ЛЕКЦІЯ10

Розфарбування графів. Хроматичне число

Розфарбування графів. Хроматичне число

Задачі розфарбування вершин або ребер графа займають важливе місце в теорії графів.

До задачі побудови розфарбування графа зводиться цілий ряд практичних задач.

Одна з областей – складання розкладів.

- . розкладу для освітніх закладів;
- розкладу в спорті;
- планування зустрічей, зборів, інтерв'ю;
- розкладу транспорту, у тому числі авіатранспорту;
- . розкладу для комунальних служб;
- **.** інші.

Правильне розфарбування

Нехай G = (V, E) — скінченний граф, а k — деяке натуральне число.

Вершинне розфарбування. Довільну функцію виду $f: V \to N_k$, де $N_k = \{1, 2, ..., k\}$ - множина кольорів,

називають вершинним k-розфарбуванням, або просто k-розфарбуванням графа G.

Правильне розфарбування. Розфарбування називають *правильним*, якщо кольори суміжних вершин не співпадають, тобто для всіх $(u,v) \in E$ справедливо $f(u) \neq f(v)$.

Розфарбований граф. Граф, для якого існує правильне k-розфарбування, називають *розфарбованим* графом.

Базовий принцип оптимізації розфарбування

Якщо функція f не взаємно однозначна, то при |V| = k фактично може бути використано менше, ніж k кольорів.

Правильне розфарбування – це розбиття множини вершин

Правильне k-розфарбування можна розглядати як розбиття множини вершин V графа G на класи $V_1 \cup V_2 \cup ... \cup V_l = V$, де $l \leq k$, $V_i \neq \varnothing$, i = 1, 2, ..., l.

Кожний клас V_i — незалежна множина, а класи називають *кольоровими класами.*

Хроматичне число

Визначення. Мінімальне число k, при якому існує правильне k-розфарбування графа G, називають хроматичним числом цього графа і позначають X(G).

Визначення. ЯкщоX(G) = k, то граф G називають k-хроматичним. Тобто його вершини можна розфарбувати k різними кольорами так, що у будь-якого ребра інцидентні вершини матимуть різний колір.

Визначення. Правильне k-розфарбування графа G при k = X(G) називають *мінімальним*.

Визначення. Хроматичне число незв'язного графа дорівнює максимальному з хроматичних чисел його компонент зв'язності.

Приклад.

Розглянемо граф G, зображений на рисунку, на якому показано одне із правильних k-розфарбувань. Натуральними числами 1,2,3,4 позначені кольори відповідних вершин.

У цьому випадку кількість кольорів не є мінімальною.

 $\mathsf{Tomy} X(G) < k$.

Хроматичні числа деяких графів

Для деяких простих графів неважко знайти хроматичні числа.

Приклади.

1. Повний граф K_n , що складається з n вершин, має хроматичне число $X_p\left(K_n\right)=n$

2. Повний граф $K_n - e$, який складається з n вершин з одним відсутнім ребром, має хроматичне число $X_n(K_n - e) = n - 1$

3. Повні дводольні графи $K_{m,n}$, що складаються з долей |A|=m і |B|=n, мають хроматичне число $X_p\left(K_{m,n}\right)=2$

Теорема. Непустий граф є **біхроматичним** тоді й тільки тоді, коли він не має циклів непарної довжини.

1-хроматичний граф – порожній граф.

2-хроматичний (біхроматичний) граф — дводольний непустий граф або граф тільки з парними циклами.

Властивість 1. Якщо граф має n вершин, то його хроматичне число не перевищує n.

Властивість 2. Якщо граф має підграф K_m , то його хроматичне число не менше, ніж m.

Хроматичне число й стандартні характеристики

У загальному випадку хроматичне число графа не можна точно обчислити, знаючи тільки його стандартні числові характеристики: число вершин, ребер, компонент зв'язності, розподіл степенів вершин.

Розглянемо графи G_1 й G_2 . Кожний з них має 12 вершин, у тому числі 4 вершини зі степенем 4 і 8 вершин зі степенем 2, 16 ребер, одну компоненту зв'язності. Але, як видно з рисунка, $X(G_1)=4$, а $X(G_2)=2$, оскільки G_1 містить у якості підграфа граф K_4 .

Оскільки граф G_2 — дводольний, маємо $X(G_2) = 2$.

Тому надалі мова йтиме про оцінки, а не про точні значення хроматичного числа.

НИЖНІ ОЦІНКИ ХРОМАТИЧНОГО ЧИСЛА Хроматичне число і щільність графа

Під нижніми оцінками хроматичного числа будемо розуміти нерівності виду $X(G) \ge c$, де c — деяка константа, що обчислюється на графі G.

Верхня оцінка хроматичного числа — це нерівності виду $X(G) \le c$, де c має той же зміст, тобто є константою.

Визначення. Максимальне число вершин, що породжують повний підграф у графі G, називають *щільністю* G і позначають через $\omega(G)$.

Визначення. Повний підграф деякого графа G - це підграф, що складається з попарно суміжних вершин.

Перша нижня оцінка може застосовуватися у випадку, якщо підграфом деякого графа є повний підграф.

Перша нижня оцінка

Для довільного графа G справедлива нерівність $X(G) \ge \omega(G)$.

Хроматичне число і число незалежності графа

Визначення. Будь-яку множину попарно несуміжних вершин графа G називають *незалежною множиною*.

Визначення. Максимальне число вершин у незалежній множині називають *числом незалежності* (внутрішньої стійкості) графа G й позначають через $\beta(G)$.

Число незалежності графа — це поняття, протилежне за змістом поняттю щільності графа. Якщо G — звичайний граф, а \overline{G} — його доповнення, то $\beta(G) = \omega(\overline{G})$.

Друга нижня оцінка

Для довільного графа G справедлива нерівність

$$X(G) \ge \frac{n(G)}{\beta(G)},$$

де n(G)– кількість вершин графа G

Третя нижня оцінка хроматичного числа

Існують нижні оцінки хроматичного числа, які використовують тільки ті характеристики графа, що легко обчислюються. Наведемо без доведення одну з них.

Третя нижня оцінка

Якщо G – звичайний граф і n=n(G) – кількість вершин графаG, m=m(G) – кількість ребер графаG,

то хроматичне число
$$X(G) \ge \frac{n^2}{n^2 - 2m}$$
 .

Легко зрозуміти, що в повному графі (як і в будь-якому звичайному графі) подвоєне число ребер менше квадрата числа вершин, і тому число, що стоїть в знаменнику в правій частині нерівності, завжди додатне.

ВЕРХНІ ОЦІНКИ ХРОМАТИЧНОГО ЧИСЛА

Теорема 2. Для будь-якого графа G має місце нерівність $X(G) \le r+1$, де $r = \max_{v \in V} \left(\deg(v)\right)$.

Наслідок. Будь-який кубічний граф розфарбовується за допомогою чотирьох кольорів.

Для певних графів справедлива теорема.

Теорема Брукса. Якщо G — зв'язний неповний граф і

$$r \ge 3$$
, de $r = \max_{v \in V} (\deg(v))$, mo $X(G) \le r$.

Отже, обмеження для даної теореми:

- 1. Граф зв'язний неповний
- 2. $r \ge 3$

Верхня оцінка за кількістю ребер.

Нехай G(V,E) - довільний зв'язний неорієнтований граф з m ребрами. Тоді

$$X(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{2}}$$

Хоча обидві теореми й дають певну інформацію про хроматичне число графа, але їх оцінки досить неточні.

Розглянемо граф-зірку K_{1n} ,

Цей граф відповідає умові теореми Брукса.

Адже 1) r = 8, 2) граф зв'язний, 3) граф неповний.

За умовою тереми Брукса $X(G) \le 8$, але насправді є

біхроматичним. Отже така оцінка є неточною.

Трохи точнішою для такого графа є реберна оцінка.

$$X(G) \le \frac{1}{2} + \sqrt{2 \cdot 8 + \frac{1}{4}} = 4.53$$

Ця ситуація значно спрощується, якщо обмежитися **планарними графами**. У цьому випадку легко довести такий досить загальний і важливий факт.

Історично послідовно доведені теореми

Теорема про шість фарб. Для будь-якого планарного (ізоморфного плоскому (у якому ребра перетинаються лише у вершинах)) графа G має місце нерівність $X_p(G) \le 6$.

Більш детальний аналіз шляхів зниження верхньої границі хроматичного числа приводить до так званої теореми про п'ять фарб.

Теорема про п'ять фарб. Для всякого планарного графа G має місце нерівність $X_n(G) \le 5$.

Теорема про чотири фарби. Кожний планарный граф без петель і кратних ребер є не більш ніж 4-хроматичним. Теорема сформульована вперше Френсісом Гутрі (англ.) в 1852 році. Проблема чотирьох фарб залишалася невирішеною протягом багатьох років. Стверджується, що ця теорема була доведена за допомогою певних міркувань і комп'ютерної

програми в 1976 році.

Алгоритми розфарбування Алгоритм послідовного розфарбування

Якщо вершини $v_1, v_2, ..., v_i$ розфарбовані l кольорами $1, 2, ..., l; \ l \leq i$, то новій довільно взятій вершині v_{i+1} припишемо мінімальний колір, не використаний при розфарбуванні суміжних з нею вершин.

Розфарбування, до якого приводить описаний алгоритм, називають *послідовним*.

Алгоритм прямого неявного перебору

```
def Color (i):
'''Функція вибору фарби для розфарбування вершини з номером i'''
  W = set();
  for j in range(i):
     if A[i][j] == 1:
        W.add(Colarr [j])
 '''Формування множини фарб, використаних для розфарбування
прилеглих до вершини i вершин з номерами менше i^{\prime\prime\prime}
     while k not in W:
      k + = 1
      return = j;
1. Введемо наступні структури даних:
Nmax - максимальна кількість вершин графа
Colarr - список номерів фарб для кожної вершини графа
А - матриця суміжності графа
2. Виконуємо цикл по вершинах графа
for i in range(Nmax):
  Colarr [i]=Color (i)
′′′Виводимо результат розфарбування′′′
```

Крок1. Розглядаємо вершину 0. Множина розфарбованих суміжних вершин W порожня. Тому функція Color(0) повертає фарбу 0. Нехай колір 0- червоний.

*Крок*2. Розглянемо вершину 1. Єдиною меншою за номером суміжною вершиною є вершина 0, яка уже червона. Тому множина W містить єдиний елемент 0. Функція Color(1) повертає наступну за номером фарбу 1 синього кольору.

Крок3. Вершина 2 має єдину суміжну вершину 1 з меншим номером. Множина W містить єдиний елемент 1. Функція Color(2) повертає фарбу з номером 0 червоного кольору.

Крок4. Вершина 3 має дві суміжні вершини з меншими номерами:0 і 2. Оскільки обидві вершини розфарбовані в колір 0, то множина W містить єдиний елемент 0. Тому функція Color(3) повертає наступну за номером фарбу 2 синього кольору.

Крок5. Вершина 4 має єдину суміжну вершину з меншим номером. Це вершина 4. Множина W містить єдиний елемент 1. Тому функція Color(4) повертає фарбу з номером 0 червоного кольру.

Крок6. Вершина 5 має такі суміжні вершини з меншими номерами:1,3,4 і 5. Ці вершини розфарбовані в колір 0 та колір 1. Отже, множина W містить два елементи: 0 і 1. Тому функція Color(5) повертає наступну за номером фарбу 2 зеленого кольору.

Крок7. Вершина 6 має такі суміжні вершини з меншими номерами:1,3, 5 і 6. Ці вершини розфарбовані в колір 0 та колір 2. Отже, множина W містить два елементи: 0 і 2. Тому функція Color(6) повертає фарбу 1 синього кольору.

В результаті роботи данного алгоритму одержуємо правильно розфарбований граф, що показаний на рисунку.

Рекурсивна процедура послідовного розфарбування

- 1. Фіксуємо порядок обходу вершин.
- 2. Ідемо по суміжних вершинах, використовуючи такий найменший колір, який не викличе конфліктів.
- 3. Якщо на черговому кроці колір вибрати не виходить, то «відкочуємось» до попередньої вершини й вибираємо для неї наступний колір, який не викличе конфліктів.

```
def visit(i):
  if i== n + 1:
    Print #Друк після розфарбування всіх вершин
  else # на початку color[i]=0-не розфарб.вершини
    for c in range(color[i], k):
      #к-кількість кольорів
       if (знайдено неконфліктний колір c):
          color[i] = c
          visit(i + 1)
       else
          visit(i)
visit(0) #Виклик рекурсивної процедури
```

«Жадібний» алгоритм розфарбування

Нехай дано зв'язний граф G(V,E).

- 1. Задамо множину $monochrom := \emptyset$, куди будемо записувати всі вершини, які можна розфарбувати одним кольором.
- 2. Переглядаємо всі вершини й виконуємо наступний «жадібний» алгоритм

def Greedy:

```
for (для кожної незафарбованої вершини v \in V ): 
 If (v не суміжна з вершинами з monochrom): 
 color(v) = колір; 
 monochrom = monochrom \cup \{v\}
```

ПРИКЛАД РОБОТИ «ЖАДІБНОГО» АЛГОРИТМУ РОЗФАРБУВАННЯ

Розглянемо граф G:

Множину вершин графа $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ потрібно розфарбувати з використанням «ЖАДІБНОГО» алгоритму розфарбування.

Сформуємо матрицю суміжності A:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 4 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 5 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 6 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 7 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 8 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

- 1. Знаходимо нерозфарбовану вершину і встановлюємо для неї новий колір.
- 2. Запускаємо процедуру «жадібного» розфарбування, яка розфарбовує в цей колір всі вершини, які тільки можливо.
- 3. Якщо не всі вершини розфарбовані, то переходимо до п.1.

Крок 1. Вибираємо вершину 1 і фарбуємо її в червоний колір 1. Крок 1.1.

2-конфліктна, оскільки суміжна з 1

3-неконфліктна. Фарбуємо в червоний.

4-конфліктна, оскільки суміжна з 3.

5- конфліктна, оскільки суміжна з 1.

6- конфліктна, оскільки суміжна з 3.

7- конфліктна, оскільки суміжна з 1.

8- конфліктна, оскільки суміжна з 3.

Крок 2. Вибираємо вершину 2 і фарбуємо її в синій колір 2. Крок 2.1.

- 1-конфліктна, має колір.
- 3-конфліктна, має колір.
- 4- неконфліктна. Фарбуємо в синій.
- 5- конфліктна, оскільки суміжна з 2.
- 6- неконфліктна. Фарбуємо в синій.
- 7- конфліктна, оскільки суміжна з 4.
- 8- конфліктна, оскільки суміжна з 4.

Крок 3. Вибираємо вершину 5 і фарбуємо її в зелений колір 3.

Крок 3.1.

- 1-конфліктна, має колір.
- 2-конфліктна, має колір.
- 3-конфліктна, має колір.
- 4-конфліктна, має колір.
- 6-конфліктна, має колір.
- 7- неконфліктна. Фарбуємо в зелений.
- 8- конфліктна, оскільки суміжна з 7.

Крок 4. Вибираємо вершину 8 і фарбуємо її в жовтий колір 4.

1-конфліктна, має колір. 2-конфліктна, має колір. 3-конфліктна, має колір. 4-конфліктна, має колір. 5-конфліктна, має колір. 6-конфліктна, має колір. 7-конфліктна, має колір. Кінець алгоритму.

Результати роботи алгоритмів послідовного розфарбування

Отримане розфарбування завжди правильне, але не завжди оптимальне навіть для простих графів.

Воно суттєво залежить від того, у якому порядку вибираються вершини. На першому рисунку вийшов оптимальний результат (2 фарби), а на другому рисунку використано більше кольорів.

Нехай зафарбуємо вершину
1 у синій колір, а потім, пропустивши вершину 2, зафарбуємо в синій колір

вершини 3 і 4. Тоді можна одержати 2 кольори.

Але "жадібний" алгоритм, ґрунтуючись на нумерації вершин, зафарбує в синій колір вершини 1 і 2, для розфарбування графа тепер потрібно 4 кольори.

Висновок. Спробувати розфарбовувати не за номерами

Алгоритм послідовного розфарбування з упорядкуванням множини вершин (Евристичний алгоритм)

- 1. Упорядкувати вершини по незростанню степеня.
- 2. Вибрати колір фарбування 1.
- 3. Розфарбувати першу вершину в колір 1.
- 4. Поки не пофарбовані всі вершини, повторювати п.4.1. 4.2.:
- 4.1. Проходим по списку зверху вниз, розфарбувати в обраний колір всі вершини, які не суміжні з вершиною, яка уже пофарбована в цей колір.
- 4.2. Вибрати наступний колір.
- **4.3**. Повернутися до першої в списку нерозфарбованої вершини, проходити по списку вниз та розфарбувати всі можливі вершини даним кольором.

{* СТРУКТУРА ДАНИХ ЕВРИСТИЧНОГО АЛГОРИТМУ *}

Nmax - максимальна кількість вершин графа

Colarr - список номерів фарб для кожної вершини графа

Degarr - список *степенів вершин*

Sortarr- список, *відсортований за зменшенням степенів*

А – двовимірний список (матриця суміжності графа)

Curcol - поточний номер фарби

n,i - службові змінні

```
""програма""
```

```
Curcol = 1 #початковий колір
Nmax=100
```

""Вводимо матрицю суміжності графа"

Degforming #Формування масиву степенів вершин

Sortnodes #Формування масиву відсортованих вершин Sortarr

for n in range(1,Nmax+1):

If Colarr [Sortarr [n]]== 0:

Colarr [Sortarr [n]] = Curcol #розфарбування вершини в списку

Color (Sortarr [n]) #розфарбування суміжних до даної вершин

Inc (Curcol);

""Виводимо результат розфарбування""

```
def Degforming: # Функція формування масиву степенів вершин
 for i in range(1, Nmax+1):
  Degarr [i] = 0
  Colarr [i] = 0;
  for j in range(1, Nmax+1):
    Degarr [i]+=A [i][j]
def Sortnodes: # Сортування вершин за степенями
 for k in range(1, Nmax):
   max = Degarr [k]
   c = k:
   for i in range(k + 1, Nmax+1):
     If Degarr [i] > max:
       max = Degarr [[i]
       c = i
  Degarr [c] = Degarr [[k];
  Degarr [k] = max;
  Sortarr [k] = c;
def Color (i);
'''Розфарбування поточним кольором HE суміжних з i вершин '''
 for j in range(1, Nmax+1):
   if A [i, i] == 0:
      If Colarr [j] == 0:
        Colarr [j] = Curcol
```

ПРИКЛАД ЕВРИСТИЧНОГО АЛГОРИТМУ РОЗФАРБУВАННЯ

Дано граф G , зображений на рисунку.

Множину вершин графа $V = \{1, 2, 3, 4, 5, 6\}$ потрібно розфарбувати з використанням евристичного алгоритму розфарбування.

Сформуємо матрицю суміжності A:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 0 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 0 & 0 & 1 \\ 4 & 1 & 0 & 0 & 0 & 1 & 1 \\ 5 & 1 & 1 & 0 & 1 & 0 & 1 \\ 6 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Відсортуємо вершини графа за зменшенням їх степенів. В результаті отримуємо вектор відсортованих вершин $SortArr = \left(1, 5, 6, 4, 2, 3\right)$

SortArr	1	5	6	4	2	3
DegArr	5	4	4	3	2	2

- 1. Рухаючись вздовж масиву *SortArr* першій знайденій нерозфарбованій вершині надаємо черговий новий колір.
- 2. Всім несуміжним зі знайденою вершинам надаємо цей же колір.

У першому рядку таблиці запишемо вектор SortArr, у другому – степені відповідних вершин. Наступні рядки відображають вміст вектора розфарбування.

Номери вершин SortArr	1	5	6	4	2	3
Степені вершин DegArr	5	4	4	3	2	2
CurCol = 1	1	-	-	-	-	-
CurCol = 2	1	2	-	-	-	2
CurCol = 3	1	2	3	-	3	2
CurCol = 4	1	2	3	4	3	2

Крок 1. Першою в SortArr стоїть вершина 1, яку фарбуємо червоним кольором 1. Несуміжних з 1 немає.

Крок 2. Другою в SortArr стоїть вершина 5, яку фарбуємо синім кольором 2. Несуміжна з 5 вершина 3, яку процедура Color(5) фарбує також синім кольором 2.

Крок 3. Третьою в SortArr стоїть вершина 6, яку фарбуємо зеленим кольором 3. Несуміжна з 6 вершина 2, яку процедура Color(6) фарбує також зеленим кольором 3.

Крок 4. Четвертою в SortArr стоїть вершина 4, яку фарбуємо жовтим кольором 4. Всі несуміжні вершини з 4 вже розфарбовані

Номери вершин SortArr	1	5	6	4	2	3
Степені вершин DegArr	5	4	4	3	2	2
CurCol = 1	1	-	-	-	-	-
CurCol = 2	1	2	-	-	-	2
CurCol = 3	1	2	3	-	3	2
CurCol = 4	1	2	3	4	3	2

Модифікація алгоритму послідовного розфарбування

Визначення. Відносний степінь — це степінь нерозфарбованих вершин у нерозфарбованому підграфі початкового графа. **Визначення.** Двокроковий відносний степінь — сума відносних степенів суміжних вершин у нерозфарбованому підграфі.

Проста модифікація описаної вище евристичної процедури полягає в переупорядкуванні нерозфарбованих вершин за незростанням їх відносних степенів.

Алгоритм відрізняється ускладненням процедури сортування Sortnodes, яка при сортуванні вершин з однаковими степенями враховує двокроковий степінь.

СТРУКТУРА ДАНИХ

Nmax- максимальна кількість вершин графа

Colarr - список номерів фарб для кожної вершини графа

Degarr - список *степенів вершин*

Sortarr – список, відсортований по незростанню степенів

А - матриця суміжності графа

Curcol - поточний номер фарби

n: службова змінна

```
""програма""
Curcol = 1
Nmax=100
 "Вводимо матрицю суміжності графа"
 Degforming #Формування масиву степенів вершин
 Sortnodes #Формування масиву відсортованих вершин Sortarr
 for n in range(1, Nmax+1):
   If Colarr [Sortarr [n]] ==0:
     Colarr [Sortarr [n]] = Curcol
     Color (Sortarr [n])
     Inc (Curcol)
""Виводимо результат розфарбування"
```

```
def Degcount (m):
    Deg = 0;
    for k in range(1, Nmax+1):
      Deg = Deg + A[k][m]
    return = Deg
def Degforming:
""Процедура формування масиву степенів вершин""
  for j in range(1,Nmax+1):
    Colarr [i] = 0
    Degarr [j] = Degcount (j) * 100
    for i in range(1,Nmax+1):
       If A [i][ i] == 1 :
          Degarr [i]+=Degcount (i)
```

```
def Sortnodes: #Сортування вершин за степенями
 for k in range(1, Nmax):
     max = Degarr [k]
     c = k:
     for i in range(k + 1, N+1):
       if Degarr [i] > max then
          max = Degarr [i];
          c = i:
  Degarr [c] = Degarr [k];
  Degarr [k] = max;
  Sortarr [k] = c;
def Color (i):
 "" Розфарбування поточним кольором НЕ суміжних з і вершин"
 for i in range(1, Nmax+1):
     if A [i, i] == 0:
        If Colarr [j] == 0:
          Colarr [j] = Curcol;
```

ПРИКЛАД МОДИФІКОВАНОГО ЕВРИСТИЧНОГО АЛГОРИТМУ РОЗФАРБУВАННЯ

Дано граф G, зображений на рисунку

Номери							
-	2	6	5	4	7	3	1
вершин X^*				7	•		•
Степінь	5	1	1	1	1	3	2
вершин D	5	4	4	4	4	3	4
Двокроковий	17	17	16	15	15	13	C
степінь D^2	17	17	10	13	13	13	9
DegArr	517	417	416	415	415	313	209
CurCol = 1	1	-	-	1	-	-	-
CurCol = 2	1	2	-	1	-	2	2
CurCol = 3	1	2	3	1	3	2	2

Множину вершин графа $V = \{1, 2, 3, 4, 5, 6, 7\}$ потрібно розфарбувати з використанням модифікованого евристичного алгоритму розфарбування.

Крок 1. SortArr[1]=2 фарбуємо червоним кольором 1. Несуміжна вершина 4. Також фарбуємо червоним.

Крок 2. SortArr[2]=6 фарбуємо синім кольором 2. Несуміжні 1 та 3 фарбуємо також синім кольором 2.

Крок 3. SortArr[3]=5 фарбуємо зеленим кольором 3. Несуміжна вершина 7. Фарбуємо також зеленим кольором 3.

Номери \mathbf{x}^*	2	6	5	4	7	3	1
Степінь вершин ${\cal D}$	5	4	4	4	4	3	2
Двокроковий D^2	17	17	16	15	15	13	9
DegArr	517	417	416	415	415	313	209
CurCol = 1	1	-	-	1	-	-	-
CurCol = 2	1	2	-	1	-	2	2
CurCol = 3	1	2	3	1	3	2	2

Розфарбування графа за методом А. П. Єршова

Андрій Петрович Єршов (1931–1988 рр.), визначний учений в області теоретичного програмування, зробив великий внесок у розвиток інформатики в нашій країні. Ним створений алгоритм розфарбування графа, що вирізняється оригінальною евристичною ідеєю.

Введемо ряд визначень.

Окіл 1-го порядку. Для даної вершини $v \in V$ графа G(V,E) всі суміжні з нею вершини називають околом 1-го порядку — $R_1(v)$.

Окіл 2-го порядку. Усі вершини, які перебувають на відстані два від v, називають околом 2-го порядку — $R_2\left(v\right)$.

Граф G(V,E), у якого для вершини $v \in V$ всі інші вершини належать околу $R_1(v)$, назвемо граф-зіркою відносно вершини v.

дея алгоритму полягає у послідовному склеюванні вершин, що входять в окіл другого порядку.

Приклад об'єднання двох вершин: $v_1' \coloneqq v_1 \cup v_2$

Графічно фарбування вершин v_1 і v_2 у один колір можна відобразити як «склеювання» цих вершин.

Отже, «склеювання» зменшує на одиницю кількість вершин у графі G і зменшує кількість ребер.

Алгоритм А. П. Єршова

- 1.Встановити i := 0.
- 2. Вибрати в графі G довільну нерозфарбовану вершину v.
- 3.Встановити i := i + 1 .
- 4. Розфарбувати вершину v у колір i.
- 5.Розфарбовувати у колір i нерозфарбовані вершини графа G, вибираючи їх з $R_2\left(v\right)$ та склеюючи їх з вершиною v, поки граф не перетвориться в граф-зірку відносно v.
- 6.Перевірити, чи залишилися нерозфарбовані вершини в графі G. Якщо так, то перейти до п. 2, інакше до п. 7.
- 7.Отриманий повний граф K_i . Хроматичне число графа $X(K_i) = i$.

Кінець алгоритму.

Приклад розфарбування методом А. П. Єршова

ПРИКЛАД РОЗФАРБУВАННЯ ГРАФА ЗА МЕТОДОМ А. П. ЄРШОВА

Розглянемо граф G:

Крок 1. Виберемо довільну вершину, наприклад, v_1 . Окіл 2-го порядку $R_2\left(v_1\right) = \left\{v_3, v_5, v_7, v_8\right\}$.

Склеїмо вершину v_1 , наприклад, з вершиною v_3 : $v_1' = v_1 \cup v_3$. Одержимо граф G_1 зображений на рисунку

Крок 2. Окіл другого порядку вершини v_1' визначається множиною $R_2\left(v_1'\right) = \left\{v_5.v_7,v_8\right\}$. Склеїмо вершину v_1' , наприклад, з вершиною $v_5\colon v_1'' \coloneqq v_1' \cup v_5$.

Крок 3. Окіл другого порядку для вершини v_1'' : $R_2\left(v_1''\right) = \left\{v_7\right\}$. Склеїмо вершину v_1'' з вершиною v_7 : $v_1''' = v_1'' \cup v_7$.

Крок 4. Окіл 2-го порядку $R_2\left(v_2\right)\!=\!\left\{v_6,v_8\right\}$. Склеїмо вершину v_2 , наприклад, з вершиною $v_6\colon v_2''=v_2\cup v_6$.

Результат

У підсумку одержуємо правильно розфарбований граф, показаний на рисунку.

