homework 2

HuJinghui (11061191)

September 19, 2013

1) Solution,

$$(N, M) = (13, 5)$$
 $answer = 39$
 $(N, M) = (13, 7)$
 $answer = 37$
 $(N, M) = (19, 5)$
 $answer = 73$
 $(N, M) = (19, 7)$
 $answer = 59$
 $(N, M) = (23, 5)$
 $answer = 101$
 $(N, M) = (23, 7)$
 $answer = 75$

2) The minimum amount of Hanoi problem is $T_n = 2^n - 1$, and I think sub-minimum answer $T'_n = T_n - 1$ is correct. I will give a possible way to implement it. Now we have 3 pegs (p_1, p_2, p_3) , in the minimum solution, the last step is to move the smallest disk to p_3 , instead of this step, we can move the last disk to another empty peg, then move the last disk to p_3 .

3) if break Lucas rule once

Disks	Break	No breaks
1	1	1
2	3	3
3	5	7
4	9	15
5	17	31

if break Lucas rule once, the answer is $2^{n-1} + 1$.

Suppose we have 3 pegs (p_1, p_2, p_3) , firstly, move n-2 disks to p_2 , using $2^{n-2}-1$ steps. Secondly, move the topest disk on p_1 to p_2 (breaking Lucas rule). then, move the last disk to p_3 and move the topest disk on p_2 to p_3 , using 3 steps. Finally, move all the disks on p_2 to p_3 , using $2^{n-2}-1$ steps. Totally, we'll use

$$(2^{n-2} - 1) \times 2 + 3 = 2^{n-1} + 1$$

steps.