Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Matrizes de transformações lineares arbitrárias
 - Matrizes de transformações lineares
 - Matrizes de composições e de inversas
- Resumo
- Bibliografia

Revisão

Revisão

- Injetora e sobrejetora
- Isomorfismo: Aplicação das coordenadas

$$\mathbf{u} \xrightarrow{T} (k_1, k_2, \dots, k_n) = (\mathbf{u})_S$$

• Composições $T_2 \circ T_1$ U T_1 U T_2 T_2 T_2 T_2 T_2 T_3 T_4 T_4 T_4 T_5 T_7 T_8 T_8

Transformações inversas

- Matrizes de transformações lineares
 - Suponha que V seja um espaço vetorial de dimensão n, W um espaço vetorial de dimensão m e T : V → W uma transformação linear.
 - Suponha também que B seja uma base de V,
 B' uma base de W e que, dado qualquer x em V,
 o matriz de coordenadas de x e T(x) sejam
 [x]_B e [T(x)]_{B'}

- Matrizes de transformações lineares
 - Objetivo:
 - Encontrar uma matriz A de tamanho m×n tal que a multiplicação por A transforma o vetor [x]_B no vetor [T(x)]_{B'}, qualquer que seja o vetor v em V

- Matrizes de transformações lineares
 - Objetivo:
 - Encontrar uma matriz A de tamanho m×n tal que a multiplicação por A transforma o vetor [x]_B no vetor [T(x)]_{B'}, qualquer que seja o vetor v em V
 - Assim será possível executar a transformação linear T usando a multiplicação matricial.
 - Procedimento indireto

- Matrizes de transformações lineares
 - Encontrando T(x) indiretamente
 - Passo 1.

Calcule o vetor de coordenadas [x]_B

Quem é A?

Passo 2.

Multiplique $[\mathbf{x}]_{B}$ à esquerda por A para obter $[\mathsf{T}(\mathbf{x})]_{B}$

Passo 3.

Reconstrua T(x) a partir de seu vetor de coordenadas $[T(x)]_{B'}$.

- Matrizes de transformações lineares
 - Descobrindo a matriz A
 - A matriz A de tamanho m×n com a propriedade

$$A[\mathbf{x}]_B = [T(\mathbf{x})]_{B'} \tag{1}$$

- Sejam B = $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ uma base do espaço vetorial V de dimensão n e
- B' = $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ uma base do espaço vetorial W de dimensão m

- Matrizes de transformações lineares
 - Descobrindo a matriz A
 - A matriz A de tamanho m×n com a propriedade

$$A[\mathbf{x}]_B = [T(\mathbf{x})]_{B'} \tag{1}$$

- Sejam B = {u₁, u₂, ..., u_n} uma base do espaço vetorial V de dimensão n e
- B' = $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ uma base do espaço vetorial W de dimensão m
- A equação (1) deve valer para qualquer vetor em V, em particular, deve funcionar para os vetores da base B

$$A[\mathbf{u}_1]_B = [T(\mathbf{u}_1)]_{B'}, \quad A[\mathbf{u}_2]_B = [T(\mathbf{u}_2)]_{B'}, \dots, \quad A[\mathbf{u}_n]_B = [T(\mathbf{u}_n)]_{B'}$$
 (2)

- Matrizes de transformações lineares

- Descobrindo a matriz A
$$\begin{bmatrix} \mathbf{1} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad [\mathbf{u}_2]_B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad [\mathbf{u}_n]_B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

De modo que

$$A[\mathbf{u}_{1}]_{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} A[\mathbf{u}_{2}]_{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$$

$$A[\mathbf{u}_{n}]_{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

- Matrizes de transformações lineares
 - Descobrindo a matriz A
 - Substituindo em (2)

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} = [T(\mathbf{u}_1)]_{B'}, \quad \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} = [T(\mathbf{u}_2)]_{B'}, \dots, \quad \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = [T(\mathbf{u}_n)]_{B'}$$

o que mostra que as colunas sucessivas de A são os vetores de coordenadas de

$$T(\mathbf{u}_1), T(\mathbf{u}_2), \ldots, T(\mathbf{u}_n)$$

Assim, a matriz A que completa a gráfico

$$A = [[T(\mathbf{u}_1)]_{B'} \mid [T(\mathbf{u}_2)]_{B'} \mid \cdots \mid [T(\mathbf{u}_n)]_{B'}]$$

- Matrizes de transformações lineares
 - Descobrindo a matriz A
 - A matriz de T em relação às bases B e B'

$$[T]_{B',B} = [[T(\mathbf{u}_1)]_{B'} \mid [T(\mathbf{u}_2)]_{B'} \mid \cdots \mid [T(\mathbf{u}_n)]_{B'}]$$

que tem a propriedade

$$[T]_{B',B}[\mathbf{x}]_B = [T(\mathbf{x})]_{B'}$$

Observe que a notação tem a direita o domínio e a esquerda o contradomínio

- Matrizes de transformações lineares
 - Exercício:
 - Seja T : $P_1 \rightarrow P_2$ a transformação linear definida por T(p(x)) = xp(x)
- Encontre a matriz de T em relação às bases canônicas $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ e $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ $\mathbf{u}_1 = 1$, $\mathbf{u}_2 = x$; $\mathbf{v}_1 = 1$, $\mathbf{v}_2 = x$, $\mathbf{v}_3 = x^2$

- Matrizes de transformações lineares
 - Exercício:
 - Seja T : $P_1 \rightarrow P_2$ a transformação linear definida por T(p(x)) = xp(x)
- Encontre a matriz de T em relação às bases canônicas $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ e $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ $\mathbf{u}_1 = 1$, $\mathbf{u}_2 = x$; $\mathbf{v}_1 = 1$, $\mathbf{v}_2 = x$, $\mathbf{v}_3 = x^2$

- Pela formula de T, acha-se as coordenadas

- A matriz de T em relação a B e B'
$$[T]_{B',B} = \begin{bmatrix} [T(\mathbf{u}_1)]_{B'} \mid [T(\mathbf{u}_2)]_{B'} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrizes de transformações lineares

- Exercício:
 - A partir da matriz de T em relação a B e B', use o procedimento de três passos descrito na figura seguinte para calcular

para calcular
$$T(a + bx) = x(a + bx) = ax + bx^{2} [T]_{B',B} = [[T(\mathbf{u}_{1})]_{B'} | [T(\mathbf{u}_{2})]_{B'}] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $[T(\mathbf{x})]_{R'}$

Cálculo direto

 \bigvee Multiplicação por $[T]_{B', B}$

(1)

 $[\mathbf{x}]_B$

- Matrizes de transformações lineares
 - Exercício:
 - A partir da matriz de T em relação a B e B', use o procedimento de três passos descrito na figura seguinte para calcular

$$\begin{array}{c|c} \mathbf{x} & \xrightarrow{\text{Cálculo}} & T(\mathbf{x}) \\ \hline & \text{direto} & \\ \hline & & \\ \hline$$

para calcular
$$T(a + bx) = x(a + bx) = ax + bx^{2} [T]_{B',B} = [[T(\mathbf{u}_{1})]_{B'} | [T(\mathbf{u}_{2})]_{B'}] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(1) O vetor de coordenadas de \mathbf{x} = a+bx em relação a B

$$[\mathbf{x}]_{B} = \begin{bmatrix} a \\ b \end{bmatrix}$$
(2) Multiplicando
$$[T]_{B',B} [\mathbf{x}]_{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix} = [T(\mathbf{x})]_{B'}$$

(3) Reconstruindo

$$T(a + bx) = 0 + ax + bx^2 = ax + bx^2$$

- Matrizes de operadores identidade
 - Se B = $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ for uma base de um espaço vetorial V de dimensão finita e se I : V \rightarrow V for o operador identidade de V, então

$$I(\mathbf{u}_1) = \mathbf{u}_1, \quad I(\mathbf{u}_2) = \mathbf{u}_2, \dots, I(\mathbf{u}_n) = \mathbf{u}_n$$

Segue que

$$[I]_{B} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$[I(\mathbf{u}_{1})]_{B} \qquad [I(\mathbf{u}_{2})]_{B} \qquad [I(\mathbf{u}_{n})]_{B}$$

- Matrizes de composições e de inversas
 - Teorema 1:
 - Se T₁: U → V e T₂: V → W forem transformações lineares e B, B" e B' bases de U, V e W, respectivamente, então

$$[T_2 \circ T_1]_{B',B} = [T_2]_{B',B''} [T_1]_{B'',B}$$

Parece que os índices se cancelam

- Matrizes de composições e de inversas
 - Teorema 2:
 - Se T: V → V for um operador linear e B uma base de V, as afirmações seguintes são equivalentes
 - (a) T é injetor.
 - (b) [T]_B é invertível.
 - Além disso, se valerem essas condições equivalentes, então

$$[T^{-1}]_B = [T]_B^{-1}$$

Como W=V, usa-se a mesma base B

- Matrizes de composições e de inversas
 - Exemplo: Composição
 - Sejam T₁: P₁ → P₂ uma transformação linear e
 T₂: P₂ → P₂ definidos por

$$T_1(p(x)) = xp(x)$$
 $T_2(p(x)) = p(3x - 5)$

Então a composição (T₂○T₁) : P₁ → P₂

$$(T_2 \circ T_1)(p(x)) = T_2(T_1(p(x))) = T_2(xp(x)) = (3x - 5)p(3x - 5)$$

• Se p(x) =
$$c_0 + c_1 x$$
, então

$$(T_2 \circ T_1)(c_0 + c_1 x) = (3x - 5)(c_0 + c_1(3x - 5))$$

$$= c_0(3x - 5) + c_1(3x - 5)^2$$
(1)

- Matrizes de composições e de inversas
 - Exemplo: Composição
 - A partir do Teorema 1: $U = P_1$ e $V = W = P_2$, assim podemos tomar B' = B", o que simplifica a fórmula para

$$[T_2 \circ T_1]_{B',B} = [T_2]_{B'} [T_1]_{B',B}$$

- Para base de P₁ escolhemos B = {1, x} e para base de P₂ escolhemos B = {1, x, x2}.
- Sabendo que

$$[T_1]_{B',B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{e} \quad [T_2]_{B'} = \begin{bmatrix} 1 & -5 & 25 \\ 0 & 3 & -30 \\ 0 & 0 & 9 \end{bmatrix}$$

Exemplo 5 do Anton

- Matrizes de composições e de inversas
 - Exemplo: Composição

• Segue que
$$[T_2 \circ T_1]_{B',B} = \begin{bmatrix} 1 & -5 & 25 \\ 0 & 3 & -30 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 25 \\ 3 & -30 \\ 0 & 9 \end{bmatrix}$$

- Conferindo calculando direto da formula da construção, sendo B = $\{1, x\}$ com com $\mathbf{u}_1 = 1$ e $\mathbf{u}_2 = x$ $[T_2 \circ T_1]_{B',B} = [[(T_2 \circ T_1)(1)]_{B'} \mid [(T_2 \circ T_1)(x)]_{B'}]$
- Usando (1)

$$(T_2 \circ T_1)(1) = 3x - 5$$
 e $(T_2 \circ T_1)(x) = (3x - 5)^2 = 9x^2 - 30x + 25$

$$[T_2 \circ T_1]_{B',B} = \begin{bmatrix} -5 & 25 \\ 3 & -30 \\ 0 & 9 \end{bmatrix}$$

Resumo

- Matrizes de transformações lineares
 - Tenta achar uma matriz que corresponde a transformação
 - Procedimento indireto

Matrizes de composições e de inversas

$$[T_2 \circ T_1]_{B',B} = [T_2]_{B',B''} [T_1]_{B'',B}$$

$$[T^{-1}]_B = [T]_B^{-1}$$

Resumo

- Exercícios de fixação:
 - Anton seção 8.4
 - 3-4
 - 7
 - 10

Resumo

- Próxima aula:
 - Semelhança
 - Escolher uma base de V que torne a matriz de T tão simples quanto possível.

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 8.4
 - DE ARAUJO, Thelmo. Álgebra Linear: Teoria e Aplicações. Rio de Janeiro: SBM, 2014.
 - Capítulo 6