MATH 603 Notes

David Zhu

March 28, 2024

1 More on Commutative Rings

Let $a, b \in R$. Then $a|b \iff \exists a' \in R, b = aa'$; A semi ring on (R, \leq) defined by $a \leq b \iff a|b$. Note that \leq is usally not a partial order: let $b \in R^{\times}$, then $a \leq ab \leq a$, but $a \neq ab$.

Proposition 1.1. $a \sim b$ iff $a \leq b$ and $b \leq a$ iff (a) = (b) is an equivalence relation.

For R a domain, the induced relation gives a well-defined definition of greatest common divisor.

Definition 1.1. The $\underline{\mathbf{gcd}}$ of a, b, denoted by gcd(a, b), if exists, is any $d \in R$ such that d|a, b and for any other d' satisfying the condition, d'|d.

Definition 1.2. The <u>lcm</u> of a, b, denoted by lcm(a, b), if exists, is any $d \in R$ such that a, b|d and for any other d' satisfying the condition, d|d'.

Proposition 1.2. If gcd(a,b) exists, then $gcd(a,b) = sup\{d : d \le a,b\}$. If lcm(a,b) exists, then $lcm(a,b) = \inf\{d : a,b \le d\}$.

Note that maximal/minimal elements always exists by Zorn's lemma. However, the unique supremum/infimum may not exist. We have our following example:

Example 1.1. Take $R = [\sqrt{-3}]$. Let $a = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ and $b = 2(1 + \sqrt{-3})$. Then, $(1 + \sqrt{-3})$ and 2 are both maximal divisors, but they are not comparable since the only divisors of 2 are $\{\pm 1, \pm 2\}$ by norm reasons, and none divides $1 + \sqrt{-3}$.

Proposition 1.3. Let $a, b \in R$ be given. Then the following hold: gcd(a, b) = d exists iff (d) is the unique maximal prinipal ideal such that $(a) + (b) \subseteq (d)$. Dually, lcm(a, b) = c exists iff $(c) = (a) \cap (b)$. If both holds, then $a \cdot b = lcm(a, b) \cdot gcd(a, b)$

Proof. Easy exercise. Note that the inclusion can be proper, for example, take R = k[x, y] and ideals (x), (y). Then (1) is the gcd, but the containment is proper.

Recall that Id(R) is partially ordered by inclusion.

Definition 1.3. $(Id(R), +, \cap, \cdot, \leq)$ is the lattice of ideals of R.

Note that $+, \cap$ are simply the sums and intersection, but \cdot is the ideal generated by the products, i.e the set of finite sums of products.

Theorem 1.1. Let $Id^{\infty}(R)$ be the set of non-finitely generated ideals for R; the following are equivalent:

- 1. $Id^{\infty}(R)$ is non-empty;
- 2. There exists an infinite non-stationary chain of ideals (σ_i) , where $\sigma_i \in Id(R)$;

Proof. For $1 \implies 2$, let I be a non-finitely generated ideal of R and pick $x_1 \in I$. Let $\sigma_1 = (x_1)$. Because the ideal is non-finitely generated, we can pick $x_2 \in I$ such that $x_2 \notin \sigma_1$. Let $\sigma_2 = (x_1, x_2)$. Continue inductively gives us an infinite non-stationary chain of ideals.

For $2 \implies 1$, take the union of all the ideals in the infinite non-stationary chain. It is an ideal and it cannot be finitely generated.

Theorem 1.2. (Cohen's lemma): Let $Id^{\infty}(R) \neq \emptyset$. Then, it has a maximal element and any such maximal element is prime.

Before proving Cohen's lemma, we need the following technical lemma:

Lemma 1.3. Let I be an ideal. Define $(I:a) := \{b \in R : ab \in I\}$. If I + (x) and (I:x) are both finitely generated, then I is finitely generated.

Proof of Lemma 1.3. By assumption, there is finite set $\{\alpha_i := a_i + f_i x : a_i \in I, f_i \in R, i = 1, ..., k\}$ that generate I + (x), and a finite set $\{b_j : j = 1, ..., l\}$ that generate (I : x). We claim that the set $\{a_i, b_j x : i \in I, j \in J\}$ generate the entire I: since $I \subseteq I + (x)$, we can write any element $\pi \in I$ as a finite linear combination $\pi = \sum_{i=1}^k g_i \alpha_i = \sum_{i=1}^k g_i (a_i + f_i x)$, where $g_i \in R$. We note that $\pi - \sum_{i=1}^k g_i a_i = \sum_{i=1}^k g_i f_i x$ is in I; it follows that $\sum_{i=1}^k g_i f_i \in (I : x)$, so $\sum_{i=1}^k g_i f_i x$ is generated by the set $\{b_j x\}$, and we are done. \square

With the lemma in hand, now we can prove Theorem 1.2

Proof of Theorem 1.2. Zorn's lemma implies $Id^{\infty}(R)$ has maximal elements. Let I one such maximal element, and suppose it is not prime. Then, there exists $xy \in I$ and WLOG suppose $x \notin I$. By maximality, I + (x) must be finitely generated. By definition, we have $y \in (I : x)$. Lemma 1.3 implies (I : x) is not finitely generated, and in particular, $I \subseteq (I : x)$. Applying maximality again, we have I = (I : x), which forces $y \in I$, a contradiction.

2 Euclidean Rings

Definition 2.1. A <u>Principal Ideal Ring</u> is any ring R i which every ideal is principally generated. If R is a domain, then R is called a <u>PID</u>.

Definition 2.2. A <u>Factorial Ring</u> is any ring R in which all units can be written as a finite product of irreducible elements, unique up to a unit. If R is domain, then it is called a <u>UFD</u>.

Note that if the ring R it is not a domain, x|y and y|x does not imply x=uy for some unit u. Let us prove that this holds for a domain: suppose x=ys and y=xt, and $x,y\neq 0$ then x=xts, which implies x(1-ts)=0. This forces 1-ts=0, and t,s are then units. We can concoct counterexamples when R is not a domain accordingly: let $R=k[x]/(x^3-x)$ and take $a=x, b=x^2$. Clearly, a|b and $b=x^2\cdot x=x^3$, so b|a. However, x is not a unit.

Definition 2.3. A **Noetherian Ring** is any ring R such that any ideal is finitely generated.

Definition 2.4. Let R be a domain. A <u>Euclidean norm</u> on R is any map $\phi: R \to \mathbb{N}$ satisfying $\phi(x) = 0$ iff x = 0 and for every $a, b \in R$ with $b \neq 0$, then there exists $q, r \in R$ such that a = bq + r with $\phi(r) < \phi(b)$. A <u>Euclidean Domain</u> is any domain equipped with a Euclidean norm.

Example of Euclidean domains include $\mathbb{Z}, \mathbb{Z}[i]$. A non-trivial example R = F[t], with $\phi(p(t)) = 2^{deg(p(t))}$. A non-example is $\mathbb{Z}[\sqrt{6}]$ for it is not a PID.

Proposition 2.1. Eucldiean Domains are PIDs.

Proof. By the well-ordering principal, for every ideal I in a Euclidean domain, there exists an element other than 0 of the smallest norm. It is easy exercise that such element generate the entire ideal.

Proposition 2.2. (The Euclidean Algorithm): Given $a, b \in R$, $b \neq 0$. Set $r_0 = a, r_1 = b$, and continue inductively $r_{i-1} = r_i \cdot q_i + r_{i+1}$. Then, $r_i = 0$ for $i > \phi(b)$ and if $r_{i_0} \geq 1$ maximal with $r_{i_0} \neq 0$, then $r_{i_0} = \gcd(a, b)$.

Proof. Note that the remainder is strictly decreasing, so r_i must become 0 after $\phi(b)$ steps. Note that once $r_{i+1} = 0$, we have $r_i | r_n$ for all $n \le i$. Coversely, it is clear that any divisor of a, b divides all r_n for $n \le i$. \square

3 Principal Ideal Domains

Theorem 3.1. (Charaterization) For A domain R, the following are equivalent:

- 1. R is a PID.
- 2. every $p \in Spec(R)$ is principal.

Proof. One direction is trivial; for the other direction, assume that every prime is principal. Then, Cohen's Lemma implies $Id^{\infty}(R) \neq \emptyset$; In particular, every ideal is finitely generated, so the ring is Noetherian. We may apply Zorn's lemma on the set of non-principally generated ideal (since every chain stablizes and has a maximal element), and let P be a maximal non-principally generated ideal. Suppose it is not prime, and let $xy \in P$ with $x \notin P$. Then, $P \subset (P:x)$ and $P \subset P + (x)$ properly. By maximality, we have (P:x) = (c), and (I:c) = (d). By definition, we have $cd \in I$; moreover, suppose $x \in I$, then x = cr = cdt for some $r, t \in R$. Thus, I = (cd) is principal, a contradiction.

Proposition 3.1. PIDs are UFDs.

Proof. Let $a \in R$ such that a is non-zero and not a unit. Then, there exists $p \in Spec(R)$ such that $(a) \subseteq p$. Hence R being a PID implies $\exists \pi \in R$ such that $p = (\pi)$. Hence, π must be prime and $\pi|a$. Set $a_1 = a$, $\pi_1 = \pi$, and let a_2 be the element such that $\pi_1 a_2 = a_1$. If a_2 is not a unit, find $(a_2) \subset (\pi_2)$, where π_2 is prime. Let a_3 be the element such that $\pi_2 a_3 = a_2$. Continue inductively until a_n is a unit. The process must terminate, for otherwise we get an infinite chain of distinct principal ideals (a_i) that does not stablize (stablizing is equivalent to $(a_n) = (a_{n+1})$ for some n, which implies they differ by a unit).

Corollary 3.1.1. Let R be a PID; let $P \subset R$ be a set of representatives for the prime elements up to association. For every $a \in R$, $\exists \epsilon \in R^{\times}$ and $e_{\pi} \in \mathbb{N}$ such that almost all $e_{\pi} = 0$. Then, every $a \in R$ can be written as $a = \epsilon \prod_{\pi \in P} \pi^{e_{\pi}}$. We proceed to recover gcd and lcm, up to associates.

Note that the above corollary generalizes to the quotient field by replacing $\mathbb N$ with $\mathbb Z$.

4 Unique Factorization Domains

Definition 4.1. The following are equivalent for a domain R:

- 1. R is a UFD.
- 2. Every minimal prime ideal (prime of height 1) is principal and every non-zero, non-invertible elements in contained in finitely many primes.

Proof. 1 \implies 2: For every non-zero prime P, pick $x \in P$ has factor. One of the prime factors must be in P, and it follows by minimality that P must be generated by such prime factor. For the second part, the finite factorization of the element gives precisely the finite primes that it is contained in. 2 \implies 1:given $x \in R$, the finitely many primes containing x are principally generated by prime elements, which gives a factorization.

Remark: we recover the gcd and lcm definition using the same factorization as Corollary 3.1.1.

Theorem 4.1. (Gauss Lemma)Let R be a UFD; then R[t] is a UFD.

To prove the theorem, we need the following lemma on contents:

Definition 4.2. Let $f(t) = a_0 + ... + a_n t^n$ be given. Then, the <u>content</u> of f, denoted C(f), is the GCD of all coefficients. In particular, $C(f)|a_i$ for all i, and $f_0 := f/(C(f))$ has content 1.

Lemma 4.2. Let R be a UFD, then the following hold: (1). $C(f): R[t] \to R$ given by $f \mapsto C(f)$ is multiplicative; in particular, if C(f) = C(g) = 1, then C(fg) = 1.

Proof of lemma 4.2. given $f(t) = a_0 + ... + a_n t^n$ and $g(t) = b_0 + ... + b_m t^m$. If one of f, g is constant, then it is easy exercise; suppose neither is constant, then set $f = f_0 \cdot C(f)$ and $g = g_0 \cdot C(g)$. Clearly we have $C(f) \cdot C(g)|C(fg)$. Hence it suffices to prove that $C(f_0g_0) = 1$. Equivalently, let $\pi \in R$ be a prime element, we want to show there exists a coefficient $c_k \in f_0g_0$ such that π does not divide c_k . Suppose

4

 $\pi | c_k = \sum_{i+j=k} a_i b_j$ for all k. Because $C(f_0) = C(g_0) = 1$, then there exists minimal a_i, b_j such that π does not divide a_{i_0}, b_{j_0} . Then, π does not divide $C_{i_0+j_0}$.

Proposition 4.1. Let $K := \operatorname{Quot}(R)$, and $f \in K[t]$. Then, let d be the least common multiple of the denominators of the coefficients of f. Then, f = df/d, and $df \in R[t]$. Define $C_K(f) = C(df)/d$. It is standard to check the analog for lemma 4.2 holds for C_K as well.

Proposition 4.2. Let R be a UFD. For any irreducible $f \in R[t]$, either f is a constant and thus prime in R, or f is primitive, i.e C(f) = 1.

Proof. If f is a constant, the first part of the proposition is obvious; now suppose f has degree > 0; then f can be factored into its primitive part and content; if $C(f) \neq 1$, we either have a non-trivial factorization of f or f will be a constant multiplied by a unit, a contradction.

Theorem 4.3. Let R be a UFD. For $f(t) \in R[t]$, let $K := \operatorname{Quot}(R)$. Then, the following are equivalent:

- 1. f(t) is prime
- 2. f(t) is irreducible
- 3. Either f is an irreducible constant in R or f is irreducible in K[t] and $C_K(f) = 1$.

Proof. 1 \implies 2 holds in every domain: suppose a is prime and a = bc. Then by primeness, we have a|b or a|c. WLOG, suppose a|b, such that ax = b and a = axc, so cx - 1 = 0, which implies c is a unit.

 $2 \implies 1$ in UFDs: suppose f is an irreducible and f|gh, then we have some l such that fl = gh. Because g, h, l can be uniquely written as a product of irreducibles up to permutation and units, we see that the irreducible f must appear on the RHS once, i.e f|g or f|h.

For $2 \implies 3$: If f is a constant, then it become a unit in the field of fractions; suppose deg(f) > 0, so irreducibility implies C(f) = 1. Suppose by contradiction that f is reducible over K[t], and let f = gh for $g, h \in K[t]$ be a factorization in K[t]. Note that given $g, h \in K[t]$, there is some $x_g, x_h \in K$ such that $x_g g, x_h h \in K[t]$ and $C(x_h h) = C(x_g g) = 1$. Then, $x_g x_h f = (x_g g)(x_h h) \in R[t]$. By Proposition 4.2, we have $C(x_g x_h f) = x_g x_h C(f) = 1$, which implies $x_g x_h = 1$ (up to a unit in R). However, this implies $f = (x_g g)(x_h h)$, a contradiction.

So we are left to prove $3 \implies 2$. Suppose f is not a constant and f primitive and irreducible. Suppose $f = gh \in R[x]$. WLOG g is a unit in K[x], so g is a nonzero element of R. Now g divides all the coefficients of f, so g is a unit in R.

Proposition 4.3. $R[t_i]_{i \in I}$ is UFD if R is UFD.

Proof. By induction it suffices to show that R[t] is a UFD. The idea is that K[t] is PID so it is a UFD. A factorization in K[t] will correspond to a factorization in R[t] by the equivalence of 2 and 3 in Theorem 4.3.

5 Noetherian Rings

Definition 5.1. A commutative ring R is called a <u>Noetherian</u> ring if every chain of ideals in R is stationary.

Proposition 5.1. The following are equivalent:

- 1. Every chain of ideals is stationary.
- 2. All ideals are finitely generated.
- 3. $Spec(R) \subseteq Id^f(R)$.

Terminology: the condition 1 is called the ACC (Ascending Chain Condition).

Proof. By Cohen's lemma, we deduce $2 \iff 3; 1 \iff 2$ is an easy exercise.

For non-commutative rings, it is possible that a ring is left Noetherian but not right Noetherian.

Example 5.1. $R = \{ \begin{bmatrix} p & q \\ 0 & m \end{bmatrix} : p, q \in \mathbb{Q}; m \in \mathbb{Z} \}$ is left Noetherian but not right Noetherian.

Proposition 5.2. (Basic Properties) Let R be a Noetherian ring. The the following hold:

- 1. If \mathfrak{a} is an ideal of R, then R/\mathfrak{a} is Noetherian if R is Noetherian.
- 2. If $\Sigma \subset R$ is a multiplicative system, then R_{Σ} is Noetherian.
- 3. The radical of an ideals \mathfrak{a} , $rad(\mathfrak{a})$, has a power contained in \mathfrak{a} .
- 4. Let $Spec_{min}(\mathfrak{a}) := \{ p \in Spec(R) : \mathfrak{a} \subseteq p, p \text{ minimal} \}$ is finite.

Proof. To 1. Ideals in R/\mathfrak{a} corresponds bijectively to ideals in R that contains \mathfrak{a} . Finite generation of ideals in R clearly implies the finite generation of ideals in the quotient.

To 2. $Spec(R_{\Sigma})$ corresponds bijectively to primes in Spec(R) with empty intersection with Σ . We also have p finite generated implies p^e f.g.

To 3. Suppose $rad(\mathfrak{a}) = (r_1, ..., r_n)$ f.g. For every i, we have $r_i^{n_i} \in \mathfrak{a}$ for some n_i . Take $n = \sum n_i$ and $nil(\mathfrak{a})^n \subset \mathfrak{a}$.

To 4. The first method to prove this is by contradiction: let $A = \{\mathfrak{a} : Spec_{min}(\mathfrak{a}) \text{ is infinite}\}$. Then A has maximal elements. Let $\mathfrak{a}_{\mathfrak{o}}$ be maximal. Note that $\mathfrak{a}_{\mathfrak{o}}$ cannot be prime for it is over itself. Suppose it is not prime, then there exists $xy \in \mathfrak{a}$ with both x and y not in \mathfrak{a} ; for every prime ideal P containing \mathfrak{a} , P contains either x or y. By pigeonhole, there must be infinite such primes containing either $\mathfrak{a} + (x)$ or $\mathfrak{a} + (y)$, which contradicts maximality.

The second method is using the fact that Spec(R) is a Noetherian topological space, which has finitely many irreducible components.

The third method is through primary decomposition. An ideal I is irreducible if $I = a_1 \cap a_2$ then, $I = a_1$ or $I = a_2$. For principal ideals, this is equivalent to the generator being irreducible.

Proposition 5.3. If R is Noetherian, then every ideal $I \in R$ is in the finite intersection of irreducible ideals in R.

Proof. By contradction, let X be the set of ideals that does not satisfy the proposition. Then, X is non-empty, and by Noetherian assumption, there is a maximal element $\mathfrak{a}_{\mathfrak{o}}$. Then, $\mathfrak{a}_{\mathfrak{o}}$ is not irreducible, for it would be the intersection of itself. Therefore, there exists I_0, I_1 such that $a_0 = I_0 \cap I_1$, where a_0 is properly contained in both. By maximality, I_0, I_1 are both finite intersection of irreducibles, and we can decompose a_0 based on such, a contradction.

Definition 5.2. Let R be a commutative ring. Then an ideal $I \subset R$ is primary if for all $x, y \in R$ we have: if $xy \in I$, $x \notin I$, then ther exists $n \in \mathbb{N}$ such that $y^n \in I$.

In general, a power of prime ideal is not primary. If $I = \mathfrak{m}^n$ for some maximal ideal \mathfrak{m} , then I is in fact primary.

Proposition 5.4. Let R be Noetherian, and $\mathfrak{a} \in Id(R)$ be a irreducible ideal. Then, \mathfrak{a} is primary, and $nil(\mathfrak{a})$ is prime.

Proof. Exercise \Box

These two facts imply $Spec_{min}$ must be finite. In general, quotient of UFD and PID are not UFD or PID. but this holds for Noetherian rings.

Theorem 5.1. Let R be a Noetherian ring. Then the following hold:

- 1. (Hilbert Basis Theorem): $R[t_1, ..., t_n]$ is Noetherian.
- 2. Every finitely generated R-algebra S is Noetherian.

Proof. Note that $1 \Longrightarrow 2$ since every finitely generated algebra is a quotient of polynomial rings over finitely many variable. To prove 1, by induction it suffices to show for i=1. Let $\mathfrak{a}\in R[t]$ be an ideal. Claim: \mathfrak{a} is f.g. Inductively, we may choose elements $f_i\in I$ with $deg(f_{i+1})$ being minimal in $I\setminus (f_1,...,f_{i-1})$. If the process terminates, then we are done; otherwise, let a_i be the leading coefficient of f_i , and the chain of ideals $(I_i:=(a_1,...,a_i))$ must stablizes by Noetherian assumption on R. Suppose it stablizes at step N, and moreover suppose by contradction that $f_1,...,f_N$ does not generate \mathfrak{a} . Then, consider the elment f_{N+1} , which by our argument is not contained in $(f_1,...,f_N)$ and of minimal degree. The leading coefficient of f_{N+1} is expressed as $a_{N+1}=\sum_{i=1}^N \mu_i a_i$. Then, we cook up

$$g = \sum_{i=1}^{N} \mu_i f_i x^{deg(f_{N+1}) - deg(f_i)}$$

where $g \in (f_1, ..., f_N)$ by construction, and $f_{N+1} - g \notin (f_1, ..., f_N)$. However, $f_{N+1} - g$ has degree strictly less than f_N since we cancelled the leading term, which is impossible.

6 Valuation Rings

Proposition 6.1. Let R be a domain. Then the following are equivalent:

- 1. The ideals in R are totally ordered by inclusion.
- 2. The principal ideals in R is totally ordered by inclusion, i.e id(R) is a chain
- 3. For every $x \in \text{Quot}(R)$, if $x \notin R$ then $x^{-1} \in R$.

Proof. $1 \implies 2$ is trivial;

Definition 6.1. A ring R satisfy one of the conditions above is called a (Krull) Valutation Ring.

Example 6.1. $\mathbb{Z}_{(p)} = \{\frac{q}{l} \in \mathbb{Q} : gcd(l, p) = 1\}$ is a valuation ring with maximal ideal (p). The valuation on v_p is defined by $v(\frac{q}{l}) = r$ where r is the maximal natural number such that $p^r|q$.

Proposition 6.2. (Properties) Let R be a valuation ring, and K be its quotient field. The the following hold:

- 1. R is local, and $m = \{x \in R : x^{-1} \notin R\}$. The maximal ideal is called <u>valuation ideal</u> of R.
- 2. $\Gamma_R := K^{\times}/R^{\times}$ is totally ordered by $xR^{\times} \leq yR^{\times}$ iff $yR \subset xR$. The group is called the value group of R.
- 3. The natural map $v_R: K \to \Gamma_R \cup \{\infty\}$, $v(0) = \infty$ satisfies v(xy) = v(x) + v(y) and $v(x+y) \ge \min(v(x), v(y))$. Such map is called the (canonical)valuation of R.

Proof. Exercise. \Box

Note R is the set $\{x \in K : v_R(x) \ge 0\}$; m is the set $\{x \in K : v_R(x) > 0\}$;

Definition 6.2. Let R be a domain, and K be a field, $(\Gamma, +, \leq)$ be a totally orderedd abelian group. Let $v: K \to \Gamma \cup \{\infty\}$ be a map satisfying

- 1. $v(x) = \infty$ iff x = 0
- $2. \ v(xy) = v(x) + v(y)$
- 3. $v(x+y) \geq min(v(x), v(y))$

Then, the map v is called a <u>valuation</u> of K.

Proposition 6.3. $R_v = \{x \in K : v(x) \geq 0\}$ is a valuation ring. The map $\tau : \Gamma_{R_v} \to \Gamma$, given by $xR_v^{\times} \mapsto v(x)$ is an order preserving embedding. Moreover, $v = \tau \circ v_{R_v} : K \to \Gamma \cup \{\infty\}$.

Proof. Exercise. \Box

Given a valuation ring, $R \subset K$, every embedding of totally ordered groups $\Gamma_R \to \Gamma$ gives rise to a valuation.

Definition 6.3. 1. Two valuations v, w on K are equivalent if $R_v = R_w$. If $v : K \to \Gamma_v \cup \{\infty\}$ and $w : K \to \Gamma_w \cup \{\infty\}$, with embeddings $\tau_v : \Gamma_{R_v} \to \Gamma_v \ \tau_w : \Gamma_{R_w} \to \Gamma_w$. There exists an order preserving commutative diagram

$$\Gamma_{R_v} \longrightarrow \tau_v(\Gamma_{R_v}) \longrightarrow \Gamma_v$$

$$\downarrow^{\tau_{vw}}$$

$$\Gamma_{R_w} \longrightarrow \tau_w(\Gamma_{R_w}) \longrightarrow \Gamma_w$$

2. Two valuations v, w on K are equivalent iff $\mathfrak{m}_v = \mathfrak{m}_w$

A valuation ring R is called <u>discrete</u>, if $v_R(K) \cong \mathbb{Z}$ as ordered abelian groups. If $\pi \in R$ has $v_R(\pi)$ minimal since \mathbb{Z} has minimal elements, then π is called a uniformizing parameter.

Example 6.2. $\mathbb{Z}_{(p)} \subset \mathbb{Q}$ is a discrete valuation ring. The uniformation parameter is $p\epsilon$ with ϵ a unit.

A valuation ring R is called rank 1 if $v_r(K)$ satisfies the Archimedian axiom, i.e for $\forall \gamma_1, \gamma_2 \in \Gamma_R, \gamma_1 > 0$, $\exists n \in \mathbb{N}$ such that $\gamma_2 \leq n \cdot \gamma_2$. A totally ordered group Γ is Archimedian if there is an ordered preserving embedding into the reals. In relation to absolute values,

Definition 6.4. An absolute value of a field K is any map $|-|: K \to \mathbb{R}^+_{\geq 0}$ iff it satisfies the norm axioms. An absolute value is called **non-Archimedian** or **ultra-metric** if $|x + y| \leq max\{|x|, |y|\}$.

Let $|-|: K \to R$ be a non-Archimedian absolute value. Then $v_{|-|} := -log \circ |-|: K \to \mathbb{R} \cup \{\infty\}$ is rank 1 valuation. Conversely, let $v: K \to R \cup \{\infty\}$ be a rank one valuation, then $|-|_v := e^{-v}: K \to \mathbb{R}_{\geq 0}$ is a non-Archimedian absolute value.

Theorem 6.1. The following facts about possible valuations

- 1. If $K|F_p$ algebraic, then no non-trivial valuations.
- 2. If v is a valuation of F(t) such v is trivial on F, then $R_v = F[t]_{p(t)}$, where p(t) irreducible or $R_v = F\left[\frac{1}{t}\right]_{\left(\frac{1}{t}\right)}$. thus all valuations are discrete.
- 3. If v is a non-trivial valuation on \mathbb{Q} , then $R_v = \mathbb{Z}_{(p)}$ for some p prime. Morever, all non-archimedian absolute values of \mathbb{Q} corresponds to the valuation above. (Ostrowskis Theorem).

In general, the space of all valuations on K, denoted Val(K), is called the Zariski-Riemann space. Moreover, Val(K) carries a topology called a patch topology, or constructible topology, that makes the space compact totally disconnected. The space is usually very complicated.

Theorem 6.2. (Chevalley's Theorem for Existence of Valuations) Let A be a domain, $p \in Spec(a)$ a prime ideal, $\kappa(p)Quot(A/p) \subset \Omega$, with Ω algebraically closed. Then, there exists a valuation ring R of K = Quot(A) such that $\mathfrak{m}_R \cap A = p$, and $R/\mathfrak{m} \hookrightarrow \Omega$.

Proof. Set up for Zorn's lemma: $H = \{(B,q) : A \subset B, q \in Spec(B), q \cap A = p\}$ such that the embedding into the closure Ω commutes. Prove that H has maximal elements R. If R is not local, then $R_{\mathfrak{m}}$ is local and bigger than R. Thus, R is local. let $x \in K$, we want to show $x \notin R$ implies $x^{-1} \in R$. Claim, if m[x] = R[x], then $m[x^{-1}] \subset R[x^{-1}]$. If so m then $R_x := R[x^{-1}]$ is greater than R, a contradictin. By contradiction, let m[x] = R[x], $m[x^{-1}] = R[x^{-1}]$. Then, there exists coefficients in m such that polynomials are 1.

7 Artin Rings

Definition 7.1. A commutative ring R is called <u>Artin</u>, if every descending chain of ideals (I_n) is stationary.

Proposition 7.1. Let R be Artinian. Then the following hold:

- 1. If Σ is a multiplicative system, then $\Sigma^{-1}R$ is also Artinian.
- 2. If $I \subset R$ is an ideal. Then, R/I is Artinian.
- 3. Spec(R) = Max(R) is finite.

Proof. To 1. pull back of ideals respects inclusion. To 2. obvious. To 3, let $p \in Spec(R)$. Then, R/p is an integral Artinian ring. Then, R/p must be a field. Thus, all primes are maximal. If $\mathfrak{m}_1, ..., \mathfrak{m}_n$, then $\mathfrak{m}_1 \subset \mathfrak{m}_1\mathfrak{m}_2 \subset ... \subset \mathfrak{m}_1\mathfrak{m}_2\mathfrak{m}_3....$

Theorem 7.1. Let R be an Artinian ring. Then the following hold:

- 1. J(R)=N(R) is nilpotent.
- 2. (Structure Theorem) Let $Max(R) = \{m_1, ..., m_r\}$. Then, $R \to R/(m_1)^n \times ... \times R/m_r^n$. Hence, R is a product of local Artinian rings.

Proof. Look at $J(R) \subset J^2(R) \subset ...$ becomes stationary. Thus, there exists n minimal such that $I = J^n(R)$ such that $I^k = I$ for all k. Let H be the set of ideals in R such that

Theorem 7.2. (Relations of Artin Rings and Noether Rings) Let R be a commutative ring. The the following are equivalent:

- 1. R is an Artin ring
- 2. R is Noether and Krull dimension of R is 0.

Proof. Step one is reduce to R local as follows: R Artin ring implies $R = \prod R_i$, where R_i are local Artin rings. In particular, the product is Noetherian iff each R_i is Noetherian. R is Noetherian and Krull dimension 0 implies Max(R) = Spec(R), hence rad(R) = Jac(R). Thus, R has only finitely many prime ideals. Hence, Max(R) is finite and we reduce to the finite case.

Step two: now assume R is local. Assume (R, \mathfrak{m}) is a local Artin ring. To prove R is Noetherian, it suffices to show \mathfrak{m} is finitely generated. For k > 0, we have the exact spectral sequences

$$0 \longrightarrow \mathfrak{m}^k/\mathfrak{m}^{k+1} \stackrel{f}{\longrightarrow} R/\mathfrak{m}^{k+1} \stackrel{g}{\longrightarrow} R/\mathfrak{m}^k \longrightarrow 0$$

Note $\kappa := R/\mathfrak{m}$ is a field, R acts on $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ through the projection $R \to \kappa$. In particular, there is a bijection

$$\{\kappa - \text{vector subspaces of} \ \ \mathfrak{m}^k/\mathfrak{m}^{k+11}:\} \iff \{R - \text{ideals}\mathfrak{n} \ : \mathfrak{m}^{k+1} \subset \mathfrak{n} \subset \mathfrak{m}^k\} = \epsilon$$

Note R Artinian implies R/\mathfrak{m}^{k+1} is Artinian. Thus, the set ϵ is finite, and $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ is finite dimensional. Then induction on k: suppose R/\mathfrak{m}^k is Noetherian. Then, $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ is finite R-module.

For the reverse implication: Given (R, \mathfrak{m}) Noetherian and $\mathfrak{m}^k = 0$ for k sufficiently large. If k = 0 then the statement holds; suppose it holds for k; consider the exact sequence above and R/\mathfrak{m}^k is Artin. Let (\mathfrak{a}_i) be

a descending sequence of $Id(R/\mathfrak{m}^{k+1})$. Hence, there exists i_0 such that $\pi_k(\mathfrak{a}_i)\pi_k(\mathfrak{a}_{i_0})$ for all $i > i_0$. Then, look at

$$0 \longrightarrow \mathfrak{a}_i \cap \mathfrak{m}^k/\mathfrak{m}^{k+1} \stackrel{f}{\longrightarrow} \mathfrak{a}_i/\mathfrak{m}^{k+1} \stackrel{g}{\longrightarrow} \mathfrak{a}_i/\mathfrak{m}^k \longrightarrow 0$$

8 Krull's Theorem on Noetherian Rings

Definition 8.1. Let R be a commutative ring; $\mathfrak{a} \subset R$ a proper ideal. Consider \mathfrak{a}^n and the projection $p_n: R/\mathfrak{a}^{n+1} \to R/\mathfrak{a}^n$. Then, $(R/\mathfrak{a}^n, p_n)$ is a projective system. The limit $\widehat{R} := \varprojlim R/\mathfrak{a}^n$, together with $i: R \to \widehat{R}$ is called \mathfrak{a} -adic completion of R.

Proposition 8.1. The kernel of the inclusion $i: R \to \widehat{R}$ is the intersection of all \mathfrak{a}^n .

Theorem 8.1. (The Intersection Theorem) Let R be a Noetherian ring that is local or integral. Let $\mathfrak{a} \subset R$ be a proper ideal. Then, $\cap \mathfrak{a}^n = 0$. In particular, the inclusion map in the \mathfrak{a} -adic completion is injection.

Proof. Suppose R is local with maximal ideal \mathfrak{m} . Let $\mathfrak{a}_0 = \cap \mathfrak{a}^k$ is a finitely generated ideal. Let $\mathfrak{m}_0 = \cap \mathfrak{m}^k$ is f.g with $\mathfrak{a}_0 \subset \mathfrak{m}_0$. We then have $\mathfrak{m} \cdot \mathfrak{m}_0 = \mathfrak{m}_0$, and apply Nakayama's lemma, we get $\mathfrak{m}_0 = (0)$.

Now suppose \mathfrak{m} be a maximal ideal over \mathfrak{a} , and let $\phi: R \to R_{\mathfrak{m}}$ be the localization is injective.

Much more is true.

Theorem 8.2. (Artin-Reese Lemma) Let R be a Noetherian ring. Given ideals $\mathfrak{a}, \mathfrak{b}, I$, there exists k such that for k' > k, we have $\mathfrak{a}^k \mathfrak{b} \cap I = (\mathfrak{a}^{k'-k})$.

Theorem 8.3. If R is Noetherian, then all \mathfrak{a} -adic completions of R is Noetherian.

Definition 8.2. Let R be a ring. For $r \in R$, let $Spec_{min}(r) = \{p \in Spec(R) : (r) \subset p \text{ minimal}\}$. Definition goes similarly for a set of elements.

Definition 8.3. For $p \in Spec(R)$, the <u>height</u> of p is the krull dimension of R_p . The <u>coheight</u> is the krull dimension is the krull dimension of R/p.

Proposition 8.2. $height(p) + coheight(p) \leq Krull dimension of p.$

Theorem 8.4. (Krull's Principal Ideal Theorem/ Hauptideasatz) Let R be a Noetherian ring. Then, for all non-units $r \in R$, one has $height(p) \leq 1$ for all $p \in Spec_{min}(r)$, with equality when r is not a zero-divisor.

Proof. Suppose by contradction that height(p) > 1. Equivalently, there exists a chain $q_0 \subset q$ prime ideals. Reduction step: can replace R by R/p_0 , and q/q_0 and p/q_0 . Can replace R, q, p by R_p, p_p, q_p . So WLOG, R is local, and p is maximal. Hence, $(r) \subset p$, and rad(r) = p. Conclude $\overline{R} := R/(r)$ is Artin. Hence, $q^{(n)}$ gives $(\overline{q^{(n)}})_n$ a descending sequence, so it must stablize.

Lemma 8.5. For $q \in Spec(R)$, let $q^{(n)} := (q^n R_q)^c$. Then, $(q^{(n)})^e = q^n R_q = (qR_q)^n$. $q^{(n)}$ is called the symbolic n-th power of q.

Proof. exercise \Box

Lemma 8.6. $q^{(n)}$ is primary if $ax \in q^{(n)}$, and $x \notin q$, then $a \in q^{(n)}$.

Proof. exercise \Box

Definition 8.4. Let $r = (r_1, ..., r_n)$ be given. It is called a <u>regular</u> sequence if r_i is not a zerodivisor in $R/(r_1, ..., r_{i-1})$.

Theorem 8.7. (Krull's Dimension Theorem) Let R be a Noether ring, and $r = (r_1, ..., r_m)$ a system. Then $Spec_{min}(r)$ contains prime ideals of height $\leq m$, with equality when r is regular.

Proof. Induction: n=1 is PIT; Given $r=(r_1,...,r_{m+1})$, and $p\in Spec_{min}(r)$. Let $q\subset p$ be a maximal with this property. Claim: ht(q)=m. Hence ht(p)=m+1, By contradiction, let ht(q)>m and consider $q_0\subset q_1\subset ...\subset q_m=q$. Reduction step 1: replace R,p,q by $\overline{R}:=R/q_0, \overline{P}:=p/q_0, \overline{q}:=q/q_0$. WLOG, $R=\overline{R}$ is a Noetherian domain. Reduction step 2 Replace R,p,q with their localization at p. Then, R is local with max(R)=p.

Since q is properly contained in p, there exists $r_i \notin q$ by minimality. WLOG, r=m+1. Consider $\mathfrak{a}=q+(r_{m+1})$, which implies $q\subset \mathfrak{a}\subseteq p$. Then, $nil(\mathfrak{a})=p$ since p is the only prime ideal containing a. Conclude that $r_i\in p$ implies $r_i\in nil(\mathfrak{a})$, hence for every i=1,...,m, there exists $a_i\in R$ and $s_i\in q$ such that $r_i^{n_i}=s_i+a_ir_{m+1}$. Conclude that $s=(s_1,...,s_m)$ and nil(s)=q. In particular, q is a minimal prime ideal containing elements $s_1,...,s_m$. Look at $R\to R/s$, and $\overline{p}=p/s$. Hence, $ht(\overline{p})$ is at most 1, and 1 \overline{r}_{m+1} is not a zero divisor.

Corollary 8.7.1. Let R be Noether. Then, the following hold:

- 1. Every descending sequence of prime ideals is staionary.
- 2. if ht(p) = m, then there exists a regular system of length m with p a minimal prime over it.

Proof. exercise \Box

9 Modules over special classes of rings

9.1 Modules over PIDs

Lemma 9.1. Let $C = (\gamma_1, ..., \gamma_n)$ be an R-basis of a free R-module P, and $\gamma'_1 = \sum_{i=1}^m r_i \gamma_i$ such that $gcd(r_1, ..., r_m) = 1$. Then there exists a basis $C' = (\gamma'_1, ..., \gamma'_m)$

Proof. Induction: n = 1 trivial; let $x = \sum_{i=1}^{m+1} r_i \gamma_i = \sum_{i=1}^m r_i \gamma_i + r_{m+1} \gamma_{m+1}$. We can write $\sum_{i=1}^m r_i \gamma_i$ with respect to the new basis by induction step. since the gcd of the sequence is $gcd(d, r_{m+1})$, which must be 1.

Theorem 9.2. Let R be a PID. Then, the following hold:

- 1. If M is a free R module, every R-submodule of M is R-free.
- 2. A finite torsion free R-module is R-free

Proof. To 1: let $A = (\alpha_i)$ be a basis for M. Suppose I is well-ordered(otherwise use Zorn's lemma), we make transfinite induction: let i_0 be the minimal element of I, $M_{i_0} = \langle \alpha_{i_0} \rangle$ be the cyclic submodule. Let $M_{i'} = \langle \alpha_{i'} : i \leq i' \rangle$ and $N_{i'} = N \cap M'_i$. Note that $N_{i_0} = N \cap R_{\alpha_{i_0}}$, and the submodules of a PID is precisely the principal ideals, which are free.

To 2: let $(x_1, ..., x_m)$ be a system of generators and let $R^m \to M$ be the natural surjection. If the system is linearly independent, we are done. Let $\sum_{i=1}^k r_1 x_i = 0$. Divide out the gcd, and if there is no torsion, we can apply the lemma.

Theorem 9.3. (Invariant Factors Theorem) Let R be a principal ideal domain and M a free R-module, $N \subset M$ a submodule. Then, there exists R-basis $A = (\alpha_1, ..., \alpha_m)$ of M and $\delta_1 |\delta_2| ... |\delta_n|$ in R such that $\delta_1 \alpha_1 ..., \delta_n \alpha_n$ is an R-basis for n.

Proof. Let $D = \{d \in R : \exists y \in N, \text{basis}(\beta_1, ..., \beta_m) \text{of} Mstd\beta_1 = y\} = \{d \in R : \exists y = d \sum_{i=1}^k r_i' \alpha_i' \in N, gcd(r_i) = 1\}.$

Lemma 9.4. $d_1 = infD$ exists, where the ordering is by divisibility.

Proof. Obviously, D has minimal elements. Let d', d'' be minimal elements, and d = gcd(d', d''), and show $d \in D$.