Semantic segmentation

Inputs

RGB image

Targets

Class label for every pixel

Instance Segmentation

(b) Generic Object Detection (Bounding Box)

Panoptic Segmentation

(a) Image

(c) Instance Segmentation

(b) Semantic Segmentation

(d) Panoptic Segmentation

Semantic segmentation

как добиться такого предикта? как сгенерировать выход с такого же размера, как и вход?

Inputs

RGB image

Targets

Class label for every pixel

Recap: Pooling

Pooling: compute mean or max over small windows to reduce resolution.

Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.

Unpooling

Unpooling: upsample to increase resolution; here 2x2 kernel.

AlexNet (2012)

Fully Convolutional Networks for Semantic Segmentation

FCN-32s

Fusing for FCN-16s and FCN-8s

Comparison with different FCNs

SegNet

U-net

Loss: pixel-wise cross entropy

$$\ell_{\text{CE}}(\mathbf{p}, \mathbf{t}) = -\frac{1}{HW} \sum_{i=1}^{HW} \sum_{j=1}^{N_{\text{classes}}} \mathbf{t}_{ij} \log \mathbf{p}_{ij}$$

Prediction for a selected pixel

Target for the corresponding pixel

Pixel-wise loss is calculated as the log loss, summed over all possible classes

$$-\sum_{classes} y_{true} \log(y_{pred})$$

This scoring is repeated over all **pixels** and averaged

Classification

Accuracy: percentage of correct predictions

Top-1: top prediction is the correct class

Top-5: correct class is in top-5 predictions

Object detection and segmentation

intersection-over-union (IoU)

non-differentiable: used only for evaluation

$$\mathcal{J}(\mathbf{P}, \mathbf{T}) = \frac{\mathbf{P} \cap \mathbf{T}}{\mathbf{P} \cup \mathbf{T}}$$

$$\frac{TP}{TP + FP + FN}$$

Table 1. The three similarity coefficients

Similarity Coefficient (X,Y)	Actual Formula
Dice Coefficient	$2\frac{ X\cap Y }{ X + Y }$
Cosine Coefficient	$\frac{ X \cap Y }{ X ^{1/2}. Y ^{1/2}}$
Jaccard Coefficient	$\frac{ X \cap Y }{ X + Y - X \cap Y }$

Prediction for a selected class

Target for the corresponding class

(a) Overall Architecture, (b) RCU, (c) Fusion, (d) Chained Residual Pooling

- (a): At the top left of the figure, it is the <u>ResNet</u> backbone. Along the <u>ResNet</u>, different resolutions of feature maps go through Residual Conv Unit (RCU). <u>Pre-Activation ResNet</u> is used.
- **(b) RCU**: Residual block is used but with <u>batch normalization</u> removed.
- **(c) Fusion**: Then multi-resolution fusion is used to merge the feature maps using element-wise summation.
- (d) Chained Residual Pooling: The output feature maps of all pooling blocks are fused together with the input feature map through summation of residual connections. It aims to capture background context from a large image region.
- (a) Output Conv: At the right of the figure, finally, another RCU is placed here, to employ non-linearity operations on the multi-path fused feature maps to generate features for further processing or for final prediction.

(a) Going deeper without atrous convolution.

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when output_stride = 16.

DeepLab V3 plus

Fig. 2. An example of a high-resolution network. Only the main body is illustrated, and the stem (two stride- 2.3×3 convolutions) is not included. There are four stages. The 1st stage consists of high-resolution convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution) blocks. The detail is given in Section 3.