Mathematik für Informatiker 2 – SS 2025

Studiengang Angewandte Informatik

Gemischte Übungen 5: Differentialrechnung für Funktionen mehrerer Veränderlicher

Übung: Partielle Ableitungen berechnen.

1.1	$f(x_1, x_2, x_3) = x_1^2 x_2 + 5x_2 x_3 - x_3 + 10$
1.2	$f(x, y, z) = e^{yz^2}\cos(2x + z) + \ln\left(\frac{xy}{z}\right) + \frac{1}{xy}$

Übung: Partielle Ableitungen 2. Ordnung berechnen (und als Hesse-Matrix anordnen)

2.1	$f(x,y) = \frac{x}{x+y}$
2.2	$f(x,y,z)=ze^{\frac{x}{y}}$

Übung: Steigungen bzw. Tangentialebene bestimmen, Richtungsableitung, Differential

3.1	Für $f(x,y) = \sin(x)\cos(y)$ ermittele man die Tangentialebene im Punkt $P(\pi,0,?)$ sowohl in Gleichungsform als auch in Punkt-Richtungsform.	
3.2	$f(x,y)=x\cdot e^{-\frac{y}{x}}$ Man ermittele man die Steigung an der Stelle $p=(1,0)$ in Richtung $r={3\choose 4}$. Welches ist die Richtung des stärksten Anstiegs von f an der Stelle p ? Wie groß ist diese stärkste Steigung an der Stelle p ?	
3.3	$f(x,y)=x^2y-3y$ Berechnen Sie die Tangentialebene an der Stelle ${m p}=(3,4)$ Bestimmen Sie die exakte Änderung Δf und die näherungsweise Änderung df mit dem totalen Differential, wenn sich x um $-0,01$ und y um $0,02$ ändert.	
3.4	Bestimmen Sie das totale Differential für $f(x,y) = x^3y - xe^{x-y}$ und interpretieren Sie für $(x,y) = (1,0)$ die Bedeutung im Sinne einer exakten bzw. als näherungsweisen Änderung.	
3.5	Bestimmen Sie das totale Differential für $f(x,y) = \sin(\cos xy)$ und interpretieren Sie für $(x,y) = (1,2)$ die Bedeutung im Sinne einer exakten bzw. als näherungsweisen Änderung.	
3.6	Das Volumen eines Kreiszylinders mit dem Radius R und der Höhe h ist $V=\pi h R^2$. Wie ändert sich V in linearer Näherung bei einer Änderung von R und h um ΔR , Δh ?	
3.7	Auswirkung kleiner Messfehler bei Einflussgrößen x_1, \dots, x_n auf Ergebnis $f(x_1, \dots, x_n)$: Bei (kleinen) Messfehlerschranken $dx_k = \Delta x_k = \pm \varepsilon_k$ ist man interessiert an einer Schätzung von • $ \Delta f =$ (absoluter) Messfehler (in der Einheit von f) sowie • $\left \frac{\Delta f}{f}\right =$ relativer Fehler (in %). Abschätzen mittels Differentials df unter Verwendung der Betragsungleichung $ x+y \leq x + y $ Anwendung: Zwei ohmsche Widerstände R_1, R_2 werden parallelgeschaltet und bilden so einen Ersatzwiderstand (Gesamtwiderstand) R mit $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. Berechnen Sie mit Hilfe des Differentials von R den größtmöglichen absoluten und relativen Fehler in % des Ersatzwiderstandes R , wenn $R_1 = (100 \pm 2)\Omega$ und $R_2 = (200 \pm 2)\Omega$ gemessen wurden.	