Value Iteration Reinforcement Learning Review

Based on Prof. Oh's Reinforcement Learning Lectures

Suinne Lee

Dynamic Programming: find the optimal policy (model based: known state-transition probability)

- Value Iteration
 - use Bellman Optimality Equation
- Policy Iteration
 - use Bellman Expectation Equation

Start with an estimator and iterate

Uses the Bellman Optimality Equation

Optimal State Value Function
$$v_*(s) = \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')]$$

(gives how to compute the optimal state value function without computing for the entire epoch)

Uses it how? Iteratively!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r+\gamma V_k(s')]$$

 Initialize → Iterate → if it converges, we find the optimal value function.

2. Iterate.

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V_k(s')]$$

We find the next (iterated) value function estimator $V_{k+1}(s)$ by finding the maximum value of $\sum_{s',r} p(s',r|s,a)[r+\gamma V_k(s')]$ $V_k(s)$ over all possible states s' and action a. (Action taken at state s')

2. Iterate.

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V_k(s')]$$

If this converges after multiple iterations, we are likely to have found the maximum value function for state s and an action a at each s' that achieves it.

This gives the optimal policy and this gives the optimal value function.

Compute the optimal policy π_* (one-step lookahead)

$$\pi_*(s) = \arg \max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma V^*(s')]$$

3. Upon convergence, we find the optimal policy:

$$\pi_*(s) = \arg \max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma V^*(s')]$$

Ways to iterate?

Synchronous

Compute for all states simultaneously.

i.e. in each iteration, we compute V_k+1(s) for all s.

We use the previous values $V_k(s')$ for all s' to compute V_k+1 .

Asynchronous

Compute for one state, update.

We use the updated $V_k+1(s)$ to compute for other states.

Can choose which states to update, and make the computation more compact.

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma V_k(s')]$$

Advantages

- Conceptually simple
- Memory efficient (only need to store and update value functions) (but as we will see, this does not necessarily mean it is computationally low cost.)

Disadvantages

- Takes long to converge / policy converges faster than value in a lot of cases
- In exploitation vs exploration, the value iteration leans more towards exploitation. Policy iteration is better for exploring the whole of the state space effectively.

 https://en.wikipedia.org/wiki/Exploration-exploitation_dilemma
- Computationally expensive (updates all the value functions for the states at each iteration) O(SS^2A)

Example 1 - Car

A robot car wants to travel far and quickly.

• 3 states: cool, warm, overheated

• 2 actions: slow, fast

• rewards: slow = 1, fast = 2 (but -10 when overheated)

V(s)	cool		warm	over
V_2	3.5		2.5	0
V_1	2		1	0
V_0	0		0	0

$$V_2(\text{Warm}) = \max_{a} \begin{cases} 0.5(1+2) + 0.5(1+1) \\ 1.0(-10+0) \end{cases}$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s',\,r} p(s',r\,|\,s,a) \big[r + \gamma \,V_k(s') \big]$$

Example 2 – Grid World

noise = 0.2, discount = 0.9, living reward c = 0

Example 2 – Grid World

noise = 0.2, discount = 0.9, living reward c = 0

Values after 100 iterations

0.64 th 0.74 th 0.85 th +1 0.57 0.57 0.49 40.43 0.48 40.28

Q-values after 100 iterations

0.59 0.57 0.64 0.53	0.67	0.17	+1
0.57		0,57 0,53 -0,60 0,30	[-1]
0,49	0,40	0.48	0,28 0,13

Q-table actions

		1	U	(\Rightarrow
states	1	0.49	0.44	0.45	0.41
	2	0.40	0.40	0.43	0.42
	3	0.48	0.41	0.40	0.29
	• • • •		:	:	:
	9	0.77	0.57	0.66	0.85

Q-values after 100 iterations

$$\pi_*(s) = \arg\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma V^*(s')]$$
$$= \arg\max_{a} Q^*(s, a)$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V_k(s')]$$

Value Iteration for estimating $\pi \approx \pi_*$

Hyperparameter: small threshold $\epsilon > 0$ for the convergence check Initialize V(s) arbitrarily for all $s \in \mathcal{S}$, except V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$
Loop for each $s \in \mathcal{S}$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$
Until $\Delta < \epsilon$

Output a deterministic policy $\pi \approx \pi_*$ such that

$$\pi(s) = \arg\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma V(s')]$$