Econometric Problem Set 1

Gigi

September 19, 2018

Question 1

Prove the Chebyshev Inequality, and then the WLLN.

The Chebyshev Inequality is

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

Proof: Let X be a random variable with mean μ and variance σ^2 . Let $\epsilon > 0$ be any postive real number. I will show for the **discrete case**, but the continuous case is identical to this proof. Let f(x) be the distribution function of X. Then the probability that X deviates from μ by at least ϵ is

$$P(|X - \mu| \ge \epsilon) = \sum_{|x - \mu| \le \epsilon} f(x) \tag{1}$$

Let us explicitly define the variance of X:

$$\sigma^2 = \sum_{x} (x - \mu)^2 f(x) \tag{2}$$

$$\geq \sum_{|x-\mu| \leq \epsilon} (x-\mu)^2 f(x) \tag{3}$$

$$\geq \sum_{|x-\mu| \geq \epsilon} \epsilon^2 f(x) = \epsilon^2 \sum_{|x-\mu| \geq \epsilon} f(x) \tag{4}$$

$$= \epsilon^2 P(|X - \mu| \ge \epsilon). \tag{5}$$

From (2) and (5), we now have

$$\sigma^2 > \epsilon^2 P(|X - \mu > \epsilon),$$

which by simplifying is the Chebyshev Inequality

$$\frac{\sigma^2}{\epsilon^2} \ge P(|X - \mu \ge \epsilon).$$

An assumption to this inequality is that $\sigma^2 \neq \infty$.

The **Weak Law of Large Numbers** says that $X_1, X_2, ..., X_n$ are an independent trials process, with finite expected value $\mu = E(X_i)$ and finite variance $\sigma^2 = V(X_i)$. Let $S_n = X_1, X_2, ..., X_n$. Then for any $\epsilon > 0$,

$$P(|\frac{S_n}{n} - \mu) \le \epsilon) \to 0$$

as $n \to \infty$, or,

$$P(|\frac{S_n}{n} - \mu) < \epsilon) \to 1$$

as n $\to \infty$

Proof: We will use Chebyshev's Inequality (which was proved above) as this assumes mutual independence. Let $S_n = X_1, X_2, \ldots, X_n$ be a sequence of mutually independent random variables, with $\mu = E(X_i)$ and variance $Var(S_i) = \sigma^2$. Since X_1, X_2, \ldots, X_n are independently distributed: for this sequence,

$$Var(S_i) = n\sigma^2,$$

and

$$Var(\frac{S_n}{n}) = \frac{\sigma^2}{n}.$$

Which gives

$$E(\frac{S_n}{n}) = \mu.$$

By Chebyshev's Inequality, for any $\epsilon > 0$,

$$P(|\frac{S_n}{n} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}.$$

So, for any constant ϵ ,

$$P(|\frac{S_n}{n} - \mu) \le \epsilon) \to 0$$

as $n \to \infty$ or

$$P(|\frac{S_n}{n} - \mu) < \epsilon) \to 1$$

as $n \to \infty$

Question 2

Show that if X and Y are continuous independent random variables, E[XY] = E[X]E[Y].

Proof: Let X and Y be two independent continuous random variables. Independence implies the **covariance** between X and Y is 0: $\sigma_{X,Y} = 0$.

$$\sigma_{X,Y} = E[(X - E(X))(Y - E(Y))]$$
 (1)

$$= E[XY - XE(Y) - YE(X) + E(X)E(Y)]$$
 (2)

$$= E(XY) - E(XE(Y)) - E(YE(X)) + E(E(X)E(Y))$$
 (3)

$$= E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)$$
 (4)

$$= E(XY) - E(X)E(Y) \tag{5}$$

Since $\sigma_{X,Y} = 0$,

$$\sigma_{X,Y} = E(XY) - E(X)E(Y) \tag{6}$$

$$0 = E(XY) - E(X)E(Y) \tag{7}$$

$$E(XY) = E(X)E(Y), \tag{8}$$

where (1) is the definition of covariance; (2) follows from distributing the terms inside the brackets; (3) is the communitivity property of expectation; (4) is the distributive law; (5) cancels out like terms, and (8) is our result.

Question 2 a

Let X_1, \ldots, X_n be a sequence of N independent and identically distributed (iid) random variables, with $E[X_i] = \mu < \infty$. Then,

$$\bar{X_N} \xrightarrow{p} u$$

.

Question 3

Linear regression model

Obtain the covariance matrix of $\mathbf{u} = (u_1, \dots, u_T)'$ as a function of ρ and σ_u^2 .

Work: Our linear regression model is $y_t = x_t \beta + u_t$ in the presence of residual autocorrelation of the form $u_t = \rho u_{t-1} + \epsilon_t$. $E(\epsilon_t) = 0$, $Var(\epsilon_t) = \sigma_{\epsilon}^2$, $Var(u_t) = \sigma_u^2$ for t = 1, ..., T, and $Cov(\epsilon_s, \epsilon_t) = 0$ for s, t = 1, ..., T, where $s \neq t$.

We have $E(\epsilon_t, \epsilon_{t+s}) = \sigma_{\epsilon}^2$ if (s=0), and $E(\epsilon_t, \epsilon_{t+s}) = 0$ if $(s \neq 0)$

Now,

$$u_{t} = \rho u_{t-1} + \epsilon_{t}$$

$$= \rho (u_{t-2} + \epsilon_{t-1} + \epsilon_{t})$$

$$= \vdots$$

$$= \epsilon_{t} + \rho \epsilon_{t-1} + \rho^{2} \epsilon_{t-2}$$

$$= \sum_{r=0}^{\infty} \rho^{2} \epsilon_{t-r}$$

$$(1)$$

$$(2)$$

$$= (3)$$

$$= (4)$$

Since $E(u_t) = 0$, taking the expected value of (3) $E(u_t)$, we get

$$E(u_t^2) = E(\epsilon_t^2) + \rho^2 E(\epsilon_{t-1}^2) + \rho^4 E(\epsilon_{t-2}^2) + \dots$$

= $\sigma_{\epsilon^2} (1 + \rho^2 + \rho^4 + \dots)$
$$E(u_t^2) = \sigma_u^2 = \frac{\sigma_{\epsilon}^2}{1 - \rho^2}$$

for all i.

$$E(u_{t}u_{t-1}) = E[(\epsilon_{t} + \rho\epsilon_{t-1} + \rho^{2}\epsilon_{t-2} + \dots) \times (\epsilon_{t-1} + \rho\epsilon_{t-2} + \rho^{2}\epsilon_{t-3} + \dots)]$$

$$= E[[\epsilon_{t} + \rho(\epsilon_{t-1} + \epsilon_{t-2} + \dots)](\epsilon_{t-1} + \rho\epsilon_{t-2} + \rho^{2}\epsilon_{t-3} + \dots)]]$$

$$= \rho E[(\epsilon_{t-1} + \rho\epsilon_{t-2} + \dots)^{2}]$$

$$= \rho \sigma_{u}^{2}$$

as $E(\epsilon_t) = 0$.

Also $E(u_t u_{t-2}) = \rho^2 \sigma_u^2$.

In general,

 $E(u_t u_{t-s}) = \rho^s \sigma_u^2$

$$E(uu') = \Omega = \sigma_u^2 \begin{pmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-2} \\ \rho^2 & \rho & 1 & \cdots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1 \end{pmatrix}$$

Which is the covariance matrix of this linear regression.