ПЗ-3. Абсолютная и условная сходимость числового ряда.

Знакочередующиеся ряды.

Определение 22.1. Ряд $\sum_{n=1}^{\infty} u_n$, содержащий как положительные, так и отрицательные члены, называется *знакопеременным*.

Например, знакопеременным будет ряд

$$\frac{\sin\frac{\pi}{4}}{3} + \frac{\sin\frac{3}{4}\pi}{3^2} + \frac{\sin\frac{5}{4}\pi}{3^3} + \frac{\sin\frac{7}{4}\pi}{3^4} + \dots + \frac{\sin\left(\frac{2n-1}{4}\right)\pi}{3^n} + \dots = \\ = \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{18} - \frac{\sqrt{2}}{54} - \frac{\sqrt{2}}{162} + \dots + \frac{\sin\left(\frac{2n-1}{4}\right)\pi}{3^n} + \dots = \sum_{n=1}^{\infty} \frac{\sin\left(\frac{2n-1}{4}\right)\pi}{3^n},$$

так как за двумя положительными членами следуют два отрицательных члена.

Определение 22.2. Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$, называется знакочередующимся, если его члены поочередно меняют знаки.

Например, знакочередующимся является ряд

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + (-1)^{n-1} \frac{1}{n^2} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}.$$

Обозначая модули членов такого ряда через a_i и считая $a_i > 0$ (i = 1, 2, 3, ...), запишем знакочередующийся ряд в виде

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n,$$
 (22.1)

где a_n есть модуль общего члена ряда.

Tе о р е м а 22.1 ($meopema\ Лейбница^1$). Если у знакочередующегося ряда (22.1) модули всех членов убывают с ростом n, т. е.

$$a_1 > a_2 > a_3 > \dots > a_{n-1} > a_n > \dots,$$
 (22.2)

и модуль a_n общего члена ряда стремится к нулю при $n \to \infty$, т.е.

$$\lim_{n \to \infty} a_n = 0, \tag{22.3}$$

то ряд (22.1) сходится.

Пример 22.1. Рассмотрим ряд Лейбница

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

Ряд сходится, так как выполнены условия (22.2) и (22.3) теоремы Лейбница. Действительно, $\frac{1}{n} > \frac{1}{n+1} \quad \forall n \in \mathbb{N} \quad (a_n > a_{n+1});$ $\lim_{n \to \infty} \frac{1}{n} = 0 \quad \left(\lim_{n \to \infty} a_n = 0\right).$ Пусть S есть сумма данного ряда: $S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{n-1} \frac{1}{n} + \ldots$

Абсолютно и условно сходящиеся ряды.

Определение 22.3. Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |u_n|$ из абсолютных величин членов этого ряда.

Определение 22.4. Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ называется условно (неабсолютно) сходящимся, если он сам сходится, а ряд $\sum_{n=1}^{\infty} |u_n|$ из абсолютных величин его членов расходится.

Например, ряд $\sum\limits_{n=1}^{\infty}\frac{\sin n\alpha}{n^5}$ — абсолютно сходящийся, так как сходится ряд $\sum\limits_{n=1}^{\infty}\frac{|\sin n\alpha|}{n^5}$, общий член которого $\frac{|\sin n\alpha|}{n^5}\leqslant \frac{1}{n^5}$, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^5}$ сходится Ряд Лейбница $\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}$ — условно сходящийся, так как он сам сходится , а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ (гармонический ряд) расходится.

Пример 1. Исследовать на сходимость ряд

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \ldots + (-1)^{n+1} \frac{1}{\sqrt{n}} + \ldots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}.$$

В случае сходимости установить характер сходимости ряда.

Решение. Отметим, что данный ряд знакочередующийся, модули членов убывают при $n \to \infty$ $\left(\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} \ \forall \ n \in \mathbf{N}\right)$ и $\lim_{n \to \infty} |u_n| = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, т. е. выполнены все условия теоремы Лейбница. Следовательно, ряд сходится. Чтобы установить характер сходимости, рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ из модулей членов данного ряда.

 Π ример 2. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3+1}$. В случае сходимости установить ее характер.

Решение. Ряд удовлетворяет всем условиям теоремы Лейбница: ряд знакочередующийся, модули его членов убывают с ростом n.

$$\left(\frac{1}{(n+1)^3+1} < \frac{1}{n^3+1} \quad \forall n \in \mathbf{N}\right), \quad \lim_{n\to\infty} |u_n| = \lim_{n\to\infty} \frac{1}{n^3+1} =$$

= 0. Отсюда следует, что ряд сходится. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$

из модулей членов данного ряда. Так как $\frac{1}{n^3+1} < \frac{1}{n^3} \ \forall \ n \in \mathbf{N}$ и ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится , то ряд $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ сходится.

Следовательно, исходный ряд сходится абсолютно.

 Π р и м е р 3. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \arcsin \frac{1}{\sqrt[3]{n}}$. В случае сходимости установить ее характер.

Решение. Ряд удовлетворяет всем условиям теоремы Лейбница: ряд знакочередующийся, модули его членов убывают при $n \to \infty$ $\left(\frac{1}{\sqrt[3]{n+1}} < \frac{1}{\sqrt[3]{n}} \ \forall \ n \in \mathbf{N}\right), \ \lim_{n \to \infty} |u_n| = \lim_{n \to \infty} \arcsin \frac{1}{\sqrt[3]{n}} = 0.$ Следовательно, ряд сходится. Исследуем ряд $\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt[3]{n}}$, составленный из модулей членов данного ряда. Так как $\arcsin \frac{1}{\sqrt[3]{n}} \sim \frac{1}{\sqrt[3]{n}}$ при $n \to \infty$ и ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ расходится , то ряд $\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt[3]{n}}$ расходится. Поскольку сам ряд сходится, а ряд из модулей расходится, то исходный ряд сходится условно. \blacksquare

Теорема 22.2 (достаточное условие сходимости знакопеременного ряда). Если сходится ряд $\sum_{n=1}^{\infty} |u_n|$, то сходится и ряд $\sum_{n=1}^{\infty} u_n$ (т. е. абсолютно сходящийся ряд сходится).

 Π ример 22.3. Ряд $\sum_{n=1}^{\infty} \frac{\cos n\alpha}{n^3}$ сходится, так как сходится ряд $\sum_{n=1}^{\infty} \frac{|\cos n\alpha|}{n^3}$, поскольку $\frac{|\cos n\alpha|}{n^3} \leqslant \frac{1}{n^3}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится

2) Для ряда $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^2}$ имеем $|u_n| = \frac{|\sin n\alpha|}{n^2} \leqslant \frac{1}{n^2}$ (так как $|\sin n\alpha| \leqslant 1$). Из сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$ следует сходимость ряда $\sum_{n=1}^{\infty} \frac{|\sin n\alpha|}{n^2} = \sum_{n=1}^{\infty} |u_n|$ по признаку сравнения для знакопостоянных рядов. Следовательно, данный ряд $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^2}$ сходится абсолютно.

Задачи для самостоятельного решения

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n+4}$$
;

2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n^3+2}}$$
;

3.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \operatorname{arctg} \frac{1}{n+3}$$
;

4.
$$1 - \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} - \frac{1}{5^4} - \frac{1}{6^4} + \dots;$$

7.
$$\frac{1}{2} - \frac{2}{7} + \frac{3}{12} - \ldots + \frac{(-1)^{n-1}n}{5n-3} + \ldots;$$

10.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n+1)}{2n+7}$$
;

9.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n}$$
;

12.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{\sqrt{n(n+1)(n+2)}}$$
.

11.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \arcsin \frac{n}{\sqrt{n^3+1}}$$
;

Литература

Демидович Б.П.

Сборник задач и упражнений по математическому анализу: Учеб. пособие. — 14-е изд. испр. — М.: Изд-во Моск. ун-та, 1998. — 624 с.