A) CN ⁻ ,	C: +2	B) H ₂ SO ₄ , S: +6	C) ClF ₃ , Cl: +3			
D) H ₂ O ₂	2, O: -2	E) Hg ₂ F ₂ , Hg: +1				
	n which of the following NCORRECT?	lowing pairs is the oxidation	on number for the underlined element			
A) <u>N</u> <i>H</i> .	B) MnO ₄	$\frac{1}{1}$ C) $\frac{\text{Cr}_2}{2}\text{O}_7^{2-}/6$ D)	${\bf EO_4}^{2-}/4$ E) ${\bf NO_3}^{-}/5$			
2 (Character INCORD	CCT: l-ti				
3- (Choose the INCORR	ECT oxidation state.				
A) H ₂ SC	b ₄ , S: +6 b ₁ H ₂ (O ₂ , O: -2 C) NH ₄ ⁺ , N: -	3			
D) MnO	E) C	Cr ₂ O ₇ ²⁻ , Cr: +6				
4- V	Which sample represe	ents the greatest number of n	noles? (C: 12 g/mol, H: 1 g/mol, O: 16			
g	g/mol, N: 14 g/mol)					
A) 30 g ethane gases (C ₂ H ₆)						
B) 1.0 m	noles of benzene					
C) 6.022x10 ²³ molecules of propane						
D) 90 g	acetic acid (CH ₃ COC	OH)				
E) 1800	00 mg aspirin (C ₉ H ₈ 0	O ₄)				
5-]	5- The molecular formula for nicotine is $C_{10}H_{14}N_2$. How many moles of C atoms are pre-					
i	n a 3.0 g sample of n	icotine? (C: 12 g/mole, H: 1	g/mole, O: 16 g/mole)			

A) 0.370 mole **B)** 0.041 mole **C)** 0.185 mole **D)** 0.275 mole **E)** 0.018 mole

fertilizer? (H: 1 g/mole, N: 14 g/mole, C: 12 g/mole, O: 16 g/mole)

A) 6,02. 10²³

6- How many hydrogen atoms are present in 25,6 g of urea, [(NH₂)₂CO], which is used as a

B) 2,57. 10²³ C) 1,03. 10²⁴ D) 5,13. 10²³ E) 1,34. 10²⁴

1- Choose the INCORRECT oxidation state.

• •	present in a 10.0 g sample of paracetamol? (C: 12 g/mol, H: 1 g/mol, O: 16 g/mol, N: 14 g/mol)							
A) 0	.066 mol	B) 0.132 mol	C) 0.53 mol	D) 0.27 mol	E) 0.010 mol			
8- The chief component of clove oil is X, which contains 40.7% carbon, 54.2% oxygen, and 5.1% hydrogen? (C: 12 g/mol, H: 1 g/mol, O: 16 g/mol)								
	t is the en	npirical formula of 2 B) C ₂ H ₆ O	X? C) C5H9O5	D) C ₂ H ₃ O ₂	E) C ₄ H ₃	Oo		
1) C	11302	B) C21160	C) C3119O3	D) C2H3O2	L) C4113	O ₂		
9	9- When 3.606 grams of organic compound is burned, 5.28 g of CO ₂ , 3.846 g of SO ₂ and 2.16							
	g of H ₂ O are formed. What is the empirical formula of this compound? (C:12 g/mol, H:1							
	g/mol,	O:16 g/mol, S:32 g	/mol)					
A) C	S_2SH_2	B) C_2SO_8H	$C) C_2 S$	$_{2}O_{4}H_{4}$ D)	C_2SH_4 E) (CSH		
10- A 4.05 g sample of a compound containing only C, H, and O was burned completely. The only combustion products were 10.942 g CO ₂ and 4.476 g H ₂ O. What is the empirical formula of the compound? (C: 12 g/mole, H: 1 g/mole, O: 16 g/mole)								
A) C	$_{7}\mathrm{H}_{14}\mathrm{O}$	B) $C_7H_{14}O_7$	C) $C_6H_{12}O$	D) C ₇ H ₇ O E)	CH ₂ O			
		of the following nu B) 100 g	<u> </u>	C	E) 0.090)9 g		
1	2.8 x 4.5039 =? what is the result of the operation expressed in significant numbers?							
A) 1	2.6	B) 12.61092	C) 12.611	D) 13	E) 12			
1	1 3- numbe		what is the resu	alt of the operation	n expressed in s	ignificant		
A) 1	2.6	B) 12.61092	C) 12.611	D) 13	E) 12			

14- An atom has 15 neutrons,	18 protons and 19 electrons.	What is the correct representation
for this atom?		

A) $_{18}^{33}X^{-}$ B) $_{18}^{33}X^{+}$ C) $_{15}^{33}X^{-}$ D) $_{15}^{33}X^{+}$

E) $^{37}_{15}X^{-}$

15- An atom has 15 neutrons, 18 protons and 17 electrons. What is the correct representation for this atom?

 $A)_{18}^{33}X^{-}$

B) ${}^{33}_{18}X^+$ C) ${}^{33}_{15}X^-$ D) ${}^{33}_{15}X^+$

E) $^{37}_{15}X^{-}$

16- An atom has 18 neutrons, 15 protons and 16 electrons. What is the correct representation for this atom?

 $A)_{18}^{33}X^{-}$

B) ${}^{33}_{18}X^+$ C) ${}^{33}_{15}X^-$ D) ${}^{33}_{15}X^+$ E) ${}^{37}_{15}X^-$

17- If the density of indium is 7.31 g/cm³, how many atoms are there in a indium piece of 30 dm wide, 5 cm long and 1.6 mm thick? (In: 114.8 g/mol, N_A=6,02x10²³)

A) 9.19×10^{24} B) 9.19×10^{22} C) 15.3×10^{23} D) 15.3×10^{22} E) 918×10^{2}

18- If the density of lead is 11.34 g/cm³, how many atoms are there in a lead piece of 2.5 cm wide, 1.00 m long and 2.1 mm thick? (Pb: 207 g/mol, N_A=6,02x10²³)

A) 1.73×10^{23}

B) 1.73×10^{24}

C) 1.03×10^{24}

D) 1.03×10^{23}

E) 6.03×10^{23}

19- A physical property is;

A) The ability of a sample to undergo change

B) A property the sample displays that result in a change in composition

C) A substance comprised of a single type of atom

D) A property the sample displays without changing composition.

- E) A characteristic of a material that can only be observed with chemical decomposition.
 - **20-** 15.875 g Cu are combined with 126 g of HNO₃ according to the reaction:

$$3 \text{ Cu} + 8 \text{ HNO}_3 \rightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}.$$

Which reagent is limiting and how many grams of Cu(NO₃)₂ are produced? (Cu: 63.5 g/mol, H: 1 g/mol, O: 16 g/mol, N: 14 g/mol)

- A) Cu, 187.5 g
- B)Cu(NO₃)₂, 46.875 g
- C)HNO₃, 93.8 g
- D) HNO₃, 125.65 g
- E) Cu, 46.875 g
 - **21-** What is the limiting reagent compound when the each 500 g samples from PCl₃, Cl₂ and P₄O₁₀ are reacted, and how much POCl₃ is formed at most?

$$PCl_3 + Cl_2 + P_4O_{10} \rightarrow POCl_3$$
 (The reaction equation is not balanced)

- **A)** PCl₃; 931 g POCl₃
- **B**) Cl₂; 1031 g POCl₃
- **C)** PCl₃; 301 g POCl₃

- **D**) P₄O₁₀; 813 g POCl₃
- **E**) PCl₃;5403 g POCl₃
- **22-** Ca(OH)_{2(k)} + NH₄Cl_(k) \rightarrow CaCl₂(aq) + NH₃(g) + H₂O(s) (Reaction is not balanced) If a mixture containing 33 g each of NH₄Cl and Ca(OH)₂ is heated, how many grams of NH₃ will form and which reactant remains in excess, and in what mass? (Ca: 40 g/mol, Cl: 35,5 g/mole, O: 16 g/mole, N: 14 g/mole, H: 1 g/mole)
- A) 32,93 g NH₃ ve 9,14 g NH₄Cl
- B) 7,58 g NH₃ ve 22,9 g Ca(OH)₂
- C) 32,93 g NH₃ ve 23,85 g NH₄Cl
- D) 7,58 g NH₃ ve 25,42 g Ca(OH)₂
- E) 10,5 g NH₃ ve 10,1 g Ca(OH)₂

- **23-** The label on a pressurized can of spray disinfectant warns against heating the can above 68 °F. What are the corresponding temperatures on the Celsius and Kelvin temperature scales?
- A) 22.5 °C, 295.65 K
- B) 20 °C, 293.15 K
- C)25 °C, 298.15 K
- D) 68 °C, 341.15 K
- E) 28 °C, 301.15 K
 - **24-** The label on a pressurized can of spray disinfectant warns against heating the can above 122 °F. What are the corresponding temperatures on the Celsius and Kelvin temperature scales?
- A) 82.5 °C, 355.65 K
- B) 85 °C, 358.15 K
- C) 80 °C, 353.15 K
- D) 50 °C, 323.15 K
- E) 93.5 °C, 366.65 K
 - **25-** The label on a pressurized can of spray disinfectant warns against heating the can above 194 °F. What are the corresponding temperatures on the Celsius and Kelvin temperature scales?
- A) 82.5 °C, 355.65 K
- B) 85 °C, 358.15 K
- C) 80 °C, 353.15 K
- D) 90 °C, 363.15 K
- E) 93.5 °C, 366.65 K