MA423 Matrix Computations

Lectures 1&2: Floating-point system

Rafikul Alam Department of Mathematics IIT Guwahati

Lecture outline

- Floating-point system
- Machine precision and unit roundoff
- Rounding errors
- Floating-point arithmetic

Anomalous arithmetic

Arithmetic operations on computers are inexact and can produce surprising results. For example, MATLAB produces

$$(\frac{4}{3}-1)*3-1 = -2.2204 \times 10^{-16}$$
 $5 \times \frac{(1+\exp(-50))-1}{(1+\exp(-50))-1} = NaN$
 $\frac{\log(\exp(750))}{100} = Inf$

Example 2

Let
$$p(x) = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1 = (x - 1)^7$$
.

Does the plot look like a polynomial? What explains this behaviour?

Normalized floating-point representation

Let $x\in\mathbb{R}$ be nonzero and $\beta>1$ be an integer. Then we have the normalized floating-point representation

$$x = \pm (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e, \ 0 \le d_i < \beta, \ d_1 \ne 0, \ e \in \mathbb{Z}.$$

Here β is called the base, e is called the exponent and $f:=(\cdot d_1d_2\cdots d_t\cdots)_{\beta}$ is called mantissa or fraction and given by

Normalized floating-point representation

Let $x \in \mathbb{R}$ be nonzero and $\beta > 1$ be an integer. Then we have the normalized floating-point representation

$$x = \pm (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e, \ 0 \le d_i < \beta, \ d_1 \ne 0, \ e \in \mathbb{Z}.$$

Here β is called the base, e is called the exponent and $f:=(\cdot d_1d_2\cdots d_t\cdots)_{\beta}$ is called mantissa or fraction and given by

$$f = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} = \sum_{j=1}^{\infty} \frac{d_j}{\beta^j}.$$

Normalized floating-point representation

Let $x \in \mathbb{R}$ be nonzero and $\beta > 1$ be an integer. Then we have the normalized floating-point representation

$$x = \pm (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e, \ 0 \le d_i < \beta, \ d_1 \ne 0, \ e \in \mathbb{Z}.$$

Here β is called the base, e is called the exponent and $f:=(\cdot d_1d_2\cdots d_t\cdots)_{\beta}$ is called mantissa or fraction and given by

$$f = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} = \sum_{j=1}^{\infty} \frac{d_j}{\beta^j}.$$

Note that $0 < f \le 1$ and $x = \pm f \times \beta^e$ is a unique representation. The number of digits allowed in f is called precision of the floating-point representation, which in the present case is infinite.

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

A floating-point system $F(eta,t,e_{\mathsf{min}},e_{\mathsf{max}})$ is a finite set given by

$$\{\pm (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e, \ 0 \leq d_i < \beta, \ d_1 \neq 0, \ e_{\mathsf{min}} \leq e \leq e_{\mathsf{max}}\} \cup \{0\}.$$

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

A floating-point system $F(eta,t,e_{\sf min},e_{\sf max})$ is a finite set given by

$$\{\pm(\cdot d_1d_2\cdots d_t)_{\beta}\times\beta^e,\ 0\leq d_i<\beta,\ d_1\neq 0,\ e_{\mathsf{min}}\leq e\leq e_{\mathsf{max}}\}\cup\{0\}.$$

 β : base of the floating-point system

t: precision (number of digits in the mantissa) of the floating-point system

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

A floating-point system $F(eta,t,e_{\sf min},e_{\sf max})$ is a finite set given by

$$\{\pm(\cdot d_1d_2\cdots d_t)_{\beta}\times\beta^e,\ 0\leq d_i<\beta,\ d_1\neq 0,\ e_{\mathsf{min}}\leq e\leq e_{\mathsf{max}}\}\cup\{0\}.$$

 β : base of the floating-point system

t: precision (number of digits in the mantissa) of the floating-point system

 e_{\min} : lowest exponent of the floating-point system

 e_{max} : highest exponent of the floating-point system

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

A floating-point system $F(eta,t,e_{\sf min},e_{\sf max})$ is a finite set given by

$$\{\pm(\cdot d_1d_2\cdots d_t)_{\beta}\times\beta^e,\ 0\leq d_i<\beta,\ d_1\neq 0,\ e_{\mathsf{min}}\leq e\leq e_{\mathsf{max}}\}\cup\{0\}.$$

 β : base of the floating-point system

t: precision (number of digits in the mantissa) of the floating-point system

 e_{\min} : lowest exponent of the floating-point system

 e_{max} : highest exponent of the floating-point system

The fraction
$$0 < f := (d_1 d_2 \cdots d_t)_{\beta} = \sum_{j=1}^t \frac{d_j}{\beta^j} \le 1 - \beta^{-t} < 1$$
.

Example:
$$(\cdot 101)_2 \times 2^2 = (1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}) \times 2^2 = 5/2$$
.

Computers use a floating-point representation with base $\beta=2$. The set of numbers represented on a computer is called a floating-point system.

A floating-point system $F(\beta,t,e_{\sf min},e_{\sf max})$ is a finite set given by

$$\{\pm(\cdot d_1d_2\cdots d_t)_{\beta}\times\beta^e,\ 0\leq d_i<\beta,\ d_1\neq 0,\ e_{\mathsf{min}}\leq e\leq e_{\mathsf{max}}\}\cup\{0\}.$$

 β : base of the floating-point system

t: precision (number of digits in the mantissa) of the floating-point system

 e_{\min} : lowest exponent of the floating-point system

 e_{max} : highest exponent of the floating-point system

The fraction
$$0 < f := (d_1 d_2 \cdots d_t)_{\beta} = \sum_{j=1}^t \frac{d_j}{\beta^j} \le 1 - \beta^{-t} < 1$$
.

Example:
$$(.101)_2 \times 2^2 = (1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}) \times 2^2 = 5/2$$
.

Note that
$$\#F(\beta, t, e_{\min}, e_{\max}) = 2(\beta - 1)\beta^{t-1} \times (e_{\max} - e_{\min} + 1) + 1$$
.

Underflow threshold (smallest positive floating point number):

• realmin := $(\cdot 10 \cdots 0)_{\beta} \times \beta^{e_{\min}} = \beta^{e_{\min}-1}$

Overflow threshold (largest positive floating point number):

• realmax $:= (\cdot (\beta-1) \cdots (\beta-1))_{eta} imes eta^{e_{\mathsf{max}}} = (1-eta^{-t}) eta^{e_{\mathsf{max}}}$

Underflow threshold (smallest positive floating point number):

• realmin := $(\cdot 10 \cdots 0)_{\beta} \times \beta^{e_{\min}} = \beta^{e_{\min}-1}$

Overflow threshold (largest positive floating point number):

• realmax := $(\cdot(\beta-1)\cdots(\beta-1))_{eta} imeseta^{e_{\mathsf{max}}}=(1-eta^{-t})eta^{e_{\mathsf{max}}}$

Machine epsilon/precision: **eps** := β^{1-t} .

• eps = $(\cdot 10 \cdots 01)_{\beta} \times \beta^1 - (\cdot 10 \cdots 0)_{\beta} \times \beta^1 = \beta^{1-t}$

Underflow threshold (smallest positive floating point number):

• realmin :=
$$(\cdot 10 \cdots 0)_{\beta} \times \beta^{e_{\min}} = \beta^{e_{\min}-1}$$

Overflow threshold (largest positive floating point number):

• realmax
$$:= (\cdot (\beta-1) \cdots (\beta-1))_{eta} imes eta^{e_{\mathsf{max}}} = (1-eta^{-t}) eta^{e_{\mathsf{max}}}$$

Machine epsilon (eps) is defined as the distance (gap) between 1 and the next largest floating point number. Machine epsilon/precision: eps := β^{1-t} .

• eps =
$$(\cdot 10 \cdots 01)_{\beta} \times \beta^1 - (\cdot 10 \cdots 0)_{\beta} \times \beta^1 = \beta^{1-t}$$

For MATLAB we have the following

	Binary	Decimal
eps	2^{-52}	2.2204×10^{-16}
realmin	2^{-1022}	2.2251×10^{-308}
realmax	$(2-\mathtt{eps}) imes 2^{1023}$	1.7977×10^{308}

IEEE single precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Single precision 32 bits

IEEE single precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Single precision 32 bits

Exponents:
$$2^8 = 256$$
 Largest exponent: $2^8 - 1 = 255$

Exponent range: $0 \le b \le 255$ and $-127 \le e \le 128$

$$x = (-1)^s \times (1 \cdot d_1 \cdots d_{23})_2 \times 2^{b-127}$$
 where $e = b - 127$.

Effective exponent range: $-126 \le e \le 127$ as e = -127 is reserved for ± 0 and e = 128 for $\pm \inf$ and NaN

IEEE single precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Single precision 32 bits

Exponents:
$$2^8 = 256$$
 Largest exponent: $2^8 - 1 = 255$

Exponent range: $0 \le b \le 255$ and $-127 \le e \le 128$

$$x = (-1)^s \times (1 \cdot d_1 \cdots d_{23})_2 \times 2^{b-127}$$
 where $e = b - 127$.

Effective exponent range: $-126 \le e \le 127$ as e=-127 is reserved for ± 0 and e=128 for $\pm \inf$ and NaN

How is eps
$$2^{-23}$$
 and not 2^{-22} eps $= 2^{-23} \approx 1.192 \times 10^{-7}$, realmin $= 2^{-126} \approx 1.175 \times 10^{-38}$, realmax $= (2 - \text{eps}) \times 2^{127} \approx 3.403 \times 10^{38}$

IEEE double precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Double precision 64 bits

IEEE double precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Double precision 64 bits

Exponents: $2^{11} = 2048$ Largest exponent: $2^{11} - 1 = 2047$

Exponent range: $0 \le b \le 2047$ and $-1023 \le e \le 1024$

$$x = (-1)^s \times (1 \cdot d_1 \cdots d_{52})_2 \times 2^{b-1023}$$
 where $e = b - 1023$.

Effective exponent range: $-1022 \le e \le 1023$ as e = -1023 is reserved for ± 0 and e = 1024 for $\pm \inf$ and NaN

IEEE double precision floating-point representation

IEEE specifies $F(2, t, e_{min}, e_{max})$ as follows.

Table: Double precision 64 bits

Exponents: $2^{11} = 2048$ Largest exponent: $2^{11} - 1 = 2047$ Exponent range: 0 < b < 2047 and -1023 < e < 1024

$$x = (-1)^s \times (1 \cdot d_1 \cdots d_{52})_2 \times 2^{b-1023}$$
 where $e = b - 1023$.

Effective exponent range: $-1022 \le e \le 1023$ as e = -1023 is reserved for ± 0 and e = 1024 for $\pm \inf$ and NaN

$$\begin{array}{l} {\tt eps} = 2^{-52} \approx 2.2204 \times 10^{-16}, \ {\tt realmin} = 2^{-1022} \approx 2.2251 \times 10^{-308}, \\ {\tt realmax} = (2 - {\tt eps}) \times 2^{1023} \approx 1.7977 \times 10^{308} \end{array}$$

Gap between floating-point numbers

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$.

Define $\operatorname{ulp}(x) := \beta^{e-t}$. Then $\operatorname{next}(x) := x + \operatorname{ulp}(x)$ is the next floating point number larger than x, that is, $\operatorname{next}(x)$ is the smallest floating-point number larger than x. Hence x and $\operatorname{next}(x)$ are consecutive floating-point numbers.

Gap between floating-point numbers

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$.

Define $\operatorname{ulp}(x) := \beta^{e-t}$. Then $\operatorname{next}(x) := x + \operatorname{ulp}(x)$ is the next floating point number larger than x, that is, $\operatorname{next}(x)$ is the smallest floating-point number larger than x. Hence x and $\operatorname{next}(x)$ are consecutive floating-point numbers.

This shows that $\operatorname{next}(x) - x = \operatorname{ulp}(x) = \beta^{e-t}$. So, if x is a large number then e is large which implies large gap between x and $\operatorname{next}(x)$. Hence the gap between consecutive floating-point number is nonuniform.

Gap between floating-point numbers

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$.

Define $\operatorname{ulp}(x) := \beta^{e-t}$. Then $\operatorname{next}(x) := x + \operatorname{ulp}(x)$ is the next floating point number larger than x, that is, $\operatorname{next}(x)$ is the smallest floating-point number larger than x. Hence x and $\operatorname{next}(x)$ are consecutive floating-point numbers.

This shows that $\operatorname{next}(x) - x = \operatorname{ulp}(x) = \beta^{e-t}$. So, if x is a large number then e is large which implies large gap between x and $\operatorname{next}(x)$. Hence the gap between consecutive floating-point number is nonuniform.

Note that $eps = ulp(1) = \beta^{1-t}$ and next(1) = 1 + eps. Hence eps is the gap between 1 and the next floating-point number next(1) larger than 1.

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$. Then $\text{next}(x) = x + \text{ulp}(x) = x + \beta^{e-t}$ implies that the relative gap

$$\frac{\operatorname{next}(x) - x}{x} = \frac{\beta^{e-t}}{(.d_1 \cdots d_t)_{\beta} \times \beta^e} \le \beta^{1-t} = \operatorname{eps.}$$

Hence the relative gap between two consecutive floating-point numbers is almost uniform and the relative gap is at most eps.

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$. Then $\text{next}(x) = x + \text{ulp}(x) = x + \beta^{e-t}$ implies that the relative gap

$$\frac{\operatorname{next}(x) - x}{x} = \frac{\beta^{e-t}}{(.d_1 \cdots d_t)_{\beta} \times \beta^e} \le \beta^{1-t} = \operatorname{eps}.$$

Hence the relative gap between two consecutive floating-point numbers is almost uniform and the relative gap is at most eps.

Example: Consider $x \in F(10, 4, -30, 30)$ given by $x = 10^{-9} = .1000 \times 10^{-8}$. Then $ulp(x) = 10^{-8-4} = 10^{-12}$ and $next(x) - x = 10^{-12}$.

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$. Then $\text{next}(x) = x + \text{ulp}(x) = x + \beta^{e-t}$ implies that the relative gap

$$\frac{\operatorname{next}(x) - x}{x} = \frac{\beta^{e-t}}{(.d_1 \cdots d_t)_{\beta} \times \beta^e} \le \beta^{1-t} = \operatorname{eps}.$$

Hence the relative gap between two consecutive floating-point numbers is almost uniform and the relative gap is at most eps.

Example: Consider $x \in F(10, 4, -30, 30)$ given by $x = 10^{-9} = .1000 \times 10^{-8}$. Then $\text{ulp}(x) = 10^{-8-4} = 10^{-12}$ and $\text{next}(x) - x = 10^{-12}$. Note, however, that $\frac{\text{next}(x) - x}{x} = \frac{10^{-12}}{10^{-9}} = 10^{-3} = \text{eps.}$

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$. Then $\text{next}(x) = x + \text{ulp}(x) = x + \beta^{e-t}$ implies that the relative gap

$$\frac{\operatorname{next}(x) - x}{x} = \frac{\beta^{e-t}}{(.d_1 \cdots d_t)_{\beta} \times \beta^e} \le \beta^{1-t} = \operatorname{eps}.$$

Hence the relative gap between two consecutive floating-point numbers is almost uniform and the relative gap is at most eps.

Example: Consider $x \in F(10, 4, -30, 30)$ given by $x = 10^{-9} = .1000 \times 10^{-8}$. Then $\text{ulp}(x) = 10^{-8-4} = 10^{-12}$ and $\text{next}(x) - x = 10^{-12}$. Note, however, that $\frac{\text{next}(x) - x}{x} = \frac{10^{-12}}{10^{-9}} = 10^{-3} = \text{eps.}$

Next, consider $y = 10^{15} = .1000 \times 10^{16}$. Then $ulp(y) = 10^{16-4} = 10^{12}$ and $next(y) - y = 10^{12}$.

Let $x \in F(\beta, t, e_{\min}, e_{\max})$ be given by $x = (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$. Then $\text{next}(x) = x + \text{ulp}(x) = x + \beta^{e-t}$ implies that the relative gap

$$\frac{\operatorname{next}(x) - x}{x} = \frac{\beta^{e-t}}{(.d_1 \cdots d_t)_{\beta} \times \beta^e} \le \beta^{1-t} = \operatorname{eps.}$$

Hence the relative gap between two consecutive floating-point numbers is almost uniform and the relative gap is at most eps.

Example: Consider $x \in F(10, 4, -30, 30)$ given by $x = 10^{-9} = .1000 \times 10^{-8}$. Then $\text{ulp}(x) = 10^{-8-4} = 10^{-12}$ and $\text{next}(x) - x = 10^{-12}$. Note, however, that $\frac{\text{next}(x) - x}{x} = \frac{10^{-12}}{10^{-9}} = 10^{-3} = \text{eps.}$

Next, consider
$$y = 10^{15} = .1000 \times 10^{16}$$
. Then $\mathrm{ulp}(y) = 10^{16-4} = 10^{12}$ and $\mathrm{next}(y) - y = 10^{12}$. However, we have $\frac{\mathrm{next}(y) - y}{y} = \frac{10^{12}}{10^{15}} = 10^{-3} = \mathrm{eps}$.

A number $x \in \mathbb{R}$ can be represented by a number in $F(\beta, t, e_{\min}, e_{\max})$ provided realmin $\leq |x| \leq \text{realmax}$.

A number $x \in \mathbb{R}$ can be represented by a number in $F(\beta, t, e_{\min}, e_{\max})$ provided realmin $\leq |x| \leq \text{realmax}$.

Let f(x) denote the floating-point representation of x, that is,

$$fl: \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x).$$

How to define f(x)?

A number $x \in \mathbb{R}$ can be represented by a number in $F(\beta, t, e_{\min}, e_{\max})$ provided realmin $\leq |x| \leq \text{realmax}$.

Let f(x) denote the floating-point representation of x, that is,

$$fl: \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x).$$

How to define f(x)?

Let
$$x = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e$$
. Set $x_L := (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$ and $x_R := x_L + (\cdot 0 \cdots 01)_{\beta} \times \beta^e = x_L + \beta^{e-t} = x_L + \text{ulp}(x_L)$. Then $x_L \le x \le x_R$.

A number $x \in \mathbb{R}$ can be represented by a number in $F(\beta, t, e_{\min}, e_{\max})$ provided realmin $\leq |x| \leq \text{realmax}$.

Let f(x) denote the floating-point representation of x, that is,

$$fl: \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x).$$

How to define f(x)?

Let
$$x = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e$$
. Set $x_L := (\cdot d_1 d_2 \cdots d_t)_{\beta} \times \beta^e$ and $x_R := x_L + (\cdot 0 \cdots 01)_{\beta} \times \beta^e = x_L + \beta^{e-t} = x_L + \text{ulp}(x_L)$. Then $x_L \le x \le x_R$.

Define
$$fl(x) := \begin{cases} x_L, & \text{round down} \\ x_R, & \text{round up} \\ x_L \text{ or } x_R \text{ whichever is closer to } x, & \text{round to nearest} \end{cases}$$

Unit roundoff:
$$\mathbf{u} := egin{cases} \beta^{1-t} & \text{round down} \\ \frac{1}{2}\beta^{1-t}, & \text{round to nearest} \end{cases}$$

Unit roundoff:
$$\mathbf{u} := \begin{cases} \beta^{1-t} & \text{round down} \\ \frac{1}{2}\beta^{1-t}, & \text{round to nearest} \end{cases}$$

Theorem: Let
$$fl : \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x)$$
. Then

$$f(x) = x(1+\delta)$$
 with $|\delta| \le \mathbf{u}$.

Unit roundoff:
$$\mathbf{u} := \begin{cases} \beta^{1-t} & \text{round down} \\ \frac{1}{2}\beta^{1-t}, & \text{round to nearest} \end{cases}$$

Theorem: Let $fl : \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x)$. Then

$$f(x) = x(1+\delta)$$
 with $|\delta| \le \mathbf{u}$.

Proof: Let $x = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e$. Set $\delta := \frac{\mathrm{fl}(x) - x}{x}$. Then $\mathrm{fl}(x) = x(1 + \delta)$. Note that $|\mathrm{fl}(x) - x| \leq \beta^{e-t}$ for round down, and $|\mathrm{fl}(x) - x| \leq \beta^{e-t}/2$ for round to nearest. Also $x \geq \beta^{e-1}$.

Unit roundoff:
$$\mathbf{u} := \begin{cases} \beta^{1-t} & \text{round down} \\ \frac{1}{2}\beta^{1-t}, & \text{round to nearest} \end{cases}$$

Theorem: Let $fl : \mathbb{R} \to F(\beta, t, L, U), x \longmapsto fl(x)$. Then

$$f(x) = x(1+\delta)$$
 with $|\delta| \le \mathbf{u}$.

Proof: Let $x = (\cdot d_1 d_2 \cdots d_t \cdots)_{\beta} \times \beta^e$. Set $\delta := \frac{\mathrm{fl}(x) - x}{x}$. Then $\mathrm{fl}(x) = x(1 + \delta)$. Note that $|\mathrm{fl}(x) - x| \leq \beta^{e-t}$ for round down, and $|\mathrm{fl}(x) - x| \leq \beta^{e-t}/2$ for round to nearest. Also $x \geq \beta^{e-1}$. Hence

$$|\delta| \le \frac{|\mathrm{fl}(x) - x|}{|x|} \le \begin{cases} \beta^{1-t}, & \text{round down} \\ \frac{1}{2}\beta^{1-t}, & \text{round to nearest.} \end{cases}$$

```
Let f(t) := \sin(2\pi t) for t \in [0,1]. Consider F(10,5,-10,10). Then t = 0:.001:1; tt = \sin(2*pi*t); rt = round(tt, 5); roundoff = tt-rt; plot(tt, roundoff, 'LineWidth',1.5) produces the following
```


Floating-point arithmetic

Arithmetic model: If $x, y \in F(\beta, t, e_{\min}, e_{\max})$ and $\emptyset \in \{+, -, \times, /\}$ and **u** is the unit roundoff then

$$f(x \oplus y) = (x \oplus y)(1 + \delta)$$
, where $|\delta| \le \mathbf{u}$.

Floating-point arithmetic

Arithmetic model: If $x, y \in F(\beta, t, e_{\min}, e_{\max})$ and $\emptyset \in \{+, -, \times, /\}$ and **u** is the unit roundoff then

$$f(x \oplus y) = (x \oplus y)(1 + \delta)$$
, where $|\delta| \le \mathbf{u}$.

Loss of significance (or cancellation): If x and y are not floating-point numbers then we have to start with $\hat{x} := \text{fl}(x) = x(1 + \delta_1)$ and $\hat{y} := \text{fl}(y) = y(1 + \delta_2)$. Then

$$\widehat{x} \pm \widehat{y} = x(1+\delta_1) \pm y(1+\delta_2) = (x \pm y) \left(1 + \frac{x\delta_1 \pm y\delta_2}{x \pm y}\right)$$

Floating-point arithmetic

Arithmetic model: If $x, y \in F(\beta, t, e_{\min}, e_{\max})$ and $\emptyset \in \{+, -, \times, /\}$ and **u** is the unit roundoff then

$$f(x \oplus y) = (x \oplus y)(1 + \delta)$$
, where $|\delta| \le \mathbf{u}$.

Loss of significance (or cancellation): If x and y are not floating-point numbers then we have to start with $\hat{x} := \text{fl}(x) = x(1 + \delta_1)$ and $\hat{y} := \text{fl}(y) = y(1 + \delta_2)$. Then

$$\widehat{x} \pm \widehat{y} = x(1+\delta_1) \pm y(1+\delta_2) = (x \pm y) \left(1 + \frac{x\delta_1 \pm y\delta_2}{x \pm y}\right)$$

Now, if x and y have the same sign then the relative error

$$\left| \frac{x\delta_1 + y\delta_2}{x + y} \right| \le |\delta_1| + |\delta_2| \le 2\mathbf{u}$$
 is small but $\left| \frac{x\delta_1 - y\delta_2}{x - y} \right|$ can be arbitrarily large when $x - y$ is very small.

Example

Problem: Solve $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$

Classical method: Naive use of the formula yields

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \ \ x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

does not avoid subtraction whereas the modified formula

$$x_1 = -\frac{b + \text{sign}(b)\sqrt{b^2 - 4ac}}{2a}, \ \ x_2 = \frac{c}{ax_1}$$

avoid subtractions and hence avoid loss of significance.

Example

Problem: Solve $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$

Classical method: Naive use of the formula yields

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \ \ x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

does not avoid subtraction whereas the modified formula

$$x_1 = -\frac{b + \text{sign}(b)\sqrt{b^2 - 4ac}}{2a}, \ \ x_2 = \frac{c}{ax_1}$$

avoid subtractions and hence avoid loss of significance.

For $10^{-3}x^2 + 10^7x + 3 = 0$, the classical method in MATLAB yields $x_1 = -10^{10}$ and $x_2 = 0$ whereas the modified method yields the accurate answer $x_1 = -10^{10}$ and $x_2 = -3.0 \times 10^{-7}$.

Cancellation and remedy

Let $f(x) := \frac{1 - \cos(x)}{\sin(x)}$ for $x \neq 0$. If a is close to 0 then evaluation of f(x) at a causes cancellation as $\cos(a) \approx 1$. The remedy is to rewrite f(x) as

$$f(x) = \frac{1 - \cos(x)}{\sin(x)} = \frac{\sin(x)}{1 + \cos(x)}$$

which avoids cancellation at $a \approx 0$.