

Features

- Uses CRM(CQ) advanced SkyMOS2 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Synchronous Rectification for AC/DC Quick Charger
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	100V
R _{DS(on)}	6.8mΩ
I _D	80A

100% Avalanche Tested

CRST074N10L2

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRST074N10L2	-	TO-220	Tube	N/A	N/A	50pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	100	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I_{D}	120	Α
$T_C = 25$ °C (Package limit)	ı _D	80	A
T _C = 100°C (Silicon limit)		76	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	${ m I}_{ m D~pulse}$	320	Α
Avalanche Current (L=0.5mH)	I_{AS}	21	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS}	110	mJ
Repeative avalanche Current (L=0.5mH)*	${ m I}_{\sf AR}$	15	Α
Repeative avalanche (L=0.5mH)*	E _{AR}	56	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	227	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

^{*}Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.55	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	62	- C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Darameter	Symbol	Value			Unit	Toot Condition
Parameter	Symbol	min.	typ.	max.	Onit	Test Condition
Static Characteristic						
Drain-source breakdown voltage	BV _{DSS}	100	115	-	V	V _{GS} =0V, I _D =250uA
Gate threshold voltage	V _{GS(th)}	1.4	1.8	2.2	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA
Zero gate voltage drain current	I _{DSS}	-	0.05 -	1 10	μΑ	V_{DS} =100V, V_{GS} =0V T_{j} =25°C T_{j} =125°C
Gate-source leakage current	I_{GSS}	-	±10	±100	nA	$V_{GS}=\pm20V, V_{DS}=0V$
			6.8	8.2	mΩ	VGS=10V,I _D =50A
Drain-source on-state	l D		10.2	12.8	mΩ	T _j =100°C
resistance	R _{DS(on)}		8.3	10.0	mΩ	VGS=4.5V,I _D =50A
		-	15.6	19.5	mΩ	T _j =100°C
Transconductance	g _{fs}	-	115	-	S	$V_{DS}=5V,I_{D}=50A$

Dynamic Characteristic

Input Capacitance	C _{iss}	1313	2626	3939		
Output Capacitance	C _{oss}	228.5	457	685.5	pF	$V_{GS} = 0V, V_{DS} = 50V,$
Reverse Transfer Capacitance	C _{rss}	19	38	76	-	f=1MHz
Gate Total Charge	Q_{G}	-	44.5	66.8		101/1/
Gate-Source charge	Q_{gs}	-	10.4	15.6	nC	V_{GS} =10V, V_{DS} =50V, I_{D} =50A, f=1MHz
Gate-Drain charge	Q_{gd}	-	6.8	10.2		,
Turn-on delay time	t _{d(on)}	-	10.3	15.5		
Rise time	t _r	-	62	93	ns	$V_{GS} = 10V, V_{DD} = 50V,$
Turn-off delay time	t _{d(off)}	-	30	45		$R_{G_{ext}}=3.0\Omega$
Fall time	t _f	-	98	147		
			-			

CRST074N10L2

SkyMOS2 N-MOSFET 100V, $6.8m\Omega$, 80A

	-	_				
Gate resistance	R_G	0.6	1.1	1.7	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

Body Diode Characteristic

Parameter	Symbol		Value		Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Onit	rest Condition	
Body Diode Forward Voltage	V_{SD}	ı	0.93	1.4	V	V _{GS} =0V,I _{SD} =50A	
Body Diode Reverse Recovery Time	t _{rr}	ı	64	128	ns	I _F =50A,	
Body Diode Reverse Recovery Charge	Q_{rr}	-	101	202	nC	I _F =50A, dI/dt=100A/μs	

Typical Performance Characteristics

Fig 5: Rds(on) vs. Temperature 2.4 V_{GS}=10V 2.2 $I_D = 50A$ R_{DS(on)}_Normalized 2.0 1.8 1.6 1.4 1.2 1.0 0.8 50 100 125 150 175 Tj - Junction Temperature (°C)

Fig 6: Capacitance Characteristics 10000 Ciss C - Capacitance (PF) 1000 Coss 100 $V_{GS}=0V$ f=1MHz Crss 10 10 20 30 40 50 60 0 V_{DS} (V)

Fig 7: Gate Charge Characteristics

Fig 8: Body-diode Forward Characteristics

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

t_p (sec)

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-220-3L

G	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.30	4.80	0.169	0.189
A1	1.20	1.45	0.047	0.057
A2	2.20	2.90	0.087	0.114
b	0.69	0.95	0.027	0.037
b2	1.00	1.60	0.039	0.063
С	0.33	0.65	0.013	0.026
D	14.70	16.20	0.579	0.638
D1	8.59	9.65	0.338	0.380
D2	11.75	13.60	0.463	0.535
е	2.54	2.54 BSC.		BSC.
E	9.60	10.60	0.378	0.417
E1	7.00	8.46	0.276	0.333
H1	6.20	7.00	0.244	0.276
L	12.60	14.80	0.496	0.583
L1	2.70	3.80	0.106	0.150
L2	12.13	16.50	0.478	0.650
Q	2.40	3.10	0.094	0.122
Р	3.60	3.90	0.142	0.154

SkyMOS2 N-MOSFET 100V, 6.8mΩ, 80A

Revision History

Revison	Date	Major changes
1.0	2018-02-09	Release of formal version.
1.3	2018-10-15	Dynamic Characteristic update SPEC
1.4	2018-10-25	Redefine the Φ in the Package Outline
2.0	2019-05-31	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

