ใบงานที่ 5

วัตถุประสงค์ ประยุกต์ใช้ flow control กับการ brute force

โจทย์ Knapsack Problem แบบง่ายคือ มีถุงผ้า
(knapsack) รับน้ำหนักได้ C หน่วย (บางเอกสารใช้ W ซึ่ง
เป็นคนละตัวกับ w_i) กับของ n ชิ้น แต่ละชิ้นมีน้ำหนัก w_i
และ v_i หน่วย หามูลค่าของที่มากที่สุดที่ใส่ knapsack ไปได้
โดยถุงไม่ขาด (หากต้องการรู้ว่าใส่อะไรไปบ้าง ต้องทำเพิ่ม)

Given n items

weight
$$w_1$$
 w_2 ... w_n values v_1 v_2 ... v_n a knapsack of capacity C

Find the most valuable subset of the items that fit into the knapsack.

กำหนด 0 คือไม่หยิบใส่ถุง และ 1 คือหยิบใส่ถุง เช่น 0 0 0 0 คือไม่หยิบอะไรเลย น้ำหนักรวมเป็น 0 และ มูลค่ารวมเป็น 0 คำสั่ง

แจกแจง (brute force) ว่ามีวิธีหยิบกี่แบบ กากบาทท้ายวิธีที่น้ำหนักเกิน ใส่ดอกจันทร์วิธีที่ให้มูลค่ามากที่สุด

มีผิชินยิบทั้งหมด : 16

กำหนดส่ง TBA 「

ชิ <mark>ชิ</mark> หยิญ	ห้าหนัก	มูล ค่า	
0000	0	0	
1000	5	10	
00 10	5	30	
0011	10	40	
0100	10	50	
0101	15	60	
0110	15	80	*
0111	20	90	* *
1000	2	20	
1001	7	30	
1010	7	50	
1011	12	60	
1100	12	70	
1104	17	80	×
1110	1 7	100	×
1111	9 9.	110	$ \times $

Example:	knapsack	capacity	C	=	16
item	weight	value			
1	2	\$20			
2	10	\$50			
3	5	\$30			
4	5	\$10			