MAT232 - Lecture 6

vectors?

AlexanderTheMango

Prepared for January 23, 2025

Contents

Ti	Citle Page				0
Pı	Preliminary Concepts				. 1
	Introduction to Vectors		.)	9	\bigcirc_1
	Vector Representation			\	1
	Basic Vector Operations			.\	2
	Scalar Multiplication			. \	2
	Vector Addition				2
	Vector Subtraction				3
	Vector Components				3
	Magnitude of a Vector	.\			4
	Properties of Vector Operations		\		4
	Applications of Vectors				
	Learning Objectives				5
	Introduction to Three-Dimensional Space				5
	Locating Points in Space	1			5
	Coordinate Planes in \mathbb{R}^3				6
	Distance Formula in Three Dimensions				
	Equations of Planes				7
	Equations of Spheres	X).	7
	Graphing Equations in Three Dimensions			O	8

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Introduction to Vectors

Definition

A **vector** is a quantity that has both magnitude and direction. Vectors can be optionally denoted in multiple ways:

• Boldface Notation: v

• Arrow Notation: \vec{v}

• Overline Notation: \overline{v}

Note

In MAT232H5, the contents of a vector are typically written using angle bracket notation:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle$$

For example, a 3D vector can be represented as:

$$\vec{v} = \langle 2, -1, 3 \rangle$$

Depending on the context, you might see $\mathbf{v} = \langle v_1, v_2 \rangle$ in 2D or $\mathbf{v} = \langle v_1, v_2, v_3, v_4 \rangle$ in higher dimensions.

Remark

Quantities such as velocity and force are examples of vectors because they require both magnitude and direction to be fully described.

Vector Representation

A vector in a plane is represented by a directed line segment (an arrow) with an **initial point** and a **terminal point**. The length of the segment represents its **magnitude**, denoted $\|\vec{v}\|$. A vector with the same initial and terminal point is called the **zero vector**, denoted $\vec{0}$.

Two vectors \vec{v} and \vec{w} are equivalent if they have the same magnitude and direction, written as $\vec{v} = \vec{w}$.

Exercise

Sketching Vectors

Sketch a vector in the plane from initial point P(1,1) to terminal point Q(8,5).

Basic Vector Operations

Scalar Multiplication

Multiplying a vector \vec{v} by a scalar k results in a new vector $k\vec{v}$ with the following properties:

- · Its magnitude is |k| times the magnitude of \vec{v} .
- · Its direction remains the same if k > 0.
- · Its direction is reversed if k < 0.
- If k = 0 or $\vec{v} = \vec{0}$, then $k\vec{v} = \vec{0}$.

Note

The zero vector $\vec{0}$ is the vector with a magnitude of 0 and no direction (or any direction). It is the only vector that is orthogonal (perpendicular) to every vector, including itself.

${\bf Exercise}$

Scalar Multiplication

Given vector \vec{v} , sketch the vectors $3\vec{v}$, $\frac{1}{2}\vec{v}$, and $-\vec{v}$.

Vector Addition

The sum of two vectors \vec{v} and \vec{w} is constructed by placing the initial point of \vec{w} at the terminal point of \vec{v} . The vector sum, $\vec{v} + \vec{w}$, is the vector from the initial point of \vec{v} to the terminal point of \vec{w} .

Exercise

Vector Addition

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} + \vec{w}$ using both the triangle method and the parallelogram method.

Graphical Methods for Vector Addition

- 1. Place the vectors with the head of the previous vector \vec{u} connected to the tail of the successive vector \vec{v} .
- 2. The resultant vector $\vec{u} + \vec{v}$ is formed by connecting the tail of the first vector to the head of the last vector.

Parallelogram Method

- 1. Place both vectors, \vec{u} and \vec{v} at the same initial point.
- 2. Complete the parallelogram.
- 3. The diagonal of the parallelogram is the resultant vector $\vec{u} + \vec{v}$.

Vector Subtraction

The difference $\vec{v} - \vec{w}$ is defined as $\vec{v} + (-\vec{w})$, where $-\vec{w}$ is the vector with the same magnitude as \vec{w} but opposite direction.

Exercise

Vector Subtraction

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} - \vec{w}$.

Vector Components

A vector in standard position has its initial point at the origin (0,0). If the terminal point is (x,y), the vector is written in **component form** as $\vec{v} = \langle x, y \rangle$. The scalars x and y are called the **components** of \vec{v} .

Exercise

Expressing Vectors in Component Form

Express vector \vec{v} with initial point (-3,4) and terminal point (1,2) in component form.

Magnitude of a Vector

Definition

The magnitude of a vector $\vec{v} = \langle x, y \rangle$ is its length, and is given by:

$$\|\overrightarrow{v}\| = \sqrt{x^2 + y^2}.$$

Exercise

Find the magnitude of the vector $\overrightarrow{v} = \langle 3, -4 \rangle$.

Properties of Vector Operations

Theorem

Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} be vectors, and let k and c be scalars. Then:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Commutative Property)
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associative Property)
- 3. $k(c\vec{v}) = (kc)\vec{v}$ (Associativity of Scalar Multiplication)
- 4. $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ (Distributive Property)

Proof

Proof of Commutative Property:

Let $\overrightarrow{u} = \langle u_1, u_2 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2 \rangle$. Then:

$$\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2 \rangle = \langle v_1 + u_1, v_2 + u_2 \rangle = \overrightarrow{v} + \overrightarrow{u}.$$

Applications of Vectors

Example

Real-Life Applications

- A boat crossing a river experiences a force from its motor and a force from the river current. Both forces are vectors.
- A quarterback throwing a football applies a velocity vector to the ball, determining its speed and direction.

Learning Objectives

By the end of this section, you should be able to:

- Describe three-dimensional space mathematically.
- Locate points in space using coordinates.
- Write the distance formula in three dimensions.
- Write the equations for simple planes and spheres.
- Perform vector operations in \mathbb{R}^3 .

Introduction to Three-Dimensional Space

Definition

Definition: The **three-dimensional rectangular coordinate system** consists of three perpendicular axes: the *x*-axis, the *y*-axis, and the *z*-axis, with an origin at the point of intersection (0,0,0). This system is often denoted by \mathbb{R}^3 .

Note

Note: The three-dimensional coordinate system follows the **right-hand rule**. If you align your right hand's fingers with the positive x-axis and curl them toward the positive y-axis, your thumb points in the direction of the positive z-axis.

Locating Points in Space

Definition

Definition: A point in three-dimensional space is represented by coordinates (x, y, z), where:

- x is the distance along the x-axis,
- y is the distance along the y-axis,
- z is the distance along the z-axis.

Example

Example 2.11: Locating Points in Space

Sketch the point (1, -2, 3) in three-dimensional space.

Exercise

Checkpoint 2.11:

Sketch the point (-2, 3, -1) in three-dimensional space.

Coordinate Planes in \mathbb{R}^3

Definition

Definition: The three coordinate planes in \mathbb{R}^3 are:

- The xy-plane: $\{(x, y, 0) \mid x, y \in \mathbb{R}\},\$
- The xz-plane: $\{(x,0,z) \mid x,z \in \mathbb{R}\},\$
- The yz-plane: $\{(0, y, z) \mid y, z \in \mathbb{R}\}.$

Note

Note: The coordinate planes divide space into eight regions called **octants**. The first octant is where x > 0, y > 0, and z > 0.

Distance Formula in Three Dimensions

Theorem

Theorem 2.2: Distance Between Two Points in Space

The distance d between points $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ is given by:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Example

Example 2.12: Distance in Space

Find the distance between points $P_1 = (3, -1, 5)$ and $P_2 = (2, 1, -1)$.

Exercise

Checkpoint 2.12:

Find the distance between points $P_1 = (1, -5, 4)$ and $P_2 = (4, -1, -1)$.

Equations of Planes

Definition

Definition: A plane parallel to one of the coordinate planes can be described by:

- z = c for a plane parallel to the xy-plane,
- y = b for a plane parallel to the xz-plane,
- x = a for a plane parallel to the yz-plane.

Example

Example 2.13: Writing Equations of Planes

- Write an equation of the plane passing through point (3, 11, 7) that is parallel to the yz-plane.
- Find an equation of the plane passing through points (6, -2, 9), (0, -2, 4), and (1, -2, -3).

Exercise

Checkpoint 2.13:

Write an equation of the plane passing through point (1, -6, -4) that is parallel to the xy-plane.

Equations of Spheres

Definition

Definition: A **sphere** is the set of all points in space equidistant from a fixed point, called the **center**. The distance from the center to any point on the sphere is called the **radius**.

Theorem

Equation of a Sphere:

The sphere with center (a, b, c) and radius r is given by:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

Example

Example 2.14: Finding an Equation of a Sphere

Find the standard equation of the sphere with center (10,7,4) and passing through point (-1,3,-2).

Exercise

Checkpoint 2.14:

Find the standard equation of the sphere with center (-2, 4, -5) and passing through point (4, 4, -1).

Example

Example 2.15: Finding the Equation of a Sphere

Let P = (-5, 2, 3) and Q = (3, 4, -1), and suppose line segment PQ forms the diameter of a sphere. Find the equation of the sphere.

Exercise

Checkpoint 2.15:

Find the equation of the sphere with diameter PQ, where P=(2,-1,-3) and Q=(-2,5,-1).

Graphing Equations in Three Dimensions

Example

Example 2.16: Graphing Other Equations

Describe the set of points that satisfies (x-4)(z-2)=0, and graph the set.

Exercise

Checkpoint 2.16:

Describe the set of points that satisfies (y+2)(z-3)=0, and graph the set.

Example

Example 2.17: Graphing Other Equations

Describe the set of points in three-dimensional space that satisfies $(x-2)^2 + (y-1)^2 = 4$, and graph the set.

Exercise

Checkpoint 2.17:

Describe the set of points in three-dimensional space that satisfies $x^2 + (z-2)^2 = 16$, and graph the surface.

self-note: add the rest from deepseek alexandermenginquiries@gmail.com account

