Core-Maths-C4 - 2010-June

Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(0.75 + \cos^2 x)}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x = \frac{\pi}{3}$.

(a) Complete the table with values of y corresponding to $x = \frac{\pi}{6}$ and $x = \frac{\pi}{4}$.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
у	1.3229	1.2973			1

(2)

(b) Use the trapezium rule

(i) with the values of y at x = 0, $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ to find an estimate of the area of R. Give your answer to 3 decimal places.

(ii) with the values of y at x = 0, $x = \frac{\pi}{12}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ to find a further estimate of the area of R. Give your answer to 3 decimal places.

(6)

Using the substitution $u = \cos x + 1$, or otherwise, show that

$$\int_0^{\frac{\pi}{2}} e^{\cos x + 1} \sin x \, dx = e(e - 1)$$

(6)

Question 3

A curve C has equation

$$2^x + y^2 = 2xy$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (3, 2).

(7)

Question 4

A curve C has parametric equations

$$x = \sin^2 t$$
, $y = 2 \tan t$, $0 \le t < \frac{\pi}{2}$

(a) Find $\frac{dy}{dx}$ in terms of t.

(4)

The tangent to C at the point where $t = \frac{\pi}{3}$ cuts the x-axis at the point P.

(b) Find the x-coordinate of P.

(6)

$$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = A + \frac{B}{x-1} + \frac{C}{x+2}$$

(a) Find the values of the constants A, B and C.

(4)

(b) Hence, or otherwise, expand $\frac{2x^2 + 5x - 10}{(x-1)(x+2)}$ in ascending powers of x, as far as the term in x^2 . Give each coefficient as a simplified fraction.

(7)

Question 6

$$f(\theta) = 4\cos^2\theta - 3\sin^2\theta$$

(a) Show that $f(\theta) = \frac{1}{2} + \frac{7}{2}\cos 2\theta$.

(3)

(b) Hence, using calculus, find the exact value of $\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta$. (7)

The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, where λ is a scalar parameter.

The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, where μ is a scalar parameter.

Given that l_1 and l_2 meet at the point C, find

(a) the coordinates of C.

(3)

The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$.

(b) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places.

(4)

(c) Hence, or otherwise, find the area of the triangle ABC.

(5)

Figure 2

Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m. Water is flowing into the tank at a constant rate of 0.48π m³ min⁻¹. At time t minutes, the depth of the water in the tank is h metres. There is a tap at a point T at the bottom of the tank. When the tap is open, water leaves the tank at a rate of $0.6\pi h$ m³ min⁻¹.

(a) Show that t minutes after the tap has been opened

$$75\frac{\mathrm{d}h}{\mathrm{d}t} = (4 - 5h) \tag{5}$$

When t = 0, h = 0.2

(b) Find the value of t when h = 0.5

(6)