Algebraic Number Theory (MA3A6) - Problem Sheet 3

You should answer any **three** out of **five** questions. All questions have equal weight. Marks will also be awarded for clarity/presentation.

Deadline: 5pm on Thursday 10th February (week 5)

- 1. Let $K, L \subset \mathbb{C}$ be number fields.
 - · Define KL to be the field generated by K and L, i.e. KL is the intersection of all subfields of \mathbb{C} that contain both K and L. Prove that KL is a number field.
 - · Likewise, define $\mathcal{O}_K \cdot \mathcal{O}_L$ to be the ring generated by \mathcal{O}_K and \mathcal{O}_L , i.e. the intersection of all subrings of \mathbb{C} that contain both \mathcal{O}_K and \mathcal{O}_L . Prove that $\mathcal{O}_K \cdot \mathcal{O}_L$ is a full rank lattice in KL and a subring of \mathcal{O}_{KL} .
- 2. Do we necessarily have $\mathcal{O}_K \cdot \mathcal{O}_L = \mathcal{O}_{KL}$? Give a proof or a counterexample.
- 3. For $n \in \mathbb{Z}_{\geq 3}$, let P be a regular n-gon whose circumscribed circle has radius 1. Show that the product of the lengths of all the sides and diagonals of P is $\sqrt{n^n}$.

Figure 1: A heptagon and all of its diagonals

- 4. Let $f(x) = x^3 + x^2 + 2$ and suppose $f(\theta) = 0$. Put $K = \mathbb{Q}(\theta)$. Show that
 - (i) $[K : \mathbb{Q}] = 3;$
 - (ii) $\operatorname{Tr}(a+b\theta+c\theta^2)=3a-b+c$ (for a,b and c in \mathbb{Q});
 - (iii) $\Delta(\mathbb{Z}[\theta])$ (i.e. $\Delta(1, \theta, \theta^2)$) = -116;
 - (iv) $\mathbb{Z}[\theta] = \mathcal{O}_K$.
- 5. Let K be a number field and $\{x_1, \ldots, x_n\}$ a basis for K over \mathbb{Q} . Because the trace pairing is a non-degenerate bilinear form, we may define a dual basis $\{x_1^*, \ldots, x_n^*\}$ for K over \mathbb{Q} satisfying

$$\operatorname{Tr}(x_i x_i^*) = \delta_{ij}$$

where δ_{ij} is the Kronecker delta symbol. Prove that

$$\Delta(x_1, \dots, x_n) \cdot \Delta(x_1^*, \dots, x_n^*) = 1.$$