系級:電機系 2E

姓名:張峻瑋

學號:110511194

機器學習導論 作業3:支持向量機

Nu-SVC	0.1	0.3	0.5	0.99
Linear	0.9584	0.944	0.9284	0.8172
RBF	0.976	0.9596	0.9484	0.9056
sigmoid	0.642	0.9344	0.9272	0.872

表 1:使用 v-SVM 之不同 v 值與 kernel type 下測資正確率

-							
	C-SVC	0.1	0.3	0.5	1.0	3.0	5.0
	Linear	0.95	0.95	0.95	0.95	0.95	0.95
	RBF	0.958	0.9692	0.972	0.9784	0.9832	0.9828
	sigmoid	0.9332	0.9268	0.9168	0.9072	0.888	0.8976

表 2:使用 C-SVM 之不同 C 值與 kernel type 下測資正確率

從表 1 與表 2 可發現,使用 C-SVM 的效果普遍比 v-SVM 好。而三種 kernel 中又以 RBF 表現最好,線性分類次之,sigmoid 最差。

在表 1 中可發現,v-SVM 中線性分類隨 v 值漸增而準確度遞減;RBF 亦同;sigmoid 則是在 v = 0.3 時表現最好。在表 2 可發現,線性分類的成果穩定;RBF 在 C = 3.0 時表現最好;sigmoid 則是隨 C 值增加而遞減。

以下試分析 C = 3.0、RBF 之模型:

支持向量的圖形存放於 support_vectors 資料夾中。其中各個數字成為支持向量的數量為:

	0	1	2	3	4
數量	187	117	334	268	228

表 3: 各數字之支持向量個數

所謂支持向量,即在進行支持向量機的分類時,畫分分類線最接近該線的向量即為支持向量,可解釋為在分類時,與自己類別最不像者。RBF並非線性,是先將各各量映射到另一空間中,再進行分類,故在分類上可以比較細,支持向量也會比線性分類多。

從表 3 我們發現, 2 的支持向量最多, 1 最少。表示 2 最容易與其他數字混

淆。確實 2 的許多圖片,與上下皆有一槓的 1 相近,也與最後一筆較短的 3 相近。而 1 最不容易被混淆,故支持向量最少。

7

圖1:長得像2的1 **圖2**:長得像1的2

7

圖 3:長得像 1 的 4 圖 4:長得像 3 的 4