- 1. Show that similarity of matrices is an equivalence relation in $Mat_n(\mathbf{K})$.
- 2. Show that the eigenvalue associated to an eigenvector is uniquely determined.
- **3.** Show that if $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}$ are eigenvectors with the same eigenvalue λ , then for every $c_1, c_2 \in \mathbf{K}$ the vector $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$, if it is non-zero, is also an eigenvector with eigenvalue λ .
- **4.** Give the characteristic polynomial, the eigenvectors and eigenvalues for the identity matrix Id_n and the zero matrix 0_n .
- **5.** Give the eigenvalues of $lin(Pr_{H,\mathbf{v}})$, $lin(Pr_{\ell,\mathbf{W}})$, $lin(Ref_{H,\mathbf{v}})$ and $lin(Ref_{\ell,\mathbf{W}})$. What can you say about the eigenvectors?
- **6.** Give the characteristic polynomial, the eigenvectors and eigenvalues for the matrices

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Are these matrices diagonalizable?

7. Consider the matrix

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Show that A doesn't have eigenvectors when considered in $\operatorname{Mat}_{n\times n}(\mathbb{R})$. Show that A is diagonalizable when considered in $\operatorname{Mat}_{n\times n}(\mathbb{C})$ and find the eigenvectors of A.

8. Find the eigenvalues and eigenvectors of the following matrices in $Mat_{2\times 2}(\mathbb{R})$:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

9. Let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator

$$\phi(x, y, z) = (x + y - z, y + z, 2x).$$

Find the matrix $[\phi]_b$ where

$$b = \{(1, 1, 0), (-1, 0, 1), (1, 1, 1)\}.$$

10. Calculate the eigenvalues and their algebraic and geometric multiplicities for the following matrices in $Mat_{3\times 3}(\mathbb{R})$, and deduce whether or not they are diagonalizable:

$$\begin{bmatrix} -6 & 2 & -5 \\ -4 & 4 & -2 \\ 10 & -3 & 8 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & -15 \\ 0 & 2 & 8 \end{bmatrix}$$

11. Show that if $A = (a_{ij}) \in \text{Mat}_{2 \times 2}(\mathbf{K})$ then

$$P_A(T) = T^2 - \operatorname{tr}(A)T + \operatorname{det}(A)$$

where $tr(A) = a_{11} + a_{22}$ is the *trace* of *A*.