II B.Tech II Semester Regular Examinations, August/September 2023

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, IT, AIML & DS)

3 hours

Max Marks: 70

uctions:

Question paper comprises of Part-A and Part-B

Part-A (for 20 marks) must be answered at one place in the answer book.

Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

CO means Course Outcomes. BL means Blooms Taxonomy Levels.

PART - A

	(Answer ALL questions. All questions carry equal marks)	10 * 2 = 20 Marks						
a.	Define Big-O and Omega-Ω Notations.	[2]	CO1	BL1				
b. c. d.	Define time complexity. Write the differences between divide and conquer and greedy method. Write the union algorithm of disjoint set.	[2] [2] [2]	CO1 CO2	BL2 BL1 BL2				
e. f.	Define principle of optimality. Write the general method of dynamic programming.	[2] [2] [2]	CO3 CO4	BL1 BL2 BL1				
g. h. i.	Write the control abstraction for Greedy technique. What is sum of subsets problem. Define class P and class NP.	[2] [2]	CO4 CO5	BL2 BL1 BL2				
j.	Parallel and Round solution?							
a) b)	Explain about the asymptotic notations with an example for each. Show that the following equality is correct $5n^2\text{-}6n=\Theta(n^2)$	[5] [5]	CO1	BL1 BL3				
a) b)	OR List out the steps in mathematical analysis of recursive algorithms. Explain about recursive algorithms.	[5] [5]	CO1	BL3 BL2				
	Page1 of 2							

C	ODI	E: GR20A2077 GR 20		188
4.	a)	Explain quick sort with suitable example.	[5]	0
	b)	Give the worst-case time complexity of quick sort.	[5]	Co
		OR		W,
5.	a)	Compare simple FIND and COLLAPSING FIND operations on disjoint sets and write the algorithms.	[5]	Co
	b)	What is an articulation point? Write an algorithm to find an articulation point in a given graph.	[5]	Co
6.	a)	What is All Pair Shortest Path problem (APSP)? Discuss the Floyd's APSP algorithm and discuss the analysis of this algorithm	[5]	C03
	b)	Explain Optimal rod cutting problem.	[5]	Cos
		OR		
7.	a)	Explain 0/1 Knapsack algorithm? Solve the following 0/1 Knapsack Problem by using Dynamic Programming approach. N=3, (w1, w2, w3) = (2, 3, 4) (p1, p2, p3)=(1, 2, 5) and m= 6	[5]	C03
	b)	How do you solve travelling sales man problem using dynamic programming? Explain with an example.	[5]	C03
8.	a)	Describe the greedy technique for solving the job sequence problem.		
	b)	Explain Kruskal's algorithm.	[5]	C04
		OR	[5]	CO4
9.	a)	Discuss Hamiltonian cycle with an example and also write algorithm		
	b)	Find all sum of subsets for n=4, $(w1, w2, w3, w4) = (11, 13, 24, 7)$ and M=31.Draw the portion of the state space tree	[5] [5]	CO4
10	a)	Explain Cook's Theorem in detail.		
	b)	What is the relationship among P, NP and NP complete problems? Show	[5]	C05
		OR	[5]	CO5
11	a) b)	Consider the knapsack problem n=4 (p1,p2,p3,p4)=(10,10,12,18), (w1,w2,w3,w4)=(2,4,6,9) and m=15 find the optimal solution using LC branch and bound.	[5]	CO5
		***	[5]	CO ⁵