Índice general

9.	Proc	ducto interno y ortogonalidad en espacios vectoriales sobre $\mathbb R$	1
	9.1.	Longitud, ángulos y ortogonalidad	1
	9.2.	Producto interno y norma sobre $\mathbb R$	3
		9.2.1. Proyección ortogonal sobre un vector	9
	9.3.	Complemento ortogonal	0

Tema 9

Producto interno y ortogonalidad en espacios vectoriales sobre \mathbb{R}

9.1. Longitud, ángulos y ortogonalidad

Vamos a introducir el concepto de ortogonalidad en espacios vectoriales con un ejemplo sencillo. Consideremos un vector v de \mathbb{R}^2 . De cursos anteriores, sabemos que si utilizamos la representación geométrica de v como un segmento dirigido, podemos usar el teorema de Pitágoras para DEFINIR la **longitud** de v de la forma

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$$
 ,

donde v_1 y v_2 son las coordenadas de v con respecto a la base canónica $B_0 = (e_1, e_2)$. Ver la figura 9.1(a). Obsérvese que, al representar los ejes cartesianos, entendemos que estamos trabajando con la base canónica de \mathbb{R}^2 . Un vector de longitud 1 se denomina vector unitario.

Sean \mathbf{u}, \mathbf{v} dos vectores de \mathbb{R}^2 y sea $\theta \in [0, \pi]$ el ángulo entre ellos (ver la figura 9.1(b)). Si $0 < \theta < \pi$, los vectores \mathbf{u}, \mathbf{v} y $\mathbf{w} = \mathbf{v} - \mathbf{u}$ forman un triángulo, donde \mathbf{w} es el lado opuesto al ángulo θ .

Figura 9.1: a) Representación de la longitud de un vector. b) Representación del ángulo $\theta \in [0, \pi]$ entre dos vectores.

Para determinar el ángulo θ entre \mathbf{u} y \mathbf{v} utilizamos el *producto escalar usual*:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \underbrace{\mathbf{u}^{\mathrm{t}} \mathbf{v}}_{\text{producto}}$$
 = $\mathbf{u}_{1} \mathbf{v}_{1} + \mathbf{u}_{2} \mathbf{v}_{2}$

y hacemos uso de la expresión

$$\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$$
.

Nota importante: en la fórmula anterior $\mathbf{u} = [\mathbf{u}]_{B_0}$; pero si cambiamos la base de \mathbb{R}^2 de B_0 a B, entonces hay que tener cuidado porque en general $[\mathbf{u}]_B^t$ $[\mathbf{v}]_B \neq \langle \mathbf{u}, \mathbf{v} \rangle$.

También sabemos que dos vectores NO NULOS \mathbf{u} y \mathbf{v} son **ortogonales** (o perpendiculares o normales) si el ángulo entre ellos es $\theta = \frac{\pi}{2}$. Si dos vectores unitarios son ortogonales, diremos que son **ortonormales**.

La generalización de estos conceptos a \mathbb{R}^n es sencilla y conocida de cursos anteriores. A continuación abordamos estas ideas en espacios vectoriales arbitrarios sobre el cuerpo \mathbb{R} .

9.2. Producto interno y norma sobre \mathbb{R}

Sea V un espacio vectorial sobre el cuerpo \mathbb{R} de los reales.

Un **producto interno o escalar** definido sobre V es una aplicación entre el conjunto de todos los pares de vectores (\mathbf{u}, \mathbf{v}) y \mathbb{R} , cuyo resultado es un número real denotado por $\langle \mathbf{u}, \mathbf{v} \rangle$, que satisface las siguientes propiedades para todo $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ y todo escalar $\alpha \in \mathbb{R}$:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- 2. $\alpha \langle \mathbf{u}, \mathbf{v} \rangle = \langle (\alpha \mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, (\alpha \mathbf{v}) \rangle$.
- 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$.
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle \geqslant 0$ y $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ si y sólo si $\mathbf{u} = \mathbf{0}$.

Ejemplo

El producto escalar *usual* en \mathbb{R}^2 es un producto interno. Sean $\mathbf{u}=(u_1,u_2)^t, \mathbf{v}=(v_1,v_2)^t, \mathbf{w}=(w_1,w_2)^t \in \mathbb{R}^2$ y sea $\alpha \in \mathbb{R}$. Entonces:

- $1. \ \langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 = v_1 u_1 + v_2 u_2 = \langle \mathbf{v}, \mathbf{u} \rangle.$
- 2. $\alpha \langle \mathbf{u}, \mathbf{v} \rangle = \alpha (\mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2) = (\alpha \mathbf{u}_1) \mathbf{v}_1 + (\alpha \mathbf{u}_2) \mathbf{v}_2 = \langle \alpha \mathbf{v}, \mathbf{u} \rangle$ y análogamente para la otra igualdad $\alpha \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \alpha \mathbf{u} \rangle$.
- 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = (\mathbf{u}_1 + \mathbf{v}_1)w_1 + (\mathbf{u}_2 + \mathbf{v}_2)w_2 = \mathbf{u}_1w_1 + \mathbf{v}_1w_1 + \mathbf{u}_2w_2 + \mathbf{v}_2w_2 = (\mathbf{u}_1w_1 + \mathbf{u}_2w_2) + (\mathbf{v}_1w_1 + \mathbf{v}_2w_2) = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle.$
- $\begin{array}{l} 4. \ \langle \textbf{u},\textbf{u}\rangle = \textbf{u}_1^2 + \textbf{u}_2^2 \geqslant 0 \ y \ \text{además} \ \langle \textbf{u},\textbf{u}\rangle = 0 \iff \textbf{u}_1^2 + \textbf{u}_2^2 = 0 \iff \textbf{u}_1 = \textbf{u}_2 = 0 \\ 0 \iff \textbf{u} = \textbf{0}. \end{array}$

Ejemplo

Consideremos el espacio vectorial \mathbb{P}_1 sobre \mathbb{R} y definamos en él la operación para vectores arbitrarios $p(x) = a_0 + a_1 x$ y $q(x) = b_0 + b_1 x$ dada por:

$$\langle \mathfrak{p}, \mathfrak{q} \rangle = \mathfrak{a}_0 \mathfrak{b}_0 + 2 \mathfrak{a}_1 \mathfrak{b}_1$$
.

Veamos que es un producto interno: para todo $p(x)=a_0+a_1x$, $q(x)=b_0+b_1x$, $t(x)=c_0+c_1x\in\mathbb{P}_1$ y todo $\alpha\in\mathbb{R}$, se cumple que:

- 1. $\langle p, q \rangle = a_0b_0 + 2a_1b_1 = b_0a_0 + 2b_1a_1 = \langle q, p \rangle$.
- 2. $\langle \alpha p, q \rangle = \alpha (a_0 b_0 + 2 a_1 b_1) = (\alpha a_0) b_0 + 2(\alpha a_1) b_1 = \langle \alpha p, q \rangle$; del mismo modo se prueba la otra igualdad: $\alpha \langle p, q \rangle = \langle p, \alpha q \rangle$.
- 3. $\langle p+q,t \rangle = (a_0+b_0)c_0 + 2(a_1+b_1)c_1 = a_0c_0 + b_0c_0 + 2a_1c_1 + 2b_1c_1 = (a_0c_0 + 2a_1c_1) + (b_0c_0 + 2b_1c_1) = \langle p,t \rangle + \langle q,t \rangle.$
- $\begin{array}{l} 4. \ \langle \mathfrak{p},\mathfrak{p}\rangle = \mathfrak{a}_0^2 + 2\mathfrak{a}_1^2 \geqslant 0 \ y \ \text{además} \ \langle \mathfrak{p},\mathfrak{q}\rangle = 0 \iff \mathfrak{a}_0^2 + 2\mathfrak{a}_1^2 = 0 \iff \mathfrak{a}_1 = \mathfrak{a}_2 = 0 \\ 0 \iff \mathfrak{p}(\mathfrak{x}) = 0. \end{array}$

Por tanto es un producto interno.

Como vimos en el caso de \mathbb{R}^2 (o de \mathbb{R}^n en general), tenemos la posibilidad de definir, a partir del producto escalar, conceptos geométricos tales como la longitud de un vector y la distancia y el ángulo entre dos vectores de dicho espacio. Tales nociones pueden ser generalizadas a cualquier espacio vectorial con producto interno fácilmente. En particular:

Definimos la *longitud* o **norma** $\|\mathbf{u}\|$ de un vector $\mathbf{u} \in V$ como el número real:

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$
.

Ejemplo

En el espacio vectorial \mathbb{P}_1 sobre \mathbb{R} con el producto interno

$$\langle a_0 + a_1 x, b_0 + b_1 x \rangle = a_0 b_0 + 2 a_1 b_1$$
,

vamos a calcular la norma del polinomio $p(x) = 4 - 5x \in \mathbb{P}_1$:

$$\|\mathbf{p}\| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{\langle 4 - 5\mathbf{x}, 4 - 5\mathbf{x} \rangle} = \sqrt{4 \cdot 4 + 2 \cdot (-5) \cdot (-5)} = \sqrt{66}.$$

Proposición

Toda norma definida en V a partir de un producto interno verifica las siguientes propiedades: para todo $\mathbf{u}, \mathbf{v} \in V$ y todo $\alpha \in \mathbb{K}$, se cumple que

- $\|\mathbf{u}\| \geqslant 0$ y $\|\mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$ [positividad].
- $\|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|$ para todo $\mathbf{u} \in V$ [homogeneidad].
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ [designaldad triangular].

Desigualdad de Cauchy-Schwarz

Dado el espacio vectorial V dotado de producto interno, para todo $u,v\in V$ se tiene:

$$|\langle u, v \rangle| \leqslant ||u|| \, ||v||.$$

Demostración. Consideremos

$$\|u+\lambda\nu\|^2=\langle u+\lambda\nu, u+\lambda\nu\rangle=\|u\|^2+\lambda^2\|\nu\|^2+2\lambda\langle u,\nu\rangle\geqslant 0\,.$$

Por tanto, considerando la expresión $p(\lambda) = \|\mathbf{u}\|^2 + \lambda^2 \|\mathbf{v}\|^2 + 2\lambda \langle \mathbf{u}, \mathbf{v} \rangle$, la ecuación $p(\lambda) = 0$

tendrá discriminante $\Delta \leqslant 0.$ Dicho discriminante es

$$\Delta = 4 \left(\langle \mathbf{u}, \mathbf{v} \rangle \right)^2 - 4 \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \leqslant 0 \quad \Rightarrow \quad \left(\langle \mathbf{u}, \mathbf{v} \rangle \right)^2 \leqslant \|\mathbf{u}\|^2 \|\mathbf{v}\|^2.$$

También es posible medir la *distancia* entre vectores utilizando la siguiente definición:

Dados los vectores \mathbf{u} y \mathbf{v} del espacio vectorial V sobre \mathbb{R} , dotado de producto interno, se llama **distancia** entre \mathbf{u} y \mathbf{v} al número real:

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Este concepto de distancia nos va a permitir en los Temas 13 y 14 abordar el problema de mínimos cuadrados, en el que nuestro objetivo será minimizar la distancia entre ciertos puntos, en espacios vectoriales con producto interno arbitrarios.

Las siguientes propiedades son intuitivas y fáciles de demostrar:

Proposición

Para todo $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, se tiene que:

- i) $d(\mathbf{u}, \mathbf{v}) \geqslant 0$.
- ii) $d(\mathbf{u}, \mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v}$.
- iii) d(u, v) = d(v, u).
- iv) Desigualdad triangular: $d(u, w) \leq d(u, v) + d(v, w)$.

Ejemplo

Consideremos de nuevo el espacio vectorial \mathbb{P}_1 sobre \mathbb{R} y el producto interno:

$$\langle a_0 + a_1 x, b_0 + b_1 x \rangle = a_0 b_0 + 2a_1 b_1.$$

Vamos a calcular la distancia entre los polinomios $p_1(x) = 1$ y $p_2(x) = 1 + 2x$. Como $p_1(x) - p_2(x) = -2x$,

$$d(p_1,p_2) = \|p_1 - p_2\| = \|-2x\| = \sqrt{0^2 + 2 \cdot (-2)^2} = \sqrt{8} \,.$$

Obviamente,

$$d(p_2, p_1) = ||p_2 - p_1|| = ||2x|| = \sqrt{0^2 + 2 \cdot 2^2} = \sqrt{8}.$$

Si además consideramos el vector $p_3(x) = 2-3x$, podemos comprobar que se verifica la desigualdad triangular. En efecto:

$$d(p_2, p_3) = \|p_2(x) - p_3(x)\| = \|-1 + 5x\| = \sqrt{(-1)^2 + 2 \cdot 5^2} = \sqrt{51},$$

$$d(p_1, p_3) = \|p_1(x) - p_3(x)\| = \|-1 + 3x\| = \sqrt{(-1)^2 + 2 \cdot 3^2} = \sqrt{19}$$

y claramente

$$\sqrt{19} \leqslant \sqrt{8} + \sqrt{51} \,.$$

Obsérvese que en el ejemplo anterior hemos *comprobado* que se cumple la desigualdad triangular para una terna particular de polinomios, lo cual no puede considerarse una *demostración*.

El concepto de **ángulo** θ entre dos vectores \mathbf{u} y \mathbf{v} en un espacio vectorial V dotado

de un producto interno se generaliza mediante la expresión

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Nótese que la desigualdad de Cauchy-Schwarz garantiza que $-1 \leqslant \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \leqslant 1$, lo que nos permite escribir $\cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \cos \theta \in [0, \pi]$.

Obviamente si dos vectores \mathbf{u} y \mathbf{v} verifican que $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, el ángulo comprendido entre ellos, según el producto interno dado, es de $\frac{\pi}{2}$; en tal caso, se dice que los vectores son **ortogonales** o *perpendiculares* **con respecto a dicho producto interno**. Cuando el producto interno se sobreentienda, diremos simplemente que son ortogonales.

Ejemplo

Consideremos una vez más el espacio vectorial \mathbb{P}_1 sobre \mathbb{R} y el producto interno:

$$\langle a_0+a_1x,b_0+b_1x\rangle=a_0b_0+2a_1b_1\,.$$

Vamos a calcular ahora el ángulo entre los polinomios $\mathfrak{p}_1(x)=1$ y $\mathfrak{p}_2(x)=1+2x$. Tenemos que

$$\begin{split} \|p_1\| &= \sqrt{1^2 + 2 \cdot 0^2} = 1 \,, \\ \|p_2\| &= \sqrt{1^2 + 2 \cdot 2^2} = 3 \,, \\ \langle p_1, p_2 \rangle &= 1 \cdot 1 + 2 \cdot 0 \cdot 2 = 1 \,. \end{split}$$

Por tanto,

$$\cos(\theta) = \frac{1}{3} \quad \Rightarrow \quad \theta = \arccos\left(\frac{1}{3}\right) \neq 0.$$

Obviamente, no son ortogonales según el producto interno dado.

9.2.1. Proyección ortogonal sobre un vector

Como hemos visto, la noción de producto interno permite medir ángulos y, en particular, decidir si dos vectores son o no ortogonales. Para ello, basta con comprobar que su producto interno es cero, ya que en tal caso, el ángulo que formen será de $\frac{\pi}{2}$.

Con frecuencia es necesario obtener (en un cierto espacio vectorial con producto interno) la "proyección ortogonal" de un vector sobre otro. En \mathbb{R}^2 , esta idea es muy intuitiva. Consideremos dos vectores \mathbf{u} y \mathbf{v} , representados geométricamente como en la figura 9.2.

Figura 9.2: Proyección ortogonal de **v** sobre **u**.

La proyección ortogonal del vector \mathbf{v} sobre el vector \mathbf{u} es otro *vector* que representaremos por $P_{\mathbf{u}}(\mathbf{v})$. En la figura está representado en azul y es perpendicular al segmento punteado rojo.

Utilizando el concepto de producto interno, la longitud de dicha proyección se puede calcular fácilmente mediante

$$\|P_{\mathbf{u}}(\mathbf{v})\| = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|}.$$

Puesto que la proyección tiene la misma dirección que u, podemos escribir

$$P_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|} \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

Si \mathbf{u} es un vector unitario ($\|\mathbf{u}\| = 1$), escribiremos simplemente

$$P_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u}$$
.

Ejemplo

Vamos a encontrar ahora la proyección del vector $p_1(x)=1$ sobre el vector $p_2(x)=1+2x$ del espacio vectorial \mathbb{P}_1 con el producto interno utilizado anteriormente. Tenemos que

$$P_{p_2}(p_1) = \frac{\langle p_1, p_2 \rangle}{\langle p_2, p_2 \rangle} \, p_2(x) = \frac{1}{9} \, (1 + 2 \, x) \; .$$

En general, si V es un espacio vectorial dotado de un producto interno y consideramos cualquier vector unitario $\mathbf{u} \in V$, podemos definir una aplicación $P_{\mathbf{u}}$ de V en V mediante

$$P_{\mathbf{u}}(\mathbf{v}) = \overbrace{\langle \mathbf{u}, \mathbf{v} \rangle}_{\text{vector}} \underbrace{\mathbf{u}}_{\text{vector}}$$

para todo $v \in V$. Tal aplicación se denomina **proyección ortogonal sobre u** y, para cada vector v de V, llamaremos al vector $P_{\mathbf{u}}(v)$ la *proyección ortogonal de v sobre* \mathbf{u} .

En temas posteriores definiremos la proyección de un vector, no sobre otro vector, sino sobre un subespacio vectorial.

9.3. Complemento ortogonal

Consideremos el espacio vectorial V con producto interno.

Dos subespacios S_1 y S_2 de V se denominan **subespacios ortogonales** si $\langle \mathbf{s}_1, \mathbf{s}_2 \rangle = 0$ para cada $\mathbf{s}_1 \in S_1$ y para cada $\mathbf{s}_2 \in S_2$.

Si S_1 y S_2 son ortogonales, escribiremos $S_1 \perp S_2$.

Obsérvese que el concepto anterior difiere del que definimos a continuación:

Sea S un subespacio de V. El conjunto de todos los vectores de V que son ortogonales a cada vector de S se denota por S^{\perp} y se denomina **complemento ortogonal de** S. Así:

$$S^{\perp} = \{x \in V : \langle x, s \rangle = 0, \text{ para cada } s \in S\}$$
.

Ejemplo

Sean $S_1 = \text{Gen}(\boldsymbol{e}_1)$ y $S_2 = \text{Gen}(\boldsymbol{e}_2)$ dos subespacios de \mathbb{R}^3 . Es fácil ver que S_1 y S_2 son ortogonales con respecto al producto escalar usual. Si $\boldsymbol{s}_1 \in S_1$, tenemos que $\boldsymbol{s}_1 = (\alpha,0,0)^t$ y, si $\boldsymbol{s}_2 \in S_2$, será $\boldsymbol{s}_2 = (0,\beta,0)^t$; por tanto

$$\langle \mathbf{s}_1, \mathbf{s}_2 \rangle = \alpha \cdot 0 + 0 \cdot \beta + 0 \cdot 0 = 0$$

y $S_1 \perp S_2$. No obstante, S_1 y S_2 no son complementos ortogonales, pues e_3 es perpendicular a cualquier vector de S_1 y sin embargo no está en S_2 .

Ejemplo

Vamos a calcular el complemento ortogonal del subespacio $S_1 = \text{Gen}(\boldsymbol{e}_1, \boldsymbol{e}_2)$ de \mathbb{R}^3 con respecto al producto escalar usual. Éste estará formado por todos los vectores que son perpendiculares a TODOS los vectores de S_1 , es decir:

$$S_1^{\perp} = \left\{ \mathbf{v} \in \mathbb{R}^3 \colon \langle \mathbf{v}, \mathbf{s} \rangle = \mathbf{v}^{\mathrm{t}} \ \mathbf{s} = 0 \,,\, \forall \, \mathbf{s} \in S_1 \right\} \,.$$

Para determinar qué vectores pertenecen a S_1^{\perp} , observemos que los vectores de S_1 se

escriben de la forma $\alpha_1 e_1 + \alpha_2 e_2 = (\alpha_1, \alpha_2, 0)^t$ con $\alpha_1, \alpha_2 \in \mathbb{R}$. Para que un vector $\mathbf{v} = (\nu_1, \nu_2, \nu_3)^t \in \mathbb{R}^3$ sea perpendicular a todos los vectores $\mathbf{w} \in S_1$ debe cumplirse que:

$$\langle \mathbf{v}, \mathbf{w} \rangle = 0 \quad \Rightarrow \quad \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = 0$$
, para todo $\alpha_1, \alpha_2 \in \mathbb{R}$.

Esto sólo es posible si $v_1 = v_2 = 0$. Por tanto, los vectores de S_1^{\perp} son de la forma $(0,0,v_3)^{\rm t}$ con $v_3 \in \mathbb{R}$ ó en otras palabras:

$$S_1^{\perp} = Gen(\mathbf{e}_3)$$
.

Ejemplo

Consideremos el espacio vectorial \mathbb{P}_1 sobre \mathbb{R} con el producto interno:

$$\langle a_0+a_1x$$
 , $\,b_0+b_1x\rangle=a_0b_0+2a_1b_1\,.$

Vamos a calcular el complemento ortogonal del subespacio $S_1 = \text{Gen}(x)$ con respecto a este producto interno. Tenemos que

$$\begin{split} S_1^{\perp} &= \{ p(x) \in \mathbb{P}_1 \colon \langle \alpha x, p(x) \rangle = 0 \,, \forall \, \alpha \in \mathbb{R} \} \\ &= \{ p(x) = a_0 + a_1 x \colon 2\alpha a_1 = 0 \,, \forall \, \alpha \in \mathbb{R} \} \\ &= \{ p(x) = a_0 + a_1 x \colon a_1 = 0 \} = \mathsf{Gen}(1) = \mathbb{P}_0 \,. \end{split}$$

En palabras, S_1^{\perp} está formado por los polinomios que sólo constan del término independiente.

Finalmente, enunciamos a continuación algunos resultados interesantes:

Si S_1 y S_2 son subespacios ortogonales de V, entonces $S_1 \cap S_2 = \{0\}$.

Si S es un subespacio de V, entonces S^{\perp} también es un subespacio de V.

Si S es un subespacio de V, entonces

$$dim(S) + dim(S^{\perp}) = dim(V).$$

Además, si (v_1, \ldots, v_r) es una base de S y (v_{r+1}, \ldots, v_n) es una base de S^{\perp}, entonces $(v_1, \ldots, v_r, v_{r+1}, \ldots, v_n)$ es una base de V.

Obsérvese que los resultados anteriores nos dicen que $S \oplus S^{\perp} = V$.

Ejemplo

Consideremos el espacio vectorial \mathbb{P}_1 , con el producto interno definido anteriormente: $\langle a_0 + a_1 x, b_0 + b_1 x \rangle = a_0 b_0 + 2 a_1 b_1$ y sean los subespacios $S_1 = Gen(x)$ y $S_1^{\perp} = Gen(1)$. Evidentemente:

$$S_1 \cap S_1^{\perp} = \{0\},$$

$$2 = dim(\mathbb{P}_1) = dim(S_1) + dim(S_1^{\perp}) = 1 + 1$$

y puede formarse una base de \mathbb{P}_1 uniendo las bases $B_{S_1}=(x)$ y $B_{S_1^\perp}=(1).$

Sea $A \in \mathbb{R}^{m \times n}$. El espacio nulo de A es el complemento ortogonal de su espacio fila. Análogamente, el espacio columna de A es el complemento ortogonal del espacio nulo de la traspuesta de A.

Ejemplo

Sea la matriz

$$A = \left(\begin{array}{rrr} 1 & 3 & -2 \\ 0 & 1 & -1 \\ -2 & -6 & 4 \end{array}\right).$$

Es fácil encontrar cada uno de los subespacios asociados a esta matriz:

$$\begin{split} \mathsf{N}(\mathsf{A}) &= \mathsf{Gen}\left((-1,1,1)^{\mathsf{t}}\right)\,, \\ & \mathcal{C}(\mathsf{A}^{\mathsf{t}}) &= \mathsf{Gen}\left((1,3,-2)^{\mathsf{t}},(0,1,-1)^{\mathsf{t}}\right)\,, \\ & \mathsf{N}(\mathsf{A}^{\mathsf{t}}) &= \mathsf{Gen}\left((2,0,1)^{\mathsf{t}}\right)\,, \\ & \mathcal{C}(\mathsf{A}) &= \mathsf{Gen}\left((1,0,-2)^{\mathsf{t}},(3,1,-6)^{\mathsf{t}}\right)\,. \end{split}$$

Obviamente, todos los vectores de N(A) son ortogonales a todos los vectores de $\mathcal{C}(A^t)$, al serlo los vectores que generan ambos subespacios, y todos los vectores de $N(A^t)$ son ortogonales a todos los vectores de $\mathcal{C}(A)$.

También es claro que

$$\begin{split} N(A) \cap \mathcal{C}(A^t) &= \{0\}, \\ N(A^t) \cap \mathcal{C}(A) &= \{0\}, \\ \\ N(A)^{\perp} &= \mathcal{C}(A^t), \\ \\ N(A^t)^{\perp} &= \mathcal{C}(A), \\ \\ \mathbb{R}^3 &= N(A) \oplus \mathcal{C}(A^t) = N(A^t) \oplus \mathcal{C}(A). \end{split}$$