Problem 1 (2.2.35). Use the Mayer-Vietoris sequence to show that a nonorientable closed surface, or more generally a finite simplicial complex X for which $H_1(X)$ contains torsion, cannot be embedded as a subspace of \mathbb{R}^3 in such a way as to have a neighborhood homeomorphic to the mapping cylinder of some map from a closed orientable surface to X. [This assumption on a neighborhood is in fact not needed if one deduces the result from Alexander duality in 3.3]

Proof. Let $i: X \to \mathbb{R}^3$ be an embedding with $N \subset \mathbb{R}^3$ such that $N \cong M_f$ where M_f is the mapping cylinder for a map $f: Y \to X$ with Y closed and orientable. Let $A = \mathbb{R}^3 \setminus i(X)$. Then $A \cap N = N \setminus i(X) \cong Y$. Note that because N retracts onto i(X) that $H_n(N) = H_n(X) \oplus H_n(N, X)$. Then using Mayer-Vietrois sequence with reduced homology we get

$$0 \longrightarrow H_1(Y) \longrightarrow H_1(\mathbb{R}^3 \setminus i(X)) \oplus H_1(X) \oplus H_1(N,X) \longrightarrow 0$$

Which gives us an isomorphism. However since Y is a closed orientable surface its first homology group is isomorphic \mathbb{Z}^{2g} which contains no torsion while the other group does which is a contradiction.

Therefore a finite simplicial complex with torsion cannot be embedded into \mathbb{R}^3 such that it has a neighborhood homeomorphic to the mapping cylinder for a map from a closed orientable surface to said complex.

Problem 2 (2.2.38). Show that the commutative diagram

with the two sequences across the top and bottom exact, gives rise to an exact sequence

$$\cdots \to E_{n+1} \to B_n \to C_n \oplus D_n \to E_n \to B_{n-1} \to \cdots$$

where the maps are obtained from those in the previous diagram in the obvious way, except that $B_n \to C_n \oplus D_n$ has a minus sign in one coordinate.

Proof. Label the map $E_{n+1} \to B_n$, $B_n \to C_n \oplus D_n$, and $C_n \oplus D_n \to E_n$ as $\varphi, (i, -j)$, and k + l respectively. There are six things to verify:

- $\ker(\varphi) \subseteq \operatorname{im}(k+l)$: Suppose that $e \in \ker \varphi$. Then $\epsilon \circ \alpha_b(e) = 0$ and by commutativity $\beta \circ \epsilon \circ \alpha_b(e) = \epsilon \circ \alpha_d(e) = 0$. By exactness there is a $c \in C_{n+1}$ such that $\gamma(c) = \epsilon(e)$. By commutativity $\gamma(c) = \epsilon \circ k(c) = \epsilon(e)$. As such $\epsilon(e k(c)) = 0$ and by exactness there is a $d \in D_{n+1}$ such that l(d) = e k(c). It then follows that $k + l(c + d) = k(c) + e k(c) = e \in \operatorname{im}(k+l)$.
- im $(k+l) \subseteq \ker(\varphi)$: Let $e \in \operatorname{im}(k+l)$. Then there exists $c \in C_{n+1}$ and $d \in D_{n+1}$ such that k(c) + l(d) = e. Then $\varphi(k(c) + l(d)) = \alpha_b \circ \epsilon \circ k(c) + \alpha_b \circ \epsilon \circ l(d)$. First note that $\epsilon \circ l(d) = 0$ by exactness. By commutativity $\epsilon \circ k(c) = \gamma(c)$ which implies that $\alpha_b \circ \gamma(c) = 0$. Therefore $\varphi(e) = 0$.

- $\ker(i, -j) \subseteq \operatorname{im} \varphi$: Let $b \in \ker(i, -j)$. Then we have that i(b) = j(b) = 0. By exactness there is an $a \in A_n$ such that $\alpha_b(a) = b$. From commutativity $\alpha_d(a) = j \circ \alpha_b(a) = 0$. It then follows from exactness that there is a $c \in C_{n+1}$ such that k(c) = a. Finally by commutativity $\operatorname{varphi}(k(c)) = b$
- im $\varphi \subseteq \ker(i, -j)$: Let $b \in \operatorname{im} \varphi$. Then there exists an $e \in E_{n+1}$ such that $\varphi(e) = \alpha_b \circ \epsilon(e) = b$. Apply i, -j to get $i \circ \alpha_b \circ \epsilon(e) j \circ \alpha_b \circ \epsilon(e)$. The left term is zero by exactness and the right term is transformed to $\alpha_d \circ \epsilon(e)$ which is also zero by exactness. Therefore i, -j(b) = 0.
- $\ker(k+l) \subseteq \operatorname{im}(i,-j)$: Let $c+d \in \ker(k+l)$. Then k(c)+l(d)=0 which implies that k(c)=-l(d). By exactness we have that $\gamma(c)=-\epsilon\circ l(d)=0$. Thus there exists a $b\in B_n$ such that i(b)=c. Moreover l(d+j(b))=l(d)-l(d)=0 which by exactness gives us an $a\in A_n$ such that $\alpha_d(a)=d+j(b)$. Then $j(\alpha_b(a)-j(b))=d+j(b)-j(b)=d$ by commutativity. Then if note that $i(\alpha_b(a)-b)=-c$ we see that $\alpha_b(a)=0$ which implies that j(-b)=d showing that i,-j(b)=c+d.
- im $(i, -j) \subseteq \ker(k + l)$: Let $c, d \in \text{im } (i, -j)$. Then there exists a $b \in B_n$ such that i, -j(b) = c + d. Note that by commutativity $l \circ j(-b) = i \circ k(-b) = l(d)$. Thus $k(c) + l(d) = k \circ i(b) + k \circ i(-b) = k \circ i(b b) = 0$.

Therefore since all of the above conditions hold the sequence it commutative. \Box

Problem 3 (2.B.1). Compute $H_i(S^n \setminus X)$ when X is he subspace of S^n homeomorphic to $S^k \vee S^\ell$ or to $S^k \mid \mid S^\ell$.

Let $A := S^n \setminus S^k$ and $B := S^n \setminus S^\ell$. Then $A \cap B = S^n \setminus X$. Now we split into two cases. First if we are doing the wedge of S^k and S^ℓ then $A \cup B = \mathbb{R}^n$. Using the Mayer-Vietoris sequence and lemma 2.B.1 we get

$$0 \longrightarrow H_i(S^n \setminus X) \longrightarrow H_i(S^k) \oplus H_i(S^\ell) \longrightarrow 0$$

for i > 0. Thus if $k \neq \ell$

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z} & i = n - k - 1, n - \ell - 1 \\ 0 & \text{else} \end{cases}$$

Otherwise if $k = \ell$ then

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z}^2 & i = n - k - 1\\ 0 & \text{else} \end{cases}$$

The disjoint union case is similar. If $k, \ell > 0$ then it is the same the only difference being the portion for i = n where

$$0 \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^n \setminus X) \longrightarrow 0$$

Then if $k \neq \ell$

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z} & i = n - k - 1, n - \ell - 1, n - 1 \\ 0 & \text{else} \end{cases}$$

Otherwise if $k = \ell$ then

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z} & i = n - 1\\ \mathbb{Z}^2 & i = n - k - 1\\ 0 & \text{else} \end{cases}$$

On the other hand if either k or ℓ is zero then for n we have

$$0 \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^n \setminus X) \longrightarrow H_{n-1}(A) \oplus H_{n-1}(B) \longrightarrow 0$$

Then if $k = \ell = 0$ we have

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z}^3 & i = n-1\\ 0 & \text{else} \end{cases}$$

If just k = 0 we have

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z}^2 & i = n - 1\\ \mathbb{Z} & i = n - \ell - 1\\ 0 & \text{else} \end{cases}$$

Finally if just $\ell = 0$ we have

$$H_i(S^n \setminus X) = \begin{cases} \mathbb{Z}^2 & i = n - 1\\ \mathbb{Z} & i = n - k - 1\\ 0 & \text{else} \end{cases}$$