Stéréovision :

Généralités & géométrie épipolaire

Systèmes de vision, INSA - ASI4

Sebastien.Kramm@univ-rouen.fr

LITIS - INSA Rouen

février 2016

Sommaire

- Généralités
- Quality of the second of th
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- 3 Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Introduction

ZED / Stereolabs

- Acquisition binoculaire :
 - Deux caméras, acquisition simultanée.
 - Ou : une caméra qui se déplace (si scène statique!)
- Intéret : acquisition de la profondeur.
- Applications : industrie, robotique, automobile (ADAS), réalité augmentée, cinéma, métrologie, cartographie,...

ADAS : Advanced Driving Assistance System

Deux types de productions

Stéréovision dense

- Production d'une carte de profondeur, donnant Z pour tout point de l'image.
 - coût calculatoire élevé (volume de données à traiter lié à la résolution),
 - nécéssité d'un post traitement pour de l'analyse de scène : segmentation et/ou localisation (techniques classiques de CV)

Deux types de productions

Stéréovision dense

- Production d'une carte de profondeur, donnant Z pour tout point de l'image.
 - coût calculatoire élevé (volume de données à traiter lié à la résolution),
 - nécéssité d'un post traitement pour de l'analyse de scène : segmentation et/ou localisation (techniques classiques de CV)

Stéréovision éparse

- La profondeur est calculée uniquement sur des points caractéristiques (angles, coins, droites, obstacles,...)
 - volume de données à traiter réduit.
 - mais performances liées à celle du détecteur.

Deux types de productions

Stéréovision dense

- Production d'une carte de profondeur, donnant Z pour tout point de l'image.
 - coût calculatoire élevé (volume de données à traiter lié à la résolution),
 - nécéssité d'un post traitement pour de l'analyse de scène : segmentation et/ou localisation (techniques classiques de CV)

Stéréovision éparse

- La profondeur est calculée uniquement sur des points caractéristiques (angles, coins, droites, obstacles,...)
 - · volume de données à traiter réduit,
 - mais performances liées à celle du détecteur.
- Point clé dans les 2 cas : l'appariement!

Introduction

• Stéréovision dense

Introduction

Stéréovision dense

• Stéréovision éparse

Généralisation

- La stéréovision consiste à :
 - extraire des primitives (points d'intérêts, segments de droite,...),
 - les apparier,
 - a calculer pour chaque paire une valeur de profondeur ("reconstruction 3D").

Note : pour certaines applications, on pourra se passer de l'étape 3, et se contenter de la disparité.

Généralisation

- La stéréovision consiste à :
 - extraire des primitives (points d'intérêts, segments de droite,...),
 - les apparier,
 - a calculer pour chaque paire une valeur de profondeur ("reconstruction 3D").

Note : pour certaines applications, on pourra se passer de l'étape 3, et se contenter de la disparité.

- Stéréovision dense ⇒ primitives = pixels de l'image.
- Il est fréquent de réaliser un pré-traitement des images (rectification, recadrage, seuillage,...)

Appariement

- Les algorithmes d'appariement sont dépendant des primitives utilisées :
 - Stéréo dense : corrélation (SSD, ZSSD, ZNSSD, ZNCC, ...), algorithmes de coupure de graphe (graph-cut), Techniques récentes : CBA(2011) Cross Based Correlation
 - Stéréo éparse : utilisation de la caractérisation des primitives.
- Difficultés
 - Un point 2D peut ne pas avoir de stéréo-correspondant (occultation ou recouvrement des images insuffisant).
 - L'apparence des éléments de la scène peut être différente dans les 2 images.
- Contraintes exploitables :
 - Unicité: une primitive d'une image ne peut correspondre qu'à un seul appariement.
 - Contrainte d'ordre (si scène opaque)
- En pratique, les contraintes utilisables sont dépendantes du **contexte applicatif**.

CBA: Cross Based Aggregation

Contraintes & difficultés de l'appariement

 Occultation : si (P1,P2,P3) est un objet opaque, le point P1 n'aura pas de projection dans la caméra droite.

Contraintes & difficultés de l'appariement

 Occultation : si (P1,P2,P3) est un objet opaque, le point P1 n'aura pas de projection dans la caméra droite.

 Unicité : contrainte imposée, mais ne correspond pas toujours à la réalité.

Contraintes & difficultés de l'appariement

• Contrainte d'ordre (valable si éléments opaques) :

- Chaque point P_i se projette
 - dans (Oxz) en ui
 - dans (O'x'z') en u'_i

ullet Si $u_2>u_1$ et $u_2< u_3$, alors on devra avoir $u_2'>u_1'$ et $u_2'< u_3'$

Exemple de primitive : descripteur local

- Un descripteur local effectue deux opérations :
 - recherche de points d'intérêts dans l'image,
 - caractérisation de ces points par un vecteur d'attributs.
- Le précurseur : SIFT (Scale-Invariant Feature Transform) [Lowe,2004]
 - basé sur la théorie des "espaces d'échelles" (Space scale),
 - invariant aux rotations, changement d'illumination, etc.,
 - fournit pour chaque point un vecteur de 128 attributs.
- Avantages :
 - richesse de la caractérisation (pouvoir discriminant élevé),
 - position subpixellique.
- Inconvénient : coût.
- Domaine de recherche actif (compromis coût/performance)

Descripteur SIFT

• Exemple d'extraction

Exemple de primitive : opérateur "déclivité"

- On recherche dans l'image, ligne par ligne, les variations significatives de niveau (seuil auto-adaptatif).
- On caractérise par l'amplitude, la pente, et les moyennes des niveaux à gauche et à droite.
- Avantages :
 - coût (très rapide), peut être parallélisé,
 - position horizontale subpixellique.
- Inconvénient : caractérisation faible.

Sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Sous-sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Stéréovision : cas aligné

- Les calculs sont simplifiés si les 2 caméras
 - ont des paramètres intrinsèques identiques (K = K'),
 - sont alignées : axes Ox confondus et axes Oy et Oz parallèles.

- Deux niveaux de simplification
 - La profondeur s'obtient par une simple division.
 - 2 Les points stéréo-correspondants sont sur la même ligne image.

S. Kramm (LITIS) Vision stéréo 2015-2016

Cas aligné : simplification de l'appariement

Les points stéréo-correspondants sont sur les mêmes lignes-image.

 \(\text{L'appariement passe d'un problème bi-dimensionnel \(\text{à} \) un problème mono-dimensionnel.

S. Kramm (LITIS) Vision stéréo 2015-2016

Cas aligné : simplification de l'appariement

Les points stéréo-correspondants sont sur les mêmes lignes-image.

 \(\times \) L'appariement passe d'un problème bi-dimensionnel à un problème mono-dimensionnel.

• L'appariement consiste à trouver pour le point (ou pixel) m_{in} (se trouvant sur la ligne n) son stéréo-correspondant m_{jn} dans l'image l' sur la ligne n

S. Kramm (LITIS) Vision stéréo 2015-2016 1

- ullet Un point 3D M aura pour projections :
 - $m = (x_M, y_M, z_M)$ dans le repère caméra (Cxyz), • m = (x', y', z') dans le repère caméra
 - $m = (x'_M, y'_M, z'_M)$ dans le repère caméra (C'x'y'z')

- x'_M est lié à x_M par la relation $x'_M = x_M B$
- Remarque : dans la configuration du dessin ci-dessus, on aura x>0 et $x^{\prime}<0$

S. Kramm (LITIS) Vision stéréo 2015-2016

$$\begin{cases} u = \alpha_u \frac{x_M}{z_M} + u_0 \\ u' = \alpha_u \frac{x'_M}{z'_M} + u_0 \end{cases}$$
 et $z_M = z'_M$

S. Kramm (LITIS) Vision stéréo 2015-2016 20 / 67

$$\begin{cases} u = \alpha_u \frac{x_M}{z_M} + u_0 \\ u' = \alpha_u \frac{x_M'}{z_M'} + u_0 \end{cases} \text{ et } z_M = z_M'$$

$$u - u' = \alpha_u \frac{x_M - x_M'}{z_M}$$

$$= \alpha_u \frac{B}{z_M}$$

S. Kramm (LITIS) Vision stéréo 2015-2016 20 / 67

$$\begin{cases} u = \alpha_u \frac{x_M}{z_M} + u_0 \\ u' = \alpha_u \frac{x_M'}{z_M'} + u_0 \end{cases} \text{ et } z_M = z_M'$$

$$u - u' = \alpha_u \frac{x_M - x_M'}{z_M}$$

$$= \alpha_u \frac{B}{z_M}$$

La profondeur est inversement proportionnelle à la **disparité** u-u'

$$z_M = \frac{B \alpha_u}{u - u'}$$

$$d=u-u'>0$$

$$d = u - u' > 0$$
 $d = 0 \Leftrightarrow z_M = \infty$

S. Kramm (LITIS) Vision stéréo 2015-2016 20 / 67

Importance de la baseline

- La précision est directement proportionnelle à l'écart entre les caméras.
- Il devra être choisi selon le domaine applicatif (vision à 2 m. ou à 50 m.?)
- Les algorithmes d'appariement utilisent souvent une limite haute sur la disparité, afin de limiter les erreurs d'appariement.
 (Exemple : 1/10 de la largeur de l'image)

S. Kramm (LITIS) Vision stéréo 2015-2016 21 / 67

Importance de la baseline

- La précision est directement proportionnelle à l'écart entre les caméras.
- Il devra être choisi selon le domaine applicatif (vision à 2 m. ou à 50 m.?)
- Les algorithmes d'appariement utilisent souvent une limite haute sur la disparité, afin de limiter les erreurs d'appariement.
 (Exemple : 1/10 de la largeur de l'image)
- Exercice 1 : avec cette limite et une image "VGA", quel sera la distance minimale observable ($\alpha = 500$)?
 - pour B=20 cm?
 - pour B=50 cm?

S. Kramm (LITIS) Vision stéréo 2015-2016 21 / 67

Importance de la baseline

- La précision est directement proportionnelle à l'écart entre les caméras.
- Il devra être choisi selon le domaine applicatif (vision à 2 m. ou à 50 m.?)
- Les algorithmes d'appariement utilisent souvent une limite haute sur la disparité, afin de limiter les erreurs d'appariement.
 (Exemple : 1/10 de la largeur de l'image)
- Exercice 1 : avec cette limite et une image "VGA", quel sera la distance minimale observable ($\alpha = 500$)?
 - pour B=20 cm?
 - pour B=50 cm?
- Exercice 2 : on souhaite avoir un système stéréo qui fournit une disparité de 100 pixels pour un objet situé à 2m. Quel devra être la valeur de B?
 - pour $\alpha = 200$?
 - pour $\alpha = 500$?

21 / 67

S. Kramm (LITIS) Vision stéréo 2015-2016

Contrainte d'implémentation : aspect temporel

- En cas de scène dynamique, il est impératif que l'acquisition soit simultanée.
- Si l'objet se déplace, sa position dans l'image sera modifiée
 ⇒ erreur sur la profondeur mesurée.

S. Kramm (LITIS) Vision stéréo 2015-2016

Exercice

• Soit un point $M = (x_M, 0, z_M)$ se deplaçant parallèlement à Ox, à une vitesse v.

S. Kramm (LITIS) Vision stéréo 2015-2016 23 / 67

Exercice

• Soit un point $M = (x_M, 0, z_M)$ se deplaçant parallèlement à Ox, à une vitesse v.

- La caméra stéréo a un framerate fr=20 paires/s, et réalise l'acquisition de l'image G puis D de façon alternée avec un intervalle de temps Δ_t .
 - ullet exprimer la profondeur observée z_ϵ si $\Delta t
 eq 0$
 - exprimer l'erreur relative ϵ (%)
 - A.N. : focale f=8mm, taille pixel= 8μ m, B=50cm, v=15km/h, z=15m.

S. Kramm (LITIS) Vision stéréo 2015-2016 23 / 67

Sous-sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- Reconstruction 3D

Systèmes réels

- Si les caméras ne sont pas alignées, on ne peut plus obtenir la profondeur par une simple division.
- L'appariement devient aussi plus complexe...(recherche 2D)

S. Kramm (LITIS) Vision stéréo 2015-2016

Systèmes réels

- Si les caméras ne sont pas alignées, on ne peut plus obtenir la profondeur par une simple division.
- L'appariement devient aussi plus complexe...(recherche 2D)

• Problème : pour des écartements importants, il devient délicat **d'obtenir** et de **maintenir** un alignement "parfait".

Influence du désalignement

- Les perturbations les plus importantes seront liées aux écarts en rotation entre caméras.
- L'influence sur la profondeur mesurée dépend de l'axe de rotation considéré.
 - axe horizontal (Ox): peu d'erreur sur la profondeur, mais sur la hauteur apparente des élements observés, après appariement.
 - axe vertical (*Oy*) : influera directement sur la disparité et donc sur la profondeur mesurée.
 - axe optique (Oz): combinaison des 2 précédentes erreurs, selon la position dans l'image du point considéré.
- Dans la réalité, les rotations seront évidemment combinées, rendant la correction par post-traitement très difficile.

26 / 67

Exercice

- On suppose un système de caméras alignées, sauf sur l'axe (Ox), sur lequel un écart de b degrés existe entre la caméra gauche et droite.
- Un objet vertical (cube) de hauteur H et dont la base est à une hauteur Y₁, situé à une distance Z est observé par ce système, et se projette avec une hauteur h dans chaque image.
- Déterminer la hauteur apparente observée après appariement, et comparer avec celle obtenue par un système aligné.
- A partir de quel angle l'objet ne sera plus du tout apparié?
- A.N. : $\alpha_v = -500$, $Z_M = 10$ m, H = 1m
 - $b = 1^{\circ}$
 - $b = 2^{\circ}$

Exercice

• La projection de l'objet dans l'image droite sera **décalée verticalement** par rapport à l'image gauche.

• Après appariement ligne par ligne, la hauteur de l'objet reconstruit sera égale à la partie commune entre gauche et droite.

28 / 67

Systèmes réels

- En dehors d'applications spécifiques, le cas aligné a peu d'applications pratiques :
 - L'alignement mécanique des caméras est délicat, et risque de dériver (vibrations).
 - Difficile de quantifier l'erreur en fonction de la position réelle.
 - ⇒ nécessité d'un calibrage stéréoscopique.
- Vocable ambigu, peut désigner :
 - l'action d'aligner mécaniquement les deux caméras,
 - la caractérisation de la géométrie relative entre caméras.

Cinéma 3D

- Pour de la production de contenus 3D, pas besoin de métrique : on utilise des systèmes à convergence : axes (Oy) parallèle, rotation sur (Oy)
- On peut ainsi faire varier la disparité (et donc la perception visuelle de la profondeur) dans une plage définie par le réalisateur.

Plan épipolaire

- Le point M, et les deux foyers optiques vont déterminer un **plan épipolaire**.
- L'intersection de la droite reliant les 2 centre optiques avec les plan images va générer les **épipôles**.
- Ces épipôles peuvent être dans ou hors de l'image réelle.
- A un point dans une image correspond une droite dans l'autre image ("droite épipolaire").

31 / 67

Caractérisation de la géométrie épipolaire

- La géométrie épipolaire peut-être entièrement définie par deux matrices :
 - la matrice Essentielle, si on connait les paramètres intrinsèques,
 - la matrice Fondamentale, si on ne les connait pas.
- Ces matrices permettent d'associer un point d'une image à une droite dans l'autre image
 - matrice Essentielle : dans le repère caméra (C, x, y)
 - matrice Fondamentale : dans le repère image (O, u, v)

Sous-sommaire

- Généralités
- Quality de la completa del completa del completa de la completa del completa
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

33 / 67

Modélisation de la géométrie épipolaire

• Un point de la scène peut être exprimé dans les repères des 2 caméras :

$$\mathbf{M} = (X, Y, Z, 1)^T$$
 et $\mathbf{M}' = (X', Y', Z', 1)^T$

• Les repères sont liés par une homographie 3D **A**, composée d'une rotation **R** et une translation $\mathbf{t} = (t_x, t_y, t_z, 1)^T$:

$$\mathbf{A} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{33} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Modélisation - 2

• On peut exprimer la position du point dans un repère en utilisant les coordonnées de l'autre repère :

$$\begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} \simeq \mathbf{A} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} \simeq \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{33} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Sous forme développée :

$$\begin{cases} X' = r_{11}X + r_{12}Y + r_{13}Z + t_x \\ Y' = r_{21}X + r_{22}Y + r_{23}Z + t_y \\ Z' = r_{31}X + r_{32}Y + r_{33}Z + t_z \end{cases}$$

Projection en 2D

• La **projection** du point 3D dans l'image droite génère le point image 2D (x', y'):

$$\begin{cases} x' = \frac{X'}{Z'} = \frac{r_{11}X + r_{12}Y + r_{13}Z + t_x}{r_{31}X + r_{32}Y + r_{33}Z + t_z} \\ y' = \frac{Y'}{Z'} = \frac{r_{21}X + r_{22}Y + r_{23}Z + t_y}{r_{31}X + r_{32}Y + r_{33}Z + t_z} \end{cases}$$

• en utilisant la relation X = x.Z et Y = y.Z, on arrive à

$$\begin{cases} x' = \frac{Z(r_{11}x + r_{12}y + r_{13}) + t_x}{Z(r_{31}x + r_{32}y + r_{33}) + t_z} \\ y' = \frac{Z(r_{21}x + r_{22}y + r_{23}) + t_y}{Z(r_{31}x + r_{32}y + r_{33}) + t_z} \end{cases}$$

• en notant $\mathbf{r_i}$ la i-ème ligne de la matrice \mathbf{R} , et $\mathbf{m} = (x, y, 1)^T$:

$$x' = \frac{Z r_1 m + t_x}{Z r_3 m + t_z}$$
 $y' = \frac{Z r_2 m + t_y}{Z r_3 m + t_z}$

36 / 67

Relations entre les projections

Interprétation

La projection d'un point 3D dans l'image droite peut s'exprimer en fonction :

- de la projection de ce point dans l'image gauche,
- des caractéristiques de la tête stéréo (rotation et translation entre caméras),
- de la profondeur z.

Relations entre les projections

Interprétation

La projection d'un point 3D dans l'image droite peut s'exprimer en fonction :

- de la projection de ce point dans l'image gauche,
- des caractéristiques de la tête stéréo (rotation et translation entre caméras),
- de la profondeur z.
 - On peut formaliser encore plus : à partir des expressions précédentes, on sort Z :

$$Z = \frac{t_x - x't_z}{x'\mathbf{r_3m} - \mathbf{r_1m}} \qquad \qquad Z = \frac{t_y - y't_z}{y'\mathbf{r_3m} - \mathbf{r_2m}}$$

Ce qui permet d'écrire :

$$\frac{t_x - x't_z}{x'\mathbf{r_3m} - \mathbf{r_1m}} = \frac{t_y - y't_z}{y'\mathbf{r_3m} - \mathbf{r_2m}}$$

Après développement, on arrive à :

$$x'(t_z\mathbf{r_2}-t_y\mathbf{r_3})\mathbf{m}-y'(t_z\mathbf{r_1}-t_x\mathbf{r_3})\mathbf{m}-(t_x\mathbf{r_2}-t_y\mathbf{r_1})\mathbf{m}=0$$

• Ceci correspond à l'équation d'une droite \mathbf{l}' dans l'image droite, et peut être écrit x'a' + y'b' + c' = 0, avec :

$$\begin{cases} a' = (t_z r_2 - t_y r_3) m \\ -b' = (t_z r_1 - t_x r_3) m \\ -c' = (t_x r_2 - t_y r_1) m \end{cases}$$

Relation point → droite épipolaire

Interprétation : relation point-droite

- A un **point** dans une image correspond une **droite** dans l'autre image.
- Cette droite est appellée droite épipolaire, et ne dépend que de la relation inter-caméras.
- Cette relation n'est pas réversible (on ne peut pas obtenir un point dans l'à partir d'une droite dans l').

Relation point → droite épipolaire

Interprétation : relation point-droite

- A un **point** dans une image correspond une **droite** dans l'autre image.
- Cette droite est appellée droite épipolaire, et ne dépend que de la relation inter-caméras.
- Cette relation n'est **pas** réversible (on ne peut pas obtenir un point dans l à partir d'une droite dans l').

• Les coefficients de cette droite s'écrivent :

$$\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Sous-sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Matrice Essentielle - E

• Cette relation est formalisée par la **matrice Essentielle** (**E**), qui à un point $\mathbf{p} = (x, y, 1)^T$ associe une droite $\mathbf{l}' = (a', b', c')^T$, dans le repère "caméra" :

$$\begin{pmatrix} a' \\ b' \\ 1 \end{pmatrix} = \mathbf{E} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• E s'écrit :

$$\mathbf{E} = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = [\mathbf{t}]_{\times} \mathbf{R}$$

• 5 DOF : 3 rotations + 3 translations - ambiguité projective globale (quantité homogène) = 5

Propriétés de la matrice Essentielle

- Rang = $2 \Rightarrow 2$ valeurs singulières égales.
- Cette propriété permet l'extraction de R et t à partir de E
- La décomposition SVD de E s'écrit

$$\mathbf{E} = \mathbf{U}.\mathsf{diag}(1,1,0)\mathbf{V}^T$$

• Le vecteur t sera connu à un facteur d'échelle près (ambiguité projective)

Concept d'ambiguité projective

Si la baseline est inconnue, l'observation est à un facteur d'échelle près.

Matrice Fondamentale - F

- La relation épipolaire peut aussi etre exprimée en coordonnées-image
- On utilise alors la **matrice Fondamentale** (**F**), qui associe un point à sa droite épipolaire :

$$I' = F m$$
 $I = F^T m'$

Matrice Fondamentale - F

- La relation épipolaire peut aussi etre exprimée en coordonnées-image
- On utilise alors la **matrice Fondamentale** (**F**), qui associe un point à sa droite épipolaire :

$$I' = F m$$
 $I = F^T m'$

ullet F et **E** sont liés par les paramètres intrinsèques (matrices **K** et **K**') :

$$E = K'^T F K$$
 $F = K'^{-T} E K^{-1}$

• **F** peut-être déterminée uniquement à partir de correspondances entre points-images, sans connaissance des caméras.

Propriétés de la matrice Fondamentale

- Rang = 2
- 7 degrés de libertés : 9 coefficients, mais :
 - homogène, définie à un facteur d'échelle près
 - contrainte supplémentaire : det(F) = 0
- Coordonnées des épipoles **e** et **e**' :

$$\mathbf{F}\mathbf{e} = 0 \qquad \qquad \mathbf{e'}^T \mathbf{F} = 0$$

- Les coordonnées seront dans le **repère image**, et pourront être **hors** de l'image réelle, qui est de dimensions finie (u_{max}, v_{max}) .
- Si les caméras sont alignées, les épipôles sont à l'infini.
 e = (1,0,0)^T et e' = (-1,0,0)^T

"Contrainte épipolaire"

- Tout les points stéréo-correspondants respectent cette contrainte.
- Peut s'exprimer de deux façons, selon qu'on se place dans le repère caméra ou dans le repère image.
 - En coordonnées image : m'^T.F.m = 0
 En coordonnées caméra : p'^T.E.p = 0
- Interpretation : tout point droit correspondant à un point gauche doit se trouver sur la ligne épipolaire correspondante.

"Contrainte épipolaire"

- Tout les points stéréo-correspondants respectent cette contrainte.
- Peut s'exprimer de deux façons, selon qu'on se place dans le repère caméra ou dans le repère image.
 - En coordonnées image : $\mathbf{m}'^T . \mathbf{F} . \mathbf{m} = 0$
 - En coordonnées caméra : $\mathbf{p}^{\prime T} \cdot \mathbf{E} \cdot \mathbf{p} = 0$
- Interpretation : tout point droit correspondant à un point gauche doit se trouver sur la ligne épipolaire correspondante.

Attention

Pour deux points \mathbf{m}' et \mathbf{m} , la valeur $v = \mathbf{m}'^T \cdot \mathbf{F} \cdot \mathbf{m}$ n'est **pas** une distance entre un des points et la droites épipolaire!

- ROUEN

Sous-sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Matrices de projection

 En prenant la caméra gauche comme référence, on construit la forme canonique des matrices de projection :

$$P = K \left[I \mid 0 \right] \qquad \qquad P' = K' \left[R \mid t \right]$$

$$\mathbf{P} = \mathbf{K} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{P}' = \mathbf{K}' \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{33} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix}$$

- Les matrices de projections peuvent être reconstruites connaissant paramètres intrinsèques et géométrie inter-caméras.
- Il est nécessaire de les calculer pour faire de la **reconstruction 3D** (voir plus loin).

Cas particulier : configuration alignée

• Si les 3 angles de rotations sont nuls, et $t_y=t_z=0$, alors la matrice Essentielle se réduit à :

$$\mathbf{E} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & -t_X \ 0 & t_X & 0 \end{pmatrix}$$

• Ces quantités étant homogènes, il est d'usage d'écrire alors :

$$\mathbf{E} = \mathbf{F} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

• La matrice de projection droite s'écrit alors :

$$\mathbf{P}' = \mathbf{K}' egin{pmatrix} 1 & 0 & 0 & t_{\mathsf{X}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Sommaire

- Généralités
- Qéométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

50 / 67

Sous-sommaire

- Généralités
- Quality of the second of th
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

51 / 67

Calibrage stéréoscopique

- Calibrer un système stéréo, c'est estimer sa géométrie épipolaire.
- 2 approches :
 - Calibrage fort : on calibre chaque caméra (K, R, T) avec une mire commune, et on déduit la relation inter-caméras.
 - Calibrage **faible** (*Weak calibration*) : on détermine uniquement la relation inter-caméras ("Géométrie épipolaire").
- Choix : selon l'application envisagée.
- Le calibrage faible est plus précis. . . mais observation à un facteur d'échelle près, si la baseline est inconnue.
- Suffisant pour de la reconnaissance de scènes (permet la rectification des images).

Calibrage fort

- On fait un calibrage simultané des 2 caméras avec la même mire.
- La matrice de rotation entre caméras va s'écrire $\mathbf{R}_0 = \mathbf{R}'^T \mathbf{R}$
- ullet Le vecteur de translation entre caméras va s'écrire ${f t}_0={f t}-{f t}'$
- ullet La matrice Essentielle va s'écrire $oldsymbol{\mathsf{E}} = [t_0]_{ imes} \; oldsymbol{\mathsf{R}}_0$

Sous-sommaire

- Généralités
- Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- 4 Reconstruction 3D

Principe du calibrage faible

- On utilise un jeu de n paires de points stéréo-correspondants : (m, m')
- En développant l'expression $\mathbf{m}'^T \mathbf{F} \mathbf{m} = 0$:

$$f_{11}uu' + f_{12}vu' + f_{13}u' + f_{21}uv' + f_{22}vv' + f_{23}v' + f_{31}u + f_{32}v + f_{33} = 0$$

- Avec *n* paires de points, on peut construire le système d'équations : \mathbf{A}_{nx9} . $\mathbf{f}_{9x1} = 0$ avec $f = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33})^T$
- F est homogène, on peut donc fixer une des valeurs à 1
 ⇒ 8 inconnues

Résolution

- 8 paires de points donnent une solution unique.
- Inconvénient : très sensible au bruit!
- En pratique, on aura bien plus de points de correspondances.
 (jusqu'à plusieurs centaines)
- Solution au sens des moindres carrés...

Résolution

- 8 paires de points donnent une solution unique.
- Inconvénient : très sensible au bruit!
- En pratique, on aura bien plus de points de correspondances.
 (jusqu'à plusieurs centaines)
- Solution au sens des moindres carrés... Mais toujours très sensible au bruit!
 (⇒ erreurs d'appariement)
- Les erreurs d'appariement (données aberrantes) vont complètement fausser le résultat!

Estimation robuste

- L'appariement ne peut pas être juste à 100% ⇒ il introduit obligatoirement des outliers (appariements erronés).
- Afin d'éliminer ces outliers, on utilise les techniques de l'estimation statistique robuste.
- Principe : ajuster des données à un modèle en éliminant les points qui s'écartent trop du modèle.
 - Implique une métrique adaptée.
 - Souvent basé sur des seuils absolus.

Estimation robuste

- L'appariement ne peut pas être juste à 100% ⇒ il introduit obligatoirement des outliers (appariements erronés).
- Afin d'éliminer ces outliers, on utilise les techniques de l'estimation statistique robuste.
- Principe : ajuster des données à un modèle en éliminant les points qui s'écartent trop du modèle.
 - Implique une métrique adaptée.
 - Souvent basé sur des seuils absolus.
- Principaux algorithmes utilisés en CV :
 - LMEDS (Least MEdian of Squares): basé sur la médiane, tolère un maximum de 50% d'outliers.
 - RANSAC (*RANdom SAmple Consensus*), et (très) nombreux dérivés (recherche active) : solution recommandée.

Exemple d'application de l'estimation robuste

• Avec les points ci-dessous, trouver les paramètres de "la" droite.

- fitting classique ("moindres carrés") ⇒ solution abberante.
- L'estimation robuste va éliminer les points qui ne rentrent pas dans le modèle "de la majorité" des points.

Exemple d'application de l'estimation robuste

• Avec les points ci-dessous, trouver les paramètres de "la" droite.

- fitting classique ("moindres carrés") ⇒ solution abberante.
- L'estimation robuste va éliminer les points qui ne rentrent pas dans le modèle "de la majorité" des points.
- Principales étapes (algo. simplifié) :
 - Sélectionner un sous-ensemble minimal de points suffisant pour obtenir un modèle numérique.
 - Déterminer l'ensemble des n points qui "rentrent" dans le modèle trouvé (
 qui sont à une distance inf. à un seuil).
 - Répéter jusqu'à maximiser n, puis calculer l'estimation finale en utilisant tous ces points.

Estimation robuste de F

- Dans le cas de la stéréovision, il faut trouver les valeurs de F dont les droites épipolaires "collent" le plus aux points stéréo-correspondants fournis par l'étape de matching.
- On utilise l'algorithme "8-points" pour trouver un modèle à partir d'un sous-ensemble aléatoire de 8 paires.
- La métrique sera la **distance épipolaire** : moyenne des 2 distances entre droite épipolaire et point stéréo-correspondants : $d = d_1 + d_2$

S. Kramm (LITIS) Vision stéréo 2015-2016 59 / 67

Sous-sommaire

- Généralités
- Quality of the second of th
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- Reconstruction 3D

Mise en œuvre de la calibration faible

- Solution généralement adoptée :
 - utiliser un descripteur local pour obtenir automatiquement un ensemble de points dans chaque image,
 - puis les apparier (algorithme des "plus proches voisins" avec critère d'ambiguité).

61 / 67

Mise en œuvre de la calibration faible

- Il faut une scène suffisament riche en contenu pour obtenir une caractérisation suffisante.
- La précision sera liée :
 - au nombre de points extraits,
 (pas assez de points ⇒ information imprécise trop de points ⇒ temps de calcul prohibitif)
 - a leur répartition géographique dans l'image,
 (si les points sont concentrés dans une zone, la géométrie ne sera précise que pour cette zone)
 - aux performances du descripteur local.

S. Kramm (LITIS) Vision stéréo 2015-2016 62 / 67

Sommaire

- Généralités
- 2 Géométrie épipolaire
 - Cas aligné
 - Cas général
 - Modélisation algébrique de la géométrie épipolaire
 - Matrices Essentielle & Fondamentale
 - Géométrie épipolaire et matrices de projection
- 3 Calibrage stéréoscopique
 - Calibrage stéréoscopique
 - Calibrage faible : théorie
 - Calibrage faible : aspects pratiques
- Reconstruction 3D

63 / 67

Reconstruction 3D

- Consiste à calculer le point 3D correspondant à 2 points 2D stéréocorrespondants.
- Necessite la connaissance complète du système :
 - Géométrie relative des caméras (matrice fondamentale F)
 - ullet + paramètres intrinsèques ${\bf K}$ et ${\bf K}'$
 - \bullet = matrices de projection **P** et **P**'
- Rappel (voir cours 1): un point 2D correspond à une droite 3D

Reconstruction 3D par rétroprojection

- Principe : connaissant **m** et **m**′, on cherche le point 3D correspondant, en calculant le point d'intersection des 2 droites.
- Problème : du au bruit sur les positions des points 2D et sur la calibration, ces 2 droites. . . ne se coupent pas!
- Solution généralement adoptée : on calcule le milieu du segment de droite l'endroit ou les 2 droites sont les plus proches.

Exercice: erreur sur la profondeur

- Soit un système stéréo aligné dont l'appariement se fait au niveau pixel. Pour chaque appariement d'un pixel gauche avec un pixel droit, on aura une erreur dans l'intervalle e = [0, 0.5] pixels.
- Exprimer l'erreur sur la profondeur ϵ_z en fonction de la disparité d et de l'erreur e.
- Exprimer l'erreur sur la profondeur ϵ_z pour une profondeur z_0 donnée, en considérant l'erreur maximale e = 0, 5.
- A.N. B=30cm, $\alpha=1000$. Tracer l'allure de ϵ_z pour quelques valeurs de z_0 (1m, 10m, 100m).
- Conclusion?
- Question subsidiaire : on souhaite limiter l'erreur à 10%. Jusqu'à quelle distance pourra-t-on mesurer avec une baseline de 20 cm / de 50 cm?

Exercice: chevauchement d'image

- Pour que la stéréovision soit possible, il faut qu'il y ait un chevauchement minimal de la scène dans les images.
- On définit le ratio de chevauchement r comme la largeur en pixels de la partie commune (pour une profondeur z₀ donnée) par rapport à la largeur totale d'une image.
- Donner la condition sur β (FOV) et la baseline B pour qu'il y ait chevauchement (r > 0).
- Exprimer r en fonction de b, β et z_0

