Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 1

- 1. Recall that $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$ can be thought of as the xy-plane. Consider the two vectors v = (9, 7) and w = (-8, 12). Describe the following sets geometrically. Which are subspaces of \mathbb{R}^2 ?
 - (a) Span(v)
 - (b) $\operatorname{Span}(v, w)$
 - (c) $\operatorname{Span}(v) \cup \operatorname{Span}(w)$, that is, the vectors in $\operatorname{Span}(v)$ or $\operatorname{Span}(w)$
 - (d) $\operatorname{Span}(v) \cap \operatorname{Span}(w)$, that is, the vectors in both $\operatorname{Span}(v)$ and $\operatorname{Span}(w)$
 - (e) $\{(1-t)v + tw : t \in [0,1]\}$
 - (f) $\{(1-t)v + tw : t \in \mathbb{R}\}$
 - (g) $\{\alpha v + \beta w : \alpha, \beta \ge 0\}$
 - (h) Span(v, w, x) where x = (0, 5).
 - (i) $\{(a,b) \in \mathbb{R}^2 : a^2 + b^2 \le 25\}$
 - $(j) \{(a,a) \in \mathbb{R}^2 : a \in \mathbb{R}\}\$
 - (k) $\{(a, a^2) \in \mathbb{R}^2 : a \in \mathbb{R}\}$
 - (1) $\{(a,1) \in \mathbb{R}^2 : a \in \mathbb{R}\}$

Solution. Below recall that W is a subspace of \mathbb{R}^n if it is nonempty and satisfies

- $ax \in W$ for all $a \in \mathbb{R}$ and $x \in W$
- $x + y \in W$ for all $x, y \in W$
- (a) Line through v. It is a subspace.
- (b) All of \mathbb{R}^2 . It is a subspace.
- (c) 2 lines through v and w. Not a subspace (doesn't contain v+w).
- (d) Only the 0 vector. It is a subspace.
- (e) Line segment between v and w. Not a subspace (doesn't contain 0).
- (f) Line through v and w. Not a subspace (doesn't contain 0).
- (g) Infinite wedge between v and w. Not a subspace (doesn't contain -v).
- (h) All of \mathbb{R}^2 . It is a subspace.
- (i) All points within a circle of radius 5 centered at the origin. Not a subspace (doesn't contain $2 \cdot (5,0)$).

- (j) Diagonal line through the origin. It is a subspace.
- (k) Parabola. Not a subspace (doesn't contain $2 \cdot (1,1)$).
- (l) Horizontal line with y-coordinate equal to 1. Not a subspace (doesn't contain 0).
- 2. Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$ be distinct and define $C_1 = \{v_1, v_2\}$ and $C_2 = \{v_3, v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for dim(Span (v_1, v_2, v_3, v_4))? No proof necessary.

Solution. Either $C_1 \subset \operatorname{Span}(C_2)$ and the dimension is 2, or the dimension is 3. We will discuss dimension and justify this later in the class.

3. Let $B = \{v_1, \dots, v_n\}$ be a basis for \mathbb{R}^n . Show that for any $x \in \mathbb{R}^n$ there exists a unique $\alpha \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

Solution. Existence follows immediately from the definition of basis, since it implies that $Span(B) = \mathbb{R}^n$. For uniqueness, suppose

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$$

for $\alpha, \beta \in \mathbb{R}^n$. Then we have

$$0 = (\alpha_1 - \beta_1)v_1 + \dots + (\alpha_n - \beta_n)v_n.$$

By linear independence, we must have $\alpha_i = \beta_i$ for all i.

4. True or False: If $B = \{v_1, \ldots, v_n\}$ is a basis for \mathbb{R}^n , and W is a subspace of \mathbb{R}^n , then some subset of B is a basis for W.

Solution. False. Consider $B = \{(1,0), (0,1)\}$ and $W = \operatorname{Span}((1,1))$.

5. Suppose $v_1, \ldots, v_m \in \mathbb{R}^n$ are linearly dependent. Prove that if $x \in \text{Span}(v_1, v_2, \ldots, v_m)$ then there are infinitely many $\alpha \in \mathbb{R}^m$ with

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m.$$

Solution.

Proof. By assumption $x \in \text{Span}(v_1, \dots, v_m)$ so

$$x = a_1 v_1 + \dots + a_m v_m$$

for some $a_i \in \mathbb{R}$. Since v_1, \ldots, v_m are linearly dependent, there are $c_1, \ldots, c_m \in \mathbb{R}$ such that

$$c_1v_1 + \dots + c_mv_m = 0$$

where not all $c_i = 0$. Then we have

$$x = a_1v_1 + \dots + a_mv_m + r(c_1v_1 + \dots + c_mv_m) = (a_1 + rc_1)v_1 + \dots + (a_m + rc_m)v_m$$

for all $r \in \mathbb{R}$. This gives infinitely many distinct α where $\alpha_i = a_i + rc_i$ for $r \in \mathbb{R}$. \square

6. Find (if they exist) the (global) maximizers and minimizers of the following function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = |x - 1| + |x - 3| + |x - 10|.$$

Solution. There is no maximizer since $f(x) \to \infty$ as $x \to \infty$. Where f' exists, it is negative when x < 3 and positive when x > 3 so 3 is the minimizer. [Technically, we are applying the mean value theorem to show f is descending on $(-\infty, 1)$ and (1, 3) and ascending on (3, 10) and $(10, \infty)$.]