ST5215 Advanced Statistical Theory, Lecture 7

HUANG Dongming

National University of Singapore

3 Sep 2020

Overview

Last time

- Sufficiency
- Factorization theorem

Today

Minimal sufficiency

P6 in Lect 5: Existence of conditional distributions

Theorem

Suppose

- ullet X is a random n-vector on a probability space (Ω,\mathcal{F},P) , and
- Y is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .

Then there exists a function $P_{X|Y}(B \mid y)$ on $\mathcal{B}^n \times \Lambda$ such that

- $P_{X|Y}(\cdot \mid y)$ is a probability measure on $(\mathcal{R}^n, \mathcal{B}^n)$ for any fixed $y \in \Lambda$,

Remark.

- By definition, for any $B \in \mathcal{B}^n$, $P[X \in B \mid Y] := E[I_{X \in B} \mid Y]$ is a random variable on $(\Omega, \sigma(Y))$ and can be represented as $h_B(Y)$.
- This theorem ensures that for almost every fixed $y \in \Lambda$, we can find a probability measure $P_{X|Y}(\cdot \mid y)$ such that the equation $P_{X|Y}(B \mid y) = h_B(y)$ holds.

P8 in Lect 4: Properties of conditional expectation

All r.v.s. are integrable on the probability space (Ω, \mathcal{F}, P) , and \mathcal{G} is a sub- σ -field of \mathcal{F} .

- Linearity: $\mathbb{E}(aX + bY \mid \mathcal{G}) = a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(X \mid \mathcal{G})$ a.s.
- If X = c a.s. for a constant c, then $\mathbb{E}(X \mid \mathcal{G}) = c$ a.s.
- Monotonicity: if $X \leq Y$, then $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$ a.s.
- If $\mathbb{E}X^2 < \infty$, then $\{\mathbb{E}(X \mid \mathcal{G})\}^2 \leq \mathbb{E}(X^2 \mid \mathcal{G})$ a.s.
- (Fatou's lemma). If $X_n \ge 0$ for any n, then $\mathbb{E}\left(\liminf_n X_n \mid \mathcal{G}\right) \le \liminf_n \mathbb{E}\left(X_n \mid \mathcal{G}\right)$ a.s.
- (Dominated convergence theorem). If $|X_n| \leq Y$ for any n and $X_n \to_{\mathsf{a.s.}} X$, then $\mathbb{E}(X_n \mid \mathcal{G}) \to_{\mathsf{a.s.}} \mathbb{E}(X \mid \mathcal{G})$
- All the integral-inequalities we saw before have conditional versions

P12 in Lecture 4: Conditional p.d.f.

Theorem

Suppose

- X is a random n-vector, Y is a random m-vector
- (X, Y) has a p.d.f. f(x, y) w.r.t. $\nu \times \lambda$ (ν on \mathcal{B}^n , λ on \mathcal{B}^m , both σ -finite).

Let $f_Y(y) = \int f(x,y)d\nu(x)$ be the marginal p.d.f. of Y w.r.t. λ , and $A = \{y \in \mathbb{R}^m : f_Y(y) > 0\}.$

Then for any fixed $y \in A$, the p.d.f. of $P_{X|Y=y}$ w.r.t. ν is given by

$$f_{X|Y}(x \mid y) = \frac{f(x, y)}{f_Y(y)}.$$
 (1)

5/31

Furthermore, if g(x,y) is a Borel function on \mathbb{R}^{n+m} and $\mathbb{E}|g(X,Y)|<\infty$, then

$$\mathbb{E}[g(X,Y)\mid Y] = \int g(x,Y)f_{X\mid Y}(x\mid Y) \,\mathrm{d}\nu(x), a.s. \tag{2}$$

The conditional p.d.f. is given by $f_{X|Y}$

- After we proved the second equation, we can claim that **the p.d.f.** of $P_{X|Y=y}$ is given by the first equation
- Need to show: for any $B \in \mathcal{B}^n$, $P_{X|Y=y}(B) = \int_B f_{X|Y}(x \mid y) \, d\nu(x)$
- Define $g(x, y) = I_B(x)$
- Define $\psi_B(y) = \int_B f_{X|Y}(x \mid y) d\nu(x)$
- The theorem's second equation implies $E(I_B(X) \mid Y) = \psi_B(Y)$ a.s.
- By the definition of $P(X \in B \mid Y = y)$, we have $P(X \in B \mid Y = y) = \psi_B(y)$
- By the definition of $P_{X|Y=y}(B)$, we have $P_{X|Y=y}(B) = P(X \in B \mid Y=y) = \psi_B(y)$, where RHS equals to $\int_B f_{X|Y}(x \mid y) \, \mathrm{d}\nu(x)$
- Since this holds for any $B \in \mathcal{B}^n$, we conclude that the RN derivative of $P_{X|Y=v}(\cdot)$ is $f_{X|Y}(\cdot|y)$.

Recap: Sufficiency and factorization

Let X be a sample from an unknown population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations.

- A statistic T(X) is said to be *sufficient* for $P \in \mathcal{P}$ iff the conditional distribution of X given T is known (does not depend on P)
- Factorization Theorem: Further suppose that \mathcal{P} is a family of probability measures on $(\mathcal{R}^n, \mathcal{B}^n)$ dominated by a σ -finite measure ν .

Then a statistic T(X) is sufficient for $P \in \mathcal{P}$ if and only if there are nonnegative Borel functions h(x) on $(\mathcal{R}^n, \mathcal{B}^n)$ and $g_P(t)$ on the range of T such that

 $\frac{\mathrm{d}P}{\mathrm{d}\nu}(x)=g_P(T(x))h(x).$

Sufficiency of Order statistics

Let $X = (X_1, \dots, X_n)$ be i.i.d. according to an unknown continuous distribution F

- By the continuity assumptions, the X_i 's are distinct with probability 1 (Left for exercise)
- Let $T = (X_{(1)}, \dots, X_{(n)})$ where $X_{(1)} < \dots < X_{(n)}$ denotes the ordered observations
- Given T, the only possible values for X are the n! vectors $(X_{(i_1)}, \cdots, X_{(i_n)})$, where i_1, \ldots, i_n is a permutation of $1, \ldots, n$
- By symmetry, each of these has conditional probability 1/n!
- This conditional distribution is independent of F, so T is sufficient
- Generating fake samples: A random vector \tilde{X} with the same distribution as X can be obtained from T by labeling the n coordinates of T at random

Exercise

Let X be a sample from $P \in \mathcal{P}$, where \mathcal{P} is a family of distributions on the Borel σ -field on \mathcal{R}^n .

Show that if T(X) is a sufficient statistic for $P \in \mathcal{P}$ and $T = \psi(S)$, where ψ is measurable and S(X) is another statistic, then S(X) is sufficient for $P \in \mathcal{P}$

Solution.

First suppose ${\mathcal P}$ is dominated by a σ -finite measure $\nu.$

• By the factorization theorem,

$$\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(T(x))h(x)$$

where h is a Borel function of x and $g_P(t)$ is a Borel function of t

• If $T = \psi(S)$, then

$$\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(\psi(S(x)))h(x)$$

and, by the factorization theorem again, S(X) is sufficient for $P \in \mathcal{P}$

Exercise (Cont.)

Now consider the general case.

- Suppose that S(X) is not sufficient for $P \in \mathcal{P}$, i.e., there exist at least two measures P_1 and $P_2 \in \mathcal{P}$ s.t. the conditional distributions of X given S(X) under P_1 and P_2 are different (*)
- Let $\mathcal{P}_0 = \{P_1, P_2\}$. It is dominated by the measure $(P_1 + P_2)$
- Since T(X) is sufficient for $P \in \mathcal{P}$, it is also sufficient for $P \in \mathcal{P}_0$ because $\mathcal{P}_0 \subset \mathcal{P}$
- ullet By the previously proved result, S(X) is sufficient for $P\in\mathcal{P}_0$
- Hence, the conditional distributions of X given S(X) under P_1 and P_2 are the same, which contradicts with (*)

Information reduction

- If $T(X) = \psi(S(X))$ and T is sufficient, then S is also sufficient
 - ► Knowledge of *S* implies knowledge of *T* and hence permits reconstruction of the original data
 - \blacktriangleright T provides a greater reduction of the data than S unless ψ is one-to-one
- Can we find the sufficient statistic that provides the greatest reduction?

Definition (Minimal sufficiency)

Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a minimal sufficient statistic if and only if, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ \mathcal{P} -a.s.

• Notation: If a statement holds except for outcomes in an event A satisfying P(A)=0 for all $P\in\mathcal{P}$, then we say that the statement holds \mathcal{P} -a.s.

- Minimal sufficient statistics are unique (almost surely)
 - ▶ If both T and S are minimal sufficient statistics (for a family \mathcal{P}), then there is a one-to-one measurable function ψ such that $T = \psi(S) \mathcal{P}$ -a.s.
- Minimal sufficient statistics exist under weak conditions
 - e.g., $\mathcal P$ contains distributions on $\mathcal R^n$ dominated by a σ -finite measure (Bahadur, 1957)

Theorems for finding minimal sufficient statistics

We have several useful tools for checking minimal sufficiency. In the following slides, \mathcal{P} is a family of distributions on \mathcal{R}^n .

Theorem (A)

Suppose $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s.

If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$.

Proof:

- If S is sufficient for \mathcal{P} , then it is also sufficient for \mathcal{P}_0 .
- Thus, $T = \psi(S) \mathcal{P}_0$ -a.s. for a measurable function ψ
- Then $T = \psi(S)$ \mathcal{P} -a.s. since \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s by assumption.

Theorem (B)

Suppose that P contains p.d.f.'s f_0, f_1, \ldots w.r.t. a σ -finite measure.

- Define $f_{\infty}(x) = \sum_{i=0}^{\infty} c_i f_i(x)$, where $c_i > 0$ and $\sum_{i=0}^{\infty} c_i = 1$. Let $T_i(x) = f_i(x)/f_{\infty}(x)$ when $f_{\infty}(x) > 0$. Then $T(X) = (T_0(X), T_1(X), \ldots)$ is minimal sufficient for \mathcal{P} .
- If $\{x: f_i(x) > 0\} \subset \{x: f_0(x) > 0\}$ for all i, then $T(X) = (f_1(x)/f_0(x), f_2(x)/f_0(x), \ldots)$ is minimal sufficient for \mathcal{P} .

Proof: The argument for the second case is the same.

- The construction of f_{∞} assures that $f_{\infty}(X) > 0$ \mathcal{P} -a.s.
- Let $g_i(T) = T_i$. Then $f_i(x) = g_i(T(x))f_{\infty}(x)$. By Factorization theorem, T is sufficient for \mathcal{P} .
- Suppose S(X) is another sufficient statistic. By Factorization theorem, $f_i(x) = \tilde{g}_i(S(x))h(x)$ for all i and some \tilde{g}_i and h.
- Then $T_i(x) = \tilde{g}_i(S(x)) / \sum_{i=0}^{\infty} c_i \tilde{g}_i(S(x))$ when $f_{\infty}(x) > 0$.
- Thus, T is minimal sufficient for \mathcal{P} .

Theorem (C)

Suppose that $\mathcal P$ contains p.d.f.'s f_P w.r.t. a σ -finite measure ν and that there exists a sufficient statistic T(X) such that for any possible values x and y of X and a measurable function ϕ ,

$$f_P(x) = f_P(y)\phi(x,y), \ \forall P \in \mathcal{P} \Rightarrow T(x) = T(y).$$
 (3)

Then T(X) is minimal sufficient for \mathcal{P} .

Proof: See the textbook (Theorem 2.3.iii). Here is the basic idea.

- Suppose S is sufficient. We need to show T is a function of S.
- By factorization theorem, we have $f_P(x) = g_P(S(x))h(x)$, ν -a.e. , for any $P \in \mathcal{P}$.
- Let $A = \{x : h(x) > 0\}$. Then $P(A^c) = 0$ for any $P \in \mathcal{P}$.
- For any two values x and y in A s.t. S(x) = S(y), for all $P \in \mathcal{P}$,

$$f_P(x) = g_P(S(x))h(x) = g_P(S(y))h(y) \times \frac{h(x)}{h(y)} = f_P(y) \times \frac{h(x)}{h(y)},$$
 (4)

which implies T(x) = T(y). So $T(x) = \psi(S(x))$, \mathcal{P} -a.s.

Example: Normal minimal sufficient statistic

- Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$, both μ and σ^2 unknown.
- Let **x** and **y** denote two sample points
- Let $(\bar{x}, s_{\mathbf{x}}^2)$ and $(\bar{y}, s_{\mathbf{y}}^2)$ be the sample means and variances corresponding to the \mathbf{x} and \mathbf{y} samples, respectively
- The ratio of densities is

$$\begin{split} \frac{f\left(\mathbf{x}\mid\mu,\sigma^{2}\right)}{f\left(\mathbf{y}\mid\mu,\sigma^{2}\right)} &= \frac{\left(2\pi\sigma^{2}\right)^{-n/2}\exp\left(-\left[n(\bar{x}-\mu)^{2}+(n-1)s_{\mathbf{x}}^{2}\right]/\left(2\sigma^{2}\right)\right)}{\left(2\pi\sigma^{2}\right)^{-n/2}\exp\left(-\left[n(\bar{y}-\mu)^{2}+(n-1)s_{\mathbf{y}}^{2}\right]/\left(2\sigma^{2}\right)\right)} \\ &= \exp\left(\left(2\sigma^{2}\right)^{-1}\left[-n\left(\bar{x}^{2}-\bar{y}^{2}\right)+2n\mu(\bar{x}-\bar{y})-\right.\right. \\ &\left.\left.\left(n-1\right)\left(s_{\mathbf{x}}^{2}-s_{\mathbf{y}}^{2}\right)\right]\right) \end{split}$$

- This ratio will be constant as a function of μ and σ^2 if and only if $\bar{x} = \bar{y}$ and $s_{\mathbf{x}}^2 = s_{\mathbf{v}}^2$
- \bullet Thus, by Theorem C, $\left(\bar{X},S^2\right)$ is a minimal sufficient statistic for $\left(\mu,\sigma^2\right)$

Example: Exponential family

Let $\mathcal{P} = \{f_{\theta}: \ \theta \in \Theta\}$ be a *p*-dimensional exponential family with p.d.f.'s

$$f_{\theta}(x) = \exp\{[\eta(\theta)]^{\tau} T(x) - \xi(\theta)\} h(x).$$

- By Factorization Theorem, T(X) is sufficient for $\theta \in \Theta$
- If there exists $\Theta_0 = \{\theta_0, \theta_1, \dots, \theta_p\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) \eta(\theta_0), i = 1, \dots, p$, are linearly independent in \mathcal{R}^p ,
 - This is true if the corresponding natural exponential family is of full rank
- then T is also minimal sufficient
 - Method 1: combining Theorems A and B
 - ▶ Method 2: using Theorem C

Example (Cont.): Method 1

Let $\mathcal{P} = \{f_{\theta}: \ \theta \in \Theta\}$ be a *p*-dimensional exponential family with p.d.f.'s

$$f_{\theta}(x) = \exp\{[\eta(\theta)]^{\tau} T(x) - \xi(\theta)\} h(x).$$

If there exists $\Theta_0 = \{\theta_0, \theta_1, \dots, \theta_p\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0)$, $i = 1, \dots, p$, are linearly independent in \mathbb{R}^p , then T is minimal sufficient.

- Let $\mathcal{P}_0 = \{ f_\theta : \theta \in \Theta_0 \}$
- Note that the set $\{x: f_{\theta}(x) > 0\}$ does not depend on θ
- ullet It follows from Theorem B with $f_{ heta_0}$ that

$$S(X) = \left(\exp\{\eta_1^{\tau} T(x) - \xi_1\}, \dots, \exp\{\eta_{\rho}^{\tau} T(x) - \xi_{\rho}\}\right)$$

is minimal sufficient for $\theta \in \Theta_0$

- Since η_i 's are linearly independent, there is a one-to-one measurable function ψ such that $T(X) = \psi(S(X))$ a.s. \mathcal{P}_0
- Hence, T is minimal sufficient for $\theta \in \Theta_0$
- It is easy to see that \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s.
- By Theorem A, T is minimal sufficient for $\theta \in \Theta$.

Example (Cont.): Method 2

Let $\mathcal{P} = \{f_{\theta}: \ \theta \in \Theta\}$ be a *p*-dimensional exponential family with p.d.f.'s

$$f_{\theta}(x) = \exp\{[\eta(\theta)]^{\tau} T(x) - \xi(\theta)\} h(x).$$

If there exists $\Theta_0 = \{\theta_0, \theta_1, \dots, \theta_p\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0)$, $i = 1, \dots, p$, are linearly independent in \mathbb{R}^p , then T is minimal sufficient.

• If there exists a function $\phi(x, y)$, such that any $x, y \in \{x : h(x) > 0\}$

$$f_{\theta}(x) = f_{\theta}(y)\phi(x,y), \forall \theta \in \Theta,$$

then by restricting on Θ_0 , we have

$$\exp\{[\eta(\theta_i)-\eta(\theta_0)]^{\tau}[T(x)-T(y)]\}=1, \forall i=1,\ldots,p,$$

which implies T(x) = T(y) because $\{\eta_i\}_{i=1}^p$ are linearly independent

• Since *T* is sufficient, by Theorem C, *T* is minimal sufficient.

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 19 / 31

Example: Uniform with Varying Location

Let $X_1, \ldots, X_n \sim P_{\theta} = U(\theta, \theta + 1)$ for $\theta \in \mathcal{R}$, where n > 1.

- ullet This is a location family, with the location parameter heta
- The joint Lebesgue p.d.f. is

$$f_{\theta}(x) = \prod_{i=1}^{n} I_{(\theta,\theta+1)}(x_i) = I_{(x_{(n)}-1,x_{(1)})}(\theta), \qquad x = (x_1,\ldots,x_n) \in \mathbb{R}^n.$$

- ▶ because $\theta < x_{(1)} \le \cdots \le x_{(n)} < \theta + 1 \Leftrightarrow I_{(x_{(n)}-1,x_{(1)})}(\theta) = 1$
- ullet By Factorization Theorem, $T=(X_{(1)},X_{(n)})$ is sufficient for heta

We will show that $T=(X_{(1)},X_{(n)})$ is minimal sufficient by using Theorem C. As an exercise, you can also try to use Theorems A+B to prove this result.

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 20 / 31

Example: Uniform with Varying Location (Cont.)

$$f_{\theta}(x) = \prod_{i=1}^{n} I_{(\theta,\theta+1)}(x_i) = I_{(x_{(n)}-1,x_{(1)})}(\theta), \qquad x = (x_1,\ldots,x_n) \in \mathbb{R}^n.$$

 \bullet For any x,y in the possible range of sample, and ψ measurable such that

$$f_{\theta}(x) = f_{\theta}(y)\psi(x,y), \quad \forall \theta \in \mathcal{R}$$
 (5)

- If $x_{(1)} < y_{(1)}$
 - We can choose θ such that $x_{(1)} < \theta < y_{(1)}$ and $y_{(n)} < \theta + 1$
 - ▶ Then $f_{\theta}(x) = 0$ and $f_{\theta}(y) = 1$. This shows $\psi(x, y) = 0$
 - ▶ Then (5) implies that $f_{\theta}(x) = 0$ for all $\theta \in \mathcal{R}$, which cannot be true.
- So $x_{(1)} \ge y_{(1)}$. Similarly, $x_{(n)} \le y_{(n)}$.
- If $x_{(1)} > y_{(1)}$
 - We can choose θ such that $y_{(1)} < \theta < x_{(1)}$ and $x_{(n)} < \theta + 1$,
 - ▶ Then $f_{\theta}(x) = 1$ and $f_{\theta}(y) = 0$, which contradicts (5).
- So $x_{(1)} \le y_{(1)}$. Similarly, $x_{(n)} \ge y_{(n)}$
- So (5) implies T(x) = T(y). By Theorem C, T is minimal sufficient

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 21/31

Tutorial: P1 \sim 3 in Homework 1

- **1** If $f: \mathcal{R} \mapsto \mathcal{R}$ is a continuous function, then it is Borel measurable
- ② Ex 1.6.12 in JS Let ν and μ be two measures on (Ω, \mathcal{F}) such that $\nu(A) = \mu(A)$ for any $A \in \mathcal{C}$, where $\mathcal{C} \subset \mathcal{F}$ and \mathcal{C} is a π -system (i.e., if A and B are in \mathcal{C} , then so is $A \cap B$). Assume that there are $A_i \in \mathcal{C}$, $i = 1, 2, \ldots$, such that $\cup A_i = \Omega$ and $\nu(A_i) < \infty$ for all i. Show that $\nu(A) = \mu(A)$ for any $A \in \sigma(\mathcal{C})$. This proves the uniqueness part of Proposition 1.3 . (Hint: show that $\{A \in \sigma(\mathcal{C}) : \nu(A) = \mu(A)\}$ is a σ -field.)
- **3** Ex 1.6.23 in JS Let $\nu_i, i = 1, 2$, be measures on (Ω, \mathcal{F}) and f be Borel. Show that

$$\int \mathit{fd}\left(
u_{1}+
u_{2}
ight)=\int \mathit{fd}
u_{1}+\int \mathit{fd}
u_{2}$$

i.e., if either side of the equality is well defined, then so is the other side, and the two sides are equal.

Ex 1

If $f: \mathcal{R} \mapsto \mathcal{R}$ is a continuous function, then it is Borel measurable Proof:

• We use Tutorial Problem 2 in Lecture 2.

Proposition

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \mapsto \mathcal{R}$ is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathcal{R}$.

• If f is continuous, then $f^{-1}(a, \infty)$ is an open subset of \mathcal{R} , which is in \mathcal{B} . Therefore, f is Borel measurable.

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 23 / 31

Ex 1.6.12 in JS

Let ν and μ be two measures on (Ω, \mathcal{F}) such that $\nu(A) = \mu(A)$ for any $A \in \mathcal{C}$, where $\mathcal{C} \subset \mathcal{F}$ and \mathcal{C} is a π -system (i.e., if A and B are in \mathcal{C} , then so is $A \cap B$). Assume that there are $A_i \in \mathcal{C}, i = 1, 2, \ldots$, such that $\cup A_i = \Omega$ and $\nu(A_i) < \infty$ for all i. Show that $\nu(A) = \mu(A)$ for any $A \in \sigma(\mathcal{C})$.

Remark. This result is often used to prove the uniqueness of measures. To prove this result, we first introduce the notion of λ -system

Definition

A collection $\mathcal L$ of subsets of Ω is a λ -system if

- $\mathbf{0}$ $\Omega \in \mathcal{L}$
- 2 If $A, B \in \mathcal{L}$ and $A \subset B$, then $B \setminus A \in \mathcal{L}$
- **3** If A_n ∈ \mathcal{L} for all n and A_n ↑, then $\bigcup_n A_n$ ∈ \mathcal{L}

It is easy to see that a σ -field is a λ -system. The reverse is not true.

Proof of Ex 2 by Dynkin's π - λ Theorem

We first solve the homework by using the following result.

Theorem (Dynkin's π - λ Theorem)

Suppose $\mathcal C$ is a π -system and $\mathcal L$ is a λ system that contains $\mathcal C$, then $\sigma(\mathcal C)\subset\mathcal L.$

• Fixed any $B \in \mathcal{C}$ with $\nu(B) < \infty$. Define

$$\mathcal{G}_B = \{ A \in \mathcal{F} : \nu(A \cap B) = \mu(A \cap B) \}. \tag{6}$$

Then $\mathcal{C} \subset \mathcal{G}_B$.

- By additivity and monotonicity of measures, we can see that \mathcal{G}_B is a λ -system.
- By the theorem, we have $\sigma(\mathcal{C}) \subset \mathcal{G}_B$.
- Since B is arbitrary, we conclude that for any $A \in \sigma(\mathcal{C})$ and any $B \in \mathcal{C}$ with $\nu(B) < \infty$, $\nu(A \cap B) = \mu(A \cap B)$

• Now fixed any $B \in \sigma(\mathcal{C})$ with $\nu(B) < \infty$. We can apply the same argument before to conclude that for any $A \in \sigma(\mathcal{C})$, $\nu(A \cap B) = \mu(A \cap B)$ (*)

- Let A_i 's be the sequence given in the statement of the exercise. Define $B_n = \bigcup_{i=1}^n A_i$. Then $B_n \in \sigma(\mathcal{C})$, $B_n \uparrow \Omega$, and $\nu(B_n) \leq \sum_{i=1}^n \nu(A_i) < \infty$.
- For any $A \in \sigma(\mathcal{C})$,

$$\nu(A) = \lim_{n} \nu(A \cap B_n) \tag{7}$$

$$=\lim_{n}\mu(A\cap B_{n})\tag{8}$$

$$=\mu(B_n), \tag{9}$$

where the first and third equalities are due to monotonicity of measures, and the second is because $B_n \in \sigma(C)$, $\nu(B_n) < \infty$, $A \in \sigma(C)$, and the result (*)

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 26 / 31

"
$$\sigma$$
-field \Leftrightarrow (π & λ) system"

To prove the theorem, we need the following result.

Proposition

If A is a π -system and is a λ -system, then it is a σ -field.

- Easy to see that $\Omega \in \mathcal{A}$ and if $B \in \mathcal{A}$ then $B^c = \Omega \setminus B \in \mathcal{A}$ by definition of λ -system
- For a sequence of $B_n \in \mathcal{A}$, then

$$C_n := \bigcup_{i=1}^n B_i = \left(\bigcap_{i=1}^n B_i^c\right)^c \in \mathcal{A},$$

and C_n is increasing. So $\bigcup\limits_{n=1}^{\infty}B_n=\bigcup\limits_{n=1}^{\infty}C_n\in\mathcal{A}$

We now prove the theorem

Theorem (Dynkin's π - λ Theorem)

Suppose $\mathcal C$ is a π -system and $\mathcal L$ is a λ system that contains $\mathcal C$, then $\sigma(\mathcal C)\subset\mathcal L.$

• The smallest λ -system that contains \mathcal{C} (a.k.a. the lambda-system generated by \mathcal{C}), denoted by $\lambda(\mathcal{C})$, is defined as the the intersection of all λ -systems that contains \mathcal{C} , i.e.,

$$\lambda(\mathcal{C}) = \bigcap_{\substack{\mathcal{A}: \mathcal{A} \supset \mathcal{C}, \\ \mathcal{A} \text{ is a } \lambda \text{-system}}} \mathcal{A}. \tag{10}$$

- Easy to check that $\lambda(\mathcal{C})$ is a λ -system and is contained by any λ -system that contains \mathcal{C}
- We will show that $\sigma(\mathcal{C}) = \lambda(\mathcal{C})$
- $\sigma(\mathcal{C}) \supset \lambda(\mathcal{C})$ because a σ -field is a λ -system
- If we can **show** $\lambda(\mathcal{C})$ **is a** π -**system**, then by the last proposition, $\lambda(\mathcal{C})$ is a σ -field, and thus $\sigma(\mathcal{C}) \subset \lambda(\mathcal{C})$

Showing $\lambda(\mathcal{C})$ is a π -system

• Fix any $A \in \mathcal{C}$, define

$$\mathcal{L}_A := \{ B \in \lambda(\mathcal{C}) : A \cap B \in \lambda(\mathcal{C}) \}. \tag{11}$$

- We can check that \mathcal{L}_A is a λ -system and $\mathcal{C} \subset \mathcal{L}_A$. So $\lambda(\mathcal{C}) \subset \mathcal{L}_A$ We conclude that if $A \in \mathcal{C}$ and $B \in \lambda(\mathcal{C})$ then $A \cap B \in \lambda(\mathcal{C})$.
 - Fix any $B \in \lambda(\mathcal{C})$, let

$$\mathcal{G}_B = \{ A \in \lambda(\mathcal{C}) : A \cap B \in \lambda(\mathcal{C}) \}. \tag{12}$$

• We can check that \mathcal{G}_B is a λ -system, and $\mathcal{C} \subset \mathcal{G}_B$. So $\lambda(\mathcal{C}) \subset \mathcal{G}_B$ We conclude that if $A \in \lambda(\mathcal{C})$ and $B \in \lambda(\mathcal{C})$ then $A \cap B \in \lambda(\mathcal{C})$. That is, $\lambda(\mathcal{C})$ is a π -system.

Ex 1.6.23 in JS

Let $\nu_i, i = 1, 2$, be measures on (Ω, \mathcal{F}) and f be Borel. Show that

$$\int \textit{fd} \left(\nu_1 + \nu_2 \right) = \int \textit{fd} \nu_1 + \int \textit{fd} \nu_2$$

i.e., if either side of the equality is well defined, then so is the other side, and the two sides are equal.

Proof: Use canonical method

- The case of simple functions is straightforward to prove by using the definition
- The case of nonnegative functions can be proved using approximation of simple functions
- For general Borel function f, since the LHS is well-defined, we know that $\int f_+ d(\nu_1 + \nu_2)$ or $\int f_- d(\nu_1 + \nu_2)$ is finite
 - ▶ WLOG, assume $\int f_- d (\nu_1 + \nu_2)$ is finite
 - ▶ By the result for nonnegative functions, we have $\int f_- d(\nu_1 + \nu_2) = \int f_- d\nu_1 + \int f_- d\nu_2$, so both $\int f_- d\nu_1$ and $\int f_- d\nu_2$ are finite.

Ex 1.6.23 in JS (Cont.)

Therefore.

$$\int fd (\nu_1 + \nu_2) = \int f_+ d (\nu_1 + \nu_2) - \int f_- d (\nu_1 + \nu_2)$$

$$= \int f_+ d\nu_1 + \int f_+ d\nu_2 - (\int f_- d\nu_1 + \int f_- d\nu_2)$$

$$= (\int f_+ d\nu_1 - \int f_- d\nu_1) + (\int f_+ d\nu_2 - \int f_- d\nu_2)$$

$$= \int fd\nu_1 + \int fd\nu_2$$

H.D. (NUS) ST5215, Lecture 7 3 Sep 2020 31 / 31