# KINEMATICS COMPARISON OF OPENCAP AND IMU WITH MARKER-BASED MOTION CAPTURE IN TREADMILL RUNNING:





## Muhammad Nur Shahril Iskandar<sup>1</sup>, Phillis Soek Po Teng<sup>1\*</sup>

<sup>1</sup>Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore

#### INTRODUCTION

A PILOT STUDY

- OpenCap utilizes pose-estimation algorithms and muscledriven simulations to estimate 3D movement kinematics and kinetics through a web-based platform (Uhlrich et al., 2023).
- Initial validation shows that its accuracy is comparable to other markerless systems and inertial measurement units (IMUs) for walking, squatting, and other movements.
- Research gap → unclear whether OpenCap retains the accuracy in faster dynamic motions like running.
- Aim → assess the accuracy of OpenCap in analyzing treadmill running kinematics.

#### **METHODS**

- Treadmill speed: 2.22 m/s for 1 minute
- **Equipment:** 
  - IMU → Noraxon (100 Hz)
  - Markerless → OpenCap, 2 devices (60 Hz)
  - 3D mocap → lower limb marker set (200 Hz)

#### Data processing:

- Time synchronization 

  Peak knee angle at the start
- Offset correction → Aligning values at time synchronization with 3D mocap
- Low pass filtered + downsampled to 60 Hz

RESULTS



Figure 1: The kinematic waveforms of lower-limb kinematics in the first 500 frames comparing marker-based mocap, IMU, and OpenCap (A) before offset, and (B) after offset correction.

|               | <b>MAE</b> (°) |            | RMSE (°) |            |
|---------------|----------------|------------|----------|------------|
|               | Before         | After      | Before   | After      |
| IMUs          |                |            |          |            |
| Left          |                |            |          |            |
| Hip flexion   | 19.3           | 9.1        | 20.7     | 11.5       |
| Knee flexion  | 3.2            | 4.4        | 3.9      | <b>5.3</b> |
| Ankle flexion | 4.3            | 2.4        | 5.1      | 3.1        |
| Right         |                |            |          |            |
| Hip flexion   | 24.3           | 6.1        | 25.4     | <b>7.8</b> |
| Knee flexion  | <b>5.4</b>     | <b>5.1</b> | 6.9      | 6.3        |
| Ankle flexion | 10.9           | <b>8.1</b> | 11.6     | 8.9        |
| Overall       | 11.2           | 5.9        | 12.3     | 7.2        |
| OpenCap       |                |            |          |            |
| Left          |                |            |          |            |
| Hip flexion   | 21.1           | 13.6       | 23.6     | 16.0       |
| Knee flexion  | 14.0           | 12.0       | 17.3     | 14.3       |
| Ankle flexion | 14.8           | 20.1       | 17.6     | 23.9       |
| Right         |                |            |          |            |
| Hip flexion   | 20.4           | 11.3       | 22.9     | 13.5       |
| Knee flexion  | 15.7           | 13.4       | 19.0     | 16.0       |
| Ankle flexion | 18.0           | 29.1       | 21.6     | 33.7       |
| Overall       | 17.3           | 16.6       | 20.3     | 19.6       |

Table 1: Comparison of MAE and RMSE values between IMUs and OpenCap with a marker-based mocap system. Bold values in red indicate a lower error comparing IMU and OpenCap.

### CONCLUSION

- Both systems demonstrate challenges in analyzing running kinematics.
- Findings suggest it would benefit from further refinement and optimization to match the marker-based mocap system for running analysis.
- Future research direction:
- Utilize >2 devices for running when using OpenCap
- Record at 120 Hz

**ACKNOWLEDGEMENTS:** This research project is supported by the National Institute of Education, Singapore, under its Academic Research Fund (RI 3/22 PT).

#### **References:**

Uhlrich, S. D., Falisse, A., Kidziński, Ł., Muccini, J., Ko, M., Chaudhari, A. S., Hicks, J. L., & Delp, S. L. (2023). OpenCap: Human movement dynamics from smartphone videos. PLOS Computational Biology, 19(10), e1011462. https://doi.org/10.1371/journal.pcbi.1011462