

caBlOperl: a new Perl API to the NCI's Biomedical Domain Object Middleware

Shan Jiang
Ying Long
Gene Levinson
Peter A. Covitz

NCICB organization

Applications

Core Infrastructure

·caCORE

caCORE plays a central role...

NCI Center for Bioinformatics

Building common tools, common architecture and common standards

caCORE

Scientific Applications

Bioinformatics Objects

Common Data Elements

Controlled Vocabulary

caBIO architecture

caBIO APIs

- Java
 - Use caBIO domain objects within your Java program
 - Data automatically retrieved from caBIO servers
- SOAP-XML
 - SOAP client in any language/environment can send request to NCICB server for object data
 - SOAP-XML envelope and payload returned
- **HTTP-XML**
 - Properly formed URLs in any web browser/client can retrieve XML-formatted object data directly
- caBIOperI
 - Latest addition: Perl wrapper of a SOAP interface

What is caBIOperl?

- Essentially a Perl version of the caBIO Java API
- Instantiate caBIO data objects directly as Perl objects, just as if working with caBIO in Java
- Under the hood caBIOperl uses caBIO SOAP-XML interface: parses all the XML and populates objects with data for you
- Developed mostly by Shan Jiang, SAIC employee at the NCI Center for Bioinformatics

What can caBIOperl do for you?

- Presents an object oriented interface to access caBIO objects in Perl; frees Perl programmers from manipulating SOAP and XML
- Query broad range of data sources by calling methods, without SQL
- Navigate between objects using Perl code

Objects and Documentation

Agent

Anomaly

Chromosome

ClinicalTrialProtocal

Clone

CMAPOntology

CMAPOntologyRelationship

Disease

ExpressionFeature

ExpressionMeasurement

ExpressionMeasurementArray

Gene

Gene Alias

GeneHomolog

GoOntology

GoOntologyRelationship

Histopathology

Library

MapLocation

Organ

OrganRelationship

Pathway

Protein

ProteinHomolog

Protocol

ProtocolAssociation

<u>Sequence</u>

SNP

Target

Taxon

Tissue

Vocabulary

- o Object creation and retrieval methods
- o Attributes and related methods
- o Associations and related methods
- o EXPORT
- SEE ALSO
- AUTHOR
- COPYRIGHT AND LICENSE

NAME

gov::nih::nci::caBIO::bean::Agent - Perl extension for Agent.

SYNOPSIS

```
use gov::nih::nci::caBIO::bean::Agent;
use gov::nih::nci::caBIO::bean::AgentSearchCriteria;

# create a AgentSearchCriteria instance to specify search elements
my $search = new gov::nih::nci::caBIO::bean::AgentSearchCriteria;
# specify a search element
$search->setId(1080);
# create a dummy bean instance to invoke its search methods
my $bean = new gov::nih::nci::caBIO::bean::Agent;
# return all beans that meets the search element
my $beanlist = $bean->searchAgent($search);
...
```


Example 1: Pathway Search

For the gene symbol BRCA1:

- Find all pathways associated with the gene symbol BRCA1
- Retrieve a list of all available pathway descriptions as well as SVG filenames

Instantiate the search object(s):

```
@symbols = qw(BRCA1);
$bean = new gov::nih::nci::caBIO::bean::Gene() ;
foreach $sym (@symbols) {
  $searchCriteria =
  new gov::nih::nci::caBIO::bean::GeneSearchCriteria();
  $searchCriteria->setName($sym);
  $result = $bean->search($searchCriteria);
```

Create an array for the results:

@genes = \$result->getResultSet();

foreach \$gene (@genes) {

Print pathway description and SVG filename:

```
@pathways = $gene->getPathways();
  if (@pathways) {
    foreach $pw (@pathways) {
    printf " Description: %s\n",
    $pw->getDisplayValue();
    $pw->getPathwayDescription();
    printf " SVG: %s\n",
    $pw->getName();
```

Output from a sample script:

Retrieving pathways for gene 'BRCA1'...

Found caBIO Gene BRCA1

Found associated Taxon: Homo sapiens

Found 5 associated Pathway(s):

Description: ATM Signaling Pathway

SVG: h_atmPathway

Description: Role of BRCA1, BRCA2 and ATR in Cancer Susceptibility

SVG: h_atrbrcaPathway

Description: BRCA1-dependent Ub-ligase activity

SVG: h_bard1Pathway

Description: CARM1 and Regulation of the Estrogen Receptor

SVG: h_carm-erPathway

Description: Cell Cycle: G2/M Checkpoint

SVG: h_g2Pathway

Example 2: Get Multiple Attributes

- For the gene symbol ATM, get:
 - Title, LocusLink, ClusterID
 - GoOntologys
 - SNPs
 - Map Locations
 - Proteins
 - Gene Homologs
 - Gene Aliases

Create instance and search criterion:

```
sub getGenes {
   my $bean = new gov::nih::nci::caBIO::bean::Gene;
   my $searchCriteria =
    new gov::nih::nci::caBIO::bean::GeneSearchCriteria;
   $searchCriteria->setName($symbol);
   $result = $bean->search($searchCriteria)
```

Process the result set:

```
my @rs = $result->getResultSet;
my $bean2;
foreach $bean2 (@rs) {
    print "Name = ".$bean2->getName."\n";
    print "Title = ".$bean2->getTitle."\n";
    print "LocusLinkId = ".$bean2 >getLocusLinkId."\n";
    print "ClusterId = ".$bean2->getClusterId."\n\n";
}
```

Partial output from a sample script:

Name = ATM

Title = ataxia telangiectasia mutated (includes complementation groups A, C and D)

LocusLinkId = 472

ClusterId = 526394

Name = Atm

Title = ataxia telangiectasia mutated homolog (human)

LocusLinkId = 11920

ClusterId = 5088

Future versions...

- Next version:
 - Nested queries
 - Integrate with caMOD
- Further out:
 - EVS
 - caDSR
 - Possibly others— please let us know!

Links:

- download: http://ncicb.nci.nih.gov/download
- caBIO project page: http://ncicb.nci.nih.gov/core/cabio
- NCICB application support: voice: (1) 301-451-4384
 - email: ncicb@pop.nci.nih.gov

Acknowledgements

Shan Jiang Ying Long Peter Covitz

caBIO team, SAIC

Systems and support teams, Terrapin Systems

caBIO user and developer community!

