K-means algorithm GI07/M012

Mark Herbster

University College London Department of Computer Science

September 30, 2014

Objective

- The aim is to partition unlabelled data into k classes.
- This is "achieved" by optimising the following (nonconvex) objective

$$\underset{C_1,...,C_k; c_1,...,c_k}{\text{arg min}} \sum_{i=1}^k \sum_{x \in C_i} \|x - c_i\|^2$$
 (1)

Thus we find a disjoint partition

$$C_1, \ldots, C_k$$

As well as centers (or prototypes)

$$c_1,\ldots,c_k$$

イロト イボト イヨト イヨト ヨ めのぐ

K-means algorithm

ν_{-}	m	റാ	ns
Λ-		Ca	115

Inputs:	Data: $X:=(x_1,x_2,\ldots,x_\ell)\subset\mathbb{R}^n$		
	Number of classes: k		
Initialization:	Choose random centers $c_1 \dots, c_k$		
Algorithm:			
	1 for $i = 1,, k$ do		
	$C_i = \{x \in X i = \emptyset\}$		
	$\arg\min_{1\leq j\leq k}\ c_j-x\ ^2\}$		
	2 for $i = 1,, k$ do		
	$c_i = \operatorname{argmin}_{z \in R^n} \sum_{x \in C_i} \ z - x\ ^2$		
	While not converged go to step 1.		

Convergence

Theorem: k-means converges

Proof.

- The objective decreases in step 1
- 2 The objective decreases in step 2
- 3 The objective is bounded below
- 4 Hence we converge in "value"

Questions

- Does gradient descent converge finitely or infinitely?
- 2 Is convergence of k-means finite or infinite?

- Suppose we have 4 boxes of different sizes and we want to divide them into 2 classes.
- Each box represents one point with two attributes (X,Y):

- *Initial centers:* suppose we choose points A and B as the initial centers, so $c_1 = (10, 10)$ and $c_2 = (20, 10)$
- Object centre distance: calculate the Euclidean distance between cluster centres and the objects. For example, the distance of object C from the first center is:

$$\sqrt{(40-10)^2+(30-10)^2}=36.06$$

We obtain the following distance matrix:

0	10	36.06	50
10	0	28.28	42.43

K-means - an example

 Object clustering: We assign each object to one of the clusters based on the minimum distance from the centre:

1	0	0	0
0	1	1	1

• Determine centres: Based on the group membership, we compute the new centers: $c_1 = (10, 10)$, $c_2 = (\frac{20+40+50}{3}, \frac{10+30+40}{3}) = (36.7, 26.7)$

K-means Mark Herbster

 Recompute the object-centre distances: We compute the distances of each data point from the new centres:

0	10	36.06	50
31.4	23.6	4.7	18.9

 Object clustering: We reassign the objects to the clusters based on the minimum distance from the centre:

1	1	0	0
0	0	1	1

• Determine the new centres: $c_1 = (\frac{10+20}{2}, \frac{10+10}{2}) = (15, 10),$ $c_2 = (\frac{40+50}{2}, \frac{30+40}{2}) = (45, 35)$

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

• Recompute the object-centres distances:

5	5	32	46.1
43	35.4	7.1	7.1

Object clustering:

1	1	0	0
0	0	1	1

• The cluster membership did not change from one iteration to another and so the k-means computation terminates.

The end

The end

