SBML Model Report

Model name: "Srividhya2006_CellCycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following four authors: Harish Dharuri¹, Lukas Endler², Vijayalakshmi Chelliah³ and Srividhya Jeyaram⁴ at October thirteenth 2008 at 12:53 a. m. and last time modified at April eighth 2016 at 3:47 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	11
events	1	constraints	0
reactions	13	function definitions	3
global parameters	35	unit definitions	0
rules	4	initial assignments	0

Model Notes

In this model the values of "free CDK, (Id: x2), "cdc25_P, (x4) "Wee1_P, (Id: y5) and "APC, (Id: y6) are assigned using the parameters describing the total concentrations totcdk (Id: c)), totcdc5, totwee1 and totAPC. So if you want to change the levels of these proteins, you need to change the values of these parameters.

¹California Institute of Technology, hdharuri@cds.caltech.edu

²EMBL-EBI, lukas@ebi.ac.uk

³EMBL-EBI, viji@ebi.ac.uk

⁴Indiana University School of Informatics, USA, sjeyaram@indiana.edu

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2010 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

	racio 2. Froperates of all compartments.						
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains eleven species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x1	cyclin	cell	$\text{mol} \cdot l^{-1}$		
x2	free CDK	cell	$\text{mol} \cdot 1^{-1}$		
x3	MPF	cell	$\text{mol} \cdot 1^{-1}$		
x4	cdc25_P	cell	$\text{mol} \cdot 1^{-1}$		
x5	Wee1	cell	$\text{mol} \cdot 1^{-1}$		
x6	APC_P	cell	$\text{mol} \cdot l^{-1}$		
m	cell_mass	cell	$\text{mol} \cdot l^{-1}$		
y4	cdc25	cell	$\text{mol} \cdot l^{-1}$		
у5	Wee1_P	cell	$\text{mol} \cdot 1^{-1}$		\square
у6	APC	cell	$\text{mol} \cdot 1^{-1}$		
Pre_MPF	Pre_MPF	cell	$\text{mol} \cdot 1^{-1}$	\Box	

5 Parameters

This model contains 35 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value U	Unit Constant
vf	vf	0.215	Ø
kf	kf	1.000	\mathbf{Z}
kc	kc	0.050	$\overline{\mathbf{Z}}$
Вс	Bc	3.500	$\overline{\mathbf{Z}}$
kd	kd	0.200	$\overline{ u}$
B2	B2	3.300	$\overline{\mathbf{Z}}$
vM1	vM1	0.700	$\overline{\mathscr{L}}$
a1	a1	1.200	$\overline{\mathbf{Z}}$
Ka	Ka	0.500	$\overline{ u}$
j1	j1	0.010	$\overline{ u}$
B1	B1	5.000	$\overline{\checkmark}$
$vM1_2$	v'M1	0.550	$\overline{ u}$
j1_2	j'1	0.010	
vM2	vM2	0.410	$\overline{ u}$
a2	a2	1.000	$\overline{\checkmark}$
j2	j2	0.010	
vM2_2	v'M2	1.000	
j3	j'3	0.010	
j2_2	j'2	0.010	\square
vM3	vM3	1.000	
j3_2	j3	0.010	
vM3_2	v'M3	1.000	
В3	В3	1.000	\square
vM4	vM4	0.700	\mathbf{Z}
a4	a4	2.000	\mathbf{Z}
tau	tau	5.000	\mathbf{Z}
j4	j4	0.010	\mathbf{Z}
$vM4_2$	v'M4	1.000	\mathbf{Z}
$j4_{-}2$	j'4	0.010	\square
mu	mu	0.010	
a	a	10.000	\square
totcdc25	totcdc25	1.000	\square
totwee1	totwee1	1.000	\square
totAPC	totAPC	1.000	
С	totcdk	1.100	

6 Function definitions

This is an overview of three function definitions.

6.1 Function definition Mass_Action_0

Name Mass_Action_0

Argument k1

Mathematical Expression

k1 (1)

6.2 Function definition Mass_Action_2

Name Mass_Action_2

Arguments k1, S1, S2

Mathematical Expression

$$k1 \cdot S1 \cdot S2$$
 (2)

6.3 Function definition Mass_Action_1

Name Mass_Action_1

Arguments k1, S1

Mathematical Expression

$$k1 \cdot S1$$
 (3)

7 Rules

This is an overview of four rules.

7.1 Rule x4

Rule x4 is an assignment rule for species x4:

$$x4 = totcdc25 - [y4] \tag{4}$$

7.2 Rule y5

Rule y5 is an assignment rule for species y5:

$$y5 = totwee1 - [x5] \tag{5}$$

7.3 Rule y6

Rule y6 is an assignment rule for species y6:

$$y6 = totAPC - [x6] \tag{6}$$

7.4 Rule x2

Rule x2 is an assignment rule for species x2:

$$x2 = c - [Pre_MPF] - [x3]$$

$$(7)$$

8 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

8.1 Event event_0

Name cell_division

Trigger condition

$$[x3] < 0.2$$
 (8)

Assignment

$$m = \frac{[m]}{2} \tag{9}$$

9 Reactions

This model contains 13 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id Name	Reaction Equation	SBO
1	cyclinsythesis cyclin synthesis	$\emptyset \longrightarrow x1$	
2	cyclincdkcomplexf oydat/ċdk complex formation	$x1 + x2 \longrightarrow Pre_MPF$	
3	cyclindegradationcyclin degradation	$x1 \xrightarrow{x6} \emptyset$	
4	MPFdissociation MPF cyclin subunit degradation	$x3 \xrightarrow{x6} x2$	
5	PreMPFMPFtransitiBme-MPF-> MPF transition	$Pre_MPF \xrightarrow{X4} x3$	
6	MPFPreMPFtransiti MP F-> Pre-MPF transition	$x3 \xrightarrow{x5} Pre_MPF$	
7	cdc25phosphorylatiom25 phosphorylation	$y4 \xrightarrow{m, x3} x4$	
8	cdc25dephosphoryladi25ndephosphorylation	$x4 \longrightarrow y4$	
9	wee1dephosphorylation dephosphorylation	$y5 \longrightarrow x5$	
10	wee1phosphorylativme1 phosphorylation	$x5 \xrightarrow{x3, m} y5$	
11	_2 APC phosphorylation	$y6 \xrightarrow{m, x3} x6$	
12	APCdephosphorylatAAAC dephosphorylation	$x6 \longrightarrow y6$	
13	cellmass cell growth	$\emptyset \longrightarrow m$	

9.1 Reaction cyclinsythesis

This is an irreversible reaction of no reactant forming one product.

Name cyclin synthesis

Reaction equation

$$\emptyset \longrightarrow x1 \tag{10}$$

Product

Table 6: Properties of each product.

Id	Name	SBO
x1	cyclin	

Kinetic Law

Derived unit not available

$$v_1 = \text{Mass_Action_O}(\text{vf})$$
 (11)

$$Mass_Action_0(k1) = k1$$
 (12)

9.2 Reaction cyclincdkcomplexformation

This is an irreversible reaction of two reactants forming one product.

Name cyclin/cdk complex formation

Reaction equation

$$x1 + x2 \longrightarrow Pre_MPF$$
 (13)

Reactants

Table 7: Properties of each reactant.

Id	Name	SBO
x1	cyclin	
x2	free CDK	

Product

Table 8: Properties of each product.

Id	Name	SBO
Pre_MPF	Pre_MPF	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{Mass_Action_2}(kf, [x1], [x2])$$

$$\tag{14}$$

$$Mass_Action_2(k1, S1, S2) = k1 \cdot S1 \cdot S2$$
 (15)

9.3 Reaction cyclindegradation

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name cyclin degradation

Reaction equation

$$x1 \xrightarrow{x6} \emptyset$$
 (16)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
x1	cyclin	

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
х6	APC_P	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = [x1] \cdot (kc + Bc \cdot [x6]) \tag{17}$$

9.4 Reaction MPFdissociation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name MPF cyclin subunit degradation

Reaction equation

$$x3 \xrightarrow{x6} x2$$
 (18)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
х3	MPF	

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
x6	APC_P	

Product

Table 13: Properties of each product.

Id	Name	SBO
x2	free CDK	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = kd \cdot (1 + B2 \cdot [x6]) \cdot [x3] \tag{19}$$

9.5 Reaction PreMPFMPFtransition

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Pre-MPF -> MPF transition

Reaction equation

$$Pre_MPF \xrightarrow{x4} x3 \tag{20}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Pre_MPF	Pre_MPF	

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
x4	cdc25_P	

Product

Table 16: Properties of each product.

Id	Name	SBO
хЗ	MPF	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = vM1 \cdot \left(1 + \frac{a1 \cdot [x4]}{Ka + [x4]}\right) \cdot \frac{[Pre_MPF]}{j1 + [Pre_MPF]}$$
 (21)

9.6 Reaction MPFPreMPFtransition

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name MPF -> Pre-MPF transition

Reaction equation

$$x3 \xrightarrow{x5} Pre_MPF$$
 (22)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
хЗ	MPF	

Modifier

Table 18: Properties of each modifier.

Id	Name	SBO
х5	Wee1	

Product

Table 19: Properties of each product.

Id	Name	SBO
Pre_MPF	Pre_MPF	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = vM1.2 \cdot \left(1 + \frac{B1 \cdot [x5]}{Ka + [x5]}\right) \cdot \frac{[x3]}{j1.2 + [x3]}$$
 (23)

9.7 Reaction cdc25phosphorylation

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name cdc25 phosphorylation

Reaction equation

$$y4 \xrightarrow{m, x3} x4$$
 (24)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
у4	cdc25	

Modifiers

Table 21: Properties of each modifier.

Id	Name	SBO
m x3	cell_mass MPF	

Product

Table 22: Properties of each product.

Id	Name	SBO
x4	cdc25_P	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = vM2 \cdot \left(1 + \frac{a2 \cdot [m] \cdot [x3]}{Ka + [m] \cdot [x3]}\right) \cdot \frac{1 - [x4]}{j2 + 1 - [x4]}$$
 (25)

9.8 Reaction cdc25dephosphorylation

This is an irreversible reaction of one reactant forming one product.

Name cdc25 dephosphorylation

Reaction equation

$$x4 \longrightarrow y4$$
 (26)

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
x4	cdc25_P	

Product

Table 24: Properties of each product.

Id	Name	SBO
y4	cdc25	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{\text{vM2}_2 \cdot [\text{x4}]}{\text{j2}_2 + [\text{x4}]} \tag{27}$$

9.9 Reaction weeldephosphorylation

This is an irreversible reaction of one reactant forming one product.

Name weel dephosphorylation

Reaction equation

$$y5 \longrightarrow x5$$
 (28)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
у5	Wee1_P	

Product

Table 26: Properties of each product.

Id	Name	SBO
x5	Wee1	

Id	Name	SBO

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vM3 \cdot \frac{1 - [x5]}{j3 \cdot 2 + 1 - [x5]}$$
 (29)

9.10 Reaction weelphosphorylation

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name weel phosphorylation

Reaction equation

$$x5 \xrightarrow{x3, m} y5$$
 (30)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
х5	Wee1	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
хЗ	MPF	
m	$cell_mass$	

Product

Table 29: Properties of each product.

Id	Name	SBO
у5	Wee1_P	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vM3.2 \cdot \left(1 + \frac{B3 \cdot [m] \cdot [x3]}{Ka + [m] \cdot [x3]}\right) \cdot \frac{[x5]}{j3 + [x5]}$$
(31)

9.11 Reaction _2

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name APC phosphorylation

Reaction equation

$$y6 \xrightarrow{m, x3} x6 \tag{32}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
у6	APC	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
m	cell_mass	
x3	MPF	

Product

Table 32: Properties of each product.

Id	Name	SBO
х6	APC_P	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vM4 \cdot \frac{\left(1 + \frac{a4 \cdot [m] \cdot delay}{Ka + [m] \cdot delay}\right) \cdot (1 - [x6])}{j4 + (1 - [x6])}$$
(33)

9.12 Reaction APCdephosphorylation

This is an irreversible reaction of one reactant forming one product.

Name APC dephosphorylation

Reaction equation

$$x6 \longrightarrow y6$$
 (34)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
x6	APC_P	

Product

Table 34: Properties of each product.

Id	Name	SBO
у6	APC	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \frac{vM4_2 \cdot [x6]}{j4_2 + [x6]} \tag{35}$$

9.13 Reaction cellmass

This is an irreversible reaction of no reactant forming one product.

Name cell growth

Reaction equation

$$\emptyset \longrightarrow m$$
 (36)

Product

Table 35: Properties of each product.

Id	Name	SBO
m	cell_mass	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \mathbf{m}\mathbf{u} \cdot [\mathbf{m}] \cdot \left(1 - \frac{[\mathbf{m}]}{\mathbf{a}}\right) \tag{37}$$

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

10.1 Species x1

Name cyclin

Initial amount 0.01 mol

This species takes part in three reactions (as a reactant in cyclincdkcomplexformation, cyclindegradation and as a product in cyclinsythesis).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 1 = |v_1| - |v_2| - |v_3| \tag{38}$$

10.2 Species x2

Name free CDK

Involved in rule x2

This species takes part in two reactions (as a reactant in cyclincdkcomplexformation and as a product in MPFdissociation). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.3 Species x3

Name MPF

Initial amount 0.1 mol

This species takes part in six reactions (as a reactant in MPFdissociation, MPFPreMPFtransition and as a product in PreMPFMPFtransition and as a modifier in cdc25phosphorylation, wee1phosphorylation, _2).

$$\frac{d}{dt}x3 = |v_5| - |v_4| - |v_6| \tag{39}$$

10.4 Species x4

Name cdc25_P

Involved in rule x4

This species takes part in three reactions (as a reactant in cdc25dephosphorylation and as a product in cdc25phosphorylation and as a modifier in PreMPFMPFtransition). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.5 Species x5

Name Wee1

Initial amount 0.1 mol

This species takes part in three reactions (as a reactant in weelphosphorylation and as a product in weeldephosphorylation and as a modifier in MPFPreMPFtransition).

$$\frac{\mathrm{d}}{\mathrm{d}t}x5 = v_9 - v_{10} \tag{40}$$

10.6 Species x6

Name APC_P

Initial amount 0.1 mol

This species takes part in four reactions (as a reactant in APCdephosphorylation and as a product in _2 and as a modifier in cyclindegradation, MPFdissociation).

$$\frac{d}{dt}x6 = |v_{11}| - |v_{12}| \tag{41}$$

10.7 Species m

Name cell_mass

Initial amount 0.473 mol

Involved in event event_0

This species takes part in four reactions (as a product in cellmass and as a modifier in cdc25phosphorylation, wee1phosphorylation, _2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{m} = |v_{13}| \tag{42}$$

Furthermore, one event influences this species' rate of change.

10.8 Species y4

Name cdc25

Initial amount 0.9 mol

This species takes part in two reactions (as a reactant in cdc25phosphorylation and as a product in cdc25dephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}y4 = v_8 - v_7 \tag{43}$$

10.9 Species y5

Name Wee1_P

Involved in rule y5

This species takes part in two reactions (as a reactant in weeldephosphorylation and as a product in weelphosphorylation). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.10 Species y6

Name APC

Involved in rule y6

This species takes part in two reactions (as a reactant in _2 and as a product in APCdephosphorylation). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.11 Species Pre_MPF

Name Pre_MPF

Initial amount 0.2 mol

This species takes part in three reactions (as a reactant in PreMPFMPFtransition and as a product in cyclincdkcomplexformation, MPFPreMPFtransition).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pre_MPF} = v_2 + |v_6| - v_5 \tag{44}$$

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany