II SUITES NUMERIQUES

1. Définitions

1.1 Définition

Soit E un ensemble; on appelle suite à valeurs dans E toute application u de \mathbb{N} dans E.

On note traditionnellement u_n l'image par u d'un entier n (plutôt que u(n)) et on l'appelle le terme d'indice ou de rang n de la suite u.

La notation $(u_n)_{n\in\mathbb{N}}$ désigne la suite définie par l'application u, à ne pas confondre avec l'ensemble $\{u_n \mid n \in \mathbb{N}\}$ des termes de la suite : ainsi, si $u_n = (-1)^n$, la suite $(u_n)_{n\in\mathbb{N}}$ a une infinité de termes $(1, -1, 1, -1, \cdots)$ alors que $\{u_n \mid n \in \mathbb{N}\} = \{1, -1\}$.

On appelle suite réelle toute suite à valeurs dans \mathbb{R} et suite complexe toute suite à valeurs dans \mathbb{C} ; plus généralement, on appelle suite numérique toute suite à valeurs dans \mathbb{R} ou \mathbb{C} .

On peut définir une suite $(u_n)_{n\in\mathbb{N}}$ par une formule explicite de l'application u, par exemple

- (a) $u_n = n, \forall n \in \mathbb{N}$;
- (b) $u_n = \frac{1}{n+1}, \forall n \in \mathbb{N};$
- (c) $u_n = 2^{-n}, \forall n \in \mathbb{N}$

ou par récurrence : $u_0 \in E$ et $u_{n+1} = f(u_n)$ où f est une application de E dans E. Les exemples (a), (b) et (c) ci-dessus peuvent aussi être définis par récurrence :

- (a) $u_{n+1} = u_n + 1, \forall n \in \mathbb{N} \text{ et } u_0 = 0;$
- (b) $u_{n+1} = \frac{u_n}{1+u_n}, \forall n \in \mathbb{N} \text{ et } u_0 = 1;$
- (c) $u_{n+1} = \frac{u_n}{2}, \forall n \in \mathbb{N} \text{ et } u_0 = 1.$

1.2 Définitions

(a) Soit $a \in \mathbb{R}$; on appelle suite arithmétique réelle de raison a toute suite définie par récurrence de la façon suivante

$$u_{n+1} = u_n + a, \forall n \in \mathbb{N} \text{ et } u_0 \in \mathbb{R}$$

On vérifie facilement que

$$\forall n \in \mathbb{N}, u_n = u_0 + na.$$

(b) Soit $r \in \mathbb{R}$; on appelle suite géométrique réelle de raison r toute suite définie par récurrence de la façon suivante

$$u_{n+1} = ru_n, \forall n \in \mathbb{N} \text{ et } u_0 \in \mathbb{R}$$

On vérifie facilement que

$$\forall n \in \mathbb{N}, u_n = u_0 r^n.$$

Cependant, dans la majorité des cas, il n'est pas possible de trouver une formule explicite pour une suite définie par récurrence.

1

1.3 Définitions

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- (a) on dit que $(u_n)_{n\in\mathbb{N}}$ est constante si $\forall n\in\mathbb{N}, u_{n+1}=u_n$;
- (b) on dit que $(u_n)_{n\in\mathbb{N}}$ est croissante si $\forall n\in\mathbb{N}, u_{n+1}\geq u_n$;
- (c) on dit que $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}, u_{n+1}\leq u_n$;
- (d) on dit que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}, u_{n+1}>u_n$;
- (e) on dit que $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante si $\forall n \in \mathbb{N}, u_{n+1} < u_n$;
- (f) on dit que $(u_n)_{n\in\mathbb{N}}$ est monotone si elle est croissante ou décroissante;
- (g) on dit que $(u_n)_{n\in\mathbb{N}}$ est strictement monotone si elle est strictement croissante ou strictement décroissante;
- (h) on dit que $(u_n)_{n\in\mathbb{N}}$ est majorée si l'ensemble $A = \{u_n \mid n \in \mathbb{N}\}$ est majoré : dans ce cas sup A est appelée borne supérieure de la suite $(u_n)_{n\in\mathbb{N}}$;
- (i) on dit que $(u_n)_{n\in\mathbb{N}}$ est minorée si l'ensemble $A=\{u_n\ /\ n\in\mathbb{N}\}$ est minoré : dans ce cas inf A est appelée borne inférieure de la suite $(u_n)_{n\in\mathbb{N}}$;
- (j) on dit que $(u_n)_{n\in\mathbb{N}}$ est bornée si l'ensemble $\{u_n \mid n\in\mathbb{N}\}$ est borné;
- (k) on dit que $(u_n)_{n\in\mathbb{N}}$ est périodique s'il existe $p\in\mathbb{N}^*$ tel que $\forall n\in\mathbb{N},\ u_{n+p}=u_n$.

1.4 Exemples

- (a) la suite $(n)_{n\in\mathbb{N}}$ est croissante minorée;
- (b) la suite $(\frac{1}{n+1})_{n\in\mathbb{N}}$ est décroissante bornée;
- (c) la suite $(\cos(\frac{n\pi}{3}))_{n\in\mathbb{N}}$ est périodique.

1.5 Définitions

Il arrive qu'une suite ne soit définie que sur une partie de \mathbb{N} : on considère alors la suite pour $n \geq n_0$ pour un certain $n_0 \in \mathbb{N}$; ainsi la suite $u_n = \frac{1}{n}$ n'est définie que pour $n \geq 1$. Il arrive aussi que la suite possède une certaine propriété seulement pour $n \geq n_0$: on dit qu'une suite $(u_n)_{n \in \mathbb{N}}$ vérifie la propriété \mathcal{P} à partir d'un certain rang s'il existe $n_0 \in \mathbb{N}$ tel que la suite $(u_n)_{n \geq n_0}$ vérifie \mathcal{P} . On dit aussi que la propriété \mathcal{P} est vraie pour n assez grand.

1.6 Remarque

Une suite $(u_n)_{n\in\mathbb{N}}$ bornée à partir d'un certain rang est en fait une suite bornée; en effet s'il existe $n_0 \in \mathbb{N}$ et M > 0 tels que

$$\forall n \geq n_0, |u_n| \leq M$$

alors, en posant $M' = \max(|u_0|, \cdots, |u_{n_0-1}|, M)$ on a

$$\forall n \in \mathbb{N}, |u_n| < M'.$$

et ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

1.7 Définitions

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- (a) On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire si elle est constante à partir d'un certain rang; il existe $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow u_{n+1} = u_n$;
- (b) On dit que $(u_n)_{n\in\mathbb{N}}$ est croissante (resp. décroissante) à partir d'un certain rang s'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow u_{n+1} \geq u_n$ (resp. $u_{n+1} \leq u_n$).

1.8 Exemples

- (a) la suite $(E(\frac{4}{n+1}))_{n\in\mathbb{N}}$ est stationnaire : pour $n\geq 4$ on a $E(\frac{4}{n+1})=0$.
- (b) la suite $((n-3)^2)_{n\in\mathbb{N}}$ est croissante à partir du rang 3.

1.9 Opérations sur les suites

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques et $\lambda\in\mathbb{C}$.

On définit de façon naturelle la suite somme $(u_n + v_n)_{n \in \mathbb{N}}$, la suite produit $(u_n v_n)_{n \in \mathbb{N}}$ et la suite $(\lambda u_n)_{n \in \mathbb{N}}$.

1.10 Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique; on appelle suite extraite ou sous-suite de $(u_n)_{n\in\mathbb{N}}$ toute suite de la forme $(u_{\varphi(n)})_{n\in\mathbb{N}}$ où φ est une application strictement croissante de \mathbb{N} dans \mathbb{N} .

Par exemple, la suite $(u_{2n})_{n\in\mathbb{N}}$ est une sous-suite de $(u_n)_{n\in\mathbb{N}}$.

2. Convergence

2.1 Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels et ℓ un réel; on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ , ou a ℓ pour limite si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon$$

autrement dit tout intervalle ouvert centré en ℓ contient tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ à partir d'un certain rang.

On remarque que l'on peut remplacer l'inégalité stricte $|u_n - \ell| < \varepsilon$ dans la définition par une inégalité large $|u_n - \ell| \le \varepsilon$: en effet, une inégalité stricte est a fortiori large, et réciproquement si la suite $(u_n)_{n \in \mathbb{N}}$ vérifie la condition

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon$$

alors, pour tout $\varepsilon > 0$, il existe $\alpha \in \mathbb{R}$ tel que $0 < \alpha < \varepsilon$ et par conséquent, il existe $N_{\alpha} \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \geq N_{\alpha} \Longrightarrow |u_n - \ell| \leq \alpha < \varepsilon$.

On note $\lim_{n \to +\infty} u_n = \ell$ ou $u_n \xrightarrow[n \to +\infty]{} \ell$.

On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ par valeurs supérieures ou que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ^+ si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow 0 < u_n - \ell < \varepsilon$$

bien évidemment, si $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ^+ , alors $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ .

On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ par valeurs inférieures ou que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ^- si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow 0 < \ell - u_n < \varepsilon.$$

On dit la suite $(u_n)_{n\in\mathbb{N}}$ converge ou est convergente s'il existe $\ell\in\mathbb{R}$ tel que $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ ; on dit alors que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

On dit la suite $(u_n)_{n\in\mathbb{N}}$ diverge ou est divergente si elle n'est pas convergente.

2.2 Exemple

La suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ converge vers 0, en effet :

comme \mathbb{R} est archimédien, pour tout $\varepsilon > 0$, il existe $N_{\varepsilon} \in \mathbb{N}$ tel que $N_{\varepsilon} \varepsilon > 1$ alors

$$\forall n \in \mathbb{N}^*, n \ge N_{\varepsilon} \Longrightarrow 0 < \frac{1}{n} \le \frac{1}{N_{\varepsilon}} < \varepsilon$$

d'où le résultat.

2.3 Définition

(a) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels; on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si

$$\forall A > 0, \exists N_A \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_A \Longrightarrow u_n > A$$

(b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels; on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si

$$\forall A > 0, \exists N_A \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_A \Longrightarrow u_n < -A$$

2.4 Exemple

La suite $(n)_{n\in\mathbb{N}}$ tend vers $+\infty$, en effet : comme \mathbb{R} est archimédien, pour tout A>0, il existe n_A tel que $n_A>A$ alors $\forall n\in\mathbb{N}, n\geq n_A\Longrightarrow n>A$ d'où le résultat.

2.5 Proposition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- (a) si $(u_n)_{n\in\mathbb{N}}$ a une limite finie, cette limite est unique;
- (b) si $(u_n)_{n\in\mathbb{N}}$ a une limite finie, alors $(u_n)_{n\in\mathbb{N}}$ est bornée;
- (c) si $(u_n)_{n\in\mathbb{N}}$ possède une limite (finie ou pas), alors toute sous-suite de $(u_n)_{n\in\mathbb{N}}$ tend vers cette limite;
- (d) si les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers la même limite (finie ou pas) alors $(u_n)_{n\in\mathbb{N}}$ tend vers cette limite;
- (e) si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$, alors la suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers $|\ell|$; la réciproque de ce résultat est vraie si $\ell=0$, mais fausse en général si $\ell\neq 0$.
- (f) si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie $\ell > 0$ (resp. $\ell < 0$), alors pour n assez grand, $u_n > 0$ (resp. $u_n < 0$).
- (g) si une suite $(u_n)_{n\in\mathbb{N}}$ est bornée, elle ne peut tendre vers $\pm\infty$.

Preuve:

(a) supposons que $(u_n)_{n\in\mathbb{N}}$ possède deux limites finies ℓ et ℓ' , alors pour tout $\varepsilon > 0$, il existe n_1 et $n_2 \in \mathbb{N}$ tels que

$$n \ge n_1 \Longrightarrow |u_n - \ell| < \frac{\varepsilon}{2} \text{ et } n \ge n_2 \Longrightarrow |u_n - \ell'| < \frac{\varepsilon}{2}$$

alors, si on pose $N = \max(n_1, n_2)$, on a

$$|\ell - \ell'| = |\ell - u_N + u_N - \ell'| \le |\ell - u_N| + |u_N - \ell'| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donc $\ell - \ell' = 0$ d'après I. 2.9.

(b) supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$: alors pour $\varepsilon=1$ il existe $N\in\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow |u_n - \ell| < 1$$

d'où

$$\forall n \in \mathbb{N}, \ n \geq N \Longrightarrow |u_n| = |u_n - \ell + \ell| \leq |u_n - \ell| + |\ell| < 1 + |\ell|$$

et ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est bornée à partir du rang N, donc est bornée (cf. 1.6).

(c) soit $(u_{\varphi(n)})_{n\in\mathbb{N}}$ une sous-suite de $(u_n)_{n\in\mathbb{N}}$ avec φ une application strictement croissante de \mathbb{N} dans \mathbb{N} . Démontrons d'abord le lemme suivant :

Lemme: si φ est une application strictement croissante de \mathbb{N} dans \mathbb{N} , alors on a $\forall n \in \mathbb{N}$, $\varphi(n) \geq n$.

La démonstration se fait par récurrence : si on désigne par (H_n) la proposition $\varphi(n) \ge n$ pour $n \in \mathbb{N}$, il est clair que (H_0) est vraie puisque φ est à valeurs dans \mathbb{N} ; supposons maintenant (H_n) vérifiée, alors $\varphi(n+1) > \varphi(n) \ge n$ donc $\varphi(n+1) \ge n+1$, i.e (H_{n+1}) est vérifiée. On en déduit que (H_n) est vraie pour tout $n \in \mathbb{N}$.

Ecrivons que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$:

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon$$

alors, d'après le lemme, on a

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_{\varepsilon} \Longrightarrow \varphi(n) > n > N_{\varepsilon} \Longrightarrow |u_{\varphi(n)} - \ell| < \varepsilon$$

i.e la sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers ℓ .

La démonstration est analogue dans le cas où $(u_n)_{n\in\mathbb{N}}$ tend vers $\pm\infty$.

(d) si les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers la même limite $\ell\in\mathbb{R}$, alors, pour tout $\varepsilon>0$, il existe n_1 et $n_2\in\mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, \ n \geq n_1 \Longrightarrow |u_{2n} - \ell| < \varepsilon \text{ et } n \geq n_2 \Longrightarrow |u_{2n+1} - \ell| < \varepsilon$$

alors si on note $N = \max(2n_1, 2n_2 + 1)$, on obtient

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow |u_n - \ell| < \varepsilon$$

et ainsi $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

La démonstration est analogue dans le cas où $(u_n)_{n\in\mathbb{N}}$ tend vers $\pm\infty$.

(e) si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors on a

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon$$

or, pour tout $n \in \mathbb{N}$, on a l'inégalité triangulaire

$$||u_n| - |\ell|| \le |u_n - \ell|$$

d'où le résultat.

De plus si $(|u_n|)_{n\in\mathbb{N}}$ converge vers 0, cela s'écrit

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow |u_n| = ||u_n| - 0| < \varepsilon$$

ce qui signifie exactement que $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

Par contre ce résultat est faux si $\ell \neq 0$ et si les termes de la suite ne sont pas de signe constant pour n assez grand : par exemple la suite $((-1)^n)_{n\in\mathbb{N}}$ ne possède pas de limite (cf. remarque 2.6 ci-dessous) alors que la suite $(|(-1)^n|)_{n\in\mathbb{N}}$ est constante égale à 1 donc converge.

(f) supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell>0$, alors il existe un réel $\alpha>0$ tel que $0<\alpha<\ell$ et pour ce réel $\alpha>0$, il existe $N_\alpha\in\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n \geq N_{\alpha} \Longrightarrow 0 < \ell - \alpha < u_n < \ell + \alpha$$

d'où le résultat pour u_n . La démonstration est analogue si $\ell < 0$.

(g) supposons $(u_n)_{n\in\mathbb{N}}$ bornée, alors il existe A>0 tel que $\forall n\in\mathbb{N},\ -A\leq u_n\leq A$, ce qui contredit les définitions de $u_n\longrightarrow\pm\infty$.

2.6 Remarque

Dire qu'une suite de réels $(u_n)_{n\in\mathbb{N}}$ diverge signifie que, soit $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ ou $-\infty$, soit $(u_n)_{n\in\mathbb{N}}$ ne possède pas de limite : par exemple la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\forall n \in \mathbb{N}, u_n = (-1)^n$ diverge puisque la sous-suite $(u_{2n})_{n\in\mathbb{N}}$ tend vers 1 et la sous-suite $(u_{2n+1})_{n\in\mathbb{N}}$ tend vers -1 (cf. 2.5 (c))

2.7 Proposition

Considérons une suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers $\ell_1\in\mathbb{R}$ et une suite $(v_n)_{n\in\mathbb{N}}$ convergeant vers $\ell_2\in\mathbb{R}$. Alors

- (a) la suite $(u_n + v_n)_{n \in \mathbb{N}}$ converge vers $\ell_1 + \ell_2$;
- (b) pour tout $\lambda \in \mathbb{R}$ la suite $(\lambda u_n)_{n \in \mathbb{N}}$ converge vers $\lambda \ell_1$;
- (c) la suite $(u_n v_n)_{n \in \mathbb{N}}$ converge vers $\ell_1 \ell_2$;
- (d) si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell_1\neq 0$, alors il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0, u_n\neq 0$ et la suite $(\frac{1}{u_n})_{n\geq n_0}$ converge vers $\frac{1}{\ell_1}$.

Preuve:

(a) Considérons $\varepsilon > 0$, alors il existe n_1 et $n_2 \in \mathbb{N}$ tels que

$$n \ge n_1 \Longrightarrow |u_n - \ell_1| < \frac{\varepsilon}{2} \text{ et } n \ge n_2 \Longrightarrow |v_n - \ell_2| < \frac{\varepsilon}{2}$$

d'où

$$n \ge \max(n_1, n_2) \Longrightarrow |u_n + v_n - (\ell_1 + \ell_2)| \le |u_n - \ell_1| + |v_n - \ell_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

d'où le résultat.

(b) si $\lambda = 0$, il est clair que la suite nulle tend vers 0; si $\lambda \neq 0$, comme $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ_1 , on a pour tout $\varepsilon > 0$,

$$\exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, \ n \geq N_{\varepsilon} \Longrightarrow |u_n - \ell_1| < \frac{\varepsilon}{|\lambda|}$$

donc

$$n \ge N_{\varepsilon} \Longrightarrow |\lambda u_n - \lambda \ell_1| = |\lambda| . |u_n - \ell_1| < \varepsilon$$

et ainsi $(\lambda u_n)_{n\in\mathbb{N}}$ converge vers $\lambda \ell_1$.

(c) Ecrivons $u_n v_n - \ell_1 \ell_2$ pour tout $n \in \mathbb{N}$ sous la forme

$$u_n v_n - \ell_1 \ell_2 = u_n (v_n - \ell_2) + (u_n - \ell_1) \ell_2$$

Or, d'après (a) et (b) la suite $((u_n - \ell_1)\ell_2)_{n \in \mathbb{N}}$ tend vers 0; il reste à montrer que la suite $(u_n(v_n - \ell_2))_{n \in \mathbb{N}}$ tend vers 0 également :

comme $\ell_1 \in \mathbb{R}$, la suite $(u_n)_{n \in \mathbb{N}}$ est bornée d'après 2.5, il existe donc M > 0 tel que $|u_n| \leq M$ pour tout $n \in \mathbb{N}$, or pour tout $\varepsilon > 0$ il existe $N_{\varepsilon} \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n \ge N_{\varepsilon} \Longrightarrow |v_n - \ell_2| < \frac{\varepsilon}{M}$$

d'où

$$\forall n \in \mathbb{N}, \ n \ge N_{\varepsilon} \Longrightarrow |u_n(v_n - \ell_2)| \le M|v_n - \ell_2| < M\frac{\varepsilon}{M} = \varepsilon$$

et ainsi $(u_n(v_n - \ell_2))_{n \in \mathbb{N}}$ tend vers 0. On en déduit alors, d'après (a), que $(u_n v_n)_{n \in \mathbb{N}}$ converge vers $\ell_1 \ell_2$.

(d) on fait la démonstration dans le cas où $\ell_1 > 0$ (il suffira ensuite d'utiliser le point (b) dans le cas où $\ell_1 < 0$); on a vu en 2.5 (f) qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $u_n > 0$: on va montrer que la suite $(\frac{1}{u_n})_{n \ge n_0}$ est bornée :

comme $\ell_1 > 0$, il existe un réel $\alpha > 0$ tel que $0 < \alpha < \ell_1$ et pour ce réel $\alpha > 0$, il existe $N_\alpha \in \mathbb{N}$ tel que $N_\alpha > n_0$ et

$$\forall n \in \mathbb{N}, \ n > N_{\alpha} \Longrightarrow 0 < \ell_1 - \alpha < u_n < \ell_1 + \alpha$$

d'où

$$\forall n \in \mathbb{N}, \ n \ge N_{\alpha} \Longrightarrow \frac{1}{\ell_1 + \alpha} < \frac{1}{u_n} < \frac{1}{\ell_1 - \alpha}$$

on en déduit alors que pour tout $n \geq N_{\alpha}$

$$0 < \frac{1}{u_n} < \frac{1}{\ell_1 - \alpha}.$$

Montrons maintenant que $(\frac{1}{u_n})_{n\geq n_0}$ converge vers $\frac{1}{\ell_1}$: pour tout $n\geq N_{\alpha}$, on a

$$\frac{1}{u_n} - \frac{1}{\ell_1} = \frac{\ell_1 - u_n}{u_n \ell_1}$$

donc

$$\left| \frac{1}{u_n} - \frac{1}{\ell_1} \right| = \frac{|\ell_1 - u_n|}{u_n \ell_1} < \frac{|\ell_1 - u_n|}{(\ell_1 - \alpha)\ell_1}$$

or $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ_1 , donc pour tout $\varepsilon>0$ il existe $N_{\varepsilon}\in\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n \geq N_{\varepsilon} \Longrightarrow |u_n - \ell_1| < (\ell_1 - \alpha)\ell_1\varepsilon$$

d'où, si $N = \max(N_{\varepsilon}, N_{\alpha}),$

$$\forall n \in \mathbb{N}, \ n \ge N \Longrightarrow \left| \frac{1}{u_n} - \frac{1}{\ell_1} \right| < \varepsilon$$

et ainsi $(\frac{1}{u_n})_{n \ge n_0}$ converge vers $\frac{1}{\ell_1}$.

Donnons maintenant une définition de la continuité d'une fonction d'une variable réelle en un point à l'aide des suites (on donnera une autre définition dans le chapitre III).

2.8 Définition

Soit f une fonction d'une variable réelle à valeurs dans \mathbb{R} , définie sur un intervalle I centré en $a \in \mathbb{R}$: on dit que f est continue en a si et seulement si, pour toute suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de I convergeant vers a, la suite $(f(u_n))_{n \in \mathbb{N}}$ converge vers f(a).

On peut ainsi, par exemple, retrouver le fait que si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell_1\neq 0$, alors la suite $(\frac{1}{u_n})_{n\geq n_0}$ converge vers $\frac{1}{\ell_1}$, car la fonction $f(x)=\frac{1}{x}$ est continue en tout $a\neq 0$.

On citera notamment les résultats suivants :

2.9 Proposition

- (a) si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors $(e^{u_n})_{n\in\mathbb{N}}$ converge vers e^{ℓ} ;
- (b) si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell>0$, alors $u_n>0$ pour n assez grand, et $\ln(u_n)\xrightarrow[n\to+\infty]{}\ln(\ell)$.
- (c) si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell > 0$, alors $u_n > 0$ pour n assez grand, et pour tout réel α , $u_n^{\alpha} \xrightarrow[n \to +\infty]{} \ell^{\alpha}$ (on n'a pas de condition sur le signe de ℓ si $\alpha \in \mathbb{N}^*$).
- **2.10 Exemple** Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{2n-3}{n\sin(\frac{1}{n}) + \sqrt{(n+1)(2n+1)}}$$

en divisant le numérateur et le dénominateur par n, on obtient

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{2 - \frac{3}{n}}{\sin(\frac{1}{n}) + \sqrt{(1 + \frac{1}{n})(2 + \frac{1}{n})}}$$

or $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc $\sin(\frac{1}{n}) \xrightarrow[n \to +\infty]{} 0$ puisque la fonction sinus est continue en 0, de plus $(1+\frac{1}{n})(2+\frac{1}{n}) \xrightarrow[n \to +\infty]{} 1 \times 2 = 2$ d'après 2.7, donc $\sqrt{(1+\frac{1}{n})(2+\frac{1}{n})} \xrightarrow[n \to +\infty]{} \sqrt{2}$ puisque la fonction racine carrée est continue en 2 : il ne reste plus qu'à appliquer encore une fois 2.7 pour conclure que $u_n \xrightarrow[n \to +\infty]{} \frac{2}{\sqrt{2}} = \sqrt{2}$.

On va maintenant énoncer des résultats pour les opérations sur les suites quand l'une (ou les deux) a une limite infinie :

2.11 Proposition

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles.

(a) si
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
 (resp. $-\infty$) et si $(v_n)_{n \in \mathbb{N}}$ est bornée, $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$ (resp. $-\infty$);

(b) si
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
 et $v_n \xrightarrow[n \to +\infty]{} +\infty$, alors $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$;

(c) si
$$u_n \xrightarrow[n \to +\infty]{} -\infty$$
 et $v_n \xrightarrow[n \to +\infty]{} -\infty$, alors $u_n + v_n \xrightarrow[n \to +\infty]{} -\infty$;

(d) si
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
 et si $v_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}^*$, alors $u_n v_n \xrightarrow[n \to +\infty]{}$ (signe de ℓ) ∞

(e) si
$$u_n \xrightarrow[n \to +\infty]{} -\infty$$
 et si $v_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}^*$, alors $u_n v_n \xrightarrow[n \to +\infty]{} (-\text{ signe de } \ell)\infty$

(f) si
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
, alors il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Longrightarrow u_n > 0$ et $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} 0^+$;

(g) si
$$u_n \xrightarrow[n \to +\infty]{} -\infty$$
, alors il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Longrightarrow u_n < 0$ et $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} 0^-$;

(h) si
$$u_n \xrightarrow[n \to +\infty]{} 0^+$$
, alors il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Longrightarrow u_n > 0$ et $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} +\infty$;

(i) si
$$u_n \xrightarrow[n \to +\infty]{} 0^-$$
, alors il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Longrightarrow u_n < 0$ et $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} -\infty$.

(j) si
$$u_n \xrightarrow[n \to +\infty]{} \varepsilon_1 \infty$$
 et si $v_n \xrightarrow[n \to +\infty]{} \varepsilon_2 \infty$ où $\varepsilon_1 = \pm 1$ et $\varepsilon_2 = \pm 1$, alors $u_n v_n \xrightarrow[n \to +\infty]{} \varepsilon_1 \varepsilon_2 \infty$.

Preuve : laissée au lecteur.

2.12 Remarques

(a) si $u_n \xrightarrow[n \to +\infty]{} +\infty$ et $v_n \xrightarrow[n \to +\infty]{} -\infty$, on ne peut rien dire au sujet de $(u_n + v_n)_{n \in \mathbb{N}}$ a priori ; c'est ce qu'on appelle une forme indéterminée :

• si
$$u_n = n + 1$$
 et $v_n = -n$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} -\infty$ et $u_n + v_n \xrightarrow[n \to +\infty]{} 1$;

• si
$$u_n = n$$
 et $v_n = -n^2$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} -\infty$ et $u_n + v_n \xrightarrow[n \to +\infty]{} -\infty$;

• si
$$u_n = n$$
 et $v_n = -n + (-1)^n$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} -\infty$ et $u_n + v_n = (-1)^n$ n'a pas de limite;

(b) si $u_n \xrightarrow[n \to +\infty]{} \pm \infty$ et $v_n \xrightarrow[n \to +\infty]{} 0$, on ne peut rien dire au sujet de $(u_n v_n)_{n \in \mathbb{N}}$ a priori; on a aussi une forme indéterminée :

• si
$$u_n = n$$
 et $v_n = \frac{1}{n}$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} 0$ et $u_n v_n \xrightarrow[n \to +\infty]{} 1$;

• si
$$u_n = n$$
 et $v_n = \frac{1}{n^2}$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} 0$ et $u_n v_n = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$;

• si
$$u_n = n^2$$
 et $v_n = \frac{1}{n}$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} 0$ et $u_n v_n = n \xrightarrow[n \to +\infty]{} +\infty$;

• si
$$u_n = n^2$$
 et $v_n = \frac{(-1)^n}{n}$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$, $v_n \xrightarrow[n \to +\infty]{} 0$ et $u_n v_n = (-1)^n n$ n'a pas de limite.

3. Suites monotones

3.1 Théorème

- (a) toute suite réelle croissante et majorée converge vers sa borne supérieure;
- (b) toute suite réelle croissante et non majorée tend vers $+\infty$;
- (c) toute suite réelle décroissante et minorée converge vers sa borne inférieure;
- (d) toute suite réelle décroissante et non minorée tend vers $-\infty$.

Preuve:

(a) si la suite $(u_n)_{n\in\mathbb{N}}$ est majorée, cela signifie que l'ensemble $A=\{u_n \mid n\in\mathbb{N}\}$ est majorée donc admet une borne supérieure ℓ : puisque ℓ est le plus petit majorant de A, pour tout $\varepsilon>0,\ \ell-\varepsilon$ n'est pas un majorant de A donc il existe $n_0\in\mathbb{N}$ tel que $\ell-\varepsilon< u_{n_0}\leq \ell$.

Or la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, donc pour tout $n\geq n_0$, on a $u_n\geq u_{n_0}$ d'où

$$\forall n \in \mathbb{N}, \ n \geq n_0 \Longrightarrow \ell - \varepsilon < u_{n_0} \leq u_n \leq \ell < \ell + \varepsilon$$

et ainsi $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

(b) si la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée, alors pour tout A>0, il existe $n_0\in\mathbb{N}$ tel que $u_{n_0}>A$.

Or la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, donc pour tout $n\geq n_0$ on a $u_n\geq u_{n_0}$ d'où

$$\forall n \in \mathbb{N}, \ n \ge n_0 \Longrightarrow u_n \ge u_{n_0} > A$$

et ainsi $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

Pour démontrer (c) et (d) il suffit d'appliquer (a) et (b) à la suite croissante $(-u_n)_{n\in\mathbb{N}}$.

3.2 Nature des suites géométriques

Considérons la suite géométrique $(r^n)_{n\in\mathbb{N}}$ où $r\in\mathbb{R}$.

(a) si r > 1, la suite $(r^n)_{n \in \mathbb{N}}$ est croissante et $r^n \xrightarrow[n \to +\infty]{} +\infty$;

(b) si
$$-1 < r < 1, r^n \xrightarrow[n \to +\infty]{} 0;$$

- (c) si $r \leq -1$, la suite $(r^n)_{n \in \mathbb{N}}$ n'a pas de limite;
- (d) si r = 1, la suite $(r^n)_{n \in \mathbb{N}}$ est constante égale à 1.

Preuve:

(a) si r > 1, la suite $(r^n)_{n \in \mathbb{N}}$ est croissante; on va montrer que $(r^n)_{n \in \mathbb{N}}$ n'est pas majorée : comme r > 1, si on pose t = r - 1, on a t > 0 et avec la formule du binôme de Newton, on obtient pour tout $n \ge 2$

$$r^n = (1+t)^n = 1 + nt + \sum_{k=2}^n C_n^k t^k \ge 1 + nt$$

or \mathbb{R} est archimédien, donc pour tout A > 0, il existe $n \in \mathbb{N}$ tel que nt > A - 1 d'où $r^n > A$: ainsi $(r^n)_{n \in \mathbb{N}}$ n'est pas majorée, donc $r^n \xrightarrow[n \to +\infty]{} +\infty$ d'après 3.1.

- (b) si -1 < r < 1 et $r \neq 0$, alors 0 < |r| < 1 donc $\frac{1}{|r|} > 1$, on en déduit alors d'après (a) que la suite $\left(\left(\frac{1}{|r|}\right)^n\right)_{n \in \mathbb{N}}$ tend vers $+\infty$, donc la suite $(|r|^n)_{n \in \mathbb{N}}$ tend vers 0 d'après 2.8, i.e la suite $(r^n)_{n \in \mathbb{N}}$ tend vers 0. Et si r = 0, la suite est nulle donc tend vers 0.
- (c) si r < -1, alors la sous-suite $(r^{2n})_{n \in \mathbb{N}}$ tend vers $+\infty$ d'après (a) puisque $r^2 > 1$, alors que la sous-suite $(r^{2n+1})_{n \in \mathbb{N}}$ tend vers $-\infty$ puisque pour tout $n \in \mathbb{N}$, $r^{2n+1} = r(r^{2n})$ et r < 0. Donc la suite $(r^n)_{n \in \mathbb{N}}$ ne possède pas de limite. Et si r = -1, la suite $((-1)^n)_{n \in \mathbb{N}}$ ne possède pas de limite non plus (cf. 2.6).

(d) évident.

3.3 Définition

Deux suite réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si

- (a) $(u_n)_{n\in\mathbb{N}}$ est croissante;
- (b) $(v_n)_{n\in\mathbb{N}}$ est décroissante;
- (c) $v_n u_n \xrightarrow[n \to +\infty]{} 0$.

3.4 Théorème

Deux suites réelles adjacentes convergent et vers la même limite ℓ ; de plus on a

$$\forall n \in \mathbb{N}, \ u_n \leq \ell \leq v_n.$$

Preuve:

Considérons $(u_n)_{n\in\mathbb{N}}$ une suite réelle croissante et $(v_n)_{n\in\mathbb{N}}$ une suite réelle décroissante telles que $v_n-u_n\xrightarrow[n\to+\infty]{}0$, alors $(v_n-u_n)_{n\in\mathbb{N}}$ est décroissante et par conséquent sa limite 0 est la borne inférieure de $(v_n-u_n)_{n\in\mathbb{N}}$, donc on a

$$\forall n \in \mathbb{N}, \ u_0 \le u_n \le v_n \le v_0$$

ainsi la suite croissante $(u_n)_{n\in\mathbb{N}}$ est majorée par v_0 donc converge vers une limite ℓ_1 , et la suite décroissante $(v_n)_{n\in\mathbb{N}}$ est minorée par u_0 donc converge vers une limite ℓ_2 ; or $v_n - u_n \xrightarrow[n \to +\infty]{} 0$, donc $\ell_2 - \ell_1 = 0$ par unicité de la limite, d'où $\ell_1 = \ell_2$.

3.5 Exemple

Considérons les deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par

$$\forall n \in \mathbb{N}^*, \ u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \text{ et } v_n = u_n + \frac{1}{n n!}$$

la suite $(u_n)_{n\in\mathbb{N}}$ est clairement croissante puisque $\forall n\in\mathbb{N}^*,\ u_{n+1}-u_n=\frac{1}{(n+1)!}>0$ et la suite $(v_n)_{n\in\mathbb{N}}$ est décroissante puisque

$$\forall n \in \mathbb{N}^*, v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \cdot n!} = \frac{-1}{n(n+1)(n+1)!} < 0.$$

De plus

$$\forall n \in \mathbb{N}^*, \ v_n - u_n = \frac{1}{n \ n!}$$

or on a

$$\forall \varepsilon > 0, \exists \ N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}^*, n \geq N_{\varepsilon} \Longrightarrow \frac{1}{n \ n!} \leq \frac{1}{n} < \varepsilon$$

puisque la suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ tend vers 0, donc $v_n-u_n\xrightarrow[n\to+\infty]{}0$ et ainsi les deux suites sont adjacentes. On montre que la limite commune de ces deux suites est le nombre e, et on obtient un encadrement de e avec une excellente précision pour un nombre de termes calculés assez réduit : pour n=7 on a

$$u_7 = 2,718253968$$
 et $v_7 - u_7 = 0,000028345$

c'est-à-dire qu'on trouve $e \simeq 2,7182$ avec 4 décimales exactes (à comparer avec la valeur $e \simeq 2,718281828$ donnée par une calculatrice.)

4. Comparaison des suites

4.1 Théorème

- 1) Considérons deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ vérifiant $u_n\leq v_n$ pour n assez grand.
- a) Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes, alors on a $\lim_{n\to+\infty}u_n\leq\lim_{n\to+\infty}v_n$.

b)

(i) si
$$\lim_{n \to +\infty} u_n = +\infty$$
, alors $\lim_{n \to +\infty} v_n = +\infty$

(ii) si
$$\lim_{n \to +\infty} v_n = -\infty$$
, alors $\lim_{n \to +\infty} u_n = -\infty$.

2) Considérons une suite réelle $(u_n)_{n\in\mathbb{N}}$ convergente et deux réels a et b tels que $a\leq u_n\leq b$ pour n assez grand, alors

$$a \le \lim_{n \to +\infty} u_n \le b.$$

Preuve:

1) a) Supposons $\lim_{n\to+\infty} u_n > \lim_{n\to+\infty} v_n$, alors la suite $(u_n-v_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell > 0$ donc, pour n assez grand, on a $u_n - v_n > 0$ d'après 2.5 (f), ce qui contredit l'hypothèse, d'où le résultat.

1) b) si
$$\lim_{n\to+\infty} u_n = +\infty$$
, alors

$$\forall A > 0, \exists N \in \mathbb{N}, n \geq N \Longrightarrow u_n > A$$

d'où

$$\forall A > 0, \exists N \in \mathbb{N}, \ n \geq N \Longrightarrow v_n \geq u_n > A$$

et ainsi $\lim_{n\to+\infty} v_n = +\infty$.

Le point (ii) s'obtient en appliquant le point (i) aux suites $(-u_n)_{n\in\mathbb{N}}$ et $(-v_n)_{n\in\mathbb{N}}$.

2) s'obtient en appliquant 1 a) à la suite $(u_n)_{n\in\mathbb{N}}$ et aux suites constantes a et b.

4.2 Remarque

Les inégalités larges sont donc conservées par "passage à la limite"; il n'en est pas de même avec les inégalités strictes :

si $u_n < v_n$ pour *n* assez grand, on a seulement $\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$.

Pour illustrer ce fait, constatons que la suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ et la suite nulle ont la même limite, à savoir 0, alors que $\frac{1}{n}>0$ pour tout $n\geq 1$.

4.3 Proposition

Considérons deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ vérifiant $|u_n| \leq |v_n|$ pour n assez grand; alors si $(v_n)_{n\in\mathbb{N}}$ converge vers 0, $(u_n)_{n\in\mathbb{N}}$ converge vers 0 également.

Preuve:

pour tout $\varepsilon > 0$ il existe $N_{\varepsilon} \in \mathbb{N}$ tel que

$$n > N_{\varepsilon} \Longrightarrow |u_n| < |v_n| < \varepsilon$$

puisque $v_n \xrightarrow[n \to +\infty]{} 0$, d'où le résultat.

4.4 Exemple

La suite définie par $u_n = \frac{\sin n}{n}$ pour tout $n \ge 1$ converge vers 0, en effet, on a

$$\forall n \ge 1, \ \left| \frac{\sin n}{n} \right| \le \frac{1}{n}.$$

4.5 Théorème "des gendarmes"

Considérons trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ vérifiant pour n assez grand

$$u_n \le v_n \le w_n$$

alors, si $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , la suite $(v_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

Preuve:

l'encadrement des suites peut s'écrire sous la forme

$$0 \le v_n - u_n \le w_n - u_n$$
 pour *n* assez grand

il suffit alors d'appliquer 4.3 : comme la suite $(w_n - u_n)_{n \in \mathbb{N}}$ converge vers $\ell - \ell = 0$, il en est de même de la suite $(v_n - u_n)_{n \in \mathbb{N}}$, alors $v_n = (v_n - u_n) + u_n \xrightarrow[n \to +\infty]{} 0 + \ell = \ell$.

4.6 Exemple

Considérons la suite définie par $u_n = \frac{n + \cos n}{n + 2}$ pour tout $n \in \mathbb{N}$; on a

$$\forall n \in \mathbb{N}, \ n-1 \le n + \cos n \le n+1$$

d'où

$$\frac{n-1}{n+2} \le u_n \le \frac{n+1}{n+2}$$

or $\frac{n-1}{n+2} = \frac{1-\frac{1}{n}}{1+\frac{2}{n}} \xrightarrow[n \to +\infty]{} 1$ et de même $\frac{n+1}{n+2} \xrightarrow[n \to +\infty]{} 1$ donc $(u_n)_{n \in \mathbb{N}}$ converge vers 1.

4.7 Théorème de Bolzano-Weierstrass

De toute suite réelle bornée, on peut extraire une sous-suite convergente.

Preuve:

Considérons une suite réelle bornée $(u_n)_{n\in\mathbb{N}}$; on va construire par dichotomie une suite d'intervalles emboîtés dont la longueur tend vers 0 et contenant chacun une infinité de termes de la suite $(u_n)_{n\in\mathbb{N}}$:

comme $(u_n)_{n\in\mathbb{N}}$ est bornée, il existe deux réels a et b tels que

$$\forall n \in \mathbb{N}, \ a < u_n < b$$

on construit par récurrence deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de la façon suivante : on pose $a_0=a$ et $b_0=b$ et on considère l'hypothèse de récurrence (H_n) suivante pour $n\geq 1$:

 (H_n) : il existe des réels a_1, a_2, \cdots, a_n et b_1, b_2, \cdots, b_n vérifiant les 3 conditions suivantes

$$(a) b_n - a_n = \frac{b-a}{2^n}$$

(b)
$$a_{n-1} \le a_n \le b_n \le b_{n-1}$$

(c) l'ensemble $\{k \in \mathbb{N} / u_k \in [a_n, b_n]\}$ est infini.

Montrons que (H_1) est vraie : si $[a, \frac{a+b}{2}]$ contient une infinité de termes de la suite $(u_n)_{n \in \mathbb{N}}$, on pose $a_1 = a$ et $b_1 = \frac{a+b}{2}$, sinon, c'est $[\frac{a+b}{2}, b]$ qui contient une infinité de termes de la suite $(u_n)_{n \in \mathbb{N}}$ et on pose $a_1 = \frac{a+b}{2}$ et $b_1 = b$.

Dans les deux cas, on a $b_1 - a_1 = \frac{b-a}{2}$, $a_0 \le a_1 \le b_1 \le b_0$ et (c) est vérifié pour n = 1 par construction même.

Supposons maintenant (H_n) vraie pour un entier $n \geq 1$; comme $[a_n,b_n]$ contient une infinité de termes de la suite, il en est de même de $[a_n,\frac{a_n+b_n}{2}]$ ou de $[\frac{a_n+b_n}{2},b_n]$:

- si $[a_n, \frac{a_n+b_n}{2}]$ contient une infinité de termes de la suite, on pose $a_{n+1}=a_n$ et $b_{n+1}=\frac{a_n+b_n}{2}$;
- si $\left[\frac{a_n+b_n}{2},b_n\right]$ contient une infinité de termes de la suite, on pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n$;

dans les deux cas, on a $b_{n+1} - a_{n+1} = \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}$, $a_n \le a_{n+1} \le b_{n+1} \le b_n$ et (c) est vérifié au rang n+1, et ainsi $(H_n) \Longrightarrow (H_{n+1})$, donc (H_n) est vraie pour tout entier $n \ge 1$.

Construisons maintenant une application φ de \mathbb{N} dans \mathbb{N} strictement croissante par récurrence : on pose $\varphi(0) = 0$ et on suppose qu'il existe n entiers $\varphi(1), \dots, \varphi(n)$ tels que $\varphi(0) < \varphi(1) < \dots < \varphi(n)$ et pour tout $k \in [0, n], a_k \le u_{\varphi(k)} \le b_k$:

comme l'ensemble $\{k \in \mathbb{N} \mid u_k \in [a_n, b_n]\}$ est infini pour tout entier $n \geq 1$, l'ensemble $\{p \in \mathbb{N} \mid p \geq \varphi(n) + 1 \text{ et } a_{n+1} \leq u_p \leq b_{n+1}\}$ est non vide donc admet un plus petit élément (cf. I. 2.2) que l'on note $\varphi(n+1)$: on a bien $\varphi(n+1) > \varphi(n)$ et ainsi φ est strictement croissante, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est une sous-suite de $(u_n)_{n \in \mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \ a_n \le u_{\varphi(n)} \le b_n.$$

Or la suite $(a_n)_{n\in\mathbb{N}}$ est croissante, la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante et $b_n-a_n=\frac{b-a}{2^n}$ converge vers 0, donc les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes : elles convergent donc vers une même limite ℓ d'après 3.4, d'où $(u_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers ℓ d'après 4.5.

4.8 Définitions

Considérons deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

(a) On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $(v_n)_{n\in\mathbb{N}}$ si

$$\exists M > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n > N \Longrightarrow |u_n| < M|v_n|$$

ou, ce qui est équivalent, s'il existe une suite réelle bornée $(w_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}$, $u_n=v_nw_n$. On écrit alors $u_n=O(v_n)$, ce qui se lit " u_n est un grand O de v_n ".

(b) On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$ si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \ n \ge N \Longrightarrow |u_n| \le \varepsilon |v_n|$$

ou, ce qui est équivalent, s'il existe une suite réelle $(w_n)_{n\in\mathbb{N}}$ convergeant vers 0 telle que $\forall n\in\mathbb{N}, u_n=v_nw_n$.

On écrit alors $u_n = o(v_n)$, ce qui se lit " u_n est un petit o de v_n ".

(c) On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $(v_n)_{n\in\mathbb{N}}$ si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Longrightarrow |u_n - v_n| \leq \varepsilon |v_n|$$

ou, ce qui est équivalent, s'il existe une suite réelle $(w_n)_{n\in\mathbb{N}}$ convergeant vers 1 telle que $\forall n\in\mathbb{N},\ u_n=v_nw_n$. On écrit alors $u_n\sim v_n$, ce qui se lit " u_n est équivalent à v_n ".

Quand les termes de la suite $(v_n)_{n\in\mathbb{N}}$ sont tous non nuls à partir d'un certain rang N (ce qui est le cas de la quasi-totalité des suites étudiées), les définitions ci-dessus s'expriment plus simplement à l'aide de la suite $\left(\frac{u_n}{v_n}\right)_{n\geq N}$ (on constate facilement que dans les 3 définitions ci-dessus, si $v_n=0$ pour n assez grand, alors $u_n=0$ également).

4.9 Proposition

Considérons deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$; on suppose qu'il existe $N\in\mathbb{N}$ tel que $v_n\neq 0$ pour $n\geq N$, alors

- (a) la suite $(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $(v_n)_{n\in\mathbb{N}}$ si et seulement si la suite $\left(\frac{u_n}{v_n}\right)_{n\geq N}$ est bornée;
- (b) la suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$ si et seulement si la suite $\left(\frac{u_n}{v_n}\right)_{n>N}$ converge vers 0;
- (c) la suite $(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $(v_n)_{n\in\mathbb{N}}$ si et seulement si la suite $\left(\frac{u_n}{v_n}\right)_{n\geq N}$ converge vers 1.

Preuve : il suffit de diviser par $|v_n|$ dans les définitions de 4.8.

4.10 Proposition

- a) si $a_p \neq 0$, alors $a_p n^p + a_{p-1} n^{p-1} + \dots + a_1 n + a_0 \sim a_p n^p$;
- b) $\ln\left(1+\frac{1}{n}\right) \sim \frac{1}{n}$, plus généralement, si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0 (et dans ce cas $u_n > -1$ pour n assez grand), alors $\ln\left(1+u_n\right) \sim u_n$;
- c) Pour tout $\alpha > 0$ et tout $\beta \in \mathbb{R}$, $(\ln n)^{\beta} = o(n^{\alpha})$;
- d) Pour tout $\alpha > 0$ et tout $\beta \in \mathbb{R}$, $n^{\beta} = o(e^{\alpha n})$;
- e) Pour tout $\alpha > 0$ et tout $\beta \in \mathbb{R}$, $(\ln n)^{\beta} = o(e^{\alpha n})$;
- f) Pour tout $\alpha > 0$ et tous β et $\gamma \in \mathbb{R}$, $n^{\beta}(\ln n)^{\gamma} = o(e^{\alpha n})$.

Preuve : sera faite dans le chapitre III suivant (4.6 et 4.10).

Le principal intérêt de la notion d'équivalence réside dans le résultat suivant :

4.11 Proposition

Considérons deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ équivalentes;

- (a) si $(u_n)_{n\in\mathbb{N}}$ possède une limite finie non nulle ℓ , alors $u_n \sim \ell$;
- (b) si $(v_n)_{n\in\mathbb{N}}$ possède une limite ℓ (finie ou pas), alors $(u_n)_{n\in\mathbb{N}}$ tend aussi vers ℓ .
- (c) si $v_n \ge 0$ (resp. $v_n \le 0$) pour n assez grand, alors $u_n \ge 0$ (resp. $u_n \le 0$) pour n assez grand.

Preuve:

- (a) C'est une conséquence immédiate de 4.9 (c).
- (b) on suppose $(v_n)_{n\in\mathbb{N}}$ possède une limite ℓ ; comme $u_n \sim v_n$, il existe une suite réelle $(w_n)_{n\in\mathbb{N}}$ convergeant vers 1 telle que $\forall n\in\mathbb{N}, u_n=v_nw_n$ donc $u_n\xrightarrow[n\to+\infty]{}\ell\times 1=\ell$.
- (c) Supposons $v_n \geq 0$ pour tout $n \geq n_0$; comme $u_n \sim v_n$, il existe une suite réelle $(w_n)_{n \in \mathbb{N}}$ convergeant vers 1 telle que $\forall n \in \mathbb{N}$, $u_n = v_n w_n$. Comme $(w_n)_{n \in \mathbb{N}}$ converge vers 1, d'après 2.5 f) il existe $n_1 \in \mathbb{N}$ tel que $w_n > 0$ pour tout $n \geq n_1$, on en déduit que $u_n \geq 0$ pour tout $n \geq \max(n_0, n_1)$.

On a une démonstration analogue si $v_n \leq 0$ pour $n \geq n_0$.

4.12 Proposition

(a) La relation \sim est une relation d'équivalence sur l'ensemble des suites réelles, i.e elle vérifie les propriétés suivantes :

- elle est réflexive : pour tout suite réelle $(u_n)_{n\in\mathbb{N}}$, on a $u_n \sim u_n$;
- elle est symétrique : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, on a

$$u_n \sim v_n \Longleftrightarrow v_n \sim u_n$$
;

• elle est transitive : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$, on a

$$u_n \sim v_n \text{ et } v_n \sim w_n \Longrightarrow u_n \sim w_n.$$

(b) la relation \sim est compatible avec le produit : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$, on a

$$u_n \sim v_n$$
 et $w_n \sim t_n \Longrightarrow u_n w_n \sim v_n t_n$.

(c) la relation \sim est compatible avec le quotient : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$ telles que $w_n\neq 0$ et $t_n\neq 0$ pour n assez grand, on a

$$u_n \sim v_n \text{ et } w_n \sim t_n \Longrightarrow \frac{u_n}{w_n} \sim \frac{v_n}{t_n}.$$

(d) la relation \sim est compatible avec les puissances : pour tout réel α et pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ telles que u_n et v_n sont >0 pour n assez grand , on a

$$u_n \sim v_n \Longrightarrow u_n^{\alpha} \sim v_n^{\alpha}$$
.

(si $\alpha \in \mathbb{N}$, il n'y a pas de condition sur le signe des termes)

(e) la relation \sim n'est pas compatible avec l'exponentielle en général, on a cependant le critère suivant : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, on a

$$e^{u_n} \sim e^{v_n} \iff u_n - v_n \xrightarrow[n \to +\infty]{} 0$$

(f) la relation \sim n'est pas compatible avec le logarithme en général, on a cependant le critère suivant : pour toutes suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que u_n et v_n sont >0 pour n assez grand, si $(v_n)_{n\in\mathbb{N}}$ possède une limite (finie ou pas) distincte de 1 on a

$$u_n \sim v_n \Longrightarrow \ln(u_n) \sim \ln(v_n).$$

Preuve:

On va faire la démonstration uniquement dans le cas où les termes des suites considérées sont non nuls pour n assez grand à l'aide de 4.9:

(a) la relation \sim est réflexive car $\frac{u_n}{u_n} = 1$;

elle est symétrique car si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$, alors $\frac{v_n}{u_n} \xrightarrow[n \to +\infty]{} 1$;

elle est transitive car si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$ et $\frac{v_n}{w_n} \xrightarrow[n \to +\infty]{} 1$, alors $\frac{u_n}{w_n} = \frac{u_n}{v_n} \frac{v_n}{w_n} \xrightarrow[n \to +\infty]{} 1$.

(b) si
$$\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$
 et $\frac{w_n}{t_n} \xrightarrow[n \to +\infty]{} 1$, alors $\frac{u_n w_n}{v_n t_n} = \frac{u_n}{v_n} \frac{w_n}{t_n} \xrightarrow[n \to +\infty]{} 1$ d'où le résultat.

(c) démonstration analogue (le quotient de deux suites convergeant vers 1 converge vers 1).

(d) si
$$\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$
, alors $\frac{u_n^{\alpha}}{v_n^{\alpha}} = \left(\frac{u_n}{v_n}\right)^{\alpha} \xrightarrow[n \to +\infty]{} 1^{\alpha} = 1$, d'où le résultat.

- (e) s'obtient en constatant que $\frac{e^{u_n}}{e^{v_n}} = e^{u_n v_n}$.
- (f) on écrit

$$\frac{\ln(u_n)}{\ln(v_n)} - 1 = \frac{\ln(u_n) - \ln(v_n)}{\ln(v_n)} = \frac{\ln(\frac{u_n}{v_n})}{\ln(v_n)}$$

or $\ln\left(\frac{u_n}{v_n}\right) \xrightarrow[n \to +\infty]{} 0$ puisque $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$, et $\frac{1}{\ln(v_n)} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$ puisque $(v_n)_{n \in \mathbb{N}}$ ne tend pas vers 1, on en déduit alors que

$$\frac{\ln(u_n)}{\ln(v_n)} - 1 \xrightarrow[n \to +\infty]{} 0 \text{ i.e } \ln(u_n) \sim \ln(v_n).$$

4.13 Remarque

La relation \sim n'est pas compatible avec la somme : si $u_n \sim v_n$ et $w_n \sim t_n$, $u_n + w_n$ **N'EST PAS EN GENERAL** équivalente à $v_n + t_n$: par exemple, considérons les suites $u_n = n + 1$ et $w_n = -n + 1$, alors $u_n \sim n$ et $w_n \sim -n$ mais $u_n + w_n = 2$ n'est pas équivalente à la suite nulle (une suite équivalente à la suite nulle est nulle à partir d'un certain rang!). Cependant, on a le résultat suivant :

4.14 Proposition

Considérons deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $v_n=o(u_n)$ alors $u_n+v_n\sim u_n$.

Preuve:

Si $v_n = o(u_n)$, alors il existe une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ convergeant vers 0 telle que pour tout $n \in \mathbb{N}$, $v_n = u_n \varepsilon_n$, donc $u_n + v_n = u_n (1 + \varepsilon_n)$ donc $u_n + v_n \sim u_n$.

4.15 Exemple

Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \ u_n = \frac{\sqrt{n^4 + 2n^3 + n^2 + 7}}{(2n+3)\sqrt[3]{n^3 + 2n^2 + 3n + 1}}$$

et cherchons sa limite; il s'agit d'une forme indéterminée puisque le numérateur et le dénominateur tendent vers $+\infty$:

d'après 4.10, $n^4 + 2n^3 - n^2 + 7 \sim n^4$, donc $\sqrt{n^4 + 2n^3 + n^2 + 7} \sim \sqrt{n^4} = n^2$ d'après 4.12.

De la même façon, $\sqrt[3]{n^3+2n^2+3n+1} \sim \sqrt[3]{n^3} = n$, on a alors

$$u_n \sim \frac{n^2}{2n \times n} \sim \frac{1}{2}$$

donc $u_n \xrightarrow[n \to +\infty]{1} \frac{1}{2}$ d'après 4.11.

5. Valeur d'adhérence d'une suite

5.1 Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et a un réel; on dit que a est valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ si

$$\forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \exists \ n \geq N \text{ tel que } |u_n - a| < \varepsilon.$$

5.2 Théorème

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et a un réel; alors a est valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ si et seulement si il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge vers a.

Preuve:

supposons qu'il existe une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers a: alors, pour tout $\varepsilon > 0$, il existe $N_{\varepsilon} \in \mathbb{N}$ tel que

$$n \ge N_{\varepsilon} \Longrightarrow |u_{\varphi(n)} - a| < \varepsilon$$

considérons maintenant $N \in \mathbb{N}$: en posant $p = \max(N_{\varepsilon}, N)$, comme $\varphi(p) \geq p$ (cf. preuve de 2.5), on a à la fois $\varphi(p) \geq N$ et $\varphi(p) \geq N_{\varepsilon}$, donc $|u_{\varphi(p)} - a| < \varepsilon$ et ainsi a est valeur d'adhérence de la suite $(u_n)_{n \in \mathbb{N}}$.

Supposons maintenant que a est valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$; on va construire par récurrence une application φ de \mathbb{N} dans \mathbb{N} strictement croissante de la façon suivante : on prend $\varphi(0) \in \mathbb{N}$ quelconque et on suppose construit des entiers $\varphi(1), \dots, \varphi(n)$ vérifiant $\varphi(0) < \varphi(1) < \dots < \varphi(n)$ et

$$\forall k \in [1, n], \ |u_{\varphi(k)} - a| < \frac{1}{k}$$

alors, comme a est valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$, il existe un entier, que l'on note $\varphi(n+1)$, vérifiant $\varphi(n+1) \geq \varphi(n) + 1 > \varphi(n)$ et

$$|u_{\varphi(n+1)} - a| < \frac{1}{n+1}$$

ainsi φ est strictement croissante et $(u_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers a d'après 4.5.

5.3 Corollaire

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle;

- (a) si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}$ alors ℓ est l'unique valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$;
- (b) si a est une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$ et si f est une application de \mathbb{R} dans \mathbb{R} continue en a, alors f(a) est une valeur d'adhérence de la suite $(f(u_n))_{n\in\mathbb{N}}$.

Preuve:

- (a) si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , toute sous-suite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , d'où le résultat grâce à 5.2.
- (b) si a est valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$, il existe une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers a; alors d'après 2.8, $(f(u_{\varphi(n)}))_{n\in\mathbb{N}}$ converge vers f(a) puisque f est continue en a, d'où le résultat.

5.4 Exemple

Les valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}=((-1)^n)_{n\in\mathbb{N}}$ sont 1 et -1; en effet 1 et -1 sont des valeurs d'adhérence de $((-1)^n)_{n\in\mathbb{N}}$ puisque $((-1)^{2n})_{n\in\mathbb{N}}$ converge vers 1 et $((-1)^{2n+1})_{n\in\mathbb{N}}$ converge vers -1. Réciproquement, si a est valeur d'adhérence de $((-1)^n)_{n\in\mathbb{N}}$, alors

$$\forall n \in \mathbb{N}^*, \exists p_n \in \mathbb{N}, u_{p_n} - \frac{1}{n} < a < u_{p_n} + \frac{1}{n}.$$

Si p_1 est pair, alors de l'encadrement ci-dessus, on déduit que 0 < a < 2 et ainsi tous les entiers p_n sont pairs également, car s'il existait $n \ge 1$ avec p_n impair, on aurait

$$-1 - \frac{1}{n} < a < -1 + \frac{1}{n} \le 0$$

ce qui est impossible. On obtient donc

$$\forall n \in \mathbb{N}^*, \ 1 - \frac{1}{n} < a < 1 + \frac{1}{n}$$

d'où a = 1 en faisant tendre n vers $+\infty$.

Si p_1 est impair, on obtient par un raisonnement analogue que dans ce cas a = -1.

6. Suites de Cauchy

6.1 Définition

On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ est de Cauchy si elle vérifie la condition suivante :

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall p \in \mathbb{N}, \forall q \in \mathbb{N}, p \geq N_{\varepsilon} \text{ et } q \geq N_{\varepsilon} \Longrightarrow |u_p - u_q| < \varepsilon.$$

6.2 Proposition

Toute suite réelle de Cauchy est bornée.

Preuve:

Considérons une suite réelle $(u_n)_{n\in\mathbb{N}}$ de Cauchy et choisissons un réel $\varepsilon>0$, alors on a :

$$\exists N_{\varepsilon} \in \mathbb{N}, \ \forall p \in \mathbb{N}, \forall q \in \mathbb{N}, \ p \geq N_{\varepsilon} \text{ et } q \geq N_{\varepsilon} \Longrightarrow |u_p - u_q| < \varepsilon$$

en particulier

$$p \ge N_{\varepsilon} \Longrightarrow |u_p - u_{N_{\varepsilon}}| < \varepsilon$$

d'où

$$p \ge N_{\varepsilon} \Longrightarrow |u_p| \le |u_p - u_{N_{\varepsilon}}| + |u_{N_{\varepsilon}}| < \varepsilon + |u_{N_{\varepsilon}}|$$

donc $(u_n)_{n\in\mathbb{N}}$ est bornée.

6.3 Proposition

Si une suite réelle de Cauchy possède une valeur d'adhérence a, alors elle converge vers a.

Preuve:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de Cauchy : si a est valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$, alors il existe une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers a d'après 5.2, donc pour tout $\varepsilon > 0$ il existe $N_1 \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n \ge N_1 \Longrightarrow |u_{\varphi(n)} - a| < \frac{\varepsilon}{2}.$$

D'autre part la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy, donc il existe $N_2\in\mathbb{N}$ tel que

$$\forall p \in \mathbb{N}, \forall q \in \mathbb{N}, \ p \ge N_2 \text{ et } q \ge N_2 \Longrightarrow |u_p - u_q| < \frac{\varepsilon}{2}$$

posons alors $N = \max(N_1, N_2)$: pour tout $n \in \mathbb{N}$, on a $\varphi(n) \geq n$ (cf. lemme de la preuve de 2.5), donc

$$n \ge N \Longrightarrow \varphi(n) \ge n \ge N \Longrightarrow |u_n - u_{\varphi(n)}| < \frac{\varepsilon}{2}$$

d'où

$$n \ge N \Longrightarrow |u_n - a| \le |u_n - u_{\varphi(n)}| + |u_{\varphi(n)} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

et ainsi $(u_n)_{n\in\mathbb{N}}$ converge vers a.

6.4 Proposition

Toute suite réelle convergente est de Cauchy.

Preuve:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers ℓ , alors pour tout $\varepsilon > 0$ il existe $N_{\varepsilon} \in \mathbb{N}$ tel que

$$\forall p \in \mathbb{N}, \ p \ge N_{\varepsilon} \Longrightarrow |u_p - \ell| < \frac{\varepsilon}{2}$$

alors

$$\forall p \in \mathbb{N}, \forall q \in \mathbb{N}, \ p \ge N_{\varepsilon} \text{ et } q \ge N_{\varepsilon} \Longrightarrow |u_p - u_q| \le |u_p - \ell| + |\ell - u_q| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

et ainsi $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

On va maintenant montrer que la réciproque de 6.4 est vraie; c'est encore une différence considérable de \mathbb{R} par rapport à \mathbb{Q} car une suite de Cauchy de rationnels ne converge pas toujours vers une limite $\ell \in \mathbb{Q}$ (cf. exemple 6.6 ci-dessous).

6.5 Théorème

Toute suite réelle de Cauchy est convergente : cette propriété s'exprime en disant que \mathbb{R} est complet.

Preuve:

Considérons une suite réelle $(u_n)_{n\in\mathbb{N}}$ de Cauchy; elle est bornée, donc elle possède une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ convergente d'après le théorème de Bolzano-Weierstrass, i.e $(u_n)_{n\in\mathbb{N}}$ possède une valeur d'adhérence d'après 5.2 : on en déduit alors que $(u_n)_{n\in\mathbb{N}}$ converge d'après 6.3.

6.6 Exemple

 \mathbb{Q} n'est pas complet : considérons pour tout $n \in \mathbb{N}$, l'ensemble $A_n = \{m \in \mathbb{N} \mid m^2 \le 2.4^n\}$; alors A_n est un sous-ensemble non vide majoré de \mathbb{N} , donc admet un plus grand élément que l'on notera a_n . Posons $r_n = a_n/2^n$ pour tout $n \in \mathbb{N}$: alors pour tout $n \in \mathbb{N}$, $r_n \in \mathbb{Q}^+$ et, comme $a_n \in A_n$ et $a_n + 1 \notin A_n$, r_n vérifie

$$r_n^2 \le 2 \text{ et } (r_n + \frac{1}{2^n})^2 > 2$$

donc

$$r_n \le \sqrt{2} < r_n + \frac{1}{2^n}$$

on en déduit que $r_n \xrightarrow[n \to +\infty]{} \sqrt{2}$ et que

$$\forall p, q \in \mathbb{N}, r_p - r_q - \frac{1}{2^q} < 0 < r_p - r_q + \frac{1}{2^p}$$

et ainsi, si $r_p \ge r_q$, $|r_p - r_q| = r_p - r_q \le \frac{1}{2^q}$, et si $r_p \le r_q$, $|r_p - r_q| = r_q - r_p \le \frac{1}{2^p}$ d'où

$$\forall p, q \in \mathbb{N}, p \ge q \Longrightarrow |r_p - r_q| \le \frac{1}{2^q}$$

donc $(r_n)_{n\in\mathbb{N}}$ est une suite de Cauchy d'éléments de \mathbb{Q} , mais elle ne converge pas dans \mathbb{Q} puisque $\sqrt{2} \notin \mathbb{Q}$.

7. Suites de nombres complexes

On étend aux suites complexes les définitions et propriétés des suites réelles, à l'exception de celles faisant appel à l'ordre, comme les suites monotones, la notion de limite infinie, ou le théorème des gendarmes : en effet il n'est pas possible de munir $\mathbb C$ d'une relation d'ordre compatible avec la structure de corps de $\mathbb C$. Il faut seulement lire le symbole |.| comme le module dans $\mathbb C$ et non plus la valeur absolue :

7.1 Définitions

(a) Soit $(z_n)_{n\in\mathbb{N}}$ une suite complexe et $\ell\in\mathbb{C}$; on dit que $(z_n)_{n\in\mathbb{N}}$ tend vers ℓ , ou a ℓ pour limite si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n > N_{\varepsilon} \Longrightarrow |z_n - \ell| < \varepsilon$$

autrement dit tout disque ouvert centré en ℓ contient tous les termes de la suite $(z_n)_{n\in\mathbb{N}}$ à partir d'un certain rang;

(b) une suite $(z_n)_{n\in\mathbb{N}}$ complexe est bornée s'il existe un réel M>0 tel que

$$\forall n \in \mathbb{N}, |z_n| < M$$

autrement dit le disque de centre 0 et de rayon M contient tous les termes de la suite.

Le théorème suivant permet de ramener l'étude d'une suite complexe à celle de deux suites réelles :

7.2 Théorème

Soit $(z_n)_{n\in\mathbb{N}}$ une suite complexe et $\ell\in\mathbb{C}$; $(z_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si les suites réelles $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ et $(\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ convergent resp. vers $\operatorname{Re}(\ell)$ et $\operatorname{Im}(\ell)$.

Preuve:

La démonstration repose sur l'encadrement suivant pour tout complexe z=a+ib (avec a et $b\in\mathbb{R}$):

$$\max(|a|, |b|) \le |z| \le |a| + |b|.$$

7.3 Proposition

Soit $(z_n)_{n\in\mathbb{N}}$ une suite complexe et soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant les conditions suivantes :

- (a) $|z_n| \le u_n$ pour n assez grand;
- (b) $(u_n)_{n\in\mathbb{N}}$ converge vers 0

alors la suite $(z_n)_{n\in\mathbb{N}}$ converge vers 0.

Preuve:

On remarque tout d'abord que la condition (a) implique que $u_n \ge 0$ pour n assez grand; comme $u_n \xrightarrow[n \to +\infty]{} 0$, on a ainsi

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\varepsilon} \Longrightarrow u_n = |u_n - 0| < \varepsilon$$

or $|z_n| \leq u_n$ pour *n* assez grand, donc il existe $N_1 \in \mathbb{N}$ tel que

$$\forall \varepsilon > 0, \forall n \in \mathbb{N}, n \geq N_1 \Longrightarrow |z_n - 0| \leq u_n < \varepsilon$$

d'où le résultat.

7.4 Exemples

(a) considérons $z_n = 1 - i + \frac{e^{in}}{n}$ pour tout $n \ge 1$:

$$\operatorname{Re}(z_n) = 1 + \frac{\cos n}{n}$$
 et $\operatorname{Im}(z_n) = -1 + \frac{\sin n}{n}$, donc $\operatorname{Re}(z_n) \xrightarrow[n \to +\infty]{} 1$ et $\operatorname{Im}(z_n) \xrightarrow[n \to +\infty]{} -1$ d'où $z_n \xrightarrow[n \to +\infty]{} 1 - i$.

(b) considérons $z_n = (\frac{1+i}{3})^n$ pour tout $n \in \mathbb{N}$; il n'est pas très indiqué ici de calculer les parties réelle et imaginaire de z_n , on va plutôt calculer $|z_n|$:

$$|z_n| = \left|\frac{1+i}{3}\right|^n = \left(\frac{\sqrt{2}}{3}\right)^n \xrightarrow[n \to +\infty]{} 0$$

puisque $\frac{\sqrt{2}}{3} \in]0,1[$, on en déduit alors que $z_n \xrightarrow[n \to +\infty]{} 0$ d'après 7.3.

8 Suites récurrentes (CPU)

Dans tout le paragraphe, on considère D un ensemble non vide de \mathbb{R} et f une fonction définie sur D à valeurs dans \mathbb{R} vérifiant $f(D) \subset D$. On rappelle que si f est croissante sur D alors pour tout entier $n \in \mathbb{N}^*$, $f^n = f \circ f \circ \cdots \circ f$ n-fois est croissante sur D et que si f est décroissante sur D, alors $f \circ f$ est croissante sur D.

8.1 Définition

On appelle suite récurrente associée à f, toute suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 \in D$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

8.2 Proposition

Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0 \in D$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Alors, si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell \in D$ et si f est continue sur D, on a $f(\ell) = \ell$: on dit que ℓ est un point fixe de f.

8.3 Théorème

On considère $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0\in D$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. On suppose que f est croissante sur D, alors on a :

- a) La suite $(u_n)_{n\in\mathbb{N}}$ est monotone, plus précisément, on a :
 - (i) si $f(u_0) \ge u_0$, alors $\forall n \in \mathbb{N}, u_{n+1} \ge u_n$, i.e la suite $(u_n)_{n \in \mathbb{N}}$ est croissante;
 - (ii) si $f(u_0) \leq u_0$, alors $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$, i.e la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- b) S'il existe $\ell \in D$ tel que $f(\ell) = \ell$, alors on a :
 - (i) si $u_0 < \ell$, alors $\forall n \in \mathbb{N}, u_n < \ell$;
 - (ii) si $u_0 \ge \ell$, alors $\forall n \in \mathbb{N}, u_n \ge \ell$;
 - (iii) si $u_0 = \ell$, alors $\forall n \in \mathbb{N}, u_n = \ell$.

Preuve:

- a) Il est clair que pour tout $n \in \mathbb{N}$, $u_n = f^n(u_0)$, on en déduit alors :
- (i) si $f(u_0) \ge u_0$, alors pour tout $n \in \mathbb{N}$, $f^n(f(u_0)) \ge f^n(u_0)$ puisque f^n est croissante sur D, i.e $u_{n+1} \ge u_n$: la suite $(u_n)_{n \in \mathbb{N}}$ est croissante; le point (ii) s'obtient de manière analogue.
- b) S'il existe $\ell \in D$ tel que $f(\ell) = \ell$, alors, par une récurrence immédiate, on obtient que pour tout $n \in \mathbb{N}$, $f^n(\ell) = \ell$.
- (i) si $u_0 \leq \ell$, alors pour tout $n \in \mathbb{N}$, $f^n(u_0) \leq f^n(\ell)$ puisque f^n est croissante sur D, i.e $u_n \leq \ell$; les points (ii)et (iii) s'obtiennent de manière analogue.

8.4 Etude pratique dans le cas où f est croissante

On considère $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$.

On étudie la fonction f pour déterminer un ensemble D sur lequel f est définie et qui est stable par f, i.e $f(D) \subset D$, et on vérifie que $u_0 \in D$. Puis on regarde si f est continue et croissante sur D, et on étudie la fonction g(x) = f(x) - x sur D pour déterminer les éventuels points fixes de f qui seront les limites possibles de la suite $(u_n)_{n \in \mathbb{N}}$, et aussi pour déterminer le signe de $g(u_0)$ qui détermine le sens de monotonie de la suite $(u_n)_{n \in \mathbb{N}}$ d'après 8.3. Etudions un exemple :

On considère $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N},\ u_{n+1}=u_n^2$.

Etudions donc la fonction $f(x) = x^2$ sur \mathbb{R} : on constate immédiatement que $u_n \geq 0$ pour tout entier $n \geq 1$ quelle que soit la valeur de u_0 , or $[0, +\infty[$ est stable par f donc on étudie f sur $D = [0, +\infty[$ et f est clairement continue et croissante sur D.

Etudions $g(x)=f(x)-x=x^2-x$ sur D:g'(x)=2x-1, donc $g'(x)<0, \ \forall x\in [0,\frac{1}{2}[$ et $g'(x)>0, \ \forall x\in]\frac{1}{2},+\infty[:g$ décroît donc strictement de g(0)=0 à $g(\frac{1}{2})=-\frac{1}{4}$ sur $[0,\frac{1}{2}]$ et croît strictement de $g(\frac{1}{2})=-\frac{1}{4}$ à $+\infty$ sur $[\frac{1}{2},+\infty[$.

On en déduit que g s'annule sur D uniquement en x = 0 et en x = 1 (donc les limites possibles pour $(u_n)_{n \in \mathbb{N}}$ sont $\ell_1 = 0$ et $\ell_2 = 1$), et que si $x \in [0,1]$ alors $g(x) \leq 0$ et si $x \in [1,+\infty[$ alors $g(x) \geq 0$.

<u>1er cas</u>: $u_0 \in [0, 1[$, alors pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$ d'après 8.3 puisque 0 et 1 sont des points fixes de f. De plus $g(u_0) \leq 0$ i.e $f(u_0) \leq u_0$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante, toujours d'après 8.3, or la suite $(u_n)_{n \in \mathbb{N}}$ est minorée par 0 donc elle converge vers une limite $\ell = \inf_{n \in \mathbb{N}} u_n$ et $\ell \in \{0, 1\}$. Montrons que $\ell \neq 1$: si $\ell = 1$ alors $\inf_{n \in \mathbb{N}} u_n = 1$ donc $\forall n \in \mathbb{N}$, on a $u_n \geq 1$, ce qui est impossible puisque $u_0 < 1$ par hypothèse. Donc $\ell \neq 1$, d'où $\ell = 0$.

<u>2ème cas</u>: $u_0 = 1$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est constante égale à 1 puisque 1 est un point fixe de f.

<u>3ème cas</u>: $u_0 > 1$, alors pour tout $n \in \mathbb{N}$, $u_n \ge 1$ d'après 8.3. De plus $g(u_0) \ge 0$ i.e $f(u_0) \ge u_0$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. Montrons que $(u_n)_{n \in \mathbb{N}}$ n'est pas majorée: si elle était majorée, alors elle convergerait vers une limite finie $\ell = \sup_{n \in \mathbb{N}} u_n$ telle que

 $\ell \in \{0, 1\}$ et vérifiant $\ell \ge 1$ puisque pour tout $n \in \mathbb{N}$, $u_n \ge 1$, donc $\ell = 1$ nécessairement, d'où $\forall n \in \mathbb{N}$, $u_n \le 1$, or pour tout $n \in \mathbb{N}$, $u_n \ge 1$, on aurait alors $\forall n \in \mathbb{N}$, $u_n = 1$, ce qui est impossible puisque $u_0 > 1$. On en déduit que la suite $(u_n)_{n \in \mathbb{N}}$ n'est pas majorée donc elle tend vers $+\infty$ puisqu'elle est croissante.

<u>4ème cas</u>: $u_0 < 0$, alors $u_1 > 0$ et on utilise les résultats précédents:

- * si $u_0 \in]-1,0[$, alors $u_1 \in]0,1[$ donc la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0;
- * si $u_0 = -1$, alors $u_1 = 1$ et ainsi la suite est constante égale à 1 à partir du rang 1;
- * si $u_0 < -1$, alors $u_1 > 1$ donc la suite $(u_n)_{n \in \mathbb{N}}$ tend vers $+\infty$.

8.5 Etude pratique dans le cas où f est décroissante

On considère $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0 \in D$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. On suppose que f est décroissante sur D, alors $u_{n+1} - u_n$ est alternativement positif et négatif, donc la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas monotone : on parle de suite oscillante. On étudie alors les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$:

pour tout $n \in \mathbb{N}$, $u_{2n+2} = f \circ f(u_{2n})$ et $u_{2n+3} = f \circ f(u_{2n+1})$, or $f \circ f$ est croissante sur D puisque f est décroissante sur D, donc les deux suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones et de sens de variation contraire d'après 8.3: en effet $u_3 - u_1 = f(u_2) - f(u_0)$ donc $u_3 - u_1$ est de signe contraire à $u_2 - u_0$ puisque f est décroissante.

On applique alors les techniques de 8.3 pour étudier la convergence éventuelle des deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$, et si ces deux sous-suites tendent vers la même limite, alors la suite $(u_n)_{n\in\mathbb{N}}$ aussi. Etudions un exemple :

On considère $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0 > -\frac{1}{2}$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2u_n + 1}$.

Etudions donc la fonction $f(x) = \frac{1}{2x+1}$: son domaine de définition est $D_f = \mathbb{R} \setminus \{-\frac{1}{2}\}$ et on montre facilement que les points fixes de f sont -1 et $\frac{1}{2}$. De plus f est clairement continue et dérivable sur D_f et on a

$$\forall x \in D_f, \ f'(x) = -\frac{2}{(2x+1)^2} < 0$$

donc f est strictement décroissante sur $]-\frac{1}{2},+\infty[$ et l'étude de f prouve que f est une bijection de $]-\frac{1}{2},+\infty[$ sur $]0,+\infty[$, que $f(]0,+\infty[)\subset]0,1[$ et que l'intervalle]0,1[est stable par f; comme $u_0>-\frac{1}{2}$, on a donc $u_1=f(u_0)>0$ et $u_2=f(u_1)\in]0,1[$: on montre alors facilement par récurrence que pour tout entier $n\geq 2$, u_n est défini et $u_n\in]0,1[$.

La fonction f étant une fonction décroissante de]0,1[dans]0,1[, $f \circ f$ est une fonction croissante de]0,1[dans]0,1[, donc les sous-suites $(u_{2n})_{n\in\mathbb{N}^*}$ et $(u_{2n+1})_{n\in\mathbb{N}^*}$ sont monotones, leurs sens de monotonie étant déterminés respectivement par les signes de u_2-u_0 et de u_3-u_1 , d'où la nécessité d'étudier la fonction $g(x)=f\circ f(x)-x=\sup[0,1]$:

 $\forall \ x \in [0,1], \ g(x) = \frac{-2x^2 - x + 1}{2x + 3} \text{ et } g'(x) = \frac{-4x^2 - 12x - 5}{(2x + 3)^2}, \text{ on constate alors que } g \text{ est strictement décroissante sur } [0,1] \text{ et que le seul zéro de } g \text{ dans } [0,1] \text{ est } \frac{1}{2}, \text{ donc } g(x) > 0 \text{ si } 0 \le x < \frac{1}{2} \text{ et } g(x) < 0 \text{ si } \frac{1}{2} < x \le 1.$

<u>1er cas</u>: $u_0 \ge \frac{1}{2}$, alors, pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$ puisque]0,1[est stable par f; de plus $u_2 - u_0 = g(u_0) \le 0$, donc d'après 8.3, on en déduit que la sous-suite $(u_{2n})_{n \in \mathbb{N}}$ est décroissante; de plus elle est minorée par 0 donc elle converge vers une limite qui ne peut être que l'unique point fixe de $f \circ f$, i.e l'unique zéro de g dans [0,1] à savoir $\frac{1}{2}$, puisque $f \circ f$ est continue sur [0,1].

D'autre part $u_2 \leq u_0$ entraı̂ne $u_3 = f(u_2) \geq u_1 = f(u_0)$ puisque f est décroissante sur $]-\frac{1}{2},+\infty[$, donc la sous-suite $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante; or elle est majorée par 1 donc elle converge, et nécessairement sa limite est $\frac{1}{2}$. Donc la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\frac{1}{2}$.

 $\underline{2\text{\`e}me~cas}:-\frac{1}{2}< u_0<\frac{1}{2},$ on a vu précédemment que , pour tout entier $n\geq 2,$ $u_n\in]0,1[$ et ainsi deux cas se présentent :

* si $0 < u_2 < \frac{1}{2}$ alors $u_4 - u_2 = g(u_2) > 0$ donc la sous-suite $(u_{2n})_{n \in \mathbb{N}^*}$ est croissante; or elle est majorée par 1 donc elle converge, et nécessairement sa limite est $\frac{1}{2}$. Et comme $u_4 > u_2$,

on a $u_5 < u_3$ puisque f est strictement décroissante, d'où la sous-suite $(u_{2n+1})_{n \in \mathbb{N}^*}$ est décroissante; or elle est minorée par 0 donc elle converge, et nécessairement sa limite est $\frac{1}{2}$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $\frac{1}{2}$.

* si $u_2 \geq \frac{1}{2}$ alors $u_4 - u_2 = g(u_2) \leq 0$ donc la sous-suite $(u_{2n})_{n \in \mathbb{N}^*}$ est décroissante; or elle est minorée par 0 donc elle converge, et nécessairement sa limite est $\frac{1}{2}$. Et comme $u_4 \leq u_2$, on a $u_5 \geq u_3$ puisque f est décroissante, d'où la sous-suite $(u_{2n+1})_{n \in \mathbb{N}^*}$ est croissante; or elle est majorée par 1 donc elle converge, et nécessairement sa limite est $\frac{1}{2}$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $\frac{1}{2}$.

On en conclut donc que, si $u_0 > -\frac{1}{2}$, la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $\frac{1}{2}$.

On peut montrer de la même façon, que si $u_0 < -\frac{1}{2}$, la suite $(u_n)_{n \in \mathbb{N}}$ converge vers -1, qui est l'autre point fixe de f.