Midterm Exam S1 Computer Architecture

Last name: Group:	

Exercise 1 (4 points)

Answer on the worksheet

1. Simplify the following expressions. Give each result in a power-of-two form. Write down the result only (do not show any calculation).

Expression	Result
$\frac{32^8 \cdot 8^4 \cdot 128^7}{((1,999+49)^3 \cdot 16^{-5})^5}$	
$\frac{((8,192\cdot16^{11})^5\cdot65,536^{-8})^3}{(32^{-5}\cdot(500+12))^{-5}\cdot4,096}$	

- 2. How many bits do the following values contain? <u>Use a power-of-two notation</u>. Write down the result only (do not show any calculation).
 - 128 Mib =
 - 2 KiB =
- 3. How many bytes do the following values contain? Use binary prefixes (Ki, Mi or Gi). Choose the most appropriate prefix so that the integer numerical value will be as small as possible. Write down the result only (do not show any calculation).
 - 128 Gib =
 - 2³¹ bits =

Duration: 1 hr. 30 min.

Exercise 2 (4 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}). Write down the result only (do not show any calculation).

Number to Convert	Source Form	Destination Form	Result
11110001.0001	Binary	Decimal	
3FA.1	Hexadecimal	Decimal	
125.4	Decimal	Hexadecimal (2 digits after the point)	
52.0625	Decimal	Binary	
6142.153	Base 8	Hexadecimal	
7.25	Decimal	Base 5 (3 digits after the point)	
67	Base 9	Base 3	
1110101011.111011	Binary	Hexadecimal	

Exercise 3 (4 points)

Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value. Write down the result only (do not show any calculation).

Operation	Diname Dagult	Decima	l Value
Operation	Binary Result	Unsigned	Signed
01100110 - 10011011			
10001100 + 01111110			
01111011 + 10000011			
10010011 - 10001101			

Midterm Exam S1 2/4

Exercise 4 (4 points)
Perform the operations below. Show all calculations.

Bas	e 2												Base 16		•			
			1	0	1	1		0	1	1	0	1		F	8	С	С	
	_	-		1	0	1		0	0	1	1	0	+	3	2	В	В	
		- Commenter						İ										
															,			
								***************************************							M-1			
			7	*														
Bas	e 2												Base 8					
	1	0	0	0	1	1	1	1	I	1	0	1		3	7	3	4	
													+	4	7	2	5	
					1													
	į.																	
							E E											

Midterm Exam S1 3/4

Midterm Exam S1 4/4

Contrôle S1 Architecture des ordinateurs

Reponure exclusivement sur le sujet		Duree: In Su
Nom:	Prénom:	Groupe :

Exercice 1 (4 points)

1. Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat
$\frac{32^8 \cdot 8^4 \cdot 128^7}{((1999 + 49)^3 \cdot 16^{-5})^5}$	
$\frac{((8192 \cdot 16^{11})^5 \cdot 65536^{-8})^3}{(32^{-5} \cdot (500 + 12))^{-5} \cdot 4096}$	

- 2. Donnez, <u>en puissance de deux</u>, le nombre de bits que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).
 - 128 Mib =
 - 2 Kio =
- 3. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes. <u>Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière</u>. Le résultat seul est attendu (pas de détail).
 - 128 Gib =
 - 2³¹ bits =

Exercice 2 (4 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas ¼ ou 2⁻²). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
11110001,0001	Binaire	Décimale	
3FA,1	Hexadécimale	Décimale	
125,4	Décimale	Hexadécimale (2 chiffres après la virgule)	
52,0625	Décimale	Binaire	
6142,153	Base 8	Hexadécimale	
7,25	Décimale	Base 5 (3 chiffres après la virgule)	
67	Base 9	Base 3	
1110101011,111011	Binaire	Hexadécimale	

Exercice 3 (4 points)

Effectuez les opérations suivantes en binaire (les deux opérandes et le résultat sont codés sur 8 bits). Convertissez le résultat en une valeur décimale non signée et signée. Si un dépassement apparaît, écrire « ERREUR » à la place de la valeur décimale. Le résultat seul est attendu (pas de détail).

Opération	Résultat binaire	Valeur de	écimale
Operation	Resultat Dinaire	Non signée	Signée
01100110 - 10011011			,
10001100 + 011111110			
01111011 + 10000011			
10010011 - 10001101			

Contrôle S1 2/4

Exercice 4 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Bas	e 2												Base 16					
			1	0	1	1		0	1	1	0	1		F	8	С	С	
		•		1	0	1		0	0	1	1	0	+	3	2	В	В	
	-								am.									
															a 11.1804.1.1.1.1			
								- Land										
							L. Caracteria		~~~									
3as	e 2			varlamen fratabun farra				,,					Base 8					
	1	0	0	0	1	1	1	1	1	1	0	1		3	7	3	4	
													+	4	7	2	5	
		i	i	i	1	I					ı			1 ,		<u> </u>	<u> </u>	·
							called the delited lead :											
								ALL PROPERTY OF THE PROPERTY O							The state of the s			

Contrôle S1 3/4

4/4

Contrôle S1

EPITA /	InfoS1

NOM: Prénom:

Novembre 2017

Groupe:.....

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points – pas de points négatifs pour le QCM)

- A. Choisissez la bonne réponse :
- 1. Une différence de potentiels entre 2 points est aussi appelée :

a- Une intensité

c- Une puissance

b- Une tension

d- Une conductance

2. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

a- VRAI

b- FAUX

3. Le courant qui entre dans un générateur a une intensité plus faible que celle de celui qui en ressort.

a- VRAI

b- FAUX

4. Dans le schéma ci-dessus, on a les courants suivants :

$$I_1 = 5mA$$
; $I_2 = 1mA$; $I_3 = 1mA$; $I_4 = -3mA$

Calculer le courant I.

a- I = 4 mA

c- $I = 10 \, mA$

b- I = 2 mA

d-I=8 mA

5. Quand on associe 2 résistances en parallèle, on conserve :

a- Le courant qui les traverse

c- Rien du tout

b- la tension à leurs bornes

B. Soit des résistances de valeurs $R_1=1\,\Omega$ et $R_2=1{\rm k}\Omega$. Calculer les résistances équivalentes :

1. R_2 et R_2 en série

2. R_1 et R_2 en série

3. R_1 et R_1 en parallèle

4. 10 résistances R_1 en série

5. 10 résistances R_2 en parallèle

<u>Exercice 2.</u> Généralités et Lois de Kirchhoff (6 points)

On considère le circuit ci-contre dans lequel on suppose connus I et R.

1. Exprimer la résistance R' en fonction de R pour que $U=\frac{R.I}{4}$.

2. Déterminer l'expression de la tension U' en fonction de I et des résistances. (On prendra toujours $U=\frac{RJ}{4}$)

Exercice 3. Lois de Kirchoff (4,5 points)

Soit le circuit suivant :

Remarque préalable : les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma. Redessinez les circuits sur votre brouillon pour pouvoir répondre correctement aux

questions, et, <u>Commencez par les cas qui vous paraissent les plus simples!</u>

La tension E et les 3 résistances sont supposées connues.

Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les tensions demandées ne devront dépendre \underline{QUE} de \underline{E} et/ou des résistances $\underline{R_1}$, $\underline{R_2}$ ou $\underline{R_3}$ (sauf s'ils sont nuls !) et PAS les unes des autres !!

Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!

K ₁	K ₂	U_{1}	U_3	U
0	0			
0	F			
F	0			
F	F	,		

Rq : O = OuvertF = Fermé

Exercice 4. Théorème de superposition (2,5 points)

Soit le circuit suivant : Déterminer l'expression de I_1 dans R_1 en fonction de E_1 , I_3 , R_1 , R_2 , R_3 en utilisant le théorème de superposition.

Exercice 5. Association de résistances (2 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement – On imagine que le courant « entre » par le point A et « ressort » en B)

NAME : Firstname:

EDITA CHILD TO CHILD TO CHATTER

Electronics Midterm

Calculators and extra documents are not allowed. The marking scale is given as a rough guide.

Please answer only on exam sheets. If more space is needed, write on the back.

<u>Exercise 1.</u> Questions about lecture topics (5 points – no negative points for the MCQ)

- A. Choose the correct answers:
- 1. A potential difference between 2 points is called:

a- A current

c- A power

b- A voltage

d- A conductance

2. To measure the current intensity in some dipole, one uses an ammeter which is in series with that dipole.

a- TRUE

b- FALSE

3. The incoming current in a generator has a lower intensity than the outgoing one.

a- TRUE

b- FALSE

4. In the following sketch one considers the currents:

$$I_1 = 5mA$$
; $I_2 = 1mA$; $I_3 = 1mA$; $I_4 = -3mA$

Compute current I.

a-
$$I = 4 mA$$

c-
$$I = 10 \, mA$$

b-
$$I = 2 mA$$

d-I=8mA

5. If two resistors in parallel are associated, one conserves:

a- The current flowing through them

c- Nothing

b- The voltage at their terminals

B. Consider the following resistances $R_1=1\ \varOmega$ and $R_2=1$ k \varOmega . Compute the equivalent resistances: 1. R_2 and R_2 in series 2. R_1 and R_2 in series 3. R_1 and R_1 in parallel 4. 10 resistances R_1 in series 5. 10 resistances R_2 in parallel Exercise 2. Generalities and Kirchhoff's laws (6 points) Let us consider the following circuit for which I and R are known.
resistances: 1. R_2 and R_2 in series 2. R_1 and R_2 in series 3. R_1 and R_1 in parallel 4. 10 resistances R_1 in series 5. 10 resistances R_2 in parallel Exercise 2. Generalities and Kirchhoff's laws (6 points) Let us consider the following circuit for which I and R are known.
2. R_1 and R_2 in series
3. $R_{f 1}$ and $R_{f 1}$ in parallel
4. 10 resistances R_1 in series
resistances: 1. R_2 and R_2 in series 2. R_1 and R_2 in series 3. R_1 and R_1 in parallel 4. 10 resistances R_1 in series 5. 10 resistances R_2 in parallel Exercise 2. Generalities and Kirchhoff's laws (6 points) Let us consider the following circuit for which I and R are known. 1. Express the resistance R' in terms of R to get $U = \frac{RJ}{4}$.
3. R_1 and R_1 in parallel 4. 10 resistances R_1 in series 5. 10 resistances R_2 in parallel Exercise 2. Generalities and Kirchhoff's laws (6 points) Let us consider the following circuit for which I and R are known. 1. Express the resistance R' in terms of R to get $U = \frac{R.I}{4}$.
Exercise 2. Generalities and Kirchhoff's laws (6 points)
<i>i</i> ▲ 1 1 1 1 1 1 1 1
L. Express the resistance R' in terms of R to get $U = \frac{RJ}{4}$. $Q = \frac{RJ}{4}$.

2.	Write the expression of the voltage U' in terms of I and resistances (still consider $U = \frac{R.I}{4}$).

Exercise 3. Kirchhoff's laws (4.5 points)

Consider the following circuit:

Note: the expected answers depend on the states of the switches and are independent from each other: so, this is not a "long" exercise but rather 4 "short" ones starting with the same sketch. Draw it on your draft to answer questions correctly. <u>Start by solving the cases that you find the simplest!</u>

We assume that the voltage \boldsymbol{E} and the three resistances are known.

Fill out the following table (only the result, no computation details). The voltages must depend <u>ONLY on</u> <u>E and/or resistances R_1 , R_2 or R_3 (except if these are vanishing!) and <u>NOT on each other!!</u></u>

Ask yourselves the right questions... you will get the right answers!!

K ₁	K ₂	U_{1}	U_3	U
0	0			
o	F			
F	0			
F	F			

Note : O = Opened C = Closed

Exercise 4. Superposition theorem (2,5 points)

Consider the following circuit:

Determine the expression of I_1 in R_1 in terms of E_1 , I_3 , R_1 , R_2 , R_3 by using superposition theorem.

Exercise 5. Resistors association (2 points)

What is the total equivalent resistance? (Detail your reasoning – let us imagine that the current «goes in» at point A and «goes out» at B)

Physics Midterm 1

Calculators and extra-documents are not allowed. Please answer only on exam sheets

MCQ (4 points)

Circle the correct answer

1- The norm of the net force \vec{R} of two non-vanishing forces \vec{F}_1 and \vec{F}_2 , which are collinear and of opposite orientation, is

a) R=0

b) $R = \sqrt{F_1^2 + F_2^2}$ c) $R = F_1 + F_2$ d) $R = |F_1 - F_2|$

2- The components of the vector force \vec{F}_1 sketched below are:

a) $\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$ b) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$

3- The scalar product between two collinear vectors which have opposite orientation is

a) strictly positive

b) vanishing

c) strictly negative

4- The norm of the vector $\vec{V}_3=\vec{V}_1\wedge\vec{V}_2$, defined such that $(\vec{V}_1,\vec{V}_2)=\alpha$, is

a) $V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$ b) $V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$ c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$

5- The velocity vector reads in polar coordinates:

a) $\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ b) $\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta b}$ c) $\vec{V} = \rho . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

6- In Frenet's basis the elementary curvy coordinate ds reads:

a) $ds = R.\theta$

b) ds = dV.dt c) $ds = R.d\theta$

7- The expression of the curvy coordinate s(t) is given by

a) $s(t) = \int_{0}^{t} a_{T} dt$ b) $s(t) = \int_{0}^{t} v dt$ c) $s(t) = \int_{0}^{t} a_{N} dt$

(where A, B and ω are positive constants $(A \neq B)$) is:

a) $x^2 + y^2 = 1$ b) $x^2 + y^2 = A^2 + B^2$ c) $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$

Exercise 1	(4)	points)

The time-dependent equations of a motion are given in Cartesian coordinates:

$$\begin{cases} x(t) = 1 + R\sin(\omega t) \\ y(t) = 2 + R\cos(\omega t) \end{cases}$$
 where ω and R are constants.

1-Express the components of the velocity vector \vec{V} as a function of time. Write its norm.

2- Express the components of the acceleration vector \vec{a} as a function of time. Write its norm

 	action voctor a do a	 THE RS HOTHI.

ing the trajecto	ry equation $y = f(x)$	(). Describe its sh	nape and its featu	ires.	
				_ .	, <u>*</u>
					 -
					مالم 7 ۸

	Exer	cise	2
--	------	------	---

(6 points)

The components of the vector position \vec{OM} are written in Cartesian coordinates as:

$$\begin{cases} x(t) = ae^{\omega t} \cos(\omega t) \\ y(t) = ae^{\omega t} \sin(\omega t) \end{cases}$$

where a and ω are positive constants.

1- Write the position vector $O\vec{M}$ in	polar coordinates in the basis $(\vec{u}_{\rho},\vec{u}_{\theta})$
--	--

Express in polar coordinates the velocity vector \vec{V} . Write its norm. Assume that $\dot{\theta} = \omega$.					
	Express in polar coordinates t	he velocity vector	$ec{V}$. Write its no	rm. Assume that $\hat{\theta}$	$\dot{\theta} = \omega$.

4- Express the acceleration components a_T and a_N in Frenet's basis. Deduce the curvature radius Rc
Exercise 3 Parts I and II are independent (6 points)
I-1) Prove that in Frenet's basis the velocity reads $\vec{V} = R(t) \stackrel{\bullet}{\theta} \cdot \vec{u}_T$.

I-2) Deduce the expression of the acceleration vector \vec{a} in Frenet's basis.
- <u>-</u>
II- Let us consider a pointlike mass M which is moving in a plan, with an acceleration given as a function
of time in Frenet's basis by the following expression:
$\vec{a} = \alpha . \vec{u}_T + \beta t^2 . \vec{u}_N$ (\alpha and \beta are positive constants)
1) Find the units of the constants α and β. Detail your answer.
2) Write the curvy coordinate $s(t)$ between the moments $t_0 = 0$ and t . Given data: $v(t_0) = 0$ and $s(t_0) = 0$

3) Prove that the curvature ra	adius is given by: $R_c = \frac{\alpha^2}{\beta}$	
		_

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

OCM (4 points)

Entourer la bonne réponse

1- La norme de la résultante \vec{R} de deux vecteurs forces $\vec{F_1}$ et $\vec{F_2}$ (non nuls), colinéaires et de sens opposé est

a)
$$R = 0$$

b)
$$R = \sqrt{F_1^2 + F_2^2}$$
 c) $R = F_1 + F_2$ d) $R = [F_1 - F_2]$

c)
$$R = F_1 + F_2$$

d)
$$R = |F_1 - F_2|$$

2- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$

c)
$$\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$$

3- Le produit scalaire entre deux vecteurs colinéaires et de sens opposé est

- a) strictement positif
- b) nul
- c) strictement négatif

4- La norme du vecteur $\vec{V}_3 = \vec{V}_1 \wedge \vec{V}_2$, tel que : $(\vec{V}_1, \vec{V}_2) = \alpha$ est :

a)
$$V_3 = V_1 V_2 |\sin(\alpha)|$$

b)
$$V_3 = V_1 . V_2 . \cos(\alpha)$$

a)
$$V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$$
 b) $V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$ c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$

5- Le vecteur vitesse en coordonnées polaires s'écrit :

a)
$$\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

a)
$$\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 b) $\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\rho} \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ c) $\vec{V} = \rho \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

c)
$$\vec{V} = \rho \cdot \vec{u}_{\rho} + \vec{\theta} \vec{u}_{e}$$

6- Dans la base de Frenet l'abscisse curviligne élémentaire ds s'écrit :

a)
$$ds = R.\dot{\theta}$$

b)
$$ds = dV.dt$$

c)
$$ds = R.d\theta$$

7- L'expression de l'abscisse curviligne s(t) est donnée par

a)
$$s(t) = \int_{0}^{t} a_{T} . dt$$
 b) $s(t) = \int_{0}^{t} v . dt$ c) $s(t) = \int_{0}^{t} a_{N} . dt$

b)
$$s(t) = \int_0^t v.dt$$

c)
$$s(t) = \int_0^t a_N . dt$$

8- L'équation de la trajectoire dont les équations horaires sont $\begin{cases} x(t) = A\sin(\omega t) \\ v(t) = B\cos(\omega t) \end{cases}$

(Où A, B et ω sont des constantes positives $(A \neq B)$) est :

a)
$$x^2 + y^2 = 1$$

a)
$$x^2 + y^2 = 1$$
 b) $x^2 + y^2 = A^2 + B^2$ c) $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$

c)
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} =$$

Exercice 1 (4 points)

Les équations horaires d'un mouvement en coordonnées cartésiennes sont :

$$\begin{cases} x(t) = 1 + R\sin(\omega t) \\ y(t) = 2 + R\cos(\omega t) \end{cases}$$

Où ω et R sont des constantes.

1-Exprimer les composantes du vecteur vitesse \vec{V} en fonction du temps. Calculer sa norme.

Exprimer le	es composantes du	vecteur accélé	ration $ec{a}$ en fonct	ion du temps. Cal	culer sa norme.	

ĺ		

3- Retrouver l'équation de la trajectoire y = f(x). Préciser sa nature et ses caractéristiques.

- 1				
- 1	1			
- 1	1			
- 1	1			
- 1	•			
- 1	1			
- 1	1			
- 1	1	•		
- 1				
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
•	1			
- 1	1			
- 1	1			
•	J .			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
•	1			
- 1	1			
- 1	4			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
	.			
ı	1			
ı	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
Į	,			
F	F .			
ŀ	ł .			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			
- 1	1			

***	•	^
Exer	riro	-7
LINCI		~

(6 points)

Les composantes du vecteur position $O\vec{M}$ en coordonnées cartésiennes sont données par :

$$\begin{cases} x(t) = ae^{\omega .t} \cos(\omega .t) \\ y(t) = ae^{\omega .t} \sin(\omega .t) \end{cases}$$
 a et ω sont des constantes positives.

1- Ecrire le vecteur position \vec{OM} en coordonnées polaires de base $(\vec{u}_{\rho}, \vec{u}_{\theta})$.

	1	
Ц		
- 1		
1	1	
ł	1	

2- Exprimer en coordonnées polaires le vecteur vitesse \vec{V} . Calculer la norme de \vec{V} . On donne $\stackrel{\bullet}{\theta} = \omega$.

_			
Γ			
1			
Т			
Т			
Т			
Т			
Т			
Т			
)			
Т			
Т			
İ			
1			
L	 		

3- Exprimer en coordonnées polaires le vecteur accélération \vec{a} . Calculer la norme de \vec{a}

4- Exprimer les composantes a_T et a_N du vecteur accélération en base de Frenet. En déduire le rayon
de courbure Rc.
Exercice 3 Les parties I et II sont indépendantes (6 points)
I-1) Montrer que la vitesse en base de Frenet s'écrit $\vec{V} = R(t) \stackrel{\bullet}{\theta} \vec{u}_T$.

1-2) En déduire l'écriture du vecteur accélération à dans la base de Frenet.
II- On considère un point matériel M qui se déplace dans un plan avec une accélération donnée en
fonction du temps dans la base de Frenet par l'expression suivante :
$\vec{a} = \alpha . \vec{u}_T + \beta . t^2 \vec{u}_N$ (α et β sont des constantes positives)
1) Déterminer les unités des constantes α et β . Justifier votre réponse.
2) Calculer l'abscisse curviligne s(t) entre les instants $t_0 = 0$ et t. On donne : $v(t_0) = 0$ et $s(t_0) = 0$

) Montrer que le rayon de courbure de la trajectoire est donné par : $R_c = \frac{\alpha^2}{\beta}$						

EPITA

Mathematics

Midterm exam (S1)

November 2017

Name:

First Name:

Class:

MARK:

Midterm exam (S1)

Duration: three hours

Documents and calculators not allowed

Instructions:

- you have to reply directly on these sheets.
- No sheet other than the stapled ones provided for answering will be corrected.
- Answers written using lead pencils will not be corrected.
- Every student failing to respect these instructions will be awarded a 00/20 mark.

Exercise 1 (2 points)

Let f and g be the functions defined by $\begin{cases} f(x) = \sqrt{\ln^{10} (\sin(x)) + 1} \\ g(x) = \sin (\arctan(\sqrt{x})) \end{cases}$

Calculate f'(x) and g'(x) (no need to refer to domains of definition).

N.B.: do not try to simplify the results.

Exercise 2 (3 points)

Let $z = 1 + \sqrt{3} + i(1 - \sqrt{3})$.

1. Determine z^2 over exponential form.

2. Deduce from this the modulus and an argument of z.

Exercise 3 (6 points)

1. Determine, using neither an integration by parts nor a substitution, $I = \int_0^1 \frac{\arctan(x)}{1+x^2} dx$.

2. Using an integration by parts, determine $J = \int_1^e \frac{\ln(x)}{x^2} dx$.

3. Using the substitution $u = \ln(t)$, determine $K = \int_1^e \frac{\mathrm{d}t}{t \left(1 + \ln^2(t)\right)}$.

4. Using the substitution $u = \sqrt{x}$, determine $L = \int_0^1 \frac{1-x}{1+\sqrt{x}} dx$.

Exercise 4 (4 points)

Let (E) be the following equation : $z^2 - (5+3i)z + 2 + 9i = 0$.

1. Show that $\Delta = 8 - 6i$.

Determine a square root of Δ .				
Deduce from this the solutions	s in $\mathbb C$ of the equation (i	Ξ).		
\				

Exercise 5 (4 points)

1. Determine the Taylor expansion around 0 at order 2 of $e^x \ln(e + ex)$.

2. Determine $\lim_{x\to 0} (1+\sin(x))^{1/x}$.

3. Determine $\lim_{x\to 0} \frac{e^x - \cos(x) - \sin(x)}{x^2}$.

Exercise 6 (2 points)
Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function such that f(0)=f(1).
Show that there exists $c \in \left[0,\frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

EPITA

Mathématiques

Contrôle (S1)

novembre 2017

Nom:
Prénom :
Entourer le nom de votre professeur de TD : Mme Boudin / Mme Daadaa / M. Ghanem / M. Goron / Mme Trêmoulet
Classe:
NOTE:

Contrôle 1

Durée: trois heures

Documents et calculatrices non autorisés

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- toute personne ne respectant pas ces consignes se verra attribuer la note 00/20.

Exercice 1 (2 points)

Soient f et g les fonctions définies par $\begin{cases} f(x) = \sqrt{\ln^{10} (\sin(x)) + 1} \\ g(x) = \sin (\arctan(\sqrt{x})) \end{cases}$

Calculer f'(x) et g'(x) (sans se préoccuper du domaine de définition).

N.B.: n'essayez pas de simplifier les résultats.

Exercice 2 (3 points)

Soit $z = 1 + \sqrt{3} + i(1 - \sqrt{3})$.

1. Déterminer z^2 sous forme exponentielle.

2. En déduire le module et un argument de z.

Exercice 3 (6 points)

1. Déterminer, sans intégration par parties ni changement de variable, $I = \int_0^1 \frac{\arctan(x)}{1+x^2} dx$.

2. Via une intégration par parties, déterminer $J=\int_1^e \frac{\ln(x)}{x^2} dx$.

3. Via le changement de variable $u=\ln(t),$ déterminer $K=\int_1^e \frac{\mathrm{d}t}{t\big(1+\ln^2(t)\big)}\cdot$

4. Via le changement de variable $u=\sqrt{x}$, déterminer $L=\int_0^1 \frac{1-x}{1+\sqrt{x}}\,\mathrm{d}x$.

Exercice 4 (4 points)

Soit l'équation (E) suivante : $z^2 - (5+3i)z + 2 + 9i = 0$.

1. Montrer que $\Delta = 8 - 6i$.

Déterminer une racine carrée de Δ .	
En déduire les solutions dans $\mathbb C$ de l'équation (E) .	

Exercice 5 (4 points)

1. Déterminer le développement limité en 0 à l'ordre 2 de $e^x \ln(e + ex)$.

2. Déterminer $\lim_{x\to 0} (1+\sin(x))^{1/x}$.

3. Déterminer $\lim_{x\to 0} \frac{e^x - \cos(x) - \sin(x)}{x^2}$.

Exercice 6 (2 points)

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue telle que f(0)=f(1). Montrer qu'il existe $c \in \left[0,\frac{1}{2}\right]$ tel que $f(c)=f\left(c+\frac{1}{2}\right)$.