Simulating the viscoelastic response of the spinal cord

Nina Kristine Kylstad¹

¹Faculty of Mathematics and Natural Sciences University of Oslo

10th June, 2014

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Discretization
- Implementation
- Simulation results
- Conclusions

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Implementation
- Simulation results
- Conclusions

The Chiari I malformation

- Malformation of the brain / skull.
- Characterized by downward displacement of hindbrain:
 - 3 5mm below the base of the skull
 - May block CSF flow from brain to spinal column.
- Approximately 1% of normal adults have the malformation.
- Few display symptoms.

Chiari I malformation

Common symptoms

The Chiari I malformation

% Symptom Headache 98 Dizziness 84 Difficulty sleeping 72 Weakness of an upper extremity 69 67 Neck pain Numbness/tingling of an upper extremity 62 **Fatigue** 59 Nausea 58 Shortness of breath 57 Blurred vision 57 Tinnitus 56 Difficulty swallowing 54 Weakness of a lower extremity 52

Table: 13 symptoms were reported by more than 50 % of the 265 participating patients with Chiari I malformation in the study by Mueller and Oro' [1]

Syringomyelia

- Fluid-filled cavities (syrinxes) develop in spinal cord.
- May cause irreversible nerve damage.
- Estimated 70% of syringomyelia related to hindbrain malformations.
- 30 50% of *symptomatic* Chiari I patients develop syrinx.

CSF flow

Cerebrospinal fluid (CSF) flows in the subarachnoid space (SAS) in the brain and spinal column.

- Studies show that Chiari I results in abnormal CSF flow.
 - Velocity
 - Pressure
- Believed to be a possible cause for symptoms and syringomyelia.

The spinal cord

- Part of the central nervous system.
- Encased in the spinal column.
- CSF flows past the spinal cord.
- Cylindrical in shape.
- Made up of grey and white matter.

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Discretization
- Implementation
- Simulation results
- Conclusions

Simulation scenario

Anatomically accurate geometry.

• Spinal cord segment from sheep (3.4cm).

Simulation scenario

- Measured pressure variation from Chiari patient.
- Pressure modelled as travelling wave,

$$p(z,t) = p_0(z+ct)$$
. (1)

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Implementation
- Simulation results
- Conclusions

Governing equations

Equations for elasticity,

$$-\nabla \cdot \sigma = f, \text{ in } \Omega, \tag{2a}$$

$$u = u_D$$
, on Γ_D , (2b)

$$\sigma \cdot n = g$$
, on Γ_N . (2c)

Neumann BC: Simulates the applies pressure,

$$\sigma \cdot \mathbf{n} = -\mathbf{p} \cdot \mathbf{n}$$
.

Dirichlet BC: Constraints on top and bottom boundaries.

- $u_D = 0$.
- $u_D = u_z = 0$.

Constitutive relationships

Stress vs. strain

- $\sigma = \sigma(u(x))$: The stress tensor.
- $\varepsilon = \varepsilon(u(x))$: The strain tensor, defined by

$$\varepsilon = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right). \tag{3}$$

Constitutive relationship: σ expressed in terms of ε .

Linear, isotropic materials.

Constitutive relationships Linear elasticity

Stress-strain relationship given by

$$\sigma = 2\mu\varepsilon + \lambda \operatorname{tr}(\varepsilon)I. \tag{4}$$

Constitutive relationships

 μ, λ : Lamé parameters, known in terms of E (Young's modulus) and ν (Poisson ratio).

Constitutive relationships Linear viscoelasticity

Stress-strain relationship from spring-dashpot combinations.

Figure: Kelvin-Voigt

Figure: Standard linear solid (SLS)

Constitutive relationships Linear viscoelasticity – SLS

Figure: Standard linear solid (SLS)

Constitutive relationship given by

$$\sigma + \tau_{\varepsilon} \dot{\sigma} = E_1(\varepsilon + \tau_{\sigma} \dot{\varepsilon}), \tag{5}$$

where
$$au_{arepsilon}=rac{\eta}{ extstyle E_2}$$
 and $au_{\sigma}=\eta rac{ extstyle E_1+ extstyle E_2}{ extstyle E_1 extstyle E_2}.$

Constitutive relationships Linear viscoelasticity – SLS

Rewritten on integral form:

$$\sigma(t) = D(0)\varepsilon(t) - \int_{0}^{t} D_{s}(t-s)\varepsilon(s)ds, \qquad (6)$$

where

$$D(t) = E_1 + E_2 e^{-t/\tau}. (7)$$

Constitutive relationships Linear viscoelasticity – SLS (2D/3D)

Extending to 2D/3D,

$$D(t)\varepsilon(t) = 2\mu(t)\varepsilon(t) + \lambda(t)\operatorname{tr}(\varepsilon(t))I, \tag{8}$$

$$D_s(t-s)\varepsilon(s) = 2\mu_s(t-s)\varepsilon(s) + \lambda_s(t-s)\operatorname{tr}(\varepsilon(s))I, \quad (9)$$

where

$$\mu(t) = \mu_1 + \mu_2 e^{-t/\tau},$$

$$\lambda(t) = \lambda_1 + \lambda_2 e^{-t/\tau}.$$

 $\lambda(t) = C\mu(t)$ gives constant Poisson ratio.

$$2\mu_1 = E_1$$
, $2\mu_2 = E_2$.

Parameter values

Constitutive relationship	$E_1(Pa)$	E ₂ (Pa)	$\eta(Pa\;s)$	E(Pa)	ν
SLS	0.84×10^3	2.03×10^{3}	6.7	_	_
SLS*	0.21×10^5	0.53×10^{5}	$1.7 imes 10^2$	_	_
Lin. elast	_	_	_	$1.6 imes 10^4$	0.479
Lin. elast*	_	_	_	6.5×10^2	0.479

Table: Summary of the parameter values selected from the literature.

^{*:} Calculated values.

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Discretization
- Implementation
- Simulation results
- Conclusions

Systems to be discretized

Recall:

$$-\nabla \cdot \sigma = f$$
, in Ω ,
 $u = u_D$, on Γ_D ,
 $\sigma \cdot n = g$, on Γ_N .

Linear elasticity:

$$\sigma = 2\mu\varepsilon + \lambda tr(\varepsilon)I.$$

Linear viscoelasticity:

$$\sigma(t) = D(0)\varepsilon(t) - \int_{0}^{t} D_{s}(t-s)\varepsilon(s)ds.$$

Variational formulations Linear elasticity

$$a(u,v) = L(v), \ \forall v \in V,$$

$$a(u,v) := \int_{\Omega} 2\mu\varepsilon : \nabla v \ d\Omega + \int_{\Omega} \lambda tr(\varepsilon)I : \nabla v \ d\Omega,$$

$$L(v) := \int_{\Omega} f \cdot v \ d\Omega + \int_{\Gamma_N} g \cdot v \ d\Gamma.$$

Fully discrete:

$$a(u_i^h, v) = L(v), \ \forall v \in \hat{V}^h$$

$$b(t, t; u(t), v) - \int_{0}^{t} c(t, s; u(s), v) ds = L(v), \forall v \in V,$$

$$b(t, t; u, v) = \int_{\Omega} D(0)\varepsilon(t) : \nabla v d\Omega,$$

$$c(t, s; u, v) = \int_{\Omega} D_{s}(t - s)\varepsilon(s) : \nabla v d\Omega,$$

Fully discrete:

$$\begin{split} b(t_i, t_i; u_i^h, v) - \frac{\Delta t}{2} c(t_i, t_i; u_i^h, v) \\ = L(v) + \frac{\Delta t}{2} c(t_i, t_0; u_0^h, v) + \Delta t \sum_{j=1}^{i-1} c(t_i, t_j; u_j^h, v), \ \forall v \in \hat{V}^h \end{split}$$

Replace sum term:

$$\sum_{j=1}^{i-1} c(t_i, t_j; u_j^h, v) = e^{-(t_i - t_{i-1})/\tau} \sum_{j=1}^{i-2} c(t_{i-1}, t_j; u_j^h, v) + c(t_i, t_{i-1}; u_{i-1}^h, v).$$
(10)

Testing the efficient scheme

	Trapezoidal		Efficient		
Δt	e_h	rate	e_h	rate	Difference
1.00E-01	7.938E-04	_	7.938E-04	_	0.0
5.00E-02	1.735E-04	2.19	1.735E-04	2.19	2.07E-17
2.50E-02	4.067E-05	2.09	4.067E-05	2.09	4.76E-18
1.25E-02	9.852E-06	2.05	9.852E-06	2.05	4.67E-17
6.25E-03	2.425E-06	2.02	2.425E-06	2.02	8.34E-17
3.13E-03	6.015E-07	2.01	6.015E-07	2.01	3.55E-18
1.56E-03	1.498E-07	2.01	1.498E-07	2.01	9.79E-16
7.81E-04	3.738E-08	2.00	3.738E-08	2.00	3.95E-16

Table: Comparing errors in the solution for trapezoidal sum and efficient sum (10).

Efficient scheme

Testing the efficient scheme

Speedup:

	Time taken (s)
Trapezoidal	1.294
Efficient	0.017
Speedup	74.6

Table: Comparing time taken to obtain solution when using trapezoidal sum and efficient sum (10).

Γ_1, Γ_2 : top and bottom boundary respectively.

- $u_z = 0$ on Γ_1, Γ_2
- No-rotation BC: $u \cdot e_{\theta} = 0$ on Γ_1, Γ_2 , where

$$e_{\theta} = \begin{pmatrix} rac{-(y_0+y)}{r} \ rac{x_0+x}{r} \ 0 \end{pmatrix},$$

$$x_0, y_0$$
: points, $r = \sqrt{(x_0 + x)^2 + (y_0 + y)^2}$.

• u = 0 on point in Γ_1, Γ_2 .

Weakly enforcing no-rotation condition

Using Nitsche's method, variational form: Find $u \in V$ such that

$$\int_{\Omega} \sigma(u) : \nabla v \ d\Omega + \frac{\gamma}{h_{E}} \int_{\Gamma_{1,2}} (u \cdot e_{\theta}) (v \cdot e_{\theta}) \ d\Gamma
- \int_{\Gamma_{1,2}} (\sigma(u) \cdot n \cdot e_{\theta}) (v \cdot e_{\theta}) \ d\Gamma - \int_{\Gamma_{1,2}} (\sigma(v) \cdot n \cdot e_{\theta}) (u \cdot e_{\theta}) \ d\Gamma
= \int_{\Omega} f \cdot v \ d\Omega + \int_{\Gamma_{N}} g \cdot v \ d\Gamma + \frac{\gamma}{h_{E}} \int_{\Gamma_{1,2}} (u \cdot e_{\theta}) (v \cdot e_{\theta}) \ d\Gamma
- \int_{\Gamma_{1,2}} (\sigma(v) \cdot n \cdot e_{\theta}), (u_{0} \cdot e_{\theta}) \ d\Gamma, \ \forall v \in \hat{V},$$
(11)

Outline

Medical backgound

Simulation scenario Mathematical models Discretization

- Medical backgound
- Simulation scenario
- Mathematical models
- Implementation
- Simulation results
- Conclusions

Implementation

- Python
- FEniCS
 - PFTSc.
 - Direct LU solver (testing)
 - Krylov solver: GMRES with AMG preconditioner (simulations)
- Object oriented approach

Verifying the implementations Linear elasticity

Medical backgound

Simulation scenario

Figure: (a) Pressure variation over time, and (b) Resulting displacement over time in a chosen point in the mesh from simple pressure simulation using linear elasticity solver on unit square geometry (2D).

Verifying the implementations Linear elasticity

Medical backgound

Mathematical models

	Degree	1	Degree 2		
h	e	rate	e	rate	
2.50E-01	1.53E-01	_	2.33E-03	_	
1.25E-01	4.46E-02	1.78	2.78E-04	3.07	
6.25E-02	1.17E-02	1.93	3.41E-05	3.03	
3.12E-02	2.97E-03	1.98	4.22E-06	3.01	
1.56E-02	7.46E-04	1.99	5.26E-07	3.01	
7.81E-03	1.87E-04	2.00	6.56E-08	3.00	

Table: Errors in the numerical solution u for linear elasticity, when compared to a manufactured exact solution u_e , for elements of degrees 1 and 2 in 2D using direct LU solver.

Verifying the implementations Linear viscoelasticity

Medical backgound

Simulation scenario

Figure: (a) Pressure variation over time, and (b) Resulting displacement over time in a chosen point in the mesh from simple pressure simulation using linear viscoelasticity solver on unit square geometry (2D).

Verifying the implementations

Linear viscoelasticity

Medical backgound

Simulation scenario

Mathematical models

$\Delta t \setminus h$	3.54E-01	1.77E-01	8.84E-02	4.42E-02	2.21E-02	1.10E-02
2.00E-02	4.19E-03	3.96E-03	5.64E-03	6.09E-03	6.21E-03	6.23E-03
1.00E-02	7.90E-03	1.18E-03	9.64E-04	1.38E-03	1.49E-03	1.51E-03
5.00E-03	8.91E-03	2.12E-03	3.10E-04	2.40E-04	3.43E-04	3.68E-04
2.50E-03	9.16E-03	2.37E-03	5.42E-04	7.87E-05	5.98E-05	8.37E-05
1.25E-03	9.22E-03	2.44E-03	6.07E-04	1.37E-04	1.98E-05	_*
1.00E-04	9.24E-03	2.46E-03	6.29E-04	1.58E-04	3.95E-05	_*
5.00E-05	9.24E-03	2.46E-03	6.29E-04	1.58E-04	3.96E-05	_*

Table: Errors in the numerical solution for linear viscoelasticity (SLS model), when compared to a manufactured exact solution, for elements of degree 1 in 2D using direct LU solver.

Verifying the implementations Linear viscoelasticity

Medical backgound

Mathematical models

$\Delta t \setminus h$	3.54E-01	1.77E-01	8.84E-02	4.42E-02	2.21E-02
2.00E-02	6.25E-03	6.25E-03	6.25E-03	6.25E-03	6.25E-03
1.00E-02	1.53E-03	1.53E-03	1.53E-03	1.53E-03	1.53E-03
5.00E-03	3.85E-04	3.80E-04	3.79E-04	3.79E-04	3.79E-04
2.50E-03	1.06E-04	9.51E-05	9.47E-05	9.47E-05	9.47E-05
1.25E-03	4.61E-05	2.45E-05	2.37E-05	2.37E-05	2.37E-05
1.00E-04	3.69E-05	5.13E-06	6.89E-07	1.75E-07	1.52E-07
5.00E-05	3.69E-05	5.12E-06	6.70E-07	9.37E-08	3.94E-08

Table: Errors in the numerical solution for linear viscoelasticity (SLS model), when compared to a manufactured exact solution, for elements of degree 2 in 2D using direct LU solver.

Outline

- Medical backgound
- Simulation scenario
- Mathematical models
- Implementation
- Simulation results
- Conclusions

Simulations Overview of the models

	SLS				
	$E_1(Pa)$	$E_2(Pa)$	$\eta(Pa\;s)$	С	
Model 1	0.84×10^3	2.03×10^3	6.7	22.8 (0.479*)	
Model 2	0.21×10^{5}	0.53×10^{5}	$1.7 imes 10^2$	22.8 (0.479*)	
Model 3	0.84×10^{3}	2.03×10^{3}	13.4	22.8 (0.479*)	
Model 4	0.84×10^3	2.03×10^3	6.7	0.0 (0.0*)	
	Linear elasticity				
	E(Pa)	ν			
Model 5	1.6×10^4	0.479	_	_	
Model 6	6.5×10^2	0.479	-	_	

Table: Summary of the parameters to be used in simulations.

^{*} ν , defined implcitly through C.

Viscoelastic results Visual plot: Models 1 and 3

Figure: Visual comparison of Model 1 and Model 3 at t = 0.075s. The displacement patterns are similar for Models 1 and 3, while the magnitudes of the displacement differ slightly.

Viscoelastic results

Line plot: Models 1 and 3

Figure: Displacement magnitude over time for chosen points in the geometry for Model 1 and Model 3. The two plots show the similar qualitative behavior, but differ in magnitude.

Visual plot: Models 1 and 4

Figure: Visual comparison of Model 1 and Model 4 at t=0.075s. The displacement patterns are drastically different for Models 1 and 4, as are the magnitudes of the displacement.

Line plot: Models 1 and 4

Figure: Displacement magnitude over time for chosen points in the geometry for Model 1 and Model 4. The two plots differ both in qualitative behavior and in magnitude.

Line plot: Model 1 over 4 cycles

Figure: Displacement in the selected points over four cycles (T = 3.4s).

Peak displacements over time: Model 1

Cycle	$u_{T,max}(cm)$	$u_{M,max}(cm)$	$u_{B,max}(cm)$
1	0.064560	0.134180	0.0534309
2	0.064612	0.134151	0.0534311
3	0.064609	0.134119	0.0534312
4	0.064609	0.134119	0.0534312

Table: Peak displacements for the points x_T, x_M and x_B for each cycle, using Model 1 with T=3.4. The difference in the peak displacements over four cycles is in the order of $1 \times 10^{-7} \mathrm{m}$ for each of the points.

Comparing with linear elasticity

Visual plot: Models 1 and 6

Figure: Visual comparison of Model 1 and Model 6 at t = 0.075s.

Comparing with linear elasticity Line plot: Models 1 and 6

Figure: Displacement magnitude over time for a chosen point in the geometry for Model 1 and Model 6. The two curves show the similar qualitative behavior, but differ in magnitude.

Comparing with linear elasticity

Time taken to reach peak displacement: Models 1 and 6

	Reaches peak after (s)		
Point	Model 1	Model 6	
XT	0.055	0.04	
x_{M}	0.045	0.035	
x_B	0.14	0.125	

Table: Time taken to reach peak displacement for the chosen points in Model 1 and Model 6.

Comparing with linear elasticity

Visual plot: Models 2 and 5

Figure: Visual comparison of Model 2 and Model 5 at t = 0.075s.

Comparing with linear elasticity Line plot: Models 2 and 5

Figure: Displacement magnitude over time for a chosen point in the geometry for Model 2 and Model 5. The two curves show the similar qualitative behavior, but differ in magnitude.

Cycle	$u_{T,max}(cm)$	$u_{M,max}(cm)$	$u_{B,max}(cm)$
1	0.0765298	0.166881	0.0600790
2	0.0765298	0.166881	0.0600790
3	0.0765298	0.166881	0.0600790
4	0.0765298	0.166881	0.0600790

Table: Peak displacements for the points x_T , x_M and x_B for each cycle, using Model 6 with T=3.4. There is no difference in the magnitude of the peak displacement for each cycle.

Comparing with linear poro

Visual comparison: Poroelastic, linear elastic, linear viscoelastic

- (a) Poroelastic [2]

Figure: Comparison of results from Støverud et. al. [2] with viscoelastic results using Model 1. Note that the top and bottom 0.5cm have been cut from the geometry to display the same geometry as Støverud et. al. [2].

- Medical backgound
- Simulation scenario
- Mathematical models
- Implementation
- Simulation results
- Conclusions

Conclusions

Medical backgound

- Difficult to establish parameter values.
- Scaling parameter magnitudes affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.
- Compressibility important.
- Small but clear viscoelastic effect:
 - Lag, approx 10ms.
 - Varying peak displacement over several cycles, $\approx 10^{-7} - 10^{-8} \text{m}$

Conclusions

Medical backgound

- Viscoelastic behaviour similar to linear elastic behaviour.
 - Lag does not seem to be significant.
 - Variation in peak displacements over time appears to decrease over time, not increase.
- Linear viscoelastic model has little or no effect in context of syringomyelia.
- Elastic/viscoelastic models assume solid spinal cord.
- Poroelastic model fluid flow within spinal cord.

Further work

Medical backgound

Simulation scenario

- Develop standard procedures for obtaining parameter data.
 - Standardized parameter values.
- Obtain patient-specific spinal cord geometry, parameter data and pressure data.
- Test effect of non-linear model.
- Couple with CDF simulations of CSF flow.

References I

Diane M. Mueller, ND RN and John J. Oro', MD.

Prospective Analysis of Presenting Symptoms Among 265 Patients With Radiographic Evidence of Chiari Malformation Type I With or Without Syringomyelia.

Journal of the American Academy of Nurse Practitioners, 16(3), 2004.

References II

Støverud, Karen H. and Alnæs, Martin and Langtangen, Hans Petter and Haughton, Victor and Mardal, Kent-André.

Effect of pia mater, central canal, and geometry on wave propagation and fluid movement in the cervical spinal cord.

Manuscript submitted for publication, 2014.