Intro to Data Engineering

Mils Burasakorn

Burasakorn Sabyeying (Mils, มิลส์, มิล, มิว)

Mesodiar.com

Data Engineer @ CJ Express (TILDI team)

Agenda

- Why do we need Data Engineer?
- Who is Data Engineer
- What does Data Engineer do?
- Where does Data Engineer stand
- How do I become Data Engineer?

Why do we need Data Engineer?

and more data sources..

Cr. Data TH.com - Data Science ชิลชิล

What is Data Engineer?

data engineers set up and operate the organization's data infrastructure preparing it for further analysis by data analysts and scientists

Data Engineering Life Cycle

4 stages in Data Pipeline

Data Lake vs Data Warehouse vs Data Mart

ETL vs ELT

Extract - pull data from all your data sources

Transform - clean and process data

Load - load into storage destination

Structure

Unstructured data

The university has 5600 students.
John's ID is number 1, he is 18 years old and already holds a B.Sc. degree.
David's ID is number 2, he is 31 years old and holds a Ph.D. degree. Robert's ID is number 3, he is 51 years old and also holds the same degree as David, a Ph.D. degree.

Semi-structured data

<University>
<Student ID="1">
<Name>John</Name>
<Age>18</Age>
<Degree>B.Sc.</Degree>
</Student>
<Student ID="2">
<Name>David</Name>
<Age>31</Age>
<Degree>Ph.D. </Degree>
</Student>
....
</University>

Structured data

ID	Name	Age	Degree
1	John	18	B.Sc.
2	David	31	Ph.D.
3	Robert	51	Ph.D.
4	Rick	26	M.Sc.
5	Michael	19	B.Sc.

Text, Audio, Video, PDF, Internet of Things (IoT) sensor data

XML, CSV, JSON, Web pages

PostgreSQL, MySQL

Q: Facebook post เป็นข้อมูลแบบไหน?

- 1. Structured data
- 2. Semi-structured data
- 3. Unstructured data

→ Google Sheets Dashboard !! ปั่นแดชบอร์ดสนุกเลย ง่ายเหลือเชื่อ 555+

้เมื่อเช้าสอน Free Fire vs. PubG Facebook Post Analysis สนุกมาก เรียน กันแบบเน้นๆ สอนสดแบบสดจริงๆ 555+

...

สรุป Steps ที่เราสอนในคลาส... See more

Databases

Relational(SQL)

Traditional database/ DBMS

Non-relational (NoSQL)

Databases

Relational (SQL)

Row - oriented

Non-relational (NoSQL)

Key-Value

Document

{
 "_id": "ObjectId("d7caskf00010dsa")",
 "firstName": "Burasakorn",
 "lastName": "Sabyeying",
 "nickName": "Mils",
 "role": "Data Engineer"
}

Columnar

Databases

Relational (SQL)

Traditional database/ DBMS

Non-relational (NoSQL)

Key-Value

Document

Columnar

Graph

OLTP vs OLAP

Online **Transaction** Processing

- captures, stores, and processes data from transactions in real time
- banking and credit card activity or retail checkout scanning.
- traditional DBMS
- Based on INSERT, UPDATE, DELETE commands

Online **Analytical** Processing

- analyze aggregated historical data from OLTP systems.
- designed for use by data scientists, business analysts
- For data warehouse and data mart applications
- Based on SELECT commands to aggregate data for reporting

Scenario

SELECT *
FROM table
WHERE date=today

SELECT

country.country_name_eng,
SUM(CASE WHEN call.id IS NOT NULL THEN 1 ELSE
0 END) AS calls,

AVG(ISNULL(DATEDIFF(SECOND, call.start_time, call.end time),0)) AS avg difference

FROM country

LEFT JOIN city ON city.country_id = country.id

LEFT JOIN customer ON city.id = customer.city_id

LEFT JOIN call ON call.customer_id = customer.id

GROUP BY

country.id,

country_name_eng

HAVING AVG(ISNULL(DATEDIFF(SECOND, call.start_time, call.end_time),0)) > (SELECT AVG(DATEDIFF(SECOND, call.start_time, call.end_time)) FROM call) ORDER BY calls DESC, country.id ASC;

Data Lake, Data Warehouse, Data Lakehouse

Structured data

Unstructured data

Data Lakehouse

(a) First-generation platforms.

Metadata, Caching, and IndexingLayer Data Lake Structured, Semi-structured & Unstructured Data

Reports

Data

Science

Machine

Learning

(b) Current two-tier architectures.

(c) Lakehouse platforms.

CIDR 2021: Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics

Centralized Data vs Decentralized Data

https://medium.com/yotpoengineering/the-4-data-mesh-principles-to-create-a-data-oriented-rnd-6f2e291bcb5b

Data Engineering Life Cycle

Orchestration

https://www.primoartists.com/news/gemma-new-receives-praise-for-milwaukee-symphony-debut

Orchestration

process of coordinating many jobs to run efficiently

Software Engineer

- Web Scraping
- Get data through API

1 page (1-100 rows) Total: 300 pages **300 API calls**

- Process data

Pyspark, Pandas

- Pipeline as code

Which language should I know?

Which language should I know?

SELECT * FROM Customers;

L

Python

JVM languages (Java, Scala)

https://www.freecodecamp.org/news/linux-ln-how-to-create-a-symbolic -link-in-linux-example-bash-command/

Infrastructure as a Code

Containers

Provisioning

Version control

Security

In both Data and System

Who should see the data?

Owner Editor Viewer

Key management

Encryption

Data Architecture

Architecture != Tools

ต้องเข้าใจ

- business requirement
- Nature การเกิดของข้อมูล
- Nature การใช้ของข้อมูล

แล้วจะปรับสิ่งพวกนี้มา design ในการ serve data ยังไง

On premises vs Cloud

On premises/ On-prem

- = purchase hardware/ data centers they own
 - Still default for established companies
 - install/ maintain/ upgrade by their own
 - Direct control over configuration, management, security

Cloud

- = Cloud provider (AWS, Azure, Google Cloud, etc)
 - Infrastructure as a Service(laaS)
 - Serverless products and managed service
 - Billed on pay-as-you-go
 - Unpredictable scale requirements

Data Architecture

Serverless

cloud-native development model that allows developers to build and run applications **without having to manage servers**

Serverless = Still have server

Hybrid and multi-cloud

Hybrid Multi-cloud

Best Data Pipeline?

cr. Richard Burlton on Unsplash

Data Governance

Data Governance: The Definitive Guide -

"Data governance is, first and foremost, a **data management function** to ensure the quality, integrity, security, and usability of the data collected **by an organization**."

- Data Monitoring
- 2. Data Discovery & Data Catalog
- 3. Data Lineage
- 4. Data Quality

Data Monitoring

Data Monitoring

Data Discovery & Data Catalog

Data Lineage

allows you to know where that data is stored and its dependencies.

Data Quality* (!important)

According to *Data Governance: The Definitive Guide*, data quality is defined by **three main characteristics**

Accuracy

Is the collected data factually correct? Are there duplicate values? Are the numeric values accurate?

Completeness

Are the records complete? Do all required fields contain valid values?

Timeliness

Are records available in a timely fashion?

Data Engineering Life Cycle

How do I become Data Engineer?

How to become Data Engineer?

how I learn

- Data Engineer Roadmap: <u>https://github.com/datastacktv/data-engineer-roadmap</u>
- Compare tools
- Compare services https://comparecloud.in/

Listen random**

READ!

medium.com

learning.oreilly.com

Write!

Note in Notion

Mesodiar.com (blog on medium)

โน้ตว่าวันนี้เราเรียนรู้อะไร จะได้ไม่ท้อ!

Facebook Group

เราอยากเป็นแบบไหน จงเอาตัวเองเข้าไปอยู่วงนั้น

FB: Mesodiar.com **Medium**: www.mesodiar.com

DATA GOVERNANCE DATABASE AIRFLOW DOCKER GOOGLE-CLOUD PLATFORM PRODUCTIVITY

Latest