CS 340 -	lecture 30 -	Nov 23	
	700		
- (:,) -			
5.3. LIN) IR	ACTABALITY		
(a) 100 1100 1	ha in it a fire	2 -1	$G \cdot G = G \cdot $
can we we	The number of Time	e of reduction of	Which ous to make
Conclusional as	bout he obice	ucy with which o	a problem a be
(C) (C) (C) (C) (C)	edy the efficie	acy will will s	proseed con ve
colved ?			
			4
focus only	on yes (no probl	eus "decision	prosileus
	U		
Example 50	Assume de	ision problem I	is reducible to
	-	l l	
, , , ,		10 10 10	Tworst (N) = θ (N ²)
deasion p	noblem J. No	2 "red with	I worst (N) = + (N)
/			
1-0, 10, 10	1 and a h	$C_{2}(x) = \mathcal{P}(x)$	T A (11) - A(1)2
Asshare W	is an argorium	solving o which	$T_{worst}(N) = \Theta(N^2)$
(NI ic the	G28 6 1.0 000	Glein Instance)	
(10 15 100	as of the poo	//	
	1 -		
instance x of P	red	>) +auc	e med(x) of P
instance x of P size (x) = N		> INSTRUC	e red(x) of P red(x)) = $O(N^2)$
Size(x) = N		size(i	$ed(x) = O(N^2)$
	,		
			A'
	1		· ·
solution to x	<		(ution to reday)
1 200 -14.500	01. 670. b. 00	(c) 1. flee	ו לו
A produces	solution to rec	(cx) in the	
() Size (red	$((\alpha)^2) = 0$	NY	
		- ' /	\7.
			Y , I
			algorithm A solution
			algoritum A solving Pit the O(N+)
	+ + + + + + + + + + + + + + + + + + + +		o o in the octor

Defruition 19. (a) A decision problem P is polynomially reducible to a decision problem P' if P is reducible to P' via a mapping "red" in O (p(N)) for some polynomial p. (b) A decision problem P is in (the complexity class) P if there is a (deterministic) algorithm in O(p(N)) solving P, for some polynomial p. (motractable problems) NOTE: If P is in IP and P is polynomially reducible to P' then P is in IP. => (i) p (yn reduction can prove that certain probableus are "tractable" / "easy". (ii) polyn. reduction an also prove a problem to be at least as "hard" as a known "hard" problem. Example 51. Hamiltonian Cycle Problem (HCP) given: an undirected graph G=(V, E) guestion: does 6 contain a Hamiltonian Cycle, r.e., a simple cycle containing all vel.

Example 52 Traveling Salesman Problem (TSP)

gren.

question: is there a simple cycle in G, containing all veV, such that the sum of its edge weights is at most k^2 ("a TS tour of length $\leq k$ ")

is there a mud-trip, is they every city exactly once, at a total distance of at most 350?

C,A,D,B,E,C -> 340 90 50 90 50 60 405!

HCP is polyn. reducible to TSP

instance of HCP

graph G=(V, E)

