1. Wyestymuj łączny rozkład prawdopodobieństwa tych danych, zgodnie z zasadą maksymalnej wiarygodności, a następnie oblicz prawdopodobieństwo, że $P(y=\star|\text{słonecznie},\text{false})$. Do jakiej klasy zostałby przydzielony przykład (słonecznie, false) wg. klasyfikatora skonstruowanego na tym prawdopodobieństwie?

Outlook	Windy	Play?
słonecznie	false	0
słonecznie	true	0
pochmurnie	false	*
deszcz	false	*
deszcz	false	*
deszcz	true	0
pochmurnie	true	*
słonecznie	false	0
słonecznie	false	*
deszcz	false	*
słonecznie	true	*
pochmurnie	true	*
pochmurnie	false	*
deszcz	true	0

- 2. Analizując klasyfikator z poprzedniego zadania, odpowiedz na pytania:
 - Jakich rozkładów prawdopodobieństwa nie możemy się na uczyć (tj. zamodelować)?
 - Czy dostrzegasz jakieś wady zaproponowanego podejścia?
 - Ile parametrów ma ten klasyfikator?
 - ullet Zakładając klasyfikację binarną i d cech binarnych, podaj wzór na liczbę parametrów tego klasyfikatora.
- 3. Zakładając rozkład normalny cech pod warunkiem klasy:

$$P(\mathsf{x}, y) = N(\mathsf{x}|\mu_y, \Sigma_y)P(y)$$

dokonaj estymacji tego klasyfikatora zgodnie z zasadą maksymalnej wiarygodności, a następnie podaj wyrażenie na $P(+|x_1=3,x_2=0)$.

Uwaga: przy estymowaniu wariancji i kowariancji możesz użyć nieobciążonych estymatorów pomimo innego wyniku dyktowanego przez MLE.

x_1	x_2	У
1	-2	+
2	0	+
3	2	+
1	5	-
1	-5	

- 4. Analizując klasyfikator z poprzedniego zadania, odpowiedz na pytania:
 - Jakich rozkładów prawdopodobieństwa nie możemy się nauczyć (tj. zamodelować)?
 - Czy dostrzegasz jakieś wady zaproponowanego podejścia?
 - Ile parametrów ma ten klasyfikator?
 - $\bullet\,$ Zakładając klasyfikację binarną i dcech binarnych, podaj wzór na liczbę parametrów tego klasyfikatora.
- 5. Zakładając dane z pierwszego zadania wyznacz prawdopodobieństwo $P(y=\star|\text{słonecznie},\text{false})$ zgodnie z klasyfikatorem naiwnego Bayesa, a następnie odpowiedz na pytania:
 - Jakich rozkładów prawdopodobieństwa nie możemy się nauczyć (tj. zamodelować)?
 - Czy dostrzegasz jakieś wady zaproponowanego podejścia?

- Ile parametrów ma ten klasyfikator?
- Zakładając klasyfikację binarną i d cech binarnych, podaj wzór na liczbę parametrów tego klasyfikatora.
- 6. Klasyfikator naiwnego Bayesa zakłada warunkową niezależność cech. Czy warunkowa niezależność jest implikowana przez niezależność cech? Podaj kontrprzykład.
- 7. Oblicz wartość szansy tj. $\frac{p}{1-p}$ dla $p=0.5,\,p=0.2$ orazp=0.9.
- 8. Jeżeli wynik modelu liniowego g(x) będzie:
 - bliski $-\infty$ to funkcja logistyczna zwróci wartość
 - \bullet bliski ∞ to funkcja logistyczna zwróci wartość
 - równy 0 to funkcja logistyczna zwróci wartość
 - równy 2 to funkcja logistyczna zwróci wartość ok.
- 9. Próbuje się zamodelować prawdopodobieństwo ataku cybernetycznego w danym dniu przy użyciu liczby ataków z dnia poprzedniego. Otrzymano następujący model regresji logistycznej o współczynnikach b = 0.5 oraz w = 0.1. Ile wynosi prawdopodobieństwo ataku, jeżeli wczoraj było ich 5?
- 10. Przeanalizuj modele LDA, naiwnego Bayesa i regresji logistycznej w kontekście zasady minimalizacji ryzyka empirycznego. Jakie są klasy hipotez? Jak jest optymalizowana funkcja? Jaki algorytm optymalizacyjny może być stosowany?
- 11. Wykorzystując poniższe aspekty wskaż na wady i zalety podejść dyskryminacyjnych i generatywnych.
 - łatwość treningu (w sensie kosztu obliczeniowego)
 - łatwość dodania nowej klasy do już wytrenowanego klasyfikatora
 - łatwość obsługi brakujących danych
 - łatwość wykorzystania niezaetykietowanych danych podczas uczenia
 - łatwość wykorzystania przetworzonych cechy (tworzonych np. poprzez wymnażanie cech ze sobą lub wykonując na nich transformacje nieliniowe)
 - zwracanie dobrze wykalibrowanych prawdopodobieństw

