Introduction to Biostatistics BC 203

Final Exam Thursday, December 14, 2006

(Closed Book)

There are 25 questions, each worth 4 points.

Write out your solutions and circle your final answers. Show all your work on these pages. If you need more space write on the back of the page.

You have three hours to complete this exam.

1. A (hypothetical) study of 56 men sought to evaluate the effectiveness of the drug Rogaine for promoting hair growth. For each participant, hair growth during the month prior to taking Rogaine and for one month afterward was assessed and classified as 'minimal' or 'substantial'. The data and *partial* Stata output are provided below.

Hair Growth Before		after Rogair Substantial	ne Total			
Minimal Substantial	18 1	7 30	25 31			
Total	19	37	56			
<pre>chi2(1) = XXXX Prob > chi2 = 0.0339 Exact significance probability = 0.0703 Proportion with factor</pre>						
-	.4464286					
Controls	.3392857	[95% Conf	. Interval]			
differen odds rat odds rat		1.159529	.2199324 42.25854 315.4834	(test based) (exact)		

(a) State the null hypothesis in terms of the difference between the two population probabilities of interest. Be specific and define your notation.

(b) Is this test one or two-sided?

Proh	lem	1	continued
-1000			

(c)	Identify and	calculate the	appropriate	Chi-square	test-statistic
(6)	ruentily and	calculate the	appropriate	Cili-square	test-statistic.

(d) Calculate the critical value for the Chi-Square test in part (b) and state if you reject the null hypothesis that Rogaine promotes hair growth at the 5% level?

(e) Interpret and summarize these data using what is given in the Stata output. What do the data say about the ability of Rogaine to promote hair growth? Does this agree with your answer in part (d)? Justify your answer.

2.	Med we dev age	mall study was designed to compare the age of recipients of dicare services in community hospitals A and B. In hospital A, there 6 recipients with an average age of 74.5 and a sample standard iation of 5.2. In hospital B, there were 16 recipients with an average of 69.3 and a sample standard deviation of 5.2. A Wilcoxon ranking test of these data yielded a p-value of 0.0533.
	(a)	Construct a 95% confidence interval for the increase in average age of Hospital A over Hospital B when the population variance is assumed to be same for both hospitals.
	(b)	Calculate the test statistic and the critical value for a test with size 5% under the assumptions stated in part (a).

Under these assumptions, would you reject the null hypothesis that the age difference is zero?

(c)

Problem 2 co	ntinued.
--------------	----------

(d)	Construct a 95% confidence interval for the increase in average age of Hospital A over Hospital B without assuming anything about the population variances.
(e)	Calculate the test statistic and the critical value for a test with size 5% under the assumptions stated in part (d).
(f)	Under these assumptions, would you reject the null hypothesis that the age difference is zero?

Problem 2 continued.

(g) The sample variances are equal, so it is quite tempting to assume that the population variances are equal. Does the Wilcoxon ranksum test impact the decision to assume equal variances or not? Answer 'yes' or 'no' and justify your answer. (You do not need to fill the entire page with your answer.)

- 3. Over the course of a month, Drug X is lowers the concentration of LDL cholesterol in the blood stream by 60 mg/dl (sd=25 mg/dl). A Phase II study with 39 participants is planned with the hopes of showing that the drug lowers LDL cholesterol by at least 50 mg/dl.
 - (a) What is the power of a two-sided test, with type I error of 5%?

(b) What is the smallest type I error that would yield at least 80% power?

Problem 3 continue

(c) What sample size would I need to achieve 80% power with a type I error of 5%?

(d) What sample size is needed to yield a 90% confidence interval with a margin of error of 5 mg/dl?

4. The table below displays the empirical evidence for the claim that drug X lowers the concentration of LDL cholesterol in the blood stream over a one month period. 8 participants were administered the drug and their LDL levels were recorded at baseline and one month later:

	LDL cholesterol (mg/dl)				
Id	Baseline (IdI0)	One month (ldl1)			
1	165	140			
2	232	165			
3	197	134			
4	197	125			
5	200	103			
6	215	125			
7	188	134			
8	174	123			

. ttest ldl0=ldl1, unpaired unequal

Two-sample t test with unequal variances

Variable	0bs	Mean	Std. Err.	Std. Dev.	 [95% Conf.	Interval]
ldl0 ldl1	8 8	196 131.125	7.540368 6.231938	21.32738 17.62658	178.1699 116.3888	213.8301 145.8612
combined	16	163.5625	9.616379	38.46551	143.0657	184.0593
diff		64.875	9.782341		43.82395	85.92605
diff = Ho: diff =	, ,	- mean(ldl	•	te's degrees	· ·	= 6.6318 = 13.5206
	lff < 0 = 1.0000	Pr(Ha: diff != T > t) =			iff > 0) = 0.0000

. ttest ldl0=ldl1, unpaired

Two-sample t test with equal variances

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
ld10 ld11	8 8	196 131.125	7.540368 6.231938	21.32738 17.62658	178.1699 116.3888	213.8301 145.8612
combined	16	163.5625	9.616379	38.46551	143.0657	184.0593
diff		64.875	9.782341		43.89397	85.85603
diff :	•) - mean(ldl	1)	degrees	t of freedom	= 6.6318 = 14
	iff < 0	Dr(Ha: diff !=			iff > 0

Pr(T < t) = 1.0000Pr(|T| > |t|) = 0.0000Pr(T > t) = 0.0000

Problem 4 continued.

. ttest ldl0=ldl1

0.0000

_						
ν_{a}	ır	ed	+	+	90	+
ı a		$-\alpha$	L	<u> </u>	-	L

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
ldl0 ldl1	8 8	196 131.125	7.540368 6.231938	21.32738 17.62658	178.1699 116.3888	213.8301 145.8612
diff	8	64.875	8.04327	22.7498	45.85569	83.89431
Ha: mean	(diff) < 0	На	: mean(diff)	!= 0	Ha: mean	(diff)
-) = 1.0000	Pr(:	Γ > t) =	0.0001	Pr(T > t) =

(a) After testing the null hypothesis that drug X lowers the concentration of LDL cholesterol at the 5% level, we

<u>reject</u> using a two-sample t-test with unequal variances
fail to reject using a two-sample t-test with unequal variances
reject using a two-sample t-test with equal variances
fail to reject using a two-sample t-test with equal variances
<u>reject</u> using a paired t-test
fail to reject using a paired t-test

(b) After testing the null hypothesis that drug X lowers the concentration of LDL cholesterol *by 45 mg/dl* at the 5% level, we

<u>reject</u> using a two-sample t-test with unequal variances
fail to reject using a two-sample t-test with unequal variances
reject using a two-sample t-test with equal variances
fail to reject using a two-sample t-test with unequal variances
reject using a paired t-test
fail to reject using a paired t-test

Dro	hl	om.	1	cont	ini	104
P(0)	l ()	em	4	(:())	1111	1⊖(1

(c) What is the observed test-statistic from the t-test that tests whether Drug X lowers the concentration of LDL cholesterol in the blood stream by 45 mg/d?

(d) What is the p-value from the t-test that tests whether drug X lowers the concentration of LDL cholesterol in the blood stream by 45 mg/d?

ſ	Dro	h	lom	1	continued
ŀ	71()	()	ш	4	COHHIUEO

(e) What is the p-value from the sign test that tests whether drug X lowers the concentration of LDL cholesterol in the blood stream by 45 mg/dl? (Hint: this test is two-sided.)

(f) Suppose that drug X lowers the concentration of LDL cholesterol *by 45* mg/dl 75% of the time, what is the power of the sign test you preformed in (e) ?

5.		pose we enroll 20 participants in a study and construct a 90% fidence interval for the probability of being cured of a disease using
	the	standard formula (i.e., $\hat{\theta}_n \pm Z_{\alpha/2} \sqrt{\hat{\theta}_n (1 - \hat{\theta}_n)/n}$). Also suppose that the
	true	e probability of being cured is $\theta = 0.15$.
	(a)	If we repeat this study with a larger sample, say n = 50, (from the same probability distribution) how will the variance of the new sample proportion, $\hat{\theta}_{50}$, compare to the variance of the old one, $\hat{\theta}_{20}$?
		 it will definitely be greater it will definitely be smaller it will probably be greater, although it might be smaller it will probably be smaller, although it might be greater there is no reason to expect it to be greater, and there is no reason to expect it to be smaller
	(b)	If we repeat this study with a larger sample, say $n = 50$, (from the same probability distribution) and construct a 90% confidence interval for the probability of being cured based on the new sample, how will the width of the new CI compare to the width of the old one?
		 it will definitely be greater it will definitely be smaller it will probably be greater, although it might be smaller it will probably be smaller, although it might be greater there is no reason to expect it to be greater, and there is no reason to expect it to be smaller
	(c)	If we repeat this study with a larger sample, say $n=50$, (from the same probability distribution) how will the coverage probability of the new confidence interval compare to the old one?
		 □ it will be approximately the same □ there is no reason to expect it to be different □ it will be closer to 90% □ it will be further from 90%