ABSTRACT

The present rate of economic growth is unsustainable without saving of fossil energy like crude oil, natural gas, or coal. There are many alternatives to fossil energy such as biomass, hydropower, and wind energy. Also, suitable waste management strategy is another important aspect. Development and modernization have brought about a huge increase in the production of all kinds of commodities, which indirectly generate waste. Plastics have been one of the materials because of their wide range of applications due to versatility and relatively low cost.

Most of plastics that are used today are non-biodegradable in nature, they remain in environment for long period Which affects environmental quality. Plastic wastes include different type's viz. Low Density Poly Ethylene (LDPE), High Density Polyethylene (HDPE), Poly Ethylene Terephthalate (PET), Polypropylene (PP), Polystyrene (PS), Poly Vinyl Chloride (PVC) etc. Among the alternatives to fossils energy, conversion of plastic waste to bio fuel is also one of them. The paper deals with implementation of the conversion and recycling of plastic wastes into alternative fuels.

Our Project deals with the extraction of oil/diesel from the waste plastics termed as plastic pyrolyzed oil which can be marketed at much cheaper rates compared to that present in the market. As we know that both Plastics and Petroleum derived fuels are Hydrocarbons that contain the elements of Carbon & Hydrogen. Pyrolysis process becomes an option of waste-to-energy technology to deliver bio-fuel to replace fossil fuel. The advantage of the pyrolysis process is its ability to handle unsort and dirty plastic. The pre-treatment of the material is easy. Plastic is needed to be sorted and dried. Pyrolysis is also no toxic or non-environmental harmful emission unlike incineration.

CONTENTS

Sl. No	. Particulars	Pg. No
1	INTRODUCTION	1
	Pyrolysis classification	7
	Slow pyrolysis	8
	Fast pyrolysis	8
	Flash pyrolysis	8
	Some influencing factor to be considered	8
	Catalyst	8
	Temperature and pressure	9
	Catalyst to polymer feed ratio	10
	Advantage	10
	Disposal method of waste plastic and their advantage and disadvantage	11
	Objective	12
2	LITERATURE REVIEW	13
	Summary of Literature survey	18
3	PLASTIC	19
	Overview	19
	Thermoplastic and thermosets	20
	Most common plastic type	21
	Polyethylene Terephthalate (PET)	21
	High-Density Polyethylene (HDPE)	21
	Polyvinyl Chloride (PVC)	22
	Low-Density Polyethylene (LDPE)	22
	Polypropylene (PP)	23
	Polystyrene (PS)	23
	Others	24
	Film/soft – rigid/hard plastics	27
	Plastic/resin identification code	27
	Plastic waste environment issue and challenges	28
	Important of plastic recycling	29

	Recycling techniques	29
	Primary recycling	30
	Secondary recycling	30
	Tertiary recycling	33
	Quaternary recycling	34
	Application of recycling polymers	35
4 5	CHARACTERSTICS OF WASTE PLASTIC AND OIL PRODUCTION METHODOLOGY	37 39
	Collection and identification of waste plastic	39
	Subjecting the waste plastic for pyrolysis process	41
	Why we adopt pyrolysis process	41
	Extraction process by specially designed mould	42
	Design detail of the instrument	43
	Technical feature	44
	Ceramic band heater	44
	Digital temperature controller	45
	Thermocouple	45
	Condensation of gas to obtain crude oil	46
	Physical properties of waste plastic oil	48
6	APPLICATION OF PROJECT AND FUTUREWORK	49
7	RESULT AND DISCUSSION	50
8	CONCLUSION	51
	REFERNCES	52

LIST OF FIGURES

FIG NO.	TITLE	PAGE NO
1	Disposal methods of waste plastics & their advantage and	10
	disadvantage	
2	Classification of plastic	19
3	Melt-temperature ranges and decomposition in the molten state of some thermoplastics	25
4	Properties and application of plastic	26
5	Plastic identification and code	28
6	Various approach for recycling of psw	30
7	Schematic diagram of single screw extruder	32
8	Atomic composition of fuel and plastic	38
9	Waste plastic recycling	38
10	Waste plastic dumping yard	39
11	Different type of plastic	40
12	Chopped plastic	40
13	Conceptual design of reactor for pyrolysis process	41
14	Reactor for pyrolysis process	42
15	Redesigned reactor for pyrolysis process	42
16	Fabricated reactor	43
17	Ceramic band heater	44
18	Block diagram of a process under control system	45
20	Initial condition before Condensation	46
21	A layer of oil formed at the top surface after Condensation	46
	of the gases.	
22	Crude oil collected from about 750gm of Plastic	47
23	Subjecting crude oil and water mixture to sedimentation process	47
24	Final Raw fuel collected after separated it from water	48

LIST OF TABLES

SL NO	TITLE	PAGE NO
1	Global per capita consumption of plastics (in keg's)	4
2	plastic consumption of India	4
3	Polymers demand in India	5
4	List of Catalyst	9
5	Calorific values of various available polymers	34
6	Overall results for pyrolytic oil blends	48