

Note for Homological Algebra

同调代数笔记

EDITED BY

颜成子游/南郭子綦

最后一次编译时间: 2024-01-29 02:26

Contents

1	链复形	3
	1.1 R-Mod 上的链复形	3
	1.2 链复形的运算	4
	1.3 长正合列	7
	1.4 链同伦	10
	1.5 映射锥和映射柱	11
	1.6 Abel 范畴拓展	14
2	·····································	15
	2.1 δ函子	15
	2.2 投射解消	17
	2.3 内射解消	21
	2.4 左导出与右导出函子	24
	2.4.1 左导出函子	24
	2.4.2 右导出函子	30
	2.5 伴随函子和左右正合性	31
	2.6 平衡性	35
	2.6.1 反变函子的导出函子	35
	2.6.2 平衡性	35
	2.6.3 Tor 函子的外积	38
3	Tor 函子和 Ext 函子	39
	3.1 Abel 群的 Tor 函子	39
	3.2 Tor 函子与平坦性	42
	3.3 性质较好的环的 Ext 函子	46
	3.4 Ext 函子与扩张	48
	3.5 逆向极限的导出函子	51
	3.6 泛系数定理	53
4	同调维数	54
5	谱序列	55
6	。 群同调和上同调	56

CONTENTS 2

7 李代数同调和上同调 57

这是笔者于 2023 年本科四年级上学期学习 Weibel 同调代数导论的学习笔记。

Tor 函子和 Ext 函子

本章的目的是介绍 Tor 函子和 Ext 函子的诸多性质。他们是同调代数初等应用中的常客。

§3.1 Abel 群的 Tor 函子

我们首先观察一个经典的 PID 上的模——Abel 群的 Tor 函子。其实,Tor 函子的名字就来源于其对 Abel 群的研究。

Example 3.1.1

对于 Abel 群 B 而言, $\mathrm{Tor}_0^{\mathbb{Z}}(\mathbb{Z}/p,B)=B/pB, \mathrm{Tor}_1^{\mathbb{Z}}(\mathbb{Z}/p,B)={}_pB=\{b\in B:pB=0\}.$ 对于 $n\geq 2, \mathrm{Tor}_2^{\mathbb{Z}}(\mathbb{Z}/p,B)=0.$

上述结果可以这么看。取 \mathbb{Z}/p 的投射解消

$$0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \mathbb{Z}/p \to 0 \tag{3.1}$$

从而我们计算的是:

$$0 \to B \stackrel{p}{\to} B \to 0 \tag{3.2}$$

的同调群。

特殊情况下, Tor 函子表现出 1 阶挠子群, 高阶为 0 的特点。实际上, 我们有下面的命题:

Proposition 3.1.1

对于两个 Abel 群 A,B, 我们有:

- (a) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A,B)$ 是一个挠群。
- (b) $\operatorname{Tor}_n^{\mathbb{Z}}(A,B)$ 在 $n \geq 2$ 的情况下为 0.

Proof. 证明依赖 Tor 函子与滤过余极限交换性。A 是其有限生成子群的滤过余极限, 所以 $\mathrm{Tor}_n(A,B)$ 是 $\mathrm{Tor}_n(A_\alpha,B)$ 的滤过余极限。

Abel 群的余极限总是他们直和的商子群。所以我们只需要证明对于有限生成子群上述命题成立即可。设 $A = \mathbb{Z}^m \oplus \mathbb{Z}/p_1 \oplus \mathbb{Z}/p_2 \dots \mathbb{Z}/p_r$ 。因为 \mathbb{Z}^m 是投射的,所以只用考虑:

$$\operatorname{Tor}_n(A,B) = \operatorname{Tor}_n(\mathbb{Z}/p_1,B) \oplus \operatorname{Tor}_n(\mathbb{Z}/p_2,B) \oplus \dots \operatorname{Tor}_n(\mathbb{Z}_r,B)$$
(3.3)

于是根据之前的例子我们知道结论成立。

Proposition 3.1.2

 $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z},B) \not\equiv B$ 的挠子群。

Proof. 可以想见, \mathbb{Z}/p 提取出 B 中挠性为 p 的元素。 \mathbb{Q}/\mathbb{Z} 是其有限子群的滤过极限,并且每个优先子群都同构于某个 $\mathbb{Z}/p(p$ 不一定是素数。)

$$\operatorname{Tor}_{*}^{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}, B) \cong \lim_{n \to \infty} \operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/p, B) \cong \lim_{n \to \infty} \{b \in B : pb = 0\}$$
(3.4)

Proposition 3.1.3

果 A 是一个无挠交换群,则 $\operatorname{Tor}_n(A,B)$ 对于 $n\neq 0$ 和 Abel 群 B 总是 0。

Proof. A 是有限生成子群的滤过余极限。然而 A 无挠意味着这些有限生成子群都是自由群。用 Tor 保滤过余极限即可。

如果 R 是交换环,则张量积有典范的同构,因此 $Tor_*(A,B) \cong Tor_*(B,A)$.

Corollary 3.1.1

 $\operatorname{Tor}_{1}^{\mathbb{Z}}(A,-)=0$ 等价于 A 无挠等价于 $\operatorname{Tor}_{1}^{\mathbb{Z}}(-,A)=0$.

但是 Tor 函子并非对于所有环都有这么好的性质。比如下面的例子就说明在 $R = \mathbb{Z}/m$ 的情况下可能失败:

Example 3.1.2

设 $R = \mathbb{Z}/m, A = \mathbb{Z}/d$ 。其中 d|m。从而 $A \in R$ 模。

我们考虑 A 周期性的自由解消:

$$\cdots \to \mathbb{Z}/m \to \mathbb{Z}/m \to \mathbb{Z}/m \to \mathbb{Z}/d \tag{3.5}$$

其中从 \mathbb{Z}/m 到 \mathbb{Z}/d 的映射是商映射,而 \mathbb{Z}/m 各自之间交替出现 d 和 m/d。所以对于任何一个 \mathbb{Z}/m 模 B,我们都有:

$$\operatorname{Tor}_{n}^{\mathbb{Z}/m}(\mathbb{Z}/d,B) = \begin{cases} B/dB, n = 0\\ \{b \in B : db = 0\}/(m/d)B, n \notin \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b = 0\}/dB, n \in \mathfrak{B} \iff \{b \in B : (m/d)b =$$

然而我们可以尝试对下面特殊的情况进行一些讨论。

Example 3.1.3

设 r 是 R 的一个左非零除子。即 $_rR=\{s\in R|rs=0\}$ 是 0。对于每个 R 模 B,记 $_rB=\{b\in B:$

rb = 0}。用 R/rR 代替上述 $\mathbb{Z}/p\mathbb{Z}$,用相同的计算办法可以算的:

$$\operatorname{Tor}_{0}(R/rR, B) = B/rB; \quad \operatorname{Tor}_{1}^{R}(R/rR, B) = {}_{r}B; \quad \operatorname{Tor}_{n}^{R}(R/rR, B) = 0, n \ge 0$$
 (3.7)

Proposition 3.1.4

若 $_rR \neq 0$, 我们只能得到一个并非投射的解消:

$$0 \to {}_r R \to R \xrightarrow{r} R \to R/rR \to 0 \tag{3.8}$$

然而第二章我们介绍了 dimension shelfting 办法2.4.4。 所以我们对于 $n \geq 3$, 存在:

$$\operatorname{Tor}_{n}^{R}(R/rR,B) \cong \operatorname{Tor}_{n-2}^{R}(rR,B) \tag{3.9}$$

其次,还有正合列:

$$0 \to \operatorname{Tor}_{2}^{R}(R/rR, B) \to {}_{r}R \otimes B \to {}_{r}B \to \operatorname{Tor}_{1}^{R}(R/rR, B) \to 0 \tag{3.10}$$

因为 $\operatorname{Tor}_2^R(R/rR,B)$ 是 $0\to {}_rR\otimes B\to R\otimes B=B$ 的核。而该映射的像就在 ${}_rB$ 中,所以上述正合列中第一个和第二个已经确实成立。

考虑 $Tor_1(R/rR, B)$ 。根据导引长正合列:

$$0 \to \operatorname{Tor}_1(R/rR, B) \to rR \otimes B \to B \to B/rB \tag{3.11}$$

为了定义 $_rB \to \mathrm{Tor}_1(R/rR,B)$. 我们定义 $_rB \to rR \otimes B$. 即 $b \mapsto r \otimes b$ 。则该映射实际上打进 $\mathrm{Tor}_1(R/rR,B)$.

若 $\sum (rr_i) \otimes b_i \in \text{Tor}_1(R/rR, B)$ 且在 B 中像为 $\sum r(1 \otimes r_i b_i) = 0$, 则 $_rB$ 中 $\sum r_i b_i$ 的像是 $\sum (rr_i) \otimes b_i$ 。于是我们定义了满射。

最后需要说明 $_rB$ 处的正合。若 $r \otimes b = 0$, 则存在 r_i 和 b_i 使得 $rr_i = 0, b = \sum r_i b_i$.

Proposition 3.1.5

设 R 是交换整环, 分式域 F。则 $\operatorname{Tor}_1^R(F/R,B)$ 是 B 的挠子群: $\{b \in B : (\exists r \neq 0)rb = 0\}$

Proposition 3.1.6

 $\operatorname{Tor}_1^R(R/I,R/J)\cong \frac{I\cap J}{IJ}$ 对于任何右理想 I 和左理想 J 都成立。特别的, 对于双边理想 I:

$$Tor_1(R/I, R/I) \cong I/I^2 \tag{3.12}$$

Proof.

上图是蛇形引理1.3.1. 验证 I/(IJ) 和 $I\otimes R/J$ 有典范同构可以得出第一行正合。第二行则典范正合。

最右边的列是计算 ${
m Tor}_1(R/I,R/J)$ 的定义式。感觉 Dimesion Shifting, $\ker i$ 是 ${
m Tor}_1(R/I,R/J)$ 。根据 snake 引理, $\ker i$ 是 $J/(IJ)\to R/I$ 的核: $\frac{I\cap J}{IJ}$ 。

§3.2 Tor 函子与平坦性

我们在这一节着重研究 Tor 函子的 ayclic 对象——平坦对象。

Definition 3.2.1: 平坦模

称一个左 R 模是平坦模, 若函子 $\otimes_R B$ 是正合函子。同样, 对于右 R 模, 也可以定义类似的平坦性。

如果 A 是投射的, 则 $Tor_n(A,B) = 0$ 。不难说明 A 此时是平坦的。因为投射模一定是平坦模。然而平坦模不一定是投射模。例如 $\mathbb Q$ 作为交换群而言是平坦的, 但不是投射的。(为什么?)

Theorem 3.2.1

若 $S \in R$ 中的乘法封闭集, 则 $S^{-1}R$ 是一个平坦模。

这个定理当然很交换代数,不过影响不大,我们可以尝试证明:

Proof. 构造一个滤过范畴 I。对象是 S 中的元素, 态射 $\operatorname{Hom}_I(s_1, s_2) = \{s \in S : s_1 s = s_2\}$ 。定义函子 $F: I \to R$ 。 $F(s) = R, F(s_1 \to s_2)$ 则定义为 R 上该态射自然给出的右乘法。

我们断言 F 的余极限 $\varinjlim F(s)\cong S^{-1}R$ 。从而因为 $S^{-1}R$ 是平坦模的滤过余极限,所以其是平坦的。下面计算 $\varinjlim F$ 。首先定义 $F(s)\to S^{-1}R$ 的映射为 $r\mapsto r/s$. 这样交换图显然成立:

$$F(s_1) = R: r \xrightarrow{s} F(s_2) = R: rs$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{-1}R: r/s_1 = rs/(s_1s) = rs/s_2$$

如果存在一个新的 B 使得余极限中关系成立,我们直接定义 $S^{-1}R$ 中的元素 r/s 到 B 的态射为 F(s) = R 中 r 在 B 中的像即可。这是唯一的定义方式!

Proposition 3.2.1: Tor 和平坦

面三个命题等价:

(1)B 是平坦模。

3.2. TOR 函子与平坦性

$$(2)\operatorname{Tor}_n^R(A,B) = 0, \forall n \neq 0$$

$$(3)\operatorname{Tor}_1^R(A,B) = 0$$

Corollary 3.2.1

 $0 \to A \to B \to C \to 0$ 是正合列且 B, C 是平坦模,则 A 平坦。

Proposition 3.2.2

R 是主理想整环,则 B 平坦等价于 B 无挠。

对于上述命题,我们给出一个反例。首先平坦显然无挠。但是无挠不一定平坦。设 k 是域且 R=k[x,y]。R 是经典的非主理想整环。设 I=(x,y)R。考虑 k=R/I 有投射解消:

$$0 \to R \to R^2 \to R \to k \tag{3.13}$$

其中第一个 R 到 R^2 为 [-y,x]. 而 R^2 到 R 为 (x,y). 从而 $\mathrm{Tor}_1^R(I,k)\cong\mathrm{Tor}_2^R(k,k)\cong k$ 。于是 I 不是平坦 模。

我们深入的研究一下平坦模。

Definition 3.2.2: Pontrjagin 对偶

左模 B 的 Pontrjagin 对偶模 B* 是一个右模:

$$B^* := \operatorname{Hom}_{\operatorname{Ab}}(B, \mathbb{Q}/\mathbb{Z}); (fr)(b) = f(rb)$$
(3.14)

Proposition 3.2.3

下面的命题等价。

- (1) 8 平坦。
- (2) В* 内射。
- $(3)I \otimes_R B \cong IB = \{x_1b_1 + \dots + x_nb_n \in B : x_i \in I, b_i \in B\}$ 对于任何右理想 I 都成立。
- $(4)\operatorname{Tor}_{I}^{R}(R/I,B)=0$ 对于任何右理想 I 都成立。

Proof. (3) 和 (4) 的等价性来源于正合列:

$$0 \to \operatorname{Tor}_1(R/I, B) \to I \otimes B \to B \to B/IB \to 0 \tag{3.15}$$

现在考虑 A' 是 A 的子模。考虑:

$$\operatorname{Hom}(A, B^*) \to \operatorname{Hom}(A', B^*) \tag{3.16}$$

B* 等价于说上述映射是满射。根据伴随关系, 我们有:

$$\operatorname{Hom}(A \otimes B, \mathbb{Q}/\mathbb{Z}) \to \operatorname{Hom}(A' \otimes B, \mathbb{Q}/Z) \tag{3.17}$$

是满射。即 $(A \otimes B)^* \to (A' \otimes B)^*$ 是满射。

用下面的**引理**,可以知道此时 $A'\otimes B\to A\otimes B$ 是单射,所以 B 是平坦模。同理也可以反推回去。所以 (1)(2) 等价。另外带入 A'=I, A=R,可以推出 $I\otimes B\to R\otimes B$ 是单射。于是 $I\otimes B\cong IB$ 且根据 Baer 判别法,这是可逆的。所以 (1)(3) 等价。

我们描述一个引理。

3.2. TOR 函子与平坦性

44

Lemma 3.2.1

 $f: A' \to A$ 是单射等价于 $f^*: A^* \to A'^*$ 是满射。

Proof. 因为 \mathbb{Q}/\mathbb{Z} 是内射的 \mathbb{Z} 模, 所以保正合。

Proposition 3.2.4: Pontrjagin 对偶与正合

 $A \to B \to C$ 是正合的当且仅当对偶 $C^* \to B^* \to A^*$ 是正合的。

Proof. 因为 \mathbb{Q}/\mathbb{Z} 是内射模, 所以 $\mathrm{Hom}(-,\mathbb{Q}/\mathbb{Z})$ 是正合函子, 因此 $C^* \to B^* \to A^*$ 是正合的。

如果 $C^* \to B^* \to A^*$ 正合, 则 $A \to B \to C$ 首先复形。若 $b \in B$ 且在 C 中的像为 0, 我们证明 b 在 A 的像中。若不然, 则 $b + \mathrm{im}A$ 是 $B/\mathrm{im}A$ 中的非 0 元。我们定义 $g: B/\mathrm{im}A \to \mathbb{Q}/\mathbb{Z}$ 使得 $g(b+\mathrm{im}A) \neq 0$ 。则 g 也给出了 B^* 中的非 0 元且在 A^* 中的像为 0。

所以可以给出一个 $f \in C^*$ 。剩下的就是显然了。

这个证明写的比较模糊。

我们邀请读者回忆有限展示的概念。然后不加证明的给出有限展示与生成元的选取无关.

Proposition 3.2.5

若 $\varphi: F \to M$ 是满射且 F 是有限生成的,M 是有限展示的,则 ker φ 是有限生成的。

HINT: 用蛇形引理。

仍然用 A^* 表示 A 的 Pontrjagin 对偶, 则存在一个自然的映射 $\sigma: A^* \otimes_R M \to \operatorname{Hom}_R(M,A)^*$

$$\sigma(f \otimes m) = h \mapsto f(h(m)) \tag{3.18}$$

其中 $f \in A^*, m \in M, h \in \text{Hom}(M, A)$. 我们的问题是,什么时候 σ 是一个同构?

Theorem 3.2.2

对于任何有限展示的 M,σ 都是一个同构。

Proof. 若 M = R,则自然有 σ 是同构。根据可加性, $M = \mathbb{R}^n$ 的时候也是如此。所以有:

因为 \otimes 是右正合的,Hom 是左正合的,所以图中两个行正合. 根据 5 引理1.3.2可知 σ 是同构。

Theorem 3.2.3

每个有限展示的平坦模是投射模。

3.2. TOR 函子与平坦性

Proof. 我们证明 Hom(M, -) 是正合的。设 $B \to C$ 是满射, 则 $C^* \to B^*$ 是单射。若 M 是平坦的, 则:

$$C^* \otimes_R M \longrightarrow B^* \otimes M$$

$$\downarrow^{\sigma} \qquad \qquad \sigma \downarrow$$

$$\operatorname{Hom}(M,C)^* \longrightarrow \operatorname{Hom}(M,B)^*$$

给出了 $\operatorname{Hom}(M,B) \to \operatorname{Hom}(M,C)$ 的满射。所以 M 是投射模。

下面的引理来源于 dimension shifting.

Lemma 3.2.2: 平坦解消引理

群 $Tor_*(A, B)$ 可以用平坦模进行计算。

Proposition 3.2.6: Tor 的平坦基变换

 $R \to T$ 是环同态, 使得 T 成为了 R 模。从而对于所有的 R 模 A, 所有的 T 模 C 和所有的 n:

$$\operatorname{Tor}_{n}^{R}(A,C) \cong \operatorname{Tor}_{n}^{T}(A \otimes_{R} T,C) \tag{3.19}$$

45

Proof. 选择 R 模的投射解消 $P \to A$,则 $Tor_*^R(A,C)$ 是 $P \otimes_R C$ 的同调。

因为 T 是平坦的 R 模,所以 $P_n \otimes T$ 是投射的 T 模且 $P \otimes T \to A \otimes T$ 是 T 模的投射解消。所以 $\operatorname{Tor}_n^T(A \otimes T, C)$ 是复形 $(P \otimes_R T) \otimes_T C \cong P \otimes_R C$ 的同调。

Corollary 3.2.2

若 R 是交换环,T 是平坦的 R 代数,则对于所有的 R 模 A,B 和所有的 n:

$$T \otimes_R \operatorname{Tor}_n^R(A, B) \cong \operatorname{Tor}_n^T(A \otimes_R T, T \otimes_R B)$$
 (3.20)

Proof. 设 $C = T \otimes_R B$. 根据上面的命题, 我们只需要证明 $\operatorname{Tor}^R_*(A, T \otimes B) = T \otimes \operatorname{Tor}^R_*(A, B)$. 因为 $T \otimes_R$ 是正合函子, 所以 $T \otimes \operatorname{Tor}^R_*(A, B)$ 是 $T \otimes_R (P \otimes_R B)$ 的同调,从而为 $\operatorname{Tor}^R_*(A, T \otimes B)$.

为了使得 Tor 给出模结构, 我们必须假设 R 是交换环。原因是下面的引理:

$\mathbf{Lemma~3.2.3}$

设 $\mu: A \to A$ 是左乘一个中心元 r。则诱导的 $\mu_*: \operatorname{Tor}_n^R(A,B) \to \operatorname{Tor}_n^R(A,B)$ 也是左乘 r.

Proof. 选择 A 的投射解消 $P \to A$ 。左乘 r 是一个 R 模的链复形映射 $\tilde{\mu}: P \to P$. (因为 r 是一个中心元)。从而 $\tilde{mu} \otimes B$ 是 $P \otimes B$ 的 r 左乘。作为商群 Tor 也是如此。

Corollary 3.2.3

若 A 是一个 R/r 模, 则对于每个 R 模 B,R 模 $Tor_*^R(A,B)$ 也是 R/r 模。换句话说, rR 乘在该模得 0.

Corollary 3.2.4: Tor 的局部化

若 R 是一个交换环且 A, B 都是 R 模。下面的命题对于所有 n 都成立:

- 1. $\operatorname{Tor}_{n}^{R}(A, B) = 0$
- 2. 对于 R 的任意素理想 $p, \operatorname{Tor}_{n}^{R_{p}}(A_{p}, B_{p}) = 0$
- 3. 对于 R 的任意极大理想 $m, \operatorname{Tor}_{n}^{R_{m}}(A_{m}, B_{m}) = 0$.

Proof. 对于 R 模而言,M=0 等价于任意素理想 $p,M_p=0$ 等价于任意极大理想 $m,M_m=0=0$. 设 $M=\operatorname{Tor}(A,B)$:

$$M_p = R_p \otimes_R M = \operatorname{Tor}_n^{R_p}(A_p, B_p) \tag{3.21}$$

§3.3 性质较好的环的 Ext 函子

讨论了 Ext 后, 我们讨论 Ext 函子的性质。首先我们计算一些性质很好的环的 Ext 函子。

Lemma 3.3.1

 $\operatorname{Ext}_{\mathbb{Z}}^{n}(A,B)=0, \forall n\geq 2$ 和所有的交换群 A,B.

Proof. 把 B 嵌入到一个内射的交换群 I^0 . 其商群 I^1 是可除的, 因而是内射的, 所以我们给出了 B 的内射解消 $0 \to B \to I^0 \to I^1 \to 0$.

所以 $Ext^*(A, B)$ 可以计算为:

$$0 \to \operatorname{Hom}(A, I^0) \to \operatorname{Hom}(A, I^1) \to 0 \tag{3.22}$$

因此我们只需要考虑 n=1 的情况。

Example 3.3.1

 $\operatorname{Ext}^0_{\mathbb Z}(\mathbb Z/p,B) = {}_pB.\operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/p,B) = B/pB.$ 可以使用 $0 \to \mathbb Z \to \mathbb Z \to \mathbb Z/p$ 作为 $\mathbb Z/p$ 的投射解消计算。

因为 \mathbb{Z} 是投射模, 所以 $\mathrm{Ext}^1(\mathbb{Z},B)=0$ 对于任何 B 总是成立。我们可以依据这个结果和上述结果, 在 A 是有限生成的 Abel 群时计算 $\mathrm{Ext}(A,B)$:

$$A \cong \mathbb{Z}^m \oplus \mathbb{Z}/p \Rightarrow \operatorname{Ext}(A, B) = \operatorname{Ext}(\mathbb{Z}/p, B)$$
(3.23)

然而无限生成的情况因为余极限不交换,要复杂得多。

Example 3.3.2: $B = \mathbb{Z}$

设 A 是一个挠群, 用 A^* 表示 Pontrjagin 对偶。 \mathbb{Z} 有经典的内射解消: $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ 。用这

个解消计算 $Ext^*(A, \mathbb{Z})$:

$$0 \to \operatorname{Hom}(A, \mathbb{Q}) \to \operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z}) \to 0 \tag{3.24}$$

从而 $\operatorname{Ext}_{\mathbb{Z}}^{0}(A,\mathbb{Z}) = \operatorname{Hom}(A,\mathbb{Z}) = 0, \operatorname{Ext}_{\mathbb{Z}}^{1}(A,\mathbb{Z}) = A^{*}$ 。

为了对这个例子有更深的印象, 注意到 $\mathbb{Z}_{p^{\infty}}$ 是 \mathbb{Z}/p^{n} 的余极限 (并). 于是可以计算:

$$\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}) = (\mathbb{Z}_{p^{\infty}})^{*} \tag{3.25}$$

这个群是 p-adic 整数的无挠群, $\hat{\mathbb{Z}}_p = \underline{\lim}(\mathbb{Z}/p^n)$ 。

再考虑一个例子: $A = \mathbb{Z}[1/p], B = \mathbb{Z}$. 此时:

$$0 \to \mathbb{Q} = \operatorname{Hom}(\mathbb{Z}[1/p], \mathbb{Q}) \to \operatorname{Hom}(\mathbb{Z}[1/p], \mathbb{Q}/\mathbb{Z}) \to 0 \tag{3.26}$$

Ext⁰ 比较容易, 我们考虑 Ext¹. 此时给定 $f \in \text{Hom}(\mathbb{Z}[1/p], \mathbb{Q}/\mathbb{Z})$, 筛出掉 $\text{Hom}(\mathbb{Z}[1/p], \mathbb{Q})$ 的元素,本质上留存的是一个 p-adic 数。并且若两个 p-adic 数只差一个整数, 与他们给出的 f 是一致的。因此 $\text{Ext}^1(\mathbb{Z}[1/p], \mathbb{Z}) = \mathbb{Z}_{p^{\infty}}$ 。

这说明 Ext 对于平坦模而言也不是 vanish 的。

Example 3.3.3: $R = \mathbb{Z}/m, B = \mathbb{Z}/p$

 \mathbb{Z}/p 在这种情况下有无穷的周期内射解消:

$$0 \to \mathbb{Z}/p \xrightarrow{\iota} \mathbb{Z}/m \xrightarrow{p} \mathbb{Z}/m \xrightarrow{m/p} \mathbb{Z}/m \xrightarrow{p} \dots$$
 (3.27)

于是 $\operatorname{Ext}^n_{\mathbb{Z}/m}(A,\mathbb{Z}/p)$ 可以计算为:

$$0 \to \operatorname{Hom}(A, \mathbb{Z}/m) \to \operatorname{Hom}(A, \mathbb{Z}/m) \to \operatorname{Hom}(A, \mathbb{Z}/m) \dots \tag{3.28}$$

的上同调。

比如, 若 $p^2|m$, 则 $\operatorname{Ext}^n_{\mathbb{Z}/m}(\mathbb{Z}/p,\mathbb{Z}/p)=\mathbb{Z}/p$

Proposition 3.3.1

对于所有的 n 和 R:

- 1. $\operatorname{Ext}_{R}^{n}(\bigoplus_{\alpha} A, B) \cong \prod_{\alpha} \operatorname{Ext}_{R}^{n}(A_{\alpha}, B)$
- 2. $\operatorname{Ext}_{R}^{n}(A, \prod_{\beta} B) \cong \prod_{\beta} \operatorname{Ext}_{R}^{n}(A, B_{\beta})$

Proof. 设 P_{α} 是 A_{α} 的投射解消。于是 $\oplus P_{\alpha}$ 是 $\oplus A_{\alpha}$ 的投射解消。同理, Q_{β} 是 B_{β} 的内射解消,则 $\prod Q_{\beta}$ 是 $\prod B_{\beta}$ 的内射解消。

根据 Hom 的性质, 再加上:

$$H^*(\prod C_\gamma) \cong \prod H^*(C_\gamma) \tag{3.29}$$

可得结果。

3.4. EXT 函子与扩张 48

Lemma 3.3.2

设 R 是交换环, 则 $\operatorname{Hom}_R(A,B)$ 和 $\operatorname{Ext}^*(A,B)$ 都是 R 模。若 μ,τ 分别是 r 的左乘 (A,B), 则诱导的 μ^* 和 τ^* 也是左乘。

可以看到, 这是 Tor 函子的相似版本, 可用于给出 Ext 与局部化交换的性质。

Proof. 给 $P \to A$ 投射解消. 左乘 r 给出了 $\tilde{mu}: P \to P$ 作为链复形映射。映射 $\operatorname{Hom}(\tilde{mu}, B)$ 是 $\operatorname{Hom}(P, B)$ 上链复形,是左乘 r.

因此商群 $\operatorname{Ext}^n(A,B)$ 被 μ^* 作用也是 r 左乘。

Corollary 3.3.1

设 R 是交换环,A 是 R/r 模。则对于 R 模 B, $\operatorname{Ext}_{R}^{*}(A,B)$ 是 R/r 模。

接下来的引理, 定理我们不写证明, 读者可自查 Weibel 原书。

考虑 $S^{-1}\mathrm{Hom}_R(A,B)$. 其到 $\mathrm{Hom}_{S^{-1}R}(S^{-1}A,S^{-1}B)$ 有一个自然的态射 Φ 。但这个态射一般不是同构。

Lemma 3.3.3

如果 A 是有限展示的 R 模,则对于每个中心可乘集合 S,Φ 是同构。

不难想象证明用到的是5引理1.3.2。

Proposition 3.3.2

设 A 是交换 Noether 环上的有限生成模. 则 Φ 也诱导了 Ext 的同构:

$$\Phi: S^{-1}\operatorname{Ext}_{R}^{n}(A, B) \cong \operatorname{Ext}_{S^{-1}R}^{n}(S^{-1}A, S^{-1}B)$$
(3.30)

不难想到证明的思路是给 A 的投射解消。因为 S^{-1} 是正合函子, 所以保 H^* 。因此用 Hom 的同构性即可给出上述同构。

Corollary 3.3.2: Ext 的局部化

设 R 是交换 Noether 环且 A 是有限生成 R 模. 则下面的命题之间对于任意 B 和 n 都等价:

- 1. $\operatorname{Ext}_{R}^{n}(A,B) = 0$
- 2. 对于 R 的任何素理想 $p,\operatorname{Ext}_{R_n}^n(A_p,B_p)=0$
- 3. 对于 R 的任何极大理想 $m, \operatorname{Ext}_{R_m}^n(A_m, B_m) = 0$.

§3.4 Ext 函子与扩张

我们在这一节探讨 Ext 到底计算了什么。为此需要介绍扩张的概念。

3.4. EXT 函子与扩张 49

Definition 3.4.1

一个 A 过 B 的扩张 ξ 是指一个正合列 $0 \to B \to X \to A \to 0$. 称两个扩张 ξ,ξ' 是等价的, 若存在交换图:

一个扩张是分裂的, 若其等价于 $0 \to B \to A \oplus B \to 0$ (典范的)。

Example 3.4.2

若 p 是素数,则仅存在 p 个等价的 \mathbb{Z}/p 过 \mathbb{Z}/p 的扩张。分别是分裂扩张和:

$$0 \to \mathbb{Z}/p \xrightarrow{p} \mathbb{Z}/p^2 \xrightarrow{i} \mathbb{Z}/p \to 0, i = 1, 2, \dots, p - 1$$
(3.31)

实际上 X 必须是 p^2 阶交换群。若 X 无 p^2 阶元,则根据 $X=\mathbb{Z}/p\oplus\mathbb{Z}/p$ 。若 X 有 p^2 阶元,设该元为 b。则 $pb\in\mathbb{Z}/p=B$ 。于是有上述 p-1 种投射。

Lemma 3.4.1

若 $\operatorname{Ext}^{1}(A, B) = 0$, 则 A 过 B 的扩张总是分裂的。

Proof. 给定一个扩张 ξ , 根据 $\operatorname{Ext}^*(A, -)$ 诱导的长正合列:

$$\operatorname{Hom}(A, X) \to \operatorname{Hom}(A, A) \xrightarrow{\partial} \operatorname{Ext}^{1}(A, B) = 0$$
 (3.32)

所以 id_A 有原像 $\sigma: A \to X$ 。这就是一个 $X \to A$ 的截面。所以 $X = A \oplus B$ 分裂。

如果 $\operatorname{Ext}^1(A,B)$ 非 0, 为了给出截面, 实际上可以计算 $\partial(\operatorname{id}_A)=0$ 。我们把这个构造记作 $\Theta(\xi)$. 另外. 如果 两个扩张等价, 那么他们的 $\Theta(\xi)$ 相同. 因此这个构造只依赖于 ξ 的等价类。

Theorem 3.4.1

给定两个模 A, B, 映射 $\Theta : \xi \mapsto \partial(\mathrm{id}_A)$ 给出了一个一一映射:

$$\{A 过 B 的扩张的等价类\} \to Ext^1(A, B)$$
 (3.33)

因此这个定理给出了 $Ext^1(A, B)$ 的一个初步作用: 确定 A 过 B 的扩张个数, 并赋予一个群结构。

Proof. 对于 B, 固定一个正合列 $0 \to B \to I \xrightarrow{\pi} N \to 0$. 其中 I 内射。作用 Hom(A, -),导出一个正合列:

$$\operatorname{Hom}(A, I) \to \operatorname{Hom}(A, N) \xrightarrow{\partial} \operatorname{Ext}^{1}(A, B) \to 0$$
 (3.34)

现在给定一个 $x \in \operatorname{Ext}^1(A,B)$, 选定 $\beta \in \operatorname{Hom}(A,N)$ 使得 $\partial(\beta) = x$. 根据 $\beta: A \to N$ 和 $I \to N$,可以写出拉回 X:

3.4. EXT 函子与扩张 50

这不仅是拉回, 而且可以验证 $0 \to B \to X \to A \to 0$ 是一个正合列。根据连接同态 ∂ 的自然性, 可以得到:

$$\begin{array}{cccc} \operatorname{Hom}(A,A) & \longrightarrow & \operatorname{Ext}^1(A,B) \\ & & \downarrow & & \downarrow \\ \operatorname{Hom}(A,N) & \longrightarrow & \operatorname{Ext}^1(A,B) \end{array}$$

令上面的扩张是 ξ , 则 $\Theta(\xi) = x$ 。于是我们通过给定 $x \in \operatorname{Ext}^1(A, B)$ 给出一个扩张 ξ 使得 $\Theta(\xi) = x$ 。

为了给出 $\operatorname{Ext}^1(A,B)$ 到等价类的映射,我们还需要说明上述过程 β 的选取不改变 ξ 的等价类。实际上 选取 $\beta' \in \operatorname{Hom}(A,N)$ 使得 $\partial \beta' = x$ 。于是 $\beta' - \beta = \pi_*(\alpha), \alpha \in \operatorname{Hom}(A,I)$. 于是可以绘制出下面的交换图:

(交换性已经在草稿纸上验证了) 根据拉回的泛性质,X 到 X' 有一个态射.

通过具体到集合的验证,可以说明这是一个同构。所以 X 和 X' 是等价的扩张。

另一方面,给定 ξ 作为 A 过 B 的扩张,I 的延拓性质表明存在一个 $\tau: X \to I$ 满足:

其中 β 是 τ 诱导的态射。我们断言 X 是 β 和 $\pi: I \to N$ 的拉回。从而 $\Psi(\Theta(\xi)) = \xi$.

如果我们可以给出扩张的运算,就能更好的理解上述的对应。

Definition 3.4.3: Baer 和

设 ξ 和 ξ' 分别是 A 过 B 的两个扩张。设 X'' 是 $X \to A$ 和 $X' \to A$ 的拉回。则 X'' 包含了三份 $B:B \times 0, 0 \times B, \{(-b,b): b \in B\}$ 。

作 X'' 对于对角线 B 的商运算,则 $B \times 0$ 和 $0 \times B$ 被对应为一个子群。而 $X''/0 \times B \cong X$ 和 X/B = A, 则我们得到正合列:

$$\varphi: 0 \to B \to Y \to A \to 0 \tag{3.35}$$

 φ 的等价类被称为 ξ 和 ξ' 的 Baer 和。

Proposition 3.4.1

扩张等价类的集合在 Baer 和的意义下生成了一个交换群, 分裂扩张是该和的幺元。从而 Θ 给出了一个群同构。

Proof. 我们说明 Θ(φ) = Θ(ξ) + Θ(ξ'). 这说明了 Baer 和的良定性, 也给出了命题成立。

固定 $0 \to M \to P \to A \to 0$ 是一个正合列, 且 P 是投射模。因为 P 投射, 所以给出 $\tau: P \to X$ 和 $\tau': P \to X'$ 。

接下来设 $\tau'':P\to X''$ 是由 $\tau:P\to X$ 和 $\tau':P\to X'$ 诱导而来的态射。而设 $\bar{\tau}:P\to Y$ 是诱导的态射。

我们断言 $\bar{\tau}$ 限制在 M 上由映射 $\gamma + \gamma' : M \to B$ 诱导。所以下面的交换图:

成立。

因此我们有 $\Theta(\varphi) = \partial(\gamma + \gamma')$. 然而 $\partial(\gamma + \gamma') = \partial(\gamma) + \partial(\gamma') = \Theta(\xi) + \Theta(\xi')$. 所以命题成立。

借助上述的命题,我们实际上可以思考这样的问题:如果一个 Abelian 范畴没有足够的投射模和内射模,我们也可以借助扩张生成的交换群来定义 Ext¹. 当然这里的交换群仍需要证明。

相似的,我们也可以思考 Ext^n 的含义。我们在这里建议大家阅读原书的 79 页到 80 页内容。

§3.5 逆向极限的导出函子

设 I 是一个小范畴 (即对象集和态射集都是集合)。A 是一个 Abelian 范畴。在第二章,我们说明了 A^I 有足够多的内射对象。(至少是 A 完备且有足够多内射对象的时候)。另外,容易验证逆向极限是左正合函子(保核)。

因此我们可以定义从 A^I 到 A 的右导出函子 $R^n \underset{i \in I}{\lim}_{i \in I}$ 。

我们在这一节关注 \mathcal{A} 是 Ab 且 I 是 $\cdots \rightarrow 2 \rightarrow 1 \rightarrow 0$ 。我们把 Ab I 中的元素称作交换群的"塔"。他们的具体形式是:

$$\{A_i\}: \dots \to A_2 \to A_1 \to A_0 \tag{3.36}$$

这一节我们具体给出 \lim^{1} 的具体构造, 并且证明 R^{n} $\lim = 0, n \neq 0, 1$ 。

我们自然想问这样的构造是否可以拓展为其他的 Abelian 范畴。Grothendieck 告诉我们,在满足下面公理的情况下该范畴可以:

(AB4*):A 是完备的, 且任何集合的满射的乘积都是满射。

满足该公理的范畴大多是有 underlying 集合的范畴 (交换群, 模范畴, 链复形范畴), 但是在层范畴失效。

Definition 3.5.1

给定 Ab 中的一个塔 $\{A_i\}$ 。定义映射:

$$\Delta: \prod_{i=0}^{\infty} \to \prod_{i=0}^{\infty} A_i \tag{3.37}$$

为:

$$\Delta(\dots, a_i, \dots, a_0) = (\dots, a_i - \bar{a}_{i+1}, \dots, a_1 - \bar{a}_2, a_0 - \bar{a}_1)$$
(3.38)

其中 \bar{a}_{i+1} 代表 $a_{i+1} \in A_{i+1}$ 在 A_i 中的项。

容易看出 Δ 的 ker 是 $\varprojlim A_i$. 我们定义 $\varprojlim^1 A_i$ 是 Δ 的余核, 从而 \varprojlim^1 是从 Ab^I 到 Ab 的函子。我们定义 $\lim^0 A_i = \lim A_i, \lim^n A_i = 0, n \geq 2$.

上述定义给出了具体的构造。当然我们需要说明这是符合要求的函子。

Lemma 3.5.1

函子 $\{\lim^n\}$ 给出了一个上同调 δ 函子。

Proof. 设 $0 \to \{A_i\} \to \{B_i\} \to \{C_i\} \to 0$ 是塔的一个短正合列。用蛇形引理:

$$0 \longrightarrow \prod A_i \longrightarrow \prod B_i \longrightarrow \prod C_i \longrightarrow 0$$

$$\downarrow^{\Delta} \qquad \downarrow^{\Delta} \qquad \downarrow^{\Delta}$$

$$0 \longrightarrow \prod A_i \longrightarrow \prod B_i \longrightarrow \prod C_i \longrightarrow 0$$

就可以得到我们想要的自然长正合列。

Lemma 3.5.2

若所有的 $A_{i+1} \to A_i$ 都是满射,则 $\varprojlim^1 A_i = 0$. 更多的, $\varprojlim A_i \neq 0$ (除非每个 A_i 都是 0),因为每个自 然投射 $\varprojlim A_i \to A_i$ 都是满射。

Proof. 给定 $b_i \in A_i (i = 0, ..., n)$, 以及任何 $a_0 \in A_0$ 。 归纳的选择 $a_{i+1} \in A_{i+1}$: 使得 a_{i+1} 是 $a_i - b_i \in A_i$ 在 A_{i+1} 中的提升。

从而 Δ 将 $(...,a_1,a_0)$ 映射到 $(...,b_1,b_0)$. 因此这种情况下 Δ 是满射, $\varprojlim^1 A_i = 0$ 。如果 $b_i = 0, (...,a_1,a_0) \in \varprojlim A_i$.

Corollary 3.5.1

 $\underline{\lim}^1 A_i \cong (R^1 \underline{\lim})(A_i) \perp R^n \underline{\lim} = 0, \forall n \neq 0, 1$

Proof. 我们说明 \varprojlim^n 形成了一个泛 δ 函子,从而根据泛性说明上述成立。我们只需要说明 \varprojlim^1 在足够多的内射对象(应付内射解消)上 vanish。

我们在第二章给出了足够多的内射对象:

$$k_*E:\dots = E = E \to 0 \to 0 \dots \to 0 \tag{3.39}$$

其中 E 内射。因此这里面所有的态射都是满射,因此 \lim^1 在这些内射塔上都 vanish。

上述的证明在 AB4* 的情况下总是对的。我们给出反例(不满足 AB4*)。

Example 3.5.2

设 $A_0 = \mathbb{Z}$ 且 $A_i = p^i \mathbb{Z}$ 是 p^i 生成的子群。对短正合列 (p 是素数):

$$0 \to \{p^i \mathbb{Z}\} \to \{\mathbb{Z}\} \to \{\mathbb{Z}/p^i \mathbb{Z}\} \to 0 \tag{3.40}$$

使用 lim.

从而 $\lim^1 \{p^i \mathbb{Z}\} \cong \hat{\mathbb{Z}}_p/\mathbb{Z}$.

下面这个命题在原书上是习题。我们仅作记录,证明省略。(可以查找 mathstackexchange)。

Proposition 3.5.1

设 $\{A_i\}$ 是一个塔, $A_{i+1} \rightarrow A_i$ 是包含映射。把 $A = A_0$ 看作拓扑群,其中 $a + A_i (a \in A, i \ge 0)$ 是开集。

3.6. 泛系数定理 53

则 $\varprojlim A_i = \cap A_i = 0$ 当且仅当 A 是 Hausdorff 的. $\varprojlim^1 A_i = 0$ 当且仅当 A 在下列意义是完备的: 每个柯西列都有不一定唯一的极限点.

提示: 证明 A 是完备的, 当且仅当 $A \cong \lim(A/A_i)$

Definition 3.5.3

我们称一个塔 $\{A_i\}$ 满足 Mittag-Leffler 条件, 若对于每个 k 都存在一个 $j \geq k$ 使得 $A_i \rightarrow A_k$ 的像等于 $A_j \rightarrow A_k$, 对于任意 $i \geq j$ 成立。(即 A_i 在 A_k 的像满足降链条件)。

例如,若 $\{A_i\}$ 都是满射,该塔就满足 M-L 条件。

有一种平凡的情况: 若对于每个 k 都存在一个 $j \ge k$ 使得 $A_i \to A_k$ 的像是 0, 我们称该塔满足平凡 M-L 条件。

Proposition 3.5.2

若 A_i 满足 M-L 条件, 则: $\lim^1 A_i = 0$

Corollary 3.5.2

设 $\{A_i\}$ 是有限 Abel 群的塔, 或者是有限维向量空间上的塔, 我们都有 $\lim_{i \to \infty} A_i = 0$

下面的定理预示了下一节的泛系数定理。

Theorem 3.5.1

设 $\cdots \to C_1 \to C_0$ 是 Ab 的链复形的塔链。(每个 C_i 都是链复形),且满足 ML 条件。设 $C = \varinjlim C_i$ 。则对于每个 q 都存在一个正合列:

$$0 \to \underline{\lim}^{1} H_{q+1}(C_i) \to H_q(C) \to \underline{\lim} H_q(C_i) \to 0$$
(3.41)

若 ... $C_1 \rightarrow C_0 \rightarrow 0$ 是上链复形的塔链且满足 ML 条件。则:

$$0 \to \lim^1 H^{q-1}(C_i) \to H^q(C) \to \lim^1 H^q(C_i) \to 0 \tag{3.42}$$

正合。

在拓扑上,这个定理有一个类似的版本。考虑 X 是 CW 复形, 而 X_i 是 X 的上升子复形链, 使得 $X = \cup X_i$. 则存在一个正合列:

$$0 \to \underline{\lim}^1 H^{q-1}(X_i) \to H^q(X) \to \underline{\lim} H^q(X_i) \to 0 \tag{3.43}$$

可以一眼看出这个公式的便利之处:可以根据子群的同调群计算最大的群的同调群。

Example 3.5.4

设 A 是 R 模。

§3.6 泛系数定理

Chapter 4

同调维数

谱序列

Chapter 6

群同调和上同调

Chapter 7

李代数同调和上同调