Deep learning HW1

Shanyin Tong, st3255@nyu.edu

February 13, 2021

1 Theory

1.1 Two-Layer Neural Nets

1.2 Regression Task

- (a) five steps
 - 1) Build the model to represent the architecture of the neural network in Pytorch:

$$Linear_1 \to f \to Linear_2 \to g. \tag{1}$$

2) Feed forward to get outputs/predictions: for input \boldsymbol{x} , obtain output $\hat{\boldsymbol{y}}$ through forward pass of the neural network (like composition of functions)

$$\hat{\boldsymbol{y}} = g(\operatorname{Linear}_2(f(\operatorname{Linear}_1(\boldsymbol{x})))).$$
 (2)

3) Evaluate the loss function: using data y and prediction from forward pass \hat{y} :

$$l_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|^2. \tag{3}$$

- 4) Backward pass to compute gradient: first initiate the gradient by 0, and then back propagate and accumulate the derivative information at each layer to evaluate the gradient of loss function l with respect to neural network parameter (denoted by $\frac{\partial l}{\partial w}$) using the chain rule.
- 5) Update the parameter w using the gradient obtained in step 4:

$$w = w - \eta \frac{\partial l}{\partial w},\tag{4}$$

where η is the step size.

- (b) forward pass in table 1
- (c) downward pass in table 2
- (d) For this part and the following text, I will assume $z_2 \in \mathbb{R}^r$ and use notation $z_{j,i}$ to denote the *i*th component of vector $z_j, j = 1, 2, 3$.

$$\left(\frac{\partial \mathbf{z}_2}{\partial \mathbf{z}_1}\right)_{ij} = \frac{\partial f(z_{1,i})}{\partial z_{1,j}} = \frac{\partial (z_{1,i})^+}{\partial z_{1,j}} = \begin{cases} 0, & \text{if } i \neq j \text{ or } z_{1,i} < 0, \\ 1, & \text{if } i = j \text{ and } z_{1,i} \geq 0. \end{cases} \tag{5}$$

Table 1: forward pass

Layer	Input	Output
Linear ₁	$oldsymbol{x}$	$m{W}^{(1)}m{x} + m{b}^{(1)}$
f	$W^{(1)}x + b^{(1)}$	$\left(oldsymbol{W}^{(1)} oldsymbol{x} + oldsymbol{b}^{(1)} ight)^+$
Linear ₂	$\left(oldsymbol{W}^{(1)} oldsymbol{x} + oldsymbol{b}^{(1)} ight)^+$	$m{W}^{(2)} \left(m{W}^{(1)} m{x} + m{b}^{(1)} ight)^+ + m{b}^{(2)}$
g	$m{W}^{(2)} \left(m{W}^{(1)} m{x} + m{b}^{(1)} ight)^+ + m{b}^{(2)}$	$m{W}^{(2)} \left(m{W}^{(1)} m{x} + m{b}^{(1)} ight)^+ + m{b}^{(2)}$
Loss	$W^{(2)} (W^{(1)}x + b^{(1)})^+ + b^{(2)}$	$\ \boldsymbol{W}^{(2)} \left(\boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right)^+ + \boldsymbol{b}^{(2)} - y \ ^2$

Table 2: downward pass

Parameter	Gradient
$W^{(1)}$	$oldsymbol{x} rac{\partial l}{\partial oldsymbol{\hat{y}}} rac{\partial oldsymbol{\hat{y}}}{\partial oldsymbol{z}_3} oldsymbol{W}^{(2)} rac{\partial oldsymbol{z}_2}{\partial oldsymbol{z}_1}$
$b^{(1)}$	$rac{\partial l}{\partial \hat{m{y}}} rac{\partial \hat{m{y}}}{\partial m{z}_3} m{W}^{(2)} rac{\partial m{z}_2}{\partial m{z}_1}$
$W^{(2)}$	$\left(oldsymbol{W}^{(1)}oldsymbol{x} + oldsymbol{b}^{(1)} ight)^+ rac{\partial l}{\partial \hat{oldsymbol{y}}} rac{\partial \hat{oldsymbol{y}}}{\partial oldsymbol{z}_3}$
$b^{(2)}$	$rac{\partial l}{\partial \hat{m{y}}} rac{\partial \hat{m{y}}}{\partial m{z}_3}$

where $z_{1,i} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)}$.

$$\frac{\partial \mathbf{z}_{2}}{\partial \mathbf{z}_{1}} = \operatorname{diag}\left\{\mathbb{1}_{[0,\infty)}\left(\mathbf{z}_{1}\right)\right\} \in \mathbb{R}^{r \times r},\tag{6}$$

is a diagonal matrix. Here, $z_1 = \boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)}$, diag (\cdot) builds a diagonal matrix with the input vector as the diagonal elements, $\mathbbm{1}_{[0,\infty)}(\cdot)$ is the element-wise indicator function of $[0,\infty)$, defined as:

$$\mathbb{1}_{[0,\infty)}(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$
(7)

$$\left(\frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{z}_3}\right)_{ij} = \frac{\partial g(z_{3,i})}{\partial z_{3,j}} = \frac{\partial z_{3,i}}{\partial z_{3,j}} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$
(8)

Thus,

$$\frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{z}_3} = I \in \mathbb{R}^{K \times K}. \tag{9}$$

$$\left(\frac{\partial l}{\partial \hat{\boldsymbol{y}}}\right)_{j} = \frac{\partial l_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y})}{\partial \hat{y}_{j}} = \frac{\partial ||\hat{\boldsymbol{y}} - \boldsymbol{y}||^{2}}{\partial \hat{y}_{j}} = 2(\hat{y}_{j} - y_{j}), \tag{10}$$

where $\hat{y}_j = \sum_{p=1}^r W_{jp}^{(2)} \left(\sum_{q=1}^n W_{pq}^{(1)} x_q + b_p^{(1)} \right)^+ + b_j^{(2)}$. Thus,

$$\frac{\partial l}{\partial \hat{\boldsymbol{y}}} = 2(\hat{\boldsymbol{y}} - \boldsymbol{y})^{\top} \in \mathbb{R}^{1 \times K}, \tag{11}$$

where $\hat{\pmb{y}} = \pmb{W}^{(2)} \left(\pmb{W}^{(1)} \pmb{x} + \pmb{b}^{(1)} \right)^+ + \pmb{b}^{(2)}$.

1.3 Classification

(a) Need to change f, g in the forward pass (b) with logistic sigmoid function σ , shown as below (I don't use the explicit form of σ here because it makes the formula too long) (c) is the same as before, the only change is from using different f, so we

Table 3: forward pass, where $\sigma(z) = (1 + \exp(-z))^{-1}$ (applied element-wisely)

Layer	Input	Output
Linear ₁	$oldsymbol{x}$	$m{W}^{(1)}m{x} + m{b}^{(1)}$
f	$m{W}^{(1)}m{x} + m{b}^{(1)}$	$\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)$
Linear ₂	$\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x} + oldsymbol{b}^{(1)} ight)$	$m{W}^{(2)}\sigma\left(m{W}^{(1)}m{x}+m{b}^{(1)} ight)+m{b}^{(2)}$
g	$m{W}^{(2)}\sigma\left(m{W}^{(1)}m{x}+m{b}^{(1)} ight)+m{b}^{(2)}$	$\sigma\left(oldsymbol{W}^{(2)}\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)+oldsymbol{b}^{(2)} ight)$
Loss	$\sigma\left(\boldsymbol{W}^{(2)}\sigma\left(\boldsymbol{W}^{(1)}\boldsymbol{x}+\boldsymbol{b}^{(1)}\right)+\boldsymbol{b}^{(2)}\right)$	$\ \sigma\left(\boldsymbol{W}^{(2)}\sigma\left(\boldsymbol{W}^{(1)}\boldsymbol{x}+\boldsymbol{b}^{(1)}\right)+\boldsymbol{b}^{(2)}\right)-y\ ^2$

use $\sigma(\cdot)$ to replace $(\cdot)^+$ in table 4, because the NN architecture does not change. (d) also changes for this problem,

Table 4: downward pass

Parameter	Gradient
$W^{(1)}$	$oldsymbol{x} rac{\partial l}{\partial \hat{oldsymbol{y}}} rac{\partial \hat{oldsymbol{y}}}{\partial oldsymbol{z}_3} oldsymbol{W}^{(2)} rac{\partial oldsymbol{z}_2}{\partial oldsymbol{z}_1}$
$b^{(1)}$	$rac{\partial l}{\partial \hat{m{y}}} rac{\partial \hat{m{y}}}{\partial m{z}_3} m{W}^{(2)} rac{\partial m{z}_2}{\partial m{z}_1}$
$W^{(2)}$	$\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x} + oldsymbol{b}^{(1)} ight) rac{\partial l}{\partial \hat{oldsymbol{y}}} rac{\partial \hat{oldsymbol{y}}}{\partial oldsymbol{z}_3}$
$b^{(2)}$	$rac{\partial l}{\partial \hat{m{y}}} rac{\partial \hat{m{y}}}{\partial m{z}_3}$

$$\left(\frac{\partial \mathbf{z}_{2}}{\partial \mathbf{z}_{1}}\right)_{ij} = \frac{\partial \sigma(z_{1,i})}{\partial z_{1,j}} = \frac{\partial (1 + \exp(-z_{1,i}))^{-1}}{\partial z_{1,j}}$$

$$= \begin{cases}
0, & \text{if } i \neq j, \\
\frac{\exp(-z_{1,i})}{(1 + \exp(-z_{1,i}))^{2}}, & \text{if } i = j,
\end{cases} \tag{12}$$

where $z_{1,i} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)}$. Thus,

$$\frac{\partial z_2}{\partial z_1} = \sigma'(z_1) = \operatorname{diag}\left\{\frac{\exp(-z_1)}{(1 + \exp(-z_1))^2}\right\} \in \mathbb{R}^{r \times r},\tag{13}$$

where $z_1 = W^{(1)}x + b^{(1)}$, the function exp and other operations here use elementwise evaluation. Similarly,

$$\left(\frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{z}_{3}}\right)_{ij} = \frac{\partial \sigma(z_{3,i})}{\partial z_{3,j}} = \begin{cases}
0, & \text{if } i \neq j, \\
\frac{\exp(-z_{3,i})}{(1 + \exp(-z_{3,i}))^{2}}, & \text{if } i = j,
\end{cases}$$
(14)

where
$$z_{3,i} = \sum_{p=1}^r W_{ip}^{(2)} \sigma\left(\sum_{q=1}^n W_{pq}^{(1)} x_q + b_p^{(1)}\right) + b_i^{(2)}$$
. Thus,

$$\frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{z}_3} = \sigma'(\boldsymbol{z}_3) = \operatorname{diag}\left\{\frac{\exp(-\boldsymbol{z}_3)}{(1 + \exp(-\boldsymbol{z}_3))^2}\right\} \in \mathbb{R}^{K \times K},\tag{15}$$

where $z_3 = W^{(2)} \sigma \left(W^{(1)} x + b^{(1)} \right) + b^{(2)}$. Since the loss function does not change, similar to 1.2(d),

$$\left(\frac{\partial l}{\partial \hat{\mathbf{y}}}\right)_{i} = 2(\hat{y}_{j} - y_{j}), \tag{16}$$

where $\hat{y}_j = \sigma \left(\sum_{p=1}^r W_{jp}^{(2)} \sigma \left(\sum_{q=1}^n W_{pq}^{(1)} x_q + b_p^{(1)} \right) + b_j^{(2)} \right)$. Thus,

$$\frac{\partial l}{\partial \hat{\boldsymbol{y}}} = 2(\hat{\boldsymbol{y}} - \boldsymbol{y})^{\top} \in \mathbb{R}^{1 \times K}, \tag{17}$$

where $\hat{\boldsymbol{y}} = \sigma \left(\boldsymbol{W}^{(2)} \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right) + \boldsymbol{b}^{(2)} \right).$

(b) First of all, beside the changes we obtain from using σ , the loss evaluation step of the forward pass (b) changes, because we use different loss function, The backward

Table 5: forward pass, where $\sigma(z) = (1 + \exp(-z))^{-1}$ (applied element-wisely) and $l_{BCE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{K} \sum_{i=1}^{K} -[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)].$

Layer	Input	Output
Linear ₁	$oldsymbol{x}$	$m{W}^{(1)}m{x} + m{b}^{(1)}$
f	$m{W}^{(1)}m{x} + m{b}^{(1)}$	$\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)$
Linear ₂	$\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)$	$m{W}^{(2)} \sigma \left(m{W}^{(1)} m{x} + m{b}^{(1)} ight) + m{b}^{(2)}$
g	$m{W}^{(2)}\sigma\left(m{W}^{(1)}m{x} + m{b}^{(1)} ight) + m{b}^{(2)}$	$\sigma\left(oldsymbol{W}^{(2)}\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)+oldsymbol{b}^{(2)} ight)$
Loss	$\sigma\left(\boldsymbol{W}^{(2)}\sigma\left(\boldsymbol{W}^{(1)}\boldsymbol{x}+\boldsymbol{b}^{(1)}\right)+\boldsymbol{b}^{(2)}\right)$	$l_{BCE}(\sigma\left(oldsymbol{W}^{(2)}\sigma\left(oldsymbol{W}^{(1)}oldsymbol{x}+oldsymbol{b}^{(1)} ight)+oldsymbol{b}^{(2)} ight),oldsymbol{y})$

pass (c) does not change, the elements of $\frac{\partial z_2}{\partial z_1}$ and $\frac{\partial \hat{y}}{\partial z_3}$ in (d) are the same as we discussed for using σ case (see sec 1.3(a) (13) and (15)). The only change is $\frac{\partial l}{\partial \hat{y}}$ since l changes.

$$\left(\frac{\partial l}{\partial \hat{\boldsymbol{y}}}\right)_{j} = \frac{\partial l_{BCE}(\hat{\boldsymbol{y}}, \boldsymbol{y})}{\partial \hat{y}_{j}} = \frac{\partial \frac{1}{K} \sum_{i=1}^{K} -[y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i})]}{\partial \hat{y}_{j}}
= -\frac{1}{K} \frac{\partial [y_{j} \log(\hat{y}_{j}) + (1 - y_{j}) \log(1 - \hat{y}_{j})]}{\partial \hat{y}_{j}} = -\frac{1}{K} \left[\frac{y_{j}}{\hat{y}_{i}} - \frac{1 - y_{j}}{1 - \hat{y}_{i}}\right]$$
(18)

Thus,

$$\frac{\partial l}{\partial \hat{\boldsymbol{y}}} = -\frac{1}{K} \left[\frac{\boldsymbol{y}}{\hat{\boldsymbol{y}}} - \frac{1-\boldsymbol{y}}{1-\hat{\boldsymbol{y}}} \right]^{\top} \in \mathbb{R}^{1 \times K}, \tag{19}$$

where the operations are done element-wisely.

(c) For sigmoid function $\sigma(z)=(1+\exp(-z))^{-1}$, we know its gradient $\sigma'(z)=\frac{\exp(-z)}{(1+\exp(-z))^2}=\frac{1}{2+\exp(z)+\exp(-z)}$ becomes close to 0 when |z| is large, which means the elements of $\frac{\partial \hat{y}}{\partial z_3}$ and $\frac{\partial z_2}{\partial z_1}$ is quite small. Based on table 2, this small Jacobian will leads to small gradient with respect to all parameter, especially for $\boldsymbol{W}^{(1)}$ and $\boldsymbol{b}^{(1)}$ (first few layers), because they have both $\frac{\partial \hat{y}}{\partial z_3}$ and $\frac{\partial z_2}{\partial z_1}$ inside. So the parameter $\boldsymbol{W}^{(1)}$ and $\boldsymbol{b}^{(1)}$ will not change/be update much through training, which is a waste of the layer. Thus, to make full use of the layer, the activation function $f(z)=(z)^+$ is better, because its gradient is 1 for all positive z, so the elements of $\frac{\partial z_2}{\partial z_1}$ are O(1), thus this activation function provides enough updates for the parameter in the first few layers, which helps train the neural network.