VSPLOT data analysis and comparsion

Chanwoo Lee, October 19, 2020

1 VSPLOT brain data log-likelihood

Table 1 shows the top 10 best log-likelihood on test datasets in cross validation. I compared old SMMK and ADMM versus new SMMK and ADMM algorithm based on log-likelihood on the full dataset. We can see new SMMK algorithm works worse than previous one while ADMM algorithm improved.

rank	sparsity	log_L_test	\log_{-L} train	old SMMK	old ADMM	new SMMK	new ADMM
1	65	-29.08	-107.69	-124.84	-138.22	-145.82	-131.48
1	66	-29.24	-112.63	-135.72	-143.08	-146.99	-133.11
1	68	-29.40	-117.59	-141.70	-146.91	-146.99	-146.99
1	67	-29.49	-115.30	-142.74	-146.66	-146.99	-144.85
1	64	-29.59	-102.80	-117.96	-128.77	-146.99	-124.47
2	67	-30.30	-112.06	-135.39	-129.66	-143.26	-129.35
1	62	-30.31	-96.85	-110.71	-132.70	-145.06	-127.90
1	63	-30.62	-100.48	-117.24	-134.37	-145.68	-131.50
2	66	-30.87	-107.67	-136.79	-132.96	-142.32	-132.28
2	64	-31.39	-102.15	-119.84	-116.05	-144.02	-126.43

Table 1: Top 10 combinations of rank and sparisty in log-likelihood of test datsets. The third and fourth columns represents averaged log-likelihood of test and training datasets in 5-folded cross validation. The last four columns shows log-likelihood values on the full datasets according to each algorithm used.

Figure 1 shows the log-likelihood trend according to different algorithms (latest one).

Figure 1: The figure shows the log-likelihood values according to sparsity given rank = 1,2, and 3. The colors represent the algorithm type used.

2 Comparison to alternative method

I want to check whether the result from hyper-parameter (rank, sparsity) = (1,65) is good enough compared to alternative methods. For an alternative method to compare with ours, I used logistic-lasso regression method. I briefly introduce this method. First, I obtained vector x_i from the adjacency matrices X_i only saving the lower triangular elements of X_i .

$$x_i = (\boldsymbol{X}_{i[21]}, \boldsymbol{X}_{i[31]}, \dots, \boldsymbol{X}_{i[68(67)]})^T.$$

I set the logistic model as

$$p(y_i = 1 | \boldsymbol{x}_i) = \frac{e^{\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i}}{1 + e^{\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i}}.$$

I use the variable selection using lasso method from the following loss function

$$-\sum_{y_i=1} \log (p(y_i = 1 | \boldsymbol{x}_i)) - \sum_{y_i=-1} \log (1 - p(y_i = 1 | \boldsymbol{x}_i)) + \lambda \sum_i |\beta_i|.$$

An optimal λ is obtained from a grid search. I used the function $\operatorname{cv.glmnet}$ in glmnet r-package for λ . Based on the dataset $\{(x_i,y_i)\}_{i=1}^{212}$, I calculated the estimated probabilities $\mathbb{P}(y_i=1|x_i)$. Figure 2 (a) shows the logistic-lasso regression result. Our method is shown in Figure 2 (b) and (c), where (b) uses (rank,sparsity) = (1,65) while (c) uses rank = 1 without sparsity. It seems to me that (c),(a), and (b) performs better in order. One interesting result I found is when I perform cross validation on this alternative model, the averaged log-likelihood on test datasets is -26.84, which is greater than the log-likelihood based on our model. Furthermore, it has -79.82 as averaged log-likelihood values on training datsets. I performed the simple simulation I did in previous note where $X_i \in \mathbb{R}^{5 \times 5}$ and $y_i = \frac{e^{\operatorname{sign}(\langle B, X_i \rangle)}}{1 + e^{\operatorname{sign}(\langle B, X_i \rangle)}}$, I have checked that the logistic-lasso gives me random guess.

Figure 2: Averaged log-likelihood value on test datasets according to the types of cross validation.