Functional Annotation Results

Team 1: Jiyeong Choi
Asmita Kishor Lagwankar
Chloe Pryor
Hannah Snyder
Likitha Venkatesh
Jiahong Zhang

Types of Functional Annotation

Ab-Initio

- Ab initio "from the beginning"
- No external evidence is available to identify a gene
- Mathematical models
- Does not need experimental data

Homology Based

- Evidence Based Annotation
- Rely on comparison between sequences
- Uses information about known structure of related proteins to predict unknown

Functional Annotation Strategy - Recap

We were going to choose 4 different aspects of functions to predict. (Signal Peptide, Transmembrane Proteins, Motif/Domain and Antibiotics Resistance).

Use 2 homology based methods to predict 2 functions and use 2 ab initio methods to predict other 2 functions.

AB initio

Func: Signal Peptide

Tool:SignalP

Func:Transmembrane Proteins

Tool: Deep TMHMM

Gene Prediction Result

Homology

Func: Motif/Domain

Tool: eggNOG

Func: Antibiotics Resistance

Tool: CARD-RGI

Functional Annotation Result

Functional Annotation Strategy - Updates

We updated our methods to cover 5 different aspects of functions to predict. (Signal Peptide, Transmembrane Proteins, Motif/Domain and Antibiotics Resistance, **Virulence**).

AB initio

Homology

Gene Prediction Result

Func: Signal Peptide

Tool:SignalP

Func:Transmembrane Proteins

Tool: Deep TMHMM

Func: Motif/Domain

Tool: eggNOG

Func: Antibiotics Resistance

Tool: CARD-RGI

Func: Virulence

Tool: BLAST with VFDB

Functional Annotation Result

Final Work Delegation

AB initio

Func: Signal Peptide

Tool:SignalP

Likitha Venkatesh

Hannah Snyder

Func:Transmembrane Proteins

Tool: Deep TMHMM

Asmita Lagwankar

Functional Annotation Result

Func: Motif/Domain Tool: eggNOG

Func: Antibiotics Resistance

Tool: CARD-RGI

Jiyeong Choi

Jiahong Zhang

Jiyeong Choi

Homology

Chloe Pryor

Func: Virulence

Tool: BLAST with VFDB

GitHub Readme

Genome Size per contig

Gene count per contig

SignalPv6

- Command: signalp6 --fastafile <input_file> --organism <organism type>
 --output_dir <output directory> --format <output_format> --mode <mode_type>
 --write_procs 8
- Runtime was ~3-4 minutes for each isolate
- Output Files:
 - Predicted_results.txt
 - Output.gff3
 - Single sequence files
- Mode could be specified as slow or fast

SignalPv6

Deep TMHMM

Command:

biolib run DTU/DeepTMHMM --fasta input.fasta

Output:

- A gff file with all TMRs
- A predicted topologies file

DeepTMHMM by default is run on the BioLib Cloud.

Predicts the following:

- protein topology prediction tool
- protein secondary structure prediction tool
- protein transmembrane helices prediction
- membrane protein structures
- Signal Peptides

Deep TMHMM

eggNog-mapper

- Diamond mode was used as it has the best balance of speed and accuracy
- Specified number of CPUs
 - o cpu 10
 - Took about 3 hours to generate all output files
- Domain/motif information obtained
 - --pfam realign realign
 - Realigning queries to the PFAM domains found on the orthologous groups
- 4 output files were generated for each input
 - *.emapper.annotation
 - *.emapper.hits
 - *.emapper.pfam
 - *.emapper.seed_orthologous

eggNog-mapper

Antibiotics Resistance - CARD RGI

```
Command: rgi main --input_sequence /path/to/*.faa --output_file /path/to/result
--local --clean -t protein
```

```
--clean removes temporary files
-t {contig,protein}, --input_type {contig,protein}
```

Key results:

Best_Hit_Bitscore	Bitscore value of match to top hit in CARD	
Best_Hit_ARO	ARO term of top hit in CARD	
Best_Identities	Percent identity of match to top hit in CARD	

Drug Class	ARO Categorization
Resistance Mechanism	ARO Categorization
AMR Gene Family	ARO Categorization

Output: json & txt

Antibiotics Resistance - CARD RGI

Virulence - BLAST with VFDB

Ran a BLAST search with Virulence Factor Database and converted output with MGKit

44,502 annotations for all genomes relatively quickly

making the blast database

makeblastdb -in /home/team1/annotation/vfdb_database/VFDB_setA_pro.fas -parse_seqids -dbtype prot -out /home/team1/annotation/vfdb_output/vfdb_prot

generating the blast output

for i in CGT*.faa; do blastp -db vfdb_prot -query \$i -out "\${i}_out" -outfmt 6 -num_threads 4 -evalue 1e-10 -max_hsps 1 -max_target_seqs 1; done

converting blast output to gff files

for i in CGT*.faa_out; do blast2gff blastdb \$i "\${i%_*}.gff"; done

Virulence - BLAST with VFDB

Tool Comparison

• Just for 5 test files that were the smallest

	CPU	Time
SignalP	10.0%	3-4 mins
ТМНММ	13%	17-18 mins
eggNOG	9.97%	32.55 mins
CARD-RGI	9.96%	54.6s
Blast	9.95%	42.25s

(Also in .tsv file)

Merged GFF File

Func: Signal Peptide

Tool: SignalP

Func:Transmembrane Proteins

Tool: Deep TMHMM

Func: Motif/Domain

Tool: eggNOG

Func: Antibiotics Resistance

Tool: CARD-RGI

Func: Virulence

Tool: BLAST with VFDB

Merged gff Files

Information to pass on:

Pipeline: /home/team1/annotation/annotation_pipeline.py

Readme: GitHub!

(https://github.gatech.edu/comgenomics2023/Team1-FunctionalAnnot_ation/blob/main/README.md)

Pathway for isolate CGT1020 Example:

- Merged gff file: /home/team1/annotation/merge/output/CGT1020
- Output of all tools: /home/team1/annotation/merge/CGT1020

All files are in the server

Questions?