**ZEMRIS** 

26.6.2000.

### Pismeni ispit iz Računalne grafike

(1.) Ispitati odnos točke zadane u homogenom prostoru X=(1 1 2 4) i konveksnog tijela zadanog popisom vrhova u radnom prostoru, te popisom poligona s pripadnim vrhovima (za pojedini poligon redoslijed vrhova u popisu odgovara obilaženju u smjeru suprotno kazalje na satu gledano izvan tijela).

| Popis p       | olig  | ona              |
|---------------|-------|------------------|
| $P_1 = (V_1$  | $V_2$ | V <sub>3</sub> ) |
| $P_2 = (V_2$  | $V_4$ | V <sub>3</sub> ) |
| $P_3 = (V_1$  | $V_3$ | V <sub>4</sub> ) |
| $P_4 = (V_1)$ | $V_4$ | V <sub>2</sub> ) |

| Popis v             | rh | ova |
|---------------------|----|-----|
| $V_1 = (0$          | 0  | 0)  |
| $V_2 = (0$          | 1  | 0)  |
| V <sub>3</sub> =(1  | 1  | 1)  |
| V <sub>4</sub> =(-1 | 0  | 0)  |

2). Dužina  $d_1$  određena je točkama u homogenom prostoru  $X_1$ =(2 1 0 1) i  $X_2$ =(3 1 0 1). Dužina  $d_2$  određena je točkama u homogenom prostoru  $X_3$ =(1 1 0 1) i  $X_4$ =(1 2 0 1). Matrica M transformira dužinu  $d_1$  u dužinu  $d_2$ , tako da vrijedi:

$$X_3 = X_1 \cdot M$$
,  $X_4 = X_2 \cdot M$ .

Odrediti matricu M.

- Pravac je zadan točkama X<sub>1</sub>=(2 8 3 1) i X<sub>2</sub>=(5 1 4 1) u homogenom prostoru. Odrediti minimalnu udaljennost točke X<sub>3</sub>=(5 5 1 1) od zadanog pravca, te točku na pravcu koja je minimalno udaljena od točke X<sub>3</sub> u radnom prostoru.
- (4. Odrediti matricu perspektivne projekcije ako se centar projekcije nalazi na x-koordinatnoj osi C=(H 0 0), a ravnina projekcije neka je u yz ravnini (x=0) koordinatnog sustava.
- 3 Pravac p određuju točke u radnom prostoru V<sub>1</sub>=(1 2 0) i V<sub>2</sub>=(2 5 4). Matrica T rotira točku 3-prostora oko pravca p za 60° stupnjeva u smjeru kazaljke na satu gledano iz točke V<sub>1</sub> u točku V<sub>2</sub>. Odrediti elementarne matrice koje čine sastavljenu matricu T.
- 6. Zadani su vektori ravnina  $R_1$ =(-3 2 1 10) $^{\tau}$  i  $R_2$ =(3 3 5 10) $^{\tau}$ . Odrediti presjecište ravnina  $R_1$  i  $R_2$ . Neka je rezultat u parametarskom obliku.
- (7) Rastumačiti postupak otklanjanja skrivenih linija i površina Z-spremnikom (Z-buffer).
- 8. Za segment prostorne krivulje koji je opisan kubnom razlomljenom funkcijom, temeljem rubnih točaka i parametarskim derivacijama u njima odrađena je karakteristična matrica krivulje A. Odrediti:

 $A = \begin{bmatrix} 3 & 3 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 4 \end{bmatrix}$ 

a) Rubne točke segmenta krivulje u radnom prostoru.

- b) Parametarske derivacije (prvu i drugu) za rubne točke u radnom prostoru.
- 9. Objasniti formiranje Bezierove krivulje postupkom de Casteljau-a. Na primjeru sa četiri kontrolne točke odrediti težinske funkcije potrebne za određivanje krivulje.
- 10. Rastumačiti postupke sjenčanja:
  - a) Phong-ovo sjenčanje,
  - b) Gourard-ovo sjenčanje.

- 1. Napisati DDA algoritam i odrediti koji će slikovni elementi biti osvijetljeni, ako su početna i krajnja točka  $V_1$ =(1 1) i  $V_2$ =(14 3) zadane u radnom prostoru.
- Zadani su vektori ravnina  $R_1$ =(-3 2 1 10) $^{\tau}$  i  $R_2$ =(3 3 5 10) $^{\tau}$ . Odrediti presjecište ravnina  $R_1$  i  $R_2$ . Neka je rezultat u parametarskom obliku.
- 3. Opisati formiranje Bezierove krivulje gibanjem vrha sastavljenog otvorenog poligona. Navesti uvjete koji se postavljaju na Bezierove težinske funkcije.
- (4.) Ravnina je određena zadanim homogenim točkama, naći karakterističnu matricu ravnine.  $V_1$ =(4 5 9 1)  $V_2$ =(10 4 -2 -1)  $V_3$ =(4 16 28 2).
- 5. Za neperiodičnu aproksimacijsku kvadratnu B-krivulju s 3 kontrolne točke odrediti težinske funkcije.

$$N_{i,0} = \begin{cases} 1 & za \ u_i \leq u < u_{i+1} \\ 0 & inace \end{cases} \qquad N_{i,k} = \frac{u - u_i}{u_{i+k} - u_i} N_{i,k-1}(u) + \frac{u_{i+k+1} - u}{u_{i+k+1} - u_{i+1}} N_{i+1,k-1}(u)$$

- Pravac p<sub>1</sub> određuju homogene točke u 2-prostoru:  $X_1$ =(2 0 1) i  $X_2$ =(2 2 1). Pravac p<sub>2</sub> određuju homogene točke u 2-prostoru:  $X_3$ =(0 0 1) i  $X_4$ =(1 -1 5).
  - a) Odrediti stupčaste vektore pravaca p<sub>1</sub> i p<sub>2</sub>.
  - b) Odrediti sjecište pravaca p<sub>1</sub> i p<sub>2</sub> u radnom prostoru.
- Dužina  $d_1$  određena je točkama u homogenom prostoru  $X_1$ =(2 1 0 1) i  $X_2$ =(3 1 0 1). Dužina  $d_2$  određena je točkama u homogenom prostoru  $X_3$ =(1 1 0 1) i  $X_4$ =(1 2 0 1). Matrica M transformira dužinu  $d_1$  u dužinu  $d_2$ , tako da vrijedi:

$$X_3=X_1\cdot M$$
,  $X_4=X_2\cdot M$ . Odrediti matricu M.

- Zadane su dvije točke u radnom prostoru  $V_1$ =(2 8),  $V_2$ =(5 1). Odrediti pravac koji je jednako udaljen (bilo koja točka pravca) od točaka  $V_1$  i  $V_2$ .
- ② Za prikazani primjer nacrtati BSP-stablo. Smjerovi strelica određuju pozitivnu stranu poluravnine.



(19. Objasniti algoritam Cohen-Sutherlanda.

1. Ispitati odnos točke zadane u homogenom prostoru X=(1 1 2 4) i konveksnog tijela zadanog popisom vrhova u radnom prostoru, te popisom poligona s pripadnim vrhovima (za pojedini poligon redoslijed vrhova u popisu odgovara obilaženju u smjeru suprotno kazalje na satu gledano izvan tijela).

| Popis p      | olige | ona              |             |
|--------------|-------|------------------|-------------|
| $P_1 = (V_1$ | $V_2$ | V <sub>3</sub> ) |             |
| $P_2=(V_2)$  | $V_4$ | $V_3$ )          | Sagrage Co. |
| $P_3=(V_1)$  | $V_3$ | V <sub>4</sub> ) |             |
| $P_4=(V_1$   | $V_4$ | V <sub>2</sub> ) |             |

| Popis vrh             | iova |
|-----------------------|------|
| $V_1 = (0 \ 0)$       | 0)   |
| $V_2 = (0 \ 1)$       | 0)   |
| $V_3 = (1 \ 1)$       | 1)   |
| V <sub>4</sub> =(-1 0 | 0) - |

- \*2. Zadani su vektori ravnina  $R_1$ ,  $R_2$  i  $R_3$ . Odrediti sjecište zadanih ravnina u radnom prostoru.  $R_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$   $R_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$   $R_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
- pravac točkama  $V_1 = (2 \ 1 \ 1 \ 1)$  i  $V_2 = (3 \ 3 \ 4 \ 1)$ . Da li pravac probada kuglu? Ako da, odrediti točku (točke) probodišta.
- 4. Poznate su matrice T<sub>t</sub> i T<sub>r</sub>. Matricama T<sub>t</sub> i T<sub>r</sub> odrediti inverzne.

$$T_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x & y & z & 1 \end{bmatrix}$$

$$T_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x & y & z & 1 \end{bmatrix} \qquad T_{r} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- $^4$  5. Zadan je vektor ravnine R=(10 5 10 -350) $^{\tau}$ . Ispitati položaj točaka  $X_1$ =(20 15 10 1),  $X_2$ =(10 20 15 1) i  $X_3$ =(5 10 15 1) spram ravnine R.
- 6. Odrediti matricu perspektivne projekcije ako se centar projekcije nalazi na x-koordinatnoj osi C=(H 0 0), a ravnina projekcije neka je u vz ravnini (x=0) koordinatnog sustava. Objasniti postupak.
- 7. Zadano je pet točaka u homogenom prostoru  $V_0=(2\ 1\ 1),\ V_1=(4\ 5\ 1),\ V_2=(5\ 1\ 1),\ V_3=(7\ 3\ 1),$ V<sub>4</sub>=(5 5 1). Odrediti aproksimacijsku Bezierovu krivulju upoterebom Bernstein-ovih težinskih funkcija  $b_{in}(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}$ . Odrediti točku krivulje i derivaciju u toj točki za iznos parametra t=0.2
- 8. Napisati Bresenhamov algoritam (za kutove 0-45°). Neka su zadane točke V<sub>1</sub>=(2 1) i V<sub>2</sub>=(7 10) u radnom prostoru. (Kut tražene linije namjerno je zadan "neispravno" tj. 45-90°). Odrediti točke rasterizirane linije za zadanu početnu i krajnju točku i napisani algoritam za kutove 0-45°. Tablično prikazati vrijednosti varijabli za pojedini korak i nacrtati rezultat (osvijetljene slikovne elemente).
- 9. Objasniti formiranje Bezie-ove krivulje postupkom de Casteljau-a. Na primjeru sa četiri kontrolne točke odrediti težinske funkcije potrebne za određivanje krivulje.
- 10. Objasniti zašto se na zaslonu računala (monitoru) ne ostvaruju sve boje koje čovjek može vidjeti. Sto je gamut.

# II kontrolna zadaća iz Računalne grafike

- 1. Objasniti postupak praćenja zrake.
- 2. Zadana je kugla središtem  $S = (4 \ 5 \ 3 \ 1)$  i radijusom r = 3. Zadan je pravac točkama  $V_1 = (2 \ 1 \ 1 \ 1)$  i  $V_2 = (3 \ 3 \ 4 \ 1)$ . Da li pravac probada kuglu? Ako da, odrediti točku (točke) probodišta.
- 3. Za prikazani primjer BSP-stablo. Smjerovi određuju pozitivnu poluravnine.

nacrtati strelica stranu





- 4. Odrediti osam intenziteta od  $I_0$  do  $I_7$  (prikazanih u obliku s pomičnim zarezom) u rasponu [0,1], tako da je početni intenzitet  $I_0 = 0.01$ , a krajnji  $I_7 = 1$ . Za ostale intenzitete, omjer susjednih intenziteta  $I_{k+1}/I_k$  mora biti konstantan.
- 5. Za neperiodičnu aproksimacijsku kvadratnu B-krivulju s tri kontrolne točke odrediti težinske funkcije.

$$N_{i,0} = \begin{cases} 1 \ za \ u_i \leq u < u_{i+1} \\ 0 \ inacc \end{cases} \qquad N_{i,k} = \frac{v - u_i}{u_{i \wedge k} - u_i} N_{i,k-1} \left( u \right) + \frac{u_{i+k+1} - u}{u_{i+k+1} - u_{i+1}} N_{i+1,k-1} \left( u \right)$$

6. Primijeniti algoritam odsijecanja Cohen-Sutherlanda na primjeru dužine AB zadane slikom. Objasniti pojedine korake.



- 7. Objasniti postupak sječanja Phongovim postupkom.
- 8. Odrediti presjecište zadanih ravnina. Presjecište izraziti u parametarskom obliku.

$$R_{1} = \begin{bmatrix} 2 \\ 4 \\ -2 \\ -2 \end{bmatrix}, \quad R_{2} = \begin{bmatrix} -3 \\ 2 \\ -21 \\ 43 \end{bmatrix}$$

- Odrediti najmanju udaljenost između zadanih pravaca i točke na pravcima u  $p_1 = \begin{bmatrix} 2 & 4 & 2 & 0 \\ -5 & -10 & -3 & 1 \end{bmatrix}$ ,  $p_2 = \begin{bmatrix} 3 & -1 & 3 & 0 \\ 6 & 1 & 4 & 1 \end{bmatrix}$  kojima je udaljenost najmanja.
- 10. Zadani su vrhovi konveksnog poligona u homogenom prostoru  $V_2 = (-5 12 16 1)$ ,  $V_3 = (5 15 4 1)$ ,  $V_3 = (-10 6 40 2)$ ,  $V_4 = (-15 45 12 3)$ ,  $V_5 = (10 12 56 2)$ . Odrediti jednadžbe, pravaca na kojima leže bridovi poligona i numerički odrediti da li je točka T = (5 10 20 1) unutar poligona.

- Zadane su točke V<sub>1</sub>=(1 1) i V<sub>2</sub>=(4 7) u radnom prostoru. Uz korištenje Bresenhamovog algoritma (nemodificirani algoritam koji ispravno radi samo za kuteve od 0° od 45°) odrediti slikovne elemente koji će biti osvijetljeni. Napisati algoritam i tablično prikazati vrijednosti varijabli u petlji za pojedini korak.
- 2. Dužina d<sub>1</sub> određena je homogenim točkama X<sub>1</sub>=(1 1 1) i X<sub>2</sub>=(2 1 1), a dužina d<sub>2</sub> homogenim točkama X<sub>3</sub>=(3 4 1) i X<sub>4</sub>=(2 3 1). Odrediti matricu transformacije M, koja transformira dužinu d<sub>1</sub> u dužinu d<sub>2</sub>, tako da vrijedi: X<sub>3</sub>=X<sub>1</sub>·M i X<sub>4</sub>=X<sub>2</sub>·M.
- 3. Zadane su točke u radnom prostoru  $V_0$ =(10 20 10) i  $V_1$ =(0 20 20). Odrediti ravninu R čije su točke jednako udaljene od  $V_0$  i  $V_1$  ( $V_0$  je zrcalna slika  $V_1$  s obzirom na R).
- 4. Zadane su dvije dužine d<sub>1</sub> i d<sub>2</sub> točkama u radnom prostoru koje leže u ravnini.

$$d_1 ... V_1 = (10 \ 20 \ 10), V_2 = (30 \ 60 \ 50)$$
  
 $d_2 ... V_3 = (0 \ 20 \ 10), V_4 = (-20 \ 60 \ 50)$ 

Dužinu  $d_1$  potrebno je rotirati oko osi p tako da se dužina  $d_1$  poklopi s dužinom  $d_2$ . Odrediti pravac p i kut rotacije.

- 5. Objasniti formiranje Bezierove krivulje postupkom de Casteljau-a. Na primjeru sa četiri kontrolne točke odrediti težinske funkcije potrebne za određivanje krivulje.
- 6. Odrediti jednadžbu aproksimacijske Bezierove krivulje s Bezierovim težinskim funkcijama za zadane tri kontrolne točke u homogenom prostoru  $V_1$ =(3 1 5 1),  $V_2$ =(10 23 -13 1) i  $V_3$ =(14 9 8 1).

$$f_{i,n}(t) = \frac{(-t)^i}{(i-1)!} \frac{d^{(i-1)}\Phi_n(t)}{d^{(i-1)}t}, \quad \Phi_n(t) = \frac{1-(1-t)^n}{-t},$$

- 7. Zadan je vektor ravnine  $R=(10\ 5\ 10\ -350)^T$ . Ispitati položaj točaka  $X_1=(20\ 15\ 10\ 1)$ ,  $X_2=(10\ 20\ 15\ 1)$  i  $X_3=(5\ 10\ 15\ 1)$  prema ravnini R.
- 8. Zadana su dva pravca p<sub>1</sub> i p<sub>2</sub>, odrediti najmanju udaljenost između pravaca i parametre na pravcima za koje je udaljenost najmanja.

$$\mathbf{p}_1 = \begin{bmatrix} 2 & 1 & -2 & 0 \\ 14 & 2 & -5 & 1 \end{bmatrix} \qquad \mathbf{p}_2 = \begin{bmatrix} -3 & 1 & 3 & 0 \\ 10 & -5 & -1 & 1 \end{bmatrix}$$

- 9. Objasniti zašto se na zaslonu računala (monitoru) ne ostvaruju sve boje koje čovjek može vidjeti. Što je gamut.
- 10. Odrediti osam intenziteta  $I_0$  do  $I_7$  (prikazanih u obliku s pomičnim zarezom) u rasponu [0 1], tako da je početni intenzitet  $I_0$ =0.05, a krajnji  $I_7$ =1. Za ostale intenzitete, omjer susjednih intenziteta  $I_{k+1}/I_k$  mora biti konstantan.

- 1. Navesti DDA algoritam i odrediti koji će slikovni elementi biti osvijetljeni, ako su početna i krajnja točka  $V_1$ =(1 1) i  $V_2$ =(14 3) zadane u radnom prostoru.
- 2. Popis vrhova konveksnog poligona čine točke zadane u radnom prostoru:

$$V_1 = (-1 \ 1), V_2 = (-1 \ 5), V_3 = (1 \ 1).$$

Ispitati odnos točke  $V_4=(0.4)$  i poligona:

- a) numeričkim rješavanjem,
- b) grafičkim putem.
- 3. Navesti osnovne funkcije pojedinih temeljnih dijelova grafičkog protočnog sustava.
- 4. Dužina d<sub>1</sub> određena je homogenim točkama X<sub>1</sub>=(1 1 1) i X<sub>2</sub>=(2 1 1), a dužina d<sub>2</sub> određena je homogenim točkama X<sub>3</sub>=(3 4 1) i X<sub>4</sub>=(2 3 1). Odrediti matricu transformacije M, koja transformira dužinu d<sub>1</sub> u dužinu d<sub>2</sub>, tako da vrijedi: X<sub>3</sub>=X<sub>1</sub> M i X<sub>4</sub>=X<sub>2</sub> M
- 5. Pravac p određuju točke u radnom prostoru  $V_1=(1\ 2\ 0)$  i  $V_2=(2\ 5\ 4)$ . Matrica T rotira točku 3-prostora oko pravca p za 60° stupnjeva u smjeru kazaljke na satu gledano iz točke V<sub>1</sub> u točku V<sub>2</sub>. Odrediti elementarne matrice koje čine sastavljenu matricu T.
- 6. Zadani su vektori ravnina R<sub>1</sub>=(-3 2 1 10)<sup>τ</sup> i R<sub>2</sub>=(3 3 5 10)<sup>τ</sup>. Odrediti presjecište ravnina R<sub>1</sub> i R<sub>2</sub>. Neka je rezultat u parametarskom obliku.
- 7. Zadan je izvor svjetlosti I=(1 5 30 1) i ravnina R svojom karakterističnom matricom M.

$$\mathbf{M} = \begin{bmatrix} 1 & 4 & 2 & 0 \\ 1 & 6 & 2 & 1 \\ 2 & 2 & 4 & 1 \end{bmatrix}$$

Na zadanoj ravnini u točki određenoj parametrima u=1 i v=1 odrediti vektor:

- a) upadne zrake,
- b) reflektirane zrake.
- - b) Parametarske derivacije (prvu i drugu) za rubne točke u radnom prostoru.
- 9. Objasniti formiranje Bezierove krivulje postupkom de Casteljau-a. Na primjeru sa četiri kontrolne točke odrediti težinske funkcije potrebne za određivanje krivulje.
- 10. Ravnina je zadana točkama V<sub>1</sub>=(5 7 1), V<sub>2</sub>=(3 3 2) i V<sub>3</sub>=(2 2 5). Odrediti karakterističnu matricu ravnine određene zadanim točkama.

#### II Kontrolna zadaća iz Računalne grafike

- Zadan je vektor ravnine R=(10 5 10 -350)<sup>T</sup>. Ispitati položaj točaka zadanih u homogenom prostoru  $X_1$ =(20 15 10 1),  $X_2$ =(10 20 15 1) i  $X_3$ =(5 10 15 1) spram ravnine R.
  - 21- Navesti DDA algoritam i odrediti koji će slikovni elementi biti osvijetljeni, ako su početna i krajnja točka  $V_1=(1\ 1)$  i  $V_2=(15\ 3)$  zadane u radnom prostoru. (1,1) (8.2)  $(15\ 3)$ .
  - Poznate su matrice  $T_t$  i  $T_r$ . Koje transformacije obavljaju navedene matrice. Koje su transformacije inverzne navedenima.  $T_t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$   $T_r = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
  - (4)+ Zadane su dvije točke u radnom prostoru V<sub>1</sub>=(2 8), V<sub>2</sub>=(5 1). Odrediti pravac koji je jednako udaljen (bilo koja točka pravca) od točaka V<sub>1</sub> i V<sub>2</sub>.
  - (5) Rastumači vezu točke u nehomogenom 3-prostoru i točke u homogenom prostoru za: a) prvu parametarsku derivaciju, b) drugu parametarsku derivaciju.
  - $\sqrt{6}$  Zadani su vrhovi poligona u radnom prostoru  $V_1$ =(10 0 0),  $V_2$ =(2 0 10),  $V_3$ =(0 2 10) i  $V_4$ =(0 10 0) U vrhovima su zadane pripadne normale  $n_1=(1\ 0\ 0), n_2=(0.6\ 0\ 0.8), n_3=(0\ 0.6\ 0.8)$  i  $n_4=(0\ 1\ 0)$ Za točku V=(3 3 5) koja leži unutar zadanog poligona odrediti vektor normale potreban za Phong-ovo sjenčanje. BEH.
  - Ukratko opisati osnovne korake u postupku isijavanja. Nacrtati dijagram izvođenja pojedinih koraka u postupku isijavanja.
    - Zadane su tri točke u homogenom prostoru s pripadnim vrijednostima parametara V₀=(2 1 1), t₀=0. V<sub>1</sub>=(4 5 1), t<sub>1</sub>=0.5, V<sub>2</sub>=(5 1 1), t<sub>2</sub>=1. Odrediti interpolacijsku Bezierovu krivulju upoterebom Bernstein-ovih težinskih funkcija  $b_{i,n}(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}$ . Odrediti točku krivulje za iznos parametra t=0.2.  $\rho(t) = (1-t)^{\frac{n}{2}} \hat{a}_0 + 3t(1-t)^{\frac{n}{2}} \hat{a}_1 + 3t^{\frac{n}{2}} (1-t)^{\frac{n}{2}} \hat{a}_2 + 3t^{\frac{n}{2}} (1-t)^{\frac{n}{2}} \hat{a}_1 + 3t^{\frac{n}{2}} (1-t)^{\frac{n}{2}} \hat{a}_2 + 3t^{\frac{n}{2}} (1-t)^{\frac{n}{2}} \hat{a}_2 + 3t^{\frac{n}{2}} \hat{a}_1 + 3t^{\frac{n}{2}} \hat{a}_2 + 3t^{\frac{n}{2}} \hat{a}_2 + 3t^{\frac{n}{2}} \hat{a}_1 + 3t^{\frac{n}{2}} \hat{a}_2 +$
    - 9. Za prikazani primjer nacrtati BSP-stablo. Smjerovi strelica određuju pozitivnu stranu poluravnine.



10.) Odrediti osam intenziteta Io do I, (prikazanih u obliku s pomičnim zarezom) u rasponu [0 1], tako da je početni intenzitet I<sub>0</sub>=0.01, a krajnji I<sub>7</sub>=1. Za ostale intenzitete, omjer susjednih intenziteta  $I_{k-1}/I_k$  mora biti konstantan.

$$T_{0} = 0.01$$
  $T_{0} = 0.1385$   
 $T_{1} = 0.0005$   $T_{2} = 0.7663$   
 $T_{2} = 0.0007$   $T_{3} = 0.7175$   
 $T_{1} = 0.0007$   $T_{3} = 1$ .

ZEMRIS

26.6.2000.

### Pismeni ispit iz Računalne grafike

[1.] Ispitati odnos točke zadane u homogenom prostoru X=(1 1 2 4) i konveksnog tijela zadanog popisom vrhova u radnom prostoru, te popisom poligona s pripadnim vrhovima (za pojedini poligon redoslijed vrhova u popisu odgovara obilaženju u smjeru suprotno kazalje na satu gledano izvan tijela).

| Popis p       | olige          | ona              |
|---------------|----------------|------------------|
| $P_1 = (V_1$  |                |                  |
| $P_2 = (V_2$  | $V_4$          | V <sub>3</sub> ) |
| $P_3 = (V_1$  | $V_3$          | V <sub>4</sub> ) |
| $P_4 = (V_1)$ | V <sub>4</sub> | V2)              |

| Popis v             | /rh | ova |
|---------------------|-----|-----|
| $V_1 = (0$          | 0   | 0)  |
| V <sub>2</sub> =(0  | 1   | 0)  |
| V <sub>3</sub> =(1  | 1   | 1)  |
| V <sub>4</sub> =(-1 | 0   | 0)  |

2). Dužina  $d_1$  određena je točkama u homogenom prostoru  $X_1$ =(2 1 0 1) i  $X_2$ =(3 1 0 1). Dužina  $d_2$  određena je točkama u homogenom prostoru  $X_3$ =(1 1 0 1) i  $X_4$ =(1 2 0 1). Matrica M transformira dužinu  $d_1$  u dužinu  $d_2$ , tako da vrijedi:

$$X_3 = X_1 \cdot M$$
,  $X_4 = X_2 \cdot M$ .

Odrediti matricu M.

- Pravac je zadan točkama X<sub>1</sub>=(2 8 3 1) i X<sub>2</sub>=(5 1 4 1) u homogenom prostoru. Odrediti minimalnu udaljennost točke X<sub>3</sub>=(5 5 1 1) od zadanog pravca, te točku na pravcu koja je minimalno udaljena od točke X<sub>3</sub> u radnom prostoru.
- (4). Odrediti matricu perspektivne projekcije ako se centar projekcije nalazi na x-koordinatnoj osi C=(H 0 0), a ravnina projekcije neka je u yz ravnini (x=0) koordinatnog sustava.
- $\bigcirc$  Pravac p određuju točke u radnom prostoru  $V_1$ =(1 2 0) i  $V_2$ =(2 5 4). Matrica T rotira točku 3-prostora oko pravca p za 60° stupnjeva u smjeru kazaljke na satu gledano iz točke  $V_1$  u točku  $V_2$ . Odrediti elementarne matrice koje čine sastavljenu matricu T.
- 6. Zadani su vektori ravnina  $R_1$ =(-3 2 1 10) $^{\tau}$  i  $R_2$ =(3 3 5 10) $^{\tau}$ . Odrediti presjecište ravnina  $R_1$  i  $R_2$ . Neka je rezultat u parametarskom obliku.
- (7) Rastumačiti postupak otklanjanja skrivenih linija i površina Z-spremnikom (Z-buffer).
- 8. Za segment prostorne krivulje koji je opisan kubnom razlomljenom funkcijom, temeljem rubnih točaka i parametarskim derivacijama u njima odrađena je karakteristična matrica krivulje A. Odrediti:

$$A = \begin{bmatrix} 3 & 3 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 4 \end{bmatrix}$$

- a) Rubne točke segmenta krivulje u radnom prostoru.
- b) Parametarske derivacije (prvu i drugu) za rubne točke u radnom prostoru.
- 9. Objasniti formiranje Bezierove krivulje postupkom de Casteljau-a. Na primjeru sa četiri kontrolne točke odrediti težinske funkcije potrebne za određivanje krivulje.
- 10. Rastumačiti postupke sjenčanja:
  - a) Phong-ovo sjenčanje,
  - b) Gourard-ovo sjenčanje.