17m left

1. Fibonacci Modified

 \mathbb{H}

Implement a *modified* Fibonacci sequence using the following definition:

ALL

Given terms t[i] and t[i+1] where $i\in(1,\infty)$, term t[i+2] is computed as:

$$t_{i+2} = t_i + (t_{i+1})^2$$

<u>(i)</u>

Given three integers, t1, t2, and n, compute and print the n^{th} term of a *modified Fibonacci sequence*.

1 Example

$$t1 = 0$$

$$t2 = 1$$

$$n = 6$$

•
$$t3 = 0 + 1^2 = 1$$

•
$$t4 = 1 + 1^2 = 2$$

•
$$t5 = 1 + 2^2 = 5$$

•
$$t6 = 2 + 5^2 = 27$$

Return 27.

Function Description

Complete the *fibonacciModified* function in the editor below. It must return the $m{n^{th}}$ number in the sequence.

fibonacciModified has the following parameter(s):

- int t1: an integer
- *int t2*: an integer
- *int n*: the iteration to report

Returns

ullet int: the n^{th} number in the sequence

Note: The value of t[n] may far exceed the range of a 64-bit integer. Many submission languages have libraries that can handle such large results but, for those that don't (e.g., C++), you will need to compensate for the size of the result.

Input Format

A single line of three space-separated integers, the values of $\emph{t1}$, $\emph{t2}$, and \emph{n} .

Constraints

• $0 \le t1, t2 \le 2$