Convolutional Neural Networks: Selfie Generalization

Tom Youngblood

Main Objective

Main Objective: Research Question

Primary Research Question: explore how well a CNN, trained on easily generated user-generated data like selfies, performs on standard, generalized image recognition tasks.

Main Objective: Process

- 1. Manual Data Collection
- 2. Data Cleaning
- 3. Initial Model Building
 - a. Making Predictions on Selfie Images
 - b. Making Predictions on Non-Selfie Images
- 4. Iterative Data-Tuning and Model-Tuning
- 5. Conclusion

Data Collection Process

Data Collection Process

Collected ~400 Photos from Close Friends

Data Cleaning Process

Data Cleaning Process

Aggregated Data in TF/Keras Generator Readable Format: Google Drive

Initial Model Building: Model 1

Model 1: Selfie Performance

Initial Class Structure

Class: Issy: 113 images Class: Oliver: 141 images Class: Ryan: 100 images Class: Sam: 104 images Class: Tom: 86 images

VGG16 Model: Selfie Performance

Epoch :		41c 2c/c	ton - accuracy	A 2012	locci	4 7760	- val accuracy:	0 0252	- val lacci	0.4020
Epoch :	2/10									
14/14 - Epoch :		33s 2s/s1	tep - accuracy:	0.8407 -	loss:	0.4826	val_accuracy:	1.0000	- val_loss:	0.0877
14/14		34s 2s/s1	tep - accuracy:	0.9314 -	loss:	0.2447	- val_accuracy:	1.0000	- val_loss:	0.0494
Epoch -		220 20/01		0.0660	10001	0 1510	- val accuracy:	1 0000	ual less:	0 0544
Epoch !		325 25/5	tep - accuracy:	0.9009 -	1055;	0.1510	- vac_accuracy:	1.0000	- vat_toss:	0.0344
14/14 -		37s 3s/s1	tep - accuracy:	0.9792 -	loss:	0.0993	- val_accuracy:	1.0000	- val_loss:	0.0157

Selfie Performance: Graphical View

VGG16 Model: Example Predictions

Model 1: Generalization to Non-Selfie Images

- Issy: 19 predictions, 47% accuracy.
- Oliver: 20 predictions. 40% accuracy.
- Ryan: 0 predictions. 0% accuracy.
- Sam: 10 predictions, 80% accuracy.
- o Tom: 1 prediction: 0% accuracy
- The model is heavily biased against predicting Ryan (0 predictions) and Tom (1 prediction)

- **Overall Accuracy: 50%**
- **Heavy Predictive Bias**
 - Class imbalance?
- Note: File format issues

Next Steps: Further Optimization

Overview: Next Steps Taken

Step Taken	Reasoning	Selfie Accuracy	Non-Selfie Accuracy
Class Imbalance, Data Augmentation	Large predictive bias on first model	85.4%	40%
Unfreezing 10 Pre-Trained Layers	Possible overfitting to pretrained ImageNet weights	28%	-
Scheduled Learning Rate	Make ImageNet weights more effective	26%	-
Implementing CV2 for Facial Cropping	Data optimization to reduce image background impact on model performance	94%	30%

Deeper Look: Class Imbalance Solution

Step Taken	Selfie Accuracy	Non-Selfie Accuracy		
Implementing CV2 for Facial Cropping	94%	30%		

Increased Augmentation + Brightness Scaling

Deeper Look: CV2 Cropping Solution

Step Taken	Selfie Accuracy	Non-Selfie Accuracy		
Implementing CV2 for Facial Cropping	94%	30%		

Original Image

Conclusions

Conclusions

- Base VGG16 model with a simple custom classifier saw best performance
 - Achieved 98% accuracy on selfies
 - Achieved 50% accuracy on real-world images
 - No architectural, hyperparameter, or data-tuning changes improved accuracy
- Data cleanup and augmentation were important but could only push accuracy improvement so far with 400 training images.
- CNNs trained on controlled (selfie) datasets can generalize effectively to real world applications feasibly