Electronic Circuits

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

FET Amplifiers

FETs provide:

- Excellent voltage gain High input impedance Low-power consumption Good frequency range

FET Small-Signal Model

Transconductance

The relationship of a change in ${\rm I}_{\rm D}$ to the corresponding change in ${\rm V}_{\rm GS}$ is called transconductance

Transconductance is denoted g_m and given by:

$$g_m = \frac{\Delta I_D}{\Delta V_{max}}$$

Graphical Determination of g_m

Mathematical Definitions of g_m

$$\begin{split} g_m &= \frac{\Delta I_D}{\Delta V_{GS}} \\ g_m &= \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right] \end{split}$$
 Where V_{GS} =0V $g_{m0} = \frac{2I_{DSS}}{|V_P|}$ $g_m = g_{m0} \left[1 - \frac{V_{GS}}{V_{GS}} \right]$

where
$$1 - \frac{c_{SS}}{V_P} = \sqrt{\frac{B}{I_{DSS}}}$$

 $g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_P}\right) = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$

FET Impedance

$$Z_i = \infty \Omega$$

$$Z_o = r_d = \frac{1}{y_{os}}$$

$$\begin{split} r_d &= \frac{\Delta V_{DS}}{\Delta I_D} \Big|_{V_{GS} = constant} \\ y_{os} &= admittance\ parameter\ listed\ on\ FET\ specification\ sheets. \end{split}$$

Practical Applications Three-Channel Audio Mixer Silent Switching Phase Shift Networks Motion Detection System