

REASONING (Penalaran)

Penyelesaian Masalah >>> Knowledge Base

Teknik Searching Masalah >>> State dan Ruang

pada Teknik searching yaitu kesulitan dalam menentukan apakah aturan produksi (operator) sudah lengkap atau belum?

Terdapat dua masalah utama yang dihadapi

1	8	2	1	2	3
	4	3	4	5	6
7	6	5	7	8	

INITIAL STATE

GOALS STATE

Jenis Logic	Apa Yang Ada Didunia Nyata	Tentang Fakta
Propositional Logic	Fakta	Benar/Salah/Tidak Diketahui
First- Order-Logic	Fakta, Objek, Relasi	Benar/Salah/Tidak Diketahui
Temporal Logic	Fakta, Objek, Relasi, Waktu	Benar/Salah/Tidak Diketahui

Derajat Kebenaran

Fakta

Probability Theory

Fuzzy Logic

Apa Yang Dipercaya Agent

Derajat Kepercayaan [0,1]

Derajat Kepercayaan [0,1]

PROPOSITIONAL LOGIC

- Tata Bahasa pada propositional logic
- Sebagai logic yang paling sederhana, propositional logic sangat mudah dipahami dan membuat kita lebih mudah membedakan teknik reasoning dengan teknik searching.

Simbol propositional logic:

- logical constants (True dan False),
- propositional symbols (misalnya P or Q),
- logical connectives ($^{\land}$, v, , \rightarrow , \rightarrow),
- kurang buka/tutup ()

Sentence → AtomicSentence ComplexSentence
AtomicSentence → True False P Q R
ComplexSentence → (Sentence) Sentence Connective Sentence ¬ Sentence
Connective $\rightarrow \land \lor \Leftrightarrow \Rightarrow$

Sematik pada propositional logic

Р	Q	¬P	P^Q	PvQ	P=>Q	P<=>Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

- Aturan Inferensi untuk Propositional Logic
- Modus Ponens atau implication-elimination

$$\frac{\alpha => \beta, \alpha}{\beta}$$

α	β	α => β
False	False	True
False	True	True
True	False	False
True	True	True

Aturan Inferensi untuk Propositional Logic And-elimination And-introduction $\alpha_1, \alpha_2, \ldots, \alpha_n$

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}{a_i}$$

 $\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n$

. Aturan Inferensi untuk Propositional Logic Or-introduction α_i

$$\alpha_1 \vee \alpha_2 \vee \dots \vee \alpha_n$$

Double-Negation-Elimination

$$\frac{\neg \neg \alpha}{\alpha}$$

Aturan Inferensi untuk Propositional Logic **Unit Resolution**

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

ekivalen dengan

 $\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\beta \vee \gamma}$

Resolution

 $\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma$

 $\neg \alpha \Rightarrow \gamma$

FIRST ORDER LOGIC

Objects Properties Relations Functions

```
Sentence → AtomicSentence
                                                                 Sentence Connective Sentence
     Quantifier Variable, ... Sentence
                                                             | ¬ Sentence
                                                                (Sentence)
  AtomicSentence → Predicate(Term,...) | Term = Term
                            Term → Function(Term,...)
| Constant
| Variable
                                                  records for our real for an Had agreement and a sure of some
                  Connective → ⇒ | ∧ | ∨ | ⇔ man | Ma
                    Quantifier → ∀ | ∃
                       Quantifier \rightarrow \forall \mid \exists
Constant \rightarrow A \mid X_1 \mid John \mid ...
                        Variable \rightarrow a \mid x \mid s \mid ...
                      Predicate → Before | HasColor | Raining | ...
                       Function → MotherOf | LeftLegOf | ...
```


Universal quantifiers (\forall)

Contoh: ∀x anakmuda(x)=> suka(x, seblak). Kalimat ini adalah benar jika dan hanya jika semua kalimat dibawah ini benar.

benar.
AnakMuda(Aa) => Suka(Aa,Seblak)^
AnakMuda(Adit) => Suka(Adit,Seblak)^

AnakMuda(Agus) => Suka(Agus,Seblak)^

Nested quantifiers

 $Vx,y Orang Tua(x,y) \Rightarrow Anak(y,x)$

Hubungan antara ∀ dan ₃

∀x Suka(x,Seblak) adalah ekivalen dengan ¬∃x¬ Suka(x,Seblak)

Universal Elimination

 $\frac{\forall v \ \alpha}{\text{SUBST}\left\{\frac{v}{g}\right\}, a}$

Dari ∀x Suka(x, Seblak), dapat digunakan substitusi (x/Adit) dan melakukan inferensi bahwa Suka(Adit, Seblak)

Existential Elimination

 $\frac{\exists v \ \alpha}{\text{SUBST}\left\{\frac{v}{k}\right\}, a}$

Dari $\exists x \; Saudara(x, Deni), kita dapat menyimpulkan Saudara(Deni, Dini), selama Andi tidak ada di dalam basis pengetahuan.$

Existential Introduction

 $\frac{\alpha}{\exists v \text{ SUBST}\left\{\frac{g}{v}\right\}, a}$

Dari Suka(Agus, Nasi) kita dapat menyimpulkan $\exists x \; Suka(x,Nasi).$

merepresentasikan masalah yang mengandung ketidakpastian kedalam suatu bahasa formal yang dipahami computer, menggunakan Fuzzy Logic. Fuzzines dan Probabilitas Fuzzy Set

suatu crisp set usia dan empat fuzzy set : balita,dewasa, muda,tua.

X	Balita	Dewasa	Muda	Tua
5	0	0	1	0
10	0	0	1	0
20	0	0.8	0.8	0.1
30	0	1	0.5	0.2
40	0	1	0.2	0.4
50	0	1	0.1	0.6
60	0	1	0	0.8
70	0	1	0	1
80	0	1	0	1

Konvensi penulisan Fuzzy

Konversi untuk menuliskan *fuzzy set* yang dihasilkan dari universe U yang diskrit adalah sebagai berikut :

$$A = \left\{ \frac{\mu A(X1)}{X1} + \frac{\mu A(X2)}{X2} + \dots \right\} = \left\{ \sum_{i} \frac{\mu A(Xi)}{Xi} \right\}$$

Fungsi Phi

Fungsi Trapesium

