# Coordendas y Curvas Polares

## 1 Radianes (repaso)

El radián es la manera más usada para medir ángulos. Para entenderla, consideremos el círculo centrado en el origen y de radio r=1, denominada circunferencia unitaria. Entonces

El ángulo formado por dos radios de la circunferencia unitaria, medido en radianes, es igual a la longitud del arco que delimitan los radios.

#### Así,

- El ángulo nulo, corresponde a 0 radianes.
- El ángulo recto, corresponde a  $\frac{\pi}{2}$  radianes.
- El ángulo llano, corresponde a  $\pi$ .
- Un giro completo (360°) corresponde a  $2\pi$  (el perímetro de la circunferencia).

Entonces, valen las siguientes fórmulas de conversión:

Sea  $\alpha$  un cierto ángulo:

- 1. Si  $\alpha$  está medido en grados, entonces  $\alpha \equiv \frac{\alpha}{180^{\circ}} \pi$  radianes (pasaje de grados a radianes).
- 2. Si  $\alpha$  está medido en radianes, entonces  $\alpha \equiv \frac{\alpha}{\pi} 180^{\circ}$  (pasaje de radianes a grados).

#### 2 Coordenadas Polares

Muchas veces es útil utilizar otros sistemas de coordenadas distintos de las rectangulares. Uno de los más utilizados son las *coordenadas polares*.

Las coordenadas polares de un punto  $P(r,\theta)$  están determinadas por su distancia r a un punto fijo O (denominado polo) y el ángulo  $\theta$  (medido en sentido antihorario) entre el vector  $\overrightarrow{OP}$  y la semirecta fija Ox (denominada eje polar)



Figure 1: Representación polar de un punto

Dado un punto  $P(r, \theta)$  en coordenadas polares

- r es el radio vector.
- $\theta$  es el argumento.

#### Coordenadas polares elementales

Si tomamos r > 0 y  $\theta \in [0, 2\pi)$ , cada punto P del plano queda **unívocamente** determinado por sus coordenadas polares  $P(r, \theta)$ .

Por convención tomamos O(0,0).

**Ejemplo 1:** Todo punto de la circunferencia unitaria tiene coordenadas polares  $P(1,\theta)$ , donde  $\theta$  es el ángulo que el vector  $\overrightarrow{OP}$  forma con el vector  $\mathbf{i} = (1,0)$ .

### 2.1 Coordenadas polares generales

A menudo, al realizar cálculos con sistemas en coordenadas polares, podemos obtener el ángulo  $\theta$  fuera del intervalo  $[0,2\pi)$ . Análogamente, también podemos obtener como resultado puntos  $P(r,\theta)$  con r<0. Para resolver esta situación, utilizamos las siguientes convenciones:

Sean r > 0,  $\theta \in \mathbb{R}$ , entonces

- 1.  $P(r,\theta) = (r, \theta + 2n\pi), n \in \mathbb{Z},$
- 2.  $P(r, \theta) = (-r, \theta + \pi),$
- 3.  $P(-r, \theta) = (r, \theta + \pi)$ .

En base a las convenciones escritas arriba, podemos observar lo siguiente:

• Si representamos un punto por coordenadas polares  $P(r,\theta)$ , la fórmula (1) nos dice que siempre podremos llevar el ángulo  $\theta$  al intervalo  $[0,2\pi)$  sumando o restando adecuadamente  $2\pi$  la cantidad de veces necesarias.

**Ejemplo 2:** De acuerdo a la convención (1) tendremos que los puntos  $P(1, \frac{\pi}{4})$ ,  $Q(1, \frac{9}{4}\pi)$  y  $R(1, -\frac{15}{4}\pi)$  coinciden.

En efecto 
$$P(1, \frac{\pi}{4}) = (1, \frac{\pi}{4} + 2\pi) = Q(1, \frac{9}{4}\pi)$$
. Análogamente  $P(1, \frac{\pi}{4}) = (1, \frac{\pi}{4} - 2 \times 2\pi) = R(1, -\frac{15}{4}\pi)$ .

• Si representamos un punto por coordenadas polares  $P(r, \theta)$ , las fórmulas (2) y (3), nos indican que para r < 0 la convención es tomar el valor |r| en el sentido opuesto al del vector  $\mathbf{u}(1, \theta)$ .

**Ejemplo 3:** Los puntos 
$$P(-2, \frac{\pi}{3})$$
 y  $Q(2, \frac{4}{3}\pi)$  coinciden pues  $P(-2, \frac{\pi}{3}) = (2, \frac{\pi}{3} + \pi) = Q(2, \frac{4}{3}\pi)$ .

De los dos ejemplos anteriores, podemos observar lo siguiente:

Tener en cuenta que

- Al representar puntos de manera polar  $P(r, \theta)$  con  $r, \theta \in \mathbb{R}$  perdemos la representación única del punto.
- La unicidad de la representación se **recupera** al usar las convenciones (1), (2) y (3) para llegar a la representación  $P(r, \theta)$  con r > 0 y  $\theta \in [0, 2\pi)$ .

**Ejemplo 4:** Encontrar la representación polar única de  $P(-2, -\frac{17}{5}\pi)$ .

Primero lo que haremos es usar quitar el signo negativo del radio:  $P(-2, -\frac{17}{5}\pi) = (2, -\frac{17}{5}\pi + \pi) = (2, -\frac{12}{5}\pi)$ .

Ahora llevamos el argumento al intervalo  $[0,2\pi)$ :  $P(2,-\frac{12}{5}\pi)=(2,-\frac{12}{5}\pi+2\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)=(2,-\frac{2}{5}\pi)$ 

#### 2.2 Conversión entre sistemas de coordenadas

Ya hemos visto que las coordenadas cartesianas y las polares son dos formas diferentes de representar puntos en el plano. Entonces, un mismo punto admite representaciones  $P(x,y) \equiv (r,\theta)$ . Ahora veremos cómo pasar de un sistema a otro.

Si el polo y el origen de coordenadas coinciden, y el eje polar Ox está sobre el semieje x positivo, el cambio de coordenadas de un punto  $P(x,y) \equiv (r,\theta)$  está dado por:

- 1.  $x = r\cos(\theta)$ ,  $y = r\sin(\theta)$  (polares a cartesianas),
- 2.  $r = \sqrt{x^2 + y^2}$ ,  $\tan(\theta) = \frac{y}{x}$ ,  $x \neq 0$ , (cartesianas a polares).

**Ejemplo 5:** Sea el punto  $P(2, \frac{1}{3}\pi)$  expresado en coordenadas polares, determinemos sus coordenadas cartesianas

Aquí r=2 y  $\theta=\frac{1}{3}\pi$ , luego  $x=2\cos\left(\frac{1}{3}\pi\right)=2\cdot\frac{1}{2}=1,\ y=2\sin\left(\frac{1}{3}\pi\right)=2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$ . Luego las coordenadas cartesianas del punto serán  $P(1,\sqrt{3})$ .

**Ejemplo 6:** Sea el punto P(2,1) expresado en coordenadas cartesianas, determinemos sus coordenadas polares.

Aquí x=2, y=1, y por las fórmulas de arriba  $r=\sqrt{2^2+1^2}=\sqrt{5}$ , y  $\theta=\arctan\left(\frac{1}{2}\right)=0,463648...$ , luego en coordenadas polares  $P(\sqrt{5};0,463648...)$ 

## Cálculo del $\arctan(\frac{y}{x})$

Al pasar de coordenadas cartesianas a polares, pueden surgir algunas dificultades.

**Ejemplo 7:** Dado el punto P(-2,2) en coordenadas cartesianas, expresarlo en polares. Vemos que  $r = \sqrt{(-2)^2 + 2^2} = \sqrt{8} > 0$ . Al calcular el argumento tenemos lo siguiente:

$$\theta = \arctan\left(\frac{2}{-2}\right) = \arctan(-1) = -\frac{\pi}{4} \notin [0, 2\pi),$$

Entonces podemos sumarle  $\pi$  al valor obtenido y tendremos que  $\theta_1 = -\frac{\pi}{4} + \pi = \frac{3}{4}\pi$  está en el intervalo  $[0, 2\pi)$  y cumple  $\tan(\theta_1) = -1$ .

Pero si sumamos  $2\pi$ , tendremos  $\theta_2 = -\frac{\pi}{4} + 2\pi = \frac{7}{4}\pi$ , que también está en el intervalo  $[0, 2\pi)$  y cumple  $\tan(\theta_2) = -1$ .

Sin embargo, vemos que el punto P(-2,2) está en el segundo cuadrante, mientras que los puntos con argumento  $\theta_2=\frac{7}{4}\pi$  están en el cuarto cuadrante.

Luego, el valor buscado del argumento es  $\theta = \theta_1$ , y las coordenadas polares del punto son  $P(\sqrt{8}, \frac{3}{4}\pi)$ .

#### Recapitulando sobre el ejemplo anterior:

La función arctan toma valores  $\arctan(t) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  (así da en la mayoría de las calculadoras), pero nosotros necesitamos que  $\theta = \arctan\left(\frac{y}{x}\right) \in [0, 2\pi)$ .

Por otro lado, sabemos que  $z = \tan(\alpha) = \tan(\alpha + \pi)$ , por lo que tanto  $\alpha$  como  $\alpha + \pi$  son resultados aceptables para  $\arctan(z)$ . Así resulta que en el intervalo  $[0, 2\pi)$  siempre habrá pares de valores  $\theta_1$  y  $\theta_2$  verificando  $\tan(\theta_1) = \tan(\theta_2)$ .

Por eso, tal como lo hicimos en el ejemplo, la elección adecuada del argumento  $\theta$  finalmente resultará de analizar a cuál cuadrante pertenece el punto.

Para obtener  $\theta$  en el intervalo  $[0, 2\pi)$ , se deben usar los siguientes criterios:

$$\theta = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si} \quad x > 0, y \geq 0 \quad \text{(primer cuadrante)} \\ \frac{\pi}{2} & \text{si} \quad x = 0, y > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si} \quad x < 0 \quad \text{(segundo y tercer cuadrante)} \\ \frac{3}{2}\pi & \text{si} \quad x = 0, y < 0 \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{si} \quad x > 0, y < 0 \quad \text{(cuarto cuadrante)}. \end{cases}$$

### 3 Lugar geométrico y funciones polares

Las coordenadas polares permiten expresar algunos lugares geométricos de manera más sencilla que en rectangulares.

**Ejemplo 8:** Expresar en coordenadas polares el lugar geométrico  $x^2 + y^2 = 4$  (circunferencia de radio 2, centrada en el origen).

Hacemos el reemplazo  $x = r\cos(\theta)$ ,  $y = r\sin(\theta)$  y resulta

$$x^2 + y^2 = (r\cos(\theta))^2 + (r\sin(\theta))^2 = r^2\cos^2(\theta) + r^2\sin^2(\theta) = r^2\left(\cos^2(\theta) + \sin^2(\theta)\right) = r^2 = 4.$$

Como r > 0, tendremos r = 2, y esa será la ecuación polar de la circunferencia.

Notemos que en coordenadas polares, este lugar geométrico se convierte en una función.

**Ejemplo 9:** Expresar en coordenadas polares el lugar geométrico  $x^2 + y^2 - 4x + 6y = 0$ .

Nuevamente hacemos el reemplazo  $x = r\cos(\theta)$ ,  $y = r\sin(\theta)$  y resulta

$$\begin{split} r^2 \cos^2(\theta) + r^2 \sin(\theta) - 4r \cos(\theta) + 6r \sin(\theta) &= 0 \\ r^2 + r^2 \left( 3 \sin(\theta) - 2 \cos(\theta) \right) &= 0 \\ r + 2 \left( 3 \sin(\theta) - 2 \cos(\theta) \right) &= 0 \\ r &= 2 \left( 2 \cos(\theta) - 3 \sin(\theta) \right). \end{split}$$

Veamos de qué lugar geométrico se trata:

$$x^2 + y^2 - 4x + 6y = x^2 - 4x + 4 - 4 + y^2 + 6y + 9 - 9 = (x - 2)^2 + (y + 3)^2 - 4 - 9 = 0 \implies \underbrace{(x - 2)^2 + (y + 3)^2 = 13}_{\text{circunferencia}}.$$

Así el lugar geométrico es una circunferencia de radio  $r = \sqrt{13}$ , centrada en el punto C(2, -3).

Notemos que en coordenadas polares, nuevamente este lugar geométrico se convierte en una función. Además, para  $\theta = \frac{\pi}{2}$ , tendremos que  $r = 2(2\cos\left(\frac{\pi}{2}\right) - 3\sin\left(\frac{\pi}{2}\right)) = -6$ .

**Ejemplo 10:** Considere el siguiente lugar geométrico  $9r^2 + 7r^2\cos^2(\theta) + 4r(9\sin(\theta) - 8\cos(\theta)) + 16 = 0$ . Determinar qué tipo de curva es.

Expresamos primero el lugar geométrico en coordenadas cartesianas:

$$9\underbrace{x^2 + y^2}_{x^2 + y^2} + 7\underbrace{x^2 \cos^2(\theta)}_{x^2} + 4x \left(9\sin(\theta) - 8\cos(\theta)\right) + 16 = 9(x^2 + y^2) + 7x^2 + 36\underbrace{x\sin(\theta)}_{y} - 32\underbrace{x\cos(\theta)}_{x} + 16$$

$$= 16x^2 - 32x + 9y^2 + 36y + 16$$

$$= 16(x^2 - 2x + 1) - 16 + 9(y^2 + 4y + 16) - 9 \times 16 + 16$$

$$= 16(x - 1)^2 + 9(y + 2)^2 - 9 \times 16 = 0$$

De la última expresión resulta  $16(x-1)^2 + 9(y+2)^2 = 9 \times 16 \Rightarrow \frac{(x-1)^2}{9} + \frac{(y+2)^2}{16} = 1.$ 

Algunas observaciones a partir de los ejemplos anteriores:

- Curvas que en coordenadas cartesianas solo las podemos representar como lugares geométricos, en coordenadas polares pueden expresarse como funciones.
- A menudo, esa expresión como función involucra radios negativos o valores de  $\theta$  fuera del rango  $[0, 2\pi)$ .

#### 3.1 Ecuación polar de las cónicas

Ahora trataremos de expresar las cónicas mediante ecuaciones en coordenadas polares.

**Ejemplo 11:** Expresar en coordenadas polares la parábola con vértice en el origen dada por  $y = \frac{x^2}{4c}$ . Nuevamente hacemos el reemplazo  $x = r\cos(\theta)$ ,  $y = r\sin(\theta)$  y resulta:

$$r\sin(\theta) = \frac{r^2\cos^2(\theta)}{4c} \Rightarrow \sin(\theta) = \frac{r\cos^2(\theta)}{4c} \Rightarrow r = 4c\frac{\sin(\theta)}{\cos^2(\theta)} = \underbrace{4c\tan(\theta)\sec(\theta) = r}_{\text{expresión final}}.$$

La expresión anterior, si bien es correcta, puede mejorarse y simplificarse (en general no nos gustan las ecuaciones con secantes y/o cosecantes).

Ejemplo 12: Supongamos que el foco de la parábola coincide con el polo.

Sea r = d(P, F) = d(P, O) y r' = d(P, directriz), entonces tendremos que

$$r = r' = r\sin(\theta) + 2c \quad \Rightarrow \quad r(1 - \sin(\theta)) = 2c \quad \Rightarrow \quad \underbrace{r = \frac{2c}{1 - \sin(\theta)}}_{\text{ecuación polar}}.$$

Vemos que esa última expresión es mucho más sencilla. De manera análoga, al colocar el origen de coordenadas en uno de los focos, las expresiones de las cónicas resultan sencillas:

La expresión polar de las cónicas con un foco sobre el origen de coordenadas son:

- 1. Parábola:  $r(\theta) = \frac{2c}{1 \sin(\theta)}$  (eje focal vertical).
- 2. Elipse:  $r(\theta) = \frac{b^2}{a + c\cos(\theta)} \ (a > b, c = \sqrt{a^2 b^2}).$
- 3. Hipérbola:  $r(\theta) = \frac{b^2}{a c\cos(\theta)}$  (eje focal horizontal,  $c = \sqrt{a^2 + b^2}$ ).