Lecture 7

Binary Search Trees and Red-Black Trees

But first!

A brief wrap-up of divide and conquer.

How do we design divide-and-conquer algorithms?

- So far we've seen lots of examples.
 - Karatsuba
 - MergeSort
 - Select
 - QuickSort

Today

Begin a brief foray into data structures!

- Binary search trees
 - They are better when they're balanced.

this will lead us to...

- Self-Balancing Binary Search Trees
 - Red-Black trees.

Some data structures for storing objects like [5] (aka, nodes with keys)

(Sorted) arrays:

Linked lists:

$$HEAD \longrightarrow 3 \longrightarrow 2 \longrightarrow 1 \longrightarrow 8 \longrightarrow 5 \longrightarrow 7 \longrightarrow 4$$

- Some basic operations:
 - INSERT, DELETE, SEARCH

Sorted Arrays

- O(n) INSERT/DELETE:
 - First, find the relevant element (we'll see how below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

eg, insert 4.5

1 2 3 4 5 7 8

eg, Binary search to see if 3 is in A.

(Not necessarily sorted)

Linked lists

• O(1) INSERT:

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees

TODAY!

	Sorted Arrays	Linked Lists	(Balanced) Binary Search Trees
Search	O(log(n))	O(n)	O(log(n))
Delete	O(n)	O(n)	O(log(n))
Insert	O(n)	O(1)	O(log(n))

This is a node.

Binary tree terminology

Each node has two children.

The left child of 3 is 2

The right child of 3 is 4

The parent of 3 is 5

2 is a descendant of 5

Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (I won't usually draw them).

The height of this tree is 3. (Max number of edges from the root to a leaf).

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Q: Is this the only binary search tree I could possibly build with these values?

A: **No.** I made choices about which nodes to choose when. Any choices would have been fine.

Aside: this should look familiar

kinda like QuickSort

Which of these is a BST?

1 minute Think-Pair-Share

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4 5

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4 5 7

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

• Runs in time O(n).

2 3 4 5 7 Sorted

Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

SEARCH in a Binary Search Tree definition by example

EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5

- It turns out it will be convenient to return 4 in this case
- (that is, return the last node before we went off the tree)

How long does this take?

O(length of longest path) = O(height)

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
 - x = SEARCH(key)
 - Insert a new node with desired key at x...

INSERT in a Binary Search Tree

This slide skipped in class – here for reference

EXAMPLE: Insert 4.5

- INSERT(key):
 - x = SEARCH(key)
 - **if** key > x.key:
 - Make a new node with the correct key, and put it as the right child of x.
 - **if** key < x.key:
 - Make a new node with the correct key, and put it as the left child of x.
 - **if** x.key == key:
 - return

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
 - x = SEARCH(key)
 - **if** x.key == key:
 -delete x....

This is a bit more complicated...see the skipped slides for some pictures of the different cases.

DELETE in a Binary Search Tree several cases (by example) say we want to delete 3

This slide skipped in class – here for reference!

Case 1: if 3 is a leaf, just delete it.

5

3

This triangle is a cartoon for a subtree

Write pseudocode for all of these!

Case 2: if 3 has just one child, move that up.

DELETE in a Binary Search Tree

This slide skipped in class – here for reference!

Case 3: if 3 has two children, replace 3 with it's immediate successor. (aka, next biggest thing after 3)

- Does this maintain the BST property?
 - Yes.
- How do we find the immediate successor?
 - SEARCH for 3 in the subtree under 3.right
- How do we remove it when we find it?
 - If [3.1] has 0 or 1 children, do one of the previous cases.
- What if [3.1] has two children?
 - It doesn't.

How long do these operations take?

- SEARCH is the big one.
 - Everything else just calls SEARCH and then does some small O(1)-time operation.

How long does search take?

1 minute think; 1 minute pair+share

Time = O(height of tree)

Trees have depth O(log(n)). **Done!**

Lucky the lackadaisical lemur.

Wait a second...

Plucky the Pedantic Penguin

Search might take time O(n).

What to do?

- Goal: Fast SEARCH/INSERT/DELETE
- All these things take time O(height)
- And the height might be big!!! 😊

- Idea 0:
 - Keep track of how deep the tree is getting.
 - If it gets too tall, re-do everything from scratch.
 - At least Ω(n) every so often....
- Turns out that's not a great idea. Instead we turn to...

Self-Balancing Binary Search Trees

Idea 1: Rotations

 Maintain Binary Search Tree (BST) property, while moving stuff around.

This seems helpful

Strategy?

• Whenever something seems unbalanced, do rotations until it's okay again.

Lucky the Lackadaisical Lemur

Even for Lucky this is pretty vague. What do we mean by "seems unbalanced"? What's "okay"?

Idea 2: have some proxy for balance

- Maintaining perfect balance is too hard.
- Instead, come up with some proxy for balance:
 - If the tree satisfies [SOME PROPERTY], then it's pretty balanced.
 - We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we'll see...

Red-Black Trees

- A Binary Search Tree that balances itself!
- No more time-consuming by-hand balancing!
- Be the envy of your friends and neighbors with the time-saving...

 Red Black tree

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red

nodes. It's just good sense!

Red-Black Trees

obey the following rules (which are a proxy for balance)

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.

Examples(?)

Every node is colored red or black.

The root node is a black node.

NIL children count as black nodes.

Children of a red node are black nodes.

For all nodes x:

Which of these are red-black trees? (NIL nodes not drawn)

 all paths from x to NIL's have the same number of black nodes on them.

1 minute think1 minute pair+share

Why these rules???????

- This is pretty balanced.
 - The black nodes are balanced
 - The red nodes are "spread out" so they don't mess things up too much.

 We can maintain this property as we insert/delete nodes, by using rotations.

This is the really clever idea!

This **Red-Black** structure is a proxy for balance.

It's just a smidge weaker than perfect balance, but we can actually maintain it!

Let's build some intuition!

This is "pretty balanced"

 To see why, intuitively, let's try to build a Red-Black Tree that's unbalanced.

The height of a RB-tree with n non-NIL nodes is at most 2log(n | 1)

Χ

Claim: at least $2^{b(x)} - 1$ nodes in this

is at most $2\log(n+1)$

 Define b(x) to be the number of black nodes in any path from x to NIL.

• (excluding x, including NIL).

- Claim:
 - There are at least 2^{b(x)} 1 non-NIL nodes in the subtree underneath x. (Including x).
- [Proof by induction on board if time]

Then:

$$n \geq 2^{b(root)} - 1$$
 using the Claim WHOLE subtree (of any color). $> 2^{height/2} - 1$ b(root) >= height/2 because of RBTree rules.

Rearranging:

$$n+1 \ge 2^{height/2} \Rightarrow height \le 2\log(n+1)$$

This is great!

 SEARCH in an RBTree is immediately O(log(n)), since the depth of an RBTree is O(log(n)).

- What about INSERT/DELETE?
 - Turns out, you can INSERT and DELETE items from an RBTree in time O(log(n)), while maintaining the RBTree property.
 - That's why this is a good property!

INSERT: Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree.

INSERT: Case 1

- Make a new red node.
- Insert it as you would normally.

INSERT: Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree.

INSERT: Case 2

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

INSERT: Case 2

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

Example: insert 0

Can't we just insert 0 as a black node?

We need a bit more context

Example: insert 0

We need a bit more context

Add 0 as a red node.

We need a bit more context

Add 0 as a red node.

• Claim: RB-Tree properties still hold.

INSERT: Many cases That's this case!

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree.

INSERT: Case 3

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

Example: Insert 0.

 Maybe with a subtree below it.

Recall Rotations

 Maintain Binary Search Tree (BST) property, while moving stuff around.

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

3

Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree.

That's a lot of cases!

- You are **not responsible** for the details of Red-Black Trees. (For this class)
- You should know:
 - What are the properties of an RB tree?
 - And (more important) why does that guarantee that they are balanced?

What have we learned?

- Red-Black Trees always have height at most 2log(n+1).
- As with general Binary Search Trees, all operations are O(height)
- So all operations with RBTrees are O(log(n)).

Conclusion: The best of both worlds

	Sorted Arrays	Linked Lists	Binary Search Trees*
Search	O(log(n))	O(n)	O(log(n))
Delete	O(n)	O(n)	O(log(n))
Insert	O(n)	O(1)	O(log(n))

Today

- Begin a brief foray into data structures!
 - See CS 166 for more!
- Binary search trees
 - You may remember these from CS 106B
 - They are better when they're balanced.

this will lead us to...

- Self-Balancing Binary Search Tr
 - Red-Black trees.

Recap

Recap

- Balanced binary trees are the best of both worlds!
- But we need to keep them balanced.
- Red-Black Trees do that for us.
 - We get O(log(n))-time INSERT/DELETE/SEARCH
 - Clever idea: have a proxy for balance

Next time

• Graph!