CS 271: Automata and Computation Theory

Spring 2014

Problem Set #2

Due: Tuesday, March 4, 2014

Problem 1 Give a CFG that generates each of the following languages.

- **a.** $\{w \mid w \text{ has twice as many a's as b's}\}.$
- **b.** The complement of $\{a^nb^n \mid n \ge 0\}$.
- **Problem 2** We proved that the language $\{a^ib^jc^k \mid \text{if } i=1, \text{ then } j=k\}$ is not regular. Show that it is context-free, either by giving a CFG that generates it or by using closure properties of CFLs.

Problem 3 Convert the following CFG into CNF.

$$S \to TST \mid T \mid \varepsilon$$
$$T \to aTb \mid \varepsilon$$

- Problem 4 Prove that the class of context-free languages is closed under reversal.
- **Problem 5** Prove that the class of context-free languages is closed under homormophism. [Hint: To simplify the notation, consider a CFG that's in CNF and construct one that isn't necessarily in CNF.]
- **Problem 6** Use the result from Problem 5 to show that $L = \{a^n b^n c^n d^n \mid n \ge 0\}$ is not context-free.
- **Problem 7** Prove that every regular language is context-free by using the fact that CFLs are closed under union, concatenation, and Kleene star and that every regular language is generated by a regular expression. [Hint: There are 6 cases to consider.]

Problem 8 Prove that the following CFG generates the language

$$\{xy\mid x,y\in\Sigma^*,\ |x|=|y|,\ \mathrm{and}\ x\neq y\}.$$

$$S\to AB\ |\ BA$$

$$A\to XAX\ |\ \mathtt{a}$$

$$B\to XBX\ |\ \mathtt{b}$$

$$X\to\mathtt{a}\ |\ \mathtt{b}$$

[Hint: Consider m applications of the rule $A \to XAX$ and n applications of the rule $B \to XBX$ in the derivation of a string and note that each instance of an X gives you a single terminal. So

$$S \Rightarrow AB \overset{*}{\Rightarrow} X^m \mathbf{a} X^m B \overset{*}{\Rightarrow} X^m \mathbf{a} X^m X^n \mathbf{b} X^n$$

where

$$X^i = \underbrace{XX\cdots X}_i$$
.

All strings derived from the rightmost expression have length 2(m+n+1). Now divide such a string into two m+n+1 parts and show that the two parts differ in at least one position. There's a similar argument when the first step in the derivation is $S \Rightarrow BA$.

Problem 9 We have used the fact that a CFG in CNF derives a string w of length |w| = n > 0 in exactly 2n - 1 steps. Prove this fact.

Problem 10 Show that the language $\{ww \mid w \in \{a,b\}^*\}$ is not context free. [Hint: Consider the string $w = a^p b^p a^p b^p$. Remember, in the definition of CF-pumpable, $|vxy| \leq p$. Use that fact to limit the number of cases you consider.]