1. Consider the morphism $f: x \to y$. Show that if there exists a pair of morphisms $g, h: y \to x$ so that $fg = 1_x$ and $hf = 1_y$, then g = h and f is an isomorphism.

Let
$$y_0 \in y$$
.

Note that: $(hf)g(y_0) = h(fg)(y_0)$

$$\Leftrightarrow g(hf(y_0)) = (fg)(h(y_0))$$

$$\Leftrightarrow g(y_0) = h(y_0)$$

$$\Leftrightarrow g = h$$

Since g=h, the initial conditions become $fg=1_x$ and $gf=1_y$, so f is an isomorphism. \square

2. For any category \mathcal{C} and any object $c \in \mathcal{C}$, show that there is a category \mathcal{C}/c whose objects are morphisms with codomain c and morphism from $f: x \to c$ to $g: y \to c$ is a map $h: x \to y$ so that f = gh.

Let f, g, h be objects in c/\mathcal{C} and $f: x \to c, g: y \to c, h: z \to c$.

Let k, l be morphisms in c/C and $k: x \to y, l: y \to z$.

Since the set of morphisms in c/\mathcal{C} is a subset of morphisms in \mathcal{C} , it is associative.

To compose k and l, by substituting g = lh into kg = f, it becomes k(lh) = f. By associativity, it follows that (kl)h = f, so kl is a morphisms in \mathcal{C}/c , and $kl : x \to z$.

For any object $f: x \to c$, the identity morphism of f is the morphism $1_f: x \to x$. Also, in \mathcal{C} , the identity morphism of object x is the morphism $1_x: x \to x$. So $1_f = 1_x$.

So for any morphism $k:f\to g; x\mapsto y$, the composition morphism $1_fk=1_xk=k$. Similarly, the composition morphism $k1_g=k1_y=k$.

So \mathcal{C}/c forms a category. \square