Lezione 1

```
Cosa andremo a studiare

Parte 1
Parte 2
Implicazione
Insiemi
Simboli principali degli insiemi
Sottoinsieme
Insieme vuoto
Esempio di sottoinsieme a due dimensioni
Relazioni tra insiemi (unione, intersezione , etc..)
Unione
Intersezione
Differenza
Complemento
Insieme delle parti di A
```

Cosa andremo a studiare

Parte 1

- Insiemi
- Relazioni
- Funzioni
- Numerosità di insiemi
- Induzione (Tecnica di dimostrazione)

Parte 2

- Logica posizionale
- · Logica predicativa

Lezione 1 1

Implicazione

Se A allora B:

- Se A è vero e B è vero allora l'implicazione è vera
- Se A è vera e B è falsa allora l'implicazione è falso
- Se A è falsa indipendentemente dal valore di B l'implicazione è vera

Es. Se piove allora apro l'ombrello (bisogna prenderla come una domanda)

- Se piove allora apro l'ombrello ed è vera
- Se piove e non apro l'ombrello allora è falsa
- Ma se non piove indipendentemente se apro l'ombrello è vera

Insiemi

Collezione di oggetti e viene contenuto da parentesi graffe {}

• Deve essere ben definito il concetto di appartenenza $\rightarrow \underline{a \in A}$ o $\underline{a \notin A}$

Negli insiemi non conta l'ordine degli elementi e ne la loro molteplicità

Es. per rappresentare i numeri da 0 a 24 utilizziamo questa formula

$$_{\dashv}$$
 A = $\{x \in \mathbb{N} \mid 0 \leq x \leq 24\}$ $_{\dashv}$ | significa tale che

Insime vuoto si indica con $\ \ \rightarrow \ \emptyset$ e significa che non ha nessun elemento.

Non confondiamo l'appartenenza con la inclusione

L'appartenenza è una relazione tra un elemento ed un insieme.

L'inclusione è una relazione tra due insiemi.

Simboli principali degli insiemi

Lezione 1 2

```
\forall = Per ogni
\exists = Esiste
\Rightarrow = Implica
\land = And (e)
\lor = Or (o)
\neg = Not (non)
```

Sottoinsieme

 $A\subset B$ ightarrow Sottoinsieme ightarrow significa che ogni elemento di A è elemento di B e si può esprimere cosi ightarrow $\forall x(x\in A)$ \Longrightarrow $x\in B)$

Insieme vuoto

L'insieme vuoto è sottoinsieme di qualunque insieme ${\scriptscriptstyle{
ightarrow}}\ \forall x \quad \emptyset \subseteq X$

Per confermare ciò prendiamo l'implicazione del sottoinsieme $_{\dashv}$ $\forall x(x\in A\implies x\in B)$

Però come detto in precedenza se A è falso allora tutta l'espressione è vera quindi se $x\in A$ è falso allora è vero che $\emptyset\subseteq X$.

Esempio di sottoinsieme a due dimensioni

```
A=\{1,2,\{1,2\}\} 1\in A	o {\sf Vera} \{1,2\}\in A	o {\sf Vera}	o {\sf Fa} riferimento all'elemento a \{1,2\} \{1,2\}\subseteq A	o {\sf Vera}	o {\sf Fa} rimerimento agli elementi 1,2 e non al sottoinsime \{1,2\} \underline{{\sf IMPORTANTE}} \{\{1,2\}\}\subseteq A	o {\sf Vera} \{\{1,2\}\}\subseteq A	o {\sf Vera} \{\{1,2\}\}\in A	o {\sf Falsa}	o {\sf Essa} appartiene ad A ma non è un elemento di A
```

Lezione 1 3

Relazioni tra insiemi (unione, intersezione, etc..)

Unione

 $A \cup B \, {\,\scriptscriptstyle\,\rightarrow\,}\,$ Tutti gli oggetti che stanno in A e in $\, {\rm B} \,$

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Intersezione

 $A\cap B$ \rightarrow Tutti gli oggetti che stanno sia in A che in B

$$A\cap B=\{x\mid x\in A\wedge x\in B\}$$

Differenza

 $A\setminus B$ o A-B o Tutti gli oggetti di A togliendo gli elementi di B $A\setminus B=\{x\mid x\in A\ \land\ x\not\in B\}$

Complemento

 $\overline{B} = A - B$ \rightarrow Tutto l'insime tranne l'insieme del complemento

$$B^A$$
 o $\overline{B} = \{x \in A \mid x \notin B\}$

Insieme delle parti di A

$$\begin{split} &P(A) = \{X \mid X \subseteq A\} \\ &\text{es. } A = \{1,2\} \ {\scriptstyle\rightarrow} \ P(A) = \{\{1\},\{2\},\{1,2\},\emptyset\} \\ &\text{es. } A = \{a,b,c\} \ {\scriptstyle\rightarrow} \ P(A) = \{\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\},\emptyset\} \\ &P(A) = \mathbf{2}^A \end{split}$$