■ Description

The FA7611CP(E) is a bipolar IC containing basic circuit necessary for PWM-type switching power supply control.

■ Features

- Low-voltage operation (Vcc = 3.6 to 22V)
- Predrivers: Totem-pole output or open-collector for CH1 and open-collector output for CH2
- Latch-mode short-circuit protection function (no malfunction due to electrical noise)
- soft-start function
- Undervoltage lock-out function
- One capacitor shared for short circuit protection and for soft start to minimize the number of external discrete components

■ Applications

• Battery power supply for portable equipment

■ Dimensions, mm

• SSOP-16

• DIP-16

■ Block diagram

Pin No.	Pin symbol	Description
1	СТ	Oscillator timing capacitor
2	CS	Capacitor for soft-start, short- circuit protection and delay
3	DT2	Dead time adjustment
4	IN2 (+)	Non-inverting input to error amplifier
5	IN2 (-)	Inverting input to error amplifier
6	FB2	Error amplifier output
7	GND	Ground
8	OUT2	CH. 2 Output
9	VCC	Power supply
10	OUT1R	CH. 1 Current limiting resistor
11	OUT1	CH. 1 Output
12	FB1	Error amplifier output
13	IN1 (-)	Inverting input to error amplifier
14	IN1 (+)	Non-inverting input to error amplifier Reference voltage (0.5V)
15	DT1	Dead time adjustment
16	REF	Reference voltage output (2.5V)

■ Absolute maximum ratings

Item	Symbol	Rating	Unit
Supply voltage	Vcc	22	V
Reference voltage output current	Ior	5	mA
Output current	lo	±50	mA
Total power dissipation	Pd	400	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +150	°C

■ Recommended operating conditions

Item	Symbol	Min.	Max.	Unit
Supply voltage	Vcc	3.6	20	V
Feedback resistance	RNF	100		kΩ
Oscillator timing capacitor	Ст	220	22,000	pF
Oscillator timing resistance	R⊤	10	100	kΩ
Oscillation frequency	fosc	5	200	kHz

■ Electrical characteristics (Ta = 25° C, Vcc = 6V, RT = $33k\Omega$, CT = 1000pF) Reference voltage section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Output voltage	VREF	lor = 1mA	2.425	2.475	2.525	V
Line regulation	LINE	Vcc = 3.6 to 20V, lor =1mA		4	12	mV
Load regulation	Load	Ior = 0.1 to 1mA		1	6	mV
Output voltage variation due to temperature change	VTC1	Ta = -20 to +25°C	-1		1	%
	VTC2	Ta = +25 to +85°C	-1		1	%

Oscillator section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Oscillation frequency	fosc	$CT = 1000pF, RT = 33k\Omega$	95	115	135	kHz
Frequency variation 1 (due to supply voltage change)	fdV	Vcc = 3.6 to 20V		1		%
Frequency variation 2 (due to temperature change)	fат	Ta = -20 to +85°C		5		%

Error amplifier section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Reference voltage	VB		0.484	0.494	0.504	V
Input bias current	Ів			5	100	nA
Open-loop voltage gain	Av		70			dB
Unity-gain bandwidth	Gв			0.6		MHz
Maximum output voltage (Pin 6 and Pin 12)	Vom+	$RNF = 100k\Omega$	VREF-0.2			V
	Vom-	$RNF = 100k\Omega$			200	mV
Output source current (Pin 6 and Pin 12)	IOM+	Vom = 1V	40	85	200	μΑ

PWM comparator section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Input threshold voltage (Pin 6 and Pin 12)	Vтно	Duty cycle = 0%		0.85	0.95	V
Input threshold voltage (Pin 6 and Pin 12)	VTH50	Duty cycle = 50%		1.1		V

FA7611CP(E)

Dead time adjustment circuit section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Input bias current (Pin 3 and Pin 15)	Іврт			80	300	nA
Input threshold voltage (Pin 3 and Pin 15)	Vтн рто	Duty cycle = 0%		0.22	0.32	V
Input threshold voltage (Pin 3 and Pin 15)	VTH DT50	Duty cycle = 50%		0.46		V

Short-circuit protection circuit section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Input threshold voltage (Pin 6 and Pin 12)	VTH PC		1.20	1.50	1.80	V
Charge current (Pin 2)	Існв	Pin 2 = 0V, Pin 6, Pin 12 = 2V	10	30	50	μΑ
Latch-mode threshold voltage (Pin 2)	Vth la		1.20	1.50	1.80	V

Undervoltage lockout circuit section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
OFF-to-ON threshold voltage	VTH ON			2.65		V
ON-to-OFF threshold voltage	VTH OFF			2.60		V
Voltage hysteresis	VHYS			50		mV

Output section

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
CH. 1 H-level output voltage (Pin 11)	V ₀₁ H	RL = 10kΩ	3.5	4.0		V
CH. 1 L-level output voltage (Pin 11)	V ₀₁ L	Output sink current = 20mA		0.25	0.65	V
CH. 1 Output source current (Pin11)	ISOURCE1	Rouτ1 = 470Ω (Pin 11) = 0V	8	11		mA
CH. 2 L-level output voltage (Pin 8)	V ₀₂ L	Output sink current = 20mA		1.0	1.5	V

Overall device

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Supply current	ICC LA	Latch mode		2.0	3.0	mA
Operating-state supply current	ICC AV	R _L = ∞ Duty cycle = 50%		3.5	6.0	mA

■ Characteristic curves (Ta = 25°C)

Oscillation frequency (fosc) vs. timing capacitor capacitance (CT)

Output duty cycle vs. CS terminal voltage (Vcs)

Output duty cycle vs. DT terminal voltage (VDT)

Output duty cycle vs. FB terminal voltage (VFB)

CH-1 output source current (ISOURCE1) vs. supply voltage (Vcc)

L-level output voltage (Vo1L) vs. CH. 1 output sink current (ISINK1)

L-level output voltage (Vo₂L) vs. CH. 2 output sink current (ISINK2)

Supply current (Icc) vs. supply voltage(Vcc)

Operating-state supply current (ICCAV) vs. oscillation frequency (fosc)

Error amplifie frequency (f) vs. valtage gain (Av) / phase (θ)

■ Application circuit

• Flyback-transformer type and chopper type buck converter circuit

• Chopper type buck converter and inverting converter circuit

Parts tolerances characteristics are not defined in the circuit design sample shown above.

When designing an actual circuit for a product, you must determine parts tolerances and characteristics for safe and economical operation.

Please connect a capacitor, which the value is about $0.01\mu F$ to $0.1\mu F$, between VCC and REF terminals in order to prevent from irregular output pulse at start-up.