Assignment 2a

PHYS4000 Advanced Computational Quantum Mechanics

Ryan Craft

Unit Coordinated by Dr. Igor Bray

May 2023

1 Question 1

Equation 2.17 is written as:

$$\frac{d^2u_l(r)}{dr^2} + 2(E + \frac{Z}{r})u_l(r) = l(l+1)\frac{u_l(r)}{r^2}$$
(1)

First we need to make ρ the subject of the function which is done through the substitution of $\rho = kr$.

$$k^{2} \frac{d^{2} u_{l}(\rho)}{d\rho^{2}} + 2\left(-\frac{k^{2}}{8} + \frac{Zk}{\rho}\right) u_{l}(\rho) = l(l+1) \frac{u_{l}(\rho)k^{2}}{\rho^{2}}$$
(2)

Where we have substituted for E by rearranging the definition of $k = 2\sqrt{-2E}$. We further simplify the differential Equation to the following by cancelling k^2 and multiplying the bracket:

$$\frac{d^2 u_l(\rho)}{d\rho^2} - (\frac{1}{4} - \frac{2Z}{\rho k}) u_l(\rho) = l(l+1) \frac{u_l(\rho)}{\rho^2}$$
(3)

In finding the solutions to the differential equation we rearrange it into the form...

$$\frac{d^2 u_l(\rho)}{d\rho^2} - (\frac{1}{4} - \frac{2Z}{\rho k}) u_l(\rho) - l(l+1) \frac{u_l(\rho)}{\rho^2} = 0$$
(4)

The question presents the substitution $u_l(\rho) = \rho^{l+1} \exp\{-\rho/2\}\omega(\rho)$, which forms...

$$\frac{d^2}{d\rho^2} [\rho^{l+1} \exp\{-\rho/2\}\omega(\rho)] - (\frac{1}{4} - \frac{2Z}{\rho k})(\rho^{l+1} \exp\{-\rho/2\}\omega(\rho)) - l(l+1)\rho^{l-1} \exp\{-\rho/2\}\omega(\rho) = 0$$
 (5)

$$(l+1)[(l\rho^{l-1}\exp\{-\rho/2\} - \frac{1}{2}\rho^{l+1}\exp\{-\rho/2\})\omega(\rho) + \rho^{l}\exp\{-\rho/2\}\frac{d\omega(\rho)}{d\rho}]$$

$$-\frac{1}{2}\{[(l+1)\rho^{l}\exp\{-\rho/2\} - \frac{1}{2}\rho^{l+1}\exp\{-\rho/2\}]\omega(\rho) + \frac{d\omega(\rho)}{d\rho^{2}}\rho^{l+1}\exp\{-\rho/2\}\}$$

$$+[(l+1)\rho^{l}\exp\{-\rho/2\} - \frac{1}{2}\rho^{l+1}\exp\{-\rho/2\}]\frac{d\omega(\rho)}{d\rho} + \frac{d^{2}\omega(\rho)}{d\rho^{2}}\rho^{l+1}\exp\{-\rho/2\}$$

$$-(\frac{1}{4} - \frac{2Z}{k\rho})\rho^{l+1}\exp\{-\rho/2\}\omega(\rho) - l(l+1)\rho^{l-1}\exp\{-\rho/2\}\omega(\rho) = 0$$

and simplifies to

$$\frac{d^2\omega(\rho)}{d\rho^2}\rho^{l+1} + \frac{d\omega(\rho)}{d\rho}[2(l+1)\rho^l - \rho^{l+1}] - \omega(\rho)[(l+1)\rho^l - \frac{2Z}{k}\rho^l] = 0$$
 (6)

We now eliminate ρ^l on all terms to get:

$$\frac{d^{2}\omega(\rho)}{d\rho^{2}}\rho + [2(l+1) - \rho]\frac{d\omega(\rho)}{d\rho} - [(l+1) - \frac{2Z}{k}]\omega(\rho) = 0$$
 (7)

This differential equation has the form:

$$z\frac{d^2w}{dz^2} + (b-z)\frac{dw}{dz} - aw = 0$$
(8)

Which has solutions in the confluent hypergeometric function;

$$F(a,b;\rho) = 1 + \frac{a}{b} \frac{\rho}{1!} + \frac{a}{b} \frac{(a+1)}{(b+1)} \frac{\rho^2}{2!} + \dots$$
 (9)

In this case, the function will truncate so long as a = 1 - n for n = 1, 2, 3, in this way, after the n + 1 term of the series and all subsequent terms must simplify to zero.

In this case then by comparing the equation we have with the general form, we can see that

$$a = l + 1 - \frac{2Z}{k} \tag{10}$$

$$b = 2(l+1) \tag{11}$$

And knowing that the differential equation is has the general solution and that the series terminates, we know that this set of equations satisfies the conditions for a solution of $\omega(\rho)$.

2 Question 2

The equation:

$$F(a,b;\rho) = 1 + \frac{a}{b} \frac{\rho}{1!} + \frac{a}{b} \frac{(a+1)}{(b+1)} \frac{\rho^2}{2!} + \dots$$
 (12)

Terminates for a = 1 - n, for $n \in \{1, 2, 3, ...\}$. This prevents the series from growing exponentially in ρ .

In our case, we have $a=1+l-\frac{2Z}{k}$, which can be rewritten as $a=1-(\frac{2Z}{k}-l)$. This makes our $n=\frac{2Z}{k}-l$ and subsequently $n+l=\frac{2Z}{k}$. We then write $n=\frac{2Z}{k}$, \forall $n\in\{1+l,2+l,3+l,\dots\}$.

3 Question 3

2.28 states:

$$\int_0^\infty dr u_{n'l}(r) u_{nl}(r) = \delta_{n'n} \tag{13}$$

Which tell us that the eigenstates are orthogonal and normalised for n = n', where the kronecker delta equals unity. This will allow us to calculate the normalisation coefficients for our wave-functions, $u_{21}(r)$ and $u_{31}(r)$.

For $\mathbf{u_{21}}(\mathbf{r})$;

First we establish what we are substituting for ρ , with Z=1, n=2, l=1:

$$\rho = kr = \frac{2Zr}{n}$$

$$\rho = kr = \frac{2(1)r}{2} = r$$

$$\therefore k = 1 \tag{14}$$

With l = 1 = Z = k = 1 we have:

$$a = l + 1 - \frac{2Z}{k}$$

$$a = 1 + 1 - 2 = 0$$

$$b = 2(l + 1)$$

$$b = 2(2b) = 4$$
(15)

Calculating the $\omega(kr)$

$$F(a,b;r) = 1 + \frac{a}{b} \frac{r}{1!} + \frac{a}{b} \frac{(a+1)}{(b+1)} \frac{r^2}{2!} + \dots$$

$$F(0,4;r) = 1 + \frac{0}{4} \frac{r}{1!} + \frac{0}{4} \frac{(0+1)}{(4+1)} \frac{r^2}{2!} + \dots$$

$$F(0,4;r) = \omega(r) = 1$$
(16)

Substituting r for ρ to get back $u_{nl}(r)$ from $u_{nl}(\rho)$:

$$u_{nl}(r) = (kr)^{l+1} \exp\{-kr/2\}\omega(kr)$$

$$u_{21}(r) = r^{1+1} \exp\{-r/2\}(1)$$

$$u_{21}(r) = r^2 \exp\{-r/2\}$$
(17)

We need to add a constant of normalisation to this function in order for it to belong to the Hilbert space, and we will use (13) in order to normalise.

$$\int_0^\infty (Ar^2 \exp\{-r/2\})^2 dr = \delta_{n'n}$$
$$\int_0^\infty A^2 r^4 \exp\{-r\} dr = \delta_{2,2} = 1$$

Tabular integration will solve the integral

$$\int_{0}^{\infty} A^{2}r^{4} \exp\{-r\} dr$$

$$= A^{2}[-r^{4} \exp\{-r\} - 4r^{3} \exp\{-r\} - 12r^{2} \exp\{-r\} - 24r \exp\{-r\} - 24 \exp\{-r\}]_{0}^{\infty}$$

$$= A^{2}[0 - (-24)]$$

$$= 24A^{2} = 1$$

$$A = \frac{1}{2\sqrt{6}}$$
(18)

Which normalises the function to

$$u_{21}(r) = \frac{r^2}{2\sqrt{6}} \exp\{-r/2\} \tag{19}$$

as given in the problem statement.

For $\mathbf{u_{31}}(\mathbf{r})$:

We start in the same way, by defining the appropriate quantities starting with Z = 1, n = 3, l = 1. Subsequently computing parameters like k:

$$\rho = kr = \frac{2Zr}{n}$$

$$\rho = kr = \frac{2(1)r}{3} = r$$

$$\therefore k = \frac{2}{3}$$
(20)

a and b...

$$a = l + 1 - \frac{2Z}{k}$$

$$a = 1 + 1 - \frac{2(1)}{\frac{2}{3}}$$

$$a = 1 + 1 - 3 = -1$$

$$b = 2(l + 1)$$

$$b = 2(2) = 4$$

$$a = -1, b = 4$$
(21)

Taking these