МФТИ, ФПМИ, сложность вычислений, осень 2023 Контрольная работа №2, тренировочный вариант

Контрольная состоится 29 ноября в 13:55 в Актовом зале. На выполнение работы отводится 80 минут. Каждая задача оценивается в 10 баллов. Никакими материалами пользоваться нельзя. При решении можно использовать изученные на лекциях и семинарах теоремы, если явно на них сослаться. Если задача решена на контрольной менее, чем на 8 баллов, то задача на ту же тему будет выдана для решения на дом из расчёта 5 баллов, так что суммарное число будет ограничено 8 баллами. При заранее заявленном пропуске по уважительной причине задачи на дом будут выдаваться из расчёта в 8 баллов. Также на дом будет дана одна новая задача на 10 баллов.

- 9. Определим язык PATHVCDIM = $\{(G = (V, E), k) : VC_{path}(G) \geqslant k\}$. Здесь под $VC_{path}(G)$ понимается наибольший размер множества $X \subset V$, такого что $\forall S \subset X$ существует некий путь в графе G, который содержит все вершины из S и не содержит ни одной вершины из $X \setminus S$. Классифицируйте PATHVCDIM как можно точнее в полиномиальной иерархии (варианты ответа: $\Sigma_m^p, \Pi_m^p, \Sigma_m^p \cap \Pi_m^p$ для некоторого m).
- 10. Докажите Π_2^p -полноту языка SUBSETEXT = $\{(k, m, a_1, b_1, a_2, b_2, \dots, a_k, b_k, c_1, c_2, \dots, c_m, N) \mid$ как бы ни выбрать по одному элементу из каждой пары $(a_1, b_1), (a_2, b_2), \dots, (a_k, b_k)$, такой набор можно дополнить некоторыми элементами из c_1, \dots, c_m так, чтобы сумма всех выбранных элементов равнялась $N\}$.
- 11. Докажите PSPACE-полноту языка LOOPING = $\{(M, 1^n, k) \mid \text{детерминированная машина Тью-ринга } M$ зацикливается на пустом входе, заняв не больше n ячеек и сделав не больше k ходов $\}$.
- 12. Назовём последовательность открывающих и закрывающих скобок чётной, если она либо пуста, либо представляется в виде $(s_1)(s_2)\dots(s_k)$, где k чётно, а s_i более короткие чётные скобочные последовательности. Докажите, что язык EVENPAR чётных скобочных последовательностей лежит в \mathbf{L} .
- 13. (2 пункта по 5 баллов). Докажите, что язык ODDREACHABLE = $\{(G, v) \mid$ в ориентированном графе G из вершины v можно дойти до нечётного числа вершин $\}$ (а) лежит в \mathbf{NL} ; (б) \mathbf{NL} -полон.
- **14.** Докажите, что функция $\mathcal{BB}_{01}(n)$, возвращающая максимальное число блоков 01 подряд в ответе машины Тьюринга с n состояниями на пустом входе, растёт быстрее любой вычислимой функции.
- **15.** (На дом, максимум 10 баллов). Рассмотрим случайный оракул A, построенный следующим образом: для каждого n независимо от остальных с вероятностью $\frac{1}{2}$ ни одно слово длины n не содержится в A, а с вероятностью $\frac{1}{2}$ в A содержатся все слова длины n, не меньшие r по лексикографическому порядку, где r выбрано случайно и равномерно. Докажите, что с вероятностью 1 выполнено $\mathbf{P}^A \neq \mathbf{NP}^A$.