CSE530 Algorithms & Complexity Lecture 2: Asymptotic Notations

Antoine Vigneron antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

February 26, 2018

- Introduction
- 2 Little-o notation
- 3 Big-O-notation
- 4 Big- Ω Notation
- Big-Θ Notation
- **6** Little- ω notation
- Further Comments

Introduction

- References:
 - Lecture notes posted on blackboard.
 - ► Chapter I-3: *Growth of Functions* of the textbook presents it differently.
- We will consider real-valued functions of integer variables.
 - Can also be seen as sequences.
- Usually values will be positive as we are interested in running times.
- We will study their asymptotic behavior, i.e. at infinity.
- In particular, we will introduce the asymptotic notations

$$o(\cdot), O(\cdot), \Theta(\cdot), \Omega(\cdot), \omega(\cdot)$$

Little-o Notation

Definition (Little-o notation)

We write f(n) = o(g(n)) if and only if there exists a function $\rho(n)$ such that $f(n) = \rho(n)g(n)$ for all n, and $\lim_{n\to\infty} \rho(n) = 0$.

• Simpler definition if $g(n) \neq 0$ for all n:

$$f(n) = o(g(n))$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

- We do not even need $g(n) \neq 0$ for all n. It suffices, for instance, that $g(n) \neq 0$ for all n > 100.
- Example: $n = o(n^2)$, because $n/n^2 = 1/n \to 0$.

Motivation

Worst case running times:

Insertion Sort:
$$T_1(n) = a_1 n^2 + b_1 n + c_1$$

Merge Sort: $T_3(n) = a_3 n \log n + b_3 n$

where $a_1 > 0$, $a_3 > 0$, b_1, b_3, c_1 are unknown constants.

- For instance, we could have $T_1(n) = 4n^2 3n + 6$ and $T_3(n) = 8n \log n + 7n$.
- In any case, regardless of the values of these constants, $T_3(n)/T_1(n) \to 0$ and thus $T_3(n) = o(T_1(n))$.
- It shows that Merge Sort is much faster than Insertion Sort for large values of n, i.e. for sorting a large array.
- So the $o(\cdot)$ notation allows us to compare these functions without even knowing the constants.

Examples

- What does f(n) = o(1) mean?
- It means $\lim_{n\to\infty} f(n) = 0$.

$$1/n + 1/n^{2} = o(1)$$

$$2n + 5 = o(n^{2})$$

$$10n \log n + 7n + 5 = o(n^{2})$$

$$n^{2} + 2n + 1 = o(n^{3})$$

$$n^{10} + 5n^{3} = o(2^{n})$$

$$2^{n} + 3^{n} + 4^{n} = o(n!)$$

Reformulation of the Definition

Definition

We say that f(n) = o(g(n)) if, for every real number $\varepsilon > 0$, there exists an integer n_0 such that $n \ge n_0$ implies $|f(n)| \le \varepsilon |g(n)|$.

Using quantifiers:

$$\forall \varepsilon > 0 \ \exists n_0 : \ n \geqslant n_0 \Rightarrow |f(n)| \leqslant \varepsilon |g(n)|$$

• Example: Prove that $2n + 5 = o(n^2)$.

Properties

Proposition

For all real numbers α , β ,

- (a) $\log n = o(n^{\alpha})$ whenever $\alpha > 0$.
- (b) $n^{\alpha} = o(n^{\beta})$ whenever $\alpha < \beta$.
- (c) $n^{\beta} = o(\gamma^n)$ whenever $\gamma > 1$.
- (d) $\gamma^n = o(n!)$

The relation f(n) = o(g(n)) is sometimes denoted $f(n) \prec g(n)$. (Hardy notation.) So the proposition above can be rewritten:

 $\log n \prec n^{\alpha} \prec n^{\beta} \prec \gamma^n \prec n!$ whenever $0 < \alpha < \beta$ and $\gamma > 1$

Properties

Proposition

For every functions f, g and h, and for every constant $\lambda > 0$,

- (i) f(n) = o(h(n)) implies $\lambda f(n) = o(h(n))$.
- (ii) f(n) = o(h(n)) and g(n) = o(h(n)) implies f(n) + g(n) = o(h(n)).
- (iii) f(n) = o(h(n)) implies f(n)g(n) = o(g(n)h(n)).
- (iv) f(n) = o(g(n)) and g(n) = o(h(n)) implies f(n) = o(h(n)).
 - Example: Prove that $5n^2 + 2n + 4 = o(n^3)$ using these properties.

O-Notation

Suppose Insertion Sort and Bubble Sort have running times

$$T_1(n) = 4n^2 - 3n + 6$$
 and $T_2(n) = 3n^2 + 6n - 2$.

- Do we have $T_1(n) = o(T_2(n))$ or $T_2(n) = o(T_1(n))$?
 - ▶ No, both statements are wrong, because $T_1(n)/T_2(n) \rightarrow 4/3$.
- The big-O notation allows to compare these two functions:

Definition

We write f(n) = O(g(n)) if there exist two constants c > 0 and $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies $|f(n)| \le c|g(n)|$.

• Difference with $o(\cdot)$:

"There exists a constant c" instead of "For all $\varepsilon > 0$ "

O-notation

- 1 1841 (11) (11)
- The relation f(n) = O(g(n)) gives an asymptotic upper bound on f(n).
- Intuition: f(n) is at most a constant factor times g(n) for large enough n.

Examples

- Let $T_1(n) = 4n^2 3n + 6$ and $T_2(n) = 3n^2 + 6n 2$.
- Prove that $T_1(n) = O(T_2(n))$.
- Remark: $T_2(n) = O(T_1(n))$ is also true.
- Caveat: f(n) = O(g(n)) does *not* mean that there exists a constant ℓ such that $\lim_{n\to\infty} f(n)/g(n) = \ell$.
- Example?
- f(n) = O(1) means that f(n) is **bounded**: there exists a constant C > 0 such that $|f(n)| \le C$ for all $n \in \mathbb{N}$. In computer science, we often say that f(n) is **constant** when f(n) = O(1).

Properties

Proposition

For all functions f, g, h, φ and for all constant $\lambda > 0$,

- (i) f(n) = O(f(n))
- (ii) f(n) = o(g(n)) implies f(n) = O(g(n)).
- (iii) f(n) = O(h(n)) implies $\lambda f(n) = O(h(n))$.
- (iv) f(n) = O(h(n)) and g(n) = O(h(n)) implies f(n) + g(n) = O(h(n)).
- (v) f(n) = O(h(n)) and $g(n) = O(\varphi(n))$ implies $f(n)g(n) = O(h(n)\varphi(n))$.
- (vi) f(n) = o(g(n)) and g(n) = O(h(n)) implies f(n) = o(h(n)).
- (vii) f(n) = O(g(n)) and g(n) = o(h(n)) implies f(n) = o(h(n)).
- (viii) f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n)).

Interpretation

• Hardy's notation: We write

$$f(n) \prec g(n)$$
 iff $f(n) = o(g(n))$
 $f(n) \preceq g(n)$ iff $f(n) = O(g(n))$

- Then (i) means: $f(n) \leq f(n)$.
- (viii) means: $f(n) \leq g(n)$ and $g(n) \leq h(n)$ implies $f(n) \leq h(n)$.
- (vii) means: $f(n) \leq g(n)$ and $g(n) \prec h(n)$ implies $f(n) \prec h(n)$.
- So $o(\cdot)$ is similar with <, and $O(\cdot)$ is similar with \le .

Applications

- Exercise: Prove that $f(n) = 5n^3 2n^2 + 5$ satisfies $f(n) = O(n^3)$ using the properties above.
- More generally:

Proposition

We say that f(n) is a degree-d polynomial in n if there are constants a_0, \ldots, a_d such that $a_d \neq 0$, and $f(n) = a_d n^d + a_{d-1} n^{d-1} + \cdots + a_1 n + a_0$ for all n. If f(n) satisfies these conditions, then $f(n) = O(n^d)$.

$Big-\Omega$ Notation

Definition

We write $f(n) = \Omega(g(n))$ if there exist two constants c > 0 and $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies $|f(n)| \ge c|g(n)|$. In other words, $f(n) = \Omega(g(n))$ means that g(n) = O(f(n)).

$Big-\Omega$ Notation

- It means that f(n) is at least a constant factor times g(n) for large enough n.
- g(n) is an asymptotic lower bound on f(n).
- Example: It can be proved that any sorting algorithm takes $\Omega(n \log n)$ time in the worst case. It means that the worst-case running time of any sorting algorithm is at least $cn \log n$ for some constant c > 0.

Big-Θ Notation

Definition

We write $f(n) = \Theta(g(n))$ if there exist three constants $c_1 > 0$, $c_2 > 0$ and $n_0 \in \mathbb{N}$ such that $n \geqslant n_0$ implies $c_1|g(n)| \leqslant |f(n)| \leqslant c_2|g(n)|$. In other words, $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Big-Θ Notation

- Interpretation: $f(n) = \Theta(g(n))$ if f(n) and g(n) are within a constant factor from each other for large enough n.
- We say that g(n) is an asymptotically tight bound for f(n).
- Let $T_1(n)$ and $T_2(n)$ be defined as in 12:

$$T_1(n) = 4n^2 - 3n + 6$$
 and $T_2(n) = 3n^2 + 6n - 2$.

Then we have $T_1(n) = \Theta(T_2(n))$.

Properties

Proposition

The relation Θ is an equivalence relation:

- $f(n) = \Theta(f(n))$. (Reflexivity)
- $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$. (Symmetry)
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$. (Transitivity)

Proof.

Follows immediately from the definition.

Properties

Proposition

- (i) Let $\lambda \neq 0$ be a constant. Then $\lambda f(n) = \Theta(f(n))$.
- (ii) If $f_1(n) = \Theta(g_1(n))$ and $f_2(n) = \Theta(g_2(n))$, then $f_1(n)f_2(n) = \Theta(g_1(n)g_2(n))$.
- (iii) If f(n) = o(g(n)), then $f(n) + g(n) = \Theta(g(n))$.
- (iv) If there exists n_0 such that $0 \le f(n) \le g(n)$ for all $n \ge n_0$, then $f(n) + g(n) = \Theta(g(n))$.
- (v) If f(n) is a degree-d polynomial, then $f(n) = \Theta(n^d)$.
 - Proofs in lecture notes.

ω -Notation

Definition (Little- ω notation)

We write $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)).

• Simpler definition if there exists n_0 such that $f(n) \neq 0$ for all $n \geqslant n_0$, then

$$f(n) = \omega(g(n))$$
 iff $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

• So $f(n) = \Omega(g(n))$ means that f(n) grows much faster than g(n).

Absolute Values

- The definitions of $O(\cdot)$, $\Theta(\cdot)$, and $\Omega(\cdot)$ use absolute values |f(n)| and |g(n)| instead of f(n) and g(n).
- In this course, most functions are running times, so they are always positive.
- Only lower-order terms can be negative.
- So you may think of all the function as being positive, and ignore absolute values.

Lower Order Terms

- $f(n) = O(n^2)$ means exactly the same as $f(n) = O(7n^2 5n + 12)$.
- Similarly, $\Theta(n^3)$ is the same as $\Theta(2n^3 + 3n \log n 5)$.
- o(5) is the same as o(1).
- In practice: Always remove constant factors and *lower order terms*, as they play no role, and can lead to mistakes.

Asymptotic Notation in Equations

- Example 1
 - ▶ The recurrence relation for the worst-case running time T(n) of merge sort can be written:

$$T(n) = 2T(n/2) + \Theta(n).$$

▶ It means that there is a function f such that $f(n) = \Theta(n)$ and

$$T(n) = 2T(n/2) + f(n).$$

- Example 2
 - $S(n) = \sum_{i=1}^n O(i)$
 - It means that there is a function g(n) = O(n) such that $S(n) = \sum_{i=1}^{n} g(i)$.
 - So $S(n) = O(n^2)$.

Algorithms Analysis

- We will use asymptotic notations to analyze algorithms running times.
- Examples:

Algorithm	Worst-case running time on input of size n
Binary Search	$\Theta(\log n)$
Linear Search	$\Theta(n)$
Merge Sort	$\Theta(n \log n)$
Insertion Sort	$\Theta(n^2)$

- Unknown constants and lower order-terms disappear.
- $\Theta(\cdot)$ says that there is a tight bound. For instance, the table above shows that there are two constants $c_1 > 0$, c_2 such that the worst case running time of Insertion Sort is at least $c_1 n^2$ and at most $c_2 n^2$ for large enough n.
- Often these bounds are given using $O(\cdot)$, so only an upper bound is claimed.

Algorithms Analysis: Example

Algorithm	Worst-case running time	Bound
Insertion Sort	$T_1(n) = 4n^2 - 3n + 6$	$\Theta(n^2)$
Bubble Sort	$T_2(n) = 3n^2 + 6n - 2$	$\Theta(n^2)$
Merge Sort	$T_3(n) = 8n \log n + 7n$	$\Theta(n \log n)$

Figure: $T_3(n) = o(T_1(n))$, $T_3(n) = o(T_2(n))$, $T_1(n) = \Theta(T_2(n))$

Classes of Running Times

Time bound	Class name	
T(n) = O(1)	Constant	
$T(n) = O(\log n)$	Logarithmic	
T(n) = O(n)	Linear	
$T(n) = O(n^2)$	Quadratic	
$T(n) = O(n^k)$	Polynomial	
$T(n) = O(2^{n^k})$	Exponential	

Table: n is the input size, k is a constant.

- Example: We say that the running time of Insertion Sort is *quadratic*.
- Next slide shows that these classes are very different.

Classes of Running Times

Figure: $\log n \prec n \prec n \log n \prec n^2 \prec 2^n$.

Classes of Running Times

- It is often desirable to find a *polynomial-time* algorithm for the problem being considered.
 - ▶ That is, we want the worst-case running time to be $O(n^d)$ for some constant d.
- On the other hand, exponential time algorithms are often considered too slow. In particular, if the worst case running time is $\Omega(2^n)$, we can only solve small instances of the problem.
- Unfortunately, for many problems, the best known algorithms are exponential. In particular, it is true for NP-hard problems. (Will be described later this semester.)