Collaborative Cognitive Diagnosis with Disentangled Representation Learning for Learner Modeling

Weibo Gao, Qi Liu, Linan Yue, Fangzhou Yao, Hao Wang, Yin Gu, Zheng Zhang

Outline

- 1 Introduction
 - 2 Coral Model
- 3 Experiments
- 4 Conclusion

■ In the applications of AI, it needs to characterize the difference of individuals in both personal information and latent features

■ In the applications of AI, it needs to characterize the difference of individuals in both personal information and latent features

■ In the applications of AI, it needs to characterize the difference of individuals in both personal information and latent features

Cognitive Diagnosis

□ Cognitive Diagnosis (CD)

- □ Goal: Diagnosing the cognitive states of each learner (i.e., proficiency on specific knowledge concepts) by fitting their practice records (i.e., practice correctness)
- □ Components: Learners, questions and knowledge concepts
- □ Applications: Supporting personalized tutoring services

Questions	Knowledge concepts	3 Bob	∆ S Alice	\ SNancy
q_1	A	(>	(
q_2	В	×	②	S
q_3	A, B	>	②	?
q_4	C, D	(8	×
q_5	C, E	S	•	?

Cognitive Diagnosis A: Function D: Cube
B: Derivative E: Cone
C: Number

/ S: Correct / wrong logs

Proficiency of concepts

-Bob
-Alice
-Nancy
D

C

Applying

- Question/course recommendation
- Adaptive testing
- • •

Practice records Cognitive states

Tutoring services

Current Limitation of CD

- □ Current CD models mainly focus inner-learner modeling, but ignore inter-learner information
 - □ Inner-learner: Individual attributions and practice records
 - □ Inter-learner: Collaborative clues between learners with similar cognitive states

Questions	Knowledge concepts	3 Bob	∿ S Alice	∆ S Nancy	Proficiency A
q_1	A	②	②	②	Proficiency of concepts
q_2	В	×	②	Ø	—Bob E
q_3	A, B	②	②	?	-Alice -Nancy
q_4	C, D	②	8	×	Individual
q_5	C, E	>	②	?	practice records Cognitive states

Practice records

Current Limitation of CD

- □ Current CD models mainly focus inner-learner modeling, but ignore inter-learner information
 - □ Inner-learner: Individual attributions and practice records
 - □ Inter-learner: Collaborative clues between learners with similar cognitive states

Questions	Knowledge concepts	3 [©] Bob	∿ S Alice	∆ S Nancy	Proficiency A of concepts
q_1	A	②	②	©	
q_2	В	×	②	Ø	—Bob E
q_3	A, B	②	Ø	?	-Alice -Nancy
q_4	C, D	②	8	×	Individual
q_5	C, E	②	②	?	practice records Cognitive states

Practice records

Current Limitation of CD

□ Current CD models mainly focus inner-learner modeling, but ignore inter-learner information

□ Inner-learner: Individual attributions and practice records
□ Inter-learner: Collaborative clues between learners with s

□ Our research goal

An ideal cognitive diagnosis model should consider both inner- and inter- learner information

Outline

- 1 Introduction
- 2 Coral Model
- 3 Experiments
- 4 Conclusion

We propose **Coral**, a **Co**llabo<u>ra</u>tive cognitive diagnosis model with disentangled representation Learning for both <u>inner-</u> and <u>inter-</u> learner information Modeling

Disentangled innerlearner cognitive states

Inner-learner modeling:

- □ **Disentangle** the learner's cognitive state into multiple components
- □ Optimize disentangled cognitive states by **fitting their** practice performance

$$p_{\Theta}(\mathbf{x}_u) = \mathbb{E}_{p(\mathbf{C})} \left[\int p_{\Theta}(\mathbf{x}_u \mid \mathbf{z}_u, \mathbf{C}) p_{\Theta}(\mathbf{z}_u) d\mathbf{z}_u \right]$$

Notations: O/O Question practicing correctly / incorrectly OOO Learner under one particular knowledge concept

Inter-learner modeling (1/2):

- ☐ Find K collaborative neighbors with similar cognitive states for each learner
- ☐ Theoretically derive the optimal condition ($\max \log p_{\Theta}(G \mid V, \mathbf{Z})$) for building the collaborative graph of learners

Property 3.

 $\max \log p_{\Theta}(G \mid V, \mathbf{Z})$ is bounded as follows:

$$\max \log p_{\Theta}(G \mid V, \mathbf{Z}) \ge -\sum_{c=1}^{C} \sum_{u=1}^{M} \sum_{k=1}^{K} \mathcal{L}_{u}^{(c), k}$$

$$\mathcal{L}_{u}^{(c),k} = -\frac{\exp\left(f_{(c)}\left(b_{u}^{(c),k}; r_{u}^{(c),k-1}\right)\right)}{\sum_{v \in V_{u}^{(c)}} \exp\left(f_{(c)}\left(v; r_{u}^{(c),k-1}\right)\right)}$$

From steps 1 to K, **iteratively** search for the **k-th** collaborative neighbor with **the** most similar cognitive state to the current **context** (existing (*k*-1)-th neighbors).

learner cognitive states

■ Based on learner collaborative graphs at each disentangled component, we design a context-aware GCN to learn collaborative learner cognitive states

Inter-learner modeling (2/2):

$$\mathbf{r}_{u}^{(c)} = \frac{1}{|\mathcal{N}_{u}^{(c)}|} \sum_{v \in \mathcal{N}_{u}^{(c)}} s_{u,v}^{(c)} \cdot \hat{\mathbf{z}}_{v}^{(c)}$$

$$s_{u,v}^{(c)} = \frac{\hat{\mathbf{z}}_{u}^{(c)} T \cdot \hat{\mathbf{z}}_{v}^{(c)}}{\sum_{j \in \mathcal{N}_{u}^{(c)}} \hat{\mathbf{z}}_{u}^{(c)} T \cdot \hat{\mathbf{z}}_{j}^{(c)}} + \frac{f_{(c),v}}{\sum_{k=1}^{K} f_{(c),v_{k}}}$$

Notations: O/O Question practicing correctly / incorrectly OOO Learner under one particular knowledge concept

Disentangled inter-

Unchosen lear

Inner- and inter- view alignment

☐ Achieve the co-disentanglement of **inner-** and **inter-** learner cognitive states

$$\tilde{\mathbf{z}}_u = \dot{\mathbf{z}}_u + \mathbf{r}_u$$

Optimization

$$\arg\min \mathcal{L} = \sum_{u=1}^{M} \left[\sum_{\substack{x_{u,i} \in \mathbf{x}_u \\ C = K}} \alpha \cdot BCE\left(x_{u,i}, p_{\Theta}\left(x_{u,i} \mid \mathbf{z}_u, \mathbf{C}\right)\right) - \beta \cdot D_{\mathrm{KL}}^{u} + \sum_{\substack{x_{u,i} \in \mathbf{x}_u \\ C = K}} BCE\left(x_{u,i}, p_{\Theta}\left(\hat{x}_{u,i}\right)\right) \right]$$

s.t.
$$\arg\max\sum_{i=1}^{C}\sum_{k=1}^{K}\mathcal{L}_{u}^{(c),k}$$

Notations: O/O Question practicing correctly / incorrectly OOO Learner under one particular knowledge concept

Unchosen lear

Outline

- 1 Introduction
- 2 Coral Model
- 3 Experiments
- 4 Conclusion

□ Dataset

■ Each dataset contains learner practice correctness on specific questions

Datasets	ASSIST	Junyi	NeurIPS2020EC
#students	1,256	1,400	1,000
#questions	16,818	674	919
#knowledge concepts	120	40	30
#concepts per exercise	1.21	1	4.02
#records	199,790	70,797	331,187
#records per student	159,07	50.67	331.19
#correct records / #incorrect records	67.08%	77.20%	53.87%

Table 1: The statistics of three datasets.

■ Evaluation of learner practice performance prediction

Dataset	Method	Metric				
Dataset	Method	ACC ↑	AUC ↑	F1-score ↑	RMSE ↓	
	IRT	69.36	69.81	78.14	45.61	
	MIRT	71.26	72.59	79.80	44.50	
	PMF	71.34	72.27	80.68	48.67	
	NCDM	72.27	74.27	79.97	48.67	
ASSIST	KaNCD	72.43	75.38	80.22	48.67	
	RCD	72.04	73.14	80.60	43.74	
	DCD	70.33	73.98	79.09	43.94	
	Coral	71.53	74.72	81.16	43.66	
	IRT	79.26	76.46	87.54	38.38	
	MIRT	77.74	74.46	86.05	40.29	
	PMF	79.65	77.17	88.18	44.10	
	NCDM	79.91	78.91	87.73	38.35	
Junyi	KaNCD	81.79	80.93	89.02	36.11	
	RCD	81.02	80.22	88.00	37.23	
	DCD	79.29	79.55	87.62	37.83	
	Coral	81.15	80.94	89.12	36.08	

Method	ACC ↑	ALIC A	T1 A	
	'	AUC	F1-score ↑	RMSE ↓
IRT	70.11	75.60	71.59	44.68
MIRT	69.95	75.52	71.24	45.51
PMF	69.85	75.39	72.62	48.33
NCDM	71.66	78.57	71.36	43.21
KaNCD	71.28	77.60	72.50	43.71
RCD	70.43	77.25	72.64	44.01
DCD	71.53	75.63	71.13	45.60
Coral	71.72	78.88	72.82	43.20
	MIRT PMF NCDM KaNCD	MIRT 69.95 PMF 69.85 NCDM 71.66 KaNCD 71.28 RCD 70.43 DCD 71.53	MIRT 69.95 75.52 PMF 69.85 75.39 NCDM 71.66 78.57 KaNCD 71.28 77.60 RCD 70.43 77.25 DCD 71.53 75.63	MIRT 69.95 75.52 71.24 PMF 69.85 75.39 72.62 NCDM 71.66 78.57 71.36 KaNCD 71.28 77.60 72.50 RCD 70.43 77.25 72.64 DCD 71.53 75.63 71.13

The Coral model nearly outperforms all baseline models across three datasets

NeurIPS 2024

□ Visualization of iteratively searching collaborative neighbors

■ Randomly select two learners as examples, and visualize their collaborative neighbors searching processes

Coral organizes neighbors according to cognitive states and exemplifying a compelling strategy for neighbor selection that takes into account cognitive similarity

■ Evaluation of the disentanglement effectiveness

■ Metric:

$$IL = \sum_{u=1}^{M} IL(u)$$

$$IL(u) = \frac{1}{C} \sum_{c=1}^{C} \frac{2}{d(d-1)} \sum_{1 \le i,j \le d} |z_u^{(c)}[i] - z_u^{(c)}[j]|$$

- The higher the *IL*, the higher the degree of disentanglement
 - Coral gradually achieves a high degree of disentanglement during the training process
 - Model performances generally exhibit a positive correlation with the degree of disentanglement

Outline

- 1 Introduction
- 2 Coral Model
- 3 Experiments
- 4 Conclusion

- □ Introduce collaborative modeling into cognitive diagnosis (CD)
 - □ An ideal cognitive diagnosis model should consider both inner- and inter- learner information
- Propose the **Coral** model
 - □ Inner-view: Disentangle learners' cognitive states into multiple components
 - Inter-view: (1) Iteratively construct learner collaborative graphs at each disentangled components; (2) Design the context-aware GCN to model collaborative clues
 - □ Co-disentanglement: Fuse both inner- and inter- learner cognitive states
- Experiments
 - □ Proving Coral's effectiveness of **collaborative modeling** and **disentanglement**
 - □ Project homepage: https://github.com/bigdata-ustc/Coral

Thank you

Q & A

weibogao@mail.ustc.edu.cn

