

Visualization & Machine Learning

Dayana Gita Putra

Machine Learning

Telco Customer Churn Prediction

Outline

PROBLEM

Customer berhenti berlangganan (Churn) layanan telekomunikasi sehingga dapat menyebabkan kerugian bagi perusahaan.

GOAL

Membangun sebuah model machine learning untuk membantu dalam mencegah customer churn

Exploratory Data Analysis

Data Overview

- 1. Dataset terdiri dari 4.250 baris dan 20 kolom
- 2. Terdapat 15 data numerik dan 5 data kategorik

Data Distribution

Seluruh feature memiliki distribusi yang normal kecuali feature : number_vmail_messages, total_intl_calls, dan number_customer_service_calls.

Bivariate Analysis

Customer yang
melakukan panggilan
lebih dari **2x panggilan pada customer service**memiliki kecenderungan
untuk Churn

Customer yang memiliki durasi panggilan**rata-rata 625.5 minute (±10 jam)**memiliki kecenderungan untuk Churn

Customer yang memiliki tagihan (charge) rata-rata 62.66 dolar memiliki kecenderungan untuk
Churn

Bivariate Analysis

Setelah dilakuakan uji statistik terhadap feature numeric terdapat beberapa feature prediktor yang tidak menyebabkan perbedaan yang signifikan terhadap feature target, diantaranya adalah account_length, total_day_calls, total_eve_calls,

total_night_calls.

Bivariate Analysis

Pada feature categoric setelah dilakuakan uji statistik didapati bahwa feature **area_code** tidak mempengaruhi feature target

Data Pre-processing

Handling Outlier

Menghapus nilai outlier

Scaling

MinMaxScaller

Featurisation

Label encode Feature Engineering **Split Data**

Train: 3187 Test: 1063 **Handling Imbalance**

Over Sampling SMOTE

Dataset Features

Id	Madel Feetuwee
State	Model Features
Total_intl_charge	Total_intl_charge
Total_intl_calls	Total_intl_calls
Total_intl_minute	Total_intl_minute
Total_night_charge	
Total_eve_charge	Total_charge
Total_day_charge	
Total_night_calls	h
Total_eve_calls	Total_calls
Total_day_calls	
Total_night_minutes	
Total_eve_minutes	Total_minutes
Total_day_minutes	
number_vmail_messages	Number_vmail_messages
Voice_mail_plan	Voice_mail_plan
International_plan	International_plan
Area_code	
Account_length	
Number_customer_service_calls	Number_customer_service_calls

Features

Classification Models

Model	Train AUC	Test AUC
DecisionTreeClassifier	1.00	0.81
RandomForestClassifier	1.00	0.86
KNeighborsClassifier	0.93	0.76
GaussianNB	0.78	0.77
LogisticRegression	0.75	0.74

Algoritma terbaik adalah

GaussianNB dimana nilai AUC

training dan Test memiliki

perbedaan yang kecil sehingga

dapat dikatan model fit

Feature Importance

Feature Importance

Kesimpulan

Model machine learning Naive-Bayes dengan nilai AUC 78 % pada Train dan 77 % Test, merupakan pilihan terbaik untuk memprediksi customer churn.

Terima Kasih.

