

FIT5201 Data Analysis Algorithms

Latent Variable Models and Expectation Maximization

Outline

- Clustering
- KMeans
- Gaussian Mixture Models and Expectation-Maximization

Data Clustering

- Is a method of unsupervised learning
- Find a sensible structure from unlabelled data
- A clustering algorithm
 - Groups data into their natural categories
 - Based on the similarities between them
 - Without knowledge of their actual groups
 - Revealing the structure of the data
 - > High intra-cluster similarity
 - > Low inter-cluster similarity

Data Clustering...

What is a natural grouping among these objects?

Clustering is subjective

School Employees

Females

Males

What is a good cluster?

What is a good cluster?

What is a good cluster?

Clustering Algorithms

- Many algorithms exist
 - Centre-based (KMeans)
 - Density based (DBSCAN)
 - Hierarchical clustering
 - Graph based clustering

Soft vs Hard Clusters

- Hard Clusters
 - Data points belong to only one cluster

- Soft Clusters
 - Data points could belong to one or more clusters
 - Probability of belonging to each cluster is given

The KMeans Algorithm

- The simplest centre-based algorithm to solve clustering problems is KMeans
- N unlabelled data points x_n are given
- Goal: Partition the data points into K distinct groups (clusters)
 - Similar points are grouped together
 - Similarity is based on a distance measure d(.)

The KMeans Algorithm

- Is an iterative algorithm
- Starts with an initial random guess of K cluster centres $\left(\mu_1^{(0)},\mu_2^{(0)},\dots,\mu_K^{(0)}\right)$
- Iterate the following two steps until a stopping criterion is met:
 - Update assignment of data points to clusters
 - > Calculate the distance of each data point to all cluster centres
 - > Assign the data point to the cluster with the minimum distance
 - Update centers of the clusters
 - > For each cluster, calculate the new centre as the average of all data points assigned to it

$$> \mu_K^{(\tau+1)} = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

$$> r_{nk} = \begin{cases} 1 & \text{if } x_n \text{ is assigned to cluster } k \\ 0 & \text{Otherwise} \end{cases}$$

KMeans visualization

 A good visual simulation is available at http://tech.nitoyon.com/en/blog/2013/11/07/k-means/

KMeans Remarks

- KMeans is sensitive to initial values
 - which means the different execution of Kmeans with different initial cluster centers may result in different solutions
- KMeans is a non-probabilistic algorithm
 - which only supports hard-assignment
 - a data point can only be assigned to one and only one of the clusters

Applications of KMeans

- Data points: pixels colors
- Cluster: similar pixel colors
- Replace the colors in a cluster with the centroid
- Store the centroid only: reduced resolution and storage space

Latent Variables

- We wanted to partition a set of data points into K groups of similar data points
- The label of the data points are latent or hidden
- We call these latent variables

Gaussian Mixture Models (GMM)

A Generative Story

- Consider the following hypothetical generative story for generating a label-data point pair (k, x)
- First
 - > generate a cluster label k, by tossing a dice with K faces where each face of the dice corresponds to a cluster label
- Second,
 - > generate the data point x, by sampling from the distribution $p_k(.)$ corresponding to the cluster label k
- We are given data point x but not labels
- We model it by $z \in \{1, ..., K\}$
- Now given the data,
 - > we would like to find the best value for the latent variables, and
 - > the best estimates for the parameters of the above generative story.

The Probabilistic Generative Model

- Tossing a dice with K faces
 - is the same as sampling from a multinomial distribution on K elements
 - the parameters of the multinomial are

$$\phi_k \ge 0, \sum_{k=1}^K \phi_k = 1, p(z_n = k) = \phi_k$$

- For each k,
 - Assume data points are sampled from Gaussian distribution $N(\mu_k, \Sigma_k)$
 - Mean μ_k and covariance matrix Σ_k
 - Note that we have a collection of these Gaussian distributions,
 - each of which corresponds to one of K dice faces
- We don't know the labels and try to best guess the latent variables $(z_1, ..., z_n)$ where $z_n \in \{1, ..., K\}$ represents the latent label for a data point x_n
- $\theta \coloneqq (\phi, \mu_1, \Sigma_1, \dots, \mu_k, \Sigma_k)$
- Use the maximum likelihood estimation

Maximum Likelihood Estimation

 maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations

You can find variance similarly

Gaussian Mixture Model

- If we are given a complete data point (k, x)
 - Where the label was not hidden
 - The probability of the pair according to our generative story would be
 - $p(k, x_n) = p(face k)p(x_n|face k) = \varphi_k N(x_n|\mu_k, \Sigma_k)$
- In practice, we are given incomplete data (or observed data)

$$- p(x_n) = \sum_{z_{n \in \{1,\dots,K\}}} p(z_n, x_n) = \sum_{k=1}^K p(z_n = k) p(x|face k)$$
$$= \sum_{k=1}^K \varphi_k N(x_n | \mu_k, \Sigma_k)$$

This model is called the Gaussian Mixture Model

Gaussian Mixture Model

- We are only given $\{x_1, x_2, ..., x_N\}$
- The labels are hidden (latent)
- We aim to best guess $(z_1, z_2, ..., z_N), z_n \in \{1, ..., K\}$
- z_n is the latent label for a data point x_n
- The parameter of this model
 - $\theta = (\phi, \mu_1, \Sigma_1, \mu_2, \Sigma_2, \dots, \mu_K, \Sigma_K)$
 - We like to best estimate these parameters

Latent variable models

- Use the maximum likelihood principle to do the parameter estimation
- Complete data likelihood function
 - We are given the class label
 - Gaussian classifier
 - $p(X,Z) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(x_n, z_k)$
 - Easy to get the analytical global solutions
- Likelihood function (incomplete data likelihood function)
 - $p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} p(x_n, z_k)$
 - Hard to get the analytical global solutions (sum inside log)
 - Need an iterative optimization algorithm (EM method)
 - EM: iterative optimization algorithm for problems with latent variables

Problem to be solved

- Why is it hard to find the global solution of incomplete data likelihood functions?
 - use Gaussian mixture model as an example
- What EM algorithm is and why?
 - Steps
 - Theoretical support

Gaussian Mixture Models

•
$$L(\Theta) = lnp(X) = ln\prod_{n=1}^{N} p(x_n) = \sum_{n=1}^{N} lnp(x_n) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} p(x_n, z_k)$$

 $L(\Theta) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} p(z_k)p(x_n|z_k) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} \varphi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$

Prediction rule

$$\gamma(z_{nk}) := p(z_n = k | \boldsymbol{x}_n) = \frac{\varphi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \varphi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- $\gamma(z_{nk})$: the posterior probability of the cluster k assigned to a given data x_n
- For a given data, what's the prior probability of the cluster k assigned to it?

Gaussian Mixture Models

•
$$L(\Theta) = lnp(X) = ln\prod_{n=1}^{N} p(x_n) = \sum_{n=1}^{N} lnp(x_n) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} p(x_n, z_k)$$

 $L(\Theta) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} p(z_k)p(x_n|z_k) = \sum_{n=1}^{N} ln\sum_{k=1}^{K} \varphi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$

Prediction rule

$$\gamma(z_{nk}) := p(z_n = k | \boldsymbol{x}_n) = \frac{\varphi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \varphi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- $\gamma(z_{nk})$: the posterior probability of the cluster k assigned to a given data x_n
- For a given data, what's the prior probability of the cluster k assigned to it? (φ_k)

Gaussian Mixture Models

$$L(\Theta) = \sum_{n=1}^{N} ln \sum_{k=1}^{K} p(z_k) p(x_n | z_k) = \sum_{n=1}^{N} ln \sum_{k=1}^{K} \varphi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$$
$$\gamma(z_{nk}) := p(z_n = k | \boldsymbol{x}_n) = \frac{\varphi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \Sigma_k)}{\sum_{j} \varphi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \Sigma_j)}$$

- Let's try to find the global optimal solutions first
 - Three types of parameters: the mean parameters (μ_k) ; the covariance Matrices (Σ_k) ; the mixing coefficients (φ_k)
 - Compute the global optimal solutions by setting the partial derivatives with respect to these parameters to 0 respectively.
 - Refer to the handwritten materials
 - Hard to get the global optimal solutions
 - > as all the solutions rely on $\gamma(z_{nk})$: the posterior probability of the cluster assignment; and $\gamma(z_{nk})$ itself relies on the three types of parameters in a complex way
 - Need an iterative algorithm!

Expectation Maximization (EM) for GMMs

Choose some initial values for the parameters;

Alternate between the following two steps until a stopping condition (the change in the log likelihood function or parameters fall below some threshold) is met:

- In the E (expectation) step, use the current values for the parameters to calculate the posterior probabilities $\gamma(z_{nk})$
- In the M (maximization) step, re-estimate the parameters (μ_k , Σ_k , and φ_k) based on the $\gamma(z_{nk})$ result from the above step.
 - Use the equations in the handwritten materials

$$P(x_i|b) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$

$$P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$

For each point calculate P(blue|x) and P(yellow|x)

$$P(x_i|b) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$

$$P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$

For each point calculate P(blue|x) and P(yellow|x)

Update means and variances

$$P(x_i|b) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$

$$b_i = P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$

$$a_i = P(a|x_i) = 1 - b_i$$

$$\mu_b = \frac{b_1x_1 + b_2x_2 + \dots + b_nx_n}{b_1 + b_2 + \dots + b_n}$$

$$\sigma_b^2 = \frac{b_1(x_1 - \mu_b)^2 + \dots + b_n(x_n - \mu_b)^2}{b_1 + b_2 + \dots + b_n}$$

Update means and variances

$$P(x_i|b) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$

$$b_i = P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$

$$a_i = P(a|x_i) = 1 - b_i$$

$$\mu_b = \frac{b_1x_1 + b_2x_2 + \dots + b_nx_n}{b_1 + b_2 + \dots + b_n}$$

$$\sigma_b^2 = \frac{b_1(x_1 - \mu_b)^2 + \dots + b_n(x_n - \mu_b)^2}{b_1 + b_2 + \dots + b_n}$$

$$P(x_i|b) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right)$$

$$b_i = P(b|x_i) = \frac{P(x_i|b)P(b)}{P(x_i|b)P(b) + P(x_i|a)P(a)}$$

$$a_i = P(a|x_i) = 1 - b_i$$

$$\mu_b = \frac{b_1x_1 + b_2x_2 + \dots + b_nx_n}{b_1 + b_2 + \dots + b_n}$$

$$\sigma_b^2 = \frac{b_1(x_1 - \mu_b)^2 + \dots + b_n(x_n - \mu_b)^2}{b_1 + b_2 + \dots + b_n}$$

- Training objective: find maximum likelihood solution for models having latent variables.
 - Observed data X, Latent variable Z, set of model parameters θ
 - Log likelihood function

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

- Algorithm:
 - Choose an initial setting for the parameters θ^{old}
 - While convergence is not met:
 - > **E Step**: Evaluate $p(Z|X, \theta^{old})$
 - > **M Step**: Evaluate θ^{new} given by

$$\theta^{new} \leftarrow \arg\max_{\theta} \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$

 $> \theta^{old \leftarrow \theta^{new}}$

Questions:

- Why do we use Q function instead of the log likelihood function as the objective function in M step?
- Is each iteration guaranteed to increase the log likelihood function?
- What's the relationship between the Q function and log likelihood function?

Why Q function?

$$\sum_{Z} p(Z|X,\theta^{old}) \ln p(X,Z|\theta)$$

- Solving $\ln p(X, Z|\theta)$ (complete data likelihood) is easy while solving $\ln p(X|\theta)$ (incomplete data likelihood) is hard
- Focus on the complete data likelihood
- Intuitive explanation: the expected value of complete data likelihood function under the posterior distribution of the latent variable $(p(Z|X,\theta^{old}))$

- Is each iteration guaranteed to increase the log likelihood function?
- What's the relationship between the Q function and log likelihood function?

- Is each iteration guaranteed to increase the log likelihood function?
 - Yes, for the proof, refer to the text book (Bishop: Pattern Recognition and Machine Learning)
- What's the relationship between the Q function and log likelihood function?
 - > Q function is a lower bound of the log likelihood function

The hard-EM Algorithm

Each data is assigned to one class with the largest posterior probability

$$Z^* = argmax_z p(Z|X, \theta^{old})$$

There is no expectation over the latent variables Z in Q function

$$\ln p(X, Z^*|\theta)$$

- Choose an initial setting for the parameters $m{ heta}^{
 m old}$
- While the convergence is not met:
 - \circ E step: Set $Z^* \leftarrow \arg\max_{Z} p(Z|X, \boldsymbol{\theta}^{\mathrm{old}})$
 - M Step: Set $\boldsymbol{\theta}^{\text{new}} \leftarrow rg \max_{\boldsymbol{\theta}} \ln p(\boldsymbol{X}, \boldsymbol{Z}^* | \boldsymbol{\theta})$
 - $\circ \boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$

EM Algorithm for GMMs with Q function

$$Q(\theta^{new}, \theta^{old}) \coloneqq \Sigma_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta^{new})$$

= $\sum_{n=1}^{N} \sum_{k=1}^{K} (\gamma(z_{nk}) \ln \varphi_k + \gamma(z_{nk}) \ln \mathcal{N}(x_n|\mu_k, \Sigma_k))$

- $\gamma(z_{nk})$ is given in E step
- No sum inside log
- Easy to optimize

EM Algorithm for GMMs with Q function

$$Q(\theta^{new}, \theta^{old}) \coloneqq \Sigma_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta^{new})$$

= $\sum_{n=1}^{N} \sum_{k=1}^{K} (\gamma(z_{nk}) \ln \varphi_k + \gamma(z_{nk}) \ln \mathcal{N}(x_n|\mu_k, \Sigma_k))$

- Maximizing the Q function, we get:
 - The mixing components: $\varphi_k^{\mathrm{new}} = \frac{N_k}{N}$ where $N_k := \sum_{n=1}^N \gamma(z_{nk})$
 - The mean parameters: $m{\mu}_k^{
 m new} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) m{x}_n$
 - The covariance matrices:

$$\mathbf{\Sigma}_k^{\mathrm{new}} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T$$

