CSE 812T – PATTERN RECOGNITION

Handout: Course Information

Timings and Venue

Timings: To be announced
Office Hours: To be announced
Venue: To be announced

Contact Information

Course Instructor: Rayees Ahmad Dar Faculty Room, CSE Department Contact: darrayes@gmail.com

Course page: students.iitmandi.ac.in/~rayees ahmad dar/courses/PR/course-site.html

Moodle page: To be announced

Prerequisites:

Students are expected to have the following background:

- Basic programming skills preferably Matlab and Python proficiency.
- Familiarity with probability theory (MTH-411T: Probability & Statistics)
- Familiarity with linear algebra (MTH 211T: Mathematics-II should be sufficient)

Attendance Policy

There are no special attendance rules other than what the university has in place.

- 1. A leave should be submitted beforehand.
- 2. In emergency cases, the student should inform the instructor through the mail and necessary documents to avail the leave benefits should be submitted with seven days.
- 3. There will be no other relaxations. You are strongly recommended to attend all the classes.

Course Materials

- 1. There is no required text for this course. Notes will be posted periodically on the course-materials page.
- 2. Any blogs/videos and reading assignments will also be put on the site.

Grading

There will be **four assignments**, one **midterm**, one **endterm** and a major open-ended **term project**. The assignments will require MATLAB/ Python (or if one chooses any other language) programming. In the term project, you will propose a machine learning problem and solve it. Preferably it should lead to a publication.

Course grades will be based **10%** on assignments (2.5% each), **10%** on project, **30%** on the midterm, and **50%** on the endsem exams.

Submitting Assignments

- Students will be required to submit the code and a report preferably written in Latex. Both the report and code will be evaluated.
- Groups of a maximum of three (or four depending upon the strength of the class) students will be formed to solve a single assignment and project. However each student will be evaluated separately depending upon the individual effort.
- **Remember** assignments and project is a group effort and that will also be considered in the final evaluation.

Late assignments

Each student will have a total of **seven free late (calendar) days** to use for homeworks, project proposals and project milestones. Once these late days are exhausted, any assignments turned in late will be penalized 20% per late day. However, **no assignment will be accepted more than three days after its due date**, and late days cannot be used for the final project poster or write-up. Each 24 hours or part thereof that a homework is late uses up one full late day.

Plagairism

Plagiarism is strongly discouraged and if any student is found indulging in plagiarism he/she will be penalized and in some cases will lead to his/her disqualification.

Course Materials and schedule

Event	Date	Description	Materials and Assignments		
Review of Maths Topics necessary for Pattern Recognition (3 classes)					
Lecture 1	TBD	1. Probability Distributions and Densities.			
Lecture 2	TBD	2. Linear Algebra Review			
Lecture 3	TBD	3. Optimization Basics.			
Homework	TBD	Practice Problems			
Generative classifiers; Density Estimation (7 classes)					

Lecture 4	TBD	1. Bayes' Decision Theory; Decision Boundaries and				
		surfaces; Parametric Models.				
Lecture 5	TBD	2. Minimum Error Classifier; Minimum Risk Decision				
		Rule				
Lecture 6	TBD	3. Maximum Likelihood Estimate (Univariate and				
		multivariate Gaussian)				
Lecture 7	TBD	4. Maximum A-priori Estimate (Univariate and				
1	TDD	Multivariate Gaussian)				
Lecture 8	TBD	6. Multimodal Distributions; k-means algorithm				
Lecture 9	TBD	7. Gaussian Mixture Models; EM Algorithm; MLE Estimation				
Homework	TBD		Table of Care			
		Assignment 1	<u>Instructions</u> .			
Homework	TBD	Project Proposals	<u>Instructions</u> .			
Non-parametric Density Estimation (2 classes)						
Lecture 10	TBD	1. Introduction to Non-parametric Density Estimation				
Lecture 11	TBD	2. Parzen window and Nearest Neighbour Estimation;				
		kNN Classifier.				
Homework	TBD	Practice Problems				
Homework	TBD	Assignment 2	<u>Instructions</u> .			
Homework	TBD	Midsem	<u>Instructions</u> .			
Discriminative Models (7 classes)						
Lecture 12	TBD	1. Logistic Regression				
Lecture 13	TBD	2. Perceptron Model; Introduction to the concept of				
		Margins				
Lecture 14	TBD	3. Support Vector Machines - Problem Formulation				
Lecture 15	TBD	4. Support Vector Machines - Soft Margins; Kernel Trick				
Lecture 16	TBD	5. Review of Logistic Regression; Introduction to the				
		Idea of Back Propagation				
Lecture 17	TBD	6. Neural Networks - Forward Propagation				
Lecture 18	TBD	7. Backpropagation				
Homework	TBD	Practice Problems				
Homework	TBD	Assignment 3	<u>Instructions</u> .			
	Dimensionality Reduction (7 classes)					
Lecture 19	TBD	1. Curse of Dimensionality; Introduction to PCA				
Lecture 20	TBD	2. PCA; Singular Value Decomposition				
Lecture 21	TBD	3. Linear Discriminant Analysis				
Homework	TBD	Practice Problems				
Homework	TBD	Assignment 4	Instructions.			
Homework	TBD	Project Submission	Instructions.			
		•	· — —			