9 Morphismen von affinen algebraischen Mengen

Definition 23. Seien $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ affine algebraische Mengen. Ein **Morphismus** $X \to Y$ affiner algebraischer Mengen ist eine Abbildung $f: X \to Y$ der zugrundeliegenden Mengen, sodass $f_1, \ldots, f_n \in k[T_1, \ldots, T_m]$ existieren, derart dass $\forall x \in X$ gilt:

$$f(x) = (f_1(x), \dots, f_n(x)).$$

Bezeichne dafür hom(X,Y) Menge der Morphismen $X \to Y$.

Remark 24. $f: X \to Y$ lässt sich immer fortsetzen zu einem Morphismus

$$f: \mathbb{A}^n(k) \to \mathbb{A}^m(k),$$

aber nicht eindeutig, es sei denn $X = \mathbb{A}^m(k)$.

Komposition

$$X \xrightarrow{f_1, \dots, f_n \in k[T_1, \dots, T_m]} Y \xrightarrow{g_1, \dots, g_r \in k[T'_1, \dots, T'_m]} Z$$

mit $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$, $Z \subseteq \mathbb{A}^r(k)$. Es folgt:

$$g(f(x)) = (g_1(f_1(x), \dots, f_n(x)), \dots, g_r(f_1(x), \dots, f_n(x))$$

:= $h_1(x), \dots, h_r(x)$

d.h. $g \circ f$ ist durch Polynome $h_i \in k[T_1, \ldots, T_m]$ gegeben, d.h. $g \circ f$ ist wieder ein Morphismus affiner algebrasischer Mengen. Wir erhalten die **Kategorie affiner algebraischer Mengen**.

Example 25.

(i) Sei die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2} - T_{1}^{2}) \subseteq \mathbb{A}^{2}(k)$$
$$x \mapsto (x, x^{2}).$$

Diese Abbildung ist sogar ein *Isomorphismus* affiner algebraischer Mengen, da die Umkehrabbildung

$$(x,y) \mapsto x$$

ebenfalls ein Morphismus ist.

(ii) Sei $\operatorname{char}(k) \neq 2$. Die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2}^{2} - T_{1}^{2}(T_{1} + 1))$$

 $x \mapsto (x^{2} - 1, x(x^{2} - 1))$

ist ein Morphismus, aber nicht bijektiv, da 1,-1 beide auf (0,0) abgebildet werden.