Rounding a dual solution for set cover Wednesday, 15 March 2023 9:20 AM Constructing the dual: Suppose some element e; can be covered by a low-weight subset 5' while some other element Irequires a high-weight subset So to be included to get covered Lets Say we give weights y; to each element e; accordingly Sum of Perices of clements in subset 5 cannot be more than weight of the set $\therefore \forall j \in \mathcal{E}_{i} \in \mathcal{E}_{j}$ $i: e_{i} \in \mathcal{E}_{j}$ maximize $\leq y$; Subject to $\leq y; \leq w; j=1,..., m$ i= 1, ... n Dual of Set Cover Le relaxation (for y which is dual feasible) ∠ ∑ y; ≤ x; (x is j:e;tsj (peasible for primal) Now $z y_i z_j = z_j = x_j = x_j$ i=1 $j:e_i \in S_j$ j=1 $i:e_i \in S_j$ By Strong Duality if x* is primal optimal & J* is dual optimal $\int_{j=1}^{m} w_j x_j^* = \sum_{i=1}^{n} y_i^*$ Hlgorith m Let y* be an optimal to the dual LP relaxation. which dual inequality is tight i.e. $\leq y_i^* = w_i^*$. I' is the indices of subsets in the solution. Return I. Claim: - Set of Si's where jEI's set cover Proof: Suppose there is an uncovered Clement ex. Then for each subset Sj Containing ex Zi Yi * < W; i: Ci & Si Let $E = min \left(\omega_j - \sum_{i:e_i \in S_j} y_{i}^* \right)$ Now 670 Consider new dual solz y' in which $y^* = y^* + E$ and every other component of y' is dual feasible so 129. l'extes; each j such that i: eifs; i:eifs; For each j such that ext si ! = E y: T < W; !: e; es; !: e; es; Also $\sum_{i=1}^{n} \gamma_{i}$ > $\sum_{i=1}^{n} \gamma_{i}$ CONTRADICTION Thm: - Dual - Rounding gives f - approximation for set cover $j \in I'$ $j \in I'$ $i \in I'$ $i \in I'$ = \(\frac{\sqrt{1}}{1-1} \) | \(\sqrt{1} + ≤ ≤ 5; y;* < f & y:* ≤ S. OPT