WHAT IS CLAIMED IS:

1. A compound of the formula

$$R^2$$
 R^3
 R^4
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1

wherein:

15

20

5 n is an integer selected from 0, 1, and 2;

A is R⁵O-, monosubstituted amino, or disubstituted amino;

A' is R5'O-, monosubstituted amino, or disubstituted amino;

R¹ is hydrogen or C₁-C₆ alkyl;

R² is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₄ alkoxy, C₁-C₄

alkylthio, halo, haloalkyl, cyano, formyl, alkylcarbonyl, alkoxycarbonyl, or a substituent selected from the group consisting of -CO₂R⁸, -CONR⁸R⁸, and -NR⁸(COR⁹);

R³ is a structure selected from the group consisting of

$$R^{10}$$
 R^{11}
 R^{11}
 R^{12}
 R

 R^4 is $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_9$

cycloalkenyl, C_1 - C_3 alkylcarbonyl, optionally substituted aryl(C_1 - C_4 alkyl), optionally substituted aryl(C_2 - C_4 alkenyl), or optionally substituted aryl(C_2 - C_4 alkynyl);

R⁵ and R^{5'} are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkoxy)-(C₁-C₄ alkyl), optionally substituted aryl(C₁-C₄ alkyl), Y-, Y-(C₁-C₄ alkyl), Y'-, Y'-(C₁-C₄ alkyl), R⁶R⁷N-(C₂-C₄ alkyl), and R^{6'}R^{7'}N-(C₂-C₄ alkyl);

where Y and Y' are each independently selected from the group consisting of tetrahydrofuryl, morpholinyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, and quinuclidinyl; where said morpholinyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, or quinuclidinyl is optionally N-substituted with C₁-C₄ alkyl or optionally substituted aryl(C₁-C₄ alkyl);

R⁶ is hydrogen or C₁-C₆ alkyl;

5

10

15

20

25

30

R⁷ is C₁-C₆ alkyl, C₃-C₈ cycloalkyl, optionally substituted aryl, or optionally substituted aryl(C1-C4 alkyl); or

R⁶ and R⁷ are taken together with the attached nitrogen atom to form an heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, and homopiperazinyl; where said piperazinyl or homopiperazinyl is optionally N-substitued with R¹³;

R^{6'} is hydrogen or C₁-C₆ alkyl;

R^{7'} is C₁-C₆ alkyl, C₃-C₈ cycloalkyl, optionally substituted aryl, or optionally substituted aryl(C₁-C₄ alkyl); or

R⁶ and R⁷ are taken together with the attached nitrogen atom to form an heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, and homopiperazinyl; where said piperazinyl or homopiperazinyl is optionally N-substituted with R¹³;

R⁸ and R⁸ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, optionally substituted aryl, and optionally substituted aryl(C1-C4 alkyl); or

R⁸ and R^{8'} are taken together with the attached nitrogen atom to form an heterocycle selected from the group consisting of optionally substituted pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, and homopiperazinyl;

R⁹ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkoxy)-(C₁-C₄ alkyl), optionally substituted aryl, optionally substituted aryl(C1-C4 alkyl), optionally substituted heteroaryl, optionally substituted heteroaryl(C₁-C₄ alkyl), and R⁸R⁸N-(C₁-C₄ alkyl);

R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen, optionally substituted C₁-C₆ alkyl, optionally substituted C₃-C₈ cycloalkyl, C₁-C₄ alkoxycarbonyl, C₁-C₅ alkylcarbonyloxy, optionally substituted aryl, optionally

5

10

15

20

25

30

substituted aryl(C_1 - C_4 alkyl), optionally substituted aryl(C_1 - C_4 alkyloxy), optionally substituted aryl(C_1 - C_4 alkylcarbonyloxy), diphenylmethoxy, and triphenylmethoxy;

 R^{12} , R^{13} , and $R^{13'}$ are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_4 alkoxycarbonyl, optionally substituted aryloxycarbonyl, optionally substituted aryloyl; and

hydrates, solvates, and pharmaceutically acceptable salts thereof.

- 2. The compound of claim 1, wherein A is acyclic disubstituted amino.
 - 3. The compound of claim 1, wherein A is cyclic disubstituted amino.
- 4. The compound of claim 1, wherein A is monosubstituted amino of the formula XNH-, where X is selected from the group consisting of C₁-C₆ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkoxy)-(C₁-C₄ alkyl), optionally substituted aryl, optionally substituted aryl(C₃-C₇ cycloalkyl), optionally substituted indan-1-yl, optionally substituted indan-2-yl, optionally substituted 1,2,3,4-tetrahydronaphth-1-yl, optionally substituted 1,2,3,4-tetrahydronaphth-2-yl, Y, Y-(C₁-C₄ alkyl), R⁶R⁷N-, and R⁶R⁷N-(C₂-C₄ alkyl).
- 5. The compound of claim 1, wherein A is disubstituted amino of the formula R¹⁴XN-; where R¹⁴ is selected from the group consisting of hydroxy, C₁-C₆ alkyl, C₁-C₄ alkoxycarbonyl, and benzyl; and where X is selected from the group consisting of C₁-C₆ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkoxy)-(C₁-C₄ alkyl), optionally substituted aryl, optionally substituted aryl(C₃-C₇ cycloalkyl), optionally substituted indan-1-yl, optionally substituted indan-2-yl, optionally substituted 1,2,3,4-tetrahydronaphth-1-yl, optionally substituted 1,2,3,4-tetrahydronaphth-2-yl, Y, Y-(C₁-C₄ alkyl), R⁶R⁷N-, and R⁶R⁷N-(C₂-C₄ alkyl).
 - 6. The compound of claim 1, wherein A is disubstituted amino of the formula R¹⁴XN-, where R¹⁴ and X are taken together with the attached nitrogen atom to form an optionally substituted heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, pyrrolidinonyl, piperidinonyl, 2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-yl, and 1,2,3,4-tetrahydroisoquinolin-2-yl.
 - 7. The compound of claim 6, wherein the optionally substituted heterocycle is substituted with a substituent selected from the group consisting of

5

10

15

20

optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_5 alkylcarbonyloxy, optionally substituted aryl, optionally substituted aryl(C_1 - C_4 alkyl), optionally substituted aryl(C_1 - C_4 alkylcarbonyloxy), R^6R^7N -, and R^6R^7N -(C_1 - C_4 alkyl).

- 8. The compound of claim 6, wherein R¹⁴ and X are taken together with the attached nitrogen atom to form piperidinyl optionally substituted at the 4-position with hydroxy, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₄ alkoxy, (C₁-C₄ alkoxy)carbonyl, (hydroxy(C₂-C₄ alkyloxy))-(C₂-C₄ alkyl), R⁶R⁷N-, R⁶R⁷N-(C₁-C₄ alkyl), diphenylmethyl, optionally substituted aryl, optionally substituted aryl(C₁-C₄ alkyl), or piperidin-1-yl(C₁-C₄ alkyl).
- 9. The compound of claim 6, wherein R^{14} and X are taken together with the attached nitrogen atom to form piperazinyl optionally substituted at the 4-position with C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, optionally substituted aryl, optionally substituted aryl(C_1 - C_4 alkyl), α -methylbenzyl, N-(C_1 - C_5 alkyl) acetamid-2-yl, N-(C_3 - C_8 cycloalkyl) acetamid-2-yl, R^6R^7N -, or (C_1 - C_4 alkoxy)carbonyl.
- 10. The compound of claim 6, wherein R¹⁴ and X are taken together with the attached nitrogen atom to form homopiperazinyl optionally substituted in the 4-position with C₁-C₄ alkyl, aryl, or aryl(C₁-C₄ alkyl).
- 11. The compound of claim 1, wherein A' is acyclic disubstituted amino.
 - 12. The compound of claim 1, wherein A' is cyclic disubstituted amino.
- 13. The compound of claim 1, wherein A' is monosubstituted amino of the formula X'NH-, where X' is selected from the group consisting of C₁-C₆ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkoxy)-(C₁-C₄ alkyl), optionally substituted aryl, optionally substituted aryl(C₃-C₇ cycloalkyl), optionally substituted indan-1-yl, optionally substituted indan-2-yl, optionally substituted 1,2,3,4-tetrahydronaphth-1-yl, optionally substituted 1,2,3,4-tetrahydronaphth-2-yl, Y', Y'-(C₁-C₄ alkyl), R⁶'R⁷'N-, and R⁶'R⁷'N-(C₂-C₄ alkyl).
- 30 14. The compound of claim 1, wherein A' is disubstituted amino of the formula R¹⁴'X'N-; where R¹⁴' is selected from the group consisting of hydroxy, C₁-C₆ alkyl, C₁-C₄ alkoxycarbonyl, and benzyl; and where X' is selected from the group

WO 2005/035492

5

10

15

20

25

30

consisting of C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, $(C_1$ - C_4 alkoxy)- $(C_1$ - C_4 alkyl), optionally substituted aryl $(C_1$ - C_4 alkyl), optionally substituted aryl $(C_3$ - C_7 cycloalkyl), optionally substituted indan-1-yl, optionally substituted indan-2-yl, optionally substituted 1,2,3,4-tetrahydronaphth-1-yl, optionally substituted 1,2,3,4-tetrahydronaphth-2-yl, Y', Y'- $(C_1$ - C_4 alkyl), R^6 ' R^7 'N-, and R^6 ' R^7 'N- $(C_2$ - C_4 alkyl).

- 15. The compound of claim 1, wherein A' is disubstituted amino of the formula R¹⁴'X'N-, where R¹⁴' and X' are taken together with the attached nitrogen atom to form an optionally substituted heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, pyrrolidinonyl, piperidinonyl, 2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-yl, and 1,2,3,4-tetrahydroisoquinolin-2-yl.
- 16. The compound of claim 15, wherein the optionally substituted heterocycle is substituted with a substituent selected from the group consisting of optionally substituted C₁-C₆ alkyl, optionally substituted C₃-C₈ cycloalkyl, C₁-C₄ alkoxycarbonyl, C₁-C₅ alkylcarbonyloxy, optionally substituted aryl, optionally substituted aryl(C₁-C₄ alkyl), optionally substituted aryl(C₁-C₄ alkylcarbonyloxy), R⁶'R⁷'N-, and R⁶'R⁷'N-(C₁-C₄ alkyl).
- 17. The compound of claim 15, wherein R^{14'} and X' are taken together with the attached nitrogen atom to form piperidinyl optionally substituted at the 4-position with hydroxy, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₄ alkoxy, (C₁-C₄ alkoxy)carbonyl, (hydroxy(C₂-C₄ alkyloxy))-(C₂-C₄ alkyl), R^{6'}R^{7'}N-, R^{6'}R^{7'}N-(C₁-C₄ alkyl), diphenylmethyl, optionally substituted aryl, optionally substituted aryl(C₁-C₄ alkyl), or piperidin-1-yl(C₁-C₄ alkyl).
- 18. The compound of claim 15, wherein $R^{14'}$ and X' are taken together with the attached nitrogen atom to form piperazinyl optionally substituted at the 4-position with C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, optionally substituted aryl, optionally substituted aryl(C_1 - C_4 alkyl), α -methylbenzyl, N-(C_1 - C_5 alkyl) acetamid-2-yl, N-(C_3 - C_8 cycloalkyl) acetamid-2-yl, R^6 ' R^7 'N-, or (C_1 - C_4 alkoxy)carbonyl.
- 19. The compound of claim 15, wherein R¹⁴ and X' are taken together with the attached nitrogen atom to form homopiperazinyl optionally substituted in the 4-position with C₁-C₄ alkyl, aryl, or aryl(C₁-C₄ alkyl).
- 20. The compound of any of claims 1-19, wherein R³ is a structure selected from the group consisting of

- 80 -

$$R^{10}$$
 R^{11} R^{12} R^{11} R^{11} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

The compound of any of claims 1-19, wherein R³ is 21.

- The compound of any of claims 1-19, wherein R⁴ is optionally 22. substituted aryl(C1-C4 alkyl), optionally substituted aryl(C2-C4 alkenyl), or optionally 5 substituted aryl(C2-C4 alkynyl).
 - The compound of any of claims 1-19, wherein R⁴ is optionally 23. substituted aryl(C2-C4 alkenyl).
- The compound of any of claims 1-24, wherein R¹⁰ is optionally 24. substituted phenyl. 10
 - 25. The compound of any of claims 1-25, wherein A is monosubstituted amino of the formula XNH-, where X is optionally substituted aryl(C₁-C₄ alkyl).
 - The compound of any of claims 1-26, wherein A' is disubstituted 26. amino of the formula R¹⁴'X'N-, where R¹⁴' and X' are taken together with the attached nitrogen atom to form an optionally substituted heterocycle selected from the group consisting of optionally substituted piperidinyl and optionally substituted piperazinyl.
 - 27. A pharmaceutical composition comprising the compound of any of the-preceding claims, and a pharmaceutically acceptable carrier, diluent, or excipient.
- A process for preparing a compound of the formula: 20 28.

15

where Ar¹, Ar², R¹, R², R⁴, n, A, and A' are as defined in claim 1, comprising the step of reacting a compound of the formula:

5 with a compound of the formula:

A method for treating a disease state responsive to antagonism of a vasopressin V_{1a} receptor in a mammal in need of such treatment, comprising the step of administering to the mammal a pharmaceutically effective amount of the compound of
 any of claims 1-26 or a pharmaceutical composition of claim 27.