Real Data Analysis

MA4740 - Introduction to Bayesian Statistics

GROUP - 6 April 21, 2023

Team Members

- Varunaditya Singhal MA20BTECH11021
- Nikhil Kongara MA20BTECH11011
- Megavath Rajinikanth ES20BTECH11018
- Mohd Saad MA20BTECH11009

Introduction

Introduction

Abstract

This project explores the idea of analyzing a real world data set to demonstrate Poisson-Gamma Bayesian analysis. The project is part of the group project MA4740 - Introduction to Bayesian Statistics. The model is implemented in R.

Introduction

Objective

The project includes:

- Real Data Analysis on Dataset:-
 - Stephen Curry 2021 2023 Game log.
- Performing Poisson Gamma Bayesian Analysis on the collected Dataset.

Data Collection

Data Collection

The Dataset

- The data-set was taken from Stephen Curry 2021-23 Game Log
- The data includes stats like number of field goal, number of 3 pointers, number of free throws, assists, blocks, total points, etc.
- Amongst which, we are interested in the number of three pointers he made in each game.

Glimpse of the Dataset

Figure 1: Stephen Curry Game Log

Defining variables

The below representations of the data we used regarding the variables we learned in class.

$$\lambda \sim \mathsf{Gamma}(\alpha, \beta)$$
 (1)

$$Y \mid \lambda \sim Poisson(\lambda)$$
 (2)

$$\lambda \mid Y \propto f(Y \mid \lambda) * f(\lambda)$$
 (3)

Where,

 λ : Average number of 3 - Pointers scored by Stephen Curry per game.

Y = Data of 3 - Pointers over the n entire season (Realised values of Y of size n, $Y_i \mid \lambda \sim Poisson(\lambda)$)

Poisson Gamma Bayesian Data Analysis

- The prior data is taken from the dataset from the years 2021 to 2022.
- We try to fit the prior data to a Gamma Distribution.
 We get λ ~ Gamma(α, β), where,

Formula

$$\mu = \frac{\alpha}{\beta}, \quad \sigma = \frac{\alpha}{\beta^2}$$

Where, α is the shape hyper-parameter and β is the scale hyper-parameter of $Gamma(\alpha, \beta)$.

- From the season 2021-22, Bayesian Analysis has been performed on stephen curry's performance.
- After performing the necessary calculations, we get the values of the hyper-parameters α and β for these months as

Calculations

$$\alpha = 11.17, \quad \beta = 2.47, \quad PriorMean = 4.507$$

The corresponding Prior Distribution graphs are as follows

Figure 2: Prior Distribution

Data-Likelihood Function

From our likelihood data we get that

Result

$$f(Y_1 = y_1,, Y_n = y_n \mid \lambda) = f(y_1,, y_n \mid \lambda)$$

$$= \prod_{i=1}^n f(x_i \mid \lambda)$$

$$= \prod_{i=1}^n \frac{\lambda_i^x e^{-\lambda}}{x_i!}$$

$$= \frac{\lambda^{n\overline{x}} e^{-n\lambda}}{n!}$$

$$\sum_{i=1}^n y_i = 273 \text{ and } n = 56$$

$$(4)$$

Data-Likelihood Function

The corresponding Likelihood Function graphs are as follows

Figure 3: Prior and Likelihood

Posterior Distribution

Thus, after performing the necessary calculations, we get the following values for $Gamma(\alpha', \beta')$

Calculations

$$\lambda \mid (Y_1 = y_1, Y_n = y_n) \sim Gamma(\alpha', \beta')$$

$$\alpha' = \alpha + \sum_{i=1}^{n} y_i \tag{5}$$

$$\beta' = \beta + n \tag{6}$$

$$\alpha' = 284.17$$
, $\beta' = 58.47$, PosteriorMean = 4.85

Posterior Distribution

The graph of Posterior is as follows

Figure 4: Posterior Distribution

Prior Likelihood and Posterior Distribution

The combined graphs of Prior, Likelihood, and Posterior are as follows

Figure 5: Posterior Distribution

Conclusion

From the above plots, we can see that the mean of our prior and posterior differ slightly whereas the variance of prior and posterior differ by a very large margin. We can thus interpret from this Bayesian model that our posterior distribution is much more accurate than the prior.

Stephen Curry is more likely to increase his 3P in the next season.

 $Prior\ std = 1.3453$

Post std = 0.0298

Thank You