

Generalised mixed effects models for changepoint analysis of biomedical time series

Rebecca Killick(r.killick@lancs.ac.uk) Joint work with Mark Fiecas and Kathryn Cullen (University of Minnesota) Paris, July 2025

Outline

- Putting us all on the same page
- Motivation from Biomedical Time Series
- A generalised mixed effects model with changepoints
- Simulations + Data Applications
- Summary

What are changepoints? Mathematical Sciences | Lancaster University

For data y_1, \ldots, y_n , if a changepoint exists at τ , then y_1, \ldots, y_{τ} differ from $y_{\tau+1}, \ldots, y_n$ in some way.

There are many different types of change.

Research Areas

- Online vs offline
- Single change vs multiple changes
 - Multiple changepoint search
- Univariate and multivariate
- Parametric and non-parametric
- Frequentist and Bayesian
- Types of change
- Inference
 - Detection vs localisation
 - Confidence sets
 - Downstream analysis
 - Theoretical and application driven
- Others I have missed!

This talk

- Online vs offline
- Single change vs multiple changes
 - Multiple changepoint search
- Univariate and multivariate
- Parametric and non-parametric
- Frequentist and Bayesian
- Types of change first order and second order random effect models
- Inference
 - Detection vs localisation
 - Confidence sets ask me later if interested
 - Downstream analysis
 - Theoretical and application-driven
- Others I have missed!

FMRI - BRIDGES

Brain Imaging Development of Girls' Emotion and Self (BRIDGES) Study

- Resting state data from 137 girls, no NSSI to severe NSSI.
- 56 spatial locations, 4 regions of interest
- 904 observations from each individual

At home monitoring

The Howz Smart System:

- Discreet passive sensors.
- Measure activity in the home.
- Learn about your daily routine.

Objective:

- Identify abnormal behaviour:
- Indicate a decline in health or well-being in an older person.

Data:

- 4 people
- Binary yes/no activity in 15 mins
- 8 weeks (56 days) of activity data

Paris, July 2025

Commonalities

- Mutiple people
- Repeated observations per person
- Common structure with random variation across people
- Potential changes over time

Commonly used model = random effects model

$$\mathbb{E}(\mathbf{y}_{i,j}) = \mu + \mu_i + \epsilon_{i,j}$$

GLMER

Generalized Linear Mixed Effects Regression (GLMER) model.

$$y_i|b \sim \operatorname{Distr}\left(\mu_i, \sigma^2\right)$$
 (1)

$$g(\mu) = X\beta + Zb, \tag{2}$$

- X external regressors with coefficients β
- Distr conditional distribution
- Z random effects with coefficients b

Standard GLMER estimators work well.

GLMEC

$$y_i|b \sim \operatorname{Distr}\left(0, \sigma_i^2\right)$$
 (3)

(4)

We want to write the covariance in a similar random effects form.

GLMEC

For Uniform-block (UB) structure we get

$$\Sigma = \widetilde{\Sigma}_{\epsilon} \circ \mathsf{Id}(\mathbf{k}) + \Sigma_{\mu} \circ \mathsf{J}(\mathbf{k}). \tag{5}$$

where:

- $\widetilde{\Sigma}_{\epsilon} = \operatorname{diag}(\sigma^2_{\epsilon,1}, \dots, \sigma^2_{\epsilon,K})$
- $Id(k) = Bdiag(Id_{k_1}, ..., Id_{k_K})$, where $Bdiag(\cdot)$ constructs a block-diagonal matrix
- $\Sigma_{\mu} = (b_{ij})$ be a $K \times K$ covariance matrix
- $J(\mathbf{k}) = (\mathbf{1}_{k_u \times k_v})$
- o be the block Hadamard product

GLMEC

For Heterogeneous-block (HB) structure we get

$$\Sigma = \widetilde{\Sigma}_{\epsilon} + \Sigma_{\mu} \circ \mathbf{J}(\mathbf{k}). \tag{6}$$

May be prohibitive for high dimensional (n relative to K)

Estimate parameters by block-wise method of moments (see ArXiV paper).

What now?

Segway

Assume we have time-series data where

$$Y_t | \theta_t \sim N(\theta_t, 1),$$

but where the means, θ_t , are piecewise constant through time.

Inferring Changepoints

We want to infer the number and position of the points at which the mean changes. One approach:

Likelihood Ratio Test

To detect a single changepoint we can use the likelihood ratio test statistic:

$$LR = \max_{\tau} \{ \ell(y_{1:\tau}) + \ell(y_{\tau+1:n}) - \ell(y_{1:n}) \}.$$

We infer a changepoint if $LR > \beta$ for some (suitably chosen) β . If we infer a changepoint its position is estimated as

$$\tau = \arg \max \{ \ell(y_{1:\tau}) + \ell(y_{\tau+1:n}) - \ell(y_{1:n}) \}.$$

This can test can be repeatedly applied to new segments to find multiple changepoints.

Likelihood Ratio Tests

Define m to be the number of changepoints, with positions $\tau = (\tau_0, \tau_1, \dots, \tau_{m+1})$ where $\tau_0 = 0$ and $\tau_{m+1} = n$.

Then one application of the Likelihood ratio test can be viewed as

$$\min_{m \in \{0,1\}, \tau} \left\{ \sum_{i=1}^{m+1} \left[-\ell(y_{\tau_{i-1}:\tau_i}) \right] + \beta m \right\}$$

Repeated application is thus aiming to minimise

$$\min_{m,\tau} \left\{ \sum_{i=1}^{m+1} \left[-\ell(y_{\tau_{i-1}:\tau_i}) \right] + \beta m \right\}$$

Problem

- How many changes?
- Where are the changes? 2^{n-1} possible solutions!

PELT in a nutshell

- Dynamic programming allows us to only worry about the location of the *last* change.
- Pruning means that as we go through the data we are smart about which locations are potential last change locations.

PELT: Pruning

Let 0 < t < s < T, if

$$F(t) + \mathcal{C}(y_{(t+1):s}) < F(s)$$

then at any future time T > s, t can never be the optimal last changepoint prior to T. We can prove that, under certain regularity conditions, the expected computational complexity will be $\mathcal{O}(n)$.

Final approach

- Use the GLMER or LMEC likelihood as the cost function for PELT
- Other multiple changepoint search options are available :-)

Practical considerations

- What can change?
- Minimum segment length theoretical minimum? Covariance estimation is hard!
- Penalty for changepoint estimation BIC
- Assume known group structure

Simulations

- n=1000
- K=4 groups, 5 series per group
- Simulate covariances from Wishart distribution and manipulate

Compare to

- Ratio method (Ryan and Killick (2023)), no group structure
- Wild Sparsified Binary Segmentation (Li et al.(2023)), factor model

Single cpt p=20

(a) Single changepoint, p = 20

3 cpts p=20

3 cpts p=60

(a) Multiple changepoints, p = 60

Misspecified groups

(b) Multiple changepoints, misspecified groups, p = 60

Autocorrelation

(c) Multiple changepoints, autocorrelated data, p = 60

Summary of sims

- LMEC-HB best overall
- Mild misspecification doesn't affect cpt detection
- No accounting for autocorrelation is bad

FMRI

Dynamic FC, Segment 1

PCC, Left

Dynamic FC, Segment 3

PCC, Left

PCC, Right

Howz

Howz

Summary

- We all love changepoint research but in potentially different ways
- I'm excited to hear about the wide range of activity in Paris
- Presented a generalised random effects model with changepoints
- Showed its utility in two very different data settings
- I enjoy working with messy real life data . . .
- ... as often it sparks my next research challenge.