Контролно ДАА

Име: Φ H: Курс: Група:

Задача	1	2	3	Общо
максимум	10	10	10	30
получени точки				

Изберете две от трите задачи (една е бонус). Всяка задача носи по 10 т. Предложете колкото е възможно по-бързи (в асимптотичен смисъл) и оптимални по памет алгоритми за следните проблеми:

Задача 1. Даден е неориентиран граф. Да се намери цикъл в него (алгоритъмът да отпечатва намерения цикъл или че графът е ацикличен).

Задача 2. Върхово покритие на граф се нарича множество от върхове, такова че всяко ребро на графа е инцидентно с поне един връх от множеството. Минимално върхово покритие е върхово покритие с възможно най-малкия брой върхове. Да се намери броя върхове в минимално върхово покритие на дърво.

Задача 3. Даден е речник с думи - низове от латински букви. За константно време може да се проверява дали даден низ е дума от речника. Даден е произволен низ от латински букви. Да се намери дали низът може да бъде представен като конкатенация на думи от речника.

Контролно ДАА

Име: Φ H: Kypc: Група:

Задача	1	2	3	Общо
максимум	10	10	10	30
получени точки				

Изберете две от трите задачи (една е бонус). Всяка задача носи по 10 т. Предложете колкото е възможно по-бързи (в асимптотичен смисъл) и оптимални по памет алгоритми за следните проблеми:

Задача 1. Да се намери броя на свързаните компоненти в неориентиран граф.

Задача 2. Дадено е множество от п правоъгълника с техните размери. Един правоъгълник може да се постави върху друг ако неговите дължина и ширина са съответно по-малки или равни на дължината и ширината на втория. Не е разрешено въртене на правоъгълниците. Да се намери дължината к на максималната редица от правоъгълници $a_1, a_2, \ldots a_k$, такива че a_i може да се постави върху a_{i+1} . (Даденото множество няма наредба, можем да строим редицата по произволен начин)

Задача 3. Дадени са цените на такси $a_1, a_2, \dots a_k$ за пропътуване съответно на 1, 2, ... k км $(a_i > 0)$. Пътник може да пропътува n км като ги раздели на отсечки с дължини измежду числата 1, 2, ... k. Каква е минималната цена за пътуване n км?