Modélisation Stochastique et Approche Bayésienne

Inférence probabiliste

Roland Donat

Université de Bretagne Sud

ENSIBS - Spécialité Cyber Data

https://roland-donat.github.io/cours-rb/ensibs/

Plan de la présentation

- Introduction
- Notion de potentiel
- Méthode d'élimination des variables
- Conclusion
- S Références
- 6 Annexes

Objectifs pédagogiques

- Comprendre la notion d'inférence probabiliste dans un réseau bayésien
- Maîtriser les calculs effectués par un algorithme d'inférence exacte
- Prendre conscience des avantages et des limites de l'inférence dans les réseaux bayésiens

Plan

- Introduction
 - Objectif et vocabulaire
 - Algorithmes d'inférence
- Notion de potentiel
- Méthode d'élimination des variables
- 4 Conclusion
- Seférences
- 6 Annexes

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- $P(X_4)$
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$
- $P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe:

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- \bullet $P(X_4)$
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$
- $P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- \bullet $P(X_4)$
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$
- $P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe:

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- \bullet $P(X_4)$
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$
- $P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$

n Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe:

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- $P(X_4)$
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$

$$P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$$

n Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexe 000000000000 00000000 00

Introduction à l'inférence

Exemples

...

- \bullet $P(X_6)$
- P(X₄)
- $P(X_4|X_5=x_5)$
- $P(X_2|X_1=x_1,X_6=x_6)$
- $P(X_3, X_5 | X_4 = x_4, X_6 = x_6)$

Introduction Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

Introduction à l'inférence

Définition

Problématique : comment calculer des probabilités dans un RB?

- Soit un RB représentant la loi jointe d'une suite de v.a. $\boldsymbol{X} = (X_1, \dots, X_n)$ à valeurs dans $\mathcal{X}_1, \dots, \mathcal{X}_n$ respectivement
- ⇒ Objectif : calculer les lois de la forme

$$P(Q|E=e)$$

- $extbf{ extit{Q}} = (Q_1, \ldots, Q_\ell) \subseteq extbf{ extit{X}}$ est une suite de v.a. appelée "requête" de l'inférence
- $E = (E_1, \dots, E_m) \subseteq X$ est une suite de v.a., observées aux valeurs $e = (e_1, \dots, e_m)$, appelée "évidence" de l'inférence
- Contrainte : $\mathbf{Q} \cap \mathbf{E} = \emptyset$

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

OOOOOOOOOO OOOOOOO OO

Introduction à l'inférence

Algorithmes d'inférence

Inférence exacte

- Algorithme belief propagation (Pearl 1988) adapté aux structures d'arbres (ou polyarbres)
- Méthodes reposant sur la construction de l'arbre de jonction (Lauritzen et Spiegelhalter 1988)
- Méthodes d'élimination des variables (Dechter 1999; Cozman 2000)

Inférence approchée déterministe

- Algorithme loopy belief propagation (Murphy, Weiss et Jordan 1999):
 Utilisation de la méthode belief propagation sur un graphe général
- Méthode de raisonnement par pertinence (Lin et Druzdzel 1999)

Inférence approchée stochastique

Méthode d'échantillonnage type Monte-Carlo

Plan

- Notion de potentiel
 - Définition
 - Opérations algébriques
 - Complexité
 - LPC comme potentiel

Exemple

Χ		Ζ	Φ(x,y,z)
x1	у1	z1	-10
x2	у1	z1	2,25
x1	у2	z1	0,01
x2	у2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	у1	z2	-4
x2	у1	z2	1
x1	у2	z2	-2
x2	у2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$ • $\mathcal{Y} = \{y_1, y_2, y_3\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- \Rightarrow Φ possède |Dom (Φ)* | = | \mathcal{X} | × | \mathcal{Y} | × | \mathcal{Z} | = 2 × 3 × 2 = 12 configurations
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Exemple

Χ	Υ	Ζ	Φ(x,y,z)
x1	у1	z1	-10
x2	у1	z1	2,25
x1	у2	z1	0,01
x2	у2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	у1	z2	-4
x2	у1	z2	1
x1	у2	z2	-2
x2	у2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $\mathcal{Z} = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi \text{ possède } |\text{Dom } (\Phi)^*| = \\ |\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12 \\ \text{configurations}$
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Exemple

Χ	Υ	Ζ	Ф(x,y,z)
x1	у1	z1	-10
x2	у1	z1	2,25
x1	у2	z1	0,01
x2	у2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	у1	z2	-4
x2	у1	z2	1
x1	у2	z2	-2
x2	<i>y</i> 2	z2	-1,5
x1	у3	z2	-2
x2	<i>y</i> 3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $Z = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi \text{ possède } |\text{Dom } (\Phi)^*| = \\ |\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12 \\ \text{configurations}$
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Exemple

Χ	Υ	Ζ	Ф(x,y,z)
x1	y1	z1	-10
x2	y1	z1	2,25
x1	<i>y</i> 2	z1	0,01
x2	<i>y</i> 2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	y1	z2	-4
x2	y1	z2	1
x1	<i>y</i> 2	z2	-2
x2	<i>y</i> 2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $\mathcal{Z} = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi \text{ possède } |\text{Dom}(\Phi)^*| = \\ |\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12 \\ \text{configurations}$
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Exemple

Χ	Υ	Ζ	Ф(x,y,z)
x1	у1	z1	-10
x2	у1	z1	2,25
x1	y2	z1	0,01
x2	у2	z1	-90
х1	у3	z1	0
x2	у3	z1	0,7
х1	у1	z2	-4
x2	y1	z2	1
x1	y2	z2	-2
x2	у2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $\mathcal{Z} = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi \text{ possède } |\text{Dom } (\Phi)^*| = \\ |\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12 \\ \text{configurations}$
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Exemple

Χ		Ζ	Φ(x,y,z)
x1	y1	z1	-10
x2	y1	z1	2,25
x1	<i>y</i> 2	z1	0,01
x2	<i>y</i> 2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	y1	z2	-4
x2	y1	z2	1
x1	<i>y</i> 2	z2	-2
x2	<i>y</i> 2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $\mathcal{Z} = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* =$ $\{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi$ possède $|Dom(\Phi)^*| =$ $|\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12$ configurations
 - Pour toute configuration

Exemple

Χ	Υ	Ζ	
x1	у1	z1	-10
x2	у1	z1	2,25
x1	<i>y</i> 2	z1	0,01
x2	<i>y</i> 2	z1	-90
x1	у3	z1	0
x2	у3	z1	0,7
x1	у1	z2	-4
x2	y1	z2	1
x1	у2	z2	-2
x2	y2	z2	-1,5
x1	у3	z2	-2
x2	у3	z2	0,5

- Dom $(\Phi) = \{\mathcal{X}, \mathcal{Y}, \mathcal{Z}\}$ avec :
 - $\mathcal{X} = \{x_1, x_2\}$
 - $\mathcal{Y} = \{y_1, y_2, y_3\}$
 - $\mathcal{Z} = \{z_1, z_2\}$
- Configurations de Φ : Dom $(\Phi)^* = \{x_1, x_2\} \times \{y_1, y_2, y_3\} \times \{z_1, z_2\}$
- $\Rightarrow \Phi \text{ possède } |\text{Dom } (\Phi)^*| = \\ |\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}| = 2 \times 3 \times 2 = 12 \\ \text{configurations}$
 - Pour toute configuration $(x, y, z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, Φ prend la valeur $\Phi(x, y, z)$

Définition

Concept général

Un potentiel est une application de plusieurs variables à valeurs dans un ensemble quelconque et muni d'opérations particulières

Potentiel discret et fini réel

Soit $\mathcal{X}_1,\ldots,\mathcal{X}_D$ une famille d'ensembles discrets et finis. Φ est un potentiel réel sur le domaine $\{\mathcal{X}_1,\ldots,\mathcal{X}_D\}$ si Φ est une application définie par

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{X}_1 \times \ldots \times \mathcal{X}_D & \mapsto & \mathbb{R} \\ (x_1, \ldots, x_D) & \mapsto & \Phi(x_1, \ldots, x_D) \end{array} \right..$$

Vocabulaire et notations

- Le domaine du potentiel Φ est noté $\mathsf{Dom}(\Phi) = \{\mathcal{X}_1, \dots, \mathcal{X}_D\}$
- Dom $(\Phi)^* = \prod_{d=1}^D \mathcal{X}_d = \mathcal{X}_1 \times \ldots \times \mathcal{X}_D$
- Tout élément $(x_1, ..., x_D) \in \text{Dom}(\Phi)^*$ est appelé configuration
- Si $|Dom(\Phi)| = D$, on dit que Φ est un potentiel à D dimensions

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
y2	z1	-1
y2	z2	7.25

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
y2	z1	-1
y2	z2	7.25

Χ	Ζ	Υ	Ψ(x,z,y)
x1	z1	y1	
x1	z1	<i>y</i> 2	
x1	z2	y1	
x1	z2	y2	
x2	z1	y1	
x2	z1	y2	
x2	z2	y1	
x2	z2	<i>y</i> 2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
y2	z1	-1
y2	z2	7.25

Χ	Ζ		Ψ(x,z,y)
x1	z1	y1	-10 • 0 = 0
x1	z1	<i>y</i> 2	
x1	z2	y1	
x1	z2	y2	
x2	z1	y1	
x2	z1	y2	
x2	z2	y1	
x2	z2	<i>y</i> 2	

Χ	Ζ	Φ1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
у1	z2	3.5
<i>y</i> 2	z1	-1
y2	z2	7.25

X	Ζ		Ψ(x,z,y)
х1	z1	y1	0
x1	z1	y2	-10 • -1 = 10
х1	z2	y1	
x1	z2	y2	
x2	z1	y1	
x2	z1	y2	
x2	z2	y1	
x2	z2	y2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
<i>y</i> 2	z1	-1
<i>y</i> 2	z2	7.25

X	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	y2	10
x1	z2	y1	7.875
x1	z2	y2	
x2	z1	y1	
x2	z1	y2	
x2	z2	y1	
x2	z2	<i>y</i> 2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
<i>y</i> 2	z1	-1
y2	z2	7.25

X	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	<i>y</i> 2	10
x1	z2	y1	7.875
x1	z2	<i>y</i> 2	16.3125
x2	z1	y1	
x2	z1	y2	
x2	z2	y1	
x2	z2	<i>y</i> 2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Z	Ф2(y,z)
y1	z1	0
у1	z2	3.5
<i>y</i> 2	z1	-1
y2	z2	7.25

Χ	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	<i>y</i> 2	10
x1	z2	y1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	
x2	z2	y1	
x2	z2	y2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
у1	z2	3.5
<i>y</i> 2	z1	-1
y2	z2	7.25

X	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	<i>y</i> 2	10
x1	z2	y1	7.875
x1	z2	<i>y</i> 2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	
x2	z2	y2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
<i>y</i> 2	z1	-1
y2	z2	7.25

Χ	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	y2	10
x1	z2	y1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	<i>y</i> 2	

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
y2	z1	-1
<i>y</i> 2	z2	7.25

Χ	Ζ		Ψ(x,z,y)
x1	z1	y1	0
x1	z1	y2	10
x1	z2	y1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	y2	-65.25

Χ	Ζ	Ф1(x,z)
x1	z1	-10
x1	z2	2,25
x2	z1	0,01
x2	z2	-9

Υ	Ζ	Ф2(y,z)
y1	z1	0
y1	z2	3.5
y2	z1	-1
y2	z2	7.25

Χ	Ζ		Ψ(x,z,y)
х1	z1	y1	0
x1	z1	<i>y</i> 2	10
х1	z2	y1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	<i>y</i> 2	-65.25

Opérations algébriques - Produit et somme - Définition

Produit de deux potentiels discrets et finis

- Soient deux potentiels réels discrets et finis Φ_1 et Φ_2
- Notons:
 - $\mathcal{X} = \mathsf{Dom}(\Phi_1) \setminus \mathsf{Dom}(\Phi_2)$
 - $\mathbf{y} = \mathsf{Dom}(\Phi_2) \setminus \mathsf{Dom}(\Phi_1)$
 - $\mathcal{Z} = \mathsf{Dom}(\Phi_1) \cap \mathsf{Dom}(\Phi_2)$
- Le produit de Φ_1 et Φ_2 est un potentiel $\Psi = \Phi_1 \cdot \Phi_2$ de domaine $\mathsf{Dom}(\Psi) = \mathsf{Dom}(\Phi_1) \cup \mathsf{Dom}(\Phi_2)$ vérifiant pour toute configuration $(x,z,y) \in \mathcal{X}^* \times \mathcal{Z}^* \times \mathcal{Y}^*$:

$$\Psi(x,z,y) = \Phi_1(x,z) \cdot \Phi_2(z,y)$$

Somme de deux potentiels discrets et finis

La somme de deux potentiels réels discrets et finis est définie de manière analogue au produit en remplaçant l'opérateur - par l'opérateur +

Opérations algébriques - Sommation/Marginalisation - Exemple

Χ	Ζ	Υ	$\Phi(x,z,y)$
x1	z1	y1	0
x1	z1	y2	10
x1	z2	y1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	y2	-65.25

Opérations algébriques - Sommation/Marginalisation - Exemple

	Χ	Ζ	Υ	Ф(x,z,y)
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
	x1	z2	y2	16.3125
	x2	z1	y1	0
	x2	z1	y2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

Opérations algébriques - Sommation/Marginalisation - Exemple

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	y2	10
	x1	z2	y1	7.875
	x1	z2	<i>y</i> 2	16.3125
2	x2	z1	y1	0
	x2	z1	y2	-0.01
	x2	z2	y1	-31.5
	x2	z2	y2	-65.25

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
- 22	x1	z2	<i>y</i> 2	16.3125
X	x2	z1	y1	0
	x2	z1	<i>y</i> 2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

	Υ	Ψ(z,y)
z1	y1	
z1	y2	
z2	y1	
z2	у2	

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
) - 32	x1	z2	y2	16.3125
$\exists \mathcal{X}$	x2	z1	y1	0
	x2	z1	y2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

Ζ	Υ	Ψ(z,y)
z1	y1	0
z1	y2	
z2	у1	
z2	y2	

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
) - 32	x1	z2	y2	16.3125
$\in \mathcal{X}$	x2	z1	y1	0
	x2	z1	<i>y</i> 2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

Ζ	Υ	Ψ(z,y)
z1	y1	0
z1	y2	9.99
z2	у1	
z2	y2	

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
\sum_{i}	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
	x1	z2	<i>y</i> 2	16.3125
$x \in \mathcal{X}$	x2	z1	y1	0
	x2	z1	<i>y</i> 2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

Ζ	Υ	Ψ(z,y)
z1	y1	0
z1	<i>y</i> 2	9.99
z2	y1	-23.625
z2	y2	

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
\sum_{i}	x1	z2	y1	7.875
	x1	z2	<i>y</i> 2	16.3125
$x \in \mathcal{X}$	x2	z1	y1	0
	x2	z1	y2	-0.01
	x2	z2	y1	-31.5
	x2	z2	<i>y</i> 2	-65.25

Ζ	Υ	Ψ(z,y)
z1	y1	0
z1	y2	9.99
z2	y1	-23.625
z2	<i>y2</i>	-48.9375

	Χ	Ζ	Υ	$\Phi(x,z,y)$
	x1	z1	y1	0
	x1	z1	<i>y</i> 2	10
	x1	z2	y1	7.875
$\sum_{x \in \mathcal{X}}$	x1	z2	y2	16.3125
	x2	z1	y1	0
	x2	z1	y2	-0.01
	x2	z2	y1	-31.5
	x2	z2	y2	-65.25

Ζ	Υ	Ψ(z,y)
z1	y1	0
z1	y2	9.99
z2	у1	-23.625
z2	<i>y2</i>	-48.9375

Opérations algébriques - Sommation/Marginalisation - Définition

Sommation/Marginalisation d'un potentiel discret et fini

- Soit un potentiel réel discret et fini Φ
- Le résultat de la sommation de Φ sur le domaine \mathcal{W} est un potentiel $\Psi = \sum_{\mathcal{W}} \Phi$ de domaine $\mathrm{Dom}(\Psi) = \mathrm{Dom}(\Phi) \setminus \mathcal{W}$ vérifiant pour toute configuration $x \in \mathrm{Dom}(\Psi)^*$:

$$\Psi(x) = \sum_{w \in \mathcal{W}} \Phi(x, w)$$

• Cette opération est également appelée marginalisation du potentiel Φ sur le domaine $\mathsf{Dom}(\Phi) \setminus \mathcal{W}$

Opérations algébriques - Instanciation - Exemple

Χ	Ζ	Υ	Φ(x,z,y)
х1	z1	у1	0
х1	z1	y2	10
х1	z2	у1	7.875
х1	z2	y2	16.3125
x2	z1	у1	0
x2	z1	y2	-0.01
х2	z2	y1	-31.5
х2	z2	y2	-65.25

Opérations algébriques - Instanciation - Exemple

			Ф(x,z,y)
х1	z1	y1	0
x1	z1	y2	10
х1	z2	y1	7.875
х1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	<i>y</i> 2	-0.01
x2	z2	y1	-31.5
x2	z2	<i>y</i> 2	-65.25

			Ф(<mark>x2</mark> ,z,y)
x2	z1	у1	0
x2	z1	y2	-0.01
x2	z2	у1	-31.5
x2	z2	у2	-65.25

-31.5

Notion de potentiel

Opérations algébriques - Instanciation - Exemple

			Φ(x,z,y)
x1	z1	y1	0
x1	z1	y2	10
x1	z2	у1	7.875
x1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	y2	-65.25

				Φ(x2,z,y)
	x2	z1	y1	0
	x2	z1	<i>y</i> 2	-0.01
⊋	x2	z2	y1	-31.5
	x2	z2	y2	-65.25
			₩	
				Ф(x2,z, <mark>y1</mark>)
	x2	z1	y1	0

x2 z2 y1

-0.01

-31.5

-65.25

 \Rightarrow

Notion de potentiel

Opérations algébriques - Instanciation - Exemple

			$\Phi(x,z,y)$
х1	z1	y1	0
x1	z1	y2	10
х1	z2	y1	7.875
х1	z2	y2	16.3125
x2	z1	y1	0
x2	z1	y2	-0.01
x2	z2	y1	-31.5
x2	z2	<i>y</i> 2	-65.25

Χ	Ζ	Υ	Ф(x2, z1 ,y1)
x2	z1	y1	0

0

 \Rightarrow

Notion de potentiel

Opérations algébriques - Instanciation - Exemple

0
0
5
5
0
1
5
5

Χ	Ζ	Υ	Ф(x2,z1,y1)
x2	z1	у1	0

Opérations algébriques - Instanciation - Définition

Instanciation d'un potentiel discret et fini

- Soit un potentiel réel discret et fini Φ
- L'instanciation de Φ sur la configuration $y \in \mathcal{Y} \subseteq \mathsf{Dom}\,(\Phi)$ est la projection du potentiel Φ sur le domaine $\mathsf{Dom}\,(\Phi_y) = (\mathsf{Dom}\,(\Phi) \setminus \mathcal{Y}) \cup y$
- ⇒ Φ instancié sur y est un potentiel défini sur toutes les configurations $x \in (\text{Dom}(\Phi) \setminus \mathcal{Y})^*$ tel que $\Phi(x, y)$

Complexité

Complexité spatiale

- Soit un potentiel réel discret et fini Φ tel que Dom $(\Phi) = \{\mathcal{X}_1, \dots, \mathcal{X}_D\}$
- La complexité spatiale de Φ , notée CS(Φ), correspond au nombre de configurations du domaine de Φ :

$$\mathsf{CS}(\Phi) = |\mathsf{Dom}(\Phi)^*|$$

- \Rightarrow CS(Φ) $\simeq v^D$ quand v et/ou D sont grands avec :
- D : nombre de variables représenté dans le domaine du potentiel
- $v = \max\{|\mathcal{X}_1|, \dots, |\mathcal{X}_D|\}$: + grand nombre de valeurs prises par une v.a.

Complexité algorithmique (CA) d'une opération algébrique

- Soient deux potentiels réels discrets et finis Φ₁ et Φ₂
- $\mathsf{CA}(\Phi_1 \cdot \Phi_2) = \mathsf{CA}(\Phi_1 + \Phi_2) \simeq |(\mathsf{Dom}(\Phi_1) \cup \mathsf{Dom}(\Phi_2))^*|$
- \Rightarrow CA $(\sum_{\mathcal{W}} \Phi_1) \simeq |(\mathsf{Dom}(\Phi_1) \setminus \mathcal{W})^*|$
- Les complexités algorithmiques et spatiales sont du même ordre ENSIBS - Spécialité Cyber Data

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

Notion de potentiel

LPC comme potentiel

Potentiel et LPC

- Soit un potentiel réel discret et fini à valeur dans [0, 1] noté p
- S'il existe deux sous-domaines disjoints \mathcal{X} et \mathcal{Y} avec $\mathsf{Dom}\,(p) = \mathcal{X} \cup \mathcal{Y}$ tels que pour toute configuration $y \in \mathcal{Y}^*$

$$\sum_{\mathbf{x}\in\mathcal{X}^*}p(\mathbf{x},\mathbf{y})=1.$$

- \Rightarrow Le potentiel p est une Loi de Probabilité Conditionnelle (LPC) sur ${\mathcal X}$ conditionnellement à ${\mathcal Y}$
- \Rightarrow Les domaines \mathcal{X} et \mathcal{Y} étant discrets et finis, la LPC p peut se représenter sous la forme d'une Table de Probabilité Conditionnelle (TPC)

Vocabulaire

- ullet Le domaine $oldsymbol{\mathcal{Y}}$ est appelé domaine de conditionnement
- Le domaine \mathcal{X} est appelé domaine normalisé

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

Notion de potentiel

LPC comme potentiel - Exemple

P(Note Difficulté, Niveau)				
Niveau	mauvaise	bonne		
faible	0,5	0,5		
faible	0,75	0,25		
faible	0,99	0,01		
fort	0,1	0,9		
fort	0,2	0,8		
fort	0,3	0,7		
	Niveau faible faible faible fort fort	Noteau mauvaise faible 0,5 faible 0,75 faible 0,99 fort 0,1 fort 0,2		

Exemple

- Variables de conditionnement :
 - Difficulté à valeurs dans {facile, moyenne, importante
 - Niveau à valeurs dans {faible_fort}
- Variable normalisée :
 - Note à valeurs dans {mauvaise, bonne}

LPC comme potentiel - Exemple

P(Note Difficulté, Niveau)					
	Not	e			
Difficulté	Niveau	mauvaise	bonne		
facile	faible	0,5	0,5		
moyenne	faible	0,75	0,25		
importante	faible	0,99	0,01		
facile	fort	0,1	0,9		
moyenne	fort	0,2	0,8		
importante	fort	0,3	0,7		

Exemple

- Variables de conditionnement :
 - Difficulté à valeurs dans {facile, moyenne, importante}
 - Niveau à valeurs dans {faible, fort}
- Variable normalisée :
 - Note à valeurs dans {mauvaise, bonne}

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

Notion de potentiel

LPC comme potentiel - Exemple

P(<mark>Note</mark> Difficulté, Niveau)				
	Not	e		
Difficulté	Niveau	mauvaise	bonne	
facile	faible	0,5	0,5	
moyenne	faible	0,75	0,25	
importante	faible	0,99	0,01	
facile	fort	0,1	0,9	
moyenne	fort	0,2	0,8	
importante	fort	0,3	0,7	

Exemple

- Variables de conditionnement :
 - Difficulté à valeurs dans {facile, moyenne, importante}
 - Niveau à valeurs dans {faible, fort}
- Variable normalisée :
 - Note à valeurs dans {mauvaise, bonne}

Plan

- Introduction
- 2 Notion de potentie
- Méthode d'élimination des variables
 - Principe de la méthode
 - Ordre d'élimination
- 4 Conclusion
- Seférences
- 6 Annexes

Principe de la méthode - Formalisation

Rappel de l'objectif

- Soit $\mathbf{X} = (X_1, \dots, X_n)$ une suite de v.a.
- Calculer P(Q|E=e) avec $Q\subseteq X$, $E\subseteq X$ et $Q\cap E=\varnothing$

- Par définition : $P(Q|E=e) = \frac{P(Q,E=e)}{P(E=e)}$
- En posant $W = X \setminus (Q, E)$, on a

$$P(Q, E = e) = \sum_{W \in W} \underbrace{P(X_1, \dots, X_n)}_{\text{loi jointe de la suite } X} = \sum_{W \in W} P(Q, W, E = e)$$

- **Principe**: Simplifier le calcul de P(Q|E=e) grâce à la propriété de

Principe de la méthode - Formalisation

Rappel de l'objectif

- Soit $\mathbf{X} = (X_1, \dots, X_n)$ une suite de v.a.
- Calculer P(Q|E=e) avec $Q\subseteq X$, $E\subseteq X$ et $Q\cap E=\varnothing$

- Par définition : $P(Q|E=e) = \frac{P(Q, E=e)}{P(E=e)}$
- En posant $W = X \setminus (Q, E)$, on a

$$P(Q, E = e) = \sum_{W \in W} \underbrace{P(X_1, \dots, X_n)}_{\text{loi jointe de la suite } X} = \sum_{W \in W} P(Q, W, E = e)$$

- **Principe**: Simplifier le calcul de P(Q|E=e) grâce à la propriété de

Principe de la méthode - Formalisation

Rappel de l'objectif

- Soit $\mathbf{X} = (X_1, \dots, X_n)$ une suite de v.a.
- Calculer P(Q|E=e) avec $Q\subseteq X$, $E\subseteq X$ et $Q\cap E=\varnothing$

- Par définition : $P(Q|E=e) = \frac{P(Q, E=e)}{P(E=e)}$
- En posant $W = X \setminus (Q, E)$, on a

$$P(Q, E = e) = \sum_{W \in W} \underbrace{P(X_1, \dots, X_n)}_{\text{loi jointe de la suite } X} = \sum_{W \in W} P(Q, W, E = e)$$

- **Principe :** Simplifier le calcul de P(Q|E=e) grâce à la propriété de factorisation dans un RB
- En pratique : Toutes les variables hors requête et évidence sont "éliminées" de l'expression de la loi jointe par sommation

Principe de la méthode - Formalisation

Rappel de l'objectif

- Soit $\mathbf{X} = (X_1, \dots, X_n)$ une suite de v.a.
- Calculer P(Q|E=e) avec $Q\subseteq X$, $E\subseteq X$ et $Q\cap E=\varnothing$

- Par définition : $P(Q|E=e) = \frac{P(Q, E=e)}{P(E=e)}$
- En posant $W = X \setminus (Q, E)$, on a

$$P(Q, E = e) = \sum_{W \in W} \underbrace{P(X_1, \dots, X_n)}_{\text{loi jointe de la suite } X} = \sum_{W \in W} P(Q, W, E = e)$$

- **Principe :** Simplifier le calcul de P(Q|E=e) grâce à la propriété de factorisation dans un RB
- En pratique : Toutes les variables hors requête et évidence sont "éliminées" de l'expression de la loi jointe par sommation

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

Principe de la méthode - Exemple

Caractéristiques du calcul

- Suite des v.a. :
 - $\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$
- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$\sum_{X_1} \sum_{X_2} \sum_{X_2} P(X_1, X_2, \frac{X_3}{3}, X_4 = x_4, \frac{X_5}{5}, X_6)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

Déroulement du calcul

$$P(X_3, X_5, X_4 = x_4) =$$

$$\sum_{X_1} \sum_{X_2} \sum_{X_6} \underbrace{P(X_1) P(X_2) P(X_3 | X_1, X_2) P(X_4 = x_4 | X_2) P(X_5 | X_3) P(X_6 | X_5, X_4 = x_4)}_{\text{Total of the polynomial of the polyn$$

Factorisation loi jointe dans le RB

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5}|X_{3}\right)\sum_{X_{1}}P\left(X_{1}\right)\sum_{X_{2}}P\left(X_{2}\right)P\left(X_{3}|X_{1},X_{2}\right)P\left(X_{4}=x_{4}|X_{2}\right)\sum_{X_{6}}P\left(X_{6}|X_{5},X_{4}=x_{4}\right)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5}|X_{3}\right)\sum_{X_{1}}P\left(X_{1}\right)\sum_{X_{2}}P\left(X_{2}\right)P\left(X_{3}|X_{1},X_{2}\right)P\left(X_{4}=x_{4}|X_{2}\right)\sum_{X_{6}}P\left(X_{6}|X_{5},X_{4}=x_{4}\right)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a.:

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5}|X_{3}\right)\sum_{X_{1}}P\left(X_{1}\right)\sum_{X_{2}}P\left(X_{2}\right)P\left(X_{3}|X_{1},X_{2}\right)P\left(X_{4}=x_{4}|X_{2}\right)\underbrace{\sum_{X_{6}}P\left(X_{6}|X_{5},X_{4}=x_{4}\right)}_{1}$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P(X_5|X_3)\sum_{X_1}P(X_1)\sum_{X_2}P(X_2)P(X_3|X_1,X_2)P(X_4=x_4|X_2)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5}|X_{3}\right)\sum_{X_{1}}P\left(X_{1}\right)\sum_{X_{2}}\underbrace{P\left(X_{2}\right)P\left(X_{3}|X_{1},X_{2}\right)P\left(X_{4}=X_{4}|X_{2}\right)}_{\Phi_{2}\left(X_{1},X_{2},X_{3},X_{4}=X_{4}\right)}$$

Principe de la méthode - Exemple

Caractéristiques du calcul

Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

Déroulement du calcul

$$P(X_3, X_5, X_4 = x_4) =$$

$$P(X_{5}|X_{3})\sum_{X_{1}}P(X_{1})\underbrace{\sum_{X_{2}}\Phi_{X_{2}}(X_{1},X_{2},X_{3},X_{4}=x_{4})}_{\Psi_{2}(X_{1},X_{2},X_{6}=x_{4})}$$

ENSIBS - Spécialité Cyber Data

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a.:

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P(X_5|X_3)\sum_{X_1}P(X_1)\Psi_2(X_1,X_3,X_4=x_4)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5} \middle| X_{3}\right) \sum_{X_{1}} \underbrace{P\left(X_{1}\right) \Psi_{2}\left(X_{1}, X_{3}, X_{4} = x_{4}\right)}_{\Phi_{1}\left(X_{1}, X_{3}, X_{4} = x_{4}\right)}$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a.:

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) =$$

$$P\left(X_{5}|X_{3}\right)\underbrace{\sum_{X_{1}}}_{\Psi_{1}\left(X_{1},X_{3},X_{4}=x_{4}\right)}$$

Principe de la méthode - Exemple

Caractéristiques du calcul

Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4), e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

$$P(X_3, X_5, X_4 = x_4) = P(X_5 | X_3) \Psi_1(X_3, X_4 = x_4)$$

Principe de la méthode - Exemple

Caractéristiques du calcul

• Suite des v.a. :

$$\mathbf{X} = (X_1, X_2, X_3, X_4, X_5, X_6)$$

- Objectif: calculer $P(X_3, X_5 | X_4 = x_4)$
- Requête : $Q = (X_3, X_5)$
- Évidence : $E = (X_4)$, $e = (x_4)$
- Variables à éliminer : $\mathbf{W} = (X_1, X_2, X_6)$

Déroulement du calcul

$$P(X_3, X_5, X_4 = x_4) = P(X_5 | X_3) \Psi_1(X_3, X_4 = x_4)$$

 \Rightarrow Déduction de $P(X_3, X_5 | X_4 = x_4)$ en normalisant $P(X_3, X_5, X_4 = x_4)$ sur les v.a. X_3, X_5

Algorithme - Remarques

Ordre d'élimination

- L'ordre d'élimination des variables n'influe pas sur le résultat
- ⇒ Tous les ordres aboutissent au même (bon) résultat
- En revanche, la rapidité des calculs est fortement liée à l'ordre d'élimination (cf. complexité)

Algorithme - Complexité (1/2)

Complexité de la méthode d'élimination des variables

- On note $\sigma: \{1, \ldots, D\} \mapsto \{1, \ldots, D\}$ l'ordre des variables à éliminer
- Pire cas: (n-1) variables à éliminer
- Opérations coûteuses : calcul des potentiels $\Phi_{\sigma(i)}$ et $\Psi_{\sigma(i)}$
- Complexité de l'algorithme :

$$\mathsf{CA}\left(\mathsf{AEV}\right) \simeq \sum_{i} \mathsf{CS}\left(\Phi_{\sigma(i)}\right) + \mathsf{CS}\left(\Psi_{\sigma(i)}\right)$$

$$\simeq n \mathsf{v}_{\star}^{D_{\star}}$$

- D_{\star} : Nombre de dimensions du plus gros potentiel $\Phi_{\sigma(i)}$, noté Φ_{\star}
- v_{\star} : Nombre de valeurs dans la plus grande dimension de Φ_{\star}
- ⇒ Risque d'explosion exponentielle

Algorithme - Complexité (2/2)

Complexité de l'inférence exacte dans un RB

- Il n'existe pas d'algorithme polynomial d'inférence exacte pour un RB quelconque
- ⇒ Le calcul de probabilité dans un RB est un problème NP-difficile

Attention à l'ordre d'élimination

- Trouver un "bon" ordre consiste à rechercher un ordre qui limite la taille des $\Phi_{\sigma(i)}$ à chaque élimination
- Malheureusement :
 - Trouver l'ordre optimal est un problème NP-complet
 - Même l'ordre optimal peut dans certains cas aboutir à une explosion combinatoire
- ⇒ En pratique, on utilise des heuristiques ou des connaissances sur le graphe pour déterminer l'ordre d'élimination

Élimination des variables

Algorithme - Complexité (2/2)

Complexité de l'inférence exacte dans un RB

- Il n'existe pas d'algorithme polynomial d'inférence exacte pour un RB quelconque
- ⇒ Le calcul de probabilité dans un RB est un problème NP-difficile

Attention à l'ordre d'élimination

- Trouver un "bon" ordre consiste à rechercher un ordre qui limite la taille des $\Phi_{\sigma(i)}$ à chaque élimination
- Malheureusement :
 - Trouver l'ordre optimal est un problème NP-complet
 - Même l'ordre optimal peut dans certains cas aboutir à une explosion combinatoire
- ⇒ En pratique, on utilise des heuristiques ou des connaissances sur le graphe pour déterminer l'ordre d'élimination

Notion de potentiel Méthode d'élimination des variables Conclusion Références Références Annexes

Élimination des variables

Stratégies pour déterminer l'ordre d'élimination

Stratégie 1 : Application d'une heuristique

- Utilisation d'un algorithme glouton muni d'une fonction de coût donnée
- ⇒ À chaque étape, on élimine la variable qui minimise le coût
- Exemples de fonctions de coût :
 - Nombre de voisins de la v.a. courante
 - ullet Complexité de $\Phi_{\sigma(i)}$ engendré par l'élimination de la v.a. courante

Stratégie 2 : Exploiter sa connaissance du graphe

Exemples de cas où cela peut être profitable

- Graphes avec peu de variables mais avec des LPC de tailles très hétérogènes (i.e. piège les méthodes gloutonnes)
- Graphes très grands mais très structurés (e.g. modèle bayésien naïf

Élimination des variables

Stratégies pour déterminer l'ordre d'élimination

Stratégie 1 : Application d'une heuristique

- Utilisation d'un algorithme glouton muni d'une fonction de coût donnée
- ⇒ À chaque étape, on élimine la variable qui minimise le coût
- Exemples de fonctions de coût :
 - Nombre de voisins de la v.a. courante
 - ullet Complexité de $\Phi_{\sigma(i)}$ engendré par l'élimination de la v.a. courante

Stratégie 2 : Exploiter sa connaissance du graphe

Exemples de cas où cela peut être profitable :

- Graphes avec peu de variables mais avec des LPC de tailles très hétérogènes (i.e. piège les méthodes gloutonnes)
- Graphes très grands mais très structurés (e.g. modèle bayésien naïf)

Notion de potentiel **Méthode d'élimination des variables** Conclusion Références Références

Élimination des variables

Ordre d'élimination - Illustration

- Élimination des X_i , $j \neq i$ et enfin élimination de Y?
- © Un seul calcul à réaliser : $P(X_i) = \sum_{Y} P(Y) P(X_i | Y)$
- Élimination de Y, puis élimination des X_i , $j \neq i$?
- © Explosion combinatoire

Élimination des variables

Ordre d'élimination - Illustration

- Élimination des X_i , $j \neq i$ et enfin élimination de Y?
- © Un seul calcul à réaliser : $P(X_i) = \sum_Y P(Y) P(X_i|Y)$
- Élimination de Y, puis élimination des X_i , $j \neq i$?
- © Explosion combinatoire

Notion de potentiel **Méthode d'élimination des variables** Conclusion Référen

Élimination des variables

Ordre d'élimination - Illustration

- Élimination des X_i , $j \neq i$ et enfin élimination de Y?
- \odot Un seul calcul à réaliser : $P(X_i) = \sum_Y P(Y) P(X_i | Y)$
- Élimination de Y, puis élimination des X_i , $j \neq i$?
- © Explosion combinatoire

Notion de potentiel **Méthode d'élimination des variables** Conclusion Références R

Élimination des variables

Ordre d'élimination - Illustration

- Élimination des X_i , $j \neq i$ et enfin élimination de Y?
- © Un seul calcul à réaliser : $P(X_i) = \sum_Y P(Y) P(X_i|Y)$
- Élimination de Y, puis élimination des X_i , $j \neq i$?
- © Explosion combinatoire

Plan

- Introduction
- Notion de potentie
- Méthode d'élimination des variable
- 4 Conclusion
- S Références
- 6 Annexes

Conclusion

Inférence probabiliste

- Objectif : Calculer des probabilités dans un RB
- Inférence exacte : Problème NP-Difficile

Méthode d'élimination des variables

- Méthode d'inférence exacte
- Méthode simple et intuitive ne reposant pas sur la théorie des graphes
- Principe :
 - Réduction de la loi jointe en propageant l'évidence
 - Élimination des variables hors requête et évidence par sommations successives
 - Multiplication des potentiels restants à la fin de la procédure
 - Normalisation du potentiel résultant afin d'obtenir la LPC recherchée
- Complexité de l'algorithme fortement dépendante de l'ordre d'élimination des variables

Plan

- Introduction
- Notion de potentie
- Méthode d'élimination des variable
- 4 Conclusion
- Références
- 6 Annexes

Références

Cozman, Fabio G. (2000). "Generalizing Variable Elimination in Bayesian Networks". In: *the IBERAMIA/SBIA Workshops on Probabilistic Reasoning in Artificial Intelligence*. São Paulo: Editora Tec Art, p. 27-32.

Dechter, R. (1999). "Bucket Elimination: A Unifying Framework for Reasoning". In: Artificial Intelligence 113.1-2, p. 41-85.

Lauritzen, S. L. et D. J. Spiegelhalter (1988). "Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems". In: *Journal of the Royal Statistical Society* 50.2. p. 157-224.

Lin, Yan et Marek J. Druzdzel (1999). "Relevance-based Incremental Belief Updating in Bayesian Networks". In: International Journal of Pattern Recognition and Artificial Intelligence 13.02, p. 285-295. eprint: http://www.worldscientific.com/doi/pdf/10.1142/S0218001499000161.

Murphy, K. P., Y. Weiss et M. I. Jordan (1999). "Loopy Belief Propagation for Approximate Inference: An Empirical Study". In: *Proceedings of the 15th on Uncertainty in Artificial Intelligence*, p. 467-475.

Pearl, J. (sept. 1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 1^{re} éd. Morgan Kaufmann.

Plan

- Introduction
- 2 Notion de potentie
- Méthode d'élimination des variables
- 4 Conclusion
- Références
- 6 Annexes
 - Algorithme

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
11:
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```

```
Entrée: LPC \{P(X_i|pa(X_i))\}_{1 \le i \le n} de la loi jointe factorisée des v.a. \mathbf{X} = (X_1, \dots, X_n)
Entrée: Une suite de v.a. de requête Q \subseteq X
Entrée: Une suite de v.a. E \subseteq X, Q \cap E = \emptyset
Entrée: Une permutation \sigma des v.a. (X_1, \ldots, X_n) représentant l'ordre d'élimination des v.a
Sortie: La loi P(Q|E)
1: // Initialisation de la liste des potentiels à considérer
2: \mathcal{P} \leftarrow \{P(X_1|pa(X_1)), \ldots, P(X_n|pa(X_n))\}
// Parcours de toutes les variables
4: Pour chaque i = 1, \ldots, n Faire
5:
         // Vérification si la variable courante (dans l'ordre d'élimination) est à éliminer
6:
         Si X_{\sigma(i)} \in W = X \setminus (Q, E) Alors
7:
             // Ensemble des potentiels cibles, i.e. dont le domaine contient la v.a. à éliminée
8:
             \mathcal{B}_{\sigma(i)} \leftarrow \{ \psi \in \mathcal{P} | X_{\sigma(i)} \in \mathsf{Dom}(\psi) \}
9:
             // Suppression des potentiels cibles de la liste de potentiels courante
10:
              \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{\sigma(d)}
11:
              \Phi_{\sigma(i)} \leftarrow \prod_{\psi \in \mathcal{B}_{\sigma(i)}} \psi // Produit des potentiels cibles
              \Psi_{\sigma(i)} \leftarrow \sum_{X_{\sigma(i)}} \Phi_{\sigma(i)} // Élimination de la variable
12:
13:
              // Mise à jour de la liste de potentiels qui ne contiennent plus la variable courante
14:
              \mathcal{P} \leftarrow \mathcal{P} \cup \{\Psi_{\sigma(i)}\}
15:
          Fin Si
16: Fin Pour
17: P(\mathbf{Q}, \mathbf{E}) \leftarrow \prod_{\psi \in \mathcal{P}} \psi
18: Déduction de P(Q|E) en normalisant P(Q|E) sur la suite de v.a. Q
```