Álgebra Lineal Grupo 3003, 2021-I

Examen parcial 1 (tarea examen)

Fecha de entrega: sábado 17 de octubre, 15:00 hrs.

Si no tienes disposición para aprender, nadie te puede ayudar —pero si realmente tienes la disposición, nada te puede detener.

—Anónim@.

- 1. Sean $m, n \in \mathbb{N}$, K un campo y $M_{m \times n}(K)$ el conjunto de todas las matrices de m renglones y n columnas con entradas en K. Definiendo la suma de matrices y el producto de una matriz por un elemento del campo entrada por entrada, demuestren que:
 - a) $M_{m \times n}(K)$ forma un espacio vectorial sobre K;
 - b) la operación $\langle \cdot, \cdot \rangle : M_{m \times n}(K) \times M_{m \times n}(K) \to K$ dada por

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} \overline{B_{ij}}$$

para toda $A, B \in M_{m \times n}(K)$ es un producto escalar en este espacio;

c) la operación $||\cdot||: M_{m\times n}(K) \to K$ dada por

$$||A|| = \text{máx.} |A_{ij}|$$

para toda $A \in M_{m \times n}(K)$ es una norma en este espacio.

Además, encuentren una base ortonormal para el espacio vectorial visto en a) con el producto escalar de b) y la norma del inciso c) y argumenten por qué dicha base es ortonormal.

2. Sea (F, \mathbb{R}) el espacio vectorial de todas las funciones reales de variable real y sea L^2 el conjunto de todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$\int_{-\infty}^{\infty} f^2(x) \ dx < \infty.$$

Demuestren que¹:

- a) (L^2, \mathbb{R}) es un subespacio vectorial de (F, \mathbb{R}) ;
- b) la operación $\langle \cdot , \cdot \rangle : L^2 \times L^2 \to \mathbb{R}$ dada por

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x) \ dx$$

para toda $f, g \in L^2$ es un producto escalar en (L^2, \mathbb{R}) .

Además, contesten la siguiente pregunta: si las funciones de L^2 tuvieran imágenes en \mathbb{C} en vez de \mathbb{R} , ¿cómo modificarían la operación $\langle \cdot, \cdot \rangle$ para que siguiera teniendo todas las propiedades de producto escalar?

Para los incisos a) y b) pueden asumir que si $f, g, h \in L^2$, entonces $\int_{-\infty}^{\infty} f^2(x) + g^2(x) dx = \int_{-\infty}^{\infty} f^2(x) dx + \int_{-\infty}^{\infty} g^2(x) dx$ y $\int_{-\infty}^{\infty} f(x)h(x) + f(x)g(x) dx = \int_{-\infty}^{\infty} f(x)h(x) dx + \int_{-\infty}^{\infty} f(x)g(x) dx$, además de las propiedades de la integral que hayan visto en sus gruppos de gélapho

- 3. Sea \mathbf{c} un vector no nulo del espacio vectorial complejo \mathbb{C} y $\lambda \in \mathbb{C}$ un escalar del campo. Muestren que²:
- a) Si $\text{Im}(\lambda) = 0$, entonces $\lambda \mathbf{c}$ corresponde a un reescalamiento de \mathbf{c} por $|\lambda|$, con una inversión en el sentido si $\text{Re}(\lambda) < 0$.
- b) Si $\lambda = i$, entonces $\lambda \mathbf{c}$ corresponde al vector resultante de rotar a \mathbf{c} por $\frac{\pi}{2}$.
- c) Si $|\lambda| = 1$, entonces $\lambda \mathbf{c}$ corresponde al vector resultante de rotar a \mathbf{c} por $\arctan\left(\frac{\operatorname{Im}(\lambda)}{\operatorname{Re}(\lambda)}\right)$.
- d) En general, $\lambda \mathbf{c}$ corresponde a un reescalamiento de \mathbf{c} por $|\lambda|$ con una rotación por arctan $\left(\frac{\operatorname{Im}(\lambda)}{\operatorname{Re}(\lambda)}\right)$ y una inversión en el sentido si $\operatorname{Re}(\lambda) < 0$.
- **4.** Sea (V, K) un espacio vectorial con producto escalar positivo definido. Decimos que una función $d(\cdot, \cdot): V \times V \to K$ es una función de distancia o métrica en V si para todo $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$:

$$d(\mathbf{u}, \mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v},$$
$$d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$$
$$y \quad d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w}).$$

Demuestren que:

- a) $d(\mathbf{u}, \mathbf{v}) = +\sqrt{\langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle}$ para todo $\mathbf{u}, \mathbf{v} \in V$ es una métrica en V.
- b) Todo conjunto ortogonal de V que no contenga al vector nulo es linealmente independiente.
- 5. Sea $P^3([-1,1])$ el espacio vectorial real de todos los polinomios reales de grado 3 con dominio en [-1,1], dotado de un producto escalar dado por

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$

Obten una base ortonormal para este espacio vectorial y expresa a un vector arbitrario $f(x) = ax^3 + bx^2 + cx + d \in P^3([-1,1])$ como combinación lineal de los elementos de la base que hayas obtenido.

²Para este ejercicio, les sugiero revisar el apéndice C del Poole.