NAME: JEREMIAH MAINA

ASSESSMENT ITEM 2 RESEARCH REPORT (2019 S1)

TASK 1

a) i) Test if there is any difference in Results on average between male and female students at the 5% level of significance.

To test if there is any difference in results on average between males and females we use the two tailed independent sample T test to carry out mean comparison. Our hypothesis for the test will be;

H₀: Average results of males is equal to the average results of females

H₁: Average results of males is equal to the average results of females

Findings

Independent Samples Test

	Leve	ene's				t-test for	Equality of M	eans				
	Test	for										
	Equal	ity of										
	Varia	inces										
	F	Sig.	t	df	Sig.	Mean	Std. Error	95% Cont	fidence Interval of			
					(2-	Differenc	Difference	the	Difference			
					tailed)	e						
								Lower	Upper			
Equal												
variances	.003	.957	-3.321	647	.001	-4.249	1.280	-6.762	-1.737			
assumed												
Equal				51716								
variances not			-3.285	547.46	.001	-4.249	1.294	-6.790	-1.708			
assumed				4								

Conclusion

Since the t-values are in between the 95% Confidence Intervals of the Difference, we do not have enough evidence to reject the null hypothesis that the average results of males is equal to the average results of females. We conclude that the average results of both genders are not significantly different.

ii) Test at the level of significance of 5% if students who are involved in a romantic relationship have a lower result than the students who are not.

To test if students who are involved in a romantic relationship have a lower result than the students who are not. We carry out an independent sample T test for mean comparison between the two groups in question. Our hypothesis for the test will be;

H₀: The average results of students involved in a romantic relationship is less than the average results of students who are not

H₁: The average results of students involved in a romantic relationship is greater than or equal to the average results of students who are not.

Findings

Independent Samples Test

	Levene's	s Test for			t-test fo	or Equality o	of Means		
	Equality of	f Variances							
	F	Sig.	t	df	Sig. (2-	Mean	Std.	95% Cont	fidence
					tailed)	Differenc	Error	Interval	of the
						e	Differen	Differe	ence
							ce	Lower	Upper
Equal									
variance s	3.825	.051	-2.323	647	.021	-3.043	1.310	-5.616	471
assumed									
Equal									
variance			-2.222	433.076	.027	-3.043	1.370	-5.736	351
s not			-2.222	755.070	.027	-5.0+5	1.570	-5.750	551
assumed									

Conclusion

Since the t-values are less than the upper tail values in the 95% Confidence Intervals of the Difference, we fail to reject the null hypothesis that the average results of students involved in a romantic relationship is less than the average results of students who are not.

TASK 2(Regression Analysis)

(a) i) Construct a correlation matrix of all the quantitative variables in the dataset comment briefly on the linear associations between Result and other quantitative variables (viz. Age, Lectures and Tutorials) and whether these variables are a predictor of result.

Correlations

		Age	Result	LECTURES	TUTORIALS
				NOT	NOT
				ATTENDED	ATTENDED
	Pearson Correlation	1	107**	.152**	.147**
Age	Sig. (2-tailed)		.006	.000	.000
	N	649	649	649	649
	Pearson Correlation	107**	1	092*	084*
Result	Sig. (2-tailed)	.006		.019	.032
	N	649	649	649	649
LECTURES NOT	Pearson Correlation	.152**	092*	1	.946**
ATTENDED	Sig. (2-tailed)	.000	.019		.000
ATTENDED	N	649	649	649	649
TUTODIALGNOT	Pearson Correlation	.147**	084*	.946**	1
TUTORIALS NOT ATTENDED	Sig. (2-tailed)	.000	.032	.000	
	N	649	649	649	649

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The variables Age, lectures not attended and tutorials not attended are all predictor variables of results. This is because there is a significant correlation between the variables and results at the 0.01 or 0.05 level of significance. Also, there is a negative linear relationship between the variables and the results.

(b) Conduct a simple regression on:

(i) Age is a predictor of Result?

Coefficients^a

Model	Unstandardize	ed Coefficients	Standardized	t	Sig.
			Coefficients		
	В	Std. Error	Beta		

^{*.} Correlation is significant at the 0.05 level (2-tailed).

1	(Constant)	86.145	9.751		8.835	.000
1	Age	-1.419	.519	107	-2.735	.006

a. Dependent Variable: Result

(ii) Lectures is a predictor of Result?

Coefficients^a

Mode	el	Unstandardize	ed Coefficients	Standardized	t	Sig.
				Coefficients		
		В	Std. Error	Beta		
	(Constant)	60.704	.804		75.488	.000
1	LECTURES NOT ATTENDED	319	.136	092	-2.344	.019

a. Dependent Variable: Result

(iii) Tutorials is a predictor of Result?

Coefficients^a

Mode	1	Unstandardize	d Coefficients	Standardized	t	Sig.
				Coefficients		
		В	Std. Error	Beta		
	(Constant)	61.227	1.009		60.697	.000
1	TUTORIALS NOT ATTENDED	545	.254	084	-2.149	.032

a. Dependent Variable: Result

Does this support your answers to Task 2 (a)?

Yes, this is because all the variables when regressed against results, they have a negative relationship with the dependent variable (results).

(c). For each of the independent variables contained in the regression model in Step 1, test their statistical significance. In testing statistical significance of a regression coefficient.

Model Summary

Mod	R	R	Adjusted R	Std. Error		Cha	nge Statis	tics	
el		Square	Square	of the	R Square	F	df1	df2	Sig. F
				Estimate	Change	Change			Change
1	.084ª	.007	.006	16.110	.007	4.618	1	647	.032

a. Predictors: (Constant), TUTORIALS NOT ATTENDED

Model Summary

Mod	R	R	Adjusted R	Std. Error		Cha	nge Statis	tics	
el		Square	Square	of the	R Square	F	df1	df2	Sig. F
				Estimate	Change	Change			Change
1	.092a	.008	.007	16.099	.008	5.496	1	647	.019

a. Predictors: (Constant), LECTURES NOT ATTENDED

Model Summary

Mod	R	R	Adjusted R	Std. Error		Cha	nge Statis	tics	
el		Square	Square	of the	R Square	F	df1	df2	Sig. F
				Estimate	Change	Change			Change
1	.107ª	.011	.010	16.075	.011	7.478	1	647	.006

a. Predictors: (Constant), Age

Model Summary

Mode	R	R	Adjusted R	Std. Error of		Cha	nge Statis	tics			
I		Square	Square	the Estimate	R Square	F	df1	df2	Sig. F		
					Change	Change			Change		
1	.230a	.053	.051	15.736	.053	35.985	1	647	.000		

a. Predictors: (Constant), Mothers highest level of education

Model Summary

Mode	R	R	Adjusted R	Std. Error of		Cha	nge Statis	tics	
ı		Square	Square	the Estimate	R Square	F	df1	df2	Sig. F
					Change	Change			Change
1	.129ª	.017	.015	16.031	.017	11.029	1	647	.001

a. Predictors: (Constant), Gender

Model Summary

Mode	R	R	Adjusted R	Std. Error of	Change Statistics				
1		Square	Square	the Estimate	R Square	F	df1	df2	Sig. F
					Change	Change			Change
1	.091ª	.008	.007	16.100	.008	5.395	1	647	.021

a. Predictors: (Constant), Relationship

TASK 3(Summary report);

According to the research analysis, there is no gender difference in academic achievement of the students. This is because the t-values from the test are in between the 95% Confidence Intervals of the Difference therefore we do not have enough evidence to reject the null hypothesis that the average results of males is equal to the average results of females. Additionally, being in a romantic relationship seems to have an effect on the academic performance of the students. This is because the t-values from the test are less than the upper tail values in the 95% Confidence Intervals of the Difference therefore we fail to reject the null hypothesis that the average results of students involved in a romantic relationship is less than the average results of students who are not and conclude that the average results of students involved in a romantic relationship is less than the average results of students who are not.

A regression analysis of different variables on results was further conducted to investigate the relationship of the variables to results. From the findings we can conclude that the variables Age, lectures not attended and tutorials not attended are all predictor variables of results. This is because there is a significant correlation between the variables and results at the 0.01 or 0.05 level of significance. Also, there is a negative linear relationship between the variables and the results, this means that as the variable values increases, the results will decrease.

For this study, I would recommend the use of a multiple linear regression model which is a versatile model for prediction when both categorical and continuous variables are in play. To check for the significance of the model we look for the r-square to see which percentage of the data has been plotted by the model, the final model for this research would be;

$$Results = -0.067(age) + 0.238(medu) + 0.85(relationship) - 0.056(tutorials\ missed) + 0.169(gender) - 0.075(lectures\ missed) + 55.314$$

For instance to predict the Result of a female student who is 18, whose mother has post-graduate qualifications, is not involved in a romantic relationship and attended all classes. We input the variable values to the above model to predict her results;

$$Results = -0.067(18) + 0.238(3) + 0.85(2) - 0.056(0) + 0.169(2) - 0.075(0) + 55.314$$

$$Results = 56.86$$

Although this study takes into consideration some variables that influence academic performance, it leaves out some of the vital variables that may impact the results too. Such variables include, the student's health, the coursework difficulty, study habits, the learning environment etc.