CMIP6 Model Documentation

Institute: NOAA-GFDL Model: GFDL-AM4 Topic: Atmosphere

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	14
5	Turbulence Convection	27
6	Microphysics Precipitation	31
7	Cloud Scheme	33
8	Observation Simulation	37
9	Gravity Waves	40
10	Natural Forcing	44

1 Key Properties

Atmosphere key properties

1.1.1 Top level properties

Atmosphere key properties

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPERATED list:

1.1.1.3 Overview *

Overview of atmos model.

1.1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

\boxtimes	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Primitive equations
Non-hydrostatic
Anelastic
Boussinesq
Hydrostatic
Quasi-hydrostatic
Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

33

1.2.1.5 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

П	True	Г	False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

Timestep for the dynamics in seconds

30

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

3600

1.3.1.3 Timestep Longwave Radiative Transfer

 $Timestep\ for\ the\ longwave\ radiative\ transfer\ in\ seconds.$

=60*60*3

1.4.1 Orography

Characteristics of the model orography

1.4.1.1 Type *			
Type of orographic representation.			
Fixed: present day			
Fixed: modified - Provide details of modification below			
Other - please specify:			
1.4.1.0.34 .10.1			
1.4.1.2 Modified			
If the orography type is modified describe the adaptation.			
Select MULTIPLE options:			
Related to ice sheets			
Related to tectonics			
Modified mean			
Modified variance if taken into account in model (cf gravity waves)			
Other - please specify:			
1.4.1.3 Time-varying			
Describe any time varying orographic change			
Enter TEXT:			
1.5.1 Tuning Applied			
Tuning methodology for atmospheric component			
1.5.1.1 Description *			
General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.			
Enter TEXT:			

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPERATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.1.4 Trend Metrics Used

 $List\ observed\ trend\ metrics\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

2 Grid

Atmosphere grid

	2.	1.	1	Top	level	pro	perties
--	----	----	---	-----	-------	-----	---------

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type *

Horizontal discretisation type

Spectral
Fixed grid
Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Ш	Finite elements
	Finite volumes
	Finite difference
	Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Second
Third
Fourth

	Other - please specify:	
2.1.2.4	Horizontal Pole	
Horizonta	l discretisation pole singularity treatment	
	Filter	
	Pole rotation	
	Artificial island	
	Other - please specify:	
2.1.2.5	Grid Type *	
	l grid type	
	Gaussian	
	Latitude-Longitude	
\boxtimes	Cubed-Sphere	
	Icosahedral	
	Other - please specify:	
2.1.3 Vertical		
Atmosph	nere discretisation in the vertical	
2.1.3.1 Coordinate Type *		
Type of vertical coordinate system		
	Isobaric - Vertical coordinate on pressure levels	
	Sigma - Allows vertical coordinate to follow model terrain	
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above	
	Hybrid pressure	
	Vertically lagrangian	
	Other - please specify:	

3 Dynamical Core

Characteristics of the dynamical core

3.1.1 Top level properties

Characteristics of the dynamical core

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

3.1.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

Overview of characteristics of the agricultical core in aimos mode				
3.1.1.3 Timestepping Type *				
Timestepp	oing framework type			
	Adams-Bashforth			
	Explicit			
	Implicit			
	Semi-implicit			
	Leap frog			
	Multi-step			
	Runge Kutta fifth order			
	Runge Kutta second order			
	Runge Kutta third order			
	Other - please specify:			
3.1.1.4	Prognostic Variables *			
List of the model prognostic variables				
	Surface pressure			
	Wind components			
	Divergence/curl			
	Temperature			
	Potential temperature			
	Total water			

	Water vapour			
	Water liquid			
	Water ice			
	Total water moments			
	Clouds			
	Radiation			
	Other - please specify:			
3.2.1	Гор Boundary			
$Type\ of$	boundary layer at the top of the model			
3.2.1.1	Top Boundary Condition *			
Top boun	dary condition			
	Sponge layer			
	Radiation boundary condition			
	Other - please specify:			
3.2.1.2	Top Heat *			
Top boun	dary heat treatment			
3.2.1.3	Top Wind *			
	dary wind treatment			
3.3.1 l	Lateral Boundary			
	lateral boundary condition (if the model is a regional model)			
3.3.1.1	Condition			
Type of le	ateral boundary condition			
Selec	t SINGLE option:			
	Sponge layer			
	Radiation boundary condition			
	Other - please specify:			
-				

3.4.1 Diffusion Horizontal

 $Horizontal\ diffusion\ scheme$

3.4.1.1 Scheme Name

 $Horizontal\ diffusion\ scheme\ name$

3.4.1.2	Scheme Method *
Horizonta	l diffusion scheme method
	Iterated Laplacian
	Bi-harmonic
	Other - please specify:
3.4.2 7	racers .
	$dvection \ scheme$
	~ .
	Scheme Name
Tracer ad	vection scheme name
	Heun
	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:
3.4.2.2	Scheme Characteristics *
Tracer add	vection scheme characteristics
	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
	Finite volume
	Flux-corrected
	Linear

	Quadratic
	Quartic
	Other - please specify:
3 4 2 3	Conserved Quantities *
	vection scheme conserved quantities
	Dry mass
	Tracer mass
	Other - please specify:
3.4.2.4	Conservation Method *
Tracer ad	vection scheme conservation method
	Conservation fixer
	Priestley algorithm
	Other - please specify:
3 4 3 N	Momentum
	um advection scheme
Moment	
Moment 3.4.3.1	um advection scheme
Moment 3.4.3.1	um advection scheme Scheme Name
Moment 3.4.3.1	um advection scheme Scheme Name m advection schemes name
Moment 3.4.3.1	um advection scheme Scheme Name m advection schemes name VanLeer
Moment 3.4.3.1	um advection scheme Scheme Name m advection schemes name VanLeer Janjic
Moment 3.4.3.1 Momentus	um advection scheme Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin)
Moment 3.4.3.1 Momentum	Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify:
Moment 3.4.3.1 Momentum	Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: Scheme Characteristics *
Moment 3.4.3.1 Momentum	Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: Scheme Characteristics * m advection scheme characteristics
Moment 3.4.3.1 Momentum	Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: Scheme Characteristics * m advection scheme characteristics 2nd order
Moment 3.4.3.1 Momentum	Scheme Name m advection schemes name VanLeer Janjic SUPG (Streamline Upwind Petrov-Galerkin) Other - please specify: Scheme Characteristics * m advection scheme characteristics 2nd order 4th order

	Other - please specify:
3.4.3.3	Scheme Staggering Type *
Momentu	m advection scheme staggering type
	Arakawa B-grid
	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
	Conserved Quantities * m advection scheme conserved quantities
	•
	Angular momentum
	Horizontal momentum
	Enstrophy
	Mass
	Total energy
\boxtimes	Vorticity
	Other - please specify:
3.4.3.5	Conservation Method *
Momentu	m advection scheme conservation method
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

4.1.1.3 Aerosols *

Aerosols v	whose radiative effect is taken into account in the atmosphere model
	Sulphate
	Nitrate
	Sea salt
	Dust
	Ice
	Organic
\boxtimes	BC - Black carbon / soot
	SOA - Secondary organic aerosols
	POM - Particulate organic matter
	Polar stratospheric ice
	NAT - Nitric acid trihydrate
	NAD - Nitric acid dihydrate
	STS - Supercooled ternary solution aerosol particle
	Other - please specify:

4.2.1 Shortwave Radiation

Properties of the shortwave radiation scheme

4.2.1.1 Name	
Commonly used name for the shortwave radiation scheme	
Enter TEXT:	
4.2.1.2 Spectral Integration *	
Shortwave radiation scheme spectral integration	
Wide-band model	
Correlated-k	
Exponential sum fitting	
Other - please specify:	
4.2.1.3 Transport Calculation *	
Shortwave radiation transport calculation methods	
Select MULTIPLE options:	
☐ Two-stream	
Layer interaction	
Bulk - Highly parameterised methods that use bulk expressions	
Adaptive - Exploits spatial and temporal correlations in optical characteristics	
Multi-stream	
Other - please specify:	
4.2.1.4 Spectral Intervals *	
Shortwave radiation scheme number of spectral intervals	
18	
4.2.1.5 General Interactions *	
General radiative interactions e.g. with aerosols, cloud ice and cloud water	
Select MULTIPLE options:	
Emission/absorption,	
☐ Scattering	
Other - please specify:	

4.3.1 Shortwave GHG

Representation of greenhouse gases in the shortwave radiation scheme

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ee concentration
concentra	${ m HFC}\text{-}134a$ eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}\text{-}134a$ equivalence tion
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.3.1.2 Ozone dep model	ODS oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone dep model	
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere t MULTIPLE options:
Ozone dep model	t MULTIPLE options: CFC-12 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC HCFC-141b - HCFC

	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC

	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1.1 l	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area ees
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4 4 1 0 4	O-4:1 M-41 d- *
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
	MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

Physical representation of cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii Droplet size distribution Liquid water path - Integrated liquid water path through the cloud kg m-2 Other - please specify: 4.5.1.2 Optical Methods * Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Geometric optics - For non-spherical particles Mie theory - For spherical particles Other - please specify: 4.6.1 Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 4.6.1.1 Cloud Inhomogeneity * Method for taking into account horizontal cloud inhomogeneity Select SINGLE option: Monte Carlo Independent Column Approximation - McICA Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010 Analytic Other - please specify: 4.7.1 Shortwave Aerosols Shortwave radiative properties of aerosols 4.7.1.1 Physical Representation * Physical representation of aerosols in the shortwave radiation scheme

4.5.1.1 Physical Representation *

Select MULTIPLE options:

	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.7.1.2	Optical Methods *
Optical m	nethods applicable to aerosols in the shortwave radiation scheme
Selec	et MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
121	Longwave Radiation
	ies of the longwave radiation scheme
4.8.1.1	
Common	ly used name for the longwave radiation scheme.
Ente	r TEXT:
4.8.1.2	Spectral Integration *
Longwave	e radiation scheme spectral integration
Selec	et SINGLE option:
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
10	
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 l	Longwave GHG
Represe	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexi	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalen	${ m CFC-12~eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${ m CFC-12}$ ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion

	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2 Ozone der model	ODS pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	t MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other \ flour in a ted \ gases \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model$

Select MULTIPLE options:

	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	${ m HFC} ext{-}143a$ - ${ m HFC}$
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	${ m HFC\text{-}43\text{-}10mee}$ - ${ m HFC}$
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.10.1 Longwave Cloud Ice	
10 нуwav	e radiative properties of ice crystals in clouds
4.10.1.1	Physical Reprenstation *

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns		
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes		
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res		
	Ice water path - Integrated ice water path through the cloud kg m-2 $$		
	Crystal asymmetry		
	Crystal aspect ratio		
	Effective crystal radius		
	Other - please specify:		
4.10.1.2	Optical Methods *		
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme		
Select	t MULTIPLE options:		
	T-matrix - For non-spherical particles		
	Geometric optics - For non-spherical particles		
	Finite difference time domain (FDTD) - For non-spherical particles		
	Mie theory - For spherical particles		
	Anomalous diffraction approximation		
	Other - please specify:		
4.11.1	4.11.1 Longwave Cloud Liquid		
Longwav	e radiative properties of liquid droplets in clouds		
4.11.1.1	Physical Representation *		
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme		
Select	t MULTIPLE options:		
	Cloud droplet number concentration - CDNC		
	Effective cloud droplet radii		
	Droplet size distribution		
	Liquid water path - Integrated liquid water path through the cloud kg m-2		
	Other - please specify:		

4.11.1.2	Optical Methods *
$Optical\ m$	ethods applicable to cloud liquid droplets in the longwave radiation scheme
Select	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
Cloud in	homogeneity in the longwave radiation scheme
4.12.1.1	Cloud Inhomogeneity *
Method fo	r taking into account horizontal cloud inhomogeneity
Select	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.13.1	Longwave Aerosols
Longwav	ne radiative properties of aerosols
4.13.1.1	Physical Representation *
Physical r	representation of aerosols in the longwave radiation scheme
Select	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select	MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

5.2.1 Boundary Layer Turbulence

 $Properties \ of \ the \ boundary \ layer \ turbulence \ scheme$

5.2.1.1	Scheme Name
Boundary	layer turbulence scheme name
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.1.2	Scheme Type *
Boundary	layer turbulence scheme type

undary	layer turbulence scheme type
	TKE prognostic
	TKE diagnostic
	TKE coupled with water
	Vertical profile of Kz
	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
	Coupled with convection
П	Coupled with gravity waves

	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
	Closure Order *
Boundary	layer turbulence scheme closure order
1	
5.2.1.4	Counter Gradient *
Uses boun	dary layer turbulence scheme counter gradient
	True
531 I	Deep Convection
	es of the deep convection scheme
тторени	es of the deep convection scheme
5.3.1.1	Scheme Name
Deep conv	vection scheme name
5.3.1.2	Scheme Type *
Deep conu	vection scheme type
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep conu	vection scheme method
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
\square sphere	${\it CAPE/WFN}$ based - ${\it CAPE-Cloud}$ Work Function: Based on the quasi-equilibrium of the free tropo-
	$\label{thm:thm:mass} \mbox{TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer}$
	Other - please specify:

5.3.1.4	Processes *
Physical	processes taken into account in the parameterisation of deep convection
	Vertical momentum transport
	Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Updrafts
	Downdrafts
	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of drometeor and water vapor from updrafts
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:
5.4.1	Shallow Convection
Propert	ies of the shallow convection scheme
5.4.1.1	Scheme Name
Shallow o	convection scheme name
5.4.1.2	Scheme Type *
	convection scheme type
	Mass-flux
	Cumulus-capped boundary layer
	Other - please specify:

5.4.1.3	Scheme Method *
Shallow c	onvection scheme method
	Same as deep (unified)
	Included in boundary layer turbulence
	${\bf Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria}$
	Other - please specify:
	Processes *
Physical p	processes taken into account in the parameterisation of shallow convection
	Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Re-evaporation of convective precipitation
	Other - please specify:
5.4.1.5	Microphysics
Microphys	sics scheme for shallow convection
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

6.2.1.2 Hydrometeors *

Precipitati	$ing\ hydrometeors\ taken\ into\ account\ in\ the\ large\ scale\ precipitation\ scheme$
	Liquid rain
	Snow
	Hail
	Graupel
	Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

6.3.1.2	Processes *
Large scal	le cloud microphysics processes
	Mixed phase
	Cloud droplets
	Cloud ice
	Ice nucleation
	Water vapour deposition
	Effect of raindrops
	Effect of snow
	Effect of graupel
	Other - please specify:

7	Cloud	l Scheme	n
1	CHOIL	ı əcneme	е

Characteristics of the cloud scheme

	7.1	1.1	Top	level	pro	pertie
--	-----	-----	-----	-------	-----	--------

Characteristics of the cloud scheme

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

7.1.1.3 Scheme Type *				
Describes the $type(s)$ of cloud scheme: prognostic, diagnostic, other.				
Selec	t MULTIPLE options:			
	Prognostic			
	Diagnostic			
	Other - please specify:			

7.1.1.4 Uses Separate Treatment *

Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)

7.1.1.5 Processes *				
Processes	$included \ in \ the \ cloud \ scheme$			
	Entrainment			
	Detrainment			
	Bulk cloud			
	Other - please specify:			

7.1.1.6 Prognostic Variables

List	the	prognostic	variables	used	by	the	cloud	scheme,	if	applicable
	П	Cloud a	mount							

ш	Cloud amoun
	Liquid
П	Ice

	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
	Atmosphere_radiation
	Atmosphere_microphysics_precipitation
	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1 (Optical Cloud Properties
Optical o	cloud properties
7.2.1.1	Cloud Overlap Method
Method fo	r taking into account overlapping of cloud layers
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:
7.2.1.2	Cloud Inhomogeneity
	r taking into account cloud inhomogeneity

7.3.1 Sub Grid Scale Water Distribution

Sub-grid scale water distribution

7.3.1.1 Type *
Sub-grid scale water distribution type
Select SINGLE option:
Prognostic
Diagnostic
7.3.1.2 Function Name *
Sub-grid scale water distribution function name
7.3.1.3 Function Order *
Sub-grid scale water distribution function type
Enter INTEGER value:
7.3.1.4 Convection Coupling *
$Sub\mbox{-}grid\ scale\ water\ distribution\ coupling\ with\ convection$
Coupled with deep
Coupled with shallow
Not coupled with convection
7.4.1 Sub Grid Scale Ice Distribution
Sub-grid scale ice distribution
7.4.1.1 Type *
Sub-grid scale ice distribution type
Select SINGLE option:
Prognostic
Diagnostic
7.4.1.2 Function Name *
Sub-grid scale ice distribution function name
Enter TEXT:

7.4.1.3 Function Order	*
------------------------	---

 $Sub\mbox{-}grid\ scale\ ice\ distribution\ function\ type$

Enter INTEGER value:

1.4.1.4 Convection Coupling	7.4.1.4	Convection	Coupling	*
-----------------------------	---------	------------	----------	---

 $Sub\mbox{-}grid\ scale\ ice\ distribution\ coupling\ with\ convection$

Select MULTIPLE options:		
	Coupled with deep	
	Coupled with shallow	
	Not coupled with convection	

Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

8.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

oud sin	$nulator\ ISSCP\ top\ height\ estimation\ method\ Uet$
	No adjustment
\boxtimes	IR brightness
	Visible optical depth
	Other - please specify:
2.1.2	Top Height Direction

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction Lowest altitude level Highest altitude level Other - please specify:

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1	Run Configuration
Cloud sin	nulator COSP run configuration
\boxtimes	Inline
	Offline
	Other - please specify:
8.3.1.2	Number Of Grid Points
Cloud sin	nulator COSP number of grid points
Ente	r INTEGER value:
8.3.1.3	Number Of Sub Columns
Cloud sin	nulator COSP number of sub-cloumns used to simulate sub-grid variability
Ente	r INTEGER value:
8.3.1.4	Number Of Levels
Cloud sin	nulator COSP number of levels
40	
8.4.1 l	Radar Inputs
	eristics of the cloud radar simulator
8.4.1.1	Frequency
Cloud sin	nulator radar frequency (Hz)
9400	0
8.4.1.2	Type
Cloud sin	nulator radar type
	Surface
	Space borne
	Other - please specify:
8.4.1.3	Gas Absorption
Cloud sin	nulator radar uses gas absorption
	True

8.4.1.4	Effective Radius
$Cloud\ sim$	ulator radar uses effective radius
	True False
8.5.1 L	idar Inputs
Characte	ristics of the cloud lidar simulator
8.5.1.1	ce Types
$Cloud\ sim$	ulator lidar ice type
	Ice spheres
	Ice non-spherical
	Other - please specify:
8.5.1.2	Overlap
Cloud sim	ulator lidar overlap
	Max
	Random
	Other - please specify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

Enter TEXT:

9.1.1.3 Sponge Layer *			
Sponge la	yer in the upper levels in order to avoid gravity wave reflection at the top.		
Select SINGLE option:			
	Rayleigh friction		
	Diffusive sponge layer		
	Other - please specify:		

9.1.1.4 Background *

Background wave distribution

Selec	t SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:

9.1.1.5 Subgrid Scale Orography *

ubgrid	scale	orography	effects	taken	into	account.
	Ef	fect on dra	g			

Effect on lifting
Enhanced topography - To enhance the generation of long waves in the atmosphere

	Other - please specify:
	Orographic Gravity Waves waves generated due to the presence of orography
9.2.1.1	Name
Commonl	y used name for the orographic gravity wave scheme
Enter	· TEXT:
9.2.1.2	Source Mechanisms *
Orographi	c gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	c gravity wave calculation method
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	c gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:
9.2.1.5	Dissipation Scheme *
Orographi	c gravity wave dissipation scheme
	Total wave

	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1 [Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1.1	Name
Commonl	ly used name for the non-orographic gravity wave scheme
Ente	r TEXT:
9.3.1.2	Source Mechanisms *
Non-oroga	raphic gravity wave source mechanisms
	Convection
	Precipitation
	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-oroga	raphic gravity wave calculation method
	Spatially dependent
	Temporally dependent
9.3.1.4	Propagation Scheme *
Non-oroga	raphic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Other - please specify:
9.3.1.5	Dissipation Scheme *
	raphic gravity wave dissipation scheme
	Total wave

Ш	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10 Natural Forcing

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Select	MULTIPLE	options:
--------	----------	----------

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type \ast

Time adaptation of the solar constant.

Ш	Fixed
	Transient

Enter FLOAT value:
10.0.1.0 T
10.3.1.3 Transient Characteristics
Solar constant transient characteristics (W m-2)
10.4.1 Orbital Parameters
Orbital parameters and top of atmosphere insolation characteristics
Orona parameters and top of atmosphere insolution characteristics
10.4.1.1 Type *
Type of orbital parameter
Fixed
Transient
10.4.1.2 Fixed Reference Date
Reference date for fixed orbital parameters (yyyy)
23
10.4.1.3 Transient Method
Description of transient orbital parameters
Enter TEXT:
10.4.1.4 Computation Method
Method used for computing orbital parameters.
Select SINGLE option:
Berger 1978
Laskar 2004
U Other - please specify:
10.5.1 Insolation Ozone
Impact of solar insolation on stratospheric ozone
10.5.1.1 Solar Ozone Impact *
$Does\ top\ of\ atmosphere\ insolation\ impact\ on\ stratospheric\ ozone?$
☐ True ☐ False

If the solar constant is fixed, enter the value of the solar constant (W m-2).

10.3.1.2 Fixed Value

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes	Implementation	*
--------------------	----------------	---

How volcanic effects are modeled in the atmosphere.	
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: