WEEK 9

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

ANSWER:

05:00	07:00	10:00	14:00	18:00	19:00	21:00		
*	M	*	*	*	*	*		
Sun	LightCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud		
2°C	2°C	4°C	7°C	3°C	1°C	0°C		
1°C	2°C	4°C	5°C	3°C	0°C	-2°C		
0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm		
83 %	82 %	79 %	63 %	76 %	87 %	88 %		
1026 hPa	1026 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa		

Il tempo oggi in Piacenza Martedì, 03 Dicembre 2019

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

The time now is 21:00, from the data given in the

website https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacen

za/

umidità:88%, i.e., the relative humidity \(\phi = 88%; \)

pressione atmosferica: 1025 hPa, i.e., the total air pressure P =102.5kPa;

temperatura effttiva: 0°C, i.e., the temperature in Kelvin temperature scale

T=273K

the humidity ratio, i.e., the absolute humidity ω = 0.004

the web-bulb temperature $T_{\omega b} = -2^{\circ}C$

$$\therefore \omega = \frac{0.622 P_{v}}{P_{a}} = \frac{0.622 P_{v}}{P - P_{v}} = 0.004$$

P =102.5kpa into this equation

$$P_{V} = 0.655 \text{ kPa}$$

$$\phi = \frac{m_{\rm v}}{m_{\rm g}} = 88\%$$

$$m = \frac{PV}{R_{\rm cn}T} \quad \textit{so the} \quad R_{\rm sp} = \textit{0.4615}$$

Introduce the pressure of water vapor $P_{\rm v}=0.655$,and define the volume of aula A is V ,here we have:

$$m_v = \frac{0.655V}{0.4615 * 273} = 0.0052V$$
$$m_g = \frac{0.0052}{88\%} = 0.0059V$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry (height of 2.5 m, considering two occupants and one bed room calculate, and a conditioned floor area of $200\ m^2$ and wall area is $144\ m^2$, calculate the internal gains, infiltration, and ventilation loads) as that of the example which is located in Brindisi, Italy.

		BRINDISI, Italy													WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev	: 10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and h	lumidificat	ion Design C	onditions												
	0-14		- 00		Hur	nidification D	P/MCDB and	HR		Coldest month WS/MCDB					MCWS/PCWD		
	Coldest Heating DB Month			99.6%		99%					1% to 99.6%						
		99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Deh	umidificatio	on, and Entha	alpy Desig	n Condition:	;										
	Hottest	Hottest		400		DB/MCWB		61	Evaporation WB/MCD								
	Month DB Range DB		.4% MCWB	DB	1% MCWB	DB MCWB		0.4% 1% WB MCDB WB MCD		MCDB	2% WB MCDB		to 0.4% DB MCWS PCWD				
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
(2)			J2.0											20.0			(2)
		0.4%		Dehumidification DP/MCDB and HR 1% 2%						Enthalpy/MCDB 0.4% 1%				2% Hours			
	DP	U.4% HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth U.	MCDB	Enth	MCDB	Enth	MCDB	8 to 4 & 12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desi	gn Conditie	ons													
	Extr	treme Annual WS Extreme Extreme Annual DB					n-Year Return Period Values of Extreme DB										
	N		Max WB	Min	lean Max	Standard Min		n=5 Min	years Max	n=10 Min	years	n=20 Min	years	n=50	years Max		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	Max (1)	(m)	(n)	(o)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Answer:

Internal gains,

Calculate the sensible cooling load from internal gains,

$$q_{iq.s}$$
= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W

Calculate the latent cooling load from internal gains,

$$q_{ig,l} = 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 \, W$$

Infiltration.

for a house with a good construction quality, unit leakage area A_{ul} = 1.4 cm^2/m^2

and the exposed surface A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2

thus,
$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 cm^2$$

Define the cooling temperature $T_{cooling}$ =24 °C, and heating temperature $T_{heating}$ =20 °C

in Brindisi,

$$\Delta T_{cooling} = 31.1 \, ^{\circ}C \, -24 \, ^{\circ}C = 7.1 \, ^{\circ}C = 7.1 \, K$$

$$\Delta$$
 $T_{heating} = 20$ °C $-(4.1$ °C) = 24.1 °C = 15.9 K

$$DR = 7.1 \,^{\circ}C = 7.1 \,^{\circ}K$$

Given that $IDF_{heating} = 0.073 \frac{L}{s * cm^2}$,

$$IDF_{cooling} = 0.033 \frac{L}{s * cm^2},$$

Calculate infiltration airflow rate,

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 \approx 35.157 \frac{L}{S}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 \approx 15.893 \frac{L}{s}$$

The required miminum whole-building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1 + 1) = 17\frac{L}{s}$$

thus,

$$Q_{i-v,heating} = Q_{i,heating} + Q_v \approx 35.157 + 17 = 52.157 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v \approx 15.893 + 17 = 32.893 \frac{L}{s}$$

Given that $C_{sensible}$ = 1.23 , C_{latent} = 3010, $\Delta\omega_{Cooling}$ = 0.0039

 $\dot{q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} Q_{i-v,cooling} \quad \Delta T_{Cooling} \approx 1.23 * 32.893 * 7.1 \approx 287.25 W$

 $\dot{q}_{inf-ventilation_{cooling_{latent}}} = C_{latent}Q_{i-v,cooling} \quad \Delta\omega_{Cooling} \approx 3010 * 32.893 * 0.0039 \approx 386.13 W$

 $\dot{q}_{inf-ventilation_{heatingg_{sensible}}} = C_{sensible}Q_{i-v,heating} \quad \Delta T_{heating} \approx 1.23 * 52.157 * 15.9 \approx 1020.034 W$