Lab 8 Deliverables

Calibration Data

Position - x	Analog Input	ADC Input	Correct Fixed P	Measured Fixed P
0	3681	3871	0	13
0.20	3140	3422	200	194
0.40	2814	2931	400	393
0.60	2237	2399	600	607
0.80	1747	1889	800	813
1.00	1212	1419	1000	1003
1.20	812	953	1200	1191
1.40	357	441	1400	1397

Accuracy Data

True position	Measured position	Error
0.1	0.109	-0.009
0.3	0.301	0.004
0.5	0.512	-0.012
0.7	0.721	-0.004
0.9	0.897	0.003

Data Set: 5 points

Maximum Error: 0.012

Average Error: 0.006

PCB Artist Diagram

ACD/LCD Execution Time

ADC = 11 microseconds Output = 1120 microseconds

Sampling Rate

Final Code

```
// Lab8.c
// Runs on LM4F120 or TM4C123
// Student names: Eduardo Zueck Garces
// Last Modified: 4/14/2015
// Analog Input connected to PE2=ADC1
// displays on Sitronox ST7735
// PF3, PF2, PF1 are heartbeats
#include <stdint.h>
#include "ST7735.h"
#include "TExaS.h"
#include "ADC.h"
#include "print.h"
#include "tm4c123gh6pm.h"
//****the first three main programs are for debugging *****
// main1 tests just the ADC and slide pot, use debugger to see data
// main2 adds the LCD to the ADC and slide pot, ADC data is on Nokia
// main3 adds your convert function, position data is no Nokia
void DisableInterrupts(void); // Disable interrupts
void EnableInterrupts(void); // Enable interrupts
#define PF1
               (*((volatile uint32_t *)0x40025008))
#define PF2
               (*((volatile uint32_t *)0x40025010))
             (*((volatile uint32_t *)0x40025020))
#define PF3
                // 12-bit ADC
int32 t Data;
int32_t Position; // 32-bit fixed-point 0.001 cm
uint32_t ADCStatus;
uint32 t ADCMail;
// Initialize Port F so PF1, PF2 and PF3 are heartbeats
void PortF_Init(void){
       volatile unsigned long delay;
SYSCTL_RCGC2_R |= 0x035; // We activate clock PE
delay = SYSCTL_RCGC2_R;
```

```
GPIO_PORTF_AMSEL_R &= ~0x0F; // no analog
       GPIO PORTF PCTL R &= ~0x00000FFF; // regular function
       GPIO_PORTF_DIR_R |= 0x0E;
                                    // Make PF1-3 input
 GPIO_PORTF_AFSEL_R &= ~0x0F; // disable alt on PE2-0
 GPIO_PORTF_DEN_R |= 0x0E; // Enable Digital IO
       ADCMail=0;
       ADCStatus=0;
}
//Initialize our Heartbeat registers
void HeartBeat(void){
       unsigned long volatile delayE;
       GPIO_PORTC_AMSEL_R &= ~0x30; // no analog
 GPIO_PORTC_DIR_R |= 0x30; // make PC4-5 out
 GPIO_PORTC_AFSEL_R &= ~0x30; // disable alt on PC4-5
 GPIO PORTC DEN R |= 0x30; // enable digitalon PE4-5
}
//Initialize our Systick timer with 40HZ
void Systick_Init(void){
       NVIC ST CTRL R = 0;
       NVIC_ST_RELOAD_R = 2000000-1;
       NVIC ST CURRENT R = 0;
       NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF) | 0x20000000;
       NVIC_ST_CTRL_R = 0x0007;
}
//Function to convert our data
uint32_t Convert(uint32_t input){
       signed long output;
       output = 1575-(0.40344*input);
return output;
}
//Our final main program
int main(void){
TExaS Init();
                                      //Bus clock is 80 MHz
ST7735_InitR(INITR_REDTAB); //Initialize the screen
 PortF_Init();
                                                                    //Initialize PortF
 ADC Init();
                                       //Turn on ADC, set channel to 1
       HeartBeat();
                                                                            //Initialize PortC for
heartbeat
       Systick_Init();
                                                                    //Initialize our SysTick timer
```

```
EnableInterrupts();
                                                      //We enable interrupts and run with it
 while(1){
               while(ADCStatus==0){
                                                      //Wait for new data
        }
               DisableInterrupts();
               PF2 ^= 0x04;
                                                       //Heartbeat
  Data = ADCMail;
                                                      //Get Data from mail
  PF3 = 0x08;
                                               //Profile Convert
  Position = Convert(Data);
  PF3 = 0;
                                      //End of Convert Profile
  PF1 = 0x02;
                                               //Profile LCD
               if(Position>1500 | | Position<0){
               ST7735_SetCursor(0,0);
  ST7735_OutString("Out of bounds!");
  ST7735_SetCursor(6,0);
               else{
  ST7735_SetCursor(0,0);
  LCD_OutDec(Position); ST7735_OutString(" ");
  ST7735_SetCursor(6,0);
  LCD_OutFix(Position); ST7735_OutString(" cm");
  PF1 = 0;
                                      //End of LCD Profile
               ADCStatus=0;
               EnableInterrupts();
}
}
void SysTick_Handler(void){unsigned long sampling;
       GPIO_PORTC_DATA_R ^= 0x30; //Toggle HB
       sampling = ADC_In();
                                                                     //Get our new sample
       if(sampling > ADCMail+5 | | sampling < ADCMail-5){
                                                                                     //Check if new
one for MB
               ADCStatus = 1;
                                                                                     //Set mailbox
       }
       ADCMail = sampling;
                                                                             //MAAAAIL
}
```