

Statistik I

Prof. Dr. Simone Abendschön 12. Einheit

Plan heute

- Punktschätzung und Intervallschätzung
- Einführung Konfidenzintervall
- Einführung Hypothesentests

Grundgesamtheit/Stichprobe

Schätzungsarten

- Punktschätzung
- Intervallschätzung

Punktschätzungen

- Stichprobenkennwerte als Schätzung für Parameter in der Grundgesamtheit
- Welche Kennwerte relevant?
 - Mittelwert, Anteilswert, Varianz
- Kriterien einer "guten" Punktschätzung
 - "erwartungstreu", effizient, konsistent
 - Werden i.d.R. bei Zufallsstichprobe erfüllt

Punktschätzungen

- Erwartungstreu:
 - Unverzerrt
 - bei "unendlich" vielen Stichproben entspricht der Mittel-/Anteilswert der Stichprobenkennwerte dem "wahren" Wert
- Effizient: wie präzise ist die Schätzung?
 - je geringer der Standardfehler desto effizienter
- Konsistent:
 - Bei steigender Stichprobengröße sollte die Differenz zwischen dem geschätzten Wert und dem wahren Wert geringer werden

Punktschätzungen

 Stichprobenmittelwert: gute Schätzung für Mittelwert in der Grundgesamtheit

$$\hat{\mu} = \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 Anteilswert in Stichprobe: gute Schätzung für Anteilwert in Grundgesamtheit

$$\hat{\theta} = p$$

 Aber: Varianz in Stichprobe <u>unterschätzt Varianz</u> in Grundgesamtheit

Varianz

- Varianz s^2 in Stichprobe unterschätzt Varianz σ^2 um Faktor $\frac{n-1}{n}$
- Mit $\frac{n-1}{n}$ multiplizieren
- Berechnung von Stichprobenvarianz als Schätzung für Grundgesamtheit lässt sich vereinfachen:

$$\hat{\sigma}^2 = s^2 \times \frac{n}{n-1} = \frac{\sum (x_i - \bar{x})^2}{n} \times \frac{n}{n-1} = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

• (geschätzte) Standardabweichung in der Population ist:

$$\hat{\sigma}_{\chi} = \sqrt{s^2 \cdot \frac{n}{n-1}}$$

Irrelevant in großen Stichproben

Warum reichen Punktschätzungen nicht?

- Schätzungen basieren auf Zufallsstichproben
- Gaukelt falsche Sicherheit vor
- (Kennwerte in Stichprobe sind Zufallsvariablen kontinuierliche Verteilung um wahren Wert)
- Wahrscheinlichkeit wahren Wert exakt zu treffen nahe 0
- Stattdessen: Wahrscheinlichkeit, Stichprobenwert aus einem bestimmten Intervall zu erhalten
- → Intervallschätzung

Intervallschätzung

- Ergänzung zur Punktschätzung
- Berechnung und Angabe eines Intervall, das mit großer Wahrscheinlichkeit μ einschließt

- Vertrauens- bzw. Konfidenzintervall: Bereich, in dem mit einer gewissen (vorab bestimmten)
 Wahrscheinlichkeit der wahre Wert vermutet wird
- Diesen Bereich können wir auf Basis unserer Vorkenntnisse berechnen!

Plan heute

- Punktschätzung und Intervallschätzung
- Einführung Konfidenzintervall
- Einführung Hypothesentests

Vom Grenzwertsatz zum Konfidenzintervall

- Normalverteilung der Stichprobenmittelwerte um μ
- Bekannte Eigenschaften der Normalverteilung:
 - Symmetrisch
 - 95% der Fläche (=Wahrscheinlichkeit) $\pm 1,96$ Standardabweichungen vom Mittelwert
 - 99% der Fläche (=Wahrscheinlichkeit) $\pm 2,58$ Standardabweichungen vom Mittelwert
 - Weitere Integrale aus (z-)Tabelle ablesbar

Wh.: Standardnormalverteilung

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu-1.96\cdot\sigma;\mu+1.96\cdot\sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Konfidenzintervall

- Angabe eines Bereichs (Intervall), in dem μ sehr wahrscheinlich liegt bzw. vermutet wird
- 95%-Konfidenzintervall (Konvention)
 - In 95 % aller Stichproben ist \bar{x} nicht mehr als 1,96 Standardfehler von μ entfernt
 - Dh.: Ein Intervall von 1,96 Standardfehlern um \bar{x} schließt μ mit einer Sicherheit von 95 % ein
 - Warum? Nur 2,5 % der Fläche der Standardnormalverteilung liegt oberhalb von z=1,96 und 2,5 % unterhalb von z=-1,96
- \rightarrow Verbleibende 5% : "Irrtumswahrscheinlichkeit" α

95%-Konfidenzintervall

Abbildung 21.7: 95 %-Konfidenzintervall um den Stichprobenmittelwert $\bar{\mathbf{x}}$

In Anlehnung an Behnke/Behnke (2006)

Konfidenzintervall

- Zur Berechnung der unteren und der oberen Grenze des Konfidenzintervalls benötigen wir \bar{x} und den (geschätzten) Standardfehler
- Ausblick: Berechnung in Statistik II

Plan heute

- Punktschätzung und Intervallschätzung
- Einführung Konfidenzintervall
- Einführung Hypothesentests

Wh. Hintergrund

- In der quantitativen Sozialforschung entwickeln wir Hypothesen, die verallgemeinern
 - Beispiele:
 - "Je geringer der soziale Status im Rentenalter desto schlechter der Gesundheitszustand"

Wh. Forschungsprozess

Auswahl/Formulierung des Auftrag: (relevantes) **Forschungsproblems** Phänomen der extern oder selbst gestellt soz. Realität **Theoriebildung**: grundlegende Gedanken über Ursache / Wirkungsverhältnis Konzeptspezifikation: Definition zentrale Begriffe Forschungsdesign **Operationalisierung** Formulierung Hypothesen Indikatorenbildung • Festlegung der Untersuchungsform Methode Datengewinnung Datengewinnung, -erhebung Auswahl Untersuchungseinheiten **Datenerfassung**, -bereinigung Messmethode und -aufbereitung Datenanalyse, Überprüfung Hypothesen Ergebnisdarstellung / **Publikation**

Wh. Hypothesen

Überprüfung:

- Typischerweise ist es nicht möglich, alle Individuen in der Grundgesamtheit zu analysieren
- Hypothesen werden auf Basis einer Stichprobe untersucht
- Inwiefern darf verallgemeinert werden? → Inferenzstatistik

Wh. Hypothesen

- Aussagen, in denen über einen Sachverhalt bzw.
 über den Zusammenhang zwischen zwei oder mehr Sachverhalten Vermutungen angestellt werden
- engerer Ausgangspunkt (quantitativer) empirischer Forschung
 - vorläufig noch nicht bewährte Aussagen über die soziale Realität
 - Überprüfbar und falsifizierbar
 - Probabilistisch statt deterministisch
- Allgemeingültig, gehen über Einzelfall hinaus
- Formalstruktur: Wenn/Dann; Je/Desto (aV/uV)

Statistisches Testen

- Wichtiges Teilgebiet der Inferenzstatistik
- Hintergrund: Zentraler Grenzwertsatz
- Prüft vorab formulierte Hypothesen mit statistischen Verfahren
- Wie wahrscheinlich ist es, dass ein bestimmter empirischer Sachverhalt der Stichprobe "zufällig" zustande gekommen ist?
- Angabe zur "statistischen Signifikanz"

Statistische Tests und Hypothesenprüfung

- Antwort auf die Frage: Wie lassen sich mit Stichproben Hypothesen über eine (normalerweise unbekannte) Grundgesamtheit überprüfen?
- Z.B. Prüfen von Unterschiedshypothesen durch Mittelwertvergleiche (t-test)
 - Unterscheiden sich Frauen und Männer bezüglich der Höhe ihres Gehalts?
 - Hat eine bestimmte didaktische Maßnahme zur Steigerung der Mathekompetenz Erfolg gehabt? (experimentelles Setting)

Statistische Signifikanz

- Wenn Stichprobenergebnisse mit einer bestimmten Sicherheit nicht durch Zufall zustande gekommen sind spricht man von statistischer Signifikanz
- Damit lassen sich (mit einer bestimmten Irrtumswahrscheinlichkeit) Rückschlüsse von der Stichprobe auf die Grundgesamtheit ziehen.

Statistische Tests und Hypothesenprüfung

- Testverfahren u.a.
 - Mittelwertunterschiede bei bekannter Streuung in GG (z-Test)
 - Mittelwertunterschiede für unabhängige/abhängige
 Stichproben (t-Test)
 - χ^2 -Test auf Unabhängigkeit
- Zahlreiche weitere Testverfahren mit identischer Logik (Regressionskoeffizienten)

→ Statistik 2