第四章向量组的线性相关性

- **牵章向容——线性代数的几何理论**
 - •向量组:线性组合,线性相关性,秩
 - 向量空间
 - 一线性方程组解的结构,解空间
- 学习难章的关键:

抓住向量狙,矩阵,残性方程狙的 联系与互相转化

§1 向量组及其线性组合

- -. n 维向量
- 二.线性表示,线性组合与等价的概念

引例2. 飞机的运行状态

 $(x, y, z, v_x, v_y, v_z, a_x, a_y, a_z, t)^T$

一. n 维向量

定义1. n 个有序数 a_1, a_2, \dots, a_n 组成的数组称为n 维向量, a_i 称为第i个分量.

表示法:
$$\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
, $\vec{a}^T = (a_1, a_2, \cdots, a_n)$ 行向量

列向量

约定: \vec{a} 与 \vec{a}^T 表示两个不同的向量.

运算: 同矩阵运算

几何意义:

空间解析几何中 点 $(x,y,z) \stackrel{1-1}{\longleftrightarrow}$ 向量 $\vec{r} = (x,y,z)^T$

$$\mathbf{R}^{3} = \{\vec{r} = (x, y, z)^{T} | x, y, z \in \mathbf{R}\}$$
三维向量空间

$$\Pi = \{\vec{r} = (x, y, z)^T | ax + by + cz = d\}$$

$$\mathbf{R}^3 \mathbf{P} \mathbf{P} \mathbf{T} \mathbf{\Pi}$$

推广:

$$\mathbf{R}^{n} = \{\vec{r} = (x_{1}, \dots, x_{n})^{T} | x_{1}, \dots, x_{n} \in \mathbf{R} \}$$
 n 维向量空间
$$\prod = \{\vec{r} = (x_{1}, \dots, x_{n})^{T} | a_{1}x_{1} + \dots + a_{n}x_{n} = b \}$$
 \mathbf{R}^{n} 中的 $n-1$ 维超平面

向量组 — 若干个同维数的列(行)向量之集.

有限个向量的向量组与矩阵的关系:

$$n$$
 维列向量组 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$
$$\longleftarrow A_{n \times m} = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m)$$

$$n$$
维行向量组 $\vec{\beta}_1^T, \vec{\beta}_2^T, \dots, \vec{\beta}_m^T$ $\longrightarrow B_{m \times n} = \begin{pmatrix} \vec{\beta}_1^T \\ \vdots \\ \vec{\beta}_m^T \end{pmatrix}$

因此,可以用矩阵研究向量组,也可用向量组研究矩阵.

二. 线性表示, 线性组合与等价的概念

写例1. 设 $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m), A \vec{x} = \vec{b}$ 有解

$$\vec{x} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{pmatrix}$$

 $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m = \vec{b}$

号例2. R³中

$$\vec{r} = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

定义2. 给定向量组 $A: \vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$,对任意一组实数

$$k_1, k_2, \dots, k_m$$
, 称

$$k_1\vec{a}_1 + k_2\vec{a}_2 + \dots + k_m\vec{a}_m$$

为向量组A的一个线性组合, k_1, k_2, \dots, k_m 称为组合系数.

给定 \bar{b} ,若存在一组数 $\lambda_1,\lambda_2,\dots,\lambda_m$,使

$$\vec{b} = \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m$$

则称 \vec{b} 能由向量组A 线性表示.

注意:

(1) 零向量 $\vec{0}$ 可由任意向量组 $A: \vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性表示.

(2) n 维单位向量

$$\vec{e}_i = (0, \dots, 0, 1, 0, \dots, 0)^T$$
 $(i = 1, 2, \dots, n)$

任给向量 $\vec{\alpha} = (a_1, a_2, \dots, a_n)^T$ 都可由 n 维单位向量线性表示:

$$\vec{\alpha} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + \dots + a_n \vec{e}_n$$

(3) 向量 \vec{b} 能由向量组 $A: \vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性表示

线性方程组 $x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_m\vec{a}_m = \vec{b}$ 有解

由P77定理5可得:

定理1. 向量 \vec{b} 能由向量组 $A: \vec{a}_1, \vec{a}_1, \dots, \vec{a}_n$ 线性表示

$$R(\vec{a}_1, \vec{a}_1, \dots, \vec{a}_n) = R(\vec{a}_1, \vec{a}_1, \dots, \vec{a}_n, \vec{b})$$

例1. 设
$$\vec{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\vec{a}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}$, $\vec{a}_3 = \begin{pmatrix} 1 \\ -1 \\ 4 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 1 \end{pmatrix}$, 证明向量

 \vec{b} 能由向量组 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性表示.

$$\begin{array}{ll}
\text{IIE:} \quad B = (\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{b}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 0 \\ 2 & 1 & 4 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}
\begin{array}{l}
r \\
\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\end{array}$$

可见 $R(\vec{a}_1, \vec{a}_2, \vec{a}_3) = R(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{b}) = 2$ 故 \vec{b} 能由向量组 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 线性表示.

定义3. 给定两个n维向量组

$$A: \vec{a}_1, \dots, \vec{a}_m, \quad B: \vec{b}_1, \dots, \vec{b}_l$$

若 B 组中每一向量都能由 A 组线性表示,则称向量组 B 能由向量组 A 线性表示;

若向量组 A与B 能互相线性表示,则称二者等价.

矩阵描述:

 \longrightarrow 存在矩阵 $K_{m\times l}=(k_{ij})_{m\times l}$,使

$$(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_l) = (\vec{a}_1, \dots, \vec{a}_m) \begin{pmatrix} k_{11} & k_{12} & \dots & k_{1l} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \dots & k_{ml} \end{pmatrix}$$

- (1) C与A 的列向量组之间有何关系?
- (2) C与B 的行向量组之间有何关系?

C 的列向量组可由 A 的列向量组线性表示, 系数矩阵为 B.

$$C = \begin{pmatrix} \vec{\gamma}_1^T \\ \vdots \\ \vec{\gamma}_m^T \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1l} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \vec{\beta}_1^T \\ \vdots \\ \vec{\beta}_l^T \end{pmatrix}$$

C 的行向量组可由B 的行向量组线性表示, 系数矩阵为 A.

思考题 2.

- (1)矩阵 A 与矩阵 B 行等价 (即 $A \stackrel{T}{\sim} B$),他们的 行向量组有何 关系?
- (2)矩阵 A 与矩阵 B 列等价 (即 $A \subseteq B$),他们的 列向量组有何 关系?

答: 矩阵 A 与矩阵 B 行等价

 \longrightarrow 矩阵 A 与B 的行向量组等价

矩阵 A 与矩阵 B 列等价

 \longrightarrow 矩阵 A 与 B 的 列 向 量 组 等 价

见书P84

注意:

1. 三个重要关系

 $A: \vec{a}_1, \dots, \vec{a}_m, \quad B: \vec{b}_1, \dots, \vec{b}_l$

 \vec{b} 能由 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性表示

 \leftarrow 存在一组数 $\lambda_1, \lambda_2, \dots, \lambda_m$, 使

$$\vec{b} = \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m$$

 \longrightarrow 线性方程组 $A\vec{x} = \vec{b}$ 有解

其中: $A = (\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m)$

B 组能由 A 组线性表示

 \longrightarrow 存在矩阵 $K_{m \times l}(k_{ij})$, 使

$$(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_l) = (\vec{a}_1, \dots, \vec{a}_m) \begin{pmatrix} k_{11} & k_{12} & \dots & k_{1l} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \dots & k_{ml} \end{pmatrix}$$
即 $B = AK$

 \longrightarrow 矩阵方程 AX = B 有解

2. 几个重要结论

	等价关系	充要条件	必要条件
向量组 的关系	组B能由组A 线性表示	R(A) = R(A,B)	$R(B) \leq R(A)$
矩阵间 的关系	存在矩阵 K $AK = B$	R(A) = R(A,B)	$R(B) \leq R(A)$
矩阵方程	AX = B 有解	R(A) = R(A,B)	$R(B) \leq R(A)$

定理2. 组 B 能由组 A 线性表示 \longrightarrow R(A) = R(A, B) 推 论. 组 B 与组 A 等价 \longrightarrow R(A) = R(B) = R(A, B)

定理3. $A: \vec{a}_1, \dots, \vec{a}_m, B: \vec{b}_1, \dots, \vec{b}_l$ 组 B 能由组 A 线性表示 $\Rightarrow R(B) \leq R(A)$

例2. 设
$$\vec{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $\vec{a}_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 3 \end{pmatrix}$, $\vec{b}_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\vec{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$, $\vec{b}_3 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}$,

证明向量组 \vec{a}_1, \vec{a}_2 与向量组 $\vec{b}_1, \vec{b}_2, \vec{b}_3$ 等价.

证: 记
$$A = (\vec{a}_1, \vec{a}_2), B = (\vec{b}_1, \vec{b}_2, \vec{b}_3),$$

可见 R(A) = R(B) = R(A,B) = 2所以二向量组等价.

例3. 设 n 维向量组 $A: \vec{a}_1, \dots, \vec{a}_m$, 构成 $n \times m$ 矩阵

$$A=(\vec{a}_1,\cdots,\vec{a}_m)$$

证明 n 维单位坐标向量 $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ 能由组 A 线性表示的充要条件是 R(A) = n.

证: $E = (\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ 为单位矩阵

 $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ 能由组A线性表示

$$\langle R(A) = R(A,E)$$

(A, E) 只有n行,且n 阶子式 $|E| = 1 \neq 0$

$$\langle R(A) = n$$

*说明:本例的几种表述方式

几何 语言

$$\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$$
 能由 $A: \vec{a}_1, \dots, \vec{a}_m$ 线性表示

$$R(A) = n$$

方程 语言

矩阵方程 $A_{n\times m}X = E$ 有解

$$R(A) = n$$

矩阵 语言

① 对 $A_{n\times m}$,存在 $Q_{m\times n}$,使 $AQ = E_n$

$$R(A) = n$$

② 对 $B_{n\times m}$, 存在 $P_{n\times m}$, 使 $PB = E_m$

$$R(B) = n$$

说明: 当m=n 时,P,Q 即为 A^{-1} ,所以①,② 可看作逆矩阵概念的推广.

小结

1. 线性表示的概念与充要条件

$$A: \vec{a}_1, \dots, \vec{a}_m, \quad B: \vec{b}_1, \dots, \vec{b}_l$$

b能由 A 组线性表示

$$\leftarrow$$
 存在 $k_1,...,k_m$,使

$$\vec{b} = k_1 \vec{a}_1 + \dots + k_m \vec{a}_m$$

$$= (\vec{a}_1, \dots, \vec{a}_m) \begin{pmatrix} k_1 \\ \vdots \\ k_m \end{pmatrix}$$

$A\vec{x} = \vec{b}$ 有解

$$\longrightarrow$$
 $R(A,\vec{b}) = R(A)$

B组能由A组线性表示

$$\longrightarrow$$
 存在 $K_{m \times l}(k_{ij})$, 使

$$(\vec{b}_{1},\dots,\vec{b}_{l})$$

$$=(\vec{a}_{1},\dots,\vec{a}_{m})\begin{pmatrix}k_{11}\dots & k_{1l}\\ \vdots & & \vdots\\ k_{m1}\dots & k_{ml}\end{pmatrix}$$
即 $B=AK$

$$\longrightarrow AX = B$$
有解

$$R(A,B) = R(A)$$

2. 组B 能由组A 线性表示 \longrightarrow $R(B) \leq R(A)$

注意: 反之不真. 反例: 三维向量组 $A: \vec{e}_1, \vec{e}_2; B: \vec{b} = \vec{e}_3$ R(B) = 1 < R(A) = 2

但组 B 不能由组A 线性表示

- 3. 组A与组B等价的概念; 组A与组B等价 \longrightarrow R(B) = R(A) = R(A,B)
- 4. 线性表示,线性组合等概念可推广到线性方程组中

