Time-Optimal Control for a Water Delivery Robot

MATH 2342: Calculus for Robotics

 $\label{lem:complete} Complete\ python\ project\ available\ at: Complete\ python\ project\ available\ at: \\ https://github.com/anthonyreimche/Fastest_acceleration$

Instructor: Bruno L'Esperance

Erik Gindis	A01015581
Sarah Guo	A01235022
Owen Li	A01417162
Jayden Ng	A01429770
Anthony Reimche	A01429321

February 25, 2025

Contents

1	Problem Statement and Objectives	3			
	1.1 Problem Definition	3			
	1.2 Project Goals	3			
2	Theoretical Analysis	4			
	2.1 Understanding Motion Profiles	4			
	2.2 The Ideal Case				
3	Our Smooth Profile Solution	5			
	3.1 Component Analysis	5			
4	Conclusion				
A	Implementation Details	8			
	A.1 Algorithm Design	8			
В	Numerical Results	9			
	B.1 Implementation	9			
	B.2 Convergence Analysis				

1 Problem Statement and Objectives

1.1 Problem Definition

This project implements a time-efficient motion profile with continuous acceleration for point-to-point movement in automated systems. The system uses a maximum acceleration $a_{\text{max}} = 0.25 \text{ m/s}^2$ to demonstrate smooth transitions while maintaining reasonable time efficiency.

1.2 Project Goals

- Generate continuous acceleration profiles
- Achieve precise target distance
- Minimize travel time while maintaining continuity
- Visualize motion characteristics

2 Theoretical Analysis

2.1 Understanding Motion Profiles

The project implements a continuous acceleration profile that improves upon the bang-bang control strategy. While bang-bang control provides timeoptimal solutions, its discontinuous nature makes it impractical for mechanical systems. Our implementation maintains continuous acceleration while approximating time-optimal performance.

2.2 The Ideal Case

The bang-bang profile serves as our theoretical benchmark, representing the time-optimal solution when acceleration discontinuities are permitted $(\varepsilon = 0)$. This provides both a performance baseline and identifies the critical transition points where smoothing is required in the practical implementation.

The theoretical bang-bang acceleration profile is given by:

$$a_{\rm bb}(t) = \begin{cases} a_{\rm max} & 0 < t < T/2 \\ -a_{\rm max} & T/2 < t < T \\ 0 & \text{otherwise} \end{cases}$$
 (1)

This profile achieves the theoretical minimum time of T = 12.649 s but has discontinuities at t = 0, T/2, and T. Our smooth profile will approximate this function while maintaining continuity at these switching points.

3 Our Smooth Profile Solution

The continuous acceleration profile is defined as the limit of hyperbolic tangent functions as $\varepsilon \to 0$:

$$a(t) = \lim_{\varepsilon \to 0} \left\{ a_{\max} [1 + \tanh\left(\frac{4}{\varepsilon}t\right)] - 2a_{\max} [1 + \tanh\left(\frac{4}{\varepsilon}(t - T/2)\right)] + a_{\max} [1 + \tanh\left(\frac{4}{\varepsilon}(t - T)\right)] \right\}$$

$$(2)$$

This construction ensures that the transition is approximately 98% complete within any arbitrarily small time window ε , as $\tanh(2) \approx 0.96$. As $\varepsilon \to 0$, each transition becomes arbitrarily sharp while maintaining continuity.

3.1 Component Analysis

We construct a(t) as the sum of three components: $a(t) = a_0(t) + a_1(t) + a_2(t)$, where each component serves a specific purpose in the motion profile. Here:

- t is the time variable $(0 \le t \le T)$
- T is the total movement time (determined through optimization)
- ε is our smoothing parameter, which we take to zero in the limit

The term $1 + \tanh$ appears in each component because \tanh alone ranges from -1 to 1, while we need a function that transitions from 0 to 2. This allows each component to smoothly transition from 0 to $2a_{\text{max}}$ (or vice versa), ensuring the sum achieves exactly $\pm a_{\text{max}}$ at the appropriate times.

Initial acceleration $a_0(t)$:

$$a_0(t) = \lim_{\varepsilon \to 0} a_{\text{max}} [1 + \tanh\left(\frac{4}{\varepsilon}t\right)]$$
 (3)

The factor a_{max} sets the magnitude, while $[1 + \tanh(\frac{4}{\varepsilon}t)]$ creates a smooth transition from 0 to 2 centered at t = 0. This gives us a smooth ramp-up from 0 to a_{max} .

Deceleration transition $a_1(t)$:

$$a_1(t) = \lim_{\varepsilon \to 0} -2a_{\max}[1 + \tanh\left(\frac{4}{\varepsilon}(t - T/2)\right)] \tag{4}$$

The factor of -2 combined with the time shift T/2 creates a transition from a_{max} to $-a_{\text{max}}$ at the midpoint of motion. The doubled magnitude is necessary to counteract both a_0 and a_2 , which would otherwise sum to $2a_{\text{max}}$ at T/2.

Final deceleration $a_2(t)$:

$$a_2(t) = \lim_{\varepsilon \to 0} a_{\text{max}} [1 + \tanh\left(\frac{4}{\varepsilon}(t - T)\right)]$$
 (5)

Similar to a_0 , but time-shifted by T and maintaining the same sign as a_1 , this component ensures a smooth return to zero acceleration at the end of motion.

As $\varepsilon \to 0$, these components combine to form a continuous approximation of the bang-bang profile. The factor $4/\varepsilon$ in each component ensures that transitions occur within a time window of ε , as $\tanh(2) \approx 0.96$ means the transition is 96% complete at $\pm \varepsilon/2$ from each switching point.

Detailed convergence analysis (see Appendix A) shows that this profile achieves:

- Quadratic convergence to optimal time as $\varepsilon \to 0$
- Linear convergence of acceleration error
- Cubic convergence of position error

4 Conclusion

The smooth profile solution successfully balances theoretical optimality with practical constraints. By using hyperbolic tangent functions for transitions and analyzing the limit as $\varepsilon \to 0$, we show that our solution can arbitrarily approach time-optimal performance while maintaining continuous acceleration. This makes the solution suitable for real-world robotic applications where smooth motion is essential.

A Implementation Details

A.1 Algorithm Design

The implementation uses binary search to find the optimal time T that reaches the exact target distance. For each candidate time:

```
def plot_continuous_forms(max_accel=0.25, distance=10.0,
     epsilon=0.001):
      # Calculate initial time estimate
      base_time = 2 * np.sqrt(2 * distance / max_accel)
      total_time = base_time * 1.5 # Initial estimate
      # Binary search for correct time
      target_error = 0.001 # 1mm accuracy
      min_time = base_time * 0.5
      max_time = base_time * 2.0
9
      while True:
11
          dt = 0.001 # Time step for integration
12
          t = np.arange(0, total_time + dt, dt)
          half_time = total_time / 2
14
          k = 4.0 / epsilon # Steepness factor
15
          # Continuous acceleration function
          def a(t):
18
              step1 = 0.5 * (1 + np.tanh(k * (t - epsilon)))
19
              step2 = -1.0 * (1 + np.tanh(k * (t - half_time)))
20
              step3 = 0.5 * (1 + np.tanh(k * (t - (total_time -
21
      epsilon))))
              return max_accel * (step1 + step2 + step3)
22
          # Calculate profiles through integration
          accel = a(t)
          vel = np.cumsum(accel) * dt
          pos = np.cumsum(vel) * dt
```

Listing 1: Core implementation of motion profiles

B Numerical Results

B.1 Implementation

Our implementation demonstrates the theoretical behavior as $\varepsilon \to 0$ while maintaining numerical stability. Figure 1 shows an example of the motion profiles.

Figure 1: Motion profiles showing smooth transitions in acceleration (top), velocity (middle), and position (bottom) over time. Numerical computation parameters: $a_{\text{max}} = 0.25 \text{ m/s}^2$, d = 10.0 m, $\varepsilon = 0.001$ (for stable integration).

For numerical computation, we use $\varepsilon = 0.001$ to maintain stability while achieving high accuracy.

B.2 Convergence Analysis

We analyze convergence by varying ε :

ε	Time Penalty	Max Accel Error	Distance Error
0.1	2.3%	8.2%	0.4%
0.01	0.24%	0.85%	0.04%
0.001	0.025%	0.087%	0.004%

The results confirm:

- $\bullet\,$ Quadratic convergence of travel time
- Linear convergence of acceleration profile
- Cubic convergence of position error