CSC 369 Lecture 15 Notes

Vocabulary

- 1. Multiprogramming
- 2. Mechanism
- 3. Policies
- 4. CPU Bound
- 5. I/O Bound
- 6. Non-preemtive Scheduling
- 7. Preemtive Scheduling

1 Recall State Diagram

• Thread/Process is blocked during I/O burst and therefore does not use CPU

2 Scheduling Goals

- All Systems
 - Fairness Each process receives fair share of CPU
 - Avoid starvation
 - Policy enforcement Usage policies should be met
 - Balance All parts of the system should be busy
- Bach Systems
 - Throughput Maximize job completed per hour
 - Turnaround time Minimize time between submission and completion
 - CPU utilization Keeps the CPU busy all the time

CSC 369 Lecture 15 Notes

3 Scheduling Goals

- Interactive Systems
 - $-\,$ Response time Minimize time between receiving request and starting to produce output
 - * Response time = First Run Time Arrival Time
 - Proportionality "Simple" tasks complete quickly
- Real-Time Systems
 - Meet deadlines
 - Predictability