Mathematical Analysis

Lecture

Philip Policki

12th October 2020

Contents

1	Rul	les	3		
2	Rec	quirements	3		
3	Notation				
	3.1	Number sets	3		
	3.2	Sets notation	3		
	3.3	Cartesian Product	4		
	3.4	Quantifiers	4		
4	Functions				
	4.1	The Vertical Line Test	5		
	4.2	Classes of functions	5		
	4.3	New functions from Old functions	6		
	4.4	Composite Functions	7		
	4.5	One-to-one functions	8		
		4.5.1 Horizontal Line Test	8		
5	Logarithms				
	5.1	Laws of logarithms	9		
6	Trig	gonometry	10		
	6.1	Trigonometric identities	11		
	6.2	Reduction formulas	12		
	6.3	Inverse of trigonometric functions / Cyclometric functions	12		

7	Sequences			
	7.1	Limit Laws for convergent sequences	14	
		7.1.1 Squeeze Theorem for sequences	14	

1 Rules

No textbook, so take notes. Classes are mandatory

2 Requirements

During the classes we will start with a quiz, every practice. To pass the course you need 50% of points from the quizzed. A Quizes is 15min every quiz is worth 5 points. You get points from your top 10 quizes.

3 Notation

3.1 Number sets

- 1. Natural Numbers $N = \{1, 2, 3, ...\}$
- 2. Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- 3. Rational $\mathbb{Q} = \{ \frac{p}{q}; p, q \in \mathbb{Z}, q \neq 0 \}$
- 4. Irrational $ex.: \sqrt{2}, \pi, \dots$
- 5. Real Numbers $\mathbb{R} = Rational + Irrational$

3.2 Sets notation

- $(a,b) = x \in R : a < x < b$
- $(a,b) = x \in R : a \le x \le b$
- $(a, \infty) = x \in R : x > a$
- (a,b) openinterval
- [a,b]-closedinterval

 $A \subset B$ A is a subset of B

 $x \in A$ X is an element of A, x belongs to A

 $x \not\in A$ X is not an element of A, x does not belong to A

3.3 Cartesian Product

Given two sets A and B, we can form the set consisting of all ordered pairs of the form (a, b) where $a \in A$ and $b \in B$. This set is called the Cartesian product of A and B and is denoted by AxB

$$AxB\{(a,b): a \in A, \in B\}$$

If A = B, then AxA is denoted by A^2

3.4 Quantifiers

- 1. Existential \exists "There exists x such that", "For at least one x"
- 2. Universal ∀ "For all x", "For each x", "For every x"

Example:

$$\exists t > 0 \ \forall \ x \in \mathbb{R} \ x^2 + 4x + 4 > t$$

The statement above is false

The negation of the statement:

$$\forall t > 0 \ \exists \ x_0 \in \mathbb{R} \ x_0^2 + 4x_0 + 4 \le t$$

4 Functions

A function f is a rule that assigns to each element x in a set A $\underbrace{\text{exactly one}}$ element , called f(x), in a set B.

In our class $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ The set A is called the domain of the function f and will be denoted D_f .

The range of the function f is the set of all possible values of f(x) as x varies throughout the domain. The range of f will be denoted by R_f .

The most common method for visualizing a function is its.

If f is a function with domain D_f then its graph is the set of ordered pairs.

$$\{(x,y) \in \mathbb{R}^2 \ x \in D_f, y = f(x)\}$$

Example:

Min function

$$f(x) = \min\{x, x^2\}$$

$$f(2) = \min\{2, 4\} = 2$$

$$f(\frac{1}{2}) = \min\{\frac{1}{2}, \frac{1}{4}\} = \frac{1}{4}$$
(1)

Absolute

$$f(x) = |x| = \{x, ifx \ge 0 \text{ or } -x, ifx - 2 < 0\}$$

$$f(x) = |x - 2| = \{x - 2, ifx \ge 0 \text{ or } -(x - 2), ifx - 2 < 0\}$$
 (2)

|x-a| represents the distance between x and a

4.1 The Vertical Line Test

A curve is the XY plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

4.2 Classes of functions

1. Periodic functions

We say that f is a periodic function if

$$\exists T > 0 \ \forall x \in D_f(x \pm T \in D_f \text{ and } f(x + T) = f(x))$$

A periodic function is a function that repeats its values after some determined period has been added to its independent variable.

2. Symmetric functions

• Even

A function f is called even if:

$$\forall x \in D_f \ (-x \in D_f) \text{ and } f(-x) = f(x)$$

The geometric significance of an even function is that its graph is symmetric with respect to the Y axis.

If f is even D_f is symmetric about the Y Axis.

• Odd

A function f is called odd if:

$$\forall x \in D_f(-x \in D_f) \text{ and } f(-x) = -f(x)$$

The graph of and odd function is symmetric about the origin. If an odd function is defined at x=0 then f(0) must be 0!!

Example: Check if function is even or odd.

$$f(x) = \frac{3^x - 3^{-x}}{x}$$

(a) Check if domain is symmetric

$$D_f = \mathbb{R} \setminus \{0\}$$

- (b) Substitute -x for x
- Monotonicity:

A function is monotonic if it is increasing, or decreasing, or nondecreasing, or non-increasing.

- Increasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I [(x_1 < x_2) \Rightarrow (f(x_1) < f(x_2))]$$

- Non-decreasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I \ [(x_1 < x_2) \Rightarrow (f(x_1) \le f(x_2))]$$

- Decreasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I [(x_1 < x_2) \Rightarrow (f(x_1) > f(x_2))]$$

- Non-increasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I \ [(x_1 < x_2) \Rightarrow (f(x_1) \ge f(x_2))]$$

Algebraic way to check monotonicity:

let
$$f(x) = \frac{1}{1+x^2}$$
 and $I = (-\infty, 0]$

Take any 2 points $x_1, x_2 \in I$ with $x_1 < x_2$.

fact any 2 points
$$x_1, x_2 \in T$$
 with $f(x_2) - f(x_1) = \frac{1}{1+x_2^2} - \frac{1}{1+x_1^2} = \frac{1+x_1^2-1+x_2^2}{(1+x_1^2)(1+x_2^2)} = \frac{(x_1-x_2)(x_1+x_2)}{(1+x_2^2)(1+x_1^2)} = \frac{1+x_1^2-1+x_2^2}{x_1-x_2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2} = \frac{1+x_1^2-1+x_1^2}{x_1-x_1^2}$

$$\frac{1+x_1-1+x_2}{(1+x_1^2)(1+x_2^2)} = (x_1-x_2)(x_1+x_2)$$

$$(1+x_2^2)(1+x_1^2)$$

 $x_1 - x_2 < 0$

$$x_1 - x_2 < 0$$

$$x_1 + x_2 < 0$$

New functions from Old functions

• Vertical and horizontal shifts: Suppose c > 0.

To obtain the graph of y = f(x) + c shift the graph of y a distance of c units upwards. If y = f(x) - c shift downwards.

To obtain the graph of y = f(x - c) shift the graph y a distance of c units to the right.

To obtain the graph of y = f(x+c) shift the graph y a distance of c units to the left.

• Vertical and horizontal stretching and reflecting:

Suppose c > 1.

To obtain the graph y = c * f(x) stretch y vertically by a factor of x.

To obtain the graph y = f(c * x) compress the graph of y horizontally by a factor of c.

To obtain the graph y = -f(x) reflect the graph of y about the y axis.

To obtain the graph y = f(-x) reflect the graph of y about the x axis.

• Algebra of functions:

let f and g be functions with domains D_f and D_g . Then the functions f_g , f-g, fg and $\frac{f}{g}$ are as follows:

$$(f \pm g)(x) = f(x) \pm g(x); D_{f+g} = D_f \cap D_g$$

$$(f * g)(x) = f(x) * g(x); D_{f*g} = D_f \cap D_g$$

 $(\frac{f}{g})(x) = \frac{f(x)}{f(g)}; D_{f+g} = D_f \cap D_g$

$$(\frac{f}{g})(x) = \frac{f(x)}{f(g)}; D_{f+g} = D_f \cap D_g$$

4.4 Composite Functions

Given 2 functions f and g the composite function is denoted by $f \circ g$ and is defined as $(f \circ g)(x) = f(g(x))$.

Example:

If $f(x) = \sqrt{2-x}$ and $g(x) = \sqrt{x}$, then:

$$(f \circ g)(x) = f(g(x)) = \sqrt{2 - \sqrt{x}}$$

$$(g \circ f)(x) = g(f(x)) = \sqrt{\sqrt{2-x}}$$

For a \sqrt{x} to be defined, we must have $x \geq 0$. For $\sqrt{2-\sqrt{x}}$ to be defined we must have a $2-\sqrt{x}\geq 0$ that is $\sqrt{x}\leq 2$ or $x\leq 4$. One can see that $D_{f\circ g}=[0,4]$ therefore $D_{g \circ f} = (-\infty, 2]$

Let
$$h(x) = 3^{\sqrt{x+3}}$$
, write it as $f \circ g$:
 $f(x) = 3^x$

$$g(x) = \sqrt{x+3}$$

$$(f^{-1} \circ f)(x) = x, \forall x \in D_f$$

$$(f \circ f^{-1})(x) = x, \forall x \in R_f$$

4.5 One-to-one functions

A function f is called an one-to-one function on a set $I \subset D_f$ $\forall x_1, x_2 \in I \ [(x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))]$ Example:

- (Strictly) increasing function are 1-1
- Exponential functions are 1-1

4.5.1 Horizontal Line Test

A function f in one-to-one if and only if no horizontal line intersects the graph at most once

Let f be a 1-1 function with a domain D_f and a range R_f . Then its inverse function f^{-1} has a domain $D_{f^{-1}} = R_f$ and $R_{f^{-1}} = D_f$ and is defined by:

$$(f^{-1})(y) = x \Leftrightarrow f(x) = y$$

Example:

Let $g(x) = 3 + x + 2^x$. Is g invertible? Yes, because its a strictly increasing function.

The inverse of $y = a^x$ is $y = \log_a x$ where a > 1.

The inverse of $y = a^x$ is $y = \log_a x$ where 0 < a < 1.

5 Logarithms

The logarithm to the bare a is defined as the inverse function of the exponential function with bare a, that is $y = \log_a x$ means that $x = a^y$

5.1 Laws of logarithms

- 1. $\log_a(bc) = \log_a b + \log_a c$
- $2. \, \log_a b^c = c * \log_a b$
- $3. \log_a \frac{b}{c} = \log_a b \log_a c$
- $4. \log_a c = \log_a b * \log_b c$

6 Trigonometry

A standard position of an angle occurs when we place its vertex at the origin of a coordinate system and initial side on the positive x-axis.

A positive angle is obtained by rotating the initial side counterclockwise until it coincides with the terminal side. Negative angles are obtained by a clockwise rotation. Angles can be measured in radians. Mandatory for this class.

For an acute angle α the trigonometric functions are defined as ratios.

The signs of the trig functions for angles in each of the quadrants can be remembered with: "All Students Take Calculus"

6.1 Trigonometric identities

We have a angle α and a point P(x, y)

- $\forall \alpha \in \mathbb{R} \sin^2 \alpha + \cos^2 \alpha = 1$
- $\forall \alpha \in \mathbb{R} \sin(-\alpha) = -\sin \alpha$
- $\forall \alpha \in \mathbb{R} \cos(-\alpha) = \cos \alpha$
- $\forall \alpha \in \mathbb{R} \sin(\alpha + 2\pi) = \sin(\alpha) \text{ and } \cos(\alpha + 2\pi) = \cos(\alpha)$
- $\sin(x+y) = \sin(x)\cos(y) + \cos(y)\sin(x)$
- $\sin(x y) = \sin(x)\cos(y) \cos(y)\sin(x)$
- $\sin(2x) = 2\sin(x)\cos(x)$
- If we denote $x+y=\alpha$ and $x-y=\beta$, then $\sin(\alpha)+\sin(\beta)=2\sin(\frac{\alpha+\beta}{2})*\cos(\frac{\alpha-\beta}{2})$
- cos(x+y) = cos(x)cos(y) sin(x)sin(y)
- $\cos(x y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
- $\cos(\alpha) + \cos(\beta) = 2\cos(\frac{\alpha+\beta}{2}) * \cos(\frac{\alpha-\beta}{2})$
- $\bullet \cos(2x) = \cos^2(x) \sin^2(x)$
- $\cos^2(x) = \frac{1+\cos(2x)}{2}$

6.2 Reduction formulas

- $\sin(\alpha + k\frac{\pi}{2}) = \sin(\alpha)\cos(k\frac{pi}{2}) + \cos(\alpha)\sin(k\frac{\pi}{2})$ when k is even $\pm\sin(\alpha)$ when k is odd $\pm\cos(\alpha)$
- $\cos(\alpha + l\frac{\pi}{2}) = \cos(\alpha)\cos(k\frac{\pi}{2}) \sin(\alpha)\sin(k\frac{\pi}{2})$ when k is even $\cos(\alpha)$ when k is odd $\pm\sin(\alpha)$

6.3 Inverse of trigonometric functions / Cyclometric functions

The function $\sin(x)$ is not 1-1 but if we consider $f(x) = \sin(x)$ for $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ as a 1-1 function The existing inverse is called $\arcsin(x) = y \Leftrightarrow \sin(y) = x$ and $\frac{-\pi}{2} \leq \frac{\pi}{2}$

The function $\cos(x)$ is not 1-1 but if we consider $f(x) = \cos(x)$ for $x \in [0, \pi]$ as a 1-1 function The existing inverse is called $\arccos(x) = y \Leftrightarrow \sin(y) = x$ and $0 \le \pi$

Example:

Show that $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$ $\arcsin(x) = \alpha \Leftrightarrow \sin(\alpha) = x$ and $\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$ $\arccos(x) = \beta \Leftrightarrow \cos(\beta) = x$ and $0 \leq \beta \leq \pi$

7 Sequences

A sequence can be thought of as a list of numbers written in a definite order ex. $a_1, a_2, ..., a_n$. The numbers have special names

 a_1 is called the first term of the sequence. (a_n) infinite sequence of numbers, $\{a_n\} = \{a_n : n \in \mathbb{N}\}.$

A sequence can be defined as a function whose domain is is the set \mathbb{N} . But we usually write a_n instead of the function notation f(n).

Sequences can be defined by:

- 1. By giving the formula for the nth term: $a_n = \frac{(-1)^{n+1}(n+\sqrt[n]{n})}{2^n}$
- 2. By a description: Let a_n be the digit in the n-th decimal place of the number $\sqrt{2}$
- 3. By a recursive relation: $f_1=1, f_2=1, f_n=f_{n-1}+f_{n-2} \ \forall \ n\geq 3$

7.1 Limit Laws for convergent sequences

If (a_n) and (b_n) are convergent sequences and c is a constant then:

1.
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

2.
$$\lim_{n\to\infty} (c*a_n) = c \lim_{n\to\infty} (a_n)$$

3.
$$\lim_{n\to\infty} (a_n * b_n) = \lim_{n\to\infty} (a_n) * \lim_{n\to\infty} (b_n)$$

4.
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} (a_n)}{\lim_{n\to\infty} (b_n)}$$
 if $\lim_{n\to\infty} (b_n) \neq 0$

5.
$$\lim_{n\to\infty} (a_n)^p = (\lim_{n\to\infty} a_n)^p$$

6.
$$\lim_{n\to\infty} (\sqrt[n]{a_n}) = \sqrt[k]{\lim_{n\to\infty} (a_n)}$$

7.
$$\lim_{n\to\infty} (\sqrt[n]{a}) = 1$$

8.
$$\lim_{n\to\infty} (\sqrt[n]{n}) = 1$$

7.1.1 Squeeze Theorem for sequences

If $a_n \leq b_n \leq c_n$ for $n \geq n_0$.

and

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$

A sequence a bounded above if there is a number such that $a_n \leq M$