

► 14th Material Subject: Simple Regression

Undergraduate of Telecommunication Engineering

MUH1F3 - PROBABILITY AND STATISTICS

Telkom University Center of eLearning & Open Education Telkom University Jl. Telekomunikasi No.1, Bandung - Indonesia http://www.telkomuniversity.ac.id

Lecturer: Nor Kumalasari Caecar Pratiwi, S.T., M.T. (caecarnkcp@telkomuniversitv.ac.id)

السلام عليكم ورحمة الله وبركاته WELCOME

TABLE OF CONTENTS:

- 1. Simple Regression Linear
- 2. Properties of the Least Squares Estimators

LEARNING OBJECTIVES:

After careful study of this chapter, student should be able to do the following:

- 1. Use simple linear regression for building empirical models to engineering and scientific data
- 2. Understand how the method of least squares is used to estimate the parameters in a linear regression model

There are many variables x and y that would appear to be related to one another, but not in a deterministic fashion. A familiar example is given by variables x = high school grade point average (GPA) and y = college GPA. The value of y cannot be determined just from knowledge of x, and two different individuals could have the same x value but have very different y values. Yet there is a tendency for those who have high (low) high school GPAs also to have high (low) college GPAs. Knowledge of a students high school GPA should be quite helpful in enabling us to predict how that person will do in college. Other examples x = age of a child and y = size of that child's vocabulary, x = size of an engine (cm³) and y = size of that engine, etc.

Regression analysis is the part of statistics that investigates the relationship between two or more variables related in a nondeterministic fashion. In this chapter, we generalize the deterministic linear relation $\mathbf{y} = \alpha + \beta \mathbf{x}$ to a linear probabilistic relationship, develop procedures for making various inferences based on the model, and obtain a quantitative measure (the correlation coefficient) of the extent to which the two variables are related. The simplest deterministic mathematical relationship between two variables \mathbf{x} and \mathbf{y} is a linear relationship:

$$\mathbf{y} = \alpha + \beta \mathbf{x} \tag{1}$$

The set of pairs (\mathbf{x}, \mathbf{y}) for which determines a straight line with slope β and \mathbf{y} -intercept α . The objective of this section is to develop a linear probabilistic model. For the deterministic model, the actual observed value of \mathbf{y} is a linear function of \mathbf{x} . The appropriate generalization of this to a probabilistic model assumes that the expected value of \mathbf{Y} is a linear function of \mathbf{x} , but that for fixed \mathbf{x} the variable \mathbf{Y} differs from its expected value by a random amount.

There are parameters α , β , and σ^2 , such that for any fixed value of the independent variable \mathbf{x} , the dependent variable is a random variable related to \mathbf{x} through the model equation.

$$\mathbf{Y} = \alpha + \beta \mathbf{x} + \epsilon \tag{2}$$

The quantity ϵ in the model equation is a random variable, assumed to be normally distributed with $\mathbf{E}(\mathbf{x}) = \mathbf{0}$ and $\mathbf{Var}(\mathbf{x}) = \sigma^2$.

Figure 1: Deviations of the data from the estimated regression model

PROPERTIES OF THE LEAST SQUARES

ESTIMATORS

The statistical properties of the least squares estimators $\overline{\alpha}$ and $\overline{\beta}$ may be easily described. Recall that we have assumed that the error term e in the model $\mathbf{Y}=\alpha+\beta\mathbf{x}+\epsilon$ is a random variable with $\mu=\mathbf{0}$ and $\mathbf{Var}=\sigma^2$.

$$\overline{\beta} = \frac{\left(\mathbf{n} \cdot \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Y}_{i}\right) - \left(\sum_{i=1}^{n} \mathbf{X}_{i} \cdot \sum_{i=1}^{n} \mathbf{Y}_{i}\right)}{\left(\mathbf{n} \cdot \sum_{i=1}^{n} \mathbf{X}_{i}^{2}\right) - \left(\sum_{i=1}^{n} \mathbf{X}_{i}\right)^{2}}$$
(3)

While the intercept $\overline{\alpha}$

$$\overline{\alpha} = \overline{\mathbf{Y}} - \overline{\beta}\overline{\mathbf{X}} \tag{4}$$

Correlation Coefficients can be found by:

$$\rho = \frac{\left(\mathbf{n} \cdot \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Y}_{i}\right) - \left(\sum_{i=1}^{n} \mathbf{X}_{i} \cdot \sum_{i=1}^{n} \mathbf{Y}_{i}\right)}{\sqrt{\mathbf{n} \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{2}\right) - \left(\sum_{i=1}^{n} \mathbf{X}_{i}\right)^{2}} \sqrt{\mathbf{n} \left(\sum_{i=1}^{n} \mathbf{Y}_{i}^{2}\right) - \left(\sum_{i=1}^{n} \mathbf{Y}_{i}\right)^{2}}}$$

(5)

LECTURER CODE NK

Average length of study / week (hours)	Mid Exam Score
2	35
3.2	39
6	55
8	80
10	94
3.9	52
8.2	88
6.5	65
9	89
2.6	30
8.5	75
7.5	86
4.5	51

The data is the time spent studying and the Middle Exam score on Probability & Statistics for class A-01. Determine:

- a. The Linear Regression Equation
- b. If a student studies 1.5 hours / week, What is the estimated acquisition score of the Mid Exam
- c. If a student studies for 11 Hours / Week, What is the estimated acquisition score of the Mid Exam d. The correlation coefficient between the variables **X** and **Y**

PROPERTIES OF THE LEAST SQUARES

ESTIMATORS

Answer: Length of study time / week is the variable to be affect the acquisition score of Mid Exam, then the Length of Study is variable **X**. Whereas Mid Exam score is response, variables that are influenced by the Length of Study Time, the Value Mid Exam is the **Y** variable.

	Xi	Yi	$X_i \cdot Y_i$	X _i ²	Y_i^2
	2	35	70	4	1225
	3.2	39	124.8	10.24	1521
	6	55	330	36	3025
	8	80	640	64	6400
	10	94	940	100	8836
	3.9	52	202.8	15.21	2704
	8.2	88	721.6	67.24	7744
	6.5	65	422.5	42.25	4225
	9	89	801	81	7921
	2.6	30	78	6.76	900
	8.5	75	637.5	72.25	5625
	7.5	86	645	56.25	7396
	4.5	51	229.5	20.25	2601
\sum	79.9	839	5842.7	575.5	60123
Rata-Rata	6.15	64.54			

PROPERTIES OF THE LEAST SQUARES

■ ESTIMATORS

a. The Linear Regression Equation

$$\beta = \frac{\left(n \cdot \sum_{i=1}^{n} X_{i} Y_{i}\right) - \left(\sum_{i=1}^{n} X_{i} \cdot \sum_{i=1}^{n} Y_{i}\right)}{\left(n \cdot \sum_{i=1}^{n} X_{i}^{2}\right) - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}$$

$$\beta = \frac{\left(13 \cdot 5842.7\right) - \left(79.9 \cdot 839\right)}{\left(13 \cdot 575.5\right) - \left(79.9\right)^{2}} = \frac{8919}{1096.84} = 8.13$$

$$\alpha = \overline{Y} - b\overline{X}$$

$$\alpha = 64.54 - \left(8.13 \cdot 6.15\right) = 14.56$$

Simple Linear Regression equation becomes:

$$\overline{Y} = 14.56 + 8.13 \, \overline{X}$$

 $\overline{\mathbf{Y}} = \alpha + \beta \overline{\mathbf{X}}$

b. If a student studies 1.5 hours / week, What is the estimated acquisition score of the Mid Exam

$$\overline{X} = 1.5 \, Hours/Week$$

$$\overline{Y} = 14.56 + 8.13 \, \overline{X} = 14.56 + 8.13 \cdot 1.5 = 26.755$$

c. If a student studies for 11 Hours / Week, What is the estimated acquisition score of the Mid Exam

$$\overline{X} = 11 \, Hours / Week$$

$$\overline{Y} = 14.56 + 8.13 \, \overline{X} = 14.56 + 8.13 \cdot 11 = 103.99$$

d. The correlation coefficient between the variables X and Y

$$\begin{split} \rho &= \frac{\left(\mathbf{n} \cdot \sum_{i=1}^{n} X_{i} Y_{i}\right) - \left(\sum_{i=1}^{n} X_{i} \cdot \sum_{i=1}^{n} Y_{i}\right)}{\sqrt{\mathbf{n} \left(\sum_{i=1}^{n} X_{i}^{2}\right) - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{\mathbf{n} \left(\sum_{i=1}^{n} Y_{i}^{2}\right) - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}} \\ \rho &= \frac{\left(13 \cdot 5842.7\right) - \left(79.9 \cdot 839\right)}{\sqrt{13 \left(575.45\right) - \left(79.9\right)^{2}} \sqrt{13 \left(60123\right) - \left(839\right)^{2}}} \\ \rho &= \frac{8919}{\sqrt{1096.84} \cdot \sqrt{77678}} = \frac{8919}{33.12 \cdot 278.7} = \frac{8919}{9230.54} = 0.97 \end{split}$$

13/14 May 10, 2020

Thank You

14/14 May 10, 2020