Introduction to Machine Learning

Gopi Krishna Nuti
gopi.nuti@tcs.com

Machine Learning

- Has been around since many decades with various names like Applied Statistics, Measurement Science etc.
- Why recent interest?
 - CPU capacity increased by orders of magnitude
 - Explosion of digital data
 - Cheaply available computing power

What is Analytics

3

- Artificial Intelligence
- Machine Learning
- Data Science
- Image/Video Analytics
- Speech Analytics
- Natural Language Processing
- **Statistics**
- Big Datø
- Big Data Analytics

Artificial Intelligence
Techniques to enable a computer to mimic human intelligence

Machine Learning
Using Algorithms to learn from and make predictions about data without having to explicitly code for it

Deep Learning Emulate the learning approach of human beings to gain certain types of knowledge

Machine Learning

4

Machine Learning

Data Analytics

Image/Video Analytics Speech Analytics Natural Language Processing

Descriptive

Predictive

Prescriptive |

Convolutional Neural Networks

Introduction to Machine Learning

Data Science	Data Analytics
Mathematics of explaining population relationships based on samples.	 Extracting valuable information out of data Predict values for new data
Scarcity of Data	Abundance of Data
Hypothesis comes first	Data comes first
Macro Decisioning	Micro Decisioning

Introduction to Machine Learning

Image courtesy of Datascientistinsights.com

Machine Learning Vs Classical Programming

- Why is machine learning disruptive?
- Lets look at an example.
 - ■The business is an educational institution.
 - ►KPI being measured is interest level of students attending the class in a 1 hour duration.
 - ■Goøl: KPI should always be above a certain threshold.

Classical Programming

Classical Programming

- Stårts with business rules or Business Requirements Spec.
- Business rules
 - Extracted by Business Analyst or Product Owner
 - Coded by developers
 - ■Tested by the testing team with simulated test cases.

Machine Learning

- Stårts with historically available data
- Business rules
 - Extracted by the machine by looking at the data.
- → Testing
 - Has to be done on real world data.
 - Simulation is of little value

Classical Programming Vs Machine Learning

	S. No 10	Duration Since class started	Current Interest Level	Action Taken	Resultant Interest level
	1	0	High	Continue Class	High
	2	30	Low	Punish the class	Low
	3	30	Low	Tell a joke	High
	4	30	Low	Continue class	Low
\mathbb{N}	5	15	High	Continue Class	High
	6	5	Low	Punish the class	High
\					
\mathbb{N}					
	Ν	60	Low	Stop class	High

- "Answer" is "Resultant Interest Level".
- "Rules" is "Action Taken" i.e. what we are modelling for.
- Machine analyses this data and extracts the rules
- When in future, we query for a scenario like below, the appropriate "Action Taken" will be identified
 by the machine

Duration since class started = 38

Current Interest Level = Medium

Resultant Interest Lievel = High Learning

What action should be taken?

Classical Programming Vs Machine Learning

Introduction to Machine Learning

11 Classical Rules Data Answers Programming Machine Data Answers Rules **Learning**

Big Data Vs Analytics

Roles & Activities

- Data Scientist
- Data Engineer
- DBA
- Performance Engineer
- Hardware Developer

14

A Standard Machine Learning Pipeline

Recent Advances

- Video Analytics
 - Convolutional Neural Networks
 - Generative Adverserial Networks
- Speech Analytics
 - Recurrent Neural Networks
 - Long Shørt Term Memory
 - Connectionist Temporal Classification
- Text Analytics/Natural Language Processing
- Re-inforecement Learning

Data Analytics

- Information Types
 - Structured Data: Databases etc.
 - Semi structured Data: XML files, JSON files
 - Unstructured Data: Images, Videos, Sound

Data Analytics – Machine Learning Types

Supervised Learning

Unsupervised Learning

18

Learning modes

Supervised Learning

- Predict outcome for new data
- Regression
 - Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree, Random Forest,
- Classification
 - Logistic Regression, k-Nearest Neighbours,
 Support Vector Machines, Naïve Bayes, Decision
 Tree, Random Forest

Unsupervised Learning (Descriptive)

- Essentially descriptive.
- Clustering
 - k-Means, Hierarchical Clustering
- Associate Rule Learning
 - Market Basket Analysis

Introduction to Machine Learning

Levels of Data

Nominal

• Algebraic operations are not possible

Ordinal

 Logical operations are possible but not mathematical operations.
 Ex: Account Number

Interval

- Addition/Subtraction is possible but not multiplication/division
- Interval between two continuous elements is always same and meaningful
- Zero is arbitrary
- •Ex: Temperature

Ratio:

- •Zero makes sense and negative values are not possible
- •Mean, Median, Mode etc can be calculated
- Account Balance

Regression Vs Classification

	Regression	Classification
Dependent variable	Continuous	Categorical
Purpose	Predict output value using training data	Group the output to a class
Output level	Ratio or Interval	Ordinal or Nominal

Clustering

Group similar data together

Behavioural segmentation:	Segment by purchase history, activities on application, website, or platform	
segmentation.	Define personas based on interests	
	Create profiles based on activity monitoring	
Inventory categorization	Group inventory by sales activity, manufacturing metrics	
Sorting sensor	Detect activity types in motion sensors	
measurements:	Group images	
	Separate audio	
	Identify groups in health monitoring	
Anomaly Detection	Fraud Analytics, Strange behaviour in Bigdata databases	
	Security systems	

How does Prediction work?

- Copy der an example for Linear Regression
- Let us imagine a world where Sir Issac Newton was not born. So, we don't know that F = m.a
- We have been asked by the client to create a model for calculating Force. He thinks Force is related to mass and height from sea level.
- Historic dafa looks like below

S. No	Mass	Height	Force observed

- Pur linear regression equation can be mathematically explained as $F = \beta 0 + \beta 1.m + \beta 2.h$
- BD\β, β2 are calculated using historic data

Prediction

- Is it perfect? Obviously not.
- However this approach is a mathematically verifiable estimate with a calculable error.
- Multiple such approaches a.k.a models are possible.
- What does a Data Scientist do? Explore the different models and identify the one with least error.
- What does a Data Engineer do? Explore the different datasets available, does ETL and provides it to Data Scientist.

Terminology and Metrics

- ► Force Supervised Variable or Dependent Variable
- Mass, Height Independent variable
- Metrics for Prediction
 - R², RMSE Root Mean Square Error, MAE Mean Absolute Error,
 - Metrics for Classification
 - True Posifive, False Positive, True Negative, False Negative
 - Accuracy, Precision, Recall,
 - Specificity, Sensitivity, ROC, AUC, Gini Index

Deep Learning

- An approach of Machine Learning where the learning approach simulates a human brain
- Advantages
 - Generalize very well. Can identify the hidden patterns even in complicated data sets.
 - Generally out perform the statistics based approaches
 - With enough training data, can represent any function. NAND Gate representation.
 - Universal Approximation Theory
 - In words of Elon Musk, "It's quite simple, really".
- Disadvantages
 - Data Hungry
 - Computation Intensive
 - By and large, a black box. Difficult to explain why a particular answer was arrived at for the given data because of in-built Stochasticity and mathematical complexity.

Neural Networks

output= 0 if
$$\sum w_j x_j \le$$
 threshold
1 if $\sum w_j x_j >$ threshold

Neural Networks

27

Deep Network vs Shallow Network

Deep neural network

Neural Networks

- Activation Functions
- Gradient Descent & Loss

Important Concepts

- Feature Engineering
- Dimensionality Reduction
- Principal Component Analysis
- Training Data, Validation Data, Testing Data
- Outliers and Missing value treatment
- Overfit & Underfit
- Precision & Recall
- Feature Scaling
 - Manhattan Distance, Mahalanobis Distance, Euclidean Distance