	/ Utech
<i>Name</i> :	
Roll No.:	Contracting the Landson
Invigilator's Signature :	

CS/B.Tech (CE)/SEM-7/CE-703/2010-11 2010-11 FOUNDATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) The standard penetration resistance value N (blows/30 cm) for general shear failure of bearing capacity is
 - a) between 10 and 20
 - b) between 20 and 25
 - c) greater than/equal to 30
 - d) less than 30.
- ii) The net ultimate bearing capacity on fairly saturated homogeneous cohesive soils is equal to (as per IS code)
 - a) $c.N'_c.s_c.d_c.i_c$
 - b) $c.N'_c.S_c.d_c.i_c + \overline{\sigma}(N'_q 1).s_q.d_q.i_q$
 - c) $c.N'_{c}.S_{c}.d_{c}.i_{c} + \overline{\sigma}(N'_{q} 1).s_{q}.d_{q}.i_{q} + 0.5 \gamma B.N'_{\gamma}.s_{\gamma}.d_{\gamma}.i_{\gamma}$
 - d) $5.14 \text{ c.s}_{c}.d_{c}.i_{c}$.

7314 [Turn over

CS/B.Tech (CE)/SEM-7/CE-703/2010-11

a)
$$\gamma_{sat} - \gamma_{w}$$

b)
$$\gamma - \gamma_w$$

c)
$$\frac{1}{2} (\gamma - \gamma_{sat})$$

d) none of (a) (b) or (c).

iv) Shape factors as per IS 6403-1981 for square footing s_c , s_q , s_γ are respectively

- 1.3, 1.2, 0.8a)
- b) 1.2, 1.2, 0.8
- 1.3, 1.2, 0.6c)
- d) 1.2, 1.3, 0.6.

A shallow foundation is 2 m deep having water table at v) a depth of 1 m form ground surface. Unit weight of soil above and below the water table are 16 and 18 $\,\mathrm{kN/m^3}$ and that of water is 9.81 kN/m^3 . The effective surcharge at the base level of foundation is

- $24 \cdot 19 \text{ kN/m}^2$ a)
- 24 kN/m^2 b)
- 25.5 kN/m^2 c)
- d) none of these.

The safe load Q_{st} on pile should not exceed vi)

- a) $Q_{st} = (0.25 f_{CK}). A_C$ b) $Q_{st} = (0.33 f_{CK}). A_C$
- c) $Q_{st} = (0.40 f_{CK}). A_C$ d) $Q_{st} = (0.50 f_{CK}). A_C$.

where $\ f_{\text{CK}}$ is the characteristic strength of concrete and $\boldsymbol{A}_{\mathrm{C}}$ is cross-sectional area of pile.

- vii) In a foundation of size 2 m × 4 m, the load is eccentric by 0.15 m in both the axes. The effective size of the foundation is
 - $1.7 \text{ m} \times 3.7 \text{ m}$ a)
- b) $1.85 \text{ m} \times 3.85 \text{ m}$
- $2.15 \text{ m} \times 3.85 \text{ m}$ c)
- d) $1.85 \text{ m} \times 4.15 \text{ m}$.
- viii) The size of a foundation is $2 \text{ m} \times 4 \text{ m}$. The depth of foundation is 1.5 m. The shape factor, $\,s_{_{\scriptscriptstyle C}}$ is equal to
 - 1.1 a)

b) 1.0

c) 1.85

- d) none of these.
- Inclination factor due to load inclined at α^0 with the ix) vertical is
 - a) $i_c = 1 \frac{\alpha}{90}$
- b) $i_{c} = \left(1 \frac{\alpha}{90}\right)^{2}$ d) $i_{c} = 1 \frac{\alpha}{\Phi}.$
- c) $i_c = \left(1 \frac{\alpha}{\Phi}\right)^2$

where Φ is angle of shearing resistance.

- In general shear failure of soil underneath shallow X) foundation, the soil wedge immediately beneath the footing is the zone of
 - a) Rankine's passive state
 - b) Radial shear state
 - Elastic equilibrium c)
 - d) None of these.

CS/B.Tech (CE)/SEM-7/CE-703/2010-11

xi)	The SPT-N value is the number o	f blows required to
	drive the sampler through the last	To Among card townships that I township

a) 15 cm

b) 30 cm

c) 45 cm

d) 50 cm.

xii) The type of sampler used in standard penetration test is

- a) Shelby tube sampler
- b) piston sampler
- c) split-spoon sampler
- d) any of these.

xiii) The depth of well foundation from the high flood level is at least

- a) 1.33 times the deepest scour depth
- b) 1.20 times the deepest scour depth
- c) 1.25 times the deepest scour depth
- d) 1.30 times the deepest scour depth.

xiv) For spread footings on sand the maximum allowable angular distortion is

4

a) 1/100

b) 1/150

c) 1/200

d) 1/300.

7314

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Write down the points required for soil report writing. What are the functions of Geotextiles?
- 3. What is the difference between bouancy raft and conventional raft? Differentiate between local shear failure & punching shear failure.
- 4. What are the different types of settlement that a shallow foundation can undergo?
- 5. Give neat sketch of a well foundation showing the various components.
- 6. Describe Chunk sample.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. Describe with neat sketches how the depth of exploration and lateral extent of exploration for different kind of foundations considered and finalised for execution. 10 + 5
- 8. Discuss standard penetration test. What are the various corrections ? What is the importance of the test in geotechnical engineering ? 6+6+3
- 9. a) State the limitation of Terzaghi's theory in predicting the bearing capacity of a shallow foundation footing on a cohesive deposit.
 - b) A footing of 2 m square is laid at a depth of 1·3 m below the ground surface. Determine net ultimate bearing capacity using IS code method. Given $\gamma = 20 \text{ kN/m}^3$, $\phi' = 20^\circ$, c' = 0, $N_c = 30 \cdot 14$, $N_q = 18 \cdot 14$, $N_\gamma = 22 \cdot 40$, $S_c = 1 \cdot 3$, $S_q = 1 \cdot 2$ and $S_\gamma = 0 \cdot 80$. 5 + 10

- 10. a) A group of 16 piles with 4 piles in a row was driven into a soft clay extending from ground level to a great depth. The diameter and the length of the piles were 30 cm and 12 m respectively. The unconfined compressive strength of the clay is 70 kN/m². The piles were placed at 90 cm centre to centre. Compute the allowable load on the pile group on the basis of a shear failure criterion for a factor of safety of 2.5 for the following conditions:
 - i) block failure and
 - ii) individual pile failure.

$$(N_c = 9, \alpha = 1, c = 70/2 = 35 \text{ KN/m}^2)$$

b) If the above pile group passes through a recently constructed fill cohesive soil of depth $L_{\rm n}$ = 3 m, $q_{\rm n}$ = 60 kN/m² and γ = 16 kN/m³, compute the negative frictional load on the pile group. $C_{\rm u}$ = 60/2=30 kN/m².

10 + 5

- 11. a) A concrete pile 30 cm diameter is driven into a medium dense sand (ϕ = 35°, N_q = 60, D_c/B = 12, γ = 21 kN/m^3 , K = 1·0, tan δ = 0·70) for a depth of 8 m. Estimate the safe load, taking a factor of safety of 2·50.
 - b) A square footing of width $2\cdot 2$ m is to be constructed in a homogeneous sand stratum at $1\cdot 0$ m below GL. The water table is located at a great depth. The properties of the sand are as follows:

$$\phi = 35^{\circ}$$
, c= 0, $\gamma = 18 \text{ kN/m}^3$

Determine the ultimate, net ultimate, net safe and safe bearing capacities of the footing. Assume a general shear failure. The factor of safety against shear failure may be taken as 3. Terzahgi's bearing capacity factors for $\phi = 35^\circ$ are

$$N_c = 57 \cdot 8, \ N_q = 41 \cdot 4, \ N_{\gamma} = 42 \cdot 4.$$
 15

7314

- 12. a) Discuss the effects of submergence on the bearing capacity of a shallow foundation.
 - b) A strip footing of width $2\cdot 0$ m is to be founded at a depth of $1\cdot 2$ m below GL in a loose sand deposit having the following properties :

$$\phi = 25^{\circ}$$
, c= 0, $\gamma = 17.8 \text{ kN/m}^3$

The water table is at a substantial depth below GL.

- Determine the ultimate and safe bearing capacities
 of the footing, with respect to a factor of safety of 3,
 using Terzaghi's bearing capacity equation.
- ii) Determine the percent change in the ultimate bearing capacity if the water table rises up to the base of the foundation. Given γ_{sat} = 18·13 kN/m³.

For
$$\phi = 25^{\circ}$$
, $N_q = 12 \cdot 7$, $N_c = 25 \cdot 10$, $N_{\gamma} = 9 \cdot 7$, $N_c = 14 \cdot 8$, $N_q = 5 \cdot 6$, $N_{\gamma} = 3 \cdot 2$. $5 + 10$