Test report No. : 4786002570S-A Page : 87 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svízzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL Japan Shonan (PIII)

Certificate No: EX3-3679\_Jun12

Accreditation No.: SCS 108

| -                          | and the second s |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object                     | EX3DV4 - SN:3679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . Calibration procedure(s) | QA CAL-01 v8, QA CAL-14 v3, QA CAL-23 v4, QA CAL-25 v4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,                          | Calibration procedure for dosimetric E-field probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calibration date:          | June 21, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Power sensor E4412A        | MY41498087      | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 27-Mar-12 (No. 217-01531)         | Apr-13                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529)         | Apr-13                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532)         | Apr-13                 |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-11 (No. ES3-3013_Dec11)    | Dec-12                 |
| DAE4                       | SN: 660         | 10-Jan-12 (No. DAE4-660_Jan12)    | Jan-13                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-11)  | In house check: Apr-13 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

|                | Name           | Function                                   | Signature             |  |
|----------------|----------------|--------------------------------------------|-----------------------|--|
| Calibrated by: | Jeton Kastrati | Laboratory Technician                      | Stell                 |  |
| Approved by:   | Katja Poković  | Technical Manager                          | Let 18                |  |
|                |                | n full without written approval of the lab | Issued: June 22, 2012 |  |

Certificate No: EX3-3679 Jun12 Page 1 of 11

Test report No.: 4786002570S-A Page: 88 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization \$ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
  power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
  maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
  exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3679\_Jun12 Page 2 of 11

Test report No. : 4786002570S-A Page : 89 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4 – SN:3679 June 21, 2012

# Probe EX3DV4

SN:3679

Manufactured: Calibrated:

September 9, 2008 June 21, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3679\_Jun12

Page 3 of 11

Test report No.: 4786002570S-A : 90 of 117 Page **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3679

June 21, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.58     | 0.54     | 0.53     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 96.7     | 99.1     | 101.0    |           |

**Modulation Calibration Parameters** 

| UID | Communication System Name | PAR  |   | A<br>dB | B<br>dB | C<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|------|---|---------|---------|---------|----------|---------------------------|
| 0   | CW                        | 0.00 | X | 0.00    | 0.00    | 1.00    | 168.7    | ±3.3 %                    |
|     |                           |      | Υ | 0.00    | 0.00    | 1.00    | 172.8    |                           |
|     |                           |      | Z | 0.00    | 0.00    | 1.00    | 158.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test report No.: 4786002570S-A : 91 of 117 Page **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3679 June 21, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 2450                 | 39.2                                  | 1.80                    | 6.72    | 6.72    | 6.72    | 0.31  | 1.00          | ± 12.0 %       |
| 5200                 | 36.0                                  | 4.66                    | 4.66    | 4.66    | 4.66    | 0.40  | 1.80          | ± 13.1 %       |
| 5300                 | 35.9                                  | 4.76                    | 4.63    | 4.63    | 4.63    | 0.40  | 1.80          | ± 13.1 %       |
| 5500                 | 35.6                                  | 4.96                    | 4.30    | 4.30    | 4.30    | 0.45  | 1.80          | ± 13.1 %       |
| 5600                 | 35.5                                  | 5.07                    | 4.04    | 4.04    | 4.04    | 0.45  | 1.80          | ± 13.1 %       |
| 5800                 | 35.3                                  | 5.27                    | 4.19    | 4.19    | 4.19    | 0.50  | 1.80          | ± 13.1 %       |

Certificate No: EX3-3679\_Jun12

<sup>&</sup>lt;sup>c</sup> Frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Test report No.: 4786002570S-A : 92 of 117 Page **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3679

June 21, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 2450                 | 52.7                                  | 1.95                    | 6.77    | 6.77    | 6.77    | 0.80  | 0.60          | ± 12.0 %       |
| 5200                 | 49.0                                  | 5.30                    | 4.13    | 4.13    | 4.13    | 0.50  | 1.80          | ± 13.1 %       |
| 5300                 | 48.9                                  | 5.42                    | 3.98    | 3.98    | 3.98    | 0.50  | 1.80          | ± 13.1 %       |
| 5500                 | 48.6                                  | 5.65                    | 3.70    | 3.70    | 3.70    | 0.55  | 1.80          | ± 13.1 %       |
| 5600                 | 48.5                                  | 5.77                    | 3.61    | 3.61    | 3.61    | 0.55  | 1.80          | ± 13.1 %       |
| 5800                 | 48.2                                  | 6.00                    | 3.87    | 3.87    | 3.87    | 0.60  | 1.80          | ± 13.1 %       |

<sup>&</sup>lt;sup>C</sup> Frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Test report No.: 4786002570S-A Page : 93 of 117 : April 15, 2013 **Issued date** 

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3679 June 21, 2012

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3679\_Jun12

Test report No. : 4786002570S-A Page : 94 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3679 June 21, 2012 Receiving Pattern ( $\phi$ ),  $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Tot Tot Error [dB] Roll [°] 600 MHz 100 MHz 2500 MHz 1800 MHz Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Page 8 of 11 Certificate No: EX3-3679\_Jun12

Test report No. : 4786002570S-A Page : 95 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3679 June 21, 2012

# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3679\_Jun12

Test report No.: 4786002570S-A Page: 96 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4— SN:3679 June 21, 2012

# **Conversion Factor Assessment**



### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz





Certificate No: EX3-3679\_Jun12

Test report No. : 4786002570S-A Page : 97 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3679

June 21, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -169.6     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 2 mm       |

Certificate No: EX3-3679\_Jun12

Page 11 of 11

Test report No. : 4786002570S-A Page : 98 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2)

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suüsse d'étalonnage
Servizio svizzere di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilisteral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

| CALIBRATION C                      | · · · · · · · · · · · · · · · · · · · |                                               | lo: D5GHzV2-1070_Mar13          |
|------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------|
| Object                             | D5GHzV2 - SN:                         |                                               |                                 |
| Cojasi                             | DOGFIZVZ - SN:                        | 10/0                                          |                                 |
| Calibration procedure(s)           | QA CAL-22.v2<br>Calibration proce     | dure for dipole validation kits be            | tween 3-6 GHz                   |
|                                    |                                       |                                               |                                 |
| Calibration date:                  | March 14, 2013                        |                                               |                                 |
| This calibration certificate docum | ents the traceability to nati         | onal standards, which realize the physical u  | nits of measurements (SI).      |
| The measurements and the unce      | rtainties with confidence p           | robability are given on the following pages a | nd are part of the certificate. |
| All calibrations have been conduc  | sted in the closed laborato           | y facility: environment temperature (22 ± 3)  | °C and humidity < 70%.          |
| Calibration Equipment used (M&T    | TE critical for calibration)          |                                               | -                               |
| Primary Standards                  | ID#                                   | Cal Date (Certificate No.)                    | Scheduled Calibration           |
| Power meter EPM-442A               | GB37480704                            | 01-Nov-12 (No. 217-01640)                     | Oct-13                          |
| Power sensor HP 8481A              | US37292783                            | 01-Nov-12 (No. 217-01640)                     | Oct-13                          |
| Reference 20 dB Attenuator         | SN: 5058 (20k)                        | 27-Mar-12 (No. 217-01530)                     | Apr-13                          |
| Type-N mismatch combination        | SN: 5047.3 / 06327                    | 27-Mar-12 (No. 217-01533)                     | Apr-13                          |
| Reference Probe EX3DV4             | SN: 3503                              | 28-Dec-12 (No. EX3-3503_Dec12)                | Dec-13                          |
| DAE4                               | SN: 601                               | 27-Jun-12 (No. DAE4-601_Jun12)                | Jun-13                          |
| Secondary Standards                | ID#                                   | Check Date (in house)                         | Scheduled Check                 |
| Power sensor HP 8481A              | MY41092317                            | 18-Oct-02 (in house check Oct-11)             | In house check: Oct-13          |
| RF generator R&S SMT-06            | 100005                                | 04-Aug-99 (in house check Oct-11)             | In house check: Oct-13          |
| Network Analyzer HP 8753E          | US37390585 S4206                      | 18-Oct-01 (in house check Oct-12)             | In house check: Oct-13          |
|                                    | Name                                  | Function                                      | s:\                             |
| Calibrated by:                     | Claudio Leubier                       | Laboratory Technician                         | astrainle /                     |
|                                    | SAUGIO LEGUIO                         | Laboratory recreated                          | . With                          |
| Approved by:                       | Katja Pokovic                         | Technical Manager                             | 00/14                           |
|                                    |                                       |                                               | Lower                           |
|                                    |                                       |                                               |                                 |

Certificate No: D5GHzV2-1070\_Mar13

Page 1 of 20

Test report No.: 4786002570S-A Page: 99 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

N/A

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z

#### Calibration is Performed According to the Following Standards:

not applicable or not measured

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

c) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1070\_Mar13

Page 2 of 20

Test report No. : 4786002570S-A Page : 100 of 117 Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.8.5                          |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                     | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

#### Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.4 ± 6 %   | 4.52 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.97 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 78.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.5 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 3 of 20

Test report No. : 4786002570S-A Page : 101 of 117 **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 4.62 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.27 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.9 W / kg a 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.5 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

| The tollowing particular and the control of the con | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 4.80 mho/m ± 6 % |
| Head TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.52 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 84.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.9 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 4 of 20

Test report No.: 4786002570S-A Page: 102 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.9 ± 6 %   | 4.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.38 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.39 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.6 ± 6 %   | 5.11 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.88 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 77.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.25 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.2 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 5 of 20

Test report No.: 4786002570S-A Page: 103 of 117 **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 5.42 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.41 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.08 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.6 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.9 ± 6 %   | 5.55 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.56 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 75.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>2</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 6 of 20

Test report No.: 4786002570S-A Page: 104 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.5 ± 6 %   | 5.80 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.92 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.8 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 5.94 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.99 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 79.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.22 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 7 of 20

Test report No.: 4786002570S-A Page: 105 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mha/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.1 ± 6 %   | 6.21 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>2</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.39 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.05 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 8 of 20

Test report No.: 4786002570S-A Page: 106 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Appendix

#### Antenna Parameters with Head TSL at 5200 MHz

|   | Impedance, transformed to feed point | 50.7 Ω - 12.5 ]Ω |
|---|--------------------------------------|------------------|
| I | Return Loss                          | - 18.2 dB        |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 51.9 Ω - 6.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.6 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 49.2 Ω - 7.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.5 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 55.6 Ω - 9.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 19.4 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 53.9 Ω - 4.8  Ω |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.6 dB       |

Certificate No: D5GHzV2-1070\_Mar13

Page 9 of 20

Test report No.: 4786002570S-A Page: 107 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 49.8 Ω - 12.4 jΩ |
|--------------------------------------|------------------|
| Return Loss                          | - 18.2 dB        |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 51.3 Ω - 5.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.8 dB       |

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 49.3 Ω - 5.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.9 dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 54.5 Ω - 8.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.0 dB       |

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 54.5 Ω - 2.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.2 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction | i) | 1.203 ns |
|---------------------------------|----|----------|
| mineral manny farin an area.    | ,  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG              |  |
|-----------------|--------------------|--|
| Manufactured on | September 26, 2008 |  |

Certificate No: D5GHzV2-1070\_Mar13

Page 10 of 20

Test report No.: 4786002570S-A Page: 108 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### DASY5 Validation Report for Head TSL

Date: 13.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium prompton yield for 5200 MHz, and 52 Store and 54 Store and 52 Store and 54 Store and 52 Store and 54 Store and 54

Medium parameters used: f=5200 MHz;  $\sigma=4.52$  S/m;  $\epsilon_r=34.4;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5300 MHz;  $\sigma=4.62$  S/m;  $\epsilon_r=34.3;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5500 MHz;  $\sigma=4.8$  S/m;  $\epsilon_r=34;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5500 MHz;  $\sigma=4.91$  S/m;  $\epsilon_r=33.9;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5600 MHz;  $\sigma=4.91$  S/m;  $\epsilon_r=33.9;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5800 MHz;  $\sigma=5.11$  S/m;  $\epsilon_r=33.6;$   $\rho=1000$  kg/m $^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1);
   Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76);
   Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.581 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.28 W/kgMaximum value of SAR (measured) = 18.9 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.313 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.8 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.127 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

Certificate No: D5GHzV2-1070\_Mar13 Page 11 of 20

UL Japan, Inc. Shonan EMC Lab.

Test report No.: 4786002570S-A Page: 109 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.687 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.292 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.7 W/kg



Certificate No: D5GHzV2-1070\_Mar13

Page 12 of 20

Test report No.: 4786002570S-A Page: 110 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)



Certificate No: D5GHzV2-1070\_Mar13

Page 13 of 20

Test report No.: 4786002570S-A Page : 111 of 117 **Issued date** : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### DASY5 Validation Report for Body TSL

Date: 14.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.42 \text{ S/m}$ ;  $\epsilon_r = 47$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5300 MHz;  $\sigma = 5.55$  S/m;  $\epsilon_r = 46.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> ,

Medium parameters used: f = 5500 MHz;  $\sigma$  = 5.8 S/m;  $\epsilon_r$  = 46.5;  $\rho$  = 1000 kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.94 S/m;  $\epsilon_r$  = 46.4;  $\rho$  = 1000 kg/m³

Medium parameters used: f = 5800 MHz;  $\sigma = 6.21 \text{ S/m}$ ;  $\varepsilon_r = 46.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.030 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.855 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.56 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.871 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1070\_Mar13

Page 14 of 20

Test report No.: 4786002570S-A Page: 112 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.618 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.394 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 18.5 W/kg



Certificate No: D5GHzV2-1070\_Mar13

Page 15 of 20

Test report No.: 4786002570S-A Page: 113 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)



Certificate No: D5GHzV2-1070\_Mar13

Page 16 of 20

Test report No.: 4786002570S-A Page: 114 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Appendix B: Additional Measurements

Upon customer request, additional antenna parameter measurements were done using customer spacers, for Head and Body conditions. Results are summarized on the following pages.

#### Antenna Parameters with Head TSL at 5200 MHz

| New spacer   | 50.7 Ω - 12.5 jΩ | - 18.2 dB |
|--------------|------------------|-----------|
| UL spacer #1 | 51.0 Ω - 12.2 jΩ | - 18.4 dB |
| UL spacer #2 | 51.2 Ω - 12.0 jΩ | - 18.6 dB |

#### Antenna Parameters with Head TSL at 5300 MHz

| New spacer   | 51.9 Ω - 6.5 jΩ | - 23.6 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 51.9 Ω - 6.3 jΩ | - 23.8 dB |
| UL spacer #2 | 52.0 Ω - 6.0 jΩ | - 24.1 dB |

#### Antenna Parameters with Head TSL at 5500 MHz

| New spacer   | 49.2 Ω - 7.4 jΩ | - 22.5 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 49.6 Ω - 7.6 jΩ | - 22.4 dB |
| UL spacer #2 | 50.0 Ω - 7.0 jΩ | - 23.1 dB |

#### Antenna Parameters with Head TSL at 5600 MHz

| New spacer   | 55.6 Ω - 9.9 jΩ | - 19.4 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 55.7 Ω - 9.2 jΩ | - 19.8 dB |
| UL spacer #2 | 55.6 Ω - 8.8 jΩ | - 20.1 dB |

#### Antenna Parameters with Head TSL at 5800 MHz

| New spacer   | 53.9 Ω - 4.8 jΩ | - 24.6 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.2 Ω - 4.7 jΩ | - 24.4 dB |
| UL spacer #2 | 54.6 Ω - 3.9 jΩ | - 24.8 dB |

Certificate No: D5GHzV2-1070\_Mar13

Page 17 of 20

Test report No.: 4786002570S-A Page: 115 of 117 Issued date: April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Antenna Parameters with Body TSL at 5200 MHz

| New spacer   | 49.8 Ω - 12.4 jΩ | - 18.2 dB |
|--------------|------------------|-----------|
| UL spacer #1 | 49.9 Ω - 12.4 jΩ | - 18.2 dB |
| UL spacer #2 | 50.1 Ω - 12.3 jΩ | - 18.3 dB |

#### Antenna Parameters with Body TSL at 5300 MHz

| New spacer   | 51.3 Ω - 5.0 jΩ | - 25.8 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 51.4 Ω - 5.0 jΩ | - 25.8 dB |
| UL spacer #2 | 51.5 Ω - 4.8 jΩ | - 26.2 dB |

#### Antenna Parameters with Body TSL at 5500 MHz

| New spacer   | 49.3 Ω - 5.6 jΩ | - 24.9 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 49.2 Ω - 5.6 jΩ | - 24.9 dB |
| UL spacer #2 | 49.5 Ω - 5.4 jΩ | - 25.2 dB |

#### Antenna Parameters with Body TSL at 5600 MHz

| New spacer   | 54.5 Ω - 8.2 ]Ω | - 21.0 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.7 Ω - 8.2 jΩ | - 20.9 dB |
| UL spacer #2 | 54.8 Ω - 7.8 jΩ | - 21.2 dB |

#### Antenna Parameters with Body TSL at 5800 MHz

| New spacer   | 54.5 Ω - 2.5 jΩ | - 26.2 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.4 Ω - 2.2 jΩ | - 26.5 dB |
| UL spacer #2 | 54.8 Ω - 1.8 jΩ | - 26.2 dB |

Certificate No: D5GHzV2-1070\_Mar13

Page 18 of 20

Test report No. : 4786002570S-A Page : 116 of 117 Issued date : April 15, 2013

> 5-24,398 dB 5,88888 8Hz

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# | The content of the

#### Impedance Measurement Plot for Head TSL (UL Spacer #2)



Certificate No: D5GHzV2-1070\_Mar13

Page 19 of 20

Test report No.: 4786002570S-A

Page : 117 of 117 (End of Report)

Issued date : April 15, 2013

FCC ID : YR7AERODRP3

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

#### Impedance Measurement Plot for Body TSL (UL Spacer #1)



#### Impedance Measurement Plot for Body TSL (UL Spacer #2)



Certificate No: D5GHzV2-1070\_Mar13

Page 20 of 20