Semantic Theory week 7 – Discussion of exercises

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Exercise sheet 4: Exercise 1b Beta-reduction and Type-raising

```
\lambda y \lambda e \exists u [s'(u) \land call(e, y, u)] :: \langle e, \langle e, t \rangle \rangle
                                         \lambda y \lambda e \left[ \exists u [s'(u) \land (\lambda x [call(e, y, x)])](u) \right]
                                   \lambda y \lambda e [\lambda R \exists u [s'(u) \land R(u)] (\lambda x [call(e, y, x)])]
\lambda Q \lambda y \lambda e [Q(\lambda x [call(e, y, x)])]
                                                                                                                    \lambda R \equiv u [s'(u) \wedge R(u)]
                                                                                                                                                      :: \langle \langle e, t \rangle, t \rangle
                       :: \langle \langle \langle e, t \rangle, t \rangle, \langle e, \langle e, t \rangle \rangle
                                 *
   \lambda y \lambda x \lambda e [call(e, x, y)] :: \langle e, \langle e, \langle e, t \rangle \rangle \lambda P \lambda R \exists u [P(u) \land R(u)] s' = \lambda x (s'(x))
                         call
                                                                                                              :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle :: \langle e, t \rangle
                                                                                                                                                          senator
                                                                                                                           a
```

Exercise sheet 3: Exercise 3 A formal proof

The external negation of an upward monotonic quantifier is a downward monotonic quantifier.

Proof: We first collect the three relevant definitions:

- (1) The external negation $\neg Q$ of a quantifier Q is defined as $\{P \subseteq U_M | P \notin Q\}$.
- (2) Q is an upward monotonic quantifier iff for all X, Y \subseteq U_M: if X \in Q and X \subseteq Y, then Y \in Q
- (3) Q' is a downward monotonic quantifier iff for all X, Y \subseteq U_M: if X \in Q' and Y \subseteq X, then Y \in Q'

Take an arbitrary A, B \subseteq U_M and suppose A \subseteq B and B \in \neg Q. To prove: A \in \neg Q.

Suppose that $A \notin \neg Q$, then it follows from (1) that $A \in Q$. Given that Q is an upward monotonic quantifier, it follows from (2) that $B \in Q$. But this is in conflict with the assumption $B \in \neg Q$, which means that $B \notin Q$ (by (1)). Therefore, it must hold that $A \in \neg Q$. Now it follows from (3) that $\neg Q$ is downward monotonic.