10.2. OSNOVNI TEOREMI DIFERENCIJALNOG I

DIFERENCIJALNOG I INTEGRALNOG RAČUNA

> tempenta na Privulgia a poèci c ima koeticijent smjera isti

analogno je i u in kgralnom racumu

=> f je neproceinuta na [a, b]. postoji c e (a, b) tha.

NATP:
$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx = 7$$
 reduja vrijednost fumbrije f na intervalu [a,b]

DOKAZ'

minimalne:

$$M = min f(x)$$
 $[a_1b]$

a cb
 a
 $m \neq najmaya P$

malenimalne

 $M = max f(x)$
 $[a_1b]$
 $m \neq najmaya P$
 $m \neq najmaya$
 m

$$m
eq \frac{\int_a^b f(x)dx}{b-a}
eq M
eq \frac{\int_a^b f(x)dx}{b-a}
eq [m, M]$$

20aii
$$f(b,b)$$
- $[m,M]$ prema home, f je nesto $i \ge [m,M]$

Dakle postoji $c \in (a,b)$ za (a,b) za (a,b) in (a,b) $(a,$

Lakse je shrutti na primjeru

Primjer 10.6.) Odredimo meduju vijednost funkcije $f(x) = x^2$ na intervalu [0,1] Za toji $c \in (0,1)$ se ona postiže?

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convot tog integrala predstavlja površinu ispad
knivulji $y = x^{2}$ na intervalu [a]
$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$

$$\int_{0}^{1} x^{2} dx - v_{i} y = v_{i} convoluti (spad)$$$$

$$O_{n} = \sum_{i=1}^{n} f(x_{i}) \Delta x = \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \cdot \frac{1}{n}$$

$$= \sum_{i=1}^{n} \frac{i^{2}}{n^{2}} \cdot \frac{1}{n} = \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$+ \text{seuma bradrata pnih n pninoduh}$$

$$\text{Projeva jeduaka je}$$

$$\frac{n}{\sqrt{n}} = \frac{1}{n} \left(\frac{n}{n}\right) \cdot \frac{1}{n}$$

$$\sum_{i=1}^{n} i^{2} = \frac{1}{6} n (n+1)(2n+1)$$

$$= > O_{n} = \frac{n}{6n^{3}} (n+1)(2n+1)$$

$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^{3}} = \lim_{n \to \infty} \frac{(n^{2}+n)(2n+1)}{6n^{3}}$$

$$= \lim_{n \to \infty} \frac{2n^{3}+n^{2}+2n^{2}+n}{6n^{3}} = \lim_{n \to \infty} \frac{2n^{3}+3n^{2}+n}{6n^{3}} / n^{3}$$

$$= \lim_{n \to \infty} \frac{2+\frac{3}{n}}{6} + \frac{3}{n} + \frac{3}{n} = \frac{2}{6} = \frac{1}{3}$$

$$= \lim_{N \to \infty} \frac{1 + \sqrt{n} \sqrt{n}}{G} = \frac{2}{G} = \frac{1}{3}$$

$$\int_{a}^{b} f(x) dx = f(c)(b-a) \qquad [a_1b] = [a_1b]$$

$$\int_{a}^{b} x^2 dx = f(c)(b-a) \qquad \frac{1}{3} = f(c)$$

$$\frac{1}{3} = c^2$$

$$\frac{1}{3} = c^2$$

Newton-Leibnizova formula

* mjè dnost odvedenog integrala ne onisi o nativu varijable $\int_a^b f(x)dx = \int_a^b f(e)dt$

TM Konstruleja primitivne funkcije pomoću odveduog integrala

† je nepreleinuta kja na
$$[a,b] \rightarrow \phi(x) = \int_a^x f(t)dt$$
, $x \in [a,b]$

tada je fija diferencijalnima na (a,b)

i origidi $\phi'(x) = f(x)$.

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

$$\phi(x) = \lim_{x \to \infty} \frac{\phi(x + \Delta x) - \phi(x)}{\phi(x)}$$

$$\star \Phi(x) = \int_{a}^{x} f(t)dx$$

$$\phi'(x) = \lim_{\Delta x \to 0} \frac{\phi(x + \Delta x) - \phi(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\int_{a}^{x + \Delta x} f(t) dt - \int_{a}^{x} f(t) dt}{\int_{a}^{x + \Delta x} f(t) dt - \int_{a}^{x} f(t) dt}$$

$$=\lim_{\Delta \times \to 0} \int_{a}^{x+\Delta x} f(t)dt - \int_{a}^{x} f(t)dt$$

$$\int_{a}^{x} f(t)dt - \int_{a}^{x} f(t)dt = \int_{a}^{x} f(t)dt$$

$$\int_{a}^{x+\Delta x} f(\tau) d\tau - \int_{a}^{x} f(t) d\tau$$

=
$$\lim_{\Delta \times \to 0} \int_{\Delta \times}^{x} dt dt = \int_{a}^{x} f(t)dt + \int_{a}^{x+\Delta \times} f(t)dt - \int_{a}^{x} f(t)dt$$

= $\lim_{\Delta \times \to 0} \int_{a}^{x+\Delta \times} f(t)dt - \int_{a}^{x} f(t)dt - \int_{a}^{x} f(t)dt$

= $\lim_{\Delta \times \to 0} \int_{a}^{x+\Delta \times} f(t)dt$

= $\lim_{\Delta \times \to 0} \int_{a}^{x+\Delta \times} f(t)dt$

= $\lim_{\Delta \times \to 0} \int_{a}^{x} f(t)dt$

f(t)dt

pringengiv teorem greduje

vrejldnosti

$$\int_{X}^{X+\Delta X} f(t) dt = f(c_{x}) \cdot \Delta X$$

$$= \Rightarrow \phi'(x) = \lim_{\Delta x \to 0} \frac{f(c_x) \cdot \Delta x}{\Delta x} = \begin{pmatrix} \Delta x \to 0 \\ = \Rightarrow c_x \to x \end{pmatrix} = \lim_{c_x \to x} f(c_x) = f(x)$$

Primer 10.7.) Nota je
$$S(x) = \int_0^x \sin(\frac{\pi}{2} + 2) dt$$
. Odredik $S(x)$ i $S''(x)$.

Prema problem forence
$$\Phi'(x) = f(x)$$
 $\Phi(x) = \int_a^x f(t)dt$

$$= f(x) = f(x)$$

$$S'(x) = f(x)$$

$$S'(x) = Sin(\frac{\pi}{2}x^{2})$$

$$S'(x) = Sin(\frac{\pi}{2}x^{2})$$

$$S'(x) = (S'(x))' = (gin(\frac{\pi}{2}x^{2}))'$$

$$S''(x) = cos(\frac{\pi}{2}x^{2}) \cdot \frac{\pi}{2} \cdot ax$$

$$S'(1) = 1$$

$$S'(x) = \cos(\frac{\pi}{2}x^2) \cdot \pi \cdot x$$

$$S''(1) = \cos(\frac{\pi}{2}x^2) \cdot \pi \cdot x$$

$$S''(1) = 0$$

Nota je f nepreleinuta funkcija na [a,b], te nela je F(x) silo

koj'a primitivna fy'a od
$$f(x)$$
 na [a,b]. Tada jo:

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

DOKAZ: prema prosilion trovenu sa f(t)dt je prim bja od f(x) pa orijedi $\phi(x) = F(x) + C$ (duje prim fije or razlikuji ze C)

$$\phi(x) = \int_{\alpha}^{a} f(t)dt = 0 = 7 F(a) + C = 0$$

$$F(a) = -C \longrightarrow \phi(x) = F(x) - F(a)$$

Za X=a

$$\frac{1}{2}a \times b \text{ imams}$$

$$\frac{1}{2}b + \frac{1}{2}b + \frac{1$$

vesa odredenog integrala; površine ispod grafa fijo f(x)

i nyène primitione fije vidfiva je iz geomet interpret TH 10.2.2. $P(x) = \int_{\alpha}^{x} f(x) dx$

 $P(x+\Delta x) = P(x) + \Delta P \rightarrow P'(x) = \lim_{\Delta x \to 0} \frac{\Delta P}{\Delta x} = f(x)$ poveía li (pour like [a,x]

Primjer 10.9.) Izročunajk površimu ispod prvog luka simusoide $f(x) = \sin x$

$$\int_{a}^{b} f(x)dx = F(b) - F(c)$$

$$P(x) = \int_0^{\pi} \sin x dx$$

$$= -\cos x \Big|_{\delta}^{\pi}$$

$$P(x) = -605(11) + 605(0)$$

$$P(x) = 2$$

$$y = |\sin x|$$

$$\sqrt{1 + |\cos x|}$$

$$P(x) = \int_0^{57} |\sin x| dx \longrightarrow 5\int_0^{77} |\sin x| dx = 5 \cdot |-\cos x| \int_0^{77} |\sin x| dx$$

$$=5\left(-\cos\left(\pi\right)+\cos\left(\circ\right)\right)=10$$