Literature research:

- ☐ **Title of paper:** Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images
- □ Ranked 1st in WMH Segmentation Challenge at MICCAI 2017 https://wmh.isi.uu.nl/details/#terms suggesting to be State of the art technique

Dataset:

- ☐ Preprocessed training data are available in the format of .npy files
- ☐ To obtain the actual data https://wmh.isi.uu.nl/details/#terms need to sign a confidentiality agreement and send to wmh@isi.uu.nl

Technique used to detect WMH:

- ☐ Used deep fully convolutional network and ensemble models
- Based on the papers:
 - ☐ Fully Convolutional Networks for Semantic Segmentation (by Long et al)
 - ☐ U-Net: Convolutional networks for biomedical image segmentation (by Ronneberger et al)

Why this technique is used?

Result of WMH Segmentation Challenge:

- ☐ Predominantly most of the teams have used Deep Learning
- ☐ CNN or U-Net performs better when compared to other methods

#	Team	Pre ¹	Method	Post ²	Data	\mathbf{DL}^3		Loss function	Neural network features ⁵							
							Aug ⁴		Dim	Dil	BN	Drop	MS	LR	HN	En
1	sysu_media	1,R	U-Net	SL	T,F	1	H,R,S	DSC	2D							V
2	cian	F,I	MDGRU		T.F	1	D,R,S	multinom. log.	2D†			1				
3	nlp_logix	1,5	CNN		T.F	1		cross-entropy	2D				1	1	1	1
4	nic-vicorob		CNN	SM	T.F	1	M.R	cross-entropy	3D		1	1			1	
5	k2	1,R,S	U-Net		T,F	1	м	DSC	2D			1		1		1
6	misp	1,R	CNN		T.F	1		mean sq. error	3D		1	1			1	
7	Irde	F,I	VGG-16		T,F	1	R,S	multinom. log.	2D					1		
8	nih_cidi	S	U-Net	G	T.F	1	M,R	cross-entropy	2D		1			1		
9	ipmi-bern	1,8	U-Net		T,F	1	M,R	cross-entropy	2D		1		1	1		
10	scan	S	DenseNet		T,F	1		cross-entropy	2D	6						
11	achilles	I,R	HighResNet		F	1	R.S	DSC	3D	1	1		1			
12	skkumedneuro	1,5	RF		T,F											
13	tignet	B,1,T	HighResNet		T_*F^*	1		DSC	3D	1	1			1		
14	tig	B,S,T	GMM	FP	T,F											
15	knight	B,1,S,T	VLR	SM	F*		M,T,Y	DSC								
16	upc_dlmi	1	U-Net		T,F	1	м	DSC	3D		1		1	1		
17	nist	B,J,T	RF		T,F											
18	neuro.ml		DeepMedic		T,F	1		cross-entropy	3D				1	1		
19	text_class	1,R	RF	SM	T,F											
20	hadi		RF		T,F											

		FCN based on U-Net (with a network architecture of 19 layers - Conv 3x3, ReLU and MaxPooling) can classify all the pixels simultaneously and tracks objects in an image. Voting of the object classification (pixel labels) is based on the ensemble models.
٩d	van	tages:
		Ensemble model reduces overfitting problems Usage of 2D architecture over 3D, as WMH are small lesions and does not possess high spatial or contextual information.

https://ieeexplore.ieee.org/document/8669968