

Hybrid genetic networks: from Hoare logic to identification of parameters

Jonathan Behaegel, J.-P. Comet, M. Folschette

University Nice Sophia Antipolis I3S lab

March 14, 2017

Objective - Identification of dynamic parameters

Legend:

pc : PER/CRY protein complex inside the nucleus,

g : per and cry genes,L : Light (Zeitgeber)

Stake: Identify dynamic parameters of genetic networks automatically.

Discrete and hybrid modelling frameworks

- Discrete modelling framework.
- Space of homogeneous concentration.
- Dynamic parameters ex : $K_{A,\emptyset}$, $K_{A,\{m_3\}}$

Discrete and hybrid modelling frameworks

- Hybrid modelling framework.
- Knowledge of time spent in each state of the system.
- Celerities ex : $C_{A,\emptyset,0}$, $C_{A,\emptyset,1}$, $C_{A,\emptyset,2}$

Hoare logic - A formal method

Hoare triple:

 If P is satisfied before executing p, the postcondition Q will be satisfied after p.

```
Example: \{x=0\}x := x + 1\{x=1\}
```

Hoare logic - A formal method

Hoare triple:

 If P is satisfied before executing p, the postcondition Q will be satisfied after p.

Example:
$$\{x=0\}x := x + 1\{x=1\}$$

 Biological paths can represent successions of events, similar to imperative programs

(A, B)	Parameters	ω	Resources	Constraints	
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(1,0)	Α	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(1,1)	В	ω 3			
(1,0)	А	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,1)	Α	ω 2			
(1,1)	В	ω 3			
(1,0)	А	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$			
(2,1)	Α	ω 2			
(1,1)	В	ω 3			
(1,0)	А	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$	<i>m</i> ₂	$K_{B,\{m_2\}} > 0$	
(2,1)	Α	ω 2			
(1,1)	В	ω 3			
(1,0)	А	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$	<i>m</i> ₂	$K_{B,\{m_2\}} > 0$	
(2,1)	А	ω 2	m_1	$K_{A,\{m_1\}} < 2$	
(1,1)	В	ω 3			
(1,0)	А	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$	<i>m</i> ₂	$K_{B,\{m_2\}} > 0$	
(2,1)	Α	ω 2	m_1	$K_{A,\{m_1\}} < 2$	
(1,1)	В	ω 3	Ø	$K_{A,\emptyset} < 1$	
(1,0)	Α	ω 4			
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$	<i>m</i> ₂	$K_{B,\{m_2\}} > 0$	
(2,1)	Α	ω 2	m_1	$K_{A,\{m_1\}} < 2$	
(1,1)	В	ω 3	Ø	$K_{A,\emptyset} < 1$	
(1,0)	Α	ω 4	m_1, m_3	$K_{A,\{m_1,m_3\}} > 1$	
Final state: (2,0)					

(A, B)	Parameters	ω	Resources	Constraints	
(2,0)	В	$\omega 1$	<i>m</i> ₂	$K_{B,\{m_2\}} > 0$	
(2,1)	Α	ω 2	m_1	$K_{A,\{m_1\}} < 2$	
(1,1)	В	ω 3	Ø	$K_{A,\emptyset} < 1$	
(1,0)	А	ω 4	m_1, m_3	$K_{A,\{m_1,m_3\}} > 1$	
Final state: (2,0)					

Modified Hoare logic adapted to the hybrid modelling framework.

Property language:

All couples (D,H) formed by a discrete and hybrid conditions.

Path language: Describe a biological behaviour p:

$$p :== \varepsilon \mid (\Delta t, a, v \pm) \mid p ; p$$

Path language: Describe a biological behaviour p:

$$p :== \varepsilon \mid (\Delta t, a, v \pm) \mid p ; p$$

Path language: Describe a biological behaviour p:

$$p :== \varepsilon \mid (\Delta t, a, v \pm) \mid p ; p$$

$$\begin{Bmatrix} \begin{matrix} D \\ H \end{Bmatrix} \begin{pmatrix} T_1 \\ \top \\ A + \end{pmatrix} \begin{Bmatrix} D' \\ H' \end{Bmatrix}$$

Objective: Determine conditions which make compatible the model with observed path.

$$\begin{Bmatrix} \begin{matrix} D \\ H \end{Bmatrix} \begin{pmatrix} T_1 \\ \top \\ A + \end{pmatrix} \begin{Bmatrix} D' \\ H' \end{Bmatrix}$$

Objective: Determine conditions which make compatible the model with observed path.

Weakest Precondition: $WP_f^i(p, Post) \equiv (D, H_{i,f})$

$${D \choose H} \varepsilon {D' \choose H'}$$

Objective: Determine conditions which make compatible the model with observed path.

Weakest Precondition: $WP_f^i(p, Post) \equiv (D, H_{i,f})$

• If $p = \varepsilon$, then $D \equiv D'$ and $H_{i,f} \equiv H'_f$;

$$\begin{Bmatrix} \begin{matrix} D \\ H \end{Bmatrix} \begin{pmatrix} T_1 \\ \top \\ A + \end{pmatrix} \begin{Bmatrix} D' \\ H' \end{Bmatrix}$$

Objective: Determine conditions which make compatible the model with observed path.

Weakest Precondition: $WP_f^i(p, Post) \equiv (D, H_{i,f})$

- If $p = \varepsilon$, then $D \equiv D'$ and $H_{i,f} \equiv H'_f$;
- If $p = (\Delta t, assert, v\pm)$:
 - $D \equiv D'[\eta_{\nu} \backslash \eta_{\nu} \pm 1]$,
 - $H_{i,f} \equiv H'_f \wedge \Phi_v^{\pm}(\Delta t) \wedge \neg W_v^{\pm} \wedge \mathcal{F}_v(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_v;$

$$\begin{Bmatrix} \begin{matrix} D \\ H \end{Bmatrix} p_1; p_2 \begin{Bmatrix} D' \\ H' \end{Bmatrix}$$

Objective: Determine conditions which make compatible the model with observed path.

Weakest Precondition: $WP_f^i(p, Post) \equiv (D, H_{i,f})$

- If $p = \varepsilon$, then $D \equiv D'$ and $H_{i,f} \equiv H'_f$;
- If $p = (\Delta t, assert, v\pm)$:
 - $D \equiv D'[\eta_v \setminus \eta_v \pm 1],$
 - $H_{i,f} \equiv H'_f \wedge \Phi_v^{\pm}(\Delta t) \wedge \neg W_v^{\pm} \wedge \mathcal{F}_v(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_v;$
- If $p = p_1; p_2$:
 - $WP_f^i(p_1; p_2, Post) \equiv WP_m^i(p_1, WP_f^m(p_2, Post))$

Modified Hoare logic - Sub-properties of the Weakest Precondition

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

 $\Phi_A^+(\Delta_t^1)$: describes conditions where A increases its level expression.

Modified Hoare logic - Sub-properties of the Weakest Precondition

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

 $\neg \mathcal{W}_{\Delta}^{+}$: none internal or external wall for A.

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

 $\mathcal{F}_A(\Delta_t^1)$: A is the first component to change its qualitative state.

Modified Hoare logic - Sub-properties of the Weakest Precondition

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

 $\mathcal{A}(\Delta_t^1)$: translates assertion symbols in constraints.

$$H_{i,f} \equiv H'_f \wedge \Phi_A^+(\Delta t) \wedge \neg W_A^+ \wedge \mathcal{F}_A(\Delta t) \wedge \mathcal{A}(\Delta t) \wedge \mathcal{J}_A;$$

 \mathcal{J}_A : makes the junction of positions between two successive states.

March 14, 2017 8 / 12

Example - Influence graph

Simplified circadian clock

day/night cycle

$$\begin{cases} D_0 \\ H_0 \end{cases} \begin{pmatrix} 0.9 \\ \top \\ pc- \end{pmatrix}; \begin{pmatrix} 4.5 \\ \top \\ g+ \end{pmatrix}; \begin{pmatrix} 0.6 \\ \top \\ X+ \end{pmatrix}; \begin{pmatrix} 5.53 \\ \mathsf{slide}^+(g) \\ pc+ \end{pmatrix}; \begin{pmatrix} 0.47 \\ \top \\ L- \end{pmatrix}; \begin{pmatrix} 5.4 \\ \mathsf{slide}^+(pc) \\ g- \end{pmatrix}; \begin{pmatrix} 0.6 \\ \mathsf{slide}^-(L) \end{pmatrix}; \begin{pmatrix} 6 \\ \top \\ L+ \end{pmatrix} \begin{cases} D_6 \\ H_6 \end{cases}$$

$$D_6 \equiv (\eta_g = 0) \land (\eta_{pc} = 1) \land (\eta_L = 1) \land (\eta_X = 0)$$

$$H_6 \equiv (\pi_g = 0.12) \land (\pi_{pc} = 0.12) \land (\pi_L = 0) \land (\pi_X = 0)$$

Example - Results of constraints

Results of constraints for the simplified circadian clock :

$$((((((((((((\pi_g^0'=0.12) \land ((\pi_{pc}^0'=0.12) \land (\pi_{l}^0'=0))) \land (((\pi_{l}^1=1) \land (((C_{L,\{m5\},0}>0) \land (\pi_{l}^{1'}=(\pi_{l}^1-(C_{L,\{m5\},0}<6.6))))) \land (((((C_{g,\emptyset,0}>0) \land (\pi_{g}^{1'}>(\pi_{g}^1-(C_{g,\emptyset,0}\times6.6)))) \land ((((C_{g,\emptyset,1}<0) \land (\pi_{pc}^1'<(\pi_{pc}^1-(C_{pc,\emptyset,1}\times6.6)))) \land (((C_{X,\emptyset,0}>0) \land (\pi_{X}^{1'}>(\pi_{x}^1-(C_{X,\emptyset,0}\times6.6))))) \land ((\pi_{l}^1=1-\pi_{l}^0') \land (((\pi_{g}^1=\pi_{g}^0') \land ((\pi_{pc}^1=\pi_{pc}^0') \land (\pi_{x}^1=\pi_{X}^0')))))) \land (((\pi_{x}^2=0) \land ((C_{X,\emptyset,1}<0) \land (\pi_{x}^2'=(\pi_{x}^2-(C_{X,\emptyset,1}\times0.6))))) \land ((((C_{g,\emptyset,0}>0) \land (\pi_{g}^2'>(\pi_{g}^2-(C_{g,\emptyset,0}\times0.6))))) \land (((C_{L,\emptyset,0}<0) \land (\pi_{pc}^2'<(\pi_{g}^2-(C_{g,\emptyset,0}\times0.6))))) \land (((C_{L,\emptyset,0}>0) \land (\pi_{l}^2'>(\pi_{l}^2-(C_{L,\emptyset,0}\times0.6))))) \land ((((\pi_{l}^2=0) \land ((C_{L,\emptyset,0}<0) \Rightarrow (\pi_{l}^2'<(\pi_{l}^2-(C_{L,\emptyset,0}\times0.6))))) \land (((\pi_{x}^2=1-\pi_{x}^1')) \land ((\pi_{g}^2=\pi_{g}^1') \land ((\pi_{pc}^2=\pi_{pc}^1') \land (\pi_{l}^2=\pi_{l}^1'))))))) \land ((((\pi_{g}^3=0) \land ((C_{g,\emptyset,1}<0) \land (\pi_{g}^3'=(\pi_{g}^3-(C_{g,\emptyset,1}\times5.4))))) \land ((((C_{g,\emptyset,1}<0) \land (\pi_{g}^3'<(\pi_{g}^3-(C_{g,\emptyset,1}\times5.4))))) \land (((C_{g,\emptyset,1}<0) \land (\pi_{g}^3'<(\pi_{g}^3-(C_{g,\emptyset,1}\times5.4))))) \land ((((\pi_{g}^3=1) \land ((C_{g,\emptyset,1}\times1.5))))) \land (((\pi_{g}^3=1) \land ((C_{g,\emptyset,1}\times1.5)))) \land (((\pi_{g}^3=1) \land ((C_{g,\emptyset,1}\times1.5))))) \land (((\pi_{g}^3=1) \land ((G_{g,\emptyset,1}\times1.5))))) \land ((\pi_{g}^3=1) \land ((G_{g,\emptyset,1}\times1.5))))) \land ((\pi_{g}^3=1) \land ((G_$$

Jonathan Behaegel

Conclusion

- program developped and constraints represented as DNF,
- Simplify on the fly :

$$FNC: \ldots \wedge [(C_{v,\omega,n} < 0) \vee (\ldots)] \wedge (C_{v,\omega,n} \geq 0) \wedge \ldots$$

 $2^{27} \rightarrow 2^5$ disjunctive logical connectives in our example

Constraints adapted for constraint solver (ibex)

Conclusion

- program developped and constraints represented as DNF,
- Simplify on the fly :

$$FNC: \ldots \wedge [(C_{\nu,\omega,n} < 0) \vee (\ldots)] \wedge (C_{\nu,\omega,n} \geq 0) \wedge \ldots$$

 $2^{27} \rightarrow 2^5$ disjunctive logical connectives in our example

Constraints adapted for constraint solver (ibex)

Perspective:

Biological coupling between cell cycle and circadian clock

Appendix - Result of cell cycle

 $\Phi_A^+(T_1)$: describes conditions where A increases its level expression.

$$\Phi_{A}^{+}(\Delta t) \equiv (\pi_{A}^{i}' = 1) \wedge \\ \bigwedge_{\substack{\omega \subset R^{-}(A) \\ n \in [\![0.b_{A} \!]\!]}} \left(\left(\Phi_{A}^{\omega} \wedge (\eta_{A} = n) \right) \Rightarrow (C_{A,\omega,n} > 0) \wedge (\pi_{A}^{i} = \pi_{A}^{i}' - C_{A,\omega,n} \cdot \Delta t) \right)$$

 $\Phi_A^+(T_1)$: describes conditions where A increases its level expression.

$$\begin{split} \Phi_{A}^{+}(\Delta t) &\equiv (\pi_{A}^{i}{}' = 1) \quad \wedge \\ & \bigwedge_{\substack{\omega \subset R^{-}(A) \\ n \in \llbracket 0, b_{A} \rrbracket}} \left(\left(\Phi_{A}^{\omega} \wedge (\eta_{A} = n) \right) \Rightarrow \left(C_{A,\omega,n} > 0 \right) \wedge \left(\pi_{A}^{i} = \pi_{A}^{i}{}' - C_{A,\omega,n} \cdot \Delta t \right) \right) \end{split}$$

 $\neg \mathcal{W}_{\Delta}^{+}$: none internal or external wall for A.

$$\mathcal{W}_A^+ \equiv \mathsf{IW}_A^+ \lor \mathsf{EW}_A^+$$

$$\begin{split} \mathsf{EW}_A^+ &\equiv (\eta_A = b_A) \land \bigwedge_{\omega \subset R^-(A)} (\Phi_A^\omega \Rightarrow C_{A,\omega,b_A} > 0) \\ \mathsf{IW}_A^+ &\equiv (\eta_A < b_A) \land \bigwedge_{\substack{\omega,\omega' \subset R^-(A) \\ n \in \llbracket 0,b_A \rrbracket}} \left(\left((\eta_A = n) \land (m = n+1) \land \Phi_A^\omega \land \Phi_{A+}^{\omega'} \right) \right. \\ &\qquad \qquad \Rightarrow C_{A,\omega,n} > 0 \land C_{A,\omega',m} < 0 \right) \end{split}$$

 $\mathcal{F}_A(\mathcal{T}_1)$: A is the first component to change its qualitative state.

$$\begin{split} \mathcal{F}_{A}(\Delta t) &\equiv \bigwedge_{u \in V \setminus \{A\}} \\ & \left(\bigwedge_{\substack{\omega \subset R^{-}(u) \\ n \in [\![0,b_u]\!]}} ((\eta_u = n) \land \Phi_u^{\omega} \land C_{u,\omega,n} > 0 \land \pi_{u,i} > \pi'_{u,i} - C_{u,\omega,n} \cdot \Delta t) \Rightarrow \mathcal{W}_u^+ \right) \\ & \land \left(\bigwedge_{\substack{\omega \subset R^{-}(u) \\ n \in [\![0,b_u]\!]}} ((\eta_u = n) \land \Phi_u^{\omega} \land C_{u,\omega,n} < 0 \land \pi_{u,i} < \pi'_{u,i} - C_{u,\omega,n} \cdot \Delta t) \Rightarrow \mathcal{W}_u^- \right) \end{split}$$

 $n_i \in \llbracket 0, b_{v_i} \rrbracket$

 $\mathcal{A}(\mathcal{T}_1)$: translates assertion symbols in constraints.

$$\mathcal{A}(\Delta t, a) \equiv \bigwedge_{ egin{array}{c} i \in \llbracket 1, n
rbracket} \left(igwedge_{i \in \llbracket 1, n
rbracket} \left((\eta_{v_i} = n_i) \wedge \Phi^{\omega_i}_{v_i}
ight) \Rightarrow a egin{array}{c} C_{v_i} \setminus C_{v_i, \omega_{v_i}, n_{v_i}} \\ \operatorname{slide}(v_i) \setminus \mathcal{S}_{v_i, \omega_{v_i}, n_i}(\Delta t) \\ \operatorname{slide}^+(v_i) \setminus \mathcal{S}^+_{v_i, \omega_{v_i}, n_i}(\Delta t) \\ \operatorname{slide}^-(v_i) \setminus \mathcal{S}^-_{v_i, \omega_{v_i}, n_i}(\Delta t) \end{array}
ight]$$

 $\mathcal{A}(\mathcal{T}_1)$: translates assertion symbols in constraints.

$$\mathcal{A}(\Delta t, a) \equiv \bigwedge_{\substack{i \in \llbracket 1, n \rrbracket \\ v_i \in V \\ \omega_i \in R^-(v_i) \\ n_i \in \llbracket 0, b_{v_i} \rrbracket}} \left(\bigwedge_{\substack{i \in \llbracket 1, n \rrbracket \\ v_i \in V}} \left((\eta_{v_i} = n_i) \land \Phi^{\omega_i}_{v_i} \right) \Rightarrow a \begin{bmatrix} c_{v_i} \setminus C_{v_i, \omega_{v_i}, n_{v_i}} \\ \text{slide}(v_i) \setminus \mathcal{S}_{v_i, \omega_{v_i}, n_i}(\Delta t) \\ \text{slide}^+(v_i) \setminus \mathcal{S}_{v_i, \omega_{v_i}, n_i}^-(\Delta t) \end{bmatrix}$$

 \mathcal{J}_A : makes the junction of positions between two successive states.

$$\mathcal{J}_{A} \equiv \left(\pi_{A}^{f} = 1 - {\pi_{A}^{i}}'\right) \wedge \bigwedge_{u \in V \setminus \{A\}} \left(\pi_{u}^{f} = {\pi_{u}^{i}}'\right) \; .$$