第十二章 域和Galois理论 2015年11月16日

信息安全数学基础

陈恭亮 教授 博士生导师

上海交通大学信息安全工程学院

chengl@sjtu.edu.cn

访问主页

标题页

目 录 页

第1页共71页

返回

全屏显示

关 闭

12. 域和Galois理论

本章, 我们继续讨论域的结构, 特别是Galois 域.

12.1 域的扩张

12.1.1 域的有限扩张

首先,我们从集合的包含关系的角度来讨论域的性质.

定义12.1.1 设F 是一个域. 如果K 是F 的子域, 则称F 为K 的扩域.

例12.1.1 有理数域Q 是实数域R 和复数域C 的子域. 复数域C 是实数域R 的扩域. 实数域R 是有理数域Q 的扩域.

例12.1.2 $\mathbf{F}_{2^8} = \mathbf{F}_2[x]/(x^8 + x^4 + x^3 + x + 1)$ 是 \mathbf{F}_2 的扩域.

访问主页

标题页

目 录 页

第2页共71页

返回

全屏显示

关 闭

其次, 我们从线性空间的角度来讨论域的性质.

如果F 是K 的扩域, 则 $1_F = 1_K$. 而且, F 可作为K 上的线性空间. 事实上, 对任意 $\alpha, \beta \in \mathbf{F}, k \in \mathbf{K}$, 有

$$\alpha + \beta \in \mathbf{K}, \quad k \cdot \alpha \in \mathbf{K}.$$

我们用[F:K] 表示F 在K 上线性空间的维数. 我们称F 为K 的有 限维扩域 或无限维扩域, 如果[F:K] 是有限或无限.

访问主页

标题页

目录页

第3页共71页

返 回

全屏显示

关 闭

定理12.1.1 设E 是F 的扩域, F 是K 的扩域. 则

$$[\mathbf{E}:\mathbf{K}] = [\mathbf{E}:\mathbf{F}][\mathbf{F}:\mathbf{K}].$$

如果 $\{\alpha_i\}_{i\in I}$ 是F 在K 上的基底, $\{\beta_j\}_{j\in J}$ 是E 在F 上的基底,则 $\{\alpha_i\beta_j\}_{i\in I, j\in J}$ 是E 在K 上的基底.

证 首先, 证明 $\{\alpha_i \beta_j\}_{i \in I, j \in J}$ 是E 在K 上的生成元. 事实上, 对任 意 $c \in \mathbf{E}$, 根据 $\{\beta_j\}_{j \in J}$ 是E 在F 上的基底, 存在 $b_j \in \mathbf{F}$, $j \in J$ 使得

$$c = \sum_{j \in J} b_j \, \beta_j.$$

再根据 $\{\alpha_i\}_{i\in I}$ 是F 在K 上的基底, 存在 $a_{ij}\in K$, $i\in I$ 使得

$$b_j = \sum_{i \in I} a_{ij} \, \alpha_i.$$

从而,

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \, \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \, \alpha_i \, \beta_j.$$

访问主页

标 题 页

目 录 页

第4页共71页

返回

全屏显示

关 闭

其次, 证明 $\{\alpha_i \beta_j\}_{i \in I, j \in J}$ 在K 上线性无关. 事实上, 若存在 $a_{ij} \in K$, $i \in I, j \in J$ 使得

$$\sum_{i \in I, j \in J} a_{ij} \, \alpha_i \, \beta_j = 0 \quad \mathbf{\vec{g}} \quad \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \, \alpha_i \right) \beta_j = 0.$$

因为 $\sum_{i \in I} a_{ij} \alpha_i \in \mathbf{F}$, 且 $\{\beta_j\}_{j \in J}$ 是E 在F 上的基底, 所以

$$\sum_{i \in I} a_{ij} \, \alpha_i = 0, \quad j \in J.$$

又因为 $a_{ij} \in \mathbf{K}$, 以及 $\{\alpha_i\}_{i \in I}$ 是F 在K 上的基底, 得到

$$a_{ij} = 0$$
 $i \in I, j \in J.$

因此,我们有

$$[\mathbf{E}:\mathbf{K}]=[\mathbf{E}:\mathbf{F}][\mathbf{F}:\mathbf{K}].$$

定理成立. 证毕

访问主页

标 题 页

目 录 页

第5页共71页

返回

全屏显示

关 闭

推论 域 $E \to K$ 的有限扩域的充要条件是 $E \to K$ 的有限扩域,以及 $E \to K$ 的有限扩域.

例12.1.3 实数域R是有理数域Q 的扩域, 复数域C是实数域R 的扩域.

例12.1.4 数域 $\mathbf{Q}(\sqrt{2})$ 是Q 的有限扩张, $\mathbf{L}[\mathbf{Q}(\sqrt{2}):\mathbf{Q}]=2$.

标 题 页

目 录 页

第6页共71页

返回

全屏显示

关 闭

最后, 我们讨论域的子域的生成.

定理12.1.2 设{ \mathbf{E}_j } $_{j\in J}$ 是域 \mathbf{F} (对应地, 环R) 中的一族子域(对应地, 子环). 则 $\bigcap_{i\in J} E_j$ 也是一个子域(对应地, 子环).

证 令 $E = \bigcap_{j \in J} E_j$. 根据定理8.1.3, E 是一个交换加法群, 而 $E^* =$

 $\bigcap_{j \in J} E_j^*$ 是一个交换乘群(对应地, E 也满足子环的乘法运算条件),

因此, E 是域F 的子域(对应地, 子环). 证毕

访问主页

标 题 页

目 录 页

第7页共71页

返回

全屏显示

关 闭

设F 是一个域, $X \subset F$, 则包含X 的所有子域(对应地. 子环)的交集仍是包含X 的子域, 叫做由X **生成的子域** (对应地. **子环**). 如果F 是K 的扩域及 $X \subset F$, 则由K $\cup X$ 生成的子域(对应地. 子环)叫做X **在K** 上生成的子域 (对应地. 子环), 记为K(X) (对应地. K[X]). 注意到K[X] 是一个整环.

如果 $X = \{u_1, \ldots, u_n\}$, 则F 的子域 $\mathbf{K}(X)$ (对应地. 子环 $\mathbf{K}[X]$) 记为 $\mathbf{K}(u_1, \ldots, u_n)$ (对应地. $\mathbf{K}[u_1, \ldots, u_n]$). 域 $\mathbf{K}(u_1, \ldots, u_n)$ 叫做 \mathbf{K} 的有限扩张. 如果 $X = \{u\}$, 则 $\mathbf{K}(u)$ 称为 \mathbf{K} 的单扩张.

访问主页

标 题 页

目 录 页

第8页共71页

返回

全屏显示

关 闭

下面给出域中元素的表示.

定理12.1.3 设F 是域K 的扩域, $u_1, \ldots, u_n \in F$, 以及 $X \subset F$, 则

- (i) 子环 $\mathbf{K}[u]$ 由形为f(u) 的元素组成, 其中f 是系数在 \mathbf{K} 的多项式(就是 $f \in \mathbf{K}[x]$).
- (ii) 子环 $\mathbf{K}[u_1,\ldots,u_n]$ 由形为 $f(u_1,\ldots,u_n)$ 的元素组成, 其中f 是系数在 \mathbf{K} 的n 元多项式(就是 $f\in\mathbf{K}[x_1,\ldots,x_n]$).
- (iii) 子 环K[X] 由 形 为 $f(u_1, ..., u_n)$ 的 元 素 组 成,其 中 $n \in \mathbb{N}, u_1, ..., u_n \in X, f$ 是 系 数 在K 的n 元 多 项 式(就 是 $f \in K[x_1, ..., x_n]$).
- (iv) 子域 $\mathbf{K}(u)$ 由形为 $\frac{f(u)}{g(u)}$ 的元素组成, 其中 $f,\ g\in\mathbf{K}[x],\ g(u)\neq 0.$
- (v) 子域 $\mathbf{K}(u_1, \dots, u_n)$ 由形为 $\frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)}$ 的元素组成, 其中 $f, g \in \mathbf{K}[x_1, \dots, x_n], \ g(u_1, \dots, u_n) \neq 0.$
- (vi) 子域 $\mathbf{K}(u_1, ..., u_n)$ 由形为 $\frac{f(u_1, ..., u_n)}{g(u_1, ..., u_n)}$ 的元素组成, 其中 $n \in \mathbf{N}, f, g \in \mathbf{K}[x_1, ..., x_n], u_1, ..., u_n \in X, g(u_1, ..., u_n) \neq 0.$

访问主页

标题页

目 录 页

第9页共71页

返回

全屏显示

关 闭

(vii) 对每个 $v \in \mathbf{K}(X)$ (对应地. $\mathbf{K}[X]$), 存在一个有限子集 $X' \subset X$, 使得 $v \in \mathbf{K}(X')$ (对应地. $\mathbf{K}[X']$).

证 (i) 令

$$\mathbf{E} = \{ a_0 + a_1 u + \dots + a_m u^m \mid m \in \mathbf{N}, \ a_i \in \mathbf{K} \}. \tag{1}$$

易知, E 是一个整环. 又对任意 $\alpha \in E$, 有

$$\alpha = a_0 + a_1 u + \dots + a_m u^m, \quad m \in \mathbf{N}, \ a_i \in \mathbf{K}.$$

因为 $u, a_i \in \mathbf{K}[u]$, 所以 $u^i \in \mathbf{K}[u]$, $a_i u^i \in \mathbf{K}[u]$. 从而 $\alpha \in \mathbf{K}[u]$ 以及 $\mathbf{E} \subset \mathbf{K}[u]$. 故 $\mathbf{K}[u] = \mathbf{E}$.

访问主页

标题页

目 录 页

第 10 页 共 71 页

返回

全屏显示

关 闭

(ii) 令

$$\mathbf{E} = \{ \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} u_1^{i_1} \cdots u_n^{i_n} \mid a_{i_1, \dots, i_n} \in \mathbf{K} \}.$$
 (2)

易知, E 是一个整环. 又对任意 $\alpha \in \mathbf{E}$, 有

$$\alpha = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} u_1^{i_1} \cdots u_n^{i_n}, \quad a_{i_1, \dots, i_n} \in \mathbf{K}.$$

因为 $u_1, \ldots, u_n, a_{i_1,\ldots,i_n} \in \mathbf{K}[u_1,\ldots,u_n]$,所以 $u_1^{i_1}, \ldots, u_n^{i_n}, a_{i_1,\ldots,i_n} \in \mathbf{K}[u_1,\ldots,u_n]$, $a_{i_1,\ldots,i_n}u_1^{i_1}\cdots u_n^{i_n} \in \mathbf{K}[u_1,\ldots,u_n]$. 从而 $\alpha \in \mathbf{K}[u_1,\ldots,u_n]$ 以及 $\mathbf{E} \subset \mathbf{K}[u_1,\ldots,u_n]$. 故 $\mathbf{K}[u_1,\ldots,u_n] = \mathbf{E}$.

(iii) 令

$$\mathbf{E} = \{ \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} u_1^{i_1} \cdots u_n^{i_n} \mid n \in \mathbf{N}, u_1, \dots, u_n \in X, a_{i_1, \dots, i_n} \in \mathbf{K} \}.$$
 (3)

易知, E 是一个整环. 又对任意 $\alpha \in E$, 有

$$\alpha = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} u_1^{i_1} \cdots u_n^{i_n}, \quad a_{i_1, \dots, i_n} \in \mathbf{K}.$$

因为 $u_1, \ldots, u_n, a_{i_1,\ldots,i_n} \in \mathbf{K}[X]$,所以 $u_1^{i_1}, \ldots, u_n^{i_n}, a_{i_1,\ldots,i_n} \in \mathbf{K}[X]$, $a_{i_1,\ldots,i_n}u_1^{i_1}\cdots u_n^{i_n} \in \mathbf{K}[X]$. 从而 $\alpha \in \mathbf{K}[X]$ 以及 $\mathbf{E} \subset \mathbf{K}[X]$. 故 $\mathbf{K}[X] = \mathbf{E}$.

访问主页

标 题 页

目 录 页

第 11 页 共 71 页

返回

全屏显示

关 闭

(iv) 令

$$\mathbf{E} = \left\{ \frac{f(u)}{g(u)} \mid f(x), \ g(x) \in \mathbf{K}[x], \ g(u) \neq 0 \right\}. \tag{4}$$

易知, E 是一个子域. 又对任意 $\alpha \in E$, 有

$$\alpha = \frac{f(u)}{g(u)}.$$

根据(i), 有 f(u), $g(u) \in \mathbf{K}(u)$, 所以 $\alpha \in \mathbf{K}(u)$ 以及 $\mathbf{E} \subset \mathbf{K}(u)$. 故 $\mathbf{K}(u) = \mathbf{E}$. (v) 令

$$\mathbf{E} = \left\{ \frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)} \mid f, g \in \mathbf{K}[x_1, \dots, x_n], g(u_1, \dots, u_n) \neq 0 \right\}.$$
 (5)

易知, E 是一个子域. 又对任意 $\alpha \in \mathbf{E}$, 有

$$\alpha = \frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)}.$$

根 据(ii),有 $f(u_1,\ldots,u_n)$, $g(u_1,\ldots,u_n)\in \mathbf{K}(u_1,\ldots,u_n)$,所 以 $\alpha\in \mathbf{K}(u_1,\ldots,u_n)$ 以及 $\mathbf{E}\subset \mathbf{K}(u_1,\ldots,u_n)$. 故 $\mathbf{K}(u_1,\ldots,u_n)=\mathbf{E}$.

访问主页

标 题 页

目 录 页

第 12 页 共 71 页

返回

全屏显示

关 闭

(vi) 令

$$\mathbf{E} = \begin{cases} \frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)} & | n \in \mathbf{N}, u_1, \dots, u_n \in X, f, g \in \mathbf{K}[x_1, \dots, x_n], \\ g(u_1, \dots, u_n) \neq 0 \end{cases}.$$
(6)

易知, E 是一个子域. 又对任意 $\alpha \in \mathbf{E}$, 有

$$\alpha = \frac{f(u_1, \dots, u_n)}{g(u_1, \dots, u_n)}.$$

根据(iii),有 $f(u_1,\ldots,u_n),\ g(u_1,\ldots,u_n)\in \mathbf{K}(X),\$ 所以 $\alpha\in \mathbf{K}(X)$ 以及 $\mathbf{E}\subset \mathbf{K}(X).$ 故 $\mathbf{K}(X)=\mathbf{E}.$ 证毕

访问主页

标 题 页

目 录 页

第 13 页 共 71 页

返回

全屏显示

关 闭

0.1. 域的代数扩张

本节, 我们从多项式的根的角度来讨论扩域.

定义12.1.2 设R 是一个整环, K 是包含R 的一个域, F 是K 的一个扩域.

- 1) \mathbf{F} 的元素u 称为整环R 上的代数数, 如果存在一个非零多项式 $f \in R[x]$ 使得f(u) = 0.
- 2) \mathbf{F} 的元素u 称为整环R 上的代数整数, 如果存在一个非零的首一多项式 $f \in R[x]$ 使得f(u) = 0.
- 3) \mathbf{F} 的元素u 称为整环R 上的超越数, 如果不存在任何非零多项式R 使得f(u)=0.

进一步, 当K 是整环R 的分式域时, 人们有时就称K 上的代数数和超越数. 这时, 与代数相关的多项式就可以要求其是首一的多项式. F 称为K 的代数扩张, 如果F 的每个元素都是K 上的代数数. F 称为K 上的超越扩张, 如果F 中至少有一个元素是K 上的超越数.

易知, 对于 $u \in \mathbf{K}$, 有u 是一次多项式 $f(x) = x - u \in \mathbf{K}[x]$ 的根, 因此, u 是K 上的代数数.

访问主页

标 题 页

目 录 页

第 14 页 共 71 页

返回

全屏显示

关 闭

例12.1.5

(i) $u = \sqrt{2}$ 是整数环Z 上代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbf{Z}[x]$$

使得f(u) = 0. $\mathbf{Q}(\sqrt{2})$ 是代数扩张.

(ii) $u = \frac{1+\sqrt{5}}{2}$ 是整数环**Z** 上代数整数, 因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbf{Z}[x]$$

使得f(u) = 0. $\mathbf{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

访问主页

标 题 页

目 录 页

第 15 页 共 71 页

返回

全屏显示

关 闭

例12.1.6

- (i) 圆周率 $\pi = 3.14159265 \cdots$ 是有理数域**Q**上的超越数.
- (ii) 自然对数底 $e = 2.71828182 \cdots$ 是有理数域Q 上的超越数.
- (iii) $2^{\sqrt{2}}$ 是有理数域Q 上的超越数.
- (iv) $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$ 是有理数域Q 上的超越数.

标 题 页

目 录 页

第 16 页 共 71 页

返回

全屏显示

关 闭

下面建立多项式环和多项式分式域与域扩张之间的关系. 设F 是K 的扩域, $u \in F$, 则我们可以构造K[x] 到K[u] 一个同态:

$$\varphi: \mathbf{K}[x] \longrightarrow \mathbf{K}[u]$$

$$h(x) \longmapsto h(u)$$

且上述环同态可拓展为 $\mathbf{K}(x)$ 到 $\mathbf{K}(u)$ 一个域同态:

$$\varphi: \mathbf{K}(x) \longrightarrow \mathbf{K}(u)$$

$$\frac{h(x)}{g(x)} \longmapsto \frac{h(u)}{g(u)}$$

根据环同态分解定理, 我们有同构:

$$\overline{\varphi}: \mathbf{K}[x]/\ker(\varphi) \longrightarrow \mathbf{K}[u]$$

其中 $\ker(\varphi) = \{h(x) \mid \in \mathbf{K}[x], \ h(u) = 0\}.$

分两种情况讨论.

- 1) u 是**K** 上的超越数. 这时, $\ker(\varphi) = \{0\}$. 因此, φ 是环同构, 也是域同构. 即有定理12.1.4.
- 2) u 是**K** 上的代数数. 这时, $\ker(\varphi) \neq \{0\}$ 是素理想. 因为**K**[x] 是主理想 环, 所以存在次数最小的首一不可约多项式f(x) 使得 $\ker(\varphi) = (f(x))$. 即引理12.1.1.

访问主页

标 题 页

目 录 页

第 17 页 共 71 页

返回

全屏显示

关 闭

定理12.1.4 如果F 是K 的扩域, $u \in F$ 是K 上的超越数, 则存在一个在K 上为恒等映射的域同构 $K(u) \cong K(x)$.

引理12.1.1 设F 是域K 的扩域, $u \in F$ 是K 上的代数数, 则存在惟一的K 上的首一不可约多项式f(x) 使得f(u) = 0. 借助引理, 我们可以建立代数数与多项式的对应关系.

访问主页

标 题 页

目 录 页

第 18 页 共 71 页

返回

全屏显示

关 闭

 SE LEGISLA DE LA CONTROL DE LA

访问主页

标 题 页

目 录 页

第 19 页 共 71 页

返回

全屏显示

关 闭

退 出

根为 $-\sqrt{2}$.

下面考虑由代数数生成的域.

定理12.1.5 F 是域K 的扩域, $u \in F$ 是K 上的代数数, 则

- (i) $\mathbf{K}(u) = \mathbf{K}[u]$.
- (ii) $\mathbf{K}(u) \cong \mathbf{K}[x]/(f(x))$, 其中 $f(x) \in \mathbf{K}[x]$ 是u 的定义多项式, $n = \deg f$.
- (iii) $[\mathbf{K}(u) : \mathbf{K}] = n$.
- (iv) $\{1, u, u^2, ..., u^{n-1}\}$ 是K 上向量空间 $\mathbf{K}(u)$ 的基底.
- (v) **K**(u) 的每个元素可惟一地表示为 $a_0 + a_1 u + \cdots + a_{n-1} u^{n-1}, a_i \in \mathbf{K}$. **证** 设u 的定义多项式为 $f(x), n = \deg f$.
- (i) 对任意 $\frac{h(u)}{g(u)} \in \mathbf{K}(u), \ g(u) \neq 0, \ \mathbf{有多项式} g(x) \ \mathbf{5} f(x) \ \mathbf{5} \mathbf{\underline{s}}. \ 根据多项式$ 广义欧几里得除法(定理11.3.6), 存在 $s(x), \ t(x) \in \mathbf{K}[x]$ 使得

$$s(x) \cdot g(x) + t(x) \cdot f(x) = 1.$$

从而, s(u)g(u) = 1. 因此,

$$\frac{h(u)}{g(u)} = \frac{s(u) \cdot h(u)}{s(u) \cdot g(u)} = s(u) \cdot h(u) \in \mathbf{K}[u],$$

 $\mathbf{K}(u) \subset \mathbf{K}[u]$. 这说明, $\mathbf{K}(u) = \mathbf{K}[u]$.

访问主页

标 题 页

目 录 页

第 20 页 共 71 页

返回

全屏显示

关 闭

(ii) 考虑K[x] 到K[u] 的映射

$$\varphi: g(x) \longmapsto g(u).$$

易知, σ 是满的环同态. 根据定理10.5.9, 我们有 $\mathbf{K}[x]/\ker(\varphi) \cong$ $\mathbf{K}(u)$. 但 $\ker(\varphi) = (f)$, 故结论成立.

(iv) 对任意 $g(x) \in \mathbf{K}[x]$, 根据多项式欧几里得除法(定理11.3.1), 存 $\mathbf{c}q(x), r(x) \in \mathbf{K}[x]$ 使得

$$g(x) = q(x) \cdot f(x) + r(x), \quad 0 \le \deg r < \deg f.$$

因此, g(u) = r(u). 这说明, $\{1, u, u^2, \dots, u^{n-1}\}$ 是**K**(u) 的生成元. 又因为f(x)是使得f(u)=0的次数最小的多项式,所 以 $\{1, u, u^2, \dots, u^{n-1}\}$ 在K 上线性无关. 因此, $\{1, u, u^2, \dots, u^{n-1}\}$ 是K 上向量空间K(u) 的基底.

(iii) 和(v) 由(iv) 得到.

访问主页

标题页

目 录 页

第21页共71页

返 回

全屏显示

关 闭

退 出

证毕

例12.1.8 多项式 $x^2 - x - 1$ 是Q 上的不可约多项式.

例12.1.9 多项式 $x^3 - 3x - 1$ 是**Q** 上的不可约多项式.

访问主页

标 题 页

目 录 页

第 22 页 共 71 页

返回

全屏显示

关 闭

下面的定理将从域的同构扩充到扩域的同构.

设 $\sigma: \mathbf{K} \to \mathbf{L}$ 是域同构. 对于 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbf{K}[x]$, 我们记

$$\sigma(f)(x) = \sigma(a_n)x^n + \sigma(a_{n-1})x^{n-1} + \dots + \sigma(a_1)x + \sigma(a_0)$$

易知f 和 $\sigma(f)$ 同为可约或不可约多项式.

定理12.1.6 设 $\sigma: \mathbf{K} \to \mathbf{L}$ 是域同构. 设u 是 \mathbf{K} 的某一扩域中的元素, v 是 \mathbf{L} 的某一扩域中的元素. 假设

- (i) u 是K 上的超越元, v 是L 上的超越元, 或者
- (ii) u 是K 上的代数数, u 的定义多项式为 $f \in \mathbf{K}[x]$, v 是多项式 $\sigma(f) \in \mathbf{L}[x]$ 的根.

则 σ 可扩充为扩域 $\mathbf{K}(u)$ 到 $\mathbf{L}(v)$ 的同构 φ , 并将u 映到 $v = \varphi(u)$.

访问主页

标 题 页

目 录 页

第 23 页 共 71 页

返回

全屏显示

关 闭

证 考虑K(u) 到L(v) 的映射

$$\varphi: \frac{h(u)}{g(u)} \longrightarrow \frac{\sigma(h)(v)}{\sigma(g)(v)}.$$

这个 φ 是 $\mathbf{K}(u)$ 到 $\mathbf{L}(v)$ 的同构,且满足 $\varphi|_{\mathbf{K}} = \sigma$, $\varphi(u) = v$. 事实上,只需说明 φ 是一对一的.若 $\sigma(h)(v) = 0$,根据假设条件,在情形(i),有 $\sigma(h) = 0$,从而h = 0.在情形(ii),有 $\sigma(f) \mid \sigma(h)$,从而 $f \mid h$,h(u) = 0.定理成立.

访问主页

标题页

目 录 页

第 24 页 共 71 页

返回

全屏显示

关 闭

定理12.1.7 设E 和F 都是域K 的扩域, $u \in E$ 以及 $v \in F$. 则u 和v 是同一不可约多项式 $f \in K[x]$ 的根当且仅当存在一个K 的同构 $K(u) \cong L(v)$, 其将u 映到v.

证 取 $\sigma = id_{\mathbf{K}}$ 为K 上的恒等变换, σ 是K 到自身的同构, 且 $\sigma(f) = f$. 应用定理12.1.6 即得到定理12.1.7 . 证毕

访问主页

标 题 页

目 录 页

第 25 页 共 71 页

返回

全屏显示

关 闭

定理12.1.8 设K 是一个域, $f \in \mathbf{K}[x]$ 是次数为n 的多项式. 则存在K 的单扩域 $\mathbf{F} = \mathbf{K}(u)$ 使得

- (i) $u \in \mathbf{F}$ 是f 的根.
- (ii) $[\mathbf{K}(u):\mathbf{K}] \leq n$, 等式成立当且仅当f 是 $\mathbf{K}[x]$ 中的不可约多项式.

证 不妨设 $f \in \mathbf{K}[x]$ 是不可约多项式,根据定理11.4.4,商 $\mathbf{K}[x]/(f)$ 是一个域. 考虑 $\mathbf{K}[x]$ 到 $\mathbf{K}[x]/(f) = \mathbf{F}$ 的自然同态

$$s: g(x) \longmapsto (g(x) \pmod{f(x)}).$$

易知, $s|_{\mathbf{K}}$ 是**K** 到 $s(\mathbf{K})$ 的同构, 且**F** 是 $s(\mathbf{K})$ 的扩域. 对于 $x \in \mathbf{K}[x]$, 令u = s(x), 我们有**F** = **K**(u) 及f(u) = 0. (i) 成立. 从定理12.1.5 即可推出(ii).

推论 设K 是一个域, $f \in \mathbf{K}[x]$ 是次数为n 的不可约多项式. 设 α 是f(x) 的根, 则 α 在K 上生成的域为 $\mathbf{F} = \mathbf{K}(\alpha)$, 且[$\mathbf{K}(\alpha) : \mathbf{K}$] = n.

访问主页

标 题 页

目 录 页

第 26 页 共 71 页

返回

全屏显示

关 闭

12.2 Galois 基本定理

12.2.1 K-同构

本小节先讨论K—同构及其性质. 本小节先讨论K—同构及其性质. **定义12.2.1** 设E 和F 是K 的扩域. 一个非零映射 $\sigma: E \to F$ 叫做K-同态, 如果 σ 是一个域同态, 且 σ 在K 上为恒等映射. 特别, 当 σ 是一个域同构时, σ 叫做K-同构.

注 K-同态和K-同构都要求K 中的元素是不变元, 即在同态或同构映射下保持不变.

一个自同构 $\sigma: \mathbf{F} \to \mathbf{F}$ 叫做 \mathbf{K} -自同构, 如果 σ 是 \mathbf{K} -同构. \mathbf{F} 的 所有 \mathbf{K} -自同构组成的群叫做 \mathbf{F} 在 \mathbf{K} 上的 **伽略华**(**Galois**)**群**, 记 为 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$.

对于中间域E: $\mathbf{K} \subset \mathbf{E} \subset F$, 也有F 在E 上的伽略华(Galois)群 $\mathrm{Aut}_{\mathbf{E}}$ F.

访问主页

标 题 页

目 录 页

第 27 页 共 71 页

返回

全屏显示

关 闭

定理12.2.1 设F 是K 的扩域, $f \in \mathbf{K}[x]$. 如果 $u \in \mathbf{F}$ 是f 的根, $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$, 则 $\sigma(u)$ 也是f 的根.

证 设 $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbf{K}[x]$. 对于 $u \in \mathbf{F}$ 及 $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$, 我们有

$$\sigma(f(u)) = \sigma(a_n)\sigma(u)^n + \dots + \sigma(a_1)\sigma(u) + \sigma(a_0)$$
$$= a_n\sigma(u)^n + \dots + a_1\sigma(u) + a_0$$
$$= f(\sigma(u)).$$

因此, 当f(u) = 0, 有 $f(\sigma(u)) = 0$. 定理成立.

访问主页

标 题 页

目 录 页

第 28 页 共 71 页

返回

证毕

全屏显示

关 闭

为了更清楚地描述Galois 基本定理关于有限域的中间域与 其Galois 群的子群之间的关系, 我们引进符号:

设 \mathbf{F} 是 \mathbf{K} 的扩域, \mathbf{E} 是中间域, 设H 是 $G = \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的子群. 我们定义

$$I(H) = \{ v \in \mathbf{F} \mid \sigma(v) = v, \ \sigma \in H \}$$
 (7)

和

$$\mathbf{A}(\mathbf{E}) = \{ \sigma \in \text{Aut}_{\mathbf{K}} \mathbf{F} \mid \sigma(u) = u, \ u \in \mathbf{E} \}$$
 (8)

I(H) 是由F 中在子群H 中的自同构下保持不变的元素组成的集合. 下面的定理12.2.2 (i) 将证明I(H) 是扩域F 的中间域. 易知,

$$I(G) = \mathbf{K}, \quad I(\{e\}) = \mathbf{F}.$$

 $A(\mathbf{E})$ 是由 $G = \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 中使得中间域 \mathbf{E} 中元素保持不变的自同构组成的集合. 下面的定理12.2.2 (ii) 将证明I(H) 是 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的子群. 易知,

$$A(\mathbf{F}) = \{e\}, \quad A(\mathbf{K}) = G.$$

访问主页

标 题 页

目 录 页

第29页共71页

返回

全屏显示

关 闭

定理12.2.2 设F 是K 的扩域, E 是中间域以及H 是 Aut_K F 的子群.则

- (i) I(H) 是扩域F 的中间域.
- (ii) $A(\mathbf{E})$ 是 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的子群.

证 (i) (1)先证明I(H)是F的子环. 事实上,对任意 $a,b \in I(H)$, 以及对任意 $\sigma \in H$, 有

$$\sigma(a-b) = \sigma(a) - \sigma(b) = a - b,$$

所以, $a-b \in I(H)$. 又

$$\sigma(ab) = \sigma(a)\sigma(b) = ab,$$

所以 $ab \in I(H)$.

(2)I(H) 有单位元为e. 事实上,对任意 $\sigma \in H$, 有 $\sigma(e) = e$.

访问主页

标 题 页

目 录 页

第 30 页 共 71 页

返回

全屏显示

关 闭

(3) 最后证明I(H) 中的非零元都是可逆元. 事实上, 对于I(H)中任一非零元a, 以及对任意 $\sigma \in H$, 有

$$a\sigma(a^{-1}) = \sigma(a)\sigma(a^{-1}) = \sigma(aa^{-1}) = \sigma(e) = e,$$

以及

$$\sigma(a^{-1})a = \sigma(a^{-1})\sigma(a) = \sigma(a^{-1}a) = \sigma(e) = e.$$

所以 $\sigma(a^{-1}) = a^{-1}, a^{-1} \in I(H).$

因此, I(H) 是 \mathbf{F} 的子域.

(ii) 要证 $A(\mathbf{E})$ 是 $Aut_{\mathbf{K}}\mathbf{F}$ 的子群. 事实上, 对任意 $\sigma, \tau \in A(\mathbf{E})$, 有

$$(\sigma \tau^{-1})(u) = \sigma(\tau^{-1}(\tau(u))) = \sigma(u) = u, \quad u \in \mathbf{E}$$

因此, $\sigma \tau^{-1} \in A(\mathbf{E})$.

证毕

中间域I(H) 叫做H 在F 中的**不变域**.

访问主页

标 题 页

目 录 页

第 31 页 共 71 页

返 回

全屏显示

关 闭

我们进一步讨论不变域的性质.

引理12.2.1 设F 是K 的扩域, \mathbf{E} , \mathbf{E}_1 , \mathbf{E}_2 是中间域. 设H, H_1 , H_2 是 $G = \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的子群. 则

i)
$$I(G) = \mathbf{K}, \ I(\{e\}) = \mathbf{F}.$$

ii)
$$A(\mathbf{F}) = \{e\}, \ A(\mathbf{K}) = G.$$

iii) 若
$$H_1 < H_2$$
, 则 $I(H_1) \supset I(H_2)$.

iv) 若
$$\mathbf{E}_1 \subset \mathbf{E}_2$$
, 则 $A(\mathbf{E}_1) > A(\mathbf{E}_2)$.

v)
$$H < A(I(H))$$
.

vi)
$$\mathbf{E} \subset I(A(\mathbf{E}))$$
.

vii)
$$I(H) = I(A(I(H)))$$
.

viii)
$$A(\mathbf{E}) = A(I(A(\mathbf{E}))).$$

ix) 若
$$\mathbf{E} = I(A(\mathbf{E}))$$
,则 $H = A(\mathbf{E})$ 满足 $\mathbf{E} = I(H)$,且 $H = A(I(H))$.

v) 若
$$H = A(I(H))$$
,则 $\mathbf{E} = I(H)$ 满足 $H = A(\mathbf{E})$,且 $\mathbf{E} = I(A(\mathbf{E}))$.

访问主页

标 题 页

目 录 页

第 32 页 共 71 页

返回

全屏显示

关 闭

证 根据定义,直接得到i), ii).

iii) 设 $H_1 < H_2$. 则对任意的 $v \in I(H_2)$, 有

$$\sigma(v) = v, \quad \sigma \in H_2,$$

当然有 $\sigma(v) = v$, $\sigma \in H_1$

因此, $v \in I(H_1)$, $I(H_2) \subset I(H_1)$.

iv) 设 $\mathbf{E}_1 \subset \mathbf{E}_2$. 则对任意的 $\sigma \in A(\mathbf{E}_2)$, 有

$$\sigma(v) = v, \quad v \in \mathbf{E}_2,$$

当然有 $\sigma(v) = v$, $v \in \mathbf{E}_1$

因此, $\sigma \in A(\mathbf{E}_1)$, $A(\mathbf{E}_2) < A(\mathbf{E}_1)$.

v) 对任意的 $\sigma \in H$, 以及任意 $v \in I(H)$, 有

$$\sigma(v)=v,\quad v\in I(H),$$

这意味着 $\sigma \in A(I(H)), H \subset A(I(H)).$

访问主页

标 题 页

目 录 页

第 33 页 共 71 页

返回

全屏显示

关 闭

vi) 对任意的 $v \in \mathbf{E}$, 以及任意 $\sigma \in A(\mathbf{E})$, 有

$$\sigma(v) = v, \quad \sigma \in A(\mathbf{E}),$$

这意味着 $v \in I(A(\mathbf{E})), E \subset I(A(\mathbf{E})).$

vii) 由v) 和iii) 推出 $I(A(I(H))) \subset I(H)$.

而在vi) 中取E = I(H), 得

$$I(H) \subset I(A(I(H))).$$

故I(H) = I(A(I(H))).

viii) 由vi) 和iv) 推出 $A(I(A(\mathbf{E}))) < A(\mathbf{E})$.

而在v) 中取 $H = A(\mathbf{E})$, 得

$$A(\mathbf{E}) < A(I(A(\mathbf{E}))).$$

故 $A(\mathbf{E}) = A(I(A(\mathbf{E}))).$

证毕

访问主页

标 题 页

目 录 页

第 34 页 共 71 页

返回

全屏显示

关 闭

定义12.2.2 设F 是K 的扩域。F 叫做K-的Galois 扩张,如果Galois群Aut_KF的不变域是K.

对于中间域E: $\mathbf{K} \subset \mathbf{E} \subset F$, \mathbf{F} 叫做E-的Galois 扩张, 如果Galois群 $\mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 的不变域是E.

注1

- 设域F 是K 的Galois 扩张, 则对于任意的 $u \in \mathbf{F} \setminus \mathbf{K}$, 存在 $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 使得 $\sigma(u) \neq u$.
- 设域F 是E 的Galois 扩张, 则对于任意的 $u \in \mathbf{F} \setminus \mathbf{E}$, 存在 $\sigma \in \mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 使得 $\sigma(u) \neq u$.

注2 给 定E ,可 得 $A(\mathbf{E})$,进 而 得 $I(A(\mathbf{E}))$,它 使 得 $A(\mathbf{E})$ = $\mathrm{Aut}_{I(A(\mathbf{E}))}$ **F**. 因此,

$$A(E) = \operatorname{Aut}_{\mathbf{E}}\mathbf{F} \iff I(A(\mathbf{E})) = \mathbf{E}.$$

这意味着, E 有Galois 子群 $\mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 的充要条件是 $I(A(\mathbf{E})) = \mathbf{E}$.

访问主页

标 题 页

目 录 页

第 35 页 共 71 页

返回

全屏显示

关 闭

注3 给定H < G, 可得I(H), 进而得A(I(H)), 它使得 $A(I(H)) = Aut_{I(H)}$ F, 因此,

$$H = \operatorname{Aut}_{I(H)} \mathbf{F} \iff A(I(H)) = H$$

这意味着, H 是其不变域I(H) 上Galois 子群 $\mathrm{Aut}_{I(H)}$ F 的充要条件 是A(I(H))=H.

中间域 \mathbf{E} 叫做闭的, 如果 $\mathbf{E} = I(A(\mathbf{E}))$.

$$\begin{array}{ccc} \mathbf{E} & \subset & I(A(\mathbf{E})) \\ \downarrow & \nearrow & \downarrow \\ A(\mathbf{E}) & = & A(I(A(\mathbf{E}))) \end{array}$$

例如, K 和F 都是闭域.

子群
$$H$$
 叫做闭的, 如果 $H = A(I(H))$.

$$I(H) = I(A(I(H)))$$
 $\uparrow \qquad \uparrow$
 $H \subset A(I(H))$

例如, $\{e\}$ 和G 都是闭子群.

此外,由引理12.2.1, 立得
$$\mathbf{E} = I(A(\mathbf{E})) \Longleftrightarrow H = A(I(H)).$$

访问主页

标 题 页

目 录 页

第 36 页 共 71 页

返回

全屏显示

关 闭

TEN PORT OF THE PROPERTY OF TH

根据引理12.2.1 vii) 和viii), 我们可推出:

定理12.2.3 设F 是K 的扩域. 则在这个扩张的闭中间域与其Galois 群 $G = \operatorname{Aut}_K F$ 的闭子群之间存在一一对应的映射:

$$E \longmapsto A(E) = \operatorname{Aut}_{\mathbf{E}} \mathbf{F}.$$

第37页共71页

返回

全屏显示

关 闭

定理12.2.1 可以推广为:

定理12.2.4 设F 是K 的扩域, E 是F 的中间域, $f \in E[x]$. 如果 $u \in F$ 是 f 的根, $\sigma \in A(\mathbf{E})$, 则 $\sigma(u)$ 也是 f 的根.

证 设 $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbf{E}[x]$. 对于 $u \in \mathbf{F}$ 及 $\sigma \in A(\mathbf{E})$, 我们有

$$\sigma(f(u)) = \sigma(a_n)\sigma(u)^n + \dots + \sigma(a_1)\sigma(u) + \sigma(a_0) = a_n\sigma(u)^n + \dots + a_1\sigma(u) + a_0 = \overline{f(\sigma(u))}$$

因此, 当 f(u) = 0, 有 $f(\sigma(u)) = 0$. 定理成立.

证毕

访问主页

标题页

目 录 页

第 38 页 共 71 页

返回

全屏显示

关 闭

12.2.2 Galois 基本定理

现在我们给出Galois 基本定理:

定理12.2.5 (Galois 理论的基本定理) 如果F 是K 的有限维Galois 扩张,则在所有中间扩域集到Galois 群 $\mathrm{Aut}_{\mathbf{K}}$ F 的所有子群集之间存在一个一一对应的映射

$$\mathbf{E} \longmapsto A(\mathbf{E}) = \mathrm{Aut}_{\mathbf{E}}\mathbf{F}$$
 (9)

使得: (i) F 是每个中间域E 上的Galois 域.

- (ii) 两个中间域 $\mathbf{E}_1\subset\mathbf{E}_2$ 的相关维数 $[\mathbf{E}_2:\mathbf{E}_1]$ 等于对应子 群 $A(\mathbf{E}_1)>A(\mathbf{E}_2)$ 的相关指标 $[A(\mathbf{E}_1):A(\mathbf{E}_2)]$,特别, $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 有阶 $[\mathbf{F}:\mathbf{K}]$.
- (iii) 中间域E 是K 上的Galois 域当且仅当对应的子群 $A(\mathbf{E}) = \mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 是 $G = \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的正规子群, 在这个情况下, $G/A(\mathbf{E})$ (同构意义下) 是E 在K 上的Galois 群 $\mathrm{Aut}_{\mathbf{K}}\mathbf{E}$.

访问主页

标题页

目 录 页

第 39 页 共 71 页

返回

全屏显示

关 闭

在给出Galois 基本定理的证明之前, 我们先讨论几个引理.

引理12.2.2 设F 是K 的扩域, E_1 , E_2 是中间域, $\underline{A}E_1\subset E_2$. 如果 $[E_2:E_1]$ 有限, 则

$$[A(\mathbf{E}_1): A(\mathbf{E}_2)] \le [\mathbf{E}_2: \mathbf{E}_1]. \tag{10}$$

特别地, 如果 $[\mathbf{F}:\mathbf{K}]$ 有限, $|\mathrm{Aut}_{\mathbf{K}}\mathbf{F}| \leq [\mathbf{F}:\mathbf{K}]$.

注 这意味着: 在变换A下, 子群之间的指标不会增加.

证 对 $n = [\mathbf{E}_2 : \mathbf{E}_1]$ 用数学归纳法. n = 1 时, 命题显然成立. n > 1 时, 假设命题对所有i < n 都成立. 取 $u \in \mathbf{E}_2, u \notin \mathbf{E}_1$. 因为 $[\mathbf{E}_2 : \mathbf{E}_1]$ 有限, 所以 $u \in \mathbf{E}_1$ 上的代数元, u 的定义多项式 $f(x) \in \mathbf{E}_1[x]$ 具有次数k > 1. 考虑如下的中间域及相应的子群:

$$\mathbf{E_1} \subset E_1(u) \subset \mathbf{E}_2$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$A(\mathbf{E_1}) > A(E_1(u)) > A(\mathbf{E}_2)$$

访问主页

标 题 页

目 录 页

第 40 页 共 71 页

返回

全屏显示

关 闭

分两种情形. 若k < n, 则1 < n/k < n. 根据归纳假设, 我们有

$$[A(\mathbf{E}_1) : A(\mathbf{E}_1(u))] \le [\mathbf{E}_2 : \mathbf{E}_1(u)], \quad [A(\mathbf{E}_1(u)) : A(\mathbf{E}_2)] \le [\mathbf{E}_2 : \mathbf{E}_1(u)].$$

从而

$$[A(\mathbf{E}_1) : A(\mathbf{E}_2)] \leq [A(\mathbf{E}_1) : A(\mathbf{E}_1(u))] \cdot [A(\mathbf{E}_1(u)) : A(\mathbf{E}_2)]$$

$$\leq [\mathbf{E}_2 : \mathbf{E}_1(u)][\mathbf{E}_1(u) : \mathbf{E}_1]$$

$$\leq [\mathbf{E}_2 : \mathbf{E}_1(u)].$$

若k=n,则[$\mathbf{E}_2:\mathbf{E}_1(u)$] = 1,即有 $\mathbf{E}_2=\mathbf{E}_1(u)$. 由定理12.2.4,可构造商集 $A(\mathbf{E}_1)/A(\mathbf{E}_2)$ 到f 在 \mathbf{F} 中的根集 $\mathrm{Roots}(f)_{\mathbf{F}}=\{v\in\mathbf{F}\mid f(v)=0\}$ 的映射: $\varphi:\sigma\cdot A(\mathbf{E}_2)\longmapsto \sigma(u)$ φ 是一对一的. 事实上,若 $\varphi(\sigma_1A(\mathbf{E}_2))=\varphi(\sigma_2A(\mathbf{E}_2)),$ 则 $\sigma_1(u)=\sigma_2(u)$. 从而, $\sigma_2^{-1}\sigma_1(u)=u$, $\sigma_2^{-1}\sigma_1\in A(\mathbf{E}_1(u))=A(\mathbf{E}_2)$. 由此得到 $\sigma_1A(\mathbf{E}_2)=\sigma_2A(\mathbf{E}_2)$.

访问主页

标 题 页

目 录 页

第41页共71页

返回

全屏显示

关 闭

因 为 φ 是 一 对 一 的, 所 以 $|A(\mathbf{E}_1)/A(\mathbf{E}_2)|$ \leq $|\text{Roots}(f)_{\mathbf{F}}|$. 而 $|\text{Roots}(f)_{\mathbf{F}}| \leq n$. 故

$$[A(\mathbf{E}_1): A(\mathbf{E}_2)] = |A(\mathbf{E}_1)/A(\mathbf{E}_2)| \le n = [\mathbf{E}_2: \mathbf{E}_1].$$

特别地, 令 $\mathbf{E}_1 = \mathbf{K}, \ \mathbf{E}_2 = \mathbf{F}.$ 我们有

$$|\operatorname{Aut}_{\mathbf{K}}\mathbf{F}| = [\operatorname{Aut}_{\mathbf{K}}\mathbf{F} : \{e\}] = [A(\mathbf{K}) : A(\mathbf{F})] \le [\mathbf{F} : \mathbf{K}].$$

证毕

访问主页

标 题 页

目 录 页

第 42 页 共 71 页

返回

全屏显示

关 闭

引理12.2.3 设F 是K 的扩域. 设 H_1 , H_2 是 $G = \text{Aut}_{\mathbf{K}}$ F 的子群, 且 $H_1 < H_2$. 如果 $[H_2: H_1]$ 有限, 则

$$[I(H_1)): I(H_2)] \le [H_2: H_1]. \tag{11}$$

注 这意味着: 在变换 I 下, 子空间之间的维数不会增加.

证 反证法. 设 $[H_2: H_1] = n$, $[I(H_1)]: I(H_2)] > n$. 则存在 $u_1, u_2, \ldots, u_n, u_{n+1} \in I(H_1)$, 它们在 $I(H_2)$ 上线性无关. 设 H_2/H_1 中的代表元为 $\sigma_1 \in H_1, \sigma_2, \ldots, \sigma_n$. 在F 中考虑n+1 元的n 个方程的齐次方程组:

$$\begin{cases}
\sigma_{1}(u_{1}) x_{1} + \sigma_{1}(u_{2}) x_{2} + \dots + \sigma_{1}(u_{n}) x_{n} + \sigma_{1}(u_{n+1}) x_{n+1} = 0 \\
\sigma_{2}(u_{1}) x_{1} + \sigma_{2}(u_{2}) x_{2} + \dots + \sigma_{2}(u_{n}) x_{n} + \sigma_{2}(u_{n+1}) x_{n+1} = 0 \\
& \dots \\
\sigma_{n}(u_{1}) x_{1} + \sigma_{n}(u_{2}) x_{2} + \dots + \sigma_{n}(u_{n}) x_{n} + \sigma_{n}(u_{n+1}) x_{n+1} = 0
\end{cases} (12)$$

因为未知变量个数 n+1 大于方程个数 n, 所以这个方程组有非零解 ξ . 适当改变 $\sigma_1, \sigma_2, \ldots, \sigma_n$ 的排序, 可设在所有非零解中, 有一组解 $\xi = (a_1, a_2, \ldots, a_n, a_{n+1})$, 其不为零的分量 a_i 的个数最少. 不妨设

$$\xi_1 = (a_1, a_2, \dots, a_r, 0, \dots, 0)$$

访问主页

标 题 页

目 录 页

第 43 页 共 71 页

返回

全屏显示

关 闭

$$\begin{cases}
\sigma_{1}(u_{1}) x_{1} + \sigma_{1}(u_{2}) x_{2} + \dots + \sigma_{1}(u_{n}) x_{n} + \sigma_{1}(u_{n+1}) x_{n+1} = 0 \\
\sigma_{2}(u_{1}) x_{1} + \sigma_{2}(u_{2}) x_{2} + \dots + \sigma_{2}(u_{n}) x_{n} + \sigma_{2}(u_{n+1}) x_{n+1} = 0 \\
& \dots \\
\sigma_{n}(u_{1}) x_{1} + \sigma_{n}(u_{2}) x_{2} + \dots + \sigma_{n}(u_{n}) x_{n} + \sigma_{n}(u_{n+1}) x_{n+1} = 0
\end{cases} (12)$$

SIMPLE OF THE STATE OF THE STAT

现在, 我们构造一个 $\tau \in H_2$, 使得

$$\xi_2 = (\tau(a_1), \tau(a_2), \dots, \tau(a_r), 0, \dots, 0)$$

是(12) 的解, 满足 $\tau(a_2) \neq a_2$.

因为 $\sigma_1 \in H_1$, 所以 $\sigma_1(u_i) = u_i$, $1 \le i \le n+1$. 由(12) 的第一个方程, 有

$$u_1a_1 + u_2a_2 + \dots + u_ra_r = 0.$$

因为 $u_1, u_2, \ldots, u_n, u_{n+1} \in I(H_1)$ 在 $I(H_2)$ 上线性无关, 所以必有一个 $a_i \not\in I(H_2)$. (不妨设为 a_2 , 若必要就交换 $u_1, u_2, \ldots, u_n, u_{n+1}$ 的次序) 这样, 存在 $\tau \in H_2$, 使得 $\tau(a_2) \neq a_2$.

标 题 页

目 录 页

第 44 页 共 71 页

返回

全屏显示

关 闭

现在考虑线性方程组:

$$\begin{cases}
\tau \sigma_{1}(u_{1}) x_{1} + \tau \sigma_{1}(u_{2}) x_{2} + \dots + \tau \sigma_{1}(u_{n}) x_{n} + \tau \sigma_{1}(u_{n+1}) x_{n+1} = 0 \\
\tau \sigma_{2}(u_{1}) x_{1} + \tau \sigma_{2}(u_{2}) x_{2} + \dots + \tau \sigma_{2}(u_{n}) x_{n} + \tau \sigma_{2}(u_{n+1}) x_{n+1} = 0 \\
\dots \\
\tau \sigma_{n}(u_{1}) x_{1} + \tau \sigma_{n}(u_{2}) x_{2} + \dots + \tau \sigma_{n}(u_{n}) x_{n} + \tau \sigma_{n}(u_{n+1}) x_{n+1} = 0
\end{cases} (13)$$

因 为 $\xi_1 = (a_1, a_2, \dots, a_r, 0, \dots, 0)$ 是(12) 的 解,所 以 $\xi_2 = (\tau(a_1), \tau(a_2), \dots, \tau(a_r), 0, \dots, 0)$ 是(13) 的解.

注意到, $\tau \in H_2$ 时, $\tau \sigma_1, \tau \sigma_2, \ldots, \tau \sigma_n$ 也是 H_2/H_1 中的代表元. 这样, 对于 $1 \le k \le n$, 有 $\tau \sigma_k = \sigma_{i_k} \tau', \tau' \in H_1$. 从而, 由 $\tau'(u_j) = u_j, 1 \le j \le n+1$, 得到 $\tau \sigma_k(u_j) = \sigma_{i_k} \tau'(u_j) = \sigma_{i_k}(u_j)$.

而 $\sigma_{i_1}, \sigma_{i_2}, \ldots, \sigma_{i_n}$ 是 $\sigma_1, \sigma_2, \ldots, \sigma_n$ 的一个排列, 所以方程组(13) 与方程组(12) 等价. 由此, ξ_2 也是(12) 的解. 从而,

$$\xi_2 - \xi_1 = (0, \tau(a_2) - a_2, \dots, \tau(a_r) - a_r, 0, \dots, 0)$$

是(12) 的解. 这与 ξ 的非零分量个数最少的选取矛盾.

故
$$[I(H_1)]:I(H_2)] \leq [H_2:H_1].$$

证毕

访问主页

标 题 页

目 录 页

第 45 页 共 71 页

返回

全屏显示

关 闭

引理12.2.4 设F 是K 的扩域, \mathbf{E}_1 , \mathbf{E}_2 是中间域, $\mathbf{L}\mathbf{E}_1 \subset \mathbf{E}_2$. 设 H_1 , H_2 是 $G = \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的子群, $\mathbf{L}H_1 < H_2$. 则

- i) 若 E_1 是闭的且[E_2 : E_1]有限, 那么 E_2 是闭的, 且[$A(E_1)$: $A(E_2)$] = [E_2 : E_1].
- ii) 若 H_1 是闭的, 且 $[H_2: H_1]$ 有限, 那么 H_2 是闭的, 且 $[I(H_1)): I(H_2)] = [H_2: H_1]$.
- iii) 若 \mathbf{F} 是 \mathbf{K} 的有限维Galois 扩张, 那么每个中间域和其Galois 子群都是闭的, 且 $Aut_{\mathbf{K}}\mathbf{F}$ 阶为[$\mathbf{F}:\mathbf{K}$].
- 证 i) 设 \mathbf{E}_1 是闭的,则有 $E_1 = I(A(\mathbf{E}_1))$, $E_2 \subset I(A(\mathbf{E}_2))$,根据引理12.2.2 和引理12.2.3,有

$$[\mathbf{E}_2 : \mathbf{E}_1] \leq [I(A(\mathbf{E}_2)) : \mathbf{E}_1] = [I(A(\mathbf{E}_2)) : I(A(\mathbf{E}_1))]$$

$$\leq [A(\mathbf{E}_1) : A(\mathbf{E}_2)] \leq [\mathbf{E}_2 : \mathbf{E}_1].$$

从而,
$$[I(A(\mathbf{E}_2)): \mathbf{E}_2] = [I(A(\mathbf{E}_2)): \mathbf{E}_1]/[\mathbf{E}_2: \mathbf{E}_1] = 1$$
, $I(A(\mathbf{E}_2)) = \mathbf{E}_2$, 以及
$$[A(\mathbf{E}_1)): A(\mathbf{E}_2)] = [\mathbf{E}_2: \mathbf{E}_1].$$

访问主页

标 题 页

目 录 页

第 46 页 共 71 页

返回

全屏显示

关 闭

ii)设 H_1 是闭的,则有 $H_1 = A(I(H_1))$, $H_2 \subset A(I(H_2))$,根据引理12.2.2 和引理12.2.3,有

$$[H_2: H_1] \le [A(I(H_2)): H_1] = [A(I(H_2)): A(I(H_1))]$$

 $\le [I(H_1): I(H_2)] \le [H_2: H_1].$

从而, $[A(I(H_2)):H_2]=[A(I(H_2)):H_1]/[H_2:H_1]=1$, $A(I(H_2))=H_2$, 以及

$$[I(H_1)): I(H_2)] = [H_2: H_1].$$

iii) 设E 是中间域. 因为F 是K 的有限维Galois 扩张, 所以[E:K] 是有限的. 而F 在K 上是Galois 的, 因此, K 是闭的. 由i) 推出E 是闭的, 且[A(K):A(E)]=[E:K]. 特别, 当E=F 时, 有

$$|\operatorname{Aut}_{\mathbf{K}}\mathbf{F}| = [\operatorname{Aut}_{\mathbf{K}}\mathbf{F} : \{e\}] = [A(\mathbf{K}) : A(\mathbf{F})] = [\mathbf{F} : \mathbf{K}]$$

是有限的. 从而 $Aut_{\mathbf{K}}\mathbf{F}$ 的每个子群H 是有限的. 因为 $\{e\}$ 是闭的,由ii) 得到H 是闭的. 证毕

访问主页

标 题 页

目 录 页

第 47 页 共 71 页

返回

全屏显示

关 闭

设F 是K 的扩域, E 是中间域. 称E (对于K 和F) 是稳定的, 如果每个K-自同构 $\sigma \in \operatorname{Aut}_{\mathbf{K}}$ F 在E 上的限制都是E 到E 自身的映射.

即: 对于K-自同构 $\sigma \in Aut_{\mathbf{K}}\mathbf{F}$,

$$\sigma: \mathbf{F} \mapsto \mathbf{F} \Rightarrow \sigma|_{\mathbf{E}}: \mathbf{E} \mapsto \mathbf{E}.$$

由此,可建立F 的稳定的中间域集 $\{E\}$ 到 Aut_KF 的正规子群集 $\{A(E) = Aut_EF\}$ 之间的一一对应关系.

访问主页

标 题 页

目 录 页

第 48 页 共 71 页

返回

全屏显示

关 闭

引理12.2.5 设F 是K 的扩域.

- i) 若E 是稳 定的 中 间 扩 域, 那 么 $A(\mathbf{E}) = \mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 是Galois群 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 的正规子群;
- ii) 若H 是 $Aut_{\mathbf{K}}$ **F** 的正规子群,那么H 的不变域I(H) 是稳定的中间扩域.

证 i) 设 $u \in \mathbf{E}$, $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$. 根据E 的稳定性, 有 $\sigma(u) \in \mathbf{E}$, 从而, 对于每个 $\tau \in A(E)$, 有 $(\tau\sigma)(u) = \tau(\sigma(u)) = \sigma(u)$. 因此, 对于任意的 $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$, $\tau \in A(\mathbf{E})$, 以及 $u \in \mathbf{E}$, 有

$$(\sigma^{-1}\tau\sigma)(u) = \sigma^{-1}(\tau\sigma(u)) = \sigma^{-1}(\sigma(u)) = u.$$

从而, $\sigma^{-1}\tau\sigma \in A(\mathbf{E})$. $A(\mathbf{E})$ 是 $\mathrm{Aut}_{\mathbf{K}}$ **F的正规子**群.

ii) 设H 是 $\mathrm{Aut}_{\mathbf{K}}$ F 的正规子群, 那么对任意的 $\tau \in H$, $\sigma \in \mathrm{Aut}_{\mathbf{K}}$ F ,有 $\sigma^{-1}\tau\sigma \in H$. 因此, 对于任意的 $u \in I(H)$, 有 $\sigma^{-1}\tau\sigma(u) = u$. 从而, $\tau(\sigma(u)) = \sigma(u)$. 故 $\sigma(u) \in I(H)$, I(H) 是稳定的中间扩域. 证毕

访问主页

标 题 页

目 录 页

第 49 页 共 71 页

返回

全屏显示

关 闭

引理12.2.6 若F 是K 的Galois 扩域, 且E 是稳定的中间扩域, 则E 也是K 的Galois 扩张.

证 对于 $u \in \mathbf{E} \setminus \mathbf{K}$, 由F 是K 的Galois 扩域, 知存在 $\sigma \in \mathrm{Aut}_{\mathbf{K}}\mathbf{F}$, 使 得 $\sigma(u) \neq u$. 但E 是稳定的, 从而 $\sigma|_{\mathbf{E}} \in \mathrm{Aut}_{\mathbf{K}}\mathbf{E}$, 使得 $\sigma(u) \neq u$. 因此, E 也是K 的Galois 扩张.

访问主页

标 题 页

目 录 页

第 50 页 共 71 页

返回

全屏显示

关 闭

引理12.2.7 若F 是K 的某个扩域, E 是一个中间扩域, 且E 是K 的代数扩张和Galois扩张, 那么E (相对于F 和K) 是稳定的.

注 假设条件: E 是K 的代数扩张, 是不可缺少的.

证 设 $u \in \mathbf{E}, f \in \mathbf{K}[x]$ 是u 的定义多项式. 令 $u_1 = u, u_2, \ldots, u_r$ 是f 在 \mathbf{E} 中的不同的根,则 $r \leq \deg f = n$. 如果 $\tau \in \mathrm{Aut}_{\mathbf{K}}\mathbf{E}$,则 $\{u_1, u_2, \ldots, u_r\}$ 在 τ 下的像 $\{\tau(u_1), \tau(u_2), \ldots, \tau(u_r)\}$ 是 $\{u_1, u_2, \ldots, u_r\}$ 的一个置换,从而, $\mathbf{E}[x]$ 中的多项式 $g(x) = (x - u_1)(x - u_2) \cdots (x - u_r)$ 在 τ 的作用下保持不变. 因为, \mathbf{E} 在 \mathbf{K} 上是Galois 扩张,所以 $g(x) \in \mathbf{K}[x]$.

由 $u_1 = u$ 是g(x) 的根, 得到 $f \mid g$. 因为g 是首一多项式,且 $\deg g \le \deg f$, 所以f = g, f 的所有根是两两不同的, 且都落在 \mathbf{E} 中.

现在, 对于 $\sigma \in \operatorname{Aut}_{\mathbf{K}}\mathbf{F}$, 有 $\sigma(u)$ 是f 的根, 从而 $\sigma(u) \in \mathbf{E}$. 因此, \mathbf{E} (相对于 \mathbf{F} 和 \mathbf{K}) 是稳定的.

访问主页

标 题 页

目 录 页

第 51 页 共 71 页

返回

全屏显示

关 闭

设F 是K 的扩域, E 是稳定的中间扩域. K-自同构 $\tau \in \operatorname{Aut}_K E$ 叫做可拓展到F, 如果存在 $\sigma \in \operatorname{Aut}_K F$,使得 $\sigma|_E = \tau$. 易知, 可拓展的K— 自同构全体所组成的集合是 $\operatorname{Aut}_K F$ 的子群. 特别, 当E 是稳定时, $A(E) = \operatorname{Aut}_E F$ 是 $G = \operatorname{Aut}_K F$ 的正规子群, 从而可以定义商群G/A(E).

引理12.2.8 设F 是K 的扩域, E 是稳定的中间扩域, 那么商群 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}/\mathrm{Aut}_{\mathbf{E}}\mathbf{F}$ 同构于可拓展到F 的E 的所有K -自同构所组成的群.

证 因为E 是稳定的中间扩域, 所以映射 $\varphi: \sigma \longmapsto \sigma|_{\mathbf{E}}$ 是 $\mathrm{Aut}_{\mathbf{K}}$ F 到 $\mathrm{Aut}_{\mathbf{K}}$ E. 显然, 像集合是可拓展到F 的 \mathbf{K} -自同构所构成的群, 而 核是 $\mathrm{Aut}_{\mathbf{E}}$ F. 因此,商群 $\mathrm{Aut}_{\mathbf{K}}$ F / $\mathrm{Aut}_{\mathbf{E}}$ F 同构于可拓展到F 的E 的所 有 \mathbf{K} -自同构所组成的群.

访问主页

标 题 页

目 录 页

第 52 页 共 71 页

返回

全屏显示

关 闭

12.2.3 基本定理之证明

Galois 基本定理之证明: 考虑F 的中间扩域集到Galois 群 $\operatorname{Aut}_{\mathbf{K}}$ F 的所有子群集之间的映射(9) $\varphi: E \longmapsto A(E)$. 根据引理12.2.1, 我们有

$$\mathbf{K} \subset \mathbf{E} \subset I(A(\mathbf{E})) \subset \mathbf{F}.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A(\mathbf{K}) = Aut_{\mathbf{K}}\mathbf{F} > A(\mathbf{E}) > A(I(A(\mathbf{E}))) > A(\mathbf{F}) = \{id_{\mathbf{F}}\}.$$

且 $I(A(\mathbf{E})) = \mathbf{E}$ 的充要条件是H = A(E) 满足A(I(H)) = H. 这表明(定理12.2.3): 闭的中间扩域和闭的Galois 子群之间存在着一个一对应的关系.

访问主页

标 题 页

目 录 页

第 53 页 共 71 页

返回

全屏显示

关 闭

又考虑关系式 $\mathbf{K} \subset \mathbf{E}_1 \subset \mathbf{E}_2 \subset \mathbf{F}$. 我们有(引理12.2.2)

$$[A(\mathbf{K}): A(\mathbf{E}_1)] \le [\mathbf{E}_1: \mathbf{K}], \quad [A(\mathbf{E}_1): A(\mathbf{E}_2)] \le [\mathbf{E}_2: \mathbf{E}_1].$$

因为K 是闭的,且 E_1 在K 上是有限维的(因为F 是有限维的),所以 E_1 是闭的,根据引理12.2.4,所有的中间域(包括 E_2) 和子群都是闭的,这说明映射 φ 是一一对应的. 而且,F 是E 的Galois 扩张. 并且有[$A(E_1): A(E_2)$] = [$E_2: E_1$].

访问主页

标 题 页

目 录 页

第 54 页 共 71 页

返回

全屏显示

关 闭

(iii) 必要性. 假设E 是K 的Galois 扩张. 因为F 是有限维的, 所以根据[F:K] = n, 对任意 $u \in F$, 都有 $\{1_K, u, u^2, \cdots, u^{n-1}\}$ 成一线性相关组这一事实, 即可知E 是K 的代数扩张. 根据引理12.2.7, E 是稳定的. 即每个K 自同构 $\sigma \in \operatorname{Aut}_K F$ 在E 上的限制 $\sigma|_E$ 是E 到自身的同构, 即 $\sigma|_E \in \operatorname{Aut}_K F$. 由引理12.2.5 i), $A(E) = \operatorname{Aut}_E F$ 在 $\operatorname{Aut}_K F$ 中是正规的.

充分性. 假设 $A(\mathbf{E})$ 在 $\mathrm{Aut}_{\mathbf{K}}\mathbf{F}$ 中正规, 那么 $I(A(\mathbf{E}))$ 是一个稳定中间域(引理12.2.5 ii)). 但所有中间域都是闭的, 因此 $\mathbf{E} = I(A(\mathbf{E}))$ 是一个稳定中间域, 再由引理12.2.6, 得到 \mathbf{E} 是 \mathbf{K} 的 \mathbf{Galois} 域.

访问主页

标 题 页

目 录 页

第 55 页 共 71 页

返回

全屏显示

关 闭

假设中间域E 是K 的Galois扩张, (从而A(E)在 Aut_KF 中正规), 因为E 和A(E) 都是闭的, 且I(G) = K (F 是K的Galois 扩张), 由引理12.2.4 得到

$$|G/A(E)| = [G : A(E)] = [I(A(E)) : I(G)] = [\mathbf{E} : \mathbf{K}].$$

由引理12.2.8 , $G/A(E) = \operatorname{Aut}_{\mathbf{K}} \mathbf{F}/\operatorname{Aut}_{\mathbf{E}} \mathbf{F}$ 和 $\operatorname{Aut}_{\mathbf{K}} \mathbf{E}$ 的某个阶为[E: K] 的子群同构,但基本定理的i) 表明 $|\operatorname{Aut}_{\mathbf{K}} \mathbf{E}| = [\mathbf{E}:\mathbf{K}]$ (因为E 是K 的Galois 扩张),这说明 $G/A(\mathbf{E}) \cong \operatorname{Aut}_{\mathbf{K}} \mathbf{E}$. 证毕

访问主页

标 题 页

目 录 页

第 56 页 共 71 页

返回

全屏显示

关 闭

12.3 可分域 代数闭包

12.3.1 可分域

定义12.3.1 设K 是一个域, $f \in \mathbf{K}[x]$ 是次数 ≥ 1 的多项式. K 的一个扩域F 叫做**多项式**f **在K 上的分裂域**, 如果f 在F[x] 中可分解, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $\mathbf{F} = \mathbf{K}(u_1, \dots, u_n)$, 其中 $\alpha \in \mathbf{K}, u_1, \dots, u_n$ 是f 在 \mathbf{F} 中的根.

设S 是K[x] 中一些次数 ≥ 1 的多项式组成的集合. K 的一个扩域F 叫做**多项式集合**S **在**K 上的分裂域, 如果S 中的每个多项式f 在F[x] 中可分解, 且F 由S 中的所有多项式的根在K 上生成.

例12.3.1 设 $x^p - x$ 在 \mathbf{F}_p 的分裂域就是 \mathbf{F}_p .

证 因为在 \mathbf{F}_p 上有 $x^p - x = x(x-1)\cdots(x-(p-1))$.

例12.3.2 设E 是q 元有限域, 其素域是 \mathbf{F}_p . 则 $x^q - x$ 在 \mathbf{F}_p 的分裂域就是 \mathbf{E} .

访问主页

标 题 页

目 录 页

第 57 页 共 71 页

饭 回

全屏显示

关 闭

定理12.3.1 设K 是一个域, $f \in \mathbf{K}[x]$ 的次数为 $n \geq 1$. 则存在f 一个分裂域F 具有 $[\mathbf{F}:\mathbf{K}] \leq n!$.

证 我们对 $n = \deg f$ 作数学归纳法.

如果n = 1, 或如果F 在K 上可分解, 则F = K 是分裂域.

如果n > 1, f 在K 上不能分解, 设 $g \in \mathbf{K}[x]$ 是f 的次数大于1 的不可约因式. 则存在K 的一个简单扩张 $\mathbf{K}(u)$ 使得u 是g 的根, 且[$\mathbf{K}(u): \mathbf{K}] = \deg g > 1$. 因此, 在 $\mathbf{K}(u)[x]$ 中有分解式f(x) = (x-u)h(x), 其中 $\deg h = n-1$. 由归纳假设, 存在一个h 在 $\mathbf{K}(u)$ 上的维数 $\leq (n-1!)$ 的分裂域F. 易知, F 在K 上的次数[$\mathbf{F}: \mathbf{K}$] = [$\mathbf{F}: \mathbf{K}(u)$][$\mathbf{K}(u): \mathbf{K}$] $\leq (n-1)!n = n!$. 证毕

访问主页

标 题 页

目 录 页

第 58 页 共 71 页

返回

全屏显示

关 闭

12.3.2 代数闭包

下面讨论不能进行代数扩张的域, 也是一个在该域上的多项式总有解的域.

定理12.3.2 在域F上的如下条件等价:

- (i) 每个非常数多项式 $f \in \mathbf{F}[x]$ 在 \mathbf{F} 中有根.
- (ii) 每个非常数多项式 $f \in \mathbf{F}[x]$ 在 \mathbf{F} 中可分解.
- (iii) 每个不可约多项式 $f \in \mathbf{F}[x]$ 的次数为一.
- (iv) 不存在F 的代数扩张(除了F 自己以外).

访问主页

标 题 页

目 录 页

第 59 页 共 71 页

返回

全屏显示

关 闭

证 (i) 推(ii). 对 f 的次数 deg f = n 作数学归纳法.

n=1 时, f(x) 为一次多项式, 结论成立.

假设结论对次数 $\leq n-1$ 的多项式成立.

对于非零 $n \ge 2$ 次多项式f(x), 由(i), f(x) 在F 中有根x = a. 根据定理12.3.1 之推论2, 我们有 $x - a \mid f(x)$, 或 $f(x) = f_1(x)(x - a)$, 其中deg $f_1 = n - 1$. 根据归纳假设, $f_1(x)$ 在F 中可分解. 故 $f \in \mathbf{F}[x]$ 在F 中可分解.

- (ii) 推(iii). 结论显然成立.
- (iii) 推(iv). 设E 是F 的一个代数扩张, 则对于任意 $u \in E$, 因为u 是F 上的代数元, 定理12.1.5, 存在不可约多项式 $f(x) \in F[x]$ 使得f(u) = 0. 根据(iii), $f(x) = a_1x + a_2$, $a_1, a_2 \in F$. 从而, $u = -a_2/a_1 \in F$. 这说明, $E \subset F$, E = F. 结论成立.
- (iv) 推(i). 设f(x) 是F 上的非常数多项式,根据定理12.1.5,存在f(x) 的一个根u,使得F(u)为F 的代数扩张.根据(iv),F(u) = F. 因此, $u \in F$. 结论成立. 证毕

访问主页

标 题 页

目 录 页

第 60 页 共 71 页

返回

全屏显示

关 闭

定义12.3.2 设F 是一个域. F 叫做代数闭包, 如果域F 满足定理12.3.2 的等价条件.

定义12.3.3 设K 是一个域, f 是K 上的不可约多项式. 如果F 是f 在K 上的一个分裂域, 且f 在F 中的根都是单根, 则称f 是可分的. **定义12.3.4** 设F 是域K 的一个扩域, u 是K 上的代数数. 如果u 在K 上的定义多项式是可分的, 则称u 在u 上是可分的. 如果u 的每个元素u 在u 上都是可分的, 则称u 为u 的可分扩张.

访问主页

标 题 页

目 录 页

第61页共71页

返回

全屏显示

关 闭

