《汽车理论》课程作业

汽车燃油经济性分析

学院: 汽车学院

姓名: 贾林轩

学号: 1853688

软件版本: MATLAB 2021b

1、 国内外对汽车燃油经济性有哪些评价方法? 利用 JB3352-83 规定的六工况循环行驶评价货车的百公里油耗的局限性?

① 欧洲经济委员会:

欧洲的燃油和排放测试标准按时间节点大致上可以划分为三个阶段: 1992 年前,1992--2000年(此间正值欧盟实施欧 | 和欧 | 排放法规)以及 2000年后(此间正值欧盟实施欧川和欧 W 排放法规),如图所示。1992年前欧洲燃油消耗测试分为模拟市区工况测试以及 90km/h 和 120km/h 等速行驶测试。第二阶段的测试由市区运转循环和市郊运转循环两部分组成,联合国欧洲经济委员会规定以四个城市行驶循环(City Driving Cycle)加一个公路行驶循环(Extra UrbanDriving Cycle)组成一个大的循环,即所谓的新欧洲行驶工况(New European Driving Cycle, NEDC),并按 NEDC 循环测量评定汽车燃油经济性的百公里油耗量。欧洲第三阶段测试和第二阶段相比差异不大,只是取消了第二阶段开始前的 40s 怠速。

② 美国环境保护局 (EPA): 分别测量汽车城市循环工况燃油经济性与公路循环工况燃油经济性, 按权重取调和平均数作为汽车综合油耗。

综合燃油经济性 =
$$\frac{1}{0.55}$$
 $\frac{0.45}{$ $\sqrt{386}$ \sqrt

③ 我国:在如下两个工况下测量汽车燃油经济性

JB3352-83 规定的六工况循环参数

	累计行程/m	时间 /s	累计时间 / s	车速 (km/h)	说明
ı	50	7. 2	7. 2	25	等速
Ш	200	16. 7	23. 9	25-40	匀加速度为 0.25 m/s ²
	450	22. 5	46. 4	40	等速
IV	625	14. 0	60.4	40-50	匀加速度为 0.2 m/s ²
٧	875	18. 0	78. 4	50	等速
۷I	1075	19.3	97. 7	50-25	匀加速度为 0.36 m/s ²

JB3352-83 所规定的六工况循环测试时容易受外界环境影响,且未考虑车辆启停工况。受限于当时条件,车辆时速低,不能很好地符合如今货车实际行驶工况。

2、 燃油经济性分析

1. 绘制汽车功率平衡图

根据汽车动力性分析结果及公式

$$P_{e} = \frac{1}{\eta_{T}} \left(\frac{Gfu_{a}}{3600} + \frac{Giu_{a}}{3600} + \frac{C_{D}Au_{a}^{3}}{76140} + \frac{\delta mu_{a}}{3600} \frac{du}{dt} \right)$$

绘图结果如下:

2. 最高档和次高档的等速百公里油耗

将一系列n代入公式计算得发动机功率,进而计算得:

	转速 n	815	1207	1614	2012	2603	3006	3403	3804		
功率 Pe	IV 挡	3. 43	5. 63	8. 59	12. 3	20. 0	27. 0	35. 5	46. 0		

$(kW \cdot h)$		42	33	29	730	690	634	911	744
	V 挡	4. 56 11	7. 85 24	12. 6 262	19. 0 708	32. 8 174	45. 6 933	61. 6 612	81.5 392
燃油消耗率	IV 挡	537. 4693	481. 5226	438. 7282	383. 3792	334. 8077	319. 9546	314. 3375	305. 1934
b (<i>g/kW</i> ⋅ <i>h</i>)	V 挡	453. 6132	396. 6266	346. 9744	312. 3252	296. 7140	278. 2034	307. 4664	52. 1 211

这里选用 25-85km/h 间每 10 km/h 绘制一点作为等速百公里油耗图,依据拉格朗日插值法得:

	ua(<i>k m/h</i>)	25	35	45	55	65	75	85
b (<i>g/kW</i>	IV 挡	503. 4419	453. 3660	399. 4 897	358. 2 698	329. 7993	317. 7720	310. 2643
· h)	V 挡	450. 6532	402. 0773	360. 4 366	327. 4 912	308. 1004	299. 2740	285. 8176
Qs (L/100	IV 挡	11. 5 447	11. 8 143	12. 0 762	12. 6 977	13. 7 515	15. 5 690	17. 7 888
km)	V 挡	10. 3 341	10. 4 777	10. 8 957	11. 6 068	12. 8 468	14. 6 627	16. 3 872

绘图如下:

3. 按 JB3352-83 规定的六工况循环行驶计算百公里油耗(计算过程中 b 可采用线性插值法获得)加速工况下,由:

$$P_e = \frac{1}{\eta_T}(P_f + P_w + P_j)$$

$$Q_s = \frac{P_e \cdot b}{1.02 u_a \rho g}$$

其中, Pe, b是关于ua的函数, Q可以通过数值积分求得:

$$dQ = Q_s ds = \frac{P_e \cdot b}{1.02 u_a \rho g} * ds = \frac{P_e \cdot b}{1.02 u_a \rho g} \frac{u_a}{3.6} * dt = \frac{P_e \cdot b}{367.1 \rho g} * \frac{du_a}{3.6a}$$

$$Q = \int_{u_{a0}}^{u_{a1}} \frac{P_e \cdot b}{367.1 \rho g} * \frac{du_a}{3.6a} = \sum_{i=0}^{M} \frac{P_e(u_{a0} + \frac{i(u_{a1} - u_{a0})}{M}) \cdot b(u_{a0} + \frac{i(u_{a1} - u_{a0})}{M})}{367.1 \rho g} \cdot \frac{u_{a1} - u_{a0}}{3.6aM}$$

其中,Qs、dQ单位为 ml,M 为一足够大的数。匀速工况下,由:

$$P_e = \frac{1}{\eta_T}(P_f + P_w)$$

$$Q_s = \frac{P_e \cdot b}{1.02 u_a \rho g}$$

其中, s 的单位为 m, 如此计算得到的 Qs 单位为 ml。 减速工况下, 由:

$$Q_s = Q_{id} \cdot t = \frac{u_{a1} - u_{a0}}{3.6 \frac{du_a}{dt}} Q_{id}$$

如此可以得到三工况下的燃油消耗量,代数字计算得:

$$Q_s = \begin{cases} 17.06(\frac{L}{100km}) & IV \not\stackrel{H}{=} \\ 15.35(\frac{L}{100km}) & V \not\stackrel{H}{=} \end{cases}$$