2004

Probleem 1: Herlei die volgende tabelinskrywings op bl.123 in die notas:

- (a) Nommer 7
- (b) Nommer 1.

Wenk: Vir (b), gebruik indukise.

Probleem 2: Toonaan dat die Lapace transform, gedefinieer deur $L[f](s) = \int_0^\infty f(t)e^{-st} dt$, lineêr is, dws dat, vir gegewe funksies f en g, en konstantes α en β ,

$$L[\alpha f + \beta g](s) = \alpha L[f](s) + \beta L[g](s).$$

Probleem 3: Gebruik die lineariteit bewys in 2 hierbo en die tabel op bladsy 123 van die notas, en bepaal die Laplace transform van $f(t) = 5e^{-2t} - 3\sin 4t$, $t \ge 0$.

Probleem 4: Neemaan dat die inverse Laplace transform ook lineêr is, dws vir gegewe funksies F en G, en konstantes α en β ,

$$L^{-1}[\alpha F + \beta G](t) = \alpha L^{-1}[F](t) + \beta L^{-1}[G](t),$$

en bereken die inverse Laplace transform van

$$F(s) = \frac{1}{s^2(s^2+1)} + \frac{s-2}{s^2+1}.$$

TW244

Huiswerk #9 (Inhandig: 06 Oktober 2004)

2004

Probleem 1: Herlei die volgende tabelinskrywings op bl.123 in die notas:

- (a) Nommer 7
- (b) Nommer 1.

Wenk: Vir (b), gebruik indukise.

Probleem 2: Toonaan dat die Lapace transform, gedefinieer deur $L[f](s) = \int_0^\infty f(t)e^{-st} dt$, lineêr is, dws dat, vir gegewe funksies f en g, en konstantes α en β ,

$$L[\alpha f + \beta g](s) = \alpha L[f](s) + \beta L[g](s).$$

Probleem 3: Gebruik die lineariteit bewys in 2 hierbo en die tabel op bladsy 123 van die notas, en bepaal die Laplace transform van $f(t) = 5e^{-2t} - 3\sin 4t$, $t \ge 0$.

Probleem 4: Neemaan dat die inverse Laplace transform ook lineêr is, dws vir gegewe funksies F en G, en konstantes α en β ,

$$L^{-1}[\alpha F + \beta G](t) = \alpha L^{-1}[F](t) + \beta L^{-1}[G](t),$$

en bereken die inverse Laplace transform van

$$F(s) = \frac{1}{s^2(s^2+1)} + \frac{s-2}{s^2+1}.$$