Category 1 Number Operations

- 1. For which of the following expressions is it true that the value of the expression is the same for x = 587 as for x = -587?
 - I. 1-2x
 - II. $1-2x^2$
 - III. $(1-2x)^2$
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II, and III
- 2. If the numbers $\frac{17}{24}$, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{3}{4}$, and $\frac{9}{16}$ were ordered from greatest to least, the middle number of the resulting sequence would be
 - **(A)** $\frac{17}{24}$
 - **(B)** $\frac{1}{2}$
 - (C) $\frac{3}{8}$
 - **(D)** $\frac{3}{4}$
 - **(E)** $\frac{9}{16}$

- 3. The sum $\frac{7}{8} + \frac{1}{9}$ is between
 - (A) $\frac{1}{2}$ and $\frac{3}{4}$
 - **(B)** $\frac{7}{8} + \frac{1}{9}$ and 1
 - (C) 1 and $1\frac{1}{4}$
 - **(D)** $1\frac{1}{4}$ and $1\frac{1}{2}$
 - (E) $1\frac{1}{2}$ and 2
- 4. Of the following, which is closest to $\frac{1}{7}$?
 - (A) 0.200
 - (B) 0.172
 - (C) 0.167
 - (D) 0.143
 - (E) **0.140**
- 5. For all integers a, b, c, and d, *(a,b,c,d) is defined as a-b+c-d. What is the value of *(1,3,8,5)?
 - **(A)** -1
 - **(B)** 0
 - (C) 1
 - (D) 2
 - (E) 3

- 6. The operation # is defined by the equation $x \# y = \frac{x y}{2x y}$, where $2x \ne y$. The value of which of the following is 0?
 - -2#2**(A)**
 - 2#-2**(B)**
 - 2#2 **(C)**
 - 2#1 **(D)**
 - 3#2 **(E)**
- 7. The number 0.756 is how much greater than $\frac{3}{4}$?
 - (A) $\frac{6}{25}$
 - **(B)** $\frac{3}{125}$
 - (C) $\frac{3}{250}$
 - **(D)** $\frac{3}{500}$
 - **(E)** $\frac{1}{250}$
- 8. What number when multiplied by $\frac{4}{7}$ yields $\frac{6}{7}$ as the result?

- (A) $\frac{2}{7}$ (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $\frac{24}{7}$ (E) $\frac{7}{2}$

- 9. If the sum of 3 times n, 11 times n, and 111 times n is equal to 1,000, what is the value of
 - n?
 - (A) 8
 - **(B)** 12.5
 - (C) 16
 - **(D)** 25
 - **(E)** 125
- 10. Which of the following is equal to 0.042?
 - (A) $\frac{4}{10} + \frac{2}{10}$
 - **(B)** $\frac{4}{10} + \frac{2}{100}$
 - (C) $\frac{4}{100} + \frac{2}{100}$
 - **(D)** $\frac{4}{100} + \frac{2}{1,000}$
 - (E) $\frac{4}{1,000} + \frac{2}{1,000}$
- 2 C + 2 C 2 \(\triangle \), 2 2 \(\triangle \)
- 11. In the addition problem above, if and **D** each represent a digit, then represents
 - (A) 9
 - **(B)** 8
 - (C) 5
 - (D) 2
 - (\mathbf{E}) 0

- 12. If represents a digit in the subtraction problem above,
 - **(A)** 1
- **(B)** 5
- (C) 6
- **(D)** 7
- (E) 9

13. The figure above shows the arrangement and code numbers of 9 fluorescent tubes. If a tube is illuminated whenever its code number is received, which of the following shows the arrangement of tubes illuminated when the digits in the result of $3,804 \div 3$ are received?

- 14. Of the following, which is the closest approximation of $\frac{50.2 \times 0.49}{199.8}$?

- (A) $\frac{1}{10}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{5}{4}$ (E) $\frac{25}{2}$

$$\frac{61.24 \times (0.998)^2}{\sqrt{403}}$$

- 15. The expression above is approximately equal to
 - (A) 1
 - **(B)** 3
 - (C) 4
 - **(D)** 5
 - **(E)** 6
- 16. $\frac{(2)(0.33)(15)}{(0.24)}$ is approximately equal to
 - (A) 2
 - **(B)** $\frac{5}{2}$
 - (C) 15
 - **(D)** 36
 - (E) 40
- 17. Of the following, which is the best approximation for $\frac{0.01 \times 2.005 \times 32.98}{11.12 \times 0.04}$?
 - (A) 0.015
 - (B) 0.15
 - (C) 1.5
 - **(D)** 15
 - (E) 150

- 18. Of the following, the closest approximation to $\frac{8.097(0.8745)}{0.202}$ is
 - (A) 40
 - **(B)** 35
 - (C) 30
 - (\mathbf{D}) 4
 - (E) 3

<High Level Questions>

- 19. If a sequence of 8 consecutive odd integers with increasing values has 9 as its 7th term, what is the sum of the terms of the sequence?
 - (A) 22
 - (B) 32
 - (C) 36
 - (D) 40
 - (E) 44
- 20. If w, x, y, and z are positive and $\frac{w}{x} = \frac{y}{z}$, which of the following is NOT always true?
 - (A) wz = xy
 - **(B)** $\quad \frac{x}{w} = \frac{z}{y}$
 - (C) $\frac{x}{y} = \frac{z}{w}$
 - $\mathbf{(D)} \quad \frac{w+x}{x} = \frac{y+z}{z}$
 - $\mathbf{(E)} \quad \frac{x+w}{w} = \frac{z+y}{y}$

- 21. If $d = \frac{a+b}{1+\frac{ab}{c^2}}$, $a = \frac{c}{2}$, and $b = \frac{3c}{4}$, what is the value of d in terms of c?
 - **(A)** $\frac{10c}{11}$
 - **(B)** $\frac{5c}{2}$
 - (C) $\frac{10c}{3}$
 - **(D)** $\frac{10}{11c}$
 - **(E)** $\quad \frac{5}{2c}$
- 22. Tamara saves \$35 each week. If she now has \$100 saved, in how many weeks can she first have enough saved to buy a lawn mower that costs \$250?
 - (A) 2
 - **(B)** 3
 - (C) 4
 - **(D)** 5
 - **(E)** 6
- 23. If x > 3,000, then the value of $\frac{x}{2x+1}$ is closest to
 - (A) $\frac{1}{6}$
 - **(B)** $\frac{1}{3}$
 - (C) $\frac{10}{21}$
 - **(D)** $\frac{1}{2}$
 - $\mathbf{(E)} \quad \frac{3}{2}$

- 24. A certain clock indicates 8 o'clock. If the clock runs accurately for the next 11,995 hours, what hour will it indicate at the end of that time?
 - (A) 1 o' clock
 - (B) 2 o' clock
 - (C) 3 o' clock
 - (D) 5 o' clock
 - (E) 10 o' clock

25. If $\frac{1}{2}$ the result obtained when 2 is subtracted from 5x is equal to the sum of 10 and 3x,

what is the value of x?

- **(A)** -22
- **(B)** -4
- (C) 4
- **(D)** 18
- **(E)** 22

- 26. A light-year is approximately 6×10^{12} miles. Approximately how many miles from Earth is a galaxy that is 2×10^6 light-years away?
 - (A) 3.0×10^6
 - **(B)** 1.2×10^{18}
 - (C) 1.2×10^{19}
 - **(D)** 1.2×10^{72}
 - **(E)** 1.2×10^{73}

27.	. If it is 6:27 in the evening on a certain day, what time in the morning was it exactly 2,880,717										
	minutes <u>earlier</u> ? (Assume standard time in one location.)										
	(A)	6:22									
	(B)	6:24									
	(C)	6:27									
	(D)	6:30									
	(E)	6:32									
28.	If th	e sum of	two positive integers is 24 and the difference of their squares is 48, what is the								
	prod	uct of th	e two integers?								
	(A)	108									
	(B)	119									
	(C)	128									
	(D)	135									
	(E)	143									
29.	On a	certain :	scale of intensity, each i ncrement of 10 in magnitude represents a tenfold increase								
	in in	tensity.	On this scale, an intensity corresponding to a magnitude of 165 is how many								
	times an intensity corresponding to a magnitude of 125?										
	(A)	40									
	(B)	100									
	(C)	400									
	(D)	1 000									

(E) 10,000

- 30. In the formula $V = \frac{1}{(2r)^3}$, if r is halved, then V is multiplied by
 - (A) 64

- (B) 8 (C) 1 (D) $\frac{1}{8}$ (E) $\frac{1}{64}$

- 31. In the subtraction problem above, **D**, , and **O** represent different positive digits. If greater than **D**, what is the value of **0**?
 - 9 **(A)**
 - 7 **(B)**
 - (C) 5
 - **(D)** 3
 - **(E)** 2
- 32. Which of the following procedures is always equivalent to adding 5 given numbers and then dividing the sum by 5?
 - I. Multiplying the 5 numbers and then finding the 5th root of the product.
 - II. Adding the 5 numbers, doubling the sum, and then moving the decimal point one place to the left.
 - III. Ordering the 5 numbers numerically and then selecting the middle number.
 - **(A)** None
 - **(B)** I only
 - **(C)** II only
 - **(D)** III only
 - **(E)** I and III

Category 1 Number Operations

1.	1. For which of the following expressions is it true that the value of the	e expression is the same for

x = 587 as for x = -587?

I.
$$1-2x$$

II.
$$1-2x^2$$

III.
$$(1-2x)^2$$

- I only **(A)**
- **(B)** II only
- I and III only **(C)**
- **(D)** II and III only
- I, II, and III **(E)**

$$x = 587$$
, $x = -587$

. *x*

(B) .

2. If the numbers
$$\frac{17}{24}$$
, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{3}{4}$, and $\frac{9}{16}$ were ordered from greatest to least, the middle

number of the resulting sequence would be

(A)
$$\frac{17}{24}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{3}{5}$$

$$\mathbf{D}) \quad \frac{3}{4}$$

(A)
$$\frac{17}{24}$$
 (B) $\frac{1}{2}$ (C) $\frac{3}{8}$ (D) $\frac{3}{4}$ (E) $\frac{9}{16}$

GRE

i)

ii)

$$\frac{3}{8}$$
 $\frac{3}{4}$

$$\frac{3}{8}$$
 $\frac{3}{4}$

$$\frac{17}{24}$$
, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{3}{4}$

7
$$\frac{3}{8} \left(= \frac{9}{24} \right), \quad \frac{1}{2} \left(= \frac{12}{24} \right), \quad \frac{17}{24}, \quad \frac{3}{4} \left(= \frac{18}{24} \right)$$

$$\frac{9}{16}$$

fractions($\frac{22}{19}, \frac{11}{9}$)

$$\frac{22}{10}$$
 $\frac{11}{9}$ cross-multiplying(22 '9, 11 '19)

22 ' 9 < 11' 19 , so
$$\frac{22}{19} < \frac{11}{9}$$

- **(E)**
- 3. The sum $\frac{7}{8} + \frac{1}{9}$ is between

(A)
$$\frac{1}{2}$$
 and $\frac{3}{4}$

(A)
$$\frac{1}{2}$$
 and $\frac{3}{4}$ (B) $\frac{7}{8} + \frac{1}{9}$ and 1 (C) 1 and $1\frac{1}{4}$

(D)
$$1\frac{1}{4}$$
 and $1\frac{1}{2}$ (E) $1\frac{1}{2}$ and 2

$$\frac{7}{8} + \frac{1}{9} = \frac{71}{72}$$

(C),(D),(E)

$$\frac{3}{4} \left(= \frac{54}{72} \right) \quad \frac{71}{72}$$

(B)

$$\frac{7}{8} + \frac{1}{9}$$
 (C),(D),(E)

$$\frac{7}{8}$$
 1

$$\frac{1}{9}$$
 $\frac{1}{8}$

 $\frac{7}{8} + \frac{1}{9} = 1$

GRE

가 .

- (B)
- 4. Of the following, which is closest to $\frac{1}{7}$?
 - (A) 0.200
 - (B) 0.172
 - (C) 0.167
 - (D) 0.143
 - (E) 0.140

 $\frac{1}{7}$

•

- (D) .
- 5. For all integers a, b, c, and d, *(a,b,c,d) is defined as a-b+c-d. What is the value of *(1,3,8,5)?
 - (A) -1
 - **(B)** 0
 - (C) 1
 - **(D)** 2
 - (E) 3

*(a,b,c,d) a-b+c-d *(1,3,8,5)

가 . 가

(C) .

- 6. The operation # is defined by the equation $x \# y = \frac{x-y}{2x-y}$, where $2x \ne y$. The value of which of the following is 0?
 - (A) -2#2
 - **(B)** 2#–2
 - **(C)** 2#2
 - **(D)** 2#1
 - **(E)** 3#2
- $x \# y = \frac{x y}{2x y} \qquad 0$ $7 \parallel 0 \qquad 7 \parallel 0 \qquad .$
- (C) .
- 7. The number 0.756 is how much greater than $\frac{3}{4}$?
 - **(A)** $\frac{6}{25}$
 - **(B)** $\frac{3}{125}$
 - (C) $\frac{3}{250}$
 - **(D)** $\frac{3}{500}$
 - **(E)** $\frac{1}{250}$
- 0.7567 $\frac{3}{4}$. $\frac{3}{4}$
 - 가 가 . 3÷4 ,
 - $\frac{75}{100}$. GMAT
- (D) .

8. What number when multiplied by $\frac{4}{7}$ yields $\frac{6}{7}$ as the result?

- (A) $\frac{2}{7}$ (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $\frac{24}{7}$ (E) $\frac{7}{2}$

$$x \times \frac{4}{7} = \frac{6}{7}$$
 .)

GRE

(C)

9. If the sum of 3 times n, 11 times n, and 111 times n is equal to 1,000, what is the value of n?

- **(A)**
- **(B)** 12.5
- **(C)** 16
- **(D)** 25
- (E) 125

n 3, n 11, n111 1,000 n(3n+11n+111n=1,000)

(A)

10. Which of the following is equal to 0.042?

- (A) $\frac{4}{10} + \frac{2}{10}$
- **(B)** $\frac{4}{10} + \frac{2}{100}$
- (C) $\frac{4}{100} + \frac{2}{100}$
- **(D)** $\frac{4}{100} + \frac{2}{1000}$
- (E) $\frac{4}{1,000} + \frac{2}{1,000}$

1000

(D)

11. In the addition problem above, if and **D** each represent a digit, then represents

(A) 9

- **(B)** 8
- (C) 5
- (D) 2
- (\mathbf{E}) 0

,Δ

71.2

가 2+ = 2

0, 9. 10 10

0

2가

٨

0

.

971 . (

.)

(A) .

12. If represents a digit in the subtraction problem above, =

(A) 1

- **(B)** 5
- (C) 6
- **(D)** 7
- **(E)** 9

.

(E) .

13. The figure above shows the arrangement and code numbers of 9 fluorescent tubes. If a tube is illuminated whenever its code number is received, which of the following shows the arrangement of tubes illuminated when the digits in the result of $3,804 \div 3$ are received?

- (D) .
- 14. Of the following, which is the closest approximation of $\frac{50.2 \times 0.49}{199.8}$?
 - (A) $\frac{1}{10}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{5}{4}$ (E) $\frac{25}{2}$
- GRE 가 .

$$\frac{50 \times 0.5}{200} = \frac{1}{8}$$

(B) .

$$\frac{61.24 \times (0.998)^2}{\sqrt{403}}$$

- 15. The expression above is approximately equal to
 - (A) 1
 - **(B)** 3
 - (C) 4
 - **(D)** 5
 - **(E)** 6

$$\frac{60\times(1)^2}{20}=3$$

- (B) .
- 16. $\frac{(2)(0.33)(15)}{(0.24)}$ is approximately equal to
 - (A) (A) 2
 - **(B)** $\frac{5}{2}$
 - (C) 15
 - (D) 36
 - (E) 40
- (E) .
- 17. Of the following, which is the best approximation for $\frac{0.01 \times 2.005 \times 32.98}{11.12 \times 0.04}$?
 - (A) 0.015
 - (B) 0.15
 - (C) 1.5
 - (D) 15
 - (E) 150
- (C) .

18. Of the following, the closest approximation to $\frac{8.097(0.8745)}{0.202}$ is

- (A) 40
- **(B)** 35
- (C) 30
- (D) 4
- (E) 3

(B) .

<High Level Questions>

- 19. If a sequence of 8 consecutive odd integers with increasing values has 9 as its 7th term, what is the sum of the terms of the sequence?
 - (A) 22
 - **(B)** 32
 - (C) 36
 - (D) 40
 - **(E)** 44
- 8 7 consecutive odd integers increasing value 7 7 9 . : -3, -1, 1, 3, 5, 7, 9, 11. -3 3 0 5 + 7 + 9 + 11 = 32.

(B)

- 20. If w, x, y, and z are positive and $\frac{w}{x} = \frac{y}{z}$, which of the following is NOT always true?
 - **(A)** wz = xy
 - $\mathbf{(B)} \qquad \frac{x}{w} = \frac{z}{v}$
 - (C) $\frac{x}{y} = \frac{z}{w}$
 - $\mathbf{(D)} \qquad \frac{w+x}{x} = \frac{y+z}{z}$
 - $\mathbf{(E)} \qquad \frac{x+w}{w} = \frac{z+y}{y}$
- $\frac{w}{x} = \frac{y}{z}$ wz = xy,
- **I** (C)
- 21. If $d = \frac{a+b}{1+\frac{ab}{c^2}}$, $a = \frac{c}{2}$, and $b = \frac{3c}{4}$, what is the value of d in terms of c?
 - (A) $\frac{10c}{11}$ (B) $\frac{5c}{2}$ (C) $\frac{10c}{3}$ (D) $\frac{10}{11c}$ (E) $\frac{5}{2c}$

(C)

d

 $a = \frac{c}{2} \qquad b = \frac{3c}{4} \qquad d = \frac{a+b}{1+\frac{ab}{2}}$

- **I** (A)
- 22. Tamara saves \$35 each week. If she now has \$100 saved, in how many weeks can she first have enough saved to buy a lawn mower that costs \$250?
 - **(A)** 2
- (B) 3
- (C) 4
- (D) 5
- **(E)** 6

Page 21

GRE Math Set 1

(D)

- 23. If x > 3,000, then the value of $\frac{x}{2x+1}$ is closest to
 - (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{10}{21}$ (D) $\frac{1}{2}$ (E) $\frac{3}{2}$
- $\frac{x}{2x+1} = \frac{1}{2+\frac{1}{x}} \qquad \frac{1}{x} \qquad x \qquad 3,001 \qquad \frac{1}{x} = 0.00033322 \dots$

(D)

- 24. A certain clock indicates 8 o'clock. If the clock runs accurately for the next 11,995 hours, what hour will it indicate at the end of that time?
 - (A) 1 o' clock
 - (B) 2 o' clock
 - (C) 3 o' clock
 - (D) 5 o' clock
 - (E) 10 o' clock

8 11,995 7 11,995 8 12,003 hours가 24 3

.

(C)

25.	If $\frac{1}{2}$ the	result obtained	when 2 is subtracted	from 5x	is equal to th	e sum of 10 and	3x,
-----	----------------------	-----------------	----------------------	---------	----------------	-----------------	-----

what is the value of x?

- (A) 22
- **(B)** 4
- (C) 4
- (D) 18
- (E) 22

$$\frac{1}{2}(5x-2) = 10 + 3x$$

$$x = -22$$

(A)

26. A light-year is approximately 6×10^{12} miles. Approximately how many miles from Earth is a galaxy that is 2×10^6 light-years away?

- (A) 3.0×10^6
- **(B)** 1.2×10^{18}
- (C) 1.2×10^{19}
- **(D)** 1.2×10^{72}
- **(E)** 1.2×10^{73}

(light-year)
$$6\times10^{12}$$
 miles , 2×10^{6} . $6\times10^{12}\times2\times10^{6}=1.2\times10^{19}$

(C)

27. If it is 6:27 in the evening on a certain day, what time in the morning was it exactly 2,880,717 minutes <u>earlier</u>? (Assume standard time in one location.)

- (A) 6:22
- (B) 6:24
- (C) 6:27
- (D) 6:30
- (E) 6:32

 $2,880,717 \text{ minutes} = (48,011 \times 60 \text{ minutes}) + 57 \text{ minutes}$

57

6: 30

4

(D)

- 28. If the sum of two positive integers is 24 and the difference of their squares is 48, what is the product of the two integers?
 - (A) 108
- (B) 119
- (C) 128
- (D) 135
- (E) 143
- 29. On a certain scale of intensity, each increment of 10 in magnitude represents a tenfold increase in intensity. On this scale, an intensity corresponding to a magnitude of 165 is how many times an intensity corresponding to a magnitude of 125?
 - (A) 40
 - **(B)** 100
 - (C) 400
 - (D) 1,000
 - (E) 10,000
 - 165 125 40 magnitude 7\tau . magnitude 10 7\tau 10 (intensity) 7\tau 7\tau 10 \times 10 \times
- **(E)**
- 30. In the formula $V = \frac{1}{(2r)^3}$, if r is halved, then V is multiplied by
 - (A) 64
 - **(B)** 8
 - (C) 1
 - **(D)** $\frac{1}{8}$
 - **(E)** $\frac{1}{64}$
- $V = \frac{1}{8r^3}$, $r = \frac{1}{2r}$ $V = \frac{1}{r^3}$. V = 8

Page 24

- 31. In the subtraction problem above, \mathbf{D} , and $\mathbf{0}$ represent different positive digits. If is 1 greater than \mathbf{D} , what is the value of $\mathbf{0}$?
 - (A) 9
- **(B)** 7
- (C) 5
- **(D)** 3
- (E) 2

 $=\Delta+1 \qquad \bigcirc \qquad .$ $\Delta=1 \qquad 7 + \qquad =27 + \qquad \bigcirc=97 + \qquad . \qquad \bigcirc=97 + \qquad .$ $\bigcirc =97 + \qquad .$

- 32. Which of the following procedures is always equivalent to adding 5 given numbers and then dividing the sum by 5?
 - I. Multiplying the 5 numbers and then finding the 5th root of the product.
 - II. Adding the 5 numbers, doubling the sum, and then moving the decimal point one place to the left.
 - III. Ordering the 5 numbers numerically and then selecting the middle number.
 - (A) None
 - (B) I only
 - (C) II only
 - (D) III only
 - (E) I and III

(C)

œ