THE CUTTING-PLANE ALGORITHM (Cont...)

Contributi	5	8	0	0	0		
C _{Bi}	Basic Variables (B)	X_1	X ₂	S_1	S ₂	S ₃	SOLUTION
8	X ₂	0	1	1	0	- 1/2	7/2
5	X_1	1	0	-1	0	1	1
0	S ₂	0	0	3	1	-7/2	5/2
Total Profit	(Z _i)	5	8	3	0	1	33
Net Contrib	oution (C _j – Z _j)	0	0	-3	0	-1	

The Solution is still non-integer. So, develop a fractional cut. The Basic variables X_2 and S_2 are not integers.

STEP #4:

Summary of Integer & Fractional Parts

Basic Variable in the above Optimal table	b _i	[b _i] + f _i
X_2	7/2	3 + 1/2
S_2	5/2	2 + 1/2

STEP # 5: Here, the fractional parts are the same for $X_2 \& S_2$. But, we preferred the fractional part of the X_2 . So, Select the Row " X_2 " as the Source row for developing Cut.

THE CUTTING-PLANE ALGORITHM

$$7/2 = X_2 + S_1 - 1/2S_3 \rightarrow (3 + 1/2) = (1+0)X_1 + (1+0)S_1 + (-1+1/2)S_3$$

The Corresponding fractional cut is:

$$-f_i = S_i - Summation ((f_i)(Non-Basic Variable))$$

-1/2 = $S_4 - 1/2S_3$

STEP # 6: This cut is added to the above table; and further solved using dual simplex method.

СВі	<i>C</i> ,	5 X ₁	8 X ₂	0 S ₁	0	0	0 S ₄	Solution
	Basic variable				$\dot{S_2}$	S ₃		
8	- X ₂	0	1	1	0	-1/2	0	7/2
5	X ₁	1	0	-1	. 0	1	0	1
0	S ₂	0	0	3	1	-7/2	0	5/2
0	S4	0.	0	0	0	-1/2	1	-1/2*
	Z_{j}	5	8	3	0	1	0	33
	$C_i - Z_i$	0	0	-3	0	-1*	0	

For ENTERING Variable;

Ratio =
$$(C_j - Z_j)$$
 / (Pivot Row <0)

The smallest positive ratio is "2" and the corresponding variable is " S_3 ". So, the variable " S_3 " enters the basis.

THE CUTTING-PLANE ALGORITHM (Cont...)

Contribution Per Unit C _i		5	8	0	0	0	0	
C _{Bi}	Basic Variables (B)	X_1	X ₂	S ₁	S ₂	S_3	S ₄	SOLUTION
8	X_2	0	1	1	0	0	-1	4
5	X_1	1	0	-1	0	0	2	0
0	S ₂	0	0	3	1	0	-7	6
0	S_3	0	0	0	0	1	-2	1
Total Prof	Total Profit (Z _i)		8	3	0	0	2	32
Net Contribution $(C_i - Z_i)$		0	0	-3	0	0	-2	

So, The values of all the basic variables are integers. So, the optimality is reached and the corresponding results are summarized as follows:

$$X_1 = 0$$
, $X_2 = 4$ and Z (Optimum) = 32