TOSHIBA

TC55257BPL/BFL/BSPL/BFTL/BTRL-85L/10L(LV)

SILICON GATE CMOS

32,768 WORD x 8 BIT STATIC RAM

Description

The TC55257BPL is a 262,144 bit CMOS static random access memory organized as 32,768 words by 8 bits and operated from a single 5V power supply. Advanced circuit techniques provide both high speed and low power features with an operating current of 5mA/MHz (typ.) and a minimum cycle time of 85ns.

When \overrightarrow{CE} is a logical high, the device is placed in a low power standby mode in which the standby current is $2\mu A$ at room temperature. The TC55257BPL has two control inputs. Chip enable (\overrightarrow{CE}) allows for device selection and data retention control, while an output enable input (\overrightarrow{OE}) provides fast memory access. The TC55257BPL is suitable for use in microprocessor systems where high speed, low power, and battery backup are required.

The TC55257BPL is offered in a standard dual-in-line 28-pin plastic package (0.6/0.3 inch width), a small outline plastic package, and a thin small outline plastic package (forward type, reverse type).

Features

Low power dissipation:

27.5mW/MHz (typ.)

Standby current:

 $2\mu A$ (max.) at Ta = $25^{\circ}C$

Single 5V power supply

Access time (max.)

	TC55257BPL/BFL	/BSPL/BFTL/BTRL
	-85L(LV)	-10L(LV)
Access Time	85ns	100ns
Chip Enable Access Time	85ns	100ns
Output Enable Time	45ns	50ns

· Power down feature:

ire: CE

• Data retention supply voltage:

 $2.0 \sim 5.5 V$

Inputs and outputs TTL compatible

Package

TC55257BPL

: DIP28-P-600

TC55257BFL

: SOP28-P-450

TC55257BSPL

: DIP28-P-300B

TC55257BFTL

: TSOP28-P

TC55257BTRL

: TSOP28-P-A

Pin Names

A0 ~ A14	Address Inputs
R/W	Read/Write Control Input
ŌĒ	Output Enable Input
CE	Chip Enable Input
1/01 ~ 1/08	Data Input/Output
V_{DD}	Power (+5V)
GND	Ground

PIN NO.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
PIN NAME	ŌĒ	A ₁₁	A ₉	A ₈	A ₁₃	R/W	V_{DD}	A ₁₄	A ₁₂	A ₇	A ₆	A ₅	A ₄	A ₃
PIN NO.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
PIN NAME	A ₂	Α ₁	A ₀	1/01	1/02	1/03	GND	1/04	1/05	1/06	1/07	1/08	CE	A ₁₀

Pin Connection (Top View)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Block Diagram

Operating Mode

MODE	CE	ŌĒ	R/W	I/01 ~ I/08	POWER
Read	L	L	Н	D _{OUT}	I _{DDO}
Write	L	*	L	D _{IN}	I _{DDO}
Output Deselect	L	н	Н	High-Z	I _{DDO}
Standby	Н	*	*	High-Z	IDDS

^{*} H or L

Maximum Ratings

MAXILIA	ii i iaaii igo		
SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	-0.3 ~ 7.0	V
V _{IN}	Input Voltage	-0.3* ~ 7.0	V
V _{I/O}	Input and Output Voltage	-0.5* ~ V _{DD} + 0.5	V
PD	Power Dissipation	1.0/0.8/0.6**	W
T _{SOLDER}	Soldering Temperature • Time	260 • 10	°C • sec
TSTRG	Storage Temperature	-55 ~ 150	°C
T _{OPR}	Operating Temperature	0 ~ 70	°C

^{* -3.0}V with a pulse width of 50ns

 $^{^{\}star\star}$ Package dependent: 0.6 inch 1.0W, 0.3 inch 0.8W, 0.45 inch 0.6W

DC Recommended Operating Conditions

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	
V _{IH}	Input High Voltage	2.2	-	V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	-0.3*	-	0.8	'
V _{DH}	Data Retention Supply Voltage	2.0		5.5	

^{* -3.0}V with a pulse width of 50ns

DC Characteristics (Ta = 0 ~ 70°C, V_{DD} = 5V±10%)

SYMBOL	PARAMETER	TEST CON	IDITION .	MIN.	TYP.	MAX.	UNIT
ILI	Input Leakage Current	V _{IN} = 0 ~ V _{DD}	V _{IN} = 0 ~ V _{DD}			±1.0	μА
ILO	Output Leakage Current	$\overline{CE} = V_{IH} \text{ or } R/W = V_{IL}$ $V_{OUT} = 0 \sim V_{DD}$	$\overline{CE} = V_{IH}$ or $R/W = V_{IL}$ or $\overline{OE} = V_{IH}$ $V_{OUT} = 0 \sim V_{DD}$			±1.0	μА
Іон	Output High Current	V _{OH} = 2.4V		-1.0	_	_	mA
loL	Output Low Current	V _{OL} = 0.4V	V _{OL} = 0.4V			-	mA
		CE = V _{IL}	t _{cycle} = 1μs	_	10	- 1	*.
I _{DDO1}		$R/W = V_{IH}$ Other Input = V_{IH}/V_{IL} $I_{OUT} = 0mA$	t _{cycle} = Min. cycle	_	-	70	
	Operating Current	<u>CE</u> = 0.2V	t _{cycle} = 1μs	-	5	_	mA
I _{DDO2}		$R/W = V_{DD} - 0.2V$ Other Input $= V_{DD} - 0.2V/0.2V$ $I_{OUT} = 0 \text{mA}$	t _{cycle} = Min. cycle	_	-	60	
I _{DDS1}		CE = V _{IH}		-	-	3	mA
	Standby Current	<u>CE</u> = V _{DD} - 0.2V	Ta = 0 ~ 70°C	_	-	30	
DDS2		$V_{DD} = 2.0V \sim 5.5V$	Ta = 25°C	_	-	2	μA

Capacitance* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = GND	- 10	pF
C _{OUT}	Output Capacitance	V _{OUT} = GND	10	PΓ

^{*}This parameter is periodically sampled and is not 100% tested.

AC Characteristics (Ta = 0 ~ 70°C, V_{DD} = 5V \pm 10%)

Read Cycle

		TC55257BPL/BFL/BSPL/BFTL/BTRL					
SYMBOL	PARAMETER	-851	.(LV)	-101	UNIT		
		MIN.	MAX.	. MIN.	MAX.		
t _{RC}	Read Cycle Time	85	_	100	-		
t _{ACC}	Address Access Time	_	85	_	100		
tco	CE Access Time	_	85	. –	100		
· t _{OE}	Output Enable to Output in Valid	-	45	_	50		
t _{COE}	Chip Enable (CE) to Output in Low-Z	10	-	10	. –	ns	
toee	Output Enable to Output in Low-Z	5	_	5	_		
ton	Chip Enable (CE) to Output in High-Z	_	30	_	-50		
topo	Output Enable to Output in High-Z	-	30	_	40]	
t _{OH}	Output Data Hold Time	10	-	10	-		

Write Cycle

		TC552				
SYMBOL	PARAMETER	-851	(LV)	-10L(LV)		UNIT
		MIN.	MAX.	MIN.	MAX.	
t _{WC}	Write Cycle Time	85	-	100	_	
t _{WP}	Write Pulse Width	60	_	-70	-	
tcw	Chip Selection to End of Write	65	_	90	_	
t _{AS}	Address Setup Time	0	-	0	-	
t _{WR}	Write Recovery Time	5		. 5	_	ns
topw	R/W to Output in High-Z	_	30	_	50	
toew	R/W to Output in Low-Z	5	-	5	-	
t _{DS}	Data Setup Time	40	_	40	-	
t _{DH}	Data Hold Time	0	_	0	_	

AC Test Conditions

Input Pulse Levels	2.4V/0.6V
Input Pulse Rise and Fall Time	5ns
Input Timing Measurement Reference Levels	2.2V/0.8V
Output Timing Measurement Reference Levels	2.2V/0.8V
Output Load	1 TTL Gate and C _L = 100pF

Timing Waveforms

Read Cycle (1)

Write Cycle 1 (4) (R/W Controlled Write)

Write Cycle 2 (4) (CE Controlled Write)

Notes:

- 1. R/W is high for read cycles.
- 2. If the $\overline{\text{CE}}$ low transition occurs coincident with or after the R/W low transition, outputs remain in a high impedance state.
- 3. If the $\overline{\text{CE}}$ high transition occurs coincident with or prior to the R/W high transition, outputs remain in a high impedance state.
- 4. If \overline{OE} is high during a write cycle, the outputs are in a high impedance state during this period.

Data Retention Characteristics (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER		MIN.	TYP.	MAX.	UNIT		
V _{DH}	Data Retention Supply Voltage		2.0	-	5.5	V.		
	Standby Current	V _{DH} = 3.0V		-	20			
IDDS2	Standby Current V	V _{DH} = 5.5V	-		30	μΑ		
tCDR	Chip Deselect to Data Retention Mode		0	_	_			
t _R	Recovery Time	-	t _{RC(1)}	_	_	μs		

Note (1): Read Cycle Time

CE Controlled Data Retention Mode

Note (2): If the V_{IH} of \overline{CE} is 2.2V in operation, I_{DDS1} current flows during the period that the V_{DD} voltage is going down from 4.5V to 2.4V.

3V Operation

DC Recommended Operating Conditions

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	2.7	3.0	3.3	
V _{IH}	Input High Voltage	V _{DD} - 0.2	-	V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	-0.3	-	0.2]

DC Characteristics (Ta = 0 ~ 70°C, V_{DD} = $3V\pm10\%$)

SYMBOL	PARAMETER	TEST CONDITION		MIN.	TYP.	MAX.	UNIT	
l _{Ll}	Input Leakage Current	V _{IN} = 0 ~ V _{DD}	V _{IN} = 0 ~ V _{DD}		-	-	±1.0	μА
ILO	Output Leakage Current	$\overline{CE} = V_{IH}$ or R/W = V_{IL} or $\overline{OE} = V_{IH}$, $V_{OUT} = 0 \sim V_{DD}$		_	-	±1.0	μΑ	
Юн	Output High Current	$V_{OH} = V_{DD} - 0.2V$			-0.1	-	_	mA
loL	Output Low Current	V _{OL} = 0.2V		·	0.1	- 1	_	mA
		CE = 0.2V		Min.	_		20	
I _{DDO2}	Operating Current	$R/W = V_{DD} - 0.2V$ $I_{OUT} = 0mA$ $Other Inputs = V_{DD} - 0.2V/0.2V$	t _{cycle}	1µs	-	_	5	mĄ
	Inner Standby Current CF = Vpp - 0.2V		Ta = 0 ~ 70°C Ta = 25°C	- 70°C	_	-	20	
DDS2				°C	-	. 1	. 2	μА

Capacitance* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = GND	10	рF
C _{OUT}	Output Capacitance	V _{OUT} = GND	10	PΓ

^{*}This parameter is periodically sampled and is not 100% tested.

3V Operation

DC Characteristics (Ta = 0 ~ 70°C, V_{DD} = 3V \pm 10%)

Read Cycle

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
t _{RC}	Read Cycle Time	200	_	
tACC	Address Access Time	-	200	
tco	CE Access Time	_	200	*
t _{OE}	Output Enable to Output in Valid		100	
t _{COE}	Chip Enable (CE) to Output in Low-Z	10	-	ns
toee	Output Enable to Output in Low-Z	5	_	
t _{OD}	Chip Enable (CE) to Output in High-Z		100	
topo	Output Enable to Output in High-Z	-	80	
toH	Output Data Hold Time	10	_	

Write Cycle

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
t _{WC}	Write Cycle Time	200	_	
t _{WP}	Write Pulse Width	150	_	
t _{CW}	Chip Selection to End of Write	180	-	
t _{AS}	Address Setup Time	0		
twR	Write Recovery Time	5	-	ns
t _{ODW}	R/W to Output in High-Z		100	
toew	R/W to Output in Low-Z	5	_	
t _{DS}	Data Setup Time	90	-	
t _{DH}	Data Hold Time	0		

AC Test Conditions

Input Pulse Levels	V _{DD} - 0.2V/0.2V
Input Pulse Rise and Fall Time	5ns
Input Timing Measurement Reference Levels	1.5V
Output Timing Measurement Reference Levels	1.5V
Output Load	C _L = 100pF