AI VIET NAM - COURSE 2022

Module 2 – Exam

04 September 2022

Các bạn có thể trình bày ra giấy, chụp ảnh lại, đặt tên ảnh theo thứ tự và nén thành 1 file để nộp bài. Ngoài ra các bạn cũng có thể trình bày trên các file tài liệu như doc, latex ...

Lưu ý: Các bạn trình bày các bước giải bao gồm những công thức chính đã sử dụng (công thức trong khung xanh lá). Những công thức khác ví dụ như giải phương trình bậc 2, bậc 3, ... không cần phải trình bày (Các bài toán về nhân ma trận, vector cũng không cần phải viết công thức).

Multiplying a matrix by a matrix

• Matrix A:
$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
, $\mathbf{A} \in R^{m*n}$

• Matrix B:
$$\mathbf{B}=\begin{bmatrix}b_{11}&\dots&b_{1k}\\\dots&\dots&\dots\\b_{n1}&\dots&b_{nk}\end{bmatrix},\,\mathbf{B}\in R^{n*k}$$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} a_{11} * b_{11} + \dots + a_{1n} * b_{n1} & \dots & a_{11} * b_{1k} + a_{1n} * b_{nk} \\ \dots & \dots & \dots \\ a_{m1} * b_{11} + \dots + a_{mn} * b_{n1} & \dots & a_{m1} * b_{1k} + a_{mn} * b_{nk} \end{bmatrix},$$

$$\mathbf{C} \in R^{m*k}$$

Problem 4:
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & -3 \\ 6 & 1 \\ 0 & -1 \end{bmatrix}$ Tim $C = AB$?

Matrix inverse

- Matrix A: $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\mathbf{A} \in \mathbb{R}^{2*2}$
- Determinant of $\mathbf{A} \in \mathbb{R}^{2*2}$: $det(\mathbf{A}) = ad bc$
- if $det(\mathbf{A}) \neq 0$ **A** is invertible
- Inverse Matrix: $\mathbf{A^{-1}} = \frac{1}{det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Problem 5:
$$\mathbf{A} = \begin{bmatrix} -2 & 6 \\ 8 & -4 \end{bmatrix}$$
 Tim \mathbf{A}^{-1} ?

2 Basic Math

2.1 Derivative

Hàm liên tục

- Đạo hàm theo công thức: Ví dụ $f(x) = x^2 + 2x, f'(x) = 2x + 2x$
- Đạo hàm 1 bên: $f'(x) = \frac{f(x + \Delta x) f(x)}{\Delta x}$
- Đạo hàm trung tâm: $f'(x) = \frac{f(x + \frac{\Delta x}{2}) f(x \frac{\Delta x}{2})}{\Delta x}$

Problem 6: Cho $f(x) = x^2 + 2x + 1$ tìm f'(1) cho trước $\Delta x = 0.005$:

- Đạo hàm theo công thức: f'(1)?
- Đạo hàm 1 bên: f'(1)?
- Đạo hàm trung tâm: f'(1)?

Problem 7: Cho hàm rời rac f(x) có kết quả như sau:

- x = [-3, -2, -1, 0, 1, 2, 3, 4]
- f(x) = [-1, 0, 2, 4, 11, 16, 20, 24]

Tìm f'(1) với $\Delta x = 2$ sử dụng công thức đạo hàm trung tâm?

Gradient Descent

- function f(x,y)
- Khởi tạo x và y
- Tính đạo hàm của f(x,y) theo x và y sẽ thu được dx,dy
- Cập nhật x và y theo hướng ngược chiều đạo hàm của dx và dy, theo công thức $x=x-\eta dx$ và $y=y-\eta dy$ trong đó η là learning rate

Problem 8: Cho function $f(x,y) = x^2 + y^2$, khởi tạo x = 1, y = 3, learning rate $\eta = 0.05$. Thực hiện 1 lần cập nhật x và y theo thuật toán Gradient Descent ở trên $(x = x - \eta dx \text{ và } y = y - \eta dy)$. Biết rằng $\Delta x = 0.01$ và $\Delta y = 0.01$, dx, dy được tính theo công thức đạo hàm trung tâm?

Problem 9: Cho hai hàm loss $L_1(y_{hat}, y) = (\hat{y} - y)^2$ và $L_2(y_{hat}, y) = 0.5(\hat{y} - y)^2$ cho bài toán linear regression. Giả sử chúng ta dùng cùng một learning rate η , các bạn hãy tìm mối liên hệ giữa giá trị đạo hàm cho biến w_i khi sử dụng hai hàm loss trên.

Problem 10: Trong một ngữ cảnh nào đó, hàm Huber (Huber loss) hoạt động tối ưu hơn hàm L1 (absolute difference) và hàm L2 (squared difference). Các bạn hãy giải thích ngắn gọn lý do cho nhận định trên?

1 Linear Algebra

1.1 Vector And Matrix Operations

Length of a vector

• Vector: $\mathbf{v} = [v_1, v_2, ... v_n]^T$

• Length of a vector: $\parallel \mathbf{v} \parallel = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$

Problem 1: Tìm length của vecotr $\mathbf{v} = [-2, 4, 9, 21]$?

Dot product

• Vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix}$

• Dot Product: $\mathbf{v} \cdot \mathbf{u} = v_1 * u_1 + v_2 * u_2 + ... + v_n * u_n$

Problem 2: $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 2 \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ 1 \\ 0 \end{bmatrix}$ Tim dot product $\mathbf{c} = \mathbf{v} \cdot \mathbf{u}$?

Multiplying a vector by a matrix

• Matrix: $\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$, $\mathbf{A} \in R^{m*n}$

• Vector: $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$, $\mathbf{v} \in R^n$

• $\mathbf{c} = \mathbf{A}\mathbf{v} = \begin{bmatrix} a_{11} * v_1 + \dots + a_{1n} * v_n \\ & \dots \\ a_{m1} * v_1 + \dots + a_{mn} * v_n \end{bmatrix},$ $\mathbf{c} \in R^n$

Problem 3: $\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -4 & 9 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ Tim $\mathbf{c} = \mathbf{A}\mathbf{v}$?

1 Rubric

Module 2 Exam Rubric			
Phần	Kiến Thức	Đánh Giá	Điểm
1 : từ câu 1 đến	- Cách tính độ dài của một	- Hiểu và biết cách áp dụng	- Total $= 5$
câu 5	vector	các công thức đặc trưng cơ	
	- Dot product của hai vector	bản của Linear Algebra để	
	- Cách nhân ma trận với vec-	thực hiện các phép tính giữa	
	tor	vector với vector, ma trận với	
	- Cách nhân ma trận với ma	vector, ma trận với ma trận	
	trận	và các phép tính nâng cao hơn	
	- Cách tính ma trận nghịch	như độ dài vector hay ma trận	
	đảo	nghịch đảo	
2 : từ câu 6 đến	- Áp dụng công thức đạo hàm	- Hiểu và biết cách áp dụng	- Total $= 2$
câu 7	có sẵn và công thức xấp xỉ đạo	các loại công thức đạo hàm	
	hàm (một bên, trung tâm,)	cho miền liên tục và đạo hàm.	
	cho miền liên tục	Đây là kiến thức nền tảng cơ	
	- Áp dụng công thức đạo hàm	bản giúp học về back propa-	
	trung tâm cho miền rời rạc	gation trong neural network,	
		thuật toán gradient descent,	
		Đối với miền rời rạc là nền	
		tảng cơ bản cho học xử lý ảnh	
		ví dụ các loại kernel (Sobel,	
)	
3 : từ câu 8 đến	- Thuật toán Gradient De-	- Hiểu và thực hiện thuật	- Total = 3
câu 10	scent.	toán Gradient Descent bằng	
	- MSE, MAE và Huber loss	tay trong một step. Việc này	
	được dùng trong thuật toán	giúp hiểu rõ hơn cách hoạt	
	Linear Regression	động của Gradient Descent	
		- Hiểu rõ điểm mạnh và điểm	
		yếu của MSE, MAE và vì sao	
		cần tạo ra Huber loss. Giúp	
		cho việc lựa chọn loss phù hợp	
		với điều kiện của bài toán	

AI VIET NAM – COURSE 2022

Phổ Biến Nội Dung Thi Module 2

Ngày 1 tháng 9 năm 2022

Module Exam 2			
Hình thức làm bài	Các bạn có thể trình bày ra giấy, chụp ảnh lại, đặt tên ảnh theo thứ		
	câu hỏi và nén thành 1 file để nộp bài. Ngoài ra các bạn cũng có thể		
	trình bày trên các file tài liệu như doc, latex		
	Các bạn trình bày các bước giải bao gồm những công thức chính		
	đã sử dụng (công thức trong khung xanh lá của đề). Những công thức		
	khác không cần phải trình bày. (Các bài toán về nhân ma trận, vector		
	cũng không cần phải viết công thức).		
Hình thức nộp bài	Với ảnh các bạn xếp theo thứ tự câu hỏi sau đó nén lại và nộp. Đối với		
	file như doc hoặc latex các bạn nộp 1 file pdf với các câu hỏi theo thứ		
	tự.		
	${f Luu}$ ${f \acute{y}}$: Nếu làm ra giấy các bạn trình bày rõ ràng, chụp ảnh chất lượng		
	cao và không bị mờ.		
Cấu trúc đề	Đề gồm 10 câu hỏi mỗi câu 1 điểm và được chia làm 3 phần		
	Phần 1 (5 câu): Liên quan đến nội dung bài học về Linear Algebra gồm		
	các phép tính toán vector và ma trận.		
	Phần 2 (2 câu): Liên quan đến nội dung bài học về Calculus cơ bản		
	gồm các cách tính đạo hàm của miền liên tục và rời rạc		
	Phần 3 (3 Câu): Liên quan đến thuật toán Gradient Descent, các hàm		
	loss trong thuật toán Linear Regression		
Thời gian bắt đầu làm bài	20h00 ngày 04/09/2022		
Thời gian làm bài	120 phút		
Thời gian nộp bài	Không được trễ hơn 22h15.		
	Mỗi 5 phút trễ hơn trừ 2.5 điểm.		