EC 205 - Analog Electronics Lab - Course Plan

Electronics and Communication Engineering

Course Instructor: Dr. Nikhil K. S. Credits: 2 (0-0-3)

Modules	Experiments	No of weeks
Basic Electronic Circuits	 To design OR and AND logic gates using diodes and resistors. To study clipping and clamping circuits. To design full-wave Bridge rectifier, Unregulated and regulated power supply. To study the behavior of RC circuit for sinusoidal and square wave excitation. To study the effect of negative feedback. 	5
Linear and non-linear applications of opamps	 6 Non-inverting amplifier. 7. Inverting Adder. 8. All-pass filter. 9.Second order filter. 10. Study of Comparator, Inverting Schmitt trigger and non-inverting Schmitt trigger circuits. 11. Astable multivibrator. 	6

Course outcomes:

- 1) Student should be able to design and simulate various basic electronic circuits and systems.
- 2) Student should be able to design and simulate op-amp based circuits.
- 3) Student should be able to analysis the circuit performance from the simulated results.

Tentative Course Evaluation plan:

Continuous Evaluation / Assignment – 60 marks

Midsem – 15 marks

Endsem – 25 marks

References:

- [1] Behzad Razavi, "Fundamentals of Microelectronics", Second edition, Wiley, 2013.
- [2] A. Sedra, K. Smith, "Microelectronic Circuits: Theory and Applications" Oxford University Press, 2004.
- [3] Sergio Franco, "Design with OPAMPS and Linear Integrated circuits", Tata McGraw Hill, 2002.