To be discussed:-

- Entity
- Attribute
- Types of Attribute
- Relationship
- ER Diagram Representation
- Generalization
- Specialization
- Aggregation
- Relational Data Model
- ER Model to Relational Model

An Entity-Relationship (ER) diagram is a conceptual and graphical representation of entities (objects or concepts), attributes (properties or characteristics), and the relationships between entities.

Entity

An entity can be a real-world object having specific set of attributes, either animate or inanimate, that can be easily identifiable.

Entity set

An entity set is a collection of similar types of entities. An entity set may contain entities with attribute sharing similar values.

Example: School Database

- Teachers (E.No, T_Name, D.No, Salary)
- Students (R.No, S_Name, Class, Age)

(A+B)=1.6"

Attributes

An attribute is a property or characteristic of an entity. An entity may contain any number of attributes.. All attributes have values.

Example: Student:- Name, Class, Age

Types of Attributes

• Simple attribute – Simple attributes are atomic values, which cannot be divided further. For example, a student's Roll_number is an atomic value.

Composite attribute − Student's complete name may have first_name and last_name.

name

Last_name

Dr. Rakesh Rathi

Types of Attributes Continue.....

 Derived attribute – It can be derived from other attribute. Value of derived attribute should not be saved directly in the database.

Example: age can be derived from date_of_birth attribute.

Multi-value attribute – Multi-value attributes may contain more than one values.
 Example: A person can have more than one phone number, email_address, etc

Ph. No.

Relationship

- The association among entities is called relationship.
- Ex: Employee works at department
- Ex: Student enrolls in a course

Relationship Set

A set of relationships of similar type is called a relationship set.

Like entities, a relationship too can have attributes. These attributes are called descriptive attributes.

ER Diagrams Notations

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

weak entity set

generalization

(N+8) = ric

Summary of Symbols Used in E-R Notation

Symbols Used in E-R Notation (Cont.)

(1+B)=+.6"

Keys

Super Key: A super key is set of one or more attribute which taken collectively, allows us to identify uniquely an entity in the entity set.

Example:

- Customer (Social_securityno, Cust_name, Street, City)
- Social_securityno is a Super Key
- Combination of {Social_securityno, Cust_name } is also a super key
- Super key may contain extraneous attributes.

Mapping cardinalities

Cardinality defines the number of entities in one entity set, which can be associated with the number of entities of other entity set via relationship set.

- One to One
- 2. One to Many
- Many to One
- Many to Many

One to One

One to Many

Many to One

Many to Many

ER Diagram Representation

Entity Set

Teacher

Student

Classes

Attributes

Composite Attributes

Derived

Relationship

- Binary Relationship: When two Entity Set participating in a relationship then it is called Binary Relationship.
- Ternary Relationship: When three Entity Set participating in a relationship then it is called Ternary Relationship.

One to One (1:1)

Example: Person - Passport

(1-18) = r.c.

One to Many (1:N)

Example: Mother-Children

• Many to One (N:1)

Example: Students - Teacher(Mentor)

Customer-Account (Joint Account)

(A+B)=1.6"

• Many to Many (M:N)

Example: -1)Books - Authors 2) Customer- Account (Multiple Account of a Customer & Joint Account)

Participation Constraint

Generalization and Specialization

- Generalization is a bottom-up approach in which multiple lower-level entity set are combined to form a single higher-level entity set. Generalization is usually used to find common attributes among entity set to form a generalized entity set. It can also be thought of as the opposite of specialization.
- Specialization is a process of taking a subset of a higher level entity set to form a lower-level entity set. Going up in this structure is called Generalization Reverse is called Specialization.

Generalization

Specialization

Generalization and Specialization

Dr. Rakesh Rathi