Apéndice B

Lema de Zorn

El lema de Zorn es una versión equivalente del **axioma de elección*** que se utiliza muy a menudo en álgebra. Aquí vamos a revisar el enunciado y un par de aplicaciones típicas.

B.1 Lema de Zorn

B.1.1. Definición. Se dice que un conjunto \mathcal{P} es **parcialmente ordenado** si sobre los elementos de \mathcal{P} está definida una relación \leq que satisface los siguientes axiomas.

- 1) **Reflexividad**: para todo $x \in \mathcal{P}$ se cumple $x \leq x$.
- 2) **Antisimetría**: para cualesquiera $x, y \in \mathcal{P}$ si $x \leq y$ e $y \leq x$, entonces x = y.
- 3) **Transitividad**: para cualesquiera $x, y, z \in P$ si $x \leq y$ e $y \leq z$, entonces $x \leq z$.

Se dice que $m \in \mathcal{P}$ es un elemento **maximal** si no existe otro elemento $x \in \mathcal{P}$ tal que $m \leq x$.

Se dice que un subconjunto $S \subseteq P$ es una **cadena** si para cualesquiera $s, s' \in S$ se tiene $s \leq s'$ o $s' \leq s$.

Se dice que un subconjunto $S \subseteq P$ es **acotado** si existe $t \in P$ (una **cota superior**) tal que $s \leq t$ para todo $s \in S$.

B.1.2. Lema de Zorn. Sea \mathcal{P} un conjunto parcialmente ordenado no vacío. Supongamos que toda cadena en \mathcal{P} es acotada. Entonces, \mathcal{P} posee un elemento maximal.

B.2 Aplicación: bases de espacios vectoriales

La primera aplicación del lema de Zorn debe de ser conocida al lector. Recordemos primero algunas definiciones de álgebra lineal. Sea k un cuerpo. Para un espacio vectorial V sobre k y un subconjunto $S \subset V$ el subespacio vectorial **generado** por S es el subconjunto de las sumas finitas

$$\sum_{1 \le i \le n} \lambda_i \, v_i$$

donde $\lambda_i \in k$ y $v_i \in S$. Se dice que los elementos de S son **linealmente independientes** si para cualesquiera $\{v_1, \ldots, v_n\} \subseteq S$, si

$$\sum_{1\leq i\leq n}\lambda_i\,v_i=0,$$

^{*}Esto no es un curso de lógica, así que no voy a probar la equivalencia; el lector puede consultar otras fuentes, por ejemplo [Lan2002, Appendix 2].

entonces $\lambda_1 = \cdots = \lambda_n = 0$. Se dice que S es una **base** de V si $\langle S \rangle = V$ y los elementos de S son linealmente independientes.

B.2.1. Teorema. Sea V un espacio vectorial no nulo y sea $S \subset V$ un subconjunto linealmente independiente. Entonces, S puede ser completado a una base de V.

Demostración. Sea \mathcal{P} el conjunto de los subconjuntos linealmente independientes $T \subseteq V$ tales que $S \subseteq T$, parcialmente ordenado respecto a la inclusión. En particular, $S \in \mathcal{P}$, así que $\mathcal{P} \neq \emptyset$.

Sea $\{T_{\alpha}\}$ una cadena en \mathcal{P} ; es decir, una colección de conjuntos linealmente independientes $T_{\alpha} \subset V$ tales que

- 1) $S \subseteq T_{\alpha}$ para todo α ,
- 2) para cualesquiera α y β se tiene $T_{\alpha} \subseteq T_{\beta}$ o $T_{\beta} \subseteq T_{\alpha}$.

Tomemos la unión $T := \bigcup_{\alpha} T_{\alpha}$. Tenemos $S \subseteq T_{\alpha} \subseteq T$ para todo α . Además para una colección finita de vectores $\{v_1, \ldots, v_n\} \subseteq T$ tenemos $v_i \in T_{\alpha_i}$ para algunos α_i , y ya que $\{T_{\alpha}\}$ es una cadena, todos estos vectores pertenecen a algún conjunto T_{α} y por ende son linealmente independientes. Esto significa que $T \in \mathcal{P}$ y es una cota superior para la cadena.

Ahora el lema de Zorn implica que existe un elemento maximal en \mathcal{P} ; es decir, un conjunto linealmente independiente B tal que $S \subseteq B$ y B no está contenido en ningún otro conjunto linealmente independiente. Vamos a probar que los elementos de B generan a V.

Supongamos que $\langle B \rangle \subsetneq V$. En este caso existe un vector $v \in V$, $v \notin \langle B \rangle$. Vamos a ver que esto implica que el conjunto $B \cup \{v\}$ es linealmente independiente. Si $B \cup \{v\}$ fuera linealmente dependiente, entonces existiría una combinación lineal

$$\lambda v + \lambda_1 v_1 + \cdots + \lambda_n v_n = 0$$

donde $\lambda, \lambda_i \in k$ son escalares, no todos nulos, y $v_1, \dots, v_n \in B$. Dado que los elementos de B son linealmente independientes, tenemos necesariamente $\lambda \neq 0$. Sin embargo, en este caso

$$v = -\left(\frac{\lambda_1}{\lambda}v_1 + \cdots + \frac{\lambda_n}{\lambda}v_n\right),$$

lo que implica que $v \in \langle B \rangle$. Entonces, el conjunto $B \cup \{v\}$ debe ser linealmente independiente.

Esto contradice el hecho de que B sea un conjunto linealmente independiente maximal, y por lo tanto $\langle B \rangle = V$.

B.2.2. Corolario. Todo espacio vectorial no nulo posee una base.

Demostración. En el resultado anterior, basta tomar $S = \{v\}$ donde v es cualquier vector no nulo en V.

B.2.3. Corolario. Sea V un espacio vectorial no nulo. Para todo subespacio $U \subset V$ existe otro espacio $W \subset V$ tal que $V = U \oplus W$.

Demostración. Según el teorema, podemos escoger una base S de U, y luego completarla a una base B de V. Sea W el subespacio generado por $B \setminus S$. Se puede verificar que V = U + W y $U \cap W = \{0\}$.

B.3 Aplicación: grupos abelianos divisibles (*)

Recordemos que un grupo abeliano D es **divisible** si para cualesquiera $x \in D$ y $n = 1, 2, 3, \ldots$ existe $y \in D$ tal que ny = x. Hemos encontrado estos grupos en los ejercicios. Por ejemplo, los grupos $\mathbb{Q}, \mathbb{R}, \mathbb{Q}/\mathbb{Z}, \mathbb{R}/\mathbb{Z}$ son divisibles. He aquí una caracterización importante de grupos divisibles.

B.3.1. Teorema (Reinhold Baer, 1940). Sea D un grupo abeliano. Las siguientes condiciones son equivalentes.

1) Para todo grupo abeliano A y un subgrupo $B\subseteq A$ cualquier homomorfismo $f\colon B\to D$ se extiende a un homomorfismo $\widetilde{f}\colon A\to D$:

$$B \longleftrightarrow A$$

$$f \downarrow \qquad \qquad \exists \widetilde{f}$$

$$\widetilde{f}\Big|_{B}=f.$$

2) D es divisible.

Demostración. La implicación fácil es 1) \Rightarrow 2). Para n = 1, 2, 3, ... consideremos el subgrupo $n\mathbb{Z} \subseteq \mathbb{Z}$. Un elemento $x \in D$ corresponde a un homomorfismo

$$f: n\mathbb{Z} \to D$$
, $an \mapsto ax$.

Luego, si D cumple la propiedad 1), entonces f se extiende a \tilde{f} :

$$\begin{array}{ccc}
n\mathbb{Z} & \longrightarrow & \mathbb{Z} \\
f \downarrow & & \\
D & & \exists \tilde{f}
\end{array}$$

Tenemos

$$n \cdot \widetilde{f}(1) = \widetilde{f}(n \cdot 1) = f(n) = x.$$

Esto demuestra que x es divisible por n.

Para probar $2) \Rightarrow 1$), primero notamos que si D es divisible, entonces la propiedad 1) se cumple para los subgrupos de \mathbb{Z} : como arriba, todo homomorfismo $f\colon n\mathbb{Z} \to D$ se extiende a $\widetilde{f}\colon \mathbb{Z} \to D$. De hecho, f está definido por la imagen $f(n)=x\in D$, y por la divisibilidad existe $y\in D$ tal que $n\cdot y=x$. Podemos definir

$$\widetilde{f}: \mathbb{Z} \to D$$
, $1 \mapsto y$.

Ahora para todo $an \in n\mathbb{Z}$ se cumple

$$\widetilde{f}(an) = an \, \widetilde{f}(1) = any = ax = a \, f(n) = f(an).$$

Procedamos con la prueba. Sean A un grupo abeliano, $B\subseteq A$ un subgrupo y $f\colon B\to D$ un homomorfismo. Sea $\mathcal P$ un conjunto de los pares (B',f') donde $B\subseteq B'\subseteq A$ es un subgrupo que contiene a B y $f'\colon B'\to D$ es un homomorfismo tal que $f=f'|_B$. En particular, $(B,f)\in \mathcal P$, así que $\mathcal P\neq \emptyset$. Consideremos la siguiente relación sobre $\mathcal P$:

$$(B',f') \leq (B'',f'') \iff B' \subseteq B'' \text{ y } f''|_{B'} = f'.$$

El conjunto \mathcal{P} es parcialmente ordenado respecto a esta relación. Para una cadena $\{(B_{\alpha}, f_{\alpha})\}$ podemos considerar la unión $\bigcup_{\alpha} B_{\alpha}$. Puesto que $\{(B_{\alpha}, f_{\alpha})\}$ es una cadena, se ve que $\bigcup_{\alpha} B_{\alpha}$ es un subgrupo abeliano de A tal que $B_{\alpha} \subseteq \bigcup_{\alpha} B_{\alpha}$ para todo α . Podemos definir un homomorfismo $\phi \colon \bigcup_{\alpha} B_{\alpha} \to D$ de la siguiente manera: para todo $x \in \bigcup_{\alpha} B_{\alpha}$ tenemos $x \in B_{\alpha}$ para algún α , y pongamos $\phi(x) := f_{\alpha}(x)$. Dado que $\{(B_{\alpha}, f_{\alpha})\}$ es una cadena en \mathcal{P} , esto nos da un homomorfismo bien definido. Por la definición, $\phi|_{B_{\alpha}} = f_{\alpha}$ para todo α . Entonces, $(\bigcup_{\alpha} B_{\alpha}, \phi)$ es una cota superior para la cadena.

El lema de Zorn implica que \mathcal{P} posee un elemento maximal (B', f'). Necesitamos probar que B' = A. Supongamos que $B' \subsetneq A$. Entonces, existe algún elemento $x \in A \setminus B'$, y podemos considerar el conjunto

$$C := \{ a \in \mathbb{Z} \mid a \cdot x \in B' \} \subset \mathbb{Z}.$$

Se ve que esto es un subgrupo de Z. Consideremos el homomorfismo de grupos abelianos

$$g: C \to D$$
, $a \mapsto f'(a \cdot x)$.

Como hemos notado, dado que D es divisible, el homomorfismo g se extiende a un homomorfismo $\widetilde{g} \colon \mathbb{Z} \to D$:

$$\begin{array}{ccc}
C & \longrightarrow & \mathbb{Z} \\
\downarrow g & & & \\
D & & & \exists \widetilde{g}
\end{array}$$

Consideremos ahora el subgrupo $B'' := \langle B' \cup \{x\} \rangle$. Sus elementos son sumas y + nx donde $y \in B'$ y $n \in \mathbb{Z}$. Por nuestra hipótesis que $x \notin B'$, se tiene $B' \subsetneq B'' \subseteq A$. Consideramos la aplicación

$$f'': B'' \to A,$$

 $y + nx \mapsto \widetilde{g}(n) + f'(y).$

Se ve que esto es un homomorfismo de grupos abelianos y $f''|_{B'} = f'$. Entonces, $(B', f') \leq (B'', f'')$. Pero esto contradice la maximalidad de (B', f'). Podemos concluir que B' = A.

De aquí podemos deducir otra caracterización de grupos divisibles.

B.3.2. Corolario. D es un grupo abeliano divisible si y solamente si todo monomorfismo de grupos abelianos $i: D \rightarrow A$ admite un homomorfismo $r: A \rightarrow D$ tal que $r \circ i = \mathrm{id}_D$.

Demostración. Supongamos que D es divisible. Un monomorfismo $i: D \rightarrow A$ induce un isomorfismo $\bar{i}: D \xrightarrow{\cong} \operatorname{im} i$. El teorema anterior nos dice que \bar{i}^{-1} : $\operatorname{im} i \xrightarrow{\cong} D$ se extiende al grupo A:

$$\lim_{\bar{i}^{-1} \downarrow \atop D} \stackrel{\exists r}{\longrightarrow} A$$

Tenemos $r|_{\text{im }i} = \overline{i}^{-1}$, así que $r \circ i = \overline{i}^{-1} \circ \overline{i} = \text{id}_D$.

Viceversa, supongamos que todo monomorfismo $i: D \rightarrow A$ admite un homomorfismo $r: A \rightarrow D$ tal que $r \circ i = \mathrm{id}_D$. Para un elemento $x \in D$ y $n = 1, 2, 3, \ldots$ consideremos el conjunto

$$C := \{(a \cdot x, -an) \mid a \in \mathbb{Z}\} \subseteq D \times \mathbb{Z}.$$

Esto es un subgrupo de $D \times \mathbb{Z}$: tenemos $(0,0) = (0 \cdot x, -0 \cdot n) \in C$, y luego para cualesquiera $a,b \in \mathbb{Z}$

$$(a \cdot x, -an) \pm (b \cdot x, -bn) = ((a \pm b) \cdot x, -(a \pm b) n).$$

Podemos pasar al grupo cociente $(D \times \mathbb{Z})/C$ y considerar el homomorfismo

$$i: D \to (D \times \mathbb{Z})/C$$
,
 $z \mapsto (z,0) + C$

(esto es la composición de la inclusión de D como un subgrupo de $D \times \mathbb{Z}$ con la proyección sobre el grupo cociente). Notamos que

$$(x,0) - (0,n) = (x,-n) = (1 \cdot x, -1 \cdot n) \in C,$$

así que

$$i(x) = (0, n) + C$$
 en $(D \times \mathbb{Z})/C$.

Verifiquemos que i es un monomorfismo: si tenemos

$$(z,0)-(z',0)\in C$$
,

entonces

$$(z - z', 0) = (a \cdot x, -an)$$

para algún $a \in \mathbb{Z}$. Sin embargo, $n \neq 0$, así que esto significa que a = 0 y luego $z - z' = 0 \cdot x = 0$, y por ende z = z'. Entonces, por nuestra hipótesis, existe un homomorfismo $r \colon (D \times \mathbb{Z})/C \to D$ tal que $r \circ i = \mathrm{id}_D$. En particular,

$$x = r \circ i(x) = r((0, n) + C) = n \cdot r((0, 1) + C).$$

Esto establece la divisibilidad de x por n.

Bibliografía

[Lan2002] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.

http://dx.doi.org/10.1007/978-1-4613-0041-0