(12) INTERNACIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) Internati nal Publication Number WO 01/00878 A2

- (51) International Patent Classification⁷: C12Q 1/68, G01N 33/48, C12N 15/18, 15/63, 1/21, 5/00, C07K 14/475, A61K 38/18
- (21) International Application Number: PCT/US00/18085
- (22) International Filing Date: 29 June 2000 (29.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/343,671

30 June 1999 (30.06.1999) US

- (71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; 75 Sidney Street, Cambridge, MA 02139 (US).
- (72) Inventor: GEARING, David, P.; 23 Standish Road, Wellesley, MA 02146 (US).
- (74) Agents: MANDRAGOURAS, Amy, E.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 et al. (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: A NOVEL VASCULAR ENDOTHELIAL GROWTH FACTOR FAMILY MEMBER AND USES THEREOF

(57) Abstract: The invention provides isolated nucleic acids molecules, designate VEGF-G nucleic acid molecules, which encode novel VEGF family members. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing VEGF-G nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a VEGF-G gene has been introduced or disrupted. The invention still further provides isolated VEGF-G proteins, fusion proteins, antigenic peptides and anti-VEGF-G antibodies. Diagnostic methods utilizing compositions of the invention are also provided.

- 1 -

A NOVEL VASCULAR ENDOTHELIAL GROWTH FACTOR FAMILY MEMBER AND USES THEREOF

Background of the Invention

5

10

15

20

25

30

The development of a vascular blood supply is required for organogenesis during embryonic development and for reproductive functions in the adult. Angiogenesis is also implicated in physiological and pathophysiological processes such as wound healing and tumor growth and metastasis. Angiogenic factors and growth factors regulate a variety of cellular functions including proliferation, differentiation, migration, and morphogenesis during development.

Vascular endothelial growth factor (VEGF/VEGF-A) is a potent endothelial cell mitogen. survival factor, chemotactic factor and angiogenic factor. The VEGF protein family comprises the structurally and functionally related proteins VEGF-A, VEGF-B/VEGF related factor (VEGF-B/VRF), VEGF-C/VEGF related protein (VEGF-C/VRP), c-fos induced growth factor (FIGF), and placenta growth factor (PIGF) (Erikson, U. et al. (1999) Curr. Topics Microbiol. Immunol., 237:4).

VEGF-A is a secreted. dimeric glycoprotein, distantly related in structure to the platelet derived growth factors (PDGF), PDGF-A and PDGF-B. An amino acid sequence alignment of VEGF family members indicates the presence of a core region containing conserved cysteine residues important for inter- and intramolecular disulphide bonding (Erikson, U. et al. (1999) Curr. Topics Microbiol. Immunol., 237:41). Several VEGF proteins are also heparin binding growth factors, thus, their activity may be regulated by interactions with cell surface and/or extracellular matrix-associated heparan sulfate proteoglycans (Erikson, U. et al. (1999) Curr. Topics Microbiol. Immunol., 237:41: Neufeld, G. et al., (1999) FASEB J., 13:9).

Cell. e.g., endothelial cell. responses are mediated, at least in part, by the binding of VEGF ligands to cell surface VEGF receptors. VEGF receptors include the high affinity tyrosine kinase receptors, Flt and KDR/flk (Neufeld, G. et al., (1999) FASEB J., 13:9; Zachary, I. (1998) Int. J. Biochem. Cell Biol., 30:1169). Additionally, the VEGF-A₁₆₅ protein isoform appears to interact with neuropilin-1, a non-protein tyrosine kinase receptor for the semaphorin family (Neufeld, G. et al., (1999) FASEB J., 13:9; Zachary,

15

20

25

I. (1998) *Int. J. Biochem. Cell Biol.*, 30:1169). The binding of VEGF proteins to their cognate receptors initiates intracellular signalling pathways which result in the activation of MAP kinases and protein kinase C (PKC), phosphorylation of proteins such as focal adhesion kinase and paxillin, and generation of second messengers such as inositol 1,4,5-trisphosphate (IP3) and calcium (Zachary, I. (1998) *Int. J. Biochem. Cell Biol.*, 30:1169).

Summary of the Invention

The present invention is based, at least in part, on the discovery of novel vascular endothelial growth factor family members, referred to herein as "Vascular Endothelial Growth Factor-G" or "VEGF-G" nucleic acid and protein molecules. The VEGF-G molecules of the present invention are useful as modulating agents, or as targets for developing modulating agents to regulate a variety of cellular (e.g., endothelial cell) processes, e.g., cell proliferation, differentiation, migration, angiogenesis, and wound repair. Accordingly, in one aspect, this invention provides isolated nucleic acid molecules encoding VEGF-G proteins or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of VEGF-G-encoding nucleic acids.

In one embodiment, a VEGF-G nucleic acid molecule of the invention is at least 50%. 55%. 60%, 65%, 70%. 75%, 80%, 85%, 86%, 90%. 95%. 98%. or more identical to the nucleotide sequence (e.g., to the entire length of the nucleotide sequence) shown in SEQ ID NO:1, 3, 10 or 12, or a complement thereof.

In another embodiment, the isolated nucleic acid molecule includes the nucleotide sequence shown SEQ ID NO:1 or 3, or a complement thereof. In another embodiment, the nucleic acid molecule includes SEQ ID NO:3 and nucleotides 1-212 of SEQ ID NO:1. In another embodiment, the nucleic acid molecule includes SEQ ID NO:3 and nucleotides 1326-3853 of SEQ ID NO:1. In another embodiment, the nucleic acid molecule consists of the nucleotide sequence shown in SEQ ID NO:1 or 3. In another embodiment, the nucleic acid molecule includes a fragment of at least 549 nucleotides (e.g., 549 contiguous nucleotides) of the nucleotide sequence of SEQ ID NO:1or 3, or a complement thereof.

- 3 -

In another embodiment, the isolated nucleic acid molecule includes the nucleotide sequence shown SEQ ID NO:10 or 12, or a complement thereof. In another embodiment, the nucleic acid molecule includes SEQ ID NO:12 and nucleotides 1-164 of SEQ ID NO:10. In another embodiment, the nucleic acid molecule includes SEO ID NO:12 and nucleotides 1278-3121 of SEQ ID NO:10. In another embodiment, the nucleic acid molecule consists of the nucleotide sequence shown in SEQ ID NO:10 or 12. In another embodiment, the nucleic acid molecule includes a fragment of at least 50. 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000 10 or more nucleotides (e.g., contiguous nucleotides) of the nucleotide sequence of SEO ID NO:10 or 12, or a complement thereof. In still another embodiment, a VEGF-G nucleic acid molecule includes a nucleotide sequence encoding a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of SEO ID NO:2 or 11. In one embodiment, a VEGF-G nucleic acid molecule includes a 15 nucleotide sequence encoding a protein having an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more identical to the entire length of the amino acid sequence of SEQ ID NO:2 or 11.

In another embodiment, an isolated nucleic acid molecule encodes the amino acid sequence of human or mouse VEGF-G. In yet another embodiment, the nucleic acid molecule includes a nucleotide sequence encoding a protein having the amino acid sequence of SEQ ID NO:2 or 11.

20

25

In yet another embodiment, the nucleic acid molecule is at least 50, 100, 200, 300, 400, 500, 549, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2273, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000 nucleotides in length. In a further preferred embodiment, the nucleic acid molecule is at least 50, 100, 200, 300, 400, 500, 549, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2273, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000 nucleotides in length and encodes a protein having a VEGF-G activity as described herein.

Another embodiment of the invention features nucleic acid molecules, preferably VEGF-G nucleic acid molecules, which specifically detect VEGF-G nucleic acid molecules relative to nucleic acid molecules encoding non-VEGF-G proteins. For example, in one embodiment, such a nucleic acid molecule is at least 50, 60, 70, 80, 90, 100, 150, 200. 300. 400, 500, 549, 549-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800-1900, 1900-2000, 2000-2200, 2200-2272, 2273, 2273-2400, 2400-2600, 2600-2800, 2800-3000 or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence shown in SEQ ID NO:1 or 10.

In certain embodiments, the nucleic acid molecules are at least 15 (e.g., contiguous) nucleotides in length and hybridize under stringent conditions to nucleotides 1-17 and 310-3283 of SEQ ID NO:1. In another embodiment, the nucleic acid molecules comprise nucleotides 1-17 and 310-3283 of SEQ ID NO:1. In yet another embodiment, the nucleic acid molecules consist of nucleotides 1-17 and 310-3283 of SEQ ID NO:1. In another embodiment, the nucleic acid molecules are at least 15 (e.g., contiguous) nucleotides in length and hybridize under stringent conditions to SEQ ID NO:10r 10.

In other embodiments, the nucleic acid molecule encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 11, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, 3, 10 or 12 under stringent conditions.

Another embodiment of the invention provides an isolated nucleic acid molecule which is antisense to a VEGF-G nucleic acid molecule. *e.g.*, the coding strand of a VEGF-G nucleic acid molecule.

In a related aspect, the invention provides a vector comprising a VEGF-G nucleic acid molecule. In certain embodiments, the vector is a recombinant expression vector. In another embodiment, the invention provides a host cell containing a vector of the invention. In yet another embodiment, the invention provides a host cell containing a nucleic acid molecule of the invention. The invention also provides a method for producing a protein, preferably a VEGF-G protein, by culturing in a suitable medium, a

15

20

25

30

- 5 -

host cell, e.g., a mammalian host cell, such as a non-human mammalian cell, of the invention containing a recombinant expression vector, such that the protein is produced.

Another aspect of this invention features isolated or recombinant VEGF-G proteins and polypeptides. In one embodiment, the isolated VEGF-G protein includes at least one VEGF/PDGF superfamily variant motif. In one embodiment, the isolated VEGF-G protein includes at least one VEGF-G disulfide knot-like domain. In another embodiment, the isolated VEGF-G proteins includes at least one CUB domain. In a further embodiment, the isolated VEGF-G protein includes a signal sequence. In yet another embodiment, the isolated VEGF-G protein includes at least one VEGF/PDGF superfamily variant motif and at least one CUB domain. In yet another embodiment, the isolated VEGF-G protein includes at least one VEGF-G disulfide knot-like domain and at least one CUB domain. In another embodiment, the isolated VEGF-G protein includes at least one VEGF/PDGF superfamily variant motif and a signal sequence. In another embodiment, the isolated VEGF-G protein includes at least one VEGF-G disulfide knotlike domain and a signal sequence. In a further embodiment, the isolated VEGF-G protein includes at least one CUB domain and a signal sequence. In yet another embodiment, the isolated VEGF-G protein includes at least one VEGF/PDGF superfamily variant motif, at least one CUB domain, and a signal sequence. In yet another embodiment, the isolated VEGF-G protein includes at least one VEGF-G disulfide knot-like domain, at least one CUB domain, and a signal sequence.

10

15

20

25

30

In other embodiments, the VEGF-G protein of the invention has an amino acid sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more identical to the amino acid sequence of SEQ ID NO:2 or 11. In another embodiment, the VEGF-G protein includes a VEGF/PDGF superfamily variant motif and a CUB domain, and has an amino acid sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more identical to the amino acid sequence of SEQ ID NO:2 or 11. In another embodiment, the VEGF-G protein includes a VEGF-G disulfide knot-like domain and a CUB domain, and has an amino acid sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more identical to the amino acid sequence of SEQ ID NO:2 or 11.

15

20

25

30

In another embodiment, the VEGF-G proteins of the invention play a role in endothelial cell growth, e.g., the regulation of cell proliferation, differentiation, migration, and apoptosis.

In other embodiments, the VEGF-G proteins of the invention are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12.

In a further embodiment, the invention features an isolated VEGF-G protein which is encoded by a nucleic acid molecule consisting of a nucleotide sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 90%, 95%, 98% or more identical to a nucleotide sequence of SEQ ID NO:1, 3, 10 or 12, or a complement thereof. This invention further features an isolated VEGF-G protein which is encoded by a nucleic acid molecule consisting of a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12, or a complement thereof. In still another embodiment, the VEGF-G protein has the amino acid sequence of SEQ ID NO:2 or 11.

In another embodiment, the invention features fragments of the protein having the amino acid sequence of SEQ ID NO:2 or 11, wherein the fragment comprises at least 15 amino acids (e.g., contiguous amino acids) of the amino acid sequence of SEQ ID NO:2 or 11.

The proteins of the present invention or portions thereof. *e.g.*, biologically active portions thereof, can be operatively linked to a non-VEGF-G polypeptide (*e.g.*, heterologous amino acid sequences) to form fusion proteins. In addition, the VEGF-G proteins or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.

The invention further features antibodies, such as monoclonal or polyclonal antibodies, that specifically bind proteins of the invention, preferably VEGF-G proteins.

In another aspect, the present invention provides a method for detecting the presence of a VEGF-G nucleic acid molecule, protein or polypeptide in a biological sample by contacting the biological sample with an agent capable of detecting a VEGF-

-7-

G nucleic acid molecule, protein or polypeptide such that the presence of a VEGF-G nucleic acid molecule, protein or polypeptide is detected in the biological sample.

In another aspect, the present invention provides a method for detecting the presence of VEGF-G activity in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of VEGF-G activity such that the presence of VEGF-G activity is detected in the biological sample.

In another aspect, the invention provides a method for modulating VEGF-G activity comprising contacting a cell capable of expressing VEGF-G with an agent that modulates VEGF-G activity such that VEGF-G activity in the cell is modulated. In one embodiment, the agent inhibits VEGF-G activity. In another embodiment, the agent stimulates VEGF-G activity. In one embodiment, the agent is an antibody that specifically binds to a VEGF-G protein. In another embodiment, the agent modulates expression of VEGF-G by modulating transcription of a VEGF-G gene or translation of a VEGF-G mRNA. In yet another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of a VEGF-G mRNA or a VEGF-G gene.

15

20

25

30

Another aspect of the present invention features methods to treat a subject having a disorder characterized by aberrant VEGF-G protein or nucleic acid expression or activity by administering an agent which is a VEGF-G modulator to the subject. In one embodiment, the VEGF-G modulator is a VEGF-G protein. In another embodiment the VEGF-G modulator is a VEGF-G nucleic acid molecule. In yet another embodiment, the VEGF-G modulator is a peptide, peptidomimetic, or other small molecule. In one embodiment, the disorder characterized by aberrant VEGF-G protein or nucleic acid expression is a disorder associated with deregulated cell growth such as a proliferative or differentiative disorder, including cancer, e.g., carcinoma, sarcoma, or leukemia, and hypertrophic bone disorders, e.g., opsismodysplasia; and/or a disorder involving aberrant angiogenesis and/or vascularity, e.g., tumor angiogenesis and metastasis, diabetic retinopathy, macular degeneration, psoriasis, endometriosis, Grave's disease, ischemic disease (e.g., atherosclerosis), and chronic inflammatory disease (e.g., rheumatoid arthritis).

The present invention also provides a diagnostic assay for identifying the presence or absence of a genetic alteration characterized by at least one of (i) aberrant modification or mutation of a gene encoding a VEGF-G protein; (ii) mis-regulation of the gene; and (iii) aberrant post-translational modification of a VEGF-G protein, wherein a wild-type form of the gene encodes a protein with a VEGF-G activity.

In another aspect the invention provides a method for identifying a compound that binds to or modulates the activity of a VEGF-G protein, by providing an indicator composition comprising a VEGF-G protein having VEGF-G activity, contacting the indicator composition with a test compound, and determining the effect of the test compound on VEGF-G activity in the indicator composition to identify a compound that modulates the activity of a VEGF-G protein.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

15

20

25

5

Brief Description of the Drawings

Figure 1 depicts the cDNA sequence and predicted amino acid sequence of human VEGF-G. The nucleotide sequence corresponds to nucleic acids 1 to 3853 of SEQ ID NO:1. The amino acid sequence corresponds to amino acids 1 to 370 of SEQ ID NO: 2. The coding region without the 5° and 3' untranslated regions of the human VEGF-G gene is shown in SEQ ID NO:3.

Figure 2 depicts the results of a search which was performed against the HMM database and which resulted in the identification of a "CUB domain" in the human VEGF-G protein.

Figure 3 depicts a local alignment of the human VEGF-G protein with the human VEGF-C protein using the GAP program in the GCG software package, using a Blossum 62 matrix and a gap weight of 5 and a length weight of 2. The results showed a 30.357% identity between the two sequences.

Figure 4 depicts a local alignment of the human VEGF-G protein with the human VEGF-A protein using the GAP program in the GCG software package, using a Blossum 62 matrix and a gap weight of 5 and a length weight of 2. The results showed a 26.042% identity between the two sequences.

Figure 5 depicts a local alignment of the human VEGF-G protein with the human TANGO 128 protein using the GAP program in the GCG software package, using a Blossum 62 matrix and a gap weight of 12 and a length weight of 4. The results showed a 51.203% identity between the two sequences.

5

10

20

30

Figure 6 depicts a global alignment of the human VEGF-G protein with the human TANGO 128 protein using the ALIGN program (version 2.0), using a PAM120 scoring matrix, and a gap length penalty of 12 and a gap penalty of 4. The results showed a 42.4% identity between the two sequences.

Figure 7 depicts a global alignment of the human VEGF-G nucleic acid sequence with the human TANGO 128 nucleic acid sequence using the ALIGN program (version 2.0), using a PAM120 scoring matrix, and a gap length penalty of 12 and a gap penalty of 4. The results showed a 51.9% identity between the two sequences.

Figure 8 depicts the cDNA sequence and predicted amino acid sequence of mouse VEGF-G. The nucleotide sequence corresponds to nucleic acids 1 to 3121 of SEO ID NO:10. The amino acid sequence corresponds to amino acids 1 to 370 of SEQ ID NO: 11. The coding region without the 5° and 3' untranslated regions of the mouse VEGF-G gene is shown in SEQ ID NO:12.

Figure 9, panel A depicts the results of a search which was performed against the HMM database and which resulted in the identification of a "CUB domain" in the mouse VEGF-G protein; panel B depicts the results of a search which was performed against the SMART database and which resulted in the identification of a "CUB domain" and a "PDGF domain" in the mouse VEFG-G protein.

Figure 10 depicts a global alignment of the open reading frame of the human VEGF-G gene with the open reading frame of the mouse VEGF-G gene using the GAP program in the GCG software package, using a nwsgapdna.cmp matrix and a gap weight of 12 and a length weight of 4. The results showed a 85.586% identity between the two sequences.

Figure 11 depicts a global alignment of the human VEGF-G protein with the mouse VEGF-G protein using the GAP program in the GCG software package, using a Blosum 62 matrix and a gap weight of 12 and a length weight of 4. The results showed a 84.865% identity between the two sequences.

5

10

15

20

25

30

Detailed Description of the Invention

The present invention is based, at least in part, on the discovery of novel VEGF family members, referred to herein as "Vascular Endothelial Growth Factor-G" or "VEGF-G" nucleic acid and protein molecules. VEGF proteins modulate the proliferation, motility, differentiation and survival of cells, such as endothelial cells or monocytes. VEGF molecules regulate a broad range of cell. *e.g.*, endothelial cell, processes including mitogenesis, permeability, vascular tone, and the synthesis of vasoactive molecules (Zachary, I. (1998) *Int. J. Biochem. Cell Biol.*, 30:1169). VEGF proteins are important in vasculogenesis and angiogenesis, both in normal physiology and the pathophysiology of disease states.

The VEGF-G molecules of the present invention are predicted to be growth regulatory proteins that function to modulate cell proliferation, differentiation, motility, and apoptosis. Thus, the VEGF-G molecules of the present invention may play a role in cellular growth signalling mechanisms. As used herein, the term "cellular growth signalling mechanism" includes signal transmissions from cell receptors. e.g., growth factor receptors, which regulate one or more of the following: 1) cell transversal through the cell cycle, 2) cell differentiation, 3) cell migration and patterning, and 4) programmed cell death. Throughout development and in the adult organism, cell fate and activity is determined. in part, by extracellular and intracellular stimuli, e.g., growth factors, angiogenic factors, chemotactic factors, neurotrophic factors, cytokines, and hormones. These stimuli act on their target cells by initiating signal transduction cascades that alter the pattern of gene expression and metabolic activity so as to mediate the appropriate cellular response. The VEGF-G molecules of the present invention are predicted to be involved in the initiation or modulation of cellular signal transduction pathways that modulate endothelial cell growth, differentiation, migration and/or apoptosis. Thus, the VEGF-G molecules, by participating in cellular growth signalling

-11-

mechanisms, may modulate cell behavior and act as therapeutic agents for controlling cellular proliferation, differentiation, migration, and apoptosis.

Altered expression of factors (*e.g.*, a VEGF-G molecule) involved in the regulation of signalling pathways associated with cell (*e.g.*, endothelial cell) growth, differentiation, migration, and apoptosis can lead to perturbed cellular proliferation, which in turn can lead to cellular proliferative and/or differentiative disorders. As used herein, a "cellular proliferative disorder" includes a disorder, disease, or condition characterized by a deregulated, *e.g.*, upregulated or downregulated, growth response. As used herein, a "cellular differentiative disorder" includes a disorder, disease, or condition characterized by aberrant cellular differentiation. Thus, the VEGF-G molecules can act as novel diagnostic targets and therapeutic agents for controlling cellular proliferative and/or differentiative disorders. Examples of cellular proliferative and/or differentiative disorders include cancer, *e.g.*, carcinoma, sarcoma, or leukemia; and disorders involving aberrant angiogenesis and/or vascularity, *e.g.*, tumor angiogenesis and metastasis, diabetic retinopathy, macular degeneration, psoriasis, endometriosis, Grave's disease, ischemic disease (*e.g.*, atherosclerosis), and chronic inflammatory diseases (*e.g.*, rheumatoid arthritis).

10

15

20

25

30

VEGF-G-associated or related disorders also include disorders affecting tissues in which VEGF-G protein is expressed.

The term "family" when referring to the protein and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology as defined herein. Such family members can be naturally or non-naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of human origin as well as other distinct proteins of human origin, or alternatively, can contain homologues of non-human origin, e.g., rat or mouse proteins. Members of a family can also have common functional characteristics.

For example, members of the VEGF-G family of proteins include at least one "VEGF/PDGF superfamily variant motif" in the protein molecule or the nucleic acid molecule encoding the protein molecule. As used herein, the term "VEGF/PDGF superfamily variant motif" includes a protein domain having an amino acid sequence of

- 12 -

about 60-130 amino acid residues. Preferably, a VEGF/PDGF superfamily variant motif includes at least about 70-120, more preferably about 80-110 amino acid residues, and most preferably about 90-100 amino acid residues. The VEGF/PDGF superfamily variant motif is characterized by conserved cysteine residues that form intra- and inter-

chain disulfide bonds which may affect the structural integrity of the protein, and in one embodiment has the following signature pattern:

$$[RK] - X(2-3) - C - X - [PA] - X(19-20) - P - X - C - X(4) - R - C - G - G - N - C - [GA] - C - X(6-7) - C - X(30-45) - C - X - C (SEQ ID NO:4)$$

The signature patterns or consensus patterns described herein are described according to the following designation: all amino acids are indicated according to their universal single letter designation; "x" designates any amino acid; x(n) designates n number of amino acids, e.g., x (2) designates any two amino acids, e.g., x (1-3) designates any of one to three amino acids; and, amino acids in brackets indicates any one of the amino acids within the brackets, e.g., [RK] indicates any of one of either R (arginine) or K

15 (lysine). VEGF-G has such a signature pattern at about amino acids 268 to 362 of SEQ ID NO:2, and at about amino acids 268-362 of SEQ ID NO:11. Another VEGF-G family member, human TANGO 128 (U.S. Patent Application No. 09/223,546, filed Dec. 30, 1998), has a VEGF/PDGF superfamily variant motif, suggesting that VEGF-G and TANGO 128 may represent a novel variant subclass of the VEGF/PDGF family of molecules.

In another embodiment, the VEGF/PDGF superfamily variant motif has the following signature pattern:

$$[RK] - X(2-3) - C - X - [PA] - X(19-20) - P - X - C - X(4) - R - C - G - G - N - C - [GA] - C - X(6-7) - C - X(32-43) - C - X - C (SEQ ID NO:5)$$

VEGF-G has such a signature pattern at about amino acids 268 to 362 of SEQ ID NO:2, and at about amino acids 268 to 362 of SEQ ID NO:11.

In yet another embodiment, the VEGF/PDGF superfamily variant motif has the following signature pattern:

In still another embodiment, a member of the VEGF-G family of molecules includes a VEGF-G disulfide knot-like domain. A VEGF-G disulfide knot-like domain has the following signature pattern:

VEGF-G has such a signature pattern at about amino acids 302 to 308 of SEQ ID NO:2, and at about amino acids 302-308 of SEQ ID NO:11.

In a preferred embodiment, the VEGF-G disulfide knot-like domain has the following signature pattern:

10 VEGF-G has such a signature pattern at about amino acids 302 to 308 of SEQ ID NO:2, and at about amino acids 302-308 of SEQ ID NO:11.

In another preferred embodiment, a member of this novel subfamily of VEGF proteins has a VEGF/PDGF superfamily variant motif which includes at least about 60-130 amino acid residues and has at least about 50-60% identity with a VEGF/PDGF superfamily variant motif of VEGF-G (e.g., residues 268-362 of SEQ ID NO:2 or 11). Preferably, a VEGF/PDGF superfamily variant motif includes at least about 70-120 amino acid residues, or about 80-110 amino acid residues. or 90-100 amino acid residues, and has at least 60-70% identity, preferably about 70-80%, or more preferably about 80-90%, identity with a VEGF/PDGF superfamily variant motif of VEGF-G (e.g., residues 268-362 of SEQ ID NO:2 or 11).

Accordingly, VEGF-G proteins having at least 50-60% identity, preferably about 60-70%, more preferably about 70-80%, or about 80-90% identity with a VEGF/PDGF superfamily variant motif of human or mouse VEGF-G are within the scope of the invention.

20

VEGF-G family members can be identified based on the presence of a "CUB domain" in the protein or the nucleic acid molecule encoding the protein. As used herein, the term "CUB domain" includes a protein domain having an amino acid sequence of about 90-140 amino acid residues and having a bit score for the alignment of the sequence to the CUB domain (HMM) of at least about 80. Preferably, a CUB domain includes at least about 100-130, more preferably about 110-120 amino acid residues. or 113-117 amino acid residues, and has a bit score for the alignment of the

- 14 -

sequence to the CUB domain (HMM) of at least about 85, 90, 100, 120 or greater. The CUB domain (HMM) has been assigned the PFAM Accession PF00431 (http://genome.wustl.edu/Pfam/.html). The CUB domain is an extracellular domain associated with various developmentally regulated proteins and as such is likely to be involved in developmental processes. A CUB domain contains conserved cysteine residues which are likely to form disulfide bonds that affect protein structure.

To identify the presence of a CUB domain in a VEGF-G protein, and make the determination that a protein of interest has a particular profile, the amino acid sequence of the protein is searched against a database of HMMs (e.g., the Pfam database, release

10 2.1) using the default parameters

(http://www.sanger.ac.uk/Software/Pfam/HMM_search). For example, the hmmsf program, which is available as part of the HMMER package of search programs. is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit. Alternatively, the threshold score for determining a hit can be lowered (e.g., to 8 bits). A description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28(3):405-420 and a detailed description of HMMs can be found, for example, in Gribskov et al.(1990) Meth. Enzymol. 183:146-159; Gribskov et al.(1987) Proc. Natl. Acad. Sci. USA 84:4355-4358; Krogh et al.(1994) J. Mol. Biol. 235:1501-1531: and Stultz et al.(1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference. A search was performed against the HMM database resulting in the identification of a CUB domain in the amino acid sequence of human VEGF-G at about residues 53-167 of SEQ ID NO:2 (see Figure 2).

A CUB domain was also identified in the amino acid sequence of mouse VEGF-G at about residues 53-167 of SEQ ID NO:11 (see Figure 9). In one embodiment, a member of the VEGF-G family of molecules includes a CUB domain with the following

signature pattern:

and at about amino acids 62 to 163 of SEQ ID NO:11.

20

25

PCT/US00/18085 WO 01/00878

- 15 -

In a further preferred embodiment, a member of this novel subfamily of VEGF proteins has a CUB domain includes at least about 70-130 amino acid residues and has at least about 50-60% identity with a CUB domain of VEGF-G (e.g., residues 62-163 of SEQ ID NO:2 or 11). Preferably, a CUB domain includes at least about 80-120 amino acid residues, or about 90-110 amino acid residues, or 98-104 amino acid residues, and has at least 60-70% identity, preferably about 70-80%, more preferably about 80-90% identity with a CUB domain of VEGF-G (e.g., residues 62-163 of SEQ ID NO:2 or 11).

Accordingly, VEGF-G proteins having at least 50-60% identity, preferably about 60-70%, more preferably about 70-80%, or about 80-90% identity with a CUB domain of human or mouse VEGF-G are within the scope of the invention.

10

15

25

VEGF-G family members can be identified based on the presence of a signal sequence. As used herein, a "signal sequence" includes a peptide containing about 19 amino acids which occurs at the N-terminus of secretory and membrane bound proteins and which contains a large number of hydrophobic amino acid residues. For example, a signal sequence contains at least about 10-30 amino acid residues, preferably about 15-25 amino acid residues, more preferably about 18-20 amino acid residues, and more preferably about 19 amino acid residues, and has at least about 35-65%, preferably about 38-50%, and more preferably about 40-45% hydrophobic amino acid residues (e.g., Valine, Leucine, Isoleucine or Phenylalanine). Such a "signal sequence", also 20 referred to in the art as a "signal peptide", serves to direct a protein containing such a sequence to a lipid bilayer, and is cleaved in secreted and membrane bound proteins. A signal sequence was identified in the amino acid sequence of human VEGF-G at about amino acids 1-19 of SEQ ID NO:2. A signal sequence was also identified in the amino acid sequence of mouse VEGF-G at about amino acids 1-23 of SEQ ID NO:11.

In yet another embodiment, VEGF-G family members include at least one or more N-glycosylation sites. Predicted N-glycosylation sites are found, for example, from about amino acids 276-279 of SEQ ID NO:2, and from about amino acid residues 14-17 and 276-279 of SEQ ID NO:11.

10

15

20

25

In another embodiment, VEGF-G family members include at least one N-myristoylation site. Predicted N-myristoylation sites are found, for example, from about amino acid residues 100-105, 192-197, and 303-308 of SEQ ID NO:2, and from about amino acid residues 100-105 and 303-308 of SEQ ID NO:11.

In another embodiment, VEGF-G family members include at least one cAMP and cGMP dependent protein kinase phosphorylation site. Predicted cAMPand cGMP dependent protein kinase phosphorylation sites are found, for example, from about amino acid residues 268-271 of SEQ ID NO:2, and from about amino acid residues 268-271 of SEQ ID NO:11.

In another embodiment, VEGF-G family members include at least one protein kinase C phosphorylation site. Predicted protein kinase C phosphorylation sites are found, for example, from about amino acid residues 17-19, 29-31, 66-68, 80-82, 150-152, 243-245, 273-275, 320-322, 323-325, and 365-367 of SEQ ID NO:2, and from about amino acid residues 29-31, 66-68, 141-143, 150-152, 273-275, 320-322, 323-325, and 365-367 of SEQ ID NO:11.

In another embodiment, VEGF-G family members include at least one casein kinase II phosphorylation site. Predicted casein kinase II phosphorylation sites are found, for example, from about amino acid residues 17-20, 168-171, 181-184, 199-202, 219-222, 231-234, 250-253, and 256-259 of SEQ ID NO:2, and from about amino acid residues 168-171, 181-184, 199-202, 213-216, 219-222, 231-234, 250-253, and 256-259 of SEQ ID NO:11.

In another embodiment, VEGF-G family members include at least one tyrosine kinase phosphorylation site. Predicted tyrosine kinase phosphorylation sites are found, for example, from about amino acid residues 262-270 of SEQ ID NO:2, and from about amino acid residues 262-270 of SEQ ID NO:11.

Isolated proteins of the present invention, preferably VEGF-G proteins, have an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2 or 11, or are encoded by a nucleotide sequence sufficiently homologous to SEQ ID NO:1, 3, 10 or 12. As used herein, the term "sufficiently homologous" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain)

amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences share common structural domains or motifs and/or a common functional activity. For example, amino acid or nucleotide sequences which share common structural domains have at least 50% homology, preferably 60% homology, more preferably 70%-80%, and even more preferably 90-95% homology across the amino acid sequences of the domains and contain at least one and preferably two structural domains or motifs, are defined herein as sufficiently homologous. Furthermore, amino acid or nucleotide sequences which share at least 50%, preferably 60%, more preferably 70-80%, or 90-95% homology and share a common functional activity are defined herein as sufficiently homologous.

10

25

As used interchangeably herein, an "VEGF-G activity", "biological activity of VEGF-G" or "functional activity of VEGF-G", refers to an activity exerted by a VEGF-G protein, polypeptide or nucleic acid molecule on a VEGF-G responsive cell or on a VEGF-G protein substrate, as determined *in vivo* or *in vitro*, according to standard techniques. In one embodiment, a VEGF-G activity is a direct activity, such as an association with a VEGF-G target molecule. As used herein, a "target molecule" or "binding partner" is a molecule with which a VEGF-G protein binds or interacts in nature, such that VEGF-G-mediated function is achieved. A VEGF-G target molecule can be a non-VEGF-G molecule or a VEGF-G protein or polypeptide of the present invention. In an exemplary embodiment, a VEGF-G target molecule is a VEGF-G substrate or receptor, *e.g.*, flt or KDR/flk. A VEGF-G activity can also be an indirect activity, such as a cellular signalling activity mediated by interaction of the VEGF-G protein with a VEGF-G substrate or receptor, *e.g.*, flt or KDR/flk. Preferably, a VEGF-G activity is the ability to act as a growth regulatory factor and to modulate cell proliferation, differentiation, migration, apoptosis, and/or angiogenesis.

Accordingly, another embodiment of the invention features isolated VEGF-G proteins and polypeptides having a VEGF-G activity. Preferred proteins are VEGF-G proteins including at least one VEGF/PDGF superfamily variant motif. and. preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF/PDGF superfamily variant motif, and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions

to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12. Preferred proteins are VEGF-G proteins including at least one VEGF-G disulfide knot-like domain, and, preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF-G disulfide knot-like domain, and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12. Other preferred proteins are VEGF-G proteins including at least one CUB domain, and, preferably, having a VEGF-G activity. Additional preferred proteins include at least one CUB domain, and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEO ID NO:1, 3, 10 or 12. Preferred proteins are VEGF-G proteins including at least one signal sequence, and, preferably, having a VEGF-G activity. Further preferred proteins include at least one signal sequence, and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12. Additional preferred proteins are VEGF-G proteins including at least one VEGF/PDGF superfamily variant motif and at least one CUB domain, and preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF/PDGF superfamily variant motif and at least one CUB domain and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12. Other preferred proteins are VEGF-G proteins including at least one VEGF/PDGF superfamily variant motif, at least one CUB domain, and at least one signal sequence and preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF/PDGF superfamily variant motif, at least one CUB domain, and at least one signal sequence and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12. Additional preferred 30 proteins are VEGF-G proteins including at least one VEGF-G disulfide knot-like

domain and at least one CUB domain, and preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF-G disulfide knot-like domain and at least one CUB domain and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3. 10 or 12. Other preferred proteins are VEGF-G proteins including at least one VEGF-G disulfide knot-like domain, at least one CUB domain, and at least one signal sequence and preferably, having a VEGF-G activity. Further preferred proteins include at least one VEGF-G disulfide knot-like domain, at least one CUB domain, and at least one signal sequence and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12.

The nucleotide sequence of the isolated human VEGF-G cDNA and the predicted amino acid sequence of the human VEGF-G polypeptide are shown in Figure 1 and in SEQ ID NOs:1 and 2, respectively. The human VEGF-G gene, which is approximately 3853 nucleotides in length, encodes a protein having a molecular weight of approximately 43 kD and which is approximately 370 amino acid residues in length.

The nucleotide sequence of the isolated mouse VEGF-G cDNA and the predicted amino acid sequence of the mouse VEGF-G polypeptide are shown in Figure 8 and in SEQ ID NOs:10 and 11, respectively. The mouse VEGF-G gene, which is approximately 3121 nucleotides in length, encodes a protein having a molecular weight of approximately 43 kD and which is approximately 370 amino acid residues in length. The predicted mature mouse VEGF-G protein lacking the signal sequence has a molecular weight of approximately 40 kD and is approximately 347 amino acid residues in length.

Various aspects of the invention are described in further detail in the following subsections:

I. Isolated Nucleic Acid Molecules

10

15

20

25

One aspect of the invention pertains to isolated nucleic acid molecules that encode VEGF-G proteins or biologically active portions thereof, as well as nucleic acid

- 10

fragments sufficient for use as hybridization probes to identify VEGF-G -encoding nucleic acid molecules (e.g., VEGF-G mRNA) and fragments for use as PCR primers for the amplification or mutation of VEGF-G nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

The term "isolated nucleic acid molecule" includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term "isolated" includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated VEGF-G nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material. or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention. *e.g.*, a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:1, 3, 10 or 12 as hybridization probes. VEGF-G nucleic acid molecules can be isolated using standard hybridization and cloning techniques (*e.g.*, as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

30

Moreover, a nucleic acid molecule encompassing all or a portion of SEQ ID NO:1, 3, 10 or 12 can be isolated by the polymerase chain reaction (PCR) using synthetic oligonucleotide primers designed based upon the sequence of SEQ ID NO:1, 3, 10 or 12.

5

15

30

A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to VEGF-G nucleotide sequences can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

In one embodiment, an isolated nucleic acid molecule of the invention comprises the nucleotide sequence shown in SEQ ID NO:1. The sequence of SEQ ID NO:1 corresponds to the human VEGF-G cDNA. This cDNA comprises sequences encoding the human VEGF-G protein (*i.e.*, "the coding region", from nucleotides 213-1325), as well as 5' untranslated sequences (nucleotides 1-212) and 3' untranslated sequences (nucleotides 1326-3853). Alternatively, the nucleic acid molecule can comprise only the coding region of SEQ ID NO:1 (*e.g.*, nucleotides 213-1325, corresponding to SEQ ID NO:3).

In one embodiment, an isolated nucleic acid molecule of the invention comprises
the nucleotide sequence shown in SEQ ID NO:10. The sequence of SEQ ID NO:10
corresponds to the mouse VEGF-G cDNA. This cDNA comprises sequences encoding
the mouse VEGF-G protein (*i.e.*, "the coding region", from nucleotides 165-1277), as
well as 5° untranslated sequences (nucleotides 1-164) and 3° untranslated sequences
(nucleotides 1278-3121). Alternatively, the nucleic acid molecule can comprise only the
coding region of SEQ ID NO:10 (*e.g.*, nucleotides 165-1277, corresponding to SEQ ID
NO:12).

In one embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12, or a portion of any of these nucleotide sequences. A nucleic acid molecule which is complementary to the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12 is one which is sufficiently complementary to the nucleotide sequence

shown in SEQ ID NO:1, 3, 10 or 12, such that it can hybridize to the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12, thereby forming a stable duplex.

In one embodiment, an isolated nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least about 50%, 55%, 60%, 65%. 70%, 75%, 80%, 85%, 86%, 90%, 95%, 98% or more homologous to the entire length of the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12, or a portion of any of these nucleotide sequences.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the nucleic acid sequence of SEQ ID NO:1, 3, 10 or 12, for example, a fragment which can be used as a probe or primer or a fragment encoding a portion of a VEGF-G protein, e.g., an immunogenic or biologically active portion of a VEGF-G protein. The nucleotide sequence determined from the cloning of the VEGF-G gene allows for the generation of probes and primers designed for use in identifying and/or cloning other VEGF-G family members, as well as VEGF-G homologues from other species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12 or 15, preferably about 20 or 25, more preferably about 30, 35, 40, 45, 50, 55, 60, 65, or 75 consecutive nucleotides of a sense or antisense sequence of SEQ ID NO:1, 3, 10 or 12, or of a naturally occurring allelic variant or mutant of SEQ ID NO:1, 3, 10 or 12. In an exemplary embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is greater than 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 549, 549-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800-1900, 1900-2000, 2000-2200, 2200-2272, 2273, 2273-2400, 2400-2600, 2600-2800, 2800-3000 or more nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO:1, 3, 10 or 12.

Probes based on the VEGF-G nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In certain embodiments, the probe further comprises a label group attached thereto, *e.g.*, the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-

20

25

factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which misexpress a VEGF-G protein, such as by measuring a level of a VEGF-G-encoding nucleic acid in a sample of cells from a subject e.g., detecting VEGF-G mRNA levels or determining whether a genomic VEGF-G gene has been mutated or deleted.

5

10

15

20

25

30

A nucleic acid fragment encoding a "biologically active portion of a VEGF-G protein" can be prepared by isolating a portion of the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12, which encodes a polypeptide having a VEGF-G biological activity (the biological activities of the VEGF-G proteins are described herein), expressing the encoded portion of the VEGF-G protein (*e.g.*, by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the VEGF-G protein. A nucleic acid fragment encoding a biologically active portion of a VEGF-G protein. may comprise a nucleotide sequence which is greater than 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 549, 549-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1800, 1800-2000, 2000-2200, 2273 or more nucleotides in length.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12 due to degeneracy of the genetic code and thus encode the same VEGF-G proteins as those encoded by the nucleotide sequence shown in SEQ ID NO:1, 3, 10 or 12. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:2 or 11.

In addition to the VEGF-G nucleotide sequences shown in SEQ ID NO:1, 3, 10 or 12, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the VEGF-G proteins may exist within a population (e.g., the human population). Such genetic polymorphism in the VEGF-G genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules which include an open reading frame encoding a VEGF-G protein, preferably a mammalian VEGF-G protein, and can further include non-coding regulatory sequences, and introns.

10

15

20

25

30

Allelic variants of VEGF-G, e.g., human or mouse VEGF-G, include both functional and non-functional VEGF-G proteins. Functional allelic variants are naturally occurring amino acid sequence variants of the VEGF-G protein within a population that maintain the ability to bind a VEGF-G receptor or substrate, and/or modulate cell growth and migration mechanisms. Functional allelic variants will typically contain only conservative substitution of one or more amino acids of SEQ ID NO:2 or 11, or substitution, deletion or insertion of non-critical residues in non-critical regions of the protein.

Non-functional allelic variants are naturally occurring amino acid sequence variants of the VEGF-G, e.g., human or mouse VEGF-G, protein within a population that do not have the ability to either bind a VEGF-G receptor or substrate, or modulate cell growth or migration mechanisms. Non-functional allelic variants will typically contain a non-conservative substitution, a deletion, or insertion, or premature truncation of the amino acid sequence of SEQ ID NO:2 or 11, or a substitution, insertion, or deletion in critical residues or critical regions of the protein.

The present invention further provides orthologues of the human and mouse VEGF-G proteins. Orthologues of the human and mouse VEGF-G proteins are proteins that are isolated from non-human and non-mouse organisms and possess the same VEGF-G receptor or substrate binding mechanisms, and/or modulation of cell growth or migration mechanisms of the human and mouse VEGF-G proteins. Orthologues of the human and mouse VEGF-G proteins can readily be identified as comprising an amino acid sequence that is substantially homologous to SEQ ID NO:2 or 11.

Moreover, nucleic acid molecules encoding other VEGF-G family members and, thus, which have a nucleotide sequence which differs from the VEGF-G sequences of SEQ ID NO:1, 3, 10 or 12 are intended to be within the scope of the invention. For example, another VEGF-G cDNA can be identified based on the nucleotide sequence of human or mouse VEGF-G. Moreover, nucleic acid molecules encoding VEGF-G proteins from different species, and which, thus, have a nucleotide sequence which differs from the VEGF-G sequences of SEQ ID NO:1, 3, 10 or 12 are intended to be within the scope of the invention. For example, a monkey VEGF-G cDNA can be identified based on the nucleotide sequence of a human or mouse VEGF-G.

- 25 -

Nucleic acid molecules corresponding to natural allelic variants and homologues of the VEGF-G cDNAs of the invention can be isolated based on their homology to the VEGF-G nucleic acids disclosed herein using the cDNAs disclosed herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Nucleic acid molecules corresponding to natural allelic variants and homologues of the VEGF-G cDNAs of the invention can further be isolated by mapping to the same chromosome or locus as the VEGF-G gene.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15, 20, 25, 30 or more nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1. 3, 10 or 12. In other embodiment, the nucleic acid is at least 30, 50, 100, 150, 200, 250, 253, 300, 350, 400, 450, 500, 549, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200 or 2273 nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 70%. more preferably at least about 80%, even more preferably at least about 85% or 90% homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons. N.Y. (1989), 6.3.1-6.3.6. A preferred. nonlimiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C. Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C. A further example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Preferably, stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C. followed by one or more washes in 0.2X

20

25

30

10

15

20

SSC, 0.1% SDS at 65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1, 3, 10 or 12 corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In addition to naturally-occurring allelic variants of the VEGF-G sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:1, 3, 10 or 12, thereby leading to changes in the amino acid sequence of the encoded VEGF-G proteins. without altering the functional ability of the VEGF-G proteins. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO:1, 3, 10 or 12. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of VEGF-G (e.g., the sequence of SEQ ID NO:2 or 11) without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are conserved among the VEGF-G proteins of the present invention, e.g., those present in the VEGF/PDGF superfamily variant motif, the VEGF-G disulfide knot-like domain, or the CUB domain, are predicted to be particularly unamenable to alteration. Furthermore, additional amino acid residues that are conserved between the VEGF-G proteins of the present invention and other members of the VEGF family are not likely to be amenable to alteration.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding VEGF-G proteins that contain changes in amino acid residues that are not essential for activity. Such VEGF-G proteins differ in amino acid sequence from SEQ ID NO:2 or 11, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to SEQ ID NO:2 or 11.

An isolated nucleic acid molecule encoding a VEGF-G protein homologous to the protein of SEQ ID NO:2 or 11 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, 3, 10

30

20

or 12 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into SEQ ID NO:1, 3, 10 or 12 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), 10 uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a VEGF-G protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a VEGF-G coding sequence. such as by saturation mutagenesis, and the resultant mutants can be screened for VEGF-G biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:1, 3, 10 or 12, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

In a preferred embodiment, a mutant VEGF-G protein can be assayed for the ability to (1) interact with a non-VEGF-G protein molecule, e.g., a VEGF-G substrate or receptor; (2) activate a VEGF-G-dependent signal transduction pathway; (3) modulate cell proliferation, differentiation, migration and/or apoptosis mechanisms; or (4) modulate angiogenic processes.

In addition to the nucleic acid molecules encoding VEGF-G proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein. e.g., complementary to the coding strand of a double-stranded cDNA molecule or

complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire VEGF-G coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding VEGF-G. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the coding region of human VEGF-G corresponds to SEQ ID NO:3 and the coding region of mouse VEGF-G corresponds to SEQ ID NO:12). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding VEGF-G. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding VEGF-G disclosed herein (e.g., SEQ ID NO:3 or 12), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of VEGF-G mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of VEGF-G mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of VEGF-G mRNA. An antisense oligonucleotide can be. for example, about 10, 15, 20, 25, 30, 35, 40, 45. 20 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil. 5bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-30 (carboxyhydroxylmethyl) uracil. 5-carboxymethylaminomethyl-2-thiouridine. 5-

20

25

carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2.6-diaminopurine.

10 Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

- 29 -

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a VEGF-G protein to thereby inhibit expression of the protein. e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes. through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention include direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense

nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids*. *Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.* (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave VEGF-G mRNA transcripts to thereby inhibit translation of VEGF-G mRNA. A ribozyme having specificity for a VEGF-G-encoding nucleic acid can be designed based upon the nucleotide sequence of a VEGF-G cDNA disclosed herein (i.e., SEQ ID NO:1, 3, 10 or 12). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a VEGF-G-encoding mRNA. See. e.g., Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742. Alternatively, VEGF-G mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel. D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

Alternatively, VEGF-G gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the VEGF-G (e.g., the VEGF-G promoter and/or enhancers) to form triple helical structures that prevent transcription of the VEGF-G gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher,

L.J. (1992) Bioassays 14(12):807-15.

- 31 -

In yet another embodiment, the VEGF-G nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup B. et al. (1996) Bioorganic & Medicinal Chemistry 4 (1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup B. et al. (1996) supra; Perry-O'Keefe et al. Proc. Natl. Acad. Sci. 93: 14670-675.

10

20

30

PNAs of VEGF-G nucleic acid molecules can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNAs of VEGF-G nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene. (e.g., by PNA-directed PCR clamping); as 'artificial restriction enzymes' when used in combination with other enzymes. (e.g., S1 nucleases (Hyrup B. (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup B. et al. (1996) supra; Perry-O'Keefe supra).

In another embodiment, PNAs of VEGF-G can be modified, (e.g., to enhance their stability or cellular uptake), by attaching lipophilic or other helper groups to PNA. by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of VEGF-G nucleic acid molecules can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes. (e.g., RNAse H and DNA polymerases), to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of

bonds between the nucleobases, and orientation (Hyrup B. (1996) *supra*). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup B. (1996) *supra* and Finn P.J. *et al.* (1996) *Nucleic Acids Res.* 24 (17): 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs, *e.g.*, 5'-(4-methoxytrityl)amino-5'-deoxythymidine phosphoramidite. can be used as a between the PNA and the 5' end of DNA (Mag, M. *et al.* (1989) *Nucleic Acid Res.* 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn P.J. *et al.* (1996) *supra*). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser, K.H. *et al.* (1975) *Bioorganic Med. Chem. Lett.* 5: 1119-11124).

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al. (1988) Bio-Techniques 6:958-976) or intercalating agents. (See, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).

II. Isolated VEGF-G Proteins and Anti-VEGF-G Antibodies

One aspect of the invention pertains to isolated VEGF-G proteins, and
biologically active portions thereof, as well as polypeptide fragments suitable for use as
immunogens to raise anti-VEGF-G antibodies. In one embodiment, native VEGF-G
proteins can be isolated from cells or tissue sources by an appropriate purification
scheme using standard protein purification techniques. In another embodiment, VEGFG proteins are produced by recombinant DNA techniques. Alternative to recombinant
expression, a VEGF-G protein or polypeptide can be synthesized chemically using
standard peptide synthesis techniques.

15

An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the VEGF-G protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of VEGF-G protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of VEGF-G protein having less than about 30% (by dry weight) of non-VEGF-G protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-VEGF-G protein, still more preferably less than about 10% of non-VEGF-G protein, and most preferably less than about 5% non-VEGF-G protein. When the VEGF-G protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium. i.e., culture medium represents less than about 20%. more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of VEGF-G protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of VEGF-G protein having less than about 30% (by dry weight) of chemical precursors or non-VEGF-G chemicals, more preferably less than about 20% chemical precursors or non-VEGF-G chemicals, still more preferably less than about 10% chemical precursors or non-VEGF-G chemicals, and most preferably less than about 5% chemical precursors or non-VEGF-G chemicals.

As used herein, a "biologically active portion" of a VEGF-G protein includes a fragment of a VEGF-G protein which participates in an interaction between a VEGF-G molecule and a non-VEGF-G molecule. Biologically active portions of a VEGF-G protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the VEGF-G protein, *e.g.*, the amino acid sequence shown in SEQ ID NO:2 or 11, which include less amino acids than the full

length VEGF-G proteins, and exhibit at least one activity of a VEGF-G protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the VEGF-G protein, e.g., modulating cell growth and/or migration mechanisms. A biologically active portion of a VEGF-G protein can be a polypeptide which is, for example, 10, 25, 50, 100, 200 or more amino acids in length. Biologically active portions of a VEGF-G protein can be used as targets for developing agents which modulate a VEGF-G mediated activity, e.g., a cell proliferation, differentiation, migration, apoptosis, or angiogenic signalling mechanism.

In one embodiment, a biologically active portion of a VEGF-G protein comprises at least one VEGF/PDGF superfamily variant motif, and/or at least one CUB 10 domain. It is to be understood that a preferred biologically active portion of a VEGF-G protein of the present invention may contain at least one VEGF/PDGF superfamily variant motif. In another embodiment, a biologically active portion of a VEGF-G protein comprises at least one VEGF-G disulfide knot-like domain, and/or at least one CUB domain. It is to be understood that a preferred biologically active portion of a 15 VEGF-G protein of the present invention may contain at least one VEGF-G disulfide knot-like domain. Another preferred biologically active portion of a VEGF-G protein may contain at least one CUB domain. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native VEGF-20 G protein.

In a preferred embodiment, the VEGF-G protein has an amino acid sequence shown in SEQ ID NO:2 or 11. In other embodiments, the VEGF-G protein is substantially homologous to SEQ ID NO:2 or 11, and retains the functional activity of the protein of SEQ ID NO:2 or 11, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail in subsection I above.

Accordingly, in another embodiment, the VEGF-G protein is a protein which comprises an amino acid sequence at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to SEQ ID NO:2 or 11.

To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the reference sequence (e.g., when aligning a second sequence to the VEGF-G amino acid sequence of SEQ ID NO:2 or 11 having 370 amino acid residues, at least 111, preferably at least 148, more preferably at least 185, even more preferably at least 222, and even more preferably at least 259, 296 or 333 amino acid residues are aligned). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at 15 that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for 20 optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent

- 36 -

identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (*Comput. Appl. Biosci.*, 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program. score = 100, wordlength = 12 to obtain nucleotide sequences homologous to VEGF-G nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to VEGF-G protein molecules of the invention. To obtain gapped alignments for comparison purposes. Gapped BLAST can be utilized as described in Altschul et al.. (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.

The invention also provides VEGF-G chimeric or fusion proteins. As used

herein, a VEGF-G "chimeric protein" or "fusion protein" comprises a VEGF-G

polypeptide operatively linked to a non-VEGF-G polypeptide. An "VEGF-G

polypeptide" refers to a polypeptide having an amino acid sequence corresponding to

VEGF-G, whereas a "non-VEGF-G polypeptide" refers to a polypeptide having an

amino acid sequence corresponding to a protein which is not substantially homologous

to the VEGF-G protein, e.g., a protein which is different from the VEGF-G protein and

which is derived from the same or a different organism. Within a VEGF-G fusion

protein the VEGF-G polypeptide can correspond to all or a portion of a VEGF-G

protein. In a preferred embodiment, a VEGF-G fusion protein comprises at least one

biologically active portion of a VEGF-G protein. In another preferred embodiment, a

VEGF-G fusion protein comprises at least two biologically active portions of a VEGF-G

protein. Within the fusion protein, the term "operatively linked" is intended to indicate

that the VEGF-G polypeptide and the non-VEGF-G polypeptide are fused in-frame to each other. The non-VEGF-G polypeptide can be fused to the N-terminus or C-terminus of the VEGF-G polypeptide.

For example, in one embodiment, the fusion protein is a GST-VEGF-G fusion protein in which the VEGF-G sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant VEGF-G.

In another embodiment, the fusion protein is an alkaline phosphatase-VEGF-G fusion protein in which the VEGF-G sequences are fused to alkaline phosphatase sequences. Such fusion proteins can be used to assess VEGF-G binding to cells and/or tissues.

10

15

25

In another embodiment, the fusion protein is a VEGF-G protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of VEGF-G can be increased through use of a heterologous signal sequence.

The VEGF-G fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject *in vivo*. The VEGF-G fusion proteins can be used to affect the bioavailability of a VEGF-G substrate. Use of VEGF-G fusion proteins may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a VEGF-

20 G protein; (ii) mis-regulation of the VEGF-G gene; and (iii) aberrant post-translational modification of a VEGF-G protein.

Moreover, the VEGF-G-fusion proteins of the invention can be used as immunogens to produce anti-VEGF-G antibodies in a subject, to purify VEGF-G ligands and in screening assays to identify molecules which inhibit the interaction of VEGF-G with a VEGF-G substrate.

Preferably, a VEGF-G chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid

undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel *et al.* John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (*e.g.*, a GST polypeptide). A VEGF-G-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the VEGF-G protein.

The present invention also pertains to variants of the VEGF-G proteins which function as either VEGF-G agonists (mimetics) or as VEGF-G antagonists. Variants of the VEGF-G proteins can be generated by mutagenesis, e.g., discrete point mutation or truncation of a VEGF-G protein. An agonist of the VEGF-G proteins can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a VEGF-G protein. An antagonist of a VEGF-G protein can inhibit one or more of the activities of the naturally occurring form of the VEGF-G protein by, for example, competitively modulating a VEGF-G-mediated activity of a VEGF-G protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function.

In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the VEGF-G protein.

In one embodiment, variants of a VEGF-G protein which function as either

VEGF-G agonists (mimetics) or as VEGF-G antagonists can be identified by screening combinatorial libraries of mutants. e.g., truncation mutants, of a VEGF-G protein for VEGF-G protein agonist or antagonist activity. In one embodiment, a variegated library of VEGF-G variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of VEGF-G variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential VEGF-G

sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of VEGF-G sequences therein. There are a variety of methods which can be used to produce libraries of potential VEGF-G variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential VEGF-G sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

10

15

20

In addition, libraries of fragments of a VEGF-G protein coding sequence can be used to generate a variegated population of VEGF-G fragments for screening and subsequent selection of variants of a VEGF-G protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a VEGF-G coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA. renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal. C-terminal and internal fragments of various sizes of the VEGF-G protein.

Several techniques are known in the art for screening gene products of

combinatorial libraries made by point mutations or truncation, and for screening cDNA
libraries for gene products having a selected property. Such techniques are adaptable for
rapid screening of the gene libraries generated by the combinatorial mutagenesis of
VEGF-G proteins. The most widely used techniques, which are amenable to high
through-put analysis, for screening large gene libraries typically include cloning the
gene library into replicable expression vectors, transforming appropriate cells with the
resulting library of vectors, and expressing the combinatorial genes under conditions in

which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recrusive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify VEGF-G variants (Arkin and Yourvan (1992) *Proc. Natl. Acad. Sci. USA* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In one embodiment, cell based assays can be exploited to analyze a variegated VEGF-G library. For example, a library of expression vectors can be transfected into a cell line, e.g., an endothelial cell line, which ordinarily responds to VEGF-G in a particular VEGF-G substrate-dependent manner. The transfected cells are then contacted with VEGF-G and the effect of the expression of the mutant on signalling by the VEGF-G substrate can be detected, e.g., by measuring intracellular calcium and inositol 1,4,5-trisphosphate (IP3) levels, cell growth, and cell migration. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of signalling by the VEGF-G substrate, and the individual clones further characterized.

An isolated VEGF-G protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind VEGF-G using standard techniques for polyclonal and monoclonal antibody preparation. A full-length VEGF-G protein can be used or, alternatively, the invention provides antigenic peptide fragments of VEGF-G for use as immunogens. The antigenic peptide of VEGF-G comprises at least 8 amino acid residues of the amino acid sequence shown in SEQ ID NO:2 and encompasses an epitope of VEGF-G such that an antibody raised against the peptide forms a specific immune complex with VEGF-G. Preferably, the antigenic peptide comprises at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues.

Preferred epitopes encompassed by the antigenic peptide are regions of VEGF-G that are located on the surface of the protein, e.g., hydrophilic regions, as well as regions with high antigenicity.

25

-41 -

A VEGF-G immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, recombinantly expressed VEGF-G protein or a chemically synthesized VEGF-G polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent. Immunization of a suitable subject with an immunogenic VEGF-G preparation induces a polyclonal anti-VEGF-G antibody response.

Accordingly, another aspect of the invention pertains to anti-VEGF-G antibodies. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules. *i.e.*, molecules that contain an antigen binding site which specifically binds (immunoreacts with) an antigen, such as VEGF-G. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies that bind VEGF-G. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of VEGF-G. A monoclonal antibody composition thus typically displays a single binding affinity for a particular VEGF-G protein with which it immunoreacts.

10

20

30

Polyclonal anti-VEGF-G antibodies can be prepared as described above by immunizing a suitable subject with a VEGF-G immunogen. The anti-VEGF-G antibody titer in the immunized subject can be monitored over time by standard techniques. such as with an enzyme linked immunosorbent assay (ELISA) using immobilized VEGF-G. If desired, the antibody molecules directed against VEGF-G can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the anti-VEGF-G antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described

15

20

25

30

by Kohler and Milstein (1975) Nature 256:495-497) (see also, Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980) J. Biol. Chem .255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. USA 76:2927-31; and Yeh et al. (1982) Int. J. Cancer 29:269-75), the more recent human B cell hybridoma technique (Kozbor et al. (1983) Immunol Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing monoclonal antibody hybridomas is well known (see generally R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, New York (1980); E. A. Lerner (1981) Yale J. Biol. Med., 54:387-402; M. L. Gefter et al. (1977) Somatic Cell Genet. 3:231-36). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with a VEGF-G immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds VEGF-G.

Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating an anti-VEGF-G monoclonal antibody (see, e.g., G. Galfre et al. (1977) Nature 266:55052; Gefter et al. Somatic Cell Genet., cited supra; Lerner, Yale J. Biol. Med., cited supra; Kenneth, Monoclonal Antibodies, cited supra). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods which also would be useful. Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. For example, murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium"). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques. e.g., the P3-NS1/1-Ag4-1. P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from ATCC. Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG"). Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind VEGF-G, e.g., using a standard ELISA assay.

5

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal anti-VEGF-G antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with VEGF-G to thereby isolate immunoglobulin library members that bind VEGF-G. Kits for generating and screening phage display libraries are commercially 10 available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, Ladner et al. U.S. Patent No. 5,223,409; Kang et al. PCT International Publication No. WO 15 92/18619; Dower et al. PCT International Publication No. WO 91/17271; Winter et al. PCT International Publication WO 92/20791; Markland et al. PCT International Publication No. WO 92/15679; Breitling et al. PCT International Publication WO 93/01288; McCafferty et al. PCT International Publication No. WO 92/01047; Garrard et al. PCT International Publication No. WO 92/09690; Ladner et al. PCT International 20 Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281: Griffiths et al. (1993) EMBO J 12:725-734: Hawkins et al. (1992) J. Mol. Biol. 226:889-896; Clarkson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nuc. Acid Res. 19:4133-4137; Barbas et al. (1991) Proc. 25 Natl. Acad. Sci. USA 88:7978-7982; and McCafferty et al. Nature (1990) 348:552-554.

Additionally, recombinant anti-VEGF-G antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in

Robinson et al. International Application No. PCT/US86/02269; Akira, et al. European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al. European Patent Application 173,494; Neuberger et al. PCT International Publication No. WO 86/01533; Cabilly et al. U.S. Patent No. 4,816,567;
Cabilly et al. European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559);
Morrison, S. L. (1985) Science 229:1202-1207; Oi et al. (1986) BioTechniques 4:214; Winter U.S. Patent 5.225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.

An anti-VEGF-G antibody (e.g., monoclonal antibody) can be used to isolate VEGF-G by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-VEGF-G antibody can facilitate the purification of 15 natural VEGF-G from cells and of recombinantly produced VEGF-G expressed in host cells. Moreover, an anti-VEGF-G antibody can be used to detect VEGF-G protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the VEGF-G protein. Anti-VEGF-G antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure. e.g., to. for 20 example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups. fluorescent materials. luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, \(\beta\)-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein. fluorescein isothiocyanate. rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent 30

materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

III. Recombinant Expression Vectors and Host Cells

5

10

15

20

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a VEGF-G protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of
the invention in a form suitable for expression of the nucleic acid in a host cell, which
means that the recombinant expression vectors include one or more regulatory
sequences, selected on the basis of the host cells to be used for expression, which is
operatively linked to the nucleic acid sequence to be expressed. Within a recombinant
expression vector, "operably linked" is intended to mean that the nucleotide sequence of
interest is linked to the regulatory sequence(s) in a manner which allows for expression
of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a

host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185,

5 Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., VEGF-G proteins, mutant forms of VEGF-G proteins, fusion proteins, and the like).

The recombinant expression vectors of the invention can be designed for expression of VEGF-G proteins in prokaryotic or eukaryotic cells. For example, VEGF-G proteins can be expressed in bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*. for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein

15

20

from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Purified fusion proteins can be utilized in VEGF-G activity assays, (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for VEGF-G proteins, for example. In a preferred embodiment, a VEGF-G fusion protein expressed in a retroviral expression vector of the present invention can be utilized to infect bone marrow cells which are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).

Examples of suitable inducible non-fusion *E. coli* expression vectors include

pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego,
California (1990) 60-89). Target gene expression from the pTrc vector relies on host
RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene
expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion
promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral
polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident
prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5
promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express
the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those

preferentially utilized in *E. coli* (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118).

Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the VEGF-G expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerivisae* include pYepSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and picZ (InVitrogen Corp, San Diego, CA).

Alternatively, VEGF-G proteins can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is

25 capable of directing expression of the nucleic acid preferentially in a particular cell type
(e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable
tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.
(1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988)

30 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and
Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell

15

- 49 -

33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters (*e.g.*, the neurofilament promoter; Byrne and Ruddle (1989) *Proc. Natl. Acad. Sci. USA* 86:5473-5477), endothelial cell-specific promoters (*e.g.*, KDR/flk promoter; U.S. Patent No. 5,888,765), pancreas-specific promoters (Edlund *et al.* (1985) *Science* 230:912-916), and mammary gland-specific promoters (*e.g.*, milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev.* 3:537-546).

10 The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to VEGF-G mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen 15 which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant 20 plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986. 25

Another aspect of the invention pertains to host cells into which a VEGF-G nucleic acid molecule of the invention is introduced, e.g., a VEGF-G nucleic acid molecule within a recombinant expression vector or a VEGF-G nucleic acid molecule containing sequences which allow it to homologously recombine into a specific site of the host cell's genome. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular

subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, a VEGF-G protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as human umbilical vein endothelial cells (HUVEC), human microvascular endothelial cells (HMVEC), Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the
expression vector and transfection technique used, only a small fraction of cells may
integrate the foreign DNA into their genome. In order to identify and select these
integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is
generally introduced into the host cells along with the gene of interest. Preferred
selectable markers include those which confer resistance to drugs, such as G418,
hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be
introduced into a host cell on the same vector as that encoding a VEGF-G protein or can
be introduced on a separate vector. Cells stably transfected with the introduced nucleic
acid can be identified by drug selection (e.g., cells that have incorporated the selectable
marker gene will survive, while the other cells die).

5

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) a VEGF-G protein. Accordingly, the invention further provides methods for producing a VEGF-G protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a VEGF-G protein has been introduced) in a suitable medium such that a VEGF-G protein is produced. In another embodiment, the method further comprises isolating a VEGF-G protein from the medium or the host cell.

10

15

20

The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which VEGF-G-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous VEGF-G sequences have been introduced into their genome or homologous recombinant animals in which endogenous VEGF-G sequences have been altered. Such animals are useful for studying the function and/or activity of a VEGF-G protein and for identifying and/or evaluating modulators of VEGF-G activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a nonhuman animal, preferably a mammal, more preferably a mouse, in which an endogenous VEGF-G gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing a VEGF-G-30 encoding nucleic acid into the male pronuclei of a fertilized oocyte, *e.g.*, by microinjection, retroviral infection, and allowing the oocyte to develop in a

pseudopregnant female foster animal. The VEGF-G cDNA sequence of SEQ ID NO:1 or 10 can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human or non-mouse homologue of a human or mouse VEGF-G gene, such as a rat or VEGF-G gene, can be used as a transgene. Alternatively, a VEGF-G gene homologue, such as another VEGF-G family member, can be isolated based on hybridization to the VEGF-G cDNA sequences of SEQ ID NO:1, 3, 10 or 12 (described further in subsection I above) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a VEGF-G transgene to direct expression of a VEGF-G protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Patent No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring 15 Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of a VEGF-G transgene in its genome and/or expression of VEGF-G mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene 20 encoding a VEGF-G protein can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a VEGF-G gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the VEGF-G gene. The VEGF-G gene can be a human gene (e.g., the cDNA of SEQ ID NO:3), but more preferably, is a non-human homolog of a human VEGF-G gene (e.g., a cDNA isolated by stringent hybridization with the nucleotide sequence of SEQ ID NO:1 or 10), For example, a mouse VEGF-G gene (e.g., the cDNA of SEQ ID NO:12) can be used to construct a homologous recombination nucleic acid molecule, e.g., a vector, suitable for altering an endogenous VEGF-G gene in the mouse genome. In a preferred

embodiment, the homologous recombination nucleic acid molecule is designed such that, upon homologous recombination, the endogenous VEGF-G gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the homologous recombination nucleic acid molecule can be designed such that, upon homologous recombination, the endogenous VEGF-G gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous VEGF-G protein). In the homologous recombination nucleic acid molecule, the altered portion of the VEGF-G gene is flanked at its 5' and 3' ends by additional nucleic acid sequence of the VEGF-G gene to allow for homologous recombination to occur between the exogenous VEGF-G gene carried by the homologous recombination nucleic acid molecule and an endogenous VEGF-G gene in a cell, e.g., an embryonic stem cell. The additional flanking VEGF-G nucleic acid sequence is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the homologous recombination 15 nucleic acid molecule (see, e.g., Thomas, K.R. and Capecchi, M. R. (1987) Cell 51:503 for a description of homologous recombination vectors). The homologous recombination nucleic acid molecule is introduced into a cell, e.g., an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced VEGF-G gene has 20 homologously recombined with the endogenous VEGF-G gene are selected (see e.g., Li, E. et al. (1992) Cell 69:915). The selected cells can then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E.J. Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a 25 suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination nucleic acid molecules, e.g., vectors, or homologous recombinant animals are described further in Bradley, A. (1991) Current Opinion in Biotechnology 2:823-829 and in PCT International Publication Nos.: WO 90/11354 by Le Mouellec et

al.; WO 91/01140 by Smithies et al.; WO 92/0968 by Zijlstra et al.; and WO 93/04169 by Berns et al.

In another embodiment, transgenic non-humans animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, *e.g.*, Lakso *et al.* (1992) *Proc. Natl. Acad. Sci. USA* 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae* (O'Gorman *et al.* (1991) *Science* 251:1351-1355. If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, *e.g.*, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. (1997) Nature 385:810-813 and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

25

30

15

IV. Pharmaceutical Compositions

The VEGF-G nucleic acid molecules, fragments of VEGF-G proteins, and anti-VEGF-G antibodies (also referred to herein as "active compounds") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Active compounds may include, but are not limited to, peptides, nucleic acids, antibodies, and small inorganic or inorganic compounds. Such compositions typically comprise the

nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

10

15

20

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as

bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a fragment of a VEGF-G protein or an anti-VEGF-G antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as

10

15

20

25

10

15

microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.

Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid.

Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

- 58 -

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured. for example, by high performance liquid chromatography.

10

15

20

25

As defined herein, a therapeutically effective amount of protein or polypeptide (*i.e.*, an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.

In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7

10

15

20

25

weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.

The present invention encompasses agents which modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10.000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5.000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1.000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

It is understood that appropriate doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention.

Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

Further, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin. a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol. cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs

10

15

20

25

15

or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A. pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha.-interferon, beta.-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

Techniques for conjugating such therapeutic moiety to antibodies are well known. see. e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53
(Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis. Results. And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al.. "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates".

Immunol. Rev., 62:119-58 (1982). Alternatively, an antibody can be conjugated to a second antibody to Form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Patent 5,328,470) or by stereotactic injection (see *e.g.*, Chen *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells. *e.g.*, retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Uses and Methods of the Invention

The nucleic acid molecules. proteins, protein homologues. and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics); and c) methods of treatment (e.g., therapeutic and prophylactic). As described herein, a VEGF-G protein of the invention has one or more of the following activities: (1) it interacts with a non-VEGF-G protein molecule, e.g., a VEGF-G substrate, such as a VEGF receptor; (2) it activates a VEGF-G-dependent signal transduction pathway; (3) it modulates cell proliferation, differentiation, and/or migration mechanisms; (4) it modulates angiogenesis, and, thus, can be used to, for example, (1) modulate the interaction with a non-VEGF-G protein molecule; (2) to activate a VEGF-G-dependent signal transduction pathway; (3) to modulate cell proliferation, differentiation, and/or migration mechanisms: (4) to modulate angiogenesis.

5

10

15

20

25

The isolated nucleic acid molecules of the invention can be used, for example, to express VEGF-G protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect VEGF-G mRNA (e.g., in a biological sample) or a genetic alteration in a VEGF-G gene, and to modulate VEGF-G activity, as described further below. The VEGF-G proteins can be used to treat disorders characterized by insufficient or excessive production of a VEGF-G substrate or production of VEGF-G inhibitors. In addition, the VEGF-G proteins can be used to screen for naturally occurring VEGF-G substrates, to screen for drugs or compounds which modulate VEGF-G activity, as well as to treat disorders characterized by insufficient or excessive production of VEGF-G protein or production of VEGF-G protein forms which have 10 decreased, aberrant or unwanted activity compared to VEGF-G wild type protein (e.g., cell proliferation and/or differentiation disorders, such as disorders characterized by aberrant angiogenesis). Moreover, the anti-VEGF-G antibodies of the invention can be used to detect and isolate VEGF-G proteins, regulate the bioavailability of VEGF-G proteins, and modulate VEGF-G activity.

A. Screening Assays:

5

15

20

25

30

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides. peptidomimetics, small molecules or other drugs) which bind to VEGF-G proteins. have a stimulatory or inhibitory effect on, for example, VEGF-G expression or VEGF-G activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a VEGF-G substrate.

In one embodiment, the invention provides assays for screening candidate or test compounds which are substrates of a VEGF-G protein or polypeptide or biologically active portion thereof. In another embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a VEGF-G protein or polypeptide or biologically active portion thereof. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art. including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic

15

20

25

30

library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam. K.S. (1997) *Anticancer Drug Des.* 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al. (1994) J. Med. Chem. 37:1233.

Libraries of compounds may be presented in solution (e.g., Houghten (1992) Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner USP 5,223,409), spores (Ladner USP '409), plasmids (Cull et al. (1992) Proc Natl Acad Sci USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla et al. (1990) Proc. Natl. Acad. Sci. 87:6378-6382); (Felici (1991) J. Mol. Biol. 222:301-310); (Ladner supra.).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a VEGF-G protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate VEGF-G activity is determined. Determining the ability of the test compound to modulate VEGF-G activity can be accomplished by monitoring, for example. intracellular calcium and inositol 1.4,5-trisphosphate (IP3) levels, cell growth, and cell chemotaxis. The cell, for example, can be of mammalian origin, e.g., an endothelial cell.

The ability of the test compound to modulate VEGF-G binding to a substrate or to bind to VEGF-G can also be determined. Determining the ability of the test compound to modulate VEGF-G binding to a substrate can be accomplished, for example, by coupling the VEGF-G substrate with a radioisotope or enzymatic label such that binding of the VEGF-G substrate to VEGF-G can be determined by detecting the labeled VEGF-G substrate in a complex. Alternatively, VEGF-G could be coupled with

a radioisotope or enzymatic label to monitor the ability of a test compound to modulate VEGF-G binding to a VEGF-G substrate in a complex. Determining the ability of the test compound to bind VEGF-G can be accomplished, for example, by coupling the compound with a radioisotope or enzymatic label such that binding of the compound to VEGF-G can be determined by detecting the labeled VEGF-G compound in a complex. For example, compounds (e.g., VEGF-G substrates) can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.

10

15

20

30

It is also within the scope of this invention to determine the ability of a compound (e.g., a VEGF-G substrate) to interact with VEGF-G without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of a compound with VEGF-G without the labeling of either the compound or the VEGF-G. McConnell, H. M. et al. (1992) Science 257:1906-1912. As used herein, a "microphysiometer" (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a compound and VEGF-G.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a VEGF-G target molecule (e.g., a VEGF-G substrate) with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the VEGF-G target molecule. Determining the ability of the test compound to modulate the activity of a VEGF-G target molecule can be accomplished, for example, by determining the ability of the VEGF-G protein to bind to or interact with the VEGF-G target molecule.

Determining the ability of the VEGF-G protein or a biologically active fragment thereof, to bind to or interact with a VEGF-G target molecule can be accomplished by one of the methods described above for determining direct binding. In a preferred embodiment, determining the ability of the VEGF-G protein to bind to or interact with a

- 66 -

VEGF-G target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (*i.e.*, intracellular calcium or IP3), detecting catalytic/enzymatic activity of the target molecule upon an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, *e.g.*, luciferase), or detecting a target-regulated cellular response (*i.e.*, cell growth or migration).

In yet another embodiment, an assay of the present invention is a cell-free assay in which a VEGF-G protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the VEGF-G protein or biologically active portion thereof is determined. Preferred biologically active portions of the VEGF-G proteins to be used in assays of the present invention include fragments which participate in interactions with non-VEGF-G molecules, e.g., fragments with high surface probability scores. Binding of the test compound to the VEGF-G protein can be determined either directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the VEGF-G protein or biologically active portion thereof with a known compound which binds VEGF-G to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a VEGF-G protein comprises determining the ability of the test compound to preferentially bind to VEGF-G or biologically active portion thereof as compared to the known compound.

In another embodiment, the assay is a cell-free assay in which a VEGF-G protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the VEGF-G protein or biologically active portion thereof is determined. Determining the ability of the test compound to modulate the activity of a VEGF-G protein can be accomplished, for example, by determining the ability of the VEGF-G protein to bind to a VEGF-G target molecule by one of the methods described above for determining direct binding. Determining the ability of the VEGF-G protein to bind to a VEGF-G target molecule

5

10

15

can also be accomplished using a technology such as real-time Biomolecular Interaction Analysis (BIA). Sjolander, S. and Urbaniczky, C. (1991) *Anal. Chem.* 63:2338-2345 and Szabo *et al.* (1995) *Curr. Opin. Struct. Biol.* 5:699-705. As used herein, "BIA" is a technology for studying biospecific interactions in real time, without labeling any of the interactants (*e.g.*, BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.

In an alternative embodiment, determining the ability of the test compound to modulate the activity of a VEGF-G protein can be accomplished by determining the ability of the VEGF-G protein to further modulate the activity of a downstream effector of a VEGF-G target molecule. For example, the activity of the effector molecule on an appropriate target can be determined or the binding of the effector to an appropriate target can be determined as previously described.

In yet another embodiment, the cell-free assay involves contacting a VEGF-G protein or biologically active portion thereof with a known compound which binds the VEGF-G protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the VEGF-G protein, wherein determining the ability of the test compound to interact with the VEGF-G protein comprises determining the ability of the VEGF-G protein to preferentially bind to or modulate the activity of a VEGF-G target molecule.

The cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of isolated proteins (e.g., VEGF-G proteins or biologically active portions thereof). In the case of cell-free assays in which a membrane-bound form of an isolated protein is used it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the isolated protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside. n-dodecylglucoside. n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide. Triton X-100. Triton X-114. Thesit. Isotridecypoly(ethylene glycol ether)n, 3-[(3-

cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-

15

20

25

30

cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,N-dimethyl-3-ammonio-1-propane sulfonate.

In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either VEGF-G or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to a VEGF-G protein, or interaction of a VEGF-G protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase/VEGF-G fusion proteins or glutathione-S-transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or VEGF-G protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of VEGF-G binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either a VEGF-G protein or a VEGF-G target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated VEGF-G protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit. Pierce Chemicals. Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with VEGF-G protein or target molecules but which do not interfere with binding of the VEGF-G protein to its target molecule can be derivatized to the wells of the plate, and unbound target or

10

15

20

VEGF-G protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the VEGF-G protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the VEGF-G protein or target molecule.

In another embodiment, modulators of VEGF-G expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of VEGF-G mRNA or protein in the cell is determined. The level of expression of VEGF-G mRNA or protein in the presence of the candidate compound is compared to the level of expression of VEGF-G mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of VEGF-G expression based on this comparison. For example, when expression of VEGF-G mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of VEGF-G mRNA or protein expression. Alternatively, when expression of VEGF-G mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of VEGF-G mRNA or protein expression. The level of VEGF-G mRNA or protein expression in the cells can be determined by methods described herein for detecting VEGF-G mRNA or protein.

In yet another aspect of the invention, the VEGF-G proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see. e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300). to identify other proteins, which bind to or interact with VEGF-G ("VEGF-G-binding proteins" or "VEGF-G-bp") and are involved in VEGF-G activity. Such VEGF-G-binding proteins are also likely to be involved in the propagation of signals by the VEGF-G proteins or VEGF-G targets as, for example, downstream elements of a VEGF-G-mediated signalling pathway. 30

Alternatively, such VEGF-G-binding proteins are likely to be VEGF-G inhibitors.

- 70 -

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a VEGF-G protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a VEGF-G-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the VEGF-G protein.

In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cell-based or a cell free assay, and the ability of the agent to modulate the activity of a VEGF-G protein can be confirmed *in vivo*, *e.g.*, in an animal such as an animal model for angiogenesis, or for cellular transformation and/or tumorigenesis.

Cellular models for the study of angiogenesis include models of endothelial cell differentiation on Matrigel (Baatout, S. et al. (1996) Rom. J. Intern. Med. 34:263-269; Benelli, R et al. (1999) Int. J. Biol. Markers 14:243-246), embryonic stem cell models of vascular morphogenesis (Doetschman, T. et al. (1993) Hypertension 22:618-629), the culture of microvessel fragments in physiological gels (Hoying, JB et al. (1996) In Vitro Cell Dev. Biol. Anim. 32: 409-419; US Patent No. 5.976,782), and the treatment of endothelial cells with atherogenic and angiogenic factors including growth factors and cytokines (e.g., IL-1β, PDGF, TNFα, VEGF), homocysteine, and LDL. In vitro angiogenesis models are described in. for example, Black, AF et al. (1999) Cell Biol. Toxicol. 15:81-90.

10

15

20

- 71 -

Animal based models of cellular proliferative diseases, e.g., tumorigenesis, are well known in the art, and include, for example, non-recombinant and engineered transgenic animals. Models for studying tumorigenesis in vivo include carcinogeninduced tumors, injection and/or transplantation of tumor cells into an animal, as well as animals bearing mutations in growth regulatory genes. Models for studying angiogenesis in vivo include tumor cell-induced angiogenesis and tumor metastasis (Hoffman, RM (1998-99) Cancer Metastasis Rev. 17:271-277; Holash, J et al. (1999) Oncogene 18:5356-5362; Li, CY et al. (2000) J. Natl Cancer Inst. 92:143-147), matrix induced angiogenesis (US Patent No. 5.382,514), the disc angiogenesis system (Kowalski, J. et al. (1992) Exp. Mol. Pathol. 56:1-19), the rodent mesenteric-window 10 angiogenesis assay (Norrby, K (1992) EXS 61:282-286), experimental choroidal neovascularization in the rat (Shen. WY et al. (1998) Br. J. Ophthalmol. 82:1063-1071), and the chick embryo development (Brooks, PC et al. Methods Mol. Biol. (1999) 129:257-269) and chick embryo chorioallantoic membrane (CAM) models (McNatt LG et al. (1999) J. Ocul. Pharmacol. Ther. 15:413-423; Ribatti, D et al. (1996) Int. J. Dev. Biol. 40:1189-1197), and are reviewed in Ribatti, D and Vacca, A (1999) Int. J. Biol. Markers 14:207-213.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a VEGF-G modulating agent, an antisense VEGF-G nucleic acid molecule, a VEGF-G-specific antibody, or a VEGF-G-binding partner) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

15

20

25

30

B. Detection Assays

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

1. Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the VEGF-G nucleotide sequences, described herein, can be used to map the location of the VEGF-G genes on a chromosome. The mapping of the VEGF-G sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease. The VEGF-G gene has been mapped to human chromosome 11.

Briefly, VEGF-G genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the VEGF-G nucleotide sequences. Computer analysis of the VEGF-G sequences can be used to predict primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the VEGF-G sequences will yield an amplified fragment.

Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but human cells can, the one human chromosome that contains the gene encoding the needed enzyme, will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single

human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. (D'Eustachio P. et al. (1983) Science 220:919-924). Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.

5

10

15

20

25

30

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the VEGF-G nucleotide sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a VEGF-G sequence to its chromosome include *in situ* hybridization (described in Fan, Y. *et al.* (1990) *Proc. Natl. Acad. Sci. USA*, 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.

Fluorescence *in situ* hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical such as colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time. For a review of this technique, see Verma *et al.*. Human Chromosomes: A Manual of Basic Techniques (Pergamon Press. New York 1988).

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding

- 74 -

sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between a gene and a disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, for example, Egeland, J. et al. (1987) Nature, 325:783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the VEGF-G gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

20

25

30

10

15

2. Tissue Typing

The VEGF-G sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5.272.057).

- 75 -

Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the VEGF-G nucleotide sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue. The VEGF-G nucleotide sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO:1 or 10 can comfortably provide positive individual identification with a panel of perhaps 10 to 1.000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 or 12 are used, a more appropriate number of primers for positive individual identification would be 500-2.000.

10

15

20

If a panel of reagents from VEGF-G nucleotide sequences described herein is
used to generate a unique identification database for an individual, those same reagents
can later be used to identify tissue from that individual. Using the unique identification
database, positive identification of the individual, living or dead, can be made from
extremely small tissue samples.

15

20

25

30

3. Use of Partial VEGF-G Sequences in Forensic Biology

DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a perpetrator of a crime. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues. *e.g.*, hair or skin. or body fluids, *e.g.*, blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.

The sequences of the present invention can be used to provide polynucleotide reagents. *e.g.*, PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (*i.e.* another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of SEQ ID NO:1 or 10 are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents include the VEGF-G nucleotide sequences or portions thereof, *e.g.*, fragments derived from the noncoding regions of SEQ ID NO:1 or 10 having a length of at least 20 bases, preferably at least 30 bases.

The VEGF-G nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an *in situ* hybridization technique, to identify a specific tissue, e.g., a tissue containing endothelial cells. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such VEGF-G probes can be used to identify tissue by species and/or by organ type.

In a similar fashion, these reagents, e.g., VEGF-G primers or probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).

- 77 -

C. Predictive Medicine:

The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining VEGF-G protein and/or nucleic acid expression as well as VEGF-G activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant or unwanted VEGF-G expression or activity. The invention also provides for prognostic (or predictive) assays for 10 determining whether an individual is at risk of developing a disorder associated with VEGF-G protein, nucleic acid expression or activity. For example, mutations in a VEGF-G gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to 15 the onset of a disorder characterized by or associated with VEGF-G protein, nucleic acid expression or activity.

Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of VEGF-G in clinical trials.

These and other agents are described in further detail in the following sections.

20

25

30

1. Diagnostic Assays

An exemplary method for detecting the presence or absence of VEGF-G protein or nucleic acid in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting VEGF-G protein or nucleic acid (*e.g.*, mRNA. genomic DNA) that encodes VEGF-G protein such that the presence of VEGF-G protein or nucleic acid is detected in the biological sample. A preferred agent for detecting VEGF-G mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to VEGF-G mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length VEGF-G nucleic acid, such as the nucleic acid of SEQ ID NO:1, 3, 10 or 12, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length

10

15

20

25

and sufficient to specifically hybridize under stringent conditions to VEGF-G mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

A preferred agent for detecting VEGF-G protein is an antibody capable of binding to VEGF-G protein, preferably an antibody with a detectable label. Antibodies can be polyclonal. or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect VEGF-G mRNA. protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of VEGF-G mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of VEGF-G protein include enzyme linked immunosorbent assays (ELISAs). Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of VEGF-G genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of VEGF-G protein include introducing into a subject a labeled anti-VEGF-G antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a serum sample isolated by conventional means from a subject.

- 79 -

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting VEGF-G protein, mRNA, or genomic DNA, such that the presence of VEGF-G protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of VEGF-G protein, mRNA or genomic DNA in the control sample with the presence of VEGF-G protein. mRNA or genomic DNA in the test sample.

The invention also encompasses kits for detecting the presence of VEGF-G in a biological sample. For example, the kit can comprise a labeled compound or agent capable of detecting VEGF-G protein or mRNA in a biological sample: means for determining the amount of VEGF-G in the sample: and means for comparing the amount of VEGF-G in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect VEGF-G protein or nucleic acid.

15

20

25

30

10

5

2. Prognostic Assays

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant or unwanted VEGF-G expression or activity. As used herein, the term "aberrant" includes a VEGF-G expression or activity which deviates from the wild type VEGF-G expression or activity. Aberrant expression or activity includes increased or decreased expression or activity, as well as expression or activity which does not follow the wild type developmental pattern of expression or the subcellular pattern of expression. For example, aberrant VEGF-G expression or activity is intended to include the cases in which a mutation in the VEGF-G gene causes the VEGF-G gene to be under-expressed or over-expressed and situations in which such mutations result in a non-functional VEGF-G protein or a protein which does not function in a wild-type fashion. e.g., a protein which does not interact with a VEGF-G substrate. e.g., a VEGF receptor, or one which interacts with a non-VEGF-G substrate. As used herein, the term "unwanted" includes an unwanted phenomenon involved in a biological response such

- 80 -

as pain or deregulated cell proliferation. For example, the term unwanted includes a VEGF-G expression or activity which is undesirable in a subject.

The assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation in VEGF-G protein activity or nucleic acid expression, such as a cell proliferation and/or differentiation disorder. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disorder associated with a misregulation in VEGF-G protein activity or nucleic acid expression, such as a cell proliferation and/or differentiation disorder. Thus, the present invention provides a method for identifying a disease or disorder associated with aberrant or unwanted VEGF-G expression or activity in which a test sample is obtained from a subject and VEGF-G protein or nucleic acid (e.g., mRNA or genomic DNA) is detected, wherein the presence of VEGF-G protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant or unwanted VEGF-G expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) 20 to treat a disease or disorder associated with aberrant or unwanted VEGF-G expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a cell proliferation and/or differentiation disorder. Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant or 25 unwanted VEGF-G expression or activity in which a test sample is obtained and VEGF-G protein or nucleic acid expression or activity is detected (e.g., wherein the abundance of VEGF-G protein or nucleic acid expression or activity is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant or unwanted VEGF-G expression or activity). 30

10

15

The methods of the invention can also be used to detect genetic alterations in a VEGF-G gene, thereby determining if a subject with the altered gene is at risk for a disorder characterized by misregulation in VEGF-G protein activity or nucleic acid expression, such as a cell proliferation and/or differentiation disorder. In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a VEGF-G-protein, or the mis-expression of the VEGF-G gene. For example, such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from a VEGF-G gene: 2) an addition of one or more nucleotides to a VEGF-G gene; 3) a substitution of one or more nucleotides of a VEGF-G gene. 4) a chromosomal rearrangement of a VEGF-G gene; 5) an alteration in the level of a messenger RNA transcript of a VEGF-G gene, 6) aberrant modification of a VEGF-G gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a VEGF-G gene. 8) a non-wild type level of a VEGF-G-protein, 9) allelic loss of a VEGF-G gene, and 10) inappropriate posttranslational modification of a VEGF-G-protein. As described herein, there are a large number of assays known in the art which can be used for detecting alterations in a VEGF-G gene. A preferred biological sample is a tissue or serum sample isolated by conventional means from a subject.

10

20

30

In certain embodiments, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see. e.g., U.S. Patent Nos. 4.683.195 and 4.683.202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see. e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in the VEGF-G-gene (see Abravaya et al. (1995) Nucleic Acids Res .23:675-682). This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a VEGF-G gene under conditions such that hybridization and amplification of the VEGF-G-gene (if present) occurs, and

10

15

20

25

30

detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J.C. et al., (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878). transcriptional amplification system (Kwoh. D.Y. et al., (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P.M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a VEGF-G gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Patent No. 5.498.531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in VEGF-G can be identified by hybridizing a sample and control nucleic acids. e.g., DNA or RNA. to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin, M.T. et al. (1996) Human Mutation 7: 244-255; Kozal, M.J. et al. (1996) Nature Medicine 2: 753-759). For example, genetic mutations in VEGF-G can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, M.T. et al. supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array

10

15

20

25

30

that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the VEGF-G gene and detect mutations by comparing the sequence of the sample VEGF-G with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert ((1977) *Proc. Natl. Acad. Sci. USA* 74:560) or Sanger ((1977) *Proc. Natl. Acad. Sci. USA* 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) *Biotechniques* 19:448), including sequencing by mass spectrometry (see. *e.g.*, PCT International Publication No. WO 94/16101; Cohen *et al.* (1996) *Adv. Chromatogr.* 36:127-162; and Griffin *et al.* (1993) *Appl. Biochem. Biotechnol.* 38:147-159).

Other methods for detecting mutations in the VEGF-G gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type VEGF-G sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl Acad Sci USA 85:4397; Saleeba et al.

10

15

20

25

(1992) *Methods Enzymol*. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in VEGF-G cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu *et al.* (1994) *Carcinogenesis* 15:1657-1662). According to an exemplary embodiment, a probe based on a VEGF-G sequence, *e.g.*, a wild-type VEGF-G sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in VEGF-G genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (orita et al. (1989) Proc Natl. Acad. Sci USA: 86:2766, see also Cotton (1993) Mutat. Res. 285:125-144; and Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control VEGF-G nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).

In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When

DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) *Biophys Chem* 265:12753).

5

10

15

30

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki *et al.* (1986) *Nature* 324:163); Saiki *et al.* (1989) *Proc. Natl Acad. Sci USA* 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs *et al.* (1989) *Nucleic Acids Res.* 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) *Tibtech* 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini *et al.* (1992) *Mol. Cell Probes* 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) *Proc. Natl. Acad. Sci USA* 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing prepackaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a VEGF-G gene.

Furthermore, any cell type or tissue in which VEGF-G is expressed may be utilized in the prognostic assays described herein.

5

15

20

25

30

3. Monitoring of Effects During Clinical Trials

Monitoring the influence of agents (e.g., drugs) on the expression or activity of a VEGF-G protein (e.g., the modulation of cell growth, differentiation, migration, and/or apoptosis mechanisms) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase VEGF-G gene expression, protein levels, or upregulate VEGF-G activity, can be monitored in clinical trials of subjects exhibiting decreased VEGF-G gene expression, protein levels, or downregulated VEGF-G activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease VEGF-G gene expression, protein levels, or downregulate VEGF-G activity, can be monitored in clinical trials of subjects exhibiting increased VEGF-G gene expression, protein levels, or upregulated VEGF-G activity. In such clinical trials, the expression or activity of a VEGF-G gene, and preferably, other genes that have been implicated in, for example, a VEGF-G-associated disorder can be used as a "read out" or markers of the phenotype of a particular cell.

For example, and not by way of limitation, genes, including VEGF-G, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates VEGF-G activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on VEGF-G-associated disorders (e.g., disorders characterized by deregulated cell growth, differentiation and/or migration mechanisms), for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of VEGF-G and other genes implicated in the VEGF-G-associated disorder, respectively. The levels of gene expression (e.g., a gene expression pattern) can be quantified by northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of

activity of VEGF-G or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent.

Accordingly, this response state may be determined before, and at various points during treatment of the individual with the agent.

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) including the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a VEGF-G protein. mRNA. or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the VEGF-G protein, mRNA, or genomic DNA in the post-administration samples: (v) comparing the level of expression or activity of the VEGF-G protein. mRNA, or genomic DNA in the pre-administration sample with the VEGF-G protein, mRNA. or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of VEGF-G to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of VEGF-G to lower levels than detected. i.e. to decrease the effectiveness of the agent. According to such an embodiment. VEGF-G expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.

25

5

10

15

20

D. Methods of Treatment:

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant or unwanted VEGF-G expression or activity. With regards to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of

pharmacogenomics. "Pharmacogenomics", as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's "drug response phenotype", or "drug response genotype".) Thus, another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with either the VEGF-G molecules of the present invention or VEGF-G modulators according to that individual's drug response genotype. Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug-related side effects.

1. Prophylactic Methods

In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant or unwanted VEGF-G expression or activity, by administering to the subject a VEGF-G or an agent which modulates VEGF-G expression or at least one VEGF-G activity. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted VEGF-G expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the VEGF-G aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of VEGF-G aberrancy, for example, a VEGF-G. VEGF-G agonist or VEGF-G antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.

2. Therapeutic Methods

Another aspect of the invention pertains to methods of modulating VEGF-G expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method of the invention involves contacting a cell with a VEGF-G or agent that modulates one or more of the activities of VEGF-G protein

15

20

25

30

activity associated with the cell. An agent that modulates VEGF-G protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a VEGF-G protein (e.g., a VEGF-G substrate or receptor), a VEGF-G antibody, a VEGF-G agonist or antagonist, a peptidomimetic of a VEGF-G agonist or antagonist, or other small molecule. In one embodiment, the agent stimulates one or 5 more VEGF-G activities. Examples of such stimulatory agents include active VEGF-G protein and a nucleic acid molecule encoding VEGF-G that has been introduced into the cell. In another embodiment, the agent inhibits one or more VEGF-G activities. Examples of such inhibitory agents include antisense VEGF-G nucleic acid molecules. anti-VEGF-G antibodies, and VEGF-G inhibitors. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a VEGF-G protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) VEGF-G expression or activity. In another embodiment, the method involves administering a VEGF-G protein or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted VEGF-G expression or activity. 20

Stimulation of VEGF-G activity is desirable in situations in which VEGF-G is abnormally downregulated and/or in which increased VEGF-G activity is likely to have a beneficial effect. For example, stimulation of VEGF-G activity is desirable in situations in which a VEGF-G is downregulated and/or in which increased VEGF-G activity is likely to have a beneficial effect. Likewise, inhibition of VEGF-G activity is desirable in situations in which VEGF-G is abnormally upregulated and/or in which decreased VEGF-G activity is likely to have a beneficial effect.

3. Pharmacogenomics

30

The VEGF-G molecules of the present invention, as well as agents, or modulators which have a stimulatory or inhibitory effect on VEGF-G activity (e.g.,

- 1 -

SEQUENCE LISTING

<110> Millenium Pharmaceuticals, Inc. <120> A NOVEL VASCULAR ENDOTHELIAL GROWTH FACTOR FAMILY MEMBER AND USES THEREOF <130> MNI-124CPPC <140> <141> <150> USSN 09/343,671 <151> 1999-06-30 <160> 9 <170> PatentIn Ver. 2.0 <210> 1 <211> 3853 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (213)..(1322) <400> 1 gtcgacccac gcgtccggga agtgcggcac ccacacgcgc tcggaaagtt cagcatgcag 60 gaagtttggg gagagctcgg cgattagcac agcgacccgg gccagcgcag ggcgagcgca 120 ggcggcgaga gcgcagggcg gcgcggcgtc ggtcccggga gcagaacccg gctttttctt 180 ggagcgacgc tgtctctagt cgctgatccc aa atg cac cgg ctc atc ttt gtc Met His Arg Leu Ile Phe Val tac act cta atc tgc gca aac ttt tgc agc tgt cgg gac act tct gca 281 Tyr Thr Leu Ile Cys Ala Asn Phe Cys Ser Cys Arg Asp Thr Ser Ala acc ccg cag agc gca tcc atc aaa gct ttg cgc aac gcc aac ctc agg 329 Thr Pro Gln Ser Ala Ser Ile Lys Ala Leu Arg Asn Ala Asn Leu Arg 25 cga gat gag agc aat cac ctc aca gac ttg tac cga aga gat gag acc 377 Arg Asp Glu Ser Asn His Leu Thr Asp Leu Tyr Arg Arg Asp Glu Thr 40 atc cag gtg aaa gga aac ggc tac gtg cag agt cct aga ttc ccg aac 425 Ile Gln Val Lys Gly Asn Gly Tyr Val Gln Ser Pro Arg Phe Pro Asn 60 age tac eec agg aac etg etc etg aca tgg egg ett eac tet eag gag 473 Ser Tyr Pro Arg Asn Leu Leu Leu Thr Trp Arg Leu His Ser Gln Glu

80

85

75

GAP of: FrGcgManager_440_TFD0x.gUZ check: 9937 from: 1 to: 370 mVEGFG prot (analysis only) - Import - complete to: FrGcgManager_440_UFDxJGDT_ check: 429 from: 1 to: 370 h VEGFG prot (analysis only) - Import - complete Symbol comparison table: /prod/ddm/seqanal/BLAST/matrix/aa/BLOSUM62 CompCheck: 1102 Matrix made by matblas from blosum62.iij Gap Weight: 12 Average Match: 2.778 Length Weight: 4 Average Mismatch: -2.248 Length: 370 Quality: 1732 Gaps: 0 Ratio: 4.681 Percent Similarity: 89.730 Percent Identity: 84.865 Match display thresholds for the alignment(s): = IDENTITY : = 2 FrGcgManager_440_TFD0x.gUZ x FrGcgManager_440_UFDxJGDT_ 1 MQRLVLVSILLCANFSCYPDTFATPQRASIKALRNANLRRDESNHLTDLY 50 mouse TH: 1 1:1111 HOURS HILLIAM 1 MHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRDESNHLTDLY 50 human 51 QREENIQVTSNGHVQSPRFPNSYPRNLLLTWWLRSQEKTRIQLSFDHQFG 100 ંબ લેં લગોલાલાલાલા છે. લાંદે લગોલ 51 RRDETIQVKGNGYVQSPRFPNSYPRNLLLTWRLHSQENTRIQLVFDNQFG 100 101 LEEAENDICRYDFVEVEEVSESSTVVRGRWCGHKEIPPRITSRTNQIKIT 150 101 LEEAENDICRYDFVEVEDISETSTIIRGRWCGHKEVPPRIKSRTNQIKIT 150 151 FKSDDYFVAKPGFKIYYSFVEDFQPEAASETNWESVTSSFSGVSYHSPSI 200 151 FKSDDYFVAKPGFKIYYSLLEDFQPAAASETNWESVTSSISGVSYNSPSV 200 201 TDPTLTADALDKTVAEFDTVEDLLKHFNPVSWQDDLENLYLDTPHYRGRS 250 201 TDPTLIADALDKKIAEFDTVEDLLKYFNPESWQEDLENMYLDTPRYRGRS 250 251 YHDRKSKVDLDRLNDDVKRYSCTPRNHSVNLREELKLTNAVFFPRCLLVQ 300 251 YHDRKSKVDLDRINDDAKRYSCTPRNYSVNIREELKLANVVFFPRCLLVQ 300 301 RCGGNCGCGTVNWKSCTCSSGKTVKKYHEVLKFEPGHFKRRGKAKNMPLV 350 301 RCGGNCGCGTVNWRSCTCNSGKTVKKYHEVLQFEPGHIKRRGRAKTMALV 350 351 DIQLDHHERCDCICSSRPPR 370 351 DIQLDHHERCDCICSSRPPR 370

4 5 1	TTTAAGTCTGATGACTACTTTGTGGCAAAACCTGGATTCAAGATTTATTA	50	0
	TTCATTTGTGGAAGATTTCCAACCGGAAGCAGCCTCAGAGACCAACTGGG		
	TTCATTTGTGGAAGATTTCCAACCGGAAGCAGCTCAGAGATCTCTTGTTGTGGAAGATTTCCAACCGGCAGCAGCTTCAGAGACCAACTGGG		
551	AATCAGTCACAAGCTCTTTCTCTGGGGTGTCCTATCACTCTCCATCAATA	60	0
551		60	0
601	ACGGACCCCACTCTCACTGCTGATGCCCTGGACAAACTGTCGCAGAATT	65	0
601		65	50
651	CGATACCGTGGAAGATCTACTTAAGCACTTCAATCCAGTGTCTTGGCAAG	70	00
651	TGATACAGTGGAAGATCTGCTCAAGTACTTCAATCCAGAGTCATGGCAAG	70	00
701	ATGATCTGGAGAATTTGTATCTGGACACCCCTCATTATAGAGGCAGGTCA	7	50
701	AAGATCTTGAGAATATGTATCTGGACACCCCTCGGTATCGAGGCAGGTCA	7	50
751	TACCATGATCGGAAGTCCAAAGTGGACCTGGACAGGCTCAATGATGTGTGT	8	00
751		8	00
801	CAAGCGTTACAGTTGCACTCCCAGGAATCACTCTGTGAACCTCAGGGAGG	8	50
801		8	50
851	AGCTGAAGCTGACCAATGCAGTCTTCTTCCCACGATGCCTCCTCGTGCAG	9	00
851	AGCTGAAGTTGGCCAATGTGGTCTTCTTTCCACGTTGCCTCCTCGTGCAG	9	00
901	CGCTGTGGTGGCAACTGTGGTTGCGGAACTGTCAACTGGAAGTCCTGCAC	9	50
901		9	50
951	L ATGCAGCTCAGGGAAGACAGTGAAGAAGTATCACGAGGTATTGAAGTTTG	1	.000
100:	AGCCTGGACATTTCAAGAGAAGGGGCAAAGCTAAGAATATGCCTCTTGTT	r : 	1050
	1 AGCCTGGCCACATCAAGAGGAGGGGTAGAGCCAAGACCAAGGCTCAAGA		
105	1 GATATCCAGCTGGATCATCATGAGCGATGTGACTGTATCTGCAGCTCAAC	3 : 	1100
105	1 GACATCCAGTTGGATCACCATGAACGATGCGATTGTATCTGCAGCTCAA	3	110
110	1 ACCACCTCGA 1110		
110	1 ACCACCTCGA 1110		

16/18

```
GAP of: FrGcgManager_439_OFD8yopr_ check: 718 from: 1 to: 1110
mVEGFG ORF (analysis only) - Import - complete
to: FrGcgManager_439_PFD0SGVzu check: 2855 from: 1 to: 1110
h VEGFG ORF (analysis only) - Import - complete
Symbol comparison table: /ddm_local/gcg/gcg_9.1/gcgcore/data/rundata/nwsgapdna.cmp
CompCheck: 8760
    Gap Weight: 12 Average Match: 10.000
Length Weight: 4 Average Mismatch: 0.000
                           Length: 1110
        Quality: 9500
Ratio: 8.559
                             Gaps:
Percent Similarity: 85.586 Percent Identity: 85.586
     Match display thresholds for the alignment(s):
              = IDENTITY
                 5
FrGcgManager_439_OFD8yopr_ x FrGcgManager_439_PFD0SGVzu
     1 ATGCAACGGCTCGTTTTAGTCTCCATTCTCCTGTGCGCGAACTTTAGCTG 50
                                              mouse
    human
    101 GCAATGCCAACCTCAGGAGAGATGAGAGCAATCACCTCACAGACTTGTAC 150
      101 GCAACGCCAACCTCAGGCGAGATGAGAGCAATCACCTCACAGACTTGTAC 150
   151 CAGAGAGAGAACATTCAGGTGACAAGCAATGGCCATGTGCAGAGTCC 200
   201 TCGCTTCCCGAACAGCTACCCAAGGAACCTGCTTCTGACATGGTGGCTCC 250
   251 GTTCCCAGGAGAAACACGGATACAACTGTCCTTTGACCATCAATTCGGA 300
        251 ACTCTCAGGAGAATACACGGATACAGCTAGTGTTTGACAATCAGTTTGGA 300
   301 CTAGAGGAAGCAGAAAATGACATTTGTAGGTATGACTTTGTGGAAGTTGA 350
       301 TTAGAGGAAGCAGAAAATGATATCTGTAGGTATGATTTTGTGGAAGTTGA 350
   351 AGAAGTCTCAGAGAGCAGCACTGTTGTCAGAGGAAGATGGTGTGGCCACA 400
   401 AGGAGATCCCTCCAAGGATAACGTCAAGAACAAACCAGATTAAAATCACA 450
       401 AGGAAGTTCCTCCAAGGATAAAATCAAGAACGAACCAAATTAAAATCACA 450
```

```
Searching for complete domains in SMART
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
_____
                     /ddm/robison/smart/smart/smart.all.hmms
/prod/ddm/wspace/orfanal/oa-script.3303.seq
HMM file:
Sequence file: /prod/ddm/wspace/orfanal/oa-script.33
 Query: mouseT274_VEGF_
Scores for sequence family classification (score includes all domains):
                                                      Score E-value N
Model Description
                                                      _____
                                                              _____
                                                      97.8
                                                             2.1e-25 1
CUB_2
                                                       5.2
                                                             0.002 1
PDGF_2
Parsed for domains:
Model Domain seq-f seq-t hmm-f hmm-t
                                             score E-value
       _____
                              -----
                                              97.8 2.1e-25
CUB_2 1/1 54 170 .. 1 144 [] PDGF_2 1/1 271 364 .. 1 91 []
                                             97.8 2.1e-25
5.2 0.002
Alignments of top-scoring domains:
CUB_2: domain 1 of 1, from 54 to 170: score 97.8, E = 2.1e-25
                  *->CGgtltasssDfkesGtitSPnYPnspsgesYpnnleCvWtIsappG
                      + +t + G+++SP +Pns Yp+nl +W ++ +
                     ENIQVTSN-----GHVQSPRFPNS----YPRNLLLTWWLRSQEK 88
  mouseT274_
                  yrieLkFtdhdkFdlEssdndgggrfvpeCryDyveiyDGpsktsspllG
                   ri+L+F++ F lE +nd CryD+ve+ + ++ ss+++
               89 TRIQLSFDHQ--FGLEEAENDI-----CRYDFVEVEEVSE--SSTVVR 127
  mouseT274_
                  ntearfCGse..p.iisSssNsmtvtFvsDssvqgkgktkrGFsarYsav
                     r CG+++ p+ i+S +N++ +tF+sD k GF+++Ys+v
              128 G---RWCGHKeiPpRITSRTNQIKITFKSDDYFVA----KPGFKIYYSFV 170
  mouseT274_
                  <-*
  mouseT274_
PDGF_2: domain 1 of 1, from 271 to 364: score 5.2, E = 0.002
                  {\tt *->seCkPRevvVevseeypdetsAnflfkPpCVtVkRCgGCCNdegLe}\,.
                      C PR V + ee+ + t n f P+C V+RCgG C+ +
                     -SCTPRNHSVNLREEL-KLT--NAVFFPRCLLVQRCGGNCGCGTVNw 313
  mouseT274_
              271
                   ... \texttt{CvPtetsnrlVtm..qlleIsr....} kkpsssgpelvevsfee \texttt{HtkCe}
                   ++C+ ++ V++ +++1+ +++ +++ 1v + + H +C+
              314 ksCTCSSGKT--VKKyhEVLKFEPghfkRRGKAKNMPLVDIQLDHHERCD 361
  mouseT274_
                  CrP<-*
                   C+
             362 CIC
                        364
  mouseT274_
```

E 25000 W

```
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
/prod/ddm/seqanal/PFAM/pfam5.2/Pfam
HMM file:
Sequence file: /prod/ddm/wspace/orfanal/oa-script.33
                      /prod/ddm/wspace/orfanal/oa-script.3303.seq
Query: mouseT274_VEGF_
Scores for sequence family classification (score includes all domains):
                                                 Score E-value N
Model Description
                                                  ----
                                                  90.6 3.2e-23 1
            CUB domain
CUB
Parsed for domains:
     Domain seq-f seq-t hmm-f hmm-t score E-value
Model
_____
            1/1 53 167 .. 1 116 [] 90.6 3.2e-23
CUB
Alignments of top-scoring domains:
CUB: domain 1 of 1, from 53 to 167: score 90.6, E = 3.2e-23
                 *->CGgtldltessGsisSPnYPnrsdYppnkeCvWrIrappgyrvVeLt
                     +++ +s+G+ +SP +Pn +Yp+n+ +W +r ++ r ++L+
                   -EENI-QVTSNGHVQSPRFPN--SYPRNLLLTWWLRSQEKTR-IQLS 94
 mouseT274_
                 Fqd.FdlEdhdgapCryDyvEirDGdpss.pllGrfCG.sgkPedirSts
                 F+++F lE+ ++ CryD+vE+ + +ss+ ++Gr CG++++P+ i+S +
              95 FDHQFGLEEAENDICRYDFVEVEEVSESSTVVRGRWCGhKEIPPRITSRT 144
 mouseT274_
                nrmlikFvs.DasvskrGFkAty<-*
                 n+ i+F+s+D v+k GFk++y
                                         167
             145 NQIKITFKSdDYFVAKPGFKIYY
  mouseT274_
```

FIGURE 9A

r	•
5	_
FINCE	
Ç	
Q	į
	Y
*	1
•	1

2834 2534 2594 2654 2774 2894 2954 3014 3074 2414 2474 2714 2294 2354 aggatgatgc gtggaggcac agtgagttaa acaggaagtt taacttggtt aactgattta tgtgcatagg cacatatatt taaaattaaa ctaatttgca cttactcact ttttcaata aaaagtgggt tggaatattt acatgatatt tattacacat aaataagcaa tttctatctt tgcttactga tttctgaatc tagattgcta ttaagactgt taagccaggc agaaagtcag gtctacattt tgctcttgca caagctatca gatttttagg gagtccagaa gaagtcaagt tagaaaagaa aaatgattat cagctaagtt cggccgc agttctactt caatgagaag aaatgaaatg aaaaaaaggg ttcaggaaga ttctgtgttt ctatatgaga caactagagc tttttgttct taaagagatt agggaatcct gcctttagag aagtgttttg tatacacact aacaaatctg aaaatcaaaa gtttgataag ataactgtaa ccaaaaaaa tggtgcctct atatcttttc tgccacagaa ctcctataaa tctgcagaaa agcaagtgtt actggaaagc aatgtttagg cctgagcaca ctgtgtgctc ccaataattt ttatattgtg attaacaaaa ttttcttcct atgaatagct attacctgcc catggcaaga caaatgggct cagatcaatc gtggtgataa gaaactatat ccaacactac ctgatgtcag ttgtcaagca gaaacaatgg ctgctgttcc ctccaaacaa aagttatcag tatgcagtca aactggaaat acacatgaac atatttatgt ctaaactgtg atatggtagt tgtctaaacc ctaaaggttc cccttttgt tagtatattg gageetttaa caaaaatctt ttcaatatat atagcctaaa agatttggtc gtttccccag gctcattgtt ctgctactag ttcggtgagt agetteetgt aaccttctag atgitgacal

tct Ser	cca Pro	tca Ser	ata Ile 200	acg Thr	gac Asp	ccc Pro	act Thr	ctc Leu 205	act Thr	gct Ala	gat Asp	gcc Ala	ctg Leu 210	gac Asp	aaa Lys	800
act Thr	gtc Val	gca Ala 215	gaa Glu	ttc Phe	gat Asp	acc Thr	gtg Val 220	gaa Glu	gat Asp	cta Leu	ctt Leu	aag Lys 225	cac His	ttc Phe	aat Asn	848
cca Pro	gtg Val 230	tct Ser	tgg Trp	caa Gln	gat Asp	gat Asp 235	ctg Leu	gag Glu	aat Asn	ttg Leu	tat Tyr 240	ctg Leu	gac Asp	acc Thr	cct Pro	896
cat His 245	tat Tyr	aga Arg	ggc Gly	agg Arg	tca Ser 250	tac Tyr	cat His	gat Asp	cgg Arg	aag Lys 255	tcc Ser	aaa Lys	gtg Val	gac Asp	ctg Leu 260	944
gac Asp	agg Arg	ctc Leu	aat Asn	gat Asp 265	gat Asp	gtc Val	aag Lys	cgt Arg	tac Tyr 270	agt Ser	tgc Cys	act Thr	ccc Pro	agg Arg 275	aat Asn	992
cac His	tct Ser	gtg Val	aac Asn 280	ctc Leu	agg Arg	gag Glu	gag Glu	ctg Leu 285	aag Lys	ctg Leu	acc Thr	aat Asn	gca Ala 290	gtc Val	ttc Phe	1040
ttc Phe	cca Pro	cga Arg 295	tgc Cy s	ctc Leu	ctc Leu	gtg Va l	cag Gln 300	cgc Arg	tgt Cys	ggt Gly	ggc	aac Asn 305	tgt Cys	ggt Gly	tgc Cys	1088
gga Gly	act Thr 310	Val	aac Asn	tgg Trp	aag Lys	tcc Ser 315	tgc Cys	aca Thr	tgc Cys	agc Ser	tca Ser 320	GIA	aag Lys	aca Thr	gtg Val	1136
aag Lys 325	Lys	tat Tyr	cac His	gag Glu	gta Val 330	Leu	aag Lys	ttt Phe	gag Glu	Pro 335	GIY	cat His	ttc Phe	aag Lys	aga Arg 340	1184
agg Arg	ggc	aaa Lys	gct Ala	aag Lys 345	Asn	atg Met	cct Pro	ctt Lev	gtt Val 350	Asp	ato Ile	caç Glr	ctg Lev	gat Asp 359	cat His	1232
cat His	gag Glu	g cga	tgt Cys 360	aA :	tgt Cys	ato Ile	tgo Cys	ago Ser 365	Ser	aga : Arg	a cca	a cct	c cga c Arg 370	3		1274
taa	aaca	icta	tgca	acato	etg t	actt	tgai	tt at	gaaa	agga	c ct	ttag	gtta	caa	aaccct	1334
336		-t+c	taat	ctca	agt (rcaat	cgaal	ta ca	atatg	ggaaa	a tg	ctgc	tttg	CCa	gegeeat	1394 1454
ggo	aaga	aga	agca	aaata	atc a	atta:	attt(ct al	tatac	cata: atoa:	a ac c ta	acag gctc	yaa: tato	tat	cttatca gtaaata	1514
	+	atac	+++;	atte	agt a	atati	ttac	to a	agtc	CCCL	a ga	ggca	aacg	ata	ctacting	1574
		ract	222	ataad	aaa a	aato	tatc	aa 🕫	cata	taaa	a ta	CCCC	tcaa	aaa	LLCadaa	1634
			++~		act :	ttat	atga	ca a	aata	tatc	a ga	てててて	gctc	acc	caaagaa	1694 1754
		tata	03 t		toa .	AAGA	t.aaa	ac t	ttct	tctq	t gt	acaa	atct	aat	Laryrya	1814
aga	caa	atac	ata	gttt	ctg '	gcaa ggae	caaa agtt	at t	aayc atct	atct	.c ca	caac	tatq	cca	tgagatg aagtaat	1874
20		+2++	tea	caat	caa ·	otca	atca	aq t	catt	aagt	C CT	CLLC	catg	cac	Cttttta	1934
25	*^-2	acta	agt.	aact	gag	CACC	cttc	tc a	atga	attg	C CC	aggg	raccc	gra	gigalaa	1994
tt	ggca	agag	ata	ttca	ata	ggca	agca	at a	ggtt	gctg	t ag	aatt	tttg	aat	tttttt	2054

ALIGN c	alculates	a global	alignmen	t of two s	equences	1989)			
versio	n 2.0uPlea		Myers an	d willer.	CABIOS (370 aa vs.			
•	VEGE:	- Ç				345 aa			
, T128	a.a.					J.5			
	matrix: P	am120.ma	t, gap pe	naitles:	T2/-4				
42.4% i	dentity;	G	lobal all	gnment sco	Jie. GII				
				20	40	50	60	70	
	10	_	20	30	TODDESM			VOSPREP	VEGF-G
inputs	MHRLIFVYTL	ICANFCSC.	RDTSATPQS	: : · · ·	· · ·		: : ::	: : : : :	72002
	: .: :			ILSSKFQFSSI	VKEONG	VODP-OHERI	ITVSTNGS	IHSPRFP	T128
	MSLFGLLI			30	40) 5	0	60	
		10	20	30		,	-		
			90	100	110	120	130		
	80 NSYPRNLLLT) 	90 ************************************	MORGLEFAE	ADICEADEA	EVEDISETS?	TIRGRWCG	HKEVPPR	
inputs	NSYPRNLLL	WKLHS-QE	MIRIQUE	: : :		::::. ::		:: .	
	::::	. : : : :	NAMES TO THE	DERFGLEDPE	DDICKYDF	EVEEPSD-G1	TIL-GRWCG	SGTVPGK	
		80 WKTAWAFE	90	100	13	10 3	120	130	
	70	80	30						
_		50	160	170	180	190	200		
1	40 1! IKSRTNQIK	-	MAKDGEKT.	YYSLLEDFOP	AAASETNWI	ESVTSSISGV	SYNSPSVTD	PTLIADA	
inputs							•		
	:. :::.	TPEVSDEY	PSEPGFCI	HYNIVMP	QFT1	EAVSPSV	LPP	SALPLDL	
	QISKGNQIK.	150		60	1	70	1	.80	
	140								
_	10 2	20	230	240	250	260	270		
			FNPESWOED	LENMYLDTPR	YRGRSY-H	DRKSKV-DLD	RLNDDAKRY	SCTPRNY	
inputs									
	INNATTAFS	TLEDLIRY	LEPERWOLD	LEDLYRPTWO	LLGKAFVF	GKV2K A ADIM		.50111011	
	190	200	210	220	23	0 24	0 2	250	
								_	
	280	290	300	310	320	330	340		
inputs	SVNIREELE	LANVVFFP	RCLLVQRCG	GNCGCGTVN	RSCTCNSG	KIVKKYHEVL	QFEPGHIK	REGRANIM	
	SVSIREELE	RIDIIFWP	GCLLVKRCC	GNCACCLHN	THE COC A PS	KALKKAHEAT	ÖTKbV	320	
	260	270	280	290	30	00 31	.0	320	
	350	360	370						
input	s ALVDIQLD	HERCDCIC	SSRPPR		•				
	.:.:. :.	::: :::::							
	SLTDVALE								
	330	34	10						

A1 TON .		e e a alob	hal aligne	nent:of two	sequences				
version o	on 2.0uP	lease Cl	te: Myers	and Miller	, CABIOS ((1989)			
,		GF-G	•			.110 aa vs			
+ T128						אה פנני.			
	-			penalties.		700			
51.9%	identity.	<i>:</i>	Globa	l alignment	score: 1	/96			
		10	20	30	40	50	60		
inputs	ATGCACCO	GCTCAT-		CACTCTAATCT	CCCAAACTT	TTGCAGCTG	TCGGGAC	CTT-CT	VEGF-G
211,6222		::.	::: ::::	: ::::	:: ::	:::	.: :::::	· : · · · ·	
	ATGAGCC			TGACATCT					™128
		10	20	30	40	50	60	,	
	70	80	90	100	110	120	13	10	
inputs	GCAACCC			AVAGCTTTGCG					
Jp	: :.::	: . : : :	: :	:	::::	:	.: :::.:	::: .:	
				CAGTTTTC-					
	70	80	90	1	00	110	120	130	
	140	15	0 16	50 17	0 18	30 1	90 ;	200	
inputs	CTCA-CA	GACTIGTA	CCGAAGAGA	TGAGACCATCC		GAAACGGCTA	CGTGCAGAG	CCTAGA	
	::	:.:	.:	:::::: : :	: : . : : :	::. :	:	::.::.	
				TGTGTC TAC				- CCAAGG	
		140	150	160	170	18			
	210	22	0 2:	30 24	0	250	260	270	
inputs	TTCCCGA	ACAGCTAC	CCCAGGAAC	CTGCTCCTGAC	ATGGCGGCT	TCACTCTC	-AGGAGAAT	ACACGGA	
		: : ::	:: :::::	: :: ::.	:::: :. :	: .:. :	:::::::	. : :::	
				ACGGTCTTGGT	ATGGAGATT.	agtagcagta			
	190					246	. 25	^	
		200	210	220	230	240) 25	0	
	2	90	290	300	310	320	330	340	
inputs	2 TACAGCT	80	290 JACAATCAGT	300 TTGGATTAGAC	310 KGAAGCAGAA	320 AATGATATC	330 TGTAGGTATG	340 ATTTGT	
inputs	2 TACAGCT	80	290 IACAATCAGT	300 TIGGATTAGAC	310 GAAGCAGAA	320 AATGATATCI	330 CGTAGGTATG	340 ATTTTGT	
inputs	2 TACAGCT :::::: TACAACT	:80 PAGIGITIO :::::	290 BACAATCAGT :: .:: BATGAAAGAT	300 TIGGATTAGAC	310 GAAGCAGAA .:: :::::	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 TGTAGGTATG ::::::::: IGCAAGTATG	340 ATTITGT ::::::	
inputs	2 TACAGCT	80	290 IACAATCAGT	300 TIGGATTAGAC	310 GAAGCAGAA	320 AATGATATCI .::::::::::::::::::::::::::::::::::::	330 TGTAGGTATG ::::::::: IGCAAGTATG	340 ATTITGT ::::::	
-	TACAGCT TACAGCT TACAACT 260	280 PAGIGITIO 11. ::::: PTACGITIO 270	290 HACAATCAGT :: .:: HATGAAAGAT 280	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 CGAAGCAGAA :::::::: AGACCCAGAA 300	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 TGTAGGTATG :::::::: TGCAAGTATG 0 32	340 ATTITIGT :::::: ATTITIGT 0	
-	TACAGCT TACAGCT TACAACT 260	280 PAGIGITIO 11. ::::: PTACGITIO 270	290 HACAATCAGT :: .:: HATGAAAGAT 280	300 TTGGATTAGAC :::::::::: TTGGGCTTGAI 290 370 CCAGTACCATT	310 GAAGCAGAA :::::::: AGACCCAGAA 300 380 ATTAGAGGAC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 TGTAGGTATG ::::::::: TGCAAGTATG 0 32 400 GACACAAGG	340 ATTITGT :::::: ATTITGT 0 410 A-AGTICC	
-	TACAACT 260	270	290 IACAATCAGT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 CGRAGCAGAA :::::::: AGACCCAGAA 300 380 ATTAGAGGAC	320 AATGATATCT GATGACATA: 310 390 XXATGGTGTG	330 RGTAGGTATG RGCAAGTATG 32 400 GACACAAGGE	340 ATTITIGT :::::: ATTITIGT 0 410 A-AGTTCC	
-	TACAGCT TACAACT 260 GGAAGTT AGAAGT	PAGGGTTTG 270 350 RGAAGATAT	290 BACAATCAGT SATGAAAGAT 280 360 TATCCGAAAC SSICCAAAC	300 TTGGATTAGAC :::::::::: TTGGGCTTGAI 290 370 CCAGTACCATT::::::::::::::::::::::::::::::::::	310 CGRAGCAGAA .::::::: AGACCCAGAA 300 380 ATTAGAGGAC ::::::::	320 AATGATATCT GATGACATAT 310 390 XXATGGTGTG	330 RGTAGGTATG RGCAAGTATG 32 400 GACACAAGGE	340 ATTITIGT :::::: ATTITIGT 0 410 A-AGTTCC	
-	TACAACT 260	PAGGGTTTG 270 350 RGAAGATAT	290 IACAATCAGT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 CGRAGCAGAA :::::::: AGACCCAGAA 300 380 ATTAGAGGAC	320 AATGATATCT GATGACATA: 310 390 XXATGGTGTG	330 RGTAGGTATG RGCAAGTATG 32 400 GACACAAGGE	340 ATTITIGT :::::: ATTITIGT 0 410 A-AGTTCC	
inputs	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGTT 330	280 PAGTGTTTG 270 250 RGAAGATAT	290 BACAATCAGT STATGAAAGAT 280 360 BATCCGAAAC STATCCGAAAC STATCCGAAAC	300 TTGGATTAGAC ::::::::::: TTGGGCTTGAI ::::::::::::::::::::::::::::::::::::	310 GGAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGGGC 360 450	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG :::::::: rGCAAGTATG 0 32 400 GACACAAGGF :.:::::: GT-TCTGGTX 380	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC :::::: ACTGTACC	
inputs	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGTT 330	280 PAGTGTTTG 270 250 RGAAGATAT :::::: TGAGGA 420 GATAAAAT	290 BACAATCAGT STATGAAAGAT 280 360 BATCCGAAAC STATCCGAAAC STATCCGAAAC ACCCAGTGA	300 TTGGATTAGAC :::::::::: TTGGGCTTGAI ::::::::::::::::::::::::::::::::::::	310 GARGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGGGC 360 450 ATCACATTC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG :::::::: rGCAAGTATG 0 32 400 GACACAAGGF :.:::::: GT-TCTGGTX 380 470 ACTACTTTG	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC :::::: ACTGTACC	
inputs	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGTT 330	PAGGGTTTG 270 350 RGAGGATAN HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA	290 BACAATCAGT SATGAAAGAT 280 360 TATCCGAAAC SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	300 TTGGATTAGAC ::::::::::: TTGGGCTTGAI 290 370 CCAGTACCATT. :::::::::::::::::::::::::::::::::::	310 CGAAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGAGGAC 360 450 ATCACATTC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG :::::::: rGCAAGTATG 0 32 400 GACACAAGGA :.::::::::::::::::::::::::::::::::	340 ATTITIST :::::: ATTITIST 0 410 A-AGTTCC ::::: ACTITIACC	
inputs	TACAGCT TACAACT 260 GGAAGTT AGAAGTT 330 TCCAAGCT AGGAAAA	PAGGGTTTG 270 350 RGAAGATAT :::::: TGAGGA 420 GATAAAAT ACAGATTT	290 BACAATCAGT STATGAAAGAT 280 360 TATCCGAAAC STATCCGAAAC STAAACGAA	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 CGAAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGGGC 360 450 ATCACATTC	320 AATGATATCT GATGACATAT 310 390 XATGGTGTGG 370 460 AAGTCCGATG	330 IGTAGGTATG :::::::: IGCAAGTATG 0 32 400 GACACAAGGA :.::::::: GT-TCTGGTA 380 470 ACTACTTG::::::::	340 ATTITIST :::::: ATTITIST 0 410 A-AGTTCC ::::: ACTITIACC	
inputs	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGTT 330	PAGGGTTTG 270 350 RGAGGATAN HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA HGAGGA	290 BACAATCAGT SATGAAAGAT 280 360 TATCCGAAAC SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	300 TTGGATTAGAC ::::::::::: TTGGGCTTGAI 290 370 CCAGTACCATT. :::::::::::::::::::::::::::::::::::	310 CGAAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGAGGAC 360 450 ATCACATTC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG :::::::: rGCAAGTATG 0 32 400 GACACAAGGA :.::::::::::::::::::::::::::::::::	340 ATTITIST :::::: ATTITIST 0 410 A-AGTTCC ::::: ACTITIACC	
inputs	TACAGCT TACAACT 260 GGAAGTT AGAAGTT 330 S TCCAAGC AGGAAAA 390	PAGGGTTTG 270 250 RGAAGATAT HIGAGGA 420 GATAAAAT ACAGATTT 400	290 BACARTCAGT STATGAAAGAT 280 360 BATCCGAAAC STATCCGAAAC STATCCGAAC STATCCGAAAC STATCCGAAC STATCCCAAC STATCCGAAC STATCCGAAC STATCCGAAC STATCCGAAC STATCCGAAC STATCCCAAC STATCCAAC STATCCCAAC STATCCAAC STATCCAAC STATCCCAAC STATCCAAC	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC .:. ::::: ATATTAGGGC 360 450 ATCACATTC .:: :::: ATAAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAG	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG :::::::: rGCAAGTATG 0 32 400 GACACAAGGF :.:::::: GT-TCTGGTA 380 470 ACTACTITG 1:::::: RATATITIC 450	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC :::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA	
inputs	TACAGCT TACAACT 260 GGAAGTT AGAAGTT 330 S TCCAAGC AGGAAAA 390	PAGGGTTTG 270 250 RGAAGATAT HIGAGGA 420 GATAAAAT ACAGATTT 400	290 BACAATCAGT STATGAAAGAT 280 360 BATCCGAAAC STATCCGAAAC STATCCGAAAC CAAGAACGAAC CAAGAACGAAC CAAGAACGAAC	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC ATAAGAGTTT 430 520 GATTTCCAAC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG ::::::: IGCAAGTATG 0 32 400 GACACAAGGF :.::::: 380 470 ACTACTITG :::::: IAATATITIC 450 540 TTCAGAGAGA	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC ::::: ACTGTACC 480 AGGCTAAA ::::: CTTCTGAA	
inputs	TACAGCT TACAACT 260 GGAAGTT .::::: AGAAGT 330 B TCCAAGC .:: AGGAAA	PAGGATATA TAGAGATATA TAGAGATATA TAGAGATATATA TAGAGATATATAT	290 BACARTCAGT :: .: .:: BATGARAGAT 280 360 FATCCGARAC :::ACCCAGTGF 340 430 CARGARCGAI :::: .:: CTARAGGAN 410 500 TTATTATTC	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC 430 520 GATTTCCAAC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG :::::::: IGCAAGTATG 0 32 400 GACACAAGGP :.::::::: GT-TCTGGT/ 380 470 ACTACTITG: 450 540 TTCAGGAGAC	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC ::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA	
input:	TACAGCT TACAACT TACAACT 260 GGAAGTT .::::: AGAAGT 330 S TCCAAGC .:: AGGAAA 390	PAGTGTTTG 270 350 RGAAGATAT 111.11 1GAGGA 420 GATAAAAT 400 490 TTCAAGAT TTCTG	290 BACARTCAGT :: .: .:: BATGARAGAT 280 360 FATCCGARAC :::ACCCAGTGF 340 430 CARGARCGAI :::: .:: CTARAGGAN 410 500 TTATTATTC	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GAAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC :::::: ATAGAGTTT 430 520 GATTTCCAAC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 rGTAGGTATG ::::::: rGCAAGTATG 0 32 400 GACACAAGGA :.:::: GT-TCTGGTA 380 470 ACTACTTTG :::::: RATATTTTC 450 540 TTCAGGGAC	340 ATTITIST 210 ALAGITCC ACTITACC 480 REGITAAA CITCIGAA 550 CAACTEGGAGCTGTG	
input:	TACAGCT TACAACT 260 GGAAGTT .::::: AGAAGT 330 B TCCAAGC .:: AGGAAA	PAGGATATA TAGAGATATA TAGAGATATA TAGAGATATATA TAGAGATATATAT	290 BACARTCAGT :: .: .:: BATGARAGAT 280 360 FATCCGARAC :::ACCCAGTGF 340 430 CARGARCGAI :::: .:: CTARAGGAN 410 500 TTATTATTC	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC 430 520 GATTTCCAAC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG :::::::: IGCAAGTATG 0 32 400 GACACAAGGP :.::::::: GT-TCTGGT/ 380 470 ACTACTITG: 450 540 TTCAGGAGAC	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC ::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA	
input:	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGT 330 S TCCAAGG .::. AGGAAA 390 CCAGGG 460	### 180 ***********************************	290 BACARTCAGT SICH STATEMENT STATEM	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA .:: ::::: AGACCCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC ::::::: ATTAGAGTTT 430 520 GATTTCCAAC :::::::: ATTGTCATG 490	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG :::::::: IGCAAGTATG 0 32 400 GACACAAGGF :.:::::: GT-TCTGGT/ 380 470 ACTACTITG 450 540 TTCAGAGAC :::::::: -TTCACAGA- 500 610	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC :::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA 550 CAACTGGG :::::: -AGCTGTG 510 620	
input:	TACAGCT TACAACT 260 GGAAGTT .:::::: AGAAGT 330 S TCCAAGG .::. AGGAAA 390 CCAGGG 460	### 180 ***********************************	290 BACARTCAGT SICH STATEMENT STATEM	300 TTGGATTAGAC :::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC 1:::::: ATTAGAGTTT 430 520 GATTTCCAAC 1:::::: CATTGTCATG 490 590 ATTAACTCTCC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG :::::::: IGCAAGTATG 0 32 400 GACACAAGGF :.::::: GT-TCTGGTA 380 470 ACTACTITG 450 540 TTCAGAGAC ::::::: -TTCACAGA- 500 610	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC :::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA 550 CAACTGGG :AGCTGTG 510 620	
input:	TACAGCT TACAACT 260 GGAAGTT AGAAGTT 330 S TCCAAGG .::: AGGAAAA 390 S CCTGGA :::: CCAGGG 460	######################################	290 BACAATCAGT SATGAAAGAT 280 360 BATCCGAAAC SISSAC 340 430 CAAGAACGAI SOO TTATTATTC SOO TTATTATTC	300 TTGGATTAGAC ::::::::::: TTGGGCTTGAI ::::::::::::::::::::::::::::::::::::	310 GGAAGCAGAA 300 380 ATTAGAGGAC 360 450 ATCACATTC :::::: ATAGAGATTT 430 520 GATTTCCAAC :::::: CATTGCCATG 490 ATAACTCTCC	320 AATGATATCT .:::::::::::::::::::::::::::::::::::	330 IGTAGGTATG ::::::: IGCAAGTATG 0 32 400 GACACAAGGF ::::::: GT-TCTGGTA 380 470 ACTACTITG :::::: IAATATITTC 450 540 TTCAGAGAC ::::::: -TTCACAGA- 500 610 GGATCCCACI	340 ATTITGT :::::: ATTITGT 0 410 A-AGTTCC ::::: ACTGTACC 480 RGGCTAAA ::::: CTTCTGAA 550 CAACTGGG ::::: -AGCTGTG 510 620	

gaattcccgg gtcgacccac gcgtccgagc gccagtaact gggcggccgg gacaacacag gcggtgaagg cgagggactg tgcagtagaa atccgccgac tcaacccttt gggctttatt tatttacttt tggagcaacg cgatccctag gtcgctgagc ccaa atg caa cgg ctc Met Gln Arg Leu 1													60 120 176			
											agc Ser					224
act Thr	ttt Phe	gcg Ala	act Thr	ccg Pro 25	cag Gln	aga Arg	gca Ala	tcc Ser	atc Ile 30	aaa Lys	gct Ala	ttg Leu	cgc Arg	aat Asn 35	gcc Ala	272
aac Asn	ctc Leu	agg Arg	aga Arg 40	gat Asp	gag Glu	agc Ser	aat Asn	cac His 45	ctc Leu	aca Thr	gac Asp	ttg Leu	tac Tyr 50	cag Gln	aga Arg	320
											gtg Val					368
											aca Thr 80					416
tcc Ser 85	cag Gln	gag Glu	aaa Lys	aca Thr	cgg Arg 90	ata Ile	caa Gln	ctg Leu	tcc Ser	ttt Phe 95	gac Asp	cat His	caa Gln	ttc Phe	gga Gly 100	464
cta Leu	gag Glu	gaa Glu	gca Ala	gaa Glu 105	aat Asn	gac Asp	att Ile	tgt Cys	agg Arg 110	tat Tyr	gac Asp	ttt Phe	gtg Val	gaa Glu 115	gtt Val	512
gaa Glu	gaa Glu	gtc Val	tca Ser 120	gag Glu	agc Ser	agc Ser	act Thr	gtt Val 125	gtc Val	aga Arg	gga Gly	aga Arg	tgg Trp 130	tgt Cys	Gly	560
cac His	aag Lys	gag Glu 135	atc Ile	cct Pro	cca Pro	agg Arg	ata Ile 140	acg Thr	tca Ser	aga Arg	aca Thr	aac Asn 145	cag Gln	att Ile	aaa Lys	608
atc Ile	aca Thr 150	ttt Phe	aag Lys	tct Ser	gat Asp	gac Asp 155	tac Tyr	ttt Phe	gtg Val	gca Ala	aaa Lys 160	cct Pro	gga Gly	ttc Phe	aag Lys	656
att Ile 165	tat Tyr	tat Tyr	tca Ser	ttt Phe	gtg Val 170	gaa Glu	gat Asp	ttc Phe	caa Gln	ccg Pro 175	gaa Glu	gca Ala	gcc Ala	tca Ser	gag Glu 180	704
acc Thr	aac Asn	tgg Trp	Glu	tca Ser 185	gtc Val	aca Thr	agc Ser	tct Ser	ttc Phe 190	tct Ser	Gly aaa	gtg Val	tcc Ser	tat Tyr 195	His	752

			520	530		54	10	550
			320				, 680	
	6	30	640	650	660 TACACTGGA	670 AGATOT - GO		AATCCAGA
inputs GO	SATGCTC	TGGACAAA	VVVV I.C	A SAATITGA	.::: ::::	::: :: :	rcaagractru	.:.::::
-	: :	: .: ::. ~~~~~~~~~~~	:: CTATAA	CTGCCTTTAC	TACCTTGGA	AGACCTTAT	rcgatatctt-	GAACCAGA .
T	ى	560	570	580	590	60	0 61	10
						7	40 75	50
690		700	710	720	730	` ТАТЭЭЭ Т~	CGAGGCAGGT(CATACC
inputs G	TCATGGC	AAGAAGAT	CTTGAGA	ATATGTATC	IGGACACCCC	: ::	CGAGGCAGGT(: . : .
:	. :::::	: ::	::: :::	: :: :::	TAGGCCAACT	TGGCAACTT	CTTGGCAAGG	CTTTTGTTT
	AGATGGC 20	A-GTTGGA 630	(CII-AGA	40	650	660	670	680
6	20	050					810	820
	760		770	780	790	008	DACATTECE	
inputs A	TGACCG	GAAGTC	AAAAGT	IGACCTGGAT	AGGCTCAAT	JAIGAIGCC	AGCGTTACAG	:::::::
•	.:. :	.::.::	::	::::::	CTTCTAACA	GAGGAGGTA	GATTATACAG	CTGCACACC
7			SAGTGGT	710	720	. 730	740	750
	690	700		, 20				890
	8	30	840	850	860	870	880	
inputs	CAGGAAT	TACTCGGT	CAATATA	AGAGAAGAG	TGAAGTTGG	CCAATGTGG	rcttctttcc. : :::: :::	:::::::
	: ::	::::::	. :::	::::::::	::.:::. ··	.CCGATACCA	TTTTCTGGCCI 810	GGTTGTCTC
•				доссалскі 780	790	800	810	820
	760	770		700				960
	9	000	910	920	930	940	950	
inputs	CTCGTGC	AGCGCTGT	GGAGGA	LATTGTGGCT	GTGGAACTGT	CAACIGGAG	GTCCTGCACA'	:: ::.
	:: ::	::::::	::.::	::::::::	::::: ~~~~~~~~~~	.:::::::	TGAATGTCAA 880	TGTGTCCCAA
				850	860	870	880	890
	830	840	,	830				1030
		970	980	990	1000	1010	1020	
inputs	GGAAAA	CCGTGAAA	AAGTATC	ATGAGGTAT7	ACAGTTTGA	GCCTGGCCAG	CATCAAGAGGA	.::: : :::
	: :::.	. :::	::.:::	: :::::	······································	ACCAAA	-GACCGGTGTC	AGGGGATTGC 960
		TTACTAAA	AAATACC	920	930	940	950	960
	900	91	U	920				
	1	040	1050	106	0 107	70 10	80 109	90 CTCCAGCTCAA
inputs	TAAGAC	CATGGCTC	TAGTTG	CATCCAG	TTGGATCACC	ATGAACGAT	GCGATIGIAI	CTGCAGCTCAA
21.6	•	:: :::	: . ::	::::::	:::: ::::	i i i i i i i i i i i i i i i i i i i	: :: ::::: GTGACTGTGT	GTGCAGAGGGA 1020
	A	CAAATCAC	TCACCG	ACGTGGCC	990	1000	1010	1020
		970)	980	,,,,			
••		1110						
	LOO 5 GACCA							
Tilbacs	: ::							
		ggagga						
	103	0						

FIGURE 7 CONT.

```
BESTFIT of: vegf-g.pep check: 429 from: 1 to: 370
VEGF-G
to: t128.pep check: 7365 from: 1 to: 346
T128
Symbol comparison table: /usr/local/gcg_9.1/gcgcore/data/rundata/blosum62.cmp
CompCheck: 6430
                             Average Match: 2.912
                      12
       Gap Weight:
                           Average Mismatch: -2.003
     Length Weight:
                                    Length:
          Quality:
                     628
            Ratio: 2.129
                                     Gaps:
 Percent Similarity: 60.825
                         Percent Identity: 51.203
       Match display thresholds for the alignment(s):
                  | = IDENTITY
                  : =
                      2
 vegf-g.pep x t128.pep
     51 RRDETIQVKGNGYVQSPRFPNSYPRNLLLTWRLHS.QENTRIQLVFDNQF 99 VEGF-G
        45 QHERIITVSTNGSIHSPRFPHTYPRNTVLVWRLVAVEENVWIQLTFDERF 94
    100 GLEEAENDICRYDFVEVEDISETSTIIRGRWCGHKEVPPRIKSRTNQIKI 149
     |||: |.||:|||||: |: . | ||||| ||: |: |||:|
95 GLEDPEDDICKYDFVEVEEPSDGT..ILGRWCGSGTVPGKQISKGNQIRI 142
    150 TFKSDDYFVAKPGFKIYYSLLEDFQPAAASETNWESVTSSISGVSYNSPS 199
     200 VTDPT.LIADALDKKIAEFDTVEDLLKYFNPESWOEDLENMYLDTPRYRG 248
     249 RSY. HDRKSK. VDLDRLNDDAKRYSCTPRNYSVNIREELKLANVVFFPRC 296
     :.: |||: |||. | :: : ||||||:||.||||| . :|.| |
225 KAFVFGRKSRVVDLNLLTEEVRLYSCTPRNFSVSIREELKRTDTIFWPGC 274
     297 LLVQRCGGNCGCGTVNWRSCTCNSGKTVKKYHEVLQFEPGHIKRRGRAKT 346
     347 MALVDIQLDHHERCDCIC 364
          .1 1: 1:111 111:1
     322 KSLTDVALEHHEECDCVC 339
```

```
BESTFIT of: vegf-g.pep check: 429 from: 1 to: 370
VEGF-G
          VEGF-A
         human.pep check: 4840 from: 1 to: 215
 to:
    human VEGF-A
 Symbol comparison table: /usr/local/gcg_9.1/gcgcore/data/rundata/blosum62.cmp
 CompCheck: 6430
                               Average Match: 2.912
        Gap Weight:
                       2 Average Mismatch: -2.003
      Length Weight:
 Quality: 71 Length: 116
Ratio: 0.732 Gaps: 9
Percent Similarity: 39.583 Percent Identity: 26.042
        Match display thresholds for the alignment(s):
                    = IDENTITY
                         2
                          1
                     =
 vegf-g.pep x vegf_human.pep
     248 GRSYHDRKSKVDLDRLNDDAKRYSCTPRNYSVNIREEL.KLANVVFFPRC 296 VEGF-G
      297 LLVQRCGGNCGCGTVNWRSCTCNSGKTVKKYHEVLQFEPGHIKRRGRAKT 346
      ...||| | : :::...| ...
78 VPLMRCGG.C.CND.EGLECVPTEESNITM..QIMRIKP.H...QGQ... 115
      347 MALVDIQLDHHERCDC 362
           : :. | :|:|
      116 HIGEMSFLOHNKCEC 130
```

```
BESTFIT of: vegf-g.pep check: 429 from: 1 to: 370
EGF-G
         VEGF-C
        human.pep check: 6807 from: 1 to: 419
to:
   human VEGF-C
Symbol comparison table: /usr/local/gcg_9.1/gcgcore/data/rundata/blosum62.cmp
CompCheck: 6430
                             Average Match: 2.912
       Gap Weight:
                          Average Mismatch: -2.003
                       2
    Length Weight:
                                              208
                                    Length:
                     114
          Quality:
                                     Gaps:
                                              15
           Ratio: 0.610
Percent Similarity: 40.476 Percent Identity: 30.357
      Match display thresholds for the alignment(s):
                 = IDENTITY
                      2
                       1
vegf-g.pep x vegc_human.pep
    175 PAAASETNWESVTSSISGVSYNSPSVTDPTLIADA.LDKKIAEFDTVEDL 223
                                                           VEGF-G
     |||| .| |: .| |: || |:..: .|::|
26 PAAAAA..FE...SGLD.LSDAEPDAGEATAYASKDLEEQLRSVSSVDEL 69
                                                           VEGF-C
    224 LKYFNPE.....SWOEDLENMYL....DTPRYRGRSYHDRKS 256
     257 KVDLDRLNDDAKRYSCTPRNYSVNIREELKLANVVFF.PRCLLVQRCGGN 305
    306 CGCGTVNWRSCTCNSGKTVKKYHEVLQFEPGHIKRRGRAKTMALVDIQLD 355
    165 C.C. . NSEGLOCMNTST. . SYLSKTLFEITVPLSQG. PKP. . . VTISFA 204
    356 HHERCDCI 363
    205 NHTSCROM 212
```

Protein Family / Domain Matches, HMMer version 2

```
Searching for complete domains
hmmpfam - search a single seq against HMM database
HOMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
-----
                     /prod/ddm/seqanal/PFAM/pfam3.4/Pfam
HMM file:
                      /tmp/orfanal.15446.aa
Sequence file:
----
Query: sequence15443
Scores for sequence family classification (score includes all domains):
                                                 Score E-value N
Model Description
                                                       1.5e-20 1
                                                  81.7
CUB
        PF00431 CUB domain
Parsed for domains:
Model Domain seq-f seq-t hmm-f hmm-t
                                          score E-value
                                           ----
                              1 116 () 81.7 1.5e-20
                53 167 ..
Alignments of top-scoring domains:
CUB: domain 1 of 1, from 53 to 167: score 81.7, E = 1.5e-20
                 *->CGgtldltessGsisSPnYPnrsdYppnkeCvWrIrappgyrvVeLt
                     +t+ + +G+ +SP +Pn +Yp+n+ +Wr+ +++ r ++L
                    -DETI-QVKGNGYVQSPRFPN--SYPRNLLLTWRLHSQENTR-IQLV 94
  sequence15
                 Fqd.FdlEdhdgapCryDyvEirDGdpss.pllGrfCG.sgkPedirSts
                 F+ +F 1E+ ++ CryD+vE+ D + s+ ++Gr CG+++ P+ i+S +
              95 FDNqFGLEEAENDICRYDFVEVEDISETSLIIRGRWCGhKEVPPRIKSRT 144
  sequence15
                 nrmlikFvs.DasvskrGFkAty<-*
                 n+ i+F+s+D v+k GFk++y
                                         167
              145 NQIKITFKSdDYFVAKPGFKIYY
  sequence15
```

//

CTCTGCTTATTGAAGATGTACCTTCTAAAACTTTCCTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGAAAAGTGTCTGATGTTTTACTGTAAAAGTGTCTGAAAAGTGTCTGAAAAAGTGTCTGATGTTTTACTGTAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAGTGTCTGAAAAAGTGTTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAAGTGTCTGAAAAAGTTTTCCTTAAAAAAGTGTTCTGAAAAAGTTTTCCTTAAAAAAGTTGTTCTGAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCCTTAAAAAAGTTTTCTTTAAAAAAGTTTTCTTTAAAAAAGTTTTCCTTAAAAAAGTTTTCTTTAAAAAAGTTTTTTTT	
TANATACTCTÄTTGTTCNATTCTCTNNNATCCCNGAACACAATCNGANATAGCTCNGGCAGACACTAATAATTANGANT	3221
GCTCTTCCTCTTCATAACTGCTTTGCAAGTTTCCTGTGAAAACATCAGTTTCCTGTACCAAAGTCAAAATGAACGTTAC	3300
ATCACTCTAACCTGAACAGCTCACAATGTAGCTGTAAATATAAAAAATGAGAGTGTTCTACCCAGTTTTCAATAAACCT	3379
TCCAGGCTGCAATAACCAGCAAGGTTTTCAGTTAAAGCCCTATCTGCACTTTTTATTTA	3458
CATATTCACTCACTTTTCTTTGCCTTTCCTGAGAGTTTTATTAAAACTTCTCCCTTGGTTACCTGTTATCTTTTGCACT	3537
TCTAACATGTAGCCAATAAATCTATTTGATAGCCATCAAAGGAATAAAAAGCTGGCCATACAAATTACATTTCAAAACA	3616
AACCCTAATAAATCCACATTTCCGCATGGCTCATTCACCTGGAATAATGCCTTTTATTGAATATGTTCTTATAGGGCAA	3695
${\tt AACACTTTCATAAGTAGAGTTTTTTTTTTTTTTTTTTTT$	3774
TAGCGAATGTAATATGCCTCTTATCTTCATGAAAAATAAAT	3853
TACCED A TETA A TATECCTCTTATCTTCATGAAAAATAAATATTGCTTTTGAACAAAAAAAA	3853

FIGURE I CONT.

2/18

GC	TGT	GGA	ACT	GTC	AAC	TGG	AGG	TCC	TGC	ACA	TGC	AAT	TCA	GGG	AAA	ACC	616	AAA	AAG	1190
ï	ií	Ж	v	1.		į.	E	р	:;	н	:	ř	E	R	G	E	Α	E	:	146
TAT	CAT	GAG	GTA	TTA	CAG	TTT	GAG	CCT	GGC	CAC	ATC	AAG	AGG	AGG	GGT	AGA	GCT	AAG	ACC	1250
м	Α	L	v	D	I	Q		D			Ε		C					S		366
ATG	GCT	CTA	GTT	GAC	ATC	CAG	TTG	GAT	CAC	CAT	GAA	CGA	160	GAI	161	AIC	160	AGC	TCA	1310
R				•																371 1 32 5
	CCA																		T1 CC	1404
													GGGTY							1404
AGC	AACC	AAAC	TTAC	TACT	AGCC	TGCA.	ATGC	AATG.	AACA	CAAG	TGGT	TGCT	GAGT	CTCA	CCT	TGCT	TTGT	TAAT	GCCA	1483
TGG	CAAG'	TAGA	aagg	TATA	TCAT	CAAC	TTCT.	ATAC	CTAA	GAAT.	ATAG	GATT	GCAT	TTAA	TAAT.	AGTG	TTTG	AGGT	TATA	1562
TAT	GCAC	AAAC	ACAC	ACAG.	AAAT.	ATAT	TCAT	GTCT	ATGT	GTAT.	ATAG	ATCA	AATG	TTTT	TTTT	TTGG	TATA	ATAT	ACCA	1641
													AAAA							1720
																				1799
													GAAA							
AGA	AAGC	ATCT	TGTA	TATT	AAAA'	ATCA	AAAG	ATGA	GGCT	TTCT	TACA	ATATA	CATC	TTAG	TTGA	TATT	TAAA	AAAG	GAAA	1878
AA1	ATGG	TTTC	CAGA	GAAA	AGGC	CAAT	ACCI	AAGC	ATTI	TITC	CATO	AGAA	GCAC	TGCA	TACT	TACC	TATG	TGGA	.CTGT	1957
AA:	CAACC	TGT	TCC	AAAC	CATC	CCAT	TAAT	LATA7	'AAG1	GCTT	TAG	LAAT7	TAAAT	CATI	GTGI	TITI	TATO	CATT	TTGC	2036
TG	AGGC	ATCC:	TAT1	CATT	CTAAC	ACC	TATC	CAAJ	AAAC1	TACI	TAG	AAGG1	TTT	TATI	ATA:	TCC	'ACA	laag?	CAAT	2115
																				2194
																				2273
																			TGAA	
AC	ATCG	ACGT.	AACT	GGAA	ATTA	GTG(GGAT.	ATTT	GATA	GGAT	CCAT	ATCT.	ATAA	ATGG	ATTC	GAAC	rcrc	CAAAC	TACA	2352
cc	AATT	AATT	TAAT	GTAT	CITG	CTTT	TGTG	TTCC	CCTC	TTTT	TGAA	ATAT.	AGAC	ATGG	ATTT.	AATA	rggc	ATTT:	TATAT	2431
T	GGCA	GGCC	ATCA	TAGA	TATT	TTAC	AACC	TAAA	AGCT	TTTG	TGTA	TCAA	AAAA	ATCA	CATT	TTAT	TAAT	GTAA	ATTTC	2510
TA	ATCG	TATA	CTTG	CTCA	CTGT	TCTG	ATTI	ccrg	TTTC	TGAA	.CCAA	GTAA	AATC	AGTC	CTAG	AGGC	TATG	GTTC	TTAAT	2589
																			TAGAA	
																				2747
C.	CCAG	GAGT	ragg/	TAA	TTA	ATC	TCC	CCA	\AGC!	AGAC	GCI	LDAG!	\GAGP	AAC	rcc@	LAATT	CAG	TAGO	TCAGG	2826
G	CTG	CAATE	CAGAC	BAACT	raca?		CTI	ATTG	CTT	DAAAC	STTA	AAAG	JAAAE	CAG	\TTT	TTC	GTG	CITI	GTGGT	2905
C	TAC	raac:	TACA	ACCA	3111	GGT	BACA	GGC	rggt/	AAAG:	rccc	agtg	TAGI	ATGA	TGA	CTA	AATA?	ractt	ragati	2984
																			LAAGA 1	
•		• • •																		

aat Asn	aca Thr	cgg Arg 90	ata Ile	cag Gln	cta Leu	gtg Val	ttt Phe 95	gac Asp	aat Asn	cag Gln	ttt Phe	gga Gly 100	tta Leu	gag Glu	gaa Glu	521
gca Ala	gaa Glu 105	aat Asn	gat Asp	atc Ile	tgt Cys	agg Arg 110	tat Tyr	gat Asp	ttt Phe	gtg Val	gaa Glu 115	gtt Val	gaa Glu	gat Asp	ata Ile	569
tcc Ser 120	gaa Glu	acc Thr	agt Ser	acc Thr	att Ile 125	att Ile	aga Arg	gga Gly	cga Arg	tgg Trp 130	tgt Cys	gga Gly	cac His	aag Lys	gaa Glu 135	617
gtt Val	cct Pro	cca Pro	agg Arg	ata Ile 140	aaa Lys	tca Ser	aga Arg	acg Thr	aac Asn 145	caa Gln	att Ile	aaa Lys	atc Ile	aca Thr 150	ttc Phe	665
aag Lys	tcc Ser	gat Asp	gac Asp 155	tac Tyr	ttt Phe	gtg Val	gct Ala	aaa Lys 160	cct Pro	gga Gly	ttc Phe	aag Lys	att Ile 165	tat Tyr	tat Tyr	713
tct Ser	ttg Leu	ctg Leu 170	gaa Glu	gat Asp	ttc Phe	caa Gln	ccc Pro 175	gca Ala	gca Ala	gct Ala	tca Ser	gag Glu 180	acc Thr	aac Asn	tgg Trp	761
gaa Glu	tct Ser 185	gtc Val	aca Thr	agc Ser	tct Ser	att Ile 190	tca Ser	G] À ààà	gta Val	tcc Ser	tat Tyr 195	aac Asn	tct Ser	cca Pro	tca Ser	809
gta Val 200	acg Thr	gat Asp	ccc Pro	act Thr	ctg Leu 205	att Ile	gcg Ala	gat Asp	gct Ala	ctg Leu 210	gac Asp	aaa Lys	aaa Lys	att Ile	gca Ala 215	857
gaa Glu	ttt Phe	gat Asp	aca Thr	gtg Val 220	gaa Glu	gat Asp	ctg Leu	ctc Leu	aag Lys 225	tac Tyr	ttc Phe	aat Asn	cca Pro	gag Glu 230	tca Ser	905
tgg Trp	caa Gln	gaa Glu	gat Asp 235	ctt Leu	gag Glu	aat Asn	atg Met	tat Tyr 240	ctg Leu	gac Asp	acc Thr	cct Pro	cgg Arg 245	tat Tyr	cga Arg	953
ggc	agg Arg	tca Ser 250	tac Tyr	cat His	gac Asp	cgg Arg	aag Lys 255	tca Ser	aaa Lys	gtt Val	gac Asp	ctg Leu 260	gat Asp	agg Arg	ctc Leu	1001
aat Asn	gat Asp 265	Asp	gcc Ala	aag Lys	cgt Arg	tac Tyr 270	agt Ser	tgc Cys	act Thr	ccc Pro	agg Arg 275	aat Asn	tac Tyr	tcg Ser	gtc Val	1049
aat Asn 280	Ile	aga Arg	gaa Glu	gag Glu	ctg Leu 285	aag Lys	ttg Leu	gcc Ala	aat Asn	gtg Val 290	gtc Val	ttc Phe	ttt Phe	cca Pro	cgt Arg 295	1097
tgc Cys	ctc Leu	ctc Leu	gtg Val	cag Gln 300	cgc Arg	tgt Cys	gga Gly	gga Gly	aat Asn 305	tgt Cys	ggc Gly	tgt Cys	gga Gly	act Thr 310	gtc Val	1145
aac Asn	tgg Trp	agg Arg	tcc Ser 315	tgc Cys	aca Thr	tgc Cys	aat Asn	tca Ser 320	ggg Gly	aaa Lys	acc Thr	gtg Val	aaa Lys 325	aag Lys	tat Tyr	1193

cat His	gag Glu	gta Val 330	Leu	cag Gln	ttt Phe	gag Glu	cct Pro 335	ggc Gly	cac His	atc Ile	aag Lys	agg Arg 340	agg Arg	ggt Gly	aga Arg	1241
gct Ala	aag Lys 345	acc Thr	atg Met	gct Ala	cta Leu	gtt Val 350	gac Asp	atc Ile	cag Gln	ttg Leu	gat Asp 355	cac His	cat His	gaa Glu	cga Arg	1289
tgc Cys 360	gat Asp	tgt Cys	atc Ile	tgc Cys	agc Ser 365	tca Ser	aga Arg	cca Pro	cct Pro	cga Arg 370	taaq	gagaa	atg	tgca	catcct	1342
taca	attaa	agc	ctgaa	aagaa	ac c	tttaq	gttta	a ago	gagg	gtga	gata	aaga	gac	cctt	ttccta	1402
cca	gcaad	cca	aacti	cacta	ac t	agcct	gcaa	a tgo	caat	gaac	acaa	agtgo	gtt	gctg	agtctc	1462
agc	cttgo	ctt	tgtta	aatgo	cc a	tggca	aagta	a gaa	aaggt	tata	tcat	caa	ctt	ctat	acctaa	1522
gaat	tataq	gga	ttgc	attta	aa t	aataq	gtgtt	t tga	aggti	tata	tate	gcac	aaa	caca	cacaga	1582
aata	atati	ca	tgtc	tatg	ig t	atata	agato	c aaa	atgti	tttt	ttti	ttgg	tat	atat	aaccag	1642
gta	cacca	aga	ggtta	acata	at g	tttga	agtta	a gad	ctcti	taaa	atc	cttt	gcc	aaaa	taaggg	1702
atg	gtcaa	aat	atat	gaaa	ca t	gtcti	taga	a aaa	attta	agga	gata	aaat	tta	tttt	taaatt	1762
ttga	aaaca	acg	aaac	aatti	tt g	aatci	tgct	t ct	cttaa	aaga	aag	catc	ttg	tata	ttaaaa	1822
atca	aaaa	gat	gagg	cttt	ct t	acata	ataca	a tc	ttag	ttga	tta	ttaa	aaa	agga	aaaata	1882
tgg	tttc	cag	agaa	aaggo	cc a	atac	ctaaq	g cat	tttt	ttcc	atga	agaa	gca	ctgc	atactt	1942
acci	tatg	tgg	actg	taata	aa c	ctgt	ctcca	a aa	accai	tgcc	ataa	ataa	tat	aagt	gcttta	2002
gaa	attaa	aat	catt	gtgti	tt t	ttat	gcati	t tt	gctga	aggc	atc	ctta	ttc	attt	aacacc	2062
tat	ctcaa	aaa	actt	actta	ag a	aggti	tttt	t at	tata	gtcc	taca	aaaa	gac	aatg	tataag	2122
ctg	taac	aga	attt	tgaat	tt g	tttt	tctt	t gc	aaaa	cccc	tcc	acaa	aag	caaa	tccttt	2182
caa	gaat	ggc	atgg	gcati	tc t	gtat	gaaco	c tti	tcca	gatg	gtg	ttca	gtg	aaag	atgtgg	2242
gta	gttg	aga	actt	aaaa	ag t	gaac	attga	a aa	catc	gacg	taa	ctgg	aaa	ttag	gtggga	2302
tat	ttga	tag	gatc	cata	tc t	aata	atgga	a tt	cgaa	ctct	cca	aact	aca	ccaa	ttaatt	2362
taa	tgta	tct	tgcti	tttg	tg t	tccc	gtcti	t tt	tgaaa	atat	aga	catg	gat	ttat	aatggc	2422
att	ttata	att	tggc	aggc	ca t	cata	gatta	a tti	taca	acct	aaa	agct [.]	ttt	gtgt	atcaaa	2482
aaa	atca	cat	ttta	ttaai	tg t	aaat	ttcta	a ato	cgta	tact	tgc	tcac	tgt	tctg	atttcc	2542
tgt [.]	ttct	gaa	ccaa	gtaaa	aa t	cagt	cctaq	g age	gctai	tggt	tct	taat	cta	tgga	gcttgc	2602
ttt	aagaa	agc	cagti	tgtca	aa t	tgtg	gtaad	c aca	aagti	ttgg	ccc	tgct	gtc	ctac	tgttta	2662
ata	gaaa	act	gttti	cacat	tt g	gttaa	atggt	t at	ttaga	agta	att	tttt	ctc	tctg	cctcct	2722

tcgtgtctgt tttaaaggag actaactcca ggagtaggaa atgattcatc atcctccaaa 2782 gcaagaggct taagagagaa acaccgaaat tcagatagct cagggactgc taacagagaa 2842 ctacattttt cttattgcct tgaaagttaa aaggaaagca gatttcttca gtgactttgt 2902 ggtcctacta actacaacca gtttgggtga cagggctggt aaagtcccag tgttagatga 2962 gtgacctaaa tatacttaga tttctaagta tggtgctctc aggtccaagt tcaactattc 3022 ttaagcagtg caattcttcc cagttatttg agatgaaaga tctctgctta ttgaagatgt 3082 accttctaaa actttcctaa aagtgtctga tgtttttact caagagggga gtggtaaaat 3142 taaatactct attgttcaat tctctaaaat cccagaacac aatcagaaat agctcaggca 3202 gacactaata attaagaacg ctcttcctct tcataactgc tttgcaagtt tcctgtgaaa 3262 acatcagttt cctgtaccaa agtcaaaatg aacgttacat cactctaacc tgaacagctc 3322 acaatqtaqc tqtaaatata aaaaatqaqa qtgttctacc cagttttcaa taaaccttcc 3382 aggetgeaat aaccageaag gtttteagtt aaageeetat etgeaetttt tatttattag 3442 ctgaaatgta agcaggcata ttcactcact tttctttgcc tttcctgaga gttttattaa 3502 aacttctccc ttggttacct gttatctttt gcacttctaa catgtagcca ataaatctat 3562 ttgatagcca tcaaaggaat aaaaagctgg ccatacaaat tacatttcaa aacaaaccct 3622 aataaatcca catttccgca tggctcattc acctggaata atgcctttta ttgaatatgt 3682 tcttataggg caaaacactt tcataagtag agttttttat gttttttgtc atatcggtaa 3742 catgcagctt tttcctctca tagcattttc tatagcgaat gtaatatgcc tcttatcttc 3802 3853

<210> 2

<211> 370

<212> PRT

<213> Homo sapiens

<400> 2

Met His Arg Leu Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys
1 5 10 15

Ser Cys Arg Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala 20 25 30

Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35 40 45

Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val
50 55 60

Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr 65 70 75 80

Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp 105 Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly Arg Trp Cys Gly His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys 155 Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala 170 Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly 185 Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu 215 Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser Lys Val Asp Leu Asp Arg Leu Asn Asp Asp Ala Lys Arg Tyr Ser Cys Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala 280 Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly 290 295 Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 310 Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 345 Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 360

Pro Arg 370

<211> 1110 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1110) <400> 3 atg cac egg etc atc ttt gtc tac act cta atc tgc gca aac ttt tgc Met His Arg Leu Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys age tgt egg gae act tet gea ace eeg eag age gea tee ate aaa get 96 Ser Cys Arg Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala ttq cqc aac qcc aac ctc agg cga gat gag agc aat cac ctc aca gac 144 Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 40 ttg tac cga aga gat gag acc atc cag gtg aaa gga aac ggc tac gtg 192 Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val 55 240 cag agt cct aga ttc ccg aac agc tac ccc agg aac ctg ctc ctg aca Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Thr 288 tqq cqq ctt cac tct cag gag aat aca cgg ata cag cta gtg ttt gac Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp 85 90 aat cag ttt gga tta gag gaa gca gaa aat gat atc tgt agg tat gat 336 Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp 105 100 ttt gtg gaa gtt gaa gat ata tcc gaa acc agt acc att att aga gga 384 Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly 120 115 cga tgg tgt gga cac aag gaa gtt cct cca agg ata aaa tca aga acg 432 Arg Trp Cys Gly His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr 130 135 140 aac caa att aaa atc aca ttc aag tcc gat gac tac ttt gtg gct aaa 480 Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys 145 150 160 528 cct gga ttc aag att tat tat tct ttg ctg gaa gat ttc caa ccc gca Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala 175 165 qca qct tca qaq acc aac tgg gaa tct gtc aca agc tct att tca ggg Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly 180 gta too tat aac tot coa toa gta acg gat coc act otg att gog gat Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp

-7-

195	200	205	
gct ctg gac aaa aaa a Ala Leu Asp Lys Lys I 210			
aag tac ttc aat cca g Lys Tyr Phe Asn Pro G 225		sp Leu Glu Asn Met	
ctg gac acc cct cgg t Leu Asp Thr Pro Arg T 245			
aaa gtt gac ctg gat a Lys Val Asp Leu Asp A 260			
act ccc agg aat tac t Thr Pro Arg Asn Tyr S 275			_
aat gtg gtc ttc ttt c Asn Val Val Phe Phe P 290	=		
aat tgt ggc tgt gga a Asn Cys Gly Cys Gly T 305		er Cys Thr Cys Asn	
ggg aaa acc gtg aaa a Gly Lys Thr Val Lys L 325			
cac atc aag agg agg g His Ile Lys Arg Arg G 340			
cag ttg gat cac cat g Gln Leu Asp His His G 355			
cct cga Pro Arg 370			1110
<210> 4 <211> 98 <212> PRT <213> Homo sapiens			
<220> <223> Xaa at position	1 may be Arg or Lys		
<220> <223> Any 1 Xaa between intended to equal	en positions 2-4 may al a range of 2-3 ami		

-8-

```
<223> Xaa at positions 6,29, 31-34, and 97 may be any
    amino acid
<223> Xaa at position 7 may be Pro or Ala
<220>
<223> Any 1 Xaa between positions 8-27 may be absent;
    intended to equal a range of 19-20 amino acids
<220>
<223> Xaa at position 41 may be Gly or Ala
<220>
<223> Any 1 Xaa between positions 43-49 may be absent;
    intended to equal a range of 6-7 amino acids
<220>
<223> Any 15 Xaa's between positions 51-95 may be
    absent; intended to equal a range of 30-45 amino
    acids
<400> 4
Xaa Xaa Arg Cys Gly Gly Asn Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Cys
<210> 5
<211> 96
<212> PRT
<213> Homo sapiens
<223> Xaa at position 1 may be Arg or Lys
<223> Any 1 Xaa between positions 2-4 may be absent;
    intended to equal a range of 2-3 amino acids
<220>
```

PCT/US00/18085 WO 01/00878

-9-

<223> Xaa's at positions 6,29,31-34, and 95 may be any amino acid

<220>

<223> Xaa at position 7 may be Pro or Ala

<220>

<223> Any 1 Xaa between positions 8-27 may be absent; intended to equal a range of 19-20 amino acids

<223> Xaa at position 41 may be Gly or Ala

<220>

<223> Any 1 Xaa between positions 43-49 may be absent; intended to equal a range of 6-7 amino acids

<220>

<223> Any 11 Xaa's between positions 51-93 may be absent; intended to equal a range of 32-43 amino acids

<400> 5

10

25

Xaa Xaa Arg Cys Gly Gly Asn Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa

65 70 75

85 90

<210> 6

<211> 98

<212> PRT

<213> Homo sapiens

<220>

<223> Xaa at position 1 may be Arg or Lys

<223> Any 1 Xaa between positions 2-4 may be absent; intended to equal a range of 2-3 amino acids

<220>

<223> Xaa's at positions 6,29,31-34,43-49,51,93, 95 and

97 may be any amino acid <220> <223> Xaa at position 7 may be Pro or Ala <220> <223> Any 1 Xaa between positions 8-27 may be absent; intended to equal a range of 19-20 amino acids <223> Xaa at position 41 may be Gly or Ala <220> <223> Any 3 Xaa's at positions 53-93 may be absent; intended to equal a range of 38-41 amino acids <400> 6 Xaa Xaa Arg Cys Gly Gly Asn Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa

70

Xaa Cys

<210> 7 <211> 7 <212> PRT <213> Homo sapiens <223> Xaa's at positions 2-4 may be any amino acid

<223> Xaa at position 6 may be Gly or Ala

<400> 7 Cys Xaa Xaa Xaa Cys Xaa Cys

<210> 8 <211> 7 <212> PRT <213> Homo sapiens -11-

<223> Xaa at position 6 may be Gly or Ala <400> 8 Cys Gly Gly Asn Cys Xaa Cys <210> 9 <211> 103 <212> PRT <213> Homo sapiens <220>

<223> Xaa's at positions 2-4,7,8,9,10,14-19,50,69,70, and 78-94 may be any amino acid

<223> Any 1 Xaa between positions 21-45 may be absent; intended to equal a range of 27-28 amino acids

<220>

<223> Any 2 Xaa's between positions 53-67 may be absent; intended to equal a range of 13-15 amino acids

<220>

<223> Any 1 Xaa between positions 73-76 may be absent; intended to equal a range of 3-4 amino acids

<223> Any 1 Xaa between positions 95-101 may be absent; intended to equal a range of 6-7 amino acids

Gly Xaa Xaa Xaa Ser Pro Xaa Xaa Pro Xaa Xaa Tyr Pro Xaa Xaa Xaa

Xaa Xaa Xaa Gly Xaa Xaa Cys Gly Xaa Xaa Xaa Pro Xaa Xaa Xaa

90

Xaa Xaa Xaa Xaa Gly Phe

<210> 10

<211> 3121

<212> DNA

<213> Mus musculus														
<220> <221> CDS <222> (165)(1274)														
<400> 10 gaattcccgg gtcgacccac gcgtccgagc gccagtaact gggcggccgg gacaacacag 60														
gcggtgaagg cgagggactg tgcagtagaa atccgccgac tcaacccttt gggctttatt 120														
tatttacttt tggagcaacg cgatccctag gtcgctgagc ccaa atg caa cgg ctc 176 Met Gln Arg Leu 1														
gtt tta gtc tcc att ctc ctg tgc gcg aac ttt agc tgc tat ccg gac 224 Val Leu Val Ser Ile Leu Leu Cys Ala Asn Phe Ser Cys Tyr Pro Asp 5 10 15 20														
act ttt gcg act ccg cag aga gca tcc atc aaa gct ttg cgc aat gcc 272 Thr Phe Ala Thr Pro Gln Arg Ala Ser Ile Lys Ala Leu Arg Asn Ala 25 30 35														
aac ctc agg aga gat gag agc aat cac ctc aca gac ttg tac cag aga 320 Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp Leu Tyr Gln Arg 40 45 50														
gag gag aac att cag gtg aca agc aat ggc cat gtg cag agt cct cgc 368 Glu Glu Asn Ile Gln Val Thr Ser Asn Gly His Val Gln Ser Pro Arg 55 60 65														
ttc ccg aac agc tac cca agg aac ctg ctt ctg aca tgg tgg ctc cgt Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Thr Trp Trp Leu Arg 70 75 80														
tcc cag gag aaa aca cgg ata caa ctg tcc ttt gac cat caa ttc gga 464 Ser Gln Glu Lys Thr Arg Ile Gln Leu Ser Phe Asp His Gln Phe Gly 85 90 95 100														
cta gag gaa gca gaa aat gac att tgt agg tat gac ttt gtg gaa gtt 512 Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp Phe Val Glu Val 105 110 115														
gaa gaa gtc tca gag agc agc act gtt gtc aga gga aga tgg tgt ggc 560 Glu Glu Val Ser Glu Ser Ser Thr Val Val Arg Gly Arg Trp Cys Gly 120 125 130														
cac aag gag atc cct cca agg ata acg tca aga aca aac cag att aaa 608 His Lys Glu Ile Pro Pro Arg Ile Thr Ser Arg Thr Asn Gln Ile Lys 135 140 145														
atc aca ttt aag tct gat gac tac ttt gtg gca aaa cct gga ttc aag 656 Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys Pro Gly Phe Lys 150 155 160														
att tat tat tca ttt gtg gaa gat ttc caa ccg gaa gca gcc tca gag 704 Ile Tyr Tyr Ser Phe Val Glu Asp Phe Gln Pro Glu Ala Ala Ser Glu 165 170 180														

	tgg gaa Trp Glu											752
	tca ata Ser Ile 200											800
	gca gaa Ala Glu 215			Glu								848
	tct tgg Ser Trp											896
	aga ggc Arg Gly		Tyr His									944
	ctc aat Leu Asn											992
	gtg aac Val Asn 280											1040
	cga tgc Arg Cys 295			Arg								1088
	gtc aac Val Asn		_		-	-			_			1136
	tat cac Tyr His											1184
agg ggc Arg Gly	aaa gct Lys Ala	aag aat Lys Asn 345	atg cct Met Pro	ctt Leu	gtt Val 350	gát Asp	atc Ile	cag Gln	ctg Leu	gat Asp 355	cat His	1232
	cga tgt Arg Cys 360											1274
taaaaca	cta tgca	catctg t	actttgat	t ato	gaaaç	ggac	cttt	aggt	ta d	caaaa	accct	1334
aagaagc	ttc taat	ctcagt g	caatgaat	g cat	tatgo	gaaa	tgtt	gctt	tg t	tagt	gccat	1394
ggcaaga	aga agca	aatatc a	ttaatttc	t ata	ataca	ataa	acat	agga	at t	cact	tatca	1454
atagtat	gtg aaga	tatgta t	atatactt	a tat	acat	gac	tago	tcta	tg t	atgt	aaata	1514
gattaaa	tac ttta	tcagt a	tatttact	g aaq	gtecc	cta	gagg	caaa	itg a	tatt	acttg	1574
atatttt	gct aaaa	aaggg a	atgtgtca	a gca	atata	aaa	tato	tttc	aa a	aatt	caaaa	1634

ggtaagttta ttctaaagct ttgtatgaca aaatatatca gattttgctc acttaaagaa 1694 ggcacttgtc cattaaatga aagatgagac tttcttctgt gtataaatct aattatgtga 1754 agacaaatac atagtttctg gcaataaaaa caagttttga aatattttct tcatgagatg 1814 tactactcac ctaccaatgt ggacagttat tatctgtctc cacaactatg ccaaagtaat 1874 acaggatatt taacaatcaa gtcaatcaag tcattaagtc ctcttccatg tattttctca 1934 atgcaagcta agtaactgag caccettete aatgaattge teagggactt gtggtgataa 1994 ttggcaagag atattcaata ggcaagcaat aggttqctqt agaatttttg aattttttt 2054 tattttaaag tetgeagaaa ageaagtgtt tteaggaaga acatgatatt tattacacat 2114 gagcctttaa atatggtagt catggcaaga cttgggtqat agaaaqtcaq aaataaqcaa 2174 atgttgacat aactggaaat caaatgggct gtttgataag gtctacattt aaaagtgggt 2234 caaaaatctt ctaaactgtg ccaataattt ttctgtgttt tgctcttgca tttctatctt 2294 ttcaatatat acacatgaac ttatattgtg ctatatgaga caagctatca tggaatattt 2354 atagcctaaa atatttatgt attaacaaaa caactagagc cagctaagtt gtggaggcac 2414 agatttggtc ctgctgttcc actggaaagc tttttgttct gatttttagg agtgagttaa 2474 gtttccccag tggtgcctct atatcttttc taaagagatt gagtccagaa acaggaagtt 2534 gctcattgtt ctccaaacaa aatgtttagg agggaatcct gaagtcaagt taacttggtt 2594 ctgctactag gaaactatat ttttcttcct gcctttagag tagaaaagaa aactgattta 2654 ttcggtgagt ccaacactac cctgagcaca aagtgttttg tttctgaatc tgtgcatagg 2714 ccccttttgt ctgatgtcag atgaatagct tatacacact tagattqcta aggatgatgc 2774 tgtctaaacc aagttatcag ctgtgtgctc aacaaatctg tgcttactga cacatatatt 2834 ctaaaggttc tatgcagtca attacctgcc agttctactt aaatgattat taaaattaaa 2894 tagtatattg ttgtcaagca tgccacagaa caatgagaag taagccaggc ctaatttgca 2954 agcttcctgt gaaacaatgg ctcctataaa aaaatcaaaa tgtacattac cttactcact 3014 aaccttctag gtggtgataa ccaaaaaaaa aaaaaaaggg cggccgc 3121

<210> 11

<211> 370

<212> PRT

<213> Mus musculus

<400> 11

Met Gln Arg Leu Val Leu Val Ser Ile Leu Leu Cys Ala Asn Phe Ser

- 15 -

1		•		5					10					15	
Cys	Tyr	Pro	Asp 20		Phe	Ala	Thr	Pro 25		Arg	Ala	Ser	Ile 30	_	Ala
Leu	Arg	Asn 35	Ala	Asn	Leu	Arg	Arg 40	Asp	Glu	Ser	Asn	His 45		Thr	Asp
Leu	Tyr 50		Arg	Glu	Glu	Asn 55	. Ile	Gln	Val	Thr	Ser 60	Asn	Gly	His	Va]
Gln 65	Ser	Pro	Arg	Phe	Pro 70	Asn	Ser	Tyr	Pro	Arg 75	Asn	Leu	Leu	Leu	Thr 80
Trp	Trp	Leu	Arg	Ser 85	Gln	Glu	Lys	Thr	Arg 90	Ile	Gln	Leu	Ser	Phe 95	_
His	Gln	Phe	Gly 100	Leu	Glu	Glu	Ala	Glu 105	Asn	Asp	Ile	Cys	Arg 110	Tyr	Asp
Phe	Val	Glu 115	Val	Glu	Glu	Val	Ser 120	Glu	Ser	Ser	Thr	Val 125	Val	Arg	Gly
Arg	Trp 130	Cys	Gly	His	Lys	Glu 135	Ile	Pro	Pro	Arg	Ile 140	Thr	Ser	Arg	Thr
Asn 145	Gln	Ile	Lys	Ile	Thr 150	Phe	Lys	Ser	Asp	Asp 155	Tyr	Phe	Val	Ala	Lys 160
Pro	Gly	Phe	Lys	Ile 165	Tyr	Tyr	Ser	Phe	Val 170	Glu	Asp	Phe	Gln	Pro 175	Glu
Ala	Ala	Ser	Glu 180	Thr	Asn	Trp	Glu	Ser 185	Val	Thr	Ser	Ser	Phe 190	Ser	Gly
Val	Ser	Tyr 195	His	Ser	Pro	Ser	11e 200	Thr	Asp	Pro	Thr	Leu 205	Thr	Ala	Asp
Ala	Leu 210	Asp	Lys	Thr	Val	Ala 215	Glu	Phe	Asp	Thr	Val 220	Glu	Asp	Leu	Leu
Lys 225	His	Phe	Asn	Pro	Val 230	Ser	Trp	Gln	Asp	Asp 235	Leu	Glu	Asn	Leu	Tyr 240
Leu	Asp	Thr	Pro	His 245	Tyr	Arg	Gly	Arg	Ser 250	Tyr	His	Asp	Arg	Lys 255	Ser
Lys	Val	Asp	Leu 260	Asp	Arg	Leu	Asn	Asp 265	Asp	Val	Lys	Arg	Tyr 270	Ser	Cys
Thr	Pro	Arg 275	Asn	His	Ser	Val	Asn 280	Leu	Arg	Glu	Glu	Leu 285	Lys	Leu	Thr
Asn	Ala 290	Val	Phe	Phe	Pro	Arg 295	Cys	Leu	Leu	Val	Gln 300	Arg	Cys	Gly	Gly
Asn 305	Cys	Gly	Cys	Gly	Thr 310	Val	Asn	Trp	Lys	Ser 315	Cys	Thr	Cys	Ser	Ser 320

10

15

20

25

30

VEGF-G gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) VEGF-G-associated disorders (e.g., cell proliferation and/or differentiation disorders, or disorders characterized by aberrant angiogenesis) associated with aberrant or unwanted VEGF-G activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a VEGF-G molecule or VEGF-G modulator as well as tailoring the dosage and/or therapeutic regimen of treatment with a VEGF-G molecule or VEGF-G modulator.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996) Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 and Linder. M.W. et al. (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally-occurring polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

One pharmacogenomics approach to identifying genes that predict drug response, known as "a genome-wide association", relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a "bi-allelic" gene marker map which consists of 60.000-100.000 polymorphic or variable sites on the human genome, each of which has two variants.) Such a high-resolution

genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect. Alternatively, such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome. As used herein, a "SNP" is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA. A SNP may be involved in a disease process, however, the vast majority may not be disease-associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.

Alternatively, a method termed the "candidate gene approach". can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a drug's target is known (e.g., a VEGF-G protein of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.

15

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses.

10

15

If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Alternatively, a method termed the "gene expression profiling", can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug (e.g., a VEGF-G molecule or VEGF-G modulator of the present invention) can give an indication whether gene pathways related to toxicity have been turned on.

Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a VEGF-G molecule or VEGF-G modulator, such as a modulator identified by one of the exemplary screening assays described herein.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of the Sequence Listing, figures, and all references, patents and published patent applications cited throughout this application are incorporated herein by reference.

EXAMPLES

25

EXAMPLE 1: IDENTIFICATION AND CHARACTERIZATION OF HUMAN AND MOUSE VEGF-G cDNA

In this example, the identification and characterization of the gene encoding human (clone jthbb079f06) and mouse VEGF-G is described.

Isolation of the human and mouse VEGF-G cDNA

The invention is based, at least in part, on the discovery of genes encoding novel members of the VEGF family. The human VEGF-G cDNA was isolated from a human osteoblast library.

The nucleotide sequence encoding the human VEGF-G protein (clone jthbb079f06) is shown in Figure 1 and is set forth as SEQ ID NO:1. The full length protein encoded by this nucleic acid comprises about 370 amino acids and has the amino acid sequence shown in Figure 1 and set forth as SEQ ID NO:2. The coding region (open reading frame) of SEQ ID NO:1 is set forth as SEQ ID NO:3.

The nucleotide sequence encoding the mouse VEGF-G protein is shown in Figure 8 and is set forth as SEQ ID NO:10. The full length protein encoded by this nucleic acid comprises about 370 amino acids and has the amino acid sequence shown in Figure 8 and set forth as SEQ ID NO:11. The coding region (open reading frame) of SEQ ID NO:10 is set forth as SEQ ID NO:12.

15

20

25

30

10

5

Analysis of the VEGF-G Molecules

A search was performed against the HMM database resulting in the identification of a CUB domain in the amino acid sequence of human VEGF-G (SEQ ID NO:2) at about residues 53-167 of SEQ ID NO:2. The results of the search are set forth in Figure 2. A CUB domain was also identified in the amino acid sequence of mouse VEGF-G (SEQ ID NO:11) at about residues 53-167 of SEQ ID NO:11. The results of the search are set forth in Figure 9.

The human VEGF-G protein is predicted to have a signal peptide from amino acid residues 1-19 of SEQ ID NO:2. Accordingly, a mature human VEGF-G protein is predicted to include amino acid residues 20-370 of SEQ ID NO:2. The mouse VEGF-G protein is predicted to have a signal peptide from amino acid residues 1-23 of SEQ ID NO:11. Accordingly, a mature mouse VEGF-G protein is predicted to include amino acid residues 24-370 of SEQ ID NO:11.

The VEGF-G protein is also predicted to have at least one N-glycosylation site, at about amino acid residues 276-279 of SEQ ID NO:2, and at about amino acid residues 14-17 and 276-279 of SEQ ID NO:11. In addition, the VEGF-G protein is predicted to

have at least one N-myristoylation site, at about amino acid residues 100-105, 192-197, and 303-308 of SEQ ID NO:2, and at about amino acid residues 100-105 and 303-308 of SEQ ID NO:11.

The VEGF-G protein is predicted to have at least one cAMP and cGMP dependent protein kinase phosphorylation site, at about amino acid residues 268-271 of SEQ ID NO:2, and at about amino acid residues 268-271 of SEQ ID NO:11.

The VEGF-G protein is predicted to have at least one protein kinase C phosphorylation site, at about amino acid residues 17-19, 29-31, 66-68, 80-82, 150-152, 243-245, 273-275, 320-322, 323-325, and 365-367 of SEQ ID NO:2, and at about amino acid residues 29-31, 66-68, 141-143, 150-152, 273-275, 320-322, 323-325, and 365-367 of SEQ ID NO:11.

The VEGF-G protein is predicted to have at least one casein kinase II phosphorylation site, at about amino acid residues 17-20, 168-171, 181-184, 199-202, 219-222, 231-234, 250-253. and 256-259 of SEQ ID NO:2, and at about amino acid residues 168-171, 181-184. 199-202. 213-216. 219-222, 231-234. 250-253. and 256-259 of SEQ ID NO:11.

The VEGF-G protein is predicted to have at least one tyrosine kinase phosphorylation site, at about amino acid residues 262-270 of SEQ ID NO:2, and at about amino acid residues 262-270 of SEQ ID NO:11.

The open reading frame of the human VEGF-G gene was globally aligned with the open reading frame of the mouse VEGF-G gene using the GAP program in the GCG software package, using a nwsgapdna.cmp matrix and a gap weight of 12 and a length weight of 4. The results showed a 85.586% identity between the two sequences (see Figure 10). In addition, the nucleotide sequence of the human VEGF-G gene was locally aligned with the nucleotide sequence of the mouse VEGF-G gene using the GAP program in the GCG software package, using a nwsgapdna.cmp matrix and a gap weight of 12 and a length weight of 4. The results showed a 74.592% identity between the two sequences.

The human VEGF-G protein was globally aligned with the mouse VEGF-G protein using the GAP program in the GCG software package, using a Blosum 62 matrix and a gap weight of 12 and a length weight of 4. The results showed a 84.865% identity between the two sequences (see Figure 11).

5

10

15

25

30

Tissue Distribution of VEGF-G mRNA

Northern blot hybridizations with various human tissue RNA samples revealed that VEGF-G mRNA was strongly expressed in the ovary, heart, pancreas, and fetal kidney, moderately expressed in the prostate, testis, small intestine, spinal cord, trachea, placenta and kidney, and weakly expressed in the colon, brain, skeletal muscle, and liver. Within the endocrine system, VEGF-G mRNA was strongly expressed in the adrenal medulla and the adrenal cortex. In addition, VEGF-G mRNA was weakly expressed in various immune system tissues such as spleen, lymph node, thymus, peripheral blood leukocytes, bone marrow, and fetal liver. VEGF-G mRNA was also expressed in the thyroid and stomach, but was not expressed in adult or fetal lung, or fetal brain. Northern blot analysis of mouse tissues revealed strong expression of VEGF-G mRNA in the heart and kidney, moderate expression in the brain, and no expression in the spleen, lung, liver, skeletal muscle and testis.

20 Tissue Distribution of VEGF-G cDNA

VEGF-G expression was also determined by PCR analysis of cDNA libraries from various tissues and cell lines. Detecting expression by a library array procedure entailed preparing a PCR mixture including Taq Polymerase. dNTPs. and PCR buffer. and adding a vector primer, a primer internal to the gene of interest, and an aliquot of a library in which expression was to be tested. This procedure was performed with many libraries at a time in a 96 well PCR tray, with 80 or more wells containing libraries and a control well in which the above primers were combined with the clone of interest itself. The control well served as an indicator of the fragment size to be expected in the library wells, in the event the clone of interest was expressed within. Amplification was performed in a PCR machine, employing standard PCR conditions for denaturing, annealing, and elongation, and the resultant mixture was mixed with an appropriate

10

15

20

25

30

loading dye and run on an ethidium bromide-stained agarose gel. The gel was later viewed with UV light after the DNA loaded within its lanes had time to migrate into the gels. Lanes in which a band corresponding with the control band was visible indicated the libraries in which the clone of interest was expressed.

VEGF-G was expressed in choroid plexus (MCPdL) and lung Bleomycin model day 7, and weakly expressed in long term bone marrow cells, MLTC-1 (mouse Leydig tumor cells), lung, brain, and lung Gonzolo day 15. 3 hours.

EXAMPLE 2 REGULATION OF VEGF-G EXPRESSION IN HUMAN ENDOTHELIAL CELLS

The expression of VEGF-G in human endothelial cells was analyzed by TaqMan® Quantitative Polymerase Chain Reaction.

Probes were designed by PrimerExpress software (PE Biosystems) based on the sequence of the VEGF-G gene. Each VEGF-G gene probe was labeled using FAM (6-carboxyfluorescein), and the β2-microglobulin reference probe was labeled with a different fluorescent dye, VIC. The differential labeling of the target gene and internal reference gene thus enabled measurement in same well. Forward and reverse primers and the probes for both β2-microglobulin and target gene were added to the TaqMan[®] Universal PCR Master Mix (PE Applied Biosystems). Although the final concentration of primer and probe could vary, each was internally consistent within a given experiment. A typical experiment contained 200nM of forward and reverse primers plus 100nM probe for β-2 microglobulin and 600 nM forward and reverse primers plus 200 nM probe for the target gene. TaqMan matrix experiments were carried out on an ABI PRISM 7700 Sequence Detection System (PE Applied Biosystems). The thermal cycler conditions were as follows: hold for 2 minute at 50°C and 10 minute at 95°C, followed by two-step PCR for 40 cycles of 95°C for 15 seconds followed by 60°C for 1 minute.

A comparative Ct method is used for the relative quantitation of gene expression. The following method was used to quantitatively calculate VEGF-G gene expression in the various samples relative to β -2 microglobulin expression in the same sample. The threshold cycle (Ct) value is defined as the cycle at which a statistically significant

increase in fluorescence is detected. A lower Ct value is indicative of a higher mRNA concentration. The Ct value of the VEGF-G gene is normalized by subtracting the Ct value of the β -2 microglobulin gene to obtain a Δ Ct value using the following formula:

5 Expression is then calibrated against a cDNA sample showing a comparatively low level of expression of the VEGF-G gene. The ΔCt value for the calibrator sample is then subtracted from ΔCt for each tissue sample according to the following formula:

$$\Delta\Delta Ct = \Delta Ct - Colibrator} - \Delta Ct - Colibrator}$$

Relative expression is then calculated using the arithmetic formula given by 2-AACt.

10

25

30

Human umbilical vein endothelial cells (HUVECs) were cultured *in vitro* under standard conditions. Experimental cultures were then exposed to either laminar shear stress (LSS) conditions or interleukin (IL)-1.

Cultured HUVEC monolayers were exposed to laminar sheer stress by culturing
the cells in a specialized apparatus containing liquid culture medium. Static cultures
grown in the same medium served as controls. The *in vitro* LSS treatment at 10
dyns/cm² was designed to simulate the shear stress generated by blood flow in a straight,
healthy artery such as the internal mammary artery. Alternatively, HUVEC cultures
were treated with human IL-1β, a factor known to be involved in the inflammatory
response, in order to mimic the physiologic conditions involved in the atherosclerotic
state. Stimulation of endothelial cells with IL-1 induces the expression of several
inflammatory markers. Experimental and control cells were harvested and analyzed for
gene expression at 1, 6 and 24 hours.

Exposure of HUVECs to LSS resulted in a reduction in VEGF-G gene expression at 1 and 6 hours, and an induction in VEGF-G levels following 24 hours of LSS treatment, as compared to static controls. In addition, IL-1 stimulation of HUVECs resulted in a time dependent decrease in VEGF-G expression.

In another study, primary cultures of human microvascular endothelial cells (HMVEC) were plated on Matrigel to induce tube formation and incubated for 5 or 25 hours, or were grown on plastic tissue culture dishes as a control. Control cells include sub-confluent HMVEC that were grown on tissue culture dishes in 5% serum and

incubated in the presence of growth factors for 25 hours, and confluent HMVEC that were grown on tissue culture dishes in 5% serum and incubated in the absence of growth factors for 25 hours. VEGF-G gene expression was up-regulated after 25 hours of incubation on Matrigel, at which time the cells are performing angiogenesis-related functions, *e.g.*, cell migration and tube formation.

Collectively, these data indicate that VEGF-G may be involved in the regulation of endothelial cell processes such as growth, proliferation, differentiation, migration and tube formation.

10 EXAMPLE 3: VEGF-G IS A SECRETED PROTEIN

This example describes a secretion assay that was performed to determine if VEGF-G is secreted from cells. Briefly, the secretion assay was performed as follows: 8x10⁵ 293T cells were plated per well in a 6-well plate and the cells were incubated in growth medium (DMEM, 10% fetal bovine serum, penicillin/strepomycin) at 37°C, 5% 15 CO, overnight. 293T cells were transfected with 2 µg per well of full-length VEGF-G in the pMET7 vector and 10 µg per well of LipofectAMINE (GIBCO/BRL Cat. # 18324-012) according to the manufacturer's instructions. After 5 hours, the transfection media was removed and fresh growth medium was added to allow the cells to recover overnight. The medium was removed and each well was gently washed twice with 20 DMEM without methionine and cysteine (ICN Cat. # 16-424-54). Subsequently, 1 ml DMEM without methionine and cysteine supplemented with 50 µCi Trans-35S-Label (35S-L-methionine/35S-L-cysteine; ICN Cat. # 51006) was added to each well and the cells were incubated at 37°C. 5% CO₃. A 150 µl aliquot of conditioned medium was obtained and 150 µl of 2X SDS sample buffer was added to the aliquot. The sample was 25 heat-inactivated and loaded on a 4-20% SDS-PAGE gel. The gel was fixed and the presence of secreted protein was detected by autoradiography. The secretion assay revealed that VEGF-G is a secreted protein.

WO 01/00878 PCT/US00/18085

- 99 -

EXAMPLE 4: VEGF-G BINDING TO ENDOTHELIAL CELLS

The binding of VEGF-G to endothelial cells was assessed using an alkaline phosphatase-VEGF-G fusion protein (AP-VEGF-G). *In vitro* studies of AP-VEGF-G binding to HDMEC (human dermal microvascular endothelial cells), bACE cells (bovine adrenal cortical capillary endothelial cells) and BAE (bovine aortic endothelial cells) were performed with Phospha-Light chemilluminescent assay system (Tropix, Inc. Bedford, MA). bACE cells were plated into gelatinized 96-well plates (3000 cells/well) and allowed to grow to confluence. The cells were then fixed with acetone. AP-VEGF-G was incubated with the cells for 1 hour, and specific binding was detected with a microplate luminometer according to the manufacturer's instructions.

The results from these experiments indicated selective, high affinity binding of VEGF-G to endothelial cells in culture. When human smooth muscle cells, human prostate carcinoma cells (PC-3), human colon carcinoma cells (LS-174T) and human melanoma cells (SK-MEL-5) were examined, only background binding was detected. These data suggest that VEGF-G binds to endothelial cells with high affinity, and may thus selectively exert its effects on endothelial cells.

EXAMPLE 5: EXPRESSION OF RECOMBINANT VEGF-G PROTEIN IN BACTERIAL CELLS

In this example, VEGF-G is expressed as a recombinant glutathione-S-transferase (GST) fusion polypeptide in *E. coli* and the fusion polypeptide is isolated and characterized. Specifically, VEGF-G is fused to GST and this fusion polypeptide is expressed in *E. coli*, *e.g.*, strain PEB199. Expression of the GST-VEGF-G fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.

10

15

20

10

15

20

25

30

EXAMPLE 6: EXPRESSION OF RECOMBINANT VEGF-G PROTEIN IN COS CELLS

To express the VEGF-G gene in COS cells, the pcDNA/Amp vector by Invitrogen Corporation (San Diego, CA) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, an *E. coli* replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site. A DNA fragment encoding the entire VEGF-G protein and an HA tag (Wilson *et al.* (1984) *Cell* 37:767) or a FLAG tag fused in-frame to its 3' end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.

To construct the plasmid, the VEGF-G DNA sequence is amplified by PCR using two primers. The 5' primer contains the restriction site of interest followed by approximately twenty nucleotides of the VEGF-G coding sequence starting from the initiation codon; the 3' end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the VEGF-G coding sequence. The PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs. Beverly, MA). Preferably the two restriction sites chosen are different so that the VEGF-G gene is inserted in the correct orientation. The ligation mixture is transformed into *E. coli* cells (strains HB101. DH5α, SURE, available from Stratagene Cloning Systems, La Jolla, CA, can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.

COS cells are subsequently transfected with the VEGF-G-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods. DEAE-dextran-mediated transfection, lipofection. or electroporation. Other suitable methods for transfecting host cells can be found in Sambrook. J., Fritsh. E. F., and Maniatis. T. *Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press. Cold Spring Harbor. NY, 1989. The expression

WO 01/00878 PCT/US00/18085

of the VEGF-G polypeptide is detected by radiolabelling (35S-methionine or 35S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labelled for 8 hours with 35S-methionine (or 35S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.

Alternatively, DNA containing the VEGF-G coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites. The resulting plasmid is transfected into COS cells in the manner described above, and the expression of the VEGF-G polypeptide is detected by radiolabelling and immunoprecipitation using a VEGF-G specific monoclonal antibody.

15

20

10

5

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

thereof.

15

What is claimed:

- An isolated nucleic acid molecule selected from the group consisting of:

 (a) a nucleic acid molecule comprising the nucleotide sequence set forth

 in SEQ ID NO:1 or 3, or a complement thereof;
 (b) a nucleic acid molecule comprising the nucleotide sequence set forth
- An isolated nucleic acid molecule which encodes a polypeptide
 comprising the amino acid sequence set forth in SEQ ID NO: 2 or 11, or a complement

in SEQ ID NO:10 or 12, or a complement thereof.

- 3. An isolated nucleic acid molecule comprising the nucleotide sequence contained in the plasmid deposited with ATCC® as Accession Number ______.
- 4. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2 or 11, or a complement thereof.
- 20 5. An isolated nucleic acid molecule selected from the group consisting of:
 - a) a nucleic acid molecule comprising a nucleotide sequence which is at least 60% identical to the nucleotide sequence of SEQ ID NO:1, 3, 10 or 12, or a complement thereof;
- b) a nucleic acid molecule comprising a fragment of at least 50 nucleotides of a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1. 3. 10 or 12. or a complement thereof:
 - c) a nucleic acid molecule which encodes a polypeptide comprising an amino acid sequence at least about 60% identical to the amino acid sequence of SEQ ID NO:2 or 11; and
- d) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 11, wherein the

WO 01/00878 PCT/US00/18085

fragment comprises at least 15 contiguous amino acid residues of the amino acid sequence of SEQ ID NO:2 or 11.

- 6. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5 under stringent conditions.
 - 7. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5, and a nucleotide sequence encoding a heterologous polypeptide.

10

- 8. A vector comprising the nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5.
 - 9. The vector of claim 8, which is an expression vector.

15

- 10. A host cell transfected with the expression vector of claim 9.
- 11. A method of producing a polypeptide comprising culturing the host cell of claim 10 in an appropriate culture medium to, thereby, produce the polypeptide.

- 12. An isolated polypeptide selected from the group consisting of:
- a) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 11, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:2 or 11;
- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 11, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of SEQ ID NO:1, 3, 10 or 12 under stringent conditions;
- c) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 60 % identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1. 3. 10 or 12; and
 - d) a polypeptide comprising an amino acid sequence which is at least 60% identical to the amino acid sequence of SEQ ID NO:2 or 11.
- 15 13. The isolated polypeptide of claim 12 comprising the amino acid sequence of SEQ ID NO:2 or 11.
 - 14. The polypeptide of claim 12, further comprising heterologous amino acid sequences.

- 15. An antibody which selectively binds to a polypeptide of claim 12.
- 16. A method for detecting the presence of a polypeptide of claim 12 in a sample comprising:
- 25 a) contacting the sample with a compound which selectively binds to the polypeptide; and
 - b) determining whether the compound binds to the polypeptide in the sample to thereby detect the presence of a polypeptide of claim 12 in the sample.
- The method of claim 16, wherein the compound which binds to the polypeptide is an antibody.

- 18. A kit comprising a compound which selectively binds to a polypeptide of claim 12 and instructions for use.
- 19. A method for detecting the presence of a nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5 in a sample comprising:
 - a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes to the nucleic acid molecule; and
- b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample to thereby detect the presence of a nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5 in the sample.
 - 20. The method of claim 19, wherein the sample comprises mRNA molecules and is contacted with a nucleic acid probe.
 - 21. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of any one of claims 1, 2, 3, 4, or 5 and instructions for use.
- 22. A method for identifying a compound which binds to a polypeptide of 20 claim 12 comprising:
 - a) contacting the polypeptide. or a cell expressing the polypeptide with a test compound; and
 - b) determining whether the polypeptide binds to the test compound.
- 25 23. The method of claim 22, wherein the binding of the test compound to the polypeptide is detected by a method selected from the group consisting of:
 - a) detection of binding by direct detection of test compound/polypeptide binding;
 - b) detection of binding using a competition binding assay; and
- 30 c) detection of binding using an assay for VEGF-G activity.

WO 01/00878

24. A method for modulating the activity of a polypeptide of claim 12 comprising contacting the polypeptide or a cell expressing the polypeptide with a compound which binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.

- 25. A method for identifying a compound which modulates the activity of a polypeptide of claim 12 comprising:
 - a) contacting a polypeptide of claim 12 with a test compound; and
- b) determining the effect of the test compound on the activity of the
- polypeptide to thereby identify a compound which modulates the activity of the polypeptide.

1/18

	TCGACCCACGCGTCCGGGAAGTGCGGCACCCACACGCGCTCGGAAAGTTCAGCATGCAGGAAGTTTGGGGAGAGCTCG 79														9									
GCGA'	CGATTAGCACAGCGACCCGGGCCAGCGCAGGGCGAGCGCAGGCGGC															8 כ'								
	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,															6								
GAGC	AGCAGAACCCGGCTTTTTCTTGGAGCGACGCTGTCTCTAGTCGCTGATCCCAA															230								
	v	-	r	1.	ī	С	А	N	F	С	9	5	С	R	D									26
GTC	I TAC	AC	er c	TA	ATC	TGC	GCA	AAC	TTT	TGC	: AC	GC 1	TGT	CGG	GAC	AC	TT	CT G	ica i	ACC	CCG	C?	\G	290
				_	.,		ŧ	R	N	А	1	N	L	R	R	D		Ε	s	N	Н	I		46
S AGC	A GCI	A T	s cc /	I ATC	AAA	A GCT	LIG	CGC	AAC	GCC	A	AC (CTC	AGG	CGA	CA.	T G	AG A	GC .	AAT	CAC	. C.	rc	350
_	_			v	R	R	D	E	Т	I	,	Q	v	ĸ	G	N		G			Q		-	66
T ACA	GA(c T	TG :	TAC	CGA	R AGA	GAT	GAG	ACC	ATO	c c	AG (GTG	AAA	GGA	A.A.	C G	GC 1	DAT	GTG	CAC	; A(GT	410
_	_		F	P	N	s	Y	P	R	N		L	L	L	T	4	1		L	H	s		Q	86
CCI	AG.	A T	TC	ccG	AAC	AGC	TAC	CCC	AGG	AA	cc	TG	CTC	CTG	ACA	A TO	GG C	GG (CTT	CAC	TC	r C	AG ·	470
_				R	7	Q	L	v	F	D		N	Q	F	G		L	Ε	E	Α	Ε		N	106
E GAG	AA	A T.	.CA	CGG	ATA	Q CAG	CTA	GTG	TTT	GA	C A	TA	CAG	TTT	GG	A T	TA C	SAG	GAA	GCA	GA	A A	TA	530
_	-		С	D	V	D	F	v	E	v		Ε	D	I	s		Ε	T	S		·I		I	126
GAT	TA	C 7	GT	Äää	TAT	D GAT		GTC	GA	, GT	T	344	GAT										.77	550
_	_		Ð	W	С	G	н	ĸ	E	V	,	P	P	R	I		K	s	Ř	T	N		Q	146
AGA	GC	, Sa (GA.	TGG	TGI	G GG≱	CAC	: AAC	GA	A GI	T	CT	CCA	AGG	AT	AA	AA '	TCA	AGA	ACG	AA	C	:AA	650
														A				G	F		I		Y	166
I ATI	I A	K AA 2	I ATC	T ACA	F TTC	X AAC	S TC	D GA	D GA	C TI	VC ,	TTT	GTG	GC.	AA 1	A C	CT		TTC	AAG	TA :	T	TAT	710
							_	_	_			λ.	Δ.	S	F	2	т	N	W	Ξ	9	;	v	186
Y TAT	: T	s CT	L TTG	CIC	E GA	D A GA	TT	CA CA	A CC	CG	CA	GCA	GCI	TC	A G	AG A	ACC	AAC	TGG	GAJ	A TO	T (GTC	770
			_	_	_	_	v	s	Y		N	s	P	s	,	J	T	D	P	Ţ		٠	I	206
T AC	A A	s .gc	S TCT	I AT	s TTC	G A GG	G GT	A TC	C TA	TA	AC	TCI	ca	A TC	A G	ra J	ACG	GAT	CCC	AC	r C	rg	ATT	830
			_	_	_	. 1/	K	I			E	F	D	T	, ,	V	E	D	L	L		K		226
A GC	G G	D IAT	A GCT	. civ	D G GA	C AA	A AA	A AI	T G	· CAG	AA	TT	GA	T AC	A G	TG (GAA	GAT	CIX	CI	C A	AG	TAC	890
			_	_		; ¥	, ,	٠ ۶	. 1)	L	E	N	ŀ	1	Y	L	D	T				Y	246
F TT	C A	N AAT	CCS	E A GA	G TC	A TO	e c	LA GI	AA G	AT (TT	GA	S AA	T A	lG I	M.								
_		_		c	; }	, ,	. I	o 1	R	K	s	ĸ	٧	, 1)	L	D	R	L	N	T _	D	D	266
CG	ia (GGC	AGG	G TC	A T	AC C	AT G	AC C	GG A	AG 1	TCA	AA	A GI	T G	AC C	ЛG	GAT	AGG	s (1	CA	•••		••••	
_					,	s (٠ ,	r	P	R	N	Y	5	3	٧	N	I	R	E	1	Ξ	L	K	286
				T T	AC A	GT T	GC A	CT C	CC A	.GG	TAA	' TA	C T	3 6 6	10 1	W.	WIL	i AG	n Oz		AG (
_	,		**	,	ur '	v	F	F	P	R	С	L	. 1	ւ	V	Q	R	С	G	; (G		C	306
T-	rg	GCC	л Аа:	T G	rg G	TC T	TC T	TT C	CA C	GT	TGC	. CI	c c	IC G	TG (CAG	CGG	TG	T GO	ia G	GA A	AAT	TGT	1130
•	3	c	G	,	T	v	N	w	P.	s	С	7		С	N	s	G	ĸ	: 7	,	v	ĸ	к	326

```
Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Lys Phe Glu Pro Gly
       His Phe Lys Arg Arg Gly Lys Ala Lys Asn Met Pro Leu Val Asp Ile
       Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro
       Pro Arg
          370
      <210> 12
      <211> 1110
      <212> DNA
      <213> Mus musculus
     <220>
     <221> CDS
     <222> (1)..(1110)
     <400> 12
    atg caa egg ete gtt tta gte tee att ete etg tge geg aac ttt age
    Met Gln Arg Leu Val Leu Val Ser Ile Leu Leu Cys Ala Asn Phe Ser
    tgc tat ccg gac act ttt gcg act ccg cag aga gca tcc atc aaa gct
    Cys Tyr Pro Asp Thr Phe Ala Thr Pro Gln Arg Ala Ser Ile Lys Ala
   ttg cgc aat gcc aac ctc agg aga gat gag agc aat cac ctc aca gac
   Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp
                                                                      144
   ttg tac cag aga gag gag aac att cag gtg aca agc aat ggc cat gtg
   Leu Tyr Gln Arg Glu Glu Asn Ile Gln Val Thr Ser Asn Gly His Val
                                                                     192
  cag agt cct cgc ttc ccg aac agc tac cca agg aac ctg ctt ctg aca
  Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Thr
                                                                     240
 tgg tgg ctc cgt tcc cag gag aaa aca cgg ata caa ctg tcc ttt gac
 Trp Trp Leu Arg Ser Gln Glu Lys Thr Arg Ile Gln Leu Ser Phe Asp
                                                                    288
 cat caa ttc gga cta gag gaa gca gaa aat gac att tgt agg tat gac
 His Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp
                                                                   336
ttt gtg gaa gtt gaa gaa gtc tca gag agc agc act gtt gtc aga gga
Phe Val Glu Val Glu Val Ser Glu Ser Ser Thr Val Val Arg Gly
                                                                   384
aga tgg tgt ggc cac aag gag atc cct cca agg ata acg tca aga aca
Arg Trp Cys Gly His Lys Glu Ile Pro Pro Arg Ile Thr Ser Arg Thr
                                                                  432
```

														gca Ala		480
cct Pro	gga Gly	ttc Phe	aag Lys	att Ile 165	tat Tyr	tat Tyr	tca Ser	ttt Phe	gtg Val 170	gaa Glu	gat Asp	ttc Phe	caa Gln	ccg Pro 175	gaa Glu	528
														tct Ser		576
														gct Ala		624
gcc Ala	ctg Leu 210	gac Asp	aaa Lys	act Thr	gtc Val	gca Ala 215	gaa Glu	ttc Phe	gat Asp	acc Thr	gtg Val 220	gaa Glu	gat Asp	cta Leu	ctt Leu	672
aag Lys 225	cac His	ttc Phe	aat Asn	Pro	gtg Val 230	tct Ser	tgg Trp	caa Gln	gat Asp	gat Asp 235	ctg Leu	gag Glu	aat Asn	ttg Leu	tat Tyr 240	720
														aag Lys 255		768
														agt Ser		816
act Thr	ccc Pro	agg Arg 275	aat Asn	cac His	tct Ser	gtg Val	aac Asn 280	ctc Leu	agg Arg	gag Glu	gag Glu	ctg Leu 285	aag Lys	ctg Leu	acc Thr	864
														ggt Gly		912
aac Asn 305	tgt Cys	ggt Gly	tgc Cys	gga Gly	act Thr 310	gtc Val	aac Asn	tgg Trp	aag Lys	tcc Ser 315	tgc Cys	aca Thr	tgc Cys	agc Ser	tca Ser 320	960
Gly	aag Lys	aca Thr	gtg Val	aag Lys 325	aag Lys	tat Tyr	cac His	gag Glu	gta Val 330	ttg Leu	aag Lys	ttt Phe	gag Glu	cct Pro 335	gga Gly	1008
cat His	ttc Phe	aag Lys	aga Arg 340	agg Arg	ggc Gly	aaa Lys	gct Ala	aag Lys 345	aat Asn	atg Met	cct Pro	ctt Leu	gtt Val 350	gat Asp	atc Ile	1056
cag Gln	ctg Leu	gat Asp 355	cat His	cat His	gag Glu	cga Arg	tgt Cys 360	gac Asp	tgt Cys	atc Ile	Cys	agc Ser 365	tca Ser	aga Arg	cca Pro	1104
cct Pro	-															1110