Graph Theory: Centrality

Introduction to Network Science

Dr. Michele Starnini — https://github.com/chatox/networks-science-course

A *central* question in networks is determining who is more ... *central*

https://youtu.be/wQ3TX65MnjM?t=22

Types of centrality measure

•Non-spectral

- -Degree
- -Closeness and harmonic closeness
- -Betweenness
- Spectral
- -HITS
- -PageRank

Is u a well-connected person?

- •Degree: *u* has many connections
- **.Closeness:** *u* is close to many people
- -Average distance from *u* is small
- **.Betweenness**: many connections pass through *u*
- -Large number of shortest paths pass through *u*
- **.PageRank**: *u* is connected to the well-connected

Closeness

Closeness

•Distance between two nodes is d(u,v)

.Closeness is the reciprocal of the sum of distances

closeness
$$(u) = \frac{1}{\sum_{v \in V, v \neq u} d(u, v)}$$

•Some graphs are not connected, in that case d(u,v) can be ∞ ; assuming $1/\infty = 0$ one can define the **harmonic closeness**:

$$hcloseness(u) = \sum_{v \neq u} \frac{1}{d(u, v)}$$

Exercise

closeness $(u) = \frac{1}{\sum_{v \in V, v \neq u} d(u, v)}$

Compute closeness and harmonic closeness for all the nodes; d(u,v) = 1 if v is a neighbor of u

$$hcloseness(u) = \sum_{v \in V, v \neq u} \frac{1}{d(u, v)}$$

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

Betweenness

Definitions

The **betweenness of a node** is the number of shortest paths that cross that node

The **betweenness of an edge** is the number of shortest paths that cross that edge

Node Betweenness

Graph with nodes colored according to node betweenness

red=low, blue=high

[Wikipedia: Betweenness centrality]

There are 20 shortest paths that cross through the orange node. Why?

The shortest path between nodes X and Y does not cross the orange node, but the shortest path between nodes X and Z does cross the orange node.

Here, nodes and edges are labeled with their betweenness.

Exercise

Compute the node betweenness of the nodes marked with letterA

Pin board: https://upfbarcelona.padlet.org/chato/asfs154waxnnkhgo

Exercise (cont.)

What is a good algorithm to compute node betweenness of all nodes?

What limitations does your algorithm have?

Edge Betweenness

Edge Betweenness

An edge has high betweenness if it is part of many shortest-paths.

Approximate method [sampling]

- •Label all edges e with b(e) = 0
- •Repeat K times:
- -Pick a random pair of nodes (u,v)
- -Compute shortest path between u and v
- $-b(e) \leftarrow b(e) + 1$ for all edges e along the path
- b(e) is a lower bound for betweenness (e)
- •Useful if we only care about finding the edge with the highest betweenness, or finding the top-k edges with the highest betweenness \rightarrow an early stopping criterion is possible

Exact algorithm [Brandes, Newman]

- •For every node *u* in *V*
- -Layer the graph performing a BFS from *u*
- -For every node v in V, $v\neq u$, sorted by layer
- Assign to v a number s(v) indicating how many shortest paths from u arrive to v
- -For every node v in V, $v\neq u$, sorted by reverse layer
- •Score to distribute = 1 + score from children
- •Add score to parent edges in proportion to s(v)
- In the end divide all edge scores by two

For every node u in V

- Layer the graph performing a BFS from u
- •For every node v in V, v≠u, sorted by layer
- Assign to v a number s(v) indicating how many shortest p
- •For every node v in V, v≠u, sorted by reverse layer
- •Score to distribute = 1 + score from children
- •Add score to distribute to parent edges in proportion to so In the end divide all edge scores by two

For every node u in V

Layer the graph performing a BFS from u

.For every node v in V, v≠u, sorted by layer

.Assign to v a number s(v) indicating how many short

•For every node v in V, v≠u, sorted by reverse layer

•Score to distribute = 1 + score from children

•Add score to distribute to parent edges in proportion to so In the end divide all edge scores by two

All nodes in layer 1 get s(v)=1

Remaining nodes: simply add s(.) o

For every node u in V

Layer the graph performing a BFS from u

•For every node v in V, v≠u, sorted by layer

In the end divide all edge scores by two

Assign to v a number s(v) indicating how many shortest p

.For every node v in V, v≠u, sorted by rev. layer

.Score to distribute = 1 + score from children

.Add score to distribute to parent edges in proportion

Nodes without children distribute a

Other nodes distribute 1 + whatever

Result

For every node u in V

- Layer the graph performing a BFS from u
- •For every node v in V, v≠u, sorted by layer
- Assign to v a number s(v) indicating how many shortest p
- •For every node v in V, v≠u, sorted by reverse layer
- •Score to distribute = 1 + score from children
- .Add score to distribute to parent edges in proportion to se

In the end divide all edge scores by two

Computed using NetworkX (edge betweenness)

NetworkX code

```
import networkx as nx
g = nx.Graph()
g.add_edge("A", "B")
g.add edge("A", "C")
g.add_edge("A", "D")
g.add_edge("A", "E")
g.add edge("B", "C")
g.add_edge("B", "F")
```

nx.draw_spring(g, with_labels=True)

•••

nx.edge_betweenness(g, normalized=False)

Exercise

Try to compute **edge betweenness** by inspection first

Then use the Brandes-Newman algorithm; you should get the same results

a

For every node u in V

- Layer the graph performing a BFS from u
- •For every node v in V, v≠u, sorted by layer
- Assign to v a number s(v) indicating how many shortest paths from u arrive to v
- •For every node v in V, v≠u, sorted by reverse layer
- •Score to distribute = 1 + score from children
- •Add score to distribute to parent edges in proportion to s(v) In the end divide all edge scores by two

d

Fractional values?

- In a graph with cycles, you may get fractional values of the edge betweenness for an edge
- •Conceptually, this is because in a graph with cycles there might be s>1 shortest paths between two nodes, each of them counts 1/s

HIGH

A: Degree

B: Closeness

C: Betweenness

LOW

Summary

Things to remember

- Closeness and harmonic closeness
- Node and edge betweenness
- Practice running the Brandes-Newman algorithm on small graphs
- Write code to execute the Brandes-Newman algorithm

Constructive problems

 Practice drawing examples of graphs in which a chosen node has high degree but low closeness, or viceversa

 Can you find a graph in which there is a node that has the maximum degree and the minimum closeness? If not, why?

Constructive problems

- 1.Sketch a graph of N nodes in which a node, which you should mark with an asterisk (*), should have betweenness approximately equal to N and closeness approximately 1/N for large N. Explain briefly.
- 2.Sketch a graph of N nodes in which a node, which you should mark with an asterisk (*), should have betweenness approximately equal to N and closeness approximately 2/N² for large N. Explain briefly.

Do not use a concrete N. Use a general N, for instance by using the ellipsis (\ldots) to denote multiple nodes.

Sources

- •D. Easly and J. Kleinberg (2010). Networks, Crowds, and Markets <u>Section 3.6B</u>
- •A. L. Barabási (2016). Network Science Section 9.3
- •P. Boldi and S. Vigna (2014). <u>Axioms for Centrality</u> in *Internet Mathematics*
- •Esposito and Pesce: <u>Survey of Centrality</u> 2015.
- •URLs cited in the footer of slides

Sources

- D. Easley and J. Kleinberg (2010). Networks, Crowds, and Markets – <u>Section 3.6B</u>
- •P. Boldi and S. Vigna (2014). <u>Axioms for Centrality</u> in *Internet Mathematics*.
- •Esposito and Pesce (2015): <u>Survey of Centrality</u>.
- •F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science Chapter 02

Practice on your own

•Compute edge betweenness on this graph

Practice on your own (cont.)

If you don't get this result, check:

https://www.youtube.com/watch?v=uYjWbp8VC7c