Chapter 8

Many-Body Systems

8.1 The Many-Body Problem

- 11/1: Announcements.
 - Exam room locations are on Canvas.
 - Notice that we skipped Kibble and Berkshire (2004), Chapter 6.
 - Recap: 2-body systems.
 - In such a system, we have two particles: m_1, \vec{r}_1 and m_2, \vec{r}_2 . Their mass sum is $M = m_1 + m_2$, their center of mass is at $\vec{R} = (m_1 \vec{r}_1 + m_2 \vec{r}_2)/(m_1 + m_2)$, their reduced mass is $\mu = m_1 m_2/(m_1 + m_2)$, and their relative position is $\vec{r} = \vec{r}_1 \vec{r}_2$.
 - Under a constant external force, their EOMs uncouple into $M\ddot{R}_i = Mg_i$ and $\mu \ddot{r}_i = -\partial V_{\rm int}/\partial r_i$ where $V_{\rm int}(\vec{r})$ is the interaction potential energy.
 - Jerison will now give a better answer to last time's question, "what is the reduced mass?"
 - Let's look at two important cases to start.
 - 1. If $m_1 = m_2$, $\mu = m_1/2 = m_2/2$ and the particles are maximally affecting each other.
 - 2. If $m_1 \ll m_2$, then

$$\mu = \frac{m_1 m_2}{m_2 (1 + m_1/m_2)} \approx m_1 \left(1 - \frac{m_1}{m_2}\right) + \text{H.O.T.} \rightarrow m_1$$

where H.O.T. stands for "higher order terms."

- Additionally, as $m_1/m_2 \to 0$, we have $M \to m_2$, $\vec{R} \to \vec{r_2}$, $\vec{r_2}^* \to 0$, $\mu \to m_1$, and $\vec{r} \to \vec{r_1}^*$.
 - ➤ Essentially, we approach the limit of 1 body orbiting a fixed object.
 - ➤ This justifies the approximation made in earlier chapters of the Earth orbiting a fixed sum or a satellite orbiting the fixed Earth or more.
 - ightharpoonup Additional consideration of $\vec{r}_2^* = -m_2/M \cdot \vec{r}$??
- Today: Many-body systems.
 - Lagrangian, CM frame.
 - Rockets.
- Call our particle indices $\alpha = 1, \dots, N$.
 - Kibble and Berkshire (2004) uses a different notation! They just say \vec{r}_i .
 - The mass sum in this case is

$$M = \sum_{\alpha} m_{\alpha}$$

- The center of mass in this case is

$$\vec{R} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}$$

- The linear momentum in this case is

$$\vec{P} = \sum_{\alpha} m_{\alpha} \dot{\vec{r}}_{\alpha} = M \dot{\vec{R}}$$

• In the CM frame (still denoted *), we have

$$\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^{*}$$

- Moreover, within the frame, we still have $\dot{\vec{R}}^* = 0$ and hence $\vec{P}^* = 0$.
- Using the above, we may define the kinetic energy for the system

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{2}$$

$$= \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= \frac{1}{2} \left(\dot{\vec{R}}^{2} \sum_{\alpha} m_{\alpha} + 2 \dot{\vec{R}} \cdot \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} + \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2} \right)$$

$$= \frac{1}{2} M \dot{\vec{R}}^{2} + \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= T_{\text{CM}} + T^{*}$$

- We may now define the Lagrangian for the system.
 - Note that

$$\begin{split} V &= -\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \cdot \vec{g} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \\ &= -M \vec{g} \cdot \vec{R} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \end{split}$$

where $\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}$ denotes the vector with all pairwise differences.

- Combining this result with the above, we obtain

$$L = T - V$$

$$= \frac{1}{2}M\dot{\vec{R}}^2 + M\vec{g} \cdot \vec{R} + \frac{1}{2}\sum_{\alpha} m_{\alpha}(\dot{\vec{r}_{\alpha}}^*)^2 - V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\})$$

• Thus, the EOMs separate into

$$M\ddot{\vec{R}} = M\vec{g} \qquad m_{\alpha}\ddot{r}_{\alpha_{i}}^{*} = -\frac{\partial V_{\rm int}}{\partial r_{\alpha_{i}}^{*}}$$

where we have three of these, one for each $i = q_1, q_2, q_3$ component of particle α .

• Moreover, we get two conservation laws.

$$\frac{1}{2}M\dot{\vec{R}}^2 - M\vec{g} \cdot \vec{R} = E \qquad \qquad T^* + V_{\rm int} = E_{\rm int}$$

• In the more general case wherein other forces act on the system, we have

$$m_{lpha}\ddot{\vec{r}}_{lpha} = \sum_{eta} \vec{F}_{lphaeta} + \vec{F}_{lpha}$$

- The $\vec{F}_{\alpha\beta}$ are internal pairwise forces.
- The singular \vec{F}_{α} represents an external force.
- Linear momentum in this case.

$$\begin{split} \dot{\vec{P}} &= \sum_{\alpha} m_{\alpha} \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{F}_{\alpha} \end{split}$$

– Since $\vec{F}_{\alpha\beta} = -\vec{F}_{\beta\alpha}$, the left term above cancels, leaving us with

$$\dot{\vec{P}} = \sum_{\alpha} \vec{F}_{\alpha} = M\ddot{\vec{R}}$$

- Recall that if there are no external forces, \vec{P} is constant.
- Angular momentum in this case.

$$\vec{J} = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \dot{\vec{r}}_{\alpha}$$

- It follows that

$$\begin{split} \dot{\vec{J}} &= \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{r}_{\alpha} \times \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \end{split}$$

- If $\vec{F}_{\alpha\beta}$ are central (i.e., parallel to $\vec{r}_{\alpha} \vec{r}_{\beta}$), then the left term above is zero.
- This leaves us with

$$\dot{\vec{J}} = \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha}$$

i.e., \vec{J} is only affected by external forces in the central $\vec{F}_{\alpha\beta}$ case.

- Thus, if $\vec{F}_{\alpha} = 0$, \vec{J} is constant.
- Additionally, if \vec{F}_{α} are central, then \vec{J} is constant because the cross product cancels.
- In the CM frame...
 - Recall that $\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^*$.
 - Thus,

$$\begin{split} \vec{J} &= \sum_{\alpha} m_{\alpha} (\vec{R} + \vec{r}_{\alpha}) \times (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}) \\ &= \left(\sum_{\alpha} m_{\alpha} \right) \vec{R} \times \dot{\vec{R}} + \underbrace{\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \right)}_{0 = \vec{R}^{*}} \times \dot{\vec{R}} + \vec{R} \times \underbrace{\left(\sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} \right)}_{0 = \vec{P}^{*}} + \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \times \dot{\vec{r}_{\alpha}}^{*} \\ &= M \vec{R} \times \dot{\vec{R}} + \vec{J}^{*} \end{split}$$

where

$$\vec{J}^* = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^* \times \dot{\vec{r}}_{\alpha}^*$$

- It follows that

$$\begin{split} \dot{\vec{J}}^* &= \dot{\vec{J}} - \frac{\mathrm{d}}{\mathrm{d}t} \Big(M \vec{R} \times \dot{\vec{R}} \Big) \\ &= \dot{\vec{J}} - M \vec{R} \times \ddot{\vec{R}} \\ &= \dot{\vec{J}} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha}^* \times \vec{F}_{\alpha} \end{split}$$

- An application of these multi-body systems: Rockets!
 - Consider a rocket traveling forward at velocity v.
 - To propel itself forward, it ejects mass dm at a constant speed u relative to the rocket.
 - After the ejection, the mass dm travels backwards at speed v-u and the remaining rocket M-dm travels forward at velocity v+dv.
 - We have conservation of momentum in this "explosion," so

$$(M - dm)(V + dv) + dm (v - u) = Mv$$

$$Mv + M dv - v dm - u dm + v dm = Mv$$

$$M dv = u dm$$

$$= -u dM$$

$$\frac{dv}{u} = -\frac{dM}{M}$$

$$\frac{v}{u} = -\ln \frac{M}{M_0}$$

$$M = M_0 e^{-v/u}$$