3.2.4 Свободные колебания в электрическом контуре

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Исследование свободных колебаний в электрическом колебательном контуре.

1.2 В работе используются

Генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, катушка индуктивности, электронный осциллограф, измеритель LRC.

Рис. 1: Схема экспериментальной установки

2 Работа

2.1 Измерение периодов свободных колебаний

Соберём схему, изображённую на Рис. 1.Установим на магазине сопротивлений R=0; На магазине емкостей величину $C=0.02~\mu F$. Установим выходное напряжение генератора на 28 V. По ЭО измерим расстояние между соседними импульсами ($x_0=2.1\cdot 5~ms=10.5~ms$).

Будем измерять по ЭО расстояние x, которое занимают n полных периодов колебаний. Зная период задающих колебания импульсов $(T_0=0.01\ s)$ и x_0 можно расчитать период колебаний контура T по формуле:

$$T = T_0 x/(nx_0)$$

Проведём эти измерения изменяя емкость C от $0.02~\mu F$ до $0.9~\mu F$:

$C, \mu F$	x_0, cm	scale, ms	n	x, cm	scale, ms	T, s
0.02	2.1	5	3	1	1	0.0006
0.13	2.1	5	7	3	2	0.0106
0.24	2.1	5	5	3	2	0.0274
0.35	2.1	5	5	3.6	2	0.0480
0.46	2.1	5	5	4.1	2	0.0718
0.57	2.1	5	5	4.6	2	0.0999
0.68	2.1	5	4	4	2	0.1295
0.79	2.1	5	3	3.1	2	0.1555
0.9	2.1	5	4	4.6	2	0.1971

2.2 Критическое сопротивление и декремент затухания

Приняв L=200~mH рассчитаем ёмкость C, при которой собственная частота колебаний контура $\nu_0=1/(2\pi\sqrt{LC})$ составляет 5~kHz:

$$C = 0.005 \; \mu F$$

Для полученных значений L и C рассчитаем критическое сопротивление контура R_{cr} по формуле:

$$R_{cr} = 2\sqrt{L/C} = 12600 \ \Omega$$

Установим на магазине ёмкость, близкую к рассчитанной. Будем увеличивать R от 0 до R_{cr} . Определим сопротивление магазина R_0 , при котором контур переходит в апериодический режим:

$$R_0 = 7400 \ \Omega$$

Установим сопротивление $R\simeq 0.1R_0$ и будем измерять логарифмический декремент затухающих колебаний по формуле:

$$d = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

Повторим эти измерения для разных R от $0.1R_0$ до $0.3R_0$:

R, Ω	n	U_k, cm	U_{k+n}, cm	d
740	3	4	1	0.462
986	3	3	0.5	0.597
1232	2	2.2	0.5	0.741
1478	2	4	0.6	0.949
1724	2	3.4	0.4	1.070
1970	2	3	0.3	1.151

2.3 Свободные колебания на фазовой плоскости

Подключим на 90 канал Y, на который подано напряжение U_R . Зафиксируем картину:

Рис. 2: Сигналы X и Y в развёртке по времени

Отключим развёртку по времени, переведы ручку "TIME/DIV"в положение "X-Y". Будем наблюдать за изменением картины при изменении R от $0.1R_0$ до $0.3R_0$:

Рис. 3: Фазовая картина при $R=740~\Omega$

Рис. 4: Фазовая картина при $R=1478\;\Omega$

Рис. 5: Фазовая картина при $R=1970~\Omega$

Измерим логарифмический декремент d контура для максимального и минимального значений R по формуле:

$$d = \frac{1}{n} \ln \frac{x_k}{x_{k+n}}$$

ĺ	R, Ω	n	X_k, cm	X_{k+n}, cm	d
ĺ	740	2	3.5	1.4	0.458
Ì	1970	1	2.0	0.6	1.204

Разберём цепь, отключим катушку и измерим её индуктивность L и оммическое сопротивление R_L при помощи RLC-метра. Получим значения:

$$L = 146 \ mH; \ R_L = 14 \ \Omega$$

3 Обработка экспериментальных данных

3.1 Сравнение экспериментальных и теоретических значений периода ${\bf T}$

По формуле $T=2\pi\sqrt{LC}$ рассчитаем теоретические значения периодов для контура. и сравним с экспериментальными, измеренными в пункте 2.1:

$T_{mes}, 10^5 s$	$T_{th}, 10^5 s$
31.7	33.8
81.6	86.5
114	118
137	142
156	163
175	181
190	198
197	213
219	228

Рис. 6: График T_{th} от T_{mes}

Получили зависимость:

$$T_{th} = a \cdot T_{mes} + b$$
$$a = 1.05 \pm 0.01$$
$$b = -0.137 \pm 0.8 \ s$$

Из апроксимации видно, что экспериментальные данный практически идеально совпадают с теоретическими.

3.2 декремент затухания и R_{cr}

Используя данные из пункта 2.3 построим зависимость $Y=f(X),\ Y=1/d^2\ X=1/R_\Sigma$:

Рис. 7: График Y от $X \cdot 10^4$

По наклону графика в начале координат определим R_{cr} :

$$R_{cr} = 2\pi \sqrt{\Delta Y/\Delta X} = 264 \ \Omega$$

Видно, что это значение очень плохо совпадает со значениями, полученными в пункте 2.2. что говорит о том, что данные способ определения критического сопротивления слабо соответствует реальности.

3.3 Добротность

Расчитаем добротность для минимального и максимального значения R, измеренных в пункте 2.3. Используем формулу:

$$Q = \frac{\pi}{d}$$

	R, Ω	d	Q_{mes}	Q_{th}
	740	0.458	6.9	8.5
ĺ	1970	1.204	2.6	3.2

Видим, что экспериментальные данные довольно точно совпадают с теоретическими.

4 Выводы

- 1. Были измерены периды колебания контура (Пункт 3.1). Полученные значения совпадают с теоретическими в пределаъ погрешности.
- 2. Был проверен способ определения критического сопротивления R_{cr} через коэффициент наклона графика $1/d^2$ от $1/R_{\Sigma}$. Полученные значения нисколько не совпадают с теоретическими (264 Ω vs 12600 Ω).
- 3. Были экспериментально получены значения добротности для контура при двух значениях R. Полученные значения примерно совпадают с теоретическими (Пункт 3.3).