SCHRÖDINGER®

Molecular Modeling in Drug Discovery

By the end of this module you should be able to...

- Know more about the structure of this course and the computational strategies we will use
- Describe the difference between structure-based and ligand-based virtual screening
- List examples of how molecular modeling approaches have helped to identify and advance compounds to the clinical trials and beyond

The Drug Discovery pipeline has many steps

Paul SM et al., Nat. Rev. Drug Discov., 2010, 9, 203-214 Schuhmacher et al. Value Creation in the Pharmaceutical Industry: The Critical Path to Innovation, First Edition, 2016

Drug discovery is expensive and slow

Scannell JW et al., Nat. Rev. Drug Discov., 2012, 11, 191-200 Ringel MS, Scannell JW, Baedeker M, Schulze U., Nat Rev Drug Discov (2020) https://doi.org/10.1038/d41573-020-00059-3

There are many strategies to identify hit compounds

Hit Identification Strategy % for Clinical Candidates in 2015-2016

Macarron R et al., *Nat. Rev. Drug Discov.,* **2011** *10*, 188-195 Brown D et al., *J. Med. Chem.* **2018**, *61*, 9442-9468

High-throughput virtual screening (HTVS) has advantages over traditional high-throughput screening

Time/Well Wells/Day Success Time Screens/Year **Project Time** Reagents Consumables Costs Instrumentation Personnel Few False Positives Few False Negatives Quality Signal/Noise ratios Validated Binders HTS Macarron R et al., Nat. Rev. Drug Discov., 2011 10, 188-195

Mayer et al, *J. Biomol. Screening.* 2008, *13*SCHRÖDINGER.

Lyu et al., Nature, 2019, 556, 224-229

High-throughput virtual screening (HTVS) has advantages over traditional high-throughput screening

Macarron R et al., *Nat. Rev. Drug Discov.*, 2011 *10*, 188-195 Lyu et al., *Nature*, 2019, *556*, 224-229 Mayer et al, *J. Biomol. Screening*. 2008, *13*

High-throughput virtual screening (HTVS) has advantages over traditional high-throughput screening

Macarron R et al., *Nat. Rev. Drug Discov.*, 2011 *10*, 188-195 Lyu et al., *Nature*, 2019, *556*, 224-229 Mayer et al, *J. Biomol. Screening*. 2008, *13*

Lead optimization requires getting all parameters right at once

Lead optimization requires getting all parameters right at once

Free Energy Methods and Machine Learning Enhanced QSAR

Computing power has increased over time

Image source: https://www.nvidia.com/es-la/data-center/hpc/

Computing power has increased over time

Success Stories in Molecular Modeling: Indinavir against HIV Protease

Rich et al., *J Med Chem.*, 1991 34, 1222-1225 https://pubs.acs.org/doi/pdf/10.1021/jm00107a049

Success Stories in Molecular Modeling: Navitoclax and BCL2

Zhou, et al., *J Med Chem.*, 2012 *55*, 6149-6161 https://pubs.acs.org/doi/10.1021/jm300608w

Success Stories in Molecular Modeling: ND630 and ACC1/2

Harriman, et al., PNAS., 2016 13, E1796-E1805.

Success Stories in Molecular Modeling: From Concept to Clinic

Drug	Target	Stage	Chapter
Rucaparib	PARP-1, -2, -3	Approved	
Pazopanib	VEGF kinase	Approved	Final Case Study
LY517717	Factor Xa	Approved	
Rofecoxib	COX2	Phase II	
1,2,4-Triazine Derivatives	A2A	Phase I	
NDI-010976	ACC	Phase II	

Talele, et al., Curr Top. Med Chem., 2010 10, 127-141

Physics-based methods allow you to explore more

Stank et al., *Acc. Chem. Res.* 2016, 49, 5, 809–815. https://doi.org/10.1021/acs.accounts.5b00516

There are different elements to the course modules

This Course Includes

- Introduction to molecular modeling concepts
- Using Schrödinger's modeling interface,
 Maestro
- Discussion of virtual screening methods and analyses
- Compound ideation in 3D using Schrödinger's web-based platform, LiveDesign

Types of Learning Modules

- Videos
- Journal articles
- Online resources
- Tutorials
- Case study

Log in to web-based Maestro for the hands-on portions

The Maestro Help menu contains more detail

Learn more with the Training Portal

Get to know Maestro

Maestro Learning Series

To help you quickly get acquainted with Maestro, we have put together an eight-part series in which we demonstrate and explain the tools. Each fast-paced session includes a recorded webinar and an annotated guide, so you can follow along or practice the exercises on your own.

Use our list of publications to generate ideas

Results

	"Clobetasol Propionate Is a Heme-Mediated Selective Inhibitor of Human Cytochrome P450 3A5" Wright, W.C.; Chenge, J.; Wang, J.; Girvan, H.M.; Yang, L.; Chai, S.C.; Huber, A.D.; Wu, J.; Oladimeji, P.O.; Munro, A.W.; Chen, T., J. Med. Chem., 2020, x, xx-xx	Desmond, Glide, Maestro, Protein Preparation Wizard	2020
ö	"Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects" Schindler, C.; Baumann, H.; Blum, A.; Böse, D.; Buchstaller, H-P.; Burgdorf, L.; et al., ChemRxiv, 2020, Preprint, xx-xx	FEP+	2020
ö	"Combining Cloud-Based Free Energy Calculations, Synthetically Aware Enumerations and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization" Ghanakota, P.; Bos, P.; Konze, K.; Staker, J.; Marques, G.; Marshall, K.; Leswing, K.; Abel, R.; Bhat, S., ChemRxiv, 2020, Preprint, xx-xx	FEP+	2020
ö	"Large-Scale In Vitro Functional Testing and Novel Variant Scoring via Protein Modeling Provide Insights Into Alkaline Phosphatase Activity in Hypophosphatasia" Del Angel, C.; Reynders, J.; Negron, C.; Steinbrecher, T.; Mornet, E., Hum Mutat., 2020, DOI: 10.1002/humu.24010,	BioLuminate [®]	2020
ö	"A Free Energy Perturbation Approach to Estimate the Intrinsic Solubilities of Druglike Small Molecules" Mondal, S; Tresadern, G.; Greenwood, J.; Kim, B.; Kaus, J.; Wirtala, M.; Steinbrecher, T.; Wang, L.; Masse, C.; Farid, R.; Abel, R., ChemRxiv., 2020, preprint, https://doi.org/10.26434/chemrxiv.10263077.v1	FEP+	2020
ö	"A Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein- Ligand Binding" Miller, E.; Murphy, R.; Sindhikara, D.; Borrelli, K.; Crisewood, M.; Ranalli, F.; Dixon, S.; Jerome, S.; Boyles, N.; Day, T.; Ghanakota, P.; Mondal, S.; Rafi, S.B.; Troast, D.M.; Abel, R.; Friesner, R.A., ChemRxiv, 2020, Preprint,	Glide, Induced Fit, Phase, Prime, FEP+	2020
ö	"Impact of Different Automated Binding Pose Generation Approaches on Relative Binding Free Energy Simulations" Cappel, D.; Jerome, S.; Hessler, G.; Matter, H., J. Chem. Inf. Model., 2020, 60 (3), 1432-1444	FEP+	2020
ö	"Quantifying the Extent of Ligand Incorporation and the Effect on Properties of TiO2 Thin Films Grown by Atomic Layer Deposition Using an Alkoxide or an Alkylamide" Dufond, M.E.; Diouf, M.W.; Badie, C.; Laffon, C.; Parent, P.; Ferry, D.; Grosso, D.; Kools, J.C.S.; Elliott, S.D.; Santinacci, L., Chem. Mater., 2020, 32 (4), 1393-1407	MS Jaguar	2020
ö	"Discovery of Potent, Selective, and Orally Bioavailable Inhibitors of USP7 with In Vivo Anti-Tumor Activity" Leger, P.R.; Hu, D.X.; Biannic, B.; Bui, M.; Han, X.; et. al., <i>J. Med. Chem., 2020, XXX, XXX-XXX</i>	FEP+	2020

Other education resources are available online

- Knowledge Base: https://www.schrodinger.com/kb/
- Schrödinger Seminar Series:

https://www.schrodinger.com/seminars/current https://www.schrodinger.com/seminars/archives

Script Center: https://www.schrodinger.com/scriptcenter/

Here are some useful video Maestro links

- Maestro Quick Start Guide
 - -https://www.schrodinger.com/training/maestro
- Maestro Short Videos
 - -https://www.schrodinger.com/training/videos/maestro/all
- Protein Preparation Wizard
 - -https://www.schrodinger.com/training/videos/protein-preparation
- Other Small-Molecule Drug Discovery Tools
 - -https://www.schrodinger.com/training/videos/small-molecule-drug-discovery

Thanks for joining us!

Schrödinger Online Course | online-learning@schrodinger.com