Summary for Modern Algebra I

SEUNGWOO HAN

David S. Dummit, Richard M. Foote. *Abstract Algebra*. 3rd ed., Wiley, 2003.

CONTENTS

CHAPIEK	GROUPS	PAGE Z	
1.1	Definitions and Examples of Groups	2	
1.2	Group Homomorphisms	4	
1.3	Subgroups	5	
1.4	Generators of Groups and Free Groups	7	
1.5	Cyclic Groups	8	
1.6	Alternating Groups	10	
CHAPTER	NORMAL SUBGROUPS AND QUOTIENT GROUPS	PAGE 12	
2.1	Lagrange Theorem	12	
2.2	Normal Subgroups	14	
2.3	Quotient Groups and Group Homomorphisms	16	
2.4	Simple Groups and Jordan–Hölder Theorem	20	
CHAPTER	GROUP ACTIONS	Page 25	
3.1	Stabilizers and Orbits	25	
3.2	Group Actions by Conjugation	27	
3.3	Automorphisms	29	

Chapter 1

Groups

1.1 Definitions and Examples of Groups

Definition 1.1.1: Abelian Group

An *abelian group* is a nonempty set G equipped with a binary operation + on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G$, a + (b + c) = (a + b) + c.
- (ii) (commutative) $\forall a, b \in G, a + b = b + a$.
- (iii) (identity) $\exists 0 \in G, \ \forall a \in G, \ a + 0 = 0 + a = a$.
- (iv) (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0.$

Note:-

One may easily show that the identity is unique, and for each $a \in G$, an inverse of a is unique.

Notation 1.1.2

- We define $-: G \times G \to G$ by a b = a + (-b).
- We write, for each positive integer n, and for each $a \in G$,

$$na \triangleq \underbrace{a + a + \dots + a}_{n \text{ times}}, \qquad 0a \triangleq 0_G, \qquad (-n)a \triangleq \underbrace{(-a) + (-a) + \dots + (-a)}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $(m+n)a = ma + na \land m(na) = (mn)a$.

Example 1.1.3

- (i) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , equipped with their ordinary additions, are abelian groups, while $(\mathbb{N}, +)$ is not.
- (ii) $\mathbb{Q} \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$, and $\mathbb{C} \setminus \{0\}$, equipped with their ordinary multiplications, are abelian groups.
- (iii) If $G = \{1, -1, i, -i\} \subseteq \mathbb{C}$, then (G, \cdot) is an abelian group. One may explicitly write the *group table* for this.
- (iv) $GL_n(\mathbb{C}) = \{n \times n \text{ invertible matrices over } \mathbb{C} \}$ (general linear group) equipped with \cdot is not an abelian group but is a group. (See Definition 1.1.4.)

Definition 1.1.4: Group

An *group* is a nonempty set G equipped with a binary operation \cdot on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G, a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (ii) (identity) $\exists 1 \in G, \forall a \in G, a \cdot 1 = 1 \cdot a = a$.
- (iii) (inverse) $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = 1.$

Theorem 1.1.5

Let (G, \cdot) be a group. Let $a, b, c \in G$.

- (i) $ab = ac \implies b = c$
- (ii) $(a^{-1})^{-1} = a$
- (iii) $(ab)^{-1} = b^{-1}a^{-1}$

Proof. Trivial.

Notation 1.1.6

• We write, for each positive integer n, and for each $a \in G$,

$$a^n \triangleq \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ times}}, \qquad a^0 \triangleq 1_G, \qquad a^{-n} \triangleq \underbrace{a^{-1} \cdot a^{-1} \cdot \cdots \cdot a^{-1}}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $a^m a^n = a^{m+n} \wedge (a^m)^n = a^{mn}$.

Note:-

We don't generally have $(ab)^n = a^n b^n$.

Definition 1.1.7: Order

We write |G| to denote the number of elements in G and call it *order* of G.

Example 1.1.8 Dihedral Groups

$$D_n \triangleq \{ r_i : [n] \hookrightarrow [n] \mid \forall j \in [n], r_i(j) = i +_n j \} \cup \{ \text{reflections???} \}$$

= $\{ \text{all "rigid motions" for regular } n \text{ polygon} \}$

Then, (D_n, \circ) is a group where \circ is ordinary function composition operator. We claim that $|D_n| = 2n$ and D_n is not abelian.

Proof. If $r \in D_n$ is a rotation, then

Example 1.1.9 Symmetric Group

Let *T* be a nonempty set. Then, the set $S(T) \triangleq \{f : f : T \hookrightarrow T\}$ with the function composition operator \circ is a group.

We write

$$S_n \triangleq S(\{1,2,\cdots,n\})$$

and call it *symmetric group*. S_1 and S_2 are abelian, but S_n with $n \ge 3$ is not abelian. $((123) \circ (12) \ne (12) \circ (123))$

Definition 1.1.10: Group Action

Let *G* be a group and *A* be a set. A group action *G* on *A* is a map $f: G \times A \rightarrow A$ such that:

- (i) $\forall g_1, g_2 \in G$, $\forall a \in A$, $f(g_1, f(g_2, a)) = f(g_1g_2, a)$.
- (ii) $\forall a \in A, f(1, a) = a$.

We write $G \cap A$ to write G acts on A.

Example 1.1.11 Quaternion Group

 $Q_8 \triangleq \{\pm 1, \pm i, \pm j, \pm k\}$ as usual.

Example 1.1.12 General Linear Group

 $\operatorname{GL}_n(R)$ is a group of all $n \times n$ invertible matrices over R.

Definition 1.1.13: Direct Product

If $(G, *_G)$ and $(H, *_H)$ are groups, then the binary operation * on $G \times H$ defined by $(g,h) \times (g',h') \triangleq (g *_G g',h *_H h')$ forms a group $(G \times H,*)$.

1.2 Group Homomorphisms

Definition 1.2.1: Group Homomorphism

Let *G* and *H* be groups. A *group homomorphism* between *G* and *H* is a function $f: G \to H$ such that $\forall a, b \in G$, f(ab) = f(a)f(b).

Definition 1.2.2: Group Isomorphism

Let G and H be groups. A *group isomorphism* is a bijective group homomorphism between G and H. (This means that G and H have the same group structure.) We write $G \cong H$.

Theorem 1.2.3

Let $f: G \to H$ be a group homomorphism.

- (i) $f(1_G) = 1_H$.
- (ii) $\forall a \in G, f(a^{-1}) = f(a)^{-1}$.
- (iii) Im f is a group under the group operation under H.
- (iv) If f is injective, then $G \cong \operatorname{Im} f$.

Proof.

(i) $f(1_G)f(1_G) = f(1_G1_G) = f(1_G) = f(1_G)1_H$. Hence, we have $f(1_G) = 1_H$ from Theorem 1.1.5 (i).

- (ii) $f(a^{-1})f(a) = f(a^{-1}a) = f(1_G) = 1_H$ by (i). Hence, $f(a^{-1}) = f(a)^{-1}$.
- (iii) Direct from definition.
- (iv) Direct from definition.

There is only one way—the direct product—to give a group structure on $G \times H$ such that both projections are group homomorphisms.

Definition 1.2.4: Group Automorphism

An *automorphism* of G is an isomorphism $G \hookrightarrow G$ between G and itself. Then, the collection of all automorphisms of G, $Aut(G) \triangleq \{$ automorphisms of $G \}$, equipped with \circ , is a group. Moreover, $Aut(G) \curvearrowright G$ in the natural way $((\sigma, g) \mapsto \sigma(g))$.

Example 1.2.5

Fix any $c \in G$ and define $i_c : G \to G$ by $g \mapsto cgc^{-1}$. Then, $i_c \in Aut(G)$. i_c is called the *inner automorphism on G induced by c*.

Lemma 1.2.6

Let $G \cap A$. Then, every $g \in G$ induces a map

$$\varphi_g: A \longrightarrow A$$
 $a \longmapsto ga.$

Then, $\varphi: G \to S(A)$ defined by $g \mapsto \varphi_g$ is a group homomorphism, which is called the *permutation representation of the group action of G on A*.

Proof. For each $a \in A$, $(\varphi_{g^{-1}} \circ \varphi_g)(a) = g^{-1}(ga) = (g^{-1}g)a = 1a = a$. Thus, $\varphi_{g^{-1}} \circ \varphi_g = \varphi_g \circ \varphi_{g^{-1}} = \text{id}$. Therefore, $\varphi_g \in S(A)$. It is easy to show that φ is a group homomorphism. \square

Lemma 1.2.7

Let *G* be a group and let *A* be a set. If $\varphi: G \to S(A)$ is a group homomorphism, Then, the map $G \times A \to A$ defined by $(g, a) \mapsto \varphi(g)(a)$ is a group action of *G* on *A*.

Proof. Direct from Definition 1.1.10.

Theorem 1.2.8

Let *G* be a group and let *A* be a nonempty set. Then, there exists one-to-one correspondence

{all group actions of G on A} $\stackrel{1-1}{\longleftrightarrow}$ {all group homomorphisms $G \to S(A)$ }.

Proof. Direct from Lemmas 1.2.6 and 1.2.7.

1.3 Subgroups

Definition 1.3.1: Subgroup

Let *G* be a group, and $\emptyset \subsetneq H \subseteq G$. *H* is a *subgroup* of *G* if *H* is a group under the binary operation of *G*. If *H* is a subgroup of *G*, we write $H \subseteq G$.

- (i) $1, G \le G$.
- (ii) If $H, K \leq G$ and $H \subseteq K$, then $H \leq K$.
- (iii) If $f: H \to G$ is a group homomorphism, then $im(f) \le G$.
- (iv) If $H \leq G$, then $id_H: H \hookrightarrow G$ is a group homomorphism.
- (v) For all $n \in \mathbb{Z}$, $n\mathbb{Z} = \{ nz \mid z \in \mathbb{Z} \} \leq \mathbb{Z}$.
- (vi) $\{\pm 1, \pm i\} \leq \mathbb{C}^*$.
- (vii) $\{1, r_1, \dots, r_{n-1}\} \le D_n \le S_n \text{ and } \{1, s\} \le D_n$.

Theorem 1.3.2

TFAE. Let G be a group and $\emptyset \subsetneq H \subseteq G$.

- (i) $H \leq G$.
- (ii) $\forall a, b \in H, ab \in H \text{ and } \forall a \in H, a^{-1} \in H.$
- (iii) $\forall a, b \in H, ab^{-1} \in H$.

Proof. Implications (i) \rightarrow (ii) and (ii) \rightarrow (iii) are trivial. For any $a, b \in H$, we have $1 = aa^{-1} \in H$, $a^{-1} = 1a^{-1} \in H$, and $ab = a(b^{-1})^{-1} \in H$.

Definition 1.3.3: Kernel

Let $f: G \to H$ be a group homomorphism. The *kernel* of f is the set

$$\ker(f) \triangleq \{ g \in G \mid f(g) = 1_H \}.$$

Example 1.3.4 Kernel

Let $f: G \to H$ be a group homomorphism. Then, $\ker(f) \leq G$ since, $1 \in \ker(f)$ and, for each $a, b \in \ker(f)$, $f(ab^{-1}) = f(a)f(b)^{-1} = 1_H 1_H = 1_H$.

Corollary 1.3.5

Let G be a group and let H be a nonempty finite subset of G. Then,

$$H \leq G \iff \forall a, b \in H, ab \in H.$$

Proof. The direction (\Leftarrow) is trivial.

Take any $a \in H$. By the assumption, $a^n \in H$ for all $n \in \mathbb{Z}_+$. As H is finite, there exists $m, n \in \mathbb{Z}_+$ such that $a^n = a^m$. WLOG, m < n. Therefore, $1 = a^{n-m} \in H$. Moreover, we have $aa^{n-m-1} = 1$, which implies $a^{-1} = a^{n-m-1} \in H$. Therefore, by Theorem 1.3.2, $H \leq G$.

🛉 Note:- 🛉

The finite condition in Corollary 1.3.5 is essential since $\mathbb{N} \not \leq \mathbb{Z}$ while \mathbb{N} is closed under addition. (\mathbb{N} is not a group at first.)

Corollary 1.3.6

Let *G* be a group and let $\langle H_i | i \in I \rangle$ be an indexed system of subgroups of *G*. Then, $\bigcap_{i \in I} H_i \leq G$.

Proof. Since $1 \in H_i$ for all $i \in I$, $\bigcap_{i \in I} H_i \neq \emptyset$. Take any $a, b \in \bigcap_{i \in I} H_i$. Then, as $\forall i \in I$, $ab^{-1} \in H_i$, we have $ab^{-1} \in \bigcap_{i \in I} H_i$. The result follows from Theorem 1.3.2. □

Even though $H_1, H_2 \leq G$, it is not guaranteed that $H_1 \cup H_2 \leq G$. For instance, $2\mathbb{Z} \cup 3\mathbb{Z} \nleq \mathbb{Z}$. $(2+3 \notin 2\mathbb{Z} \cup 3\mathbb{Z}.)$

Theorem 1.3.7 Cayley Theorem

Let *G* be a group. Then, $G \cong H$ for some $H \leq S(G)$.

Proof. Note that $(g, g') \mapsto gg'$ is a group action of G on G. Let $\varphi : G \to S(G)$ be the permutation representation of it. We only need to show that φ is injective.

Take any $x, y \in G$ and assume $\varphi_x = \varphi_y$. Then, $x = x \cdot 1 = \varphi_x(1) = \varphi_y(1) = y \cdot 1 = y$. Therefore, $G \cong \operatorname{im}(\varphi) \leq S(G)$.

Definition 1.3.8: Center

Let *G* be a group. The *center* of *G* is the set

$$Z(G) \triangleq \{ g \in G \mid \forall a \in G, ag = ga \}.$$

Theorem 1.3.9

Let G be a group. Then, Z(G) is an abelian group.

Proof. Take any $a, b \in Z(G)$. Then for all $g \in G$, (ab)g = a(gb) = a(gb) = (ag)b = g(ab); hence $ab \in Z(G)$. For all $g \in G$, $ga^{-1} = a^{-1}g(aa^{-1}) = a^{-1}(ga)a^{-1} = a^{-1}g(aa^{-1}) = a^{-1}g$; hence $a^{-1} \in Z(G)$. Therefore, $Z(G) \le G$ by Theorem 1.3.2. Z(G) is abelian by definition. □

Definition 1.3.10: Centralizer

Let *G* be a group and let $\emptyset \subsetneq A \subseteq G$. The *centralizer* of *A* is the subset

$$C_G(A) = C(A) \triangleq \{ g \in G \mid \forall a \in A, ag = ga \}.$$

We may also write C(a) instead of $C(\{a\})$.

Theorem 1.3.11

Let *G* be a group.

- (i) $C(A) \leq G$ for any $\emptyset \subseteq A \subseteq G$.
- (ii) $Z(G) = \bigcap_{a \in G} C(a)$.
- (iii) $a \in Z(G) \iff C(a) = G$.

Proof.

 \Box

1.4 Generators of Groups and Free Groups

Theorem 1.4.1

Let *G* be a group and $\emptyset \subsetneq S \subseteq G$. Let $\langle S \rangle$ be the closure of *S* under the structure (G, \cdot, \cdot^{-1}) .

- (i) $\langle S \rangle \leq G$ and $S \subseteq \langle S \rangle$.
- (ii) If $H \leq G$ and $S \subseteq H$, then $\langle S \rangle \subseteq H$.

Proof. Trivial.

Definition 1.4.2: Generator

Let *G* be a group and $\emptyset \subsetneq S \subseteq G$. If $G = \langle S \rangle$, then we say *G* is *generated by S* and *S* is a *generator* of *G*. If *S* is finite, then *G* is *finitely generated*.

Example 1.4.3

- (i) A finite group is finitely generated. $G = \langle G \rangle$.
- (ii) $\mathbb{Z} = \langle -1 \rangle$ is finitely generated.
- (iii) \mathbb{Q} is not finitely generated. If $\mathbb{Q} = \langle p_i/q_i \mid i < n \rangle$, then, for a prime $p \in \mathbb{P}$ such that $\forall i < n, p \nmid q_i$, we have $1/p \notin \langle p_i/q_i \mid i < n \rangle$.
- (iv) $D_n = \langle r_1, s \rangle$. (This is a minimal representation.)
- (v) $Q_8 = \langle i, j \rangle = \langle j, k \rangle = \langle k, i \rangle$.

Definition 1.4.4: Group Presentation

We write

$$G = \langle S | R \rangle$$

as a way of representing group G in terms of generator S and a set of relations R.

Example 1.4.5

- (i) $\mathbb{Z} = \langle 1 \rangle$.
- (ii) $D_n = \langle r, s \mid r^n = s^2 = rsrs = 1 \rangle$.

Theorem 1.4.6

Let $G = \langle g_1, \cdots, g_k \mid r_1(g_1, \cdots, g_k) = \cdots = r_m(g_1, \cdots, g_k) = 1 \rangle$ be a group presentation. Let H be a group. If $\varphi \colon \{g_1, \cdots, g_k\} \to H$ such that $r_i(\varphi(g_1), \cdots, \varphi(g_k)) = 1$ for all $i \in [m]$, then there uniquely exists a group homomorphism $\tilde{\varphi} \colon G \to H$ such that $\tilde{\varphi}\big|_{\{g_1, \cdots, g_k\}} = \varphi$.

1.5 Cyclic Groups

Definition 1.5.1: Order

Let *G* be a group and let $a \in G$. If $a^k = 1$ for some $k \in \mathbb{Z}_+$, then we say *a* has a *finite* order and the order of *a* is

$$|a| = \min\{ n \in \mathbb{Z}_+ \mid a^n = 1 \}.$$

If a does not have a finite order, we write $|a| = \infty$.

Example 1.5.2

- (i) If $f: G \stackrel{\approx}{\to} H$, then $\forall a \in G$, |a| = |f(a)|.
- (ii) $\forall a \in G, |a| = |a^{-1}|.$

- (iii) $\forall a \in G$, ($|a| = 1 \iff a = 1$).
- (iv) $\forall m \in \mathbb{Z}_n$, $|m| = n/\gcd(n, m)$.
- (v) In Q_8 , |1| = 1, |-1| = 2, $|\pm i| = |\pm j| = |\pm k| = 4$.
- (vi) In D_n , $|r_i| = n/\gcd(n, i)$ and |s| = 2.

Note that (v) and (vi) shows that $Q_8 \ncong D_n$.

Theorem 1.5.3

Let *G* be a group. Let $a, b \in G$.

- (i) $|a| = \infty \iff \forall i, j \in \mathbb{Z}, (a^i = a^j \implies i = j).$
- (ii) Assume $|a| = n < \infty$.
 - (1) $a^k = 1 \iff n \mid k$.
 - (2) $a^i = a^j \iff i \equiv j \pmod{n}$
 - (3) If n = td, then $|a^t| = d$.
- (iii) Assume ab = ba, $|a| < \infty$, $|b| < \infty$, and gcd(a, b) = 1. Then, |ab| = |a| |b|.

Proof.

- (i) Trivial.
- (ii) Basic number theory.
- (iii) Let $\alpha \triangleq |a|$, $\beta \triangleq |b|$, and $\ell = \alpha\beta$. Since $(ab)^{\ell} = 1$, we have $|ab| \leq \ell$.

Suppose $(ab)^m < 1$ for some $0 < m < \ell$ for the sake of contradiction. Then, we have $1 = a^{m\alpha} = b^{-m\alpha}$; thus $\beta \mid m$ as $\gcd(a,b) = 1$. Similarly, we have $\alpha \mid m$, which implies $\ell = \alpha\beta \mid m$. This contradicts $m < \ell$.

Note:-

We do not have |ab| = lcm(|a|, |b|). In D_3 , $|r_1s| = 2 \neq 6 = \text{lcm}(|r_1|, |s|)$.

Corollary 1.5.4

Let $f: G \to H$ be a group homomorphism. If $g \in G$ has a finite order, then |f(g)| |g|.

Corollary 1.5.5

Let *G* be an abelian group in which all elements have finite order. If $c \in G$ has the largest order, then $\forall a \in G$, |a| | |c|.

Proof. Suppose there exists $a \in G$ such that $|a| \nmid |c|$ for the sake of contradiction. Then, we may write $|a| = p^r m$ and $|c| = p^s n$ where p is a prime number, gcd(m, p) = gcd(n, p) = 1, and r > s. Then, by Theorem 1.5.3 (ii), $|a^m| = p^r$ and $|c^{p^s}| = n$. Therefore, by Theorem 1.5.3 (iii), $|a^m c^{p^s}| = |a^m| |c^{p^s}| = p^r n > |c|$, which contradicts the maximality of |c|.

Definition 1.5.6

Let *G* be a group. Then, a subgroup of *G* of the form

$$\langle a \rangle = \langle \{a\} \rangle = \{ a^n \mid n \in \mathbb{Z} \}$$

is called a *cyclic subgroup generated by a*. If $G = \langle a \rangle$, then we say G is a cyclic group.

Note:-

Every cyclic group is abelian, but the converse is not true. (e.g. Example 1.4.3 (iii))

Corollary 1.5.7

Let *G* be a group and let $a \in G$.

- (i) If $|a| = \infty$, then $\langle a \rangle \cong \mathbb{Z}$.
- (ii) If |a| = n, then $\langle a \rangle \cong \mathbb{Z}_n$.

This gives the complete classification of cyclic groups.

Corollary 1.5.8

Let $G = \langle a \rangle$ be a cyclic group. Let H be a nontrivial subgroup of G.

- (i) $H = \langle a^k \rangle$ where $k = \min\{ n \mid a^n \in H \}$.
- (ii) If $|a| = \infty$, then $\langle 1 \rangle$, $\langle a \rangle$, $\langle a^2 \rangle$, \cdots are all the distinct subgroups of G.
- (iii) If $|a| = n < \infty$, then min{ $n \mid a^n \in H$ } | n.

Proof.

(i) As $a^i \in H$ for some $i \neq 0$, we may let $k = \min\{n \mid a^n \in H\}$. Take any $h \in H$. Then, $h = a^m$ for some $m \in \mathbb{Z}$. There exists $q, r \in \mathbb{Z}$ such that

 $0 \le r < k$ and m = kq + r. Then, $a^r = a^m (a^k)^{-q} \in H$; thus r = 0 by minimality of k. Hence, $H = \langle a^k \rangle$.

- (ii) Trivial.
- (iii) Let $d = \gcd(k, n)$. As $d \mid k$, we have $\langle a^k \rangle \subseteq \langle a^d \rangle$. There exist $u, v \in \mathbb{Z}$ such that d = mu + nv. Then, $a^d = (a^m)^u (a^n)^v = (a^m)^u$; thus $\langle a^d \rangle \subseteq \langle a^k \rangle$. Hence, $k = d \mid n$.

1.6 Alternating Groups

Definition 1.6.1: m-Cycle

Permutations of the form $(a_1 a_2 \cdots a_m)$ is called *m-cycles*.

Note:-

Some basic facts:

- S_1, S_2, S_3 consist of cycles while S_4 has a non-cycle (12)(34).
- $(a_1 a_2 \cdots a_m)^{-1} = (a_m a_{m-1} \cdots a_1).$
- Every $\sigma \in S_n$ admits a disjoint cycle decomposition. In other words,

$$\sigma = (a_{i_{11}} \cdots a_{i_{1m_1}})(a_{i_{21}} \cdots a_{i_{2m_2}}) \cdots (a_{i_{k1}} \cdots a_{i_{km_k}})$$

where $a_{i_{j\ell}}$ s are all different. Moreover, the cycle decomposition is unique up to permutation of the cycles.

• If $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ is a disjoint cycle decomposition, then $\sigma^n = \sigma_1^n \sigma_2^n \cdots \sigma_k^n$. Moreover, $|\sigma| = \text{lcm}(|\sigma_1|, |\sigma_2|, \cdots, \sigma_k)$.

Example 1.6.2 Center of Symmetric Group

 $Z(S_2) = S_2$ since S_2 is abelian. Fix $n \ge 3$ and consider S_n . Let $\sigma \in Z(S_n) \setminus \{(1)\}$. Let $\sigma = (a_1 \, a_2 \, \cdots \, a_m) \sigma_2 \cdots \sigma_k$ be a disjoint cycle decomposition with $m \ge 2$. Choose $\tau \in S_n$ such that $\tau(a_1) = a_1$ and $\tau(a_2) \ne a_2$. Then, $\sigma(a_1) = \tau \sigma \tau^{-1}(a_1) = \tau \sigma(a_1) = \tau(a_2) \ne a_2$, which is a contradiction. Hence, $Z(S_n) = \{(1)\}$.

Definition 1.6.3: Transposition

A transposition is a 2-cycle (a b).

Note:-

- $(a_1 a_2 \cdots a_m) = (a_1 a_m)(a_1 a_{m-1}) \cdots (a_1 a_2).$
- By the cyclic decomposition and the equation above, we get the fact that every $\sigma \in S_n$ is a product of transpositions.

Definition 1.6.4: Parity of Permutation

For each $\sigma \in S_n$, define $\sigma(\Delta) = \prod_{i \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$ be a polynomial on independent variables x_1, \dots, x_n . Let $\Delta \triangleq (1)(\Delta)$. Then, $\sigma(\Delta) = \pm \Delta$. We define $\varepsilon : S_n \to \{1, -1\}$ by

$$\varepsilon(\sigma) \triangleq \begin{cases} 1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta. \end{cases}$$

Theorem 1.6.5

 ε in Definition 1.6.4 is a surjective group homomorphism.

Proof. Take any $\sigma, \tau \in S_n$. Suppose $\sigma(\Delta)$ has exactly k factors of $(x_j - x_i)$ with j > i so that $\varepsilon(\sigma) = (-1)^k$. $\varepsilon(\tau\sigma)\Delta = (\tau\sigma)(\Delta) = \varepsilon(\sigma)\prod_{i \le i < j \le n} (x_{\tau(i)} - x_{\tau(j)}) = \varepsilon(\sigma)\varepsilon(\tau)\Delta$. Hence, $\varepsilon(\tau\sigma) = \varepsilon(\sigma)\varepsilon(\tau) = \varepsilon(\tau)\varepsilon(\sigma)$.

Definition 1.6.6: Alternating Group

$$A_n \triangleq \ker(\varepsilon: S_n \to \{\pm 1\})$$

Chapter 2

Normal Subgroups and Quotient Groups

2.1 Lagrange Theorem

Definition 2.1.1: Congruence

Let $K \leq G$ and $a, b \in G$. We say a is congruent to b modulo K if $ab^{-1} \in K$, and write $a \equiv b \pmod{K}$.

Definition 2.1.2: Coset

Let $K \leq G$ and $a \in G$.

- $Ka \triangleq \{ka \mid k \in K\}$ is a right coset of K in G.
- $aK \triangleq \{ak \mid k \in K\}$ is a left coset of K in G.

Note:-

The relation $\equiv \pmod{K}$ is reflexive, symmetric, and transitive; hence it is a equivalence relation. Then, the equivalence class of $a \in G$ is

$$[a]_K = \{b \in G \mid b \equiv a \pmod{K}\} = \{b \in G \mid \exists k \in K, b = ka\} = Ka.$$

In other words, $a \equiv b \pmod{K} \iff Ka = Kb$.

One may define $\equiv_l b$ are $\equiv_l b$ iff $a^{-1}b \in K$ so that [a] = aK.

Note:-

One may note that, if K is just a nonempty subset of G, then $\equiv \pmod{K}$ is an equivalence relation if and only if $K \leq G$.

Definition 2.1.3

Let $K \leq G$.

$$G/K \triangleq \{ Ka \mid a \in G \}.$$

Definition 2.1.4: Index

The *index of K in G* is

$$[G:K] \triangleq |G/K|$$
.

Example 2.1.5

- (i) $n\mathbb{Z} \leq \mathbb{Z}$; $[\mathbb{Z}:n\mathbb{Z}] = n$.
- (ii) $\mathbb{Z} \leq \mathbb{Q}$; $[\mathbb{Q}:\mathbb{Z}] = \infty$.

Theorem 2.1.6

Let $K \leq G$. Let L and R be sets of left and right cosets, respectively. Then, the map

$$\varphi: R \longrightarrow L$$
$$Ka \longmapsto a^{-1}K$$

is a (well-defined) bijection.

Proof. Take any $a, b \in G$ and assume Ka = Kb. Then, we have b = ka for some $k \in K$. Hence, $a^{-1} = b^{-1}k$; thus we have $a^{-1}K = b^{-1}K$. Therefore, the function is well-defined. Moreover, by a similar argument, $a^{-1}K = b^{-1}K \implies Ka = Kb$; thus φ is injective. The surjectivity is evident.

Note:-

Theorem 2.1.6 implies that $[G:K] = |\{aK \mid a \in G\}|$.

Lemma 2.1.7

Let $K \leq G$. For each $a \in G$, the function

$$f: K \longrightarrow Ka$$
 $k \longmapsto ka$

is a bijection.

Proof. f is evidently surjective. If ka = f(k) = f(k') = k'a, then we have k = k'.

Theorem 2.1.8 Lagrange Theorem

Let K be a finite group and $K \leq G$. Then, [G:K] = |G|/|K|. (In particular, $|K| \mid |G|$.)

Proof. Let n = [G:K] and write $G/K = \{Ka_1, Ka_2, \dots, Ka_n\}$. By Lemma 2.1.7, $|Ka_i| = |K|$ for all $i \in [n]$. Therefore, $|G| = \sum_{i=1}^{n} |Ka_i| = n|K| = [G:K]|K|$. □

Example 2.1.9

 $A_n(12) = \{ \text{ all odd permutations} \}$. Therefore, $[S_n:A_n] = 2$; thus by Lagrange Theorem, $|A_n| = n!/2$.

Note:-

The converse of Lagrange Theorem (if $d \mid |G|$, there exists a subgroup of order d) does not hold.

 $|A_4|=12$. Suppose $K \le A_4$ with |K|=6. Then, there are two right cosets K and Ka where $a \in A_4 \setminus K$. (Note that $Ka = A_4 \setminus K$.) Take any $b \in A_4 \setminus K$. If $b^2 \in Ka = Kb$, then $b^2 = kb$ for some $k \in K$, which implies $b = k \in K$. Thus, $b^2 \in K$. Therefore, $\forall g \in G, g^2 \in K$. Hence, for all $g \in G$ with |g|=3, then $g=g^4=(g^2)^2 \in K$ while there are 8 elements in A_4 whose order is 3, which contradicts |K|=6.

Corollary 2.1.10

Let *G* be a finite group.

- (i) If $a \in G$, then |a| | |G|.
- (ii) If $a^{|G|} = 1$.

Proof. Direct from Lagrange Theorem.

Corollary 2.1.11

Let p be a prime number. Then, every group of order p is cyclic.

Proof. Fix any $a \in G \setminus \{1\}$. Then, $1 < |a| \mid p$; thus |a| = p; thus $G = \langle a \rangle$.

Corollary 2.1.12

Let *G* be a finite group and let $K \le H \le G$. Then, [G:K] = [G:H][H:K].

Proof. [G:K]|K| = |G| = [G:H]|H| = [H:K][G:H]|K|.

2.2 Normal Subgroups

Lemma 2.2.1

Let *G* be a group and let $N \leq G$. Then,

 $\forall a, a', b, b' \in G, (Na = Na' \land Nb = Nb' \Longrightarrow Nab = Na'b')$

 $\iff \forall g \in G, gNg^{-1} \subseteq N.$

Proof.

- (⇒) Take any $g \in G$ and $n \in N$. Since $N1 = Nn^{-1}$, we have $Ng = Ngn^{-1}$. Hence, there exists $n' \in N$ such that $ng = n'gn^{-1}$. Therefore, $gng^{-1} = g(gn^{-1})^{-1} = n^{-1}n' \in N$.
- (⇐) Take any $a, a', b, b' \in G$ and assume Na = Na' and Nb = Nb'. Then, $n' \triangleq a'a^{-1} \in N$ and $b'b^{-1} \in N$. Hence, a' = n'a; thus $(a'b')(ab)^{-1} = n'(a(b'b^{-1})a^{-1}) \in N$ (by $b'b^{-1} \in N$ and the assumption). Therefore, Nab = Na'b'.

Definition 2.2.2: Normal Subgroup

Let *G* be a group and let $N \le G$. *N* is a *subgroup* if $\forall g \in G$, $gNg^{-1} \in N$. If *N* is a normal subgroup of *G*, we write $N \le G$.

Example 2.2.3

- (i) If *G* is abelian, then every subgroup is normal.
- (ii) If $f: G \to H$ is a group homomorphism, then $\ker(f) \subseteq G$.

Lemma 2.2.4

Let G be a group and $N \leq G$. Then, $aNa^{-1} \leq G$ and $aNa^{-1} \cong N$.

Proof. For each ana^{-1} , $an'a^{-1} \in aNa^{-1}$, we have $(ana^{-1})(an'a^{-1})^{-1} = (ana^{-1})(a(n')^{-1}a^{-1}) = a(n(n')^{-1})a^{-1} \in aNa^{-1}$. Therefore, $aNa^{-1} \leq G$.

Moreover, $f: N \to aNa^{-1}$ defined by $n \mapsto ana^{-1}$ is a bijective group homomorphism; thus $aNa^{-1} \cong N$.

Theorem 2.2.5

Let *G* be a group and $N \leq G$. TFAE.

- (i) $N \leq G$
- (ii) $\forall a \in G, aNa^{-1} = N$
- (iii) $\forall a \in G, Na = aN$

Proof.

- (i) \Rightarrow (ii) For each $n \in N$ and $a \in G$, we have $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$; thus $n = a(a^{-1}na)a^{-1} \in aNa^{-1}$. Therefore, $N \subseteq aNa^{-1}$.
- (ii) \Rightarrow (iii) Take any $n \in N$ and $a \in G$. Then, $ana^{-1} = n'$ for some $n' \in N$. Hence, $an = n'a \in Na$; thus $aN \subseteq Na$. Similarly, we may show $Na \subseteq aN$.
- (iii)⇒(i) Take any $n \in N$ and $a \in G$. Then, an = n'a for some $n' \in N$. Thus, $ana^{-1} = n' \in N$; thus $aNa^{-1} \subseteq N$.

Lemma 2.2.6

Let *G* be a group and $N \leq G$. If $\lceil G:N \rceil = 2$, then $N \leq G$.

Proof. $\{N, Na\}$ and $\{N, aN\}$ are partitions of G; thus Na = aN. The result follows from Theorem 2.2.5.

Example 2.2.7

- (i) If $N \leq Z(G)$, then $N \subseteq G$. (In particular, $Z(G) \subseteq G$).
- (ii) By (i) and Lemma 2.2.6, $A_n \subseteq S_n$.
- (iii) $\{r_0, s\} \leq \{r_0, s, r_2, sr_2\} \leq D_4$ but $\{r_0, s\} \not \leq D_4$.

Definition 2.2.8: Normalizer

Let G be a group and let $\emptyset \subseteq A \subseteq G$. Then, the normalizer of A is the set

$$N(A) = N_G(A) \triangleq \{ g \in G \mid gAg^{-1} = A \}.$$

Theorem 2.2.9

Let *G* be a group and let $\emptyset \subseteq A \subseteq G$. Then, $C(A) \leq N(A) \leq G$.

Proof. As $C(A) \subseteq N(A)$, it is enough to show $N(A) \le G$. Note that $1 \in A$ by definition. Take any $x, y \in N(A)$. Then, $(xy^{-1})A(xy^{-1})^{-1} = xy^{-1}Ayx^{-1} = xy^{-1}(yAy^{-1})yx^{-1} = xAx^{-1} = A$. Therefore, $xy^{-1} \in N(A)$; thus $N(A) \le G$ by Theorem 1.3.2. □

Theorem 2.2.10

Let *G* be a group and let $H \leq G$.

- (i) $H \leq N(H)$
- (ii) If $H \subseteq K \subseteq G$, then $K \subseteq N(H)$.

Proof. (i) is trivial since $H \subseteq N(H)$. Take any $k \in K$. From $kHk^{-1} = H$, we have $k \in N(H)$; $K \subseteq N(H)$.

Note:-

Theorem 2.2.10 essentially says that N(H) is the largest subgroup of G of which H is a normal subgroup.

Example 2.2.11

- (i) If *G* is abelian, then N(H) = G for all $H \le G$.
- (ii) $K = \{r_0, s\} \le D_4$ but $K \not \supseteq D_4$. $N(K) = \{r_0, r_2, s, r_2\}$.

Definition 2.2.12: Characteristic Subgroup

Let *G* be a group and let $H \leq G$. *H* is called a *characteristic subgroup of G* if $\forall \sigma \in \text{Aut}(G)$, $\sigma(H) = H$. If *H* is a characteristic characteristic subgroup of *G*, we write *H* char *G*.

Theorem 2.2.13

Let *G* be a group and let $H \leq G$.

- (i) If *H* char *G*, then $H \subseteq G$.
- (ii) If *H* is a unique subgroup of *G* of a given order, then *H* char *G*.
- (iii) If K char $H \subseteq G$, then $K \subseteq G$.

Proof.

- (i) For all $g \in G$, we have $gHg^{-1} = i_g(H) = H$.
- (ii) For any automorphism $\sigma \in \operatorname{Aut}(G)$, we have $|\sigma(H)| = |H|$ but the condition asserts that $H = \sigma(H)$.
- (iii) Take any $g \in G$. Note that $i_g|_H \in \operatorname{Aut}(H)$. Then, $gKg^{-1} = i_g|_H(K) = K$; thus $K \subseteq G$. \square

2.3 Quotient Groups and Group Homomorphisms

Definition 2.3.1: Quotient Group

Let *G* be a group and $N \le G$. Then, by Lemma 2.2.1, G/N equipped with operation $(Na, Nb) \mapsto (Nab)$ is a group.

 $\pi: G \to G/N$ defined by $a \mapsto Na$ is a surjective group homomorphism. We call π the *natural projection*.

Note:-

If G is abelian/cyclic/finite, then G/N is also abelian/cyclic/finite.

Theorem 2.3.2

Let G be a group. If G/Z(G) is a cyclic group, then G is an abelian group.

Proof. Let $C \triangleq Z(G)$. There exists $d \in G$ such that $G/C = \langle Cd \rangle$. Take any $a, b \in G$. Then, $Ca = Cd^i$ and $Cb = Cd^j$ for some $i, j \in \mathbb{Z}$. Hence, $a = c_1d^i$ and $b = c_2d^j$ for some $c_1, c_2 \in C$. Then, we have

$$ab = c_1(d^ic_2)d^j = (c_1c_2)(d^id^j) = c_2(c_1d^j)d^i = c_2d^jc_1d^i = ba.$$

Hence, the result follows.

Theorem 2.3.3

Let $f: G \to H$ be a group homomorphism. Then, $\ker(f) = \{1\}$ if and only if f is injective.

Proof.

- (⇒) Take any $a, b \in G$ with f(a) = f(b). Then, we have $1 = f(a)f(b)^{-1} = f(ab^{-1})$; thus $ab^{-1} \in \ker(f)$. Therefore, we have $ab^{-1} = 1$, which implies a = b.
- (⇐) Trivial.

Theorem 2.3.4 First Isomorphism Theorem

If $f: G \to H$ is a group homomorphism, then $G/\ker(f) \cong \operatorname{im}(H)$.

Proof. WLOG, f is surjective. Put $K \triangleq \ker(f)$. Define $\varphi : G/K \to H$ by $Ka \mapsto f(a)$. It is well-defined since, if Ka = Kb, then we have a = kb for some $k \in \ker(f)$ and thus f(a) = f(k)f(b) = f(b). Moreover, it is evidently surjetive.

It is clear that φ is a group homomorphism. Take any $Ka, Kb \in G/K$ and assume f(a) = f(b). Then, $1 = f(ab^{-1})$; thus $ab^{-1} \in K$. Therefore, Ka = Kb; φ is injective. \square

Corollary 2.3.5

Let $N \le G$ be a subgroup of a finite group G. If [G:N] is the smallest prime divisor of |G|, then $N \le G$.

Proof. Let L be the set of left cosets of N in G and let $p \triangleq [G:N] = |L|$. (See Theorem 2.1.6.) Note that $G \cap L$ by $(g,aN) \mapsto (ga)N$. Then, by Lemma 1.2.6, the map $\varphi: G \to S(L)$ defined by $g \mapsto \varphi_g$ is a group homomorphism. Let $K \triangleq \ker(\varphi)$. By First Isomorphism Theorem and Lagrange Theorem, we have $|G/K| \mid p!$.

On the other hand, for each $k \in K$, since $\varphi(k) = \operatorname{id}_L$, $kN = \varphi(k)(N) = N$; thus $k \in N$. Hence, we have $K \leq N$. By Corollary 2.1.12, $p[N:K] = [N:K][G:N] = [G:K] \mid p!$. Now, we have $[N:K] \mid (p-1)!$. As p is the smallest prime divisor of |G|, and as [N:K] divides |G|, we have [N:K] = 1; that is to say $N = K = \ker(\varphi) \leq G$.

Theorem 2.3.6

If $H, K \leq G$ and G is a finite group, then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proof. Note that, for each $h_1, h_1 \in H$,

$$h_1K=h_2K\iff h_2^{-1}h_1\in K\iff h_2^{-1}h_1\in H\cap K\iff h_1(H\cap K)=h_2(H\cap K).$$

Therefore,

$$|\{hK \mid h \in H\}| = |\{h(H \cap K) \mid h \in H\}| = [H:H \cap K] = |H|/|H \cap K|$$

by Lagrange Theorem and Theorem 2.1.6. Therefore, $|HK| = |\{hK \mid h \in H\}||K| = |H||K|/|H \cap K|$.

Theorem 2.3.7

Let $H, K \leq G$. Then, $HK \leq G$ if and only if HK = KH.

Proof.

- (⇒) Take any $kh \in KH$. Since $H, K \leq HK$, we have $kh \in HK$; thus $KH \subseteq HK$. Now, take any $x \in HK$. Then, since $x^{-1} \in HK$, $x^{-1} = hk$ for some $h \in H$ and $k \in K$. Therefore, $x = (x^{-1})^{-1} = k^{-1}h^{-1} \in KH$; thus $HK \subseteq KH$.
- (⇐) HK is evidently nonempty. Take any $h_1k_1, h_2k_2 \in HK$. Since $k_1k_2^{-1}h_2^{-1} \in KH = HK$, we have $k_1k_2^{-1}h_2^{-1} = h_3k_3$ for some $h_3 \in H$ and $k_3 \in K$. Therefore, $(h_1k_1)(h_2k_2)^{-1} = h_1(k_1k_2^{-1}h_2^{-1}) = h_1h_3k_3 \in HK$. Thus, $HK \leq G$ by Theorem 1.3.2.

Corollary 2.3.8

Let $H, K \leq G$. Then, $H \leq N(K)$ implies $HK \leq G$. In particular, if $H \leq G$ and $K \leq G$, then $HK \leq G$.

Proof. Take any $hk \in HK$. Since $hkh^{-1} \in K$, we have $hk = (hkh^{-1})h \in KH$; thus $HK \subseteq KH$. On the other hand, for each $kh \in KH$, we have $kh = h(h^{-1}kh) \in HK$ by the same reason. Hence, HK = KH. The result follows from Theorem 2.3.7.

Theorem 2.3.9 Second Isomorphism Theorem

Let $N \subseteq G$ and $K \subseteq G$. Then, $NK \subseteq G$, $N \subseteq NK$, $N \cap K \subseteq K$, and $K/(N \cap K) \cong NK/N$.

Proof. By Corollary 2.3.8 and Theorem 2.3.7, we have $KN = NK \le G$. Moreover, $N \le G$ and $N \le NK$ straightforwardly implies $N \le NK$. Consider a group homomorphism $f: K \to NK/N$ defined by $k \mapsto Nk$. As Nnk = Nk for each $n \in N$ and $k \in K$, f is surjective. Now,

$$\ker(f) = \{k \in K \mid Nk = N\} = \{k \in K \mid k \in N\} = K \cap N.$$

Therefore, $K \cap N \subseteq K$. First Isomorphism Theorem implies $K/(K \cap N) \cong NK/N$.

Theorem 2.3.10 Third Isomorphism Theorem

Let $N, K \leq G$ and $N \leq K$. Then, $K/N \leq G/N$ and $(G/N)/(K/N) \cong G/K$.

Proof. Define

$$f: G/N \longrightarrow G/K$$

 $Na \longmapsto Ka$.

To show well-definedness, take any $a, b \in G$ and assume $ab^{-1} \in N$. Then, since $N \subseteq K$, we also have $ab^{-1} \in K$, i.e., Ka = Kb. Now, clearly f is a surjective group homomorphism.

$$\ker(f) \triangleq \{ Na \in G/N \mid Ka = K \} = \{ Na \in G/N \mid a \in K \} = K/N.$$

Therefore, $(G/N)/(K/N) \cong G/K$ by First Isomorphism Theorem.

Theorem 2.3.11 Fourth Isomorphism Theorem

Let $N \le G$ and let $\pi: G \twoheadrightarrow G/N$ be the natural projection. Then, there is a natural one-to-one correspondence between

{ subgroups of G containing N } $\stackrel{1:1}{\longleftrightarrow}$ { subgroups of G/N }

with $K \mapsto K/N$. Furthermore, for each $K \le G$ such that $N \le K$, we have $K \le G \iff K/N \le G/N$.

Proof. Let $\phi(K) = K/N$ for each subgroup $K \leq G$ containing N.

- Assume $N \le K, K' \le G$ with $K \ne K'$. WLOG, fix $k \in K \setminus K'$. If Nk = Nk' for some $k' \in K'$, then we have $k \in Nk' \subseteq K'$. Therefore, $\forall k' \in K, Nk \ne Nk'$; we get $Nk \in K/N$ while $Nk \notin K'/N$. Thus, $K/N \ne K'/N$. ϕ is injective.
- Take any $\overline{K} \le G/N$ and let $K = \pi^{-1}(\overline{K}) = \{g \in G \mid Ng \in \overline{K}\}$. Then, we immediately have $N \le K \le G$ and $\phi(K) = K/N = \overline{K}$.

Therefore, ϕ is bijective.

We are now left with the last assertion.

- (⇒) Third Isomorphism Theorem
- (⇐) Assume $K/N ext{ } ext$

Definition 2.3.12: Commutator

Let G be a group and let $x, y \in G$. Then, the *commutator* of x and y is

$$[x, y] \triangleq x^{-1}y^{-1}xy$$
.

Moreover, for $A, B \leq G$, the *commutator* of A and B is

$$[A,B] \triangleq \langle [a,b] \mid a \in A \land b \in B \rangle.$$

The *commutator subgroup of G* is [G, G].

🛉 Note:- 🛉

- Let $x, y \in G$. From the fact that xy = yx[x, y], we have $[x, y] = 1 \iff xy = yx$.
- *G* is abelian if and only if $[G, G] = \{1\}$.
- We do not have $\{[a,b] \mid a \in A \land b \in B\} \le G$ in general. However, the smallest counterexample requires |G| = 96; so we do not consider it.

Example 2.3.13

• In D_n , $[r_1^i, r_1^j] = r_0$, $[sr_1^i, r_1^j] = r_1^{2j}$, $[r_1^i, sr_1^j] = r_1^{-2i}$, and $[sr_1^i, sr_1^j] = r_1^{-2i+2j}$. In particular, $[D_4, D_4] = \{r_0, r_1^2\}$.

Theorem 2.3.14

Let *G* be a group and let $H \leq G$.

- (i) $H \subseteq G \iff [H,G] \subseteq H$.
- (ii) $\forall \sigma \in \text{Aut}(G), \ \forall x, y \in G, \ \sigma([x, y]) = [\sigma(x), \sigma(y)].$
- (iii) [G, G] char G, and G/[G, G] is abelian.
- (iv) $H \subseteq G$ and G/H is abelian if and only if $[G, G] \subseteq H$.

Proof.

- (i) Take any $g \in G$ and $h \in H$. Then, $[h, g] = h^{-1}(g^{-1}hg) \in H \iff g^{-1}hg \in H$.
- (ii) Take any $\sigma \in \text{Aut}(G)$ and $x, y \in G$. Then, $\sigma([x, y]) = \sigma(x^{-1}y^{-1}xy) = \sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y) = [\sigma(x), \sigma(y)].$

- (iii) Take any $\sigma \in \text{Aut}(G)$. Then, we have $\sigma([G,G]) \leq [G,G]$ and $\sigma^{-1}([G,G]) \leq [G,G]$ by (ii). Hence, $\sigma([G,G]=G)$.
 - Now, take any $x, y \in G$. Then, $[G,G]xy = [G,G][y^{-1},x^{-1}]xy = [G,G]yx$. Hence, G/[G,G] is abelian.
- (iv) (\Rightarrow) Take any $x, y \in G$. Then, $H = (Hx)^{-1}(Hy)^{-1}(Hx)(Hy) = H(x^{-1}y^{-1}xy) = H[x, y]$. Therefore, $[x, y] \in H$. This shows $[G, G] \leq H$.
 - (⇐) By (iii) and Theorem 2.2.13 (i), we have $[G,G] \unlhd G$; and thus $[G,G] \unlhd H$. Moreover, since G/[G,G] is abelian, every subgroup of G/[G,G] is normal. In particular, $H/[G,G] \unlhd G/[G,G]$. Hence, by Fourth Isomorphism Theorem, $H \unlhd G$. By Third Isomorphism Theorem, $G/H \cong (G/[G,G])/(H/[G,G])$ is abelian.

From Theorem 2.3.14 (iii) and Theorem 2.3.14 (iv), we get the fact that G/[G,G] is the *largest* abelian quotient of G.

2.4 Simple Groups and Jordan-Hölder Theorem

Definition 2.4.1: Simple Group

A nontrivial group *G* is *simple* if *G* has only two normal subgroups.

Example 2.4.2

Let G be a group and let M be a proper normal subgroup of G. Then, M is a maximal normal subgroup if and only if G/M is simple.

- (⇒) Let $N \subseteq G/M$. Let $H \triangleq \{h \in G \mid Mh \in N\}$ so that $M \subseteq H \subseteq G$. By maximality of M, we have H = M or H = G, that is to say $N = \{M\}$ or N = G/M.
- (⇐) Let $M ext{ deg } N ext{ deg } G$. Then, by Third Isomorphism Theorem, $N/M ext{ deg } G/M$; thus $N/M = \{M\}$ or N/M = G/M as G/M is simple. Therefore, N = M or N = G.

Definition 2.4.3: Composition Series

Let *G* be a group. A sequence of subgroups

$$\{1\} = N_0 \leq N_1 \leq \cdots \leq N_k = G$$

of *G* is called a *composition series of G* if N_i/N_{i-1} is simple for each $i \in [k]$. Each N_{i+1}/N_i is called a *composition factor of G*.

Example 2.4.4

- (i) $\{r_0\} \leq \langle s \rangle \leq \langle s, r_1^2 \rangle \leq D_4$ and $\{r_0\} \leq \langle r_1^2 \rangle \leq \langle s, r_1^2 \rangle \leq D_4$ are two composition series of D_4 .
- (ii) $\mathbb Z$ has no composition series because every proper subgroup of $\mathbb Z$ is an infinite cyclic group.

Theorem 2.4.5 Jordan-Hölder Theorem

Let *G* be a nontrivial finite group.

- (i) *G* has a composition series.
- (ii) If (N_0, \dots, N_r) and (M_0, \dots, M_s) are composition series of G, then r = s and $\exists \sigma \in S_r$ such that $\forall i \in [r]$, $M_{\sigma(i)}/M_{\sigma(i)-1} \cong N_i/N_{i-1}$.

Proof.

- (i) We prove (i) by induction on |G|. It is trivial when |G| = 2. Let G be a finite group with $|G| \ge 3$. If G is simple, we are done; assume G is not simple. Then, G has a proper normal subgroup N which is maximal so that G/N is simple. By induction hypothesis, N admits a composition series.
- (ii) WLOG, $s \ge r$. We proceed with induction on r. Since r = 1 implies G is simple and s = 1, we are done; hence assume $r \ge 2$. If $N_{r-1} = M_{s-1}$, then we are done by induction hypothesis.

Now, assume $N_{r-1}=M_{s-1}$. Then, $N_{r-1},M_{s-1} \leq N_{r-1}M_{s-1} \leq G$ by Corollary 2.3.8. Moreover, since $g(nm)g^{-1}=(gng^{-1})(gmg^{-1})\in N_{r-1}M_{s-1}$ for all $g\in G$, $n\in N_{r-1}$, and $m\in M_{s-1}$, we have $N_{r-1}M_{s-1}\leq G$. Hence, as N_{r-1} and M_{s-1} are maximal proper normal subgroups of G, and as $N_{r-1}\neq M_{s-1}$, we have $N_{r-1}M_{s-1}=G$. Define $H\triangleq H_{r-1}\cap M_{s-1}$ so that $H\leq N_{r-1},M_{s-1}$. Then, by Second Isomorphism Theorem, $G/N_{r-1}=N_{r-1}M_{s-1}/N_{r-1}\cong M_{s-1}/H$ and $G/M_{s-1}=N_{r-1}M_{s-1}/M_{s-1}\cong N_{r-1}/H$, and they are simple groups.

Let $\{1\} = H_0 \le H_1 \le \cdots \le H_h = H$ be a composition series of H. Then,

$$\{1\} = H_0 \le H_1 \le \cdots \le H_h = H \le N_{r-1}$$
$$\{1\} = H_0 \le H_1 \le \cdots \le H_h = H \le M_{s-1}$$

are composition series of N_{r-1} and M_{s-1} , respectively. Therefore, by induction hypothesis, r-1=h+1=s-1; thus r=s. By induction hypothesis again,

$$H_1/H_0, H_2/H_1, \cdots, H_h/H_{h-1}, N_{r-1}/H_h \cong G/M_{s-1}$$

and $N_1/N_0, N_2/N_1, \cdots, N_{r-2}/N_{r-1}, N_{r-1}/N_{r-2}$

are the same up to permutation, and

$$H_1/H_0, H_2/H_1, \cdots, H_h/H_{h-1}, M_{s-1}/H_h \cong G/N_{r-1}$$
 and $M_1/M_0, M_2/M_1, \cdots, M_{s-2}/M_{s-1}, M_{s-1}/M_{s-2}$

are the same up to isomorphism. Hence, the result follows.

Theorem 2.4.6

Let *G* be an abelian group. Then, *G* is simple if and only if $G \cong \mathbb{Z}_p$ for some prime number *p*.

Proof.

- (⇒) Take any $a \in G \setminus \{1\}$. Then, $\langle a \rangle \subseteq G$ since G is abelian. As G is simple, we have $\langle a \rangle = G$. Therefore, by Corollary 1.5.7, $\langle a \rangle \cong Z_p$ for some prime p.
- (⇐) Trivial.

Theorem 2.4.7

 A_n is simple for $n \ge 5$.

Proof.

Claim 1. For $n \ge 3$, A_n is generated by 3-cycles.

Proof. There are three types of products of two transpositions.

- (a b)(c d) = (a d b)(a d c)
- (a b)(a c) = (a c b)
- (a b)(a b) = (1)

This is sufficient since every $\sigma \in A_n$ is a product of even number of transpositions.

Claim 2. Let $n \ge 3$ and $N \le A_n$ such that N contains a 3-cycle. Then, $N = A_n$.

Proof. WLOG, $(123) \in N$. Then, $(132) = (123)^2 \in N$. Take any $k \ge 4$. Then,

- $(12k) = (2k1) = \tau(132)\tau^{-1} \in N$ where $\tau = (12)(3k)$, and
- $(21k) = (1k2) = \tau'(123)(\tau')^{-1} \in N$ where $\tau' = (32k)$.

All other 3-cycles can be generated by:

- $(1 a b) = (1 2 b)(1 2 a)(1 2 a) \in N$,
- $(2ab) = (21b)(21a)(21a) \in N$, and
- $(abc) = (12a)(12a)(12c)(12b)(12b)(12a) \in N$.

Therefore, by Claim 1, $N = A_n$.

Take any $\{(1)\} \leq N \leq A_n$ and fix some $\sigma \in N \setminus \{(1)\}$. Consider the cycle decomposition of σ . There are three cases: (i) some cycle has length ≥ 4 , (ii) the maximum length of cycle is 3, and (iii) every cycle has length ≤ 2 .

(i) WLOG, $\sigma = (12 \cdots r)\tau$ where $r \ge 4$ where $\tau(i) = i$ for each $i \in [r]$. Let $\delta = (123) \in A_n$. Then, we have $(23145 \cdots r)\tau = \delta\sigma\delta^{-1} \in N$. Moreover, we have

$$\sigma^{-1}(23145\cdots r)\tau = (r\,r-1\cdots 1)(23145\cdots r)\tau^{-1}\tau = (13\,r)\in N;$$

thus $N = A_n$ by Claim 2.

- (ii) We have two subcases: (1) there are (at least) two 3-cycles and (2) there are only one 3-cycle.
 - (1) WLOG, $\sigma = (123)(456)\tau$ where τ fixes [6]. Let $\delta = (124) \in A_n$. Then, $(243)(156)\tau = \delta\sigma\delta^{-1} \in N$. Hence, we have

$$\sigma^{-1}(243)(156)\tau = (321)(654)(243)(156)\tau^{-1}\tau = (14263) \in \mathbb{N},$$

which reduces to case (i). Hence, we have $N = A_n$ in this case.

- (2) WLOG, $\sigma = (1\,2\,3)\tau$ where τ fixes [3] and τ is a product of disjoint transpositions so that $\tau^2 = 1$. Then, we have $\sigma^2 = (1\,3\,2) \in N$; thus $N = A_n$ by Claim 2.
- (iii) WLOG, $\sigma = (12)(34)\tau$ where τ fixes [4] and τ is a product of disjoint transpositions. Let $\delta = (123) \in A_n$. Then, $(23)(14)\tau = \delta\sigma\delta^{-1} \in N$. Therefore,

$$\beta \triangleq \sigma^{-1}(23)(14)\tau = (12)(34)(23)(14)\tau^{-1}\tau = (13)(24) \in N.$$

As $n \ge 5$ we may fix $5 \le k \le n$ and let $\alpha = (13k) \in A_n$. Then, $(3k)(24) = \alpha\beta\alpha^{-1} \in N$. Hence,

$$\beta(3k)(24) = (13)(24)(3k)(24) = (13k) \in N$$

which implies $N = A_n$ by Claim 2.

🛉 Note:- 🛉

- A_4 is not simple.
- We have two infinite series of simple groups: \mathbb{Z}_p 's (p is prime) and A_n 's $n \ge 5$.

Corollary 2.4.8

For $n \ge 5$, S_n has only three normal subgroups $\{1\}$, A_n , and S_n .

Proof. By Lemma 2.2.6, we have $A_n \subseteq S_n$.

Let $N \subseteq S_n$ be a nontrivial normal subgroup of S_n . Then, $N \cap A_n \subseteq A_n$. By Theorem 2.4.7, we have (i) $N \cap A_n = \{(1)\}$ or (ii) $N \cap A_n = A_n$.

- (i) If $N \cap A_n = \{1\}$, then $N \cong N/(N \cap A_n) \cong A_n N/A_n$ by Second Isomorphism Theorem. As $|A_n N| |n!$ and $|A_n| = n!/2$, we have $|N| = |A_n N| / |A_n| = 2$ as we assumed N is nontrivial. Then, $N = \{(1), \sigma\}$ where $\sigma^2 = (1)$. By Theorem 2.2.5, $\tau N = N\tau$ for all $\tau \in S_n$; that is to say $\sigma \tau = \tau \sigma \in S_n$ for all $\tau \in S_n$. This means $N \leq Z(S_n) = \{(1)\}$, which is a contradiction.
- (ii) Assume $N \cap A_n = A_n$, i.e., $A_n \le N$. However, by Lagrange Theorem, $n!/2 \mid |N| \mid n!$ so that $N = A_n$ or $N = S_n$.

Definition 2.4.9: Solvable Group

Let *G* be a group. We say *G* is *solvable* if there is a sequence

$$\{1\} = G_n \leq G_{n-1} \leq \cdots \leq G_0 = G$$

of subgroups of *G* such that G_{i-1}/G_i is abelian for each $i \in [n]$.

Example 2.4.10

- Every abelian group is solvable. $(G_0 = \{1\}, G_1 = G)$
- $\{1\} \subseteq A_3 \subseteq S_3$ and A_3 is abelian; thus S_3 is solvable.
- $\{1\} \subseteq \{(1), (12)(34), (13)(24), (14)(23)\} \subseteq A_4 \subseteq S_4$; S_4 is solvable.
- S_n is not solvable for $n \ge 5$.

Theorem 2.4.11

Let G be a group and $N \subseteq G$. Then, G is solvable if and only if N and G/N are solvable.

Proof.

(⇒) There exists a sequence $\{1\} = G_n \unlhd G_{n-1} \unlhd \cdots \unlhd G_0 = G$ such that G_{i-1}/G_i is abelian for each $i \in [n]$. Then, we have $N \cap G_i \unlhd G_{i-1}$ and thus $N \cap G_i \unlhd N \cap G_{i-1}$ for each $i \in [n]$. Moreover,

$$(N\cap G_{i-1})/(N\cap G_i)\leq G_{i-1}/(N\cap G_i).$$

By Third Isomorphism Theorem, $G_i/(N \cap G_i) \leq G_{i-1}/(N \cap G_i)$ and $(G_{i-1}/(N \cap G_i))/(G_i/(N \cap G_i)) \cong G_{i-1}/G_i$.

Considering the existence of natural projection

$$G_{i-1}/(N \cap G_i) \twoheadrightarrow (G_{i-1}/(N \cap G_i))/(G_i/(N \cap G_i)) \cong G_{i-1}/G_i$$

there is a group homomorphism

$$\varphi: (N \cap G_{i-1})/(N \cap G_i) \longrightarrow G_{i-1}/G_i$$

whose kernel $\ker(\varphi) = (N \cap G_{i-1})/(N \cap G_i) \cap G_i/(N \cap G_i) = (N \cap G_i)/(N \cap G_i)$ is trivial. Therefore, φ is injective by Theorem 2.3.3. Hence, $(N \cap G_i)/(N \cap G_i)$ is isomorphic to a subgroup of G_{i-1}/G_i , which is abelian. Therefore, the sequence

$$\{1\} = N \cap G_n \le N \cap G_{n-1} \le \cdots \le N \cap G_0 = N$$

witnesses that N is solvable.

Let $\pi: G \to G/N$ be the natural projection. Then, $\pi(G_i) \le \pi(G_i)$ for all $i \in [n]$. The map $G_{i-1}/G_i \mapsto \pi(G_{i-1})/\pi(G_i)$ defined by $G_i g_{i-1} \mapsto \pi(G_i)\pi(g_{i-1})$ is a surjective group homomorphism; thus $\pi(G_{i-1})/\pi(G_i)$ is abelian. Hence, the sequence

$$\{1\} = \pi(G_n) \le \pi(G_{n-1}) \le \cdots \le \pi(G_0) = G/N$$

witnesses that G/N is solvable.

(**⇐**) Let

$$\{1\} = N_s \leq N_{s-1} \leq \cdots \leq N_0 = N$$

and

$$\{N\} = \overline{G}_r \unlhd \overline{G}_{r-1} \unlhd \cdots \unlhd \overline{G}_0 = G/N$$

be sequences that witnesses the solvability of N and G/N. By Fourth Isomorphism Theorem, for each $j \in [r]$, there (uniquely) exists $G_j \leq G$ such that $N \leq G_j$ and $G_j/N = \overline{G}_j$. Then, for each $j \in [r]$, we have $G_j \leq G_{j-1}$ by Fourth Isomorphism Theorem. By Third Isomorphism Theorem, $G_{j-1}/G_j \cong (G_{j-1}/N)/(G_j/N) = \overline{G}_{j-1}/\overline{G}_j$ is abelian; thus

$$\{1\} = N_s \leq N_{s-1} \leq \cdots \leq N_0 = N = G_r \leq G_{r-1} \leq \cdots \leq G_0 = G$$

shows that *G* is solvable.

Chapter 3

Group Actions

3.1 Stabilizers and Orbits

Definition 3.1.1: Stabilizer

Let $G \cap A$. The stabilizer of $a \in A$ is the set

$$G_a \triangleq \{ g \in G \mid ga = a \}.$$

Definition 3.1.2: Kernel of Group Action

Let $G \cap A$. The kernel of $G \cap A$ is the set

$$K(G,A) \triangleq \{g \in G \mid \forall a \in A, ga = a\} = \bigcap_{a \in A} G_a.$$

Note:-

K(G,A) is the kernel of the permutation representation of the group action. Therefore, $K(G,A) \subseteq G$.

Theorem 3.1.3

Let $G \cap A$. Then, $\forall a \in G$, $G_a \leq G$.

Proof. $G_a \neq \emptyset$ since $1 \in G_a$. If $x, y \in G_a$, then $(xy^{-1})a = (xy^{-1})(ya) = xa = a$; thus $xy^{-1} \in G_a$. Hence, $G_a \leq G$ by Theorem 1.3.2.

Example 3.1.4

- (i) Let *G* be a group and let $S \triangleq \mathcal{P}(G)$. Define a group action of *G* on *S* by $(g,A) \mapsto gAg^{-1}$. Then, for each $A \in \mathcal{P}(G)$, $G_A = \{g \in G \mid gAg^{-1} = A\} = N(A)$.
- (ii) Let *G* be a group and let $A \subseteq G$. Define a group action of N(A) on *A* by $(g, a) \mapsto gag^{-1}$. Then, $K(N(A), A) = \{g \in N(A) \mid \forall a \in A, gag^{-1} = a\} = C(A)$.
- (iii) Let *G* be a group and define a group action of *G* on *G* by $(g, a) \mapsto gag^{-1}$. Then, $G_a = \{g \in G \mid gag^{-1} = a\} = C(a)$ for each $a \in G$ and $K(G, G) = \{g \in G \mid \forall a \in A, gag^{-1} = a\} = Z(G)$.

Definition 3.1.5: Faithful Group Action

If $G \cap A$, we say the group action is faithful if $K(G,A) = \{1\}$.

Let $\varphi: G \to S(A)$ be the permutation representation. Then, $G/K(G,A) \cong \operatorname{im}(\varphi) \leq S(A)$ so we may consider injective group homomorphism $G/K(G,A) \hookrightarrow S(A)$ so that $G/K(G,A) \curvearrowright A$ is faithful.

Lemma 3.1.6

Define $a \sim b \iff \exists g \in G, \ a = g \cdot b$. Then, \sim is an equivalence relation.

Definition 3.1.7: Orbit

Let $G \cap A$. The *orbit of* $a \in A$ is the set

$$Ga \triangleq \{ g \cdot a \mid g \in G \}.$$

Note:-

By Lemma 3.1.6, the collection of orbits forms a partition of A. Moreover, $G \cap Ga$ for each $a \in A$.

Theorem 3.1.8 Orbit-Stabilizer Theorem

Let $G \cap A$ and $a \in A$. Then, the function

$$f: Ga \longrightarrow \{ \text{ left cosets of } G_a \text{ in } G \}$$

 $ga \longmapsto gG_a$

is well-defined and is a bijection. In particular, if Ga is finite, then $|Ga| = [G:G_a]$.

Proof. For each $g, g' \in G$, we have

$$ga = g'a \iff a = g^{-1}g'a \iff g^{-1}g' \in G_a \iff gG_a = g'G_a$$

Therefore, f is well-defined and is injective. The surjectivity of f is evident.

Definition 3.1.9: Transitive Group Action

Let $G \cap A$. The group action is transitive if $\forall a \in A, A = Ga$.

Note:-

By Orbit-Stabilizer Theorem and Lagrange Theorem, if G and A are finite, and if the group action is transitive, then |A| | |G|.

Definition 3.1.10

Let $G \cap A$. Then, for each $g \in G$, we define

$$A_g \triangleq \{ a \in A \mid g \cdot a = a \}.$$

Example 3.1.11

(i) Let $S_n \cap [n]$. Then, $(S_n)_i \cong S_{n-1}$ for each $i \in [n]$. Moreover, $K(S_n, [n]) = \bigcap_{i \in [n]} (S_n)_i = \{(1)\}$. By Orbit-Stabilizer Theorem, $|S_n \cdot i| = |S_n|/|(S_n)_i| = n$; thus $S_n \cdot i = [n]$.

Theorem 3.1.12 Burnside's Lemma

Let $G \cap A$ and let |G| and |A| be finite. Then,

(# of orbits of
$$G$$
) = $\frac{1}{|G|} \sum_{a \in A} |G_a| = \frac{1}{|G|} \sum_{g \in G} |A_g|$.

Proof. Let $S \triangleq \{(g,a) \in G \times A \mid g \cdot a = a\}$. Then, by double counting, $|S| = \sum_{a \in A} |G_a| = \sum_{g \in G} |A_g|$. By Orbit-Stabilizer Theorem,

$$\sum_{a \in A} |G_a| = \sum_{a \in A} \frac{|G|}{|Ga|} = |G| \sum_{a \in A} \frac{1}{|Ga|}.$$

Since $\sum_{a' \in Ga} |Ga|^{-1} = 1$, we have $\sum_{a \in A} \frac{1}{|Ga|} = (\# \text{ of orbits of } G)$. Therefore, we have

(# of orbits of
$$G$$
) = $\frac{1}{|G|} \sum_{a \in A} |G_a| = \frac{1}{|G|} \sum_{g \in G} |A_g|$.

3.2 Group Actions by Conjugation

Definition 3.2.1: Conjugate

Let *G* be a group. We say $a, b \in G$ are *conjugate* if

$$\exists g \in G, \ b = gag^{-1}.$$

In other words, if *G* acts on *G* by conjugation $g \cdot a = gag^{-1}$, $a, b \in G$ are conjugate if they are in the same orbit. The orbit of *a* in this case is called *conjugacy class* of *a*.

Note:-

Under conjugation, the stabilizer of *a* is the centralizer of *a*.

Example 3.2.2

- (i) The conjugacy class of a is $\{1\}$ if and only if $a \in Z(G)$.
- (ii) Let $\sigma \in S_n$ has the *cycle type* (n_1, n_2, \dots, n_r) . Then, as σ and its conjugation have the same cycle type, the conjugacy class of σ is the collection of permutations with the same cycle type of σ .

Corollary 3.2.3

Let $G \cap A$ and let $a \in A$. If $[G:C_G(a)]$ is finite, then

|conjugacy class of a| = [$G:C_G(a)$].

Proof. Direct consequence of Orbit-Stabilizer Theorem.

Example 3.2.4

Let $1 \le m \le n$. Let $\sigma = (12 \cdots m)$ be an m-cycle in S_n . Then, there are $n(n-1)\cdots(n-m+1)/m$ number of m-cycles in S_n . Therefore, $|C_{S_n}(\sigma)| = |G|/[n(n-1)\cdots(n-m+1)/m] = m \cdot (n-m)!$. One may note that $C_{S_n}(\sigma) = \{\sigma^i \tau \mid 0 \le i \le m-1 \text{ and } \tau \in S_{n-m}\}$.

Theorem 3.2.5 Class Equation

Let *G* be a finite group. If C_1, C_2, \dots, C_r are all the distinct conjugacy classes of *G* such that $\forall i \in [r], C_i \nsubseteq Z(G)$, and if $a_i \in C_i$ for each $i \in [r]$, then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G:C_G(a_i)].$$

Proof. Z(G) is the union of all singleton conjugacy classes by Example 3.2.2 (i). The result follows from Corollary 3.2.3.

Example 3.2.6

- $|S_3| = 1 + 2 + 3$
- $|Q_8| = 2 + 2 + 2 + 2$
- $|D_4| = 2 + 2 + 2 + 2$

Corollary 3.2.7

Let *G* be a group of order p^n where p is a prime number and $n \ge 1$. Then, $|Z(G)| = p^k$ for some $k \le 1$.

Proof. In Class Equation, each $[G:C_G(a_i)]$ is a multiple of p. Therefore, we must have $p \mid |Z(G)|$ while $Z(G) \neq \emptyset$.

Corollary 3.2.8

Let G be a group of order p^2 where p is a prime number, then $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. By Corollary 3.2.7, we have $|Z(G)| = p^2$ or |Z(G)| = p.

If $|Z(G)| = p^2$, then If G has an element of order p^2 , then $G \cong \mathbb{Z}_{p^2}$. If every nonidentity element of G has order p, then $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Then, $f : \mathbb{Z}_p \times \mathbb{Z}_p \to G$ defined by $(i, j) \mapsto x^i y^j$ where $x \in G \setminus \{1\}$ and $y \in G \setminus \langle x \rangle$ is a group isomorphism.

Now, assume |Z(G)| = p. Then, $G/Z(G) \cong \mathbb{Z}_p$. By Theorem 2.3.2, we get Z(G) = G, which is a contradiction.

Theorem 3.2.9

Let *G* be a group and let $N \subseteq G$. Let *K* be a conjugacy class of *G*. Then, we have $K \subseteq N$ or $K \cap N = \emptyset$. In particular, *N* is union of some conjugacy classes of *G*.

Proof. Assume $K \cap N \neq \emptyset$ and take any $x \in K \cap N$. Then, for any $g \in G$, $gxg^{-1} \in gNg^{-1} = N$; thus $K \subseteq N$. □

Example 3.2.10

There are four cycle types of A_5 ; (1),(123),(12345),(12)(34). Note that, even if

 σ and σ' have the same cycle type so that $\sigma' = \tau \sigma \tau^{-1}$ for some S_5 , σ and σ' may not be in the same conjugacy class since τ may not be an element of A_5 .

- $C_{S_5}((123)) = \langle (123), (45) \rangle$ and $C_{A_5}((123)) = \langle (123) \rangle \cong \mathbb{Z}_3$; thus the conjugacy class consists of 20 elements; which are all the 3-cycles in A_5 .
- $C_{S_5}((12345)) = \langle (12345) \rangle$ and $C_{A_5}((12345)) = \langle (12345) \rangle \cong \mathbb{Z}_5$; the conjugacy class of (12345) consists of 12 elements while A_5 has 24 5-cycles. The conjugacy class of (13524) consists of 12 elements.
- $|C_{S_5}((12)(34))| = 8$ and $|C_{A_5}((12)(34))| = 4$; the conjugacy class of (12)(34) consists of all 15 elements.

Therefore, the class equation of A_5 is $|A_5| = 1 + 12 + 12 + 15 + 20$; thus by Theorem 3.2.9, if there is a nontrivial normal subgroup then its order is sum of orders of some conjugacy classes but there is no way to make it divisible by $|A_5| = 60$. Therefore, A_5 is simple.

Corollary 3.2.11

Let $G \cap \mathcal{P}(G)$ by conjugation; $(g,A) \mapsto gAg^{-1}$. We say $A,B \subseteq G$ are *conjugate* if $A = gBg^{-1}$ for some $g \in G$. Then, $[G:N_G(A)] = |G \cdot A| = |\text{orbit of } A|$.

Proof. $N_G(A) = G_A$.

3.3 Automorphisms

Note:-

Let *G* be a group and let $N \le G$. We may let $G \cap N$ by conjugation. Then, the permutation representation evaluated at $g \in G$ is defined by $\varphi_g : N \to N$ and $n \mapsto gng^{-1}$

Theorem 3.3.1

For each $g \in G$, we have $\varphi_g \in \operatorname{Aut}(N)$. Moreover, $\ker(\varphi) = C_G(N)$. In particular, $G/C_G(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$.

Proof. For each $n_1, n_2 \in N$, we have $\varphi_g(n_1 n_2) = g n_1 n_2 g^{-1} = g n_1 g^{-1} g n_2 g^{-1} = \varphi_g(n_1) \varphi_g(n_2)$; thus φ_g is a group isomorphism as it is already $\varphi_g \in S(N)$.

We have

$$\ker(\varphi) = \{ g \in G \mid \forall n \in \mathbb{N}, \ \varphi_g(n) = n \} = \{ g \in G \mid \forall n \in \mathbb{N}, \ ng = gn \} = C_G(N).$$

Corollary 3.3.2

Let *G* be a group and let $H \leq G$. Then, $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(*H*). In particular, G/Z(G) is isomorphic to a subgroup of Aut(*G*).

Proof. We have $H \leq N_G(H)$, $C_G(H) = C_{N_G(H)}(H)$, and $N_G(H) = N_{N_G(H)}(H)$. The result follows from Theorem 3.3.1.

Note:-

Let Inn(G) be the set of all inner automorphisms of G. Then, $\text{Inn}(G) \leq \text{Aut}(G)$ since $\forall \varphi \in \text{Aut}(G), \ \varphi \circ i_c \circ \varphi^{-1} = i_{\varphi(c)}$. We call Aut(G)/Inn(G) the outer automorphism group.

Corollary 3.3.3

Let *G* be a group. Then, $Inn(G) \cong G/Z(G)$.

Proof. Let $G \cap G$ by conjugation so that $\varphi : G \twoheadrightarrow Inn(G)$ is a permutation representation. Then, $ker(\varphi) = Z(G)$; the result follows from First Isomorphism Theorem.

Example 3.3.4

- $\operatorname{Inn}(D_4) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\operatorname{Inn}(Q_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\operatorname{Inn}(S_n) \cong S_n$ for $n \ge 3$.

Definition 3.3.5

For each integer $n \ge 1$, define

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ k \in \mathbb{Z}_n \mid \gcd(k, n) = 1 \}$$

so that $(\mathbb{Z}/n\mathbb{Z})^*$ is a group under usual multiplication.

Theorem 3.3.6

For each $n \in \mathbb{Z}_+$, $\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}/n\mathbb{Z})^*$.

Proof. Take any $k \in \mathbb{Z}_+$ such that gcd(k, n) = 1. Consider the map $f_k : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\ell \mapsto k\ell$. Then, clearly, $f_k \in Aut(\mathbb{Z}_n)$.

Now, define $\Phi \colon (\mathbb{Z}/n\mathbb{Z}) * \to \operatorname{Aut}(\mathbb{Z}_n)$ by $k \mapsto f_k$. Then, it is easy to check Φ is an injective group homomorphism. Take any $f \in \operatorname{Aut}(\mathbb{Z}_n)$ and let $k \triangleq f(1)$. Then, $f = f_k$.

♦ Note:- ♦

- $\neg(G \text{ is abelian} \Longrightarrow \operatorname{Aut}(G) \text{ is abelian}).$
- $\neg(G \text{ is cyclic} \implies \text{Aut}(G) \text{ is cyclic}).$