Basi di Dati

A.A. 2021-2022 CdL Informatica Triennale

Prof. Alfredo Pulvirenti (A-L)

Prof. Salvatore Alaimo (M-Z)

Recapiti

Prof. Alfredo Pulvirenti

- Ufficio: Terzo Blocco, stanza n. 35
- Tel. 095-7383087
- e-mail: apulvirenti@dmi.unict.it
- Homepage: http://www.dmi.unict.it/~apulvrenti/

Prof. Salvatore Alaimo

- Ufficio: Terzo Blocco, stanza n. 35
- Tel. 095-7383087
- e-mail: alaimos@dmi.unict.it
- Homepage: http://www.alaimos.com/

• 9 CFU (72h)

- Prerequisiti
 - Programmazione 2

Informazioni

- Orario lezioni
 - Lun/Mer 11:00-13.00; Ven 10:00-12:00 (A-L)
 - Lun/Mer 11:00-13.00; Ven 8:00-10:00(M-Z)
- Ricevimento:
 - Giovedì 9.30-11.30 su Teams
- Durante il corso sarà usato STUDIUM (e Teams) come canale di comunicazione ufficiale;
- Materiale delle lezioni su STUDIUM <u>http://studium.unict.it/</u>

- Introduzione alle basi di dati:
 - Generalità sui DBMS
 - Modelli dei dati e indipendenza fisica
 - Linguaggi e utenti delle basi di dati
- Il modello Relazionale dei dati
 - Relazioni, attributi, istanze di relazione, n-uple
 - Vincoli di integrità, chiavi, chiavi esterne
- Algebra relazionale
 - Operatori fondamentali e derivati
 - Algoritmo per l'ottimizzazione delle query

- Il linguaggio SQL
 - Il linguaggio di definizione dei dati (DDL):
 - Definizione di tabelle, domini, indici.
 - · Specifica di semplici vincoli di integrità
 - Il linguaggio di interrogazione (DML):
 - Operatori di join-selezione-proiezione, operatori insiemistici
 - Operatori di raggruppamento.
 - Interrogazioni nidificate e correlate
 - · Query ricorsive.
 - Il linguaggio di manipolazione dei dati (DML):
 - · Inserimento, eliminazione e modifica di record.
 - Viste
 - Controllo dell'accesso ad una base di dati
 - Grant/Revoke
 - Basi di dati attive
 - Trigger

- Progettazione delle basi di dati:
 - Progettazione concettuale
 - Progettazione logica
- Normalizzazione delle basi di dati:
 - Anomalie
 - Dipendenze Funzionali
 - Decomposizioni di Schemi
 - Forme Normali: di Boyce-Codd e 3NF
- · Organizzazione fisica e gestione delle interrogazioni
 - Indici primari e secondari, Strutture ad albero
 - Gestione delle interrogazioni: esecuzione ed ottimizzazioni

- Sviluppo di applicazioni
 - Stored procedure
 - Linguaggi host: Php
 - Oggetti persistenti
- Gestione delle transazioni
 - Controllore dell'affidabilità
 - Log e gestione dei guasti
 - Controllo concorrenza, lock a due fasi
- Cenni sui NoSQL database
 - Diversificazione dei sistemi
 - Modelli dei dati nei sistemi NoSQL
 - Gestione delle Transazioni, Map-Reduce
- Basi di dati per XML
 - Definizione di dati semistrutturati in XML
 - Xpath, XLS, Xquery

- DBMS:
 - MySQL
 - NoSQL database
 - Neo4j

Bibliografia

Libri di testo:

- Atzeni, Ceri, Fraternali, Paraboschi, Torlone,
 Basi di Dati (V edizione), McGraw-Hill.
- Albano, Ghelli, Orsini, Fondamenti di basi di dati, Zanichelli.

• Opzionale:

Garcia-Molina, Ullman, Widom, Database
 Systems: The Complete Book, Prentice Hall

Esame/1

Scritto

Esercizi + domande sulla teoria

Progetto

- Implementazione di una base di dati equipaggiata con una opzionale interfaccia web.
- Presentare una relazione dettagliata sulla progettazione completa del database.
- Il progetto viene richiesto tramite email e viene assegnato durante il ricevimento.
- Validità un anno.
- Max 1 persona per progetto.
- I progetti devono essere consegnati dopo il superamento dell'esame scritto.
- Il docente comunicherà una o più date (all'incirca un mese dopo lo scritto) per la presentazione del progetto.
- La relazione va consegnata tramite email almeno 72 ore prima della data fissata per la presentazione
- Altre comunicazioni...STUDIUM

Esame/2

Modalità d'esame:

- Per chi segue:
 - 2 prove in itinere (della durata di 2h ciascuna) + progetto finale;

 Esame della durata di 3h sui contenuti del corso (aperto a tutti).

Metodo di studio

Altamente consigliato seguire interamente il corso

 Studio individuale, con riflessione approfondita sui concetti;

Svolgere esercizi;

• Sviluppo di progetti e esercitazioni pratiche anche con l'uso di DBMS (es. MySQL)

Introduzione alle basi di dati

Prof. Alfredo Pulvirenti (A-L)

Prof. Salvatore Alaimo (M-Z)

(Atzeni-Ceri Capitolo 1)

Base di Dati: definizione

• Un insieme organizzato di dati, che esistono e si evolvono nel tempo, disponibili in una certa struttura (impresa, banca, ospedale, ...) per lo svolgimento della propria attività.

Dove sono

• Le basi di dati al giorno d'oggi sono essenziali in ogni tipologia di attività.

Esempi:

- Usate per mantenere "record" interni ad una struttura;
- Per offrire servizi attraverso il World-Wide-Web;
- Per supportare diversi altri processi (commerciali);
- Alla base di ricerche scientifiche, utilizzate per memorizzare e rappresentare dati (collezionati in una qualche maniera).

Sistema organizzativo e sistema informativo

- Insieme di risorse (persone, denaro, materiali e beni, informazioni) e regole per lo svolgimento coordinato delle attività al fine del perseguimento degli scopi;
- Il sistema informativo è parte del sistema organizzativo (eventualmente non esplicitato nella struttura), il sistema informativo esegue/gestisce processi informativi (cioè i processi che coinvolgono informazioni).

Sistemi informativi e automazione

• Il concetto di "sistema informativo" è indipendente da qualsiasi automazione:

 esistono organizzazioni la cui ragion d'essere è la gestione di informazioni (p. es. servizi anagrafici e banche) e che operano da secoli.

Sistemi informativi, informazioni e dati

- porzione automatizzata del sistema informativo:
 - la parte del sistema informativo che gestisce informazioni con tecnologia informatica

Gestione delle informazioni/1

- Aspetto fondamentale:
 - Razionalizzazione e standardizzazione dell'organizzazione delle informazioni e delle procedure.

- Anche prima di essere informatizzati, molti sistemi informativi si sono evoluti in questa direzione;
 - Esempio: gli uffici anagrafe fino a pochi anni fa

Gestione delle informazioni/2

- In qualsiasi attività le informazioni vengono gestite (registrate e scambiate) in diversi modi:
 - idee informali;
 - linguaggio naturale (scritto o parlato, formale o colloquiale, in una lingua o in un'altra);
 - disegni, grafici, schemi;
 - numeri e codici.
- e su vari supporti
 - memoria umana, carta, dispositivi elettronici.

Informazioni e dati

- Nei sistemi informatici (e non solo), le informazioni vengono rappresentate in modo essenziale e spartano attraverso i dati
- Dal Vocabolario della lingua italiana (1987) distinguiamo:
 - informazione: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere.
 - dato: ciò che è immediatamente presente alla conoscenza, prima di ogni elaborazione; (in informatica) elementi di informazione costituiti da simboli che debbono essere elaborati.

Dati e informazioni

• I dati hanno bisogno di essere interpretati

Esempio

su un foglio di carta sono due dati: 'Mario' '2075'

Se il foglio di carta viene fornito in risposta alla domanda

- "A chi mi devo rivolgere per il problema X; qual è il suo interno?"
- allora i dati possono essere interpretati per fornire informazione e arricchire la conoscenza.

Perché i dati

 La rappresentazione precisa di forme più ricche di informazione e conoscenza è difficile;

 I dati costituiscono spesso una risorsa strategica, perché più stabili nel tempo di altre componenti (processi, tecnologie, ruoli umani).

Basi di dati/1

 La potenza delle basi di dati deriva da un bagaglio di conoscenze e tecnologie che sono state sviluppate in diverse decadi che hanno dato luogo a software specializzati chiamati:

Sistema di gestione di basi di dati DataBase Management System, o DBMS

Basi di dati/2

 Un DBMS è uno strumento particolarmente potente per la creazione e la gestione efficiente ed efficace di grandi quantità di dati.

DataBase Management System — DBMS

- Sistema (prodotto software) in grado di gestire collezioni di dati che siano (anche):
 - grandi (di dimensioni (molto) maggiori della memoria centrale dei sistemi di calcolo utilizzati)
 - persistenti (con un periodo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano)
 - condivise (utilizzate da applicazioni diverse)

DataBase Management System — DBMS

Ambiente di programmazione:

- Un DBMS consente all'utente o ad un'applicazione di accedere e modificare i dati attraverso un potente linguaggio di interrogazione.
- garantendo affidabilità (resistenza a malfunzionamenti hardware e software) e privatezza (con una disciplina e un controllo degli accessi).
- Come ogni prodotto informatico, un DBMS deve essere efficiente (utilizzando al meglio le risorse di spazio e tempo del sistema) ed efficace (rendendo produttive le attività dei suoi utilizzatori).

DBMS relazionali

- Prodotti software (complessi) disponibili sul mercato; esempi:
 - DB2
 - Oracle
 - SQLServer
 - MySQL
 - PostgreSQL
 - **—** ...

DB-Engines Ranking

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

Read more about the \underline{method} of calculating the scores.

283 systems in ranking, October 2015

				200 Systems in Familiary Second Lord				
	Rank				Score			
Oct 2015	Sep 2015	Oct 2014	DBMS	Database Model	Oct 2015	Sep 2015	Oct 2014	
1.	1.	1.	Oracle	Relational DBMS	1466.95	+3.58	-4.95	
2.	2.	2.	MySQL	Relational DBMS	1278.96	+1.21	+15.99	
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1123.23	+25.40	-96.37	
4.	4.	↑ 5.	MongoDB 🔠	Document store	293.27	-7.30	+52.86	
5.	5.	4 .	PostgreSQL	Relational DBMS	282.13	-4.05	+24.41	
6.	6.	6.	DB2	Relational DBMS	206.81	-2.33	-0.86	
7.	7.	7.	Microsoft Access	Relational DBMS	141.83	-4.17	+0.19	
8.	8.	1 0.	Cassandra 🖽	Wide column store	129.01	+1.41	+43.30	
9.	9.	4 8.	SQLite	Relational DBMS	102.67	-4.99	+7.71	
10.	10.	1 2.	Redis 🔠	Key-value store	98.80	-1.86	+19.42	
11.	11.	4 9.	SAP Adaptive Server	Relational DBMS	85.64	-0.88	-1.15	
12.	12.	4 11.	Solr	Search engine	79.07	-2.87	-0.89	
13.	13.	13.	Teradata	Relational DBMS	73.44	-0.83	+6.09	
14.	14.	1 6.	Elasticsearch	Search engine	70.23	-1.32	+27.41	
15.	15.	15.	HBase	Wide column store	57.24	-1.79	+10.14	
16	16.	1 7.	Hive	Relational DBMS	53 56	+0.03	+18.78	

359 systems in ranking, October 2020

	Rank				Score		
Oct 2020	Sep 2020	Oct 2019	DBMS	Database Model	Oct 2020	Sep 2020	Oct 2019
1.	1.	1.	Oracle 🚻	Relational, Multi-model 🚺	1368.77	-0.59	+12.89
2.	2.	2.	MySQL 🚹	Relational, Multi-model 🚺	1256.38	-7.87	-26.69
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🚺	1043.12	-19.64	-51.60
4.	4.	4.	PostgreSQL #	Relational, Multi-model 🚺	542.40	+0.12	+58.49
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	448.02	+1.54	+35.93
6.	6.	6.	IBM Db2 🚹	Relational, Multi-model 👔	161.90	+0.66	-8.87
7.	1 8.	7.	Elasticsearch 🖽	Search engine, Multi-model 👔	153.84	+3.35	+3.67
8.	4 7.	8.	Redis 🕕	Key-value, Multi-model 👔	153.28	+1.43	+10.37
9.	9.	1 1.	SQLite ••	Relational	125.43	-1.25	+2.80
10.	10.	10.	Cassandra 🚹	Wide column	119.10	-0.08	-4.12
11.	11.	4 9.	Microsoft Access	Relational	118.25	-0.20	-12.93
12.	12.	1 3.	MariaDB 🚹	Relational, Multi-model 👔	91.77	+0.16	+5.00
13.	13.	J 12.	Splunk	Search engine	89.40	+1.51	+2.57
14.	14.	1 5.	Teradata 🚹	Relational, Multi-model 👔	75.79	-0.61	-2.95
15.	15.	J 14.	Hive	Relational	69.55	-1.62	-15.19
16.	16.	16.	Amazon DynamoDB 🖽	Multi-model 👔	68.41	+2.23	+8.24
17.	17.	1 25.	Microsoft Azure SQL Database	Relational, Multi-model 👔	64.40	+3.95	+36.89
18.	18.	1 9.	SAP Adaptive Server	Relational	55.16	+1.15	-0.67
19.	19.	1 20.	SAP HANA 🚹	Relational, Multi-model 👔	54.24	+1.38	-1.11
20.	20.	J 17.	Solr	Search engine	52.48	+0.86	-5.09
21.	21.	1 22.	Neo4j ⊞	Graph	51.34	+0.71	+1.87

380 systems in ranking, October 2021

52.84 +0.52 +5.46

	Rank				Score	
Oct 2021	Sep 2021	Oct 2020	DBMS	Database Model	Oct Sep 2021 2021	Oct 2020
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🔃	1270.35 -1.19	-98.42
2.	2.	2.	MySQL	Relational, Multi-model 🔞	1219.77 +7.24	-36.61
3.	3.	3.	Microsoft SQL Server [+	Relational, Multi-model 👔	970.61 -0.24	-72.51
4.	4.	4.	PostgreSQL □ ⊜	Relational, Multi-model 👔	586.97 +9.47	+44.57
5.	5.	5.	MongoDB 😷	Document, Multi-model 👔	493.55 -2.95	+45.53
6.	6.	1 8.	Redis 😷	Key-value, Multi-model 👔	171.35 -0.59	+18.07
7.	7.	4 6.	IBM Db2	Relational, Multi-model 👔	165.96 -0.60	+4.06
8.	8.	4 7.	Elasticsearch	Search engine, Multi-model 👔	158.25 -1.98	+4.41
9.	9.	9.	SQLite	Relational	129.37 +0.72	+3.95
10.	10.	10.	Cassandra 🚹	Wide column	119.28 +0.29	+0.18
11.	11.	11.	Microsoft Access	Relational	116.38 -0.56	-1.87
12.	12.	12.	MariaDB 🚹	Relational, Multi-model 👔	102.59 +1.90	+10.82
13.	13.	13.	Splunk	Search engine	90.61 -0.99	+1.21
14.	14.	1 5.	Hive ⊞	Relational	84.74 -0.83	+15.19
15.	15.	1 7.	Microsoft Azure SQL Database	Relational, Multi-model 👔	79.72 +1.46	+15.32
16.	16.	16.	Amazon DynamoDB 🚹	Multi-model 🔃	76.55 -0.38	+8.14
17.	17.	4 14.	Teradata 🞛	Relational, Multi-model 👔	69.83 +0.15	-5.96
18.	1 21.	1 64.	Snowflake 🚹	Relational	58.26 +6.19	+52.32
19.	4 18.	1 21.	Neo4j ⊞	Graph	57.87 +0.24	+6.53
20.	4 19.	4 19.	SAP HANA 🖽	Relational, Multi-model 👔	55.28 -0.96	+1.04

Relational

FileMaker

21. ↓ 20. **↑** 23.

Basi di dati e condivisione delle informazioni

- Una base di dati e' una risorsa integrata, condivisa fra le varie applicazioni
- Conseguenze
 - Attivita' diverse su dati in parte condivisi:
 - meccanismi di autorizzazione
 - Attivita' multi-utente su dati condivisi:
 - controllo della concorrenza
- Problemi
 - Ridondanza: informazioni ripetute
 - Rischio di incoerenza: le versioni possono non coincidere

Descrizione dei dati

- Modello dei dati, formalismo (matematico) composto da due parti:
 - Una notazione per descrivere i dati;
 - Un insieme di operatori per manipolare tali dati.
- Componente fondamentale:
 - Meccanismi di strutturazione (o costruttori di tipo)
 - come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori

Descrizione dei dati nei DBMS

- Descrizioni e rappresentazioni dei dati a livelli diversi
 - Permettono l'indipendenza dei dati dalla rappresentazione fisica:
 - i programmi fanno riferimento alla struttura a livello più alto (logica), e le rappresentazioni sottostanti possono essere modificate senza necessità di modifica dei programmi.

Due tipi (principali) di modelli

- modelli logici: utilizzati nei DBMS esistenti per l'organizzazione dei dati
 - Si chiama logico per sottolineare il fatto che le strutture utilizzate da questi modelli, pure essendo astratte, riflettono una particolare organizzazione
 - utilizzati dai programmi
 - indipendenti dalle strutture fisiche
- esempi: relazionale, reticolare, gerarchico, a oggetti

Due tipi (principali) di modelli

- modelli concettuali: permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale piuttosto che i dati utili a rappresentarli
 - sono utilizzati nelle fasi preliminari di progettazione
- il più noto è il modello Entità-Relazione

Esempio

Modello relazionale:

- prevede il costruttore relazione, che permette di definire insiemi di record omogenei;
- Usa un insieme di nomi (detti attributi) per descrivere i dati, che individuano le colonne delle tabelle.

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 18	777777
Maria Bianchi	234567	Via Roma 2	888888
Giovanni Verdi	345678	Via Etnea 18	999999
Enzo Gialli	456789	Via Catania 3	44444

Architettura di un DBMS (semplificata)

- schema logico: descrizione della base di dati nel modello logico (ad esempio, la struttura della tabella)
- schema fisico: rappresentazione dello schema logico per mezzo di strutture memorizzazione (file)

cambiare nel tempo)

Modello Dati

Utente

Modello concettuale

Modello logico

Schema interno Tabelle sul disco

Architettura standard(ANSI/SPARC) a tre livelli per DBMS

Architettura ANSI/SPARC: schemi

- schema logico: descrizione dell'intera base di dati nel modello logico "principale" del DBMS
- schema fisico: rappresentazione dello schema logico per mezzo di strutture fisiche di memorizzazione
- schema esterno: descrizione di parte della base di dati in un modello logico ("viste" parziali, derivate, anche in modelli diversi)

Una Vista

Corsi

Corso D	ocente A	Aula
Basi di dati	Rossi	4
Algoritmi	Neri	2
Reti	Bruni	1
Analisi dati	Rossi	G

Aule

Nome	Edificio	Piano
4	DMI	Terra
1	DMI	Terra
G	DAU	Primo

CorsiSedi

Corso	Aula	Edificio	Piano
Basi di dati	4	DMI	Terra
Reti	1	DMI	Terra
Analisi dati	G	DAU	Primo

Indipendenza dei dati

- conseguenza della articolazione in livelli
- l'accesso avviene solo tramite il livello esterno (che può coincidere con il livello logico)
- due forme:
 - indipendenza fisica
 - indipendenza logica

Indipendenza fisica

- Il livello logico e quello esterno sono indipendenti da quello fisico
 - una relazione è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica
 - la realizzazione fisica può cambiare senza che debbano essere modificati i programmi

Indipendenza logica

- Il livello esterno è indipendente da quello logico
- aggiunte o modifiche alle viste non richiedono modifiche al livello logico
- modifiche allo schema logico che lascino inalterato lo schema esterno sono trasparenti

Linguaggi per le basi di dati

Nei DBMS distinguiamo

Data-Definition Language (DDL):

 consente all'utente di creare nuovi database e di specificarne i loro schemi (logici, esterni, fisici) la loro strutturazione logica

- Data-Manipulation Language (DML):
 - da agli utenti la possibilità di interrogare e modificare istanze di basi di dati

Query su una tabella

 Vorrei conoscere l'indirizzo e il telefono di Giovanni Verdi

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 18	777777
Maria Bianchi	234567	Via Roma 2	888888
Giovanni Verdi	345678	Via Etnea 18	999999
Enzo Gialli	456789	Via Catania 3	444444

Indirizzo	Telefono
Via Etnea 18	999999

Query su due tabelle

Quali esami ha superato Mario Rossi?

Corso	Matricola	Voto
Programmazione 1	345678	27
Architettura	123456	30
Matematica discreta	234567	19
Basi di Dati	345678	28

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 18	777777
Maria Bianchi	234567	Via Roma 2	888888
Giovanni Verdi	345678	Via Etnea 18	999999
Enzo Gialli	456789	Via Catania 3	44444

Corso Architettura

Query su più tabelle

Corso	Matricola	Voto
Programmazione 1	345678	27
Architettura	123456	30
Matematica discreta	345678	19
Basi di Dati	345678	28

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 18	777777
Maria Bianchi	234567	Via Roma 2	888888
Giovanni Verdi	345678	Via Etnea 18	999999
Enzo Gialli	456789	Via Catania 3	44444

Corso	Professore
Architettura	Barbanera
Programmaizione 1	Cincotti
Matematica discreta	Milici
Basi di dati	Pulvirenti

Quali professori hanno dato più di 24 a Giovanni Verdi e in quali corsi?

Corso	Professore
Programmazione 1	Cincotti
Basi di dati	Pulvirenti

Vantaggi e svantaggi DBMS

Pro

- dati come risorsa comune, base di dati come modello della realtà
- gestione centralizzata con possibilità di standardizzazione ed "economia di scala"
- disponibilità di servizi integrati
- riduzione di ridondanze e inconsistenze
- indipendenza dei dati (favorisce lo sviluppo e la manutenzione delle applicazioni)

Contro

- costo dei prodotti (a volte) e della transizione
- architetture complesse a fronte di requisiti minimi comuni