

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia Mecânica

MECÂNICA GERAL

PROFESSOR: IGOR DOS SANTOS GOMES

E-MAIL: IGOR.GOMES@ITEC.UFPA.BR

CENTRO DE GRAVIDADE, CENTRO DE MASSA E CENTRO GEOMÉTRICO

6.4. Corpos compostos

- ➤ Um **corpo composto** consiste em uma série de corpos de formatos "mais simples" conectados, que podem ser retangulares, triangulares, semicirculares, etc.;
- ➤ Tal corpo normalmente pode ser seccionado ou dividido em suas partes componentes e, desde que o **peso** e a localização do centro de gravidade de cada uma dessas partes sejam conhecidos, podemos eliminar a necessidade de integração para determinar o centro de gravidade do corpo inteiro.

Para determinar o centro de gravidade do corpo inteiro, em vez de considerar um número infinito de pesos diferenciais, temos um número finito de pesos:

$$\overline{x} = \frac{\Sigma \widetilde{x} W}{\Sigma W} \quad \overline{y} = \frac{\Sigma \widetilde{y} W}{\Sigma W} \quad \overline{z} = \frac{\Sigma \widetilde{z} W}{\Sigma W}$$

$$\overline{x} = \frac{\Sigma \widetilde{x} W}{\Sigma W} \quad \overline{y} = \frac{\Sigma \widetilde{y} W}{\Sigma W} \quad \overline{z} = \frac{\Sigma \widetilde{z} W}{\Sigma W}$$

- $ightharpoonup \overline{x}, \overline{y}, \overline{z}$ representam as coordenadas do centro de gravidade G do corpo composto;
- \nearrow \widetilde{x} , \widetilde{y} , \widetilde{z} representam as coordenadas do centro de gravidade de cada parte componente do corpo;
- $\triangleright \sum W$ é a soma dos pesos de todas as partes componentes do corpo, ou simplesmente o peso total do corpo;

Observação:

- Quando o corpo tem uma densidade ou peso específico constante, o centro de gravidade coincide com o centroide do corpo;
- O centroide para linhas, áreas e volumes compostos pode ser encontrado por meio de relações semelhantes às equações da Aula 18, porém, os Ws são substituídos por Ls, As e Vs, respectivamente.

Exercício 41:

➤ Localize o centroide do arame mostrado na Figura abaixo.

Solução:

- 1) Partes componentes do arame e braços de momento
- O arame pode ser dividido em três seguimentos.

Solução:

Um parênteses: Coordenadas polares para os problemas de arcos circulares;

$$\overline{x} = \frac{\int_{L}^{\widetilde{x}} dL}{\int_{L}^{dL}} = \frac{\int_{0}^{\pi/2} (R\cos\theta)R \,d\theta}{\int_{0}^{\pi/2} R \,d\theta} = \frac{R^2 \int_{0}^{\pi/2} \cos\theta \,d\theta}{R \int_{0}^{\pi/2} d\theta} = \frac{2R}{\pi}$$

$$\frac{R \cdot R}{R \cdot \frac{\pi}{2}} = \frac{2R}{\pi}$$

$$\overline{y} = \frac{\int_{L}^{\widetilde{y}} dL}{\int_{L}^{dL}} = \frac{\int_{0}^{\pi/2} (R \sin \theta) R d\theta}{\int_{0}^{\pi/2} R d\theta} = \frac{R^{2} \int_{0}^{\pi/2} \sin \theta d\theta}{R \int_{0}^{\pi/2} d\theta} = \frac{2R}{\pi}$$

Solução:

2) Somatórios

> Por conveniência, os cálculos podem ser tabulados da seguinte forma:

Segmento	L (mm)	\widetilde{x} (mm)	\widetilde{y} (mm)	\tilde{z} (mm)	$\widetilde{x}L$ (mm ²)	$\widetilde{y}L$ (mm ²)	$\tilde{z}L$ (mm ²)
1	$\pi(60) = 188,5$	60	-38,2	0	11310	-7200	0
2	40	0	20	0	0	800	0
3	20	0	40	-10	0	800	-200
	$\Sigma L = 248,5$				$\Sigma \widetilde{x} L = 11310$	$\Sigma \widetilde{y}L = -5600$	$\Sigma \widetilde{z} L = -200$

$$\bar{x} = \frac{\Sigma \tilde{x} L}{\Sigma L} = \frac{11310}{248.5} = 45,5 \text{ mm}$$

$$\overline{y} = \frac{\Sigma \widetilde{y}L}{\Sigma L} = \frac{-5600}{248,5} = -22,5 \text{ mm}$$

$$\bar{z} = \frac{\Sigma \tilde{z}L}{\Sigma L} = \frac{-200}{248.5} = -0.805 \text{ mm}$$

Exercício 42:

> Localize o centroide da área da placa mostrada na Figura abaixo.

Solução:

1) Partes componentes da placa e braços de momento

Solução:

2) Somatórios

Segmento	A (m ²)	$\widetilde{x}(\mathbf{m})$	$\widetilde{y}(\mathbf{m})$	$\widetilde{x}A(\mathbf{m}^3)$	$\widetilde{y}A(m^3)$
1	$\frac{1}{2}(3)(3) = 4,5$	1	1	4,5	4,5
2	(3)(3) = 9	-1,5	1,5	-13,5	13,5
3	-(2)(1) = -2	-2,5	2	5	-4
	$\Sigma A = 11,5$			$\Sigma \widetilde{x} A = -4$	$\Sigma \widetilde{y} A = 14$

$$\overline{x} = \frac{\Sigma \widetilde{x} A}{\Sigma A} = \frac{-4 \text{ m}^3}{11.5 \text{ m}^2} = -0.348 \text{ m}$$

$$\overline{y} = \frac{\Sigma \widetilde{y} A}{\Sigma A} = \frac{14 \text{ m}^3}{11.5 \text{ m}^2} = 1.22 \text{ m}$$

OBRIGADO PELA ATENÇÃO!