Data Visualization III

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

In [1]:	<pre>import pandas as pd import numpy as np</pre>						
In [2]:	df	= p	d.read_csv("/hom	e/mca01/Download	ds/Iris.csv")		
In [3]:	df	hea	d()				
Out[3]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Variety
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	Iris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
In [4]:	df.shape						
Out[4]:	(1	50,	6)				
In [5]:	<pre>df.describe()</pre>						

Out[5]:	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidt

count	150.000000	150.000000	150.000000	150.000000	150.00
mean	75.500000	5.843333	3.054000	3.758667	1.19
std	43.445368	0.828066	0.433594	1.764420	0.76
min	1.000000	4.300000	2.000000	1.000000	0.10
25%	38.250000	5.100000	2.800000	1.600000	0.30
50%	75.500000	5.800000	3.000000	4.350000	1.30
75 %	112.750000	6.400000	3.300000	5.100000	1.80
max	150.000000	7.900000	4.400000	6.900000	2.50

In [6]: df.tail()

Out[6]:	Id	SepalLengthCm	Sep

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Vai
145	146	6.7	3.0	5.2	2.3	virg
146	147	6.3	2.5	5.0	1.9	virg
147	148	6.5	3.0	5.2	2.0	virg
148	149	6.2	3.4	5.4	2.3	virg
149	150	5.9	3.0	5.1	1.8	virg

In [7]: df.mean()

/tmp/ipykernel_3465/3698961737.py:1: FutureWarning: Dropping of nuisance col umns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.mean()

Out[7]: Id 75.500000 SepalLengthCm 5.843333

> SepalWidthCm 3.054000 PetalLengthCm 3.758667 PetalWidthCm 1.198667

dtype: float64

In [8]: df.std()

/tmp/ipykernel_3465/3390915376.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.std()

Out[8]: Id 43.445368 SepalLengthCm 0.828066 SepalWidthCm 0.433594

PetalLengthCm 1.764420 PetalWidthCm 0.763161

dtype: float64

In [9]: df.mode()

Out[9]:IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCmV015.03.01.50.2

0	1	5.0	3.0	1.5	0.2	
1	2	NaN	NaN	NaN	NaN	ver
2	3	NaN	NaN	NaN	NaN	vir
3	4	NaN	NaN	NaN	NaN	
4	5	NaN	NaN	NaN	NaN	
145	146	NaN	NaN	NaN	NaN	
146	147	NaN	NaN	NaN	NaN	
147	148	NaN	NaN	NaN	NaN	
148	149	NaN	NaN	NaN	NaN	
149	150	NaN	NaN	NaN	NaN	

150 rows × 6 columns

In [10]: df.cov()

Out[10]: Id SepalLengthCm SepalWidthCm PetalLengthCm

				_
Id	1887.500000	25.782886	-7.492282	67.667785
SepalLengthCm	25.782886	0.685694	-0.039268	1.273682
SepalWidthCm	-7.492282	-0.039268	0.188004	-0.321713
PetalLengthCm	67.667785	1.273682	-0.321713	3.113179
PetalWidthCm	29.832215	0.516904	-0.117981	1.296387

In [11]: df.mode()

Out[11]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Vi
	0	1	5.0	3.0	1.5	0.2	5
	1	2	NaN	NaN	NaN	NaN	vers
	2	3	NaN	NaN	NaN	NaN	vir
	3	4	NaN	NaN	NaN	NaN	
	4	5	NaN	NaN	NaN	NaN	
	145	146	NaN	NaN	NaN	NaN	
	146	147	NaN	NaN	NaN	NaN	
	147	148	NaN	NaN	NaN	NaN	
	148	149	NaN	NaN	NaN	NaN	
	149	150	NaN	NaN	NaN	NaN	

150 rows \times 6 columns

In [12]: df.median()

/tmp/ipykernel_3465/222071786.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.median()

Out[12]: Id 75.50 SepalLengthCm 5.80 SepalWidthCm 3.00 PetalLengthCm 4.35 PetalWidthCm 1.30

dtype: float64

In [13]: df.var()

/tmp/ipykernel_3465/1568254755.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.var()

Out[13]:	Id	1887.500000
	SepalLengthCm	0.685694
	SepalWidthCm	0.188004
	PetalLengthCm	3.113179
	PetalWidthCm	0.582414

dtype: float64

```
In [14]: import seaborn as sns
          import matplotlib.pyplot as plt
In [16]: df.hist(bins=7)
Out[16]: array([[<AxesSubplot:title={'center':'Id'}>,
                   <AxesSubplot:title={'center':'SepalLengthCm'}>],
                  [<AxesSubplot:title={'center':'SepalWidthCm'}>,
                   <AxesSubplot:title={'center':'PetalLengthCm'}>],
                  [<AxesSubplot:title={'center':'PetalWidthCm'}>, <AxesSubplot:>]],
                 dtype=object)
                     ld
                                         SepalLengthCm
         20
                                   20
        10
               SegalWidth&m
                                         RetalLengthCm
         50
                                   40
         25
                                   20
                Petal WidthCm<sub>4</sub>
         40
         20
         0
In [17]: df.hist()
Out[17]: array([[<AxesSubplot:title={'center':'Id'}>,
                   <AxesSubplot:title={'center':'SepalLengthCm'}>],
                  [<AxesSubplot:title={'center':'SepalWidthCm'}>,
                   <AxesSubplot:title={'center':'PetalLengthCm'}>],
                  [<AxesSubplot:title={'center':'PetalWidthCm'}>, <AxesSubplot:>]],
                 dtype=object)
                     ld
                                         SepalLengthCm
                                   20
        10
                                   10
         0
                                    0
               SepalWidth&m
                                         RetalLengthCm
                             150
         20
                                   20
         0
                Petal WidthCm<sub>4</sub>
         40
         20
In [18]:
         df.columns
```

```
Out[18]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthC
         m',
                 'Variety'],
               dtype='object')
In [20]: numeric cols=['Id','SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidt
         np.min(df[numeric cols])
Out[20]: Id
                                     1
                                   4.3
         SepalLengthCm
         SepalWidthCm
                                   2.0
         PetalLengthCm
                                   1.0
         PetalWidthCm
                                   0.1
         Variety
                           Iris-setosa
         dtype: object
In [21]: np.max(df[numeric cols])
Out[21]: Id
                                      150
         SepalLengthCm
                                      7.9
                                      4.4
         SepalWidthCm
         PetalLengthCm
                                      6.9
         PetalWidthCm
                                      2.5
         Variety
                           Iris-virginica
         dtype: object
In [22]: df.quantile([0.0,0.1,0.5,1.0],numeric only=True)
Out[22]:
                 Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
         0.0
                1.0
                                 4.3
                                                2.0
                                                                1.00
                                                                                0.1
         0.1
               15.9
                                 4.8
                                                2.5
                                                                1.40
                                                                                0.2
         0.5
               75.5
                                 5.8
                                                3.0
                                                               4.35
                                                                                1.3
                                 7.9
         1.0 150.0
                                                4.4
                                                               6.90
                                                                                2.5
In [24]: iris long = pd.melt(df, id vars='Id')
         ax = sns.boxplot(x="Id", y="value", hue="variable", data=iris long)
         plt.show()
```



```
In [26]: df['Id'].value_counts()

Out[26]: 1     1
     95     1
     97     1
```

1

98

150

Name: Id, Length: 150, dtype: int64

In [27]: df['Id'].plot.density()

1

Out[27]: <AxesSubplot:ylabel='Density'>

In [29]: df.hist(bins=7)

```
Out[29]: array([[<AxesSubplot:title={'center':'Id'}>,
                   <AxesSubplot:title={'center':'SepalLengthCm'}>],
                  [<AxesSubplot:title={'center':'SepalWidthCm'}>,
                   <AxesSubplot:title={'center':'PetalLengthCm'}>],
                  [<AxesSubplot:title={'center':'PetalWidthCm'}>, <AxesSubplot:>]],
                 dtype=object)
                     ld
                                          SepalLengthCm
         20
                                   20
         10
         0
                                    0
               SegalWidth&m
                                          RetalLengthCm
                              150
         50
                                   40
         25
                                   20
         0
                Petal WidthCm<sub>4</sub>
         40
         20
         0
```

In [30]: sns.heatmap(df.corr(), annot=True) #Correlation is feature to feature relati

Out[30]: <AxesSubplot:>

