

A Level · Edexcel · Maths

3 hours

35 questions

7.5 Implicit Differentiation (A Level only)

Total Marks	/198
Very Hard (9 questions)	/49
Hard (9 questions)	/49
Medium (9 questions)	/60
Easy (8 questions)	/40

Scan here to return to the course

or visit savemyexams.com

Easy Questions

- **1** Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ when
 - (i) $x^2 + y = 3$,
 - (ii) $5x^4 + y^2 4 = 0$, (iii) $\sin 3x 3y = 0$

 - (iv) $e^x + e^y = 2x$.

(8 marks)

2 Find the gradient of the curve with equation $3y^2 - 2x^3 = 10$ at the point (1 , 2).

(3 marks)

3 Show that if $x - \sin y = 0$ then $\frac{dy}{dx} = \sec y$.

4 (a) The curve *C* has equation

$$y^2 - 4x + 2 = 0.$$

Show that C intersects the x-axis at the point $\left(\frac{1}{2},0\right)$.

(2 marks)

- (b) Find an expression for $\frac{dy}{dx}$.
 - (ii) Explain why the curve *C* does not have any stationary points.

5 (a) Show that the point $\left(-\frac{4}{\pi}, \frac{\pi}{2}\right)$ lies on the curve with equation $2\cos 2y = xy$.

(2 marks)

(b) Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$.

6 (a)	Find the gradient of the curve with equation	$12x^2 - 4y^2 + 24 = 0$	at the point (1 , 3).
(b)	Hence, find an equation of the tangent to the	e curve at the point (1 ,	(2 marks) 3).
			(2 marks)

7 (a) Given $3x^2 - 2y = xy$, find an expression for $\frac{dy}{dx}$.

(3 marks)

(b) Hence show that the stationary points of $3x^2 - 2y = xy$ lie on the line y = 6x.

(2 marks)

8 (a)	The curve C has equation	$x^3 + 9x$	$v^2 = 54$.
-----	----	--------------------------	------------	--------------

Find the gradient of the tangent to \mathcal{C} at the point (3 , 1).

(4 marks)

(b) Hence find the equation of the normal to C at (3, 1), giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

Medium Questions

- 1 Find an expression for $\frac{dy}{dx}$ in terms of x and y for the following
 - (i) $2xy + y^2 = 4$
 - (ii) $3\sin y y = 2x 1$

(4 marks)

2 Find the gradient of the curve with equation

$$3x^2y + 4x - y = 39$$

at the point with coordinates (2, 3).

(4 marks)

3 (a) The curve *C* has equation

$$\frac{1}{5}x^2e^y = 5$$

Show that C intersects the x-axis at the points (-5, 0) and (5, 0).

(2 marks)

(b) Find an expression for $\frac{dy}{dx}$ in terms of x and y.

(2 marks)

(c) Hence find the gradients of *C* at the two points where *C* intercepts the *x*-axis.

(2 marks)

4 Show that if $y = \arcsin x$, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - x^2}}$$

5 (a)	Show that the point (0 , π) lies on the curve with equation	
	$3\tan y = 2xy$	
(b)	Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$.	(2 marks)
(c)	Find the gradient at the point (0, π).	(3 marks)
(d)	Hence find an equation of the tangent to the curve at the point (0 , π).	(2 marks)

6 (a) The curve C is defined by the equation $\ln y = 1 - xy$.	
6 (a) The curve C is defined by the equation iff $y - 1 - xy$.	

Show that

The point P(1, 1) lies on C.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y^2}{1+xy}$$

(4 marks)

(b) Find the gradient of the tangent to C at point P, and hence find the gradient of the normal to C at point P.

(3 marks)

(c) Find the equation of the normal to C at point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(2 marks)

	dy	7	
7 (a)	Find an expression for $\frac{dx}{dx}$	in terms of x and y given the	hat

$$2x^2 - y = xy^2$$

(b) Show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
 when $4x = y^2$.

(2 marks)

8 (a) The curve *C* is given by the equation $e^{xy} = y - x$.

Find the coordinates of the points where \mathcal{C} intersects the coordinate axes.

(2 marks)

(b) Find an expression for $\frac{dy}{dx}$

(3 marks)

(c) Show that the tangents to C_i at the points where it meets the coordinate axes, have equations

$$y = 2x + 1$$
 and $2y = x + 1$

(4 marks)

(d) The tangents meet at point Q. Find the distance *OQ*, where *O* is the origin.

(4 marks)

9 Use implicit differentiation to show that

$$\frac{\mathrm{d}}{\mathrm{d}x}[a^x] = a^x \ln a$$

where a is a constant.

Hard Questions

- 1 Find an expression for $\frac{dy}{dx}$ in terms of x and y for the following
 - (i) $2ye^x + 5x^2y^2 = 8$,
 - (ii) $3x \tan y = 2x^2.$

(4 marks)

2 (a) Given that

$$y^2 + 4x^2 - e^y = 0,$$

find the positive value of x when y = 0.

(1 mark)

(b) Hence, or otherwise, find the value of the gradient of

$$y^2 + 4x^2 - e^y = 0$$

at the point where y = 0 and x is positive.

(4 marks)

3 Show that if $y = \arccos 2x$, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{\sqrt{1 - 4x^2}}.$$

6 (a) Show that the derivative function of the curve given by

$$\ln y - 2xy^3 = 8$$

is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y^4}{1 - 6xy^3}.$$

(5 marks)

(b) Find the equation of the normal to the curve given in part (a) at the point where y = 1, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3 marks)

7 Show that the stationary points on the curve with equation

$$xy^2 - 4x^2 = 64$$

occur when x = 4, and find the **exact** *y*-coordinates of the stationary points.

(6 marks)

8 (a) Verify that the point A(1, 1) lies on the curve with equation

$$\ln(xy) + xy^2 = 1.$$

(1 mark)

(b) The tangent at point A intercepts the x-axis at point B and the y-axis at point C. Find the area of the triangle OBC.

(8 marks)

9 Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}[a^{kx}] = ka^{kx} \ln a$$

where a and k are constants.

Very Hard Questions

- 1 Find an expression for $\frac{dy}{dx}$ in terms of x and y for the following
 - (i) $e^{xy} + \ln(xy) = \csc(x) + 4$
 - (ii) $4\cos(x^2y) 3e^{x^2y} = 4e^y$

(5 marks)

2 Find the gradient at the point where x = -2 and y is an integer on the curve with equation $x^{2}y^{2} - 5x = 22y$.

(5 marks)

3 Show that if $2y = \arctan x^2$, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{1 + x^4}$$

4 An ellipse has equation

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Find an expression for $\frac{dy}{dx}$ and hence show that the gradient of the ellipse at any point where it meets a line of the form $y = kx \ (k \neq 0)$ is independent of x and y.

(4 marks)

5 The curve *C* is described by the equation

$$\ln y + x^2 y^2 = 9.$$

Show that the tangents of the two points on C where y = 1 meet at the point $\left(0, \frac{37}{19}\right)$.

(5 marks)

6 (a) The curve *C* is described by the equation

$$3x^2 + 2xy^3 + 16 = 0$$
.

Show that the normal to C at the point where x = -4 is parallel to the normal to C at the point where x = 4.

(4 marks)

(b) Find the distance between the y-axis intercepts of these two normals.

(4 marks)

7 Find the stationary points and determine their nature for the curve with equation $y^2 = 3x^2 - 2xy + 3.$

8 The curve *C* is defined by

$$e^{\sin xy} = 1 \qquad \{ y > 0 \}$$

Points A and B have coordinates $\left(\frac{\pi}{2},2\right)$ and $\left(-\frac{\pi}{2},2\right)$ respectively.

The tangents to C at points A and B intersect at the point P. The tangent to C at point A intersects the x-axis at point Q. The tangent to *C* at point *B* intersects the *x*-axis at point *R*.

Find the area of triangle *PQR*.

(8 marks)

9 Show that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[a^{x^k} \right] = k a^{x^k} x^{k-1} \ln a$$

where a and k are constants.

