

轮 趣 科 技

N10P 雷达上位机软件及 ROS 环境中 使用教程

推荐关注我们的公众号获取更新资料

版本说明:

版本	日期	内容说明
V1.0	2022/11/30	第一次发布

网址:www.wheeltec.net

目录

1. 上位	机车	欠件		3
	1.1	安装 cp2102 芯片驱动	W = I MAE	.3
		连接使用上位机软件		
	1.3	CP2102 信息修改		.7
2. ROS		CS WEELER		8
	2. 1	编译 ROS_SDK 包	₹	.8
	2.2	Ubuntu CP2102 驱动安装	SI WHEEL	.9
	2. 3	使用 ROS 包驱动 N10P 雷达	- WHEE!	11

1. 上位机软件

1.1安装 cp2102 芯片驱动

① 解压资料中的 "CP2102usb 驱动. zip" 文件

选中资料包中 CP2102 芯片目录下对应的驱动压缩包,进行解压使用。

图 1-1-1 解压 CP2102 驱动压缩包

② 安装 CP2102 驱动

根据系统的位数来选择相应位数的驱动进行安装。

图 1-1-2 选择相应位数的驱动

双击打开安装程序后点击下一页→接受协议→下一页进行驱动安装,安装完成后会显示以下界面,这时电脑就能识别到我们的 CP2102 的 usb 了。

图 1-1-3 驱动安装完成

1.2连接使用上位机软件

① 雷达接线

一开始到手,我们会有三个部分:雷达本体,SMH200-05H 转 Micro USB 转接模块, Micro USB 线。将他们按下图方式连接。

图 1-2-1 雷达接线

② 连接电脑运行上位机软件

将 USB 线接到电脑的 USB 口,在 windows 中右键此电脑→属性→设备管理器→端口,找到 CP210x USB 的端口名,其后面对应的 COM 即为雷达在 windows 中的串口号。

图 1-2-2 查看串口号

解压 windows 上位机软件中的压缩包,得到以下文件夹。

图 1-2-3 解压上位机软件压缩包

进入解压后的文件夹,找到 LSLIDAR_Single_Scan_Lidars.exe 双击运行。

图 1-2-4 运行上位机软件

打开上位机软件后, 可以点击自动连接便能连上雷达。

图 1-2-5 自动连接

自动连接失败或者其他情况下可选择手动连接,点击连接雷达,然后选择相 应的雷达型号,选择雷达对应的串口号后,点击 ok 即可连接雷达。

图 1-2-6 手动连接

注:上位机软件相关功能说明可以参考《N10 产品使用手册》。

1.3CP2102 信息修改

解压 CP2102 芯片目录下的"修改端口号软件",得到以下文件。

图 1-3-1 解压压缩包

打开解压后的文件夹,双击运行 CP21xxCustomizationUtility.exe。

图 1-3-2 运行 CP21xxCustomizationUtility.exe

之后若我们的电脑有连接 CP2102 芯片的设备则会显示相关参数,我们可以通过修改对应参数栏后面的 Value 值并点击 "Program Device"进行应用修改。

图 1-3-3 查看芯片信息及修改

2. ROS

2.1编译 ROS_SDK 包

① 解压 ROS_SDK 压缩包

进入 ROS SDK 目录中,解压其中的压缩包,得到 lsn10p包。

图 2-1-1 解压 ROS SDK 压缩包

② 将功能包放入 ROS 工作空间的 src 中

将我们刚刚解压得到的 lsn10p 包复制到 ros 工作空间的 src 目录中。

图 2-1-2 Isn10p 放置到 ros 工作空间

③ 运行终端并编译

先联网运行以下命令安装依赖

sudo apt-get install libpcap-dev

然后返回工作空间的根目录并在该目录下打开一个终端,先执行

"catkin_make -DCATKIN_WHITELIST_PACKAGES=lslidar_msgs"命令先编译 msgs,然后执行

"catkin_make -DCATKIN_WHITELIST_PACKAGES=Islidar_driver"编译另外一个功能包。

图 2-1-3 编译功能包

④ 编译成功

执行完上一步后,系统会开始编译功能包并在终端显示相应的编译进度信息。 若中间无报错最后显示为 100%则编译成功。

图 2-1-4 编译成功

2. 2Ubuntu CP2102 驱动安装

一般情况下 ubuntu 系统都会自带该驱动模块,不需要手动安装,该步骤主要针对系统中没有该驱动的用户。可以通过在终端执行 lsmod|grep cp210x 命令确认系统是否已经有该驱动模块。

① 解压驱动压缩包

首先解压 "Ubuntu CP2102 驱动"目录下的压缩包,得到以下文件。

第 9 页 共 16 页

图 2-2-1 解压驱动压缩包

② 打开解压得到的 txt 文档

打开解压得到的txt 文档,并参照"Ubuntu:"后面四步进行驱动安装。

```
The bundle contains:

* cp210x.c
* Makefile

* cp210x_gpio_example.c
* cp210x_gpio_example_gpiolib.c
* build.sh
* CP210x_VCP_Linux_4.x_Release_Notes.txt

Build instrutions:

Ubuntu:
1. make ( your cp210x driver )
2. cp cp210x_ko to /lib/modules/<kernel-version>/kernel/drivers/usb/serial/usbserial.ko
4. insmod cp210x.ko
```

图 2-2-2 打开 txt 文档说明

③ 安装驱动

将我们解压得到的驱动文件夹整个复制到 ubuntu 的 home 路径下。

图 2-2-3 复制驱动文件夹到 ubuntu

打开一个终端进入到我们刚刚复制过来的驱动文件夹中,并执行 make 指令进行编译。

```
passoni@passoni:~$ cd Linux_3.x.x_4.x.x_VCP_Driver_Source/
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$ make
make -C /lib/modules/`uname -r`/build M=/home/passoni/Linux_3.x.x_4.x.x_VCP_Driver_Source modules
make[1]: 进入目录"/usr/src/linux-headers-5.4.0-84-generic"
CC [M] /home/passoni/Linux_3.x.x_4.x.x_VCP_Driver_Source/cp210x.o
Building modules, stage 2.
MODPOST 1 modules
CC [M] /home/passoni/Linux_3.x.x_4.x.x_VCP_Driver_Source/cp210x.mod.o
LD [M] /home/passoni/Linux_3.x.x_4.x.x_VCP_Driver_Source/cp210x.ko
make[1]: 离开目录"/usr/src/linux-headers-5.4.0-84-generic"
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$
```

图 2-2-4 执行 make 编译驱动包

编译完成之后,文件夹内会生成几个新的文件。我们继续在这个终端执行一个复制文件的命令

sudo cp cp210x.ko /lib/modules/<kernel-version>/kernel/drivers/usb/serial 其中<kernel-version>是系统发行编号,可以通过 uname -r 指令查看。


```
passoni@passoni:~$ uname -r
5.4.0-84-generic
passoni@passoni:~$
```

图 2-2-5 查看系统发行编号

在得到系统发行编号之后,我们就可以执行上面那条复制指令了。

```
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$ sudo cp cp210x.ko /lib/mo
dules/5.4.0-84-generic/kernel/drivers/usb/serial
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$
```

图 2-2-6 复制 cp210x.ko 到指定目录

接下来继续在终端执行以下命令进行模块的载入:

sudo insmod /lib/modules/<kernel-version/kernel/drivers/usb/serial/usbserial.ko

```
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$ sudo insmod /lib/modules/
5.4.0-84-generic/kernel/drivers/usb/serial/usbserial.ko
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$
```

图 2-2-7 insmod 载入 usbserial.ko 模块

最后再执行 cp210x.ko 模块的载入命令

sudo insmod cp210x.ko

```
passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$ sudo insmod cp210x.ko passoni@passoni:~/Linux_3.x.x_4.x.x_VCP_Driver_Source$
```

图 2-2-8 insmod 载入 cp210x.ko 模块

通过 lsmod|grep cp210x 命令查看已安装驱动,发现 cp210x 说明我们的驱动安装成功。

```
      passoni@passoni:~$
      lsmod|grep
      cp210x

      cp210x
      40960
      0

      usbserial
      49152
      1 cp210x
```

图 2-2-9 Ismod 查看已安装驱动

2.3使用 ROS 包驱动 N10P 雷达

① 将雷达连接至 Ubuntu 系统

将雷达连接至 ubuntu 系统,通过 lsusb 命令查看已连接的 usb 设备,发现 CP210x 的设备说明连接成功。

```
passoni@passoni:~$ lsusb

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 002: ID 10c4:ea60 Cygnal Integrated Products, Inc.

Idge / myAVR mySmartUSB light

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 002: ID 0eof:0002 VMware, Inc. Virtual USB Hub

Bus 002 Device 003: ID 0eof:0003 VMware, Inc. Virtual Mouse

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

passoni@passoni~$
```

图 2-3-1 Isusb 查看已连接设备

② 配置 N10P ROS 驱动包

这里我用 sublime 打开 N10P 的 ROS 包,方便查看文件目录结构和文件内容。 我们打开 lsn10p/lslidar_driver/launch 文件夹下的 lslidar_serial.launch 进行查看, 这个 launch 文件也是我们之后要运行的启动雷达的文件。

```
PER FILES
FOLDERS
FOLDERS

| Indifficients |
```

图 2-3-2 查看 Islidar_serial.launch

用 Islidar_serial.launch 开启 N10P 雷达前需要先确认雷达在 ubuntu 中的串口。 我们可以通过 Il /dev/|grep ttyUSB 命令查看。一般情况下串口名为 ttyUSB0。这 里我通过创建串口别名将其串口名重映射为 wheeltec_lidar(这一步不是必须的)。

图 2-3-3 查看串口名

注: 串口别名的创建可以参考雷达资料包根目录中的"wheeltec_udev.sh"脚本。本质是通过设备属性来定位设备并为其创建命名规则。

接下来将 lslidar_serial.launch 中对应的 serial_port 的值改为雷达的串口名,串口名即为我们上图查看到的,这个参数一般不需要修改,一般默认的串口名就是"/dev/ttyUSB0"。这里我进行了串口别名,所以也可以将其改为 wheeltec lidar。

图 2-3-4 修改串口参数

③ 屏蔽雷达角度

根据自己实际需要选择屏蔽雷达角度。(此步非必须)

在 lslidar_serial.launch 中,先将 truncated_mode 参数置 1,表明需要屏蔽雷达角度。然后根据自己需要屏蔽的角度设置 disable_min 和 disable_max 参数, disable_min 参数代表需要屏蔽的角度初始值,disable_max 参数代表需要屏蔽的角度结束值,如 disable_min=[0,90,180,270],disable_min=[0,90,180,270],代表屏蔽雷达 $0\sim45^\circ$ 、 $90^\circ\sim135^\circ$ 、 $180^\circ\sim225^\circ$ 、 $270^\circ\sim315^\circ$ 角度范围。支持多角度屏蔽。

图 2-3-5 ROS 中 N10 角度屏蔽

多角度屏蔽时,以雷达正前方为 0 度角方向,扫描角度顺时针增加,如图所示。

图 2-3-6 ROS 中 N10P 角度及坐标系

4 启动雷达

在配置完 launch 文件后,我们打开一个终端,执行以下命令: roslaunch lslidar_driver lslidar_serial.launch 成功启动后终端会出现以下字样。

图 2-3-7 成功启动雷达

⑤ 雷达数据查看

在 ROS 中雷达数据的展示形式可以是文本形式,也可以是点云图像形式。 当运行 lslidar_serial.launch 启动雷达后,/lslidar_serial_node 节点便会在 ros 中发布一个/scan 话题。

图 2-3-8 查看/scan 话题发布者

我们可以通过执行 rostopic echo /scan 命令直接进行雷达数据的查看。/scan 话题中的消息类型是 LaserScan,该消息类型的具体描述可以参考以下链接: http://docs.ros.org/en/api/sensor msgs/html/msg/LaserScan.html


```
passoni@passoni:~

文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)
passoni@passoni:-$ rostopic echo /scan
header:
    seq: 1611
    stamp:
    secs: 1649655850
    nsecs: 406630537
    frame_id: "laser"
    angle_nai: 6.28318548203
    angle_nai: 6.28318548203
    angle_nai: 6.28318548203
    angle_nai: 6.28318548203
    angle_nai: 8.0406221969748964
    scan_time: 8.0992204770446
    range_nai: 9.0
    ranges: [0.68300002213333923, 0.6830000281333923, 0.7139999866485596, 0.713999986
d85596, 0.7599999984632568, 0.7749999761581421, 0.7910000085830688, 0.822000026
7028809, 0.8529999852180481, 0.8690000176429749, inf, 0.8989999990327454, 0.9300
000071525574, 0.961000032742964, 0.9769999980926514, 1.0808000162124634, 1.0379
999876022339, 1.8910000324249268, 1.8760000467300415, 1.8760000467300415, 0.3790000081062317, inf, 0.34700000286102295, 0.3790000
081062317, 0.39500001072883060, 0.4269999861717224, 0.45899999111693115, 0.49099
081062317, 0.39500001072883060, 0.4269999861717224, 0.5720000267028809, 0.6500
```

图 2-3-9 查看雷达话题数据

除了直接通过话题查看文本形式的雷达数据,我们也可以通过 rviz 来查看雷达的点云图像。直接在终端输入 rviz 并执行。打开 rviz 后,先将 Fixed Frame 后面对应的值修改为 lslidar serial.launch 中 frame id 对应的 value 值。

图 2-3-10 修改 Fixed Frame

之后点击 Rviz 左下角的 Add 按键,在弹出的窗口中点击 By topic 选中/scan 话题下的 LaserScan 并点击 OK。

图 2-3-11 添加 LaserScan

成功添加 LaserScan 后我们便可以在 Rviz 中看到这样的雷达点云图像。

图 2-3-12 Rviz 显示雷达点云

⑥ 雷达数据在 ros 的应用

当/Islidar_serial_node 节点通过话题发布 N10P 雷达的数据之后,我们就可以通过订阅它发出的/scan 话题在不同的功能中获取使用雷达的数据。比如建图、导航避障、雷达跟随等等。下图就是一个在 python 中订阅/scan 话题的示例。

```
ef __init__(self):
    self.lastScan=None
    self.winSize = rospy.get_param('~winSize')
    self.deltaDist = rospy.get_param('~deltaDist')
    self.scanSubscriber = rospy.Subscriber('scan', LaserScan, self.registerScan)
    self.positionPublisher = rospy.Publisher('object_tracker/current_position', Pos self.infoPublisher = rospy.Publisher('object_tracker/info', StringMsg, queue_si
```

图 2-3-13 订阅/scan 话题

话题名默认情况下为/scan,但我们也可以通过手动修改 lslidar_serial.launch中的 scan topic 的值来修改启动后发布的雷达话题名。

```
<launch>

<node pkg="lslidar driver" type="lslidar driver node" name="lslidar driver noted to the pkg and the pkg are also below the pkg are also below to the pkg are also belo
```

图 2-3-14 修改雷达话题名