公聴会 2008/1/8

Research on the Importance Sampling Method for Evolutionary Algorithms based on Probability Models

確率モデルに基づく進化計算のインポータン スサンプリングに関する研究

比護 貴之

はじめに

- サンプリングに基づく最適化
- 確率モデルに基づく進化計算: EAPM
 (Evolutionary Algorithms based on Probability Models)
 - 良い解の分布を統計的に推定
 - 推定分布からサンプリング
- 探索領域を絞り込む戦略

目標分布q(x)

- 目標分布:目標となる最適化過程
 - 例:ボルツマン分布

$$q(x) = \frac{e^{-f(x)\beta}}{Z}$$

 $\beta = 0: -$ 様分布

 $\beta = \infty$:最適解

近似分布p(x)

- 目標分布を近似する
- ・インポータンスサンプリング
 - 分散が推定精度に影響する
 - p(x)とq(x)が似てる方がよい

$$\int q(x)\log \hat{p}(x)dx \simeq \frac{1}{N} \sum \frac{q(x)}{p(x)}\log \hat{p}(x)$$

経験対数尤度

統計学(機械学習)

近似分布

近似分布

アニーリング

- アニーリング=ゆっくり収束させる
 - 分散を抑える効果

$$\frac{1}{N} \sum_{p_1(x)} \frac{q_2(x)}{p_1(x)} \log \hat{p}(x|\theta)$$

EAPMの最適化性能

• 最適化性能=モンテカルロ積分の良さ

$$\int q(x) \log \hat{p}(x) dx \simeq \frac{1}{N} \sum \frac{q(x)}{p(x)} \log \hat{p}(x)$$

- モンテカルロ積分の推定精度を上げる方法
 - サンプルの量
 - サンプルの質=p(x)とq(x)の類似度
 - ・アニーリング
 - 近似分布の統計的推定
 - •3つの方法で改良します!!

本研究のアプローチ

- ・【手法1】過去サンプルの再利用
- ・【手法2】乱雑度の階層型制御
 - 局所解からの脱出
- ・【手法3】収束スケジュール
 - 理論的接近
- 提案手法の適用範囲の評価
 - 離散空間:イジング(フラストレート)
 - 連続空間: Rastrigin, Rosenbrock

発表の流れ

- 1. 基本数理モデル(先行研究)
- 2. 【手法1】過去サンプルの再利用
- 3. 【手法2】乱雑度の階層型制御
- 4. 【手法3】収束スケジュール
- 5. 【実験1】離散空間
- 6. 【実験2】連続空間
- 7. まとめ

【手法1】過去サンプルの再利用

- EAPMではサンプルが不足
 - 過去に生成したサンプルの一部を再利用したい
- 過去サンプルの問題点
 - ある方法で集めたサンプルには偏りがある →集めたサンプルの分布が不明

例

GAで良い解だけを集めると多様性が失われ収束する

提案手法の概要: RPM

- 集めたサンプル分布の近似計算法の確立
 - インポータンスサンプリングが適用可能になる →偏りを消去できる
- 基本操作
 - 重み付け
 - 集めた過去サンプルの分布を記憶する
 - リサンプリング
 - 分布を変えずに集めた過去サンプルのサイズを変 更

実験: ベンチマーク問題

2D イジング模型

$$x = \{0, 1\}$$

$$f(x) = -\sum_{i=0}^{19} \sum_{j=0}^{19} \{J(x_{ij}, x_{i+1,j}) + J(x_{ij}, x_{i,j+1})\}$$

$$J(x_i, x_j) = \begin{cases} 1 & x_i = x_j \\ 0 & x_i \neq x_j \end{cases}$$

- -20×20
- 周期境界条件
- 最小値: -800

$$(x_{0,0})$$
 $(x_{0,1})$ $(x_{0,2})$ $(x_{0,19})$ $(x_{1,0})$ $(x_{1,1})$ $(x_{1,2})$ $(x_{1,19})$ $(x_{2,0})$ $(x_{2,1})$ $(x_{2,2})$ $(x_{2,19})$ $(x_{19,0})$ $(x_{19,1})$ $(x_{19,2})$ $(x_{19,19})$

実験設定

- 提案手法(RPM) vs 従来法(IDEAとEDA)
 - EDA: 過去サンプルを利用しない
 - IDEA: ヒューリスティックな過去サンプル利用法
 - 確率モデル:全変数独立

$$p(x|w) = \prod_{i} p(x_i|w_i)$$

- ・パラメータ
 - 同じ条件になるように設定

それぞれの組合せに対して10試行

結果

考察

- ヒューリスティックな方法は効果が弱い
 - 偏りを取り除くことが重要
 - インポータンスサンプリングは理論的にも実験的にも有効
- EDAでサンプルを増やしても効果がでない
 - 理論:RPMでは過去サンプルの分布が確率分 布に制約されない

手法1のまとめ: RPM

- EAPM(従来法)
 - ある方法で集めた過去サンプルを用いると、その偏りが問題となる
- 重み付けとリサンプリングによる過去サンプルの分布近似計算
 - インポータンスサンプリングが適用可能になる (サンプルの偏りを考慮して計算できる)
 - 実験により有効性を確認

【手法2】乱雑度の階層型制御

- 局所解の問題
 - 目標分布と近似分布がずれるとインポータンス サンプリングで有効なサンプルが生成されない

提案手法の概要: HIS

- 乱雑度の高いサンプルを混ぜる
 - サンプル生成分布が混合分布として定義可能
 - インポータンスサンプリングが適用可能→混合したサンプルから情報が取り出せる

アルゴリズム概要: HIS

Agosthm Maria Algosthm Maria Agosthm Maria A

• (1)サンプリングと(2)推定を繰り返す

(1) サンプリング

(2) 推定

実験: ベンチマーク問題

2D イジング模型

$$x = \{0, 1\}$$

$$f(x) = -\sum_{i=0}^{19} \sum_{j=0}^{19} \{J(x_{ij}, x_{i+1,j}) + J(x_{ij}, x_{i,j+1})\}$$

$$J(x_i, x_j) = \begin{cases} 1 & x_i = x_j \\ 0 & x_i \neq x_j \end{cases}$$

- -20×20
- 周期境界条件
- 最小値: -800

実験設定

- 提案手法(HIS) vs 従来法(EDA)
 - 確率モデル:全変数独立

$$p(x|w) = \prod_{i} p(x_i|w_i)$$

- ・パラメータ
 - HIS: 階層数L=10,20,30,40 サンプル数=10
 - EDA: サンプル数=100,500, 1000,3000

それぞれのパラメータに対して10試行

結果

Algorithm Maria Algorithm Mari

手法2のまとめ

- EAPM(従来法)
 - 局所解に陥ると脱出不可能
- 階層型制御
 - 異なる乱雑度を持つ複数分布からサンプリング
 - 混合サンプルからインポータンスサンプリングで 情報を抽出
 - 実験的に有効性を確認

【手法3】収束スケジュール

- 目標分布の決め方の理論的指針がない
 - (階層型制御では必須)

提案手法の概要

インポータンスサンプリングの分散を最小に したい

$$\min \operatorname{Var} \left(\frac{q_{t+1}(x)}{q_t(x)} \log \hat{p}(x) \right)_{q_t(x)}$$

完全に目標分布が近似できたと仮定

エントロピーを線形で減少させればよい

探索空間の広さ

- サンプルの受理確率: $\frac{\Omega_{l-1}}{\Omega_{l}}$
 - 下の分布から出て上の分布に入る確率
 - 探索空間の広さΩ
- 受理確率の最大化
 - 探索空間を等比減少
 - エントロピーを線形減少

指数オーダーの解空間に対して 線形時間で収束

実験

- 基本性質調査
 - Onemax:簡単
 - 2Dイジング: 複雑
- 先行研究との比較
 - Standard Deviation Schedule [Mhanig and Muhlenbein 2001]

Onemax

• 理論値とほぼ一致

2D イジング

- 一定の傾きでエントロピーを減少させたい (傾きはパラメータとして与えている)
- 近似的にしか実現できない

(SDSもほぼ同じ軌跡)

先行研究との比較

• 比較: Standard Deviation Schedule

緑の方が収束速度が速い

手法3のまとめ

- EAPM
 - 目標分布の理論的制御方法が存在しない
- エントロピー減少スケジュール
 - 探索空間を等比減少 =エントロピーを線形減少
 - 実験的に有効性を確認
 - 正しくエントロピーが制御できた場合: 指数オーダーの解空間に対して、線形時間の近 似最適化手法となる

適用範囲の評価実験

- 今まで
 - 離散空間+相関
- ここでの目的
 - 相関: 相関の種類
 - 連続: Rastrigin, Rosenbrock

【実験1】2Dイジング(フラストレート)

- 全ての制約を満たせないケース
 - 通常の制約: 隣接する変数が同じ値
 - 反転した制約: 隣接する変数が異なる値
 - 制約を満たせない部分は→揺らぎが生じる

- 実験1:通常

- 実験2:5%で制約を反転

- 実験3:10%で制約を反転

$$p(J=-1)=0\%$$

$$p(J=-1)=5\%$$

$$p(J=-1)=10\%$$

実験1:考察

- 予想した最適解に近い値が得られている
 - 揺らぎの影響はほぼない
- 反転制約10%でHISとRPMの差が無くなる
 - なぜか?

イジングの最適化過程

・ランダム

クラスター形成

改悪

クラスターを消すことが 2Dイジング最大の難所 HISが貢献

改善

クラスターは 反転制約で縮小する RPM=HIS クラスター消滅

局所解 複数同時フリップ

【実験1】まとめ

- 揺らぎの効果は無視できる
- 相関の数=クラスターサイズが難しさの原因
- 満たせない制約を追加→クラスターのサイズ が減少
 - クラスターサイズが小さい場合:RPM=HIS

【実験2】連続関数

• 問題

- Rosenbrock
 - 凸、変数間依存
 - ・独立の仮定は不適切
- Rastrigin
 - 2次関数+コサイン曲線(局所解)
 - ・独立の仮定OK

連続関数の結果

• 最適解到達回数(10回中)

全次元独立

	EDA	RPM	HIS
Rosenbrock	0	10	0
Rastrigin	10	0	10
S-Rastrigin	10	0	10

共分散考慮

	EDA	RPM	HIS
Rosenbrock	0	10	10
Rastrigin	10	0	3
S-Rastrigin	0	0	3

連続関数の結果

• 関数評価回数(単位:1E5)

独立

	EDA	RPM	HIS
Rosenbrock	8	11	X
Rastrigin	8	11	18
S-Rastrigin	9	14	1

=打ち切り時間

=幾何平均で4

共分散

	EDA	RPM	HIS
Rosenbrock	7	6	2
Rastrigin	9	9	4
S-Rastrigin	11	9	4

打ち切り時間の影響あり (成功ケースは2〜3)

【実験2】考察

- 理論:EDAには偏りが存在する
- RPM(アニーリング型)は局所解に弱い
 - けれど、分布推定が多少ダメでもOK
- HISは分布推結果の影響を受けやすい
 - RPMに比べて、HISは局所解に強い

	偏り消去	局所解	分布推定への依存
EDA	×	Δ	Δ
RPM	0	×	悪い分布でもOK
HIS	0	0	推定が悪いとダメ

【実験2】考察

- 階層数が少ないことの弊害
 - レアサンプルに過剰に反応
 - 悪い近似分布ができる→悪いサンプルが生成

研究の全体像

まとめ(RPM編)

- 過去サンプルの再利用
 - 統計的推定が安定化
 - 実験的な有効性を確認
 - 局所解に弱い

まとめ (HIS編)

- アニーリングのライバル手法
 - 局所解の構造に有効
 - 応用では階層数の適切な設定が重要
 - ・ 階層数が少ない→分布推定が不安定
 - ・ 階層数が多い→関数評価回数が増加
 - 局所解が少ければRPM(アニーリング)の方が よい
 - 2DイジングではHISが良い

まとめ(収束スケジュール)

- EAPM全体に貢献
 - 実験的に良い結果 (vs SDS)
- 理論的側面からの貢献
 - EAPM:指数オーダーの探索空間に対して、線 形時間で計算しようとしている

確率モデルに基づく進化計算に対する数理的改良

• 指針:最適化性能=対数尤度推定量の良さ

- 手法1:ポピュレーションメカニズム
 - 過去サンプル
- 手法2:乱雑度の階層型制御
 - 確率モデルの推定誤差
- 手法3:収束スケジュール
 - インポータンスサンプリングの効率
- 実験1(離散):イジング
- 実験2(連続):Rastrigin, Rosenbrock

理論的妥当性

+

実験的妥当性

御静聴ありがとうございました

分散(比熱)の発散

• 分散が急激に変わることが原因

1次元のイジングでも起きる

逆温度の設定方法

- あるエントロピーを持つ目標分布はどのよう に設定するか?
- サンプルからエントロピーが計算できる
 - 部分的一様分布は簡単
 - ボルツマン分布は少し難しい

$$\hat{S}(\beta) = \hat{\bar{f}}\beta + \log \hat{Z}$$
 $\frac{\partial S}{\partial \beta} = -\sigma^2 \beta$
 $\Delta S \simeq -\sigma^2 \int \beta \, d\beta$

正規化定数(分配関数)

- 正規化定数が計算できない場合
 - ZをISで推定

$$L(\theta) \simeq \frac{1}{\sum \frac{\tilde{q}(x)}{p(x)}} \sum \frac{\tilde{q}(x)}{p(x)} \log p(x|\theta)$$

• 目標分布
$$q(x) = \frac{\tilde{q}(x)}{Z}$$

$$Z = \int \tilde{q}(x) dx \simeq \frac{1}{N} \sum \frac{\tilde{q}(x)}{p(x)}$$

制御方法

- 目標:エントロピーを一定の割合で減らす
- エントロピーの微分

$$\frac{\partial S}{\partial \beta} = -\sigma^2 \beta$$

• 目的関数の分散が一定と仮定

$$\Delta S = \int -\sigma^2 \beta \, d\beta$$

$$\simeq -\sigma^2 \int \beta \, d\beta = \frac{-\sigma^2}{2} \{\beta_1^2 - \beta_0^2\}$$

対称KLとの比較

- 実はMCMCでも類似の結論が得られている
 - 交換率=対称KLから導かれる

$$r = -\sigma^2 (\beta_1 - \beta_0)^2$$
$$\beta_1 = \frac{\sqrt{-r}}{\sigma} + \beta_0$$

EDAではSDSという名 前で使われている

- 提案手法

$$r = -\sigma^2(\beta_1^2 - \beta_0^2)$$
$$\beta_1 = \sqrt{\beta_0^2 - \frac{r}{\sigma^2}}$$

提案手法によるサンプリングの様子

・常に乱雑度をキープ

ポピュレーションの問題点

ポピュレーションの確率分布がわからないのでインポータンスサンプリングが使えない

提案:リサンプリングによるポピュレーションモデル Resampling Population Model: RPM

目標分布から生成してると思えるようにポピュレーションを重み付け

操作1: 重みづけ

• ポピュレーションの各個体に重みをつける

$$X_{pop} = \{(x_i, w_i)\}_{i=1}^{N}$$

 $w_i = \frac{q(x_i)}{p(x_i)}$

 $\hat{q}(x)$

• q(x)の近似分布になる

$$\hat{q}(x) = \frac{1}{\sum w_i} \sum_{X} w_i \delta(x - x_i)$$

- 期待値をとるとインポータンスサンプリングになる

$$\int \frac{\hat{q}(x)f(x)dx}{\int \frac{p(x)}{p(x)}} \int \frac{q(x)}{p(x)}f(x) \simeq \int \frac{q(x)f(x)dx}{\int \frac{q(x)f(x)dx}{p(x)}} dx$$

次世代ポピュレーションの重み更新式

ポピュレーション

サンプル

$$X_{pop} = \{(x_i, w_i)\}_{i=1}^{N}$$

$$X_{pop} = \{(x_i, w_i)\}_{i=1}^N$$
 $X_{samp} = \{(x_i, 1)\}_{i=1}^M$

$$X_m = X_{pop} \cup X_{samp}$$

$$w^{(t+1)} = w^{(t)} \frac{q_{t+1}(x)}{p_m^{(t)}(x)}$$

サンプリングしない場合

$$w_{t+1} = w_t \frac{q_{t+1}(x)}{q_t(x)}$$

$$= w^{(t)} \frac{q_{t+1}(x)}{\alpha p_t(x) + (1 - \alpha)q_t(x)}$$

更新式

操作2: リサンプリング

- サンプルの数を減らす
 - 近似分布の性質をなるべく保存

$$\hat{q}(x) = \frac{1}{\sum w_i} \sum_{x_i \in X} w_i \delta(x - x_i)$$

$$\hat{q}(x) = \frac{1}{\sum w_i} \sum_{x_i \in X} w_i \delta(x - x_i)$$

- リサンプリング方法
 - 本研究では重みを保存した非復元抽出
 - 重複したサンプルを保存するのは無意味

考察:ポピュレーション収束の一般化

- HIS=「繰り返しEDA」の一般化
 - p(x)の推定が繰り返しEDAに比べて必ず良い

繰り返しEDA

HISの直感的イメージ(1)

• サンプルの共有

HISの直感的イメージ(2)

Comparison with Iterative EDA

- EDA (M=3000, C=0.5)
 - The 10 best results in 100 trials: -746, -736, -732, -732, -732, -730, -730, -730, -728, -726, -726
 - Average: -719 and Standard deviation: 15.68
 - HIS is -800 > -746
- Function evaluations
 - HIS is 2e6 vs. EDA is 7e7

目標分布スケジュール(1)

- 部分的一様分布
 - 制御パラメータ: 閾値 \tilde{f}
 - 正規化定数→生成候補解の数

$$q(x) = \frac{\tilde{q}(x|\tilde{f})}{Z}$$

$$\tilde{q}(x|\tilde{f}) = I(f(x) < \tilde{f})$$

$$= \begin{cases} 1 & f(x) < \tilde{f} \\ 0 & else \end{cases}$$

$$q_{l+1}(x)$$
 Z_{l+1}
 $q_{l}(x)$
 Z_{l}
 $q_{l-1}(x)$
 Z_{l-1}

目標分布スケジュール(2)

• インポータンスサンプリングの効率

$$\int q_l(x)r(x)dx = \frac{1}{M_{l-1}} \sum_{q_{l-1}(x)} \frac{q_l(x)}{q_{l-1}(x)} r(x)$$

- 無駄サンプル: x s.t. $\frac{q_l(x)}{q_{l-1}(x)} = 0$
- ullet 無駄サンプル生成確率: $rac{Z_l}{Z_{l-1}}$

目標分布スケジュール(3)

• 無駄サンプルの和の期待値

$$\sum_{l} M_{l-1} \frac{Z_l}{Z_{l-1}}$$

• 極值条件

$$M_{l-1}\frac{Z_l}{Z_{l-1}} = M_l \frac{Z_{l+1}}{Z_l}$$

• 探索空間を指数的に縮小

$$1:10=10:100$$

目標分布スケジュール(4)

・閾値パラメータの決定

$$Z_{l} = \int \tilde{q}_{l}(x)dx$$

$$\simeq \frac{1}{M_{m}} \sum \frac{\tilde{q}_{l}(x)}{p_{m}(x)}$$

$$q(x) = \frac{\tilde{q}(x|\tilde{f})}{Z}$$

$$\tilde{q}(x|\tilde{f}) = I(f(x) < \tilde{f})$$

$$= \begin{cases} 1 & f(x) < \tilde{f} \\ 0 & else \end{cases}$$

考察: HIS vs EDA

- HISは時間をかければ良い解が得られる
- HISはいつでも打ち切り可能
 - EDA: 解の質と評価回数のトレードオフが パラメータに依存

Discussion

- HISは良い解を与える
- HISは局所解を脱出している
 - EDAにおける局所解とは何か?
 - なぜHISは局所解を脱出できるのか?

インポータンスサンプリング(IS)の効率

- 悪いISは悪い確率モデルを生成する
- 悪い確率モデルは悪いISの原因になる

EDA: 局所解

一度でも悪い確率モデルが生成されると、以後も悪い確率モデルが生成される

EDA: 局所解

一度でも悪い確率モデルが生成されると、以後も悪い確率モデルが生成される

HIS: 局所解からの脱出

• 上の方にある確率モデルは、初期段階では 悪い

HIS: Escaping from Local Optima

悪い確率モデルは下からのサンプルを使って、改良される

HIS: Escaping from Local Optima

下の確率モデルから順番に、確率モデルが 改良されていく

HIS: Escaping from Local Optima

下の確率モデルから順番に、確率モデルが 改良されていく

HIS: Escaping Local Optima

• 最終的には、全ての確率モデルが改良される(ことが期待できる)

生成サンプル数と関数評価回数

サンプル数を増やせば、統計誤差やバイアスは小さくなるが、関数評価回数は増える

目標分布q(x)の例

- 部分的一様分布
 - 閾値 \widetilde{f} :エントロピーを制御

$$q(x) = rac{ ilde{q}(x| ilde{f})}{Z}$$
 (Zは正規化定数)
$$ilde{q}(x| ilde{f}) = I(f(x) < ilde{f}) = \begin{cases} 1 & f(x) < ilde{f} \\ 0 & else \end{cases}$$

EDAの数理モデル

• 確率モデルを逐次的に生成

提案: 階層型インポータンスサンプリング Hierarchical Importance Sampling (HIS)

全ての確率モデルを同時に繰り返し更新エントロピーの異なるサンプルを混ぜる

HIS:アルゴリズム

Agottem Maria Algottem Maria Agottem Maria A

• (1)サンプリングと(2)推定を繰り返す

(1) サンプリング

(2) 推定

(1)サンプリング

• 1度にサンプリング

(2)推定

- 確率分布推定に全てのサンプルを使う
 - サンプル生成分布は混合分布

混合分布

$$\frac{1}{3}p_1(x) + \frac{1}{3}p_2(x) + \frac{1}{3}p_3(x)$$

混合分布によるインポータンスサンプリング

サンプルが従う分布:

$$p_m(x) = \frac{1}{3}p_1(x) + \frac{1}{3}p_2(x) + \frac{1}{3}p_3(x)$$

• 経験対数尤度

$$(q_2(x))$$
 $(p_2(x))$

$$\max_{\theta} L_i(\theta) = \frac{1}{N} \sum_{i} \frac{q_i(x)}{p_m(x)} \log \hat{p}(x|\theta)$$

サンプル 十 サンプル 十 サンプル

インポータンスサンプリングの効率

- 棄却されるサンプルの数=探索空間の比
 - 推定量の分散に影響

$$\operatorname{Var}\left(\frac{q_{t+1}(x)}{q_t(x)}\log\hat{p}(x)\right)_{q_t(x)} = \frac{\Omega_l}{\Omega_{l+1}}\operatorname{Var}\left(\log\hat{p}(x)\right)_{q_t(x)}$$

$$\min \sum_{l} \frac{\Omega_l}{\Omega_{l-1}}$$

$$\log \Omega_{l+1} - \log \Omega_l = \log \Omega_l - \log \Omega_{l-1}$$

探索空間を指数的に減少

研究の目的:尤度推定の改良

• 統計的推定の3つの要素

EAPM

統計学(機械学習)

$$\int q(x) \log \hat{p}(x) dx \simeq \sum \frac{q(x)}{p(x)} \log \hat{p}(x)$$
• 目標:モンテカルロ積分の改良

- - サンプル数を増やす
 - 分散を減らす→q(x)に近いp(x)を使う

考察

- 提案手法は局所解を脱出する
 - 確率モデルが徐々に改善される =推定誤りの修正

