CS/MATH 111, Discrete Structures - Fall 2018. Discussion 6 - Non-homogeneous Recurrences, Divide and Conquer & Inclusion - Exclusion

Andres, Sara, Elena

University of California, Riverside

November 1, 2018

Outline

Non-homogeneous recurrence

Divide and Conquer

Theorem

¹Proof available at [Rosen, 2015. pg 515].

$$a_n = a_n^h + a_n^p$$

Find a particular solution for recurrence relation $C_n = 3C_{n-1} + Cn - 2 + 6$ show your work

$$C_n^n=\beta$$
, for some constant β . we plug it in: $\beta=3\beta+\beta+6$ which gives $\beta=-4$, So $C_n^n=-2$

Find a particular solution for recurrence relation $C_n = 3C_{n-1} + Cn - 2 + 3.2^n$ show your work

 $C_n^n=\beta.2^n$, for some constant β . we plug it in: $\beta.2^n=3\beta.2^{n-1}+\beta.2^{n-2}+3.2^n$ after dividing by 2^{n-2} , this reduces to $\beta.4=3\beta.2+\beta+3.4$ we solve it for β , which gives $\beta=-4$. So, $C_n^n=-4.2^n$

Solve the following non-homogeneous recurrence:

$$A_n = 4A_{n-1} - 4A_{n-2} + 2 * 5^n$$
, $A_0 = 1, A_1 = 2$;

Solve the following non-homogeneous recurrence:

$$A_n = 4A_{n-1} - 4A_{n-2} + 2*5^n$$
, $A_0 = 1$, $A_1 = 2$; $A'_{nc} = \alpha_1 2^n + \alpha_2 n 2^n$ $A''_n = n^m (p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) S^n$ S=5 is not a root of characteristic equation its multiplicity is m=0 $A''_n = (p_0) 5^n$ $(p_0) 5^n = 4(p_0) 5^n - 4(p_0) 5^n + 2*5^n$ $P_0 = 2$ $A_0 = \alpha_1 + 2 = 1$ $A_1 = 2\alpha_1 + 2\alpha_2 + 10 = 2$

 $\alpha_1 = -1, \alpha_2 = -3$

Outline

Non-homogeneous recurrence

Divide and Conquer

Problem 1: Give the asymptotic value (using the 9-notation) for the number of letters that will be printed by the algorithms below. Your solution needs to consist of an appropriate recurrence equation and its solution, with a brief justification. (See the suggested format at the bottom of the assignment).

```
Algorithm PRINTXS (n:integer)
          if n < 3
               print("X")
          else
               PRINTXs(\lceil n/3 \rceil)
               PRINTXs(\lceil n/3 \rceil)
               PRINTXs(\lceil n/3 \rceil)
               for i \leftarrow 1 to 2n do print("X")
(b) Algorithm Printys (n: integer)
          if n < 2
               print("Y")
          else
               for j \leftarrow 1 to 16 do PrintYs(\lfloor n/2 \rfloor)
               for i \leftarrow 1 to n^3 do print("Y")
```

```
(c) Algorithm Printzs (n: integer)
         if n < 3
              print("Z")
         else
              PRINTZs(\lceil n/3 \rceil)
              PRINTZs(\lceil n/3 \rceil)
              for i \leftarrow 1 to 7n do print("Z")
(d) Algorithm Printus (n: integer)
         if n < 4
              print("U")
          else
              PrintUs(\lceil n/4 \rceil)
              PRINTUS(|n/4|)
              for i \leftarrow 1 to 11 do print("U")
```

```
(e) Algorithm PRINTVS (n: integer)

if n < 3

print("V")

else

for j \leftarrow 1 to 9 do PRINTVS(\lfloor n/3 \rfloor)

for i \leftarrow 1 to 2n^3 do print("V")
```

(a

There are 3 recursive calls, each with parameter $\lceil n/3 \rceil$. Since we are looking for an asymptotic solution, we can ignore rounding. Then the number of letters printed can be expressed by the recurrence:

$$X(n) = 3X(n/3) + 2n$$
.

We apply the Master Theorem with $a=3,\,b=3,\,c=2,\,d=1.$ Here, we have $a=b^d,$ so the solution is $\Theta(n\log n).$

(b)

There are 16 recursive calls, each with parameter $\lfloor n/2 \rfloor$. Since we are looking for an asymptotic solution, we can ignore rounding. Then the number of letters printed can be expressed by the recurrence:

$$X(n) = 16X(n/2) + n^3$$
.

We apply the Master Theorem with $a=16,\,b=2,\,c=1,\,d=3.$ Here, we have $a>b^d,$ so the solution is $\Theta(n^{\log_2 16}).$

(c)

There are 2 recursive calls, each with parameter $\lceil n/3 \rceil$. Since we are looking for an asymptotic solution, we can ignore rounding. Then the number of letters printed can be expressed by the recurrence:

$$X(n) = 2X(n/3) + 7n$$

We apply the Master Theorem with $a=2,\ b=3,\ c=7,\ d=1.$ Here, we have $a< b^d$, so the solution is $\Theta(n)$.

(d

There are 2 recursive calls, each with parameter $\lceil n/4 \rceil$. Since we are looking for an asymptotic solution, we can ignore rounding. Then the number of letters printed can be expressed by the recurrence:

$$X(n) = 2X(n/4) + 11.$$

We apply the Master Theorem with $a=2,\,b=4,\,c=11,\,d=0.$ Here, we have $a>b^d,$ so the solution is $\Theta(n^{\log_4 2}).$

(e)

There are 9 recursive calls, each with parameter $\lfloor n/3 \rfloor$. Since we are looking for an asymptotic solution, we can ignore rounding. Then the number of letters printed can be expressed by the recurrence:

$$X(n) = 9X(n/3) + 2n^3$$
.

We apply the Master Theorem with $a=9,\,b=3,\,c=2,\,d=3.$ Here, we have $a< b^d,$ so the solution is $\Theta(n^3)$.

Outline

Non-homogeneous recurrence

Divide and Conquer

Inclusion-Exclusion

Problem 2: We have a group of people, each of which is a citizen of either US or Mexico or Canada. Half of the people in this group are US citizens, 10 are Mexican citizens, 17 are Canadian citizens, 4 people have dual US-Mexican citizenship, 5 have US-Canadian citizenship, 6 have Canadian-Mexican, and 2 are citizens of all three countries. How many people are in this group? Show your work.

$$|A \cup B \cup C| = |A| + |B| + |C|$$

- $|A \cap B| - |A \cap C| - |B \cap C|$
+ $|A \cap B \cap C|$

Us citizens:
$$\begin{vmatrix} A \end{vmatrix} = \frac{X}{2}$$

Mexican citizen: $\begin{vmatrix} B \end{vmatrix} = 10$

Canadian citizen: $\begin{vmatrix} C \end{vmatrix} = 17$

US-Mexican citizen: $\begin{vmatrix} A \cap B \end{vmatrix} = 4$

US-Canadian citizen: $\begin{vmatrix} A \cap C \end{vmatrix} = 5$

Canadian-Mexican: $\begin{vmatrix} B \cap C \end{vmatrix} = 6$

Citizens of all countries: $\begin{vmatrix} A \cap B \cap C \end{vmatrix} = 2$

$$X = \frac{X}{2} + 10 + 17 - 4 - 5 - 6 + 2$$
$$X = \frac{X}{2} + 14$$
$$X = 28$$