

Polinômios: Teorema fundamental da álgebra, equação polinomial e pesquisa de raízes

Resumo

Teorema das raízes complexas

Vamos enunciar um teorema que se trata das raízes complexas não reais de uma equação polinomial de coeficientes reais, isto é, das raízes complexas da forma z = a + bi, com $b \in \mathbb{R}$

Se um número complexo z=a+bi com a pertencente aos reais e b pertencente aos reais não nulos, é raiz de uma equação polinomial p(x) = 0 com coeficientes reais, o conjugado de z, isto é, $\overline{z} = a$ - bi também é solução.

Como consequência desse teorema temos que:

- 1. Se um número complexo z = a + bi é raiz com multiplicidade m de uma equação polinomial p(x) = 0 de coeficientes reais, então seu conjugado $\overline{z} = a bi$ também o é.
- 2. A quantidade de raízes complexas não reais de uma equação polinomial de coeficientes reais é necessariamente par. Assim, se uma equação polinomial de coeficientes reais tem grau ímpar, admite pelo menos uma raiz real.

Teorema das raízes racionais

Dada uma equação polinomial p(x) = 0 ela pode apresentar raízes racionais, isto é, números na forma p/q. No entanto existem equações polinomiais que apresentam coeficientes inteiros e não admitem raízes racionais.

A seguir, iremos enunciar um teorema que não nos garante a existência de raízes racionais, mas caso existam ele apresenta uma maneira de obtê-las.

Seja uma equação polinomial $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x^1 + a_0 = 0$ de coeficientes inteiros com a_n diferente de zero. Se essa equação admite uma raiz racional p/q, tal que p e q sejam primos entre si, p é divisor de a_0 e q é divisor de a_n .

Como consequência deste teorema temos:

1. Se a_n = 1 e os demais coeficientes são inteiros, a equação não admite raízes racionais fracionárias, podendo ser inteiras e divisores de a₀. No entanto, a recíproca não é verdadeira, pois pode haver divisores de a₀ que não são raízes da equação.

Teorema da decomposição

Seja p(x) um polinômio de grau n, n≥1, dado por:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

Então p(x) pode ser decomposto em n fatores do 1° grau sob a forma:

$$P(x) = a_n (x-u_1)(x-u_2)...(x-u_n)$$

Sendo u_1 , u_2 ... u_n raízes do polinômio.

Multiplicidade de uma raiz

O número complexo r é uma raiz de multiplicidade m, da equação p(x) = 0 se a forma fatorada de p(x) é:

$$P(x) = (x - r).(x - r)...(x - r).q(x)$$
$$P(x) = (x - r)^{m}.q(x)$$

Teorema fundamental da álgebra

Em 1798 o matemático alemão Gauss demonstrou em sua tese de doutorado, um teorema de grande importância na matemática conhecido como teorema fundamental da álgebra. A seguir, iremos enunciar esse teorema admitindo-o.

Todo polinômio de grau n, $n \ge 1$ admite ao menos uma raiz complexa.

Aos vinte anos de idade, Gauss escreveu sua tese de doutorado na universidade de Helmstadt, na qual apresentou a primeira demonstração do teorema fundamental da álgebra que foi aceita entre os matemáticos.

Apesar de nesta ocasião a demonstração envolver aspectos geométricos, posteriormente Gauss publicou outras demonstrações para este teorema, visando obter uma que fosse completamente algébrica.

Exercícios

1. No século XVI, divertidos duelos intelectuais entre professores das academias contribuíram para o avanço da Matemática. Motivado por um desses duelos, o matemático italiano Niccólo Fontana (Tartaglia) (1500 – 1557) encontrou uma fórmula para resolver equações polinomiais de terceiro grau. No entanto, os outros matemáticos da época não tinham acesso a tal descoberta, tendo que encontrar formas alternativas para resolver aqueles problemas. Uma dessas formas alternativas é a fatoração, que facilita a observação das raízes (soluções), pois transforma a adição dos termos da equação em uma multiplicação igualada a zero. Veja o exemplo:

$$x^3 + 6x^2 + 5x - 12 = 0 \Leftrightarrow (x - 1) \cdot (x + 3) \cdot (x + 4) = 0$$

Analisando o exemplo dado, é correto afirmar que essa equação

- a) possui três raízes naturais distintas.
- b) possui três raízes inteiras distintas.
- c) possui duas raízes naturais distintas e uma raiz irracional.
- d) possui duas raízes irracionais distintas e uma raiz inteira.
- e) não possui raízes reais.
- 2. O polinômio de quinto grau tem 2 como uma raiz de multiplicidade 3. A razão entre o coeficiente do termo de quarto grau e o coeficiente do termo de quinto grau é igual a -7. A razão entre o termo independente e o coeficiente do termo de quinto grau é igual a 96.

A menor raiz desse polinômio vale:

- **a)** 0
- **b)** -1
- **c)** -2
- **d)** -3
- 3. Um polinômio de terceiro grau, cujo coeficiente do termo dominante é igual a 1, admite apenas raízes reais e distintas que quando multiplicadas resultam em 15 e quando somadas resultam em 1. Se o resto da divisão desse polinômio por g(x) = x + 2 é igual a 7, então o quociente dessa divisão é igual a:
 - **a)** x²-3x-11
 - **b)** x^2+3x-7
 - c) x^2-x-15
 - **d)** x^2-x-11
 - **e)** x^2+x+15

4. Sejam $P(x) = x^5 + x^4 + x^3 + x^2 + x + 1$ um polinômio e M o conjunto dos números reais k tais que P(k)-0. O número de elementos de M é:

- **a)** 1
- **b)** 2
- **c)** 4
- **d)** 5

5. A soma dos quadrados dos números complexos que são as raízes da equação $x^4 - 1 = 0$ é igual a:

- **a)** 8
- **b)** 0
- **c)** 4
- **d)** 2

6. Se os números de divisores de 6, de 9 e de 16 são as raízes da equação x³+ax²+bx+c=0, onde os coeficientes a, b e c são números reais, então o valor do coeficiente b é:

- **a)** 41
- **b)** 45
- **c)** 43
- **d)** 47

7. Considere a equação ax²+bx+c=0, sabemos que a+b+c=0 e que x=3 é raiz da equação. Quanto vale o produto das duas raízes da equação?

- **a)** -6
- **b)** -3
- **c)** 3
- **d)** 6
- **e)** 9

- **8.** Se 2 é a única raiz real da equação $x^3 4x^2 + 6x 4 = 0$, então relativamente às demais raízes desta equação, é verdade que são números complexos:
 - a) cujas imagens pertencem ao primeiro e quarto quadrante do plano complexo.
 - b) que tem módulos iguais a 2
 - c) cujos argumentos principais são 45° e 135°
 - d) suja soma é igual a 2i.
- **9.** Considere o polinômio de variável real p(x) = x³ kx + 150, com k sendo um número natural fixo não nulo. Se o número complexo z = 3 + ai é uma raiz de p(x), em que a é um número real positivo e i é a unidade imaginária, então o valor do produto k.a é igual a:
 - a) 44
 - **b)** 66
 - **c)** 24
 - **d)** 96
- **10.** A culinária está em alta nos programas televisivos. Em um desses programas, os participantes foram desafiados a elaborar um prato no qual fossem utilizados, entre outros, os ingredientes A, B e C, cujas quantidades, em kg, numericamente, não excedessem às raízes do polinômio

$$P(x) = 8x^3 - 14x^2 + 7x - 1$$
.

Sabendo-se que os participantes receberam 250g do ingrediente A, pode-se afirmar que as quantidades máximas que podem ser utilizadas dos ingredientes B e C diferem em

- **a)** 200 g
- **b)** 275 g
- **c)** 350 g
- **d)** 425 g
- **e)** 500 g

Gabarito

1. B

Da equação $(x-1)\cdot(x+3)\cdot(x+4)=0$, temos: x-1=0 ou x+3=0 ou x+4=0, ou seja, x=1 ou x=-3 ou x=-4. Assim, a equação dada apresenta três raízes inteiras distintas.

2. D

Seja
$$p(x) = (x-2)^3(x-a)(x-b)$$
, em que a e b são raízes de p. Logo, temos
$$p(x) = (x^3 - 6x^2 + 12x - 8)(x^2 - (a+b)x + ab)$$
$$= x^5 - (a+b+6)x^4 + (ab+6(a+b)+12)x^3 - (6ab+12(a+b)+8)x^2 + + (12ab+8(a+b))x - 8ab.$$

Em consequência, vem

Em consequencia, vem
$$\begin{vmatrix}
-\frac{a+b+6}{1} = -7 \\
-\frac{8ab}{1} = 96
\end{vmatrix} = -7$$

$$\Leftrightarrow \begin{vmatrix}
a+b=1 \\
ab=-12
\end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix}
a=4 \\
b=-3
\end{vmatrix}$$

Portanto, segue que a menor raiz de p é -3.

3. A

Seja $f(x) = x^3 - Sx^2 + bx - P$, em que S = 1 e P = 15 são, respectivamente, a soma e o produto das raízes de f. Pelo Teorema do Resto, vem $7 = (-2)^3 - 1 \cdot (-2)^2 + b \cdot (-2) - 15 \Leftrightarrow b = -17.$

Portanto, como

$$x^3 - x^2 - 17x - 15 = (x + 2) \cdot (x^2 - 3x - 11) + 7$$

segue que o resultado é $q(x) = x^2 - 3x - 11$.

4. A

É fácil ver, por inspeção, que x=-1 é raiz de P. Logo, temos $P(x)=(x+1)(x^4+x^2+1)$. Daí, como $x^4+x^2+1=0$ não possui raízes reais, podemos concluir que a única raiz real de $P \notin x = -1$. Portanto, sendo M o conjunto das raízes reais de P, vem que a resposta é 1.

5. B

Tem-se que

$$x^4 - 1 = (x^2 - 1)(x^2 + 1)$$

= $(x - 1)(x + 1)(x + i)(x - i)$.

Por conseguinte, as raízes da equação são -1,1,-i e i.

A resposta é $(-1)^2 + 1^2 + (-i)^2 + i^2 = 0$.

6. D

É imediato que 6 possui 4 divisores positivos, 9 possui 3 divisores positivos e 16 possui 5 divisores positivos. Logo, temos

$$(x-4)(x-3)(x-5) = x^3 - 12x^2 + 47x - 60$$

= $x^3 + ax^2 + bx + c$.

Portanto, comparando os coeficientes dos termos de mesmo grau, vem b = 47.

7. C

Tomando x = 1, vem $a \cdot 1^2 + b \cdot 1 + c = a + b + c = 0$. Logo, segue que x = 1 é raiz da equação e, portanto, a resposta é $1 \cdot 3 = 3$

8. A

Aplicando o dispositivo de Briot-Ruffini, temos:

2	1	-4	6	-4	
	1	-2	2	0	Interchal

Ou seja,

$$x^3 - 4x^2 + 6x - 4 = (x - 2) \cdot (x^2 - 2x + 2) = 0$$

Determinando as demais raízes através da equação:

$$x^2-2x+2=0 \Rightarrow x=\frac{2\pm 2i}{2} \begin{cases} x=1+i \\ x=1-i \end{cases}$$

Estas raízes possuem afixos localizados no primeiro e quarto quadrantes. Portanto, a alternativa [A] está correta.

9. A

Se z = 3 + ai é raiz de p(x), então z = 3 - ai também é raiz. Chamaremos o terceira raiz de r. Considerando as relações de Girard podemos escrever que:

$$3 + a \cdot i + 3 - a \cdot i + r = -\frac{0}{1} \Rightarrow r = -6$$

$$(3 + a \cdot i) \cdot (3 - a \cdot i) \cdot (-6) = -150 \Rightarrow a = 4$$

$$P(-6) = 0 \Rightarrow (-6)^{3} - k \cdot (-6) + 150 = 0 \Rightarrow k = 11$$

Portanto, $k \cdot a = 11 \cdot 4 = 44$.

10. E

Por inspeção, é fácil ver que x = 1 é raiz de P. Ademais, pelo dispositivo de Briot-Ruffini, temos

Desse modo, vem $P(x) = (x-1)(8x^2-6x+1)$ e, portanto, as outras raízes de P são $x = \frac{1}{4}$ e $x = \frac{1}{2}$. Em consequência, as quantidades dos ingredientes B e C não podem superar 1 kg e $\frac{1}{2} \text{kg}$, ou vice-versa.

A resposta, em qualquer caso, é 1.000 - 500 = 500 g.