Import Modules

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from imblearn.over_sampling import SMOTE # Assuming you have imblearn installed
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
Loading Dataset
```

```
df=pd.read_csv('creditcard.csv')
df.head()
df.cloan = df.dronna()  # Ensure no NaN values are
```

df_clean = df.dropna() # Ensure no NaN values are present

X = df_clean.drop(columns=['Class'])
y = df clean['Class']

df.describe()

	Time	V1	V2	V3	V4	V5	V6	V7	
count	284807.000000	2.848070e+05	2.8480						
mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.2134
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.1943
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.3216
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.0862
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.2358
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.2734
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.0007;

8 rows × 31 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 284807 entries, 0 to 284806
 Data columns (total 31 columns):

Ducu	COTAIIII	(cocar	JI COIGIIII	٠,٠
#	Column	Non-Nul	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64

```
12 V12
           284807 non-null float64
           284807 non-null float64
13 V13
14 V14
           284807 non-null float64
           284807 non-null float64
15 V15
16 V16
           284807 non-null float64
17 V17
           284807 non-null float64
18 V18
           284807 non-null float64
19 V19
           284807 non-null float64
20 V20
           284807 non-null float64
           284807 non-null float64
21 V21
22 V22
           284807 non-null float64
           284807 non-null float64
23 V23
24 V24
           284807 non-null float64
25 V25
           284807 non-null float64
26 V26
           284807 non-null float64
27 V27
           284807 non-null float64
28 V28
           284807 non-null float64
   Amount 284807 non-null float64
30 Class
           284807 non-null int64
```

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

Preprocessing the Data

df.isnull().sum()

0

Time 0

V1 0

V2 0

V3 0

V4 0

V5 0

V6 0

V7 0

V8 0

V9 0

V10 0

V11 0

V12 0

V13 0

V14 0

V15 0

V16 0

V17 0

V18 0

V19 0

V20 0

V21

V22 0

V23 0

V24 0

V25 0

V26 0

V27 0

V28 0

Amount 0

Class 0

dtype: int64

Exploratory Data Analysis

sns.countplot(x='Class',data=df)

Input Split

Standard Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x scaler = sc.fit transform(X)
x scaler[-1]
    array([ 1.64205773, -0.27233093, -0.11489898, 0.46386564, -0.35757 ,
           -0.00908946, -0.48760183, 1.27476937, -0.3471764, 0.44253246,
           -0.84072963, -1.01934641, -0.0315383, -0.18898634, -0.08795849,
            0.04515766, -0.34535763, -0.77752147, 0.1997554, -0.31462479,
            0.49673933, 0.35541083, 0.8861488, 0.6033653, 0.01452561,
           -0.90863123, -1.69685342, -0.00598394, 0.04134999, 0.51435531])
Model Training
```

```
print("NaN Count in x scaler:", np.isnan(x scaler).sum())
print("NaN Count in y:", y.isnull().sum())
→ NaN Count in x scaler: 0
     NaN Count in v: 0
# Drop NaN values before scaling
df clean = df.dropna()
# Separate features and target only from the cleaned DataFrame
X = df clean.drop(columns=['Class'], axis=1)
y = df clean['Class']
# Perform standard scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x scaler = sc.fit transform(X)
# Split the data
x_train, x_test, y_train, y_test = train_test_split(x_scaler, y, test_size=0.25, random_state=42, stratify=y)
```

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
# training
model.fit(x_train, y_train)
# testing
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))
print("F1 Score:",f1_score(y_test, y_pred))
```

₹		precision	recall	f1-score	support
	0	1.00	1.00	1.00	71079
	1	0.84	0.62	0.71	123
	accuracy			1.00	71202
	macro avg	0.92	0.81	0.85	71202
	weighted avg	1.00	1.00	1.00	71202

F1 Score: 0.7102803738317757

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
# training
model.fit(x_train, y_train)
# testing
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))
print("F1 Score:",f1_score(y_test, y_pred))
```

→	precision	recall	f1-score	support
	1.00	1.00	1.00	71079
:	0.96	0.77	0.86	123
accurac	У		1.00	71202
macro av	g 0.98	0.89	0.93	71202
weighted av	g 1.00	1.00	1.00	71202

F1 Score: 0.8558558558558559

```
from xgboost import XGBClassifier
model = XGBClassifier(n_jobs=-1)
# training
model.fit(x_train, y_train)
# testing
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))
print("F1 Score:",f1_score(y_test, y_pred))
```

→	precision	recall	f1-score	support
0	1.00	1.00	1.00	71079
1	0.95	0.79	0.86	123
accuracy			1.00	71202
macro avg	0.98	0.89	0.93	71202
weighted avg	1.00	1.00	1.00	71202

F1 Score: 0.862222222222222

Class Imbalance

```
smote = SMOTE(random_state=42)
x_train_smote, y_train_smote = smote.fit_resample(x_train, y_train)

from sklearn.linear_model import LogisticRegression
log_model = LogisticRegression()
log_model.fit(x_train_smote, y_train_smote) # Training with SMOTE data
y_pred_log = log_model.predict(x_test)
print("Logistic Regression")
print(classification_report(y_test, y_pred_log))
print("F1 Score:", f1 score(y test, y pred_log))
```

→ Logistic Regression precision recall f1-score support 0 1.00 0.98 0.99 71079 1 0.06 0.89 0.11 123 71202 accuracy 0.98 macro avg 0.53 0.55 71202 0.93 weighted avg 1.00 0.98 0.99 71202

F1 Score: 0.11082867310625318

```
rf_model = RandomForestClassifier(n_jobs=-1)
rf_model.fit(x_train_smote, y_train_smote) # Training with SMOTE data
y_pred_rf = rf_model.predict(x_test)
print("Random Forest Classifier")
print(classification_report(y_test, y_pred_rf))
print("F1 Score:", f1_score(y_test, y_pred_rf))
```

₹	Random Forest	Classifier precision	recall	f1-score	support	
	0 1	1.00 0.88	1.00 0.80	1.00 0.84	71079 123	
	accuracy macro avg weighted avg	0.94 1.00	0.90 1.00	1.00 0.92 1.00	71202 71202 71202	

F1 Score: 0.8376068376068376