

Eletromagnetismo EE

H504N31A-MIEInformática - 2º ano

Universidade do Minho

Teste2- Mini (duração máxima: 1h)

6 Abril 2019

Nome:_______ N^o.

1) Preencha o cabeçalho (com o seu nome e número) antes de iniciar o teste.

2) Responda na própria folha do teste

$$K = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \, N \cdot m^2 \cdot C^{-2}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} (SI)$$

$$K_m = \frac{\mu_0}{4\pi} = 10^{-7} T \cdot m \cdot A^{-1}$$

Carga elementar:
$$e = 1.6 \times 10^{-19}$$
 C;

massa do protão: $m_p = 1.67 \times 10^{-27}$ kg;

massa do electrão: $m_e = 9.1 \times 10^{-31} \text{ kg}$

P1. (1.5 valores) No circuito da figura $R_1 = 2M\Omega$, $R_2 = 3M\Omega$, $C1 = 2\mu F$, $C2 = 3\mu F$, e a *f.e.m*. da bateria é $\varepsilon = 120 \ V$. Os condensadores estão inicialmente descarregados.

- a) Determine a constante de tempo do circuito.
- b) Calcule a corrente no circuito após fechar o interruptor.
- c) Determine a tensão e a carga em cada condensador, 3s depois de fechar o interruptor.

P2. (2.5 valores) No circuito da figura, as fontes reais apresentam uma resistência interna de $r_i=1\Omega$. As suas f.e.m. são $\varepsilon_1=8V$; $\varepsilon_2=20V$; mas ε_3 é desconhecida. O valor das resistências é: $R_1=4\Omega$, $R_2=6\Omega$, $R_3=3\Omega$, e $R_4=8\Omega$. O amperímetro ideal lê 2A, com o sentido indicado.

- a) Determine o valor da intensidade da corrente que passa em cada ramo e o valor lido pelo voltímetro.
- b) Calcule a potência que a fonte 3 fornece ao circuito e a que é transformada para produzir a sua *f.e.m.*
- c) Preencha a tabela: (o número de quadrículas disponibilizado é aleatório)

Equações do circuito (versão mais simples)	I (A)		ε ₃ ()	ΔV_{ab} $()$	P ₃ ()	P_{fem3} $()$
	I_1	2 <i>A</i>				