Package 'RcppBessel'

August 27, 2024

Type Package

```
Title Bessel Functions Rcpp Interface
Version 1.0.0
Maintainer Alexios Galanos <alexios@4dscape.com>
Description Exports an 'Rcpp' interface for the Bessel functions in the 'Bessel' pack-
      age, which can then be called from the 'C++' code of other packages. For the original 'For-
      tran' implementation of these functions see Amos (1995) <doi:10.1145/212066.212078>.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.3.2
LinkingTo Rcpp
Imports Rcpp (>= 1.0.12), Rdpack
URL https://github.com/alexiosg/RcppBessel
RdMacros Rdpack
Suggests knitr, rmarkdown, roxygen2, Bessel, testthat (>= 3.0.0),
      microbenchmark
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Author Alexios Galanos [aut, cre] (<a href="https://orcid.org/0009-0000-9308-0457">https://orcid.org/0009-0000-9308-0457</a>),
      Martin Maechler [aut] (Author of the Bessel R package,
       <a href="https://orcid.org/0000-0002-8685-9910">https://orcid.org/0000-0002-8685-9910>),</a>
      Donald E. Amos [aut] (Original author of the zbsubs Fortran code,
       Sandia National Laboratories)
Repository CRAN
Date/Publication 2024-08-27 16:30:14 UTC
```

2 airy_a

Contents

Index																							8
	bessel_y	•	 •	•	•	 •		•		•		•	•		•		 •		•	•	 		6
	bessel_k																				 		6
	bessel_j																						5
	bessel_i																						4
	bessel_h																						3
	airy_b .																						3
	airy_a .																				 		2

airy_a The AiryA Function

Description

Computes the Airy function Ai for real or complex inputs.

Usage

```
airy_a(z, deriv = 0, expon_scaled = FALSE, verbose = 0)
```

Arguments

Z	A numeric or complex vector representing the input values at which to evaluate the Airy function.
deriv	An integer indicating whether to compute the function (θ for the function itself) or its first derivative (1 for the first derivative). Defaults to θ .
expon_scaled	A logical value indicating whether to use the exponentially scaled form of the Airy function. Defaults to FALSE.
verbose	An integer specifying the verbosity level for error messages. Defaults to \emptyset .

Value

A numeric or complex vector (depending on the input) containing the values of the airy_a function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order":" *ACM Transactions on Mathematical Software (TOMS)*, **21**(4), 388–393.

airy_b

airy_b	The AiryB Function	

Description

Computes the Airy function Bi for real or complex inputs.

Usage

```
airy_b(z, deriv = 0, expon_scaled = FALSE, verbose = 0)
```

Arguments

Z	A numeric or complex vector representing the input values at which to evaluate the Airy function.
deriv	An integer indicating whether to compute the function (\emptyset for the function itself) or its first derivative (1 for the first derivative). Defaults to \emptyset .
expon_scaled	A logical value indicating whether to use the exponentially scaled form of the Airy function. Defaults to FALSE.
verbose	An integer specifying the verbosity level for error messages. Defaults to 0.

Value

A numeric or complex vector (depending on the input) containing the values of the airy_b function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." *ACM Transactions on Mathematical Software (TOMS)*, **21**(4), 388–393.

bessel_h	The BesselH Function	
----------	----------------------	--

Description

Computes the Hankel function (Bessel function of the third kind) for real or complex inputs.

Usage

```
bessel_h(m, z, nu, expon_scaled = FALSE, verbose = 0)
```

bessel_i

Arguments

m	An integer representing the type of Hankel function. It must be either 1 (for the first kind) or 2 (for the second kind).
Z	A numeric or complex vector representing the input values at which to evaluate the Hankel function.
nu	A double representing the order of the Hankel function.
expon_scaled	A logical value indicating whether to use the exponentially scaled form of the Hankel function. Defaults to FALSE.
verbose	An integer specifying the verbosity level for error messages. Defaults to \emptyset .

Value

A complex vector containing the values of the bessel_h function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." *ACM Transactions on Mathematical Software (TOMS)*, **21**(4), 388–393.

bessel_i	The Bessell Function	

Description

Computes the modified Bessel function of the first kind for real or complex inputs.

Usage

```
bessel_i(z, nu, expon_scaled = FALSE, verbose = 0)
```

Arguments

Z	A numeric or complex vector representing the input values at which to evaluate the Bessel function.
nu	A double representing the order of the Bessel function.
expon_scaled	A logical value indicating whether to use the exponentially scaled form of the Bessel function. Defaults to FALSE.

An integer specifying the verbosity level for error messages. Defaults to 0.

Value

verbose

A numeric or complex vector (depending on the input) containing the values of the bessel_i function evaluated at the points in z.

bessel_j 5

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." *ACM Transactions on Mathematical Software (TOMS)*, **21**(4), 388–393.

bessel_j The BesselJ Function

Description

Computes the Bessel function of the first kind for real or complex inputs.

Usage

```
bessel_j(z, nu, expon_scaled = FALSE, verbose = 0)
```

Arguments

z A numeric or complex vector representing the input values at which to evaluate

the Bessel function.

nu A double representing the order of the Bessel function.

expon_scaled A logical value indicating whether to use the exponentially scaled form of the

Bessel function. Defaults to FALSE.

verbose An integer specifying the verbosity level for error messages. Defaults to 0.

Value

A numeric or complex vector (depending on the input) containing the values of the bessel_j function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." ACM Transactions on Mathematical Software (TOMS), **21**(4), 388–393.

6 bessel_y

bessel_k The BesselK Function

Description

Computes the modified Bessel function of the second kind for real or complex inputs.

Usage

```
bessel_k(z, nu, expon_scaled = FALSE, verbose = 0)
```

Arguments

z A numeric or complex vector representing the input values at which to evaluate

the Bessel function.

nu A double representing the order of the Bessel function.

expon_scaled A logical value indicating whether to use the exponentially scaled form of the

Bessel function. Defaults to FALSE.

verbose An integer specifying the verbosity level for error messages. Defaults to 0.

Value

A numeric or complex vector (depending on the input) containing the values of the bessel_k function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." ACM Transactions on Mathematical Software (TOMS), **21**(4), 388–393.

bessel_y	The BesselY Function

Description

Computes the Bessel function of the second kind (Neumann function) for real or complex inputs.

Usage

```
bessel_y(z, nu, expon_scaled = FALSE, verbose = 0)
```

bessel_y 7

Arguments

z A numeric or complex vector representing the input values at which to evaluate

the Bessel function.

nu A double representing the order of the Bessel function.

expon_scaled A logical value indicating whether to use the exponentially scaled form of the

Bessel function. Defaults to FALSE.

verbose An integer specifying the verbosity level for error messages. Defaults to 0.

Value

A numeric or complex vector (depending on the input) containing the values of the bessel_y function evaluated at the points in z.

References

Maechler M (2024). *Bessel: Computations and Approximations for Bessel Functions*. R package version 0.6-1, https://CRAN.R-project.org/package=Bessel.

Amos DE (1995). "A remark on Algorithm 644: "A portable package for Bessel functions of a complex argument and nonnegative order"." *ACM Transactions on Mathematical Software (TOMS)*, **21**(4), 388–393.

Index

airy_a, 2
airy_b, 3
bessel_h, 3
bessel_i, 4
bessel_j, 5
bessel_k, 6
bessel_y, 6