning for character-model more complex than word-based model. Non-zero chance our implementation is flawed.

Conclusions

- Both word-based models significantly outperformed character-based models on current data set & context.
- Simple character-based architectures may not be effective; high-performing models are vastly more complicated (e.g., including CNNs, highway networks, RNN+LSTM layers, etc.).
- In this context, fifteen classes may be too many classes for a simple character-model to effectively differentiate.

QUESTIONS