Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia

São Paulo: Atlas, 2004

Cap. 7 - Distribuições Amostrais e Estimação de Parâmetros

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

Amostragem e Inferência estatística

Ex.

Conceitos

- Parâmetro: alguma medida descritiva (média, variância, proporção, etc.) dos valores x1, x2, x3,..., associados à população.
- Amostra aleatória simples: conjunto de *n* variáveis aleatórias independentes {*X*1, *X*2, ..., *Xn*}, cada uma com a mesma distribuição de probabilidades de uma certa variável aleatória *X*. Esta distribuição de probabilidades deve corresponder à distribuição de freqüências dos valores da população (*X*1, *X*2, *X*3, ...).
- **Estatística**: alguma medida descritiva (média, variância, proporção, etc.) das variáveis aleatórias X1, X2, ..., Xn, associadas à amostra

Parâmetros e Estatísticas

	Parâmetros	Estatísticas
Proporção	$p = \frac{n^{\circ} \ de \ elementos \ com \ o \ atributo}{N}$	$\hat{P} = \frac{n^o \ de \ elementos \ com \ o \ atributo}{n}$
Média	$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
Variância	$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$

Estatística

 Uma estatística é uma variável aleatória e a sua distribuição de probabilidades é chamada de distribuição amostral.

Ex. 7.2

População: {2, 3, 4, 5}

Parâmetros:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{4} (2 + 3 + 4 + 5) = 3,5$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 = \frac{1}{4} [(2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2] = 1.25$$

Distribuição da média amostral (Ex. 7.2)

- Amostragem aleatória simples de tamanho n = 2.
 - Construção da distribuição amostral da média:

Amostras possíveis	\overline{X}	Probabilidade
(2, 2) (2, 3), (3, 2) (2, 4), (3, 3), (4, 2) (2, 5), (3, 4), (4, 3), (5, 2) (3, 5), (4, 4), (5, 3) (4, 5), (5, 4) (5, 5)	2,0 2,5 3,0 3,5 4,0 4,5 5,0	1/ 16 2/ 16 3/ 16 4/ 16 3/ 16 2/ 16 1/ 16

Distribuição da média amostral (Ex. 7.2)

Média e variância da média amostral (Ex. 7.2)

$$E(\overline{X}) = 2\left(\frac{1}{16}\right) + 2,5\left(\frac{2}{16}\right) + 3\left(\frac{3}{16}\right) + 3,5\left(\frac{4}{16}\right) + 4\left(\frac{3}{16}\right) + 4,5\left(\frac{2}{16}\right) + 5\left(\frac{1}{16}\right) = 3,5$$

$$V(\overline{X}) = (2-3.5)^2 \frac{1}{16} + (2.5-3.5)^2 \frac{2}{16} + \dots + (5-3.5)^2 \frac{1}{16} = 0.625$$

Distribuição amostral da média

População: N elementos

X: variável quantitativa

Parâmetros:

$$\mu = E(X), \sigma^2 = V(X)$$

X pode ser vista como uma variável aleatória se considerar a distribuição de freqüências da população como uma distribuição de probabilidades — a distribuição da população.

Amostragem aleatória simples

Amostra:

$$(X_1, X_2, ..., X_n)$$

Estatísticas:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Média e variância da média amostral

Seja a população com média μ e variância σ².

$$E(\overline{X}) = \mu$$

$$V(\overline{X}) = \frac{\sigma^2}{n}$$
 se a amostragem for *com* reposição, ou *N* muito grande ou infinito

$$V(\overline{X}) = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$$
 se a amostragem for *sem* reposição e
 N não muito grande, $N < 20n$

Distribuição da média amostral

 (Teorema limite central) Se o tamanho da amostra for razoavelmente grande, então a distribuição amostral da média pode ser aproximada pela distribuição normal.

Distribuição amostral da proporção

População: $N = N_A + N_{\overline{A}}$ elementos Parâmetro: p = proporção dos elementos0 ou 1

(0 = sem o atributo;

1 = com o atributo)

que têm o atributo A

Distribuição da população (caso de proporção)

X	p(x)
0 1	1-p p

Média e variância:

$$\mu = p$$

$$\sigma^2 = p(1-p)$$

Média e variância da proporção amostral

$$E(\hat{P}) = p$$

$$V(\hat{P}) = \frac{p(1-p)}{n}$$

se a amostragem for *com* reposição, ou *N* muito grande ou infinito

ou:

$$V(\hat{P}) = \frac{p(1-p)}{n} \cdot \frac{N-n}{N-1}$$

 $V(\hat{P}) = \frac{p(1-p)}{n} \cdot \frac{N-n}{N-1}$ se a amostragem for *sem* reposição e N não muito grande, N < 20n

Distribuição da proporção amostral

- Se o tamanho da amostra for razoavelmente grande, então a distribuição amostral da proporção pode ser aproximada pela distribuição normal.
- OBS. Se n for pequeno, a distribuição exata é binomial ou hipergeométrica (dependendo se a amostragem for com ou sem reposição)

Estimação de Parâmetros

universo do estudo (população)

dados observados

O raciocínio indutivo da estimação de parâmetros

Estimação de Parâmetros

POPULAÇÃO

AMOSTRA

Observações: X_1 X_2 X_3 ...

$$X_1 X_2$$

$$X_3$$
 ...

 $p = \hat{p} \pm \text{erro amostral}$

Estimação de parâmetros: intervalo de confiança para proporção

- p = proporção na população (parâmetro que se quer estimar)
- \hat{p} = proporção na amostra (pode ser calculada com base na amostra)
- $\sigma_{\hat{P}}=$ erro-padrão da proporção, que para amostra aleatória simples com reposição (ou sem reposição, mas com N >> n), pode ser estimado por:

$$s_{\hat{P}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Estimação de parâmetros: intervalo de confiança para proporção

 Com dados de uma amostragem aleatória simples com reposição (ou sem reposição, mas com N >> n), tem-se um intervalo de confiança para p, com nível de confiança γ :

$$IC(p, \gamma) = \hat{p} \pm z_{\gamma} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Verificar a expressão acima a partir da distribuição (aproximada) da proporção amostral (ver livro).

Estimação de parâmetros: intervalo de confiança para proporção

$$IC(p, \gamma) = \hat{p} \pm z_{\gamma} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

γ	0,800	0,900	0,950	0,980	0,990	0.995	0,998
z_{γ}	1,282	1,645	1,960	2,326	2,576	2,807	3,090

 μ = média na população (parâmetro que se quer estimar)

 $\overline{\chi}$ = média na amostra (pode ser calculada com base na amostra)

 $\sigma_{\overline{X}}$ = erro-padrão da média.

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Caso o desvio padrão (populacional) seja conhecido:

$$IC(\mu, \gamma) = \overline{x} \pm z_{\gamma} \frac{\sigma}{\sqrt{n}}$$

Caso o desvio padrão (populacional) **não** seja conhecido:

uso da distribuição t de Student.

A distribuição t de Student

 Supondo a população com distribuição normal, a estatística

$$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem distribuição de probabilidades conhecida como distribuição t de Student, com gl = n - 1 graus de liberdade.

A distribuição t de Student

Caso o desvio padrão (populacional) não seja conhecido:

$$IC(\mu, \gamma) = \overline{x} \pm t_{\gamma} \frac{s}{\sqrt{n}}$$

s = desvio padrão calculado na amostra

Como usar a Tabela t (Tab. IV do Apêndice)

 Ilustração com gl = 9 e nível de confiança de 95%.

Tamanho de amostra

 Na fase do planejamento da pesquisa, muitas vezes precisamos calcular o tamanho n da amostra, para garantir uma certa precisão desejada, a qual é descrita em termos do *erro amostral máximo tolerado* (E₀,) e do nível de confiança (γ) a ser adotado no processo de estimação.

Suponha amostragem aleatória simples

Tamanho de amostra

• No caso de estimação de μ , podemos exigir

$$\left|\overline{X} - \mu\right| \le E_0$$

ou:

$$z_{\gamma} \frac{\sigma}{\sqrt{n}} \leq E_0$$

ou:

$$n \geq \frac{z_{\gamma}^2 \sigma^2}{E_0^2}$$

Tamanho de amostra

 No caso de estimação de p, a população é caracterizada por uma variável 0-1, portanto:

$$\sigma^2 = p.(1-p) \le \frac{1}{4}$$

Assim:

$$n \ge \frac{z_{\gamma}^2 p(1-p)}{E_0^2} \ge \frac{z_{\gamma}^2}{4E_0^2}$$

Ver discussão no livro.

Tamanho mínimo de uma amostra aleatória simples

Parâmetro de interesse	Valor inicial do	tamanho da amostra	
uma média (μ):	$n_0 = \frac{z_\gamma^2 \sigma^2}{E_0^2}$		
uma proporção (p):	$n_0 = \frac{z_\gamma^2 p(1-p)}{E_0^2}$	$\frac{1}{2}$	
várias proporções (p ₁ , p ₂ ,):	$n_0 = \frac{z_\gamma^2}{4E_0^2}$		
Tamanho da amostra			
População infinita:	$n = n_0$	(arredondamento para o inteiro superior)	
População de tamanho N:	$n = \frac{N \cdot n_0}{N + n_0 - 1}$	(arredondamento para o inteiro superior)	