THE: Smíšené Nashovo ekvilibrium ve strategických hrách (Mixed Nash Equilibria in Normal-Form Games)

Martin Hrubý

Brno University of Technology Brno Czech Republic

October 16, 2019

Úvod

Čerpáno z:

- ► Fudenberg, D., Tirole, J.: Game Theory, The MIT Press, 1991
- ▶ Osborne, M., Rubinstein, A.: A Course in Game Theory, The MIT Press, 1994

Úvod:

- Strategické hry a základní pojmy. Ryzí (pure) strategie.
- ▶ Best response $BR_i(s_{-i}) \subseteq S_i$, $i \in Q$, $s_{-i} \in S_{-i}$.
- ▶ Ryzí Nashovo ekvilibrium (PNE) $s^* \in S$, žádný hráč nemá $s_i \in S_i$, že $U_i(s_i, s_{-i}^*) > U_i(s^*)$.
- Očekávaný zisk a s ním spojené smíšené chování.

Příklad hry bez PNE: Matching pennies

Každý hráč má penny. Tajně otočí svoje penny na heads/tails (tím volí strategii).

A/B	heads	tails
heads	1,-1	-1,1
tails	-1,1	1,-1

- Jak se zachovají hráči, pokud nemají PNE?
- Co znamená, že neexistuje PNE?
- Budou hráči umět hru hrát? Umíte hrát kámen-nůžky-papír?
- Zopakujme si, že TH je analytický nástroj pro zkoumaní interakcí.
- Hráči hru hrají, rozhodují se, takže musí existovat její matematický model.

Příklad hry bez PNE: Matching pennies

A/B	heads	tails
heads	1,-1	-1,1
tails	-1,1	1,-1

Sledujme řádkového hráče. Ryzí BR jsou jasné.

- Pokud sloupcový hraje $(\frac{1}{2}, \frac{1}{2})$, pak je řádkový indiferentní (ve svých očekáváních) vůči oběma svým strategiím.
- Řádkový může jednorázově hrát cokoliv z (p, 1-p), $p \in \langle 0, 1 \rangle$. Hráči **očekávají** výsledek 0.
- Může řádkový zvýšit svá očekávání výsledku, resp. může pro sebe garantovat lepší výsledek? Pokud řádkový vybočí z rovnovážné strategie na např. (³/₄, ¹/₄), pak se mění sloupcového BR.

Příklad hry bez PNE: Matching pennies

A/B	heads	tails
heads	1,-1	-1,1
tails	-1,1	1,-1

Pokud řádkový vybočí z rovnovážné strategie na např. $(\frac{3}{4}, \frac{1}{4})$, pak se mění sloupcového BR.

$$\pi_s((\frac{3}{4},\frac{1}{4}),\textit{heads}) = -\frac{3}{4} + \frac{1}{4} = -\frac{1}{2}$$

$$\pi_s((\frac{3}{4},\frac{1}{4}),\textit{tails}) = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$
 ... tudíž je sloupcového $BR_s((\frac{3}{4},\frac{1}{4})) = \textit{tails}$. Pak sloupcový hraje tails.

$$\pi_r((\frac{3}{4},\frac{1}{4}),tails) = -\frac{3}{4} + \frac{1}{4} = -\frac{1}{2}$$

Řádkový nezlepšil svá očekávání (ani výsledek), naopak zhoršil z 0
na -0.5 , když vybočil z rovnovážné strategie.

Rozhodování jedince za jistoty

Rozhodnutí v:

volba	а	b	С	d
zisk	10	20	40	40

Hráč je indiferentní mezi c a d, tzn. rozhoduje se náhodně podle pravděpodobnostní distribuce (0, 0, 0.5, 0.5).

Přesto je jisté, že dosáhne výsledku 40.

Očekávání ve hře, očekávaný zisk

Jaké je očekávání zisku při loterii:

volba	а	b	С	d
zisk	10	20	30	1000
pravděpodobnost	0.1	0.2	0.6	0.1

$$\pi = 10 \cdot 0.1 + 20 \cdot 0.2 + 30 \cdot 0.6 + 1000 \cdot 0.1 = 123$$

Očekávání je 123 a to i přesto, že s pravděpodobností 0.9 dostanu něco z $\langle 10, 30 \rangle$.

Kdo vytváří ty pravděpodobnosti? Co když je to protihráč?

Vždy nás zajímá Best-Response

	а	b
С	3,2	1,3
d	-1,4	2,1

$$\pi_1(p,q)=5pq-p-3q+2$$
 , $\pi_2(p,q)=-4pq+2p+3q+1$ Funkce $\pi_1(p,q)$, kde hráč přemýšlí o nejlepším $p\in\langle 0,1\rangle$.

$$BR_1(q = (\frac{1}{10}, \frac{9}{10})) \Rightarrow -0.5p - 0.7 \Rightarrow p := 0$$
, tj. volí d
Problém: $BR_2(d) = \{a\}$, tj. $U_1(d, a) = -1$, tj. uhne do a.

$$BR_1(q=\left(\frac{9}{10},\frac{1}{10}\right))\Rightarrow 3.5p-0.7\Rightarrow p:=1$$

$$BR_1(q=\left(\frac{1}{5},\frac{4}{5}\right))\Rightarrow 5p\cdot 0.2-p-3\cdot 0.2+2=1.4$$
 Zde již BR není závislé na p , tzn. $BR_1(q=0.2)=\Delta_1$. $MNE=\left(\sigma_1^*,\sigma_2^*\right)=\left(\left(\frac{3}{4},\frac{1}{4}\right),\left(\frac{1}{5},\frac{4}{5}\right)\right)$

Výpočet smíšené rovnováhy analyticky

	а	b
С	3,2	1,3
d	-1,4	2,1

p je pravděpodobnost hraní strategie a, tzn. 1-p je prst hraní b. Podobně q.

 π_i je funkce v proměnných p a q, hledáme její extrém podle p, $\frac{\partial \pi_1}{\partial p}$.

$$\pi_1 = 3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q) = 5pq - p - 3q + 2$$
$$\frac{\partial \pi_1}{\partial p} = 5q - 1 \Rightarrow q = \frac{1}{5}$$

$$\pi_2 = 2pq + 3p(1-q) + 4(1-p)q + (1-p)(1-q) = -4pq + 2p + 3q + 1$$
$$\frac{\partial \pi_2}{\partial q} = -4p + 3 \Rightarrow p = \frac{3}{4}$$

Smíšené strategie

Zavedeme pravděpodobnostní rozšíření do strategií, očekávaných zisků a rozhodování.

Definition

Mějme hru Γ. Vektor pravděpodobností $\sigma_i = (\sigma_i^1, \sigma_i^2, ..., \sigma_i^{|S_i|})$ se nazývá smíšená strategie hráče $i \in Q$ ve hře Γ, pokud platí:

- $\sigma_i^j \in \langle 0, 1
 angle$ pro všechna $1 \leq j \leq |S_i|$

Podobně, jako pojem profil, zavádíme i smíšený profil jako vektor smíšených strategií, tedy $\sigma=(\sigma_i)_{i\in Q}$, kde σ_i je smíšená strategie hráče $i\in Q$.

Smíšené strategie

Smíšenou strategii σ_i hráče i interpretujeme jako předpoklad, že hráč i použije svou ryzí strategii $s_j \in S_i$ (zde výjimečně chápejme $S_i = (s_1, s_2, ..., s_{|S_i|})$ jako vektor) s pravděpodobností σ_i^j .

Smíšená strategie je zobecněním ryzí strategie, neboť $\sigma_i = (\sigma_i^1, \sigma_i^2, ...) = (1, 0, ...)$ vyjadřuje ryzí strategii s_i^1 .

Notace: σ je smíšený profil, $s \in S$, $s_i \in S_i$ pro nějaké $i \in Q$

- $ightharpoonup \sigma_i(s_i)$ je pravděpodobnost, že hráč i bude hrát s_i při σ (resp. σ_i)
- $\sigma_i(s)$ je ekvivalentní zápis

Smíšené rozšíření hry v normální formě

Definition

Mějme hru $\Gamma=(Q;\{S_i\}_{i\in Q};\{U_i\}_{i\in Q})$. Hru $\Gamma^m=(Q;\{\Delta_i\}_{i\in Q};\{\pi_i\}_{i\in Q})$ nazveme smíšeným rozšířením hry Γ , pokud $\forall i\in Q$:

▶ Δ_i je množina smíšených strategií hráče i (vektory délky $|S_i|$). $\sigma_i \in \Delta_i$. Číslo $\sigma_i(s_i)$ označuje pravděpodobnost přiřazenou ryzí strategii $s_i \in S_i$ ve strategii σ_i . Celkově $\Delta = \prod_i \Delta_i$.

$$\Delta_i = \left\{ \sigma_i \in \langle 0, 1
angle^{m_i} \mid \sum_{s_i \in S_i} \sigma_i(s_i) = 1
ight\}; m_i = |S_i|$$

Výplatní funkce hráče i

$$\pi_i(\sigma) = \sum_{s \in S} U_i(s) \cdot \left(\prod_{i \in Q} \sigma_i(s_i)\right)$$

Očekávaný zisk (Expected payoff) ve smíšených strategiích

Připomeneme, že v ryzích strategiích při profilu $s \in S$ je očekávaný zisk hráče i dán: $\pi_i(s) = U_i(s)$.

Vektor $\sigma=(\sigma_1,\sigma_2,...,\sigma_N)$ je smíšený strategický profil hráčů ve hře. Pokud hráči i nehrají konkrétní (ryzí) strategii $s_i\in S_i$, pak musí být očekávaný zisk hráče $i\in Q$ v profilu σ dán pravděpodobnostním váhováním přes všechny ryzí profily $s\in S$.

$$\pi_i(\sigma) = \sum_{s \in S} pmix(s, \sigma) \cdot U_i(s)$$

kde $pmix(s,\sigma)$ je pravděpodobnost profilu $s\in S$ při smíšené strategii σ :

$$pmix(s, \sigma) = \prod_{i \in Q} \sigma_i(s_i)$$

Smíšené rozšíření hry v normální formě

Připomeňme definici smíšeného Nashova ekvilibria (MNE):

Definition

Smíšený profil $\sigma^* \in \Delta$ je ekvilibrium ve hře Γ^m , pokud platí pro všechny $i \in Q$:

$$\sigma_i^* \in BR_i(\sigma_{-i}^*)$$

$$BR_i(\sigma_{-i}) = arg \left[\max_{\sigma_i \in \Delta_i} \pi_i(\sigma_i, \sigma_{-i}) \right]$$

Pozn.: Předpokládáme, že výsledkem operace $BR_i(\sigma_{-i})$ je podmnožina Δ_i . Množina Δ_i má jiný charakter než S_i ! Z toho plyne.: hráč i je v kontextu sub-profilu σ_{-i} indiferentní mezi všemi $\sigma_i \in BR_i(\sigma_{-i})$.

Otázka: Jak je velká množina $BR_i(\sigma_{-i})$?

Expected payoff: příklad

Pedro/Juana	Box	Balet
Box	3,1	0,0
Balet	0,0	1,3

$$\sigma^* = \left(\left(\frac{3}{4}, \frac{1}{4} \right), \left(\frac{1}{4}, \frac{3}{4} \right) \right)$$

Pedro/Juana	Box	Balet
Вох	$\frac{3}{16}$	$\frac{9}{16}$
Balet	$\frac{1}{16}$	3 16

$$\frac{3}{16} + \frac{9}{16} + \frac{1}{16} + \frac{3}{16} = \frac{16}{16} = 1$$

$$\pi_{Pedro}(\sigma^*) = 3 \cdot \frac{3}{16} + 1 \cdot \frac{3}{16} = \frac{12}{16}$$

Expected payoff: příklad

Pedro/Juana	Box	Balet
Box	3,1	0,0
Balet	0,0	1,3

$$\begin{split} \sigma^* &= \left(\left(\frac{3}{4}, \frac{1}{4} \right), \left(\frac{1}{4}, \frac{3}{4} \right) \right) \\ \pi_{Pedro}(\textit{Box}, \sigma^*_{-i}) &= 3 \cdot \frac{1}{4} = 1 \cdot \frac{3}{4} = \pi_{Pedro}(\textit{Balet}, \sigma^*_{-i}) \end{split}$$

V MNE σ^* bude platit, že je hráč indiferentní vůči všem svým ryzím strategiím, kterým jeho smíšená strategie σ_i^* přiřazuje nenulovou pravděpodobnost.

NE ve smíšených strategiích – MNE (Mixed Nash Equilibrium)

Fakticky stejná definice jako pro PNE, ovšem se zavedením expected payoff (pouze zobecnění).

Definition

Mějme hru $\Gamma = (Q; \{S_i\}_{i \in Q}; \{U_i\}_{i \in Q})$. Smíšený profil $\sigma^* \in \Delta$ nazveme smíšené Nashovo ekvilibrium ve hře Γ , pokud platí pro všechny hráče $i \in Q$ a všechny možné smíšené profily $\sigma \in \Delta$:

$$\pi_i(\sigma^*) \geq \pi_i(\sigma_i, \sigma_{-i}^*)$$

Smíšené ekvilibrium: příklad

A/B	L	R
Т	1,3	2,1
В	2,1	1,4

$$\sigma^* = \left(\left(\frac{3}{5}, \frac{2}{5} \right), \left(\frac{1}{2}, \frac{1}{2} \right) \right)$$
 $\pi_A(\sigma^*) = 1.5$

$$\sigma = \left(\left(1, 0 \right), \left(\frac{1}{2}, \frac{1}{2} \right) \right)$$

 $\pi_A(\sigma)=1.5$. Tj., řádkový může hrát stále T, pak ovšem poruší rovnováhu.

Při σ by B hrál něco jiného.

Pochopení smíšených strategií

$$BR_i(\sigma_{-i}) = arg \max_{\sigma_i \in \Delta_i} [\pi_i(\sigma_i, \sigma_{-i})]$$

Smíšená strategie σ_i^* hráče i je nejlepší odpovědí na smíšený subprofil σ_{-i}^* právě tehdy, když každá z ryzích strategií, kterým σ_i^* přiřazuje nenulovou pravděpodobnost, je nejlepší odpovědí na σ_{-i}^* .

Ověřit na příkladech.

Hráč i je proto při hraní σ_i^* v situaci σ_{-i}^* indiferentní vůči všem ryzím strategiím s nenulovou pravděpodobností (jsou pro něj všechny stejně dobré).

To znamená, že pokud by byly dvě jeho ryzí strategie $s_1^i, s_2^i \in S_i$ s nenulovou pravděpodobností v rámci σ_i^* takové, že by $\pi_i(s_1^i,\sigma_{-i}^*)>\pi_i(s_2^i,\sigma_{-i}^*)$, pak by σ^* nebylo ekvilibrium.

Pochopení smíšených strategií

	а	b
С	3,2	1,3
d	-1,4	2,1
е	4,1	-2,5

e je $BR_1(a)$, přesto se neúčastní MNE; c není BR, ale v MNE je

c do MNE zanáší sloupcový hráč, neboť na něj má vázáno b jako BR

$$\textit{MNE} = (\sigma_1^*, \sigma_2^*) = \left(\left(\tfrac{3}{4}, \tfrac{1}{4}, 0 \right), \left(\tfrac{1}{5}, \tfrac{4}{5} \right) \right)$$

Věta o existenci Nashova ekvilibria

Theorem

Každá konečná hra má vždy alespoň jeden rovnovážný bod ve smíšených strategiích.

John Nash, 1951

Tento závěr publikoval John Nash ve své práci (*Non-Cooperative Games*, The Annals of Mathematics 54(2)). Ukázal tak koncept ekvilibria ve hrách s nenulovým součtem a současně dokázal, že každá hra má nějaké řešení.

Důkaz si předvedeme ve 4. přednášce.

Věta o existenci Nashova ekvilibria

Co znamená Nashova věta?

- Konečná hra = množiny strategií hráčů jsou konečné.
- Víme, že konečná hra má vždy řešení. Zůstává ještě problém ho najít.
- ▶ Máme-li bi-maticovou hru $n \times n$, pak má tato hra až 2^{n-1} NE.
- více: Quint, T., Shubik, M.: A theorem on the number of Nash equilibria in a bimatrix game, International Journal of Game Theory, Volume 26, Number 3 / October, 1997

Theorem

Každá konečná hra má lichý počet Nashových ekvilibrií.

Výpočet Nashova ekvilibria ve smíšených strategiích (MNE)

- Analýza strategických her ve smíšených strategiích je stále algoritmicky obtížně řešitelný problém.
- Výpočet MNE je ve složitostní třídě NP (v rámci výzkumu algoritmizace výpočtu MNE byla zavedena specifická třída PPAD ⊂ NP (Ch. Papadimitriou) a byly publikovány důkazy o příslušnosti výpočtu MNE v N-hráčových maticových hrách k PPAD pro jistá N zatím ne obecně). Obecně proto přířazujeme výpočet MNE k NP složitosti.
- Předvedeme obecný předpis pro řešení dvouhráčových her a v pozdějších přednáškách další složitější algoritmy.

Výpočet řešení pro Matching pennies

A/B	heads	tails	
heads	1,-1	-1,1	р
tails	-1,1	1,-1	1 - p
	q	1-q	

p,q jsou pravděpodobnosti strategie "heads", 1-p (resp. 1-q) jsou pravděpodobnosti "tails".

Očekávané výplaty:

$$\pi_1(p,q) = 1pq - 1p(1-q) - 1(1-p)q + 1(1-p)(1-q)$$

$$\pi_2(p,q) = -pq + 1p(1-q) + 1(1-p)q - 1(1-p)(1-q)$$

$$\pi_1(p,q) = 4pq - 2p - 2q + 1$$

$$\pi_2(p,q) = -4pq + 2p + 2q - 1$$

Výpočet řešení pro Matching pennies

$$\pi_1(p,q) = 4pq - 2p - 2q + 1$$

$$\pi_2(p,q) = -4pq + 2p + 2q - 1$$

$$\frac{\partial \pi_1}{\partial p} = 4q - 2 = 0 \Rightarrow 4q = 2 \Rightarrow q = \frac{1}{2}$$

$$\frac{\partial \pi_2}{\partial q} = -4p + 2 = 0 \Rightarrow -4p = -2 \Rightarrow p = \frac{1}{2}$$

Hra má jediné řešení ve formě Nashova ekvilibria ve smíšených strategiích. Je to

$$\mathfrak{s}^* = \left(\left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right) \right)$$

Obecný předpis pro analytický výpočet MNE

Uvažujme hru dvou hráčů s množinami ryzích strategií S_1, S_2 a pravděpodobnostní proměnné $p_1, p_2, ..., p_{m-1}$ a $q_1, q_2, ..., q_{n-1}$, kde $m = |S_1|, n = |S_2|$.

Odvodíme funkce pro očekávané výplaty $\pi_1(p_1, p_2, ..., p_{m-1}), \pi_2(q_1, q_2, ..., q_{n-1}).$

Řešíme soustavu lineárních rovnic:

$$\frac{\partial \pi_1}{\partial p_i} = 0; 1 \le i \le m - 1$$

$$\frac{\partial \pi_2}{\partial q_i} = 0; 1 \le j \le n - 1$$

Každé řešení této soustavy s $p_i \geq 0, q_j \geq 0$ splňující $\sum_i p_i \leq 1$, $\sum_j q_j \leq 1$ je rovnovážný bod zadané hry.

Grafické řešení her

- Kreslí se "reakční křivky" průběh BR na nějakou strategii.
- Jejich průsečík je ekvilibrium.

Grafické řešení her

Zavedeme nejdříve hru bez PNE (Colonel Blotto Game, defender/invader, Mountain/Plains).

D/I	М	Р
М	1,-1	-1,1
Р	-1,1	1,-1

Nechť $\sigma_1=\sigma_1(M)$ je pravděpodobnost, že obránce bude střežit hory, resp. $\sigma_2=\sigma_2(M)$ útočník napadne obránce přes hory. Očekávané užitky hráčů:

$$\pi_1(M, \sigma_2) = \sigma_2 - (1 - \sigma_2) = 2\sigma_2 - 1$$

$$\pi_1(P, \sigma_2) = -\sigma_2 + (1 - \sigma_2) = 1 - 2\sigma_2$$

$$\pi_2(\sigma_1, M) = -\sigma_1 + (1 - \sigma_1) = 1 - 2\sigma_1$$

$$\pi_2(\sigma_1, P) = \sigma_1 - (1 - \sigma_1) = 2\sigma_1 - 1$$

Konstrukce reakčních křivek

$$\pi_1(M, \sigma_2) = \sigma_2 - (1 - \sigma_2) = 2\sigma_2 - 1$$

 $\pi_1(P, \sigma_2) = -\sigma_2 + (1 - \sigma_2) = 1 - 2\sigma_2$

$$BR_1(\sigma_2) = egin{cases} M & \sigma_2 > rac{1}{2} \ P & \sigma_2 < rac{1}{2} \ \{M, P\} & \sigma_2 = rac{1}{2} \end{cases}$$

V situaci, kdy $\sigma_2=\frac{1}{2}$ je naprosto řádkový hráč indiferentní mezi $\{M,P\}$. Z toho plyne, že

$$BR_1(\sigma_2) = \Delta_1$$

Konstrukce reakčních křivek, sloupcový hráč

$$\pi_2(\sigma_1, M) = -\sigma_1 + (1 - \sigma_1) = 1 - 2\sigma_1$$
 $\pi_2(\sigma_1, P) = \sigma_1 - (1 - \sigma_1) = 2\sigma_1 - 1$
 $BR_2(\sigma_1) = \begin{cases} M & \sigma_1 < \frac{1}{2} \\ P & \sigma_1 > \frac{1}{2} \\ \{M, P\} & \sigma_1 = \frac{1}{2} \end{cases}$

Grafické nalezení ekvilibria, Colonel's game

Grafické nalezení ekvilibria, PNEs+MNEs

FBI/CIA	King	Obyc
King	2,2	0,1
Obyc	1,0	1,1

Grafické nalezení ekvilibria, PNEs+MNEs

Smíšená strategie je především reakce na preference protivníka (paradox). Mohli bychom si myslet, že v modifikované hře změní CIA své chování.

FBI/CIA	King	Obyc
King	2,4	0,1
Obyc	1,0	1,1

$$\sigma_1 = BR_1(\sigma_2) = egin{cases} K & \sigma_2 > rac{1}{2} \ O & \sigma_2 < rac{1}{2} \ [0,1] & \sigma_2 = rac{1}{2} \end{cases} \quad \sigma_2 = BR_2(\sigma_1) = egin{cases} K & \sigma_1 > rac{1}{4} \ O & \sigma_1 < rac{1}{4} \ [0,1] & \sigma_1 = rac{1}{4} \end{cases}$$

Grafické nalezení ekvilibria, PNEs+MNEs

FBI/CIA	King	Obyc
King	2,4	0,1
Obyc	1,0	1,1

 $MNE = ((\frac{1}{4}, \frac{3}{4}), (\frac{1}{2}, \frac{1}{2}))$

Algoritmické řešení konečných her

Definition

Mějme hru $\Gamma = (Q; \{S_i\}_{i \in Q}; \{U_i\}_{i \in Q})$. Support $supp(\sigma_i)$ je množina ryzích strategií $s_i \in S_i$ hráče i, kterým smíšená strategie σ_i přiřazuje nenulovou pravděpodobnost $\sigma_i(s_i) \in \langle 0, 1 \rangle$. Tzn.,

$$supp(\sigma_i) = \{s_i \in S_i | \sigma_i(s_i) > 0\}$$

Množina všech supportů hráče i je rovna $Supp_i=2^{S_i}\setminus\{\emptyset\}$, tzn. je jich $|2^{S_i}|-1$ mnoho.

Základní přístup (silou)

Předpokládejme smíšený sub-profil Δ_{-i} . Je-li $\sigma_i \in BR_i(\Delta_{-i})$, pak je hráč i indiferentní vůči všem ryzím strategiím $supp(\sigma_i)$, tzn.

$$\forall s_i, s_j \in supp(\sigma_i) : \pi_i(s_i, \Delta_{-i}) = \pi_i(s_j, \Delta_{-i})$$

Současně musí platit

$$\sum_{s_i \in supp(\sigma_i)} \sigma_i(s_i) = 1$$

To je počátek pro sestavení soustavy rovnic (lineárních pro dvou-hráčové hry).

Základní předpoklad pro následující algoritmus

Definition

Dvouhráčová hra je tak zvaně nedegenerovaná, pokud žádná smíšená strategie se supportem velikosti k nemá více než k ryzích best-response (pozor! nezkoumáme počet smíšených BR).

Tuto vlastnost snadno poznáme: pokud má hra na ryzí strategii jednoho hráče dvě (a více) ryzích best-response protihráče, je degenerovaná.

Plyne z toho: Kterékoliv Nash ekvilibrium (s_1^*, s_2^*) nedegenerované dvouhráčové hry má supporty stejné délky.

Pro další studium doporučuji: Nisan et al.: Algorithmic Game Theory (link na stránce THE), specificky kapitolu: *Bernhard von Stengel: Equilibrium Computation for Two-Player Games in Strategic and Extensive Form*

Ukázka degenerované hry (příklad od P. Zemka)

	а	b
С	3,3	3,3
d	1,2	2,0

Hra je degenerovaná, neboť na ryzí strategii c má sloupcový hráč best-response $\{a,b\}$.

Navíc vidíme, že hru lze redukovat na |3,3,3|, kde řádkový hráč volí svou jedinou strategii, ale sloupcový je naprosto indiferentní mezi a a b tak, že jeho $BR_2(c)=\Delta_2$, to znamená, že množina MNE je nekonečná.

Závěr: opět vidíme, že TH nám nedává jednoznačnou odpověď *co se ve hře stane*, ale ukazuje nám, že řádkový hráč má striktně dominantní strategii *c* a sloupcovému je za této situace naprosto jedno, co bude hrát (nezáleží na tom ani řádkovému).

Výpočet smíšené rovnováhy II.

	а	b
U	3,2	1,3
d	-1,4	2,1

Vycházíme z poznání indiference mezi a a b při hraní smíšené (p,1-p) versus smíšené (q,1-q).

Pak pro řádkového hráče vychází užitek:

$$U_1(c,a) \cdot q + U_1(c,b) \cdot (1-q) = U_1(d,a) \cdot q + U_1(d,b) \cdot (1-q)$$

 $3q + 1(1-q) = -1q + 2(1-q)$
 $3q = -q + (1-q)$
 $q = \frac{1}{5}$

Podobně sloupcový:
$$2p + 4(1-p) = 3p + (1-p) \Rightarrow p = \frac{3}{4}$$

Základní přístup (silou) – algoritmus, 2 hráči

Algoritmus je určen pro výpočet všech MNE v dvouhráčových nedegenerovaných hrách. V případě degenerované hry některá ekvilibria neodhalí. V případě více-hráčové hry se změní lineární rovnice na nelineární, které nejspíš nikdo nechce řešit.

Vstup: Hra
$$\Gamma = (Q; \{S_i\}_{i \in Q}; \{U_i\}_{i \in Q})$$
, matice A , resp. B vyjadřující U_1 , resp. U_2 , $m = |S_1|$, $n = |S_2|$.

Výstup: Množina MNE, tzn.

$$MNEs = \{\sigma^* \in \Delta | \sigma_i^* \in BR_i(\sigma_{-i}^*); \forall i \in Q\}$$

Nechť
$$K = \{1, 2, ..., min(m, n)\}$$

Základní přístup (silou) – algoritmus, 2 hráči

Algoritmus:

- 1. $\forall k \in K$:
- 2. $\forall I \subseteq S_1, |I| = k$:
- 3. $\forall J \subseteq S_2, |J| = k$:
- 4. Řeš následující soustavu rovnic. Pokud má řešení, pak smíšený profil (x,y) zařaď mezi výsledky. Složky mimo I,J jsou nulové, tzn. $\forall z \in S_1 \setminus I : x_z = 0, \ \forall z \in S_2 \setminus J : y_z = 0$

Soustava obecně:

$$\sum_{i \in I} x_i b_{ij} = v; \forall j \in J \qquad \qquad \sum_{i \in I} x_i = 1$$

$$\sum_{j \in J} a_{ij} y_j = u; \forall i \in I \qquad \qquad \sum_{j \in J} y_j = 1$$

Příklad: Matching pennies

A/B	heads	tails
heads	1,-1	-1,1
tails	-1,1	1,-1

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
; $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$; $K = \{1, 2\}$

Řešení pro k=1 zavrhujeme rovnou, protože v ryzích strategiích neočekáváme výsledek (víme, že tam není). Strategie heads a tails si přejmenujeme na 1 a 2.

Soustava pro $k = 2, I = \{1, 2\}, J = \{1, 2\}$

$$-x_1 + x_2 = u$$
 $y_1 - y_2 = v$
 $x_1 - x_2 = u$ $-y_1 + y_2 = v$
 $x_1 + x_2 = 1$ $y_1 + y_2 = 1$

Z toho plyne:

$$-x_1 + x_2 = x_1 - x_2$$

$$-2x_1 + 2x_2 = 0$$

$$-2(1 - x_2) + 2x_2 = 0$$

$$-2 + 2x_2 + 2x_2 = 0$$

$$4x_2 = 2$$

$$x_2 = \frac{1}{2}$$

$$x_1 = \frac{1}{2}$$

$$y_2 = \frac{1}{2}$$

$$y_1 = \frac{1}{2}$$

Profil $((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}))$ patří mezi řešení PNEs.

Algoritmická složitost řešení "silou"

- lacktriangle Pro každé $k\in K$ řešíme $\Pi_{i\in Q}inom{|S_i|}{k}$ soustav
- ▶ Pro všechna k je to $\sum_{k \in K} \prod_{i \in Q} {|S_i| \choose k}$ soustav
- U dvouhráčových her jsou to soustavy lineárních rovnic,
- u vícehráčových her pak soustavy nelineárních rovnic (poněkud obtížné).
- Výpočet Nashova equilibria je ve složitostní třídě PPAD (2 a více hráčů)

Více: Daskalakis, C., Goldberg, P.W., Papadimitriou, Ch.: *The Complexity of Computing a Nash Equilibrium*, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing

Algoritmy pro MNE

Hledáme algoritmy, které by řešily MNE efektivněji, tzn. převádí problém výpočtu MNE na jiný ekvivalentní problém, který řeší efektivněji.

- ► Lemke-Howsonův algoritmus pouze pro dvouhráčové hry, pouze jedno ekvilibrium
- Experimenty s genetickými algoritmy.

Simulační (numerické) řešení her

Chceme modelovat konkrétní strategickou situaci.

- Počítačová simulace, numerická metoda.
- Modelujeme fakt, že existuje N hráčů.
- ▶ Modelujeme fakt, že hráči mají množiny strategií S_i.

Jak ovšem vyjádřit užitkové funkce $U_i:S o \mathbb{U}$

- 1. Funkce (zadané analyticky nebo maticí) považujeme za vstup. Někdo nám je dá. Dále hru jenom analyzujeme.
- 2. Funkce nejsou vstupem. Jsme ovšem schopni sestavit *vnitřní model*, který vyhodnotí pro každý profil $s \in S$, co by se stalo, kdyby hráči hráli strategie s_i . Výsledkem tohoto *experimentu s vnitřním modelem* by byl vektor užitků hráčů $(u_i)_{i \in Q}$.

Simulační řešení her

Pak je kompletní model dán fázemi:

- 1. Modelování struktury hry kdo jsou hráči, jaké mají strategie, co ví o hře, ...
- 2. Tvorbou vnitřního modelu hry $cm: S \to \mathbb{U}^N$.
- 3. Implementací analytických funkcí dle teorie her.

Mějme pak program:

```
for s in S:
    U[s] := cm(s);
eq := nashEq(S,U);
```

Příště, kam to směřuje

- Prostudujeme hry s nulovým součtem
- Zavedeme metody lineárního programování (matematický základ her)
- Projdeme algoritmy výpočtu MNE v hrách dvou hráčů, obecný základ
- Projdeme Nashův důkaz existence ekvilibria
- Dále pak: opakování ve hře, kooperativnost, vyjednávání, aukce, volby, ...