# NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI



Faglig kontakt under eksamen:

Institutt for Materialteknologi, Gløshaugen

Professor Kjell Wiik, tlf.: 73 59 40 82, mob.: 92 26 50 39

### **EKSAMEN I EMNE TMT4110 KJEMI**

# **BOKMÅL (Nynorsk s. 5-7)**

Lørdag 12. juni 2010 Tid: 9:00-13:00

Hjelpemidler: B2-typegodkjent kalkulator, med tomt minne, i henhold til utarbeidet liste

Aylward & Findlay: SI Chemical Data

Sensuren faller i uke 26

# **OPPGAVE 1**

- a) Ranger følgende gasser etter størrelsen på deres varmekapasitet og forklar hvorfor det er forskjell: Ar, CO<sub>2</sub> og H<sub>2</sub>.
- b) Hvilke gasser i a) er drivhusgasser? Forklar kort.
- c) Gitt reaksjonen:  $NH_3$  (g) +  $O_2$  (g)  $\rightarrow NO$  (g) +  $H_2O$  (g).
  - i) Sett opp en balansert reaksjonslikning for denne reaksjonen.
  - ii) Hvis en blander 3,00L  $NH_3$  gass ved 1,00 atm. og 2,00L  $O_2$  ved 2,00 atm. (se figur), hva er partialtrykkene av  $NH_3$  og  $O_2$  i beholderen (5,00L) etter blanding (åpen ventil), men før reaksjonen finner sted? Hva er totaltrykket?



NH<sub>3</sub>, 1,00 atm., 3,00 L

O<sub>2</sub>, 2,00 atm., 2,00 L

iii) Hvis en antar at reaksjonen går til en av reaktantene er brukt opp, hva er da partialtrykket til de forskjellige speciene i beholderen?

### **OPPGAVE 2**

- a) Ved hvilken temperatur (høy, lav, uavhengig) går en vilkårlig reaksjon når: 1)  $\Delta S$  er positiv og  $\Delta H$  er negativ, 2)  $\Delta S$  er negativ og  $\Delta H$  er positiv, 3)  $\Delta S$  er positiv og  $\Delta H$  er positiv, 4)  $\Delta S$  er negativ og  $\Delta H$  er negativ. Hvilke av reaksjonene er eksoterme ved konstant trykk?
- b) Skriv den balanserte reaksjonen for reduksjon av jernoksid ( $Fe_2O_3$ ) med hydrogen og dannelse av metallisk jern og vanndamp, og beregn  $\Delta S^{\circ}$  for reaksjonen ved å anta at reaksjonsentropier er uavhengig av temperatur. Er endringen i entropi som forventet? Forklar.

## **OPPGAVE 3**

- a) Du har en celle med to halvceller. Den ene halvcellen er en sinkstav plassert i en sinksulfatløsning (1 M) og den andre halvcellen er en kobberstav plassert i en kobbersulfatløsning (1 M).
  - i) Tegn den galvaniske cellen og vis hvilken vei ioner og elektroner går, skriv opp halvreaksjonene, totalreaksjonen og vis hva som er anode og katode.
  - ii) Beregn standard cellepotensial og  $\Delta G^{\circ}$  for reaksjonen over.
  - iii) Med tiden vil [Zn²+] øke til 1.7 M. Anta 1 L av hver løsning. Hva er da vektøkningen til kobberstaven og hva blir det nye cellepotensialet?
- b) Beskriv og tegn en konsentrasjonscelle med utgangspunkt i AgNO₃-løsninger (0.05 M og 1 M) og Ag elektroder. Hva er katode og anode? Bestem standard cellepotensial og cellepotensialet ved 25°C.
- c) Anta at du kan deponere 476 mg jordalkalimetall fra dets klorid på katoden ved å elektrolysere ved konstant strøm 3.0 A i 21 min. Hvilket metallklorid er dette?

## **OPPGAVE 4**

a) Hydrolyse av sukrose (S) til fruktsukker (F) og druesukker (D) i sur vandig løsning er gitt ved følgende reaksjon:

$$S + H_2O \rightarrow F + D$$

Reaksjonen er første orden med hensyn på (S) og vi antar at vannmengden er så stor at den kan regnes som konstant. Ved 25°C er hastighetskonstanten 3.47 x 10<sup>-3</sup> min<sup>-1</sup>.

Hvor lang tid tar det å hydrolysere

- i) halvparten av 1 kg sukrose
- ii) 75% av 100 g sukrose
- b) For reduksjon av NO<sub>3</sub> med MoCl<sub>6</sub><sup>2</sup> i en vandig løsning er følgende reaksjonsmekanisme foreslått:

$$\operatorname{MoCl_6}^{2^-} \xleftarrow{k_1} \operatorname{MoCl_5}^- + \operatorname{Cl}^-$$
 (1

$$NO_3^- + MoCl_5^- \xrightarrow{k_2} OMoCl_5^- + NO_2^-$$
 (2)

### **OPPGAVE 4 forts.**

- i) Hvilke intermediat(er) opptrer i delreaksjonene?
- ii) Utled en hastighetslov (d[NO<sub>2</sub>-]/dt) for reduksjon av NO<sub>3</sub>- med MoCl<sub>6</sub><sup>2</sup>- på grunnlag av den oppgitte reaksjonsmekanismen.
- c) En førsteordens reaksjon har en hastighetskonstant på 8,1×10<sup>-2</sup> s<sup>-1</sup> ved 0°C og 4,6×10<sup>-1</sup> s<sup>-1</sup> ved 20°C. Bestem reaksjonens aktiveringsenergi.
- d) Hvordan fungerer en heterogen katalysator? Forklar kort.

### **OPPGAVE 5**

- a) NaCl, PCl<sub>3</sub> og Cl<sub>2</sub> er alle forbindelser mellom elementer i 3. periode, men de har ulik kjemisk binding. Angi bindingskarakter (type) for alle forbindelsene med utgangspunkt i elementenes elektronegativitet. Angi molekylstruktur for de ulike forbindelser in henhold til Lewis og VSEPR-modellene samt aggregattilstand. (Anta romtemperatur og standard trykk). Hvorfor er PCl<sub>3</sub> en væske i forhold til de andre to forbindelsene?
- b) Tegn molekylstrukturen til 3-bromo-toluen, 2,2,4-trimetylpentan (iso-oktan), aceton, 3-iodo-4-heptensyre og polyvinylklorid (PVC). Angi type hybridisering av karbonatomene i alle forbindelsene.

# **OPPGAVE 6**

Blåsyre, HCN, er en svak syre.

- a) Tegn titrerkurven når blåsyre titreres med NaOH (sterk base).
- b) Identifiser bufferområde og omslagspunkt, og beregn pH for disse.
- c) Angi en egnet indikator for denne titreringen.
- d) Tegn titrerkurven for den treprotiske syren  $H_3PO_4$  (fosforsyre) og merk av bufferområder og omslagspunkt.

| FORMEL                                                                                                            | KOMMENTAR                                        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| PV = nRT                                                                                                          | Ideell gass                                      |
| $P_i = n_i RT/V  (P_T = \sum_i P_i)$                                                                              | Partialtrykk av i                                |
| $C = q / \Delta T$                                                                                                | Varmekapasitet                                   |
| E = q + w                                                                                                         | Endring i indre energi                           |
| H = E + PV                                                                                                        | Entalpi                                          |
| $\Delta H = q_p$                                                                                                  | Konstant P. Bare volumarb.                       |
| $\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} (\text{produkter}) - \sum \Delta H_{f}^{\circ} (\text{reaktanter})$ | Husk støkiometriske koeffisienter                |
| $\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$                                | $\Delta C_p^o$ konstant                          |
| $\ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$                 | $\Delta H$ og $\Delta S$ konstant                |
| $dS = \frac{dq_{\text{rev}}}{T}$                                                                                  | Entropiendring                                   |
| $\Delta S_T^{\circ} = \Delta S_{298}^{\circ} + \Delta C_P^{\circ} \ln \left( \frac{T}{298,15} \right)$            | $\Delta C_p^o$ konstant                          |
| G = H - TS                                                                                                        | Gibbs energi. Fri energi.                        |
| $\Delta G = \Delta H - T\Delta S$                                                                                 | Endring i fri energi ved konstant T              |
| $\Delta G_T^\circ = \Delta H_{298}^\circ - T \Delta S_{298}^\circ$                                                | $\Delta C_p^o \approx 0$                         |
| $\Delta G = \Delta G^{\circ} + RT \ln Q$                                                                          | Reaksjonskvotient, Q                             |
| $G = G^{\circ} + RT \ln a$                                                                                        | Aktivitet (relativ), a                           |
| $\Delta G^{\circ} = -RT \ln K$                                                                                    | Likevektskonstant, K                             |
| $\Delta G = -nFE$                                                                                                 | Cellepotensial, E                                |
| $Q = It = n_{e}F$                                                                                                 | Elektrisk ladning                                |
| $E = E^{o} - \frac{RT}{nF} \ln Q = E^{o} - \frac{0,0592}{n} \log Q, 25^{\circ} C$                                 | Nernsts ligning                                  |
| $r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$               | Reaksjonshastighet for $aA + bB = cC + dD$       |
| Total orden = $l + m + n + p$                                                                                     |                                                  |
| $k = A e^{-\frac{E_a}{RT}}$                                                                                       | Hastighetskonstant, $k$ Aktiveringsenergi, $E_a$ |

NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI



Fagleg kontakt under eksamen:

Institutt for Materialteknologi, Gløshaugen

Professor Kjell Wiik, tlf.: 73 59 40 82, mob.: 92 26 50 39

#### **EKSAMEN I EMNE TMT4110 KJEMI**

### **NYNORSK**

Laurdag 12. juni 2010 Tid: 9:00-13:00

Hjelpemiddel: B2-typegodkjent kalkulator, med tomt minne, i følgje utarbeida liste

Aylward & Findlay: SI Chemical Data

Sensuren fell i veke 26

# **OPPGÅVE 1**

- d) Ranger følgjande gassar etter storleiken på varmekapasiteten deira og forklar korfor det er forskjell: Ar, CO<sub>2</sub> og H<sub>2</sub>.
- e) Kva for gassar i a) er drivhusgassar? Forklar kort.
- f) Gjeven reaksjonen:  $NH_3(g) + O_2(g) \rightarrow NO(g) + H_2O(g)$ .
  - iv) Sett opp ei balansert reaksjonslikning for denne reaksjonen.
  - v) Om ein blandar 3,00L NH<sub>3</sub> gass ved 1,00 atm. og 2,00L O<sub>2</sub> ved 2,00 atm. (sjå figur), kva er partialtrykka av NH<sub>3</sub> og O<sub>2</sub> i behaldaren (5,00L) etter blanding (open ventil), men før reaksjonen finner stad? Kva er totaltrykket?



NH<sub>3</sub>, 1,00 atm., 3,00 L

O<sub>2</sub>, 2,00 atm., 2,00 L

vi) Om ein antar at reaksjonen går til ein av reaktantane er brukt opp, kva er da partialtrykket til de forskjellige specia i behaldaren?

# **OPPGÅVE 2**

- c) Ved kva for temperatur (høy, lav, uavhengig) går ein vilkårleg reaksjon når: 1)  $\Delta S$  er positiv og  $\Delta H$  er negativ, 2)  $\Delta S$  er negativ og  $\Delta H$  er positiv, 3)  $\Delta S$  er positiv og  $\Delta H$  er positiv, 4)  $\Delta S$  er negativ og  $\Delta H$  er negativ. Kva for reaksjonar er eksoterme ved konstant trykk?
- d) Skriv den balanserte reaksjonen for reduksjon av jernoksid ( $Fe_2O_3$ ) med hydrogen og danning av metallisk jern og vassdamp, og rekn ut  $\Delta S^{\circ}$  for reaksjonen ved å anta at reaksjonsentropiar er uavhengig av temperatur. Er endringa i entropi som forventa? Forklar.

# **OPPGÅVE 3**

- a) Du har ei celle med to halvceller. Den eine halvcella er ein sinkstav er plassert i ei sinksulfatløysning (1 M) og den andre halvcella er ein koparstav plassert i ei koparsulfatløysning (1 M).
  - i) Teikn den galvaniske cella, vis kva for vei iona og elektrona går, skriv opp halvreaksjonane, totalreaksjonen og vis kva som er anode og katode.
  - ii) Rekn ut standard cellepotensial og  $\Delta G^{\circ}$  for reaksjonen.
  - iii) Med tida vil [Zn²+] auke til 1.7 M. Anta 1 L av kvar løysning. Kva er da vektaukinga til koparstaven og kor mye reduserast cellepotensialet?
- b) Beskriv og teikn ei konsentrasjonscelle med utgangspunkt i AgNO<sub>3</sub>-løysninger (0.05 M og 1 M) og Ag elektrodar. Kva er katode og anode? Rekn ut standard cellepotensial og cellepotensialet ved 25°C.
- c) Anta du kan deponere 476 mg jordalkalimetall frå kloridet til dette metallet på katoden ved å elektrolysere ved konstant strøm 3.0 A i 21 min. Kva for eit metallklorid er dette?

## **OPPGÅVE 4**

a) Hydrolyse av sukrose (S) til fruktsukker (F) og druesukker (D) i sur løysning i vatn er gitt ved følgjande reaksjon:

$$S + H_2O \rightarrow F + D$$

Reaksjonen er første orden med omsyn på (S) og vi antek at mengda vatn er så stor at den kan reknas som konstant. Ved  $25^{\circ}$ C er hastighetskonstanten  $3.47 \times 10^{-3}$  min<sup>-1</sup>.

Kor lang tid tar det å hydrolysere:

- i) halvparten av 1 kg sukrose?
- ii) 75% av 100 g sukrose?
- b) For reduksjon av NO<sub>3</sub> med MoCl<sub>6</sub><sup>2</sup> i ei løysning i vatn er følgjande reaksjonsmekanisme foreslått:

$$MoCl_6^{2-} \xrightarrow{k_1 \atop k_{-1}} MoCl_5^{-} + Cl^{-}$$
 (1)

$$NO_3^- + MoCl_5^- \xrightarrow{k_2} OMoCl_5^- + NO_2^-$$
 (2)

### **OPPGÅVE 4 forts.**

- i) Kva for intermediat(er) opptrer i delreaksjonane?
- ii) Utlei ei hastighetslov (d[ $NO_2^-$ ]/dt) for reduksjon av  $NO_3^-$  med  $MoCl_6^{2-}$  på grunnlag av den oppgjevne reaksjonsmekanismen.
- c) Ein reaksjon av første orden har ein hastighetskonstant på  $8.1 \times 10^{-2}$  s<sup>-1</sup> ved 0 °C og  $4.6 \times 10^{-1}$  s<sup>-1</sup> ved 20°C. Rekn ut aktiveringsenergien til reaksjonen.
- d) Korleis fungerer ein heterogen katalysator? Forklar kort.

# **OPPGÅVE 5**

- a) NaCl, PCl<sub>3</sub> og Cl<sub>2</sub> er sambindingar mellom element i 3. periode, men dei har ulik kjemisk binding. Angi bindingskarakter (type) for alle sambindingane med utgangspunkt i elementas elektronegativitet. Angi molekylstruktur for de ulike sambindingane i følgje Lewis og VSEPR-modellane samt aggregat-tilstand. (Anta romtemperatur og normal trykk)? Korfor er PCl<sub>3</sub> ei væske i forhold til dei andre to sambindingane?
- b) Teikn molekylstrukturen til 3-bromo-toluen, 2,2,4-trimetylpentan (iso-oktan), aceton, 3-iodo-4-heptensyre og polyvinylklorid (PVC). Angi type hybridisering for karbonatoma i alle sambindingar.

# **OPPGÅVE 6**

Blåsyre, HCN, er ei svak syre.

- e) Teikn titrerkurven når blåsyre titrerast med NaOH (sterk base).
- f) Identifiser bufferområde og omslagspunkt, og rekn ut pH for desse.
- g) Angi ein egna indikator for denne titreringa.
- h) Teikn titrerkurva for den treprotiske syra H₃PO₄ (fosforsyre) og merk av bufferområder og omslagspunkt.