In [1]:

import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt %matplotlib inline from patsy import dmatrices import sklearn import seaborn as sns

In [2]:

dataframe=pd.read_csv("IBM Attrition Data.csv")

In [3]:

dataframe.head()

Out[3]:

	Age	Attrition	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	JobSatisfaction	MaritalStatus	MonthlyIncome	Nur
0	41	Yes	Sales	1	2	Life Sciences	2	4	Single	5993	
1	49	No	Research & Development	8	1	Life Sciences	3	2	Married	5130	
2	37	Yes	Research & Development	2	2	Other	4	3	Single	2090	
3	33	No	Research & Development	3	4	Life Sciences	4	3	Married	2909	
4	27	No	Research & Development	2	1	Medical	1	2	Married	3468	
4											•

In [4]:

names = dataframe.columns.values print(names)

^{[&#}x27;Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education' 'EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction' 'MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance' 'YearsAtCompany']

In [5]:

```
# histogram for age
plt.figure(figsize=(10,8))
dataframe['Age'].hist(bins=70)
plt.title("Age distribution of Employees")
plt.xlabel("Age")
plt.ylabel("# of Employees")
plt.show()
```


In [6]:

```
# explore data for Attrition by Age
plt.figure(figsize=(14,10))
plt.scatter(dataframe.Attrition,dataframe.Age, alpha=.55)
plt.title("Attrition by Age ")
plt.ylabel("Age")
plt.grid(b=True, which='major',axis='y')
plt.show()
```

C:\Users\hp\AppData\Local\Temp\ipykernel_25548\519728794.py:6: MatplotlibDeprecationWarning: The 'b' parameter of grid() has been renamed 'visible' since Matplotlib 3.5; support for the old name will be dropped two minor releases later. plt.grid(b=True, which='major',axis='y')

In [7]:

```
# explore data for Left employees breakdown
plt.figure(figsize=(8,6))
dataframe.Attrition.value_counts().plot(kind='barh',color='blue',alpha=.65)
plt.title("Attrition breakdown ")
plt.show()
```


In [8]:

```
# explore data for Education Field distribution
plt.figure(figsize=(10,8))
dataframe.EducationField.value_counts().plot(kind='barh',color='g',alpha=.65)
plt.title("Education Field Distribution")
plt.show()
```


In [9]:

```
# explore data for Marital Status
plt.figure(figsize=(8,6))
dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.5)
plt.show()
```


In [10]:

dataframe.describe()

Out[10]:

	Age	DistanceFromHome	Education	EnvironmentSatisfaction	JobSatisfaction	MonthlyIncome	NumCompaniesWorked	WorkLifeBalance	١
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	_
mean	36.923810	9.192517	2.912925	2.721769	2.728571	6502.931293	2.693197	2.761224	
std	9.135373	8.106864	1.024165	1.093082	1.102846	4707.956783	2.498009	0.706476	
min	18.000000	1.000000	1.000000	1.000000	1.000000	1009.000000	0.000000	1.000000	
25%	30.000000	2.000000	2.000000	2.000000	2.000000	2911.000000	1.000000	2.000000	
50%	36.000000	7.000000	3.000000	3.000000	3.000000	4919.000000	2.000000	3.000000	
75%	43.000000	14.000000	4.000000	4.000000	4.000000	8379.000000	4.000000	3.000000	
max	60.000000	29.000000	5.000000	4.000000	4.000000	19999.000000	9.000000	4.000000	
4									

In [11]:

dataframe.info()

memory usage: 149.4+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype				
0	Age	1470 non-null	int64				
1	Attrition	1470 non-null	object				
2	Department	1470 non-null	object				
3	DistanceFromHome	1470 non-null	int64				
4	Education	1470 non-null	int64				
5	EducationField	1470 non-null	object				
6	EnvironmentSatisfaction	1470 non-null	int64				
7	JobSatisfaction	1470 non-null	int64				
8	MaritalStatus	1470 non-null	object				
9	MonthlyIncome	1470 non-null	int64				
1	0 NumCompaniesWorked	1470 non-null	int64				
1	1 WorkLifeBalance	1470 non-null	int64				
1	2 YearsAtCompany	1470 non-null	int64				
<pre>dtypes: int64(9), object(4)</pre>							
140 4. KD							

```
In [12]:
```

```
dataframe.columns
```

Out[12]:

In [13]:

```
dataframe.std()
```

C:\Users\hp\AppData\Local\Temp\ipykernel_25548\3401367348.py:1: FutureWarning: The default value of numeric_only in DataFra me.std is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

dataframe.std()

Out[13]:

```
9.135373
Age
DistanceFromHome
                               8.106864
                               1.024165
Education
EnvironmentSatisfaction
                               1.093082
{\tt JobSatisfaction}
                               1.102846
                            4707.956783
MonthlyIncome
NumCompaniesWorked
                               2,498009
WorkLifeBalance
                               0.706476
YearsAtCompany
                               6.126525
dtype: float64
```

In [14]:

```
dataframe['Attrition'].value_counts()
```

Out[14]:

No 1233 Yes 237

Name: Attrition, dtype: int64

In [15]:

```
dataframe['Attrition'].dtypes
```

Out[15]:

dtype('0')

In [16]:

```
dataframe['Attrition'].replace('Yes',1, inplace=True)
dataframe['Attrition'].replace('No',0, inplace=True)
```

In [17]:

dataframe.head(10)

Out[17]:

	Age	Attrition	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	JobSatisfaction	MaritalStatus	MonthlyIncome	Nur
0	41	1	Sales	1	2	Life Sciences	2	4	Single	5993	
1	49	0	Research & Development	8	1	Life Sciences	3	2	Married	5130	
2	37	1	Research & Development	2	2	Other	4	3	Single	2090	
3	33	0	Research & Development	3	4	Life Sciences	4	3	Married	2909	
4	27	0	Research & Development	2	1	Medical	1	2	Married	3468	
5	32	0	Research & Development	2	2	Life Sciences	4	4	Single	3068	
6	59	0	Research & Development	3	3	Medical	3	1	Married	2670	
7	30	0	Research & Development	24	1	Life Sciences	4	3	Divorced	2693	
8	38	0	Research & Development	23	3	Life Sciences	4	3	Single	9526	
9	36	0	Research & Development	27	3	Medical	3	3	Married	5237	
4											•

```
In [18]:
# building up a logistic regression model
X = dataframe.drop(['Attrition'],axis=1)
X.head()
Y = dataframe['Attrition']
Y.head()
Out[18]:
0
      1
      0
1
2
      1
3
      0
      0
Name: Attrition, dtype: int64
In [19]:
dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
dataframe['EducationField'].replace('Medical',2, inplace=True)
dataframe['EducationField'].replace('Marketing', 3, inplace=True)
dataframe['EducationField'].replace('Other',4, inplace=True)
dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
In [20]:
dataframe['EducationField'].value_counts()
Out[20]:
      606
1
2
      464
3
      159
5
      132
4
       82
6
       27
Name: EducationField, dtype: int64
In [21]:
dataframe['Department'].value_counts()
Out[21]:
Research & Development
                                 961
                                 446
Sales
Human Resources
                                  63
Name: Department, dtype: int64
In [22]:
dataframe['Department'].replace('Research & Development',1, inplace=True)
dataframe['Department'].replace('Sales',2, inplace=True)
dataframe['Department'].replace('Human Resources', 3, inplace=True)
In [23]:
dataframe['Department'].value_counts()
Out[23]:
1
      961
      446
Name: Department, dtype: int64
In [24]:
dataframe['MaritalStatus'].value_counts()
Out[24]:
Married
               673
Single
               470
Divorced
               327
Name: MaritalStatus, dtype: int64
In [25]:
dataframe['MaritalStatus'].replace('Married',1, inplace=True)
dataframe['MaritalStatus'].replace('Single',2, inplace=True)
dataframe['MaritalStatus'].replace('Divorced',3, inplace=True)
```

```
In [26]:
dataframe['MaritalStatus'].value_counts()
Out[26]:
    673
    470
3
    327
Name: MaritalStatus, dtype: int64
In [27]:
x=dataframe.select_dtypes(include=['int64'])
x.dtypes
Out[27]:
Age
                       int64
Attrition
                       int64
Department
                       int64
DistanceFromHome
                       int64
Education
                       int64
{\tt EducationField}
                       int64
{\tt EnvironmentSatisfaction}
                       int64
JobSatisfaction
                       int64
MaritalStatus
                       int64
MonthlyIncome
                       int64
NumCompaniesWorked
                       int64
WorkLifeBalance
                       int64
YearsAtCompany
                       int64
dtype: object
In [28]:
x.columns
Out[28]:
dtype='object')
In [29]:
y=dataframe['Attrition']
In [30]:
y.head()
Out[30]:
a
    1
1
    0
2
    1
3
    0
Name: Attrition, dtype: int64
In [31]:
y, x = dmatrices('Attrition ~ Age + Department + \
               DistanceFromHome + Education + EducationField + YearsAtCompany',
               dataframe, return_type="dataframe")
print (x.columns)
dtype='object')
In [32]:
y = np.ravel(y)
```

```
In [33]:
```

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model = model.fit(x, y)
# check the accuracy on the training set
model.score(x, y)
Out[33]:
0.8408163265306122
In [34]:
y.mean()
Out[34]:
0.16122448979591836
In [35]:
X_train, X_test, y_train, y_test=sklearn.model_selection.train_test_split(x,y, test_size=0.3, random_state=0)
model2=LogisticRegression()
model2.fit(X_train, y_train)
Out[35]:
▼ LogisticRegression
LogisticRegression()
In [36]:
predicted= model2.predict(X_test)
print (predicted)
0. 0. 0. 0. 0. 0. 0. 0. 0. 1
In [37]:
probs = model2.predict_proba(X_test)
print (probs)
[[0.86179629 0.13820371]
[0.80754595 0.19245405]
[0.74123952 0.25876048]
[0.83441331 0.16558669]
[0.73499943 0.26500057]
[0.79097749 0.20902251]
[0.85615202 0.14384798]
[0.85699674 0.14300326]
[0.96699053 0.03300947]
[0.93685203 0.06314797]
[0.95099268 0.04900732]
[0.83101544 0.16898456]
[0.86296552 0.13703448]
[0.86581192 0.13418808]
[0.88750595 0.11249405]
[0.88892618 0.11107382]
[0.88569719 0.11430281]
[0.78516588 0.21483412]
[0.79794491 0.20205509]
```

```
In [38]:
```

```
from sklearn import metrics

print (metrics.accuracy_score(y_test, predicted))
print (metrics.roc_auc_score(y_test, probs[:, 1]))
```

0.8435374149659864 0.6502502887947632

In [39]:

```
print (metrics.confusion_matrix(y_test, predicted))
print (metrics.classification_report(y_test, predicted))
```

```
[[371
[ 69
       1]]
              precision
                           recall f1-score
                                               support
         0.0
                   0.84
                             1.00
                                        0.91
         1.0
                   1.00
                             0.01
                                        0.03
                                                    70
                                        0.84
                                                   441
    accuracy
                   0.92
                             0.51
                                        0.47
                                                   441
   macro avg
weighted avg
                   0.87
                             0.84
                                        0.77
                                                   441
```

In [40]:

print (X_train)

	Intercept	Age	Department	DistanceFromHome	Education	\
338	1.0	30.0	2.0	5.0	3.0	
363	1.0	33.0	2.0	5.0	3.0	
759	1.0	45.0	3.0	24.0	4.0	
793	1.0	28.0	1.0	15.0	2.0	
581	1.0	30.0	1.0	1.0	3.0	
763	1.0	34.0	2.0	10.0	4.0	
835	1.0	35.0	3.0	8.0	4.0	
1216	1.0	43.0	2.0	2.0	3.0	
559	1.0	38.0	1.0	2.0	5.0	
684	1.0	40.0	2.0	10.0	4.0	

	EducationField	YearsAtCompany
338	3.0	10.0
363	3.0	1.0
759	2.0	6.0
793	1.0	4.0
581	1.0	2.0
	• • •	
763	1.0	1.0
835	5.0	5.0
1216	2.0	10.0
559	2.0	1.0
684	3.0	1.0

[1029 rows x 7 columns]

In [41]

```
#add random values to KK according to the parameters mentioned above to check the proabily of attrition of the employee kk=[[1.0, 23.0, 1.0, 500.0, 3.0, 24.0, 1.0]] print(model.predict_proba(kk))
```

[[6.25571959e-07 9.99999374e-01]]

C:\Users\hp\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have val id feature names, but LogisticRegression was fitted with feature names warnings.warn(

In [43]:

Note: you may need to restart the kernel to use updated packages.

ERROR: Invalid requirement: "'nbconvert[qtpdf]'"

In []: