非线性泛函分析

姬超 理学院

华东理工大学

2020年3月3日

第一章: 预备知识

§1 度量空间

§1 有界线性算子的基本理论

定义1.1 (度量空间的基本概念)

设X是非空集合,d是 $X \times X$ 上的实函数,如果它满足下面的条件:

3 / 10

姬超 (华东理工大学) 非线性泛函分析

定义1.1 (度量空间的基本概念)

设X是非空集合,d是 $X \times X$ 上的实函数,如果它满足下面的条件:

(1) 对任意 $x, y \in X$, $d(x, y) \ge 0$, 并且 d(x, y) = 0 的充分必要条件是 x = y;

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りゅ○

定义1.1 (度量空间的基本概念)

设X是非空集合,d是 $X \times X$ 上的实函数,如果它满足下面的条件:

- (1) 对任意 $x, y \in X$, $d(x, y) \ge 0$, 并且 d(x, y) = 0 的充分必要条件是 x = y;
- (2) $d(x,y) = d(y,x), \forall x, y \in X;$

定义1.1 (度量空间的基本概念)

设X是非空集合,d是 $X \times X$ 上的实函数,如果它满足下面的条件:

- (1) 对任意 $x,y \in X$, $d(x,y) \ge 0$, 并且 d(x,y) = 0 的充分必要条件是 x = y;
- (2) $d(x,y) = d(y,x), \forall x,y \in X;$
- (3) $d(x,y) \ge d(x,z) + d(z,y), \forall x,y,z \in X.$

姫超 (华东理工大学) 非线性泛函分析 3 / 10

定义1.1 (度量空间的基本概念)

设 X 是非空集合,d 是 $X \times X$ 上的实函数,如果它满足下面的条件:

- (1) 对任意 $x, y \in X$, $d(x, y) \ge 0$, 并且 d(x, y) = 0 的充分必要条件是 x = y;
- (2) $d(x,y) = d(y,x), \forall x,y \in X;$
- (3) $d(x,y) \ge d(x,z) + d(z,y)$, $\forall x, y, z \in X$.

则称 $d \in X$ 上的距离函数,而称 d(x,y) 为 x 与 y 之间的距离。又称 (X,d) 为距离空间或度量空间。

4□ + 4回 + 4 = + 4 = + 9 < 0</p>

3 / 10

姬超 (华东理工大学) 非线性泛函分析

定义1.2 (Cauchy 列的定义)

设 x_n 是度量空间X 中的点列,如果对任何 $\epsilon > 0$,存在正整数N ,使得当n,m > N 时,有

$$d(x_n, x_m) < \epsilon,$$

定义1.2 (Cauchy 列的定义)

设 x_n 是度量空间X 中的点列,如果对任何 $\epsilon > 0$,存在正整数N ,使得当n,m > N 时,有

$$d(x_n, x_m) < \epsilon,$$

则称 x_n 是 X 中的 Cauchy 列。

姫超 (华东理工大学) 非线性泛函分析 4 / 10

定义1.2 (Cauchy 列的定义)

设 x_n 是度量空间X 中的点列,如果对任何 $\epsilon > 0$,存在正整数N,使得当n.m > N 时,有

$$d(x_n, x_m) < \epsilon,$$

则称 x_n 是 X 中的 Cauchy 列。

如果度量空间 X 中每个 Cauchy 列都有极限则称 X 是完备的。

姫超 (华东理工大学) 非线性泛函分析 4 / 10

定义1.3 (紧性)

设 A 是度量空间 X 的子集,如果对于 A 的任何一族开覆盖,都有有限子覆盖,则称 A 是紧的;如果 A 的闭包 \overline{A} 是紧的,则称是相对紧的或者致密的。

5 / 10

定义1.3 (紧性)

设 A 是度量空间 X 的子集,如果对于 A 的任何一族开覆盖,都有有限子覆盖,则称 A 是紧的;如果 A 的闭包 \overline{A} 是紧的,则称是相对紧的或者致密的。

定理1.1

A 是度量空间 X 中紧集的充分必要条件是对 A 中的每个点列 $\{x_n\}$,存在子列 $\{x_{n_k}\}$,使得 $\{x_{n_k}\}$ 在 A 中有极限。

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

姬超 (华东理工大学)

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

(1) 对任何 $x \in X$, $||x|| \ge 0$, 并且 ||x|| = 0 的充分必要条件是 x = 0;

姬超 (华东理工大学) 非线性泛函分析

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

- (1) 对任何 $x \in X$, $||x|| \ge 0$, 并且 ||x|| = 0 的充分必要条件是 x = 0;
- $(2) \|\alpha x\| = |\alpha| \|x\|, \ \forall \alpha \in F, \ \forall x \in X;$

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

- (1) 对任何 $x \in X$, $||x|| \ge 0$, 并且 ||x|| = 0 的充分必要条件是 x = 0;
- (2) $\|\alpha x\| = |\alpha| \|x\|$, $\forall \alpha \in F, \forall x \in X$;
- (3) $||x+y|| \ge ||x|| + ||y||$, $\forall x, y \in X$.

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

- (1) 对任何 $x \in X$, $||x|| \ge 0$, 并且 ||x|| = 0 的充分必要条件是 x = 0;
- (2) $\|\alpha x\| = |\alpha| \|x\|$, $\forall \alpha \in F, \forall x \in X$;
- (3) $||x + y|| \ge ||x|| + ||y||, \forall x, y \in X.$

则称 $\|\cdot\|$ 为 X 为的范数, 而称 $(X,\|\cdot\|)$ 为线性赋范空间。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ つへ○

设 X 是实数域或复数域上 F 上的线性空间,如果 X 上的实值函数 $\|\cdot\|$ 满足下面的条件:

- (1) 对任何 $x \in X$, $||x|| \ge 0$, 并且 ||x|| = 0 的充分必要条件是 x = 0;
- (2) $\|\alpha x\| = |\alpha| \|x\|$, $\forall \alpha \in F, \forall x \in X$;
- (3) $||x + y|| \ge ||x|| + ||y||, \forall x, y \in X.$

则称 $\|\cdot\|$ 为 X 为的范数, 而称 $(X,\|\cdot\|)$ 为线性赋范空间。

定义1.5 (Banach空间)

完备的线性赋范空间称为 Banach 空间。

→□▶→□▶→□▶→□ → つへ○

定义1.7 (弱收敛与弱*收敛)

设X 是线性赋范空间, X^* 是它的共轭空间, $\{x_n\} \subset X, x_0 \in X$,如果对每个 $f \in X^*$. 都有

$$\lim_{n \to \infty} f(x_n) = f(x_0),$$

则称 $\{x_n\}$ 弱收敛于 x_0 , 记为 $x_n \rightarrow x_0$.

8 / 10

姬超 (华东理工大学) 非线性泛函分析

定义1.7 (弱收敛与弱*收敛)

设 X 是线性赋范空间, X^* 是它的共轭空间, $\{x_n\} \subset X$, $x_0 \in X$, 如果对每个 $f \in X^*$. 都有

$$\lim_{n \to \infty} f(x_n) = f(x_0),$$

则称 $\{x_n\}$ 弱收敛于 x_0 , 记为 $x_n \rightarrow x_0$.

设 $\{f_n\} \subset X^*, f_0 \in X^*,$ 如果对每个 $x \in X$,都有

$$\lim_{n \to \infty} f_n(x) = f_0(x),$$

则称 $\{f_n\}$ 弱*收敛于 f_0 .

姫超 (华东理工大学) 非线性泛函分析 8 / 10

定义1.8 (自反空间)

设X 是线性赋范空间,如果 $X = X^{**}$,则称X 是自反的。

姬超 (华东理工大学)

定义1.8 (自反空间)

设X 是线性赋范空间,如果 $X = X^{**}$,则称X 是自反的。

定理1.2

设X是自反的Banach空间, $\{x_n\}$ 是X中的有界点列,则 $\{x_n\}$ 有弱收敛的子列。

9 / 10

姬超 (华东理工大学) 非线性泛函分析

定义1.9

设 X, Y 是两个线性赋范空间, $T: X \to Y$ 是线性算子,如果 T 的值域 R(T) = Y , T 的逆算子 T^{-1} 存在并且有界,则称 T 是正则算子。

(ロ ト 4 🗗 ト 4 분 ト 4 분) 이 Q ()

定义1.9

设 X, Y 是两个线性赋范空间, $T: X \to Y$ 是线性算子,如果 T 的值域 R(T) = Y , T 的逆算子 T^{-1} 存在并且有界,则称 T 是正则算子。

定理1.3

设 X,Y 是 Banach 空间, $T:X\to Y$ 是一一到上的有界线性算子,则 T^{-1} 有界。因此, T 是正则算子。

Thank you!

11 / 10