Frequent Patterns

Nicolas PASQUIER

Laboratoire I3S (UMR-7271 UNS/CNRS)

Université Nice Sophia-Antipolis

http://www.i3s.unice.fr/~pasquier

mailto:nicolas.pasquier@unice.fr

Data Mining Context

- Dataset: Finite binary relation $R \subseteq O \times I$
 - O: Finite set of objects
 - I: Finite set of attribute values (items)
- · Example dataset D

Transactions

OID	Items
1	ABCE
2	BCE
3	ACD
4	ABCE
5	BCE

Equivalent

Binary Matrix

OID	A	В	С	D	E
1	1	1	1	0	1
2	0	1	1	0	1
3	1	0	1	1	0
4	1	1	1	0	1
5	0	1	1	0	1

· Items are ordered (e.g., lexicographic order)

Association Rules

- Directed links of association (co-occurrence) between two sets of variable values expressing causality
- Example: Market basket data
 - Buy:Cereal ∧ Buy:Sugar → Buy:Milk (support=10%, confidence=50%)
- Support: Weight (scope) of the rule
 - Proportion of objects (instances/tuples) containing all items
 - 10% of all customers have bought both three items
- · Confidence: Precision (reliability) of the rule
 - Proportion of objects containing the consequent among those containing the antecedent
 - 50% of customers having bought cereal and sugar also have bought milk

N. Pasquier

Frequent Patterns

Itemsets and Itemset Support

- Itemset
 - A set of items
 - Ex: {A}, {B}, {AC}, {ABC} in D
- K-itemset
 - A set of k-items
 - Ex: {A} and {B} are 1-itemsets, {ABC} is a 3-itemset
- Support of an itemset
 - Proportion of objects containing the itemset
 - support(L) = COUNT(L) / COUNT()
 - Ex: support($\{AC\}$) = COUNT($\{AC\}$) / COUNT() = $|\{1,3,4\}|$ / 5 = 3/5

Itemset Lattice

- The search space is the itemset lattice or subset lattice
- Its size is exponential in the number of items: 2^{|I|}

N. Pasquier

Frequent Patterns

Minimum Support and Confidence

- An association rule R is considered useful and significant iff:
 - Sufficiently frequent in the dataset support(R) ≥ minsupport
 - Sufficiently precise in the dataset confidence(R) ≥ minconfidence
- minsupport and minconfidence are user defined thresholds
 - Values depend on the application context and objectives
- An itemset L is <u>frequent</u> if support(L) ≥ *minsupport*
- · Association rules are generated from frequent itemsets

Association Rule Support and Confidence

- Association rule
 - Implication rule between two distinct itemsets
 R = LHS → RHS, support(R), confidence(R)
- support(R) = COUNT(LHS ∪ RHS) / COUNT()
 - Proportion of objects "containing" the rule
 - Ex: support(A → B) = COUNT({AB}) / COUNT()
 = |{1,4}| / 5 = 2/5
 - Interpretation: Scope (coverage) of the rule in the dataset
- confidence(R) = COUNT(LHS ∪ RHS) / COUNT(LHS)
 - Proportion of objects "verifying" the rule
 - Ex: confidence(A → B) = COUNT({AB}) / COUNT({A})
 = |{1,4}| / |{1,3,4}| = 2/3
 - Interpretation: Precision (accuracy) of the rule in the dataset

N. Pasquier

Frequent Patterns

Frequent Itemsets

minsupport = 2/5

Association Rule Mining

- First approach (Apriori algorithm [1])
 - 1. Extract all frequent itemsets and their support (support ≥ minsupport)
 - 2. Generate all valid association rules (confidence ≥ minconfidence)
- · Based on the following properties
 - i. All supersets of an infrequent itemset are infrequent
 - Ex: ABD infrequent ⇒ ABCD, ABDE, ABCDE infrequent
 - ii. All subsets of a frequent itemset are frequent
 - Ex: ABC frequent ⇒ A, B, C, AB, AC, BC frequent

N. Pasquier Frequent Patterns

Itemset Lattice Pruning

• minsupport = 2/5

Association Rule Mining: Apriori

- · Iterative pruning the itemset lattice
 - Bottom-up level-wise traversal of the itemset lattice
- First iteration:
 - Frequent 1-itemsets (i.e., items) are extracted
- Subsequent iteration k:
 - Candidate k-itemsets are generated from frequent (k-1)-itemsets
 - Supports of candidate k-itemsets are extracted from the dataset
 - Infrequent candidate k-itemsets are discarded

N. Pasquier Frequent Patterns

Apriori Algorithm

- Ck: Candidate k-itemsets
- Lk: frequent k-itemsets
- 1. L_1 = {frequent 1-itemsets};
- 2. for $(k \leftarrow 1; L_k != \emptyset; k++)$
- 3. $C_{k+1} \leftarrow AprioriGen(L_k)$
- 4. for each object o in dataset D do
- 5. for each candidate c in C_{k+1} do
- 6. \underline{if} (c \subseteq o) then c.support++
- 7. endfor
- 8. endfor
- 9. $L_{k+1} \leftarrow \text{candidates in } C_{k+1} \text{ with support } \geq \text{minsupport}$
- 10. endfor
- 11. return ∪_k L_k

AprioriGen Function

- Step 1: Self-joining frequent k-itemsets in L_k to generate k+1-candidates (SQL syntax)
- 1. insert into C_{k+1}
- 2. select P₁, P₂, ..., P_k, Q_k
- 3. from $L_k P, L_k Q$
- 4. where $P_1 = Q_1$ and ... and $P_{k-1} = Q_{k-1}$ and $P_k < Q_k$
- Step 2: Pruning invalid candidates
- 1. for each itemset c in Ck+1 do
- 2. for each k-subsets s of c do
- 3. <u>if</u> $(s \notin L_k)$ then delete c from C_{k+1}
- 4. endfor
- 5. endfor

N. Pasquier

Frequent Patterns

13

Apriori Algorithm Example

- · Dataset D
- minsupport = 2/5

	itemset	J	itemset	support		itemset	support		
	Α		Α	3/5		Α	3/5		
	В	scan D	В	4/5	pruning	В	4/5		
	С	\rightarrow	С	5/5	infrequent	C	5/5		
	D	ĺ	D	1/5	_ →	E	4/5		
ĺ	E		İΕ	4/5					
					•				
	C_2) 2		L_2			
	itemset		itemset	support		itemset	support		
	AB		AB	2/5		AB	2/5		
	AC		AC	3/5	pruning	AC	3/5		
	AE	scan D	AE	2/5	infrequent	AE	2/5		
	BC	→	BC	4/5	→	BC	4/5		
i	BE	İ	BE	4/5		BE	4/5		
	CE		CE	4/5		CE	4/5		
		,			•				
	C ₃			cal_3		L ₃			
	itemset		itemset	support		itemset	support		
	ABC		ABC	2/5		ABC	2/5		
	ABE	scan D	ABE	2/5	pruning	ABE	2/5		
	ACE	_ →	ACE	2/5	infrequent	ACE	2/5		
	BCE		BCE	4/5		BCE	4/5		
		•							
	C ₄			24	pruning	L	-4		
	itemset	scan D	itemset	support	infrequent	itemset	support		
	ABCE	\rightarrow	ABCE	2/5	_ →	ABCE	2/5		

AprioriGen Function Example

- Generating candidate 4-itemsets from set L₃ of frequent 3-itemsets L₃ = {ABC, ABD, ACD, ACE, BCD}
- Step 1: Join frequent 3-itemsets with the same prefix
 - ABC and ABD : ABCD
 - ACD and ACE: ACDE
 - C₄ = {ABCD, ACDE}
- Step 2: Pruning invalid 4-candidates with infrequent 3-subsets
 - ABCD: Valid candidate since ABC, ABD, ACD, BCD in L₃
 - ACDE: Invalid candidate since ADE is infrequent
- L₄ = {ABCD}

N. Pasquier

Frequent Patterns

14

Generating Association Rules

• minconfidence = 2/3

Maximal Frequent Itemset Approach

- A <u>maximal frequent itemset</u> is a frequent itemset with no frequent superset (maximality vs. inclusion)
- Approach based on the following property:
 - Maximal frequent itemsets define a border under which all itemsets are frequent and above which all itemsets are infrequent
- All frequent itemsets can be deduced from the maximal frequent itemsets, but their support must be extracted from the dataset
- Second approach (Max-Miner [2] and Pincer-Search [3] algorithms)
 - 1. Extract all maximal frequent itemsets (dataset scans)
 - 2. Derive frequent itemsets and extract their support (dataset scan)
 - 3. Generate all valid association rules

N. Pasquier Frequent Patterns

Maximal Frequent Itemset Extraction

Maximal Frequent Itemsets

- · Iterative approach
 - Simultaneous top-down and bottom-up level-wise traversals of the itemset lattice
 - Two sets of candidates:
 - a) Candidate frequent itemsets (bottom-up)
 - b) Candidate maximal frequent itemsets (top-down)
- · During each iteration
 - One scan of the dataset
 - Reduce the search space of one level bottom-up
 - Reduce the search space of one or several levels top-down
 - Subsets of discovered maximal frequent itemsets are deleted from bottom-up traversal candidates

N. Pasquier

Frequent Patterns

Association Rule Mining Problems

- Dense and correlated data constitute a challenge for extracting association rules
- Problem of execution times
 - Execution times of several hours most often (sometimes several days!)
 - Datasets are large (cannot fit in main memory)
 - The dataset must be scanned (sequential read of all instances) several times during the process
- Problem of relevance of extracted association rules
 - Several tens of thousands of rules extracted (sometimes millions)
 - Among these rules many are redundant (i.e., represent the same information)

N. Pasquier Frequent Patterns 19 🗗 N. Pasquier Frequent Patterns 20 🗗

Galois Connection

- Let $I \subseteq I$ and $O \subseteq O$
- · Galois connection of a finite binary relation
 - f(O): Items common to all objects $o \in O$
 - f(O): $2^O \rightarrow 2^I$
 - $f(O) = \{i \in I \mid \forall o \in O, (o,i) \in R\}$
 - g(I): Objects in relation with all items $i \in I$
 - g(l): $2^I \rightarrow 2^O$
 - $g(I) = \{o \in O \mid \forall i \in I, (o,i) \in R\}$
- Closure operator of the Galois connection: h = f ∘ g
 - Extension: I ⊆ h(I)
 - Idempotency: h(h(I)) = h(I)
 - Monotonicity: $I_1 \subseteq I_2 \Rightarrow h(I_1) \subseteq h(I_2)$

N. Pasquier

Frequent Patterns

21

Frequent Closed Itemsets

minsupport = 2/5

Frequent Closed Itemsets

- The Galois closure of an itemset I is computed by intersecting all objects containing I
 - Ex : h(BC) = intersection(objects(BC)) = BCE
- A <u>closed itemset</u> is an itemset that is equal to its closure: I = h(I)
 - Closed itemset: Maximal set of items common to a set of objects
 - Examples:
 - BC is not closed since objects(BC) = {1,2,4,5} but intersection({1,2,4,5}) = BCE
 - BCE is a closed itemset since intersection(objects(BCE)) = BCE
 - C is a closed itemset since intersection(objects(C)) = C
- A <u>frequent closed itemset</u> is a closed itemset that is frequent

N. Pasquier

Frequent Patterns

Galois Closure based Approach

- Approach based on the following properties:
 - i. Maximal frequent itemsets are maximal frequent closed itemsets
 - ii. The support of an itemset is equal to the support of its closure
- Third approach (Close algorithm [4])
 - 1. Extract all frequent closed itemsets (dataset scans)
 - 2. Derive frequent itemsets and their support
 - 3. Generate all valid association rules
- Pruning the closed itemset lattice
 - Bottom-up level-wise traversal of the itemset lattice
 - Iteration k: The support and the closure of all candidate k-itemsets are extracted simultaneously

Frequent Closed Itemset Mining

GenGenerators Function

- Step 1: Self-joining frequent itemsets in Ek (SQL syntax)
- 1. insert into CC_{k+1} .generator
- 2. select p.item₁, p.item₂, ..., p.item_k, q.item_k
- 3. from $E_k p$, $E_k q$
- 4. where p.item₁ = q.item₁, ..., p.item_{k-1} = q.item_{k-1}, p.item_k < q.item_k
- Step 2: Pruning invalid candidates
- 1. $\underline{\text{for each}}$ candidate generator c $\underline{\text{in}}$ CC_{k+1}.generator $\underline{\text{do}}$
- 2. <u>for each</u> k-subsets s <u>of</u> c <u>do</u>
- 3. \underline{if} (s \notin E_k.generators) \underline{then} \underline{delete} c \underline{from} CC_{k+1}
- 4. $\underline{\text{elsif}} \ (c \subseteq s. \text{closure}) \ \underline{\text{then}} \ \underline{\text{delete}} \ c \ \underline{\text{from}} \ CC_{k+1}$
- 5. endfor
- 6. endfor

Close Algorithm

- CCk: Candidate k-itemsets (fields: generator, support, closure)
- E_k: Frequent equivalence classes (fields: generator, support, closure)

```
1. CC<sub>1</sub>.generators ← {1-itemsets}
 2. for (k \leftarrow 2; CC_k! = \emptyset; k++)
         for each object o in dataset D do
             for each candidate c in CCk do
  5.
                 if (c.generator \subseteq o) then
  6.
                      c.support++
  7.
                     if (c.closure = \emptyset) then c.closure \leftarrow o
  8.
                      else c.closure \leftarrow c.closure \cap o
  9.
                 endif
10.
             endfor
11.
         endfor
         E_k \leftarrow \text{candidates in } CC_k \text{ with support } \geq \text{minsupport}
        CC_k \leftarrow GenGenerators(E_k)
14. endfor
15. return ∪<sub>k</sub> E<sub>k</sub>
```

N. Pasquier

Frequent Patterns

28

Close Algorithm Example

Dataset D

N. Pasquier

• minsupport = 2/5

CC ₁				CC ₁				E ₁			
generator	closure	support]	generator	closure	support		generator	closure	support	
Α	Ø	0	[А	AC	3/5	pruning	Α	AC	3/5	
В	Ø	0	scan D	В	BCE	4/5	infrequent	В	BCE	4/5	
С	Ø	0	→	С	С	5/5	→	С	С	5/5	
D	Ø	0		D	ACD	1/6		E	BCE	4/5	
E	Ø	0		E	BCE	4/5					
,			,								
	CC ₂				CC_2				E ₂		
generator	closure	support]	generator	closure	support	pruning	generator	closure	support	
AB	Ø	0	scan D	AB	ABCE	2/5	infrequent	AB	ABCE	2/5	

ABCE 2/5

Hybrid Approaches

- A-Close
 - All frequent generators are found using the Apriori approach
 - Closures of generators that are not closed are computed in the last phase
 - More efficient than Close for weakly correlated data, less efficient for dense and highly correlated data
 - Less efficient than Apriori for weakly correlated data, more efficient for dense and highly correlated data
- Pascal
 - Itemset Counting Inference in Apriori
 - Generators and closed itemsets are identified among frequent itemsets by comparing supports of subsets and super-sets

N. Pasquier Frequent Patterns 29 🗐

Experimental Results: Execution Times

- · Census dataset (UCI Machine Learning Repository) benchmark
- Dense and correlated data:
 - Important execution times
 - Galois Closure usage reduces the number of candidates

Experimental Results: Execution Times

- Synthetic market basket data (Almaden IBM Research Center)
- · Sparse and weakly correlated data:
 - Low execution times
 - Closure computation is inefficient (increase number of operations)

N. Pasquier Frequent Patterns 30

Experimental Results: Execution Times

- Mushrooms dataset (UCI Machine Learning Repository) benchmark: Physiological characters of 8046 mushrooms
- Galois Closure use reduces the number of candidates
- · Lower memory usage than itemset based approaches

Numerical Continuous Variables

- Discretization: Transformation in ordinal values by intervals
 - Ex: Discretize variable Age ∈ [16.60] in 3 intervals of same width Variable values are replaced in the data matrix by the corresponding interval: Age=[16,30], Age=[31,45], Age=[46-60]
- Equal-width discretization: Intervals are defined such that they all have an identical width

Equal-frequency (quantiles): Intervals are defined such that they all correspond to the same number of instances (as far as possible)

N. Pasquier

Frequent Patterns

33

Statistical Measures

- A correlation statistical measure (software dependent) is often computed for each association rule to assess its statistical validity
- · Lift: Statistical correlation between LHS and RHS
 - Lift(R: LHS \rightarrow RHS) = P(LHS \cup RHS) / P(LHS) . P(RHS) \in [0,+ ∞]
 - Lift < 1: negative correlation
 - Lift = 1: independence
 - Lift > 1: Positive correlation
- · Conviction: Takes into account the absence of RHS
 - Lift(R: LHS → RHS) = P(LHS) . P(¬RHS) / P(LHS \cup ¬RHS) ∈ [0,+∞]
 - Conviction < 1: negative correlation
 - Conviction = 1: independence
 - Conviction > 1: Positive correlation
- Both can be used to filter useless rules (i.e., rules with measure ≤ 1)

Hierarchical Discretization

Hierarchical decomposition of intervals (taxonomy)

Variable value intervals

Note: The smallest support value of an item in the dataset defines a constraint (maximal value) on the minsupport threshold value

Frequent Patterns N. Pasquier

References

- [1] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings VLDB international conference, 1994.
- [2] R. J. Bayardo. Efficiently Mining Long Patterns from Databases. Proceedings SIGMOD international conference, 1998.
- [3] D.I. Lin, Z.M. Kedem. Pincer Search: A New Algorithm for Discovering the Maximum Frequent Set. Proceedings EDBT international conference, 1998.
- [4] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Efficient Mining of Association Rules using Closed Itemset Lattices. Information Systems, 24(1):25-46, Elsevier, 1999.
- [5] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal. Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering, 42(2):189-222, Elsevier, 2002
- [6] J. Han, H. Cheng, D. Xin, X. Yan. Frequent Pattern Mining: Current Status and Future Directions. Data Mining and Knowledge Discovery, 15:55-86. 2007.