Sisteme de procesare digitală a informațiilor Principale elemente și proprietăți ale familiilor de microcontroler-e pe 8 biți

Curs AOC
Calculatoare an 3

Familia MCS51

- □Se bazează pe o arhitectură
 Harvard, având separate cele
 două zone de memorie de
 program și respectiv de date
 □ Dispune de o arhitectură de
 registre generale organizată sub
 forma a 4 bancuri de câte 8
 registre, fiecare de câte 8 biți
 □Registre speciale:
 - ■PSW Program Status Word
 - ACC Acumulator
 - ■B Indexor
 - ■PC Program Counter
 - ■DPTR Data Pointer
 - ■SP Stack Pointer

Durata execuției unei instrucțiuni este de 12 ciclii de ceas

Familia MCS51 –principale facilități

□Dispune de o unitate aritmetico-logică pe 8 biți (ALU).
□Memoria internă ROM este de 4Kbytes
□Memoria SRAM este de 128 bytes
\Box Dispune de porturi P_0 - P_3 .
\Box Dispune de 2 timer-e a 16 bit fiecare $T_0 \& T_1$.
□ Are un port serial USART ce poate transmite "Full duplex".
□Registrele de Control ale perifericelor:
☐TCON,TMOD,SCON,PCON,IP,IE (registre speciale SFR).
□Dispune de un controler de întreruperi având două nivele d
prioritate și care administrează:
☐ 2 surse externe de întreruperi INTO și INT1
☐ 3 surse interne de întreruperi TCONO. TCON1 si USART

Familia MCS51 harta memoriei interne

Familiile PIC de microcontroler-e

- ☐Acoperă cea mai largă gamă de aplicații
- ☐ Asigură o varietate maximă de implementări

Microcontroler-e PIC dedicate aplicațiilor de mică amploare

Aplicațiile țintă privesc senzorii inteligenți, cum ar f: cei de temperatură presiune, flux luminos sau actuatorii

Microcontroler-e PIC

Familia PIC18F45xx

- ☐Sunt dezvoltați în baza unei arhitecturi Harvard pe 8 biți
- ☐ Microcontroler-e RISC
- ☐ Cuvântul instrucțiune de 16 biți
- ☐Arhitectura de registre generale se bazează pe bancuri de registre

generale care facilitează schimbarea

contextului

Dispune de un circuit PLL programabil digital, utilizat la generarea semnalului de ceas de sistem prin multiplicarea frecvenței de 32,768KHz

Imagine de ansamblu asupra microcontroler-elor PIC pe 8 biţi

	Baseline Architecture	Mid-Range Architecture	Enhanced Mid-Range Architecture	PIC18 Architecture
Pin Count	6-40	8-64	8-64	18-100
Interrupts	No	Single interrupt capability	Single interrupt capability with hardware context save	Multiple interrupt capability with hardware context save
Performance	5 MIPS	5 MIPS	8 MIPS	Up to 16 MIPS
Instructions	33, 12-bit	35, 14-bit	49, 14-bit	83, 16-bit
Program Memory	Up to 3 KB	Up to 14 KB	Up to 28 KB	Up to 128 KB
Data Memory	Up to 138 Bytes	Up to 368 Bytes	Up to 1,5 KB	Up to 4 KB
Hardware Stack	2 level	8 level	16 level	32 level
Features	 Comparator 8-bit ADC Data Memory Internal Oscillator 	In addition to Baseline: SPI/I²C™ UART PWMs LCD 10-bit ADC Op Amp	In addition to Mid-Range: Multiple Communication Peripherals Linear Programming Space PWMs with Independent Time Base	In addition to Enhanced Mid-Range: 8x8 Hardware Multiplier CAN CTMU USB Ethernet 12-bit ADC
Highlights	Lowest cost in the smallest form factor	Optimal cost to performance ratio	Cost effective with more performance and memory	High performance, optimized for C programming, advanced peripherals
Total Number of Devices	16	58	29	193
Families	PIC10, PIC12, PIC16	PIC12, PIC16	PIC12FXXX, PIC16F1XX	PIC18

Familia Atmega - Tiny

Familia Atmega (128)

■Numărul de instrucțiuni 133

□Numărul de linii ale porturilor

GPIO 53

☐ Arie de temporizare/numărare 16

canale

☐ Controler al întreruperilor

vectorizat

☐Unitați de transfer serial sincron a

datelor: SPI, TWI

☐ Unități de transfer serial asincron

a datelor: 2xUART

☐ Memorie de program Flash

128Kbytes

☐ Memorie SRAM 4Kbytes

☐ Memorie EEPROM 4 kBytes

Familia PSoC03 (Programmable System on Chip)

- Combină programabilitatea clasică prin program cu posibilitatea de configurare și adaptare hardware ca rezultat al unei implementări hardware originale ce se calează pe utilizarea unor subsisteme de multiplexare combinate:
 - Magistrale multiplexate ce permit transferul de tip "Direct Memory Access DMA"
 - Cu blocuri de circuite de control programabile PLD
 - =>"Universal Digital Block Aray" UDBA

Structura unei unități UDB

□UDB are o structură ce conține două module PLD de dimensiune redusă □Blocurile sunt interconectate prin intermediul unei matrice de rutare. □PLD-urile sunt folosite pentru implementarea mașinilor de stare, precum și a logicii combinaționale necesare

☐ Modulul de rutare "DataPath" este un ansamblu de linii de magistrală pe 8-biţi care include o logică structurată pentru a implementa un ALU dinamic configurabil.

Spectrul perifericelor și unităților componente ale PSoC03

Set de instrucțiuni MCS51 Frecvența maximă de ceas 67MHz Generarea frecvenței de ceas se face cu ajutorul unui multiplicator de frecvență digital Interfețe seriale sincrone I2C, SPI Interfețe asincrone UART Convertoare de semnal CAD de 12 biţi rezoluţie şi 200KSps (SAR) Convertoare de semnale CAD de înaltă rezoluție sigma-delta Memorie Flash 8Kbytes Memorie SRAM 2÷ 8 Kbytes Domeniu al tensiunilor de alimentare extrem de larg 0,5V÷5,5V

Familiile PSoC imagine comparativă

PSoC 1	PSoC 3	PSoC 5LP	Tools
Performance optimized 8-bit M8C	High-performance 8-bit 8051 CPU(1CPI)	High-performance 32-bit ARM Cortex- M3	PSoC Creator Drag-n-drop based free IDE
Up to 24 MHz, 4 MIPS	Up to 67 MHz, 33 MIPS	1KB cache, 31% system performance	for PSoC 3 and PSoC 5LP
Flash 4 KB to 32 KB	Flash 8 KB to 64 KB	improvement	
SRAM 256B to 2 KB	SRAM 2 KB to 8 KB		PSoC Designer
Operation 1.7V to 5.25V	Operation 0.5V to 5.5V	Up to 67 MHz, 84 DMIPS (80 MHz in 2H13)	Drag-n-drop based free IDE for PSoC 1
1 Delta-Sigma ADC (6 to 14-bit)	1 Delta-Sigma ADC (8 to 20-bit)	Flash 32 KB to 256 KB	
131 ksps @ 8-bit	192 ksps @ 12-bit	SRAM 8 KB to 64 KB	PSoC 3 Featured Kits
Voltage Precision ±1.53%	Voltage Precision ±0.1%	2KB EEPROM	CY8CKIT-001 Kit
Up to 2 DACs (6- to 8-bit)	Up to 4 dedicated DACs (8-bit)	Operation 0.5V to 5.5V	CY8CKTT-030 Analog Kit All PSoC 3 kits
Active: 2 mA, Sleep: 3 µA	Active: 0.8 mA, Sleep: 1 μA,	1 Delta-Sigma ADC (8 to 20 bit); 192ksps	
FS USB 2.0, I2C, SPI, UART, LIN	Hibernate: 200 nA	@12-bit	PSoC 5LP Featured Kits
Requires ICE Cube and FlexPods	FS USB 2.0, I2C, SPI, UART, CAN, LIN,	2 SAR ADCs (8-12 bit); 1000Ksps	CY8CKIT-001 Kit
Up to 64 I/O	I2S	@12-bit	CY8CKIT-050 Analog Kit
	On-chip JTAG, Debug and Trace; SWD, SWV	Voltage Precision ±0.1% Up to 4 dedicated DACs (8-bit)	All PSoC 5LP kits
View PSoC Designer User Module	Up to 72 I/O		PSoC 1 Kits
Datasheets to learn more	1 1	Single-cell battery operated	CY8CKIT-001 Kit
	View PSoC Creator Component	Hibernate: 300 nA	All PSoC 1 kits
	Datasheets to learn more	Active: 3.1 mA @ 6 MHz	
		FS USB 2.0, CAN, EMIF, I2C, SPI, UART, LIN, I2S	
		On-chip Debug and Trace; JTAG, SWD,	
		TRACE, SWV	
		3rd Party Debug compliant	
		Up to 72 I/Os	
		View PSoC Creator Component	
		Datasheets to learn more	

Metodologia de proiectare sau drumul de la specificații la produs

Metodologia de decizie

a microcontroler-ului optim a fi folosit la implementarea aplicației

Factorul de "calitate al implementării": $\sum_{i} F_{p_{j}} \cdot F_{m_{i}}$

Exemplificare: traductor de presiune a sângelui inteligent

Schemă bloc senzor presiune a sângelui bazat pe metoda sfigno-manometrică

Exemplificare:

Alegerea parametrilor folosiți în procesul de decizie

Nr crt	Parametrul luat in considerare		
1	Tensiunea de alimentare: max 3,3V		
2	Sistemul de management al energiei (număr de regimuri de funcționare de putere redusă)	15.00%	
3	Numărul de linii GPIO, cel puțin 5 linii cu capabilitate în curent de cel puțin 20mA/linie		
4	Existența unui convertor CAD de cel puțin 10 biți integrat		
5	Performanța în calcul a CPU dată în MIPS	15.00%	
6	Existența unei interfețe care să permită conectarea la un transceiver wireless a microcontroler-ului		
7	Setul de instrucțiuni al CPU		
8	Existența unor medii de integrate de dezvoltare și cunoașterea de către proiectant a acestora	15.00%	
9	Gradul de integrare pe circuit a funcționalității	6.00%	
10	Prețul microcontroler-ului	12.00%	

Aplicația: senzor inteligent de măsurare a presiunii sângelui

Exemplificare:

Rezultatele analizei comparative

		Factor de				
Nr crt	Parametrul luat in considerare	pondere	PSoC03	PIC	Atmel	MSP
1	Tensiunea de alimentare: max 3,3V	10.00%	100.00%	80.00%	80.00%	80.00%
2	Sistemul de management al energiei (număr de regimuri de funcționare de putere redusă)	15.00%	70.00%	100.00%	90.00%	80.00%
3	Numărul de linii GPIO, cel puțin 5 linii cu capabilitate în curent de cel puțin 20mA/linie	7.00%	100.00%	70.00%	80.00%	70.00%
4	Existența unui convertor CAD de cel puțin 10 biți integrat	5.00%	90.00%	85.00%	80.00%	80.00%
5	Performanța în calcul a CPU dată în MIPS	15.00%	100.00%	80.00%	90.00%	85.00%
6	Existența unei interfețe care să permită conectarea la un transceiver wireless a microcontroler-ului	10.00%	95.00%	80.00%	80.00%	90.00%
7	Setul de instrucțiuni al CPU	5.00%	95.00%	100.00%	90.00%	90.00%
8	Existența unor medii de integrate de dezvoltare și cunoașterea de către proiectant a acestora	15.00%	90.00%	100.00%	100.00%	85.00%
9	Gradul de integrare pe circuit a funcționalității	6.00%	100.00%	80.00%	80.00%	90.00%
10	Prețul microcontroler-ului	12.00%	30.00%	100.00%	90.00%	92.00%
	Factorul de merit cumulat		84.3500%	88.9500%	87.7000%	84.3400%

Documente primare folosite la analiză:

Microcontroler-ul	Link-ul către pagina de decizie a fabricantului		
PSoC03 CY8C36 Cypress	http://www.cypress.com/?id=2232&source=productshome		
16Fxxx Michrochip	http://www.microchip.com/paramchartsearch/Chart.aspx?branchID=1002		
AVR-8 Atmel	http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx		
MSP430-TI	http://www.ti.com/paramsearch/docs/parametricsearch.tsp?family=mcu&s		
	ectionId=95&tabId=2229&familyId=1615		

Bibliografie

- *** Microchip Inc. ", Datasheet PIC18" , vizualizată la 15 aprilie 2012 la adresa ww1.microchip.com/downloads/en/devicedoc/33023a.pdf USA, 2012
- *** Microchip Inc. ", Datasheet 18F4520", vizualizată la 15 aprilie 2012 la adresa ww1.microchip.com/downloads/en/devicedoc/39631e.pdf
 " USA, 2012
- *** Intel Inc. " MCS51 8 bits control oriented microcontroller", vizualizată în aprilie 2012 la adresa doc-08-88-docsviewer.googleusercontent.com/viewer/securedownload, USA, 2012
- *** Microchip Inc. ", Microchip's 8 bits PIC Microcontrollers -part1", vizualizată in Martie 2012 la adresa http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en557096.pdf USA, 2012
- *** Microchip Inc. ", Microchip's 8 bits PIC Microcontrollers -part2", vizualizată in Martie 2012 la adresa http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en557099.pdf USA, 2012
- *** Atmel Corp.,"Datasheet 8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash ATtiny25/V "vizualizată în Ianuarie 2012 la adresa http://www.atmel.com/Images/2586S.pdf, USA 2012
- *** Atmel Corp.,"Datasheet 8-bit Atmel Microcontroller with 128KBytes In-System Programmable Flash" vizualizată în Ianuarie 2012 la adresa http://www.atmel.com/Images/doc2467.pdf, USA, 2012
- *** Cypress Inc. "Datasheet PSoC03", vizualizată la adresa http://www.cypress.com/?docID=39703 în luna martie USA, 2012.
- E. C. Conley, Doarn C, Hajjam-El-Hassani A, editors, "Proceedings of International Conference on eHealth, Telemedicine, and Social Medicine eTELEMED 2009" Cancum Mexic 2009, IEEE Computer Society Order Number E3532, Los Alamitos, CA 90720-1314 USA 2010 ISBN 978-0-7695-3532-6
- D Jennings, A Flint, BCH Turton, LDM Nokes, "Introduction to Medical Electronics, Applications", Edward Arnold, Hodder Headline PLC division, 338 Euston Road, London NWI 3BH UK, 1995
- Carlos Alexandre Barros de Mello, Biomedical Engineering, Ed. In-Teh Olajnica 19/2, 32000 Vukovar, Croatia, 2009, ISBN 978-953-307-013-1
- T. Gao, D. Greenspan, M. Welsh, R. R. Juang, and A. Alm. Vital Signs Monitoring and Patient Tracking Over a Wireless Network. IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 2005
- Joseph D. Bronzino, "Biomedical Engineering Handbook", CRC Press & IEEE Press, Dec 1999, ISBN-10: 849304628, ISBN-13: 978-0849304620
- Y. Xiao,Chen H, "Mobile Telemedicine A Computing and Networking Perspective", CRC Press an Auerbach book, © 2008 by Taylor & Francis Group, LLC ISBN-13: 978-1-4200-6046-1
- ***, Texas Instruments, "MSP 430x1xxFamily, User's guide-Mixed Signal Product 2006", Texas Instruments, Post Office Box 655303, Dallas, Texas 75265, 2006
- ***, Texas Instruments, "MSP 430 Hardware Tools User's guide", Texas Instruments, Post Office Box 655303, Dallas, Texas 75265, 2012