Example 1. The area of triangle ABC is 16 cm^2 . D and E are midpoints of AB and AC, respectively. F is a point on BC such that BF = 3 cm. What is the area of triangle DEF?

- (A) 12
- (B) 9
- (C) 8
- (D) 4
- (E) 3

$$\begin{split} S_{\Delta ABC} &= S_{\Delta ADC} - S_{\Delta ABF} - 2S_{\Delta FDB} - S_{\Delta BCE} \\ &= \frac{1}{2} \times 4 \times 3 - \frac{1}{2} \times 3 \times 2 - 2 \times \frac{1}{2} \times 1 \times 2 - \frac{1}{2} \times 1 \times 1 = \frac{1}{2} \end{split}$$

Method 2 (Our Solution):

By Pick's Law,
$$Area = \frac{3}{2} + 0 - 1 = \frac{1}{2}$$
.

☆Example 8. What is the area enclosed by the geoboard quadrilateral below?

- (A) 16

 - (B) 18 (C) 20 (D) 25
- (E) 21

of a larger rectangle as shown.

pe?

(E) 10

he two red colored own side lengths (Note: the and after the move). The perimeter

Z.

 \Rightarrow Example 22. (AMC 10) Circles A, B, and C each have radius 1. Circles A and B share one point of tangency. Circle C has a point of tangency with the midpoint of AB. What is the area inside circle C but outside circle A and circle B?

(A)
$$3 - \frac{\pi}{2}$$
 (B) $\frac{\pi}{2}$ (C) 2 (D) $\frac{3\pi}{4}$ (E) $1 + \frac{\pi}{2}$

Example 23. ABCD is a square with vertex A at the center of the circle. AE = 10 in. What is the number of square inches in the area of

 ΔBCD ?

(A) 100

(B) 50

(C) 25

(D) 8π

(E) 12π

Example 27. D and C trisect the arc of the half circle as shown in the figure. Find the shaded area if the area of the half circle is 9π .

(A) 3π

(B) 4π (C) 5π

(D) 6π

(E) 2π

Problem 17. What is the radius of a circle whose perimeter is 64π cm?

- (A) 64
- (B) 32
- (C) 16
 - (D) 8
- (E) 128

Problem 19. In the figure, the center of the circle is O and \overline{AB} is tangent to the circle at point B. What is the area of the shaded region?

- (A) $36\sqrt{3} 24\pi$ (B) $36\sqrt{3} 12\pi$
- (C) $72\sqrt{3} 12\pi$ (D) $72\sqrt{3} 24\pi$
- (E) $36\sqrt{3} 12\pi$

Problem 22. A square is constructed on diameter \overline{AC} such that the area of the square is equal to the area of the circle. What percent of \overline{AC} is \overline{BC} ?

(A) $\frac{\sqrt{\pi}}{2}$ (B) $\frac{\pi}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3\pi}{4}$ (E) $2 - \frac{\pi}{2}$

E

Problem 23. The length of a side of equilateral triangle ABC is 2. D, E, and F are the midpoints of \overline{AB} , \overline{BC} , and \overline{AC} , respectively. A, B, and C are the centers of the circles that contain arcs DF, DE, and FE, respectively. What is the area of the shaded region? D

(B)
$$\pi - \sqrt{3}$$

(C)
$$2\sqrt{3} - \frac{\pi}{2}$$
 (D) $\sqrt{3} - \frac{\pi}{4}$

(D)
$$\sqrt{3} - \frac{\pi}{4}$$

$$(\mathbb{E}) \sqrt{3} - \frac{\pi}{2}$$

Problem 24. The figure shows a square with side of length 12. The center of the square is O, and E, F, G, and H are the midpoints of the sides. If the arcs shown have centers at A, O, and C, what is the area of the shaded region? o^{\cdot}

(B)
$$36 + \frac{36\pi}{7}$$
 (C) $18\pi - 18$

(C)
$$18\pi - 18$$

(E)
$$36 - 12\pi$$

(A)
$$\frac{1}{2} - \frac{3\sqrt{3}}{2\pi}$$
 (B) $\frac{1}{2} - \frac{\sqrt{3}}{4\pi}$ (C) $\frac{1}{2} - \frac{\sqrt{3}}{\pi}$

(B)
$$\frac{1}{2} - \frac{\sqrt{3}}{4\pi}$$

(C)
$$\frac{1}{2} - \frac{\sqrt{3}}{\pi}$$

(D)
$$\frac{1}{2} - \frac{3\sqrt{3}}{4\pi}$$
 (E) $\frac{1}{2} - \frac{3\sqrt{3}}{\pi}$

(E)
$$\frac{1}{2} - \frac{3\sqrt{3}}{\pi}$$

Problem 26. As shown in the figure, right triangle ABC with BC = 20 cm. BDC is a half circle with the diameter BC. The difference between two shaded areas I and II is 23. Find AC in terms of π .

☆ Problem 27. A circle of radius 4 is inscribed in a semicircle, as shown. The area inside the semicircle but outside the circle is shaded. What fraction of the semicircle's area is

shaded?

(A) $\frac{1}{2}$ (B) $\frac{5\pi}{6}$ (C) $\frac{2}{\pi}$ (D) $\frac{2\pi}{3}$ (E) $\frac{3}{\pi}$.

 \Rightarrow **Problem 28.** In trapezoid *ABCD*, *AD* is perpendicular to *DC*, AD = AB = 4, and DC = 8. In addition, *E* is on *DC*, and *BE* is parallel to A = AB = AB = AD. Find the area of ABEC.

- (A) 4
- (B) 8
- (C) 12
- (D) 18
- (E) 10

