Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №7 з дисципліни: «Твердотільна електроніки-1»

Дослідження вольт-амперних характеристик біполярних транзисторів

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження біполярних транзисторів з допомогою вимірювання вольт-амперних характеристик, визначення фізичних та основних технічних параметрів біполярних транзисторів із вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру паспортних параметрів біполярних транзисторів. Ознайомитися із вимірювальним стендом та використовуваними приладами (рис. 1, 2, 3, 4).
- 2. Зібрати схему для дослідження вольт-амперних характеристик біполярних транзистора ввімкненого за схемою із спільним емітером (або із спільною базою).
- 3. Визначити експериментально і побудувати графічно сімейство вхідних характеристик транзистора залежність вхідного струму від вхідної напруги.
- 4. Визначити експериментально та побудувати графічно сімейство вихідних характеристик транзистора залежність вихідного струму від вихідної напруги.
- 5. * Провести температурні дослідження ВАХ біполярного транзистора при підвищеній температурі $T_2 \approx +70$ °C.
- 6. **Із вхідних та вихідних ВАХ побудувати характеристики зворотного зв'язку і прямої передачі.
- 7. За побудованими графіками характеристик визначити основні параметри біполярного транзистора: коефіцієнт підсилення струму бази - β ; коефіцієнт підсилення струму емітера - α ; диференційні опори емітерного r_e і колекторного r_c переходів для вибраної робочої точки $A_p(I_c, U_{ce})$; графічно визначити дифузійний потенціал емітерного переходу φ_{0e} та опір бази r_b .
- 8. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

2.1. СХЕМА ВИМІРЮВАННЯ

Рис. 1: Схема для дослідження вольт — амперних характеристик транзистора ввімкненого за схемою зі спільним емітером.

3.ПОБУДОВА ГРАФІКІВ

3.1. Таблиці вимірювань

	Uвых	= 0 B		Uвых = 8 B						
Uвх, В	Івх, мкА	ΔU, Β	ΔΙ, ΜΚΑ	Ивх, В	Івх, мкА	ΔU, Β	ΔΙ, ΜΚΑ			
0,441	2	0,0025	0,75	0,599	2	0,0025	0,75			
0,463	4	0,0025	0,75	0,619	4	0,0025	0,75			
0,476	6	0,0025	0,75	0,632	6	0,0025	0,75			
0,485	8	0,0025	0,75	0,638	8	0,0025	0,75			
0,493	10	0,0025	0,75	0,644	10	0,0025	0,75			
0,5	12	0,0025	0,75	0,649	12	0,0025	0,75			
0,506	14	0,0025	0,75	0,653	14	0,0025	0,75			
0,51	16	0,0025	0,75	0,656	16	0,0025	0,75			
0,516	18	0,0025	0,75	0,659	18	0,0025	0,75			
0,518	20	0,0025	0,75	0,662	20	0,0025	0,75			
0,524	22	0,0025	0,75	0,664	22	0,0025	0,75			
0,527	24	0,0025	0,75	0,666	24	0,0025	0,75			
0,53	26	0,0025	0,75	0,667	26	0,0025	0,75			
0,533	28	0,0025	0,75	0,668	28	0,0025	0,75			
0,536	30	0,0025	0,75	0,67	30	0,0025	0,75			
0,539	32	0,0025	0,75	0,672	32	0,0025	0,75			
0,541	34	0,0025	0,75	0,673	34	0,0025	0,75			
0,544	36	0,0025	0,75	0,674	36	0,0025	0,75			
0,548	38	0,0025	0,75	0,675	38	0,0025	0,75			
0,55	40	0,0025	0,75	0,676	40	0,0025	0,75			
0,552	42	0,0025	0,75	0,676	42	0,0025	0,75			
0,554	44	0,0025	0,75	0,676	44	0,0025	0,75			
0,556	46	0,0025	0,75	0,678	46	0,0025	0,75			
0,557	48	0,0025	0,75	0,678	48	0,0025	0,75			
0,56	50	0,0025	0,75	0,678	50	0,0025	0,75			

Таб. 1 Значення вхідних струмів та напруг, їх похибок при різних напругах виходу.

				IDA – (5 мкА		IBX = 9 MKA			
ых, мА 📗	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ
0,06	0,025	0,00375	0,12	0,125	0,025	0,00375	0,1	0,115	0,025	0,00375
0,24	0,025	0,00375	0,22	0,55	0,025	0,00375	0,2	0,66	0,025	0,00375
0,29	0,025	0,00375	0,36	0,66	0,025	0,00375	0,3	0,98	0,025	0,0075
0,31	0,025	0,00375	0,6	0,665	0,025	0,00375	0,4	1,01	0,025	0,0075
0,315	0,25	0,00375	10	0,675	0,25	0,00375	2	1,025	0,075	0,0075
							4	1,03	0,25	0,0075
							10	1,04	0,25	0,0075
	0,24 0,29 0,31	0,24 0,025 0,29 0,025 0,31 0,025	0,24 0,025 0,00375 0,29 0,025 0,00375 0,31 0,025 0,00375	0,24 0,025 0,00375 0,22 0,29 0,025 0,00375 0,36 0,31 0,025 0,00375 0,6	0,24 0,025 0,00375 0,22 0,55 0,29 0,025 0,00375 0,36 0,66 0,31 0,025 0,00375 0,6 0,665	0,24 0,025 0,00375 0,22 0,55 0,025 0,29 0,025 0,00375 0,36 0,66 0,025 0,31 0,025 0,00375 0,6 0,665 0,025	0,24 0,025 0,00375 0,22 0,55 0,025 0,00375 0,29 0,025 0,00375 0,36 0,66 0,025 0,00375 0,31 0,025 0,00375 0,665 0,025 0,00375	0,24 0,025 0,00375 0,22 0,55 0,025 0,00375 0,2 0,29 0,025 0,00375 0,36 0,66 0,025 0,00375 0,3 0,31 0,025 0,00375 0,6 0,665 0,025 0,00375 0,4 0,315 0,25 0,00375 10 0,675 0,25 0,00375 2 4 4 4 4 4 4 4 4	0,24 0,025 0,00375 0,22 0,55 0,025 0,00375 0,2 0,66 0,29 0,025 0,00375 0,36 0,66 0,025 0,00375 0,3 0,98 0,31 0,025 0,00375 0,6 0,665 0,025 0,00375 0,4 1,01 0,315 0,25 0,00375 10 0,675 0,25 0,00375 2 1,025 4 1,03	0,24 0,025 0,00375 0,22 0,55 0,025 0,00375 0,2 0,66 0,025 0,29 0,025 0,00375 0,36 0,66 0,025 0,00375 0,3 0,98 0,025 0,31 0,025 0,00375 0,6 0,665 0,025 0,00375 0,4 1,01 0,025 0,315 0,25 0,00375 10 0,675 0,25 0,00375 2 1,025 0,075 0,315 0,25 0,00375 10 0,675 0,25 0,00375 2 1,025 0,075 0,315 0,25 0,00375 0,25 0,00375 2 1,025 0,075

	lвх = 1	.2 мкА			lвх = 1	.5 мкА		Iвх = 18 мкА			
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ
0,1	0,158	0,025	0,0015	0,1	0,234	0,025	0,0015	0,1	0,268	0,025	0,0015
0,14	0,4125	0,025	0,00375	0,14	0,515	0,025	0,00375	0,12	0,595	0,025	0,00375
0,18	0,7175	0,025	0,00375	0,2	1,12	0,025	0,0075	0,16	0,84	0,025	0,0075
0,2	0,93	0,025	0,0075	0,24	1,45	0,025	0,015	0,2	1,38	0,025	0,015
0,3	1,3	0,025	0,0075	0,3	1,62	0,025	0,015	0,3	1,9	0,025	0,015
0,4	1,345	0,025	0,0075	0,4	1,69	0,025	0,015	0,4	1,98	0,025	0,015
0,6	1,38	0,025	0,0075	0,5	1,72	0,025	0,015	0,52	2,02	0,025	0,015
0,94	1,39	0,025	0,0075	0,6	1,74	0,025	0,015	0,6	2,06	0,025	0,015
3	1,4	0,25	0,0075	0,8	1,76	0,025	0,015	0,7	2,08	0,025	0,015
6	1,41	0,25	0,0075	1,5	1,78	0,075	0,015	1,1	2,12	0,075	0,015
10	1,42	0,25	0,0075	10	1,81	0,25	0,015	2,5	2,14	0,075	0,015
								10	2,18	0,25	0,015

	lbx = 2	21 мкА			Iвх = 2	24 мкА		Iвх = 27 мкА				
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	
0,1	0,166	0,0075	0,0015	0,09	0,252	0,0075	0,0015	0,08	0,218	0,0075	0,0015	
0,12	0,285	0,0075	0,00375	0,11	0,4175	0,0075	0,00375	0,11	0,48	0,0075	0,00375	
0,15	0,61	0,0075	0,00375	0,13	0,67	0,0075	0,00375	0,12	0,605	0,0075	0,00375	
0,18	1,01	0,0075	0,0075	0,15	0,97	0,0075	0,0075	0,15	1,09	0,0075	0,0075	
0,2	1,29	0,0075	0,0075	0,18	1,42	0,0075	0,0075	0,17	1,39	0,0075	0,0075	
0,23	1,66	0,0075	0,015	0,22	1,92	0,0075	0,015	0,19	1,74	0,0075	0,015	
0,25	1,84	0,0075	0,015	0,25	2,22	0,0075	0,015	0,22	2,11	0,0075	0,015	
0,27	1,98	0,0075	0,015	0,3	2,4	0,0075	0,015	0,25	2,38	0,0075	0,015	
0,3	2,1	0,0075	0,015	0,5	2,6	0,025	0,015	0,34	2,78	0,025	0,015	
0,4	2,29	0,025	0,015	0,6	2,66	0,025	0,015	0,4	2,88	0,025	0,015	
0,5	2,34	0,025	0,015	0,7	2,69	0,025	0,015	0,6	2,96	0,025	0,015	
0,6	2,38	0,025	0,015	0,9	2,76	0,025	0,015	1,1	3,175	0,075	0,0375	
0,76	2,42	0,025	0,015	1,5	2,84	0,075	0,015	2	3,25	0,075	0,0375	
2,6	2,51	0,075	0,015	5	2,88	0,25	0,015					
								10	3,325	0,25	0,0375	
10	2,56	0,25	0,015	10	2,92	0,25	0,015					

	IBX = 3	0 мкА			IBX = 3	3 мкА		Iвх = 36 мкA				
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	
0,06	0,108	0,0075	0,0015	0,06	0,124	0,0075	0,0015	0,06	0,144	0,0075	0,0015	
0,1	0,42	0,0075	0,00375	0,08	0,25	0,0075	0,00375	0,07	0,19	0,0075	0,00375	
0,11	0,555	0,0075	0,00375	0,1	0,475	0,0075	0,00375	0,09	0,385	0,0075	0,00375	
0,12	0,7	0,0075	0,00375	0,11	0,6125	0,0075	0,00375	0,11	0,675	0,0075	0,00375	
0,13	0,89	0,0075	0,0075	0,12	0,8	0,0075	0,0075	0,13	1,03	0,0075	0,0075	
0,15	1,185	0,0075	0,0075	0,13	0,955	0,0075	0,0075	0,15	1,47	0,0075	0,0075	
0,17	1,59	0,0075	0,015	0,14	1,13	0,0075	0,0075	0,17	1,88	0,0075	0,015	
0,19	1,9	0,0075	0,015	0,15	1,32	0,0075	0,0075	0,19	2,23	0,0075	0,015	
0,21	2,18	0,0075	0,015	0,16	1,54	0,0075	0,015	0,21	2,55	0,0075	0,015	
0,25	2,64	0,0075	0,015	0,17	1,74	0,0075	0,015	0,23	2,808	0,0075	0,015	
0,3	2,9	0,0075	0,015	0,18	1,89	0,0075	0,015	0,25	3,05	0,0075	0,0375	
0,4	3,075	0,025	0,0375	0,19	2,06	0,0075	0,015	0,29	3,3	0,0075	0,0375	
0,5	3,15	0,025	0,0375	0,2	2,21	0,0075	0,015	0,32	3,5	0,025	0,0375	
0,8	3,3	0,025	0,0375	0,21	2,36	0,0075	0,015	0,4	3,575	0,025	0,0375	
2	3,55	0,075	0,0375	0,25	2,82	0,0075	0,015	0,8	3,85	0,025	0,0375	
				0,36	3,3	0,025	0,0375	1,5	4,2	0,075	0,0375	
10	3,65	0,25	0,0375	0,4	3,325	0,025	0,0375	2,7	4,3	0,075	0,0375	
				0,5	3,4	0,025	0,0375	5,6	4,35	0,25	0,0375	
				0,6	3,475	0,025	0,0375	10	4,425	0,25	0,0375	
				0,7	3,55	0,025	0,0375					
				1,1	3,75	0,075	0,0375					
				2,9	3,95	0,075	0,0375					
				10	4,05	0,25	0,0375					

	Iвх = 3	9 мкА			Iвх = 4	12 MKA		Iвх = 45 мкА				
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	
0,06	0,166	0,0075	0,0015	0,06	0,2	0,0075	0,0015	0,06	0,202	0,0075	0,0015	
0,07	0,256	0,0075	0,0015	0,07	0,292	0,0075	0,0015	0,07	0,275	0,0075	0,00375	
0,08	0,345	0,0075	0,00375	0,08	0,3775	0,0075	0,00375	0,08	0,39	0,0075	0,00375	
0,09	0,43	0,0075	0,00375	0,09	0,48	0,0075	0,00375	0,09	0,525	0,0075	0,00375	
0,1	0,5775	0,0075	0,00375	0,11	0,85	0,0075	0,0075	0,1	0,7	0,0075	0,00375	
0,12	0,935	0,0075	0,0075	0,13	1,23	0,0075	0,0075	0,12	1,1	0,0075	0,0075	
0,15	1,59	0,0075	0,015	0,15	1,72	0,0075	0,015	0,14	1,62	0,0075	0,015	
0,18	2,16	0,0075	0,015	0,17	2,16	0,0075	0,015	0,16	2,04	0,0075	0,015	
0,2	2,56	0,0075	0,015	0,2	2,74	0,0075	0,015	0,18	2,5	0,0075	0,015	
0,24	3,05	0,0075	0,0375	0,24	3,3	0,0075	0,0375	0,21	3,05	0,0075	0,0375	
0,3	3,6	0,0075	0,0375	0,28	3,7	0,0075	0,0375	0,26	3,7	0,0075	0,0375	
0,4	3,825	0,025	0,0375	0,36	4	0,025	0,0375	0,3	4	0,0075	0,0375	
0,6	4	0,025	0,0375	0,44	4,1	0,025	0,0375	0,4	4,3	0,025	0,0375	
1	4,25	0,025	0,0375	0,54	4,2	0,025	0,0375	0,5	4,4	0,025	0,0375	
2	4,6	0,075	0,0375	0,7	4,3	0,025	0,0375	0,6	4,5	0,025	0,0375	
10	4,75	0,25	0,0375	0,8	4,4	0,025	0,0375	0,96	4,75	0,025	0,0375	
				0,9	4,45	0,025	0,0375	2	5,3	0,075	0,0375	
				1,5	4,75	0,075	0,0375	6	5,5	0,25	0,0375	
				3	5	0,075	0,0375	10	5,55	0,25	0,0375	
				3,4	5,05	0,25	0,0375					
				10	5,15	0,25	0,0375					

Таб. 1 Значення вхідних струмів та напруг, їх похибок при різних напругах виходу.

3.1. ГРАФІКИ

За прямого зміщення обернені діоди (в моєму вимадку D1 і це видно з його BAX) не мають максимуму тунельного струму (пунктирна крива). Повернута на 180° відносно початку координат BAX оберненого діода нагадує характеристику звичайного діода, але внаслідок різкої залежності зворотного тунельного струму від напруги має вищу нелінійність. Прямий спад напруги обернених діодів значно менший порівняно зі звичайними та становить соті частки вольта. Допустима зворотна напруга також мала та відповідає U_V .

Рис. 2: Значення вхідних струмів та напруг, їх похибок при різних напругах виходу..

Рис. 3: Вольт-амперна характеристика оберненого діода (пунктиром).

Рис. 4: Вольт-амперна характеристика оберненого діода (пунктиром).

3.1. РОЗРАХУНКИ

 $I_p,\,U_p,\,I_V,\,U_V,\,U_F$ можна легко знайти з рис.?? опустивши перпендикуляри на вісі струму та напруги, а от напруга «стрибка» знаходиться наступним чином:

$$\triangle U = U_F - U_p = 1,05 - 0,1 = 0,95 \text{ B},$$
 (1)

де U_F — напруга на діоді; U_p — напруга «піка» Важливим параметром є також відношення

$$\frac{I_p}{I_V} = \frac{5}{0,65} = 7,692 \text{ A},\tag{2}$$

де I_p – струм «піка»; I_V – струм «впадини». Це відношення характеризує нахил спадного відрізка ВАХ діодів на основі одного й того самого матеріалу. Від'ємний диференційний опір можна знайти за формулою (опір на спадаючому відрізку ВАХ):

$$r^{-} = \frac{U_V - U_p}{I_V - I_p} = \frac{0,65 - 0,1}{0,65 - 5} = -0,1264 \text{ KOM},$$
 (3)

де U_p – напруга на діоді, яка відповідає струму «піка»; U_V – напруга на діоді, яка відповідає струму I_V (напруга «впадини»).

4. АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ.

Таблиця значень для звичайного тунельного діода D2

В даній лабораторній роботі я на основі отриманих значень побудував вольт-амперні характеристики двох тунельних діодів, також за побудованими характеристиками зміж знайти основні параметри даних діодів. Дивлячись на графіки можна сказати, що перший діод — це обернений тунельний діод (виходячи з власних міркувань та малюнків в кніжці), а другий — звичайний тунельний діод. Також можна зазначити, що особливістю звичайного тунельного ϵ наявність від'ємного диференційного опору r^- . А що стросується параметрів першого діода, то ні графічно (оскільки немає ні піку, ні западини), ні якимось іншим чином я не зміг їх знайти.