

DIGITAL LOGIC AND DESIGN

LAB ASESSMENT - 2

Name: VIBHU KUMAR SINGH

Reg. No: 19BCE0215
Teacher: Sairabanu J.

Q1) (i)Design Half adder and full adder using Gates. Ans 1(i))

Truth Tables:

HALF ADDER							
INPUT OUTPUT							
X	Y	Sum	Carry				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

FULL ADDER							
11	NPU	Т	OUTPUT				
X	Y	Z	Sum	Carry			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	1	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

EXPRESSIONS:

For Hay Addus
Sum = E(1,2) = X'Y+ XY' = (X⊕Y)
(arry = X.Y
For full Addes :
Sum = X'Y'Z + X! Y.Z' + XY'Z' + XYZ
$= X'(Y \oplus Z) + X(Y \oplus Z)'$ $= (X \oplus Y \oplus Z)$
carry = \(\(\)(3,5,6,7)
X YZ 00 01 11 10
1 , [[-]-[-]-]-
= XY+ YZ+ XZ.

Q1)(ii) Design a full adder using two half adders.(Gates and Half adder IC) Ans 1(ii))

Truth Tables:

HALF ADDER						
INPUT OUTPUT						
X	Y	Sum Carry				
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	1	1			

	FULL ADDER							
I	NPU	Γ	OUTPUT					
X	Y	Y	Sum	Carry				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	1	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				

SCREENSHOTS(4 Each):

USING GATES:

USING IC:

Q1)(iii) Design Half subtractor and Full Subtractor using Gates. Ans 1(iii))

Truth Tables:

HALF SUBTRACTOR							
INF	INPUT OUTPUT						
X	Y	Difference	Borrow				
0	0	0	0				
0	1	1	1				
1	0	1	0				
1	1	0	0				

FULL SUBTRACTOR						
11	NPU	Т	OUTPUT			
X	Y	Z	Difference	Borrow		
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

EXPRESSIONS:

SCREENSHOTS(4 Each): HALF SUBTRACTOR: ΧO DIFFERENCE ΧO DIFFERENCE 0 VIBHU KUMAR SINGH: Ý VIBHU KUMAR SINGH 19BCE0215 19BCE0215 BORROW BORROW HALF SUBTRACTOR HALF SUBTRACTOR X 🕕 DIFFERENCE X 🕕 DIFFERENCE: 0 0 VIBHU KUMAR SINGH VIBHU KUMAR SINGH 19BCE0215 19BCE0215 BORROW BORROW HALF SUBTRACTOR HALF SUBTRACTOR **FULL SUBTRACTOR:** ΧO X 🛈 DIFFERENCE DIFFERENCE Y 🕕 ΥO z 💽 Z 🕦 VIBHU KUMAR SINGH . . 19BCE0215 VIBHU KUMAR SINGH . . 19BCE0215 ⑩ BORROW BORROW FULL SUBTRACTOR FULL SUBTRACTOR × O ×Φ DIFFERENCE DIFFERENCE Ϋ́ Ϋ́ z 🕕 z 🕡 VIBHU KUMAR SINGH . . 19BCE0215 VIBHU KUMAR SINGH . . 19BCE0215 BORROW BORROW FULL SUBTRACTOR: FULL SUBTRACTOR:

Q1)(iv) Design a full subtractor using two half subtractors.(Gates and Half Subtractor IC)

Ans 1(iv))

Truth Tables:

HALF SUBTRACTOR						
INF	TU	OUTP	UT			
X	Y	Difference Borrow				
0	0	0	0			
0	1	1	1			
1	0	1	0			
1	1	0	0			

	FULL ADDER								
I	NPU	Γ	OUTPUT						
X	Y	Z	Sum	Carry					
0	0	0	0	0					
0	0	1	1	0					
0	1	0	1	0					
0	1	1	1	1					
1	0	0	1	0					
1	0	1	0	1					
1	1	0	0	1					
1	1	1	1	1					

SCREENSHOTS(4 Each):

USING GATES:

Q2)(i) Design a combinational circuit which converts 2 4 2 1 code to 8 4 -2 -1 code.

Ans 2(i))

Truth Table:

Desimal disite	2	4	2	1	Minterms		
Decimal digits	Α	В	С	D	wiiiteiiis		
0	0	0	0	0	[0]		
1	0	0	0	1	[1]		
2	0	0	1	0	[2]		
3	0	0	1	1	[3]		
4	0	1	0	0	[4]		
5	1	0	1	1	[11]		
6	1	1	0	0	[12]		
7	1	1	0	1	[13]		
8	1	1	1	0	[14]		
9	1	1	1	1	[15]		

EXPRESSIONS:

Don't care terms: ∑(5,6,7,8,9,10)

Q2)(ii) Design a circuit to display thrice of a number on seven segment display (Consider maximum input number to be 2 bit)

Ans 2(ii))

Truth Table:

Inp	uts								
X	Y	Multiplier	Α	В	С	D	E	F	G
0	0	0	1	1	1	1	1	1	0
0	1	3	1	1	1	1	0	0	1
1	0	6	1	0	1	1	1	1	1
1	1	9	1	1	1	1	0	1	1

EXPRESSIONS:

SCREENSHOTS(4):

