Serial No. 09/943,078

Docket No. MIO 0083 PA/40509.162

Amendments to the Claims:

This listing of claims will replace all prior versions, and lists, of claims in the application:

Claims 1-49. (Canceled)

- 50. (Currently amended) A method of fabricating a semiconductor device comprising:
 - forming a damascone trench in a first dielectric layer over a base substrate, said damascone trench having a gate area and a local interconnect area;
 - depositing a conductive layer over said base substrate such that said damascene trench is filled with a conductive material:
 - planarizing said device to define a damascene structure including a damascene gate structure and a damascene local intercennect structure electrically coupled by said conductive material within said damascene trench, wherein said damascene local intercennect structure forms a direct connection to said base substrate;
 - providing at least one implant contact within a plug area, wherein said plug area is lecated at least partially beneath and in contact with said damascene local interconnect structure;
 - The method of fabricating a semiconductor device of claim 58, further comprising:
 - shaping <u>said</u> spacers <u>layer to form spacers</u> against the vertical walls of said damascene gate structure and said damascene interconnect structure; and
 - forming doped-source/drain-regions in said base substrate adjacent and lateral to said damascene gate structure and said damascene local interconnect

Serial No. 09/943,078 Docket No. MIO 0083 PA/40509.162

structure.

Claims 51-54 (Cancelled)

55. (Currently amended) A method of fabricating a semiconductor device comprising:

forming a damascene trench in a first dielectric layer over a base substrate, said damascene trench having a gate area and a local interconnect area;

- depositing a conductive layer over said base substrate such that said

 damascene trench is filled with a conductive material, wherein said
 conductive material comprises a polysilicon material:
- planarizing said device to define a damascene structure including a damascene gate structure and a damascene local interconnect structure electrically coupled by said conductive material within said damascene trench, wherein said damascene local interconnect structure forms a direct connection to said base substrate:
- The method of fabricating a semiconductor device of claim 59, further comprising:
- forming a silicide layer over said polysilicon material within said gate area of said damascene trench; and
- forming doped source/drain regions in said base substrate adjacent and lateral to said damascene gate structure and said damascene local interconnect structure.
- 56. (Cancelled)
- 57. (Cancelled)

Serial No. 09/943,078

Docket No. MIO 0083 PA/40509.162

58. (Currently Amended) A method of fabricating a semiconductor device comprising:

forming an isolation trench in a base substrate;

forming a first dielectric layer over said base substrate;

forming a first patterned mask over said first dielectric layer;

etching through said first dielectric layer to said base substrate in areas defined by said first patterned mask to define a damascene trench in said first dielectric layer, said damascene trench having a gate area and a local interconnect area and positioned such that at least a portion of said damascene trench at least partially overlies said isolation trench;

stripping said first patterned mask from said first dielectric layer;

- growing an oxide layer on said base substrate, said oxide layer within said gate area of said damascene trench defining a gate oxide layer;
- forming a second patterned mask over said semiconductor device, said second patterned mask arranged to expose at least a portion of said oxide layer within said local interconnect area;
- etching away the exposed portion of said oxide layer within said damascene trench;
- providing at least one contact implant within a plug area in said base substrate, wherein said plug area is located at least partially beneath and in contact with said damascene local interconnect structure;

stripping said second patterned mask from said semiconductor device;

depositing a conductive layer comprising a conductive material over said device such that said conductive <u>materiallayer</u> fills said damascene trench;

planarizing said conductive layer down to the surface of said dielectric layer;

removing said first dielectric layer to define a damascene gate structure and a damascene local interconnect structure:

forming lightly doped drain regions in said base substrate adjacent and lateral to

Serial No. 09/943,078

Docket No. MIO 0083 PA/40509.162

said damascene gate structure and said damascene local interconnect structure;

depositing a spacer layer over said device;

anisotropically etching said spacer layer such that spacers are formed over the portions of said base substrate where said lightly doped drain regions are formed; and

forming doped regions in said base substrate after formation of said spacers such that said base substrate is doped more deeply adjacent and lateral to said spacers and said lightly doped drain regions underneath said spacers, wherein said lightly doped drain regions and said doped regions define doped source/drain regions.

59. (New) The method of fabricating a semiconductor device of claim 58, wherein said conductive material comprises a polysilicon material.