Capítulo 1

Ecuaciones de Hamilton

Se pasa de las variables (q,\dot{q}) hacia el par (q,p) con

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$$

Se parte del

$$H(q_i,p_i,t) = \sum_{i}^{3N-k} p_i \dot{q}_i - \mathcal{L}(q_i,\dot{q}_i,t) \tag{1} \label{eq:1}$$

y consideramos el diferencial

$$\begin{split} dH &= \sum_{i} p_{i} d\dot{q}_{i} + \dot{q}_{i} dp_{i} - \frac{\partial \mathcal{L}}{\partial q_{i}} dq_{i} - \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d\dot{q}_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \dot{p}_{i} dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \end{split}$$

se deducen entonces,

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \qquad \qquad \frac{\partial H}{\partial q_i} = -\dot{p}_i \qquad \qquad (2)$$

y

$$\frac{\partial H}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$$

que son las ecuaciones de Hamilton. Donde (p,q) son 2N grados de libertad del sistema llamados las variables canónicas. Si $V \neq V(\dot{q})$ y los vínculos no dependen del tiempo entonces $T=T_2$ (la energía cinética es cuadrática en las velocidades) y H=T+V=E.

En el caso H=E se puede escribir fácil el hamiltoniano.

No presenta gran economía respecto a la formulación lagrangiana. Aquí las coordenadas y los momentos adquieren un carácter simétrico. Se define el espacio de fases del sistema, donde cada punto describe un estado dinámico en el tiempo.

Una transformación canónica es aquella transformación en variables canónicas. Las variables canónicas son un conjunto de 2N (N llamadas p y N llamadas q) variables que cumplen con las ecuaciones (2).

$$T = \frac{1}{2} \sum_{i} \sum_{j} m_{ij} \dot{q}_i \dot{q}_j$$

Aquí despejo según $\dot{q}_i=\dot{q}_i(q_i,p_i)$ y se introduce en T entonces se puede obtener un $H=H(q_i,p_i)$.

$$T = \frac{1}{2} \sum_{i} \sum_{i} m_i (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2)$$

de donde se deduce

$$p_{x_i} = m_i \dot{x}_i \qquad \rightarrow \qquad \dot{x}_i = \frac{p_{x_i}}{m_i}, \label{eq:pxi}$$

y p_{y_i}, p_{z_i} se obtienen análogamente. Si $H \neq E$ para obtener $H = H(q_i, p_i)$ no hay más remedio que utilizar la definición (1).

EJEMPLO 0.1 Sencillo

Sea un hamiltoniano

$$\begin{split} H = \sum_i \frac{p_{x_i}^2 + p_{y_i}^2 + p_{z_i}^2}{2m} + V(\pmb{x}_1,...,\pmb{x}_n) \\ T = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\varphi}^2) \end{split}$$

y los momentos son

$$\begin{split} p_r &= m\dot{r} \rightarrow \dot{r} = \frac{p_r}{m} \\ p_\varphi &= mr^2 \sin^2 \theta \dot{\varphi} \rightarrow \dot{\varphi} = \frac{p_\varphi}{mr^2 \sin^2 \theta} \\ p_\theta &= mr^2 \dot{\theta} \rightarrow \dot{\theta} = \frac{p_\theta}{mr^2} \end{split}$$

En este caso es fácil porque no hay términos cruzados. En general pasa a ser como invertir una matriz

$$\begin{pmatrix} p_r \\ p_{\varphi} \\ p_{\theta} \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} \dot{q}_r \\ \dot{q}_{\varphi} \\ \dot{q}_{\theta} \end{pmatrix}$$

Cuando no hay términos cruzados es equivalente a una matriz diagonal.

1.1 Transformación canónica del hamiltoniano

Es una transformación que verifica

$$H \longrightarrow K$$

donde $K=K(\boldsymbol{Q}_i,\boldsymbol{P}_i,t)$ es un nuevo hamiltoniano proveniente de

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \longrightarrow \dot{Q}_i = \frac{\partial K}{\partial P_i}$$

$$-\frac{\partial H}{\partial q_i} = \dot{p}_i \longrightarrow \dot{P}_i = -\frac{\partial K}{\partial Q_i}$$

y ahora usamos el Principio Variacional de Hamilton,

$$S = \int_{t_i}^{t_f} \mathcal{L} dt = \int_{t_i}^{t_f} \left\{ \sum_i p_i \dot{q}_i - H(p_i, q_i, t) \right\} dt$$

$$\delta S = \sum p_i \delta \dot{q}_i + \dot{q}_i \delta p_i - \frac{\partial H}{\partial p_i} \delta p_i - \frac{\partial H}{\partial q_i} \delta q_i - \frac{\partial H}{\partial t} \delta t$$

pero el último término es nulo porque la variación es a tiempo fijo. Usando las ecuaciones de Euler-Lagrange en el primer término resulta que

$$\delta S = \int_{t_i}^{t_f} \left\{ \sum_i \left(-\dot{p}_i - \frac{\partial H}{\partial q_i} \right) \delta q_i + \left(\dot{q}_i - \frac{\partial H}{\partial p_i} \right) \delta p_i + \frac{d}{dt} \left(p_i \delta q_i \right) \right\} dt$$

y llego pidiendo que sea extremo S a las ecuaciones de Hamilton (dos primeros paréntesis) mientras que el último término resulta

$$\int_{t_{i}}^{t_{f}}\left\{ \frac{d}{dt}\left(p_{i}\delta q_{i}\right)\right\} dt=\left.p_{i}\delta q_{i}\right|_{t_{i}}^{t_{f}}.$$

Entonces, usando la misma idea que el $\mathcal L$ se tiene

$$\mathcal{L}' = \mathcal{L} + \frac{dF}{dt}$$

siendo F una función generatriz. Luego,

$$\sum p_i \dot{q}_i - H(p_i,q_i,t) = \sum P_i \dot{Q}_i - K(P_i,Q_i,t) + \frac{dF'}{dt}$$