

Fetal Pose Estimation in Volumetric MRI using a 3D Convolution Neural Network

wrist (R)

elbow (R)

hip (R)

bladder

-shoulder (R)

knee (R)

Junshen Xu, Molin Zhang, Esra Abaci Turk, Larry Zhang, P. Ellen Grant, Kui Ying, Polina Golland, Elfar Adalsteinsson Junshen@mit.edu

Motivation

Fetal MRI

Fetal motion is unpredictable and rapid

Motion artifacts

Final goal:

Building a fetal motion model for prospective motion correction in fetal MRI

This work:

Pose

Fetal pose estimation from EPI volume

Keypoint representation

Percentage of Correct Keypoints (PCK)

 $PCK(s) = \frac{\text{# sample with error} < s}{\text{# sample}} \times 100\%$

Methods

Algorithm:

1.Generate keypoint heatmap from MRI

$$\widehat{H} = [\widehat{H}_1, \dots, \widehat{H}_J] = G(I)$$

2.Infer keypoint location from heatmap

$$\widehat{H} \to \widehat{x} = [\widehat{x}_1, \dots, \widehat{x}_I]$$

Notations

Method 1 (CNN + MRF)

Minimize energy function of MRF

Pose

Method 2 (GAN)

Generator:

Generate heatmaps that can fool the discriminator

Discriminator:

- Distinguish between generated and ground truth heatmaps
- Model possible fetal pose configuration implicitly

Adversarial training

$$G^* = \underset{G}{\operatorname{argmin}} L_G$$
 , $D^* = \underset{D}{\operatorname{argmin}} L_D$

$$L_G = ||G(I) - H||_2^2 + \lambda ||D([G(I), I]) - 1||_2^2$$

$$L_D = ||D([G(I),I])||_2^2 + ||D([H,I]) - 1||_2^2$$

I	image		
H_i	Heatmap of keypoint <i>i</i>		
x_i	Location of keypoint i		
J	Number of keypoints		
B	The set of keypoint connections		
$\mu_{i,j}$, $\sigma_{i,j}^2$	Mean and variance of normalized distance between keypoint i and j		
r_{GA}	Normalization factor		
G, D	Generator and Discriminator		

Results

	CNN	CNN+MRF	GAN
Mean error (mm)	3.12	3.02	2.64
std (mm)	3.09	2.69	2.33
Median error (mm)	2.27	2.27	2.26
Time (ms / volume)	297	648	297

Conclusion

We propose methods for fetal pose estimation in volumetric MRI, potentially enabling low latency tracking of fetal pose for prospective motion correction.

error / mm

Acknowledgement:

This research was supported by NIH U01HD087211, NIH R01EB01733 and NIH NIBIB NAC P41EB015902.

Dataset

Multislice EPI time series

Size of dataset:

- ~20k frames
- 77 subjects
- train: 49, val: 14, test: 14 Resolution: 3mm x 3mm x 3mm

TR: ~3.5 s / TE: 32 ms

Data augmentation:

- Flipping Rotation
- Intensity scaling