

E80-xxxM2213S 产品规格书

Sub-GHz/2. 4GHz LoRa 双频无线模块

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co. Ltd.

目录

第一章 产品概述	2
1.1 产品简介	2
1.2 特点功能	2
1.3 应用场景	3
第二章 规格参数	3
2.1 射频参数	3
2.2 电气参数	3
2.3 硬件参数	4
第三章 机械尺寸与引脚定义	4
第四章 软件开发使用	6
第五章 硬件设计	10
第六章 参考电路	11
第七章 常见问题	11
7.1 传输距离不理想	11
7.2 模块易损坏	11
7.3 误码率太高	12
第八章 焊接作业指导	12
8.1 回流焊温度	12
8.2 回流焊曲线图	12
第九章 批量包装方式	13
修订历史	13
关于我们	13

第一章 产品概述

1.1 产品简介

E80-xxxM2213S 是基于 SEMTECH 公司用于多频段全球连接的 LoRa Connect™ LR1121 芯片为核心自主研发的双频贴片式 LoRa 硬件 SPI 无线模块,发射功率分别为 22dBm 和 13dBm。模块内部集成了工业级 48MHz 高精度低温漂晶振。

LR1121 是 SEMTECH 公司的第三代超低功耗 LoRa 收发器。它提供了基于 Sub-GHz 和 2.4 GHz ISM 频段的多波段 LoRa 和远程跳频扩频(LR-FHSS)通信,以及卫星 s 波段连接。LR1121 的设计符合 LoRa Alliance®发布的 LoRaWAN®规范的物理层要求,同时保持可配置,以满足不同的应用程序需求和专有协议。

*由于该模块是纯硬件类射频模块,需要用户对其编程后方可使用。

E80-900M2213S

1.2 特点功能

- 低功耗高灵敏度 LoRa/(G)FSK 半双工射频收发器;
- 全球 ISM 频段支持范围为 150-960MHz (Sub-GHz) 和 2.4 GHz, 以及 2.1 GHz s 频段;
- 内置低噪声系数 RX 前端,增强了 LoRa/(G) FSK 灵敏度;
- 最大发射功率 22dBm@Sub-GHz/13dBm@2.4GHz, 软件多级可调;
- 理想条件下,通信距离可达 5.6km@433MHz/5.6km@868MHz/2.6km@2.4GHz;
- 芯片内置 LR-FHSS 调制器, 支持 2.4 GHz 频段的远程跳频扩频;
- 集成 PA 调节器电源选择器,简化双电源设计,单板实现最高射频输出功率+15/+22dBm(仅 Sub-GHz);
- 内置 DC-DC 供电电路, 功耗表现更低, 系统更稳定;
- 能够支持世界范围内的多区域 BOM, 电路可自适应匹配网络, 以满足监管限制;
- 在 Sub-GHz 通信下,与 SX126x 器件完全兼容,并符合 LoRa Alliance®定义的 LoRaWAN®标准;
- 在 2.4GHz 通信下,与 SX128x 器件兼容(除 FLRC 调制),并符合 LoRa Alliance®定义的 LoRa 标准;
- 硬件支持基于 AES-128 加密/解密的算法;
- 模块包含 48M 高速晶振/32.768k 低速晶振;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),用户可根据自身需求选择使用;

1.3 应用场景

- 智能电表
- 楼宇自动化
- 农业传感器
- 智慧城市
- 零售店传感器
- 资产跟踪
- 街道照明
- 倒车雷达
- 环境传感器
- 安全传感器
- 遥控应用
- 智能家居
- 无线电遥控玩具和无人机

第二章 规格参数

2.1 射频参数

射频参数	参数值		备注	
为10%参数	E80-400M2213S	E80-900M2213S	無仁	
工作频段(MHz)	410-493 850-930		@Sub-GHz, 用户可通过编程使模块工作在不同频点	
工1F9與权(MIIZ)	观技(MHZ) 2400-2500		@2.4GHz,用户可通过编程使模块工作在不同频点	
阻塞功率(dBm)	10		近距离使用烧毁概率较小	
最大发射功率(dBm)	21.5 22.0		@Sub-GHz,用户可通过编程调整输出功率	
取八及別切华(dDill)	13		@2.4GHz,用户可通过编程调整输出功率	
接收灵敏度(dBm)	-136		@Sub-GHz, BWL=125kHz, SF=9	
按収火敬及(dbm) -129		29	@2.4GHz, BWL=406kHz, SF=7	
参考通信距离 (km) ≤5.6 ≤2.6		5. 6	@Sub-GHz, 晴朗空旷环境, 天线增益 3.5dBi, 天线高度 2.5 米, 空中速率 2.4kbps	
		2. 6	@2. 4GHz, 晴朗空旷环境, 天线增益 5dBi, 天线高度 2.5 米, 空中速率 2. 4kbps	

2.2 电气参数

电气参数	最小值	典型值	最大值	备注
工作电压 (V)	1.8	3. 3	3. 7	≥3.3V 可保证输出功率,超过3.8V 有风险烧毁风险
通信电平(V)	-	3. 3	-	使用 5V TTL 有风险烧毁,用户请合理使用转换电路
发射电流(mA)	-	120	-	@433/470MHz,瞬时功耗
及別 电机(mA)	=	125	=	@868/915MHz,瞬时功耗

	_	35	_	@2.4GHz,瞬时功耗
接收电流(mA)	-	9. 5	-	@Sub-GHz
按权电视(IIIA)	-	9. 0	-	@2. 4GHz
休眠电流 (μA)	-	10	_	软件关断,所有射频都不工作
工作温度(℃)	-40	-	+85	工业级设计
工作湿度(%rh)	10	-	90	-
储存温度(℃)	-50	-	+150	-

2.3 硬件参数

硬件参数	参数值	备注
IC 全称	LR1121IMLTRT	SEMTECH 官网无铅产品编号
晶振频率 (MHz)	32	模块已内置有源温补晶振
模块尺寸(mm)	26. 0*16. 0*3. 0	长*宽*高
天线形式	IPEX-1/邮票孔	IPEX 1 代座子,Sub-GHz/2.4GHz 双天线接口设计
通信接口	SPI	通信电平 1.8-3.7V, 建议使用 3.3V 以保证数据可靠性
封装方式	贴片/邮票孔	引脚间距 1.27mm,详细尺寸信息请见第三章
重量 (g)	1.85	-

第三章 机械尺寸与引脚定义

引脚序号	引脚名称	引脚方向	引脚用途
1	GND	电源	-
2	NC		-
3	MISO	输出	SPI 接口引脚,连接 LR1121 的"DIO4",详情请查看芯片手册或亿佰特自定义 SDK 资料
4	MOSI	输入	SPI 接口引脚,连接 LR1121 的"DIO3",详情请查看芯片手册或亿佰特自定义 SDK 资料
5	SCK	输入	SPI 接口引脚,连接 LR1121 的"DIO2",详情请查看芯片手册或亿佰特自定义 SDK 资料
6	NSS	输入	SPI 接口引脚,连接 LR1121 的"DIO1",详情请查看芯片手册或亿佰特自定义 SDK 资料
7	BUSY	输出	模块"忙"指示,连接 LR1121 的"BUSY",详情请查看芯片手册或亿佰特自定义 SDK 资料
8	GND	电源	-
9	无	无	预留位置未来扩展
10	无	无	预留位置未来扩展
11	GND	电源	-
12	ANT	输入/输出	2. 4GHz 天线接口
13	GND	电源	-
14	GND	电源	-
15	ANT	输入/输出	Sub-GHz 天线接口
16	GND	电源	-
17	无	无	预留位置未来扩展
18	无	无	预留位置未来扩展
19	GND	电源	-
20	NC		-
21	LR_NRESET	输入	模块复位引脚,低电平有效,连接 LR1121 的"NRESET",详情请查看芯片手册
22	DI09	输入/输出	连接 LR1121 的"DI09",不用请悬空,详情请查看芯片手册
23	DI08	输入/输出	连接 LR1121 的"DIO8",不用请悬空,详情请查看芯片手册
24	DI07	输入/输出	连接 LR1121 的"DI07",不用请悬空,详情请查看芯片手册
25	VCC	电源输入	-
26	GND	电源	-

注:

- 1. 模块内部 LR1121 射频芯片的 "32k_P/DI011"和 "32k_N/DI010" 引脚已连接 32. 768k 晶振;
- 2. 模块内部 LR1121 射频芯片的 "XTA"、 "XTB"和 "VTCXO"引脚已连接 32M 有源晶振;
- 3. 模块内部 LR1121 射频芯片的 "DI05/RFSW0"和 "DI06/RFSW1"引脚已连接射频开关,用来控制 "Sub-1GHz"和 "2. 4GHz"射频收发。由于射频开 关的控制状态与 SEMTECH 官方 SDK 默认控制状态不同,请注意区分。详情请参考 SEMTECH 官方原厂 SDK 或亿佰特自定义 SDK。

DIO5/RFSWO	DIO6/RFSW1	射频状态	
0	0	RX	
0	1	TX(Sub-1GHz 低功率模式)	
1	0	TX(Sub-1GHz 高功率模式)	
1	1	TY (2 4GHz)	

第四章 软件开发使用

软件开发分为两部分: 一是 SEMTECH 官方原厂 SDK 使用教程,二是亿佰特自定义 SDK 示例使用教程

- LR1121 官方 SDK
- ①下载链接: https://github.com/Lora-net/SWSD003

②SDK 结构描述

③使用 keil 打开官网工程;

在官网下载 SDK 包 "SWSD003",打开后选择"lr11xx"文件夹,在内部 app 文件下选择所需要的示例工程。 我们演示示例暂时选择"ping-pong">"MDK-ARM"

④选择工作空间:

⑤main 函数入口解析;

⑥关键参数配置-射频开关;

⑦关键射频参数配置-LoRa 调制相关参数;

- E80-xxxM2213S 亿佰特自定义 SDK(由于 DEMO 代码有详细注释,下面不再过多对软件业务流程做详细解释)
- ①在亿佰特官网下载"E80_DEMO.zip"解压到英文路径下面;
- ②使用 Keil 打开工程:

③E80 DEMO SDK 结构描述;

④E80_DEMO main 函数入口;

```
98 int main(void)
99 int main(void)
99 int main(void)
99 int main(void)
100 hal_mou.disable
101 hal_mou.disable
102 systemClock_Cond
103 /* Initialize al
104 MK_GFO_Init();
105 /* ME_SFO_Init();
106 MK_GFO_Init();
107 /* MAL_URAT_URAN
110 /* MAL_URAT_URAN
111 /* main(void)
112 /* MAL_URAT_URAN
113 /* main(void)
114 uset_fifo_Init()
115 /* User_Coode in
116 /* MAL_URAT_Trans
128 /* User_Coode in
129 /* User_Coode in
120 /* User_Coode in
120 /* User_Coode in
121 /* User_Coode in
122 /* User_Coode in
123 /* User_Coode in
124 /* User_Coode in
125 /* User_Coode in
126 /* User_Coode in
127 /* User_Coode in
128 /* User_Coode in
129 /* User_Coode in
130 /* User_Coode in
131 /* User_Coode in
132 /* User_Coode in
133 /* User_Coode in
134 /* User_Coode in
135 /* User_Coode in
136 /* User_Coode in
137 /* Sep_Coode
138 /* User_Coode in
138 /* User_Coode in
139 /* Sep_Coode
130 /* MEMORY_Coode
131 /* MEMORY_Coode
132 /* MEMORY_Coode
133 /* MEMORY_Coode
134 /* MEMORY_Coode
135 /* MEMORY_Coode
136 /* MEMORY_Coode
137 /* MEMORY_Coode
138 /* User_Coode
138 /* User_Coode
139 /* MEMORY_Coode
130 /* MEMORY_Coode
130 /* MEMORY_Coode
131 /* MEMORY_Coode
132 /* MEMORY_Coode
133 /* MEMORY_Coode
134 /* MEMORY_Coode
135 /* MEMORY_Coode
136 /* MEMORY_Coode
137 /* MEMORY_Coode
138 /* MEMORY_Coode
139 /* MEMORY_Coode
140 /* MEMORY_Co
                                                       日

hal_mou_disable_irq();

HAL_Init();

"SystemClock_Config();

/* Initialize all configured peripherals */

MC.GFIO_Init();

MC.GFIO_Init();

MC.USARI_UNAT_Init();

/* 清津自口服使中枢标志。
                                                                    / 清海金口級收率新活志 /

RAL UART_CLAR_FLAG(showner),UART_FLAG_RONE);

/* 开始自己級收申請 /

/* 由自相位起 /

/* 由日相位起 /

RAL NVIC_Enable(ROQ USRRI_IROn );

/* 申日fro刺染化 /

uart_fro_init();

/* USER_COUS_BESIS 2 /
                                                                            hal mcu enable irq();
/* 射網初始化 */
                                                                                 radio_init( LR11XX_WITH_LF_HP_PA, 22, frequency);
/* 射频进入接收状态 */
                                                                         /* 高級周初打印信息 */

HAL_UMAI_Transmit(shuart),(const uint0_t *) "Radio enter receive\r\n" , sizeof("Radio enter receive\r\n"), 100);

HAL_UMAI_Transmit(shuart),(const uint0_t *) "FM:7480-0-10\r\n" , sizeof("FM:7480-0-10\r\n"), 100);

HAL_UMAI_Transmit(shuart),(const uint0_t *) "Enter the main program\r\n" , sizeof("Enter the main program\r\n"), 100);

**V SERK COME EDID **/

*V USER COME BEDID **/
                                                                                              /* USER CODE END WHILE */
                                                                                         /* USER CODE BEGIN 3 */
/* 申口接收数据完成 */
if(event_check( EVENI_UART_RX_DONE ))
                                                                                                                                                                                                                                                                                                                                                                                                                                            系统主要轮询事件
                                                                                         /* 射频接收数据完成 */
if(event_check( EVENT_RADIO_RX_DONE ))
```


⑤E80 DEMO 关键射频参数配置;

```
| Paint | Projection | Paint | Paint
```

第五章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在Top Layer,在模块接触部分的Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽:
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露且最好垂直向上。当模块安装于机壳内部时,可使用优质的天 线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第六章 参考电路

※ E80-400M2213S 和 E80-900M2213S 参考电路相同 ※

第七章 常见问题

7.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

7.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;

如果没有特殊需求不建议在过高、过低温度下使用。

7.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第八章 焊接作业指导

8.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220-235℃	230−250°C
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

8.2 回流焊曲线图

第九章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2024-6-25	初版	Ning

关于我们

销售热线: 4000-330-990 公司电话: 4000-330-990 技术支持: <u>support@cdebyte.com</u> 官方网站: www.ebyte.com

公司地址:四川省成都市高新区西区大道 199号 B2 栋 2层

