

RESEARCH MEMORANDUM

TABULATED PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS MEASURED IN FLIGHT ON THE WING OF THE DOUGLAS D-558-I AIRPLANE FOR A 1 g STALL, A SPEED RUN TO A MACH NUMBER OF 0.90, AND A WIND-UP TURN AT

A MACH NUMBER OF 0.86

By Earl R. Keener and Mary Pierce

Langley Aeronautical Laboratory Langley Field, Va.

CLASSIFICATION CANCELLED

Authori/ MACA R7 2580 Date 8/31/54

mxx 9/14/54

CLASSIFIED DOCUMENT

"This document contains classified information affecting the National Defense of the United States within the nearing of the Espionage Act, USC 50-31 and 32. Its transmission or the revelation of its contents in any namer to an unauthorized person is prohibited by law.

Interestance to classified may be imparted only to persons in the military and naval services of the United States, appropriate civilian officers and employees of the Federal Government who have a legitimate interest.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS UNCLASSIFIED

WASHINGTON

December 15, 1950

CONFIDENTIAL

1

UNCLASSIFIED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

TABULATED PRESSURE COEFFICIENTS AND AERODYNAMIC

CHARACTERISTICS MEASURED IN FLIGHT ON THE WING OF THE

DOUGLAS D-558-I AIRPLANE FOR A 1 g STALL, A SPEED RUN

TO A MACH NUMBER OF 0.90, AND A WIND-UP TURN AT

A MACH NUMBER OF 0.86

By Earl R. Keener and Mary Pierce

SUMMARY

Tabulated pressure coefficients and aerodynamic characteristics are presented unanalyzed for six spanwise stations on the right wing of the Douglas D-558-I research airplane (BuAero No. 37972). The data were obtained in a 1 g stall at subcritical Mach numbers, in a speed run to a Mach number of 0.90 and in a wind-up turn at a Mach number of 0.86.

INTRODUCTION

As a part of the NACA High-Speed Flight Research Program, pressure-distribution measurements have been made over the right wing of the Douglas D-558-I research airplane (BuAero No. 37972) to determine the chordwise and spanwise loading at subsonic and transonic Mach numbers.

The data presented herein include a tabulation of the measured pressure coefficients and the calculated section and wing-panel characteristics obtained from a 1 g stall, at subcritical Mach numbers, a speed run to a Mach number of 0.90, and a wind-up turn at a Mach number of 0.86. In order that these data be made available at an early date, no analysis is included. An analysis paper including these data is being prepared.

SYMBOLS

b/2 wing semispan (12.5 ft)

b'/2 spanwise distance from row 1 to wing tip (10.1 ft)

c local wing chord parallel to plane of symmetry, feet

average chord of wing panel, feet (S'/b')

 c_n section normal-force coefficient $\left(\int_0^1 (-P_R) d\frac{x}{c}\right)$

 $c_{m_{\mathrm{C}}/l_{\mathrm{H}}}$ section pitching-moment coefficient about 0.25 local chord

point $\left(\int_0^1 (-P_R)\left(0.25 - \frac{x}{c}\right) d\frac{x}{c}\right)$

cm section pitching-moment coefficient about a line perpendicular to longitudinal axis of airplane, passing through the

0.25 M.A.C. $\left(\int_{0}^{1} -P_{R}\left(\frac{0.50c - 0.25M.A.C.}{c} - \frac{x}{c}\right) d\frac{x}{c}\right)$

C.P., wing-panel chordwise center of pressure, percent M.A.C.

C.P., wing-panel lateral center of pressure, percent b'/2

 $C_{\mathrm{N}_{A}}$ airplane normal-force coefficient (Wn/qS)

 c_N' wing-panel normal-force coefficient $\left(\int_0^1 c_n \frac{c}{c} d \frac{2y'}{b'}\right)$

CR: wing-panel bending-moment coefficient about row 1

 $\left(\int_0^1 c_n \frac{c}{\overline{c}} \frac{2y'}{b'} d \frac{2y'}{b'}\right)$

 C_{M}^{t} wing-panel pitching-moment coefficient about the 0.25 M.A.C.

 $\left(\frac{\overline{c}}{M.A.C.}\int_{O}^{1} c_{m_{x}}\left(\frac{c}{\overline{c}}\right)^{2} d \frac{2y!}{b!}\right)$

g acceleration due to gravity, 32.2 feet per second²

NACA RM L50J10

M free-stream Mach number

M.A.C. mean aerodynamic chord of the wing (6.21 ft) $\left(\frac{2}{S}\int_0^{b/2}c^2dy\right)$

n normal load factor

p local static pressure, pounds per square foot

po free-stream static pressure, pounds per square foot

P pressure coefficient $\left(\frac{p - p_0}{q}\right)$

 P_{R} resultant pressure coefficient $\left(\frac{p_{u} - p_{l}}{q}\right)$

q free-stream dynamic pressure, pounds per square foot

S total wing area, including area projected through fuselage, (150 sq ft)

S'/2 area of a single wing panel outboard of row 1 (57.5 sq ft)

W airplane weight, pounds

x chordwise distance aft of leading edge, feet

y spanwise distance outboard of airplane center line, feet

y' spanwise distance outboard of row 1, feet

 δ_{ap} deflection of right aileron, degrees

Subscripts:

l - lower wing surface

u upper wing surface

DESCRIPTION OF AIRPLANE AND TEST PANEL

The Douglas D-558-I research airplane is a single-place low-wing monoplane powered by a General Electric TG-180 turbojet engine. Figure 1

presents three photographs of the airplane, and figure 2 shows a three-view drawing giving the general over-all dimensions of the airplane. The airplane has an untwisted, 10-percent-thick wing and has a taper ratio of 0.54, an aspect ratio of 4.17, and an incidence angle of 2°. It has an NACA 65-110 airfoil section from root to tip. The ordinates of the airfoil section are given in table I, and the chordwise location of the pressure-measuring orifices are given in table II. The 50-percent-chord line is perpendicular to the longitudinal axis of the airplane.

INSTRUMENTATION

Synchronized NACA instruments were used to record time histories of the following quantities:

Airspeed
Altitude
Normal acceleration
Rolling angular velocity
Aileron position
Yaw angle
Wing resultant and individual pressures

The airspeed head and the yaw vane were mounted on booms 1 chord ahead of the right and left wing tips, respectively. The airspeed system of the airplane was calibrated by the low-altitude fly-by and radar methods of reference 1.

Wing surface pressures were measured by two NACA recording 60-cell manometers. Flush-type orifices installed in the right-wing skin were connected to the instrument compartment by $\frac{1}{8}$ -inch-inside-diameter aluminum tubing; $\frac{3}{16}$ -inch-inside-diameter rubber tubing was used between the aluminum tubing and the manometer cells. The length of the aluminum tubing varied from about 6 feet at the root station to about 14 feet at the tip station. About 4 feet of rubber tubing were used on each line.

ACCURACY

The accuracy of the test results is estimated to be within the following limits:

Mach number				•			•		•	•			•	•	•	•	•		•	•	±0.01
P and P_R .									•												±0.02
c _n		•																			±0.03
c _{mc/4}	•		•		•	•	•	•	•						•	•	•				±0.006

TESTS

The data presented herein were obtained from a 1 g stall at subcritical Mach numbers, a speed run to a Mach number of 0.90, and a wind-up turn at a Mach number of 0.86. The 1 g stall was executed at approximately 15,000 feet and was performed by gradually slowing up until the airplane stalled. The speed run was started at approximately 37,000 feet and a Mach number of 0.70. After diving to about 33,000 feet and a Mach number of 0.90, the pilot entered a gradual left turn which he tightened until maximum allowable buffet was reached. The Mach number fell off during the turn to around 0.86 at which some points were obtained at near constant Mach number and increasing $C_{\rm NA}$. The ailerons were held near neutral during the maneuvers, and the rolling velocities due to the inherent lateral oscillations of the airplane were low. The resulting changes in the section normal-force coefficients were within the experimental accuracy.

METHODS

The right wing is treated as an isolated panel, and the coefficients obtained from integration of the pressure distributions are based upon the geometric properties of the right-wing panel outboard of row 1 (fig. 3). Row 1 is approximately 6 inches outboard of the wing-fuselage junction and 28.75 inches outboard of the center line of the airplane.

The pressure differential between the upper and lower wing surfaces was measured at rows 1, 2, 3, 4, and 6 (fig. 3). Individual surface pressures were measured at row 5 relative to the instrument compartment pressure, and the instrument compartment pressure was measured relative to the boom static pressure, which was corrected to free-stream static pressure by use of the radar tracking method of reference 1.

Ground checks showed that lag due to orifice tube length was negligible. Lag in the airspeed recording system was calculated by the method presented in reference 2 for photographic instruments. In the speed run and wind-up turn considerable lag was present in the airspeed recording system, because both pilot's and recording instruments were connected to the right wing boom. Corrections for this lag were applied to the Mach numbers and q. For the l g stall the lag was negligible, because the pilot used a separate airspeed system.

Section coefficients were obtained by mechanical integration of the chordwise pressure distributions. Panel coefficients were obtained by mechanical integration of spanwise plots of the section coefficients.

PRESENTATION OF DATA

The measured pressure coefficients and aerodynamic characteristics are presented for a 1 g stall at subcritical Mach numbers in table III, for a speed run to a Mach number of 0.90 in table IV, and for a wind-up turn at a Mach number of 0.86 in table V. Blank spaces in these tables represent disconnected orifices (see table II), or orifices whose cells were inoperative. In tables III(c), III(d), III(e), III(f), and III(g) the leading-edge orifice of row 5 went off scale in the negative direction. It was connected to a cell which recorded only positive pressures.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.

REFERENCES

- 1. Zalovcik, John A.: A Radar Method of Calibrating Airspeed Installations on Airplanes in Maneuvers at High Altitudes and at Transonic and Supersonic Speeds. NACA TN 1979, 1949.
- 2. Huston, Wilber B.: Accuracy of Airspeed Measurements and Flight Calibration Procedures. NACA Rep. 919, 1948.

TABLE I
PROFILE AND ORDINATES OF THE AIRFOIL SECTION

NACA 6	5-110 airfoil secti	lon
Abscissa,	Ordinate, per	cent chord, c
percent chord, c	Upper surface	Lower surface
0	0	0
.50	• 796	746
• 75	.966	896
1.25	1.222	-1.115
2.50	1.667	-1.481
5.00	2.334	-2.018
7.50	2.859	-2.435
10.00	3 . 298	-2.781
15.00	4.002	-3.329
20.00	4.541	-3.745
25.00	4.951	-4.056
30.00	5.246	-4.274
35.00	5.439	-4.409
140.00	5.532	-4.461
45.00	5.511	-4.416
50.00	5.364	-4.261
55.00	5.078	-3.983
60.00	4.682	-3.611
65.00	4.197	-3.167
70.00	3.642	-2.670
75.00	3.032	-2.137
80.00	2.385	-1.589
85.00	1.721	-1.048
90.00	1.068	 551
95.00	.464	148
100.00	0	. 0
L.E. radius	= 0.687 percent cho	ord, c

2

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES (a) Row 1; $2 \frac{y}{b} = 0.192$; c = 7.54 feet

	Complete pro	file surv	еу	Differe	ntial survey		
Uppe	r surface	Lowe	r surface	Between surfaces			
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord		
2 4 6 8 10 14 16 18 0 2 4 6 8 0 3 4 6 8 3 3 4 6 8 3 8 40	1.73 3.65 5.57 7.29 20.2 35.4 46.3 49.0 55.0 * 65.0 70.7 75.6 80.0 85.1 90.2 95.5	1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1	0.0663 1.53 3.18 4.91 9.08 21.2 * 35.2 * 46.0 48.8 56.9 66.2 70.7 75.1 80.8 85.0 89.9 95.3	1 2-3 4-5 8-9 10-13 14-15 16-17 18-19 20-25 24-27 28-33 34-35 36-37 38-37 38-39	00.07 1.63 3.42 5.24 8.18 20.7 35.3 46.2 48.9 56.0 65.6 70.7 75.3 80.8 85.1 90.1 95.4		

Plugged.
Not connected.

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES - Continued (b) Row 2; $2 \frac{y}{b} = 0.360$; c = 6.55 feet

	Complete pro	file surv	еу	Differe	ential survey		
Uppe	r surface	Lowe	r surface	Between surfaces			
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord		
- 2468024680246803468040	1.37 3.7 3.7 9.50 17.50 18.50 18.50 18.00	1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 2 2 2 2 2 3 3 3 5 7 9 -	1.83 3.36 3.30 9.55 8.95 17.5 8.0 8.0 8.0 70.0 84.0 90.0	1 3 5 7 9 11 3 5 7 9 11 3 5 7 9 11 3 5 7 9 1 13 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 3 3 5 7 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1.6 3.9 8.9 17.5 8.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17		

Plugged. Not connected.

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES - Continued (c) Row 3; $2 \frac{y}{b} = 0.493$; c = 6.09 feet

	Complete pro	file surv	ey	Differe	ntial survey
Ирре	r surface	Lowe	r surface	Betwee	n surfaces
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord
- 246812146802468024680 1418024680334680 3340	1.31 3.12 4.9 8.9 19.9 28.3 38.6 45.8 50.1 * 60.0 64.9 70.1 * 79.7 84.8 *	135791357913579135791	0 1.81 3.26 5.04 20.4 28.6 78.6 50.0 84.6 79.8 94.6 94.6	1 3 4 5 7 9 11 13 15 17 18 1 2 2 2 2 2 3 3 3 3 5 7 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.5 3.2 5.1 9.0 20.1 28.5 38.7 45.8 50.0 65.0 70.0 79.8 84.9 94.5

^{*} Plugged.
! Not connected.

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES - Continued (d) Row 4; $2\frac{y}{b} = 0.644$; c = 5.52 feet

	Complete pro	file surv	ey	Differe	ntial survey			
Uppe	r surface	Lowe	er surface	Betwee	Between surfaces			
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord			
246801246802468034680 14180246803468034	1.27 3.08 5.10 5.10 20.3 20.3 35.9 46.7 50.0 89.4 89.5 89.5	135791357913579135791	0 1 3 5 9 6 0 7 1 9 1 4 8 2 4 8 0 8 3 3 4 5 6 6 5 7 7 8 9 4	1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29 30-31 32-33 34-35 36-47 38-39	1.3 3.3 5.1 9.3 20.3 28.5 34.5 34.5 60.1 65.2 70.3 75.2 75.2			

Plugged.
Not connected.

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES - Continued (e) Row 5; $2 \frac{y}{b} = 0.777$; c = 5.02 feet

	Complete pro	file surv	еу	Differe	ential survey
Uppe	r surface	Lowe	r surface	Betwee	n surfaces
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord
- 246802468024680 1146822468024680 333340	1.0000931 1.44413102688 35.45.4413102688 55.65.775.886.88 95.8	1 3 5 7 9 1 13 5 7 9 1 21 22 22 22 33 33 5 7 9 1 3 5 7 9	1.000091 3.000091 2.000091 3.406223334948 3.4556657750.88995.	1 2-3 4-5 8-9 10-11 12-13 14-15 16-17 18-19 20-23 24-25 28-31 32-35 38-35 38-39 40	1.1 3.0 5.0 9.9 19.4 39.4 51.5 55.3 2 86.5 86.5 95.8 95.8

Plugged. Not connected.

TABLE II CHORDWISE LOCATION OF THE PRESSURE MEASURING ORIFICES - Concluded (f) Row 6; $2\frac{y}{b} = 0.940$; c = 4.46 feet

	Complete pro	file surv	еу	Differe	ntial survey		
Uppe	r surface	Lowe	r surface	Between surfaces			
Orifice	Exact percent chord	Orifice	Exact percent chord	Orifice pair	Average percent chord		
2 4 6 8 10 11 4 16 8 20 2 4 26 8 30 31 4 36 34 40	1.35 3.15 4.9 9.0 20.4 * * * * * * * * 86.1 90.2 95.2	1 3 5 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1.35 2.9 5.2 8.5 21.6 60.8 75.6 86.1 94.5	1 2-3 4-5 8-9 10-13 14-15 16-19 18-19 20-23 26-23 26-23 26-23 36-33 36-33 36-33 38-33 38-33	1.35 3.0 5.0 8.7 21.0 60.7 75.5 86.1 90.3 94.8		

^{*} Plugged.
' Not connected.

TABLE III

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL

(a)
$$M = 0.512$$
; $C_{N_A} = 0.291$; $\delta_{a_R} = 0.3^{\circ}$ up

			Pressure	e coefficie	ents		
Orifice number	D 1	Post O	P 2	Row 4	Row	5	Port 6
	Row 1	Row 2	Row 3	NOW 4	Upper	Lower	Row 6
1 2-3 4-5 6-7 8-9 10-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39	-1.159 898 773 648 381 386 324 267 148 108 125 097	-1.551 -1.091 886 744 494 421 318 273 193 199 153 108 091 148	-1.591 -1.057 761 517 426 358 284 256 199 170 148	-1.534 -1.046 886 705 511 398 358 352 233 210 182 165 119 057	-0.465 -0.465 -0.465 -0.465 -0.445 -0	0.795 .534 .420 .273 .125 .046 -119 148 165 159 136 119 034 017 .051 .102 .159	-1.307 290 426 278 080 045 051 .000

Section aerodynamic characteristics											
c _n	0.308	0.330	0.3 ¹ 47	0.313	0.289	0.196					
c _{mc/4}	-0.0148	-0.0090	-0.0119	-0.0006	0.0020	0.0035					

Panel aerodynamic characteristics										
$C_{N}^{i} = 0.302$ $C_{B}^{i} = 0.126$	$C_{M}^{T} = -0.0056$ $C.P{x} = 26.9$	C.P.y' = 41.7								

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Continued

(b)
$$M = 0.452$$
; $C_{N_A} = 0.388$; $\delta_{a_R} = 0.1^{\circ}$ up

			Pressure	e coefficie	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	1.04 2	110# 5	2.04 4	Upper	Lower	1.0# 0
1 2-3 4-5 8-9 10-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29	-1.590 -1.248 -1.052 879 538 485 394 341	-2.174 -1.500 -1.227 977 651 561 326 250 242 205 144	-2.144 -1.462 -1.015 651 545 447 356 318 242 205 174	-2.189 -1.417 -1.197924644515439432303273212182144	-1.394 -879 -803 -697 -583 -455 -470 -500 -470 -379 -273	0.424 .682 .545 .386 .212 .015 068 152 129 136 114	-1.780 417 568 341
30-31 32-33 34-35 36-37 38-39	129 152 114 076	144 121 205 114 053	114	068	167 106 045 015 .068	023 015 .023 .068 .098 .152	076 227 068 023
40			7		.129		

Section aerodynamic characteristics									
c _n	0.396 -0.0164	0.429	0.438 -0.0071	0.0010 0.408	0.370 0.0000	0.261 -0.0068			

Panel aerodynamic characteristics								
$C_{N}^{t} = 0.386$ $C_{B}^{t} = 0.162$	$C_{M}^{\dagger} = -0.0049$ $C.P{x} = 26.3$	C.P.y; = 42.0						

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Continued

(c)
$$M = 0.438$$
; $C_{NA} = 0.492$; $\delta_{a_{R}} = 0.2^{\circ}$ up

[· · · · · · · · · · · · · · · · · · ·	Pressure coefficients								
Orifice number	Row 1	Borr O	Borr 2	Row 4	Row	5	Row 6			
•	NOM I	Row 2	Row 3	NOW 4	Upper	Lower	NOW O			
1 2-3 4-5 8-9 10-13 14-15 16-19 20-23 20-23 20-33 30-3	-2.016 -1.550 -1.317 -1.133 667 567 467 400 217 167 183	-2.616 -1.916 -1.567 -1.225 817 683 483 408 283 242 175 133 250	-2.675 -1.850 -1.250 792 650 533 417 383 292 242 217	-2.533 -1.825 -1.517 -1.158 792 617 525 517 375 317 267 217 175 117	-1.491 -1.150 -1.000 -816 650 508 541 491 425 400 291 175 108 050 016 .067 .109 .125	0.025 .809 .659 .500 .309 .075 -016 -058 -108 -100 -116 -091 -083 -008 .042 .067 .100 .159	-2.283 575 725 450 133 100 292 092 033			

Section aerodynamic characteristics								
c _n	0.488	0.526	0.540	0.498	0.456	0.33C		
c _{mc/4}	-0.0142	-0.0084	-0.0084	-0.0004	0.0013	-0.0100		

Panel aerodynamic characteristics							
$C_{N}^{\dagger} = 0.1476$ $C_{B}^{\dagger} = 0.203$	$C_{M}^{t} = -0.0037$ $C.P{x} = 25.8$	C.P.y' = 42.7					

TABLE III

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Continued

(d)
$$M = 0.409$$
; $C_{NA} = 0.592$; $\delta_{a_R} = 0.1^{\circ}$ up

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	110# 1	NOW Z	NOW 5	110# 4	Upper	Lower	110# 0
1 2-3 4-5 6-7 8-9 10-13 14-15 16-17 18-19 20-23 24-25 26-29 30-33 34-37 38-39 40	-2.452 -1.913 -1.606 -1.394 827 654 558 481 250 192 192 192	-3.250 -2.346 -1.904 -1.442 -981 -788 -567 -490 -327 -327 -279 -202 -154 -288	-3.336 -2.260 -1.510 952 750 615 500 452 327 279 250	-2.981 -2.211 -1.798 -1.375 952 750 635 615 442 385 250 202 135	-1.953 -1.453 -1.453 -1.232 982 741 587 597 559 443 357 280 136 088 088 088 088	0.893 .749 .586 .374 .124 .038 039 107 087 087 087 087 080 011 .018 .057 .076 .143	-2.452 750 894 529 173 135 298 135 058

Section aerodynamic characteristics								
c _n	0.576	0.626	0.646	0.600	0.556	0.380		
	-0.0122	-0.0081	-0.0074	0.0010	0.0035	-0.0132		

Panel aerodynamic characteristics								
$C_{N}^{1} = 0.575$ $C_{B}^{1} = 0.242$	C _M ' = -0.0016 C.P. _x = 25.3	C.P.y: = 42.2						

NACA.

TABLE III

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Continued

(e)
$$M = 0.329$$
; $C_{\overline{N}_{A}} = 0.623$; $\delta_{a_{R}} = 0.1^{\circ}$ up

			Pressur	e coeffici	ents		
Orifice number	Row 1	Row 1 Row 2	Row 3	Row 4	Row 5		Row 6
	NOW 1	IIOW Z	1.0%	110# 4	Upper	Lower	now o
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39	-2.561 -2.015 -1.667 -1.455 .894 682 545 485 197 182 152	-3.394 -2.455 -1.970 -1.515 985 818 576 470 349 349 303 212 167 273	-3.440 -2.349 -1.985 -1.561 970 758 621 500 455 333 303 258	-3.182 -2.303 -1.909 -1.424 955 758 636 606 485 409 318 288 288 152	-2.058 -1.452 -1.179 -891 -634 -497 -482 -391 -331 -240 -179 -073 -058 -124 -154	0.972 .866 .700 .472 .245 .139 .078 .018 .033 .018 .003 .018 .094 .109 .169 .169	-2. 424 485 894 530 212 182 303 152 076
40					.154		

Section aerodynamic characteristics								
c _n c _{mc/4}	0.613	0.645	0.658	0.621	0.574	0.394		
	-0.0138	-0.0058	-0.0087	0.0000	-0.0010	-0.0196		

Panel aerodynamic characteristics							
$C_{N}^{t} = 0.588$ $C_{B}^{t} = 0.251$	$C_{M}^{*} = -0.0041$ $C.P{x} = 25.7$	C.P.y: = 42.7					

TABLE III

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Continued

(f)
$$M = 0.315$$
; $C_{N_A} = 0.708$; $\delta_{a_R} = 0.2^{\circ}$ up

			Pressur	e coefficie	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	NOW Z	110# 3	NOW 4	Upper	Lower	NOW 0
1 2-3 4-5 6-7 8-9 10-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29 30-31 32-35 36-37 38-39	-3.017 -2.379 -1.948 -1.724 -1.138 741 621 569 310 241 207 172	-4.121 -2.897 -2.310 -1.759 -1.172 931 655 552 397 259 241 190 276	-4.086 -2.759 -2.259 -1.828 -1.104879707569517379345310190	-3.828 -2.742 -2.224 -1.655 -1.121862741724552466362293241172121	-2.637 -1.793 -1.431 -1.051 741 569 5517 482 448 396 310 224 172 103 017 086 .087 .121	1.035 .897 .776 .535 .276 .156 .104 .035 .052 .035 .018 .035 .104 .087 .121 .156 .156	2.931 621 -1.069 603 241 207 362 190 103
40					.121		

Section aerodynamic characteristics								
c _{mc/4}	0.705	0.757	0.760	0.721	0.682	0.466		
	-0.0119	-0.0003	-0.0087	-0.0010	-0.0019	-0.0235		

Panel aerodynamic characteristics								
$C_{N}^{t} = 0.688$ $C_{B}^{t} = 0.296$	$C_{M}^{\dagger} = -0.0029$ $C.P{X} = 25.4$	C.P.y, = 43.1						

TABLE III

OF THE D-558-I WING; 1 g STALL; M \approx SUBCRITICAL - Concluded

(g)
$$M = 0.292$$
; $C_{N_A} = 0.877$; $\delta_{a_R} = 0.0^{\circ}$

		•	Pressure	e coefficie	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	110₩ 2	1104 3	110W T	Upper	Lower	110₩ 0
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39	-3.865 -3.827 -3.000 -2.461 -1.346 865 692 596 288 308 231 192	-5.019 -3.461 -2.769 -2.115 -1.404 -1.115 654 404 385 308 212 288	-5.173 -3.423 -2.211 -1.346 -1.077 673 596 404 346 327	-4.884 -3.461 -2.808 -2.077 -1.365 -1.077885673538442308212135	-3.556 -2.383 -1.864 -1.345 921 652 556 556 556 518 441 268 210 133 037 075 059	1.079 1.040 .905 .675 .367 .213 .155 .079 .059 .021 .098 .117 .136 .194 .175	308 269 500 154
40					.079		

Section aerodynamic characteristics								
c _n	0.880	0.911	0.915	0.892	0.842	0.613		
	0.0064	-0.0026	0.0016	0.0035	0.0006	-0.0306		

Panel aerodynamic characteristics								
$C^{M_t} = 0.848$	$C_{M}^{1} = 0.0008$	C.P.y = 43.0						
$C_{B}^{*} = 0.365$	C.P. _x = 25.1							

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS

OF THE D-558-I WING; SPEED RUN AT $C_{N_{
m A}}$ = 0.23 ± 0.04

(a) M = 0.742;
$$C_{N_A}$$
 = 0.213; δ_{a_R} = 0.00

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	NOW Z	1.0# 2	NOW 4	Upper	Lower	NOW C
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 24-25 26-29 30-31 32-33	-0.617 540 556 432 284 358 340 383	-0.911 787 679 556 370 370 324 278 124 201 108 062 046 108	-0.926 617 401 401 355 293 247 170 154 124 093	-0.864 818 664 556 370 370 370 185 185 108 139 062 .000	-0.501 -538 -479 -547 -439 -454 -501 -562 -578 -423 -979 -285 -223 -053 -038	1.065 .425 .279 .166 .016 158 198 300 244 263 263 238 184 177 053 022	0.911 401 293 232 093
34-35 36-37 38-39 40	077 046	062 031	062 031	015	.055 .080 .179 .203	.024 .117 .200	031 .000

Section aerodynamic characteristics								
c _n	0.246	0.259	0.279	0.237	0.218	0.155		
	-0.0226	-0.0110	-0.0094	0.0022	0.0010	-0.0008		

	Panel aerodynamic charac	teristics
$C_{N}^{1} = 0.232$ $C_{B}^{1} = 0.097$	$C_{M}^{*} = -0.0057$ $C.P{x} = 27.4$	C.P.y: = 41.9

~ WACA

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $\rm \,^{C}_{N_{
m A}}$ = 0.23 \pm 0.04 - Continued

(b) M = 0.759;
$$c_{N_A}$$
 = 0.218; δ_{a_R} = 0.00

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	110# 1	110# 2	104 5	110# 4	Upper	Lower	1.0# 0
1 3 5 7 9 11 3 5 7 9 11 3 5 7 9 11 14 15 16 1 1 2 2 2 2 2 2 2 3 3 3 3 5 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-0.601 543 499 425 282 387 367 411 123 059 073	-0.880 777 719 572 381 425 381 308 117 191 103 059 044 088	-0.968645440411308242147103059	-0.865 821 689 587 411 367 337 440 205 205 103 132 059 .000	-0.526 -546 -508 -573 -455 -529 -602 -617 -455 -924 -309 -221 -147 -074 -036 -082 -181	1.073 .425 .300 .164 .021 159 218 323 265 323 265 265 206 177 059 015 .014 .029 .117 .196	015 044 000
40					.205		

Section aerodynamic characteristics								
c _{mc/4}	0.253	0.269	0.297	0.249	0.228	0.164		
	-0.0234	-0.0110	-0.0077	0.0003	0.0008	-0.0013		

Panel aerodynamic characteristics								
$C_{N^1} = 0.244$ $C_{B^1} = 0.102$	$C_{M}^{*} = -0.0056$ $C.P{x} = 27.4$	C.P.y' = 41.9						

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $\rm\,^{C}N_{A}$ = 0.23 \pm 0.04 - Continued

(c) M = 0.778;
$$c_{N_{\hbox{\scriptsize A}}}$$
 = 0.291; $\delta_{a_{\hbox{\scriptsize R}}}$ = 0.0°

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	110# 1	110# 2	110# 3	110# 4	Upper	Lower	NOW C
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-23 24-25 26-27 28-29 30-31 34-35 36-37 38-39	-0.712 616 575 493 356 466 584 115 082 069	-1.014 877 795 644 493 507 438 438 082 178 096 041 082 055 041	-1.014 740 548 507 466 288 425 123 137 096 082 055 041	-0.945 918 712 685 521 384 274 397 315 370 082 123 055 006	- 521 - 581 - 581 - 589 - 585 - 585 - 583 - 583	1.087 .465 .328 .202 .054 148 228 264 343 283 283 283 279 055 028 .013 .123 .197	-1.041 384 370 301 082 027 041 .000

		Section a	erodynamic	character	lstics	
c _n	0.292 -0.0244	0.319 -0.0109	0.336 -0.0071	0.287 -0.0002	0.264 0.0030	0.185

	Panel aerodynamic charac	teristics
$C_{N}^{*} = 0.282$ $C_{B}^{*} = 0.117$	$C_{M}^{t} = -0.0050$ $C.P{x} = 27.3$	C.P.yt = 41.6

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $C_{N_{\hbox{$\Barkoneroo}}}=0.23\pm0.04$ - Continued (d) M = 0.796; $C_{N_{\hbox{$\Barkoneroo}}}=0.287$; $\delta_{a_{\hbox{$\Barkoneroo}}}=0.1^{\circ}$ down

			Pressure	e coefficie	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	10# 1	110# 2	110# 3	110# -	Upper	Lower	110# 0
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39 40	-0.702 600 549 510 347 520 549 671 077 051 064 038	-1.008 893 804 612 510 510 510 497 166 089 038 026 013 . 077	-1.071 765 587 574 510 497 612 179 102 064 051	-0.944 -957 -714 -702 -574 -459 -536 -587 -332 -421 -051 -089 -026 026	-0.516 -600 -544 -643 -682 -656 -669 -707 -809 -720 -261 -120 -057 -082 -065 -097 -191 -219	1.089 .479 .345 .211 .058 156 217 335 281 375 286 210 197 069 031 .020 .046 .122 .199	026 051 .000

		Section a	erodynamic	characteri	lstics	
c _n c/4	0.312 -0.0263	0.333	0.365 -0.0074	0.316 0.0006	0.304 0.0002	0.209 -0.0050

	Panel aerodynamic characte	ristics
$C_{N}^{t} = 0.307$ $C_{B}^{t} = 0.130$	$C_{M}^{*} = -0.0063$ $C.P{x} = 27.0$	C.P. _y , = 42.3

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $C_{\rm NA}$ = 0.23 \pm 0.04 - Continued

(e) M = 0.819;
$$c_{N_A}$$
 = 0.251; δ_{a_R} = 0.1° down

			Pressure	e coefficie	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	10# 1	1101 2	210# 5	210# 4	Upper	Lower	110# 0
1 2-3 4-5 8-9 10-11 12-13 14-15 16-17 18-19 20-23 24-25 26-29 30-33 34-35 36-37 38-39	-0.520 473 449 378 258 426 402 589 118 047	-0.709 650 615 485 378 402 402 378 508 343 106 024 024 024	-0.0780 579 461 473 426 355 544 556 366 154 047	-0.674 662 567 520 414 449 426 497 272 449 272 130 .012 .071	-0.323 -404 -394 -515 -580 -657 -763 -810 -763 -1.059 -385 -1.96 -089 -066 -112 -124 -216	1.126 .407 .283 .173 .017 184 255 394 309 468 314 243 066 007 .041 .053 .135 .206	-0.804 -0.804 -0.804 -0.872 -0.272 -0.296 -0.095 -0.012 -0.047
40					237		

		Section as	erodynamic	characteri	stics	
c _n	0.250	0.282	0.321	0.271	0.252	0.165
	-0.0246	-0.0174	-0.0174	-0.0062	-0.0041	-0.0028

	Panel aerodynamic characte	ristics
$C_{N}^{1} = 0.259$ $C_{B}^{1} = 0.109$	$C_{M}^{t} = -0.0113$ $C.P{x} = 29.4$	C.P. _y ; = 42.1

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $\rm C_{N_A}$ = 0.23 ± 0.04 - Continued

(f) M = 0.835; c_{N_A} = 0.215; δ_{a_R} = 0.1° down

	-		Pressure	e coefficie	ents	-	
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	110# 2		110# -	Upper	Lower	
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-21 20-23 24-25 26-27 28-29 30-31 31-35 36-37 38-39	-0.437 -381 -359 -292 -197 -368 -336 -460 -213 -090 -056	-0.538 516 471 404 303 359 269 314 336 740 224 168 101 .000	-0.617 460 370 415 258 303 348 348 718 269 235 022	-0.505 516 448 415 336 426 370 280 224 224 661 292 112 .022	-0.192 -288 -313 -438 -528 -573 -629 -752 -831 -786 -1.021 -786 -1.58 -046 -057 -156 -140 -221	1.143 .380 .251 .138 .010 .205 .268 .409 .452 .427 .514 .348 .225 .180 .057 .023 .044 .145 .223	-0.650 314 224 247 235 011 045 .000
j 40					.253		

		Section a	erodynami.c	characteri	istics	
c _n	0.231	0.258	0.286	0.252	0.243	0.184
	-0.0312	-0.0279	-0.0266	-0.0188	-0.0169	-0.0154

	Panel aerodynamic charac	teristics
$C_{N}^{*} = 0.244$ $C_{B}^{*} = 0.106$	$C_{M}^{*} = -0.0221$ $C.P{x} = 34.1$	C.P. _y = 43.3

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $C_{\rm N_A}$ = 0.23 \pm 0.04 - Continued

(g)
$$M = 0.856$$
; $C_{N_A} = 0.227$; $\delta_{a_R} = 0.00$

Orifice number Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 1
1 1.159 2-3 -0.459 -0.564 -0.637 -0.522 -0.177 .392 -0.658 4-5 397 522 543 271 .288 6-7 365 512 449 285 .168 324 8-9 324 397 480 428 422 .022 209 10-11 207 .303 386 334 511 187 271 12-13 355 418 449 594 248 14-15 376 376 605 381 16-17 282 292 313 751 452
2-3 -0.459 -0.564 -0.637 -0.522 -0.177 .392 -0.658 4-5 397 522 543 271 .288 6-7 365 512 449 285 .168 324 8-9 324 397 480 428 422 .022 209 10-11 207 .303 386 334 511 187 271 12-13 207 355 418 449 594 248 14-15 376 376 605 381 452 16-17 282 292 313 751 452 18-19 334 292 251 219 866 511 20-21 449
26-27 257 230 324 240 396 198 28-29 240 313 251 292 041 30-31 240 313 255 166 .001 031 32-33 188 073 .032 34-35 125 073 240 .115 .060 36-37 094 240 .132 .147 021 38-39 063 052 042 .209 .209 .000 40 .237

Section aerodynamic characteristics									
c _n c _{mc/4}	0.262 -0.0462	0.269 -0.0374	0.290 -0.0316	0.256 -0.0351	-0.0203	0.201			

Panel aerodynamic characteristics							
C _N ' = 0.250	C _M ¹ = -0.0313	C.P. _{v1} = 43.2					
$C_{B}' = 0.108$	C.P. _x = 37.5	1					

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $C_{ m N_A}$ = 0.23 \pm 0.04 - Continued

(h) M = 0.875;
$$c_{N_A}$$
 = 0.226; δ_{a_R} = 0.10 up

		e coefficie	ents				
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW I	110# 2	110# 3	110# 4	Upper	Lower	NOW 0
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39	-0.530 455 426 369 273 417 350 477 278 161 208	-0.663 606 587 474 397 445 294 256 133 .265 142 227 265 275 189	-0.710 549 426 483 313 284 303 294 284 133 085	-0.587 625 445 474 379 502 407 346 199 360 180 237 208	-0.207 -283 -306 -423 -537 -603 -641 -764 -868 -812 -887 -528 -404 -376 -329 -187 -101 -026 -084 -130	1.158 .438 .334 .212 060 158 213 353 437 499 560 594 632 670 376 092 .003 .107 .202	0.720 379 256 303 114 085

Section aerodynamic characteristics									
c _n	0.218	0.280	0.279	0.238	0.250	0.182			
	-0.0221	-0.0312	-0.0170	-0.0214	-0.0207	-0.0112			

Panel aerodynamic characteristics							
$C_{N}^{t} = 0.248$	$C_{\mathbf{M}^{\mathbf{t}}} = -0.0210$	C.P. _v ; = 42.4					
$C_{B}^{*} = 0.105$	C.P. _x = 33.5						

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $c_{N_A}=0.23\pm0.04$ - Continued (i) M = 0.881; $c_{N_A}=0.212$; $\delta_{a_R}=0.1^\circ$ up

			Pressur	e coeffici	ents		
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6.
	NOW I	NOW 2	LOW 2	NOW 4	Upper	Lower	ROW O,
1 2-3 5-7 9-11 12-13 14-15 16-19 18-21 28-21 28-31 38-35 38-35 38-35 38-35	-0.556 474 437 373 273 423 497 295 .000	-0.692 638 601 492 419 455 364 310 255 064 264 364 164	-0.747 -0.747 -0.747 -0.747 -0.747 -0.446 -0.501 -0.328 -0.301	-0.634 665 455 501 392 519 428 355 273 200 3746 228 264	- 2946 - 29546 - 29546 - 29546 - 35594 - 5594 - 5694 - 569	1.150 .463 .354 .238 .080 134 205 489 489 6635 -	027
38-39 40	155		073		.021 .067	.172	.000

Section aerodynamic characteristics									
c _n	0.211	0.256	0.267	0.203	0.221	0.164			
	-0.0152	-0.0167	-0.0063	0.0017	-0.0038	0.0026			

Panel aerodynamic characteristics								
$C_{N}^{\dagger} = 0.223$ $C_{B}^{\bullet} = 0.094$	$C_{M}^{*} = -0.0066$ $C.P{x} = 27.9$	C.P. _y ; = 42.2						

TABLE IV

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; SPEED RUN AT $C_{\rm N_A}$ = 0.23 \pm 0.04 - Concluded

(j) M = 0.895; $c_{\overline{N}_A}$ = 0.265; δ_{a_R} = 0.7° down

			Pressure	e coeffici	ents	 	
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	NOW 1	110% 2	110# 5	110# -	Upper	Lower	NOW O
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39 40	-0.731 613 563 479 350 504 454 555 234 160 153	-0.941 891 815 714 538 445 454 412 311 034 .202 .311 .395 034 151 143	-0.983 698 597 546 445 378 403 .059 227 185	-0.866 950 706 597 513 597 538 445 361 286 177 050 .126 .373	-0.335 -475 -406 -495 -579 -638 -696 -772 -873 -871 -402 -394 -402 -352 -184 -115	1.131 .564 .347 .332 .165 064 132 280 360 427 490 520 583 629 579 621 327 .001 .060 .107	160 109 059

Section aerodynamic characteristics									
c _n	0.276	0.276	0.300	0.276	0.28 ¹ 4	0.189			
c _{mc/4}	-0.0229	0.0070	-0.0013	0.0086	-0.0072	0.0086			

, Panel aerodynamic characteristics								
$C_{N}^{\dagger} = 0.265$ $C_{B}^{\dagger} = 0.114$	$C_{M}^{t} = -0.0019$ $C_{\cdot}P_{\cdot x} = 24.3$	C.P.y: = 42.9						

TABLE V

OF THE D-558-I WING; WIND-UP-TURN AT $M \approx 0.60$

(a) M = 0.856;
$$C_{NA}$$
 = 0.227; δ_{aR} = 0.0°

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6
	110# 1	NOW Z	1104)	110# 4	Upper	Lower	1.0# 0
1 2-3 4-5 6-7 8-9 10-13 14-15 16-17 18-21 22-25 24-25 28-23 24-25 28-31 32-35 34-35 36-37 38-39	-0.459 397 365 324 207 376 334 449 257 240 125	-0.564 522 512 397 303 355 282 292 230 230 230 230 313 313 188	-0.637 480 386 418 292 251 282 282 292 324 345	-0.522 -543 -449 -428 -334 -449 -376 -313 -219 -157 -251 -240 -251 -255	-0.177 -271 -285 -422 -511 -594 -605 -751 -866 -793 -991 -876 -396 -292 -166 -073 -115 -132 -209 -237	1.159 .392 .288 .168 .022 187 248 381 452 511 567 594 579 198 041 .001 .032 .060 .147 .209	021 000

Section aerodynamic characteristics									
c _n c _{mc/4}	0.262	0.269	0.290	0.256	0.244	0.201			
	-0.0462	-0.0374	-0.0316	-0.0351	-0.0203	-0.0198			

Panel aerodynamic characteristics								
$C_{N}^{t} = 0.250$ $C_{B}^{t} = 0.108$	C _M ' = -0.0313 C.P. _x = 37.5	C.P.y: = 43.2						

~ NACA

TABLE V

OF THE D-558-I WING; WIND-UP-TURN AT $M \approx 0.60$ - Continued

(b) M = 0.862;
$$C_{\overline{N}_{A}}$$
 = 0.512; $\delta_{a_{R}}$ = 0.40 down

		Pressure coefficients							
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6		
	LOW I	NOW Z	TOM 2	NOW 4	Upper	Lower	DOM O		
1 2-3 4-5 6-7 8-91 12-13 14-15 16-12 18-25 26-23 24-27 28-31 38-33 38-33 40	-1.632 973 981 836 621 841 619 342 024 233	-1.503 -1.431 -1.334 -1.182 -1.021 820 780 289 13 306 322 322 322	-1.535 -1.150 908 924 876 732 498 129 072 265 249 185	-0.1471 -1.431 -1.238 -1.093 908 868 828 764 064 072 145 105 314 379	-0.776 -845 -794 -857 -848 -937 -961 -1.057 -1.130 -1.017 -639 -567 -382 -302 -1.101 -1.019 -004	0.999 .715 .582 .449 .265 .012 .111 .252 .204 .358 .477 .527 .623 .141 .053 .037 .052 .076 .127	-1.479 -1.150 908 539 273 129 137 088		

Section aerodynamic characteristics									
c _n	0.458	0.539	0.573	0.524	0.549	0.399			
c _{mc/4}	-0.0350	-0.0326	-0.0297	-0.0443	-0.0269	-0.0184			

Panel aerodynamic characteristics							
$C_{N}^{\dagger} = 0.512$ $C_{B}^{\dagger} = 0.226$	$C_{M}^{*} = -0.0293$ $C.P{X} = 30.8$	С.Р. _{У.} = 44.0					

TABLE V

OF THE D-558-I WING; WIND-UP-TURN AT $M \approx 0.60$ - Continued

(c) M = 0.858;
$$C_{N_A}$$
 = 0.550; δ_{a_R} = 0.90 down

	Pressure coefficients						
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5 ·	Row 6
	NOW 1	1.0% 2	1.0# 5	110# 4	Upper	Lower	1.0%
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25	-1.835 -1.029 -1.068 942 690 926 293 313	-1.654 -1.567 -1.456 -1.305 -1.155 902 862 253 .048 .119	-1.677 -1.274 -1.013 -1.013 973 799 348 237	-1.606 -1.551 -1.369 -1.203 -1.021 965 641 396 079 .016	-0.867 -923 -863 -950 -934 -989 -1.021 -1.108 -1.203 -1.052 -649 -570	0.956 •759 •641 •489 •308 •078 •228 •192 •356 •473 •518 •527	-1.598 -1.242 -1.068 609
26-27 28-29 30-31 32-33 34-35 36-37 38-29 40	158 245 285 285	166 293 317 301 380 309	142 206 24', 198	301 340 351 	467 340 261 198 147 116 035 008	467 119 079 064 .047 .063 .115	142 182 103

Section aerodynamic characteristics								
c _n	0.504	0.588	0.643	0.551	0.610	0.458		
	-0.0431	-0.0334	-0.0365	-0.0442	-0.0281	-0.0229		

Panel aerodynamic characteristics						
$C_{N}^{i} = 0.561$ $C_{B}^{i} = 0.250$	$C_{\mathbf{M}^{t}} = -0.0331$ $C.P{\mathbf{X}} = 30.9$	C.P.y, = 44.6				

TABLE V

OF THE D-558-I WING; WIND-UP-TURN AT $M \approx 0.60$ - Continued

(d)
$$M = 0.855$$
; $C_{N_A} = 0.602$; $\delta_{a_R} = 0.4^{\circ}$ down

		Pressure coefficients							
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6		
	NOW I	NOW Z	NOW 2	IIOW 4	Upper	Lower	NOW O		
1 2-3 5-7 8-11 12-15 16-17 18-12 20-12 20-23 30-13 31-35 31-	-1.988 -1.196 -1.157 -1.033 767 983 326 376 196 287 326	-1.809 -1.716 -1.615 -1.429 -1.266 -1.203 947 318 016 085 233 287 295 204 311 303	-1.848 -1.413 -1.134 -1.103 -1.064 567 427 202 163 233 295	-1.778 -1.685 -1.584 -1.351 -1.149 -1.009412380124016031318326323	-0.987 -1.026 -970 -1.040 -1.016 -1.071 -1.102 -1.195 -1.234 -838 -636 -512 -356 -279 -263 -248 -294 -224 -120	0.891 .808 .680 .544 .354 .079 .052 .184 .173 .349 .454 .469 .481 .154 .154 .116 .116 .007	-1.762 -1.413 -1.227 714 373 132 148 101		
40					080				

Section aerodynamic characteristics									
c _n	0.570	0.663	0.694	0.589	0.637	0.509			
	-0.0506	-0.0279	-0.0382	-0.0430	-0.0188	-0.0203			

Panel aerodynamic characteristics .							
$C_{N}^{t} = 0.611$ $C_{B}^{t} = 0.269$	$C_{M}^{1} = -0.0313$ $C.P{x} = 30.1$	С.Р. _у : = ¼4.0					

TABLE V

TABULATION OF PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE D-558-I WING; WIND-UP-TURN AT $M\approx0.60$ - Concluded

(e)
$$M = 0.854$$
; $C_{N_A} = 0.650$; $\delta_{a_R} = 0.6^{\circ}$ down

	Pressure coefficients							
Orifice number	Row 1	Row 2	Row 3	Row 4	Row	5	Row 6	
	1.0# 1	110# 2		110 K 4	Upper	Lower	1.0	
1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39 40	-2.092 -1.417 -1.229 -1.095 832 975 352 439 223 292 330	-1.897 -1.829 -1.724 -1.529 -1.334 952 -345 038 157 247 270 285 274 345 345 300	-1.942 -1.507 -1.199 -1.177 -1.124 540 480 195 232 262	-1.889 -1.777 -1.702 -1.454 -1.222795472450180135112375360354472	-1.068 -1.086 -1.028 -1.091 -1.083 -1.113 -1.143 -1.233 -1.248 874 649 499 439 356 304 323 284 169 124	0.848 .843 .708 .573 .382 .109 .024 .152 .151 .341 .394 .394 .161 .124 .079 .056	-1.844 -1.507 -1.304 780 465 142 187 090	

Section aerodynamic characteristics											
c _{mc/l}	0.599	0.724	0.741	0.630	0.709	0.574					
	-0.0514	-0.0360	-0.0432	-0.0497	-0.0342	-0.0306					

Panel aerodynamic characteristics								
$C_{N}^{\dagger} = 0.667$ $C_{B}^{\dagger} = 0.297$	$C_{M}^{*} = -0.0377$ $C.P{x} = 30.6$	C.P.y: = 44.5						

-_NACA

Figure 1.- Photographs of the Douglas D-558-I airplane.

		,			
					•
	·				
					•
			·		
					u
					•
·.					
					•
					•

NACA RM L50J10 39

Figure 2.- Three-view drawing of the Douglas D-558-I airplane.

Figure 3.- Spanwise location of pressure-measuring orifices.

NACA-Langley - 12-15-00 - 3