14/9/1 DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv. 011034393 **Image available** WPI Acc No: 1997-012317/199701 XRAM Acc No: C97-003473 XRPX Acc No: N97-010652 Surface-mountable radiation-sensitive detector element - esp. photoelement for scanning unit of photoelectric position measuring device Patent Assignee: HEIDENHAIN GMBH JOHANNES (HEIJ) Inventor: SPECKBACHER P Number of Countries: 020 Number of Patents: 006 Patent Family: Date Week Patent No Kind Date Applicat No Kind A1 19961121 WO 96EP1976 19960509 199701 WO 9636999 Α **A**1 19961121 DE 1018593 Α 19960509 199701 DE 19618593 19960509 199723 EP 771475 **A**1 19970507 EP 96919747 Α WO 96EP1976 Α 19960509 DE 29623349 U1 19980326 DE 1018593 Α 19960509 199818 N DE 96U2023349 19960509 U JP 10508987 19980902 JP 96534528 Α 19960509 199845 WO 96EP1976 Α 19960509 US 5852322 Α 19981222 WO 96EP1976 Α 19960509 199907 US 97776288 Α 19970725 Priority Applications (No Type Date): DE 1018423 A 19950519 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 9636999 A1 G 29 H01L-031/0352 Designated States (National): JP US Designated States (Regional): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE DE 19618593 A1 12 H01L-031/10 EP 771475 A1 G H01L-031/0352 Based on patent WO 9636999 Designated States (Regional): AT CH DE FR GB IT LI application DE 1018593 DE 29623349 U1 25 H01L-031/10 JP 10508987 W 23 H01L-031/10 Based on patent WO 9636999 US 5852322 Α H01L-031/00 Based on patent WO 9636999 Abstract (Basic): WO 9636999 A

A radiation-sensitive detector element (1) has an active region (7) which forms a layer arrangement (3) with different charge carriers between two adjacent layer regions (5,6) and which converts incident electromagnetic radiation (hnu) into electrical signals. The position of the active region (7) relative to the two adjacent surfaces is selected, taking into account the radiation penetration depth, such that two or more contact elements (8a,8b) for connecting the detector element (1) to an evaluation circuit (100), can be mounted on a surface opposite the radiation-sensitive surface receiving the incident radiation (hnu).

Also claimed is a method of producing a radiation-sensitive detector element (1).

USE - In the scanning unit of a photoelectric position measuring device (claimed), the element (esp. photoelement) being used to detect amplitude-modulated radiation signals resulting from relative displacement of a scale graduation and a scanning plate.

THIS PAGE BLANK (USF...,

 ${\tt ADVANTAGE}$ - The element can be mounted by SMD technology and is simple and inexpensive to mfr.

Dwg.1/7

Title Terms: SURFACE; MOUNT; RADIATE; SENSITIVE; DETECT; ELEMENT; PHOTOELEMENT; SCAN; UNIT; PHOTOELECTRIC; POSITION; MEASURE; DEVICE

Derwent Class: L03; U11; U12

International Patent Class (Main): H01L-031/00; H01L-031/0352; H01L-031/10

International Patent Class (Additional): G01B-011/00; G01D-005/10;

H01L-031/0224; H01L-031/103; H01L-031/18

File Segment: CPI; EPI

Manual Codes (CPI/A-N): L04-E05

Manual Codes (EPI/S-X): U11-C18B9; U11-D01A; U12-A03

THIS PAGE BLANK (USPAL)

WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

H01L 31/0352, 31/103

A1

- (11) Internationale Veröffentlichungsnummer: WO 96/36999
- (43) Internationales

Veröffentlichungsdatum:

21. November 1996 (21.11.96)

(21) Internationales Aktenzeichen:

PCT/EP96/01976

(22) Internationales Anmeldedatum:

9. Mai 1996 (09.05.96)

(30) Prioritätsdaten:

195 18 423.8

19. Mai 1995 (19.05.95)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): DR. JOHANNES HEIDENHAIN GMBH [DE/DE]; Postfach 12 60, D-83292 Traunreut (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SPECKBACHER, Peter [DE/DE]; Blumenstrasse 3a, D-84558 Kirchweidach (DE).

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: RADIATION-SENSITIVE DETECTOR ELEMENT AND A METHOD OF PRODUCING IT

(54) Bezeichnung: STRAHLUNGSEMPFINDLICHES DETEKTORELEMENT UND VERFAHREN ZUR HERSTELLUNG DESSEL-BEN

(57) Abstract

A radiation-sensitive detector element has an active region formed between two contiguous layer regions in a layer arrangement with different charge carriers and within which incident electromagnetic radiation is converted into electrical signals. The position of the active region relative to the two contiguous surfaces is selected according to the depth of penetration of the incident radiation so as to ensure that at least two contact elements whose purpose is to connect the detector element to an evaluation circuit can be fitted on a surface opposite the radiation-sensitive surface on which the incident radiation impinges.

(57) Zusammenfassung

Ein strahlungsempfindliches Detektorelement weist einen aktiven Bereich auf, der sich zwischen zwei aneinandergrenzenden Schichtbereichen Schichtanordnung mit unterschiedlichen Ladungsträgern ausbildet und innerhalb dessen eine Umwandlung einfallender, elektromagnetischer Strahlung in elektrische Signale erfolgt. Die Lage des aktiven Bereiches relativ zu den beiden begrenzenden Oberflächen ist unter Berücksichtigung der Eindringtiefe der Strahlung derart

gewählt, daß mindestens zwei Kontaktelemente zum Anschluß des Detektorelementes an eine Auswerteschaltung an einer Oberfläche montierbar sind, die gegenüber der strahlungsempfindlichen Oberfläche liegt, auf die die einfallende Strahlung auftrifft.

10

15

Strahlungsempfindliches Detektorelement und Verfahren zur Herstellung desselben

Die vorliegende Erfindung betrifft ein strahlungsempfindliches Detektorelement sowie ein geeignetes Verfahren zur Herstellung desselben.

Bekannte strahlungsempfindliche Detektorelemente, insbesondere Photoelemente, dienen zur Umwandlung elektromagnetischer Strahlungssignale
in elektrische Signale. Für derartige Detektorelemente existieren vielfältige
Einsatzmöglichkeiten. Erwähnt sei in diesem Zusammenhang etwa der Einsatz in der Abtasteinheit von lichtelektrischen Positionsmeßeinrichtungen.
Dort dienen die vorgesehenen Detektorelemente zum Erfassen der amplitudenmodulierten Strahlungssignale, die beim Relativversatz einer MaßstabsTeilung und einer Abtastplatte resultieren. Gefordert wird ein möglichst
kompakter Aufbau der Abtasteinheit, das heißt es ergeben sich bestimmte
Anforderungen an die darin eingesetzten strahlungsempfindlichen Detektorelemente. Darüberhinaus ist auch eine möglichst einfache Fertigung der
verwendeten Bauelemente, insbesondere der Detektorelemente, wünschenswert.

Die üblichen strahlungsempfindlichen Detektorelemente weisen einen aktiven Bereich auf, in dem Schichten mit unterschiedlichen Ladungsträgerkonzentrationen benachbart angeordnet sind, beispielsweise Halbleiterschichten unterschiedlicher Dotierung. Es handelt sich hierbei etwa um pn-Übergänge, in denen innerhalb eines aktiven Bereiches bzw. innerhalb einer sich ausbildenden Raumladungszone durch die einfallende elektromagnetische Strahlung freie Ladungsträger erzeugt werden. So bestehen handelsübliche Photoelemente auf Silizium-Basis aus n-dotiertem Silizium, in dessen Oberfläche eine dünne Schicht p-dotiertes Silizium eindiffundiert wurde. Der erwähnte aktive Bereich, in dem beim Einfall von Strahlung eine Ladungsträgertrennung erfolgt, liegt hierbei knapp unterhalb der strahlungsempfindlichen Oberfläche. Um die derart erzeugten elektrischen Signale an eine Auswerteschaltung zu übermittteln, sind am Detektorelement angeordnete Kontaktelemente oder -Elektroden erforderlich.

15

20

25

30

35

10

Derart aufgebaute strahlungsempfindliche Detektorelemente können in der Abtasteinheit nunmehr beispielsweise in eine Leiterplatte integriert werden, auf der darüberhinaus auch Teile der nachgeordneten Auswerteelektronik angeordnet sind. Es bietet sich somit eine Ausbildung der Detektorelemente als sogenannte SMD-Elemente (Surface Mounted Devices) an. Hierunter versteht man miniaturisierte Bauelemente, die direkt auf die Oberfläche von Leiterplatten oder anderen Substraten montiert werden können. Bei einer derartigen Ausgestaltung der strahlungsempfindlichen Detektorelemente resultieren jedoch gewisse Anforderungen insbesondere an die Kontaktierung. Als vorteilhaft erweist sich dabei, wenn die Detektorelemente auf derjenigen Seite mit geeigneten Anschlußkontakten versehen werden, die gegenüberliegend zur strahlungsempfindlichen Oberfläche angeordnet ist. Eine solche rückseitige Kontaktierung ist bei Solarzellen beispielsweise aus der US 4,897,123 oder aber aus der EP 0 452 588 grundsätzlich bekannt. In der US 4,897,123 wird hierzu vorgeschlagen, einen der beiden Kontakte. über eine klammerartige Verbindung von der strahlungsempfindlichen Oberfläche in Richtung der gegenüberliegenden Oberfläche, d.h. zur Rückseite zu führen. Der zweite Kontakt befindet sich bereits auf dieser gegenüberliegenden Oberfläche, so daß eine Kontaktierung von der Rückseite des Bauelementes her möglich ist. Nachteilig hieran erweist sich insbesondere der

fertigungstechnische Aufwand zur Ausbildung der klammerartigen Verbindung zwischen Vorder- und Rückseite des Bauelementes.

Aus der EP 0 452 588 ist bekannt, mittels geeignet dimensionierter Durchbrüche durch den aktiven Bereich eine rückseitige Kontaktierung zu ermöglichen, d.h. die Anschlußkontakte auf derjenigen Seite vorzusehen, die der strahlungsempfindlichen Seite gegenüberliegt. Bei einer derartigen rückseitigen Kontaktierung wird aufgrund der vorgesehenen Durchbrüche die Kristall-Struktur der verschiedenen Halbleiterschichten unerwünscht beeinflußt bzw. gestört.

10

15

5

Photoelemente sowie IR-Detektorelemente mit rückseitig angeordneten Kontaktelektroden sind desweiteren aus den Veröffentlichungen R.S.Sussmann et al. "Ultra-Low-Capacitance Flip-Chip-Bonded GalnAs PIN Photodetector For Long-Wavelentgh High-Data-Rate Fibre-Optic Systems", Electronics Letters July 1985 Vol. 21, No. 14, S. 593-595 sowie "SDI needs Alter detector's mission", Photonics Spectra, Januar 1986, S. 86, 88 bekannt. Details zur Herstellung derartiger Detektorelemente finden sich in diesen Veröffentlichungen jedoch nicht.

Aufgabe der vorliegenden Erfindung ist es, ein strahlungsempfindliches Detektorelement sowie ein Verfahren zur Herstellung desselben zu schaffen, welches über die SMD-Technik montierbar und einfach bzw. kostengünstig zu fertigen ist. Gefordert ist dabei insbesondere eine Möglichkeit zur Kontaktierung auf der Seite, die gegenüberliegend zu derjenigen Oberfläche angeordnet ist, auf die die einfallende Strahlung auftrifft.

Diese Aufgabe wird gelöst durch ein strahlungsempfindliches Detektorelement mit den Merkmalen des Anspruches 1.

Vorteilhafte Ausführungsformen des erfindungsgemäßen strahlungsempfindlichen Detektorelementes ergeben sich aus den Merkmalen in den von Anspruch 1 abhängigen Ansprüchen.

Ein Verfahren zur Herstellung eines strahlungsempfindlichen Detektorelementes wird durch die Maßnahmen in Anspruch 15 angegeben. Vorteilhafte Ausführungsformen des erfindungsgemäßen Herstellungsverfahrens ergeben sich aus den Maßnahmen in den von Anspruch 15 abhängigen Ansprüchen.

Die erfindungsgemäße Ausgestaltung des strahlungsempfindlichen Detektorelementes ermöglicht nunmehr die SMD-Montage auf einer Leiterplatte, da eine Kontaktierung des Detektorelementes von der Rückseite her möglich ist, d.h. von derjenigen Seite, die gegenüberliegend zur strahlungsempfindichen Seite angeordnet ist. Im Fall des Einsatzes des Detektorelementes innerhalb der Abasteinheit einer lichtelektrischen Positionsmeßeinrichtung lassen sich somit die erwähnten Anforderungen hinsichtlich des gewünschten geringen Platzbedarfes erfüllen.

Desweiteren ergeben sich Vorteile bei der Massenfertigung derartiger Bauelemente, wenn diese in sogenanten Batch-Prozessen analog zur Halbleiter-Fertigung hergestellt werden können. Hierbei werden auf einem einzigen Trägersubstrat, z.B. aus Silizium, eine große Anzahl identischer Bauelemente gleichzeitig fertigen.

Weitere Vorteile sowie Einzelheiten der erfindungsgemäßen Lösung erge-20 ben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele anhand der beiliegenden Zeichnungen.

Dabei zeigt

25	Figur 1	eine erstes Ausführungsbeispiel des erfindungsgemäßen strahlungsempfindlichen Detektorelementes;
30	Figur 2a-2d	jeweils einen Verfahrensschritt zur Herstellung des Detektorelementes aus Figur 1;
	Figur 3	eine zweite Ausführungsform des erfindungs- gemäßen strahlungsempfindlichen Detek- torelementes;

30

35

	Figur 4	eine dritte Ausführungsform des erfindungs- gemäßen strahlungsempfindlichen Detek- torelementes;
5	· Figur 5a	eine vierte Ausführungsform des erfindungs- gemäßen strahlungsempfindlichen Detek- torelementes;
10	Figur 5b	die Ausführung der Kontaktierung in der Ausführungsform der Figur 5a;
	Figur 6	eine fünfte Ausführungsform des erfindungs- gemäßen strahlungsempfindlichen Detek- torelementes;
15	Figur 7a-f	jeweils einen Verfahrensschritt zur Herstellung des Detektorelementes aus Figur 6.
20	lungsempfindlichen Detekto lung. Dieses umfaßt eine T (3) mit mehreren unterschi	Ausführungsform des erfindungsgemäßen strah- orelementes (1) in einer seitlichen Schnittdarstel- rägerstruktur (2), auf der eine Schichtanordnung edlichen Schichten (5, 6) aufgebracht ist, im dar- oriel mit zwei verschiedenen Schichten (5, 6). Die

gestellten Ausführungsbeispiel mit zwei verschiedenen Schichten (5, 6). Die Oberseite des Detektorelementes (1) ist mit zwei Kontaktelementen (8a, 8b) versehen. Als Material für die Kontaktelemente (8a, 8b) ist in der dargestellten Variante Gold vorgesehen.

Die zu detektierende elektromagnetische Strahlung (hv) beaufschlagt demzufolge in der Darstellung der Figur 1 die Unterseite des Detektorelementes (1), d.h. die Unterseite fungiert als eigentliche strahlungsempfindliche Fläche. Die Kontaktelemente (8a, 8b) zur Verbindung des Detektorelementes (1) mit einer schematisiert dargestellten, nachgeordneten Auswerteschaltung (100) sind hingegen an der Oberseite vorgesehen, also an derjenigen Seite, die gegenüberliegend zur strahlungsempfindlichen Seite angeordnet ist. Diese Anordnung eignet sich wie vorab erläutert insbesondere zur gewünschten SMD-Montage des Bauelementes auf einer Leiterplatte und wird

10

15

20

35

durch die nachfolgend beschriebenen, erfindungsgemäßen Maßnahmen ermöglicht.

Die auf der Trägerstruktur (2) befindliche Schichtanordnung (3) umfaßt zwei aneinandergrenzende Schichten (5, 6) bzw. Schichtbereiche, in denen unterschiedliche Ladungsträger jeweils in definierter Konzentration vorhanden sind. Als untere Schicht (5) ist eine n-dotierte Silizium-Halbleiterschicht vorgesehen, darüber befindet sich eine p-dotierte Silizium-Halbleiterschicht (6). Im Grenzbereich zwischen den beiden Schichten (5, 6) bildet sich eine Sperrschicht aus, die nachfolgend als aktiver Bereich (7) bezeichnet wird und die in der Darstellung der Figur 1 vergrößert eingezeichnet ist. Im aktiven Bereich (7) der Schichtanordnung (3) resultiert beim Einfall der elektromagnetischen Strahlung (hv) eine Erzeugung von Ladungsträgerpaaren (9a, 9b), die wiederum als elektrische Signale in der nachgeordneten Auswerteschaltung (100) detektiert werden können. Hierzu sind die beiden Halbleiterschichten (5, 6) auf der Oberseite mit den bereits erwähnten Kontaktelementen (8a, 8b) versehen.

Unterhalb der Schichtanordnung (3) mit den beiden verschieden dotierten Schichten (5, 6) ist noch eine weitere Schicht (4) vorgesehen, die als SiO₂-Schicht ausgebildet ist und deren Funktion im Verlauf der Beschreibung noch näher erläutert wird. An dieser Stelle sei lediglich erwähnt, daß diese Schicht (4) aufgrund der Einfallsrichtung der zu detektierenden Strahlung (hv) selbstverständlich durchlässig für die jeweilige Strahlungs-Wellenlänge λ sein muß.

Bei bekannten strahlungsempfindlichen Detektorelementen bzw. Photoelementen trifft die einfallende Strahlung (hv) üblicherweise von der entgegengesetzten Seite auf das Bauelement, d.h. auf der Seite der in der Regel dünneren der beiden Halbleiter-Schichten (6) auf, weshalb eine Kontaktierung von der Rückseite und damit die gewünschte SMD-Montage nicht möglich ist.

Erfindungsgemäß ist deshalb nunmehr vorgesehen, die Schichtanordnung (3) so zu dimensionieren, daß das Detektorelement (1) von der eigentlichen "Rückseite" mit der zu detektierenden Strahlung (hv) beaufschlagt werden kann. Die elektromagnetische Strahlung (hv) trifft demzufolge zunächst auf

die dickere (5) der beiden Halbleiterschichten des pn-Überganges, bevor im aktiven Bereich (7) die Erzeugung von Ladungsträgern (9a, 9b) erfolgt. Hierzu muß insbesondere die Lage des aktiven Bereich (7) des strahlungsempfindlichen Detektorelementes (1) relativ zur stahlungsempfindlichen Oberfläche definiert eingestellt werden. Zur definierten Einstellung der räumlichen Ausdehnung bzw.. Lage des aktiven Bereiches (7) relativ zu den begrenzenden Oberflächen werden bevorzugterweise die Dotierungskonzentrationen in den beiden aneinandergrenzenden Schichten (5, 6) variiert. Je nach nach gewählter Konzentration bildet sich der aktive Bereich (7) geeignet aus.

Die Eindringtiefe der zu detektierenden Strahlung (hv) muß demzufolge ausreichen, um die Ladungsträgertrennung im aktiven Bereich (7) zu ermöglichen, auch wenn zunächst die dickere (5) der beiden Halbleiterschichten (5, 6) durchtreten wird, d.h. der Strahlungseinfall aus dieser Richtung erfolgt. Im dargestellten Ausführungsbeispiel der Figur 1 wurde hierzu die Dicke d der Schichtanordnung (3) derart dünn gewählt, daß die erwähnten Voraussetzungen erfüllt sind, d.h. die Ladungsträgertrennung im aktiven Bereich (7) erfolgt. Der aktive Bereich (7) nimmt in dieser Ausführungsform demzufolge fast die gesamte Dicke der Schichtanordnung (3) ein.

Da die unterhalb der Schichtanordnung (3) vorgesehene Schicht (4) transparent für die einfallende Strahlung (hv) ausgelegt ist, ist deren Dicke in diesem Zusammenhang von untergeordneter Bedeutung.

Bei einer zu detektierenden Wellenlänge von 830 nm ergibt sich auf Grundlage dieser Überlegungen bei den gewählten Materialien eine Schichtdicke d der beiden Halbleiterschichten (5, 6) in der Größenordnung 2-5 µm. Der aktive Bereich (7) bildet sich demzufolge in dieser Ausführungsform entsprechend der Darstellung nach Figur 1 nahezu in der gesamten Schichtanordnung (3) aus.

30

35

15

20

25

Analog hierzu ändern sich selbstverständlich die zu wählenden Parameter mit anderen Strahlungswellenlängen bzw. anderen Materialien. So ist es etwa auch möglich, dickere Schichtanordnungen einzusetzen, bei denen der aktive Bereich nicht die gesamte Schichtdicke ausmacht, sondern relativ zur strahlungsempfindlichen Oberfläche in Abhängigkeit der Strahlungswellenlänge passend eingestellt wird. Entscheidend ist wiederum, daß die Ein-

dringtiefe der zu detektierenden Strahlung auf jeden Fall ausreicht, um durch die dickere Schicht hindurch in den aktiven Bereich bzw. in die sich ausbildende Sperrschicht oder Raumladungszone der benachbart angeordneten Schichten zu gelangen.

5

10

15

Zur Ermittlung der geeigneten Lage des aktiven Bereiches bzw. Dicken der Schichtanordnung ist auch in anderen Fällen die wellenlängenabhängige Absorptionscharakteristik dieser Materialien heranzuziehen. In diesem Zusammenhang sei beispielsweise auf eine entsprechende graphische Darstellung dieser Zusammenhänge für verschiedene geeignete Materialien in S.M. Sze, Physics of Semiconductor Devices, 2nd edition, New York 1981, S. 750, Figur 5 verwiesen.

Diese Überlegungen gelten selbstverständlich auch für andere ÜbergangsArten bei strahlungsempfindlichen Detektorelementen, also nicht nur für
reine Halbleiter-Halbleiter-Übergänge, sondern beispielsweise auch für
Schottky-Kontakte mit Metall-Halbleiter-Übergängen. Ebenso können
selbstverständlich auch andere Halbleitermaterialien gewählt werden, wie
GaAs. InP usw.

20

25

Um die Dicke d der Schichtanordnung (3) bzw. die Dicke der beiden Halbleiterschichten (5, 6) derart dünn einstellen zu können, erweisen sich für das in Figur 1 dargestellte Ausführungsbeispiel bestimmte fertigungstechnische Maßnahmen als vorteilhaft. So ist vorgesehen, daß die beiden Halbleiterschichten (5, 6) bzw. der aktive Bereich (7) durch eine Trennschicht (4) von der Trägerstruktur (2) separiert sind. Wie bereits angedeutet, ist die Trennschicht als SiO_2 - Schicht ausgebildet, die für die zu detektierende Wellenlänge von 830 nm durchlässig ist.

30 Bei der nachfolgend anhand der Figuren 2a-2d erläuterten Fertigung des erfindungsgemäßen Detektorelementes (1) fungiert diese Trennschicht (4) als Ätzstopschicht. Die Erzeugung dieser Schicht erfolgt im sogenannten SIMOX-Verfahren (Separation by Implanted Oxygen). Zu weiteren Details dieses Verfahrens sei beispielsweise auch auf die Veröffentlichung von A.Müller et al. mit dem Titel "Ein thermoelektrischer Infrarotsensor als Beispiel für den Einsatz von SIMOX-Substraten für die Herstellung von Senso-

10

15

20

25

30

35

ren und Mikrosystemen" in SENSOR 93, Kongreßband III, S. 238-245 verwiesen.

In Figur 2a ist ein erster Verfahrensschritt des Fertigungsprozesses dargestellt, bei dem eine Sauerstoff-Implantation in ein n-dotiertes, einkristallines Si-Substrat erfolgt. Im zweiten Verfahrensschritt der Figur 2b wird der knapp unterhalb der Oberfläche eingebrachte Sauerstoff in einem mehrstündigem Prozeß bei hohen Temperaturen von ca. 1300 °C getempert. Hierbei heilen Strahlungsschäden aus und es verbindet sich der implantierte Sauerstoff mit dem Silizium zur SiO₂-Schicht, die scharfe Übergänge zum benachbarten Si-Substrat aufweist. Typische Dicken der SiO₂-Schicht liegen in der Grössenordnung mehrerer hundert nm (Nanometer). Der Abstand der eingebrachten Schicht von der darüberliegenden Oberfläche beträgt ebenfalls einige hundert nm.

Im nachfolgenden Prozeßschritt der Figur 2c dient die SiO₂ -Schicht nunmehr als Trennschicht während eines Ätzprozesses, bei dem mittels Kalilauge (KOH) der untere Teil des Si-Substrates bis zur SiO₂-Trennschicht bzw. Ätzstopschicht selektiv weggeätzt wird, so daß die auch in Figur 1 erkennbare Trägerstruktur (2) resultiert, die das komplette Detektorelement (1) mechanisch stabilisiert. Im Fall einer runden Ausführung des Detektorelementes (1) ist die Trägerstruktur (2) demnach zylinderförmig ausgebildet; selbstverständlich sind aber auch andere Geometrien realisierbar. Der zentrale, freigeätzte Bereich des Detektorelementes (1) mit der begrenzenden SiO₂-Schicht fungiert nachfolgend als strahlungsempfindliche Oberfläche. Im Bereich der darunter befindlichen Ausnehmung kann zusätzlich noch ein - nicht dargestelltes - Füllmaterial eingebracht werden, das für die zu detektierende Strahlung transparent ist und eine zusätzliche mechanische Stabilisierung das Detektorelementes (1) bewirkt.

Im Prozeßschritt der Figur 2d wird schließlich mittels bekannter Diffusionstechniken in die oberhalb der Trennschicht befindliche dünne Silizium-Schicht eine räumlich begrenzte p-dotierte Zone (6) geringer Dicke eingebracht, so daß der bereits anhand von Figur 1 beschriebene Aufbau der Schichtanordnung resultiert. Typische Dicken dieser Schicht liegen etwa im Bereich mehrerer hundert nm.

Nicht mehr dargestellt ist die abschließende Kontaktierung der Oberseite mit den Kontaktelektroden, was über bekannte Bonding-Verfahren in Form von Sputtern oder Bedampfen erfolgt.

Neben der Verwendung einer SiO₂-Schicht als Trennschicht bzw. Ätzstopschicht im erfindungsgemäßen Detektorelement, ist es desweiteren möglich, alternativ zur Sauerstoff-Implantation eine Bor-Implantation vorzunehmen, so daß sich eine entsprechende Trennschicht in Form einer Silizium-Bor-Verbindung knapp unterhalb der Oberfläche ausbildet. Bei geeignet gewählter Bor-Konzentration, etwa im Konzentrations-Bereich 10²⁰ Atome/cm³, wirkt diese Schicht dann ebenfalls als Ätzstopschicht und eine Herstellung des erfindungsgemäßen Detektorelementes ist analog zu den Fertigungsschritten in den Figuren 2a - 2d möglich.

10

15

20

25

Eine Möglichkeit zur Optimierung des erfindungsgemäßen Detektorelementes hinsichtlich der verwendeten Wellenlänge besteht desweiteren darin. wenn in einem separaten Verfahrensschritt nach der erfolgten Sauerstoffoder Bor-Implantation und dem nachfolgenden Temper-Prozess eine Siliziumschicht definierter Dicke auf die Ätzstopschicht epitaktisch aufgewachsen wird. Derart läßt sich die Dicke der Schichtanordnung und damit auch die Lage des aktiven Bereiches relativ zur strahlungsempfindlichen Oberfläche in der gewünschten Art und Weise einstellen. Dies ist insbesondere zur Anpassung der Dicke der Schichtanordnung an die Eindringtiefe der verwendeten elektromagnetischen Strahlung von Vorteil, da sich derart eine einfache Möglichkeit zur wellenlängen-optimierten Dimensionierung ergibt. Der aktive Bereich innerhalb der Schichtanordnung liegt somit immer in einer an die wellenlängenabhängige Eindringtiefe angepaßten Entfernung von der strahlungsempfindlichen Oberfläche. Die erforderliche p- und n-Dotierung der beiden Schichten erfolgt nach dem Epitaxie-Prozess durch entsprechende Diffusionsverfahren, bei denen in räumlich getrennten Bereichen der Schichtanordnung die verschiedenen Ladungsträger definiert eingebracht werden.

Darüberhinaus läßt sich eine Optimierung des erfindungsgemäßen Detektorelementes bei zu detektierender Strahlung im infraroten Spektralbereich auch dadurch erreichen, wenn in die epitaktisch aufgewachsene Siliziumschicht zusätzlich Germanium-Atome in einer definierten Konzentration eingebracht werden, so daß ein Si-Ge-Übergitter resultiert. In diesem Spektralbereich läßt sich die Detektorelement-Empfindlichkeit somit über die ent-

10

15

sprechende Konzentration an eingebrachtem Germanium vorteilhaft beeinflußen.

Eine zweite Ausführungsform des erfindungsgemäßen strahlungsempfindlichen Detektorelementes (31) sei im folgenden anhand von Figur 3 beschrieben. Analog zum ersten Ausführungsbeispiel ist die Dicke d der Schichtanordnung (33) mit den beiden unterschiedlich dotierten Halbleiterschichten (35, 36) und dem aktiven Bereich (37) derart dimensioniert, daß die strahlungsempfindliche Fläche des Detektorelementes (31) gegenüber derjenigen Fläche liegt, an der die Kontaktelemente (38a, 38b) in Form von Kontaktelektroden angeordnet sind. Es ist alternativ zur Ausführungsform aus Figur 1 jedoch nunmehr die Schichtanordnung (33) mit dem aktiven Bereich (7) als entsprechend dünne Membran ausgebildet. Die erforderliche Dotierung der Membran (33), d.h. die Ausbildung von p- und n-dotierten Schichten bzw. Bereichen ist bereits in der entsprechend den Anforderungen hergestellten Membran (33) enthalten.

Im Hinblick auf solche Halbleitermembranen sei etwa auf die Informationsschrift der Fa. *Virginia Semiconductor*, *Inc.* aus dem Mai 1992 verwiesen, in der derartige Membranen, ausgeführt als Silizium-Membranen, beschrieben werden.

20 werden.

Vorteilhaft an einer derartigen Ausführung der Schichtanordnung ist die Möglichkeit zur großflächigen und damit rationellen Fertigung der Halbleitermembranen (33) und damit auch der Detektorelemente. Grundsätzlich ist hierbei auch der Einsatz anderer Halbleiter-Membran-Materialien möglich.

25

30

Auf der der einfallenden Strahlung (hv.) zugewandten Seite des Detektorelementes (31), ist im dargestellten Ausführungsbeispiel der Figur 3 desweiteren eine transparente Passivierungsschicht (34) angeordnet. Diese Passivierungsschicht (34) dient zur Stabilisierung der elektrischen Eigenschaften der Membran (33) bzw. des Bauelementes, d.h. zum Schutz gegen verschiedenste Umwelteinflüsse. Als Passivierungsschichten (34) eignen sich beispielsweise SiO₂ oder aber Si₃N₄, die jeweils aus der Gasphase auf die entsprechende Oberfläche abgeschieden werden können.

Zur weiteren mechanischen Stabilisierung ist in dieser Ausführungsform des erfindungsgemäßen Detektorelementes (31) vorgesehen, die Membran (33)

10

15

inclusive der Passivierungsschicht (34) auf einem, z.B. zylinderförmigen, Trägerelement (32) anzuordnen. Hierbei erweist sich zudem als günstig, wenn das verwendete Trägerelement (32) den gleichen Wärmeausdehnungskoeffizienten aufweist wie die Membran (33), um eventuell auftretende mechanische Spannungen beim Erwärmen zu vermeiden. Im Fall einer Silizium-Membran (32) eignet sich hinsichtlich gleicher Wärmeausdehnungskoeffizienten demzufolge ein aus Silizium gefertigtes Trägerelement (32); alternativ hierzu wäre auch der Einsatz von Pyrex möglich.

Ferner ist eine möglichst stabile mechanische Verbindung zwischen der Membran (33) und dem Trägerelement (32) vorteilhaft, um die Stabilität des Detektorelementes (31) gegen Erschütterungen und dgl. zu gewährleisten. Ein hierfür besonders geeignete Verbindungstechnologie ist das sogenannte "Anodic Bonding", bei dem unter dem Einfluß von definierten Temperaturen und/oder elektrischen Feldern eine Verbindung mit kristallinen Übergangstrukturen realisierbar ist. Geeignete Trägermaterialien auf Silizium-Basis für ein Verbinden mit Silizium-Membranen werden etwa von der Fa. HOYA angeboten. Hierzu sei auf die Firmendruckschrift "SD - 2 Glass for Anodic Bonding" verwiesen, in der ein hierfür geeignetes Trägermaterial beschrieben wird.

20

Bei den bislang beschriebenen Ausführungsbeispielen besteht jeweils desweiteren noch die Möglichkeit, in die Schichtanordnung mit dem aktiven Bereich weitere elektronische Bauelemente in integrierter Form einzubauen, beispielsweise Verstärker-Elemente oder aber Temperatursensor-Elemente.

25

30

35

Eine dritte mögliche Ausführungsform des erfindungsgemäßen strahlungsempfindlichen Detektorelementes (41) ist in Figur 4 dargestellt. Wiederum ist erfindungsgemäß vorgesehen, die Schichtanordnung (43) mit den beiden unterschiedlich dotierten Halbleiterbereichen (45, 46) und dem aktiven Bereich (47) so zu dimensionieren, daß eine Kontaktierung auf der der Lichteinfalls-Oberfläche gegenüberliegenden Oberfläche möglich ist.

Auf einem Trägersubstrat (49), das für die zu detektierende Strahlung (hv) transparent ist, beispielsweise Glas, ist hierbei die Schichtanordnung (43) der Dicke d aufgebracht. Als Ausgangsmaterial für die Schichtanordnung (43) ist im Gegensatz zum in Figur 1 erwähnten einkristallinem oder aber amorphem Silizium nunmehr sogenanntes nano- oder mikrokristallines Sili-

15

20

25

30

35

zium vorgesehen, das in den beiden Schichten (45, 46) bzw. Schichtbereichen unterschiedlich dotiert ist. Ein derartiges Material hat im infraroten Wellenlängenbereich eine hohe spektrale Empfindlichkeit; zudem erweist es sich als hinreichend langzeitstabil. Aufgrund der definierten Einstellbarkeit der internen Kristallitstruktur läßt sich beim Herstellungsprozeß zudem die gewünschte spektrale Empfindlichkeit definiert variieren. Das Aufbringen des nano- oder mikrokristallinen Siliziums auf das Trägersubstrat (49) erfolgt durch eine Abscheidung aus der Gasphase. Zu weiteren Einzelheiten hinsichtlich dieses Materiales sei ferner auf den Konferenzbeitrag "Initial stages of microcrystalline silicon film growth" von S.Koynov et al. anläßlich der Int. Conf. on Amorph. Semicond. (Kobe, JP, Sept. '95) hingewiesen.

Im dargestellten Ausführungsbeispiel der Figur 4 ist das Trägersubstrat (49) zur weiteren mechanischen Stabilisierung außerdem noch auf einem zylinderförmigen Trägerelement (42) angeordnet.

Eines der beiden Kontaktelemente (48a) ist über eine geeignete Verbindungstechnik an der Detektorelement-Rückseite mit einem der beiden unterschiedlich dotierten Schichtbereiche (46) verbunden. Zur Kontaktierung des anderen Schichtbereiches (45) ist eine leitfähige Zwischenschichtanordnung (44) zwischen der Schichtanordnung (43) und dem Trägersubstrat (49) vorgesehen. Hierbei besteht die Zwischenschichtanordnung (44) aus einer für die zu detektierende Strahlung (hv) transparenten Indiumzinnoxid-Schicht. Typische Dicken dieser Zwischenschichtanordnung (44) liegen zwischen 30 und 200nm.

Die Zwischenschichtanordnung (44) erstreckt sich hierbei über eine Fläche, die größer als die benachbarte Fläche der Schichtanordnung (43) mit dem aktiven Bereich (47) dimensioniert ist, im dargestellten Ausführungsbeispiel also über die komplette Fläche des Trägersubstrates (49). Auf dem Kontaktierungsbereich der Zwischenschichtanordnung (44), welche über die Schichtanordnung (43) mit dem aktiven Bereich (47) hinausragt, ist die Indiumzinnoxid-Schicht (44) desweiteren mit einer darüberliegenden Haftschicht (44.1) aus Titan versehen. Auf der Haftschicht (44.1) ist das zweite Kontaktelement (48b) in Form einer Kontaktelektrode angeordnet, die beispielsweise aus Gold. Titan oder Nickel aufgedampft wurde.

30

35

Auch auf diese Art und Weise ist somit eine Kontaktierung des Detektorelementes (41) von derjenigen Oberfläche her möglich, die entgegengesetzt zur strahlungsempfindlichen Oberfläche orientiert ist.

Eine weitere Ausführungsform des erfindungsgemäßen strahlungsempfind-5 lichen Detektorelementes zeigen die Figuren 5a und 5b. Die dabei dargestellte Variante unterscheidet sich von derjenigen aus Figur 3 lediglich hinsichtlich der gewählten Art der Kontaktierung und der Form des Detektorelementes (51). So ist nunmehr vorgesehen, die beiden Kontaktelemente (58a, 58b) jeweils großflächig auf einem im Querschnitt quadratisch aus-10 gebildeten Detektorelement (51) auszuführen. Hierbei ist auf der entgegengesetzt zur Strahlungseinfalls-Seite angeordneten Oberfläche eine quadratisch ausgebildete erste Kontaktelektrode (58b) mit einem der beiden Schichtbereiche (55, 56) unterschiedlicher Dotierung verbunden. Die zweite Kontaktelektrode (58a) ist ringförmig um die erste Kontaktelektrode (58b) 15 angeordnet und mit dem zweiten Schichtbereich (55) verbunden. Durch eine derartige großflächige Kontaktieren lassen sich eventuell vorhandene, lokaliunterschiedliche Empfindlichkeiten des Detektorelementes (51) vermeiden. Selbstverständlich sind auch alternative Geometrien für die großflächig ausgeführte Kontaktelektroden möglich, etwa rotationssymmetrisch angeord-20 nete Kontaktelektroden etc...

Ein weiteres Ausführungsbeispiel des erfindungsgemäßen strahlungsempfindlichen Detektorelementes ist in Figur 6 dargestellt. Hierbei ist auf einem Trägerelement (62) eine Trennschicht (64) angeordnet, über der sich die Schichtanordnung (63) mit zwei unterschiedlich dotierten Schichtbereichen (65, 66) und dem sich in der Grenzzone ausbildenden aktiven Bereich (67) befindet. Hierbei sind zwei unterschiedlich dotierte Schichtbereiche (65, 66) vorgesehen, von denen die untere unmittelbar benachbart zur SiO₂-Ätzstopschicht angeordnet ist eine größere Grundfläche wie die darüber angeordnete, anders dotierte Schicht (66) aufweist, so daß ein rückseitig zugänglicher Kontaktierungsbereich zur Verfügung steht, wenn das darüber liegend Material entfernt wurde. Der im dargestellten Ausführungsbeispiel als p-dotierte Schicht ausgebildete Schichtbereich (65) kann dann einfach kontaktiert werden, wozu analog zum Beispiel aus Figur 4 zwischen dem leitfähigen Schichtbereich (65) und der Kontaktelektrode (68b) noch eine Haft-

15

20

25

schicht (64.1) angeordnet ist. Das zweite erforderliche Kontaktelement (68a) wird mit dem anderen Schichtbereich (66) leitend verbunden. Aufgrund der Wahl der Dicke d der Schichtanordnung (63) ist wiederum sichergestellt. daß eine Kontaktierung des Detektorelementes (61) auf der rückseitigen Oberfläche möglich ist.

Ein geeignetes Herstellungsverfahren für das in Figur 6 dargestellte Detektorelement (61) sei im folgenden anhand der Figuren 7a-e erläutert.

Zunächst wird hierzu ausgehend von einem n-dotiertem, einkristallinem Silizium-Substrat über das vorab erläuterte SIMOX-Verfahren eine SiO₂-Schicht (64) eingebracht. Anschließend wird im folgenden Schritt über einen lonenimplantationsprozess ein p-dotierter Schichtbereich (65) in einer bestimmten Tiefe unterhalb der Substratoberfläche erzeugt, die über der SiO₂-Schicht liegt. Die SiO₂-Schicht (64) übernimmt im nächsten Prozeßschritt wie vorab erläutert wiederum die Funktion einer Ätzstopschicht, d.h. im Rahmen eines Ätzprozesses wird mittels Kalilauge (KOH) der strahlungsempfindliche Oberflächenbereich des Detektorelementes (61) freigeätzt. An den Randbereichen verbleibt wie im Ausführungsbeispiel der Figur 2 eine Trägerstruktur stehen, die die mechanische Stabilität des Bauelementes erhöht. Über einen anschließenden Lithographie- und Ätzprozess wird daraufhin ein Randbereich des n-dotierten Siliziums bis hin zur p-dotierten Schicht entfernt.

Die p-dotierte und damit leitfähige Schicht (64) dient in dieser Ausführungsform demnach als ganzflächige Kontaktierungsfläche, an der ein geeignetes Kontaktelement (68b) angeordnet werden kann.

Auch in dieser Ausführungsform des erfindungsgemäßen Detektorelementes (61) ist demnach eine Kontaktierung von derjenigen Seite her möglich, die entgegengesetzt zur strahlungsempfindlichen Oberfläche orientiert ist.

Selbstverständlich lassen sich die verschiedenen erwähnten Materialien für die erfindungsgemäß dimensionierte Schichtanordnung aus den erläuterten Ausführungsbeispielen mit den unterschiedlichen Kontaktierungs-Arten kombinieren. Das gleiche gilt für die vorab erläuterten anderen Maßnahmen in den einzelnen Ausführungsbeispielen. Es ergeben sich somit eine Reihe weiterer Ausführungsformen des erfindungsgemäßen Detektorelementes.

die in der vorangehenden Beschreibung nicht explizit erwähnt wurden, aber nichtsdestotrotz auf den erfindungsgemäßen Erkenntnissen beruhen.

Ansprüche

=======

1. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) mit einem aktiven Bereich (7; 27; 37; 47; 57; 67), der sich zwischen zwei aneinandergrenzenden Schichtbereichen (5, 6; 25, 26; 35, 36; 45, 46; 55, 56; 65, 66) einer Schichtanordnung (3; 33; 43; 53; 63) mit unterschiedlichen Ladungsträgern ausbildet und innerhalb dessen eine Umwandlung einfallender, elektromagnetischer Strahlung (hv) in elektrische Signale erfolgt, wobei die Lage des aktiven Bereiches (7; 27; 37; 47; 57; 67) relativ zu den beiden begrenzenden Oberflächen unter Berücksichtigung der Eindringtiefe der Strahlung (hv) derart gewählt ist, daß mindestens zwei Kontaktelemente (8a, 8b; 38a, 38b; 48a, 48b; 58a, 58b; 68a, 68b) zum Anschluß des Detektorelementes (1; 31; 41; 51; 61) an eine Auswerteschaltung (100) an einer Oberfläche montierbar sind, die gegenüber der strahlungsempfindlichen Oberfläche liegt, auf die die einfallende Strahlung (hv) auftrifft.

15

10

5

2. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 1, wobei die Dicke (d) der Schichtanordnung (3; 33; 43; 53; 63) derart dimensioniert ist, daß die eindringende Strahlung (hv) auf jeden Fall in den aktiven Bereich (7; 27; 37; 47; 57; 67) gelangt.

20

3. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 1, wobei die Schichtanordnung (3; 33; 43; 53; 63) in Richtung der einfallenden Strahlung (hv) mit einer für die einfallende Strahlung (hv) transparenten Ätzstopschicht (4; 44; 54; 64) versehen ist.

- Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 3, wobei die Ätzstopschicht (4; 44; 54; 64) als SiO₂-Schicht ausgebildet ist.
- 5 5. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 1, wobei die Schichtanordnung (3; 33; 43; 53; 63) als epitaktisch aufgewachsene Silizium-Schicht ausgebildet ist, die mindestens zwei Schichtbereiche (5, 6; 25, 26; 35, 36; 45, 46; 55, 56; 65, 66) unterschiedlicher Dotierung aufweist.

- 6. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 5, wobei in die epitaktisch aufgewachsene Silizium-Schicht Germanium-Ionen in definierter Konzentration eingebracht sind.
- Strahlungsempfindliches Detektorelement (31) nach Anspruch 1, wobei die Schichtanordnung (33) als dünne Halbleitermembran mit definierter Dicke (d) ausgebildet ist, die Schichtbereiche (35, 36) unterschiedlicher Dotierung aufweist.
- 8. Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 1 oder 7, wobei die der einfallenden Strahlung (hv) zugewandte Oberfläche mit einer strahlungsdurchlässigen Passivierungsschicht (34) zur Stabilisierung der elektrischen Eigenschaften versehen ist.
- Strahlungsempfindliches Detektorelement (1; 31; 41; 51; 61) nach Anspruch 8, wobei die Passivierungsschicht (34) als SiO₂- oder Si₃N₄-Schicht ausgebildet ist.
- Strahlungsempfindliches Detektorelement (31) nach Anspruch 7, wobei
 die Halbleitermembran (33) auf einem Trägersubstrat (32) angeordnet ist, das den gleichen thermischen Ausdehnungskoeffizienten aufweist wie die Halbleitermembran.
- Strahlungsempfindliches Detektorelement (41) nach Anspruch 1, wobei
 die auf einem Trägersubstrat (42) angeordnete Schichtanordnung (43) mindestens eine Schicht nano- oder mikrokristalllinem Siliziums umfaßt.

- Strahlungsempfindliches Detektorelement (51; 61) nach Anspruch 1, wobei mindestens eines der Kontaktelemente (58a, 58b; 68a, 68b) als großflächiger Kontaktierungsbereich ausgebildet ist.
- 5 13. Strahlungsempfindliches Detektorelement (51; 61) nach Anspruch 12, wobei einer der beiden Schichtbereiche (55, 56; 65, 66) der Schichtanordnung (53; 63) eine größere Grundfläche aufweist als der jeweils andere Schichtbereich (55, 56; 65, 66) und der größere Schichtbereich (55, 56; 65, 66) mit einem großflächigen Kontaktierungsbereich (58a, 58b; 68a, 68b) versehen ist, welcher über ein weiteres Kontaktelement (58a, 58b; 68a, 68b) mit der nachgeordneten Auswerteschaltung verbunden ist.
- 14. Verwendung eines strahlungsempfindlichen Detektorelementes (1; 31;
 15 41; 51; 61) nach einem der vorangehenden Ansprüche in der Abtasteinheit einer lichtelektrischen Positionsmeßeinrichtung.
 - 15. Verfahren zur Herstellung eines strahlungsempfindlichen Detektorelementes (1; 41; 51; 61) mit folgenden Prozeßschritten:
 - a) Erzeugung einer Ätzstopschicht (4; 44; 54; 64) in einem definiert dotiertem Halbleiter-Substrat knapp unterhalb einer begrenzenden ersten Oberfläche:
- b) Räumlich selektives Wegätzen des unterhalb der Ätzstopschicht (4;
 44; 54; 64) vorhandenen Substratmateriales, bis die Ätzstopschicht (4;
 44; 54; 64) eine begrenzende zweite Oberfläche bildet;
- c) Erzeugung eines räumlich begrenzten Schichtbereiches (6; 46; 56;
 30 66) oberhalb der Ätzstopschicht (4; 44; 54; 64), der eine unterschiedliche Dotierung als das Halbleiter-Substrat aufweist;
 - d) Kontaktieren des Detektorelementes (1; 31; 41; 51; 61) auf einer Seite, die gegenüberliegend zur zweiten Oberfläche angeordnet ist mit mindestens zwei Kontaktelementen (8a; 8b; 48a, 48b; 58a, 58b; 68a, 68b).

- 16. Verfahren nach Anspruch 15, wobei die Erzeugung der Ätzstopschicht (4; 44; 54; 64) folgende Teilprozeßschritte umfaßt:
 - a1) Sauerstoff-Implantation in ein definiert-dotiertes Halbleiter-Substrat;

a2) Tempern des Halbleiter-Substrates zur Ausbildung einer Halbleiter-Sauerstoff-Verbindung als Ätzstopschicht (4; 44; 54; 64) mit scharf definierten Grenzen knapp unterhalb der Oberfläche des Halbleiter-Substrates.

10

17. Verfahren nach Anspruch 15, wobei der räumlich begrenzte Schichtbereich (65) mit anderer Dotierung wie das Halbleiter-Substrat als unmittelbar an die Ätzstopschicht (64) angrenzende Schicht in das Halbleiter-Substrat eingebracht wird.

15

- 18. Verfahren nach Anspruch 17, wobei zur Kontaktierung
 - d1) ein Teil des Halbleitersubstrates bis zum Schichtbereich (65) anderer Dotierung in einem Kontaktierungsbereich entfernt wird;

20

- d2) im Kontaktierungsbereich eine Haftschicht (64.1) aufgebracht wird;
- d3) auf die Haftschicht (64.1) ein Kontaktierungselement (68b) aufgebracht wird.

25

19. Verfahren nach Anspruch 15, wobei auf das Substratmaterial oberhalb der Ätzstopschicht weiteres Substratmaterial in definierter Dicke epitaktisch aufgewachsen wird.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5a

FIG. 5b

FIG. 6
66
67
68b
64.1
65
64
64
64

FIG. 7

5/5

a)

INTERNATIONAL SEARCH REPORT

PCT/EP 96/01976

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 H01L31/0352 H01L31/103

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 21 15 305 A (LICENTIA GMBH) 12 October 1972 see claims	1,2,5,7,
Α	EP 0 601 561 A (TERUMO CORP) 15 June 1994 see the whole document	1,15
A	US 4 838 952 A (DILL HANS G ET AL) 13 June 1989 see abstract	1
A	PATENT ABSTRACTS OF JAPAN vol. 007, no. 204 (E-197), 9 September 1983 & JP 58 100467 A (MATSUSHITA DENKI SANGYO KK), 15 June 1983, see abstract	1,2,15
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance. E* earlier document but published on or after the international filing date. L* document which may throw doubts on priority claim(s) or which is cited to enablish the publication date of another citation or other special reason (as specified). O* document referring to an oral disclosure, use, exhibition or other means. P* document published prior to the international filing date but later than the priority date claimed.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
10 September 1996	0 2. 10. 96
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rupwik Tel. (~31-70) 340-2040, Tx. 31 651 epo nl, Fax: (~31-70) 340-3016	Lina, F

INTERNATIONAL SEARCH REPORT

Intern al Application No PCT/EP 96/01976

C 1C		PCT/EP 96/01976
C.(Continu	Citation of document, with indication, where appropriate, of the relevant passages	Delegator des No.
	or comment, with minimation, where appropriate, of the relevant passages	Relevant to claim No.
Α .	DE 41 02 286 A (MESSERSCHMITT BOELKOW BLOHM) 6 August 1992 see the whole document	1,15
A	EP 0 444 370 A (TELEMECANIQUE) 4 September 1991 see the whole document	1,15
	EP 0 452 588 A (MITSUBISHI ELECTRIC CORP) 23 October 1991 cited in the application see the whole document	1
\	US 4 897 123 A (MITSUI KOTARO) 30 January 1990 cited in the application see the whole document	1
		•
	and the second of the second o	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No
PCT/EP 96/01976

Patent document cited in search report						Publication date	
DE-A-2115305	12-10-72	US-A- 3802924		09-04-74			
EP-A-0601561	15-06-94	JP-A-	6196727	15-07-94			
US-A-4838952	13-06-89	NONE					
DE-A-4102286	06-08-92	NONE					
EP-A-0444370	04-09-91	FR-A-	2656738	05-07-91			
EP-A-0452588	23-10-91	JP-A- JP-B- DE-D- DE-T- US-A-	4002174 8031617 69024481 69024481 5100480	07-01-92 27-03-96 08-02-96 09-05-96 31-03-92			
US-A-4897123	30-01-90	JP-A-	2000384	05-01-90			

INTERNATIONALER RECHERCHENBERICHT

ales Aktenzeichen Intern PCT/EP 96/01976

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES 1PK 6 H01L31/0352 H01L31/103

Nach der Internationalen Patentklassfikation (IPK) oder nach der nationalen Klassfikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 H01L

Recherchierte aber nicht zum Mindestprüsstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

	ICH ANGESEHENE	

	•
DE 21 15 305 A (LICENTIA GMBH) 12.Oktober 1972 siehe Ansprüche	1,2,5,7, 15
EP 0 601 561 A (TERUMO CORP) 15.Juni 1994 siehe das ganze Dokument	1,15
US 4 838 952 A (DILL HANS G ET AL) 13.Juni 1989 siehe Zusammenfassung	1
PATENT ABSTRACTS OF JAPAN vol. 007, no. 204 (E-197), 9.September 1983 & JP 58 100467 A (MATSUSHITA DENKI SANGYO KK), 15.Juni 1983, siehe Zusammenfassung	1,2,15
	1972 siehe Ansprüche EP 0 601 561 A (TERUMO CORP) 15.Juni 1994 siehe das ganze Dokument US 4 838 952 A (DILL HANS G ET AL) 13.Juni 1989 siehe Zusammenfassung PATENT ABSTRACTS OF JAPAN vol. 007, no. 204 (E-197), 9.September 1983 & JP 58 100467 A (MATSUSHITA DENKI SANGYO KK), 15.Juni 1983, siehe Zusammenfassung

X	Weitere Veröffentlichungen and der Fortsetzung von Feld C zu enthehmen
لثا	entnehmen

Siehe Anhang Patentiamilie X I

- * Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-schenen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbencht genannten Veröffentlichung belegt werden -y-soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- dem beanspruchten Priontatsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Priontätsdatum veröffentlicht worden ist und mit der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist Anmeidung nicht kollidiert, sondern nur zum Verständnis des der
- Veröffentlichung von besonderer Bedeutung die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit berühend betrachtet werden
- Veröffentlichung von besonderer Bedeutung die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist werden, wenn die veröffentlichung die sich auf eine mündliche Offenbarung.

 Veröffentlichung, die sich auf eine mündliche Offenbarung.

 veröffentlichung eine Ausstellung oder andere Maßnahmen bezieht

 Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach

 Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach

 Veröffentlichung, die Mitglied derselben Patentfamilie ist

U 2. 10. 96

Datum des Abschlusses der internationalen Recherche

Fax (- 31-70) 340-3016

Absendedatum des internationalen Recherchenberichts

10.September 1996

Bevolimischtigter Bediensteter

Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5812 Patentiaan 2 NL - 2280 HV Ripmik Tel. (- 31-70) 340-2040, Tx. 31 651 epo nl,

Lina, F

Formblett PCT/ISA/210 (Bist 2) (Jul. 1992)

INTERNATIONALER RECHERCHENBERICHT

Interns ales Aktenzeichen
PCT/EP 96/01976

	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Den Annual No
Kategorie*	Bezeichnung der Veröffentlichung, sowat erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Α .	DE 41 02 286 A (MESSERSCHMITT BOELKOW BLOHM) 6.August 1992 siehe das ganze Dokument	1,15
A	EP 0 444 370 A (TELEMECANIQUE) 4.September 1991 siehe das ganze Dokument	1,15
A	EP 0 452 588 A (MITSUBISHI ELECTRIC CORP) 23.0ktober 1991 in der Anmeldung erwähnt siehe das ganze Dokument	1
A	US 4 897 123 A (MITSUI KOTARO) 30.Januar 1990 in der Anmeldung erwähnt siehe das ganze Dokument	1
	·	
	·	

Formblett PCT/ISA-210 (Foruetzung vor. Biett 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veroffentlichung die zur seiben Patentfamilie gehören

Intern ules Aktenzeichen
PCT/EP 96/01976

Im Recherchenbericht Datum der ngeführtes Patentdokument Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
DE-A-2115305	12-10-72	US-A- 3802924		09-04-74	
EP-A-0601561	15-06-94	JP-A-	6196727	15-07-94	
US-A-4838952	13-06-89	KEINE			
DE-A-4102286	06-08-92	KEINE			
EP-A-0444370	04-09-91	FR-A-	2656738	05-07-91	
EP-A-0452588	23-10-91	JP-A- JP-B- DE-D- DE-T- US-A-	4002174 8031617 69024481 69024481 5100480	07-01-92 27-03-96 08-02-96 09-05-96 31-03-92	
US-A-4897123	30-01-90	JP-A-	2000384	05-01-90	