# Market Mix Modelling

# Objectives

- To develop a market mix model to observe the actual impact of different marketing variables over the last year.
- To recommend the optimal budget allocation for different marketing levers for the following year.
- To understand other factors/ KPIs having impact on sales.
- All these tasks to be done for 3 product sub-categories:
   Camera Accessory, Game Accessory and Home Audio.

# Solution Approach

Data
Understanding
& Preparation

EDA & Data Visualization

Feature Engineering Model Building

Future Scope

# Data Understanding & Preparation

- Read through all the datasets provided in different files.
- Handled nulls and assigned appropriate datatypes after reading different datasets.
- Order & Weather Datasets were filtered for appropriate date range.
- Imputed missing values.
- Dropped unnecessary columns.
- Outlier Treatment was done.
- Identified other data quality issues and handled them appropriately.



- Filtered order dataset for product subcategories = CameraAccessory, HomeAudio, GamingAccessory.
- Performed univariate and bi-variate analysis on all columns of the ConsumerElectronics dataset.
- Filtered rows on basis of some business rules:
  - 1. Removed the columns having high \N values.
  - 2. Removed duplicates on basis of combination of order id and order item id.
  - 3. Set GMV = MRP\* Units for the records having GMV higher than MRP \* Units.
  - 4. Dropped records for GMV = 0.
  - 5. Dropped records for MRP = 0.
  - 6. Set all the SLA columns with values < 0 to 0.
  - 7. Outlier Treatment: Took values only within range of (mean -3\* std, mean +3\* std) for all variables.
- Read ad-spend data from other file.
- Converted monthly ad-spends to daily ad-spends and eventually into weekly ad-spends. Converted given ad-spends in crores to units.
- Read weather dataset. Joined 2 files for different years and filtered for appropriate date range.
- Handled data quality issues of weather dataset and did EDA for all columns.
- Read special sales dataset & NPS dataset from the given excel file.

### Feature Engineering

- Created weeks from order date in the order dataset.
- Created weeks in weather dataset and ad-spend datasets and aggregated both to weekly level.
- We took the week number to be continuous. Therefore dataset consist of week 27-79.
- Aggregated all the datasets over weeks and joined on weeks. We divided the datasets in 3 for different sub-categories.
- Handled multi-collinearity before creating the models.

#### **Basic KPIs**

Dummy Variable for Prepaid/ COD and took fraction for prepaid to COD Ratio

List Price = GMV/ Units

Discount = (MRP - List Price)/ MRP

Flags: pay\_day, special\_sales

Weekly NPS, Weekly Ad-Spends, Weekly Mean Temperature, Weekly Mean Rainfall

#### **Advanced KPIs**

Ad-Stock Variables for each Marketing Category

Lag Variables for 1 and 2 weeks: GMV, Product MRP

Moving Averages for 2 and 3 weeks: List Price, Discount

























- Plotted ad-spends v/s ad-stocks over week for all categories. These are all in crores or 10 crores (scale is indicated on top left).
- Some of the patterns looks quite similar. These hints at strong collinearity among few categories which was validated during model creation.

# **Model Building**

- Created 1 dataset for each product sub category after creating basic features, data preparation, EDA and aggregating all the datasets to a weekly level and joined them over weeks. Final datasets had 1 aggregated row for each week.
- Used RFE after feature scaling and handling multi-collinearity for creating each models for 3 categories.
- Created Linear Model and Multiplicative models using basic KPIs.
- Created advanced KPIs on the aggregated data for each categories.
- Created Distributed Lag, Koyck and Distributed Lag Multiplicative models after feature scaling, handling multi-collinearity and doing the RFE.
- Computed training R-Square, Adjusted R-Square and Test RMSE and MSE values after keeping features having low p-value and VIF.

# Model Building: CameraAccessory

- R-Square and Adjusted R-Square shown are based training data performance.
- RMSE and MSE are test data scores.
- Linear Model have decent performance but Koyck Model has slightly better performance.
- Distributed Lag model have lowest adj. R-Square and high RMSE and MSE.
- Distributive Lag Multiplicative model have high adjusted R-Square but also have high RMSE and MSE values.
- Multiplicative model has decent performance but none of ad-spend feature.
- Hence we would use Koyck Model.

| Model                             | Variables                                           | R-Square<br>Adj. R-Square | RMSE  | MSE   |
|-----------------------------------|-----------------------------------------------------|---------------------------|-------|-------|
| Linear                            | List Price + Discount + Online<br>Marketing         | 0.501<br>0.468            | 0.565 | 0.319 |
| Multiplicative                    | Prepaid Frac + Digital + SLA                        | 0.573<br>0.545            | 0.112 | 0.012 |
| Distributed Lag                   | SLA + Discount + SLA_lag_2 + List_Price_ma_3        | 0.45<br>0.40              | 0.616 | .380  |
| Koyck                             | List Price + Discount + Online<br>Marketing_adstock | 0.520<br>0.488            | 0.090 | 0.008 |
| Distributed Lag<br>Multiplicative | List Price + Discount_ma_2 + SLA                    | 0.795<br>0.781            | 0.735 | 0.540 |

# Model Building: GamingAccessory

- R-Square and Adjusted R-Square shown are based training data performance.
- RMSE and MSE are test data scores.
- Linear Model have decent performance but Distributed Lag Model has slightly better performance.
- Multiplicative model have lowest adj. R-Square and high RMSE and MSE.
- Koyck Model have good performance with only 3 features.
- In this case we would prefer using Distributed Lag Model as it has highest Adj. R-Square and very low RMSE and MSE values. Also, it has marketing ad-stock feature.

| Model                             | Variables                                                                             | R-Square<br>Adj. R-Square | RMSE  | MSE   |
|-----------------------------------|---------------------------------------------------------------------------------------|---------------------------|-------|-------|
| Linear                            | List Price + Discount + Online<br>Marketing                                           | 0.620<br>0.595            | 0.849 | 0.721 |
| Multiplicative                    | Prepaid Frac + Product MRP +<br>Product Procurement SLA                               | 0.413<br>0.375            | 0.556 | 0.309 |
| Distributed Lag                   | SLA_lag_1 + Discount + List_Price_ma_2 + Product MRP_lag_1 + Online Marketing_adstock | 0.650<br>0.610            | 0.129 | 0.016 |
| Koyck                             | List Price + Discount + Online<br>Marketing_adstock                                   | 0.613<br>0.588            | 0.149 | 0.122 |
| Distributed Lag<br>Multiplicative | List Price + List Price_ma_2 + Prepaid Frac + Product_MRP_lag_2                       | 0.590<br>0.553            | 0.351 | 0.123 |

### Model Building: HomeAudio

- R-Square and Adjusted R-Square shown are based training data performance.
- RMSE and MSE are test data scores.
- Linear Model have decent performance but Distributed Lag and Koyck Model have slightly better performance.
- Multiplicative model have lowest adj. R-Square and high RMSE and MSE.
- Distributed Lag Multiplicative model has high Adjusted R-Square but RMSE and MSE are also higher than Koyck. This model don't have any marketing ad-stock variable as well.
- Hence, in this case we would prefer Koyck Model as it has high Adjusted R-Square and lowest RMSE and MSE.

| Model                             | Variables                                                                       | R-Square<br>Adj. R-Square | RMSE  | MSE   |
|-----------------------------------|---------------------------------------------------------------------------------|---------------------------|-------|-------|
| Linear                            | Content Marketing + Discount +<br>Online Marketing + Product<br>Procurement SLA | 0.665<br>0.632            | 0.293 | 0.086 |
| Multiplicative                    | List Price + SLA + Discount                                                     | 0.572<br>0.542            | 0.281 | 0.079 |
| Distributed Lag                   | Content Marketing_adstock + SLA + List_Price_ma_2 + GMV_lag_1 + Discount        | 0.682<br>0.642            | 0.053 | 0.002 |
| Koyck                             | Content Marketing_adstock + SLA + GMV_lag_1 + Discount + Product Procurment SLA | 0.700<br>0.662            | 0.050 | 0.002 |
| Distributed Lag<br>Multiplicative | SLA + Product MRP_lag_1 + List_Price_ma_2 + Discount_ma_2                       | 0.715<br>0.687            | 0.258 | 0.066 |

### Conclusions

#### Camera Accessory:

- Koyck models is giving List Price, Discount and Online Marketing Ad-stock as predictor variables all having positive coefficients.
- Online Marketing spending should be increased. Reduce spending in other marketing channels and those funds can be utilized in giving better discounts.
- By giving better discounts products list price should also change.

#### Gaming Accessory:

- Distributed Lag Model is giving Discount, Online Marketing Ad-stock, Product MRP Lag for 1
  week, SLA lag for 1 week and List Price Moving Average for 2 weeks as predictor features with
  MRP Lag and SLA Lag having negative coefficient and rest having positive coefficients.
- Online Marketing spending should be increased. Reduce spending in other marketing channels and those funds can be utilized in giving better discounts.
- More focus should be there to reduce the SLAs and MRP of the products and thus creating lower List Prices.

#### **Koyck Model for Camera Accessory**

|                          | coef    |
|--------------------------|---------|
|                          |         |
| const                    | -0.1815 |
| List_Price               | 0.3428  |
| discount                 | 0.3476  |
| Online marketing_adstock | 0.2399  |

#### Distrbuted Lag Model for Gaming Accessory

| coef    |
|---------|
|         |
| -0.0127 |
| 0.5958  |
| 0.3387  |
| -0.4189 |
| -0.5913 |
| 0.7366  |
|         |

### Conclusions

#### Home Audio

- Koyck models is giving SLA, Product Procurement SLA, Discount, Content Marketing Adstock and GMV Lag as predictor variables.
- Content Marketing spending should be increased. Reduce spending in other marketing channels and those funds can be utilized in giving better discounts and improving SLA and product Procurement SLAs.

#### Koyck Model for Home Audio

|                           | coef    |
|---------------------------|---------|
|                           |         |
| const                     | 0.1902  |
| sla                       | 0.2246  |
| product_procurement_sla   | -0.3385 |
| discount                  | 0.3697  |
| Content Marketing_adstock | 0.1861  |
| gmv_lag_1                 | -0.2264 |

- Most of the Marketing Channels have high co-relation among themselves.
- More funds should be allocated for Digital Marketing and Content Marketing spending which would generate better ad-stocks and boost sales.
- Funding for other channels should be reduced and that budget should be allocated towards offering discounts and providing better SLAs (both SLA and Product Procurement SLA).
- List Prices of the products and its perception (through moving average and lags) also plays significant role in their sales. So, products should be listed at competitive prices.