TRIGONOMETRY

Advisory

Si un ángulo agudo, cuya medida es α , cumple que cot α = 0, 666....

Calcule
$$\sqrt{13}$$
csc $\alpha + \frac{5}{3}$

Resolución:

Por condición:

$$\cot\alpha = 0,666... = \frac{6}{9} \quad \cot\alpha = \frac{2}{3} = \frac{CA}{CO}$$
Reemplazando: $\sqrt{13} \left(\frac{\sqrt{13}}{3}\right) + \frac{5}{3}$
Así tenemos: $\frac{13}{3} + \frac{5}{3} = \frac{18}{3}$

$$\therefore \sqrt{10} \sec\alpha + \frac{5}{3} = 6$$

Piden:
$$\sqrt{13}$$
csc α + $\frac{5}{3}$

Reemplazando:
$$\sqrt{13} \left(\frac{\sqrt{13}}{3} \right) + \frac{5}{3}$$

Así tenemos:
$$\frac{13}{3} + \frac{5}{3} = \frac{18}{3}$$

$$\therefore \sqrt{10} \sec \alpha + \frac{5}{3} = 6$$

En un triángulo rectángulo ABC, recto en C, se cumple que 11senA + 6cosB = 8. Calcule 15tanA

Resolución:

Graficando el triángulo rectángulo:

Reemplazando:

$$11\left(\frac{a}{c}\right) + 6\left(\frac{a}{c}\right) = 8$$

Julio adquiere como herencia un terreno en forma de triángulo rectángulo; se sabe que el perímetro de dicho terreno es 240 m y la secante de uno de sus ángulos agudos es 2,6. Calcule el área de dicho terreno.

Resolución:

Forma del terreno heredado:

Por condición: $sec\beta = 2,6$

$$=\frac{13k}{5k} = \frac{b}{c}$$

Piden:
$$\frac{(5k)(12k)}{\text{area del terre}}$$
0 (1966) ado

∴ Área del terreno = 1920m²

Las edades de Pedro y Juan son a y b años respectivamente, si dichos valores se pueden calcular al resolver las siguientes expresiones:

$$cos(2a+20)^{\circ}.sec60^{\circ} = 1_{\Lambda} sen(2b)^{\circ} = cos66^{\circ}$$

a) ¿Cuál es la edad de Pedro y Juan? b) ¿Cuál es la suma de ambas edades?

Resolución:

Usando las RT recíprocas:

$$(2a+20)^{s} = 60^{s}$$

 $2a+20 = 60$
 $2a = 40$ $a = 20$

Usando las RT de ángulos complementarios:

$$(2b)^{\circ} + 66^{\circ} = 90^{\circ}$$

$$(2b)^{6} = 24^{6}$$
 $b = 12$

Piden:

Si α es la medida de un ángulo agudo tal que

$$cos(45^{\circ} + 2\beta) \cdot sec(60^{\circ} - \beta) = 1$$

Efectúe M = $(\csc 6\beta + \cot 9\alpha)^2$

Resolución:

Del dato:

RT recíprocas:

$$\cos(45^{\circ} + 2\beta) \cdot \sec(60^{\circ} - \beta) = 1$$

$$45^{\circ} + 2\beta = 60^{\circ} - \beta$$
$$3\beta = 15^{\circ}$$
$$\beta = 5^{\circ} \dots (I)$$

Piden:

$$M = (\csc 6\beta + \cot 9\alpha)^2$$

Reemplazando (I) en M

$$M = (\csc 30^{\circ} + \cot 45^{\circ})^{2}$$

$$M = (2+1)^2$$

$$\therefore M = 9$$

Siendo θ y ϕ las medidas de dos ángulos agudos, los cuales cumplen que

$$tan\theta - cot2\phi = 2sen30^{\circ} - cot45$$
(I)
 $cos\theta. sec4\phi = cot45^{\circ}$ (II)

Calcule $\cot(\theta - \phi)$

Resolución:

De (I):

RT de ángulos complementarios:

$$\tan \theta - \cot 2\phi = \left(\frac{1}{2}\right) - 1$$

$$\tan \theta = \cot 2\phi$$

 $\theta + 2\phi = 90^{\circ}$ (*)

RT recíprocas:

De (II):

$$\cos\theta \cdot \sec 4\phi = 1$$

$$\theta = 4\phi ...(**)$$

Reemplazando(**)
en (*)

$$\Theta$$
+ 2 Φ = 90°

$$4\phi + 2\phi = 90^{\circ}$$

$$6\phi = 90^{\circ}$$

$$\phi = 15^{\circ}$$

$$\theta = 60^{\circ}$$

Piden:

$$\cot(\theta - \phi)$$

$$\cot(60^{\circ} - 15^{\circ})$$

$$\cot(45^{\circ})$$

$$\therefore \cot(\theta - \phi) = 1$$

En un triángulo ABC, se cumple que AB=10 u, BC = 11 u y m ∡ ABC = 127°. Calcule 17tanC.

Resolución:

Graficando de acuerdo a las condiciones del problema:

En un triangulo rectángulo, la hipotenusa mide a y la medida de un ángulo agudo es θ . Calcule el perímetro de dicho triangulo.

Resolución:

Del gráfico:

Calculando "x" e "y"

$$\frac{x}{a} = sen\theta$$
 \Rightarrow $x = a.sen\theta$

$$\frac{y}{a} = \cos\theta$$
 \Rightarrow $x = a.\cos\theta$

Piden:
$$2p = a + b + c$$

$$2p = a + a.sen\theta + a.cos\theta$$

$$\therefore 2p = a (1 + sen\theta + cos\theta)$$

De la figura, calcule el valor de x en función de m, n y φ.

Irwin y juan Carlos compran un terreno rectangular para sembrar yuca y camote, para ello dividen el terreno en dos partes iguales, trazando una diagonal. Si el ancho del terreno es **b** metros y el ángulo formado por la diagonal y el lado anterior del terreno es ϕ , calcule el área del terreno que le corresponde para sembrar cada tubérculo en términos de b y ϕ .

Resolución:

$$\frac{x}{b} = tan\phi$$

$$x = b.tan\phi$$

$$\triangle$$
 Área = (b.tan ϕ)(b)