







# PostgreSQL on Kubernetes



12-07-2017



## **TABLE OF CONTENTS**

The past

The present

And the future?

# **PostgreSQL**



Powerful, open-source, relational database

MVCC, lock free reads, great at concurrency

Transactional DDL!

Safe to modify tables in production (yes!)

Solid owner and role system for privileges

Highly customizable

Supports PL/pgSQL, Python, JS V8



### **ZALANDO AT A GLANCE**

>300<sub>databases</sub>
In data centers

>100
Cloud databases
Managed by DB team

>50 staging databases in Kubernetes



## Running PostgreSQL in two data centers

Bare metal with LXC containers

Single Git repository with all configs

Database discovery service

Script to initialize new nodes

Init from slave to lower impact

Time delayed slaves in one data center

PostgreSQL versions: 9.3+











## Git-driven workflow in data centers



# **PostgreSQL on AWS**

Faster database provisioning

Flexible hardware configurations

CPU, Memory, Storage, Price

Docker is enforced

Expected more node failures

Needs more automation



## Patroni to the rescue

PostgreSQL management "daemon"

Platform independent using callback scripts

Implemented in Python

Master election (using ETCD, ...)

Zalando's first open-source repo reaching 1000 🌣



# Spilo: Packaging Patroni in Docker

Configuration via ENV variables

From self contained for AWS deployment

Including all PG versions since 9.3

```
115 # Install patroni and WAL-e
116 ENV PATRONIVERSION=1.2.5
117 ENV WALE VERSION=1.0.3
118 RUN export DEBIAN_FRONTEND=noninteractive \
         export BUILD_PACKAGES="python3-pip" \
         && apt-get update \
         && apt-get install -y \
                 # Required for wal-e
                 daemontools lzop \
                 # Required for /usr/local/bin/patroni
                 python3 python3-setuptools python3-pystache python3-prettytable python3-six \
                 ${BUILD_PACKAGES} \
         && pip3 install pip --upgrade \
         && pip3 install --upgrade patroni==$PATRONIVERSION \
                 gcloud boto wal-e==$WALE_VERSION \
         # https://github.com/wal-e/wal-e/issues/318
         && sed -i 's/^\( for i in range(0,\) num retries):.*/\1 100):/q' /usr/local/lib/pyt
         # Clean up
         && apt-get purge -y ${BUILD_PACKAGES} \
         && apt-get autoremove -y \
         && apt-get clean \
         && rm -rf /var/lib/apt/lists/* /root/.cache
142 # install etcdctl
143 ENV ETCDVERSION 2.3.8
```

# Try it locally!

docker run -p 8080:8080 registry.opensource.zalan.do/acid/spilo-9.6:1.2-p27

# Spilo deployment on AWS



# Spilo-based deployments in the cloud





# Why not AWS RDS or Aurora PostgreSQL



Not an easy answer:)

#### **Full control**

- Independent of cloud provider
- Real super user available
- Custom extensions
- Streaming/WAL replication in and out
- Local storage not supported on RDS

Costs? Cost of development? ...



# **Costs: RDS vs Spilo**

|            | RDS Multi AZ + 100GB | Spilo (2x EC2 + 100GB gp2) |
|------------|----------------------|----------------------------|
| m4.large   | 335€                 | 219€                       |
| m4.2xlarge | 1300€                | 750€                       |
| m4.4xlarge | 2600€                | 1460€                      |

+ ELB Traffic costs for Spilo (RDS can be VPC internal)

PostgreSQL as a Service



## Goals



#### **Automation**

- Get rid of Jira and users waiting
- Convenient way to get new cluster
- Enable users to modify cluster setup

#### Integration

- Works with deployment pipeline
- User and Application user provisioning
- Monitoring out of the box



# **Kubernetes**





Kelsey's guide to running traditional databases on Kubernetes. Strongly consider using a managed service.

6:56 PM - 20 Jan 2017

92 Retweets 175 Likes

















## The Stateful Set

```
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  labels:
    application: spilo
 name: zmon-nc-10-3
 namespace: default
spec:
  replicas: 2
  selector:
   matchLabels:
      application: spilo
  serviceName: zmon-nc-10-3
  template:
   metadata:
    spec:
      containers:
      - env:
        - name: ETCD HOST
          value: etcd.o.z.d
        image: r.o.z.d/acid/spiloprivate-10:1.3-p2
```

Building block for stateful services

- Stable host or pod names
- Stable assignment of volumes
- Scale factor
- Ordering during upstart and scaling

Useful for: Cassandra, ETCD, PostgreSQL, ...



## **Storage on Kubernetes**

```
spec:
                                                                    Volumes and Volume claims
  containers:
  - env:
                                                                    Auto provisioning of volumes in the Cloud
    [ .. ]
    volumeMounts:
    - mountPath: /home/postgres/pgdata
                                                                    EBS volumes in our case
      name: pgdata
[..]
                                                                    No resize support in K8S itself
volumeClaimTemplates:
  - metadata:
                                                                    Volumes per failure domain (AZ)
      annotations:
        volume.alpha.kubernetes.io/storage-class: default
      name: pgdata
    spec:
      accessModes:
      - ReadWriteOnce
                                                                    Local storage in 1.7
      resources:
        requests:
          storage: 10Gi
```

# Third party resources

Store user-defined data in K8S

Create your own "types"

Big YAML "blob"

Watchable by applications via K8S API

Changes in 1.7 to Custom Resource Definition



# Cluster manifest with PostgreSQL configuration

```
apiVersion: acid.zalan.do/v1
kind: Postgresql
metadata:
  labels:
    team: acid
  name: acid-newdatabase-01
  namespace: default
spec:
  allowedSourceRanges:
  - 192.168.1.0/24
  numberOfInstances: 2
  postgresql:
    version: "9.6"
    parameters:
      shared buffers: 512MB
      max connections: 128
  teamId: acid
  volume:
    size: 10Gi
```

payload



# The "postgres-operator"



Application to manage PostgreSQL clusters

Observes 3rd party "postgres" manifests

Spawns and modifies new clusters

Syncs and provisions roles

Handles volume resize, incl. Resize2fs

Also responsible for e.g. updating Docker images





## Create a new PostgreSQL cluster

#### Cluster YAML definition

```
kind: "Postgresql"
apiVersion: "acid.zalan.do/v1"
metadata:
   name: "guild-24x7-new-cluster"
   namespace: "default"
   labels:
        team: guild-24x7
   teamId: "guild-24x7"
    volume:
        size: "10Gi"
    numberOfInstances: 1
   postgresql:
        version: "9.6"
   allowedSourceRanges:
   # IP ranges to access your cluster go here
```

#### Cluster configuration

| Database Name         | new-cluster               |      |  |
|-----------------------|---------------------------|------|--|
| Owning team           | guild-24x7 ▼              |      |  |
| PostgerSQL Version    | 9.6 ▼                     |      |  |
| DNS Name:             | new-cluster.acid.staging. |      |  |
| Number of instances   | 1                         |      |  |
| Replica Load Balancer | Enable Replica ELB        |      |  |
| Volume Size           | 10                        | Gi   |  |
| Office/DC IP ranges   | Datacenter 1              |      |  |
|                       | Datacenter 2 Berlin       |      |  |
| AWS NAT IPs           | 1.                        | / 32 |  |
| AWS WATERS            | 2.                        | / 32 |  |
|                       | 3.                        | / 32 |  |
|                       | 5.                        | 7 32 |  |
| Odd Host              | IP                        | / 32 |  |



## Waiting for master to become available

PostgreSQL cluster status **zmon-nc-10-3** 

#### Cluster YAML definition

```
apiVersion: acid.zalan.do/v1
kind: Postgresql
metadata:
  creationTimestamp: '2017-06-07T16:31:33Z'
  labels:
   team: zmon
  name: zmon-nc-10-3
  namespace: default
  allowedSourceRanges:
  numberOfInstances: 1
  postgresgl:
   version: '10'
  teamId: zmon
  volume:
   size: 10Gi
status: Running
```

#### Checking status of Cluster





# Cluster create completed

PostgreSQL cluster status zmon-nc-10-3 and

#### Cluster YAML definition

```
apiVersion: acid.zalan.do/v1
kind: Postgresgl
metadata:
 creationTimestamp: '2017-06-07T16:31:33Z'
 labels:
   team: zmon
 name: zmon-nc-10-3
 namespace: default
  allowedSourceRanges:
  numberOfInstances: 1
  postgresgl:
   version: '10'
  teamId: zmon
  volume:
   size: 10Gi
status: Running
```

#### Checking status of Cluster





# **Deployment to production**

YAML file — Git commit — Deployment — K8S apply

## **Employee and application roles**

Employee roles get created based on owning teams

Employee login via oauth2 tokens, no credential sync, MFA

#### Application roles:

- Declared in manifest
- Credentials stored in kubernetes secret
- Applications can mount secret
- Credentials don't leave the system

# **Monitoring**

# **Integration with ZMON**

#### My Team's clusters (2)

| Team | Instances | Name                        | Monitoring   |
|------|-----------|-----------------------------|--------------|
| zmon | 1         | zmon-nc-10-3                | Mode metrics |
| zmon | 2         | zmon-new-cluster-replica-lb | Mode metrics |

#### All clusters (169)

search:

| Team         | Instances | Name                 | Monitoring                                             |
|--------------|-----------|----------------------|--------------------------------------------------------|
| ACID         | 2         | acid-testcluster     | Node metrics      ☐ Diskspace      Tables      Indexes |
| ACID         | 2         | acid-testcluster-42  | Node metrics      ☐ Diskspace      Tables      Indexes |
| DBAAS        | 3         | contentbrokerpicasso | Node metrics      ☐ Diskspace      Tables      Indexes |
| Gerrymanders | 2         | prodstoreaxiom13     | Node metrics      ☐ Diskspace      Tables      Indexes |
| Gerrymanders | 3         | productstoreaxiom1   | Node metrics      ☐ Diskspace      Tables      Indexes |
| Gerrymanders | 2         | productstoreaxiom5   | Node metrics      ☐ Diskspace      Tables      Indexes |
| Gerrymanders | 3         | productstoreaxiom9   | Node metrics      Diskspace      Tables      Indexes   |



# Monitoring with pgview.web





## **EC2 Instance Metrics via ZMON**





#### Learnings on AWS: not only credits!

**EBS IOPS credits** 

CPU Credits (t2)

Start/Stop to change instance type (EBS backed only!)

Prepare for instance stops: Retirement, rolling upgrades,...



Postgres Operator

github.com/zalando-incubator/postgres-operator

Spilo HA Docker image

github.com/zalando/spilo

Patroni

github.com/zalando/patroni

Web-based monitoring via Postgres background worker

github.com/CyberDem0n/bg\_mon

PAM Oauth2 for PostgreSQL

https://github.com/zalando-incubator/pam-oauth2

Postgres Operator blog post



# Thank you!

