# Módulo 1 - Diapositiva 3 Axiomas de Orden para $(\mathbb{R})$

Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales

# Temas

- $\bullet$  Axiomas de orden para  $\mathbb R$
- Reales positivos y negativos. Propiedades.

# Axiomas de Orden

En la recta real podemos definir de modo informal un orden en  $\mathbb{R}$ : Si b está a la derecha de a entonces se dice que b es mayor que a (b > a).



a>b (a mayor que b) significa lo mismo que b< a (b menor que a), por tanto todas las propiedades de > tienen su equivalente para <

#### Axiomas de orden: relación mayor que (>)

Existe en  $\mathbb{R}$  una relación > tal que para todo  $a, b, c \in \mathbb{R}$ , se cumple que:

- $\bullet$  a = b  $\circ$  a > b  $\circ$  b > a (Ley de la tricotomía)
- 2 Si a > b, entonces a + c > b + c
- 3 Si a > 0 y b > 0, entonces ab > 0
- $\bullet$  Si a > b y b > c, entonces a > c (Transitividad de la ralación >)

Determine el o los procedimientos equivocados en el siguiente argumento:

#### Demostración de que 0 > 2

La siguiente tabla muestra las operaciones y su respectiva justificación para demostrar que 0>2 a partir de la hipótesis de que existe un número real a que es mayor que 2:

| Operación            | Justificación                            |
|----------------------|------------------------------------------|
| a > 2                | Hipótesis                                |
| 2a > 4               | Multiplicación por 2 en ambos lados      |
| $2a - a^2 > 4 - a^2$ | Resta de $a^2$ en ambos lados            |
| a(2-a) > (2-a)(2+a)  | Factorización en ambos lados             |
| a > 2 + a            | Cancelación de $2-a$ en ambos lados      |
| a - a > 2 + a - a    | Resta de $a$ en ambos lados              |
| 0 > 2                | Resultado de la operación en ambos lados |

Conclusión: 0 > 2

# Reales positivos y negativos - Propiedades

#### Reales positivos y negativos

- Un número real a es un real positivo si a>0  $(a\in\mathbb{R}^+)$  y es un real negativo si a<0  $(a\in\mathbb{R}^-)$
- Sean  $a, b \in \mathbb{R}$ .
  - Si a > b, entonces a b > 0
  - Si a < b, entonces a b < 0

#### Propiedades

Para todo  $a, b, c \in \mathbb{R}$ , se cumple que:

- Si a > b y c > 0, entonces ac > bc
- 2 Si a > b y c < 0, entonces ac < bc
- $\bullet$  Si  $a \neq 0$ , entonces  $a^2 > 0$
- $\bigcirc$  Si a > b y c > d, entonces a + c > b + d

#### Ejemplos:

- **3**  $\frac{1}{2} > 0.25$ , porque  $\frac{1}{2} 0.25 = \frac{1}{2} \frac{1}{4} = \frac{1}{4} > 0$ .

$$2 = 4 \cdot \frac{1}{2} > 4 \cdot \frac{1}{4} = 1.$$

Sin embargo para -2 < 0 tenemos que

$$-1 = -2 \cdot \frac{1}{2} < -2 \cdot \frac{1}{4} = -\frac{1}{2}.$$

Igualmente

$$-\frac{1}{4} = \frac{1}{2} \div -2 < \frac{1}{4} \div -2 = -\frac{1}{8}.$$

#### Observaciones:

- De la Ley de la tricotomía se tiene que todo número real es positivo, negativo o cero  $(x=0 \ \circ \ x>0 \ \circ \ x<0)$ .
- Si a < b, entonces -b < -a
- Si a es positivo, entonces -a es negativo
- Si a es negativo, entonces -a es positivo
- Si ab > 0, entonces se cumple solo una de las siguientes afirmaciones

$$a > 0 \text{ y } b > 0$$
 ó  $a < 0 \text{ y } b < 0$ 

- Si a y b son ambos positivos o ambos negativos, entonces  $ab y \frac{a}{b}$  son positivos.
- $\bullet$  Si ay bson uno negativo y el otro positivos, entonces aby  $\frac{a}{b}$ son negativos.

#### Ejemplos:

- ② Como -1 < 0, entonces -(-1) = 1 > 0.
- **3**  $\sqrt{2} > 0$  y 2 > 0, luego  $2 \cdot \sqrt{2} > 0$ ,  $\frac{\sqrt{2}}{2} > 0$  y  $\frac{1}{\sqrt{2}} > 0$ .
- $-\frac{1}{2}$  < 0 y -4 < 0, entonces

$$-\frac{1}{2} \cdot -4 = 2 > 0,$$

у

$$\frac{-\frac{1}{2}}{-4} = \frac{1}{8} > 0,$$

pero

$$\frac{1}{-\frac{1}{2}} = -2 < 0.$$

#### Ejercicio. Determine si las siguientes afirmaciones son verdaderas o falsas:

- Si a > b y c > d, entonces a c > b d
- Si a > b y c > d, entonces ac > bd

#### Relación mayor o igual (≥)

- $a \ge b$ , significa que a es mayor que b o que a es igual a b
- $a \leq b$ , significa que a es menor que b o que a es igual a b

#### Relación de orden

Para todo  $a, b, c \in \mathbb{R}$  se cumple que:

- Propiedad reflexiva:  $a \leq a$
- Propiedad antisimétrica: si  $a \le b$  y  $b \le a$ , entonces a = b
- Propiedad transitiva: si  $a \le b$  y  $b \le c$ , entonces  $a \le c$

# Referencias

Sullivan, M. Álgebra y Trigonometría,  $7^a$  Edición. Editorial Pearson Prentice Hall, 2006.

Swokowski, E.W. Cole, J.A. Álgebra y Trigonometría con Geometría Analítica 13<sup>a</sup> Edición. Editorial Cengage Learning, 2011

Zill, D. G. Dewar, J. M. Álgebra, Trigonometría y Geometría Analítica,  $3^a$  Edición. Editorial McGraw-Hill, 2012.