Ha npasax pykonucu OR HGKEG ACC

ЗАВГОРОДНЯЯ Юлия Анатольевна

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ГУМИНОВЫХ КИСЛОТ И ГРИБНЫХ МЕЛАНИНОВ

Специальность 04.00.03 - биогеохимия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

MOCKBA 2000 Работа выполнена на кафедре химии почв факультета Почвоведения Московского государственного университета имени М.В.Ломоносова

Научный руководитель: профессор, доктор биологических наук

Орлов Д.С.

Официальные оппоненты: профессор, доктор биологических наук

Карпухин А.И.

доцент, кандидат биологических наук

Богатырев Л.Г.

Ведущая организация: Почвенный институт им. В.В.Докучаева

Защита диссертации состоится **25 реврам** 2000 г. в 15 час. 30 мин. в аудитории М-2 на заседании диссертационного совета по биогеохимии Д.053.05.57 МГУ им. М.В.Ломоносова по адресу: 119899, г.Москва, Воробьевы горы, МГУ, факультет почвоведения, Ученый совет.

Приглашаем Вас принять участие в обсуждении диссертации на заседании диссертационного совета, отзывы на автореферат в 2-х экземплярах, заверенные печатью, просим присылать по указанному выше адресу.

С диссертацией можно ознакомиться в библиотеке факультета Почвоведения МГУ.

Автореферат разослан 24 <u>января</u> 2000 г.

Ученый секретарь

диссертационного совета

77032, 350

77032, 505, 4, 0

Michaeleref Arankuna Г.И.

Актуальность работы. В образовании гуминовых кислот принимают участие различные органические соединения растительного, животного и микробного происхождения, поступающие в почву. Особое место среди них занимают меланины - высокомолекулярные темноокрашенные пигменты, продушируемые многими почвенными грибами, отдельные представители которых встречаются в почвах всех зон.

По данным R.A.Nicolaus [1968], К.М.Запрометовой и др. [1971], А.А.Маламы [1975], Z.Filip et al. [1976], L.F.Linhares and J.P.Martin [1978], С.П.Лях [1981], S.Paim et al. [1990] и других авторов, некоторые грибные меланины сходны с гуминовыми кислотами по элементному составу, содержанию функциональных групп, ИК-спектрам, УФ- и видимым спектрам, ЯМР-спектрам, содержанию ароматических фрагментов, аминокислот и полисахаридов. Количество пигментов, попадающих с мицелием в почву, составляет сотые и тысячные доли миллиграмма на 1 грамм почвы и, с учетом неоднократного поступление мицелия в течении года, меланины могут составить значительную долю от органического вещества почвы. Это позволяет некоторым исследователям [Капg, Felbeck, 1964; Запрометова, Мирчинк, 1979; Звягинцев, Мирчинк, 1986] утверждать, что грибные пигменты могут в неизмененном виде не только включаться в стабильные фракции органического вещества почвы, известные как гуминовые кислоты и гумин, но и доминировать в их составе.

Сама по себе близость химического состава и свойств грибных меланинов и почвенных гуминовых кислот еще не говорит о структурном сходстве молекул этих групп веществ и не позволяет однозначно оценчть роль пигментов в формировании гумуса. Вклад меланинов в гумусообразование, вероятно, во многом будет определяться их биохимической устойчивостью, способностью длительное время сохраняться в неизменном виде в почвенных условиях.

Цель работы: Дать сравнительную характеристику гуминовых кислот и грибных меланинов по их химическим свойствам и устойчивости к биодеградации.

Задачи: 1. Получить сравнительную характеристику химических свойств меланиновых пигментов и гуминовых кислот из дерново-подзолистой почвы, чернозема, бурого угля и торфа.

2. Определить скорость минерализации почвенными микроорганизмами грибных меланинов и гуминовых кислот.

- 3. Изучить изменения в химическом составе и молекулярно-массовых распределениях меланинов и гуминовых кислот в процессе их деградации почвенными микроорганизмами.
- 4. Определить степень устойчивости меланинов и гуминовых кислот к биотическому и абиотическому разрушению.

Научная новизна работы. Впервые исследованы свойства гуминовых кислот из дерново-подзолистой почвы (ГКД), чернозема (ГКЧ), торфа (ГКТ) и угля (ГКУ) и меланинов из мищелия грибов Aspergillus niger (МА) и Cladosporium cladosporiodes (МК). Показано, что грибные меланины отличаются от гуминовых кислот более высокой молекулярной массой, повышенным содержанием кислых функциональных групп и низкой степенью окисленности.

Определена скорость минерализация гуминовых кислот и меланинов в условиях модельного эксперимента. Установлено, что при биодеградации гуминовых кислот снижается степень их полидисперсности и увеличивается их растворимость в воде. Получено, что при биодеградации грибных меланинов происходит сближение их элементного состава, молекулярных масс и оптических свойств со свойствами гуминовых веществ.

Показано, что скорость ферментного гидролиза протеазой близка для выделенных из почвы гуминовых кислот, и резко различается для исследованных меланинов. Установлено, что меланин *Cladosporium cladosporiodes* более устойчив к воздействию молекулярного кислорода по сравнению с ГК дерново-подзолистой почвы

Практическая значимость работы. Результаты работы могут быть использованы при изучении химического строения почвенных гуминовых кислот, для оценки устойчивости гумусовых веществ к разложению и прогнозирования изменения запасов органического вещества почв.

Апробация работы. Основные положения диссертации были доложены на международных конференциях студентов и аспирантов «Ломоносов-97» (1997 г.), «Ломоносов-98» (1998 г.), «Ломоносов-99» (1999 г.), на международном научном семинаре «Трансформация и гумификация органических материалов в почвах» (1997 г.), на заседании кафедры химии почв факультета почвоведения МГУ (1999 г.).

Публикации. По теме диссертации опубликовано 6 работ.

Структура и объем диссертации. Диссертация состоит из введения, 7 глав, выводов и списка цитируемой литературы. Работа изложена на <u>IDS</u> страницах машинописного текста, включает <u>IZ</u> таблиц и <u>Z5</u> рисунков Список литературы включает <u>IZ5</u> работ, в том числе <u>B3</u> - на иностранных языках.

Работа выполнена при поддержке грантов ФЦНТП «Глобальные изменения природной среды и климата» проект 4.3.1. и РФФИ № 99-04-48007.

ОБЪЕКТЫ И МЕТОДЫ

В качестве объектов исследования были взяты следующие препараты ГК:

- гуминовая кислота из горизонта A1 дерновой среднеподзолистой почвы на моренном суглинке, взятой с Леспой опытной дачи МСХА им. К.А.Тимирязева;
- гуминовая кислота из горизонта A1 чернозема обыкновенного, взятого с 200летней некосимой залежи Каменной степи, Таловский р-н, Воронежская обл.;
 - гуминовая кислота из торфа (препарат фирмы Merck);
- гуминовая кислота из сильновыветрелого бурого угля Канско-Ачинского угольного бассейна (промышленный препарат гумата натрия ТУ 211-06-18-94).

Выделение препаратов гуминовых кислот. Препараты гуминовых кислот из дерново-подзолистой почвы и чернозема обыкновенного были выделены по стандартной методике [Орлов, Гришина, 1981]. Полученные препараты почвенных ГК, а также промышленные препараты гуминовых кислот из торфа и бурого угля очищали от органо-минеральных примесей высаливанием и переосаждением.

Выделение препаратов грибных меланинов. Мицелий грибов наращивали в течение 2-3 недель на жидкой питательной среде [Linhares, Martin, 1978] при температуре 20-25°С. Затем мицелий извлекали из сосудов, промывали дистиллированной водой и высушивали при температуре 40°С. Мицелий обрабатывали 0,1 н. NaOH и в полученном экстракте осаждали меланин НСI (pH~1-2). Для очистки от низкомолекулярных примесей меланины несколько раз переосаждали и промывали дистиллированной водой.

Химические свойства гуминовых кислот и меланинов. Элементный состав препаратов был определен на CHNS-анализаторе «Сагlo Erba» 1106 (Т=1000°С). Спектры поглошения растворов в УФ- и видимой области снимали при рН~11-12 на спектрофотометре UV-260 Shimadzu; ИК-спектры были сняты на спектрофотометре ИКС-29 с применением КВг-техники [Орлов, Осипова, 1988]. Содержание углеводных компонентов в препаратах определяли по методу Дюбуа [Орлов, Гришина, 1981].

Общее содержание кислых функциональных групп рассчитывали по данным потенциометрического титрования, которое проводилось на pH-метре Horiba при $25\pm0,1^{\circ}$ C в атмосфере N_2 при концентрации препаратов 0,5 мг/мл и ионной силе 0,1.

Молекулярно-массовые распределения препаратов были получены методом гельфильтрации на геле Sephadex G-100. В качестве элюента использовали 0,025М Tris-HCl буфер (рН 8,2) с добавлением 0,1% додецилсульфата натрия, 0,05М NaCl и 0,02% NaN₃. Все образцы предварительно пропускали через колонку с гелем Sephadex G-10 для очистки от низкомолекулярных примесей и переведения в Tris-HCl буфер.

Гидрофильно-гидрофобные свойства препаратов определяли методом гидрофобной хроматографии на октил-сефарозе CL-4B в 0,05М Tris-HCl буфере при ступенчатом градиенте 0,3% додецилсульфата натрия.

Схема эксперимента по биодеградации гуминовых кислот и меланинов. 70-100 мг препарата смешивали с 20 г кварцевого песка, в полученную смесь вносили 200мг глюкозы, меченной ¹⁴С, в виде концентрированной глюкозо-минеральной смеси [Паников и др., 1982], и почвенный инокулят. Влажность полученной смеси доводили до 60% от ПВ и инкубировали 3 месяца в сосудах объемом 100 мл с герметичной крышкой при T=25°C. Модельный эксперимент с некоторой степенью условности воспроизводит ежегодное поступление с растительным опадом в почву легкоминерализуемого органического вещества и его деструкцию в присутствии стабильных фракций гумуса.

Скорость минерализации ГК и меланинов рассчитывали по разности между суммарным количеством выделившейся из инкубационных сосудов CO₂ и количеством выделившегося ¹⁴CO₂, источником которого являлась ¹⁴C-глюкоза или продукты метаболизма и лизиса выросшей на ней микробной биомассы, равномерно меченной ¹⁴C. Разложение ГК торфа, к которой была добавлена немеченая глюкоза, определяли по разности между эмиссией CO₂ из сосудов с ГК и эмиссией из контрольных сосудов. Контролем являлась смесь почвенного инокулята и глюкозы, внесенная в чистый песок.

После 2, 6 и 9 недель эксперимента инкубационные сосуды снимали и их содержимое последовательно обрабатывали водой (в отношении 1:5) и 0,1н. NaOH (в отношении 1:10). Щелочной экстракт подкисляли HCl, полученный осадок, который представлял собой собственно гуминовую кислоту или меланин, переосаждали и промывали водой. Количество углерода ГК или меланина, переходящее в экстракты определяли по разности между общим содержанием в них С и содержанием ¹⁴С, присутствие которого объясняется образованием при инкубации водо- и щелочерастворимых продуктов

микробного синтеза. Опыт проводили в 3-5-кратной повторности, доверительный интервал рассчитывали для P=0,95.

Количество выделившегося CO₂ при минерализации гуминовых кислот и меланинов определяли абсорбционным методом с титриметрическим окончанием [Шарков, 1983, 1984, 1987; Иванникова, 1992]. В качестве поглотителя использовали 0,5н. КОН, избыток которого, не связавшийся с CO₂, оттитровывали 1,0н. H₂SO₄.

Измерение радиоактивности. Для определения активности ¹⁴С в растворах аликвоту раствора помещали в гелиевый сцинтиллятор и определяли радиоактивность смеси на жидкостном сцинтилляционном счетчике LKB RackBeta 1217 с учетом поправок на гашение.

Ферментативная деструкция гуминовых кислот и меланинов. Деструкцию препаратов трипсином проводили в 0,05М Tris-HCl буфере с добавлением 0,03% тритона X-100 при рН 8,2. Смесь, содержащую в 20мл буфера 8 мг трипсина и 40 мг исследуемого препарата, инкубировали 7 часов при T=37±0,1°C. Через каждый час отбирали 1 мл смеси, добавляли 1мл 10% ТХУ для остановки реакции, смесь оставляли на 10 мин для коагуляции, осадок центрифугировали 10 мин при 2000g и измеряли оптическую плотность надосадочной жидкости при длине волны 280нм на спектрофотометре СФ-41. По изменению оптической плотности раствора, возникающей в результате отщепления от препарата низкомолекулярных кислоторастворимых продуктов, определяли динамику деструкции.

Облучение препаратов светом. Растворы гуминовой кислоты и меланина облучали светом с длиной волны 360-660 нм при рН~10. Облучение проводили в течении 1 часа в закрытой кювете с предварительной продувкой Аг и в открытой кювете в атмосфере кислорода. Оптическую плотность растворов ГК и меланина снимали на спектрофотометре СФ-46, ММ-распределения получали на геле Sephadex G-50F (элюент - 0.025М Tris-HC1 буфер (рН 8.2)+0,1% ДСН+0,05М NаС1). Фракции ГК получали на геле Sephadex G-50F в 0,05М NаОН.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА МЕЛАНИНОВ ПОЧВЕННЫХ ГРИБОВ

Известно, что грибные меланины широко варьируют по своим свойствам. Для выбора меланина, который мог быть использован в последующих опытах, был проведен сравнительный анализ 15 темноокрашенных пигментов, образуемых почвенными

грибами (табл.1). Экстракцию пигментов проводили описанным выше методом с продувкой щелочных экстрактов N_2 .

Таблица 1. Содержание и свойства грибных меланинов

Вид гриба	Содер- жание	E465 0 001°-4	<u>E</u> 4	Содержание фракций (%) с ММ			
•	меланина		E ₆	>150000	~70000	6000-	
	(%)					12000	
Gliocladium catenulatum	0,3	0,033	6,9	23	63	14	
Gilman 72						1	
Aspergillus candidus Link.7	0,4	0,018	5,4	15	74	11	
Cladosporium cladosporiodes	0,2	0,011	3,8	20	40	40	
de Vries 2							
Cladosporium sp. 86	0,4	0,015	3,9	18	62	20	
C. cludosporiodes 90	0,6	0,026	4,0	36	56	8	
Alternaria sp. 80	0,4	0,033	4,9	21	43	36	
A. alternata Keiss 38	0,5	0,033	5,0	11	67	22	
Alternaria sp. 53	1,2	0,019	3,6	11	70	19	
Ulocladium sp. 98	0,7	0,015	3,6	18	51	31	
Ulocladium botrytis Preuss.42	1,2	0,018	3,2	30	60	10	
Drechlera dematiadeae Bubuk. 20	1,5	0,049	4,8	27	47	26	
Verticillium lateritium Berkely 95	1,9	0,056	9,8	28	32	40	
Penicillium sp. 79	2,3	0,038	7,9	31	55	14	
Acremonium sp. AB	7,4	0,032	8,9	23	62	15	
Stachybotrys atra Corda 1	9,2	0,041	6,5	2	84	14	

Выход меланинового пигмента в исследованных грибах варьировал от 0,3 до 92%. По данным гель-фильтрации все полученные меланины состоят из трех фракций со средневесовыми молекулярными массами >150000, ~70000 и 6000-12000 и имеют относительно низкую оптическую плотность по сравнению с почвенными ГК (Е₄₆₃ 0.001% С составляли 0.01-0.05). Для молекулярного состава большинства меланинов характерно преобладание фракции с ММ~70000 и относительно невысокое содержание фракции с ММ~6000-12000 (<40%), что отличает их от почвенных гуминовых кислот, в составе которых низкомолекулярная фракция преобладает.

Использование при экстракции меланинов N_2 в качестве газовой фазы позволяет избежать окисления пигментов кислородом воздуха. При выделении пигментов без продувки азотом наблюдались изменения в их оптических свойствах и ММ-распределениях (табл.2). Увеличение оптической плотности растворов меланинов можно объяснить появлением в ходе реакции с кислородом новых хромофорных группировок в молекулах пигментов. В ряде случаев такие реакции окисления могут сопровождаться разрушением макромолекул, что повышает долю низкомолекулярных фракций в составе

меланина. Полученные результаты указывают на зависимость свойств меланинов от процедуры их выделения из грибного мицелия.

Таблица 2. Содержание и свойства меланинов, экстрагированных из мицелия 0,1 и. NaOH с продувкой $N_2(1)$ и без продувки $N_2(2)$

		Мела-			Содержание фракций (%) с ММ					
Вид гриба		нин (%)	E ₄₆₅ 0 001° &	E₄/E ₆	>150000	~70000	~40000	6000- 12000		
Alternaria	1	0,5	0,033	5,0	11	67	-	22		
alternata Keiss 38	2	1,7	0,043	4,9	29	•	16	55		
Ulocladium sp. 98	1	0,7	0,015	3,6	18	51	-	31		
	2	3,3	0,052	3,8	4	13		83		
Drechlera dema-	1	1,5	0,049	4,8	27	47	-	26		
tiadeae Bubuk. 20	2	2,6	0,056	3,8	21	-	19	60		
Cladosporium	1	0,6	0,026	4,0	36	56	-	8		
cladosporiodes 90	2	1,0	0,030	3,6	40	42	-	18		

На основании полученных результатов для дальнейших исследований был отобран меланин (ladosporium cladosporiodes, молекулярные параметры и оптические свойства которого наиболее контрастно отличались от свойств гуминовых кислот и незначительно изменялись при экстракции в присутствии кислорода. Также был взят меланин гриба Aspergillus niger, хорошо изученный и описанный в литературе [Kang, Felbeck, 1965; Barbetta et all., 1967; Nicolaus, 1968 и др.]. Оба гриба являются космополитными и встречаются во всех зональных почвах, но для почв умеренной зоны Aspergillus niger встречается чаще в минеральных горизонтах, а Cladosporium cladosporiodes - в подстилках и органогенных горизонтах.

ХИМИЧЕСКИЕ СВОЙСТВА ГРИБНЫХ МЕЛАНИНОВ И ГУМИНОВЫХ КИСЛОТ

По элементному составу (табл.3) исследованные гуминовые кислоты и меланины в целом сходны между собой. Невысокие значения отношения Н:С (0,8-1,1) указывают на преобладание в составе ГК ароматических структур. ГК из торфа и угля отличаются от почвенных низким содержанием азота, а ГК угля и высокой степенью окисленности. Меланин Cladosporium cladosporiodes отличается от препаратов гуминовых кислот и меланина Aspergillus niger более высоким содержанием азота (7,2%) и низкой степенью окисленности, а широкое отношение Н:С указывает на значительное содержание алифатических компонентов в составе меланина.

Таблица 3. Элементный состав гуминовых кислот и меланинов (над чертой -масс.%, под чертой - ат.%)

Препарат	Зола,%	С	Н	N	0	H:C	O:C	C:N	Степснь
		L					<u> </u>		окисленности, ω
ГКД	3,2	54.2	5.0	4,6	36,2	1,11	0,50	13,81	-0,10
		37,3	41,3	2,7	18,7				
ГКЧ	6,2	55,9	3,9	<u>5,1</u>	35,1	0,84	0,47	13,06	+0,10
		41,8	35,3	3,2	19,7				
ГКТ	1,9	51,2	4,8	2,8	41,2	1,13	0,60	21,12	+0,08
	1 .	35,9	40,7	1,7	21,7	1)		
ГКУ	6,7	45,5	3,2	0,9	50,4	0,84	0,83	62,00	+0,82
	1	37,2	31,4	0,6	30,9		1		-
MA	1,7	54,5	5,1	5,4	35,0	1,12	0,48	12,03	-0,15
		37,3	41,6	3,1	18,0	1	1	'	,
MK	1,9	52,3	5,8	7,2	34,7	1,33	0,50	8,48	-0,34
		33,9	45,2	4,0	16,9				

Спектр поглощения меланина Cladosporium cladosporiodes в УФ- и видимой области (рис.1) так же, как и спектры поглощения всех ГК, имеет вид пологой кривой. Однако на спектре меланина Aspergillus niger видны два четких максимума при длине волны 300 нм и 420 нм. Коэффициент экстинкции (табл.6) меланина Aspergillus niger значительно выше, чем у всех гуминовых кислот (0,176), что, вероятно, можно объяснить наличием в молекуле пигмента большого количества сопряженных двойных связей. $E_{465}^{0.001\%C}$ меланина Cladosporium cladosporiodes значительно ниже, чем у всех ГК (0,03).

Рисунок 1. Спектры поглощения гуминовых кислот и меланинов в ультрафиолетовой и видимой области (концентрация растворов - 0,1 мг/мл, концентрация меланина Aspergillus niger - 0,05 мг/мл)

ИК-спектры всех препаратов имеют сходную форму (рис.2). Спектры ГК дерновоподзолнстой почвы и меланина Cladosporium cladosporiodes несколько отличаются от
остальных невысокой интенсивностью полосы при 1610 см⁻¹, вызываемой колебаниями
ароматических С=С связей, что при высокой интенсивности полос 2920 и 2860 см⁻¹
(валентные колебания СН₂-, СН₃-групп) указывает на значительную долю алифатических
компонентов в составе препаратов. Спектры этих препаратов характеризуются также
наличием полосы поглощения при 1530см⁻¹, обусловленной присутствием амидных
группировок. Наибольшую интенсивность имеет эта полоса на спектре меланина
С'ladosporium cladosporiodes, что, вместе с высоким содержанием азота, свидетельствует
о наличии большого числа пептидных фрагментов в составе пигмента.

По данным потенциометрического титрования количество кислых функциональных групп в меланинах выше, чем в гуминовых кислотах (табл.4). Причем меланины содержат вдвое больше кислых групп, титрующихся в диапазоне рН 8.0-10.5, в котором диссоциируют слабокислые фенольные группы. Для всех изученных препаратов титрование необратимо - наблюдается гистерезис. Соответственно, величины

общего содержания функциональных групп, определенные методом обратного титрования выше величин, определенных при прямом.

Таблица 4. Содержание функциональных групп в гуминовых кислотах и меланинах (по данным потенциометрического титрования)

	0	братное т	итрование	-)акомм) э	Прямое титрование (ммоль(-)/г)			
Препарат			интер	вал рН			интер	вал рН
	общее	4,0-5,0	5,0-7,0	7,0-8,0	8,0-10,5	общее	4,0-7,5	7,5-10,0
ГКД	5,90	2,3	2,31		1,65	3,76	2,86	0,90
ГКЧ	6,04	2,	2,34		1,64	3,95	2,87	1,08
ГКТ	5,80	2,4	42	1,69.	1,691	3,92	2,40	1,52
ГКУ	5,60	2,	2,40		1,60	3,98	2,79	1,19
MA	9,00	0,96	4,	48	4,16	3,41	1,55	1,86
MK	10,56	0,64	3,20	1,92	4,80	2,50	1,25	1,25

Константы диссоциации ГК и меланинов в целом сходны между собой и находятся в пределах 4.4-4.7; 7.5-8.1; 9.6-9.9, но для меланина *Cladosportum cladosportodes* установлено наличие четвертого типа функциональных групп с рК 6.3, который титруется в диапазоне рН 5.0-7.0 (табл.5).

Таблица 5. Константы диссоциации гуминовых кислот и меланинов

Препарат	C	братное	титрован	ие	грование	
	pK ₁	pK ₂	pK₃	pK₄	pK ₁	pK ₂
ГКД	4,6	-	7,7	9,8	5,1	9,5
ГКЧ	4,7	- :	8,1	9,9	4,9	9,6
ГКТ	4,7	-	7,9	9,8	4,8	9,4
ГКУ	4,7		7,8	9,6	4,9	9,4
MA	4,4	-	7,5	9,9	5,1	9,4
MK	4,5	6,3	7,6	9,8	5,3	9,4

От гуминовых кислот меланины отличает более высокое относительное солержание в их составе высокомолекулярных фракций, причем наиболее высокомолекулярным является меланин Cladosporium cladosporiodes (табл.6).

Таблица 6. Физико-химические свойства гуминовых кислот и меланинов.

Препарат	E465 0 001 4C	E4/E6	Содержание фракций (%) с ММ			Содержание углеводов,	Содержание гидрофильной
		1	>150000	~70000	-10000	%	фракции, %
ГКД	0,075	4,6	7	21	72	3,6	53
ГКЧ	0,115	4,0	3	13	84	4,6	56
ГКТ	0,081	5,2	4	14	82	3,1	42
ГКУ	0,144	5,8	2	4	94	2,3	49
MA	0,176	2,9	8	30	62	5,0	-
MK	0,030	3,6	40	42	18	3,4	14

БИОДЕГРАДАЦИЯ ГРИБНЫХ МЕЛАНИНОВ И ГУМИНОВЫХ КИСЛОТ В УСЛОВИЯХ МОДЕЛЬНОГО ЭКСПЕРИМЕНТА

Скорость минерализации грибных меланинов и гуминовых кислот. Потребление внесенной глюкозы и рост микроорганизмов при инкубации начался на сутки раньше по сравнению с контрольным для вариантов с ГК чернозема, ГК угля, ГК торфа и меланином Cladosporium cladosporiodes, что может быть связано со стимулирующим эффектом этих препаратов, обладающих по нашим данным [Орлов и др., 1997] биологической активностью. После 2-х недель инкубации, в течении которых вся глюкоза была минерализована или включена в микробную биомассу, в виде СО2 выделилось около 70% внесенного ¹⁴С. После этого в выделяющемся СО2 начинала нарастать доля нерадиоактивного С, источником которого являлись разлагающиеся препараты. За последующие 10 недель только около 10% внесенной радиоактивной метки выделилось в виде СО2 вследствие эндогенного метаболизма меченной микробной биомассы и ее реутилизации.

Рисунок 3. Минерализация гуминовых кислот и меланинов

По результатам эксперимента было установлено, что за три месяца было минерализовано и выделилось в виде CO_2 8.2% углерода ГК чернозема и 12.1% углерода ГК дерново-подзолистой почвы. Степень минерализации меланинов оказалась в два раза выше и составила 22.2 и 24.7% для меланина Aspergillus niger и меланина Cladosporium cladosporiodes, соответственно. Причем скорость разложения меланинов была особенно высокой в первые 4 недели. Наиболее устойчивыми к биодеградации оказались препараты ГК из торфа и угля - за 3 месяца было минерализовано всего 3-4% углерода (рис.3).

Изменение во фракционном составе грибных меланинов и гуминовых кислот при биодеградации. При разложении почвенных гуминовых кислот и ГК торфа после 2-х недель опыта происходит уменьшение содержания углерода гуминовых кислот в водном экстракте (рис.4), затем количество углерода водорастворимой фракции нарастает, причем наиболее интенсивно для ГК чернозема. Вероятно, за первые 2 недели в процессе кометаболизма происходит частичная минерализация компонентов водорастворимой фракции ГК, как наиболее доступных для действия микроорганизмов. В дальнейшем, при более глубокой деструкции молекул ГК от них отщепляются новые низкомолекулярные водорастворимые фрагменты (по данным гель-фильтрации на геле Sephadex G-100 их молекулярная масса не превышала 5 000). Содержание углерода в шелочных экстрактах ГК при этом снижается.

Для ГК угля изменения во фракционном составе в ходе инкубации были незначительны. Наблюдалось лишь небольшое снижение содержания углерода ГК в водном экстракте (рис.4).

Содержание водорастворимой фракции меланина Cladosporium cladosporiodes при инкубации увеличивается. Результаты хроматографии на геле Sephadex G-10, полученные для водного экстракта (рис.6), показывают, что водорастворимая часть меланина становится более низкомолекулярной и представляет собой, по-видимому, осколки, отщепленные от крупных молекул.

Наименее гидрофильный меланин Aspergillus niger в водную вытяжку практически не переходил.

Рисунок 4, Изменение содержания углерода гуминовых кислот и меланинов в экстрактах при инкубации

Изменение свойств грибных меланинов и гуминовых кислот при биодеградации. По данным элементного анализа, во всех инкубированных препаратах практически не изменяется содержание азота, в гуминовых кислот несколько повышается содержание водорода (табл.7).

Таблица 7. Изменение элементного состава гуминовых кислот и меланинов (в ат.%) после инкубации (над чертой - до инкубации, под чертой - после инкубации)

Препарат	С	Н	N	0	H:C	O:C	C:N	Степень
								окисленности, ω
ГКД	37,3	41,3	<u>2,7</u>	<u>18,7</u>	1,11	0,50	13,81	<u>-0,10</u>
	36,5	41,7	2,5	19,3	1,14	0,53	14,41	-0,08
ГКЧ	41,8	35,3	<u>3,2</u>	19,7	0,84	0,47	13,06	<u>+0,10</u>
	39,0	36,9	3,2	20,9	0,95	0,54	12,08	+0,13
ГКТ	35,9 35,4	40,7	<u>1,7</u>	21,7	1,13	0,60	21,12	+0,08
	35,4	42,2	1,9	20,5	1,19	0,58	18,85	-0,03
ГКУ	37,2	31,4	0.6	30,9	0,84	0,83	62,00	+0,82
	39,2	35,2	0,7	24,9	0,90	0,64	60,08	+0,37
MA	37,3	41,6	3,1	18,0	1.12	0,48	12,03	<u>-0,15</u>
L	38,2	39,5	2,9	19,4	1,03	0,51	13,12	-0,02
MK	33,9	45,2	4.0	16,9	1,33	0,50	8,48	<u>-0,34</u>
	35,9	39,7	4,5	20,0	1,11	0,58	8,05	0,01

Для ГК угля после инкубации заметно снижается степень окисленности, что сопровождается некоторым снижением значения $E_{465}^{0,001\%}$ препарата (табл.8). Оптические свойства остальных гуминовых кислот существенно не изменяются. Наблюдается лишь небольшое понижение оптической плотности после двух недель инкубации (табл.8).

Для меланина Cladosporium cladosporiodes увеличивается содержание утлерода и кислорода и снижается - водорода (табл.7). Увеличение степени окисленности меланина при инкубации сопровождается резким (более чем в 3 раза) повышением оптической плотности (табл.8), которая может быть вызвана появлением дополнительного количества хромофорных группировок в молекулах пигмента. Оптическая плотность меланина Aspergillus niger в ходе минерализации становится ниже, при этом отношение Н:С сужается. По-видимому при минерализации меланина Aspergillus niger разрушаются алифатические мостики, связывающие ароматические фрагменты молекулы, что вызывает укорачивание цепи сопряженных связей и снижение оптической плотности пигмента.

Во время эксперимента поступление ¹⁴С в осаждаемые кислотой фракции ГК и меланинов наблюдалось только на 16 сутки инкубации (рис.5). После 3 месяцев

инкубации небольшое количество ¹⁴С (2-3% от внесенного) было обнаружено только в осадках ГК дерново-подзолистой почвы и меланина Aspergillus niger.

Рисунок 5. Поступление ¹⁴С в гуминовые кислоты и меланины во время инкубации.

После двух недель инкубации происходит незначительное повышение содержания высокомолекулярной фракции с ММ>150000 в составе ГК и меланинов (табл.8), что кореллирует с наличием в препаратах радиоактивной метки. Увеличение доли высокомолекулярных фракций может быть вызвано с одной стороны - включением в молекулы ГК и меланинов крупных фрагментов белка микробного происхождения (так называемое «фрагментарное обновление ГК»), с другой стороны - механическим соосаждением вместе с ГК или меланинами тех же фрагментов, которые при более длительных сроках инкубации минерализуются микроорганизмами.

В дальнейшем наблюдается снижение доли высокомолекулярных фракций и повышение содержания низкомолекулярной в составе всех препаратов (табл.8), что может свидетельствовать о меньшей устойчивости высокомолекулярных фракций к биодеградации. Особенно интенсивно разрушаются высокомолекулярные фракции меланина (ladosportum cladosportodes - за время эксперимента их содержание

уменьшается в 2 раза, что, наряду с повышением оптической плотности, вызывает сближение свойств пигмента со свойствами гуминовых кислот.

Таблица 8. Изменение оптических свойств и молекулярных масс гуминовых кислот и меланинов в ходе инкубации.

Препарат	Время инкубации,	E463 0 00 1940	5./E6	Содерж	кание фракт с ММ	
• •	сутки			>150000	~70000	~10000
ГКД	0	0,076	47	7	21	72
	16	0,070	4,0	10	18	72
	47	0,074	4,7	7	16	77
	91	0,077	4,6	4	13	81
ГКЧ	0	0,117	4,0	3	13	84
	16	0,101	4,0	5	12	83
	47	0,115	4,1	2	9	89
	91	0,117	4,0	1	5	94
ГКТ	0	0,082	5,2	-1	14	82
	16	0,071	5,0	8	- 11	81
	79	0,080	5,0	3 _	9	88
ГКУ	0	0,145	5,8	2	4	94
	16	0,125	4,2	5	4	91
	47	0,128	4,8	4	4	92
	91	0,134	5,2	2	3	95
MA	0	0,179	3,0	(8)*	(30)	(62)
	16	0,141	2,9	(10)	(32)	(58)
	47	0,153	2,9	(8)	(2'7)	(65)
	91	0,157	3,1	(6)	(26)	(68)
MK	0	0,030	3,8	40	40	20
	16	0,041	3,6	42	44	14
	47	0.080	3,7	29	24	47
	91	0,096	3,7	22	28	50

^{* -} в скобках приведены данные о молекулярно-массовом составе фрак при мсланина, не сорбирующейся на Сефадексах (~25% от общего веса)

На гель-хроматограммах почвенных ГК (рис.6) видно, что максимум пика низкомолекулярной фракции сдвигается в область более высоких мол екулярных масс, при этом сам пик становится уже и симметричнее, то есть при чинерализации понижается полидисперсность гуминовых кислот.

ФЕРМЕНТАТИВНЫЙ ГИДРОЛИЗ ГРИБНЫХ МЕЛАНИНОВ И ГУМИНО. В Б. IX КИСЛОТ

Многие почвенные грибы, бактерии и актиномицеты способны выделять 13 окружающую среду протеолитические и целлюлолитические ферменты, сохраняющие

Рисунок 6. Изменение ММ-распределений ГК и меланина при инкубации
— до инкубации — после 16 суток инкубации
— после 47 суток инкубации — после 91 суток инкубации

свою активность в почвенных условиях. За счет действия ферментов осуществляется биотическая деструкция гуминовых веществ и меланиновых пигментов в почвк [Мишустин, Никитин, 1961; Mathur, 1971]. Было исследовано разложение гуминовых кислот и меланинов под действием протеолитического фермента трипсина.

Ферментолиз почвенных ГК протекал практически одинаково: выход кислоторастворимых продуктов постепенно нарастал и достигал максимума через 3 часа экспозиции, величина деструкции была одинакова для ГК чернозема и ГК дерновоподзолистой почвы (рис.7). Менее гидрофильные препараты ГК торфа и угля оказались заметно устойчивей к действию ферментов (примерно в 1.5 раза), что вместе с низким содержанием азота в их составе указывает на невысокое содержание пептидных компонентов.

Рисунок 7. Деструкция гуминовых кислот и меланинов трипсином (по выходу кислоторастворимых продуктов)

Наименее устойчивым к действию трипсина оказался меланин Cladosporium cladosporiodes, что, возможно, связано с высоким содержанием пептидных компонентов в

его составе, причем максимальный выход аминокислот наблюдался уже через 30 минут после начала реакции.

Меланин Aspergillus niger оказался весьма устойчив к воздействию трипсина, величина его деструкции сходна с полученной для ГК угля и торфа. Это может быть связано не только с низким содержанием пептидных компонентов в молекуле меланина, но и с особенностями его аминокислотного состава, так как трипсин предпочтительно расщепляет связи между остатками лизина и аргинина. Можно также предположить, что пептидные цепочки в молекуле меланина слишком короткие и не подвергаются атаке фермента.

В реакционной смеси ГК-фермент происходит не только протеолиз гуминовой кислоты, но и автолиз самого фермента, в результате чего в раствор поступает дополнительное количество отщепленных аминокислот. При ингибировании фермента гуминовой кислотой прекращается и его автолиз, и дополнительного увеличения оптической плотности за счет поступления продуктов расщепления трипсина не происходит. В контрольной же смеси автолиз трипсина идет в течение всего времени эксперимента, следовательно, оптическая плотность надосадочной жидкости продолжает нарастать, и измеряемая разность между оптической плотностью анализируемого и контрольного образца при этом будет уменьшаться.

Если оценивать степень ингибирования фермента по изменению разности оптических плотностей, то наиболее сильным ингибитором трипсина является ГК дерново-подзолистой почвы, затем идет ГК чернозема, ГК торфа и ГК угля. Степень ингибирования обратно коррелирует с содержанием низкомолекулярной фракции в составе ГК. Сильнее всего ингибирует фермент наиболее полидисперсная и высокомолекулярная гуминовая кислота.

При реакции меланина Aspergillus niger с трипсином через 2 часа выход кислоторастворимых продуктов достиг максимума, и оптическая плотность далее не изменялась, что указывает на отсутствие ингибирования фермента в растворе меланина.

устойчивость меланина и гуминовой кислоты к действию молекулярного кислорода

Абиотическим фактором, вызывающим деструкцию гуминовых кислот, может являться молекулярный кислород. В основном состоянии молекулярный кислород малоактивен, но может быть активирован различными агентами, одним из которых является излучение в УФ-области спектра. В отличие от УФ-света, энергии которого достаточно для возбуждения O_2 или разрыва связей в молекулах ГК [Tichy, 1971; Ильин, Орлов, 1973], излучение в видимой области спектра не обладает достаточной энергией для инициирования этих процессов. Однако, поглощение квантов видимого света приводит молекулы ГК в возбужденное состояние, возбуждение может сниматься за счет передачи энергии на молекулы O_2 , которые в свою очередь переходят в активное состояние (фотосенсибиллизация).

Рисунок 8. Изменение молекулярно-массовых распределений ГК дерновоподзолистой почвы и ее фракций при облучении светом

Воздействие молекулярного кислорода воздуха, активированного в результате реакций фотосенсибиллизации, вызывает снижение оптической плотности ГК дерновоподзолистой почвы на 10% (табл.9) и изменение ее ММ-распределения (рис.8). Причем, как показали опыты по облучению двух ее фракций с ММ>30000 и ММ~5000, в растворе ГК одновременно может происходить разрушение высокомолекулярных молекул и полимеризация низкомолекулярных, что на гель-хроматограммах проявляется в снижении высоты высокомолекулярного пика и сужении низкомолекулярного.

Таблица 9. Изменение оптических свойств гуминовой кислоты и меланина при облучении видимым светом.

(условия облучения: 1 - исходный образец; 2 - в закрытой кювете с предварительной продувкой Ar; 3 - в открытой кювете без продувки Ar)

Препарат		рН раствора	E ₄₆₅ 0,025%
	1	9,99	0,825
ГКД	2	9,71	0,773
	3	9,40	0,748
ГКД	1	9,99	0,827
фракция І	2	9,84	0,821
(MM>30 000)	3	9,82	0,792
ГКД	1	9,97	0,349
фракция 2	2	9,86	0,315
(MM~5 000)	3	9,82	0,289
	1	10,00	0,113
MK	2	9,96	0,112
	3	9,92	0,110

Изменений оптических свойств и молекулярных параметров меланина $Cladosporium\ cladosporiodes\ под\ воздействием\ O_2\ при\ облучении\ раствора\ светом\ не обнаружено. Это может объясняться тем фактом, что в клетках микроорганизмов меланины выполняют защитную функцию, предохраняя живые организмы от вредного воздействия повышенной радиации и инсоляции, и, следовательно, не должны разрушаться при интенсивном облучении.$

выводы

- Темноцветные пигменты, выделенные из мицелия 15 различных штаммов почвенных грибов сильно варьируют по оптическим свойствам и молекулярным массам. Общим для всех проанализированных пигментов является преобладание в их составе фракций с молекулярной массой больше 12 000.
- 2. Препараты меланинов грибов Aspergillus niger и Cladosporium cladosporiodes близки к препаратам гуминовых кислот из дерново-подзолистой почвы, чернозема, торфа и угля по элементному составу, содержанию углеводных компонентов и кислотно-основным свойствам, но отличаются от изученных ГК оптической плотностью, более высокой молекулярной массой и повышенным содержанием кислых функциональных групп.
- 3. За три месяца в условиях модельного эксперимента в результате микробной деятельности было минерализовано (по углероду) 12,1% ГК дерново-подзолистой почвы, 8,2% ГК чернозема, 4,5% ГК торфа, 3,0% ГК угля. Скорость минерализации

- меланинов в тех же условиях была в 2 раза выше, чем у почвенных ГК; было минерализовано 22,2% меланина Aspergillus niger и 24,7% меланина Cladosporium cladosporiodes.
- 4. Высокомолекулярные фракции гуминовых кислот менее устойчивы к микробному разложению по сравнению с низкомолекулярной фракцией. При биодеградации происходит отшепление от молекул ГК водорастворимых компонентов, и снижается степень полидисперсности гуминовых кислот.
- 5. В ходе инкубации меланины претерпевают разнонаправленные изменения в своем строении. Минерализация меланина Aspergillus niger сопровождается снижением его оптической плотности, что может быть связано с сокращением цепи сопряженных связей в молекуле пигмента. При минерализации меланина Cladosporium cladosporiodes происходит разрушение его высокомолекулярных фракций, сопровождающееся появлением дополнительного количества кислородсодержащих хромофорных группировок, что ведет к резкому увеличению оптической плотности пигмента.
- 6. Глубина и скорость ферментативного гидролиза трипсином близки для почвенных гуминовых кислот, и резко различаются для меланинов. Наиболее устойчивым к действию трипсина оказался меланин Aspergillus niger, степень его устойчивости сходна с полученной для препаратов ГК из торфа и угля.
- 7. Являясь менее устойчивым, по сравнению с почвенными ГК, к микробному разложению, меланин (*'ladosporium cladosporiodes* в то же время обладает высокой устойчивостью к абиотической деструкции под воздействием молекулярного кислорода.

СПИСОК ПУБЛИКАНИЙ

- Д.С.Орлов, В.В.Демин, Ю.А.Завгородняя «Влияние молекулярных параметров гуминовых кислот на их физиологическую активность», Доклады Академии наук, 1997, том 354, №6, с. 843-845
- Ю.А.Завгородняя «Влияние молекулярных параметров гуминовых кислот на их биологическую активность», IV Всероссийская студенческая конференция «Экология и проблемы защиты окружающей среды». Тезисы докладов, Красноярск, 1997, с. 82

- Ю.А.Завгородняя «Влияние молекулярных параметров гуминовых кислот на их биологическую активность», Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов - 97». Тезисы докладов. Почвоведение. В печати.
- Ю.А.Завгородняя «Сравнительная характеристика физико-химических свойств грибных меланинов», Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов - 98». Тезисы докладов. Почвоведение, Москва, 1998. с. 24
- Ю.А.Завгородняя «Минерализация гуминовых кислот из чернозема и дерновоподзолистой почвы», Докучаевские молодежные чтения «Почва. Экология. Общество.». Тезисы докладов. Почвоведение, Санкт-Петербург, 1999, с. 203
- Ю.А.Завгородняя «Ферментативная деструкция гуминовых кислот и грибных меланинов», Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов - 99». Тезисы докладов. Почвоведение, Москва, 1999, с. 38

Zalof