# Exponential Distribution in R Compared to Central Limit Theorem

By Aiman D.

#### **Overview**

Part 1 of the project will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n,  $\lambda$ ) where  $\lambda$  is the rate parameter. The mean of exponential distribution is  $1/\lambda$  and the standard deviation is  $1/\lambda$ . We will set  $\lambda$  = 0.2 for all of the simulations and investigate the distribution of averages of 40 exponentials.

#### **Simulations**

To compare, we will execute 1000 simulations that has 40 exponentials with  $\lambda$  = 0.2 and and apply the function rexp(n,  $\lambda$ ).

The following code was executed:

```
1 NumSims = 1000;
 2 n = 40;
    Lambda = 0.2
 5 Means <- vector("numeric")</pre>
   Sum_of_Means <- vector("numeric")
Cum_of_Means <- vector("numeric")
 9 for (i in 1:NumSims)
10 → {
       Means[i] <- mean(rexp(n, Lambda))</pre>
11
12 }
13 Sum_of_Means <- Means[1]
15 for (i in 2:NumSims)
16 ₹ {
       \label{eq:sum_of_Means[i] + Means[i] + Means[i]} Sum\_of\_Means[i] + Means[i]
17
18 }
19
20 for (i in 1:NumSims)
22
       Cum_of_Means[i] <- Sum_of_Means[i]/i</pre>
23
24
    print(sprintf("The Means of the sample equal: %f", Cum_of_Means[NumSims]))
print(sprintf("The theoretical mean is equal to: %f", 1/Lambda))
```

This was the output:

```
[1] "The Means of the sample equal: 5.003542"
[1] "The theoretical mean is equal to: 5.000000"
```

The end of the simulations was very close to the theoretical mean as the plot will also show after running the following code:

```
library(ggplot2)
NumSims = 1000;
n = 40;
Lambda = 0.2

Means <- vector("numeric")
Sum_of_Means <- vector("numeric")
Cum_of_Means <- vector("numeric")

g<-ggplot(data.frame(x = 1:NumSims, y = Cum_of_Means), aes(x = x, y = y))
g<-g+geom_hline(yintercept = 0) + geom_line(size = 1)
g<-g+scale_y_continuous(breaks=c(4.25, 4.50, 4.75, 5.00, 5.25, 5.50), limits =c(4.25, 5.5))
g<-g+theme(plot.title=element_text(size=12, face="bold", vjust=2, hjust=0. 5))
g<-g+labs(title="Cumulative Sample Exponential Distribution Compared to Central Limit Theorem")
g<-g+labs(x="Number of Simulations", y="Cumulative Mean")
print(g)</pre>
```

The code produced the following plot:



## Sample variance compared to the theoretical variance of the distribution

```
1 NumSims = 1000;
 2
     n = 40;
 3
     Lambda = 0.2
 4
 5
     Means <- vector("numeric")</pre>
 6
 7
     for (i in 1:NumSims)
 8 + {
 9
        Means[i] <- mean(rexp(n, Lambda))</pre>
10
11
     print(sprintf("The Sample Variance Means: %f", var(Means)*n))
print(sprintf("The theoretical variance is: %f", (1/Lambda)^ 2))
```

#### The output was also very close:

```
> print(sprintf("The Sample Variance Means: %f", var(Means)*n))
[1] "The Sample Variance Means: 23.834909"
> print(sprintf("The theoretical variance is: %f", (1/Lambda)^ 2))
[1] "The theoretical variance is: 25.000000"
```

### **Sample Distribution Means Compared to Normal Distribution**

The code produced the following plot:



The sample shows normal distribution around the mean of 5.

# Statistical Inference Project Part 2

By Aiman D.

#### **Overview**

Part 2 of the project will analyze the ToothGrowth data in the R datasets package.

- 1. Load the ToothGrowth data and perform some basic exploratory data analyses
- 2. Provide a basic summary of the data.
- 3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.
- 4. State your conclusions and the assumptions needed for your conclusions.

#### **Description**

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid).

#### **Usage**

**ToothGrowth** 

#### **Format**

A data frame with 60 observations on 3 variables.

- [,1] len numeric Tooth length
- [,2] supp factor Supplement type (VC or OJ).
- [,3] dose numeric Dose in milligrams.

#### **Source**

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

#### References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

# **Data Loading and Analysis**

```
> library(datasets)
> data(ToothGrowth)
> head(ToothGrowth)
    len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5
4 5.8 VC 0.5
5 6.4 VC 0.5
6 10.0 VC 0.5
```

```
> str(ToothGrowth)
'data.frame': 60 obs. of 3 variables:
$ len : num   4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
$ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
$ dose: num   0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
```

#### **Basic Summary of Data**

```
> ToothGrowth$dose <- as.factor(ToothGrowth$dose)
> table(ToothGrowth$supp, ToothGrowth$dose)
    0.5 1 2
  OJ 10 10 10
  VC 10 10 10
> summary (ToothGrowth)
    len supp
                        dose
Min. : 4.20
               OJ:30
                      0.5:20
 1st Qu.:13.07
               VC:30 1 :20
                       2 :20
Median :19.25
Mean :18.81
3rd Qu.:25.27
Max. :33.90
> mean (ToothGrowth$len)
[1] 18.81333
> sd(ToothGrowth$len)
[1] 7.649315
```

#### **Plotting Data**

```
require(ggplot2)
plot <- ggplot(ToothGrowth, aes(x=factor(dose),y=len,fill=factor(dose)))
plot + geom_boxplot(notch=F) + facet_grid(.~supp) +
scale_x_discrete("Dosage (mg)") +
scale_y_continuous("Tooth Length") +
ggtitle("Dosage and Supplement Effect on Teeth Growth")</pre>
```



# Confidence Intervals and/or hypothesis tests to compare tooth growth by supp and dose

#### **Conclusions**

Analyzing the data and the plots:

- 1. The dosage seems to have the biggest effect on the growth if teeth.
- 2. OJ is better for teeth growth than VC at lower dosages (0.5 mg 1 mg).
- 3. OJ and VC at the higher dosage (2 mg) seem to be statistically indifferent but with a slight edge for VC.