CS-E400204: Approximation Algorithms

Spring (Fifth Period) 2022

Lecture 5 (May 4): Linear Programming and The Ellipsoid Algorithm

Lecturer: Kamyar Khodamoradi Scribe: Michał Osadnik

5.1 Introduction

5.1.1 Complexity of LP

- Feasibility problem (decision) emptiness test. Given $P = \{Ax \ge B\}$ decide if $P \ne \emptyset$
- Search version Given $P = \{Ax \ge B\}$ decide if $P \ne \emptyset$ and give $x \in P$
- Optimization version Given $P = \{Ax \geq B\}, C \in \mathbb{R}^n \text{ decide if } P \neq \emptyset, \text{ find } \arg\min_{c \in P} cx$

Say, Π is our feasibility problem

5.1.2 $\Pi \in NP$?

Yes! We can give a feasible solution and verify this by evaluating each equation

5.1.3 $\Pi \in \mathbf{co} - \mathbf{NP}$?

Yes! The non-feasibility witness has been presented in 1898 by Julius Farkas:

Lemma 1 *If* $P \neq \emptyset$ *then:*

Thereby,

Corollary 1

$$\Pi \in \mathbf{NP} \cap \mathbf{co} - \mathbf{NP}$$

Also,

Lemma 2

 $\Pi \in \mathbf{P}$

Proof: (Khachyan, 1979) The ellipsoid algorithm solves Π in poly-time

5.2 Methods to solve LP

- Simplex method (Dantzig, 1947)
 - Can cycle for ever looking for OPT
 - Exponential time (with pivoting)

Figure 5.1: The simplex algorithm iterating over vertices of the polytop hyperplane

- Ellipsoid method (Khachyan, 1979)
 - P oly time
 - Not very practical due to high (although poly) runtime complexity.
- Interior Points Method (IPM) (Karmarkar, 1984)
 - Poly time
 - Optimal
 - Practical

Figure 5.2: The Interior Points Method algorithm iterating for the optimal solution not necessarily visiting vertices of the polytop

5.3 Optimization version of the problem reduces to feasibility version

Theorem 1 Optimization version of the problem reduces to feasibility version

Assume we have an access to an feasibility oracle.

Definition 1 for $P = \{Ax \ge b\}$ basic feasible solution is inside of the polytop defined by inequalities

For any point of P, e.g., v:

$$\langle v \rangle = poly(\langle P \rangle)$$

if $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $r \in \mathbb{Q}^n$

Proof (sketch):

We use Gaussian elimination in polynomial time (Edmond, 1967).

v is produced by the Gaussian elimination:

$$\langle v \rangle = poly(\langle v \rangle), v \in \mathbb{Q}^n$$

Assume polytop is bounded. Then, we know M st.

$$P \cap \{C \cdot n \ge M\}$$

is not feasible and

$$P \cap \{C \cdot n \le -M\}$$

is not feasible and we have a lower and upper bound.

We can assume the $M \leq 2^{poly(< M >)}$

The algorithm is bisecting with hyperplane c_i perpendicular to an objective value vector.

Figure 5.3: The algorithm is bisecting with hyperplane c_i .

5.4 Ellipsoid algorithm

The algorithm takes a system of inequalities as an input. We assume that we have a bounding box of size R such that the polytop is fully included in this box.

Figure 5.4: Polytop P fully included in a box of size R.

The algorithm is starting with a preparation phrase that we convert all our inequalities and transform them all into equalities with non-negative factors. Them we displace them slightly to obtain robustness property. This being said, we expect our polytop P to not only be fully contained into box of size R, but also to contain itself box of the size r.

Figure 5.5: Polytop P fully included in a box of size R containing itself box of the size r.

Then we design an algorithm that is running in $poly(\langle P \rangle, \log(R), \log(\frac{1}{r}))$.

Firstly, we draw an ellipsoid over the set R.

Figure 5.6: The initial phrase of the ellipsoid algorithm.

Then we observe if the of the ellipsoid is a feasible solution. If no, we cut the ellipsoid with a hyperplane (representing not satisfied equation) obtaining a smaller instance.

Figure 5.7: The second phrase of the ellipsoid algorithm with a new ellipsoid (green).

On each step we're decreasing the volume of ellipsoid E_i

If eventually the volume of a new ellipsoid $V(E_i)$ will be smaller that r^d , the instance is not feasible.

$$V(E_{i+1}) \le (1 - \frac{1}{3n})V(E_i)$$

Hence, after 3n repetition:

$$V(E_{i+3n}) \le (1 - \frac{1}{3n})^{3n} V(E_i) \le e^{-1} V(E_i)$$

The overall complexity is from decreasing instance from the original ellipsoid $(O(\mathbb{R}^d))$ to \mathbb{R}^d is:

$$poly(n)(\log(R) + \log(\frac{1}{r}))$$

Such an algorithm is called a separation oracle.

.