

Shalurprod A.B= S A.B=1	a;b;	· C 0S	b	Kraz Ā×Ē	$\frac{1}{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	uht azbz — azbı — albz — B sin	azba a, bz azbi (<(,l,;	3)			Cotiolish Whit: Shk:		Newton's I. Träghei 2 Ahtiov 3. Actio	adne Ax. htsprinzip nsprinzip Reachio At.	: Fres=	0 , a~\mathrew{\text{w}}	Pq · Formel $X_{12} = -\left(\frac{p}{2}\right) \pm \sqrt{\frac{p}{2}}$ Milter was that $X_{12} = -\frac{1}{6} \pm \sqrt{\frac{p}{2}}$	(P)2 - 4	Erde Radius: 6371 km Rotation: 1670 km/n V _F = 40000 km/n
Einheiten:						· ·	Körpe				•	'					1		
Vorsatz Tera 10' Giga 10 Kilo 10'	<u>e</u>	: 10= : 13= ing: 10 ic: 13		U = O = V =	Kugel U=Z-(*; r O=4.4:r V==3.17:r L=2.1. m.r2			elschale ZM r²	/ //: () = (\cdot)	Zylinder: M= 287r.h O= 28rr2+28rh V= 17-r2.h hörperachse: L= 2mr2+2 L= 2mr2+2 L= 2mr2+2			- w. h²	Cylinder w Korperoche I= m. r ² L Korperoch I= ½m r ²	se:	Hohlzylinder tropperoduse: $I = \frac{1}{2} M (r_1^2 + r_2^2)$			
Dezi 10°7 Zenti 10°7 Milli 10°7 Mikmo 10°7 Nuno 10°7 Piko 10°	-1 2 3 -6	Druc Spaw Dehu Blash Visho	.k: 1 F wung: 1 wung: Wodul. e:1::1		·(m·s² · l kg·s · l kg·s		Dinne I tion I=1/2 Ende I	Dinner Stab L tiorperactise. $T = \frac{4}{3} \text{ W. } N^2$ Ende I tiorperactise. $T = \frac{4}{3} \text{ W. } N^2$		Ţ=	Quader: 1 Over flache: 1 = 12 M (02+b)		Scheibe			<u> </u>			
Piko 10^{-12} Umrechnung: Kwh' = $\frac{1}{3.6}$ ws' Drehmoment: $1 \text{ kg m}^2 \cdot \text{s}^{-2}$ Kwh' = $\frac{1}{3.6}$ ws' Drehmoment: $1 \text{ kg m}^2 \cdot \text{s}^{-2}$ $1 \text{ ha} = 10000 \text{ m}^2$ $1 \text{ cm}^3 = \frac{1}{1000000}$ m³ $1 \text{ cm}^3 = \frac{1}{1000000}$ m³ $1 \text{ cm}^3 = 10000 \frac{\text{kg}}{\text{m}^3}$ $1 \text{ cm}^3 = 10000 \frac{\text{kg}}{\text{m}^3}$							Eis 0.92 Erde 552 Gold 19.3 wasser 1			2 2 3 01293	kg · M ⁻³ 920 5520 19300 1000 1.293 2400-288	Bogenmak / Grad 0 0° 17/6 30° 17/4 45° 17/3 60° 17/2 90° 17 180° 2 17 270°		o° 0° 0° 0°	sin o Ableituu	$d = \frac{\text{Gege}}{\text{Hyp}}$ $d : \frac{1}{\text{Hyp}}$	Funktion	90° 35° 180°	Inhahkek tand = Gegenhahkel potenuse tand = Anhathel o'
	Holz 0.6-0.				600-300 1700-2001	3	2/r 360° × rad:) = × · 1	120 deay								
1 Pa 10-5 1 atm 1.0133 1.01 1 Torr 133103 133	0.58.0 1 0.98.0 1 0.98.0	5 0.0075 760	Ps; 14.5 145.10 ⁴ 14.69.6 1.93.10 ²	- 10 v - - -		- Zunahme	Vishos Blut Glyzerin Moloröl Wosser Luft	Temp 37 0 20 60 30 0 20 60	1410 81 200 18 100.65	Pa 5 4 10 ³	Aluminic Beton Bei Eisen Knochen Schnochen Sch	um Dannen Chub	odu)	AN w ⁻¹ 90 2 12 390 200	Druch-f	G=6.67	19-10 ⁻¹¹ 143-3 ⁻¹ 1722-10 ²⁻³ 1401 ⁻¹		
Wärmehapazit	töt	٠.		Reibur	ngszahle														
Aluminium Bismut	0.9 0.123	Cm 2 mol ^{-1, °} C 24.3 25.7 26.4	<u>-1</u>	Blech Kupter	Stahl Stahl Eisen Glas	0.7 0.5 (0.6 0.4 0.3												

36.9

m

25.6 24.5

28.3

24.9

J2:J 24.8 25.2

2.05

2.4

0.126

0.386

0.14

0.233

4.18

0.134

Blei

Gold

Kupter

Silber Wasser Walfram Zink

Quechsilber

Eis -10°C

Tetlon Tetlon Tetlon Stahl

Ski

Belou (tracken)

Beton (nass)

Schwee

0.04

0.04

1.0

0.3

0.1

0.04

0.04

0.8

0.25

0.05