Lista 2

Algorytmy optymalizacji dyskretnej

Szymon Zajączkowski

Informatyka Algorytmiczna, Semestr VI

20 kwietnia 2023

Zadanie 1

Treść zadania

Pewne przedsiębiorstwo lotnicze musi podjąć decyzję o zakupie paliwa do samolotów odrzutowych, mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują.

Firmy paliwowe poinformowały, ze mogą dostarczyć następujące ilości paliwa w nadchodzącym miesiącu: Firma 1 - 275 000 galonów, Firma 2 - 550 000 galonów i Firma 3 - 660 000 galonów. Niezbędne ilości paliwa do odrzutowców na poszczególnych lotniskach są odpowiednio równe: na Lotnisku 1 - 110 000 galonów, na Lotnisku 2 - 220 000 galonów, na Lotnisku 3 - 330 000 galonów i na Lotnisku 4 - 440 000 galonów.

Koszt jednego galonu paliwa (w \$) z uwzględnieniem kosztów transportu dostarczonego przez poszczególnych dostawców kształtuje się na każdym z lotnisk następująco:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Wyznacz plan zakupu i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedz na poniższe pytania.

- 1. Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska?
- 2. Czy wszystkie firmy dostarczają paliwo?
- 3. Czy możliwości dostaw paliwa przez firmy są wyczerpane?

Zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc).

Model formalny:

- n liczba lotnisk, m liczba firm,
- $c_i, i \in \{1,...,m\}$ ilość posiadanego paliwa przez i-tą firmę,
- $a_j,\,j\in\{1,...,n\}$ zapotrzebowanie na paliwo na j-tymlotnisku,
- $t_{ji},\,j\in\{1,...,n\},i\in\{1,...,m\}$ koszt galonu paliwa z firmy j-tejna lotnisku i-tym,
- $x_{ji} \ge 0$, $j \in \{1,...,n\}$, $i \in \{1,...,m\}$ liczba galonów paliwa zakupionych na j-te lotnisko w i-tej firmie,
- ograniczenia:

$$- \forall_{k \in \{1,\dots,n\}} \sum_{l=1}^{m} x_{kl} \geqslant a_k$$

$$- \forall_{l \in \{1,\dots,m\}} \sum_{k=1}^{n} x_{kl} \leqslant c_l$$

• funkcja celu:

$$-\min \sum_{k=1}^{m} \sum_{l=1}^{n} x_{kl} t_{kl}$$

Rozwiązanie

Poniżej przedstawiono otrzymane rezultaty:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110 000	0
Lotnisko 2	165 000	55 000	0
Lotnisko 3	0	0	330 000
Lotnisko 4	110 000	0	330 000

Figure 1: Ilość paliwa (w galonach) dostarczona na lotniska przez firmy

Na podstawie uzyskanych rezultatów można stwierdzić, że:

- Minimalny łączny koszt dostaw wynosi \$ 8 525 000.
- Wszystkie firmy dostarczają paliwo.
- Firma 1 i Firma 3 dostarczają całe dostępne paliwo. Firma 2 dostarcza jedynie 165 000 galonów. Na stanie zostanie 385 000 galonów paliwa.

Zadanie 2

Treść zadania

Dana jest sieć połączeń między n miastami reprezentowana za pomocą skierowanego grafu G=(N,A), gdzie N jest zbiorem miast (wierzchołków), |N|=n, A jest zbiorem połączeń między miastami (łuków), |A|=m. Dla każdego połączenia z miasta i do miasta j, $(i,j)\in A$, dane są koszt przejazdu c_{ij} oraz czas przejazdu t_{ij} (im mniejszy koszt, tym dłuższy czas przejazdu). Dane są również dwa miasta $i^{\circ}, j^{\circ} \in N$.

Celem jest znalezienie połączenia (ścieżki) między zadanymi dwoma miastami, którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu przejazdu T.

- 1. Zapisz model programowania całkowitoliczbowego w wybranym języku. Rozwiąż własny egzemplarz problemu $(n \ge 10)$ za pomocą solvera GLPK (lub np. Cbc).
- 2. Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Sprawdź, jakie będą wartości zmiennych decyzyjnych, jeśli usuniemy ograniczenie na ich całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego).
- 3. Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie jest akceptowalnym rozwiązaniem?

Model formalny:

- $\bullet\,$ N zbiór miast, A zbiór połączeń pomiędzy miastami,
- \bullet n liczba miast, m liczba połączeń, T maksymalny całkowity czas przejazdu,
- $\bullet~i^{\circ}$ miasto początkowe, j° miasto końcowe,
- $c_{ij},\,(i,j)\in A$ koszt przejazdu z
 i-tegomiasta do j-tegomiasta,
- $t_{ij}, (i, j) \in A$ czas przejazdu z i-tego miasta do j-tego miasta,
- $x_{ij}, (i, j) \in A$ użyte krawędzie (1 krawędź użyta, 0 krawędź nieużyta),
- ograniczenia:

$$- \sum_{(i,j)\in A} t_{ij} x_{ij} \leq T$$

$$- \forall_{i\in\{1,\dots,n\}} (\sum_{(j,i)\in A} x_{ji} + 1[i=i^{\circ}] = \sum_{(i,j)\in A} x_{ij} + 1[i=j^{\circ}])$$

• funkcja celu:

$$-\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

Rozwiązanie

Poniżej przedstawiono rozwiązanie przykładowego egzemplarza problemu:

Wejście	Wyjście	Koszt	Czas	Wejście	Wyjście	Koszt	Czas
1	2	50	3	6	8	20	2
1	3	40	2	6	9	70	5
2	4	60	4	7	8	60	4
2	5	20	1	7	9	30	2
3	4	30	2	8	10	50	3
3	5	70	5	8	1	80	7
4	6	80	6	9	10	20	10
4	7	10	1	9	2	90	8
5	6	40	3	10	3	30	2
5	7	90	7	10	4	40	3

Figure 2: Przykładowy egzemplarz problemu (n = 10)

Poniżej przedstawiono rozwiązanie przykładowego egzemplarza problemu:

Źródło	Ujście	Ścieżka	Koszt	Maksymalny czas
1	10	$\boxed{1 \rightarrow 3 \rightarrow 4 \rightarrow 7 \rightarrow 9 \rightarrow 10}$	130	17
1	10	$1 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 8 \rightarrow 10$	180	16

Figure 3: Rozwiązanie przedstawionego egzemplarza problemu

Rozwiązanie o koszcie 130 jest rozwiązaniem optymalnym. Po zmniejszeniu maksymalnego kosztu optymalne rozwiązanie staje się niedopuszczalne i wyznaczone jest rozwiązanie, które jest optymalne biorąc pod uwagę ograniczenia czasowe.

Ograniczenia na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne, gdyż w przypadku, gdy rozwiązanie optymalne nie spełnia ograniczeń czasowych, zmienne decyzyjne w otrzymanym rozwiązaniu przyjmują wartości ułamkowe.

Usunięcie ograniczeń czasowych nie rozwiąże problemu, gdyż wtedy program wyznaczy opty-

malne rozwiązanie nie biorąc pod uwagę maksymalnego czasu. Zatem może być ono niedozwolone.

Zadanie 3

Treść zadania

Zapisz model dla zadania 3. z Listy 2 na ćwiczenia w wybranym języku i rozwiąż go dla podanych tam danych za pomocą solvera GLPK (lub np. Cbc).

W opisie rozwiązania przedstaw optymalny przydział radiowozów dla każdej zmiany i dzielnicy oraz podaj całkowitą liczbę wykorzystywanych radiowozów.

Policja w małym miasteczku posiada w swoim zasięgu trzy dzielnice oznaczone jako p1, p2 i p3. Każda dzielnica ma przypisaną pewną liczbę radiowozów wyposażonych w radiotelefony i sprzęt pierwszej pomocy. Policja pracuje w systemie trzyzmianowym. W poniższych tabelach podane są minimalne i maksymalne liczby radiowozów dla każdej zmiany.

	zmiana 1	zmiana 2	zmiana 3
p1	2	4	3
p2	3	6	5
рЗ	5	7	6

Figure 4: Minimalne liczby radiowozów dla każdej zmiany i dzielnicy

	zmiana 1	zmiana 2	zmiana 3
p1	3	7	5
p2	5	7	10
рЗ	8	12	10

Figure 5: Maksymalne liczby radiowozów dla każdej zmiany i dzielnicy

Aktualne przepisy wymuszają, że dla zmiany 1, 2 i 3 powinno być dostępnych, odpowiednio, co najmniej 10, 20 i 18 radiowozów. Ponadto dzielnice p1, p2 i p3 powinny mieć przypisane,

odpowiednio, co najmniej 10, 14 i 13 radiowozów. Policja chce wyznaczyć przydział radiowozów spełniający powyższe wymagania i minimalizujący ich całkowitą liczbę. Sformułuj ten problem jako problem cyrkulacji.

Opis modelu

Model formalny:

- n liczba dzielnic, m liczba zmian,
- $s_i, j \in \{1,...,m\}$ minimalna liczba radiowozów na j-tej zmianie,
- $a_{ij}, i \in \{1,...,n\}, j \in \{1,...,m\}$ minimalna liczba radiowozów w *i*-tej dzielnicy na *j*-tej zmianie,
- $b_{ij}, i \in \{1,...,n\}, j \in \{1,...,m\}$ maksymalna liczba radiowozów w i-tej dzielnicy na j-tej zmianie,
- $x_{ij} \ge 0, i \in \{1,...,n\}, j \in \{1,...,m\}$ liczba radiowozów w i-tej dzielnicy na j-tej zmianie,
- ograniczenia:

$$- \forall_{k \in \{1,...,n\}} \sum_{l=1}^{m} (x_{kl} \ge d_k)$$

$$- \forall_{l \in \{1,...,m\}} \sum_{k=1}^{n} (x_{kl} \ge s_l)$$

$$- \forall_{k \in \{1,...,n\}} \forall_{l \in \{1,...,m\}} (a_{kl} \le x_{kl} \le b_{kl})$$

• funkcja celu:

$$-\min \sum_{k=1}^n \sum_{l=1}^m x_{kl}$$

Rozwiązanie

Poniżej przedstawiono optymalny przydział radiowozów:

	zmiana 1	zmiana 2	zmiana 3
p1	2	7	5
p2	3	6	7
рЗ	5	7	6

Figure 6: Optymalny przydział radiowozów do dzielnic

Do odpowiedniego patrolowania dzielnic policja potrzebuje 48 samochodów.

Zadanie 4

Treść zadania

Pewna firma przeładunkowa posiada teren, na którym składuje kontenery z cennym ładunkiem. Teren podzielony jest na $m \times n$ kwadratów. Kontenery składowane są w wybranych kwadratach. Zakłada się, że kwadrat może być zajmowany przez co najwyżej jeden kontener. Firma musi rozmieścić kamery, żeby monitorować kontenery. Każda kamera może obserwować k kwadratów na lewo, k kwadratów na prawo, k kwadratów w górę i k kwadratów w dół. Kamera nie może być umieszczona w kwadracie zajmowanym przez kontener.

Zaplanuj rozmieszczenie kamer w kwadratach tak, aby każdy kontener był monitorowany przez co najmniej jedną kamerę oraz liczba użytych kamer była jak najmniejsza.

Zapisz model programowania całkowitoliczbowego w wybranym języku. Rozwiąż własny egzemplarz problemu $(m, n \ge 5$; rozwiązania dla ≥ 2 różnych wartości parametru k) za pomocą solvera GLPK (lub np. Cbc).

Model formalny:

- \bullet n liczba rzędów kontenerów, m liczba kolumn kontenerów, k zasięg kamer,
- c_{ij} , $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$ rozmieszczenie kontenerów (1 kontener jest ustawiony na danym polu, 0 pole jest puste),
- x_{ij} , $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$ rozmieszczenie kamer (1 kamera jest ustawiona na danym polu, 0 pole jest puste),
- ograniczenia:

$$- \forall_{a \in \{1, \dots, n\}} \forall_{b \in \{1, \dots, m\}} (x_{ab} + c_{ab} \leq 1)$$

$$- \forall_{a \in \{1, \dots, n\}} \forall_{b \in \{1, \dots, m\}} (c_{ab} = 1 \implies (\sum_{o = \max(1, b - k)}^{\min(m, b + k)} x_{ao} + \sum_{p = \max(1, a - k)}^{\min(n, a + k)} x_{pb} \geq 1))$$

• funkcja celu:

$$-\min \sum_{a=1}^n \sum_{b=1}^m x_{ab}$$

Rozwiązanie

Poniżej przedstawiono rozwiązanie przykładowego egzemplarza problemu:

	1	2	3	4	5
1	1	0	0	0	1
2	0	1	0	1	0
3	0	0	1	0	0
4	0	1	0	1	0
5	1	0	0	0	1

Figure 7: Przykładowy egzemplarz problemu (n = 5, m = 5)

k	Liczba kamer	Rozmieszczenie kamer
1	5	(1,2), (1,4), (2,3), (4,1), (4,5)
2	4	(1,3),(2,3),(4,1),(4,5)
3	3	(1,2),(1,4),(5,3)

Figure 8: Optymalne rozmieszczenie kamer w zależności od wartości parametru k

Zadanie 5

Treść zadania

Zakład może produkować cztery różne wyroby $P_i, i \in 1, 2, 3, 4$, w różnych kombinacjach. Każdy z wyrobów wymaga pewnego czasu obróbki na każdej z trzech maszyn. Czasy te są podane w poniższej tabeli (w minutach na kilogram wyrobu). Każda z maszyn jest dostępna przez 60 godzin w tygodniu. Produkty P_1, P_2, P_3 i P_4 mogą być sprzedane po cenie, odpowiednio, 9, 7, 6 i 5 \$ za kilogram. Koszty zmienne (koszty pracy maszyn) wynoszą, odpowiednio, 2 \$ za godzinę dla maszyn M_1 i M_2 oraz 3 \$ za godzinę dla maszyny M_3 . Koszty materiałowe wynoszą 4 \$ na każdy kilogram wyrobu P_1 i 1 \$ na każdy kilogram wyrobu P_2, P_3 i P_4 . W tabeli podany jest także maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach).

Produkt	M_1	M_2	M_3	Max popyt
P_1	5	10	6	400
P_2	3	6	4	100
P_3	4	5	3	150
P_4	4	2	1	500

Figure 9: Maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach)

Wyznacz optymalny tygodniowy plan produkcji poszczególnych wyrobów i oblicz zysk z ich sprzedaży.

Zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc).

Model formalny:

- n liczba produktów, m liczba maszyn,
- $p_i, i \in \{1, ..., n\}$ cena za sprzedaż kilogramu *i*-tego produktu,
- $m_i, i \in \{1,...,n\}$ koszt materiałowy za kilogram i-tego produktu,
- w_j , $i \in \{1, ..., m\}$ koszt pracy za godzinę j-tej maszyny,
- $d_j,\,i\in\{1,...,n\}$ maksymalny popyti-tego produktu,
- h maksymalny czas działania każdej z maszyn (w godzinach),
- t_{ij} , $i \in \{1,...,n\}$, $j \in \{1,...,m\}$ czas wyrobu kilogramu *i*-tego produktu na *j*-tej maszynie (w minutach),
- $x_i\geqslant 0,\,i\in\{1,...,n\}$ liczba wyprodukowanych kilogramów i-tegoproduktu,
- ograniczenia:

$$- \forall_{k \in \{1,...,n\}} (x_k \le d_k)$$

- $\forall_{l \in \{1,...,m\}} \sum_{k=1}^{n} (\frac{x_k t_{kl}}{60} \le h)$

• funkcja celu:

$$-\max \sum_{k=1}^{n} (x_k(p_k - m_k - \sum_{l=1}^{m} \frac{t_{kl}w_l}{60}))$$

Rozwiązanie

Poniżej przedstawiono optymalny tygodniowy plan produkcji poszczególnych wyrobów:

P_1	P_2	P_3	P_4
125	100	150	500

Figure 10: Optymalny tygodniowy plan produkcji

Maksymalny zysk wynosi 3632.5 \$.