COMP 4431 Lab 1

Lab 1 Introduction to Python

Sep 14, 2023

Department of Computing
The Hong Kong Polytechnic University

Today's Arrangement

- Lecture and lab Schedule
- Introduction to lab sessions
- Python basics
 - 1. Prepare the Python Environment
 - 2. Data types
 - 3. Basic operators
 - 4. Conditions and Conditional statements
 - 5. Loops
 - 6. Function declaration
 - 7. File operations
 - 8. Module importing
- Practice with tutorials on Numpy, Pandas, Matplotlib, and networkX

Lecture and lab Schedule

Lecture and lab Schedule

Week	Date	Quiz in TU101 (12:30 - 12:50)	Lecture in TU101 (12:50 - 14:20)	Lab in PQ603& 604 A-C (14:30 - 15:20)	Remarks
1	Sept. 7		Introduction to COM	1P4431	
2	Sept. 14	Heuristic Search	Entrepreneurship in Al	Introduction to Python	
3	Sept. 21	Quiz 1	Constrains	Introduction to ChatGPT	The deadline of movie selection
4	Sept. 28	Quiz 2	Decision Tree	Generate PPT using ChatGPT	Announcement of the Presentation order
5	Oct. 5	Quiz 3	Machine Learning	Blind Search	
6	Oct. 12	Presentation 1		Heuristic Search	The deadline of Lab assignment 1 is Oct. 11
7	Oct. 19	Presentation 2		Decision Tree	The deadline of Lab assignment 2 is Oct. 18
8	Oct. 26	Presentation 3		Clustering	The deadline of Lab assignment 3 is Oct. 25
9	Nov. 2	Presentation 4		Classification	The deadline of Lab assignment 4 is Nov. 1
10	Nov. 9	Quiz 4	Neural Networks	Neural networks	The deadline of Lab assignment 5 is Nov. 8
11	Nov. 16	Quiz 5	Deep Learning	Convolutional neural networks	The deadline of Lab assignment 6 is Nov. 15
12	Nov. 23	Quiz 6	Bayesian	Bayesian	The deadline of Lab assignment 7 is Nov. 22
13	Nov. 30	Quiz 7	Final Exam Review	Transformer	The deadline of Lab assignment 8 is Nov. 29

Introduction to Lab Sessions

Introduction to Lab Sessions

- TA Responsible for the lab teaching:
 - Xiao MA
 - edward-xiao.ma@connect.polyu.hk
- Aims of Lab Sessions
 - Getting familiar with AI algorithms
 - Gaining hands-on experience in programming
 - Training for problem-solving abilities
- A few In-class Exercises in each lab session
 - Not influence your gradings
- Eight lab assignments
 - 1-4 members per group (the same groups as the Course Presentation by default)
 - Submit only one copy of your solutions on each lab assignment
 - All members are given the same score by default
 - 16 % of the final grading (each assignment contributes 2%)

Introduction to Lab Sessions

- All materials will be available on Blackboard (learn.polyu.edu.hk)
 - Lab slides (PDF files): Available after each session
 - Main contents of lab teaching, exercises, etc.
 - Release and check of assignments
 - Lab exercises (Jupyter Notebook files): Available before each session
 - · Example code of problems of in-class exercises
 - Tutorials of some Python packages
 - Assignment answers (Jupyter Notebook files): Available after each session
- Self-learning resources
 - Stuart Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", third edition.
 - Tutorials and documents of Python
 - https://www.learnpython.org/
 - https://www.w3schools.com/python/
 - Official documents of packages (scikit-learn, pandas, numpy, torch, etc.)
 - Ask ChatGPT

1. Prepare the Python Environment

- Anaconda
 - A popular distribution of Python, which comes with the most fundamental data science, AI, and machine learning packages (NumPy, Pandas, Matplotlib, seaborn, scikit-learn, etc.)
- Jupyter notebook
 - A web-based interactive computational application
 - Combine code, output, and rich text in a single document
 - You should submit a .ipynb file for each of the assignments
- Quick Start
 - Install Anaconda from https://www.anaconda.com/
 - Launch Jupyter notebook

2. Data Types

- Variables and Objects
 - Variables don't have an associated type or size, because they just hold references to objects.
 - Objects live in concrete memory positions.
- Mutable and immutable types

Four collection data types: Tuple, List, Set, Dictionary

Tuple

- A tuple is an ordered, indexed, and **unchangeable** collection of elements
- Written with round brackets ()
- Tuple items can be of the same or different data types

```
In [1]: tuple1 = (1,'str', True)
    print(tuple1[0])
1
```

List

- A list is an ordered, indexed, and **changeable** collection of elements
- Written with square brackets []
- List items can be of the same or different data types

```
In [2]: list1 = [1,'str', True]
    print(list1[1])
    list1.append(3.14)
    print(list1)

str
    [1, 'str', True, 3.14]
```

Set

- A set is an unordered and unindexed collection of elements
- Written with curly brackets {}
- Set items can be of the same or different data types
- Duplicates are not allowed

```
In [3]: set1 = {"18","19",True,32}
```

Dictionary

- A dictionary is a collection of key:value pairs.
- Written with curly brackets, and has keys and values
- The values in dictionary items can be of any data type
- Duplicates are not allowed (cannot have two items with the same key)

```
In [4]: dict1 = {
    "brand": "Ford",
    "electric": False,
    "year": 1964,
    "colors": ["red", "white", "blue"]
}
```

- Exercise 1: Create and modify variables
 - Use the assignment operator (=) to assign values to variables
 - Try different data types
 - Find more properties and operations of different data types through the online document. https://www.w3schools.com/python/

3. Basic operators

- Types of operators
 - Arithmetic Operators: Addition(+), Subtraction(-), Multiplication(*), Division(/), Modulus(%), Exponent(**), Floor Division (//)
 - Comparison (Relational) Operators: Equals(==), Not equals(!=), Greater than(>),
 Less than(<), Greater than or equal to(>=), Less than or equal to(<=)
 - Assignment Operators: =, +=, -=, *=, /=, %=, **=, //=
 - Bitwise Operators: &, |, ^, ~, <<, >>
 - Logical Operators: and, or, not
 - Membership Operators: in, not in
 - Identity Operators: is, is not
- Operators Precedence
 - https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/

- 4. Conditions and Conditional statements
- Python supports the usual logical conditions from mathematics:
 - Equals: a == b
 - Not Equals: a != b
 - Less than: a < b
 - Less than or equal to: a <= b
 - Greater than: a > b
 - Greater than or equal to: a >= b
- Conditional statements: if...elif...else
- For multi-conditions, use "and", "or" and "not" to connect.

5. Loops

- For Loop
 - for in: statement A
 - The most common used statement for loops
 - Usually combined with range (start, end, step)

- While Loop
 - while : statement A
 - Will implement A until it satisfies the condition of while.

- Use the keyword *break* inside a loop to leave the loop.
- Use the keyword *continue* inside a loop to stop processing the current iteration of the loop and immediately go on to the next round.
- You can write another loop inside a loop.

- Exercise 2: Loops
 - Calculate the sum from 1 to 100.
 - Calculate the sum of the even numbers from 1 to 100 (2, 4, 6, ...).
 - Try both "for loop" and "while loop"

- 6. Function declaration
- Functions are defined as:

```
def TheNameOfFunction (para1, para2):
.....
return Outcome
```

• Then the function will return the value of its outcome to wherever the function is called.

- Exercise 3: Function declaration
 - Write a function to calculate the area of a rectangle
 - It takes two arguments, length and width, and returns the area of a rectangle with the given dimensions
 - The function should check if the input values are positive numbers and print an Error message if they are not.

7. File operations

- Use the built-in open() function to work with files in Python
- open() function takes two parameters: filename and mode
- The mode can be:
 - "r" Read Default value. Opens a file for reading, error if the file does not exist
 - "w" Write Opens a file for writing, creates the file if it does not exist
 - "a" Append Opens a file for appending, creates the file if it does not exist
 - ...
- Use write() function to write a specified text to the file
- Use close() function to close an open file.

- Exercise 4: File operations
 - Create a new file
 - Write to the file
 - Close the file
 - Read the content in the file

- 8. Module importing
- Import a module by typing:
 - import numpy
- Or for short by:
 - import numpy as np
- Sometimes you do not have to import the whole module, like:
 - from scipy. stats import norm
- Some modules we will encounter:
 - Numpy: Efficient manipulation of multidimensional arrays. Efficient mathematical functions.
 - Matplotlib: Visualizations 2D and 3D plots.
 - Pandas: Statistical and data analysis
 - NetworkX: creation, manipulation, and study of graphs

Practice with tutorials on Numpy, Pandas, Matplotlib, and networkX

Check the Part 2 of Lab1-Exercise.