Design and Analysis of Algorithms Part IV: Graph Algorithms

Lecture 11: Minimum Spanning Trees

Yongxin Tong (童咏昕)

School of CSE, Beihang University yxtong@buaa.edu.cn

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Introduction to Part IV

- In Part IV, we will illustrate several graph algorithm problems using several examples:
 - Basic Concepts of Graphs (图的基本概念)
 - Breadth-First Search [BFS] (广度优先搜索)
 - Depth-First Search [DFS] (深度优先搜索)
 - Topological Sort (拓扑排序)
 - Strongly Connected Components (强联通分量)
 - Minimum Spanning Trees (最小生成树)
 - Shortest Path (最短路径)
 - All-Pairs Shortest Paths (所有结点对的最短路径)
 - Maximum/Network Flows (最大流/网络流)

Introduction to Part IV

- In Part IV, we will illustrate several graph algorithm problems using several examples:
 - Basic Concepts of Graphs (图的基本概念)
 - Breadth-First Search [BFS] (广度优先搜索)
 - Depth-First Search [DFS] (深度优先搜索)
 - Topological Sort (拓扑排序)
 - Strongly Connected Components (强联通分量)
 - Minimum Spanning Trees (最小生成树)
 - Shortest Path (最短路径)
 - All-Pairs Shortest Paths (所有结点对的最短路径)
 - Maximum/Network Flows (最大流/网络流)

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G

Definition

A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G

Example

Theorem

Every connected graph has a spanning tree.

Theorem

Every connected graph has a spanning tree.

Question

Why is this true?

Theorem

Every connected graph has a spanning tree.

Question

Why is this true?

Question

Given a connected graph G, how can you find a spanning tree of G?

Weighted Graphs

Definition

A weighted graph is a graph, in which each edge has a weight (some real number)

Weighted Graphs

Definition

A weighted graph is a graph, in which each edge has a weight (some real number)

Example

Weighted Graphs

Definition

A weighted graph is a graph, in which each edge has a weight (some real number)

Example

Definition

Weight of a graph: The sum of the weights of all edges

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum Spanning Trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Minimum Spanning Trees

Definition

A Minimum spanning tree of an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Minimum Spanning Trees

Definition

A Minimum spanning tree of an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Example

Remark

The minimum spanning tree may not be unique

Remark

The minimum spanning tree may not be unique

However, if the weights of all the edges are distinct, it is indeed unique (we won't prove this now)

Minimum Spanning Tree Problem

Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

General strategy for solving the MST Problem

A tree is an acyclic graph

start with an empty graph.

General strategy for solving the MST Problem

A tree is an acyclic graph

- start with an empty graph.
- try to add edges one at a time, always making sure that what is built remains acyclic.

General strategy for solving the MST Problem

A tree is an acyclic graph

- start with an empty graph.
- try to add edges one at a time, always making sure that what is built remains acyclic.
- if after adding each edge we are sure that the resulting graph is a subset of some minimum spanning trees, we are done.

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST.

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Generic-MST(G)

Input: A graph G

Output: \boldsymbol{A} is the MST of G

 $A \leftarrow \text{EMPTY};$

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Generic-MST(G)

Input: A graph G

Output: \boldsymbol{A} is the MST of G

 $A \leftarrow \text{EMPTY};$

while A does not form a spanning tree do

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Generic-MST(G)

```
Input: A graph G
Output: A is the MST of G
A \leftarrow \text{EMPTY};
while A does not form a spanning tree do

| find an edge(u, v) that is safe for A;
```

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Generic-MST(G)

```
Input: A graph G
Output: A is the MST of G
A \leftarrow \text{EMPTY};
while A does not form a spanning tree do

| find an edge(u, v) that is safe for A;
| add (u, v) to A;
```

Definition

Let A be a set of edges such that $A \subseteq T$, where T is a MST. An edge (u, v) is a safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST

• If at each step, we can find a safe edge (u, v), we can grow a MST

Generic-MST(G)

```
Input: A graph G
Output: A is the MST of G
A \leftarrow \text{EMPTY};
while A does not form a spanning tree do

| find an edge(u, v) that is safe for A;
| add (u, v) to A;
end
return A;
```

Definition

Let G = (V, E) be a connected and undirected graph. A cut (S, V - S) of G is a partition of V.

Definition

Let G = (V, E) be a connected and undirected graph. A cut (S, V - S) of G is a partition of V.

Example

Definition

Let G = (V, E) be a connected and undirected graph. A cut (S, V - S) of G is a partition of V.

Example

Definition

An edge $(u, v) \in E$ crosses the cut (S, V - S) if one of its endpoints is in S, and the other is in V - S.

Definition

Let G = (V, E) be a connected and undirected graph. A cut (S, V - S) of G is a partition of V.

Example

Definition

An edge $(u, v) \in E$ crosses the cut (S, V - S) if one of its endpoints is in S, and the other is in V - S.

A cut respects a set A of edges if no edge in A crosses the cut.

Definition

Let G = (V, E) be a connected and undirected graph. A cut (S, V - S) of G is a partition of V.

Example

Definition

An edge $(u, v) \in E$ crosses the cut (S, V - S) if one of its endpoints is in S, and the other is in V - S.

A cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

Lemma

• Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

• (S, V - S) be any cut of G that respects A

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Then, edge (u, v) is safe for A.

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Then, edge (u, v) is safe for A.

It means that we can find a safe edge by

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Then, edge (u, v) is safe for A.

• first finding a cut that respects A,

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Then, edge (u, v) is safe for A.

It means that we can find a safe edge by

- first finding a cut that respects A,
- 2 then finding the light edge crossing that cut.

That light edge is a safe edge.

Proof

• Let $A \subseteq T$, where T is a MST.

Proof

- Let $A \subseteq T$, where T is a MST.
- Case 1: (u, v) ∈ T

Proof

- Let $A \subseteq T$, where T is a MST.
- Case 1: (u, v) ∈ T
 - A \cup {(u, v)} \subseteq T.
 - Hence (u, v) is safe for A.

• Case 2: (u, v) ∉ T

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. $A \cup \{(u, v)\} \subseteq T'$.

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. $A \cup \{(u, v)\} \subseteq T'$.
 - Consider a path P in T from u to v.

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. $A \cup \{(u, v)\} \subseteq T'$.
 - Consider a path P in T from u to v.
 - Since u and v are on opposite sides of the cut (S, V-S),
 - There is at least one edge in P that crosses the cut.

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. $A \cup \{(u, v)\} \subseteq T'$.
 - Consider a path P in T from u to v.
 - Since u and v are on opposite sides of the cut (S, V-S),
 - There is at least one edge in P that crosses the cut.
 - Let (x, y) be such an edge.

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. A ∪ {(u, v)} ⊆ T'.
 - Consider a path P in T from u to v.
 - Since u and v are on opposite sides of the cut (S, V-S),
 - There is at least one edge in P that crosses the cut.
 - Let (x, y) be such an edge.
 - Since the cut respects A, $(x, y) \notin A$.

- Case 2: (u, v) ∉ T
 - Idea: construct another MST T' s.t. $A \cup \{(u, v)\} \subseteq T'$.
 - Consider a path P in T from u to v.
 - Since u and v are on opposite sides of the cut (S, V-S),
 - There is at least one edge in P that crosses the cut.
 - Let (x, y) be such an edge.
 - Since the cut respects A, $(x, y) \notin A$.
 - Since (u, v) is a light edge crossing the cut, we have $w(x, y) \ge w(u, v)$.

 Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove (x, y) (∉ A) to make a new tree T'.

- Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove (x, y) (∉ A) to make a new tree T'.
- The weight of T' is w(T') = w(T) w(x, y) + w(u, v)

- Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove (x, y) (∉ A) to make a new tree T'.
- The weight of T' is

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T)$$

- Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove (x, y) (∉ A) to make a new tree T'.
- The weight of T' is

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T)$$

Since T is a MST, we must have w(T) = w(T'), hence T' is also a

- Add (u, v) to T, it creates a cycle. By removing an edge from the cycle, it becomes a tree again. In particular, we remove (x, y) (∉ A) to make a new tree T'.
- The weight of T' is

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T)$$

 Since T is a MST, we must have w(T) = w(T'), hence T' is also a MST.

- Since $A \cup \{(u,v)\} \subseteq T'$, (u, v) is safe for A.
- The Lemma is proved.

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

• The generic algorithm gives us an idea how to 'grow' a MST.

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration
 - grows a single tree and adds a light edge in each iteration.

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration
 - grows a single tree and adds a light edge in each iteration.
 - Grow a tree

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration
 - grows a single tree and adds a light edge in each iteration.
 - Grow a tree
 - Start by picking any vertex r to be the root of the tree.

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration
 - grows a single tree and adds a light edge in each iteration.
 - Grow a tree
 - Start by picking any vertex r to be the root of the tree.
 - While the tree does not contain all vertices in the graph:

- The generic algorithm gives us an idea how to 'grow' a MST.
 - If you read the theorem and the proof carefully, you will notice that the choice of a cut (and hence the corresponding light edge) in each iteration is arbitrary.
 - We can select any cut (that respects the selected edges) and find the light edge crossing that cut to proceed.
- Prim's algorithm makes a nature choice of the cut in each Iteration
 - grows a single tree and adds a light edge in each iteration.
 - Grow a tree
 - Start by picking any vertex r to be the root of the tree.
 - While the tree does not contain all vertices in the graph: find shortest edge leaving the tree and add it to the tree.

More Details

Step 0:

- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

More Details

Example

Step 0:

- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

Step 1:

• Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.

More Details

Example

Step 0:

- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

Step 1:

- Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.
- Add this edge to A and its (other) endpoint to S.

More Details

Example

Step 0:

- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)

Step 1:

- Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.
- Add this edge to A and its (other) endpoint to S.

Step 2:

• If $V \setminus S = \emptyset$, then stop and output (minimum) spanning tree (S, A); Otherwise, go to Step 1.

Step 1.3 before

$$S = \{1,2,3\}$$

$$V \setminus S = \{4,5,6,7\}$$

$$A = \{ \{1,2\}, \{1,3\} \}$$

lightest edge = {3,6}

Step 1.3 after

$$S = \{1,2,3,6\}$$

$$V \setminus S = \{4,5,7\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\} \}$$

lightest edge = $\{3,4\},\{6,4\},\{6,7\}$

Step 1.4 before

$$S = \{1,2,3,6\}$$

$$V \setminus S = \{4,5,7\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\} \}$$

lightest edge = $\{3,4\},\{6,4\},\{6,7\}$

Step 1.4 after

$$S = \{1,2,3,4,6\}$$

$$V \setminus S = \{5,7\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\}, \{3,4\} \}$$

lightest edge = {6,7}

Step 1.5 before

$$S = \{1,2,3,4,6\}$$

$$V \setminus S = \{5,7\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\}, \{3,4\} \}$$

lightest edge = {6,7}

Step 1.5 after

$$S = \{1,2,3,4,6,7\}$$

$$V \setminus S = \{5\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\}, \{3,4\}, \{6,7\} \}$$

lightest edge = {6,5}

Step 1.6 before

$$S = \{1,2,3,4,6,7\}$$

$$V \setminus S = \{5\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\}, \{3,4\}, \{6,7\} \}$$

lightest edge = {6,5}

Step 1.6 after

$$S = \{1,2,3,4,5,6,7\}$$

$$V \setminus S = \{\}$$

$$A = \{ \{1,2\}, \{1,3\}, \{3,6\}, \{3,4\}, \{6,7\},$$

MST completed

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Recall Idea of Prim's Algorithm

Step 0: Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in V \ S. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S,A); Otherwise go to Step 1.

Recall Idea of Prim's Algorithm

Step 0: Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in V \ S. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S,A); Otherwise go to Step 1.

Questions:

- How does the algorithm update S efficiently?
- How does the algorithm find the lightest edge and update A efficiently?

Question

How does the algorithm update S efficiently?

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

Initially all are white.

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use color[v] to store color.

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use color[v] to store color.

Question

How does the algorithm find the lightest edge and update A efficiently?

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use color[v] to store color.

Question

How does the algorithm find the lightest edge and update A efficiently?

Answer:

Use a priority queue to find the lightest edge.

Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use color[v] to store color.

Question

How does the algorithm find the lightest edge and update A efficiently?

Answer:

- Use a priority queue to find the lightest edge.
- ② Use pred[v] to update A.

Priority Queue is a data structure

Priority Queue is a data structure

Priority Queue is a data structure

can be implemented as a heap

Priority Queue is a data structure

can be implemented as a heap
 Supports the following operations:

Priority Queue is a data structure

can be implemented as a heap

Supports the following operations:

Insert(u, key): Insert u with the key value key in Q.

Priority Queue is a data structure

can be implemented as a heap

Supports the following operations:

Insert(u, key): Insert u with the key value key in Q.

u = Extract-Min(): Extract the item with minimum key value.

Priority Queue is a data structure

can be implemented as a heap

Supports the following operations:

Insert(u, key): Insert u with the key value key in Q.

u = Extract-Min(): Extract the item with minimum key value.

Decrease-Key(u, new-key): Decrease u's key value to new-key.

Priority Queue is a data structure

can be implemented as a heap

Supports the following operations:

Insert(u, key): Insert u with the key value key in Q.

u = Extract-Min(): Extract the item with minimum key value.

Decrease-Key(u, new-key): Decrease u's key value to new-key.

Remark: Priority Queues can be implemented so that each operation takes time O(log |Q|). See Lecture 5 & Chapter 6.5 CLRS.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

 Correctness: after each swap, the min-heap property is satisfied for all nodes except the node containing the element (with respect to its children)

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Correctness: after each swap, the min-heap property is satisfied for all nodes except the node containing the element (with respect to its children)
- Time complexity = O(height) = O(log n)

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair (u, key[u]),

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair (u, key[u]), where

u is a vertex in V\S,

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair (u, key[u]), where

- u is a vertex in V\S,
- key[u] is the weight of the lightest edge from u to any vertex in S. (The endpoint of this edge in S is stored in pred[u], which is used to build the MST tree.)

$$key[i] = 23$$
, $pred[i] = f$

After adding the new edge and vertex f, update the key[v] and pred[v] for each vertex v adjacent to f

Description of Prim's Algorithm

Prim(G, w, r)

```
Input: A graph G, a matrix w representing the weights between vertices
        in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
        in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices in G, the algorithm will start at root vertex r

Output: None

Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;

for u \in V do

|color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}

end

key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \ \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \ \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
    for v \in adj[u] do
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
    for v \in adj[u] do
        if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
            key[v] \leftarrow w[u,v];// new lightest edge
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
    for v \in adj[u] do
         if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
      key[v] \leftarrow w[u, v]; // \text{ new lightest edge}
Q.\text{Decrease-Key}(v, key[v]);
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
    for v \in adj[u] do
        if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
            key[v] \leftarrow w[u,v];// new lightest edge
         Q.Decrease-Key(v, key[v]);

pred[v] \leftarrow u;
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // \text{Initialize}
end
key[r] \leftarrow 0, \ pred[r] \leftarrow \text{NULL}; // \text{Start at root vertex}
Q \leftarrow \text{new PriQueue(V);// put vertices in } Q
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // \text{ lightest edge}
    for v \in adj[u] do
        if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
            key[v] \leftarrow w[u,v];// new lightest edge
            Q.Decrease-Key(v, key[v]);
         pred[v] \leftarrow u;
        end
    end
    color[u] \leftarrow \text{BLACK};
end
```


color

pred

key

	0	4	8	2	5	1	2
1		l l			l I	l l	

Weight of MST = **22**

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Prim(G, w, r)

Input: A graph G, a matrix w representing the weights between vertices

in G, the algorithm will start at root vertex \boldsymbol{r}

Output: None

Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
Q \leftarrow \text{new PriQueue(V);} // O(V)
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
    color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
Q \leftarrow \text{new PriQueue(V);} // O(V)
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // O(logV)
```

Prim(G, w, r)

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
Q \leftarrow \text{new PriQueue(V);} // O(V)
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // O(logV)
    for v \in adj[u] do
        if (color[v] \leftarrow \textit{WHITE})\&\&(w[u,v] < key[v]) then
        |key[v] \leftarrow w[u,v];
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
Q \leftarrow \text{new PriQueue(V);} // O(V)
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // O(logV)
    for v \in adj[u] do
        if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
           key[v] \leftarrow w[u,v];
            Q.Decrease-Key(v, key[v]); // O(logV)
```

```
Prim(G, w, r)
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, the algorithm will start at root vertex r
Output: None
Let color[1...|V|], key[1...|V|], pred[1...|V|] be new arrays;
for u \in V do
   color[u] \leftarrow \text{WHITE}, key[u] \leftarrow +\infty; // O(V)
end
key[r] \leftarrow 0, pred[r] \leftarrow \text{NULL};
Q \leftarrow \text{new PriQueue(V);} // O(V)
while Q is nonempty do
    u \leftarrow Q.\text{Extract-Min}(); // O(logV)
    for v \in adj[u] do
        if (color[v] \leftarrow WHITE)\&\&(w[u,v] < key[v]) then
            key[v] \leftarrow w[u,v];
            Q.Decrease-Key(v, key[v]); // O(logV)
         pred[v] \leftarrow u;
        end
    end
    color[u] \leftarrow \text{BLACK};
end
```

The data structure PriQueue (heap) supports the following two operations: (See CLRS)

 O(log V) for Extract-Min on a PriQueue of size at most V.

The data structure PriQueue (heap) supports the following two operations: (See CLRS)

 O(log V) for Extract-Min on a PriQueue of size at most V.

Total cost: O(V log V)

The data structure PriQueue (heap) supports the following two operations: (See CLRS)

 O(log V) for Extract-Min on a PriQueue of size at most V.

Total cost: O(V log V)

 O(log V) time for Decrease-Key on a PriQueue of size at most E.

The data structure PriQueue (heap) supports the following two operations: (See CLRS)

 O(log V) for Extract-Min on a PriQueue of size at most V.

Total cost: O(V log V)

 O(log V) time for Decrease-Key on a PriQueue of size at most E.

Total cost: O(E log V).

The data structure PriQueue (heap) supports the following two operations: (See CLRS)

 O(log V) for Extract-Min on a PriQueue of size at most V.

Total cost: O(V log V)

 O(log V) time for Decrease-Key on a PriQueue of size at most E.

Total cost: O(E log V).

Total cost is then $O((V + E) \log V) = O(E \log V)$

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Recalling the Generic Algorithm

- Start with an empty graph.
- Try to add edges one at a time, always making sure that what is built remains acyclic.
- If we are sure at each step that the resulting graph is a subset of some minimum spanning tree, we are done.

Lemma

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- Let A be a subset of E that is included in some minimum spanning tree for G.

Let

- (S, V S) be any cut of G that respects A
- (u, v) be a light edge crossing the cut (S, V S)

Then, edge (u, v) is safe for A.

• Kruskal's Algorithm is based directly on the generic algorithm.

- Kruskal's Algorithm is based directly on the generic algorithm.
- Unlike Prim's algorithm, which grows one tree, Kruskal's algorithm grows a collection of trees (a forest).

- Kruskal's Algorithm is based directly on the generic algorithm.
- Unlike Prim's algorithm, which grows one tree, Kruskal's algorithm grows a collection of trees (a forest).
- Initially, this forest consists of the vertices only (no edges).

- Kruskal's Algorithm is based directly on the generic algorithm.
- Unlike Prim's algorithm, which grows one tree, Kruskal's algorithm grows a collection of trees (a forest).
- Initially, this forest consists of the vertices only (no edges).
- In each step the cheapest edge that does not create a cycle is added.

- Kruskal's Algorithm is based directly on the generic algorithm.
- Unlike Prim's algorithm, which grows one tree, Kruskal's algorithm grows a collection of trees (a forest).
- Initially, this forest consists of the vertices only (no edges).
- In each step the cheapest edge that does not create a cycle is added.
- Continue until the forest 'merges into' a single tree.

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

• Set $A = \emptyset$ and F = E, the set of all edges.

- Set $A = \emptyset$ and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.

- Set $A = \emptyset$ and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.
 - If "yes", remove e from F.

- Set A = Ø and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.
 - If "yes", remove e from F.
 - If "no", move e from F to A.

- Set A = Ø and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.
 - If "yes", remove e from F.
 - If "no", move e from F to A.
- If $F = \emptyset$, stop and output the minimal spanning tree (V,A).

- Set A = Ø and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.
 - If "yes", remove e from F.
 - If "no", move e from F to A.
- If $F = \emptyset$, stop and output the minimal spanning tree (V,A). Otherwise go to Step 2.

- Set A = Ø and F = E, the set of all edges.
- Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.
 - If "yes", remove e from F.
 - If "no", move e from F to A.
- If $F = \emptyset$, stop and output the minimal spanning tree (V,A). Otherwise go to Step 2.

Questions

- How does algorithm choose edge e ∈ F with minimum weight?
- How does algorithm check whether adding e to A creates a cycle?

Question

How does algorithm choose edge $e \in F$ with minimum weight?

Question

How does algorithm choose edge $e \in F$ with minimum weight?

Answer:

Start by sorting edges in E in order of increasing weight.

Question

How does algorithm choose edge $e \in F$ with minimum weight?

Answer:

- Start by sorting edges in E in order of increasing weight.
- Walk through the edges in this order.

Question

How does algorithm choose edge $e \in F$ with minimum weight?

Answer:

- Start by sorting edges in E in order of increasing weight.
- Walk through the edges in this order.
- (Once edge e causes a cycle it will always cause a cycle, so it can be thrown away.)

Observations:

Observations:

• At each step of the framework algorithm, (V,A) is acyclic so it is a forest.

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Question

How to test whether u and v are in the same tree?

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Question

How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Question

How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure

Vertices in a tree are considered to be in same set.

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Question

How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure

- Vertices in a tree are considered to be in same set.
- Test if Find-Set(u) = Find-Set(v)?

Observations:

- At each step of the framework algorithm, (V,A) is acyclic so it is a forest.
- If u and v are in the same tree, then adding edge {u,v} to A
 creates a cycle.
- If u and v are not in the same tree, then adding edge {u,v} to
 A does not create a cycle.

Question

How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure

- Vertices in a tree are considered to be in same set.
- Test if Find-Set(u) = Find-Set(v)?

Low-Level Answer:

The Union-Find data structure implements this

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

- Create-Set(u): Create a set containing the single element u.
 - O(1) time

- Create-Set(u): Create a set containing the single element u.
 - O(1) time
- Find-Set(u): Find the set containing the element u. (Say each set has a unique ID)
 - O(log n) time

- Create-Set(u): Create a set containing the single element u.
 - O(1) time
- Find-Set(u): Find the set containing the element u. (Say each set has a unique ID)
 - O(log n) time
- Union(u, v): Merge the sets containing u and v respectively into a common set.
 - O(log n) time

Union-Find supports three operations on collections of disjoint sets over some universe U. Let n = |U|. For any $u,v \in U$:

- Create-Set(u): Create a set containing the single element u.
 - O(1) time
- Find-Set(u): Find the set containing the element u. (Say each set has a unique ID)
 - O(log n) time
- Union(u, v): Merge the sets containing u and v respectively into a common set.
 - O(log n) time

For now we treat Union-Find as a black box. We will present its implementation.

• Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)

- Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)
- The root of the tree is the representative item of all items in that tree

- Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)
- The root of the tree is the representative item of all items in that tree
 - i.e., the root of the tree represents the whole items.

- Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)
- The root of the tree is the representative item of all items in that tree
 - i.e., the root of the tree represents the whole items.
 - use the root's ID as the unique ID of the set.

Up-Tree Implementation

- Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)
- The root of the tree is the representative item of all items in that tree
 - i.e., the root of the tree represents the whole items.
 - use the root's ID as the unique ID of the set.
- In this up-tree implementation, every node (except the root) has a pointer pointing to its parent.

Up-Tree Implementation

- Every item is in a tree. (Do not confuse these with the subtrees formed by Kruskal's algorithm.)
- The root of the tree is the representative item of all items in that tree
 - i.e., the root of the tree represents the whole items.
 - use the root's ID as the unique ID of the set.
- In this up-tree implementation, every node (except the root) has a pointer pointing to its parent.
 - The root element has a pointer pointing to itself.

Create-Set(x) and Find-Set(x)

Create-Set(x): easy

 $x.parent \leftarrow x;$

Create-Set(x) and Find-Set(x)

Create-Set(x): easy

 $x.parent \leftarrow x;$

Find-Set(x): also easy

• simply trace the parent point until we hit the root, then return the root element.

Create-Set(x) and Find-Set(x)

Create-Set(x): easy

```
x.parent \leftarrow x;
```

Find-Set(x): also easy

• simply trace the parent point until we hit the root, then return the root element.

```
while x \neq x.parent do x \leftarrow x.parent; end
```

Naive solution:

 put the parent pointer of the representation of x pointing to the representation of y.

Naive solution:

 put the parent pointer of the representation of x pointing to the representation of y.

Naive solution:

 put the parent pointer of the representation of x pointing to the representation of y.

Question

Is it a good idea?

May become a linked-list at the end! Hence it is not efficient.

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

 when we union two trees together, we always make the root of the taller tree the parent of shorter tree.

• The root of every tree also holds the height of the tree.

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second.

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

Union(x,y)

Input: Two elements $x, y \in U$

Output: None

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

```
Input: Two elements x, y \in U
Output: None
a \leftarrow \text{Find-Set}(x);
b \leftarrow \text{Find-Set}(y);
```

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

```
Input: Two elements x, y \in U
Output: None
a \leftarrow \text{Find-Set}(x);
b \leftarrow \text{Find-Set}(y);
if a.height \leq b.height then

| if a.height is equal to b.height then
```

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

```
Input: Two elements x, y \in U
Output: None
a \leftarrow \text{Find-Set}(x);
b \leftarrow \text{Find-Set}(y);
if a.height \leq b.height then

| if a.height is equal to b.height then
| b.\text{height}++;
end
```

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

```
Input: Two elements x, y \in U
Output: None
a \leftarrow \text{Find-Set}(x);
b \leftarrow \text{Find-Set}(y);
if a.height \leq b.height then
    if a.height is equal to b.height then
        b.\text{height}++;
    end
    a.parent \leftarrow b;
end
else
```

- The root of every tree also holds the height of the tree.
- In case two trees have the same height, we choose the root of the first tree point to the root of the second. And the tree height is increased by 1.

```
Input: Two elements x, y \in U
Output: None
a \leftarrow \text{Find-Set}(x);
b \leftarrow \text{Find-Set}(y);
if a.height \leq b.height then
    if a.height is equal to b.height then
        b.\text{height}++;
    end
    a.parent \leftarrow b;
end
else
    b.parent \leftarrow a;
end
```

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y).

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- ② Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') =$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- ② Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} =$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

$$size(x') =$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

$$size(x') = size(x) + size(y) \ge$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} =$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- ② Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} = 2^{h(y)+1} =$$

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- **1** At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- ② Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} = 2^{h(y)+1} = 2^{h(x')}$$
.

Lemma

For the root x of any tree, let size(x) denote the number of nodes and h(x) be the height of the tree. Then $size(x) \ge 2^{h(x)}$.

Proof.

(By induction)

- ① At beginning, h(x) = 0, and size(x) = 1. We have $1 \ge 2^0 = 1$.
- 2 Suppose the assumption is true for any x and y before Union(x, y). Let the size and height of the resulting tree be size(x'), and h(x').
 - h(x) < h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} \ge 2^{h(y)} = 2^{h(x')}$$
.

• h(x) = h(y), we have

$$size(x') = size(x) + size(y) \ge 2^{h(x)} + 2^{h(y)} = 2^{h(y)+1} = 2^{h(x')}$$
.

• h(x) > h(y), it is similar to the first case

Lemma

For n items, the running time of

• Create-Set is O(1),

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is $O(\log n)$, and

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is $O(\log n)$, and
- Union is O(log n)

respectively.

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is $O(\log n)$, and
- Union is O(log n)

respectively.

Proof.

• Obviously, Create-Set(x) is O(1), and the running time of Union(x, y) depends on Find-Set(x).

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is O(log n), and
- Union is O(log n)

respectively.

Proof.

- Obviously, Create-Set(x) is O(1), and the running time of Union(x, y) depends on Find-Set(x).
- Since the running time of Find-Set(x) depends on the height of the tree. From previous lemma, for any tree, we have

$$n \geq 2^h \Rightarrow h$$

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is O(log n), and
- Union is O(log n)

respectively.

Proof.

- Obviously, Create-Set(x) is O(1), and the running time of Union(x, y) depends on Find-Set(x).
- Since the running time of Find-Set(x) depends on the height of the tree. From previous lemma, for any tree, we have

$$n \ge 2^h \Rightarrow h \le \log n$$

 $\Rightarrow h = O(\log n)$

Lemma

For n items, the running time of

- Create-Set is O(1),
- Find-Set is O(log n), and
- Union is O(log n)

respectively.

Proof.

- Obviously, Create-Set(x) is O(1), and the running time of Union(x, y) depends on Find-Set(x).
- Since the running time of Find-Set(x) depends on the height of the tree. From previous lemma, for any tree, we have

$$n \ge 2^h \Rightarrow h \le \log n$$

 $\Rightarrow h = O(\log n)$

Hence we have $Find-Set(x) = O(\log n)$.

Outline

- Review to Part IV
- Minimum Spanning Trees
 - Spanning trees
 - Minimum spanning trees
- Prim's algorithm
 - The idea
 - The algorithm
 - Analysis for Prim's algorithm
- Kruskal's algorithm
 - The idea
 - The algorithm
 - The Disjoint Set Union-Find data structure
 - Analysis for Kruskal's algorithm

Let A be the edge set selected by Kruskal's Algorithm, and let (u, v) be the edge to be added next. It suffices to show that

there is a cut that respects A, and

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

Let A be the edge set selected by Kruskal's Algorithm, and let (u, v) be the edge to be added next. It suffices to show that

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

• Let A' = (V', E') denote the tree of the forest A that contains u.

Let A be the edge set selected by Kruskal's Algorithm, and let (u, v) be the edge to be added next. It suffices to show that

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

• Let A' = (V', E') denote the tree of the forest A that contains u. Consider the cut (V', V - V').

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

- Let A' = (V', E') denote the tree of the forest A that contains u. Consider the cut (V', V V').
- There is no edge in A that crosses this cut, so the cut respects A.

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

- Let A' = (V', E') denote the tree of the forest A that contains u. Consider the cut (V', V V').
- There is no edge in A that crosses this cut, so the cut respects A.
- Since adding (u, v) to A' does not induce a cycle, (u, v) crosses the cut.

- there is a cut that respects A, and
- (u, v) is the light edge crossing this cut

- Let A' = (V', E') denote the tree of the forest A that contains u. Consider the cut (V', V V').
- There is no edge in A that crosses this cut, so the cut respects A.
- Since adding (u, v) to A' does not induce a cycle, (u, v) crosses the cut.
- Moreover, since (u, v) is currently the smallest edge, (u, v) is the light edge crossing the cut.

Input: A graph G, a matrix w representing the weights between vertices in G

Output: MST of G

Input: A graph G, a matrix w representing the weights between vertices

in G

Output: MST of G

Sort E in increasing order by weight w;

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
    Create-Set(u);
end
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
   // O(|E| \log |V|)
if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
```

```
Input: A graph G, a matrix w representing the weights between vertices
          in G
Output: MST of G
Sort E in increasing order by weight w_i O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
    \mid \text{ add } \{u_i, v_i\} \text{ to } A;
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_i O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
        add \{u_i, v_i\} to A;
        Union(u_i, v_i);
    end
end
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_i O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
        add \{u_i, v_i\} to A;
        Union(u_i, v_i);
    end
end
return
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_i O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
   Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
        add \{u_i, v_i\} to A;
        Union(u_i, v_i);
    end
end
return A;
```

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_i O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
  Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
        add \{u_i, v_i\} to A;
       Union(u_i, v_i);
    end
end
return A;
```

Remark: With a proper implementation of Union-Find, Kruskal's algorithm has running time $O(|E|\log|E|) = O(|E|\log|V|)$.

```
Input: A graph G, a matrix w representing the weights between vertices
         in G
Output: MST of G
Sort E in increasing order by weight w_{i,j} / O(|E| \log |E|)
// After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, ..., \{u_{|E|}, v_{|E|}\} \rangle
A \leftarrow \{\};
for u \in V do
  Create-Set(u);// O(|V|)
end
for e_i \in E do
    // O(|E| \log |V|)
    if Find\text{-}Set(u_i) \neq Find\text{-}Set(v_i) then
        add \{u_i, v_i\} to A;
       Union(u_i, v_i);
    end
                                  \log |E| \leq \log |V|^2 = 2\log |V| = O(\log |V|)
end
return A;
```

Remark: With a proper implementation of Union-Fine Kruskal's algorithm has running time $O(|E|\log|E|) = O(|E|\log|V|)$.

Summary

Prim's algorithm always grows one tree.

 Kruskal's algorithm grows a collection of trees, namely a forest.

• Both Prim's algorithm and Kruskal's algorithm take $O(|E|\log|V|)$ time, but they adopt different data structures.

