HOMEWORK 17

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Let X be an infinite set and \mathcal{F} be the Fréchet filter on it. Show that any other filter containing \mathcal{F} (in particular any ultrafilter containing it) cannot contain any finite sets.
- (2) Show that for a nonempty set X, any collection $S \subseteq \mathcal{P}(X)$ with the finite intersection property generates a unique smallest filter on X that contains it.
- (3) Let X be a nonempty set and \mathcal{U} a filter on X. Then show that \mathcal{U} is an ultrafilter if for any subset $A \subseteq X$, either $A \in \mathcal{U}$ or $X \setminus A \in \mathcal{U}$. (We did the converse implication of this in class.)
- $(4)^*$ Let X be a nonempty set and \mathcal{F} be a filter on X. Then show that \mathcal{F} can be extended to an ultrafilter \mathcal{U} on X. (Hint: Use Zorn's Lemma.)
- (5) Let X be a topological space. Then x is accumulation point of a filter \mathcal{F} if and only if there exists a filter $\mathcal{G} \supseteq \mathcal{F}$ such that $\mathcal{G} \to x$.