Mathcord Mathematical Logic Problem Set 1

Problem 1

- (1) Show that $\{\neg, \rightarrow\}$ is functional complete.
- (2) Show that \vee can be represented in the logical signature $\{\rightarrow\}$.
- (3) Show that any formula φ over the signature \to has $w\varphi = 1$ for the valuation w which evaluates every variable as 1.
- (4) Show that \land cannot be represented in the logical signature $\{\rightarrow\}$.
- (5) Show that \leftrightarrow cannot be represented in the logical signature $\{\rightarrow\}$.

Problem 2

We define the boolean *nand* connective, \uparrow , as follows:

$$0 \uparrow 0 = 0 \uparrow 1 = 1 \uparrow 0 = 1,$$
 $1 \uparrow 1 = 0$

and nor, \downarrow :

$$0 \downarrow 0 = 1$$
, $0 \downarrow 1 = 1 \downarrow 0 = 1 \downarrow 1 = 0$

- (1) Verify that $\alpha \uparrow \beta \equiv \neg(\alpha \land \beta)$ and $\alpha \downarrow \beta \equiv \neg(\alpha \lor \beta)$.
- (2) Show that both $\{\uparrow\}$ and $\{\downarrow\}$ are functional complete.
- (3) Show that if \circ is a boolean connective and $\{\circ\}$ is functional complete, $\circ \in \{\uparrow, \downarrow\}$.

Problem 3

Let $\varphi \to \psi$ be a tautology, then show that there exists a formula θ which uses only variables common to both φ and ψ (i.e. $var\theta \subseteq var\varphi \cap var\psi$), such that both $\varphi \to \theta$ and $\theta \to \psi$ are tautologies.

Problem 4

Let φ be a formula, we define its dual, φ^{δ} , recursively as follows:

$$\pi^{\delta} = \pi$$
 for prime π , $(\neg \alpha)^{\delta} = \neg \alpha^{\delta}$, $(\alpha \wedge \beta)^{\delta} = (\alpha^{\delta} \vee \beta^{\delta})$, $(\alpha \vee \beta)^{\delta} = (\alpha^{\delta} \wedge \beta^{\delta})$

Equivalently, it just substitutes all \wedge in φ with \vee and all \vee with \wedge .

Let $f: \{0,1\}^n \longrightarrow \{0,1\}$ be a boolean function, we define its dual to be

$$f^{\delta}\bar{x} = \neg f(\neg \bar{x})$$

- (1) Show that if α represents f, then α^{δ} represents f^{δ} .
- (2) Show that $f \mapsto f^{\delta}$ is a bijection on boolean functions.
- (3) Using the fact that every boolean function can be represented by a DNF, show that every boolean function can be represented by a CNF.

1

Problem 5

Let $\bar{x} = (x_1, \dots, x_n)$ and $\bar{y} = (y_1, \dots, y_n)$ be boolean vectors. We write $\bar{x} \leq \bar{y}$ to mean $x_i \leq y_i$ for all $i = 1, \dots, n$. A boolean function f is said to be *increasing* if $\bar{x} \leq \bar{y}$ implies $f\bar{x} \leq f\bar{y}$.

Show that every increasing boolean function can be represented in the logical signature $\{\land,\lor\}$ and vice versa: every formula in this logical signature is increasing.

For the next two problems we will need the following definitions. Let X be a set of formulas, and φ another formula. We say φ is a *consequence* of X, written $X \vDash \varphi$, if $w \vDash X$ implies $w \vDash \varphi$ for all valuations w.

Furthermore, we say that a set of formulas X is independent if for every $\varphi \in X$, $X - \{\varphi\} \nvDash \varphi$. Equivalently, there is a valuation w such that $w \vDash \psi$ for all $\psi \in X - \{\varphi\}$ and $w \vDash \neg \varphi$.

Finally, we say that two sets of formulas, X and Y, are equivalent if $w \models X$ if and only if $w \models Y$.

Problem 6

Suppose ℓ is functional complete and countable, and V is countable (thus \mathcal{F} is countable). Show that every countable set of formulas X is equivalent to an independent set.

Problem 7

Prove the same thing from the previous problem, without assuming X is countable.

Problem 6, while doable, should be quite challenging. Problem 7 should be extremely challenging.

Good Luck!