Then the following assertions hold:

- (a) $(\lambda i\alpha)^{-1}$ is a pole of the resolvent $R(.,R(\lambda))$ for all $\lambda \in D$.
- (b) dim $Fix((\lambda-i\alpha)R(\lambda)) = dim Fix((\lambda-i\alpha)\hat{R}(\lambda))$ for all $\lambda \in D$.
- (c) i α is a pole of the pseudo-resolvent R and the residue of R and R(.,R(λ)) in i α respectively (λ i α) -1 are identical.

 $\underline{\text{Proof}}$. Take a normalized sequence (x_n) in E with

$$\lim_{n} \| (\lambda - i\alpha) R(\lambda) x_n - x_n \| = 0 .$$

The existence of such a sequence follows from the fact that the fixed space of $(\lambda-i\alpha)\hat{R}(\lambda)$ is non trivial. Suppose (x_n) is not relatively compact. Then we may assume that there exists $\delta>0$ such that

$$\|\mathbf{x}_{n} - \mathbf{x}_{m}\| > \delta$$
 for $n \neq m$.

Take $k \in \mathbb{N}$ and let \hat{x}_k be the image of (x_{n+k}) in \hat{E} . Since

$$\lim_{n} \| (\lambda - i\alpha) R(\lambda) x_{n+k} - x_{n+k} \| = 0 ,$$

the so defined \hat{x}_k 's belong to Fix(($\lambda - i\alpha$) $\hat{R}(\lambda$)). Since this space is finite dimensional there exist j < ℓ such that

$$\|\hat{\mathbf{x}}_{j} - \hat{\mathbf{x}}_{\ell}\| \leq \frac{\delta}{2}.$$

From the definition of the norm in \hat{E} it follows that there are natural numbers $\, n < m \,$ such that

$$\|\mathbf{x}_n - \mathbf{x}_m\| \le \frac{\delta}{2}$$

which leads to a contradiction. Therefore every approximate eigenvector of $(\lambda - i\alpha)R(\lambda)$ pertaining to 1 is relatively compact. In particular it has a convergent subsequence from which it follows that the fixed space of $(\lambda - i\alpha)R(\lambda)$ is non trivial.

Obviously

$$\dim \operatorname{Fix}((\lambda - i\alpha)R(\lambda)) \leq \dim \operatorname{Fix}((\lambda - i\alpha)\hat{R}(\lambda)).$$