AMENDMENT TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

1. (Previously presented) A method of controlling harmful plants or regulating the growth of plants which comprises applying to the plants, to plant seeds or to the area under cultivation an effective amount of one or more compounds of the formula (I) or salts thereof

$$R^2$$
 R^3
 N
 Z
 R^4
 $X=Y$
 $X=Y$
 $X=Y$

wherein:

A-W is N=N, N⁺(O⁻)=N or NR⁵-NR⁶, wherein A represents the atom or substituted atom shown on the left side of the groups representing A-W;

 $X \text{ is } N \text{ or } CR^7;$

Y is N or CR⁸;

Z is N or CR⁹;

R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, halogen, OH, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, (C_1-C_6) alkyl-S(O)n-, nitro, cyano, amino, (C_1-C_6) alkylamino, (C_1-C_6) alkoxycarbonyl and CO_2 H,

or are (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl- (C_1-C_6) alkyl-, (C_1-C_6) alkoxy, (C_2-C_6) alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkyl- (C_1-C_6) alkyl-S $(O)_n$ -, (C_1-C_6) alkylamino, (C_1-C_6) dialkylamino, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylsulfamoyl,

-3- 00746820

where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C₁-C₆)alkoxy, (C₁-C₆)alkyl-S(O)_nand in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl; R⁵ and R⁶ are each independently H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂- C_6)alkynyl, formyl, (C_1-C_6) alkylcarbonyl, (C_2-C_6) alkenylcarbonyl, COR^{10} , (C_1-C_6) alkynyl, formyl, (C_1-C_6) alkylcarbonyl, (C_2-C_6) alkenylcarbonyl, (C_1-C_6) alkylcarbonyl, (C_1-C_6) alkylcarbonyl, (C_6)alkoxycarbonyl, (C_1-C_6) alkyl- SO_2 -, (C_1-C_6) alkoxy- (C_1-C_6) alkyl- or R^{10} ; R⁷, R⁸ and R⁹ are each independently H, halogen, nitro, cyano, S(O)_nR¹⁰, S(O)_nCH₂CO₂R¹¹, $S(O)_n CH_2 CO_2 N[(C_1 - C_6) alkyl]_2, \\ S(O)_n CH_2 CONR^{12}R^{13}, \\ S(O)_n CH_2 CONR^{14}NR^{15}, \\ formyl, \\ S(O)_n CH_2 CONR^{14}NR^{15}, \\ S(O)_n CH_2 CONR^{15}NR^{15}, \\ S(O)_n C$ carbamoyl, OH, SH, R¹⁰, NR¹⁶R¹⁷, 1,3-dioxolan-2-yl, (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₂- C_6)alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, (C_1-C_6) alkyl- $S(O)_n$ -, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkyl- (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkyl- (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkyl- $(C_1-C_6$ C₆)alkylcarbonyl, (C₁-C₆)alkylcarbamoyl or (C₁-C₆)dialkylcarbamoyl, where each of the 10 lastmentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C₁-C₆)alkoxy, (C₁-C₆)alkyl-S(O)_n- and in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl; R¹⁰ is (CH₂)_mphenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, nitro, cyano, (C_1-C_6) alkyl- $S(O)_n$ -, (C_1-C_6) haloalkyl- $S(O)_n$ -, amino, (C_1-C_6) alkylamino, (C_1-C_6) alkyl C₆)dialkylamino, (C₁-C₆)alkylcarbonyl, carbamoyl, (C₁-C₆)alkylcarbamoyl, (C₁- C_6)dialkylcarbamoyl, sulfamoyl, (C_1-C_6) alkylsulfamoyl and (C_1-C_6) dialkylsulfamoyl; R^{11} is H or (C_1-C_6) alkyl; R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, (C_1-C_6) alkyl or R^{10} ; or R^{12} and R^{13} , or R^{16} and R¹⁷ together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, (C₁- C_6)alkyl and (C_1-C_6) haloalkyl; R¹⁴ and R¹⁵ are each independently H or (C₁-C₆)alkyl: n is 0, 1 or 2 in each of the occurrences; and m is 0 or 1;

-4- 00746820

as a herbicide or plant growth regulator.

- 2. (Previously presented) The method as claimed in claim 1 wherein A-W is A-W is N=N, $N^+(O^-)=N$ or NH-NH.
- 3. (Previously presented) The method as claimed in claim 1 wherein R^1 , R^2 , R^3 and R^4 are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO_2H or sulfamoyl, or benzyl or phenoxy, where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, halogen, OH, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkyl-S $(O)_n$ -, nitro, cyano, amino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl- (C_1-C_4) alkyl-, (C_1-C_4) alkoxy, (C_2-C_4) alkenyloxy, (C_2-C_4) alkynyloxy, (C_1-C_4) alkyl-S $(O)_n$ -, (C_1-C_4) alkylamino, (C_1-C_4) dialkylamino, (C_1-C_4) alkylcarbonyl, (C_1-C_4) alkylcarbonyl, (C_1-C_4) alkylcarbamoyl, (C_1-C_4) alkylsulfamoyl or (C_1-C_4) dialkylsulfamoyl, where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1-C_4) alkoxy, (C_1-C_4) alkyl-S $(O)_n$ and in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl.
- 4. (Previously presented) The method as claimed in claim 1, wherein X is N or CR^7 wherein R^7 is H, halogen, nitro, cyano, $S(O)_nR^{10}$, $S(O)_nCH_2CO_2R^{11}$, $S(O)_nCH_2CONR^{12}R^{13}$, $S(O)_nCH_2CONR^{14}NR^{15}$, formyl, carbamoyl, OH, SH, R^{10} , $NR^{16}R^{17}$, 1,3-dioxolan-2-yl, (C_1-C_4) alkyl, (C_3-C_6) cycloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_1-C_4) alkoxy, (C_1-C_4) alkyl- $S(O)_n$ -, (C_1-C_4) alkoxycarbonyl, (C_1-C_4) alkylcarbonyl, (C_1-C_4) alkylcarbamoyl, (C_1-C_4) alkylcarbamoyl, where each of the 10 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1-C_4) alkoxy and (C_1-C_4) alkyl- $S(O)_n$ -; in which R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected from the group

 R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, nitro, cyano, (C_1-C_4) alkyl- $S(O)_n$ -, (C_1-C_4) haloalkyl- $S(O)_n$ -, amino, (C_1-C_4) alkylamino, $(C_1$

-5- 00746820

 C_4)dialkylamino, (C_1 - C_4)alkylcarbonyl, carbamoyl, (C_1 - C_4)alkylcarbamoyl, (C_1 - C_4)dialkylcarbamoyl, sulfamoyl, (C_1 - C_4)alkylsulfamoyl and (C_1 - C_4)dialkylsulfamoyl; R^{11} is H or (C_1 - C_4)alkyl;

 R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, $(C_1\text{-}C_4)$ alkyl or R^{10} ; or R^{12} and R^{13} , or R^{16} and R^{17} together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O,S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, $(C_1\text{-}C_4)$ alkyl and $(C_1\text{-}C_4)$ haloalkyl; and

R¹⁴ and R¹⁵ are each independently H or (C₁-C₄)alkyl.

5. (Previously presented) The method as claimed in claim 1 wherein Y and Z are each N.

6. (Previously presented) The method as claimed in claim 1 wherein:

A-W is N=N, $N^+(O^-)=N$ or NH-NH;

R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, halogen, OH, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkyl-S(O)_n-, nitro, cyano, amino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkoxycarbonyl and CO_2 H,

or are (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl- (C_1-C_4) alkyl-, (C_1-C_4) alkoxy, (C_2-C_4) alkynyloxy, (C_2-C_4) alkynyloxy, (C_1-C_4) alkyl- (C_1-C_4) alkyl-S $(O)_n$ -, (C_1-C_4) alkylamino, (C_1-C_4) dialkylamino, (C_1-C_4) alkoxycarbonyl, (C_1-C_4) alkylcarbonyl, (C_1-C_4) alkylcarbamoyl, (C_1-C_4) dialkylcarbamoyl, (C_1-C_4) dialkylsulfamoyl,

where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1-C_4) alkoxy, (C_1-C_4) alkyl-S(O)_n-and in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl;

 $X \text{ is } N \text{ or } CR^7;$

 R^7 is H, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, halogen, nitro, cyano, (C_1-C_4) alkyl- $S(O)_n$ -, (C_1-C_4) haloalkyl- $S(O)_n$ -, $S(O)_n$ R¹⁰,

-6- 00746820

 $S(O)_nCH_2CO_2R^{11}, S(O)_nCH_2CO_2N[(C_1-C_4)alkyl]_2, S(O)_nCH_2CONR^{12}R^{13}, \\ S(O)_nCH_2CONR^{14}NR^{15}, (C_1-C_4)alkoxycarbonyl, formyl, (C_1-C_4)alkylcarbonyl, (C_1-C_4)alkylcarbonyl, (C_1-C_4)alkylcarbamoyl, (C_1-C_4)dialkylcarbamoyl, OH, SH, \\ R^{10}, NR^{16}R^{17} \ or \ 1,3-dioxolan-2-yl; in which$

 R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, nitro, cyano, (C_1-C_4) alkyl- $S(O)_n$ -, (C_1-C_4) haloalkyl- $S(O)_n$ -, amino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, (C_1-C_4) alkylamino, and (C_1-C_4) alkylamino, (C_1-C_4) alkylamino,

 R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, $(C_1\text{-}C_4)$ alkyl or R^{10} ; or R^{12} and R^{13} , or R^{16} and R^{17} together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O,S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, $(C_1\text{-}C_4)$ alkyl and $(C_1\text{-}C_4)$ haloalkyl; and R^{14} and R^{15} are each independently H or $(C_1\text{-}C_4)$ alkyl; and Y and Z are each N.

7. (Previously presented) A compound of formula (Ii):

$$R^2$$
 A
 N
 $X=N$
(li)

wherein:

A-W is N=N, N⁺(O⁻)=N or NH-NH, in which A represents the atom or substituted atom shown on the left side of the groups representing A-W;

 $X \text{ is } N \text{ or } CR^7;$

R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

-7- 00746820

where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, halogen, OH, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, (C_1-C_6) alkyl-S(O)_n-, nitro, cyano, amino, (C_1-C_6) alkylamino, (C_1-C_6) alkylamino, (C_1-C_6) alkoxycarbonyl and CO_2H , or are (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl- (C_1-C_6) alkyl-, (C_1-C_6) alkoxy, (C_2-C_6) alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkyl-C(=O)O-, (C_1-C_6) alkyl-S(O)_n-, (C_1-C_6) alkylamino, (C_1-C_6) dialkylamino, (C_1-C_6) alkylcarbonyl, (C_1-C_6) alkylcarbonyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylsulfamoyl or (C_1-C_6) dialkylsulfamoyl,

where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1-C_6) alkoxy, (C_1-C_6) alkyl-S(O)_n-and in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl;

 R^7 is H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, halogen, nitro, cyano, (C₁-C₆)alkyl-S(O)_n-, (C₁-C₆)haloalkyl-S(O)_n-, (C₁-C₆)alkoxycarbonyl, formyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)haloalkylcarbonyl, carbamoyl, (C₁-C₆)alkylcarbamoyl, NR¹⁶R¹⁷ or 1,3-dioxolan-2-yl; and

 R^{16} and R^{17} are each independently H, $(C_1\text{-}C_6)$ alkyl or R^{10} , wherein R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ haloalkyl, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ haloalkoxy, nitro, cyano, $(C_1\text{-}C_6)$ alkyl-S $(O)_n$ -, $(C_1\text{-}C_6)$ haloalkyl-S $(O)_n$ -, amino, $(C_1\text{-}C_6)$ alkylamino, $(C_1\text{-}C_6)$ alkylcarbonyl, carbamoyl, $(C_1\text{-}C_6)$ alkylcarbamoyl, $(C_1\text{-}C_6)$ alkylcarbamoyl, $(C_1\text{-}C_6)$ alkylsulfamoyl and $(C_1\text{-}C_6)$ dialkylsulfamoyl;

with the exclusion of compounds wherein:

i) A-W is N=N; R¹, R², R³ and R⁴ are each H; and X is <u>C-Br</u>, CSO₂Me, CSMe, CMe, CH, C-phenyl, C-SH, C-S-CH₂C₆H₅, C-S-CH₂COOH, C-S-CH₂CO-morpholino, C-S-CH₂CO-piperidyl, <u>C-(N-methyl-piperazino)</u>, C-S-CH₂CON(i-propyl)₂ or C-OH;

-8- 00746820

- ii) A-W is N=N; R¹, R³ and R⁴ are each H; R² is Cl; and X is CH, C-SH, C-S-CH₂C₆H₅, C-S-CH₂COOC₂H₅, C-S-CH₂CO-NHNH₂ or C-OH;
- iii) A-W is N=N; R², R³ and R⁴ are each H; R¹ is OH or OCH₃; and X is CH;
- iv) A-W is $N^+(O^-)=N$; R^1 , R^2 , R^3 and R^4 are each H; and X is CH or C-SH;
- v) A-W is NH-NH; R¹, R², R³ and R⁴ are each H; and X is C-OH, C-(morpholino), C-(N-methyl-piperazino), CSMe or CH;
- vi) A-W is NH-NH; R¹, R³ and R⁴ are each H; R² is Me; and X is CH;
- vii) A-W is N=N; R¹, R² and R⁴ are each H; R³ is OMe; and X is N;
- viii) A-W is N=N; R¹, R³ and R⁴ are each H; R² is OMe, Me or H; and X is N;
- ix) A-W is N=N; R^1 and R^3 are each H; R^2 and R^4 are each Me; and X is N;
- x) A-W is $N^+(O^-)=N$; R^1 , R^3 and R^4 are each H; R^2 is Me or OMe; and X is N;
- xi) A-W is $N^+(O^-)=N$; R^1 and R^3 are each H; R^2 and R^4 are each Me; and X is N; and
- xii) A-W is NH-NH; R¹, R², R³ and R⁴ are each H; and X is N and
- xii) A-W is NR⁵-NR⁶, R¹, R², R³ and R⁴ are each H; R⁵ and R⁶ are each acetyl, phenylacetyl or benzoyl, and X is H.
- 8. (Currently amended) A process for the preparation of a compound of <u>formula (Ii)</u> formula (I), or a salt thereof, as defined in claim 7 which comprises:
- a) where A-W is N=N or $N^+(O^-)=N$, cyclodehydrating a compound of formula (II):

$$\begin{array}{c|c}
R^2 & X \\
R^3 & OH
\end{array}$$

$$\begin{array}{c}
R^4 & OH
\end{array}$$

$$\begin{array}{c}
Z - Y_{1} \\
N \\
H \\
OH
\end{array}$$

$$(II)$$

wherein A-W is N=N or N⁺(O⁻)=N, \underline{Y} is N, \underline{Z} is \underline{N} and R¹, R², R³, R⁴, $\underline{\text{and}}$ X, \underline{Y} and \underline{Z} are as defined in $\underline{\text{formula (Ii)}}$ for

b) where A-W is N=N, and the other values are as defined above, coupling a diazonium salt of formula (III):

-9- 00746820

$$Q = N \equiv N \qquad \begin{array}{c} + \\ N \equiv N \end{array} \qquad \begin{array}{c} X - \\ N = N \end{array} \qquad (III)$$

wherein X, Y and Z are as defined in formula (I) Y is N, Z is N and X is as defined in formula (II) and Q is a chloride, sulfate or fluoroborate, with a compound of formula (IV):

$$R^2$$
 OH R^4

wherein R¹, R², R³ and R⁴ are as defined in claim 1, to give an azo intermediate of formula (II) wherein A-W is N=N, and the other values are as defined in <u>formula (Ii)</u> formula (I), followed by the above described cyclodehydration; or

e) where A-W is NR5-NR6; R1, R2, R3; R4, R6, X, Y and Z are as defined in formula (I), and R5 is as defined in formula (I) with the exclusion of H, reacting the corresponding compound of formula (I) wherein R5 is H, with a compound of formula (VI):

wherein R5 is as defined in formula (I) with the exclusion of H, and L is a leaving group; or

d) where A-W is NR5-NR6; R1, R2, R3; R4, R5, X, Y and Z are as defined in formula (I), and R6 is as defined in formula (I) with the exclusion of H, reacting the corresponding compound of formula (I) wherein R6 is H, with a compound of formula (VII):

-10- 00746820

wherein R6 is as defined in formula (I) with the exclusion of H, and L is a leaving group; or

e) \underline{c} where A-W is NR⁵-NR⁶, R⁵ and R⁶ are each H, and the other values are as defined in formula (Ii) formula (I), reducing the corresponding compound of formula (Ii) formula (I) wherein A-W is N=N or N⁺(O⁻)=N; or

f) d where A-W is N=N, and the other values are as defined in <u>formula (Ii)</u> formula (I), reducing the corresponding compound of <u>formula (Ii)</u> formula (I) wherein A-W is $N^+(O^-)=N$; or

g) e where A-W is N=N or $N^+(O^-)=N$, X is CR^7 , Y and Z are each N, and the other values are as defined in formula (Ii) formula (I), reacting a compound of formula (VIII):

$$R^2$$
 A
 W
 $NHNH_2$
 R^4
 $(VIII)$

wherein A-W is N=N or $N^+(O^-)=N$, R^7 is H, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl or R^{10} , and R^1 , R^2 , R^3 and R^4 are as defined in <u>formula (Ii)</u> formula (I), with a carboxylic acid or an equivalent thereof of formula (IX) or (X):

$$R^7COL^1$$
 (IX) $R^7C(OR)_3$ (X)

wherein R^7 is H, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl or R^{10} , and L^1 is H or a leaving group; or

h) \underline{f} where A-W is N=N or N⁺(O⁻)=N, X is CR⁷, Y and Z are each N, and the other values are as defined in formula (Ii) formula (I), cyclising a compound of formula (XI):

-11- 00746820

wherein A-W is N=N or N⁺(O⁻)=N, R⁷ is H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or R¹⁰, and R¹, R², R³ and R⁴ are as defined in <u>formula (Ii)</u> formula (I), in the presence of a dehydrating agent or a halogenating agent; or

i) g where A-W is N=N or N⁺(O⁻)=N, and R¹, R², R³ and R⁴ are as defined in <u>formula (Ii)</u> formula (II), reacting a compound of formula (XII):

$$R^2$$
 A
 W
 L^2
 R^3
 R^4
 (XII)

wherein A-W is N=N or $N^+(O^-)=N$, R^1 , R^2 , R^3 and R^4 are as defined in <u>formula (Ii)</u> formula (I), and L^2 is a leaving group, with a metal azide of formula (XIII):

$$M-N_3$$
 (XIII)

wherein M is an alkali metal; or

<u>j</u>) <u>h</u> where A-W is $N^+(O^-)=N$, and the other values are as defined in <u>formula (Ii)</u> formula (I), oxidising the corresponding compound of formula (I)

wherein:

-12- 00746820

A-W is N=N,

X is N or CR^7 ;

Y is N or CR⁸;

Z is N or CR^9 ;

R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, halogen, OH, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, (C_1-C_6) alkyl-S $(O)_n$ -, nitro, cyano, amino, (C_1-C_6) alkylamino, (C_1-C_6) alkylamino, (C_1-C_6) alkoxycarbonyl and CO_2 H,

or are (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl- (C_1-C_6) alkyl-, (C_1-C_6) alkoxy, (C_2-C_6) alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkyl- (C_1-C_6) alkylamino, (C_1-C_6) alkylaminoyl, $(C_1-C_$

where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1-C_6) alkoxy, (C_1-C_6) alkyl-S(O)_n-and in the case of cyclic radicals also (C_1-C_6) alkyl and (C_1-C_6) haloalkyl;

 R^5 and R^6 are each independently H, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, formyl, (C_1-C_6) alkylcarbonyl, (C_2-C_6) alkenylcarbonyl, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkoxy- (C_1-C_6) alkyl- or R^{10} ;

 R^7 , R^8 and R^9 are each independently H, halogen, nitro, cyano, $S(O)_n R^{10}$, $S(O)_n CH_2 CO_2 R^{11}$, $S(O)_n CH_2 CO_2 N[(C_1-C_6)alkyl]_2$, $S(O)_n CH_2 CONR^{12}R^{13}$, $S(O)_n CH_2 CONR^{14}NR^{15}$, formyl, carbamoyl, OH, SH, R^{10} , $NR^{16}R^{17}$, 1,3-dioxolan-2-yl, $(C_1-C_6)alkyl$, (C_3-C_6) eycloalkyl, $(C_2-C_6)alkynyl$, $(C_1-C_6)alkoxy$, $(C_1-C_6)alkyl-S(O)_n$ -, $(C_1-C_6)alkoxy$ -carbamoyl, $(C_1-C_6)alkyl$ -and in the case of cyclic radicals also $(C_1-C_6)alkyl$ and $(C_1-C_6)alkyl$ -and in the case of cyclic radicals also $(C_1-C_6)alkyl$ and $(C_1-C_6)alkyl$ -and $(C_1-C_6)alk$

 R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_1-C_6)

-13-

cyano, (C_1-C_6) alkyl- $S(O)_n$ -, (C_1-C_6) haloalkyl- $S(O)_n$ -, amino, (C_1-C_6) alkylamino, (C_1-C_6) alkylcarbonyl, carbamoyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylcarbamoyl, (C_1-C_6) alkylcarbamoyl, sulfamoyl, (C_1-C_6) alkylsulfamoyl and (C_1-C_6) dialkylsulfamoyl; (C_1-C_6) alkyl;

R¹² and R¹³, or R¹⁶ and R¹⁷ are each independently H, (C₁-C₆)alkyl or R¹⁰; or R¹² and R¹³, or R¹⁶ and R¹⁷ together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, (C₁-C₆)alkyl and (C₁-C₆)haloalkyl;

 R^{14} and R^{15} are each independently H or (C_1-C_6) alkyl; n is 0, 1 or 2 in each of the occurrences; and m is 0 or 1.

- 9. (Previously presented) A herbicidal or plant growth regulating composition characterised in that it comprises one or more compounds of the formula (Ii) or salts thereof as defined in claim 7 and formulation auxiliaries which are customary in crop protection.
- 10. (Cancelled)
- 11. (Currently amended) The compound of claim 7 elaim 1, wherein X is N.
- 12. (Previously presented) The compound of claim 7, wherein X is CR^7 ; R^1 , R^3 , and R^4 is hydrogen; and R^2 is hydrogen, halogen or C_1 - C_6 alkyl.
- 13. (Previously presented) The compound of claim 12, wherein R² is hydrogen, chloro, bromo or methyl.
- 14. (Previously presented) The compound of claim 7, wherein A-W is N=N or $N^+(O^-)=N$.
- 15. (Previously presented) The method of claim 5, wherein X is N.

-14- 00746820

- 16. (Previously presented) The method of claim 5, wherein X is CR^7 ; R^1 , R^3 , and R^4 is hydrogen; and R^2 is hydrogen, halogen or C_1 - C_6 alkyl.
- 17. (Previously presented) The method of claim 16, wherein R² is hydrogen, chloro, bromo or methyl.
- 18. (Previously presented) The method of claim 5, wherein A-W is N=N or $N^+(O^-)=N$.

-15-