DEFINIÇÕES

Definição 1 (Primeiro Princípio da Indução Matemática). Seja p(n) uma proposição

sobre $M = \{n \in \mathbb{N} \mid n \ge m \land m \in \mathbb{N}\}$. Se (Base) p(m) é verdadeira

(Passo) Para qualquer k, vale $p(k) \rightarrow p(k+1)$

então p(n) é verdadeira para todo $n \in M$. **Definição 2** (Segundo Princípio da Indução Matemática). Seja p(n) uma proposição sobre $M = \{n \in \mathbb{N} \mid n \ge m \land m \in \mathbb{N}\}$. Se (Base) p(m) 'e verdadeira(Passo) Para qualquer k, vale $p(m) \land p(m+1) \land ... \land p(k) \rightarrow p(k+1)$ então p(n) é verdadeira para todo $n \in M$. **Definição 3** (Contingência). Sejam X e Y conjuntos. $X \subseteq Y$ se e somente se $\forall x \in X, x \in X \Rightarrow x \in Y$ **Definição 4** (União de Conjuntos). Dados $A \in B$ conjuntos, a união destes, $A \cup B$, \acute{e} tal que $x \in A \cup B \iff x \in A \lor x \in B$ Definição 5 (Intersecção de Conjuntos). Dados A e B conjuntos, a intersecção destes, $A \cap B$, é tal que $x \in A \cap B \iff x \in A \land x \in B$ Definição 6 (Complemento de um Conjunto). Dado A um conjunto qualquer, o seu complemento, \overline{A} , é tal que $x \in \overline{A} \iff x \notin A$. Definição 7 (Conjunto das Partes). Dado A um conjunto qualquer, o seu conjunto das partes, 2^A ou $\mathcal{P}(A)$, é tal que $\{X \mid X \subseteq A\}$ Definição 8 (Produto Cartesiano). Sejam A e B conjuntos, o produto cartesiano $A \times B \ \acute{e} \ o \ conjunto \ A \times B = \{\langle a, b \rangle \mid a \in A \land b \in B\}$ **Definição 9** (União Disjunta). Dados A e B conjuntos, sua união disjunta, A ⊎ B, é o conjunto $A \uplus B = \{a_A \mid a \in A\} \cup \{b_B \mid b \in B\}.$ Definição 10 (Diferença). Dados A e B conjuntos, o primeiro conjunto menos o segundo, ou seja, a diferença de A e B é o conjunto $A - B = \{x \mid x \in A \land x \notin B\} = \{x \mid x \in A \land x \notin B\}$ **Definição 11** (Relação). Seja A e B conjuntos. $R \subseteq A \times B$ é uma relação de A para B. **Definição 12** (Relação Inversa). Seja $R \subseteq A \times B$ uma relação. A relação $R^{-1} \subseteq$ $B \times A$ definida como $R^{-1} = \{(x,y) \mid (y,x) \in R\}$. é a relação inversa de R. **Definição 13** (Relação Identidade). Seja A um conjunto. A relação identidade de A, denotada $\iota_A \subseteq A^2$ é $\iota_A\{(a,a) \mid a \in A\}$ **Definição 14** (Propriedades de Endorelações). Seja $R \subseteq A^2$ uma endorelação sobre o conjunto A. Diz-se que R é: **Reflexiva** quando $\forall a \in A((a, a) \in R)$. Simétrica quando $\forall a, b \in A((a, b) \in R \Rightarrow (b, a) \in R)$ *Anti-simétrica* quando $\forall a, b \in A((a, b) \in R \land (b, a) \in R \Rightarrow a = b)$ Transitiva quando $\forall a, b, c \in A((a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R)$ **Definição 15** (Relação de Ordem). $R \subseteq A^2$ é uma relação de ordem se R for reflexiva, transitiva e anti-simétrica. **Definição 16** (Relação de Equivalência). $R \subseteq A^2$ é uma relação de equivalência se R for reflexiva, transitiva e simétrica. **Definição 17** (Propriedades de Relações). Seja $R \subseteq A \times B$ uma relação de A para B. Diz-se que R é: Functional quando $\forall a \in A \forall b_1, b_2 \in B((a, b_1) \in R \land (a, b_2) \in R \Rightarrow b_1 = b_2)$ **Total** quando $\forall a \in A \exists b \in B((a,b) \in R)$ *Injetora* quando $\forall a_1, a_2 \in A \forall b \in B((a_1, b) \in R \land (a_2, b) \in R \Rightarrow a_1 = a_2)$ Sobrejetora quando $\forall b \in B \exists a \in A((a,b) \in R)$ **Definição 18** (Função). Uma função $f: A \to B$ é uma relação funcional $f \subseteq A \times B$. **Definição 19** (Composição de Funções). $Dadas \ f: A \to B \ e \ g: B \to C \ funções.$ A função de composição de f com g, denotada por $g \circ f : A \to C$ é tal que, dado $x \in A$, $q \circ f(x) = q(f(x))$.

Definição 20 (Princípio da Inclusão e Exclusão). *Dados conjuntos finitos* A_1, \ldots, A_n , onde $n \ge 2$, temos:

$$\{|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Definição 21 (Princípio das Casas de Pombos). Se mais de k itens são colocados em k caixas, então pelo menos uma caixa contém mais de um item.

Definição 22 (Operação). Sejam A, B, C conjuntos. Então

Operação Binária função parcial do tipo \emptyset : $A \times B \rightarrow C$,

Operação Interna é uma operação cujo domínio e contradomínio são definidos sobre o mesmo conjunto,

Operação Fechada é uma operação total.

Definição 23 (Propriedades de Operações). $Seja \oslash : A^2 \to A$ uma operação binária interna e fechada. Então \oslash satisfaz a propriedade:

Comutativa quando $\forall a, b \in A(a \otimes b = b \otimes a)$

Associativa quando $\forall a, b, c \in A(a \otimes (b \otimes c) = (a \otimes b) \otimes c)$

Elemento Neutro quando $\exists e \in A \forall a \in A (a \otimes e = a = e \otimes a)$

Elemento Inverso quando $\forall a \in A \exists \overline{a} \in A (a \otimes \overline{a} = e = \overline{a} \otimes a)$

Definição 24 (Álgebras Internas). Tabela de tipos de álgebras

Tipo de Álgebra	Propriedades
$Grup\'oide$	Fechada
Semigrupo	Fechada e associativa
$Mon\'oide$	Fechada, associativa e elemento neutro
Grupo	Fechada, associativa, elemento neutro e elemento inverso

Definição 25 (Homomorfismo). Uma função $h: \langle A, \oplus \rangle \to \langle B, \otimes \rangle$ é um homomorfismo de grupóides se $f: A \to B$ é uma função tal que $\forall a_1, a_2 \in A(h(a_1 \oplus a_2) = h(a_1) \otimes h(a_2))$. Tal função será um homomorfismo de monóides se for um homomorfismo de grupóides e $h(e_A) = e_B$ sendo e_A, e_B os elementos neutros de \oplus e \otimes respectivamente.

Definição 26 (Ínfimo e Supremo). Seja $\langle P, R \rangle$ uma relação de ordem parcial, $a, b \in P$ então $p \in P$ é chamado de:

Ínfimo se pRa \land pRb e $\forall q \in P((qRa \land qRb) \Rightarrow qRp) - Notação: p = a \ \ \ b$

Supremo se $aRp \wedge bRp$ $e \forall q \in P((aRq \wedge bRq) \Rightarrow pRq) - Notação: <math>p = a \uparrow b$

Elemento Inicial se $\forall x \in P(pRx)$ – Notação: p = 0

Elemento Terminal se $\forall x \in P(xRp)$ – Notação: p = 1

Definição 27 (Reticulado). Seja $\langle P, R \rangle$ uma relação de ordem parcial. Então $\langle P, R \rangle$ é um reticulado se qualquer par de elementos de P possuir ínfimo e supremo.

Definição 28 (Tipos de Reticulados). Um reticulado $\langle P, R \rangle$ é dito:

Distributivo se $\forall a, b, c \in P(a \downarrow (b \uparrow c) = (a \downarrow b) \uparrow (a \downarrow c) \land a \uparrow (b \downarrow c) = (a \uparrow b) \downarrow (a \uparrow c).$

Limitado se for um reticulado que possua elemento inicial e elemento terminal. **Complementado** se for um reticulado limitado e $\forall a \in P \exists \overline{a} \in P (a \downarrow \overline{a} = 0 \land a \uparrow \overline{a} = 1)$

Definição 29 (Álgebra Booleana). *Uma Álgebra Booleana é um reticulado distributivo e complementado*.