Normalization and Normal Forms

What is normalization?

- Normalization is the process of removing redundant data from tables to improve data integrity, scalability and storage efficiency.
 - data integrity (completeness, accuracy and consistency of data)
 - scalability (ability of a system to continue to function well in a growing amount of data)
 - storage efficiency (ability to store and manage data that consumes the least amount of space)
- What we do in normalization?
 - Normalization generally involves splitting an existing table into multiple (more than one) tables, which can be re-joined or linked each time a query is issued (executed).
 - Decomposition is done with the help of FDs

How many normal forms are there?

- Normal forms:
 - 1NF (First normal form)
 - 2NF (Second normal form)
 - 3NF (Third normal form)
 - BCNF (Boyce–Codd normal form)
 - 4NF (Forth normal form)
 - 5NF (Fifth normal form)

As we move from 1NF to 5NF number of tables and complexity increases but redundancy decreases.

Normal forms 1NF (First Normal Form)

1NF (First Normal Form)

- Conditions for 1NF
 - Each cell of a table should contain a single value (it should not contain any composite attribute or multi-valued attributes or their combinations.)
 - Attribute Domain does not change.
 - There is a unique name for every Attribute/Column.
 - The order in which data is stored does not matter.
- A relation R is in first normal form (1NF) if and only if it does not contain any composite attribute or multi-valued attributes or their combinations.

OR

• A relation R is in first normal form (1NF) if and only if all underlying domains contain atomic values only.

OR

 A relation R is in first normal form (1NF) if and only if there should not be multiple values in any row vs column entry.

1NF (First Normal Form) [Example - Composite attribute]

Customer						
CID	Name	Address				
C01	Raju	Jamnagar Road, Rajkot				
C02	Mitesh	Nehru Road, Jamnagar				
C03	Jay	C.G Road, Ahmedabad				

- In customer relation address is composite attribute which is further divided into sub-attributes as "Road" and "City".
- So customer relation is not in 1NF.
- Problem: It is difficult to retrieve the list of customers living in 'Jamnagar' city from customer table.
- The reason is that address attribute is composite attribute which contains road name as well as city name in single cell.
- It is possible that city name word is also there in road name.
- In our example, 'Jamnagar' word occurs in both records, in first record it is a part of road name and in second one it is the name of city.

1NF (First Normal Form) [Example - Composite attribute]

Customer					Customer				
CID	Name	Address		CID	Name	Road	City		
C01	Raju	Jamnagar Road, Rajkot		C01	Raju	Jamnagar Road	Rajkot		
C02	Mitesh	Nehru Road, Jamnagar		C02	Mitesh	Nehru Road	Jamnagar		
C03	Jay	C.G Road, Ahmedabad		C03	Jay	C.G Road	Ahmedabad		

• Solution: Divide composite attributes into number of sub-attributes and insert value in proper sub-attribute.

Exercise Convert below relation into 1NF (First Normal Form)

Person					
PID	Fu	II_Name	City		
P01		iju Maheshbhai tel	Rajkot		

1NF (First Normal Form) [Example - Multivalued attribute]

Student					
Rno	Name	Failed in Subjects			
101	Raju	DS, DBMs			
102	Mitesh	DBMS, DS			
103	Jay	DS, DBMS, DE			
104	Jeet	DBMS, DE, DS			
105	Harsh	DE, DBMS, DS			
106	Neel	DE, DBMS			

- In student relation Failed in Subjects attribute is a multivalued attribute which can store more than one values.
- So above relation is not in 1NF.

- Problem: It is difficult to retrieve the list of students failed in 'DBMS' as well as 'DS' but not in other subjects from student table.
- The reason is that "Failed in Subjects" attribute is multi-valued attribute so it contains more than one value.

1NF (First Normal Form) [Example - Multivalued attribute]

Stude	ent	
Rno	Name	FailedinSubjects
101	Raju	DS, DBMs
102	Mitesl	n DBMS, DS
103	Jay	DS, DBMS, DE
104	Jeet	DBMS, DE, DS
105	Harsh	DE, DBMS, DS
106	Neel	DE, DBMS

Resul	t			
Rno	Subject			
101	DS			
101	DBMS			
102	DBMS			
102	DS			
103	DS			
•••				

- Solution: Split the table into two tables in such as way that
 - the first table contains all attributes except multi-valued attribute with same primary key
 - second table contains multi-valued attribute
 - insert the primary key of first table in the second table as a foreign key.

FDs and Types of FDs

- Deals with one-to-one relationship among attribute.
- FD must be defined on schema not on instance.
- FD must be non-trivial or completely non-trivial.
- Types of FDs:
 - Trivial FD
 - Non-Trivial FD
 - Completely Non-Trivial
 - Transitive FD
 - Full Functional Dependency
 - Partial FD

Will discuss later

- Trivial FD: RHS is subset of LHS
 - X → Y is trivial FD if Y is a subset of X
 - Eg. {Roll_No, Dept_Name, Semester} → Roll_No, Semester OR ABC → AB
- Nontrivial FD: One of RHS attribute is not subset LHS.
 - X → Y is nontrivial FD if Y is not a subset of X
 - Eg. {Roll_No, Dept_Name, Semester} → Stud_Name, Semester OR ABC → AD
- Completely Non-Trivial FD: None of RHS attribute is subset of LHS.
 - X → Y is Completely nontrivial FD if all subset of Y is not a subset of X
 - Eg. {Roll_No, Dept_Name, Semester} → Stud_Name, SPI OR ABC → DE

Full Functional Dependency

- In a relation, the attribute B is fully functional dependent on A if B is functionally dependent on A, but not on any proper subset of A.
- Example: {Roll_No, Semester, Department_Name} → SPI
- We need all three {Roll_No, Semester, Department_Name} to find SPI.

Partial Functional Dependency

• Partial Dependency occurs when a nonprime attribute is functionally dependent on part of a candidate key (prime attribute).

Example: R(A, B, C, D), Assume Key is {AB}, then AB \rightarrow C, and AB \rightarrow D are allowed whereas, A \rightarrow C, A \rightarrow D or B \rightarrow C, B \rightarrow D are not allowed.

Prime attribute → Non-prime attribute

Transitive Functional Dependency

In a relation, if attribute(s) A → B and B → C, then A → C (means C is transitively depends on A via B).

Sub_Fac							
Subject	Faculty	Age					
DS	Shah	35					
DBMS	Patel	32					
DF	Shah	35					

- Example: Subject → Faculty & Faculty → Age then Subject → Age
- Therefore as per the rule of transitive dependency: Subject \rightarrow Age should hold, that makes sense because if we know the subject name we can know the faculty's age.

Normal forms 2NF (Second Normal Form)

2NF (Second Normal Form)

Conditions for 2NF

It is in 1NF and each table should not contain partial dependency.

- A relation R is in second normal form (2NF) iff:
 - 1. It is in **1NF** and
 - 2. Non-prime attribute is **NOT** *partially dependent* on the key

OR

• A relation R is in second normal form (2NF) iff:

- 1. It is in **1NF** and
- 2. Every non-prime attribute is fully dependent on the key: fully functionally dependent

Example: R(A, B, C, D), Assume Key is {AB}, {A, B} = prime attributes & {C, D} = non-prime attributes; then AB \rightarrow C, and AB \rightarrow D are allowed whereas, A \rightarrow C, A \rightarrow D or B \rightarrow C, B \rightarrow D are not allowed.

What is the problem with partial dependency?

2NF (Second Normal Form) [Example]

Customer									
CID	ANO	AccessDate	Balance	BranchName					
C01	A01	01-01-2017	50000	Rajkot					
C02	A01	01-03-2017	50000	Rajkot					
C01	A02	01-05-2017	25000	Surat					
C03	A02	01-07-2017	25000	Surat					

- **FD1**: {CID, ANO} → {AccesssDate, Balance, BranchName}
- **FD2**: ANO → {Balance, BranchName}
- Balance and BranchName are partial dependent on key (CID + ANO). So customer relation is not in 2NF.

2NF (Second Normal Form) [Example]

Customer								
CID	ANO	AccessDate	Balance	BranchName				
C01	A01	01-01-2017	50000	Rajkot				
C02	A01	01-03-2017	50000	Rajkot				
C01	A02	01-05-2017	25000	Surat				
C03	A02	01-07-2017	25000	Surat				

- **Problem:** For example, in case of a joint account multiple (more than one) customers have common (one) accounts.
- If an account 'A01' is operated jointly by two customers says 'C01' and 'C02' then data values for attributes Balance and BranchName will be duplicated in two different tuples of customers 'C01' and 'C02'.

2NF (Second Normal Form) [Example]

Customer			Table-1			Table-2				
CID	ANO	AccessDate	Balance	BranchName	ANO	Balance	BranchName	CID	<u>ANO</u>	AccessDate
C01	A01	01-01-2017	50000	Rajkot	A01	50000	Rajkot	C01	A01	01-01-2017
C02	A01	01-03-2017	50000	Rajkot	A02	25000	Surat	C02	A01	01-03-2017
C01	A02	01-05-2017	25000	Surat				C01	A02	01-05-2017
C03	A02	01-07-2017	25000	Surat				C03	A02	01-07-2017

- Solution: Decompose relation in such a way that resultant relations do not have any partial FD.
 - Remove partial dependent attributes from the relation that violets 2NF.
 - Place them in separate relation along with the prime attribute on which they are fully dependent.
 - The key of new relation will be the attribute on which it is fully dependent.
 - Keep other attributes same as in that table with the same primary key.

Q. 1 Given that R(A, B, C, D) & FD {AB \rightarrow C, B \rightarrow D}. Check whether it is in 2 NF or not, if not, then convert it into 2NF.

Key = {AB}.B → D is a partial dependency.

Q. 2 Given that R(A, B, C, D) & FD {A \rightarrow B, C \rightarrow D}. Check whether it is in 2 NF or not, if not, then convert it into 2NF.

Key = {AC}.
A → B is a partial dependency.
C → D is a partial dependency.

Q. 3 Given that R(A, B, C, D, E) & FD {AB \rightarrow C, B \rightarrow D, D \rightarrow E}. Check whether it is in 2 NF or not, if not, then convert it into 2NF.

Key = {AB}.
B → D is a partial dependency.
B+ = {B, D, E}

Take closure of LHS part of Partial Dependency, and keep all of them in separate relation.

Q. 4 Given that R(A, B, C, D, E) & FD {A \rightarrow B, B \rightarrow E, C \rightarrow D}. Check whether it is in 2 NF or not, if not, then convert it into 2NF.

$$Key = \{AC\}.$$

 $A \rightarrow B$ is a partial dependency.

 $C \rightarrow D$ is a partial dependency.

Take closure of LHS part of Partial Dependency

$$A^+ = \{A, B, E\}$$

 $C^+ = \{C, D\}$

Even if the composite key has no dependent attributes, keep that relation to connect logically the others

Q. 5 Given that R(A, B, C, D, E) & FD {AB \rightarrow C, D \rightarrow E}. Check whether it is in 2 NF or not, if not, then convert it into 2NF.

Key = {ABD}.
AB → C is a partial dependency.
D → E is a partial dependency.

$$AB^{+} = \{A, B, C\}$$

 $D^{+} = \{D, E\}$

Q. R(A, B, C, D, E, F)

 $A \rightarrow FC$

 $C \rightarrow D$

 $B \rightarrow E$; Check whether it is in 2 NF or not, if not, then convert it into 2NF.

$$Key = \{AB\}.$$

 $A \rightarrow FC$ is a partial dependency.

 $B \rightarrow E$ is a partial dependency.

$$A^+ = \{A, F, C, D\}$$

 $B^+ = \{B, E\}$

Q. R(A, B, C, D, E, F, G, H, I, J)
AB
$$\rightarrow$$
 C
AD \rightarrow GH
BD \rightarrow EF
A \rightarrow I
H \rightarrow J

Check whether it is in 2 NF or not, if not, then convert it into 2NF.

Q. R(A, B, C, D, E, F, G, H, I, J)
AB
$$\rightarrow$$
 C
A \rightarrow DE
B \rightarrow F
F \rightarrow GH
D \rightarrow IJ

Check whether it is in 2 NF or not, if not, then convert it into 2NF.

