HFT Order Processing Benchmark Report

Shuen Wu

September 25, 2025

1 Environment

The experiments were conducted on the following system:

• **CPU:** Intel i7-12700H (12 cores, 20 threads)

• Memory: 16 GB DDR5

• **OS**: macOS 14.x

• Compiler: clang++ 15.0 with flags: -std=gnu++14 -03 -march=native

2 Methods

We benchmarked two implementations of strategy dispatch:

- Virtual: using an abstract base class with virtual dispatch.
- Non-virtual: direct function calls, allowing inlining.

Orders were generated randomly, and three assignment patterns were tested:

- 1. **Homogeneous**: all orders go to Strategy A.
- 2. **Mixed-random**: each order randomly assigned to A or B.
- 3. Bursty: 64 orders to A, then 16 to B, repeating.

Each experiment used 500,000 orders, repeated 10 times per configuration.

3 Results

Table 1 summarizes the performance results (average \pm standard deviation over 10 runs). Checksums are reported to ensure correctness of execution.

4 Discussion

- **Homogeneous:** Virtual is slower by about 7.7% due to per-call vtable indirection and inability to inline.
- Mixed-random: Performance gap widens (Non-virtual faster by $\sim 20\%$) because branch mispredictions hurt virtual dispatch more.
- Bursty: Both implementations benefit from cache locality and predictable branching; performance gap narrows again.

Overall, the results show that virtual dispatch introduces measurable overhead in high-frequency inner loops.

Table 1: Performance Benchmark Results

Pattern	Impl	Avg ops/sec	Std dev	Checksum
Homogeneous	Virtual	68,697,936.9	1,340,861.3	1.43575×10^{15}
Homogeneous	Non-virtual	$74,\!422,\!535.6$	$4,\!203,\!705.2$	1.43575×10^{15}
Mixed-random	Virtual	$48,\!511,\!179.7$	$826,\!879.2$	2.5077×10^{12}
Mixed-random	Non-virtual	$58,\!598,\!119.6$	766,790.1	2.5077×10^{12}
Bursty	Virtual	$67,\!668,\!381.5$	$1,\!412,\!187.5$	1.43575×10^{15}
Bursty	Non-virtual	75,754,696.0	2,081,404.4	1.43575×10^{15}

Figure 1: Comparison of Virtual vs Non-virtual Performance across patterns. Error bars show standard deviation.

5 Conclusion

For ultra-low latency HFT-style systems:

- Prefer non-virtual dispatch when the set of strategies is fixed and performance is critical.
- Use **virtual** dispatch only when extensibility and dynamic polymorphism outweigh the cost.