General Data Flow Frameworks

Uday Khedker

(www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

September 2018

Part 1

About These Slides

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

 Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the following book

 M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

- Modelling General Flows
- Constant Propagation
- Strongly Live Variables Analysis
- Pointer Analyses

Heap Reference Analysis

(after mid-sem)

(after mid-sem)

(after mid-sem)

Part 2

Precise Modelling of General Flows

Complexity of Constant Propagation?

IIT Bombay

CS 618

Complexity of Constant Propagation?

Sep 2018 **IIT Bombay**

CS 618

Complexity of Constant Propagation?

CS 618

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
•••	

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
• • •	

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

• f^* is called the loop closure of f.

Loop Closure Boundedness

• Boundedness of *f* requires the existence of some *k* such that

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap \ldots \sqcap f^{k-1}(x)$$

This follows from the descending chain condition

• For efficiency, we need a constant k that is independent of the size of the lattice

IIT Bombay

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

Sep 2018 IIT Bombay

6/92

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

• Loop Closures of Bit Vector Frameworks are 2-bounded.

6/92

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

 $f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$

$$f^{2}(x) = f(Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen \cup (x - Kill)) - Kill)$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^{*}(x) = x \sqcap f(x)$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.
- Intuition: Since Gen and Kill are constant, same things are generated or killed in every application of f.

Multiple applications of f are not required unless the input value changes.

Sep 2018 IIT Bombay

Larger Values of Loop Closure Bounds

- Both these conditions must be satisfied
 - Separability Data flow values of different entities are independent
 - Constant or Identity Flow Functions Flow functions for an entity are either constant or identity
- Non-fast frameworks

At least one of the above conditions is violated

General Frameworks: Precise Modelling of General Flows

^ ^ ^ . ^

f:L o L is $\langle \widehat{h}_1,\widehat{h}_2,\dots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

8/92

CS 618

 $f: L \to L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

Separable

General Frameworks: Precise Modelling of General Flows

Non-Separable

Example: All bit vector frameworks **Example: Constant Propagation**

CS 618

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Separable $\langle \widehat{x}_1, \widehat{x}_2, \ldots, \widehat{x}_m \rangle$

Non-Separable

$$\langle \widehat{x}_1, \widehat{x}_2, \dots, \widehat{x}_m \rangle$$
 f
 $\langle \widehat{y}_1, \widehat{y}_2, \dots, \widehat{y}_m \rangle$

Example: All bit vector frameworks

Example: Constant Propagation

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Non-Separable

 $f:L \to L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

CS 618

$\widehat{h}:\widehat{L}\to\widehat{L}$

Separable

 $\langle \widehat{x}_1, \widehat{x}_2, \ldots, \widehat{x}_m \rangle$ \widehat{h}_2

Example: All bit vector frameworks

Non-Separable

$$\langle \widehat{x}_1, \widehat{x}_2, \ldots, \widehat{x}_m \rangle$$

$$f$$

Example: Constant Propagation

Separability

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

 $\langle \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_m \rangle$

Non-Separable

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Example: All bit vector frameworks

Non-Separable

8/92

$$\widehat{h}:L\to\widehat{L}$$

Example: Constant Propagation

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate
Î Î	Î Î	$ \begin{array}{c} \widehat{\uparrow} & \widehat{\uparrow} \\ \widehat{\bot} & \widehat{\bot} \end{array} $	$\hat{\hat{\mathbf{I}}} \longrightarrow \hat{\hat{\mathbf{I}}}$

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate	
Î Î	Î Î	Î Î	Î	
Non-monotonicity				

CS 618

Larger Values of Loop Closure Bounds

General Frameworks: Precise Modelling of General Flows

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

IIT Bombay

General Frameworks: Precise Modelling of General Flows

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

IIT Bombay

Larger Values of Loop Closure Bounds

General Frameworks: Precise Modelling of General Flows

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$$

$$f(\langle \top, \top, \top, \top \rangle) = \langle \top, \top, \top, 2 \rangle$$

Sep 2018 IIT Bombay

Larger Values of Loop Closure Bounds

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$$

$$f^{2}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, 3, 2 \rangle$$

IIT Bombay

Larger Values of Loop Closure Bounds

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, \widehat{T}, 2 \rangle$$

$$f^{2}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, 4, 3, 2 \rangle$$

Sep 2018 IIT Bombay

Larger Values of Loop Closure Bounds

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f \text{ is not 2-bounded because:}$$

$$f(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, \widehat{T}, 2 \rangle$$

$$f^{2}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, 4, 3, 2 \rangle$$

$$f^{4}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, 4, 3, 2 \rangle$$

IIT Bombay

CS 618

Larger Values of Loop Closure Bounds

General Frameworks: Precise Modelling of General Flows

The summary flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$\begin{array}{c|c}
1 & & \\
2 & a = b + 1
\end{array}$$

$$\begin{array}{c|c}
b = c + 1 & 3
\end{array}$$

$$\begin{array}{c|c}
c = d + 1 & 4
\end{array}$$

$$\begin{array}{c|c}
d = 2
\end{array}$$

$$f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$$

$$f^{2}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, 4, 3, 2 \rangle$$

$$f^{4}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle 5, 4, 3, 2 \rangle$$

$$f^{5}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle 5, 4, 3, 2 \rangle$$

IIT Bombay

Part 3

Constant Propagation

Example of Constant Propagation

Sep 2018

. . . .

CS 618

MoP MFP

General Frameworks: Constant Propagation

Sep 2018

IIT Bombay

Component Lattice for Integer Constant Propagation

Π	$\langle v, ud \rangle$	$\langle v, nc \rangle$	$\langle v, c_1 angle$
$\langle v, ud \rangle$	$\langle v, ud \rangle$	$\langle v, nc \rangle$	$\langle v, c_1 angle$
$\langle v, nc \rangle$	$\langle v, nc \rangle$	$\langle v, nc \rangle$	$\langle v, nc \rangle$
$\langle v, c_2 \rangle$	$\langle v, c_2 \rangle$	$\langle v, nc \rangle$	If $c_1 = c_2$ then $\langle v, c_1 \rangle$ else $\langle v, nc \rangle$

Sep 2018 **IIT Bombay**

- In_n/Out_n values are mappings $\mathbb{V}ar \to \widehat{L}$: $In_n, Out_n \in \mathbb{V}ar \to \widehat{L}$ • Overall lattice L is a set of mappings \mathbb{V} ar $\rightarrow \widehat{L}$: $L = \mathbb{V}$ ar $\rightarrow \widehat{L}$

 - \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$
 - Partial order is restricted to data flow values of the same variable Data flow values of different variables are incomparable

$$(x, v_1) \sqsubseteq (y, v_2) \Leftrightarrow x = y \land v_1 \widehat{\sqsubseteq} v_2$$

$$OR \qquad x \mapsto v_1 \sqsubseteq y \mapsto v_2 \Leftrightarrow x = y \land v_1 \widehat{\sqsubseteq} v_2$$

▶ For meet operation, we assume that X is a total function Partial functions are made total by using \widehat{T} value

$$X \sqcap Y = \{(x, v_1 \widehat{\sqcap} v_2) \mid (x, v_1) \in X, (x, v_2) \in Y\}$$

$$OR \qquad X \sqcap Y = \{x \mapsto v_1 \widehat{\sqcap} v_2 \mid x \mapsto v_1 \in X, x \mapsto v_2 \in Y\}$$

CS 618

Notations for Mappings as Data Flow Values

Accessing and manipulating a mapping $X \subseteq A \rightarrow B$

- X(a) denotes the image of $a \in A$
 - $X(a) \in B$
- $X[a \mapsto v]$ changes the image of a in X to v

$$X[a \mapsto v] = (X - \{(a, u) \mid u \in B\}) \cup \{(a, v)\}$$

CS 618

General Frameworks: Constant Propagation

$$In_n = \begin{cases} BI = \{\langle y, ud \rangle \mid y \in \mathbb{V}ar\} & n = Start \\ \prod_{p \in pred(n)} Out_p & \text{otherwise} \end{cases}$$
 $Out_n = f_n(In_n)$

$$f_n(X) = \begin{cases} X [y \mapsto c] & n \text{ is } y = c, y \in \mathbb{V}\text{ar, } c \in \mathbb{C}\text{onst} \\ X [y \mapsto nc] & n \text{ is } input(y), y \in \textit{var} \\ X [y \mapsto X(z)] & n \text{ is } y = z, y \in \mathbb{V}\text{ar, } z \in \mathbb{V}\text{ar} \\ X [y \mapsto eval(e, X)] & n \text{ is } y = e, y \in \mathbb{V}\text{ar, } e \in \mathbb{E}\text{xpr} \\ X & \text{otherwise} \end{cases}$$

$$eval(e,X) = \begin{cases} nc & a \in Opd(e) \cap \mathbb{V}ar, X(a) = nc \\ ud & a \in Opd(e) \cap \mathbb{V}ar, X(a) = ud \\ -X(a) & e \text{ is } -a \\ X(a) \oplus X(b) & e \text{ is } a \oplus b \end{cases}$$

Sep 2018

Example Program for Constant Propagation

Example Program for Constant Propagation

	Iteration $\#1$	Changes in iteration #2	Changes in iteration #3	Changes in iteration #4
In_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}$			
Out_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{1}, \hat{\tau}$			
In_{n_2}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}$			
Out_{n_2}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$			
In_{n_3}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_3}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
In _{n4}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_4}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In _{n5}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
Out_{n_5}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In _{n6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2,\widehat{\perp},6,3,\widehat{\perp},\widehat{\perp}$
Out_{n_6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2,\widehat{\perp},6,3,\widehat{\perp},\widehat{\perp}$
In_{n_7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
Out_{n_7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
In _{n8}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2,\widehat{\perp},6,3,\widehat{\perp},\widehat{\perp}$
Out_{n_8}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,4,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$
In _{n9}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,\widehat{\perp},\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$	
Out_{n_9}	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$In_{n_{10}}$	$\widehat{\perp}, 2, \widehat{\tau}, \widehat{\tau}, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$Out_{n_{10}}$	$\hat{\perp}, 2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}$, $\widehat{\perp}$, 6, 3, $\widehat{\perp}$, $\widehat{\perp}$	

General Frameworks: Constant Propagation

General Frameworks: Constant Propagation

General Frameworks: Constant Propagation

$$f_n(X) = \left\{ \begin{array}{ll} X\left[y\mapsto c\right] & n \text{ is } y=c,y\in \mathbb{V}\text{ar, } c\in \mathbb{C}\text{onst} & (C1) \\ X\left[y\mapsto nc\right] & n \text{ is } input(y),y\in var & (C2) \\ X\left[y\mapsto X(z)\right] & n \text{ is } y=z,y\in \mathbb{V}\text{ar, } z\in \mathbb{V}\text{ar} & (C3) \\ X\left[y\mapsto eval(e,X)\right] & n \text{ is } y=e,y\in \mathbb{V}\text{ar, } e\in \mathbb{E}\text{xpr} & (C4) \\ X & \text{otherwise} & (C5) \end{array} \right.$$

General Frameworks: Constant Propagation

Monotonicity of Constant Propagation

- The proof obligation trivially follows for cases C1, C2, and C5
- For case C3, $X_1 \sqsubseteq X_2 \Rightarrow X_1(z) \sqsubseteq X_2(z)$
- For case C4, it requires showing
 X₁ ⊆ X₂ ⇒ eval(e, X₁) ⊆ eval(e, X₂)
 which follows from the definition of eval(e, X)

IIT Bombay

Non-Distributivity of Constant Propagation

Sep 2018 IIT Bombay

Non-Distributivity of Constant Propagation

•
$$x = \langle 1, 2, 3, ud \rangle$$
 (Along $Out_{n_1} \rightarrow In_{n_2}$)

IIT Bombay

General Frameworks: Constant Propagation

•
$$y = \langle 2, 1, 3, 2 \rangle$$
 (Along $Out_{n_3} \rightarrow In_{n_2}$)

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

Sep 2018

General Frameworks: Constant Propagation

$$n_1 \begin{bmatrix} a = 1 \\ b = 2 \\ c = a + b \end{bmatrix}$$

$$a = 1, b = 2$$

$$a = 1, b = 2$$

$$a = 1, b = 2$$

$$c = a + b \\ d = a * b$$

$$a = 2, b = 1$$

$$d = c - 1$$

 $n_3 \begin{vmatrix} a - c - 1 \\ a = 2 \\ b = 1 \\ c = a + b \end{vmatrix}$

CS 618

•
$$x = \langle 1, 2, 3, ud \rangle$$
 (Along $Out_{n_1} \rightarrow In_{n_2}$)
• $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

 $n_1 \left| egin{array}{c} a=1 \\ b=2 \\ c=a+b \end{array} \right| \quad ullet y=\langle 2,1,3,2 \rangle \; ext{(Along $Out_{n_3} o In_{n_2}$)} \ & \quad ext{Function application for block n_2 before merging} \end{array}$

$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$
$$= \langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$$
$$= \langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle$$

Sep 2018 **IIT Bombay**

Non-Distributivity of Constant Propagation

$$n_1 \begin{vmatrix} a = 1 \\ b = 2 \\ c = a + b \end{vmatrix}$$

$$a = 1, b = 2$$

$$y=\langle 2,1,3,2
angle$$
 (Along $Out_{n_3}
ightarrow$

• $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

$$n_1$$
 $b=2$ $c=a+b$ • $y=\langle 2,1,3,2\rangle$ (Along $Out_{n_3}\to In_{n_2}$) • Function application for block n_2 before merging

 $f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$ $=\langle 1,2,3,2\rangle \sqcap \langle 2,1,3,2\rangle$

20/92

$$= \langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$$

• Function application for block
$$n_2$$
 after merging
$$f(x \sqcap y) = f(\langle 1, 2, 3, ud \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$
$$= f(\langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle)$$
$$= \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

$$a = 2, b = 1$$

$$n_2$$

$$c = a + b$$

$$d = a * b$$

$$d = c - 1$$

$$a = 2$$

$$b = 1$$

$$c = a + b$$

Sep 2018 IIT Bombay

Non-Distributivity of Constant Propagation

$$n_1$$
 $b=2$ $c=a+$

a = 1, b = 2

 $n_3 \begin{vmatrix} d = c - 1 \\ a = 2 \\ b = 1 \\ c = a + b \end{vmatrix}$

•
$$x = \langle 1, 2, 3, ud \rangle$$
 (Along $Out_{n_1} \rightarrow In_{n_2}$)
• $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_3} \rightarrow In_{n_2}$)

$$n_1$$
 $b=2$ $c=a+b$ • $y=\langle 2,1,3,2\rangle$ (Along $Out_{n_3}\to In_{n_2}$)
• Function application for block n_2 before merging

$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$

= $\langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$
= $\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$

Function application for block n₂ after merging

$$f(x \sqcap y) = f(\langle 1, 2, 3, ud \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$

$$= f(\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle)$$

$$= \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$$

• $f(x \sqcap y) \sqsubset f(x) \sqcap f(y)$

a = 2, b = 1

Why is Constant Propagation Non-Distributive?

CS 618

Why is Constant Propagation Non-Distributive?

Possible combinations due to merging

$$a = 1$$
 $a = 2$ $b = 1$ $b = 2$

$$=1$$

a = 1

Possible combinations due to merging

a = 2 b = 1

Correct combination.

21/92

b = 2

Why is Constant Propagation Non-Distributive?

Possible combinations due to merging

Correct combination.

Why is Constant Propagation Non-Distributive?

a=1

Possible combinations due to merging

b=1

a=2

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

IIT Bombay

b=2

Why is Constant Propagation Non-Distributive?

a = 1

Possible combinations due to merging

b=1

a=2

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

b=2

 n_1 n_2 $n_3 \mid d = 2$ n_4 n_6 5 *n*₈ *n*₉ n_{10}

Tutorial Problem on Constant Propagation

How many iterations do we need?

Tutorial Problem on Constant Propagation

And now how many iterations do we need?

Tutorial Problem on Constant Propagation

And now how many iterations do we need?

Sep 2018

CS 618

IIT Bombay

CS 618

Summary flow function: (data flow value at node 7) $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1)$

Summary flow function: (data flow value at node 7)

$$(v_c+1),$$
 (v_a+1)
 \downarrow
 $f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$
 $f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$

 $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$

IIT Bombay

CS 618

Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

IIT Bombay

Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^3(\top) = \langle 1, 3, 2 \rangle$$

Summary flow function: (data flow value at node 7)

$$\begin{aligned} (v_c+1), \\ (v_a+1) \\ \rangle \end{aligned}$$

$$f^0(\top) &= \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle \\ f^1(\top) &= \langle 1, \widehat{\top}, \widehat{\top} \rangle \\ f^2(\top) &= \langle 1, \widehat{\top}, 2 \rangle \\ f^3(\top) &= \langle 1, 3, 2 \rangle \\ f^4(\top) &= \langle \widehat{\bot}, 3, 2 \rangle \end{aligned}$$

 $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$

Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^3(\top) = \langle 1, 3, 2 \rangle$$

$$f^4(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

(data flow value at node 7)
$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$$

Summary flow function:

$$(v_{c}+1),$$

$$(v_{c}+1),$$

$$(v_{a}+1)$$

$$\rangle$$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

$$f^{5}(\top) = \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1), (v_c + 1), (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^3(\top) = \langle 1, 3, 2 \rangle$$

$$f^4(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

$$f^6(\top) = \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

$$f^7(\top) = \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

Boundedness of Constant Propagation

General Frameworks: Constant Propagation

25/92

The moral of the story:

• The data flow value of every variable could change twice

IIT Bombay

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application

25/92

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times |Var|$

CS 618

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times |Var|$
- Boundedness parameter k is $(2 \times |\mathbb{V}ar|) + 1$

 n_{10}

 n_{10}

 n_{10}

 n_{10}

 n_{10}

Conditional Constant Propagation

 n_{10}

CS 618

Conditional Constant Propagation

Conditional Constant Propagation

 n_{10}

 n_{10}

Edition for Conditional Constant Propagation

notReachable
$$\widehat{L}$$
 \times \widehat{L} \times \widehat{L} \times \cdots \times \widehat{L}

- Let $\langle s, X \rangle$ denote an augmented data flow value where $s \in \{reachable, notReachable\}$ and $X \in L$.
- If we can maintain the invariant $s = notReachable \Rightarrow X = \top$, then the meet can be defined as

$$\langle s_1, X_1 \rangle \cap \langle s_2, X_2 \rangle = \langle s_1 \cap s_2, X_1 \cap X_2 \rangle$$

IIT Bombay

$$In_n = \begin{cases} \langle reachable, BI \rangle & n \text{ is } Start \\ \prod_{p \in pred(n)} g_{p \to n}(Out_p) & \text{otherwise} \end{cases}$$
 $Out_n = \begin{cases} \langle reachable, f_n(X) \rangle & In_n = \langle reachable, X \rangle \\ \langle notReachable, \top \rangle & \text{otherwise} \end{cases}$

•
$$label(m \rightarrow n)$$
 is T or F if edge $m \rightarrow n$ is a conditional branch

- $label(m \rightarrow n)$ is T or F if edge $m \rightarrow n$ is a conditional branch Otherwise $label(m \rightarrow n)$ is T
- evalCond(m, X) evaluates the condition in block m using the data flow values in X

 $g_{m \rightarrow n}(s, X) = \left\{ \begin{array}{ll} \langle s, X \rangle & \textit{label}(m \rightarrow n) \in \textit{evalCond}(m, X) \\ \langle \textit{notReachable}, \top \rangle & \textit{otherwise} \end{array} \right.$

Sep 2018 IIT Bombay

evalCond(m, X)					
$\{T,F\}$	Block m does not have a condition, or some variable in the condition is $\widehat{\bot}$ in X				
{}	No variable in the condition in block m is $\widehat{\bot}$ in X , but some variable is $\widehat{\top}$ in X				
{ <i>T</i> }	The condition in block m evaluates to T with the data flow values in X				
{ <i>F</i> }	The condition in block <i>m</i> evaluates to <i>F</i> with the data flow values in <i>X</i>				

IIT Bombay Sep 2018

	Iteration $\#1$	Changes in iteration #2	Changes in iteration #3
In _{n1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
In_{n_2}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_2}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$		
In_{n_3}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_3}	$R,\langle 2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_4}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_4}	$R, \langle 2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 7, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_5}	$N, \top = \langle \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top} \rangle$		
Out_{n_5}	$N, T = \langle \hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{T} \rangle$		
In_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In _{n7}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_7}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	
In _{n8}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_8}	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\perp}, \widehat{\perp} \rangle$		$R, \langle 2, 2, 6, 4, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_9}	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$	
Out_{n_9}	$R,\langle 2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	
$In_{n_{10}}$	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
$Out_{n_{10}}$	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, 9, \widehat{\bot} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$

30/92

Part 4

Strongly Live Variables Analysis

Strongly Live Variables Analysis

- A variable is strongly live if
 - ▶ it is used in a statement other than assignment statement, or (same as simple liveness)
 - ▶ it is used in an assignment statement defining a variable that is strongly live (different from simple liveness)
- Killing: An assignment statement, an input statement, or BI (this is same as killing in simple liveness)
- Generation: A direct use or a use for defining values that are strongly live (this is different from generation in simple liveness)

IIT Bombay

CS 618

8 27 28

0 0

Sep 2018 **IIT Bombay**

Understanding Strong Liveness

Sep 2018 IIT Bombay

32/92

Sep 2018

IIT Bombay

CS 618

Understanding Strong Liveness

32/92

Sep 2018

32/92

Sep 2018

Sep 2018

32/92

Sep 2018 **IIT Bombay**

32/92

Sep 2018 IIT Bombay

Strong Liveness y = xprint (z)Ø

32/92

Sep 2018

IIT Bombay

CS 618

Understanding Strong Liveness

IIT Bombay

 A variable is live at a program point if its current value is likely to be used later

CS 618

IT Bombay

33/92

Sep 2018 IIT Bombay

Live Variables Analysis. Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live

IIT Bombay

Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live

Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful

Sep 2018

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live

Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live
- Strong liveness is more precise than simple liveness

34/92

$$In_n = f_n(Out_n)$$
 $Out_n = \begin{cases} BI & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$

where,

CS 618

$$f_n(X) = \begin{cases} (X - \{y\}) \cup (Opd(e) \cap \mathbb{V}ar) & n \text{ is } y = e, e \in \mathbb{E}xpr, \ y \in X \\ X - \{y\} & n \text{ is } input(y) \\ X \cup \{y\} & n \text{ is } use(y) \\ X & \text{otherwise} \end{cases}$$

Sep 2018 IIT Bombay

Data Flow Equations for Strongly Live Variables Analysis

34/92

$$In_n = f_n(Out_n)$$
 $Out_n = \begin{cases} Bl & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$

where,

CS 618

 $f_n(X) = \left\{ \begin{array}{ll} (X - \{y\}) \cup (Opd(e) \cap \mathbb{V}ar) & n \text{ is } y = e, e \in \mathbb{E}xpr, \ y \in X \\ X - \{y\} & n \text{ is } input(y) \\ X \cup \{y\} & n \text{ is } use(y) \\ X & \text{otherwise} \end{array} \right.$ If y is not strongly live, the assignment is skipped using the "otherwise" clause

Sep 2018 IIT Bombay

- What is \widehat{L} for strongly live variables analysis?
- Is strongly live variables analysis a bit vector framework?

• Is strongly live variables analysis a separable framework?

• Is strongly live variables analysis distributive? Monotonic?

Bombay

35/92

- What is \hat{L} for strongly live variables analysis?
 - $\hat{L} = \{0, 1\}, 1 \square 0$
- Is strongly live variables analysis a bit vector framework?

Is strongly live variables analysis a separable framework?

Is strongly live variables analysis distributive? Monotonic?

35/92

Properties of Strongly Live Variable Analysis

- What is \widehat{L} for strongly live variables analysis?
 - $\widehat{L} = \{0,1\}, 1 \sqsubseteq 0$
- Is strongly live variables analysis a bit vector framework?
 - ► No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?

Is strongly live variables analysis distributive? Monotonic?

Properties of Strongly Live Variable Analysis

- What is \widehat{L} for strongly live variables analysis?
 - $\hat{L} = \{0, 1\}, 1 \square 0$
- Is strongly live variables analysis a bit vector framework?
 - ▶ No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?
 - ▶ No, because strong liveness of variables occurring in RHS of an assignment may depend on the variable occurring in LHS
- Is strongly live variables analysis distributive? Monotonic?

Properties of Strongly Live Variable Analysis

- What is \widehat{L} for strongly live variables analysis?
 - $\hat{L} = \{0, 1\}, 1 \square 0$
- Is strongly live variables analysis a bit vector framework?
 - ▶ No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?
 - ▶ No, because strong liveness of variables occurring in RHS of an assignment may depend on the variable occurring in LHS
- Is strongly live variables analysis distributive? Monotonic?
 - Distributive, and hence monotonic

We need to prove that

CS 618

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

IIT Bombay

We need to prove that

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

- Intuitively,
 - ▶ The value does not depend on the argument X
 - Incomparable results cannot be produced
 (A fixed set of variable are excluded or included)

IIT Bombay

CS 618

Formally,

We need to prove that

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

- Intuitively,
 - ► The value does not depend on the argument X
 - ► Incomparable results cannot be produced (A fixed set of variable are excluded or included)

We prove it for input(y), use(y), y = e, and empty statements independently

General Frameworks: Strongly Live Variables Analysis

Sep 2018 IIT Bombay

- For *input*(*y*) statement:
- For use(y) statement:

CS 618

For empty statement:

IIT Bombay

37/92

Sep 2018

Distributivity of Strongly Live Variables Analysis (2)

• For
$$input(y)$$
 statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$
= $(X_1 - \{y\}) \cup (X_2 - \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

For use(y) statement:

For empty statement:

37/92

Distributivity of Strongly Live Variables Analysis (2)

• For input(y) statement:
$$f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$$

= $(X_1 - \{y\}) \cup (X_2 - \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

• For
$$use(y)$$
 statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) \cup \{y\}$
= $(X_1 \cup \{y\}) \cup (X_2 \cup \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

For empty statement:

37/92

$$(X_2) = X_1 \cup X_2 = t_n(X_1) \cup t_n(X_2)$$

 $= (X_1 - \{y\}) \cup (X_2 - \{y\})$ = $f_n(X_1) \cup f_n(X_2)$

• For input(y) statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$

- For use(y) statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) \cup \{y\}$ = $(X_1 \cup \{y\}) \cup (X_2 \cup \{y\})$ = $f_n(X_1) \cup f_n(X_2)$
- For empty statement: $f_n(X_1 \cup X_2) = X_1 \cup X_2 = f_n(X_1) \cup f_n(X_2)$

IIT Bombay

37/92

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

General Frameworks: Strongly Live Variables Analysis

σρα(σ)/// ταπ τποισ απο σασσο.

•
$$y \in X_1, y \in X_2$$
.

• $y \in X_1, y \not\in X_2$.

• $y \notin X_1, y \notin X_2$.

IIT Bomba

_

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

For y = c statement. Let $T = opa(c) \cap Var$. There are three cases.

•
$$y \in X_1, y \in X_2$$
.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= (X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$$

$$= f_n(X_1) \cup f_n(X_2)$$

• $y \in X_1, y \notin X_2$.

• $y \notin X_1, y \notin X_2$.

38/92

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

•
$$y \in X_1, y \in X_2$$
.
 $f_n(X_1 \cup X_2)$

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= (X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$$

$$= f_n(X_1) \cup f_n(X_2)$$

 $= f_n(X_1) \cup f_n(X_2)$

•
$$y \in X_1, y \notin X_2$$
.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup (X_2) \qquad (\because y \notin X_2)$$

• $y \notin X_1, y \notin X_2$.

IIT Bomba

 $y \notin X_2 \Rightarrow f_n(X_2)$ is identity

38/92

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

 $f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{v\}) \cup Y$

 $= f_n(X_1) \cup f_n(X_2)$

 $= (X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$

 $= ((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$

•
$$y \in X_1, y \notin X_2$$
.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup (X_2)$$

$$= f_n(X_1) \cup f_n(X_2)$$

 $y \notin X_2 \Rightarrow f_n(X_2)$ is identity

• $y \notin X_1, y \notin X_2$. $f_n(X_1 \cup X_2) = X_1 \cup X_2 = f_n(X_1) \cup f_n(X_2)$ $(:: y \notin X_2)$

38/92

CS 618

• $v \in X_1, v \in X_2$.

39/92

Tutorial Problem for strongly Live Variables Analysis

Result of Strongly Live Variables Analysis

Node	Iterati	on #1	Iterat	ion #2	Iteration #3		Iteration #4	
Z	Out_n	In _n	Out _n	In _n	Out _n	In _n	Out _n	In _n
n_6	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
n_5	Ø	Ø	{a}	{a}	$\{a,b\}$	$\{a,b\}$	$\{a,b,c\}$	$\{a,b,c\}$
n_4	Ø	Ø	{a}	{a}	$\{a,b\}$	$\{a,c\}$	$\{a,b,c\}$	$\{a,c\}$
n_3	Ø	Ø	{a}	$\{b\}$	$\{a,b\}$	$\{b\}$	$\{a,b,c\}$	{ <i>b</i> , <i>c</i> }
n_2	Ø	{a}	$\{a,b\}$	$\{a,b\}$	$\{a,b,c\}$	$\{a,b,c\}$	$\{a,b,c\}$	$\{a,b,c\}$
n_1	{a}	Ø	$\{a,b\}$	{ <i>b</i> }	$\{a,b,c\}$	{b, c}	$\{a,b,c\}$	{b, c}

IIT Bombay

41/92

General Frameworks: Strongly Live Variables Analysis

- Instead of viewing liveness information as
 - ▶ a map \mathbb{V} ar $\rightarrow \{0,1\}$ with the lattice $\{0,1\}$,

view it as

- ▶ a map \mathbb{V} ar $\rightarrow \widehat{L}$ where \widehat{L} is the May-Must Lattice
- Write the data flow equations
- Prove that the flow functions are distributive

Part 5

Heap Reference Analysis

Motivating Example for Heap Liveness Analysis

If the while loop is not executed even once.

Motivating Example for Heap Liveness Analysis

If the while loop is executed once.

Motivating Example for Heap Liveness Analysis

If the while loop is executed twice.

43/92

CS 618

- Mappings between access expressions and I-values keep changing
- This is a rule for heap data
 For stack and static data, it is an exception!
- Static analysis of programs has made significant progress for stack and static data.

What about heap data?

- ► Given two access expressions at a program point, do they have the same I-value?
- ► Given the same access expression at two program points, does it have the same I-value?

Sep 2018 IIT Bombay

y = z = null

w = x

while (x.data < max)

x = x.rptr

y = y.lptr

3

y = x.lptr

z.sum = x.data + y.data

 $z = New class_of_z$

y.lptr.lptr = y.lptr.rptr = null

w = null

x.lptr = null

x.lptr = y.rptr = null

y.lptr = y.rptr = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

z.lptr = z.rptr = null

44/92

x = y = z = null

IIT Bombay

Sep 2018

```
y = z = null
```

1 w = x

3

w = null

2 while (x.data < max)

 $\{ \qquad \mathsf{x.lptr} = \mathsf{null}$

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

 $\mathsf{z.lptr} = \mathsf{z.rptr} = \mathsf{null}$

5 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

 $1 \quad w = x$

w = null

2 while (x.data < max)

 $\{$ x.lptr = null

 $3 \qquad x = x.rptr$

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

z.lptr = z.rptr = null

6 y = y.lptr y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)</p>

 $\{$ x.lptr = null

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z

 $\mathsf{z.lptr} = \mathsf{z.rptr} = \mathsf{null}$

6 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

x = x.rptr }
x.rptr = x.lptr.rptr = null
x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z

 $\mathsf{z.lptr} = \mathsf{z.rptr} = \mathsf{null}$

6 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

 $1 \quad \mathsf{w} = \mathsf{x}$

w = null

2 while (x.data < max)

 $\{ \qquad x.\mathsf{lptr} = \mathsf{null}$

x = x.rptr

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

 $\mathsf{z.lptr} = \mathsf{z.rptr} = \mathsf{null}$

6 y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

x = x.rptr } x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z

z.lptr = z.rptr = null

6 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{ x.lptr = null \}$

3 x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

 $z = New class_of_z$

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null

y = z = null

- $1 \quad \mathsf{w} = \mathsf{x}$
 - w = null
- 2 while (x.data < max)
- $\{ x.lptr = null \}$
- 3 x = x.rptr
 - x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null
- 4 y = x.lptr
 - x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null
- $5 z = New class_of_z$
 - z.lptr = z.rptr = null
- 6 y = y.lptr
 - y.lptr = y.rptr = null
- 7 z.sum = x.data + y.data
 - x = y = z = null

While loop is executed once

y = z = null

 $1 \quad w = x$

3

- w = null
- 2 while (x.data < max)
- $\{$ x.lptr = null
 - x = x.rptr
- x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null
- $4 \quad y = x.lptr$
 - x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null
- $5 z = New class_of_z$
 - z.lptr = z.rptr = null
- 6 y = y.lptr
 - y.lptr = y.rptr = null
- 7 z.sum = x.data + y.data
 - x = y = z = null

While loop is executed twice


```
y = z = null
w = x
w = null
```

while (x.data < max)

x.lptr = null

x = x.rptr

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

3

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

z.lptr = z.rptr = null

y = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null


```
y = z = null
w = x
```

w = nullwhile (x.data < max)

x.lptr = null

3 x = x.rptrx.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

z.lptr = z.rptr = nully = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

The memory address that x holds when the execution reaches a given program point is not an invariant of program execution


```
y = z = null
```

- 1 w = x
- w = null
- 2 while (x.data < max)

$$\{$$
 x.lptr = null

3 x = x.rptr } x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

- 5 z = New class_of_z
 - z.lptr = z.rptr = null
- 6 y = y.lptr y.lptr = y.rptr = null
 - z.sum = x.data + y.data
 - x = y = z = null

- The memory address that x holds when the execution reaches a given program point is not an invariant of program execution
- Whether we dereference lptr out of x or rptr out of x at a given program point is an invariant of program execution


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{ x.lptr = null$ $x = x.rptr \}$

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

6 y = y.lptr y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

- The memory address that x holds when the execution reaches a given program point is not an invariant of program execution
- Whether we dereference lptr out of x or rptr out of x at a given program point is an invariant of program execution
- A static analysis can discover only invariants

Stack Heap

y = z = null

 $1 \quad w = x$

w = null

2 while (x.data < max)

{ x.lptr = null 3 x = x.rptr }

x = x.rptr } x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

 $5 z = New class_of_z$

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.datax = y = z = null New access expressions are created. Can they cause exceptions?

An Overview of Heap Reference Analysis

• A reference (called a *link*) can be represented by an *access path*.

Eg. " $x \rightarrow lptr \rightarrow rptr$ "

- A link may be accessed in multiple ways
- Setting links to null
 - Alias Analysis. Identify all possible ways of accessing a link
 - Liveness Analysis. For each program point, identify "dead" links (i.e. links which are not accessed after that program point)
 - ► Availability and Anticipability Analyses. Dead links should be reachable for making null assignment.
 - ► Code Transformation. Set "dead" links to null

Assumptions

For simplicity of exposition

- Java model of heap access
 - ► Root variables are on stack and represent references to memory in heap.
 - ▶ Root variables cannot be pointed to by any reference.
- Simple extensions for C++
 - ▶ Root variables can be pointed to by other pointers.
 - Pointer arithmetic is not handled.

Key Idea #1: Access Paths Denote Links

Root variables: x, y, z

Field names : rptr, lptr

- Access path : x→rptr→lptr Semantically, sequence of "links"
- Frontier: name of the last link
- Live access path: If the link corresponding to its frontier is used in future

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the corresponding target object:

Example	Objects read	Live access paths
sum = x.rptr.data	x, O_1, O_2	$x, x \rightarrow rptr$
if $(x.rptr.data < sum)$	x, O_1, O_2	$x, x \rightarrow rptr$

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

Example	Objects read	Live access paths	
y = x.rptr	x, O_1	x, x.rptr	

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

Example	Objects read	Live access paths	
y = x.rptr	x, O_1	x, x.rptr	
x.lptr = y	x, O_1, y	<i>x</i> , <i>y</i>	

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the corresponding target object:

Example	Objects read	Live access paths	
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$	

Stack

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the corresponding target object:

Example	Objects read	Live access paths	
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$	
if $(y == x.lptr)$	x, O_1, y	$x, x \rightarrow lptr, y$	

Stack

Program

General Frameworks: Heap Reference Analysis

Live Access Paths Statement involving Effect of the statement on memory references the access paths Live Access Paths

CS 618

Semantic Information

51/92

52/92

reg laca #2 . Transfer of recess raths

General Frameworks: Heap Reference Analysis

CS 618

Rey lued #2. Hallsler of Access Fattis

General Frameworks: Heap Reference Analysis

52/92

Rey lucu #2: Transier of Access Futils

General Frameworks: Heap Reference Analysis

52/92

52/92

..

General Frameworks: Heap Reference Analysis

 $\{x, x \rightarrow r\}$

IIT Bombay

Key Idea #2 : Transfer of Access Paths

Key Idea #2: Transfer of Access Paths

52/92

x after the assignment is same as $x \rightarrow n$ before the assignment

53/92

Rey Idea #5 . Liveness Closure Officer Lift Allasing

General Frameworks: Heap Reference Analysis

x and y are node aliases x.n and y.n are link aliases

 $x \cdot n$ and $y \cdot n$ are link allases $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

53/92

CS 618

Rey luea #5. Liveness Closure Officer Link Aliasing

General Frameworks: Heap Reference Analysis

54/92

 $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

54/92

Sep 2018

Key Idea #4: Aliasing is Required with Explicit Liveness

IIT Bombay

55/92

55/92

IIT Bombay

55/92

Key Idea #4: Aliasing is Required with Explicit Liveness

IIT Bombay

55/92

55/92

1 x = y Explicit Liveness

General Frameworks: Heap Reference Analysis

Sep 2018

CS 618

use y.q.d

General Frameworks: Heap Reference Analysis

55/92

 $\{x, y, y \rightarrow p, y \rightarrow p \rightarrow q\} \{x, y, t, t \rightarrow q\}$

Sep 2018

CS 618

Key Idea #4: Aliasing is Required with Explicit Liveness

56/92

Notation for Defining Flow Functions for Explicit Liveness

- Basic entities
 - ▶ Variables $u, v \in \mathbb{V}$ ar
 - ▶ Pointer variables $w, x, y, z \in \mathbf{P} \subseteq \mathbb{V}$ ar
 - ▶ Pointer fields $f, g, h \in pF$
 - ▶ Non-pointer fields $a, b, c, d \in npF$
- Additional notation
 - ▶ Sequence of pointer fields $\sigma \in pF^*$ (could be ϵ)
 - Access paths $\rho \in \mathbf{P} \times pF^*$ Example: $\{x, x \rightarrow f, x \rightarrow f \rightarrow g\}$
 - ▶ Summarized access paths rooted at x or $x \rightarrow \sigma$ for a given x and σ
 - $x \rightarrow * = \{x \rightarrow \sigma \mid \sigma \in pF^*\}$
 - $x \rightarrow \sigma \rightarrow * = \{x \rightarrow \sigma \rightarrow \sigma' \mid \sigma' \in pF^*\}$

Data Flow Equations for Explicit Liveness Analysis

$$In_n = \left(Out_n - \mathsf{Kill}_n(Out_n)\right) \cup \mathsf{Gen}_n(Out_n)$$

$$Out_n = \begin{cases} Bl & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$$

57/92

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{ y \rightarrow \sigma \mid z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	Ø	<i>x</i> →*
x = null	Ø	<i>x</i> →*
other	Ø	Ø

Let A denote May Aliases at the exit of node n

Statement n	$Gen_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	${y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X}$	χ→∗
x.f = y	$\left\{y \rightarrow \sigma \mid \underbrace{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)}\right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	<i>x</i> →*
x = null	0	<i>x</i> →*
other	0	Ø

May link aliasing for soundness

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{y \rightarrow \sigma \mid \boxed{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)}\right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	x) > ∗
x = null	0	/ <→*
other	Ø	/ Ø

May link aliasing for soundness

Must link aliasing for precision

Let A denote May Aliases at the exit of node n

Statement <i>n</i>	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
If $x \notin \mathbb{R}$ Why If $x \to \mathbb{R}$ Why Why	is $y \notin \operatorname{Gen}_n(X)$ for $x.f = y$ when $x \notin A$ out _n , we can do dead code elimination is $y \notin \operatorname{Gen}_n(X)$ for $x = y.f$ when $x \to a$ or $x \notin \operatorname{Out}_n$, we can do dead code elimination is $x \notin \operatorname{Gen}_n(X)$ for $x.f = y$? If $x \to f \to \sigma \notin \operatorname{Out}_n$, we can do dead code if $\exists x \to f \to \sigma \in \operatorname{Out}_n$, then $\exists x \in \operatorname{Out}_n$ it will not be killed, so no need of $x \in \operatorname{Out}_n$.	on $\sigma \notin X$? nation ode elimination

Anticipability of Heap References: An All Paths problem

IIT Bombay

Anticipability of Heap References: An All Paths problem

Anticipability of Heap References: An All Paths problem

IIT Bombay

Anticipability of Heap References: An All Paths problem

IIT Bombay

Liveness of Heap References: An Any Path problem

Liveness of Heap References: An Any Path problem

Liveness of Heap References: An Any Path problem

IIT Bomba

Liveness of Heap References: An Any Path problem

IIT Bomba

Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

Liveness of Heap References: An Any Path problem

Infinite Number of Unbounded Access Paths

Rey idea #5. Using Graphs as Data How Values

Finite Number of Bounded Structures

Key Idea #6: Include Program Point in Graphs

$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$$

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n, ...\}$ Different occurrences of n's in an access path are Indistinguishable

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow r\}$ Different occurrences of n's in an access path are
Distinct

rey idea #0 : include i rogram i ont in Graphs

61/92

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow n, \ldots\}$ Different occurrences of n's in an access path are Indistinguishable $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow r\}$ Different occurrences of n's in an access path are Distinct .. = x.n.r.d(pattern of subsequent dereferences could be distinct)

Sep 2018 IIT Bombay

Rey luea #0 . Include Flogram Foint in Graphs

61/92

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow n, \ldots\}$ Different occurrences of n's in an access path are Indistinguishable (pattern of subsequent dereferences remains same) $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow r\}$ Different occurrences of n's in an access path are Distinct .. = x.n.r.d

Sep 2018 IIT Bombay

(pattern of subsequent dereferences could be distinct)

Key Idea #6: Include Program Point in Graphs

General Frameworks: Heap Reference Analysis

62/92

Inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

62/92

General Frameworks: Heap Reference Analysis

62/92

Inclusion of Program Point Facilitates Summarization

metasion of Frogram Fourt Facilitates Sammanzation

General Frameworks: Heap Reference Analysis

Iteration #1

inclusion of Frogram Fount Facilitates Summarization

General Frameworks: Heap Reference Analysis

63/92

inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

63/92

melacion en riogram romo racineaces Cammanizacion

Inclusion of Program Point Facilitates Summarization

inclusion of Frogram Foint Facilitates Summanzation

inclusion of Frogram Fourt Facilitates Summanzation

IIT Bombay

Inclusion of Program Point Facilitates Summarization

ipii

64/92

Program Fragment

Sep 2018 IIT Bombay

Access Graph and Memory Graph

CS 618

Sep 2018 IIT Bombay

Access Graph and Memory Graph

IIT Bombay

64/92

Access Graph and Memory Graph

• Memory Graph: Nodes represent locations and edges represent links (i.e. pointers).

IIT Bombay

- Memory Graph: Nodes represent locations and edges represent links (i.e. pointers).
- Access Graphs: Nodes represent dereference of links at particular statements. Memory locations are implicit.

Lattice of Access Graphs

- Finite number of nodes in an access graph for a variable
- \forall induces a partial order on access graphs
 - ⇒ a finite (and hence complete) lattice
 - ⇒ All standard results of classical data flow analysis can be extended to this analysis.

Termination and boundedness, convergence on MFP, complexity etc.

CS 618

• Path Removal

 $G\ominus R$ removes those access paths in G which have $ho\in R$ as a prefix

- Factorization (/)
- Extension

Defining Factorization

Given statement x.n = y, what should be the result of transfer?

Live AP	Memory Graph	Transfer	Remainder
<i>x</i> → <i>n</i> → <i>r</i>	$x \rightarrow 0$	y→r	r (LHS is contained in the live access path)
x→n	$x \rightarrow 0$	У	ϵ (LHS is contained in the live access path)
x	$x \rightarrow 0$	no transfer	?? (LHS is not contained in the live access path)

Defining Factorization

Given statement x.n = y, what should be the result of transfer?

Live AP	Memory Graph	Transfer	Remainder
<i>x</i> → <i>n</i> → <i>r</i>	$\begin{array}{c} x \to 0 \\ y \end{array}$	y→r	r (LHS is contained in the live access path)
x→n	$x \rightarrow 0$ $y \rightarrow 0$ $y \rightarrow 0$	У	ϵ (LHS is contained in the live access path)
x	$x \rightarrow 0$ $y \rightarrow 0$ $y \rightarrow 0$ $y \rightarrow 0$	no transfer	?? (LHS is not contained in the live access path) Quotient is empty So no remainder

Semantics of Access Graph Operations

- P(G) is the set of all paths in graph G
- P(G, M) is the set of paths in G terminaing on nodes in M
- *S* is the set of remainder graphs
- P(S) is the set of all paths in all remainder graphs in S

Operation		Access Paths
Union	$G_3 = G_1 \uplus G_2$	$P\left(G_{3} ight)\supseteq P\left(G_{1} ight)\cup\ P\left(G_{2} ight)$
Path Removal	$G_2=G_1\ominus X$	$P(G_2) \supseteq P(G_1) - \{\rho \rightarrow \sigma \mid \rho \in X, \rho \rightarrow \sigma \in P(G_1)\}$
Factorization	$S=G_1/\rho$	$P(S) = \{ \sigma \mid \rho \rightarrow \sigma \in P(G_1) \}$
	$G_2 = (G_1, M) \# \emptyset$	$P\left(G_{2}\right)=\emptyset$
Extension	$G_2 = (G_1, M) \# S$	$P(G_2) \supseteq P(G_1) \cup \{\rho \rightarrow \sigma \mid \rho \in P(G_1, M), \ \sigma \in P(S)\}$

Sep 2018 IIT Bombay

Semantics of Access Graph Operations

- P(G) is the set of all paths in graph G
- P(G, M) is the set of paths in G terminaing on nodes in M
- S is the set of remainder graphs
- P(S) is the set of all paths in all remainder graphs in S

Operation		Access Paths
Union	$G_3 = G_1 \uplus G_2$	$P\left(G_{3} ight)\supseteq P\left(G_{1} ight)\cup\ P\left(G_{2} ight)$
Path Removal	$G_2=G_1\ominus X$	$P(G_2) \supseteq P(G_1) - \{\rho \rightarrow \sigma \mid \rho \in X, \rho \rightarrow \sigma \in P(G_1)\}$
Factorization	$S = G_1/\rho$	$P(S) = \{ \sigma \mid \rho \rightarrow \sigma \in P(G_1) \}$
	$G_2 = (G_1, M) \# \emptyset$	$P(G_2) = \emptyset$
Extension	$G_2 = (G_1, M) \# S$	$P(G_2) \supseteq P(G_1) \cup \{\rho \rightarrow \sigma \mid \rho \in P(G_1, M), \ \sigma \in P(S)\}$

 σ represents remainder

Union	Path Removal	Factorisation	Extension

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g₁ → (x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g_3 $\Rightarrow (x) \rightarrow (l_1)$	$rg_1 \rightarrow r_2$
2 y = x.r.d	$ \begin{array}{c} g_4 \\ \rightarrow (I_1) \rightarrow (r_2) \end{array} $	g_5 x $\downarrow l_1$ $\downarrow r_2$	g_6 x r_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$			
$g_2 \uplus g_4 = g_5$			
$g_5 \uplus g_4 = g_5$			
$g_5 \uplus g_6 = g_6$			

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g ₃ → (I ₁)	$rg_1 \rightarrow r_2$
2 y = x.r.d	g_4 \Rightarrow $(I_1) \Rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
	$g_6 \ominus \{x \rightarrow I\} = g_2$		
	$g_5 \ominus \{x\} = \mathcal{E}_G$		
	$g_4 \ominus \{x \rightarrow r\} = g_4$		
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$		

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g ₃ → (I ₁)	$rg_1 \rightarrow r_2$
2 y = x.r.d	g_4 \Rightarrow $(l_1) \rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	$g_6 \ominus \{x \rightarrow I\} = g_2$		
$g_2 \uplus g_4 = g_5$			
	$g_4 \ominus \{x \rightarrow r\} = g_4$		
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$	$g_4/x \rightarrow r = \emptyset$	

IIT Bombay

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g ₃ → (x)→(l ₁)	$rg_1 \rightarrow rg_2$
2 y = x.r.d	g_4 \Rightarrow $(l_1) \Rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

	Union	Path Removal	Factorisation	Extension
g ₃	$\forall g_4 = g_4$	$g_6 \ominus \{x \rightarrow I\} = g_2$	$g_2/x = \{rg_1\}$	$(g_3, \{l_1\}) \# \{rg_1\} = g_4$
	$\uplus g_4 = g_5$, (- , - ,	$(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$
		$g_4\ominus\{x\rightarrow r\}=g_4$		$(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$
g_5	$ \uplus g_6 = g_6 $	$g_4 \ominus \{x \rightarrow I\} = g_1$	$g_4/x \rightarrow r = \emptyset$	$(g_2,\{r_2\}) \# \emptyset = \mathcal{E}_G$

Sep 2018 IIT Bombay

CS 618

Access Graph Operations: Examples

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	$g_6 \ominus \{x \rightarrow I\} = g_2$	$g_2/x = \{rg_1\}$	$(g_3, \{l_1\}) \# \{rg_1\} = g_4$
$g_2 \uplus g_4 = g_5$, ,		$(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$
$g_5 \uplus g_4 = g_5$	$g_4 \ominus \{x \rightarrow r\} = g_4$	$g_5/x \rightarrow r = \{\epsilon_{RG}\}$	$(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$	$g_4/x \rightarrow r = \emptyset$	$(g_2,\{r_2\})\#\emptyset=\mathcal{E}_G$
		•	<u></u>

Remainder is empty

Quotient is empty

General Frameworks: Heap Reference Analysis

- In_n , Out_n , and Gen_n are access graphs
- Kill_n is a set of access paths

IIT Bombay

70/92

CS 618

Version

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{ y \rightarrow \sigma \mid z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	Ø	<i>x</i> →*
x = null	Ø	<i>x</i> →*
other	Ø	Ø

IIT Bomba

Version

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{y \rightarrow \sigma \mid \underbrace{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)}\right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	<i>x</i> →*
x = null	0	<i>x</i> →*
other	0	Ø

May link aliasing for soundness

Flow Functions for Explicit Liveness Analysis: Access Paths Version

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$		
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*		
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*		
x.f = y	$\left\{ y \rightarrow \sigma \mid \left(z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$		
x = new	0	x /> ∗		
x = null	0	/ ⟨→∗		
other	0	/ Ø		
May link aliasing for soundness Must link aliasing for precision		nk aliasing for precision		

Sep 2018

CS 618

General Frameworks: Heap Reference Analysis

- A denotes May Aliases at the exit of node n
- $mkGraph(\rho)$ creates an access graph for access path ρ

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	mkGraph(y)#(X/x)	{x}
x = y.f	$mkGraph(y \rightarrow f) \# (X/x)$	{x}
x.f = y	$mkGraph(y)\#\left(\bigcup_{z\in A(x)}(X/(z\rightarrow f))\right)$	$\{z \rightarrow f \mid z \in Must(A)(x)\}$
x = new	Ø	{x}
x = null	Ø	{x}
other	Ø	Ø

 $\Rightarrow x \rightarrow l_4 \rightarrow l_6$

General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: Ist Iteration

CS 618

General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: 2nd Iteration

CS 618

General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: 3rd Iteration

 $\mathsf{w}=\mathsf{x}$

CS 618

General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: 4th Iteration

CS 618

Tutorial Problem for Explicit Liveness (1) Construct access graphs at the entry of block 1 for the following programs

В

construct access graphs at the entry of block I for the following programs

C

77/92

IIT Bombay

Α

Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

Sep 2018

IIT Bombay

Construct access graphs at the entry of block 1 for the following programs

В

Α

Tutorial Problem for Explicit Liveness (1)

77/92

Construct access graphs at the entry of block 1 for the following programs

Tutorial Problem for Explicit Liveness (2)

- Unfortunately the student who constructed these access graphs forgot to attach statement numbers as subscripts to node labels and has misplaced the programs which gave rise to these graphs
- Please help her by constructing CFGs for which these access graphs represent explicit liveness at some program point in the CFGs

Tutorial Problem for Explicit Liveness (3)

- Compute explicit liveness for the program.
- Are the following access paths live at node 1?
 Show the corresponding execution sequence of statements

P1 : $y \rightarrow m \rightarrow l$ P2 : $y \rightarrow l \rightarrow n \rightarrow m$ P3 : $y \rightarrow l \rightarrow n \rightarrow l$

P4: $y \rightarrow n \rightarrow l \rightarrow n$

Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f$ = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Which Access Paths Can be Nullified?

Can be safely dereferenced

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) for each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

IIT Bombay

Which Access Paths Can be Nullified?

Can be safely dereferenced

Consider link aliases at p

Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f$ = null at p subject to profitability

For simple access paths, ρ is empty and f is the root variable name.

IIT Bomba

Which Access Paths Can be Nullified?

Can be safely dereferenced

Consider link aliases at *p*

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) for each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Cannot be hoisted and is not redefined at p

Sep 2018 IIT Bombay

General Frameworks: Heap Reference Analysis

- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.

IIT Bombay

81/92

CS 618

Availability and Anticipability Analyses

General Frameworks: Heap Reference Analysis

- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.
- Finiteness.
 - An anticipable (available) access path must be anticipable (available) along every paths. Thus unbounded paths arising out of loops cannot be anticipable (available).
 - ▶ Due to "every control flow path nature", computation of anticipable and available access paths uses \cap as the confluence. Thus the sets are bounded.
 - \Rightarrow No need of access graphs.

Transfer in Availability and Anticipability Analysis

General Frameworks: Heap Reference Analysis

The essential idea of the transfer of access paths remains same

Transfer in Availability Analysis is from the RHS to the LHS

$$\begin{array}{c|c} & \rho_r \to \sigma \text{ available here} \\ \hline \rho_l = \rho_r \\ \hline & \rho_l \to \sigma \text{ available here} \end{array}$$

Transfer in Anticipability Analysis is from the LHS to the RHS

 $\begin{array}{c|c} & & & & \\ & & & \\ \hline & \\ \hline & & \\ \hline &$

IIT Bombay

General Frameworks: Heap Reference Analysis

\emptyset

Anticipability Analysis of Example Program

{*x*}

General Frameworks: Heap Reference Analysis

y = z = null

x = y = z = null

Sep 2018

CS 618

y = z = null

General Frameworks: Heap Reference Analysis

```
w = null
   while (x.data < max)
                                 x.lptr = null
3
          x = x.rptr
                                x.rptr = x.lptr.rptr = null
                                x.lptr.lptr.lptr = null
                                x.lptr.lptr.rptr = null
4 y = x.lptr
                                x.lptr = y.rptr = null
```

w = x

z.lptr = z.rptr = nully = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

 $z = New class_of_z$

87/92

Sep 2018

CS 618

y.lptr.lptr = y.lptr.rptr = null

• The program allocates $x \rightarrow p$ in one iteration and uses it in the next

 The program allocates x→p in one iteration and uses it in the next

- The program allocates $x \rightarrow p$ in one iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2

- The program allocates $x \rightarrow p$ in one iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2

The program allocates $x \rightarrow p$ in one

- iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out₂
- x→p→p is live at Out₂ $x \rightarrow p \rightarrow p \rightarrow p$ is dead at Out_2
- First p used in statement 3 Second p used in statement 4
- Third p is reallocated

Second occurrence of a dereference does not necessarily mean an unbounded number of repetitions!

The program allocates $x \rightarrow p$ in one

- iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2
- $x \rightarrow p \rightarrow p$ is live at Out_2 $x \rightarrow p \rightarrow p \rightarrow p$ is dead at Out_2
- First p used in statement 3
 Second p used in statement 4
- Third p is reallocated

use x.r.d

General Frameworks: Heap Reference Analysis

Non-Distributivity of Explicit Liveness Analysis

x.n = null

6 x = x.n

Sep 2018

use x.n.d

CS 618

IIT Bombay

use x.r.d

General Frameworks: Heap Reference Analysis

Non-Distributivity of Explicit Liveness Analysis

x.n = null

use x.n.d

CS 618

Non-Distributivity of Explicit Liveness Analysis

89/92

Non-Distributivity of Explicit Liveness Analysis

89/92

Non-Distributivity of Explicit Liveness Analysis

use x.r.d

8

89/92

use x.n.d

Non-Distributivity of Explicit Liveness Analysis

IIT Bombay

89/92

Non-Distributivity of Explicit Liveness Analysis

89/92

Non-Distributivity of Explicit Liveness Analysis

89/92

.

General Frameworks: Heap Reference Analysis

89/92

Sep 2018

Non-Distributivity of Explicit Liveness Analysis

CS 618

Non-Distributivity of Explicit Liveness Analysis

CS 618

Non-Distributivity of Explicit Liveness Analysis

89/92

IIT Bombay

89/92

IIT Bombay

Non-Distributivity of Explicit Liveness Analysis

CS 618

Non-Distributivity of Explicit Liveness Analysis

Issues Not Covered

General Frameworks: Heap Reference Analysis

- Precision of information
 - Cyclic Data Structures

Properties of Data Flow Analysis:

Eliminating Redundant null Assignments

- Monotonicity, Boundedness, Complexity
- Interprocedural Analysis
- Extensions for C/C++
- Formulation for functional languages
- Issues that need to be researched: Good alias analysis of heap

IIT Bon

CS 618

IIT Bombay

Conclusions

- Unbounded information can be summarized using interesting insights
 - ► Contrary to popular perception, heap structure is not arbitrary

 Heap manipulations consist of repeating patterns which bear a close resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings between access expressions and I-values keep changing

