International Institute of Information Technology Bangalore

MACHINE LEARNING AI511

Project Report: It's A Fraud

Submitted by: Darshak Jivrajani (IMT2020119)

Arhant Arora (IMT2020503)

December 14, 2022

Contents

1	Preprocessing and EDA:				
	1.1	Removing Null Values:	3		
	1.2	Dealing with Vxx, Cx and Dx columns:	3		
	1.3	Dealing with Skewness:	3		
	1.4	Filling NULL Values:	3		
	1.5	Outlier Removal:	3		
2	Models and Final Scores:				
3	Obs	servation And Conclusion:	4		

Overview

GitHub Repository Link: https://github.com/A9Aru/MLProject_ItsAFraud

Given data about transactions, train a model which tells if a given transaction is fraudulent or not.

The Train Dataset given to us has 434 columns and rows. To train a model accurately, we clearly need to perform heavy preprocessing and EDA on the dataset.

On observation, we also find that the dataset is highly biased with only 3.5% of the entries as fraud.

1. Preprocessing and EDA:

1.1 Removing Null Values:

Since the dataset has only 3.5% of fraud entries, any row with more than 96.5% of NULL Values was removed.

1.2 Dealing with Vxx, Cx and Dx columns:

We grouped the V columns on the basis of NULL value %, got 9 different groups and looked at the correlation matrix of each group. This helped us remove a large number of columns.

For the V Columns left, we again looked at the correlation matrix to remove any other similarities among columns. We then performed the same with the C and D columns. This helped us decrease number of columns from 434 to around 102.

1.3 Dealing with Skewness:

We looked at the skewness of all the columns. We calculated the square root for the columns with skewness greater than 5.1 and square for the columns with skewness less than -4. After this we calculated the skewness again and this time we removed the columns who's skewness was outside of the range -4 to 5.1.

1.4 Filling NULL Values:

For categorical columns, we filled the with the median of the data values we had. For non-categorical columns, same process as mentioned above except we filled the values with mean if we still had any empty columns, we'll fill it as per our data.

1.5 Outlier Removal:

We checked the outlier for all columns ad for values between 2% and 98%, we kept it and removed the rest. We are finally ready to train our models.

2. Models and Final Scores:

Here is a summary of the models used:

Model	Hyperparameter	Value	Model
			Score
KNN	metric	manhattan	0.82645
	algorithm	$ball_tree$	
	leaf_size	10	
	n_neighbours	11	
	weights	distance	
Logistic	С	0.1	0.756
Regression	max_iter	100000	
	penalty	12	
	solver	lbfgs	
Naive Bayes	var_smoothing	1	0.686
Bagging (With	base_estimatormax_depth	5	0.85897
Decision Tree)	max_samples	0.5	
ADA Boost	base_estimatormax_depth	10	0.8475
(With Decision	base_estimator_min_samples	10	
Tree)	_leaf		
XG Boost	colsample_bytree	0.75	0.928
	gamma	0.65	
	learning_rate	0.1	
	max_depth	20	
	reg_alpha	0.4	
	objective	binary:logistic	
	n_estimators	8000	
	njobs	-1	
Neural Networks	Layers	2(relu, sigmoid)	0.69716
	loss_function	$binary_crossentropy$	
	epochs	20	
	batch_size	100	
	optimizer	adam	

Table 1: Table showing Hyperparameter values for different models and their final scores.

3. Observation And Conclusion:

We can observe that the best model for our data is XGBoost. This can be because our data is a high bias one and XGBoost aims to reduce bias. Also, XGBoost works well on a heterogeneous data (our data becomes highly uncorrelated after the initial preprocessing.) Thus we can conclude XGBoost is the best model for a highly-biased heterogeneous binary classification data like the one we had.