1. Cours : Compléments sur la dérivation

1 Rappels sur la dérivation

1.1 Fonction dérivée

Définition 1 : Soit f une fonction définie sur un intervalle I, $a \in I$ et h un réel non nul tel que $a + h \in I$.

• On dit que f est dérivable en a si le taux de variation $\frac{f(a+h)-f(a)}{h}$ admet une limite finie lorsque h tend vers 0. Cette limite est appelée nombre dérivé de f en a et est notée f'(a).

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

On dit que f est dérivable sur I si f est dérivable en tout a ∈ I. On appelle alors fonction dérivée de f sur I la fonction

$$f': \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f'(x). \end{array} \right.$$

Exemple 1: On considère la fonction $f: x \mapsto x^2$, définie sur \mathbb{R} . Soit x un réel et h un réel non nul.

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = 2x + h$$

Lorsque h se rapproche de 0, cette quantité tend vers 2x.

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 2x.

1.2 Dérivées usuelles

$f: x \mapsto$	Définie sur	Dérivable sur	$f': x \mapsto$
$k\in\mathbb{R}$	\mathbb{R}	\mathbb{R}	0
mx + p, m et p réels	\mathbb{R}	\mathbb{R}	m
x^2	\mathbb{R}	\mathbb{R}	2x
x^n pour $n \in \mathbb{N}^*$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$\frac{1}{x}$	$\bigg \]-\infty;0[\ \text{et}\]0;+\infty[$] $-\infty$; 0[et]0; $+\infty$ [$\left -\frac{1}{x^2} \right $
$\frac{1}{x^n}$ pour $n \in \mathbb{N}^*$] $-\infty$; 0[et]0; $+\infty$ [] $-\infty$; 0[et]0; $+\infty$ [$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\boxed{[0;+\infty[}$	$]0;+\infty[$	$\frac{1}{2\sqrt{x}}$
$\exp(ax+b)$, a et b réels	\mathbb{R}	\mathbb{R}	$a \exp(ax+b)$

2

1.3 Opérations sur les dérivées

Théorème 1 : Soit I un intervalle, u et v deux fonctions dérivables sur I, k un réel. Alors les fonctions ku, u+v et uv sont dérivables sur I. Si de plus, v ne s'annule pas sur I, alors la fonction $\frac{u}{v}$ est également dérivable sur I. On a alors

$$(ku)' = ku' \qquad (u+v)' = u'+v'$$

$$(uv)' = u'v + uv' \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

- Exemple 2 : On considère la fonction $f: x \mapsto (x^2 3x + 1) \exp(3x + 1)$, définie sur \mathbb{R} . Pour tout réel x, on pose alors $u(x) = x^2 3x + 1$ et $v(x) = \exp(3x + 1)$.
 - u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) = 2x 3.
 - v est dérivable sur \mathbb{R} et pour tout réel x, $v'(x) = 3\exp(3x+1)$.

On a f = uv. Ainsi, f est un produit de fonctions dérivables sur \mathbb{R} et est donc dérivable sur \mathbb{R} . De plus, on a f' = u'v + uv'. Ainsi, pour tout réel x,

$$f'(x) = (2x-3) \times \exp(3x+1) + (x^2-3x+1) \times 3\exp(3x+1) = (3x^2-7x)\exp(3x+1).$$

1.4 Tangente à la courbe

Définition 2 — Tangente à la courbe : Soit f une fonction dérivable en a. On note \mathscr{C}_f la courbe de f dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$.

La tangente à \mathscr{C}_f au point d'abscisse a est la droite de coefficient directeur f'(a) et passant par le point de coordonnée (a; f(a)).

Propriété 1 : Soit f une fonction dérivable en a. La tangente à \mathscr{C}_f au point d'abscisse a a pour équation

$$y = f'(a) \times (x - a) + f(a).$$

■ Exemple 3 : Pour tout réel x, posons $f(x) = \frac{x^2}{2} - 2x - 1$.

f est dérivable sur \mathbb{R} et pour tout réel x, on a f'(x) = x - 2. Déterminons l'équation de la tangente à \mathscr{C}_f au point d'abscisse 4

•
$$f'(4) = 4 - 2 = 2$$

•
$$f(4) = \frac{4^2}{2} - 2 \times 4 - 1 = -1$$

Cette tangente a pour équation $y = f'(4) \times (x - 4) + f(4)$ soit y = 2(x - 4) - 1 et donc y = 2x - 9.

2 Dérivée seconde 3

1.5 Variations d'une fonction

Propriété 2 : Soit f une fonction dérivable sur un intervalle I.

- Si, pour tout $x \in I$, $f'(x) \ge 0$, alors f est croissante sur I.
- Si, pour tout $x \in I$, $f'(x) \le 0$, alors f est décroissante sur I.
- Si, pour tout $x \in I$, f'(x) = 0, alors f est constante sur I.
- Exemple 4 : On considère la fonction $f: x \mapsto (x^2 3x + 1) \exp(3x + 1)$ étudiée précédemment. On a vu que pour tout réel x, on a $f'(x) = (3x^2 7x) \exp(3x + 1) = x(3x 7) \exp(3x + 1)$.

f'(x) étant écrite sous forme factorisée, on peut alors construire le tableau de signes de f' et en déduire les variations de f.

x	-∞	0		$\frac{7}{3}$		+∞
x	_	0	+		+	
3x - 7	_		_	0	+	
$\exp(3x+1)$	+		+		+	
f'(x)	+	0	_	0	+	
f		e		$-\frac{5e^8}{9}$		<i>y</i>

2 Dérivée seconde

Définition 3 — Dérivée seconde : Soit f une fonction dérivable sur un intervalle I telle que sa fonction dérivée f' est également dérivable sur I (on dit également que f est deux fois dérivable sur I).

On appelle fonction dérivée seconde de f la fonction dérivée de f'. Cette fonction est notée f''.

Pour tout $x \in I$, f''(x) = (f')'(x).

- Exemple 5 : Pour tout réel x, on pose $f(x) = (2x+1)e^{3x-2}$. Posons, pour tout réel x, $u_1(x) = 2x+1$ et $v_1(x) = e^{3x-2}$.
 - u_1 est dérivable sur \mathbb{R} et pour tout réel x, $u'_1(x) = 2$.
 - v_1 est dérivable sur \mathbb{R} et pour tout réel x, $v_1'(x) = 3e^{3x-2}$.

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = u'_1(x) \times v_1(x) + u_1(x) \times v'_1(x) = 2 \times e^{3x-2} + (2x+1) \times 3e^{3x-2} = (6x+5)e^{3x-2}.$$

Posons alors, pour tout réel x, $u_2(x) = 6x + 5$ et $v_2(x) = e^{3x-2}$.

- u_2 est dérivable sur \mathbb{R} et pour tout réel x, $u_2'(x) = 6$.
- v_2 est dérivable sur \mathbb{R} et pour tout réel x, $v_2(x) = 3e^{3x-2}$.

Ainsi, f' est dérivable sur \mathbb{R} et pour tout réel x,

$$f''(x) = u_2'(x) \times v_2(x) + u_2(x) \times v_2'(x) = 6 \times e^{3x-2} + (6x+5) \times 3e^{3x-2} = (24x+21)e^{3x-2}.$$

3 Composition de fonctions

Définition 4 — Fonction composée : Soit I et J deux parties de \mathbb{R} .

Soit f une fonction définie sur J et g une fonction définie sur I telle que pour tout réel x, $g(x) \in J$.

On définit la fonction composée de f et g notée $f \circ g$ par

Pour tout
$$x \in I$$
, $f \circ g(x) = f(g(x))$.

L'idée derrière la composition de fonctions est simplement d'appliquer successivement plusieurs fonctions.

$$f \circ g : x \xrightarrow{g} g(x) \xrightarrow{f} f[g(x)]$$

- **Exemple 6 :** Pour tout réel x, on note $f(x) = x^2$ et g(x) = x + 3. Alors, pour tout réel x,
 - $f \circ g(x) = f(g(x)) = (g(x))^2 = (x+3)^2$.
 - $g \circ f(x) = g(f(x)) = f(x) + 3 = x^2 + 3$.

Attention! En général, on n'a pas $f \circ g = g \circ f$! Ces deux fonctions ne sont d'ailleurs pas forcément définies sur le même ensemble.

Propriété 3 : Soit I et J deux intervalles, f une fonction définie et dérivable sur J et g une fonction définie et dérivable sur I telle que pour tout $x \in I$, $g(x) \in J$. Alors $f \circ g$ est dérivable et pour tout réel x dans I,

$$(f \circ g)'(x) = g'(x) \times (f' \circ g)(x).$$

- Exemple 7 : On considère la fonction f définie pour tout réel x par $f(x) = e^{x^2 + 3x 2}$. Pour tout réel x, on pose alors $u(x) = e^x$ et $v(x) = x^2 + 3x 2$. Pour tout réel x, on a alors $f(x) = u(v(x)) = u \circ v(x)$.
 - v est dérivable sur \mathbb{R} et pour tout réel x, v'(x) = 2x + 3
 - u est dérivable sur \mathbb{R} et pour tout réel x, $u'(x) = e^x$

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = v'(x) \times u'(v(x)) = (2x+3)e^{x^2+3x-2}.$$

3 Composition de fonctions

5

Propriété 4 — Cas particuliers : Soit u une fonction définie et dérivable sur un intervalle I

- Pour tout entier naturel n, u^n est dérivable sur I et $(u^n)' = nu'u^{n-1}$.
- e^u est dérivable sur I et $(e^u)' = u' \times e^u$.
- Si pour tout réel $x \in I$, u(x) > 0, alors \sqrt{u} est dérivable sur I et $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$.
- Si pour tout réel x, $u(x) \neq 0$, $\frac{1}{u}$ est dérivable sur I et $\left(\frac{1}{u}\right) = -\frac{u'}{u^2}$.
- **Exemple 8 :** Pour tout réel x, posons $f(x) = (4x+1)^9$.

Pour tout réel x, on pose u(x) = 4x + 1. u est dérivable sur \mathbb{R} . Or, $f = u^9$.

Ainsi, f est dérivable sur \mathbb{R} et $f' = 9 \times u' \times u^8$, c'est-à-dire que pour tout réel x, on a

$$f'(x) = 9 \times 4 \times (4x+1)^{9-1} = 36 \times (4x+1)^8.$$

Exemple 9 : Pour tout réel x, posons $f(x) = \frac{1}{x^2 + 1}$.

Pour tout réel x, on pose alors $u(x) = x^2 + 1$. u est dérivable sur \mathbb{R} et ne s'annule pas. Or, $f = \frac{1}{u}$.

Ainsi, f est dérivable sur \mathbb{R} et $f' = -\frac{u'}{u^2}$, c'est-à-dire que pour tout $x \in \mathbb{R}$, on a

$$f'(x) = -\frac{2x}{(x^2+1)^2}.$$

■ Exemple 10 : On considère la fonction f définie pour tout réel $x \in [-2;2]$ par $f(x) = \sqrt{4-x^2}$.

Bien que la fonction f soit définie sur l'intervalle fermé [-2;2], elle n'est en revanche dérivable que sur l'intervalle ouvert]-2;2[. Pour tout réel $x \in]-2;2[$, on a

$$f'(x) = \frac{-2x}{2\sqrt{4 - x^2}} = -\frac{x}{\sqrt{4 - x^2}}.$$

_

2. Exercices

Rappels sur la dérivation

► Exercice 1 – Voir le corrigé

Dériver les fonctions suivantes, en précisant leur domaine de définition et de dérivation.

$$f_{1}: x \mapsto 5x^{3} + 2x^{2} - 3x + 1$$

$$f_{2}: x \mapsto 8x^{7} + \frac{4}{x^{2}}$$

$$f_{3}: x \mapsto 2x^{4} + e^{3x - 1}$$

$$f_{4}: x \mapsto (5x^{2} + 2x - 1)e^{x}$$

$$f_{5}: x \mapsto (1 - 6x^{2})e^{3x + 2}$$

$$f_{6}: x \mapsto \frac{e^{x}}{x}$$

$$f_{7}: x \mapsto \frac{x^{2} + 3x + 1}{x - 5}$$

$$f_{8}: x \mapsto \frac{x + e^{3}}{e^{x}}$$

► Exercice 2 – Voir le corrigé

On considère la fonction $f: x \mapsto x^3 + 3x^2 - 45x + 21$.

- 1. f est dérivable pour tout $x \in \mathbb{R}$. Que vaut f'(x)?
- 2. Construire le tableau de signes de f' et en déduire le tableau de variations de f.

► Exercice 3 – Voir le corrigé

On considère la fonction f définie pour tout réel x par $f(x) = \frac{10x + 4}{5x^2 + 1}$

- 1. Justifier que f est dérivable sur \mathbb{R} . Exprimer f'(x) pour tout réel x.
- 2. Construire le tableau de variations de f sur \mathbb{R}

► Exercice 4 – Voir le corrigé

Pour tout réel $x \neq -1$, on pose $f(x) = \frac{e^x}{1+x}$.

1. Justifier que f est dérivable sur $]-\infty;-1[$ et sur $]-1;+\infty[$ et que pour tout réel x dans ces intervalles

$$f'(x) = \frac{xe^x}{(1+x)^2}.$$

2. Étudier le signe de f'(x) et en déduire le tableau de variations de f.

► Exercice 5 – Voir le corrigé

Construire le tableau de variations de la fonction $f: x \mapsto (-x^2 + x + 1)e^{1-3x}$ définie sur \mathbb{R} .

► Exercice 6 (Centres étrangers 2024) – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 0,1$ et, pour tout entier naturel n, $u_{n+1} = 2u_n e^{-u_n}$

- 1. Déterminer le sens de variations de la fonction f définie pour tout réel $x \in [0, 1]$ par $f(x) = 2xe^{-x}$.
- 2. Montrer par récurrence que pour tout entier naturel n, on a $0 \le u_n \le u_{n+1} \le 1$.

► Exercice 7 – Voir le corrigé

A l'aide d'une étude de fonction, montrer que pour tout réel x, on a $e^x \ge 1 + x$

Dérivée seconde

► Exercice 8 – Voir le corrigé

Pour chacune des fonctions suivantes, deux fois dérivables sur l'intervalle mentionné, donner une expression de la dérivée seconde.

$$f_{1}: x \mapsto 6x^{2} + 2x - 1 \text{ sur } \mathbb{R}$$

$$f_{2}: x \mapsto 3x^{2} + 2x - \frac{3}{x}, \text{ sur }] - \infty; 0[$$

$$f_{3}: x \mapsto x^{2}e^{3x+1}, \text{ sur } \mathbb{R}$$

$$f_{4}: x \mapsto \frac{3x^{2} - 1}{x}, \text{ sur }] - \infty; 0[$$

$$f_{5}: x \mapsto (1 - 6x^{2})e^{3x+2}, \text{ sur } \mathbb{R}$$

$$f_{6}: x \mapsto \frac{e^{x}}{x}, \text{ sur }]0; +\infty[$$

► Exercice 9 – Voir le corrigé

On considère la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = 3x^4 + 16x^3 - 66x^2 - 360x + 120$.

- 1. Soit x un réel. Que vaut f'(x)?
- 2. On note f'' la dérivée de f'. Que vaut f''(x)?
- 3. Construire la tableau de signes de f''.
- 4. En déduire le tableau de variations de f'.
- 5. On indique de plus que f'(-5) = f'(3) = f'(-2) = 0. Construire le tableau de signes de f' et en déduire le tableau de variations de f.

► Exercice 10 – Voir le corrigé

On considère une fonction f deux fois dérivable. On a représenté ci-dessous la courbe de f' dans un repère orthonormé.

On sait par ailleurs que f(-6) = -1, f(-5,5) = 0 et f(-1) = 2. Construire le tableau de signes de f'' et f sur l'intervalle [-6,7].

► Exercice 11 – Voir le corrigé

Soit f et g deux fonctions deux fois dérivables sur un intervalle I. Justifier que (fg) est deux fois dérivable sur I et exprimer (fg)'' en fonction de f, g et de leurs dérivées.

► Exercice 12 – Voir le corrigé

Soit a et b deux réels. Pour tout réel x, on pose $f(x) = (ax + b)e^x$.

- 1. Justifier que f est deux fois dérivable sur \mathbb{R} puis donner une expression de f'(x) et f''(x).
- 2. Montrer que pour tout réel x, f''(x) 2f'(x) + f(x) = 0.

8 2. Exercices

► Exercice 13 – Voir le corrigé

Soit f une fonction définie sur un intervalle I et n un entier naturel. Lorsqu'il est possible de dériver n fois la fonction f sur I, on dit que f est n fois dérivable et on note $f^{(n)}$ la fonction obtenue en dérivant n fois. On a alors $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$...

- 1. On considère la fonction $f: x \mapsto xe^x$. Montrer par récurrence que, pour tout entier naturel n, f est n fois dérivable et pour tout réel x, $f^{(n)}(x) = (x+n)e^x$.
- 2. On considère la fonction $g: x \mapsto xe^{-x}$. Montrer par récurrence que, pour tout entier naturel n, g est n fois dérivable et pour tout réel x, $g^{(n)}(x) = (-1)^n (x - n)e^x$.

Composition de fonctions

► Exercice 14 – Voir le corrigé

Pour tout réel *x*, on pose $f(x) = x^2 + 1$, g(x) = 3x + 2 et h(x) = 2 - x. Donner une expression de $(f \circ g)(x)$, $(g \circ f)(x)$, $(h \circ g)(x)$ et $(f \circ g \circ h)(x)$.

► Exercice 15 – Voir le corrigé

Exprimer chacune des fonctions suivantes comme la composition de deux fonctions « usuelles ». On ne se souciera pas des domaines de définition.

$$f_1: x \mapsto e^{1+x^2}$$
 $f_2: x \mapsto (3x+8)^7$ $f_3: x \mapsto \sqrt{1+e^x}$

► Exercice 16 – Voir le corrigé

Soit f une fonction définie sur un ensemble E. On dit que f est une involution de E si pour tout $x \in E$, $(f \circ f)(x) = x.$

- Montrer que la fonction x → 1/x est une involution de R*.
 Soit a un réel. Montrer que la fonction x → a x est une involution de R.
- 3. Soit a et b deux réels, avec $b \neq 0$. Montrer que la fonction $x \mapsto \frac{b}{r-a} + a$ est une involution de $\mathbb{R} \setminus \{a\}$.

► Exercice 17 – Voir le corrigé

Dériver les fonctions suivantes, dérivables sur l'intervalle donné.

$$f_1: x \mapsto (3x+2)^2$$
, sur \mathbb{R} $f_2: x \mapsto (6x^2+3x+4)^3$, sur \mathbb{R} $f_3: x \mapsto e^{\sqrt{x}}$, sur $]0; +\infty[$ $f_4: x \mapsto \sqrt{2x^2-5x+7}$, sur \mathbb{R} $f_5: x \mapsto \frac{1}{(3x+6)^2}$, sur $]-2; +\infty[$ $f_6: x \mapsto e^{x+\frac{1}{x}}$, sur $]-\infty; 0[$

► Exercice 18 – Voir le corrigé

On considère la fonction $f: x \mapsto e^{3x^2+2x-1}$, définie sur \mathbb{R} .

- 1. Justifier que f est dérivable sur \mathbb{R} et calculer f'(x) pour tout réel x.
- 2. Construire le tableau de variations de f.
- 3. Déterminer l'équation de la tangente à la courbe de f au point d'abscisse -1.

► Exercice 19 – Voir le corrigé

Construire le tableau de variations de la fonction $f: x \mapsto \sqrt{x^2 - 4x + 5}$, définie et dérivable sur \mathbb{R} puis tracer l'allure de sa courbe représentative dans un repère orthogonal.

► Exercice 20 - Voir le corrigé

On considère la fonction $f: x \mapsto \sqrt{1-x^2}$. On note D le domaine de définition de f et D' son domaine de dérivabilité.

- 1. Déterminer D et D'.
- 2. Donner une expression de f'(x) pour tout $x \in D'$.
- 3. Pour tout réel $x \in D$, on pose $g(x) = e^{\sqrt{1-x^2}}$.
 - (a) Justifier que g est dérivable sur D' et calculer g'(x) pour tout x dans D'.
 - (b) En déduire le sens de variations de *g* puis tracer l'allure de la courbe représentative de *g* dans un repère orthonormé.

► Exercice 21 – Voir le corrigé

On considère la fonction $f: x \mapsto e^{x^2+2x-5}$, définie et deux fois dérivable sur \mathbb{R} .

- 1. Construire le tableau de variation de f.
- 2. Déterminer une expression de f''(x) pour tout réel x.

► Exercice 22 – Voir le corrigé

Pour tout réel
$$x$$
, on pose $f(x) = \left(\frac{x^2 - 2x - 3}{2}\right)^2$.

- 1. Justifier que f est dérivable sur \mathbb{R} et calculer f'(x) pour tout réel x.
- 2. En déduire les variations de f sur \mathbb{R} et tracer la courbe représentative de f dans un repère orthonormé.
- 3. Justifier que f est deux fois dérivable sur \mathbb{R} . Donner une expression de f''(x) pour tout réel x.

► Exercice 23 – Voir le corrigé

Donner une expression de la dérivée seconde de la fonction $f: x \mapsto e^{1/x} \operatorname{sur} [0; +\infty[$.

► Exercice 24 – Voir le corrigé

On considère la fonction $f: x \mapsto \frac{e^x}{\sqrt{x}}$, définie sur $]0; +\infty[$.

- 1. Justifier que f est dérivable sur $]0; +\infty[$ et que pour tout réel x > 0, $f'(x) = \frac{(2x-1)e^x}{2x\sqrt{x}}$.
- 2. Construire le tableau de variations de la fonction f sur $]0;+\infty[$.

On considère désormais la fonction
$$g: x \mapsto \frac{e^{x^2+x+1}}{\sqrt{x^2+x+1}}$$
.

On peut remarquer que pour tout réel x, $g(x) = f(x^2 + x + 1)$.

3. Justifier que g est définie et dérivable sur \mathbb{R} et que pour tout réel x,

$$g'(x) = \frac{(2x+1)(2x^2+2x+1)e^{x^2+x+1}}{2(x^2+x+1)\sqrt{x^2+x+1}}.$$

Indication : ne pas utiliser la dérivée d'un quotient vous épargnera de longs et pénibles calculs.

4. Construire le tableau de variations de g sur \mathbb{R} .

3. Correction des exercices

Rappels sur la dérivation

► Correction 1 – Voir l'énoncé

a. Pour tout réel x, $f'_1(x) = 5 \times 3x^2 + 2 \times 2x - 3 = 15x^2 + 4x - 3$.

b. Pour tout réel non nul
$$x$$
, $f_2'(x) = 8 \times 7x^6 + 4 \times \left(-\frac{2}{x^3}\right) = 56x^6 - \frac{8}{x^3}$.

Remarque : en mettant au même dénominateur, on a $f_2'(x) = \frac{56x^9 - 8}{x^3}$

c. Pour tout réel
$$x$$
, $f_3'(x) = 2 \times 4x^3 + 3e^{3x-1} = 8x^3 + 3e^{3x-1}$.

d. Pour tout réel x, on pose $u(x) = 5x^2 + 2x - 1$ et $v(x) = e^x$.

•
$$u$$
 est dérivable sur \mathbb{R} et pour tout réel x , $u'(x) = 10x + 2$.

•
$$v$$
 est dérivable sur \mathbb{R} et pour tout réel x , $v'(x) = e^x$.

Ainsi, puisque $f_4 = uv$, f est dérivable sur \mathbb{R} et $f'_4 = u'v + uv'$. Pour tout réel x, on a donc

$$f_4'(x) = (10x+2)e^x + (5x^2+2x-1)e^x = (5x^2+12x+1)e^x.$$

e. Pour tout réel x, on pose $u(x) = 1 - 6x^2$ et $v(x) = e^{3x+2}$.

- u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) = -12x.
- v est dérivable sur \mathbb{R} et pour tout réel x, $v'(x) = 3e^{3x+2}x$.

Ainsi, puisque $f_5 = uv$, f_5 est dérivable sur \mathbb{R} et f' = u'v + uv'. Pour tout réel x, on a donc

$$f_5'(x) = -12xe^{3x+2} + (1-6x^2) \times 3e^{3x+2} = [-12x + (1-6x^2) \times 3]e^{3x+2} = (-18x^2 - 12x + 3)e^{3x+2}$$

f. Pour tout réel non nul x, on pose $u(x) = e^x$ et v(x) = x.

- u est dérivable sur $]-\infty;0[$ et $]0;+\infty[$, et pour tout réel non nul $x, u'(x)=e^x$.
- v est dérivable et ne s'annule pas sur $]-\infty;0[$ et $]0;+\infty[$, et pour tout réel non nul x,v'(x)=1.

Ainsi, puisque $f_6 = \frac{u}{v}$, f est dérivable sur $]-\infty;0[$ et $]0;+\infty[$ et $f_6' = \frac{u'v-uv'}{v^2}$. Pour tout réel non nul x, on a donc

$$f'_6(x) = \frac{e^x \times x - e^x \times 1}{x^2} = \frac{(x-1)e^x}{x^2}.$$

g. Pour tout réel $x \neq 5$, on pose $u(x) = x^2 + 3x + 1$ et v(x) = x - 5.

- u est dérivable sur $]-\infty;5[$ et $]5;+\infty[$, et pour tout réel $x \neq 5$, u'(x)=2x+3.
- v est dérivable et ne s'annule pas sur $]-\infty;5[$ et $]5;+\infty[$, et pour tout réel $x \neq 5, v'(x) = 1$.

Ainsi, puisque $f = \frac{u}{v}$, f est dérivable sur $]-\infty; 5[$ et $]5; +\infty[$ et $f' = \frac{u'v - uv'}{v^2}$. Pour tout réel $x \neq 5$, on a donc

$$f_7'(x) = \frac{(2x+3)(x-5) - (x^2+3x+1)}{(x-5)^2} = \frac{2x^2 - 10x + 3x - 15 - x^2 - 3x - 1}{(x-5)^2} = \frac{x^2 - 10x - 16}{(x-5)^2}.$$

h. Pour tout réel x, on pose $u(x) = x + e^3$ et $v(x) = e^x$.

- u est dérivable sur \mathbb{R} , et pour tout réel x, u'(x) = 1.
- v est dérivable et ne s'annule pas sur \mathbb{R} , et pour tout réel x, $v'(x) = e^x$.

Ainsi, puisque $f = \frac{u}{v}$, f est dérivable sur \mathbb{R} et $f' = \frac{u'v - uv'}{v^2}$. Pour tout réel x, on a donc

$$f_8'(x) = \frac{1 \times e^x - (x + e^3)e^x}{(e^x)^2} = \frac{(-x + 1 - e^3)e^x}{(e^x)^2} = \frac{-x + 1 - e^3}{e^x}.$$

► Correction 2 – Voir l'énoncé

Pour tout réel *x*, on a $f'(x) = 3x^2 + 6x - 45$.

Notons Δ le discriminant du polynôme $3x^2 + 6x - 45$. On a $\Delta = 6^2 - 4 \times 3 \times (-45) = 576 > 0$.

Le polynôme $3x^2 + 6x - 45$ admet donc deux racines réelles distinctes

$$x_1 = \frac{-6 - \sqrt{576}}{2 \times 3} = -5$$
 et $x_2 = \frac{-6 + \sqrt{576}}{2 \times 3} = 3$.

Par ailleurs, le signe d'un polynôme est celui de son coefficient dominant (ici, 3) à l'extérieur des racines. Il est du signe opposé entre les racines. On peut alors dresser le tableau de signe de f' et en déduire le tableau de variations de f.

x	-∞		-5		3	+∞
f'(x)		+	0	_	0	+
f	/		196		-60	

► Correction 3 – Voir l'énoncé

Pour tout réel x, on pose u(x) = 10x + 4 et $v(x) = 5x^2 + 1$

- u est dérivable sur \mathbb{R} , et pour tout réel x, u'(x) = 10
- v est dérivable et ne s'annule pas sur \mathbb{R} , et pour tout réel x, v'(x) = 10x

Ainsi, puisque $f = \frac{u}{v}$, f est dérivable sur \mathbb{R} et $f' = \frac{u'v - uv'}{v^2}$. Pour tout réel x, on a donc

$$f'(x) = \frac{10 \times (5x^2 + 1) - (10x + 4) \times 10x}{(5x^2 + 1)^2} = \frac{-50x^2 - 40x + 10}{(5x^2 + 1)^2}$$

Pour tout réel x, $(5x^2+1)^2>0$. Il ne reste qu'à étudier le signe de $-50x^2-40x+10$. C'est un polynôme du second degré dont le discriminant vaut $(-40)^2-4\times10\times(-50)=3600>0$. Ce polynôme admet donc deux racines réelles distinctes qui sont

$$x_1 = \frac{-(-40) + \sqrt{3600}}{2 \times (-50)} = -1$$
 et $x_2 = \frac{-(-40) - \sqrt{3600}}{2 \times (-50)} = \frac{1}{5} = 0.2$

On peut alors construire le tableau de signes de f' et en déduire le tableau de variations de f.

х	-∞		-1		0.2		+∞
f'(x)		_	0	+	0	_	
f			-1		5		*

▶ Correction 4 – Voir l'énoncé

Pour tout réel $x \neq -1$, on pose $u(x) = e^x$ et v(x) = 1 + x.

- u est dérivable sur $]-\infty;-1[$ et $]-1;+\infty[$, et pour tout réel $x\neq -1, u'(x)=e^x$.
- v est dérivable et ne s'annule pas sur $]-\infty;-1[$ et $]-1;+\infty[$, et pour tout réel $x\neq -1, v'(x)=1$.

Ainsi, puisque $f = \frac{u}{v}$, f est dérivable sur $]-\infty;-1[$ et $]-1;+\infty[$ et $f'=\frac{u'v-uv'}{v^2}$. Pour tout réel $x\neq -1$,

$$f'(x) = \frac{e^x \times (1+x) - e^x \times 1}{(1+x)^2} = \frac{xe^x}{(1+x)^2}$$

Pour tout réel $x \neq -1$, $(1+x)^2 > 0$ et $e^x > 0$. f'(x) est donc du signe de x (hormis en -1, valeur interdite).

► Correction 5 – Voir l'énoncé

Pour tout réel x, on pose $u(x) = -x^2 + x + 1$ et $v(x) = e^x$.

- u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) = -2x + 1
- v est dérivable sur \mathbb{R} et pour tout réel x, $v'(x) = e^x$

Ainsi, puisque f = uv, f est dérivable sur \mathbb{R} et f' = u'v + uv'. Pour tout réel x, on a donc

$$f'(x) = (-2x+1)e^x + (-x^2+x+1)e^x = (-x^2-x+2)e^x.$$

Pour tout réel x, $e^x > 0$. Il ne reste donc qu'à étudier le signe de $-x^2 - x + 2$. Il s'agit d'un polynôme du second degré. Son discriminant vaut $\Delta = (-1)^2 - 4 \times (-1) \times 2 = 9 > 0$. Le polynôme $-x^2 - x + 2$ admet donc deux racines réelles distinctes

$$x_1 = \frac{-(-1) - \sqrt{9}}{2 \times (-1)} = 1$$
 et $x_2 = \frac{-(-1) + \sqrt{9}}{2 \times (-1)} = -2$.

On peut alors construire le tableau de signes de f' et en déduire le tableau de variations de f.

x	-∞		-2		1		+∞
f'(x)		_	0	+	0	_	
f			$3e^{-2}$		e \		`*

► Correction 6 – Voir l'énoncé

La fonction f est dérivable comme produit de fonctions dérivables sur [0;1]

De plus, pour tout réel $x \in [0; 1]$, on a

$$f'(x) = 2 \times e^{-x} + 2x \times (-e^{-x}) = (2 - 2x)e^{-x}.$$

Or, pour tout $x \in [0;1]$, $e^{-x} > 0$. Par ailleurs, si $0 \le x \le 1$, on a $0 \ge -2x \ge -2$ et donc $2 \ge 2 - 2x \ge 0$. En particulier, pour tout $x \in [0;1]$, $2 - 2x \ge 0$.

Ainsi, pour tout réel positif $x \in [0, 1]$, $f'(x) \ge 0$. f est donc croissante sur [0, 1].

Pour tout entier naturel n, on considère la proposition $\mathcal{P}(n)$: « $0 \le u_n \le u_{n+1} \le 1$ ».

- **Initialisation :** Pour n = 0, on a $u_0 = 0,1$ et $u_1 = 2 \times 0,1 \times e^{-0,1} \simeq 0,18$. On a bien $0 \le u_0 \le u_1 \le 1$. $\mathscr{P}(0)$ est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons que $\mathscr{P}(n)$ est vraie, c'est-à-dire $0 \le u_n \le u_{n+1} \le 1$.La fonction f étant croissante sur [0;1], on peut l'appliquer à cette inégalité sans en changer le sens. Ainsi,

$$f(0) \leqslant f(u_n) \leqslant f(u_{n+1}) \leqslant f(1).$$

Or,
$$f(0) = 0$$
, $f(u_n) = u_{n+1}$, $f(u_{n+1}) = u_{n+2}$ et $f(1) = \frac{2}{e} \le 1$. Il en vient que $0 \le u_{n+1} \le u_{n+2} \le \frac{2}{e} \le 1$.

 $\mathcal{P}(n+1)$ est donc vraie.

• Conclusion : $\mathcal{P}(0)$ est vraie. \mathcal{P} est héréditaire. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout entier $n \in \mathbb{N}$.

► Correction 7 – Voir l'énoncé

Pour tout réel x, on pose $f(x) = e^x - x - 1$. f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = e^x - 1$. On sait par ailleurs que $e^x \ge 1 \Leftrightarrow x \ge 0$. On en déduit le tableau de signes de f' et le tableau de variations de f.

On a en effet $f(0) = e^0 - 0 - 1 = 0$. Ainsi, pour tout réel x, $f(x) \ge 0$, soit $e^x - x - 1 \ge 0$ ou $e^x \ge 1 + x$.

Graphiquement, cela signifie que la courbe de la fonction exponentielle est toujours au-dessus de sa tangente en 0.

Dérivée seconde

▶ Correction 8 – Voir l'énoncé

Pour tout réel x, $f'_1(x) = 12x + 2$ et $f''_1(x) = 12$.

Pour tout réel x < 0, $f_2'(x) = 6x + \frac{3}{x^2}$ et $f_2''(x) = 6 - \frac{6}{x^3}$.

Pour tout réel x, on pose $u_1(x) = x^2$ et $v_1(x) = e^{3x+1}$. u_1 et v_1 sont dérivables sur \mathbb{R} . f est donc également dérivable sur \mathbb{R} et $f' = u'_1 v_1 + u_1 v'_1$. Ainsi, pour tout réel x,

$$f_3'(x) = 2x \times e^{3x+1} + x^2 \times 3e^{3x+1} = (3x^2 + 2x)e^{3x+1}$$

Pour tout réel x, on pose $u_2(x) = 3x^2 + 2x$ et $v_2(x) = e^{3x+1}$. u_2 et v_2 sont dérivables sur \mathbb{R} , f_3' l'est donc également et $f_3'' = u_2'v_2 + u_2v_2'$. Ainsi, pour tout réel x,

$$f_3''(x) = (6x+2)e^{3x+1} + (3x^2+2x) \times 3e^{3x+1} = (3x^2+12x+2)e^{3x+1}$$

On peut remarquer que pour tout réel x < 0, $f_4(x) = \frac{3x^2}{x} - \frac{1}{x} = 3x - \frac{1}{x}$.

Ainsi, pour tout réel x < 0, $f'_4(x) = 3 + \frac{1}{x^2}$ et $f''_4(x) = -\frac{2}{x^3}$.

Pour tout réel x, on pose $u_1(x) = 1 - 6x^2$ et $v_1(x) = e^{3x+2}$

- u_1 est dérivable sur \mathbb{R} et pour tout réel x, $u_1'(x) = -12x$.
- v_1 est dérivable sur \mathbb{R} et pour tout réel x, $v_1'(x) = 3e^{3x+2}x$.

Ainsi, puisque $f_5 = u_1v_1$, f_5 est dérivable sur \mathbb{R} et $f_5' = u_1'v_1 + u_1v_1'$. Pour tout réel x, on a donc

$$f_5'(x) = -12xe^{3x+2} + (1-6x^2) \times 3e^{3x+2} = [-12x + (1-6x^2) \times 3]e^{3x+2} = (-18x^2 - 12x + 3)e^{3x+2}$$

Pour tout réel x, on pose alors $u_2(x) = -18x^2 - 12x + 3$ et $v_2(x) = e^{3x+2}$. u_2 et v_2 sont dérivables sur \mathbb{R} , f_5' l'est donc également. Pour tout réel x,

$$f_5''(x) = (-36x - 12)e^{3x+2} + (-18x^2 - 12x + 3) \times 3e^{3x+2} = (-54x^2 - 72x - 3)e^{3x+2}.$$

Pour tout réel x > 0, on pose $u_1(x) = e^x$ et $v_1(x) = x$. u_1 et v_1 sont dérivables sur $]0; +\infty[$ et v ne s'annule pas sur cet intervalle. Ainsi, f_6 est dérivable sur $]0; +\infty[$ et pour tout réel x,

$$f_6'(x) = \frac{e^x \times x - e^x \times 1}{x^2} = \frac{(x-1)e^x}{x^2}.$$

Posons alors, pour tout réel x > 0, $u_2(x) = (x - 1)e^x$ et $v_2(x) = x^2$. v_2 est dérivable et ne s'annule pas sur $]0; +\infty[$ Par ailleurs, u_1 est dérivable sur $]0; +\infty[$ car c'est un produit de fonctions dérivables sur cet intervalle. Pour tout réel x > 0

$$u_1'(x) = 1 \times e^x + (x-1)e^x = xe^x$$

Ainsi, pour tout réel x > 0

$$f_6''(x) = \frac{xe^x \times x^2 - (x-1)e^x \times 2x}{x^4} = \frac{(x^3 - 2x^2 + 2x)e^x}{x^4} = \frac{(x^2 - 2x + 2)e^x}{x^3}$$

Jason LAPEYRONNIE

► Correction 9 – Voir l'énoncé

Pour tout réel x, $f'(x) = 12x^3 + 48x^2 - 132x - 360$ et $f''(x) = 36x^2 + 96x - 132$.

f'' est une fonction polynôme du second degré dont le discriminant vaut $96^2 - 4 \times 36 \times (-132) = 28224 > 0$. L'équation f''(x) = 0 admet donc deux solutions réelles

$$x_1 = \frac{-96 - \sqrt{28224}}{2 \times 36} = -\frac{11}{3}$$
 et $x_2 = \frac{-96 + \sqrt{28224}}{2 \times 36} = 1$.

On peut alors construire le tableau de signes de f''. Par ailleurs, f'' étant la dérivée de f', on en déduit le tableau de variations de f'.

x	-∞		-11/3		1		+∞
f''(x)		+	0	_	0	+	
f'			<i>></i>		\		7

Puisque f' est croissante sur $]-\infty;5]$ et que f'(5)=0, on en déduit que pour tout réel $x \le 5$, $f'(x) \le 0$. En raisonnant de même sur les autres intervalles, on en déduit le tableau de signes de f' et donc le tableau de variations de f.

x	$-\infty$ -5 -11/3 -2 1 3 + ∞
f''(x)	+ + 0 0 +
f'	
f'(x)	- 0 + + 0 0 +
f	

► Correction 10 – Voir l'énoncé

f'' est la dérivée de f'. Les variations de f' nous donnent donc le signe de f''.

Par ailleurs, à l'aide du signe de f', on peut construire le tableau de variations de f. Les informations sur les valeurs extrêmes de f nous permettent de construire son tableau de signes.

▶ Correction 11 – Voir l'énoncé

Si f et g sont dérivables, alors fg l'est également et (fg)' = f'g + fg'. Si de plus f' et g' sont dérivables, alors f'g et fg' le sont également et

- (f'g)' = f''g + f'g'; (fg')' = f'g' + fg''.

Ainsi, (fg)' est dérivable et (fg)'' = f''g + f'g' + f'g' + fg'' = f''g + 2f'g' + fg''.

► Correction 12 – Voir l'énoncé

Les fonctions $x \mapsto ax + b$ et $x \mapsto e^x$ sont deux fois dérivables sur \mathbb{R} . Leur produit est donc deux fois dérivable sur \mathbb{R} .

Pour tout réel x, $f'(x) = ae^x + (ax + b)e^x = (ax + a + b)e^x$ et $f''(x) = ae^x + (ax + a + b)e^x = (ax + 2a + b)e^x$. Ainsi, pour tout réel x,

$$f''(x) - 2f'(x) + f(x) = (ax + 2a + b)e^{x} - 2(ax + a + b)e^{x} + (ax + b)e^{x}$$

et donc

$$f''(x) - 2f'(x) + f(x) = (ax + 2a + b - 2ax - 2a - 2b + ax + b)e^{x} = 0$$

► Correction 13 – Voir l'énoncé

Pour tout entier naturel n, on considère la proposition P(n): « f est n fois dérivable sur \mathbb{R} et pour tout réel x, $f^{(n)}(x) = (x+n)e^x$ ».

- Initialisation : f est bien dérivable 0 fois et pour tout réel x, $f^{(0)}(x) = f(x) = (x+0)e^x$.
- **Hérédité** : Soit n un entier naturel. Supposons que P(n) est vraie. Alors f est n fois dérivable sur \mathbb{R} et pour tout réel x, $f^{(n)}(x) = (x+n)e^x$. $f^{(n)}$ est dérivable sur \mathbb{R} car c'est le produit de deux fonctions dérivables sur \mathbb{R} . f est donc n+1 fois dérivable sur \mathbb{R} . Par ailleurs, pour tout réel x,

$$f^{(n+1)}(x) = (f^{(n)})'(x) = e^x + (x+n)e^x = (x+n+1)e^x.$$

P(n+1) est donc vraie.

• Conclusion : P(0) est vraie, P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

Pour tout entier naturel n, on considère la proposition P(n): « g est n fois dérivable sur \mathbb{R} et pour tout réel x, $g^{(n)}(x) = (-1)^n (x-n)e^{-x}$ ».

- Initialisation : g est bien dérivable 0 fois et pour tout réel x, $g^{(0)}(x) = g(x) = (-1)^0(x-0)e^{-x}$. P(0) est vraie.
- **Hérédité**: Soit n un entier naturel. Supposons que P(n) est vraie. Alors g est n fois dérivable sur \mathbb{R} et pour tout réel x, $g^{(n)}(x) = (-1)^n (x-n) \mathrm{e}^{-x}$. $g^{(n)}$ est dérivable sur \mathbb{R} car c'est le produit de deux fonctions dérivables sur \mathbb{R} . g est donc n+1 fois dérivable sur \mathbb{R} . Par ailleurs, pour tout réel x,

$$g^{(n+1)}(x) = (g^{(n)})'(x) = (-1)^n \times (e^{-x} + (x-n) \times (-e^{-x}))'$$

$$= (-1)^n (1-x+n)e^{-x}$$

$$= (-1)^n \times (-(x-n-1))e^{-x}$$

$$= (-1)^{n+1} (x - (n+1))e^{-x}$$

P(n+1) est donc vraie.

• Conclusion : P(0) est vraie, P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

Composition de fonctions

► Correction 14 – Voir l'énoncé

Pour tout réel x,

- $(f \circ g)(x) = f(g(x)) = g(x)^2 + 1 = (3x + 2)^2 + 1 = 9x^2 + 12x + 5$.
- $(g \circ f)(x) = 3f(x) + 2 = 3(x^2 + 1) + 2 = 3x^2 + 5$.
- $(h \circ g)(x) = 2 g(x) = 2 (3x + 2) = -3x$.
- $(f \circ g \circ h)(x) = (f \circ g)(h(x)) = (3h(x) + 2)^2 + 1 = (8 3x)^2 + 1 = 9x^2 48x + 65.$

► Correction 15 – Voir l'énoncé

Pour tout réel x, on pose $u(x) = e^x$ et $v(x) = 1 + x^2$. On a alors $f_1 = u \circ v$.

Pour tout réel x, on pose $u(x) = x^7$ et v(x) = 3x + 8. On a alors $f_2 = u \circ v$.

Pour tout réel positif x positif, on pose $u(x) = \sqrt(x)$. Pour tout réel x, on pose $v(x) = 1 + e^x$. On a alors $f_3 = u \circ v$.

► Correction 16 – Voir l'énoncé

Pour tout réel $x \neq 0$, $f(f(x)) = \frac{1}{\frac{1}{x}} = x$. f est bien une involution de \mathbb{R}^* .

Pour tout réel x, f(f(x)) = a - (a - x) = x. f est une involution de \mathbb{R} .

Pour tout réel $x \neq a$,

$$f(f(x)) = \frac{b}{\left(\frac{b}{x-a} + a\right) - a} + a = \frac{b}{x-a} + a = x - a + a = x.$$

f est une involution de $\mathbb{R} \setminus \{a\}$.

► Correction 17 – Voir l'énoncé

- **a.** Pour tout réel x, $f'_1(x) = 3 \times 2(3x+2) = 18x+12$.
- **b.** Pour tout réel x, $f_2'(x) = (12x+3) \times 3(6x^2+3x+4)^2 = (36x+9)(6x^2+3x+4)^2$.
- **c.** Pour tout réel x > 0, $f_3'(x) = \frac{1}{2\sqrt{x}} \times e^{\sqrt{x}}$.

d. Pour tout réel
$$x$$
, $f_4'(x) = \frac{4x-5}{2\sqrt{2x^2-5x+7}}$.

e. Pour tout réel
$$x > 2$$
, $f_5'(x) = 3 \times \left(-\frac{2}{(3x+6)^3}\right) = -\frac{6}{(3x+6)^3}$.

f. Pour tout réel
$$x \neq 0$$
, $f'_{6}(x) = \left(1 - \frac{1}{x^{2}}\right) e^{x + \frac{1}{x}}$.

► Correction 18 – Voir l'énoncé

Pour tout réel x, $f(x) = e^{u(x)}$ avec $u(x) = 3x^2 + 2x - 1$. u est dérivable sur \mathbb{R} , f l'est donc aussi et $f' = u'e^u$. Ainsi, pour tout réel x,

$$f'(x) = (6x+2)e^{3x^2+2x-1}.$$

Pour tout réel x, $e^{3x^2+2x-1} > 0$, f'(x) est donc du signe de 6x + 2.

La tangente à la courbe de f à l'abscisse -1 a pour équation y = f'(-1)(x+1) + f(-1) soit y = -4(x+1) + 1 ou encore y = -4x - 3.

► Correction 19 – Voir l'énoncé

Pour tout réel x, $x^2 - 4x + 5 > 0$. En effet, il s'agit d'un polynôme du second degré dont le discriminant est strictement négatif. De plus, $f(x) = \sqrt{u(x)}$. Ainsi, f est définie et dérivable sur \mathbb{R} et $f' = \frac{u'}{2\sqrt{u}}$.

Pour tout $x \in \mathbb{R}$, on a donc $f'(x) = \frac{2x-4}{2\sqrt{x^2-4x+5}}$. Puisque pour tout $x \in \mathbb{R}$, $\sqrt{x^2-4x+5} > 0$, f'(x) est du signe de 2x-4.

x	-∞	2		+∞
f'(x)	_	0	+	
f		1		Х

► Correction 20 – Voir l'énoncé

- 1. $\sqrt{1-x^2}$ existe si et seulement si $1-x^2 \ge 0$, c'est-à-dire $x^2 \le 1$ et donc $x \in [-1;1]$. Par ailleurs, la fonction racine carrée n'est pas dérivable en zéro. Ainsi, f n'est pas dérivable en -1 et 1, qui sont les solutions de l'équation $1 - x^2 = 0$. On a donc D' =]-1;1[.
- 2. Pour tout $x \in D'$, $f'(x) = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}}$. 3. (a) On a $g = e^f$. Or, f est dérivable sur D', g l'est donc également et pour tout réel x de D',

$$g'(x) = f'(x) \times e^{f(x)} = -\frac{xe^{\sqrt{1-x^2}}}{\sqrt{1-x^2}}.$$

(b) Puisque pour tout réel $x \in D$, $\sqrt{1-x^2} > 0$ et $e^{-\sqrt{1-x^2}} > 0$, g'(x) est du signe de -x.

X	-1		0		1
f'(x)		+	0	_	
f	1		e \		1

(c) On trace l'allure de la courbe représentative de g dans un repère orthonormé.

► Correction 21 – Voir l'énoncé

f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = (2x+2)e^{x^2+2x-5}$ qui est du signe de 2x+2.

x	-∞	-1	+∞
f'(x)	_	0	+
f		e^{-6}	

En utilisant la dérivée d'un produit, pour tout réel x, on a

$$f''(x) = 2 \times e^{x^2 + 2x - 5} + (2x + 2) \times (2x + 2)e^{x^2 + 2x - 5} = (4x^2 + 8x + 6)e^{x^2 + 2x - 5}.$$

► Correction 22 – Voir l'énoncé

Pour tout réel x, on pose $u(x) = \frac{x^2 - 2x - 3}{2}$. u est dérivable sur \mathbb{R} et $f = u^2$. f est donc dérivable sur \mathbb{R} et f' = 2u'u. Pour tout réel x,

$$f'(x) = 2 \times (x-1) \times \frac{x^2 - 2x - 3}{2} = (x-1)(x^2 - 2x - 3).$$

Le polynôme $x^2 - 2x - 3$ s'annule en -1 et en 3. Ainsi, pour tout réel x, f'(x) = (x - 1)(x + 1)(x - 3). On peut alors construire le tableau de signes de f' et le tableau de variations de f.

f' est le produit de deux fonctions dérivables sur \mathbb{R} et est donc dérivable sur \mathbb{R} . Pour tout réel x,

$$f''(x) = 1 \times (x^2 - 2x - 3) + (x - 1) \times (2x - 2) = 3x^2 - 6x - 1.$$

► Correction 23 – Voir l'énoncé

Pour tout réel x > 0, on pose $u(x) = \frac{1}{x}$. u est dérivable sur $]0; +\infty[$ et $f = e^u$. f est donc dérivable sur $]0; +\infty[$ et $f' = u'e^u$. Ainsi, pour tout réel x > 0, $f'(x) = -\frac{e^{1/x}}{x^2}$.

f' est également dérivable comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas sur $]0; +\infty[$. Par ailleurs, pour tout réel x > 0,

$$f''(x) = -\left(\frac{-\frac{e^{1/x}}{x^2} \times x^2 - e^{1/x} \times 2x}{(x^2)^2}\right) = \frac{(2x+1)e^{1/x}}{x^4}.$$

► Correction 24 – Voir l'énoncé

1. Les fonctions $x \mapsto e^x$ et $x \mapsto \sqrt{x}$ sont dérivables sur $]0; +\infty[$. De plus, la fonction $x \mapsto \sqrt{x}$ ne s'annule pas sur cet intervalle. Ainsi, f est dérivable sur $]0; +\infty[$ et, pour tout réel x > 0, on a

$$f'(x) = \frac{e^x \times \sqrt{x} - e^x \times \frac{1}{2\sqrt{x}}}{\sqrt{x}^2} = \frac{1}{x} \times \frac{e^x \sqrt{x} \times 2\sqrt{x} - e^x}{2\sqrt{x}} = \frac{(2x - 1)e^x}{2x\sqrt{x}}.$$

2. Pour tout réel x > 0, f'(x) est du signe de (2x - 1).

x	-∞		$\frac{1}{2}$		+∞
f'(x)	_	-	0	+	
f			$\sqrt{2e}$		Х

3. La fonction $u: x \mapsto x^2 + x + 1$ est une fonction dérivable sur \mathbb{R} . Par ailleurs, pour tout réel $x, x^2 + x + 1 > 0$ (on calcule le discriminant du polynôme $x^2 + x + 1$, celui-ci est strictement négatif). Ainsi, g est dérivable sur \mathbb{R} et pour tout réel x,

$$g'(x) = u'(x) \times f'(u(x)) = (2x+1) \times \frac{(2(x^2+x+1)-1)e^{x^2+x+1}}{2(x^2+x+1)\sqrt{x^2+x+1}}$$

et donc

$$g'(x) = \frac{(2x+1)(2x^2+2x+1)e^{x^2+x+1}}{2(x^2+x+1)\sqrt{x^2+x+1}}.$$

4. g'(x) est du signe de (2x+1) (on vérifie que pour tout réel x, $2x^2+2x+1>0$ à l'aide du discriminant par exemple).

x	0	$-\frac{1}{2}$		+∞
g'(x)		- 0	+	
g		$g\left(-\frac{1}{2}\right)$		7