STEP I 2017 Mark Scheme

Question 1

(i)
$$u = x \sin x + \cos x$$

$$\frac{du}{dx} = \sin x + x \cos x - \sin x$$

$$= x \cos x$$

$$\int \frac{x}{x \tan x + 1} dx = \int \frac{x \cos x}{x \sin x + \cos x} dx$$

$$= \ln |u| + c$$

$$\therefore \int \frac{x}{x \tan x + 1} dx = \ln |x \sin x + \cos x| + c$$
M1

$$\int \frac{x}{x \cot x - 1} dx = \int \frac{x \sin x}{x \cos x - \sin x} dx$$

$$\text{Let } u = x \cos x - \sin x$$

$$\frac{du}{dx} = \cos x - x \sin x - \cos x$$

$$= -x \sin x$$

$$\int \frac{x}{x \cot x - 1} dx = \int \frac{1}{u} dx = -\ln |u| + c$$

$$\therefore \int \frac{x}{x \cot x - 1} dx = \int \frac{1}{u} dx = -\ln |u| + c$$

$$\frac{du}{dx} = \cos x - x \sin x - \cos x = -\ln |u| + c$$

$$\frac{du}{dx} = \cos x - x \sin x - \cos x - \sin x = -x \sin x$$
M1 A1

(ii) Let $u = x \sec^2 x - \tan x$

$$\frac{du}{dx} (\sec^2 x) = 2 \sec x (\sec x \tan x) = 2 \sec^2 x \tan x$$
A1

$$\frac{du}{dx} = \sec^2 x + 2x \sec^2 x \tan x - \sec^2 x = 2x \sec^2 x \tan x$$
A1

So
$$\int \frac{x \sec^2 x \tan x}{x \sec^2 x - \tan x} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + c$$

$$\int \frac{x \sin x \cos x}{x \sec^2 x - \tan x} dx = \frac{1}{2} \ln |x \sec^2 x - \tan x| + c$$
A1

$$\int \frac{x \sin x \cos x}{(x - \sin x \cos x)^2} dx = \int \frac{x \sec^2 x \tan x}{(x \sec^2 x - \tan x)^2} dx$$
Using same substitution as previous integral:
$$= \frac{1}{2} \int \frac{1}{u^2} du = -\frac{1}{2u} + c$$
A1

 $\int \frac{x \sin x \cos x}{(x - \sin x \cos x)^2} dx = -\frac{1}{2(x \sec^2 x - \tan x)} + c$

A1

An **A1** should be lost if modulus signs or +c are omitted in the final answer for any section, but only on the first occasion.

M1	Calculation of $\frac{du}{dx}$
A1	Correct expression
M1	Use of $\tan x = \frac{\sin x}{\cos x}$
A1	Integral simplified and in terms of u
A1	Integration completed correctly in terms of u
M1	Integral rewritten in terms of <i>x</i>
	Subtotal: 6
M1	Rewriting integral in a form ready for substitution
M1	Correct choice of substitution
A1	Correctly differentiated
A1	Correct final answer.
	Subtotal: 4
M1	Choice of a sensible substitution, based on the denominator.
A1	Correct choice
A1	Differentiation of $\sec^2 x$
A1	Correct $\frac{du}{dx}$
A1	Correct final answer.
	Subtotal: 5
M2	Transformation of the integral so that the denominator is similar to the first part.
A1	Correctly transformed.
A1	Correct integral in terms of u
A1	Correct final answer.
	Subtotal: 5

(i)
$$\int_{1}^{x} \frac{1}{t} dt = [\ln|t|]_{1}^{x} = \ln x$$
 M1
$$\int_{1}^{x} 1 dt = [t]_{1}^{x} = x - 1$$
 Therefore, $\ln x \le x - 1$

Over the interval
$$x \le t \le 1, \frac{1}{t} \ge 1$$

Taking the integral over the range $x \le t \le 1$ gives the inequality

Therefore
$$\ln x \le x - 1$$

(ii)
$$\int_{1}^{x} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{1}^{x} = 1 - \frac{1}{x}$$
 M1 A1

Therefore, integrating both sides gives

$$1 - \frac{1}{x} \le \ln x$$
 M1 A1

and so $\ln x \ge 1 - \frac{1}{x}$ for $x \ge 1$

For
$$0 < x < 1$$
, integrating $\frac{1}{t^2} \ge \frac{1}{t}$ over the interval $x \le t \le 1$ gives:
 $\frac{1}{x} - 1 \ge -\ln x$

So
$$\ln x \ge 1 - \frac{1}{x}$$
 for $0 < x < 1$ as well and so (**) is true for $x > 0$.

ALTERNATIVE

$$\frac{d}{dx}\left(1-\frac{1}{x}\right) = \frac{1}{x^2} \text{ and } \frac{d}{dx}(\ln x) = \frac{1}{x}$$
When $x = 1$, $1-\frac{1}{x} = 0 = \ln x$

dM1

$$\frac{1}{x^2} \ge \frac{1}{x} \text{ for } x \le 1$$

Therefore, since the two sides of the inequality are equal when x=1, the LHS grows more rapidly for x<1 and the RHS grows more rapidly for x>1, the inequality is true.

(iii)
$$\int_{1}^{y} \ln x \, dx = \int_{1}^{y} 1 \times \ln x \, dx$$

$$u = \ln x \quad \frac{dv}{dx} = 1$$

$$\frac{du}{dx} = \frac{1}{x} \quad v = x$$

$$\int_{1}^{y} \ln x \, dx = [x \ln x]_{1}^{y} - \int_{1}^{y} 1 \, dx = y \ln y - y + 1$$

Integrating (*):

For
$$y > 1$$
:

$$y \ln y - y + 1 \le \frac{y^2}{2} - y + \frac{1}{2}$$

Therefore
$$2y \ln y \le (y^2 - 1)$$
 and so $\frac{\ln y}{y - 1} \le \frac{y + 1}{2y}$ (since $2(y - 1) > 0$)

For 0 < y < 1:

$$y - y \ln y - 1 \le -\frac{y^2}{2} + y - \frac{1}{2}$$

Therefore
$$2y \ln y \ge \frac{y^2}{2} - y + \frac{1}{2}$$
 and so $\frac{\ln y}{y-1} \le \frac{y+1}{2y}$ (since $2(y-1) < 0$)

Integrating (**):

For
$$y > 1$$
: M1

$$y \ln y - y + 1 \ge y - \ln y - 1$$

Therefore
$$(y+1) \ln y \ge 2(y-1)$$
 and so $\frac{2}{y+1} \ge \frac{\ln y}{y-1}$ (since $(y-1)(y+1) > 0$) **A1**

For
$$0 < y < 1$$
:
 $y - y \ln y - 1 \ge \ln y + 1 - y$

Therefore
$$(y+1) \ln y \le 2(y-1)$$
 and so $\frac{2}{y+1} \ge \frac{\ln y}{y-1}$ (since $(y-1)(y+1) < 0$) **A1**

M1	Integration of one of the sides of the inequality (indefinite integration OK)
A1	Integration of both sides of the inequality and conclusion reached. (In the case of the RHS
^-	an alternative would be a clear explanation in terms of area of rectangle)
M1	Statement of the inequality for this range of values for t .
A1	Correctly drawn conclusion.
71	Subtotal: 4
M1	Integration of LHS of inequality. (indefinite integration OK)
A1	Integration completed correctly.
M1	Inequality formed by integrating both sides of inequality
A1	Correct deduction of (**) for $x \ge 1$
	sup to this point can be awarded if there is no consideration of which values of x (**) is
showr	
M1	Integration of correct inequality for $0 < x < 1$
A1	Conclusion of (**) including clear explanation of how it is shown for whole range.
Note that substituting $\frac{1}{x}$ for x in (*) gives $\ln \frac{1}{x} \le \frac{1}{x} - 1$, which leads to $-\ln x \le \frac{1}{x} - 1$ and then to	
	irectly, but no marks for this as question requires starting from a different inequality.
(**) d	
(**) d	irectly, but no marks for this as question requires starting from a different inequality.
(**) d.	RNATIVE Two differentiations. Correctly completed.
(**) d ALTER M1	irectly, but no marks for this as question requires starting from a different inequality. RNATIVE Two differentiations.
(**) d ALTER M1 A1	RNATIVE Two differentiations. Correctly completed.
(**) d ALTER M1 A1 dM1	irectly, but no marks for this as question requires starting from a different inequality. RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$
(**) d. ALTER M1 A1 dM1 B1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds.
(**) d ALTER M1 A1 dM1 B1 G1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality.
(**) d. ALTER M1 A1 dM1 B1 G1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched.
(**) d. ALTER M1 A1 dM1 B1 G1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Subtotal: 6
(**) d. ALTER M1 A1 dM1 B1 G1 E1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Subtotal: 6 Use of integration by parts to integrate $\ln x$ (indefinite integration OK)
(**) d ALTER M1 A1 dM1 B1 G1 E1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Subtotal: 6 Use of integration by parts to integrate $\ln x$ (indefinite integration OK) Correct integral
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Use of integration by parts to integrate $\ln x$ (indefinite integration OK) Correct integral Integration of both sides of inequality in case $y>1$. Inequality deduced for case $y>1$.
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1 A1	RNATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Subtotal: 6 Use of integration by parts to integrate $\ln x$ (indefinite integration OK) Correct integral Integration of both sides of inequality in case $y>1$. Inequality deduced for case $y>1$. Integration of both sides of inequality in case $0< y<1$.
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1 A1	Integration of both sides of inequality in case $0 < y < 1$. Inequality deduced for case $0 < y < 1$. Inequality deduced for case $0 < y < 1$.
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1 A1 M1	Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$.
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1 A1 M1 A1	irectly, but no marks for this as question requires starting from a different inequality. INATIVE Two differentiations. Correctly completed. Consideration of $x=1$ Correct inequality. Graph to illustrate that the inequality holds. Explanation (award the G1 also for a good explanation without the graph sketched. Subtotal: 6 Use of integration by parts to integrate $\ln x$ (indefinite integration OK) Correct integral Integration of both sides of inequality in case $y>1$. Inequality deduced for case $y>1$. Inequality deduced for case $0 < y < 1$. Integration of both sides of inequality in case $y>1$. Integration of both sides of inequality in case $y>1$. Integration of both sides of inequality in case $y>1$. Integration of both sides of inequality in case $y>1$. Integration of both sides of inequality in case $y>1$. Integration of both sides of inequality in case $y>1$.
(**) d ALTER M1 A1 dM1 B1 G1 E1 M1 A1 M1 A1 M1	Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$. Integration of both sides of inequality in case $y > 1$.

$$2y\frac{dy}{dx}=4a \hspace{1cm} \text{M1}$$
 At $P, \frac{dy}{dx}=\frac{4a}{2(2ap)}=\frac{1}{p}$ A1
Therefore the equation of the tangent is:
$$y-2ap=\frac{1}{p}(x-ap^2) \hspace{1cm} \text{M1}$$

$$y=\frac{1}{p}x+ap \hspace{1cm} \text{A1}$$
 Similarly, the equation of the tangent at Q is $y=\frac{1}{q}x+aq$ B1
Coordinates of R:
$$\frac{1}{p}x+ap=\frac{1}{q}x+aq \hspace{1cm} \text{M1}$$

$$qx+ap^2=qpx+apq^2 \hspace{1cm} \text{M1}$$

$$qx+ap^2=qpx+apq^2 \hspace{1cm} \text{M1}$$

$$qx+ap^2=qpx+apq^2 \hspace{1cm} \text{M1}$$

$$qx+ap^2=qpx+apq^2 \hspace{1cm} \text{M1}$$
 A1 A1
$$(p-q)x=apq(p-q) \hspace{1cm} \text{Therefore } x=apq. \hspace{1cm} [y=\frac{1}{p}(apq)+ap=a(p+q)] \hspace{1cm} \text{The coordinates of R are } (apq,a(p+q)) \hspace{1cm} \text{Other coordinates are:} S(0,ap) \text{ and } T(0,aq) \hspace{1cm} \text{Area of RST:}$$
Using the edge along the y-axis as the base:
Base length = $a(p-q)$ M1 A1
Height = $-apq$ M1 A1
Height = $-apq$ A1
Triangles to be removed:
$$(P): Area = \frac{1}{2}(ap^2+aq^2)(2ap-2aq) = a^2(p^2+q^2)(p-q) \hspace{1cm} \text{M2 A1}$$
Triangles to be removed:
$$(P): Area = \frac{1}{2}(aq^2)(-2aq) = -a^2q^3 \hspace{1cm} \text{Therefore area of OPQe} = a^2(p^2+q^2)(p-q) - a^2p^3 + a^2q^3 \hspace{1cm} \text{A1 A1}$$

$$Area = a^2(p^3+pq^2-p^2q-q^3-p^3+q^3) = a^2pq(q-p) \hspace{1cm} \text{M1 A1}$$

$$B1$$

Therefore the area of OPQ is twice the area of RST

Differentiation.	
Gradient correct.	
Equation of line through P with this gradient.	
Establish given equation.	
	Subtotal: 4
Tangent at Q.	
	Subtotal: 1
Equating y coordinates.	
Solve for x (allow mark if signs are incorrect).	
Correct signs.	
	Subtotal: 3
Coordinates of other points.	
Valid method for area of triangle.	
Area correct.	
Sign correct.	
	Subtotal: 4
Valid method for calculation of the area.	
Correct area for one shape that is needed.	
Correct area for at least one other shape that is needed.	
Correct areas found for all shapes needed.	
Combine all areas correctly.	
Correct area of the triangle.	
All correct and conclusion reached.	
	Subtotal: 8
	Gradient correct. Equation of line through P with this gradient. Establish given equation. Tangent at Q. Equating y coordinates. Solve for x (allow mark if signs are incorrect). Correct signs. Coordinates of other points. Valid method for area of triangle. Area correct. Sign correct. Valid method for calculation of the area. Correct area for one shape that is needed. Correct areas found for all shapes needed. Combine all areas correctly. Correct area of the triangle.

(i)

Since |r| < 1, upper bound for p is the value when r = 1.

Therefore $\frac{3}{4} \le p < 3$

Since |r| < 1, there is only one value of r that corresponds to each value of p in the range 1 (as can be seen on the graph). Therefore values of <math>p in that range determine r (and hence S) uniquely.

If $\frac{3}{4} then there are two values of <math>r$ that satisfy $1 + r + r^2 = p$.

Rearranging $S = \frac{1}{1-r}$ gives $r = 1 - \frac{1}{S}$

Substituting:

$$1 + \left(1 - \frac{1}{S}\right) + \left(1 - \frac{1}{S}\right)^2 = p$$
 M1

So $3 - \frac{3}{S} + \frac{1}{S^2} = p$ and therefore $(3 - p)S^2 - 3S + 1 = 0$

(ii)
$$1 + 2r + 3r^2 \equiv 3\left(r + \frac{1}{3}\right)^2 + \frac{2}{3}$$
 M1 A1

At
$$r = -1$$
, $1 + 2r + 3r^2 = 2$
At $r = 1$, $1 + 2r + 3r^2 = 6$

Therefore values of q in the range $2 \le q < 6$ determine r, and hence T uniquely. **B1**

If $q = \frac{2}{3}$ then the value of r and hence T is also determined uniquely.

For
$$\frac{2}{3} < q < 2$$
, there are two values of r .

$$(1-r)^2 = \frac{1}{r}$$
, so $r = 1 - \frac{1}{\sqrt{T}}$

Therefore
$$q = 1 + 2\left(1 - \frac{1}{\sqrt{T}}\right) + 3\left(1 - \frac{1}{\sqrt{T}}\right)^2$$

$$q = 6 - \frac{8}{\sqrt{T}} + \frac{3}{T}$$
 and so $(6 - q)T + 3 = 8\sqrt{T}$

Squaring:

$$(6-q)^2T^2 + 6(6-q)T + 9 = 64T$$

$$(6-q)^2T^2 - (28+6q)T + 9 = 0$$

B1	Correct shape (must include range $ r $ <1).
M1	Completing the square (or differentiating) to find minimum.
A1	Correct minimum point.
B1	y-intercept at (0,1).
B1	No intercept with x-axis.
B1	Upper bound for p justified.
B1	Any valid explanation.
M1	Rearrangement of the formula for S.
M1	Substitution into the formula for p.
A1	Correct solution.
	Subtotal: 10
M1	Completing the square (or differentiation to find minimum)
A1	Completion of square done correctly.
B1	Calculation of the value at the two endpoints.
B1	Interval $2 \le q < 6$ identified.
B1	$q = \frac{2}{3}$ identified.
	Subtotal: 5
B1	Correct interval identified.
M1	Rearrangement of the formula for T.
A1	Substitution into the formula for q.
M1	Simplification into a three term quadratic in \sqrt{T} .
A1	Quadratic in T found.
	Subtotal: 5

The width of the rectangle is (s - x)The height of the rectangle is $x \tan \beta$ Therefore the area is $x(s-x) \tan \beta$ **B1 AG** The coordinates of R must be $(s, \sqrt{a^2 - s^2})$ **B1** The coordinates of Q must be $(x, x \tan \beta)$ Therefore $x \tan \beta = \sqrt{a^2 - s^2}$ since both must have the same y-coordinate **M1** So $s^2 = a^2 - x^2 \tan^2 \beta$, $s = \sqrt{a^2 - x^2 \tan^2 \beta}$ Α1 $2s\frac{ds}{dx} = -2x\tan^2\beta$ $\frac{dA}{dx} = (s - x)\tan\beta + x\left(\frac{ds}{dx} - 1\right)\tan\beta$ M1 M1 A1 Substituting for $\frac{ds}{ds}$: **M1** $\frac{dA}{dx} = (s - x) \tan \beta + x \left(-\frac{x}{s} \tan^2 \beta - 1 \right) \tan \beta$ $\frac{dA}{dx} = (s - 2x) \tan \beta - \frac{x^2}{s} \tan^3 \beta$ A1 AG ALTERNATIVE (from $s^2 = a^2 - x^2 \tan^2 \beta$, $s = \sqrt{a^2 - x^2 \tan^2 \beta}$) $A = x \tan \beta \sqrt{a^2 - x^2 \tan^2 \beta} - x^2 \tan \beta$ dM1 $\frac{dA}{dx} = \tan \beta \sqrt{a^2 - x^2 \tan^2 \beta} - 2x \tan \beta - \frac{x \tan \beta (2x \tan^2 \beta)}{2\sqrt{a^2 - x^2 \tan^2 \beta}}$ M1 A1 Since $\sqrt{a^2 - x^2 \tan^2 \beta}$, $\frac{dA}{dx} = (s - 2x) \tan \beta - \frac{x^2}{s} \tan^3 \beta$ M1 A1 Stationary points when $(s - 2x) \tan \beta - \frac{x^2}{s} \tan^3 \beta = 0$ $s^2 - 2xs - x^2 \tan^2 \beta = 0$ **M1 M1** $s = x + x\sqrt{1 + \tan^2 \beta}$ (since s > x) M1 A1 Therefore $s = x(1 + \sec \beta)$ AG $s^{2} = x^{2}(1 + \sec \beta)^{2}$ $a^{2} - x^{2} \tan^{2} \beta = x^{2}(1 + \sec \beta)^{2}$ $x^{2}(1 + 2\sec \beta + \sec^{2} \beta + \tan^{2} \beta) = a^{2}$ $2x^{2} \sec \beta (1 + \sec \beta) = a^{2}$ **M1** Α1 $A = x(x \sec \beta) \tan \beta$ **M1** $A = \frac{1}{2}a^2 \left(\frac{\tan \beta}{1 + \cos \beta}\right)$ Α1 $=\frac{1}{2}a^2\left(\frac{\sin\beta}{\cos\beta+1}\right)$ $= \frac{1}{2} a^2 \left(\frac{2 \sin \frac{1}{2} \beta \cos \frac{1}{2} \beta}{2 \cos \frac{1}{2} \beta - 1 + 1} \right)$ **M1** $=\frac{1}{2}a^2\left(\tan\frac{1}{2}\beta\right)$ A1 AG $\tan \angle ROS = \frac{x \tan \beta}{x(1 + \sec \beta)}$ $\tan \angle ROS = \tan \frac{1}{2}\beta$ so $\angle ROS = \frac{1}{2}\beta$ B1 AG

B1	Clear explanation of the formula for the area of the rectangle.
B1	Coordinates of R deduced (use of Pythagoras / radius of circle).
M1	Equating y-coordinates for Q and R.
A1	Expression for s in terms of a , x and β .
M1	Differentiation to find $\frac{ds}{dx}$
M1	Differentiation of the expression for A .
A1	Correct differentiated expression.
M1	Substitution for $\frac{ds}{dx}$
A1	Rearrangement to required form.
ALTER	RNATIVE
dM1	Substitution.
M1	Differentiation with respect to x (must either treat $\tan \beta$ as constant or have an expression
	involving $\frac{d\beta}{dx}$.)
A1	Correct derivative.
M1	Use of other formula.
A1	Correctly deduced relationship.
	Subtotal: 9
M1	Use of $\frac{ds}{dx} = 0$.
M1	Use of quadratic formula.
M1	Use of $1 + \tan^2 \beta \equiv \sec^2 \beta$
A1	Correct value for s determined, including justification of which root of the quadratic.
	Subtotal: 4
M1	Attempt to eliminate s from equation found in the first part of the question.
A1	Correct relationship.
M1	Substitution into the formula for the area.
A1	Correct formula obtained.
M1	Use of double angle formulae.
A1	Correct expression for the area.
B1	Justification for the size of angle ROS.
· ·	Subtotal: 7

(i) Suppose that $f(x) \ge 0$ for all values of x in the interval. Then $\int_0^1 f(x) dx > 0$ В1 (since $f(x) \neq 0$ for some value of x in the interval).

Similarly, if $f(x) \le 0$ for all values of x in the interval. Then $\int_0^1 f(x) \, dx < 0$ (since $f(x) \neq 0$ for some value of x in the interval).

Therefore if $\int_0^1 f(x) dx = 0$, f(x) must take both positive and negative values in the interval $0 \le x \le 1$

B1

 $\int_0^1 (x - \alpha)^2 g(x) dx = \int_0^1 x^2 g(x) dx - 2\alpha \int_0^1 x g(x) dx + \alpha^2 \int_0^1 g(x) dx$ $= \alpha^2 - 2\alpha^2 + \alpha^2 = 0$ **M1** Α1

Since $\int_0^1 g(x) dx = 1$, g(x) must be non-zero for some value of x in the interval **M1**

Therefore, by (i), g(x) takes both positive and negative values in the interval **M1** $0 \le x \le 1$.

Therefore, g(x) takes the value 0 at some point in the interval $0 \le x \le 1$. Α1

If g(x) = a + bx, then:

$$\int_0^1 g(x) dx = \left[ax + \frac{1}{2} bx^2 \right]_0^1$$

Therefore, $a + \frac{1}{2}b = 1$ **B1**

$$\int_0^1 x g(x) dx = \left[\frac{1}{2} a x^2 + \frac{1}{3} b x^3 \right]_0^1$$

Therefore, $\frac{1}{2}a + \frac{1}{3}b = \alpha$ **B1**

$$\int_0^1 x^2 g(x) dx = \left[\frac{1}{3} ax^3 + \frac{1}{4} bx^4 \right]_0^1$$

Therefore, $\frac{1}{3}a + \frac{1}{4}b = \alpha^2$ В1

From the first two equations:

$$a = 4 - 6\alpha$$
, $b = 12\alpha - 6$

Substituting into the third equation:

$$\frac{1}{3}(4-6\alpha) + \frac{1}{4}(12\alpha - 6) = \alpha^2$$

$$\alpha^2 - \alpha + \frac{1}{6} = 0$$
M1

Therefore $\alpha=\frac{3\pm\sqrt{3}}{6}$ So $g(x)=1-\sqrt{3}+2x\sqrt{3}$ or $g(x)=1+\sqrt{3}-2x\sqrt{3}$ **A1**

So
$$g(x) = 1 - \sqrt{3} + 2x\sqrt{3}$$
 or $g(x) = 1 + \sqrt{3} - 2x\sqrt{3}$

Therefore the values of g(0) and g(1) are $1-\sqrt{3}$ and $1+\sqrt{3}$ and so g(x)=0**E1** for some value of x in the interval $0 \le x \le 1$.

(iii) $\int_0^1 h'(x) dx = h(1) - h(0) = 1$ $\int_0^1 x h'(x) dx = [xh(x)]_0^1 - \int_0^1 h(x) dx$ **B1**

M1 A1 So $\int_0^1 xh'(x) dx = 1 - \beta$

$$\int_{0}^{1} x^{2} h'(x) dx = [x^{2} h(x)]_{0}^{1} - 2 \int_{0}^{1} x h(x) dx$$
So $\int_{0}^{1} x^{2} h'(x) dx = 1 - \beta(2 - \beta) = (1 - \beta)^{2}$

Therefore, the conditions of (*) are met $(g(x) = h'(x), \alpha = 1 - \beta)$.

Therefore h'(x) = 0 for some value of x in the interval $0 \le x \le 1$. **B1**

B1	Correct statement considering either $f(x)$ always positive or always negative.
B1	Statement that corresponding result is true in the other case and conclusion of proof by
	contradiction.
	Subtotal: 2
M1	Expansion of $(x - \alpha)^2$ and split of integral.
A1	Establish that the value of the integral is 0.
M1	Identify one of the conditions required to apply the result from (i)
M1	Apply result from (i)
A1	Draw the required conclusion.
	Subtotal: 5
B1	Relationship between a and b .
B1	Relationship between a , b and α .
B1	Relationship between a , b and a .
M1	Elimination of two of the variables.
A1	Value of one of the variables found.
A1	Correct choice of $g(x)$.
B1	Verification that there is a root in the interval.
	Subtotal: 7
B1	Confirm that first condition is satisfied.
M1	Use of integration by parts.
A1	Confirm that second condition is satisfied.
M1	Use of integration by parts.
A1	Confirm that the third condition is satisfied.
B1	Apply the previous result to draw the conclusion.
	Subtotal: 6

 $|CL| = \frac{a}{\sqrt{2}}$

(i) CMA is an isosceles triangle, with |CA|=b and |CM|=|AM| Angle $CMA=120^\circ$ B1 $b^2=2|CM|^2-2|CM|^2\cos 120$ M1 $|CM|^2=\frac{b^2}{3}$ $|CM|=\frac{b}{\sqrt{3}}$

B1

- (ii) $|LM|^2 = |CM|^2 + |CL|^2 2|CM||CL|\cos \angle LCM$ $|LM|^2 = \frac{a^2}{3} + \frac{b^2}{3} - \frac{2ab}{3}\cos \angle LCM$ $|AB|^2 = |BC|^2 + |CA|^2 - 2|BC||CA|\cos \angle ACB$ $c^2 = a^2 + b^2 - 2ab\cos \angle ACB$ $\angle LCM = \angle ACB + 60^\circ$ M1
 - $\angle LCM = \angle ACB + 60^{\circ}$ Therefore $\cos \angle LCM = \frac{1}{2}\cos \angle ACB \frac{\sqrt{3}}{2}\sin \angle ACB$ $|LM|^{2} = \frac{a^{2}}{3} + \frac{b^{2}}{3} \frac{ab}{3}(\cos \angle ACB \sqrt{3}\sin \angle ACB)$ $|LM|^{2} = \frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{1}{6}c^{2} \frac{1}{6}a^{2} \frac{1}{6}b^{2} + \frac{ab\sqrt{3}}{3}\sin \angle ACB$ M1
 - $6|LM|^2 = a^2 + b^2 + c^2 + 4\sqrt{3}\Delta$ A similar argument will show that $6|MN|^2 = 6|NL|^2 = a^2 + b^2 + c^2 + 4\sqrt{3}\Delta$, so
 - A similar argument will show that $O[MN] = O[NL] = u + b + c + 4\sqrt{3}\Delta$, so **B1**LMN is an equilateral triangle.
 - The area of LMN is $\frac{\sqrt{3}}{4}|LM|^2$
 - If $a^2+b^2+c^2=4\sqrt{3}\Delta$, then the area of LMN is $\frac{\sqrt{3}}{4}\times\frac{4\sqrt{3}}{3}\Delta=\Delta$ **B1** If the area of LMN is equal to the area of ABC:
 - $\frac{\sqrt{3}}{24} (a^2 + b^2 + c^2 + 4\sqrt{3}\Delta) = \Delta$ $\sqrt{3} (a^2 + b^2 + c^2) + 12\Delta = 24\Delta$ $a^2 + b^2 + c^2 = 4\sqrt{3}\Delta$ B1
- (iii) If $(a-b)^2 = -2ab(1-\cos(C-60^\circ))$, then $a^2 2ab + b^2 = -2ab + 2ab\cos(C-60^\circ)$ $a^2 + b^2 = ab\cos C + ab\sqrt{3}\sin C$ M1 $\Delta = \frac{1}{2}ab\sin C$, and by the cosine rule $c^2 = a^2 + b^2 2ab\cos C$ M1 $a^2 + b^2 = \frac{1}{2}(a^2 + b^2 c^2) + 2\sqrt{3}\Delta$ A1 All steps are reversible, so the conditions are equivalent. B1
 - The areas of the triangles are equal if and only if $a^2+b^2+c^2=4\sqrt{3}\Delta$, which is equivalent to $(a-b)^2=-2ab(1-\cos(\mathcal{C}-60^\circ))$.
 - Since $(a-b)^2 \ge 0$ and $-2ab(1-\cos(\mathcal{C}-60^\circ)) \le 0$ this can only be satisfied if both sides are equal to 0.
 - Therefore a=b and $\cos(C-60^\circ)=1$, so $C=60^\circ$. So ABC is an equilateral triangle.

B1	Value of angle CMA.	
M1	Use of cosine rule for triangle CMA.	
A1	Correct value reached.	
B1	Correct value stated.	
		Subtotal: 4
M1	Application of cosine rule to triangle <i>CLM</i> .	
M1	Application of cosine rule to triangle ABC.	
M1	Relationship between angles LCM and ACB.	
M1	Application of $cos(A + B) \equiv cos A cos B - sin A sin B$.	
M1	Combination of the previous results.	
M1	Use of $\Delta = \frac{1}{2}ab \sin C$	
A1	Fully correct solution.	
B1	Deduction that the triangle is equilateral.	
B1	Justification that the condition implies that the areas are equal.	
B1	Justification that the areas being equal implies that the condition holds.	
		Subtotal: 10
M1	Expansion and rearrangement.	
M1	Use of area of triangle and cosine rule.	
A1	Fully correct justification.	
B1	Clear indication that the reasoning applies both ways.	
M1	Observation that inequality can only be satisfied in this case if both sides are 0.	
A1	Clear explanation that this implies that the triangle is equilateral.	
		Subtotal:6

Check
$$n = 1$$
: $a_1^2 + 2a_1b_1 - b_1^2 = 1^2 + 2(1)(2) - 2^2 = 1$

Assume that the result is true for n = k:

$$a_k^2 + 2a_k b_k - b_k^2 = 1$$

$$a_{k+1}^2 + 2a_{k+1}b_{k+1} - b_{k+1}^2 = (a_k + 2b_k)^2 + 2(a_k + 2b_k)(2a_k + 5b_k) - (2a_k + 5b_k)^2$$
 M1 A1

B1

A1 AG

$$= a_k^2 + 2a_kb_k - b_k^2 = 1$$

 $=a_k^2+2a_kb_k-b_k^2=1$ Therefore, by induction, $a_n^2+2a_nb_n-b_n^2=1$ for all $n\geq 1$

(i) From the definitions of the sequences
$$a_n>0$$
 and $b_n>0$ for all n $b_1=2\geq 2\times 5^{1-1}$, so $b_n\geq 2\times 5^{n-1}$ is true in the case $n=1$.

Assume that $b_k \ge 2 \times 5^{k-1}$ for some value k.

Then
$$b_{k+1}=2a_k+5b_k\geq 2\times 5^k$$
 M1 A1 Therefore , by induction, $b_n\geq 2\times 5^{n-1}$ for all $n\geq 1$

ALTERNATIVE

$$\begin{array}{c} a_n \geq 0 \text{ for all } x \geq 1 \\ b_1 = 2, b_n = 2a_{n-1} + 5b_{n-1} \geq 5b_{n-1} \geq 5^2b_{n-2} \geq \cdots \geq 5^{n-1}b_1 \\ b_n \geq 2(5^{n-1}) \end{array} \hspace{1cm} \textbf{M1 A1}$$

From (*):
$$c_n^2+2c_n-1=\left(\frac{1}{b_n}\right)^2$$
 B1
Therefore, as $n\to\infty$, c_n approaches a root of $x^2+2x-1=0$ M1
The roots of $x^2+2x-1=0$ are $-1\pm\sqrt{2}$

Since
$$c_n > 0$$
, $c_n \to \sqrt{2} - 1$ as $n \to \infty$.

(ii)
$$c_{n+1} = \frac{a_{n+1}}{b_{n+1}} = \frac{a_n + 2b_n}{2a_n + 5b_n}$$
 M1

Therefore
$$c_{n+1} - c_n = \frac{a_n + 2b_n}{2a_n + 5b_n} - \frac{a_n}{b_n} = \frac{-2a_n^2 - 4a_nb_n + 2b_n^2}{(2a_n + 5b_n)b_n}$$

Therefore
$$c_n > \sqrt{2} - 1$$
. $c_n + 1 > \sqrt{2}$ and so $\frac{2}{c_n + 1} < \sqrt{2} < c_n + 1$

ALTERNATIVE FOR $c_n > \sqrt{2} - 1$

$$c_n=-1+\sqrt{2+rac{1}{b_n^2}}$$
 M1 A1 $b_n>0$ B1 $c_n>\sqrt{2}-1$

$$a_1 = 1$$
 and $b_1 = 2$, so $c_1 = \frac{1}{2}$

$$a_2 = 5$$
 and $b_2 = 12$, so $c_2 = \frac{5}{12}$

$$a_3 = 29$$
 and $b_3 = 70$, so $c_3 = \frac{29}{70}$

Therefore
$$\frac{2}{\frac{29}{70}+1} < \sqrt{2} < \frac{29}{70} + 1$$

$$\frac{140}{99} < \sqrt{2} < \frac{99}{70}$$
 A1

B1	Check the case $n=1$	
M1	Attempt to relate the case $n = k + 1$ to the case $n = k$	
A1	Deduce that the result holds in the case $n = k + 1$ if it holds in the case $n = k$	
B1	Conclusion of proof by induction.	
		Subtotal: 4
B1	Observe that all values in both sequences are positive.	
B1	Check the case $n=1$	
M1	Attempt to relate the case $n = k + 1$ to the case $n = k$	
A1	Deduce that the result holds in the case $n = k + 1$ if it holds in the case $n = k$	
B1	Conclusion of proof by induction.	
ALTE	RNATIVE	
B1	Observe that all values of a_n are positive.	
M1	Inequality between consecutive values for b_n	
A1	Repeated application of inequality.	
B2	Conclusion clearly justified.	
		Subtotal: 5
B1	Deduce formula satisfied by c_n	
M1	Find equation satisfied by limit of sequence.	
A1	Solve quadratic.	
A1	Justify choice of positive root.	
		Subtotal: 4
M1	Write c_{n+1} in terms of a_n and b_n	
M1	Find expression for $c_{n+1} - c_n$	
A1	Conclude that the sequence is decreasing.	
A1	Explain why this shows that $c_n > \sqrt{2} - 1$	
ALTE	RNATIVE	
M1	Solution of quadratic.	
A1	Choice of positive square root.	
A1	Observe that $b_n > 0$	
A1	Clear explanation that $c_n > \sqrt{2} - 1$	
A1	Conclude required inequality	
M1	Calculate c_3	
A1	Deduce required inequality.	
	· · · · ·	Subtotal: 7

Horizontal speed = $u \cos \alpha$, therefore the particle passes through P after $\frac{d}{u \cos \alpha}$ (i) M1 A1 seconds.

Vertically:

Initial speed = $u \sin \alpha$, acceleration = -g, displacement = $d \tan \beta$. M1 A1 $d \tan \beta = u \sin \alpha \left(\frac{d}{u \cos \alpha}\right) - \frac{1}{2}g \left(\frac{d}{u \cos \alpha}\right)^2$

$$d \tan \beta = d \tan \alpha - \frac{d^2g}{2u^2} \sec^2 \alpha$$

$$u^2 = \frac{dg \sec^2 \alpha}{2(\tan \alpha - \tan \beta)}$$

u will be as small as possible at a point where $\frac{du}{d\alpha} = 0$:

 $2u\frac{du}{d\alpha} = \frac{2(\tan\alpha - \tan\beta)(2dg\sec^2\alpha\tan\alpha) - dg\sec^2\alpha(2\sec^2\alpha)}{4(\tan\alpha - \tan\beta)^2}$ $2u\frac{du}{d\alpha} = \frac{2dg\sec^2\alpha((\tan\alpha - \tan\beta)(2\tan\alpha) - \sec^2\alpha)}{4(\tan\alpha - \tan\beta)^2}$ Therefore $\frac{du}{d\alpha} = 0$ if $(\tan\alpha - \tan\beta)(2\tan\alpha) - \sec^2\alpha = 0$ M1 M1 Α1

 $(\tan \alpha - \tan \beta)(2 \tan \alpha) - \tan^2 \alpha - 1 = 0$ **M1** $\tan^2 \alpha - 2 \tan \alpha \tan \beta - 1 = 0$

So $\tan \beta = \frac{\tan^2 \alpha - 1}{2 \tan \alpha}$ and $\tan \alpha - \tan \beta = \frac{\tan^2 \alpha + 1}{2 \tan \alpha} = \frac{\sec^2 \alpha}{2 \tan \alpha}$ Α1

Therefore $u^2 = \frac{dg \sec^2 \alpha}{2\left(\frac{\sec^2 \alpha}{2\tan \alpha}\right)} = dg \tan \alpha$ M1 A1 AG

 $\tan \beta = \frac{-1}{\tan 2\alpha} = -\cot 2\alpha$ **M1** The graph of $y = -\cot x$ is a translation of the graph of $y = \tan x$ by $90(^{\circ})$

horizontally. M1 A1 AG

 α must be greater than β . Therefore $2\alpha = \beta + 90^{\circ}$

(ii) When the particle passes through P:

Horizontal velocity is $u\cos\alpha$

Vertical velocity is
$$u \sin \alpha - \frac{gd}{u \cos \alpha}$$

Therefore if the angle to the horizontal is γ , then

$$\tan \gamma = \frac{u \sin \alpha - \frac{gd}{u \cos \alpha}}{u \cos \alpha} = \tan \alpha - \frac{gd}{u^2} \sec^2 \alpha$$
M1 A1

Since $u^2 = gd \tan \alpha$: $\tan \alpha \tan \gamma = \tan^2 \alpha - \sec^2 \alpha = -1$ M1 A1

Therefore $\gamma = \alpha - 90^{\circ}$ (or $(90 - \alpha)^{\circ}$ below the horizontal). Α1

M1	Use of constant horizontal velocity to determine time passing through P.
A1	Correct expression for time.
M1	Uniform acceleration formula.
A1	Correct equation.
M1	Attempt to differentiate either u or u^2 with respect to α
M1	Application of quotient rule.
A1	Correctly differentiated.
M1	Set derivative equal to 0.
A1	Rearrange to get formula for $ an eta$
M1	Substitute to get expression for u^2
A1	Fully correct justification.
M1	Observe relationship between $ aneta$ and $\cot 2lpha$
M1	Reference to the relationship between the two functions.
A1	Correct relationship, fully justified.
	Subtotal: 14
B1	Calculation of vertical velocity through P (must be in terms of α)
M1	Division of two velocities to get tan of required angle.
A1	Simplified form.
M1	Substitution of result from part (i)
A1	$\tan \alpha \tan \gamma = -1$
A1	Removal of tan functions.
	Subtotal: 6

- (i) Conservation of momentum: $mu = mv + \lambda mu_1$ B1
 - Law of Restitution:
 - $u_1 v = eu$ Eliminating v:
 - $u_1 (u \lambda u_1) = eu$ $u_1(1 + \lambda) = (1 + e)u$
 - $u_1 = \frac{1+e}{1+\lambda}u$ A1 AG
 - For the first collision with particle n (n > 1):
 - $\lambda^{n-1} m u_{n-1} = \lambda^{n-1} m v_{n-1} + \lambda^n m u_n$ M1 A1 $u_{n-1} = v_{n-1} + \lambda u_n$
 - $u_{n-1} v_{n-1} + nu_n$ $u_n v_{n-1} = eu_{n-1}$
 - Eliminating v_{n-1} :
 - $u_{n-1} = u_n eu_{n-1} + \lambda u_n$
 - $(1+e)u_{n-1}=u_n(1+\lambda)$
 - Therefore $u_n = \left(\frac{1+e}{1+\lambda}\right)^n u$
 - $v_{n-1} = \left(\frac{1+e}{1+\lambda}\right)^{n-1} u \lambda \left(\frac{1+e}{1+\lambda}\right)^n u$ M1
 - $= \left(\frac{1+e}{1+\lambda}\right)^{n-1} u \left(1 \frac{\lambda(1+e)}{1+\lambda}\right)$ $= \left(\frac{1-e\lambda}{1+\lambda}\right) \left(\frac{1+e}{1+\lambda}\right)^{n-1} u$ M1
 - So $v_n = \left(\frac{1-e\lambda}{1+\lambda}\right)\left(\frac{1+e}{1+\lambda}\right)^n u$
- (ii) If $e>\lambda$ then $\left(\frac{1+e}{1+\lambda}\right)>1$, so $v_{k+1}>v_k$ for every choice of k and so there cannot be any subsequent collisions.
- (iii) If $e=\lambda$ then all particles will have the same velocity after their second collision. $v_n=(1-e)u$
 - The Kinetic Energies of the particles after their second collisions will form a geometric series with first term $\frac{1}{2}m(1-e)^2u^2$ and common ratio e.
 - Therefore the sum will approach $\frac{\frac{1}{2}m(1-e)^2u^2}{1-e} = \frac{1}{2}m(1-e)u^2$
 - The initial KE was $\frac{1}{2}mu^2$, so the fraction that has been lost approaches e.
- (iv) If $\lambda e=1$ then all particles stop after their second collision. B1
 All of the energy is lost eventually in this case. B1

B1	Correct equation.	
B1	Correct equation.	
M1	Attempt to eliminate <i>v</i>	
A1	Reach given equation correctly.	
М1	Consideration of conservation of momentum for n^{th} collision.	
A1	Simplified form.	
A1	Correct equation for u_n	
M1	Substitution to find v_{n-1}	
M1	Simplification.	
A1	Adjustment to get v_n	
		Subtotal: 10
M1	$\left(\frac{1+e}{1+\lambda}\right) > 1$	
М1	Relationship between velocities.	
A1	Clear explanation why this implies no further collisions.	
		Subtotal: 3
M1	Comment that all velocities will be equal.	
A1	Correct common velocity stated.	
M1	Identify that the KEs will form a geometric series.	
A1	Sum to infinity.	
A1	Clear justification that fraction of KE lost approaches e	
		Subtotal: 5
B1	Observation that all particles stop.	
B1	All KE lost (fraction lost = 1)	
		Subtotal: 2

Forces at A:	
Reaction force R_A (perpendicular to the slope)	B1
Frictional force F_A (parallel to slope, towards O)	
Forces at B:	
Reaction force R_B (parallel to slope)	B1
Frictional force F_B (perpendicular to slope, away from O)	
Since equilibrium is limiting at both A and B:	B1
$F_A = R_A \tan \gamma$ and $F_B = R_B \tan \gamma$	DI
Resolving parallel to the slope:	M1 A1
$R_A \tan \gamma + W \sin \alpha = R_B$	IVIT AT
Resolving perpendicular to the slope:	M1 A1
$W\cos\alpha = R_A + R_B\tan\gamma$	IVITAL
Eliminating W :	M1
$W \sin \alpha \cos \alpha = R_B \cos \alpha - R_A \tan \gamma \cos \alpha = R_A \sin \alpha + R_B \tan \gamma \sin \alpha$	M1
$R_A \tan \alpha + R_B \tan \alpha \tan \gamma = R_B - R_A \tan \gamma$	M1
$R_A = \frac{1 - \tan \alpha \tan \gamma}{\tan \alpha + \tan \gamma} R_B$, so $R_B = \tan(\alpha + \gamma) R_A$	A1
Taking moments about the centre of the rod:	M1 M1
$L\cos\beta R_B + L\sin\beta R_B \tan\gamma + L\cos\beta R_A \tan\gamma = L\sin\beta R_A$	A1
So $R_B + R_B \tan \beta \tan \gamma + R_A \tan \gamma = R_A \tan \beta$	M1 M1
Therefore:	N/1
$\tan(\alpha + \gamma) + \tan(\alpha + \gamma) \tan \beta \tan \gamma + \tan \gamma = \tan \beta$	M1
$\tan \beta = \frac{\tan(\alpha + \gamma) + \tan \gamma}{1 - \tan(\alpha + \gamma) \tan \gamma} = \tan(\alpha + 2\gamma)$	M1
	.411
Therefore $\beta = \alpha + 2\gamma + n\pi$	M1
Since $\alpha < \beta$ and β is acute, $\beta = \alpha + 2\gamma$.	A1 AG

B1	Identification of the forces at A (may be implied by later work).
B1	Identification of the forces at B (may be implied by later work).
B1	Use of limiting equilibrium at both points.
M1	Resolve parallel to slope.
A1	All correct.
M1	Resolve perpendicular to slope.
A1	All correct.
M1	Elimination of any one variable from equations.
M1	Manipulation of trigonometric functions (may occur later in solution).
M1	Use of $tan(A + B)$ (or equivalent) formula (may occur later in solution).
A1	Correct relationship between two reaction forces.
M1	Take moments about centre of rod (at least 2 correct)
M1	Moments about centre of rod (at least 3 correct)
A1	Fully correct.
M1	Cancel L from the equation.
M1	Apply $\tan \theta = \frac{\sin \theta}{\cos \theta}$
M1	Eliminate so that W , R_A and R_B are not present in the equation.
M1	Rearrange to apply $tan(A + B)$ formula.
M1	Full solutions to tan equation just reached.
A1	Deduce relationship between α , β and γ , explaining why it can't be any of the others.
	Subtotal: 20

- (i) The probability that any one participant will choose the correct number is $\frac{1}{N}$. M1 A1 Therefore, $P(No \ participant \ picks \ the \ winning \ ticket) = \left(1 - \frac{1}{N}\right)^N$ The expected amount that will need to be paid in prizes is $\left(1 - \left(1 - \frac{1}{N}\right)^N\right)J$. **M1**
 - Therefore the expected profit is $Nc \left(1 \left(1 \frac{1}{N}\right)^N\right)J$. Α1
 - Therefore the expected profit is approximately $Nc \left(1 \frac{1}{a}\right)J$ Α1
 - If 2Nc = J then the expected profit is $\left(\frac{1}{2} 1 + \frac{1}{e}\right)J < 0$, therefore the organizer A1 AG will expect to make a loss.
- (ii) The probability of picking a number between 1 and N is $\gamma N \times \frac{a}{N} + (1 - \gamma)N \times \frac{b}{N} = 1$ **M1** Α1
 - If the number that is drawn is popular then the probability that no participant will choose it is $\left(1 - \frac{a}{N}\right)^N$
 - If the number that is drawn is not popular then the probability that no participant will choose it is $\left(1-\frac{b}{N}\right)^N$ The probability that no participant chooses the winning number is therefore: **B1**

 - $\gamma \left(1 \frac{a}{N}\right)^N + (1 \gamma) \left(1 \frac{b}{N}\right)^N$ M1 A1

Α1

M1

- $Nc \left(1 \gamma \left(1 \frac{a}{N}\right)^N (1 \gamma) \left(1 \frac{b}{N}\right)^N\right)J$
- which can be approximated to $Nc-\left(1-\gamma e^{-a}-(1-\gamma)e^{-b}\right)\!J=\gamma Je^{-a}+(1-\gamma)Je^{-b}+Nc-J$ M1 A1
- If $\gamma = \frac{1}{8}$, then $\frac{a}{8} + \frac{7b}{8} = 1$. If a = 9b, then $b = \frac{1}{2}$ $a = \frac{9}{2}$ **M1**
- **A1**
- If 2Nc = J, then the profit will be: $\frac{Nc}{4}e^{-\frac{9}{2}} + \frac{7Nc}{\frac{4}{2}}e^{-\frac{1}{2}} Nc = \frac{Nc}{4}\left(e^{-\frac{9}{2}} + 7e^{-\frac{1}{2}} 4\right)$
- $e^{-\frac{9}{2}} + 7e^{-\frac{1}{2}} 4 = e^{-\frac{1}{2}}(e^{-4} + 7) 4 > \frac{7\sqrt{3}}{3} 4$, since e < 3M1
- $\left(\frac{7\sqrt{3}}{3}\right)^2 = \frac{147}{9} > 16$, so $\frac{7\sqrt{3}}{3} 4 > 0$, meaning that the organiser will expect to M1 A1

M1	Identification of the probability of choosing the winning number.	
A1	Correct probability that no participant chooses the winning number.	
M1	Expected amount to be paid out.	
A1	Correct expected profit.	
A1	Use of approximation.	
A1	Justification that organizer will expect to make a loss.	
		Subtotal: 6
M1	Consideration of probability that the number chosen is between 1 and N .	
A1	Correct relationship.	
B1	Correct probabilities of no winner for both cases.	
M1	Find probability that no participant chooses a winning ticket.	
A1	Correct probability.	
A1	Correct expected profit.	
M1	Use of approximation.	
A1	Simplification to required form.	
		Subtotal: 8
M1	Substitution and attempt to solve simultaneous equations.	
A1	Values of a and b correct.	
M1	Profit calculated in the case $2Nc = J$	
M1	Rearranged and use of $e < 3$	
M1	Attempt to show that the expected profit is positive.	
A1	Fully clear explanation.	
	•	Subtotal: 6

 $s_1 = 0$ В1 If the r^{th} slice is to be used to make toast then either the $(r-1)^{th}$ slice was used as the second slice for a sandwich (probability s_{r-1}) **M1** the $(r-1)^{th}$ slice was used for toast (probability t_{r-1}) The probability that the next slice is used for toast is p. Α1 Therefore $t_r = (s_{r-1} + t_{r-1})p$ The r^{th} slice being the second slice for a sandwich is equivalent to the $(r-1)^{th}$ slice being the first slice for a sandwich, so the probability that the $(r-1)^{th}$ slice M1 M1 is the first slice for a sandwich is also s_r Since there are only three possibilities for the use of a slice, $s_{r-1} + t_{r-1} + s_r = 1$ **A1** and so $s_r = 1 - (s_{r-1} + t_{r-1})$ Valid for $r \ge 2$ as the reasoning only refers to the previous slice. **B1** Formula for t_r is not valid for r = n as the final slice must be toast. $s_{r-1} + t_{r-1} = 1 - s_r$, so $t_r = p(1 - s_r)$ M1 Therefore $s_r = 1 - (s_{r-1} + p(1 - s_{r-1}))$ **M1** $s_r = 1 - s_{r-1} - p(1 - s_{r-1}) = (1 - p)(1 - s_{r-1})$ $s_r = q(1 - s_{r-1})$ Α1 $s_1 = \frac{q + (-q)}{1 + q} = 0$, which is correct. **B1** Assume that $s_k = \frac{q + (-q)^k}{1 + a}$ Then $s_{k+1} = q \left(1 - \frac{q + (-q)^k}{1 + q} \right)$ **M1** $s_{k+1} = q\left(\frac{1+q-q-(-q)^k}{1+q}\right) = \frac{q+(-q)^{k+1}}{1+q}$ **A1** Therefore, by induction, $s_r = \frac{q + (-q)^r}{1 + q}$ for $1 \le r \le n - 1$ **B1** $ps_r = p - t_r$ **M1** Therefore $t_r = p - p\left(\frac{q + (-q)^r}{1 + q}\right)$ for $1 \le r \le n - 1$ **A1** $s_n = 1 - \left(\frac{q + (-q)^{n-1}}{1+q} + p - p \left(\frac{q + (-q)^{n-1}}{1+q} \right) \right)$ **M1** $s_n = 1 - p - (1 - p) \left(\frac{q + (-q)^{n-1}}{1+q} \right)$ $s_n = \frac{q(1+q) - q\left(q + (-q)^{n-1}\right)}{1+q} = \frac{q + (-q)^n}{1+q}$ Α1 Since the last slice must either be the second slice of a sandwich or toast: $t_n=1-\frac{q+(-q)^n}{1+q}=\frac{1-(-q)^n}{1+q}$ M1 A1

B1	Correct value.	
M1	Identification of the two possibilities.	
A1	Clear justification of the equation.	
M1	Identification of the probability that it is the first slice of a sandwich.	
M1	Identification of the three possibilities in general.	
A1	Clear justification of the equation.	
B1	Clear justification of the ranges for which the equations are valid.	
	, ,	Subtotal: 7
M1	Rearrangement.	
M1	Substitution.	
A1	Correct equation.	
B1	Check first case.	
M1	Relate case $k + 1$ to case k .	
A1	Show that the correct formula follows.	
B1	Complete proof by induction.	
M1	Use relationship between s and t .	
A1	Correct equation, including range for which it is valid.	
		Subtotal: 9
M1	Substitute into formula for s_n	
A1	Correct formula.	
M1	Observe that $t_n = 1 - s_n$	
A1	Correct formula.	
		Subtotal: 4