

Rafał Stępień

Książkowy dziennik w chmurze

Praca dyplomowa inżynierska

Opiekun pracy: dr inż. Mariusz Mączka

Spis treści

1.	Wst	:ęр									•											5
2.	Pod	lobne a	ap	lika	ıcje																	6
	2.1.	Bookn	no	ry .								•									•	6
	2.2.	TV Ti	im	e.																	•	6
3.	Śro	dowisk	κa	i te	chr	ıolo	gie									•						7
	3.1.	Andro	oid	Stu	ıdio																	7
	3.2.	Kotlin	ı.																			7
	3.3.	Jetpac	ck	Cor	npos	se .						•										8
	3.4.	Supab	as	e.																		9
	3.5.	GitHu	ıb	•																		9
	3.6.	Cloudi	ina	ary																		9
4.	Stru	ıktura	b	azy	da	nyc	h S	upa	bas	se .												10
5 .	Arc	hitektı	ur	a i	strı	ıktı	ura	apl	ika	cji											•	12
	5.1.	MVVN	Μ	(Mo	odel-	-Vie	w-V	'iew	Mo	del)		•									•	12
		5.1.1.	Ν	Iod	el .																•	12
	5.2.	Strukt	tur	a p	roje!	ktu															•	12
6.	Tek	st zasa	adı	nicz	zy –	- II																13
		6.0.1.	L	isti	ngi :	prog	gran	ıów				•	 •	•								13
		6.0.2.	N	Jum	erov	vani	ie i j	punl	ktov	wan	ie	•									•	14
	6.1.	Wykaz	z li	itera	atur	у.																14
	6.2.	Wydru	uk	pra	су.																	14
7.	Pod	lsumov	wa	nie	i w	nio	ski	koń	icov	we							•					16
Za	łącz	niki .																				17

1. Wstęp

W dobie rosnącej cyfryzacji i dynamicznego rozwoju technologii mobilnych, coraz więcej osób poszukuje nowoczesnych narzędzi wspierających codzienne czynności, w tym także zarządzanie swoimi pasjami i zainteresowaniami. Jedną z takich pasji, cieszącą się niezmienną popularnością, jest czytanie książek. Wraz z rosnącą liczbą dostępnych tytułów zarządzanie osobistą biblioteką może stać się problematyczne.

Niniejsza praca dotyczy zaprojektowania i implementacji aplikacji mobilnej o nazwie "BookTracker", stworzonej z wykorzystaniem technologii Jetpack Compose oraz zintegrowanej z internetową bazą danych Supabase. Aplikacja oferuje użytkownikom możliwość oznaczania książek jako posiadanych lub przeczytanych, śledzenia nadchodzących premier literackich oraz zarządzania osobistą biblioteką w sposób przejrzysty i dostępny z każdego miejsca, dzięki wykorzystaniu technologii chmurowych. Tematyka ta została wybrana ze względu na rosnącą popularność aplikacji wspierających organizację życia codziennego oraz potrzebę zapewnienia użytkownikom narzędzi umożliwiających wygodne i efektywne zarządzanie ich kolekcjami literackimi.

Zakres pracy obejmuje zaprojektowanie kluczowych funkcji aplikacji, implementację interfejsu użytkownika oraz integrację z bazą danych w chmurze. Głównym celem pracy jest stworzenie aplikacji mobilnej, która w przejrzysty sposób umożliwi użytkownikom zarządzanie osobistą biblioteką książek z wykorzystaniem technologii chmurowych.

2. Podobne aplikacje

W dzisiejszych czasach niemal każda aplikacja ma już swoje odpowiedniki na rynku. Podczas tworzenia aplikacji postawiono więc na skupienie się na grupie docelowej użytkowników, którzy oczekują konkretnych rozwiązań.

2.1. Bookmory

Bookmory to przykład wielu istniejących aplikacji dzięki którym można zarządzać swoją biblioteką, do jej odpowiedników można zaliczyć jeszcze kilka aplikacji takich jak: StoryGraph, Bookshelf, czy Bookly. Każda z wymienionych aplikacji spełnia podobne zadania, a dla większości użytkowników wybór pomiędzy nimi nie ma większego znaczenia, ponieważ różnice między nimi są minimalne.

Istnienie tych aplikacji zainspirowało stworzenie alternatywy, która będzie różniła się od swoich poprzedników unikalną funkcjonalnością i skupieniem się na konkretnej grupie odbiorców.

2.2. TV Time

TV Time to popularna aplikacja służąca do śledzenia postępu oglądania seriali i filmów. Pomimo tego, że aplikacja ta nie ma możliwości zarządzania książkami i skupia się wyłącznie na produkcjach filmowych, to funkcjonalność śledzenia seriali stała się inspiracją do stworzenia alternatywnej aplikacji do śledzenia postępu czytania książek. Główną różnicą do istniejących już rozwiązań jest skupienie się na seriach książek wydawanych w tomach i ułatwieniu użytkownikom obserwowania i zarządzania książkami, które są ze sobą powiązane.

3. Środowiska i technologie

Wybór odpowiednich środowisk i technologii jest kluczowym elementem każdego projektu informatycznego, ponieważ wpływa zarówno na efektywność pracy, jak i na jakość końcowego rozwiązania. Ważnym jest przedstawienie wybranych rozwiązań i uzasadnienie dlaczego były one wybrane zamiast alternatywnych opcji.

3.1. Android Studio

Android Studio to oficjalne zintegrowane środowisko programistyczne (IDE) do tworzenia aplikacji na system Android bazujące na IntelliJ IDEA firmy JetBrains, stworzone i rozwijane przez firmę Google. Jest to kompleksowe narzędzie, które oferuje zestaw funkcji, mających na celu ułatwienie tworzenia, debugowania i publikowania aplikacji.

Środowisko to jest nieustannie aktualizowane przez Google, aby wspierać najnowsze wersje systemu Android oraz dodawać nowe funkcje. Android Studio obsługuje programowanie w językach takich jak Java, Kotlin (rekomendowany przez Google), a także w mniejszym stopniu w C++.

Kluczowym elementem jest edytor kodu, który obsługuje autouzupełnianie, refaktoryzację oraz podpowiedzi kontekstowe, co znacząco ułatwia pisanie czystego i efektywnego kodu.

Android Studio zostało wybrane ze względu na to, że jest najpełniejszym narzędziem do tworzenia aplikacji na system android i w przeciwieństwie do np. Visual Studio Code, można praktycznie od razu rozpocząć pracę zamiast zajmowania się instalowaniem rozszerzeń i potrzebnych komponentów. Android Studio oferuje wszystkie niezbędne funkcje w jednym pakiecie.

3.2. Kotlin

Kotlin to nowoczesny, statycznie typowany język programowania, który został stworzony przez firmę JetBrains i jest oficjalnie wspierany przez Google do tworzenia natywnych aplikacji na system Android. Kotlin jest zaprojektowany z myślą o prostocie, bezpieczeństwie i interoperacyjności z Javą - język ten jest w pełni kompatybilny z istniejącym ekosystemem Javy, co umożliwia łatwą integrację z istniejącym kodem i bibliotekami.

Kotlin oferuje wiele nowoczesnych funkcji, które czynią go atrakcyjnym wyborem. Jego kluczowe cechy to m.in. zwięzła składnia, która pozwala na pisanie czytelnego i mniej podatnego na błędy kodu, oraz zaawansowane mechanizmy, takie jak obsługa funkcji wyższych rzędów, rozszerzenia klas czy programowanie funkcyjne. Wbudowane mechanizmy bezpieczeństwa, takie jak system typów zapobiegający błędom typu null pointer exception (tzw. "null safety"), znacząco zwiększają niezawodność aplikacji.

Kotlin wspiera także współbieżność dzięki korutynom, które są lekkim mechanizmem współbieżności umożliwiającym pisanie asynchronicznego kodu w czytelnym i intuicyjnym stylu. Korutyny działają w ramach istniejących wątków, wykorzystując mechanizmy wstrzymywania i wznawiania, co pozwala na efektywne zarządzanie zasobami systemowymi bez potrzeby blokowania wątków. To podejście znacząco upraszcza tworzenie wydajnych aplikacji, zwłaszcza tych, które intensywnie korzystają z asynchronicznej komunikacji sieciowej, przetwarzania dużych ilości danych czy operacji wejścia/wyjścia.

3.3. Jetpack Compose

Jetpack Compose to nowoczesny framework interfejsu użytkownika stworzony przez Google, który pozwala na tworzenie aplikacji na Androida w sposób deklaratywny. Zamiast używać tradycyjnych plików XML do definiowania widoków, Jetpack Compose umożliwia definiowanie interfejsu w kodzie Kotlin, co prowadzi do tworzenia prostszych, bardziej zwięzłych i łatwiejszych w utrzymaniu aplikacji.

Jedną z największych zalet Jetpack Compose jest możliwość dynamicznego reagowania na zmiany stanu aplikacji. Dzięki podejściu opartemu na deklaratywnej reaktywności, widoki automatycznie aktualizują się w odpowiedzi na zmiany danych, co eliminuje konieczność ręcznego zarządzania aktualizacjami interfejsu użytkownika.

W Jetpack Compose funkcje komponowalne (ang. composable functions) stanowią podstawę tworzenia interfejsu użytkownika. Są to specjalne funkcje oznaczone adnotacją @Composable, które pozwalają na deklaratywne definiowanie i łączenie elementów UI. Funkcje komponowalne w Jetpack Compose działają na zasadzie deklaratywnego określania struktury i zawartości interfejsu użytkownika, zamiast szczegółowego opisywania sposobu jego wyświetlania. Co umożliwia koncentrację na logice aplikacji, a nie na szczegółach implementacji interfejsu. Każda funkcja komponowalna może zawierać inne funkcje komponowalne, tworząc w ten sposób złożone i hierarchiczne struktury

UI w sposób naturalny i łatwy do zrozumienia. Takie podejście umożliwia tworzeniee intuicyjnych, skalowalnych i łatwych w utrzymaniu aplikacji.

Jetpack Compose został wybrany, ponieważ jest rozwiązaniem w pełni zintegrowanym z Androidem, co zapewnia najlepszą optymalizację i wydajność w tworzeniu aplikacji natywnych na tę platformę.

3.4. Supabase

Supabase to nowoczesna platforma typu Backend-as-a-Service (backend jako usługa), która umożliwia tworzenie aplikacji z wykorzystaniem bazy danych Postgre-SQL. Jest to narzędzie do budowy aplikacji, bez potrzeby zarządzania infrastrukturą serwerową.

Kluczowym elementem Supabase jest integracja z PostgreSQL, która umożliwia dostęp do bazy danych, oferującej funkcje takie jak zaawansowane zapytania SQL, funkcje typu trigger oraz bezpieczeństwo na poziomie wiersza (RLS). Supabase automatycznie tworzy RESTful API na podstawie tabel w bazie danych, co pozwala na szybkie wdrażanie aplikacji.

3.5. GitHub

GitHub to powszechnie używana platforma do zarządzania kodem źródłowym i współpracy w zespołach programistycznych, oparta na systemie kontroli wersji Git. Umożliwia śledzenie zmian w kodzie, zarządzanie historią projektu oraz łatwą współpracę wielu programistów nad jednym projektem.

3.6. Cloudinary

Cloudinary to platforma do zarządzania multimediami w chmurze, która umożliwia przechowywanie, optymalizację i dostarczanie obrazów, wideo oraz innych plików multimedialnych. Dzięki zaawansowanym funkcjom, takim jak automatyczna optymalizacja, zmiana rozmiaru, kadrowanie i konwersja formatów, Cloudinary pozwala na łatwe dostosowanie zasobów do różnych urządzeń i platform.

4. Struktura bazy danych Supabase

Backend aplikacji został utworzony w Supabase. Za wykonaną pracę autor uważa utworzenie struktury bazy danych, funkcji

Rysunek 4.1: Schemat bazy danych

5. Architektura i struktura aplikacji

Architektura aplikacji została oparta na wzorcu MVVM, co pozwala na efektywne zarządzanie stanem i separację logiki biznesowej od interfejsu użytkownika. Właściwa organizacja plików w projekcie jest kluczowa dla utrzymania porządku i skalowalności aplikacji, umożliwiając łatwe zarządzanie komponentami i ich zależnościami.

5.1. MVVM (Model-View-ViewModel)

Model-View-ViewModel to popularny wzorzec architektoniczny stosowany w tworzeniu aplikacji, który pomaga w organizacji kodu i rozdzieleniu odpowiedzialności pomiędzy różne warstwy aplikacji. Jego głównym celem jest zwiększenie modularności, łatwości testowania oraz oddzielenie logiki biznesowej od interfejsu użytkownika.

- a) Model reprezentuje warstwwę danych i logiki biznesowej. Jest odpowiedzialny za zarządzanie danymi, które mogą pochodzić z różnych źródeł, takich jak bazy danych, API czy pliki lokalne. Model nie zawiera żadnej logiki związanej z interfejsem użytkownika ani sposobem prezentacji danych,
- b) View (Widok) odpoawiada za warstwę prezentacji. Widok to interfejs użytkownika (UI), który jest odpowiedzialny za wyświetlenie danych i odbieranie interakcji od użytkownika. Widok powinien jedynie reagować na dane dostarczane przez ViewModel. W android widokiem są komponenty Jetpack Compose,
- c) ViewModel to warstwa pomiędzy modelem a widokiem. pobiera dane z modelu i przekształca je w taki sposób, aby były gotowe do wyświetlenia w widoku. Ponadto zarządza stanem widoku (np. przechowywaniem stanu aplikacji w przypadku zmiany orientacji ekranu).

5.1.1. Model

W poniższym listingu

5.2. Struktura projektu

6. Tekst zasadniczy – II

6.0.1. Listingi programów

W pracy dyplomowej możesz umieszczać fragmenty programów. Pamiętaj, aby umieszczać krótkie, tylko najważniejsze fragmenty kodów źródłowych. Zawsze je komentuj w treści pracy dyplomowej. Typowo w LATEX kody źródłowe umieszczane są w środowisku verbatim (\begin{verbatim}...\end{verbatim}). Obecnie instnieje jednak bardziej nowoczesne i bardziej funkcjonalne środowisko lstlisting (wymaga zainstalowanego w systemie pakietu listings). Zwróć uwagę, że możesz kolorować składnię automatycznie za pomocą parametru language. W niniejszym dokumencie przedstawiono dwa przykłady listingów, Listing 1 to przykład kodu źródłowego Matlaba, a poniżej Listing 2 dla Perl'a.

```
i = 1
p = 3
for i = 1:10
if i > 3
i = i+p
else
i = i+1
end
end
```

Listing 1: Listing programu Matlab

```
my $url ='http://pei.prz.edu.pl';
use LWP::Simple;
my $content = get $url;
die "Couldn't get $url" unless defined $content;
print $content;
print "\n";
print "Length " + length($content)
```

Listing 2: Listing programu Perl

Z pewnością przeglądając źródło tego dokumentu zobaczysz, że kody źródłowe powinny mieć zdefiniowane parametry label, aby łatwo w tekście do nich się odwoływać. Numeracja linii jest w stylu domyślnie włączona (to przydatne, bo w treści pracy łatwo odwołać się dzięki temu do konkretnego wiersza w kodzie źródłowym), możesz je wyłączyć podając jako parametr numbers=none. Więcej szczegółów możesz odnaleźć w sekcji \lstset pliku arkusza styli.

6.0.2. Numerowanie i punktowanie

- 1) Pierwszy poziom (stosuje się numerowanie lub punktowanie). Formatowanie: akapit wyjustowany, wcięcie od lewej 0,75 cm, wysuniecie co 0,5 cm.
- 2) Znakiem numerowania jest liczba (z kropką lub nawiasem).
 - drugi poziom (stosuje się wyłącznie punktowanie). Formatowanie: akapit wyjustowany, wcięcie od lewej 1,25 cm, wysunięcie co 0,5 cm,
 - znakiem punktowania jest łącznik lub mała litera alfabetu (z nawiasem). Nie zaleca się stosowania kropek, strzałek itp.,
 - punktowane akapity rozpoczyna się minuskułą (małą literą), na końcu akapitu stawia się przecinek, ostatni punktowany akapit kończy się kropką.
- 3) Numerowane akapity rozpoczyna się majuskułą (wielką literą) i kończy kropką.
- 4) Należy zwrócić uwagę, aby nie rozdzielać numerowania/punktowania pomiędzy kolejnymi stronami tekstu.

6.1. Wykaz literatury

W wykazie literatury zamieszcza się wyłącznie pozycje, na które powołano się w pracy. Kolejność numerów w wykazie – zgodna z kolejnością pojawiania się danej pozycji w tekście.

Format akapitu: akapit wyjustowany, wysunięcie 0,75 cm. Prawidłowo opracowany wykaz został zaprezentowany w niniejszym dokumencie w odpowiednim rozdziale, oznaczonym jako "Literatura" (pozycja nr [1] to zasoby internetowe, [2] – książka, [3] – artykuł w czasopiśmie, [4] – karta katalogowa).

6.2. Wydruk pracy

Przed wydrukiem należy usunąć ewentualne błędy literowe i sprawdzić prawidłową interpunkcję. Przykładowo, łącznik zapisuje się za pomocą krótkiego minusa (np. badawczo-rozwojowy) natomiast myślnik – stosowany w zdaniach wtrąconych – zapisuje się za pomocą długiej pauzy. Dzielenie wyrazów według uznania Autora (można podzielić długie wyrazy, powodujące duże "rozstrzelenie" tekstu w poprzedzającym wierszu. Zaleca się usunięcie pojedynczych znaków na końcu wiersza oraz podwójnych spacji w tekście. Dla przedrostka "mikro" należy unikać stosowania litery "u" zamiast

" μ ". Znak " μ " można otrzymać przytrzymując lewy Alt i wpisując na klawiaturze numerycznej 0181 (podobnie "stopień": Alt-0176). W celu uniknięcia "rozstrzelenia" liczb i ich jednostek zaleca się używanie "twardej" spacji pomiędzy liczbą i jednostką. Należy sprawdzić, czy tytuły podrozdziałów/zakresów nie zostały jako pojedyncze wiersze na poprzedniej stronie oraz czy rysunki/tabele i ich tytuły nie zostały rozdzielone pomiędzy kolejnymi stronami.

Pracę drukuje się dwustronnie. Zaleca się wydruk w kolorze. Przed wydrukiem należy ponumerować strony (czcionka 10 pkt., dół strony, akapit wyśrodkowany). Strony tytułowej oraz strony z podziękowaniem nie numeruje się. Spis treści rozpoczyna się od strony numer 3 (lub 5, jeżeli zamieszczono podziękowania).

7. Podsumowanie i wnioski końcowe

 $1\div 3$ stron merytorycznie podsumowanie najważniejszych elementów pracy oraz wnioski wynikające z osiągniętego celu pracy. Proponowane zalecenia i modyfikacje oraz rozwiązania będące wynikiem realizowanej pracy.

Ostatni akapit podsumowania musi zawierać wykaz własnej pracy dyplomanta i zaczynać się od sformułowania: "Autor za własny wkład pracy uważa: . . . ".

Załączniki

Według potrzeb zawarte i uporządkowane uzupełnienie pracy o dowolny materiał źródłowy (wydruk programu komputerowego, dokumentacja konstrukcyjno-technologiczna, konstrukcja modelu – makiety – urządzenia, instrukcja obsługi urządzenia lub stanowiska laboratoryjnego, zestawienie wyników pomiarów i obliczeń, informacyjne materiały katalogowe itp.).

Literatura

- [1] http://weii.portal.prz.edu.pl/pl/materialy-do-pobrania. Dostęp 5.01.2015.
- [2] Jakubczyk T., Klette A.: Pomiary w akustyce. WNT, Warszawa 1997.
- [3] Barski S.: Modele transmitancji. Elektronika praktyczna, nr 7/2011, str. 15-18.
- [4] Czujnik S200. Dokumentacja techniczno-ruchowa. Lumel, Zielona Góra, 2001.
- [5] Pawluk K.: Jak pisać teksty techniczne poprawnie, Wiadomości Elektrotechniczne, Nr 12, 2001, str. 513-515.

POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza

Rzeszów, 2025

Wydział Elektrotechniki i Informatyki

STRESZCZENIE PRACY DYPLOMOWEJ INŻYNIERSKIEJ KSIĄŻKOWY DZIENNIK W CHMURZE

Autor: Rafał Stępień, nr albumu: EF-169625

Opiekun: dr inż. Mariusz Mączka

Słowa kluczowe: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)

Treść streszczenia po polsku

RZESZOW UNIVERSITY OF TECHNOLOGY

Rzeszow, 2025

Faculty of Electrical and Computer Engineering

BSC THESIS ABSTRACT

CLOUD-BASED BOOK JOURNAL

Author: Rafał Stępień, nr albumu: EF-169625

Supervisor: Dr. Eng. Mariusz Mączka

Key words: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)

Treść streszczenia po angielsku