

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 October 2001 (11.10.2001)

PCT

(10) International Publication Number
WO 01/74905 A1

(51) International Patent Classification⁷: **C07K 16/18**, C12N 9/22, 15/62, C07K 16/46, C12N 15/63, 15/85, A61K 39/395, 38/43 // C07K 19/00

(21) International Application Number: PCT/GB01/01324

(22) International Filing Date: 26 March 2001 (26.03.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0008049.9 3 April 2000 (03.04.2000) GB
60/237,159 2 October 2000 (02.10.2000) US

(71) Applicant (for all designated States except US): **ANTISOMA RESEARCH LIMITED** [GB/GB]; West Africa House, Hanger Lane, Ealing, London W5 3QR (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **YOUNG, Robert, James** [GB/GB]; Antisoma Research Limited, West Africa House, Hanger Lane, Ealing, London W5 3QR (GB).

(74) Agent: **THOMAS, Philip, J., D.**; Eric Potter Clarkson, Park View House, 58 The Ropewalk, Nottingham NG1 5DD (GB).

(54) Title: COMPOUNDS FOR TARGETING

WO 01/74905 A1

(57) Abstract: A compound comprising a target cell-specific portion and a cytotoxic portion characterised in that the target cell-specific portion comprises a humanised monoclonal antibody having specificity for polymorphic epithelial mucin (PEM), or an antigen binding fragment thereof, and the cytotoxic portion has endonucleolytic activity. Preferably, the target cell-specific portion comprises a humanised HMFG-1 antibody or an antigen binding fragment thereof. Advantageously, the cytotoxic portion is at least the catalytically active portion of a DNA endonuclease, e.g. a human DNA endonuclease I. The invention further provides nucleic acids encoding the compounds of the invention, and the use of such compounds in medicine, e.g. in the treatment of cancer.

CLAIMS

1. A compound comprising a target cell-specific portion and a cytotoxic portion characterised in that:
 - (i) the target cell-specific portion comprises an humanised monoclonal antibody having specificity for polymorphic epithelial mucin (PEM), or an antigen binding fragment thereof; and
 - (ii) the cytotoxic portion has endonucleolytic activity.
2. A compound according to Claim 1 wherein the target cell-specific portion comprises an humanised HMFG-1 antibody or an antigen binding fragment thereof.
3. A compound according to Claim 2 wherein the target cell-specific portion is an humanised HMFG-1 antibody.
4. A compound according to Claim 1 or 2 wherein the target cell-specific portion comprises an antigen binding fragment of the humanised antibody selected from the group consisting of Fab-like molecules, such as Fab and F(ab')₂, Fv molecules, disulphide-linked Fv molecules, ScFv molecules and single domain antibodies (dAbs).
5. A compound according to Claim 4 wherein the target cell-specific portion comprises a Fab molecule.
6. A compound according to Claim 4 wherein the target cell-specific

portion comprises a F(ab')₂ molecule.

7. A compound according to Claim 1 wherein the target cell-specific portion comprises an amino acid sequence encoded by at least part of one or both of the nucleotide sequences of Figure 3(a) and (d).
8. A compound according to Claim 7 wherein the target cell-specific portion comprises an amino acid sequence encoded by the nucleotide sequence of Figure 3(a) and an amino acid sequence encoded by the nucleotide sequence of Figure 3(d).
9. A compound according to any one of Claims 1 to 8 wherein the cytotoxic portion has DNA endonucleolytic activity.
10. A compound according to Claim 9 wherein the cytotoxic portion is at least the catalytically active portion of a DNA endonuclease.
11. A compound according to Claim 10 wherein the endonuclease is a mammalian deoxyribonuclease I.
12. A compound according to Claim 11 wherein the endonuclease is a human deoxyribonuclease I.
13. A compound according to Claim 1 wherein the endonuclease is a restriction endonuclease.
14. A compound according to Claim 10 wherein the cytotoxic portion comprises the amino acid sequence shown in Figure 2(a) or (b).

15. A compound according to any one of Claims 1 to 14 wherein a nuclear localization signal is incorporated.
16. A compound according to Claim 15 wherein the nuclear localization signal comprises the sequence PKKKRKV.
17. A compound according to any one of Claims 1 to 16 wherein the target cell-specific portion and the cytotoxic portion are fused.
18. A compound according to Claim 17 wherein the target cell-specific portion and the cytotoxic portion are separated by a linker sequence.
19. A compound according to Claim 18 wherein the linker sequence is or comprises GG or GSGG.
20. A compound according to any one of Claims 1 to 19 wherein the compound comprises all or part of the amino acid sequence as shown in Figure 3(c) together with all or part of an amino acid sequence selected from the group consisting of amino acid sequences as shown in Figures 5(d), 6(d), 7(b), 8(b), 9(b), 10(b), 11(b), 12(b), 13(d), 14(d), 15(d), 16(c), 17(d), 18(d) and 19(d).
21. A compound according to Claim 20 wherein the compound comprises an amino acid sequence as shown in Figure 3(c) and an amino acid sequence as shown in Figure 7(b).
22. A compound according to Claim 20 wherein the compound comprises

an amino acid sequence as shown in Figure 3(c) and an amino acid sequence as shown in Figure 14(d).

23. A nucleic acid molecule encoding a compound as defined in any one of Claims 1 to 22.
24. A nucleic acid molecule according to Claim 23 wherein the molecule comprises all or part of the nucleotide sequence as shown in Figure 3(a or b) together with all or part of a nucleotide sequence selected from the group consisting of nucleotide sequences as shown in Figures 5(a, b and c), 6(a, b and c), 7(a), 8(a), 9(a), 10(a), 11(a), 12(a), 13(a, b and c), 14(a, b and c), 15(a, b and c), 16(a and b), 17(a, b and c), 18(a, b and c) and 19(a, b and c).
25. A nucleic acid molecule according to Claim 24 wherein the molecule comprises a nucleotide sequence as shown in Figure 3(b) and a nucleotide sequence as shown in Figure 7(a).
25. A nucleic acid molecule according to Claim 24 wherein the molecule comprises a nucleotide sequence as shown in Figure 3(b) and a nucleotide sequence as shown in Figure 14(c).
26. A nucleic acid molecule according to any one of Claims 23 to 25 wherein the molecule further comprises a Kozak consensus ribosome-binding site.
27. A vector comprising a nucleic acid molecule according to any one of Claims 23 to 26.

28. A host cell comprising a vector according to Claim 27.
29. A pharmaceutical composition comprising a compound according to any one of Claims 1 to 22 and a pharmaceutically acceptable carrier.
30. A compound according to any one of Claims 1 to 22 for use in medicine.
31. Use of a compound according to any one of Claims 1 to 22 in the preparation of a medicament for treating a mammal having said target cells to be destroyed.
32. A method of treating a mammal having target cells to be destroyed, the method comprising administering a compound according to any one of Claims 1 to 22 to said mammal.
33. A use according to Claim 31 or a method according to Claim 32 wherein the mammal is a human.
34. A use according to Claim 31 or a method according to Claim 32 wherein the target cells to be destroyed are cancer cells.
35. A use or a method according to Claim 34 wherein the cancer cells are epithelial cancer cells.
36. A use or a method according to Claim 35 wherein the cancer cells are ovarian, gastric, colorectal and/or pancreatic cancer cells.

37. A use or a method according to Claim 36 wherein the cancer cells are ovarian cancer cells.
38. A compound substantially as described herein, preferably with reference to one or more of the accompanying figures.

COMPOUNDS FOR TARGETING

The present invention relates to cytotoxic compounds that have a high
5 avidity for, and can be targeted to, selected cells. Specifically, the invention provides compounds comprising a cytotoxic portion having DNA endonucleolytic activity and a target-cell specific portion having specificity for human polymorphic epithelial mucin (PEM).

10 **Background**

The cell-specific targeting of compounds that are directly, or indirectly, cytotoxic has been proposed as a way to combat diseases such as cancer. Bagshawe and his co-workers have disclosed (Bagshawe (1987) *Br. J. Cancer* **56**, 531; Bagshawe *et al* (1988) *Br. J. Cancer* **58**, 700; WO 88/07378) conjugated compounds comprising an antibody or part thereof and an enzyme, the antibody being specific to tumour cell antigens and the enzyme acting to convert an innocuous pro-drug into a cytotoxic compound. The cytotoxic compounds were alkylating agents, *e.g.* a
15 benzoic acid mustard released from *para*-N-bis(2-chloroethyl)aminobenzoyl glutamic acid by the action of *Pseudomonas sp.* CPG2 enzyme.
20

An alternative system using different pro-drugs has been disclosed
25 (WO 91/11201) by Epenetos and co-workers. The cytotoxic compounds were cyanogenic monosaccharides or disaccharides, such as the plant compound amygdalin, which release cyanide upon the action of a β -glucosidase and hydroxynitrile lyase.

In a further alternative system, the use of antibody-enzyme conjugates containing the enzyme alkaline phosphatase in conjunction with the pro-drug etoposide 4'-phosphate or 7-(2'-aminoethyl phosphate)mitomycin or 5 a combination thereof have been disclosed (EP 0 302 473; Senter *et al* (1988) *Proc. Natl. Acad. Sci. USA* **85**, 4842).

Rybak and co-workers have disclosed (Rybak *et al* (1991) *J. Biol. Chem.* **266**, 21202; WO 91/16069) the cytotoxic potential of a monomeric 10 pancreatic ribonuclease when injected directly into *Xenopus* oocytes and the cytotoxic potential of monomeric RNase coupled to human transferrin or antibodies directed against the transferrin receptor. The monomeric RNase hybrid proteins were cytotoxic to human erythroleukaemia cells *in vitro*.

15 Other approaches are the *in vivo* application of streptavidin conjugated antibodies followed, after an appropriate period, by radioactive biotin (Hnatowich *et al* (1988) *J. Nucl. Med.* **29**, 1428-1434), or injection of a biotinylated mAb followed by radioactive streptavidin (Paganelli *et al* 20 (1990) *Int. J. Cancer* **45**, 1184-1189). A pilot radioimmunolocalisation study in non-small cell lung carcinomas was conducted with encouraging results (Kalofonos *et al* (1990) *J. Nucl. Med.* **31**, 1791-1796).

Apart from these examples, it is rather more common to see biotinylated 25 antibodies and streptavidin-enzyme conjugates, which are used in enzyme-linked immunosorbent assays.

These previous systems have used relatively large antibody-enzyme,

antibody-streptavidin or antibody-biotin conjugates and may comprise portions of non-mammalian origin which are highly immunoreactive.

We have now devised improved compounds for targeting cells to be
5 destroyed.

Summary of Invention

A first aspect of the invention provides a compound comprising a target
10 cell-specific portion and a cytotoxic portion characterised in that the target cell-specific portion comprises an humanised monoclonal antibody having specificity for polymorphic epithelial mucin (PEM), or an antigen binding fragment thereof, and the cytotoxic portion has endonucleolytic activity.

15 By "target cell specific" portion we mean the portion of the compound which comprises one or more binding sites which recognise and bind to polymorphic epithelial mucin (PEM) on the target cell. Upon contact with the target cell, the target cell specific portion is preferably internalised along with the cytotoxic portion. Such internalisation results in the
20 cytotoxic portion being delivered to the cell cytosol, where it has access to the cell's nucleic acid molecules.

The target cell-specific portion of the compounds of the invention comprises an humanised monoclonal antibody having specificity for
25 polymorphic epithelial mucin (PEM), or an antigen binding fragment thereof.

Polymorphic epithelial mucin, or PEM, is a component of the human milk

fat globule. PEM is expressed by cells in several body tissues and is also found in urine. Significantly, PEM is known to be expressed in epithelial cancer cells, notably in ovarian, gastric, colorectal and pancreatic cancer cells.

5

- Monoclonal antibodies which will bind to PEM are already known, but in any case, with today's techniques in relation to monoclonal antibody technology, antibodies can be prepared to most antigens. The antigen-specific portion may be a whole antibody, a part of an antibody (for example a Fab or $F(ab')_2$ fragment), a synthetic antibody fragment (for example a single chain Fv fragment [ScFv]), or a peptide/peptidomimetic or similar. Suitable monoclonal antibodies to selected antigens may be prepared by known techniques, for example those disclosed in *'Monoclonal Antibodies: A manual of techniques'*, H Zola (CRC Press, 1988) and in *'Monoclonal Hybridoma Antibodies: Techniques and Applications'*, J G R Hurrell (CRC Press, 1982) and *Antibody Engineering, A Practical Approach*, McCafferty, J. et al, ed. (IRL Pres, 1996).
- By 'humanised monoclonal antibody' we include monoclonal antibodies having at least one chain wherein the framework regions are predominantly derived from a first, acceptor monoclonal antibody of human origin and at least one complementarity-determining region (CDR) is derived from a second, donor monoclonal antibody having specificity for PEM. The donor monoclonal antibody may be of human or non-human origin, for example it may be a murine monoclonal antibody.

Preferably, both chains of the humanised monoclonal antibody comprise

CDRs grafted from a donor monoclonal antibody having specificity for PEM.

Advantageously, the CDR-grafted (*i.e.* humanised) chain comprises two
5 or all three CDRs derived from a donor antibody having specificity for PEM.

Conveniently, the humanised monoclonal antibody comprises only human framework residues and CDRs from a donor antibody having specificity
10 for PEM.

However, it will be appreciated by those skilled in the art that in order to maintain and optimise the specificity of the humanised antibody it may be necessary to alter one or more residues in the framework regions such that
15 they correspond to equivalent residues in the donor antibody.

Conveniently, the framework regions of the humanised antibody are derived from an human IgG monoclonal antibody.

20 Methods of making humanised monoclonal antibodies are well-known in the art, for example see Jones *et al.* (1986) *Nature* 321:522-525, Riechmann *et al.* (1988) *Nature* 332:323-327, Verhoeyen *et al.* (1988) *Science* 239:1534-1536 and EP 239 400 (to Winter).

25 In a preferred embodiment of the first aspect of the invention, the target cell-specific portion comprises an humanised HMFG-1 monoclonal antibody or an antigen binding fragment thereof.

HMFG antibodies are raised against human milk fat globule (HMFG), in a delipidated state (see Taylor-Papadimitriou *et al.*, 1981, *Int. J. Cancer* 28:17-21 and Gendler *et al.*, 1988, *J. Biol. Chem.* 236:1282-12823).
5 HMFG-1 monoclonal antibodies bind to a particular component of HMFG, namely polymorphic epithelial mucin (PEM). Binding is thought to involve the amino acid sequence APDTR within the twenty amino acid tandem repeats of the *muc-1* gene product.

Exemplary humanised HMFG-1 antibodies are disclosed in WO 92/04380.
10

Advantageously, the target cell-specific portion is an humanised HMFG-1 monoclonal antibody.

In a preferred embodiment of the first aspect of the invention, the target
15 cell-specific portion comprises a fragment of an humanised monoclonal antibody having specificity for polymorphic epithelial mucin (PEM), said fragment retaining the antigen binding properties of the parent antibody.

The variable heavy (V_H) and variable light (V_L) domains of the antibody
20 are involved in antigen recognition, a fact first recognised by early protease digestion experiments. Further confirmation was found by "humanisation" of rodent antibodies. Variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parented antibody
25 (Morrison *et al* (1984) *Proc. Natl. Acad. Sci. USA* 81, 6851-6855).

That antigenic specificity is conferred by variable domains and is independent of the constant domains is known from experiments involving

the bacterial expression of antibody fragments, all containing one or more variable domains. These molecules include Fab-like molecules (Better *et al* (1988) *Science* **240**, 1041); Fv molecules (Skerra *et al* (1988) *Science* **240**, 1038); disulphide-linked Fv molecules (Young *et al.*, 1995, *FEBS Lett.* **377**:135-139); single-chain Fv (ScFv) molecules where the V_H and V_L partner domains are linked via a flexible oligopeptide (Bird *et al* (1988) *Science* **242**, 423; Huston *et al* (1988) *Proc. Natl. Acad. Sci. USA* **85**, 5879) and single domain antibodies (dAbs) comprising isolated V domains (Ward *et al* (1989) *Nature* **341**, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) *Nature* **349**, 293-299.

By "ScFv molecules" we mean molecules wherein the V_H and V_L partner domains are linked via a flexible oligopeptide.

Chimaeric antibodies are discussed by Neuberger *et al* (1988, *8th International Biotechnology Symposium Part 2*, 792-799).

The advantages of using antibody fragments, rather than whole antibodies, are several-fold. The smaller size of the fragments allows for rapid clearance, and may lead to improved tumour to non-tumour ratios. Fab, Fv, ScFv, disulphide Fv and dAb antibody fragments can all be expressed in and secreted from bacteria, such as *E. coli*, or eukaryotic expression systems such as Yeast or mammalian systems, thus allowing the facile production of large amounts of the said fragments.

Whole antibodies, and F(ab')₂ fragments are "bivalent". By "bivalent" we

mean that the said antibodies and F(ab')₂ fragments have two antigen combining sites. In contrast, Fab, Fv, ScFv, disulphide Fv and dAb fragments are monovalent, having only one antigen combining site.

- 5 Preferably, the target cell-specific portion of the compounds of the invention comprises an antigen binding fragment of the humanised antibody selected from the group consisting of Fab-like molecules, such as Fab and F(ab')₂, Fv molecules, disulphide-linked Fv molecules, ScFv molecules and single domain antibodies (dAbs).

10

More preferably, the target cell-specific portion comprises a Fab molecule or a F(ab')₂ molecule.

- 15 Yet more preferably, the target cell-specific portion comprises an amino acid sequence encoded by at last part of one or both of the nucleotide sequences of Figure 3(a) and (d).

- 20 Most preferably, the target cell-specific portion comprises an amino acid sequence encoded by the nucleotide sequence of Figure 3(a) and an amino acid sequence encoded by the nucleotide sequence of Figure 3(d).

Preferably, the target cell-specific portion recognises the target cell with high avidity.

- 25 By "high avidity" we mean that the target cell-specific portion recognises the target cell with a binding constant of at least $K_d = 10^{-6} M$, preferably at least $K_d = 10^{-9} M$, suitably $K_d = 10^{-10} M$, more suitably $K_d = 10^{-11} M$, yet more suitably still $K_d = 10^{-12} M$, and more preferably $K_d = 10^{-15} M$ or

even $K_d = 10^{-18} \text{ M}$.

- Preferably, the target cell-specific portion comprises an antigen binding fragment of an humanised HMFG-1 monoclonal antibody, *e.g.* an Fab or 5 F(ab')₂ fragment thereof, wherein a hinge region contains a mutation (*i.e.* wherein the hinge is a variant or hybrid of a naturally occurring hinge). More preferably, the variant hinge comprises the amino acid sequence CCVECPPCPAPE.
- 10 By ‘cytotoxic portion’ we mean a portion having endonucleolytic activity which is toxic to the cell if it is to reach, and preferably enter said cell.
- In a preferred embodiment of the first aspect of the invention, the cytotoxic portion has DNA endonucleolytic activity.
- 15 Advantageously, the cytotoxic portion is at least the catalytically active portion of a DNA endonuclease.
- Examples of known DNA endonucleases include bovine DNase I (see 20 Worrall and Conolly, 1990, *J. Biol. Chem.* **265**:21889-21895). Human pancreatic DNase I has also been cloned (see Shak *et al.*, 1990, *Proc. Natl. Acad. Sci. USA* **87**:9188-9192 and Hubbard *et al.*, 1992, *New Eng. J. Med.* **326**:812-815).
- 25 Preferably, the endonuclease is a mammalian deoxyribonuclease I.
- More preferably, the endonuclease is a human deoxyribonuclease I.

Most preferably, the cytotoxic portion comprises the amino acid sequence shown in Figure 2(a) or 2(b).

Preferably, the cytotoxic portion of the compound of the invention is capable of oligomerisation, *e.g.* dimerisation. Attachment of the target-cell specific portion to a cytotoxic portion capable of oligomerisation provides a method for increasing the number of binding sites to the target cell. For example, if the target cell-specific portion is joined to a portion capable of forming a dimer then the number of target cell-specific binding sites is two; if the target cell-specific portion is joined to a portion capable of forming a tetramer then the number of target cell-specific binding sites is four. The number of target cell-specific binding sites is greater than one and the compounds may therefore have a greater avidity for the target cell than do compounds which only have one target cell-specific binding site.

It is preferable for the cytotoxic portion of the compound of the invention capable of oligomerisation to contain no interchain disulphide bonds nor intrachain disulphide bonds; to be well characterised; to be non-toxic; to be stable; to be amenable to preparation in a form suitable for pre-clinical or clinical use or be in pre-clinical or clinical use; and for the subunit monomers to have a high affinity for each other, that is they contain one or more subunit binding sites.

Advantageously, the cytotoxic portion is of mammalian, preferably human, origin. The use of the said mammalian proteins as the cytotoxic portion of the compound of the invention is advantageous since such compounds are less likely to give rise to undesirable immune reactions.

It will be appreciated by those skilled in the art that the cytotoxic portion may be a variant of a naturally occurring endonuclease.

- 5 By "a variant" we include cytotoxic portions comprising of a naturally occurring endonuclease wherein there have been amino acid insertions, deletions or substitutions, either conservative or non-conservative, such that the changes do not substantially reduce the endonuclease activity of the variant compared to that of the naturally occurring endonuclease. For
10 example, the variant may have increased activity compared to the naturally occurring endonuclease

Such variants may be made using methods of protein engineering and site-directed mutagenesis commonly known in the art (for example, see
15 Sambrook *et al.*, 1989, *Molecular cloning: A Laboratory Manual*, 2nd edition, Cold Spring Harbor Laboratory Press, NY, USA).

In an alternative embodiment, the endonuclease is a restriction endonuclease, such as a microbial type II restriction endonuclease.
20 Exemplary type II restriction endonucleases include *Bam*HI, *Hind*III, *Msp*I, *Sau*3AI, *Hinf*I, *Not*I and *Eco*RI.

In another preferred embodiment of the first aspect of the invention, a nuclear localization signal is incorporated into the compound.
25

Preferably, the nuclear localization signal (NLS) comprises a nuclear localization signal from the SV40 large T antigen (Kalderon *et al.*, 1984, *Cell* 39:499-509), and specifically the amino acid sequence PKKKRKV.

12

Inclusion of a nuclear localization signal encourages the compound of the invention to gain access to the chromosomal DNA during the periods of the cell cycle when the nuclear membrane is intact, since the nuclear pores are permeable to large molecules incorporating said nuclear localization
5 signal.

In a further preferred embodiment of the first aspect of the invention, the target cell-specific portion and the cytotoxic portion are fused to create a fusion compound.

10

By "fusion compound" we include a compound comprising one or more functionally distinct portions, wherein the distinct portions are contained within a single polypeptide chain produced by recombinant DNA techniques. For example, the compound may comprise a whole antibody
15 wherein the heavy chain is fused to human DNase I. Alternatively, the compound may comprise an Fab or F(ab')₂ fragment of an antibody wherein the truncated heavy chain (*i.e.* the Fd chain) is fused to human DNase I.

20 Preferably, the target-cell specific and the cytotoxic portion of the fusion compound of the invention separated by a linker sequence, for example to allow greater flexibility of the portions relative to one another.

More preferably, the linker sequence comprises a GG dipeptide.

25

Most preferably the linker sequence is or comprises GG or GSGG.

Alternatively, the target-cell specific and the cytotoxic portion of the

compound of the invention are separate moieties linked together by any of the conventional ways of cross-linking polypeptides, such as those generally described in O'Sullivan *et al Anal. Biochem.* (1979) **100**, 100-108. For example, the antibody portion may be enriched with thiol groups and the enzyme portion reacted with a bifunctional agent capable of reacting with those thiol groups, for example the N-hydroxysuccinimide ester of iodoacetic acid (NHIA) or N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Amide and thioether bonds, for example achieved with m-maleimidobenzoyl-N-hydroxysuccinimide ester, are generally more stable *in vivo* than disulphide bonds.

In a preferred embodiment of the first aspect of the invention, the compound comprises all or part of the amino acid sequence as shown in Figure 3(c) (*i.e.* an HMFG-1 light chain) together with all or part of an amino acid sequence selected from the group consisting of amino acid sequences as shown in Figures 5(d), 6(d), 7(b), 8(b), 9(b), 10(b), 11(b), 12(b), 13(d), 14(d), 15(d), 16(c), 17(d), 18(d) and 19(d) (*i.e.* an HMFG-1 heavy or Fd chain/DNase fusion).

Advantageously, the compound is a whole HMFG-1 antibody/human DNase I fusion compound comprising an amino acid sequence as shown in Figure 3(c) and an amino acid sequence as shown in Figure 7(b). Preferably, the compound is a tetrameric compound comprising two HMFG-1 light chains and two HMFG-1 heavy chain /DNase I fusions.

25

Conveniently, the compound comprises an amino acid sequence as shown in Figure 3(c) and an amino acid sequence as shown in Figure 14(d).

Preferably, the compound comprises one of the pairs of amino acid sequences defined above wherein the leader sequence of each amino acid (the first 19 amino acids of the sequences shown in each figure) is removed. It will be appreciated by persons skilled in the art that the 5 compounds of the invention may also comprise variants of such amino acid sequences.

Suitably, the compound is a tetrameric compound comprising two HMFG-1 light chains and two HMFG-1 Fd chain /DNase I fusions. More 10 preferably, the compound is a dimeric compound comprising one HMFG-1 light chain and one HMFG-1 Fd chain /DNase I fusion.

A second aspect of the invention provides a nucleic acid molecule encoding a compound according to the first aspect of the invention, or a 15 target cell-specific portion or cytotoxic portion thereof.

By "nucleic acid molecule" we include DNA, cDNA and mRNA molecules.

20 In a preferred embodiment of the second aspect of the invention, the nucleic acid molecule comprises all or part of the nucleotide sequence as shown in Figure 3(a or b) (*i.e.* encoding an HMFG-1 light chain) together with all or part of a nucleotide sequence selected from the group consisting of nucleotide sequences as shown in Figures 5(a, b and c), 6(a, 25 b and c), 7(a), 8(a), 9(a), 10(a), 11(a), 12(a), 13(a, b and c), 14(a, b and c), 15(a, b and c), 16(a and b), 17(a, b and c), 18(a, b and c) and 19(a, b and c) (*i.e.* encoding an HMFG-1 heavy or Fd chain/DNase fusion).

Advantageously, the nucleic acid molecule comprising a nucleotide sequence as shown in Figure 3(b) and a nucleotide sequence as shown in Figure 7(a).

- 5 Conveniently, the compound comprises a nucleotide sequence as shown in Figure 3(b) and a nucleotide sequence as shown in Figure 14(c).

- Alternatively, the nucleic acid molecule comprises nucleotide sequences that are degenerate sequences of those nucleotide sequences identified
10 above (*i.e.* which encode the same amino acid sequence).

- A further aspect of the present invention provides a method of making a compound according to the first aspect of the invention, said method comprising expressing one or more nucleic acid molecules according to
15 the second aspect of the invention in a host cell and isolating the compound therefrom.

- It is preferable that the two portions of the compound of the invention are produced as a fusion compound by recombinant DNA techniques,
20 whereby a length of DNA comprises respective regions encoding the two portions of the compound of the invention either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the compound. The benefits in making the compound of the invention using recombinant DNA techniques are several
25 fold. Firstly, it enables a high degree of precision with which the two portions of the compound can be joined together. Secondly, the construction of compounds which are "hetero-oligomeric" can be controlled by the expression of the different recombinant DNA molecules

encoding each of the different type of subunit of the "hetero-oligomer" in the same host cell.

By "hetero-oligomer" we mean those compounds in which two or more
5 different cell-specific portions are joined to either the same or to different subunits which are capable of oligomerisation. The expression, in the same host cell of two compounds, of A and B, each with different target cell specific portions but with a common second portion capable of oligomerisation will result in a mixed population of compounds. For
10 example, if the common second portion is capable of dimerisation, three potential compounds will be produced: A_2 , AB and B_2 , in a ratio of 1:2:1, respectively.

The separation of the desired compound with each of the different cell
15 specific portions, that is AB, can be achieved by two step affinity chromatography.

Application of the mixture of compounds to an affinity column specific for A will result in the binding of A_2 and AB. These compounds are eluted
20 from this first column, and then applied to an affinity column specific for B. This will result in AB, but not A_2 , being bound to the column. Finally, the desired product AB, can be eluted.

Of course, the order in which the affinity columns are used is not
25 important.

The same principle of separating those compounds with two or more different binding sites can be applied to the purification of the desired

compounds from mixtures of other hetero-oligomers.

Conceivably, the two portions of the compound may overlap wholly or partly.

5

Preferably, the compound is a multimeric compound such as a whole antibody/DNase fusion comprising two light chains and two heavy chains (H_2L_2), a $F(ab')_2$ fusion comprising two light chains and two truncated heavy chains (Fd_2L_2), or a Fab fusion comprising one light chain and one
10 truncated heavy chain (FdL).

The nucleic acid may be expressed in a suitable host to produce a polypeptide comprising the compound of the invention. Thus, the nucleic acid encoding the compound of the invention or a portion thereof may be
15 used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed in US Patent Nos. 4,440,859 issued 3 April 1984 to Rutter
20 *et al*, 4,530,901 issued 23 July 1985 to Weissman, 4,582,800 issued 15 April 1986 to Crowl, 4,677,063 issued 30 June 1987 to Mark *et al*, 4,678,751 issued 7 July 1987 to Goeddel, 4,704,362 issued 3 November 1987 to Itakura *et al*, 4,710,463 issued 1 December 1987 to Murray,
25 4,757,006 issued 12 July 1988 to Toole, Jr. *et al*, 4,766,075 issued 23 August 1988 to Goeddel *et al* and 4,810,648 issued 7 March 1989 to Stalker, all of which are incorporated herein by reference.

Where the compound of the invention is multimeric, the constituent chains

may be encoded by a single nucleic acid molecule or separate nucleic acid molecule (expressed in a common host cell or in different host cells and assembled *in vitro*).

- 5 The nucleic acid encoding the compound of the invention or a portion thereof may be joined to a wide variety of other nucleic acid sequences for introduction into an appropriate host. The companion nucleic acid will depend upon the nature of the host, the manner of the introduction of the nucleic acid into the host, and whether episomal maintenance or
10 integration is desired.

It will be appreciated that in order to prevent expression of the cytotoxic portion of the compound of the invention from killing the host cells in which it is expressed, it may be necessary to link the nucleic acid of the
15 second aspect of the invention to a signal sequence capable of directing secretion of the expressed compound (or portion) out of the host cell. Signal sequences will be selected according to the type of host cell used. Exemplary signal sequences include the *ompA* signal sequence (for example, see Takahara *et al.*, 1985, *J. Biol. Chem.* **260**(5):2670-2674).

20 Generally, the nucleic acid is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the nucleic acid may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences
25 recognised by the desired host, although such controls are generally available in the expression vector. For example, the nucleic acid molecule encoding a compound of the invention may be linked to or comprise a Kozak consensus ribosome binding sequence (such as GCCGCCACC) to

enhance translation.

The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector.

5 Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a nucleic acid sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance. Alternatively, the gene for such selectable trait can be on another vector,

10 which is used to co-transform the desired host cell.

Host cells that have been transformed by the recombinant nucleic acid of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings

15 disclosed herein to permit the expression of the polypeptide, which can then be recovered.

Many expression systems are known, including bacteria (for example *E. coli* and *Bacillus subtilis*), yeasts (for example *Saccharomyces cerevisiae* and *Pichia pastoris*), filamentous fungi (for example *Aspergillus*), plant cells, animal cells (for example COS-1, COS-7, CHO, NIH 3T3, NS0 and BHK cells) and insect cells (for example *Drosophila*, SF9 cells).

Those vectors that include a replicon such as a prokaryotic replicon can

25 also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as *E. coli*, transformed therewith.

A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

Typical procaryotic vector plasmids are pUC18, pUC19, pBR322 and pBR329 (available from Biorad Laboratories, Richmond, CA, USA), pTrc99A and pKK223-3 (available from Pharmacia Piscataway, NJ, USA) and the pET system (T7 promoter, Novagen Ltd).

A typical mammalian cell vector plasmid is pSVL available from Pharmacia, Piscataway, NJ, USA. This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing cells, such as COS-1 cells.

An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers *his3*, *trp1*, *leu2* and *ura3*. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps).

Further useful vectors for transformation of yeast cells, such as *Pichia*, include the 2 μ plasmid pYX243 (available from R and D Systems Limited) and the integrating vector pPICZ series (available from Invitrogen).

- 5 A variety of methods have been developed to operatively link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric
10 tails to form recombinant DNA molecules.

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described
15 earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3'-ends with their polymerizing activities.

- 20 The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are
25 DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

5

A desirable way to modify the nucleic acid encoding the compound of the invention or a portion thereof is to use the polymerase chain reaction as disclosed by Saiki *et al* (1988) *Science* 239, 487-491.

- 10 In this method the nucleic acid to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified nucleic acid. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.

15

- Exemplary genera of yeast contemplated to be useful in the practice of the present invention are *Pichia*, *Saccharomyces*, *Kluyveromyces*, *Candida*, *Torulopsis*, *Hansenula*, *Schizosaccharomyces*, *Citeromyces*, *Pachysolen*, *Debaromyces*, *Metschunikowia*, *Rhodosporidium*, *Leucosporidium*,
20 *Botryoascus*, *Sporidiobolus*, *Endomycopsis*, and the like. Preferred genera are those selected from the group consisting of *Pichia*, *Saccharomyces*, *Kluyveromyces*, *Yarrowia* and *Hansenula*. Examples of *Saccharomyces* are *Saccharomyces cerevisiae*, *Saccharomyces italicus* and *Saccharomyces rouxii*. Examples of *Kluyveromyces* are *Kluyveromyces fragilis* and *Kluyveromyces lactis*. Examples of *Hansenula* are *Hansenula polymorpha*, *Hansenula anomala* and *Hansenula capsulata*. *Yarrowia lipolytica* is an example of a suitable *Yarrowia* species.

Methods for the transformation of *S. cerevisiae* are taught generally in EP 251 744, EP 258 067 and WO 90/01063, all of which are incorporated herein by reference.

- 5 Suitable promoters for *S. cerevisiae* include those associated with the *PGK1* gene, *GAL1* or *GAL10* genes, *CYC1*, *PHO5*, *TRPI*, *ADH1*, *ADH2*, the genes for glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, triose phosphate isomerase, phosphoglucose isomerase, glucokinase, α -mating factor pheromone, a-
- 10 mating factor pheromone, the *PRB1* promoter, the *GUT2* promoter, and hybrid promoters involving hybrids of parts of 5' regulatory regions with parts of 5' regulatory regions of other promoters or with upstream activation sites (e.g. the promoter of EP-A-258 067).
- 15 The transcription termination signal is preferably the 3' flanking sequence of a eukaryotic gene which contains proper signals for transcription termination and polyadenylation. Suitable 3' flanking sequences may, for example, be those of the gene naturally linked to the expression control sequence used, i.e. may correspond to the promoter. Alternatively, they
- 20 may be different in which case the termination signal of the *S. cerevisiae AHD1* gene is preferred.

The present invention also relates to a host cell transformed with a polynucleotide vector construct of the present invention. The host cell can be either procaryotic or eukaryotic. Bacterial cells are preferred procaryotic host cells and typically are a strain of *E. coli* such as, for example, the *E. coli* strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, MD, USA, and RR1 available from the

- American Type Culture Collection (ATCC) of Rockville, MD, USA (No ATCC 31343). Preferred eukaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line. Preferred eukaryotic host
- 5 cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658 and monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650 or WS \emptyset cells.
- 10 Transformation of appropriate cell hosts with a nucleic acid constructs of the present invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen *et al*, *Proc. Natl. Acad. Sci. USA*, **69**: 2110 (1972); and Sambrook *et al*,
- 15 *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989). Transformation of yeast cells is described in Sherman *et al*, *Methods In Yeast Genetics, A Laboratory Manual*, Cold Spring Harbor, NY (1986). The method of Beggs, *Nature*, **275**: 104-109 (1978) is also useful. With regard to
- 20 vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc, Gaithersburg, MD 20877, USA.
- 25 Successfully transformed cells, *i.e.* cells that contain a nucleic acid construct of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the

polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern, *J. Mol. Biol.*, 98: 503 (1975) or Berent *et al*, *Biotech.*, 3: 208 (1985). Alternatively, the presence of the protein in 5 the supernatant can be detected using antibodies as described below.

In addition to directly assaying for the presence of recombinant nucleic acid, successful transformation can be confirmed by well known immunological methods when the recombinant nucleic acid is capable of 10 directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies.

15 Thus, in addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium. Preferably, the culture also contains the protein.

20

Nutrient media useful for culturing transformed host cells are well known in the art and can be obtained from several commercial sources.

25 A third aspect of the invention provides a vector comprising a nucleic acid according to the second aspect of the invention.

A fourth aspect of the invention provides a host cell comprising a vector according to the third aspect of the invention.

Preferably, the host cell is a mammalian cell.

More preferably the host cell is NS0 or CHO.

5

A fifth aspect of the invention provides a pharmaceutical composition comprising a compound according to the first aspect of the invention and a pharmaceutically acceptable carrier.

- 10 The compounds and compositions of the invention are administered in any suitable way, usually parenterally, for example intravenously, intraperitoneally or, preferably (for bladder cancer), intravesically (*i.e.* into the bladder), in standard sterile, non-pyrogenic formulations of diluents and carriers, for example isotonic saline (when administered
15 intravenously).

A sixth aspect of the invention provides a compound according to the first aspect of the invention for use in medicine.

- 20 The compounds and compositions of the invention may be used to treat a patient with any disease involving a dysfunction of a population of cells expressing PEM, said compounds and compositions selectively targeting and destroying said population of cells within a patient. For example, said compounds and compositions may be used in the treatment of cancer, *e.g.*
25 cancer of the breast, ovaries, lung, stomach, intestines, blood *etc.* Thus, anti-tumour cell antigen antibodies can be used to deliver a cytotoxic portion with endonuclease activity to a tumour cell. Antibodies that are internalised upon contact with the target antigen are used, such that the

cytotoxic portion enters the cytosol of the tumour cell, where it can trigger cell death.

In principle, the compounds and compositions of the invention may be
5 used to treat any mammal, including pets such as dogs and cats and agriculturally important animals such as cows, horses, sheep and pigs.

Preferably, the patient is human.

10 A seventh aspect of the invention provides the use of a compound according to first aspect of the invention in the preparation of a medicament for treating a mammal having said target cells to be destroyed.

15 Preferably, the medicament is for treating cancer, such as ovarian cancer.

A eighth aspect of the invention provides a method of treating a mammal having target cells to be destroyed, the method comprising administering a compound according to the first aspect of the invention to said mammal.

20

In a preferred embodiment of the seventh and eighth aspects of the invention, the mammal is a human.

25 Preferably, the target cells to be destroyed are cancer cells. More preferably, the cancer cells are epithelial cancer cells, such as ovarian, gastric, colorectal and/or pancreatic cancer cells. Most preferably, the cancer cells are ovarian cancer cells.

The invention will now be described in detail with reference to the following figures and examples:

Figure 1 shows the complete coding sequence of human DNase I.

5

Figure 2 shows (A) the mature DNase peptide I sequence used in the exemplary Ab-DNase and Fab-DNase constructs, and (B) a truncated DNase peptide I sequence encoded by a nucleotide sequence comprising a Kozak sequence (underlined).

10

Figure 3 shows (A) the nucleotide sequence encoding the humanised HMFG1 light chain including leader peptide, (B) the nucleotide sequence of (A) further comprising a Kozak sequence (underlined), (C) the amino acid sequence of the humanised HMFG1 light chain including leader 15 peptide (shaded) and (D) the nucleotide sequence encoding the humanised HMFG1 heavy chain including leader peptide,

Figure 4 shows the linker and hinge-linker oligonucleotides used in (A) the whole antibody-DNase and (B) the Fd-DNase exemplary constructs.

20

Note, in Figure 4(A) a deletion of one or more codons between the HMFG1 hinge and the linker is represented as ΔG .

25

Figure 5 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS23 comprising a leader sequence (underlined) and a linker sequence (double-underlined). Figure 5(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

Figure 6 shows (A), (B) and (C) shows the nucleotide sequences of Figure 5 (A), (B) and (C), respectively, further comprising an SV40 NLS (double underlined) (pAS27). Figure (D) shows the amino acid sequence of a 5 humanised HMFG-1 Fd/DNase I fusion comprising an SV40 NLS (double underlined).

Figure 7 shows (A) the nucleotide sequence and (B) the translated amino acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion 10 pAS34 (as used in ‘Ab-DNase’ in Example 2), comprising a leader sequence (underlined) and a linker sequence (double-underlined).

Figure 8 shows (A) the nucleotide sequence and (B) the translated amino acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion 15 pAS35, comprising a leader sequence (underlined) and a linker sequence (double-underlined). The lower case ‘g’ represents a silent mutation caused by PCR amplification.

Figure 9 shows (A) the nucleotide sequence and (B) the translated amino 20 acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion pAS36, comprising a leader sequence (underlined) and a linker sequence (double-underlined). The lower case ‘c’ represents a silent mutation caused by PCR amplification.

25 Figure 10 shows (A) the nucleotide sequence and (B) the translated amino acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion pAS37, comprising a leader sequence (underlined), a linker sequence (double-underlined) and an NLS sequence (triple underlined).

Figure 11 shows (A) the nucleotide sequence and (B) the translated amino acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion pAS38, comprising a leader sequence (underlined), a linker sequence 5 (double-underlined) and an NLS sequence (triple underlined). The lower case 'g' represents a silent mutation caused by PCR amplification.

Figure 12 shows (A) the nucleotide sequence and (B) the translated amino acid sequence of an exemplary HMFG-1 heavy chain/DNase I fusion 10 pAS39, comprising a leader sequence (underlined), a linker sequence (double-underlined) and an NLS sequence (triple underlined). The lower case 'c' represents a silent mutation caused by PCR amplification.

Figure 13 shows nucleotide sequences (A and B) encoding a humanised 15 HMFG-1 Fd/DNase I fusion pAS101 comprising a short leader sequence (underlined) and a linker sequence (double-underlined). Figure 13(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

20

Figure 14 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS102 comprising a leader sequence (underlined) and a hybrid hinge + linker sequence (double-underlined). Figure 14(C) shows the nucleotide sequence of (B) further comprising a 25 Kozak sequence (underlined) (construct designated pAS302 in Example 2). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

Figure 15 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS103 comprising a leader sequence (underlined) and a hybrid hinge + short linker sequence (double-underlined). Figure 15(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

Figure 16 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS104 comprising a leader sequence (underlined) and a hybrid hinge + mutated short linker sequence (double-underlined). Figure (C) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion. Mutations (compared to pAS103) at positions 775 and 924 are shaded.

Figure 17 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS105 comprising a leader sequence (underlined), a short linker sequence (double-underlined) and an NLS sequence (triple underlined). Figure 17(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

Figure 18 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS106 comprising a leader sequence (underlined), a hybrid hinge + linker sequence (double-underlined) and an NLS sequence (triple underlined). Figure 18(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1

Fd/DNase I fusion.

Figure 19 shows nucleotide sequences (A and B) encoding a humanised HMFG-1 Fd/DNase I fusion pAS107 comprising a leader sequence (underlined), a hybrid hinge + short linker sequence (double-underlined) and an NLS sequence (triple underlined). Figure 19(C) shows the nucleotide sequence of (B) further comprising a Kozak sequence (underlined). Figure (D) shows the amino acid sequence of a humanised HMFG-1 Fd/DNase I fusion.

10

Figure 20 shows a schematic diagram of the pEE6 expression vector used in the exemplary constructs.

15

Figure 21 shows autoradiographs from immuno-precipitation experiments with metabolically labelled transient transfectants:

GEL A

Lane 1 shows the precipitation of supernatant from mock-transfected cells.

20

Lane 2 is from cells transfected with hHMFG-1 (construct 6) giving expected molecular weights of about 51.2 and 26.4 kDa for the heavy and light chains, respectively.

25

Lane 3 shows construct 34 antibody construct which has human DNase I fused to the C-terminus of the heavy chain gene. As expected, the size of the heavy chain gene has increased to about 80.7 kDa.

Samples from whole antibody DNase I constructs 35, 36 and 39 were run on the gel (Lanes 4 to 6) but were not sufficiently well

expressed to be visible, in this experiment.

In subsequent experiments using this method, construct 39 was detectable but weak, and constructs 35 and 36 were detectable but very weak. Constructs 37 and 38 have not been tested in this assay
5 system.

Lanes 8 to 10 are fusion of humanised HMFG1 F(ab')₂ with human DNase I (constructs 41, 23 and 102, respectively). F(ab')₂ alone was included in this set of experiments (lane 7, construct 41) but did not express, this was included in later experiments (see gels C and D).

10 In addition to the light chain (about 26.4 kDa) and the Fd-DNase I fusion (about 56.6 kDa), a third major band is observed at around 40 kDa. Interestingly, this band is observed in the humanised HMFG-1 fusions but not in the antibody alone. Since an anti-F(ab')₂ antibody was used for immuno-precipitation, it is unlikely that this can be proteolysis between immunoglobulin and DNase I sequence.
15

It probably represents a population of polypeptide produced by premature transcriptional termination (due to DNase I sequence in the 3'-end of the fusion mRNA).

20

GEL B

25

This is the non-reducing gel counterpart to gel A, described above. Lane 1 is the mock-transfected control cells and lanes 2 and 3 are from the cells transfected with humanised HMFG1 alone (construct 6) and the humanised HMFG-1 fused at the C-terminus to human DNase I, respectively. As before, lanes 4 to 6 are from cell supernatants from cells transfected with constructs 35, 36 and 39. The gel shows that both the whole antibody and the antibody-DNase I fusion are assembled, with the DNase fusion giving a higher

molecular weight compared to the antibody alone.

Figure 22 shows a typical standard curve used to determine the concentration of PDTRP-binding material in the supernatants of transiently
5 transfected L761h cells. Each point on the curve has been determined twice.

Figure 23 shows typical standard curves used to determine the concentration of bovine DNase I.

10

Figure 24 shows corrected DNase I activity in transiently expressed humanised HMFG1 whole antibody-human DNase I fusions (*i.e.* pAS34, pAS34, pAS35 and pAS6[control]).

15

Figure 25 shows the corrected DNase I activity in transiently expressed humanised HMFG1 F(ab')₂-human DNase I fusions (*i.e.* pAS101, pAS102, pAS103 and pAS41[control]).

Figure 26 shows results of the cytotoxicity assay.

20

Figure 27 shows the % of MCF7 cells killed after incubation with the exemplary constructs.

25

Figure 28 shows a schematic diagram of (A) Ab-DNase and (B) Fab-DNase.

Figure 29 shows a schematic diagram of vector pAS34K encoding Ab-DNase (*i.e.* pAS34 as shown in Figure 7b plus Kozak sequence).

Figure 30 shows a schematic diagram of vector pAS302 encoding Fab-DNase.

5 Figure 31 shows (A) the elution profile from Protein-L column and (B) size exclusion chromatogram for Fab-DNase.

Figure 32 shows (A) the elution profile from Protein-A column and (B) size exclusion chromatogram for Ab-DNase.

10

Figure 33 shows the SDS-PAGE stained gels for (A) Ab-DNase and (B) Fab-DNase.

15

Figure 34 shows (A) standard curve for bovine DNase concentration AND (B) DNase activity measurements at 3 hours and 6 hours.

Figure 35 shows (A) PEM expression on OVCAR 3 and A375 cells, as measured by ELISA using hHMFG-1 and AD-DNase antibodies, and (B) cytotoxicity measurements.

20

EXAMPLESExample 15 (A) Mammalian expression of humanised HMFG1-DNase constructs

The human HMFG1 light and heavy chain (with or without engineering a fusion to human DNase I), were cloned into the pEE6 expression vector system for expression in mammalian CHO or myeloid NS0 cells (see 10 figure 20). The vector system was originally developed by Celltech Ltd (UK) and is now owned by al-Lonza (see Young & Owens, 1994, *J. Immunol. Meth.* **168**:149-165). The vector consists of two human cytomegalovirus promoters (hCMV) for both the heavy and light chain genes. Each transcription unit is completed by the poly-adenylation signal 15 (pA) with an optional immunoglobulin terminator sequence (Ig term.) located between the heavy and light chain transcription units. Propagation in *E.coli* can be selected for by the presence on an ampicillin resistance gene (not shown in Fig 20). The inclusion of a glutamine synthetase gene (GS) in the vector allows the stable NS0 transfectomas to be selected by 20 growth in glutamine free media, since NS0 cells are GS⁻ and cannot otherwise grow in glutamine free media.

Exemplary humanized HMFG1-DNAse I fusion constructs of the invention are detailed in figures 5 to 19.

25

25 (B) Immuno-precipitation of metabolically labelled transient transfectants

CHO-L761h cells (Cockett *et al.*, 1990, *Nuc. Acids Res.* **19**:319-325)

were transfected, according to the modification of Gorman et al, 1985), with expression vectors containing either whole HMFG1 antibody or F(ab')₂ fragment of the antibody along with the various fusion constructs of their respective heavy chains and human DNase I. The cells were then
5 incubated with either 50 µCi ³⁵S methionine for 72 h in methionine-free medium. Secreted product was precipitated with a rabbit anti-human F(ab')₂ antibody bound to protein A Sepharose. Bound material was eluted in either reducing or non-reducing SDS-PAGE loading buffer and run on gels. The autoradiographs (see Figure 21) above were generated
10 from those gels after drying them.

(C) Estimation of the efficiency of DNase constructs in supernatants

Introduction

15

This set of experiments was designed to standardise the amount of construct in a given DNase I activity assay and to allow us to comment on the amount of activity a particular construct possesses. Given that the antibody-DNase I fusions are so different to the F(ab')₂-DNase I fusions
20 it is best not to compare the two groups. Once we have purified the protein, we will have a better idea of the exact molecular configuration of all species. Then, and only then, will it be sensible to compare amongst groups.

25 *Determination of concentration of constructs*

The concentration of constructs in supernatants from transiently transfected L761H cells was determined in a PDTRP-binding ELISA. To

each well of a Maxisorb 96-well ELISA plate (Nunc) was added 100 μ l of carbonate buffer containing 100 ng of recombinant GST-(PDTRP)₇ fusion protein (Gendler *et al.*, 1990, *J. Mol. Biol.* **265**:15286-93). After overnight binding at 4°C, the plate was washed three times in PBS-Tween 5 (*i.e.* PBS containing 0.05% Tween-20). The plate was then blocked with three 3-minute washes of PBS-Tween containing 1% BSA.

For each construct, 100 μ l of supernatant was added to a well on the plate. In addition, hHMFG-1 of known concentration was serially diluted down 10 the plate using doubling dilutions in 100 μ l of PBS-Tween per well. The plate was incubated for a further 1 h at 30°C, then 200 ng of MC135 anti-human kappa light chain antibody (binding site) in 100 μ l of PBS-Tween was added to each well for 1 h at 30°C. After three 3-minute washes in PBS-Tween, 100 μ l of anti-mouse IgG-peroxidase conjugate (Jackson 15-035-045), diluted 1:2000 in PBS-Tween, was added to each well and incubated for 1 h at 30°C. Following a final set of three 3-minute washes in PBS-Tween, 100 μ l of TMB substrate (Sigma) was added to each well of the plate and, after a colour developed, the optical density at 630 nm of the solution in each well of the plate was determined.

20

Results

(see Figure 22)

25 (D) Corrected bovine DNase I standard curves and DNase assay

DNase activity was determined using a modification of the methyl green-DNA complex degradation method (Sinicropi *et al.*, 1994, *Analyt.*

Biochem. **222**:351-358). Briefly, a 1:1 solution of the assay buffer and methyl green-salmon sperm DNA complex was mixed together to give a total volume of 0.2 ml. To this, 0.1 ml of tissue culture supernatant from transiently transfected CHO-L761h cells was added and the mixture 5 incubated at 37°C. DNA cleavage by DNase results in a reduction in absorbance at 620 nm. Figure 23 shows a standard curve produced with various concentrations of bovine DNase I over a number a time point.

Figures 24 and 25 show DNase activity for the whole HMFG1 antibody-
10 and F(ab')₂ - DNase fusions, respectively.

(E) Cytotoxicity of DNase constructs

Method

15

DNase constructs were transfected into CHO L761h cells using a calcium phosphate co-precipitation method (Gorman *et al.*, 1985, In: *DNA cloning* (2nd edition), Glover A(ed.), Academic Press, NY, 163-188). Included in the experiment were negative controls, consisting of cells transfected 20 with TE buffer alone or with TE buffer and pEE6 expression vector. In addition to these controls, vectors that express hHMFG-1 (pAS6) and F(ab')₂ of hHMFG1 (both with specificity for PEM but without DNase I) were included.

25 The supernatant from these cells was harvested after 72 h of expression, followed by centrifugation to remove dead cells. MCF-7 cells were incubated for 1 h at 37°C with an aliquot of each of these supernatants. The amount of cellular lactate dehydrogenase (LDH) released from the

MCF-7 cells due to the cytotoxicity of the supernatant was determined using the CytoTox96 cytotoxic assay kit (Promega). Total lysis ('total LDH') was determined by measuring the target cell maximum LDH release using the kits lysis solution. The percentage of cells killed was
5 then calculated as the proportion of the LDH released to the total LDH released. For each construct, the cytotoxicity assay was performed in quadruplicate, except for assay of pAS38 and 39, which were performed in triplicate. The values of LDH release for each construct were compared against either F(ab')₂ or whole antibody, or each other, using
10 a one-tailed t-test in Excel.

Results

Figures 26 and 27 shows that there is negligible cell killing with either
15 pAS6 (HMFG1 alone) or with pAS41 (F(ab')₂ alone). All of the hHMFG1 F(ab')₂-DNase I constructs kill significantly more cells than the F(ab')₂ fragment alone ($p < 0.00193$) and all of the antibody-DNase I constructs kill significantly more cells than antibody alone ($p < 0.00783$), except for perhaps pAS34 ($p < 0.021$).
20

(F) Use of the DNase-I/huHMFG-1 Fab fusion protein in the treatment of ovarian cancer

Patients diagnosed with ovarian cancer are treated by intravenous injection
25 of the DNaseI/huHMFG-1 Fab fusion protein. Typically, a dose of between 1 to 100 mg will be administered weekly.

Therapeutic response is measured by the normal clinical procedures that

are well known in the art, for example radio-imaging methods.

Example 2

5 (A) Mammalian expression of humanised HMFG-1 / DNase constructs

In a second series of experiments, two further humanised HMFG-1/Dnase constructs were expressed in mammalian cells. The first construct encoded a fusion protein a complete hHMFG-1 antibody fused with human
10 DNase, designated ‘Ad-DNase’. The second construct encoded a fusion protein a Fab fragment of the hHMFG-1 antibody fused with human DNase, designated ‘Fab-DNase’. Ad-Dnase and Fab-DNase are shown schematically in Figure 28.

15 Ad-DNase comprises an HMFG-1 light chain as shown in Figure 3(c) and an HMFG-1 heavy chain/DNase fusion as shown in Figure 7(b).

Fab-DNase comprises an HMFG-1 light chain as shown in Figure 3(c) and an HMFG-1 Fd chain/DNase fusion as shown in Figure 14(d).

20

The human HMFG1 heavy and light chain constructs were cloned into the pEE6 expression vector system for expression in mammalian CHO or myeloid NS0 cells, as described in Section (A) of Example 1. This vector consists of two human cytomegalovirus promoters (hCMV) for both the
25 heavy and light chain genes. Each transcription unit is completed by the poly-adenylation signal (pA) with an optional immunoglobulin terminator sequence (Ig term.) located between the heavy and light chain transcription units. The vectors also comprise a 5'-UT Kozak sequence

(to enhance translation of the mRNA) and an ATG initiator codon upstream of both heavy and light chains.

5 The vectors encoding Ad-Dnase and Fab-DNase, designated pAS34K and pAS 302 respectively, are shown schematically in Figure 32.

Propagation in *E.coli* can be selected for by the presence on an ampicillin resistance gene. The inclusion of a glutamine synthetase gene (GS) in the vector allows the stable NS0 transfectomas to be selected by growth in 10 glutamine free media, since NS0 cells are GS⁻ and cannot otherwise grow in glutamine free media.

15 These plasmids were co-transfected with a vector containing a neomycin resistance gene into CHO cells. Stable cell lines were generated for each of the constructs.

Clones were selected that expressed DNase activity and antigen (PEM)-binding activity.

20 (B) Purification of hHMFG-1/DNase constructs

The cells were routinely grown in:

	DMEM (Gibco 10938-025)	500 ml
25	Non essential amino acids (Sigma M7145)	5 ml
	Sodium pyruvate (Sigma S8636)	5 ml
	Glutamine (G7513)	5 ml
	Heat inactivated foetal calf serum	50 ml

Incubation was carried out at 37°C in 5% CO₂.

For production of the Ab-DNase fusion protein, W70 cells (CHO cells
5 transfected with pAS34K) were maintained in flats and grown to
confluence in T175 flasks. Each T175 flask was split between two
850 cm² roller bottles containing 100 ml of the aforementioned growth
media. Each roller bottle was gassed with an 95% air 5% CO₂ mix for 1
minute and then sealed. They were rolled at a rate of 0.5 rpm and were
10 gassed every other day as described earlier until the cultures were
confluent. At this stage the medium was removed and 200 ml of harvest
medium was replaced on the culture. This was the same medium but
contained 2 mM sodium butyrate (with or without 10% heat inactivated
FCS). The cells were then grown for a further 3-4 days before they were
15 harvested. The medium was collected from the cells and dead cells were
removed from the medium by centrifugation at 5000 rpm for 30 mins at
4°C. The spun medium (supernatant) was then filtered through a 0.2
micron filter unit, prior to applying to the affinity chromatography
column.

20

The Fab-DNase fusion product was then purified by affinity chromatography using a Protein-L column (Protein L agarose, P3351 from Sigma Co, Poole, Dorset, UK), as follows:

- 25
1. Wash 1 ml of settled protein L agarose (P3351) with at least 5 volumes of phosphate buffered saline (PBS: 10 mM phosphate buffered saline, pH 7.4).
 2. Dilute 1 ml supernatant with 9 ml PBS.

3. Mix diluted supernatant with protein-L agarose and incubate with gentle end over end mixing for 1 hour at room temperature.
4. Pack the slurry in a column and drain.
5. Wash away unbound proteins with 10-15 column volumes of PBS.
6. Elute bound protein with 5 ml elution buffer (0.1 M glycine, pH 2.0, or 0.2 M citrate buffer, pH 2.8).
7. Neutralise eluted material with Tris-base to achieve pH 7.5.

Figure 31(a) shows the elution profile of the Fab-DNase from the Protein-L column when eluted with 0.1 M glycine, pH 2.0.

Following purification, Fab-DNase was analysed by analytical size-exclusion chromatography on a Superdex-200 column.

Figure 31(b) shows the size-exclusion chromatogram obtained for the Fab-DNase.

The Ab-DNase fusion product was purified by affinity chromatography using a Protein-A sepharose column, as follows:

1. 25 ml of protein A sepharose fast flow resin (Amersham Pharmacia Biotech) in an XK26 column (Amersham Pharmacia Biotech) was equilibrated in 0.1M glycine, pH 8.8, 0.5M NaCl.
2. Approximately 2 litres of sterile-filtered supernatant from cell line W70 (CHO cell line making 34K) was passed the column overnight at a low flow rate (1-2 ml/min).
3. The column was then washed down to base-line and was re-equilibrated in 0.15M disodium hydrogen phosphate, pH 9.0 and the

bound 34K was eluted by running a gradient between this buffer (A) and a low pH buffer (B) which consisted of 0.1M citric acid, pH2.0, supplemented to 2 mM calcium chloride and 2 mM magnesium sulphate. The gradient was run over 100 ml at a flow rate of 4 ml/min and a further 50 ml of buffer B was run over the column at the completion of the gradient, also at 4 ml/min.

- 5 4. During the 100 ml gradient and the last 50 ml of buffer A fractions were collected. The peak fractions were identified and pooled and dialysed against 4 litres of 25 mM Hepes, pH7.5, 0.2 M NaCl, 10 1mM calcium chloride and 1mM magnesium sulphate. Dialysis was performed overnight at 4C.
- 15 5. The dialysate was concentrated on Centricon spin concentrators to a final concentration of 6-13 mg/ml. The concentration was determined by dividing by its extinction coefficient of 1.558 (calculated from the known sequence).

Figure 32(a) shows the elution profile of the Ab-DNase from the Protein-L column when eluted with a gradient of 0.15 M Na₂HPO₄, pH 9.0 to 0.1 M citric acid, pH 2.0 containing 2mM each of CaCl₂ and MgCl₂.

20

Figure 32(b) shows the size-exclusion chromatogram obtained for the Ab-DNase.

25

(C) Determination of concentration of fusion proteins
Prior to measuring DNase activity of the purified fusion proteins (see Section (E) below), the concentration of the proteins was determined by ELISA, as follows (see also Section (C) of Example 1).

Materials

1. 96 Well ELISA plates (Nunc F96 Maxisorp Cat No. 442404).
- 5 2. Bovine serum albumin (Sigma A-9647).
3. Coating buffer (Na₂CO₃ 1.59 g/l, NaHCO₃ 2.93 g/l, NaN₃ 0.2 g/l, pH9.6).
4. GST-MUC1-7TR antigen (1.5 mg/ml).
5. Anti-human kappa light-chain antibody GD12 (0.2 mg/ml, Binding Site, MC135).
- 10 6. Peroxidase-conjugated rabbit anti-mouse IgG (Jackson, 315-035-045).
7. TMB- substrate buffer (Sigma P-4417).
8. Tween 20 (Sigma P7949).
- 15 9. Purified humanised HMFG1 (1.4 mg/ml).

Method

Note all washes in this protocol consist of 3 x 3 min washes in PBS buffer
20 (note: all PBS buffer contained 0.05 % Tween) and the plate was
incubated in a lunch box containing moist tissue paper.

1. Coat 100 ng of antigen/100 µl coating buffer/well overnight at 4°C.
- 25 2. Wash the plate and block each well with 100 µl of PBS containing 0.05 % Tween, and 1% BSA for 1 h at 30°C. Wash plate afterwards.
3. A standard curve of humanised HMFG1 should be prepared

down the plate using doubling dilutions. Make each dilution in 100 μ l PBS buffer and for the highest concentration in the curve use 1000 ng of antibody.

4. Incubate the plate for 2 h at 30°C, wash, and add 100 μ l PBS containing 200 ng of the anti-human Kappa light chain antibody to each well of the plate. Incubate for a further 1 h at 30°C and then wash the plate.
5. Add 100 μ l PBS containing the rabbit anti-mouse IgG-peroxidase conjugate (diluted 1:2000) to each well of the plate and incubate for 30 min at 30°C. Wash the plate and add 100 μ l TMB- substrate-buffer to each well of the plate and allow the reaction to proceed in the dark at room temperature. When the blue colour has developed, read the plate at a wavelength of 630 nm.

15

(D) SDS-PAGE

Following purification of Ab-DNase and Fab-DNase, the fusion proteins were analysed by SDS-PAGE under non-reducing and reducing conditions, as described in Section (B) of Example 1.

In brief, affinity-purified material was used. In the case of the Ab-DNase fusion protein, this was from a sample dialysed and concentrated (as described in the protein A protocol above). In the case of the Fab-DNase, 25 this was unconcentrated protein directly eluted from the protein L affinity column. 15 μ l of the Fab-DNase protein-L eluate was mixed with 5 μ l of either reducing or non-reducing loading buffer whereas 2 μ l of the Ab-DNase protein A eluate (dialysed and concentrated) was mixed with 5 μ l

of either reducing or non-reducing buffer. Both samples were boiled for 5 minutes and were loaded onto the gel. The gels were stained with Coomassie Brilliant Blue stain. The cells were not labelled with 35S-methionine (as in Example 1).

5

The SDS-PAGE autoradiograph for Ab-DNase is shown in Figure 33(a). Under reducing conditions, Ab-DNase produces a band of about 80 kDa, which corresponds to the expected size of the heavy chain-DNase fusion product (see lane 3). A further band of about 50 kDa is also observed, 10 which is approximately the same molecular weight as the hHMFG-1 heavy chain (see lane 4).

The SDS-PAGE autoradiograph for Fab-DNase is shown in Figure 33(b). Under reducing conditions, Fab-DNase produces a band of about 55- 15 60 kDa, which corresponds to the expected size of Fab-DNase (see lane 3). Under non-reducing conditions, a band of about 80-85 kDa is observed, which is the approximate molecular weight of Fab-DNase rather than F(ab')₂-DNase (see lane 4). Thus, the Fab-DNase appears to exist as a dimer of the hHMFG-1 light chains and the hHMFG-1 heavy 20 chain/human DNase fusion, not a tetrameric F(ab')₂-DNase.

(E) Measurement of DNase activity of hHMFG-1/DNase constructs

DNase activity of the two fusion proteins was determined as described in 25 Section (D) of Example 1. In brief, 0.1 ml of the purified protein was added to a 1:1 solution of assay buffer and methyl green-salmon sperm DNA complex, and the mixture incubated at 37°C. A reduction in absorbance at 620 nm is indicative of DNA activity.

A standard curve produced using bovine DNase I is shown in Figure 34(a).

5 Figure 34(b) shows the DNase activity of the Fab-DNase and Ab-DNase fusion proteins 3 h and 6 h after being added to the DNA, compared to a positive control of bovine DNase and a negative control of Fab only. Clearly, the DNase activity of the Fab-DNase and Ab-DNase fusion proteins is comparable to that of the bovine DNase positive control.

10

(F) Cytotoxicity of DNase activity of hHMFG-1/DNase constructs

15 Cytotoxicity of the Fab-DNase and Ab-DNase fusion proteins was analysed using two tumour cell lines, the human malignant melanoma cell line A375 and the human ovarian adenocarcinoma cell line OVCAR 3.

An initial cell-based ELISA was performed using hHMFG-1 antibodies to determine the level of expression of PEM (the MUC1 gene product) on these cells.

20

Cell-based PEM ELISA assay protocol

Materials and methods

- 25 1. Phosphate buffered saline tablets (Sigma P-4417)
 2. 50% glutaraldehyde solution (BDH UN2810 Prod. 2868240)
 3. sodium azide (Sigma S-8032)
 4. Nunclon 96 well tissue culture plate (Nunc D167008)

50

- 5 5. BSA (Sigma A-9647)
6. OVCAR-3 ovarian cancer cells, A375 melanoma cancer cells both from ATCC
7. TMB substrate buffer (Sigma P-4417)
8. Tween 20 (Sigma P7949)
9. Purified humanised HMFG1 (1 mg/ml from ICRF)
10. RPMI 1640 media (Gibco 21875-034)

Protocol

- 10 1. The OVCAR-3 and A375 cells were grown in RPMI containing 20% and 10% FCS respectively at 37°C in 5% CO₂ in a 96 well tissue culture plate, seeded at 106 cells/ml with 0.1 ml/well.
- 15 2. Excess media was removed and the plate was fixed with 0.05% glutaraldehyde in water for 1 hour at room temperature.
3. Excess glutaraldehyde/water solution was removed and the plates were washed three times with PBS containing 0.05% Tween 20. The plate was stored at 4°C until required in PBS with 0.02% sodium azide).
- 20 4. To use the plate, the plate was then washed with three washes of PBS containing 0.05% Tween 20, and the wells were blocked with 0.1 ml 5% BSA in PBS containing 0.05% Tween 20. The wells were blocked for 1 hour at 30°C.
- 25 5. They washed three times as described before. Serial dilutions of hHMFG1 were plated out on the wells from a maximum concentration of 2 µg/ml downward. Dilutions of constructs were also similarly plated onto the fixed cells. All dilutions were prepared in PBS containing 0.05% Tween 20.

6. The proteins were incubated with the fixed cells for 1 hour at 30°C and were again washed three times as described above.
7. Anti-human IgG-Fc peroxidase conjugate antibody (Jackson 209-035-103) was diluted to 1:2000 in PBS containing 0.05% Tween 20. This was incubated at 30°C for 30 minutes.
8. Once again the cells were washed as described as before. Then 0.1 ml TMB substrate was put in each well and the colour was developed at room temperature and the absorbance at 655 nm was determined.

10

For comparison, an additional ELISA using Ab-DNase was performed with the OVCAR 3 cells.

Antigen-bound hHMFG-1 and Ab-DNase was detected by a peroxidase-conjugated anti-human Fc antibody.

The results of the ELISA are shown in Figure 35, indicating that the OVCAR 3 cell line expresses high levels of PEM (as measured by both hHMFG-1 and Ab-DNase) while the A375 cell line expresses low levels of PEM (and hence can be used as a negative control in cytotoxicity experiments).

Cytotoxicity was measured using an LDH release assay, as described in Section (E) of Example 1. In brief, 10⁵ cells per well of the A375 and OVCAR 3 cell lines were plated in a 96-well plate and grown for 24 hours. Fifteen microlitres of the purified fusion proteins (containing 200 ng of Ab-DNase or 100 ng of Fab-DNase) were added to the cells and incubated for 48 hours at 37°C. A negative control group of each cell

type was treated with 200 ng of the hHMFG-1 antibody (*i.e.* not fused to DNase).

Following the incubation period, 50 μ l of the supernatant was removed
5 and incubated with 50 μ l of tetrazolium-containing substrate buffer for 30 minutes at 22°C. The reaction was stopped with stop buffer (Promega) and the absorbance of the reaction mixture at 490 nm measured.

Both Fab-DNase and Ab-DNase fusions show cell killing of OVCAR 3
10 cells as compared to the negative control hHMFG-1 treated cells. In contrast, killing of A375 cells by DNase fusions is negligible, consistent with negligible binding of the fusions to these cells.

1/113

Human DNase I

LOCUS HUMDNASEI 1039 bp mRNA **PRI** 06-MAR-1995
DEFINITION Human DNase I mRNA, complete cds.
ACCESSION M55983
VERSION M55983.1 GI:181623
KEYWORDS DNase I.
SOURCE Human pancreus, cDNA to mRNA.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;
Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1039)
AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
MEDLINE 91067672

FEATURES
source Location/Qualifiers
1..1039
/organism="Homo sapiens"
/db_xref="taxon:9606"
/clone="hDNase-18-1"
/tissue_type="pancreas"
sig_peptide 160..225
/gene="DNase I"
CDS 160..1008
/gene="DNase I"
/codon_start=1
/product="DNase I"
/protein_id="AAA63170.1"
/db_xref="GI:181624"
/translation="MRGMKLLGALLALAALLQGAVSLKIAAFNIQTGETKMSNATLV
SYIVQILSRYDIALVQEVRDSHLTAVGKLLDNLNQDAPDTYHYVVSEPLGRNSYKERY
LFVYRPDQVSADVSDYYDDGCEPCGNDFNREPAIVRFFSRFTEVREFAIVPLHAAPG
DAVAEIDALYDVYLDVQEKWGLEDMVLMGDFNAGCSYVRPSQWSSIRLWTSPTFQWL
PDSADTTATPTHCAYDRIVVAGMLLRGAVVPDSALPFNFQAAAGLSDQLAQAIISDHYP
VEVMLK"
gene 160..1008
/gene="DNase I"
mat_peptide 226..1005
/gene="DNase I"
/product="DNase I"

BASE COUNT 226 a 305 c 282 g 226 t
ORIGIN

```

1 tcctgcacag gcagtgcctt gaagtgcattt ttcagagacc ttcttcata gactactttt
61 ttttcttaa gcagcaaaag gagaaaattt tcatcaaagg atattccaga ttcttgacag
121 cattctcgat atctctgagg acatcaccat catctcagga tgagggcat gaagctgtcg
181 ggggcgtgc tggcactggc gcccctactg .cagggggccg tgcctcgaa gatcgacg
241 ttcaacatcc agacatttgg ggagaccaag atgtccatg ccaccctcgat cagctacatt
301 gtgcagatcc tgagccgcta tgacatcgcc ctggcagg aggtcagaga cagccac
361 actgcgtgg ggaagctgtgc ggacaaccc aatcaggatg caccagacat ctatcactac
421 gtggcgtgtg agccactggg acggaacagg tataaggagg gctacccgtt cgtgtacagg
481 cctgaccagg tgcgtcggt ggacagctac tactacgtat atggcgtgcga gcccgtcggg
541 aacgacaccc tcaaccgaga gccaggcatt gtcagggtct tctcccggtt cacagaggc
601 agggagtttgc cattgttcc cctgcattcg gcgggggggg acgcgttagc cgagatcgac
661 gctcttatg acgtctaccc ggtatgtccaa gagaatgggg gcttggagga cgtcatgttg
721 atgggcgact tcaatgcggg ctgcgttat gtggacccct cccagtggtc atccatccgc
781 ctgtggacaa gccccaccc tccagggtcg atccccgaca ggcgtgacac cacagctaca
841 cccacgcact gtgccttatg caggatcgat gtgcaggaa tgctgtccg aggcgcgg
901 gttcccgact cggcttcc cttaactt caggctgcct atggcctgag tgaccaactg
961 gccaagcca tcaatgcggc ctatccaggc gaggtgatgc tgaatgtggc agccctcc
1021 cacaccaggtaa gaaatcgac

```

//

Fig. 1

2/113

Human DNase I construct

LOCUS MHDNASE.DN 783 bp mRNA **PRI** 06-MAR-1995
DEFINITION Human DNase I mRNA, complete cds, Mature sequence modified to remove NarI site
ACCESSION M55983
NID g181623
KEYWORDS DNase I.
SOURCE Human pancreas, cDNA to mRNA.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1039)
AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
MEDLINE 91067672
FEATURES
source Location/Qualifiers
1..1039
/organism="Homo sapiens"
/db_xref="taxon:9606"
/clone="hDNase-18-1"
/tissue_type="pancreas"
sig_peptide 160..225
/gene="DNase I"
CDS 160..1008
/gene="DNase I"
/codon_start=1
/product="DNase I"
/db_xref="PID:g181624"
/translation="LKIAAFNIQTFGETKMSNATLVSYIVQILSRDIALVQEVRDSHLTAVGKLLDNLNQDAPDTYHYVVSEPLGRNSYKERYLFVYRPDQVSADVSDYYDDGCEPCGNDFNREPAIVRFFSRFTEVREFAIPLHAAPGDAVAEIDALYDVLDVQEKWGLEDVMLMGDFNAGCSYVRPSQWSSIRLWTSPFQWLIPDSADTTATPTHCAYDRIVVAGMILLRGAVVPDSALPFNFQAAYGLSDQLAQAIISDHYPVEVMLK"
gene 160..1008
/gene="DNase I"
mat_peptide 226..1005
/gene="DNase I"
/product="DNase I"
BASE COUNT 168 a 236 c 220 g 159 t
ORIGIN

```

1 CTGAAGATCG CAGCCTTCAA CATCCAGACA TTGGGGAGA CCAAGATGTC CAATGCCACC
61 CTCGTCAGCT ACATTGTGTC GATCCTGAGC CGCTACGACA TCGCCCTGGT CCAGGAGGTC
121 AGAGACAGCC ACCTGACTGC CGTGGGAAAG CTGCTGGACA ACCTCAATCA GGACGCACCA
181 GACACCTATC ACTACGTGGT CAGTGAGCCA CTGGGACGGA ACAGCTATAA GGAGCGCTAC
241 CTGTTCGTGT ACAGGCCCTGA CCAGGTGTCT CGGGTGGACA GCTACTACTA CGATGATGGC
301 TGCGAGCCCT GCGGGAACGA CACCTCAAC CGAGAGCCAG CCATTGTCAG GTTCTTCTCC
361 CGGTTCACAG AGGTCAAGGG A GTTGGCCATT GTTCCCCCTGC ATGCGGGCCC GGGGGACGCA
421 GTAGCCGAGA TCGACGCTCT CTATGACGTC TACCTGGATG TCCAAGAGAA ATGGGGCTTG
481 GAGGACGTCA TGTTGATGGG CGACTTCAAT GCGGGCTGCA GCTATGTGAG ACCCTCCAG
541 TGGTCATCCA TCCGCCCTGTG GACAAGCCCC ACCCTCCAGT GGCTGATCCC CGACAGCGCT
601 GACACCACAG CTACACCCAC GCACTGTGCC TATGACAGGA TCGTGGTTGC AGGGATGCTG
661 CTCCGAGGGG CCGTTGTTCC CGACTCGGCT CTTCCTTTA ACTTCCAGGC TGCTATGGC
721 CTGAGTGACC AACTGGCCCA AGCCATCAGT GACCACTATC CAGTGGAGGT GATGCTGAAG
781 TGA
//
```

Fig. 2(A)

3/113

LOCUS PAS155_1 858 BP SS-DNA SYN 29-AUG-2000
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 FEATURES Location/Qualifiers
 frag 10..75 /note="160 to 225 of Untitled1"
 frag <10..>75 /note="1 to 1039 of M55983.DNA [Split]"
 source <10..>75 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="hDNase-18-1"
 /tissue_type="pancreas [Split]"
 sig_peptide 10..75 /gene="DNase I"
 CDS 10..>75 /gene="DNase I"
 /codon_start="1"
 /product="DNase I"
 /db_xref="PID:g181624"

 /translation="MRGMKLLGALLALAALLQGAVSLKIAAFNIQTGETKMSNATLV
 SYIVQILSRYDIALVQEVRDSHLTAVGKLLDNLNQDAPDTYHYVVSEPLGRNSYKERY
 LFVYRPDQVSAVDSDYYDDGCEPCGNDFNREPAIVRFFSRFTEVREFAIVPLHAAPG
 D... [Split]"
 gene 10..>75 /gene="DNase I [Split]"
 frag 76..858 /note="1 to 783 of mod humanDNaseI"
 frag 76..858 /note="1 to 72 of 104linker"
 frag join(76..>129,<131..147) /note="1 to 72 of 103linker [Split]"
 frag join(76..>126,<127..>129,<131..147) /note="1 to 78 of 102linker [Split]"
 BASE COUNT 177 A 260 C 251 G 170 T 0 OTHER
 ORIGIN -
 1 GCCGCCACCA TGAGGGGCAT GAAGCTGCTG GGGCGCTGC TGGCACTGGC GCCCTACTG
 61 CAGGGGGCCG TGTCCCTGAA GATCGCAGCC TTCAACATCC AGACATTGG GGAGACCAAG
 121 ATGCCAATG CCACCCCTCGT CAGCTACATT GTGCAGATCC TGAGCCGCTA CGACATCGC
 181 CTGGTCCAGG AGGTCAGAGA CAGCCACCTG ACTGCCGTGG GGAAGCTGCT GGACAACCTC
 241 AATCAGGACG CACCAGACAC CTATCACTAC GTGGTCAGTG AGCCACTGGG ACGAACAGC
 301 TATAAGGAGC GCTACCTGTT CGTGTACAGG CCTGACCAGG TGTCTGCGGT GGACAGCTAC
 361 TACTACGATG ATGGCTGCGA GCCCTGCGGG AACGACACCT TCAACCGAGA GCCAGCCATT
 421 GTCAGGTTCT TCTCCCGGTT CACAGAGGTC AGGGAGTTG CCATTGTTC CCTGCATGCG
 481 GCCCCGGGGG ACGCAGTAGC CGAGATCGAC GCTCTCTATG ACGTCTACCT GGATGTCAA
 541 GAGAAATGGG GCTTGGAGGA CGTCATGTT ATGGGGCAGCT TCAATGCGGG CTGCAGCTAT
 601 GTGAGACCT CCCAGTGGTC ATCCATCCGC CTGTGGACAA GCCCCACCTT CCAGTGGCTG
 661 ATCCCCGACA GCGCTGACAC CACAGCTACA CCCACGCCT GTGCCTATGA CAGGATCGTG
 721 GTTGCAGGGA TGCTGCTCCG AGGGGCCGTT GTTCCCGACT CGGCTCTTCC CTTAACTTC
 781 CAGGCTGCCT ATGGCCTGAG TGACCAACTG GCCCAAGCCA TCAGTGACCA CTATCCAGTG
 841 GAGGTGATGC TGAAGTGA

//

Fig. 2(B)

4/113

pAS6 – light chain

LOCUS	HMFG1LC2.D	721 bp	DNA	18-AUG-1998
DEFINITION	HUMANISED HMFG1 LIGHT CHAIN Vnp LEADER.			
ACCESSION				
KEYWORDS				
SOURCE				
ORGANISM				
REFERENCE	1 (BASES 1 TO 342)			
AUTHORS	VERHOEYEN ET AL			
TITLE	CONSTRUCTION OF RESHAPED HMFG1 ETC			
JOURNAL	IMMUNOL. (1993):78, 364-370			
COMMENT	SCANNED IN FROM JOURNAL			
FEATURES				
SITES				

This is the sequence of the HMFG1 light chain gene with the Vnp leader sequence attached. Translate from residue 1. Note residue 399 is T > A in all clones leading to R133 silent mutation (T in Verhoeven paper)

BASE COUNT	197	a	202	c	182	g	140	t
ORIGIN	?							

x	LEADER SEQ
1	ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCGGAC
61	ATCCAGATGA CCCAGAGCCC AAGCAGCCTG AGGCCAGCG TGGGTGACAG AGTGACCATC
121	ACCTGTAAGT CCAGTCAGAG CCTTTTATAT AGTAGCAATC AAAAGATCTA CTGGCCTGG
181	TACCAGCAGA AGCCAGGTAA GGCTCAAAG CTGCTGATCT ACTGGGCATC CACTAGGGAA
241	TCTGGTGTGC CAAGCAGATT CAGCGGTAGC GGTAGCGGTA CCGACTTCAC CTTCACCATC
301	AGCAGCCTCC AGCCAGAGGA CATGCCACC TACTACTGCC AGCAATATTA TAGATATCCT
361	CGGACGTTCG GCCAAGGGAC CAAGGTGGAA ATCAAACGAA CTGTGGCTGC ACCATCTGTC
421	TTCATCTTCC CGCCATCTGA TGAGCAGTTG AAATCTGGAA CTGCCTCTGT TGTGTGCCTG
481	CTGAATAACT TCTATCCCAG AGAGGCCAAA GTACAGTGGA AGGTGGATAA CGCCCTCCAA
541	TCGGGTAACT CCCAGGAGAG TGTCACAGAG CAGGACAGCA AGGACAGCAC CTACAGCCTC
601	AGCAGCACCC TGACGCTGAG CAAAGCAGAC TACGAGAAAC ACAAAAGTCTA CGCCTGCGAA
661	GTCACCCATC AGGGCCTGAG CTCGCCGTC ACAAAAGAGCT TCAACAGGGG AGAGTGTAG
721	A

//

Fig. 3(A)

5/113

LOCUS	HHMFG1KLC_	730 BP SS-DNA	SYN	29-AUG-2000		
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	10..730	/note="1 to 721 of hHMFG1light chain"				
frag	10..730	/note="1 to 72 of 104linker"				
frag	join(10..>63,<65..81)	/note="1 to 72 of 103linker [Split]"				
frag	join(10..>60,<61..>63,<65..81)	/note="1 to 78 of 102linker [Split]"				
BASE COUNT	198 A	208 C	184 G	140 T		
ORIGIN	-			0 OTHER		
	1 GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGCAACAGC	TACAGGTGTC
	61 CACTCCGACA	TCCAGATGAC	CCAGAGCCC	AAGCAGCCTGA	GCGCCAGCGT	GGGTGACAGA
	121 GTGACCATCA	CCTGTAAAGTC	CAGTCAGAGC	CTTTTATATA	GTAGCAATCA	AAAGATCTAC
	181 TTGGCCTGGT	ACCAGCAGAA	GCCAGGTAAG	GCTCCAAAGC	TGCTGATCTA	CTGGGCATCC
	241 ACTAGGGAAT	CTGGTGTGCC	AAGCAGATT	AGCGGTAGCG	GTAGCGGTAC	CGACTTCACC
	301 TTCACCACATCA	GCAGCCTCCA	GCCAGAGGAC	ATCGCCACCT	ACTACTGCCA	GCAATATTAT
	361 AGATATCCTC	GGACGTTCGG	CCAAGGGACC	AAGGTGGAAA	TCAAACGAAC	TGTGGCTGCA
	421 CCATCTGTCT	TCATCTTCCC	GCCATCTGAT	GAGCAGTTGA	AATCTGGAAC	TGCCTCTGTT
	481 GTGTGCCTGC	TGAATAACTT	CTATCCCAGA	GAGGCCAAAG	TACAGTGGAA	GGTGGATAAC
	541 GCCCTCCAAT	CGGGTAAC	CCAGGAGAGT	GTCACAGAGC	AGGACAGCAA	GGACAGCACC
	601 TACAGCCTCA	GCAGCACCC	GACGCTGAGC	AAAGCAGACT	ACGAGAAACA	CAAAGTCTAC
	661 GCCTGCGAAG	TCACCCATCA	GGGCCTGAGC	TCGCCCCGTCA	CAAAGAGCTT	CAACAGGGGA
	721 GAGTGTAGA					

//

Fig. 3(B)

6/113

HMFG-1 light chain with Vnp Leader (shaded)

MGWSCHLFLEVATATGVHSDIQMTQSPSSLSASVGDRVITCKSSQL
LYSSNQKIYLAWYQQKPGKAPKLLIYWASTRESGVPSRFSGSGSGT
DFTFTISSLQPEDIAYYCQQYYRYPRTFGQGTKVEIKRTVAAPSVFI
FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESV
TEQDSKDSTYLSSTTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Fig. 3(C)

7/113

pAS6 – heavy chain

LOCUS HHMFG1HC.D 1404 bp DNA
 DEFINITION HUMANISED HMFG1 heavy chain
 ACCESSION HHMFG1H
 KEYWORDS
 SOURCE
 ORGANISM
 REFERENCE
 AUTHORS VERHOEYEN ET AL
 TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
 JOURNAL IMMUNOL. (1993):78, 364-370
 COMMENT VH domain SCANNED IN FROM JOURNAL
 FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
 FEATURES Residue 963 is G > T leading to silent mutation in all clones
 SITES Note
 BASE COUNT 333 a 439 c 379 g 253 t
 ORIGIN ?

LEADER

```

1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACCTCCAG
61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGGC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT
241 GAGAAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCTTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACCA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCCT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
541 GGCGCCCTGA CCAGCGGCAGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGGTGAC CGTGCCTCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACACT ACACATGCC ACCACCTGCCA GCACCTGAAC TCCCTGGGGG ACCGTCAGTC
781 TTCCCTCTTCC CCCCAAAACCC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTACACA
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCCTGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACACACA GGTGTACACC CTGCCCCCAT CCCGGATGA GCTGACCAAG
1141 AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGAGGCC GGAGAACACAC TACAAGACCA CGCCTCCGT GCTGGACTCC
1261 GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC
1381 CTCTCCCTGT CTCCGGTAA ATGA
  
```

Antibody DNase Fusions Made Here
(eg pAS34----39.)

→ End of lower hinge region of heavy chain. PAPE Amino Acid Seq. Fab'₂ fusions were made at this point.

Those with HYBRID HINGES are altered further up
i.e.

→ This part GACAAAACACTGACACA
D K T H T

After this sequence you get the HYBRID HINGE + LINKER SEQUENCES
Then DNase I (eg Fab-DNase construct pAS302)

Fig. 3(D)

8/113

Fig. 4(A)

Oligos involved in the fusion of whole antibody-DNase

Constructs PAS34/37

AS79	GAG AGG GAC AGA AGC	CCG GGT AAA	GGG AGC GGC GGG	CTG AAG ATC GCA GCC	CTG AAG ATC GCA GCC TTC AAC
AS80	L S I S P G K	CCC CCA TTT	CCC TCG CCG CCC	GAC TTC TAG	
		G S G Q	G I K I A F N		

HMFG1

LINKER

hn DNase I

Constructs PAS35/38

AS81	GAG AGG GAC AGA AGC	CCG	AAA GGG AGC GGC GGG	CTG AAG ATC GCA GCC	CTG AAG ATC GCA GCC TTC AAC
AS82	L S I S P G K	TTT CCC TCG CCG CCC	GAC TTC TAG		
		K G S G Q	I K I A F N		

HMFG1

LINKER

hn DNase I

ΔG (deletion)

Constructs PAS36/39

AS83	GAG AGG GAC AGA AGC	CCG	GGG AGC GGC GGG	CTG AAG ATC GCA GCC	CTG AAG ATC GCA GCC TTC AAC
AS84	L S I S P G K	CCC TCG CCG CCC	GAC TTC TAG		
		Q S G G	I K I A F N		

HMFG1

LINKER

hn DNase I

ΔG (deletion)

Oligos involved in the fusion of Fab'2-DNaseI

Constructs PAS23/27

AS73	GGT GGC ACG GGT CGT GGA CCT	GAA	GGG AGC GGC GGG	CTG AAG ATC GCA GCC	CTG AAG ATC GCA GCC TTC AAC
AS74	P P C P A P E	CTT	CCC TCG CCG CCC	GAC TTC TAG	
		G S G Q	I K I A F N		

HMFG1 HINGE

LINKER

hn DNase I

9/113

Oligos involved in the fusion of new Fab'2-DNaseI molecules (5.7.99)

Constructs PAS101/105

Constructs PAS102/106

Constructs PAS103/107

Fig. 4(B)

10/113

pAS23

LOCUS PAS23.DNA 1554 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I (construct 1)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic
 fibrosis sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 344 a 468 c 434 g 308 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAACGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTATT ACTGTGCAAG ATCCTACGAC
361 TTGCTCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC
421 AAGGGCCCCT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACATCA
541 GGCGCCCTGA CCAGCGGCCTG GCACACCTTC CCGGCTGTCC TACAGTCTCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACCTC ACACATGCC ACCGTGCCA GCACCTGAAG GGAGCGGCGG GCTGAAGATC
781 GCAGCCTTCA ACATCCAGAC ATTGGGGAG ACCAAGATGT CCAATGCCAC CCTCGTCAGC
841 TACATTGTGC AGATCCTGAG CCGCTACGAC ATGCCCTGG TCCAGGAGGT CAGAGACAGC
901 CACCTGACTG CCGTGGGAA GCTGCTGGAC AACCTCAATC AGGACGCCACC AGACACCTAT
961 CACTACGTGG TCAGTGAGCC ACTGGGACGG AACAGCTATA AGGAGCGCTA CCTGTTCTGTG
1021 TACAGGCCTG ACCAGGTGTC TGCGGTGGAC AGCTACTACT ACGATGATGG CTGCGAGCCC
1081 TGCAGGAAACG ACACCTTCAA CCGAGAGCCA GCCATTGTCA GGTTCTCTC CCGGTTACAA
1141 GAGGTCAGGG AGTTGCCAT TGTTCCTTG CATGGGCC CGGGGACGC AGTAGCCGAG
1201 ATCGACGCTC TCTATGACGT CTACCTGGAT GTCCAAGAGA AATGGGGCTT GGAGGACGTC
1261 ATGTTGATGG GCGACTTCAA TGCGGGCTGC AGCTATGTGA GACCCTCCCA GTGGTCATCC
1321 ATCCGCCTGT GGACAAGCCC CACCTTCCAG TGGCTGATCC CCGACAGCGC TGACACCACA
1381 GCTACACCCA CGCACTGTGC CTATGACAGG ATCGTGGTTG CAGGGATGCT GCTCCGAGGG
1441 GCCGTTGTTG CCGACTCGGC TCTTCCCTTT AACCTCCAGG CTGCCTATGG CCTGAGTGAC
1501 CAACTGGCCC AAGCCATCAG TGACCACTAT CCAGTGGAGG TGATGCTGAA GTGA
  //
```

Fig. 5(A)

11/113

LOCUS	FDDNASE23_	1554 BP SS-DNA	SYN	25-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	join(1..>720,<787..1554) /note="1 to 1554 of 23.dna [Split]"			
frag	721..786 /note="1 to 66 of 23/27linker"			
frag	join(721..>735,<736..786) /note="1 to 78 of 102linker [Split]"			
BASE COUNT	344 A	466 C	435 G	309 T 0 OTHER
ORIGIN	-			
	1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG			
	61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC			
	121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA			
	181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT			
	241 GAGAAGTTCA AGGGCCGAGT GACAGTCAC AGAGACACAT CCACAAACAC AGCCTACATG			
	301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACAGC			
	361 TTTGCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC			
	421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG			
	481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTGTC GTGGAACACTA			
	541 GGCGCCCTGA CCAGGGCGGT GCACACCTTC CCGGCTGTCC TACAGTCTC AGGACTCTAC			
	601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC			
	661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT			
	721 GACAAAATC ACACATGTCC ACCGTGTCCA GCACCAAGAGG GGAGCAGCGG GCTGAAGATC			
	781 GCAGCCTTCA ACATCCAGAC ATTTGGGGAG ACCAAGATGT CCAATGCCAC CCTCGTCAGC			
	841 TACATTGTGC AGATCCTGAG CCGCTACGAC ATCGCCCTGG TCCAGGAGGT CAGAGACAGC			
	901 CACCTGACTG CCGTGGGAA GCTGCTGGAC AACCTCAATC AGGACGCC ACCACCTAT			
	961 CACTACGTGG TCAGTGAGCC ACTGGGACGG AACAGCTATA AGGAGCGCTA CCTGTTCTGT			
	1021 TACAGGCCTG ACCAGGTGTC TGCAGGTGGAC AGCTACTACT ACGATGATGG CTGCGAGGCC			
	1081 TGCAGGAAACG ACACCTTCAA CCGAGAGCCA GCCATTGTCA GGTTCTCTC CCGGTTACAA			
	1141 GAGGTCAAGGG AGTTGCCAT TGTGCCCCCTG CATGCCGCC CGGGGGACGC AGTAGCCGAG			
	1201 ATCGACGCTC TCTATGACGT CTACCTGGAT GTCCAAGAGA AATGGGGCTT GGAGGACGTC			
	1261 ATGTTGATGG GCGACTTCAA TGCAGGTGGAC AGCTATGTGA GACCCCTCCCA GTGGTCATCC			
	1321 ATCCGCCTGT GGACAAGCCC CACCTTCCAG TGGCTGATCC CCGACAGCGC TGACACCACA			
	1381 GCTACACCCA CGCAGTGTGC CTATGACAGG ATCGTGGTTG CAGGGATGCT GCTCCGAGGG			
	1441 GCCGTTGTTG CCGACTCGGC TCTTCCCTT AACTTCCAGG CTGCCTATGG CCTGAGTGAC			
	1501 CAACTGGCCC AAGCCATCAG TGACCACTAT CCAGTGGAGG TGATGCTGAA GTGA			

//

Fig. 5(B)

12/113

LOCUS	FDDNASE23K	1563 BP	SS-DNA	SYN	29-AUG-2000	
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	10..1563					
	/note="1 to 1554 of FdDNase23correct"					
frag	join(10..>729,<796..1563)					
	/note="1 to 1554 of 23.dna [Split]"					
frag	730..795					
	/note="1 to 66 of 23/27linker"					
frag	join(730..>744,<745..795)					
	/note="1 to 78 of 102linker [Split]"					
BASE COUNT	345 A	472 C	437 G	309 T	0 OTHER	
ORIGIN	-					
	1 GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGAACACAG	TACAGGTGTC
	61 CACTCCCAGG	TGCAGCTGGT	GCAGTCTGGG	GCAGAGGTGA	AAAAGCCTGG	GGCCCTCAGTG
	121 AAGGTGTCCT	GCAAGGCTTC	TGGCTACACC	TTCAGTGCCT	ACTGGATAGA	GTGGGTGCGC
	181 CAGGCTCCAG	GAAAGGGCCT	CGAGTGGGTC	GGAGAGATT	TACCTGGAAG	TAATAATTCT
	241 AGATACAATG	AGAAGTTCAA	GGGCGGAGTG	ACAGTCACTA	GAGACACATC	CACAAACACA
	301 GCCTACATGG	AGCTCAGCAG	CCTGAGGTCT	GAGGACACAG	CCGTCTATT	CTGTGCAAGA
	361 TCCTACGACT	TTGCCCTGGTT	TGCTTACTGG	GGCCAAGGGA	CTCTGGTCAC	AGTCTCCTCA
	421 GCCTCCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCC	CCTCCAAGAG	CACCTCTGGG
	481 GGACACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTCC	CCGAACCGGT	GACGGTGTG
	541 TGGAACTCAG	GCGCCCTGAC	CAGCGGCGTG	CACACCTTCC	CGGCTGTCC	ACAGTCTC
	601 GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	GCAGCTGGG	CACCCAGACC
	661 TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
	721 AAATCTTGTG	ACAAAACCTCA	CACATGTCCA	CCGTGTCCAG	CACCAGAGGG	GAGCGGGCGGG
	781 CTGAAGATCG	CAGCCTTCAA	CATCCAGACA	TTTGGGGAGA	CCAAGATGTC	CAATGCCACC
	841 CTCGTCAGCT	ACATTGTGCA	GATCCTGAGC	CGCTACGACA	TCGCCCTGGT	CCAGGAGGT
	901 AGAGACAGCC	ACCTGACTGC	CGTGGGGAAG	CTGCTGGACA	ACCTCAATCA	GGACGCAACCA
	961 GACACCTATC	ACTACGTGGT	CAGTGAGCCA	CTGGGACGGA	ACAGCTATAA	GGAGCGCTAC
	1021 CTGTTCGTGT	ACAGGCTGA	CCAGGTGTCT	CGGGTGGACA	GCTACTACTA	CGATGATGGC
	1081 TCGCGAGCCCT	CGGGGAACGA	CACCTTCAAC	CGAGAGCCAG	CCATTGTCAG	GTTCTTCTCC
	1141 CGGTTCACAG	AGGTCAAGGGA	GTTCGCCATT	GTTCCTCTGC	ATGCGGCC	GGGGGACGCA
	1201 GTAGCCGAGA	TCGACGCTCT	CTATGACGTC	TACCTGGATG	TCCAAGAGAA	ATGGGGCTTG
	1261 GAGGACGTCA	TGTTGATGGG	CGACTTCAAT	CGGGCTGCA	GCTATGTGAG	ACCCCTCCAG
	1321 TGGTCATCCA	TCCGCTGTG	GACAAGCCCC	ACCTTCCAGT	GGCTGATCCC	CGACAGCGCT
	1381 GACACCACAG	CTACACCCAC	GCACGTGCC	TATGACAGGA	TCGTGGTTGC	AGGGATGCTG
	1441 CTCCGAGGGG	CCGTTGTTCC	CGACTCGGCT	CTTCCCTTA	ACTTCCAGGC	TGCCCTATGGC
	1501 CTGAGTGACC	AACTGGCCCA	AGCCATCAGT	GACCACTATC	CAGTGGAGGT	GATGCTGAAG
	1561 TGA					

//

Fig. 5(C)

13/113

9 18 27 36 45 54

5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCA GCT ACA GGT GTC CAC

M G W S C I I L F L V A T A T G V H

63 72 81 90 99 108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA

S Q V Q L V Q S G A E V K K P G A S

117 126 135 144 153 162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG

V K V S C K A S G Y T F S A Y W I E

171 180 189 198 207 216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT

W V R Q A P G K G L E W V G E I L P

225 234 243 252 261 270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT

G S N N S R Y N E K F K G R V T V T

279 288 297 306 315 324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG

R D T S T N T A Y M E L S S L R S E

333 342 351 360 369 378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC

D T A V Y Y C A R S Y D F A W F A Y

387 396 405 414 423 432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG

W G Q G T L V T V S S A S T K G P S

441 450 459 468 477 486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG

V F P L A P S S K S T S G G T A A L

495 504 513 522 531 540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA

G C L V K D Y F P E P V T V S W N S

549 558 567 576 585 594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA

G A L T S G V H T F P A V L Q S S G

Fig. 5(D)
(Sheet 1 of 3)

14/113

		603		612		621		630		639		648
CTC	TAC	TCC	CTC	AGC	AGC	GTG	GTG	ACC	GTG	CCC	TCC	AGC
L	Y	S	L	S	S	V	V	T	V	P	S	S
											L	G
		657		666		675		684		693		702
ACC	TAC	ATC	TGC	AAC	GTG	AAT	CAC	AAG	CCC	AGC	AAC	ACC
T	Y	I	C	N	V	N	H	K	P	S	N	T
											K	V
		711		720		729		738		747		756
GTT	GAG	CCC	AAA	TCT	TGT	GAC	AAA	ACT	CAC	ACA	TGC	CCA
V	E	P	K	S	C	D	K	T	H	T	C	P
											P	C
		765		774		783		792		801		810
GAA	GGG	AGC	GGC	GGG	CTG	AAG	ATC	GCA	GCC	TTC	AAC	ATC
E	G	S	G	G	L	K	I	A	A	F	N	I
											Q	T
		819		828		837		846		855		864
ACC	AAG	ATG	TCC	AAT	GCC	ACC	CTC	GTC	AGC	TAC	ATT	GTG
T	K	M	S	N	A	T	L	V	S	Y	I	V
											Q	I
		873		882		891		900		909		918
TAC	GAC	ATC	GCC	CTG	GTC	CAG	GAG	GTC	AGA	GAC	AGC	CAC
Y	D	I	A	L	V	Q	E	V	R	D	S	H
											L	T
		927		936		945		954		963		972
AAG	CTG	CTG	GAC	AAC	CTC	AAT	CAG	GAC	GCA	CCA	GAC	ACC
K	L	L	D	N	L	N	Q	D	A	P	D	T
											Y	H
		981		990		999		1008		1017		1026
AGT	GAG	CCA	CTG	GGA	CGG	AAC	AGC	TAT	AAG	GAG	CGC	TAC
S	E	P	L	G	R	N	S	Y	K	E	R	Y
											L	F
		1035		1044		1053		1062		1071		1080
CCT	GAC	CAG	GTG	TCT	GCG	GTG	GAC	AGC	TAC	TAC	GAT	GAT
P	D	Q	V	S	A	V	D	S	Y	Y	D	D
											G	C
		1089		1098		1107		1116		1125		1134
TGC	GGG	AAC	GAC	ACC	TTC	AAC	CGA	GAG	CCA	GCC	ATT	GTC
C	G	N	D	T	F	N	R	E	P	A	I	V
											R	F
		1143		1152		1161		1170		1179		1188
TTC	ACA	GAG	GTC	AGG	GAG	TTT	GCC	ATT	GTT	CCC	CTG	CAT
F	T	E	V	R	E	F	A	I	V	P	L	H
											A	A
		1195		1206		1215		1224		1233		1242

Fig. 5(D)
(Sheet 2 of 3)

15/113

GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA

 A V A E I D A L Y D V Y L D V Q E K
 1251 1260 1269 1278 1287 1296
 TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT

 W G L E D V M L M G D F N A G C S Y
 1305 1314 1323 1332 1341 1350
 GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG

 V R P S Q W S S I R L W T S P T F Q
 1359 1368 1377 1386 1395 1404
 TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT

 W L I P D S A D T T A T P T H C A Y
 1413 1422 1431 1440 1449 1458
 GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CCC GAC TCG

 D R I V V A G M L L R G A V V P D S
 1467 1476 1485 1494 1503 1512
 GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA

 A L P F N F Q A A Y G L S D Q L A Q
 1521 1530 1539 1548
 GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'

 A I S D H Y P V E V M L K *

Fig. 5(D)
(Sheet 3 of 3)

16/113

pAS27

LOCUS PAS27.DNA 1584 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I with SV40
 NLS (construct 1)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 354 a 474 c 446 g 310 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCACTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT
241 GAGAACGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACATCA
541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACTC ACACATGCC ACCGTGCCA GCACCTGAAG GGAGCGGCCGG GCTGAAGATC
781 GCAGCCTTCA ACATCCAGAC ATTTGGGGAG ACCAAGATGT CCAATGCCAC CCTCGTCAGC
841 TACATTGTGC AGATCCTGAG CCGCTACGAC ATCGCCCTGG TCCAGGAGGT CAGAGACAGC
901 CACCTGACTG CCGTGGGAA GCTGCTGGAC AACCTCAATC AGGACGCACC AGACACCTAT
961 CACTACGTGG TCAGTGAGCC ACTGGGACGG AACAGCTATA AGGAGCGCTA CCTGTTCTGTG
1021 TACAGGCCTG ACCAGGTGTC TGCAGTGGAC AGCTACTACT ACGATGATGG CTGCGAGGCC
1081 TGCAGGAAACG ACACCTTCAA CCGAGAGCCA GCCATTGTCA GGTCTTCTC CCGGTTCAACA
1141 GAGGTCAAGGG AGTTGCCAT TGTTCCCCCTG CATGCGGCC CGGGGGACGC AGTAGCCGAG
1201 ATCGACGCTC TCTATGACGT CTACCTGGAT GTCCAAGAGA AATGGGGCTT GGAGGACGTC
1261 ATGTTGATGG GCGACTTCAA TGCAGGCTGC AGCTATGTGA GACCCTCCCA GTGGTCATCC
1321 ATCCGCCCTGT GGACAAGCCC CACCTTCCAG TGGCTGATCC CCGACAGCGC TGACACCACA
1381 GCTACACCCA CGCACTGTGC CTATGACAGG ATCGTGGTTG CAGGGATGCT GCTCCGAGGG
1441 GCCGTTGTTC CCGACTCGGC TCTTCCCTTT AACTTCCAGG CTGCCTATGG CCTGAGTGAC
1501 CAACTGGCCC AAGCCATCAG TGACCACTAT CCAGTGGAGG TGATGCTGAA GGGGGGCGGA
1561 CCCAAAAGA AGCGCAAGGT TTGA
  //
```

Fig. 6(A)

17/113

LOCUS	FDDNASE27_	1584 BP SS-DNA	SYN	25-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	join(1..>720,<787..1584) /note="1 to 1584 of 27.dna [Split]"			
frag	721..786 /note="1 to 66 of 23/27linker"			
frag	join(721..>735,<736..786) /note="1 to 78 of 102linker [Split]"			
BASE COUNT	354 A	472 C	447 G	311 T 0 OTHER
ORIGIN	-			
<pre> 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACCTCCCAG 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGGTGTCC 121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA 181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT 241 GAGAACGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG 301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC 361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC 421 AAGGGCCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG 481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACCTCA 541 GGCGCCCTGA CCAGCAGGCGT GCACACCTTC CGGGCTGTCC TACAGTCCTC AGGACTCTAC 601 TCCCTCAGCA GCGTGGTGAC CGTGGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC 661 AACGTGAATC ACAAGCCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT 721 GACAAAATC ACACATGTCC ACCGTGTCCA GCACCAAGAGG GGAGCGGGCGG GCTGAAGATC 781 GCAGCCTTCA ACATCCAGAC ATTGGGGAG ACCAAGATGT CCAATGCCAC CCTCGTCAGC 841 TACATTGTGC AGATCCGTGAG CGCCTACGAC ATCGCCCTGG TCCAGGGAGT CAGAGACAGC 901 CACCTGACTG CGGTGGGAA GCTGCTGGAC AACCTCAATC AGGACGCACC AGACACCTAT 961 CACTACGTGG TCACTGAGCC ACTGGGACGG AACAGCTATA AGGAGCGCTA CCTGTTCTGTG 1021 TACAGGCCTG ACCAGGTGTC TGCCTGGAC AGCTACTACT ACGATGATGG CTGCGAGCCC 1081 TGCGGGAACG ACACCTCAA CGAGAGGCCA GCCATTGTCA GGTTCTTCTC CCGGTTCACCA 1141 GAGGTCAAGGG AGTTTCCCAT TGTTCCTG CATGGGGCCC CGGGGGACGC AGTAGCCGAG 1201 ATCGACGCTC TCTATGACGT CTACCTGGAT GTCCAAGAGA AATGGGGCTT GGAGGACGTC 1261 ATGTTGATGG GCGACTTCAA TGCCTGGCTGC AGCTATGTGA GACCCTCCA GTGGTCATCC 1321 ATCCGCTGT GGACAAGCCC CACCTTCCAG TGGCTGATCC CCGACAGCGC TGACACCACA 1381 GCTACACCCA CGCACTGTGC CTATGACAGG ATCGTGGTTG CAGGGATGCT GCTCCGAGGG 1441 GCCGTTGTTG CCGACTCGGC TCTTCCCTT AACTTCCAGG CTGCCTATGG CCTGAGTGAC 1501 CAACTGGCCC AAGCCATCAG TGACCACTAT CCAGTGGAGG TGATGCTGAA <u>GGGGGGCGGA</u> 1561 <u>CCCCAAAAAGA AGCGCAAGGT TTGA</u> </pre>				

//

Fig. 6(B)

18/113

LOCUS	FDDNASE27K	1593 BP SS-DNA	SYN	29-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	10..1593			
	/note="1 to 1584 of FdDNase27correct"			
frag	join(10..>729,<796..1593)			
	/note="1 to 1584 of 27.dna [Split]"			
frag	730..795			
	/note="1 to 66 of 23/27linker"			
frag	join(730..>744,<745..795)			
	/note="1 to 78 of 102linker [Split]"			
BASE COUNT	355 A	478 C	449 G	311 T
	0 OTHER			
ORIGIN	-			
	1 GCCGCCACCA TGGGATGGAG CTGTATCATC CTCTTCTTGG TAGCAACAGC TACAGGTGTC			
	61 CACTCCCAGG TGCAGCTGGT GCAGTCTGGG GCAGAGGTGA AAAAGCCTGG GGCCTCAGTG			
	121 AAGGTGTCCT GCAAGGCTTC TGGCTACACC TTCAGTGCCT ACTGGATAGA GTGGGTGCGC			
	181 CAGGCTCCAG GAAAGGGCCT CGAGTGGTC GGAGAGATT TACCTGGAAG TAATAATTCT			
	241 AGATACAATG AGAAGTTCAA GGGCCGAGTG ACAGTCACTA GAGACACATC CACAAACACA			
	301 GCCTACATGG AGCTCAGCAG CCTGAGGTCT GAGGACACAG CCGTCTATTA CTGTGCAAGA			
	361 TCCTACGACT TTGCCTGGTT TGCTTACTGG GGCCAAGGGG CTCTGGTCAC AGTCTCCTCA			
	421 GCCTCCACCA AGGGCCCATC GGTCTTCCCC CTGGCACCCCT CCTCCAAGAG CACCTCTGGG			
	481 GGACACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTTCC CCGAACCGGT GACGGTGTGCG			
	541 TGGAACTCAG GCGCCCTGAC CAGCGGGCTG CACACCTTCC CGGCTGTCCT ACAGTCCTCA			
	601 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTGGG CACCCAGACC			
	661 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGTTGAGCCC			
	721 AAATCTTGTG ACAAAAATCTCA CACATGTCCA CCGTGTCCAG CACCAGAGGG GAGCGGGCGGG			
	781 CTGAAGATCG CAGCCTTCAA CATCCAGACA TTTGGGGAGA CCAAGATGTC CAATGCCACC			
	841 CTCGTCAGCT ACATTGTGCA GATCCTGAGC CGCTACGACA TCGCCCTGGT CCAGGAGGTC			
	901 AGAGACAGCC ACCTGACTGC CGTGGGGAAAG CTGCTGGACA ACCTCAATCA GGACGCACCA			
	961 GACACCTATC ACTACGTGGT CAGTGAGCCA CTGGGACGGA ACAGCTATAA GGAGCGCTAC			
	1021 CTGTTCGTGT ACAGGCCTGA CCAGGTGTCT GCGGTGGACA GCTACTACTA CGATGATGGC			
	1081 TCGGAGCCCT GCGGGAACGA CACCTTCAAC CGAGAGCCAG CCATTGTCAG GTTCTTCTCC			
	1141 CGGTTCACAG AGGTCAAGGGG GTTTGCCATT GTTCCCTGC ATGCGGGCCCC GGGGGACGCA			
	1201 GTAGCCGAGA TCGACGCTCT CTATGACGTC TACCTGGATG TCCAAGAGAA ATGGGGCTTG			
	1261 GAGGACGTCA TGTTGATGGG CGACTTCAAT GCGGGCTGCA GCTATGTGAG ACCCTCCCAAG			
	1321 TGGTCATCCA TCCGCCTGTG GACAAGCCCC ACCTTCCAGT GGCTGATCCC CGACAGCGCT			
	1381 GACACCACAG CTACACCCAC GCACTGTGCC TATGACAGGA TCGTGGTTGC AGGGATGCTG			
	1441 CTCCGAGGGG CGGTTGTTCC CGACTCGGCT CTTCCCTTTA ACTTCCAGGC TGCCCTATGGC			
	1501 CTGAGTGACC AACTGGCCA AGCCATCAAGT GACCACTATC CAGTGGAGGT GATGCTGAAG			
	1561 <u>GGGGCGGAC</u> CAAAAAGAA GCGCAAGGTT TGA			

//

Fig. 6(C)

19/113

9	18	27	36	45	54
5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
M	G	W	S	C	I
T	L	F	L	V	A
A	T	A	T	G	V
T	G	H			

63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
S	Q	V	Q	L	V
S	G	A	E	V	K
K	K	P	G	A	S

117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
V	K	V	S	C	K
A	S	G	Y	T	F
S	A	Y	W	I	E

171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
W	V	R	Q	A	P
G	K	L	E	W	V
E				G	E
				I	L
				P	

225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
G	S	N	N	S	R
Y	N	E	K	F	K
			G	R	V
			E	T	V
				V	T

279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
R	D	T	S	T	N
				A	T
				Y	M
					E

333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
D	T	A	V	Y	Y
C	A	R	S	Y	D
				F	F
				A.	A.
				W	W
				F	F
				A	Y

387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
W	G	Q	G	T	L
V	T			V	T
				S	S
				A	S
				T	T
				K	G
				P	P
				S	S

441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
V	F	P	L	A	P
				S	S
				K	S
				T	S
				S	G
				G	G
				T	T
				A	A
				A	L

495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACY GTG TCG TGG AAC TCA					
G	C	L	V	K	D
					Y
					F
					P
					E
					P
					V
					T
					V
					S
					W
					N
					S

549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
G	A	L	T	S	G
					V
					H
					T
					F
					P
					A
					V
					L
					Q
					S
					S
					G

Fig. 6(D)
(Sheet 1 of 3)

20/113

603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
-----	-----	-----	-----	-----	-----
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702
ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA					
-----	-----	-----	-----	-----	-----
T Y I C N V N H K P S N T K V D K K					
711	720	729	738	747	756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT					
-----	-----	-----	-----	-----	-----
V E P K S C D K T H T C P P C P A P					
765	774	783	792	801	810
GAA GGG AGC GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG					
-----	-----	-----	-----	-----	-----
E G S G G L K I A A F N I Q T F G E					
819	828	837	846	855	864
ACC AAG ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC					
-----	-----	-----	-----	-----	-----
T K M S N A T L V S Y I V Q I L S R					
873	882	891	900	909	918
TAC GAC ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG					
-----	-----	-----	-----	-----	-----
Y D I A L V Q E V R D S H L T A V G					
927	936	945	954	963	972
AAG CTG CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC					
-----	-----	-----	-----	-----	-----
K L L D N L N Q D A P D T Y H Y V V					
981	990	999	1008	1017	1026
AGT GAG CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG					
-----	-----	-----	-----	-----	-----
S E P L G R N S Y K E R Y L F V Y R					
1035	1044	1053	1062	1071	1080
CCT GAC CAG GTG TCT GCG GTG GAC AGC TAC TAC TAC GAT GAT GGC TGC GAG CCC					
-----	-----	-----	-----	-----	-----
P D Q V S A V D S Y Y Y D D G C E P					
1089	1098	1107	1116	1125	1134
TGC GGG AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG					
-----	-----	-----	-----	-----	-----
C G N D T F N R E P A I V R F F S R					
1143	1152	1161	1170	1179	1188
TTC ACA GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC					
-----	-----	-----	-----	-----	-----
F T E V R E F A I V P L H A A P G D					
1197	1206	1215	1224	1233	1242

Fig. 6(D)
(Sheet 2 of 3)

21/113

GCA	GTA	GCC	GAG	ATC	GAC	GCT	CTC	TAT	GAC	GTC	TAC	CTG	GAT	GTC	CAA	GAG	AAA
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
A	V	A	E	I	D	A	L	Y	D	V	Y	L	D	V	Q	E	K
1251	1260	1269	1278	1287	1296												
TGG	GGC	TTG	GAG	GAC	GTC	ATG	TTG	ATG	GGC	GAC	TTC	AAT	GCG	GGC	TGC	AGC	TAT
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
W	G	L	E	D	V	M	L	M	G	D	F	N	A	G	C	S	Y
1305	1314	1323	1332	1341	1350												
GTG	AGA	CCC	TCC	CAG	TGG	TCA	TCC	ATC	CGC	CTG	TGG	ACA	AGC	CCC	ACC	TTC	CAG
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
V	R	P	S	Q	W	S	S	I	R	L	W	T	S	P	T	F	Q
1359	1368	1377	1386	1395	1404												
TGG	CTG	ATC	CCC	GAC	GCT	GAC	ACC	ACA	GCT	ACA	CCC	ACG	CAC	TGT	GCC	TAT	
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
W	L	I	P	D	S	A	D	T	T	A	T	P	T	H	C	A	Y
1413	1422	1431	1440	1449	1458												
GAC	AGG	ATC	GTG	GTT	GCA	GGG	ATG	CTG	CTC	CGA	GGG	GCC	GTT	GTC	CCC	GAC	TCG
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
D	R	I	V	V	A	G	M	L	L	R	G	A	V	V	P	D	S
1467	1476	1485	1494	1503	1512												
GCT	CTT	CCC	TTT	AAC	TTC	CAG	GCT	GCC	TAT	GGC	CTG	AGT	GAC	CAA	CTG	GCC	CAA
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
A	L	P	F	N	F	Q	A	A	Y	G	L	S	D	Q	L	A	Q
1521	1530	1539	1548	1557	1566												
GCC	ATC	AGT	GAC	CAC	TAT	CCA	GTG	GAG	GTG	ATG	CTG	AAG	GGG	GGC	GGA	CCC	AAA
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	
A	I	S	D	H	Y	P	V	E	V	M	L	K	<u>G</u>	<u>G</u>	<u>G</u>	<u>P</u>	<u>K</u>
1575	1584																
AAG	AAG	CGC	AAG	GTT	TGA	3'											
<u>K</u>	<u>K</u>	<u>R</u>	<u>K</u>	<u>V</u>	*												

Fig. 6D
(Sheet 3 of 3)

22/113**pAS34**

LOCUS PAS34.DNA 2196 bp 2196 bp 2196 bp DNA 14-AUG-1998
 DEFINITION HUMANISED HMFG1 heavy chain fused to human DNase construct 34
 DEFINITION Clone 16.4.2 (same as hcdnasel.dna template file)
 REFERENCE
 AUTHORS VERHOEYEN ET AL
 TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
 JOURNAL IMMUNOL. (1993):78, 364-370
 COMMENT Human DNase sequence is modified as a result of oligo assembly
 (mhdnase.dna)
 COMMENT The fusion was made using overlapping oligos AS79 and AS80
 FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
 FEATURES Residue 963 is G > T leading to silent mutation in all clones
 SITES Note
 BASE COUNT 501 a 677 c 607 g 411 t
 ORIGIN ?

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCCT TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTCT TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACCTCA
541 GGCGCCCTGA CCAGCGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTGT
721 GACAAAACTC ACACATGCC ACCGTGCCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC
781 TTCCTCTTCC CCCCCAAACCC CAAGGACACC CTCATGATCT CCCGGACCCCC TGAGGTACCA
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCCTGGAGG TGCATAATGC CAAGACAAAG CGCGGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAA
1081 GGGCAGCCCC GAGAACCCACA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAAG
1141 ACCCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA CGCCTCCCGT GCTGGACTCC
1261 GACGGCTCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGGT GCAAGCAGGGG
1321 AACGTCTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC
1381 CTCTCCCTGT CTCCGGTAA AGGGACCCGC GGGCTGAAGA TCGCAGCCTT CAAACATCCAG
1441 ACATTGGGG AGACCAAGAT GTCCAATGCC ACCCTCGTCA GCTACATTGT GCAGATCTG
1501 AGCCGCTACG ACATCGCCCT GGTCCAGGAG GTCAGAGACA GCCACCTGAC TGCCGTGGGG
1561 AAGCTGCTGG ACAACCTCAA TCAGGACGCA CCAGACACCT ATCACTACGT GGTCACTGAG
1621 CCACTGGGAC GGAACAGCTA TAAGGAGGCC TACCTGTTCG TGTACAGGCC TGACCAAGGTG
1681 TCTGCGGTGG ACAGCTACTA CTACGATGAT GGCTGCGAGC CCTGCGGGAA CGACACCTTC
1741 AACCGAGAGC CAGCCATTGT CAGGTTCTC TCCCGGTTCA CAGAGGTCAAG GGAGTTGCC
1801 ATTGTTCCCC TGCATGCGGC CCCGGGGGAC GCAGTAGCCG AGATCGACGC TCTCTATGAC
1861 GTCTACCTGG ATGTCCAAGA GAAATGGGGC TTGGAGGAGC TCATGTTGAT GGGCGACTTC
1921 AATGCGGGCT GCAGCTATGT GAGACCCCTCC CAGTGGTCAT CCATCCGCT GTGGACAAGC
1981 CCCACCTTCC AGTGGCTGAT CCCGACAGC GCTGACACCA CAGCTACACC CACCGACTGT
2041 GCCTATGACA GGATCGTGGT TGCAGGGATG CTGCTCCGAG GGGCCGTTGT TCCCGACTCG
2101 GCTCTTCCCT TTAACCTCCA GGCTGCCTAT GGCTGAGTG ACCAACTGGC CCAAGCCATC
2161 AGTGACCACT ATCCAGTGGA GGTGATGCTG AAGTGA
  //
```

Fig. 7(A)

23/113

	9	18	27	36	45	54
5'	ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
	M G W S C I I L F L V A T A T G V H					
	63	72	81	90	99	108
	TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
	S Q V Q L V Q S G A E V K K P G A S					
	117	126	135	144	153	162
	GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
	V K V S C K A S G Y T F S A Y W I . E					
	171	180	189	198	207	216
	TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
	W V R Q A P G K G L E W V G E I L P					
	225	234	243	252	261	270
	GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
	G S N N S R Y N E K F K G R V T V T					
	279	288	297	306	315	324
	AGA GAC ACA TCC ACA AAC ACA GGC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
	R D T S T N T A Y M E L S S L R S E					
	333	342	351	360	369	378
	GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
	D T A V Y Y C A R S Y D F A W F A Y					
	387	396	405	414	423	432
	TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
	W G Q G T L V T V S S A S T K G P S					
	441	450	459	468	477	486
	GTC TTC CCC CTG GCA CCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
	V F P L A P S S K S T S G G T A A A L					
	495	504	513	522	531	540
	GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
	G C L V K D Y F P E P V T V S W N S					
	549	558	567	576	585	594
	GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
	G A L T S G V H T F P A V L Q S S G					
	603	612	621	630	639	648
	CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
	L Y S L S S V V T V P S S S L G T Q					
	657	666	675	684	693	702

Fig. 7(B)
(Sheet 1 of 4)

24/113

ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA

 T Y I C N V N H K P S N T K V D K K
 711 720 729 738 747 756
 GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT

 V E P K S C D K T H T C P P C P A P
 765 774 783 792 801 810
 GAA CTC CTG CGG GGA CCG TCA GTC TTC CTC CCC CCA AAA CCC AAG GAC ACC

 E L L G G P S V F L F P P K P K D T
 819 828 837 846 855 864
 CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC GTG AGC CAC

 L M I S R T P E V T C V V V D V S H
 873 882 891 900 909 918
 GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT

 E D P E V K F N W Y V D G V E V H N
 927 936 945 954 963 972
 GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC AGC TAC CGT GTG GTC AGC

 A K T K P R E E Q Y N S T Y R V V S
 981 990 999 1008 1017 1026
 GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG

 V L T V L H Q D W L N G K E Y K C K
 1035 1044 1053 1062 1071 1080
 GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA

 V S N K A L P A P I E K T I S K A K
 1089 1098 1107 1116 1125 1134
 GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG

 G Q P R E P Q V Y T L P P S R D E L
 1143 1152 1161 1170 1179 1188
 ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC

 T K N Q V S L T C L V K G F Y P S D
 1197 1206 1215 1224 1233 1242
 ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG

 I A V E W E S N G Q P E N N Y K T T
 1251 1260 1269 1278 1287 1296
 CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC CTC TAC AGC AAG CTC ACC GTG

 P P V L D S D G S F F L Y S K L T V
 1305 1314 1323 1332 1341 1350
 GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG

 D K S R W Q Q G N V F S C S V M H E

Fig. 7(B)
(Sheet 2 of 4)

25/113

1359	1368	1377	1386	1395	1404												
GCT	CTG	CAC	AAC	CAC	TAC	ACG	CAG	AAG	AGC	CTC	TCC	CTG	TCT	CCG	GGT	AAA	GGG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A	L	H	N	H	Y	T	Q	K	S	L	S	L	S	P	G	K	<u>G</u>
1413	1422	1431	1440	1449	1458												
AGC	GGC	GGG	CTG	AAG	ATC	GCA	GCC	TTC	AAC	ATC	CAG	ACA	TTT	GGG	GAG	ACC	AAG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u>S</u>	<u>G</u>	<u>G</u>	L	K	I	A	A	F	N	I	Q	T	F	G	E	T	K
1467	1476	1485	1494	1503	1512												
ATG	TCC	AAT	GCC	ACC	CTC	GTC	AGC	TAC	ATT	GTG	CAG	ATC	CTG	AGC	CGC	TAC	GAC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M	S	N	A	T	L	V	S	Y	I	V	Q	I	L	S	R	Y	D
1521	1530	1539	1548	1557	1566												
ATC	GCC	CTG	GTC	CAG	GAG	GTC	AGA	GAC	AGC	CAC	CTG	ACT	GCC	GTG	GGG	AAG	CTG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I	A	L	V	Q	E	V	R	D	S	H	L	T	A	V	G	K	L
1575	1584	1593	1602	1611	1620												
CTG	GAC	AAC	CTC	AAT	CAG	GAC	GCA	CCA	GAC	ACC	TAT	CAC	TAC	GTG	GTC	AGT	GAG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L	D	N	L	N	Q	D	A	P	D	T	Y	H	Y	V	V	S	E
1629	1638	1647	1656	1665	1674												
CCA	CTG	GGA	CGG	AAC	AGC	TAT	AAG	GAG	CGC	TAC	CTG	TTC	GTG	TAC	AGG	CCT	GAC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P	L	G	R	N	S	Y	K	E	R	Y	L	F	V	Y	R	P	D
1683	1692	1701	1710	1719	1728												
CAG	GTG	TCT	CGG	GTG	GAC	AGC	TAC	TAC	TAC	GAT	GAT	GCG	TGC	GAG	CCC	TGC	GGG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Q	V	S	A	V	D	S	Y	Y	Y	D	D	G	C	E	P	C	G
1737	1746	1755	1764	1773	1782												
AAC	GAC	ACC	TTC	AAC	CGA	GAG	CCA	GCC	ATT	GTC	AGG	TTC	TTC	TCC	CGG	TTC	ACA
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N	D	T	F	N	R	E	P	A	I	V	R	F	F	S	R	F	T
1791	1800	1809	1818	1827	1836												
GAG	GTC	AGG	GAG	TTT	GCC	ATT	GTT	CCC	CTG	CAT	GCG	GCC	CCG	GGG	GAC	GCA	GTA
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	V	R	E	F	A	I	V	P	L	H	A	A	P	G	D	A	V
1845	1854	1863	1872	1881	1890												
GCC	GAG	ATC	GAC	GCT	CTC	TAT	GAC	GTC	TAC	CTG	GAT	GTC	CAA	GAG	AAA	TGG	GGC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A	E	I	D	A	L	Y	D	V	Y	L	D	V	Q	E	K	W	G
1899	1908	1917	1926	1935	1944												
TTG	GAG	GAC	GTC	ATG	TTG	ATG	GGC	GAC	TTC	AAT	GCG	GCG	TGC	AGC	TAT	GTG	AGA
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L	E	D	V	M	L	M	G	D	F	N	A	G	C	S	Y	V	R
1953	1962	1971	1980	1989	1998												
CCC	TCC	CAG	TGG	TCA	TCC	ATC	CGC	CTG	TGG	ACA	AGC	CCC	ACC	TTC	CAG	TGG	CTG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P	S	Q	W	S	S	I	R	L	W	T	S	P	T	F	Q	W	L
2007	2016	2025	2034	2043	2052												
ATC	CCC	GAC	AGC	GCT	GAC	ACC	ACA	GCT	ACA	CCC	ACG	CAC	TGT	GCC	TAT	GAC	AGG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I	P	D	S	A	D	T	T	A	T	P	T	H	C	A	Y	D	R

Fig. 7(B)
(Sheet 3 of 4)

26/113

2061	2070	2079	2088	2097	2106
ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CCC GAC TCG GCT CTT					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
I V V A G M L L R G A V V P D S A L					
2115	2124	2133	2142	2151	2160
CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA GCC ATC					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
P F N F Q A A Y G L S D Q L A Q A I					
2169	2178	2187	2196		
AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
S D H Y P V E V M L K *					

Fig. 7(B)
(Sheet 4 of 4)

27/113

pAS35

LOCUS PAS35.DNA 2193 bp 2193 bp DNA 14-AUG-1998
DEFINITION HUMANISED HMFG1 heavy chain fused to human DNase construct 35
DEFINITION Clone 17.12.1 with silent K to K mutation (1398 A > G)
REFERENCE
AUTHORS VERHOEYEN ET AL
TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
JOURNAL IMMUNOL. (1993):78, 364-370
COMMENT Human DNase sequence is modified as a result of oligo assembly (mhdnase.dna)
COMMENT The fusion was made using overlapping oligos AS81 and AS82
FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
FEATURES Residue 963 is G > T leading to silent mutation in all clones
FEATURES In 17.12.1 residue 1398 is A > G (silent K to K mutation)
SITES Note
BASE COUNT 500 a 677 c 606 g 410 t
ORIGIN ?

```

1 ATGGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTG TAGATACAAT
241 GAGAAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCCTC AGCCTCCACC
421 AAGGGCCCCT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACCTCA
541 GGCGCCCTGA CCAGCGGCCT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTCCCCCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACCTC ACACATGCCC ACCGTGCCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC
781 TTCCTCTTCC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCCC TGAGGTACACA
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCCTGGAGG TGCATAATGC CAAGACAAAG CCGCCTGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACCCACA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAAG
1141 AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA CGCCTCCCGT GCTGGACTCC
1261 GACGGCTCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAACAGC
1381 CTCTCCCTGT CTCCGAAGGG GAGCGGGCGGG CTGAAGATCG CAGCCTCAA CATCCAGACA
1441 TTTGGGGAGA CCAAGATGTC CAATGCCACC CTCGTCAGCT ACATTGTGCA GATCCTGAGC
1501 CGCTACGACA TCGCCCTGGT CCAGGAGGTG AGAGACAGCC ACCTGACTGC CGTGGGGAAAG
1561 CTGCTGGACA ACCTCAATCA GGACGCACCA GACACCTATC ACTACGTGGT CAGTGAGCCA
1621 CTGGGACGGA ACAGCTATAA GGAGCGCTAC CTGTTCTGT ACAGGGCTGA CCAGGTGTCT
1681 CGGGTGGACA GCTACTACTA CGATGATGGC TGCGAGCCCT GCGGGAACGA CACCTCAAC
1741 CGAGAGCCAG CCATTGTCAG GTTCTTCTCC CGGTTCACAG AGGTCAAGGGG GTTGGCATT
1801 GTTCCCTCTG ATGCGGGCCCC GGGGGACGCA GTAGCCGAGA TCGACGCTCT CTATGACGTC
1861 TACCTGGATG TCCAAGAGAA ATGGGGCTTG GAGGACGTCA TGTTGATGGG CGACTTCAT
1921 GCGGGCTGCA GCTATGTGAG ACCCTCCCAG TGGTCATCCA TCCGCCTGTG GACAAGCCCC
1981 ACCTTCCAGT GGCTGATCCC CGACAGCGCT GACACCACAG CTACACCCAC GCACTGTGCC
2041 TATGACAGGA TCGTGGTTGC AGGGATGCTG CTCCGAGGGG CCGTTGTTCC CGACTCGGCT
2101 CTTCCCTTTA ACTTCCAGGC TGCCTATGGC CTGAGTGACC AACTGGCCCA AGCCATCAGT
2161 GACCACTATC CAGTGGAGGT GATGCTGAAG TGA

```

//

Fig. 8(A)

28/113

9	18	27	36	45	54																		
S' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC																							
<table border="0"> <tr> <td>M</td><td>G</td><td>W</td><td>S</td><td>C</td><td>I</td><td>I</td><td>L</td><td>F</td><td>L</td><td>V</td><td>A</td><td>T</td><td>A</td><td>T</td><td>G</td><td>V</td><td>H</td> </tr> </table>						M	G	W	S	C	I	I	L	F	L	V	A	T	A	T	G	V	H
M	G	W	S	C	I	I	L	F	L	V	A	T	A	T	G	V	H						
63	72	81	90	99	108																		
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA																							
<table border="0"> <tr> <td>S</td><td>Q</td><td>V</td><td>Q</td><td>L</td><td>V</td><td>Q</td><td>S</td><td>G</td><td>A</td><td>E</td><td>V</td><td>K</td><td>K</td><td>P</td><td>G</td><td>A</td><td>S</td> </tr> </table>						S	Q	V	Q	L	V	Q	S	G	A	E	V	K	K	P	G	A	S
S	Q	V	Q	L	V	Q	S	G	A	E	V	K	K	P	G	A	S						
117	126	135	144	153	162																		
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG																							
<table border="0"> <tr> <td>V</td><td>K</td><td>V</td><td>S</td><td>C</td><td>K</td><td>A</td><td>S</td><td>G</td><td>Y</td><td>T</td><td>F</td><td>S</td><td>A</td><td>Y</td><td>W</td><td>I</td><td>E</td> </tr> </table>						V	K	V	S	C	K	A	S	G	Y	T	F	S	A	Y	W	I	E
V	K	V	S	C	K	A	S	G	Y	T	F	S	A	Y	W	I	E						
171	180	189	198	207	216																		
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT																							
<table border="0"> <tr> <td>W</td><td>V</td><td>R</td><td>Q</td><td>A</td><td>P</td><td>G</td><td>K</td><td>G</td><td>L</td><td>E</td><td>W</td><td>V</td><td>G</td><td>E</td><td>I</td><td>L</td><td>P</td> </tr> </table>						W	V	R	Q	A	P	G	K	G	L	E	W	V	G	E	I	L	P
W	V	R	Q	A	P	G	K	G	L	E	W	V	G	E	I	L	P						
225	234	243	252	261	270																		
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT																							
<table border="0"> <tr> <td>G</td><td>S</td><td>N</td><td>N</td><td>S</td><td>R</td><td>Y</td><td>N</td><td>E</td><td>K</td><td>F</td><td>K</td><td>G</td><td>R</td><td>V</td><td>T</td><td>V</td><td>T</td> </tr> </table>						G	S	N	N	S	R	Y	N	E	K	F	K	G	R	V	T	V	T
G	S	N	N	S	R	Y	N	E	K	F	K	G	R	V	T	V	T						
279	288	297	306	315	324																		
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG																							
<table border="0"> <tr> <td>R</td><td>D</td><td>T</td><td>S</td><td>T</td><td>N</td><td>T</td><td>A</td><td>Y</td><td>M</td><td>E</td><td>L</td><td>S</td><td>S</td><td>L</td><td>R</td><td>S</td><td>E</td> </tr> </table>						R	D	T	S	T	N	T	A	Y	M	E	L	S	S	L	R	S	E
R	D	T	S	T	N	T	A	Y	M	E	L	S	S	L	R	S	E						
333	342	351	360	369	378																		
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC																							
<table border="0"> <tr> <td>D</td><td>T</td><td>A</td><td>V</td><td>Y</td><td>Y</td><td>C</td><td>A</td><td>R</td><td>S</td><td>Y</td><td>D</td><td>F</td><td>A</td><td>W</td><td>F</td><td>A</td><td>Y</td> </tr> </table>						D	T	A	V	Y	Y	C	A	R	S	Y	D	F	A	W	F	A	Y
D	T	A	V	Y	Y	C	A	R	S	Y	D	F	A	W	F	A	Y						
387	396	405	414	423	432																		
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG																							
<table border="0"> <tr> <td>W</td><td>G</td><td>Q</td><td>G</td><td>T</td><td>L</td><td>V</td><td>T</td><td>V</td><td>S</td><td>S</td><td>A</td><td>S</td><td>T</td><td>K</td><td>G</td><td>P</td><td>S</td> </tr> </table>						W	G	Q	G	T	L	V	T	V	S	S	A	S	T	K	G	P	S
W	G	Q	G	T	L	V	T	V	S	S	A	S	T	K	G	P	S						
441	450	459	468	477	486																		
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG																							
<table border="0"> <tr> <td>V</td><td>F</td><td>P</td><td>L</td><td>A</td><td>P</td><td>S</td><td>S</td><td>K</td><td>S</td><td>T</td><td>S</td><td>G</td><td>G</td><td>T</td><td>A</td><td>A</td><td>L</td> </tr> </table>						V	F	P	L	A	P	S	S	K	S	T	S	G	G	T	A	A	L
V	F	P	L	A	P	S	S	K	S	T	S	G	G	T	A	A	L						
495	504	513	522	531	540																		
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA																							
<table border="0"> <tr> <td>G</td><td>C</td><td>L</td><td>V</td><td>K</td><td>D</td><td>Y</td><td>F</td><td>P</td><td>E</td><td>P</td><td>V</td><td>T</td><td>V</td><td>S</td><td>W</td><td>N</td><td>S</td> </tr> </table>						G	C	L	V	K	D	Y	F	P	E	P	V	T	V	S	W	N	S
G	C	L	V	K	D	Y	F	P	E	P	V	T	V	S	W	N	S						
549	558	567	576	585	594																		
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA																							
<table border="0"> <tr> <td>G</td><td>A</td><td>L</td><td>T</td><td>S</td><td>G</td><td>V</td><td>H</td><td>T</td><td>F</td><td>P</td><td>A</td><td>V</td><td>L</td><td>Q</td><td>S</td><td>S</td><td>G</td> </tr> </table>						G	A	L	T	S	G	V	H	T	F	P	A	V	L	Q	S	S	G
G	A	L	T	S	G	V	H	T	F	P	A	V	L	Q	S	S	G						
603	612	621	630	639	648																		
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG																							
<table border="0"> <tr> <td>L</td><td>Y</td><td>S</td><td>L</td><td>S</td><td>S</td><td>V</td><td>V</td><td>T</td><td>V</td><td>P</td><td>S</td><td>S</td><td>S</td><td>L</td><td>G</td><td>T</td><td>Q</td> </tr> </table>						L	Y	S	L	S	S	V	V	T	V	P	S	S	S	L	G	T	Q
L	Y	S	L	S	S	V	V	T	V	P	S	S	S	L	G	T	Q						
657	666	675	684	693	702																		

Fig. 8(B)
(Sheet 1 of 4)

29/113

ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA

T Y I C N V N H K P S N T K V D K K

711 720 729 738 747 756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT

V E P K S C D K T H T C P P C P A P

765 774 783 792 801 810
GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC

E L L G G P S V F L F P P K P K D T

819 828 837 846 855 864
CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC GTG AGC CAC

L M I S R T P E V T C V V V D V S H

873 882 891 900 909 918
GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT

E D P E V K F N W Y V D G V E V H N

927 936 945 954 963 972
GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC AGC TAC CGT GTG GTC AGC

A K T K P R E E Q Y N S T Y R V V S

981 990 999 1008 1017 1026
GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG

V L T V L H Q D W L N G K E Y K C K

1035 1044 1053 1062 1071 1080
GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA

V S N K A L P A P I E K T I S K A K

1089 1098 1107 1116 1125 1134
GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG

G Q P R E P Q V Y T L P P S R D E L

1143 1152 1161 1170 1179 1188
ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC

T K N Q V S L T C L V K G F Y P S D

1197 1206 1215 1224 1233 1242
ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACC ACG

I A V E W E S N G Q P E N N Y K T T

1251 1260 1269 1278 1287 1296
CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC ACC GTG

P P V L D S D G S F F L Y S K L T V

1305 1314 1323 1332 1341 1350
GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG

D K S R W Q Q G N V F S C S V M H E

Fig. 8(B)
(Sheet 2 of 4)

30/113

1359	1368	1377	1386	1395	1404												
GCT	CTG	CAC	CAC	TAC	ACG	CAG	AAG	AGC	CTC	TCC	CTG	TCT	CCG	AAG	GGG	AGC	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
A	L	H	N	H	Y	T	Q	K	S	L	S	L	S	P	K	<u>G</u>	<u>S</u>
1413	1422	1431	1440	1449	1458												
GGC	GGG	CTG	AAG	ATC	GCA	GCC	TTC	AAC	ATC	CAG	ACA	TTT	GGG	GAG	ACC	AAG	ATG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
<u>G</u>	<u>G</u>	L	K	I	A	A	F	N	I	Q	T	F	G	E	T	K	M
1467	1476	1485	1494	1503	1512												
TCC	AAT	GCC	ACC	CTC	GTC	AGC	TAC	ATT	GTG	CAG	ATC	CTG	AGC	CGC	TAC	GAC	ATC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
S	N	A	T	L	V	S	Y	I	V	Q	I	L	S	R	Y	D	I
1521	1530	1539	1548	1557	1566												
GCC	CTG	GTC	CAG	GAG	GTC	AGA	GAC	AGC	CAC	CTG	ACT	GCC	GTG	GGG	AAG	CTG	CTG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
A	L	V	Q	E	V	R	D	S	H	L	T	A	V	G	K	L	L
1575	1584	1593	1602	1611	1620												
GAC	AAC	CTC	AAT	CAG	GAC	GCA	CCA	GAC	ACC	TAT	CAC	TAC	GTG	GTC	AGT	GAG	CCA
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
D	N	L	N	Q	D	A	P	D	T	Y	H	Y	V	V	S	E	P
1629	1638	1647	1656	1665	1674												
CTG	GGA	CGG	AAC	AGC	TAT	AAG	GAG	CGC	TAC	CTG	TTC	GTG	TAC	AGG	CCT	GAC	CAG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
L	G	R	N	S	Y	K	E	R	Y	L	F	V	Y	R	P	D	Q
1683	1692	1701	1710	1719	1728												
GTG	TCT	GCG	GTG	GAC	AGC	TAC	TAC	GAT	GAT	GGC	TGC	GAG	CCC	TGC	GGG	AAC	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
V	S	A	V	D	S	Y	Y	Y	D	D	G	C	E	P	C	G	N
1737	1746	1755	1764	1773	1782												
GAC	ACC	TTC	AAC	CGA	GAG	CCA	GCC	ATT	GTC	AGG	TTC	TTC	TCC	CGG	TTC	ACA	GAG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
D	T	F	N	R	E	P	A	I	V	R	F	F	S	R	F	T	E
1791	1800	1809	1818	1827	1836												
GTC	AGG	GAG	TTT	GCC	ATT	GTT	CCC	CTG	CAT	GCG	GCC	CCG	GGG	GAC	GCA	GTA	GCC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
V	R	E	F	A	I	V	P	L	H	A	A	P	G	D	A	V	A
1845	1854	1863	1872	1881	1890												
GAG	ATC	GAC	GCT	CTC	TAT	GAC	GTC	TAC	CTG	GAT	GTC	CAA	GAG	AAA	TGG	GGC	TTG
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
E	I	D	A	L	Y	D	V	Y	L	D	V	Q	E	K	W	G	L
1899	1908	1917	1926	1935	1944												
GAG	GAC	GTC	ATG	TTG	ATG	GGC	GAC	TTC	AAT	GCG	GGC	TGC	AGC	TAT	GTG	AGA	CCC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
E	D	V	M	L	M	G	D	F	N	A	G	C	S	Y	V	R	P
1953	1962	1971	1980	1989	1998												
TCC	CAG	TGG	TCA	TCC	ATC	CGC	CTG	TGG	ACA	AGC	CCC	ACC	TTC	CAG	TGG	CTG	ATC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
S	Q	W	S	S	I	R	L	W	T	S	P	T	F	Q	W	L	I
2007	2016	2025	2034	2043	2052												
CCC	GAC	AGC	GCT	GAC	ACC	ACA	GCA	TCT	ACA	CCG	CAC	TGT	GCC	TAT	GAC	AGG	ATC
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P	D	S	A	D	T	T	A	T	P	T	H	C	A	Y	D	R	I

Fig. 8(B)
(Sheet 3 of 4)

31/113

2061	2070	2079	2088	2097	2106												
GTG	GTT	GCA	GGG	ATG	CTG	CTC	CGA	GGG	GCC	GTT	GTT	CCC	GAC	TCG	GCT	CTT	CCC
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
V	V	A	G	M	L	L	R	G	A	V	V	P	D	S	A	L	P
2115	2124	2133	2142	2151	2160												
TTT	AAC	TTC	CAG	GCT	GCC	TAT	GGC	CTG	AGT	GAC	CAA	CTG	GCC	CAA	GCC	ATC	AGT
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
F	N	F	Q	A	A	Y	G	L	S	D	Q	L	A	Q	A	I	S
2169	2178	2187															
GAC	CAC	TAT	CCA	GTG	GAG	GTG	ATG	CTG	AAG	TGA	3'						
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -						
D	H	Y	P	V	E	V	M	L	K	*							

Fig. 8(B)
(Sheet 4 of 4)

32/113**pAS36**

LOCUS PAS36.DNA 2190 bp 2190 bp DNA 14-AUG-1998
 DEFINITION HUMANISED HMFG1 heavy chain fused to human DNase - construct 36
 DEFINITION Clone 18.24.1 with residue 1392 T > C
 REFERENCE
 AUTHORS VERHOEYEN ET AL
 TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
 JOURNAL IMMUNOL. (1993):78, 364-370
 COMMENT Human DNase sequence is modified as a result of oligo assembly (mhdnase.dna)
 COMMENT The fusion was made using overlapping oligos AS83 and AS84
 FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
 FEATURES Residue 963 is G > T leading to silent mutation in all clones
 FEATURES Residue 1392 T > C silent S to S mutation
 SITES Note
 BASE COUNT 498 a 678 c 605 g 409 t
 ORIGIN ?

```

1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAACGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACAGC
361 TTTGCCTGGT TTGCTTAUTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC
421 AAGGGCCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
541 GCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATC ACACATGCC ACCGTGCCCA GCACCTGAAC TCCGGGGGG ACCGTCAGTC
781 TTCCTCTTC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTACAC
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCCTGGGAGG TGCATAATGC CAAGACAAAG CGCCTGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TCGAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACACCA GGTGTACACC CTGGCCCCAT CCCGGGATGA GCTGACCAAG
1141 AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGAGGCC GGAGAACAAAC TACAAGACCA CGCCTCCGT GCTGGACTCC
1261 GACGGCTCT TCTTCCCTCA CAGCAAGCTC ACCGTGGACAGA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAACAGC
1381 CTCCTCCCTGT CCCCCGGGAG CGGGCGGGCTG AAGATCGCAG CTTCAACAT CCAGACATT
1441 GGGGAGACCA AGATGTCAA TGCCACCCCTC GTCAGCTACA TTGTGCAGAT CCTGAGCCGC
1501 TACGACATCG CCCTGGTCCA GGAGGTAGA GACAGCCACC TGACTGCCGT GGGGAAGCTG
1561 CTGGACAAACC TCAATCAGGA CGCACAGAC ACCTATCACT ACGTGGTCAG TGAGCCACTG
1621 GGACGGAACA GCTATAAGGA GCGCTACCTG TTCGTGTACA GGCTGACCA GGTGTCTGCG
1681 GTGGACAGCT ACTACTACGA TGATGGCTGC GAGCCCTGCG GGAACGACAC CTTCAACCGA
1741 GAGCCAGCCA TTGTCAAGGTT CTTCTCCCGG TTCACAGAGG TCAGGGAGTT TGCCATTGTT
1801 CCCCTGCATG CGGCCCCGGG GGACGCAGTA GCCGAGATCG ACGCTCTCTA TGACGTCTAC
1861 CTGGATGTCC AAGAGAAATG GGGCTTGGAG GACGTCTGT TGATGGGCAG CTTCAATGCG
1921 GGCTGCAGCT ATGTGAGACC CTCCCAGTGG TCATCCATCC GCCTGTGGAC AAGCCCCACC
1981 TTCCAGTGGC TGATCCCCGA CAGCGCTGAC ACCACAGCTA CACCCACGCA CTGTGCCTAT
2041 GACAGGATCG TGGTTGCAGG GATGCTGCTC CGAGGGGCCG TTGTTCCGA CTCGGCTCTT
2101 CCCTTTAACT TCCAGGCTGC CTATGGCTG AGTGAACAC TGGCCCAAGC CATCAGTGCAC
2161 CACTATCCAG TGGAGGTGAT GCTGAAGTGA
  //
```

Fig. 9(A)

33/113

9 18 27 36 45 54

5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC

 M G W S C I I L F L V A T A T G V H

63 72 81 90 99 108

TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA

 S Q V Q L V Q S G A E V K K P G A S

117 126 135 144 153 162

GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG

 V K V S C K A S G Y T F S A Y W I E

171 180 189 198 207 216

TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT

 W V R Q A P G K G L E W V G E I L P

225 234 243 252 261 270

GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT

 G S N N S R Y N E K F K G R V T V T

279 288 297 306 315 324

AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG

 R D T S T N T A Y M E L S S L R S E

333 342 351 360 369 378

GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC

 D T A V Y Y C A R S Y D F A W F A Y

387 396 405 414 423 432

TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG

 W G Q G T L V T V S S A S T K G P S

441 450 459 468 477 486

GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG

 V F P L A P S S K S T S G G T A A L

495 504 513 522 531 540

GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA

 G C L V K D Y F P E P V T V S W N S

549 558 567 576 585 594

GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA

 G A L T S G V H T F P A V L Q S S G

603 612 621 630 639 648

CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG

 L Y S L S S V V T V P S S S L G T Q

657 666 675 684 693 702

Fig. 9(B)
(Sheet 1 of 4)

34/113

ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA

 T Y I C N V N H K P S N T K V D K K
 711 720 729 738 747 756
 GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT

 V E P K S C D K T H T C P P C P A P
 765 774 783 792 801 810
 GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC

 E L L G G P S V F L F P P K P K D T
 819 828 837 846 855 864
 CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC

 L M I S R T P E V T C V V V D V S H
 873 882 891 900 909 918
 GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT

 E D P E V K F N W Y V D G V E V H N
 927 936 945 954 963 972
 GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC

 A K T K P R E E Q Y N S T Y R V V S
 981 990 999 1008 1017 1026
 GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG

 V L T V L H Q D W L N G K E Y K C K
 1035 1044 1053 1062 1071 1080
 GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA

 V S N K A L P A P I E K T I S K A K
 1089 1098 1107 1116 1125 1134
 GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG

 G Q P R E P Q V Y T L P P S R D E L
 1143 1152 1161 1170 1179 1188
 ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC

 T K N Q V S L T C L V K G F Y P S D
 1197 1206 1215 1224 1233 1242
 ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CGG GAG AAC AAC TAC AAG ACC ACG

 I A V E W E S N G Q P E N N Y K T T
 1251 1260 1269 1278 1287 1296
 CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC ACC GTG

 P P V L D S D G S F F L Y S K L T V
 1305 1314 1323 1332 1341 1350
 GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG

 D K S R W Q Q G N V F S C S V M H E

Fig. 9(B)
(Sheet 2 of 4)

35/113

1359	1368	1377	1386	1395	1404
GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCC CCG GGG AGC GGC					
A L H N H Y T Q K S 'L S L S P G S G					
1413	1422	1431	1440	1449	1458
GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG ATG TCC					
G L K I A A F N I Q T F G E T K M S					
1467	1476	1485	1494	1503	1512
AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC ATC GCC					
N A T L V S Y I V Q I L S R Y D I A					
1521	1530	1539	1548	1557	1566
CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG CTG GAC					
L V Q E V R D S H L T A V G K L L D					
1575	1584	1593	1602	1611	1620
AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG CCA CTG					
N L N Q D A P D T Y H Y V V S E P L					
1629	1638	1647	1656	1665	1674
GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC CAG GTG					
G R N S Y K E R Y L F V Y R P D Q V					
1683	1692	1701	1710	1719	1728
TCT GCG GTG GAC AGC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG AAC GAC					
S A V D S Y Y D D G C E P C G N D					
1737	1746	1755	1764	1773	1782
ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG TTC ACA GAG GTC					
T F N R E P A I V R F F S R F T E V					
1791	1800	1809	1818	1827	1836
AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA GCC GAG					
R E F A I V P L H A A P G D A V A E					
1845	1854	1863	1872	1881	1890
ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC TTG GAG					
I D A L Y D V Y L D V Q E K W G L E					
1899	1908	1917	1926	1935	1944
GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT GTG AGA CCC TCC					
D V M L M G D F N A G C S Y V R P S					
1953	1962	1971	1980	1989	1998
CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG ATC CCC					
Q W S S I R L W T S P T F Q W L I P					
2007	2016	2025	2034	2043	2052
GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG ATC GTG					
D S A D T T A T P T H C A Y D R I V					

Fig. 9(B)
(Sheet 3 of 4)

36/113

2061	2070	2079	2088	2097	2106
GTT GCA GGG ATG CTG CTC CGA GGG GCC	GTT GTT CCC GAC TCG GCT CTT CCC	TTT			
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
V A G M L L R G A V V P D S A L P F					
2115	2124	2133	2142	2151	2160
AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA GCC ATC AGT GAC					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
N F Q A A Y G L S D Q L A Q A I S D					
2169	2178	2187			
CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
H Y P V E V M L K *					

Fig. 9(B)
(Sheet 4 of 4)

37/113
pAS37

LOCUS	PAS37.DNA	2226 bp	2196 bp	2196 bp DNA	14-AUG-
1998					
DEFINITION	HUMANISED HMFG1 heavy chain fused to human DNase construct 37				
DEFINITION	Clone 16.4.2 (same as hcdnasel.dna template file) plus NLS				
REFERENCE					
AUTHORS	VERHOEYEN ET AL				
TITLE	CONSTRUCTION OF RESHAPED HMFG1 etc				
JOURNAL	IMMUNOL. (1993):78, 364-370				
COMMENT	Human DNase sequence is modified as a result of oligo assembly (mhdnase.dna)				
COMMENT	The fusion was made using overlapping oligos AS79 and AS80				
FEATURES	AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)				
FEATURES	Residue 963 is G > T leading to silent mutation in all clones				
SITES	Note				
BASE COUNT	511 a	683 c	619 g	413 t	
ORIGIN	?				

```

1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAACGCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTCAGTGGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTCCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACACTCA
541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATC ACACATGCC ACCGTGCCCC GCACCTGAAC TCCCTGGGGG ACCGTAGTC
781 TTCCTCTTCC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACA
841 TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCGTGGAGG TGCATAATGC CAAGACAAAG CGCGGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACACCA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAAG
1141 AACCAAGGTCA GCCTGACCTG CCTGGTCAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGAGGCC GGAGAACAAAC TACAAGACCA CGCCTCCGT GCTGGACTCC
1261 GACGGCTCCT TCTTCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAACAGC
1381 CTCTCCCTGT CTCCGGTAA AGGGAGCGGC GGGCTGAAGA TCGCAGCCT CAACATCCAG
1441 ACATTTGGGG AGACCAAGAT GTCCAATGCC ACCCTCGTCA GCTACATTGT GCAGATCCTG
1501 AGCCGCTACG ACATCGCCCT GGTCCAGGAG GTCAGAGACA GCCACCTGAC TGCCGTGGGG
1561 AAGCTGCTGG ACAACCTCAA TCAGGACGCA CCAGACACCT ATCACTACGT GGTCAGTGAG
1621 CCACTGGGAC GGAACAGCTA TAAGGAGCGC TACCTGTTCG TGTACAGGCC TGACCAGGTG
1681 TCTGCGGTGG ACAGCTACTA CTACGATGAT GGCTGCGAGC CCTGCGGGAA CGACACCTTC
1741 ACCCGAGAGC CAGCCATTGT CAGGTTCTTC TCCCGGTTCA CAGAGGTCA GGAGTTGCC
1801 ATTGTTCCCC TGCATGCGC CCCGGGGGAC GCAGTAGCCG AGATCGACGC TCTCTATGAC
1861 GTCTACCTGG ATGTCCAAGA GAAATGGGGC TTGGAGGACG TCATGTTGAT GGGCGACTTC
1921 AATGCGGGCT GCAGCTATGT GAGACCTCC CAGTGGTCAT CCATCCGCCT GTGGACAAGC
1981 CCCACCTTCC AGTGGCTGAT CCCCGACAGC GCTGACACCA CAGCTACACC CACGCACGT
2041 GCCTATGACA GGATCGTGGT TGCAGGGATG CTGCTCCGAG GGGCCGTGTT TCCCGACTCG
2101 GCTCTCCCT TTAACTTCCA GGCTGCCTAT GGCTGAGTG ACCAACTGGC CCAAGCCATC
2161 AGTGACCACT ATCCAGTGGA GGTGATGCTG AAGGGGGCG GACCCAAAAA GAAGCGCAAG
2221 GTTTG  


```

//

NLS →

Fig. 10(A)

38/113

9	18	27	36	45	54
5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
<hr/>					
M	G	W	S	C	I
I	L	F	L	V	A
A	T	A	T	G	V
T	G	V	H		
<hr/>					
63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
<hr/>					
S	Q	V	Q	L	V
S	G	A	E	V	K
K	K	P	G	A	S
<hr/>					
117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
<hr/>					
V	K	V	S	C	K
A	S	G	Y	T	F
S	A	Y	W	I	E
<hr/>					
171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
<hr/>					
W	V	R	Q	A	P
G	K	G	L	E	W
E	W	V	G	E	I
				L	P
<hr/>					
225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
<hr/>					
G	S	N	N	S	R
Y	N	E	K	F	K
				G	R
				V	T
				V	T
<hr/>					
279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
<hr/>					
R	D	T	S	T	N
					T
					A
					Y
<hr/>					
333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
<hr/>					
D	T	A	V	Y	Y
				C	A
				R	S
				S	Y
				D	F
				A	W
				F	A
				Y	
<hr/>					
387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
<hr/>					
W	G	Q	G	T	L
V	T	V	S	S	V
<hr/>					
441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
<hr/>					
V	F	P	L	A	P
<hr/>					
495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
<hr/>					
G	C	L	V	K	D
					Y
					F
					P
					E
					P
					V
					T
					V
					S
					W
					N
					S
<hr/>					
549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
<hr/>					
G	A	L	T	S	G
					V
					H
					T
					F
					P
					A
					V
					L
					Q
					S
					S
					G
<hr/>					
603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
<hr/>					
L	Y	S	L	S	S
					V
					V
					T
					V
					P
					S
					S
					S
					L
					G
					T
					Q
<hr/>					
657	666	675	684	693	702

Fig. 10(B)
(Sheet 1 of 4)

39/113

ACC TAC ATC TG_C AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA

T Y I C N V N H K P S N T K V D K K

711 720 729 738 747 756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT

V E P K S C D K T H T C P P C P A P

765 774 783 792 801 810
GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC

E L L G G P S V F L F P P K P K D T

819 828 837 846 855 864
CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC

L M I S R T P E V T C V V V D V S H

873 882 891 900 909 918
GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT

E D P E V K F N W Y V D G V E V H N

927 936 945 954 963 972
GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC

A K T K P R E E Q Y N S T Y R V V S

981 990 999 1008 1017 1026
GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG

V L T V L H Q D W L N G K E Y K C K

1035 1044 1053 1062 1071 1080
GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA

V S N K A L P A P I E K T I S K A K

1089 1098 1107 1116 1125 1134
GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG

G Q P R E P Q V Y T L P P S R D E L

1143 1152 1161 1170 1179 1188
ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC

T K N Q V S L T C L V K G F Y P S D

1197 1206 1215 1224 1233 1242
ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG

I A V E W E S N G Q P E N N Y K T T

1251 1260 1269 1278 1287 1296
CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC CTC TAC AGC AAG CTC ACC GTG

P P V L D S D G S F F L Y S K L T V

1305 1314 1323 1332 1341 1350
GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG

D K S R W Q Q G N V F S C S V M H E

Fig. 10(B)
(Sheet 2 of 4)

40/113

1359	1368	1377	1386	1395	1404
GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG GGT AAA GGG					
A L H N H Y T Q K S L S L S P G K <u>G</u>					
1413	1422	1431	1440	1449	1458
AGC GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG					
<u>S</u> G G L K I A A F N I Q T F G E T K					
1467	1476	1485	1494	1503	1512
ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC					
M S N A T L V S Y I V Q I L S R Y D					
1521	1530	1539	1548	1557	1566
ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG					
I A L V Q E V R D S H L T A V G K L					
1575	1584	1593	1602	1611	1620
CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG					
L D N L N Q D A P D T Y H Y V V S E					
1629	1638	1647	1656	1665	1674
CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC					
P L G R N S Y K E R Y L F V Y R P D					
1683	1692	1701	1710	1719	1728
CAG GTG TCT GCG GTG GAC AGC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG					
Q V S A V D S Y Y D D G C E P C G					
1737	1746	1755	1764	1773	1782
AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG TTC ACA					
N D T F N R E P A I V R F F S R F T					
1791	1800	1809	1818	1827	1836
GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA					
E V R E F A I V P L H A A P G D A V					
1845	1854	1863	1872	1881	1890
GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC					
A E I D A L Y D V Y L D V Q E K W G					
1899	1908	1917	1926	1935	1944
TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT GTG AGA					
L E D V M L M G D F N A G C S Y V R					
1953	1962	1971	1980	1989	1998
CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG					
P S Q W S S I R L W T S P T F Q W L					
2007	2016	2025	2034	2043	2052
ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG					
I P D S A D T T A T P T H C A Y D R					

Fig. 10(B)
(Sheet 3 of 4)

41/113

2061	2070	2079	2088	2097	2106													
ATC	GTG	GTT	GCA	GGG	ATG	CTG	CTC	CGA	GGG	GCC	GCC	GTT	GTT	CCC	GAC	TCG	GCT	CTT
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I	V	V	A	G	M	L	L	R	G	A	V	V	P	D	S	A	L	
2115	2124	2133	2142	2151	2160													
CCC	TTT	AAC	TTC	CAG	GCT	GCC	TAT	GGC	CTG	AGT	GAC	CAA	CTG	GCC	CAA	GCC	ATC	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P	F.	N	F	Q	A	A	Y	G	L	S	D	Q	L	A	Q	A	I	
2169	2178	2187	2196	2205	2214													
AGT	GAC	CAC	TAT	CCA	GTG	GAG	GTG	ATG	CTG	AAG	GGG	GGC	GGA	CCC	AAA	AAG	AAG	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
S	D	H	Y	P	V	E	V	M	L	K	<u>G</u>	<u>G</u>	<u>G</u>	<u>P</u>	<u>K</u>	<u>K</u>	<u>K</u>	
2223																		
CGC AAG GTT TGA 3'																		

<u>R</u> <u>K</u> <u>V</u> *																		

Fig. 10(B)
(Sheet 4 of 4)

42/113**pAS38**

LOCUS PAS38.DNA 2223 bp 2193 bp DNA 14-AUG-1998
 DEFINITION HUMANISED HMFG1 heavy chain fused to human DNase construct 38
 DEFINITION Clone 17.12.1 with silent K to K mutation (1398 A > G) +NLS
 REFERENCE
 AUTHORS VERHOEYEN ET AL
 TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
 JOURNAL IMMUNOL. (1993):78, 364-370
 COMMENT Human DNase sequence is modified as a result of oligo assembly (mhdnase.dna)
 COMMENT The fusion was made using overlapping oligos AS81 and AS82
 FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
 FEATURES Residue 963 is G > T leading to silent mutation in all clones
 FEATURES In 17.12.1 residue 1398 is A > G (silent K to K mutation)
 SITES Note
 BASE COUNT 510 a 683 c 618 g 412 t
 ORIGIN ?

```

1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
61 GTGCAGCTGG TGCAGTCAGG GGCAGAGGTG AAAAACGCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCTTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCTTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACCTCA
541 GGCGCCCTGA CCAGCGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACTC ACACATGCC ACCGTGCCCA GCACCTGAAC TCCTGGGGG ACCGTCAAGTC
781 TTCCTCTTCC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACA
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GCGCTGGAGG TGCATAATGC CAAGACAAAG CGCGGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACACCA GGTGTACACC CTGCCCCCAT CCCGGATGA GCTGACCAAG
1141 ACCCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGAGGCC GGAGAACAC TACAAGACCA CGCCTCCGT GCTGGACTCC
1261 GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAACAGC
1381 CTCTCCCTGT CTCCGAGG GAGCGGGCGGG CTGAAGATCG CAGCCTCAA CATCCAGACA
1441 TTTGGGGAGA CCAAGATGTC CAATGCCACC CTCGTCAGCT ACATTGTGCA GATCCTGAGC
1501 CGCTACGACA TCGCCCTGGT CCAGGAGGTG AGAGACAGCC ACCTGACTGC CGTGGGGAAAG
1561 CTGCTGGACA ACCTCAATCA GGACGCAACCA GACACCTATC ACTACGTGGT CAGTGAGCCA
1621 CTGGGACGGA ACAGCTATAA GGAGCGCTAC CTGTTCGTGT ACAGGCCTGA CCAGGTGTCT
1681 GCGGTGGACA GCTACTACTA CGATGATGGC TGCGAGCCCT GCGGGAACGA CACCTTCAAC
1741 CGAGAGCCAG CCATTGTCAG GTTCTTCTCC CGGTTCACAG AGGTCAGGGA GTTGCCATT
1801 GTTCCCTGCA ATGCGGGCCCC GGGGGACGCA GTAGCCGAGA TCGACGCTCT CTATGACGTC
1861 TACCTGGATG TCCAAGAGAA ATGGGGCTTG GAGGACGTCA TGTTGATGGG CGACTTCAAT
1921 GCGGGCTGCA GCTATGTGAG ACCCTCCAG TGGTCATCCA TCCGCCTGTG GACAAGCCCC
1981 ACCTTCCAGT GGCTGATCCC CGACAGCGCT GACACCACAG CTACACCCAC GCACTGTGCC
2041 TATGACAGGA TCGTGGTTGC AGGGATGCTG CTCCGAGGGGG CCGTTGTTCC CGACTCGGCT
2101 CTTCCCTTTA ACTTCCAGGC TGCCATGGC CTGAGTGTGACC AACTGGCCCA AGCCATCAGT
2161 GACCACTATC CAGTGGAGGT GATGCTGAAG GGGGCGGGAC CAAAAAGAA CGCGAAGGTT
2221 TGA

```

//

→ NLS

Fig. 11(A)

43/113

9	18	27	36	45	54-
5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
M G W S C I I L F L V A T A T G V H					
63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
S Q V Q L V Q S G A E V K K P G A S					
117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
V K V S C K A S G Y T F S A Y W I E					
171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
W V R Q A P G K G L E W V G E I L P					
225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
G S N N S R Y N E K F K G R V T V T					
279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
R D T S T N T A Y M E L S S L R S E					
333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
D T A V Y Y C A R S Y D F A W F A Y					
387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
W G Q G T L V T V S S A S T K G P S					
441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
V F P L A P S S K S T S G G T A A A L					
495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
G C L V K D Y F P E P V T V S W N S					
549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
G A L T S G V H T F P A V L Q S S G					
603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702

Fig. 11(B)
(Sheet 1 of 4)

44/113

ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA
 T Y I C N V N H K P S N T K V D K K
 711 720 729 738 747 756
 GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA, CCG TGC CCA GCA CCT
 V E P K S C D K T H T C P P C P A P
 765 774 783 792 801 810
 GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC
 E L L G G P S V F L F P P K P K D T
 819 828 837 846 855 864
 CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC
 L M I S R T P E V T C V V V D V S H
 873 882 891 900 909 918
 GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT
 E D P E V K F N W Y V D G V E V H N
 927 936 945 954 963 972
 GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC
 A K T K P R E E Q Y N S T Y R V V S
 981 990 999 1008 1017 1026
 GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG
 V L T V L H Q D W L N G K E Y K C K
 1035 1044 1053 1062 1071 1080
 GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA
 V S N K A L P A P I E K T I S K A K
 1089 1098 1107 1116 1125 1134
 GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG
 G Q P R E P Q V Y T L P P S R D E L
 1143 1152 1161 1170 1179 1188
 ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC
 T K N Q V S L T C L V K G F Y P S D
 1197 1206 1215 1224 1233 1242
 ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG
 I A V E W E S N G Q P E N N Y K T T
 1251 1260 1269 1278 1287 1296
 CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC ACC GTG
 P P V L D S D G S F F L Y S K L T V
 .1305 1314 1323 1332 1341 1350
 GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG
 D K S R W Q Q G N V F S C S V M H E

Fig. 11(B)
(Sheet 2 of 4)

45/113

1359	1368	1377	1386	1395	1404
GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG AAG GGG AGC					
A L H N H Y T Q K S L S L S P K G S					
1413	1422	1431	1440	1449	1458
GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG ATG					
<u>G G</u> L K I A A F N I Q T F G E T K M					
1467	1476	1485	1494	1503	1512
TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC ATC					
S N A T L V S Y I V Q I L S R Y D I					
1521	1530	1539	1548	1557	1566
GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG CTG					
A L V Q E V R D S H L T A V G K L L					
1575	1584	1593	1602	1611	1620
GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG CCA					
D N L N Q D A P D T Y H Y V V S E P					
1629	1638	1647	1656	1665	1674
CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC CAG					
L G R N S Y K E R. Y L F V Y R P D Q					
1683	1692	1701	1710	1719	1728
GTG TCT GCG GTG GAC AGC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG AAC					
V S A V D S Y Y D D G C E P C G N					
1737	1746	1755	1764	1773	1782
GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG TTC ACA GAG					
D T F N R E P A I V R F F S R F T E					
1791	1800	1809	1818	1827	1836
GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA GCC					
V R E F A I V P L H A A P G D A V A					
1845	1854	1863	1872	1881	1890
GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC TTG					
E I D A L Y D V Y L D V Q E K W G L					
1899	1908	1917	1926	1935	1944
GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT GTG AGA CCC					
.E D V M L M G D F N A G C S Y V R P					
1953	1962	1971	1980	1989	1998
TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG ATC					
S Q W S S .I R L W T S P T F Q .W L I					
2007	2016	2025	2034	2043	2052
CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG ATC					
P D S A D T T A T P T H C A Y D R I					

Fig. 11(C)
(Sheet 3 of 4)

46/113

2061	2070	2079	2088	2097	2106												
GTG	GTT	GCA	GGG	ATG	CTG	CTC	CGA	GGG	GCC	GTT	GTT	CCC	GAC	TCG	GCT	CTT	CCC
- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
V	V	A	G	M	L	L	R	G	A	V	V	P	D	S	A	L	P
2115	2124	2133	2142	2151	2160												
TTT	AAC	TTC	CAG	GCT	GCC	TAT	GGC	CTG	AGT	GAC	CAA	CTG	GCC	CAA	GCC	ATC	AGT
- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
F	N	F	Q	A	A	Y	G	L	S	D	Q	L	A	Q	A	I	S
2169	2178	2187	2196	2205	2214												
GAC	CAC	TAT	CCA	GTG	GAG	GTG	ATG	CTG	AAG	GGG	GGC	GGA	CCC	AAA	AAG	AAG	CGC
- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
D	H	Y	P	V	E	V	M	L	K	<u>G</u>	<u>G</u>	<u>G</u>	<u>P</u>	<u>K</u>	<u>K</u>	<u>K</u>	<u>R</u>
2223																	
AAG GTT TGA 3'																	
- - -																	
K V *																	
<u><u><u></u></u></u>																	

Fig. 11(D)
(Sheet 4 of 4)

47/113

pAS39

LOCUS PAS39.DNA 2220 bp 2190 bp DNA 14-AUG-
 1998
 DEFINITION HUMANISED HMFG1 heavy chain fused to human DNase - construct 39
 DEFINITION Clone 18.24.1 with residue 1392 T > C +NLS
 REFERENCE
 AUTHORS VERHOEYEN ET AL
 TITLE CONSTRUCTION OF RESHAPED HMFG1 etc
 JOURNAL IMMUNOL. (1993):78, 364-370
 COMMENT Human DNase sequence is modified as a result of oligo assembly
 (mhdnase.dna)
 COMMENT The fusion was made using overlapping oligos AS83 and AS84
 FEATURES AA RESIDUE 235 HAS NOT BEEN CHANGED TO KABAT (I.E. V TO A)
 FEATURES Residue 963 is G > T leading to silent mutation in all clones
 FEATURES Residue 1392 T > C silent S to S mutation
 SITES Note
 BASE COUNT 508 a 684 c 617 g 411 t
 ORIGIN ?

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGCCCAAGGG ACTCTGGTCA CAGTCTCCCT AGCCTCCACC
421 AAGGGCCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTGTC GTGGAACTCA
541 GGCGCCCTGA CCAGCGGCCTG GCACACCTTC CCGGCTGTCC TACAGTCCCTC AGGACTCTAC
601 TCCCCTCAGCA GCGTGGTGAC CGTGCCTCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATC ACACATGCC ACCGTGCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC
781 TTCCCTCTTCC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTACACA
841 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC
901 GGCGTGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTACAA CAGCACGTAC
961 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGAGTACAAG
1021 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA
1081 GGGCAGCCCC GAGAACCCACA GGTGTACACC CTGCCCCAT CCCGGGATGA GCTGACCAAG
1141 AACCAAGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1201 TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA CGCCTCCCGT GCTGGACTCC
1261 GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG
1321 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAACAGC
1381 CTCTCCCTGT CcCGGGAG CGGGCTGGCTG AAGATCGCAG CCTTCAACAT CCAGACATT
1441 GGGGAGACCA AGATGTCCAA TGCCACCTCT GTCAGCTACA TTGTGCAGAT CCTGAGCCGC
1501 TACGACATCG CCCTGGTCCA GGAGGTCAAGA GACAGCCACC TGACTGCCGT GGGGAAGCTG
1561 CTGGACAACC TCAATCAGGA CGCACCAAGAC ACCTATCACT ACGTGGTCAG TGAGCCACTG
1621 GGACGGAACA GCTATAAGGA GCGCTACCTG TTCGTGTACA GGCCTGACCA GGTGTCTGCG
1681 GTGGACAGCT ACTACTACGA TGATGGCTGC GAGCCCTGCG GGAACGACAC CTTCAACCGA
1741 GAGCCAGCCA TTGTCAGGTT CTTCTCCCGG TTCACAGAGG TCAGGGAGTT TGCCATTGTT
1801 CCCCTGCATG CGGCCCGGG GGACGCAGTA GCCGAGATCG ACGCTCTCTA TGACGTCTAC
1861 CTGGATGTCC AAGAGAAATG GGGCTTGGAG GACGTCTAC TGATGGGCGA CTTCAATGCG
1921 GGCTGCAGCT ATGTGAGACC CTCCCACTGG TCATCCATCC GCCTGTGGAC AAGCCCCACC
1981 TTCCAGTGGC TGATCCCCGA CAGCGCTGAC ACCACAGCTA CACCCACGCA CTGTGCCTAT
2041 GACAGGATCG TGGTTGCAGG GATGCTGCTC CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT
2101 CCCTTTAACT TCCAGGCTGC CTATGGCCTG AGTGACCAAC TGGCCCAAGC CATCAGTGAC
2161 CACTATCCAG TGGAGGTGAT GCTGAAGGGG GGCAGACCCA AAAAGAACCG CAAGGTTGA
  //
```

Fig. 12(A)

48/113

	9	18	27	36	45	54
ATG	GGA	TGG	AGC	TGT	ATC	ATC
C	G	W	S	C	I	I
M	G	W	S	C	I	I
TCC	CAG	GTG	CAG	CTG	GTG	CAG
S	Q	V	Q	L	V	Q
117	126	135	144	153	162	
GTG	AAG	GTG	TCC	TGC	AAG	GCT
V	K	V	S	C	K	A
171	180	189	198	207	216	
TGG	GTG	CGC	CAG	GCT	CCA	GGG
W	V	R	Q	A	P	G
225	234	243	252	261	270	
GGA	AGT	AAT	AAT	TCT	AGA	TAC
G	S	N	N	S	R	Y
279	288	297	306	315	324	
AGA	GAC	ACA	TCC	ACA	AAC	ACA
R	D	T	S	T	N	T
333	342	351	360	369	378	
GAC	ACA	GCC	GTC	TAT	TAC	TGT
D	T	A	V	Y	Y	C
387	396	405	414	423	432	
TGG	GGC	CAA	GGG	ACT	CTG	GTC
W	G	Q	G	T	L	V
441	450	459	468	477	486	
GTC	TTC	CCC	CTG	GCA	CCC	TCC
V	F	P	L	A	P	S
495	504	513	522	531	540	
GGC	TGC	CTG	GTC	AAG	GAC	TAC
G	C	L	V	K	D	Y
549	558	567	576	585	594	
GGC	GCC	CTG	ACC	AGC	GGC	GTG
G	A	L	T	S	G	V
603	612	621	630	639	648	
CTC	TAC	TCC	CTC	AGC	AGC	GTG
L	Y	S	L	S	S	V
657	666	675	684	693	702	

Fig. 12(B)
(Sheet 1 of 4)

48/113

9 18 27 36 45 54

5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC

M G W S C I I L F L V A T A T G V H

63 72 81 90 99 108

TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA

S Q V Q L V Q S G A E V K K P G A S

117 126 135 144 153 162

GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG

V K V S C K A S G Y T F S A Y W I E

171 180 189 198 207 216

TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT

W V R Q A P G K G L E W V G E I L P

225 234 243 252 261 270

GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT

G S N N S R Y N E K F K G R V T V T

279 288 297 306 315 324

AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG

R D T S T N T A Y M E L S S L R S E

333 342 351 360 369 378

GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC

D T A V Y Y C A R S Y D F A W F A Y

387 396 405 414 423 432

TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG

W G Q G T L V T V S S A S T K G P S

441 450 459 468 477 486

GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG

V F P L A P S S K S T S G G T A A L

495 504 513 522 531 540

GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG AGC GTG TCG TGG AAC TCA

G C L V K D Y F P E P V T V S W N S

549 558 567 576 585 594

GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA

G A L T S G V H T F P A V L Q S S G

603 612 621 630 639 648

CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG

L Y S L S S V V T V P S S S L G T Q

657 666 675 684 693 702

Fig. 12(B)
(Sheet 1 of 4)

49/113

ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA
 T Y I C N V N H K P S N T K V D K K
 711 720 729 738 747 756
 GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT
 V E P K S C D K T H T C P P C P A P
 765 774 783 792 801 810
 GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC
 E L L G G P S V F L F P P K P K D T
 819 828 837 846 855 864
 CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC GTG AGC CAC
 L M I S R T P E V T C V V V D V S H
 873 882 891 900 909 918
 GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT
 E D P E V K F N W Y V D G V E V H N
 927 936 945 954 963 972
 GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC
 A K T K P R E E Q Y N S T Y R V V S
 981 990 999 1008 1017 1026
 GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG
 V L T V L H Q D W L N G K E Y K C K
 1035 1044 1053 1062 1071 1080
 GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA
 V S N K A L P A P I E K T I S K A K
 1089 1098 1107 1116 1125 1134
 GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG
 G Q P R E P Q V Y T L P P S R D E L
 1143 1152 1161 1170 1179 1188
 ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC
 T K N Q V S L T C L V K G F Y P S D
 1197 1206 1215 1224 1233 1242
 ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG
 I A V E W E S N G Q P E N N Y K T T
 1251 1260 1269 1278 1287 1296
 CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC CTC TAC AGC AAG CTC ACC GTG
 P P V L D S D G S F F L Y S K L T V
 1305 1314 1323 1332 1341 1350
 GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG
 D K S R W Q Q G N V F S C S V M H E

Fig. 12(B)
(Sheet 2 of 4)

50/113

1359	1368	1377	1386	1395	1404
GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCC CCG GGG AGC GGC					
A L H N H Y T Q K S L S L S P				<u>G</u>	<u>S</u> <u>G</u>
1413	1422	1431	1440	1449	1458
GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG ATG TCC					
<u>G</u> L K I A A F N I Q T F G E T K M S					
1467	1476	1485	1494	1503	1512
AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC ATC GCC					
N A T L V S Y I V Q I L S R Y D I A					
1521	1530	1539	1548	1557	1566
CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG CTG GAC					
L V Q E V R D S H L T A V G K L L D					
1575	1584	1593	1602	1611	1620
AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG CCA CTG					
N L N Q D A P D T Y H Y V V S E P L					
1629	1638	1647	1656	1665	1674
GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC CAG GTG					
G R N S Y K E R Y L F V Y R P D Q V					
1683	1692	1701	1710	1719	1728
TCT GCG GTG GAC AGC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG AAC GAC					
S A V D S Y Y Y D D G C E P C G N D					
1737	1746	1755	1764	1773	1782
ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TCC CGG TTC ACA GAG GTC					
T F N R E P A I V R F F S R F T E V					
1791	1800	1809	1818	1827	1836
AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA GCC GAG					
R E F A I V P L H A A P G D A V A E					
1845	1854	1863.	1872	1881	1890
ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC TTG GAG					
I D A L Y D V Y L D V Q E K W G L E					
1899	1908	1917	1926	1935	1944
GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT GTG AGA CCC TCC					
D V M L M G D F N A G C S Y V R P S					
1953	1962	1971	1980	1989	1998
CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG ATC CCC					
Q W S S I R L W T S P T F Q W L I P					
2007	2016	2025	2034	2043	2052
GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG ATC GTG					
D S A D T T A T P T H C A Y D R I V					

Fig. 12(B)
(Sheet 3 of 4)

SUBSTITUTE SHEET (RULE 26)

51/113

2061	2070	2079	2088	2097	2106
GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT CCC GAC TCG GCT CTT CCC TTT					
-----	-----	-----	-----	-----	-----
V A G M L L R G A V V P D S A L P F					
2115	2124	2133	2142	2151	2160
AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA GCC ATC AGT GAC					
-----	-----	-----	-----	-----	-----
N F Q A A Y G L S D Q L A Q A I S D					
2169	2178	2187	2196	2205	2214
CAC TAT CCA GTG GAG GTG ATG CTG AAG GGG GGC GGA CCC AAA AAG AAG CGC AAG					
-----	-----	-----	-----	-----	-----
H Y P V E V M L K G G G P K K K R K					

GTT TGA 3'

V *

Fig. 12(B)
(Sheet 4 of 4)

52/113

pAS101

LOCUS PAS101.DNA 1548 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I (pAS101)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 343 a 467 c 430 g 308 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCGAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCACTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT
241 GAGAAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCTTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCTTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCTTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG GTGGAACCTCA
541 GGCGCCCTGA CCAGCGCGT GCACACCTTC CCGGCTGTCC TACAGTCTTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACTC ACACATGCC ACCGTCCCCA GCACCTGAAG GCGGGCTGAA GATCGCAGCC
781 TTCAACATCC AGACATTGG GGAGACCAAG ATGTCCAATG CCACCCCTCGT CAGCTACATT
841 GTGCAGATCC TGAGCCGCTA CGACATCGCC CTGGTCCAGG AGGTCAAGAGA CAGCCACCTG
901 ACTGCCGTGG GGAAGCTGCT GGACAACCTC AATCAGGAGC CACCAGACAC CTATCACTAC
961 GTGGTCAGTG AGCCACTGGG ACGGAACAGC TATAAGGAGC GCTACCTGTT CGTGTACAGG
1021 CCTGACCAGG TGTCTCGGGT GGACAGCTAC TACTACGATG ATGGCTGCGA GCCCTGCGGG
1081 AACGACACCT TCAACCGAGA GCCAGCCATT GTCAGGTTCT TCTCCCGGTT CACAGAGGTC
1141 AGGGAGTTTG CCATTGTTCC CCTGCATCGG GCCCCGGGG ACAGCAGTAGC CGAGATCGAC
1201 GCTCTCTATG ACGTCTACCT GGATGTCCAA GAGAAATGGG GCTTGGAGGA CGTCATGTTG
1261 ATGGGCGACT TCAATGCCGG CTGCAGCTAT GTGAGACCCCT CCCAGTGGTC ATCCATCCGC
1321 CTGTGGACAA GCCCCACCTT CCAGTGGCTG ATCCCCGACA GCGCTGACAC CACAGCTACA
1381 CCCACGCACT GTGCCTATGA CAGGATCGTG GTTGCAGGGG TGCTGCTCCG AGGGGCCGTT
1441 GTTCCCGACT CGGCTCTTCC CTTAACTTC CAGGCTGCCT ATGGCCTGAG TGACCAACTG
1501 GCCCAAGCCA TCAGTGACCA CTATCCAGTG GAGGTGATGC TGAAGTGA
  //
```

Fig. 13(A)

53/113

LOCUS	FDDNASE101	1548 BP SS-DNA	SYN	25-AUG-2000			
DEFINITION	-						
ACCESSION	-						
KEYWORDS	-						
SOURCE	-						
FEATURES	Location/Qualifiers						
frag	join(1..>720,<781..1548) /note="1 to 1548 of PAS101.dna [Split]"						
frag	721..780 /note="1 to 60 of 101/105linker"						
frag	join(721..>735,<736..>759,<760..>780) /note="1 to 80 of 102linker [Split]"						
BASE COUNT	343 A	465 C	431 G	309 T			
ORIGIN	0 OTHER						
	1	ATGGGATGGA	GCTGTATCAT	CCTCTTCTTG	GTAGCAACAG	CTACAGGTGT	CCACTCCCAG
	61	GTGCAGCTGG	TGCAGTCTGG	GGCAGAGGTG	AAAAAGCCTG	GGGCCTCAGT	GAAGGTGTCC
	121	TGCAAGGCTT	CTGGCTACAC	CTTCAGTGCC	TACTGGATAG	AGTGGGTGCG	CCAGGCTCCA
	181	GGAAAGGGCC	TCGAGTGGGT	CGGAGAGATT	TTACCTGGAA	GTAATAATTC	TAGATACAAT
	241	GAGAAGTTCA	AGGGCCGAGT	GACAGTCACT	AGAGACACAT	CCACAAACAC	AGCCTACATG
	301	GAGCTCAGCA	GCCTGAGGTC	TGAGGACACA	GCCGTCTATT	ACTGTGCAAG	ATCCTACGAC
	361	TTTGCCTGGT	TTGCTTACTG	GGGCCAAGGG	ACTCTGGTCA	CAGTCTCCTC	AGCCTCCACC
	421	AAGGGCCCAT	CGGTCTCCC	CCTGGCACCC	TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG
	481	GCCCTGGGCT	GCCTGGTCAA	GGACTACTTC	CCCGAACCGG	TGACGGTGTG	GTGGAACATCA
	541	GGCCCCCTGA	CCAGCGCCGT	GCACACCTTC	CCGGCTGTCC	TACAGTCCTC	AGGACTCTAC
	601	TCCCTCAGCA	GCGTGGTGAC	CGTGCCTCC	AGCAGCTTGG	GCACCCAGAC	CTACATCTGC
	661	AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAGA	AAGTTGAGCC	CAAATCTTGT
	721	GACAAAATC	ACACATGTCC	ACCGTGTCCA	GCACCCAGAGG	GGGGGCTGAA	GATCGCAGCC
	781	TTCAACATCC	AGACATTGG	GGAGACCAAG	ATGTCCAATG	CCACCCCTCGT	CAGCTACATT
	841	GTGCAGATCC	TGAGCCGCTA	CGACATCGCC	CTGGTCCAGG	AGGTCAGAGA	CAGCCACCTG
	901	ACTGCCGTGG	GGAAAGCTGCT	GGACAACCTC	AATCAGGACG	CACCAGACAC	CTATCACTAC
	961	GTGGTCAGTG	AGCCACTGGG	ACGGAACAGC	TATAAGGAGC	GCTACCTGTT	CGTGTACAGG
	1021	CCTGACCAGG	TGTCTCGGGT	GGACAGCTAC	TACTACGATG	ATGGCTGCGA	CCCTGCGGG
	1081	AACGACACCT	TCAACCGAGA	GCCAGCCATT	GTCAGGTCT	TCTCCCGGTT	CACAGAGGTC
	1141	AGGGAGTTTG	CCATTGTTCC	CCTGCATGCG	GCCCCGGGGG	ACGCAGTAGC	CGAGATCGAC
	1201	GCTCTCTATG	ACGTCTACCT	GGATGTCCAA	GAGAAATGGG	GCTTGGAGGA	CGTCATGTTG
	1261	ATGGGCGACT	TCAATGCGGG	CTGCAGCTAT	GTGAGACCT	CCCAGTGGTC	ATCCATCCGC
	1321	CTGTGGACAA	GCCCCACCTT	CCAGTGGCTG	ATCCCCGACA	GCGCTGACAC	CACAGCTACA
	1381	CCCACGCACT	GTGCCTATGA	CAGGATCGTG	GTTGCAGGGA	TGCTGCTCCG	AGGGGCCGTT
	1441	GTTCCCGACT	CGGCTCTTCC	CTTTAACTTC	CAGGCTGCCT	ATGGCCTGAG	TGACCAACTG
	1501	GCCCAAGCCA	TCAGTGACCA	CTATCCAGTG	GAGGTGATGC	TGAAGTGA	

//

Fig. 13(B)

54/113

LOCUS	FDDNASE101	1557	BP	SS-DNA	SYN	29-AUG-2000
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	10..1557					
	/note="1 to 1548 of FdDNase101correct"					
frag	join(10..>729,<790..1557)					
	/note="1 to 1548 of PAS101.dna [Split]"					
frag	730..789					
	/note="1 to 60 of 101/105linker"					
frag	join(730..>744,<745..>768,<769..>789)					
	/note="1 to 80 of 102linker [Split]"					
BASE COUNT	344 A	471 C	433 G	309 T	0 OTHER	
ORIGIN	-					
1	GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGCAACAGC	TACAGGTGTC
61	CACTCCCAGG	TGCAGCTGGT	GCAGTCTGGG	GCAGAGGTGA	AAAAGCCTGG	GGCCTCAGTG
121	AAGGTGTCCT	GCAAGGCTTC	TGGCTACACC	TTCAGTGCCT	ACTGGATAGA	GTGGGTGCGC
181	CAGGCTCCAG	GAAAGGGCCT	CGAGTGGGTC	GGAGAGATTT	TACCTGGAAG	TAATAATTCT
241	AGATACAATG	AGAACGTTCAA	GGGCGAGTG	ACAGTCACTA	GAGACACATC	CACAAACACA
301	GCCTACATGG	AGCTCAGCAG	CCTGAGGTCT	GAGGACACAG	CCGTCTATT	CTGTGCAAGA
361	TCCTACGACT	TTGCCTGGTT	TGCTTACTGG	GGCCAAGGGA	CTCTGGTCAC	AGTCTCCTCA
421	GCCTCCACCA	AGGGCCCCATC	GGTCTTCCCC	CTGGCACCCCT	CCTCCAAGAG	CACCTCTGGG
481	GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	CCGAACCGGT	GACGGTGTGCG
541	TGGAACCTAG	GCGCCCTGAC	CAGCGGCCGTG	CACACCTTCC	CGGCTGTCC	ACAGTCTCTCA
601	GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	GCAGCTGGG	CACCCAGACCC
661	TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
721	AAATCTTGTG	ACAAAACCTCA	CACATGTCCA	CCGTGTCCAG	CACCAGAGGG	CGGGCTGAAG
781	ATCGCAGCCT	TCAACATCCA	GACATTTGGG	GAGACCAAGA	TGTCCAATGC	CACCCCTCGTC
841	AGCTACATTG	TGCAGATCCT	GAGCCGCTAC	GACATCGCCC	TGGTCCAGGA	GGTCAGAGAC
901	AGCCACCTGA	CTGCCGTGGG	GAAGCTGCTG	GACAACCTCA	ATCAGGACGC	ACCAAGACACC
961	TATCACTACG	TGGTCAGTGA	GCCACTGGGA	CGGAACAGCT	ATAAGGAGCG	CTACCTGTT
1021	GTGTACAGGC	CTGACCAGGT	GTCTCGGGT	GACAGCTACT	ACTACGATGA	TGGCTGCGAG
1081	CCCTGCGGGA	ACGACACCTT	CAACCGAGAG	CCAGCCATTG	TCAGGTTCTT	CTCCCGGTTTC
1141	ACAGAGGTCA	GGGAGTTGC	CATTGTTCCC	CTGCATGCGG	CCCCGGGGGA	CCGAGTAGGCC
1201	GAGATCGACG	CTCTCTATGA	CGTCTACCTG	GATGTCCAAG	AGAAATGGGG	CTTGGAGGAC
1261	GTCATGTTGA	TGGGCGACTT	CAATGCGGGC	TGCAGCTATG	TGAGACCTC	CCAGTGGTCA
1321	TCCATCCGCC	TGTGGACAAG	CCCCACCTTC	CAGTGGCTGA	TCCCCGACAG	CGCTGACACC
1381	ACAGCTACAC	CCACCGACTG	TGCCTATGAC	AGGATCGTGG	TTGCAGGGAT	GCTGCTCCGA
1441	GGGGCCGTTG	TTCCCGACTC	GGCTCTTCCC	TTAACCTCC	AGGCTGCCTA	TGGCCTGAGT
1501	GACCAACTGG	CCCAAGCCAT	CAGTGACCAC	TATCCAGTGG	AGGTGATGCT	GAAGTGA

//

Fig. 13(C)

55/113

	9	18	27	36	45	54
5'	ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
	M G W S C I I L F L V A T A T G V H					
	63	72	81	90	99	108
	TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
	S Q V Q L V Q S G A E V K K P G A S					
	117	126	135	144	153	162
	GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
	V K V S C K A S G Y T F S A Y W I E					
	171	180	189	198	207	216
	TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
	W V R Q A P G K G L E W V G E I L P					
	225	234	243	252	261	270
	GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
	G S N N S R Y N E K F K G R V T V T					
	279	288	297	306	315	324
	AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
	R D T S T N T A Y M E L S S L R S E					
	333	342	351	360	369	378
	GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
	D T A V Y Y C A R S Y D F A W F A Y					
	387	396	405	414	423	432
	TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
	W G Q G T L V T V S S A S T K G P S					
	441	450	459	468	477	486
	GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
	V F P L A P S S K S T S G G T A A L					
	495	504	513	522	531	540
	GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
	G C L V K D Y F P E P V T V S W N S					
	549	558	567	576	585	594
	GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
	G A L T S G V H T F P A V L Q S S G					

Fig. 13(D)
(Sheet 1 of 3)

56/113

603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702
ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
T Y I C N V N H K P S N T K V D K K					
711	720	729	738	747	756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CGG TGC CCA GCA CCT					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
V E P K S C D K T H T C P P C P A P					
765	774	783	792	801	810
GAA GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
E G G L K I A A F N I Q T F G E T K					
819	828	837	846	855	864
ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
M S N A T L V S Y I V Q I L S R Y D					
873	882	891	900	909	918
ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
I A L V Q E V R D S H L T A V G K L					
927	936	945	954	963	972
CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
L D N L N Q D A P D T Y H Y V V V S E					
981	990	999	1008	1017	1026
CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
P L G R N S Y K E R Y L F V Y R P D					
1035	1044	1053	1062	1071	1080
CAG GTG TCT GCG GTG GAC AGC TAC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
Q V S A V D S Y Y Y D D G C E P C G					
1089	1098	1107	1116	1125	1134
AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG TTC ACA					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
N D T F N R E P A I V R F F S R F T					
1143	1152	1161	1170	1179	1188
GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA					
- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
E V R E F A I V P L H A A P G D A V					
1197	1206	1215	1224	1233	1242

Fig. 13(D)
(Sheet 2 of 3)

57/113

GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC

 A E I D A L Y D V Y L D V Q E K W G
 1251 1260 1269 1278 1287 1296
 TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC AGC TAT GTG AGA

 L E D V M L M G D F N A G C S Y V R
 1305 1314 1323 1332 1341 1350
 CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG

 P S Q W S S I R L W T S P T F Q W L
 1359 1368 1377 1386 1395 1404
 ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG

 I P D S A D T T A T P T H C A Y D R
 1413 1422 1431 1440 1449 1458
 ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CCC GAC TCG GCT CTT

 I V V A G M L L R G A V V P D S A L
 1467 1476 1485 1494 1503 1512
 CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA GCC ATC

 P F N F Q A A Y G L S D Q L A Q A I
 1521 1530 1539 1548
 AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'

 S D H Y P V E V M L K *

Fig. 13(D)
(Sheet 3 of 3)

58/113

pAS102

LOCUS PAS102.DNA 1566 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I (pAS102)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna) (See Figure 2)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic
 fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 345 a 469 c 440 g 312 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAACGCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAAGCTCA
541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATCTC ACACATTGCTG TGTGGAGTGC CCACCGTGCC CAGCACCTGA AGGGGAGCGGC
781 GCCCTGAAGA TCGCAGCCTT CAACATCCAG ACATTTGGGG AGACCAAGAT GTCCAATGCC
841 ACCCTCGTCA GCTACATTGT GCAGATCCTG AGCCGCTACG ACATGCCCT GGTCCAGGAG
901 GTCAGAGACA GCCACCTGAC TGCCGTGGGG AAGCTGCTGG ACAACCTCAA TCAGGACGCA
961 CCAGACACCT ATCACTACGT GGTCACTGAG CCACCTGGAC GGAACAGCTA TAAGGAGCGC
1021 TACCTGTTCG TGTACAGGCC TGACCAGGTG TCTGCGGTGG ACAGCTACTA CTACGATGAT
1081 GGCTGCGAGC CCTGCCGGAA CGACACCTTC AACCGAGAGC CAGCCATTGT CAGGTTCTC
1141 TCCCGGTTCA CAGAGGTCA GGAGTTGCC ATTGTTCCCC TGCAATGCC CCCGGGGGAC
1201 GCAGTAGCCG AGATCGACGC TCTCTATGAC GTCTACCTGG ATGTCCAAGA GAAATGGGGC
1261 TTGGAGGACG TCATGTTGAT GGGCGACTTC AATGCGGGCT GCAGCTATGT GAGACCCCTCC
1321 CAGTGGTCAT CCATCCGCCT GTGGACAAGC CCCACCTTCC AGTGGCTGAT CCCCAGACAGC
1381 GCTGACACCA CAGCTACACC CACGCACTGT GCCTATGACA GGATCGTGGT TGCAGGGATG
1441 CTGCTCCGAG GGGCCGTTGT TCCCGACTCG GCTCTTCCCT TTAACCTCCA GGCTGCCCTAT
1501 GGCCTGAGTG ACCAACTGGC CCAAGCCATC AGTGAACACT ATCCAGTGGA GGTGATGCTG
1561 AAGTGA
  //
```

Fig. 14(A)

59/113

LOCUS	FDDNASE102	1566 BP SS-DNA	SYN	23-MAR-2001	
DEFINITION	-				
ACCESSION	-				
KEYWORDS	-				
SOURCE	-				
BASE COUNT	345 A	468 C	440 G	313 T	0 OTHER
ORIGIN	-				

```

1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAACCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCAT CGGTCTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
541 GGCGCCCTGA CCAGCGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACTC ACACATGCTG TGTGAGTGT CCACCGTGTG CAGCACCCAGA GGGGAGCGGC
781 GGGCTGAAGA TCGCAGCCTT CAACATCCAG ACATTGGGG AGACCAAGAT GTCCAATGCC
841 ACCCTCGTCA GCTACATTGT GCAGATCCTG AGCCGCTACG ACATCGCCCT GGTCCAGGAG
901 GTCAGAGACA GCCACCTGAC TGCCGTGGGG AAGCTGCTGG ACAACCTCAA TCAGGACGCA
961 CCAGACACCT ATCACTACGT GGTCACTGAG CCACTGGGAC GGAACAGCTA TAAGGAGCGC
1021 TACCTGTTCG TGTACAGGCC TGACCAGGTG TCTGCGGTGG ACAGCTACTA CTACGATGAT
1081 GGCTCGGAGC CCTGCGGGAA CGACACCTTC AACCAGAGAC CAGCCATTGT CAGGTTCTTC
1141 TCCCCGTTCA CAGAGGTCAAG GGAGTTGCC ATTGTTCCCC TGCACTGGGC CCCGGGGGAC
1201 GCAGTAGCCG AGATCGACGC TCTCTATGAC GTCTACCTGG ATGTCCAAGA GAAATGGGGC
1261 TTGGAGGACG TCATGTTGAT GGGCGACTTC AATGCGGGCT GCAGCTATGT GAGACCCCTCC
1321 CAGTGGTCAT CCATCCGCCT GTGGACAAGC CCCACCTTCC AGTGGCTGAT CCCGACAGC
1381 GCTGACACCA CAGCTACACC CACGCACTGT GCCTATGACA GGATCGTGGT TGCAAGGGATG
1441 CTGCTCCGAG GGGCCGTTGT TCCCGACTCG GCTCTCCCT TTAACCTCCA GGCTGCCTAT
1501 GGCTGAGTG ACCAACTGGC CCAAGCCATC AGTGAACACT ATCCAGTGGA GGTGATGCTG
1561 AAGTGA

```

//

Fig. 14(B)

60/113

pAS302

LOCUS	FDDNASE302	1575 BP SS-DNA	SYN	29-AUG-2000		
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	10..1575 /note="1 to 1566 of FdDNase102correct"					
BASE COUNT	346 A	474 C	442 G	313 T		
ORIGIN	0 OTHER					
1	GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGCAACAGC	TACAGGTGTC
61	CACTCCCAGG	TGCAGCTGGT	GCAGTCTGGG	GCAGAGGTGA	AAAAGCTGG	GGCCTCAGTG
121	AAGGTGTCCT	GCAAGGCTTC	TGGCTACACC	TTCAGTGCCT	ACTGGATAGA	GTGGGTGCGC
181	CAGGCTCCAG	GAAAGGGCCT	CGAGTGGGTC	GGAGAGATT	TACCTGGAAG	TAATAATTCT
241	AGATACAATG	AGAACGTTCAA	GGGCCGAGTG	ACAGTCACTA	GAGACACATC	CACAAACACA
301	GCCTACATGG	AGCTCAGCAG	CCTGAGGTCT	GAGGACACAG	CCGTCTATT	CTGTGCAAGA
361	TCCTACGACT	TTGCCTGGTT	TGCTTACTGG	GGCCAAGGG	CTCTGGTCAC	AGTCTCCTCA
421	GCCTCCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCC	CCTCCAAGAG	CACCTCTGGG
481	GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	CCGAACCGGT	GACGGTGTCC
541	TGGAACTCAG	GCGCCCTGAC	CAGCGGCGTG	CACACCTTCC	CGGCTGTCCT	ACAGTCCTCA
601	GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	GCAGCTGGG	CACCCAGACC
661	TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
721	AAATCTTGTG	ACAAAACCTCA	CACATGCTGT	GTCGAGTGT	CACCGTGTCC	AGCACCAGAG
781	GGGAGCGGCG	GGCTGAAGAT	CCGAGCCTTC	AACATCCAGA	CATTGGGGA	GACCAAGATG
841	TCCAATGCCA	CCCTCGTCAG	CTACATTGTG	CAGATCCTGA	GCCGCTACGA	CATGCCCTG
901	GTCCAGGAGG	TCAGAGACAG	CCACCTGACT	GCCGTGGGA	AGCTGCTGGA	CAACCTCAAT
961	CAGGACGCAC	CAGACACCTA	TCACTACGTG	GTCAGTGAGC	CACTGGGACG	GAACAGCTAT
1021	AAGGAGCGCT	ACCTGTTCGT	GTACAGGCCT	GACCAGGTGT	CTGCGGTGGA	CAGCTACTAC
1081	TACGATGATG	GCTGCGAGCC	CTGCGGGAAC	GACACCTTCA	ACCGAGAGCC	AGCCATTGTC
1141	AGGTTCTTCT	CCCGGGTCAC	AGAGGTCAGG	GAGTTGCCA	TTGTTCCCT	GCATGCGGCC
1201	CCGGGGGAGC	CAGTAGCCGA	GATCGACGCT	CTCTATGACG	TCTACCTGGA	TGTCCAAGAG
1261	AAATGGGGCT	TGGAGGACGT	CATGTTGATG	GGCGACTTCA	ATGCGGGCTG	CAGCTATGTG
1321	AGACCCCTCC	AGTGGTCATC	CATCCGCCCTG	TGGACAAGCC	CCACCTTCCA	GTGGCTGATC
1381	CCCGACAGCG	CTGACACCAC	AGCTACACCC	ACGCACTGTG	CCTATGACAG	GATCGTGGTT
1441	GCAGGGATGC	TGCTCCGAGG	GGCCGTTGTT	CCCGACTCGG	CTCTTCCCTT	TAACTTCCAG
1501	GCTGCCTATG	GCCTGAGTGA	CCAACTGGCC	CAAGCCATCA	GTGACCACTA	TCCAGTGGAG
1561	GTGATGCTGA	AGTGA				

//

Fig. 14(C)

61/113

	9	18	27	36	45	54
5'	ATG GCA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
	M G W S C I I L F L V A T A T G V H					
	63	72	81	90	99	108
	TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
	S Q V Q L V Q S G A E V K K P G A S					
	117	126	135	144	153	162
	GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
	V K V S C K A S G Y T F S A Y W I E					
	171	180	189	198	207	216
	TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
	W V R Q A P G K G L E W V G E I L P					
	225	234	243	252	261	270
	GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
	G S N N S R Y N E K F K G R V T V T					
	279	288	297	306	315	324
	AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
	R D T S T N T A Y M E L S S L R S E					
	333	342	351	360	369	378
	GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
	D T A V Y Y C A R S Y D F A W F A Y					
	387	396	405	414	423	432
	TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
	W G Q G T L V T V S S A S T K G P S					
	441	450	459	468	477	486
	GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
	V F P L A P S S K S T S G G T A A L					
	495	504	513	522	531	540
	GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
	G C L V K D Y F P E P V T V S W N S					
	549	558	567	576	585	594
	GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
	G A L T S G V H T F P A V L Q S S G					

Fig. 14(D)
(Sheet 1 of 3)

62/113

603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
---	---	---	---	---	---
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702
ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA					
---	---	---	---	---	---
T Y I C N V N H K P S N T K V D K K					
711	720	729	738	747	756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC TGT GTG GAG TGC CCA CCG					
---	---	---	---	---	---
V E P K S C D K T H T C C V E C P P					
765	774	783	792	801	810
TGC CCA GCA CCT GAA GGG AGC GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG					
---	---	---	---	---	---
C P A P E G S G G L K I A A F N I Q					
819	828	837	846	855	864
ACA TTT GGG GAG ACC AAG ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG					
---	---	---	---	---	---
T F G E T K M S N A T L V S Y I V Q					
873	882	891	900	909	918
ATC CTG AGC CGC TAC GAC ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG					
---	---	---	---	---	---
I L S R Y D I A L V Q E V R D S H L					
927	936	945	954	963	972
ACT GCC GTG GGG AAG CTG CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT					
---	---	---	---	---	---
T A V G K L L D N L N Q D A P D T Y					
981	990	999	1008	1017	1026
CAC TAC GTG GTC AGT GAG CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG					
---	---	---	---	---	---
H Y V V S E P L G R N S Y K E R Y L					
1035	1044	1053	1062	1071	1080
TTC GTG TAC AGG CCT GAC CAG GTG TCT GCG GTG GAC AGC TAC TAC TAC GAT GAT					
---	---	---	---	---	---
F V Y R P D Q V S A V D S Y Y Y D D					
1089	1098	1107	1116	1125	1134
GGC TGC GAG CCC TGC GGG AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG					
---	---	---	---	---	---
G C E P C G N D T F N R E P A I V R					
1143	1152	1161	1170	1179	1188
TTC TTC TCC CGG TTC ACA GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG					
---	---	---	---	---	---
F F S R F T E V R E F A I V P L H A					
1197	1206	1215	1224	1233	1242

Fig. 14(D)
(Sheet 2 of 3)

63/113

```

GCC CCG GGG GAC GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT
----- -----
A P G D A V A E I D A L Y D V Y L D
1251 1260 1269 1278 1287 1296
GTC CAA GAG AAA TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG
----- -----
V Q E K W G L E D V M L M G D F N A
1305 1314 1323 1332 1341 1350
GGC TGC AGC TAT GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC
----- -----
G C S Y V R P S Q W S S I R L W T S
1359 1368 1377 1386 1395 1404
CCC ACC TTC CAG TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG
----- -----
P T F Q W L I P D S A D T T A T P T
1413 1422 1431 1440 1449 1458
CAC TGT GCC TAT GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT
----- -----
H C A Y D R I V V A G M L L R G A V
1467 1476 1485 1494 1503 1512
GTT CCC GAC TCG GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC
----- -----
V P D S A L P F N F Q A A Y G L S D
1521 1530 1539 1548 1557 1566
CAA CTG GCC CAA GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3
----- -----
Q L A Q A I S D H Y P V E V M L K *

```

Fig. 14(D)
(Sheet 3 of 3)

64/113

pAS103

LOCUS PAS103.DNA 1560 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I (pAS103)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic
 fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 344 a 468 c 436 g 312 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCAGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCACTGAG TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTCTAGATAACAT
241 GAGAACGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC
421 AAGGGCCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTGTC GTGGAACCTCA
541 GGCGCCCTGA CCAGCGGCCTG GCACACCTTC CGGGCTGTCC TACAGTCCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGGCTCTC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAACAT ACACATTGCTG TGTGGAGTGC CCACCGTGC CACCACTGA AGGCAGGGCTG
781 AAGATCGCAG CCTTCAACAT CCAGACATTG GGGGAGACCA AGATGTCCAA TGCCACCCCTC
841 GTCAGCTACA TTGTGCGAGAT CCTGAGCCCG TACGACATCG CCCTGGTCCA GGAGGTTCAGA
901 GACAGCCACC TGACTGCCGT GGGGAAGCTG CTGGACAAACC TCAATCAGGA CGCACCCAGAC
961 ACCTATCACT ACGTGGTCAG TGAGCCACTG GGACGGAACCA GCTATAAGGA GCGCTACCTG
1021 TTGCTGTACA GGCCTGACCA GGTGTCTGCG GTGGACAGCT ACTACTACGA TGATGGCTGC
1081 GAGCCCTGCG GGAACGACAC CTTCAACCGA GAGCCAGCCA TTGTCAGGTT CTTCTCCCGG
1141 TTCACAGAGG TCAGGGAGTT TGCCATTGTT CCCCTGCATG CGGCCCGGG GGACGCAGTA
1201 GCCGAGATCG ACGCTCTCA TGACGTCTAC CTGGATGTCC AAGAGAAATG GGGCTTGGAG
1261 GACGTCACTG TGATGGGCAGA CTTCAATGCG GGCTGCAGCT ATGTTGAGACC CTCCCAGTGG
1321 TCATCCATCC GCCTGTGGAC AAGCCCCACC TTCCAGTGGC TGATCCCCGA CAGCGCTGAC
1381 ACCACAGCTA CACCCACGCA CTGTGCCTAT GACAGGATCG TGGTTGCAGG GATGCTGCTC
1441 CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT CCCTTAACT TCCAGGCTGC CTATGGCCTG
1501 AGTGACCAAC TGGCCCAAGC CATCAGTGCAC CACTATCCAG TGGAGGTGAT GCTGAAGTGA
  //
```

Fig. 15(A)

65/113

LOCUS FDDNASE103 1560 BP SS-DNA SYN 25-AUG-2000
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 FEATURES Location/Qualifiers
 frag join(1..>720,<793..1560)
 /note="1 to 1560 of PAS103.dna [Split]"
 frag 721..792
 /note="1 to 72 of 103/107linker"
 frag join(721..>771,<772..792)
 /note="1 to 78 of 102linker [Split]"
 BASE COUNT 344 A 467 C 436 G 313 T 0 OTHER
 ORIGIN -
 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
 121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
 181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACACTGGAA GTAATAATTC TAGATACAAT
 241 GAGAAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
 301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
 361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
 421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
 481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTC GTGGAACCTCA
 541 GGCGCCCTGA CCAGGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC
 601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
 661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
 721 GACAAAATC ACACATGCTG TGTGAGTGT CCACCGTGTG CAGCACCGA GGGCGGGCTG
 781 AAGATCGCAG CCTTCACAT CCAGACATT GGGGAGACCA AGATGTCCTA TGCCACCCCTC
 841 GTCAGCTACA TTGTGAGAT CCTGAGCCGC TACGACATCG CCCTGGTCCA GGAGGTCAAGA
 901 GACAGCCACC TGACTGCCGT GGGGAAGCTG CTGGACAACC TCAATCAGGA CGCACCAAGAC
 961 ACCTATCACT ACGTGGTCAG TGAGCCACTG GGACGGAACA GCTATAAGGA GCGCTACCTG
 1021 TTCGTGTACA GGCCTGACCA GGTGTCTGCG GTGGACAGCT ACTACTACGA TGATGGCTGC
 1081 GAGCCCTGCG GGAACGACAC CTTCAACCGA GAGCCAGCCA TTGTCAGGTT CTCTCCCGG
 1141 TTCACAGAGG TCAGGGAGTT TGCCATTGTT CCCCTGCATG CGGCCCGGG GGACGCAGTA
 1201 GCCGAGATCG ACGCTCTCTA TGACGTCTAC CTGGATGTCC AAGAGAAATG GGGCTTGGAG
 1261 GACGTATGT TGATGGCGA CTTCAATGCG GGCTGCAGCT ATGTGAGACC CTCCCACTGG
 1321 TCATCCATCC GCCTGTGGAC AAGCCCCACC TTCCAGTGGC TGATCCCCGA CAGCGCTGAC
 1381 ACCACAGCTA CACCCACGCA CTGTGCCTAT GACAGGATCG TGGTTGCAGG GATGCTGCTC
 1441 CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT CCCTTTAAC TCCAGGCTGC CTATGGCCTG
 1501 AGTGACCAAC TGGCCCAAGC CATCAGTGAC CACTATCCAG TGGAGGTGAT GCTGAAGTGA

//

Fig. 15(B)

66/113

LOCUS FDDNASE103 1569 BP SS-DNA SYN 29-AUG-2000
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 FEATURES Location/Qualifiers
 frag 10..1569
 /note="1 to 1560 of FdDNase103correct"
 frag join(10..>729,<802..1569)
 /note="1 to 1560 of PAS103.dna [Split]"
 frag 730..801
 /note="1 to 72 of 103/107linker"
 frag join(730..>780,<781..801)
 /note="1 to 78 of 102linker [Split]"
 BASE COUNT 345 A 473 C 438 G 313 T 0 OTHER
 ORIGIN -
 1 GCCGCCACCA TGGGATGGAG CTGTATCATC CTCTTCTTGG TAGAACAGC TACAGGTGTC
 61 CACTCCAGG TGCAGCTGGT GCAGTCTGGG GCAGAGGTGA AAAAGCCTGG GGCCTCAGTG
 121 AAGGTGTCCCT GCAAGGCTTC TGGCTACACC TTCAGTGCCT ACTGGATAGA GTGGGTGCGC
 181 CAGGCTCCAG GAAAGGGCCT CGAGTGGGTC GGAGAGATT TACCTGGAAG TAATAATTCT
 241 AGATAACAATG AGAAGTTCAA GGGCCGAGTG ACAGTCACTA GAGACACATC CACAAACACA
 301 GCCTACATGG AGCTCAGCAG CCTGAGGTCT GAGGACACAG CCGTCTATT A CTGTGCAAGA
 361 TCCTACGACT TTGCCTGGTT TGCTTACTGG GGCCAAGGGA CTCTGGTCAC AGTCTCCTCA
 421 GCCTCCACCA AGGGCCCATC GGTCTTCCCC CTGGCACCC C CTCCAAGAG CACCTCTGGG
 481 GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTTCC CCGAACCGGT GACGGTGTGCG
 541 TGGAACTCAG GCGCCCTGAC CAGCGGCGTG CACACCTTCC CCGCTGTCCT ACAGTCCTCA
 601 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTGGG CACCCAGACC
 661 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGTTGAGCCC
 721 AAATCTTGTA ACAAAACTCA CACATGCTGT GTGGAGTGT C ACCGTGTCC AGCACCAGAG
 781 GGCAGGCTGA AGATCGCAGC CTTCAACATC CAGACATTG GGGAGACCAA GATGTCCAAT
 841 GCCACCCCTCG TCAGCTACAT TGTGCAGATC CTGAGCCGCT ACGACATCGC CCTGGTCCAG
 901 GAGGTCAAGAG ACAGCCACCT GACTGCCGTG GGGAAAGCTGC TGGACAACCT CAATCAGGAC
 961 GCACCAAGACA CCTATCACTA CGTGGTCAGT GAGCCACTGG GACGGAACAG CTATAAGGAG
 1021 CGCTACCTGT TCGTGTACAG GCCTGACCAAG GTGTCTGCGG TGGACAGCTA CTACTACGAT
 1081 GATGGCTCGG AGCCCTGCAG GAACGACACC TTCAACCGAG AGCCAGCCAT TGTCAAGGTT
 1141 TTCTCCCGGT TCACAGAGGT CAGGGAGTTT GCCATTGTT CCCTGCATGC GGGCCCCGGGG
 1201 GACGCAGTAG CCGAGATCGA CGCTCTCTAT GACGGTCTACC TGGATGTCCA AGAGAAATGG
 1261 GGCTTGGAGG ACGTCATGTT GATGGGCGAC TTCAATGCGG GCTGCAGCTA TGTGAGACCC
 1321 TCCCAGTGGT CATCCATCCG CCTGTGGACA AGCCCCCACCT TCCAGTGGCT GATCCCCGAC
 1381 AGCGCTGACA CCACAGCTAC ACCCACGCAC TGTGCCTATG ACAGGATCGT GGTTGCAGGG
 1441 ATGCTGCTCC GAGGGGCCGT TGTCCCCGAC TCGGCTCTTC CCTTTAACTT CCAGGCTGCC
 1501 TATGGCCTGA GTGACCAACT GGCCCAAGCC ATCAGTGACC ACTATCCAGT GGAGGTGATG
 1561 CTGAAGTGA

//

Fig. 15(C)

67/113

9	18	27	36	45	54
ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
M	G	W	S	C	I
I	I	L	F	L	V
A	T	A	T	A	T
G	V	H			
63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
S	Q	V	Q	L	V
Q	S	G	A	E	V
K	K	P	G	A	S
117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
V	K	V	S	C	K
A	S	G	Y	T	F
S	A	Y	W	I	E
171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
W	V	R	Q	A	P
G	K	G	L	E	W
E	W	V	G	E	I
L	P				
225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
G	S	N	N	S	R
S	Y	N	E	K	F
T	K	F	K	G	R
V	T	Y	W	V	T
T	Y	W	T	V	T
279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
R	D	T	S	T	N
D	T	A	Y	M	E
T	A	Y	L	S	S
A	Y	W	R	S	E
333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
D	T	A	V	Y	Y
T	A	R	S	Y	D
A	V	S	Y	F	A
V	Y	W	F	A	Y
387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
W	G	Q	G	T	L
G	T	V	T	V	S
Q	G	T	V	S	S
G	T	V	S	A	S
T	V	S	A	T	K
V	S	A	S	K	G
S	A	T	K	G	P
A	S	K	G	P	S
441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
V	F	P	L	A	P
F	P	S	S	K	S
P	S	S	K	S	T
L	A	P	S	S	S
A	P	S	K	S	G
P	S	S	K	S	G
495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
G	C	L	V	K	D
C	L	V	K	D	Y
L	V	K	D	Y	F
V	K	D	Y	F	P
K	D	Y	F	P	E
D	Y	F	P	E	P
Y	F	P	E	P	V
F	P	E	P	V	T
P	E	P	V	T	V
E	P	V	T	V	S
P	V	T	V	S	W
V	T	V	S	W	N
T	V	S	W	N	S
549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
G	A	L	T	S	G
A	L	T	S	G	V
L	T	S	G	V	H
T	S	G	V	H	T
S	G	V	H	T	F
G	V	H	T	F	P
V	H	T	F	P	A
H	T	F	P	A	V
T	F	P	A	V	L
F	P	A	V	L	Q
P	A	V	L	Q	S
A	V	L	Q	S	S
V	L	Q	S	S	G

Fig. 15(D)
(Sheet 1 of 3)

68/113

603	612	621	630	639	648
CTC	TAC	TCC	CTC	AGC	AGC
GTG	GTG	ACC	GTG	CCC	TCC
CCC	AGC	AGC	TTG	GGC	ACC
- - -	- - -	- - -	- - -	- - -	- - -
L	Y	S	L	S	Q
.	.	.	V	V	
T	V	T	V	P	
.	.	.	S	S	
S	S	S	S	S	
L	G	T	L	G	
.	
657	666	675	684	693	702
ACC	TAC	ATC	TGC	AAC	GTG
AAC	GTG	AAT	CAC	AAG	CCC
CCC	AGC	AGC	AAC	ACC	AAG
- - -	- - -	- - -	- - -	- - -	- - -
T	Y	I	C	N	V
.	.	.	V	N	H
K	K	P	S	N	T
.	.	.	.	T	K
H	K	P	S	T	V
.	.	.	.	K	D
.	.	.	.	K	K
711	720	729	738	747	756
GTT	GAG	CCC	AAA	TCT	TGT
AAA	TCT	TGT	ACT	CAC	ACA
ACT	CAC	ACA	TGC	TGT	GTG
TGC	GAG	CCC	AAA	TCT	GAG
GAG	CCC	AAA	TCT	TGT	TGC
CCC	AAA	TCT	TGT	GAG	CCA
- - -	- - -	- - -	- - -	- - -	- - -
V	E	P	K	S	C
.	.	.	V	N	H
D	K	T	H	T	T
.	.	.	C	C	C
K	T	H	T	V	E
.	.	.	C	C	P
H	T	T	V	E	P
.	P
765	774	783	792	801	810
TGC	CCA	GCA	CCT	GAA	GGC
GCA	CCT	GAA	GGC	GGG	CTG
CTG	AAG	ATC	GAA	GGG	AAG
AAG	ATC	GCA	GGC	CTG	ATC
ATC	GCA	GCA	GGC	AAG	CAG
GCA	GCA	GCA	GGC	ATC	ACA
- - -	- - -	- - -	- - -	- - -	- - -
C	P	A	P	E	G
.	.	.	V	N	G
D	K	I	K	T	L
.	.	.	A	A	K
K	I	A	A	F	G
.	.	.	F	N	C
H	T	T	N	I	P
.	.	.	V	Q	P
T	F	T	I	T	F
.	F
819	828	837	846	855	864
GGG	GAG	ACC	AAG	ATG	TCC
GAG	ACC	AAG	ATG	TCC	AAT
ACC	AAG	ATG	TCC	AAT	GCC
AAT	GCC	ACC	CTC	GTC	AGC
GCC	AGC	AGC	GTC	AGC	TAC
AGC	TAC	GCA	GCA	GTC	ATT
TAC	GCA	GCA	GTC	AGC	GTG
GCA	GCA	GCA	GTC	TAC	CAG
GCA	GCA	GCA	GTC	ATT	ATC
- - -	- - -	- - -	- - -	- - -	- - -
G	E	T	K	M	S
.	.	.	N	A	N
T	L	V	A	T	L
.	.	.	N	L	N
L	V	Q	E	V	L
.	.	.	R	R	N
V	Y	D	I	A	S
.	.	.	L	L	N
S	R	Y	D	I	A
.	.	.	V	Q	L
927	936	945	954	963	972
GTG	GGG	AAG	CTG	CTG	GAC
GGG	AAG	CTG	CTG	GAC	AAC
AAG	CTG	CTG	GAC	AAC	CTC
CTG	GAC	AAC	CTC	AAT	CAG
GAC	AAC	CTC	AAT	CAG	GAG
AAC	CTC	AAT	CAG	GAG	GTC
CTC	AAT	CAG	GAG	GTC	AGC
AAT	CAG	GAG	GTC	AGC	AGC
CAG	GAG	GTC	AGC	AGC	TAT
GAG	GTC	AGC	AGC	AGC	CAC
GTC	AGC	AGC	AGC	AGC	CTG
AGC	AGC	AGC	AGC	AGC	ACT
AGC	AGC	AGC	AGC	AGC	TAC
AGC	AGC	AGC	AGC	AGC	CTG
AGC	AGC	AGC	AGC	AGC	TTC
AGC	AGC	AGC	AGC	AGC	GTG
- - -	- - -	- - -	- - -	- - -	- - -
V	G	K	L	L	D
.	.	.	N	N	N
D	N	L	N	Q	D
.	.	.	L	Q	A
N	N	N	S	D	P
L	L	L	S	S	D
V	Q	Q	Y	Y	T
.	.	.	K	Y	Y
S	E	E	R	R	Y
.	.	.	N	N	L
E	P	P	R	R	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	V
.	.	.	R	R	R
981	990	999	1008	1017	1026
GTG	GTC	AGT	GAG	CCA	CTG
GTC	AGT	GAG	CCA	CTG	GGA
AGT	GAG	CCA	GGA	GGA	CGG
GAG	CCA	CTG	GGA	GGA	AAC
CCA	CTG	GGA	GGA	GGA	AGC
CTG	GGA	GGA	GGA	GGA	TAT
GGA	GGA	GGA	GGA	GGA	AAG
GGA	GGA	GGA	GGA	GGA	TAG
GGA	GGA	GGA	GGA	GGA	TTC
GGA	GGA	GGA	GGA	GGA	GTG
- - -	- - -	- - -	- - -	- - -	- - -
V	V	S	E	P	L
.	.	.	L	G	G
D	N	E	R	R	G
.	.	.	N	N	C
N	N	S	S	P	V
L	L	S	S	D	F
V	Q	Y	Y	Y	V
.	.	K	E	Y	V
S	E	E	R	R	F
.	.	.	N	N	V
E	P	P	R	R	V
.	.	.	N	N	R
S	V	V	Y	Y	F
.	.	.	K	K	F
V	V	V	E	E	F
.	.	.	R	R	V
S	V	V	Y	Y	V
.	.	.	K	K	R
V	V	V	E	E	F
.	.	.	N	N	F
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E	E	F
.	.	.	N	N	V
S	V	V	Y	Y	F
.	.	.	K	K	V
V	V	V	E		

69/113

GGG GAC GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
G D A V A E I D A L Y D V Y L D V Q	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1251 1260 1269 1278 1287 1296	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
GAG AAA TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
E K W G L E D V M L M G D F N A G C	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1305 1314 1323 1332 1341 1350	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
AGC TAT GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
S Y V R P S Q W S S I R L W T S P T	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1359 1368 1377 1386 1395 1404	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
TTC CAG TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
F Q W L I P D S A D T T A T P T H C	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1413 1422 1431 1440 1449 1458	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
GCC TAT GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CCC	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
A Y D R I V V A G M L L R G A V V P	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1467 1476 1485 1494 1503 1512	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
GAC TCG GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
D S A L P F N F Q A A Y G L S D Q L	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1521 1530 1539 1548 1557	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
GCC CAA GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
A Q A I S D H Y P V E V M L K *	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Fig. 15(D)
(Sheet 3 of 3)

70/113**pAS104**

LOCUS PAS104.DNA 1560 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I (pAS104)
 Position 924 G to A by ggg to gag
 Linker GR instead of GG (position 777)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic
 fibrosis sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 346 a 468 c 434 g 312 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTAUTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCCTCCACC
421 AAGGGCCCCT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACATCA
541 GGCGCCCTGA CCAGCGGCCTG GCACACCTTC CCGGCTGTCC TACAGTCTCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATCTC ACACATGCTG TGTGGAGTGC CCACCGTGC CAGCACCTGA AGGCAGGCTG
781 AAGATCGCAG CCTTCAACAT CCAGACATTG GGGGAGACCA AGATGTCCAA TGCCACCCCTC
841 GTCAGCTACA TTGTGCGAGT CCTGAGCCGC TACGACATCG CCCTGGTCCA GGAGGTTCAGA
901 GACAGCCACC TGACTGCCGT GGAGAAGCTG CTGGACAACC TCAATCAGGA CGCACCCAGAC
961 ACCTATCACT ACGTGGTCAG TGAGCCACTG GGACGGAACA GCTATAAGGA GCGCTACCTG
1021 TTCGTGTACA GGCCTGACCA GGTGTCTGCG GTGGACAGCT ACTACTACGA TGATGGCTGC
1081 GAGCCCTGCG GGAACGACAC CTTCAACCGA GAGCCAGCCA TTGTCAGGTT CTTCTCCCGG
1141 TTACACAGAGG TCAGGGAGTT TGCCATTGTT CCCCTGCATG CGGCCCCGGG GGACGCAGTA
1201 GCCGAGATCG ACGCTCTCTA TGACGTCTAC CTGGATGTCC AAGAGAAATG GGGCTTGGAG
1261 GACGTCTATGT TGATGGGCAGA CTTCAATGCG GGCTGCAGCT ATGTGAGACC CTCCCAGTGG
1321 TCATCCATCC GCCTGTGGAC AAGCCCCACC TTCCAGTGGC TGATCCCCGA CAGCGCTGAC
1381 ACCACAGCTA CACCCACGCA CTGTGCCTAT GACAGGATCG TGGTTGCAGG GATGCTGCTC
1441 CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT CCCTTTAAC TCCAGGCTGC CTATGGCCTG
1501 AGTGACCAAC TGGCCAAGC CATCAGTGAC CACTATCCAG TGGAGGTGAT GCTGAAGTGA
  //
```

Fig. 16(A)

71/113

LOCUS	FDDNASE104	1560 BP SS-DNA	SYN	25-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	join(1..>720,<793..1560) /note="1 to 1560 of PAS104.dna [Split]"			
frag	721..792 /note="1 to 72 of 104linker"			
frag	join(721..>774,<776..792) /note="1 to 72 of 103linker [Split]"			
frag	join(721..>771,<772..>774,<776..792) /note="1 to 78 of 102linker [Split]"			
BASE COUNT	346 A	467 C	434 G	313 T
ORIGIN	0 OTHER			
1	ATGGGATGGA	GCTGTATCAT	CCTCTTCTTG	GTAGCAACAG
61	GTGCAGCTGG	TGCAGTCTGG	GGCAGAGGTG	AAAAAGCCTG
121	TGCAAGGCTT	CTGGCTACAC	CTTCAGTGCC	TACTGGATAG
181	GGAAAGGGCC	TCGAGTGGGT	CGGAGAGATT	TTACCTGGAA
241	GAGAACGTTCA	AGGGCCGAGT	GACAGTCACT	AGAGACACAT
301	GAGCTCAGCA	GCCTGAGGTC	TGAGGACACA	GCCGTCTATT
361	TTGCCTGGT	TTGCTTACTG	GGGCCAAGGG	ACTCTGGTCA
421	AAGGGCCCCAT	CGGTCTTCCC	CCTGGCACCC	TCCTCCAAGA
481	GCCCTGGGCT	GCCTGGTCAA	GGACTACTTC	CCCCAACCGG
541	GGCGCCCTGA	CCAGCGGCGT	GCACACCTTC	CCGGCTGTCC
601	TCCCTCAGCA	CGCTGGTGAC	CGTGCCCTCC	AGCAGCTTGG
661	AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAGA
721	GACAAAACTC	ACACATGCTG	TGTCGAGTGT	CCACCGTGTG
781	AAGATCGCAG	CCTTCAACAT	CCAGACATT	GGGGAGACCA
841	GTCAGCTACA	TTGTGCAGAT	CCTGAGCCGC	TACGACATCG
901	GACAGCCACC	TGACTGCCGT	GGAGAAGCTG	CTGGACAACC
961	ACCTATCACT	ACGTGGTCAG	TGAGCCACTG	GGACGGAACA
1021	TTCGTGTACA	GGCCTGACCA	GGTGTCTGCG	GTGGACAGCT
1081	GAGCCCTGCG	GGAACGACAC	CTTCAACCAGA	GAGCCAGCCA
1141	TTCACAGAGG	TCAGGGAGTT	TGCCATTGTT	CCCCTGCATG
1201	GCCGAGATCG	ACGCTCTCTA	TGACGTCTAC	CTGGATGTCC
1261	GACGTCAATGT	TGATGGGCAGA	CTTCAATGCG	GGCTGCAGCT
1321	TCATCCATCC	GCCTGTGGAC	AAGCCCCACC	TTCCAGTGGC
1381	ACCACAGCTA	CACCCACGCA	CTGTGCCTAT	GACAGGATCG
1441	CGAGGGGCCG	TTGTTCCCGA	CTCGGCTCTT	CCCTTTAACT
1501	AGTGACCAAC	TGGCCAAGC	CATCAGTGAC	CACTATCCAG

//

Fig. 16(B)

72/113

	9	18	27	36	45	54	
5'	ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC						
- - - - -	M G W S C I I L F L V A T A T G V H						
		63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA							
- - - - -	S Q V Q L V Q S G A E V K K P G A S						
		117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG							
- - - - -	V K V S C K A S G Y T F S A Y W I E						
		171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT							
- - - - -	W V R Q A P G K G L E W V G E I L P						
		225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT							
- - - - -	G S N N S R Y N E K F K G R V T V T						
		279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG							
- - - - -	R D T S T N T A Y M E L S S L R S E						
		333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC							
- - - - -	D T A V Y Y C A R S Y D F A W F A Y						
		387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG							
- - - - -	W G Q G T L V T V S S A S T K G P S						
		441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG							
- - - - -	V F P L A P S S K S T S G G T A A A L						
		495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA							
- - - - -	G C L V K D Y F P E P V T V S W N S						
		549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA							
- - - - -	G A L T S G V H T F P A V L Q S S G						

Fig. 16(C)
(Sheet 1 of 3)

73/113

603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
---	---	---	---	---	---
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702
ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA					
---	---	---	---	---	---
T Y I C N V N H K P S N T K V D K K					
711	720	729	738	747	756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC TGT GTG GAG TGC CCA CCG					
---	---	---	---	---	---
V E P K S C D K T H T C C V E C P P					
765	774	783	792	801	810
TGC CCA GCA CCT GAA GGCG AGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT					
---	---	---	---	---	---
C P A P E G R L K I A A F N I Q T F					
819	828	837	846	855	864
GGG GAG ACC AAG ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG					
---	---	---	---	---	---
G E T K M S N A T L V S Y I V Q I L					
873	882	891	900	909	918
AGC CGC TAC GAC ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC					
---	---	---	---	---	---
S R Y D I A L V Q E V R D S H L T A					
927	936	945	954	963	972
GTG GAG AAG CTG CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC					
---	---	---	---	---	---
V E K L L D N L N Q D A P D T Y H Y					
981	990	999	1008	1017	1026
GTG GTC AGT GAG CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG					
---	---	---	---	---	---
V V S E P L G R N S Y K E R Y L F V					
1035	1044	1053	1062	1071	1080
TAC AGG CCT GAC CAG GTG TCT GCG GTG GAC AGC TAC TAC TAC GAT GAT GGC TGC					
---	---	---	---	---	---
Y R P D Q V S A V D S Y Y Y D D G C					
1089	1098	1107	1116	1125	1134
GAG CCC TGC GGG AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC					
---	---	---	---	---	---
E P C G N D T F N R E P A I V R F F					
1143	1152	1161	1170	1179	1188
TCC CGG TTC ACA GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG					
---	---	---	---	---	---
S R F T E V R E F A I V P L H A A P					
1197	1206	1215	1224	1233	1242

Fig. 16(C)
(Sheet 2 of 3)

74/113

GGG GAC GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA

 G D A V A E I D A L Y D V Y L D V Q
 1251 1260 1269 1278 1287 1296
 GAG AAA TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC

 E K W G L E D V M L M G D F N A G C
 .
 1305 1314 1323 1332 1341 1350
 AGC TAT GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC

 S Y V R P S Q W S S I R L W T S P T
 1359 1368 1377 1386 1395 1404
 TTC CAG TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT

 F Q W L I P D S A D T T A T P T H C
 1413 1422 1431 1440 1449 1458
 GCC TAT GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CGC

 A Y D R I V V A G M L L R G A V V P.
 1467 1476 1485 1494 1503 1512
 GAC TCG GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG

 D S A L P F N F Q A A Y G L S D Q L
 1521 1530 . 1539 1548 1557
 GCC CAA GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG TGA 3'

 A Q A I S D H Y P V E V M L K *

Fig. 16(C)
(Sheet 3 of 3)

75/113

pAS105

LOCUS PAS105.DNA 1578 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I with SV40
 NLS (pAS105)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f
 MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak, S., Capon, D.J., Hellmiss, R., Marsters, S.A. and Baker, C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic
 fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 353 a 473 c 442 g 310 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACACTGGAA GTAATAATT TAGATACAAT
241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC
421 AAGGGCCCCT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
721 GACAAAATC ACACATGCC ACCGTGCCA GCACCTGAAG CGGGGCTGAA GATCGCAGCC
781 TTCAACATCC AGACATTGG GGAGACCAAG ATGTCCAATG CCACCCCTCGT CAGCTACATT
841 GTGCAGATCC TGAGCCGCTA CGACATGCC CTGGTCCAGG AGGTCAGAGA CAGCCACCTG
901 ACTGCCGTGG GGAAGCTGCT GGACAACCTC AATCAGGACG CACCAGACAC CTATCACTAC
961 GTGGTCAGTG AGCCACTGGG ACGGAACAGC TATAAGGAGC GCTACCTGTT CGTGTACAGG
1021 CCTGACCAGG TGTCTCGGGT GGACAGCTAC TACTACGATG ATGGCTGCGA GCCCTGCGGG
1081 AACGACACCT TCAACCGAGA GCCAGCCATT GTCAGGTTCT TCTCCGGTT CACAGAGGTC
1141 AGGGAGTTG CCATTGTTCC CCTGCATGCG GCCCCGGGG ACGCAGTAGC CGAGATCGAC
1201 GCTCTCTATG ACGTCTACCT GGATGTCCAA GAGAAATGGG GCTTGGAGGA CGTCATGTTG
1261 ATGGGCGACT TCAATGCGGG CTGCAGCTAT GTGAGACCT CCCAGTGGTC ATCCATCCGC
1321 CTGTGGACAA GCCCCACCTT CCAGTGGCTG ATCCCCGACA GCGCTGACAC CACAGCTACA
1381 CCCACGCACT GTGCCTATGA CAGGATCGTG GTTGCAGGGA TGCTGCTCCG AGGGGCCGTT
1441 GTTCCCGACT CGGCTCTTCC CTTAACCTC CAGGCTGCCT ATGGCCTGAG TGACCAACTG
1501 GCCCAAGCCA TCAGTGACCA CTATCCAGTG GAGGTGATGC TGAAGGGGGG CGGACCCAAA
1561 AAGAAGCGCA AGGTTGA
  
```

//

 NLS
Fig. 17(A)

76/113

LOCUS	FDDNASE105	1578 BP SS-DNA	SYN	25-AUG-2000		
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	join(1..>720,<781..1578) /note="1 to 1578 of PAS105.dna [Split]"					
frag	721..780 /note="1 to 60 of 101/105linker"					
frag	join(721..>735,<736..>759,<760..>780) /note="1 to 80 of 102linker [Split]"					
BASE COUNT	353 A	471 C	443 G	311 T		
ORIGIN	0 OTHER					
1	ATGGGATGGA	GCTGTATCAT	CCTCTTCTTG	GTAGCAACAG	CTACAGGTGT	CCACTCCCAG
61	GTGCAGCTGG	TGCAGTCTGG	GGCAGAGGGT	AAAAAGCCTG	GGGCCTCAGT	GAAGGTGTCC
121	TGCAAGGCTT	CTGGCTACAC	CTTCAGTGC	TACTGGATAG	AGTGGGTGCG	CCAGGCTCCA
181	GGAAAGGGCC	TCGAGTGGGT	CGGAGAGATT	TTACCTGGAA	GTAATAATTC	TAGATACAAT
241	GAGAAGTTCA	AGGGCCGAGT	GACAGTCACT	AGAGACACAT	CCACAAACAC	AGCTTACATG
301	GAGCTCAGCA	GCCTGAGGTC	TGAGGACACA	GCCGTCTATT	ACTGTGCAAG	ATCTTACGAC
361	TTTGCCTGGT	TTGCTTACTG	GGGCCAAGGG	ACTCTGGTCA	CAGTCTCCTC	AGCCTCCACC
421	AAGGGCCCAT	CGGTCTTCCC	CCTGGCACCC	TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG
481	GCCCTGGGCT	GCCTGGTCAA	GGACTACTTC	CCCGAACCGG	TGACGGTGT	GTGGAACCTA
541	GGGCCCTGA	CCAGCGCGT	GCACACCTTC	CCGGCTGTCC	TACAGTCTTC	AGGACTCTAC
601	TCCCTCAGCA	CGGTGGTGAC	CGTGCCTC	AGCAGCTTGG	GCACCCAGAC	CTACATCTGC
661	AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAGA	AAGTTGAGCC	CAAATCTTGT
721	GACAAAATC	ACACATGTCC	ACCGTGTCCA	GCACCCAGAGG	GCAGGGCTGAA	GATCGCAGCC
781	TTCAACATCC	AGACATTGG	GGAGACCAAG	ATGTCCAATG	CCACCCCTCGT	CAGCTACATT
841	GTGCAGATCC	TGAGCCGCTA	CGACATCGCC	CTGGTCCAGG	AGGTCAAGAGA	CAGCCACCTG
901	ACTGCCGTGG	GGAAAGCTGCT	GGACAACCTC	AATCAGGACG	CACCAGACAC	CTATCACTAC
961	GTGGTCAGTG	AGCCACTGGG	ACGGAACAGC	TATAAGGAGC	GCTACCTGTT	CGTGTACAGG
1021	CCTGACCAGG	TGTCTCGGGT	GGACAGCTAC	TACTACGATG	ATGGCTGCGA	GCCCTGCGGG
1081	AACGACACCT	TCAACCGAGA	GCCAGCCATT	GTCAGGTTCT	TCTCCCGGTT	CACAGAGGTC
1141	AGGGAGTTTG	CCATTGTTCC	CCTGCATGCG	GCCCCGGGGG	ACGCAGTAGC	CGAGATCGAC
1201	GCTCTCTATG	ACGTCTACCT	GGATGTCCAA	GAGAAATGGG	GCTTGGAGGA	CGTCATGTTG
1261	ATGGGCGACT	TCAATGCGGG	CTGCAGCTAT	GTGAGACCC	CCCAGTGGTC	ATCCATCCGC
1321	CTGTGGACAA	GCCCCACCTT	CCAGTGGCTG	ATCCCCGACA	GCGCTGACAC	CACAGCTACA
1381	CCCACGCACT	GTGCCTATGA	CAGGATCGTG	GTTGCAGGGGA	TGCTGCTCCG	AGGGGCCGTT
1441	GTTCCCGACT	CGGCTCTTCC	CTTAACTTC	CAGGCTGCCT	ATGGCCTGAG	TGACCAACTG
1501	GCCCAAGCCA	TCAGTGACCA	CTATCCAGTG	GAGGTGATGC	TGAAGGGGGG	CGGACCCAAA
1561	AAGAACGCGCA	AGGTTTGA				

//

Fig. 17(B)

77/113

LOCUS	FDDNASE105	1587 BP SS-DNA	SYN	29-AUG-2000		
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	10..1587					
	/note="1 to 1578 of FdDNase105correct"					
frag	join(10..>729,<790..1587)					
	/note="1 to 1578 of PAS105.dna [Split]"					
frag	730..789					
	/note="1 to 60 of 101/105linker"					
frag	join(730..>744,<745..>768,<769..>789)					
	/note="1 to 80 of 102linker [Split]"					
BASE COUNT	354 A	477 C	445 G	311 T		
ORIGIN	-			0 OTHER		
	1 GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGCAACAGC	TACAGGTGTC
	61 CACTCCCAGG	TGCAGCTGGT	GCAGTCTGGG	GCAGAGGTGA	AAAAGCCTGG	GGCCTCAGTG
	121 AAGGTGTCCT	GCAAGGCTTC	TGGCTACACC	TTCAGTGCCT	ACTGGATAGA	GTGGGTGCGC
	181 CAGGCTCCAG	GAAAGGGCCT	CGAGTGGTC	GGAGAGATT	TACCTGGAAG	TAATAATTCT
	241 AGATACAATG	AGAAGTTCAA	GGGCCGAGTG	ACAGTCACTA	GAGACACATC	CACAAACACA
	301 GCCTACATGG	AGCTCAGCAG	CCTGAGGTCT	GAGGACACAG	CCGTCTATT	CTGTGCAAGA
	361 TCCTACGACT	TTGCCTGGTT	TGCTTACTGG	GGCCAAGGGA	CTCTGGTCAC	AGTCTCCTCA
	421 GCCTCCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCC	CCTCCAAGAG	CACCTCTGGG
	481 GCCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	CCGAACCGGT	GACGGTGTG
	541 TGGAACTCAG	GCGCCTGAC	CAGCGGGCTG	CACACCTTCC	CGGCTGTCCT	ACAGTCTC
	601 GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	GCAGCTGGG	CACCCAGACC
	661 TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
	721 AAATCTGTG	ACAAAACCTCA	CACATGTCCA	CCGTGTCCAG	CACCAGAGGG	CGGGCTGAAG
	781 ATCGCAGCCT	TCAACATCCA	GACATTTGGG	GAGACCAAGA	TGTCCAATGC	CACCCCTCGTC
	841 AGCTACATTG	TGCAGATCCT	GAGCCGCTAC	GACATCGCCC	TGGTCCAGGA	GGTCAGAGAC
	901 AGCCACCTGA	CTGCCGTGGG	GAAGCTGCTG	GACAACCTCA	ATCAGGACGC	ACCAGACACC
	961 TATCACTACG	TGGTCAGTGA	GCCACTGGGA	CGGAACAGCT	ATAAGGAGCG	CTACCTGTT
	1021 GTGTACAGGC	CTGACCAGGT	GTCTGCGGTG	GACAGCTACT	ACTACGATGA	TGGCTGCGAG
	1081 CCCTGCGGGGA	ACGACACCTT	CAACCGAGAG	CCAGCCATTG	TCAGGTTCTT	CTCCCGGTT
	1141 ACAGAGGTCA	GGGAGTTGC	CATTGTTCCC	CTGCATGCGG	CCCCGGGGGA	CGCAGTAGCC
	1201 GAGATCGACG	CTCTCTATGA	CGTCTACCTG	GATGTCCAAG	AGAAATGGGG	CTTGGAGGAC
	1261 GTCATGTTGA	TGGGCGACTT	CAATGCGGGC	TGCAGCTATG	TGAGACCC	CCAGTGGTCA
	1321 TCCATCCGCC	TGTGGACAAG	CCCCACCTTC	CAGTGGCTGA	TCCCCGACAG	CGCTGACACC
	1381 ACAGCTACAC	CCACGCACTG	TGCCTATGAC	AGGATCGTGG	TTGCAGGGAT	GCTGCTCCGA
	1441 GGGGCCGTTG	TTCCCGACTC	GGCTCTTCCC	TTAACCTCC	AGGCTGCC	TGGCCTGAGT
	1501 GACCAACTGG	CCCAAGCCAT	CAGTGACCA	TATCCAGTGG	AGGTGATGCT	GAAGGGGGGC
	1561 GGACCCAAAA	AGAAGCGCAA	GGTTTGA			

//

Fig. 17(C)

78/113

	9	18	27	36	45	54												
5'	ATG	GGA	TGG	AGC	TGT	ATC	ATC	CTC	TTC	TTG	GTA	GCA	ACA	GCT	ACA	GGT	GTC	CAC
	M	G	W	S	C	I	I	L	F	L	V	A	T	A	T	G	V	H
	63		72		81			90			99			108				
TCC	CAG	GTG	CAG	CTG	GTG	CAG	TCT	GGG	GCA	GAG	GTG	AAA	AAG	CCT	GGG	GCC	TCA	
	S	Q	V	Q	L	V	Q	S	G	A	E	V	K	K	P	G	A	S
	117		126		135			144			153			162				
GTG	AAG	GTG	TCC	TGC	AAG	GCT	TCT	GGC	TAC	ACC	TTC	AGT	GCC	TAC	TGG	ATA	GAG	
	V	K	V	S	C	K	A	S	G	Y	T	F	S	A	Y	W	I	E
	171		180		189			198			207			216				
TGG	GTG	CGC	CAG	GCT	CCA	GGG	AAG	GGC	CTC	GAG	TGG	GTC	GGA	GAG	ATT	TTA	CCT	
	W	V	R	Q	A	P	G	K	G	L	E	W	V	G	E	I	L	P
	225		234		243			252			261			270				
GGA	AGT	AAT	AAT	TCT	AGA	TAC	AAT	GAG	AAG	TTC	AAG	GGC	CGA	GTG	ACA	GTC	ACT	
	G	S	N	N	S	R	Y	N	E	K	F	K	G	R	V	T	V	T
	279		288		297			306			315			324				
AGA	GAC	ACA	TCC	ACA	AAC	ACA	GCC	TAC	ATG	GAG	CTC	AGC	AGC	CTG	AGG	TCT	GAG	
	R	D	T	S	T	N	T	A	Y	M	E	L	S	S	L	R	S	E
	333		342		351			360			369			378				
GAC	ACA	GCC	GTC	TAT	TAC	TGT	GCA	AGA	TCC	TAC	GAC	TTT	GCC	TGG	TTT	GCT	TAC	
	D	T	A	V	Y	Y	C	A	R	S	Y	D	F	A	W	F	A	Y
	387		396		405			414			423			432				
TGG	GGC	CAA	GGG	ACT	CTG	GTC	ACA	GTC	TCC	TCA	GCC	TCC	ACC	AAG	GGC	CCA	TCG	
	W	G	Q	G	T	L	V	T	V	S	S	A	S	T	K	G	P	S
	441		450		459			468			477			486				
GTC	TTC	CCC	CTG	GCA	CCC	TCC	AAG	AGC	ACC	TCT	GGG	GGC	ACA	GCG	GCC	CTG		
	V	F	P	L	A	P	S	S	K	S	T	S	G	G	T	A	A	L
	495		504		513			522			531			540				
GGC	TGC	CTG	GTC	AAG	GAC	TAC	TTC	CCC	GAA	CCG	GTG	ACG	GTG	TCG	TGG	AAC	TCA	
	G	C	L	V	K	D	Y	F	P	E	P	V	T	V	S	W	N	S
	549		558		567			576			585			594				
GGC	GCC	CTG	ACC	AGC	GGC	GTG	CAC	ACC	TTC	CCG	GCT	GTC	CTA	CAG	TCC	TCA	GGA	
	G	A	L	T	S	G	V	H	T	F	P	A	V	L	Q	S	S	G

Fig. 17(D)
(Sheet 1 of 3)

79/113

603	612	621	630	639	648
CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACC CAG					
-----	-----	-----	-----	-----	-----
L Y S L S S V V T V P S S S L G T Q					
657	666	675	684	693	702
ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AAA					
-----	-----	-----	-----	-----	-----
T Y I C N V N H K P S N T K V D K K					
711	720	729	738	747	756
GTT GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT					
-----	-----	-----	-----	-----	-----
V E P K S C D K T H T C P P C P A P					
765	774	783	792	801	810
GAA GGC GGG CTG AAG ATC GCA GCC TTC AAC ATC CAG ACA TTT GGG GAG ACC AAG					
-----	-----	-----	-----	-----	-----
E G G L K I A A F N I Q T F G E T K					
819	828	837	846	855	864
ATG TCC AAT GCC ACC CTC GTC AGC TAC ATT GTG CAG ATC CTG AGC CGC TAC GAC					
-----	-----	-----	-----	-----	-----
M S N A T L V S Y I V Q I L S R Y D					
873	882	891	900	909	918
ATC GCC CTG GTC CAG GAG GTC AGA GAC AGC CAC CTG ACT GCC GTG GGG AAG CTG					
-----	-----	-----	-----	-----	-----
I A L V Q E V R D S H L T A V G K L					
927	936	945	954	963	972
CTG GAC AAC CTC AAT CAG GAC GCA CCA GAC ACC TAT CAC TAC GTG GTC AGT GAG					
-----	-----	-----	-----	-----	-----
L D N L N Q D A P D T Y H Y V V V S E					
981	990	999	1008	1017	1026
CCA CTG GGA CGG AAC AGC TAT AAG GAG CGC TAC CTG TTC GTG TAC AGG CCT GAC					
-----	-----	-----	-----	-----	-----
P D G R N S Y K E R Y L F V Y R P D					
1035	1044	1053	1062	1071	1080
CAG GTG TCT GCG GTG GAC AGC TAC TAC TAC GAT GAT GGC TGC GAG CCC TGC GGG					
-----	-----	-----	-----	-----	-----
Q V S A V D S Y Y Y D D G C E P C G					
1089	1098	1107	1116	1125	1134
AAC GAC ACC TTC AAC CGA GAG CCA GCC ATT GTC AGG TTC TTC TCC CGG TTC ACA					
-----	-----	-----	-----	-----	-----
N D T F N R E P A I V R F F S R F T					
1143	1152	1161	1170	1179	1188
GAG GTC AGG GAG TTT GCC ATT GTT CCC CTG CAT GCG GCC CCG GGG GAC GCA GTA					
-----	-----	-----	-----	-----	-----
E V R E F A I V P L H A A P G D A V					
1197	1206	1215	1224	1233	1242

Fig. 17(D)
(Sheet 2 of 3)

80/113

GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA GAG AAA TGG GGC

A E I D A L Y D V Y L D V Q E K W G

1251 1260 1269 1278 1287 1296
TTG GAG GAC GTC ATG TTG ATG GGC TTC AAT GCG GGC TGC AGC TAT GTG AGA

L E D V M L M G D F N A G C S Y V R

1305 1314 1323 1332 1341 1350
CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC TTC CAG TGG CTG

P S Q W S S I R L W T S P T F Q W L

1359 1368 1377 1386 1395 1404
ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT GCC TAT GAC AGG

I P D S A D T T A T P T H C A Y D R

1413 1422 1431 1440 1449 1458
ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT CCC GAC TCG GCT CTT

I V V A G M L L R G A V V P D S A L

1467 1476 1485 1494 1503 1512
CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG GCC CAA GCC ATC

P F N F Q A A Y G L S D Q L A Q A I

1521 1530 1539 1548 1557 1566
AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG GGG GGC GGA CCC AAA AAG AAG

S D H Y P V E V M L K G G G P K K K

1575
CGC AAG GTT TGA 3'

R K V *

Fig. 17(D)
(Sheet 3 of 3)

81/113

pAS106

LOCUS PAS106.DNA 1596 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I with SV40
 NLS (pAS106)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak, S., Capon, D.J., Hellmiss, R., Marsters, S.A. and Baker, C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 355 a 475 c 452 g 314 t
 ORIGIN

```

    1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACCTCCCAG
    61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
   121 TGCAAGGCTT CTGGCTACAC CTTCACTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
   181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
   241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCTTACATG
   301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTTATT ACTGTGCAAG ATCCTACGAC
   361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCTC AGCTTCCACC
   421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
   481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
   541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCTC AGGACTCTAC
   601 TCCCTCAGCA GCGTGGTGAC CGTGCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
   661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT
   721 GACAAAACTC ACACATTGCTG TGTGGAGTGC CCACCGTGCC CAGCACCTGA AGGGAGCGGC
   781 GGGCTGAAGA TCGCAGCCTT CAACATCCAG ACATTGGGG AGACCAAGAT GTCCAATGCC
   841 ACCCTCGTCA GCTACATTGT GCAGATCCTG AGCCGCTACG ACATGCCCT GGTCCAGGAG
   901 GTCAGAGACA GCCACCTGAC TGCCGTGGGG AAGCTGCTGG ACAACCTCAA TCAGGACGCA
   961 CCAGACACCT ATCACTACGT GGTCACTGAG CCACCTGGAC GGAACAGCTA TAAGGAGCGC
  1021 TACCTGTTCG TGTACAGGCC TGACCAGGTG TCTGGGTGG ACAGCTACTA CTACGATGAT
  1081 GGCTGCGAGC CCTGCGGGAA CGACACCTTC AACCGAGAGC CAGCCATTGT CAGTTCTTC
  1141 TCCCGGTTCA CAGAGGTCAAG GGAGTTGGCC ATTGTTCCCC TGCATGCGGC CCCGGGGGAC
  1201 GCAGTAGCCG AGATCGACGC TCTCTATGAC GTCTACCTGG ATGTCCAAGA GAAATGGGGC
  1261 TTGGAGGACG TCATGTTGAT GGGCGACTTC AATGCGGGCT GCAGCTATGT GAGACCCTCC
  1321 CAGTGGTCAT CCATCCGCCT GTGGACAAGC CCCACCTTC AGTGGCTGAT CCCCAGACAGC
  1381 GCTGACACCA CAGCTACACC CACGCAGTGT GCCTATGACA GGATCGTGGT TGCAGGGATG
  1441 CTGCTCCGAG GGGCCGTTGT TCCCGACTCG GCTCTCCCT TAAACTTCCA GGCTGCCTAT
  1501 GGCTGAGTG ACCAACTGGC CCAAGCCATC AGTGACCACT ATCCAGTGGA GGTGATGCTG
  1561 AAGGGGGCG GACCCAAAAA GAAGCGCAAG GTTGGA
  //
```

→ NLS

Fig. 18(A)

82/113

LOCUS	FDDNASE106	1596 BP SS-DNA	SYN	25-AUG-2000		
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
FEATURES	Location/Qualifiers					
frag	join(1..>720,<799..1596) /note="1 to 1596 of PAS106.dna [Split]"					
frag	721..798 /note="1 to 78 of 102/106linker"					
BASE COUNT	355 A	474 C	452 G	315 T 0 OTHER		
ORIGIN	-					
1	ATGGGATGGA	GCTGTATCAT	CCTCTTCTTG	GTAGCAACAG	CTACAGGTGT	CCACTCCAG
61	GTGCAGCTGG	TGCAGTCTGG	GGCAGAGGGT	AAAAAGCCTG	GGGCCTCAGT	GAAGGTGTCC
121	TCCAAGGCTT	CTGGCTACAC	CTTCAGTGCC	TACTGGATAG	AGTGGGTGCG	CCAGGCTCCA
181	GGAAAGGGCC	TCGAGTGGGT	CGGAGAGATT	TTACCTGGAA	GTAATAATT	TAGATACAAT
241	GAGAAGTTCA	AGGGCCGAGT	GACAGTCACT	AGAGACACAT	CCACAAACAC	AGCCTACATG
301	GAGCTCAGCA	GCCTGAGGTC	TGAGGACACA	GCCGTCTATT	ACTGTGCAAG	ATCCTACGAC
361	TTTGCCTGGT	TTGCTTACTG	GGGCCAAGGG	ACTCTGGTC	CAGTCTCCTC	AGCCTCCACC
421	AAGGGCCCCT	CGGTCTTCCC	CCTGGCACCC	TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG
481	GCCCTGGGCT	GCCTGGTCAA	GGACTACTTC	CCCGAACCGG	TGACGGTGT	GTGGAACCTCA
541	GGCGCCCTGA	CCAGCGGCGT	GCACACCTTC	CCGGCTGTCC	TACAGTCTC	AGGACTCTAC
601	TCCCTCAGCA	GCGTGGTGAC	CGTGCCCTCC	AGCAGCTTGG	GCACCCAGAC	CTACATCTGC
661	AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAGA	AAGTTGAGCC	CAAATCTTGT
721	GACAAAATC	ACACATGCTG	TGTCGAGTGT	CCACCGTGT	CAGCACCGA	GGGGAGCGGC
781	GGGCTGAAGA	TCGCAGCCTT	CAACATCCAG	ACATTGGGG	AGACCAAGAT	GTCCAATGCC
841	ACCCTCGTCA	GCTACATTGT	GCAGATCCTG	AGCCGCTACG	ACATCGCCCT	GGTCAGGAG
901	GTCAGAGACA	GCCACCTGAC	TGCCGTGGGG	AAGCTGCTGG	ACAACCTCAA	TCAGGACGCA
961	CCAGACACCT	ATCACTACGT	GGTCAGTGAG	CCACTGGGAC	GGAACAGCTA	TAAGGAGCGC
1021	TACCTGTTCG	TGTACAGGCC	TGACCAGGTG	TCTGCGGTGG	ACAGCTACTA	CTACGATGAT
1081	GGCTGCGAGC	CCTGCCGGAA	CGACACCTTC	AACCGAGAGC	CAGCCATTGT	CAGGTTCTTC
1141	TCCCGGTTCA	CAGAGGTCA	GGAGTTGCC	ATTGTTCCCC	TGCATGCGGC	CCCGGGGGAC
1201	GCAGTAGCCG	AGATCGACGC	TCTCTATGAC	GTCTACCTGG	ATGTCCAAGA	GAAATGGGGC
1261	TTGGAGGACG	TCATGTTGAT	GGGCGACTTC	AATGCGGGCT	GCAGCTATGT	GAGACCCCTCC
1321	CAGTGGTCAT	CCATCCGCCT	GTGGACAAGC	CCCACCTTC	AGTGGCTGAT	CCCCGACAGC
1381	GCTGACACCA	CAGCTACACC	CACGCACTGT	GCCTATGACA	GGATCGTGGT	TGCAGGGATG
1441	CTGCTCCGAG	GGGCCGTTGT	TCCCGACTCG	GCTCTTCCCT	TTAACTCCA	GGCTGCCTAT
1501	GGCCTGAGTG	ACCAACTGGC	CCAAGCCATC	AGTGACCAC	ATCCAGTGGA	GGTGATGCTG
1561	AAGGGGGGCG	GACCCAAAAA	GAAGCGCAAG	GTTTGA		

//

Fig. 18(B)

83/113

LOCUS	FDDNASE106	1605 BP SS-DNA	SYN	29-AUG-2000			
DEFINITION	-						
ACCESSION	-						
KEYWORDS	-						
SOURCE	-						
FEATURES	Location/Qualifiers						
frag	10..1605 /note="1 to 1596 of FdDNase106correct"						
frag	join(10..>729,<808..1605) /note="1 to 1596 of PAS106.dna [Split]"						
frag	730..807 /note="1 to 78 of 102/106linker"						
BASE COUNT	356 A	480 C	454 G	315 T			
ORIGIN	0 OTHER						
	1	GCCGCCACCA	TGGGATGGAG	CTGTATCATC	CTCTTCTTGG	TAGCAACAGC	TACAGGTGTC
	61	CACTCCCAGG	TGCAGCTGGT	GCAGTCTGGG	GCAGAGGTGA	AAAAGCTGG	GGCCTCAGTG
	121	AAGGTGTCTT	GCAAGGCTTC	TGGCTACACC	TTCAGTGCCT	ACTGGATAGA	GTGGGTGCGC
	181	CAGGCTCCAG	GAAAGGGCCT	CGAGTGGGTC	GGAGAGATT	TACCTGAAAG	TAATAATTCT
	241	AGATACAATG	AGAACGTTCAA	GGGCCGAGTG	ACAGTCACTA	GAGACACATC	CACAAACACA
	301	GCCTACATGG	AGCTCAGCAG	CCTGAGGTCT	GAGGACACAG	CCGTCTATTA	CTGTGCAAGA
	361	TCCTACGACT	TTGCCTGGTT	TGCTTACTGG	GGCCAAGGG	CTCTGGTCAC	AGTCTCCTCA
	421	GCCTCCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCC	CCTCCAAGAG	CACCTCTGGG
	481	GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	CCGAACCGGT	GACGGTGTGC
	541	TGGAACTCAG	GCGCCCTGAC	CAGCGGCGTG	CACACCTCC	CGGCTGCCT	ACAGTCCTCA
	601	GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	GCAGCTGGG	CACCCAGACC
	661	TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
	721	AAATCTGTG	ACAAAAACTCA	CACATGCTGT	GTCGAGTGT	CACCGTGTCC	AGCACCAGAG
	781	GGGAGCGGCG	GGCTGAAGAT	CGCAGCCTTC	AACATCCAGA	CATTGGGGA	GACCAAGATG
	841	TCCAATGCCA	CCCTCGTCAG	CTACATTGTG	CAGATCCTGA	GCCGCTACGA	CATCGCCCTG
	901	GTCCAGGAGG	TCAGAGACAG	CCACCTGACT	GCCGTGGGG	AGCTGCTGGA	CAACCTCAAT
	961	CAGGACGCA	CAGACACCTA	TCACTACGTG	GTCAGTGAGC	CACTGGGACG	GAACAGCTAT
	1021	AAGGAGCGCT	ACCTGTTCGT	GTACAGGCCT	GACCAGGTGT	CTGCGGTGGA	CAGCTACTAC
	1081	TACGATGATG	GCTGCCGAGCC	CTGCGGGAAC	GACACCTTCA	ACCGAGAGCC	AGCCATTGTC
	1141	AGTTCTTCT	CCCGGGTCAC	AGAGGTCAAG	GAGTTGCCA	TTGTTCCCT	GCATGCGGCC
	1201	CCGGGGGACG	CAGTAGCCGA	GATCGACGCT	CTCTATGACG	TCTACCTGGA	TGTCCAAGAG
	1261	AAATGGGGCT	TGGAGGACGT	CATGTTGATG	GGCGACTTCA	ATGCGGGCTG	CAGCTATGTG
	1321	AGACCCCTCC	AGTGGTCATC	CATCCGCCCTG	TGGACAAGCC	CCACCTTCCA	GTGGCTGATC
	1381	CCCGACAGCG	CTGACACCA	AGCTACACCC	ACGCACTGTG	CCTATGACAG	GATCGTGGTT
	1441	GCAGGGATGC	TGCTCCGAGG	GGCCGTTGTT	CCCGACTCGG	CTCTTCCCTT	TAACCTCCAG
	1501	GCTGCCTATG	GCCTGAGTGA	CCAAGTGGCC	CAAGCCATCA	GTGACCACTA	TCCAGTGGAG
	1561	GTGATGCTGA	AGGGGGGCGG	ACCCAAAAAG	AAGCGCAAGG	TTTGA	

//

Fig. 18(C)

84/113

9	18	27	36	45	54													
ATG	GGA	TGG	AGC	TGT	ATC	ATC	CTC	TTC	TTG	GTA	GCA	ACA	GCT	ACA	GGT	GTC	CAC	
- - - - -	M	G	W	S	C	I	I	L	F	L	V	A	T	A	T	G	V	H
63	72	81	90	99	108													
TCC	CAG	GTG	CAG	CTG	GTG	CAG	TCT	GGG	GCA	GAG	GTG	AAA	AAG	CCT	GGG	GCC	TCA	
- - - - -	S	Q	V	Q	L	V	Q	S	G	A	E	V	K	K	P	G	A	S
117	126	135	144	153	162													
GTG	AAG	GTG	TCC	TGC	AAG	GCT	TCT	GGC	TAC	ACC	TTC	AGT	GCC	TAC	TGG	ATA	GAG	
- - - - -	V	K	V	S	C	K	A	S	G	Y	T	F	S	A	Y	W	I	E
171	180	189	198	207	216													
TGG	GTG	CGC	CAG	GCT	CCA	GGA	AAG	GGC	CTC	GAG	TGG	GTC	GGA	GAG	ATT	TTA	CCT	
- - - - -	W	V	R	Q	A	P	G	K	G	L	E	W	V	G	E	I	L	P
225	234	243	252	261	270													
GGA	AGT	AAT	AAT	TCT	AGA	TAC	AAT	GAG	AAG	TTC	AAG	GGC	CGA	GTG	ACA	GTC	ACT	
- - - - -	G	S	N	N	S	R	Y	N	E	K	F	K	G	R	V	T	V	T
279	288	297	306	315	324													
AGA	GAC	ACA	TCC	ACA	AAC	ACA	GCC	TAC	ATG	GAG	CTC	AGC	AGC	CTG	AGG	TCT	GAG	
- - - - -	R	D	T	S	T	N	T	A	Y	M	E	L	S	S	L	R	S	E
333	342	351	360	369	378													
GAC	ACA	GCC	GTC	TAT	TAC	TGT	GCA	AGA	TCC	TAC	GAC	TTT	GCC	TGG	TTT	GCT	TAC	
- - - - -	D	T	A	V	Y	Y	C	A	R	S	Y	D	F	A	W	F	A	Y
387	396	405	414	423	432													
TGG	GGC	CAA	GGG	ACT	CTG	GTC	ACA	GTC	TCC	TCA	GCC	TCC	ACC	AAG	GGC	CCA	TCG	
- - - - -	W	G	Q	G	T	L	V	T	V	S	S	A	S	T	K	G	P	S
441	450	459	468	477	486													
GTC	TTC	CCC	CTG	GCA	CCC	TCC	TCC	AAG	AGC	ACC	TCT	GGG	GGC	ACA	GCG	GCC	CTG	
- - - - -	V	F	P	L	A	P	S	S	K	S	T	S	G	G	T	A	A	L
495	504	513	522	531	540													
GGC	TGC	CTG	GTC	AAG	GAC	TAC	TTC	CCC	GAA	CCG	GTG	ACG	GTG	TCG	TGG	AAC	TCA	
- - - - -	G	C	L	V	K	D	Y	F	P	E	P	V	T	V	S	W	N	S
549	558	567	576	585	594													
GGC	GCC	CTG	ACC	AGC	GGC	GTG	CAC	ACC	TTC	CCG	GCT	GTC	CTA	CAG	TCC	TCA	GGA	
- - - - -	G	A	L	T	S	G	V	H	T	F	P	A	V	L	Q	S	S	G

Fig. 18(C)
(Sheet 1 of 3)

85/113

603	612	621	630	639	648
CTC	TAC	TCC	CTC	AGC	AGC
GTG	GTG	ACC	GTG	CCC	TCC
---	---	---	---	---	---
L	Y	S	L	S	S
S	S	V	V	T	P
V	T	V	P	S	S
-----	-----	-----	-----	-----	-----
657	666	675	684	693	702
ACC	TAC	ATC	TGC	AAC	GTG
GTG	AAT	CAC	AAG	CCC	GAC
---	---	---	---	---	---
T	Y	I	C	N	V
N	V	N	H	K	P
H	K	P	S	N	T
-----	-----	-----	-----	-----	-----
711	720	729	738	747	756
GTT	GAG	CCC	AAA	TCT	TGT
GAC	AAA	TCA	ACT	CAC	ACA
---	---	---	---	---	---
V	E	P	K	S	C
S	C	D	K	T	H
C	K	T	H	T	C
-----	-----	-----	-----	-----	-----
765	774	783	792	801	810
TGC	CCA	GCA	CCT	GAA	GGG
GGG	AGC	GGC	GGG	CTG	AAG
---	---	---	---	---	---
C	P	A	P	E	G
S	C	D	K	G	G
G	K	T	H	L	K
-----	-----	-----	-----	-----	-----
819	828	837	846	855	864
ACA	TTT	GGG	GAG	ACC	AAG
ATG	TCC	AAT	GCC	ACC	CTC
---	---	---	---	---	---
T	F	G	E	T	K
M	S	N	A	T	L
S	N	A	T	L	V
-----	-----	-----	-----	-----	-----
873	882	891	900	909	918
ATC	CTG	AGC	CGC	TAC	GAC
GAC	ATC	GCC	CTG	GTC	CAG
---	---	---	---	---	---
I	L	S	R	Y	D
I	A	L	V	Q	E
A	L	V	Q	E	V
-----	-----	-----	-----	-----	-----
927	936	945	954	963	972
ACT	GCC	GTG	GGG	AAG	CTG
GGG	AAG	CTG	CTG	GAC	AAC
---	---	---	---	---	---
T	A	V	G	K	L
L	L	D	N	L	N
D	N	L	N	Q	D
-----	-----	-----	-----	-----	-----
981	990	999	1008	1017	1026
CAC	TAC	GTG	GTC	AGT	GAG
GAG	CCA	CTG	GGG	AAC	AGC
---	---	---	---	---	---
H	Y	V	V	S	E
Y	V	V	S	E	P
V	V	S	E	P	L
-----	-----	-----	-----	-----	-----
1035	1044	1053	1062	1071	1080
TTC	GTG	TAC	AGG	CCT	GAC
AGC	CAG	CAG	GTG	TCT	GGG
---	---	---	---	---	---
F	V	Y	R	P	D
Y	R	P	D	Q	V
R	P	D	Q	V	S
-----	-----	-----	-----	-----	-----
1089	1098	1107	1116	1125	1134
GGC	TGC	GAG	CCC	TGC	GGG
GAG	CCC	TGC	GGG	AAC	GAC
---	---	---	---	---	---
G	C	E	P	C	G
G	N	D	T	F	N
N	D	T	F	N	R
D	T	F	N	R	E
-----	-----	-----	-----	-----	-----
1143	1152	1161	1170	1179	1188
TTC	TTC	TCC	CGG	TTC	ACA
CGG	TTC	ACA	GAG	GTC	AGG
---	---	---	---	---	---
F	F	S	R	F	T
F	F	R	F	T	E
R	F	F	T	E	V
-----	-----	-----	-----	-----	-----
1197	1206	1215	1224	1233	1242

Fig. 18(C)
(Sheet 2 of 3)

86/113

GCC CCG GGG GAC GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 A P G D A V A E I D A L Y D V Y L D
 1251 1260 1269 1278 1287 1296
 GTC CAA GAG AAA TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 V Q E K W G L E D V M L M G D F N A
 1305 1314 1323 1332 1341 1350
 GGC TGC AGC TAT GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 G C S Y V R P S Q W S S I R L W T S
 1359 1368 1377 1386 1395 1404
 CCC ACC TTC CAG TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 P T F Q W L I P D S A D T T A T P T
 1413 1422 1431 1440 1449 1458
 CAC TGT GCC TAT GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 H C A Y D R I V V A G M L L R G A V
 1467 1476 1485 1494 1503 1512
 GTT CCC GAC TCG GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 V P D S A L P F N F Q A A Y G L S D
 1521 1530 1539 1548 1557 1566
 CAA CTG GCC CAA GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG GGG
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 Q L A Q A I S D H Y P V E V M L K G
 1575 1584 1593
 GGC GGA CCC AAA AAG AAG CGC AAG GTT TGA 3'
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 G G P K K K R K V *

Fig. 18(C)
(Sheet 3 of 3)

87/113

pAS107

LOCUS PAS107.DNA 1590 bp mRNA PRI 06-MAR-1995
 DEFINITION Humanised HMFG1 Fab'2 fused to human DNase I with SV40
 NLS (pAS107)
 ACCESSION
 NID
 KEYWORDS DNase I.
 SOURCE DNase I sequence is from assembled oligos (thus modified c/f MHDNASE1.dna)
 ORGANISM Homo sapiens
 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
 Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A. and Baker,C.L.
 TITLE Recombinant human DNase I reduces the viscosity of cystic fibrosis
 sputum
 JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (23), 9188-9192 (1990)
 MEDLINE 91067672
 BASE COUNT 354 a 474 c 448 g 314 t
 ORIGIN

```

 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCCAG
 61 GTGCAGCTGG TGCAGTCTGG GGCAAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC
121 TGCAAGGCTT CTGGCTACAC CTTCACTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA
181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATTC TAGATACAAT
241 GAGAAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCTACATG
301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGCTCTATT ACTGTGCAAG ATCCTACGAC
361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCC CAGCTCCACC
421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG
481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA
541 GGCGCCCTGA CCAGCGCGT GCACACCTTC CCGGCTGTCC TACAGTCTC AGGACTCTAC
601 TCCCTCAGCA GCGTGGTAC CGTGCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC
661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTGT
721 GACAAAATC ACACATGCTG TGTGGAGTGC CCACCGTGCC CAGCACCTGA AGGCAGGGCTG
781 AAGATCGCAG CCTTCAACAT CCAGACATTG GGGGAGACCA AGATGTCCA TGCCACCCCTC
841 GTCAGCTACA TTGTGCAGAT CCTGAGCCGC TACGACATCG CCCTGGTCCA GGAGGTCAAGA
901 GACAGCCACC TGACTGCCGT GGGGAAGCTG CTGGACAACC TCAATCAGGA CGCACCAAGAC
961 ACCTATCACT ACGTGGTCAG TGAGCCACTG GGACGGAACA GCTATAAGGA GCGCTACCTG
1021 TTCTGTACCA GGCTGACCA GGTGTCTGCC GTGGACAGCT ACTACTACGA TGATGGCTGC
1081 GAGCCCTGCG GGAACGACAC CTTCAACCGA GAGCCAGCCA TTGTCAGGTT CTTCTCCCGG
1141 TTCAACAGAGG TCAGGGAGTT TGCCATTGTT CCCCTGCATG CGGCCCCGGG GGACGCAAGTA
1201 GCCGAGATCG ACGCTCTCTA TGACGTCTAC CTGGATGTCC AAGAGAAATG GGGCTTGGAG
1261 GACGTCAATGT TGATGGCGA CTTCAATGCC GGCTGCAGCT ATGTGAGACC CTCCAGTGG
1321 TCATCCATCC GCCTGTGGAC AAGCCCCACC TTCCAGTGGC TGATCCCCGA CAGCGCTGAC
1381 ACCACAGCTA CACCCACGCA CTGTGCCTAT GACAGGATCG TGTTGCAAGG GATGCTGCTC
1441 CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT CCCTTTAACT TCCAGGCTGC CTATGGCCTG
1501 AGTGACCAAC TGGCCCAAGC CATCAGTGAC CACTATCCAG TGGAGGTGAT GCTGAAGGGG
1561 GGCGGACCCA AAAAGAAGCG CAAGGTTTGA
  //
```

NLS

Fig. 19(A)

88/113

LOCUS	FDDNASE107	1590 BP SS-DNA	SYN	25-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	join(1..>720,<793..1590) /note="1 to 1590 of PAS107.dna [Split]"			
frag	721..792 /note="1 to 72 of 103/107linker"			
frag	join(721..>771,<772..792) /note="1 to 78 of 102linker [Split]"			
BASE COUNT	354 A	473 C	448 G	315 T 0 OTHER
ORIGIN	-			
<pre> 1 ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT CCACTCCAG 61 GTGCAGCTGG TGCAGTCTGG GGCAGAGGTG AAAAAGCCTG GGGCCTCAGT GAAGGTGTCC 121 TGCAAGGCTT CTGGCTACAC CTTCAGTGCC TACTGGATAG AGTGGGTGCG CCAGGCTCCA 181 GGAAAGGGCC TCGAGTGGGT CGGAGAGATT TTACCTGGAA GTAATAATT TAGATACAAT 241 GAGAAGTTCA AGGGCCGAGT GACAGTCACT AGAGACACAT CCACAAACAC AGCCTACATG 301 GAGCTCAGCA GCCTGAGGTC TGAGGACACA GCCGTCTATT ACTGTGCAAG ATCCTACGAC 361 TTTGCCTGGT TTGCTTACTG GGGCCAAGGG ACTCTGGTCA CAGTCTCCTC AGCCTCCACC 421 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG 481 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTG TGGAACACTCA 541 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CGCGCTGTCC TACAGTCTC AGGACTCTAC 601 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC 661 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGTTGAGCC CAAATCTTGT 721 GACAAAATC ACACATGCTG TGTCGAGTGT CCACCGTGTG CAGCACAGA GGGCGGGCTG 781 AAGATCGCAG CCTTCAACAT CCAGACATTG GGGGAGACCA AGATGTCCAA TGCCACCCCTC 841 GTCAGCTACA TTGTGCGAGAT CCTGAGCCGC TACGACATCG CCCTGGTCCA GGAGGTCAAGA 901 GACAGCCACC TGACTGCCGT GGGGAAGCTG CTGGACAACC TCAATCAGGA CGCACCAAGAC 961 ACCTATCACT ACGTGGTCAG TGAGCCACTG GGACGGAACA GCTATAAGGA GCGCTACCTG 1021 TTCGTGTACA GGCCTGACCA GGTGTCTGCG GTGGACAGCT ACTACTACGA TGATGGCTGC 1081 GAGCCCTGCG GGAACGACAC CTTCAACCGA GAGCCAGCCA TTGTCAAGGTT CTTCTCCCGG 1141 TTCACAGAGG TCAGGGAGTT TGCCATTGTT CCCCTGCATG CGGCCCGGG GGACGCAGTA 1201 GCCGAGATCG ACGCTCTCTA TGACGTCTAC CTGGATGTCC AAGAGAAATG GGGCTTGGAG 1261 GACGTCATGT TGATGGGCGA CTTCAATGCG GGCTGCAGCT ATGTGAGACC CTCCCAGTGG 1321 TCATCCATCC GCCTGTGGAC AAGCCCCACC TTCCAGTGGC TGATCCCCGA CAGCGCTGAC 1381 ACCACAGCTA CACCCACGCA CTGTGCCTAT GACAGGATCG TGGTTGCAGG GATGCTGCTC 1441 CGAGGGGCCG TTGTTCCCGA CTCGGCTCTT CCCTTAACT TCCAGGCTGC CTATGGCCTG 1501 AGTGACCAAC TGGCCAAGC CATCAGTGAC CACTATCCAG TGGAGGTGAT GCTGAAGGGG 1561 GGCAGACCA AAAAGAAGCG CAAGGTTTGA </pre>				

//

Fig. 19(B)

89/113

LOCUS	FDDNASE107	1599 BP SS-DNA	SYN	29-AUG-2000
DEFINITION	-			
ACCESSION	-			
KEYWORDS	-			
SOURCE	-			
FEATURES	Location/Qualifiers			
frag	10..1599			
	/note="1 to 1590 of FdDNase107correct"			
frag	join(10..>729,<802..1599)			
	/note="1 to 1590 of PAS107.dna [Split]"			
frag	730..801			
	/note="1 to 72 of 103/107linker"			
frag	join(730..>780,<781..801)			
	/note="1 to 78 of 102linker [Split]"			
BASE COUNT	355 A	479 C	450 G	315 T 0 OTHER
ORIGIN	-			
	1 GCCGCCACCA TGGGATGGAG CTGTATCATC CTCTTCTTGG TAGAACAGC TACAGGTGTC			
	61 CACTCCCAGG TGCAGCTGGT GCAGTCTGGG GCAGAGGTGA AAAAGCCTGG GGCCTCAGTG			
	121 AAGGTGTCTT GCAAGGCTTC TGGCTACACC TTCAGTGCCT ACTGGATAGA GTGGGTGCGC			
	181 CAGGCTCCAG GAAAGGGCCT CGAGTGGGTC GGAGAGATT TACCTGGAAG TAATAATTCT			
	241 AGATACAATG AGAAGTTCAA GGGCCGAGTG ACAGTCACTA GAGACACATC CACAAACACA			
	301 GCCTACATGG AGCTCAGCAG CCTGAGGTCT GAGGACACAG CCGTCTATT CTGTGCAAGA			
	361 TCCTACGACT TTGCTTGGTT TGCTTACTGG GGCCAAGGGG CTCTGGTCAC AGTCTCCTCA			
	421 GCCTCCACCA AGGGCCCATC GGTCTTCCCC CTGGCACCCCT CCTCCAAGAG CACCTCTGGG			
	481 GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTCC CGAACCAGGT GACGGTGTGC			
	541 TGGAACTCAG GCGCCCTGAC CAGCGGCGTG CACACCTTCC CGGCTGTCCT ACAGTCTC			
	601 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTGGG CACCCAGACC			
	661 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGTTGAGCCC			
	721 AAATCTTGTG ACAAAACTCA CACATGCTGT GTCGAGTGTG CACCGTGTCC AGCACCAGAG			
	781 GGGGGGCTGA AGATCGCAGC CTTCAACATC CAGACATTG GGGAGACCAA GATGTCCAAT			
	841 GCCACCCTCG TCAGCTACAT TGTGCAGATC CTGAGCCGCT ACGACATCGC CCTGGTCCAG			
	901 GAGGTCAAGAG ACAGCCACCT GACTGCCGTG GGGAAAGCTGC TGGACAACCT CAATCAGGAC			
	961 GCACCAAGACA CCTATCACTA CGTGGTCAGT GAGCCACTGG GACGGAACAG CTATAAGGAG			
	1021 CGCTACCTGT TCGTGTACAG GCCTGACCAAG GTGTCTGCGG TGGACAGCTA CTACTACGAT			
	1081 GATGGCTGCG AGCCCTGCGG GAACGACACC TTCAACCGAG AGCCAGCCAT TGTCAAGGTT			
	1141 TTCTCCCGGT TCACAGAGGT CAGGGAGTTT GCCATTGTTC CCCTGCATGC GGGCCCGGGG			
	1201 GACGCAGTAG CCGAGATCGA CGCTCTCTAT GACGTCTACC TGGATGTCCA AGAGAAATGG			
	1261 GGCTTGGAGG ACGTCATGTT GATGGCGAC TTCAATGCGG GCTGCAGCTA TGTGAGACCC			
	1321 TCCCAGTGGT CATCCATCCG CCTGTGGACA AGCCCCACCT TCCAGTGGCT GATCCCCGAC			
	1381 AGCGCTGACA CCACAGCTAC ACCCACGCAC TGTGCCTATG ACAGGATCGT GGTGCAAGGG			
	1441 ATGCTGCTCC GAGGGCCGT TGTTCCCGAC TCGGCTCTTC CCTTTAACTT CCAGGCTGCC			
	1501 TATGGCCTGA GTGACCAACT GGCCCAAGCC ATCAGTGACC ACTATCCAGT GGAGGTGATG			
	1561 CTGAAGGGGG GCGGACCCAA AAAGAAGCGC AAGGTTGA			

//

Fig. 19(C)

90/113

9	18	27	36	45	54
5' ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC					
M	G	W	S	C	I
I	L	F	L	V	A
A	T	A	T	G	V
T	A	T	G	V	H

63	72	81	90	99	108
TCC CAG GTG CAG CTG GTG CAG TCT GGG GCA GAG GTG AAA AAG CCT GGG GCC TCA					
S	Q	V	Q	L	V
Q	S	G	A	E	V
K	K	K	P	G	A
P	G	A	S		

117	126	135	144	153	162
GTG AAG GTG TCC TGC AAG GCT TCT GGC TAC ACC TTC AGT GCC TAC TGG ATA GAG					
V	K	V	S	C	K
A	S	G	Y	T	F
S	A	Y	W	I	E

171	180	189	198	207	216
TGG GTG CGC CAG GCT CCA GGA AAG GGC CTC GAG TGG GTC GGA GAG ATT TTA CCT					
W	V	R	Q	A	P
G	K	G	L	E	W
V	G	E	I	L	P

225	234	243	252	261	270
GGA AGT AAT AAT TCT AGA TAC AAT GAG AAG TTC AAG GGC CGA GTG ACA GTC ACT					
G	S	N	N	S	R
Y	N	E	K	F	K
R	G	R	V	T	V
					T

279	288	297	306	315	324
AGA GAC ACA TCC ACA AAC ACA GCC TAC ATG GAG CTC AGC AGC CTG AGG TCT GAG					
R	D	T	S	T	N
T	N	T	A	Y	M
S	E	K	F	L	S
					R

333	342	351	360	369	378
GAC ACA GCC GTC TAT TAC TGT GCA AGA TCC TAC GAC TTT GCC TGG TTT GCT TAC					
D	T	A	V	Y	Y
T	N	T	C	A	R
A	K	F	S	Y	D
V	R	S	S	Y	F
					A

387	396	405	414	423	432
TGG GGC CAA GGG ACT CTG GTC ACA GTC TCC TCA GCC TCC ACC AAG GGC CCA TCG					
W	G	Q	G	T	L
V	T	S	S	V	V
					S

441	450	459	468	477	486
GTC TTC CCC CTG GCA CCC TCC TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG					
V	F	P	L	A	P
					S

495	504	513	522	531	540
GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG TCG TGG AAC TCA					
G	C	L	V	K	D
					Y

549	558	567	576	585	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
G	A	L	T	S	G
V	H	T	F	P	A
					V

594	594	594	594	594	594
GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT GTC CTA CAG TCC TCA GGA					
G	A	L	T	S	G
V	H	T	F	P	A
					V

Fig. 19(D)
(Sheet 1 of 3)

91/113

603	612	621	630	639	648												
CTC	TAC	TCC	CTC	AGC	AGC	GTG	GTG	ACC	GTG	CCC	TCC	AGC	AGC	TTG	GGC	ACC	CAG
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
L	Y	S	L	S	S	V	V	T	V	P	S	S	S	L	G	T	Q
657	666	675	684	693	702												
ACC	TAC	ATC	TGC	AAC	GTG	AAT	CAC	AAG	CCC	AGC	AAC	ACC	AAG	GTG	GAC	AAG	AAA
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
T	Y	I	C	N	V	N	H	K	P	S	N	T	K	V	D	K	K
711	720	729	738	747	756												
GTT	GAG	CCC	AAA	TCT	TGT	GAC	AAA	ACT	CAC	ACA	TGC	TGT	GTG	GAG	TGC	CCA	CCG
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
V	E	P	K	S	C	D	K	T	H	T	C	C	V	E	C	P	P
765	774	783	792	801	810												
TGC	CCA	GCA	CCT	GAA	GGC	GGG	CTG	AAG	ATC	GCA	GCC	TTC	AAC	ATC	CAG	ACA	TTT
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
C	P	A	P	E	G	G	L	K	I	A	A	F	N	I	Q	T	F
819	828	837	846	855	864												
GGG	GAG	ACC	AAG	ATG	TCC	AAT	GCC	ACC	CTC	GTC	AGC	TAC	ATT	GTG	CAG	ATC	CTG
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
G	E	T	K	M	S	N	A	T	L	V	S	Y	I	V	Q	I	L
873	882	891	900	909	918												
AGC	CGC	TAC	GAC	ATC	GCC	CTG	GTC	CAG	GAG	GTC	AGA	GAC	AGC	CAC	CTG	ACT	GCC
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
S	R	Y	D	I	A	L	V	Q	E	V	R	D	S	H	L	T	A
927	936	945	954	963	972												
GTG	GGG	AAG	CTG	CTG	GAC	AAC	CTC	AAT	CAG	GAC	GCA	CCA	GAC	ACC	TAT	CAC	TAC
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
V	G	K	L	L	D	N	L	N	Q	D	A	P	D	T	Y	H	Y
981	990	999	1008	1017	1026												
GTG	GTC	AGT	GAG	CCA	CTG	GGA	CGG	AAC	AGC	TAT	AAG	GAG	CGC	TAC	CTG	TTC	GTG
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
V	V	S	E	P	L	G	R	N	S	Y	K	E	R	Y	L	F	V
1035	1044	1053	1062	1071	1080												
TAC	AGG	CCT	GAC	CAG	GTG	TCT	GCG	GTG	GAC	AGC	TAC	TAC	TAC	GAT	GAT	GGC	TGC
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
Y	R	P	D	Q	V	S	A	V	D	S	Y	Y	Y	D	D	G	C
1089	1098	1107	1116	1125	1134												
GAG	CCC	TGC	GGG	AAC	GAC	ACC	TTC	AAC	CGA	GAG	CCA	GCC	ATT	GTC	AGG	TTC	TTC
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
E	P	C	G	N	D	T	F	N	R	E	P	A	I	V	R	F	F
1143	1152	1161	1170	1179	1188												
TCC	CGG	TTC	ACA	GAG	GTC	AGG	GAG	TTT	GCC	ATT	GTG	CCC	CTG	CAT	GCG	GCC	CCG
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
S	R	F	T	E	V	R	E	F	A	I	V	P	L	H	A	A	P
1197	1206	1215	1224	1233	1242												

Fig. 19(D)
(Sheet 2 of 3)

92/113

GGG GAC GCA GTA GCC GAG ATC GAC GCT CTC TAT GAC GTC TAC CTG GAT GTC CAA

 G D A V A E I D A L Y D V Y L D V Q
 1251 1260 1269 1278 1287 1296
 GAG AAA TGG GGC TTG GAG GAC GTC ATG TTG ATG GGC GAC TTC AAT GCG GGC TGC

 E K W G L E D V M L M G D F N A G C
 1305 1314 1323 1332 1341 1350
 AGC TAT GTG AGA CCC TCC CAG TGG TCA TCC ATC CGC CTG TGG ACA AGC CCC ACC

 S Y V R P S Q W S S I R L W T S P T
 1359 1368 1377 1386 1395 1404
 TTC CAG TGG CTG ATC CCC GAC AGC GCT GAC ACC ACA GCT ACA CCC ACG CAC TGT

 F Q W L I P D S A D T T A T P T H C
 1413 1422 1431 1440 1449 1458
 GCC TAT GAC AGG ATC GTG GTT GCA GGG ATG CTG CTC CGA GGG GCC GTT GTT CCC

 A Y D R I V V A G M L L R G A V V P
 1467 1476 1485 1494 1503 1512
 GAC TCG GCT CTT CCC TTT AAC TTC CAG GCT GCC TAT GGC CTG AGT GAC CAA CTG

 D S A L P F N F Q A A Y G L S D Q L
 1521 1530 1539 1548 1557 1566
 GCC CAA GCC ATC AGT GAC CAC TAT CCA GTG GAG GTG ATG CTG AAG GGG GGC GGA

 A Q A I S D H Y P V E V M L K G G G
 1575 1584
 CCC AAA AAG AAG CGC AAG GTT TGA 3'

 P K K K R K V *

Fig. 19(D)
(Sheet 3 of 3)

93/113

Mammalian expression of humanised HMFG1-D Nase constructs***Fig. 20***

94/113

Immuno-precipitation of metabolically labelled transient transfectants

Fig. 21(A)

95/113

Immuno-precipitation of metabolically labelled transient transfectants

8% SDS-PAGE non-reducing gel

Fig. 21(B)

96/113

Immuno-precipitation of metabolically labelled transient transfectants

Fig. 21(C)
10% SDS-PAGE reducing gel

97/113

Immuno-precipitation of metabolically labelled transient transfectants

Fig. 21(D)

98/113

Fig. 22 PDTRP binding assay standard curve
(5' development)

Fig. 23

Corrected bovine DNase I standard curves
at various time points

100/113

Corrected DNase I activity in transiently expressed
humanised human HMFG1-human DNase I constructs

Fig. 24

101/113

**Corrected DNase I activity in transiently expressed
humanised HMFG1 F(ab')2-human DNase I fusions**

Fig. 25

Fig. 26

103/113

104/113

Fig. 28(A)

Fig. 28(B)

105/113

Ab-DNase***Fig. 29***

106/113

Fab-DNase

Fig. 30

107/113

Fig. 31(A)

Fig. 31(B)

108/113

Fig. 32(A)

Fig. 32(B)

109/113

Fig. 33(A)

Fig. 33(B)

110/113

Bovine DNase I standard curves at various time points

Fig. 34(A)

111/113

Fig. 34(B)

112/113

Fig. 35(A)

113/113

Fig. 35(B)

INTERNATIONAL SEARCH REPORT

national Application No
PCT/GB 01/01324

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C07K16/18	C12N9/22	C12N15/62	C07K16/46	C12N15/63
	C12N15/85	A61K39/395	A61K38/43	//C07K19/00	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, WPI Data, MEDLINE, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>YOUNG ROBERT J ET AL: "A DNase I based immunotoxin for tumor therapy." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, no. 41, March 2000 (2000-03), page 289 XP001008862 91st Annual Meeting of the American Association for Cancer Research.; San Francisco, California, USA; April 01-05, 2000, March, 2000 ISSN: 0197-016X abstract</p> <p>---</p> <p>-/-</p>	<p>1-12,14, 15,17, 21,23, 25, 28-35, 37,38</p>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

6 August 2001

16/08/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Montrone, M

INTERNATIONAL SEARCH REPORT

ational Application No
PCT/GB 01/01324

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 15644 A (EPENETOS AGAMEMNON ANTONIOU ;IMP CANCER RES TECH (GB); DEONARAIN M) 21 July 1994 (1994-07-21) abstract page 3, line 12-22 page 4, line 24-26 page 6, line 7 -page 8, line 2 page 10, line 11-14 page 12, line 18 -page 13, line 8 page 15, line 1-19 page 26, line 30 -page 27, line 25 page 28, line 23 -page 29, line 21 page 49, line 29 -page 51, line 10 ----	1-6, 9-19,23, 28-38
Y	LINARDOU H. ET AL.: "Deoxyribonuclease I (DNase I). A novel approach for targeted cancer therapy." CELL BIOPHYS., vol. 24-25, 1994, page 243-248 XP001012902 abstract page 244, paragraphs 2-4 page 245, paragraph 4 page 246; figure 1 page 247, paragraphs 2,3,5 ----	15,16, 18,19
Y	WO 92 04380 A (UNILEVER PLC ;UNILEVER NV (NL)) 19 March 1992 (1992-03-19) cited in the application abstract page 4, line 30 - line 27 page 6, line 6-26 page 8, line 30 -page 9, line 7 page 9, line 11-28 page 10, line 1-6 page 10, line 33 -page 11, line 3 page 12, line 13-35 page 14, line 14-16 page 15, line 15-30 page 16, line 15-20 page 17, line 6-14 ----	1-19,21, 23,25, 27-38
Y	EP. 0 781 845 A (CELLTECH THERAPEUTICS LTD) 2 July 1997 (1997-07-02) abstract page 3, line 19-48 page 5, line 3 -page 6, line 15 page 9, line 23-42 page 16, line 8-17 ----	1-19,21, 23,25, 27-38

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 20,22,24,26,38

Present claims 20, 24 and 38 relate to an extremely large number of possible compounds. In fact, the claims contain so many options, variables, possible permutations and provisos that a lack of clarity within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Moreover, a search for the subject-matter of claims 22 and 26 has not been carried out since it was not possible to identify the corresponding SEQ.ID.NO. of fig. 14(c). Consequently, the search has been carried out for those parts of the application which do appear to be clear, namely 1 to 19, 21, 23, 25, 27 to 37.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

	International Application No PCT/GB 01/01324
--	---

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9415644	A	21-07-1994	AT 164314 T DE 69409225 D DE 69409225 T DK 679094 T EP 0679094 A EP 0815872 A ES 2115927 T GB 2289679 A, B GB 2300859 A, B GR 3026449 T JP 8509460 T US 5973116 A	15-04-1998 30-04-1998 13-08-1998 19-10-1998 02-11-1995 07-01-1998 01-07-1998 29-11-1995 20-11-1996 30-06-1998 08-10-1996 26-10-1999
WO 9204380	A	19-03-1992	AU 653167 B AU 8495391 A BG 60716 B BG 97607 A CA 2090961 A EP 0483961 A FI 930984 A HU 67796 A JP 6500468 T NO 930825 A RO 113432 B US 6204366 B	22-09-1994 30-03-1992 31-01-1996 31-03-1994 08-03-1992 06-05-1992 05-03-1993 28-04-1995 20-01-1994 05-05-1993 30-07-1998 20-03-2001
EP 0781845	A	02-07-1997	AT 160362 T AU 666868 B AU 2598392 A CA 2095926 A DE 69223206 D DE 69223206 T EP 0534742 A ES 2108732 T WO 9306231 A IL 103269 A JP 6505399 T NZ 244468 A	15-12-1997 29-02-1996 27-04-1993 27-03-1993 02-01-1998 25-06-1998 31-03-1993 01-01-1998 01-04-1993 04-01-1998 23-06-1994 25-11-1994