MAY D. 9 2005 JULY

SEQUENCE LISTING

<110> Fikes, John D.
Sette, Alessandro
Sidney, John
Southwood, Scott
Celis, Esteban
Keogh, Elissa A
Chestnut, Robert

- <120> HLA Class I A2 Tumor Associated Antigen Peptides and Vaccine Compositions
- <130> 2060.0150002
- <140> US 09/583,200
- <141> 2000-05-30
- <150> US 60/170,448
- <151> 1999-12-13
- <150> US 60/141,422
- <151> 1999-06-29
- <150> US 09/098,584
- <151> 1998-06-17
- <150> US 09/017,735
- <151> 1998-02-03
- <150> US 09/016,361
- <151> 1998-01-30
- <150> US 08/821,739
- <151> 1997-03-20
- <150> US 60/036,696
- <151> 1997-01-31
- <150> US 60/013,833
- <151> 1996-03-21
- <150> US 08/589,108
- <151> 1996-01-23
- <150> US 08/589,107
- <151> 1996-01-23
- <150> US 08/451,913
- <151> 1995-05-26
- <150> US 08/347,610
- <151> 1994-12-01
- <150> US 08/205,713
- <151> 1994-03-04

```
<150> US 08/186,266
<151> 1994-01-25
<150> US 08/159,339
<151> 1993-11-29
<150> US 08/159,184
<151> 1993-11-29
<150> US 08/103,396
<151> 1993-08-06
<150> US 08/073,205
<151> 1993-06-04
<150> US 08/027,746
<151> 1993-03-05
<150> US 08/027,146
<151> 1993-03-05
<160> 72
<170> PatentIn version 3.3
<210> 1
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> CEA.233V10
<400> 1
Val Leu Tyr Gly Pro Asp Ala Pro Thr Val
<210> 2
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> CEA.605V9
<400> 2
Tyr Leu Ser Gly Ala Asn Leu Asn Val
<210> 3
<211> 9
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> CEA.687
<400> 3
Ala Thr Val Gly Ile Met Ile Gly Val
<210> 4
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223> p53.25V11
<400> 4
Leu Leu Pro Glu Asn Asn Val Leu Ser Pro Val
1 5
<210> 5
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> p53.139L2
<400> 5
Lys Leu Cys Pro Val Gln Leu Trp Val
1 5
<210> 6
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> p53.139L2B3
<400> 6
Lys Leu Asx Pro Val Gln Leu Trp Val
1 5
<210> 7
<211> 9
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> p53.149L2
<400> 7
Ser Leu Pro Pro Pro Gly Thr Arg Val
<210> 8
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> p53.149M2
<400> 8
Ser Met Pro Pro Pro Gly Thr Arg Val
<210> 9
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.369L2V9
<400> 9
Lys Leu Phe Gly Ser Leu Ala Phe Val
<210> 10
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.369V2V9
<400> 10
Lys Val Phe Gly Ser Leu Ala Phe Val
<210> 11
<211> 10
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> Her2/neu.773
<400> 11
Val Met Ala Gly Val Gly Ser Pro Tyr Val
<210> 12
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.5
<400> 12
Ala Leu Cys Arg Trp Gly Leu Leu Leu
1 5
<210> 13
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> MAGE3.271
<400> 13
Phe Leu Trp Gly Pro Arg Ala Leu Val
               5
<210> 14
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.48
<400> 14
His Leu Tyr Gln Gly Cys Gln Val Val
1 5
<210> 15
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.435
```

```
<400> 15
Ile Leu His Asn Gly Ala Tyr Ser Leu
   5
<210> 16
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> CEA.691
<400> 16
Ile Met Ile Gly Val Leu Val Gly Val
<210> 17
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.369
<400> 17
Lys Ile Phe Gly Ser Leu Ala Phe Leu
<210> 18
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> MAGE3.112
<400> 18
Lys Val Ala Glu Leu Val His Phe Leu
<210> 19
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> CEA.24V9
```

```
<400> 19
Leu Leu Thr Phe Trp Asn Pro Pro Val
<210> 20
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> MAGE3.160
<400> 20
Leu Val Phe Gly Ile Glu Leu Met Glu Val
<210> 21
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223> MAGE3.159
<400> 21
Gln Leu Val Phe Gly Ile Glu Leu Met Glu Val
                5
<210> 22
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.689
<400> 22
Arg Leu Leu Gln Glu Thr Glu Leu Val
1 5
<210> 23
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.665
<400> 23
```

```
Val Val Leu Gly Val Val Phe Gly Ile
<210> 24
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> MAGE2.157
<400> 24
Tyr Leu Gln Leu Val Phe Gly Ile Glu Val
<210> 25
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> Her2/neu.952
<400> 25
Tyr Met Ile Met Val Lys Cys Trp Met Ile
<210> 26
<211> 14
<212> PRT
<213> Artificial sequence
<223> Tetanus Toxoid Positions 830-843, Standard Peptide 553.01
<400> 26
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu
<210> 27
<211> 21
<212> PRT
<213> Artificial sequence
<220>
<223> Plasmodium falciparum CS Protein Positions 378-398
<400> 27
```

```
Asp Ile Glu Lys Lys Ile Ala Lys Met Glu Lys Ala Ser Ser Val Phe
Asn Val Val Asn Ser
           20
<210> 28
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> Streptococcus 18kD Protein Position 116
<400> 28
Gly Ala Val Asp Ser Ile Leu Gly Gly Val Ala Thr Tyr Gly Ala Ala
               5
                                   10
<210> 29
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> pan-DR Binding Epitope Peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ala is either D-alanine or L-alanine.
<220>
<221> MOD RES
<222> (3)..(3)
<223> Xaa is cyclohexylalanine, Phe, or Tyr.
<220>
<221> MOD_RES
<222> (7)..(7)
<223> Xaa is Trp, Tyr, His, or Asn.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is either D-alanine or L-alanine.
<400> 29
Ala Lys Xaa Val Ala Ala Xaa Thr Leu Lys Ala Ala Ala
```

10

5

```
<210> 30
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<400> 30
Ala Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
                5
<210> 31
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 31
Ala Lys Phe Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
               5
<210> 32
<211> 13
<212> PRT
<213> Artificial sequence
<223> Alternative Preferred PADRE Peptide
<400> 32
Ala Lys Tyr Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
                5
                                    10
<210> 33
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 33
```

```
Ala Lys Phe Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
<210> 34
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<400> 34
Ala Lys Xaa Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
<210> 35
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 35
Ala Lys Tyr Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
<210> 36
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 36
Ala Lys Phe Val Ala Ala His Thr Leu Lys Ala Ala Ala
                                   10
<210> 37
<211> 13
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Alternative Preferred PADRE Peptide
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<400> 37
Ala Lys Xaa Val Ala Ala His Thr Leu Lys Ala Ala Ala
<210> 38
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 38
Ala Lys Tyr Val Ala Ala His Thr Leu Lys Ala Ala Ala
                5
<210> 39
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<400> 39
Ala Lys Phe Val Ala Ala Asn Thr Leu Lys Ala Ala Ala
                5
                                     10
<210> 40
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Alternative Preferred PADRE Peptide
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
```

<400> 40 Ala Lys Xaa Val Ala Ala Asn Thr Leu Lys Ala Ala Ala <210> 41 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Alternative Preferred PADRE Peptide <400> 41 Ala Lys Tyr Val Ala Ala Asn Thr Leu Lys Ala Ala Ala <210> 42 <211> 9 <212> PRT <213> Artificial sequence <220> <223> Standard Peptide 944.02 <400> 42 Tyr Leu Glu Pro Ala Ile Ala Lys Tyr <210> 43 <211> 10 <212> PRT <213> Artificial sequence <220> <223> Standard Peptide 941.01 <400> 43 Phe Leu Pro Ser Asp Tyr Phe Pro Ser Val <210> 44

<211> 9 <212> PRT <213> Artificial sequence <220>

<223> Standard Peptide 1072.34

```
<400> 44
Tyr Val Ile Lys Val Ser Ala Arg Val
<210> 45
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 941.12
<400> 45
Lys Val Phe Pro Tyr Ala Leu Ile Asn Lys
<210> 46
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 940.06
<400> 46
Ala Val Asp Leu Tyr His Phe Leu Lys
               5
<210> 47
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 1083.02
<400> 47
Ser Thr Leu Pro Glu Thr Tyr Val Val Arg Arg
               5
<210> 48
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 979.02
<400> 48
```

```
Ala Tyr Ile Asp Asn Tyr Asn Lys Phe
<210> 49
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 1075.23
<400> 49
Ala Pro Arg Thr Leu Val Tyr Leu Leu
<210> 50
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 1021.05
<400> 50
Phe Pro Phe Lys Tyr Ala Ala Ala Phe
<210> 51
<211> 13
<212> PRT
<213> Artificial sequence
<223> Standard Peptide 515.01
<400> 51
Pro Lys Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr
<210> 52
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 829.02
<400> 52
```

```
Tyr Lys Thr Ile Ala Phe Asp Glu Glu Ala Arg Arg
<210> 53
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 717.01
<400> 53
Tyr Ala Arg Phe Gln Ser Gln Thr Thr Leu Lys Gln Lys Thr
<210> 54
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 1200.05
<400> 54
Glu Ala Leu Ile His Gln Leu Lys Ile Asn Pro Tyr Val Leu Ser
                5
<210> 55
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> Standard Peptide 650.22
<400> 55
Gln Tyr Ile Lys Ala Asn Ala Lys Phe Ile Gly Ile Thr Glu
                5
<210> 56
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> DR7 Preferred Motif
<220>
<221> VARIANT
```

```
<222> (1)..(1)
<223> Xaa is either Met, Phe, Leu, Ile, Val, Trp, or Tyr.
<220>
<221> VARIANT
<222> (5)..(5)
<223> Xaa may be any amino acid.
<220>
<221> VARIANT
<222> (6)..(6)
<223> Xaa is either Ile, Val, Met, Ser, Ala, Cys, Thr, Pro, or Leu.
<220>
<221> VARIANT
<222> (8)..(8)
<223> Xaa may be any amino acid.
<220>
<221> VARIANT
<222> (9)..(9)
<223> Xaa is either Ile or Val.
<400> 56
Xaa Met Trp Ala Xaa Xaa Met Xaa Xaa
<210> 57
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> DR7 Deleterious Motif
<220>
<221> VARIANT
<222> (1)..(1)
<223> Xaa may be any amino acid.
<220>
<221> VARIANT
<222> (3)..(3)
<223> Xaa may be any amino acid.
<220>
<221> VARIANT
<222> (5)..(5)
<223> Xaa may be any amino acid.
<220>
<221> VARIANT
<222> (6)..(6)
<223> Xaa may be any amino acid.
```

```
<220>
<221> VARIANT
<222> (7)..(7)
<223> Xaa is either Gly, Arg, or Asp.
<400> 57
Xaa Cys Xaa Gly Xaa Xaa Xaa Asn Gly
               5
<210> 58
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 58
Ala Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
                5
                                    10
<210> 59
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD RES
<222>
      (1)..(1)
<223> Ala is D-alanine.
<220>
```

```
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 59
Ala Lys Phe Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
<210> 60
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 60
Ala Lys Tyr Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
<210> 61
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 61
Ala Lys Phe Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
```

- 19 -

```
5
1
                                   10
<210> 62
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 62
Ala Lys Xaa Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
<210> 63
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD RES
<222>
      (13)..(13)
<223> Ala is D-alanine.
```

Ala Lys Tyr Val Ala Ala Tyr Thr Leu Lys Ala Ala 1 5 10

<400> 63

```
<210> 64
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 64
Ala Lys Phe Val Ala Ala His Thr Leu Lys Ala Ala Ala
               5
<210> 65
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 65
Ala Lys Xaa Val Ala Ala His Thr Leu Lys Ala Ala Ala
```

<210> 66

```
<211> 13
 <212> PRT
<213> Artificial sequence
 <220>
 <223> PADRE Peptide
<220>
 <221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
 <220>
 <221> MOD_RES
 <222> (13)..(13)
 <223> Ala is D-alanine.
 <400> 66
 Ala Lys Tyr Val Ala Ala His Thr Leu Lys Ala Ala Ala
                 5
                                       10
 <210> 67
 <211> 13
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> PADRE Peptide
 <220>
 <221> MOD RES
 <222> (1)..(1)
 <223> Ala is D-alanine.
 <220>
 <221> MOD_RES
 <222> (13)..(13)
 <223> Ala is D-alanine.
 <400> 67
 Ala Lys Phe Val Ala Ala Asn Thr Leu Lys Ala Ala Ala
                                       10
 <210> 68
 <211> 13
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> PADRE Peptide
```

```
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE <222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 68
Ala Lys Xaa Val Ala Ala Asn Thr Leu Lys Ala Ala Ala
<210> 69
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 69
Ala Lys Tyr Val Ala Ala Asn Thr Leu Lys Ala Ala Ala
                                      10
<210> 70
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
```

<220>

```
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> AMIDATION
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<400> 70
Ala Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
<210> 71
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<220>
<221> MOD_RES
<222> (13):.(13)
<223> AMIDATION
<400> 71
Ala Lys Phe Val Ala Ala Tyr Thr Leu Lys Ala Ala Ala
<210> 72
<211> 13
```

```
<212> PRT
<213> Artificial sequence
<220>
<223> PADRE Peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Ala is D-alanine.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is cyclohexylalanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ala is D-alanine.
<220>
<221> MOD_RES
<222> (13)..(13)
<223> AMIDATION
<400> 72
Ala Lys Xaa Val Ala Ala His Thr Leu Lys Ala Ala Ala
```