Working title: Highly resolved spatiotemporal simulations for exploring mixed fishery dynamics

Paul J. Dolder^{a,b,*}, Cóilín Minto^a, Jean-Marc Guarini^c, Jan Jaap Poos^{d,e}

^a Galway-Mayo Institute of Technology (GMIT), Dublin Road, Galway, Ireland
^b Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, UK

^cSorbonne Université, Faculty of Sciences, 4 Place Jussieu, 75005 Paris, France
 ^dWageningen Marine Research, Haringkade 1 1976 CP IJmuiden, Netherlands
 ^eAquaculture and Fisheries Group, Wageningen University & Research, Zodiac Building
 122, De Elst 1, 6708 WD Wageningen, the Netherlands

Abstract

To understand how data resolution impacts inference on mixed fisheries interactions we developed a highly resolved spatiotemporal discrete-event simulation model incorporating: i) delay-difference population dynamics, ii) population movement using Gaussian Random Fields to simulate patchy, heterogeneously distributed populations, and iii) fishery dynamics for multiple fleet characteristics based on population targeting under an explore-exploit strategy. This is implemented via a mix of correlated random walk movement (for exploration) and learned behaviour (for exploitation) phases of the fisheries.

Fifty years of sub-daily fishing activity was simulated and used to draw inference on the underlying community structures. We compared inferences based on: commercial catch, a simulated fixed-site sampling survey design and the true underlying populations. We i) establish the potential limitations of fishery-dependent data in providing a robust picture of spatiotemporal distributions; and then ii) simulated an area closure based on areas defined from the different data sources at a range of temporal and spatial resolutions.

Our framework allows users to explore the assumptions in modelling observational data and evaluate the underlying dynamics of such approaches at a fine

 $Email\ address: \verb"paul.dolder@research.gmit.ie" (Paul\ J.\ Dolder)$

^{*}Corresponding author

spatial and temporal scale. In application to a mixed fishery exploiting four different populations we found different spatial patterns were evident and that the effectiveness of the spatial closure reduced when data were aggregated across larger spatial areas. However, aggregation across time periods has less of a negative impact on the closure success and while not as effective as when based on on the true population, closures based on high catch rates observed in commercial data could still reduce fishing on a protected species.

We conclude from our example framework application that commercial data, while containing bias, provide a useful tool for managing catches in mixed fisheries if applied at the correct spatiotemporal scale.

Keywords: spatiotemporal, mixed fisheries, individual based, spatial management, heterogeneity, preferential sampling

2010 MSC: 00-01, 99-00

1. Introduction

Fishers exploit a variety of fish populations that are heterogeneously dis-

3 tributed in space and time with varying knowledge of species distributions. As

4 fishers do not have full control over what species they select when fishing in

5 'mixed fisheries' it can result in catch of low quota or protected species. If over-

6 quota catch of a species for which they have no quota is discarded without being

accounted for it limits our ability to control fishing mortality (Alverson et al.,

8 1994; Crowder et al., 1998; Rijnsdorp et al., 2007) and the ability to manage

fisheries for the biological and economic sustainability (Ulrich et al., 2011; Bat-

sleer et al., 2015).

11

There is increasing interest in technical solutions such as gear and spatial clo-

sures as measures to reduce unwanted catch (Kennelly and Broadhurst, 2002;

¹⁴ Catchpole and Revill, 2008; Bellido et al., 2011; Cosgrove et al., 2019) and

adaptive spatial management strategies have been proposed as a way of reducing over-quota discards (Holmes et al., 2011; Little et al., 2015; Dunn et al., 2014). However, if fisheries are to reduce unwanted catch through spatial avoidance, an in-depth understanding of spatiotemporal fishery dynamics is required.

19

Understanding the correct scale for spatial management measures to be effec-20 tive is crucial as it enables implementation of effective solutions which minimise economic impact (Dunn et al., 2016). For example, the problem can be to identify a scale that promotes species avoidance for vulnerable or low quota species 23 while allowing continuance of sustainable fisheries for available quota species. Identifying the correct spatial scale remains a challenge because data on fish 25 location at high temporal and spatial resolutions is expensive and difficult to collect and proxies are usually inferred from scientific surveys or commercial catches with limited spatial and temporal resolution. Thus, implementation of spatial measures is hampered by a lack of knowledge of fish and fishery spatiotemporal dynamics and understanding of the scale at which these processes 30 become important for management. 31

32

Identifying appropriate spatial scales for fisheries closures has been a highlighted as crucial to their success (Costello et al., 2010; Dunn et al., 2016).

Inference on fisheries spatial dynamics is hampered where spatial information
is coarse due to low resolution reporting of fisheries catch which is aggregated
across larger gridded areas (Branch et al., 2005). Further, if data does not allow
identification of spatial features it may lead to poorly sited closures which are
ineffectual or have unintended consequences. For example, increased benthic
impact on previously unexploited areas from the cod closure in the North Sea
were observed without the intended effect of reducing cod exploitation (Rijnsdorp et al., 2001; Dinmore et al., 2003)).

44 45

More refined spatiotemporal information has since become available through

the combination of logbook and Vessel Monitoring System (VMS) data (Lee et al., 2010; Bastardie et al., 2010; Gerritsen et al., 2012; Mateo et al., 2017) and more real-time spatial management has been possible (e.g. Holmes et al., 2011). However, fishers establish favoured fishing grounds through an explore-exploit strategy (Rijnsdorp et al., 2011; Bailey et al., 2019) where they search for areas with high catches and then use experience to return to areas where they've experienced high catch in the past. This leads to an inherently biased sampling where target species are over-represented in the catch as fishers exploit areas of high abundance. There is a need to understand the influence of these biases on any spatial management measures which are implemented based on inference from commercial landings or catch data.

57

To understand the effect of spatiotemporal aggregation of data and fishery targeting on our perception of spatial abundance of different fish populations we ask two fundamental questions regarding inference derived from observational data:

- 1. Do different source of sampling-derived fisheries data reflects the underlying community structure?
- 2. How does data aggregation and data source impact on the success of spatial fisheries management measures?

To answer these questions we i) develop a simulation model where population dynamics are highly-resolved in space and time, using a Gaussian spatial process to define suitable habitat for different populations. As the precise locations of the fish are known directly rather than inferred from sampling or commercial catch, we can use the population model to validate how inference from fisheries-dependent and fisheries independent sampling relates to the real community structure in a way we could not with real data. We ii) compare, at different spatial and temporal aggregations, the real (simulated) population distributions to samples from fisheries-dependent and fisheries independent catches to test if these are a true reflection of the relative density of the populations.

We then iii) simulate a fishery closure to protect a species based on different

77 spatial and temporal data aggregations.

78

We use these evaluations to draw inference on the utility of commercial data

 $_{80}$ in supporting management decisions.

2. Materials and Methods

A Discrete-event simulation (DES) model of a hypothetical fishery was de-

veloped as a software package (MixFishSim). The modular approach enabled

efficient computation by allowing for sub-modules implemented on time-scales

appropriate to capture the characteristic of the different processes (Figure 1).

The following sub-modules were included to capture the full system: 1) Popu-

lation dynamics, 2) Recruitment dynamics, 3) Population movement, 4) fishery

dynamics.

39

90 Population dynamics operate on a daily time-step, while population move-

ment occurs on a weekly time-step, with the fishing module operating on a

tow-by-tow basis (i.e. multiple events a day).

93 2.1. Population dynamics

The basic population level processes were simulated using a modified two-

stage Deriso-Schnute delay difference model which models the fish populations in

terms of aggregate biomass of recruits and mature components rather than keep-

97 ing track of individuals(Deriso, 1980; Schnute, 1985; Dichmont et al., 2003). A

daily time-step was chosen to discretise continuous population processes on a bi-

ologically relevant and computationally tractable timescale. Population biomass

growth was modelled as a function of previous recruited biomass, intrinsic pop-

ulation growth and recruitment functionally linked to the adult population size.

Biomass for each cell c was incremented each day d as follows (the full parameter

list is detailed in Table 1):

$$B_{c,d+1} = (1+\rho) B_{c,d} \cdot e^{-Z_{c,d}} - \rho \cdot e^{-Z_{c,d}} \times (B_{c,d-1} \cdot e^{-Z_{c,d-1}} + Wt_{R-1} \cdot (\alpha_{d-1} \cdot R_{\tilde{y}(c)})) + Wt_{R} \cdot (\alpha_{d} \cdot R_{\tilde{y}(c)})$$

$$(1)$$

where ρ is Brody's coefficient, shown to be equal to e^{-K} when K is the growth rate from a von Bertalanffy logistic growth model (Schnute, 1985). Wt_{R-1} is the average weight of fish prior to recruitment, while Wt_R is the average recruited weight. α_d represents the proportion of fish recruited during that day for the year, while $R_{c,\tilde{y}(c)}$ is the annual recruits in year y for cell c.

109

Mortality $Z_{c,d}$ can be decomposed to natural mortality, $M_{c,d}$, and fishing mortality, $F_{c,d}$, where both $M_{c,d}$ and $F_{c,d}$ are instantaneous rates with $M_{c,d}$ fixed and $F_{c,d}$ calculated by solving the Baranov catch equation (Hilborn and Walters, 1992) for $F_{c,d}$:

$$C_{c,d} = \frac{F_{c,d}}{F_{c,d} + M_{c,d}} \cdot \left(1 - e^{-(F_{c,d} + M_{c,d})}\right) \cdot B_{c,d}$$
 (2)

where $C_{c,d}$ is the summed catch from the fishing model across all fleets and vessels in cell c for the population during the day d, and $B_{c,d}$ the daily biomass for the population in the cell. Here, catch is the sum of those across all fleets and vessels, $C_{c,d} = \sum_{fl=1}^{FL} \sum_{v=1}^{V} E_{fl,v,c,d} \cdot Q_{fl} \cdot D_{c,d}$ with fl and FL the fleet and total number of fleets, v and v the vessel and total number of vessels respectively and v and v fishing effort and catchability of the gear, and v is the density of the population at the location fished.

121

122

2.2. Recruitment dynamics

Recruitment is modelled as a function of adult biomass. In *MixFishSim*, it can either take the form of a stochastic Beverton-Holt stock recruitment relationship, or a stochastic Ricker stock recruitment relationship. The Beverton-Holt relationship is defined as(Beverton and Holt, 1957):

$$\bar{R}_{c,d} = \frac{(\alpha \cdot S_{c,d})}{(\beta + S_{c,d})}$$

$$R_{c,d} \sim \log N[(\log(\bar{R}_{c,d}), \sigma^2)]$$
(3)

where α is the maximum recruitment rate, β the spawning stock biomass (SSB) required to produce half the maximum stock size, S current stock size and σ^2 the variability in the recruitment due to stochastic processes. The stochastic Ricker form (Ricker, 1954) is:

$$\bar{R}_{c,d} = B_{c,d} \cdot e^{(\alpha - \beta \cdot B_{c,d})}$$

$$R_{c,d} \sim \log N[(\log(\bar{R}_{c,d}), \log(\sigma^2))]$$
(4)

where α is the maximum productivity per spawner and β the density dependent reduction in productivity as the SSB increases.

2.3. Population movement dynamics

Population movement is a combination of directed (advective) movement where at certain times of year the population moves towards spawning grounds by increasing the probabilities of moving into the spawning grounds from adjacent cells, and random (diffusive) movement, governed by a stochastic process where movement between adjacent cells is described by a set of probabilities.

138 139

134

135

136

137

To simulate fish population distribution in space and time a Gaussian spatial process was employed to model habitat suitability for each of the popula-141 tions on a 2d grid. We first defined a Gaussian random field process, $\{S(c):$ 142 $c \in \mathbb{R}^2$, where for any set of cells c_1, \ldots, c_n , the joint distribution of S =143 $\{S(c1), \ldots S(c_n)\}\$ is multivariate Gaussian with a *Matérn* covariance structure, 144 where the correlation strength weakens with distance controlled by two parameters, with ν a scale parameter in the units of distance and κ a shape parameter which determines the smoothness of the process. This enables us to model the 147 spatial autocorrelation observed in animal populations where density is more 148 similar in nearby locations (Tobler, 1970; F. Dormann et al., 2007; Poos and

Rijnsdorp, 2007b) and we change the parameters to implement different spa-150 tial structures for the different populations using the RandomFields R package 151 (Schlather et al., 2015). We define a stationary habitat field with an anisotropic pattern (to simulate a depth gradient) and combine it with a temporally dy-153 namic thermal tolerance field to imitate two key drivers of population dynamics 154 without modelling the processes explicitly. Each population was initialised at 155 a single location, and subsequently moved across the entire space according 156 to a probabilistic distribution based on habitat suitability (represented by the 157 normalised values from the GRFs), temperature tolerance and distance from 158 current cell: 159

$$Pr(C_{wk+1} = J | C_{wk} = I) = \frac{e^{-\lambda \cdot d_{I,J} \cdot (Hab_{J,p}^2 \cdot Tol_{J,p,wk})}}{\sum_{c=1}^{C} e^{-\lambda \cdot d} \cdot (Hab_{c,p}^2 \cdot Tol_{c,p,wk})}$$
(5)

Where $d_{I,J}$ is the euclidean distance between cell I and cell J, λ is a given rate of decay, $Hab_{c,p}$ is the index of habitat suitability for cell c and population p, with $Tol_{c,p,wk}$ the temperature tolerance for cell c by population p in week wk (see below).

164

During pre-defined weeks of the year the habitat suitability is modified with user-defined spawning habitat locations, resulting in each population having concentrated areas where spawning takes place. The populations then move towards these cells in the weeks prior to spawning, resulting in directional movement towards the spawning grounds.

170 171

172

173

167

168

169

A time-varying temperature covariate changes the interaction between time and suitable habitat on a weekly time-step. Each population p was assigned a thermal tolerance with mean, μ_p and standard deviation, σ_p so that each cell and population temperature tolerance is defined that:

$$Tol_{c,p,wk} = \frac{1}{\sqrt{(2\pi \cdot \sigma_p^2)}} \cdot \exp\left(-\frac{(T_{c,wk} - \mu_p)^2}{2 \cdot \sigma_p^2}\right)$$
 (6)

Where $Tol_{c,p,wk}$ is the tolerance of population p for cell c in week wk, $T_{c,wk}$ is
the temperature in the cell given the week and μ_p and σ_p the mean and standard

deviation of the population temperature tolerance.

178 179

180

181

182

183

185

The final combined process results in a population structure and movement pattern unique to each population, with population movement occurring on a weekly basis. The decision to model population movement on a weekly timescale was to reflect that fish tend to aggregate in species specific locations that have been observed to last around one to two weeks (Poos and Rijnsdorp, 2007b). Therefore this process approximated the demographic shifts in fish populations throughout a year with seasonal spawning patterns (Figure S5).

186 2.4. Fleet dynamics

Fleet dynamics can be broadly categorised into three components: fleet targeting - that determined the fleet catch efficiency and preference towards a 188 particular population; trip-level decisions, that determines the initial location 189 to be fished at the beginning of a trip; and within-trip decisions, that determines 190 movement from one fishing spot to another within a trip. An explore-exploit 191 type strategy was implemented in the model that combined these three compo-192 nents for individual vessels to maximise their catch from an unknown resource 193 distribution (Bailey et al., 2019). The decision to use an individual based model 194 for fishing vessels was taken because fishers are heterogeneous in their location 195 choice behaviour due to different objectives, risk preference and targeting prefer-196 ence (Van Putten et al., 2012; Boonstra and Hentati-Sundberg, 2016). Therefore fleet dynamics are emergent from individual dynamics rather than pre-defined 198 group dynamics. 199

200 2.4.1. Fleet targeting

Each fleet of n vessels was characterised by both a general efficiency, Q_{fl} , and a population specific efficiency, $Q_{fl,p}$ which are each bound by [0,1]. The product of these parameters $[Q_{fl} \cdot Q_{fl,p}]$ affects the overall catch rates for the fleet and the preferential targeting of one species over another. This, in combination with the parameter choice for the step-function defined below (as well as some

randomness from the exploratory fishing process) determined the preference of fishing locations for the fleet.

208 2.4.2. Decision about where to fish at the start of a trip

Several studies (for a review see Girardin et al., 2017) have confirmed past 209 activity and past catch rates are strong predictors of fishing location choice. 210 For this reason, the fleet dynamics sub-model included a learning component, 211 where a vessel's initial fishing location in a trip was based on selecting from 212 previously successful fishing locations. This was achieved by calculating an 213 expected revenue based on the catches from locations fished in the preceding 214 trip as well as the same month periods in previous years and the travel costs 215 from the port to the fishing grounds. Then a vessel chooses randomly from the 216 top 70 % of fishing events (defined as the 'threshold') in terms of expected profit within that season. 218

2.4.3. Decision about where to fish within a trip

233

234

Fishing locations within a trip are initially determined by a modified ran-220 dom walk process. As the simulation progresses the within-trip decision become 221 gradually more influenced by experience gained from past fishing locations (as 222 per the initial trip-level location choice), moving location choice towards areas 223 of higher perceived profit. A random walk was chosen for the exploratory fishing 224 process as it is the simplest assumption commonly used in ecology to describe 225 optimal animal search strategy for exploiting heterogeneously distributed prey 226 about which there is uncertain knowledge (Viswanathan et al., 1999). In a random walk, movement is a stochastic process through a series of steps. These 228 steps have a length, and a direction that can either be equal in length or take 229 some other functional form. The direction of the random walk was also cor-230 related (known as 'persistence') providing some overall directional movement (Codling et al., 2008). 232

For our implementation of a random walk directional change is based on a

negatively correlated circular distribution where a favourable fishing ground is likely to be "fished back over" by the vessel returning in the direction it came from. The step length (i.e. the distance travelled from the current to the next fishing location) is determined by relating recent fishing success, measured as the summed value of fish caught (revenue, Rev);

$$Rev_{c,d} = \sum_{p=1}^{P} L_{c,d,p} \cdot Pr_p \tag{7}$$

where $L_{c,d,p}$ is landings of a population p, and Pr_p price of a population. All population prices were kept the same across fleets and seasons. Here, when fishing is successful vessels remain in a similar location and continue to exploit the local fishing grounds. When unsuccessful, they move some distance away from the current fishing location. The movement distance retains some degree of stochasticity, that can be controlled separately, but is determined by the relationship:

$$Le = e^{\log(\beta_1) + \log(\beta_2) - \left(\log\left(\frac{\beta_1}{\beta_3}\right)\right) \cdot Rev}$$
(8)

Where β_1 , β_2 and β_3 are parameters determining the shape of the step function in its relation to revenue, so that, a step from (x_t, y_t) to (x_{t+1}, y_{t+1}) is defined by:

$$(x_{t+1}, y_{t+1}) = x_t + Le \cdot \cos\left(\frac{\pi \cdot Br_{t+1}}{180}\right),$$

$$y_t + Le \cdot \sin\left(\frac{\pi \cdot Br_{t+1}}{180}\right)$$

$$when \quad Br_t < 180, Br_{t+1} = 180 + \sim vm[(0, 360), k]$$

$$Br_t > 180, Br_{t+1} = 180 - \sim vm[(0, 360), k]$$

$$(9)$$

where Le is the step length, Br_t is the bearing at time t, k the concentration parameter from the von Mises distribution that we correlate with the revenue so that $k = (Rev + 1/RefRev) \cdot max_k$, where max_k is the maximum concentration value, k, and RefRev is parametrised as for β_3 in the step length function.

2.4.4. Local population depletion

Where several fishing vessels exploit the same fish population competition is 255 known to play an important role in local distribution of fishing effort (Gillis and 256 Peterman, 1998). If several vessels are fishing on the same patch of fish, local 257 depletion and interference competition will affect fishing location choice of the fleet as a whole (Rijnsdorp, 2000; Poos and Rijnsdorp, 2007a). To account for 259 this behaviour, the fishing sub-model operates spatially on a daily time-step so 260 that for future days the biomass available to the fishery is reduced in the areas 261 fished. The cumulative effect is to make heavily fished areas less attractive as a 262 future fishing location choice as reduced catch rates will be experienced.

2.5. Fisheries independent survey

A fisheries-independent survey is simulated where fishing on a regular grid begins each year at the same time for a given number of stations (a fixed station survey design). Catches of the populations at each station are recorded but not removed from the population (catches are assumed to have negligible impact on population dynamics). This provides a fishery independent snapshot of the populations at a regular spatial intervals each year, similar to scientific surveys undertaken by fisheries research agencies.

272

2.6. Software: R-package development

The simulation framework is implemented in the statistical software package R (R Core Team, 2017) and available as an R package from the author's github site (www.github.com/pdolder/MixFishSim).

277

3. Parameterisation

We parameterise *MixFishSim* to investigate the influence of data aggregation on spatial inference.

3.1. Population models

We parametrised the simulation model for four example populations with different demographics, growth rates, natural mortality and recruitment parameters (Table 4). Habitat preference (Figure S1) and temperature (Figures S3, with temperature tolerance S4) defined to be unique to each population resulting in differently weekly distribution patterns (Figures S5-S7). In addition, each of the populations was assumed to have two defined spawning areas that result in the populations moving towards these areas in pre-defined weeks (Figure S2) with population-specific movement rates (Table 4).

290 3.2. Fleet parametrisation

301

303

304

305

308

309

The fleets were parametrised to reflect five different characteristic fisheries 291 with unique exploitation dynamics (Table 5). By setting different catchability parameters $(Q_{fl,p})$ we create different targeting preferences between the fleets 293 and hence spatial dynamics. The learned random walk process implies that 294 within a fleet different vessels have different spatial distributions based on indi-295 vidual experience. The step function was parametrised dynamically within the 296 simulations as the maximum revenue obtainable was not known beforehand. 297 This was implemented so that vessels take smaller steps when fishing at a loca-298 tion that yields landings value in the top 90th percentile of the value experienced 299 in that year so far (as defined per fleet in Table 5). 300

Fishing locations were chosen based on random search and, with increasing proportion as time progressed, experience of profitable catches built up in the same month from previous years and from the previous trip. 'Profitable' in this context was defined as the locations where the top 70 % of expected profit would be found given revenue from previous trips and cost of movement to the new fishing location. This probability was based on a logistic sigmoid function with a lower asymptote of 0 and upper asymptote of 0.95, and a growth rate that ensures the upper asymptote (where decisions are mainly based on past

knowledge) is reached approximately halfway through the simulation.

311

3.3. Survey settings

The survey simulation was set up with a fixed gridded station design with 100 stations fished each year, starting on day 92 and ending on day 112 (5 stations per day) with same catchability parameter $(Q_p = 1)$ for all populations p. This approximates a real world survey design with limited seasonal and spatial coverage.

3.4. Example research question

To illustrate the capabilities of MixFishSim, we investigate the influence of the temporal and spatial resolution of different data sources on the reduction in catches of a population given spatial closures. To do so, we set up a simulation to run for 50 years based on a 100×100 square grid (undetermined units), with five fleets of 20 vessels each and four fish populations. Fishing takes place four times a day per vessel and five days a week, while population movement is every week.

326 327

325

319

320

321

322

323

How does sampling-derived fisheries data reflect the underlying population structure?

329

331

335

336

To answer this question we compare different spatial and temporal aggregations of the true population distributions to:

- a) **fisheries-independent data:** the inferred population density from a fixed-site sampling survey design as commonly used for fisheries monitoring purposes;
 - b) **fisheries-dependent data:** the inferred population density from our fleet model that includes fishery-induced sampling dynamics.

We allow the simulation to run unrestricted for 30 years, then implement spatial closed areas for the last 20 years of the simulation based on data (either derived from the commercial catches, fisheries-independent survey or the true population used at different spatial and temporal scales.

341

343

349

The following steps are undertaken to determine closures:

- 1. Extract data source (true population, commercial or survey),
- 2. Aggregate according to desired spatial and temporal resolution,
- 345 3. Interpolate across entire area at desired resolution using simple bivariate
 346 interpolation using the *interp* function from the R package akima (Akima
 347 and Gebhardt, 2016). This is intended to represent a naive spatial model
 348 of catch rates, without knowledge of the spatial population dynamics.
 - 4. Close area covering top 5 % of catch rates
- In total 28 closure scenarios were run that represent combinations of:
- data types: commercial logbook data, survey data and true population,
- temporal resolutions: weekly, monthly and yearly closures,
- spatial resolutions: 1 x 1 grid, 5 x 5 grid, 10 x 10 grid and 20 x 20 grid,
- closure basis: highest 5 % of catch rates for the protected population

Survey closures were on an annual basis only, as this was the most temporally resolved survey data available. We evaluated the factors contributing to the success of the closures through a regression tree (using the R package REEMtree (Sela and Simonoff, 2011)) to identify the factor most contributing to differences in fishing mortality before and after the closure.

4. Results

361

362

366

370

372

373

374

375

376

378

379

4.1. Emergent simulation dynamics

Individual habitat preferences and thermal tolerances result in different spatial habitat use for each population (Figure 2) and consequently different seasonal exploitation patterns (Figure 3).

It can be seen from a single vessels movements during a trip that the vessel exploits three different fishing grounds, each of them multiple times (Figure 4(A)), while across several trips fishing grounds that are further apart are fished (Figure 4 (B)). These different locations relate to areas where the highest revenue were experienced, as shown by Figure 4 (D), where several vessels tracks are overlaid on the revenue field, i.e.

$$Rev_c = \sum_{p=1}^{P} B_{c,p} \cdot Q_{fl,p} \cdot Pr_p$$

Vessels from the same fleet (and therefore targeting preference) may exploit some shared and some different fishing grounds depending on their own personal experience during the exploratory phase of the fishery (Figure 4 (C)). This results from the randomness in the correlated random walk step function, with distance moved during the exploitation phase and the direction stochastically related to the revenue experienced on the fishing ground (Figure 4 (D)).

4.2. How does sampling-derived fisheries data reflect the underlying population structure?

The aggregated catch composition from each of the data sources over a tenyear period (which shows average seasonal patterns) at different spatial resolutions highlights different patterns in perceived community structure depending on the data source and aggregation level (Figure 5; visualised using Gerritsen (2014)). The finer spatial grid for the true population (top left) and commercial data (top middle) show visually similar patterns, though there are large unsampled areas in the commercial data from a lack of fishing activity (particularly in the lower left part of the sampling domain). The survey data at this spatial resolution displays very sparse information about the spatial distributions of
the populations. The slightly aggregated data on a 5 x 5 grid shows similar
patterns and, while losing some of the spatial detail, there remains good consistency between the true population and the commercial data. Survey data
starts to pick out some of the similar patterns as the other data sources, but
lacks spatiotemporal coverage. The spatial catch information on a 10 x 10 and
20 x 20 grid lose a significant amount of information about the spatial resolutions for all data sources, and some differences between the survey, commercial
and true population data emerge.

390

Different perceptions of the proportion of each stock in an area are seen when 391 we aggregate the data over a smaller geographical region at different timescales, 392 with weekly (top), monthly (middle) and yearly (bottom) catch compositions from across an aggregated 20 x 20 area (Figure 6). In the true population, 394 the monthly aggregation captures the major patterns of composition seen in 395 the weekly data with the percentage of different populations in the catch hav-396 ing similar mean and standard deviations. In the weekly data population 1 =397 9.36% (SD = 3.99), population 2 = 83.2% (5.60), population 3 = 3.57% (1.23), 398 population 4 = 3.91% (1.59); in the monthly data population 1 = 9.23% (3.87), 300 population 2% = 83.3 (5.52), population 3 = 3.62% (1.15), population 4 =400 %3.86 (1.52). While means were similar some of the variation was lost when 401 aggregated to an annual level; population 1 = 9.90% (0.173), population 2 =402 82.2% (0.308), population 3 = 3.82% (0.119), population 4 = 4.03% (0.0502). 403

404 405

406

407

409

410

The commercial data on a weekly basis shows some of the same patterns as the true population, though the population 1 (in red) is less well represented and some weeks are missing catches from the area. Here, weekly and monthly compositions were nearly identical, with monthly composition of population 1 = 0.0472% (0.0139), population 2 = 94.4% (1.47), population 3 = 3.12% (1.47), population 4 = 2.40% (0.444). Again, yearly values head a similar mean but smaller standard deviation.

The survey data was only available on an annual basis, and showed again a 413 slightly different composition; population 1 = 0.372% (0.00473), population 2 =

87.7% (0.193), population 3 = 0.729% (0.0200), population 4 = 11.2% (0.172).

412

415

418

419

420

421

435

438

4.3. How does data aggregation and source impact on spatial fisheries manage-416 ment measures? 417

We implemented a spatial closure using the different data sources and spatial and temporal aggregations as outlined in the protocol in Section 3.4. We used this to assess the efficacy of a closure in reducing fishing mortality on population 3, given availability of data and its use at different resolutions in order to evaluate the trade-offs in data sources.

In most cases the fishery closure was successful in reducing fishing mortal-423 ity on the species of interest (population 3; Figure 7), though interestingly the 424 largest reductions in fishing mortality happened immediately after the closures, 425 following which the fisheries "adapted" to the closures and fishing mortality 426 increased again somewhat. The exception to the success was the closures imple-427 mented based on the coarsest spatial (20 x 20) and temporal resolution (yearly) 428 that was ineffective (i.e. failed to reduce fishing mortality) with all data sources. 429 As expected, closures based on the "known" population distribution were most 430 effective, with differing degrees of success using the commercial data. Fishing 431 mortality rates on the other species changed in different proportions, depending on whether the displaced fishing effort moved to areas where the populations 433 were found in greater or lesser density. 434

The factor most contributing to differences in fishing mortality before and 436 after the closure was the population (72 % showing that the closures were effective for population 3), followed by data resolution (21 %), data type (7 %) with the least important factor the timescale (< 1 %). In general the finer the 439 spatial resolution of the data used the greater reduction in fishing mortality for 440 population 3 after the closures (Figure 8). The notable outliers are the com-

mercial data at the coarsest spatial resolution (20 x 20) at a yearly and weekly 442 timescale, where closures were nearly as effective as the fine-scale resolution. In 443 this case the closures were sufficiently large to protect a core area of the habitat for the population, but this was achieved in a fairly crude manner by closing a 445 large area - including area where the species was not found (Figure 9) that may 446 have consequences in terms of restricting the fishery in a much larger area than 447 necessary. We found that these trade-offs existed, with high catches maintained with an effective closure when the highest resolution data was used, with the effect being linear when the true population distribution was known and also 450 persisting for closures based on commercial information (Figure 10). 451

452

5. Discussion

Our study presents a new highly resolved fisheries simulation framework to 454 evaluate the importance of data scaling and considers potential bias introduced through data aggregation when using fisheries data to infer spatiotemporal dy-456 namics of fish populations. Understanding how fishers exploit multiple hetero-457 geneously distributed fish populations with different catch limits or conservation 458 status requires detailed understanding of the overlap of resources; this is difficult to achieve using conventional modelling approaches due to species targeting in 460 fisheries resulting in preferential sampling (Martínez-Minaya et al., 2018). Of-461 ten data are aggregated or extrapolated which requires assumptions about the 462 spatial and temporal scale of processes. Our study explores the assumptions 463 behind such aggregation and preferential sampling to identify potential impacts on management advice. With modern management approaches increasingly 465 employing more nuanced spatiotemporal approaches to maximise productivity 466 while taking account of both the biological and human processes operating on 467 different time-frames (Dunn et al., 2016), understanding assumptions behind the data used - increasingly a combination of logbook and positional information from vessel monitoring systems - is vital to ensure measures are effective. 470

5.1. Simulation dynamics

We employ a simulation approach to model each of the population and fishery dynamics in a hypothetical 'mixed fishery', allowing us to i) evaluate the consequences of different aggregation assumptions on our understanding of the spatiotemporal distribution of the underlying fish populations, and ii) evaluate the effectiveness of a spatial closure given those assumptions.

Our approach is unique in that it captures fine scale population and fishery dynamics and their interaction in a way not usually possible with real data and thus not usually considered in fisheries simulations. While other simulation frameworks seek to model individual vessel dynamics based on inferred dynamics from VMS and logbook records (Bastardie et al., 2010), or as a system to identify measures to meet particular management goals (Bailey et al., 2019), our framework allows users to explore the assumptions in modelling observational data and evaluate the underlying dynamics of such approaches at a fine spatial and temporal scale. This offers the advantage that larger scale fishery patterns are emergent properties of the system and results can be compared to those obtained under a statistical modelling framework.

Typically, simulation models that treat fish as individuals are focussed on exploring the inter- and intra- specific interactions among fish populations (e.g. OSMOSE; Shin et al. (2004)) in order to understand how they vary over space and time. Our focus was on understanding the strengths and limitations of inference from catch data obtained through commercial fishing activity with fleets exploiting multiple fish populations and realising catch distributions that may differ from the underlying populations, as identified by Gillis et al. (2008). As such, we favoured a minimum realistic model of the fish populations (Plagányi et al., 2014) taking account of environmental but not demographic stochasticity, while incorporating detailed fishing dynamics that take account of different

drivers in a mechanistic way.

Demographic stochasticity arises due to individual-level variability in time to reproduction and death. This form of stochasticity is often modelled by drawing random time intervals from a given distribution (Gillespie, 1977). The impact of demographic stochasticity depends on the population size, with the effects expected to decrease with increasing population size (Lande et al., 2010). This contrasts with environmental stochasticity, which affects all population sizes and is present at the population level in our model by variability in recruitment.

We take account of heterogeneity in fleet dynamics due to different preferences and drivers similarly to other approaches (Fulton et al., 2011), but at an individual vessel rather than fleet level. We do not explicitly define fleets as rational profit maximisers at the outset, but consider there are several stages to development of the fishery; information gathering through search where the resource location is not known, followed by individual learnt behaviour of profitable locations. This provides a realistic model of how fishing patterns are established and maintained to exploit an uncertain resource through an explore-exploit strategy (Mangel and Clark, 1983; Bailey et al., 2019).

5.2. How does sampling-derived fisheries data reflect the underlying population structure?

Our results demonstrate the importance of considering data scale and resolution when using observational data to support management measures. We find that understanding of the community composition dynamics will depend on the level of data aggregation and its important to consider the scale of processes; including population movement rates, habitat uniformity and fishing targeting practices if potential biases in data are to be understood and taken into account (Figures 2, 4).

Our simulation shows that, despite biases introduced through the fishing

process, the commercially derived data could still inform on the key spatial patterns in the community structures where the fisheries occurred, which was spatially limited due to the "hotspots" of commercially valuable species being fished. Similarly, despite the even spatial coverage the survey was able to capture some of the same spatial patterns as the true population, but missed others due to gaps between survey stations limiting spatial and temporal cov-erage (Figure 5). This provides a challenge when modelling unsampled areas in inferring species distribution maps, though these limitations may be overcome by understanding the relationship between the species and habitat covariates where these are known at unsampled locations (Robinson et al., 2011).

5.3. How does data aggregation and source impact on spatial fisheries management measures?

From our simulations spatial disaggregation was more important than the temporal disaggregation of the commercial data. This reflects the fact that there was greater spatial heterogeneity over the spatial domain than experienced in individual locations over the course of the year (Figure 2).

The yearly data assumes the same proportion of each population caught at any time of the year due to the data aggregation. This assumption introduces 'aggregation bias' as the data may only be representative of some point (or no point) in time. The monthly data shows some consistency between the real population and commercial data for population 2 - 4, though population 1 remains under-represented. On an annual basis, interestingly the commercial data under represents the first species (in red) while the survey over represents species 1. This is likely due to the biases in commercial sampling, with the fisheries not targeting the areas where population 1 are present and the survey sampling areas where population 1 is more abundant than on average. This indicates that fixed closures, at the right resolution, when based on commercially derived data have the potential to reduced fishing mortality. The likely cost of poor spatial

and temporal resolution is associated with reduced effectiveness and potentially closing fishing opportunities for other fisheries (Figure 10).

Two contrasting real world approaches in this respect were the spatial closures to protect cod in the North Sea. In one example, large scale spatial closures were implemented with little success due to effort displacement to previously unfished areas (Dinmore et al., 2003), while in another small scale targeted spatiotemporal closures were considered to have some effect in reducing cod mortality without having to disrupt other fisheries substantially (Needle and Catarino, 2011). These examples emphasise the importance of considering the right scale and aggregation of data when identifying area closures and the need to consider changing dynamics in the fisheries in response to such closures.

Our study showed that fishing rates on other populations also changed (both up and down) as a side-effect of closures to protect one species. This indicates the importance in considering fishing effort reallocation following spatial closures, and our simulation allows us to consider the spatiotemporal reasons for these changes.

5.4. Model assumptions and caveats

We modelled the population and fleet dynamic processes to draw inference on the importance of data scale and aggregation in understanding and managing mixed fisheries and their impact on multiple fish populations. In doing so, we necessarily had to make a number of simplifying assumptions.

Fish populations in our simulations move in pre-defined timescales and according to fixed habitat preferences and temperature gradients (Figures S1, S3). Our assumptions in parameterising the model (movement rates, temperature tolerances) will have a direct impact on our conclusions on the relative importance of spatial and temporal processes. These assumptions could be explored in a future study by varying the parameters and assessing the robustness of our

conclusions. For our example application we have chosen movement rates to reflect aggregation periods observed in past studies (Poos and Rijnsdorp, 2007b).

In addition, we have assumed that fishing vessels are not restricted by quota and therefore discarding of species for which vessels have no quota or that are unwanted is not taken into account. This is likely to be a significant source of bias in any inference using commercial data and should also be explored. For example, MixFishSim could be altered to allow for spatiotemporal appraisal of the impact of discarding on fisher behaviour and underlying populations via inclusion as discarding behaviour, or through move-on rules or cessation of fishing activity when quota is exhausted.

5.5. Future applications of MixFishSim

We consider that the increased availability of high resolution catch and locational information from commercial fisheries will require it to be a key source of data for ensuring management is implemented at the right scale in future. For example, identifying hot-spots for bycatch reduction or identifying spatial overlaps in mixed fisheries (Dolder et al., 2018; Gardner et al., 2008; Little et al., 2015; Dedman et al., 2015; Ward et al., 2015). Our simulation model has the potential to test some of the assumptions behind the modelling approaches in identifying such hotspots and indeed behind spatiotemporal modelling in general (e.g. comparing GAMs, GLMMs, Random Forests and geostatistical models under different data generation processes as exampled by Stock et al. (2019)).

Other novel applications of our framework could be: testing different survey designs given multiple species and data generating assumptions (Xu et al., 2015); commercial index standardisation methods and approaches and understanding of appropriate scales and data aggregations and non-proportionality in catch rate and abundance (Harley et al., 2001; Maunder and Punt, 2004); exploring assumptions about the distribution of natural mortality and fishing

mortality throughout the year and importance of capturing in-year dynamics in estimating stock status (Liu and Heino, 2014); at sea sampling scheme designs to deliver unbiased estimates of population parameters (Cotter and Pilling, 2007; Kimura and Somerton, 2006); adaptive management (Walters, 2007; Dunn et al., 2016); testing the ability of commonly employed fleet dynamics models such as Random Utility Models to capture fine scale dynamics and understand their importance (Girardin et al., 2017); and as a detailed operating model in a management strategy evaluation (Mahévas and Pelletier, 2004).

630 6. Conclusions

MixFishSim provides a detailed simulation framework to explore the interaction of multiple fisheries exploiting different fish populations. The framework enables users to evaluate assumptions in modelling commercially derived data through comparison to the true underlying dynamics at a fine spatial and temporal scale. Understanding these dynamics, the limitations of the data and any potential biases that may be introduced when making inference on spatiotemporal interactions will enable users to identify weaknesses in modelling approaches and identity where data collection is needed to strengthen inference.

Our application shows that inference on community dynamics may change depending on the scale of data aggregation. There is an important balance in ensuring that the data are sufficiently spatially and temporally disaggregated that the main features of the data are captured, yet maintaining enough data coverage that the features can be distinguished. We found in our application that there was greater spatial heterogeneity than temporal heterogeneity and that when using aggregated data to define spatial closures coarser temporal resolution (months instead of weeks) could still achieve the same results in reducing exploitation rates of a vulnerable species at the highest temporal resolution data. Conversely, reducing the spatial resolution had a negative effect on the

effectiveness of the measures (though importantly, there was still some benefit 650 even with coarse spatial resolution). 653

653

654

655

While any findings are likely to be case specific, our findings emphasise the need to understand population demographics, habitat use and movement rates in designing any closure scenario based on observational sampling. This information can then be used to set the bounds on data aggregation used in modelling studies aimed at informing the management measures.

658

663

MixFishSim has numerous potential additional applications as it enables 659 the user to apply methods to a fisheries system where there is detailed under-660 standing of underlying spatiotemporal dynamics. This enables identification of weaknesses or limitations which would not be possible otherwise. In future, we recommend use of the framework to test hypothesis that are otherwise unable 663 to be analysed using real world data due to limitations of data collection. That 664 way the knowledge gained through simulation can inform the future design of 665 management measures. 666

Funding 667

This work was supported by the MARES doctoral training program (MARES_14_15) 668 and the Centre for Environment, Fisheries and Aquaculture Science seedcorn 669 program (DP227AC). The authors declare no competing interests. 670

Appendices

Table 1: Description of variables for population and recruitment dynamics sub-modules.

Variable	Meaning	Units				
Population dynamics						
Delay-difference model						
$B_{c,d}$	Biomass in cell c and day d	kg				
$Z_{c,d}$	Total mortality in cell c for day d	-				
$R_{c,\tilde{y}}$	Annualy recruited fish in cell	yr^{-1}				
ho	Brody's growth coefficient	yr^{-1}				
Wt_R	Weight of a fully recruited fish	kg				
Wt_{R-1}	Weight of a pre-recruit fish	kg				
α_d	Proportion of annually recruited fish recruited during	-				
	$\mathrm{day}\ d$					
Baranov c	atch equation					
$C_{c,d}$	Catch from cell c for day d	kg				
$F_{c,d}$	Instantaneous rate of fishing mortality in cell \boldsymbol{c} on	-				
	day d					
$M_{c,d}$	Instantaneous rate of natural mortality in cell \boldsymbol{c} on	-				
	$\mathrm{day}\ d$					
$B_{c,d}$	Biomass in cell c on day d	kg				
Recruitment dynamics						
$\tilde{R}_{c,d}$	is the recruitment in cell c for day d	d^{-1}				
$B_{c,d}$	biomass in cell c for day d	d^{-1}				
α	the maximum recruitment rate (Beverton Holt) or	kg				
	maximum productivity per spawner (Ricker)					
β	the stock size required to produce half the maximum	kg				
	rate of recruitment (Beverton Holt) or density de-					
	pendent reduction in productivity per capita of SSB					

 ${\it Table 2: Description \ of \ variables \ for \ population \ movement \ sub-module.}$

Variable	Meaning	Units				
Thermal to						
$T_{c,wk}$	Temperature for cell c in week wk	$^{\circ}\mathrm{C}$				
μ_p	Mean of the thermal tolerance for population p	$^{\circ}\mathrm{C}$				
σ_p	Standard deviation of thermal tolerance for popula-	$^{\circ}\mathrm{C}$				
	tion p					
Population	Population movement model					
λ	Decay rate for population movement	-				
$Hab_{c,p}$	Habitat suitability for cell \boldsymbol{c} and population \boldsymbol{p}	-				
$Tol_{c,wk,p}$	Thermal tolerance for in cell c at week wk for popu-	-				
	lation p					
$d_{I,J}$	Euclidean distance between cell ${\cal I}$ and cell ${\cal J}$	-				

Table 3: Description of variables for fleet dynamics sub-module.

Variable	Meaning	Units
Rev	Revenue from fishing tow	€
L_p	Landings of population p	kg
Pr_p	Average price of population p	$\in kg^{-1}$
Le	Step length for vessel	-
Br	Bearing	degrees
k	Concentration parameter for von mises distribution	-
eta_1	shape parameter for step function	-
eta_2	shape parameter for step function	-
eta_3	shape parameter for step function	

Table 4: Population dynamics and movement parameter settings.

Parameter	Pop 1	Pop 2	Pop 3	Pop 4
Habitat quality				
Matérn ν	1/0.015	1/0.05	1/0.01	1/0.005
Matérn κ	1	2	1	1
Anisotropy	1.5,3,-3,4	1,2,-1,2	2.5,1,-1,2	0.1,2,-1,0.2
Spawning areas (bound	40,50,40,50;	50,60,30,40;	30,34,10,20;	50,55,80,85;
box)	80,90,60,70	80,90,90,90	60,70,20,30	30,40,30,40
Spawning multiplier $= 10$				
Movement $\lambda = 0.1$				
Population dynamics				
Starting Biomass	1e5	2e5	1e5	1e4
Beverton-Holt Recruit α	6	27	18	0.3
Beverton-Holt Recruit β	4	4	11	0.5
Beverton-Holt Recruit σ^2	0.7	0.6	0.7	0.6
Recruit week	13-16	12-16	14-16	16-20
Spawn week	16-18	16-19	16-18	18-20
K = 0.3				
wt = 1				
$wt_{d-1} = 0.1$				
M (annual)	0.2	0.1	0.2	0.1
Movement dynamics				
μ_p	12	15	17	14
σ_p^2	8	9	7	10

Table 5: Fleet dynamics parameter setting.						
Parameter	Fleet 1	Fleet 2	Fleet 3	Fleet 4	Fleet 5	
Targeting preferences	$\mathrm{pop}\; 2/4$	$\mathrm{pop}\; 1/3$	-	pop 4	$\mathrm{pop}\ 2/3$	
Price $Pr_p 1 = 100$						
Price $Pr_p2 = 200$						
Price $Pr_p3 = 350$						
Price $Pr_p4 = 600$						
Q_p	0.01	0.02	0.02	0.01	0.01	
Q_p	0.02	0.01	0.02	0.01	0.03	
Q_p	0.01	0.02	0.02	0.01	0.02	
Q_p	0.02	0.01	0.02	0.05	0.01	
Exploitation dynamics						
step function β_1	1	2	1	2	3	
step function β_2	10	15	8	12	7	
step function β_3 , the land-	90	90	85	90	80	
ings value nth quantile						
step function $rate$	20	30	25	35	20	
$Past\ Knowledge = TRUE$						
Threshold	0.7	0.7	0.7	0.7	0.7	
Fuel Cost	3	2	5	2	1	

Table 6: Fishing mortality effects of the closure scenarios on population 3 (ordered by most effective first). The fishing mortality rate before the closure was 1.08.

Scenario No	F after closure	% F change	data type	timescale	resolution
9	0.29	-73.47	true Population	weekly	1.00
10	0.29	-72.94	true Population	monthly	1.00
11	0.35	-68.04	true Population	yearly	1.00
45	0.58	-46.70	commercial	yearly	20.00
1	0.58	-46.21	commercial	weekly	1.00
23	0.59	-45.27	true Population	weekly	5.00
2	0.59	-45.06	commercial	monthly	1.00
7	0.60	-44.48	survey	yearly	1.00
24	0.61	-43.20	true Population	monthly	5.00
3	0.64	-40.82	commercial	yearly	1.00
25	0.65	-39.94	true Population	yearly	5.00
17	0.67	-38.11	commercial	yearly	5.00
15	0.71	-34.38	commercial	weekly	5.00
43	0.71	-34.31	commercial	weekly	20.00
16	0.73	-32.58	commercial	monthly	5.00
51	0.78	-27.92	true Population	weekly	20.00
37	0.78	-27.76	true Population	weekly	10.00
39	0.79	-26.98	true Population	yearly	10.00
38	0.81	-25.47	true Population	monthly	10.00
21	0.81	-25.21	survey	yearly	5.00
35	0.81	-25.05	survey	yearly	10.00
44	0.87	-19.91	commercial	monthly	20.00
52	0.88	-18.39	true Population	monthly	20.00
30	0.96	-11.06	commercial	monthly	10.00
29	0.98	-9.80	commercial	weekly	10.00
31	1.03	-4.36	commercial	yearly	10.00

53	1.06	-1.64	true Population	yearly	20.00
49	1.07	-1.01	survey	yearly	20.00

Table 7: Mean and standard deviation of proportions of each species at different levels of temporal aggregation

Data type	Timescale	Population 1	Population 2	Population 3	Population 4
commercial	monthly	0.047(0.014)	94.435(1.47)	3.122(1.468)	2.396(0.444)
commercial	weekly	0.047(0.016)	94.426(1.514)	3.117(1.563)	2.411(0.498)
commercial	yearly	0.051(0.001)	94.388(0.205)	3.021(0.175)	2.539(0.046)
True Population	monthly	9.225(3.872)	83.287(5.522)	3.624(1.151)	3.864(1.519)
True Population	weekly	9.358(3.992)	83.165(5.596)	3.567(1.233)	3.91(1.592)
True Population	yearly	9.899(0.173)	82.25(0.308)	3.821(0.119)	4.031(0.05)
survey	yearly	0.372(0.005)	87.667(0.193)	0.729(0.02)	11.232(0.172)

Figure 1: Schematic overview of the simulation model. Blue boxes indicate fleet dynamics processes, the green boxes population dynamics processes while the white boxes are the time steps at which processes occur; t= tow, tmax is the total number of tows; (Rec), (Pop Movement), (Pop Dynamics) logic gates for recruitment periods, population movement and population dynamics for each of the populations, (Past Knowledge) a switch whether to use a random (exploratory) or past knowledge (exploitation) fishing strategy.

Figure 2: Spatial density (log abundance) for each of the four populations at four time steps. The darker the colour the greater the density of the population. Note that a diagonal anisotropic pattern (mimicking a depth gradient) can be clearly seen in populations 2 and 3. The concentrated spawning areas are also visible in the second row of the panels (t=18).

Figure 3: Fishing mortality dynamics - the daily fishing mortalities across the entire spatial domain showing weekly and seasonal patterns in exploitation. Individual years and the light grey lines, the mean of all years the thick black line.

Figure 4: (A) The fishing locations (points) and movements (lines) of a single vessel during a trip overlaid on the revenue of a fishing site (landings x price); (B) the fishing locations of the vessel over several trips (value field changes over the period so not shown). Note that movements are a mixture of correlated random walk (solid lines) and experience-based (dashed lines), and that the field is wrapped on a torus so that opposite sides of the spatial domain are considered spatially close; (C) the locations of multiple vessels from the same fleet overlaid on the value field, (D) the realised step distance and turning angles for a single vessel over the simulation.

Figure 5: [Colour] Data aggregation at different spatial resolutions over a ten year period.

Figure 6: [Colour]Proportion of each population (y axis) for data aggregated at different temporal resolutions. Data is aggregated over a ten-year period for an area 20×20 . Each bar represents either a week, month or year respectively.

Figure 7: [Colour]Comparison of closure scenarios effect on fishing mortality trends. Line colour denotes timescale, while linestyle denotes spatial resolution. The vertical dashed line indicates the onset of the spatial closures.

Figure 8: Comparison of closure scenario effectiveness based on different spatial and temporal resolutions.

Figure 9: Closure fishing locations based on annual closures with a coarse spatial resolution. Closure location can be seen in red box in relation to a) before the closure fishing locations, b) after the closure fishing locations, c) population 3 habitat distribution. $42\,$

Figure 10: [Colour]Effectiveness of closure with regards to reducing fishing mortality on protected population (further left on x-axis is best) and maintaining high catches in the fishery (highest on y-axis is best). The numbers indicate the spatial resolution of the data, while grey lines indicate the direction of the trade-off between reducing fishing mortality and overall catches.

672 References

- Akima, H., Gebhardt, A., 2016. akima: Interpolation of Irregularly and Regularly Space data. R package version 0.6-2.
- Alverson, D.L., Freeberg, M., Pope, J., Murawski, S., 1994. A Global Assess-
- ment of Fisheries By-catch and Discards: A Summary Overview. Technical
- 677 Report 339.
- Bailey, R.M., Carrella, E., Axtell, R., Burgess, M.G., Cabral, R.B., Drexler, M.,
- Dorsett, C., Madsen, J.K., Merkl, A., Saul, S., 2019. A computational ap-
- proach to managing coupled human-environmental systems: the POSEIDON
- model of ocean fisheries. Sustainability Science 14, 259–275.
- Bastardie, F., Nielsen, J.R., Ulrich, C., Egekvist, J., Degel, H., 2010. De-
- tailed mapping of fishing effort and landings by coupling fishing logbooks
- with satellite-recorded vessel geo-location. Fisheries Research 106, 41–53.
- Batsleer, J., Hamon, K.G., Overzee, H.M.J., Rijnsdorp, A.D., Poos, J.J., 2015.
- High-grading and over-quota discarding in mixed fisheries. Reviews in Fish
- Biology and Fisheries 25, 715–736.
- 688 Bellido, J.M., Santos, M.B., Pennino, M.G., Valeiras, X., Pierce, G.J., 2011.
- Fishery discards and by catch: Solutions for an ecosystem approach to fisheries
- 690 management? Hydrobiologia 670, 317–333.
- 691 Beverton, R.J., Holt, S.J., 1957. On the Dynamics of Exploited Fish Popula-
- tions. HM Stationary Office, London.
- Boonstra, W.J., Hentati-Sundberg, J., 2016. Classifying fishers' behaviour. An
- invitation to fishing styles. Fish and Fisheries 17, 78–100.
- Branch, T.A., Hilborn, R., Bogazzi, E., 2005. Escaping the tyranny of the grid:
- A more realistic way of defining fishing opportunities. Canadian Journal of
- Fisheries and Aquatic Sciences 62, 631–642.

- ⁶⁹⁸ Catchpole, T.L., Revill, A.S., 2008. Gear technology in Nephrops trawl fisheries.
- Reviews in Fish Biology and Fisheries 18, 17–31.
- Codling, E.A., Plank, M.J., Benhamou, S., Interface, J.R.S., 2008. Random
- walk models in biology. Journal of the Royal Society, Interface / the Royal
- ⁷⁰² Society 5, 813–34.
- Cosgrove, R., Browne, D., Minto, C., Tyndall, P., Oliver, M., Montgomerie, M.,
- McHugh, M., 2019. A game of two halves: Bycatch reduction in Nephrops
- mixed fisheries. Fisheries Research 210, 31–40.
- Costello, C., Rassweiler, A., Siegel, D., De Leo, G., Micheli, F., Rosenberg, A.,
- ⁷⁰⁷ 2010. The value of spatial information in MPA network design. Proceedings
- of the National Academy of Sciences of the United States of America 107,
- 709 18294–18299.
- Cotter, A.J., Pilling, G.M., 2007. Landings, logbooks and observer surveys:
- Improving the protocols for sampling commercial fisheries. Fish and Fisheries
- 712 8, 123–152.
- Crowder, B.L.B., Murawski, S.a., Crowder, L.B., Murawski, S.a., 1998. Fisheries
- Bycatch: Implications for Management. Fisheries 23, 8–17.
- Dedman, S., Officer, R., Brophy, D., Clarke, M., Reid, D.G., 2015. Modelling
- abundance hotspots for data-poor Irish Sea rays. Ecological Modelling 312,
- 717 77-90.
- Deriso, R.B., 1980. Harvesting Strategies and Parameter Estimation for an Age-
- 5719 Structured Model. Canadian Journal of Fisheries and Aquatic Sciences 37,
- 720 268-282. arXiv:1410.7455v3.
- Dichmont, C.M., Punt, A.E., Deng, A., Dell, Q., Venables, W., 2003. Applica-
- tion of a weekly delay-difference model to commercial catch and effort data
- for tiger prawns in Australia 's Northern Prawn Fishery. Fisheries Research
- ₇₂₄ 65, 335–350.

- Dinmore, T.A., Duplisea, D.E., Rackham, B.D., Maxwell, D.L., Jennings, S.,
- 2003. Impact of a large-scale area closure on patterns of fishing disturbance
- and the consequences for benthic communities. ICES Journal of Marine Sci-
- ence 60, 371–380.
- Dolder, P.J., Thorson, J.T., Minto, C., 2018. Spatial separation of catches in
- highly mixed fisheries. Scientific Reports 8.
- Dunn, D.C., Boustany, A.M., Roberts, J.J., Brazer, E., Sanderson, M., Gardner,
- B., Halpin, P.N., 2014. Empirical move-on rules to inform fishing strategies:
- A New England case study. Fish and Fisheries 15, 359–375.
- Dunn, D.C., Maxwell, S.M., Boustany, A.M., Halpin, P.N., 2016. Dynamic
- ocean management increases the efficiency and efficacy of fisheries manage-
- ment. Proceedings of the National Academy of Sciences of the United States
- of America 113, 668–673.
- F. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J.,
- Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I.,
- Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr,
- F., Wilson, R., 2007. Methods to account for spatial autocorrelation in the
- analysis of species distributional data: A review. Ecography 30, 609–628.
- Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P.,
- Ainsworth, C., Horne, P., Gorton, R., Gamble, R.J., Smith, A.D., Smith,
- D.C., 2011. Lessons in modelling and management of marine ecosystems:
- The Atlantis experience. Fish and Fisheries 12, 171–188.
- Gardner, B., Sullivan, P.J., Morreale, S.J., Epperly, S.P., 2008. Spatial and
- temporal statistical analysis of bycatch data: patterns of sea turtle bycatch
- in the North Atlantic. Canadian Journal of Fisheries and Aquatic Sciences
- ₇₅₀ 65, 2461–2470.
- Gerritsen, H., 2014. mapplots: Data visualisation on maps. R package version
- 1.5. http://CRAN.R-project.org/package=mapplots.

- Gerritsen, H.D., Lordan, C., Minto, C., Kraak, S.B., 2012. Spatial patterns
- in the retained catch composition of Irish demersal otter trawlers: High-
- resolution fisheries data as a management tool. Fisheries Research 129-130,
- 756 127–136.
- Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions.
- Journal of Physical Chemistry 81, 2340–2361.
- Gillis, D.M., Peterman, R.M., 1998. Implications of interference among fishing
- vessels and the ideal free distribution to the interpretation of CPUE. Canadian
- Journal of Fisheries and Aquatic Sciences 55, 37–46.
- Gillis, D.M., Rijnsdorp, A.D., Poos, J.J., 2008. Behavioral inferences from
- the statistical distribution of commercial catch: patterns of targeting in the
- landings of the Dutch beam trawler fleet. Canadian Journal of Fisheries and
- Aquatic Sciences 65, 27–37.
- 766 Girardin, R., Hamon, K.G., Pinnegar, J., Poos, J.J., Thébaud, O., Tidd, A.,
- Vermard, Y., Marchal, P., 2017. Thirty years of fleet dynamics modelling
- using discrete-choice models: What have we learned? Fish and Fisheries 18,
- 769 638-655.
- Harley, S.J., Myers, R.A., Dunn, A., 2001. Is catch-per-unit-effort proportional
- to abundance? Canadian Journal of Fisheries and Aquatic Sciences 58, 1760–
- ⁷⁷² 1772.
- Hilborn, R., Walters, C., 1992. Quantitative fisheries stock assessment: Choice,
- dynamics and uncertainty. volume 2. arXiv:1011.1669v3.
- Holmes, S.J., Bailey, N., Campbell, N., Catarino, R., Barratt, K., Gibb, A., Fer-
- nandes, P.G., 2011. Using fishery-dependent data to inform the development
- and operation of a co-management initiative to reduce cod mortality and cut
- discards. ICES Journal of Marine Science 68, 1679–1688.
- Kennelly, S.J., Broadhurst, M.K., 2002. By-catch begone: Changes in the phi-
- losophy of fishing technology. Fish and Fisheries 3, 340–355.

- Kimura, D.K., Somerton, D.A., 2006. Review of statistical aspects of survey sampling for marine fisheries. Reviews in Fisheries Science 14, 245–283.
- Lande, R., Engen, S., Saether, B.E., 2010. Stochastic Population Dynamics in
 Ecology and Conservation.
- Lee, J., South, A.B., Jennings, S., 2010. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distri-
- butions from vessel monitoring system (VMS) data. ICES Journal of Marine
- ⁷⁸⁸ Science 67, 1260–1271.
- Little, A.S., Needle, C.L., Hilborn, R., Holland, D.S., Marshall, C.T., 2015.
- Real-time spatial management approaches to reduce bycatch and discards:
- Experiences from Europe and the United States. Fish and Fisheries 16, 576–
- 792 602.
- Liu, X., Heino, M., 2014. Overlooked biological and economic implications of
- within-season fishery dynamics. Canadian Journal of Fisheries and Aquatic
- ⁷⁹⁵ Sciences 71, 181–188.
- Mahévas, S., Pelletier, D., 2004. ISIS-Fish, a generic and spatially explicit
- simulation tool for evaluating the impact of management measures on fisheries
- dynamics. Ecological Modelling 171, 65–84.
- Mangel, M., Clark, C.W., 1983. Uncertainty, search, and information in fisheries. ICES Journal of Marine Science 41, 93–103.
- Martínez-Minaya, J., Cameletti, M., Conesa, D., Pennino, M.G., 2018. Species
- distribution modeling: a statistical review with focus in spatio-temporal is-
- sues. Stochastic Environmental Research and Risk Assessment 32, 3227–3244.
- Mateo, M., Pawlowski, L., Robert, M., 2017. Highly mixed fisheries: Fine-scale
- spatial patterns in retained catches of French fisheries in the Celtic Sea. ICES
- Journal of Marine Science 74, 91–101.

- Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: A review of recent approaches. Fisheries Research 70, 141–159.
- Needle, C.L., Catarino, R., 2011. Evaluating the effect of real-time closures on cod targeting. ICES Journal of Marine Science 68, 1647–1655.
- Plagányi, É.E., Punt, A.E., Hillary, R., Morello, E.B., Thébaud, O., Hutton,
- T., Pillans, R.D., Thorson, J.T., Fulton, E.A., Smith, A.D.M., Smith, F.,
- Bayliss, P., Haywood, M., Lyne, V., Rothlisberg, P.C., 2014. Multispecies
- fisheries management and conservation: tactical applications using models of
- intermediate complexity. Fish and Fisheries 15, 1–22.
- Poos, J.J., Rijnsdorp, A.D., 2007a. An "experiment" on effort allocation of
- fishing vessels: the role of interference competition and area specialization.
- Canadian Journal of Fisheries and Aquatic Sciences 64, 304–313.
- Poos, J.J., Rijnsdorp, A.D., 2007b. The dynamics of small-scale patchiness of
- plaice and sole as reflected in the catch rates of the Dutch beam trawl fleet and
- its implications for the fleet dynamics. Journal of Sea Research 58, 100–112.
- R Core Team, 2017. R Core Team (2017). R: A language and environment for statistical computing.
- Ricker, W.E., 1954. Stock and Recruitment. Journal of the Fisheries Research
- Board of Canada 11, 559–623.
- Rijnsdorp, A., 2000. Competitive interactions among beam trawlers exploiting
- local patches of flatfish in the North Sea. ICES Journal of Marine Science 57,
- 828 894–902.
- Rijnsdorp, a.D., Daan, N., Dekker, W., Poos, J.J., Van Densen, W.L.T., 2007.
- Sustainable use of flatfish resources: Addressing the credibility crisis in mixed
- fisheries management. Journal of Sea Research 57, 114–125.
- Rijnsdorp, A.D., Piet, G.J., Poos, J.J., 2001. Effort allocation of the Dutch
- beam trawl fleet in response to a temporarily closed area in the North Sea.
- Ices CM 2001/N:01, 1–17.

- Rijnsdorp, A.D., Poos, J.J., Quirijns, F.J., Grant, J., 2011. Spatial dimension
- and exploitation dynamics of local fishing grounds by fishers targeting several
- flatfish species. Canadian Journal of Fisheries and Aquatic Sciences 68, 1064—
- 838 1076.
- Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Poss-
- ingham, H.P., Richardson, a.J., 2011. Pushing the limits in marine species
- distribution modelling: Lessons from the land present challenges and oppor-
- tunities. Global Ecology and Biogeography 20, 789–802.
- Schlather, M., Malinowski, A., Menck, P.J., Oestin, M., Strokorb, K., 2015.
- Analysis, simulation and prediction of multivariate random fields with package
- randomfields. Journal of Statistical Software 63, 1–25. arXiv:1501.0228.
- Schnute, J., 1985. A genera theory for analysis of catch and effort data. Cana-
- dian Journal of Fisheries and Aquatic Sciences 42, 414–429.
- Sela, R., Simonoff, J., 2011. REEMtree: Regression Trees with Random Effects.
- R package version 0.90.3.
- 850 Shin, Y.J., Shannon, L.J., Cury, P.M., 2004. Simulations of fishing effects on the
- southern Benguela fish community using an individual-based model: Learning
- from a comparison with ECOSIM. African Journal of Marine Science 26, 95–
- 853 114.
- Stock, B.C., Ward, E.J., Eguchi, T., Jannot, J.E., Thorson, J.T., Feist, B.E.,
- 855 Semmens, B.X., 2019. Comparing predictions of fisheries by catch using multi-
- ple spatiotemporal species distribution model frameworks. Canadian Journal
- of Fisheries and Aquatic Sciences .
- Tobler, W.R., 1970. A Computer Movie Simulating Urban Growth in the Detroit
- Region. Economic Geography 46, 234. arXiv:1011.1669v3.
- Ulrich, C., Reeves, S.a., Vermard, Y., Holmes, S.J., Vanhee, W., 2011. Rec-
- onciling single-species TACs in the North Sea demersal fisheries using the

- Fcube mixed-fisheries advice framework. ICES Journal of Marine Science 68,
- 863 1535–1547.
- Van Putten, I.E., Kulmala, S., Thébaud, O., Dowling, N., Hamon, K.G., Hut-
- ton, T., Pascoe, S., 2012. Theories and behavioural drivers underlying fleet
- dynamics models. Fish and Fisheries 13, 216–235.
- Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M.G.E., Raposo, E.P.,
- Stanley, H.E., 1999. Optimizing the success of random searches. Nature 401,
- 911-914.
- Walters, C.J., 2007. Is adaptive management helping to solve fisheries problems?
- Ambio .
- Ward, E.J., Jannot, J.E., Lee, Y.W., Ono, K., Shelton, A.O., Thorson, J.T.,
- 2015. Using spatiotemporal species distribution models to identify temporally
- evolving hotspots of species co-occurrence. Ecological Applications 25, 2198–
- 2209.
- Xu, B., Zhang, C., Xue, Y., Ren, Y., Chen, Y., 2015. Optimization of sampling
- effort for a fishery-independent survey with multiple goals. Environmental
- Monitoring and Assessment 187.