Ejercicios Geometría proyectiva

1. Ejercicio 1

Utilice álgebra elemental (por ejemplo, Cramer) para determinar que las rectas definidas por $r_1 = [a_1, b_1, c_1]^T$ y $r_2 = [a_2, b_2, c_2]^T$ intersecan en el punto $p = [b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - a_2b_1]^T$

2. Ejercicio 2

Verifique que el punto de intersección p entre las rectas $r_1 = [a_1, b_1, c_1]^T$ y $r_2 = [a_2, b_2, c_2]^T$ es de la forma $p = r_1 \times r_2$, donde "×" denota el producto vectorial. (Nótese que la simplicidad de esta fórmula para calcular el punto de intersección de dos rectas es una consecuencia de la representación de rectas y puntos como vectores homogéneos).

3. Ejercicio 3

(Ejemplo 2.3, pág. 27 de Hartley y Zisserman) El punto no homogéneo $p_0 = [1,1]^T \in \mathbb{R}^2$ es el punto de intersección de las rectas x=1 e y=1. Utilice la fórmula del Ejercicio 2 para encontrar la representación homogénea del punto p_0 .

4. Ejercicio 4

(Ejemplo 1, pág. 4 de Birchfield) Demuestre que el punto de intersección de las rectas $r_1 = [4, 2, 2]^T$ y $r_2 = [6, 5, 1]^T$ es el punto $p = [-1, 1, 1]^T$

5. Ejercicio 5

(Ecuación de la recta que pasa por dos puntos) Demuestre que la ecuación de la recta r que pasa por los puntos $p_1 = [x_1, y_1, z_1]^T$ y $p_2 = [x_2, y_2, z_2]^T$ cumple que $r = p_1 \times p_2$

(Colinealidad)

Demuestre que la condición para que los tres puntos $p_1 = [x_1, y_1, z_1]^T$, $p_2 = [x_2, y_2, z_2]^T$ y $p_3 = [x_3, y_3, z_3]^T$ pertenezcan a la misma recta (o que sean colineales) es $p_3^T(p_1 \times p_2) = 0$, o sea que $det[p_1 \ p_2 \ p_3] = 0$

7. Ejercicio 7

(Concurrencia)

Demuestre que la condición para que las tres rectas $r_1 = [a_1, b_1, c_1]^T$, $r_2 = [a_2, b_2, c_2]^T$ y $r_3 = [a_3, b_3, c_3]^T$ se intercepten en un mismo punto (o sea, que sean concurrentes) es que $det[r_1 \ r_2 \ r_3] = 0$

8. Ejercicio 8

(Ejemplo 2.5, pág. 28 de Hartley y Zisserman)

Sean las rectas paralelas x=1 y x=2 del plano euclidiano \mathbb{R}^2 , obtener el punto de intersección en el infinito en la dirección del eje y .

9. Ejercicio 9

Para 'homogenizar'(3), introducimos las siguientes sustituciones $x \to \frac{x_1}{x_3}, y \to \frac{x_2}{x_3}$

a) Comprobar que la correspondiente ecuación en coordenadas homogéneas es de la forma

$$ax_1^2 + bx_1x_2 + cx_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

- b) Demuestre que (4) es una ecuación polinómica homogénea de grado 2.
- c) Verificar que (4) se puede expresar en notación matricial por la ecuación

$$x^T C x = 0$$

$$C = \begin{bmatrix} a & a/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

2

(Resultado 2.7, pág. 31 de Hartley y Zisserman 21)

Demuestre que la ecuación de la recta tangente r a la cónica C en un punto x está dada por r = Cx.

Ejercicio 11 11.

(Cónicas degeneradas)

Estudiar concepto de cónica degenerada y el Ejemplo 2.8, pág. 32 de Hartley y Zisserman. Considerar el caso particular de las rectas $l = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$, $m = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$, y compruebe que:

a)
$$C = lm^T + ml^T = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

- b) det[c] = 0
- c) x^TCx conduce a $x_1x_2 x_1x_3 x_2x_3 + x_3^2 = 0$ d) La ecuación $x_1x_2 x_1x_3 x_2x_3 + x_3^2 = 0$ de P^2 transformada al plano euclidiano \mathbb{R}^2 **es** (x-1)(y-1) = 0
 - e) La solución del sistema Cx=0 es la recta $\alpha[111]^T, \alpha \in \mathbb{R}^2$
 - f) El punto de intersección entre las rectas es l y m es $[111]^T$
- g) Remitirse al Ejercicio 3 para interpretar geométricamente los resultados de los incisos anteriores.

12. Ejercicio 12

Si los cuatro pares de puntos correspondientes, $(X_i, Y_i) \leftrightarrow (x_i, y_i)$, para i = 1, 2, 3, 4, satisfacen las ecuaciones (5), y suponiendo que $h_{33} = 1$, demuestre que de (5) resulta el siguiente sistema de ecuaciones lineales...

13. Ejercicio 13

Probar que las cónicas duales $R^TC^*R=0$ del plano proyectivo de partida se transforman proyectivamente en cónicas duales $r^T C^{*\prime} r = 0$ del plano proyectivo de llegada donde $C^{*\prime} = HC^*H^T$.

Ejercicio 14 **14.**

Demuestre que la distancia Euclidiana entre dos puntos $P_i = [X_i, Y_i, Z_i]^T$ y $P_j =$ $[X_j,Y_j,Z_j]^T$ (para i, j =1,2,3,4) calculada a partir de sus correspondientes puntos del plano Euclidiano \mathbb{R}^2 se expresa por la fórmula $\Delta_{ij} = \sqrt{\left(\frac{X_i}{Z_i} - \frac{Y_i}{Z_i}\right)^2 + \left(\frac{X_j}{Z_j}, \frac{Y_j}{Z_j}\right)^2}$

Escriba cinco posibles fórmulas para razón cruzada de cuatro puntos colineales P_1, P_2, P_3, P_4 de P^2 , ¿Cuántas fórmulas posibles pudieran encontrarse?

16. Ejercicio 16

Demuestre que la transformación proyectiva sobre la recta R es de la forma $x = \frac{h_{11}X + h_{12}}{h_{21}X + h_{22}}$, la cual es la forma bidimensional de la ecuación (5).

17. Ejercicio 17

Demuestre que la distancia Euclidiana entre dos puntos $P_i = [X_i, Y_i]^T$ y $P_j = [X_j, Y_j]^T$ de P^1 (para i, $\mathbf{j} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$) calculada a partir de sus correspondientes puntos de la recta Euclidiana \mathbb{R} se calcula por la fórmula $\Delta_{ij} = \frac{1}{|Y_iY_j|} det[PiPj]$

18. Ejercicio 18

Demuestre que $Cr(P_1, P_2, P_3, P_4) = \frac{\det[P_1P_3]\det[P_2P_4]}{\det[P_2P_3]\det[P_1P_4]}$

19. Ejercicio 19

Demuestre que bajo la transformación proyectiva p = HP se cumple que Cr(p1, p2, p3, p4) = Cr(P1, P2, P3, P4)

20. Ejercicio 20

Demuestre que una transformación es una transformación de semejanza, sí y solo sí, esta mantiene invariantes los puntos absolutos $i = [1, i, 0]^T$ y $j = [1, -i, 0]^T$

21. Ejercicio 21

(El objetivo de este ejercicio es obtener una fórmula clásica para determinar el ángulo entre las correspondientes proyecciones de las rectas r_1 y r_2 en el plano Euclidiano)

Dadas las rectas $r_1 = [a_1, -1, 0]^T$ y $r_2 = [a_2, -1, 0]^T$ del plano proyectivo P^2 :

- a) Verifique que sus correspondientes ecuaciones cartesianas (en el plano Euclidiano R^2) son $a_1x y = 0$ y $a_2x y = 0$, respectivamente.
- b)Compruebe que sus ecuaciones vectoriales son, respectivamente, $r_1(\alpha) = \alpha[1, a_1]^T$ y $r_2(\alpha) = \alpha[1, a_2]^T$
- c)El ángulo θ entre las rectas r_1 y r_2 coincide con el ángulo entre los vectores directores $v_1 = [1.a_1]$ y $v_2 = [1.a_2]$. Demuestre que

$$tan\theta = \frac{|v_2 \times v_1|}{v_2 \cdot v_1} = \frac{a_1 - a_2}{1 + a_1 a_2}$$

El objetivo de este ejercicio es obtener una fórmula clásica para determinar el ángulo entre las rectas r_1 y r_2 en el plano proyectivo y comparar con la obtenida en el Ejercicio 21)

Dadas las rectas $r_1 = [a_1, -1, 0]^T$ y $r_2 = [a_2, -1, 0]^T$ del plano proyectivo P^2 :

- a) Comprobar que los puntos de intersección p_i entre las rectas r_i y la recta ideal r_{∞} son de la forma $p_i = [1, a_i, 0]^T$ (i = 1, 2).
- b) Comprobar que la razón cruzada entre los puntos $p_1 = [1, a_1, 0]^T$, $p_1 = [1, a_2, 0]^T$, $i = [1, i, 0]^T$ y $j = [1, -i, 0]^T$ está dada por

$$Cr(p_1, p_2, i, j) = e^{2i(tan^{-1}(\frac{a_1 - a_2}{a_1 a_2 + 1}))}$$

c) Comprobar de (26) y (27) resulta (25).

23. Ejercicio 23

(El objetivo de este ejercicio es visualizar la interpretación geométrica Euclidiana de la recta r que pasa por dos puntos no ideales P_1 y P_2 de P^3) Sea r la recta de P^3 que pasa por los puntos $P_1 = [1, 1, 0, 1]^T$ y $P_2 = [0, 1, 1, 1]^T$

- a) Escribir la ecuación de la recta r usando la fórmula (10).
- b) Hallar los puntos \overline{P}_1 y \overline{P}_2 , correspondientes de $\mathbb{R}^3=\{(x,y,z)\}$, en coordenadas no homogéneas.
 - c) Hallar la ecuación vectorial de la recta \overline{r} que pasa por los puntos \overline{P}_1 y \overline{P}_2

- d)Hallar la ecuación cartesiana Ax+By+Cz=0 del plano que pasa por el origen y por los puntos \overline{P}_1 y \overline{P}_2
- e) Ilustrar gráficamente en el primer octante del espacio Cartesiano $R^3=(x,y,z)$, a los puntos \overline{P}_1 y \overline{P}_2 , al plano que pasa por el origen y por los puntos \overline{P}_1 y \overline{P}_2 , y al vector normal a dicho plano $n=\overline{P}_1\times\overline{P}_2$

(Sucesión de pasos que conduce a la ecuación del plano que pasa por tres puntos de P^3 a partir del vector normal en coordenadas no homogéneas)

a) Verificar que, si $D \neq 0$, el sistema (13) se puede expresar en notación matricial como sigue:

$$\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} \begin{bmatrix} A/D \\ B/D \\ C/D \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

b) Suponiendo que $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}
eq 0$, aplicar Cramer, para comprobar que las componentes $\bar{n}_x \bar{n}_y \bar{n}_z$ del vector normal $\bar{n} = [\bar{n}_x \bar{n}_y \bar{n}_z]^T$ satisfacen las siguientes relaciones:

$$n_{x} = \frac{\begin{vmatrix} -1 & y_{1} & z_{1} \\ -1 & y_{2} & z_{2} \\ -1 & y_{3} & z_{3} \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{1} & y_{1} & z_{1} \end{vmatrix}}, n_{y} = \frac{\begin{vmatrix} x_{1} & -1 & z_{1} \\ x_{2} & -1 & z_{2} \\ x_{3} & -1 & z_{3} \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}}, n_{z} = \frac{\begin{vmatrix} x_{1} & y_{1} & -1 \\ x_{2} & y_{2} & -1 \\ x_{3} & y_{3} & -1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}}$$

c)Homogeneizar el vector normal $\bar{n}=[\bar{n_x}\bar{n_y}\bar{n_z}]^T$ mediante los cambios $x_i=\frac{X_i}{W_i}$, $y_i=\frac{Y_i}{W_i}$ y $z_i=\frac{Z_i}{W_i}$ aplicando propiedades de los determinantes, obtener la siguiente ecuación del plano que pasa por los puntos $P_1=[X_1,Y_1,Z_1]^T$, $P_2=[X_2,Y_2,Z_2]^T$ y $P_3=[X_3,Y_3,Z_3]^T$ de P^3

$$\bar{n} = \begin{bmatrix} \begin{vmatrix} Y_1 & Y_2 & Y_3 \\ W_1 & W_2 & W_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Z_1 & Z_2 & Z_3 \\ W_1 & W_2 & W_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ W_1 & W_2 & W_3 \\ Y_1 & Y_2 & Y_3 \end{vmatrix}, \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix} \end{bmatrix}^T$$

25. Ejercicio 25

(Tres planos concurrentes en un punto) Deduzca, por dualidad con (16), la fórmula del punto de intersección p entre los planos $n_1 = [n_1^1, n_2^1, n_3^1, n_4^1], n_2 = [n_1^2, n_2^2, n_3^2, n_4^2]$ y

 $n_3 = [n_1^3, n_2^3, n_3^3, n_4^3]$ de P^3 .