Badanie okresu wahadła

Hubert Ładziński

21 marca 2017

1 Streszczenie

W pracy badano okres wahadła składającego się z metalowej kuli przymocowanej za pomocą nici do sufitu. Wahadło wprawiono w ruch i mierzono jego okresy różnymi metodami. Na podstawie zgromadzonych danych przeprowadzono analizę niektórych wielkości używanych w statystyce.

2 Wstęp

Niech wahadło użyte podczas doświadczenia zachowuje się jak wahadło matematyczne o długości l, wahające się w polu grawitacyjnym o przyspieszeniu g równemu przyspieszeniu ziemskiemu.

$$T = 2\pi \sqrt{\frac{l}{g}},\tag{1}$$

T z równania 1 jest wzorcem okresu dla omawianego tu wahadła, natomiast główną częścią raportu jest analiza metod statystycznych na przykładzie danych zdobytych podczas doświadczenia. Pozwoli ona zrozumieć ich sens i wzajemne zależności.

3 Układ doświadczalny i pomiary

Układ widoczny na rysunku 1 składał się z metalowej kuli przyczepionej do sufitu za pomocą nici, pod kulką ustawiona była kartka z narysowaną na środku linią równoległą do dłuższego boku kartki, prostopadle do narysowanej linii ustawiono długopis w punkcie równowagi wahadła. Pomiar zaczynał się gdy wahadło przechodziło przez punkt równowagi a kończył gdy przeszło drugi raz w tym samym kierunku przez ten punkt. Wysokość h od podłogi do dolnej krawędzi kuli mierzono za pomocą tamy mierniczej z podziałką co 1 mm. Średnice kulki d=50 mm zmierzono za pomocą suwmiarki cyfrowej wyświetlającej wynik z dokładnością do 0,01 mm. W pierwszej części pomiarowej zmierzono dwieście szesnaście pojedyńczych okresów wahadła, w kolejnej części mierzono pięćdziesiąt cztery poczwórne okresy wahań, natomiast w ostatnim etapie mierzono pięć dziesięciokrotnych okresów zmieniając co pomiar długość l wahadła. Wszystkie okresy mierzono za pomocą stopera o najmniejszej działce odczytu równej 0,01 s.

4 Wyniki pomiarów i ich niepewności

Wyniki pierwszej cześci pomiarów dwustu szesnastu okresów wahadła dały średni wynik $T=(3,3177\pm0,0032)$ s.

Rysunek 1: Układ doświadczalny

Niepewność pojedyńczej wielkości została określona za pomocą wzoru:

$$u = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$
 (2)

Niepewność średniej wielkości obliczono ze wzoru:

$$\overline{u} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$
 (3)

W ten sam sposób obliczono niepewność dla drugiej części pomiarów:

Tabela 1: Wyniki pomiarów

	Pojedynczy okres T	Suma czterech 4T	Poczwórny okres T
Średni okres [s]	3,3177	3,3177	3,2931
Niepewność pojedynczego okresu [s]	0,0470	0,0230	0,0100
Niepewność średniego okresu [s]	0,0032	0,0031	0,0014

5 Analiza danych

Na podstawie załączonych danych wykonano trzy histogramy gęstości okresów drgań:

Rysunek 2: Histogram 216 pojedyńczych okresów drgań

Rysunek 3: Histogram 54 okresów wyznaczonych z sumy czterech okresów z 216 pomiarów

Rysunek 4: Histogram 54 średnich okresów wyznaczonych z 54 pomiarów poczwórnych okresów

Porównanie kształtu histogramów na rysunkach 2,3 i 4 wskazuje na znaczne zagęszczenie wartości w przedziale (3,27-3,3] wokół, którego oscyluje średnia wartość pojedyńczego okresu wahadła z części I i II. Prowadzi to do wniosku, że zmniejszenie ilości pomiarów na okres daje lepsze rezultaty w kwestii jego niepewności. Podobny efekt dało zgrupowanie wyników po cztery.

Definicja i analiza wielkości $\xi_{(n)}$ Wielkość $\xi_{(n)}$ definiuje się następująco:

$$\xi_{(n)} = \frac{1}{k} \sum_{i=1}^{k} \xi_{(n)i} \tag{4}$$

gdzie $\xi_{(n)i}$ jest równe:

$$\xi_{(n)i} = \sum_{j=1}^{n} (x_{ij} - \overline{x}_{(n)i})^2, i = 1, 2, 3, \dots, k$$
 (5)

$$\overline{x}_{(n)i} = \frac{1}{n} \sum_{j=1}^{n} x_{ij}, i = 1, 2, 3, \dots, k$$
 (6)

Aby zbadać wpływ ilości elementów n na wielkość $\xi_{(n)}$ należy narysować wykres tej zależności, na podstawie tabeli 2:

Tabela 2: Dane do wykresu

n	2	3	4	6	8	9	12	18	24
$\xi_{(n)}$	0,002047	0,004953	0,006659	0,011607	0,015375	0,018043	$0,\!024670$	0,037784	0,050189

Rysunek 5: Wykres zależności $\xi_{(n)}$ od n

Uzyskana prosta najlepszego dopasowania widoczna na rysunku 5 ma wzór $\xi_{(n)}=0,0022n-0,0019$ obliczony z punktów $n=7,\xi_{(7)}=0,0135$ oraz $n=8,\xi_{(8)}=0,0157$, dla $\xi_{(n)}=0$ n ma wartość 0,86.

Z wykresu widać jasno, że charakter relacji $\xi_{(n)}$ od n jest liniowy, zwiększanie ilości elementów wchodzących do jednej grupy zwiększa także miarę ich rozrzutu.

Definicja i analiza wielkości $s_{(n)}^2$ Wielkość $s_{(n)}^2$ definiuje się następująco:

$$s_{(n)}^2 = \frac{1}{k-1} \sum_{i=1}^k (\overline{x}_{(n)i} - \overline{x})$$
 (7)

Gdzie k jest równe odpowiedniej ilości grup k=108,72,5436,27,24,18,12,9, na jakie zostały podzielone dane. Wielkość $\overline{x}_{(n)i}$ została zdefiniowana we wzorze (6), natomiast \overline{x} jest średnią uzyskaną z 216 pojedyńczych okresów. Powyższa wielkość pokaże jakiego średniego odchylenia od średniej można spodziewać się analizując każdą z grup.

Na początku wypada przyjrzeć się jak wielkość $s_{(n)}^2$ zależy od liczby n elementów w każdej z grup, na podstawie tabeli 3 rysujemy wykres widoczny na rysunku 6:

Tabela 3: Tabela do wykresu $s_{(n)}^2$ od n

							\ /			
n	1	2	3	4	6	8	9	12	18	24
$s_{(n)}^2$	0,00219	0,00117	0,000538	0,000526	0,000254	0,000269	0,000184	0,000133	0,00009	0,000101

Rysunek 6: Wykres zależności $\boldsymbol{s}_{(n)}^2$ od \boldsymbol{n}

Ponieważ zależność $s_{(n)}^2$ od n zachowuje się jak funkcja postaci $s_{(n)}^2 = A n^B$ po zlogarytmowaniu powinniśmy otrzymać zależność liniową $\ln(s_{(n)}^2/1s^2) = \ln A + B \ln n$. Dobrze obrazuje to wykres na rysunku 7 na podstawie tabeli 4.

Tabela 4: Dane do wykresu $\ln(s_{(n)}^2/1s^2)$ od $\ln(n)$

						\ /				
$\ln(n)$	0,000	0,693	1,099	1,386	1,792	2,079	2,197	2,485	2,890	3,178
$\ln(s^2)$	-6,123	-6,752	-7,528	-7,549	-8,278	-8,219	-8,599	-8,925	-9,318	-9,196

Rysunek 7: Wykres zależności $\ln(s_{(n)}^2/1s^2)$ od $\ln(n)$

Wzór prostej najlepszego dopasowania z rysunku 7 uzyskany na podstawie punktów $\ln(n)=1,\,\ln(s_{(n)}^2/1s^2)=-7,24$ oraz $\ln(n)=2,\,\ln(s_{(n)}^2/1s^2)=-8,29$ jest następujący: $\ln(s_{(n)}^2/1s^2)=-1,05\ln(n)-6,19$ co wskazuje na liniowość relacji wielkości $s_{(n)}^2$ od 1/n.

Tabela 5: Dane do wykresu $s_{(n)}^2$ od 1/n

1/n	1,0000	0,5000	0,3333	0,2500	0,1667	0,1250	0,1111	0,0833	0,0556	0,0417
$s_{(n)}^2$	0,00219	0,001169	0,000538	0,000526	0,000254	0,000269	0,000184	0,000133	0,000090	0,000101

Rysunek 8: Wykres zależności $s_{(n)}^2$ od 1/n

Parametry prostej z rysunku 8 na podstawie punktów (1/n = 0, 2 $s_{(n)}^2=0,000396$) oraz (1/n = 0, 4 $s_{(n)}^2=0,00085$): $s_{(n)}^2=0,00227\frac{1}{n}-0,00823$ Uwzględniając wszystkie omawiane powyżej aspekty wielkości $s_{(n)}^2$, można uznać za dobrą miarę średniego odchylenia pojedyńczej wielkości od średniej na podstawie N danych.

Z zebranych danych jasno wynika, że metodą dającą najmniejszą niepewność jest zmniejszenie ilości pomiarów na okres, jak to miało miejsce w drugiej części pomiarowej, która okazała się najdokładniejszą z wynikiem T=3,2931 s, niedokładnością średniego okresu $\overline{u}=0,0014$ s oraz niedokładnością pojedyńczego okresu u=0,0100 s.

6 Dyskusja i wnioski końcowe

Zebrane pomiary pojedyńczego oraz poczwórnego okresu wahadła i następna analiza, rzucają nieco światła na zagadnienie niepewności. Jak można się było spodziewać, największy rozrzut od średniej otrzymano dla metody pomiaru jednego okresu, jest to zrozumiałe z uwagi na częstszą możliwość popełnienia błędu, u podstaw którego był przede wszystkim czas reakcji osoby mierzącej, stoper oraz zmiany w okresie wahadła pod wpływem oporu powietrza i zmieniającej sie płaszczyzny wahań wahadła. Te same błędy co do wartości pojawiały się przy mierzeniu poczwórnego okresu wahadła ale miały mniejszy wpływ na średnią pojedyńczego okresu ponieważ występowały rzadziej w odniesieniu do jednego wachnięcia. Podobny efekt dla średniej niepewności pojedyńczego okresu dało grupowanie wyników po cztery. Implikacją różnic w niepewności średniego okresu dla częsci pierwszej i drugiej jest także różnica ich średnich wartości, która jest około dwukrotnie mniejsza w przypadku metody poczwórnego okresu co wynika ze wzoru (3).