4 Системы непересекающихся множеств

4.1 Объединение таблиц

Ваша цель в данной задаче — реализовать симуляцию объединения таблиц в базе данных.

В базе данных есть n таблиц, пронумерованных от 1 до n, над одним и тем же множеством столбцов (атрибутов). Каждая таблица содержит либо реальные записи в таблице, либо символьную ссылку на другую таблицу. Изначально все таблицы содержат реальные записи, и i-я таблица содержит r_i записей. Ваша цель — обработать m запросов типа ($destination_i$, $source_i$):

1. Рассмотрим таблицу с номером *destination*_i. Пройдясь по цепочке символьных ссылок, найдём номер реальной таблицы, на которую ссылается эта таблица:

пока таблица $destination_i$ содержит символическую ссылку: $destination_i \leftarrow symlink(destination_i)$

- 2. Сделаем то же самое с таблицей *source*_i.
- 3. Теперь таблицы $destination_i$ и $source_i$ содержат реальные записи. Если $destination_i \neq source_i$, скопируем все записи из таблицы $source_i$ в таблицу $destination_i$, очистим таблицу $source_i$ и пропишем в неё символическую ссылку на таблицу $destination_i$.
- 4. Выведем максимальный размер среди всех n таблиц. Размером таблицы называется число строк в ней. Если таблица содержит символическую ссылку, считаем её размер равным нулю.
- **Формат входа.** Первая строка содержит числа n и m число таблиц и число запросов, соответственно. Вторая строка содержит n целых чисел r_1, \ldots, r_n размеры таблиц. Каждая из последующих m строк содержит два номера таблиц $destination_i$ и $source_i$, которые необходимо объединить.

Формат выхода. Для каждого из m запросов выведите максимальный размер таблицы после соответствующего объединения.

```
Ограничения. 1 \le n, m \le 100\ 000; 0 \le r_i \le 10\ 000; 1 \le destination_i, source_i \le n.
```

Пример.

Вход:

```
5 5
1 1 1 1 1
3 5
2 4
1 4
5 4
5 3
```

Выход:

```
2
2
3
5
```

Изначально каждая таблица содержит ровно одну строку.

- 1. После первой операции объединения все записи из таблицы 5 копируются в таблицу 3. Теперь таблица 5 является ссылкой на таблицу 3, а таблица 3 содержит две записи.
- 2. Вторая операция аналогичным образом переносит все записи из таблицы 2 в таблицу 4.
- 3. Третья операция пытается объединить таблицы 1 и 4, но таблица 4 ссылается на таблицу 2, поэтому все записи из таблицы 2 копируются в таблицу 1. Таблица 1 теперь содержит три строки.
- 4. Чтобы произвести четвёртую операцию, проследим пути из ссылок: $4 \to 2 \to 1$ и $5 \to 3$. Скопируем все записи из таблицы 1 в таблицу 3, после чего в таблице 3 будет пять записей.
- 5. После этого все таблицы ссылаются на таблицу 3, поэтому все оставшиеся запросы объединения ничего не меняют.

Пример.

Вход:

```
6 4
10 0 5 0 3 3
6 6
6 5
5 4
4 3
```

Выход:

10 10 10 11

- 1. Запрос объединения таблицы 6 с собой ничего не меняет, максимальным размером по-прежнему остаётся 10 (таблица 1).
- 2. Записи из таблицы 5 копируются в таблицу 6, размер таблицы 6 становится равным 6.
- 3. Записи из таблицы 4 копируются в таблицу 6, размер таблицы 6 становится равным 10.
- 4. Записи из таблицы 3 копируются в таблицу 6, размер таблицы 6 становится равным 11.