

Project PNII 111/2014: Evaluation of the productive potential, the capacity of phytoremediation and adaptability to the hydric stress of some *Salix* genotypes, in improper stations for agricultural crops – SAROSWE (www.saroswe.ro)

Corneanu Mihaela¹, Hernea Cornelia¹, Hollerbach William², Soare Marin³, Netoiu Constantin⁴

¹Banat's University of Agricultural Sciences and Veterinary Medicine "King Mihai the Ist of Romania" from Timisoara, Faculty of Horticulture and Forestry Timisoara, Romania, e-mail: micorneanu@yahoo.com; ²REBINA Agrar SRL; Timişoara, Romania; ³University of Craiova, Faculty of Agriculture and Horticulture, Craiova, Romania; ⁴ Forest Research and Management Institute Bucharest, Romania

Funding: 453,335 RON (national budget) by UEFISCDI Bucharest

Co-funding: 68,002 RON by REBINA Agrar SRL

Project period: 01.07.2014 – 15.12.2016:

PARTNERS

COORDINATOR: Banat's University of Agricultural Sciences and Veterinary Medicine "King Mihai Ist of Romania" from Timisoara

Partner 1: REBINA Agrar SRL
Partner 2: University of Craiova

Partner 3: Forest Research and Management Institute Bucharest

PROJECT OBJECTIVES

- 1.The characterization of the *Salix* sp. hybrids and clones, for the maximum valorization of the productive potential, under specific environmental conditions.
- 2. The establishment of a genitors collection (living gene bank) of *Salix* sp, their phenotype and genotype characterization
- 3. The selection of Salix genotypes tolerant to hydric stress.
- 4. Selection of Salix sp. genotypes for the phytoremediation process.

No	Work package	Coord.
1	Evaluation of the productive potential of <i>Salix</i> genotypes in different stationary conditions (7 RO + 7 SE / 7 Locations - Banat-SDE, saline soil, MG; Oltenia - control, irrigated sand, without irrigation sand, MG)	P1
2	Collection, cultivation and analysis of local germplasm sources of <i>Salix</i> sp., for the establishment a collection of genitors	СО
3	Evaluation and selection of <i>Salix</i> genotypes for tolerance to water stress	P2
4	Evaluation of the capacity of phytoremediation of some <i>Salix</i> sp. genotypes	CO
5	Evaluation of resistance to pests and diseases of the Salix genotypes under different stationary conditions	P3
6	Dissemination of results	CO

Final products to be obtained:

- ➤ By selecting the most resistant and resilience genotypes (in yield trials conducted in unfavorable environmental conditions, subjected to water stress and soil pollution) there will be elaborated a eco-technology for degraded lands;
- Collection of local and European germplasm, which will be used in a breeding program, in order to obtain new hybrids, that incorporates indigenous genetic material, better adapted to environmental conditions and improved yield capacity;
- Genetic and biochemical characterization of the genetic material from the local collection of ICAS and collected from nature, with two completions: biomass energy and salicylic acid production.

RESULTS 2014 (July)-2015 (May)

WP1 The establishment of 7 comparative Salix sp. culture - three cultures in the west of the country (Control, a salty soil surface – REBINA Agrar SRL, a surface on contaminated soils [crude ash] – Thermoelectric Power Plant Timisoara) and four cultures in the south Oltenia (Control, two areas on sandy soils irrigated/unirrigated , a surface on contaminated soils [30 years old ash] – Thermoelectric Power Plant Craiova). Complete soil analysis and characterisation.

WP2 Sample collection and the establishment of the genitors culture (42 accesions, 12 species) in BUASMV Timisoara Didactical Experimental Station. Phenotypic and preliminary molecular characterisation.

No.	Collection data	Location	Specie
1.	15.08.2014	Sasca Haldă 3	Salix purpurea
2.	15.08.2014	Ostrov	Salix fragilis
3.	15.08.2014	Pojejena 1	Salix fragilis
4.	15.08.2014	Pojejena 2	Salix fragilis
5.	15.08.2014	Pojejena 3	Salix purpurea
6.	15.08.2014	Sasca Haldă 4	Salux purpurea
7.	15.08.2014	Haldă Moldova Noua Tău?ani	Salix alba
8.	15.08.2014	Pojejena 4	Salix pentandra
9.	15.08.2014	Sasca Haldă 2	Salix hastata
10.	15.08.2014	Sasca Haldă 1	Salix incana
11.	22.08.2014	Agadici 11	Salix fragilis
12.	22.08.2014	Agadici 12	Salix daphnoides
13.	22.08.2014	Agadici 14	Salix incana
14.	22.08.2014	Lisava 16	Salix triandra
15.	22.08.2014	Lisava 18	Salix caprea
16.	22.08.2014	Agadici 13	Salix daphnoides
17.	22.08.2014	Lisava 19	Salix fragilis
18.	22.08.2014	Agadici 15	Salix cinerea
19.	22.08.2014	Lisava 17	Salix daphnoides
20.	10.09.2014	Podi? 36	Salix alba
21.	16.09.2014	Sohodol Ø60 cm	Salix alba
22.	16.09.2014	Z. Pocruia – ?ură 2CV ø 70	Salix alba (fragilis?)
23.	16.09.2014	Frătilescu Pocruia 1 CV	Salix viminalis
24.	16.09.2014	3 CV Pocruia - Prun 16.09.14	Salix fragilis (triandra?)
25.	19.09.2014	10 CV	Salix triandra
26.	19.09.2014	12CV	Salix triandra
27.	19.09.2014	9 CV	Salix triandra
28.	19.09.2014	5 CV	Salix babylonica
29.	19.09.2014	7 CV	Salix alba
30.	19.09.2014	8 CV	Salix viminalis
31.	19.09.2014	6 CV	Salix alba
32.	19.09.2014	11 CV	Salix alba
33.	08.10.2014	Haldă Pinoasa 7H	Salix fragilis
34.	08.10.2014	Haldă Pinoasa 8H	Salix fragilis
35.	08.10.2014	Haldă Pe?teana Nord 2H	Salix alba
36.	08.10.2014	Negomir (drum) 6	Salix alba
37.	08.10.2014	Haldă Fărcă?e?ti (nouă) 3H	Salix pentandra (S. fragilis?)
38.	08.10.2014	Haldă Fărcă?e?ti 5H	Salix purpurea
39.	08.10.2014	Haldă St. Agro 9H	Salix alba
40.	08.10.2014	St. Agro Rovinari 10	Salix viminalis
41.	08.10.2014	Haldă Fărcă?e?ti 4H	Salix alba
42.	08.10.2014	Haldă Pe?teana Nord P1	Salix purpurea

cultivators

Molecular profile in some *Salix*L. geotypes after amplification with two primers

- 1- *Salix alba* (Agadici),
- 2- Salix alba (Craiova),3- Salix alba / fragilis (Pinoasa),
- 5- Salix daphnoides (Agadici),6- Salix purpurea (Farcasesti)7- Salix triandra (Craiova)
- WP5 Preliminary evaluation of pests and diseases of the Salix sp. genitors "in

WP 6 Results dissemination: 3 presented papers in national symposiums; 1 IDB publication; 1 workshop with partners, scientific comunite and potential SRC