EXERCICE 28 p 143 (niveau 1-2)

- 1. Mesurons: $M_3M_5 = 1.7$ cm
- 2. Calculons $v_4 = \frac{M_3 M_5}{\Delta \uparrow} = \frac{1.7}{0.50} = 3.4 \text{ cm.s}^{-1}$ (2CS)
- 3. Avec l'échelle de 1 cm pour 2 cm.s⁻¹, le vecteur v₄ aura pour longueur 1,7 cm.

4.

EXERCICE 27 p 143 (niveau 1-2)

- 1. On appelle les points M_0 (x_0 = 0 ; y_0 = 2,0) et M_{10} (x_{10} 100 ; y_{10} = 2,0) Le vecteur déplacement moyen a pour valeur M_0M_{10} = 100 m et l'enregistrement correspond à 9 intervalles de 5 secondes chacun : Δt = t_{10} - t_0 = 9 x 5 = 45 s
- 2. Calculons la vitesse moyenne $v = \frac{M_0 M_{10}}{t_{10} t_0} = \frac{100}{45} = 2.2 \text{ m.s}^{-1}$

EXERCICE 39 p 147 (niveau 2-3)

- A : mouvement uniforme puisque le déplacement est proportionnel au temps.
- B : Système au repos car le déplacement ne change pas au cours du temps.
- C: Mouvement non uniforme car la vitesse diminue au cours du temps (décéléré).
- D : Mouvement non uniforme car la vitesse augmente au cours du temps (accéléré).

EXERCICE 45 p 148 (niveau 2-3)

 $\begin{array}{ll} \text{R\'ef\'erentiel}: \text{terrestre} \\ \text{Syst\`eme}: & \left\{ \text{point M} \right. \end{array}$

Echelle des distances : 7,7 cm pour 35 m en réalité

Durée entre deux points consécutifs : $\tau = 4 \div 5 = 0.8 \text{ s}$

Ici
$$M_0M_2 = 1.2 \times 35 \div 7.7 = 5.4 \text{ m}$$

 $M_3M_5 = 4.9 \times 35 \div 7.7 = 22 \text{ m}$

$$v_1 = \frac{M_0 M_2}{t_2 - t_0} = \frac{5.4}{1.6} = 3 \text{ m.s}^{-1}$$
 $v_4 = \frac{M_3 M_5}{t_5 - t_3} = \frac{22}{1.6} = 1.4 \times 10^1 \text{ m.s}^{-1}$

1. Echelle des vitesses : 1 cm pour 3 m.s⁻¹

2. Le mouvement est rectiligne accéléré.