Monostable ferroelectric active matrix display useful in television;

Veröffentlichungsnr. (Sek.) DE19825484 Veröffentlichungsdatum: 1999-12-09

Erfinder: WINGEN RAINER (DE); HORNUNG BARBARA (DE); NONAKA

TOSHIAKI (JP)

Anmelder :: AVENTIS RES & TECH GMBH & CO (DE)

Veröffentlichungsnummer: <u>J DE19825484</u>

Aktenzeichen:

(EPIDOS-INPADOC-normiert) DE19981025484 19980608

Prioritätsaktenzeichen:

(EPIDOS-INPADOC-normiert) DE19981025484 19980608

Klassifikationssymbol (IPC): G02F1/13; G02F1/136; G02F1/141; G09F9/35; C09K19/06

Klassifikationssymbol (EC): <u>C09K19/02C</u>, <u>C09K19/42</u>, <u>C09K19/46</u>

Korrespondierende Patentschriften

Bibliographische Daten

In a monostable ferroelectric active matrix display having a monodomain liquid crystal (LC) layer with a well-defined direction of the normal z of the smectic C asterisk (smC asterisk) phase, the angle between z and the preferred orientation n of the nematic or cholesteric phase (N asterisk phase) is over 5 deg. The LC layer consists of >= 5 compounds, comprising an achiral base mixture of fluorobenzene or fluoronaphthalene compound(s) (IA) and/or fluorophenanthrene compound(s) (IB) and optionally other compound(s) (II) and/or (III) and chiral component(s) (IV). In a monostable ferroelectric active matrix display having a monodomain liquid crystal (LC) layer with a well-defined direction of the normal z of the smectic C asterisk (smC asterisk) phase, the angle between z and the preferred orientation n of the nematic or cholesteric phase (N asterisk phase) is over 5 deg. The LC layer consists of >= 5 compounds, comprising an achiral base mixture of fluorobenzene or fluoronaphthalene compound(s) (IA) and/or fluorophenanthrene compound(s) (IB) and optionally other compound(s) (II) and/or (III) and chiral component(s) (IV) of the formulae; A<3> = 2-fluoro-, 2,3-difluoro-, 2,6-difluoro-, 2,5-difluoro-, 2,3-difluoro-, 2,5-difluoro-, 2,3-difluoro-naphthalen-2,6-diyl; A'<3> = 1-fluoro- or 1,8-difluoro-phenanthren-2,7-diyl or 1-fluoro- or 1,8-difluoro-9,10-dihydro-phenanthren-2,7-diyl; R<7> = a group with asymmetric carbon (C) atom(s) as a constituent of a substituted 3-12 C alkyl group or 3-7-membered carbo- or hetero-cycle. The full definitions are given in the DEFINITIONS (Full Definitions) Field. An Independent claim is also included for a method of producing a display.

Daten aus der esp@cenet Datenbank - - 12

_		

(9) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

OffenlegungsschriftDE 198 25 484 A 1

(1) Aktenzeichen: 198 25 484.9
 (2) Anmeldetag: 8. 6.98

43 Offenlegungstag: 9. 12. 99

(5) Int. Cl.⁶: **G 02 F 1/13**

> G 02 F 1/136 G 02 F 1/141 G 09 F 9/35 C 09 K 19/06

(1) Anmelder:

Aventis Research & Technologies GmbH & Co KG, 65929 Frankfurt, DE

(4) Vertreter:

Patent- und Rechtsanwälte Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, 68165 Mannheim (12) Erfinder:

Wingen, Rainer, Dr., 65795 Hattersheim, DE; Nonaka, Toshiaki, Iruma, Saitama, JP; Hornung, Barbara, Dipl.-Ing., 63594 Hasselroth, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Monostabiles ferroelektrisches Aktivmatrix-Display
- Das monostabile ferroelektrische Aktivmatrix-Display enthält eine spezielle Flüssigkristallschicht in Form einer Mododomäne mit einer eindeutig definierten Richtung der Schichtennormalen z der smC -Phase und ist dadurch gekennzeichnet, daß die Schichtennormalen z und die Vorzugsrichtung n der nematischen beziehungsweise cholesterischen Phase (N -Phase) einen Winkel von mehr als 5° ausbilden.

Beschreibung

Der Ersatz der Kathodenstrahlröhre (Bildröhre) durch einen flachen Bildschirm erfordert eine Displaytechnologie, die gleichzeitig eine hohe Bildauflösung, d. h. mehr als 1000 Zeilen, eine hohe Bildhelligkeit (>200 Cd/m²), einen hohen Kontrast (>100: 1), eine hohe Bildfrequenz (>60 Hz), eine ausreichende Farbdarstellung (>16 Mio Farben), ein großes Bildformat (>40 cm Bildschirmdiagonale), eine geringe Leistungsaufnahme und einen weiten Betrachtungswinkel ermöglicht und zudem kostengünstig herstellbar ist. Bislang existiert keine Technologie, die alle diese Merkmale gleichzeitig in vollem Umfang erfüllt.

Viele Hersteller haben Bildschirme auf der Basis nematischer Flüssigkristalle entwickelt, die seit einigen Jahren beispielsweise im Bereich von Notebook PC, Personal Digital Assistants und Desktop Monitoren im Einsatz sind. Dabei werden die Technologien STN (Supertwisted Nematics), AM-TN (Active Matrix-Twisted Nematics), AM-IPS (Active Matrix-In Plane Switching), AM-MVA (Active Matrix-Multidomain Vertically Aligned) verwendet, die in der Literatur ausführlich beschrieben werden, siehe z. B. T. Tsukuda, TFT/LCD: Liquid Crystal Displays Addressed by Thin-Film Transistors, Gordon and Breach 1996, ISBN 2-919875-01-9 und darin zitierte Literatur; SID Symposium 1997, ISSN-0097-966X, Seiten 7 bis 10, 15 bis 18, 47 bis 51, 213 bis 216, 383 bis 386, 397 bis 404 und darin zitierte Literatur. Darüber hinaus werden die Technologien PDP (Plasma Display Panel), PALC (Plasma Addressed Liquid Crystal), ELD (Electro Luminescent Display) und FED (Field Emission Display) angewandt, die ebenfalls im zitierten SID Bericht erläutert sind.

Clark und Lagerwall (US 4,367,924) konnten zeigen, daß der Einsatz ferroelektrischer Flüssigkristalle (FLC) in sehr dünnen Zellen zu optoelektrischen Schalt- oder Anzeigeelementen führt, die im Vergleich zu den herkömmlichen TN ("twisted nematic")-Zellen um bis zu einem Faktor 1000 schnellere Schaltzeiten haben, siehe auch EP-A 0 032 362. Aufgrund dieser und anderer günstiger Eigenschaften, z. B. der bistabilen Schaltmöglichkeit und des nahezu blickwinkelunabhängigen Kontrasts, sind FLCs grundsätzlich für Anwendungsgebiete wie Computerdisplays und Fernsehgeräte geeignet, wie ein seit Mai 1995 in Japan von Canon vermarkteter Monitor zeigt.

Für die Verwendung von FLCs in elektrooptischen oder vollständig optischen Bauelementen benötigt man entweder Verbindungen, die smektische Phasen ausbilden und selbst optisch aktiv sind, oder man kann durch Dotierung von Verbindungen, die zwar solche smektischen Phasen ausbilden, selbst aber nicht optisch aktiv sind, mit optisch aktiven Verbindungen ferroelektrische smektische Phasen induzieren. Die gewünschte Phase soll dabei über einen möglichst großen Temperaturbereich stabil sein.

25

30

50

Die einzelnen Bildelemente (Pixel) eines LC-Displays sind üblicherweise in einer x,y Matrix angeordnet, die durch die Anordnung je einer Serie von Elektroden (Leiterbahnen) entlang der Reihen und der Spalten an der Unter- bzw. Oberseite des Displays gebildet wird. Die Kreuzungspunkte der horizontalen (Reihen-) und vertikalen (Spalten-) Elektroden bilden adressierbare Pixel.

Diese Anordnung der Bildpunkte bezeichnet man üblicherweise als eine passive Matrix. Zur Adressierung wurden verschiedene Multiplex-Schemata entwickelt, wie beispielsweise in Displays 1993, Vol. 14, Nr. 2, S. 86-93 und Kontakte 1993 (2), S. 3-14 beschrieben. Die passive Matrixadressierung hat den Vorteil einer einfacheren Herstellung des Displays und damit verbundenen geringen Herstellkosten, jedoch den Nachteil, daß die passive Adressierung immer nur zeilenweise erfolgen kann, was dazu führt, daß die Adressierungszeit des gesamten Bildschirms bei N Zeilen das N-fache der Zeilenadressierungszeit beträgt. Bei üblichen Zeilenadressierungszeiten von ca. 50 Mikrosekunden bedeutet das eine Bildschirmadressierungszeit von ca. 60 Millisekunden bei z. B. HDTV Norm (High Definition TV, 1152 Zeilen), d. h. einer maximalen Bildfrequenz von ca. 16 Hz. Diese Frequenz ist für die Darstellung bewegter Bilder zu gering. Zudem ist die Darstellung von Graustufen schwierig. Mizutani et. al. haben anläßlich der FLC-Konferenz in Brest, Frankreich (20-24 Juli 1997, siehe Abstract Book 6th International Conference on Ferroelectric Liquid Crystals, Brest/France) ein passives FLC-Display mit digitalen Graustufen vorgestellt, bei dem jeder der RGB-Bildpunkte (RGB=red, green, blue) in Unterpunkte unterteilt wurde, wodurch vermittels partiellem Schalten die Darstellung von Grauwerten in digitaler Form ermöglicht wird. Bei N Grauwerten unter Verwendung dreier Grundfarben (rot, grün, blau) ergeben sich 3^N Farben. Der Nachteil dieser Methode ist eine starke Erhöhung der Anzahl benötigter Bildschirmtreiber und damit der Kosten. Im Falle des in Brest gezeigten Bildschirms wurden dreimal soviele Treiber benötigt, wie bei einem normalen FLC Display ohne digitale Graustufen.

Bei der sogenannten Aktivmatrix-Technologie (AMLCD) wird üblicherweise ein nicht-strukturiertes Substrat mit einem Aktivmatrix-Substrat kombiniert. An jedem Pixel des Aktivmatrixsubstrates ist ein elektrisch nichtlineares Element, beispielsweise ein Dünnschichttransistor, integriert. Bei dem nichtlinearen Element kann es sich auch um Dioden, Metall-Insulator-Metall u. ä. Elemente handeln, die vorteilhaft mit Dünnschichtverfahren hergestellt werden und in der einschlägigen Literatur beschrieben sind, siehe z. B. T. Tsukuda, TFT/LCD: Liquid Crystal Displays Addressed by Thin-Film Transistors, Gordon and Breach 1996, ISBN 2-919875-01-9 und darin zitierte Literatur.

Aktivmatrix-LCDs werden üblicherweise mit nematischen Flüssigkristallen im TN-(twisted nematics), ECB- (electrically controlled birefringence). VA- (vertically aligned) oder IPS- (in plane switching) Modus betrieben. In jedem Fall wird durch die aktive Matrix an jedem Bildpunkt ein elektrisches Feld individueller Stärke erzeugt, das eine Orientierungsänderung und damit eine Änderung der Doppelbrechung erzeugt, die wiederum im polarisierten Licht sichtbar ist. Ein schwerwiegender Nachteil dieser Verfahren ist die mangelnde Videofähigkeit bedingt durch die zu langen Schaltzeiten nematischer Flüssigkristalle.

Unter anderem aus diesem Grunde wurden Flüssigkristallanzeigen, die auf einer Kombination aus ferroelektrischen Flüssigkristallmaterialien und Aktiven Matrix-Elementen beruhen, vorgeschlagen, siehe z. B. WO 97/12355 oder Ferroelectrics 1996, 179, 141–152, W. J. A. M. Hartmann, IEEE Trans. Electron. Devices 1989, 36, (9; Pt. 1), 1895–9, sowie Dissertation Eindhoven, Niederlande 1990.

Hartmann nutzte eine Kombination aus der sogenannten "Quasi-bookshelf Geometrie" (QBG) von FLC und einer TFT (Thin-Film-Transistor) Aktivmatrix und erhielt gleichzeitig eine hohe Schaltgeschwindigkeit, Graustufen und eine hohe Transmission. Allerdings ist die QBG nicht über einen weiten Temperaturbereich stabil, da durch die Temperaturabhän-

gigkeit der smektischen Schichtdicke die feldinduzierte Lagenstruktur aufbricht oder sich dreht. Darüber hinaus nutzt Hartmann ein FLC-Material mit einer Spontanpolarisation von mehr als 20 nC/cm², was bei Bildpunkten mit realistischen Dimensionen von z. B. 0,01 mm² Fläche zu großen elektrischen Ladungen führt (bei Sättigung gilt Q = 2 A P, A = Bildpunktfläche, P = spontane Polarisation), die z. B. mit kostengünstig herstellbaren amorphen Silizium-TFT während der Öffnungszeit des TFT nicht auf den Bildpunkt gelangen können. Aus diesen Gründen wurde diese Technologie bisher nicht weiterverfolgt.

Während Hartmann die ladungskontrollierte Bistabilität zur Darstellung einer nahezu kontinuierlichen Grauskala ausnutzt, haben Nito et. al. eine monostabile FLC-Geometrie vorgeschlagen, siehe Journal of the SID, 1/2, 1993, Seiten 163–169, bei der das FLC-Material mit Hilfe verhältnismäßig hoher Spannungen derart orientiert wird, daß nur eine stabile Lage entsteht, aus der dann durch Anlegen eines elektrischen Feldes über einen Dünnschichttransistor eine Reihe von Zwischenzuständen erzeugt werden, die bei angepaßter Zellengeometrie zwischen gekreuzten Polarisatoren einer Reihe von verschiedenen Helligkeitsgraden (Grauwerten) entsprechen.

10

35

45

Ein Nachteil dieses Vorgehens ist jedoch das Auftreten einer Streifentextur im Display, die den Kontrast und die Helligkeit dieser Zelle begrenzt (siehe Abb. 8 im o. a. Zitat). Die nachteilige Streifentextur läßt sich durch eine Behandlung mit einer hohen elektrischen Spannung (20-50 V) in der nematischen bzw. cholesterischen Phase (siehe S. 168 des o. a. Zitates) zwar korrigieren; jedoch ist eine solche Feldbehandlung nicht für die Massenfertigung von Bildschirmen geeignet und führt in der Regel auch nicht zu temperaturstabilen Texturen. Darüber hinaus ergibt diese Methode lediglich ein Schalten in einem Winkelbereich von bis zu maximal dem einfachen Tiltwinkel, der bei dem von Nito et. al. verwendeten Material bei ca. 22° liegt (siehe S. 165, Abb. 6) und damit nur eine Transmission von maximal 50% der Transmission zweier paralleler Polarisatoren ergibt.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer ferroelektrischen Aktiv-Matrix-Flüssigkristallanzeige, die eine ferroelektrische Flüssigkristallmischung enthält, wobei die Flüssigkristallmischung eine monostabile Lage einnimmt, dabei jedoch keine Streifentextur bildet, licht und temperaturstabil ist und eine sehr hohe Maximaltransmission sowie einen sehr hohen Kontrast ermöglicht.

Die Aufgabe wird erfindungsgemäß gelöst durch ein monostabiles ferroelektrisches Aktivmatrix-Display, enthaltend eine Flüssigkristallschicht in Form einer Monodomäne mit einer eindeutig definierten Richtung der Schichtennormalen z der smC*-Phase, wobei die Schichtennormale z und die Vorzugsrichtung n der nematischen beziehungsweise cholesterischen Phase (N*-Phase einen Winkel von mehr als 5° ausbilden, wobei die Flüssigkristallschicht aus einer Flüssigkristallmischung aus mindestens 5 Verbindungen, die sich zusammensetzt aus

einer achiralen Basismischung, enthaltend mindestens eine Verbindung aus der durch (Ia-Ik) gebildeten Gruppe (I), gegebenfalls zusätzlich mindestens eine Verbindung der durch (IIa-IIg) gebildeten Gruppe und/oder gegebenenfalls mindestens eine Verbindung der Gruppe (III), und

mindestens einer chiralen Komponente der Gruppe (IV)

$$R^{1}(-\Lambda^{1}-M^{1})_{a}(-\Lambda^{2}-M^{2})_{b}-\Lambda^{3}-(M^{4}-\Lambda^{4})_{c}-(M^{5}-\Lambda^{5})_{d}-R^{2}$$
 (Ia)

in der Λ^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (1b)

in der Λ^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (1c)

in der A^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2} \eqno(Id)$$

5 in der A³

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ie)

in der A³

15

25

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-(A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (II)

30 in der A^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

40
$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ig)

in der A3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ih)

in der A³

50

60

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(\text{-}A^{1}\text{-}M^{1})_{a}(\text{-}A^{2}\text{-}M^{2})_{b}\text{-}A^{3}\text{-}(M^{4}\text{-}A^{4})_{c}\text{-}(M^{5}\text{-}A^{5})_{d}\text{-}R^{2} \quad (Ii)$$

65 in der A³

5

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

R¹, R² unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A¹, A², A⁴, A⁵ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-I-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

 M^1 , M^2 , M^3 unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder CH₂-O- CH₂CH₂-CH₂CH₂- oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^N eine Einfachbindung ist, wenn der entsprechende Index Null ist

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ik)

in der A3

F G₁-G₂ (F)_n

30

20

25

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben:

R¹, R² unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -S1(CH₃)₂- oder Cylopropan-1,2-dıyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

G1- G2 -CH=CH- oder -CH2-CH2- bedeutet

n Null oder Eins bedeutet

A¹, A², A⁴, A⁵ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F

 M^1 , M^2 , M^3 unabhängig voneinander gleich oder verschieden eine Eintachbindung, -OC(=O)- oder-(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂ -CH₂CH₂-CH₂CH₂- oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $0 < \{a+b+c+d\} \le 2$ und dem Verständnis daß M\ eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^{3}(-\Lambda^{7}-M^{7})_{a}(-\Lambda^{8}-M^{8})_{b}-\Lambda^{6}-(M^{9}-\Lambda^{9})_{c}-(M^{10}-\Lambda^{10})_{d}-R^{4}$$
 (Ha)

worin A⁶

50

45

bedeutet.

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder -Cylopropan-1,2-diyl

und worm auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Was serstoff sein können

A¹, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexan 1,4-diyl, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, Bicyclo[2,2,2]octan-1,4-diyl,

 M^7 , M^8 , M^9 , M^{10} unabhangig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O) oder -(O=)C-O, $-OCH_2$ - oder $-CH_2$ - O_3 , $-CH_2$ - CH_3

a, b, c, d: Null oder 1, mit dem Vorbehalt 1 ≤ {a+b+c+d} ≤ 3 und dem Verständnis daß M^N eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^3(-A^7-M^7)_a(-A^8-M^8)_b-A^6-(M^9-A^9)_c-(M^{10})_d/R^4$$
 (11b)

worin A6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder - (O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A¹, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder-(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂- oder -C \equiv C-

20 a, b, c, d: Null oder 1, mit dem Vorbehalt 1 ≤ {a+b+c+d} ≤ 3 und dem Verständnis daß M* eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (IIc)

25 worin A⁶

bedeute

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂- oder -C ≡ C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^3 (-A^7 - M^7)_a (-A^8 - M^8)_{b^-} A^6 - (M^9 - A^9)_{c^-} (M^{10} - A^{10})_{d^-} R^4 \quad (IId)$$

worin A^6

45

50

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexane-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexane-1,4-diyl, Bi-cyclo[2.2.2]octan-1,4-diyl, Naphthalin-2,6-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder-(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂CH₂-cder -C ≡ C-

a, b,c,d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$^{65} \quad R^{3} (\text{-}A^{7} \text{-}M^{7})_{a} (\text{-}A^{8} \text{-}M^{8})_{b} \text{-}A^{6} \text{-}(M^{9} \text{-}A^{9})_{c} \text{-}(M^{10} \text{-}A^{10})_{d} \text{-}R^{4} \quad \text{(IIc)}$$

worin A6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

10

٦,

35

50

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Was serstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung. -OC(=O)- oder -(O=)C-O-, 1 -OCH₂- oder -CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-Oder -C = C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
(III)

worin A⁶

bedeutet 30

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH₂-CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-divl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, Bicyclo]2,2,2 octan-1,4-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂-CH₂-CH₂-CH₂-, oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (IIg)

worin A^6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-C- oder -Si(CH₄)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

 A^7 , A^8 , A^9 , A^{10} unabhängig voneinander gleich oder verschieden Cyclohexan-1,4 diyl, gegebenenfalls einfach substitu iert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung. OC(=O) oder «O=)C-O-. «OCH₂- oder «CH₂O , «CH₂CH₂- «CH₂CH₂- Oder «C = C

a, b, c, d; Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^s eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{6}-A^{9})_{c}(M^{10}-A^{10})_{d}-R^{4}$$
 (IIIh) 65

worin A6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

15 M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder-(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂-CH₂CH₂- oder -C ≡ C- a, b, c, d: Null ist, Null oder 1, mit dem Vorbehalt 1 ≤ {a+b+c+d} ≤ 3 und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

20
$$R^5(-A^{11}-M^{11})_a(-A^{12}-M^{12})_b-A^{13}$$
 (III)

worin A¹³

 X_1 X_2

25

30

bedeutet

 X^1 , X^2 , X^3 unabhängig, X^3 unabhängig voneinander gleich oder verschieden H, Cl, F, OCF₂H, CF₃ bedeuten mit dem Vorbehalt, daß mindestens eines von X^1 , X^2 , X^3 nicht H ist,

R⁵ Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können

A¹¹, A¹² unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂-CH₂CH₂- oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{6}(-A^{14}-M^{14})_{a}(-A^{15}-M^{15})_{b}-(M^{16}-A^{16})_{c}-(M^{17}-A^{17})_{d}-M^{18}-R^{7}$$
 (IV)

worin

R⁶ Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein kann, können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können,

R⁷ eine Gruppierung mit mindestens einem asymmetrischen C-atom, das entweder Bestandteil ist einer Alkylgruppe von 3–12 C-Atomen, worin auch eine oder zwei -CH₂-Gruppen ersetzt sein können durch -O- oder -OC(=O) oder -(O=)C-O-

und worin -CH₃, -CF₃, -OCH₃ -CH₃ Cl, F einer der Substituenten des asymmetrischen C-Atoms sein müssen, oder Bestandteil ist eines 3-7-gliedrigen Carbocyclus (worin auch eine oder zwei nicht benachbarte -CH₂-Gruppen durch -O- oder eine -CH₃-Gruppen durch -OC(-O), oder +(O-)C O, orsetzt sein könner.

durch -O- oder eine -CH₂-Gruppe durch -OC(=O)- oder -(O=)C-O- ersetzt sein können.

A¹⁴, A¹⁵, A¹⁶, A¹⁷ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach

substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

M¹⁴, M¹⁵, M¹⁶, M¹⁷ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂-, -CH₂-O- -CH₂CH₂-, -CH₂-

M¹⁸ eine Einfachbindung, falls das asymmetrische C-Atom Teil einer Alkylkette ist,

und eine Einfachbindung, -OCH₂-, -CH₂O-, -OC(=O)- oder -C(=O)O- für den Fall, daß das asymmetrische C-Atom Bestandteil eines Carbocyclus ist

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis, daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist, aufgebaut ist.

Bevorzugte Mischungen weisen eines oder mehrere der nachfolgenden Merkmale auf:

- R¹ und R² bedeuten geradkettiges Alkyl- oder Alkyloxy mit 2 bis 12 C-Atomen.
- die Mischung enthält mindestens eine Verbindung bei der in R¹ oder R² eine nicht-terminale -CH₂-Gruppe durch
 -OC(=O) ersetzt ist.
- in mindestens einer Verbindung der Formel (I) oder (II) ist bei R¹ und/oder R² mindestens eine oder mehrere, nicht jedoch die dem Kern benachbarte -CH₂-Gruppe durch -CF₂- ersetzt.
- in mindestens einer Verbindung der Formeln (I) oder (II) bedeutet R¹ oder R² Wasserstoff
- R⁷ ist sek-Alkyl- oder sek-Alkyloxy- mit 4 bis 12 C-Atomen
- R⁷ ist 2-Methyl-alkyl- oder 2-Methyl-alkyloxy- oder 2-Methyl-alkylcarbonyloxy oder 2-Methyl-alkyloxycarbonyl mit 4 bis 12 C-Atomen
- = \mathbb{R}^7 ist 2-Fluoro-alkyl- oder 2 Fluor-alkyloxy- oder 2-Fluor-alkylcarbonyloxy- oder 2 Fluor-alkyloxycarbonyl mit 3 bis 12 C-Atomen
- R⁷ ist 2-Trifluormethyl-alkyl- oder 2-Trifluormethyl-alkyloxy- oder 2-Trifluormethyl-alkyloxycarbonyl mit 3 bis 12 C-Atomen

15

20

- R⁷ enthält die Gruppierung [-O-CH(CH₃)-C(=O)O-] als Teil einer Alkylkette
- R⁷ enthält die Gruppierung -C(=O)O- als Teil eines 5- oder 6-gliedrigen Cyclus.

Das erfindungsgemäße Aktivmatrix-FLCD enthält als optisch wirksame Schicht ein ferroelektrisch flüssigkristallines Medium (Flüssigkristallphase) mit einer Phasenfolge von

Isotrop-Nematisch oder Cholesterisch (N*)- smektisch C*

oder einer Phaseurfolge Isotrop Nematisch oder Cholesterisch (N*) smektisch A*- smektisch C*, wobei die smektisch A* Phase einen Existenzbereich (Phasenbereich) von maximal 2°C, vorzugsweise maximal 1°C, besonders bevorzugt maximal 0.5°C besitzt. Der Stern (*) an der Phasenbereichnung eint an daß es sich um eine chirale Phase handelt

maximal 0.5°C besitzt. Der Stern (*) an der Phasenbezeichnung gibt an, daß es sich um eine chirale Phase handelt. Die FLC-Mischungen weisen hohe Werte für Widerstand und Spannungsvermögen (voltage-retaining-ability) auf.

Die Herstellung der Displays erfolgt, vorzugsweise nach einem Verfahren, bei dem man die Flüssigkristallschicht in den Zwischenraum zwischen einer geriebenen Obersubstratplatte und einer geriebenen Untersubstratplatte des Aktiv-Matrix-Displays einbringt, wobei die Reiberichtungen auf der Ober- und Untersubstratplatte im wesentlichen parallel sind, und die Flüssigkristallphase aus der isotropen Phase abkühlt, wobei zumindest beim Phasenübergang N*-→smC* beziehungsweise N*-→smC* eine elektrische Gleichspannung am Display anliegt.

Die FLC-Mischung wird in ein Aktivmatrix-Display gefüllt. Die Herstellung und die Komponenten eines solchen AM-Displays ist ausführlich in der vorstehend aufgeführten Literatur von Tsukuda, beschrieben. Die Dicke der FLC-Schicht beträgt jedoch anders als bei nematischen Displays nur 0,7 bis 2,5, bevorzugt 1-2 µm. Darüber hinaus sind die Reiberichtungen auf Ober- und Untersubstratplatten im wesentlichen parallel. Der Begriff "im wesentlichen parallel" schließt antiparallele oder schwach, d. h. bis zu 10° gekreuzte Reiberichtungen mit ein.

Wichtig für die Funktionsweise dieses Displays ist nun, daß bei der Herstellung des Displays beim kontrollierten Abkühlen eine elektrische Gleichspannung, vorzugsweise unterhalb 5 V, angelegt und beim Phasenübergang N*—smC* bzw. N—smA*—smC* beibehalten wird, die dazu führt, daß das gesamte Display eine monostabile Monodomäne ein nimmt, die zwischen gekreuzten Polarisatoren vollkommen dunkel erscheint.

Nach Erhalt dieser Domäne wird die Gleichspannung abgeschaltet. Die so erhaltene Textur ist im Gegensatz zu Hartmanns oben angeführtem Ansatz oder im Gegensatz zu konventionellen bistabilen FLCD monostabil. Dies bedeutet, daß sich der bevorzugte n-Direktor (der die Vorzugsrichtung der Moleküllängsachsen angibt), befindet sich in Reibrichtung der Zelle befindet, wohingegen der z-Direktor (der die Vorzugsrichtung der smektischen Lagennormale angibt) sich ungefähr um den Betrag des Tiltwinkels schräg zur Reiberichtung befindet. Diese Konstellation ist gerade entgegengesetzt zur gewöhnlichen bistabilen Zelle nach Clark und Lagerwall, bei der der z-Direktor in Reiberichtung liegt.

Im Unterschied zu Nitos Ansatz gibt es bei dieser Orientierung gerade keine zwei Lagennormalen und damit keine zwei Orientierungsdomänen, die letztlich zu der oben erwähnten störenden Streifentextur führen, sondern nur eine eindeutige Richtung des z-Direktors und daher eine Monodomäne. Darüber hinaus ist nun der zweifache Tiltwinkel, der zu 100% Transmission bezogen auf parallele Polarisatoren führt, zugänglich, d. h. es wird eine doppelte Helligkeit erzielt.

Das so erhaltene Display erscheint bei geeignetem Drehwinkel zwischen gekreuzten Polarisatoren vollkommen dunkel. Bei Anlegen einer Ansteuerspannung von nur wenigen Volt erscheint es hell, wobei die Helligkeit über die Spannung kontinuierlich variiert werden kann und bei Sättigung nahezu die Helligkeit zweier paralleler Polarisationsfolien besitzt. Ein wichtiges Merkmal dieses Displays ist, daß der Winkel zwischen der Vorzugsrichtung der nematischen (bzw. cholesterischen) Phase und der Schichtennormale (z-Direktor) im Idealfall gleich dem Tiltwinkel der smektischen C. Phase ist, bzw. zumindest im wesentlichen gleich dem Tiltwinkel ist. "Im wesenlichen" im Sinne dieser Erfindung bedeutet vorzugsweise einen Wertebereich vom halben bis zum vollen, besonders bevorzugt 0,8- bis 1-fachen Tiltwinkel, jedoch mindestens von 5"

Das erfindungsgemäße ferroelektrische Aktivmatrix-Flüssigkristalldisplay ist in hohem Maße praxistauglich, insbesondere für TV und HDTV oder Multimedia, da es hohe Transmission, kurze Schaltzeit, Grauskala und daher volle Farbfähigkeit, kostengünstige Herstellung und einen weiten Temperaturbereich miteinander vereinbart. Darüber hinaus läßt sich das Display bei Spannungen von ≤ 10 Volt, bevorzugt ≤ 8 V, besonders bevorzugt ≤ 5 V betreiben.

Die spontane Polarisation des erfindungsgemäßen Aktiv-Matrix-FLCD liegt vorzugsweise unterhalb 15 nC/cm², be vorzugt im Bereich von 0,01 bis 10 nC/cm² bei der Betriebstemperatur des Displays.

Vorzugsweise beträgt in der Flüssigkristallschicht die Länge der chiralnematischen beziehungsweise cholesterischen Ganghöhe (pitch) in einem Temperaturbereich von mindestens 2°C oberhalb des Übergangs zur smektischen Phase mehr als 50 µm.

Die Displays können beispielsweise im TV-, HDTV- oder Multimedia Bereich oder im Bereich der Informationsver arbeitung eingesetzt werden, z. B. in Notebook-PCs, Personal Digital Assistants oder Desktop Monitoren.

Die Herstellungsverfahren der für die erfindungsgemäßen Mischungen geeigneten Materialien sind im Prinzip bekannt, ebenso wie die Herstellung von Flüssigkristallmischungen aus den Einzelkomponenten.

So sind z. B. Verbindungen der jeweiligen nachstehenden Formeln beschrieben in:

- (Ia) EP-B-0 210215 und GB-B 2198743
- (Ib) EP-B-0 210 215 sowie aus JP-B 2732765
 - (Ic) Gray et. al., Mol. Cryst. Liq. Cryst. 1991, vol. 204, pp. 43-64
 - (Id) Gray et. al., Mol. Cryst. Liq. Cryst. 1991, vol. 204, pp. 43-64
 - (le) EP-B 602596
 - (If) Xu et. al., Liq. Cryst. 1995, 18(I), 105-8
- o (Ig) JP-A 09052859
 - (Ih) DE-A 195 22 167
 - (Ii) DE-A-196 52 252
 - (Ik) US 5,648,021
 - (IIa) Flüssige Kristalle in Tabellen II, pp. 269-304
- (IIb) US 5,447,656
 - (IIc) Flüssige Kristalle in Tabellen II, pp. 313-322
 - (IId) EP-A-0 546 338
 - (IIe) Flüssige Kristalle in Tabellen II, pp. 32-72
 - (IIf) EP-A-0 761 674, 742 222, 732 335, 727 428 etc.
- 20 (IIg) Flüssige Kristalle in Tabellen II, pp. 85-95
 - (III) EP-A-0 832 954
 - (IV) chirale Dotierstoffe mit
 - oxiran- als Einheit mit asymmetrischem C-Atom EP-B-0 292 954/263 437
 - dioxolan- als Einheit mit asymmetrischem C-Atom EP-B-0 351 746/361 272
- 25 2,3-Difluoralkyloxy- als Einheit mit asymmetrischem C-Atom US 5,051,506
 - 2-Fluoralkyloxy- als Einheit mit asymmetrischem C-Atom US 4,798,680
 - α-chlorocarboxylat- als Einheit mit asymmetrischem C-Atom US 4,855,429
 - α-fluorocarboxylat- als Einheit mit asymmetrischem C-Atom Arakawa et. al., Liquid Crystals 1997, vol. 23, no. 5, pp. 659-666
- Methyl-verzweigte Alkylketten als Einheit mit asymmetrischem C-Atom EP-B-0 201 578, 211 030
 - Lactone als Einheit mit asymmetrischem C-Atom z. B. US 5,061,398, 5,256,330, 5,026,506
 - sowie Verbindungen mit den Strukturelementen
 - silylalkyl- aus EP-B-0 366 561

40

55

60

65

- cyclopropylalkyl- aus EP-B-0 318 423/398 155
- perfluroalkyl- aus Ferroelectrics 1988, 85, 375–384 bzw. US 4,886,619, 5,082,587, 5,254,747, 5,262,082, 5,437,812 oder 5,482,650
 - perflurocyclohexyl aus DE-A-197 48 818.

Beispiele

Beispiel 1

Die besondere Eignung der erfindungsgemäßen Verbindungen als Komponenten von ferroelektrischen Flüssigkristallmischungen für Aktivmatrix-Displays wird durch nachstehende Messungen belegt, bei denen die erfindungsgemäßen Verbindungen im Vergleich zu anderen, ebenfalls als Komponenten ferroelektrischer Flüssigkristallmischungen vorgeschlagenen Komponenten untersucht werden.

Dabei wird mittels einer einschlägigen Meßanordnung der Widerstand nachfolgender Komponenten gemessen.

- a) 2-(4-Octyloxyphenyl)-5-octyl-pyrimidin (Synthese nach DD-WP 95892, Reinigung nach Nagashima et. al., Liq. Crystals 1997, vol. 4, pp. 537–546)
 - b) 2-(4-Ethylphenyl)-5-(4-octylphenyl)-(1,3,4)-thiadiazol (Synthese/Reinigung nach EP-B 309514)
 - c) 5-(4-Nonanoyloxy-phenyl)-2-(4-hexylphenyl)-1,3-thiazol (Synthese/Reinigung nach EP-B 439170)

Beispiel für Verbindung (Ia)

d) 2'-Fluor- 4-octyloxy-4"-pentyl-terphenyl (Synthese/Reinigung nach GB-B 2198743)

Beispiel für Verbindung (Ib)

e) 2,3-Difluor-4-heptyl-4"-pentyl-terphenyl (Synthese/Reinigung nach EP-B 329752)

Beispiel für Verbindung (Ib)

f) 4-Decyl-2,3-difluor-4"-pentyl-terphenyl (Synthese/Reinigung nach EP-B 329752)

Beispiel für Verbindung (Ib)

g) 2',3'-Difluor-4-hexyloxy-4"-pentyl-terphenyl (Synthese/Reinigung nach EP-B 329752)

Beispiel für Verbindung (IIa)

h) 4-(Cyclohexyl)cyclohexan-carbonsäure-(4-octyloxy)phenyl-ester.

Tabelle 1

Tabelle I belegt die besondere Eignung der erfindungsgemäßen Verbindungen für die Erstellung von ferroelektrischen Flüssigkristallmischungen für Aktivmatrixdisplays, da für die erfindungsgemäßen Materialien durch Standardoperatio-

10

3()

4()

65

Patentansprüche

1. Monostabiles ferroelektrisches Aktivmatrix-Display, enthaltend eine Flüssigkristallschicht in Form einer Monodomäne mit einer eindeutig definierten Richtung der Schichtennormalen z der smC*-Phase, dadurch gekennzeichnet, daß die Schichtennormalen z und die Vorzugsrichtung n der nematischen beziehungsweise cholesterischen Phase (N*-Phase) einen Winkel von mehr als 5° ausbilden, wobei die Flüssigkristallschicht aus einer Flüssigkristallmischung aus mindestens 5 Verbindungen, die sich zusammensetzt aus

einer achiralen Basismischung, enthaltend mindestens eine Verbindung aus der durch (Ia-Ik) gebildeten Gruppe (I), gegebenfalls zusätzlich mindestens eine Verbindung der durch (IIa-IIg) gebildeten Gruppe und/oder mindestens eine Verbindung der Gruppe (III), und

mindestens einer chiralen Komponente der Gruppe (IV)

nen höhere Werte des Widerstandes zu erreichen sind.

$$R^{1}(-A^{1}/M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}$$
 (Ia)

in der A³

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-\Lambda^{1}-M^{1})_{a}(-\Lambda^{2}-M^{2})_{b}(-\Lambda^{3}-(M^{4}-\Lambda^{4})_{c}-(M^{5}-\Lambda^{5})_{d}-R^{2}$$
 (Ib)

in der A3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{4})_{d}(-A^{2}-M^{2})_{b}(A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}(R^{2}-(Ic))$$

in der A³

bedeutet und die restlichen Substituenten die nachstellenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{5}/A^{3}/(M^{4}-A^{4})_{c}(M^{5}-A^{5})_{d}/R^{2}$$
 (Id)

in der A3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ie)

in der A³

10

20

30

35

40

50

55

65

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}^{-}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2} \quad (If)$$

in der A^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ig)

in der A³

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ih)

in der A³

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2} \quad (Ii)$$

in der A^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben

R¹, R² unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A¹, A², A³, A⁵ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohexan-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2,2,2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

 M^1 , M^2 , M^3 unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder (O=)C-O-, -OCH₂- oder CH₂-O-CH₂CH₂-CH₂CH₃- oder -C \equiv C-

10

15

30

65

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist

$$R^{1}(-A^{1}-M^{1})_{a}(-A^{2}-M^{2})_{b}-A^{3}-(M^{4}-A^{4})_{c}-(M^{5}-A^{5})_{d}-R^{2}$$
 (Ik)

in der A^3

bedeutet und die restlichen Substituenten die nachstehenden Bedeutungen haben:

R¹, R² unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-dıyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

G1-G2 -CH=CH- oder-CH₂-CH₂-bedeutet

n Null oder Eins bedeutet

A¹, A², A⁴, A⁵ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder CI. Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F

 M^1 , M^2 , M^3 unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O, -CH₂CH₂-, -CH₂CH₂-CH₂

a, b, c, d: Null oder 1, mit dem Vorbehalt $0<\{a+b+c+d\} \le 2$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^{3}(-A^{7}-M^{7})_{a}(A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (Ha)

worin Λ^6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2--12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, Bicyclo{2.2.2}octan-1,4-diyl,

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O--CH₂-CH

a. b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^s eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}\cdot M^{7})_{a}(-A^{8}\cdot M^{8})_{b}A^{6}\cdot (M^{9}\cdot A^{9})_{c}\cdot (M^{10}\cdot A^{10})_{d}R^{4}$$
 (IIb)

worin Λ^6

bedeutet

R³, R⁴ unabhangig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy-mit 2-12 C-Atomen,

worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, l-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O--OCH₂- oder -CH₂-O-, -CH₂CH₂. -CH₂CH₂-CH₂-CH₂- oder -C ≡ C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (IIc)

worin A⁶

5

10

15

20

30

35

40

45

50

55

60

65

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, gebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl,

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂-, -CH₂CH₂-CH₂-CH₂-CH₂- oder -C ≡ C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (IId)

worin A⁶

bedeuter

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexane-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexane-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Naphthalin-2,6-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂. -CH₂CH₂-CH₂-CH₂- oder -C = C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^3 (-A^7 - M^7)_a (-A^8 - M^8)_b - A^6 - (M^9 - A^9)_c - (M^{10} - A^{10})_d - R^4 \quad (IIe)$$

worin A⁶

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A¹⁰ unabhängig voneinander gleich oder verschieden Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂CH₂ -CH₂CH₂-CH₂CH₂- oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^s eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}-(M^{9}-A^{9})_{c}-(M^{10}-A^{10})_{d}-R^{4}$$
 (III)

worin
$$A^6$$

20

35

65

bedeutet

 R^3 , R^4 unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH 2 CH- oder OC(=O) oder -(O=)C-O oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H. Atome durch F ersetzt sein können mit dem Vorbehalt, daß R, R2 nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, Bicyclo[2,2,2]octan-1,4-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder -(O=)C-O-, -OCH₂- oder -CH₂-O-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^3 (-A^7 - M^7)_a (-A^8 - M^8)_{b} - A^6 - (M^9 - A^9)_c - (M^{10} - A^{10})_d - R^{\frac{3}{4}} - (Hg)$$

worin Λ^6

bedeutet 45

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F. Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

 M^7 , M^8 , M^9 , M^{10} unabhängig voneinander gleich oder verschieden eine Einfachbindung, -OC(=O)- oder-(O=)C-O-, -OCH₂- oder -CH₂ O-, -CH₂CH₂-, -CH₂CH₂-CH₂-CH₂-CH₂- oder -C \equiv C-

a, b, c, d: Null oder 1, mit dem Vorbehalt. $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist,

$$R^{3}(-A^{7}-M^{7})_{a}(-A^{8}-M^{8})_{b}-A^{6}\cdot (M^{9}-A^{9})_{c}\cdot (M^{10}-A^{10})_{d}\cdot R^{4}$$
 (IIh)

worin A6

bedeutet

R³, R⁴ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C. Atomen, worin eine oder zwei. -CH₂ Gruppen ersetzt sein können durch -CH--CH- oder. OC(-O) oder. -(O=)C-O) oder.

-Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R1, R2 nicht beide Wasserstoff sein können

A⁷, A⁸, A⁹, A¹⁰ unabhängig voneinander gleich oder verschieden Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-Ooder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

a, b, c, d: Null ist, Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbin-10 dung ist, wenn der entsprechende Index Null ist,

$$R^{5}(-A^{11}-M^{11})_{a}(-A^{12}-M^{12})_{b}-A^{13}$$
 (III)

worin A13 15

$$X_1$$
 X_2
 X_3

bedeutet

25 und

20

30

35

40

45

50

55

'60

X¹, X², X³ unabhängig voneinander gleich oder verschieden H, Cl, F, OCF₂H, CF₃ bedeuten mit dem Vorbehalt, daß mindestens eines von X^1 , X^2 , X^3 nicht H ist,

R⁵ Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können

A¹¹, A¹² unabhängig voneinander gleich oder verschieden 1,4-Phenylen, Cyclohexan-1,4-diyl, Cyclohex-1-en-1,4diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2,6-diyl, Naphthalin-2,6-diyl

M⁷, M⁸, M⁹, M¹⁰ unabhängig voneinander gleich oder verschieden Wasserstoff, Alkyl- oder Alkyloxy- mit 2–12 C-Atomen, worin eine oder zwei -CH2-Gruppen ersetzt sein können durch -CH=CH- oder -OC(=O)- oder -(O=)C-Ooder -Si(CH₃)₂- oder Cylopropan-1,2-diyl

und worin auch ein oder mehrere H-Atome durch F ersetzt sein können mit dem Vorbehalt, daß R¹, R² nicht beide Wasserstoff sein können

a, b, c, d: Null ist, Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist.

$$R^6 (-A^{14} - M^{14})_a (-A^{15} - M^{15})_b - (M^{16} - A^{16})_c - (M^{17} - A^{17})_d - M^{18} - R^7 \quad (IV)$$

R⁶ Wasserstoff, Alkyl- oder Alkyloxy- mit 2-12 C-Atomen, worin eine oder zwei -CH₂-Gruppen ersetzt sein kann, können durch -CH=CH- oder -OC(=O)- oder -(O=)C-O- oder -Si(CH₃)₂- oder Cylopropan-1,2-diyl und worin auch ein oder mehrere H-Atome durch F ersetzt sein können.

R7 eine Gruppierung mit mindestens einem asymmetrischen C-Atom, das entweder Bestandteil ist einer Alkylgruppe von 3-12 C-Atomen, worin auch eine oder zwei -CH2-Gruppen er-

setzt sein können durch -O- oder -OC(=O) oder (O=)C-O- und worin -CH₃, -CF₃, -OCH₃, -CH₃, Cl, F einer der Substituenten des asymmetrischen C-Atoms sein müssen, oder Bestandteil ist eines 3-7-gliedrigen Carbocyclus worin auch eine oder zwei nicht benachbarte -CH₂-Gruppen

durch -O- oder eine -CH2-Gruppe durch -OC(=O)- oder -(O=)C-O- ersetzt sein können. A¹⁴, A¹⁵, A¹⁶, A¹⁷ unabhängig voneinander gleich oder verschieden 1,4-Phenylen, gegebenenfalls einfach oder

zweifach substituiert durch F oder Cl, Cyclohexan-1,4-diyl, gegebenenfalls einfach substituiert durch F, Cyclohex-1-en-1,4-diyl, Cyclohex-2-en-1,4-diyl, 1-Alkyl-1-sila-cyclohexan-1,4-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Indan-2.6-diyl, Naphthalin-2,6-diyl

M¹⁴, M¹⁵, M¹⁶, M¹⁷ unabhängig voneinander gleich oder verschieden eine Einfachbindung, -O(=O)-, -OC(=O)oder -(O=)C-O-, oder -CH₂-O-CH₂CH₂₋ -CH₂CH₂-CH₂CH₂- oder -C \equiv C-

M¹⁸ eine Einfachbindung, falls das asymmetrische C-Atom Teil einer Alkylkette ist,

und eine Einfachbindung, -OCH₂-, -CH₂O-, -OC(=O)- oder -C(=O)O- für den Fall, daß das asymmetrische C-Atom Bestandteil eines Carbocyclus ist

a, b, c, d: Null oder 1, mit dem Vorbehalt $1 \le \{a+b+c+d\} \le 3$ und dem Verständnis, daß M^x eine Einfachbindung ist, wenn der entsprechende Index Null ist, aufgebaut ist.

2. Aktivmatrix-Display nach Anspruch 1, dadurch gekennzeichnet, daß R¹ und R² geradkettiges Alkyl- oder Alkyl-65 oxy mit 2 bis 12 C-Atomen bedeuten.

3. Aktivmatrix-Display nach Anspruch 1 oder 2. dadurch gekennzeichnet, daß die Mischung mindestens eine Verbindung enthält, bei der in R¹ und R² eine nicht-terminale -CH₂-Gruppe durch -OC(=O)- ersetzt ist.

- 4. Aktivmatrix-Display nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in mindestens einer Verbindung der Formeln (I) oder (II) bei R¹ und/oder R² mindestens eine oder mehrere, nicht jedoch die dem Kern benachbarte -CH₂-Gruppe durch -CF₂- ersetzt ist.
- 5. Aktivmatrix-Display nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in der Flüssigkristallschicht die Länge der chiralnematischen beziehungsweise cholesterischen Ganghöhe (pitch) in einem Temperaturbereich von mindestens 2°C oberhalb des Übergangs zur smektischen Phase mehr als 50 µm beträgt.
- 6. Verfahren zur Herstellung von Aktivmatrix-Displays nach einem der Ansprüche 1 bis 5, bei dem man die Flüssigkristallschicht in den Zwischenraum zwischen einer geriebenen Obersubstratplatte und einer geriebenen Untersubstratplatte des Aktiv-Matrix-Displays einbringt, wobei die Reiberichtungen auf der Ober- und Untersubstratplatte im wesentlichen parallel sind, und die Flüssigkristallphase aus der isotropen Phase abkühlt, wobei zumindest beim Phasenübergang N*→smC* beziehungsweise N*→ smA*→smC* eine elektrische Gleichspannung am Display anliegt.
- 7. Aktivmatrix-Display, herstellbar nach dem Verfahren gemäß Anspruch 6.
- 8. Verwendung von Aktivmatrix-Displays nach einem der Ansprüche 1 bis 5 und 7 im TV-, HDTV-, oder Multimedia-Bereich oder im Bereich der Informationsverarbeitung.

1.5

20

25

3()

40

45

60

65

9. Verwendung nach Anspruch 8 in Notebook-PCs, Personal Digital Assistants und Desktop Monitoren

17

- Leerseite -