Neural-Network 3

Created time: 2024/5/24 09:49

學號:109321019 姓名:涂价弘

```
clear
clc
```

CNN

步骤 1:加载和显示图像数据

```
[XTrain,~,YTrain] = digitTrain4DArrayData; %加载训练图像样本
[XValidation,~,YValidation] = digitTest4DArrayData; %加载验证图像样本

% 随机显示 20 幅训练图像
numTrainImages = numel(YTrain); %统计用于训练样本的
数量
figure
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)
    imshow(XTrain(:,:,:,idx(i)))
    drawnow
end
```


步骤 2:构建卷积神经网络

```
layers = [
   imageInputLayer([28 28 1])
                                                  % 输入层, 1个通道, 像
素为 28×28
                                                  % 卷积层 1: 卷积核大
   convolution2dLayer(3,8,'Padding','same')
小为 3×3, 卷积核的个数为 8 (每个卷积核的通道数与输入图像的通道数相等, 本层中每个卷积核 1 个通
道)卷积的方式采用零填充方式(即设定为 same 方式)
                                                  % 批量归一化层 1
   batchNormalizationLayer
   reluLayer
                                                  % ReLU 非线性激活函数 1
                                                  % 池化层 1:池化方式:
   averagePooling2dLayer(2, 'Stride', 2)
平均池化:池化区域为 2×2, 步长为 2
   convolution2dLayer(3,16,'Padding','same')
                                                  % 卷积层 2:卷积核大小
为 3×3. 卷积核的个数为 16 (每个卷积核的通道数与输入特征图的通道数相等,本层中每个卷积核 8 个
通道)卷积的方式采用零填充方式(即设定为 same 方式)
                                                  % 批量且一化层 2
   batchNormalizationLayer
                                                  % ReLU 非线性激活函数 2
   reluLayer
                                                 % 池化层 2:池化方式:
   averagePooling2dLayer(2,'Stride',2)
平均池化:池化区域为 2×2. 步长为 2
   convolution2dLayer(3,32,'Padding','same')
                                                  % 卷积层 3: 卷积核大小
为 3×3,卷积核的个数为 32(每个卷积核的通道数与输入特征图的通道数相等,本层中每个卷积核 16 个
通道)卷积的方式采用零填充方式(即设定为 same 方式)
   batchNormalizationLayer
                                                  % 批量且一化层 3
```

```
reluLayer % ReLU 非线性激活函数 3

% convolution2dLayer(3,64,'Padding','same')
% batchNormalizationLayer
% reluLayer

dropoutLayer(0.2) % dropout 层,随机将 20%
的输入置零
fullyConnectedLayer(1) % 全连接层,全连接层的输
出为 1
regressionLayer ]; % 回归层,用于预测结果
```

步骤 3:配置训练选项

```
miniBatchSize = 128;
                                                     % 训练一次最小的样本量为
128
                                                     % 验证频率
validationFrequency = floor(numel(YTrain)/miniBatchSize);
                                                     % 设置训练方法,本例中将
options = trainingOptions('sgdm', ...
其设置为 SGDM 法
                                                     % 设置最小样本训练数量,
   'MiniBatchSize', miniBatchSize, ...
本例中将其设置为 128
   'MaxEpochs',30, ...
                                                     % 设置最大训练轮数, 在本
例当中, 最大训练轮数为 30
                                                     % 设置初始学习率为 0.001
   'InitialLearnRate',0.001, ...
                                                     % 设置初始的学习率是变化
   'LearnRateSchedule', 'piecewise', ...
的
                                                     % 设置学习率衰减因子为
   'LearnRateDropFactor',0.1, ...
0.1
                                                     % 设置学习率衰减周期为
   'LearnRateDropPeriod',20, ...
20 轮, 即:每20轮,在之前的学习率基础上,乘以学习率的衰减因子0.1
   'Shuffle','every-epoch', ...
                                                     % 设置每一轮都打乱数据
                                                     % 设置验证用得数据
   'ValidationData', {XValidation, YValidation}, ...
   'ValidationFrequency', validationFrequency, ...
                                                     % 设置验证频率
                                                     % 设置打开训练进度图
   'Plots','training-progress', ...
   'Verbose', true);
                                                    % 设置关闭命令窗口的输出
```

步骤 4:训练网络

```
net = trainNetwork(XTrain,YTrain,layers,options);
```

Training on single CPU.

- 1	========	=========	============		:========::	==========	===========	-=========
	Epoch	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch RMSE	Validation RMSE	Mini-batch Loss	Validation Loss	Base Learnin Rate
	1	1	00:00:04	25.71	25.94	330.5157	336.3932	0.00
j	1	39	00:00:07	12.69	12.73	80.4754	80.9785	0.00
	2	50	00:00:08	11.89		70.6410		0.00
	2	78	00:00:10	11.61	10.53	67.3771	55.4436	0.00
	3	100	00:00:11	9.88		48.8142		0.00
	3	117	00:00:12	12.56	10.84	78.8615	58.7907	0.00

			1	1			
4	150	00:00:14	9.13	<u> </u>	41.6857	•	0.00
4	156	00:00:15	9.38	9.10	44.0328	41.4459	0.00
5	195	00:00:17	8.90	8.64	39.6065	37.3258	0.00
6	200	00:00:18	8.89	_ ==	39.4718		0.00
6	234	00:00:20	8.46	8.57	35.8233	36.7390	0.00
7	250	00:00:21	8.42		35.4250	1 24 25:-	0.00
7	273	00:00:22	7.35	7.89	27.0476	31.0910	0.00
8	300	00:00:24	7.81		30.4695		0.00
8	312	00:00:25	7.13	8.00	25.4220	31.9616	0.00
9	350	00:00:27	7.26		26.3340]	0.00
9	351	00:00:27	7.55	7.46	28.5124	27.8383	0.00
10	390	00:00:30	7.61	6.84	28.9519	23.4254	0.00
11	400	00:00:30	7.79	1	30.3657		0.00
11	429	00:00:32	7.17	6.85	25.6873	23.4294	0.00
12	450	00:00:33	5.48		14.9889]	0.00
12	468	00:00:35	7.57	6.49	28.6854	21.0423	0.00
13	500	00:00:37	6.36		20.2319	1 22 0070	0.00
13	507	00:00:38	7.31	6.77	26.7461	22.8970	0.00
14	546	00:00:40	6.63	6.56	21.9793	21.4978	0.00
15 15	550	00:00:40	6.74		22.7126	10 4713	0.00
15 16	585	00:00:42	7.22	6.24	26.0517	19.4712	0.00
16 16	600	00:00:43	5.75		16.5569	10 4367	0.00
16 17	624	00:00:45	6.75	6.07	22.7604	18.4367	0.00
17 17	650	00:00:46	6.53	I I 5 05	21.3216	17 7266	0.00
17 18	663 700	00:00:47 00:00:49	6.47 6.07	5.95	20.9372 18.3959	17.7266	0.00
18 18	700 702	00:00:49 00:00:50	6.67	 6.01	21.5805	18.0665	0.00
18 19	762 741	00:00:50	6.13	6.05	18.7824	18.2884	0.00
19 20	741	00:00:52	5.97	ן סיים ו	18.7824	10.2004	0.00
20 20	750 780	00:00:52 00:00:54	6.98	 5.95	24.3458	17.6987	0.00
20 21	800	00:00:54	5.57	ı 5.95	15.5143	1/.050/	0.00
21	819	00:00:57	6.21	 5.87	19.3032	17.2440	0.00
21	850	00:00:58	5.35	, J.6/	14.3181	1/.2440	0.00
22	858	00:00:59	5.30	 5.59	14.0610	15.5986	0.00
22	897	00:01:02	3.30 4.67	5.54	10.9269	15.3229	0.00
23	900	00:01:02	5.00	5.54	12.5112	13.3223	0.00
24	936	00:01:02	4.67	l 5.53	10.8831	15.2916	0.00
24	950	00:01:04	5.09		12.9509	17.2710	0.00
25	975	00:01:07	4.83	 5.50	11.6763	15.1468	0.00
25	1000	00:01:07	5.53		15.3140	13.1400	0.00
26	1014	00:01:00	5.13	5.43	13.1372	14.7688	0.00
27	1050	00:01:03	5.77	į	16.6697		0.00
27	1053	00:01:12	5.02	5.51	12.6071	15.1588	0.00
28	1092	00:01:12	4.55	5.44	10.3384	14.7708	0.00
29	1100	00:01:15	5.41	į	14.6406		0.00
29	1131	00:01:13	4.58	5.41	10.4959	14.6412	0.0
30	1150	00:01:18	4.61	i	10.6429	i	0.0
30	1170	00:01:20	5.53	5.46	15.2819	14.9105	0.00
 	:=======			==========			

步骤 5:测试与评估

```
YPredicted = predict(net, XValidation);
                                                    % 用训练好的网络预测验证
图像中数字倾斜的角度
                                                    % 计算预测倾斜角度和实际
predictionError = YValidation - YPredicted;
倾斜角度之间的预测误差
% 计算准确率
                                                    % 设定阈值, 在本例中, 阈
thr = 10;
值设定为 10 度
                                                    % 当预测值与实际值得误差
numCorrect = sum(abs(predictionError) < thr);</pre>
小于 10 度时,则认为预测正确
                                                    % 用于验证图像的数量
numValidationImages = numel(YValidation);
                                                    % 计算准确率
Accuracy = numCorrect/numValidationImages
```

```
Accuracy = 0.9412
```

```
% 计算 RMSE 的值
squares = predictionError.^2;
RMSE = sqrt(mean(squares))

RMSE = single
```

```
5.3625
```

```
% original layers

layers = [
   imageInputLayer([28 28 1])

   convolution2dLayer(3,8,'Padding','same')
   batchNormalizationLayer
   reluLayer
   averagePooling2dLayer(2,'Stride',2)

   convolution2dLayer(3,16,'Padding','same')
   batchNormalizationLayer
   reluLayer
```

```
averagePooling2dLayer(2,'Stride',2)

convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer

% convolution2dLayer(3,64,'Padding','same')
% batchNormalizationLayer
% reluLayer

dropoutLayer(0.2)
fullyConnectedLayer(1)
regressionLayer ];
```

Exercise-1

```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
   maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.2)
    fullyConnectedLayer(1)
    regressionLayer ];
net = trainNetwork(XTrain,YTrain,layers,options);
```

Training on single CPU.

	========	:=========	:==========	===========		===========	==========	==========
	Epoch	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch RMSE	Validation RMSE	Mini-batch Loss	Validation Loss	Base Learnin Rate
	 		00:00:01	 27.91	 l 25.52	389.5237	 325.5949	 0.00
	1 1	39	00:00:04	14.46	12.75	104.5097	81.2544	0.00
ĺ	2	50	00:00:05	11.12		61.8182	İ	0.00
	2	78	00:00:07	11.53	10.71	66.4905	57.3150	0.00
	3	100	00:00:08	10.46		54.7497		0.00
	3	117	00:00:09	11.21	10.44	62.8011	54.4492	0.00
	4	150	00:00:11	8.69		37.7529		0.00
	4	156	00:00:12	8.93	9.40	39.8937	44.1950	0.00

5	195	00:00:14	9.09	8.44	41.3444	35.6517	0.00
6	200	00:00:14	7.67		29.3953		0.00
6	234	00:00:17	7.88	8.58	31.0580	36.7924	0.00
7	250	00:00:17	7.82		30.5874		0.00
7	273	00:00:19	7.31	8.32	26.7448	34.6068	0.00
8	300	00:00:20	7.80		30.4361		0.00
8	312	00:00:22	7.21	7.58	26.0247	28.7218	0.00
9	350	00:00:23	8.70		37.8849		0.00
9	351	00:00:24	7.14	7.61	25.4649	28.9807	0.00
10	390	00:00:27	7.69	8.25	29.6010	34.0483	0.00
11	400	00:00:27	7.67		29.4209		0.00
11	429	00:00:29	6.93	7.02	23.9879	24.6090	0.00
12	450	00:00:30	6.43		20.6538		0.00
12	468	00:00:31	7.55	7.03	28.4640	24.7124	0.00
13	500	00:00:33	6.66		22.1825		0.00
13	507	00:00:34	6.58	6.90	21.6221	23.8010	0.00
14	546	00:00:36	7.01	6.73	24.5487	22.6336	0.00
15	550	00:00:37	6.38		20.3466		0.00
15	585	00:00:39	6.89	6.96	23.7222	24.2106	0.00
16	600	00:00:40	5.98		17.9032		0.00
16	624	00:00:42	6.27	7.14	19.6691	25.5227	0.00
17	650	00:00:44	7.05		24.8222	<u> </u>	0.00
17	663	00:00:45	6.59	6.56	21.7399	21.5457	0.00
18	700	00:00:48	5.61		15.7296	<u> </u>	0.00
18	702	00:00:49	6.16	6.73	18.9559	22.6574	0.00
19	741	00:00:52	5.96	7.48	17.7527	27.9607	0.00
20	750	00:00:53	6.01		18.0340		0.00
20	780	00:00:56	4.93	6.54	12.1673	21.3640	0.00
21	800	00:00:57	5.89		17.3486		0.00
21	819	00:01:00	5.49	6.20	15.0578	19.2367	0.00
22	850	00:01:01	4.96		12.2862	10.6402	0.00
22	858	00:01:02	5.53	6.11	15.2984	18.6492	0.00
23	897	00:01:07	5.34	6.11	14.2749	18.6776	0.00
24	900	00:01:07	4.92		12.0949	10 4005	0.00
24	936	00:01:11	5.31	6.08	14.0858	18.4905	0.00
25 25	950 975	00:01:11 00:01:13	5.25 4.91	l 6.07	13.7737	 10 4510	0.00 0.00
25 26	1000	00:01:13	4.91 4.94	0.0/	12.0502 12.2050	18.4513	l 0.00
26	1014	00:01:14	4.94	 6.05	11.6499	 18.3302	0.00
26	1050	00:01:18	4.90	ן ס י ס	12.0241	10.3302	0.00
27	1053	00:01:18	5.02	l 6.05	12.6095	 18.3141	0.00
27	1092	00:01:21	4.95	6.06	12.2440	18.3425	0.00
28	1100	00:01:21	5.13	l 0.00	13.1725	1 10.242	0.00
29	1131	00:01:23	5.35	1 6.05	14.2877	18.2724	0.00
29 30	1150	00:01:24	5.18	l 0.03	13.4208	10.2/24	0.00
30	1170	00:01:25	4.79	l 6.04	11.4873	18.2620	0.00
, 50 ========		=======================================	ı	•	=======================================	•	·


```
YPredicted = predict(net, XValidation);
predictionError = YValidation - YPredicted;

% Accuracy
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);
Accuracy = numCorrect/numValidationImages</pre>
```

Accuracy = 0.9134

```
% RMSE
squares = predictionError.^2;
RMSE = sqrt(mean(squares))
RMSE = single
```

Exercise-2-1

5.9669

```
% original layers
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer ];
net = trainNetwork(XTrain,YTrain,layers,options);
```

Training on single CPU.

=======	==	========	==		===	:========	==		==	=======	===	:========	:==	========
Epoch		Iteration		Time Elapsed		Mini-batch		Validation		Mini-batch		Validation		Base Learni
				(hh:mm:ss)		RMSE		RMSE		Loss		Loss		Rate

1	1	 00:00:02	26.26	25.60	344.7772	327.5879	0.6
1	39	00:00:04	11.61	11.56	67.4399	66.8226	0.6
2	50	00:00:05	11.15	i	62.2051		0.0
2	78 İ	00:00:07	10.66	10.87	56.8090	59.0897	0.0
з ј	100	00:00:08	9.96	j	49.6225	j	0.0
3	117	00:00:09	8.88	11.22	39.4285	62.9812	0.0
4	150	00:00:11	7.55	į	28.5314	j	0.0
4	156	00:00:12	8.19	8.57	33.5246	36.7574	0.0
5	195	00:00:14	8.88	8.52	39.4113	36.3073	0.0
6	200	00:00:14	6.94	į	24.1097	j	0.0
6	234	00:00:17	7.30	7.17	26.6656	25.7158	0.6
7	250	00:00:17	6.79		23.0240		0.6
7	273	00:00:19	6.25	7.21	19.5510	26.0150	0.6
8	300	00:00:20	5.68	İ	16.1111	İ	0.6
8	312	00:00:22	6.13	7.24	18.7926	26.2228	0.6
9	350	00:00:23	7.06	j	24.9177	İ	0.6
9	351	00:00:24	5.85	7.28	17.0999	26.4969	0.6
10	390	00:00:27	5.98	6.54	17.8768	21.3955	0.6
11	400	00:00:28	5.76		16.5753		0.6
11	429	00:00:30	5.04	6.00	12.6831	17.9974	0.6
12	450	00:00:31	5.83		16.9859		0.6
12	468	00:00:33	6.72	6.22	22.5877	19.3341	0.6
13	500	00:00:34	5.58		15.5650		0.6
13	507	00:00:35	5.07	6.37	12.8554	20.2578	0.6
14	546	00:00:38	5.99	5.96	17.9679	17.7471	0.6
15	550	00:00:39	5.06		12.8144		0.6
15	585	00:00:41	4.82	6.08	11.6303	18.4599	0.6
16	600	00:00:42	5.44		14.7753		0.6
16	624	00:00:44	4.98	6.10	12.4097	18.5864	0.6
17	650	00:00:45	4.58		10.4832		0.6
17	663	00:00:46	5.61	5.57	15.7428	15.5022	0.0
18	700	00:00:48	4.68		10.9499		0.0
18	702	00:00:49	4.75	5.53	11.2760	15.2649	0.0
19	741	00:00:52	4.23	5.65	8.9347	15.9555	0.6
20	750	00:00:52	4.34		9.4267	ļ	0.6
20	780	00:00:55	5.08	5.66	12.8957	16.0294	0.6
21	800	00:00:56	4.10		8.4126	ļ	0.0
21	819	00:00:57	4.13	5.26	8.5342	13.8111	0.0
22	850	00:00:59	3.45	_	5.9611		0.6
22	858	00:01:00	3.89	5.20	7.5517	13.5407	0.6
23	897	00:01:02	3.61	5.20	6.5054	13.5114	0.6
24	900	00:01:03	3.25	_	5.2899		0.6
24	936	00:01:05	3.84	5.21	7.3568	13.5709	0.6
25	950	00:01:06	3.17		5.0254		0.0
25	975	00:01:08	3.22	5.06	5.1727	12.7933	0.0
26	1000	00:01:09	4.01	_ !	8.0203		0.0
26	1014	00:01:10	3.81	5.08	7.2533	12.9071	0.0
27	1050	00:01:12	3.31		5.4799		0.0
27	1053	00:01:13	3.77	5.08	7.1042	12.8976	0.0
28	1092	00:01:16	3.67	5.04	6.7505	12.6832	0.0
29	1100	00:01:17	3.56		6.3458		0.0
29	1131	00:01:19	3.19	5.03	5.0810	12.6340	0.6
30	1150 1170	00:01:20	3.35	_ !	5.6184		0.6
30 l		00:01:22	3.24	5.05	5.2426	12.7462	0.6


```
YPredicted = predict(net, XValidation);
predictionError = YValidation - YPredicted;

% Accuracy
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);
Accuracy = numCorrect/numValidationImages</pre>
```

```
Accuracy = 0.9554
```

```
% RMSE
squares = predictionError.^2;
RMSE = sqrt(mean(squares))
RMSE = single
```

Exercise-2-2

4.9728

```
layers = [
    imageInputLayer([28 28 1])

convolution2dLayer(3,8,'Padding','same')
    dropoutLayer(0.2)
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)

convolution2dLayer(3,16,'Padding','same')
    dropoutLayer(0.2)
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
```

```
convolution2dLayer(3,32,'Padding','same')
dropoutLayer(0.2)
batchNormalizationLayer
reluLayer

dropoutLayer(0.2)
fullyConnectedLayer(1)
regressionLayer ];

net = trainNetwork(XTrain,YTrain,layers,options);
```

Training on single CPU.

Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learn
ا =======		(hh:mm:ss)	RMSE	RMSE	Loss	Loss	Rate
1	1	00:00:02	26.03	25.99	338.8383	337.8305	0.
1	39	00:00:05	15.34	14.52	117.6599	105.4386	0.
2	50	00:00:06	13.82		95.5306		0.
2	78	00:00:08	13.33	13.04	88.7901	85.0469	0.
3	100	00:00:10	9.57		45.8172		0.
3	117	00:00:12	13.26	11.57	87.8583	66.8865	0.
4	150	00:00:14	12.57		78.9978		0.
4	156	00:00:15	11.59	11.42	67.1797	65.2398	0.
5	195	00:00:18	11.34	10.41	64.2462	54.1841	0.
6	200	00:00:18	10.31		53.1459		0.
6	234	00:00:21	11.26	10.88	63.3883	59.2030	0.
7	250	00:00:22	10.22		52.2519		0.
7	273	00:00:25	9.50	9.52	45.1600	45.3050	0.
8	300	00:00:27	9.28		43.0326		0.
8	312	00:00:28	9.53	10.25	45.3709	52.4819	0.
9	350	00:00:31	9.83		48.3170		0
9	351	00:00:31	11.03	10.45	60.8482	54.6026	0
10	390	00:00:34	10.53	9.52	55.4845	45.2752	0
11	400	00:00:35	9.64		46.4252		0
11	429	00:00:38	10.05	9.55	50.5329	45.6439	0
12	450	00:00:39	9.77		47.7457		0
12	468	00:00:41	10.19	9.11	51.8825	41.5126	0
13	500	00:00:43	8.93		39.8418		0
13	507	00:00:44	9.64	9.10	46.4686	41.4105	0
14	546	00:00:47	9.52	8.77	45.2689	38.4273	0
15	550	00:00:47	9.91		49.1074		0
15	585	00:00:50	10.93	9.35	59.7264	43.7522	0
16	600	00:00:51	8.64		37.3574		0
16	624	00:00:53	9.19	8.11	42.1839	32.9114	0
17	650	00:00:55	9.15		41.8294		0
17	663	00:00:57	8.84	9.57	39.0641	45.8177	0
18	700	00:00:59	8.49		36.0080		0
18	702	00:01:00	8.20	8.37	33.5860	35.0376	0
19	741	00:01:03	8.89	9.05	39.5468	40.9450	0
20	750	00:01:04	8.15		33.1710		0
20	780	00:01:06	8.22	8.66	33.8028	37.4560	0
21	800	00:01:08	8.05		32.3938		0
21	819	00:01:09	7.24	8.45	26.1915	35.6955	0
22	850	00:01:11	8.99	I	40.3654		0
22	858	00:01:13	7.61	8.40	28.9659	35.3049	0
23	897	00:01:16	7.40	8.28	27.3941	34.2874	0
24	900	00:01:16	7.98	İ	31.8199	İ	0
24	936	00:01:19	7.56	8.75	28.5987	38.3049	0
25	950	00:01:20	7.67	İ	29.4343	İ	0
25	975	00:01:22	6.96	8.38	24.2266	35.1058	0

=========		===========		==========			=======
30	1170	00:01:38	8.42	8.63	35.4597	37.2592	0.00
30	1150	00:01:37	8.03		32.2269		0.00
29	1131	00:01:35	8.80	8.42	38.7179	35.4350	0.00
29	1100	00:01:32	6.75		22.7491		0.00
28	1092	00:01:32	7.50	8.63	28.1438	37.1994	0.00
27	1053	00:01:29	7.61	8.54	28.9501	36.4979	0.00
27	1050	00:01:28	8.28		34.2524		0.00
26	1014	00:01:25	7.41	8.53	27.4897	36.4050	0.00
26	1000	00:01:24	7.40		27.3831		0.00
	26 27 27 28 29 29 30	26 1014	26 1014 00:01:25 27 1050 00:01:28 27 1053 00:01:29 28 1092 00:01:32 29 1100 00:01:32 29 1131 00:01:35 30 1150 00:01:37	26 1014 00:01:25 7.41 27 1050 00:01:28 8.28 27 1053 00:01:29 7.61 28 1092 00:01:32 7.50 29 1100 00:01:32 6.75 29 1131 00:01:35 8.80 30 1150 00:01:37 8.03	26 1014 00:01:25 7.41 8.53 27 1050 00:01:28 8.28 27 1053 00:01:29 7.61 8.54 28 1092 00:01:32 7.50 8.63 29 1100 00:01:32 6.75 29 1131 00:01:35 8.80 8.42 30 1150 00:01:37 8.03	26 1014 00:01:25 7.41 8.53 27.4897 27 1050 00:01:28 8.28 34.2524 27 1053 00:01:29 7.61 8.54 28.9501 28 1092 00:01:32 7.50 8.63 28.1438 29 1100 00:01:32 6.75 22.7491 29 1131 00:01:35 8.80 8.42 38.7179 30 1150 00:01:37 8.03 32.2269	26 1014 00:01:25 7.41 8.53 27.4897 36.4050 27 1050 00:01:28 8.28 34.2524 34.2524 27 1053 00:01:29 7.61 8.54 28.9501 36.4979 28 1092 00:01:32 7.50 8.63 28.1438 37.1994 29 1100 00:01:32 6.75 22.7491 22.7491 29 1131 00:01:35 8.80 8.42 38.7179 35.4350 30 1150 00:01:37 8.03 32.2269


```
YPredicted = predict(net, XValidation);
predictionError = YValidation - YPredicted;

% Accuracy
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);
Accuracy = numCorrect/numValidationImages</pre>
```

```
Accuracy = 0.7804
```

```
% RMSE
squares = predictionError.^2;
RMSE = sqrt(mean(squares))
RMSE = single
```

Exercise-3

8.3384

```
layers = [
  imageInputLayer([28 28 1])

convolution2dLayer(3,8,'Padding','same')
  batchNormalizationLayer
  reluLayer
  averagePooling2dLayer(2,'Stride',2)
```

```
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
averagePooling2dLayer(2,'Stride',2)

convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer

dropoutLayer(0.2)
fullyConnectedLayer(1)
regressionLayer ];

net = trainNetwork(XTrain,YTrain,layers,options);
```

Training on single CPU.

Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learn
. j	i	(hh:mm:ss)	RMSE	RMSE	Loss	Loss	Rate
1	1	00:00:02	26.87	25.72	361.0811	330.6974	0.
1	39	00:00:05	13.15	12.40	86.4637	76.8540	0.
2	50	00:00:06	13.83		95.6960		0.
2	78	00:00:08	12.37	11.59	76.4768	67.2011	0.
3	100	00:00:09	11.68		68.2300		0.
3	117	00:00:10	11.20	10.17	62.7307	51.7025	0.
4	150	00:00:12	9.36		43.8416		0.
4	156	00:00:13	9.04	10.36	40.8762	53.6665	0.
5	195	00:00:15	8.84	8.93	39.0727	39.8328	0.
6	200	00:00:16	10.49		54.9870		0.
6	234	00:00:18	8.50	8.39	36.1345	35.1804	0.
7	250	00:00:19	7.95		31.6121		0.
7	273	00:00:20	7.66	9.90	29.3061	49.0069	0.
8	300	00:00:22	7.82		30.5979		0.
8	312	00:00:23	8.43	8.12	35.5713	33.0058	0.
9	350	00:00:25	8.96		40.1335		0.
9	351	00:00:25	6.68	8.43	22.2973	35.5135	0.
10	390	00:00:28	7.95	7.30	31.5895	26.6581	0.
11	400	00:00:28	6.87		23.6069		0.
11	429	00:00:31	6.51	6.80	21.1873	23.1398	0.
12	450	00:00:32	6.72		22.5613		0.
12	468	00:00:33	6.75	7.34	22.7642	26.9263	0.
13	500	00:00:35	6.62		21.9131		0.
13	507	00:00:35	5.83	6.56	17.0203	21.5157	0.
14	546	00:00:38	6.44	6.46	20.7363	20.8938	0.
15	550	00:00:38	6.59		21.7458		0.
15	585	00:00:40	7.41	6.85	27.4344	23.4858	0.
16	600	00:00:41	6.35	İ	20.1453	İ	0.
16	624	00:00:43	7.58	7.08	28.7430	25.0339	0.
17	650	00:00:44	6.68	İ	22.3117	j	0.
17	663	00:00:45	7.23	7.18	26.1559	25.8111	0.
18	700	00:00:47	7.56	ĺ	28.5721	İ	0.
18	702	00:00:48	5.85	6.67	17.1074	22.2536	0.
19	741	00:00:51	6.18	6.23	19.1108	19.4216	0.
20	750	00:00:51	7.15	i	25.5635	j	0.
20	780	00:00:53	6.50	6.05	21.1110	18.3045	0.
21	800	00:00:54	7.28	-	26.4830	j	0.
21	819	00:00:56	6.42	6.05	20.5774	18.3001	0.

22	850	00:00:57	5.37		14.4162		0.00
22	858	00:00:58	5.00	5.65	12.5138	15.9663	0.00
23	897	00:01:01	4.74	5.75	11.2454	16.5182	0.00
24	900	00:01:01	4.68		10.9293		0.00
24	936	00:01:03	5.78	5.58	16.6981	15.5465	0.00
25	950	00:01:04	5.59		15.6256		0.00
25	975	00:01:06	5.61	5.55	15.7288	15.4235	0.00
26	1000	00:01:07	5.45		14.8361		0.00
26	1014	00:01:08	5.36	5.59	14.3592	15.6102	0.00
27	1050	00:01:10	6.31		19.9023		0.00
27	1053	00:01:11	5.03	5.55	12.6372	15.3736	0.00
28	1092	00:01:13	5.22	5.54	13.6115	15.3399	0.00
29	1100	00:01:14	4.83		11.6689		0.00
29	1131	00:01:16	5.54	5.50	15.3649	15.1521	0.00
30	1150	00:01:17	5.31		14.0737		0.00
30	1170	00:01:18	5.12	5.47	13.1260	14.9794	0.00
1							


```
YPredicted = predict(net, XValidation);
predictionError = YValidation - YPredicted;

% Accuracy
thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);
Accuracy = numCorrect/numValidationImages</pre>
```

Accuracy = 0.9408

```
% RMSE
squares = predictionError.^2;
RMSE = sqrt(mean(squares))
```

RMSE = single 5.4002

```
clf('reset')
% test with real image
```

```
I = imread('./images/hand_write_5.png');
I45 = imrotate(I, 45, 'crop');
I45 = rgb2gray(I45)
I45 = 28×28 uint8 matrix
                                                                                                                                                                                                                                                                                     1 · · ·
                                      0
                                                          0
                                                                                                       0
                                                                                                                             0
                                                                                                                                                   0
                                                                                                                                                                                              0
                                                                                                                                                                                                                     2
                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                                               7
                                                                                                  0
                 0
                                      0
                                                            0
                                                                                                                                                                        3
                                                                                                                                                                                              0
                                                                                                                                                                                                                     2
                                                                                                                                                                                                                                                                                     0
                                                                            0
                                                                                                                           0
                 0
                                      0
                                                          0
                                                                                            0
                                                                                                                                                  0
                                                                                                                                                                       0
                                                                                                                                                                                              0
                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                         5
                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                     0

      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0

                 0
                                                                                                                                                                                                                                                                                     0
                 0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                    2
                 2
imshow(I45);
```

```
truesize([200 200])
```



```
predict(net, double(I45)/255)
ans = single
```

AlexNet with transfer learning

Exercise-4

-19.2021

步骤 1:加载图像数据. 并将其划分为训练集和验证集

```
% 加载图像数据
unzip('./data/MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders', true, ...
    'LabelSource', 'foldernames');
```

```
% 划分验证集和训练集
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

% 随机显示训练集中的部分图像
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end
```


步骤 2:加载预训练好的网络

% 加载 alexnet 网络(注:该网络需要提前下载,当输入下面命令时按要求下载即可) net = alexnet;

步骤 3:对网络结构进行改进

```
% 保留 AlexNet 倒数第三层之前的网络
layersTransfer = net.Layers(1:end-3);

% 确定训练数据中需要分类的种类
numClasses = numel(categories(imdsTrain.Labels));
```

步骤 4:调整数据集

```
% 查看网络输入层的大小和通道数
inputSize = net.Layers(1).InputSize;

% 将训练图像的大小调整为与输入层的大小相同
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);

% 将验证图像的大小调整为与输入层的大小相同
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

对网络进行训练

```
% 对训练参数进行设置

options = trainingOptions('sgdm', ...
    'MiniBatchSize',15, ...
    'MaxEpochs',10, ...
    'InitialLearnRate',0.00005, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',true, ...
    'Plots','training-progress');

% 用训练图像对网络进行训练
netTransfer = trainNetwork(augimdsTrain,layers,options);
```

Training on single CPU. Initializing input data normalization.

Epoch Iteration Time Elapsed Mini-batch Validation Mini-batch Validation Base Learni (hh:mm:ss) Accuracy Accuracy Loss Loss Rate 1 | 40.00% 1 | 00:00:03 20.00% I 2.8960 1.9698 5,0000e 1 | 3 I 00:00:06 40.00% 40.00% 2.6730 1.7133 5.0000e 2 6 00:00:09 26.67% 55.00% 2.5593 5.0000e 1.1835 3 | 9 | 70.00% 00:00:13 53.33% 1.8450 0.8137 5.0000e 4 12 | 00:00:16 60.00% 80.00% 1.4889 0.5832 5.0000e

|------

Training finished: Max epochs completed.

分类验证图**像并并随机**显示分类结果

```
% 对训练好的网络采用验证数据集进行验证
[YPred,scores] = classify(netTransfer,augimdsValidation);

% 随机显示验证效果
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
```

MathWorks Cap

MathWorks Playing Cards

MathWorks Screwdriver

MathWorks Playing Cards

计**算分**类**准确率**

YValidation = imdsValidation.Labels; accuracy = mean(YPred == YValidation)

accuracy = 1

创**建并**显**示混淆矩**阵

figure
confusionchart(YValidation,YPred)

Exercise-5

```
% 加载图像数据
unzip('./data/MerchData.zip', './IMDS/MerchData');
imds = imageDatastore('IMDS/MerchData', ...
    'IncludeSubfolders', true, ...
    'LabelSource', 'foldernames');
% 划分验证集和训练集
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
% 随机显示训练集中的部分图像
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end
```



```
net = vgg16;
% analyzeNetwork(net)
```

```
layersTransfer = net.Layers(1:end-3);
numClasses = numel(categories(imdsTrain.Labels));
layers = [
    layersTransfer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer
];
```

```
% 查看网络输入层的大小和通道数 inputSize = net.Layers(1).InputSize;

% 将训练图像的大小调整为与输入层的大小相同 augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);

% 将验证图像的大小调整为与输入层的大小相同 augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

```
% 对训练参数进行设置
options = trainingOptions('sgdm', ...
'MiniBatchSize',15, ...
'MaxEpochs',10, ...
'InitialLearnRate',0.00005, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',true, ...
'Plots','training-progress');

% 用训练图像对网络进行训练
netTransfer = trainNetwork(augimdsTrain,layers,options);
```

Training on single CPU.

Initializing input data normalization.

poch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learn
l		(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
1	1	 00:00:15	13.33%	30.00%	4.2538	2.2510	5.0000
1	3	00:00:40	13.33%	40.00%	3.6386	1.6201	5.0000
2	6	00:01:12	60.00%	75.00%	1.1786	0.7998	5.00006
3	9	00:01:44	60.00%	90.00%	0.8684	0.4971	5.00006
4	12	00:02:16	93.33%	95.00%	0.2067	0.3588	5.0000
5	15	00:02:48	86.67%	95.00%	0.3604	0.2800	5.00006
6	18	00:03:20	93.33%	95.00%	0.1945	0.2284	5.00006
7	21	00:03:51	100.00%	95.00%	0.1051	0.1951	5.00006
8	24	00:04:21	100.00%	95.00%	0.0502	0.1748	5.00006
9	27	00:04:54	100.00%	95.00%	0.0585	0.1611	5.00006
10	30	00:05:26	100.00%	95.00%	0.0267	0.1495	5.0000

Training finished: Max epochs completed.


```
% 对训练好的网络采用验证数据集进行验证
[YPred,scores] = classify(netTransfer,augimdsValidation);

% 随机显示验证效果
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
```

```
subplot(2,2,i)
I = readimage(imdsValidation,idx(i));
imshow(I)
label = YPred(idx(i));
title(string(label));
end
```

MathWorks Screwdriver

MathWorks Cube

MathWorks Screwdriver


```
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)
```

accuracy = 0.9500

figure
confusionchart(YValidation,YPred)

Predicted Class

Exercise-6

```
% 加载图像数据
unzip('./data/small_EUROSat.zip', './IMDS/small_EUROSat');
imds = imageDatastore('IMDS/small_EUROSat', ...
    'IncludeSubfolders', true, ...
    'LabelSource', 'foldernames');
% 划分验证集和训练集
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
% 随机显示训练集中的部分图像
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end
```



```
net = alexnet;
```

```
layersTransfer = net.Layers(1:end-3);

numClasses = numel(categories(imdsTrain.Labels));

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer
];
```

```
% 查看网络输入层的大小和通道数 inputSize = net.Layers(1).InputSize;

% 将训练图像的大小调整为与输入层的大小相同 augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);

% 将验证图像的大小调整为与输入层的大小相同 augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

% 对训练参数进行设置

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize',15, ...
    'MaxEpochs',10, ...
    'InitialLearnRate',0.00005, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',true, ...
    'Plots','training-progress');

% 用训练图像对网络进行训练
netTransfer = trainNetwork(augimdsTrain,layers,options);
```

Training on single CPU.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learni Rate
	·						==========
1	1	00:00:05	26.67%	16.19%	2.7319	2.6052	5.0000
1	3	00:00:10	33.33%	15.24%	3.1596	2.4217	5.0000
1	6	00:00:17	40.00%	20.48%	2.3993	2.0914	5.0000
1	9	00:00:23	13.33%	21.90%	2.9472	1.8524	5.0000
1	12	00:00:29	33.33%	28.10%	2.0265	1.6816	5.0000
1	15	00:00:37	13.33%	43.33%	1.7954	1.5190	5.0000
1	18	00:00:44	26.67%	51.43%	2.0007	1.3903	5.0000
1	21	00:00:51	46.67%	53.81%	1.7703	1.2881	5.0000
1	24	00:00:58	53.33%	58.57%	1.5739	1.1988	5.0000
1	27	00:01:05	33.33%	64.76%	1.5568	1.1012	5.0000
1	30	00:01:12	40.00%	69.05%	1.7096	1.0153	5.00006
2	33	00:01:18	73.33%	73.33%	0.8832	0.9422	5.00006
2	36	00:01:25	66.67%	72.86%	0.9891	0.8790	5.00006
2	39	00:01:31	60.00%	74.76%	0.7942	0.8307	5.00006
2	42	00:01:38	33.33%	79.05%	1.3617	0.7865	5.0000
2	45	00:01:44	60.00%	77.62%	1.0756	0.7593	5.0000
2	48	00:01:50	60.00%	77.14%	1.2447	0.7337	5.0000
2	50	00:01:52	73.33%		0.9325		5.0000
2	51	00:01:56	46.67%	77.62%	1.3321	0.6999	5.0000
2	54	00:02:02	93.33%	78.57%	0.4563	0.6647	5.00006
2	57	00:02:09	60.00%	80.00%	1.0804	0.6333	5.0000
2	60	00:02:15	80.00%	81.43%	0.5900	0.6132	5.00006
2	63	00:02:21	86.67%	80.00%	0.8373	0.6085	5.00006
3	66	00:02:27	86.67%	81.90%	0.4571	0.5805	5.0000
3	69	00:02:33	80.00%	84.29%	0.6447	0.5528	5.00006
3	72	00:02:39	46.67%	83.33%	0.9593	0.5435	5.00006
3	75	00:02:44	66.67%	82.86%	0.8515	0.5435	5.0000
3	78	00:02:50	86.67%	81.90%	0.4513	0.5433	5.0000
3	81	00:02:56	66.67%	81.90%	0.6999	0.5311	5.00006
3	84	00:03:02	86.67%	81.90%	0.3698	0.5266	5.0000
3	87	00:03:08	66.67%	82.86%	0.7184	0.5181	5.0000
3	90	00:03:14	80.00%	81.90%	0.5313	0.5202	5.0000
3	93	00:03:19	86.67%	83.33%	0.4078	0.5051	5.0000
3	96	00:03:25	86.67%	83.81%	0.5238	0.4862	5.0000
4	99	00:03:31	100.00%	83.33%	0.1783	0.4696	5.0000
4	100	00:03:32	86.67%		0.4283		5.0000
4	102	00:03:37	93.33%	83.81%	0.1986	0.4609	5.0000
4	105	00:03:43	60.00%	83.33%	1.3591	0.4376	5.0000
4	108	00:03:48	93.33%	87.14%	0.4268	0.4119	5.0000
4	111	00:03:54	80.00%	86.67%	0.4257	0.4167	5.0000
4	114	00:04:00	66.67%	87.14%	1.1513	0.4280	5.0000
4	117	00:04:06	73.33%	86.67%	0.5201	0.4120	5.0000

	4	120	00:04:11	80.00%	87.62%	0.5337	0.3955	5.0000e
	4	123	00:04:17	100.00%	87.62%	0.1491	0.3894	5.0000e
	4	126	00:04:23	93.33%	86.67%	0.3021	0.4010	5.0000e
	5	129	00:04:29	80.00%	87.14%	0.4319	0.4159	5.0000e
	5	132	00:04:35	80.00%	85.71%	0.5911	0.4231	5.0000e
	5	135	00:04:41	80.00%	85.24%	0.5734	0.4249	5.0000e
	5	138	00:04:47	86.67%	85.24%	0.4548	0.4148	5.0000e
	5	141	00:04:52	86.67%	86.67%	0.2876	0.4045	5.0000e
	5	144	00:04:58	86.67%	87.14%	0.3780	0.3912	5.0000e
	5	147	00:05:04	86.67%	87.14%	0.3300	0.3805	5.0000e
	5	150	00:05:10	60.00%	87.14%	1.0725	0.3821	5.0000e
	5 5	153 156	00:05:15	73.33%	87.14%	0.4163	0.3790	5.0000e
	5	159	00:05:27	80.00% 100.00%	87.62% 86.19%	0.4976 0.2339	0.3692 0.3616	5.0000e- 5.0000e-
	6	162	00:05:32	93.33%	86.67%	0.4212	0.3509	5.0000e
	6	165	00:05:38	86.67%	87.14%	0.4212	0.3422	5.0000e
	6	168	00:05:44	93.33%	87.14%	0.4199	0.3422	5.0000e
ľ	6	171	00:05:50	86.67%	88.57%	0.5182	0.3409	5.0000e
	6	174	00:05:55	93.33%	87.62%	0.3262	0.3387	5.0000e
i	6	177	00:06:01	80.00%	88.10%	0.4136	0.3354	5.0000e
	6	180	00:06:07	93.33%	89.05%	0.2599	0.3410	5.0000e
i	6	183	00:06:12	86.67%	89.05%	0.2909	0.3514	5.0000e
i	6	186	00:06:18	93.33%	88.10%	0.3306	0.3621	5.0000e
ĺ	6	189	00:06:24	86.67%	87.14%	0.2625	0.3709	5.0000e
	6	192	00:06:30	86.67%	86.67%	0.2141	0.3663	5.0000e
	7	195	00:06:35	93.33%	87.62%	0.1671	0.3543	5.0000e
	7	198	00:06:41	86.67%	87.14%	0.4691	0.3443	5.0000e
	7	200	00:06:43	66.67%	!	0.8051	!	5.0000e
	7	201	00:06:47	100.00%	87.14%	0.0862	0.3407	5.0000e
	7	204	00:06:53	93.33%	86.67%	0.4144	0.3406	5.0000e
	7	207	00:06:58	86.67%	87.14%	0.4658	0.3454	5.0000e
	7	210	00:07:04	93.33%	87.62%	0.1694	0.3393	5.0000e
	7	213	00:07:10	100.00%	88.57%	0.0656	0.3368	5.0000e- 5.0000e-
	7 7	216 219	00:07:16	80.00% 93.33%	89.05% 88.57%	0.4125 0.2527	0.3370 0.3315	5.0000e
	7	219	00:07:28	80.00%	89.05%	0.4015	0.3253	5.0000e
	8	225	00:07:34	93.33%	88.10%	0.4013	0.3181	5.0000e
	8	228	00:07:40	93.33%	88.10%	0.1840	0.3138	5.0000e
i	8	231	00:07:46	93.33%	88.57%	0.2417	0.3168	5.0000e
i	8	234	00:07:52	100.00%	88.57%	0.0306	0.3247	5.0000e
	8	237	00:07:58	100.00%	88.57%	0.1797	0.3312	5.0000e
ĺ	8	240	00:08:03	93.33%	88.10%	0.3140	0.3334	5.0000e
	8	243	00:08:09	80.00%	89.52%	0.4092	0.3327	5.0000e
	8	246	00:08:15	93.33%	87.62%	0.2107	0.3408	5.0000e
	8	249	00:08:21	93.33%	87.62%	0.2633	0.3614	5.0000e
	8	250	00:08:22	93.33%		0.2107		5.0000e
	8	252	00:08:27	86.67%	87.14%	0.3687	0.3770	5.0000e
	8	255	00:08:33	100.00%	87.14%	0.0846	0.3801	5.0000e
ļ	9	258	00:08:39	80.00%	87.14%	0.4305	0.3786	•
	9	261	00:08:45	100.00%	88.57%	0.0965	0.3723	5.0000e
	9	264	00:08:51	100.00% 93.33%	88.10%	0.0610	0.3650	5.0000e
	9 9	267	00:08:57	!	88.57%	0.2017	0.3658	5.0000e
	9	270 273	00:09:03	93.33% 100.00%	87.62% 87.62%	0.2949 0.1271	0.3678 0.3827	5.0000e- 5.0000e-
	9	276	00:09:15	86.67%	87.14%	0.2404	0.3726	5.0000e
	9	279	00:09:21	93.33%	87.14%	0.1530	0.3560	5.0000e
	9	282	00:09:27	80.00%	87.62%	0.4004	0.3381	5.0000e
	9	285	00:09:33	100.00%	88.10%	0.0566	0.3242	
İ	9	288	00:09:39	93.33%	88.57%	0.1172	0.3129	
i	10	291	00:09:45	100.00%	88.57%	0.1153	0.3097	5.0000e
ĺ	10	294	00:09:51	100.00%	89.05%	0.0447	0.3100	5.0000e
i	10	297	00:09:57	93.33%	89.05%	0.2194	0.3157	:
	10	300	00:10:03	86.67%	88.10%	0.3722	0.3219	
	10	303	00:10:09	93.33%	88.10%	0.2561	0.3260	5.0000e

10	306	00:10:15	93.33%	88.57%	0.2372	0.3313	5.0000e
10	309	00:10:21	100.00%	87.62%	0.0916	0.3352	5.0000e
10	312	00:10:27	80.00%	87.62%	0.3500	0.3406	5.0000e
10	315	00:10:33	93.33%	87.62%	0.1596	0.3398	5.0000e
10	318	00:10:39	100.00%	87.62%	0.1212	0.3424	5.0000e
10	320	00:10:44	86.67%	88.57%	0.2824	0.3358	5.0000e
1							


```
% 对训练好的网络采用验证数据集进行验证
[YPred,scores] = classify(netTransfer,augimdsValidation);

% 随机显示验证效果
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
```

PermanentCrop

Highway

Industrial

YValidation = imdsValidation.Labels; accuracy = mean(YPred == YValidation)

accuracy = 0.8857

figure

confusionchart(YValidation,YPred)

SS	AnnualCrop	26			1		1	2	
	Forest		29		1				
	HerbaceousVegetation		2	24			1	3	
True Class	Highway	1			28		1		
Ë	Industrial				2	28			
	Pasture				1		28	1	
	PermanentCrop	3		3	1			23	
PermanentCrop 3 3 1 23 AnnualCrop Forest Highway Industrial Pasture PermanentCrop PermanentCrop									

Predicted Class