

先看一下 ANSYS 拓扑优化的 workflow,先是用一个 Static Structural 创建材料、边界条件等,然后导入 Topology Optimization,最后将生成出来的图形导入检验的 Static Structural 模块。

复合材料由于各向异性等问题光使用 Static Structural 的结果其实不够准确,需要使用 ACP,会麻烦一点,而且 Topology Optimization 是无法使用层信息的。本教程出于最简考虑,直接将复合材料使用最简单的金属代替。对于平面内的受力,比如纵置的碳纤板可以使用钢代替,涉及到弯矩的考虑到层撕裂问题可以用强度低一点的铝代替。这个方法我在 2019 赛季使用了一年没出现问题。

以下开始具体流程介绍。

1. 设置材料

双击 Engineering Data 进入材料库。然后选择 Engineering Data Sources,在下面的两个大框里选择需要的材料。钢和铝都在 General Materials 里面,点击第二个大框里的黄色加号即可将材料添加到 workflow 里面。

2. 在 Geometry 里面导入图形。

右键 Geometry 然后 import。然后进入 Design Modeler 或者 Space Claim 里面生成模型即可。这部分建议在 SolidWorks 里面把图形都处理好再导进来会方便一些。本教程里使用的模型如下,无需修改直接 Generate。

3. 划分网格

根据我的经验,RM 里面的板子一般都是半个巴掌那么大,插入一个 sizing 选定整个模型使用 2mm 作为单元尺寸会比较合适。

新手最纠结的一个问题是怎么判断我划分的网格是否合理。这里给一个最简单的判据。 进入 mesh 然后展开 Quality,在 Mesh Metric 栏选择 Element Quality,一般 Average 大于 0.7 可以认为网格质量合格。

4. 设置边界条件

边界条件这里要看具体情况具体分析,不难、教程也非常多,在此不再赘述。

5. 设置结果

结果这里也是具体情况具体分析,我喜欢用 Total Deformation、Equivalent Stress、Safety Factor 这三个判据,尤其是 Safety Factor 最为直观。下图可见,目前这个模型安全系数高达15,说明优化空间非常之大。

6. 将模型导入 Topology Optimization 模块。

在 Topology Optimization 中只需要修改 Retained Threshold 即可设置需要去除的材料的量。 下图是优化后的结构,是不是感觉很舒畅。

7. 处理模型进行验证

处理模型有两个办法,一是右键 Topology Density→Export→STL file,然后把生成的 STL 文件导入 SolidWorks,对着这个 STL 文件画新的零件图。二是如下图所示,右键 Topology Optimization 的 Results→Transfer to Design Validation System,然后后生成一个新的 Static Structural,在这里可以进入 SpaceClaim 去清理模型中不好的边角。对于结构简单的板件在 SolidWorks 里面处理会更加简单而且准确,在此暂不介绍 SpceClaim 的方法。

SolidWorks 画完以后的验证操作就很简单了,再建一个 Static Structural,重复 1-5 步,得出以下结果。可见,一波操作以后这个板子的安全系数依然妥妥的。

更牛逼的大佬在做完拓扑优化以后还会做参数优化,再次,本教程出于最简考虑不介绍 参数优化的方法。