

re leased from

Slikes down a frictionless rest.

an angle & wirt. the ground plane inclined at

Q: i) What are the forces acting an thu block?

a) what's the little of A block?

NB: accel

All ensuers in terms

is a weater!

Ade's sol'a:

(pseudonym: FN Force that ents
normally in this . (or 06;15) the Daw a FBD on the Force A applyst whose motion ancerns us The may of the Cock make normal = perpendicular syn: orthogonal

* magnitude of

(2) Set up a convenient coord subsequent culculation ... Make this chaice so that it simplifies system (martindria 0x PUICIT) es of row untroun m

Guiverines: if you know that accel in some dr is 0,

chose And dir to be an axis (mose ay = 0)

BAR Amor Suideline: have zero components along one of your oxes (in this problem, ext Fs as possible in your FBD choose your axes so that as 's that don't alrea som arcs point along a word. ng av& my - 630 - 164 force that doesn't

18 N 3 る・ほに とのい Prior Brown ZF. È

Step (5) — The algebra (this was not actually covered in the lecture)

we have 3 gins:

@ Mg - FT = Ma () F- mg = ma / top rope ... est's solve true for Ft, than use @ to this

O From SF

directly: EliniNATE a from the y'ss Or O to find Ft, but her's a way to find Ft We and find "a" first and then backsubstitute into

J

mx@: mMg-mFT=mHa X 0 .. MFT - Mmg = Mma

Subtract them IMF+mFT-Hmg-mMg=Hmx-mMa 8'05
FF(H+m)-2 Mmg
FF(H+m) -> Fr(H+m)=2Hm FT = 2 Mm g

Sab into (3): Foroge = 2FT = 4Hm & Insert #5: 4 - 4Kg)(3Kg) = 45kg. 8 m=3kg, M=4kg

So the magnitude of the tension in the top ope From = #8 (10%) < 74.10%

It's UESS THAN the combined wight of the blocks. How can that be?

Ask Hoff met time ...