МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(научно-исследовательский институт)»

Физтех-школа аэрокосмических технологий Кафедра общей физики

Голубятников Сергей

Отчёт по лабораторной работе
Исследование эффекта Комптона
3 курс, группа Б03-903

Руководитель работы		
	Л.В. Инжечик	
«»	2021 г.	

Долгопрудный, 2021 г.

Содержание

1. Цель работы	3
2. Теория	3
3. Экспериментальная установка	4
4. Ход работы	4
5. Вывод	6
Список используемой литературы	6

1. Цель работы

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

В работе используются: поглотители (свинцовые, алюминивые, железные), коллиматор, сцинтилляционный счётчик, пересчётный прибор, высоковольтный выпрямитель.

2. Теория

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим. Интерпретируется как результат упругого соударения *gamma*-квантов и свободных электронов. Запишем для этого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1 \tag{1}$$

$$\frac{\hbar\omega_0}{c} = \gamma m v \cos\phi + \frac{\hbar\omega_1}{c} * \cos\theta \tag{2}$$

Решая совместно эти уравнения и переходя от частот к длинам волн, получаем изменение длины волны рассеянного излучения:

$$\lambda = \lambda_1 - \lambda_0 = \frac{h}{mc}(1 - \cos\theta) = \Lambda_K(1 - \cos\theta), \tag{3}$$

где λ_0,λ_1 - длины волн γ -кванта до и после рассеяния, а величина $\Lambda_K=\frac{h}{mc}=2.42\cdot 10^{10}$ см называется комптоновской длиной волны электрона.

При рассении на связанных электронах изменение импульса кванта воспринимается атомом в целом, поэтому набюдается несмещённая компонента в спектре рассеянного излучения (Томсоновское рассеяние). При увеличении энергии сечение томсоновского рассеяния уменьшается очень быстро, а сечение комптоновского рассеяния - незначительно. Поэтому эффект Комптона проявляеся наиболее отчётливо при использовании в качестве рассеивателя легких элементов и при энергии γ -лучей порядка сотен килоэлектрон-вольт.

Кроме того, γ -кванты испытывают в среде поглощение, называемое фотоэффектом и рождением электрон-позитронных пар. Процесс рождения пар пороговый и по порядку равен 1 МэВ, поэтому в рассматриваемом энергетическом диапазоне не происходит. При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом. Энергия возбуждения атома обычно поглощается соседними атомами рассеивателя.

3. Экспериментальная установка

Схема установки изображена на рисунке 1. Источником излучения служит ^{137}Cs , помещённый в толстостенный свинцовый контейнер с колиматором. Узкий пучок квантов попадает на графитовую мишень. Рассеянные кванты регистрируются сцинтилляционном счёсчиком. Сцинтиллятором служит кристалл NaI.

Рис.1. Схема установки. 1 - источник излучения, 2 - графитовая мишень, 3 - ФЭУ, 4 - сцинтиллятор, 5 - свинцовый коллиматор, 6 - лимб

4. Ход работы

Вначале измерим $N(\theta)$ и убедимся, что второй фотопик смещается влево. Результаты последовательных измерений приведём в Таблице 1.

θ	N	$1-\cos\theta$	σ_N
0	900	0.000	9
10	925	0.015	9
20	904	0.060	9
30	706	0.134	7
40	690	0.234	7
50	614	0.357	6
60	569	0.500	6
70	503	0.657	5
80	452	0.826	4
90	393	0.000	4
100	360	1.173	4
110	339	1.341	3
120	309	1.500	3

Таблица 1. Результаты измерений

Погрешности расчитаем по формуле:

$$\sigma_{1/N} = \frac{\sigma_N}{N^2},$$

$$\sigma_{1-\cos\theta} = \sin(\theta)\sigma_{\theta}.$$

Оформим полученные величины в виде графика (рис. 2) зависимости $\frac{1}{N}(1-\cos\theta)$.

Рис.2. График зависимости $\frac{1}{N(\theta)}$ от $1 - \cos\theta$

Для того чтобы найти энергию по графику нужно : найти пересечение линии с осью ординат это даст нам значение $N_{best}(0)$. А пересечение линии с прямой $cos\Theta = 0$ даст значение $N_{best}(90)$:

$$N_{\text{best}}(0) = \frac{1}{\frac{1}{N(0)}} = 921 \pm 20$$

$$N_{\text{best}}(90) = \frac{1}{\frac{1}{N(0)} + A} = 399 \pm 7$$

По графику: $mc^2 = 506 \pm 20$ к Θ в

где погрешности считались по формулам

$$\begin{split} \sigma_{N_{\text{best}}(0)} &= \frac{\sigma_{\frac{1}{N(0)}}}{(\frac{1}{N(0)})^2}, \\ \sigma_{N_{\text{best}}(90)} &= \frac{\sigma_{\frac{1}{N(0)}} + \sigma_A}{(\frac{1}{N(0)} + A)^2}. \end{split}$$

$$\sigma_{mc^2} = \sqrt{\left(\frac{\partial (mc^2)}{\partial N_{\text{\tiny HAUJ}}(0)}\right)^2 \sigma_{N_{\text{\tiny HAUJ}}(0)}^2 + \left(\frac{\partial (mc^2)}{\partial N_{\text{\tiny HAUJ}}(90)}\right)^2 \sigma_{N_{\text{\tiny HAUJ}}(90)}^2}$$

Результаты вычислений представим в виде таблицы 2.

Величина	Значение	Погрешность
$N_{best}(0)$	921	20
$N_{best}(90)$	399	7
mc^2 , МэВ	0.506	0.020

Таблица 2. Результаты вычислений

5. Вывод

В ходе лабораторной работы исследовали энергетический спект γ — квантов, рассеяных на графите. Определили энергию рассеянных γ — квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние. Определили энергию рассеянных квантов двумя способами: по формуле ($mc^2=0.506~{\rm MpB}$) и при помощи графиков ($mc^2=0.515~{\rm MpB}$). Результаты совпадают с учетом погрешности.

Список литературы

[1] Лабораторный практикум по общей физике: Учеб. пособие для вузов. Т. 3. Квантовая физика / Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М.; Под ред. Ципенюка Ю.М. - М.:Физматкнига, 2005. 432 стр.