# COMP 7180 Quantitative Methods for Data Analytics and Artificial Intelligence

Lecture 3: Eigenvalues and Eigenvectors

# Eigenvalues and Eigenvectors

- Matrix-Vector multiplication: Ax.
  - Almost all vectors change direction when they are multiplied by a matrix A.
- Eigenvectors (Eigen is a German word meaning "characteristic")
  - There are certain exceptional vectors x whose direction is the same as Ax.
  - Multiplied by matrix A does not change the direction of these vectors.
  - These vectors are "eigenvectors".

#### Eigenvalues

- For those eigenvectors, multiplied by matrix A is equal to multiplied by a number.
- Therefore,  $Ax = \lambda x$ .
- The number  $\lambda$  is an eigenvalue of **A**.

# Eigenvalues and Eigenvectors

- Eigenvalue equation  $Ax = \lambda x$
- The eigenvalue λ tells whether the eigenvector x is stretched or shrunk or reversed or left unchanged when it is multiplied by matrix A.



# Eigenvalues and Eigenvectors – Special Matrix

If **A** is identity matrix, every vector has  $\mathbf{A}\mathbf{x} = \mathbf{x}$ . All vectors are eigenvectors of **I**. And all eigenvalues are 1.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

## Computing eigenvalues, eigenvectors

- How to compute eigenvalues, eigenvectors based on eigenvalue equation  $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$
- Let rewrite  $Ax = \lambda x$  as  $(A \lambda I)x = 0$ 
  - The matrix  $\mathbf{A} \lambda \mathbf{I}$  times the eigenvector  $\mathbf{x}$  is the zero vector.
  - We are **NOT** interested in the trivial solution  $\mathbf{x} = \mathbf{0}$ .
- Obtain eigenvalues first
  - Since  $\mathbf{x} \neq \mathbf{0}$ , this requires matrix  $\mathbf{A} \lambda \mathbf{I}$  is not invertible.
  - Therefore,  $det(\mathbf{A} \lambda \mathbf{I}) = 0$ . This equation only involves  $\lambda$  not  $\mathbf{x}$ .
- For each eigenvalue  $\lambda$ , solve  $(\mathbf{A} \lambda \mathbf{I})\mathbf{x}$  to find an eigenvector  $\mathbf{x}$ .

Let us find the eigenvalues and eigenvectors of the following 2\*2 matrix.

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

Find  $A - \lambda I$  by subtract  $\lambda$  from the diagonal of A

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix}$$

Obtain eigenvalues by solving  $det(\mathbf{A} - \lambda \mathbf{I}) = 0$ 

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix} = (4 - \lambda)(3 - \lambda) - 2 * 1 = 0$$

$$10 - 7\lambda + \lambda^2 = (2 - \lambda)(5 - \lambda) = 0$$
  $\lambda_1 = 2$  and  $\lambda_2 = 5$ 



$$\lambda_1 = 2$$
 and  $\lambda_2 = 5$ 

- Now find the eigenvectors by solving  $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$  separately for  $\lambda_1 = 2$  and  $\lambda_2 = 5$ .
- Let denote **x** as  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 
  - (1) For  $\lambda_1 = 2$ , we obtain

$$(\mathbf{A} - 2\mathbf{I})\mathbf{x} = \mathbf{0} \longrightarrow \begin{bmatrix} 4 - 2 & 2 \\ 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{cases} 2x_1 + 2x_2 = 0 \\ x_1 + x_2 = 0 \end{cases}$$

This means any vector  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ , where  $x_2 = -x_1$ , such as

 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  (or  $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ) is an eigenvector of **A** with eigenvalue 2.

- Now find the eigenvectors by solving  $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$  separately for  $\lambda_1 = 2$  and  $\lambda_2 = 5$ .
- Let denote **x** as  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 
  - (2) For  $\lambda_2 = 5$ , we obtain

$$(\mathbf{A} - 5\mathbf{I})\mathbf{x} = \mathbf{0} \longrightarrow \begin{bmatrix} 4 - 5 & 2 \\ 1 & 3 - 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -x_1 + 2x_2 = 0 \\ x_1 - 2x_2 = 0 \end{bmatrix}$$

This means any vector  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ , where  $x_2 = \frac{x_1}{2}$ , such as  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$  (or

 $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ ) is an eigenvector of **A** with eigenvalue 5.

### Non-uniqueness of eigenvectors

- In previous example, we saw both  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$  are eigenvectors of **A** with eigenvalue 5. There is a whole line of eigenvectors any nonzero multiple of  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$  is an eigenvector.
- Non-uniqueness of eigenvectors. If x is an eigenvector of A with eigenvalue λ, then for any nonzero number c it holds that cx is an eigenvector of A with the same eigenvalue:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
  $\mathbf{A}(c\mathbf{x}) = c\mathbf{A}\mathbf{x} = c\lambda \mathbf{x} = \lambda(c\mathbf{x})$ 

In previous example, we obtained the eigenvalues and eigenvectors for  $\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ , which are  $\lambda_1 = 2$  with eigenvector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  and  $\lambda_2 = 5$  with eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ .

• How about the eigenvalues, eigenvectors for  $\mathbf{A} + 3\mathbf{I}$ ,  $\mathbf{A}^2$ ?

# Eigenvalues, Eigenvectors for A + 3I

• 
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$
, let denote  $\mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 7 & 2 \\ 1 & 6 \end{bmatrix}$ 

• Obtain eigenvalues by solving  $det(\mathbf{B} - \lambda \mathbf{I}) = 0$ 

$$\mathbf{B} - \lambda \mathbf{I} = \begin{bmatrix} 7 - \lambda & 2 \\ 1 & 6 - \lambda \end{bmatrix} = (7 - \lambda)(6 - \lambda) - 2 * 1 = 0$$

$$40 - 13\lambda + \lambda^2 = (5 - \lambda)(8 - \lambda) = 0$$
  $\lambda_1 = 5$  and  $\lambda_2 = 8$ 

• When 
$$\lambda_1 = 5$$
,  $\begin{bmatrix} 7-5 & 2 \\ 1 & 6-5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2x_1 + 2x_2 = 0 \\ x_1 + x_2 = 0 \end{bmatrix} \longrightarrow \text{Eigenvector } \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

• When 
$$\lambda_2 = 8$$
,  $\begin{bmatrix} 7 - 8 & 2 \\ 1 & 6 - 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -x_1 + 2x_2 = 0 \\ x_1 - 2x_2 = 0 \end{bmatrix} \longrightarrow \text{Eigenvector } \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 

# Eigenvalues, Eigenvectors for A + 3I

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\lambda_1 = 2$$

$$\lambda_2 = 5$$

Eigenvector 
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Eigenvector 
$$\begin{bmatrix} 2\\1 \end{bmatrix}$$

$$\mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 7 & 2 \\ 1 & 6 \end{bmatrix}$$

$$\lambda_1 = 5$$

$$\lambda_2 = 8$$

$$\lambda_1 = 2$$
 Eigenvector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$   $\lambda_1 = 5$  Eigenvector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$   $\lambda_2 = 5$  Eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$   $\lambda_2 = 8$  Eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 

Eigenvector 
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- The eigenvectors of **A** and **A**+3**I** are the same.
- The eigenvalues of **A**+3**I** are the eigenvalues of **A** plus 3.
- Why?

# Eigenvalues, Eigenvectors for A<sup>2</sup>

• 
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$
, let denote  $\mathbf{B} = \mathbf{A}^2 = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 18 & 14 \\ 7 & 11 \end{bmatrix}$ 

• Obtain eigenvalues by solving  $det(\mathbf{B} - \lambda \mathbf{I}) = 0$ 

$$\mathbf{B} - \lambda \mathbf{I} = \begin{bmatrix} 18 - \lambda & 14 \\ 7 & 11 - \lambda \end{bmatrix} = (18 - \lambda)(11 - \lambda) - 14 * 7 = 0$$

$$100 - 29\lambda + \lambda^2 = (4 - \lambda)(25 - \lambda) = 0$$
  $\lambda_1 = 4$  and  $\lambda_2 = 25$ 

• When 
$$\lambda_1 = 4$$
,  $\begin{bmatrix} 18-4 & 14 \\ 7 & 11-4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 + x_2 = 0 \\ x_1 + x_2 = 0 \end{bmatrix} \longrightarrow \text{Eigenvector } \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

• When 
$$\lambda_2 = 25$$
,  $\begin{bmatrix} -7 & 14 \\ 7 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   $\longrightarrow$   $-x_1 + 2x_2 = 0$   $\longrightarrow$  Eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 

# Eigenvalues, Eigenvectors for A<sup>2</sup>

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\lambda_1 = 2$$

$$\lambda_2 = 5$$

$$\mathbf{B} = \mathbf{A}^2 = \begin{bmatrix} 18 & 14 \\ 7 & 11 \end{bmatrix}$$

$$\lambda_1 = 4$$

$$\lambda_2 = 25$$

$$\lambda_1 = 2$$
 Eigenvector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$   $\lambda_1 = 4$  Eigenvector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$   $\lambda_2 = 5$  Eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$   $\lambda_2 = 25$  Eigenvector  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 

Eigenvector 
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- The eigenvectors of **A** and  $A^2$  are the same.
- The eigenvalues of  $A^2$  are the square of the eigenvalues of A.
- Why?

# Other Useful Facts for Eigenvalues: Sum of Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \qquad \mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 7 & 2 \\ 1 & 6 \end{bmatrix} \qquad \mathbf{B} = \mathbf{A}^2 = \begin{bmatrix} 18 & 14 \\ 7 & 11 \end{bmatrix}$$

$$\lambda_1 = 2 \qquad \qquad \lambda_1 = 5 \qquad \qquad \lambda_1 = 4$$

$$\lambda_2 = 5 \qquad \qquad \lambda_2 = 25$$

- The sum of the n eigenvalues equals the sum of the n diagonal entries.
- The sum of the entries along the main diagonal of A is called the trace of A.

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} tr(A) = \sum_{i=1}^{n} a_{ii}$$

# Other Useful Facts for Eigenvalues: Product of Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \qquad \mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 7 & 2 \\ 1 & 6 \end{bmatrix} \qquad \mathbf{B} = \mathbf{A}^2 = \begin{bmatrix} 18 & 14 \\ 7 & 11 \end{bmatrix}$$

$$\lambda_1 = 2 \qquad \qquad \lambda_1 = 5 \qquad \qquad \lambda_1 = 4$$

$$\lambda_2 = 5 \qquad \qquad \lambda_2 = 8 \qquad \qquad \lambda_2 = 25$$

$$\lambda_1 \lambda_2 = 10 \qquad \qquad \lambda_1 \lambda_2 = 40 \qquad \qquad \lambda_1 \lambda_2 = 100$$

$$\det(\mathbf{A}) = 10 \qquad \qquad \det(\mathbf{A}) = 40$$

The product of the n eigenvalues equals the determinant.

## Eigen-Decomposition of A

Suppose the n by n matrix  $\mathbf{A}$  has n linearly independent eigenvectors  $\mathbf{x}_1, \dots, \mathbf{x}_n$ . Put them into the columns of an *eigenvector matrix*  $\mathbf{X}$ . Then

$$\mathbf{A}\mathbf{X} = \mathbf{A} \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{x}_1 & \dots & \lambda_n \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$$
eigenvector matrix  $\mathbf{X}$  eigenvalue matrix  $\mathbf{A}$ 

# Eigen-Decomposition of A

- $\mathbf{AX} = \mathbf{X}\mathbf{\Lambda}$
- The matrix X has an inverse, because its columns (the eigenvectors of A) were assumed to be linearly independent. Therefore

$$AX = X\Lambda \longrightarrow AXX^{-1} = X\Lambda X^{-1} \longrightarrow A = X\Lambda X^{-1}$$

- X is the eigenvector matrix and its columns are eigenvectors of A. Λ is the eigenvalue matrix whose diagonal entries are eigenvalues of A.
- $A = X\Lambda X^{-1}$  is the eigen-decomposition of **A**.

# Computing A<sup>k</sup> easily using eigen-decomposition

- Eigen decomposition  $A = X\Lambda X^{-1}$
- The *k*-th power of **A** can be computed as

$$\mathbf{A}^{k} = (\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{-1}) (\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{-1}) (\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{-1}) \cdots (\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{-1})$$
$$= \mathbf{X}\boldsymbol{\Lambda}^{k}\mathbf{X}^{-1}$$

 $\longrightarrow$   $X^{-1}X = I$ 

• E.g., 
$$\mathbf{A} = \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{A}^k = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6^k \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

- With k = 1 we get **A**. With k = 0 we get  $\mathbf{A}^0 = \mathbf{I}$ . With k = -1, we get  $\mathbf{A}^{-1}$ .
- $A^2 = \begin{bmatrix} 1 & 35 \\ 0 & 36 \end{bmatrix}$  fits the formula when k = 2.

# Eigen-decomposition of a symmetric matrix S

For a symmetric matrix, transposing **S** to  $S^T$  produces no change. Then  $S^T$  equals **S**. Its (i, i) entry across the main diagonal equals its (i, j) entry.

• E.g., 
$$\mathbf{S} = \begin{bmatrix} 1 & 5 \\ 5 & 6 \end{bmatrix}$$
,  $\mathbf{S} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$  are symmetric matrices.

- Symmetric matrices S are the most important matrices in the theory of linear algebra and also in applications (We will discuss one important application in machine learning (i.e., PCA) later).
- What is special about  $Sx = \lambda x$  when S is symmetric?

# Eigen-decomposition of a symmetric matrix S

- Eigen decomposition of a matrix  $S = X\Lambda X^{-1}$ .
- Transpose of S:  $S^T = (X\Lambda X^{-1})^T = (X^{-1})^T \Lambda X^T$
- **S** is a symmetric matrix:  $S = S^T$ . To satisfied it, we can choose  $X^{-1} = X^T$ .
- Then  $X^TX = X^{-1}X = I$ . The eigenvectors are chosen orthonormal: Each eigenvector in X orthogonal to other eigenvectors and the length of each eigenvector is 1.
- The special form of eigen-decomposition  $A = X\Lambda X^{-1}$  for symmetric matrices is

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^T$$
 with  $Q^{-1} = Q^T$ .

Columns of **Q** are orthonormal eigenvectors of **S**.

# Example of Eigen-decomposition of a symmetric matrix S

- Eigen-decomposition of  $S = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ .
- Obtain eigenvalues of **S** by solving  $\det(\mathbf{S} \lambda \mathbf{I}) = \det\left(\begin{vmatrix} 1 \lambda & 2 \\ 2 & 4 \lambda \end{vmatrix}\right) = 0.$ 
  - $(1 \lambda)(4 \lambda) 2 * 2 = \lambda^2 5\lambda = 0$
  - $-\lambda_1=0$  and  $\lambda_2=5$
- When  $\lambda_1 = 0$ ,  $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  and  $x_1^2 + x_2^2 = 1$  
   Eigenvector  $\begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix}$  When  $\lambda_1 = 5$ ,  $\begin{bmatrix} 1-5 & 2 \\ 2 & 4-5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  and  $x_1^2 + x_2^2 = 1$  
   Eigenvector  $\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$

# Example of Eigen-decomposition of a symmetric matrix S

$$\mathbf{S} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

$$\mathbf{Q} \qquad \mathbf{\Lambda} \qquad \mathbf{Q}^{-1} \text{ (or } \mathbf{Q}^T)$$

• The eigenvectors are orthonormal:  $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ 

**Theorem** If the matrix A is symmetric and the eigenvalues of A are  $\lambda_1, \ldots, \lambda_n$ , with corresponding eigenvectors  $\vec{x}_1, \ldots, \vec{x}_n$ 

i.e. 
$$A\vec{x}_i = \lambda_i \vec{x}_i$$

If 
$$\lambda_i \neq \lambda_j$$
 then  $\vec{x}_i' \vec{x}_j = 0$ 

#### Exercise

Given the  $n \times k$  matrix **A** and the  $k \times n$  matrix **B**:

1. Use an example to show that  $AB \neq BA$  even if n = k.

#### Exercise

Given the  $n \times k$  matrix **A** and the  $k \times n$  matrix **B**:

2. When  $n \neq k$ , do we have trace(**AB**) = trace(**BA**)? Prove your conclusion.

#### Exercise

Given the  $n \times k$  matrix **A** and the  $k \times n$  matrix **B**:

3. What is the relationship between eigenvalues of **AB** and eigenvalues of **BA**? What is the relationship between eigenvectors of **AB** and eigenvectors of **BA**?