A practical crash-course into the maths and Python implementation of

Non-linear gravity inversion for the relief of a sedimentary basin

Sedimentary basins

Depressions filled by sediments*

Over time, sediments become rocks

Important natural resources: Water, minerals, geothermal, oil & gas, etc.

Often ~1-15km deep & 100s wide

Need to understand their structure to manage resources well

How can we study it without digging?

Gravity disturbances

Disturbances relate to density anomalies inside the Earth

Sedimentary basin rocks have low density causing a negative disturbance

Measure gravity globally with very high accuracy (1e-5 - 1e-11 m/s ²)

Subtract the gravity of a theoretical homogenous Earth to get the gravity disturbance

Modeling basins with gravity

What is the height of the prisms (with known density) that fits the observed gravity disturbances?

To the maths!

Non-linear parametric model: $g(x,y,z) = \sum_{i=1}^{M} G\Delta\rho \int \int \int \frac{z_2}{\int \int \frac{y_2(h_j)}{\ell^3} dx' dy' dz'}$

$$\frac{d_i = f_i(\bar{p})}{\bar{p}} = \begin{bmatrix} h_i \\ h_s \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$$

$$\overline{J} = \overline{f}(\overline{p})$$

$$\frac{d_{i} = f_{i}(\bar{p})}{\bar{d}} = \begin{bmatrix} h_{i} \\ h_{s} \\ \vdots \\ h_{m} \end{bmatrix}_{M \times 1} = \begin{bmatrix} \bar{d}^{\circ} - \bar{f}(\bar{p}) \end{bmatrix}^{T} [\bar{d}^{\circ} - \bar{f}(\bar{p})]$$

$$\bar{d} = \bar{f}(\bar{p})$$

$$\phi(\vec{p}) = ||\vec{q}_0 - \vec{t}(\vec{p})||^2 \Rightarrow \text{Miff}$$

Traditional approach is to linearize the model and solve several linear problems:

$$f(b) \approx f(b^{\circ}) + y(b^{\circ}) pb + y(b^{\circ}) pb$$

Here, we'll take a slightly different route to the solution.

Non-linear inverse problems with the Gauss-Newton method

Expand the misfit function in a Taylor series: $\phi(\bar{p}) = [\bar{d}^o - \bar{f}(\bar{p})]^T [\bar{d}^o - \bar{f}(\bar{p})]$

$$\phi(\bar{p}) \approx \phi(\bar{p}_{6}) + \bar{\nabla}\phi(\bar{p}_{0})\bar{\nabla}\bar{p} + \bar{\nabla}\phi(\bar{p}_{0})\bar{\nabla$$

 Γ is now a quadratic function of $\, \bar{\Delta p} \,$

Solve for Δp like we would in a linear problem.

$$\overline{\nabla} \Gamma = \overline{0}$$

$$\overline{\nabla} \Gamma = \overline{O} = \overline{D} \Phi(\overline{P}O) + \perp \cancel{A} \overline{\nabla} \phi(\overline{P}O) \triangle \overline{P}$$

$$\overline{\nabla}\phi(\overline{p}_0) \Delta \overline{p} = -\overline{\nabla}\phi(\overline{p}_0)$$
 Newton's method

Derive the expression for the gradient of the misfit function with respect to the parameters.

the gradient vector

$$ar{
abla}_p = egin{bmatrix} rac{\partial}{\partial p_1} \\ draingledown \\ rac{\partial}{\partial p_2} \end{aligned}$$

tip: start by calculating
$$\frac{\partial \phi}{\partial p_1}$$

$$\phi(\bar{p}) = [\bar{d}^o - \bar{f}(\bar{p})]^T [\bar{d}^o - \bar{f}(\bar{p})]$$

$$\frac{\partial \phi}{\partial P_1} = -\frac{\partial \overline{f}}{\partial P_1} \left[\overline{d}^{\circ} - \overline{f}(\overline{p}) \right] - \left[\overline{d}^{\circ} - \overline{f}(\overline{p}) \right] \frac{\partial \overline{F}}{\partial P_1}$$

tip: the transpose of a scalar is itself

$$\nabla \phi = \begin{bmatrix} -3 \frac{1}{2} & [d^{\circ} - f(\vec{p})] \end{bmatrix} = -3 \begin{bmatrix} \frac{1}{2} & \frac{1}{$$

$$\nabla \phi = -\partial \bar{A}^{T}(\bar{p}) \left[\bar{d}^{o} - \bar{F}(\bar{p}) \right]$$

₩\$ \alpha \alp

\$\bar{A} \bar{A} \bar{A} = \$\alpha \bar{A}^{\dagger} (\bar{A}^{\circ} - \bar{F}(\bar{P}^{\circ}))

System of normal equations

Solve for Δp and repeat.

To the code!

Now we'll see how to code all of this up in Python.

We'll cheat and use ready-made forward modelling.

But you can see the code for all of that in the repository.

https://github.com/GeophysicsLibrary/non-linear-gravity-inversion

Smoothness regularization

$$\frac{\left(\overline{A}^{T}\overline{A} + \lambda \overline{R}^{T}\overline{R}\right) \Delta \overline{p}}{\overline{N}} = \overline{A}^{T} \left(\overline{A}^{0} - \overline{F}\phi_{0}\right) - \lambda \overline{R}^{T}\overline{R}\overline{p}_{0}}$$

$$- \overline{N}\phi(\overline{p}_{0})$$

Regularized Gauss-Newton solution