INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Area Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

Arquitetura de Computadores

Aula de laboratório

Considere a Figura 1, que apresenta a micro arquitetura do processador a 4 bit, o qual disponibiliza ao programador 4 registos de uso geral, denominados R0, R1, R2 e R3, e o conjunto de instruções indicado na Tabela 1

Figura 1 - Diagrama de blocos do processador.

Instrução	Descrição			
sub rx, ry, const2	Subtrai const2 a ry e coloca o resultado em rx.	rx = ry - const2		
add rx, ry, rz	Adiciona rz a ry e coloca o resultado em rx.	rx = ry + rz		
cmp rx, ry	Subtrai ry de rx e atualiza a <i>flag</i> C em conformidade com o resultado, que é descartado.	rx - ry		
mov rx, imm4	Carrega o valor da constante imm4 no registo rx.	rx = imm4		
bae offset6	Quando a <i>flag</i> C apresenta o valor 0, muda a execução para o endereço resultante da adição ao PC do deslocamento offset6 .	PC = PC + offset6 se C == 0 senão PC + 1		
b offset6	Muda a execução para o endereço resultante da adição ao PC do deslocamento offset6.	PC = PC + offset6		
ld rx, [ry]	Transfere para o registo rx o conteúdo da posição de memória cujo endereço está definido em ry .	rx = mem[ry]		
st rx, [ry]	Transfere o conteúdo do registo rx para a posição de memória cujo endereço está definido em ry.	mem[ry] = rx		

Tabela 1 - Conjunto de instruções suportado pelo processador

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Area Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

Arquitetura de Computadores

1. Sabendo que as instruções foram codificadas com 9 bits, no formato apresentado na Tabela 2, complete o descodificador de instruções do processador analisado nas aulas teóricas.

Tmatron 2									
Instrução	8	7	6	5	4	3	2	1	0
add rx, ry, rz	ry		rx		rz		0	0	0
sub rx, ry, const2	ry		rx		const2		0	0	1
mov rx, imm4	i3 i2		rx		i1 i0		0	1	0
cmp rx, ry	rx				ry		0	1	1
bae offset6	offset6					1	0	0	
b offset6	offset6					1	0	1	
ld rx, [ry]			rx		ry	/	1	1	0
st rx, [ry]	rx				ry	/	1	1	1

Tabela 2 – Codificação das instruções.

- 2. Implemente o sub circuito Descodificador de Instruções descrito no ficheiro *p4b.circ*, usando a aplicação Logisim e concretizando as definições do ponto anterior.
- 3. Codifique o seguinte programa, que realiza a multiplicação de $\bf A$ por $\bf B$ usando o algoritmo das adições sucessivas, assumindo que deverá ficar localizado em memória a partir do endereço 0. Considere que as variáveis $\bf A$ e $\bf B$ estão localizadas em memória nos endereços 0x00 e 0x01, respetivamente.

P=A*B	Endereço	Palavra	
mov r3, 0	00		
mov r2, 0	01		
ld r0, [r2]	02		
mov r2, 1	03		
ld r1, [r2]	04		
mov r2, 0	05		
cmp r2, r1	06		
bae +4	07		
sub r1, r1, 1	08		
add r3, r3, r0	09		
b -4	0A		
mov r2, 2	OB		
st r3,[r2]	0C		
b 0	0D		

RAM				
ADDR				
0	Α			
1	В			
2	Р			

Algoritmo		
;(r3)P		
;(r0)A		
;(r1)B		
P=0;		
While B>0 {		
P = P + A;		
В;		
}		

4. Carregue o programa na memória de código do processador na aplicação LogiSim e execute-o para aferir o seu correto funcionamento.

Notas: O ficheiro *p4b.circ* pode ser obtido na secção de recursos da página da turma na plataforma Moodle.