Formelsammlung zu Modul 200-001: Statistik 1

Dr. Mirka Henninger und Dr. Rudolf Debelak HS 2022 und FS 2023

Inhaltsverzeichnis

1	Univ	variate statistische Kennwerte	L									
	1.1	Maße der zentralen Tendenz (Lagemaße)	1									
		1.1.1 Mittelwert (arithmetisches Mittel)										
		1.1.2 Median										
	1.2	Maße der Variabilität (Streuungsmaße)										
	1.2	` - /										
	1.0	1.2.2 Standardabweichung										
	1.3	Lineare Transformation										
		1.3.1 Mittelwert bei linearer Transformation	L									
		1.3.2 Stichprobenvarianz und Standardabweichung bei linearer Transformation .	Ĺ									
2	Wak	nrscheinlichkeitstheorie 2)									
_	2.1	Additionstheorem										
	2.2											
		•										
	2.3	Bedingte Wahrscheinlichkeit										
	2.4	Satz von der totalen Wahrscheinlichkeit										
	2.5	Satz von Bayes	2									
3	Wak	nrscheinlichkeitsverteilungen	2									
J	3.1	Diskrete Zufallsvariablen										
	3.1											
	0.0	3.1.1 Wahrscheinlichkeitsfunktion										
	3.2	Stetige Zufallsvariablen										
		3.2.1 Dichte										
	3.3	<i>z</i> -Transformation										
	3.4	Stichprobenverteilung des Mittelwerts	3									
4	Test	s und Konfidenzintervalle	1									
•	4.1	Ein-Stichproben-Tests für den Mittelwert										
	4.1	·										
		4.1.1 Ein-Stichproben z-Test bei bekannter Varianz σ^2										
		4.1.2 Ein-Stichproben t-Test bei unbekannter Varianz										
	4.2	Konfidenzintervalle für den Mittelwert										
		4.2.1 Konfidenzintervall für \bar{x} bei bekannter Varianz σ^2	1									
		4.2.2 Konfidenzintervall für \bar{x} bei unbekannter Varianz	1									
	4.3	Zwei-Stichproben-Tests zum Vergleich von Mittelwerten	ō									
		4.3.1 <i>t</i> -Test für unabhängige Stichproben	5									
		4.3.2 <i>t</i> -Test für verbundene Stichproben	5									
	4.4	χ^2 -Unabhängigkeitstest										
		4.4.1 Test für 2x2-Tabellen										
		4.4.2 Test für beliebig grosse Tabellen										
		4.4.2 Test fur beliebig grosse Tabellell	J									
5	Kov	arianz und Korrelation	7									
	5.1	1 Stichprobenkovarianz										
	5.2	Korrelationskoeffizient nach Bravais-Pearson	7									
	5.3	Lineare Transformation										
	0.0	5.3.1 Stichprobenkovarianz bei linearer Transformation										
		5.3.2 Korrelationskoeffizient bei linearer Transformation										
	E 1											
	5.4	Test für den Korrelationskoeffizienten										
	5.5	Rang-Korrelationskoeffizient nach Spearman	S									

6	Line	are Einfachregression	9
	6.1	Regressionsgleichung	. 9
	6.2	Kleinste-Quadrate-Schätzer	. 9
	6.3	Vorhersage	. 9
	6.4	Standardisierte Regressionskoeffizienten	. 9
	6.5	Maße für die Güte des Regressionsmodells	
		6.5.1 Residuen	
		6.5.2 Standardschätzfehler	
		6.5.3 Bestimmtheitsmaß (Determinationskoeffizient) R^2	
	6.6	Test und Konfidenzintervall für den Steigungsparameter	
7	Part	ielle Korrelation	10
8	Muli	tiple lineare Regression	11
•	8.1	Regressionsgleichung	
	8.2	Kleinste-Quadrate-Schätzer für zwei Prädiktoren	
	8.3	Standardisierte Regressionskoeffizienten	
	8.4	Maße für die Güte des multiplen Regressionsmodells	
	0.4	· · · ·	
		8.4.1 Residuen	
		8.4.2 Standardschätzfehler	
		8.4.3 Bestimmtheitsmaß R^2	
		8.4.4 Korrigiertes Bestimmtheitsmaß R_{korr}^2	
	8.5	Tests im multiplen Regressionsmodell	
		8.5.1 F-Test (Omnibustest)	
		8.5.2 t-Test für eine einzelne Steigung	
		8.5.3 F-Test für das Dekrement	
		8.5.4 Multikollinearität	
		8.5.5 Automatisierte Prädiktorenauswahl	. 13
9	Varia	anzanalyse	14
	9.1	Einfaktorielle Varianzanalyse	. 14
		9.1.1 Modell mit festen Effekten	. 14
		9.1.2 Modell mit zufälligen Effekten	
	9.2	Post-hoc Tests und multiples Testen	
	J	9.2.1 Einfache Vergleiche von Gruppenmittelwerten	
		9.2.2 Lineare Kontraste	
		9.2.3 Kontrolle der experimentwise error rate	
	9.3	Zweifaktorielle Varianzanalyse	
	9.5	9.3.1 Modell mit festen Effekten für balanciertes Design	
		9.3.3 Modell mit zufälligen Effekten	
	0.4	9.3.4 Gemischtes Modell	
	9.4	Varianzanalyse mit Messwiederholungen	. 19
10	Tabe		20
		Vereinfachte Normalverteilungstabelle	
	10.2	χ^2 -Verteilung	. 21
	10.3	Students <i>t</i> -Verteilung	. 22
	10.4	<i>F</i> -Verteilung	. 23

1 Univariate statistische Kennwerte

1.1 Maße der zentralen Tendenz (Lagemaße)

1.1.1 Mittelwert (arithmetisches Mittel)

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

1.1.2 Median

sortierte Daten: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$

falls *n* ungerade: Median = $x_{((n+1)/2)}$

falls n gerade: Median = $\frac{x_{(n/2)} + x_{(n/2+1)}}{2}$

1.2 Maße der Variabilität (Streuungsmaße)

1.2.1 Stichprobenvarianz

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

1.2.2 Standardabweichung

$$s = \sqrt{s^2}$$

1.3 Lineare Transformation

$$y = a + b \cdot x$$

1.3.1 Mittelwert bei linearer Transformation

$$\bar{y} = a + b \cdot \bar{x}$$

1.3.2 Stichprobenvarianz und Standardabweichung bei linearer Transformation

$$s_y^2 = b^2 \cdot s_x^2$$
, $s_y = |b| \cdot s_x$

2 Wahrscheinlichkeitstheorie

2.1 Additionstheorem

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Spezialfall wenn A und B disjunkt:

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
 etc.

2.2 Multiplikationstheorem

$$P(A \cap B) = P(A) \cdot P(B|A)$$

$$P(A \cap B \cap C) = P(A) \cdot P(B|A) \cdot P(C|A, B)$$
 etc.

Spezialfall für unabhängige Ereignisse:

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$$
 etc.

2.3 Bedingte Wahrscheinlichkeit

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2.4 Satz von der totalen Wahrscheinlichkeit

$$P(B) = P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})$$

2.5 Satz von Bayes

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})}$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(B|\overline{A}) = 1 - P(\overline{B}|\overline{A})$$

3 Wahrscheinlichkeitsverteilungen

3.1 Diskrete Zufallsvariablen

3.1.1 Wahrscheinlichkeitsfunktion $P(x_i)$

Erwartungswert: $\mu = \sum_{i=1}^{N} x_i \cdot P(x_i)$

Varianz: $\sigma^2 = \sum_{i=1}^N (x_i - \mu)^2 \cdot P(x_i)$

Verteilungsfunktion $F(x_i) = \sum_{j \le i} P(x_j)$

3.1.1.1 Binomialverteilung $P(x) = \binom{n}{x} \pi^x (1-\pi)^{n-x}$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 mit $x! = 1 \cdot 2 \cdots (x-2) \cdot (x-1) \cdot x$, wobei $0! = 1$

Erwartungswert: $\mu = n \cdot \pi$

Varianz: $\sigma^2 = n \cdot \pi (1 - \pi)$

3.2 Stetige Zufallsvariablen

3.2.1 Dichte f(x)

Erwartungswert: $\mu = \int_{-\infty}^{\infty} x f(x) dx$

Varianz: $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Verteilungsfunktion: $F(x_p) = P(x \le x_p) = \int_{-\infty}^{x_p} f(t) dt$

3.3 *z*-Transformation

z-Transformation (Daten): $z = \frac{x - \bar{x}}{s}$

z-Transformation (Verteilung): $z = \frac{x - \mu}{\sigma}$

3.4 Stichprobenverteilung des Mittelwerts

 $\mu_{\bar{\mathbf{x}}} = \mu$

$$\sigma_{\bar{x}} = \sigma/\sqrt{n}$$
 bzw. $\sigma_{\bar{x}}^2 = \sigma^2/n$

 $\sigma_{\bar{\mathbf{x}}}$ wird als $\mathit{Standardfehler}$ des Mittelwerts bezeichnet

wenn
$$x \sim \textit{N}(\mu, \sigma^2) \Rightarrow \bar{x} \sim \textit{N}(\mu, \sigma_{\bar{x}}^2)$$

Plug-in Schätzer für $\sigma_{\bar{x}}$:

$$s_{\bar{x}} = s/\sqrt{n} = \sqrt{s^2/n}$$

4 Hypothesentests und Konfidenzintervalle

4.1 Ein-Stichproben-Tests für den Mittelwert

Hypothesen:

 $H_0: \mu = \mu_0$

- a) $H_1: \mu > \mu_0$ (einseitiger Test)
- b) $H_1: \mu < \mu_0$ (einseitiger Test)
- c) $H_1: \mu \neq \mu_0$ (zweiseitiger Test)

4.1.1 Ein-Stichproben z-Test bei bekannter Varianz σ^2

Prüfgrösse:
$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \sqrt{n} \left(\frac{\bar{x} - \mu_0}{\sigma} \right)$$

Ablehnbereich:

- a) $z > z_{1-\alpha}$
- b) $z < z_{\alpha}$
- c) $z < z_{\alpha/2}$ oder $z > z_{1-\alpha/2}$ bzw. $|z| > z_{1-\alpha/2}$

4.1.1.1 Standardisierte Effektgrösse

$$\delta = \frac{\mu - \mu_0}{\sigma}$$

4.1.1.2 Bestimmung des Stichprobenumfangs

$$n = \left(\frac{z_{\beta} - z_{1-\alpha}}{\delta}\right)^2$$

wenn Teststärke (Power) $1 - \beta$ angegeben: $z_{\beta} = -z_{1-\beta}$

sonst: $z_{\beta} = z_{1-\alpha} - \sqrt{n} \cdot \delta$

4.1.2 Ein-Stichproben t-Test bei unbekannter Varianz

Prüfgrösse:
$$t = \frac{\bar{x} - \mu_0}{s_{\bar{x}}} = \sqrt{n} \left(\frac{\bar{x} - \mu_0}{s} \right)$$

Ablehnbereich:

- a) $t > t_{1-\alpha}(n-1)$
- b) $t < t_{\alpha}(n-1)$
- c) $t < t_{\alpha/2}(n-1)$ oder $t > t_{1-\alpha/2}(n-1)$ bzw. $|t| > t_{1-\alpha/2}(n-1)$

4.2 Konfidenzintervalle für den Mittelwert

4.2.1 Konfidenzintervall für \bar{x} bei bekannter Varianz σ^2

$$\bar{x} \pm z_{1-\alpha/2} \cdot \sigma_{\bar{x}}$$
 bzw. $\bar{x} \pm z_{1-\alpha/2} \cdot \sigma/\sqrt{n}$

4.2.2 Konfidenzintervall für \bar{x} bei unbekannter Varianz

$$ar{x} \pm t_{1-lpha/2}(n-1) \cdot s_{ar{x}}$$
 bzw. $ar{x} \pm t_{1-lpha/2}(n-1) \cdot s/\sqrt{n}$

4

4.3 Zwei-Stichproben-Tests zum Vergleich von Mittelwerten

4.3.1 t-Test für unabhängige Stichproben

Hypothesen:

 $H_0: \mu_1 = \mu_2$

a) $H_1: \mu_1 > \mu_2$ (einseitiger Test)

b) $H_1: \mu_1 < \mu_2$ (einseitiger Test)

c) $H_1: \mu_1 \neq \mu_2$ (zweiseitiger Test)

Prüfgrösse: $t = \frac{\bar{x}_1 - \bar{x}_2}{s_{\bar{x}_1 - \bar{x}_2}}$

$$s_{\bar{x}_1-\bar{x}_2} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \text{ mit } s_p^2 = \frac{(n_1-1) \cdot s_1^2 + (n_2-1) \cdot s_2^2}{(n_1-1) + (n_2-1)} \text{ bzw. falls } n_1 = n_2 : s_p^2 = \frac{s_1^2 + s_2^2}{2}$$

Ablehnbereich:

a) $t > t_{1-\alpha}(n_1 + n_2 - 2)$

b) $t < t_{\alpha}(n_1 + n_2 - 2)$

c) $t < t_{\alpha/2}(n_1 + n_2 - 2)$ oder $t > t_{1-\alpha/2}(n_1 + n_2 - 2)$ bzw. $|t| > t_{1-\alpha/2}(n_1 + n_2 - 2)$

wobei: $n_1 = \text{Anzahl Personen in Gruppe 1}$ $n_2 = \text{Anzahl Personen in Gruppe 2}$

4.3.2 t-Test für verbundene Stichproben

Hypothesen:

 $H_0: \mu_d = 0$

a) $H_1: \mu_d > 0$ (einseitiger Test)

b) $H_1: \mu_d < 0$ (einseitiger Test)

c) $H_1: \mu_d \neq 0$ (zweiseitiger Test)

Prüfgrösse: $t = \sqrt{n} \left(\frac{\bar{d}}{s_d} \right)$

$$d_i = x_{i1} - x_{i2}, \quad \bar{d} = \frac{\sum_{i=1}^n d_i}{n}, \quad s_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{d})^2}{n-1}}$$

Ablehnbereich:

a) $t > t_{1-\alpha}(n-1)$

b) $t < t_{\alpha}(n-1)$

c) $t < t_{\alpha/2}(n-1)$ oder $t > t_{1-\alpha/2}(n-1)$ bzw. $|t| > t_{1-\alpha/2}(n-1)$

wobei: n = Anzahl Beobachtungspaare

4.4 χ^2 -Unabhängigkeitstest

Hypothesen:

H₀: A und B unabhängigH₁: A und B abhängig

4.4.1 Test für 2x2-Tabellen

Prüfgrösse:
$$\chi^2 = \frac{n \cdot (ad - bc)^2}{(a+b) \cdot (c+d) \cdot (a+c) \cdot (b+d)}$$

Ablehnbereich: $\chi^2 > \chi^2_{1-\alpha}(1)$

4.4.2 Test für beliebig grosse Tabellen

Prüfgrösse:
$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - m_{ij})^2}{m_{ij}}$$

$$m_{ij} = \frac{n_{i.} \cdot n_{.j}}{n}$$

 $n_{i\cdot} = \mathsf{Summe} \; \mathsf{der} \; \mathsf{H\"{a}ufigkeiten} \; \mathsf{in} \; \mathsf{der} \; i\mathsf{-ten} \; \mathsf{Zeile}$

wobei: $n_{\cdot j} = \mathsf{Summe} \; \mathsf{der} \; \mathsf{H\"{a}}\mathsf{ufig} \mathsf{keiten} \; \mathsf{in} \; \mathsf{der} \; j\mathsf{-ten} \; \mathsf{Spalte}$

n =Anzahl Beobachtungen insgesamt

Ablehnbereich: $\chi^2 > \chi^2_{1-\alpha} \left((k-1) \cdot (l-1) \right)$

wobei: k = Anzahl Zeilenl = Anzahl Spalten

Annahme: Alle *erwarteten* Häufigkeiten müssen > 5 sein.

5 Kovarianz und Korrelation

5.1 Stichprobenkovarianz

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{n-1}$$

5.2 Korrelationskoeffizient nach Bravais-Pearson

$$r = \frac{s_{xy}}{s_{x} \cdot s_{y}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) \cdot (y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \cdot \sqrt{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

bzw. Berechnung über Summen: $r = \frac{n \cdot \sum_{i=1}^{n} x_i \cdot y_i - \left(\sum_{i=1}^{n} x_i\right) \cdot \left(\sum_{i=1}^{n} y_i\right)}{\sqrt{\left[n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right] \cdot \left[n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2\right]}}$

5.3 Lineare Transformation

$$u = a + b \cdot x$$

5.3.1 Stichprobenkovarianz bei linearer Transformation

$$s_{uv} = b \cdot s_{xv}$$

5.3.2 Korrelationskoeffizient bei linearer Transformation

$$r_{uv} = r_{xv}$$

5.4 Test für den Korrelationskoeffizienten

Hypothesen:

- $H_0: \rho = 0$
- a) $H_1: \varrho > 0$
- b) $H_1: \varrho < 0$
- c) $H_1: \varrho \neq 0$

Prüfgrösse:
$$t = \frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$$

Ablehnbereich:

- a) $t > t_{1-\alpha}(n-2)$
- b) $t < t_{\alpha}(n-2)$
- c) $t < t_{\alpha/2}(n-2)$ oder $t > t_{1-\alpha/2}(n-2)$ bzw. $\mid t \mid > t_{1-\alpha/2}(n-2)$

5.5 Rang-Korrelationskoeffizient nach Spearman

= Korrelationskoeffizient nach Bravais-Pearson angewendet auf die Ränge:

$$r_s = \frac{n \cdot \sum_{i=1}^{n} rg(x_i) \cdot rg(y_i) - \left(\sum_{i=1}^{n} rg(x_i)\right) \cdot \left(\sum_{i=1}^{n} rg(y_i)\right)}{\sqrt{\left[n \cdot \sum_{i=1}^{n} rg(x_i)^2 - \left(\sum_{i=1}^{n} rg(x_i)\right)^2\right] \cdot \left[n \cdot \sum_{i=1}^{n} rg(y_i)^2 - \left(\sum_{i=1}^{n} rg(y_i)\right)^2\right]}}$$

bzw. falls keine Bindungen vorliegen:

$$r_{s} = 1 - \frac{6 \cdot \sum_{i=1}^{n} (rg(x_{i}) - rg(y_{i}))^{2}}{n \cdot (n^{2} - 1)}$$

6 Lineare Einfachregression

6.1 Regressionsgleichung

Modell: $y_i = \beta_0 + \beta_1 \cdot x_i + \varepsilon_i$ Schätzung: $y_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i + \hat{\varepsilon}_i$

6.2 Kleinste-Quadrate-Schätzer

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \cdot \bar{x}$$

$$\hat{\beta}_1 = \frac{n \cdot \sum_{i=1}^n x_i \cdot y_i - \sum_{i=1}^n x_i \cdot \sum_{i=1}^n y_i}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

Alternative Berechung:

$$\hat{eta}_1 = rac{s_{xy}}{s_x^2}$$
, $\hat{eta}_1 = r_{xy} \cdot rac{s_y}{s_x}$

6.3 Vorhersage

$$\hat{\mathbf{y}}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathbf{x}_i$$

6.4 Standardisierte Regressionskoeffizienten

$$egin{aligned} \hat{\widetilde{eta}}_0 &= 0 \ \hat{\widetilde{eta}}_1 &= \emph{r}_{xy} \ ext{oder} \ \hat{\widetilde{eta}}_1 &= \hat{eta}_1 \cdot rac{\emph{s}_{x}}{\emph{s}_{y}} \end{aligned}$$

6.5 Maße für die Güte des Regressionsmodells

6.5.1 Residuen

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

6.5.2 Standardschätzfehler

$$s_{\hat{\varepsilon}} = \sqrt{\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n-2}}$$

6.5.3 Bestimmtheitsmaß (Determinationskoeffizient) R^2

$$R^2 = \frac{QS_{\hat{y}}}{QS_y}, \quad R^2 = r_{\hat{y}y}^2 = r_{xy}^2$$

mit Quadratsummen:

$$QS_y = QS_{\hat{y}} + QS_{\hat{\varepsilon}}$$

entsprechend der Streuungszerlegung:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

6.6 Test und Konfidenzintervall für den Steigungsparameter

Hypothesen:

 $H_0: \beta = 0$

a) $H_1: \beta > 0$

b) $H_1: \beta < 0$

c) $H_1: \beta \neq 0$

Prüfgrösse: $t = \frac{\beta_1}{s_{\hat{r}}}$

 $s_{\hat{\beta}_1} = \frac{s_{\hat{\varepsilon}}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}} \quad \text{bzw.} \quad s_{\hat{\beta}_1} = \frac{s_{\hat{\varepsilon}}}{\sqrt{(n-1) \cdot s_{\star}^2}} \quad \text{mit } s_{\hat{\varepsilon}} = \sqrt{\frac{\sum_{i=1}^n \hat{\varepsilon}_i^2}{n-2}}$

Ablehnbereich:

a) $t > t_{1-\alpha}(n-2)$

b) $t < t_{\alpha}(n-2)$

c) $t < t_{\alpha/2}(n-2)$ oder $t > t_{1-\alpha/2}(n-2)$ bzw. $|t| > t_{1-\alpha/2}(n-2)$

Konfidenzintervall:

 $\hat{\beta}_1 \pm t_{1-\alpha/2}(n-2) \cdot s_{\hat{\beta}_1}$

F-Test für Determinationskoeffizient:

Hypothesen:

 H_0 : $\beta_1 = 0$

 $H_1: \beta_1 \neq 0$

Prüfgrösse: $F = \frac{R^2}{1-R^2} \cdot \frac{n-2}{1}$

Ablehnbereich:

 $F > F_{1-\alpha}(1, n-2)$

Partielle Korrelation 7

Partialkorrelation

$$r_{x_0x_1.x_2}=r_{\hat{\varepsilon}_0\hat{\varepsilon}_1}$$

Berechnung über Korrelationen:

$$r_{x_0x_1.x_2} = \frac{r_{x_0x_1} - r_{x_0x_2} \cdot r_{x_1x_2}}{\sqrt{1 - r_{x_0x_2}^2} \cdot \sqrt{1 - r_{x_1x_2}^2}}$$

Semipartialkorrelation

$$r_{y(x_1 \cdot x_2)} = \frac{r_{yx_1} - r_{yx_2} \cdot r_{x_1 x_2}}{\sqrt{1 - r_{x_1 x_2}^2}}$$

8 Multiple lineare Regression

8.1 Regressionsgleichung

Modell: $y_i = \beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \dots + \beta_p \cdot x_{ip} + \varepsilon_i$ Schätzung: $y_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_{i1} + \hat{\beta}_2 \cdot x_{i2} + \dots + \hat{\beta}_p \cdot x_{ip} + \hat{\varepsilon}_i$

8.2 Kleinste-Quadrate-Schätzer für zwei Prädiktoren

$$\hat{\beta}_1 = \frac{r_{yx_1} - r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2} \cdot \frac{s_y}{s_{x_1}}$$

$$\hat{\beta}_2 = \frac{r_{yx_2} - r_{yx_1} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2} \cdot \frac{s_y}{s_{x_2}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \cdot \bar{x}_1 - \hat{\beta}_2 \cdot \bar{x}_2$$

8.3 Standardisierte Regressionskoeffizienten

$$\hat{\widetilde{\beta}}_0 = 0$$

$$\hat{\widetilde{\beta}}_j = \hat{\beta}_j \cdot \frac{\mathsf{s}_{\mathsf{x}_j}}{\mathsf{s}_\mathsf{v}}$$

8.4 Maße für die Güte des multiplen Regressionsmodells

8.4.1 Residuen

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

8.4.2 Standardschätzfehler

$$s_{\hat{\varepsilon}} = \sqrt{\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n - p - 1}}$$

8.4.3 Bestimmtheitsmaß R^2

$$R^2 = \frac{QS_{\hat{y}}}{QS_{y}}, \quad R^2 = r_{\hat{y}y}^2$$

mit Quadratsummen:

$$QS_y = QS_{\hat{y}} + QS_{\hat{\varepsilon}}$$

entsprechend der Streuungszerlegung:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

8.4.4 Korrigiertes Bestimmtheitsmaß R_{korr}^2

$$R_{korr}^2 = 1 - (1 - R^2) \cdot \frac{n-1}{n-p-1}$$

8.5 Tests im multiplen Regressionsmodell

8.5.1 F-Test (Omnibustest)

Hypothesen:

 $H_0: \beta_1 = \cdots = \beta_p = 0$

 H_1 : $\beta_i \neq 0$ für mindestens ein j

Prüfgrösse:

$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - p - 1}{p}$$

Ablehnbereich:

$$F > F_{1-\alpha}(p, n-p-1)$$

t-Test für eine einzelne Steigung

Hypothesen:

 $H_0: \beta_i = 0$

- a) $H_1: \beta_i > 0$
- b) $H_1: \beta_i < 0$
- c) $H_1: \beta_i \neq 0$

Prüfgrösse:

$$t=rac{\hat{eta}_j}{s_{\hat{eta}_i}} \quad ext{mit } s_{\hat{eta}_j} = ext{Standardfehler von } \hat{eta}_j$$

Ablehnbereich:

- a) $t > t_{1-\alpha}(n-p-1)$
- b) $t < t_{\alpha}(n p 1)$

c)
$$t < t_{lpha/2}(n-p-1)$$
 oder $t > t_{1-lpha/2}(n-p-1)$ bzw. $|t| > t_{1-lpha/2}(n-p-1)$

8.5.3 F-Test für das Dekrement

Dekrement: $\Delta R^2 = R_{M_H}^2 - R_{M_P}^2$

für zwei Modelle

 $M_U: y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_r x_{ir} + \beta_{r+1} x_{i(r+1)} + ... + \beta_p x_{ip} + \varepsilon_i$

 $M_R: y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_r x_{ir} + \varepsilon_i$

Hypothesen:

 H_0 : $\beta_{r+1} = \dots = \beta_p = 0$

 $H_1: \beta_i \neq 0$ für mindestens einen der q Prädiktoren in j = r + 1, ..., p

Prüfgrösse:
$$F = \frac{\Delta R^2}{1 - R_{M_{II}}^2} \cdot \frac{n - p - 1}{q}$$

Ablehnbereich:

$$F > F_{1-\alpha}(q, n-p-1)$$

8.5.4 Multikollinearität

VIF: $VIF_j = \frac{1}{1-R_j^2}$ für jeden *j*-ten Prädiktor

8.5.5 Automatisierte Prädiktorenauswahl

Zusammensetzung des Determinationskoeffizienten für zwei sukzessiv aufgenommene Prädiktoren (x_1, x_2) :

$$(x_1, x_2)$$
:
 $R^2 = r_{yx_1}^2 + r_{y(x_2 \cdot x_1)}^2$

Auswahl- und Stopp-Kriterium

$$AIC = n \cdot \ln(QS_{\hat{\varepsilon}}/n) + 2 \cdot (p+1)$$

9 Varianzanalyse

9.1 Einfaktorielle Varianzanalyse

9.1.1 Modell mit festen Effekten

 $y_{im} = \mu_i + \varepsilon_{im}$ (Grundmodell)

 $\mathbf{y}_{\mathit{im}} = \mu + \alpha_{\mathit{i}} + \varepsilon_{\mathit{im}}$ (Modell in Effektdarstellung)

wobei $arepsilon_{im} \sim \textit{N}(0, \sigma_e^2)$ unabhängig, $\sum_{i=1}^{p} lpha_i = 0$ und

Faktorstufen i = 1, ..., p

Personen innerhalb jeder Faktorstufe $m=1,\ldots,n_i$

Hypothese:

$$H_0$$
: $\mu_1 = ... = \mu_p$ bzw. H_0 : $\alpha_1 = ... = \alpha_p = 0$

Streuungszerlegung:

$$QS_{tot} = QS_A + QS_e$$

mit

$$QS_{A} = n \cdot \sum_{i=1}^{p} (\overline{A}_{i} - \overline{G})^{2} \text{ bzw. } \sum_{i=1}^{p} n_{i} \cdot (\overline{A}_{i} - \overline{G})^{2}$$

$$QS_{e} = \sum_{i=1}^{p} \sum_{m=1}^{n_{i}} (y_{im} - \overline{A}_{i})^{2}$$

$$QS_{tot} = \sum_{i=1}^{p} \sum_{m=1}^{n_{i}} (y_{im} - \overline{G})^{2}$$

wobei

$$\overline{A}_i = \frac{1}{n_i} \sum_{m=1}^{n_i} y_{im}$$
 $\overline{G} = \frac{1}{N} \sum_{i=1}^p \sum_{m=1}^{n_i} y_{im}$ $N = n \cdot p$ bzw. $\sum_{i=1}^p n_i$

Varianztabelle:

QuelleQSdfMQ
$$F$$
 A QS_A $p-1$ $MQ_A = \frac{QS_A}{p-1}$ $F = \frac{MQ_A}{MQ_e}$ Fehler QS_e $N-p$ $MQ_e = \frac{QS_e}{N-p}$ Total QS_{tot} $N-1$

Ablehnbereich: $F > F_{1-\alpha}(df_A, df_e) = F_{1-\alpha}(p-1, N-p)$

9.1.2 Modell mit zufälligen Effekten

$$y_{im} = \mu + \alpha_i + \varepsilon_{im}$$

wobei: $\alpha_i \sim N(0, \sigma_A^2)$, $\varepsilon_{im} \sim N(0, \sigma_e^2)$, alle Zufallsvariablen sind voneinander unabhängig

Hypothese:

$$H_0: \sigma_A^2 = 0$$

Varianztabelle:

QuelleQSdfMQ
$$F$$
 A QS_A $p-1$ $MQ_A = \frac{QS_A}{p-1}$ $F = \frac{MQ_A}{MQ_e}$ Fehler QS_e $N-p$ $MQ_e = \frac{QS_e}{N-p}$ Total QS_{tot} $N-1$

Ablehnbereich: $F > F_{1-\alpha}(df_A, df_e) = F_{1-\alpha}(p-1, N-p)$

Intraklassenkorrelation:

$$\mathsf{ICC} = \frac{\hat{\sigma}_A^2}{\hat{\sigma}_A^2 + \hat{\sigma}_e^2} \quad \mathsf{mit} \quad \hat{\sigma}_A^2 = \frac{\mathsf{MQ}_A - \mathsf{MQ}_e}{n} \quad \mathsf{und} \quad \hat{\sigma}_e^2 = \mathsf{MQ}_e$$

9.2 Post-hoc Tests und multiples Testen

9.2.1 Einfache Vergleiche von Gruppenmittelwerten

Hypothese:

 $H_0: \mu_j = \mu_k$ für zwei Gruppen $j \neq k$

Prüfgrösse im balancierten Design:

$$F = \frac{n \cdot (\bar{A}_j - \bar{A}_k)^2}{2 \cdot MQ_e}$$

Prüfgrösse im unbalancierten Design:

$$F = \frac{n_j \cdot n_k \cdot (\bar{A}_j - \bar{A}_k)^2}{(n_j + n_k) \cdot MQ_e}$$

Ablehnbereich: $F > F_{1-\alpha}(1, N-p)$

9.2.2 Lineare Kontraste

$$D_j = \sum_{i=1}^p c_{ji} \cdot \overline{A}_i$$
 mit $\sum_{i=1}^p c_{ji} = 0$ und $\sum_{i=1}^p |c_{ji}| = 2$

zwei Kontraste j und k sind orthogonal wenn: $\sum_{i=1}^{p} c_{ji} \cdot c_{ki} = 0$

Hypothese:

$$\mathsf{H}_0 \colon \sum_{i=1}^p c_{ji} \cdot \mu_i = 0$$

Prüfgrösse:

$$F = QS_D/MQ_e$$

im balancierten Design:

$$QS_{Dj} = \frac{n \cdot D_j^2}{\sum_{i=1}^p c_{ii}^2}$$

im unbalancierten Design:

$$QS_{Dj} = \frac{D_j^2}{\sum_{i=1}^p c_{ii}^2/n_i}$$

Ablehnbereich: $F > F_{1-\alpha}(1, N-p)$

9.2.3 Kontrolle der experimentwise error rate

Korrektur nach Šidák:

$$\alpha = 1 - (1 - \alpha_{gesamt})^{1/m}$$

Approximation nach Bonferroni:

$$\alpha = \alpha_{\mathrm{gesamt}}/\mathrm{m}$$

mit m = Anzahl Tests

9.3 Zweifaktorielle Varianzanalyse

9.3.1 Modell mit festen Effekten für balanciertes Design

$$y_{\mathit{ijm}} = \mu_{\mathit{ij}} + \varepsilon_{\mathit{ijm}}$$
 (Grundmodell)

$$y_{ijm} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijm}$$
 (Modell in Effektdarstellung)

wobei
$$\varepsilon_{ijm} \sim N(0, \sigma_e^2)$$
 unabhängig, $\sum_{i=1}^p \alpha_i = 0$, $\sum_{j=1}^q \beta_i = 0$ und $\sum_{i=1}^p \sum_{j=1}^q (\alpha \beta)_{ij} = 0$

Faktorstufen i = 1, ..., p und j = 1, ..., q

Personen innerhalb jeder Faktorstufe m = 1, ..., n

Hypothesen:

 H_0 : $\alpha_i = 0$ für alle i

 H_0 : $\beta_j = 0$ für alle j

 H_0 : $(\alpha\beta)_{ij} = 0$ für alle i, j

Streuungszerlegung:

$$QS_{A} = n \cdot q \cdot \sum_{i=1}^{p} (\bar{A}_{i} - \bar{G})^{2}$$
 $QS_{B} = n \cdot p \cdot \sum_{j=1}^{q} (\bar{B}_{j} - \bar{G})^{2}$
 $QS_{AB} = n \cdot \sum_{i=1}^{p} \sum_{j=1}^{q} (\bar{y}_{ij} - \bar{A}_{i} - \bar{B}_{j} + \bar{G})^{2}$
 $QS_{e} = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{m=1}^{n} (y_{ijm} - \bar{y}_{ij})^{2}$
 $QS_{tot} = QS_{A} + QS_{B} + QS_{AB} + QS_{e}$

mit folgenden Mittelwerten:

$$\bar{y}_{ij} = \frac{1}{n} \sum_{m=1}^{n} y_{ijm} \text{ (Zellenmittelwerte)}$$

$$\bar{A}_{i} = \bar{y}_{i\cdot} = \frac{1}{q} \sum_{j=1}^{q} \bar{y}_{ij} \text{ für Faktor } A \text{ (Spaltenmittelwerte)}$$

$$\bar{B}_{j} = \bar{y}_{\cdot j} = \frac{1}{p} \sum_{i=1}^{p} \bar{y}_{ij} \text{ für Faktor } B \text{ (Zeilenmittelwerte)}$$

$$\bar{G} = \bar{y}_{\cdot \cdot} = \frac{1}{pq} \sum_{i=1}^{q} \sum_{j=1}^{p} \bar{y}_{ij} = \frac{1}{q} \sum_{i=1}^{q} \bar{B}_{j} = \frac{1}{p} \sum_{i=1}^{p} \bar{A}_{i} \text{ (Gesamtmittelwert)}$$

Varianztabelle:

QuelleQSdfMQFA
$$QS_A$$
 $p-1$ $MQ_A = \frac{QS_A}{p-1}$ $F_A = \frac{MQ_A}{MQ_e}$ B QS_B $q-1$ $MQ_B = \frac{QS_B}{q-1}$ $F_B = \frac{MQ_B}{MQ_e}$ AB QS_{AB} $(p-1)\cdot(q-1)$ $MQ_{AB} = \frac{QS_{AB}}{(p-1)\cdot(q-1)}$ $F_{AB} = \frac{MQ_{AB}}{MQ_e}$ Fehler QS_e $N-p\cdot q$ $MQ_e = \frac{QS_e}{N-p\cdot q}$ Total QS_{tot} $N-1$

Ablehnbereich: H₀ ablehnen, falls

$$egin{aligned} F_A &> F_{1-lpha}(\mathrm{df}_A,\ \mathrm{df}_e) = F_{1-lpha}(p-1,\ N-p\cdot q) \ F_B &> F_{1-lpha}(\mathrm{df}_B,\ \mathrm{df}_e) = F_{1-lpha}(q-1,\ N-p\cdot q) \ F_{AB} &> F_{1-lpha}(\mathrm{df}_{AB},\ \mathrm{df}_e) = F_{1-lpha}((p-1)\cdot (q-1),\ N-p\cdot q) \end{aligned}$$

9.3.2 Quadratsummen für unbalanciertes Design

Effekt	Quadratsummen Typ	Vergleich von	gegen
		Α	_
Α	II	A + B	В
	III	A + B + AB	B + AB
		A + B	А
В	II	A + B	Α
	III	A + B + AB	A + AB
		A + B + AB	A + B
AB	II	A + B + AB	A + B
	III	A + B + AB	A + B

9.3.3 Modell mit zufälligen Effekten

 $y_{ijm} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijm}$ wobei $\varepsilon_{ijm} \sim N(0, \sigma_e^2)$, $\alpha_i \sim N(0, \sigma_A^2)$, $\beta_j \sim N(0, \sigma_B^2)$ und $(\alpha\beta)_{ij} \sim N(0, \sigma_{AB}^2)$, alle Zufallsvariablen sind voneinander unabhängig

Hypothesen:

$$H_0: \sigma_A^2 = 0$$
 $H_0: \sigma_B^2 = 0$
 $H_0: \sigma_{AB}^2 = 0$

Prüfgrössen:
$$F_A = \frac{MQ_A}{MQ_{AB}}$$
, $F_B = \frac{MQ_B}{MQ_{AB}}$, $F_{AB} = \frac{MQ_{AB}}{MQ_B}$

9.3.4 Gemischtes Modell

$$y_{ijm} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijm}$$

wobei $\varepsilon_{ijm} \sim N(0, \sigma_e^2)$, $\sum_{i=1}^p \alpha_i = 0$, $\beta_j \sim N(0, \sigma_B^2)$ und $(\alpha\beta)_{ij} \sim N(0, \sigma_{AB}^2)$, alle Zufallsvariablen sind voneinander unabhängig

Hypothesen:

$$H_0$$
: $\alpha_i = 0$ für alle i
 H_0 : $\sigma_B^2 = 0$
 H_0 : $\sigma_{AB}^2 = 0$

Prüfgrössen:
$$F_A = \frac{MQ_A}{MQ_{AB}}$$
, $F_B = \frac{MQ_B}{MQ_{AB}}$, $F_{AB} = \frac{MQ_{AB}}{MQ_B}$

9.4 Varianzanalyse mit Messwiederholungen

$$y_{im} = \mu + \alpha_i + S_m + \varepsilon_{im}$$

wobei $\varepsilon_{im} \sim N(0, \sigma_e^2)$, $S_m \sim N(0, \sigma_S^2)$, $\sum_{i=1}^p \alpha_i = 0$, alle Zufallsvariablen sind voneinander unabhängig und es gilt Sphärizität

Hypothese:

$$H_{0A}: \alpha_1 = ... = \alpha_p = 0$$

Prüfgrösse:
$$F_A = \frac{MQ_A}{MQ_e}$$

Freiheitsgrade:
$$df_A = p - 1$$
, $df_e = (n - 1) \cdot (p - 1)$

Hypothese:

$$H_{0S}: \sigma_S^2 = 0$$

Prüfgrösse:
$$F_S = \frac{MQ_S}{MQ_e}$$

Freiheitsgrade:
$$df_S = n - 1$$
, $df_e = (n - 1) \cdot (p - 1)$

Intraklassenkorrelation für Messwiederholungen:

$$ICC = \frac{\hat{\sigma}_S^2}{\hat{\sigma}_S^2 + \hat{\sigma}_e^2} \quad \text{mit} \quad \hat{\sigma}_S^2 = \frac{\mathsf{MQ}_S - \mathsf{MQ}_e}{n} \quad \text{und} \quad \hat{\sigma}_e^2 = \mathsf{MQ}_e$$

Greenhouse Geiser's ϵ : liegt zwischen $\frac{1}{p-1}$ und 1 Korrektur der Freiheitsgrade für Faktor A: $df_A^* = \epsilon \cdot df_A$ und $df_e^* = \epsilon \cdot df_e$

10 Tabellen

10.1 Vereinfachte Normalverteilungstabelle

Tabelliert sind einige Quantile z_p und die entsprechenden Werte der Verteilungsfunktion $F(z_p)$ für $p \ge 0.5$. Für das Quantil z_p gilt $F(z_p) = P(z \le z_p) = p$.

Ablesebeispiel: $z_{0.975} = 1.96$

Werte der Verteilungsfunktion für $z_p < 0$: $F(-z_p) = 1 - F(z_p)$

Quantile für 0 < p < 0.5: $z_p = -z_{1-p}$

P	4
u	ı

Z_p	$F(z_p)$
0	0.50
0.68	0.75
1.28	0.90
1.65	0.95
1.96	0.975
2.33	0.99
2.58	0.995

10.2 χ^2 -Verteilung

Tabelliert sind die Quantile $\chi_p^2(df)$ für df Freiheitsgrade und einige Werte der Verteilungsfunktion. Für das Quantil $\chi_p^2(df)$ gilt $F(\chi_p^2(df)) = p$.

Ablesebeispiel: $\chi^2_{0.95}(10) = 18.31$

df	0.01	0.025	0.05	0.1	0.5	0.9	0.95	0.975	0.99
1	0.00	0.00	0.00	0.02	0.45	2.71	3.84	5.02	6.63
2	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21
3	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.35
4	0.30	0.48	0.71	1.06	3.36	7.78	9.49	11.14	13.28
5	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09
6	0.87	1.24	1.64	2.20	5.35	10.64	12.59	14.45	16.81
7	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48
8	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.54	20.09
9	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67
10	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21
11	3.05	3.82	4.57	5.58	10.34	17.27	19.68	21.92	24.73
12	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22
13	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69
14	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14
15	5.23	6.26	7.26	8.55	14.34	22.31	25.00	27.49	30.58
16	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.84	32.00
17	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41
18	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.80
19	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19
20	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57
21	8.90	10.28	11.59	13.24	20.34	29.61	32.67	35.48	38.93
22	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29
23	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64
24	10.86	12.40	13.85	15.66	23.34	33.20	36.41	39.36	42.98
25	11.52	13.12	14.61	16.47	24.34	34.38	37.65	40.65	44.31
26	12.20	13.84	15.38	17.29	25.34	35.56	38.88	41.92	45.64
27	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.20	46.96
28	13.56	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28
29	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59
30	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89

10.3 Students *t*-Verteilung

Tabelliert sind die Quantile $t_p(df)$ für df Freiheitsgrade und einige Werte der Verteilungsfunktion für p > 0.5. Für das Quantil $t_p(df)$ gilt $F(t_p(df)) = p$.

Ablesebeispiel: $t_{0.99}(20) = 2.528$

Quantile für $0 : <math>t_p(df) = -t_{1-p}(df)$

Approximation für df > 30: $t_p(df) \approx z_p$ (z_p ist das p-Quantil der Standardnormalverteilung)

df	0.6	0.8	0.9	0.95	0.975	0.99	0.995	0.999	0.9995
1	0.325	1.376	3.078	6.314	12.706	31.820	63.657	318.309	636.619
2	0.289	1.061	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.277	0.978	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.920	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.889	1.397	1.859	2.306	2.897	3.355	4.501	5.041
9	0.261	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.260	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.259	0.873	1.356	1.782	2.179	2.681	3.054	3.930	4.318
13	0.259	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.258	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.141
15	0.258	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.258	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.257	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.257	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.257	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.257	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.849
21	0.257	0.859	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.256	0.858	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.256	0.858	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.256	0.857	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.256	0.856	1.316	1.708	2.059	2.485	2.787	3.450	3.725
26	0.256	0.856	1.315	1.706	2.055	2.479	2.779	3.435	3.707
27	0.256	0.855	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.256	0.855	1.312	1.701	2.048	2.467	2.763	3.408	3.674
29	0.256	0.854	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.256	0.854	1.310	1.697	2.042	2.457	2.750	3.385	3.646
∞	0.25	0.84	1.28	1.65	1.96	2.33	2.58	3.09	3.29

10.4 F-Verteilung

Tabelliert sind die Quantile $F_p(df_1, df_2)$ für df_1 und df_2 Freiheitsgrade und p=0.95 bzw. p=0.99. Für das Quantil $F_p(df_1, df_2)$ gilt $F(F_p(df_1, df_2))=p$.

Ablesebeispiel: $F_{0.95}(4, 8) = 3.84$

$F_{0.95}(df_1, df_2)$																
df_2	1	2	3	4	5	6	7	8	9	10	15	20	30	40	50	100
1	161	18.5	10.1	7.71	6.61	5.99	5.59	5.32	5.12	4.96	4.54	4.35	4.17	4.08	4.03	3.94
2	200	19.0	9.55	6.94	5.79	5.14	4.74	4.46	4.26	4.10	3.68	3.49	3.32	3.23	3.18	3.09
3	216	19.2	9.28	6.59	5.41	4.76	4.35	4.07	3.86	3.71	3.29	3.10	2.92	2.84	2.79	2.70
4	225	19.2	9.12	6.39	5.19	4.53	4.12	3.84	3.63	3.48	3.06	2.87	2.69	2.61	2.56	2.46
5	230	19.3	9.01	6.26	5.05	4.39	3.97	3.69	3.48	3.33	2.90	2.71	2.53	2.45	2.40	2.31
6	234	19.3	8.94	6.16	4.95	4.28	3.87	3.58	3.37	3.22	2.79	2.60	2.42	2.34	2.29	2.19
7	237	19.4	8.89	6.09	4.88	4.21	3.79	3.50	3.29	3.14	2.71	2.51	2.33	2.25	2.20	2.10
8	239	19.4	8.85	6.04	4.82	4.15	3.73	3.44	3.23	3.07	2.64	2.45	2.27	2.18	2.13	2.03
9	241	19.4	8.81	6.00	4.77	4.10	3.68	3.39	3.18	3.02	2.59	2.39	2.21	2.12	2.07	1.97
10	242	19.4	8.79	5.96	4.74	4.06	3.64	3.35	3.14	2.98	2.54	2.35	2.16	2.08	2.03	1.93
15	246	19.4	8.70	5.86	4.62	3.94	3.51	3.22	3.01	2.85	2.40	2.20	2.01	1.92	1.87	1.77
20	248	19.4	8.66	5.80	4.56	3.87	3.44	3.15	2.94	2.77	2.33	2.12	1.93	1.84	1.78	1.68
30	250	19.5	8.62	5.75	4.50	3.81	3.38	3.08	2.86	2.70	2.25	2.04	1.84	1.74	1.69	1.57
40	251	19.5	8.59	5.72	4.46	3.77	3.34	3.04	2.83	2.66	2.20	1.99	1.79	1.69	1.63	1.52
50	252	19.5	8.58	5.70	4.44	3.75	3.32	3.02	2.80	2.64	2.18	1.97	1.76	1.66	1.60	1.48
100	253	19.5	8.55	5.66	4.41	3.71	3.27	2.97	2.76	2.59	2.12	1.91	1.70	1.59	1.52	1.39
							$F_{0.99}(a)$	df_1 , df_2)							
1	4052	98.5	34.1	21.2	16.3	13.7	12.2	11.3	10.6	10.0	8.68	8.10	7.56	7.31	7.17	6.90
2	4999	99.0	30.8	18.0	13.3	10.9	9.55	8.65	8.02	7.56	6.36	5.85	5.39	5.18	5.06	4.82
3	5403	99.2	29.5	16.7	12.1	9.78	8.45	7.59	6.99	6.55	5.42	4.94	4.51	4.31	4.20	3.98
4	5625	99.3	28.7	16.0	11.4	9.15	7.85	7.01	6.42	5.99	4.89	4.43	4.02	3.83	3.72	3.51
5	5764	99.3	28.2	15.5	11.0	8.75	7.46	6.63	6.06	5.64	4.56	4.10	3.70	3.51	3.41	3.21
6	5859	99.3	27.9	15.2	10.7	8.47	7.19	6.37	5.80	5.39	4.32	3.87	3.47	3.29	3.19	2.99
7	5928	99.4	27.7	15.0	10.5	8.26	6.99	6.18	5.61	5.20	4.14	3.70	3.30	3.12	3.02	2.82
8	5981	99.4	27.5	14.8	10.3	8.10	6.84	6.03	5.47	5.06	4.00	3.56	3.17	2.99	2.89	2.69
9	6022	99.4	27.3	14.7	10.2	7.98	6.72	5.91	5.35	4.94	3.89	3.46	3.07	2.89	2.78	2.59
10	6056	99.4	27.2	14.5	10.1	7.87	6.62	5.81	5.26	4.85	3.80	3.37	2.98	2.80	2.70	2.50
15	6157	99.4	26.9	14.2	9.72	7.56	6.31	5.52	4.96	4.56	3.52	3.09	2.70	2.52	2.42	2.22
20	6209	99.5	26.7	14.0	9.55	7.40	6.16	5.36	4.81	4.41	3.37	2.94	2.55	2.37	2.27	2.07
30	6261	99.5	26.5	13.8	9.38	7.23	5.99	5.20	4.65	4.25	3.21	2.78	2.39	2.20	2.10	1.89
40	6287	99.5	26.4	13.7		7.14	5.91	5.12	4.57	4.17	3.13	2.69	2.30	2.11	2.01	1.80
50	6303	99.5	26.4			7.09	5.86	5.07		4.12	3.08	2.64	2.25	2.06	1.95	1.74
100	6334	99.5	26.2	13.6	9.13	6.99	5.75	4.96	4.41	4.01	2.98	2.54	2.13	1.94	1.82	1.60
df_1 df_2	1	2	3	4	5	6	7	8	9	10	15	20	30	40	50	100