

Общая физика: Оптика

ЛЕКТОР: КЛЕНОВ СЕРГЕЙ ЛЬВОВИЧ

Лекция 1. Геометрическая оптика

Видимый свет (400-760 Нм)

Длина волны в Нм

 $(1 \text{ Hm}=10^{-9} \text{ m}=10^{-6} \text{ mm})$

Законы геометрической оптики

- 1) Прямолинейное распространение света
- 2) Отражение
- 3) Преломление
- 4) Независимость пучков света

Отражение света

Понятие луча света: линия распространения света перпендикулярно волновому фронту

Преломление света

Закон Снеллиуса:

$$n_1 \sin \varphi = n_2 \sin \psi$$

Случай
$$n_1=1$$
 и $n_2=n$: $\sin \varphi = n \sin \psi$

Показатель преломления:

$$n = \sqrt{\varepsilon}$$

Принцип Ферма (принцип наименьшего времени)

Свет из точки A в точку B идет по пути, который занимает наименьшее время.

Скорость света в среде: $v = \frac{c}{n}$

Мнимый источник света

$$\sin \varphi = n \sin \psi$$

$$|OC|$$
: $l \operatorname{tg} \varphi = h \operatorname{tg} \psi$

При малых углах φ и ψ :

$$l = \frac{h}{n}$$

Один мнимый источник для любого малого угла ψ !

Преломление света в неоднородной среде

Для i -го слоя:

$$n_i \sin \varphi_i = n_{i+1} \sin \varphi_{i+1}$$

 $i = 0, 1, 2, ..., N-1$

$$n_0 \sin \varphi_0 = n_N \sin \varphi_N$$

Луч отклоняется в сторону больших значений показателя преломления

Радиус кривизны луча R: $\frac{1}{R} = \frac{1}{n} \frac{dn}{dx}$

Полное внутреннее отражение в неоднородной среде

Преломление света на сферической поверхности

Из $\triangle AOD$: $\alpha + \gamma = \varphi$

Из Δ DOB: $\psi + \beta = \gamma$

В параксиальном приближении (при малых углах α, β, γ):

$$\alpha = \frac{h}{a}$$
, $\beta = \frac{h}{b}$, $\gamma = \frac{h}{R}$

Тогда:

Преломление света на сферической поверхности. Расстояние до изображения

Параксиальное приближение: Изображение Источник света

a = |AC|, b = |CB|, R = |CO|.

Преломление на сферической поверхности. Увеличение. Теорема Лагранжа- Гельмгольца

Тонкая линза

Толщина тонкой линзы существенно меньше расстояний от линзы до источника света (a) и до изображения (b).

 R_1 , R_2 - радиусы кривизны

Фокусное расстояние тонкой линзы

Формула тонкой линзы

Фокус. Собирающая линза

Фокус. Рассеивающая линза

Фокус. Вогнутое зеркало

Фокусное расстояние:

$$F = \frac{R}{2}$$

Увеличение тонкой линзы

Увеличение:

$$\frac{y'}{y} = \frac{b}{a}$$

$$\frac{y'}{y} = \frac{b - F}{F}$$

a — расстояние от линзы до предмета;

b – расстояние от линзы до изображения.

Сложные оптические системы: толстая линза (без вывода)

Сложные оптические системы: построение изображения

Линейное увеличение:

$$\frac{y'}{y} = \frac{F}{X} = \frac{X'}{F}$$

Положение изображения:

$$XX' = F^2$$