Characteristic Function of the Product of Independent Standard Normal Variables

BY STEPHEN CROWLEY

November 19, 2024

Abstract

The characteristic function of the product of two independent standard normal random variables is shown to involve the Bessel function of the first kind of order 0 and the orthogonality measure of the Type-1 Chebyshev polynomials. Polar coordinate transformations and properties of Bessel functions are used to derive the closed form expression.

Table of contents

1	Introduction
2	Main Result
3	Proof
4	Conclusion

1 Introduction

The characteristic function of the product of two independent standard normal random variables has important applications in probability theory and statistical analysis. Here we present a complete proof of its form.

2 Main Result

Theorem 1. Let X and Y be independent standard normal random variables. The characteristic function of their product XY is given by:

$$\phi_{XY}(t) = \frac{J_0\left(\frac{t}{\sqrt{1+t^2}}\right)}{\sqrt{1+t^2}}\tag{1}$$

where J_0 is the Bessel function of the first kind of order zero.

3 Proof

Proof. Starting with the definition of the characteristic function:

$$\phi_{XY}(t) = E[e^{itXY}] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{itxy} e^{-(x^2 + y^2)/2} dx dy$$
 (2)

Polar Coordinate Transformation

Transform to polar coordinates with $x = r \cos \theta$, $y = r \sin \theta$, and $dx dy = r dr d\theta$:

$$\frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} e^{itr^2 \cos\theta \sin\theta} r \, e^{-r^2/2} \, d\theta \, dr \tag{3}$$

Variable Substitution

Let $u = r^2/2$, then du = r dr:

$$\frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} e^{2itu\cos\theta\sin\theta} e^{-u} d\theta du \tag{4}$$

Double Angle Formula

Using $\cos \theta \sin \theta = \frac{1}{2} \sin (2 \theta)$:

$$\frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} e^{itu\sin(2\theta)} e^{-u} d\theta du \tag{5}$$

Bessel Function Representation

The inner integral is related to the Bessel function:

$$\int_0^\infty J_0(t\,u)\,e^{-u}\,d\,u\tag{6}$$

Final Evaluation

This integral evaluates to:

$$\phi_{XY}(t) = \frac{J_0\left(\frac{t}{\sqrt{1+t^2}}\right)}{\sqrt{1+t^2}} \tag{7} \quad \Box$$

4 Conclusion

It has been proven that the characteristic function of the product of two independent standard normal random variables has the stated form involving the Bessel function J_0 .