Computer Graphics Forward/Inverse kinematics

Outline

Animation basics:

- Forward kinematics
- Inverse kinematics

Kinematics

The study of movement without the consideration of the masses or forces that bring about the motion

Animation

Robot arm animation (click <u>here</u>)

Pixar lamp animation (click <u>here</u>)

Degrees of Freedom (Dofs)

The set of independent displacements that specify an object's pose

Degrees of Freedom (Dofs)

The set of independent displacements that specify an object's pose

 How many degrees of freedom when flying?

Degrees of Freedom (Dofs)

The set of independent displacements that specify an object's pose

 How many degrees of freedom when flying?

- So the kinematics of this

 airplane permit
 movement anywhere in
 three dimensions
 - Six
 - x, y, and z positions
 - roll, pitch, and yaw

Configuration Space vs. Work Space

- Configuration space
 - The space that defines the possible object configurations
 - Degrees of Freedom
 - The number of parameters that are necessary and sufficient to define position in configuration
- Work space
 - The space in which the object exists
 - Dimensionality
 - R³ for most things, R² for planar arms

Forward vs. Inverse Kinematics

- Forward Kinematics
 - Compute configuration (pose) given individual DOF values

- Inverse Kinematics
 - Compute individual DOF values that result in specified end effector's position

Example: Two-link Structure

Two links connected by rotational joints

Example: Two-link Structure

- Animator specifies the joint angles: $\theta_1\theta_2$
- Computer finds the position of end-effector: x

$$\mathbf{x} = \mathbf{f}(\theta_1, \theta_2)$$

Example: Two-link Structure

- Animator specifies the joint angles: $\theta_1\theta_2$
- Computer finds the position of end-effector: x

$$x = (l_1 \cos \theta_1 + l_2 \cos(\theta_2 + \theta_2))$$
$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_2 + \theta_2))$$

Forward Kinematics

Create an animation by specifying the joint angle trajectories

Forward Kinematics

A 2D lamp with 6 degrees of freedom

 $f(x, y, \theta_0, \theta_1, \theta_2, \theta_3) = T(x, y)R(\theta_0)T(0, l_0)R(\theta_1)T(l_1, 0)R(\theta_2)T(l_2, 0)R(\theta_3)p_0$

 What if an animator specifies position of endeffector?

- Animator specifies the position of end-effector: x
- Computer finds joint angles: θ₁θ₂

$$(\theta_1, \theta_2) = f^{-1}(x)$$

- Animator specifies the position of end-effector: x
- Computer finds joint angles: θ₁θ₂

Why Inverse Kinematics?

- Motion capture
- Basic tools in character animation
 - key frame generation
 - animation control
 - interactive manipulation
- Computer vision (video-based mocap)
- Robotics
- Bioinfomatics (Protein Inverse Kinematics)
- Etc.

Given end effector's positions, compute required joint angles

- In simple case, analytic solution exists
 - Use trig, geometry, and algebra to solve

Analytical solution only works for a fairly simple structure

Numerical/iterative solution needed for a complex structure

Numerical Approaches

 Inverse kinematics can be formulated as an optimization problem

Function Optimization

Finding the minimum for nonlinear functions

Given
$$F : \mathbb{R}^n \mapsto \mathbb{R}$$
. Find $\mathbf{x}^+ = \operatorname{argmin}_{\mathbf{x}} \{ F(\mathbf{x}) \}$

 How to use optimization to solve the following linear system?

$$3x + 2y = 5$$
;

$$4x - 5y = 6$$

 How to use optimization to solve the following linear system?

$$3x + 2y = 5$$
;

$$4x - 5y = 6$$

Define a function:

$$F(x,y) = (3x+2y-5)^2+(4x-5y-6)^2$$

 How to use optimization to solve the following linear system?

$$3x + 2y = 5;$$

$$4x - 5y = 6$$
Could be nonlinear equations!

Define a function:

$$F(x,y) = (3x+2y-5)^2 + (4x-5y-6)^2$$

Finding the minimum for F(x,y):

$$x^+,y^+ = \operatorname{argmin}_{x,y} (3x+2y-5)^2 + (4x-5y-6)^2$$

 How to use optimization to solve the following linear system?

$$f(x, y) = 0;$$

 $g(x,y) = 0$
Could be nonlinear equations!

Define a function:

$$F(x,y) = f(x,y)^2 + g(x,y)^2$$

Finding the minimum for F(x,y):

$$x^+,y^+= \operatorname{argmin}_{x,y} f(x,y)^2 + g(x,y)^2$$

Formulation

So how to convert the IK process into an optimization function?

Iterative Approaches

Find the joint angles θ that minimizes the distance between the hypothesized character position and user specified position

Iterative Approaches

Find the joint angles θ that minimizes the distance between the hypothesized character position and user specified position

$$\arg\min_{\theta_1,\theta_2} (l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) - c_1)^2 + (l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) - c_2)^2$$

Iterative Approaches

Mathematically, we can formulate this as an optimization problem:

$$\arg\min_{\theta} \sum_{i} [f_{i}(\theta) - c_{i}]^{2}$$

The above problem can be solved by many nonlinear optimization algorithms:

- Steepest descent
- Gauss-newton
- Levenberg-marquardt, etc

Gradient-based Optimization

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles until the solution converges:

$$\theta^{k+1} = \theta^k + \Delta \theta^k$$

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles until the solution converges:

$$\theta^{k+1} = \theta^k + \Delta \theta^k$$

How can we decide the amount of update?

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

$$\arg\min_{\Delta\theta} \sum_{i} \left[f_i(\theta^k + \Delta\theta^k) - c_i \right]^2$$

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

$$\arg\min_{\Delta\theta^k} \sum_i \left[f_i(\theta^k + \Delta\theta^k) - c_i \right]^2$$
 Taylor series expansion

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

$$\begin{split} & \arg\min_{\Delta\theta^k} \sum_i \Big[f_i(\theta^k + \Delta\theta^k) - c_i \Big]^2 & \text{Taylor series expansion} \\ & = \arg\min_{\Delta\theta^k} \sum_i \Bigg[f_i(\theta^k) + \frac{\partial f_i}{\partial \theta^k} \Delta\theta^k - c_i \Bigg]^2 & \text{rearrange} \end{split}$$

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

$$\arg\min_{\Delta\theta^k} \sum_i \Big[f_i(\theta^k + \Delta\theta^k) - c_i \Big]^2 \qquad \text{Taylor series expansion:} \\ = \arg\min_{\Delta\theta^k} \sum_i \Big[f_i(\theta^k) + \frac{\partial f_i}{\partial \theta^k} \Delta\theta^k - c_i \Big]^2 \qquad \text{rearrange}$$

Can you solve this optimization problem?

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles: $\theta^{k+1} = \theta^k + \Delta \theta^k$

$$\arg\min_{\Delta\theta^k} \sum_i \left[f_i(\theta^k + \Delta\theta^k) - c_i \right]^2 \qquad \text{Taylor series expansion}$$

$$= \arg\min_{\Delta\theta^k} \sum_i \left[f_i(\theta^k) + \frac{\partial f_i}{\partial \theta^k} \Delta\theta^k - c_i \right]^2 \qquad \text{rearrange}$$

$$= \arg\min_{\Delta\theta^k} \sum_i \left[\frac{\partial f_i}{\partial \theta^k} \Delta\theta^k - (c_i - f_i(\theta^k)) \right]^2$$

This is a quadratic function of $\Delta heta$

Optimizing an quadratic function is easy

$$\arg\min_{\Delta\theta^k} \sum_{i} \left[\frac{\partial f_i}{\partial \theta^k} \Delta \theta^k - (c_i - f_i(\theta^k)) \right]^2$$

It has an optimal value when the gradient is zero

$$\begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} & \cdots & \frac{\partial f_1}{\partial \theta_N} \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_2}{\partial \theta_2} & \cdots & \frac{\partial f_2}{\partial \theta_N} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_M}{\partial \theta_N} & \frac{\partial f_M}{\partial \theta_2} & \cdots & \frac{\partial f_M}{\partial \theta_N} \end{vmatrix} \cdot \begin{vmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \vdots \\ \Delta \theta_N \end{vmatrix} = \begin{vmatrix} c_1 - f_i(\theta_1, \dots, \theta_N) \\ c_2 - f_2(\theta_1, \dots, \theta_N) \\ \vdots \\ c_N - f_i(\theta_1, \dots, \theta_N) \end{vmatrix}$$

Optimizing an quadratic function is easy

$$\arg\min_{\Delta\theta} \sum_{i} \left[\frac{\partial f_{i}}{\partial \theta^{k}} \Delta \theta^{k} - (c_{i} - f_{i}(\theta^{k})) \right]^{2}$$

It has an optimal value when the gradient is zero

$$\begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} & \cdots & \frac{\partial f_1}{\partial \theta_N} \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_2}{\partial \theta_2} & \cdots & \frac{\partial f_2}{\partial \theta_N} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_M}{\partial \theta_N} & \frac{\partial f_M}{\partial \theta_2} & \cdots & \frac{\partial f_M}{\partial \theta_N} \end{vmatrix} \cdot \begin{vmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \Delta \vdots \\ \Delta \theta_N \end{vmatrix} = \begin{vmatrix} c_1 - f_i(\theta_1, \dots, \theta_N) \\ c_2 - f_2(\theta_1, \dots, \theta_N) \\ C_N - f_i(\theta_1, \dots, \theta_N) \end{vmatrix}$$

Linear equation!

Optimizing an quadratic function is easy

$$\arg\min_{\Delta\theta} \sum_{i} \left[\frac{\partial f_{i}}{\partial \theta^{k}} \Delta \theta^{k} - (c_{i} - f_{i}(\theta^{k})) \right]^{2}$$

It has an optimal value when the gradient is zero

$$\begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} & \cdots & \frac{\partial f_1}{\partial \theta_N} \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_2}{\partial \theta_2} & \cdots & \frac{\partial f_2}{\partial \theta_N} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_M}{\partial \theta_N} & \frac{\partial f_M}{\partial \theta_2} & \cdots & \frac{\partial f_M}{\partial \theta_N} \end{vmatrix} \cdot \begin{vmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \Delta \vdots \\ \Delta \theta_N \end{vmatrix} = \begin{vmatrix} c_1 - f_i(\theta_1, \dots, \theta_N) \\ c_2 - f_2(\theta_1, \dots, \theta_N) \\ \vdots \\ c_N - f_i(\theta_1, \dots, \theta_N) \end{vmatrix}$$

Optimizing an quadratic function is easy

$$\arg\min_{\Delta\theta} \sum_{i} \left[\frac{\partial f_{i}}{\partial \theta^{k}} \Delta \theta^{k} - (c_{i} - f_{i}(\theta^{k})) \right]^{2}$$

It has an optimal value when the gradient is zero

$$\begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} & \dots & \frac{\partial f_1}{\partial \theta_N} \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_2}{\partial \theta_2} & \dots & \frac{\partial f_2}{\partial \theta_N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_M}{\partial \theta_N} & \frac{\partial f_M}{\partial \theta_2} & \dots & \frac{\partial f_M}{\partial \theta_N} \end{vmatrix} \cdot \begin{vmatrix} \Delta \theta_1 \\ \Delta \theta_2 \\ \Delta \vdots \\ \Delta \theta_N \end{vmatrix} = \begin{vmatrix} c_1 - f_i(\theta_1, \dots, \theta_N) \\ c_2 - f_2(\theta_1, \dots, \theta_N) \\ \vdots \\ c_N - f_i(\theta_1, \dots, \theta_N) \end{vmatrix}$$

$$\Delta \theta = (J^T J)^{-1} J^T b$$

Jacobian Matrix

 Jacobian maps the velocity in joint angle space to velocities in Cartesian space

A small change of θ_1 and θ_2 results in how much change of end-effector position (x,y)

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} \\ \frac{\partial f_2}{\partial \theta_1} & \frac{\partial f_1}{\partial \theta_2} \end{vmatrix} \begin{pmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{pmatrix}$$

Jacobian Matrix

 Jacobian maps the velocity in joint angle space to velocities in Cartesian space

A small change of θ_2 results in how much change of end-effector position f=(x,y)

$$\theta_2 \Longrightarrow \theta_2 + \Delta \theta_2$$

$$x \Longrightarrow x + \Delta x$$

$$y \Longrightarrow y + \Delta y$$

 $\arg\min_{\theta_{1},\theta_{2}}(l_{1}\cos\theta_{1}+l_{2}\cos(\theta_{1}+\theta_{2})-c_{1})^{2}+(l_{1}\sin\theta_{1}+l_{2}\sin(\theta_{1}+\theta_{2})-c_{2})^{2}$

$$\arg\min_{\theta_{1},\theta_{2}} \frac{l_{1}\cos\theta_{1} + l_{2}\cos(\theta_{1} + \theta_{2}) - c_{1})^{2} + (l_{1}\sin\theta_{1} + l_{2}\sin(\theta_{1} + \theta_{2}) - c_{2})^{2}}{\downarrow}$$

$$f_{1}$$

$$\arg\min_{\theta_1,\theta_2}(l_1\cos\theta_1 + l_2\cos(\theta_1 + \theta_2) - c_1)^2 + (l_1\sin\theta_1 + l_2\sin(\theta_1 + \theta_2) - c_2)^2$$

$$f_{1} = l_{1} \cos \theta_{1} + l_{2} \cos(\theta_{1} + \theta_{2})$$

$$f_{2} = l_{1} \sin \theta_{1} + l_{2} \sin(\theta_{1} + \theta_{2})$$

$$\frac{\partial f_{1}}{\partial \theta_{1}} \frac{\partial f_{1}}{\partial \theta_{2}} \dots \frac{\partial f_{1}}{\partial \theta_{N}}$$

$$\frac{\partial f_{2}}{\partial \theta_{1}} \frac{\partial f_{2}}{\partial \theta_{2}} \dots \frac{\partial f_{2}}{\partial \theta_{N}}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\frac{\partial f_{M}}{\partial \theta_{1}} \frac{\partial f_{M}}{\partial \theta_{2}} \dots \frac{\partial f_{M}}{\partial \theta_{N}}$$

$$\arg\min_{\theta_{1},\theta_{2}}(l_{1}\cos\theta_{1}+l_{2}\cos(\theta_{1}+\theta_{2})-c_{1})^{2}+(l_{1}\sin\theta_{1}+l_{2}\sin(\theta_{1}+\theta_{2})-c_{2})^{2}$$

$$J = \begin{vmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{vmatrix}$$

$$\arg\min_{\theta_{1},\theta_{2}}(l_{1}\cos\theta_{1}+l_{2}\cos(\theta_{1}+\theta_{2})-c_{1})^{2}+(l_{1}\sin\theta_{1}+l_{2}\sin(\theta_{1}+\theta_{2})-c_{2})^{2}$$

$$J = \begin{vmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{vmatrix}$$

$$\arg\min_{\theta_{1},\theta_{2}}(l_{1}\cos\theta_{1}+l_{2}\cos(\theta_{1}+\theta_{2})-c_{1})^{2}+(l_{1}\sin\theta_{1}+l_{2}\sin(\theta_{1}+\theta_{2})-c_{2})^{2}$$

$$J = \begin{vmatrix} \frac{\partial f_1}{\partial \theta_1} = \frac{\partial (l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2))}{\partial \theta_1} \\ -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{vmatrix}$$

$$\arg\min_{\theta_{1},\theta_{2}}(l_{1}\cos\theta_{1}+l_{2}\cos(\theta_{1}+\theta_{2})-c_{1})^{2}+(l_{1}\sin\theta_{1}+l_{2}\sin(\theta_{1}+\theta_{2})-c_{2})^{2}$$

$$J = \begin{vmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \end{vmatrix} - l_2 \sin(\theta_1 + \theta_2)$$

$$I_2 \cos(\theta_1 + \theta_2)$$

$$I_2 \cos(\theta_1 + \theta_2)$$

Step 1: initialize the joint angles with θ^0

Step 2: update the joint angles:

$$\theta^{k+1} = \theta^k + 2\Delta \theta^k$$

Step size: specified by the user

When to stop

Option #1: When the change of solution from previous iteration to the current one is below a user-specified threshold.

Option #2: When the number of iteration reaches a user-specified threshold.

Option #3: either #1 or #2 is satisfied.

Iterative Approaches for IK

Mathematically, we can formulate this as an optimization problem:

$$\arg\min_{\theta} \sum_{i} [f_{i}(\theta) - c_{i}]^{2}$$

The above problem can be solved by many nonlinear optimization algorithms:

- Steepest descent
- Gauss-newton
- Levenberg-marquardt, etc

C/C++ Optimization Library

- levmar : Levenberg-Marquardt nonlinear least squares algorithms in C/C+
 - Works with/without analytical Jacobian matrix
 - Speeds up the optimization process with analytical Jacobian matrix.

http://www.ics.forth.gr/~lourakis/levmar/

Another Example

Another Example

A 2D lamp character

Forward Kinematics

Given $(x, y, \theta_0, \theta_1, \theta_2, \theta_3)$, how to compute the global position of the point A?

Forward Kinematics

A 2D lamp with 6 degrees of freedom

 $f(x, y, \theta_0, \theta_1, \theta_2, \theta_3) = T(x, y)R(\theta_0)T(0, l_0)R(\theta_1)T(l_1, 0)R(\theta_2)T(l_2, 0)R(\theta_3)p_0$

A 2D lamp with 6 degrees of freedom

 $f(x, y, \theta_0, \theta_1, \theta_2, \theta_3) = T(x, y)R(\theta_0)T(0, l_0)R(\theta_1)T(l_1, 0)R(\theta_2)T(l_2, 0)R(\theta_3)p_0$

A 2D lamp with 6 degrees of freedom

 $f(x, y, \theta_0, \theta_1, \theta_2, \theta_3) = T(x, y)R(\theta_0)T(0, l_0)R(\theta_1)T(l_1, 0)R(\theta_2)T(l_2, 0)R(\theta_3)p_0$

Human Characters

A series of transformations on an object can be applied as a series of matrix multiplications

p: position in the global coordinate

 \mathbf{x} : position in the local coordinate $(h_3, 0, 0)$

$$f = T(x_0, y_0, z_0)R(\theta_0)R(\varphi_0)R(\delta_0)T_1^0R(\theta_1)R(\varphi_1)R(\delta_1)T_2^1R(\theta_2)T_3^2R(\theta_3)R(\varphi_3)x$$

Analytical solution only works for a fairly simple structure

Iterative approach needed for a complex structure

- Is the solution unique?
- Is there always a good solution?

Ambiguity of IK

Multiple solutions

Ambiguity of IK

Infinite solutions

Failures of IK

Solution may not exist

- Additional objective
 - Minimal Change from a reference pose θ_0

- Additional objective
 - Minimal Change from a reference pose θ_0

$$\arg\min_{\theta} \sum_{i} \|f_{i}(\theta) - c_{i}\|^{2} + \lambda \|\theta - \theta_{0}\|^{2}$$

- Additional objective
 - Minimal Change from a reference pose θ_0

- Additional objective
 - Minimal Change from a reference pose θ_0
 - Naturalness $g(\theta)$ (particularly for human characters)

- Additional objective
 - Minimal Change from a reference pose θ_0
 - Naturalness $g(\theta)$ (particularly for human characters)

$$\arg\min_{\theta} \sum_{i} \|f_{i}(\theta) - c_{i}\|^{2} + g(\theta)$$

- Additional objective
 - Minimal Change from a reference pose θ_0
 - Naturalness $g(\theta)$ (particularly for human characters)

Interactive Human Character Posing

Video (click <u>here</u>)

Summary of IK

Very simple structure allows an analytic solution

 Most of complex articulated figures requires a numerical solution

- May not always get the "right" solution
 - need additional objectives