Doctor Consortium for WACV 2019

69-425 Waikoloa Village, HI 96738 January 8-10, 2019

Phd Candidate: Omar Vidal Pino
Advisor: Mario F. M. Campos
Co-advisor: Erickson R. Nascimento

Doctoral Thesis Title: Global Semantic Description of objects based on Prototype Theory¹

Problem Statement. How to describe and stand for objects, semantically? Can a model of perception system be developed in which objects are described using the same semantic features learned to identify and classify them?

Proposed Solution. This research aims to build a model for the global semantic description of objects based on image features learned to classify them. We introduce a novel semantic description approach based on the foundation of Prototype Theory [2, 3, 15, 16, 19]. Inspired by the human approach used for category semantic representation [14, 17, 18], we propose a novel model that *encodes*, *stores* and *retrieves* the *central semantic meaning* of the objects category: the prototype. Our prototype-based description model encodes and stores the semantic meaning of an object, while describing its features using semantic prototypes computed with Convolutional Neural Networks (CNNs).

Main Contributions. To achieve this goal, we rely on cognitive semantics studies related to Prototype Theory to introduce:

- i) Semantic prototype: a mathematical model to code and stand for semantic prototypes of objects images categories. Furthermore, we proposed a straightforward algorithm to compute those semantic prototypes using pre-trained CNN-classification models.
- ii) Semantic distance: a semantic distance metric² as similarity measure between objects feature extracted from images with CNN-classification models. We proof that our semantic distance function (δ) is a metric³ in CNN-features set. Also, we show that proposed semantic distance metric (prototipical distance) can be understood as a object typicality score within a category (typicality score $(o) = 1/\delta(o)$).
- iii) CNN-Prototype Model: We proposed a CNN-Prototype Model (semantic prototypes + semantic distance) that is able to describe the internal semantic structure of objects categories using CNN-models. We show that our CNN-prototype model can correctly interpret the object CNN-features and can position it semantically within the category, keeping a prototypical organization [14, 17, 18].
- iv) Prototype-based description model: The proposed prototype-based description model uses semantic prototypes to create discriminative signatures that semantically describe an object, highlighting its most distinctive features within the category. Our Global Semantic Descriptor (GSDP) builds low-dimensional and semantically interpretable signatures encoding that significantly outperforms state-of-the-art global descriptors [1, 5, 6, 9, 10, 20, 21] in terms of cluster metrics (See WACV2019 Accepted paper [11]).
- v) Semantic classification of object images: (Ongoing research) Using our CNN-Prototype Model, we looking forward to introduce the prototype-based concept of categorization [4, 12, 13, 15, 18, 22] on CNN-classification models.

 $^{^1\}mathrm{See}$ the project page: <code>https://www.verlab.dcc.ufmg.br/global-semantic-description</code>

²Based on the psychological distances between two stimuli [7] and the semantic distance of MPM Model [8, 22].

 $^{^{3}\}delta$ function satisfies the axioms of non-negativity, identity of indiscernible, symmetry and triangle inequality.

References

- [1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, volume 1, pages 886–893. IEEE, 2005.
- [2] D. Geeraerts. Diachronic prototype semantics: A contribution to historical lexicology. Oxford University Press, 1997.
- [3] D. Geeraerts. Theories of lexical semantics. Oxford University Press, 2010.
- [4] D. Homa and R. Vosburgh. Category breadth and the abstraction of prototypical information. Journal of Experimental Psychology: Human Learning and Memory, 2(3):322, 1976.
- [5] M.-K. Hu. Visual pattern recognition by moment invariants. *IRE Transactions on Information Theory*, 8(2):179–187, 1962.
- [6] M. Li. Texture moment for content-based image retrieval. In Multimedia and Expo, 2007 IEEE International Conference on, pages 508-511. IEEE, 2007.
- [7] D. L. Medin and M. M. Schaffer. Context theory of classification learning. *Psychological review*, 85(3):207, 1978.
- [8] J. P. Minda and J. D. Smith. Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 28(2):275, 2002.
- [9] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 24(7):971–987, 2002.
- [10] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. *International Journal of Computer Vision (IJCV)*, 42(3):145–175, 2001.
- [11] O. V. Pino, E. R. Nascimento, and M. F. M. Campos. Prototypicality effects in global semantic description of objects. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Hawaii, USA, January 2019.
- [12] M. I. Posner and S. W. Keele. On the genesis of abstract ideas. *Journal of Experimental Psychology*, 77(3,):353–363, 1968.
- [13] S. K. Reed. Pattern recognition and categorization. Cognitive psychology, 3(3):382–407, 1972.
- [14] E. Rosch. Cognitive Development and the Acquisition of Language, chapter On the internal structure of perceptual and semantic categories. Academic Pres, New York, 1973. 111-144.
- [15] E. Rosch. Cognitive representations of semantic categories. *Journal of Experimental Psychology: General*, 104(3):192, 1975.
- [16] E. Rosch. Principles of categorization. Foundations of Cognitive Psychology: Core Readings, page 251, 2002.
- [17] E. Rosch and B. B. Lloyd. *Cognition and categorization*, volume 1. Lawrence Erlbaum Associates Hillsdale, NJ, 1978.
- [18] E. Rosch and C. B. Mervis. Family resemblances: Studies in the internal structure of categories. Cognitive psychology, 7(4):573–605, 1975.
- [19] E. H. Rosch. Natural categories. Cognitive psychology, 4(3):328–350, 1973.
- [20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [21] Y.-j. Song, W.-b. Park, D.-w. Kim, and J.-h. Ahn. Content-based image retrieval using new color histogram. In *Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)*, pages 609–611. IEEE, 2004.
- [22] S. R. Zaki, R. M. Nosofsky, R. D. Stanton, and A. L. Cohen. Prototype and exemplar accounts of category learning and attentional allocation: A reassessment. *Journal of Experimental Psychology: Learning, Memory and Cognition*, 29(6):1160–1173, 2003.