Enrichment stage 1:

1. In the diagram below, points A, B and C lie on a circle. The length of the chord AB is a constant, k.

JE MATHS MATHS JE ! k

JE MATHS JE MATHS

Let $\angle ACB = \alpha$ and $\angle ABC = \theta$ respectively.

(a) Explain why α is a constant?

JE MATHS

JE MATHS

(b) If S is the sum of the lengths of the chords AC and BC, show that S is given by $S = \frac{k}{\sin \alpha} \left[\sin \theta + \sin(\theta + \alpha) \right].$

JE MATHS

- JE MATHS
- (c) Find the expression for S, in simplified form when $\theta = \left(90^{\circ} \frac{\alpha}{2}\right)$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 1:

1. (a)

The length of a chord AB is a constant, k. (Given)

Angles subtended at the circumference on the same side of the circle by equal chords are equal. α is a constant.

(b)
$$^{\text{JB MATHS}}$$
 $^{\text{JB MATHS}}$ $^{\text{JB MATHS}}$ $^{\text{JB MATHS}}$ $^{\text{CA/sin}\theta} = \text{k/sin}\alpha$ $^{\text{CA}} = \text{ksin}\theta/\text{sin}\alpha$ $^{\text{CB/sin}[180^{\circ} - (\theta + \alpha)]} = \text{k/sin}\alpha$ $^{\text{CB/sin}[\theta + \alpha)} = \text{k/sin}\alpha$ $^{\text{CB/sin}(\theta + \alpha)} = \text{k/sin}\alpha$ $^{\text{CB}} = \text{ksin}(\theta + \alpha)/\text{sin}\alpha$ $^{\text{CB}} = \text{ksin}(\theta + \alpha)/\text{sin}\alpha$ $^{\text{S}} = \text{CA} + \text{CB}$ $^{\text{S}} = \text{k/sin}\alpha \times [\sin\theta + \sin(\theta + \alpha)]$ (c) $^{\text{CO}} = \text{k/sin}\alpha \times [\sin(90^{\circ} + \alpha/2) + \sin(90^{\circ} + \alpha/2)]$

 $S = k/\sin\alpha \times [\sin(90^{\circ} + \alpha/2) + \sin(90^{\circ} + \alpha/2)]$ $= k/\sin\alpha \times [\sin(90^{\circ} - \alpha/2) + \sin(180^{\circ} - 90^{\circ} - \alpha/2)]$ $= k/\sin\alpha \times [\sin(90^{\circ} - \alpha/2) + \sin(90^{\circ} - \alpha/2)]$ $= 2k/\sin\alpha \times \cos\alpha/2$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS