REGUL	AR LANGUAGES	20 / 10 / (000
	Computational Model → An idealised con Mathematical theories are set on th	•
	So directly on sceal computers.	
finik state Machine	We use several different computational Simplest Model → Finite state Machine o	
Finite Automata:	· good comp models with extremely limited. The designing of devices with low memory digital watches requires the designer of finite automata in mind.	such as thermostat, dish washers,
Mazes Orazes	· Finite Automata & their probabilistic consults when we've attempting to see con. These devices are used in speech processing	gnize patterns in data.

0 0 0		
Mathematical Theory Of Finite Automa:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Finite automaton M2 with 3 states.	
· State diagram	· The above fig. is called state diagram for M1.	
· States	· There are three states q_1, q_2, q_3	
· Stout laccept state	· 92 - Start State	
·transitions(-)	92 - accept state. (indicated with double circle).	
	- Arrows going from one state to other are transitions.	
	· When the above automaton receives a string input it produces an o/p	
9965mining 0/b.	which is either accept or reject. * After reading the last symbol in string, if Mz is in the accept state? the o/p is accept else reject.	
Finite Automaton:	Reasons for formal defn:	
Finite Aller	- Formal defn is precise	
	- It resolves any uncertainities about what's allowed in finite automaton.	
	Good violation helps you think a express your thoughts clearly.	

/ /

Parts of finite	is Set of States and scules for going from one state to another, depending on i/p symbol. 2) It has an i/p alphabet indicating allowed input symbols. 3) It has a start state and a set of accept states.
Definition:	A finite-autometon is a 5-tuple (Φ , Σ , δ , q_o , F), where $\Phi \to finite$ set called the states $\Sigma \to finite$ set called the alphabet. $\delta \to \Phi \times \Sigma \to \Phi' \text{ is the transition function}$ $\delta \to \Phi \times \Sigma \to \Phi' \text{ is the start state}$ $\delta \to F \subseteq \Phi \text{ is the set of accept states}.$
	· TF 'A' is a set of strings that machine 'M' accepts

* Accept states are sometimes called finite states.