Abstract Algebra II

Ji, Yong-hyeon

May 22, 2025

We cover the following topics in this note.

- Group Action
- Cayley Theorem
- Normal Subgroups
- Normality of the Kernel

Group Action

Definition. Let (G, *) be a group and let $X \neq \emptyset$. A (left) group action of G on X is a function

$$\cdot: G \times X \to X, \quad (g, x) \mapsto g \cdot x$$

satisfying the followings: for all $g, h \in G$ and all $x \in X$,

- (i) (Identity) $e \cdot x = x$, where $e \in G$ is the identity element of G;
- (ii) (Compatibility) $(g * h) \cdot x = g \cdot (h \cdot x)$.

The pair (X, \cdot) (or simply X) is then called a G-set.

Note (Notation). If a group G acts on a set X, one commonly writes: $G \curvearrowright X$.

Remark. A right group action of *G* on *X* is a function $\cdot : X \times G \to X$, $(x, g) \mapsto x \cdot g$ satisfying:

- (i) $x \cdot e = x$ for all $x \in X$;
- (ii) $(x \cdot g) \cdot h = x \cdot (gh)$ for all $g, h \in G, x \in X$.

Example (Scalar Multiplication on a Vector Space). Let \mathbb{F} be a field, and let $X = \mathbb{F}^n$ be the *n*-dimensional vector space over \mathbb{F} . Consider the multiplicative group of nonzero scalars in \mathbb{F} :

$$G = (\mathbb{F}^{\times}, \times), \text{ where } \mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}.$$

We define an action $G \curvearrowright X$ by scalar multiplication:

$$\begin{array}{cccc} \cdot & : & \mathbb{F}^{\times} \times \mathbb{F}^{n} & \longrightarrow & \mathbb{F}^{n} \\ & & (\lambda, \mathbf{v}) & \longmapsto & \lambda \cdot \mathbf{v} \end{array}$$

where the product $\lambda \cdot \mathbf{v}$ is defined componentwise. Then

- (i) $1 \cdot \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{F}^n$.
- (ii) $(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$ for all $\lambda, \mu \in \mathbb{F}^{\times}$, $\mathbf{v} \in \mathbb{F}^{n}$.

Example (Conjugation Action on the Group Itself). Let G be any group, and consider X = G. Define an action of G on itself by conjugation:

$$G \curvearrowright G$$
, $(g, x) \mapsto g \cdot x := g * x * g^{-1}$.

Then

- (i) $e \cdot x = e * x * e^{-1} = x$ for all $x \in G$.
- (ii) Note that

$$(g * h) \cdot x = (g * h) * x * (g * h)^{-1}$$

$$= (g * h) * x * (h^{-1} * g^{-1})$$

$$= g * (h * x * h^{-1}) * g^{-1}$$

$$= g * (h \cdot x) * g^{-1}$$

$$= g \cdot (h \cdot x).$$

Thus, this is a left group action.

Example (Trivial *G*-Set). Let *G* be any group and define the set $X = \{x\}$, a singleton. Define the action

$$G \curvearrowright X$$
, $(g, x) \mapsto g \cdot x := x$ for all $g \in G$.

This is the **trivial action**, where every group element acts as the identity on *X*:

- (i) $e \cdot x = x$.
- (ii) $(g * h) \cdot x = x = g \cdot (h \cdot x)$.

Example (Action on Coset Space G/H). Let (G,*) be a group, and let $H \le G$. Let X = G/H be the set of left cosets of H in G, i.e.,

$$X = G/H = \{gH \mid g \in G\}.$$

Define an action

$$G \curvearrowright G/H$$
, $(g, aH) \mapsto (ga)H$.

This is well-defined because if $a_1H = a_2H$, then $a_1^{-1}a_2 \in H$, so: $ga_1H = ga_2H$.. Since

- (i) $e \cdot aH = aH$;
- (ii) $(gh) \cdot aH = g \cdot (h \cdot aH)$.

Group Elements Act as Permutations

Proposition. Let G be a group action on a set X via a left action $G \curvearrowright X$, given by $(g, x) \mapsto g \cdot x$. Then for each $g \in G$, the map

$$\sigma_g: X \to X, \quad x \mapsto g \cdot x$$

is one-to-one and onto. That is, $\sigma_g \in Sym(X)$, the group of all permutations of X.

Proof. TBA

Group Actions Induce Permutation Representations

Theorem. Let G be a group action on a set X via a left group action $G \curvearrowright X$, $(g, x) \mapsto g \cdot x$. For each $g \in G$, define the bijection $\sigma_g : X \to X$ by $\sigma_g(x) := g \cdot x$. Then the map

$$\phi: G \to \operatorname{Sym}(X), \quad g \mapsto \sigma_g,$$

is a **group homomorphism** from G to the symmetric group Sym(X). In other words, for all g, $h \in G$,

$$\phi(g*h) = \sigma_{g*h} = \sigma_g \circ \sigma_h = \phi(g) \circ \phi(h).$$

Remark. A group action $G \curvearrowright X$ is equivalent to a group homomorphism $G \to \operatorname{Sym}(X)$, i.e., a **permutation representation** of G.

Proof. TBA

Cayley Theorem

Theorem. Let G be a group. Consider the action of G on itself by left multiplication. For each $g \in G$, define

$$\sigma_g: G \longrightarrow G, \quad x \mapsto g \cdot x.$$

Then the map

$$\phi: G \longrightarrow \operatorname{Sym}(G), \quad g \mapsto \sigma_g$$

is an injective group homomorphism (group monomorphism). In particular,

$$\phi(G) \simeq G$$
 and $\phi(G) \leq \operatorname{Sym}(G)$.

Proof. TBA

Normal Subgroups

Observation. Consider $4\mathbb{Z} \leq \mathbb{Z}$. Then

$$\mathbb{Z}/4\mathbb{Z} = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\} = \{[0], [1], [2], [3]\}.$$

- $[0] + [1] = (0 + 4\mathbb{Z}) + (1 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (0 + 1) + 4\mathbb{Z} = 1 + 4\mathbb{Z} = [1].$
- $[1] + [2] = (1 + 4\mathbb{Z}) + (2 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (1 + 2) + 4\mathbb{Z} = 3 + 4\mathbb{Z} = [3].$
- $[1] + [3] = (2 + 4\mathbb{Z}) + (3 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (1 + 3) + 4\mathbb{Z} = 4 + 4\mathbb{Z} = 0 + 4\mathbb{Z} = [0].$

Existence of the Quotient Group

Proposition. Let (G, *) be a group and let $H \le G$ be a subgroup. Define a binary operation \boxtimes on the set of left cosets G/H by

$$(g * H) \boxtimes (g' * H) = (g * g') * H$$

where $g, g' \in G$. Then this operation is well-defined if and only if

$$g*h*g^{-1}\in H.$$

for all $g \in G$, $h \in H$.

Proof. TBA

Normal Subgroup

Definition. Let (G, *) be a group and let $H \le G$. We say that H is **normal** in G, written

$$H \leq G$$
,

if $g * h * g^{-1} \in H$ for any $g \in G$ and $h \in H$.

Remark. The set of (left) cosets G/H be a well-defined group structure via

$$(g * H) \boxtimes (k * H) = (g * k) * H,$$

making G/H the quotient group of G by H.

Equivalent Definitions of Normal Subgroup

Proposition. *Let* (G, *) *be a group and let* $H \le G$. *The Following Are Equivalent:*

 $(1)^a\ H\ is\ normal\ in\ G,\ i.e.,\ H\ \unlhd\ G;$

 $(2)^b g * h * g^{-1} \in H$ for all $g \in G$, $h \in H$;

 $(3)^c \ g * H * g^{-1} = H \text{ for all } g \in G;$

 $(4)^d \ g*H=H*g \ for \ all \ g\in G.$

^aTerminology and Notation

^b(Elementwise Conjugation)

^c(Conjugation Invariance)

^d(Coset Equality)

Proof. $((2)\Rightarrow(3))$ TBA

 $((3)\Rightarrow(4))$ TBA

((4)⇒(2)) TBA

Normality of Kernel

Theorem. Let $\phi:(G,*) \longrightarrow (H,*')$ be a group homomorphism, and define its kernel by

$$\ker \phi = \{ g \in G : \phi(g) = e_H \}$$
.

Then ker ϕ *is a normal subgroup of G; that is,* ker $\phi \leq G$.

Proof. Since ϕ is a homomorphism, for every $g \in G$ and every $k \in \ker \phi$ we have

$$\phi(g * k * g^{-1}) = \phi(g) *' \phi(k) *' \phi(g)^{-1} = \phi(g) *' e_H *' \phi(g)^{-1} = e_H,$$

so $g * k * g^{-1} \in \ker \phi$. Thus,

$$g * (\ker \phi) * g^{-1} = \ker \phi \quad \forall g \in G,$$

i.e. $\ker \phi$ is invariant under conjugation and hence normal in *G*.

Illustration.

Preimage of the Image of a Subgroup

Theorem. Let $f:(G,*) \to (G',*')$ be a group homomorphism, and let $H \leq G$ such that

$$\{g \in G : f(g) = e_{G'}\} = \ker f \subseteq H.$$

Then

$$f^{-1}[f[H]] = H,$$

with $f[H] = \{f(h) \mid h \in H\}$ and $f^{-1}[f[H]] = \{g \in G \mid f(g) \in f[H]\}.$

Proof. Suppose that $\ker f \subseteq H \leq G$. We NTS that $f^{-1}[f[H]] = H$:

- $(\supseteq)\ h\in H \implies f(h)\in f[H] \implies h\in f^{-1}[f[H]].$
- (\subseteq) Let $x \in f^{-1}[f[H]]$. Then $f(x) \in f[H]$; that is,

$$\exists h \in H \text{ such that } f(h) = f(x).$$

Thus,

$$f(x * h^{-1}) = f(x) *' f(h)^{-1} = f(x) *' f(x)^{-1} = e_{G'},$$

so $x * h^{-1} \in \ker f$. Since $\ker f \subseteq H$, we have

$$x = (x * h^{-1}) * h \in H,$$

and hence $f^{-1}[f[H]] \subseteq H$.

Theorem. Let $\phi: G \longrightarrow G'$ be a surjective homomorphism of groups. Define two collections:

$$S = \{ H \subseteq G : \ker \phi \subseteq H \le G \}, \qquad \mathcal{T} = \{ H' \subseteq G' : H' \le G' \}.$$

Then the map

$$\Phi: \mathcal{S} \longrightarrow \mathcal{T}, \qquad \Phi(H) = \phi(H)$$

is a bijection. Its inverse is

$$\Phi^{-1}\colon \mathcal{T} \, \longrightarrow \, \mathcal{S}, \qquad \Phi^{-1}(H') \, = \, \phi^{-1}(H').$$

Moreover,

$$H \unlhd G \iff \phi(H) \unlhd G'$$
.

Proof.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 23. 추상대수학(d) 군 작용과 케일리-정리 group action and Cayley theorem" YouTube Video, 29:20. Published October 23, 2019. URL: https://www.youtube.com/watch?v=5SQfrH83HfA&t=1040s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 24. 추상대수학 (e) 정규부 분군의 정의 def of normal subgroups" YouTube Video, 23:00. Published October 25, 2019. URL: https://www.youtube.com/watch?v=3UJILZr4CNo.
- [3] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 25. 추상대수학 (f) 정규 부분군간의 1-1 대응 관계 1-1 correspondence of normal subgroups" YouTube Video, 29:02. Published October 26, 2019. URL: https://www.youtube.com/watch?v=na0YYLJLWeQ.

A Appendices

The unit circle \mathbb{S}^1 as the Rotation Group in the Plane

The set $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is called the **unit circle**.

Geometrically, it represents the set of points at a fixed distance 1 from the origin in \mathbb{R}^2 , while algebraically it can be seen as a group under complex multiplication. In the complex plane, we write:

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \} = \{ re^{i\theta} : |r| = 1 \text{ and } \theta \in \mathbb{R} \}.$$

Let

$$z_1 = r_1 e^{i\theta_1} = r_1 (\cos \theta_1 + i \sin \theta_1) \in \mathbb{C}$$
 and $z_2 = r_2 e^{i\theta_2} = r_2 (\cos \theta_2 + i \sin \theta_2) \in \mathbb{C}$.

Then

$$\begin{aligned} z_1 \cdot z_2 &= r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = = r_1 r_2 \left(\cos \theta_1 + i \sin \theta_1\right) \left(\cos \theta_2 + i \sin \theta_2\right) \\ &= r_1 r_2 \left[\left(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2\right) + i \left(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2\right) \right] \\ &= r_1 r_2 \left[\cos \left(\theta_1 + \theta_2\right) + i \sin \left(\theta_1 + \theta_2\right) \right] \\ &= r \left(\cos \theta + \sin \theta\right) \text{ with } \begin{cases} r &= r_1 r_2 \\ \theta &= \theta_1 + \theta_2. \end{cases} \end{aligned}$$

Multiplying a point $z = x + iy \in \mathbb{C}$ by $e^{i\theta}$ is exactly the rotation

$$(x+iy) \mapsto (x+iy)e^{i\theta} = (x+iy)(\cos\theta + i\sin\theta) = (x\cos\theta - y\sin\theta) + i(x\sin\theta + y\cos\theta).$$

In matrix form

$$e^{i\theta} \longleftrightarrow \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$

B Embed "Plane of Rotation" into \mathbb{R}^3 by "fixing" the z-axis

.