# **SAT** solvery

6. prednáška Logika pre informatikov a Úvod do matematickej logiky

Ján Kľuka, <u>Ján Mazák</u>, Jozef Šiška

Letný semester 2024/2025

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

## Obsah 6. prednášky

#### SAT solvery

Problém výrokovologickej splniteľnosti (SAT)

Výpočtová zložitosť: teória a prax (informatívne)

Algoritmy na riešenie problému splniteľnosti

Backtracking

DPLL a sledované literály

CDCL

Ďalšie aspekty (informatívne)

Verifikácia hardvéru (informatívne)

Kombinatorické problémy (informatívne)

SMT solvery (informatívne)

| Časti tejto prednášky sa netreba učiť na skúšku, slúžia len na ilustráciu |  |
|---------------------------------------------------------------------------|--|

historických či vecných súvislostí a rozšírenie všeobecného prehľadu.

Sú označené slovom "informatívne" na slajde alebo v názve

podkapitoly.

# **SAT** solvery

# **SAT** solvery

(SAT)

Problém výrokovologickej splniteľnosti

#### Definícia 5.1 (Problém SAT)

Problémom výrokovologickej splniteľnosti (SAT) je problém určenia toho, či je daná množina výrokovologických formúl splniteľná.

- Zvyčajne sa redukuje na problém splniteľnosti klauzálnej teórie (teda formuly v CNF).
- SAT solver je program, ktorý rieši problém SAT.

#### Príklad 5.2

Nech a, b, c sú predikátové atómy.

Nech  $S = \{(a \lor b), (a \lor \neg b), (\neg a \lor b), (\neg a \lor \neg b \lor \neg c), (\neg a \lor c)\}.$ 

Je množina klauzúlS splniteľná?

#### Súvisiace problémy:

- AllSAT nájsť všetky ohodnotenia, pre ktoré je formula splnená
- #SAT zistiť počet ohodnotení, pre ktoré je formula splnená
- MaxSAT zistiť najväčší možný počet klauzúl formuly v CNF, ktoré je možné splniť súčasne
- weighted MaxSAT klauzuly majú rôznu váhu a maximalizujeme súčet váh splnených klauzúl
- 3-SAT klauzuly majú ≤ 3 literály (NP-ťažké)
- 2-SAT klauzuly majú ≤ 2 literály (P)

#### Praktické využitie:

- verifikácia hardvéru (Intel i7)
- verifikácia softvéru (Windows 7 device drivers)
- manažment softvérových závislostí (Eclipse plugins, Python Conda)
- konfigurácia produktov (Daimler)
- bioinformatika, kryptológia
- expertné systémy, letová kontrola, rozvrhovanie, ...

### História (informatívne)

- výrazný pokrok v rokoch 1996–2001, keď sa SAT solvery stali dostatočne rýchle pre praktické využitie
- od r. 2002 každoročne SAT Competition
- o.i. kategória "Glucose hack" modifikácia existujúceho solvera nesmie presiahnuť 1000 znakov
- desiatky SAT solverov s otvoreným zdrojovým kódom
- 2013+ SAT configuration competition: pre obmedzený okruh vstupov možno dosiahnuť zrýchlenie typicky 2-10× (4,5× pre verifikáciu hardvéru)

# **SAT** solvery

(informatívne)

Výpočtová zložitosť: teória a prax

• zložitosť algoritmu — počet krokov výpočtu ako funkcia veľkosti vstupu *n* (nezávisí od hardvéru)

- zložitosť algoritmu počet krokov výpočtu ako funkcia veľkosti vstupu n (nezávisí od hardvéru)
- zložitosť problému zložitosť optimálneho algoritmu riešiaceho daný problém; je známa len veľmi výnimočne, napr. triedenie porovnávaním je O(n log n)

- zložitosť algoritmu počet krokov výpočtu ako funkcia veľkosti vstupu n (nezávisí od hardvéru)
- zložitosť problému zložitosť optimálneho algoritmu riešiaceho daný problém; je známa len veľmi výnimočne, napr. triedenie porovnávaním je  $O(n \log n)$
- ullet zložitosť porovnávame za predpokladu n idúceho do nekonečna

- od cca 1970 problémy delíme na "ľahké" (známy polynomiálny algoritmus, trieda P) a "ťažké" (nik nepozná polynomiálny algoritmus, triedy NP, PSPACE…)
- veľa ťažkých problémov patrí do NP: riešenie je možné overiť v polynomiálnom čase

- od cca 1970 problémy delíme na "ľahké" (známy polynomiálny algoritmus, trieda P) a "ťažké" (nik nepozná polynomiálny algoritmus, triedy NP, PSPACE…)
- veľa ťažkých problémov patrí do NP: riešenie je možné overiť v polynomiálnom čase
- napriek rozsiahlemu výskumu vôbec nevieme, či P  $\neq$  NP
- niektoré problémy sú nerozhodnuteľné (vieme dokázať, že nemôže existovať algoritmus)

 2<sup>n</sup> je lepšie ako n<sup>100</sup>
 (ale ak sme na niečo našli polynomiálny algoritmus, zväčša sme do pár rokov našli aj prakticky použiteľný polyn. algoritmus)

- 2<sup>n</sup> je lepšie ako n<sup>100</sup>
  (ale ak sme na niečo našli polynomiálny algoritmus, zväčša sme do pár rokov našli aj prakticky použiteľný polyn. algoritmus)
- asymptotické porovnávanie ignoruje konštanty, a tie sú niekedy podstatné (napr. v quicksorte sa nepoužíva lineárny algoritmus na hľadanie mediánu)

- 2<sup>n</sup> je lepšie ako n<sup>100</sup>
   (ale ak sme na niečo našli polynomiálny algoritmus, zväčša sme do pár rokov našli aj prakticky použiteľný polyn. algoritmus)
- asymptotické porovnávanie ignoruje konštanty, a tie sú niekedy podstatné (napr. v quicksorte sa nepoužíva lineárny algoritmus na hľadanie mediánu)
- teoreticky najlepšie algoritmy neraz nie sú implementované sú výhodné len pre obrovské vstupy (ktoré sa možno ani nezmestia do pamäte)

- 2<sup>n</sup> je lepšie ako n<sup>100</sup>
   (ale ak sme na niečo našli polynomiálny algoritmus, zväčša sme do pár rokov našli aj prakticky použiteľný polyn. algoritmus)
- asymptotické porovnávanie ignoruje konštanty, a tie sú niekedy podstatné (napr. v quicksorte sa nepoužíva lineárny algoritmus na hľadanie mediánu)
- teoreticky najlepšie algoritmy neraz nie sú implementované sú výhodné len pre obrovské vstupy (ktoré sa možno ani nezmestia do pamäte)
- hardvér je neraz dôležitejší ako algoritmus (hodinky dnes majú viac výkonu ako niekdajšie superpočítače)
- niekedy je podstatný špecializovaný hardvér (napr. Bitcoin mining, Al)

• strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby

- strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby
- niekedy využívame pravdepodobnostné algoritmy, ktoré napr.
   negarantujú čas behu v najhoršom prípade, ale "takmer vždy" sú rýchle

- strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby
- niekedy využívame pravdepodobnostné algoritmy, ktoré napr.
   negarantujú čas behu v najhoršom prípade, ale "takmer vždy" sú rýchle
- NP-úplné problémy sú teoreticky ekvivalentné, ale v praxi výrazne odlišné (edge colouring vs. circular edge colouring)

- strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby
- niekedy využívame pravdepodobnostné algoritmy, ktoré napr.
   negarantujú čas behu v najhoršom prípade, ale "takmer vždy" sú rýchle
- NP-úplné problémy sú teoreticky ekvivalentné, ale v praxi výrazne odlišné (edge colouring vs. circular edge colouring)
- algoritmy s veľkou zložitosťou občas fungujú prekvapivo dobre, najmä ak sú doplnené efektívnymi heuristikami

- strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby
- niekedy využívame pravdepodobnostné algoritmy, ktoré napr.
   negarantujú čas behu v najhoršom prípade, ale "takmer vždy" sú rýchle
- NP-úplné problémy sú teoreticky ekvivalentné, ale v praxi výrazne odlišné (edge colouring vs. circular edge colouring)
- algoritmy s veľkou zložitosťou občas fungujú prekvapivo dobre, najmä ak sú doplnené efektívnymi heuristikami
- klasická teória zložitosti nezohľadňuje nerovnomernú distribúciu vstupov vyskytujúcich sa v praxi

- strojový čas je lacnejší ako ľudský; komplexita alg. prináša chyby
- niekedy využívame pravdepodobnostné algoritmy, ktoré napr.
   negarantujú čas behu v najhoršom prípade, ale "takmer vždy" sú rýchle
- NP-úplné problémy sú teoreticky ekvivalentné, ale v praxi výrazne odlišné (edge colouring vs. circular edge colouring)
- algoritmy s veľkou zložitosťou občas fungujú prekvapivo dobre, najmä ak sú doplnené efektívnymi heuristikami
- klasická teória zložitosti nezohľadňuje nerovnomernú distribúciu vstupov vyskytujúcich sa v praxi
- pre problém splniteľnosti sú praktické vstupy aj 10-100× väčšie, než naznačuje teória

- prvý problém s dokázanou NP-úplnosťou
- ale v praxi riešiteľný pre tisíce až milióny premenných/atómov

# **SAT** solvery

Algoritmy na riešenie problému splniteľnosti



### História (informatívne)

- hrubá sila (tabuľka všetkých ohodnotení)
- backtracking
- DPLL [1960]
- CDCL (conflict-driven clause learning) [1996]
- watched literals [2001]
- VSIDS heuristic [2001]
- VSIDS combined with machine learning [Maple 2016+]

#### Tabuľková metóda

#### Tabuľková metóda:

- Skúma všetky ohodnotenia predikátových atómov
- Trvá  $O(s \cdot 2^n)$  krokov,
  - n je počet atómov a s je súčet veľkostí klauzúl
  - 2<sup>n</sup> ohodnotení, pre každé treba zistiť, či sú všetky klauzuly pravdivé
- Zaberá priestor  $O(k \cdot 2^n)$ 
  - k je počet klauzúl
  - Pamätáme si (píšeme na papier) celú tabuľku
- Tabuľka slúži aj ako dôkaz prípadnej nesplniteľnosti
  - kratší dôkaz nesplniteľnosti než kompletný záznam činnosti algoritmu riešiaceho SAT zatiaľ nemáme
  - ak by existoval dôkaz s polynomiálnou dĺžkou, bolo by NP = coNP

# **SAT** solvery

,

**Backtracking** 

### Naivný backtracking v Pythone

```
#!/usr/bin/env python3
class Sat(object):
   def init (self. n. clauses):
       self.n, self.clauses, self.solution = n, clauses, None
   def checkClause(self, v, c):
       return any( ( v[abs(lit)] if lit > 0 else not v[abs(lit)] )
                   for lit in c )
   def check(self, v):
       return all( self.checkClause(v, cl) for cl in self.clauses )
   def solve(self. i. v):
       if i >= self.n: # ohodnotili sme vsetkv atomv
           if self.check(v):
               self.solution = v
               return True
           return False
       for b in [True, False]:
           v[i] = b
                                          Čas: O(s \cdot 2^n), priestor: O(s+n):
           if self.solve(i+1. v):
               return True
                                           n — počet atómov.
       return False
                                           s – súčet veľkostí klauzúl
Sat(20, [[]]).solve(0, {})
```

### Strom prehľadávania ohodnotení

$$\begin{split} S &= \{(a \vee b), (a \vee \neg b), (\neg a \vee b), (\neg a \vee \neg b \vee \neg c), (\neg a \vee c)\} \\ &\times \operatorname{znamen\'{a}} v \not\models_{\mathbf{p}} S \\ \end{split} \qquad f := 0, t := 1 \end{split}$$



### Priebežné vyhodnocovanie klauzúl

#### Strom ohodnotení:

- List ohodnotenie všetkých premenných
- Každý uzol čiastočné ohodnotenie
- Ohodnotenie v uzle je rozšírením ohodnotenia v rodičovi
- Niektoré klauzuly sa dajú vyhodnotiť aj v čiastočnom ohodnotení
  - V čiastočnom ohodnotení v = {a → 0, b → 1}
     sa dá určiť pravdivosť (a ∨ b), (a ∨ ¬b), (¬a ∨ b) z našej S
- Ak nájdeme nepravdivú, môžeme hneď "backtracknúť" zastaviť prehľadávanie vetvy a vrátiť sa o úroveň vyššie
  - V čiastočnom ohodnotení  $v = \{a \mapsto 0, b \mapsto 0\}$  ie nepravdivá  $(a \lor b)$  z S

### Prehľadávanie s priebežným vyhodnocovaním

$$\begin{split} S &= \{(a \vee b), (a \vee \neg b), (\neg a \vee b), (\neg a \vee \neg b \vee \neg c), (\neg a \vee c)\} \\ &\times \operatorname{znamen\'a} v \not \vDash_{\operatorname{p}} S \end{split} \qquad ? \operatorname{znamen\'a} \operatorname{zatia\'l} \check{\operatorname{ziadna}} \operatorname{nepravdiv\'a} \operatorname{klauzula} \end{split}$$



## Zjednodušenie množiny klauzúl podľa literálu

Nech v je čiastočné ohodnotenie, v ktorom v(a) = 1.

V každom rozšírení ohodnotenia v:

- ullet sú pravdivé klauzuly obsahujúce a
  - $\{a \mapsto 1, ...\} \models_{p} (a \lor b)$
  - $\{a \mapsto 1, ...\} \models_{p} (a \vee \neg b)$
- je pravdivá klauzula  $(\ell_1 \lor \cdots \lor \neg a \lor \cdots \lor \ell_n)$  obsahujúca  $\neg a$  vtt je pravdivá zjednodušená klauzula  $(\ell_1 \lor \cdots \lor \cdots \lor \ell_n)$ 
  - $\{a \mapsto 1, ...\} \models_{p} (\neg a \lor \neg b \lor \neg c) \mathsf{vtt} \{a \mapsto 1, ...\} \models_{p} (\neg b \lor \neg c)$

Takže množinu S môžeme zjednodušiť:

- klauzuly s a môžeme vynechať;
- klauzuly s  $\neg a$  môžeme zjednodušiť.

# Zjednodušenie množiny klauzúl podľa literálu

```
\begin{split} &\text{Množinu klauzúl} \\ S &= \{(a \lor b), (a \lor \neg b), (\neg a \lor b), (\neg a \lor \neg b \lor \neg c), (\neg a \lor c)\} \\ &\text{môžeme } \textit{zjednodušiť podľa } a \mapsto 1 \text{ na} \\ &S|_{a \mapsto 1} = \{ & b, & (\neg b \lor \neg c), & c \}. \\ &\text{Analogicky môžeme } S \text{ zjednodušiť podľa } a \mapsto 0 \text{ na} \\ &S|_{a \mapsto 0} = \{ & b, & \neg b \end{cases}. \end{split}
```

# Zjednodušenie množiny klauzúl podľa literálu

#### Definícia 5.3

Nech P je predikátový atóm, S je množina klauzúl, (t, f) je dvojica pravdivostných hodnôt. Potom definujeme

pravdivostnych nodnot. Potom definujeme 
$$S|_{P \mapsto f} = \{(\ell_1 \vee \dots \vee \dots \vee \ell_n) \mid (\ell_1 \vee \dots \vee P \vee \dots \vee \ell_n) \in S\}$$

$$\cup \{C \mid C \in S, \vee C \text{ sa nevyskytuje } P \text{ ani } \neg P\}$$

$$S|_{P \mapsto f} = \{(\ell_1 \vee \dots \vee \dots \vee \ell_n) \mid (\ell_1 \vee \dots \vee \neg P \vee \dots \vee \ell_n) \in S\}$$

$$\begin{split} S|_{P \ \mapsto \ t} &= \{ (\ell_1 \lor \dots \lor \dots \lor \ell_n) \mid (\ell_1 \lor \dots \lor \neg P \lor \dots \lor \ell_n) \in S \} \\ & \cup \{ C \mid C \in S, \lor C \text{ sa nevyskytuje } P \text{ ani } \neg P \} \end{split}$$

$$S|_{\neg P \mapsto t} = S|_{P \mapsto f}$$
$$S|_{\neg P \mapsto f} = S|_{P \mapsto t}$$

#### Tvrdenie 5.4

Nech P je predikátový atóm, S je množina klauzúl, (t, f) dvojica pravdivostných hodnôt. Nech  $b \in \{t, f\}$  a v je ohodnotenie také, že v(P) = b. Potom  $v \models_{p} S \text{ vtt } v \models_{p} S|_{P \mapsto h}$ .

# Propagácia jednotkových klauzúl

Nech  $T = \{(a \lor \neg b), (a \lor b \lor c)\}.$ 

Začnime zjednodušením podľa  $a \mapsto 0$ :

- $T' := T|_{a \mapsto 0} = {\neg b, (b \lor c)}$ 
  - ¬b jednotková klauzula (unit clause alebo iba unit)
  - T' spĺňajú **iba** ohodnotenia v, kde v(b)=0
- Takže T' zjednodušíme podľa  $b\mapsto 0$
- $T'' := T'|_{b \mapsto 0} = \{c\}$ 
  - c jednotková klauzula
    T" spĺňajú iba ohodnotenia v. kde v(c) = 1
  - Takže T" ziednodušíme podľa c
- $T''':=T''|_{C\mapsto 1}=\{\}$  prázdna, pravdivá v hocijakom
  - ohodnotení. Podľa tvrdenia 5.4:
    - T'' je pravdivá v každom ohodnotení, kde v(c) = 1.
    - T' je pravdivá v každom ohodnotení, kde  $v(b)=0,\,v(c)=1.$
    - T je pravdivá v ohodnotení  $v = \{a \mapsto 0, b \mapsto 0, c \mapsto 1\}.$

# Prehľadávanie so zjednodušovaním klauzúl a unit propagation

Propagácia jednotkových klauzúl (unit propagation) je proces opakovaného rozširovania ohodnotení podľa jednotkových klauzúl a zjednodušovania.



# Eliminácia nezmiešaných literálov

Všimnime si literál *P* v množine klauzúl:

$$T = \{ (\neg a \lor \neg b \lor c), (\neg a \lor P), (\neg b \lor P), a, b, \neg c \}$$

Literál P je nezmiešaný (angl. pure) v T:

P sa vyskytuje v T, ale jeho komplement  $\neg P$  sa tam nevyskytuje.

Nech 
$$T' := T|_{P \mapsto 1} = \{(\neg a \lor \neg b \lor c), a, b, \neg c\}$$

- Ak nájdeme ohodnotenie v ⊧<sub>p</sub> T',
   tak v<sub>0</sub> := v[P → 0] aj v<sub>1</sub> := v[P → 1] sú modelmi T'
   a v<sub>1</sub> je navyše modelom T, teda T je splniteľná.
- Ak je T' nesplniteľná, tak je nesplniteľná každá jej nadmnožina, teda aj T.

Z hľadiska splniteľnosti sú klauzuly obsahujúce P nepodstatné. Stačí uvažovať  $T|_{P \ \mapsto \ 1}.$ 

# Eliminácia nezmiešaných literálov

#### Definícia 5.5

Nech P je predikátový atóm.

Komplementom literálu P je  $\neg P$ . Komplementom literálu  $\neg P$  je P.

Komplement literálu  $\ell$  označujeme  $\bar{\ell}$ .

#### Definícia 5.6

Nech  $\ell$  je literál a S je množina klauzúl.

Literál  $\ell$  je nezmiešaný (pure) v S vtt  $\ell$  sa vyskytuje v niektorej klauzule z S, ale jeho komplement  $\bar{\ell}$  sa nevyskytuje v žiadnej klauzule z S.

#### Tvrdenie 5.7

Nech  $\ell$  je literál a S je množina klauzúl.

Ak  $\ell$  je nezmiešaný v S, tak S je splniteľná vtt  $S|_{\ell\mapsto 1}$  je splniteľná.

# **SAT** solvery

**DPLL** a sledované literály

#### DPLL

#### Algoritmus 5.8 (Davis and Putnam [1960], Davis et al. [1962])

- 1: **def** DPLL( $\Phi$ , v): if  $\Phi$  obsahuje prázdnu klauzulu: 2:
- 3: return False
- 4: if v ohodnocuje všetky atómy:
- 5. return True
- **while** existuje jednotková (unit) klauzula  $\ell$  vo  $\Phi$ : 6:
- 7:  $\Phi, v = \text{unit-propagate}(\ell, \Phi, v)$
- while existuie nezmiešaný (pure) literál  $\ell$  vo  $\Phi$ : 8:
- $\Phi, v = \text{pure-literal-assign}(\ell, \Phi, v)$ 9:
- 10:  $x = \text{choose-branch-atom}(\Phi, v)$
- $\text{return DPLL}(\Phi|_{\mathcal{X}\ \mapsto\ t}, v(x\mapsto t))\ \text{or DPLL}(\Phi|_{\mathcal{X}\ \mapsto\ f}, v(x\mapsto f))$ 11:

#### Technika sledovaných literálov (watched literals)

Aby sme nemuseli zjednodušovať množinu klauzúl:

• Pre každú klauzulu vyberieme 2 sledované literály.

$$(\neg a^{\circ} \lor \neg b^{\circ} \lor \neg c)$$

- Sledovaný literál musí byť nenastavený alebo true, ak sa to dá.
- Ak sa sledovaný literál stane true: nič nemusíme robiť.

$$\{a \mapsto 0\} \qquad (\neg a^{\circ} \lor \neg b^{\circ} \lor \neg c)$$

• Ak sa sledovaný literál stane false: musíme nájsť iný.

$$\{a \mapsto 1\}$$
  $(\neg a^{\otimes} \lor \neg b^{\circ} \lor \neg c^{\circ})$ 

Ak iný nie je, práve sme vyrobili jednotkovú klauzulu

(všetky literály okrem druhého sledovaného sú false),

$$\{a \mapsto 1, b \mapsto 1\} \qquad (\neg a \lor \neg b_{\perp}^{\circ} \lor \neg c_{\perp}^{\circ})$$

alebo spor (aj druhý sledovaný je už false).

$$\{a\mapsto 1, b\mapsto 1, c\mapsto 0\} \qquad (\lnot a_{\bot}^{\circledcirc} \lor c_{\bot}^{\circledcirc})$$

 Keď backtrackujeme: nič nemusíme robiť (možno sa niektoré sledované literály stanú nenastavenými).

#### Technika sledovaných literálov (watched literals)

- netreba v každom kroku prepisovať skúmanú formulu
- pri unit propagation máme priamo odkaz na relevantné klauzuly, nemusíme prepisovať všetky ani hľadať ich vo formule
- žiadna práca pri kroku naspäť
- pre 3-SAT sa ušetrí len málo, preto preferovaná veľkosť klauzúl je výrazne viac ako 3 (dosiahne sa predspracovaním vstupu)
- nezlepšuje asymptotickú zložitosť, ale veľmi užitočné v praxi

#### Prehľadávanie s unit propagation a sledovaním



# SAT solvery CDCL





(žltá – rozhodnutie, šedá – unit propagation)





Uvedený rez nie je jediný, mohli by sme pridať  $x_1 \vee \neg x_3 \vee \neg x_7$ .



Návrat do bodu, kde pridaná klauzula vynúti ohodnotenie jednej doteraz neohodnotenej premennej (čo zabráni vzniku tohto konfliktu kdekoľvek v podstrome).



• vytvárame implikačný graf

- vytvárame implikačný graf
- keď nájdeme konflikt, zvolíme rez oddeľujúci rozhodnutia od konfliktu a odvodíme novú klauzulu, ktorá konfliktu predchádza (learning); ak je takých rezov viac, heuristikou niektorý vyberieme

- vytvárame implikačný graf
- keď nájdeme konflikt, zvolíme rez oddeľujúci rozhodnutia od konfliktu a odvodíme novú klauzulu, ktorá konfliktu predchádza (learning); ak je takých rezov viac, heuristikou niektorý vyberieme
- vrátime sa k predposlednému z rozhodnutí, ktoré viedli ku konfliktu (nie chronologicky – preskočíme rozhodnutia o literáloch nesúvisiacich s konfliktom)

#### CDCL — conflict-driven clause learning (informatívne)

#### Problémy (viac v [Zhang]):

 exponenciálne veľa klauzúl, ktoré takto možno odvodiť; ktoré si pamätať a ako dlho?
 riešenie: rôzne heuristiky, aktívna oblasť výskumu (Kruger et al. [2022])

#### CDCL — conflict-driven clause learning (informatívne)

#### Problémy (viac v [Zhang]):

- exponenciálne veľa klauzúl, ktoré takto možno odvodiť; ktoré si pamätať a ako dlho?
   riešenie: rôzne heuristiky, aktívna oblasť výskumu (Kruger et al. [2022])
- čas výpočtu má distribúciu s ťažkým chvostom (fat-tailed pre niektoré postupnosti rozhodnutí trvá výpočet výrazne dlhšie ako pre iné)
   riešenie: občasný reštart backtrackingu (napr. "Luby restarts", založené na štatistickej analýze náhodných procesov)

 voľba literálu pre ďalšie rozhodnutie má výrazný efekt na čas výpočtu

- voľba literálu pre ďalšie rozhodnutie má výrazný efekt na čas výpočtu
- heuristika VSIDS: "additive bumping, multiplicative decay"
- pre každý literál počítame počet jeho výskytov v odvodených klauzulách (t.j. konfliktoch)
- periodicky toto skóre predelíme konštantou (zdôrazníme tak nedávno naučené klauzuly)

- voľba literálu pre ďalšie rozhodnutie má výrazný efekt na čas výpočtu
- heuristika VSIDS: "additive bumping, multiplicative decay"
- pre každý literál počítame počet jeho výskytov v odvodených klauzulách (t.j. konfliktoch)
- periodicky toto skóre predelíme konštantou (zdôrazníme tak nedávno naučené klauzuly)
- prekvapivo efektívne, využíva sa vo mnohých súčasných solveroch

- voľba literálu pre ďalšie rozhodnutie má výrazný efekt na čas výpočtu
- heuristika VSIDS: "additive bumping, multiplicative decay"
- pre každý literál počítame počet jeho výskytov v odvodených klauzulách (t.j. konfliktoch)
- periodicky toto skóre predelíme konštantou (zdôrazníme tak nedávno naučené klauzuly)
- prekvapivo efektívne, využíva sa vo mnohých súčasných solveroch
- heuristika LRB [Maple 2016]: reinforcement learning (multi-armed bandit problem)
- pravidelné prepínanie medzi VSIDS a LRB

# **SAT** solvery

Ďalšie aspekty (informatívne)

#### Predspracovanie

- všetky moderné SAT solvery venujú značnú pozornosť predspracovaniu formuly
- počet premenných je zvyčajne podstatnejší ako veľkosť formuly

- všetky moderné SAT solvery venujú značnú pozornosť predspracovaniu formuly
- počet premenných je zvyčajne podstatnejší ako veľkosť formuly
- rezolvenciou možno znížiť počet klauzúl (ale narastie ich veľkosť)

- všetky moderné SAT solvery venujú značnú pozornosť predspracovaniu formuly
- počet premenných je zvyčajne podstatnejší ako veľkosť formuly
- rezolvenciou možno znížiť počet klauzúl (ale narastie ich veľkosť)
- rezolvenciou možno znížiť počet premenných (ale výrazne narastie počet klauzúl)

- všetky moderné SAT solvery venujú značnú pozornosť predspracovaniu formuly
- počet premenných je zvyčajne podstatnejší ako veľkosť formuly
- rezolvenciou možno znížiť počet klauzúl (ale narastie ich veľkosť)
- rezolvenciou možno znížiť počet premenných (ale výrazne narastie počet klauzúl)
- poradie klauzúl nemá zásadný vplyv na dĺžku výpočtu
- redundantné klauzuly môžu pomôcť

- desiatky rôznych techník, často doménovo špecifických
- napr. neúplné BDD reprezentácie umožňujú získať klauzuly, ktoré nemožno odvodiť počas CDCL

- desiatky rôznych techník, často doménovo špecifických
- napr. neúplné BDD reprezentácie umožňujú získať klauzuly, ktoré nemožno odvodiť počas CDCL
- cryptominisat akceptuje XOR-klauzuly a pri predspracovaní sa na ne díva ako na sústavu lineárnych rovníc nad  $\mathbb{Z}_2$  a používa Gaussovu elimináciu

- desiatky rôznych techník, často doménovo špecifických
- napr. neúplné BDD reprezentácie umožňujú získať klauzuly, ktoré nemožno odvodiť počas CDCL
- cryptominisat akceptuje XOR-klauzuly a pri predspracovaní sa na ne díva ako na sústavu lineárnych rovníc nad Z₂ a používa
   Gaussovu elimináciu
- pri "ľahkých" inštanciách môže predspracovanie zabrať viac času než následné riešenie, treba nájsť vhodný kompromis
- v niektorých prípadoch zase predspracovanie zvyšuje dobu následného riešenia

### Vstupné formuly

 niektoré problémy prirodzene vedú skôr k disjunktívnej normálnej forme, štandardný algoritmus úpravy potom vytvára exponenciálne veľkú CNF

#### Vstupné formuly

- niektoré problémy prirodzene vedú skôr k disjunktívnej normálnej forme, štandardný algoritmus úpravy potom vytvára exponenciálne veľkú CNF
- riešenie: ekvisplniteľné formuly (equisatisfiable)

$$\bigvee_{i} (a_{i} \wedge b_{i} \wedge c_{i})$$

$$\left(\bigvee_{i} z_{i}\right) \wedge \bigwedge_{i} \left[ (\overline{z_{i}} \vee a_{i}) \wedge (\overline{z_{i}} \vee b_{i}) \wedge (\overline{z_{i}} \vee c_{i}) \right]$$

(nie ekvivalentné, lebo sú tam premenné navyše, ale jedna je splniteľná práve vtedy, keď druhá)

## Neúplné solvery

- šanca na rýchle objavenie ohodnotenia, v ktorom je formula pravdivá
- neúplné solvery negarantujú dôkaz nesplniteľnosti
- založené na heuristikách (random walks, genetic algoritms, simulated annealing...)

# Neúplné solvery

- šanca na rýchle objavenie ohodnotenia, v ktorom je formula pravdivá
- neúplné solvery negarantujú dôkaz nesplniteľnosti
- založené na heuristikách (random walks, genetic algoritms, simulated annealing...)
- úspešné využitie metód štatistickej fyziky (napr. survey propagation pre 3-SAT), lebo náhodný SAT vykazuje podobné správanie (threshold, clustering)
- automatizované plánovanie: bežne kombinácia neúplného a úplného solvera

# Ďalšie aspekty

 existujúce solvery nie sú dobre paralelizovateľné: vedia použiť mnoho vlákien, ale s otáznym efektom (ak chceme riešiť niekoľko vstupných inštancií, je lepšie riešiť každú v osobitnom vlákne)

### Ďalšie aspekty

- existujúce solvery nie sú dobre paralelizovateľné: vedia použiť mnoho vlákien, ale s otáznym efektom (ak chceme riešiť niekoľko vstupných inštancií, je lepšie riešiť každú v osobitnom vlákne)
- solvery sú konfigurovateľné (lingeling: 300 parametrov); na optimalizáciu na úzkej triede vstupov možno použiť strojové učenie
- zmeny parametrov vedú typicky k zrýchleniu 2–10×

# **SAT** solvery

Verifikácia hardvéru (informatívne)

### Ukážka aplikácie SAT solverov

- verifikácia hardvéru je azda najvýznamnejšia oblasť využitia bez moderných procesorov nevieme robiť žiadne iné výpočty
- softvér sa vymení ľahko, vymieňať hardvér je prakticky nemožné alebo neekonomické; nedá sa opraviť časť procesora
- pri desiatkach miliónov tranzistorov nemáme inú dostatočne výkonnú alternatívu

# Metódy verifikácie hardvéru a softvéru

#### 1. Simulácia

- užitočná, ale nič nezaručuje
- je ťažké až nemožné zachytiť všetky možné stavy, v ktorých sa má systém používať

# Metódy verifikácie hardvéru a softvéru

#### 1. Simulácia

- užitočná, ale nič nezaručuje
- je ťažké až nemožné zachytiť všetky možné stavy, v ktorých sa má systém používať

#### 2. Formálna verifikácia

- v princípe úplný matematický dôkaz správnosti
- nedá sa použiť pre fyzickú vrstvu, ale ideálna pre logickú

# Metódy verifikácie hardvéru a softvéru

#### 1. Simulácia

- užitočná, ale nič nezaručuje
- je ťažké až nemožné zachytiť všetky možné stavy, v ktorých sa má systém používať

#### 2. Formálna verifikácia

- v princípe úplný matematický dôkaz správnosti
- nedá sa použiť pre fyzickú vrstvu, ale ideálna pre logickú
- používa sa zriedka drahá a vyžaduje vysokú odbornosť
- atómové elektrárne, vesmírne lety, veľké série procesorov

### Verifikácia hardvéru

- ekvivalencia booleovských výpočtových okruhov (napr. po optimalizácii)
- dôkaz invariantov
- safety: is a state reachable?
- *liveness*: is a state *T* always reached after *S*?

# Binary decision diagrams (BDDs)

$$f(x_1, ..., x_8) = x_1x_2 + x_3x_4 + x_5x_6 + x_7x_8$$



Verifikácia hardvéru: BDDs

- využívané desaťročia
- nevýhody:
  - poradie premenných musí byť vo všetkých vetvách rovnaké
  - poradie má významný efekt na veľkosť diagramu
  - diagramy môžu byť exponenciálne veľké

## Bounded model checking (BMC)

- vyjadrenie verifikačných problémov cez splniteľnosť výrokovologických formúl [Biere et al. 1999]
- rozvinieme k krokov výpočtu, skontrolujeme neporušenosť invariantov, zvýšime k
- vyjadrenie v CNF, rieši sa SAT solverom
- riešiteľné vstupy: 0.4M premenných, 7M klauzúl [2004]

# SAT solvery

Kombinatorické problémy (informatívne)

\_\_\_

# Kombinatorické problémy

- pre mnoho problémov v diskrétnej matematike je SAT solver jediné v súčasnosti použiteľné riešenie
- pre určité problémy sú špecializované solvery rýchlejšie (napr. TSP)
- pre riešiteľné inštancie sú neraz rýchlejšie špecifické heuristiky
- SAT solverom sa darí výborne, ak počet premenných rastie s veľkosťou problému lineárne (napr. farbenia grafov)

Rôzne spôsoby vyjadrenia regulárnosti hranového 3-farbenia pre graf, ktorý má všetky vrcholy stupňa 3:

- 1. incidentné hrany majú navzájom rôzne farby
- 2. v každom vrchole je každá farba použitá na práve jednej hrane
- 3. farby hrán incidentných s každým jedným vrcholom tvoria trojicu z povoleného pevného zoznamu trojíc
- 4. formula založená na combinatorial nullstellensatz

- O(n) premenných, O(n) klauzúl, veľkosť formuly O(n)
- čas výpočtu pre rôzne solvery a ich konfigurácie: nízka variácia, cca 4×
- voľne koreluje s veľkosťou formuly

- O(n) premenných, O(n) klauzúl, veľkosť formuly O(n)
- čas výpočtu pre rôzne solvery a ich konfigurácie: nízka variácia, cca 4×
- voľne koreluje s veľkosťou formuly
- všetky možnosti fungujú lepšie ako formulácia cez ILP (integer linear programming) a riešenie GLPK či Gurobi

- O(n) premenných, O(n) klauzúl, veľkosť formuly O(n)
- čas výpočtu pre rôzne solvery a ich konfigurácie: nízka variácia, cca 4×
- voľne koreluje s veľkosťou formuly
- všetky možnosti fungujú lepšie ako formulácia cez ILP (integer linear programming) a riešenie GLPK či Gurobi
- pre grafy do 50-100 vrcholov vyhráva backtracking (najmä ak sú zafarbiteľné)
- SAT solvery fungujú aj pre tisíce vrcholov
- absencia krátkych kružníc v grafe (čiže lokálne vyzerá ako strom) predlžuje výpočet

#### Symetria

- Ak je vstupná formula symetrická (má mnoho automorfizmov), solver bude opakovane preverovať "rovnaké" časti priestoru možných riešení.
- Oplatí sa symetriu odstraňovať, napr. odstránime permutácie farieb, predpíšeme na fixnú hranu konkrétnu farbu, prvý vrchol na hľadanej hamiltonovskej kružnici apod.
- Symetrické premenné možno zoradiť lexikograficky a pridať klauzuly popisujúce  $x_1 \geq x_2 \geq x_3 \geq \dots$  (čiže ak by pre niektoré spĺňajúce ohodnotenie boli niektoré  $x_i$  pravdivé, vyberieme také ohodnotenie, že to postupne budú  $x_1, x_2, \dots$ ).
- Existujú špecializované knižnice práve na tento účel (napr. BreakID), je za tým 30 rokov výskumu.

- 1. premenné  $x_{v,i}$  true ak v je i-ty vrchol kružnice
- 2. každá pozícia na kružnici má priradený vrchol
- 3. žiadne dva vrcholy nemajú priradenú tú istú pozíciu
- 4. každý vrchol je použitý najviac raz
- 5. každé dva po sebe idúce vrcholy na kružnici sú spojené hranou

- 1. premenné  $x_{v,i}$  true ak v je i-ty vrchol kružnice
- 2. každá pozícia na kružnici má priradený vrchol
- 3. žiadne dva vrcholy nemajú priradenú tú istú pozíciu
- 4. každý vrchol je použitý najviac raz
- 5. každé dva po sebe idúce vrcholy na kružnici sú spojené hranou
- $O(n^2)$  premenných,  $O(n^3)$  klauzúl!
- pre kubické grafy funguje do 40–50 vrcholov, podobne ako backtracking
- ak má byť redukcia na SAT naozaj efektívna, potrebujeme cca lineárne veľa premenných
- premenných aspoň n log n, lebo kódujeme permutácie do bitov (ale neplatí pre postupy, ktoré kružnicu priamo nehľadajú, len akosi inak rozhodujú o existencii)

- hamiltonovská kružnica je súvislý 2-faktor (podgraf s vrcholmi stupňa práve 2)
- pomocou booleovskej formuly možno stupeň vrcholo ľahko popísať lokálne
- CNF s veľkosťou O(n)

- hamiltonovská kružnica je súvislý 2-faktor (podgraf s vrcholmi stupňa práve 2)
- pomocou booleovskej formuly možno stupeň vrcholo ľahko popísať lokálne
- CNF s veľkosťou O(n)
- stačí overiť súvislosť každého 2-faktora AllSAT
- málo dostupných solverov: clasp, BDD\_MINISAT\_ALL
- pre skúmané grafy rýchlejšie ako redukcia na SAT, ale počet
   2-faktorov rastie exponenciálne
- pre kubické grafy funguje do cca 40 vrcholov (milióny 2-faktorov)

#### AIISAT

- z každého SAT solvera možno spraviť AllSAT solver (stačí po každom nájdenom riešení pridať na vstup klauzulu, ktorá ho zakazuje)
- neefektívne, klauzuly objavené CDCL zakaždým zahodíme, keď nanovo štartuje výpočet po objavení riešenia
- vstupná formula narastá príliš rýchlo (napr. pre CryptoMiniSat možno takto realisticky nájsť desaťtisíce riešení, ale nie milióny)
- iná možnosť: obmedziť skoky pre non-chronological backtracking

#### **AllSAT**

- doteraz najlepšie riešenie: formula-BDD caching [Toda 2015]
- dá sa pridať k akémukoľvek backtrackingu, ak vopred zafixujeme poradie premenných
- zruší prínosy VSIDS (vyberáme si len hodnotu, nie premennú, ktorú ideme ohodnotiť)
- BDD\_MINISAT\_ALL je náročný na pamäť, ale ako jediný dokáže pracovať s miliardami riešení
- prekvapivo vie v niektorých prípadoch dokázať nesplniteľnosť rýchlejšie ako SAT solvery

# **SAT** solvery

SMT solvery (informatívne)

#### Motivácia

- SAT solvery sú veľmi rýchle pre booleovskú logiku (log. spojky).
- Booleovské formuly však ponúkajú len obmedzené vyjadrovacie možnosti, napr. aritmetika sa dá robiť bitovo, ale je to pomalé, zložité a vzdialené od pôvodných pojmov, ktoré modelujeme.
- Problémy reálneho sveta si často vyžadujú bohatšie teórie, napr. s poliami a funkciami.
- SMT solvery rozširujú SAT tak, aby riešili tieto komplexné požiadavky.

# Čo je SMT solver?

- SMT Satisfiability Modulo Theories.
- SMT solver rozhoduje splniteľnosť formuly s výrokovologickou štruktúrou, ale zároveň berie do úvahy doplnkové teórie (background theories), ktoré sa vymykajú výrokovej logike:
  - Linear Integer Arithmetic (LIA)
  - Uninterpreted Functions (UF)
  - polia, bitové vektory, dátové typy
- Background theories sú fragmentmi prvorádovej logiky, ktoré zahŕňajú len špecifické predikáty so štandardnou interpretáciou a vyhýbajú sa tak algoritmickej nerozhodnuteľnosti.

### SMT formuly

#### SMT formuly:

- Obsahujú premenné rôznych typov, napr. celé čísla, reálne čísla, polia.
- Kombinujú logickú štruktúru (∧, ∨, ¬) s atómami pochádzajúcimi z doplnkových teórií.
- Príklad (LIA + UF + Boolean):

$$\underbrace{(a+b\leq 5)}_{\text{LIA}}\vee\underbrace{(f(a)=g(f(b)))}_{\text{UF}}\wedge\underbrace{(a\geq 0)}_{\text{LIA}}\wedge\underbrace{(c=True)}_{\text{Boolean}}$$

 SAT solver nerozumie vnútornej štruktúre atómov, len vie, ktorý podriadený solver daný atóm rozozná.

### Algoritmus DPLL(T)

- 1. SAT Solver: navrhuje ohodnotenia atómov.
- 2. **Theory Solver:** overuje konzistentnosť týchto ohodnotení vzhľadom na doplnkové teórie.
- 3. Interakcia:
  - SAT solver vykonáva DPLL/CDCL.
  - Ak SAT solver nájde spĺňajúce ohodnotenie, zavolá podriadený solver pre príslušnú teóriu, aby skontroloval, či je priradenie prípustné.
  - Ak podriadený solver odhalí neprípustnosť, SAT solver sa naučí novú klauzulu — theory learn step.

# Algoritmus DPLL(T): príklad

Vstupná formula obsahuje LIA atómy

$$A_1 = (x = 4),$$
  $A_2 = (x \ge 0),$   $A_3 = (y = x+2),$   $A_4 = (y > 5).$ 

- SAT solver navrhne, že  $A_1$ ,  $A_2$ ,  $A_3$  budú true,  $A_4$  false.
- LIA solver nájde nesúlad pre  $A_1$ ,  $A_3$ ,  $\neg A_4$ .

#### **Aplikácie**

#### Využitie:

- automatizované dokazovanie tvrdení,
- formálna verifikácia softvéru,
- overovanie hardvéru,
- testovanie a ladenie softvéru.

Napr. Microsoft vyvinul Z3 a niekoľko ďalších nástrojov založených na SMT; použil ich v systémoch ako SAGE na odhalenie viac ako 1000 kritických bezpečnostných chýb vo Windows a Office. Amazon používa internú knižnicu TLS s názvom s2n, navrhnutú špeciálne tak, aby bola malá a dala sa formálne verifikovať; denne spúšťajú miliardy výpočtov SMT na všetko od bootovacieho kódu AWS a operačných systémov IoT až po kryptografické knižnice a sieťové konfigurácie (link).

#### Literatúra

- Martin Davis and Hillary Putnam. A computing procedure for quantification theory. *J. Assoc. Comput. Mach.*, 7:201–215, 1960.
- Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. *Communications of the ACM*, 5(7):394–397, 1962.
- T. Kruger et al. Too much information: Why CDCL solvers need to forget learned clauses. *Plos One*, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417043/.
- L. Zhang. SAT-Solving: From Davis-Putnam to Zchaff and beyond. [Online] https://www.inf.ed.ac.uk/teaching/courses/propm/papers/Zhang/sat\_course1.pdf, https://www.inf.ed.ac.uk/teaching/courses/propm/papers/Zhang/sat\_course2.pdf, https://www.inf.ed.ac.uk/teaching/courses/propm/papers/Zhang/sat\_course3.pdf.