Chapter 2: Applications of Unique Factorization

Exercise. If $\frac{a}{b} \in \mathbb{Z}_p$ is not a unit, prove that $\frac{a}{b} + 1$ is a unit.

Proof. $\frac{a}{b} \in \mathbb{Z}_p$ is not a unit iff $p \mid a$ and $p \nmid b$. Thus $p \nmid (a+b)$. That is, $\frac{a}{b} + 1 = \frac{a+b}{b} \in \mathbb{Z}_p$ is a unit. \square

Exercise 4.6. (p-adic valuation.) For a rational number r let [r] be the largest integer less than or equal to r, e.g., $[\frac{1}{2}] = 0$, [2] = 2, $[3\frac{1}{3}] = 3$. Prove

$$ord_p n! = \left\lceil \frac{n}{p} \right\rceil + \left\lceil \frac{n}{p^2} \right\rceil + \left\lceil \frac{n}{p^3} \right\rceil + \cdots$$

Proof. \square

Supplement. Related problems.

(1) Prove that

$$\frac{(m+n)!}{m!n!}$$

is an integer for all non-negative integers m and n.

Proof. It is sufficient to show that

$$\operatorname{ord}_{p}(m+n)! \ge \operatorname{ord}_{p}m! + \operatorname{ord}_{p}n!$$

for any prime p, or show that

$$\left\lceil \frac{m+n}{p^k} \right\rceil \ge \left\lceil \frac{m}{p^k} \right\rceil + \left\lceil \frac{n}{p^k} \right\rceil$$

for any prime p and $k \in \mathbb{Z}^+$ by Exercise 4.6, or show that

$$[x+y] > [x] + [y]$$

for any rational (or real) numbers x and y. It is trivial by considering that the sum of two fractional parts $\{x\} = x - [x]$ might be greater than or equal to 1, so [x+y] = [x] + [y] or [x] + [y] + 1. \square

Note. $\frac{(m+n)!}{m!n!}$ is a binomial coefficient. Similarly, a multinomial coefficient is

$$\frac{(n_1+n_2+\cdots+n_k)!}{n_1!n_2!\cdots n_k!}.$$

We can show that the multinomial coefficient is an integer by using the above argument.

(2) Prove that

$$\frac{(2m)!(2n)!}{m!n!(m+n)!}$$

is an integer for all non-negative integers m and n.

Proof. Similar to (1), it is sufficient to show that

$$[2x] + [2y] \ge [x] + [y] + [x+y]$$

for any rational (or real) numbers x and y. Notice that $[2x] = [x] + [x + \frac{1}{2}]$, and thus we might show that $[x + \frac{1}{2}] + [y + \frac{1}{2}] \ge [x + y]$. Again it is trivial and we omit the tedious calculation. \square

(3) Hermite's identity: $[nx] = \sum_{k=0}^{n-1} [x + \frac{k}{n}]$ for $n \in \mathbb{Z}^+$.

Let n=2 and we can get $[2x]=[x]+[x+\frac{1}{2}]$ too.

Proof. Consider the function $f(x) = \sum_{k=0}^{n-1} [x + \frac{k}{n}] - [nx]$. Notice that $f(x + \frac{1}{n}) = f(x)$. f has period $\frac{1}{n}$. It then suffices to prove that f(x) = 0 on $[0, \frac{1}{n})$. But in this case, the integral part of each summand in f is equal to 0. Therefore f = 0 on \mathbb{R} . \square

(4) Show

$$\frac{(5m)!(5n)!}{m!n!(3m+n)!(3n+m)!}$$

is an integer for all non-negative integers m and n.

Try to deduce the inequality $[5x] + [5y] \ge [x] + [y] + [3x + y] + [3y + x]$.