

Introduction to Risk Analysis and Risk Assessment Frameworks

Joan B. Rose, Ph.D. rosejo@msu.edu

The definition chance*hazard*exposure*consequence

• Risk is the likelihood of identified hazards causing harm in exposed populations in a specified time frame including the severity of the consequences.

The National Academy of Sciences "Red Book" Approach

 More recent guidance stresses involving "interested and affected parties" throughout process (NRC 1996)

Definitions used in risk analysis

Risk assessment	The qualitative or quantitative characterization and estimation of potential adverse health effects associated with exposure of individuals or populations to hazards (materials or situations, physical, chemical and or microbial agents.)
Risk management	The process for controlling risks, weighing alternatives, selecting appropriate action, taking into account risk assessment, values, engineering, economics, legal and political issues.
Risk communication	The communication of risks to managers, stakeholders, public officials, and the public, includes public perception and ability to exchange scientific information.

Risk assessment is a method to examine qualitatively or quantitatively the potential for harm from exposure to contaminants or specific hazards.

• Monitoring and data are some of the keys to establishing risks and therefore safety goals.

Quantitative Risk Assessment

- ☐ Tool used to estimate adverse health effects associated with specific hazards.
- ☐ Elicits a statistical estimate or probability of harm.
- ☐ Used for risk management decisions.
- □ Frame work for science-based assessment.

RISK Communication

- Messages/information.
- Who is providing the information?
- Who are the stakeholders?
- What format (s) are best?
- What education need is tied to the science?
- What are the choices associated with the risk?
- What will various stakeholders do with the information?
- Are the risks distributed equitably?

RISK Management

- Approaches for addressing control of the risk.
- Requires assessment and also choices of what people value and how they judge risks.
- Must decide what is the safety goal
- [judgment; ethics].
- Costs, feasibility, implementation important.
- Controls can be based on engineering approaches.
- Controls may be institutional; based on policies to limit exposures.
- Controls may be preventative.

RISK ISSUES

Acceptable risk (de minimis risk): EPA has suggested that 1/10,000 infection annually is an appropriate level of safety for drinking water.

- •What is acceptable for recreation? (1/500, single swimming event).
- Benefit and Cost: Cost for water treatment to reduce cost of disease (health care costs, productivity time lost and suffering)

NATIONAL ACADEMY OF SCIENCES RISK ASSESSMENT PARADIGM

MHAZARD IDENTIFICATION

Types of microorganisms and disease end-points

XDOSE-RESPONSE

Human feeding studies, clinical studies, less virulent microbes and health adults

EXPOSURE

Monitoring data, indicators and modeling used to address exposure

RISK CHARACTERIZATION

Magnitude of the risk, uncertainty and variability

ANALYSIS PHASE

Exposure Analysis

Pathogen
Occurrence
(detection/survival
and spread)

Exposure Profile

Health Effects

Disease

Severity

Secondary spread

Dose-Response

Host Pathogen Profile

Problem formulation

- Interaction risk manager risk assessor
- Define the purpose of the QMRA
- Define the breadth of the QMRA
- Explore the context of the QMRA
- Develop a conceptual model
 - Route(s) of exposure for QMRA
 - System under evaluation
 - Pathogens (characteristics)
 - Exposed population; immunity
 - Health outcome
 - Data needs
 - Preliminary, exploratory assessment

Incorporate control alternatives (optional)

Analysis - Exposure assessment

- Pathogen characterization (relevant for exposure)
 - Die-off rate
 - Removal rate
 - Inactivation rate
 - Growth rates
- Pathogen occurrence
 - Frequency,
 - Concentrations,
 - Seasonality
 - Methodological issues

Pathogen behavior
in system
 Removal/inactiva
tion
 System
variability

Analysis - Exposure assessment 2

- Exposure analysis
 - Calculation of pathogen concentration in matrix
 - Consumption data
 - Combination of all information into exposure data
 - Include variability (ranges, probabilistic)
 - Include uncertainty analysis
 - Include sensitivity analysis

Analysis – Effect assessment

- Host characterization
 - Age, pregnancy, immune-status, nutritional status etc.

- Human health effects
 - Duration
 - Severity (morbidity, mortality, sequellae)
 - Secondary transmission

Dose response

- Human (or animal) dose-response data
- Type of response: infection, morbidity, mortality,
- Inoculum used (type, preparation, administration)
- Study population characteristics
- Strain variation
- Statistical model

Risk characterization

- Risk characterization
 - Combine data from exposure assessment and effect assessment into characterization of risk
 - Include variability (probabilistic)
 - Discuss assumptions: include sensitivity analysis

- Discuss how outcome answers problem formulation
- (Compare control scenario's)

Identify data needs/improvements

Water Quality Standards

- Set permissible levels of contamination (MCL)
- 2. Establish monitoring program, sample frequency, and sampling sites.
- 3. Standardize methodology, selectivity, sensitivity, accuracy and precision.

Performance Criteria

- Specify the performance, treatment efficiency, and desirable end points.
- 2. Define the types of treatment.
- 3. Compliance monitoring, verification and reliability.

The Safe Drinking Water Act of 1974--Roles

- Federal = standard setting, research and oversight of states
- States = could adopt primacy for implementation/enforcement.
- Local = must monitor and comply (responsible for capital and O & M cost)

Safe Drinking Water Act 1986 – Congressional concern over the rate of regulation

- Oversight hearings began in 1982.
- Increasing reports of organic contamination
- Concern for uncorrected violations
- Red Book for Risk Assessment and it's role in policy produced by the NAS.

SDWA 1986 -- Implementation

- EPA was required to regulated 83 contaminants by '89
- Filtration and disinfection were required
- Monitoring for unregulated contaminants
- Lead ban Corrosion Control Rule
- Ground Water Protection Programs

U.S. EPA Surface Water Treatment Rule 1988

Identified *Giardia*, Viruses and *Legionella* for control using performance criteria.

- 1/10,000 risk identified in the preamble
- Cryptosporidium identified in the preamble
- QMRA used for Giardia
- Required 99.9% reduction of *Giaridia* and 99.99% for Viruses
- BMP filtration (turbidity)
- Disinfection: CT concept required for Viruses, Bacteria and Viruses. (However, DBP influencing this).

Comparative Risks

Microorganisms in Water

Chemicals in water

Acceptable risks:	10 ⁻⁴ Annual	10 ^{−6} Life-time
Exposures:	Intermittent acute	Continual chronic
Types of agents:	Hundreds of different pathogens	Less than 50
End points:	Infections, death (YLL), disease (acute +chronic), secondary spread	Death (YLL) Disease
Extrapolations:	Equal susceptibility	Animal dose- response data
Uncertainty:	Use of safety factors Upper 95% confidence limits	

SDWA 1986 -- Concerns

- High rate of non-compliance in small systems
- Funding shortages
- Deficiencies uncorrected
- 1991 outbreak of Cryptosporidiosis in Milwaukee

SDWA 1996 – Changes and new programs

- Still required 83 standards
- Eliminated 25 new regulations every 3 years
- Revised process for listing contaminants
 Contaminant Candidate List CCL
- Required cost-benefit analysis
- National occurrence data base
- Created state revolving loan fund
- Required consumer confidence reports

CLEAN WATER ACT: Health Data Associated with Swimming in Polluted Waters

- Disease endpoints: Respiratory, gastrointestinal, ear, eye, nose and skin infections.
- England: respiratory most common, 24% had one symptom.
- Santa Monica Bay, CA: gastrointestinal, 3.7%, associated with storm drains.
- Key West, FL: gastrointestinal most common, 33% associated with leaky sewer, liveaboards.

Meta Analysis Jack Colford

- Recreational Epidemiological Studies
- Enterococci demonstrated the best statistical association in Marine Waters and was a good statistical fit in Fresh Waters
- E.coli was the best indicator of risk in Fresh Waters
- Coliphage and Enteric virus showed some relationship, however only a few studies.

Risk Matrix

Current Regulatory Climate

- Major advances have been made in pollution control in the last 60 years.
- Further gains will require increasingly discriminating assessment and control of risks.
- Costs of the controls increase as high risks are controlled and attempts are made to control marginal risks
- Methods are now available to measure small levels of contaminants in the environment.
- Still need a framework for application of QMRA for microbials within EPA.

Four Step Risk Assessment

- Hazard Identification To describe acute and chronic human health effects; sensitive populations, immunology need to be understood.
- Dose-Response To characterize the relationship between various doses administered and subsequent health effects; have human data sets but lacking appropriate animal models to increase assessment.
- Exposure Assessment To determine the size and nature of the population exposed and the route, amount, and duration of exposure. Temporal and spatial exposure with changes in microbial populations a concern.
- Risk Characterization To integrate the information from exposure, dose response, and health steps to estimate magnitude of health risks. Monte Carlo analysis to give distribution of risks and population/community models needed.

Tools & Data needs for microbial risk assessment

- Disease surveillance
- Clinical studies
- Epidemiological studies
- Methods for detection of microbials
- Transport models
- Regrowth and die-off models
- Development of occurrence data bases
- Dose-response models

Human health effects

- Microbial virulence and pathogenicity factors
- Symptomatic and symptomatic infection
- Severity (duration, medical care & hospitalization)
- Mortality
- Host immune status (role in outcome)
- Susceptible populations

Populations at Greatest Risk

Infants

Aged

Pregnancy (fetal and neonate)

Immunocompromized

Dose response issues

- Human data sets (healthy volunteers)
- Vaccine strains or less virulent organisms
- Low doses often not evaluated
- Doses measured with mainly cultivation methods for bacteria and viruses (CFU; PFU) for parasites counted under the microscope.
- Response: excretion in the feces, antibody response and sometimes illness.
- Human subjects concerns for filling in data gaps

Exposure Assessment and Risk Characterization

Exposure and levels of contamination the most important aspect for providing input to risk characterization.

- ➤ Need better monitoring data, better transport models.
- ➤ Will need new methods, QPCR, for better assessment of non-cultivatible but important viruses and bacteria.
- Essential for Good Risk Management Decisions

Occurrence Analysis for the Exposure process

- Concentrations
- Frequency
- Spatial and Temporal Variations
- Regrowth and Die-off
- Transport

New Microbiological Methods to inform Risk Assessment during Exposure Assessment

- Alternative Indicators
- Pathogen Monitoring
- Source Tracking

Watershed assessment, Flow, Transport, Integration with water quality and thus exposure.

Overland

In-Stream

Near-Shore

Sub-Surface

Linking probability of infection to population models

Interaction between Disease Transmission and the Environment

Applications for Microbial Risk Assessment

- Establish policies for protection of health using standards or performance based criteria
- Compare risks
- Evaluate alternative solutions
- Prioritize risks
- Identify scientific data gaps
- Develop protocols for monitoring

Treatment vs. Influent: Endemic Risk

HACCP

- Hazards (Haz ID).
- Critical points of contamination (part of the exposure pathway; product end point but chain from source and raw materials through to finished product).
- Controls; Processes to achieve safety.
- Critical Control Points (monitoring) assurance monitoring.

Challenges Water Safety Plans WHO

- Acceptable risk (Burden of disease)
- Definition (infection) Acceptable/Tolerable Limit; Water Quality Goals for ambient waters.
- Endpoints: Number of pathogens
- Critical control points: Identify areas for control and monitoring Efficiency.
- Treatment & Disinfection Needs

ADVANCING MICROBIAL RISK ASSESSMENT

The Hazard

The Exposure

The Dose-response

The Disease Dynamics

Social, Economic, Legal and Political Context

RISK MANAGEMENT

Target must be defined DALY, 10⁻⁴, BAT reduction targets, will include motivational Factors.

MUST UNDERSTAND ASPIRATIONS

RISK CHARACTERIZATION RISK ASSESSMENT

Current status
Disease burdens, Pathogen Monitoring or assessment, Know the source

RISK COMMUNICATION

Choice issues Equity Education Thank You QUESTIONS?

