CSE 417T Introduction to Machine Learning

Lecture 11

Instructor: Chien-Ju (CJ) Ho

Logistics: Exam 1

- Exam 1 Date: March 3, 2020 (Tuesday)
 - In-class exam (the same time/location as the lecture)
 - Exam duration: 75 minutes
 - Planned exam content: LFD Chapter 1 to 5
 - Everything in textbook/lectures are included, except for parts labeled as "safe to skip".
 - Exam format
 - 2 sections
 - Written-response questions
 - Multiple choice questions

Logistics: Exam 1

- More about Exam 1
 - Closed-book exam
 - You can bring two cheat-sheets
 - Up to letter size, front and back (up to 4 pages)
 - No format limitations (it can be typed, written, or a combination)
 - No calculators (you don't need them)

Logistics: Lectures Before Exam 1

- Feb 18 (Tue): Regularization (LFD 4.2)
- Feb 20 (Thu): Validation (LFD 4.3)
- Feb 25 (Tue): Three Learning Principles (LFD Chapter 5)
 - In the unlikely event that we can't finish Chapter 5, we will remove it from the exam.

- Feb 27 (Thu): Review
 - I'll post practice questions around Feb 25 and discuss answers in lectures
- Mar 3 (Tue): Exam 1

Logistics: Policies

- I plan to arrange random seat assignments
 - Will be announced the night before the exam
- If you have a question or if you finish before time is up:
 - Do not get up
 - Raise your hand and I will come to you
 - I may or may not answer your question
- When time is called:
 - Stop writing
 - Do not get up
 - Proctors will come around and collect your exam

Recap

Related Note for HW2: Test Set

Will discuss in detail in Validation.

- When we are given a dataset, we often split them into training set and test set (like we did in HW2).
 - First learn a hypothesis using data in the training set.
 - Estimate E_{out} using the performance on data in the test set.
 - If you use the test set only once, the test error is an unbiased estimator for E_{out} .
 - Let E_{test} be the error on test set. We usually treat E_{test} as E_{out} .

Overfitting


```
Number of data points ↑ Overfitting ↓
Noise ↑ Overfitting ↑
Target complexity ↑ Overfitting ↑
```

Overfitting and Its Cures

Overfitting

- Fitting the data more than is warranted
- Fitting the noise instead of the pattern of the data
- Decreasing E_{in} but getting larger E_{out}
- When H is too strong, but N is not large enough

Regularization

Intuition: Constraining H to make overfitting less likely to happen

Validation

• Intuition: Reserve data to estimate E_{out}

Brief Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Regularization (Constraining H)

- Informal example:
 - Regression; $f = \sin(\pi x)$; $H = \{h(x) = ax + b\}$; N = 2

Regularization:

Constrain the hypothesis set Avoid large *a* and *b*

no regularization

bias =
$$0.21$$
 var = 1.69

regularization

$$bias = 0.23$$

 $var = 0.33$

How to do this in a principled way?

Hard Constraints

We have seen hard constraints already

$$H_2 = \{h(x) = w_0 + w_1 x + w_2 x^2\}$$

$$H_{10} = \{h(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_{10} x^{10}\}$$

• H_2 can be written as constrained H_{10}

$$H_2 = \{h \in H_{10} \text{ and } w_3 = w_4 = \dots = w_{10} = 0\}$$

Soft-Order Constraints

Instead of setting the weights to 0

$$H(C) = \left\{ h \in H_Q \text{ and } \sum_{q=0}^{Q} w_q^2 \le C \right\}$$
$$= \left\{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \le C \right\}$$

- Observations
 - When $C \to \infty$, $H(C) = H_0$
 - When $C_1 \leq C_2$, $H(C_1) \subseteq H(C_2)$ and therefore $d_{vc}(H(C_1)) \leq d_{vc}(H(C_2))$
 - A smoother way to tune the complexity of hypothesis set

Soft-Order Constraints

$$H(C) = \{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \leq C \}$$

- Two main questions
 - How do we choose C
 - Model selection: The same question as selecting H
 - The focus of the next lecture
 - How do we perform learning, i.e., find a $g \in H(C)$ such that $g \approx f$
 - Solve the following constrained optimization problem

minimize
$$E_{in}(\overrightarrow{w})$$
 subject to $\overrightarrow{w}^T\overrightarrow{w} \leq C$

minimize $E_{in}(\vec{w})$ subject to $\vec{w}^T \vec{w} \leq C$

- Notations
 - \vec{w}_{lin} : the solution for min $E_{in}(\vec{w})$
 - \vec{w}_{reg} : the solution for $\min E_{in}(\vec{w})$ subject to $\vec{w}^T \vec{w} \leq C$
- When C is large enough, i.e., $\overrightarrow{w}_{lin}^T \overrightarrow{w}_{lin} \leq C$
 - $\vec{w}_{reg} = \vec{w}_{lin}$

minimize $E_{in}(\vec{w})$ subject to $\vec{w}^T \vec{w} \leq C$

- When C is not large enough
 - Using graphical arguments

•
$$\vec{w}_{reg} \propto - \nabla_{\vec{w}} E_{in}(\vec{w}_{reg})$$

• That is, we can find some constant λ_c such that

•
$$\nabla_{\overrightarrow{\mathbf{w}}} E_{in}(\overrightarrow{\mathbf{w}}_{reg}) = -\frac{2\lambda_C}{N} \overrightarrow{\mathbf{w}}_{reg}$$

• Therefore,

•
$$\nabla_{\overrightarrow{w}} \left(E_{in} (\overrightarrow{w}_{reg}) + \frac{\lambda_C}{N} \overrightarrow{w}_{reg}^T \overrightarrow{w}_{reg} \right) = 0$$

- This implies, \vec{w}_{reg} is the solution for
 - minimize $E_{in}(\overrightarrow{w}) + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w}$

Constrained to Unconstrained Optimization

Original constrained optimization problem

minimize
$$E_{in}(\overrightarrow{w})$$
 subject to $\overrightarrow{w}^T\overrightarrow{w} \leq C$

Equivalent unconstrained optimization problem

minimize
$$E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w}$$

Augmented Error

- Define augmented error
 - $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w}$
 - Algorithm: Find $\vec{w}^* = argmin E_{aug}(\vec{w})$
- A bit more discussion
 - When $C \to \infty$, $\lambda_C = 0$
 - Smaller *C* (stronger constraints)
 - => larger λ_C
 - => smaller *H*
 - => stronger regularization
 - Use λ_C to tune the level of regularization

 $\overrightarrow{w}^T\overrightarrow{w}$: weight decay

Side notes:

You will see people/us interchangeably use λ_C and $\frac{\lambda_C}{N}$ to be the constant, depending on whether the dependency on N is emphasized.

Why $\overrightarrow{w}^T\overrightarrow{w}$ is Called Weight Decay

• Run gradient descent on $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w}$

The update rule would be

•
$$\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{aug}(\overrightarrow{w}(t))$$

$$\Rightarrow \overrightarrow{w}(t+1) \leftarrow (1 - 2\eta \lambda_{C}) \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$$

• We are decaying the weights first, then do the update

General Form of Regularization

$$E_{aug}(h,\lambda,\Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N}\Omega(h)$$

- Key parameters
 - Ω : Regularizer
 - λ : Amount of regularization
- Does the form look familiar: VC Theory

•
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

• If we pick the right Ω , E_{aug} can be a better proxy for E_{out}

How to Pick the Right Ω

- No definite answer, but generally
 - We like to pick Ω that leads to "smoother" hypothesis
 - Overfitting is due to noise
 - Informally, noise is generally "high frequency"
 - We prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to pick the error measure
 - We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s
- What if we pick the wrong Ω (Think about weight growth)
 - We might still fix it by picking the right λ using validation in the next lecture