Math 251W: Foundations of Advanced Mathematics

Portfolio problems from sections 6.1, 6.2, & 6.3

Problem 6.1.Bonus*: Prove the following

<u>proposition</u>: Given sets A and B. If A and B have the same cardinality, the power set $\mathcal{P}(A)$ has the same cardinality as the power set $\mathcal{P}(B)$ (i.e. $A \sim B \Rightarrow \mathcal{P}(A) \sim \mathcal{P}(B)$.)

proof: Let A and B be arbitrary sets such that $A \sim B$. There are three cases, either both are empty, both are finite, or both are infinite.

Case 1: Suppose A and B are both empty. By definition, they have a cardinality of zero, and their powersets both have a cardinality of one.

Case 2: Suppose A and B are both finite. Then |A| = |B| = n for some $n \in \mathbb{N}$. By definition of the powerset, $|\mathcal{P}(A)| = 2^n = |\mathcal{P}(B)|$.

Case 3: Suppose A and B are both infinite. Since $A \sim B$, there exists some bijective function $f: A \to B$. Consider a function $h: \mathcal{P}(A) \to \mathcal{P}(B)$ defined $h(X) = f_*(X)$ for all $X \subseteq A$, that is $X \in \mathcal{P}(A)$. This function is well defined, as X is a subset of the domain of f, A, and $f_*(X)$ is in the codomain of h. Now we need to show that this function is both surjective and injective, and therefore bijective.

• Let X be an arbitrary element in $\mathcal{P}(B)$. By definition of the powerset, $X \subseteq B$. Since f is surjective, $X \subseteq f_*(A)$. Thus, by definition of $h, X \in h_*(\mathcal{P}(A))$.

Let Y be an arbitrary element in $h_*(\mathcal{P}(A))$. By definition of h

Somehow, this function is bijective. By definition, since there exists a bijective function $h: \mathcal{P}(A) \to \mathcal{P}(B), \mathcal{P}(A) \sim \mathcal{P}B$.

Problem 6.1.6*: Prove the following

<u>proposition</u>: Let A and B be finite sets such that |A| = |B|. Given a function $f : A \to B$, the following are equivalent:

- i. f is bijective
- ii. f is injective
- iii. f is surjective

proof:

Let A and B be sets such that |A| = |B|. Let $f: A \to B$ be an arbitrary function. By definition of a function, each element in the codomain, A, is mapped to exactly one element in the codomain, B. Since there are the same amount of elements in A as in B, and since each element in the domain A is mapped to an element in B, there are no elements in B which are not in the image of A. Thus, $f_*(A) = B$. By definition of surjectivity, f is surjective. Let f and f be arbitrary elements in f such that f be a since the domain and the codomain have the same cardinality, and since a function maps each element in the domain to exactly one element in the codomain,

 $f(x) \neq f(y)$. By definition of bijectivity, f is bijective. Thus, for all functions $f: A \to B$, f is bijective, injective and surjective. Since this is true for all functions, f's bijectivity, injectivity, and surjectivity are equivalent, as all of them must be true for any function $f: A \to B$.

Problem 6.1.13: Prove the following

proposition: Given countable sets A and B, $A \times B$ is countable.

proof Let A and B be sets such that both sets are countable. Consider the sets defined $B_a = \{(a,x)|x \in B\}$ for all $a \in A$. Consider the projection function $\pi_2 : B_a \to B$, for some arbitrary $a \in A$. By definition of the projection function, $\pi_2(a,x) = x$ for all $x \in B$. Consider another function $g: B \to B_a$, defined g(x) = (a,x) for all $x \in B$. Consider the composition $g \circ \pi_2 : B_a \to B_a$, which is well defined since the domain of g is the codomain of π_2 . By definition of both functions and of composition, $g \circ \pi_2((a,x)) = g(\pi_2(a,x)) = g(x) = (a,x)$ for all $(a,x) \in B_a$. Thus, the composition is by definition the identity map on B_a , hence g is a left inverse of π_2 .

Furthermore, consider the composition $\pi_2 \circ g : B \to B$. Once again, since the codomain of g is the domain of π_2 , the composition is well defined. By definition of both functions, $\pi_2 \circ g(x) = \pi_2(g(x)) = \pi_2((a,x)) = x$ for all $x \in B$. Therefore, by definition of the identity map, $\pi_2 \circ g = 1_B$. This shows that g is also a right inverse of π_2 , meaning that it is the inverse of π_2 .

Since π_2 has an inverse, it is by theorem bijective, thus showing that $B \sim B_a$. By this we conclude that B_a is countable.

Now consider the set defined $\bigcup_{a\in A} B_a$. By definition of B_a , and by definition of the union, $\bigcup_{a\in A} B_a = \{(a,b)|a\in A,b\in B\}$. By definition of the Cartesian product, $\bigcup_{a\in A} B_a = A\times B$. Since this is the union of an indexed family of sets, indexed by A, which is defined to be countable, we know by Theorem 6.1.10 that $\bigcup_{a\in A} B_a$ is also countable. Thus, by substitution, $A\times B$ is countable.

Problem 6.3.11: Prove the following

proposition:

$$P(n): \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n} \quad \forall n \ge 2$$

proof (PMI-I) Let n be an arbitrary natural number such that $n \geq 2$. Consider the base-case where n = 2. By substituting,

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \left(1 - \frac{1}{2^2} \right) = \frac{3}{4} = \frac{2+1}{2(2)} = \frac{n+1}{2n}.$$

Thus, the base case is true.

Suppose $k \geq 2$ is an arbitrary natural number such that

$$\prod_{i=2}^{k} \left(1 - \frac{1}{i^2} \right) = \frac{k+1}{2k}.$$

Consider k + 1. By the associative, communitative, and distributive properties of real numbers, and substitution,

$$\begin{split} \prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2} \right) &= \prod_{i=2}^k \left(1 - \frac{1}{i^2} \right) \left(1 - \frac{1}{(k+1)^2} \right) = \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2} \right) \\ &= \frac{k+1}{2k} - \frac{1}{2k(k+1)} = \frac{(k+1)^2 - 1}{2k(k+1)} = \frac{(k+1) + 1}{2(k+1)}. \end{split}$$

Hence P(k+1) holds. Since k is an arbitrary natural number such that $k \geq 2$, P(k) implies P(k+1) for all natural numbers greater than two. Thus, by way of induction,

$$P(n): \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n} \quad \forall n \ge 2.$$

Problem 6.3.12: Prove the following

proposition: For all $(n \ge 2) \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n}.$$

proof: For proof by induction, consider the case where n=2. Hence we have

$$\left(\sum_{i=1}^{2} \frac{1}{\sqrt{i}} = 1 + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}+1}{\sqrt{2}}\right) > \left(\frac{2}{\sqrt{2}} = \sqrt{2}\right).$$

Thus, the base case holds.

Now suppose the statement holds for some particular $(n \geq 2) \in \mathbb{N}$, such that

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n}.$$

By the associative property of addition,

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{1+n}}.$$

By induction hypothesis,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{1+n}} > \sqrt{n+1}$$

. By way of induction, it follows that for all $(n \geq 2) \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n}.$$

Problem Irreducible Polynomials: Prove the following

proposition: Every reducible polynomial can be written as a product of irreducible polynomials. (AKA) for all $n \in \mathbb{N}$, reducible polynomials of degree n can be written as the product of irreducible polynomials.

[proof] (Strong Induction) The lowest possible degree for a polynomial to be reducible is degree n=2.

For proof by induction, consider the base case n=2. Let p be an arbitrary reducible polynomial of degree 2. By definition of reducible polynomials, $p_2=q_ar_b$, where q_a and r_b are polynomials of degrees a and b, such that a,b<2. Furthermore, since a,b<2, q_a and r_b are either of degree 1 or 0, both of which are degrees at which all polynomials are irreducible. Thus, p_2 is a product of irreducible polynomials for n=2, and the base case holds.

For the induction hypothesis, suppose all reducible polynomials of degree i >= n can be written as the product of reducible polynomials for some particular $n \in \mathbb{N}$.

Consider an arbitrary polynomial of degree i+1, p_{i+1} such that p_{i+1} is reducible. By definition of reducible polynomials, $p_{i+1} = q_a r b$, where q_a and r_b are polynomials of degree a and b respectively, and a and b are both less than i+1. By the induction hypothesis, these polynomials can be written as a product of irreducible polynomials. Furthermore, by substitution and the associative property, p_{i+1} can be written as the product of irreducible polynomials.

Thus, by way of strong induction, all reducible polynomials can be written as a product of irreducible polynomials.

Problem 6.4.6: Prove the following

proposition: For all $n \in \mathbb{N}$ such that n > 5, $F_n = 5F_{n-4} + 3F_{n-5}$.

proof For proof by induction, consider the base case where n = 6. By definition of the Fibonacci sequence, $F_6 = 8$, $F_2 = 1$, and $F_1 = 1$. By substitution $F_6 = 5(1) + 3(1) = 8$. Thus the base case hold.

Suppose by way of strong induction that $F_i = 5F_{i-4} + 3F_{i-5}$ for all $i \leq n$ for some particular $(n > 6) \in \mathbb{N}$. Consider F_{i+1} . By definition of the Fibonacci sequence, $F_{i+1} = F_i + F_{i-2}$. By the induction hypothesis,

$$F_{i+1} = 5F_{i-4} + 3F_{i-5} + F_{i-2} = 5F_{i-4} + 3F_{i-5} + F_{i-2} + F_{i-3}$$

$$= 5F_{i-4} + 3F_{i-5} + F_{i-3} + F_{i-4} + F_{i-3}$$

$$= (3F_{i-4} + 3F_{i-5}) + 2F_{i-3} + 3F_{i-4}$$

$$F_{i+1} = 5F_{(i+1)-4} + 3F_{(i+1)-5}.$$

Thus, by way of strong induction, for all $n \in \mathbb{N}$ such that n > 6, $F_n = 5F_{n-4} + 3F_{n-5}$.

Problem 6.4.14(1i): Prove the following

Given $P_1 = 1$, $P_{n+1} = P_n + (3n+1)$, $T_1 = 1$, $T_{n+1} = T_n + (n+1)$, $L_1 = 1$, and $L_{n+1} = L_n + 1$ for all $n \in \mathbb{N}$,

proposition: $P_n = 3T_n - 2L_n$ for all $n \in \mathbb{N}$

proof by induction consider the base case where n = 1. It is given that $P_1 = 1$, and that $T_1 = 1$, and that $L_1 = 1$. Thus, $P_1 = 1 = 3(1) - 2(1) = 3T_1 - 2T_1$.

For our induction hypothesis, suppose that $P_n = 3T_n - 2L_n$ for for some particular $n \in \mathbb{N}$. Consider P_{n+1} . By definition of P, $P_{n+1} = P_n + (3n+1)$. By the induction hypothesis and by definition of T and L,

$$P_{n+1} = 3T_n - 2L_n + (3n+1) = 3(T_{n+1} - (n+1)) - 2(L_{n+1} - 1) + (3n+1)$$
$$= 3T_{n+1} - 3n - 3 - 2L_{n+1} + 2 + 3n + 1$$
$$P_{n+1} = 3T_{n+1} - 2L_{n+1}.$$

Thus, by way of induction, $P_n = 3T_n - 2L_n$ for all $n \in \mathbb{N}$.