Composition method

Alias Method

$$X \rightarrow i \overline{k} \rho_{1} \overline{k} \rho_{2} \overline{k} \rho_{3} \overline{k} \rho_{4} \overline{k} \rho_{5} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \overline{k} \rho_{5} \rho$$

Ex.
$$n=24$$

P. $P_{1}=\frac{7}{16}$
 $P_{2}=\frac{1}{4}$
 $P_{3}=\frac{1}{8}$
 $P_{4}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{1}{4}$
 $P_{3}=\frac{1}{8}$
 $P_{4}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{1}{4}$
 $P_{3}=\frac{1}{8}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{1}{3}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{1}{4}$
 $P_{3}=\frac{1}{8}$
 $P_{4}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{1}{4}$
 $P_{3}=\frac{1}{8}$
 $P_{4}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{8}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{2}=\frac{3}{16}$
 $P_{3}=\frac{3}{16}$
 $P_{4}=\frac{3}{16}$
 $P_{5}=\frac{3}{16}$
 $P_{6}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{7}=\frac{3}{16}$
 $P_{1}=\frac{3}{16}$
 $P_{1}=$

P.
$$P_{1} = \frac{7}{16}$$
 $P_{2} = \frac{1}{4}$ $P_{3} = \frac{1}{8}$ $P_{4} = \frac{3}{16}$

P. $\frac{1}{3}(Q_{1}+Q_{2}+Q_{3})$ $Q_{1} = \frac{3}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{5}{8}$

P. $\frac{7}{16}\delta_{1} + \frac{1}{4}\delta_{2} + \frac{1}{8}\delta_{3} + \frac{3}{16}\delta_{4}$ $\frac{5}{16}\delta_{4}$ $\frac{5}{16}\delta_{4}$ $\frac{5}{16}\delta_{1} + \frac{1}{4}\delta_{2} + \frac{3}{16}\delta_{4}$ $\frac{11}{48}\delta_{1} + \frac{1}{4}\delta_{2} + \frac{3}{16}\delta_{4} - \frac{1}{3}(Q_{2}+Q_{3})$ $\frac{11}{48}\delta_{1} + \frac{1}{4}\delta_{2} + \frac{3}{16}\delta_{4} - \frac{1}{3}(Q_{2}+Q_{3})$ $\frac{11}{48}\delta_{1} + \frac{1}{4}\delta_{2} + \frac{3}{16}\delta_{4} - \frac{1}{3}(Q_{2}+Q_{3})$ $\frac{1}{48}\delta_{1} + \frac{1}{48}\delta_{2} + \frac{3}{16}\delta_{4} - \frac{1}{3}(Q_{2}+Q_{3})$ $\frac{1}{48}\delta_{1} + \frac{1}{48}\delta_{2} + \frac{3}{16}\delta_{4} + \frac{1}{16}\delta_{2} + \frac{1}{16}\delta_{$

$$\frac{11}{48} \delta_{1} + \frac{1}{4} \delta_{2} + \frac{3}{4} \delta_{3} = \frac{1}{3} (Q_{2} + Q_{3})$$

$$Q_{2} = \frac{3}{4} \quad \text{a.s.} \quad$$

عربن Alias method مالت على آن رابنو يسيد.

 $P_{=}(P_{1}, -, P_{n})$ $Q_{1}, -, Q_{n-1}$

 $Q_1, -, Q_{n-1}$

nSim