Section 11

Functions

Next HW due next Wed.

(Prob. assigned on last M & W and today.)

Basics

Function and Its Domain

A function f is a correspondence which to each suitable object x associates an object f(x).

- f(x) is called the value of f at x, or the value that f takes on at x.
- The set of all x such that f(x) is defined is called the *domain of* f, denoted Dom(f).

Definition 1

Let A and B be sets.

- To say that f is a function on A means that f is a function and $\mathrm{Dom}(f)=A$.
- To say that \underline{f} is a function from A to \underline{B} (denoted $\underline{f}:A\to B$) means that f is a function, $\mathrm{Dom}(f)=A$, and for each x, if $x\in A$, then $f(x)\in B$.

Examples

Example 2

Let $A = \{x : x \text{ is a web page on the WWW}\}$. For each $x \in A$, define:

- $\ell(x)$ = the number of web pages which link to x,
- L(x) =the set of all web pages which link to x.

Then both ℓ and L are functions on A, but

$$\ell: A \to \omega$$
 while $L: A \to \mathcal{P}(A)$.

Thet f be a function on IR defined by fox = 12.

Let fox = 12. (Implicit domain = IR)

Example 3

Let $f(x) = x^2$ for all $x \in \mathbb{R}$. Then the following are all true.

- $f: \mathbb{R} \to \mathbb{R}$.
- $f: \mathbb{R} \to [0, \infty)$.
- $f: \mathbb{R} \rightarrow (B)$ where B is any set such that $[0, \infty) \subseteq B$.

- · f is a Function
- . Dom (f) = A
- $(\forall t)(t \in A \Rightarrow fm \in B) \iff Rng(f) \subseteq B$

Range of a Function

Definition 4

Let f be a function. The *range* of f (denoted Rng(f)) is the set of all <u>values</u> of f; in other words,

$$\operatorname{Rng}(f) = \{ f(x) : x \in \operatorname{Dom}(f) \}$$
$$= \{ y : y = f(x) \text{ for some } x \in \operatorname{Dom}(f) \}.$$

for a chang

Remark.

• Let A and B be sets. Then $f:A\to B$ iff f is a function, $\mathrm{Dom}(f)=A$, and $\mathrm{Rng}(f)\subseteq B$.

Equality of Functions f = g means $Pom(f) = Dom(g) \land (\forall x \in Dom(f))(fox) = good$

Two functions f and g are equal when they have the same domain and for each x in their domain, f(x) = g(x).

Example 5

Let $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 1. Let $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ defined by $g(x)=(x^2-1)/(x-1)$. For any $x\in\mathbb{R}\setminus\{1\}$,

$$a(x) = \frac{(x+1)(x-1)}{x} = x+1 = f(x)$$

$$g(x) = \frac{(x+1)(x-1)}{x-1} = x+1 = f(x).$$
The because the following points of the property of

Nonetheless, $q \neq f$ because $Dom(f) \neq Dom(g)$.

Some Examples of Functions

Constant Functions

$$Dom(f) = A$$

Example 6 (Constant Function)

Let A be a set. A function f on A^{f} is said to be a *constant function* when there exists y_0 such that for each $x \in A$, $f(x) = y_0$.

Question. For each $x \in \mathbb{R}$, let $f(x) = \pi$. What is Rng(f)?

$$R_{ng}(f) = \{\pi\}$$

Indicator Functions

Example 7 (Indicator Function)

Let A be a set and let S be a subset of A. Then the indicator function of S, denoted 1_S , is the function on A defined by

$$1_{S}(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{if } x \notin S, \end{cases}$$

for all $x \in A$.

Question. Let 1_S be as defined above. What are $\mathrm{Dom}(1_S)$ and $\mathrm{Rng}(1_S)$?

$$| \text{ Pom}(1_s) = A |$$
 $| \text{ Ruy}(1_s) = \{0, 1\}$

Identity Function

Example 8 (Identity Function)

Let A be a set. Then the identity function on A, denoted id_A , is the function from A to A defined by $\mathrm{id}_A(x) = x$ for all $x \in A$.

• Note that $id_A : A \to B$ for any set B such that $A \subseteq B$, in which case id_A is called the inclusion function from A to B.

The Empty Function

$$f: \phi \rightarrow A$$

Example 9 (The Empty Function)

The function whose domain is the empty set is called the empty function.

- **Existence**? Yes, for instance, take id_{\emptyset} as an example.
- Uniqueness? Yes.

Proof. Let f and g be functions such that $\mathrm{Dom}(f)=\varnothing=\mathrm{Dom}(g).$ For any x, the sentence

false if
$$x \in \emptyset$$
, then $f(x) = g(x)$

is vacuously true. In other words, for each $x \in \emptyset$, f(x) = g(x). Thus f = g.

• Let f be a function. Then f is the empty function iff $Rng(f) = \emptyset$.

(Proof of the above follows from
$$Pom(f) = \emptyset \iff Rng(f) = \emptyset$$
.)

Projections

A function of two variables is a function whose domain is a set of ordered pairs. In general, a function of n variables is a function whose domain is a set of n-tuples.

Example 10 (Projection)

Let A and B be sets and let $\pi_A(x,y)=x$ and $\pi_B(x,y)=y$ for all $(x,y)\in A\times B$. Then $\pi_A:A\times B\to A$ and $\pi_B:A\times B\to B$. The functions π_A and π_B are called the *projections* from $A\times B$ to A and B respectively.

• For convenience of notation, it is customary to practice a slight abuse of notation such as $\pi_A(x,y)$ instead of $\pi_A((x,y))$ as shown above.

Example: Function of functions

Composition of Functions

Composition of Functions

Definition 11

Let f and g be functions. Then the composition of g with f is the function, denoted $g \circ f$, that is defined by

$$(g \circ f)(x) = g(f(x))$$

for all $x \in Dom(f)$ such that $f(x) \in Dom(g)$.

- Note that $Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}.$
- The short way to read $g \circ f$ is "g composed with f."
- Composition of functions is associative (see Theorem 11.37) but not commutative.

$$\frac{1}{(h \cdot g) \cdot f} = h \cdot (g \cdot f) \qquad g \cdot f \neq f \cdot g$$

Examples

Example 12

Let $f, g : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and g(x) = x - 1. Then

$$(g \circ f)(x) = x^2 - 1$$
 and $(f \circ g)(x) = (x - 1)^2$,

with $\mathrm{Dom}(g\circ f)=\mathrm{Dom}(f\circ g)=\mathbb{R}$.

Examples (cont')

Example 13

Let $f:[0,\infty)\to [0,\infty)$ defined by $f(x)=\sqrt{x}$ and let $g:\mathbb{R}\to [-1,1]$ defined by $g(x)=\sin(x)$. Then

$$(g\circ f)(x)=\sin(\sqrt{x})\quad \text{ with } \mathrm{Dom}(g\circ f)=[0,\infty),$$

and

$$(f\circ g)(x)=\sqrt{\sin(x)}\quad \text{with } \mathrm{Dom}(f\circ g)=\bigcup\left\{\left[2n\pi,(2n+1)\pi\right]:n\in\mathbb{Z}\right\}.$$

San(x)

Examples (cont')

Exercise

Let $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=-(x-1)^2$ and let $g:[0,\infty)\to[0,\infty)$ defined by $g(x)=\sqrt{x}$. Find $\mathrm{Dom}(g\circ f)$. Justify your answer.