On considère la fonction f définie sur \mathbf{R} par $f(x) = -\frac{1}{2}(x+1)^2 + 5$.

1. Compléter le tableau de variation de f sur \mathbf{R} :

x	$-\infty$	-1	$+\infty$
Variations de f		5	

2. Calculer f(1) et f(3).

$$f(1) = -\frac{1}{2} \times (1+1)^2 + 5$$
$$= -\frac{1}{2} \times 2^2 + 5$$
$$= -\frac{1}{2} \times 4 + 5$$
$$= -2 + 5$$
$$= 3$$

$$f(3) = -\frac{1}{2} \times (3+1)^2 + 5$$
$$= -\frac{1}{2} \times 4^2 + 5$$
$$= -\frac{1}{2} \times 16 + 5$$
$$= -8 + 5$$
$$= -3$$

Tracer la courbe représentative de f dans le **3.** repère ci-contre.

Indiquer les points utilisés.

- **1.** On définit la fonction f sur **R** par $f(x) = 3(x-2)^2 5$.
 - a. Donner la forme développée de f.

$$f(x) = 3(x^{2} - 2 \times x \times 2 + 2^{2}) - 5$$

$$= 3(x^{2} - 4x + 4) - 5$$

$$= 3x^{2} - 12x + 12 - 5$$

$$= 3x^{2} - 12x + 7$$

- **b.** Tracer l'allure de la courbe représentative de *f* en précisant les points remarquables.
- **2.** On définit la fonction g sur \mathbf{R} par $g(x) = -\frac{1}{2}(x-2)(x+3)$.
 - a. Donner la forme développée de g.

$$g(x) = -\frac{1}{2} (x^2 + 3x - 2x - 6)$$
$$= -\frac{1}{2} (x^2 + x - 6)$$
$$= -\frac{1}{2} x^2 - \frac{1}{2} x + 3$$

b. Tracer l'allure de la courbe représentative de *g* en précisant les points remarquables.

Exercice 3

Voici un carré de côté 10 auquel on a ôté deux carrés de côtés x+1 et x+3 qui ne se chevauchent pas pour obtenir la forme dessinée en gris foncé.

1. Quelle est la valeur minimale que peut prendre la variable x? Sa valeur maximale? En déduire l'intervalle dans lequel varie x.

Les longueurs x+1 et x+3 doivent être positives. D'où x>-1. Les carrés ne doivent pas se chevaucher donc x+1+x+3 doit être inférieur à 10.

$$\begin{array}{ccc} x+1+x+3 < 10 & \iff & 2x+4 < 10 \\ & \iff & 2x < 6 \\ & \iff & x < 3 \end{array}$$

Ainsi $x \in]-1; 3[.$

2. Montrer que l'aire A(x) de la figure gris foncé est : $A(x) = -2x^2 - 8x + 90$.

Soit
$$x \in]-1$$
; $3[$.

$$A(x) = 10^{2} - (x+1)^{2} - (x+3)^{2}$$

$$= 100 - (x^{2} + 2 \times x \times 1 + 1^{2}) + (x^{2} + 2 \times x \times 3 + 3^{2})$$

$$= 100 - (x^{2} + 2x + 1) - (x^{2} + 6x + 9)$$

$$= 100 - x^{2} - 2x - 1 - x^{2} - 6x - 9$$

$$= -2x^{2} - 8x + 90$$

3. Donner la forme canonique de A.

Soit
$$x \in]-1$$
; 3[.

$$A(x) = -2x^{2} - 8x + 90$$

$$= -2 [x^{2} + 4x - 45]$$

$$= -2 [x^{2} + 2 \times x \times 2 + 2^{2} - 2^{2} - 45]$$

$$= -2 [(x + 2)^{2} - 4 - 45]$$

$$= -2 [(x + 2)^{2} - 49]$$

$$= -2(x + 2)^{2} + 98$$

4. Peut-on faire en sorte que l'aire en gris foncé soit égale à 50? Si oui, pour quelle(s) valeur(s) de x?

Soit
$$x \in]-1$$
; 3[.

$$A(x) = 50 \qquad \Longleftrightarrow \qquad -2(x+2)^2 + 98 = 50$$

$$\iff \qquad -2(x+2)^2 = -48$$

$$\iff \qquad (x+2)^2 = 24$$

$$\iff \qquad x+2 = -\sqrt{24} \quad \text{ou} \quad x+2 = \sqrt{24}$$

$$\iff \qquad x = -2 - \sqrt{24} \quad \text{ou} \quad x = -2 + \sqrt{24}$$

$$\begin{array}{lll} \text{Or} & -2-\sqrt{24}<-2 & \text{donc} & -2-\sqrt{24}\notin]-1\;;\; 3[.\\ \text{Et} & 4<\sqrt{24}<5 & \text{donc} & 2<-2+\sqrt{24}<3 & \text{et ainsi} & -2+\sqrt{24}\in]-1\;;\; 3[. \end{array}$$

L'aire en gris foncé ne peut être égale à 50 que lorsque $x=-2+\sqrt{24}$.

f est la fonction polynôme du second degré représentée graphiquement par la parabole ci-contre.

Déterminer l'expression algébrique de f à l'aide des trois points indiqués sur la parabole.

On lit que la fonction f a pour racines -3 et 4.

Il existe donc un réel non nul a tel que, pour tout $x \in \mathbb{R}$, f(x) = a(x - (-3))(x - 4)= a(x + 3)(x - 4)

De plus la parabole coupe l'axe des ordonnées en -4 donc f(0) = -4.

$$f(0) = -4 \iff a \times (0+3) \times (0-4) = -4$$

$$\iff -12a = -4$$

$$\iff a = \frac{-4}{-12}$$

$$\iff a = \frac{1}{3}$$

D'ou, pour tout $x \in \mathbf{R}$, $f(x) = \frac{1}{3}(x+3)(x-4)$.

On considère la fonction f définie sur **R** par $f(x) = \frac{1}{2}(x+2)^2 - 3$.

1. Compléter le tableau de variation de f sur \mathbf{R} :

x	$-\infty$	-2	$+\infty$
Variations de f		-3	

2. Calculer f(0) et f(2).

$$f(0) = \frac{1}{2} \times (0+2)^2 - 3$$
$$= \frac{1}{2} \times 2^2 - 3$$
$$= \frac{1}{2} \times 4 - 3$$
$$= 2 - 3$$
$$= -1$$

$$f(2) = \frac{1}{2} \times (2+2)^2 - 3$$
$$= \frac{1}{2} \times 4^2 - 3$$
$$= \frac{1}{2} \times 16 - 3$$
$$= 8 - 3$$
$$= 5$$

Tracer la courbe représentative de f dans le **3.** repère ci-contre.

Indiquer les points utilisés.

- **1.** On définit la fonction f sur **R** par $f(x) = -2(x-3)^2 + 10$.
 - **a.** Donner la forme développée de f.

$$f(x) = -2(x^2 - 2 \times x \times 3 + 3^2) + 10$$

= -2(x^2 - 6x + 9) + 10
= -2x^2 + 12x - 18 + 10
= -2x^2 + 12x - 8

- **b.** Tracer l'allure de la courbe représentative de *f* en précisant les points remarquables.
- **2.** On définit la fonction g sur \mathbf{R} par $g(x) = \frac{1}{2}(x+2)(x-3)$.
 - **a.** Donner la forme développée de g.

$$g(x) = \frac{1}{2} (x^2 - 3x + 2x - 6)$$
$$= \frac{1}{2} (x^2 - x - 6)$$
$$= \frac{1}{2} x^2 - \frac{1}{2} x - 3$$

b. Tracer l'allure de la courbe représentative de *g* en précisant les points remarquables.

Exercice 3

Voici un carré de côté 8 auquel on a ôté deux carrés de côtés x+1 et x+3 qui ne se chevauchent pas pour obtenir la forme dessinée en gris foncé.

1. Quelle est la valeur minimale que peut prendre la variable x? Sa valeur maximale? En déduire l'intervalle dans lequel varie x.

Les longueurs x+1 et x+3 doivent être positives. D'où x>-1. Les carrés ne doivent pas se chevaucher donc x+1+x+3 doit être inférieur à 8.

$$x+1+x+3 < \iff 2x+4 < 8$$
 $\iff 2x < 4$
 $\iff x < 2$

Ainsi $x \in]-1$; 2[.

2. Montrer que l'aire A(x) de la figure gris foncé est : $A(x) = -2x^2 - 8x + 54$.

Soit
$$x \in]-1$$
; 2

$$A(x) = 8^{2} - (x+1)^{2} - (x+3)^{2}$$

$$= 64 - (x^{2} + 2 \times x \times 1 + 1^{2}) + (x^{2} + 2 \times x \times 3 + 3^{2})$$

$$= 64 - (x^{2} + 2x + 1) - (x^{2} + 6x + 9)$$

$$= 64 - x^{2} - 2x - 1 - x^{2} - 6x - 9$$

$$= -2x^{2} - 8x + 54$$

3. Donner la forme canonique de A.

Soit
$$x \in]-1$$
; 2

$$A(x) = -2x^{2} - 8x + 54$$

$$= -2 [x^{2} + 4x - 27]$$

$$= -2 [x^{2} + 2 \times x \times 2 + 2^{2} - 2^{2} - 27]$$

$$= -2 [(x + 2)^{2} - 4 - 27]$$

$$= -2 [(x + 2)^{2} - 31]$$

$$= -2(x + 2)^{2} + 62$$

4. Peut-on faire en sorte que l'aire en gris foncé soit égale à 50? Si oui, pour quelle(s) valeur(s) de x?

Soit
$$x \in]-1$$
; 2

$$A(x) = 50 \iff -2(x+2)^2 + 62 = 50$$

$$\iff -2(x+2)^2 = -12$$

$$\iff (x+2)^2 = 6$$

$$\iff x+2 = -\sqrt{6} \quad \text{ou} \quad x+2 = \sqrt{6}$$

$$\iff x = -2 - \sqrt{6} \quad \text{ou} \quad x = -2 + \sqrt{6}$$

$$\begin{array}{lll} \text{Or} & -2-\sqrt{6}<-2 & \text{donc} & -2-\sqrt{6}\notin]-1\; ;\; 2[.\\ \text{Et} & 2<\sqrt{6}<3 & \text{donc} & 0<-2+\sqrt{6}<1 & \text{et ainsi} & -2+\sqrt{6}\in]-1\; ;\; 2[. \end{array}$$

L'aire en gris foncé ne peut être égale à 50 que lorsque $x=-2+\sqrt{6}$.

f est la fonction polynôme du second degré représentée graphiquement par la parabole ci-contre.

Déterminer l'expression algébrique de f à l'aide des trois points indiqués sur la parabole.

On lit que la fonction f a pour racines -2 et 6.

Il existe donc un réel non nul a tel que, pour tout $x \in \mathbb{R}$, f(x) = a(x - (-2))(x - 6)= a(x + 2)(x - 6)

De plus la parabole coupe l'axe des ordonnées en 4 donc f(0) = 4.

$$f(0) = 4 \quad \iff \quad a \times (0+2) \times (0-6) = 4$$

$$\iff \quad -12a = 4$$

$$\iff \quad a = -\frac{4}{12}$$

$$\iff \quad a = -\frac{1}{3}$$

D'ou, pour tout $x \in \mathbf{R}, \quad f(x) = -\frac{1}{3}(x+2)(x-6).$