2 Memory and I/O Modules

2.1 Memory Taxonomy & Characteristics

Physical Types of Memory

• Semiconductor (半导体介质): RAM & ROM;

Magnetic (磁介质): Disk & Tape;Optical (光介质): CD & DVD.

Location

• The memory in CPU: registers.

• The internal memory: cache, main memory.

• The external memory: disks, CD and DVD.

Capacity

- Word size: The natural unit of organization (this 'word' is defined in memory field).
- Number of words

[Example]

Memory A have a word size of 8-bit and have 2M words.

Memory B have a word size of 1-bit and have 16M words.

Memory A and Memory B have the same capacity.

Unit of Transfer

- Internal: usually a word, governed by the data bus width;
- External: usually a block which is much larger than a word.

[Example] The CPU can calculate one addition every cycle, but a memory transfer takes two cycles. That is,

Memory: 0.5 words/cycle

CPU: 2 words/cycle (calculation)

With the memory interface width to be 4 words, the CPU can be kept with 100% utilization.

Addressable unit

- Smallest location which can be uniquely addressed.
- Normally a byte for internal memory;
- · Cluster of disks.

Access Methods

- **Sequential**: Access start at the beginning and read through in order. Access time depends on location of data and previous location. (*tape*) (**NO address**)
- **Direct**: Individual blocks have unique address. Access is by jumping to vicinity plus sequential search. Access time depends on current location and destination location. (*disk*) (**HAVE address**)
- Random: Individual addresses identify locations exactly. Access time is independent of location or previous access. (ROM, RAM) (HAVE address)

• **Associative**: Data is located based on a portion of its contents rather than its address. Access time is independent of location or previous access. (*cache*) (**HAVE address**, but using contents to find location)

Performance Metrics

- Access time: time between presenting the address and getting the valid data.
- Memory cycle time: time may be required for the memory to "recover" before next access. It

[Example] When we access the data in DRAM, we destroy the data, so we have to restore ("recover") the data in DRAM.

- Transfer rate: rate at which data can be moved. (unit: transfer per second)
- Transfer bandwidth: equals to transfer rate * transfer unit size (unit: bytes per second)

[Example] A memory transfer takes two cycles and each transfer has 4 bytes. Clock frequency is 1GHz.

$$A.\,T.=2~{
m cycles}=2~{
m ns}$$

$$T.\,R.=0.5~{
m T/cycle}=0.5~{
m GT/s}$$

$$T.\,B.=0.5~{
m GT/s} imes4~{
m B/T}=2~{
m GB/s}$$

Memory Basics

- RAM: Random Access Memory.
 - o Read/Write;
 - Temporary storage: when the power is gone, the data will be lost;
- ROM: Read-Only Memory.
 - The writing process of this kind of memory is much harder than reading, often requiring some external help.
 - No capabilities for "online" memory write operations.
 - Both RAM and ROM are made by *semiconductors*.
- Volatility of Memory (易失性)
 - Volatile memory loses data over time or when power is removed. (RAM)
 - Non-volatile memory stores date even when power is removed. (ROM)
 - **Static**: holds data as long as power is applied. (*SRAM*)
 - **Dynamic**: will lose data unless refreshed periodically. (*DRAM*)

Static RAM

- The cycle of inverters keep the data running.
- As long as the power is on, the data is stored.

- When we want to read the data, open MAL; when we want to write the data, open MAL and MAR, and write the data through MAL (need some time).
- 6T-SRAM (6-transistors, MAL, MAR, and 2 transistors in each inverter).

Dynamic RAM

- Simpler construction;
- Need refresh circuits; slower;
- Consume less transistor (only 1 transistor), less expensive;
- Need 'recovery' part (after reading operation, the data will be lost).

2.2 Memory Hierarchy in Computer System

Memory Hierarchy (Registers, L1 Cache, L2 Cache, Main memory, Disk, Optical, Tape).

Why Memory Hierarchy?

- Bigger (capacity) is slower.
- Faster is more expensive.

Idea Behind Memory Hierarchy

2.3 RAM Organization

2.4 Memory Module Extension