LIGHT-STORING FLUORESCENT MATERIAL

Publication number: JP7011250
Publication date: 1995-01-13

Inventor: MURAYAMA YOSHIHIKO; TAKEUCHI NOBUYOSHI;

AOKI YASUMITSU; MATSUZAWA TAKASHI

Applicant: NEMOTO TOKUSHU KAGAKU KK

Classification:

- international: C09K11/64: C09K11/77; C09K11/80; C09K11/64;

C09K11/77; (IPC1-7): C09K11/64

- european: C09K11/77N6; C09K11/77T6 Application number: JP19940004984 19940121

Priority number(s): JP19940004984 19940121; JP19930103310 19930428

Also published as:

EP0622440 (A1); US5424006 (A1); EP0622440 (B2); EP0622440 (B1); CN1151229C (C

more >>

Report a data error he

Abstract of JP7011250

PURPOSE:To obtain a fluorescent material having prolonged decay characteristic of luminescent screer high chemical stability and high light resistance for a long period of time. CONSTITUTION:The objective material contains a compound of the formula: MAI2O4 where M is at least one metal selected from calcium strontium and barium, as a mother crystal. Magnesium can be used as M. Europium can be added as an activator. Coactivator may be added, too.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-11250

(43)公開日 平成7年(1995)1月13日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

C09K 11/64

CPM

9159-4H

審査請求 未請求 請求項の数5 OL (全 26 頁)

(21)出願番号	特願平6-4984	(71)出顧人	390031808
			根本特殊化学株式会社
(22)出顧日	平成6年(1994)1月21日		東京都杉並区上荻1丁目15番1号 丸三ビ
			ル内
(31)優先権主張番号	特顧平5-103310	(72)発明者	村山 義彦
(32)優先日	平 5 (1993) 4 月28日		東京都杉並区上荻1-15-1 丸三ピル
(33)優先権主張国	日本 (JP)		根本特殊化学株式会社内
		(72)発明者	竹内 信義
			東京都杉並区上荻1-15-1 丸三ピル
			根本特殊化学株式会社内
		(74)代理人	弁理士 黒田 博道 (外3名)

最終頁に続く

(54) 【発明の名称】 蓄光性蛍光体

(57)【要約】

【目的】長時間の残光特性を有し、化学的にも安定であり、かつ長期にわたる耐光性に優れる。

【構成】MAI2 O4 で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素からなる化合物を母結晶にした。Mにマグネシウムを添加できる。付活剤としてユウロピウムを添加できる。共付活剤を添加することもできる。

【特許請求の範囲】

【請求項1】MAI2 O4 で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素からなる化合物を母結晶にしたことを特徴とする蓄光性蛍光体。

【請求項2】MAI2 O4 で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素にマグネシウムを添加した複数の金属元素からなる化合物を母結晶にしたことを特徴とする蓄光性蛍光体。

【請求項3】賦活剤としてユウロピウムを、Mで表わす 金属元素に対するモル%で0.001 %以上10%以下添加し たことを特徴とする請求項1または2記載の蓄光性蛍光 体。

【請求項4】共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスからなる群の少なくとも1つ以上の元素を、Mで表わす金属元素に対するモル%で0.001%以上10%以下添加したことを特徴とする請求項3記載の蓄光性蛍光体。

【請求項5】室温で200~450nmの紫外線および可視光を照射する時、少なくとも50℃以上の高温域に熱発光のグローピークを有することを特徴とする請求項1、2、3または4記載の蓄光性蛍光体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は蓄光性蛍光体、特に屋内外で主に夜間表示用として利用可能な耐光性に優れると共に、極めて長時間の残光特性を有する新規の蓄光性蛍光体に関するものである。

[0002]

【従来の技術】一般に蛍光体の残光時間は極めて短く、外部刺激を停止すると速やかにその発光は減衰するが、まれに紫外線等で刺激した後その刺激を停止した後もかなりの長時間(数10分~数時間)に渡り残光が肉眼で認められるものがあり、これらを通常の蛍光体とは区別して蓄光性蛍光体あるいは燐光体と呼んでいる。

【0003】この蓄光性蛍光体としては、CaS:Bi(紫青色発光)、CaSrS:Bi(青色発光)、ZnS:Cu(緑色発光)、ZnCdS:Cu(黄色~橙色発光)等の硫化物蛍光体が知られているが、これらのいずれの硫化物蛍光体も、化学的に不安定であったり、耐光性に劣るなど実用面での問題点が多い。現在市場でもっぱら用いられる硫化亜鉛系蓄光性蛍光体(ZnS:Cu)も、特に湿気が存在すると紫外線により光分解して黒変したり輝度低下するため、屋外で直接日光に曝されるような用途での使用は困難であり、夜光時計や避難誘導標證、屋内の夜間表示等その用途は限定されていた。

【0004】またこの硫化亜鉛系蛍光体を夜光時計に用いる場合であっても、肉眼でその時刻を認識可能な残光時間は約30分から2時間程度であり、実用的には、蛍光体に放射性物質を添加しそのエネルギーで刺激して常時発光する自発光性の夜光塗料を用いざるを得ないのが現状であった。

[0005]

【発明が解決しようとする課題】そこで本発明者は、前述のごとき現状に鑑み、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れる蓄光性蛍光体の提供を目的としたものである。

[0006]

【課題を解決するための手段】従来から知られている硫化物系蛍光体とは全く異なる新規の蓄光性蛍光体材料としてユウロピウム等を賦活したアルカリ土類金属のアルミン酸塩に着目し、種々の実験を行った結果、この蓄光性蛍光体材料が、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には酸化物系であることがら化学的にも安定であり、かつ耐光性に優れることが確認でき、従来の問題点がことごとく解消でき、放射能を含有しなくとも1晩中視認可能な夜光塗料あるいは顔料として、様々な用途に適用可能な長残光の蓄光性蛍光体を提供することが可能となることが明らかとなったものである。

【0007】前述したような蓄光性蛍光体として、請求項1記載のものは、MAI2 O4 で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素からなる化合物を母結晶にしたことを特徴とする。請求項2記載の発明は、MAI2 O4 で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素にマグネシウムを添加した複数の金属元素からなる化合物を母結晶にしたことを特徴とする。

【0008】また請求項3記載のものは、請求項1または2記載の蓄光性蛍光体に、賦活剤としてユウロピウムを、Mで表わす金属元素に対するモル%で0.001 %以上10%以下添加したことを特徴とする。更に請求項4記載のものは、請求項3記載の蓄光性蛍光体に、共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスからなる群の少なくとも1つ以上の元素を、Mで表わす金属元素に対するモル%で0.001 %以上10%以下添加したことを特徴とする。

【0009】また請求項5記載のものは、請求項1、 2、3または4記載の蓄光性蛍光体のうちで、特に、室 温で200~450nmの紫外線および可視光を照射す る時、少なくとも50℃以上の高温域に熱発光のグローピークを有することを特徴とする。またこれらの蓄光性 蛍光体の合成に際しては、フラックスとしてたとえば硼酸を 1~10重量%の範囲で添加することができる。ここで添加量が、1重量%以下であるとフラックス効果がなくなるし、10重量%を越えると固化し、その後の粉砕、分級作業が困難となる。

[0010]

【実施例】以下、MAI2O4で表される本発明の実施例を、金属元素(M)の種類、賦活剤としてのユウロピウムの濃度あるいは共賦活剤の種類及び濃度を種々変更した場合について、順次説明する。最初に金属元素(M)としてストロンチウムを用い、賦活剤としてユウロピウムを用いるものの、共賦活剤を用いない場合の蓄光性蛍光体について、実施例1として説明する。実施例1.SrAI2O4:Eu蛍光体の合成とその特

試料1-(1)

試薬特級の炭酸ストロンチウム146.1 g (0.99モル) およびアルミナ102 g (1 モル) に賦活剤としてユウロピウムを酸化ユウロピウム (E u 2 O 3) で 1.76 g (0.005 モル) 添加し、更にフラックスとしてたとえば硼酸を 5 g (0.08モル) 添加し、ボールミルを用いて充分に混合した後、この試料を電気炉を用いて窒素-水素混合ガス (97:3) 気流中 (流量:0.1 リットル毎分) で、1300 $^{\circ}$ C、1時間焼成した。その後室温まで約1時間かけて冷却し、得られた化合物粉体をふるいで分級し100メッシュを通過したものを蛍光体試料1ー(1) とした。

【 O O 1 1 】図 1 には、合成された蛍光体の結晶構造を X R D (X 線回折) により解析した結果を示した。回折 ピークの特性から得られた蛍光体は S r A I 2 O 4 のスピネル構造を有することが明かとなった。図 2 には本蛍光体の励起スペクトル及び刺激停止後の残光の発光スペクトルを示した。

【0012】図から、発光スペクトルのピーク波長が約520nmの緑色の発光であることが明らかとなった。次にこのSrAl2 O4: Eu蛍光体の残光特性を市販品で緑色に発光するZnS: Cu蓄光性蛍光体(根本特殊化学(株)製:品名GSS、発光ピーク波長:530nm)の残光特性と比較して測定した結果を、図3および表2に示した。

【0013】残光特性の測定は、蛍光体粉末0.05g を内径8mmのアルミ製試料皿に秤り取り(試料厚さ: O. 1g/cm2)、約15時間暗中に保管して残光を 消去した後、D65標準光源により200 ルックスの明るさ で10分間刺激し、その後の残光を光電子増倍管を用い た輝度測定装置で計測したものである。図3から明らか なように、本発明によるSrAl2 〇4 : Eu蛍光体の 残光は極めて大きくその減衰もゆるやかであり、経過時 間とともにZnS:Cu蓄光性蛍光体との残光強度差が 大きくなることが分かる。また図中に、肉眼で充分に認 識可能な発光強度のレベル(約0.3mCd/m2の輝 度に相当)を破線で示したが、このSrAl2 〇4 : E u 蛍光体の残光特性から約24時間後でもその発光が認 識可能であると推定される。実際に刺激後15時間経過 したこのSrAI2 O4: Eu蛍光体を肉眼で観察した ところその残光を充分に確認することができた。

【0014】また表2中の試料1-(1)には、刺激停止 後10分、30分および100分後の残光強度をZn S:Cu蓄光性蛍光体の強度に対する相対値で示した。 この表から本発明によるSrAl2 〇4 : Eu蛍光体の 残光輝度は10分後で2nS: Cu蓄光性蛍光体の2.9 倍であり100分後では17倍であることが分かる。さら に本発明によるSrAl2 〇4 : Eu蛍光体を光刺激し た際の室温から250℃までの熱発光特性(グローカー ブ)をTLDリーダー(KYOKKO TLD-2000システム)を 用いて調査した結果を図4に示した。図から本蛍光体の 熱発光は約40℃、90℃、130℃の3つのグローピ ークからなり約130℃のピークがメイングローピーク であることが分かる。図中の破線で示したZnS:Cu 蓄光性蛍光体のメイングローピークが約40℃であるこ とに照らして、本発明によるSrAI2 O4: Eu蛍光 体の50℃以上の高温に相当する深い捕獲準位が残光の 時定数を大きくし、長時間にわたる蓄光特性に寄与して いると考えられる。

【0015】試料1-(2)~(7)

次に前述と同様の方法で、ユウロピウムの濃度を変化させた表 1 で表した配合比のSrAl2 О4 : Eu蛍光体試料(試料1-(2)~(7)) を調整した。

[0016]

【表 1 】

試料	原料	配合	比
A 14	炭酸ストロンチウム	アルミナ	ユウロビウム
試料 1 - (2)	0.99998 ₹♪	1.0 EN	0.00001ED
(3)	0.9999	1.0	0.00005
(4)	0.995	1.0	0.0025
(5)	0.97	1.0	0.015
(6)	0.90	1.0	0.05
(7)	0.80	1.0	0.1

【〇〇17】この試料1-(2) ~(7) の残光特性を調査した結果を、1-(1) の残光特性を調査した結果と共に、表2中に示した。この表2から、Euの添加量が〇.〇〇25~〇.〇5モルの範囲であると、1〇分後の輝度を含めてZnS:Cu蓄光性蛍光体よりも残光特性に優れていることがわかる。ただEuの添加量が〇.〇〇〇〇1モルの場合、あるいは〇.1モルの場合であっても、刺激停止後3〇分以上経過することによって、ZnS:Cu蓄光性蛍光体よりも大きい輝度を有するようになることもわかる。

【0018】またEuが高価であることから、経済性及び濃度クエンチングによる残光特性の低下を考慮すると、Euを〇. 1モル(10モル%)以上にすることに余り意味がないこととなる。逆に、残光特性から判断す

ると、EuがO.0001モル(O.001モル%)からO.0005モル(O.005モル%)の間では、10分後輝度でZnS:Cu蓄光性蛍光体よりも輝度で劣るものの、刺激停止後30分以上経過することによって、ZnS:Cu蓄光性蛍光体よりも大きい輝度が得られることから、賦活剤として用いるEuの添加効果が明らかである。

【0019】更に、SrAI2 O4 : Eu蛍光体は酸化物系であることから、従来の硫化物系蓄光性蛍光体に比べて化学的にも安定であり、かつ耐光性に優れるものである(表24及び25参照)。

[0020]

【表2】

試料	10 分後輝度	30 分後輝度	100分後輝度
ZnS:Cu Std.	1.00	1.00	1.00
試料 1 - (1)	2.90	6.61	17.0
(2)	0.41	1.20	3.10
(3)	0.56	1.50	4.80
(4)	2.40	4.50	13.5
(5)	3.01	7.04	19.2
(6)	1.10	2.70	10.3
(7)	0.32	1.11	3.02

【0021】次に、金属元素(M)としてストロンチウムを用い、賦活剤としてユウロピウムを用い、更に共賦活剤としてジスプロシウムを用いた場合の蓄光性蛍光体について、実施例2として説明する。

実施例 2. SrA | 2 O4 : Eu、Dy 蛍光体の合成と その特性

試料2-(1)

試薬特級の炭酸ストロンチウム144.6 g (0.98モル) およびアルミナ102 g (1モル) に賦活剤としてユウロピウムを酸化ユウロピウム (Eu_2 O3)で1.76g (0.005

モル)、更に共賦活剤としてジスプロシウムを酸化ジスプロシウム ($Dy_2 O_3$)で1.87g (0.005 モル)添加し、更にフラックスとしてたとえば硼酸を5g (0.08 モル)添加し、ボールミルを用いて充分に混合した後、この試料を電気炉を用いて窒素-水素混合ガス (97:3)気流中(流量:0.19 リットル毎分)で、1300 に 1時間焼成した。その後室温まで約1時間かけて冷却し、得られた化合物粉体をふるいで分級し100メッシュを通過したものを蛍光体試料2-(1)とした。

【〇〇22】この蛍光体の残光特性を前述と同様の方法

で調査した結果を図5および表4の試料2-(1) に示した。図5から明らかなように、本発明によるSrAl2O4: Eu. Dy蛍光体の残光輝度、特にその残光初期時の輝度はZnS: Cu蓄光性蛍光体と比較して極めて高く、またその減衰の時定数も大きいことから、画期的な高輝度蓄光性蛍光体であることが分かる。図中に示した視認可能な残光強度レベルとこのSrAl2O4: Eu. Dy蛍光体の残光特性から約16時間後でもその発光を識別可能である。

【0023】表4には、刺激後10分、30分、100分後の残光強度をZnS:Cu蓄光性蛍光体の強度に対する相対値で示しているが、表から本発明によるSrAl204:Eu,Dy蛍光体の残光輝度は10分後でZnS:Cu蓄光性蛍光体の12.5倍であり100分後では37倍であることが分かる。さらに本発明によるSrAl

2 O4 : Eu, Dy 蛍光体を光刺激した際の室温から 2 50 ° こまでの熱発光特性(グローカーブ)を調査した結果を図 6 に示した。図 6 および図 4 から、共賦活剤として添加した Dy の作用により熱発光のメイングローピーク温度が 130 ° こから 90 ° この 90 ° この 90 ° この 90 ° この 90 では、SrAI2 O4 : Eu 蛍光体と比較して、その残光初期時に高い輝度を示す原因と考えられる。

【0024】試料2-(2)~(7)

次に前述と同様の方法で、ジスプロシウムの濃度を変化 させた表3で表した配合比のSrAl2 O4: Eu, D y 蛍光体試料(試料2-(2)~(7)) を調整した。

[0025]

【表3】

試料	原料配合比				
試料	炭酸ストロンチウム	アルミナ	ユウロビウム	ジスプロシウム	
試料2-(2)	0.98998 モル	1.1 EA	0.005 £R	0.00001th	
(3)	0.9899	1.0	0.005	0.00005	
(4)	0.985	1.0	0.005	0.0025	
(5)	0.94	1.0	0.005	0.025	
(6)	0.92	1.0	0.005	0.035	
(7)	0.79	1.0	0.005	0.10	

【0026】この試料2-(2) ~(7) の残光特性を調査した結果を、2-(1) の残光特性を調査した結果と共に、表4に示した。この表4から、共賦活剤としてのDyの添加量は、10分後輝度を含めてZnS: Cu蓄光性蛍光体よりもはるかに優れていることを基準とすると、0.0025~0.05モルが最適であることがわかる。ただDyの添加量が0.0001モルの場合であっても、刺激停止後30分以上経過することによって、ZnS: Cu蓄光性蛍光体よりも大きい輝度を有するようになることから、賦活剤及び共賦活剤として用いたEu及びDyの添加効果が明らかである。またDyが

高価であることから、経済性及び濃度クエンチングによる残光特性の低下を考慮すると、DyをO. 1モル(10モル%)以上にすることに余り意味がないこととなる。

【0027】なお、 $SrAl_2O4:Eu$ 、Dy 蛍光体は酸化物系であることから、従来の硫化物系蓄光性蛍光体に比べて化学的にも安定であり、かつ耐光性に優れるものである(表24 及び25 参照)。

[0028]

【表4】

試 料	10 分後輝度	30 分後輝度	100分後輝度
ZnS:Cu Std.	1.00	1.00	1.00
試料2-(1)	12.5	19.6	37.0
(2)	0.943	1.57	2.00
(3)	1.5	1. 7	2. 1
(4)	11.7	17.3	22.1
(5)	20.4	28.8	40.2
(6)	18.6	26.3	36.4
(7)	1.95	2.66	3.30

【0029】次に、金属元素(M)としてストロンチウムを用い、賦活剤としてユウロピウムを用い、更に共賦活剤としてネオジウムを用いた場合の蓄光性蛍光体について、実施例3として説明する。

実施例3. SrAl2 O4: Eu、Nd蛍光体の合成と その特性 試料3-(1)~(7)

前述と同様の方法で、ネオジウムの濃度を変化させた表 5 で示した配合比の S r A I 2 O4 : E u、 N d 系蛍光 体試料 (試料 3 - (1) \sim (7)) を調整した。

【0030】 【表5】

試 料	原料配合比			t	
試 料	炭酸ストロンチウム	アルミナ	ユウロビウム	ネオジウム	
試料3-(1)	0.98998 £A	1.0 th	0.005 £A	0.00001EA	
(2)	0.9899	1.0	0.005	0.00005	
(3)	0.985	1.0	0.005	0.0025	
(4)	0.980	1.0	0.005	0.005	
(5)	0.94	1.0	0.005	0.025	
(6)	0.92	1.0	0.005	0.035	
(7)	0.79	1.0	0.005	0.10	

【0031】これらの試料3-(1)~(7)の残光特性を

【0032】 【表6】

調査した結果を、表6に示した。

_ 亦した。		【弦り】	
試 料	10 分後輝度	30 分後輝度	100分後輝度
ZnS:Cu Std.	1.00	1.00	1.00
試料 3 - (1)	0.71	0.91	1.12
(2)	0.73	1.02	1.25
(3)	6.20	8.50	11.14
(4)	9.05	11.75	14.29
(5)	9.01	11.55	13.98
(6)	8.50	10.21	11.96
(7)	2.35	2.54	2.86

〇分後の輝度を含めてZnS: Cu蓄光性蛍光体よりも残光特性に優れていることがわかる。ただNdの添加量がO. OOOO1モルの場合であっても、刺激停止後6〇分程度を経過することによって、ZnS: Cu蓄光性蛍光体よりも大きい輝度を有するようになることから、賦活剤及び共賦活剤として用いたEu及びNdの添加効果が明らかである。またNdが高価であることから、経済性及び濃度クエンチングによる残光特性の低下を考慮すると、NdをO. 1モル(10モル%)以上にすることに余り意味がないこととなる。

【0034】なお、SrAI2 O4 : Eu、Nd蛍光体は酸化物系であることから、従来の硫化物系蓄光性蛍光体に比べて化学的にも安定であり、かつ耐光性に優れるものである(表24及び25参照)。さらに本発明によるSrAI2 O4 : Eu、Nd蛍光体を光刺激した際の室温から250℃までの熱発光特性(グローカーブ)を、試料3-(4) について調査した結果を図7に示した。図から共賦活剤としてNdを添加した蛍光体の熱発光のメイングローピーク温度は約50℃であることが分かる。

【0035】次に、金属元素(M)としてストロンチウムを用い、賦活剤としてユウロピウムを用い、更に共賦活剤として、ランタン、セリウム、プラセオジム、サマリウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスの元素のいずれかを用いた場合の蓄光性蛍光体について、実施例4として説明する。

【0036】またここで、賦活剤及び各共賦活剤については、ユーロピウム及びネオジウムあるいはジスプロシウムを用いた場合の例から、金属元素(M)に対して各々0.005モル程度添加した場合に高い残光輝度が得られることを考慮して、賦活剤のEu濃度0.5モル%(0.005モル)、共賦活剤の濃度0.5モル%(0.005モル)の試料についてのみ例示した。

実施例4. SrAI2 O4: Eu系蛍光体におけるその他の共賦活剤の効果

既述の方法で、共賦活剤としてランタン、セリウム、プラセオジム、サマリウム、ガドリニウム、テルビウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスを添加した蛍光体試料についてその残光特性を調査した結果を表7に示した。

【0037】この表7から明らかなように、標準として用いた市販のZnS:Cu 蛍光体の残光特性と比較して、いずれのSrAl2 O4 : Eu 系蛍光体試料も、刺激停止後30分乃至100分以上の長時間を経過すると残光特性が向上するので、充分実用レベルにあることが分かる。なお、SrAl2 O4 : Eu 系蛍光体は酸化物系であることから、従来の硫化物系蓄光性蛍光体に比べて化学的にも安定であり、かつ耐光性に優れるものである(表24及び25参照)。

[0038]

【表7】

試 料	10 分後輝度	30 分後輝度	100分後輝度
ZnS:Cu Std.	1.00	1.00	1.00
SrAl ₂ O ₄ :Eu,La	0.33	0.74	1.14
SrAl ₂ O ₄ :Eu,Ce	0.46	0.93	1.35
SrAl ₂ O ₄ :Eu,Pr	1.24	2.63	7.51
SrAl ₂ O ₄ :Eu,Sm	3.40	4.82	9.0
SrAl ₂ O ₄ :Eu,Gd	0.51	1.30	2.27
SrAl ₂ O ₄ :Eu,Tb	1.46	2.81	7.54
SrAl ₂ O ₄ :Eu, Ho	1.06	2.09	6.29
SrAl ₂ O ₄ :Eu,Er	0.63	1.43	3.18
SrAl ₂ O ₄ :Eu,Tm	0.81	1.53	3.28
SrAl ₂ O ₄ :Eu, Yb	0.61	1.28	2.99
SrAl ₂ O ₄ :Eu,Lu	0.49	1.01	3.40
SrAl ₂ O ₄ :Eu,Mn	0.81	1.86	5.57
SrAl ₂ O ₄ :Eu,Sn	1.93	3.61	7.92
SrA1 ₂ 0 ₄ :Eu,Bi	0.72	1.77	5.55

【0039】次に金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用いるものの、共賦活剤を用いない場合の蓄光性蛍光体、及び金属元素としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、、マンガン、スズ、ビスマスからなる群の少なくとも1つの元素を用いた場合を、実施例5として説明する。

実施例5. CaAI2 O4 : Eu系蓄光性蛍光体の合成とその特性

試薬特級の炭酸カルシウムおよびアルミナに賦活剤としてユウロピウムを酸化ユウロピウム(Eu2 O3)として加えただけのもの、これに共賦活剤として、ランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスの元素のいずれかをそれぞれその酸化物で添加したものに対して、更にフラック

スとしてたとえば硼酸を 5g (0.08モル)添加し、ボールミルを用いて充分に混合した後、この試料を電気炉を用いて窒素-水素混合ガス (97:3)気流中(流量:0.1リットル毎分)で、1300°C、1時間焼成した。その後室温まで約1時間かけて冷却し、得られた化合物粉体をふるいで分級し100メッシュを通過したものを蛍光体試料5-(1)~(42)とした。

【0040】なおここで得られた試料5-(2)のXRD解析の結果を図8に示した。図からこの蛍光体は、単斜晶系のCaAl2O4結晶からなることが明らかとなった。次に、代表例として共賦活剤にネオジウム、サマリウム、ジスプロシウム、トリウムを用いた試料5-(1O)、5-(16)、5-(22)及び5-(28)について、その熱発光特性(グローカーブ)を調査した結果を図9及び図10に示した。いずれも50℃以上の高温域にグローピークがあることが示唆されている。さらに試料についてその残光の発光スペクトルを測定したところ、図11で示したようにいずれの蛍光体もその発光ピーク波長は約442nmの背色発光であった。

【0041】そこで従来から市販されている青色発光の 蓄光性蛍光体のCaSrS:Bi (商品名BA-S:根本特殊化学(株)製 発光波長454nm)を標準としてそれぞれの残光特性を相対的に比較調査した結果を表8乃至表13に示した。表8からCaAl2 O4:Eu 蛍光体については、Euが0.005モル(0.5モル%)の場合、残光初期時の輝度は低いものの100分後で市販標準品とほぼ同等に近い輝度が得られるものがあり、更に表9乃至表13に示すように、共賦活剤を添加することにより大きく増感され、いずれの共賦活剤を用いても充分実用性の高い蛍光体を得ることができた。特にNd、SmおよびTmについてはその添加効果が極めて大き

く市販品より一桁以上明るい超高輝度の青色発光の蓄光性蛍光体が得られることが明かであり画期的な蛍光体といえる。図12にはこのNd、SmおよびTmを共賦活することにより得られた高輝度蛍光体の長時間に亘る残光特性を調査した結果を示した。

【0042】なお、詳細には金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用いるものの、共賦活剤を用いない場合の蓄光性蛍光体として、5-(1)~(6)に示した蓄光性蛍光体の残光特性について表8に示した。

【0043】 【表8】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1.00	1.00	1.00
5-(1) CaAl₂O₄:Eu (Eu: 0.001ಕル%)	0.18	0.16	0.14
(2) CaAl₂O₄:Eu (Eu: O.O1+A%)	0.21	0.18	0.17
(3) CaAl ₂ O ₄ :Eu (Eu: 0.1 +N%)	0.25	0.27	0.35
(4) CaAl₂O₄:Eu (Eu: 0.5 ቲዜ%)	0.41	0.60	0.90
(5) CaAl₂O₄:Eu (Eu: 2.5 ₹ル%)	0.37	0.45	0.65
(6) CaAl ₂ O ₄ :Eu (Eu:10 +1/%)	0.25	0.28	0.39

【0044】また金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてネオジウムを用いた場合の蓄光性蛍光体として、5-(7)~(12)に示した蓄光性蛍光体の残光特性を表9に示

した。 【0045】 【表9】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1.00	1.00	1.00
(7) CaAl ₂ O ₄ :Eu, Nd) (Eu:0.5€N% Nd:0.001€N%)	0.53	0.78	1.01
(8) CaAl ₂ O ₄ :Eu,Nd) (Eu:0.5モルな Nd:0.01モル%)	1.05	1.53	2.60
(9) CaAl ₂ O ₄ :Eu,Nd (Eu:0.5モル% Nd:0.1 モル%)	8.68	11.8	20.3
(10) CaAl ₂ O ₄ :Eu,Nd (Eu:0.5+A% Nd:0.5 +A%)	9.87	14.0	25.0
(11) CaAl ₂ O ₄ :Eu, Nd (Eu:0.5+A% Nd:2.5 +A%)	3.18	4.51	8.05
(12) CaAl ₂ O ₄ :Eu,Nd (Eu:O.5+N% Nd:10 +N%)	0.84	1.18	2.02

【0046】更に金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてサマリウムを用いた場合の蓄光性蛍光体として、5-(1

した。 【0047】 【表10】

3)~(18)に示した蓄光性蛍光体の残光特性を表10に示

100分後輝度 10 分後輝度 30 分後輝度 試 料 1.00 Std. CaSrS:Bi 1.00 1.00 0.71 0.98 1.23 (13) CaAl₂O₄:Eu, Sm (Eu: 0.5+1% Sm: 0.001+1%) 0.94 1.43 2.55 (14) CaAl₂O₄:Eu, Sm (Eu: 0.5+1/2 Sm: 0.01+1/2) 11.30 (15) CaAl₂O₄:Eu,Sm 4.21 6.32 (Eu: 0.5+1% Sm: 0.1 +1%) 7.00 12.5 4.61 (16) CaAl₂O₄:Eu, Sm (Eu:0.5+1/2 Sm: 0.5 +1/2) 3. 25 5.80 (17) CaAl 204: Eu, Sm 2.14 (Eu: 0.5 + N% Sm: 2.5 + N%) 1.71 0.96 (18) CaAl₂O₄:Eu,Sm 0.63 (Eu:0.5+1/2 Sm:10 +1/2)

【0048】また金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてジスプロシウムを用いた場合の蓄光性蛍光体として、5-(19)~(24)に示した蓄光性蛍光体の残光特性を表 1 1

に示した。

[0049]

【表11】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1.00	1.00	1.00
(19) CaAl ₂ O ₄ :Eu, Dy (Eu:0.5 th% Dy:0.001 th%)	0.30	0.24	0.20
(20) CaAl ₂ O ₄ :Eu, Dy (Eu:0.5f#% Dy: 0.01f#%)	0.41	0.39	0.35
(21) CaAl ₂ O ₄ :Eu,Dy (Eu:0.5+A% Dy: 0.1 +A%)	0.52	0.60	0.76
(22) CaAl ₂ O ₄ :Eu, Dy (Eu:0.5+N% Dy: 0.5 +N%)	0.76	0.90	1.25
(23) CaAl ₂ O ₄ :Eu, Dy (Eu:0.5+N% Dy: 2.5 +N%)	0.84	1.18	1.76
(24) CaAl ₂ O ₄ :Eu,Dy (Eu:0.5+M% Dy:10 +M%)	0.50	0.58	0.76

【0050】また金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてツリウムを用いた場合の蓄光性蛍光体として、5-(25)

た。

【0051】 【表12】

~(30)に示した蓄光性蛍光体の残光特性を表12に示し

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1.0	1. 0	1. 0
(25) CaAl ₂ O ₄ :Eu, Tm (Eu: 0.5+%% Tm: 0.001+%%)	1.04	1.36	1.81
(26) CaAl₂O₄:Eu,Tm (Eu:O.5₹ル% Tm:O.01₹ル%)	2.09	2.65	3.75
(27) CaAl ₂ O ₄ :Eu,Tm (Eu:0.5モル% Tm:0.1モル%)	4.89	5.78	8.70
(28) CaAl₂O₄:Eu,Tm (Eu:O.5₹A% Tm:O.5₹A%)	6.55	9.04	18.6
(29) CaAl ₂ O ₄ :Eu,Tm (Eu:O.5₹№% Tm:2.5₹№%)	0.634	1.19	2.68
(30) CaAl ₂ O ₄ :Eu,Tm (Eu:O.5+A% Tm:10+A%)	0.151	0.358	0.755

【0052】なお金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてランタン、セリウム、プラセオジム、ガドリニウム、テルビウム、ホルミウム、エルビウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスの元素のいずれかを用いた場合の蓄光性蛍光体として、5-(31)~(42)に示した蓄光性蛍光体の残光特性をまとめて表 1 3 に示

した。

【0053】なおこの5-(31)~(42)に示した蓄光性蛍 光体では、賦活剤としてのユーロピウム及び他の共賦活 剤は共に、0.5 モル%づつ添加したものである。

[0054]

【表13】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1.00	1.00	1.00
(31) CaAl₂O₄:Eu,La (Eu:0.5€n% La:0.5€n%)	0.52	0.67	0.81
(32) CaAl₂O₄:Eu,Ce (Eu:0.5€ル% Ce:0.5€ル%)	0.84	1.23	1.96
(33) CaAl ₂ O ₄ :Eu,Pr (Eu:0.5モル% Pr:0.5モル%)	0.58	0.82	1.13
(34) CaAl₂O₄: Eu, Gd (Eu: 0.5€ル% Gd: 0.5€ル%)	0.66	0.91	1.26
(35) CaAl ₂ O ₄ :Eu, Tb (Eu:0.5モル% Tb:0.5モル%)	0.84	1.31	2.08
(36) CaAl ₂ O ₄ :Eu, Ho (Eu: 0.5 £ N% Ho: 0.5 £ N%)	0.98	1.33	2.39
(37) CaAl ₂ O ₄ :Eu,Er (Eu:0.5tA% Er:0.5tA%)	0.56	0.76	0.98
(38) CaAl ₂ O ₄ :Eu,Yb (Eu:0.5t#% Yb:0.5t#%)	0.70	0.91	1.28
(39) CaAl ₂ O ₄ :Eu,Lu (Eu:0.5t#% Lu:0.5t#%)	0.68	0.90	1.24
(40) CaAl ₂ O ₄ :Eu, Mn (Eu:0.5t/% Mn:0.5t/%)	0.31	0.42	0.58
(41) CaAl ₂ O ₄ :Eu, Sn (Eu:0.5tl% Sn:0.5tl%)	0.45	0.58	0.73
(42) CaAl ₂ O ₄ :Eu, Bi (Eu:0.5+% Bi:0.5+%)	0.25	0.33	0.48

【0055】次に金属元素(M)としてカルシウムを用い、賦活剤としてユウロピウムを用い、共賦活剤としてネオジウムを用いるものの、同時に他の共賦活剤も添加した場合を実施例6として説明する。

実施例6. CaAI2 O4 : Eu, Nd系蓄光性蛍光体の合成とその特性

試薬特級の炭酸カルシウムおよびアルミナに賦活剤としてユウロピウムを酸化ユウロピウム(Eu2 O3)として加え、これに共賦活剤としてネオジウムを加えたもの、及び、更に他の共賦活剤として、ネオジウム以外のランタン、セリウム、プラセオジム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスの元素のいずれかをそれぞれその酸化物で添加したものに、フラックスとしてたとえば砌

酸を 5g (0.08モル)添加し、ボールミルを用いて充分に混合した後、この試料を電気炉を用いて窒素-水素混合ガス (97:3)気流中(流量: O. 1リットル毎分)で、1300°C、1時間焼成した。その後室温まで約1時間かけて冷却し、得られた化合物粉体をふるいで分級し100メッシュを通過したものを蛍光体試料6-(1)~(43)とした。

【0056】ここでは、まず最初に、Eu:0.5 モル%、Nd:0.5 モル%、他の共賦活剤:0.5 モル%として、各種蛍光体試料を調整して、10分後輝度、30分後輝度及び100 分後輝度を測定した。その結果を、6-(1)~(15)として、表14に示す。

[0057]

【表14】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl₂O₄: Eu, Nd	9.87	14.0	25.0
6- (1) CaAl ₂ O ₄ :Eu,Nd,La	20.6	23.2	29. 5
(2) CaAl ₂ O ₄ :Eu,Nd,Ce	12.7	17. 5	26.9
(3) CaAl ₂ O ₄ :Eu,Nd,Pr	13.3	18. 1	27.7
(4) CaAl ₂ O ₄ : Eu, Nd, Sm	8. 20	12.6	22.6
(5) CaAl ₂ O ₄ :Eu,Nd,Gd	16.7	21. 3	33.5
(6) CaAl ₂ O ₄ :Eu,Nd,Tb	13.8	17. 2	25.5
(7) CaAl ₂ O ₄ :Eu,Nd,Dy	14.8	18. 9	30.8
(8) CaAl₂O₄:Eu,Nd,Ho	16.5	21.6	34.3
(9) CaAlzO4:Eu,Nd,Er	15.9	21.0	33.8
(10) CaAl₂O₄:Eu,Nd,Tm	4. 17	6. 69	13. 4
(11) CaAl₂O₄:Eu,Nd,Yb	11.0	16. 9	27.9
(12) CaAl₂O₄:Eu,Nd,Lu	10.2	15. 2	25. 2
(13) CaAl₂O₄:Eu,Nd,Mn	6.45	8. 01	11. 9
(14) CaAl₂O₄:Eu,Nd,Sn	11.4	14. 1	21.2
(15) CaAl₂O₄:Eu,Nd,Bi	10.6	13.5	21.4

【0058】この測定結果から、ネオジウムと共に添加する共賦活剤の中で、残光輝度が特に優れるものとしては、ランタン、ジスプロシウム、ガドリニウム、ホルミウム、エルビウム等であることが確認された。そこで次に、Eu:0.5 モル%とした上で、

ランタンの濃度を、0.1 モル%から10モル%に変えて実験を行った。その結果を、 $6-(16)\sim(21)$ として、表 15に示す。

[0059]

【表15】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
(16) CaAl₂O₄:Eu,Nd Eu:0.5€%% Nd:0.5€%%	9.87	14.0	25.0
(17) CaAl ₂ O ₄ : Eu, Nd, La Eu: 0.5+1% Nd: 0.5+1% La: 0.1+1%	14.1	18.2	29. 3
(18) CaAl ₂ O ₄ :Eu, Nd, La Eu:0.5+1% Nd:0.5+1% La:0.3+1%	15. 5	18.9	28. 5
(1) CaAl ₂ O ₄ :Eu, Nd, La Eu:0.5+1/% Nd:0.5+1/% La:0.5+1/%	20.6	23. 2	29. 5
(19) CaA1 ₂ O ₄ : Eu, Nd, La Eu: 0.5 + 1/8 Nd: 0.5 + 1/8 La: 1.0 + 1/8	1.42	1.05	0.858
(20) CaAl ₂ O ₄ :Eu, Nd, La Eu:0.5€1% Nd:0.5€1% La:2.0€1%	測定限界		
(21) CaAl 204: Eu, Nd, La Eu: 0.5 t//% Nd: 0.5 t//% La: 10 t//%	測定限界		

【0060】Eu:0.5 モル%、Nd:0.5 モル%とした上で、ジスプロシウムの濃度を、0.1 モル%から10モル%に変えて実験を行った。その結果を、6-(22)~(2

7)として、表16に示す。

【0061】 【表16】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
(22) CaAl₂O₄: Eu, Nd Eu: O. 5₹A% Nd: O. 5₹A%	9. 87	14.0	25. 0
(23) CaAl₂O₄:Eu,Nd,Dy Eu:0.5+1/% Nd:0.5+1/% Dy:0.1+1/%	4. 32	6.76	12.0
(24) CaAl₂O₄:Eu,Nd,Dy Eu:O.5₹N% Nd:O.5€N% Dy:O.3₹N%	8. 91	14.0	24. 2
(7) CaAl₂O₄:Eu, Nd, Dy Eu:0.5€1% Nd:0.5€1% Dy:0.5€1%	14.8	18. 9	30.8
(25) CaAl₂O₄:Eu, Nd, Dy Eu:0.5₹#% Nd:0.5₹#% Dy:1.0₹#%	12. 1	18. 3	27. 8
(26) CaAl₂O₄:Eu,Nd,Dy Eu:0.5₹ル% Nd:0.5₹ル% Dy:2.0₹ル%	7. 49	10.3	16.0
(27) CaAl₂O₄:Eu, Nd, Dy Eu:0.5₹#% Nd:0.5₹#% Dy:10 ₹#%	1.84	1. 29	0.998

【0062】Eu:0.5 モル%、Nd:0.5 モル%とした上で、ガドリニウムの濃度を、0.1 モル%から10モル%に変えて実験を行った。その結果を、6-(28)~(32)

として、表17に示す。

[0063]

【表17】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl₂O₄:Eu,Nd Eu:0.5€11% Nd:0.5€11%	9. 87	14.0	25. 0
(28) CaAl ₂ O ₄ : Eu, Nd, Gd Eu: O. 5 EN% Nd: O. 5 EN% Gd: O. 1 EN%	11. 8	17.4	30.0
(29) CaAl ₂ O ₄ : Eu, Nd, Gd Eu: 0.5	12. 7	17.8	29.8
(5) CaAl₂O₄: Eu, Nd, Gd Eu: O. 5₹1/% Nd: O. 5₹1/% Gd: O. 5₹1/%	16. 7	21. 3	33. 5
(30) CaAl ₂ O ₄ : Eu, Nd, Gd Eu: O. 5 th% Nd: O. 5 th% Gd: 1. O th%	10.8	15.7	26.5
(31) CaAl ₂ O ₄ : Eu, Nd, Gd Eu: O. 5 ± 1/2 Nd: O. 5 ± 1/2 Gd: 2. O ± 1/2	18. 0	21. 7	29. 5
(32) CaAl ₂ O ₄ :Eu, Nd, Gd Eu:O.5 1 N% Nd:O.5 1 N% Gd:10 1 N%	1.01	0.764	0.590

【0064】Eu:0.5 モル%、Nd:0.5 モル%とした上で、ホルミウムの濃度を、0.1モル%から10モル%に変えて実験を行った。その結果を、6-(33)~(37)と

して、表18に示す。

[0065]

【表18】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1.0
CaAl₂O₄:Eu,Nd Eu:0.5€1% Nd:0.5€1%	9.87	14. 0	25.0
(33) CaAl ₂ O ₄ : Eu, Nd, Ho Eu: O. 5 £ 1 % Nd: O. 5 £ 1 % Ho: O. 1 £ 1 %	10.4	14.4	25. 3
(34) CaAl ₂ O ₄ :Eu, Nd, Ho Eu:0.5+1% Nd:0.5+1% Ho:0.3+1%	12.0	16. 2	27.0
(8) CaAl₂O₄:Eu, Nd, Ho Eu:0.5€N% Nd:0.5€N% Ho:0.5€N%	16. 5	21.6	34. 3
(35) CaAl ₂ O ₄ : Eu, Nd, Ho Eu: O. 5 t N Nd: O. 5 t N Ho: 1. O t N	13. 4	16.9	26.3
(36) CaAl ₂ O ₄ :Eu, Nd, Ho Eu: O. 5 th% Nd: O. 5 th% Ho: 2. O th%	13. 3	16.0	23.5
(37) CaAl ₂ O ₄ :Eu, Nd, Ho Eu:O.5t/% Nd:O.5t/% Ho:10 t/%	1.20	0.914	0.782

【0066】Eu:0.5 モル%、Nd:0.5 モル%とした上で、エルビウムの濃度を、0.1モル%から 5モル%に変えて実験を行った。その結果を、6-(38)~(43)と

して、表19に示す。

[0067]

【表19】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl 204:Eu, Nd Eu:0.5€1% Nd:0.5€1%	9.87	14.0	25.0
(38) CaAl ₂ O ₄ :Eu, Nd, Er Eu:0.5tl/% Nd:0.5tl/% Er:0.1tl/%	10.7	15.1	27.0
(39) CaAl ₂ O ₄ :Eu, Nd, Er Eu:0.5+% Nd:0.5+% Er:0.3+%	10.3	14.0	24.0
(9) CaAl ₂ O ₄ :Eu, Nd, Er Eu: 0.5 tl/% Nd: 0.5 tl/% Er: 0.5 tl/%	15.9	21.0	33.8
(40) CaAl ₂ O ₄ :Eu, Nd, Er Eu:0.54% Nd:0.54% Er:1.04%	16. 4	21. 1	32.3
(41) CaAl 204:Eu, Nd, Er Eu: 0.551% Nd: 0.551% Er: 2.051%	17. 3	21. 7	30.8
(42) CaAl ₂ O ₄ :Eu, Nd, Er Eu: 0.5ti% Nd: 0.5ti% Er: 3.0ti%	20.1	21. 3	28. 5
(43) CaAl ₂ O ₄ : Eu, Nd, Er Eu: 0.5+1/3 Nd: 0.5+1/3 Er: 5.0+1/3	17.5	17.8	22. 0

【0068】このような測定結果から、共賦活剤を複数種混合すると、残光輝度が向上するものがあることが確認された。また更に、その場合、Eu:0.5 モル%、Nd:0.5 モル%とした上で、他の共賦活剤も0.5 モル%程度添加した場合が、最も優れた残光特性を示すことも確認された。次に金属元素(M)としてバリウムを用い、賦活剤としてユウロピウムを用い、更に共賦活剤としてネオジウムあるいはサマリウムを用いた場合の蓄光性蛍光体について、実施例7として説明する。実施例7. BaAI2 O4: Eu系蛍光体

実施例7. BaAl2 O4: Eu糸蛍光体 ここでは、Euを0.5 モル%添加した上で、更にNdあるいはSmを各々0.5モル%添加したものを、7ー(1) . (2) として示す。

【0069】また図13には本蛍光体のうち、共賦活剤

としてネオジウムを用いたものの、励起スペクトル及び 刺激停止後30分を経過した後の残光の発光スペクトル を示した。更に図14には、共賦活剤としてサマリウム を用いたものの、励起スペクトル及び刺激停止後30分を経過した後の残光の発光スペクトルを示した。

【0070】発光スペクトルのピーク波長はいずれも約500nmで緑色の発光であることから、表20には、その残光特性を市販品で緑色に発光するZnS:Cu蓄光性蛍光体(根本特殊化学(株)製:品名GSS,発光ピーク波長:530nm)と比較して、刺激停止後10分、30分および100分後の残光強度を相対値で示した。

【0071】 【表20】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. ZnS:Cu	1. 0	1. 0	1. 0
BaAl₂O₄:Eu,Nd Eu:O.5€N% Nd:O.5€N%	1.23	1. 14	0.885
BaAl204:Eu,Sm Eu:0.5EN% Sm:0.5EN%	0.982	0.911	0.768

【0072】この表20から、BaAI2 O4:Eu、NdはZnS:Cu蓄光性蛍光体よりも刺激停止後30分程度は残光輝度に優れていることがわかる。またBaAI2 O4:Eu、SmはZnS:Cu蓄光性蛍光体よりも若干残光輝度が劣る結果が得られた。しかしながらEuあるいは他の共賦活剤を添加せず、BaAI2 O4結晶のみで実験した結果、蛍光及び残光がまったく認められないことが確認されているので、Eu及びNdあるいはSm添加による賦活効果が得られることは明らかである。

【0073】なお、BaAI2 O4 : Eu系蛍光体は酸化物系であることから、従来の硫化物系蓄光性蛍光体に比べて化学的にも安定であり、かつ耐光性に優れるものである(表24及び25参照)。次に金属元素(M)として、カルシウムとストロンチウムとの混合物を用いた場合について、実施例8として説明する。

実施例8. SrX Ca_{1-X} A I₂ O4 系蓄光性蛍光体の 合成とその特性

試薬特級の炭酸ストロンチウムと炭酸カルシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウムを、共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスのいずれかの元素を添加したものに、フラックスとして例えば硼酸を5g(0.08 モル)添加し、既述の方法によりでSrX Ca1-X Al2 O4 系蛍光体試料を合成した。

【0074】得られた蛍光体の代表特性としてSr0.5 Ca0.5 A l 2 O4 : Eu, Dy蛍光体(EuO.5モル%、DyO.5モル%添加)の残光の発光スペクトルを調査した結果を図15に示した。図からSrの一部がCaに置換されるとその発光スペクトルは短波長側にシフトし、SrA l 2 O4 系蛍光体の発光の中間色の残光を得られることが明かとなった。

【0075】次に賦活剤および共賦活剤としてEuおよびDyをそれぞれ0.5モル%添加したSrxСa1-ҳA 12 O4 系蛍光体試料の残光特性を調査した結果を図16に示した。この図16からいずれの蛍光体についても図中の破線で示した市販標準品と比較して同等以上の優れた残光特性を有する実用性の高い蓄光性蛍光体が得られることが分かる。

【0076】次に金属元素(M)として、ストロンチウムとパリウムとの混合物を用いた場合について、実施例9として説明する。

実施例 9. Sr X Ba 1-X A I 2 O4 系蓄光性蛍光体の 合成とその特性

試薬特級の炭酸ストロンチウムと炭酸パリウムをそれぞれ れ比率を変えて調合しその試料にアルミナを加え、さら に賦活剤としてユウロピウムを、共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスのいずれかの元素を添加したものに、フラックスとして例えば硼酸を 5g (0.08 モル)添加し、既述の方法によりSrX Bal-XAl2 O4 系蛍光体試料を合成した。

【0077】得られた蛍光体の代表特性としてEuを0.5 モル%、Dyを0.5 モル%添加して調整したSrX Bal-X Al2 O4 系蛍光体試料の残光特性を調査した結果を図17に示した。この図17からいずれの蛍光体についても図中の破線で示した市販標準品と比較して同等以上の優れた残光特性を有する実用性の高い蓄光性蛍光体が得られることが分かる。

【0078】次に金属元素(M)として、ストロンチウムとマグネシウムとの混合物を用いた場合について、実施例10として説明する。

実施例 1 O. Sr X Mg1-X A I 2 O4 系蓄光性蛍光体の合成とその特性

試薬特級の炭酸ストロンチウムと炭酸マグネシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウムを、共賦活剤としてランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、マンガン、スズ、ビスマスのいずれかの元素を添加したものに、フラックスとして例えば硼酸を5g (0.08 モル)添加し、既述の方法によりSrX Mg1-X Al2 O4 系蛍光体試料を合成した。得られた蛍光体の代表特性としてEuをO.5モル%、DyをO.5モル%添加して調整したSrXMg1-X Al2 O4 系蛍光体試料の残光特性を調査した結果を図18に示した。

【0079】この図18から、ストロンチウム/マグネシウムが0.1/0.9の場合を除いて、いずれの蛍光体についても図中の破線で示した市販標準品と比較して同等以上の優れた残光特性を有する実用性の高い蓄光性蛍光体が得られることが分かる。次に金属元素(M)として、複数の金属元素を用い、かつ賦活剤としてユウロピウムを用い、更には共賦活剤を2種類用いた場合について、実施例11として説明する。

実施例11.Ca1-X SrX Al2 О4 :Eu、Nd. X 蛍光体の合成とその特性

試薬特級の炭酸ストロンチウムと炭酸カルシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウム0. 5モル%を、共賦活剤としてネオジウム0. 5モル%を加え、更に他の共賦活剤として、ランタン、ジスプロシウム、ホルミウムの元素のいずれかを0. 5モル%添加したものに、フラックスとして例えば硼酸を5g(0.08 モル)添加し、既述

の方法によりでCa_{1-X} Sr_X Al₂ O4: Eu、N d, X系蛍光体試料 1 1 - (1) ~ (9) を合成し、その残 光特性を調査した。

【0080】まず、試薬特級の炭酸ストロンチウムと炭酸カルシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウム0.

5モル%を、共賦活剤としてネオジウム 0.5 モル%を加え、更に他の共賦活剤として、ランタンを 0.5 モル%添加したものを 1.1-(1) ~(3) として、表 2.1 に示す。

【0081】 【表21】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl 204: Eu, Nd	9. 87	14.0	25. 0
11- (1) (Cao. 9 Sro. 1) Al 204: Eu, Nd, La	15. 2	17. 1	19.0
(2) (Cao. , Sro. s) Al 2O4: Eu, Nd, La	5. 53	4. 96	3. 35
(3) (Ca _{0. 5} Sr _{0. 5}) Al ₂ O ₄ : Eu, Nd, La	6.30	3. 08	測定限界

【0082】また試薬特級の炭酸ストロンチウムと炭酸カルシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウム0.5 モル%を、共賦活剤としてネオジウム0.5 モル%を加え、更に他の共賦活剤として、ジスプロシウムを0.5

モル%添加したものを11-(4)~(6) として、表22に示す。

【0083】 【表22】

試 料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl₂O₄:Eu,Nd	9.87	14.0	25. 0
(4) (Cao. 9 Sro. 1) Al ₂ O ₄ : Eu, Nd, Dy	13.2	14.6	20.4
(5) (Cao. 7 Sro. 3) AlzO4: Eu, Nd, Dy	8.00	7.46	9.05
(6) (Ca _{0.5} Sr _{0.5}) Al ₂ O ₄ : Eu, Nd, Dy	3.36	3. 08	測定限界

【0084】また試薬特級の炭酸ストロンチウムと炭酸カルシウムをそれぞれ比率を変えて調合しその試料にアルミナを加え、さらに賦活剤としてユウロピウム0.5 モル%を、共賦活剤としてネオジウム0.5 モル%を加え、更に他の共賦活剤として、ホルミウムを0.5 モル

%添加したものを 1 1 - (7) ~ (9) として、表 2 3 に示す。

【0085】 【表23】

. 試料	10 分後輝度	30 分後輝度	100分後輝度
Std. CaSrS:Bi	1. 0	1. 0	1. 0
CaAl₂O₄:Eu,Nd	9. 87	14.0	25. 0
(7) (Cao. 9 Sro. 1) Al 204: Eu, Nd, Ho	13.9	15.3	21.4
(8) (Ca _{0. 7} Sr _{0. 3}) Al ₂ O ₄ : Eu, Nd, Ho	8. 25	7.81	9. 95
(9) (Cao. 5 Sro. 5) Al 204: Eu, Nd, Ho	2. 91	2.62	3.65

元素(M)を用い、賦活剤としてユウロピウムを添加し、かつ複数の共賦活剤を添加した場合であっても、10分後輝度を含めて、CaSrS:Biに比べて優れていることが確認できた。

実施例12. 耐湿特性試験

本発明により得られた蓄光性蛍光体の耐湿特性を調査した結果を表24に示した。

【0087】この調査では、複数の蛍光体試料を、40℃、95%RHに調湿した恒温恒湿槽中に500時間放置しその前後における輝度変化を測定した。表から、いずれの組成の蛍光体も湿度に対してほとんど影響を受けず安定であることが分かる。

[8800]

【表24】

試 料	試験前	試 験 後
SrAl₂O₄ : Eu, Dy (Eu: 0.5₹11% Dy: 0.5₹11%)	1. 0	1.01
CaAl ₂ O ₄ : Eu, Nd (Eu: 0.5 t/% Nd: 0.5 t/%)	1. 0	0.99
Sr _{0.5} Ca _{0.5} Al ₂ O ₄ :Eu, Dy (Eu: 0.541% Dy: 0.541%)	1. 0	1.00
Sr _{0.5} Ba _{0.5} Al ₂ O ₄ :Eu, Dy (Eu: 0.571% Dy: 0.571%)	1. 0	0.99
Sro. 5Mgo. 5A12O4:Eu, Dy (Eu: 0. 5+N% Dy: 0. 5+N%)	1. 0	1.02

【0089】実施例13. 耐光性試験結果

本発明により得られた蓄光性蛍光体の耐光性試験を行なった結果を硫化亜鉛系蛍光体の結果と比較して表25に示した。この試験は、JIS規格に従い、試料を飽和湿度に調湿した透明容器内に入れ300Wの水銀灯下30cmの位置で3時間、6時間及び12時間光照射し、そ

の後の輝度変化を測定した。

【0090】表から従来の硫化亜鉛系蛍光体と比較して極めて安定であることが分かる。

[0091]

【表25】

試 料	試験前	3時間後	6時間後	12時間後
Std . ZnS:Cu	1. 0	0. 91	0.82	0.52
SrAl₂O₄ : Eu, Dy (Eu:0.5€1% Dy:0.5€1%)	1. 0	1. 01	1.00	1.01
CaAl ₂ O ₄ : Eu, Nd (Eu: 0.5 + 1/8 Nd: 0.5 + 1/8)	1. 0	1.00	1. 01	1.00
Sro. 5Cao. 5Al2O4:Eu, Dy (Eu:0.541% Dy:0.541%)	1. 0	1.00	0. 99	1.00
Sro. 5Bao. 5Al2O4:Eu, Dy (Eu:0.5+1/% Dy:0.5+1/%)	1. 0	1. 01	1. 01	1. 01
Sro. 5Mgo. 5Al2O4:Eu, Dy (Eu:0.54M% Dy:0.54M%)	1. 0	1.00	1.00	0.99

【0092】このような本発明による蓄光性蛍光体は、 種々の製品の表面に塗布して使用することもできるが、 プラスチック、ゴムあるいはガラス等に混入して使用することもできる。更に、従来から使用されていた、硫化

物系蓄光性蛍光体に置き換えるて、例えば各種計器、夜 行時計の文字盤、安全標識板等の用途に用いると、その 長時間の高輝度残光特性から、極めて優れたものとな る。

【0093】また本蛍光体は、極めて優れた高輝度長残光特性を有することに加えて、酸化物系であることから化学的にも安定であり、かつ耐光性に優れる点から、従来の用途に加えて、新たに下記のような用途が考えられる。

乗り物の表示:飛行機、船、自動車、自転車、鍵あるい は鍵穴

標識の表示:道路交通標識、車線表示、ガードレールへの表示、漁業用ブイ、山道等の案内表示、門から玄関への案内表示、ヘルメットへの表示

屋外の表示:看板、建物等の表示、自動車の鍵穴表示

屋内の表示:電気器具のスイッチ類

文房具類:筆記具、夜光インキ類、地図、星座表

おもちゃ類:ジグソーパズル

特殊な利用:スポーツ用ボール

(時計等に用いる)液晶用のパックライト 放電管に使用するアイソトープの代替え

[0094]

【発明の効果】以上説明したように、本発明は、従来から知られている硫化物系蛍光体とは全く異なる新規の蓄光性蛍光体材料に関するものであり、市販の硫化物系蛍光体と比べても遥かに長時間、高輝度の残光特性を有し、更には酸化物系であることから化学的にも安定であり、かつ耐光性に優れたものである。

【図面の簡単な説明】

【図1】SrAI2 O4 : Eu蛍光体の結晶構造をXR Dにより解析した結果を示したグラフである。

【図2】SrAI2 O4 : Eu蛍光体の励起スペクトルと刺激停止後3O分を経過した後の発光スペクトルとを示したグラフである。

【図3】SrAl2 О4 : Eu蛍光体の残光特性を Z n:S蛍光体の残光特性と比較した結果を示したグラフ である。

【図4】 S r A l 2 O4 : E u 蛍光体の熱発光特性を示したグラフである。

【図5】SrAI2 O4 : Eu, Dy蛍光体の残光特性をZn:S蛍光体の残光特性と比較した結果を示したグラフである。

【図6】 SrAl2 O4: Eu, Dy蛍光体の熱発光特性を示したグラフである。

【図7】 SrAl2 O4 : Eu. Nd蛍光体の熱発光特性を示したグラフである。

【図8】CaAl2O4:Eu系蛍光体の結晶構造をXRDにより解析した結果を示したグラフである。

【図9】 CaAl2 O4: Eu系蛍光体のうち共賦活剤 としてネオジウムあるいはサマリウムを用いた蛍光体の 熱発光特性を示したグラフである。

【図10】 CaAl2 O4: Eu系蛍光体のうち共賦活剤としてジスプロシウムあるいはトリウムを用いた蛍光体の熱発光特性を示したグラフである。

【図11】CaAl2 O4: Eu系蛍光体の刺激停止後 5分を経過した後の発光スペクトルを示したグラフである。

【図12】 CaAl2 O4 : Eu、 Sm蛍光体及びCa Al2 O4 : Eu、 Nd蛍光体の残光特性をZn: S蛍 光体の残光特性と比較した結果を示したグラフである。

【図13】BaAl2 О4 :Eu、Nd蛍光体の励起スペクトルと刺激停止後30分を経過した後の発光スペクトルとを示したグラフである。

【図14】BaAl2 О4 :Eu, Sm蛍光体の励起スペクトルと刺激停止後30分を経過した後の発光スペクトルとを示したグラフである。

【図15】Sr0.5 Са0.5 А I 2 О4 : E u . Dy蛍 光体の発光スペクトルを示したグラフである。

【図16】Srx Ca_{1-x} Al₂ O4 : Eu, Dy蛍光体の残光特性をZn:S蛍光体及びCaSrS:Bi蛍光体の残光特性と比較したグラフである。

【図17】 Srx Ba_{1-x} Al₂ O4 : Eu, Dy蛍光体の残光特性をZn: S蛍光体の残光特性と比較したグラフである。

【図18】Srx Mg_{1-x} Al₂ O₄ : Eu, Dy蛍光体の残光特性をZn:S蛍光体の残光特性と比較したグラフである。

5-(16)

5-(10)

フロントページの続き

(72) 発明者 青木 康充 東京都杉並区上荻 1 - 15 - 1 丸三ビル 根本特殊化学株式会社内 (72) 発明者 松沢 隆嗣 東京都杉並区上荻 1 - 15 - 1 丸三ビル 根本特殊化学株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.