KingCountyHousing

January 1, 2018

1 Create the dataframe

```
In [8]: import pandas as pd
          housing_data = pd.read_csv("Data/KingCountyHousing.csv")
          # housing_data.head()
```

Here we have 21 Columns with 19 Features, and 21613 Observations.

2 Fix the date

We've now added a column for the age of the home, which will help us analyze the pricing.

```
In [14]: housing_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 22 columns):
id
                 21613 non-null int64
                 21613 non-null object
date
price
                 21613 non-null float64
bedrooms
                 21613 non-null int64
                 21613 non-null float64
bathrooms
sqft_living
                 21613 non-null int64
sqft_lot
                 21613 non-null int64
floors
                 21613 non-null float64
                 21613 non-null int64
waterfront
view
                 21613 non-null int64
                 21613 non-null int64
condition
                 21613 non-null int64
grade
sqft_above
                 21613 non-null int64
                 21613 non-null int64
sqft_basement
yr_built
                 21613 non-null int64
```

```
yr_renovated
                 21613 non-null int64
zipcode
                 21613 non-null int64
                 21613 non-null float64
lat
                 21613 non-null float64
long
                 21613 non-null int64
sqft_living15
sqft_lot15
                 21613 non-null int64
                 21613 non-null int64
age_of_house
dtypes: float64(5), int64(16), object(1)
memory usage: 3.6+ MB
In [15]: housing_data.columns
Out[15]: Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
                'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                'lat', 'long', 'sqft_living15', 'sqft_lot15', 'age_of_house'],
               dtype='object')
```

3 Select features and dependent variable

```
In [65]: feature_cols = [
             u'age_of_house',
             u'bedrooms',
             u'bathrooms',
             u'sqft_living',
             u'sqft_lot',
             u'floors',
             u'waterfront',
             u'view',
             u'condition',
             u'grade',
             u'sqft_above',
             u'sqft_basement',
             u'yr_built',
             u'yr_renovated',
             u'zipcode',
             u'lat',
             u'long',]
         x = housing_data[feature_cols]
         y = housing_data["price"]
```

4 Visualize the features against the dependent variable

```
plt.title("Age of House")
plt.scatter(housing_data["age_of_house"],housing_data["price"])
```

Out[19]: <matplotlib.collections.PathCollection at 0x285dca962b0>

Out[20]: <matplotlib.collections.PathCollection at 0x285dcadf320>

Out[22]: <matplotlib.collections.PathCollection at 0x285dcb53400>

Out[23]: <matplotlib.collections.PathCollection at 0x285dcbb9908>

Out[24]: <matplotlib.collections.PathCollection at 0x285dcc20dd8>

Out[25]: <matplotlib.collections.PathCollection at 0x285dcf58ba8>

Out[26]: <matplotlib.collections.PathCollection at Ox285dcf96ba8>

Out[27]: <matplotlib.collections.PathCollection at 0x285dd028080>

Out[28]: <matplotlib.collections.PathCollection at 0x285dd08d8d0>

Out[29]: <matplotlib.collections.PathCollection at 0x285dd0fe198>

Out[30]: <matplotlib.collections.PathCollection at 0x285dd15e860>

Out[31]: <matplotlib.collections.PathCollection at 0x285dd1bce48>

Out[32]: <matplotlib.collections.PathCollection at 0x285dd2267b8>

Out[33]: <matplotlib.collections.PathCollection at Ox285dd28d6a0>

Out[66]: <matplotlib.collections.PathCollection at 0x285e5dac390>

Out[67]: <matplotlib.collections.PathCollection at Ox285e5e00160>

Out[68]: <matplotlib.collections.PathCollection at Ox285e5e61588>

5 Split the training and test data

6 Fitting the model to the training set

```
print("removing: "+str(i)+", with P val: "+str(regressor_OLS.pvalues[i]
                      return backwardElim(np.delete(X_opt, i, axis=1), SL)
           return X_opt
In [92]: import statsmodels.formula.api as sm
        X = np.append(arr = np.ones((21613,1)).astype(int), values = x, axis = 1)
        X_{\text{opt}} = X[:, [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]]
        SI. = 0.05
        X_opt = backwardElim(X_opt, SL)
        regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
                         OLS Regression Results
______
Dep. Variable:
                             price
                                    R-squared:
                                                                  0.700
Model:
                               OLS
                                   Adj. R-squared:
                                                                  0.700
Method:
                     Least Squares F-statistic:
                                                                  3155.
                 Mon, 01 Jan 2018 Prob (F-statistic):
Date:
                                                                  0.00
Time:
                          15:03:35
                                    Log-Likelihood:
                                                           -2.9458e+05
No. Observations:
                                    AIC:
                             21613
                                                              5.892e+05
Df Residuals:
                                    BIC:
                             21596
                                                               5.893e+05
Df Model:
                               16
Covariance Type:
                         nonrobust
______
                                            P>|t|
                                                      [0.025
                                                                 0.975]
               coef
                      std err
         9.362e+06 2.88e+06
                                 3.254
                                           0.001
                                                    3.72e+06
                                                                1.5e+07
const
                                          0.000 -3.61e+04
          -3.04e+04 2932.859
                                                             -2.47e+04
x1
                                -10.365
x2
          -3.569e+04 1887.879
                                -18.905
                                           0.000 -3.94e+04
                                                             -3.2e+04
                                                   3.47e+04
                                          0.000
                                                               4.75e+04
x3
           4.11e+04
                     3247.663
                                12.656
x4
           114.7710
                        2.127
                                53.953
                                           0.000
                                                    110.601
                                                               118.941
            -0.0551
                                -1.589
                                           0.112
                                                      -0.123
                                                                  0.013
x5
                        0.035
x6
          5506.8689
                     3567.325
                                 1.544
                                           0.123 -1485.352 1.25e+04
          5.797e+05
                     1.73e+04
                                 33.442
                                           0.000
                                                   5.46e+05
                                                               6.14e+05
x7
                     2111.286
8x
          5.452e+04
                                 25.821
                                           0.000
                                                    5.04e+04 5.87e+04
х9
          2.692e+04
                     2350.233
                                11.452
                                            0.000
                                                    2.23e+04
                                                             3.15e+04
x10
                     2060.886
                                48.580
                                            0.000
                                                    9.61e+04
                                                               1.04e+05
          1.001e+05
x11
            74.5709
                        2.136
                                34.905
                                            0.000
                                                      70.383
                                                                78.758
x12
            40.2011
                        2.643
                                15.212
                                            0.000
                                                      35.021
                                                                 45.381
          -2637.2436
                       72.548
                                                    -2779.442
x13
                                -36.352
                                            0.000
                                                               -2495.045
\times 14
            19.3364
                       3.648
                                 5.301
                                            0.000
                                                      12.187
                                                                 26.486
          -603.0424
                       32.804
                                -18.383
                                            0.000
                                                    -667.341
x15
                                                               -538.743
x16
                                 56.935
                                            0.000
                                                    5.89e+05
           6.098e+05
                     1.07e+04
                                                               6.31e+05
          -2.078e+05
                     1.29e+04
                                -16.090
                                            0.000
                                                    -2.33e+05
                                                               -1.82e+05
Omnibus:
                         18172.766
                                    Durbin-Watson:
                                                                  1.992
Prob(Omnibus):
                                    Jarque-Bera (JB):
                                                      1785086.012
                             0.000
                                    Prob(JB):
Skew:
                             3.509
                                                                   0.00
```

Kurtosis:	46.966	Cond.	No.	8.00e+16

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.34e-20. This might indicate that there are strong multicollinearity problems or that the design matrix is singular. removing: 6, with P val: 0.122676448789

OLS Regression Results

===========	=======================================		=========
Dep. Variable:	price	R-squared:	0.700
Model:	OLS	Adj. R-squared:	0.700
Method:	Least Squares	F-statistic:	3365.
Date:	Mon, 01 Jan 2018	Prob (F-statistic):	0.00
Time:	15:03:35	Log-Likelihood:	-2.9458e+05
No. Observations:	21613	AIC:	5.892e+05
Df Residuals:	21597	BIC:	5.893e+05

Df Model: 15 Covariance Type: nonrobust

=======	=========	=======	========	:=======	:=======	========
	coef	std err	t	P> t	[0.025	0.975]
const	8.47e+06	2.82e+06	3.005	0.003	2.95e+06	1.4e+07
x1	-3.032e+04	2932.545	-10.340	0.000	-3.61e+04	-2.46e+04
x2	-3.576e+04	1887.390	-18.947	0.000	-3.95e+04	-3.21e+04
хЗ	4.244e+04	3130.401	13.557	0.000	3.63e+04	4.86e+04
x4	114.2382	2.099	54.424	0.000	110.124	118.353
x5	-0.0583	0.035	-1.684	0.092	-0.126	0.010
x6	5.799e+05	1.73e+04	33.451	0.000	5.46e+05	6.14e+05
x7	5.454e+04	2111.312	25.830	0.000	5.04e+04	5.87e+04
8x	2.672e+04	2346.876	11.385	0.000	2.21e+04	3.13e+04
x9	1.003e+05	2057.307	48.757	0.000	9.63e+04	1.04e+05
x10	75.7444	1.996	37.939	0.000	71.831	79.658
x11	38.4927	2.400	16.038	0.000	33.788	43.197
x12	-2612.3789	70.739	-36.930	0.000	-2751.033	-2473.725
x13	19.6660	3.641	5.401	0.000	12.529	26.803
x14	-597.7268	32.624	-18.322	0.000	-661.672	-533.781
x15	6.111e+05	1.07e+04	57.230	0.000	5.9e+05	6.32e+05
x16	-2.1e+05	1.28e+04	-16.353	0.000	-2.35e+05	-1.85e+05
Omnibus:	=======	 18138	 .075 Durk	oin-Watson:		1.991
Prob(Omni	bus):	0	.000 Jaro	ue-Bera (JE	3):	1772812.098
Skew:		3		(JB):		0.00
Kurtosis:		46	.814 Cond	l. No.		7.42e+16
=======	=========	========	========	:=======	========	========

Warnings:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.89e-20. This might indicate that there are strong multicollinearity problems or that the design matrix is singular. removing: 5, with P val: 0.0922781409562

In [94]: regressor_OLS.summary()

Out[94]: <class 'statsmodels.iolib.summary.Summary'>

HHH

OLS Regression Results

============	:==========		=======================================
Dep. Variable:	price	R-squared:	0.700
Model:	OLS	Adj. R-squared:	0.700
Method:	Least Squares	F-statistic:	3604.
Date:	Mon, 01 Jan 2018	Prob (F-statistic):	0.00
Time:	15:04:38	Log-Likelihood:	-2.9458e+05
No. Observations:	21613	AIC:	5.892e+05
Df Residuals:	21598	BIC:	5.893e+05
Df Model:	14		
Covariance Type:	nonrobust		

______ P>|t| [0.025 0.975] 7.969e+06 2.8e+06 2.843 0.004 2.48e+06 const 1.35e+07 -3.029e+04 2932.588 -10.328 0.000 -3.6e+04 -2.45e+04 x1x2 -3.551e+04 1881.707 -18.873 0.000 -3.92e+04 -3.18e+04 xЗ 4.259e+04 3129.276 13.609 0.000 3.65e+04 4.87e+04 113.8393 2.086 54.579 0.000 109.751 117.928 x4 5.802e+05 1.73e+04 33.472 0.000 5.46e+05 6.14e+05 x5 25.780 0.000 5.02e+04 5.85e+04 x6 5.438e+04 2109.328 x7 2.674e+04 2346.953 11.392 0.000 2.21e+04 3.13e+04 1.004e+05 2057.200 48.782 9.63e+04 1.04e+05 8x 0.000 x9 75.4452 1.989 37.939 0.000 71.547 79.343 38.3951 2.400 16.001 33.692 43.098 x10 0.000 -2605.2632 -36.894 x11 70.616 0.000 -2743.675 -2466.851 x12 19.7064 3.641 5.412 0.000 12.569 26.844 -662.097 -534.204 -598.1506 32.625 -18.334 0.000 x13 6.125e+05 1.06e+04 57.520 0.000 5.92e+05 6.33e+05 -2.137e+05 1.26e+04 -16.908 0.000 -2.39e+05 -1.89e+05 ______ Omnibus: 18154.830 Durbin-Watson: 1.991

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1781798.770

 Skew:
 3.503
 Prob(JB):
 0.00

 Kurtosis:
 46.926 Cond. No.
 7.65e+16

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specif

[2] The smallest eigenvalue is 3.56e-20. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Removed 'floors' and 'waterfront' 70% accuracy