Machine Learning Diploma

Level3: Machine Learning

Session7

<u>Agenda</u>

- → Classification Models
- → Logistic Regression Algorithm
- → Sklearn Logistic Regression
- → Evaluating Classification Models Performance

1. Classification Models

- → Classification is a supervised learning concept which basically categorizes a set of data into classes.
- → It is a predictive modelling problem where a class label is predicted for a given example of input data.

Classification problem try to learn categorical class. such as "red" or "blue" or "yellow"

- → Classification is a supervised learning concept which basically categorizes a set of data into classes.
- → It is a predictive modelling problem where a class label is predicted for a given example of input data.

Classification problem try to learn categorical class. such as "red" or "blue" or "yellow"

→ Classification algorithm is a Supervised Learning technique that is used to identify the class of new observations on the basis of training data.

Classification use case:

Multi-Class Classification

Multi-Label Classification

Dog Fox Tiger Lion

Person A Person B Person C

Java Python

Comedy Drama

Dog Tiger Bird Fish

Spam Not Spam

Cancer Not Cancer

Positive Sentiment **Negative Sentiment Binary Classification**

Fraud Not Fraud

2. Logistic Regression Algorithm

Logistic Regression:

- → Logistic Regression is a supervised learning classification algorithm used to predict the probability of a Target Categorical Variable.
- → The outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, True or False, etc. but instead of giving the exact value as 0 and 1, it gives the **Probabilistic Values** which lie between 0 and 1.
- → In Logistic Regression, instead of fitting a regression line, we fit an "S" shaped logistic function, which predicts two maximum values (0 or 1).
- → The curve from the logistic function indicates the likelihood of something.

Logistic Function:

→ The **Logistic/Sigmoid** function is a mathematical function used to map the predicted values to probabilities.

- → The below is the Hypothesis of Linear Regression.
- → Logistic Regression just has a transformation based on it.
- → For logistic regression, focusing on binary classification here, we have class 0 and class 1.

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_j x_j \qquad = \theta^T x \qquad = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_j \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_j \end{bmatrix}$$

Where
$$x_0 = 1$$

$$\hat{Y} = h_{\theta}(x) = \sigma(\theta^T.x)$$

 \hat{Y} : probability that an instance x is belongs to a class

 $oldsymbol{h}_{oldsymbol{ heta}}$: model parameters that determine boundary decision

 \boldsymbol{x} : features

 σ : logistic (sigmoid — Logit) S-shaped function

- Map any real-valued number to between 0, 1

- → To compare with the target, we want to constrain predictions to some values between 0 and 1.
- → That's why **Sigmoid Function** is applied on the raw model output and provides the ability to predict with probability.

Sigmoid Function:
$$g(z) = \frac{1}{1 + e^{(-z)}}$$

Hypothesis:
$$h_{\theta}(x) = \frac{1}{1 + e^{(-\theta^T x)}}$$

- \rightarrow What hypothesis function returns is the probability that y = 1, given x, parameterized by θ .
- \rightarrow Written as: h(x) = P(y = 1 | x; θ).
- → Decision boundary can be described as: Predict 1, if $\theta^T x \ge 0 \rightarrow h(x) \ge 0.5$ Predict 0, if $\theta^T x < 0 \rightarrow h(x) < 0.5$

Cost Function:

- → We want to assign more punishment when predicting 1 while the actual is 0, and when predicting 0 while the actual is 1.
- → The Loss Function of Logistic Regression is doing this exactly which is called **Logistic Loss**.

Cost Function:

- → If y = 1, the plot on left, when prediction = 1, the cost = 0, when prediction = 0, the learning algorithm is punished by a very large cost.
- → Similarly, if y = 0, the plot on right, predicting 0 has no punishment but predicting 1 has a large value of cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost Function:

→ If y = 1, the plot on left, when prediction = 1, the cost = 0, when prediction = 0, the learning algorithm is punished by a very large cost

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y)\log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left(\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right)$$

Optimization Function:

- \rightarrow We can start to fit by minimizing J(θ) as a function of θ to find optimal parameters.
- → We can still apply **Gradient Descent** as the optimization algorithm.
- \rightarrow It takes partial derivative of J with respect to θ (the slope of J), and updates θ via each iteration with a selected learning rate α until the **Gradient Descent** has converged.

$$\theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

3. Sklearn Logistic Regression

Sklearn Logistic Regression:

4. Evaluating Classification Models Performance

Evaluating Classification Models Performance

- → Confusion Matrix
- → Accuracy
- → Precision
- → Recall
- → F1 Score

Evaluating Classification Models Performance

		Actual class	
	00	Positive	Negative
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)
Predic	Negative	FN: False Negative (Type II Error)	TN: True Negative

Confusion Matrix:

There are four quadrants in the confusion matrix, which are symbolized as below.

True Positive (TP: f_{++}): The number of instances that were positive (+) and correctly classified as positive (+v).

True Negative (TN: f_): The number of instances that were negative (-) and correctly classified as (-).

False Negative (FN: f_{+-}): The number of instances that were positive (+) and incorrectly classified as negative (-). It is also known as **Type 2 Error**.

False Positive (FP: f_{-+}): The number of instances that were negative (-) and incorrectly classified as (+). This also known as **Type 1 Error**.

		Actual class		
	Positive		Negative	
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)	
Predic	Negative	FN: False Negative (Type II Error)	TN: True Negative	

Accuracy:

This term tells us how many right classifications were made out of all the classifications. In other words, how many TPs and TNs were done out of TP + TN + FP + FNs. It tells the ratio of "True" s to the sum of "True" s and "False" s.

		Actual class		
		Positive	Negative	
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)	
Predic	Negative	FN: False Negative (Type II Error)	TN: True Negative	

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Recall (Sensitivity):

Out of all the actual real positive cases, how many were identified as positive.

		Actual class	
	0.	Positive	Negative
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)
Predic	Negative	FN: False Negative (Type II Error)	TN: True Negative

$$\begin{aligned} & \text{Recall} = \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \\ & = \frac{\textit{True Positive}}{\textit{Total Actual Positive}} \end{aligned}$$

Precision:

Out of all that were marked as positive, how many are actually truly positive.

		Actual class	
		Positive	Negative
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)
Predict	Negative	FN: False Negative (Type II Error)	TN: True Negative

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive}$$

Precision:

F1 score is a weighted average of Precision and Recall, which means there is equal importance given to FP and FN. This is a very useful metric compared to "Accuracy".

		Actual class		
		Positive	Negative	
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)	
Predict	Negative	FN: False Negative (Type II Error)	TN: True Negative	

F1 Score =
$$\frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

Area Under Curve (AUC) and ROC Curve:

A ROC Curve is drawn by plotting TPR or True Positive Rate or Recall or Sensitivity (which we saw above) in the y-axis against FPR or False Positive Rate in the x-axis. FPR = 1- Specificity (which we saw above).

Confusion Matrix:

- → Recall: Ability of a model to find all the relevant cases within a dataset.
- → Precision: Ability of a model to identify only the relevant data points.
- → F1 Score: harmonic mean of precision and recall.

Confusion Matrix:

		Actual class		·
		Positive	Negative	
Predicted class	Positive	TP: True Positive	FP: False Positive (Type I Error)	Precision: TP (TP + FP)
Predic	Negative	FN: False Negative (Type II Error)	TN: True Negative	Negative Predictive Value: TN (TN+FN)
		Recall or Sensitivity:	Specificity:	Accuracy:
		TP	TN	TP + TN
		(TP + FN)	(TN + FP)	(TP + TN + FP + FN)

Case Study:

Case 1

COVID 19/ Healthy

Cost of FN > Cost of FP

Case 2

Spam/Not Spam

Cost of FP > Cost of FN

Case 3

Good/Bad Ioan

Cost of FN > Cost of FP

Recall

Precision

Recall

$$recall = \frac{true \ positives}{true \ positives} + false \ negatives} \quad precision = \frac{true \ positives}{true \ positives} + false \ positives$$

$$recall = \frac{true\ positives}{true\ positives\ +\ (alse\ negatives}$$

Any Questions?

THANK YOU! AMIT