Expert Review in Acute Lymphoblastic Leukemia (ALL): Asparaginase Therapy and the Role for Therapeutic Drug Monitoring

Stephen Hunger, MD Children's Hospital Colorado Aurora, Colorado Robert Pieters, MD, PhD

Princess Maxima Hospital for Pediatric Oncology Utrecht, the Netherlands

Asparaginase and ALL Treatment

- Asparaginases are accepted as a key component in ALL treatment protocols¹
- Used for remission induction, and consolidation (intensification) in all pediatric regimens for ALL¹
- Maximum benefit with asparaginase seen when patients receive intensive asparaginase treatment through optimal dosing and treatment schedules resulting in sustained depletion of asparagine^{2,3}
- A 2011 consensus article (including clinicians from Europe and the United States) stated that an asparaginase treatment schedule that ensures an NSAA level of at least 100 IU/L (0.1 IU/mL) is essential to maintain adequate asparagine depletion¹

NSAA, nadir serum asparaginase activity

Mechanism of Action of Asparaginase

Leukemic lymphoblasts have very low levels of L-asparagine synthetase, and thus rely on asparagine present in serum for survival

L-asparaginase catalyses the hydrolysis of L-asparagine to L-aspartic acid and ammonia

Types of Approved Asparaginases

	Bacterial Origin	Route	Comments
L-asparaginase*	Escherichia coli	IM	Antilymphoma activity identified in guinea pig serum (1953)
PEGaspargase	E coli	IM, IV	PEGylation → less immunogenicity, longer half-life
Erwinia chrysanthemi	Erwinia	IM	Reduced cross- immunogenicity with <i>E coli</i> ASPs

^{*}No longer available in the United States (as of December 2012)

- All types of asparaginase share the same mode of action in terms of depletion of asparagine¹
- Differences in the pharmacokinetic properties of the asparaginases mean that the 3 agents are not interchangeable at the same dose and frequency^{1,2}

Asparaginase Hypersensitivity

- As with all large proteins, asparaginases can induce a host response, stimulating development of antiasparaginase antibodies¹
- Antibodies can affect asparaginase activity and are commonly associated with an overt clinical reaction²
- However, in some patients the presence of antiasparaginase antibodies does not lead to clinical signs and symptoms, yet may still affect asparaginase activity²
- Approximately 30% of patients experience hypersensitivity reactions after repeated dose of *E coli*—derived asparaginases

Clinical hypersensitivity (symptomatic)

- Clinical allergic reactions
- One of the most significant toxicities of asparaginase therapy that limits its further use²

Subclinical hypersensitivity (asymptomatic) (silent activation)

- Development of antiasparaginase antibodies may cause inactivation of asparaginase in the absence of clinical signs and symptoms of allergy³
- Currently, can only be identified by laboratory tests

Cross-Reactivity Between Asparaginases

- Patients with ALL and hypersensitivity reactions and/or antibodies to native *E coli* asparaginase during re-induction (n = 16)
- 63% (10/16) showed cross-reactivity to PEGasparaginase
- No cross-reactivity to
 E chrysanthemi asparaginase
- Erwinia chrysanthemi asparaginase
- PEGasparaginase

Subclinical Hypersensitivity to Asparaginase and Asparaginase Activity¹

■ Antibody negative ■ Antibody positive

Recommended level of asparaginase reflecting effective depletion of asparagine (≥100 IU/L) denoted by the orange line.

- Children with newly diagnosed ALL (n = 47)
- Subclinical hypersensitivity (presence of antiasparaginase antibodies and no symptoms of hypersensitivity) following reinduction treatment with native E coli asparaginase led to a reduction in asparaginase activity of almost 90%
- Mean asparaginase activity was below 100 IU/L in antibodypositive children

Erwinia Asparaginase Achieves Therapeutic Activity After PEGaspargase Allergy: A Report from the Children's Oncology Group

AALL07P2 Study: Study Design

Patients enrolled on front-line COG ALL treatment study aged >1 years and ≤30 years

≥Grade 2 allergic reaction to PEGasparaginase and≥1 course of asparaginase remaining

No previous exposure to *Erwinia* asparaginase No history of ≥grade 2 pancreatitis

PEGasparaginase replaced with *Erwinia* asparaginase 25,000 IU/m² M/W/F×6 doses

AALL07P2 Study: Objectives

Primary Objectives

- To determine if 48-hour NSAA is ≥100 IU/L in at least 70% of patients
- To determine the frequency of asparaginaserelated toxicities

Secondary Objectives

- To determine the 72-hour NSAA
- To determine if plasma asparagine is adequately depleted predose 6

AALL07P2 Study: Baseline Characteristics and Demographics

- 59 patients enrolled into the study from February 2008 to April 2010
- All patients who enrolled in the study and received at least 1 dose of study drug were included in safety analyses (58 patients)
- The study population was predominantly male (58.6%) and white (77.6%)
- The study population had a mean age of 9.7 years with a range of 2-18 years

Characteristic	(N = 58)
Gender, n (%) Males Females	34 (58.6) 24 (41.4)
Age, mean (range), years	9.7 (2-18)
Race, n (%) White Black or African American Other	45 (77.6) 6 (10.3) 7 (12.1)
Primary Disease, n (%) Precursor B-cell ALL T-cell ALL	51 (88) 7 (12)

AALL07P2 Study: Efficacy Results

Summary Statistics for 48-hour and 72-hour NSAA Data for Each Course of Therapy

		NSAA ≥0.10 IU/mL			
		Pati	Patients		ples
Trough Time, hours	Cycle	No.	%	No.	%
48	1	50	100	151	97.4
48	2	23	92.0	26	92.9
48	3	28	96.6	36	97.3
48	4	16	100	23	95.8
48	≥5	10	83.3	16	84.2
48	All	52	100	252	95.8
72	1	49	98.0	73	84.9
72	2	15	78.9	15	78.9
72	3	16	88.9	16	88.9
72	4	6	85.7	6	85.7
72	≥5	10	90.9	15	83.3
72	All	52	100	125	84.5

AALL07P2: Targeted Toxicities

Toxicity	N	%
Allergy	6	10.9
Grade 2	4	
Grade 3	2	
Hyperglycemia	6	10.9
Grade 1	3	
Grade 2	2	
Grade 3	1	
Pancreatitis	1	1.8
Grade 1	1	
Hemorrhage/thrombosis	0	0
Grade 3-4	0	

Conclusions

- Erwinia asparaginase at a dose of 25,000 IU/m² for 6 doses IM M/W/F can be safely substituted for each dose of pegaspargase in the event of an allergy
- Erwinia asparaginase is well-tolerated

Postinduction Dexamethasone and Individualized Dosing of E coli L-Asparaginase Each Improve **Outcome of Children and Adolescents With Newly Diagnosed** Acute Lymphoblastic Leukemia: Results From a Randomized Study – **Dana-Farber Cancer Institute Consortium Protocol 00-01**

Protocol 00-01: Objectives

- To determine the relative toxicity, tolerability, and efficacy of:
 - 1. Dexamethasone and prednisone administered during postinduction treatment
 - 2. Weekly IM *E coli* L-asparaginase administered as the standard fixed dose (FD) and a pharmokinetically guided individualized dose (ID)

Protocol 00-01: Therapy

Induction Phase (4 weeks)

CNS Therapy (3 weeks)

 Ψ

Intensification Phase (30 weeks)
Vincristine 2 mg/m² D1; 6-MP 50 mg/m² QD x 14 days;
MTX 30 mg/m² (1 mg/kg if 0.6 m²) IV or IM 1x/week;

Corticosteroid, Randomized:

Dexamethasone 6 mg/m² per day, divided into 2 doses D1-5 of each 3 week cycle OR

Prednisone 40 mg/m² per day divided into 2 doses

E coli asparaginase Randomized:

Fixed-dosing: 25,000 IU/m² IM, once per week x 30 weeks

OR

Individualized dosing: 12,500 IU/m² IM (starting dose), once per week x 30 weeks

Vrooman LM, et al. *J Clin Oncol.* 2013;31(9):1202-1210.

Continuation Phase (74 weeks)

Asparaginase Individualized Dosing by NSAA Levels

NSAA (IU/mL)	Change in Subsequent Dosing
<0.025	Increase by 80%; send urgent <i>E coli</i> asparaginase antibody
0.025 to <0.05	Increase by 60%
0.05 to <0.08	Increase by 40%
0.08 to <1.0	Increase by 20%
0.1 to <0.14	No change
0.14 to <0.20	Decrease by 20%
>0.20	Decrease by 40%

Protocol 00-01 Flow Diagram

Event-Free Survival: Corticosteroid Randomization

Protocol 00-01: Toxicity – Corticosteroid Randomization

	Dexamethasone	Prednisone	P
Osteonecrosis*	23%	5%	.02
Bone fracture*	29%	10%	.06
Risk of infection	19%	11%	.03

^{*}In patients 10-18 years of age

Protocol 00-01: EFS Asparaginase Randomization

Protocol 00-01: Toxicity Asparaginase Randomization

	Fixed Dose		Individualized Dose		
Characteristic	n	%	n	%	P
Patients randomly assigned	195		189		
EC-asparaginase dose, IU/m ²	25,0	000	17,5	00	
Any toxicity	63	32	59	31	.83
EC-asparaginase clinical allergy	39	20	40	21	.80
Pancreatitis	10	5	12	6	.66
Thrombosis	16	8	13	7	.70
Completed ≥25 week asparaginase	172	88	164	86	.76

 No difference in frequency of asparaginase-associated toxicity including clinical allergy, pancreatitis, or thrombosis

Protocol 00-01: Reasons for Change in Asparaginase Preparation

	Fixed Dose		Individualized Dose		se
	n	%	n	%	P
Asparaginase preparation changed	43	22	64	34	.01
EC-asparaginase clinical allergy	39	20	39	21	
Silent inactivation	N/A		19	10	
Other	4	2	6	3	

- No difference in percentage of patients who switched to another asparaginase preparation due to clinical allergy
- 10% of patients on the individualized dose arm switched due to silent inactivation

EFS by Subsets

	Fixed Dose	Individualize	Dose
	%	%	P
5-year EFS of other subsets, &			
Maximum NSAA ≥0.10 IU/mL			
EFS	85	90	
95% CI	78 to 90	83 to 95	
Maximum NSAA <0.10 IU/mL			.16
EFS	73	91	
95% CI	52 to 86	79 to 97	
Maximum NSAA <0.10 IU/mL, did not change asparaginase preparation			0.58
EFS	76	78	
95% CI	38 to 92	35 to 94	
Changed asparaginase for silent inactivation			.99
EFS	N/A	95	
95% CI		68 to 99	

Vrooman LM, et al. *J Clin Oncol.* 2013;31(9):1202-1210.

Conclusions

- Postinduction dexamethasone and individualized dose of L-asparaginase each improved EFS in pediatric patients with newly diagnosed ALL
- Fixed-dose arm patients with low NSAA but no clinical allergy had 76% EFS compared to 95% in the individualized-dose arm
- Suggests prospective monitoring for development of silent inactivation leading to change in asparaginase formulation may improve outcomes

A Prospective Study on Drug Monitoring of PEGasparaginase and Erwinia Asparaginase and Asparaginase Antibodies in Pediatric Acute Lymphoblastic Leukemia

Overview

- This study prospectively analyzed the efficacy of prolonged courses of pegylated *E coli* asparaginase and *Erwinia* asparaginase
- Patients received 8 doses native E coli asparaginase (5000 IU/m²) every 3 days during induction (DCOG ALL-10 protocol)
- PEGasparaginase (2500 IU/m²) given every 2 weeks during intensification
 - Trough levels and asparaginase antibodies (AAAs) were measured at the beginning of intensification; weeks 2, 4, 6, 8, 10, 14, 16, 24, and 28; also 1 week after administration in weeks 3, 9, 15, and 25
 - Serum asparagine, aspartic acid, glutamine, and glutamic acid levels were measured at weeks 0, 2, 4, 14, and 24
- Patients who developed an allergy were switched to asparaginase *E chrysanthemi* (20,000 IU/m²) administered IV 3 times weekly

PEGasparaginase Study Results

- 22% (20/89) of PEGasparaginase patients developed allergy
 - 90% of the reactions occurred on the 2nd dose
- 8% (7/89) showed silent inactivation
- Patients without allergy or silent inactivation showed mean trough asparaginase activity of 899 IU/L
- PEGasparaginase level was 0 in allergic patients
- All allergic patients were switched to Erwinia asparaginase

Erwinia Asparaginase Results

- 3% of patients (2 of 59) developed a clinical allergy to Erwinia asparaginase
 - Both had asparaginase activity level of 0
 - These patients did not receive further asparaginase therapy
- No patients had silent inactivation
- 96% of patients (55 of 57) had at least 1 *Erwinia* asparaginase level of ≥100 U/L and 100% of patients had activity level of ≥50 U/L
- In 65% of all patients, all *Erwinia* asparaginase activity levels were ≥100 U/L; 85% of patients had level ≥50 U/L
- Median trough asparaginase activity of 183 IU/L at 48 hours
- 33% (19 patients) were switched to twice weekly dosing due to high activity levels

Conclusions

- Use of native E coli asparaginase in induction therapy leads to significant clinical allergy and silent inactiviation of PEGasparaginase in intensification
- Switching to Erwinia asparaginase in the case of allergy to or silent inactivation of PEGasparaginase is effective
- Close monitoring is necessary to ensure adequate drug levels

prlME POINTS™

- Erwinia asparaginase can be safely substituted for PEGasparaginase in the event of an allergy
- Use of native E coli asparaginase in induction therapy leads to clinical allergy and silent activation of PEGasparaginase during intensification phase
- ✓ Individualized dosing of asparaginase based on drug levels is associated with improved outcomes in patients with ALL