课程代号: PHY17016 北京理工大学 2013-2014 学年第二学期

大学物理I期末试题A卷

2014年6月25日 14:00-16:00

址 级		_仕课教师		字号_				
填空题	选择题	计算1	计算2	计算3	计算 4	计算 5	总分	
大气压 1a	的数据: = 10 ⁶ μm = tm = 1.013 常量 R = 8	×10 ⁵ Pa,	·K ⁻¹ ,		常量 $G = 0$	5.67×10^{-11} $.38 \times 10^{-23}$ J		
				绘面指定的				
						$3-3t^2+2t+3$	(m),则	
				=				
2. (3分质点做顺质点在运)质点沿圆 时针运动,	心为 <i>C</i> , 加速度的 加速度的 加速度	半径为 5m 大小为 a	n 的圆轨道: = 30m/s ² , 不变,则 <i>t</i> =	运动。计时 方向如图	所示。若	30°, C)
3. (3分)) 两个均匀	刚性小球					,球心距离分 同时由静止释	
它们将互	相靠近,请	是后碰撞 。	碰撞时小	球A的速率	区为		o	
和 M2, 下	可视为均匀	圆盘且同	轴固定在-	R_1 和 R_2 ,一起。通过 T_2),使清	两滑轮边	缘环绕	R_1	B
那么滑轮	的角加速周	度 β=			o			
5. (3分)	在容积为	0.01 m³ 自	勺容器中,	装有质量	为 100 g 的]气体。	T_1	T_2

若气体分子的方均根速率为 200 m/s,则气体的压强为

Pa.

- 二、选择题(每题3分,共15分,请将答案写在卷面指定的方括号内):
- 1. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为:

(A)
$$\frac{5}{2}pV$$
, (B) $\frac{3}{2}pV$, (C) pV , (D) $\frac{1}{2}pV$.

- 2. 按照麦克斯韦速率分布律,温度为 T 时,氢、氮两种理想气体在各自方均根速率 $v_{ms} \pm 2m/s$ 的速率区间内,分子数占总分子数的比例的大小关系为
 - (A) $(\Delta N/N)_{H_2} > (\Delta N/N)_{N_2}$
 - (B) $\left(\Delta N/N\right)_{H_2} = \left(\Delta N/N\right)_{N_2}$
 - (C) $(\Delta N/N)_{H_2} < (\Delta N/N)_{N_2}$
- (D) 温度较低时 $(\Delta N/N)_{H_2} > (\Delta N/N)_{N_2}$, 温度较高时 $(\Delta N/N)_{H_2} < (\Delta N/N)_{N_2}$
- 3. 一列简谐波沿 -x 方向运动,在坐标原点引起的简谐振动为 $y = A\cos(\omega t + \pi/2)$,那么该简谐波在 $x = \frac{5}{12}\lambda$ 处(其中 λ 为波长)引起的简谐振动所对应的的旋转矢量图为

- 4. 当平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?
 - (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒。
 - (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同。
 - (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者数值不相等。
 - (D) 媒质质元在其平衡位置处弹性势能最大。

5. 在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹。若在两缝后放一个偏振片,则

- (A) 干涉条纹的间距不变, 但明纹的亮度加强。
- (B) 干涉条纹的间距不变, 但明纹的亮度减弱。
- (C) 干涉条纹的间距变窄, 但明纹的亮度减弱。
- (D) 无干涉条纹。

三、计算题 (共47分):

1. (12 分) 质量为 m, 长为 l 的均匀细棒可绕距离棒一端为 l/3 的光滑水平轴在竖直平面内转动,如图所示。细棒在水平位置由静止释放,当其顺时针旋转至竖直位置时,恰好有一质量为 m/6 的子弹向右水平打入细棒的末端而不复出。如果子弹使棒刚好停止旋转,求子弹射入的速度。

2. (10 分) 以理想气体为工作物质的热机,其循环过程如图所示,试证明此热机的效率为 $\eta = 1 - \gamma \frac{V_2/V_1 - 1}{p_2/p_1 - 1}$ 。其

中 $\gamma = C_{p,m} / C_{V,m}$ 为比热容比。

- 3. $(10\,\%)$ 用波长为 500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。在观察反射光的干涉现象中,距劈尖棱边 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心。(1) 求此空气劈尖的劈尖角 θ ; (2) 改用 600 nm 的单色光垂直照射到此劈尖上,仍观察反射光的干涉条纹,那么 A 处是明条纹、暗条纹、还是相邻明条纹暗条纹的过渡区域?
- 4. $(10 \, \text{分})$ 一束波长 $\lambda = 589 \, \text{nm}$ 的平行光垂直照射到宽度 $a = 0.40 \, \text{mm}$ 的单缝上,缝后放一焦距 $f = 1.0 \, \text{m}$ 的凸透镜,在透镜的焦平面处的屏上形成衍射条纹。(1)求第一级明纹离中央明纹中心的距离;(2)对第二级明纹,对该光波,单缝处的波阵面可分成几个半波带?(3)求中央明纹的宽度。
- 5. (5分) 图(a)为凸透镜成像光路图,A和B为物平面和像平面,L为凸透镜,F为焦平面。把一个透射光栅放在A处,保持光栅刻线水平并垂直于透镜主光轴,用平行白光垂直照射光栅。
 - (1)把屏放在F处,能观察到什么现象?把屏移到B处,能观察到什么现象?
- (2)保持屏在 B 处,在 F 处放置如图(b)所示遮挡板,使透镜主光轴垂直于遮挡板并通过遮挡板中心,且遮挡板的透光窄缝平行于光栅刻线。如果光栅常数 $d=12\mu m$,凸透镜焦距 f=30cm,那么在屏上能观察到什么现象?参考下表列出的可见光波长。

可见光波	及长。
颜色	波长 (nm)
红	780~630
橙	630~600
黄	600~570
绿	570~500
青	500~470
蓝	470~420
紫	420~380

答案

一、填空题 (共38分):

3. (3 分)
$$\sqrt{\frac{8Gm}{3}} \left(\frac{1}{2r} - \frac{1}{d} \right)$$

4. (3
$$\%$$
) $\frac{2(T_2R_2 - T_1R_1)}{M_1R_1^2 + M_2R_2^2}$

7. (3分) 0 (1分),
$$R \ln \frac{V_2}{V_1}$$
 (2分)

8.
$$(3 \%)$$
 $y = A\cos\left(\omega t - \frac{2\pi}{\lambda}x - \frac{\pi}{3}\right)$

11. (4分)
$$v_1 \frac{r_1}{r_2}$$
, $v_1 \sqrt{\frac{r_1}{r_2}}$ (各2分)

12.
$$(4分)$$
 $\frac{1}{2}mR^2$, $\frac{2\pi^2 f^2 R^2}{g}$ (各2分)

二、选择题 (每题 3 分, 共 15 分):

$$1. \ v = \sqrt{3gl}$$

3. (1)
$$\theta$$
=4.8×10⁵rad; (2) A处是暗纹

4. (1)
$$x_1$$
=2.21×10⁻³m; (2) 5 个半波带 (3) 2.945×10⁻³m