Estimation of pseudo counts

The equation used to estimate frequencies in a weight matrix is

$$p_a = \frac{\alpha \cdot f_a + \beta \cdot g_a}{\alpha + \beta}$$

where α is the number of sequence in the multiple alignment (minus 1), β is the weight on prior (or weight on pseudo counts), f_a is the observed frequency for amino acid a and g_a is the pseudo frequency for amino acid a.

The pseudo frequency is estimated using the relation

$$g_a = \sum_b f_b \cdot q(a \mid b)$$

where f_b is the observed frequency for amino acid b, and q(a|b) is the Blosum substitution frequency for the amino acid a, conditional on the observation of amino acid b.

Once you have estimated the frequency p_a , the weight matrix values are calculated using the relation

$$W_a = 2 * \frac{\log(\frac{p_a}{q_a})}{\log 2}$$

where p_a is the frequencies of amino acid a at position i in the motif, and q_a is the background frequency of amino acid a (see last page).

The Blosum62 substitution matrix and a table of the 20 background frequencies are given on the last page.

Say, you have the following 6 sequences

EDRYK

EHYLK

OGHLP

EHLYR

EHQEA

EHYLR

Estimate the observed frequencies (f_a), the pseudo frequencies (g_a), and the combined frequencies p_a at P1 for the 20 amino acids (fill out the table below). Use β =5 and no sequence weighting.

Say you want to calculate the values for A. Then

$$f(A) = 0.0$$

$$\begin{split} g(A) &= f(E)*q(A|E) + f(Q)*q(A|Q) = 5/6*0.06 + 1/6*0.06 = 0.06 \\ p(A) &= (5*0.0 + 5*0.06)/10 = 0.03 \\ w(A) &= 2*log(0.03/0.074)/log(2) = -2.61 \end{split}$$

since the other 18 amino acids have frequency values of 0.

	f_a	g_a	p_a	w_a
A	0	0.06	0.03	-2.61
R	0	0.053	0.027	-1.93
N	0	0.04	0.02	-2.33
D	0	0.083	0.042	-0.75
С	0	0.01	0.005	-4.64
Q	0.167	0.085	0.126	3.78
Е	0.833	0.267	0.550	6.70
G	0	0.04	0.02	-3.78
Н	0	0.03	0.015	-1.59
I	0	0.022	0.011	-5.30
L	0	0.042	0.021	-4.50
K	0	0.082	0.041	-1.01
M	0	0.012	0.006	-4.19
F	0	0.018	0.009	-4.72
P	0	0.028	0.014	-2.92
S	0	0.06	0.03	-1.85
T	0	0.04	0.02	-2.70
W	0	0.01	0.005	-2.76
Y	0	0.02	0.01	-3.36
V	0	0.032	0.016	-4.41

A 12 N D C 0 100 G H T T. K M \mathbf{F}' P 5 T 167 A 0.29 0.03 0.03 0.03 0.02 0.03 0.04 0.08 0.01 0.04 0.06 0.04 0.02 0.02 0.03 0.09 0.05 0.01 0.02 0.07 R 0.04 0.34 0.04 0.03 0.01 0.05 0.05 0.03 0.02 0.02 0.05 0.12 0.02 0.02 0.02 0.04 0.03 0.01 0.02 0.03 N 0.04 0.04 0.32 0.08 0.01 0.03 0.05 0.07 0.03 0.02 0.03 0.05 0.01 0.02 0.02 0.07 0.05 0.00 0.02 0.03 p 0.04 0.03 0.07 0.40 0.01 0.03 0.09 0.05 0.02 0.02 0.03 0.04 0.01 0.01 0.02 0.05 0.04 0.00 0.01 0.02 C 0.07 0.02 0.02 0.02 0.48 0.01 0.02 0.03 0.01 0.04 0.07 0.02 0.02 0.02 0.04 0.04 0.04 0.00 0.01 0.06 Q 0.06 0.07 0.04 0.05 0.01 0.21 0.10 0.04 0.03 0.03 0.05 0.09 0.02 0.01 0.02 0.06 0.04 0.01 0.02 0.04 E 0.06 0.05 0.04 0.09 0.01 0.06 0.30 0.04 0.03 0.02 0.04 0.08 0.01 0.02 0.03 0.06 0.04 0.01 0.02 0.03 G 0.08 0.02 0.04 0.03 0.01 0.02 0.03 0.51 0.01 0.02 0.03 0.03 0.01 0.02 0.02 0.05 0.03 0.01 0.02 H 0.04 0.05 0.05 0.04 0.01 0.04 0.05 0.04 0.35 0.02 0.04 0.05 0.02 0.03 0.02 0.04 0.03 0.01 0.06 0.02 K 0.06 0.11 0.04 0.04 0.01 0.05 0.07 0.04 0.02 0.03 0.04 0.28 0.02 0.02 0.03 0.05 0.04 0.01 0.02 0.03 M 0.05 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.10 0.20 0.04 0.16 0.05 0.02 0.04 0.04 0.01 0.02 0.09 F 0.03 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.02 0.06 0.11 0.02 0.03 0.39 0.01 0.03 0.03 0.02 0.09 0.06 P 0.06 0.03 0.02 0.03 0.01 0.02 0.04 0.04 0.01 0.03 0.04 0.04 0.01 0.03 0.04 0.04 0.01 0.03 0.04 0.04 0.01 0.03 $\texttt{S} \hspace{0.1cm} \texttt{0.11} \hspace{0.1cm} \texttt{0.04} \hspace{0.1cm} \texttt{0.05} \hspace{0.1cm} \texttt{0.05} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.03} \hspace{0.1cm} \texttt{0.07} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.03} \hspace{0.1cm} \texttt{0.04} \hspace{0.1cm} \texttt{0.05} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.03} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.08} \hspace{0.1cm} \texttt{0.01} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.04} \hspace{0.1cm} \texttt{0.05} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.08} \hspace{0.1cm} \texttt{0.01} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.04} \hspace{0.1cm} \texttt{0.05} \hspace{0.1cm} \texttt{0.02} \hspace{0.1cm} \texttt{0.08} \hspace{0.1cm} \texttt{0.08}$ T 0.07 0.04 0.04 0.04 0.02 0.03 0.04 0.04 0.01 0.05 0.07 0.05 0.02 0.02 0.03 0.09 0.25 0.01 0.02 0.07 W 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.03 0.05 0.02 0.02 0.06 0.01 0.02 0.02 0.49 0.07 0.03 Y 0.04 0.03 0.02 0.02 0.01 0.02 0.03 0.02 0.05 0.04 0.07 0.03 0.02 0.13 0.02 0.03 0.03 0.03 0.32 0.05

Background frequencies

- A 0.07400
- R 0.05200
- N 0.04500
- D 0.05400
- C 0.02500
- 0 0.03400
- E 0.05400
- G 0.07400
- н 0.02600
- I 0.06800
- L 0.09900
- K 0.05800
- M 0.02500
- F 0.04700
- P 0.03900 s 0.05700
- T 0.05100
- W 0.01300
- Y 0.03200 V 0.07300