$_{ m QCM}^{ m ALGO}$

- 1. Dans une file?
 - (a) L'entrée et la sortie sont aux deux extrémités de la file
 - (b) L'entrée et la sortie sont à la même extrémité de la file
 - (c) La position de l'entrée et de la sortie différent suivant les files
- 2. Quelles opérations ne définissent pas une liste récursive?
 - (a) debut
 - (b) longueur
 - (c) premier
 - (d) fin
 - (e) cons
- 3. La construction d'une pile est basée sur?
 - a L'ajout d'un élément au sommet de la pile
 - (b) La récupération du reste de la pile
 - (c) L'insertion d'un élément à la $K^{i\grave{e}me}$ place de la pile
 - (d) Le retrait d'un élément n'importe où dans la pile
- 4. Que représentent opération1 et opération2 dans l'axiome suivant (dans lequel e est un élément et x une pile)?

opération1(opération2 (e,x)) = x

- (a) opération1 = sommet, opération2 = dépiler
- (b) opération1 = dépiler, opération2 = sommet
- (c) opération1 = sommet, opération2 = empiler
- d opération1 = dépiler, opération2 = empiler
- 5. Une pile est une structure intrinsèquement?
 - (a) Récursive
 - (b) Itérative
 - (c) Répétitive
 - (d) Alternative
- 6. Que représentent x, opération1 et opération2 dans l'axiome suivant (dans lequel e est un Elément)?

est-vide (x) = faux => opération1(opération2 (e,x)) = opération2(e, opération1 (x))

- (a) x est une File, opération 1 = enfiler, opération 2 = défiler
- (b) x est une Pile, opération1 = dépiler, opération2 = empiler
- x est une File, opération1 = défiler, opération2 = enfiler
- (d) x est une Pile, opération 1 = ajouter, opération 2 = empiler

- 7. L'implémentation d'une pile sous une forme statique, n'est pas possible?
 - a faux
 - (b) vrai
- 8. L'implémentation d'une file sous la forme d'un tableau d'éléments, est dite?
 - (a) statique
 - (b) chaînée
 - (c) contiguë
 - (d) dynamique
- 9. Quelles opérations ne définissent pas une file?
 - (a) sommet
 - (b) enfiler
 - (c) dépiler
 - (d) file-vide
 - (e) cons
- 10. L'implémentation d'une file sous forme chaînée est toujours circulaire?
 - (a) faux
 - (b) vrai

QCM N°11

lundi 3 décembre 2012

Question 11

Soit $(a, b) \in \mathbb{N}^{*2}$. Alors

a.
$$a \wedge b = 10 \iff \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$$

(b)
$$a \wedge b = 10 \Longrightarrow \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$$

c.
$$\exists (u, v) \in \mathbb{Z}^2$$
, $au + bv = 10 \Longrightarrow a \land b = 10$

d. rien de ce qui précède

Question 12

Soit $(a,b) \in \mathbb{N}^{*2}$ tel que a et b sont premiers entre eux. Alors

(a)
$$a \wedge b = 1$$

(b) Le seul diviseur commun dans
$$\mathbb{N}$$
 de a et b est 1

c. Il existe un unique couple
$$(u,v)\in\mathbb{Z}^2$$
 tel que $au+bv=1$

d. rien de ce qui précède

Question 13

Soit $(a, b) \in \mathbb{N}^{*2}$. Alors

a.
$$a \mid a \wedge b$$

$$b. a \wedge b \leqslant b$$

c.
$$b \wedge 1 = b$$

(d.)
$$a \wedge b \geqslant 1$$

e. rien de ce qui précède

Question 14

Soit $(a,b,c)\in \mathbb{N}^{*3}$ tel que $a\wedge b=1$ et $a\wedge c=1.$ Alors

- a. $a \mid bc$
- b. $bc \mid a$
- (c) $a \wedge (bc) = 1$
 - d. rien de ce qui précède

Question 15

Soient $(a,b) \in \mathbb{N}^{*2}$ et p premier tel que $p \mid ab$. Alors

- a. $p \mid a \text{ et } p \mid b$
- b $p \mid a \text{ ou } p \mid b$
 - c. p | (a + b)
 - d. rien de ce qui précède

Question 16

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Alors n admet un diviseur premier.

- (a) vrai
 - b. faux

Question 17

Soit $(a,b,c)\in\mathbb{N}^{*3}$. Alors

- $\overbrace{\mathbb{C}.} \left[c \mid a \text{ et } c \mid b \right] \Longrightarrow \left[\forall (u,v) \in \mathbb{Z}^2, \ c \mid au + bv \right]$
- d. rien de ce qui précède

Question 18

Soit $a \in \mathbb{Z}^*$ quelconque. Alors

- $(a)a \mid 0$
- b. 0 | a
- c. a | 1
- (d.) 1 | a
- e. rien de ce qui précède

Question 19

Soit $(a, b, c, d) \in \mathbb{Z}^{*4}$. Alors

- (a) $a \mid b \Longrightarrow a \mid bc$
- $b d \mid a \text{ et } d \mid b \Longrightarrow d \mid (ac + bc)$
 - c. $a \mid b \Longrightarrow ac \mid b$
 - d. rien de ce qui précède

Question 20

Soit $(a,b) \in \mathbb{N}^{*2}$ tel que $a \mid b$ et $b \mid a$. Alors a = b.

- a. vrai
 - b. faux

Q.C.M n°5 de Physique

- 21- La trajectoire du mouvement dont les équations horaires sont $\begin{cases} x(t) = A\sin(\omega t) \\ y(t) = B\cos(\omega t) \end{cases}$ (Où A, B et ω sont des constantes positives $(A \neq B)$) est :
 - a) circulaire
 - (b) elliptique
 - c) rectiligne
 - d) parabolique
- 22- La combinaison d'un mouvement circulaire dans le plan (xoy) et d'un mouvement rectiligne sur l'axe Oz donne :
 - a) un mouvement elliptique
 - b) un mouvement sinusoïdal
 - c) un mouvement hélicoïdal circulaire
 - d) un mouvement parabolique
- 23- La force électrique \vec{F}_e entre deux charges ponctuelles q_1 et q_2 , séparées par une distance r vérifie :
 - (a) F_e dépend des charges des particules
 - b) F_e est proportionnelle à la distance r
 - c) \vec{F}_e est toujours attractive
 - d) F_c dépend des masses des particules
- 24- La condition d'équilibre de rotation est donnée par:
 - a) $\sum (\vec{F}_{ext}) = \vec{0}$
 - b) $\sum (\vec{F}_{ext}) = m\vec{a}$
 - $\bigcirc \sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \vec{0}$
 - d) $\sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \frac{d\vec{L}}{dt}$
- 25- Une force \vec{F} a un moment nul lorsque :
 - (a) le bras de levier de \vec{F} est nul
 - b) \vec{F} fait tourner le système dans le sens trigonométrique
 - c) \vec{F} fait tourner le système dans le sens horaire
 - d) \vec{F} est une force gravitationnelle

- 26) La force magnétique donnée par $\vec{F}_{m}=q\vec{V}\wedge\vec{B}$ agit sur la particule chargée q en :
 - a) changeant sa vitesse
 - b) changeant son accélération
 - c) changeant sa masse
 - d déviant sa trajectoire
- 27) La valeur algébrique du moment de \vec{F} , qui fait tourner la barre AB autour de l'axe Δ (perpendiculaire au plan de la feuille et passant par A) s'écrit :
 - a) $\overline{M}/_A(\vec{F}) = -F.D_2$
- $c)\overline{M}/_{A}(\vec{F}) = F.D_{3}$
- $\overline{M} /_{A}(\vec{F}) = -F.D_{3}$
- $d) \overline{M} /_{A}(\overline{F}) = F.D_{1}$

- 28) En l'absence des frottements la réaction de contact \vec{R} vérifie :
 - \vec{R} est perpendiculaire au plan de contact
 - b) \vec{R} est nulle
 - c) \vec{R} est inclinée par rapport à la normale au plan de contact
 - d) \vec{R} est tangente au plan de contact.
- 29) La force gravitationnelle \vec{F}_G entre deux masses m_1 et m_2 , séparées par une distance r vérifie :
 - a) F_G dépend des charges des particules
 - b) F_G est inversement proportionnelle à r
 - \bigcirc F_G est inversement proportionnelle à r^2
 - d) \vec{F}_G est une force répulsive
- 30) Le vecteur quantité de mouvement \vec{p} d'un point matériel de masse m est :
 - a) perpendiculaire au vecteur vitesse \vec{V}
 - (b) colinéaire au vecteur vitesse \vec{V}
 - c) de sens opposé au vecteur vitesse \vec{V}
 - d) indépendant de la masse m du point matériel

QCM d'anglais Technique numéros 3, Questions are based upon the "Android Ads Could Attack" and "Iphone Has Passed a Key Security Threshold"

- 31. Apple most embarrassing flub: What is the translation of "flub"?
 - a. Un bug
 - b Une bourde
 - c. Un virus
 - d. Une Application
- 32. What is the translation of "rocky launch"?
 - a. Un lancement raté
 - b. Un lancement réussi
 - c. Un lancement hésitant
 - d Un lancement cahoteux
- 33. What is the translation of threshold?
 - (a) Le seuil
 - b. Le début
 - c. La préface
 - d. Le prologue
- 34. What is the correct meaning of "To serve up"?
 - a. To deliver
 - b. To engage
 - c. To force
 - d. To show
- 35. IMEI stands for what?
 - a. Identification Mobile Equipment Intel
 - b. International Mobile Exclusive Identity
 - C. International Mobile Equipment Identity
 - d. International Mobile Equipment Identification
- 36. "The erstwhile Android Market" What does "erstwhile" mean?
 - a. Newly called
 - b. Also called
 - (c) Formerly known
 - d. Actually known
- 37. What does DFRWS stand for?
 - a. Digital Familiar Recall Wiring
 - Digital Forensic Research Workshop
 - c. Department of Forensic Research Worldwide
 - d. Digital Fabricated display Warwick
- 38. What does AES stand for?
 - a. Algorithm Examining System
 - b. Advanced Examining System
 - c. Algorithm Encryption System
 - d) Advanced Encryption Standard
- 39. What does "deemed" translate to?
 - a. Aurait
 - (b) Semblait
 - c. Serait
 - d. Etait
- 40. What is a task?
 - a. Saleté
 - (b) Tâche
 - c. Crasse
 - d. Devoir

Ouel est le mot correct :

- 41. Rapide
 - a rapidament
 - b- rapidement
 - c rapidemment
 - d rapidamment
 - e rapidemmant
- 42. Lent
 - a lentemment
 - b lentment
 - c lentemant
 - d lentemmant
 - e-lentement
- 43. a savament
 - b décidemment
 - c pertinamment
 - (d)- étonnamment
 - e anciennemment

Quelle est la phrase correcte :

- 44. a Vous ne devriez pas vous montrer aussi négligeants.
 - b Vous ne devriez pas vous montrer aussi négligents.
 - c Négligent toutes leurs affaires en cours, ils se précipitèrent au chevet de leur mère.
 - d Négligeants toutes leurs affaires en cours, ils se précipitèrent au chevet de leur mère.
- 45. a -Tout le personnel naviguant de cette compagnie aérienne est en grève.
 - (b) Le personnel naviguant le dimanche bénéficie de jours de repos supplémentaires.
- 46. (a) Ses explications convainquant tous les membres du jury, il fut admis avec les félicitations.
 - b Très convainquant, son discours lui valut l'admiration de tous.
- 47. (a) Ils restèrent en relation durant leur stage, se communiquant mutuellement leurs impressions
 - b Nous connaissons tous l'expérience célèbre des vases communiquants.
 - c L'incendie a produit des fumées suffoquantes.
 - d Nous connaissons tous l'expérience célèbre des vases communiquant.
- 48. a Différent sa réponse, il se donne le temps de consulter son conseiller juridique.
 - b Ils avaient déjà eu quelques différents il y a une dizaine d'années.
 - O- Ils avaient déjà eu quelques différends il y a une dizaine d'années.
- 49. a Les enjeux étaient importants mais, se sachant très différants, ils craignaient de ne pas s'entendre.
 - b-Les enjeux étaient importants mais, se sachant très différents, ils craignaient de ne pas s'entendre.
 - c Les enjeux étaient importants mais, se sachant très différant, ils craignaient de ne pas s'entendre.
- 50. a Les responsables de l'association convoquèrent tous les adhérants.
 - b Les responsables de l'association convoquèrent tous les adhérent.
 - C- Adhérant tous à l'idée, ils se déplacèrent en masse.
 - d Adhérants tous à l'idée, ils se déplacèrent en masse.

QCM Electronique - InfoSUP

Pensez à bien lire les questions ET les réponses proposées

- Q1. Que peut-on dire d'un générateur de tension idéal branché sur une résistance R?
 - a. Il délivre une tension mais ne débite aucun courant.
 - b. Il débite un courant mais ne délivre pas de tension.
 - C La tension à ses bornes ne dépend pas du courant débité.
 - d. Le courant débité ne dépend pas de la tension à ses bornes.
- Q2. Que peut-on dire d'un générateur de courant idéal branché sur une résistance R?
 - a. Il délivre une tension mais ne débite aucun courant.
 - b. Il débite un courant mais ne délivre pas de tension.
 - c. La tension à ses bornes ne dépend pas du courant débité.
 - d. Le courant débité ne dépend pas de la tension à ses bornes.
- Q3. Quelle est la résistance vue entre A et B?
 - a. 3R
 - b. R
 - $\begin{array}{c} C. \quad \frac{3R}{2} \end{array}$
 - d. $\frac{2R}{3}$

- Q4. Si on applique la loi d'Ohm avec la résistance en $k\Omega$ et le courain en mA, on obtient directement la tension en :
 - a. A
 - b.) V

- c. mA
- d. MV

Soit le montage ci-contre. On souhaite déterminer la tension U en utilisant le théorème de E Norton.

- Q5. Un générateur de Norton est formé :
 - a. D'une source de tension en parallèle avec une résistance.
 - (b) D'une source de courant en parallèle avec une résistance.
 - c. D'une source de tension en série avec une résistance.
 - d. D'une source de courant en série avec une résistance.
- Q6. Dans le théorème de Norton, le courant I_N du générateur est aussi appelé :
 - a. Le courant à vide
 - b. Le courant de court-circuit
 - c. Aucune de ces réponses
- Q7. Le générateur de Norton, vu depuis "R", entre les bornes A et B est alors tel que :

a.
$$I_N = \frac{U}{R} \text{ et } R_N = R$$

c.
$$I_N = \frac{E}{2R} \text{ et } R_N = \frac{3}{2} . R$$

b.
$$I_N = \frac{E}{R} \text{ et } R_N = R$$

$$\overrightarrow{d}$$
. $I_N = \frac{E}{3R}$ et $R_N = \frac{3}{2}$. R

Q8. On obtient alors:

a.
$$U = R.I_N$$

b.
$$U = \frac{2}{5} I_N$$

(c.)
$$U = R.\frac{3.I_N}{5}$$

$$d. U = E$$

Q9. Quelle est la bonne formule ?

a.
$$U = \frac{\frac{E_1}{R_1} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

b.
$$U = \frac{\frac{E_1}{R_1} + l_0 - \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

c.
$$U = \frac{\frac{E_3}{R_3} - I_0 - \frac{E_1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

Q10. Quelle est la bonne formule ?

a.
$$U = R_2 I_0$$

b
$$U = -E_1$$

c.
$$U = \frac{\frac{E_3}{R_3} - I_0 - \frac{E_1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_3}}$$

d.
$$U = \frac{\frac{-E_1}{R_1} - I_0 + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_3}}$$

