Théorie des langages rationnels : THLR CM 3

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

•0000

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Expressions rationnelles

Dernièrement : L'algèbre de mots

Soit Σ un ensemble fini.

• on appelle les éléments $a, b, \ldots \in \Sigma$ des symboles

On dénote Σ^* l'ensemble de tous les suites finies d'éléments de Σ .

- donc $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots = \bigcup_{n \geq 0} \Sigma^n$
- on appelle les éléments $u, v, w, \ldots \in \Sigma^*$ des mots

La concaténation de deux mots $a_1 \dots a_n$ et $b_1 \dots b_m$ est le mot

$$a_1 \ldots a_n b_1 \ldots b_m$$

- E: le mot vide
- l'opération « . » sur mots est associative et a ε comme

élément neutre de deux côtés

La longueur |u| d'un mot $u \in \Sigma^*$: le nombre de symboles de u.

- $|\varepsilon| = 0$ et |uv| = |u| + |v|
- u^n : la concaténation de n copies de u
- $\bullet |u^n| = n|u|$

Dernièrement : L'algèbre de langages

Un langage est un sous-ensemble $L \subseteq \Sigma^*$.

- opérations ensemblistes : $L_1 \cup L_2$, $L_1 \cap L_2$, \overline{L}
- concaténation : $L_1 L_2 = \{ u_1 u_2 \mid u_1 \in L_1, u_2 \in L_2 \}$
- $L^n = L \cdots L$ (*n* copies de *L*)
- étoile de Kleene : $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots = \bigcup_{n \ge 0} L^n$

L'opération « . » sur langages est associative et a $\{\varepsilon\}$ comme élément neutre de deux côtés.

- $L.\emptyset = \emptyset.L = \emptyset$
- $\emptyset^* = \{\varepsilon\}^* = \{\varepsilon\}$

Vrai ou faux?

Apercu

00000

$$\{a\}^n = \{a^n\}$$

$$\{a,b\}^n = \{a^n,b^n\}$$

- **1** L* est un ensemble infini pour tout $L \subseteq \Sigma^*$
- opour tout $L \subseteq \Sigma^*$ et $n \in \mathbb{N}$, l'ensemble $\{u \in L \mid |u| \leq n\}$ est un ensemble fini

$$(L_1 \cup L_2)^* = (L_1^* L_2)^* L_1^*$$

5 minutes de réflexion

Vrai ou faux?

$$\{a\}^n = \{a^n\}$$

$$\{a,b\}^n = \{a^n,b^n\}$$

$$ullet$$
 est un ensemble infini pour tout $L\subseteq \Sigma^*$

• pour tout
$$L \subseteq \Sigma^*$$
 et $n \in \mathbb{N}$, l'ensemble $\{u \in L \mid |u| \le n\}$ est un ensemble fini

$$\{a,b\}^* = \{a\}^* \{b\}^*$$

$$(L_1 \cup L_2)^* = (L_1^* L_2)^* L_1^*$$

Langages rationnels

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

• donc union, concaténation et étoile de Kleene

Théorème (pour plus tard) : Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) =
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} =$

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

• donc union, concaténation et étoile de Kleene

Théorème (pour plus tard) : Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) = $\{b\}^* \cup \{a\}\{b\}^*$
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} =$

Opérations rationnelles

Soit Σ un alphabet, on travaille avec des langages dans $\mathcal{P}(\Sigma^*)$.

Définition

Les opérations rationnelles dans $\mathcal{P}(\Sigma^*)$ sont \cup , . et *.

• donc union, concaténation et étoile de Kleene

Théorème (pour plus tard) : Toutes les autres opérations sont exprimables par \cup , . et *.

Exemples:

- $Pref(\{a\}\{b\}^*) = \{\varepsilon\} \cup \{a\} \cup \{a\}\{b\}^*$
- Suff($\{a\}\{b\}^*$) = $\{b\}^* \cup \{a\}\{b\}^*$
- $\{a\}\{b\}^* \cap \{a\}^*\{b\} = \{a\}\{b\}$

Définition (3.1)

Les langages rationnels sur Σ sont définis inductivement comme suite :

- \bigcirc \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- \odot si L_1 et L_2 sont des langages rationnels, alors $L_1 \cup L_2$, $L_1 \cup L_2$ et L_1^* le sont également
 - $\{\varepsilon\} = \emptyset^* \Rightarrow$ on peut enlever $\{\varepsilon\}$ de la définition

Lemme

L est rationnel si et seulement si

- $L = \emptyset$ ou $L = \{a\}$ pour un $a \in \Sigma$ ou
- $L = L_1 \cup L_2$, $L = L_1 L_2$ ou $L = L_1^*$ pour L_1 et L_2 rationnels.

(En quoi ce lemme est-il différent de la définition?)

Rationalité

Théorème

Si L_1 et L_2 sont des langages rationnels, alors $L_1 \cap L_2$, \overline{L}_1 , $Pref(L_1)$, $Suff(L_1)$ et $Fact(L_1)$ le sont aussi.

pour la démonstration faut attendre quelques semaines

5 minutes de réflexion

Rationnel ou pas rationnel, sur alphabet $\Sigma = \{a, b, c\}$?

- { a, b, abcba}
- ② $\{a^n \mid n > 0\}$
- **③** { $w \in \Sigma^* \mid w$ contient au moins trois a}
- **③** { $w \in \Sigma^* | |w| ≥ 5$ }
- $\{a^{2n} \mid n > 0\}$
- $\{a^{n^2} \mid n > 0\}$
- $a^m b^n \mid m, n > 0$
- $\{a^n b^n \mid n > 0\}$

5 minutes de réflexion

Rationnel ou pas rationnel, sur alphabet $\Sigma = \{a, b, c\}$?

$$\{a^n \mid n > 0\}$$

$$\{ w \in \Sigma^* \mid |w| \ge 5 \}$$

$$\{a^{2n} \mid n \geq 0\}$$

$$\{a^{n^2} \mid n \ge 0\}$$

$$\{a^m b^n \mid m, n \ge 0\}$$

$$\{a^nb^n \mid n > 0\}$$

Expressions rationnelles

Expressions rationnelles

Une notation pratique pour des langages rationnels :

Définition (3.2)

Les expressions rationnelles sur Σ sont définis inductivement comme suite:

- \emptyset et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- \odot si e_1 et e_2 sont des expressions rationnelles, alors $e_1 + e_2$, $e_1.e_2$ et e^{*} le sont également

Expressions rationnelles

Une notation pratique pour des langages rationnels :

Définition (3.1, recall)

langages rationnels sur Σ sont définis inductivement comme Les suite:

- \bigcirc \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- \odot si L_1 et L_2 sont des langages rationnels, alors $L_1 \cup L_2$, $L_1.L_2$ et L_1^* le sont également
 - presque la même chose! mais
 - 3.1 introduit une classe de sous-ensembles de Σ*,
 - 3.2 définit des expressions syntaxiques

Une notation pratique pour des langages rationnels :

Définition (3.2)

Les expressions rationnelles sur Σ sont définis inductivement comme suite:

- \bigcirc \varnothing et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- \odot si e_1 et e_2 sont des expressions rationnelles, alors $e_1 + e_2$, $e_1.e_2$ et e^{*} le sont également
 - presque la même chose! mais
- 3.1 introduit une classe de sous-ensembles de Σ*,
- 3.2 définit des expressions syntaxiques

On va relier les deux en donnant une sémantique aux expressions rationnelles.

Sémantique

Définition

Le langage dénoté par une expression rationnelle e sur Σ est $L(e) \subseteq \Sigma^*$ définit inductivement comme suite :

- ② $L(a) = \{a\}$ pour tout $a \in \Sigma$
- $L(e_1 + e_2) = L(e_1) \cup L(e_2), L(e_1 \cdot e_2) = L(e_1) \cdot L(e_2),$ $L(e^*) = (L(e))^*$

Théorème

 $L \subseteq \Sigma^*$ est rationnel ssi il existe une expression rationnelle e telle que L = L(e).

Démonstration.

Par induction structurelle . . .

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

Démonstration.

• Soit e une expression rationnelle telle que L = L(e).

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- ① Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que L(pref(e)) = Pref(L).
- ... par induction structurelle :
- \bigcirc pref(\varnothing) = , pref(ε) = , pref(a) =

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$.
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) =$ $pref(e_1e_2) =$ $pref(e^*) =$

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) = pref(e_1) + pref(e_2)$ $pref(e_1e_2) =$ $pref(e^*) =$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) = pref(e_1) + pref(e_2)$ $\operatorname{pref}(e_1 e_2) = \operatorname{pref}(e_1) + e_1 \operatorname{pref}(e_2)$ $pref(e^*) =$

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) = pref(e_1) + pref(e_2)$ $\operatorname{pref}(e_1 e_2) = \operatorname{pref}(e_1) + e_1 \operatorname{pref}(e_2)$ $pref(e^*) = e^*pref(e)$ (voir tableau)

Théorème

Si L est un langage rationnel, alors Pref(L) l'est aussi.

- Soit e une expression rationnelle telle que L = L(e).
- Nous construirons une expression rationnelle pref(e) telle que $L(\operatorname{pref}(e)) = \operatorname{Pref}(L)$
- ... par induction structurelle :
- o pref(\varnothing) = \varnothing , pref(ε) = ε , pref(a) = $a + \varepsilon$
- pref $(e_1 + e_2) = \text{pref}(e_1) + \text{pref}(e_2)$ $\operatorname{pref}(e_1 e_2) = \operatorname{pref}(e_1) + e_1 \operatorname{pref}(e_2)$ $pref(e^*) = e^*pref(e)$ (voir tableau)
- Maintenant il faut démontrer que, en fait, L(pref(e)) = Pref(L).
- … par induction structurelle, encore …

