Plan of Talk

- In this lecture, I will introduce
 - Basics Symmetric key Cryptography terminology
 - Main Security Requirements
 - Classical cipher techniques
 - Cryptanalysis framework
 - Cryptanalysis of Classical ciphers

Symmetric Encryption

- Referred to as conventional / private-key / single-key
- Main assumption: Sender and recipient share a common key
- All classical encryption algorithms are private-key
- It was the only type prior to invention of public-key in 1970's
- and by far most widely used

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering plaintext from ciphertext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Symmetric Cipher Model

Symmetric Key Cryptography

Block diagram of a Symmetric Key System: Logical view

Requirements

- Two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- In terms of functions we have:

$$Y = E_{\kappa}(X)$$

 $X = D_{\kappa}(Y)$

- Main assumptions: encryption algorithm is known
- Implies a secure channel to distribute key

Cryptography

- characterize cryptographic system by:
 - type of encryption operations used
 - substitution / transposition / product
 - number of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptanalysis

- Objective to recover key not just message
- General approaches:
 - cryptanalytic attack
 - brute-force attack

Cryptanalytic Attacks

ciphertext only

 only know algorithm & ciphertext, is statistical, know or can identify plaintext

known plaintext

know/suspect plaintext & ciphertext

chosen plaintext

select plaintext and obtain ciphertext

chosen ciphertext

select ciphertext and obtain plaintext

chosen text

select plaintext or ciphertext to en/decrypt

More Definitions

unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

 given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/μs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 years$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24}$	$5.4 \times 10^{18} \text{ years}$
		years	
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36}$	$5.9 \times 10^{30} \text{ years}$
		years	
26 characters	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4$	6.4×10^6 years
(permutation)		$\times 10^{12}$ years	

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:
 PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

can define transformation as:

abcdefghijklmnopqrstuvwxyz DEFGHIJKLMNOPQRSTUVWXYZABC

mathematically give each letter a number

abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

then have Caesar cipher as:

$$c = E(p) = (p + k) \mod (26)$$

$$p = D(c) = (c - k) \mod (26)$$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter

hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of 26! = 4 x 1026 keys
- with so many keys, might think is secure
- Is it Secure?

- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Polyalphabetic Ciphers

- Polyalphabetic substitution ciphers
- Improve security using multiple cipher alphabets
- Make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- Use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- key is multiple letters long K = k₁ k₂ ... k_d
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- eg repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

```
m e m a t r h t g p r y e t e f e t e o a a t
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 3421567
Plaintext: attackpostpone
duntilt
woamxyz
```

Ciphertext: TTNA APTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits

Summary

- We have considered:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - stenography