LABORATÓRIO TRANSFORMADORES O TRANSFORMADOR TRIFÁSICO DE NÚCLEO PLANO

Felipe Bandeira da Silva 1020942-X

1 de dezembro de 2013

Este laboratório tem como objetivo: Estudar a formação do transformador trifásico de núcleo plano. Aprender como se liga um transformador Triângulo-Triângulo, Triângulo-Estrela, Estrela-Estrela, Triângulo-Z.

Sumário

1	Fundamentação Teórica	5
2	Identificação dos transformadores	5
3	Experimento Prático	6
	3.1 Ligação Triângulo - Triângulo	6
	3.2 Ligação Triângulo - Estrela	8

Lista de Figuras

1 Ligação Triângulo-Triângulo com cargas diversas

Lista de Tabelas

1	Identificação do Transformador	5
2	Valores de tensões para o primário	6
3	Valores de corrente no primário	7
4	Potências calculadas	7
5	Reativo consumido no primário	7
6	Tensões no secundário	7
7	Valores de tensões para o primário	8
8	Valores de corrente no primário	8
9	Potências calculadas	8
10	Reativo consumido no primário	9
11	Tensões no secundário	9

1 Fundamentação Teórica

Transformadores são conhecidos pela alta eficiência na conversão de energia elétrica e tal fato faz o mesmo ser considerado, a maquina elétrica mais utilizada. Fatos que se devem, transformador não são sujeitos ao atrito, força física conhecida pela alta dissipação de energia.

O transformador trifásico de núcleo plano foi criado de três núcleos planos de transformadores monofásicos cuja redução do núcleo e consequentemente de material, acarreta um desequilíbrio de fluxo a um ligeiro desequilíbrio das correntes de magnetização das três fases. Mas essas considerações na construção do transformador torna o mesmo uma alternativa para a alta redução dos custos de fabricação e produção. E a menor perda no rendimento do transformador.

2 Identificação dos transformadores

Nessa parte da prática se faz necessária a identificação do transformador utilizado. São exigidas 4 identificações para cada transformação (Triângulo - Triângulo - Triângulo - Triângulo - Estrela, Estrela - Estrela, Triângulo - Z.)

O transformado utilizado no laboratório tem as seguintes características:

Número	EMS8348	Tipo Ventilação	Sem Ventilação
Potência	40 VA	Frequência	60 Hz
Fases	3	Tensões de Alta	208
Ligação	Delta-Delta*	Tensões de Baixa	208
Derivações	Sem derivações	Corrente de Alta	200 mA
Corrente de Baixa	Não possui	Fabricante	Lab Volt
Tipo	Transformador Isolado		

Tabela 1: Identificação do Transformador

Estas informações disponíveis da Tabela 1 são válidas para todos as outras ligações que aparecerão no decorrer da prática.

3 Experimento Prático

O experimento pratico se resume em alimentar o transformador e escolher duas ligações para o transformador.

3.1 Ligação Triângulo - Triângulo

Aplica-se uma tensão nos terminais de alta tensão(H1 H2 H3), aumentando gradativamente a tensão da fonte. Sendo feito a monitoração pelos voltímetros analógicos disponíveis nos laboratórios. A figura 1 exemplifica a ligação feita.

Figura 1: Ligação Triângulo-Triângulo com cargas diversas

Os seguintes valores foram mensurados para a tensões no primário,

$$egin{array}{c|c} V_1 & 202.4 \ V_2 & 202.4 \ V_3 & 202.4 \ V_3 \end{array}$$

Tabela 2: Valores de tensões para o primário

A correntes no primário são,

$$egin{array}{c|c} I_1 & 37 \ [mA] \\ I_2 & 37 \ [mA] \\ I_3 & 37 \ [mA] \\ \end{array}$$

Tabela 3: Valores de corrente no primário

Com isso é possível obter a potências no primário,

$$\begin{array}{c|c}
W_1 & 6 & [W] \\
W_2 & 6 & [W] \\
W_3 & 6 & [W]
\end{array}$$

Tabela 4: Potências calculadas

Com isso é possível obter a potências reativas no primário,

Tabela 5: Reativo consumido no primário

O fator de potência em vazio do transformador fica: 0.9864 (ind)

A tensão no secundário fica,

$$\begin{array}{c|c} V_1 & 225 \ [\mathrm{V}] \\ V_2 & 225 \ [\mathrm{V}] \\ V_3 & 225 \ [\mathrm{V}] \end{array}$$

Tabela 6: Tensões no secundário

3.2 Ligação Triângulo - Estrela

Aplica-se uma tensão nos terminais de alta tensão(H1 H2 H3), aumentando gradativamente a tensão da fonte. Sendo feito a monitoração pelos voltímetros analógicos disponíveis nos laboratórios.

Os seguintes valores foram mensurados para a tensões no primário,

$$egin{array}{c|c} V_1 & 213 \ V_2 & 213 \ V_3 & 213 \ V_3 \end{array}$$

Tabela 7: Valores de tensões para o primário

A correntes no primário são,

$$egin{array}{c|c} I_1 & 35 \ [mA] \\ I_2 & 35 \ [mA] \\ I_3 & 35 \ [mA] \\ \end{array}$$

Tabela 8: Valores de corrente no primário

Com isso é possível obter a potências no primário,

$$\begin{array}{c|c}
W_1 & 5 & [W] \\
W_2 & 5 & [W] \\
W_3 & 5 & [W]
\end{array}$$

Tabela 9: Potências calculadas

Com isso é possível obter a potências reativas no primário,

Tabela 10: Reativo consumido no primário

O fator de potência em vazio do transformador fica: 0.9806 (ind)

A tensão no secundário fica,

$$\begin{array}{c|c} V_1 & 122 \ [V] \\ V_2 & 122 \ [V] \\ V_3 & 122 \ [V] \end{array}$$

Tabela 11: Tensões no secundário