This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	- sn -	4 √ ⁴⁷ 9 7	***			1. (24.	345	2194	V - x	***/* * * * * * * * * * * * * * * * * *	
	6-		\$								
				47.7							
				ja.							
			1.0						***		
8		No.	-			1			*		
					er i			· ×		7	
								•			
				1							
					*					· 1	-
		* *			+				*	~ _ ,v	
			3								i.
										-	
Der .											
				4 *	10	a.".		17			
2				(.4		मी है । 			#	,	
rat.								*			Э. ч
									Ė		
r Per			, · ·				* .	w T		¥	
					*	* *	# -		· · · · · · · · · · · · · · · · · · ·		7
iş. F			٧,			**************************************			**		Ň.
					2			*			
					4						1
		·\					-		j v		
			*							d 	
			4.2°		* * *				4.7	<u>4</u> 0 -1	
			* .								
				* =	•				· · ·		÷ ,
7											
÷						, ,					
				· ·			در این		*		
v.							. P. P.		(2)		*
A.				48.							•
\$		* * * * * * * * * * * * * * * * * * * *	5 × 7		e ^r	**	4	*			
1				**	. 7			*	A CONTRACT		
				.00			₹£ _a		, vi.		
3			5.2.7	in the second							·
42.25									10.4		
*		- 4									
44		Q. Street	*	.* ;							
	4.1					* * * * * * * * * * * * * * * * * * *					4
	Ť	. , , , ,						/f .		*, *	
₹. **		The									į
7) 7(1) 7(3)		\$						4	1.5		
1		,		w/	74.						8
Ž.	,	• 0 -90	1 A ×		600		i e				91
713				$\bar{\mathcal{H}}$							vi.
<u></u>			·			· · · · · · · · · · · · · · · · · · ·		`			x- x
***		*									Ž.
				* 4	*				. •	r	
				<i>f</i>	.*						
'		. 1 2					me.				
1		Co.	· - &						0		
- 1 - 1		,		•	.*		6	Q)	• 0		
1	,	,		,		7	10 11 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	\$1 -	. 30	W	4		2 2 6	in the contract of the contrac	7			

11) Publication number:

0 325 262 A2

(3)

EUROPEAN PATENT APPLICATION

2 Application number: 89100913.6

② Date of filing: 20.01.89

(9) Int. Cl.4: C12N 15/00 , C12P 21/02 , A61K 39/395 , G01N 33/569 , //A61K39/21

The applicant has filed a statement in accordance with Rule 28 (4) EPC (issue of a sample only to an expert). Accession number(s) of the deposit(s): ATCC 67608 - 67609 - 67610 - 67611

Claims for the following Contracting States: ES + GR.

- ® Priority: 22.01.88 US 147351
- Date of publication of application: 26.07.89 Bulletin 89/30
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE

- Applicant: THE GENERAL HOSPITAL CORPORATION
 55 Fruit Street
 Boston MA 02114(US)
- Inventor: Brian, Seed, Dr. 47A Joy Street Boston MA 02114(US)
- Representative: Klein, Otto, Dr. et al Hoechst AG Zentrale Patentabteilung Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)
- (S) Cloned genes encoding IG-CD4 fusion proteins and the use thereof.
- Fusion proteins of immunoglobulins of the IgM, IgG1 or IgG3 class, wherein the variable region of the light or heavy chain has been replaced with CD4 or fragments thereof capable of binding to gp120 or immunoglobulin-like molecules comprising such fusion proteins together with an immunoglobulin light or heavy chain can be administered to an animal suffering from HIV or SIV infection. They also are useful in assays for HIV or SIV comprising contacting a sample suspected of containing HIV or SIV gp120 with the immunoglobulin-like molecule or fusion protein, and detecting whether a complex is formed.

CLONED GENES ENCODING IG-CD4 FUSION PROTEINS AND THE USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. Application Serial No. 07/147,351 filed January 22, 1988.

FIELD OF THE INVENTION

10

The invention is in the field of recombinant genetics.

BACKGROUND OF THE INVENTION

The human and simian immunodeficiency viruses HIV and SIV are the causative agents of Acquired Immune Deficiency Syndrome (AIDS) and Simian Immunodeficiency Syndrome (SIDS), respectively. See Curren, J. et al., Science 329:1359-1357 (1985); Weiss, R. et al., Nature 324:572-575 (1986). The HIV virus contains an envelope glycoprotein, gp120 which binds to the CD4 protein present on the surface of helper T lymphocytes, macrophages and other cells. Dalgleish et al. Nature, 312:763 (1984). After the gp120 binds to CD4, virus entry is facilitated by an envelope-mediated fusion of the viral target cell membranes.

During the course of infection, the host organism develops antibodies against viral proteins, including the major envelope glycoproteins gp120 and gp41. Despite this humoral immunity, the disease progresses, resulting in a lethal immunosuppression characterized by multiple opportunistic infections, parasitemia, dementia and death. The failure of host anti-viral antibodies to arrest the progression of the disease represents one of the most vexing and alarming aspects of the infection, and augurs poorly for vaccination efforts based upon conventional approaches.

Two factors may play a role in the inefficacy of the humoral response to immunodeficiency viruses. First, like other RNA viruses (and like retroviruses in particular), the immunodeficiency viruses show a high mutation rate which allows antigenic variation to progress at a high rate in response to host immune surveillance. Second, the envelope glycoproteins themselves are heavily glycosylated molecules presenting few epitopes suitable for high affinity antibody binding. The poorly antigenic, "moving" target which the viral envelope presents, allows the host little opportunity for restricting viral infection by specific antibody production.

Cells infected by the HIV virus express the gp120 glycoprotein on their surface. Gp120 mediates fusion events among CD4 cells via a reaction similar to that by which the virus enters the uninfected cell, leading to the formation of short-lived multinucleated giant cells. Syncytium formation is dependent on a direct interaction of the gp120 envelope glycoprotein with the CD4 protein. Dalgleish et al., supra, Klatzmann, D. et al., Nature 312:763 (1984); McDougal, J.S. et al. Science, 231:382 (1986); Sodroski, J. et al., Nature, 322:470 (1986); Lifson, J.D. et al., Nature, 323:725 (1986); Sodroski, J. et al., Nature, 321:412 (1986).

The CD4 protein consists of a 370 amino acid extracellular region containing four immunoglobulin-like domains, a membrane spanning domain, and a charged intracellular region of 40 amino acid residues. Maddon, P. et al., Cell 42:93 (1985); Clark, S. et al., Proc. Natl. Acad. Sci. (USA) 84:1649 (1987).

Evidence that CD4-gp120 binding is responsible for viral infection of cells bearing the CD4 antigen includes the finding that a specific complex is formed between gp120 and CD4. McDougal et al., supra. Other workers have shown that cell lines, which were non-infective for HIV, were converted to infectable cell lines following transfection and expression of the human CD4 cDNA gene. Maddon et al., Cell 47:333-348 (1986).

In contrast to the majority of antibody-envelope interactions, the receptor-envelope interaction is characterized by a high affinity (K_a = 10⁸ l/mole) immutable association. Moreover, the affinity of the virus for CD4 is at least 3 orders of magnitude higher than the affinity of CD4 for its putative endogenous ligand, the MHC class II antigens. Indeed, to date, a specific physical association between monomeric CD4 and class II antigens has not been demonstrated.

In response to bacterial or other particle infection, the host organism usually produces serum antibodies that bind to specific proteins or carbohydrates on the bacterial or particle surface, coating the bacteria. This antibody coat on the bacterium or other particle stimulates cytolysis by Fc-receptor-bearing lymphoid cells by antibody-dependent cellular toxicity (ADCC). Other serum proteins, collectively called complement (C),

bind to antibody-coated targets, and also can coat foreign particles nonspecifically. They cause cell death by lysis, or stimulate ingestion by binding to specific receptors on the macrophage called complement receptors. See Darnell J. et al., in Molecular Cell Biology, Scientific American Books, pp. 641 and 1087 (1986).

The most effective complement activating classes of human lg are IgM and IgG1. The complement system consists of 14 proteins that, acting in order, cause lysis of cells. Nearly all of the C proteins exist in normal serum as inactive precursors. When activated, some become highly specific proteolytic enzymes whose substrate is the next protein in a sequential chain reaction.

The entire C sequence can be triggered by either of two initiation pathways. In one (the classic pathway), Ab-Ag complexes bind and activate C1, C4 and C2 to form a C3-splitting enzyme. In the second pathway, polysaccharides commonly on the surface of many bacteria and fungi bind with trace amounts of a C3 fragment and then with two other proteins (factor B and properdin) to form another C3-splitting enzyme. Once C3 is split by either pathway, the way is open for the remaining sequence of steps which lead to cell lysis. See Davis, B.D., et al., In Microbiology, 3rd ed., Harper and Row, Philadelphia, PA, pp. 452-466 (1980).

A number of workers have disclosed methods for preparing hybrid proteins. For example, Murphy, United States Patent 4,675,382 (1987), discloses the use of recombinant DNA techniques to make hybrid protein molecules by forming the desired fused gene coding for a hybrid protein of diptheria toxin and a polypeptide ligand such as a hormone, followed by expression of the fused gene.

20

Many workers have prepared monoclonal antibodies (Mabs) by recombinant DNA techniques. Monoclonal antibodies are highly specific well-characterized molecules in both primary and tertiary structure. They have been widely used for in vitro immunochemical characterization and quantitation of antigens. Genes for heavy and light chains have been introduced into appropriate hosts and expressed, followed by reaggregation of the individual chains into functional antibody molecules (see, for example, Munro, Nature 312:597 (1984); Morrison, S.L., Science 229:1202 (1985); Oi et al., Biotechniques 4:214 (1986); Wood et al., Nature 314:446-449 (1985)). Light- and heavy-chain variable regions have been cloned and expressed in foreign hosts wherein they maintained their binding ability (Moore et al., European Patent Application 0088994 (published September 21, 1983)).

Chimeric or hybrid antibodies have also been prepared by recombinant DNA techniques. Oi and Morrison, Biotechniques 4:214 (1986) describe a strategy for producing such chimeric antibodies which include a chimeric human IgG anti-leu3 antibody.

Gascoigne, N.R.J., et al., Proc. Natl. Acad. Sci. (USA) 84:2936-2940 (1987) disclose the preparation of a chimeric gene construct containing a T-cell receptor a-chain variable (V) domain and the constant (C) region coding sequence of an immunoglobulin γ2a molecule. Cells transfected with the chimeric gene synthesize a protein product that expresses immunoglobulin and T-cell receptor antigenic determinants as well as protein A binding sites. This protein associates with a normal λ chain to form an apparently normal tetrameric (H₂L₂, where H = heavy and L = light) immunoglobulin molecule that is secreted.

Sharon, J., et al., Nature 309:54 (1984), disclose construction of a chimeric gene encoding the variable (V) region of a mouse heavy chain specific for the hapten azophenyl rsonate and the constant (C) region of a mouse kappa light chain (V_HC_K). This gene was introduced into a mouse myeloma cell line. The chimeric gene was expressed to give a protein which associated with light chains secreted from the myeloma cell line to give an antibody molecule specific for azophenylarsonate.

Morrison, Science 229:1202 (1985), discloses that variable light-or variable heavy-chain regions can be attached to a non-Ig sequence to create fusion proteins. This article states that the potential uses for the fusion proteins are three: (1) to attach antibody specifically to enzymes for use in assays; (2) to isolate non-Ig proteins by antigen columns; and (3) to specifically deliver toxic agents.

Recent techniques for the stable introduction of immunoglobulin genes into myeloma cells (Banerji, J., et al., Cell 33:729-740 (1983); Potter, H., et al., Proc. Natl. Acad. Sci. (USA) 81:7161-7165 (1984)), coupled with detailed structural information, have permitted the use of in vitro DNA methods such as mutagenesis, to generate recombinant antibodies possessing novel properties.

PCT Application W087/02671 discloses methods for producing genetically engineered antibodies of desired variable region specificity and constant region properties through gene cloning and expression of light and heavy chains. The mRNA from cloned hybridoma B cell lines which produce monoclonal antibodies of desired specificity is isolated for cDNA cloning. The generation of light and heavy chain coding sequences is accomplished by excising the cloned variable regions and ligating them to light or heavy chain module vectors. This gives cDNA sequences which code for immunoglobulin chains. The lack of introns allows these cDNA sequences to be expressed in prokaryotic hosts, such as bacteria, or in lower eukaryotic hosts, such as yeast:

The generation of chimeric antibodies in which the antigen-binding portion of the immunoglobulin is fused to other moieties has been demonstrated. Examples of non-immunoglobulin genes fused to antibodies include Stanphylococcus aureus nuclease, the mouse oncogene c-myc, and the Klenow fragment of E. coli DNA polymerase I (Neuberger, M.S., et al., Nature 312:604-612 (1984); Neuberger, M.S., Trends in Biochemical Science, 347-349 (1985)). European Patent Application 120,694 discloses the genetic engineering of the variable and constant regions of an immunoglobulin molecule that is expressed in E. coli host cells. It is further disclosed that the immunoglobulin molecule may be synthesized by a host cell with another peptide moiety attached to one of the constant domains. Such peptide moieties are described as either cytotoxic or enzymatic. The application and the examples describe the use of a lambda-like chain derived from a monoclonal antibody which binds to 4-hydroxy-3-nitrophenyl (NP) haptens.

European Patent Application 125.023 relates to the use of recombinant DNA techniques to produce immunoglobulin molecules that are chimeric or otherwise modified. One of the uses described for these immunoglobulin molecules is for whole-body diagnosis and treatment by injection of the antibodies directed to specific target tissues. The presence of the disease can be determined by attaching a suitable label to the antibodies, or the diseased tissue can be attacked by carrying a suitable drug with the antibodies. The application describes antibodies engineered to aid the specific delivery of an agent as "altered antibodies."

PCT Application W083/101533 describes chimeric antibodies wherein the variable region of an immunoglobulin molecule is linked to a portion of a second protein which may comprise the active portion of an enzyme.

Boulianne et al., Nature 312:643 (1984) constructed an immunoglobulin gene in which the DNA segments that encode mouse variable regions specific for the hapten trinitrophenol (TNP) are joined to segments that encode human mu and kappa regions. These chimeric genes were expressed to give functional TNP-binding chimeric IgM.

Morrison et al., P.N.A.S. (USA) 81:6851 (1984), disclose a chimeric molecule utilizing the heavy-chain variable region exons of an anti-phosphoryl choline myeloma protein G, which were joined to the exons of either human kappa light-chain gene. The genes were transfected into mouse myeloma cell lines, generating transformed cells that produced chimeric mouse-human lgG with antigen-binding function.

Despite the progress that has been achieved on determining the mechanism of HIV infection, a need continues to exist for methods of treating HIV viral infections.

SUMMARY OF THE INVENTION

The invention relates to a gene comprising a DNA sequence which encodes a fusion protein comprising 1) CD4, or a fragment thereof which binds to HIV gp120, and 2) an immunoglobulin light or heavy chain; wherein said CD4 or HIV gp120-binding fragment thereof replaces the variable region of the light or heavy immunoglobulin chain.

The invention also relates to vectors containing the gene of the invention and hosts transformed with the vectors.

The invention also relates to a method of producing a fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, and an immunoglobulin light or heavy chain, wherein the variable region of the immunoglobulin light or heavy chain has been substituted with CD4, or HIV gp120-binding fragment thereof, which comprises:

cultivating in a nutrient medium under protein producing conditions, a host strain transformed with the vector containing the gene of the invention, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.

The invention also relates to a fusion protein comprising CD4, or fragment thereof which is capable of binding to HIV gp120, fused at the C-terminus to a second protein which comprises an immunoglobulin light or heavy chain, wherein the variable region of said light or heavy chain is substituted with CD4 or a HIV gp120 binding fragment thereof.

The invention also relates to an immunoglobulin-like molecule comprising the fusion protein of the invention together with an immunoglobulin light or heavy-chain, wherein said immunoglobulin like molecule binds HIV gp120.

The IgG1 fusion proteins and immunoglobulin-like molecules may be useful for both complement-mediated and cell-mediated (ADCC) immunity, while the IgM fusion proteins are useful principally through complement-mediated immunity.

30

The invention also relates to a complex between the fusion proteins and immunoglobulin-like molecule of the invention and HIV gp120.

The invention also relates to a method for treating HIV or SIV infections comprising administering the fusion protein or immunoglobulin-like molecule of the invention to an animal.

The invention further relates to a method for detecting HIV gp120 in a sample comprising contacting a sample suspected of containing HIV or gp120 with the fusion protein or immunoglobulin-like molecule of the invention, and detecting whether a complex has formed.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is directed to a protein gene which comprises

- 1) a DNA sequence which codes for CD4, or fragment thereof which binds to HIV gp120, fused to
- 2) a DNA sequence which encodes an immunoglobulin heavy chain.

Preferably, the antibody has effector function.

10

15

The invention is also directed to a protein gene which comprises

- 1) a DNA sequence which codes for CD4, or fragment thereof which binds to HIV gp120, fused to
- 2) a DNA sequence which encodes an immunoglobulin light chain; wherein said sequence which codes for CD4, or HIV gp120-binding fragment thereof, replaces the variable region of the light immunoglobulin chain.

The invention is also directed to the expression of these novel fusion proteins in transformed hosts and the use thereof to treat and diagnose HIV infections. In particular, the invention relates to expressing said genes in mammalian hosts which express complementary light or heavy chain immunoglobulins to give immunoglobulin-like molecules which have antibody effector function and also bind to HIV or SIV gp120.

The term "antibody effector function" as used herein denotes the ability to fix complement or to activate ADCC.

The fusion proteins and immunoglobulin-like molecules may be administered to an animal for the purpose of treating HIV or SIV infections. By the terms "HIV infections" is intended the condition of having AIDS, AIDS related complex (ARC) or where an animal harbors the AIDS virus, but does not exhibit the clinical symptoms of AIDS or ARC. By the terms "SIV infections" is intended the condition of being infected with simian immunodeficiency virus.

By the term "animal" is intended all animals which may derive benefit from the administration of the fusion proteins and immunoglobulin-like molecules of the invention. Foremost among such animals are humans, however, the invention is not intended to be so limited.

By the term "fusion protein" is intended a fused protein comprising CD4, or fragment thereof which is capable of binding to gp120, linked at its C-terminus to an immunoglopulin chain wherein a portion of the N-terminus of the immunoglobulin is replaced with CD4. In general, that portion of immunoglobulin which is deleted is the variable region. The fusion proteins of the invention may also comprise immunoglobulins where more than just the variable region has been deleted and replaced with CD4 or HIV gp120 binding fragment thereof. For example, the V_H and CH1 regions of an immunoglobulin chain may be deleted. Preferably, any amount of the N-terminus of the immunoglobulin heavy chain can be deleted as long as the remaining fragment has antibody effector function. The minimum sequence required for binding complement encompasses domains CH2 and CH3. Joining of Fc portions by the hinge region is advantageous for increasing the efficiency of complement binding.

The CD4 portion of the fusion protein may comprise the complete CD4 sequence, the 370 amino acid extracellular region and the membrane spanning domain, or the extracellular region. The fusion protein may comprise fragments of the extracellular region obtained by cutting the DNA sequence which encodes CD4 at the BspM1 site at position 514 or the Pvull site at position 629 (see Table 1) to give nucleotide sequences which encode CD4 fragments which retain binding to gp120. In general, any fragment of CD4 may be used as long as it retains binding to gp120.

Where the fusion protein comprises an immunoglobulin light chain, it is necessary that no more of the lg chain be deleted than is necessary to form a stable complex with a heavy chain lg. In particular, the cysteine residues necessary for disulfide bond formation must be preserved on both the heavy and light chain moieties.

When expressed in a host, e.g., a mammalian cell, the fusion protein may associate with other light or

heavy Ig chains secreted by the cell to give a functioning immunoglobulin-like molecule which is capable of binding to gp120. The gp120 may be in solution, expressed on the surface of infected cells, or may be present on the surface of the HIV virus itself. Alternatively, the fusion protein may be expressed in a mammalian cell which does not secrete other light or heavy Ig chains. When expressed under these conditions, the fusion protein may form a homodimer.

Genomic or CDNA sequences may be used in the practice of the invention. Genomic sequences are expressed efficiently in myeloma cells, since they contain native promoter structures.

The constant regions of the antibody cloned and used in the chimeric immunoglobulin-like molecule may be derived from any mammalian source. The constant regions may be complement binding or ADCC active. However, preliminary work (see Examples) indicates that the fusion proteins of the invention may mediate HIV or SIV infected cell death by an ADCC or complement-independent mechanism. The constant regions may be derived from any appropriate isotype, including IgG1, IgG3, or IgM.

The joining of various DNA fragments, is performed in accordance with conventional techniques, employing blunt-ended or staggered-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkali and phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. The genetic construct may optionally encode a leader sequence to allow efficient expression of the fusion protein. For example, the leader sequence utilized by Maddon et al., Cell 42:93-104 (1985) for the expression of CD4 may be used.

For cDNA, the cDNA may be cloned and the resulting clone screened, for example, by use of a complementary probe or by assay for expressed CD4 using an antibody as disclosed by Dalgleish et al., Nature 312:763-766 (1984); Klatzmann et al., Immunol. Today 7:291-297 (1986); McDougal et al., J. Immunol. 135:3151-3162 (1985); and McDougal, J. et al., J. Immunol. 137:2937-2944 (1986).

To express the fusion hybrid protein, transcriptional and translational signals recognized by an appropriate host element are necessary. Eukaryotic hosts which may be used include mammalian cells capable of culture in vitro, particularly leukocytes, more particularly myeloma cells or other transformed or oncogenic lymphocytes, e.g., EBV-transformed cells. Alternatively, non-mammalian cells may be employed, such as bacteria, fungi, e.g., yeast, filamentous fungi, or the like.

Preferred hosts for fusion protein production are mammalian cells, grown in vitro in tissue culture or in vivo in animals. Mammalian cells provide post translational modification to immunoglobulin protein molecules which provide for correct folding and glycosylation of appropriate sites. Mammalian cells which may be useful as hosts include cells of fibroblast origins such as VERO or CHO-K1 or cells of lymphoid origin, such as the hybridoma SP2/0-AG14 or the myeloma P3x63Sgh, and their derivatives. For the purpose of preparing an immunoglobulin-like molecule, a plasmid containing a gene which encodes a heavy chain immunoglobulin, wherein the variable region has been replaced with CD4 or fragment thereof which binds to gp120, may be introduced, for example, into J558L myeloma cells, a mouse plasmacytoma expressing the lambda-1 light chain but which does not express a heavy chain (see Oi et al., P.N.A.S. (USA) 80:825-829 (1983)). Other preferred hosts include COS cells, BHK cells and hepatoma cells.

The constructs may be joined together to form a single DNA segment or may be maintained as separate segments, by themselves or in conjunction with vectors.

Where the fusion protein is not glycosylated, any host may be used to express the protein which is compatible with replicon and control sequences in the expression plasmid. In general, vectors containing replicon and control sequences are derived from species compatible with a host cell are used in connection with the host. The vector ordinarily carries a replicon site, as well as specific genes which are capable of providing phenotypic selection in transformed cells. The expression of the fusion protein can also be placed under control with other regulatory sequences which may be homologous to the organism in its untransformed state. For example, lactose-dependent E. coli chromosomal DNA comprises a lactose or lac operon which mediates lactose utilization by elaborating the enzyme beta-galactosidase. The lac control elements may be obtained from bacterial phage lambda plac5, which is infective for E. coli. The lac promoter-operator system can be induced by IPTG.

Other promoters/operator systems or portions thereof can be employed as well. For example, colicin E1, galactose, alkaline phosphatase, tryptophan, xylose, tax, and the like can be used.

For mammalian hosts, several possible vector systems are available for expression. One class of vectors utilize DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses RSV, MMTV or MOMLV), or SV40 virus. Selects which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow selection of transfected host cells. The marker may provide for prototropy to an auxotrophic host, biocide resistance, e.g., antibiotics, or heavy metals such as copper or the like. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced

into the same cell by cotransformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as transcriptional promoters, enhancers, and termination signals. The cDNA expression vectors incorporating such elements includes those described by Okayama, H., Mol. Cel. Biol., 3:280 (1983) and others.

Once the vector or DNA sequence containing the constructs has been prepared for expression, the DNA constructs may be introduced to an appropriate host. Various techniques may be employed, such as protoplast fusion, calcium phosphate precipitation, electroporation or other conventional techniques. After the fusion, the cells are grown in media and screened for the appropriate activity. Expression of the gene(s) results in production of the fusion protein. This expressed fusion protein may then be subject to further assembly to form the immunoglobulin-like molecule.

The host cells for immunoglobulin production may be immortalized cells, primarily myeloma or lymphoma cells. These cells may be grown in appropriate nutrient medium in culture flasks or injected into a synergistic host, e.g., mouse or a rat, or immunodeficient host or host site, e.g., nude mouse or hamster pouch. In particular, the cells may be introduced into the abdominal cavity of an animal to allow production of ascites fluid which contains the immunoglobulin-like molecule. Alternatively, the cells may be injected subcutaneously and the chimeric antibody is harvested from the blood of the host. The cells may be used in the same manner as hybridoma cells. See Diamond et al., N. Eng. J. Med. 304:1344 (1981), and Kennatt, McKearn and Bechtol (Eds.), Monoclonal Antibodies: Hybridomas: — A New Dimension in Biologic Analysis, Plenum, 1980.

The fusion proteins and immunoglobulin-like molecules of the invention may be isolated and purified in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis or the like. For example, the lgG1 fusion proteins may be purified by passing a solution through a column which contains immobilized protein A or protein G which selectively binds the Fc portion of the fusion protein. See, for example, Reis, K.J., et al., J. Immunol. 132:3098-3102 (1984); PCT Application, Publication No. W087/00329. The chimeric antibody may the be eluted by treatment with a chaotropic salt or by elution with aqueous acetic acid (1 M).

Alternatively the fusion proteins may be purified on anti-CD4 antibody columns, or on anti-immunoglobulin antibody columns.

In one embodiment of the invention, cDNA sequences which encode CD4, or a fragment thereof which binds gp120, may be ligated into an expression plasmid which codes for an antibody wherein the variable region of the gene has been deleted. Methods for the preparation of genes which encode the heavy or light chain constant regions of immunoglobulins are taught, for example, by Robinson, R. et al., PCT Application, Publication No. W087-02671.

Preferred immunoglobulin-like molecules which contain CD4, or fragments thereof, contain the constant region of an IgM, IgG1 or IgG3 antibody which binds complement at the Fc region.

The fusion protein and immunoglobulin-like molecules of the invention may be used for the treatment of HIV viral infections. The fusion protein complexes to gp120 which is expressed on infected cells. Although the inventor is not bound by a particular theory, it appears that the fix portion of the hybrid fusion protein may bind with complement, which mediates destruction of the cell. In this manner, infected cells are destroyed so that additional viral particle production is stopped.

For the purpose of treating HIV infections, the fusion protein or immunoglobulin-like molecule of the invention may additionally contain a radiolabel or therapeutic agent which enhances destruction of the HIV particle or HIV-infected cell.

Examples of radioisotopes which can be bound to the fusion protein or immunoglobulin-like molecule of the invention for use in HIV-therapy are ¹²⁵I, ¹³¹I, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Bi, ²¹¹At, ²¹²Pb, ⁴⁷Sc, and ¹⁰⁹Pd. Optionally, a label such as boron can be used which emits a and β particles upon bombardment with neutron radiation.

For in vivo diagnosis radionucleotides may be bound to the fusion protein or immunoglobulin-like molecule of the invention either directly or by using an intermediary functional group. An intermediary group which is often used to bind radioisotopes, which exist as metallic cations, to antibodies is diethylenetriaminepentaacetic acid (DTPA). Typical examples of metallic cations which are bound in this manner are ^{99m}Tc ¹²³I, ¹¹¹In, ¹³¹I, ⁹⁷Ru, ⁶⁷Cu, ⁶⁷Ga, and ⁶⁸Ga.

Moreover, the fusion protein and immunoglobulin-like molecule of the invention may be tagged with an NMR imaging agent which include paramagnetic atoms. The use of an NMR imaging agent allows the in vivo diagnosis of the presence of and the extent of HIV infection within a patient using NMR techniques.

55 Elements which are particularly useful in this manner are 157 Gd. 55 Mn. 162 Dy. 52 Cr. and 55 Fe.

Therapeutic agents may include, for example, bacterial toxins such as diphtheria toxin, or ricin. Methods for producing fusion proteins comprising fragment A of diphtheria toxin are taught in U.S. Patent 4.675,382 (1987). Diphtheria toxin contains two polypeptide chains. The B chain binds the toxin to a receptor on a cell

surface. The A chain actually enters the cytoplasm and inhibits protein synthesis by inactivating elongation factor 2, the factor that translocates ribosomes along mRNA concomitant with hydrolysis of ETP. See Darnell, J., et al., in Molecular Cell Biology, Scientific American Books, Inc., page 662 (1986). Alternatively, a fusion protein comprising ricin, a toxic lectin, may be prepared.

Introduction of the chimeric molecules by gene therapy may also be contemplated, for example, using retroviruses or other means to introduce the genetic material encoding the fusion proteins into suitable target tissues. In this embodiment, the target tissues having the cloned genes of the invention may then produce the fusion protein in vivo.

The dose ranges for the administration of the fusion protein or immunoglobulin-like molecule of the invention are those which are large enough to produce the desired effect whereby the symptoms of HIV or SIV infection are ameliorated. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of disease in the patient, counterindications, if any, immune tolerance and other such variables, to be adjusted by the individual physician. Dosage can vary from .01 mg/kg to 50 mg/kg, preferably 0.1 mg/kg to 1.0 mg/kg, of the immunoglobulin-like molecule in one or more administrations daily, for one or several days. The immunoglobulin-like molecule can be administered parenterally by injection or by gradual perfusion over time. They can be administered intravenously, intraperitoneally, intramuscularly, or subcutaneously.

Preparations for parenteral administration include sterile or aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like. See, generally, Remington's Pharmaceutical Science, 16th Ed., Mack Eds., 1980.

The invention also relates to a method for preparing a medicament or pharmaceutical composition comprising the components of the invention, the medicament being used for therapy of HIV or SIV infection in animals.

The detection and quantitation of antigenic substances and biological samples frequently utilized immunoassay techniques. These techniques are based upon the formation of the complex between the antigenic substance, e.g., gp120, being assayed and an antibody or antibodies in which one or the other member of the complex may be detectably labeled. In the present invention, the immunoglobulin-like molecule or fusion protein may be labeled with any conventional label.

Thus, the hybrid fusion protein or immunoglobulin-like molecule of the invention can also be used in assay for HIV or SIV viral infection in a biological sample by contacting a sample, derived from an animal suspected of having an HIV or SIV infection, with the fusion protein or immunoglobulin-like molecule of the invention, and detecting whether a complex with gp120, either alone or on the surface of an HIV-infected cell, has formed.

For example, a biological sample may be treated with nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble protein. The support may then be washed with suitable buffers followed by treatment with the fusion protein which may be detectably labeled. The solid phase support may then be washed with the buffer a second time to remove unbound fusion protein and the label on the fusion protein detected.

In carrying out the assay of the present invention on a sample containing gp120, the process comprises:

- a) contacting a sample suspected containing gp120 with a solid support to effect immobilization of gp120, or cell which expresses gp120 on its surface;
- b) contacting said solid support with the detectably labeled immunoglobulin-like molecule or fusion protein of the invention;
- c) incubating said detectably labeled immunoglobulin-like molecule with said support for a sufficient amount of time to allow the immunoglobulin-like molecule or fusion protein to bind, to the immobilized gp120 or cell which expresses gp120 on its surface;
 - d) separating the solid phase support from the incubation mixture obtained in step c); and

55

e) detecting the bound immunoglobulin-like molecule or fusion protein and thereby detecting and quantifying gp120.

Alternatively, labeled immunoglobulin-like molecule (or fusion protein) -gp120 complex in a sample may be separated from a reaction mixture by contacting the complex with an immobilized antibody or protein which is specific for an immunoglobulin or, e.g., protein A, protein G, anti-IgM or anti-IgG antibodies. Such anti-immunoglobulin antibodies may be monoclonal or polyclonal. The solid support may then be washed with suitable buffers to give an immobilized gp120-labeled immunoglobulin-like molecule antibody complex. The label on the fusion protein may then be detected to give a measure of endogenous gp120 and, thereby, the presence of HIV.

This aspect of the invention relates to a method for detecting HIV or SIV viral infection in a sample comprising

- (a) contacting a sample suspected of containing gp120 with a fusion protein or immunoglobulin-like molecule comprising CD4, or fragment thereof which binds to gp120, and the Fc portion of an immunoglobulin chain.
 - (b) detecting whether a complex is formed.

10

15

20

The invention also relates to a method of detecting gp120 in a sample, further comprising

- (c) contacting the mixture obtained in step (a) with an Fc binding molecule, such as an antibody, protein A, or protein G, which is immobilized on a solid phase support and is specific for the hybrid fusion protein, to give a gp120 fusion protein-immobilized antibody complex
 - (d) washing the solid phase support obtained in step (c) to remove unbound fusion protein,
 - (e) and detecting the label on the hybrid fusion protein.

Of course, the specific concentrations of detectably labeled immunoglobulin-like molecule (or fusion protein) and gp120, the temperature and time of incubation, as well as other assay conditions may be varied, depending on various factors including the concentration of gp120 in the sample, the nature of the sample, and the like. Those skilled in the art wild be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

Other such steps as washing, stirring, shaking, filtering and the like may be added to the assays as is customary or necessary for the particular situation.

One of the ways in which the immunoglobulin-like molecule or fusion protein of the present invention can be detectably labeled is by linking the same to an enzyme. This enzyme, in turn, when later exposed to its substrate, will react with the substrate in such a manner as to produce a chemical moiety which can be detected as, for example, by spectrophotometric, fluorometric or by visual means. Enzymes which can be used to detectably label the immunoglobulin-like molecule or fusion protein of the present invention include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-V-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-VI-phosphate dehydrogenase, glucoamylase and acetylcholine esterase.

The immunoglobulin-like molecule or fusion protein of the present invention may also be labeled with a radioactive isotope which can be determined by such means as the use of a gamma counter or a scintillation counter or by autoradiography. Isotopes which are particularly useful for the purpose of the present invention are: ³H, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ³⁶Cl, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe and ⁷⁵Se.

It is also possible to label the immunoglobulin-like molecule or fusion protein with a fluorescent compound. When the fluorescently labeled immunoglobulin-like molecule is exposed to light of the proper wave length, its presence can then be detected due to the fluorescence of the dye. Among the most commonly used fluorescent labelling compounds are fluorescein isothiocyanate, rhodamine, phycocrytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The immunoglobulin-like molecule or fusion protein of the invention can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the immunoglobulin-like molecule or fusion protein using such metal chelating groups as diethylenetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The immunoglobulin-like molecule or fusion protein of the present invention also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged immunoglobulin-like molecule or fusion protein is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the immunoglobulin-like molecule or fusion protein of the present invention. Bioluminescence is a type of chemiluminescence found in biological

systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Detection of the immunoglobulin-like molecule or fusion protein may be accomplished by a scintillation counter, for example, if the detectable label is a radioactive gamma emitter, or by a fluorometer, for example, if the label is a fluorescent material. In the case of an enzyme label, the detection can be accomplished by colorimetric methods which employ a substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

The assay of the present invention is ideally suited for the preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement therewith one or more container means such as vials, tubes and the like, each of said container means comprising the separate elements of the immunoassay. For example, there may be a container means containing a solid phase support, and further container means containing the detectably labeled immunoglobulin-like molecule or fusion protein in solution. Further container means may contain standard solutions comprising serial dilutions of analytes such as gp120 or fragments thereof to be detected. The standard solutions of these analytes may be used to prepare a standard curve with the concentration of gp120 plotted on the abscissa and the detection signal on the ordinate. The results obtained from a sample containing gp120 may be interpolated from such a plot to give the concentration of gp120.

The immunoglobulin-like molecule or fusion protein of the present invention can also be used as a stain for tissue sections. For example, a labeled immunoglobulin-like molecule comprising CD4 or fragment thereof which binds to gp120 may be contacted with a tissue section, e.g., a brain biopsy specimen. This section may then be washed and the label detected.

The following examples are illustrative, but not limiting the method and composition of the present invention. Other suitable modifications and adaptations which are obvious to this skill in the art are within the spirit and scope of this invention.

EXAMPLES

30

Example 1: Preparation of CD4-lg cDNA Constructs

The extracellular portion of the CD4 molecule (See Madden, P.J., et al., Cell 42:93-104 (1985)) was fused at three locations in a human IgG1 heavy chain constant region gene by means of a synthetic splice donor linker molecule. To exploit the splice donor linker, a BamHI linker having the sequence CGCGGATCCGCG was first inserted at amino acid residue 395 of the CD4 precursor sequence (nucleotide residue 1295). A synthetic splice donor sequence

40

GATCCCGAGGGTGAGTACTA GGCTCCCACTCATGATTCGA

bounded by BamHI and HindIII complementary ends was created and fused to the HindIII site in the intron preceding the CH1 domain, to the Espt site in the intron preceding the hinge domain, and to the BanI site preceding the CH2 domain of the IgG1 genomic sequence. Assembly of the chimeric genes by ligation at the BamHI site afforded molecules in which either the variable (V) region, the V+CH1 regions, or the V. CH1 and hinge regions were replaced by CD4. In the last case, the chimeric molecule is expected to form a monomer structure, while in the former, a dimeric molecule is expected.

On such genetic construct which contains the DNA sequence which encodes CD4 linked to human IgG1 at the Hind3 site upstream of the CH1 region (fusion protein CD4H₇1) is depicted in Table 1. The plasmid containing this genetic construct (pCD4H₇1) has been deposited in E. coli (MC1061/P3) at the American Type Culture Collection (ATCC) under the terms of the Budapest Treaty and given accession number 67611

A second genetic construct which contains the DNA sequence which encodes CD4 linked to human IgG1 at the Esp site upstream of the hinge region (fusion protein CD4E₇1) is depicted in Table 2. The

plasmid containing this genetic construct (pCD4E₇1) has been deposited in E. coli (MC1061.P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67610.

A third genetic construct which contains the DNA sequence which encodes CD4 linked to human IgM at the Mst2 site upstream of the CH1 region (fusion protein CD4Mu) is depicted in Table 3. The plasmid containing this genetic construct (PCD4Mu) has been deposited in E. coli (MC1061:P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67608.

A fourth genetic construct which contains the DNA sequence which encodes CD4 linked to human IgM at the Pst site upstream of the CH2 region (fusion protein CD4Pu) is depicted in Table 4. The plasmid containing this genetic construct (PCD4Pu) has been deposited in E. coli (MC1061/P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67609.

A fifth genetic construct which contains the DNA sequence which encodes CD4 linked to human lgG1 at the Ban1 site downstream from the hinge region (fusion protein CD4B $_{\gamma}1$) is depicted in Table 5.

Two similar constructs were prepared from the human IgM heavy chain constant region by fusion with the introns upstream of the μ CH1 and CH2 domains at an MStII site and a PStI site respectively. The fusions were made by joining the PStI site of the CD4/IgG1 construct fused at the Esp site in IgG1 gene to the MStII and Pst sites in the IgM gene. In the first instance, this was performed by treatment of the Pst end with T4 DNA Polymerase and the MStII end with E. coli DNA Polymerase, followed by ligation; and in the second instance, by ligation alone.

Immunoprecipitation of the fusion proteins with a panel of monoclonal antibodies directed against CD4 epitopes showed that all of the epitopes were preserved. A specific high affinity association is demonstrated between the chimeric molecules and HIV envelope proteins expressed on the surface of cells transfected with an attenuated (reverse transcriptase deleted) provinal construct.

30

25

35

..

50

45

<u>Table 1</u>

5			- -			N	N S P		E		M N		H		DH RA					B S T		
							B 2		1		L		1		AE 23	-				X 1		
10	1	GCCTC CGGAC				GCA	GCG		AAGA	AAA(• • • •										-+	60
15		E			P S					5										S		
20		DBS DAF EN1 122	5 A V A 2 2	DNF RLU AAA 241	PA JU J9 16		D D E 1	1	DHN/ RALU AEA! 234	A J 9 5				l 1	4 N	HM AN EL 31				HNC PCR AIF 211		
(51	CCGA																				120
25															,			M	N	R	G	•
30	21	H I N F 1 GAGT	cco	TT	ΤΑ	GGCA	B B V 1	GCT	TCT	GGT	F N U 4 H GCT	GCA	ACT(HH HA AE 12 GCT	CCT	ccc	U 4 H	M N L AGC	D D E 1 CAC		180
35	21	CTCA	GG	AA.	AAT	CCGT	ΓGΑA	CGA	AGA	CCA	CGA	CGT	TGA	CCG	CGA	GGA	CGC	TCG	rcg	CTC	AG	
		٧	P	F	R	Н	L	L	L	٧	L	Q	L	A	L	L	P	A	A	T	Q	-
40		B B V 1 AGGG	A A/	E C O K AGA	E C D K AAG	TGG"	TGCT	GGG	CAA	AAA	AGG	GGA	TAC	AGT	GGA	₹ ACT	GAC		R S A L TAC	A L U 1 AGC	π	240
45	81	TCCC	TT K	TCT K		ACC/	ACGA L	G	GTT K	TTT K	TCC G	CCT D	ATG	TCA V	CCT E	TGA L	CTG T	GAC.	ATG	TCG	AA S	24.0

12

50

```
5
        CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA
                                                    ---- 300
     241 -----
        GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
          QKKSIQFHWKN.SNQIKILGN-
10
                                             F
                                         S
                            5
                B
                                                 I
                                         A
                     F
                           AA
              NBS
                                         U
                           VU
                     0
              LAP
                                                 F
15
                                         3
                           A9
                                    U
              AN1
                     K
                           26
              422
         ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
               ------ 360
         TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
     301 --
20
          Q G S F L T K G P S K L N D R A D S R R -
                                                      Н
                                  S
                                                      I D
                                         Ī
25
                                 BA
                MANAS
                                                      N D
                                            F
                                 CU
                BYLUT
                                 L3
                DAA9Y
                                 1A
                22461
         GAAGCCTTTGGGÁCCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
30
         CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
      361 -----
                       GNFPLIIKNLKIEDS-
                    Q
                  D
35
                               S
                             AMAM
             M
                             VNUN
             В
                                                  Ε
                              AL9L
             0
                              2161
         CAGATACTTACATCTGTGAAGTGGAGGÁCCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
                   ------ 480
      421 ---
         GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
             TYICEVED Q KEEVQLLVFG-
```

55

												B S P								S			
5												M 1								Y 1			
		GATT		_											•			+	•				540
•	81	CTAA	CTG	ACC	CTT	GAG	ACT	CTC	GGT	GGA	CGA	AGT	CC	CCG.	TCT	CGG	ACT	CGG	GA	CTG	CAAC	C	
10		L	T	A	N	\$	D	T	Н	L	L	Q	G	Q	S	L	1	•	L	T	L	E	-
					DC.									н									
15		•	85	;	BS SC				D			M N		I	5								
, •			AP N1	. 1	TR NF				Đ			L		F	٠ ١	•							
			22	,	11 _/				1			1	A T A	•				~ ^ ·	T. 1. 1		CAT		
²⁰ 5	41	AGAG						• • • •			+						•••		+			-+	600
		TCTC	GGC	CC	GAC	ATC	AT(CGG	GGAC	TC	ACG"	ΠA									GIA	.16	
•		S	P	P	G	S	S	P	S	٧	Q	C	F	₹ S	5 F	• •	₹	C	K	N	I	Q	•
25								М	MC)	N AS	P	A	BSS	SH S		3 5	В	N	BS SC			
								B 0	NI LE)	LP		L	APT N1P	TIAI		T X	A	L A	TR NF			
30								2	13		12	_	1	221	111	1 1	1	1	4	11	•		
		AGG	CCC	GGA	AGA	ccc.	CT	ccc	TGT	TC.	AGĆ	TGG	AG(TĆ(ÁĞ	GAT.	AGT	GG	CA	ccto	GAC	AT	660
•	501	TCC	CC	CCT	TCT	CCC	AGA	GGC	ACA	GAG	TCG	ACC	TC	GAG	GTC	CTA	TÇA	CC	GT	GGAC	CTC	TA	
35		C	G	H	(T	L	\$	V	S	Q	L	Ε	. 1	L 1	Q	D	S	C	T	W	T	C	•
		N															_			NM	A		
		NS LP										8					7			HA	L		
40		AH 31										0 2								EE 11	U		
		GCA	CTG	TC	TTGC	AGA	ACC	AGA	LAGA	AGG	TGC	AG1	ΤC	AAA.	ATA	GAC	AT(G]	rgg	TGC	TAG	π	
45	661							- • -	пст		4				-+-			• • •	• • -			+	720
		T			L Q		_					_	_		I	D	I	٧	٧	L	A	F	•

14

50

. 5**5**

				HS AT EU				M N L	M N L													
5		TCCA		31		CAC	CAT	1	1 CTA	TAA	CAA	A C.A	ccc	GGA	ACA	GGT	GGA	.ctt	ctc	cπ	cc	
	721	AGGT																				780
10			K	4	S	S	I	v	Y	ĸ	K	E	G	Ε	Q	٧	Ε	F	S	F	Ρ	•
		Q	^		3	,	•	•	A		••				A .		M					
	,							ı	֝֝֝֝֝֝ IJ						L		N					
15		CACT		cTT	TAC	≜ CT	TGA		1	GAC	GGG	CAG"	TGG	CGA	i GCT	GTG	1 GTG	GCA	GGC	GGA	ÇA	
	781							_														840
20		L	A	F	T	.V	E	K	L	T	C	S	C	E	L	W	W	Q	A	E	R	-
25					H	•	P M F N L	M A N U										M B 0				
	841	GGGG				CA		TTC														900
30	071	ccc	CAAC	GAC	GAC	GT	TCAC	SAAC	CTA	AGTO	GAA	ACT	GGA							AC.	(11	
		A	\$	5	S	K	\$	W	I	T	F	D	L	K	N	K	Ε	٧	S	٧	•	•
35		·	B SM TA EE		TI	CAD RVR FAA	PS NPA(LUU(AM9)	D E	A L U						AHUH	>						
40	901	AAC			ccc	/ / AGG	416 // ACC	CTA							AGC	TCC		- + -				300
	301	ΤΤС	ccc	AAT	GGG	TCC	TGG	GAT	TCG	AGG	TCT.	ACC!	CGT	TCT	TCG.	AGG	GCG			AG 1 _		•
		R		T	Q	0	P	K	L	Q	M	G	K	K	L	P	L	. н	L	1	ι	• •

```
BSS
             BS
                                                   SCAHM
                       D
             SC HS
          M
                                                   TRUAN
                       D
           N
             TR AT
                                                   NF9EL
             NF EU
                                                   11631
5
             11_31
                       1
         TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
                                                             ---- 1020
         ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
10
                         Q Y A G S G N L T L A L E
                                     BS
                              S
                                                     H D
                              F
                                     SC
                                                       D
                                                           L
                                     TR
                              A
15
                                                     HE
                                                           U
                                     NF
                              N
                                                     1 1
                                                           1
                                     11
                              1
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
                                                              ---+ 1080
20
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
     1021 --
                                       VVMRATQLQK-
                 KLH
                                   PS
25
                                                       DE
                                ADNNPA
                                                       DS
                                            DA
                                                LN
                                VRLLUU
                                                       ΕP
                                                          U
                                                UL
                                            EN
                                                       11
                                                11
                                            11
                                224416
30
          AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
                                                               ---- 1140
          TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTCGAACTTTG
                                                          SL
                                    TSP
                                              K L
                                   Ρ
               LTCE
                                G
35
                                                                DW
                                                                DS
                                               P
                                A
           N
                                                                 ET
                                Q
           L
                                                                 12
40
          TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
                                                         ----- 1200
           ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCCACGACTTGGGAC
45
            ENKEAKVSKREKP
                                                 V W V L N P E -
```

16

50

```
PS
                                                       I
                              D
                                    IA
                                              ADPA
5
                                              VRUU
                           0
                              D
                                    N
                              Ē
                                 Ε
                                              AAM9
                           K
                                    F
                                                       1
                           1
                                              2216
          AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
10
                                             ..... 1260
     1201 ---
          TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                          LLSDSGQVLLESNI-
                         C
15
                                       BHF BS
                            S
                                   SA
                                                         RSD I A
                                 HNCP
                                       SCHMAANXA
                          ANA
                                       PIUNMULHV
                                                         SCD N L
                          VLU
                                 PCRA
                                                          AAE D U
                                       1ADLH3ADA
                          AA9
                                 AIFL
                                                          111 3 1
                                        212114421
                          236
                                 2111
20
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
25
              V L P T W S T P V H A D P
                                                          В
                       BS
                                                      D
                                                          S
                      H SC HS
                                                          P
                                                      D
                                T
                                       N
                      A TR AT
          P
                                                      Ε
30
                      E NF EU
                                Y
                                       L
          Н
                                       1
                      3 11 31
                                1
          1
          35
                                              В
                            BH
                                                  F
                                         N
                                             BS
                                                              Н
                        P
                            SG
              BASHBHHNN
                                             æ
                                                              G
                                         L
              AHPHBAPAL
                            PI
                        A
                                                              A
                                             N1
                                          A
              NAMAEEHRA L
                            18
40
                                          3
                                             22
                                                   1
                            21
              121112114
                 1 ||||
          CAGGTGGCGCÁGCAGGTGCACACCCAATGCCCATGAGCCCAGACACTGGACGCTGAACC
          GTCCACCGCGGTCGTCCACGTGTGGGTTACGGGTACTCGGGTCTGTGACCTGCGACTTGG
45
                                                              FN
                                       . B SS
                           BS
                                 S
            F
                                                              NS
                                       H SMAAHNABSAC
                           SC DNHA
            N
                                       H TNUUALPAPLR
                                                              UP
            U
                 N
                           TR RLAU
                                       A NL99EAAN1UF
                                                               DB
            D
                           NF AAE9
50
                                       1 11663412211
                                                               22
                           11 2436
                                              |  ||  |
          TCGCGGACAGTTAAGAACCCÁGGGGCCTCTGCGCCTGGGCCCÁGCTCTGTCCCACACCGC
      1441 -----
          AGCGCCTGTCAATTCTTGGGTCCCCGGAGACGCGGACCCGGGTCGAGACAGGGTGTGGCG
55
```

```
BSS
                                                        BS
                                                        SCB
                                     S BMDMHNABSAA
                             NM
         MS
                BNN
                                                        TRA
                             UN
                                     T BBRNALPAPUU
         AA
                ALL
5
                                                        NFN
                                     Y VOALEAAN199
         EC
                             4L
                NAA
                                                        111
                                     1 12213412266
                             H1
         32
                134
                                         GGTCACATGGCACCACCTCTCTTGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGG
10
         CCAGTGTACCGTGGTGGAGAACGTCGGAGGTGGTTCCCGGGTAGCCAGAAGGGGGACC
                               ASTKGPSVFPLA-
                                 B NFS
                                         BS
                                                 BS
                       BH
                                 MSB SNAH
                                         SC
                                             N
                                                 SC
                      MSG
15
                                 NPB PUUA
                                         TR
                                             U
                                                 TR
                      NPI
                                                 NF
                                 L1V B49E
                                         NF
                                             4
                       L1A
                                             Н
                                                 11
                                 121 2H63
                                         11
                      121
         CACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT
20
     1561 ----- 1620
         GTGGGAGGAGGTTCTCGTGGAGACCCCCGTGTCGCCGGGACCCGACGGACCAGTTCCTGA
           PSSKSTSGGTAALGCLVKDY-
                                                  NF
                                                          ВН
25
                                                          SG
                                                      P
                                       BANHBHN
                                                  SN
                                   D
                   H M
                         T
                              Н
                                                  PU
                                                          PI
                                   D
                                       AHAHBAL
                   PA
                                                  B4
                                                      L
                                                          18
                                   E
                                       NARAEEA
                   A E
                                                  2H
                                                          21
                                       1211124
                   2 3
30
         ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA
     1621 ----- 1680
         TGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGTCCGCGGGACTGGTCGCCGCACGTGT
           FPEPVTVSWNSGALTSGVHT-
35
                                                   В
               S
                                                 M SM
                                                       В
                                          D
                                              N
                                I
                            DM
              HNC
                                                 N TA
                                                       В
                                          D
                                              U
                            DS
                                N
                                    N
              PCR
                                              41
                                          Ε
                                                 L EE
                                                       ٧
                            ET
                                    L
              AIF
                                                 1 23
                            12
                                          1
                                1
                                    1
              211
40
          CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGC
          GGAAGGGCCGACAGGATGTCAGGAGTCCTGAGATGAGGGAGTCGTCGCACCACTGGCACG
           FPAVLQSSGLYSLSSVVTVP-
45
                F B
                        R
                                           н
                                            I
                N ASM B NSB
          SH
                U LTN A LPB
                                           N
          PP
                                            F
                4 UXL N A1V
          1H
50
                H 111
                     1 421
          21
          CCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACA
      1741 --
          GGAGGTCGTCGAACCCGTGGGTCTGGATGTAGACGTTGCACTTAGTGTTCGGGTCGTTGT
55
            SSSLGTQTYICNVNHKPSNT-
```

```
HM
                               HM
        S
T
                                  PN
5
                                  HL
                                  11
                               31
                    1
        1801 --
10
          KVDKKV
                                   ŠS
                        B$
                Ε
                                                 BSC
                                HHNCF
                        SC
                CHH
            DE
                                                 BTR
                                                     U
15
                                 PGCRA
                     0
                        TR
                 OHA
            DS
                                                 VNF
                                 AAIFN
                        NF
                 4AE
                     K
            EP
                                                 111
                                 21111
                        11
                 712
                     1
            11
        GCAGGCTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCÁGGGCAGCA
20
        CGTCCGAGTCGCGAGGACGGACCTGCGTAGGGCCGATACGTCGGGGTCAGGTCCCGTCGT
     1861 ----
                               S
                  S
                                                 MNDM
                             HMNCN
             DBHMHNA
                                                 NLDB
25
                             PNCRL
             RBABPLU
                                                 LAED
                             ALIFA
             AVEDHA9
                                                 1312
                             21114
             2132146
         30
         1921 -
                                                 В
                                                        BS
                          BS
                              P
                                             BN
                                                 S
                                                        SC
                              F
                          SC
                                             AL
                                                 P
                                                        TR
35
                          TR
                                                        NF
                                             N A
                          NF
                                                        11
                          11
         GAGGGTCTTCTGGCTTTTTCCCÁGGCTCTGGGCAGGCACAĞGCTAGGTGCCCCTAACCCÁ
40
         CTCCCAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGT
     1981 ---
                                                      S
                                             В
                                   В
           S
                   В
                                                    HNC
                                             S
                                 DBS
                   S
         DHA
                                                         ٧
                                                    PCR 1
                                               N
45
                                  DAP
                   P
         RAU
                                                    AIF
                                                         A
                                  EN1
         AE9
                                                    211
         236
         GGÉCETGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAG
                                                    ----- 2100
50
     2041 ----
         CCGGGACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTC
```

```
PS
         DNFA
                       D
                                       н
                       D
         RLUU
5
                                       Ε
         AAM9
         2416
         GACCCTGCCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGA
     2101
10
         CTGGGACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCT
                                                          B
                                                     P
                                                         BS
                         I
                            M
                              MM
                                                     S
                                                         AP
                         N
                           N
                              AB
15
                                                     T
                                                         N1
                              E0
                                                         22
                              32
          CACCTTCTCCCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGAGCCCAAATCT
20
          GTGGAAGAGAGGGGTCTAAGGTCATTGAGGGTTAGAAGAGAGACGTCTCGGGTTTAGA
                                                      EPKS
                                     BBS
                                                   BS
25
                           NS
                                     SSC
                                                   SC HS
          М
                                                   TR AT
                           LP
                                     PTR
                                                   NF EU
                           AH
                                     1NF
          Ε
                           31
                                     211
                                                   11 31
          3
30
                                                 ----- 2280
     2221 --
          CDKTHTCPPCP
35
                                                              S
                                                 S
                                              BS
                                                            HNC
                                              SC
                                                 F
                                                     DHNA
                        BN
                             SM F
                                              TR A
                                                     RALU
                                                            PCR
                             PA 0
               N
                                              NF
                                                 N # AEA9
                                                            AIF
                             1E K
           U
                                                     2346
                                                            211
                                              11
                             21 1
               1
40
          AGCTCAAGGCGGGACAGGTGCCCTAGAGTAGCCTGCATCCÁGGGACAGGCCCCAGCCGGG
      2281 -
          TCGAGTTCCGCCCTGTCCACGGGATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCC
45
                                                         S
                                                  BS
                                                  SC
                                           M
               A M
                                                  TR
                                                     B VLU B
                                           N
                                   D
                   В
                                                     D AA9 0
                                                  NF
                 E
                   0
                                                     2 246 2
                                                  11
50
                                                               --+ 2400
      2341 -----
          ACGACTGTGCAGGTGGAGGTAGAGAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCA
55
                                                       GPSV
                                            ELLG
```

```
SS
                                            M HWANNAC DM
                                        AN
                           S
                                              PNVCLUR DS
                           T
                     N
5
                                              ALAIA9F ET
                                        3A
                                              2121461 12 3
                                        A3
         CTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC
     2401 -----
         GAAGGAGAAGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTG
10
                       KPKDTLMISRTPEVT-
                                                       RM
                                     DM
15
           NS
                                                       SA
                                                           N
                                          В
                                     DS
           LP
                                                       AE
                                                           L
                                          0
                                     ET
                      E
           AH
                                                       12
                                          2
                                                           .1
                                     12
                      2
           31
          ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA
20
                                              ----- 2520
     2451
          TACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCT
            V V V D V S H E D P E V K F N W Y V D
25
                                      NSS
                                                            5
                                                  S
                                      UPA
                                                         Ε
                                     4 DBC
                                                  A
                                                         2
                                                  1
                                     H 222
                                 1
30
                                       ·//
          CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA
                                                        ----- 2580 -
      2521 -----
          GCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCAT
            VEVHNAKTKPREEQYNSTY-
35
                                     BS
            S
                                                          R
                                     SC
          HNC HH
                                                          5
                                     TR
                                N
          PCR GP
                                     NF
          AIF AH
40
                                     11
                                1
          211 11
          CCGGGTGGTCAGCGTCCTCACCGTCCTGCACCÁGGACTGGCTGAATGGCAAGGAGTACAA
                                                       _____ 2640
          GGCCCACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTT
45
                                                NGKEYK-
           RVVSVLTVLH
                                     Q
50
           GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA
                                                     ----- 2700
           CACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTT
           CKVSNKALPAPIEKTISKAK-
55
```

```
BSAH
                                                HHN
                                AHM
               ADNNPMA
                                                      GFUA
                                                APA
               VRLLUNU
                                UAN
5
                                                      LI9E
                                                EAE
               AAAAML9
                                9 E L
                                        A
                                 3 1
                                                321
                                                      1163
               2244116
          AGGTGGGÁCCCGTGGGGTGCGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTG
     2701
          TCCACCCTGGGCACCCCACGCTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGAC
10
                                                 F
                        N
                                                            В
                                                 N
                        S
                            R
                                                            В
                                                 U
                        P
                            S
             DN
                 A
15
                                                 H
             1 1
                 3
          CCCTGAGAGTGACCGCTGTACCAACCTCTGTCCTACAGGGCAGCCCCGAGAACCACAGGT
                                                          -+---- 2820
           GGGACTCTCACTGGCGACATGGTTGGAGACAGGATGTCCCGTCGGGGCTCTTGGTGTCCA
20
                                                    P
                                                       R
                                                          Ε
                                                            P
                                                               0 V -
                                               G
                                                                   BS
                                                 BS
                               SS
                                                 SC
                                                                   SC
                           AHNNCCS
           RF
                                                  TR
                                                                   TR
25
                                            0
           5 0
                           VPCCRRM
                                                  NF
                                                                   NF
                                     U
                                            K
                           AAIIFFA
                                                  11
                           1211111
           GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT
30
           CATGTGGGACGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGA
                                           KNQVSL
                                                            T
                                         T
35
                                                             F
            В
                                                             Ν
                                                                Н
            S
                                                                Р
                                                             U
            P
                                                              4
           GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA
40
           CCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCT
                                           EWESNG
                                                             0 P
            VKGFYPSDIAV
45
                                         I
                                                    N
              В
                                                               P
                                        NN
                                             В
              B
                                         F
                                                               н
                                             0
 50
                                        1 1
           GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG
                                                             ----- 3000
           CTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTC
                                            SDGSFFLYS-
 55
                                         D
```

						8	}				F								S				
5		M				S					NM				4BX				IF	M			
		N	_			P					UE				BM			_		N			
		Ĵ	U			V					40				VN				N	L			
		1	1			1					H2	1		2	211			3	1	1			
10	3001		GCT	CAC	CGT	GGA	CAA	GAC	CA(GGT	GCA	GCA	ccc	GAA	CGT	rсП	стс	ATG	CT	CCGT	GAT	3060	
	3001		CGA	GTG	GCA	CCT	CTT	CTC	GT(CAC	CGT	CGT	ccc	стт	GC/	NGAA	GAG	TAC	GA	GGCA	CTA	3000	
	i,	K	L	T	٧	D	K	S	R	W	Q	Q	C	N	٧	F	S	C	S	٧	M	•	
15																			S				
		N S	N													M B	M	HN PC	C				
		1														0	L	AI					
20		1	3													2	1	21					
		GCA	TGA	GGC	TCT	GCA	CAA	CCA	CTA	CAC	GCA	GAA	GAG	CCT	CTO	CCT	GTC	TCC	/ GG(STAA	ATG		
	3061				.			- + -			+				+			- + -			+	3120	
		CGT	ACT	CCG	AGA	CGT	GII	GGT	GAT	GIG	CGT	CH	CIC	GGA	GAC	GGA	CAG	AGG	ככ(ATT	TAC		
25		Н	Ε	A	L	Н	N	Н	Y	T	Q	K	S	L	\$	L	S	P	C	K	•		
				CVI	HHN																		
					APA																		
30					EAE																		
				13	321																		
		AGT	GCG.	ACG(GCC	3																	
	3121				• •	- 3:	133															-	
35		TCA	CCC.	TGC	CGG																		

```
Table 2
                       FN
                                                              В
                                                 DHA
                       N
5
                                                              T
                                 В
                                      N
                                            G
                                                 RAU
                                                 AE9
                                                              X
                                 ٧
                                                 236
                                 1
          GCCTGTTTGAGAAGCAGCGGGCAAGAAAGACGCAAGCCCAGAGGCCCTGCCATTTCTGTG
10
          CGGACAAACTCTTCGTCGCCCGTTCTTTCTGCGTTCGGGTCTCCGGGACGGTAAAGACAC
            · B
                  PS
                                                               S
            DBS ADNPA
                           D
                              DHNA
                                                   HM
                                                             HNC
15
            DAP VRLUU
                           D
                              RALU
                                                   AN
                                                             PCR
            EN1 AAAM9
                                                   EL
                               AEA9
                                                             AIF
                                                   31
                                                             211
                               2346
            122 22416
          GGCTCAGGTCCCTACTGGCTCAGGCCCCTGCCTCCCTCGGCAAGGCCACAATGAACCGGG
20
                                           ----- 120
          CCGAGTCCAGGGATGACCGAGTCCGGGGGACGGAGGGGAGCCGTTCCGGTGTTACTTGGCCC
                                                        WNRG-
25
          Н
          I
                                     N
                                               HH ·
          N
                         В
                                               HA
                                                               Ε
                                               AE
                                               12
                                                         H 1
                                                               1
30
          GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC
      121 -----
          CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG
                    RHLLLVLQLALLPAATQ-
35
            В
                 C
                                                              L
                                                              U
40
          AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT
          TCCCTTTCTTTCACCACGACCCGTTTTTTCCCCCTATGTCACCTTGACTGGACATGTCGAA
               KKVVLGKKGDTVELTCTAS-
45
                                                        Ī
                         В
                            В
                         0
                            0
50
                         2 2
          CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA
          GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
55
                          0 F
                              H W K N S N Q I K I L G
```

```
В
                            S
              NBS
                           AA
              LAP
                     0
                           VU
                                             DA
                                         3
5
                           A9
              AN1
                                             2 1
                           26
              422
        ATEAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
            360
        TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
10
          Q G S F L T K G P S K L N D R A D S R R -
                                  S
                                         н
                  S
                                                      I D
                                         Ι
                                 BA
                MANAS
                                                      N D
15
                                 CU
                EVLUT
                                 L3
                CAASY
                                 18
                22461
         GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
20
         CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
          SLWDQGNFPLIIKNLKIEDS-
                              S
25
                             AMAM
                             VNUN
             В
                   N
                                                 Ε
                             AL9L
                   L
                             2161
                              II
         CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
30
                          .------ 480. .
         GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
          DTYICEVEDQKEEVQLLVFG-
                                   В
35
                                   S
                                                     T
                                   Ρ
         GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGGCAGAGCCTGACCCTGACCTTGG
40
         CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
          LTANSDTHLLQGQSLTLTL
45
             В
                                          S
             ES
                SC
                           D
                                          T
             AP
                TR
                           D
                                       N
                                       F
                NF
                           E
             N1
               11
             22
50
         AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
          SPPGSSPSVQCRSPRGKNI
```

```
BBH S B
                                                    BS
                                                    SC
                            MD
                                ASP
                                      A BSSGSC
                         M
                                                    TR
                                LPV
                                     L APTIAR
                         8
                            ND
                                                    NF
                                     U N1NACF
                                UBU
                                                NA
                         0
                            LE
                                                    11
                                122
                                      1 221111
                         2
                            11
         AGGGGGGGAAGACCCTCTCC3TGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
                                                         --+ 660
      601 ---
10
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
           G G K T L S V S Q L E L Q D S G T W T C -
          N
                                                     NV.
          NS
15
                                                       L
                                                     HA
                                   8
          LP
                                                       U
                                   0
          AH
          31
          GCACTGTCTTGCAGAACCAGAAGAAGATGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
20
             720
      661 ---
          CGTGACAGAACGTCTTGGTCTTCCTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           TVLQNQKKVEFKIDIVVLAF-
                HS
25
                         N
                AT
                EU
                         1
                31
          TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
30
         AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
                                                EFSFP-
             KASSIVYKKEG
                                         E Q V
35
                                           Ų
                            U
40
          CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
      78! -----
          GTGAGCGGAAATGTCAACTT+TCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
                                                       ER-
             AFTVEKLTGS
                                      G
                                         Ε
                                                   Q
45
                                                  В
                    P
                       N LN U
                                                   0
                    н
                       L ML 3
50
                       1 11 A
          GGGCTTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
                                       ------ 900
          CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
                             ITFDLK
                                                EVSVK-
            ASSSKSW
```

```
PS
            В
                  BS
                                          A H
                  SCADNPAD
            SM
            TA
                  TRYRLUUD
                                          UH
5
                  NFAAAN9E
                           U
            EE
                  11224161
            23
                   1 / //
        AACGGGTTACCCÁGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
     901 -----
        TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
10
          R V T Q D P K L Q M G K K L P L H L T L -
                                              BSS
             85
                                              SCAHM
                     D
             SC HS
15
                                              TRUAN
                               Ρ
                             N
                     D
             TR AT
                                              NF9EL
                               Н
             NF EU
                     Ε
                                              11631
             11 31
         TGCCCCÁGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
20
         ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
          PQALPQYAGSGNLTLALEAK-
                                 BS
                            S
25
                                                H D
                            F
                                 SC
                                                P D
                                 TR
                            A
                                                HE
                                                     U
                                 NF
                           N
                                 11
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
30
                                        1080
    1021 -----
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
          T G K L H Q E V N L V V M R A T Q L Q K-
35
                               PS.
                                       DF
                                          AM
                                                DE
                            ADNINDA
            V
                                                DS
                                                    L
                                          LN
                                       DA
                            VRLLUU
            ٨
                                                 EP
                                                    U
                                       EN
                                          UE
                            EMAAM9
                                       11
                                          11
                                                 11
                            224416
40
                             /////
         AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
                                         ------ 1143
     1081 -----
         TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGATTCGACTACGACTCGAACTTTG
          NLTCEVWGPTSPKLMLSLK-L-
                                                         DW
                                                         DS
                                                  N
          N
                                                         ET
                                                  L
                                                         12
                                                  1
                            1
50
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
                                                        ---- 1200
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
55
           ENKEAKVSKREKP
```

```
PS
                                                     Н
                                   н
                                            ADPA
                              D
                                   IA
                                                     I
5
                                            VRUU
                          0
                              D
                                A
                                   N
                              Ε
                                Ε
                                            AAM9
                                                     F
                          K
                                   F
                                            2216
                                                     1
                          1
                                             ///
          AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
10
      1201 -
                                                     ----- 1260
          TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                             LSDSG
                                           Q V L L E S N I -
15
                           S
                                  SA
                                      BHF BS
                                      SCHMAANXA
                                HNCP
                                                       RSD I A
                         ANA
                                PCRA
                                      PIUNYULHV
                         VLU
                                                        SCD N L
                                AIFL
                                      1ADLH3AOA
                         AA9
                                                        AAE D U
                         236
                                2111
                                      21211A421
                                                        111 3 1
20
                                        ////
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
      1261 -----
                                                      ----+ 1320
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
25
                      TWSTPVHADPE
               Ε
                       85
                                   SS
                                                  BS
               CHH
                       SC
                                HHNCF
                                        N
                                                 esc
          P
               DHA
                       TR
                                PGCRA
                                        U
                                                 BTR
                                                     U
         н
               4AE
                       NF
                                                 VNF
                                AAIFN
30
          1
               712
                       11
                                21111
                                                 111.
          CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
          GAAGTCGCGAGGACGGACCTGCGTAGGGCCGATACGTCGGGGTCAGGTCCCGTCGTTCCG
35
                              S
          DBHYHN4
                                                 MCN
                            HYNCN
                                         M
          RB45PLU
                            PNCRL
                                         N
                                                 NLDB
          AVECHA9
                            A_IFA
                                         L
                                                 LAED
40
          2132146
                            21114
                                                 1312
            11 11
          1381 -----
                                      ----- 1440
          45
                        BS
                                                 В
                                                        BS S
                        SC
                            F
                                             BN
                                                 S
                                                        SCDHA
                        TR
                                                 P
                                                        TRRAU
                        NF
                                          Ε
                                             N A
                                                 1
                                                        NFAE9
50
                        11
                                                        11236
         GTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCC
                                                    +---- 1500
         CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
55
```

```
8
                                                В
                 5
                                  DBS
                                                        HNC
                                                              ADNPA
5
                                  DAP
                                                        PCR
                                                              VRLUU
                                                        AIF
                                                              AAAV9
                                  EN1
                                  122
                                                        211
                                                              22416
         CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
10
                                                             ---- 1550
    1501
         GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
                                                    D
                    D
                                    Н
                                                        A
                    D
                                    A
                                                    D
                                                        L
                                                             N
15
                    Ε
                                    Ε
                                                    Ε
                                                        U
                                    3
                                                    1
                                                        1
                                                             1
         CTGCCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGACACC
                                                               --- 1620
         GACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCTGTGG
20
                                                        8
                     Н
                                                  P
                      I
                           MN
                                                       85
                                                               V
                                                  S
                                                       AP
                           AB
                           EO
                                                  T
                                                       N1
                                                               Ε
25
                                                       22
                                                               3
                           32
         TTCTCTCCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGAGCCCAAATCTTGTG
     1621 -
          30
                                                            S C
                                                                 D -
                                   BES
                                                 BS
                                                 SC HS
                        NS
35
                        LP
                                                 TR AT
                        FΑ
                                   1NF
                                                 NF EU
                                                 11 31
                               STGCCCAGGTAAGCCAGCCCAGGCCTCGCCCTCCAGCT
          ACALLASTCACACATGCCCAS
                                              ----- 174C
          TOTTTTCAGTGTGTACGGGTGGCACGGGTCCATTCGGTCGGGTCCGGAGCGGGAGGTCGA
              THTCPPCP
45
                                               S
                                                             S
                          8
                                           BS
                                                          HNC
                                           SC
                     BN
                                                   DHNA
                          SN F
                                           TR
                                                   RALU
                                                           PCR
                          PA 0
                                           NF
                                                   AEA9
                                                           AIF
                          1E K
                          21 1
                                           11
                                                   2346
                                                           211
50
          CAAGGCGGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCC
                                                          ----- 1800
          GTTCCGCCCTGTCCACGGGATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCCACGA
```

29

```
BS
                                               SC
                                D
                                         M
                                         N
                                               TR
                                                   B VLU B
                                D
                                               NF
                                                   0 AA9 0
                                         L
                                                   2 246 2
                                               11
5
           3
          GACACGTCCACCTCCATCTCTTCCTCAGCACCTGAACTCCTGGGGGGGACCGTCAGTCTTC
                                                                 --+ 1860
          CTGTGCAGGTGGAGGTAGAGAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCAGAAG
10
                                    APELLGGPS
                                        S
                                                   :5
                                             M. HMANNAC DM
                                                                  NS
                                        AN
                          S
                                                                  LP
                                        UL
                                             N PNVCLUR DS
                   N
                          T
15
                                             L ALAIA9F ET
                                                          E
                                                                  AH
                                        3A
                                                                  31
                                        A3
                                             1 2121461 12
     1861 -----
20
          GAGAAGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACG
                                         ISRTPEVTC
                           K D
                                    L M
                                                        RM
                                     DM
25
                                     DS
                                                        SA
                                                             N
                             N
                                          В
                                     ET
                                          0
                                                        AE
                                                             L
                             L
                                     12
          GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGC
30
                                                            ----- 1980
      1921 ---
          CACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCG
                              Ε
35
                                    FFN
                                                              R HNC
                                    N NSS
                                M
                                                   S
                                                              S PCR
                                ٨
                                    U: UFA
                                                           Ε
                                     4 DEC
                                                              1 211
                                     H 222
40
           GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGG
                                                                 --+ 2040
           CACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCC
45
                              TKPREEQYNSTYR
```

30

50

		НН							М		B: S(٠			,		R				
		GP	•						N		TF	₹							S				
5		AH	4						L		NF	•							A				
•		11							1	•	11	,							1				
			CCT	CAG	CGT	CCT	CAC	CG.	TCC	TGC	ACCA	GGA	CTO	GCT	GAA	TÇÇ	CAA	CCA	AGT	AÇA/	AGTG	:	
10	2041		CCA	GTC	GCA	GGA	GTC	GC	ACC	ACG	TGGI	CCT	GAC	CGA	сп	ACC	GTT	CC	CA.	IGT	TCACO	2100)
		٧	٧	\$	٧	L	T	٧	L	Н	Q	D	W	L	N	C	K	Ε	Y	K	C	-	
15	•										M	T A											
										• • •	1	1				- · -							
•	2101				- +							.			-+-						AGGT	2160)
20		П	CCA	GAG	STT (11	TCG	GGA	AGG	GTC	CCCC	GTA	GCT	CIT	TTG	GTA	GAG	СП	7(CTT	TCCA		
		K	٧	\$	N	K	A	L	P	Ā	P	I	Ε	K	T	I	S	K	A	K			
		A 1		P \$				S	1.1		N.					S							
25			DNNI RLLI					A U	HI	v.	N			HHN APA		BSAI GFU					D		
		- 1	AAAI	_				-	Ê		A			EAE		. I 91					D E		
			244					-	3	-	3			321		116	_				1		
			///	/ /		CTO		_				1 C 1				1		C 1 C	c c T	C T A	CCCT		
30	2161							A G G	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.AL/	4166	ALA	UAU) ((()	LAC		CIG	CCCI	2220	
	2.01	CC	CTG	GGCA	CCC	CAC	GC	TCC	CGC	TGT	TACC	TGT	CTC	CGG	CG/	\GC(GG	GTG	GGA	GAC	GGGA	2220	. •
					N									F			•	_					
		M	V		S	F						M.		N	A			B			RF		
35		N	A		P B	9						N		U	٧			8			5 0		
		Ļ	E 3		2		•					L		4	A		,	٧			A .		
		CA	_	TCAC	_	ו בסבר		CAA	ררז	ĆT	STCC	L Taci	A C C	.⊓ CC≱4	۱ د د د	l cor	A C A	T T	ACA	COT	1 1 CTAC		
	2221											+			• • • •			+				2280	1
40		CT	CTC	ACTO	GCG	ACA	ATG	GTT	GGA	CAC	AGG	ATG	TCC	CGT	CGC	CCT	TCT	TGG	TGT	CCA	CATG		
													C	n	P	Ð	F	D .	٥	v	v	_	

```
BS B
                                     BS
                     SS
                                     SC
                  AHNNECS
                                     TR
                  VPCCRRM
                                     NF
                  AAIIFFA
5
                                                   11 1
                                     11
                  1211111
                    11111
        2281
        10
                             TKNQVSLTCLV
                 SRDEL
                                                       В
15
                                                 P
                                                       1
                                              н
        AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC
        TTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTG
20
        KGFYPSDIAV
                                EWESNG
25
                              I
                                 M
                                                P
                                 В
                                                Н
                            LF
                                 0
                            1 1
                                 2
         AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG
                                                     --- 2460
30
     2401
         TTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGGATGTCGTTC
                                   DGSFFLYSK
                                S
35
                                              S
                                                       N
                                    MBX
                 S
                            NM
                            UB
                                    ABM
                                             SAN
                                    EVN
                            40
                                             31
                            H2
40
         CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT
                                                     ---+ 2520
     2461 -
         GAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTA
                                          S
45
```

32

50

5		S N M M HNC L B N PCR O L AIF 3 2 1 211
10	2521	GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTG 2580 CTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCATTTACTCAC E A L H N H Y T Q Y S L S L S P G K •
15	,	CXH FMA RAE 133
20	2581	CGACGGCCG
25		
30		
35		
40		₹
45		

Table 3

5			. 2			N U 4	N S P B		5 V	} '	N N L		H G A		DH RA AE 23	U 9				B S T X		
10	1	GCCT		+							+			-+-			+				- +	60
15		DB:	2 2		A U 9		D D E 1	ĺ	DHNA RALU AEA9 2346))	•			M N L		HM AN EL 31				S HNC PCR AIF 211		
20	61	CCGA	CAG	GTC	CCT			•						- + -							-+	120
25											_							W.	N	R	C	-
30		H I N F 1 GAGT	ccc	тт	TAG		B B V 1 CTT	GCT	TCT	GTO	F N U 4 H CCTC	CA.	ACTO	H A 1	H A E 2 CTC	CTC	CCA	F N U 4 H NGC	N L 1	D D E 1		
	121	CTCA	ccc	•	ATC	CGT	GAA	CGA.	AGA	CAC	GAC	GΠ	[GAC	CGC	GAG	GAG	GGT	CG	TCG	GTG	AG	180
35		٧	P	F	R	H	L	L	L	٧	L	Q	L	A	L	L	P	A	A	T	Q	-
40		B B V 1 ACCC		C 0 K	E C D K AGT	GGT	GCT	GGG	CAA	AAA	∆ GG(GGA ⁻	TACA	AGTG	GAA	1	GACC	:	R S A 1 TAC	A L U 1 AGC	TT	
	181	TCCC	 TTT	ĊΠ	TCA	CCA	CGA	ccc	GIT	111	rcc(CT	ATGI	CAC	cπ	GAC	TGO	SAC.	ATG	TCG	-+ AA	240
45		C	K	K	٧	٧	L	G	K	K	G	D	T	٧	Ε	L	T	C	T	A	S	-

50

```
M
                      9
                         В
                      C
5
                      2
        CCCAGAAGAAGAGCATACAATTCCACTGCAAAAACTCCAACCAGATAAAGATTCTGGGAA
                                      300
         GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
     241 ----
             KKSIQFHWKNSNQIKILGN-
10
                                           S
                8
                                           A
               NBS
                                               UH
                                           U
                             VU
                       0
               LAP
15
                                                DA
                                           3
                             AQ
                       K
               AN1
                                                2 1
                             26
               422
         ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
         TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
20
                                               RADSRR-
           QGSFLTKGPSKLND
                                    S
                   S
25
                                   BA
                                           I
                                               A
                 WANAS
                                               F
                                   CU
                                           N
                 BYLUT
                                   L3
                 DAA9Y
                                   1A
                 22461
         GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
30
                                 420
      361 --
         CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
                         N F P L I I K N L K I E D S -
35
                                 5
                               MAMA
                               VNUN
                     N
                                                    E
                               AL9L
40
                               2161
          CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
          GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
45
           D T Y I C E V E D Q K E E V Q L L V F G -
```

55

50

```
В
                                     S
5
        GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGG
        CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
                                           SLTLTLE-
10
          LTANSDTHLLQ
                                      CQ
             8
                BS
                           D
             BS
                SC
                                            T
                           D
                                   N
             AP
                TR
15
                NF
             N1
             22
                11
        AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
        TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
20
                            SVQCRSPRGKNIQ-
          SPPGSSP
                                               8
                                         BBH S
25
                                                      SC
                             MD
                                 ASP
                                                      TR
                         В
                             ND
                                 LPV
                                                      NF
                             LE
                                 UBU
                                      1 221111
                                 122
                                         / ///
         AGGGGGGGAAGACCCTCTCCGTGTCTCAGĆŤGGAGCTĆCÁĞĞATAGTGGCACCŤGGACAT
30
     601 ---
         TCCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
             GKTLSVSQLELQDSGTWTC-
35
          N
                                                      NM
         NS
                                                      HA
                                    8
         LP
                                                      EE
                                    0
         AH.
         31
         GÉACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
         CGTGACAGAACGTCTTGGTCTTCTTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
45
           TVLQNQKKVEFKIDIVVLAF-
```

36

```
HS
               AT
               EU
               31
5
         TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
      721 ----- 780
         AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
10
            KASSIVYKKEGEQVEFSFP-
                          U
15
         CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
                                     ----- 840
         GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
20
          LAFTVEKLTGSGELWWQAER-
                  Н
                     N LN U
25
                     L ML 3
                     1 11 A
         GGGCTTCCTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
      841 ----- 900
         CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
30
          ASSSKSWITFDLKNKEVSVK-
            В
                 BS
                     PS
            SM
                 SCADNFAD
                                        A H
35
            TA
                 TRVRLUUD
            EE
                 NFAAAV9E
                         U
                                       UH
            23
                 11224161
                  1 / //
         AACGGGTTACCCÁGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
40
         TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
          RVTQDPKLQMGKKLPLHLTL-
45
            BS
                                          855
            SC HS
                    D
                                           SCAHM
            TR AT
                    D
                           N
                             Ρ
                                           TRUAN
            NF EU
                    Ε
                             Н
                                          NF9EL
           11 31
                                           11631
50
         TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
                                         ----- 1020
         ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
                     QYAGSGNLTLALEAK-
55
```

```
S
                                  BS
                                  SC
                                                 H D
5
                                  TR
                            A
                            N
                                  NF
                                  11
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA.
10
     1021 ---
                                                       ---- 1080
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
                KLHQEVNLVVMRATQLQK-
15
            М
                             ADNNPA
                                        DF
                                           A٧
                                                 DE
            N
                             VRLLUU
                                        DA
                                           LN
                                                 DS
                             EVALAA
                                        ĒΝ
            L
                                           UL
                             224415
                                           11
                                                 11
20
                              11111
         AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
                                                        ---- 1140
         TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTTTG
25
           NLTCEVWG
                                 TSPKLMLSLKL-
                             T
                                                          DV
                                         Н
                                         P
          N
                             A
                                                   N
                                                          DS
                             Q
          L
                                                          ET
30
                                                          12
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCTG
     1141 -----
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
35
           ENKEAKVSKREKPV
                                                      NPE-
                                  Н
                         F
                             D
                                  IA
                                           ADPA
                                                    Ι
40
                         0
                             D
                                           VRUU
                             E
                               Ε
                                           AAY9
                                           2216
                                                    1
         AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
45
                                                        ---- 1260
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                  WQCLLSDSQQVLLESNI-
```

38

50

```
S
                                        BHF BS
                                    SA
                                                           RSD I A
                           ANA
                                  HNCP
                                        SGNMAANXA
                                                           SCD N L
                           VLU
                                  PCRA
                                        PIUNMULHV
                                                           AAE D U
5
                           AA9
                                  AIFL
                                        1ADLH3AOA
                                                           111 3 1
                           236
                                  2111
                                        21211A421
                                         1111
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
                                                 ----- 1320
      1261 ----
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
10
            KVLPTWSTPVH
               Ε
                        BS
                                    SS
                                          F
                                                     BS
                                                        F
15
                    F
               CHH
                        SC
                                  HHNCF
          Н
                                          N
                                                    BSC
          P
               OHA
                   0
                        TR
                                  PGCRA
                                          U
                                                        U
                                                    BTR
               4AE
                   K
                        NF
                                  AAIFN
          H
                                                    VNF
                                  21111
                                                    111
                                                         Н
20
          CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
     1321 ----- 1380
          GAAGTEGEGAGGAEGGAECTGEGTAGGGECGATACGTEGGGGTCAGGTECCGTEGTTECG
25
           DBHMHNA
                             HUNIN
                                            10
                                                    MNOW
                             PNCR_
           RBASPLU
                                                    NLDE
                                            ٨
           AVEOHA9
                             ALIFA
                                                    LAEG
           2132146
                             21114
                                                    1312
             // //
30
          TECGGGGCAGACGGAGAAGTGGGCCTCGGAGACGGGCGGGGTGAGTACGAGTCCCTCTCC
                              P
                         BS
                                                           BS S
                                                    В
35
                         SC
                              F
                                            M. B N
                                                    S
                                                           SCDHA -
                         TR
                                               AL
                                                           TRRAU ...
                         NF
                              M
                                               NA
                                                    1
                                                           NFAE9
                         11
                                                           11236
40
          GTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCC
     1441
                                               ----- 1500
          CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
                 В
                                   В
                                                        S
                                                               PS
45
                 S
                                 DBS
                                              S
                                                      HNC
                                                            ADNPA
                 P
                                              Ρ
                                  DAP
                                                      PCR
                                                            VRLUU
                 M
                                 EN1
                                                      AIF
                                                            AAAM9
                                  122
                                                       211
                                                            22416
                                                             1 11
50
          CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
     1501 ---
                                             ----- 1560
          GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
```

39

5	1561				GAC					AAA				-+-					M N L I I I I I I I	+	1620
10		L C	P	L • (T P	• K	A P	H T	P P	K (A P	K I	L S S	H F	S P L F		S A I	S R	D T	T P L	•
15						H I N F 1	N L	MM AB E0 32				-	,	DF DO EK 11	-					S F A N	
20	1621				.					CTCC GAGG	- + -			TCT	STCC	стс	- • -	TAG		+	1680
25									₩ N	5 C O R						\$	A	\$	A	P	•
3 0	1681	AAC TTG			*			- • -		TGAG	TAAT			1	714						
35		T	L	F	Ρ	L	٧	S	C	Ε	N :	S .									

Table 4

B PS S S DBS ADNPA D DHNA M HW HNC DAP VRLUU D RALU N AN PCR EN1 AAAW9 E AEA9 L EL AIF 122 22416 1 2346 1 31 211 GGCTCAGGTCCCTACTGGCTCAGGCCCCTGCCTCCCTCGGCAAGGCCACAATGAACCGGG 61 CCGAGTCCAGGGATGACCGAGTCCGGGGACGGAGGGAGCCGTTCCGGTGTTACTTGGCCC M N R G - M N R G - M N R G - M N R G - T B N HH N M D F V 4 AE A L E 1 GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC TCCAGGGAAAATCCGTGAACGAACGACGACGTGCAACTGGCGCTCCTCCCCAGCAGCCACTC TCCAGGGAAAATCCGTGAACGAACGAACGACGACTGCAACTGGCGCTCCTCCCCAGCAGCCACTC V P F R H L L L V L Q L A L L P A A T Q - B E E R A	
CGGACAAACTCTTCGTCGCCCGTTCTTTCTGCGTTCGGGTCTCCGGGACGGTAAAGACAC B PS S S S S S S S S S S S S S S S S S S	
DBS ADNPA D DHNA W HW HNC DAP VRLUU D RALU N AN PCR EN1 AAAV9 E AEA9 L EL AIF 122 22416 1 2346 1 31 211 / / // GGCTCAGGTCCCTACTGGCTCAGGCCCCTGCCTCCCTCGGCAAGGCCACAATGAACCGGG 61	50
CCGAGTCCAGGGATGACCGAGTCCGGGGACGGAGGGAGCCGTTCCGGTGTTACTTGGCCC M N R G - M N R G R G R GRAMATICEGTGAGGGGGGGGGG	
J B N HH N M D N B U HA UN D F V 4 AE 4 L E 1 1 1 H 12 H 1 1 GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC TCTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG V P F R H L L L V L Q L A L L P A A T Q - B E E R A	. 20
CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG V P F R H L L L V L Q L A L L P A A T Q - B E E R A	•-
B E E R A	80
V 0 0 1 A U 1 1	
AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTTCACCACGACCCGTTTTTTCCCCCTATGTCACCTTGACTGGACATGTCGAA G K K V V L G K K G D T V E L T C T A S -	40

55

5	241	CCCA		+			3 E	3 2 ATT			- + -						4 A A				- +	300
10		Q	K	K	S	I	Q	F	Н	W	K	N	5	N	Q	I	K	I	L	C	N	-
15		ATCA		B NBS LAP AN1 422 /		F C M 1) (TAA	S AA VU A9 26 /		ATC		A L U 1	1	S A U 3 A	U D 2	H H A 1	H I N F 1	.c.T.c	AA (
20	301	TAGT		+				•			-+-			+							- •	360
		Q	G	S	F	L	T	K	G	P	S	K	L	N	D	R	A	D	S	R	R	-
25				8 0	S ANA VLU AA9 246	S T Y					8 C L	S A U 3 A			H I N F	A F L 2				N F	D D E 1	
30	361	GAAG		•				•													- +	420
35		S	L	W	D	Q	G	N	F	P	L	I	I	K	N	L	K	I	Ε	D	\$	•
40			M B 0 2			M N L				S AMA VNU AL9 216	N IN IL					1		M A E 1				
	421	CAGA	TAC	TTA	CAT	CTGT	TGA/	AGT	GGA	GĞĀ	CCA	GAA	GGA	GGA	GGT	GCA.	ATT	GCT	AGT	GTT		480
45	•	GTCT	ATG	AAT	GTA	GACA	ACT	TCA	CCT	CCT	GGT	CIT	ССТ	CCT	CCA	CGT	TAA	CGA	TCA	CAA		
		D	T	Y	I	C	E	٧	Ε	D	Q	K	Ε	Ε	٧	Q	L	L	٧	F	C	•

```
В
                                    S
                                                     T
                                                     Y
         GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGG
     481 ----- 540
10
         CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
          LTANSDTHLLQCQSLTLTLE-
                BS
             В
                                       I
                SC
                           D
             BS
15
                           D
                                       Ν
                                          T
             AP
                                  N
                TR
                                          Y
                           Ε
             N1
                NF
                                          1
             22
                11
         AGAGCCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
20
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
          SPPGSSPSVQCRSPRGKNIQ-
                                       BBH S
                                               BN
25
                                     A BSSGSC
                                            S
                            MD
                                ASP
                         M
                                     L APTIAR
                                             T
                                LPV
                            ND
                         В
                                     U NINACE
                                UBU
                         0
                            LE
                                                    11
                                     1 221111
                                122
                                        AGGGGGGGAAGACCCTCTCCGTGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
30
                                                   ----- 660 .
      601 -----
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
          G G K T L S V S Q L E L Q D S G T W T C -
35
         N
                                                    NY
         NS
                                                    HA
                                  В
         LP
                                   0
         AH
         31
40
         GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
         CGTGACAGAACGTCTTGGTCTTCTTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           TVLQNQKKVEFKIDIVVLAF-
45
                HS
                         N
                           N
                AT
                EU
                31
50
         TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
         AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
           Q K A S S I V Y K K E G E Q V E F S F P -
55
```

```
U
        CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
        GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
          LAFTVEKLTGSGELWWQAER-
10
                      M FM A
                  Н
                                                 8
                  P
                      N LN U
                                                 0
15
                      L ML 3
                      1 11 A
        GGGCTTCCTCCTAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
     841 ----- 900
        CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
          ASSSKS WITF DLKNKE V S V K-
20
                      PS
            В
                  BS
                  SCADNPAD
                                          A H
            SM
                                          L P
                  TRYRLUUD
            TA
25
                                          UH
                  NFAAAM9E
            EE
                                          1 1
                  11224161
            23
                   1 | 11
        AACGGGTTACCCAGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
         TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
30
          RVTQDPKLQMGKKLPLHLTL-
                                             BSS
             BS
                                              SCAHY
             SC HS
                     D
35
                                              TRUAN
                     D
             TR AT
                                             NF9EL
             NF EU
                     Ε
                                              11631
             11 31
         TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
40
                                      ----- 1020
         ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
           PQALPQYAGSGNLTLALEAK-
45
                                 SC
                                 TR
                                               PD
                            A
                                                    L
                                 NF
                                               HE
                                                    u
                            N
                                 11
50
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
                                               -------- 1080
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
55
```

```
PS
                               ADNNPA
                                          DF
              N
                               VRLLUU
                                          DA
                                             LN
                                                    DS
                               PAAANS
                                                    ΕP
                                          EΝ
                                             UL
                                                       Ü
                               224416
                                          11
                                              11
                                                    11
                                11111
          AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
          TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTCGAACTTTG
            NLTCEVWGPTSPKLMLSLKL-
                               T
                                            Н
                                                             DM
15
           N
                              A
                                            Ρ
                                                             DS
                                                      N
                              Q
                                            A
                                                      Ļ
                                                             ET
                              1
                                            2
                                                             12
          TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCTG
20
          ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
           ENKEAKVSKREKPVWVLNPE-
                                    н
                                               PS
25
                              D
                                    IA
                                              ADPA
                                                       1
                           ٥
                              D
                                    NV
                                              VRUU
                                                      N
                              Ε
                                 Ε
                                   FA
                           K
                                              AAV9
                                                      F
                                   1 1
                                              2216
                                                      . 1
          AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
30
     1201 -----
                                                    ----- 1260°
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
           AGHWQCLLSDSGQVLLESNI-
35
                                       BHF BS
                                  SA
                           S
                                 HNCP
                                       SCNVAANXA
                                                         RSD I A
                          ANA
                                                         SCD N L
                                 PCRA
                                       PIUNVULHV
                          VLU
                                 AIFL
                                       1ADLH3AQA
                                                         AAE D U
                          AA9
                                       21211A421
                                 2111
                                                         111 3 1
                          236
40
                                  //
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGGTCCCGAGGGTGAGTACTAAG
     1261 -----
         AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
           KVLPTWSTPVHADPE
45
                                   SS
                                                   BS
               Ε
                       SC
                                 HHNCF
                                                  BSC
               CHH
         н
                       TR
                                 PGCRA
               DHA
                   0
                                                  BTR
50
               4AE
                       NF
                                 AAIFN
                                                  VNF
         Н
                   . K
                                                       4
               712
                       11
                                 21111
                                         Н
                   1
         1
                                                  111
                                                       H
         CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
     1321 --
55
         GAAGTCGCGAGGACGGACCTGCGTAGGGCCGATACGTCGGGGTCAGGTCCCGTCGTTCCG
```

```
5
5
                                                        MNDW
                                HMNCN
           DBHMHNA
                                                        NLD5
                               PNCRL
           RBABPLU
                                                        LAEC
                                ALIFA
            AVECHA9
                                                        1312
                                21114
            2132146
                                  //
           AGGÉCEÉGTETGEETETTEACCEGGAGCETETGECEGCECEACTEATGETEAGGGAGAGG
10
      1381 -
           BS S
                                                        8
                            BS
15
                                                                SCDHA
                                 F
                                                    BN
                                                        S
                            SC
                                                                TRRAU
                            TR
                                                                NFAE9
                                                    N
                                                        1
                            NF
                                                                 11236
                            11
           GTCTTCTGGCTTTTTCCCÁGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCÁGGĆC
20
                                                                        1500
           CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
                                                                     PS
                                                   В
                                                              S
                                       В
                   В
                                                                  ADNPA
25
                                                   S
                                                            HNC
                                     DBS
                   S
                                     DAP
                                                      N
                                                            PCR
                                                                  VRLUU
                                                   M
                                                            AIF
                                                                  AAAV9
                                     EN1
                                                                  22415
                                                            211
                                     122
           CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
30
                                                                 ---- 1560
      1501 ----
           GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
                                                        D
                      D
35
                                                                 N
                                                        D
                                                            L
                                       A
                      D
                                                            U
                                       Ε
                       Ε
           CTGCCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTC¶CTCAGCTCGGACACC
       1561 -
            GACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCTGTGG
40
                         Н
                                                      BP
                                                                  AN
                                                              DE
                         I
                           M
                                                      85
                                                              DS
                                                                  LU
                         N
                            N
                              AB
                                                              EP
                                                                  U4
45
                              E0
                                                      VT
                                                              11
                                                                  1H
                               32
                                                      11
            TTCTCTCCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGTGATTGCTGAGCTGC
                                                                ----- 1680
            AAGAGAGGAGGGTCTAAGGTCATTGAGGGTTAGAAGAGAGACGTCACTAACGACTCGACG
50
                                                       VIAELP-
```

```
F
           В
                                0
                                   D
           DA
5
           2 1
         CTCCCAAAGTGAGCGTCTTCGTCCCACCCCGCGACGGCTTCTTCGGCAACCCCCGCAAGT
                                              _____ 1740
    1681 ---
         10
                                    D
                                      G
                                         FFGN
                               P
                                 R
                                                       BSF
                                        S
                                            H
                     BS
                                                       SMC N
                                               В
                                       HNC
                                            I
                     SC H
                                                       TNR U
                                               В
                                       PCR
                                            N
                     TR A
            L
15
                                                       NLF 4
                                       AIF
                     NF E
            U
                                                       111 H
                                       211
                     11 3
            1
         CCAAGCTCATCTGCCÁGGCCACGGGTTTCAGTCCCCGGCAGATTCAGGTGTCCTGGCTGC
         GGTTCGAGTAGACGGTCCGGTGCCCAAAGTCAGGGGCCGTCTAAGTCCACAGGACCGACG
20
               ICQATGFSPR
                                          ٥
                                             I
                                                    S W
                                                             H
                                        S
                                          BS
            В
25
                                                             I
                                                   D
                                       AA
                                          SCM
                              AM
            5
                      HH
         NH
                                                             N
                                          TRN
                                                   D
                                                        A
                                       VU
                      PG
                              HA
         UH
                                                   Ε
                                                        Ε
                                          NFL
                              ΑE
                                       A9
                      HA
         DA
                                                        3
                              23
                                       26
                                          111
         21
         GCGAGGGGAAGCAGGTGGGGTCTGGCGTCACCACGGACCAGGTGCAGGCTGAGGCCAAAG
30
                                                          ---- 1855
         CGCTCCCCTTCGTCCACCCCAGACCGCAGTGGTGCCTGGTCCACGTCCGACTCCGGTTTC
                                          Q V Q A E A K E -
                          SCVTTD
                    V G
35
                             В
             SS
              AAHNABS
                                       н
                             SM
             UUALPAP
                                       Н
                             EE
             99EAAN1
40
                             23
              6634122
         AGTCTGGGCCCACGACCTACAAGGTGACCAGCACACTGACCATCAAAGAG....
                                                           1910
     1861 --
         TCAGACCCGGGTGCTGGATGTTCCACTGGTCGTGTGACTGGTAGTTTCTC....
45
           S-GPTTYKVTSTLTIKE....
```

55

```
Table 5
                         S
                                                 DHA
                                  B
                                                 RAU
                                      N
                                                 AE9
                                      L
                                                 236
                                  1
                                      1
10
           GCCTGTTTGAGAAGCAGCGGGCAAGAAGACGCAAGCCCAGAGGCCCTGCCATTTCTGTG
           CGGACAAACTCTTCGTCGCCCGTTCTTTCTGCGTTCGGGTCTCCGGGACGGTAAAGACAC
                                  S
                                                               S
                   PS
              R
15
                                                             HNC
             DBS ADNPA
                           D
                               DHNA
                                               M
                                                   HM
                                                   AN
                                                             PCR
             DAP VRLUU
                               RALU
                                                   EL
                                                             AIF
             EN1 AAAM9
                               AEA9
                               2346
                                                   31
             122 22416
                                                             211
20
           GOCTCAGGTCCCTACTGGCTCAGGCCCCTGCCTCCCTCGGCAAGGCCACAATGAACCGGG
           CCGAGTCCAGGGATGACCGAGTCCGGGGACGGAGGGAGCCGTTCCGGTGTTACTTGGCCC
                                                           NRG-
25
           I
                         8
                                               HH
                                                               D
                         В
                                     U
                                               HA
                                                               D
                                               AE
                                                               E
30
                                               12
                                                         H 1
           GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC
       121 ---
                                                          ----- 180
           CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG
35
                       HLLLVLQLALLPA
             8
                 Ε
                   Ε
             В
                 C
                   C
                                                          S
                                                              L
             ٧
                 0
                   0
                                                              U
40
           AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGATACAGTGGAACTGACCTGTACAGCTT
           TCCCTTTCTTTCACCACGACCCGTTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA
45
                                       D
                                          TVELTC
                         В
                            В
                         0
                            0
50
                GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
55
                  K S I Q F H
                                            NQIKILGN-
```

5				N2 LA: AN: 42:	P 1		F 0 K		AA VU A9 26				A L U		S A U 3 A	F N U D 2	H H A	H I N F 1				
10	301		AGG(•	ICTT AGAA		.			- + -			+		AGC		+			- •	360
15	·	Q	C	S	F	L	T	K	G	P	S	K	L	N	D	R	A	D	S	R	R	-
				E	ANA BVLU DAAS 2246	NS JT PY					B C L	U 3			H I N F	A F L				N F	D D E 1	
25	361	CTT					AGG TCC	AAA			- + -			*		TCT AGA/		.			-+	420
		\$	L	W	D	Q	G	N	F	Ρ	L	I	I	K	N	L	K	I	Ε	D	S	-
30			B 0 2			M N L			,	S AYA VNU AL9 216	Y N L							M A E 1			·	٠
35	421	GTC1		+				• •		GGA	- + -			+				.			- +	480
		D	T	Y	I	C	Ε	٧	Ε	D	Q	K	Ε	Ε	¥	Q	L	L	٧	F	G	•
40					٠							8 S P M 1							S T Y			
45	481			+				•		• • • •	- +	CAC		- • •				• •		• • •	- •	540
		CTAA						٠														
50		L	Ť	A	N	5	D	T	Н	L	L	Q	G	Q	S	L	T	L	T	L	Ε	•

```
В
                 BS
                                           I
              BS
                 SC
              AP
                 TR
                                     N
                             E
              NI
                 NF
                                               Υ
5
                             1
                                     1
                                           1
                                               1
              22 11
         AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
      541 --
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
10
           SPPGSSPSVQCRSPRGKNIQ-
                                           BBH S B
                                                         BS
                                         A BSSGSC
                                                 SBN
                                   ASP
                                                         SC
                              MD
                                                 T
                                   LPV
                                        L APTIAR
                                                    AL
                                                         TR
                           В
                              ND
15
                                        U NINACF
                                                X
                                                    N A
                                                         NF
                           0
                              LE
                                   UBU
                                         1 221111
                           2
                              11
                                   122
                                            | |||
         AGGGGGGGAAGACCCTCTCCGTGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
                                                        ----- 660
      601 --
20
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
           G G K T L S V S Q L E L Q D S G T W T C -
          N
                                                         NV
          NS
25
                                      В
                                                         HA
         LP
                                      0
                                                         EE
                                                             U
         AH
          31
          GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
30
      661
          CGTGACAGAACGTCTTGGTCTTCTTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           T V L Q N Q K K V E F K I D I V V L A F-
                 HS
35
                           N
                              N
                 AT
                 ΕU
                 31
                           1
          TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
40
      721 -
          AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
            Q K A S S I V Y K K E G E Q V E F S F P -
45
                                                      N
                              U
                                               1
          CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
50
          GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
                 FTVEKLTGSGELWWQAER-
```

```
S
                                               В
                  F
                                               0
5
                                               2
                  1
                     1 11 A
        - GGGCTTCCTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
         CCCGAAGGAGGATCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
10
          ASSSKSWITFDLKNKEVSVK-
            В
                 BS
                     PS
                 SCADNPAD
            SW
                                        A H
                 TRVRLUUD
                                        L P
            TA
15
            ΕE
                 NFAAAW9E
                          U
                                        UH
            23
                 11224161
                          1
                  1111
         AACGGGTTACCCAGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
                                    ----- 960
20
         TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
          RVTQDPKLQMGKKLPLHLTL-
                                           BSS
            BS
25
            SC HS
                                           SCAHW
                    D
                           М
                              н
          M
          N TR AT
                    D
                                           TRUAN
                           N
            NF EU
                                           NF9EL
                    Ε
                                           11631
            11 31
30
         TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
     961 ----- 1020
        ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
            QALPQYAGSGNLTLALEAK-
35
                          S
                               BS
                          F
                               SC
                                             H D
                               TR
                                             P D
                                                 L
                               NF
                                             HE
                          N
                                                 U
40
                               11
                                             1 1
                                                 1
        AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
    1021 -----
                                       +----- 1080
        TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
45
          TGKLHQEVNLVVMRATQLQK-
```

51

50

```
PS
                                        S
                                       DF
                                          AM.
                                                DE
                            ADNNPA
                                                DS
                            VRLLUU
                                       DA
                                          LN
                                                 EP
                                                    U
                                       EN
                                          UL
                            EMARAA
                                                 11
                                       11
                                          11
                            224416
        AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCTAAGCTGATGCTGAGCTTGAAAC
                                                 ------ 1140
    1081 -----
        TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTCGAACTTTG
10
                              PTSPKLWL
              TCEVW
                                                  M
                                                         DM
                            T
                                         н
                                                         DS
                                         P
                                                  N
                            A
         N
15
                                                         ET
                                                  L
                            Q
         L
                                                         12
                            1
         1
        TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
    1141 ---
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
20
          ENKEAKVSKREKPVWVLNPE-
                                            PS
25
                                           ADPA
                                                    I
                            D
                                  IA
                                           VRUU
                                                    N
                         0
                            D
                               A
                                  NV
                                                    F
                                           AAV9
                                  F
                             E
                               Ε
                                   A
                         K
                                           2215
                                  1
30
         AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGCACAGGTCCTGCTGGAATCCAACA
                                          1260
     1201 -----
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
               wwqclls DSGQVLLESNI-
35
                                                           В
                                     BHF BS
                          S
                                 SA
                                                           SH
                                      SCNMAANXA
                               HNCP
                         ANA
                                                           PP
                                      PIUNMULHV
                         VLU
                               PCRA
                                                           1H
                                AIFL
                                      1ADLH3AOA
                         AA9
40
                                      21211A421
                         236
                                2111
                                       ////
         TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTGTGCCC
         AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCACACGGG
45
           KVLPTWSTPVHADPE
```

52

50

```
HNC
         MF
                              DHNA
                       SC
                                     PCR
          AO
                       TR
                              RALU
                                     AIF
                       NF
                              AEA9
5
          EΚ
                              2346
                                     211
                       11
         11
         TAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTGACACGTCCACCTCCATCT
         ATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCCACGACTGTGCAGGTGGAGGTAGA
10
                          BS.
                                 S
                             M ANA M
                          SC
                                                    N
                             B VLU B
                          TR
                    N
          N
            D
                          NF
                             D AA9 0
15
                              2 246 2
                          11
         CTTCCTCAGCACCTGAACTCCTGGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA
         GAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCAGAAGGAGAAGGGGGGTTTTGGGT
20
                APELLGGPSVFLFPPKPK-
                              SS
                    S
                                           NS
                        M HVANNAC DM M
                    AN
25
                                           LP
                        N PNVCLUR DS A
                    UL
                        L ALAIA9F ET E
                                           AH
                    3A
                                           31
                    A3
                        1 2121461 12 3
                           1 1 11
          AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC
30
          TCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACTCGG
                     I S R T P E V T C V V V D V S H -
                                       M
                                   RM.
35
                 DM
                                       N
                 DS
                      В
                                       L
                  ET
                      0
                  12
          ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA
40
      1501 ----- 1560
          TGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGT
            EDPEVKFNWYVDGVEVHNAK-
45
                 F FN
                                       R HNC HH
                              R
              M
                 N NSS
                                       S PCR GP
                              S
              N
                 U UPA
                                       A AIF AH
                 4 DBC
                                       1 211 11
                 H 222
50
           AGACAAAGCCGĆGGGAGGAGCAGTACAACAGCACGTACCGGGTGGTCAGCGTCCTCACCG
              1520
          TCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCCCACCAGTCGCAGGAGTGGC
              KPREEQYNSTYRVVSVLTV-
55
```

```
85
                  SC
5
                  TR
NF
                  11
          TCCTGCACCÁGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC
10
                                                            ----- 1680
     1621 ---
          AGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGG
                            NGKEYKCKVS
                                                                   5
15
                                                  ADNNPMA
                  V
                      T
                                                                   U
                                                   VRLLUNU
                  N
                      A
                                                   AAAAML9
                      Q
20
          TCCCAGCCCCCATCGAGAAACCATCTCCAAAGCCAAAGGTGGGÁCCCGTGGGGTGCGAG
                                                     _____ 1740
           AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCACCCTGGGCACCCCACGCTC
25
                    IEKTISKAK
                                                            N
                                  S
                                                            S
                                                               R
                          HHN
                                BSAH
            H M
                  N
                                                            P
                                                               S
                          APA
                                GFUA
                  L
30
                                                     Ε
                                LI9E
                          EAE
            EL
                   A
                                1163
                          321
            3 1
           GGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCCTGAGAGTGACCGCTGTACCA
                                                          .---- 1800
           CCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGGACTCTCACTGGCGACATGGT
35
                                                                   SS
                           F
                                                               AHNNCC
                                               RF
                                      В
                           N
                                                               VPCCRR
                                               S 0
                                      В
                           U
                      N
                                                               AAIIFF
40
                                      ٧
                                                A K
                            4
                                                               121111
           ACCTCTGTCCTACAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG
                                                            _____ 1850
       1801 ----
            TGGAGACAGGATGTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCC
45
                                      PQVYTLPPSRD-
                                R E
```

55

```
BS B
                           BS
                           SC
                                           SC S
                     0
                           TR
                           NF
                                           11 1
                           11
           ATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCG
                                                               --- 1920
      1861 ----
           TACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGTTTCCGAAGATAGGGTCGC
10
             ELTKNQVSLTCLVKGFYPSD-
                                      N
                                                В
15
                                      U
                                      Н
           ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
      1921 ---
           TGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAG
20
             I A V E A E S N G Q P E N N Y K T T P P -
                                                          В
                                                          S
                                       Н
                                              MA
                 N I
25
                      В
                                              NL
                 N N
                 1 1
                      2
           CCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
30
           GGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGT
             V L D S D G S F F L Y S K L T V D K S R -
35
                NV
                         VBX
                                    NF
                         ABM
                UB
                                    AN
                40
                         EVN
                                    31
                H2
                         211
           GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
           CCACCGTCGTCCCCTTGCAGAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGA
                  Q Q N V F S C S V M H E A L H N H Y -
                                     S
                                                    CXH
                                   HNC
                             В
                                   PCR
                                                    FMA
                                 N
                                                    RAE
                                   AIF
                                                    133
50
           ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGCGACGGCCG
       2101 --
           TGTGCGTCTTCTCGGAGAGGGGACAGAGGCCCATTTACTCACGCTGCCGGC
55
             TQKSLSLSPGK •
```

Example 2: Preparation of the Fusion Proteins from Supernatants of COS Cells

COS cells grown in DME medium supplemented with 10% Calf Serum and gentamicin sulfate at 15 µg/ml were split into DME medium containing 10% NuSerum (Collaborative Research) and gentamicin to give 50% confluence the day before transfection. The next day, CsCl purified plasmid DNA was added to a final concentration of 0.1 to 2.0 µg/ml followed by DEAE Dextran to 400 µg/ml and chloroquine to 100 µM. After 4 hours at 37 °C, the medium was aspirated and a 10% solution of dimethyl sulfoxide in phosphate buffered saline was added for 2 minutes, aspirated, and replaced with DME/10% Calf Serum. 8 to 24 hours later, the cells were trypsinized and split 1:2.

For radiolabeling, the medium was aspirated 40 to 48 hours after transfection, the cells washed once with phosphate buffered saline, and DME medium lacking cysteine or methionine was added. 30 minutes later, ³⁵S-labeled cysteine and methionine were added to final concentrations of 30-60 µci and 100-200 µci respectively, and the cells allowed to incorporate label for 8 to 24 more hours. The supernatants were recovered and examined by electrophoresis on 7.5% polyacrylamide gels following denaturation and reduction, or on 5% polyacrylamide following denaturation without reduction. The CD48₇1 protein gave the same molecular mass with or without reduction, while the CD4E₇1 and CD4H₇1 fusion proteins showed molecular masses without reduction of twice the mass observed with reduction, indicating that they formed dimer structures. The CD4 igM fusion proteins formed large multimers beyond the resolution of the gel system without reduction, and monomers of the expected molecular mass with reduction.

Unlabeled proteins were prepared by allowing the cells to grow for 5 to 10 days post transfection in DME medium containing 5% NuSerum and gentamicin as above. The supernatants were harvested, centrifuged, and purified by batch adsorption to either protein A trisacryl, protein A agarose, goat anti-human IgG antibody agarose, rabbit anti-human IgM antibody agarose, or monoclonal anti-CD4 antibody agarose. Antibody agarose conjugates were prepared by coupling purified antibodies to cyanogen bromide activated agarose according to the manufacturer's recommendations, and using an antibody concentration of 1 mg/ml. Following batch adsorption by shaking overnight on a rotary table, the beads were harvested by pouring into a sintered glass funnel and washed a few times on the funnel with phosphate buffered saline containing 1% Nonidet P40 detergent. The beads were removed from the funnel and poured into a small disposable plastic column (Quik-Sep QS-Q column, Isolab), washed with at least 20 column volumes of phosphate buffered saline containing 1% Nonidet P40, with 5 volumes of 0.15 N NaCl, 1 mM EDTA (pH 8.0), and eluted by the addition of either 0.1 M acetic acid, 0.1 M acetic acid containing 0.1 M NaCl, or 0.25 M glycine-HCl buffer, pH 2.5.

Example 3: Blockage of Syncytium Formation by the Fusion Proteins

Purified or partially purified fusion proteins were added to HPB-ALL cells infected 12 hours previously with a vaccinia virus recombinant encoding HIV envelope protein. After incubation for 6-8 more hours, the cells were washed with phosphate buffered saline, fixed with formaldehyde, and photographed. All of the full-length CD4 immunoglobulin fusion proteins showed inhibition of syncytium formation at a concentration of 20 µg/ml with the exception of the 4H₇1 protein, which was tested only at 5 µg/ml and showed partial inhibition of syncytium formation under the same conditions.

Example 4: Chromium Release Cytolysis Assay

The purified fusion proteins were examined for ability to fix complement in a chromium release assay using vaccinia virus infected cells as a model system. Namalwa (B cell) or HPB-ALL (T cell) lines were infected with vaccinia virus encoding HIV envelope protein, and 18 hours later were radiolabeled by incubation in 1 mci/ml sodium ⁵¹chromate in phosphate buffered saline for 1 hour at 37°. The labeled cells were centrifuged to remove the unincorporated chromate, and incubated in microtiter wells with serial dilutions of the CD4 immunoglobulin fusion proteins and rabbit complement at a final concentration of 40%. After 1 hour at 37°, the cells were mixed well, centrifuged, and the supernatants counted in a gamma-ray counter. No specific release could be convincingly documented.

Example 5: Binding of the CD4Ey1 Protein to Fc Receptors

Purified CD4E₇1 fusion protein was tested for its ability to displace radiolabeled human IgG1 from human Fc receptors expressed on COS cells in culture. The IgG1 was radiolabeled with sodium ²⁵ iocide using 1 mci of iodide, 100 µg of IgG1, and two idobeads (Pierce). The labeled protein was separated from unincorporated counts by passage over a Sephadex G25 column equilibrated with phosphate buffered saline containing 0.5 mM EDTA and 5% nonfat milk. Serial dilutions of the CO4E₇1 fusion protein or unlabeled IgG1 were prepared and mixed with a constant amount of radiolabeled IgG1 tracer. After incubation with COS cells bearing the FcRI and RcRII receptors at 4°C for at least 45 minutes in a volume of 20 µl. 200 µl of a 3:2 mixture of dibutyl to dioctyl phthalates were added, and the cells separated from the unbound label by centrifugation in a microcentrifuge for 15 to 30 seconds. The tubes were cut with scissors, and the cell pellets counted in a gamma-ray counter. The affinity of the CD4E₇1 protein for receptors was measured in parallel with the affinity of the authentic IgG1 protein, and was found to be the same, within experimental error.

15

Example 6: Stable Expression of the Fusion Construct pCD4E₇1 in Baby Hamster Kidney Cells

Twenty-four hours before transfection. 0.5 x 10⁶ baby hamster kidney cells (BHK; ATCC CCL10) were seeded in a 25 cm² culture flask in Dulbecco's modified Eagle's medium (DMEN) containing 10% of fetal calf serum (FCS). The cells were cotransfected with a mixture of the plasmids pCD4E₇1 (20 µg), pSV2dhfr (5 µg; Lee et al., Nature 294:228-232 (1981)) and pRMH140 (5 µg, Hudziak et al., Cell 31:137-146 (1982)) according to a modified calcium phosphate transfection technique as described in Zettlmeissl et al. (Behring Inst. Res. Comm. 82:26-34 (1988)). 72 h post-transfection, cells were split 1:3 to 1:4 (60 mm culture dishes) and resistant colonies were selected in DMEM medium containing 10% FCS, 400 µg/ml G418 (Geneticin, Gibco) and 1 µM methotrexate (selection medium). The medium was changed twice a week. The resistant colonies (40-100/transfection) appeared 10-15 day post-transfection and were further propagated either as a mixture of clones (i.e., BHK-NK1) or as individually isolated clones. For the determination of the relative expression levels, clone mixtures or individual clones were grown to confluency in T25 culture flasks.

30 washed twice with protein-free DMEM medium, and incubated for 24 h with 5 ml protein-free DMEM medium. These media were collected and subjected to a human lgG specific ELISA in order to determine the relative expression levels of the CD4-lgG1 fusion protein CD4E₇1. For further analysis an individual clone (BHK-UC3) was chosen due to its high relative expression levels.

35

Example 7: Detection of the CD4E₇1 Protein in Culture Supernatants

For ³⁵S methionine labeling of cells, the clone BHK-UC3 and untransfected BHK cells (control) were grown to confluency in T25 culture flasks and subsequently incubated for two hours in HamF12 medium without methionine. Labeling was achieved by incubating 24 h in 2.5 ml of the same medium containing 100 µCi ³⁵S methionine (1070 Ci/mmole, Amersham). For the preparation of cell lysates, the labeled cells were harvested in 1 ml of phosphate buffered saline, pH 7.2 (PBS) and lysed by repetitive freezing and thawing. Cleared lysates (after centrifugation 20000 rpm, 20 min) and culture supernatants were incubated with Protein A-Sepharose (Pharmacia) and the bound material was analyzed on a 10% SDS-Protein A-Sepharose (Pharmacia) and the bound material was analyzed on a 10% SDS-gel according to Laemmli (Nature 227:680-685 (1970)), which was subsequently autoradiographed. A specific band of about 80 KDa can be detected only in the supernatant of clone BHK-UC3, which is absent in the lysate of clone BHK-UC3 and in the respective controls.

50

Example 8: Purification of the Protein CD4E₇1 from Culture Supernatants

In order to demonstrate that the fusion protein coded by the plasmid pCD4E₇1 can be obtained in high quantities, the clone BHK-UC3 was grown in 1750 cm² roller bottles in selection medium (500 ml). Confluent monolayers were washed twice with protein-free DMEM medium (200 ml) and further incubated for 48 h with protein-free DMEM medium (500 ml). The conditioned culture supernatants (1-2 l) and respective supernatants from untransfected BHK cells were cleared by centrifugation (9000 rpm, 30 min) and microfiltered through a 0.45 µm membrane (Nalgene). After addition of 1% (v/v) of 1.9 M Tris-HCl buffer,

pH 8.6, the conditioned medium was absorbed to a Protein A-Sepharose column equilibrated with 50 mM Tris-HCl pH 8.6 buffer containing 150 mN NaCl (4°C). The loaded column was washed with 10 column volumes of equilibration buffer. Elution of the CD4-lgG1 fusion protein CD4E₇1 was achieved with 0.1 M sodium citrate buffer, pH 3, followed by immediate neutralization of the column efflux to pH 8 by Tris-base. The peak fractions were pooled, and the pool was analyzed on a Coomassie blue stained SDS-gel resulting in a band of the expected size (80 KDa), and which reacted with a polyclonal anti-human lgG heavy chain antibody and a mouse monoclonal anti-CD4 anti body (BMA040, Behringwerke) in Western Blots. The yields of purified fusion proteins obtained by the given procedure is 5-18 mg/24 h/l culture supernatant. The respective value for a BHK clone mixture (about 80 resistant clones; BHK-NK1) as described above was 2-3 mg/24 h/l.

Example 9: Physical and Biological Characterization of the CD4Ey1 Fusion Protein

As proven by SDS-electrophoresis on 10-15% gradient gels (Phast-System, Pharmacia) under non-reductive conditions, the CD4E γ 1 fusion protein migrates at the position of a homodimer (about 160 KDa) like a non-reduced mouse monoclonal antibody. This result is supported by analytical equilibrium ultracentrifugation, where the fusion protein behaves as a homogeneous dimeric molecule of about 150 KDa. The absorbance coefficient of the protein was determined as $A_{280} = 18$ cm²/mg using the quantitative protein determination according to Bradford (Anal. Biochem. 72:248-254 (1976)).

The CD4E_γ1-fusion protein shows specific complex formation with a solubilized βgal-gp120 fusion protein (pMB1790; Broker et al., Behring Inst. Res. Commun. 82:338-348 (1988)) expressed in E. coli. In this protein (110 KDa), a major part of the HIV gp120 protein (Val₄₉-Trp₆₄₆) is fused to β-galactosidase (amino acids 1-375). In a control experiment a 67-KDa β-gal-HIV 3 orf fusion protein (βgal1-375; 3 orf Pro14-Asp123) showed no complex formation. En these experiments, the CD4E_γ1-protein was incubated with the respective fusion protein in molar rations of about 5:1. The complex was isolated by binding to Protein A-Sepharose and the Protein A-Sepharose bound proteins--together with relevant controls--were analyzed on 10-15% gradient SDS-gels (Phast-System, Pharmacia).

The CD4E₇1 fusion protein binds to the surface of HIV (HIV1/HTLV-IIIB) infected cultured T4-lymphocytes as determined by direct immunofluorescence with fluorescein-isothiocyanate (FITC) labeled CD4E₇1 protein. It blocks syncytia formation in cultured T4-lymphocytes upon HIV infection (0.25 TCID/cell) at a concentration of 10 µg/ml. Furthermore, HIV-infected cultured T4-lymphocytes (subclone of cell line H9) are selectively killed upon incubation with CD4E₇1 in the presence or absence of complement: To a highly (>50%) HIV infected culture of T4-lymphocytes (10⁶ cells/ml) 50, 10 or 1 µg/ml CD4E₇1 fusion protein was added in the presence or absence of guinea pig complement. Cells were observed for specific killing by the fusion protein, which is defined by the percentage of killed cells after 3 days in relation to viable cells in the culture at the beginning of the experiment corrected by the values for unspecific killing observed in control cultures, lacking the CD4E₇1 fusion protein (Table §, Experiment I). Surprisingly, addition of CD4E₇1 protein to the infected T4 cells in the absence of complement resulted in similar specific killing rates as in the presence of complement (Table 5, Experiment II). This result demonstrates a complement independent cytolytic effect of CD4Ey1 on HIV infected T-lymphocytes in culture.

Table 5

No. Experiment	Assay System	Specific Killing (%)
II	non-infected T4-cells + 50 µg/ml CD4E ₇ l + Compl. infected T4-cells + 50 µg/ml CD4E ₇ l + Compl. infected T4-cells + 10 µg/ml CD4E ₇ l + Compl. infected T4-cells + 1 µg/ml CD4E ₇ l + Compl. infected T4-cells + 10 µg/ml CD4E ₇ l + Compl. infected T4-cells + 10 µg/ml CD4E ₇ l + Compl.	0.7 35.1 25.1 25 49.9 69.4

Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed with any wide range of equivalent parameters of composition, conditions, and methods of preparing such fusion proteins without departing from the spirit or scope of the invention or any embodiment thereof.

Claims

- A fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof.
 - 2. The fusion protein gene of claim 1, wherein the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

10			
		CAATGAACCGG	
		-+ 120	
15	;	GTTACTTGGCCC	
,3		GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	
	121		
		CTCACCCAAAATCCCTCAACCAACCAACCAACCAACCAA	180
20		CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG	
		AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT	
	181		240
		TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA	
25			
		CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA	
	241		300.
		GGGTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	300.
30		The state of the s	
		ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA	
	301		360
		TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	
35			
		GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT	
	361		420
		CTTCGGAAACCCTGGTTCCTTTGAAGGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	
40			
		CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG	
	421		480
45		GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC	
		GATTGACTGCCAACTCTGACACCCACCTGCTTC	
	481		
50		CTAACTGACGGTTGAGACTGTGGGTGGACGAAG	
		· · · · · · · · · · · · · · · · · · ·	

59

or a degenerate variant thereof, or the following DNA sequence:

CAATGAACCGGG

GTTACTTGGCCC GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG 10 AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA 15 CCCAGAAGAAGACATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA 241 ------ 300 GGGTCTTCTCCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT 20 ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT 25 GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA 30 CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG CTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTACGTTAACGATCACAAGC 35 GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTĞACCCTGACCTTGG 40 CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC 45 TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG AGGGGGGAAGACCCTCTCCGTGTCTCAG 601 -----50 TCCCCCCTTCTGGGAGAGGCACAGAGTC

or a degenerate variant thereof.

The fusion protein gene of claim 1 or 2, characterized in that said immunoglobulin chain is of the class IgM, IgG1 or IgG3.

- 4. A fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof.
- 5. A fusion protein gene of claim 4, characterized in that the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

		CAATGAACCGGG	
		120	
10		GTTACTTGGCCC	
		GAGTECCTTTTAGGCACTTGCTTGTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	
	121		180
15		CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG	
20		AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT	
	181		240
		TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA	
25		CCC1C11C11C1CC1P1C11TTCC1CTCC111111CTCC111CC1C1T111CTTCCC11	
	242	CCCAGAAGAAGAAGATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA	200
	241	GGGTCTTCTCCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	300
		obole 1 el le le control l'Andolo Accil I i l'ondoi 1 do l'en al l'en accel 1	
30		ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA	
	301		360
		TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	
35		GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT	
	361		420
		CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	
40		CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGAGGTGCAATTGCTAGTGTTCG	
	421		480
		GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC	
45		GATTGACTGCCAACTCTGACACCCACCTGCTTC	
	481		
		CTAACTGACGGTTGAGACTGTGGGTGGACGAAG	
50	or a dege	enerate variant thereof, or the following DNA sequence:	

CAATGAACCGGG

-+---- 120 GTTACTTGGCCC 5 GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG 10 AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA 15 CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA 20 GGGTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA 25 TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT 30 CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGGCAGAGCCTGACCCTGACCTTGG 481 ------ 540 CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC AGAGCCCCCTGGTAGTAGCCCCTGAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC 45 TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG AGGGGGGAAGACCCTCTCCGTGTCTCAG 601 -----TCCCCCCTTCTGGGAGAGGCACAGAGTC or a degenerate variant thereof.

- 6. A vector comprising the fusion protein gene of claim 1, preferably having the identifying characteristics of pCD4H₇1, which has been deposited under Accession No. 67611, or pCD4Mu, which has been deposited under Accession No. 67608, or of pCD4Pu, which has been deposited under Accession No. 67609, or of pCD4E₇1, which has been deposited under Accession No. 67610, all in E. coli at the ATCC under the terms of the Budapest Treaty.
 - 7. A vector comprising the fusion protein gene of claim 4.
 - 8. A host transformed with the vector of claim 6 or 7.
- 9. The host of claim 8 which expresses an immunoglobulin light chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to gp120 or an immunoglobulin heavy chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to HIV or SIV gp120.
- 10. The host of claim 9, wherein said immunoglobulin heavy chain is of the immunoglobulin class IgM. IgG1 or IgG3.
- 11. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 6, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 12. The method of claim 11, wherein said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.
 - 13. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 7, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 14. The method of claim 13, wherein said host produces immuno-globulin heavy chains of the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule which binds to HIV-qp120.
 - 15. A fusion protein, which is preferably detectably labeled, comprising CD4, or fragment thereof which is capable of binding to HIV or SIV gp120, fused at the C-terminus to a second protein which comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein the variable region of said heavy chain immunoglobulin has been replaced with CD4, or HIV gp120-binding fragment thereof, and preferably further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said fusion protein.
 - 16. The fusion proteins CD4H_γ1, CD4Mμ, CD4Pμ, CD4E_γ1 or CD4B_γ1.
 - 17. An immunoglobulin-like molecule, comprising the fusion protein of claim 15 and an immunoglobulin light chain, preferably further comprising a detectable label, and especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said immunoglobulin-like molecule.
 - 18. A fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, fused at the C-terminus to a second protein comprising an immunoglobulin light chain where the variable region has been deleted, and which fusion protein preferably is detectably labeled, especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said fusion protein.
 - 19. The fusion protein of claim 15, wherein said CD4 fragment comprises the following amino acid sequence:

50

M N R G
V P F R H L L L V L Q L A L L P A A T Q
G K K V V L G K K G D T V E L T C T A S
Q K K S I Q F H W K N S N Q I K I L G N
Q G S F L T K G P S K L N D R A D S R R
S L W D Q G N F P L I I K N L K I E D S
D T Y I C E V E D Q K E E V Q L L V F G
L T A N S D T H L L Q

15 or the following amino acid sequence:

5

10

20

30

45

M N R G
V P F R H L L L V L Q L A L L P A A T Q
G K K V V L G K K G D T V E L T C T A S
Q K K S I Q F H W K N S N Q I K I L G N
Q G S F L T K G P S K L N D R A D S R R
S L W D Q G N F P L I I K N L K I E D S
D T Y I C E V E D Q K E E V Q L L V F G
L T A N S D T H L L Q G Q S L T L T L E
S P P G S S P S V Q C R S P R G K N I Q
G G K T L S V S Q

- 20. An immunoglobulin-like molecule comprising the fusion protein of claim 18 and an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, preferably further comprising a detectable label, and especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said immunoglobulin-like molecule.
 - 21. A complex comprising the fusion protein of claim 15 or 18 and HIV or SIV gp120.
 - - 23. A method for the detection of HIV or SIV gp120 in a sample, characterized by
 - (a) contacting a sample suspected of containing HIV or SIV gp120 with the fusion protein of claim 15 or 18, and
 - (b) detecting whether a complex is formed, said fusion protein preferably being detectably labeled.

Claims for the following Contracting State: GR

- 1. A vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof.
 - 2. The vector of claim 1, having the identifying characteristics of pCD4H₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67611.
- 3. The vector of claim 1, having the identifying characteristics of pCD4Mu, which has been deposited in E. coli at the ATCC under the terms of this Budapest Treaty under Accession No. 67608.
- 4. The vector of claim 1, having the identifying characteristics of PCD4Pu, which has been deposited in É. coli at the ATCC under the Budapest Treaty under Accession No. 67609.

- 5. The vector of claim 1, having the identifying characteristics of PC4E₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67610.
- 6. A vector comprising a fusion protein gene characterized by 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof.
 - 7. A host transformed with the vector of claim 1.
- 8. The host of claim 7 which expresses an immunoglobulin light chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to gp120.
 - 9. A host transformed with the vector of claim 6.
- 10. The host of claim 6 which expresses an immunoglobulin heavy chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to HIV or SIV gp120.
- 11. The host of claim 10, characterized in that said immunoglobulin heavy chain is of the immunoglobulin class IgM, IgG1 or IgG3.
- 12. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 1, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
- 13. The method of claim 12, characterized in that said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.
- 14. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 6, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
- 15. The method of claim 14, characterized in that said host produces immuno-globulin heavy chains of the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule which binds to HIV-gp120.
 - 16. A method for the detection of HIV or SIV gp120 in a sample, characterized by
- (a) contacting a sample suspected of containing HIV or SIV gp120 with a fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, and 2) an immunoglobulin heavy chain, wherein the variable region of said immunoglobulin chain has been replaced with CD4, or said gp120 binding fragment thereof, and
 - (b) detecting whether a complex is formed.
 - 17. The method of claim 16, characterized in that said fusion protein is detectably labeled.
 - 18. A method for the detection of HIV or SIV gp120 in a sample, characterized by
- (a) contacting a sample suspected of containing HIV or SIV gp120 with a fusion protein comprising comprising 1) CD4, or fragment thereof which binds to HIV gp120, and 2) an immunoglobulin light chain, wherein the variable region of said immunoglobulin light chain has been replaced with CD4, or HIV gp120-binding fragment thereof, and
 - (b) detecting whether a complex has formed.
 - 19. The method of claim 18, characterized in that said fusion protein is detectably labeled.

Claims for the following Contracting State: ES

50

1. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with a vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV

gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.

- 2. The method of claim 1, characterized in that said vector has the identifying characteristics of pCD4H₂1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67611.
- 3. The method of claim 1, characterized in that said vector has the identifying characteristics of PCD4Mu, which has been deposited in E. coli at the ATCC under the terms of this Budapest Treaty under Accession No. 67608.
- 4. The method of claim 1, characterized in that said vector has the identifying characteristics of PCD4Pu, which has been deposited in E. coli at the ATCC under the Budapest Treaty under Accession No. 67609
- 5. The method of claim 1, characterized in that said vector has the identifying characteristics of pCD4E₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67610.
- 6. The method of claim 1, characterized in that said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.
- 7. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with a vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 8. The method any one of claims 1 or 7, characterized in that the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

35

AΩ

45

50

		CAATGAACCGGG	
		-+ 120	
5		GTTACTTGGCCC	
		· •	
		GAGTCCCTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	
	121		180
10		CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG	
		AGGGAAAGAAGTGGTGGTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT	
	181		240
15		TCCCTTTCTTCACCACGACCGGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA	
		CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA	
	241		300
20		GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	
		ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA	
	301		360
25		TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	
		GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT	
	361		420
3 0		CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	
		CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG	
	421		480
35		GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC	
		GATTGACTGCCAACTCTGACACCCACCTGCTTC	
	481		
40		CTAACTGACGGTTGAGACTGTGGGTGGACGAAG	
 /			

or a degenerate variant thereof.

55

^{9.} The method of any one of claims 1 or 7, characterized in that said DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

CAATGAACCGGG
-+-----120

GTTACTTGGCCC GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC 10 CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG AGGGAAAGAAGTGGTGCTGGCCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT 15 TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA 20 GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA 25 TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT 30 CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG 35 GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGGC 40 CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC 45 TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG AGGGGGGAAGACCCTCTCCGTGTCTCAG 601 --------TCCCCCCTTCTGGGAGAGGCACAGAGTC 50

or a degenerate variant thereof.

^{10.} The method of claim 7, characterized in that said host produces immuno-globulin heavy chains of the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule which binds to HIV-gp120.