Guia Foca GNU/Linux Capítulo 3 - Hardware

Hardware é tudo que diz respeito a parte física do computador. Nesta seção serão abordados assuntos relacionados com a configuração de hardwares, escolha de bons hardwares, dispositivos for Windows, etc.

3.1 Placa de expansão

É um circuito eletrônico encaixado na placa mãe que tem por objetivo adicionar novas funcionalidades ao computador. Esta placa pode ser uma:

- placa de som para fazer o computador emitir sons, músicas, ligar um joystick, etc.
- Placa de vídeo 3D Para obter imagens mais rápidas para jogos e ambientes de desktop 3 dimensões
- Placa de captura Para assistir televisão/rádio e gravar a programação de TV em seu micro.
- fax-modem para enviar/receber fax, conectar-se a internet, acesso remoto, bina, etc.
- rede para permitir a comunicação com outros computadores em uma rede interna
- controladora de periféricos Para ligar discos rígidos, unidades de disquete, impressora, mouse, joystick, etc.
- SCSI Para ligar unidades de disco rígidos e periféricos de alto desempenho.
- Controladora de Scanner Para ligar um Scanner externo ao micro computador.

O encaixe da placa mãe que recebe as placas de expansão são chamados de Slots.

3.2 Nomes de dispositivos

Seria terrível se ao configurar CADA programa que utilize o mouse ou o modem precisássemos nos se referir a ele pela IRQ, I/O, etc... para evitar isso são usados os *nomes de dispositivos*.

Os nomes de dispositivos no sistema GNU/Linux são acessados através do diretório /dev. Após configurar corretamente o modem, com sua porta I/O 0x2F8 e IRQ 3, ele é identificado automaticamente por /dev/ttyS1 (equivalente a COM2 no DOS). Daqui para frente basta se referir a /dev/ttyS1 para fazer alguma coisa com o modem.

Você também pode fazer um link de /dev/ttyS1 para um arquivo chamado /dev/modem usando: ln -s /dev/ttyS1 /dev/modem, faça a configuração dos seus programas usando /dev/modem ao invés de /dev/ttyS1 e se precisar reconfigurar o seu modem e a porta serial mudar para /dev/ttyS3, será necessário somente apagar o link /dev/modem antigo e criar um novo apontando para a porta serial /dev/ttyS3.

Não será necessário reconfigurar os programas que usam o modem pois eles estão usando /dev/modem que está apontando para a localização correta. Isto é muito útil para um bom gerenciamento do sistema.

Abaixo uma tabela com o nome do dispositivo no GNU/Linux, portas I/O, IRQ, DMA e nome do dispositivo no DOS (os nomes de dispositivos estão localizados no diretório /dev):

```
Dispos. Dispos.

Linux DOS IRQ DMA I/O

ttyS0 COM1 4 - 0x3F8

ttyS1 COM2 3 - 0x2F8

ttyS2 COM3 4 - 0x3E8

ttyS3 COM4 3 - 0x2E8

lp0 LPT1 7 3(ECP) 0x378

lp1 LPT2 5 3(ECP) 0x278

/dev/hda1 C: 14 - 0x1F0,0x3F6

/dev/hda2 D: * 14 - 0x1F0,0x3F6

/dev/hdb1 D: * 15 - 0x170,0x376
```

3.3 Configuração de Hardware

A configuração consiste em ajustar as opções de funcionamento dos dispositivos (periféricos) para comunicação com a placa mãe bem como a configuração do software correspondente para fazer acesso ao hardware. Um sistema bem configurado consiste em cada dispositivo funcionando com suas portas I/O, IRQ, DMA bem definidas, não existindo conflitos com outros dispositivos. Isto também permitirá a adição de novos dispositivos ao sistema sem problemas.

Dispositivos PCI, PCI Express, AMR, CNR possuem configuração automática de recursos de hardware, podendo apenas ser ligados na máquina para serem reconhecidos pela placa mãe. Após isso deverá ser feita a configuração do módulo do kernel para que o hardware funcione corretamente.

Os parâmetros dos módulos do kernel usados para configurar dispositivos de hardware são a *IRQ*, *DMA* e *I/O*. Para dispositivos plug and play, como hardwares PCI, basta carregar o módulo para ter o hardware funcionando.

3.3.1 IRQ - Requisição de Interrupção

^{*} A designação de letras de unidade do DOS não segue o padrão do GNU/Linux e depende da existência de outras unidades físicas/lógicas no computador.

Existem dois tipos básicos de interrupções: as usadas por dispositivos (para a comunicação com a placa mãe) e programas (para obter a atenção do processador). As *interrupções de software* são mais usadas por programas, incluindo o sistema operacional e *interrupções de hardware* mais usado por periféricos. Daqui para frente será explicado somente detalhes sobre interrupções de hardware.

Os antigos computadores 8086/8088 (XT) usavam somente 8 interrupções de hardware operando a 8 bits. Com o surgimento do AT foram incluídas 8 novas interrupções, operando a 16 bits. Os computadores 286 e superiores tem 16 interrupções de hardware numeradas de 0 a 15. No kernel 2.4 e superiores do Linux, a função APIC (*Advanced Programmable Interruption Controller*) permite gerenciar de forma avançada mais de 15 interrupções no sistema operacional. Estas interrupções oferecem ao dispositivo associado a capacidade de interromper o que o processador estiver fazendo, pedindo atenção imediata.

As interrupções do sistema podem ser visualizadas no kernel com o comando cat /proc/interrupts. Abaixo um resumo do uso mais comum das 16 interrupções de hardware:

- 0 Timer do Sistema Fixa
- 01 Teclado Fixa
- 02 Controlador de Interrupção Programável Fixa.

Esta interrupção é usada como ponte para a IRQ 9 e vem dos

antigos processadores 8086/8088 que somente tinham 8 IRQs.

Assim, pera tornar processadores 8088 e 80286 comunicáveis,

a IRQ 2 é usada como um redirecionador quando se utiliza uma

interrupção acima da 8.

03 Normalmente usado por /dev/ttyS1 mas seu uso depende dos

dispositivos instalados em seu sistema (como fax-modem,

placas de rede 8 bits, etc).

04 Normalmente usado por /dev/ttyS0 e quase sempre usada pelo mouse

serial a não ser que um mouse PS2 esteja instalado no sistema.

05 Normalmente a segunda porta paralela. Muitos micros não tem a segunda

porta paralela, assim é comum encontrar placas de som e outros

dispositivos usando esta IRQ.

06 Controlador de Disquete - Esta interrupção pode ser compartilhada

com placas aceleradoras de disquete usadas em tapes (unidades de fita).

07 Primeira porta de impressora. Pessoas tiveram sucesso compartilhando esta porta de impressora com a segunda porta de impressora.

Muitas impressoras não usam IRQs.

08 Relógio em tempo real do CMOS - Não pode ser usado por nenhum outro dispositivo.

09 Esta é uma ponte para IRQ2 e deve ser a última IRQ a ser utilizada. No entanto pode ser usada por dispositivos.

10 Interrupção normalmente livre para dispositivos. O controlador USB utiliza essa interrupção quando presente, mas não é regra.

- 11 Interrupção livre para dispositivos
- 12 Interrupção normalmente livre para dispositivos. O mouse PS/2, quando presente, utiliza esta interrupção.
- 13 Processador de dados numéricos Não pode ser usada ou compartilhada
- 14 Esta interrupção é usada pela primeira controladora de discos rígidos e não pode ser compartilhada.
- 15 Esta é a interrupção usada pela segunda controladora de discos e não pode ser compartilhada. Pode ser usada caso a segunda controladora esteja desativada.

Dispositivos ISA, VESA, EISA, SCSI não permitem o compartilhamento de uma mesma IRQ, talvez isto ainda seja possível caso não haja outras opções disponíveis e/ou os dois dispositivos não acessem a IRQ ao mesmo tempo, mas isto é uma solução precária.

Conflitos de IRQ ocorriam nesse tipo de hardware acima ocasionando a parada ou mal funcionamento de um dispositivo e/ou de todo o sistema. Para resolver um conflito de IRQs, deve-se conhecer quais IRQs estão sendo usadas por quais dispositivos (usando cat /proc/interrupts) e configurar as interrupções de forma que uma não entre em conflito com outra. Isto normalmente é feito através dos jumpers de placas ou através de software (no caso de dispositivos jumperless ou plug-and-play).

Dispositivos PCI, PCI Express são projetados para permitir o compartilhamento de interrupções. Se for necessário usar uma interrupção normal, o chipset (ou BIOS) mapeará a interrupção para uma interrupção normal do

sistema (normalmente usando alguma interrupção entre a IRQ 9 e IRQ 12) ou usando APIC (se estiver configurado).

3.3.1.1 Prioridade das Interrupções

Cada IRQ no sistema tem um número que identifica a prioridade que será atendida pelo processador. Nos antigos sistemas XT as prioridades eram identificadas em seqüência de acordo com as interrupções existentes:

IRQ 0 1 2 3 4 5 6 7 8

PRI 1 2 3 4 5 6 7 8 9

Com o surgimento do barramento AT (16 bits), as interrupções passaram a ser identificadas da seguinte forma:

IRQ 0 1 2 (9 10 11 12 13 14 15) 3 4 5 6 7 8

PRI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note que a prioridade segue em seqüência através da ponte da IRQ 2 para IRQ 9. Os dispositivos com prioridade mais baixa são atendidos primeiro, mas é uma diferença de desempenho praticamente imperceptível de ser notada nos sistemas atuais.

3.3.2 DMA - Acesso Direto a Memória

A *DMA* é usada para permitir a transferência de dados entre dispositivos I/O e a memória sem precisar do processador faze-lo. Ele livra esta carga do processador e resulta em uma rápida transferência de dados. O PC padrão tem dois controladores de DMA. O primeiro controla os canais 0, 1, 2, 3 e o segundo os canais 4, 5, 6, 7, assim temos 8 canais. No entanto, o canal 4 é perdido porque é usado pelo *controlador de acesso direto a memória*. Os canais 0-3 são chamados de canais baixos porque podem somente mover um byte (8 bits) por transferência enquanto canais altos movem 2 bytes (16 bits) por transferência.

Os dados movidos usando a DMA **não** são movidos através do controlador de DMA. Isto oferece uma limitação porque a DMA somente podem mover dados entre os dispositivos (portas I/O) e a memória. Não é possível mover dados entre as portas ou entre a memória.

Existem dois controladores de DMA nos computadores AT e superiores. Ao contrário do que acontece com os dois controladores de IRQ, o primeiro controlador é ligado ao segundo e não o segundo ao primeiro. Os canais de DMA altos (5 ao 7) somente podem ser acessados por dispositivos de 16 bits (aqueles que utilizam a segunda parte do slot AT). Como resultado temos 8 canais de DMA, de 0 a 7, sendo que a DMA 4 é usada como ligação entre eles.

Os canais de DMA em uso no sistema podem ser visualizados com cat /proc/dma. Abaixo uma listagem de uso mais comum dos canais de DMA.

DMA Barram. Uso

```
0 - Usada pelo circuito de refresh da memória DRAM
1 8/16 bits Normalmente usado por placas de som (canal 8 bits),
porta paralela ECP, adaptadoras SCSI, placas de rede ou
controladora de scanner.
2 8/16 bits Normalmente usado pela controladora de disquetes ou
controladoras de tapes.
3 8/6 bits Usado pela porta paralela ECP, placa de som,
controladoras de tapes, controladoras SCSI ou
controladora de scanner antiga.
4 - Usada como ponte para a outra controladora de DMA (0-3)
5 16 bits Normalmente usada pela placa de som (canal 16 bits),
placas controladoras SCSI, placas de rede ou
controladora de scanner.
6 16 bits Placa de som (canal 16 bits), controladora de scanner
ou placa de rede.
7 16 bits Placa de som (canal 16 bits), controladora de scanner
ou placa de rede.
```

Somente dispositivos ISA e derivados dele, como o EISA e VESA, usam os canais de DMA padrão. Os atuais dispositivos de alta taxa de transferência (normalmente PCI) possuem seu próprio controlador de DMA embutido, muito mais rápido do que a DMA padrão. Este controlador de DMA é chamado de*Bus Mastering* e muito usado nos discos rígidos atuais e pode atingir taxas de 33,3MB/s (no modo 2) e 66MB/s (no modo 4 - requer um cabo IDE com aterramento para evitar interferências de ruídos externos).

3.3.2.1 Conflitos de DMA

Um canal de DMA não pode ser compartilhado entre dispositivos. Ainda é possível configurar dois dispositivos para usarem um mesmo canal de DMA, desde que ele não seja usado ao mesmo tempo. Isto acontece com Scanners paralelos que compartilham a mesma porta paralela com a impressora. Se você for uma pessoa que explora os recursos de multitarefa de seu Linux e seu desempenho, evite estes tipos de dispositivos, prefira aqueles que utilizam seus próprios recursos.

Quando ocorre um conflito de DMA, os dados podem ser misturados e ocorrerem coisas estranhas até o travamento total do sistema. Este tipo de conflito é difícil de se diagnosticar, a não ser que o técnico seja experiente o bastante e tenha desconfiado do que o problema se trata...

3.3.3 I/O - Porta de Entrada/Saída

Cada dispositivo possui um endereço de porta. O endereço é uma localização da memória usada pelo computador para enviar dados ao dispositivo e onde o dispositivo envia dados ao computador. Ao contrários da IRQ e DMA, o dispositivo pode usar mais de uma porta de Entrada/Saída ou uma faixa de endereços. Por exemplo, uma placa de som padrão usa as portas 0x220, 0x330 e 0x388, respectivamente audio digital, midi e opl3.

As placas de rede normalmente transferem grandes quantidades de dados, assim ocupam uma faixa de endereços. Uma NE2000, por exemplo, ocupa a faixa de endereços 0x260 a 0x27F (0x260-0x27F). O tamanho da faixa de endereços varia de acordo com o tipo de dispositivo.

Os endereços de I/O em uso no sistema podem ser visualizados com o comando cat /proc/ioports.

Endereços das portas de entrada/saída não podem ser compartilhados

3.4 Hardwares configuráveis por jumpers, dip-switches, jumperless e Plug-and-Play.

3.4.1 Jumpers

Hardwares configuráveis por *jumpers* (pinos metálicos protegidos por uma capa plástica) tem sua configuração alterada através da colocação, retirada ou mudança de posição física do pino. Este tipo de hardware, antigamente presente em placas ISA e VESA, não é mais usado atualmente devido a configuração Plug and Play de dispositivos PCI, PCI express, etc.

As disposição dos jumpers são normalmente definidas em *fechado/aberto* e *multi-posição*. Na disposição *fechado/aberto*, o jumper pode ou não ser colocado, definindo a configuração do dispositivo:

::|::

Esta disposição é facilmente encontrada na seleção de IRQ e I/O em placas de fax-modem.

Na disposição *multi-posição*, os pinos de encaixe são numerados de 1 a 3 (ou 1 a 4, 1 a 5, etc) e os pinos podem ou não ser colocados na placa e a posição que são colocados também influencia os valores escolhidos para o funcionamento do dispositivo (a posição 1-2 especificam um valor enquanto 2-3 especificam outro). A associação entre a posição dos jumpers e a configuração desejada é feita consultando o mapa desenhado no circuito impresso da placa ou o manual de instruções da placa.

A configuração de jumper através de multi-posição é normalmente usada em placas mãe para definir a freqüência de operação do barramento, a freqüência de multiplicação ou o tipo do processador.

Se não possuir o mapa de configuração de sua placa e/ou o manual de instruções, será necessário fazer um mapeamento manual da placa, mas para isto você precisará conhecer detalhadamente a configuração de portas I/O, DMA, IRQ usadas na máquina que será usada e anotar as diferenças obtidas através da modificação da pinagem do dispositivo. Isto não é fácil, mas técnicos de informática experientes conhecerão as armadilhas encontradas pelo mapeamento manual de placas e farão o esquema de configuração completo do dispositivo, obtendo um excelente manual de instruções. Nesta hora a experiência conta mais que o uso de programas de diagnóstico.

Outra característica de hardwares configurados através de jumpers é que raramente apresentam problemas de funcionamento, a não ser que seus parâmetros como IRQ, DMA, ou I/O estejam em conflitos com outro dispositivo, mas isso não é culpa do fabricante e nem mesmo do dispositivo...

3.4.2 Dip-Switches

É a mesma coisa que os hardwares configuráveis por jumpers exceto que são usados *dip-switches* no lugar de jumpers. O *dip-switches* é um conjunto de chaves numeradas que podem ser colocadas para cima ou para baixo (como um disjuntor ou vários interruptores *LIGA/DESLIGA* colocados um ao lado do outro) para se modificar a configuração do dispositivo.

3.4.3 Jumperless (sem jumper)

Os hardwares *jumperless* não possuem jumpers e são configurados através de um programa que acompanha a própria placa. Neste programa é escolhida a IRQ, DMA, I/O e a configuração é salva na própria placa ou restaurada após cada inicialização por um programa carregado na memória. Devido a configuração via software, se obtém uma configuração fixa com muito mais facilidade do que via jumpers (por não haver a necessidade de se retirar a placa).

A maioria das placas jumperless podem funcionar também como Plug-and-Play. Existem muitas placas de rede, fax-modem, scanner jumperless no mercado.

3.4.4 Plug-and-Play

O *Plug-and-Play* é um protocolo que lê os valores de operação disponíveis para a placa e permitem que o utilizador possa especificar facilmente qual será sua IRQ, DMA, I/O. Hardwares PCI possuem configuração Plug-and-Play nativa, registrando suas interrupções, portas e dma na tabela de hardwares PCI do sistema. A diferença em relação ao modo jumperless é que toda a configuração do hardware (IRQ, DMA e I/O) é feita pelo kernel do Linux, onde ele passa a configuração detectada durante a inicialização do sistema para os módulos carregados, garantindo o perfeito funcionamento do dispositivos e evitando conflitos. Na época de hardwares ISA e VESA, o programa isappe era a preferencia para a configuração de placas ISA Plug and Play.

Veja a próxima seção para entender como funciona o arquivo de configuração isapnp.conf e assim poder ativar seu dispositivo Plug-and-Play.

3.5 Listando as placas e outros hardwares em um computador

Administradores e técnicos ao configurar uma máquina precisarão saber quais os hardwares ela possui, periféricos e até mesmo a revisão de dispositivos e clock para configurar as coisas e ver a necessidade de atualizações de dispositivos atuais.

Dispositivos PCI/AMR/CNR podem ser listados executando o comando cat /proc/pci. Outra forma de listar tais dispositivos é usando o lspci, se você precisa de mais detalhes como o mapeamento de memória, use lspci -vv.

O mapeamento de memória de dispositivos podem ser mostrados com o comando cat /proc/ioports, ou usando o comando lsdev.

O barramento USB e dispositivos conectados a ele podem ser listados com o comando lsusb ou com cat/proc/bus/usb/devices.

Hardwares disponíveis na máquina, como placa mãe, clock multiplicador, discos, placas diversas, versões e números seriais de dispositivos podem ser mostrados através do comando lshw. Use lshw -html para produzir a listagem em formato HTML, bem interessante para relatórios:-)

3.6 Conflitos de hardware

Ocorre quando um ou mais dispositivos usam a mesma *IRQ*, *I/O* ou *DMA*. Um sistema com configurações de hardware em conflito tem seu funcionamento instável, travamentos constantes, mal funcionamento de um ou mais dispositivos e até mesmo, em casos mais graves, a perda de dados. Conflitos geralmente ocorriam em placas ISA, VESA onde era necessário conhecer e usar uma tabela de valores padrões para a configuração de periféricos (como a mostrada no inicio desse capítulo).

Para resolver conflitos de hardware é necessário conhecer a configuração de cada dispositivo em seu sistema. Os comandos cat /proc/interrupts, cat /proc/dma e cat /proc/ioports podem ser úteis para se verificar as configurações usadas.

3.7 Barramento

O tipo de *slot* varia de acordo com o barramento usado no sistema, que pode ser um(s) do(s) seguinte(s): ISA 8 Bits

Industry Standard Architecture - É o padrão mais antigo, encontrado em computadores PC/XT. ISA 16 Bits

Evolução do padrão ISA 8 Bits, possui um conector maior e permite a conexão de placas de 8 bits. Sua taxa de transferência chega a 2MB/s.

Video Electronics Standard Association - É uma interface feita inicialmente para placas de vídeo rápidas. O barramento VESA é basicamente um ISA com um encaixe extra no final. Sua taxa de transferência pode chegar a 132MB/s.

EISA

Enhanced Industry Standard Architecture - É um barramento mais encontrado em servidores. Tem a capacidade de bus mastering, que possibilita a comunicação das placas sem a interferência da CPU.

MCA

Micro Channel Architecture - Barramento 32 bits proprietário da IBM. Você não pode usar placas ISA nele, possui a característica de bus mastering, mas pode procurar por dispositivos conectados a ele, procurando configuração automática.

Este barramento estava presente no PS/1 e PS/2, hoje não é mais usado.

PCI

Peripheral Component Interconnect - É outro barramento rápido produzido pela Intel com a mesma velocidade que o VESA. O barramento possui um chipset de controle que faz a comunicação entre os slots PCI e o processador. O barramento se configura automaticamente (através do Plug-and-Play). O PCI é o barramento mais usado por Pentiums e está se tornando uma padrão no PC.

PCI Express

Peripheral Component Interconnect Express - Identico ao barramento PCI, funcionando nativamente no clock de 64 bits.

AGP

Accelerated Graphics Port - É um novo barramento criado exclusivamente para a ligação de placas de video. É um slot marrom (em sua maioria) que fica mais separado do ponto de fixação das placas no chassis (comparado ao PCI). Estas placas permitem obter um desempenho elevado de vídeo se comparado as placas onboards com memória compartilhada e mesmo PCI externas. O consumo de potência em placas AGP x4 podem chegar até a 100W, portanto é importante dimensionar bem o sistema e ter certeza que a fonte de alimentação pode trabalhar com folga.

PCMCIA

Personal Computer Memory Card International Association - É um slot especial usado para conexões de placas externas (normalmente revestivas de plástico) e chamadas de *cartões PCMCIA*. Estes cartões podem adicionar mais memória ao sistema, conter um fax-modem, placa de rede, disco rígido, etc.

Os cartões PCMCIA são divididos em 3 tipos:

Tem a espessura de 3.3 milímetros, e podem conter mais memória RAM ou memória Flash.

Tipo 2

Tem a espessura de 5 milímetros e capacidade de operações I/O. É um tipo usado para placas de faxmodem, rede, som. Computadores que aceitam cartões PCMCIA do tipo 2, mantém a compatibilidade com o tipo 1.

Tipo 3

Tem a espessura de 10.5 milímetros e normalmente usado para discos rígidos PCMCIA. Slots PCMCIA do tipo 3 mantém a compatibilidade com o tipo 2 e 1.

AMR

Audio Modem Raise - Pequeno barramento criado pela Intel para a conexão de placas de som e modem. Placas de som e modem AMR usam o HSP (host signal processor) e são como as Placas onboard e todo o processamento é feito pela CPU do computador (veja detalhes em <u>Placas on-board / off-board, Seção 3.8</u> e <u>Hardwares específicos ou "For Windows", Seção 3.9</u>.

Sua vantagem é o preço: um modem ou placa de som AMR custa em torno de R\$ 25,00.

CNR

Communication and Networking Rise - Pequeno barramento criado pela Intel para a conexão de placas de som, modens e placas de rede. Este é um pequenino slot marrom que é localizado no ponto de fixação das placas no chassis do gabinete. Elas são como as Placas on-board e todo o processamento é feito pela CPU do computador (veja detalhes em <u>Placas on-board / off-board, Seção 3.8</u> e <u>Hardwares específicos ou "For Windows", Seção 3.9</u>.

3.8 Placas on-board / off-board

Placas *on-board* são embutidas na placa mãe (*motherboard*). Placas *off-board* são placas externas encaixadas nos slots de expansão da placa mãe.

No inicio da era do PC/XT todos as placas eram embutidas na placa mãe (na época eram somente a placa de vídeo e controladora). Com o surgimento do padrão AT, diversas empresas de informática desenvolveram dispositivos concorrentes e assim o utilizador tinha a liberdade de escolha de qual dispositivo colocar em sua placa mãe (ou o mais barato ou o de melhor qualidade e desempenho), isto permitiu a adição de periféricos de qualidade sem romper com seu orçamento pessoal (comprando uma placa de som, depois uma de fax-modem, placa de vídeo melhor, etc).

Atualmente parece que voltamos ao ponto de partida e tudo vem embutido na placa mãe (*on-board*) e o utilizador não tem como escolher qual dispositivo usar em seu computador. É muito difícil (praticamente impossível) encontrar uma placa mãe que satisfaça completamente as necessidades do utilizador ou

recomendações de um bom técnico de informática (a não ser que seja um técnico experiente e encontre alguma alternativa).

Certamente o único dispositivo que funciona melhor se embutido na placa mãe é a *placa controladora de periféricos*. Esta placa é usada para se conectar unidades de disquete, discos rígidos, CD-ROM, portas seriais, paralelas, joystick ao computador. Os HDs conectados em uma controladora embutida conseguem ter um desempenho muito maior do que em placas conectadas externamente, sem causar nenhum tipo de problema. Hardwares embutidos na placa mãe (como fax-modem, vídeo, som) são em média 30% mais baratos que os vendidos separadamente mas quase sempre são usados dispositivos de baixo desempenho e qualidade para reduzir o preço da placa mãe e quase sempre usados hardwares For Windows.

Hoje em dia por causa do preço da placa mãe, é comum encontrar pessoas que verificam somente o preço e sequer procuram saber ou conhecem a qualidade das placas embutidas na placa mãe. Pior ainda é encontrar vendedores despreparados que sequer sabem explicar o porque que uma placa de som Sound Blaster 128 é mais cara que uma de modelo genérico...

Geralmente dispositivos on-board trazem problemas caso tal dispositivo queime e geralmente é colocado um hardware de baixa qualidade para baratear o custo de placas mãe, que na maioria das vezes também oferece grande dificuldade para ser configurada no Linux.

Outro periférico que traz problemas e carga para o processador é o fax-modem for Windows, HSP, AMR, micromodem, etc. utilizando o processador do sistema para realizar seu trabalho e algumas vezes não trazem nem mesmo o chip UART. Isso resulta em perda de qualidade na conexão e maior consumo telefônico.

Se você estiver em uma situação destas, certamente os computadores de menor potência e com hardwares inteligentes (que possuem seus próprios chips de controle e processamento) não terão o desempenho comprometido. O preço pode ser maior mas você estará pagando por um dispositivo de melhor qualidade e que certamente trará benefícios a você e ao seu sistema.

Consulte um técnico em informática experiente para te indicar uma placa mãe de bom preço e de qualidade. É muito comum encontrar falta de profissionalismo em pessoas que não sabem distinguir as características, funções e vantagens entre uma placa de boa qualidade e um hardware for Windows a não ser o preço mais barato.

3.9 Hardwares específicos ou "For Windows"

Esta seção foi retirada do manual de instalação da Debian GNU/Linux. Uma tendência que perturba é a proliferação de Modens e impressoras específicos para Windows. Em muitos casos estes são especialmente fabricados para operar com o Sistema Operacional Microsoft Windows e costumam ter a legendaWinModem, for Windows, ou Feito especialmente para computadores baseados no Windows.

Geralmente estes dispositivos são feitos retirando os processadores embutidos daquele hardware e o trabalho deles são feitos por drivers do Windows que são executados pelo processador principal do computador. Esta

estratégia torna o hardware menos caro, mas o que é poupado não é passado para o utilizador e este hardware pode até mesmo ser mais caro quanto dispositivos equivalentes que possuem inteligência embutida.

Você deve evitar o hardware baseado no Windows por duas razões:

- 1. O primeiro é que aqueles fabricantes não tornam os recursos disponíveis para criar um driver para Linux. Geralmente, o hardware e a interface de software para o dispositivo é proprietária, e a documentação não é disponível sem o acordo de não revelação, se ele estiver disponível. Isto impede seu uso como software livre, desde que os escritores de software grátis descubram o código fonte destes programas.
- 2. A segunda razão é que quando estes dispositivos tem os processadores embutidos removidos, o sistema operacional deve fazer o trabalho dos processadores embutidos, freqüentemente em prioridade de tempo real, e assim a CPU não esta disponível para executar programas enquanto ela esta controlando estes dispositivos.

Assim o utilizador típico do Windows não obtém um multi-processamento tão intensivo como um utilizador do Linux, o fabricante espera que aquele utilizador do Windows simplesmente não note a carga de trabalho que este hardware põe naquela CPU. No entanto, qualquer sistema operacional de multi-processamento, até mesmo Windows 9X, XP e Vista, são prejudicados quando fabricantes de periféricos retiram o processador embutido de suas placas e colocam o processamento do hardware na CPU.

Você pode ajudar a reverter esta situação encorajando estes fabricantes a lançarem a documentação e outros recursos necessários para nós desenvolvermos drivers para estes hardwares, mas a melhor estratégia é simplesmente evitar estes tipos de hardwares até que ele esteja listado no HOWTO de hardwares compatíveis com Linux.

Note que hoje já existem muitos drivers para WinModems e outros hardwares for Windows para o Linux. Veja a lista de hardwares compatíveis no HARDWARE-HOWTO ou procure o driver no site do fabricante de seu dispositivo. Mesmo assim a dica é evitar hardwares for Windows e comprar hardwares inteligentes onde cada um faz sua função sem carregar a CPU.

3.10 Dispositivos específicos para GNU/Linux

Esta seção foi retirada do manual de instalação da Debian GNU/Linux. Existem diversos vendedores, agora, que vendem sistemas com a Debian ou outra distribuição do GNU/Linux pré-instaladas. Você pode pagar mais para ter este privilégio, mas compra um nível de paz de mente, desde então você pode ter certeza que seu hardware é bem compatível com GNU/Linux. Praticamente todas as placas que possuem processadores próprios funcionam sem nenhum problema no Linux (algumas placas da Turtle Beach e mwave tem suporte de som limitado).

Se você tiver que comprar uma máquina com Windows instalado, leia cuidadosamente a licença que acompanha o Windows; você pode rejeitar a licença e obter um desconto de seu vendedor.

Se não estiver comprando um computador com GNU/Linux instalado, ou até mesmo um computador usado, é importante verificar se os hardwares existentes são suportados pelo kernel do GNU/Linux. Verifique se seu

hardware é listado no *Hardware Compatibility HOWTO*, na documentação do código fonte do kernel no diretório Documentation/sound ou consulte um técnico de GNU/Linux experiente.

Deixe seu vendedor (se conhecer) saber que o que está comprando é para um sistema GNU/Linux. Desta forma isto servirá de experiência para que ele poderá recomendar o mesmo dispositivo a outras pessoas que procuram bons dispositivos para sistemas GNU/Linux. Apóie vendedores de hardwares amigos do GNU/Linux.

3.11 Configurações de Dispositivos

As seções abaixo explicam como fazer configurações em dispositivos diversos no sistema Linux como placas de rede, som, gravador de CD entre outras.

3.11.1 Configurando uma placa de rede

Para configurar sua placa de rede no Linux siga os passos a seguir:

- Identifique se sua placa de rede é ISA ou PCI. Caso seja ISA, pode ser preciso alterar a configuração de jumpers ou plug-and-play, evitando conflitos de hardware ou o não funcionamento da placa (veja como configura-la em Hardwares configuráveis por jumpers, dip-switches, jumperless e Plug-and-Play., Seção 3.4.
- Identifique a marca/modelo de sua placa. O programa lshw é útil para isto. Caso sua placa seja PCI ou CNR, execute o comando lspci e veja a linha "Ethernet".

Em último caso, abra a máquina e procure a marca na própria placa. Quase todos os fabricantes colocam a marca da placa no próprio circuito impresso ou no CI principal da placa (normalmente é o maior).

• Depois de identificar a placa, será preciso carregar o módulo correspondente para ser usada no Linux. Em algumas instalações padrões o suporte já pode estar embutido no kernel, neste caso, você poderá pular este passo.

Para carregar um módulo, digite o comando modprobe modulo (Veja modprobe, Seção 16.8). Em placas ISA, geralmente é preciso passar a IRQ e porta de I/O como argumentos para alocar os recursos corretamente. O modprobe tentará auto-detectar a configuração em placas ISA, mas ela poderá falhar por algum motivo. Por exemplo, para uma NE 2000: modprobe ne io=0x300 irq=10. Para evitar a digitação destes parâmetros toda vez que a máquina for iniciada é recomendável coloca-lo no arquivo /etc/modules.conf da seguinte forma:

```
options ne io=0x300 irq=10
```

A partir de agora, você pode carregar o módulo de sua placa NE 2000 apenas com o comando modprobe ne. O parâmetro io=0x300 irq=10 será automaticamente adicionado. Em sistemas Debian, o local correto para colocar as opções de um módulo é em arquivos separados localizados dentro de/etc/modutils. Crie um arquivo chamado /etc/modutils/ne e coloque a linha:

```
options ne io=0x300 irq=10
```

Depois disso, execute o comando update-modules para o sistema gerar um novo arquivo /etc/modules.conf com todos os módulos de/etc/modutils e substituir o anterior.

• Após carregar o módulo de sua placa de rede, resta apenas configurar seus parâmetros de rede para coloca-la em rede. Veja Atribuindo um endereço de rede a uma interface (ifconfig), Seção 15.4.2.

3.11.2 Configurando uma placa de SOM no Linux

A configuração de dispositivos de audio no Linux é simples, bastando carregar o módulo da placa e ajustar o mixer. Atualmente existem 2 padrões de som no sistema Linux: OSS (Open Sound System) e ALSA (Advanced Linux Sound Architecture).

O OSS foi o primeiro padrão adotado em sistemas Linux, que tinha como grande limitação a dificuldade em usar diversas placas e a impossibilidade dos programas utilizaram ao mesmo tempo a placa de som. O ALSA é mais novo, suporta full duplex e outros recursos adicionais, além de manter a compatibilidade com OSS. O ALSA é um padrão mais moderno e garante mais performance para a CPU da máquina, principalmente para a exibição de vídeos, etc.

3.11.2.1 Configurando uma placa de som usando o padrão OSS

OSS é o presente por padrão desde que o suporte a som foi incluído no kernel. Para configurar uma placa de som para usar este sistema de som, primeiro compile seu kernel com o suporte ao módulo de sua placa de som. Caso seja uma placa ISA, você provavelmente terá que habilitar a seção "Open Sound System" para ver as opções disponíveis (entre elas, a Sound Blaster e compatíveis). Uma olhada na ajuda de cada módulo deve ajuda-lo a identificar quais placas cada opção do kernel suporta.

Caso seu kernel seja o padrão de uma distribuição Linux, provavelmente terá o suporte a todas as placas de som possíveis. Siga o passo a passo abaixo para configurar sua placa de som no sistema:

- Primeiro descubra se sua placa de som é ISA. Caso seja, verifique se os seus recursos estão alocados corretamente (veja Conflitos de hardware, Seção 3.6). Caso seja PCI, AMR, execute o comando 1spci, procure pela linha "Multimedia" e veja o nome da placa. Você também poderá executar o comando 1shwpara descobrir qual placa você possui (veja Listando as placas e outros hardwares em um computador, Seção 3.5) para detalhes.
- Carregue o módulo da placa de som com o comando modprobe módulo (veja modprobe, Seção 16.8). Na Debian, você pode executar o comando modconfpara navegar visualmente entre os módulos disponíveis e carregar os módulos necessários.

Algumas placas (principalmente ISA) requerem que seja especificado o recurso de hardware sejam passados para seu módulo, ou simplesmente você quer especificar isto para manter o uso de hardware sobre seu controle. Alguns dos parâmetros mais usados em placas Sound Blaster são os seguintes:

```
modprobe sb io=0x220 irq=5 dma=1 dma16=5 mpu_io=0x330
```

Para evitar ter que passar estes parâmetros todas as vezes para o módulo, você poderá coloca-los no arquivo /etc/modules.conf da seguinte forma:

```
options sb io=0x220 irq=5 dma=1 dma16=5 mpu_io=0x330
```

Assim, quando der o comando modprobe sb ele será carregado com as opções acima. Na distribuição Debian, você deverá criar um arquivo chamado/etc/modutils/sb contendo a linha acima, depois execute o update-modules para "juntar" todos os arquivos do /etc/modutils e criar O/etc/modules.conf.

• Após carregar o módulo correto de sua placa de som, seu sistema de som deverá estar funcionando. Se você utiliza uma distribuição Linux, os dispositivos de som

como /dev/audio, /dev/dsp, /dev/mixer estarão criados e então poderá passar para o próximo passo. Caso não existam, entre no diretório/dev e execute o comando MAKEDEV audio.

• O próximo passo consiste em instalar um programa para controle de volume, tonalidade e outros recursos de sua placa de som. O recomendado é o aumixpor ser simples, pequeno e funcional, e permitindo restaurar os valores dos níveis de volumes na inicialização (isso evita que tenha que ajustar o volume toda vez que iniciar o sistema).

Caso o aumix apareça na tela, sua placa de som já está funcionando! Caso acesse o sistema como utilizador, não se esqueça de adicionar seu utilizador ao grupo audio para ter permissão de usar os dispositivos de som: adduser usuario audio.

3.11.3 Configurando um gravador de CD/DVD no Linux

Caso seu gravador seja IDE, veja <u>Configurando o suporte a um gravador IDE, Seção 3.11.3.1</u> caso seja um autêntico gravador com barramento SCSI, vá até<u>Configurando o suporte a um gravador SCSI, Seção 3.11.3.2</u>.

3.11.3.1 Configurando o suporte a um gravador IDE

Caso tenha um gravador IDE e use um kernel 2.6 ou superior, não é necessário fazer qualquer configuração, pois seu gravador já está pronto para ser usado, sendo acessado através de seu dispositivo tradicional (/dev/hdc, /dev/hdd, etc). De qualquer forma, você poderá realizar a configuração da unidade IDE com emulação SCSI, assim como utilizava no kernel 2.4 e inferiores seguindo as instruções abaixo.

Para configurar seu gravador de CD/DVD IDE para ser usado no Linux usando o método para o kernel 2.4 e inferiores, siga os seguintes passos:

• Tenha certeza que compilou o suporte as seguintes características no kernel:

Em "ATA/IDE/MFM/RLL support" marque as opções:

- * Include IDE/ATAPI CDROM support
- * SCSI emulation support

Depois em "SCSI support" marque as opções:

- * SCSI support
- M SCSI CD-ROM Support
- M SCSI Generic Support

As opções marcadas como "*" serão embutidas no kernel e as "M" como módulos. Note que ambas as opções "IDE/ATAPI CDROM" e "SCSI Emulation" foram marcadas como embutidas. Isto faz com que o driver ATAPI tenha prioridade em cima do SCSI, mas vou explicar mais adiante como dizer para o kernel para carregar o suporte a SCSI para determinada unidade. Isto é útil quando temos mais de 1 unidade de CD IDE no sistema e queremos configurar somente o gravador para SCSI, pois alguns aplicativos antigos não se comunicam direito tanto com gravadores SCSI como emulados.

Você também pode marcar somente a opção "SCSI Emulation" para que sua(s) unidade(s) seja(m) automaticamente emulada(s) como SCSI. Caso tenha usado esta técnica, vá até a seção <u>Testando o funcionamento</u>, Seção 3.11.3.3.

• O próximo passo é identificar o dispositivo de CD/DVD. Isto é feito através do comando dmesg. Supondo que sua unidade de CD é "hdc" (primeiro disco na segunda controladora IDE) e que compilou ambos o suporte a "IDE ATAPI" e "SCSI emulation" no kernel, adicione o argumento "hdc=ide-scsi" no/etc/lilo.conf ou no grub:

```
# Lilo
vmlinuz=/vmlinuz
append="hdc=ide-scsi"
```

Isto diz para o kernel que a unidade "hdc" usará emulação "ide-scsi". Caso tenha outras unidades de CD no sistema, estas ainda utilização ATAPI como protocolo de comunicação padrão. Execute o lilo para gerar novamente o setor de inicialização com as modificações e reinicie o computador.

OBS: Cuidado ao colocar um disco rígido IDE como hdc! A linha hdc=ide-scsi deverá ser retirada, caso contrário, seu disco rígido não será detectado.

Agora, siga até Testando o funcionamento, Seção 3.11.3.3.

3.11.3.2 Configurando o suporte a um gravador SCSI

Caso tenha um autentico gravador SCSI, não será preciso fazer qualquer configuração de emulação, a unidade estará pronta para ser usada, desde que seu suporte esteja no kernel. As seguintes opções do kernel são necessárias para funcionamento de gravadores SCSI:

```
Depois em "SCSI support" marque as opções:

* SCSI support

M SCSI CD-ROM Support

M SCSI Generic Support
```

Além disso, deve ser adicionado o suporte EMBUTIDO no kernel a sua controladora SCSI. Se o seu disco rígido também é SCSI, e seu CD está ligado na mesma controladora SCSI, ela já está funcionando e você poderá seguir para o passo <u>Testando o funcionamento</u>, <u>Seção 3.11.3.3</u>. Caso contrário carregue o suporte da sua placa adaptadora SCSI antes de seguir para este passo.

3.11.3.3 Testando o funcionamento

Para testar se o seu gravador, instale o pacote wodim e execute o comando: wodim -scanbus para verificar se sua unidade de CD-ROM é detectada.

Você deverá ver uma linha como:

```
scsibus0:
0,0,0 0) 'CREATIVE' 'CD-RW RWXXXX ' '1.00' Removable CD-ROM
```

```
0,1,0 1) *
```

0,2,02) *

O que significa que sua unidade foi reconhecida perfeitamente pelo sistema e já pode ser usada para gravação. Vá até a seção <u>Gravando CDs e DVDs no Linux, Seção 24.1</u> para aprender como gravar CDs no <u>Linux</u>. Note que gravadores IDE nativos, não são listados com esse comando.

3.11.4 Configurando o gerenciamento de energia usando o APM

O APM (*Advanced Power Management - Gerenciamento Avançado de Energia*) permite que sistemas gerenciem características relacionadas com o uso e consumo de energia do computador. Ele opera a nível de BIOS e tenta reduzir o consumo de energia de várias formas quando o sistema não estiver em uso (como reduzindo o clock da CPU, desligar o HD, desligar o monitor, etc.).

O uso de advanced power management também permite que computadores com fonte de alimentação ATX sejam desligados automaticamente quando você executa o comando halt. Caso sua máquina tenha suporte a *ACPI*, este deverá ser usado como preferência ao invés do APM por ter recursos mais sofisticados (veja Configurando o gerenciamento de energia usando ACPI, Seção 3.11.5).

Para ativar o suporte a APM no Linux, compile seu kernel com o suporte embutido a APM e também a "Advanced Power Management" (senão sua máquina não desligará sozinha no halt). Caso deseje compilar como módulo, basta depois carregar o módulo apm adicionando no arquivo /etc/modules. Depois disso instale o daemon apmd para gerenciar as características deste recurso no sistema.

Você pode desativar o uso de APM de 3 formas: removendo seu suporte do kernel, passando o argumento apm=off (quando compilado estaticamente no kernel) ou removendo o nome do módulo do arquivo /etc/modules (quando compilado como módulo). Depois disso remova o daemon apmd.

3.11.5 Configurando o gerenciamento de energia usando ACPI

O ACPI (Advanced Configuration and Power Interface - Interface de Configuração e Gerenciamento de Energia Avançado) é uma camada de gerenciamento de energia que opera a nível de sistema operacional. Apresenta os mesmos recursos que o APM, e outros como o desligamento da máquina por teclas especiais de teclado, controle de brilho e contraste de notebooks, suspend para RAM, suspend para disco, redução de velocidade de CPU manualmente, monitoramento de periféricos, temperatura, hardwares, etc.

Desta forma, o ACPI varia de sistema para sistema em questões relacionadas com suporte a recursos especiais, estes dados são armazenados em tabelas chamadas DSDT. O Linux inclui suporte a recursos ACPI genéricos entre placas mãe, recursos específicos devem ser extraídos diretamente da BIOS e disassemblados manualmente para a construção de um kernel com suporte específico a tabela DSDT do hardware (não falarei das formas de se fazer disso aqui, somente do suporte genérico).

Quanto mais nova a versão do kernel, maiores as chances do seu hardware ser suportado plenamente pelo ACPI, principalmente no caso de notebooks. Para compilar estaticamente, marque com Y a opção ACPI, depois marque os módulos que você quer que ele monitore: button (botão power), fan (ventoinhas), etc. Se compilou como

módulo, adicione o nome do módulo acpi no arquivo /etc/modules. Não há problema em compilar também o suporte a APM, pois não causará problemas com um kernel com ACPI também compilado.

Caso não saiba quais módulos ACPI seu sistema aceita, marque o suporte a todos e carregue-os. Após isto, entre no diretório /proc/acpi e de um lsentrando nos diretórios e vendo se existem arquivos dentro deles. Remova o módulo correspondente daqueles que não tiver conteúdo.

Após isto, instale o daemon acpid e configure-o para monitorar algumas características do seu sistema. Por padrão o acpid monitora o botão POWER, assim se você pressionar o power, seu sistema entrará automaticamente em run-level 0, fechando todos os processos e desligando sua máquina.

O suporte a ACPI pode ser desativado de 3 formas: Removendo seu suporte do kernel, passando o argumento acpi=off ao kernel (caso esteja compilado estaticamente) ou removendo o módulo de /etc/modules (caso tenha compilado como módulo. Após isto, remova o daemon acpid do seu sistema.

3.11.6 Ativando WakeUP on Lan

Algumas placas mãe ATX possuem suporte a este interessante recurso, que permite sua máquina ser ligada através de uma rede. Isto é feito enviando-se uma seqüência especial de pacotes diretamente para o MAC (endereço físico) da placa de rede usando um programa especial.

Para usar este recurso, seu sistema deverá ter as seguintes características:

- Placa mãe ATX
- Fonte de alimentação ATX compatível com o padrão 2.0, com fornecimento de pelo menos 720ma de corrente na saída +3v.
- Placa de rede com suporte a WakeUP-on-Lan (WOL), você poderá confirmar isto vendo um conector branco de 3 terminais instalado na placa que é o local onde o cabo wake-up é conectado.
- Suporte na BIOS também deverá ter a opção para WakeUP-on-Lan.

Com todos esses ítens existentes, instale em uma máquina da rede o pacote etherwake. Depois disso, pegue o MAC address a placa de rede da máquina que tem o wakeup on lan e na máquina da rede onde instalou o pacote execute o seguinte comando:

ether-wake AA:BB:CC:DD:EE:FF

Onde AA:BB:CC:DD:EE:FF é o endereço MAC da placa de rede. A máquina deverá ligar e realizar o procedimento padrão de POST normalmente.

Algumas das situações onde o WOL não funciona é quando sua rede é controlada por Switches (devido a natureza de funcionamento deste equipamentos) ou caso esteja atrás de um roteador que não faz proxy arp.