Stock Forecasting Model

—Eclipse Loom Forecast

Team J

Zhang Yanxiao 23222069

Zhou Zixuan 23271558

Zhang Zhenghan 23267925

Zeng Weiming 23267062

Zou Boyu 23258527

Cui Zexu 23259175

01. Problem Statement

* Making Investments is a complicated procedure to process

While investors can identify target stock types and initial combinations, they lack clarity on two key dimensions of their investments:

- 1. Forward-looking Performance (e.g., expected returns)
- 2. Potential market shifts (e.g., sector volatility, macroeconomic events)

Our project aims to resolve these gaps by developing a **Portfolio Return Prediction System**

O2. Solution Overview

O3. Stock Forecasting – Preparation Stage

O3. Stock Forecasting – Processing Stage

3. Expected Returns Calculations & Predictions (Through Machine Leaning Models) Compute final return through Input stock code, holding Retrieve parameters for Calculate returns using period, and number of → weighted aggregation of model → ML model-based return five distinct models shares purchased prediction predictions **Preparations**

03. Stock Forecasting – Output & Reporting Stage

03. Testing

We use "Back-Testing" to validate model performance:

- 1. Select T days back as an example
- 2. Use (10-year sources T days sources) to train and predict the return on the T's day (where index i = 0)
- 3. Compare the actual return with our predicted return
- 4. Increment i + 1

03. Testing

Record the ratio of all correct predictions over the total number of comparisons to acquire the estimated prediction accuracy of our system. (one-stock-simulation)

03. Testing

Do a hundred-stock-simulation to reduce randomness and get the final average prediction accuracy rate of our system

04. Complex Logic Highlights – Retrieve Data

```
get_stock_data(ticker, period="10y"):
  stock = yf.Ticker(ticker)
  df = stock.history(period=period)
  df.index = pd.to datetime(df.index)
  df.sort_index(inplace=True)
  return df
ef get gpr data():
  url gpr = "https://www.matteoiacoviello.com/gpr_files/data_gpr_export.xls"
      gpr_df["Date"] = pd.to_datetime(gpr_df["month"].astype(str).str.replace("M",
      return gpr_df
  except Exception as e:
      print("Error from getting GPR data:", e)
      return None
lef get fred data():
   """Getting FRED economy data"""
       # using pandas_datareader to get FRED data
       import pandas_datareader.data as web
      start = datetime(2000, 1, 1)
      end = datetime.now()
      # get unemployment rate
      unemployment = web.DataReader('UNRATE', 'fred', start, end)
      # get inflation rate
      inflation = web.DataReader('CPIAUCSL', 'fred', start, end)
      inflation = inflation.pct_change(12) * 100 # year inflation
      # get FED rate
      fed_rate = web.DataReader('FEDFUNDS', 'fred', start, end)
      economic_data = pd.concat([unemployment, inflation, fed_rate], axis=1)
      economic_data.columns = ['Unemployment', 'Inflation', 'FedRate']
      return economic data
  except Exception as e:
      print(" error occurred when getting FED data: ", e)
      return None
```


Using a url and the excel reader to retrieve Geopolitical Risk (GPR) Index data

Import <u>pandas_datareader .data</u> <u>library</u> to read FRED economy data

 \cup

04. Complex Logic Highlights – Check & Merge Data

```
def merge_stock_gpr(stock_df, gpr_df):
    stock_df = stock_df.copy()
    gpr_df = gpr_df.copy()

# make sure the index is datetime and no zone
    stock_df.index = pd.to_datetime(stock_df.index)
    stock_df.index = stock_df.index.tz_localize(None)

# keep the date index as a column and extract the year and month
    stock_df['Date'] = stock_df.index
    stock_df['Year'] = stock_df['Date'].dt.year
    stock_df['Month'] = stock_df['Date'].dt.month

# deal with gpr_df: turn 'month' column into datetime and clear the zone
    gpr_df['month'] = pd.to_datetime(gpr_df['month'])
    gpr_df['month'] = gpr_df['month'].dt.tz_localize(None)
    gpr_df['Year'] = gpr_df['month'].dt.year
    gpr_df['Month'] = gpr_df['month'].dt.month
```


Aligning different time formats and resampling data across varying frequencies (daily, monthly) requires robust data handling logic.

```
def is_trading_day(date, ticker):
       ticker = ticker.strip().lstrip('$')
       if ticker.endswith(".HK"):
           exchange = "HKEX"
           calendar = mcal.get calendar("HKEX")
       elif ticker.endswith(".SS") or ticker.endswith(".SZ"):
           exchange = "SSE"
           calendar = mcal.get_calendar("SSE")
       else:
           exchange = "NYSE"
            calendar = mcal.get_calendar("NYSE")
       date = pd.to_datetime(date).replace(hour=0, minute=0, second=0, microsecond=0)
       date_str = date.strftime('%Y-%m-%d')
       schedule = calendar.valid days(start date=date str, end date=date str)
       is_trading = not schedule.empty
       return is_trading
```


Import <u>pandas_market_calendars</u>
<u>library</u> to check whether a given date is a valid trading day for a specific stock exchange

04. Complex Logic Highlights – Train Models

```
'Random Forest': RandomForestRegressor(
   n estimators=100,
   max_deptin=4,
   min samples split=15,
                                                    'LightGBM': lgb.LGBMRegressor(
   min samples leaf=15,
                                                       n estimators=100.
   max features='sart',
                                                       learning_rate=0.01,
   n jobs=-1,
                                                       num leaves=15,
   random_state=42
                                                       max depth=4,
                                                       min child samples=30,
'Gradient Boosting': GradientBoostingRegressor(
                                                       min child weight=1,
   n estimators=100,
                                                       subsample=0.7.
   learning_rate=0.01,
                                                       colsample bytree=0.7,
   max depth=3,
                                                       reg_alpha=0.1,
   subsample=0.7,
                                                       reg lambda=1.0,
   min_samples_split=15,
                                                       n jobs=-1.
   min_samples_leaf=15,
                                                       random_state=42,
   random state=42
                                                       verhose=-1
'XGBoost': xqb.XGBRegressor(
                                                    'ElasticNet': ElasticNet(
   n estimators=100,
   learning rate=0.01,
                                                       l1_ratio=0.7,
   max_depth=3,
                                                       max iter=1000,
   qamma=0.1
                                                       tol=0.001,
   min child weight=7.
                                                       random_state=42
   subsample=0.7,
   colsample_bytree=0.7,
   reg alpha=0.1,
   reg lambda=1.0.
   n jobs=-1,
```

random_state=42

Import five predictive model libraries from sklearn:

- 1. RandomForestRegressor
- 2. GradientBoostingRegressor
- 3. XGBoost
- 4. LightGBM
- 5. ElasticNet

to predict future returns

04. Complex Logic Highlights – Prediction in Action

```
# Training test set split (time series split, with the last 20% used as the test set)
split idx = int(len(X) * 0.8)
X train, X test = X.iloc[:split idx], X.iloc[split idx:]
y_train, y_test = y.iloc[:split_idx], y.iloc[split_idx:]
# train all models and give the result
models results = train_and_evaluate_models(X_train, X_test, y_train, y_test, X.columns)
# generate the prediction dataframe
full_pred = pd.DataFrame(index=df_target.index)
full pred['Actual'] = df target['Future Return']
# Add predictions for each model
for name, result in models results.items():
    full pred[f'Pred {name}'] = np.nan
    # Only partially fill in the test set
    full pred.loc[X test.index, f'Pred {name}'] = result['model'].predict(X test)
# Get the latest forecast for the last day
X_latest = df_target[feature_cols].iloc[[-1]]
predictions = {}
for name, result in models_results.items():
    model = result['model']
    pred = model.predict(X_latest)[0]
    predictions[name] = pred
return predictions, models_results, full_pred
```

Split data into training set and test set (80%/20%) Train all five predictive models

Extract the features of the last day as X_latest and let models use latest data to predict what will happen in the next N days

04. Complex Logic Highlights – Testing

```
feature_df.drop(feature_df.tail(60).index, inplace=True)
for i in range(30):
    count += 1
   df_target = add_future_return(feature_df, N)
    feature_df.drop(feature_df.tail(1).index, inplace=True)
   predictions, models_results, prediction_df = train_and_predict(feature_df, N)
    df target_dron(df target_tail(1)_index, inplace=True)
    real return=df target.tail(1)['Future Return'].iloc[0]
   k=0
    for j in predictions.values():
        if j>0:
            k+=1
    if k>=3 and real return>0:
        trueValue+=1
   elif k<3 and real return<0:
        trueValue+=1
```

Reduce the impact of the recent tariff events

Compare the predicated returns with actual returns in the past 30 days and record the final accuracy ratio

O5. Other Interesting Features

Stock Prediction Program

User Input Interface

O5. Other Interesting Features

weimingceng37@gmail.com

发送至 我 ▼

Enhanced Stock Prediction with Multiple Models

Prediction deadline: Future30 days

==== AAPLpredict results =====

ElasticNet: 1.31% XGBoost: 0.64% LightGBM: -0.10%

Gradient Boosting: -1.00% Random Forest: -1.66%

==== MSFTpredict results =====

ElasticNet: 4.22% LightGBM: 3.70% XGBoost: 2.29%

Gradient Boosting: 1.99% Random Forest: -1.99%

==== TSLApredict results =====

ElasticNet: 5.71% Random Forest: 3.82% Gradient Boosting: 1.34%

XGBoost: 0.71% LightGBM: -0.76%

==== GOOGLpredict results =====

ElasticNet: 5.46% LightGBM: 3.09% XGBoost: 2.03%

Gradient Boosting: 1.94% Random Forest: -2.37%

weimingceng37@gmail.com

发送至 我 ▼

Dear Investor.

Your projected portfolio return as of 2025-04-14 21:08:13 is 1.10%. Total earning value is: 2286.667331314647 and total value is: 209685.66788063105.

Key Features:

- Integrates stock history, geopolitical risks, and macroeconomic data.
- Uses advanced algorithms (Random Forest, XGBoost) to identify volatility drivers.
- Employs ensemble models with 30-day rolling validation for calibrated projections.
- Refines outliers and ensures trend continuity for reliable insights.

Our methodology cross-verifies market signals with quantitative frameworks, balancing academic rigor with practical application. This equips institutional and active investors with actionable, data-driven foresight.

Thank you for your trust!

Best regards, EclipseLoom Team

Date: 2025-04-14 21:08:13

1个附件・已由 Gmail 扫描 ①

Results Delivery via Email (with PDF attachment)

O5. Other Interesting Features

Predicted

Portfolio

Key Features

Illustration

Return Rate

MSFT GOOGL stockName AAPL **TSLA AMZN** holdingDays 7 30 26 28 29

Dear Investor,

Your projected portfolio return as of 2025-04-14 21:08:13 is 1.10%.

Total earning value is: 2286.667331314647 and total value is: 209685.66788063105.

Key Features:

- Integrates stock history, geopolitical risks, and macroeconomic data
- Uses advanced algorithms (Random Forest, XGBoost) to identify volatility drivers.
- Employs ensemble models with 30-day rolling validation for calibrated projections.
- Refines outliers and ensures trend continuity for reliable insights.

Our methodology cross-verifies market signals with quantitative frameworks, balancing

academic rigor with practical application. This equips institutional and active

investors with actionable, data-driven foresight.

Thank you for your trust!

Input Stock Names & Holding Days

Expected Earning Prices

Predicted Portfolio Report

Demo

THANK YOU