- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion
- B. Etude de la propriété du sol : la stabilité structurale
 - Définition
 - Mécanismes de la stabilité structurale
 - Les facteurs de la stabilité
 - Méthodes d'évaluation de la stabilité Structurale
 - Méthodes basées sur le suivi de l'évolution structurale observées en condition contrôlée
- C. Lutte contre l'érosion

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion
- B. Etude de la propriété du sol : la stabilité structurale
 - Définition
 - Mécanismes de la stabilité structurale
 - Les facteurs de la stabilité
 - Méthodes d'évaluation de la stabilité Structurale
 - Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée
- C. Lutte contre l'érosion

Les facteurs de l'érosion

A. Phénomène de battance, ruissellement et érosion

- Les facteurs intervenant dans l'érosion
- Mécanismes des différents types d'érosion
- Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Mécanismes de l'érosion

Mécanismes de l'érosion: formation d'une croûte de battance

Formation d'une croûte de battance

2a - stade 1 : agrégats visibles

2b - stade 2 : mottes dégradées

2c - stade 3 : croûtes de battance formées

Source: Y. Le Bissonais, 2002

Effet 'splash'

Erosion diffuse

Erosion concentrée

Source : Y. Le Bissonais in Leguédois, 2003

Erosion des talus et chemins

A. Phénomène de battance, ruissellement et érosion

- Les facteurs intervenant dans l'érosion
- Mécanismes des différents types d'érosion
- Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

 Augmentation de la taille des parcelles et suppression des haies

 Diminution des surfaces en prairies et extension de cultures peu couvrantes (type maïs)

Episode pluvieux sur culture de maïs

Episode pluvieux sur culture de maïs

- Modification des méthodes de travail du sol :
 - Augmentation du poids des machines [] amorces de rigoles
 - Augmentation de la vitesse de travail [] terre fine abondante
 - Augmentation de la profondeur du travail du sol [] diminution de la teneur en matière organique et de la stabilité structurale

- Modification des méthodes de travail du sol mais techniques améliorantes :
 - Drainage
 - Sous-solage
 - Non labour, désherbage chimique.

- Fertilisation et amendements des terres :
 - Diminution des restitutions humiques,
 - Baisse de l'activité biologique des sols,
 - Chaulage insuffisant.

Causes non agricoles....

Urbanisation et routes [] imperméabilisation des surfaces et ruissellement / fossés mal entretenus ...

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Définition

La stabilité structurale :

C'est l'aptitude à résister à l'action dégradantes des pluies.

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale observées au champ ou en condition contrôlée

C. Lutte contre l'érosion

Relation gonflement / stabilité structurale

Indice de gonflement	4,2	3,5	2,5	1,71	1,52	1,38
Agrégats stables en %	88,8	80,8	77,6	4,7	6,2	1,7

Source: Henin (1964)

Mécanisme d'éclatement des particules

Le modèle théorique

S = C - Pi

Avec:

S: stabilité

C : cohésion à l'état humide

Pi: Pression interne

Variation de la cohésion C avec la teneur en eau

Remarque: la cohésion varie avec la teneur en argile, globalement plus la teneur en argile est grande plus il y a cohésion des particules...

Rôle du piégeage de l'air

Nature de la terre	Agrégats stables > 0,2 mm en %			
mature de la terre	Mouillé sous air	Mouillé sous vide		
Limon rouge	18	76		
Versailles 42 p . Fumier	6	37		
Versailles 42 p. Na NO3	2	9		
Horizon B	10	32		
Argilo calcaire	50	71		

Source: Henin, Gras et Monnier (1969)

Formule de calcul de Pi

```
Pi = F/S
= (2 \Pi R T \cos \alpha) / (\Pi R2)
= 2 (T \cos \alpha / R)
```

Avec:

Pi: Pression interne

R: Rayon des plus gros pores

T: tension superficielle

α : angle de raccordement entre le sol et l'eau [] mouillabilité de la terre

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Texture et stabilité structurale

Argile en %	60,7	29,0	16,8	14,2
Limon en %	28,7	20,0	19,5	20,6
Agrégats stables en %	38,8	10,9	2,2	1,7

Source: Monnier (1969)

Garniture ionique et stabilité structurale

	Ca	Na
Sol limons argileux	33,5	2,5
Sol limoneux humifère	37,5	2

Source: Monnier (1969)

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Méthodes d'évaluation de la stabilité structurale

- Analyse d'agrégats
- Test de percolation
- Complémentarité des deux tests
- Critiques de ces tests

Analyse d'agrégats

Mottes de terres non broyées, séchées à l'air
 choix d'agrégats secs dont le diamètre est inférieure à 2 mm

- Action brutale de l'eau sur les agrégats :
 - Mesure des agrégats qui conservent un diamètre > 200 μm = agrégats dits stables
 - Mesure des éléments dont le diamètre < 20 μm =
 A+L
 - Mesure sable grossier (SG) (pour différencier sables et agrégats dits stables)

Analyse d'agrégats

- Trois traitements sont pratiqués :
 - Traitement 1 : aucun prétraitement avant action brutale de l'eau [] mesure des agrégats stables à l'eau seule (Ø > 200 μm) notés Age
 - Traitement 2 : prétraitement à l'alcool puis action brutale de l'eau [] mesure des agrégats stables à l'alcool et l'eau (Ø > 200 μm) notés Aga
 - Traitement 3 : prétraitement au benzène puis action brutale de l'eau mesure des agrégats stables au benzène et à l'eau (Ø > 200 μm) notés Agb

Traitement 1 : action de l'eau sans prétraitement

Agrégats avec $\emptyset < 2 \text{ mm}$

Traitement 1 à l'eau

Eclatement si agrégat instable

Action brutale de l'eau

Air piégé 🛮 Pi 🖺

Effet du traitement 1 sur le modèle théorique

$$S = C (\square) - Pi (\square)$$

- Si terre stable alors C diminue peu et/ou Pi n'augmente pas trop (terre peu mouillable)
- Si terre instable alors C diminue beaucoup et/ou Pi augmente beaucoup (terre mouillable)

Avec : S : stabilité. C : cohésion à l'état humide et Pi : Pression interne

Traitement 2 : prétraitement à l'alcool puis action de l'eau (2 phases)

Traitement 2: prétraitement à l'alcool

Alcool prend la place de l'air sans Pi □

Traitement 2: prétraitement à l'alcool

Effet du traitement 2 sur le modèle théorique

$$S = C (\square) - Pi$$

- Si terre stable alors C diminue peu
- Si terre instable alors C diminue beaucoup

Avec : S : stabilité, C : cohésion à l'état humide et Pi : Pression interne

Traitement 3 : prétraitement au benzène puis action de l'eau (2 phases)

Traitement 3 : prétraitement au benzène

Air remplacé par le benzène

Traitement 3 : prétraitement au benzène

Brutale | Pi car eau fait compression sur le benzène

Effet du traitement 3 sur le modèle théorique

$$S = C - Pi (\square)$$

- Si terre stable alors Pi augmente peu (terre peu mouillable)
- Si terre instable alors Pi augmente beaucoup (terre très mouillable)

Avec : S : stabilité, C : cohésion à l'état humide et Pi : Pression interne

Evaluation de la stabilité structurale : analyse d'agrégats

Echantillon	A %	Texture	M.O. % tot.	$100 \times \frac{\text{MO. li\'ee}}{\text{A}}$	Aga %	Ago %
Sol n° 1, 0-25 cm	20	limoneuse	3,05	13,0	20,5	5,8
Ss-sol n° 1, 30-40 cm	21	limoneuse	0,7	2,9	19,0	0,5
Ss-sol n° 2, 30-40 cm	55	argileuse	1,8	2,9	59,0	1,1

Fig. 22. - Influence des facteurs de stabilité sur les différents tests

Indice global de Stabilité : Is

```
Is = (A + L) max en \%
((Age+Aga+Agb) / 3 – 0,9 SG))
```

Avec:

A + L : taux d'éléments fins (argiles + limons)

Age: taux d'agrégats stables à l'eau

Aga: taux d'agrégats stables à l'alcool

Agb: taux d'agrégats stables au benzène

SG: taux de sables grossiers

Test de percolation : indice K

Avec:

I : hauteur en cm de la colonne terre

V : Volume en cm3 recueilli au cours de la première heure en percolation

H : Hauteur en cm dans le tube entre la toile filtrante et la surface libre de l'eau

S : section intérieure du tube en cm2

K: s'exprime donc en cm/h

Relation entre Is et K

Influence de la teneur en eau des fragments sur la sensibilité à la désagrégation des deux types de terre

Source: Boiffin 1984

Conclusion sur les mécanismes existants....

- La microfissuration : alternances gonflement retrait (Cf. régénération des sols)
- La dispersion (SCHLOESING -1885)
- La désagrégation par éclatement dans le cas d'agrégats secs (HENIN)
- La désagrégation sans éclatement : arrachement / chocs de gouttes de pluie (comportement terres humides)

V- Erosion des sols et stabilité structurale

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion

B. Etude de la propriété du sol : la stabilité structurale

- Définition
- Mécanismes de la stabilité structurale
- Les facteurs de la stabilité
- Méthodes d'évaluation de la stabilité Structurale
- Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Méthode Le Bissonais – Le Souder

- Méthode tenant compte de trois situations de désagrégation :
 - Traitement 1 : comportement de matériaux secs soumis à une irrigation par submersion ou des pluies intenses (éclatement + action mécanique)
 - Traitement 2 : comportement de matériaux secs ou peu humides soumis à des pluies modérées (éclatement, peu d'action mécanique)
 - Traitement 3 : comportement de matériaux humides, réhumectés préalablement sans provoquer d'éclatement

Conclusions pratiques / Méthode Le Bissonais – Le Souder

MWD en mm	Stabilité	Battance	Ruissellement et érosion diffuse
< 0,4	Très instable	Systématique	Risque important et permanent en toutes conditions topographiques
0,4 – 0,8	Instable	Très fréquente	Risque fréquent en toute situation
0,8 – 1,3	Moyenneme nt stable	Fréquente	Risque variable en fonction des paramètres climatiques et topographiques
1,3 - 2	Stable	Occasionnelle	Risque limité
> 2	Très stable	Très rare	Risque très faible

V- Erosion des sols et stabilité structurale

- A. Phénomène de battance, ruissellement et érosion
 - Les facteurs intervenant dans l'érosion
 - Mécanismes des différents types d'érosion
 - Le rôle de l'agriculture dans le développement de l'érosion
- B. Etude de la propriété du sol : la stabilité structurale
 - Définition
 - Mécanismes de la stabilité structurale
 - Les facteurs de la stabilité
 - Méthodes d'évaluation de la stabilité Structurale
 - Méthodes basées sur le suivi de l'évolution structurale en condition contrôlée

C. Lutte contre l'érosion

Moyens de lutte sur le plan agronomique : action sur les surfaces exposées

- Protéger la surface du sol :
 - Abri, couvert naturel, couvert artificiel...
- Augmenter la résistance de la surface du sol :
 - Amendements, conditionneurs de sol, matière organique, techniques agricoles...
- Accroître l'infiltration et diminuer les écoulements :
 - Infiltration instantanée, retardée...

Moyens de lutte sur le plan agronomique : action sur les écoulements

- Limiter les concentrations :
 - Parcellaire
- Etaler les écoulements concentrées
- Maîtriser les écoulements et leurs vitesse et énergies
- Augmenter la résistance du lit et de ses abords
- Maîtriser la sédimentation
- Artificialiser les écoulements