Given: kJ := 1000J

Liquid methane is commonly used in various cryogenic applications. The critical temperature of methane is 191 K and must be maintained below this temperature to remain in the liquid phase. Methane enters a pump at 110 K and 1 MPa and leaves at 120 K and 5 MPa.

$$T_{cr} := 191K$$
 $T_{in} := 110K$ $P_{in} := 1MPa$ $T_{out} := 120K$ $P_{out} := 5MPa$

TempPressureDensityEnthalpyEntropySpecific HeatT, KP, MPa1, kg/m³h, kJ/kgs, kJ/kg K c_p , kJ/kg K1100.5425.3208.34.8783.4761425.8209.04.8753.4712426.6210.54.8673.4605429.1215.04.8443.4321200.5410.4243.45.1853.5511411.0244.15.1803.5432412.0245.45.1713.528	Properties of Liquid Methane						
110 0.5 425.3 208.3 4.878 3.476 1 425.8 209.0 4.875 3.471 2 426.6 210.5 4.867 3.460 5 429.1 215.0 4.844 3.432 120 0.5 410.4 243.4 5.185 3.551 1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528	Temp	Pressure	Density	Enthalpy	Entropy	Specific Heat	
1 425.8 209.0 4.875 3.471 2 426.6 210.5 4.867 3.460 5 429.1 215.0 4.844 3.432 120 0.5 410.4 243.4 5.185 3.551 1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528	T, K	P, MPa	1, kg/m ³	h, kJ/kg	s, kJ/kg K	<i>c_p</i> , kJ/kg K	
2 426.6 210.5 4.867 3.460 5 429.1 215.0 4.844 3.432 120 0.5 410.4 243.4 5.185 3.551 1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528	110	0.5	425.3	208.3	4.878	3.476	
5 429.1 215.0 4.844 3.432 120 0.5 410.4 243.4 5.185 3.551 1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528		1	425.8	209.0	4.875	3.471	
120 0.5 410.4 243.4 5.185 3.551 1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528		2	426.6	210.5	4.867	3.460	
1 411.0 244.1 5.180 3.543 2 412.0 245.4 5.171 3.528		5	429.1	215.0	4.844	3.432	
2 412.0 245.4 5.171 3.528	120	0.5	410.4	243.4	5.185	3.551	
		1	411.0	244.1	5.180	3.543	
		2	412.0	245.4	5.171	3.528	
5 415.2 249.6 5.145 3.486		5	415.2	249.6	5.145	3.486	

Required:

Determine the entropy change during this process by

- (a) using the table given and
- (b) using the Tds relations.

Solution:

Referring to the table @ $T_{in} = 110 K$ & $P_{in} = 1 \cdot MPa$ shows

$$s_{in} := 4.875 \frac{kJ}{kg \cdot K}$$
 $c_{pin} := 3.471 \frac{kJ}{kg \cdot K}$

Referring to the table @ $T_{out} = 120 K$ & $P_{out} = 5 \cdot MPa$ shows

$$s_{out} := 5.145 \frac{kJ}{kg \cdot K}$$
 $c_{pout} := 3.486 \frac{kJ}{kg \cdot K}$

Thus the change in entropy when using the tables is

$$\Delta s_{table} \coloneqq s_{out} - s_{in} = 0.27 \cdot \frac{kJ}{kg \cdot K} \quad \text{(a)}$$

The average c_p value over the process is found by

$$c_{\text{pavg}} := \frac{c_{\text{pin}} + c_{\text{pout}}}{2} = 3.478 \cdot \frac{kJ}{\text{kg} \cdot \text{K}}$$

Solution (contd.):

For an incompressible substance the change in entropy is given by

$$\Delta s_{Tds} := c_{pavg} \cdot \ln \left(\frac{T_{out}}{T_{in}} \right) = 0.3027 \cdot \frac{kJ}{kg \cdot K}$$
 (b)

The percent difference is found by

%diff :=
$$\frac{\left|\Delta s_{table} - \Delta s_{Tds}\right|}{\Delta s_{table}} = 12.1 \cdot \%$$