2022-July-27 Shift-2

AI24BTECH11005 - Prajwal Naik

- 16) Let X have a binomial distribution B(n, p) such that the sum and product of the mean and variance of X are 24 and 128 respectively. If $P(X > n - 3) = \frac{k}{2n}$
 - a) 528

b) 529

c) 629

- d) 630
- 17) A six faced die is biased such that $3 \times P$ (a prime number) = $2 \times P(1) = 6 \times P(1)$ P (a composite number). Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is:

a) $\frac{3}{11}$ b) $\frac{5}{11}$

- c) $\frac{7}{11}$ d) $\frac{8}{11}$
- 18) The angle of elevation of the top P of a vertical tower PQ of height 10 from point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, the angle of elevation of P is 60°. If $\angle BAQ=30^\circ$, AB=d and the area of the trapezium PQRB is α , then the ordered pair (d, α) is :
 - a) $(10(\sqrt{3}-1), 25)$ b) $(10(\sqrt{3}-1), \frac{25}{2})$

c) $(10(\sqrt{3}+1), 25)$ d) $(10(\sqrt{3}+1), \frac{25}{2})$

- 19) Let $S = \{\theta \in (0, \frac{\pi}{2}) : \sum_{m=1}^{9} \sec(\theta + (m-1)\frac{\pi}{6}) \sec(\theta + \frac{m\pi}{6}) \}$

a) $\{\frac{\pi}{6}\}$ b) $\{\frac{2\pi}{3}\}$

- c) $\sum_{\theta \in S} \theta = \frac{\pi}{2}$ d) $\sum_{\theta \in S} \theta = \frac{3\pi}{4}$
- 20) If the truth value of the statement $(P \land (\neg R)) \rightarrow ((\neg R) \land Q)$ is F, then the truth value of which is of the following is F?
 - a) $P \lor Q \rightarrow \neg R$

b) $R \lor O \rightarrow \neg P$

- c) $\neg (P \lor Q) \rightarrow \neg R$ d) $\neg (R \lor Q) \rightarrow \neg P$
- 21) $A = \begin{pmatrix} 4 & -2 \\ \alpha & \beta \end{pmatrix}$. If $A^2 + \gamma A + 18I = 0$, then det(A) is equal to :
- 22) The number of functions f, from the set $A = \{x \in \mathbb{N} : x^2 10x + 9 \le 0\}$ to the set $B = \{n^2 : n \in N\}$ such that $f(x) \le (x-3)^2 + 1$, for every $x \in A$, is
- 23) Let for the 9^{th} term in the binomial expansion of $(3 + 6x)^n$, in the increasing powers of 6x, to be the greatest for $x = \frac{3}{2}$, the least value of n is n_0 . If K is the ratio of the

coefficient of x^6 to the coefficient of x^3 , then $k + n_0$ is equal to:

$$24) \ \ \tfrac{2^3-1^3}{1\times 7} + \tfrac{4^3-3^3+2^3-1^3}{2\times 11} + + \tfrac{6^3-5^3+4^3-3^3+2^3-1^3}{3\times 15} + \tfrac{30^3-29^3+28^3-27^3+....+2^3-1^3}{15\times 63} \ \ \text{is equal to} \ \ .$$

- 25) A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is $\tan^{-1}\frac{3}{4}$. Water is poured in at a constant rate of 6 cubic meter per hour. The rate, at which wet curved surface area of the tank is increasing, when the depth of the tank is 4 meters, is:
- 26) For the curve $C: (x^2 + y^2 3) + (x^2 y^2 1)^5 = 0$, the value of $3y' y^3y''$, at the point (α, α) , $\alpha \ge 0$, on C, is equal to:
- 27) Let $f(x) = min\{[x-1], [x-2],, [x-10]\}$ where [t] denotes the greatest integer $\leq t$. Then $\int_0^{10} f(x) dx + \int_0^{10} (f(x))^2 dx + \int_0^{10} |f(x)| dx$ is equal to :
- 28) Let f be a differentiable function satisfying $f(x) = \frac{2}{\sqrt{3}} \int_0^{\sqrt{3}} f\left(\frac{\lambda^2 x}{3}\right) d\lambda$, $x \ge 0$ and $f(1) = \sqrt{3}$. If y = f(x) passes through the point $(\alpha, 6)$, then α is equal to:
- 29) A common tangent T to the curves $C_1: \frac{x^2}{4} + \frac{y^2}{9} = 1$ and $C_2: \frac{x^2}{42} \frac{y^2}{143} = 1$ does not pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to:
- 30) Let, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-coplanar vectors such that $\overrightarrow{a} \times \overrightarrow{b} = 4\overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = 9\overrightarrow{a}$, and $\overrightarrow{c} \times \overrightarrow{d} = \alpha \overrightarrow{b}$, $\alpha > 0$ If $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = \frac{1}{36}$, then the α is equal to :