Table of Contents

PREFACE	V
Why This Book	\
WHOM THIS BOOK IS FOR	V
How This Book Is Organized	V
COLORED FIGURES	V
EXTRAS	V
SOFTWARE AND HARDWARE	V
How To Use This Book	VI
TYPOGRAPHIC CONVENTIONS	VI
How To Reach the Author	VII
Тне Воок's Web Site	VII
ACKNOWLEDGEMENTS	D
PART I MACHINE LEARNING BASICS	1
1 INTRODUCTION TO MACHINE LEARNING	3
1.1 WHAT IS ARTIFICIAL INTELLIGENCE?	3
1.1.1 Definition of Artificial Intelligence	3
1.1.2 Some of the Applied Artificial Intelligence Application Exampl	254
1.1.3 Comparison between Human Intelligence and Artificial Intellig	gence5
1.1.4 Expert Systems and Modern Machine Learning Models	8

	1.1.5	5 Affective Computing	9
	1.1.6	5 Sentiment Analysis	10
	1.1.7	7 Recommender Systems	10
	1.2	WHAT IS MACHINE LEARNING?	11
	1.2.1	Machine learning evolutions	12
	1.2.2	2 Machine learning tasks	14
	1.2.3	Machine learning application example 1: facial recognition	15
	1.2.4	Machine learning application example 2: Netflix prize	16
	1.2.5	Machine learning application example 3: anomaly detection	18
	1.3	MACHINE LEARNING PARADIGMS	20
	1.4	MACHINE LEARNING SOFTWARE	21
	1.5	MACHINE LEARNING HARDWARE	24
	1.6	SUMMARY	24
	RECOMN	MENDED READING	25
	EXERCISE	ES	25
2	MAC	CHINE LEARNING FUNDAMENTALS ILLUSTRATED WITH REGRESSION	27
	2.1	LEARNING THE CONTEXT FIRST	27
	2.2	EXAMINE THE DATA	28
	2.2.1	l Retrieving data	28
	2.2.2	2 Data semantics	29
	2.3	LOADING, FILTERING AND EXPLORING DATA	30
	2.3.1	l Loading data	30
	2.3.2	2 Filtering data	30
	2.3.3	B Exploring data numerically	31
	2.3.4		
	2.5.4	1 Exploring data graphically	33
	2.3.4	1 Exploring data graphically SELECTING AND TRAINING MODELS	
	_	SELECTING AND TRAINING MODELS	37

	2.4.3	Fitting with a linear model	39
	2.5	EVALUATING A MACHINE LEARNING MODEL	41
	2.5.1	Mathematical representation of the linear regression model	41
	2.5.2	MSE, RMSE and R ² (coefficient of determination) as performance metrics	42
	2.6	TUNING MACHINE LEARNING MODELS	45
	2.6.1	Underfitting versus overfitting with polynomial features	45
	2.6.2	Cross-Validation	48
	2.6.3	L ₁ and L ₂ Norms	56
	2.6.4	Ridge regularization	58
	2.6.5	LASSO regularization	60
	2.6.6	Elastic Net regularization	62
	2.7	LEARNING CURVES	64
	2.8	BIAS-VARIANCE TRADE-OFFS	68
	2.8.1	Theoretical formulation	68
	2.8.2	Illustration of the bias-variance trade-off triage with experiments	70
	2.8.3	Implementation details	77
	2.9	NO FREE LUNCH (NFL) THEOREM FOR MACHINE LEARNING	82
	2.10	SUMMARY	83
	RECOM	MENDED READING	84
	EXERCI	SES	84
3	PAT	TERN RECOGNITION WITH CLASSIFICATION	87
	3.1	THE MNIST DATASET	87
	3.2	DATA SPLITTING WITH STRATIFIED K-FOLD	89
	3.3	BINARY CLASSIFIERS	90
	3.3.1	Test error rate versus total computation time	90
	3.3.2	Confusion Matrix	93
	3.3.3	Precision, recall and F1 score	99
	3.3.4	Decision function and threshold	100

	3.3.5	Precision and recall trade-off	103
	3.3.6	The ROC curve and AUC score	107
	3.4	CLASSIFICATIONS BEYOND BINARY CLASSIFIERS	110
	3.4.1	Multiclass Classification	110
	3.4.2	Multiclass classification confusion matrix	112
	3.4.3	3D plot of confusion matrix	115
	3.4.4	Multilabel classification	117
	3.4.5	Multioutput classification	118
	3.5	SUMMARY	118
	RECOM	MENDED READING	119
	EXERCI	SES	119
1	OPTI	MIZATION AND SEARCH ILLUSTRATED WITH LOGISTIC REGRESSION	121
	4.1	OPTIMIZATION	121
	4.1.1	Optimization technique I: Batch gradient descent	122
	4.1.2	Optimization technique II: Stochastic gradient descent (SGD)	123
	4.1.3	Learning scheduler	125
	4.1.4	Heavy ball method	126
	4.1.5	Conjugate gradient and Newton-Raphson iteration	128
	4.2	SEARCH	131
	4.3	LOGISTIC REGRESSION	132
	4.3.1	Logistic function	132
	4.3.2	Cost function for logistic function	133
	4.3.3	The Iris flower machine learning dataset	134
	4.3.4	Logistic Regression Model	137
	4.3.5	Softmax regression	139
	4.4	KULLBACK-LEIBLER DIVERGENCE (CROSS ENTROPY)	141
	4.5	SUMMARY	141
	RECOM	MENDED READING	142

	EXERCIS	ES	. 142
5	RULE-	BASED LEARNING: DECISION TREES	143
	5.1	THE ORIGIN OF DECISION TREES	. 143
	5.1.1	The earliest version of ID3	. 143
	5.1.2	ID3 and Occam's razor principle	. 145
	5.1.3	C4.5 and C5.0	. 145
	5.2	CLASSIFICATION AND REGRESSION TREES (CART)	. 146
	5.2.1	Gini impurity	. 146
	5.2.2	Role of Gini impurity in splitting nodes	. 146
	5.2.3	Stopping criterion	. 147
	5.2.4	Pruning trees	. 147
	5.3	CLASSIFICATION EXAMPLES WITH TREE MODELS	. 148
	5.3.1	Iris dataset: petal width versus petal length	. 148
	5.3.2	Iris dataset: sepal width versus sepal length	. 152
	5.4	Regression	. 154
	5.5	SUMMARY	. 155
	RECOM	MENDED READING	. 156
	EXERCIS	ES	. 156
6	INSTA	NCE-BASED LEARNING: SUPPORT VECTOR MACHINES	157
	6.1	SVM FUNDAMENTALS	. 157
	6.1.1	The concept of support vectors	. 158
	6.1.2	Linear SVMs	. 158
	6.1.3	Quadratic programming	. 159
	6.1.4	Hard margins versus software margins: The primal problem	. 160
	6.1.5	Hinge loss functions	. 160
	6.2	LINEARSVC MODELS	. 161
	6.3	Nonlinear SVMs	. 163
	6.3.1	Lagrangian dual problem	. 163

	6.3.2	? Kernels	. 164
	6.3.3	B Mercer's theorem	. 165
	6.3.4	Nonlinear SVM examples	. 166
	6.4	SUPPORT VECTOR REGRESSORS (SVRs)	. 166
	6.5	Issues with SVMs	. 169
	6.6	SUMMARY	. 171
	RECOM	MENDED READING	. 171
	EXERCIS	SES	. 172
7	RAN	DOM FORESTS AND ENSEMBLE LEARNING	.173
	7.1	RANDOM FORESTS	. 173
	7.1.1	Concept of random forests	. 173
	7.1.2	Instance sampling: Bagging and pasting	. 174
	7.1.3	Feature sampling: Random patches and random subspaces	. 175
	7.1.4	Baseline with decision trees	. 175
	7.1.5	Random Forests	. 176
	7.1.6	5 Extra Trees	. 177
	7.1.7	7 AdaBoost	. 179
	7.2	FEATURE IMPORTANCE	. 179
	7.2.1	Iris dataset	. 180
	7.2.2	P MNIST dataset	. 180
	7.3	GRADIENT BOOSTING REGRESSION TREES (GBRT)	. 182
	7.4	Ensemble Learning	. 184
	7.4.1	Hard voting versus soft voting	. 184
	7.4.2	? A hard voting example	. 184
	7.4.3	B A soft voting example	. 186
	7.4.4	Bagging and pasting	. 188
	7.4.5	Out-of-bag (OOB) evaluation	. 189
	7.5	SUMMARY	.191

	RECOM	MENDED READING	191
	EXERCIS	SES	191
8	DIME	NSIONALITY REDUCTION	193
	8.1	LINEAR DIMENSIONALITY REDUCTION	194
	8.1.1	Eigenvalues and eigenvectors	194
	8.1.2	Matrix diagonalization	195
	8.1.3	Singular value decomposition (SVD) theorem	196
	8.1.4	Principal component analysis (PCA) by SVD	196
	8.1.5	Principal components analysis (PCA) versus covariance matrix	197
	8.1.6	Principal component analysis (PCA) by maximizing variance	197
	8.2	EXAMPLES OF PCA	198
	8.2.1	PCA applied to the Iris dataset	199
	8.2.2	SVD applied to the Iris dataset	201
	8.3	INCREMENTAL PCA	202
	8.4	Nonlinear Dimensionality Reduction	202
	8.4.1	Kernel PCA	202
	8.4.2	Nonlinear Dimensionality Reduction by Locally Linear Embedding (LLE)	203
	8.5	SUMMARY	206
	RECOM	MENDED READING	206
	EXERCIS	SES	206
P	ART II AR	TIFICIAL NEURAL NETWORKS	207
9	INTR	ODUCTION TO ARTIFICIAL NEURAL NETWORKS	209
	9.1	HISTORY OF ARTIFICIAL NEURAL NETWORKS	209
	9.1.1	Neuron-based logical calculus by McCulloch and Pitts	209
	9.1.2	Hebbian theory or Hebbian learning	212
	9.1.3	Rosenblatt's Perceptron	213
	9.1.4	Limitations of single layer perceptrons	216
	9.2	FEED-FORWARD NEURAL NETWORKS	218

XVIII

	10.3	.3	Results	263
	10.4	ALEX	NET	264
	10.4	.1	Overview	264
	10.4	.2	Data augmentation for combating overfitting	266
	10.4	.3	Dropout combating overfitting	267
	10.4	.4	Results	267
	10.5	Good	GLENET	268
	10.5	.1	1×1 kernels	268
	10.5	.2	Inception module	269
	10.5	.3	Global averaging pooling	271
	10.5	.4	Results	271
	10.6	RESN	ET	272
	10.6	.1	The deep residual learning framework	272
	10.6	.2	Batch normalization	273
	10.6	.3	He Initialization	274
	10.6	.4	Architectures	275
	10.6	.5	Implementation and results	277
	10.7	2016	AND 2017 ILSVRC WINNERS	278
	10.8	REFER	RENCE IMPLEMENTATIONS AND OBJECT IDENTIFICATION	278
	10.9	Sumi	MARY	278
	RECOM	1MENI	DED READING	278
	EXERCI	SES		279
1:	1 REC	JRREI	NT NEURAL NETWORKS	.281
	11.1	INTRO	DDUCTION TO RNNs	281
	11.1	.1	Simple RNN cells	282
	11.1	.2	Classification of RNNs	283
	11.2	Long	SHORT-TERM MEMORY (LSTM)	284
	11.2	.1	Back-propagation through time (BPTT)	285

	44.3		W . I . I . I . I . I . I . I . I . I .	200
	11.2		Vanishing/exploding gradients	
	11.2	2.3	Background information about the arrival of LSTM	
	11.2	2.4	Long short-term memory (LSTM)	289
	11.2	2.5	LSTM extended with forget-gate	292
	11.2	2.6	Peephole connections	293
	11.3	GATI	ED RECURRENT UNIT (GRU)	293
	11.4	NAT	ural Language Processing (NLP)	294
	11.4	.1	Sub-fields of NLP	294
	11.4	.2	Connectionist temporal classification (CTC)	296
	11.4	1.3	LSTM applied to speech recognition	297
	11.5	Refe	RENCE IMPLEMENTATIONS	300
	11.6	Sum	MARY	300
	RECOM	1MEN	IDED READING	301
	EXERCI	SES		301
12	2 AUT	OENO	CODERS	303
	12.1	How	V AUTOENCODERS WORK	303
	12.2	DEN	OISING AUTOENCODERS	304
	12.3	Vari	ATIONAL AUTOENCODERS	307
	12.3	2.1	A review of the Bayes' theorem	307
	12.3	2.2	Variational inference	308
	12.3	3.3	Auto-encoding variational Bayes (AEVB)	309
	12.4	ADV	ERSARIAL AUTOENCODERS	312
	12.4	!. 1	Generative Adversarial Nets (GANs)	312
	12.4	1.2	Adversarial Autoencoders (AAE)	313
	12.5	Sum	MARY	
			IDED READING	
	LALINCI			
Λ١	DDENIDI	V A N	IACHINE I FARNING DEVELOPMENT AND FRAMEWORKS	217

	A.1 SET UP PYDEV ON ECLIPSE	317
	A.2 OTHER IDES FOR PYTHON	318
	A.3 PYTHON PACKAGES FOR MACHINE LEARNING	318
	A.3.1 pandas	318
	A.3.2 NumPy	319
	A.3.3 matplotlib	319
	A.3.4 sklearn	319
A	PPENDIX B MULTI-LAYER PERCEPTRON APPLIED TO THE FUEL ECONOMY USE CASE	.321
	B.1 THE BASELINE	321
	B.2 THE EFFECTS OF THE NUMBER OF NEURONS	322
	B.3 THE EFFECTS OF THE NUMBER OF LAYERS	324
	B.4 The Effects the Activation Functions	325
	B.5 The Effects the Solvers	326
	B.6 THE MLP MODEL FOR CLASSIFICATION TASKS	327
A	DDFNDIV C CNN FYAMDI FC WITH CAFFE VOLCYZ AND DYTODGU	220
	PPENDIX C CNN EXAMPLES WITH CAFFE, YOLOV3 AND PYTORCH	.329
	C.1 THE CAFFE FRAMEWORK	
		329
	C.1 THE CAFFE FRAMEWORK	329 <i>329</i>
	C.1 THE CAFFE FRAMEWORK	329 329 332
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe	329 329 332 340
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe	329 329 332 340 345
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe	329 329 332 340 345 349
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe C.2 THE YOLOV3 FRAMEWORK	329 329 332 340 345 349
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe C.2 THE YOLOV3 FRAMEWORK C.2.1 Building the YOLOV3 Framework from the Source	329 329 332 340 345 349 349 353
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe C.2 THE YOLOV3 FRAMEWORK C.2.1 Building the YOLOV3 Framework from the Source C.2.2 ALEX'S CIFAR-10 WITH YOLOV3	329 329 332 340 345 349 353 360
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe C.2 THE YOLOV3 FRAMEWORK C.2.1 Building the YOLOV3 Framework from the Source C.2.2 ALEX'S CIFAR-10 WITH YOLOV3 C.2.3 Use YOLOV3 to detect multi-objects in an image or bounding boxes.	329 329 332 340 345 349 353 360 364
	C.1 THE CAFFE FRAMEWORK C.1.1 Building the Caffe Framework from the Source C.1.2 The LeNet CNN Model for The MNIST Dataset with Caffe C.1.3 Alex's CIFAR-10 with Caffe C.1.4 The ImageNet Example with Caffe C.2 THE YOLOV3 FRAMEWORK C.2.1 Building the YOLOV3 Framework from the Source C.2.2 ALEX'S CIFAR-10 WITH YOLOV3 C.2.3 Use YOLOV3 to detect multi-objects in an image or bounding boxes C.2.4 Training YOLO on the COCO dataset	329 329 332 340 345 349 353 360 364 370

	C.2.8 Accelerating YOLOv3's GEMM on Mac OS with Apple's Accelerate Framework	386
	C.2.9 COCO training on Mac OS by taking advantage of Apple's Accelerate Framework	388
	C.2.10 How YOLOv3 training is kicked off	393
	C.2.11 Object Detection with under-trained YOLOv3	397
	C.3 IMAGE PROCESSING BASICS	400
	C.3.1 How OpenCV processes images in C	400
	C3.2. Converting image matrices to column matrices with the im2col function	403
	C.3.3 A more advanced image processing example in Java	406
	C.3.4 RGB versus HSV image formats	409
	C.4 THE ART AND SCIENCE OF DEEP LEARNING PERFORMANCE	409
	C.5 Training YOLOv3 on GPUs	412
	C5.1 YOLOv3 COCO training on GPUs	412
	C.5.2 Creating a Ubuntu-18.04 VM	414
	C.5.3 Installing cuda-9.1	415
	C.5.4 Making YOLOv3 on the Ubuntu-18.04-cuda-9.1 VM	417
	C5.5 Installing OpenCV on Ubuntu-18.04	418
	C.6 PYTORCH	419
ΑF	PPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW	425
	D.1 Installing Keras/TensorFlow	425
	D.2 THE KERAS LSTM TIME SERIES EXAMPLE	426
	D.2.1 Panads DataFrame	426
	D.2.2 NumPy's repeat function	427
	D.3 AN LSTM EXAMPLE THAT MODELS A TIME SERIES SEQUENCE OF LIMITED LENGTH	428
	D.4 More Experiments with The Keras LSTM Time Series Example	434
	D.4.1 Stateful vs stateless LSTM models with tsteps = 2 and lahead = 3	435
	D.4.2 Stateful vs stateless LSTM models with tsteps = 3 and lahead = 2	437
	D.4.3 Stateful vs stateless LSTM models with tsteps = 2 and lahead = 2	437
RF	FFRENCES	441

INDEX44
