Math 417 Problem Set 8 Solutions

Starred (*) problems were due Friday, April 8.

(*) 61. (Gallian, p.202, # 37) If H is a normal subgroup in G and G is finite, and $g \in H$, show that the order of gH in G/H divides the order of g in G.

The quickest approach is to use the fact that if $x^n = e$ in a group then the order of x divides n. Translating that into the language of our problem, since what we want is that |gH| divides |g|, this means the we want gH to play the role of x, and |g| to play the role of x. So it is enough to establish that $(gH)^{|g|} = e$ in G/H.

But this is true: since $g^{|g|} = e_G$, we have $(gH)^{|g|} = (gH)(gH) \cdots (gH) = (g \cdot g \cdot g)H = (g^{|g|})H = e_GH = H = e_{G/H}$ in G/H. So the order of gH divides the order of g.

(*) 64. (Gallian, p.239, # 15) Show that if H and K are abelian, normal subgroups of the group G, and $H \cap K = \{e_G\}$, then the subgroup N = HK is also abelian.

[Hint: if $a, b \in HK$, show that $aba^{-1}b^{-1} \in H \cap K$.]

What we wish to show is that if $h_1k_1, h_2k_2 \in HK$ (that is, $h_1, h_2 \in H$ and $k_1, k_2 \in K$), then $(h_1k_1)(h_2k_2) = (h_2k_2)(h_1k_1)$. Rewriting this, we want to show that $e_G = (h_1k_1)(h_2k_2)[(h_2k_2)(h_1k_1)]^{-1} = h_1k_1h_2k_2k_1^{-1}h_1^{-1}k_2^{-1}h_2^{-1} = x$. To show this, following the hint, we will show that x lies in both H and K. It then lies in their intersection, which is $\{e_G\}$, and so $x = e_G$.

Both assertions follow similiar lines. Because K is abelian, $x = h_1 k_1 h_2 k_2 k_1^{-1} h_1^{-1} k_2^{-1} h_2^{-1} = h_1 k_1 h_2 k_1^{-1} k_2 h_1^{-1} k_2^{-1} h_2^{-1} = h_1 (k_1 h_2 k_1^{-1}) (k_2 h_1^{-1} k_2^{-1}) h_2^{-1} = h_1 (k_1 h_2 k_1^{-1}) (k_2 h_1 k_2^{-1})^{-1} h_2^{-1}$. But because H is normal, $k_1 h_2 k_1^{-1} = h_3$ and $k_2 h_1 k_2^{-1} = h_4$ are in H, and so $x = h_1 h_3 h_4^{-1} h_2^{-1}$ is a product of elements of H, and so is in H.

On the other hand, since K is normal,

 $x = h_1 k_1 h_2 k_2 k_1^{-1} h_1^{-1} k_2^{-1} h_2^{-1} = h_1 k_1 (h_1^{-1} h_1) h_2 k_2 k_1^{-1} h_1^{-1} (h_2^{-1} h_2) k_2^{-1} h_2^{-1}$ $= (h_1 k_1 h_1^{-1}) h_1 h_2 k_2 k_1^{-1} h_1^{-1} h_2^{-1} (h_2 k_2^{-1} h_2^{-1}) = (h_1 k_1 h_1^{-1}) h_1 h_2 k_2 k_1^{-1} h_1^{-1} h_2^{-1} (h_2 k_2 h_2^{-1})^{-1}, \text{ and we know that } h_1 k_1 h_1^{-1} = k_3 \text{ and } h_2 k_2 h_2^{-1} = k_4 \text{ are in } K. \text{ Then, because } H \text{ is abelian, } x = k_3 h_1 h_2 k_2 k_1^{-1} h_1^{-1} h_2^{-1} k_4 = k_3 (h_1 h_2) k_2 k_1^{-1} (h_2 h_1)^{-1} k_4 = k_3 (h_1 h_2) k_2 k_1^{-1} (h_1 h_2)^{-1} k_4$ and, again because K is normal, $(h_1 h_2) [k_2 k_1^{-1}] (h_1 h_2)^{-1} = k_5$ is in K. So $x = k_3 k_5 k_4$ is a product of elements of K, and so is in K.

So $x = (h_1k_1)(h_2k_2)[(h_2k_2)(h_1k_1)]^{-1}$ is in $H \cap K = \{e_G\}$, so $x = e_G$ as desired, and the elements of HK all commute with one another. So HK is abelian.

(*) 65. Show that 2 is <u>not</u> a generator for the group \mathbb{Z}_{31}^* of units modulo 31, but that 3 <u>is</u>. If, using \mathbb{Z}_{31}^* and a=3 as the basis for a (very weak!) Diffie-Hellman key exchange, if Alice chooses n=5 and Bob chooses m=11 to build a shared key, what information do they send to one another and what is that key?

 $|\mathbb{Z}_{31}^*| = 30 = 2 \cdot 3 \cdot 5$, and so to show that $|2| \neq 30$ it is enough to show that $2^n \equiv 1 \mod 31$ for some n < 30. Fermat's Little Theorem tells us that the order must <u>divide</u> 30,

so if it is less than 30 it must in fact divide one of 30/2 = 15. 30/3 = 10, or 30/5 = 6. In fact, $2^5 = 32 \equiv 1 \mod 31$, so the order of 2 is actually 5.

On the other hand, to show that the order of 3 is 30, it is enough (by Fermat's Little Theorem) to show that it is not a proper factor of 30 (which would then have to divide one of 15, 10, or 6), and so it is enough to show that 3^n is not congruent to 1 mod 31 for n = 6, 10, and 15. And so we check: $3^3 = 27 \equiv -4$, so $3^6 \equiv (-4)^2 = 16 \not\equiv 1$. $3^5 = 243 = 31(8) - 5 \equiv -5$, so $3^{10} \equiv (-5)^2 = 25 \equiv -6 \not\equiv 1$, and $3^{15} \equiv (-5)^3 = (-5)^2(-5) \equiv (-6)(-5) = 30 \equiv -1 \not\equiv 1$. So the order of 3 does not divide any proper factor of 30, while $3^{30} \equiv 1$, so the order of 3, mod 31, is 30.

This makes 3 a candidate for the generator of a Diffie-Hellman construction mod 31. Then with Alice using n=5, she computes $3^5 \equiv -5 \equiv 26$, and so she transmits 26. With Bob using m=11, he computes $3^{11}=3^{10}\cdot 3\equiv (-6)(3)=-18\equiv 13$, and so he transmits 13. Then the shared key is $(26)^{11}=(13)^5 \mod 31$, which is (although neither of them can compute it this way!) equal to $3^{5\cdot 11}=3^{55}=3^{30}\cdot 3^{25}\equiv 3^{25}=(3^5)^5\equiv (-5)^5=-5^5=(-5)(25)(25)\equiv (-5)(-6)(-6)=(-5)(36)\equiv (-5)(5)=-25\equiv 6$. So their shared secret is 6.

A selection of further solutions.

62. If $\varphi: G \to H$ is a <u>surjective</u> homomorphism and $N \leq G$ is a <u>normal</u> subgroup of G, show that $\varphi(N) \leq H$ is a normal subgroup of H. Show, on the other hand, that if φ is not surjective, then $\varphi(N)$ need not be a normal subgroup.

If $h \in H$ and $x \in \varphi(N)$, we need to show that $hxh^{-1} \in \varphi(N)$. Since $x \in \varphi(N)$, we know that $x = \varphi(y)$ for some $y \in N$. And since φ is surjective, we know that there is $g \in G$ so that $\varphi(g) = h$. Then $hxh^{-1} = \varphi(g)\varphi(y)\varphi(g)^{-1} = \varphi(g)\varphi(y)\varphi(g^{-1}) = \varphi(gyg^{-1})$. But! Since $y \in N$ and $g \in G$, we have $gyg^{-1} \in N$, since N is normal. This means that $hxh^{-1} = \varphi(gyg^{-1})$ is the image under φ of something in N, and so $hxh^{-1} \in \varphi(N)$. So the conjugate of anything in $\varphi(N)$ lies in $\varphi(N)$, so $\varphi(N)$ is a normal subgroup of H.

However, if φ is not surjective, this need not be true. Probably the quickest way to show this is to use the identity map for φ (or more exactly, the inclusion map). For example, In $H = S_3$, $G = \{e_H, (1, 2)\}$ is a subgroup, but not a normal subgroup (since, e.g., $(1,3)(1,2)(1,3) = (2,3) \neq (1,2)$). But the inclusion map $\iota: G \to H$ sending x to x is an injective homomorphism, but not a surjective one, and the normal subgroup $N = G \leq G$ is taken by φ to $G \leq H$, which is not a normal subgroup of H.

We can build more elaborate examples, as well. For example, the map $\mathbb{Z}_8 \to S_8$ sending k to $(1,2,3,4,5,6,7,8)^k$ is a homomorphism, and $2\mathbb{Z}_8$ is a normal subgroup of \mathbb{Z}_8 , but (you can check!) $\varphi(2\mathbb{Z}_8) = \langle (1,2,3,4,5,6,7,8)^2 \rangle = \langle (1,3,5,7)(2,4,6,8) \rangle$ is not a normal subgroup of S_8 .

66. In the group S_{10} the elements a = (1, 2, 3)(4, 5)(8, 9) and b = (2, 4, 8)(1, 10)(3, 7) are conjugate. Find at least two distinct conjugating elements x (so that xa = bx).

Both elements are a product of disjoint cycles of length 2, 2, and 3. It is in fact the case that any elements of S_n that have the same 'disjoint cycle structure' are conjugate. This behaves kind of like 'change of basis' in linear algebra, we treat every element of $\{1, 2, ..., n\}$ as the basis elements. What we really need to do is to make a

correspondence between the two sets of cycles and than send the elements of one cycle to the elements of the other. In order to make sure we build a permutation, though, we need to include the 1-cycles as part of this!

So, e.g., to conjugate (1,2,3) to (2,3,4) in S_5 , we treat them as (1,2,3)(4)(5) and (2,3,4)(5)(1), and so we use the permutation $1 \mapsto 2$, $2 \mapsto 3$, $3 \mapsto 4$, $4 \mapsto 5$, and $5 \mapsto 1$, i.e., the permutation (1,2,3,4,5). Then we can check that

$$(1, 2, 3, 4, 5)(1, 2, 3)(5, 4, 3, 2, 1) = (1)(2, 3, 4)(5) = (2, 3, 4).$$

So, in S_{10} , to conjugate (1,2,3)(4,5)(8,9) = (1,2,3)(4,5)(8,9)(6)(7)(10) to

(2,4,8)(1,10)(3,7) = (2,4,8)(1,10)(3,7)(5)(6)(9), we send $1 \mapsto 2$, $2 \mapsto 4$, $3 \mapsto 8$, $4 \mapsto 1$, $5 \mapsto 10$, $6 \mapsto 5$, $7 \mapsto 6$, $8 \mapsto 3$, $9 \mapsto 7$, and $10 \mapsto 9$, which is the permutation (1,2,4)(3,8)(5,10,9,7,6). And we can check:

$$[(1,2,4)(3,8)(5,10,9,7,6)][(1,2,3)(4,5)(8,9)][(4,2,1)(8,3)(6,7,9,10,5)]$$

= $(1,10)(2,4,8)(3,7)(5)(6)(9) = (1,10)(2,4,8)(3,7)$.

On the other hand, writing the second element as (2,4,8)(3,7)(1,10)(9)(5)(6), we send $1\mapsto 2, 2\mapsto 4, 3\mapsto 8, 4\mapsto 3, 5\mapsto 7, 6\mapsto 9, 7\mapsto 5, 8\mapsto 1, 9\mapsto 10$, and $10\mapsto 6$, which is the permutation (1,2,4,3,8)(5,7)(6,9,10). And we can check:

$$[(1,2,4,3,8)(5,7)(6,9,10)][(1,2,3)(4,5)(8,9)][(8,3,4,2,1)(7,5)(10,9,6)]$$

= $(1,10)(2,4,8)(3,7)(5)(6)(9) = (1,10)(2,4,8)(3,7)$.