HOMEWORK #4

Principles of Electronics- Winter 2015

Problem 1

- a) For CE transistor shown below, find the overall small signal gain (V0/Vi) as a function of RS, RC and β , VA, and IC.
- b) Next, determine the value of DC collector current IC that maximizes the small signal voltage gain.
- c) Explain qualitatively why the gain falls at very high and very low collector currents.
- d) What is the voltafe gain at optimum IC? [Gray 3.2]

Problem 2

In Problem 1, assume $R_S=R_C=50~k\Omega$, and calculate I_C . What is the DC voltage drop across R_C ? What is the voltage gain?

Problem 3

In the following circuits, assume $V_{CC}=3v$, $\beta=100$ and $I_S=10^{-15}A$. Calculate the bias current and bias voltage (I_C and V_{CE}).

Problem 4

For the circuits in Problem 3, assuming capacitors are large,

- a) Draw the small signal (AC) equivalent circuit
- b) Calculate voltage gain A_v=V_o/V_{in}
- c) Calculate input resistance from source and from base
- d) Output resistance for VA= 50 v