ESO 208A: Computational Methods in Engineering

Tutorial 1

Truncation error and estimation of error bound

- 1. Use the second order Taylor series approximation of $f(x) = e^x \cos(x)$ at x = 0 to:
 - i. Approximate the function values at x = 0.5 and x = 1.0
 - ii. Estimate the true error for both the approximations and compare them with the upper bound of truncation errors obtained from Taylor's theorem.
 - iii. Approximate $\int_{0}^{1} f(x)dx$ using Taylor's series. Determine an upper bound for the error and compare it with the true error.

Propagation of data error

- 2. Consider the expression $z = x^2y xy^2$ where x and y are measured quantities used for estimating z. If the measured values of x and y are 3 and 2, respectively, and their measurement errors are $\delta x = \delta y = 0.1$,
 - i. Estimate error in z by using first order error analysis
 - ii. Recalculate error in z by second order analysis and comment on the usefulness of higher order error analysis.
- 3. The deflection of the top of the sailboat mast is given by

$$y = \frac{FL^4}{8EI}$$

where F = a uniform side loading (N/m), L=height (m), E= the modulus of elasticity (N/m²) and I= the moment of inertia (m⁴). Estimate the error in y given the following data.

F=750 N/m	$\Delta F = 30 \text{ N/m}$
L=9 m	$\Delta L = 0.03 \text{ m}$
$E=7.5 \times 10^9 \text{ N/m}^2$	$\Delta E = 5 \times 10^7 \mathrm{N/m^2}$
$I=0.0005 \text{ m}^4$	$\Delta I = 0.000005 \text{ m}^4$