

Multitask Learning and Benchmarking with Clinical Time Series Data

Xiao Yan 2018.11.02

Challenging

- data is irregular in patient level but regular at local episode level
- time gap between two visits in random
- data for patient varies greatly in length
- absence of universally accepted benchmark

PROBLEM DEFINITION

➤ Mortality:

label indicates whether the patient died before hospital discharge

Decompensation:

the target label indicates whether the patient will die within the next 24 hours

length of stay:

Divide the range of value into ten buckets (0-1,1-2,...,7-8,8-14,14+)

Phenotype:

25 conditions(12 critical conditions, 8 chronic conditions, 5 "mixed" conditions)

stay of length T hours, observations $\{x_t\}_{t\geq 1}$, x_t is vector of hour

mortality: $m \in \{0,1\}$ is single label indicating whether the patient die

decompensation: $\{d_t\}_{t\geq 1}^T$ where $d_t \in \{0,1\}$ is binary labels for each hour

length of stay: $\{l_t\}_{t\geq 1}^T$ where $l_t\in R$ is value number at each time step

Phenotyping: $p_{1:K} \in \{0,1\}^K$ is a vector of K binary phenotype labels

$$loss_d = \frac{1}{T} \sum_{t=1}^{T} \text{CE}(d_t, \widehat{d}_t) \qquad loss_p = \frac{1}{K} \sum_{i=1}^{K} \text{CE}(p_k, \widehat{p}_k) \qquad loss_l = \frac{1}{T} \sum_{t=1}^{T} \text{MCE}(l_{tk}, \widehat{l}_{tk}) \qquad loss_m = \text{CE}(m, \widehat{m}) \qquad loss_\ell = \frac{1}{T} \sum_{t=1}^{T} \left(\ell_t - \widehat{\ell}_t\right)^2$$

$$loss_{mt} = \lambda_d \cdot loss_d + \lambda_l \cdot loss_l + \lambda_m \cdot loss_m + \lambda_p \cdot loss_p$$

Multitask Learning and Benchmarking with Clinical Time Series Data

Model	AUROC	AUPRC	min(Se, +P)
Logistic regression	0.8442	0.4717	0.4693
LSTM	0.8540	0.5164	0.4905
Multitask LSTM	0.8550	0.4926	0.4745
Multitask LSTM*	0.8625	0.5169	0.4987

Model	AUROC	AUPRC	min(Se, +P)	
I ogistia ragrassian	0.8704	0.2132	0.2688	
Logistic regression LSTM	0.8946	0.2132	0.2666	
Multitask LSTM	0.9946	0.2980	0.3484	
Multitask LSTM**	0.9119	0.3322	0.3593	
Multitask LSTM**	0.9119	0.3322	0.3593	

mortality

decompensation

Model	Карра	MSE	MAPE
Logistic regression	0.4021	63385	573.5
LSTM	0.4266	42165	235.9
Multitask LSTM	0.4258	42131	188.5

Length of stay

Model	micro AUC	macro AUC	weighted AUC
Logistic regression	0.8007	0.7408	0.7320
1-layer LSTM	0.8206	0.7701	0.7573
2-layer LSTM	0.8213	0.7707	0.7587
Multitask LSTM	0.8174	0.7661	0.7533

phenotyping

Attend and Diagnose:

Clinical Time Series Analysis Using Attention Models

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

RECALL

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

RECALL

Position-wise Feed-Forward Networks

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Position Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- Make use of the order of the sequence
- Inject some information about the relative or absolute position

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Input Embedding

Conv1d captures the dependencies across different variables without considering the temporal information

Positional Embedding

adopt sin position embedding

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Scaled Dot-Product Attention

METHOD

Attention Module

Mask self-Attention

$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax\left(\frac{\mathbf{Q}\mathbf{K^T}}{\sqrt{d}}\right)\mathbf{V},$$

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Dense Interpolation for Encoding Order

```
Dense Interpolation Embedding
```

Input: Steps t of the time series and length of the sequence T, embeddings at step t as \mathbf{s}_t , factor M.

Output: Dense interpolated vector representation u.

Algorithm 1: Dense interpolation embedding with partial order for a given sequence.

Purpose: obtain sequence representation while preserving order

w denotes the contribution of s_t to the position m of the final vector representation u

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models Modeling Order in Neural Word Embeddings at Scale

Linear and Softmax layers

Binary classification:

$$-(y \cdot \log(\hat{y})) + (1-y) \cdot \log(1-\hat{y})$$

Multi-label classification:

$$-(y \cdot \log(\hat{y})) + (1-y) \cdot \log(1-\hat{y})$$

Regression:

$$\sum_{t=1}^{T} (l_t - \hat{l_t})^2$$

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Complexity Analysis

	Sequential operations	Complexity per Layer
RNN	O(T)	$O(T \cdot d^2)$
SAnD	0(1)	$O(T \cdot r \cdot d)$

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Phenotyping

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Mortality

Decompensation

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Length of Stay

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models Ref : http://jalammar.github.io/illustrated-transformer/

$$\ell_{mt} = \lambda_p \ell_{ph} + \lambda_i \ell_{ihm} + \lambda_d \ell_{dc} + \lambda_l \ell_{los},$$

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Metrics	Method				
Metrics	LR	LSTM	SAnD	LSTM-Multi	SAnD-Multi
Task 1: Phenotyping					
Micro AUC	0.801	0.821	0.816	0.817	0.819
Macro AUC	0.741	0.77	0.766	0.766	0.771
Weighted AUC	0.732	0.757	0.754	0.753	0.759
Task 2: In Hospit	al Mortality	'	'	'	'
AUROC	0.845	0.854	0.857	0.863	0.859
AUPRC	0.472	0.516	0.518	0.517	0.519
min(Se, P+)	0.469	0.491	0.5	0.499	0.504
Task 3: Decompensation				•	
AUROC	0.87	0.895	0.895	0.900	0.908
AUPRC	0.2132	0.298	0.316	0.319	0.327
min(Se, P+)	0.269	0.344	0.354	0.348	0.358
Task 4: Length of Stay					
Kappa	0.402	0.427	0.429	0.426	0.429
MSE	63385	42165	40373	42131	39918
MAPE	573.5	235.9	167.3	188.5	157.8

Attend and Diagnose: Clinical Time Series Analysis Using Attention Models

Appendix

- ➤ Hard parameter sharing share the hidden layers between all tasks, while keeping several task-specific output layers
- Soft parameter sharing
 each task has its own model with its own parameters, but train jointly

Hard Parameter Sharing

Soft Parameter Sharing

THANK YOU