Тема: Выпрямительные устройства

Выпрямительное устройство предназначено для преобразования энергии переменного тока в энергию постоянного тока

Выпрямитель предназначен для преобразования энергии переменного тока в энергию однополярных пульсаций (однополярных импульсов)

тличия в функционировании реального диода от идеального

Состояние	Реальный диод	Идеальный диод	
Открыт (проводит)	$\mathbf{r}_{np} = \mathbf{min}$	$\mathbf{r}_{mp} = 0$	
	$\mathbf{U}_{np} = \mathbf{min}$	$U_{np} = 0$	
Закрыт (не проводит)	$\mathbf{r}_{o\delta p} = \mathbf{max}$ $\mathbf{I}_{o\delta p} = \mathbf{min} \ (\rightarrow 0)$	$\mathbf{r_{ofop}} = \mathbf{\infty} \ \mathbf{I_{ofop}} = 0$	
Переключается	$t_{\text{nep}} = \min (\rightarrow 0)$	$t_{\text{nep}} = 0$	

Правила выбора диода в схему выпрямления

Состояние диода	Параметр схемы	Отношение	Справочник			
Проводит	I _{B. cp.}	<	$\mathbf{I_{0}}_{\text{доп}}$ (постоянный)			
Не проводит	U _{обр. тах}	<	U раб. доп			
Переключается	 f (синусоидальная форма) f (прямоугольная форма) 	«	f _{гр} – (задаётся числом или графиком)			
Если таких диодов несколько, то выбирается тот, у которого $U_{np} o min$						

При коэффициенте использования

предельных значений параметров: $K_{ucn} \approx 0.8$

Показатели качества схем выпрямления

1.
$$\Pi \mathbf{K}_1 = \frac{\mathbf{U}_0}{\mathbf{U}_2} \longrightarrow (\uparrow)$$

2.
$$\Pi K_2 = \frac{U_{06p}}{U_0} \rightarrow (>1)$$

 ${\bf \underline{\Pi K_2}}$ есть отношение обратного напряжения (практически, ЭДС полуволны, запирающей выпрямительный диод) к средневыпрямленному напряжению

 $\underline{\it \Pi K_2}$ оценивает требования схемы выпрямления к допустимому рабочему напряжению выпрямительного диода

3.
$$\Pi \mathbf{K}_3 = \mathbf{K}_{\mathbf{n}1} = \frac{\mathbf{U}_{\mathbf{m}1}}{\mathbf{U}_0} \longrightarrow (\mathbf{min})$$

<u>ПК</u>₃ (<u>Коэффициент пульсаций</u>) есть отношение амплитуды первой гармоники пульсаций к значению средне-выпрямленного напряжения в нагрузке.

 ΠK_3 оценивает содержание первой гармоники пульсаций в выпрямленном напряжении

4.
$$\Pi K_4 = K_{\text{MM}} = \frac{P_0}{P_{\text{T}}} \rightarrow (< 1)$$

 ΠK_4 оценивает уровень использования схемой выпрямления габаритной мощности трансформатора

При бестрансформаторном входе вместо габаритной мощности трансформатора подставляется средне-выпрямленная за период мощность

$$(P_T \rightarrow P_{B. cp.} = \frac{1}{T} \int_0^T u_B(t) * i_B(t) dt)$$

Тема: Выпрямление однофазного переменного тока Однофазные схемы выпрямления

- Обе схемы выпрямления двухтактные, т.е. выпрямляются обе полуволны входного переменного напряжения.
- В обеих схемах диоды пропускают одинаковый ток (около половины тока нагрузки)
- В обеих схемах выпрямительные диоды проводят половину периода, пропуская полуволну. Поэтому величина средневыпрямленного напряжения и величина пульсаций выходного напряжения одинакова в обеих схемах. Коэффициент преобразования переменного напряжения одинаков и меньше единицы
- Значение обратного напряжения (на закрытом диоде) в 2Ф1Т схеме выпрямления в два раза меньше, чем в 1Ф2Т (мостовой), т.к. в мостовой схеме в плече два диода и обратное напряжение вторичной обмотки делится пополам

- Однако, в 1Ф2Т схеме выпрямления 4 диода, а в 2Ф1Т два, поэтому объём мостовой схемы больше. Больше и потери мощности. Поэтому, исходя из желания минимизировать потери мощности, 1Ф2Т выпрямитель используется при малых значениях напряжения нагрузки, а 2Ф1Т выпрямитель при больших значениях
- 2Ф1Т выпрямитель лучше использует трансформатор, поэтому при одинаковой мощности нагрузки, объём трансформатора при 2Ф1Т выпрямителе меньше

Тема: Выпрямление трёхфазного переменного тока 1:Трёхфазная двухтактная схема выпрямления

- Частота пульсаций выпрямленного напряжения в 6 раз больше частоты сети
- В каждый момент времени к выпрямителю $Д_1 J_6$ прикладывается не фазное напряжение, а линейное.

Т.к. линейное напряжение в √3 больше фазного, то средневыпрямленное напряжение на выходе схемы выпрямления значительно больше фазного. А коэффициент преобразования в постоянное напряжение – больше единицы.

• Диоды выпрямителя переключаются в моменты равенства фазных ЭДС:

$$E_{21} = E_{22} E_{22} = E_{23} E_{23} = E_{21}$$

• Принцип коммутации диодов выпрямителя

В каждый момент времени открыты два диода. Один — из группы анодной (общий анод) $Д_2$ — $Д_6$, тот, на катоде которого в этот момент имеет место наибольшее отрицательное напряжение, а другой — из группы катодной (общий катод), тот, на аноде которого в этот момент имеет место наибольшее положительное напряжение.

- Пульсации выпрямленного напряжения образуются как огибающая выпрямленных полуволн
- Т.к. величина средневыпрямленного напряжения намного больше величины пульсаций, а частота пульсаций частоты сети, то коэффициент пульсаций выпрямленного напряжения очень мал (меньше 6 %). По этой причине требования к сглаживающему фильтру ослаблены, а в ряде приложений он может быть исключён из состава выпрямительного устройства.
- Обратное напряжение есть геометрическая сумма линейных напряжений трех фаз (см. рис.). Оно может быть вычислено как со входа, так и с выхода:

Со входа:
$$U_{OBP} = \sqrt{2\sqrt{3}U_2}$$

$$\underline{C}$$
 выхода: $U_{ODP} = 1.05U_o$

1.
$$\phi = 120^0$$
 $m_1 = 3$ $m_2 = 3$ \Rightarrow $m_{\Pi} = 6$
$$f_{\Pi} = 6f_c$$

Сравнение показателей качества схем выпрямления

Показатели качества		2Ф1Т	1Ф2Т	3Ф1Т	3Ф2Т
ΠK_1	U_0 / U_2	0.91	0.91	1.17	2.34
ΠK_2	$\mathrm{U_{o6p}}$ / $\mathrm{U_0}$	3.14	1.57	2.1	1.05
ΠK_3	$K_{n1} = U_{m1} / U_0$	0.667	0.667	0.25	0.057
ΠK_4	$K_{\text{\tiny HM}} = P_0 / P_{\text{\tiny T}}$	0.625	0.814	0.75	0.96
$\mathbf{f}_{\mathbf{n}}$	-	2 f _c	2f _c	3f _c	6f _c
і _{выпр. ср.}	-	≈ I _{0 н} / 2		≈ I _{0 н} / 3	
Количество диодов	-	2	4	3	6

Перекрытие фаз (при т ≥3)

Перекрытие фаз проявляет себя прежде всего в многофазных сетях электроснабжения. Перекрытие фаз – это совместная работа фаз в части периода. Причины две:

- 1. Индуктивности обмоток трансформатора и сглаживающих фильтров
- 2. Неидеальность выпрямительных диодов

Причина 1: Индуцированные в обмотках «рассеяния» ЭДС препятствуют спаду выпрямленного тока и выпрямительные диоды не выключаются по окончании выпрямленной полуволны и продолжают проводить уже с диодом, открывающемся в следующей фазе

Причина 2: В реальных выпрямительных диодах имеет место падение напряжения на переходе диода. Т.е. выпрямленная полуволна (прошедшая через диод) меньше выпрямляемой (ЭДС) на величину падения напряжения U_{np} . Поэтому диоды переключаются не в момент равенства фазных ЭДС, а в момент равенства фазных ЭДС и выпрямленных напряжений. На рисунке сдвиг момента переключения показан красными стрелками.

Идеальный выпрямитель

Реальный выпрямитель

$$\mathbf{e}_{21} = \mathbf{U}_{22}$$
 $\mathbf{e}_{22} = \mathbf{U}_{23}$
 $\mathbf{e}_{23} = \mathbf{U}_{21}$

- Следствие <u>перекрытия фаз</u> снижение величины средневыпрямленного напряжения, искажение формы выпрямленной полуволны, длительность которой становится больше π , растут потери мощности.
- Диод активный элемент, поэтому на работу отдельного диода поле, создаваемее трансформатором, воздействовать не может. Однако, на работу выпрямителя (сборки диодов) трансформатор оказывает влияние в форме перекрытия фаз. По этой причине, как и по другим причинам, трансформатор со входа целесообразно убирать

Внешняя характеристика ВУ

В целом, внешняя характеристика ВУ имеет тот же вид, что и для других устройств, например, трансформатор: выходное напряжение снижается с ростом тока нагрузки из-за роста падения напряжения на выходном сопротивлении ВУ

$$\Delta U_{\Sigma} = \Delta U_{TP} + \Delta U_{B} + \Delta U_{C\Phi}$$

- ΔU_{TP} ($R_{BHX}^- = r_2 + r_1/K_T^2$) r_1, r_2 сопротивление обмоток трансформатора;
- ΔU_B ($n\ U_{\Pi P}$), где n число диодов в плече выпрямителя;
- $\Delta U_{C\Phi}$ (\mathbf{r}_{L}), \mathbf{r}_{L} сопротивление обмотки реактора СФ