Statistical Causality

Philip Dawid
Statistical Laboratory
University of Cambridge

Statistical Causality

- 1. The Problems of Causal Inference
- 2. Formal Frameworks for Statistical Causality
- 3. Graphical Representations and Applications
- 4. Causal Discovery

3. Graphical Representations and Applications

Graphical Representation

- Certain collections of CI properties can be described and manipulated using a DAG representation
 - very far from complete
- Each CI property is represented by a graphical separation property
 - d-separation
 - moralization

Figure 6.1: Directed graph \mathcal{D} for criminal evidence

Figure 6.1: Directed graph D for criminal evidence

$$(B,R) \perp \!\!\! \perp (G1,Y1) \mid (A,N) ?$$

Figure 6.2: Ancestral subgraph D'

 $(B,R) \perp \!\!\! \perp (G1,Y1) \mid (A,N) ?$

Figure 6.3: Moralized ancestral subgraph G'

$$(B,R) \perp \!\!\! \perp (G1,Y1) \mid (A,N) ?$$

Extended Conditional Independence

Distribution of $Y \mid T$ the same in observational and experimental regimes:

 $Y \mid (F_T, T)$ does not depend on value of F_T

Can express and manipulate using notation and theory of conditional independence:

$$Y \perp \!\!\!\perp F_T \mid T$$

(even though F_T is not random)

Augmented DAG

- with random variables and intervention variables
- probabilistic (not functional) relationships

$$0/1/\emptyset \quad F_T \qquad 0/1 \qquad Y$$

$$T \mid (F_T = \emptyset) \sim P_T \qquad Y \mid T$$

Absence of arrow $F_T \to Y$ expresses $Y \perp \!\!\!\perp F_T \mid T$

Sufficient Covariate "(un)confounder"

- Treatment assignment ignorable given U
 - (generally) *not* marginally ignorable
- If U is observed, can fit model (e.g. regression) for dependence of Y on (T, U)
 - causally meaningful

$$ACE(u) := E(Y \mid T = 1, U = u) - E(Y \mid T = 0, U = u)$$

Sufficient covariate "(un)confounder"

$$egin{array}{cccc} U & oldsymbol{\perp} & F_T \ Y & oldsymbol{\perp} & F_T \mid (T,U) \end{array}$$

Can estimate ACE:

$$E(Y \mid F_T = t) = E\{E(Y \mid U, F_T = t) \mid F_T = t)\}$$

$$= E\{E(Y \mid U, F_T = t, T = t) \mid F_T = t)\}$$

$$= E\{E(Y \mid U, T = t)\}$$

$$ACE = E\{ACE(U)\}$$
("back-door" formula)

Similarly, whole interventional distribution:

$$p(y \mid F_T = t) = \int p(y \mid u, T = t) p(u) du$$

Non-confounding

Treatment assignment ignorable given U

Ignorable marginally if either *a* or *b* is absent:

$$a$$
 $T \perp \!\!\! \perp U \mid F_T$ b $Y \perp \!\!\! \perp U \mid T$ "randomization""irrelevance"

-then need not even observe U

Pearlian DAG

• Envisage intervention on every variable in the system

- Augmented DAG model
 - but with intervention indicators implicit

Every arrow has a causal interpretation

Pearlian DAG

Intervention DAG

Intervention DAG

- e.g., $E \perp \!\!\!\perp (A, B, F_A, F_B, F_C, F_D) \mid (C, D, F_E)$
- When *E* is not manipulated, its conditional distribution, given its parents *C*, *D* is unaffected by the values of *A*, *B* and by whether or not any of the other variables is manipulated
 - modular component

More complex DAGs

(would fail if $e.g.\ U \to Y$)

$$p(y \mid \sigma) = \int da_1 \, dl \, da_2 \, p_{\sigma}(a_1) p(l \mid a_1) p_{\sigma}(a_2 \mid a_1, l) p(y \mid a_2, a_2, l)$$

Instrumental Variable

Linear model:
$$E(Y \mid X=x, W, F_X=x) = f(W) + \beta x$$

So $E(Y \mid F_X=x) = E\{f(W) \mid F_X=x\} + \beta x$
 $= \alpha + \beta x$

- $\triangleright \beta$ is causal regression coefficient
- but not estimable from observational data:

$$E(Y | X=x) = E\{f(W) | X=x\} + \beta x$$

Instrumental Variable

–so can now identify β

Discrete case

Can develop inequalities for ACE $E(Y | F_X = 1) - E(Y | F_X = 0)$ in terms of estimable quantities

Hypothesis Test

If arrow $X \to Y$ missing, then $Y \perp \!\!\!\perp F_X$ (X has no causal effect on Y).In this case $Y \perp \!\!\!\perp F_Y = \emptyset$, can test

In this case $Y \perp \!\!\!\perp Z \mid F_X = \emptyset$ —can test.

Mendelian Randomisation

Does low serum cholesterol level increase the risk of cancer?

X = serum cholesterol

Y = cancer

W = diet, smoking, hidden tumour,...

Z = APOE gene

(E2 allele induces particularly low serum cholesterol)

Equivalence

Non-equivalence

$$X \not\perp \!\!\! \perp Z \mid F_Z \neq \emptyset$$

$$X \perp \!\!\! \perp Z \mid F_Z \neq \emptyset$$

Can we identify a causal effect from observational data?

- Model with domain and (explicit or implicit) intervention variables, specified ECI properties
 - e.g. augmented DAG, Pearlian DAG
- Observed variables \mathcal{V} , unobserved variables \mathcal{U}
- Can identify observational distribution over ${\cal V}$
- Want to answer causal query, e.g. $p(y \mid F_X = x)$
 - write as $p(y \mid \check{x})$
- When/how can this be done?

Example: "back-door formula"

$$Z \quad \bot \quad F_X$$

$$Y \quad \bot \quad F_X \mid (X, Z)$$

$$p(y \mid \check{x}) = \sum_{z} p(y \mid x, z) p(z)$$

Example: "back-door formula"

Works for $Z = (Z_3, Z_4)$, and also for $Z = (Z_4, Z_5)$

Example: "front-door formula"

$$egin{array}{cccc} U & \perp \!\!\! \perp & F_X \ Z & \perp \!\!\! \perp & (U,F_X) \mid X \ Y & \perp \!\!\! \perp & (F_X,X) \mid (Z,U) \end{array}$$

$$p(y \mid \check{x}) = \sum_{z} p(z \mid x) \sum_{x'} p(y \mid x', z) p(x').$$

do-calculus

Rule 1 (Insertion/deletion of observations)

If
$$Y \perp \!\!\! \perp Z \mid (X, F_X \neq \emptyset, W)$$
 then

$$p(y \mid \check{x}, z, w) = p(y \mid \check{x}, w)$$

Rule 2 (Action/observation exchange)

If
$$Y \perp \!\!\!\perp F_Z \mid (X, F_X \neq \emptyset, Z, W)$$
, then

$$p(y \mid \check{x}, \check{z}, w) = p(y \mid \check{x}, z, w)$$

Rule 3 (Insertion/deletion of actions)

If
$$Y \perp \!\!\!\perp F_Z \mid (X, F_X \neq \emptyset, W)$$
, then

$$p(y \mid \check{x}, \check{z}, w) = p(y \mid \check{x}, w)$$

do-calculus

For a problem modelled by a Pearlian DAG, the *do*-calculus is complete:

- We can tell whether a given causal effect is computable (from the observational distribution)
- Any computable causal effect can be computed by successive applications of rules 2 and 3
 - together with probability calculus, and property $F_T = t \Rightarrow T = t$ (delete dotted arrows)
- There exist algorithms to accomplish this

4. Causal Discovery

Probabilistic Causality

- Intuitive concepts of "cause", "direct cause",....
- Principle of the common cause:
 - "Variables are independent, given their common causes"

- Assume *causal DAG* representation:
 - direct causes of V are its DAG parents
 - all "common causes" included

Probabilistic Causality

CAUSAL MARKOV CONDITION

- The causal DAG also represents the observational conditional independence properties of the variables
 - WHEN??
 - WHY??

CAUSAL FAITHFULNESS CONDITION

- No extra conditional independencies
 - WHY??

Causal Discovery

- An attempt to learn causal relationships from observational data
- Assume there is an underlying *causal DAG* (possibly including unobserved variables) satisfying the (faithful) Causal Markov Condition
- Use data to search for a DAG representing the observational independencies
 - > model selection
- Give this a causal interpretation

Causal Discovery

Two main approaches:

- "Constraint-based"
 - Qualitative
 - Infer (patent or latent) conditional independencies between variables
 - Fit conforming DAG model(s)
- Statistical model selection
 - Quantitative
 - General approach, applied to DAG models
 - Need not commit to one model (model uncertainty)

Constraint-Based Methods (complete data)

• Identify/estimate conditional independencies holding between observed variables

 Assume sought-for causal DAG does not involve any variables other than those observed

Wermuth-Lauritzen algorithm

• Assume variables are "causally ordered" *a priori*:

 $(V_1, V_2, ..., V_N)$, s.t arrows can only go from lower to higher

• For each i, identify (smallest) subset S_i of $V^{i-1} := (V_1, \, V_2, \dots, \, V_{i-1}) \text{ such that}$ $V_i \perp \!\!\! \perp V^{i-1} \mid S_i$

• Draw arrow from each member of S_i to V_i

SGS algorithm (no prior ordering)

- 1. Start with complete undirected graph over V^N
- 2. Remove edges V–W s.t., for some S, $V \perp \!\!\! \perp W \mid S$
- 3. Orient any V Z W as $V \rightarrow Z \leftarrow W$ if:
 - no edge V-W
 - for each $S \subseteq V^N$ with $Z \in S$, $V \not\perp \!\!\! \perp W \mid S$
- 4. Repeat while still possible:
 - i. if $V \rightarrow Z W$ but not V W, orient as $V \rightarrow Z \rightarrow W$
 - ii. If $V \rightsquigarrow W$ and V-W, orient as $V \rightarrow W$

Comments

- Wermuth-Lauritzen algorithm
 - always finds a valid DAG representation
 - need not be faithful
 - depends on prior ordering
- SGS algorithm
 - may not succeed if there is no faithful DAG representation
 - output may not be fully oriented
 - computationally inefficient (too many tests)
 - better variations: PC, PC*

Constraint-Based Methods (incomplete data)

- Allow now for unobserved (latent) variables
- Can modify previous algorithms to work just with conditional independencies between observed variables
- But latent CI has other (quantitative) implications too...

No CI properties between observables A, B, C, D.

But
$$\sum_{b} p(b \mid a)p(d \mid a, b, c) = \sum_{b} p(b \mid a) \sum_{u} p(d \mid \mathbf{a}, \mathbf{b}, c, u)p(u \mid a, b, \mathbf{c})$$

$$= \sum_{u} p(d \mid c, u)p(u \mid \mathbf{a})$$

– does not depend on a

No CI properties between observables X_1, X_2, X_3, X_4 .

But
$$\rho_{13}\rho_{24} = \rho_{14}\rho_{23} = \rho_{12}\rho_{34}$$

Such properties form basis of TETRAD II program

Bayesian Model Selection

- Consider collection $\mathcal{M} = \{M\}$ of models
- Have prior distribution $\pi_M(\boldsymbol{\theta}_M)$ for parameter $\boldsymbol{\theta}_M$ of model M
- Based on data x, compute $marginal\ likelihood\ for$ each model M:

$$L_M = \int p(\mathbf{x} \mid \boldsymbol{\theta}_M) d\boldsymbol{\theta}_M$$

• Use as score for comparing models, or combine with prior distribution $\{w_M\}$ over models to get posterior:

$$w_M^* \propto w_M L_M$$

Bayesian Model Selection

- Algebraically straightforward for discrete or Gaussian DAG models, parametrised by parent-child conditional distributions, having conjugate priors (with local and global independence)
 - > Zoubin Ghahramani's lectures
- Can arrange hyperparameters so that indistinguishable (Markov equivalent) models get same score

Mixed data

- Data from experimental and observational regimes
- Model-selection approach:
 - assume Pearlian DAG
 - ignore local likelihood contribution when the response variable is set
- Constraint-based approach?
 - base on ECI properties, e.g. $X \perp \!\!\!\perp F_Y \mid (W, F_Z)$

A Parting Caution

- We have powerful statistical methods for attacking causal problems
- But to apply them we have to make strong assumptions (e.g. ECI assumptions, relating distinct regimes)
- Important to consider and justify these in context
 - -e.g., Mendelian randomisation

"NO CAUSES IN, NO CAUSES OUT"

Thank you!

Further Reading

- A. P. Dawid (2007). Fundamentals of Statistical Causality. Research Report 279, Department of Statistical Science, University College London. 94 pp.
 - http://www.ucl.ac.uk/Stats/research/reports/abs07.html#279
- R. E. Neapolitan (2003). *Learning Bayesian Networks*. Prentice Hall, Upper Saddle River, New Jersey.
- J. Pearl (2009). Causality: Models, Reasoning and Inference (second edition). Cambridge University Press.
- D. B. Rubin (1978). Bayesian inference for causal effects: the role of randomization. *Annals of Statistics* **6**, 34–68.
- P. Spirtes, C. Glymour, and R. Scheines (2000). *Causation, Prediction and Search* (second edition). Springer-Verlag, New York.
- P. Suppes (1970). *A Probabilistic Theory of Causality*. North Holland, Amsterdam.