专题4-Bootloader设计

一、Bootloader设计蓝图

Bootloader	Boot parameters	Kernel	Root filesystem	
------------	-----------------	--------	-----------------	--

1.1、Bootloader作用

用于系统上电时开始执行, 初始化硬件设备, 准备好软件环境, 最后调用操作系统内核。

1.2、Bootloader的设计方法

模仿U-Boot (Universal Boot Loader)

1.3、U-Boot

可以引导多种操作系统,支持多种架构的CPU

1.4、使用Source Insight建立U-Boot代码工程

具体操作需要实际练习

- 二、ARM处理器启动流程 (S3C6410)
 - 2.1、Stepping Stone 垫脚石 (8kB)
 - 2.2、启动方式

Table 3-1. Device operating mode selection at boot-up

XSELNAN D	OM[4:0]	GPN[15:13]	Boot Device	Function	Clock Source
1	0000X	xxx		RESERVED	
1	0001X		RESERVED	RESERVED	
1	0010X		RESERVED	RESERVED	
1	0011X			RESERVED	
Х	0100X		SROM(8bit)	-	
Х	0101X		SROM(16bit)	-	
0	0110X		OneNAND ¹⁾	Don't use NAND Device	
Х	0111X		MODEM	Don't use Xm0CSn2 for SROMC	XXTIpII if OM[0] is 0. XEXTCLK if OM[0] is
Х	1111X	000		SD/MMC(CH0)	1.
0		001		OneNAND	
1		010		NAND(512Byte, 3-Cycle)	
1		011	IROM ²⁾	NAND(512Byte, 4-Cycle)	
1		100	IROM	NAND(2048Byte, 4-Cycle)	
1		101		NAND(2048Byte, 5-Cycle)	
1		110		NAND(4096Byte, 5-Cycle)	
Х		111		SD/MMC(CH1)	

Note 1) Only 6410X PoP D type doesn't support OneNAND booting.

Note 2) 6410X PoP A type doesn't support IROM booting based on NAND Flash. 6410X PoP D type doesn't support IROM booting based on OneNAND Flash.

2.3、地址分布

2.2 DEVICE SPECIFIC ADDRESS SPACE

Table 2-2. Device Specific Address Space

Address		Size(MB)	Description	Note
0x0000_0000	0x07FF_FFFF	128MB	Booting Device Region by XOM Setting	Mirrored Region
0x0800_0000	0x0BFF_FFFF	64MB	Internal ROM	
0x0C00_0000	0x0FFF_FFFF	64MB	Stepping Stone (Boot Loader)	
0x1000_0000	0x17FF_FFFF	128MB	SROMC Bank0	
0x1800_0000	0x1FFF_FFFF	128MB	SROMC Bank 1	
0x2000_0000	0x27FF_FFFF	128MB	SROMC Bank 2	
0x2800_0000	0x2FFF_FFFF	128MB	SROMC Bank 3	
0x3000_0000	0x37FF_FFFF	128MB	SROMC Bank 4	
0x3800_0000	0x3FFF_FFFF	128MB	SROMC Bank 5	
0x4000_0000	0x47FF_FFFF	128MB		
0x4800_0000	0x4FFF_FFFF	128MB	Reserved	
0x5000_0000	0x5FFF_FFFF	256MB	DRAM Controller of the Memory Port1	
0x6000_0000	0x6FFF_FFFF	256MB	DIVAM Controller of the Memory Porti	

2.4、NAND FLASH时启动流程

首先把ROM的内容(固化好的代码,BLO)复制到0x0地址处,然后执行ROM的流程,如以下内容:

2.2 iROM(BL0) boot-up sequence

Perform the following steps for iROM (BL0) boot-up:

- 1. Disable the Watch-Dog Timer
- 2. Initialize the TCM. (Please refer to "memory map" section of chapter 2.4)
- 3. Initialize the Block Device Copy Function. (Please refer to "Device Copy Function" section of chapter 2.6)
- 4. Initialize the stack region (Please refer to "memory map" section of chapter 2.4)
- 5. Initialize the PLL. (Please refer to "clock configuration" section of chapter 2.7)
- 6. Initialize the instruction cache
- 7. Initialize the heap region. (Please refer to "memory map" section of chapter 2.4)
- 8. Copy the BL1 to the stepping stone region (Please refer to "Device Copy Function" section of chapter 2.6)
- 9. Verify the integrity of BL1
- 10. Jump to the stepping stone

Note: ECC error and bootloader verification fail are referred to chapter 4

三、U-Boot工作流程分析

3.1、程序入口

3.1.1、根据顶层目录Makefile查找板级信息

1956 forlinx_sd_ram256_config: unconfig

1957 @\$(MKCONFIG) smdk6410 arm s3c64xx smdk6410 samsung s3c6410 SD ram256

3.1.2、在板级目录(board/samsung/smdk6410/)通过链接文件查找起始文件

```
26 OUTPUT ARCH(arm)
27 ENTRY( start)
28 SECTIONS
29 {
30
      . = 0x00000000;
31
32
      . = ALIGN(4);
33
      .text :
34
35
      cpu/s3c64xx/start.o (.text)
36
      cpu/s3c64xx/s3c6410/cpu_init.o
                                         (.text)
37
      cpu/s3c64xx/onenand_cp.o
                                   (.text)
38
      cpu/s3c64xx/nand_cp.o (.text)
39
      cpu/s3c64xx/movi.o (.text)
40
       *(.text)
       lib arm/div0.o
41
42
```

可知起始文件在 cpu/s3c64xx/ 目录下,源文件是start.S。又根据入口标号 ENTRY(_start) 在start.S中找到入口为

- .globl _start
- _start: b reset
- ldr pc, _undefined_instruction
- Idr pc, _software_interrupt
- ldr pc, _prefetch_abort
- ldr pc, _data_abort
- ldr pc, _not_used
- ldr pc, _irq
- ldr pc, _fiq
 - 3.2、第一阶段程序 (BL1)分析
 - 3.2.1、设置中断向量表
 - 3.2.2、设置CPU为SVC32模式
 - 3.2.3、刷新 I/D caches
 - 3.2.4、关闭MMU和cache
 - 3.2.5、外设基地址初始化
 - 3.2.6、LED初始化
 - 3.2.7、关闭看门狗
 - 3.2.8、外部中断等待清除
 - 3.2.9、关闭中断
 - 3.2.10、初始化系统时钟
 - 3.2.11、初始化串口
 - 3.2.11、初始化NAND Flash
 - 3.2.12、初始化内存
 - 3.2.13、从NAND Flash复制BL2到内存中
 - 3.2.14、设置堆栈
 - 3.2.15、清除BSS段
 - 3.2.16、跳转到BL2
 - 3.3、第二阶段程序(BL2)分析
 - 3.3.1、MMU初始化
 - 3.3.2、中断初始化
 - 3.3.3、串口初始化
 - 3.3.4、网卡初始化
 - 3.3.5、LCD初始化
 - 3.3.6、解析执行用户命令
- 四、Bootloader架构设计

