Can You Catch It?

IDASM104 : Projet interdisciplinaire

Jean ALBRECQ, Antoine P., Cyprien L., Jessica D.

Table des matières

1	1 Introduction									
	1.1	Présentation du projet	2							
2	Préparation et visualisation des données									
	2.1	Récolte des données	3							
	2.2	Premier coup d'œil à la structure des données	3							
	2.3	Préparation des données	4							
		2.3.1 Stratification des données	4							
	2.4	Visualisation des données	4							
		2.4.1 Création du test-set	4							
		2.4.2 Premières visualisations	4							
		2.4.3 Recherche de corrélation	5							
		2.4.4 Combinaison de $features$	5							
	2.5	Les features de type string	5							
	2.6	Pipeline	6							
3	Modèles et résultats									
	3.1	Partie 1 - Regression	7							
		3.1.1 Cross-validation	7							
		3.1.2 <i>Grid search</i>	7							
		3.1.3 Randomized Search	8							
		3.1.4 Intervale de confiance	8							
$\mathbf{A}_{]}$	ppen	lices	9							
\mathbf{A}	A Position des stops									
В	B Première visualisation des données									
\mathbf{C}	Rec	nerche de corrélation	13							
D	Reg	ression	15							
E	E Bonus									

Chapitre 1

Introduction

Le but de ce rapport est d'expliquer la démarche et la méthodologie qui a guidé l'élaboration des modèles de machine learning et de l'analyse des données fournie par les *opendata stib-mivb*. Ce rapport est constitué des différentes parties : l'analyse et la préparation des données, l'entraînement des modèles de régression et de classification et l'analyse de leurs résultats. Nous nous sommes concentré uniquement sur une ligne de bus mais le système pourrait facilement être étendu au reste du réseau.

L'étape d'analyse et la préparation des données met en lumière les notions de normalisation, la détecteur d'outliers, la selection de features. La visualisation des données est également une partie importante de l'analyse des données. En suite dans l'étape d'entraînement des modèles passe par un phase de selection des méta-paramètres et d'optimisation des prédictions.

1.1 Présentation du projet

Il nous a été demandé de développer un nouveau service ou une analyse pertinente par rapport au défis de la mobilité. Plusieurs opendata nous était proposées, nous avons décidé de choisir celle de la STIB. Nous avons choisi de mettre en place un service permettant de savoir si prochain bus qui arrivera à un stop que l'on attend aura du retard ou non.

Chapitre 2

Préparation et visualisation des données

2.1 Récolte des données

La première étape est de toute évidence la récolte des données. Notre projet nous demandais d'avoir accès à un historique de retard mais malheureusement cette historique ne fait pas partie des datasets des opendata STIB. Nous avons donc développé un script python ¹ nous permettant de constituer cet historique de retard. Pour obtenir le délais, le script compare le temps d'arrivée théorique (qui nous est fournis par les fichiers GTFS ²) et l'heure d'arrivée prévue (qui nous est fournie par l'api "waiting time"). Le délais est enregistré dans un fichier csv. En plus du délais, le script enregistre la température, la vitesse du vent, l'humidité et la visibilité grâce à l'api OpenWeather ³. Un nouveau fichier csv est généré chaque jour.

Nous avons dans un premier temps récolté les données pour deux stop (les numéros 0089 et 6608G, voir leur emplacement dans l'annexe A.1) du premier novembre au douze novembre. Les fichiers csv sont disponibles sur le $repository^4$ du projet. Dans un second temps, nous avons récolté les données de tout les stops d'une ligne de bus (la ligne 39). La position de tout les stops de la ligne sont visible sur l'annexe A.2 5 . Les données récoltées durant cette deuxième phase sont disponible sur le repository du projet 6 .

2.2 Premier coup d'œil à la structure des données

La commande data.info() indique qu'il y a 12798 lignes sans valeur pour la colonne delay. Pour chacune des features un graphique du nombre d'occurrences par valeur a été créé (voir l'annexe B.1). On peut voir sur ces graphiques que plusieurs features ont toujours la même valeur. On peut également voir que des retards on été enregistré pour d'autres lignes que la numéro 39, il faudra donc supprimer ces dernières.

Dans le graphique en annexe B.1 on remarque qu'il y a moins d'occurrences de valeur quatre pour la features hour. Cela est du au fonctionnement de l'API de la STIB. On peut également

- $1.\ \,$ Le code de ce script est disponible à l'adresse suivante : lien github du script
- 2. General Transit Feed Specification
- 3. Documentation disponible ici
- 4. Disponible ici
- 5. Une carte GoogleMyMaps est également disponible ici
- 6. Disponible ici

voir qu'il y a plus de d'occurrences pour les valeurs entre dix et quinze de la features hour, cette différentes est due à l'heure de démarrage et d'arrêt du script de récolte des données.

Le boxplot en annexe B.2 montre la répartition des retards du 19 septembre sur la ligne 39 au stop 0089. On remarque que la majorité des valeurs de délais se situe entre une minute d'avance et une minute de retard.

2.3 Préparation des données

Les lignes du dataset pour les quelles la colonne delay n'avait pas de valeur ont été supprimée. Les lignes dont la valeur de la colonne line n'était pas égale à 39 ont également été supprimée. Les features ayant toujours la même valeur ont été supprimées. Les colonnes trip, theoretical_time, expectedArrivalTime et date ont été supprimées car elles sont pas été jugée utile. Les colonnes theoretical_time, expectedArrivalTime et date ont été supprimées car les valeurs étaient du type string. La colonne date a été considérée comme redondante, sa valeur étant déjà stockée dans les colonnes hour, minute et day.

2.3.1 Stratification des données

La stratification des données ne nous a pas semblé utile car le dataset n'est assez grand pour rendre cette dernière nécessaire. Cependant dans un but pédagogique nous avons quand même stratifier la colonne hour, afin que la répartition des différentes valeurs reste identique dans le dataset ainsi que dans le test-set.

2.4 Visualisation des données

2.4.1 Création du test-set

Cela pourrait paraître étrange de mettre de coté une partie des données à ce moment. Les données n'ont même pas encore été vraiment visualisée et nous devons encore en apprendre plus avant de choisir quel algorithmes utiliser. Cependant si le test-set est créé maintenant c'est pour éviter le snooping bias. Le test-set et constituer de vingt pourcent des données du dataset.

2.4.2 Premières visualisations

La première visualisation générée (annexe B.3) est la répartition des délais en fonction de l'heure. On remarque qu'après dix-huit heure on a soit une avance ou un retard de vingt minutes ou une variation de cinq minutes par rapport à l'horaire théorique, sans valeur intermédiaire. On remarque également que la majorité des délais ont une valeur nulle. On peut également voir qu'il une augmentation des délais après quinze heure jusqu'a dix-neuf heure.

Le second graphique (annexe B.4) indique le délais moyen par heure. On y remarque une augmentation des délais entre six et neuf heure, à quinze heure et ainsi qu'a vingt-et-une heure. Le pick de retard de vingt-et-une heure vient sans doute du couvre feu de vingt-deux heure, les autres pick quand à eux sont à priori du au traffic de Bruxelles.

Sur la dernière infographie (annexe B.5) on remarque une hausse des températures de midi à seize heure.

2.4.3 Recherche de corrélation

Étant donné que le notre dataset n'est pas trop grand nous pouvons facilement calculer le coefficient standard de corrélation entre chaque paire de feature. Comment on peut le voir avec le bout de code suivant (Voir listing 2.1), le retard est très peu linéairement corrélé avec les autres features.

```
1 >>> corr_matrix = data.corr()
  >>> corr_matrix["delay"].sort_values(ascending=False) # warning: this check only
       linear correlation
3 delay
                 1.000000
4 rain
                 0.018600
                 0.009013
5 temp
                 0.002024
6 wind
                -0.000627
7 hour
                -0.006874
8 minute
                -0.016347
9 humidity
                -0.034723
10 visibility
                -0.079071
11 day
12 Name: delay, dtype: float64
```

Listing 2.1 – Coefficient standard de corrélation pour la feature delay.

La heatmap (disponible en annexe C.1) nous permet de confirmer que la feature delay n'est pas linéairement corrélée avec les autres features. Elle nous fournis cependant des informations supplémentaires comme le fait que la feature temp est linéairement corrélée avec la feature wind, ainsi qu'inversément linéairement corrélée avec la feature humidity. Cependant ces corrélations reste faibles, comme on peut le voir sur la figure C.2. On voit bien que globalement quand la valeur de la feature humidity chute quand celle de la feature temp augmente mais on reste cependant loin d'une belle ligne droite.

2.4.4 Combinaison de features

La feature hour_minute est une nouvelle feature que nous avons créé en combinant les features hour et minute. Ce regroupement des features est fait dans un bute pédagogique car de manière générale on a plutôt tendance à séparer les features. La séparation des features est une bonne façon de les rendre plus utilisable par l'algorithmes de machine learning car la plus part du temps les datasets possède des colonnes du type string qui viole le principe de tidy data. La division des features permet améliorer les performances du modèle en découvrant des informations potentielles. Ce qui a déjà été fait en divisant la feature date en les features year, month, day, hour et minute.

Visualisation de la nouvelle feature

Le graphique en annexe C.3 nous montre la répartition des délais en fonction de l'heure de la journée. On remarque que le graphique garde évidement sa forme de fourche caractéristique.

En réaffichant les coefficient standard de corrélation en prenant en compte cette nouvelle feature, on remarque qu'elle est encore moins linéairement corrélée avec la feature delay que ne le sont les features hour et minute.

2.5 Les features de type string

La plus part des algorithmes de machine learning préfère travailler avec des nombres plutôt qu'avec du texte, c'est pourquoi nous convertissons la feature stop en différente catégorie repré-

sentée par un nombre.

2.6 Pipeline

Un pipeline a été créé pour faciliter l'exécution des étapes de transformation des données. Le pipeline effectue les opérations suivantes, premièrement amputer les lignes ayant au moins une valeur nulle dans l'une des colonnes. En suite vient l'étape d'ajout de la feature hour_and_minute qui peut être déactivée à la volée à l'aide d'un paramètre. La dernière étape est la création des catégories des stops comme vu dans la section précédente.

Chapitre 3

Modèles et résultats

Ce chapitre est divisés en deux partie la première concerne la partie de l'équipe "regression" (constituée de Jean A. et de Cyprien L.) et la seconde concerne la partie de l'équipe "classification" (constituée d'Antoine P. et de Jessica D.). Chacune des équipes est partie sur un vision différente du problème, comme leur nom l'indique le premiere équipe a vu le problème comme un problème de régression tandis que la second comme un problème de classification.

3.1 Partie 1 - Regression 1

Différent modèles ont été entraînés afin de sélectionner le meilleur d'entre eux. Le premier a avoir été testé est le modèle de regression linéaire, les prédictions obtenues sont disponible dans le tableau en annexe D.1. Le modèle fonctionne mais n'est pas précis du tout. Pour nous rendre compte à quel point le modèle se trompe nous calculons la root-mean-square error (RMSE), cette dernière est égale à 5.2243. C'est mieux que rien mais étant donné que les délais varient principalement entre 20min et -25min, une erreur moyenne de 5min n'est pas acceptable. Cela signifie que le modèle underfit les donnée d'entraînement ce qui indique que nos données ne sont pas assez pertinentes ou que le modèle n'est pas assez puissant. Lors que l'on utilise donc un modèle d'apprentissage par arbre de décision et que l'on calcule la RMSE on obtient une valeur nulle. Ce qui signifie que le modèle overfit les données d'entraînement.

3.1.1 Cross-validation

Afin de mieux évaluer les modèles testés, nous avons utilisé une 10-fold cross-validation. En utilisant la cross validation sur le modèle linéaire nous obtenons toujours une erreur moyenne de 5.22 pour les dix folds. Le modèle d'apprentissage par arbre de décision obtient lui une valeur de 6.13, pire que le modèle de régression linéaire donc. Ce qui indique que l'arbre de décision overfit tellement qu'il fonctionne moins bien que le modèle de régression linéaire. Apres avoir entraîné un modèle de type Random Forest et du type Support Vector Regression sur 10 folds nous obtenons respectivement une erreur moyenne de 4.89 et de 5.27. Pour la suite, nous avons choisi le modèle Random Forest.

3.1.2 Grid search

Nous avons donné un liste de valeur pour chaque métaparamètres (n_estimators, max_features et bootstrap) à tester. Grid search nous indique que la meilleur combinaison de valeur est {'

^{1.} Le code concernant cette section est disponible ici

max_features': 8, 'n_estimators': 30} avec une erreur moyenne de 4.758. Ce résultat peut encore être amélioré car la valeur des métaparamètres n_estimators et max_features sélectionnées ont tous deux la valeur maximale que nous avions donnée. Nous changeons donc la liste des valeurs de n_estimators et max_features pour des valeurs plus grandes que 30 et 8 respectivement. La meilleur combinaison était {'max_features': 8, 'n_estimators': 70} avec une erreur moyenne de 4.726.

3.1.3 Randomized Search

Nous avons test une *Randomized Search* avec des valeurs entre 1 et 200 pour max_features et entre 1 et 8 n_estimators. La meilleur combinaison de métaparamètres est {'max_features': 7, 'n_estimators': 180} avec une erreur moyenne de 4.719.

3.1.4 Intervale de confiance

L'intervale de confiance (95%) pour la RMSE est entre 3,84 et 4,63min

Annexe A

Position des stops

 $\label{eq:figure} Figure\ A.1-Position\ des\ stops\ numéro\ 0089\ et\ 6608G\ en\ jaune\ et\ noir\ respectivement.$

FIGURE A.2 – Position des stops présent sur la ligne 39

Annexe B

Première visualisation des données

 $\label{eq:figure} Figure\ B.1-Plot\ des\ features\ par\ nombre\ d'occurrences$

FIGURE B.2 – Boxplot des délais du 19 septembre sur la ligne 39 au stop 0089

FIGURE B.3 – Délai par heure pour tout le dataset

Figure B.4 – Délai moyen par heure pour tout le dataset

FIGURE B.5 – Température moyenne par heure pour tout le dataset

Annexe C

Recherche de corrélation

Figure C.1 – Matrice de corrélation linéaire entre les différentes features

FIGURE C.2 – Plot de chaque features par rapport à chacune des autres

FIGURE C.3 – Délai par heure et minute pour tout le dataset

Annexe D

Regression

Valeur réelle	Prédiction	Différence
-1.0	1.02270508	-2,023
-1.0	-1.04394531	0,044
0.0	-1.015625	-1.016
-1.0	0.03173828	-1,032
-18.0	0.48291016	-18,483

Table D.1 – Échantillon de prédiction du modèle de régression linéaire

Annexe E

Bonus

Figure E.1 - Bonus

Listings

2.1	Coefficient	standard	de corrélation	pour l	a feature	delay.										,
-----	-------------	----------	----------------	--------	-----------	--------	--	--	--	--	--	--	--	--	--	---

Bibliographie

- [1] Robert R. F. Defilippi. Standardize or Normalize Examples in Python. Avr. 2018. URL: https://medium.com/@rrfd/standardize-or-normalize-examples-in-python-e3f174b65dfc.
- [2] Aurélien Géron. <u>Hands-on machine learning</u>. Avr. 2017. URL: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/1491962291.
- [3] Urvashi Jaitley. Why Data Normalization is necessary for Machine Learning models. Avr. 2019. URL: https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029.
- [4] machine learning in Python scikit-learn documentation. URL: https://scikit-learn.org/stable/.
- [5] Python Data Analysis Library. URL: https://pandas.pydata.org/.
- [6] Emre Rençberoğlu. Fundamental Techniques of Feature Engineering for Machine Learning. Avr. 2019. URL: https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114.
- [7] Natasha Sharma. Ways to Detect and Remove the Outliers. Mai 2018. URL: https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba.
- [8] statistical data visualization seaborn documentation. URL: https://seaborn.pydata.org/.
- [9] Hadley Wickham. « Tidy data ». In: <u>The Journal of Statistical Software</u> 59 (10 2014). URL: http://www.jstatsoft.org/v59/i10/.
- [10] Zixuan Zhang. <u>Understand Data Normalization in Machine Learning</u>. Août 2019. URL: https://towardsdatascience.com/understand-data-normalization-in-machine-learning-8ff3062101f0.