Mathematics Department

COLLEGE ALGEBRA Learning Module #2

Topic	POLYNOMIALS
Duration	3 hours
Lesson	II. POLYNOMIALS
Proper	Expressions combining numbers and letters involving at least one of the basic operations.
	Definitions of Basic Terms in Polynomials
	A <i>constant</i> is a symbol that assumes one specific value.
	A <i>variable</i> is a symbol that assumes many values.
	An algebraic expression, or simply expression, is a collection of constants and variables involving at least one of the basic operations in mathematics
	A <i>term</i> is an expression preceded by plus or minus sign one term: r^2 ; $\frac{2}{x}$; $\frac{a+b}{a-b}$; \sqrt{y} ; $(x-y)^4$; $\frac{(a+b+c)}{3}$; $x \div y$ two terms: $ab-3$; $\frac{x-abc}{3}-1$; $\frac{1}{x}-\frac{1}{y}$; $x-\frac{x}{x+1}$; $a+x \div y$
	➤ A monomial is a term involving only the product of a real number and variables with nonnegative integral exponents Monomial: $6; 3b; 15xyz^2; x^2y^4; \frac{xy}{3}; abc; \sqrt{2}; abx$ Not monomial: $\frac{1}{x}; \frac{a}{b} - 5; \sqrt{x}; x + 2; \frac{1}{a+b}; x + y$ ➤ A polynomial is a sum of finite number of monomials. The general polynomial in one variable of degree n is of the form
	a _n x ⁿ + ··· + a ₁ x + a ₀ A binomial is a polynomial consisting of exactly two terms A trinomial is a polynomial consisting of exactly three terms If a monomial is expressed as a product of two or more symbols, each of the symbol is called the coefficient of the rest of the product. Ex: 2xy - 2 is called the numerical coefficient and Xy is called the literal coefficient Two monomials (or two terms) are similar if they have the same literal coefficient

Addition of Expressions or Polynomials

Rule1: To add two or more monomials with the same literal coefficients, add only their numerical coefficients, and affix the literal coefficients:

Ex. 1:
$$-8x + 15x = (-8 + 15)x = 7x$$

Rule 2: To add two or more polynomials, add similar or like terms

together. Ex. 2:
$$3x^2 - 4x - 4y$$
; $7x^2 - 2y - 2$ and $-4x^2 + x - y - 7$

Ex. 3: Subtract
$$4x - y - 3$$
 from $2x - y - 4$

Rule 3: To remove a grouping symbol preceded by a:

- minus sign, change the sign of each of the terms;
- plus sign, no further change is done;
- Factor, use the distributive law

Ex. 4:
$$4x - 2y - 5 - 2(8x - 7y) - (3x - 4y - 1)$$

Rule 4: When one symbol of grouping is within another symbol of grouping, the innermost symbol must be removed first.

Ex. 4:
$$-\{-2x-y-[3x-(4x+y-3)-y]-7\}$$

Exercises: Simplify the following:

a.
$$-\{12x-3y-8-[6x-(x+7y-3)]\}$$
 (ans. $-7x-4y+11$)

b.
$$-[-3 \times -y - (4y - z)] - [8y + 7x - (5x - 9z)]$$
 (ans. $x - 3y - 10z$)

Powers with Positive Integral Exponents

Laws of Exponents:

- 1. The Product of Powers: $a^m * a^n = a^{m+n}$ Ex. 5: $x^5 * x^4 = x^9$
- 2. The Quotient of Powers: $\frac{a^m}{a^n} = a^{m-n}$ Ex. 6: $\frac{x^7}{x^3} = x^4$; $\frac{x^4}{x^6} = \frac{1}{x^2}$
- 3. The Power of a Power: $(a^m)^n = a^{mn}$ Ex. 7: $(x^2)^4 = x^8$
- 4. The Power of a Product: $(ab)^m = a^m b^m$ Ex. 8: $(2a^2b^4)^3 = 8a^6b^{12}$
- 5. The Power of a Quotient: $\left[\frac{a}{b}\right]^m = \frac{a^m}{b^m}$ Ex.9: $\left[\frac{-\frac{312}{2}}{2}\right]^4 = \frac{16x}{91}$

Exercises: Simplify the following:

a.
$$-4^2$$

a.
$$-4^2$$
 b. $-\left[\frac{-3}{2}\right]^4$ c. $\frac{(a-b)^3}{a-b}$ d. $\frac{8^{3x}}{4^{4x}}$

$$c. \frac{(a-b)^3}{a-b}$$

d.
$$\frac{8^{3x}}{4^{4x}}$$

e.
$$\frac{25^{100}}{125^{50}}$$

f.
$$\frac{(x^4y^8z)^3}{(x^5y^8zw)^2}$$

e.
$$\frac{25^{100}}{125^{50}}$$
 f. $\frac{(x^4y^8z)^3}{(x^5y^8zw)^2}$ g. $\left[\frac{12x^3y^4z}{18x^2y^6}\right]^2$

Product of Polynomials

Rule 1: To multiply two monomials, use commutative, associative and the laws of exponents in multiplication. Ex. 10: $(3x^2y^4z^2w^9)(-4xyz^4wv)$

Rule 2: To multiply two polynomials, use the distributive law and apply Rule

1. Ex. 11: (2x - 3y) (4x + 5y)

Exercises: Find the products of the following:

a.
$$(5x^4 - 8y^3)(5x^4 + 8y^3)$$

b.
$$(5x^4 - 8y^3)(5x^4 - 8y^3)$$

c.
$$(a^2-b)(a^2+a^2b+b^2)$$

d.
$$(x^7 - x^6 + x^4 - x^3 - 5x + 3)(x^5 - x^2 + 2)$$

Simplify the following:

1.
$$-(2x-5y)-\{4-[5y-(2y-9x)-3]-6x\}$$

2.
$$-\{2x - [4y - 3x - (4 - 3y + 5x)] - 7\}$$

3.
$$-[8x-2y-(5+7y)]-\{6x-(2-8y-2x)\}$$

4. Subtract the sum of the second and third expressions from the first

$$3x - 2y + 8z$$
; $12x - y - 10z$; $3x - y + 7z$

5. Subtract the first from the sum of the second and the third expressions

$$2x - y - 3$$
; $4x + y - 5$; $x + 11y - 8$

$$6. \ \frac{3x^n-2x^n}{(x^n)^2}$$

7.
$$\frac{2x^4+3x^4}{2x^4*3x^4}$$

8.
$$\frac{64^a}{1300}$$

6.
$$\frac{3x^n - 2x^n}{(x^n)^2}$$
 7. $\frac{2x^4 + 3x^4}{2x^4 * 3x^4}$ 8. $\frac{64^a}{128^a}$ 9. $\frac{(2x^4y^8)^3}{(4x^8y^4)^2}$

10.
$$(3x^4y^2z^2)^2(4x^2y^4z^3w)^3$$

11.
$$(7x - 8y)(7x - 8y)$$

12.
$$(21x^4 - 13y^3)(21x^4 + 13y^3)$$

13.
$$(x^5 - 3x^4 - x^3 + x - 3)(x^3 - x + 5)$$