

Exame de recurso de **Introdução aos Sistemas Electromagnéticos** Eng. Biomédica 2°Ano/1°Semestre

25/02/2011 Duração: 1h

Parte I

s indicadas escolha,

1. Considere duas espiras planas concêntricas e complanares de raios, respectivamente, r_1 e r_2 , percorridas pelas correntes I_1 e I_2 em sentidos contrários. Que relação deve existir entre as correntes para que o campo magnético seia nulo no centro das espiras?

magnetico seja naro no contro das espiras.	
A: É impossível anular o campo no centro	B: $I_1/I_2 = r_2/r_1$
C: $I_1/I_2 = (r_1/r_2)^2$	D: $I_1/I_2 = r_1/r_2$

- **2.** Uma carga $q_1 = 6$ nC encontra-se na origem e uma carga $q_2 = 8$ nC encontra-se na posição 3 cm sobre o eixo dos XX.
- **2.1** A força exercida sobre a carga q_1 é de

A: $\vec{F} = -4.8 \times 10^{-4} \hat{x}$ (N)	B: $\vec{F} = 8.0 \times 10^{-4} \hat{x}$ (N)
C: $\vec{F} = -1.6 \times 10^{-4} \hat{x}$ (N)	D: $\vec{F} = 6.4 \times 10^{-4} \hat{x} (N)$

2.2 O vector campo eléctrico criado pelas cargas na posição 2 cm sobre o eixo dos XX é de:

A: $\vec{E} = -5.85 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$	B: $\vec{E} = 4.95 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$
C: $\vec{E} = 5,42 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$	D: $\vec{E} = -6.75 \times 10^5 \hat{x} \left(\frac{\text{V}}{\text{m}}\right)$

2.3 Onde se deve colocar uma terceira carga de modo a que fique sujeita a uma força eléctrica nula?

	1 1 3 3
A: Na posição 1,50 cm sobre o eixo dos X	B: Na posição 1,00 cm sobre o eixo dos X
C: Na posição 1,58 cm sobre o eixo dos X	D: Na posição 1,39 cm sobre o eixo dos X

3. Um segmento de fio condutor rectilíneo de comprimento L=2~cm percorrido pela corrente i=3~A orientada ao longo da direcção \hat{x} está situado no seio de um campo de indução magnética

|B| = 0.5 T orientado na direcção \hat{z} .

3.1 Qual é a grandeza da força exercida sobre o fio?	
A: $F=12 \text{ mN}$	B: $F=24 \text{ mN}$
$C \cdot F = 30 \text{ mN}$	D: F-18 mN

3.2 Qual é a direcção e sentido da força?

A: $-\hat{x}$	$B:-\hat{y}$
C: 2	D: ŷ

3.3 Em que direcção deve ser orientado o fio para que a força exercida seja nula?

,	Em que unecçuo deve ser orientado o no para que a rorça exercida seja nara.	
	A: \hat{z}	B: não é possível em nenhuma direcção
	$C: -\hat{y}$	D: $-\hat{x}$

Soluções: 1-D; 2.1-A; 2.2-A; 2.3-D; 3.1-C; 3.2-B; 3.3-A