

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14060046701

FCC REPORT (BLE)

Applicant: Shenzhen LEDE Tech. Co., Ltd

Address of Applicant: 3/F, 10th building, Changxing Industrial Zone, Gongming Town,

Bao'an District, Shenzhen City, Guangdong Province, China

Equipment Under Test (EUT)

Product Name: LED LAMP

Model No.: Tint B710, Tint B720, Tint B730, Tint B910, Tint B930,

Tint B510, Tint Z730, Tint Z910

FCC ID: 2ACOZ-TINT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Jun., 2014

Date of Test: 17 Jun., to 10 Jul., 2014

Date of report issued: 10 Jul., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Jul., 2014	Original

Prepared by: 10 Jul., 2014

Report Clerk

Reviewed by: Date: 10 Jul., 2014

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4	IE5	I SUMMARY	4
5	GEN	ERAL INFORMATION	5
Ę	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
5	5.3	TEST ENVIRONMENT AND MODE	
5	5.4	DESCRIPTION OF SUPPORT UNITS	
5	5.5	LABORATORY FACILITY	7
5	5.6	LABORATORY LOCATION	7
5	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
6	3.1	ANTENNA REQUIREMENT:	9
6	6.2	CONDUCTED EMISSION	10
6	6.3	CONDUCTED OUTPUT POWER	13
6	6.4	OCCUPY BANDWIDTH	15
6	6.5	POWER SPECTRAL DENSITY	18
6	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
6	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	36
8	FUT	CONSTRUCTIONAL DETAILS	38

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen LEDE Tech. Co., Ltd		
Address of Applicant:	3/F, 10th building, Changxing Industrial Zone, Gongming Town, Bao'an District, Shenzhen City, Guangdong Province, China		
Manufacturer:	Shenzhen LEDE Tech. Co., Ltd		
Address of Manufacturer:	3/F, 10th building, Changxing Industrial Zone, Gongming Town, Bao'an District, Shenzhen City, Guangdong Province, China		

5.2 General Description of E.U.T.

Product Name:	LED LAMP
Model No.:	Tint B710, Tint B720, Tint B730, Tint B910, Tint B930, Tint B510, Tint Z730, Tint Z910
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	AC120/60HZ
Remark:	The model: Tint B710, Tint B720, Tint B730, Tint B910, Tint B930, Tint B510, Tint Z730, Tint Z910, were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being power.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2014	June 08 2015	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2014	May 24 2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2014	May 24 2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2014	May. 24 2015	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2014	May. 24 2015	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2014	May. 24 2015	

Con	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2014	June 08 2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May 24 2015			
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

U. Z	2 Conducted Linission						
	Test Requirement:	FCC Part15 C Section 15.207					
	Test Method:	ANSI C63.4: 2003					
	Test Frequency Range:	150 kHz to 30 MHz					
	Class / Severity:	Class B					
	Receiver setup:	RBW=9kHz, VBW=30kHz					
	Limit:	Frequency range (MHz) Limit (dBuV)					
		Quasi-peak Average					
		0.15-0.5 66 to 56* 56 to 46*					
		0.5-5 56 46					
		5-30 60 50 * Decreases with the logarithm of the frequency.					
	Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
	Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
	Test Instruments:	Refer to section 5.7 for details					
	Test mode:	Refer to section 5.3 for details					
	Test results:	Passed					

Measurement Data

Page 10 of 43

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : LED LAMP Condition

EUT Test Mode : BT TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: NIKE
Remark : TintB930

Remark

ROMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu∀	dBu₹	<u>dB</u>	
1	0.153	46.48	0.25	10.78	57.51	65.82	-8.31	QP
2	0.155	38.58	0.25	10.78	49.61	55.74	-6.13	Average
3	0.230	32.60	0.25	10.75	43.60		-18.84	
1 2 3 4 5 6 7 8 9	0.230	23.08	0.25	10.75	34.08	52.44	-18.36	Average
5	0.389	25.32	0.25	10.72	36.29	58.08	-21.79	QP
6	0.389	14.20	0.25	10.72	25.17	48.08	-22.91	Average
7	0.541	21.21	0.26	10.76	32.23	56.00	-23.77	QP
8	0.751	9.23	0.19	10.79	20.21	46.00	-25.79	Average
9	0.771	18.54	0.19	10.80	29.53	56.00	-26.47	QP
10	4.454	11.41	0.28	10.87	22.56	46.00	-23.44	Average
11	4.478	22.55	0.28	10.87	33.70	56.00	-22.30	QP
12	27.708	6.12	0.70	10.87	17.69	50.00	-32.31	Average

Line:

Trace: 3 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT LED LAMP : TintB930 Model Test Mode : BT TX mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: NIKE

Kemark								
	V	Read	LISN Factor	Cable		Limit		Remark
	rreq	rever	ractor	F022	rever	Line	LIMIT	Kemark
	MHz	dBu∜	<u>ab</u>	₫B	dBu∀	₫₿u₹	₫₿	
1	0.150	46.87	0.27	10.78	57.92	66.00	-8.08	QP
2	0.155	37.43	0.27	10.78	48.48	55.74	-7.26	Average
3	0.230	32.56	0.27	10.75	43.58	62.44	-18.86	QP
2 3 4 5 6 7 8 9	0.230	24.06	0.27	10.75	35.08	52.44	-17.36	Average
5	0.305	15.39	0.26	10.74	26.39	50.10	-23.71	Average
6	0.385	26.16	0.28	10.72	37.16	58.17	-21.01	QP
7	0.389	15.20	0.28	10.72	26.20	48.08	-21.88	Average
8	0.546	22.04	0.27	10.76	33.07	56.00	-22.93	QP
9	4.202	22.74	0.28	10.88	33.90	56.00	-22.10	QP
10	4.407	13.32	0.29	10.87	24.48	46.00	-21.52	Average
11	26.699	9.98	0.64	10.87	21.49	60.00	-38.51	QP
12	27.708	7.05	0.71	10.87	18.63	50.00	-31.37	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	1.01		
Middle	0.57	30.00	Pass
Highest	1.27		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.77		
Middle	0.78	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.11			
Middle	1.10	N/A	N/A	
Highest	1.09			

Test plot as follows:

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	0.77		
Middle	0.49	8.00	Pass
Highest	1.23		

Test plots as follow:

10.JUL.2014 10:20:32

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Dequirements	FCC Port15 C Continu 15 247 (d)				
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	Non-Conducted Table				
Test Instruments:	Ground Reference Plane				
	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20						
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D						
Receiver setup:	Wododiomont E	notarioo. Orn					
receiver setup.	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 1G112	Peak	1MHz	10Hz	Average Value		
Limit:	Francis		1 :: (-dD) /	/m @2m)	Damark		
	Freque	ency	Limit (dBuV/ 54.0		Remark Average Value		
	Above 1	GHz	74.0		Peak Value		
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the number of the entermination of the EUT have 10 defined to determination of the EUT have 10 defined	at a 3 meter come the position was set 3 meter which was mour thich was mour to determine the potal and vertice measurement. The author of the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reposition to the potal and would be reposition.	amber. The toof the highests away from the on the too tied from one the maximum all polarizations ion, the EU a was turned to the was set to Polarizations. Was set to Polarizations was set to Pola	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights if from 0 degreeak Detect old Mode. The was arranged and was estopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the sees to 360 degrees		
Test Instrumentar	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Analyzer Amplifier						
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Trace: 3

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : LED LAMP Site Condition

EUT : TintB930 Model Test mode : BT-L mode Power Rating : 120V / 60Hz

Environment : Temp:25.5°C Huni:55% atmos:101k

Test Engineer: NIKE REMARK :

	-		Antenna Factor		_				Remark	
	MHz	dBu∜	dB/m	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000									

Test channel: Lowest

Vertical:

Trace: 9

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LED LAMP Condition EUT

Model : TintB930 Test mode : BT-L mode Power Rating : 120V / 60Hz

Environment : Temp:25.5°C Huni:55% atmos:101k

Test Engineer: NIKÉ

REMARK

	Freq		Intenna Factor						Remark
	MHz	dBu∀	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
_	2390.000 2390.000								

Test channel: Highest

Horizontal:

Frequency (MHz) Trace: 5

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : LED LAMP Condition

EUT : TintB930 Model : BT-H mode Test mode Power Rating: 120V / 60Hz

Environment : Temp: 25.5°C Huni:55% atmos:101k

Test Engineer: NIKE REMARK

12

	Freq		Antenna Factor		_				Remark	
	MHz	dBu∜	<u>dB</u> /m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
2	2483.500 2483.500									

Test channel: Highest

Vertical:

Frequency (MHz) Trace: 7

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: LED LAMP EUT : TintB930 Model Test mode : BT-H mode Power Rating : 120V / 60Hz

Environment : Temp:25.5°C Huni:55% atmos:101k

Test Engineer: NIKE REMARK :

1 2

	Freq		Antenna Factor				Remark
	MHz	dBu∜	— <u>dB</u> /m	 <u>ab</u>	dBuV/m	dBu√/m	
l 2	2483.500 2483.500						

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode:

Date: 28.MAY.2014 18:05:32

30MHz~25GHz

Date: 28.MAY.2014 18:06:32

30MHz~25GHz

Date: 28.MAY.2014 18:07:23

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:								
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	Peak	1MHz	10Hz	Average Value			
Limit:								
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH		46.0		Quasi-peak Value			
	960MHz-1GHz							
	Above 1GHz							
Test Procedure:	960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data							

Test setup:	Below 1GHz Antenna Tower Search
	EUT Antenna RF Test Receiver Turn Table Ground Plane
	Above 1GHz
	7.66VE 16112
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : LED LAMP : TintB930 Model Test mode : BT TX mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% atmos:101k Test Engineer: NIKE

REMARK

	Freq				_	Level		Over Limit	Remark
-	MHz	dBu₹	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2 3 4 5	47. 326 79. 243 142. 824 193. 095 248. 552 645. 120	47.47 42.77 33.38	8.43 8.21 10.56 12.07	0.85 1.28 1.37 1.61	29.65 29.26 28.88 28.55	27.70 25.82 18.51	40.00 43.50 43.50 46.00	-19.79 -15.80 -17.68 -27.49	QP QP QP QP

Page 32 of 43

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : LED LAMP Condition

EUT : TintB930 Model Test mode : BT TX mode Power Rating : AC 120V/Hz

Environment : Temp: 25.5°C Huni:55% atmos:101k

Test Engineer: NIKE REMARK :

SJILTI (II.	Freq				Preamp Factor				
	MHz	dBu∇	dB/m			$\overline{dBuV/m}$	dBuV/m		
1 2 3 4 5	193.773 258.326	44.55 48.37 40.13	8.22 10.56 12.05	1.28 1.37 1.65	29.66 29.25 28.87	28.62 23.19 19.72	40.00 43.50 43.50 46.00	-16.01 -14.88 -20.31 -26.28	QP QP QP QP

Above 1GHz

Test channel:		Lowest			Level:		Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	55.65	31.53	8.90	40.24	55.84	74.00	-18.16	Vertical		
7206.00	46.82	36.47	10.59	41.24	52.64	74.00	-21.36	Vertical		
4804.00	55.62	31.53	8.90	40.24	55.81	74.00	-18.19	Horizontal		
7206.00	46.50	36.47	10.59	41.24	52.32	74.00	-21.68	Horizontal		
Test channe	l:	Lowest			Level:		Average	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	35.84	31.53	8.90	40.24	36.03	54	-17.97	Vertical		
7206.00	26.21	36.47	10.59	41.24	32.03	54	-21.97	Vertical		
4804.00	35.69	31.53	8.90	40.24	35.88	54	-18.12	Horizontal		
7206.00	23.74	36.47	10.59	41.24	29.56	54	-24.44	Horizontal		

Test channel:		Middle			Level:		Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	55.32	31.58	8.98	40.15	55.73	74.00	-18.27	Vertical		
7326.00	46.11	36.47	10.69	41.15	52.12	74.00	-21.88	Vertical		
4884.00	56.32	31.58	8.98	40.15	56.73	74.00	-17.27	Horizontal		
7326.00	45.32	36.47	10.69	41.15	51.33	74.00	-22.67	Horizontal		
Test channe	l:	Middle			Level:		Average	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	35.62	31.58	8.98	40.15	36.03	54.00	-17.97	Vertical		
7326.00	26.25	36.47	10.69	41.15	32.26	54.00	-21.74	Vertical		
4884.00	36.12	31.58	8.98	40.15	36.53	54.00	-17.47	Horizontal		
7326.00	25.66	36.47	10.69	41.15	31.67	54.00	-22.33	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:		Highest			Level:		Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	53.21	31.69	9.08	40.03	53.95	74.00	-20.05	Vertical		
7440.00	42.36	36.60	10.80	41.05	48.71	74.00	-25.29	Vertical		
4960.00	52.69	31.69	9.08	40.03	53.43	74.00	-20.57	Horizontal		
7440.00	42.99	36.60	10.80	41.05	49.34	74.00	-24.66	Horizontal		
Test channe	l:	Highest			Level:		Average	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	32.63	31.69	9.08	40.03	33.37	54.00	-20.63	Vertical		
7440.00	23.69	36.60	10.80	41.05	30.04	54.00	-23.96	Vertical		
4960.00	32.74	31.69	9.08	40.03	33.48	54.00	-20.52	Horizontal		
7440.00	23.88	36.60	10.80	41.05	30.23	54.00	-23.77	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.