

#### Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne



## SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

| TEMAT: Wyznaczanie prędkości dźwięku w powietrzu                                       |                                                                                     |                |             |  |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|-------------|--|--|--|
| Wydział                                                                                | Matematyki Stosowanej                                                               | Kierunek       | Informatyka |  |  |  |
| Grupa/Sekcja                                                                           | 2/C                                                                                 | Rok akademicki | 2021        |  |  |  |
| Rok studiów                                                                            | I                                                                                   | 2              |             |  |  |  |
| Oświa                                                                                  | Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden |                |             |  |  |  |
| z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem   |                                                                                     |                |             |  |  |  |
| świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich. |                                                                                     |                |             |  |  |  |
| Lp.                                                                                    | Imię i nazwisko                                                                     | Podpis         |             |  |  |  |
| 1.                                                                                     | Grzegorz Koperwas                                                                   |                |             |  |  |  |
| 2.                                                                                     |                                                                                     |                |             |  |  |  |
| 3.                                                                                     |                                                                                     |                |             |  |  |  |

#### Ocena poprawności elementów sprawozdania

| data  | wstęp i cel | struktura    |            | rachunek    |        | zapis   |         |
|-------|-------------|--------------|------------|-------------|--------|---------|---------|
| oceny | ćwiczenia   | sprawozdania | obliczenia | niepewności | wykres | końcowy | wnioski |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |
|       |             |              |            |             |        |         |         |

#### Ocena końcowa

| OCENA lub      |  |
|----------------|--|
| LICZBA PUNKTÓW |  |
| DATA           |  |
| PODPIS         |  |

## 1. Wstęp teoretyczny

Celem doświadczenia jest pomiar prędkości dźwięku w powietrzu, poprzez mierzenie różnicy czasu między dwoma zarejestrowanymi przez urządzenia pomiarowe dźwiękami, które zostały wywołane tak jak na rysunku 1.



Rysunek 1: Układ pomiarowy

Urządzenie 1 zaczyna rejestruje dźwięk natychmiastowo, natomiast urządzenie 2 dopiero po czasie  $t_r$ . W przypadku drugiego dźwięku sytuacja jest odwrotna, urządzenie 2 rejestruje go natychmiastowo, a urządzenie 1, jako iż d=const., rejestruje go po czasie  $t_r$ .

Niech T to bezwzględny odstęp w czasie między dźwiękami:

$$\begin{cases} t_1 = T + t_r \\ t_2 = T - t_r \end{cases}$$
$$t_1 - t_2 = 2 \cdot t_r$$
$$t_r = \frac{t_1 - t_2}{2}$$

Dźwięk przebywa odległość 2d w czasie  $2t_r$ :

$$v = \frac{2d}{2t_r}$$
$$v = \frac{2d}{t_1 - t_2}$$

# 2. Wyniki pomiarów

| $t_1[s] \pm 0.001s$ | $t_2[s] \pm 0.001s$ | $t_1 - t_2$ | $V\left[\frac{m}{s^2}\right]$ |
|---------------------|---------------------|-------------|-------------------------------|
| 6,915               | 6,885               | 0,030       | 333,333                       |
| 6,780               | 6,745               | 0,035       | 285,714                       |
| 6,112               | 6,118               | -0,006      | -1666,667                     |
| 6,805               | 6,757               | 0,048       | 208,333                       |
| 6,892               | 6,861               | 0,031       | 322,581                       |
| 7,783               | 7,755               | 0,028       | 357,143                       |
| 8,082               | 8,057               | 0,025       | 400,000                       |
| 8,413               | 8,371               | 0,042       | 238,095                       |
| 8,603               | 8,537               | 0,066       | 151,515                       |
| 7,678               | 7,597               | 0,081       | 123,457                       |

Tablica 1: Pomiary dla  $5m \pm 5cm$ 

| $t_1[s] \pm 0,001s$ | $t_2[s] \pm 0,001s$ | $t_1 - t_2$ | $V\left[\frac{m}{s^2}\right]$ |
|---------------------|---------------------|-------------|-------------------------------|
| 5,274               | 5,283               | -0,009      | -666,667                      |
| 5,243               | 5,236               | 0,007       | 857,143                       |
| 5,082               | 5,085               | -0,003      | -2000,000                     |
| 4,852               | 4,836               | 0,016       | 375,000                       |
| 6,154               | 6,140               | 0,014       | 428,571                       |
| 5,416               | 5,404               | 0,012       | 500,000                       |
| 4,774               | 4,737               | 0,037       | 162,162                       |
| 5,129               | 5,108               | 0,021       | 285,714                       |
| 5,154               | 5,120               | 0,034       | 176,471                       |
| 4,325               | 4,307               | 0,018       | 333,333                       |

Tablica 2: Pomiary dla  $3m~\pm 5cm$ 

## 3. Przetwarzanie danych

Obliczamy średnią ważoną (i jej niepewność) dla wartości z tablicy 3 gdzie v>0.

| $\boxed{d~[m] \pm 0.050m}$ | $\Delta t [s]$ | $u(\Delta t)[s]$ | u(d)[m] | $v\left[\frac{m}{s}\right]$ | $u(v)\left[\frac{m}{s}\right]$ | $u^{-2}(v)\left[\frac{s^2}{m^2}\right]$ |
|----------------------------|----------------|------------------|---------|-----------------------------|--------------------------------|-----------------------------------------|
| 5,000                      | 0,030          | 0,032            | 0,050   | 333,3                       | 1,1                            | 0,90                                    |
| 5,000                      | 0,035          | 0,032            | 0,050   | 285,7                       | 0,9                            | 1,22                                    |
| 5,000                      | -0,006         | 0,032            | 0,050   | -1666,7                     | 5,3                            | 0,04                                    |
| 5,000                      | 0,048          | 0,032            | 0,050   | 208,3                       | 0,7                            | 2,30                                    |
| 5,000                      | 0,031          | 0,032            | 0,050   | 322,6                       | 1,0                            | 0,96                                    |
| 5,000                      | 0,028          | 0,032            | 0,050   | 357,1                       | 1,1                            | 0,78                                    |
| 5,000                      | 0,025          | 0,032            | 0,050   | 400,0                       | 1,3                            | 0,62                                    |
| 5,000                      | 0,042          | 0,032            | 0,050   | 238,1                       | 0,8                            | 1,76                                    |
| 5,000                      | 0,066          | 0,032            | 0,050   | 151,5                       | 0,5                            | 4,35                                    |
| 5,000                      | 0,081          | 0,032            | 0,050   | 123,5                       | 0,4                            | 6,56                                    |
| 3,000                      | -0,009         | 0,032            | 0,050   | -666,7                      | 3,5                            | 0,08                                    |
| 3,000                      | 0,007          | 0,032            | 0,050   | 857,1                       | 4,5                            | 0,05                                    |
| 3,000                      | -0,003         | 0,032            | 0,050   | -2000,0                     | 10,5                           | 0,01                                    |
| 3,000                      | 0,016          | 0,032            | 0,050   | 375,0                       | 2,0                            | 0,26                                    |
| 3,000                      | 0,014          | 0,032            | 0,050   | 428,6                       | 2,3                            | 0,20                                    |
| 3,000                      | 0,012          | 0,032            | 0,050   | 500,0                       | 2,6                            | 0,14                                    |
| 3,000                      | 0,037          | 0,032            | 0,050   | 162,2                       | 0,9                            | 1,37                                    |
| 3,000                      | 0,021          | 0,032            | 0,050   | 285,7                       | 1,5                            | 0,44                                    |
| 3,000                      | 0,034          | 0,032            | 0,050   | 176,5                       | 0,9                            | 1,16                                    |
| 3,000                      | 0,018          | 0,032            | 0,050   | 333,3                       | 1,8                            | 0,32                                    |

Tablica 3: Dane przetworzone

### 4. Wnioski

Prędkość dźwięku według danych z tablicy 3 to:

$$\bar{v} = 205 \frac{m}{s}; \ u(\bar{v}) = 42 \frac{m}{s}$$

Prędkość dźwięku w temperaturze 22°<br/> Cwynosi, według tablic, 344,31 $\frac{m}{s}.$  Zatem:

$$|205 - 344,31| < 2 \cdot 42$$
$$139,31 \not< 84$$

Zmierzona wartość nie jest zgodna z wartościami tablicowymi.

## 5. Sposoby na zmniejszenie niepewności

Głównym źródłem błędów był niestaranny pomiar odległości między urządzeniami pomiarowymi, który nie zawsze był odległością jaką pokonywał dźwięk. niemożliwe jest (lub nie jest bezpieczne) wywoływanie dźwięku młotkiem w odległości mniejszej niż 10-15cm od urządzenia pomiarowego. Stworzenie profesjonalnego urządzenia złożonego z mikrofonu i głośnika w najbliższej jak to możliwe odległości pozwoliło by wyeliminować błędy w tym przypadku.

Innym źródłem błędów była nieidealna procedura pomiarowa, gdzie jedno z urządzeń było telefonem z uruchomioną aplikacją phyphox, która, z powodu nie znanej do końca metody pomiaru, mogła być źródłem błędów. Zastąpienie jej komputerem z mikrofonem, i manualnym odczytem czasu w programie Audacity, mogło by pozwolić na większą dokładność pomiaru.