SHEAR BANDS IN FILMS OF COLLOIDAL DISPERSIONS

Bin Yang
James S. Sharp
Mike I. Smith

Planar drying of colloidal films

Strain release mechanisms in film formation

Crack formation

Film Delamination

Surface Wrinkling / Buckling

Diagonal Banding

- □ Bands form behind transition region
- □ Bands form for 50 & 100nm particles but not 200nm and greater.

0s

0.17s

SEM of the band morphology

Band Spacing

The role of yield stress

A shear band should occur when the stress applied to the film exceeds the film yield stress,

$$σ_y$$
 = A - B $ζ^2$ $dλ/dH = a - bζ^2$

Spacing of bands depends on yield stress of film

Shear rate dependence – Lever rule

Shear banding in yield stress fluids is known to obey a Lever Rule → Rate dependence

$$\frac{\delta}{\lambda} \sim \frac{\dot{\gamma}}{\dot{\gamma}_c}$$

 $\dot{\gamma}_c$ is a material dependent parameter

Controlled Humidity Air

Controlling the evaporation rate alters the band spacing.

$$\frac{\delta}{\lambda} \sim \frac{\dot{E}_{dry}}{\dot{E}_{c}} \sim \frac{(100 - RH)}{\dot{E}_{c}}$$

Measuring the film deformation

- ☐ Fluorescent tracer particles added to suspension
- ☐ Once particles become trapped at the transition region we track their x and y coordinates
- ☐ The small subsequent movements enable us to quantify film deformation

Compaction

- Stress in the drying film produces compaction beyond transition region.
- □ Compaction is too small to measure for 200nm particles→ no banding

$$dx = dx_{max}[1-exp(-D/\lambda_{fit})]$$

 \square λ_{fit} closely matches the spacing between shear bands.

- 50nm, H=60µm
- 50nm, H=27µm
- 100nm, H=25µm
- 200nm, H=38µm

→ Suggests compaction drives shear band formation and sets lengthscale

- ☐ Total movement of particles depends on film thickness.
- ☐ Consistent movement in the y direction also measurable
- ☐ Particles to the left of a chevron move left; particles to the right move right.
- ☐ y movement due to shear, x movement compaction + shear

Directly observing compaction and shear banding

"Shear banding in drying films of colloidal nanoparticles" B. Yang et al ACS Nano 9, 4077-4084 (2015)

Conclusions

- □ Diagonal lines observed in drying films are shear bands
- ☐ The spacing of bands depends on film yield stress and obeys a simple Lever Rule
- ☐ Particle tracking shows that compaction after the transition region provides the driving force for shear band formation.

"Shear banding in drying films of colloidal nanoparticles" B. Yang et al ACS Nano 9, 4077-4084 (2015)

Acknowledgements

Dr Bin Yang

Dr James Sharp

Funding:

UNITED KINGDOM · CHINA · MALAYSIA