HW 4

Ravi Kini

October 31, 2023

Exercise 1

Part (a)

Let

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$$

$$\bar{k} \mapsto \bar{k} \tag{1}$$

Note that $5=15 \mod 10$, since $5=10\,(0)+5$ and $15=10\,(1)+5$, which means that $\overline{5}=\overline{15}$ in $\mathbb{Z}/10\mathbb{Z}$. However, $5\neq 15 \mod 7$, since $5=7\,(0)+5$ and $15=7\,(2)+1$, which means that $\overline{5}\neq \overline{15}$ in $\mathbb{Z}/7\mathbb{Z}$. Since $\overline{5}=\overline{15}$ but $\varphi\left(\overline{5}\right)\neq \varphi\left(\overline{15}\right)$, φ is not well-defined, as a single element maps to multiple elements in the codomain.

Part (b)

Let

$$\varphi: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$$

$$\bar{k} \mapsto \bar{k}$$
(2)

Let $\overline{x}, \overline{y} \in \mathbb{Z}/10\mathbb{Z}$ such that $\overline{x} = \overline{y}$ in $\mathbb{Z}/10\mathbb{Z}$. Then, since $x = y \mod 10$, x = 10 (m) + p and y = 10 (n) + p for $m, n, p \in \mathbb{Z}$. Then, since x = 10 (m) + p = 5 (2m) + p and y = 10 (n) + p = 5 (2n) + p with $2m, 2n \in \mathbb{Z}$, $x = y \mod 5$, which means that $\overline{x} = \overline{y}$ in $\mathbb{Z}/5\mathbb{Z}$. Consequently, since $\overline{x} = \overline{y}$ implies that $\varphi(\overline{x}) = \varphi(\overline{y})$, φ is well-defined.

Exercise 2

Part (a)

Let

$$\varphi: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$$

$$\bar{k} \mapsto \bar{k}$$
(3)

Let $\alpha: \mathbb{Z} \to \mathbb{Z}/9\mathbb{Z}$, $k \mapsto \bar{k}$ and $\beta: \mathbb{Z}/9\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$, $\bar{k} \mapsto \bar{k}$. We first show that α and β are well defined.

Let $x, y \in \mathbb{Z}$ such that x = y. Then, since x = y, x = 9(m) + p and y = 9(m) + p for $m, p \in \mathbb{Z}$. Then, $x = y \mod 9$, which means that $\overline{x} = \overline{y}$ in $\mathbb{Z}/9\mathbb{Z}$. Consequently, since x = y implies that $\varphi(x) = \varphi(y)$, α is well-defined.

Let $\overline{x}, \overline{y} \in \mathbb{Z}/9\mathbb{Z}$ such that $\overline{x} = \overline{y}$. Then, since $\overline{x} = \overline{y}$, x = 9(m) + p and y = 9(n) + p for $m, n, p \in \mathbb{Z}$. Then, since x = 9(m) + p = 3(3m) + p and y = 9(n) + p = 3(3n) + p with $3m, 3n \in \mathbb{Z}$, $x = y \mod 3$, which means that $\overline{x} = \overline{y}$ in $\mathbb{Z}/3\mathbb{Z}$. Consequently, since $\overline{x} = \overline{y}$ implies that $\varphi(\overline{x}) = \varphi(\overline{y})$, β is well-defined.

Let $a, b \in \mathbb{Z}$ and $\overline{c}, \overline{d} \in \mathbb{Z}/9\mathbb{Z}$. Then, since $\overline{xy} = \overline{xy}$:

$$\alpha(a) \alpha(b) = \overline{a}\overline{b} = \overline{ab} = \alpha(ab)$$

$$\beta(\overline{c}) \beta(\overline{d}) = \overline{c}\overline{d} = \overline{c}\overline{d} = \beta(\overline{c}\overline{d})$$
(4)

Therefore α and β are homomorphisms. Since $\beta \circ \alpha(x) = \overline{x} = \varphi(x)$, $\beta \circ \alpha = \varphi$, and the homomorphism φ factors through $\mathbb{Z}/9\mathbb{Z}$.

Part (b)

Let $\ell \in \mathbb{N}$. Let $\alpha : \mathbb{Z} \to \mathbb{Z}/3^{\ell}\mathbb{Z}$, $k \mapsto \bar{k}$ and $\beta : \mathbb{Z}/3^{\ell}\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$, $\bar{k} \mapsto \bar{k}$. We first show that α and β are well defined.

Let $x, y \in \mathbb{Z}$ such that x = y. Then, since x = y, $x = 3^{\ell}(m) + p$ and $y = 3^{\ell}(m) + p$ for $m, p \in \mathbb{Z}$. Then, $x = y \mod 3^{\ell}$, which means that $\overline{x} = \overline{y}$ in $\mathbb{Z}/3^{\ell}\mathbb{Z}$. Consequently, since x = y implies that $\varphi(x) = \varphi(y)$, α is well-defined.

Let $\overline{x}, \overline{y} \in \mathbb{Z}/3^{\ell}\mathbb{Z}$ such that $\overline{x} = \overline{y}$. Then, since $\overline{x} = \overline{y}$, $x = 3^{\ell}(m) + p$ and $y = 3^{\ell}(n) + p$ for $m, n, p \in \mathbb{Z}$. Then, since $x = 3^{\ell}(m) + p = 3\left(3^{\ell-1}m\right) + p$ and $y = 3^{\ell}(n) + p = 3\left(3^{\ell-1}n\right) + p$ with $3^{\ell-1}m, 3^{\ell-1}n \in \mathbb{Z}$, $x = y \mod 3$, which means that $\overline{x} = \overline{y}$ in $\mathbb{Z}/3\mathbb{Z}$. Consequently, since $\overline{x} = \overline{y}$ implies that $\varphi(\overline{x}) = \varphi(\overline{y})$, β is well-defined.

Let $a, b \in \mathbb{Z}$ and $\overline{c}, \overline{d} \in \mathbb{Z}/3^{\ell}\mathbb{Z}$. Then, since $\overline{xy} = \overline{xy}$:

$$\alpha(a) \alpha(b) = \overline{a}\overline{b} = \overline{ab} = \alpha(ab)$$

$$\beta(\overline{c}) \beta(\overline{d}) = \overline{c}\overline{d} = \overline{c}\overline{d} = \beta(\overline{c}\overline{d})$$
(5)

Therefore α and β are homomorphisms. Since $\beta \circ \alpha(x) = \overline{x} = \varphi(x)$, $\beta \circ \alpha = \varphi$, and the homomorphism φ factors through $\mathbb{Z}/3^{\ell}\mathbb{Z}$ for all $\ell \in \mathbb{N}$.