MATH 136 LINEAR ALGEBRA

Professor M. Rubinstein • Winter 2014 • University of Waterloo

Last Revision: April 5, 2015

Table of Contents

Todo list							
1	Vectors in Euclidean Space						
	1.1	Vector Addition and Scalar Multiplication	1 1				
	1.2	Subspaces	3				
	1.3	Dot Product	3				
	1.4	Projections	4				
2	Systems of Linear Equations						
	2.1	Systems of Linear Equations	4				
	2.2	Solving Systems of Linear Equation	5				
3	Matrices and Linear Mappings						
	3.1	Operations on Matrices	6				
	3.2		8				
	3.3		10				
			10				
	3.4		11				
4	Vector Spaces 12						
	4.1		12				
		4.1.1 Subspaces	14				
			14				
	4.2		16				
	4.3		19				
			20				
5	Inverses and Determinants 22						
	5.1	Matrix Inverses	22				
	5.2	Elementary Matrices					
	5.3	Determinants					

6	Diagonalization				
	6.1	temp	30		
	6.2	Diagonalization	32		

Future Modifications

Proofs with these, pg 69	10
Alot of stuff here	28
Prove the theorem	32
Finish this	33

1 Vectors in Euclidean Space

1.1 Vector Addition and Scalar Multiplication

Definition 1.1. \mathbb{R}^n consists of n-tuples of real numbers, where $n \in \mathbb{N}$.

Definition 1.2. Points/vectors are elements of \mathbb{R}^n .

Notation

$$\mathbb{R}^{n} = \{ (x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \}$$

$$x_{1} + x_{2} = 3$$

$$2x_{1} + 5x_{2} = 4$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Two vectors in \mathbb{R}^n are equal if all coordinates are equal.

Vector Operations

Let $\vec{x} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$

Addition

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \in \mathbb{R}^n$$

Scalar Multiplication

$$\alpha \vec{x} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix} \in \mathbb{R}^n$$

Definition 1.3. $\vec{0}$ is the additive identity.

Definition 1.4. Given a vector $\vec{x} \in \mathbb{R}^n$, $-\vec{x}$ is the **additive inverse**.

Definition 1.5. A sum of scalar multiples of a combination of vectors is a **linear combination**

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_k\vec{v}_k : c_1 \dots c_k \in \mathbb{R}$$

Theorem 1.1.1. If $\vec{x}, \vec{y}, \vec{w} \in \mathbb{R}^n$, and $c, d \in \mathbb{R}$, then

- $\vec{x} + \vec{y} \in \mathbb{R}^n$
- $\bullet \ (\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + vw)$
- $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- $\exists \vec{0} \in \mathbb{R}^n$ such that $\vec{x} + \vec{0} = \vec{x}$ $\forall \vec{x} \in \mathbb{R}^n$
- $\forall \vec{x} \in \mathbb{R}^n$, there exists a vector $(-\vec{x}) \in \mathbb{R}^n$ such that $\vec{x} + (-\vec{x}) = \vec{0}$

- $c\vec{x} \in \mathbb{R}^n$
- $c(d\vec{x}) = (cd)\vec{x}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{y}$
- $c(\vec{x} + vy) = c\vec{x} + c\vec{y}$
- $1\vec{x} = \vec{x}$

Definition 1.6. The set S of all possible linear combinations of a set of vectors $B = (\vec{v}_1, \dots, \vec{v}_k)$ in \mathbb{R}^n is called the **span** of the set B and we write

$$S = \text{Span B} = \{t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k\}$$

S is **spanned** by B and that B is a spanning set for S.

Note. A set in the form

$$\{t_1\vec{v}_1 + \dots + t_k\vec{v}_k + \vec{b}|t_1,\dots,t_k \in \mathbb{R}\}\$$

can be written as

$$\vec{x} = t_1 \vec{v}_1 + \dots + t_k \vec{v}_k + \vec{b}, t_1, \dots, t_k \in \mathbb{R}$$

In \mathbb{R}^n , two linearly independent vectors \vec{x}_1 and \vec{x}_2 generate a plane.

Theorem 1.1.2. If \vec{v}_k can be written as a linear combination of $\vec{v}_1, \dots, \vec{v}_{k-1}$, then

$$\operatorname{span}\{\vec{v}_1, \dots, \vec{v}_k\} = \operatorname{span}\{\vec{v}_1, \dots, \vec{v}_{k-1}\}$$

Definition 1.7. A set of vectors in \mathbb{R}^n is said to be **linearly dependent** if there exists coefficients c_1, \ldots, c_k , not all 0, such that

$$\vec{0} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$$

Either 0 vector or two or more vectors are colinear (scalar multiple).

Definition 1.8. A set of vectors is **linearly independent** if the only solution is $c_1 = c_2 = \cdots = c_k = 0$ (**trivial solution**)

Theorem 1.1.3. If a set of vectors $\{\vec{v}_1, \dots, \vec{v}_k\}$ contains the zero evctor, then it is linearly dependent.

Definition 1.9. If a subset of \mathbb{R}^n can be written as a span of vectors $\vec{v}_1, \dots, \vec{v}_k$ where $\{\vec{v}_1, \dots, \vec{v}_k\}$ is linearly independent, then $\{\vec{v}_1, \dots, \vec{v}_k\}$ is a **basis** for S. The basis of the set $\{\vec{0}\}$ is the empty set.

Theorem 1.1.4. If $\beta = \{\vec{v}_1, \dots, \vec{v}_k\}$ is a basis for a subset S of \mathbb{R}^n , then every vector $\vec{x} \in S$ can be written as unique linear combination of $\vec{v}_1, \dots, \vec{v}_k$.

Definition 1.10. The **standard basis** in \mathbb{R}^n is a set of vectors where each vector's ith component is 1, and all other components are 0.

Definition 1.11. Let $\vec{x}, vy \in \mathbb{R}^n$. The set with vector equation $\vec{w} = c_1\vec{x} + \vec{y}$ with $c_1 \in \mathbb{R}$ is a **line** in \mathbb{R}^n that passes through \vec{y} .

Definition 1.12. Let $\vec{v}_1, \vec{v}_2, \vec{y} \in \mathbb{R}^n$ with $\{\vec{v}_1, \vec{v}_2\}$ being a linearly independent set. The set with the vector equation $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \vec{y}$ with $c_1, c_2 \in \mathbb{R}$ is a **plane** in \mathbb{R}^n which passes through \vec{y} .

Definition 1.13. Let $\vec{v}_1, \dots, \vec{v}_k, \vec{y} \in \mathbb{R}^n$ with the set being linearly independent. The set with the vector equation $\vec{x} = c_1 v_1 + \dots + c_k \vec{v}_k + \vec{y}$ with c_1, \dots, c_k is a **k-plane** in R^n with passes through \vec{y} .

Definition 1.14. A **hyperplane** is a subspace of one dimension less than its ambient space.

1.2 Subspaces

Theorem 1.2.1. Subspace Test: Let $\mathbb S$ be a non-empty subset of $\mathbb R^n$. If $\vec x + \vec y \in \mathbb S$ and $c\vec x \in \mathbb S$ for all $\vec x, \vec y \in \mathbb S$ and $c \in \mathbb R$, then $\mathbb S$ is a subspace of $\mathbb R^n$

Quote. If $\vec{0}$ is not in the set, definitely not subset. If it is, further investigation needed.

Definition 1.15. $S \in \mathbb{R}^n$ is closed under scalar multiplication if for all $\vec{x} \in S$ and $\alpha \in \mathbb{R}$, $\alpha \vec{x} \in S$.

Theorem 1.2.2. If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then $\mathrm{span}\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a subspace of \mathbb{R}^n .

1.3 Dot Product

Theorem 1.3.1. If $\vec{x}, \vec{y} \in \mathbb{R}^2$, and θ is the angle between them, then

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| \, ||\vec{y}|| \, \cos \theta$$

Definition 1.16. Given two vectors \vec{x} , vy, their dot product is defined by

$$\vec{x}\vec{y} = x_1y_1 + x_2 + y_2 + \dots + x_ny_n = \sum_{i=1}^n x_iy_i$$

Theorem 1.3.2. Let $\vec{x}, \vec{y} \vec{z} \in \mathbb{R}^n$ and let $s, t \in \mathbb{R}$. Then

- $\vec{x} \cdot \vec{x} \ge 0$ and $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$
- $\bullet \ \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- $\bullet \ \vec{x} \cdot (s\vec{y} + t\vec{z}) = s(\vec{x} \cdot \vec{y}) + t(\vec{x} \cdot \vec{z})$

Theorem 1.3.3. If $\vec{x} \cdot \vec{y} = 0$, then \vec{x} and \vec{y} are **orthogonal**.

Quote. The zero vector $\vec{0} \in \mathbb{R}^n$ is orthogonal to every vector in \mathbb{R}^n .

Theorem 1.3.4. The **cross product** of $\vec{x}, \vec{y} \in \mathbb{R}^3$ is given by

$$\vec{x} \times \vec{y} = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ -(x_1 y_3 - x_3 y_1) \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

Quote. Cross product is not associative. $\vec{v} \times (\vec{w} \times \vec{x}) \neq (\vec{v} \times \vec{w}) \times \vec{x}$.

Theorem 1.3.5. Let $\vec{v}, \vec{w}, \vec{b} \in \mathbb{R}^3$ with $\{\vec{v}, \vec{w}\}$ being a linear independent set, and define $\vec{n} = \vec{v} \times \vec{w}$. If P is a plane with the vector equation

$$\vec{x} = c\vec{v} + d\vec{w} + \vec{b}, \qquad c, d \in \mathbb{R}$$

then an alternate equation for the plane is

$$(\vec{x} - \vec{b}) \cdot \vec{n} = 0$$

n is a normal vector to the plane P. Rearranging: $n_1x_1 + n_2x_2 + n_3x_3 = n_1a_1 + n_2a_2 + n_3a_3$.

1.4 Projections

Definition 1.17. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$. The **projection of** \vec{u} **onto** \vec{v} is

$$\operatorname{proj}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2} \vec{v}$$

Definition 1.18. The perpendicular of \vec{u} onto \vec{v} is

$$\operatorname{perp}_{\vec{v}}(\vec{u}) = \vec{u} - \operatorname{proj}_{\vec{v}}(\vec{u})$$

Quote. To project a vector onto a plane, take the perpendicular of the vector projected onto the normal of the plane.

2 Systems of Linear Equations

2.1 Systems of Linear Equations

Definition 2.1. A system of linear equations in n variables

$$cx_1 + cx_2 + \dots + cx_n = b_1 \tag{1}$$

$$cx_1 + cx_2 + \dots + cx_n = b_2 \tag{2}$$

$$cx_1 + cx_2 + \dots + cx_n = b_3 \tag{3}$$

$$\vec{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^n$$
 is a solution to the system if all the equations are satisfied when x_i is set to s_i .

If a system has a solution, it is **consistent**. If not, it is **inconsistent**.

Theorem 2.1.1. Assume the system of linear equations with $a_1, \ldots, a_n, b \in \mathbb{R}$ has two distinct

solutions
$$\vec{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$$
 and $\vec{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$. Then $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$ is a distinct solution for each $c \in \mathbb{R}$.

Definition 2.2. A **solution set** is the set of all solutions of a system of linear equations. Two systems of equations are equivalent if they have the same solution set.

2.2 Solving Systems of Linear Equation

Definition 2.3. The **coefficient matrix** of a system is denoted by $A = \begin{bmatrix} a_{11} & a_{21} & \cdots \\ a_{21} & a_{22} & \cdots \end{bmatrix}$.

Definition 2.4. The **augment matrix** is

$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}$$

Method 2.1. The three **elementary row operations** for solving a system of linear equations are:

- 1. Multiplying a row by a scalar
- 2. Adding a multiple of one row to another
- 3. Swapping two rows

Theorem 2.2.1. If two augmented matrices are row equivalent, then the system of linear equations associated with each matrix are equivalent.

Definition 2.5. A matrix is said to be in **reduced row echelon form** (RREF) if:

- 1. All rows containing a non-zero entry are above rows which only contain zeroes.
- 2. The first non-zero entry in each row is 1. (leading one).
- 3. Leading one on each zero row is to the right of the leading one on any row above it.

4. Leading one is the only non-zero entry in its column.

Theorem 2.2.2. The RREF of a matrix is unique.

Definition 2.6. Let R be the RREF of a coefficient matrix of a system of linear equations. If the jth column does not contain a leading one, x_j is a **free variable**.

Definition 2.7. The **rank** of a matrix is the number of leading ones in the RREF of the matrix.

Theorem 2.2.3. Let A be the $m \times n$ coefficient matrix of a system of linear equations.

- 1. IF the rank of *A* is less than the rank for the augmented matrix, then the system is inconsistent.
- 2. If the system is inconsistent, then the system contains n- rank A free variables. A consistent system has a unique solution if and only if rank A=n.
- 3. rank A=m if and only if the system is consistent for every $\vec{b} \in \mathbb{R}^m$

Definition 2.8. A system of linear equations is said to be **homogeneous system** if the right-hand side only contains zeroes. It has the form $\begin{bmatrix} A \mid \vec{0} \end{bmatrix}$.

Theorem 2.2.4. The solution set of a homogeneneous systems of M linear equations in n variables is a subspace of \mathbb{R}^n .

3 Matrices and Linear Mappings

3.1 Operations on Matrices

Definition 3.1. A $m \times n$ matrix is a rectangular array with m rows and n columns.

Definition 3.2. Addition and scalar multiplication of matrices: Let $A, B \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$. A + B and cA are defined as

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij}$$
$$(cA)_{ij} = c(A)_{ij}$$

Theorem 3.1.1. Let A, B, C be $m \times n$ matrices and let $c, d \in \mathbb{R}$

- 1. A + B is an $m \times n$ matrix
- 2. (A+B)+C=A+(B+C)
- 3. A + B = B + A
- 4. There exists a matrix such that $A + O_{m,n} = A$. This is called the **zero matrix**
- 5. There exists a matrix (-A) such that $A + (-A) = O_{m,n}$
- 6. $cA \in M_{m \times n}$

7.
$$c(dA) = cd(A)$$

8.
$$(c+d)A = cA + dA$$

9.
$$c(A + B) = cA + cB$$

10.
$$1A = A$$

Definition 3.3. The **zero matrix**, denoted as $O_{m,n}$ is the matrix whose entries are all 0.

Definition 3.4. The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose ij-th entry is the ji-th entry of A.

$$(A^T)_{ij} = (A)_{ji}$$

Theorem 3.1.2. For any $m \times n$ matrices A and B and scalar $c \in \mathbb{R}$,

- $\bullet \ (A^T)^T = A$
- $\bullet \ (A+B)^T = A^T + B^T$
- $(cA)^T = c(A^T)$

Definition 3.5. Matrix-Vector multiplication: Let A be an $m \times n$ matrix whose rows are denoted \vec{a}_i^T for $1 \le i \le m$. Then, for any $\vec{x} \in \mathbb{R}^n$, we define

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 \cdot \vec{x} \\ \vdots \\ \vec{a}_m \cdot \vec{x} \end{bmatrix}$$

An alternate form is

$$A\vec{x} = x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Theorem 3.1.3. If $\vec{e_i}$ is the ith standard basis vector for \mathbb{R}^i and $A = [\vec{a_1}, \dots, \vec{a_n}]$ is an $m \times n$ matrix, then

$$A\vec{e}_i = \vec{a}_i$$

Method 3.1. Matrix Multiplication: Let A be an $m \times n$ matrix and let $B = [\vec{b}_1 \cdots \vec{b}_p]$ be an $n \times p$ matrix. Then, AB is the $m \times p$ matrix

$$AB = [A\vec{b}_1 \cdots A\vec{b}_p]$$

Note. The number of columns of A must equal to the number of rows of B for this to be defined. The resulting matrix will have the same rows as A and same columns as B.

Theorem 3.1.4. If A, B, C are matrices of the correct size so the required products are defined and $t \in \mathbb{R}$, then

- $A(B+C) = AB_AC$
- t(AB) = (tA)B + A(tB)
- A(BC) = (AB)C
- $\bullet \ (AB)^T = B^T A^T$

Quote. Matrix Multiplication is NOT commutative. $AB \neq BA$, if AB = AC, $B \neq C$.

Theorem 3.1.5. Suppose that A and B are $m \times n$ matrices such that $A\vec{x} = B\vec{x}$ for every $\vec{x} \in \mathbb{R}^n$, then A = B.

Definition 3.6. The $n \times n$ **identity matrix**, denoted as I, is the matrix containing a diagonal row of 1s and everything else set to 0. The columns of I_n are the standard basis vectors of \mathbb{R}^n .

For every $n \times n$ matrix, A, AI = A = IA.

Theorem 3.1.6. If *I* is the matrix $I = [\vec{e}_1, \dots, \vec{e}_n]$ then for any $n \times n$ matrix where IA = A = AI

Theorem 3.1.7. The multiplicative identity for $M_{n\times n}(\mathbb{R})$ is unique.

Example 3.1. Block matrix: Let $A = \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 2 \end{bmatrix}$. By reducing A into blocks, we can write

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

with
$$A_{11} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$, $A_{21} = \begin{bmatrix} 0 & 3 \end{bmatrix}$, $A_{22} = \begin{bmatrix} 1 & 2 \end{bmatrix}$.

These are useful to distribute matrix multiplication over multiple computers to speed up the process.

3.2 Linear Mapping

Theorem 3.2.1. Let A be an $m \times n$ matrix, and let $F : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $f(\vec{x}) = A\vec{x}$. Then for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $b, c \in \mathbb{R}$ we have

$$f(b\vec{x} + c\vec{y}) = bf(\vec{x}) + cf(\vec{y})$$

Definition 3.7. A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is said to be a **linear mapping** if for every $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $b, c \in \mathbb{R}$, we have

$$L(b\vec{x}+c\vec{y})=bL(\vec{x})+cL(\vec{y})$$

Note. This definition can be used to prove linear mapping.

Example 3.2. Prove that the function $L : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $L(x_1, x_2, x_3) = (3x_1 - x_2, 2x_1 + 2x_3)$ is a linear mapping.

Solution.

$$L(b\vec{x} + c\vec{y}) = L(b(x_1, x_2, x_3) + c(y_1, y_2, y_3))$$

$$= L(bx_1 + cy_1, bx_2 + cy_2, bx_3 + cy_3)$$

$$= (3(bx_1 + cy_1) - (bx_2 + cy_2)), 2(bx_1 + cy_1) + 2(bx_3 + cy_3)$$

$$= b(3x_1 - x_2, 2x_1 + 2x_3) + c(3y_1 - y_2, 2y_1 + 2y_3)$$

$$= bL(\vec{x}) + cL(\vec{y})$$

Theorem 3.2.2. Every linear mapping can be represented as a matrix mapping whose columns are the images of the standard basis vector of \mathbb{R}^n under L. $L(\vec{x}) = [L]\vec{x}$ where

$$[L] = [L(\vec{e}_1) \cdots L(\vec{e}_n)]$$

Example 3.3. Determine the standard matrix of $L(x_1, x_2, x_3) = (3x_1 - x_2, 2x_1 + 2x_3)$

Solution.

$$L(1,0,0) = (3,2)$$

$$L(0,1,0) = (-1,0)$$

$$L(0,0,1) = (0,2)$$

$$[L] = [L(\vec{e}_1) \qquad L(\vec{e}_2) \qquad L(\vec{e}_3)] = \begin{bmatrix} 3 & -1 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

Definition 3.8. The rotation in \mathbb{R}^2 is

$$R_{\theta}(x_1, x_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta)$$

The standard matrix of \mathbb{R}_{θ} is

$$[r_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Theorem 3.2.3. Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation with rotation matrix $A = [\mathbb{R}_{\theta}]$. Then the columns of A are orthogonal unit vectors.

Definition 3.9. Let $\operatorname{refl}_{\vec{n}}: \mathbb{R}^n \to \mathbb{R}^n$ denote the linear mapping which maps a vector \vec{x} to its mirror image in the hyperplane with normal vector \vec{n} . The reflection of \vec{x} over the line with the normal vector \vec{n} is given by

$$\operatorname{refl}_{\vec{n}} = \vec{x} - 2\operatorname{proj}_{\vec{n}}\vec{x}$$

3.3 Special Subspaces

Definition 3.10. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The **kernel** is defined by

$$\ker(L) = \{ \vec{x} \in \mathbb{R}^n | L(\vec{x}) = \vec{0} \}$$

The set of all vectors in \mathbb{R}^n (domain) where when L is applied, becomes the zero vector.

Theorem 3.3.1. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then $L(\vec{0}) = \vec{0}$.

Theorem 3.3.2. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then $\ker(L)$ is a subspace of \mathbb{R}^n .

Definition 3.11. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The range is

$$R(L) = \{ L(\vec{x}) \in \mathbb{R}^m | \vec{x} \in \mathbb{R}^n \}$$

The set of all vectors in the codomain where $L(\vec{x})$ is defined.

Proofs with these, pg 69

Theorem 3.3.3. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then R(L) is a subspace of \mathbb{R}^m .

3.3.1 Four Fundamental Subspaces of a Matrix

Theorem 3.3.4. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping and let A = [L] be the standard matrix of L. Then, $\vec{x} \in \ker(L)$ if and only if $A\vec{x} = \vec{0}$.

Definition 3.12. Let A be an $m \times n$ matrix. The set of all $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \vec{0}$ is called the **nullspace** of A. We write

$$Null(A) = \{\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{0}\}\$$

Theorem 3.3.5. Let A be an $m \times n$ matrix. A consistent system of linear equations $A\vec{x} = \vec{b}$ has a unique solution if and only if $Null(A) = {\vec{0}}$.

Theorem 3.3.6. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mpping with standard matrix $[L] = A = [\vec{a}_1 \cdots \vec{a}_n]$. Then

$$R(L) = \operatorname{span}\{\vec{a}_1, \dots, \vec{a}_n\}$$

Definition 3.13. Let $A = [\vec{a}_1 \cdots \vec{a}_n]$. The **columnspace** of A s the subspace of \mathbb{R}^m defined by

$$Col(A) = span{\vec{a}_1, \dots, \vec{a}_n} = \{A\vec{x} \in \mathbb{R}^m | \vec{x} \in \mathbb{R}^n\}$$

It is the span of a set created from the columns of A.

Theorem 3.3.7. Let A be an $m \times n$ matrix. Then $Col(A) = \mathbb{R}^m$ if and only if rank(A) = m.

Definition 3.14. Let A be an $m \times n$ matrix. The **rowspace** of A is the subspace of \mathbb{R}^n defined by

$$Row(A) = \{A^T \vec{x} \in \mathbb{R}^n | \vec{x} \in \mathbb{R}^m \}$$

It is the span of the rows of A.

Definition 3.15. Let A be an $m \times n$ matrix. The **left nullspace** of A is the subspace of \mathbb{R}^m defined by

$$Null(A^T) = \{\vec{x} \in \mathbb{R}^m | A^T \vec{x} = \vec{0}\}\$$

It is the nullspace of the transpose of A.

Theorem 3.3.8. Let A be an $m \times n$ matrix. If $\vec{a} \in \text{Row}(A)$ and $\vec{x} \in \text{Null}(A)$, then $\vec{a} \cdot \vec{x} = 0$.

Theorem 3.3.9. Let A be an $m \times n$ matrix. If $\vec{a} \in \text{Col}(A)$ and $\vec{x} \in \text{Null}(A^T)$, then $\vec{a} \cdot \vec{x} = 0$.

3.4 Operations on Linear Mapping

Definition 3.16. Addition & Scalar Multiplication:

$$(L+M)(\vec{x}) = L(\vec{x}) + M(\vec{x})$$
$$(cL)(\vec{x}) = cL(\vec{x})$$

Note. Two linear mappings L and M are equal if and only if they have the same domain, same range, and $L(\vec{x}) = M(\vec{x})$ for all \vec{x} in the domain.

Theorem 3.4.1. Let $L, M, N \in \mathbb{L}$ and let c_1, c_2 be real scalars. Then

- $L + M \in \mathbb{L}$
- (L+M) + N = L + (M+N)
- L + M = M + L
- There exists a linear mapping $O: \mathbb{R}^n \to \mathbb{R}^m$ such that L+O=L. This means $O(\vec{x})=\vec{0}$ for all $\vec{x}\in\mathbb{R}^n$.
- There exists (-L) such that L + (-L) = O.
- $c_1 L \in \mathbb{L}$
- $\bullet \ c_1(c_2L) = (c_1c_2)L$
- $(c_1 + c_2)L = c_1L + c_2L$
- $c_1(L+M) = c_1L + c_1M$
- 1L = L

Theorem 3.4.2. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mapping and let $c \in \mathbb{R}$. Then

$$[L+M] = [L] + [M]$$
$$[cL] = c[L]$$

Definition 3.17. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mappings. Then M composed of L is the function $M \circ L: \mathbb{R}^n \to \mathbb{R}^p$ defined by

$$(M \circ L)(\vec{x}) = M(L(\vec{x}))$$

Theorem 3.4.3. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mappings. then $M \circ L$ is a linear mapping and

$$[M \circ L] = [M][L]$$

4 Vector Spaces

4.1 Vector Spaces

Definition 4.1. Let $\mathbb V$ be a set. The elements of $\mathbb V$ are vectors denoted as $\vec x$. $\mathbb V$ is called a **vector space over** $\mathbb R$ if there is an operation of addition and scalar multiplication such that for any $\vec x, \vec y, \vec v \in \mathbb V$ and $a, b \in \mathbb R$,

- 1. $\vec{x} + \vec{y} \in \mathbb{V}$
- 2. $(\vec{x} + \vec{y}) + \vec{v} = \vec{x} + (\vec{y} + \vec{v})$
- 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 4. The zero vector exists in \mathbb{V} , $\vec{x} + \vec{0} = \vec{x}$
- 5. For each $\vec{x} \in \mathbb{V}$, there exists $-\vec{x}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$, known as the **additive inverse**
- 6. $a\vec{x} \in \mathbb{V}$
- 7. $a(b\vec{x}) = (ab)\vec{x}$
- 8. $(a+b)\vec{x} = a\vec{x} + b\vec{x}$
- 9. $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$
- 10. $1\vec{x} = \vec{x}$

Example 4.1. Is the empty set a vector space?

Solution. No. It does not contain $\vec{0}$ even though the other statements are vacuously true.

Example 4.2. Let $\mathbb{V} = \{\vec{0}\}$ and define addition by $\vec{0} + \vec{0} = \vec{0}$ and scalar multiplication by $c\vec{0} = \vec{0}$. Show that \mathbb{V} is a vector space.

Solution. Must show that it satisfies all ten axioms.

- 1. The only element in \mathbb{V} is $\vec{0}$ and $\vec{0} + \vec{0} = \vec{0} \in \mathbb{V}$
- 2. $(\vec{0} + \vec{0}) + \vec{0} = \vec{0} + (\vec{0} + \vec{0})$
- 3. $\vec{0} + \vec{0} = \vec{0} = \vec{0} + \vec{0}$
- 4. $\vec{0} + \vec{0} = \vec{0}$ so the zero vector is in the set.
- 5. Additive inverse of $\vec{0}$ is $\vec{0}$.
- 6. $a\vec{0} = \vec{0} \in \mathbb{V}$
- 7. $a(b\vec{0}) = a\vec{0} = \vec{0} = (ab)\vec{0}$
- 8. $(a+b)\vec{0} = \vec{0} = \vec{0} + \vec{0} = a\vec{0} + b\vec{0}$

9.
$$a(\vec{0} + \vec{0}) = a\vec{0} = \vec{0} = \vec{0} + \vec{0} = a\vec{0} + a\vec{0}$$

10.
$$1\vec{0} = \vec{0}$$

Example 4.3. Let $\mathbb{S} = \{x \in \mathbb{R} | x > 0\}$. Define addition in \mathbb{S} by $x \oplus y = xy$ and define sclar multiplication by $c \odot x = x^c$ for all $x, y \in \mathbb{S}$ and all $c \in \mathbb{R}$. Prove that \mathbb{S} is a vector space under these operations.

Solution. Must should that $\mathbb S$ satisfies all ten vector space axioms. For any $x,y,z\in \mathbb S$ and $a,b\in \mathbb R$ we have

- 1. $x \oplus y = xy > 0$ since x > 0 and y > 0, hence $x \oplus y \in \mathbb{S}$
- 2. $(x \oplus y) \oplus z = (xy) \oplus z = (xy)zx(yz) = x \oplus (yz) = x \oplus (y \oplus z)$
- 3. $x \oplus y = xy = yx = y \oplus x$
- 4. The zero vector is 1 because $1 \in \mathbb{S}$ and $x \oplus 1 = x1 = x$
- 5. $\frac{1}{x}$ is the additive inverse of x since $\frac{1}{x} \in \mathbb{S}$ and $\frac{1}{x} \oplus x = 1$.
- 6. $a \odot x = x^n > 0$ since x > 0 so $a \odot x \in \mathbb{S}$.
- 7. $a \odot (b \odot x) = a \odot x^b = (x^b)^a = x^{ab} = (ab) \odot x$
- 8. $(a+b) \odot x = x^{a+b} = x^a x^b = x^a \oplus x^b = a \odot x \oplus b \odot x$
- 9. $a \odot (x \oplus y) = a \odot (xy) = (xy)^a = x^a y^a = x^a \oplus y^a = a \odot x \oplus a \odot y$
- 10. $1x = x^1 = x$

Therefore S is a vector space.

Example 4.4. $\mathbb{V} = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} | x_1, x_2 \in \mathbb{R} \}$ with standard scalar multiplication, but addition defined by

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_2 \\ y_1 + x_2 \end{bmatrix}$$

Solution. This is not a vector space because $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ but $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ This does not satisfy V3.

Example 4.5. Show that the set $\mathbb{Z}^2 = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} | x_1, x_2 \in \mathbb{Z} \right\}$ is not a vector space under standard addition and scalar multiplication of vectors.

Solution. Observe that $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{Z}^2$, but $\sqrt{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 2\sqrt{2} \end{bmatrix} \notin \mathbb{Z}^2$. Hence this does not satisfy V6 and is not a vector space.

Theorem 4.1.1. Let \mathbb{V} be a vector space with addition defined by $\vec{x} + \vec{y}$ and scalar multiplication defined by $c\vec{x}$ for all $\vec{x}, \vec{y} \in \mathbb{V}$, and $c \in \mathbb{R}$, Then

- $0\vec{x} = \vec{0}$ for all $\vec{x} \in \mathbb{V}$
- $-\vec{x} = (-1)\vec{x}$ for all $\vec{x} \in \mathbb{V}$

4.1.1 Subspaces

Definition 4.2. Let $\mathbb V$ be a vector space. If $\mathbb S$ is a subset of $\mathbb V$ and $\mathbb S$ is a vector space under the same operations as $\mathbb V$, then $\mathbb S$ is called a **subspace** of $\mathbb V$.

Theorem 4.1.2. Let $\mathbb S$ be a non-empty subset of $\mathbb V$. If $\vec x + \vec y \in \mathbb S$ and $c\vec x \in \mathbb S$ for all $\vec x, \vec y \in \mathbb S$, and $c \in \mathbb R$ under the operations of $\mathbb V$, then $\mathbb S$ is a subspace of $\mathbb V$

Example 4.6. Is $\mathbb{W} = \{p(x) \in P_2(\mathbb{R}) | p(2) = 0\}$ a subspace of $P_2(\mathbb{R})$?

Solution. In $P_2(\mathbb{R})$ the zero vector is the polynomial that satisfies z(x) = 0 for all x. Hence $z(x) \in \mathbb{W}$ since z(2) = 0. Therefore \mathbb{W} is non-empty.

Let $p(x), q(x) \in \mathbb{W}$. Then p(2) = 0, q(2) = 0, (p+q)(2) = p(2) + q(2) = 0 + 0 = 0. Hence $(p+q) \in \mathbb{W}$ and \mathbb{W} is closed under addition.

Similarly, (cp)(2) = cp(2) = c0 = 0 for all $c \in \mathbb{R}$ so $(cp) \in \mathbb{W}$. Thus, it is also closed unders calar multiplication. Therefore \mathbb{W} is a subspace of $P_2(\mathbb{R})$ by the Subspace Test.

Example 4.7. IS $T = \{a + bx + cx^2 \in P_3(\mathbb{R}) | a^2 - b^2 = 0\}$ a subspace of $P_2(\mathbb{R})$?

Solution. Observe $-1 + 4x \notin T$. Therefore this is not a subspace.

4.1.2 Spanning

Definition 4.3. Let $B = \{\vec{v}_1, \dots, \vec{v}_k\}$ be a set of vectors in a vector space \mathbb{V} . Then we define the **span** of B by

$$\operatorname{span}(B) = \{c_1 \vec{v}_1 + \dots + c_k \vec{v}_k | c_1, \dots, c_k \in \mathbb{R}\}$$

span B is **spanned** by B and B is a **spanning set** for span B.

Theorem 4.1.3. If If $B = \{\vec{v}_1, \dots, \vec{v}_k\}$ is a span of vectors in a vector space \mathbb{V} , then span B is a subspace of \mathbb{V} .

Theorem 4.1.4. Let \mathbb{V} be a vector space and $\vec{v}_1, \ldots, vv_k \in \mathbb{V}$. Then $v_i \in \text{span}\{\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_k\}$.

Example 4.8. Determine if $p(x) = 3 - 4x + 2x^2$ is in span $\{1 + 2x, 1 - x + 3x^2, 2 - x + x^2\}$ in $P_2(\mathbb{R})$.

Solution. Must determine if there exists coefficients such that

$$3 - 2x + 2x^{2} = c_{1}(1 + 2x) + c_{2}(1 - x + 3x^{2}) + c_{3}(2 - x + x^{2})$$
$$= (c_{1} + c_{2} + 3c_{3}) + (2c_{1} - c_{2} - c_{3})x + (3c_{2} + c_{3})x^{2}$$

Collect like coefficients

$$c_1 + c_2 + 3c_3 = 3$$
$$2c_1 - c_2 - c_3 = 4$$
$$3c_2 + c_3 = 2$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & -1 & -1 & 4 \\ 3 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Therefore $p(x) \in \text{span}\{1 + 2x, 1 - x + 2x^2, 2 - x + x^2\}$

Definition 4.4. A set of vectors $\{\vec{v}_1, \dots, \vec{v}_k\}$ in a vector space \mathbb{V} is **linearly dependent** if there exists at least one non-zero coefficient that satisfies

$$\vec{0} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$$

The set is **linearly independent** if the only solution is the trivial solution.

Theorem 4.1.5. A set of vectors $\{\vec{v}_1, \dots, \vec{v}_k\}$ in a vector space \mathbb{V} is linearly dependent if and only if there exists $1 \leq i \leq k$ such that

$$\vec{v}_i \in \text{span}\{\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{v}_{i+1}, \vec{v}_k\}$$

Theorem 4.1.6. A set of vectors $\{\vec{v}_1, \dots, \vec{v}_k\}$ in a vector space \mathbb{V} which contains the zero vector is linearly dependent.

Example 4.9. Determine if the set $\{1 + x + 2x^2, x - x^2, -2x^2\}$ is linearly independent.

Solution. A set is linear independent if and only if the only solution to

$$0 = c_1(1 + x + 2x^2) + c(x - x^2) + c_3(-2 + x^2)$$

is $c_1 = c_2 = c_3 = 0$. Rearranging,

$$(c_1 - 2c_3) + (c_1 + c_2)x + (2c_1 - c_2 + c_3)x^2 = 0$$

Solve the homogeneous system,

$$\begin{bmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This system has a unique solution, thus the set is linearly independent.

Example 4.10. Determine if $\{1 + 2x + x^2, 3 + 3x + 2x^2, 5 + x + 3x^2\}$ is linearly independent in $P_2(\mathbb{R})$.

Solution.

$$0 = c_1(1 + 2x + x^2) + c_2(3 + 3x + 2x^2) + c_3(5 + x + 3x^2)$$

$$= (c_1 + 3c_2 + 5c_3) + (2c_1 + 3c_2 + c_3)x + (c_1 + 2c_2 + 2c_3)x^2$$

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Since there are infinitely many solutions, the system is linearly dependent.

4.2 Bases and Dimension

Definition 4.5. Let \mathbb{V} be a vector space. The set B is called a basis for \mathbb{V} if B is linearly independent spanning set for \mathbb{V} .

Example 4.11. Find the standard basis for $P_n(\mathbb{R})$.

Solution. Every vector in $P_n(\mathbb{R})$ has teh form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

Thus the set $\{1, x, \dots, x^n\}$ spans $P_n(\mathbb{R})$. In addition

$$0 + 0x + \dots + 0x^n = a_0 + a_1x + \dots + a_nx^n$$

By equating like powers of x, the only solution is the trivial solution. Therefore $\{1, x, \dots, x^n\}$ is a linearly independent spanning set for $P_n(\mathbb{R})$ and is its standard basis.

Example 4.12. Prove that $B = \{1, (1 - x), (1 - x)^2\}$ is a basis for $P_2(\mathbb{R})$.

Solution. Let $p(x) = a + bx + cx^2$.

$$a + bx + cx^{2} = c_{1} + c_{2}(1 - x) + c_{3}(1 - x)^{2}$$
$$= (c_{0} + c_{1} + c_{2}) + (-c_{1} - 2c_{2})x + c_{2}x^{2}$$

Therefore,

$$c_0 + c_1 + c_2 = a$$
$$-c_1 - 2c_2 = b$$
$$c_2 = c$$

If the system is row reduced, we . Thus B is a linearly independent spanning set for $P_2(\mathbb{R})$.

Example 4.13. Find a basis for the space of $M_{2\times 2}(\mathbb{R})$ defined by

$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a - b = 2c \right\}$$

Solution. Every vector has the form

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} a & a - 2c \\ 0 & c \end{bmatrix} = a \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix}$$

Thus $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \right\}$ spans S, and is clearly linearly independent. Therefore it is a basis for S.

Theorem 4.2.1. Let $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for a vector space \mathbb{V} and let $C = \{\vec{w}_1, \dots, \vec{w}_k\}$ be a set in \mathbb{V} . If k > n (rank) then C is linearly dependent.

Proof. Consider $0 = c_1 \vec{w}_1 + \cdots + c_k \vec{w}_k$.

Since *B* is a basis for \mathbb{V} , we can write every vector \vec{w} as a linear combination of the vectors in *B*.

$$w_i = a_{i1}\vec{v}_1 + \dots + a_{in}\vec{v}_n$$
, for $1 \le i \le k$

Substituting,

$$0 = (c_1 a_{11} + \dots + c_k a_{k1}) \vec{v_1} + \dots + (c_1 a_{1n} + \dots + c_k a_{kn}) \vec{v_n}$$

Since *B* is a basis, it is linearly independent, and the only solution is when

$$c_1 a_{11} + \dots + c_k a_{k1} = 0$$

$$\vdots$$

$$c_1 a_{1n} + \dots + c_k a_{kn} = 0$$

Since k > n, the system has infinitely many solutions by the system rank theorem, so the equation has infinitely many solutions, and hence C is linearly independent.

Theorem 4.2.2. If $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ and $C = \{\vec{w}_1, \dots, \vec{w}_k\}$ are bases for the vector space \mathbb{V} , then k = n.

Proof. Since B is a basis and C is linearly independent, $k \le n$ by the previous theorem. Similarly, since C is a basis and B is linearly independent, $n \ne k$. Hence n = k.

Definition 4.6. Let $\{\vec{v}_1, \dots, \vec{v}_k\}$ be a basis for the vector space \mathbb{V} . The **dimension** of \mathbb{V} is n (number of elements in the basis) and we write

$$dim(V) = n$$

If $V = {\vec{0}}$ then $\dim(V) = 0$. If \mathbb{V} does not have a basis with a finite number of vectors in it, then \mathbb{V} is **infinite dimensional**.

Example 4.14. Some common dimensions

- The dimension of \mathbb{R}^n is n.
- The dimension of $P_n(\mathbb{R})$ is n+1.

- The dimension if $M_{m \times n}(\mathbb{R})$ is mn
- The vector space $P(\mathbb{R})$ of all polynomials with eral coefficients is infinite dimensional since the basis is $\{1, x, x^2, \dots\}$.

Example 4.15. The basis of $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \right\}$ is 2 because there are two elements in the set.

Theorem 4.2.3. Let \mathbb{V} be an n-dimensional vector space. Then

- 1. A set of more than n vectors in \mathbb{V} must be inearly dependent.
- 2. A set of fewer than n vectors in \mathbb{V} cannot span \mathbb{V} .
- 3. A set of n vectors in \mathbb{V} is linearly independent if and only if it spans \mathbb{V} .

Theorem 4.2.4. If $\mathbb V$ is an n-dimensional vector space and $\{\vec v_1,\ldots,\vec v_k\}$ is a linearly independent set in $\mathbb V$ with k< n, then there exists vectors $\vec w_{k+1},\ldots,\vec w_n$ in $\mathbb V$ such that $\{\vec v_1,\ldots,\vec v_k,\vec w_{k+1},\ldots,\vec w_n\}$ is a basis for $\mathbb V$.

Proof. By Theorem 4.2.3, $\{\vec{v}_1,\ldots,\vec{v}_k\}$ does not span \mathbb{V} .Let \vec{w}_{k+1} be a vector in \mathbb{V} such that $\vec{w}_{k+1} \not\in \operatorname{span}\{\vec{v}_1,\ldots,\vec{v}_k\}$. If k+1=n, then by Theorem 4.2.3, $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{w}_{k+1}\}$ is a basis. Else, repeat the procedure until it is true, and the set will be

$$\{\vec{v}_1,\ldots,\vec{v}_k,\vec{w}_{k+1},\ldots,\vec{w}_n\}$$

Example 4.16. Find a basis for the hyperplane with the equation $2x_1 + x_2 - x_3 - x_4 = 0$ and extend the basis to be a basis for \mathbb{R}^4 .

Solution. Pick three vectors that are linearly independent and satisfy the hyperplane.

$$\vec{v}_1 = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Clearly the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent, so it is a basis by Theorem 4.2.3 since the dimension of a hyperplanein \mathbb{R}^4 is 3. To extend the basis to \mathbb{R}^4 , we pick

$$\vec{n} = \begin{bmatrix} 2\\1\\-1\\-1 \end{bmatrix}$$

(Observe that this vector is not spanned by the hyperplane). By Theorem 4.2.4, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{n}\}$ is a basis for \mathbb{R}^4 .

Corollary 4.1. If *S* is a subspace of a finite dimensional vector space \mathbb{V} , then $\dim(S) \leq \dim(V)$.

4.3 Coordinates

Theorem 4.3.1. If $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for a vector space \mathbb{V} , then every vector $\vec{v} \in \mathbb{V}$ can be represented as a **unique** linear combination of $\vec{v}_1, \dots, \vec{v}_n$.

Proof. Since B is a basis, it a spanning set. The for every vector $\vec{v} \in \mathbb{V}$ there exists constants such that

$$c_1\vec{v}_1 + \dots + c_n\vec{v}_n = \vec{v}$$

Assume that there also exists constants such that $d_1\vec{v}_1 + \cdots + d_n\vec{v}_n = \vec{v}$. Then

$$c_1\vec{v}_1 + \dots + c_n\vec{v}_n = d_1\vec{v}_1 + \dots + d_n\vec{v}_n = \vec{v}$$

$$(c_1 - d_1)\vec{v}_1 + \dots + (c_n - d_n)\vec{v}_n = \vec{0}$$

But this implies $c_i = d_i$ for all $1 \le i \le n$ since B is linearly independent. Thus there exists only one linear combination of the vectors in B that equals \vec{v} .

Definition 4.7. Let \mathbb{V} be a vector space with basis $B = \{\vec{v}_1, \dots, \vec{v}_n\}$. For any $\vec{v} \in \mathbb{V}$, the **coordinate vector** of \vec{v} with respect to B is

$$[\vec{v}]_B = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

where $\vec{v} = b_1 \vec{v}_1 + \cdots + b_n \vec{v}_n$.

Example 4.17. Given that $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right\}$ is a basis for a subspace S of $M_{2\times 2}(\mathbb{R})$

and
$$[A]_B = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
, what is A ?

Solution. We have
$$A = 2\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + (-1)\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + 3\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 6 & 6 \end{bmatrix}$$

Example 4.18. Consider the basis $B = \{1, (x-1), (x-1)^2\}$ for $P_2(\mathbb{R})$. Find the B coordinate vectors of $p(x) = 3 - 5x + 4x^2$ and q(x) = x.

Solution. Must find constants such that

$$3 - 5x + 4x^{2} = c_{1} + c_{2}(x - 1) + c_{3}(x - 1)^{2}$$
$$= (c_{1} - c_{2} + c_{3}) + (c_{2} - 2c_{3})x + c_{3}x^{2}$$

Similarly, we need to find

$$x = d_1 + d_2(x - 1) + d_3(x - 1)^2$$

= $(d_1 - d_2 + d_3) + (d_2 - 2d_3)x + d_3x^2$

The coefficients for both these augmented matrices are the same, so a double augmented matrix can be created.

$$\begin{bmatrix} 1 & -1 & 1 & 3 & 0 \\ 0 & 1 & -2 & -5 & 1 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix}$$

Therefore
$$[3-5x+4x^2]_B=\begin{bmatrix}2\\3\\4\end{bmatrix}$$
 , and $[x]_B=\begin{bmatrix}1\\1\\0\end{bmatrix}$.

Theorem 4.3.2. If \mathbb{V} is a vector space with $B = \{\vec{v}_1, \dots, \vec{v}_n\}$, then for any $\vec{v}, \vec{w} \in \mathbb{V}$, and $s, t \in \mathbb{R}$, we have

$$[s\vec{v} + t\vec{w}]_B = s[\vec{v}]_b + t[\vec{w}]_B$$

Proof. Let $\vec{v} = b_1 \vec{v}_1 + \cdots + b_n \vec{v}_n$ and $w = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$. Then we have

$$s\vec{v} + t\vec{w} = (sb_1 + tc_1)\vec{v}_1 + \dots + (sb_n + tc_n)\vec{v}_n$$

Therefore,

$$[s\vec{v} + t\vec{w}]_B = \begin{bmatrix} sb_1 + tc_1 \\ \vdots \\ sb_n + tc_n \end{bmatrix} = s \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} + t \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = s[\vec{v}]_B + t[\vec{w}]_B$$

4.3.1 Change of Coordinates

Example 4.19. Let *B* be any basis for \mathbb{R}^3 and let $\vec{x} \in \mathbb{R}^3$.

$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3$$

If we find the coordinates of the standard basis vectors with respect to the basis B, then calculating $[x]_B$ will be easy

$$\begin{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{bmatrix}_B = [x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3]_B$$

$$= x_1 [\vec{e}_1]_B + x_2 [\vec{e}_2]_B + x_2 [\vec{e}_2]_B$$

$$= [[\vec{e}_1]_B + [\vec{e}_2]_B + [\vec{e}_3]_B] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

We call $_BP_S=[\vec{e}_1]_B+[\vec{e}_2]_B+[\vec{e}_3]_B$ the change of coordinates matrix from the standard basis S to the basis B.

Example 4.20. Let
$$B = \left\{ \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} \right\} = \{\vec{b_1}, \vec{b_2}, \vec{b_3}\}.$$

Find $[\vec{x}]_B$ for any $\vec{x} \in \mathbb{R}^3$.

Winter 2014

Solution.

$$\vec{e}_1 = c_1 \vec{b}_1 + c_2 \vec{b}_2 + c_3 \vec{b}_3$$

$$\vec{e}_2 = d_1 \vec{b}_1 + d_2 \vec{b}_2 + d_3 \vec{b}_3$$

$$\vec{e}_3 = f_1 \vec{b}_1 + f_2 \vec{b}_2 + f_3 \vec{b}_3$$

Use a triple augmented matrix to find the coefficients

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & 1 & 4 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & \frac{3}{5} & -\frac{1}{5} & -1 \\ 0 & 1 & 0 & \frac{7}{5} & -\frac{4}{5} & -1 \\ 0 & 0 & 1 & -\frac{4}{5} & \frac{3}{5} & 1 \end{bmatrix}$$
$$[\vec{x}]_B =_B P_S \vec{x} = \begin{bmatrix} [\vec{e}_1]_B + [\vec{e}_2]_B + [\vec{e}_3]_B] = \begin{bmatrix} \frac{3}{5} & -\frac{1}{5} & 1 \\ \frac{7}{5} & -\frac{4}{5} & -1 \\ -\frac{4}{5} & \frac{3}{5} & 1 \end{bmatrix}$$
$$[\vec{x}]_B =_B P_S \vec{x} = \begin{bmatrix} \frac{3}{5}x_1 - \frac{1}{5}x_2 + x_3 \\ \frac{7}{5}x_1 - \frac{4}{5}x_2 - x_3 \\ -\frac{4}{5}x_1 + \frac{3}{5}x_2 + x_3 \end{bmatrix}$$

Definition 4.8. Let $B = \{\vec{v} + 1, \dots, \vec{v}_n\}$ and C both be basis for a vector space \mathbb{V} . The **change of coordinate matrix** from B-coordinate to C-coordinate is defined by

$$_{C}P_{B} = [[\vec{v}_{1}]_{C} \cdots [\vec{v}_{n}]_{C}]$$

and $\forall \vec{x} \in \mathbb{V}$, we have

$$[\vec{x}]_C =_C P_B[\vec{x}]_B$$

Example 4.21. Let $B = \{1 + 3x, 2 + x\}$ and $C = \{-1 + x, 5 - 4x\}$ both be basis of $P_1(\mathbb{R})$. Find ${}_CP_B$ and ${}_BP_C$.

Solution. To find ${}_{C}P_{B}$, must find the C-coordinate of the vectors in B,

$$1 + 3x = c_1(-1+x) + c_2(5-4x)$$

$$2 + x = d_1(-1 + x) + d_2(5 - 4x)$$

Create a double augmented matrix and row reduce

$$\begin{bmatrix} -1 & 5 & 1 & 2 \\ 1 & -4 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 19 & 13 \\ 0 & 1 & 4 & 3 \end{bmatrix}$$

Therefore ${}_{C}P_{B}=\begin{bmatrix}19&13\\4&3\end{bmatrix}$. To find ${}_{B}P_{C}$,

$$-1 + x = c_1(1+3x) + c_2(2+x)$$

$$5 - 4x = d_1(1+3x) + d_2(2+x)$$

Creating a double augmented matrix and row reducing gives

$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 3 & 1 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{3}{5} & -\frac{13}{5} \\ 0 & 1 & -\frac{4}{5} & \frac{19}{15} \end{bmatrix}$$

Therefore
$${}_{B}P_{C} = \begin{bmatrix} \frac{3}{5} & -\frac{13}{5} \\ -\frac{4}{5} & \frac{19}{5} \end{bmatrix}$$
.

Theorem 4.3.3. If B and C are bases for an n-dimensional vector space \mathbb{V} , then the change of coordinate matrices ${}_{C}P_{B}$ and ${}_{B}P_{C}$ satisfy

$$_{C}P_{B}{_{B}}P_{C} = I = {_{B}}P_{C}{_{C}}P_{B}$$

5 Inverses and Determinants

5.1 Matrix Inverses

Definition 5.1. Let A be an $m \times n$ matrix. If B is an $n \times m$ matrix such that $AB = I_m$, then B is called the **right inverse** of A. If C is an $n \times m$ matrix such that $CA = I_n$, then C is called the **left inverse** of A.

Example 5.1.

$$AB = \begin{bmatrix} -2 & -3 & 4 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 & -2 \\ 3 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The left inverse of B is A. The right inverse of A is B.

Theorem 5.1.1. If *A* is an $m \times n$ matrix with n > m, then *A* cannot have a right inverse.

Proof.

$$I = AB = [A\vec{b}_1 \cdots A\vec{b}_m] = [\vec{e}_1 \cdots \vec{e}_m]$$

Need to find \vec{b}_i such that $A\vec{b}_i = \vec{e}_i$. But this is just solving m systems of linear equations with the same coefficient matrix. If we row reduce $[A|I_m]$ to RREF, we can find a solution to each equation. For this to be reduced to the identity matrix, we require $\mathrm{rank}(A) = M$. Therefore we require that $n \geq m$.

Theorem 5.1.2. If A is an $m \times n$ matrix with n > m, then A cannot have a left inverse.

Proof. If A has a left inverse C, then C is an $n \times n$ matrix with n > m with a right inverse, contradicting the previous theorem.

Definition 5.2. An $n \times n$ matrix is called a square matrix.

Definition 5.3. Let A be an $n \times n$ matrix. If B is a matrix such that AB = I = BA then B is called the **inverse** of A. We write $B = A^{-1}$ and A is **invertible**.

Note. If $B = A^{-1}$ then $A = B^{-1}$.

Theorem 5.1.3. The inverse of a matrix is unique.

Proof. Assume *B* and *C* are both inverses of *A*, then

$$B = BI = B(AC) = (BA)C = C$$

Therefore B = C, and the inverse is unique.

Theorem 5.1.4. If A and B are $n \times n$ matrices such that AB = I, then A and B are invertible and rank(A) = rank(B) = n.

Proof. Assume that AB = I and consider the homogeneous system

$$B(\vec{x}) = \vec{0}$$

$$A(B\vec{x}) = A\vec{0}$$

$$(AB)\vec{x} = \vec{0}$$

$$I\vec{x} = \vec{0}$$

$$\vec{x} = \vec{0}$$

So the system has a unique solution and by the system rank theorem, the coefficient matrix B has rank(n). This implies that $B\vec{x} = \vec{y}$ is consistent for all $y \in \mathbb{R}^n$.

$$BA\vec{y} = BA(B\vec{x}) = B(AB)\vec{x} = BI(vx) = B\vec{x} = \vec{y} = I\vec{y}$$

By the matrices equal theorem, BA = I, and we can repeat the previous procedure to obtain $\operatorname{rank}(A) = n$,

Example 5.2. Determine if $n = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix}$ is invertible.

Solution.

$$\begin{bmatrix} 1 & -1 & 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{8} & \frac{9}{16} & -\frac{1}{16} \\ 0 & 1 & 0 & -\frac{3}{5} & \frac{3}{16} & \frac{5}{16} \\ 0 & 0 & 1 & \frac{1}{4} & -\frac{1}{8} & \frac{1}{8} \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} -\frac{1}{8} & \frac{9}{16} & -\frac{1}{16} \\ -\frac{3}{5} & \frac{3}{16} & \frac{5}{16} \\ \frac{1}{4} & -\frac{1}{8} & \frac{1}{8} \end{bmatrix}$$

Theorem 5.1.5. IF *A* and *B* are invertible matrices, and $c \in \mathbb{R}$ with $c \neq 0$, then

- $(cA)^{-1} = \frac{1}{c}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$
- $(AB)^{-1} = B^{-1}A^{-1}$

Theorem 5.1.6. If A is an $n \times n$ matrix such that rank(A) = n, then A is invertible.

Proof. If $\operatorname{rank}(A) = n$, then the system of equations $A\vec{b}_i = \vec{e}_i$, $1 \le i \le n$ are all consistent by Theorem 2.2.3. Let $B = [\vec{b}_1 \cdots \vec{b}_n]$, then we get

$$AB = A[\vec{b}_1 \cdots \vec{b}_n] = [A\vec{b}_1 \cdots A\vec{b}_n] = I$$

This by Theorem 5.1.4, *A* is invertible.

Method 5.1. Assume that A is invertible, to find A^{-1} , row reduce the multiple augmented matrix to the identity matrix.

$$[A | I] \sim [I | A^{-1}]$$

Example 5.3. Find the inverse of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Solution. Consider $\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix}$.

Require that $\operatorname{rank}(A)=2$ for A to be invertible, Therefore both a and c must be non-zero in the RREF form.

$$\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix} \frac{1}{c} R_2 \sim \begin{bmatrix} a & b & 1 & 0 \\ 1 & \frac{d}{c} & 0 & \frac{1}{c} \end{bmatrix} R_1 \leftrightarrow R_2 \sim \begin{bmatrix} 1 & \frac{d}{c} & 1 & 0 \\ a & b & 0 & \frac{1}{c} \end{bmatrix} R_2 - aR_1$$

$$\sim \begin{bmatrix} 1 & \frac{d}{c} & 0 & \frac{1}{c} \\ 0 & \frac{bc-ad}{c} & 1 & -\frac{a}{c} \end{bmatrix} (-c)R_2 \sim \begin{bmatrix} 1 & \frac{d}{c} & 0 & \frac{1}{c} \\ 0 & bc-ad & -c & a \end{bmatrix}$$

Since rank(A) = 2, it is required that $bc - ad \neq 0$. Continuing to row reduce we get

$$\begin{bmatrix} 1 & 0 & \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

This we get that A is invertible if and only if $ad - bc \neq 0$ and if A is invertible, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Theorem 5.1.7. Invertible Matrix Theorem: For an $n \times n$ matrix A, the following are equivalent

- 1. *A* is invertible
- 2. THE RREF of A is I
- 3. $\operatorname{rank}(A) = n$
- 4. The system of equations $A\vec{x} = \vec{b}$ is consistent with a unique solution for all $\vec{b} \in \mathbb{R}^n$
- 5. The nullspace of A is $\vec{0}$
- 6. The columns of A form a basis for \mathbb{R}^n
- 7. The rows of A for ma basis for \mathbb{R}^n
- 8. A^T is invertible

To solve a system $A\vec{x} = \vec{b}$, we can simply rearrange to get $\vec{x} = A^{-1}\vec{b}$.

Example 5.4. Solve the system of linear equations:

$$2x_1 + 4x_2 = 3$$

$$-x_1 - 5x_2 = 5$$

The system has coefficient matrix $\begin{bmatrix} 2 & 4 \\ -1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$. Since $ad - bc \neq 0$ we know that A is invertible

$$A^{-1} = \frac{1}{6} \begin{bmatrix} -5 & -4\\ 1 & 2 \end{bmatrix}$$
$$\vec{x} = A^{-1}\vec{b} = A^{-1} = \frac{1}{6} \begin{bmatrix} -5 & -4\\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3\\ 5 \end{bmatrix} = \begin{bmatrix} \frac{35}{6}\\ -\frac{13}{6} \end{bmatrix}$$

5.2 Elementary Matrices

Note. Observe the correlation between matrix multiplication and row operation

$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ c & d \end{bmatrix} kR_1$$
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix} R_1 \leftrightarrow R_2$$
$$\begin{bmatrix} 1 & -s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a - sc & b - sd \\ c & d \end{bmatrix} R_1 - sR_2$$

Definition 5.4. An $n \times n$ matrix E is called an elementary matrix if it can be obtained from the $n \times n$ identity matrix by performing exactly one elementary row operation.

Theorem 5.2.1. If E is an elementary matrix, then E is invertible. Moreover E^{-1} is the elementary matrix corresponding to the reverse elementary row operations of E.

Theorem 5.2.2. If A is an $m \times m$ matrix, and E is an $m \times m$ matrix corresponding to the row operation of $R_i + cR_j$, for $i \neq j$, then EA is the matrix obtained from A by performing the row operation $R_i + cR_j$ on A.

Theorem 5.2.3. Let A be an $m \times n$ matrix and let E be the $m \times m$ elementary matrix corresponding to the row operation of cR_i . Then EA is the matrix obtained from A by performing the row operation cR_i on A.

Theorem 5.2.4. Let A be an $m \times n$ matrix and let E be the $m \times m$ elementary matrix corresponding to the row operation $R_i \leftrightarrow R_j$, for $i \neq j$. Then EA is teh matrix obtained from A by performing the row operation $R_i \leftrightarrow R_j$ on A.

Theorem 5.2.5. Let A be an $m \times n$ matrix, and let E be an $m \times m$ elementary matrix. Then

$$rank(EA) = rank(A)$$

Note. To find something like $E_3E_2E_1A$ without multiplying, where A, E are all $m \times m$ matrices, simply determine the row operation to obtain the elementary matrices, and apply them to the matrix A.

Theorem 5.2.6. If A is an $m \times n$ matrix in its RREF form, then there exists a sequence E_k, \ldots, E_2, E_1 , of $m \times m$ matrices such that $E_k \cdots E_2 E_1 A = R$. In particular

$$A = E_1^{-1} \cdot \cdot \cdot \cdot E_k^{-1} R$$

Proof. We know that A can be reduced to its RREF, R with a sequence of elementary row operations. Let E_1 be the first operation, E_2 be teh second row operation, and so on. By the previous few theorems,

$$E_k \cdots E_2 E_1 A = R$$

Quote. Matrix multiplication begins from the right. that is $E_2E_1A = E_2(E_1A)$.

Theorem 5.2.7. If A is an invertible matrix, then A and A^{-1} can be written as a product of elementary matrices.

5.3 Determinants

Definition 5.5. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The **determinant** of A is defined as

$$\det(A) = ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Example 5.5. Calculate det $\begin{bmatrix} 1 & 7 \\ -3 & 2 \end{bmatrix}$.

Solution.

$$\det \begin{vmatrix} 1 & 7 \\ -3 & 2 \end{vmatrix} = (1)(2) - (7)(-3) = 23$$

Definition 5.6. Let A be an $n \times n$ matrix with $n \ge 2$. Let A(i, j) be the $n - 1 \times n - 1$ matrix obtained from A by deleting the i-th row and the j-th column. The **cofactor** of a_{ij} is

$$C_{ij} = (-1)^{i+j} \det A(i,j)$$

Definition 5.7. Let *A* be an $n \times n$ matrix with $n \ge 2$. Then, the **determinant** if *A* is defined as

$$\det A = \sum_{i=1}^{n} a_{i1} C_{i1}$$

where the determinant of a 1×1 matrix is defined to be det[c] = c

Note. The determinant of a matrix is denoted with square lines instead of square brackets.

Theorem 5.3.1. Let *A* be an $n \times n$ matrix.

$$\det A = \sum_{k=1}^{n} a_{ik} C_{ik}$$

$$\det A = \sum_{k=1}^{n} a_{ij} C_{kj}$$

The cofactor expansion can be called upon any row or column to obtain the determinant.

Note. Since determinants can be calculated with a cofactor expansion along any row or column, it is best to use the row/col with the most zeros.

Definition 5.8. An $m \times n$ matrix is said to be **upper triangular** if $M_{ij} = 0$ whenever i > j. It is **lower triangular** if $M_{ij} = 0$ whenever i < j.

Theorem 5.3.2. If a matrix is upper or lower triangular, the determinant is just the product of the numbers along the diagonal

$$\det A = a_{11} a_{22} \cdots a_{nn}$$

Proof. If A is a 2×2 upper triangular matrix, then det $A = a_{11}a_{22}$ as required. Assume that if B is an $(n-1) \times (n-1)$ upper triangular matrix, then det $B = b_{11} \cdots b_{(n-1)(n-1)}$. Let A be an $n \times n$ upper triangular matrix. Expanding the determinant along the first column gives

$$\det A = a_{11}(-1)^{1+1}C_{11} + 0 + \dots + 0 = a_{11}\det A(1,1)$$

But A(1,1) is the $(n-1)\times (n-1)$ upper triangular matrix formed by deeting the first row and first column of A. Thus, det $A(1,1)=a_{11}a_{22}\cdots a_{(n-1)(n-1)}$ by the inductive hypothesis. Thus det $A=a_{11}a_{22}\cdots a_{nn}$ as required.

Theorem 5.3.3. If B is the matrix obtained by multiplying one row of A by $c \in \mathbb{R}$, then det B = c det A.

Theorem 5.3.4. If B is the matrix obtained from A by swapping two rows of A. Then det $B = -\det A$.

Theorem 5.3.5. If a matrix A has two identical rows, then det A = 0.

Theorem 5.3.6. If B is the matrix obtained from A by adding a multiple of one row of A to another, then det $B = \det A$.

Theorem 5.3.7. Let A be an $n \times n$ matrix and let E be an $n \times n$ elementary matrix. Then det EA =det E det A.

Theorem 5.3.8. An $n \times n$ matrix is invertible if and only if its determinant is not 0.

Theorem 5.3.9. If A and B are $n \times n$ matrices, then det $(AB) = \det A \det B$.

Theorem 5.3.10. If *A* is an invertible matrix, then det $A^{-1} = \frac{1}{\det A}$.

Theorem 5.3.11. If *A* is an $n \times n$ matrix, then det $A = \det A^T$.

6 Diagonalization

Alot of stuff here

3/27/15

Example 6.1. Consider $A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$. with corresponding eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ since

$$\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Example 6.2. $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is not an eigenvector of A because

$$\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 16 \\ 13 \\ 16 \end{bmatrix}$$

and this is not a scalar multiple of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

Example 6.3. Is $\lambda=2$ an eigenvalue of A? Is there a non-zero vector \vec{v} such that $A\vec{v}=2\vec{v}$? **Solution.**

$$\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 2 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
$$3v_1 + 6v_2 + 7v_3 = 2v_1$$
$$3v_1 + 3v_2 + 7v_3 = 2v_2$$
$$5v_1 + 6v_2 + 5v_3 = 2v_3$$

so

$$1v_1 + 6v_2 + 7v_3 = 0$$
$$3v_1 + 1v_2 + 7v_3 = 0$$
$$5v_1 + 6v_2 + 3v_3 = 0$$

Put this into a matrix and row reduce.

$$\begin{bmatrix} 1 & 6 & 7 \\ 3 & 1 & 7 \\ 5 & 6 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The only solution is $\vec{v} = 0$ therefore, there is no non-zero vector that satisfies $A\vec{v} = 2\vec{v}$ so $\lambda = 2$ is not an eigenvalue.

Example 6.4. Is $\lambda = 15$ an eigenvalue of A? $A\vec{v} = 15\vec{v}$ exists?

Solution.

$$\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 15 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$3v_1 + 6v_2 + 7v_3 = 15v_1$$

$$3v_1 + 3v_2 + 7v_3 = 15v_2$$

$$5v_1 + 6v_2 + 5v_3 = 15v_3$$

so

$$-12v_1 + 6v_2 + 7v_3 = 0$$

$$3v_1 - 12v_2 + 7v_3 = 0$$

$$5v_1 + 6v_2 - 10v_3 = 0$$

$$\begin{bmatrix} -12 & 6 & 7 \\ 3 & -12 & 7 \\ 5 & 6 & -10 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -\frac{5}{6} \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore the solution set is $\vec{v} = t \begin{bmatrix} 1 \\ \frac{5}{6} \\ 1 \end{bmatrix}$, $t \neq 0$, and $\lambda = 15$ is an eigenvalue.

Let A be an $n \times n$ matrix. Determine an easy way of determining if a scalar λ is an eigenvalue of A. If λ is an eigenvalue of A with corresponding eigenvector \vec{v} , then

$$A\vec{v} = \lambda \vec{v}$$

$$A\vec{v} - \lambda\vec{v} = \vec{0}$$

$$(A - \lambda I)\vec{v} = \vec{0}$$

 λ is an eigenvalue of A if there exists a non-trivial solution to this equation. This is only possible if $A - \lambda I$ is not invertible. Need to find $\det(A - \lambda I) = 0$.

Example 6.5. Find all eigenvalues of $A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$.

Solution.

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 5 - \lambda \end{vmatrix}$$

Use the formula ad - bc.

$$= \lambda^2 - 9\lambda + 18 = (\lambda - 3)(\lambda - 6)$$

Therefore the eigenvalues are 3 and 6.

Example 6.6. We can find the eigenvectors corresponding to the eigenvalues by solving the homogeneous system $(A - \lambda I)\vec{v} = \vec{0}$ for each eigenvalue.

For $\lambda_1=3$, we have $A-3I=\begin{bmatrix}1&2\\1&2\end{bmatrix}\sim\begin{bmatrix}1&2\\0&0\end{bmatrix}$. Thus all eigenvectors corresponding to λ_1 are $\vec{v}=t\begin{bmatrix}-2\\1\end{bmatrix}$, $t\neq 0$.

For $\lambda_2=6$, we have $A-6I=\begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix}\sim\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$. So all eigenectors corresponding to λ_2 are $\vec{v}=t\begin{bmatrix} 1 \\ 1 \end{bmatrix}, t\neq 0$.

Example 6.7. Find all eigenvalues of

$$a = \begin{bmatrix} -4 & 2 & -6 \\ 6 & 7 & 3 \\ 12 & -3 & 14 \end{bmatrix}$$

Solution.

$$0 = \det(A - \lambda I) = \begin{vmatrix} -4 - \lambda & 2 & -6 \\ 6 & 7 - \lambda & 3 \\ 12 & -2 & 14 - \lambda \end{vmatrix} = \begin{vmatrix} -4 - \lambda & 2 & -6 \\ 6 & 7 - \lambda & 3 \\ 8 - \lambda & 0 & 8 - \lambda \end{vmatrix}$$
$$= \begin{vmatrix} 2 - \lambda & 2 & -6 \\ 3 & 7 - \lambda & 3 \\ 0 & 0 & 8 - \lambda \end{vmatrix} = (8 - \lambda)(-1)^{3+3}(\lambda^2 - 9\lambda + 8) = -(\lambda - 8)(\lambda - 8)(\lambda - 1)$$

Therefore the eigenvalues are $\lambda_1 = 8, \lambda_2 = 8, \lambda_3 = 1$

3/30/15

6.1 temp

Definition 6.1. Let A be an $n \times n$ matrix. The **characteristic polynomial** of A is the nth degree polynomial

$$C(\lambda) = \det(A - \lambda)$$

Theorem 6.1.1. A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if $C(\lambda) = 0$

Definition 6.2. Let A be an $n \times n$ matrix with eigenvalue λ . The nullspace of $A - \lambda I$ is the **eigenspace** of λ . The eigenspace is denoted as E_{λ}

Definition 6.3. Let A be an $n \times n$ matrix with eigenvalue λ_1 . The **algebraic multiplicity** of λ_2 , denoted a_{λ_1} , is the number of times that the λ_1 is a root of the characteristic polynomial $C(\lambda)$. If $C(\lambda) = (\lambda - \lambda_1)^k C_1(\lambda)$, where $C_1(\lambda_1) \neq 0$. Then $a_{\lambda_k} = k$

Definition 6.4. The **geometric multiplicity** of λ , denoted g_{λ_1} is the dimension of its eigenspace. So $g_{\lambda_1} = \dim(E_{\lambda_1})$

Example 6.8. Find teh algebraic and geometric multiplicity of all eigenvalues of $A = \begin{bmatrix} 1 & 2 & -2 \\ -2 & 5 & -2 \\ -6 & 6 & 03 \end{bmatrix}$

Solution. We have

$$C(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & -2 \\ -2 & 5 - \lambda & -2 \\ -6 & 6 & -3\lambda \end{vmatrix}$$
$$= \begin{vmatrix} 1 - \lambda & 0 & -2 \\ -2 & 3 - \lambda & -2 \\ -6 & 3 - \lambda & -3 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 0 & -2 \\ -2 & 3 - \lambda & -2 \\ -4 & 0 & -1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)(\lambda^2 - 9) = -(\lambda - 3)^2(\lambda + 3)$$

Thus, the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -3$.

$$a_{\lambda_1} = 2$$
 $a_{\lambda_2} = 1$

For $\lambda_1 = 3$,

$$A - 3I = \begin{bmatrix} -2 & 2 & -2 \\ -2 & 2 & -2 \\ -6 & 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, a basis for the eigenspace E_{λ_1} is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$.

$$g_{\lambda_2} = 2$$

For $\lambda_2 = -3$

$$A + 3I = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & -2 \\ -6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for the eigenspace E_{λ_2} is $\left\{ \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\}$.

$$g_{\lambda_2} = 1$$

Example 6.9. Find the algebraic and geometric multiplicity of all eigenvalues of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

Solution. The determinant is just $(1 - \lambda)^3$ because it is a triangular matrix (multiply along diagonal). Thus the only eigenvalue is $\lambda_1 = 1$, with $a_{\lambda_1} = 3$.

For $\lambda_1 = 1$

$$A - 1I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for E_{λ_1} is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$. Therefore $g_{\lambda_1} = 1$

Theorem 6.1.2. If A is an $n \times n$ upper or lower trianglar matrix, then the eigenvalues of A are the diagonal entries of A.

Theorem 6.1.3. If A and B are similar matrices, then A and B have the same characteristic polynomial, and hence the same eigenvalues.

Theorem 6.1.4. IF *A* is an $n \times n$ matrix, with eigenvalue λ_1 , then

$$1 \le g_{\lambda_1} \le a_{\lambda_1}$$

6.2 Diagonalization

Definition 6.5. An $n \times n$ matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D. If $P^{-1}AP = D$, then we say that P **diagonalizes** A.

Theorem 6.2.1. A matrix $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable if and only if there exists a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ for \mathbb{R}^n of eigenvectors of A.

Proof. Assume that A is diagonalizable. By definition, there exists an invertible matrix $P = [\vec{v}_1 \cdots \vec{v}_n]$ such that

$$P^{-1}AP = D$$

where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ is diagonal. Since D is diagonal, the eigenvalues of D are $\lambda_1, \dots, \lambda_n$. Therefore, by Lemma 6.2.3, $\lambda_1, \dots, \lambda_n$ are also the eigenvalues of A.

Thus

$$AP = PD$$

$$A[\vec{v}_1 \cdots \vec{v}_n] = P[\lambda_1 \vec{e}_1 \cdots \lambda_n \vec{e}_n]$$

$$[A\vec{v}_1 \cdots A\vec{v}_n] = [\lambda_1 P \vec{e}_1 \cdots \lambda_n P \vec{e}_n]$$

$$[A\vec{v}_1 \cdots A\vec{v}_n] = [\lambda_1 \vec{v}_1 \cdots \lambda_n \vec{v}_n]$$

Thus $A\vec{v}_1 = \lambda_1 \vec{v}_1$ for $1 \le i \le n$. Moreover, since P is invertible, $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for \mathbb{R}^n by the Invertible Matrix Theorem, and this implies that $\vec{v}_i \ne \vec{0}$ for $1 \le i \le n$.

On the other hand, if $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is a basis for \mathbb{R}^n of eigenvectors, then the matrix $P=[\vec{v}_1\cdots\vec{v}_n]$ is invertible by the INvertible Matrix Theorem and we have

$$P^{-1}AP = P^{-1}[A\vec{v}_1 \cdots \vec{v}_n]$$
$$= [\lambda_1 \vec{v}_1 \cdots \lambda_n \vec{v}_n]$$
$$= [\vec{e}_1 \cdots \vec{e}_n]$$

dots

$$= diag(\lambda_1, \ldots, \lambda_n)$$

Theorem 6.2.2. If A is an $n \times n$ matrix with eigenpairs, $(\lambda_1, \vec{v}_1), \dots, (\lambda_k, \vec{v}_k)$ where $\lambda_i \neq \lambda_j$, for $i \neq j$, then $\{\vec{v}_1, \dots, \vec{v}_k\}$ is linearly independent.

Theorem 6.2.3. Of A is an $n \times n$ matrix with distinct eigenvaleus, and B is a basis for the eigenspace of λ_1 for $i \le i \le k$, then $B_1 \cup \cdots \cup B_k$ is a linearly independent set.

Theorem 6.2.4. If A is an $n \times n$ matrix with distinct eigenvallues $\lambda_1, \ldots, \lambda_k$, then A is diagonalizable if and only if $g_{\lambda_i} = g_{\lambda_k}$ for $1 \le i \le k$.

Note. If λ is an eigenvalue of A such that $g_{\lambda} < a_{\lambda}$, then λ is said to be **deficient**.

Theorem 6.2.5. If *A* is an $n \times n$ matrix with *n* distinct eigenvalues, then *A* is diagonalizable.

Example 6.10. For each of the matrices, diagonalize them

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Solution.

$$C(\lambda) = \begin{vmatrix} 5 - \lambda & 8 & 16 \\ 4 & 1 - \lambda & 8 \\ -4 & -4 & -11 - \lambda \end{vmatrix}$$

$$C(\lambda) = \begin{vmatrix} 5 - \lambda & 8 & 16 \\ 0 & -3 - \lambda & -3 - \lambda \\ -4 & -4 & -11 - \lambda \end{vmatrix}$$

$$C(\lambda) = \begin{vmatrix} 5 - \lambda & 8 & 8 \\ 0 & -3 - \lambda & 0 \\ -4 & -4 & -7 - \lambda \end{vmatrix}$$

$$= -(\lambda + 3)(\lambda^2 + 2\lambda - 3) = -(\lambda + 3)^2(\lambda - 1)$$

Therefore the eigenvalues are

 $lambda_1 = -3$ with an algebraic multiplicity of 2, and $\lambda_2 = 1$ with an algebraic multiplicity of 1.

For $\lambda_1 = -3$,

$$A - (-3)I = \begin{bmatrix} 8 & 8 & 16 \\ 4 & 4 & 8 \\ -4 & -4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for E_{λ_1} is $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix} \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$, hence $g_{\lambda_1}=2$.

For $\lambda_2 = 1$, we get

$$A - I = \begin{bmatrix} 4 & 8 & 16 \\ 4 & 0 & 8 \\ -4 & -4 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for E_{λ_2} is $\left\{ \begin{bmatrix} -2\\-1\\1 \end{bmatrix} \right\}$.

Then the change of basis matrix which diagonalizes *A* is

$$P = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} -3 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Example 6.11.

$$B = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & -2 \end{bmatrix}$$

Solution. The characteristic polynomial is

$$C(\lambda) = \begin{vmatrix} 2 - \lambda & 1 & 1 \\ 2 & 1 - \lambda & -2 \\ -1 & 0 & -2 - \lambda \end{vmatrix} = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & -2 \\ -3 - \lambda & 0 & -2\lambda \end{vmatrix}$$
$$= (3 - \lambda)(\lambda - 1)(\lambda + 2) - (\lambda + 3)(-2 - (1 - \lambda))$$
$$= -(\lambda - 3)(\lambda^2 + 2\lambda + 1) = -(\lambda - 3)(\lambda + 1)^2$$

Hence the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -1$ with $a_{\lambda_1} = 1$, $a_{\lambda_2} = 2$ For λ_2

$$B - \lambda_2 I = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 2 & -2 \\ -1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for E_{λ_2} is $\left\{ \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\}$. This $g_{\lambda_2}=1 < a_{\lambda_2}$, so B is not diagonalizable.

Example 6.12.

$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Solution.

$$C(\lambda) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1$$

Since C has a non-real eignvalue, it is not diagonalizable over \mathbb{R} .

Example 6.13.

$$A\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Solution.

$$C(\lambda) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda = \lambda(\lambda - 4)$$

So the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 4$ with $a_{\lambda_1} = 1 = a_{\lambda_2}$.

A basis for
$$E_{\lambda_1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 and $E_{\lambda_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Thus
$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$.

Theorem 6.2.6. If *A* is an $n \times n$ matrix, then

- the determinant of *A* equals the product of the eigenvalues
- λ is an eigenvalue of A if and only if det(A) = 0. If it is, then the geometric multiplicity of 0 equals 1 rank(A).
- ullet The trace of A equals the sum of the eigenvalues.