KNN - Tutorial

Hisham Ihshaish Bristol, UK June, 2021

Evaluate,

in training and in testing

Data... splitting

for training and for testing (generalisation)

Data... splitting

for training and for testing (generalisation)

Run example - explained

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
*matplotlib inline
                                                                                          read data
df = pd.read csv('/Users/test/Downloads/breast-cancer-wisconsin.data.txt')
df.replace('?', -99999, inplace=True)
                                                                                          preprocessing
df.drop(['id'], 1, inplace=True)
X = np.array(df.drop(['class'], 1))
                                                                                         identify X and y
y = np.array(df['class'])
X train, X test, y train, y test = train test split(X, y, random state=0)
clf = KNeighborsClassifier(n neighbors=1)
                                                                                          1.0
                                                                                                               1.6
clf.fit (X train, y train)
                                                                                                               2.7
print (clf.score(X train, y train))
print (clf.score(X_test, y_test))
data = np.array([4,3,3,2,1,2,1,1,2])
prediction= clf.predict(data.reshape(1,-1))
print(prediction)
```

Run example - explained

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
*matplotlib inline
                                                                                        read data
df = pd.read csv('/Users/test/Downloads/breast-cancer-wisconsin.data.txt')
df.replace('?', -99999, inplace=True)
                                                                                         preprocessing
df.drop(['id'], 1, inplace=True)
X = np.array(df.drop(['class'], 1))
y = np.array(df['class'])
X train, X test, y train, y test = train test split(X, y, random state=0)
clf = KNeighborsClassifier(n neighbors=1)
clf.fit (X train, y train)
print (clf.score(X train, y train))
print (clf.score(X test, y test))
data = np.array([4,3,3,2,1,2,1,1,2])
                                                 Split into training data and testing data
prediction= clf.predict(data.reshape(1,-1))
print(prediction)
```

Data... splitting

for training and for testing (generalisation)

sklearn >> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

here goes what we did last week

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
*matplotlib inline
                                                                                                read data
df = pd.read csv('/Users/test/Downloads/breast-cancer-wisconsin.data.txt')
df.replace('?', -99999, inplace=True)
                                                                                                preprocessing
df.drop(['id'], 1, inplace=True)
X = np.array(df.drop(['class'], 1))
y = np.array(df['class'])
X train, X test, y train, y test = train test split(X, y, random state=0)
                                                                                   Split into training data and testing data
clf = KNeighborsClassifier(n neighbors=1)
clf.fit (X train, y train)
                                                train, only on training data
                                                                                                                    Training
                                                    training error
print (clf.score(X train, y train))*
print (clf.score(X test, y test))
                                                   generalisation error
                                                                                                  Sweet spot
data = np.array([4,3,3,2,1,2,1,1,2])
                                                                            Accuracy
                                                                                                                   Generalization
prediction= clf.predict(data.reshape(1,-1))
print(prediction)
                                                                                                                   Overfitting
                                                                                 Underfitting
```

note on file upload

Preparation:

- Call libraries
- Read file:
- a) if on local jupyter notebook simply use df = pd.read_csv('/Users/test/Downloads/breast-cancer-wisconsin.data.txt')
- b) if in colabd, import io, then upload file as shown below.
 - Encapculate file in a Dataframe (preferred) check methods of df to show first rows, shape, and statistics of your data.

```
[31] import numpy as np
    import pandas as pd
    import io
     from sklearn.model_selection import train_test_split
     from sklearn.neighbors import KNeighborsClassifier
     import matplotlib.pyplot as plt
    #df = pd.read_csv('/Users/test/Downloads/breast-cancer-wisconsin.data.txt')
     from google.colab import files
     uploaded = files.upload()
    df = pd.read_csv(io.BytesIO(uploaded['breast-cancer-wisconsin.data.txt']))
```