AN EVOLUTION OF CUBESAT SUBSYSTEM DESIGN METHODS FOR...

by

Matthew Philip Voll

A thesis submitted in partial fulfillment of the requirements for the degree

of

Master of Science

in

Electrical Engineering

MONTANA STATE UNIVERSITY Bozeman, Montana

April, 2017

©COPYRIGHT

by

Matthew Philip Voll

2017

All Rights Reserved

ACKNOWLEDGEMENTS

I would like acknowledge \dots Acknowledgments must be double spaced and is limited to one page.

TABLE OF CONTENTS

1.	INTRODUCTION	1
	Subsection Subsection Subsection Subsection With a Very Very Very Very Very Very Very Long Title Another Subsection With a Very Long Title.	1 2
2.	BACKGROUND	3
3.	DESIGN STUDY - SOLAR CELL EXPERIMENT	4
	Requirements and Conceptual Design Circuit Simulations and Calculations PCB Layout and Mechanical Design Calibration and Results	4 4
4.	DESIGN METHOD EXAMPLE: ELECTRICAL POWER SUB-SYSTEM	7
	Requirements and Conceptual Design Circuit Simulations and Calculations PCB Layout and Mechanical Design Lessons Learned and Future Work	11 11
5.	DESIGN STUDY - ELECTRICAL GROUND SUPPORT EQUIPMENT	12
	Requirements and Conceptual Design Circuit Simulations and Calculations PCB Layout and Mechanical Design Lessons Learned and Future Work	12 12
6.	FUTURE METHODS	13
7.	CONCLUSION	14
RE	EFERENCES CITED	15
ΔΤ	PPENDICES	16

TABLE OF CONTENTS - CONTINUED

APPENDIX A:	Example Code	. 17
APPENDIX B:	Example Schematic	. 19

LIST OF FIGURES

ure P	age
1 This block diagram represents the components of the FISCE load circuit and their functions.	5
2 The assembled FISCE load circuit on the backside of the solar panel substrate.	6
1 A simplified representation of the design method used in this chapter	8
2 Basic configuration of a direct energy transfer (DET) power subsystem, with primary current paths shown by arrows	8
Components of the Phoenix EPS and the connections that form the PDN of the spacecraft	9
4 New connector pinouts	9
5 New connector pinouts	10
6 New connector pinouts	10
7 New connector pinouts	10

ABSTRACT

The abstract must be single spaced and no more than 350 words, indent first line five spaces. The abstract must contain the following elements: (1) statement of the problem, (2) procedure or methods, (3) results, and (4) conclusions. Mathematical formulas, abbreviations, diagrams, and other illustrative materials should not be included. It should be written to be understood by a person who does not have expertise in the field.

INTRODUCTION

Welcome to the Montana State University electronic Thesis/Dissertation (ETD) LATEX template. In this chapter various sections, subsections, and subsubsections are created and filled with random text). In Ch. ?? methods to write equations and how to include figures and tables are explored. Conclusions are drawn in Ch. 7.

Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Subsection

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Subsubsection Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

For long subsection titles use the command \longsubsection{#1}{#2}, where #1 is the first line of the long title, and #2 is the second line of the long title. You can also pass an optional argument to this command that puts a shorter title in the table of contents as shown by the subsection below.

The are **not** similar commands for sections and subsubsections as these are not specified in the MSU style guide.

BACKGROUND

CubeSats are a growing industry and are becoming increasingly more capable and affordable space mission options. Off-the-shelf components can be used to develop complex missions....

DESIGN STUDY - SOLAR CELL EXPERIMENT

This subsystem design was part of the FIREBIRD-II mission, and was an electronic load used to measure the performance of a spacecraft's solar cells on orbit. By working with an industry partner, the SSEL was able to utilize cutting edge solar cell technology in exchange for providing the customer with low-cost flight heritage and useful environmental data. This chapter will focus on the design method used to fulfill the requirements as defined by the collaboration between the SSEL team and the customer. After discussing the subsystem requirements, the concept design can take shape, followed by the analyses and calculations performed to verify circuit functionality.

At this time, the SSEL relied on the Mentor Graphics PADS Suite for electrical computer aided design (ECAD), and integrated SPICE simulation was not a feature that was readily available. Therefore, simulations of the critical circuits and subcircuits was performed using LTSpice developed by Linear Technology. Then, a full schematic was captured in PADS for creating the PCB layout files and bill-of-materials needed for fabrication and assembly of the subsystem.

Requirements and Conceptual Design

Circuit Simulations and Calculations

PCB Layout and Mechanical Design

Calibration and Results

Figure 3.1: This block diagram represents the components of the FISCE load circuit and their functions.

Figure 3.2: The assembled FISCE load circuit on the backside of the solar panel substrate.

DESIGN METHOD EXAMPLE: ELECTRICAL POWER SUBSYSTEM

This subsystem was designed to facilitate expanded capabilities of the IT-SPINS mission. Building on successes of the electrical power subsystem (EPS) used for the FIREBIRD-II mission, the design of an updated version of the Phoenix EPS began in the Spring of 2016. The original design came out of necessity, and began a trend of using SSEL developed subsystems for CubeSat missions rather than purchasing and integrating off-the-shelf solutions.

This chapter provides an investigation of how IT-SPINS mission requirements made a significant overhaul of the Phoenix EPS mandatory. Then, a conceptual design that incorporates those requirements is presented. With a block diagram in place, several circuit simulations and calculations were performed to verify that components of the design would operate as intended once built. The method used in this example effectively used a hierarchical schematic structure to reuse several "blocks" and make the schematic less cluttered. However, simulations were not well integrated into the design flow and were difficult to track as the design matured; if a simulation was modified or updated the corresponding schematic changes had to be done manually. Similarly, support documents such as connector pin reference tables were in a constant state of flux as the design progressed.

Figure 4.1 is an overview of the processes involved in designing the Phoenix EPS. Ideally, these steps would be linked in only a linear progression, i.e. each step would need to be completed and approved before moving onto the next. The arrows show that during the simulation and schematic entry phases there was a need to revise the subsystems requirements and conceptual design material. Also, there was essentially only one formal approval step, made when the PCB was fully laid out and ready for fabrication.

Figure 4.1: A simplified representation of the design method used in this chapter.

Requirements and Conceptual Design

Figure 4.2: Basic configuration of a direct energy transfer (DET) power subsystem, with primary current paths shown by arrows.

Each resistor shown indicates a critical current sense location that is used to monitor the subsystem's status and performance. The inhibit switches shown indicate the locations at which the power path is broken for "safing" the satellite during test and launch; the physical switches are not located on the

Figure 4.3: Components of the Phoenix EPS and the connections that form the PDN of the spacecraft.

	A1	SFC_I2C	SFC_I2C			GND		GND	GND B2	GND
		SFC_I2C	SFC_I2C			SA1_INA	В3		SA B4	SA1_INA
	A5	SFC_SPI	SFC_SPI	A6		SA1_INB			SA B6	SA1_INB
		SFC_SPI	SFC_SPI			SA2_INA			SA B8	SA2_INA
	A9	SFC_SPI			RTC_RESET	SA2_INB	B9	SA	SA B10	SA2_INB
EPS_SDA					EPS_SCL	SA3_INA			SA B12	SA3_INA
EPS_IRQ	A13	EPS_I2C			EPS_RESET	SA3_INB			SA B14	SA3_INB
WDT_MON	A15	EPS_IO	EPS_IO	A16	PL3_EN	GND	B15	GND	GND B16	GND
COMM_BIAS	A17	COMM_IO			COMM_TMON	PL1_REG_5V0	B17	PL1	PL1 B18	PL1_REG_5V0
	A19	COMM_UART	COMM_UART	A20			B19	PL1	PL1 B20	
	A21	PL1_UART	PL1_UART			GND			GND B22	GND
	A23	PL1_IO	PL1_IO	A24		PL2_REG_5V0	B23	PL2	PL2 B24	PL2_REG_5V0
	A25	PL1_IO	PL1_IO			PL2_MAG_3V3	B25	PL2	PL2 B26	PL2_MAG_3V3
PL2_TLM	A27	PL2_UART	PL2_UART	A28		SYS_REG_3V3	B27	SYS	SYS B28	SYS_REG_3V3
CSS1A	A29	PL2_AN	PL2_AN	A30	CSS1B	GND	B29	GND	GND B30	GND
CSS2A	A31	PL2_AN	PL2_AN	A32	CSS2B	GND	B31	GND	GND B32	GND
CSS3A	A33	PL2_AN	PL2_AN	A34	CSS3B	PWR_SAFE	B33	FSW	FSW B34	PWR_SAFE
	A35	PL2_SPI	PL2_SPI	A36		PWR_UNSF	B35	FSW	FSW B36	PWR_UNSF
	A37	PL2_SPI	PL2_SPI			BAT_SAFE	B37	FSW	FSW B38	BAT_SAFE
	A39	PL2_SPI	PL2_SPI	A40		BAT_UNSF	B39	FSW	FSW B40	BAT_UNSF
		GSE_UART	GSE_UART			GND	B41		GND B42	GND
GSE_PGED	A43	GSE_PROG	GSE_PROG	A44	GSE_PGEC	DEP_UNREG	B43	SYS	SYS B44	DEP_UNREG
GSE_RESET	A45	GSE_IO	GSE_IO	A46	GSE_DISARM	SYS_UNREG			SYS B46	SYS_UNREG
GSE_SEL0	A47	GSE_IO	GSE_IO	A48	GSE_SEL1	SW_UNREG	B47	SYS	SYS B48	SW_UNREG
GSE_SEL2	A49	GSE_IO	GSE_IO	A50	GSE_SEL3	RTC_REG_3V3	B49	RTC	RTC B50	RTC_REG_3V3
RSW_INHIBIT	A51	GSE_IO	GSE_IO	A52	BAT_INHIBIT	GND	B51	GND	GND B52	GND

Figure 4.4: New connector pinouts.

GSE_SEL2	A1	GSE_IO	GSE_IO	B1	GSE_SEL3
GSE_SEL0	A2	GSE_IO	GSE_IO	B2	GSE_SEL1
GSE_RESET	A3	GSE_IO	GSE_IO	ВЗ	GSE_DISARM
GSE_PGED	A4	GSE_PROG	GSE_PROG	B4	GSE_PGEC
GSE_TLM	A5	GSE_UART	GSE_UART	B5	GSE_CMD
PL2_TLM	A6	PL2_UART	EPS_IO	B6	EPS_RESET
GSE_SDA	A7	EPS_I2C	EPS_I2C	B7	GSE_SCL
SYS REG 3V3	A8	SYS	GND	B8	GND
RSW_INHIBIT	A9	INHIBIT	INHIBIT	B9	BAT_INHIBIT
PWR_SAFE	A10	FSW	GND	B10	GND
PWR_SAFE	A11	FSW	GND	B11	GND
PWR_UNSF	A12	FSW	GND	B12	GND
PWR_UNSF	A13	FSW	GND	B13	GND
BAT_SAFE	A14	FSW	GND	B14	GND
BAT_SAFE	A15	FSW	GND	B15	GND
BAT_UNSF	A16	FSW	GND	B16	GND
BAT_UNSF	A17	FSW	GND	B17	GND

Figure 4.5: New connector pinouts.

BATTERY							
GND	A1	GND		PWR	B1	BAT_UNSF	
GND	A2	GND		PWR	B2	BAT_UNSF	
BAT_INHIBIT	A3	INHIBIT		TMON	B3	BAT_TMON	
GND	A4	GND		UNREG	B4	SYS_UNREG	
BAT_SDA	A5	SDA		SCL	B5	BAT_SDA	
			INHIBITS				
PWR_UNSF	A1	PWR		PWR	B1	PWR_SAFE	
PWR_UNSF	A2	PWR		PWR	B2	PWR_SAFE	
FSWA_C	A3	MON		MON	B3	FSWB_C	
BATT_SAFE	A4	PWR		PWR	B4	BATT_UNSF	
BATT_SAFE	A5	PWR		PWR	B5	BATT_UNSF	
SOLAR ARRAYS[13]							
GND		GND		PWRA		SA_INA	
GND		GND		PWRA		SA_INA	
GND		GND		CSSA	_	CSSA_IN	
GND		GND			B4	DEP_UNREG	
GND		GND		CSSB		CSSB_IN	
GND		GND		PWRB		SA_INB	
GND	A7	GND		PWRB	B7	SA_INB	

Figure 4.6: New connector pinouts.

Figure 4.7: New connector pinouts.

Circuit Simulations and Calculations

PCB Layout and Mechanical Design

Lessons Learned and Future Work

In this case, there were several times when the requirements, conceptual design, schematic, and PCB layout were all being updated and altered in parallel. As the IT-SPINS mission and the operation of its subsystems became more fully defined, the critically important EPS design had to be altered to maintain compatibility. In hindsight, these changes made the design method seem somewhat chaotic when

DESIGN STUDY - ELECTRICAL GROUND SUPPORT EQUIPMENT

This is the VOID EGSE design example.

Requirements and Conceptual Design

Circuit Simulations and Calculations

PCB Layout and Mechanical Design

Lessons Learned and Future Work

FUTURE METHODS

Investigating the possible methods for future use.

CONCLUSION

LATEX produces documents that look great, automatically handles references and citations, and easily incorporates figures and tables. This is not a guide to LATEX but rather an introduction to the MSU style. If you want more information about LATEX many introductory guides can be found online.

REFERENCES CITED

APPENDICES

APPENDIX A

EXAMPLE CODE

```
% MATLAB code to say 'hello world'
disp('Hello world')
```

APPENDIX B

EXAMPLE SCHEMATIC