Practice Exam 1

- 1. (a) Give at least two definitions of a closed set in \mathbb{R}^n .
 - (b) Give at least two equivalent definitions of a continuous function $f:A\to\mathbb{R}^m$ for $A\subseteq\mathbb{R}^n$.
- 2. Let **u** and **v** be two points in \mathbb{R}^n . Let R, r > 0. Show that if $dist(\mathbf{u}, \mathbf{v}) = R + r$, then the open balls $B_R(\mathbf{u})$ and $B_r(\mathbf{v})$ are disjoint (i.e. $B_R(\mathbf{u}) \cap B_r(\mathbf{v}) = \emptyset$).
- 3. Prove that the set $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + xy + z^3 \neq 0\} \subseteq \mathbb{R}^3$ is open in \mathbb{R}^3 .
- 4. Let A be an unbounded set. Show that there is a sequence $\{\mathbf{u}_k\}_{k\geqslant 1}$ in A such that no subsequence of $\{\mathbf{u}_k\}_{k\geqslant 1}$ converges.
- 5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be the function defined so that

$$f(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if all } x_i \text{ are rational for } 1 \leq i \leq n \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is not continuous at any point in \mathbb{R}^n .

6. Show that the function $f:(0,1] \to \mathbb{R}$ defined by $f(x) = \ln(x^2)$ is continuous but not uniformly continuous. (You can assume that $\ln(x)$ is continuous on $(0,\infty)$).