

ENRUTAMIENTO DINAMICO

Ing. Nelson Belloso

AGEZ DA

Conceptos de enrutamiento

Enrutamiento dinámico.

Distancia administrativa.

Protocolo RIP, RIPv2.

Protocolo IGRP, EIGRPv2.

CONCEPTOS DE ENRUTAMIENTO

El enrutador Router toma decisiones lógicas con respecto a la mejor ruta para el envío de paquetes a través de una red o disponer de la mejor ruta entre dos o más dispositivos a través de una red para el envío y recepción de datos.

Para poder interconectar redes el Router debe llenar con direcciones IP las tablas de enrutamiento. Para ello utiliza tres maneras.

- Interfaces directamente conectadas
- Enrutamiento Estático (Manualmente)
- Enrutamiento Dinámico (Protocolos de enrutamiento)

Enrutamiento Dinámico

El Router utiliza Protocolos de enrutamiento para el proceso de la obtención de la mejor ruta de envió de paquetes; dichos protocolos tienen diferentes algoritmos y/o métricas con los que definen costos para tomar decisiones.

Protocolos vector distancia: se basa en dos parámetros, la distancia o recorrido de origen al destino y el vector el cual identifica la dirección en la que se encuentra ubicado el enrutador del siguiente salto o interfaz

- Tienen conocimiento parcial del camino a través de la red
- RIP, RIPv2, IGRP, EIGRP

Protocolos estado de enlace: Se caracterizan por conocer a totalidad la red, este tipo de protocolo les permite a los **Router** generar un mapa de toda la topología de red con el cual acceden a la mejor ruta para llegar al destino.

OSPF, IS-IS

Distancia administrativa

Se define como la confiabilidad de la ruta de origen, parámetro que posibilita identificar la ruta que será incluida en la tabla de enrutamiento.

Origen de la ruta	Distancia administrativa
Conectada	0
Estática	1
Ruta sumarizada EIGRP	5
BGP externo	20
EIGRP interno	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120

Los protocolos con menor distancia administrativa tendrán prioridad en una red con distintos protocolos.

Modo de operación de los protocolos

- 1. Al encender el Router este analiza la tabla de enrutamiento, reconociendo las redes directamente conectadas.
- 2. Al configurar los protocolos de enrutamiento, los Routers asociados/vecinos en la RED interactúan entre ellos por medio de las interfaces que se encuentran activas.
- **3.** Por último, se envían actualizaciones, analizando si hay cambios dentro de la RED y los registra en la tabla de enrutamiento. Esto lo hace periódicamente para garantizar la **convergencia** de la red.

Convergencia

Se da cuando todos los **Routers** tienen la misma información de la RED en sus tablas de enrutamiento

JEREMIAS 20:11

PROTOCOLO RIP

Nace en el año 1988, forma parte de los protocolos vector Distancia, especificado en RFC 1058. Protocolo usado en redes homogéneas y pequeñas.

- Su métrica corresponde al número de saltos (15 máximos)
- Distancia administrativa 120
- No soporta VLSM
- Anuncia los Update cada 30 segundos (UDP 520 Broadcast)

CLI -ROUTER1	
Router1 (config)# router rip	Protocolo RIP
Router1 (config-router)# network 192.168.10.0	Declara la RED
Router1 (config-router)# network 192.168.50.0	Declara la RED
Router1 (config-router)# exit	
Router1 (config)# do wr	

CLI -ROUTER2	
Router2 (config)# router rip	Protocolo RIP
Router2 (config-router)# network 192.168.50.0	Declara la RED
Router2 (config-router)# network 172.16.0.0	Declara la RED
Router2 (config-router)# network 192.168.60.0	Declara la RED
Router2 (config-router)# exit	

Router2 (config-router)# exit	
CLI -ROUTER3	
Router1 (config)# router rip Router1 (config-router)# network 192.168.60.0 Router1 (config-router)# network 192.168.20.0 Router1 (config-router)# exit Router1 (config)# do wr	Protocolo RIP Declara la RED Declara la RED

PROTOCOLO RIPv2

- Es la versión mejorada de RIP, siendo también protocolo vector distancia
- Permite redes sin clase (VLSM)
- Realiza sumarización
- Permite autentificación MD5
- Anuncia los Update cada 30 segundos (Multicast) (224.0.0.9)
- Distancia administrativa de 120

CLI -ROUTER3	
Router3 (config)# router rip Router3 (config-router)# version 2 Router3 (config-router)# network 192.168.20.0 Router3 (config-router)# network 10.0.0.4 Router3 (config-router)# no auto-summary Router3 (config-router)# passive-interface gi 0/0/0	Protocolo RIP version 2 Declara la RED Declara la RED no sumariza Interface pasiva
Router3 (config-router)# exit Router3 (config)# do wr Router3 (config)# ip route 0.0.0.0 0.0.0.0 se 0/1/1	Ruta por defecto
Router3 (config)# router rip Router3 (config-router)# versión 2 Router3 (config-router)# default-information originate Router3 (config-router)# exit Router3 (config)# do wr	Protocolo RIP versión 2 Redistribución de ruta por defecto

PROTOCOLO IGRP

Es un protocolo de la familia vector distancia, aunque también utiliza parámetros de ancho de banda (BW) y retardos en su algoritmo de métrica.

Propiedad CISCO, utilizada en redes de gran tamaño.

- Distancia administrativa de 100
- Publica sus actualizaciones cada 90 segundos (solo actualizaciones)
- Presenta una convergencia rápida a los cambios de topologías
- Utiliza un sistema autónomo (AS 1 65535)
- No soporta VLSM

Sistema autónomo: conjunto de dispositivos que operan bajo una misma administración en común.

Router1 (config)# router igrp 10 Protocolo IGRP Router1 (config-router)# network 192.168.10.0 Declara la RED Router1 (config-router)# network 192.168.50.0 Declara la RED Router1 (config-router)# no auto-summary no sumariza Router1 (config-router)# passive-interface gi 0/0/0 Router1 (config-router)# exit Router1 (config)# do wr

Mascara Wildcard:

Es un registro de 32 bits, es una clase de mascara que facilita el proceso de selección de direcciones IP. Usada generalmente en listas de acceso.

Una máscara wildcard aplicada a una dirección IP de red, determina que cantidad de host son tomados en cuenta para una acción

Comparando máscara wildcard con una máscara normal

Mascara de red: Define el tamaño de una RED

Mascara Wildcard: Filtra direcciones IP

Ejemplo 1: dada la máscara de red 255.255.255.0 /24 matemáticamente se puede extraer la máscara wildcard

Ejemplo 2: dada la máscara de red 255.255.255.252 /30 matemáticamente se puede extraer la máscara wildcard

PROTOCOLO EIGRP

Es la versión mejorada de IGRP, propietario CISCO protocolo vector distancia que también utiliza en su algoritmo de métrica el ancho de banda y el retardo de las interfaces

- Admite VLSM
- Utiliza Hellos para identificar los nuevos Routers vecinos y también para darse cuenta de la perdida de estos.
- Utiliza un algoritmo dual (Analiza una segunda mejor ruta)
- También trabaja con sistema autónomo (AS 1 65535)

CLI -ROUTER3	
Router3 (config)# router eigrp 10 Router3 (config-router)# network 192.168.20.0 0.0.0.255 Router3 (config-router)# network 10.0.0.4 0.0.0.3 Router3 (config-router)# no auto-summary Router3 (config-router)# passive-interface gi 0/0/0 Router3 (config-router)# exit Router3 (config)# do wr	Protocolo EIGRP Declara la RED Declara la RED no sumariza Interface pasiva
Router3 (config)# ip route 0.0.0.0 0.0.0.0 se 0/1 Router3 (config)# ip route 192.168.30.0 255.255.255.0 se 0/1	Ruta por defecto Ruta por estática
Router3 (config)# router eigrp 10 Router3 (config-router)# redistribute static Router3 (config-router)# exit Router3 (config)# do wr	Protocolo EIGRP Redistribución

Métrica EIGRP

Es el algoritmo que utiliza el protocolo para establecer la mejor ruta para envió de paquetes entre el origen y destino.

$$Metrica = 256 \left(K_1 * BW + \frac{K_2 * BW}{256 - Lad} + K_3 * DLY \right) * \frac{K_5}{REL + K_4}$$

$$K_1 = \text{Ancho de banda} \qquad K_2 = \text{Carga}$$

$$K_3 = \text{Retraso} \qquad K_4 = \text{Confiabilidad} \qquad K_5 = \text{Confiabilidad}$$

$$Metrica = 256 \left(K_1 * BW + K_3 * DLY \right)$$

$$Metrica = 256 \left(\frac{10000000}{BWminKbit/s} + \frac{\sum \mu s}{10} \right)$$

