Estudo de Caso 02: Comparação do IMC médio de alunos do PPGEE-UFMG ao longo de dois semestres

Autores: Danilo A. Caldeira Silva (Monitor), Fabiano Viana Oliveira da Cunha Médice (Relator), Fabrício Teixeira Coura (Coordenador) e Guilherme Lopes de Figueiredo Brandão (Verificador)

22 de Outubro de 2018

Resumo

O presente trabalho aborda um experimento realizado para a comparação do IMC médio de duas populações de estudantes, sendo alunos da pós-graduação da UFMG nos semestres de 2016-2 e 2017-2. A coleta de dados foi realizada e disponibilizada pelo professor proponente da atividade e os dados foram obtidos do repositório do mesmo. Foi feita a filtragem das amostras e testadas de forma independente por sexo masculino e feminino. Foram definidas e testadas as hipóteses nula e alternativa, assim como a estimação do tamanho de efeito e do intervalo de confiança. Por fim, aborda-se a validação das premissas do teste e a derivação das conclusões apresentadas pelo experimento.

O Experimento

O experimento elaborado consistiu, primeiramente, na obtenção do peso e altura das amostras de conveniência, neste caso, os alunos da disciplina Planejamento e Análise de Experimentos do programa de pós-graduação da UFMG nos semestres de 2016-2 e 2017-2. Estes dados foram obtidos e disponibilizados pelo professor em seu repositório do Github [1].

Dados da Turma de 2016

##		ID	Course		Height.m	Weight.kg
##	1	1	PPGEE	F	1.57	45.5
##	2	2	PPGEE	F	1.62	53.0
##	3	3	PPGEE	F	1.70	57.0
##	4	4	PPGEE	F	1.62	59.0
##	5	5	PPGEE	F	1.67	63.0
##	6	6	PPGEE	F	1.76	78.0
##	7	7	PPGEE	F	1.64	51.0
##	8	8	PPGEE	М	1.79	80.0
##		9	PPGEE	М		58.0
##	10	10	PPGEE	М		
	11		PPGEE	М		
	12		PPGEE	M		
	13		PPGEE	M		71.0
	14		PPGEE	 М		86.0
	15		PPGEE	M		80.0
	16		PPGEE	M		72.0
	17		PPGEE			
				M		62.5
	18		PPGEE	M		100.0
	19		PPGEE	M		52.0
	20		PPGEE	M		84.0
	21		PPGEE	M		74.0
	22		PPGEE	М		92.0
	23		PPGEE	М		60.0
	24		PPGEE	M		57.5
##	25	25	PPGEE	M	1.89	87.0
##	26	26	PPGEE	М	1.63	81.0
##	27	27	PPGEE	М	1.81	78.0
##	28	28	PPGEE	М	1.73	68.0
##	29	29	ENGSIS	F	1.67	53.0
##	30	30	ENGSIS	F	1.61	55.0
			ENGSIS	F	1.56	43.0
			ENGSIS	М		80.0
			ENGSIS	М	1.80	97.0
			ENGSIS	M	1.77	78.0
			ENGSIS	 М	1.67	65.0
			ENGSIS	 М	1.81	110.0
			ENGSIS	M	1.86	110.0
			ENGSIS	M	1.70	63.0
			ENGSIS	M	1.79	64.0
			ENGSIS	M	1.78	84.0
			ENGSIS	M	1.75	57.5
			ENGSIS	M	1.70	64.0
			ENGSIS	М	1.82	80.0
			ENGSIS	М	1.83	70.0
##	45	45	ENGSIS	M	1.84	73.0
			ENGSIS	M	1.69	58.0
			ENGSIS	М	1.75	70.0
##	48	48	ENGSIS	М	1.76	74.8
##	49	49	ENGSIS	М	1.83	85.0

Dados Turma de 2017

##	Weight.kg	height.m	Sex	Age.years	
## 1	89.0	1.73	М	23	
## 2	72.5	1.64	М	28	
## 3	84.0	1.70	М	34	
## 4	90.0	1.72	М	27	
## 5	60.0	1.70	М	33	
## 6	79.0	1.80	М	27	
## 7	80.4	1.84	М	24	
## 8	65.0	1.70	М	25	
## 9	88.0	1.88	М	31	
## 10	64.0	1.69	М	27	
## 11	53.0	1.66	М	39	
## 12	60.0	1.84	М	29	
## 13	78.0	1.76	М	36	
## 14	86.0	1.71	М	32	
## 15	49.0	1.68	F	23	
## 16	54.0	1.61	F	24	
## 17	48.0	1.64	F	24	
## 18	46.0	1.61	F	31	
## 19	68.0	1.71	М	31	
## 20	74.0	1.68	М	26	
## 21	69.0	1.76	М	23	
## 22	63.0	1.65	М	22	
## 23	78.0	1.83	М	33	
## 24	60.2	1.70	М	25	
## 25	71.0	1.70	М	27	

Inicialmente, tendo em vista que os dados disponibilizados estão em formatos diferentes e que o arquivo relativo a turma 2016-2 apresenta, também, dados de alunos de graduação, foi realizada uma preparação dos dados, de forma a obter apenas os valores referentes a alunos da pós-graduação.

Dados da Turma de 2016 Filtrados

##		ID	Course	Gender	Height.m	Weight.kg	3
##		1		F	1.57	45.5	
##	2	2	PPGEE	F	1.62	53.0)
##	3	3	PPGEE	F	1.70	57.0)
##	4	4	PPGEE	F	1.62	59.0)
##	5	5	PPGEE	F	1.67	63.0)
##	6	6	PPGEE	F	1.76	78.0)
##	7	7	PPGEE	F	1.64	51.0)
##	8	8	PPGEE	М	1.79	80.0)
##	9	9	PPGEE	М	1.58	58.0)
##	10	10	PPGEE	М	1.74	85.0)
##	11	11	PPGEE	М	1.75	115.0)
##	12	12	PPGEE	М	1.78	71.0)
##	13	13	PPGEE	М	1.71	71.0)
##	14	14	PPGEE	М	1.78	86.0)
##	15	15	PPGEE	М	1.81	80.0)
##	16	16	PPGEE	М	1.79	72.0)
##	17	17	PPGEE	М	1.70	62.5	5
##	18	18	PPGEE	М	1.82	100.0)
##	19	19	PPGEE	М	1.72	52.0)
##	20	20	PPGEE	М	1.83	84.0)
##	21	21	PPGEE	М	1.70	74.0)
##	22	22	PPGEE	М	1.83	92.0)
##	23	23	PPGEE	М	1.73	60.0)
##	24	24	PPGEE	М	1.69	57.5	5
##	25	25	PPGEE	М	1.89	87.0)
##	26	26	PPGEE	М	1.63	81.0)
##	27	27	PPGEE	М	1.81	78.0)
##	28	28	PPGEE	М	1.73	68.0)

Em posse dos valores de Altura e Peso, foi realizado o cálculo do ICM, gerando uma nova coluna nos dados. O IMC é calculado por $IMC = Peso/Altura^2$.

Dados da Turma de 2016

##	:	ID	Course	Gender	Height.m	Weight.kg	IMC
##	1			F	_		18.46
##	2	2	PPGEE	F	1.62	53.0	20.20
##	: 3	3	PPGEE	F	1.70	57.0	19.72
##	4	4	PPGEE	F	1.62	59.0	22.48
##	: 5	5	PPGEE	F	1.67	63.0	22.59
##	6	6	PPGEE	F	1.76	78.0	25.18
##	: 7	7	PPGEE	F	1.64	51.0	18.96
##	8	8	PPGEE	М	1.79	80.0	24.97
##	9	9	PPGEE	М	1.58	58.0	23.23
##	1	0 10	PPGEE	М	1.74	85.0	28.08
##	1	1 11	PPGEE	М	1.75	115.0	37.55
##	1	2 12	PPGEE	М	1.78	71.0	22.41
##	1	3 13	PPGEE	М	1.71	71.0	24.28
##	1	4 14	PPGEE	М	1.78	86.0	27.14
##	1	5 15	PPGEE	М	1.81	80.0	24.42
##	1	6 16	PPGEE	М	1.79	72.0	22.47
##	1	7 17	PPGEE	М	1.70	62.5	21.63
##	1	8 18	PPGEE	М	1.82	100.0	30.19
##	1	9 19	PPGEE	М	1.72	52.0	17.58
##	2	0 20	PPGEE	М	1.83	84.0	25.08
##	2	1 21	PPGEE	М	1.70	74.0	25.61
##	2	2 22	PPGEE	М	1.83	92.0	27.47
##	2	3 23	PPGEE	М	1.73	60.0	20.05
##	2	4 24	PPGEE	М	1.69	57.5	20.13
##	2	5 25	PPGEE	М	1.89	87.0	24.36
##	2	6 26	PPGEE	М	1.63	81.0	30.49
##	2	7 27	PPGEE	М	1.81	78.0	23.81
##	2	8 28	PPGEE	М	1.73	68.0	22.72

Dados Turma de 2017

##	Weight.kg	height.m	Sex	Age.years	IMC	
## 1	89.0	1.73	Μ	23	29.74	
## 2	72.5	1.64	Μ	28	26.96	
## 3	84.0	1.70	М	34	29.07	
## 4	90.0	1.72	М	27	30.42	
## 5	60.0	1.70	Μ	33	20.76	
## 6	79.0	1.80	М	27	24.38	
## 7	80.4	1.84	М	24	23.75	
## 8	65.0	1.70	М	25	22.49	
## 9	88.0	1.88	Μ	31	24.90	
## 10	64.0	1.69	Μ	27	22.41	
## 1:	1 53.0	1.66	Μ	39	19.23	
## 13	2 60.0	1.84	Μ	29	17.72	
## 1	3 78.0	1.76	Μ	36	25.18	
## 14	4 86.0	1.71	Μ	32	29.41	
## 1	5 49.0	1.68	F	23	17.36	
## 10	54.0	1.61	F	24	20.83	
## 1	7 48.0	1.64	F	24	17.85	
## 13	8 46.0	1.61	F	31	17.75	
## 19	9 68.0	1.71	Μ	31	23.26	
## 20	74.0	1.68	Μ	26	26.22	
## 2:	1 69.0	1.76	М	23	22.28	
## 2:	2 63.0	1.65	Μ	22	23.14	
## 2	3 78.0	1.83	М	33	23.29	
## 24	4 60.2	1.70	М	25	20.83	
## 2	5 71.0	1.70	М	27	24.57	

Após a organização dos dados, realizou-se uma análise exploratória, afim de identificar possíveis outliers, assimetrias ou outras peculiaridades. A Figura 1 e a Figura 2 apresentam os boxplot dos dados obtidos para a turma 2016-2 e 2017-2, respectivamente. Observa-se que a turma 2016-2 apresenta um outlier.

Figura 1 - Boxplot do IMC da Turma 2016

Figura 2 - Boxplot do IMC da Turma 2017

Posteriormente, foram obtidos os histogramas das amostras, conforme apresentados nas Figuras 3 e 4. Visualmente, os dados de IMC da turma 2017 apresenta normalidade, enquanto os da turma 2016 apresentam uma cauda mais pesada à direita.

Figura 3 - Histograma do IMC da Turma 2016

Histogram of Turma2016Filtrada[, 6]

Figura 4 - Histograma do IMC da Turma 2017

Histogram of Turma2017[, 5]

Executou-se, então, o teste de Shapiro-Wilk de normalidade [2]. Os resultados do teste estão mostrados no output abaixo:

```
##
    Shapiro-Wilk normality test
##
##
## data: Turma2016Filtrada[, 6]
## W = 0.92186, p-value = 0.03858
```

```
##
##
    Shapiro-Wilk normality test
##
## data: Turma2017[, 5]
## W = 0.95379, p-value = 0.3047
```

A partir dos resultados apresentados nos histogramas e nos teste de normalidade, observa-se que eles indicam que a suposição de normalidade se verifica a um nível de confiança 99% para ambas as amostras obtidas, apesar do outlier apresentado nos dados da turma 2016-2 [3]. Assim, observando os dados, reparouse uma tendencia à atuação da diferença de sexo nos dados. Assim, para comprovar se há alguma correlação do sexo, realizou-se um diagrama de disperção.

Figura 5 - Gráfico de Dispersão da Turma 2016

Figura 6 - Gráfico de Dispersão Turma 2017

Após analisar os gráficos, a separação por sexo se viu necessaria para a correta analise dos dados. Assim, realizou-se a análise exploratória de normalidade dos dados, considerando-se a divisão por sexo de cada turma, aplicando-se o teste de normalidade de Shapiro-Wilk e a análise dos gráficos quantil-quantil. Os resultados são apresentados nos outputs:

```
## Warning: package 'ggpubr' was built under R version 3.4.4
## Loading required package: magrittr
##
    Shapiro-Wilk normality test
##
##
## data: F2016[, 6]
## W = 0.91987, p-value = 0.4684
```

Figura 7 - Gráfico Quantil-Quantil das Mulheres da Turma 2016

Pelo o valor do Teste Shapiro Wilk e pelo a figura 7, percebe-se que os dados são normais.

```
##
##
    Shapiro-Wilk normality test
##
## data: M2016[, 6]
## W = 0.92835, p-value = 0.1275
```

Figura 8 - Gráfico Quantil-Quantil dos Homens da Turma 2016

Pelo o valor do Teste Shapiro Wilk e pelo a figura 8, percebe-se que os dados são normais, apesar de haver um outlier que puxa a amostra para não normalidade.

```
##
    Shapiro-Wilk normality test
##
##
## data: F2017[, 5]
## W = 0.74871, p-value = 0.03756
```

Figura 9 - Gráfico Quantil-Quantil das Mulheres da Turma 2017

Pelo o valor do Teste Shapiro Wilk e pelo a figura 9, percebe-se que os dados não são normais. Por haver apenas 4 observaçõeso outlier que puxa a amostra para não normalidade e a sensibilidade do teste fica alta para cada observação na amostra.

```
##
##
    Shapiro-Wilk normality test
##
## data: M2017[, 5]
## W = 0.96488, p-value = 0.6192
```

Figura 10 - Gráfico Quantil-Quantil dos Homens da Turma 2017

Pelo o valor do Teste Shapiro Wilk e pelo a figura 10, percebe-se que os dados são normais.

Comparação Estatística das Salas

A fim de se escolher o nível de confiança do teste T, utilizou-se o cálculo de potência para definir qual teria o menor erro do Tipo II. Como o grupo de mulheres da turma de 2017 possuem apenas 4 observações, ele possuíra a menor potencia e será a maior fonte de incerteza do teste. Assim, foi realizado o cálculo de potência para α = 0.95 e α = 0.99.

```
##
##
        Two-sample t test power calculation
##
##
                 n = 4
             delta = 1
##
##
                sd = 1
         sig.level = 0.01
##
             power = 0.06593159
##
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```

```
##
##
        Two-sample t test power calculation
##
##
                  n = 4
##
             delta = 1
                sd = 1
##
         sig.level = 0.05
##
##
             power = 0.2224633
       alternative = two.sided
##
##
## NOTE: n is number in *each* group
```

Assim, a potência será maior para α = 0.95 e o mesmo nível de significancia será usado para os testes T a seguir.

Como em ambas as turmas possuem 21 observações, a potência do teste t será:

```
##
        Two-sample t test power calculation
##
##
##
                 n = 21
##
             delta = 1
                sd = 1
##
         sig.level = 0.05
##
##
             power = 0.8852576
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```

Ao comparar a salas, espera-se que a diferença entre as mulheres de cada sala seja zero. Então:

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$$

```
##
##
   Welch Two Sample t-test
##
## data: F2016[, 6] and F2017[, 5]
## t = 2.1704, df = 8.6009, p-value = 0.05945
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1310754 5.4046469
## sample estimates:
## mean of x mean of y
   21.08429 18.44750
```

Ao comparar a salas, espera-se que a diferença entre os homems de cada sala seja zero. Então:

$$\left\{ egin{aligned} H_0: \mu_1 - \mu_2 &= 0 \ H_1: \mu_1 - \mu_2 &
eq 0 \end{aligned}
ight.$$

```
##
##
  Welch Two Sample t-test
##
## data: M2016[, 6] and M2017[, 5]
## t = 0.53978, df = 38.061, p-value = 0.5925
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.788951 3.089904
## sample estimates:
## mean of x mean of y
   24.93667 24.28619
```

Análise dos resultados

Por cada observação ser de um aluno, não há dependência das variáveis, pois cada indivíduo é único.

Por ter pouca observação na amostra das mulheres de cada turma, não se tem uma grande potência do teste t, não obtendo assim grande confiança nos dados. Assim, escolheu-se um nível de confiancia de 95% entre 95% e 99% por ter uma potência de 22% para as 4 observações em relação a potencia de 6% para o para o nível de confiancia de 99%.

De acordo com o teste t, tem-se que a diferença entre as médias de ICM das mulheres de cada turma é 0 [-0.1310754,5.4046469] para a significancia de 95% com uma potência de 22%. Mesmo que a amostra de mulheres da turma de 2017 não seja normal, por apenas ter 4 observações, qualquer pequena variação faz com que a sensibilidade do teste aponte para a não normalidade. Assim, como mostra a figura do Quantile-Quantile plot, há apenas um ponto afastado da curva que leva a amostra a não ser normal.

Em relação a média de IMC dos homens, de acordo com o teste t, tem-se que a diferença de cada turma é 0 [-1.788951 3.089904] para a significancia de 95% com uma potência de 88%.

Conclusões

De acordo com os resultados do teste t e da analise dos dados, há diferença entre o ICM de homens e mulheres, porém não há diferença em média entre o IMC dos homens de cada turma e o IMC das mulheres de cada turma.

Referências

- [1] Felipe Campelo (2018), Lecture Notes on Design and Analysis of Experiments. Online: http://git.io/v3Kh8 (http://git.io/v3Kh8) Version 2.12; Creative Commons BY-NC-SA 4.0.
- [2] Portal Action. Teste de Shapiro-Wilk. Disponível em: http://www.portalaction.com.br/inferencia/64-teste-deshapiro-wilk (http://www.portalaction.com.br/inferencia/64-teste-de-shapiro-wilk) Acesso em: 22 de Outubro de 2018.
- [3] Montgomery, Douglas C. Applied statistics and probability for engineers / Douglas C. Montgomery, George C. Runger.Ã□¢, 6th ed.