H1 Mathematics

9879811188763

MELVIN CHIA HOU WEI SHAN WONG JIA HUI

Started on 3 January 2023

Finished on ...

Contents

18	Graphing Techniques	2
19	Exponential and Logarithmic Functions	3
20	Equations and Inequalities	4
21	Differenciation Techniques	5
22	Application of Differentiation (I)	6
23	Application of Differentiation (II)	7
24	Integration Techniques	8
25	Application of Integration - Area	9
26	Permutation and Combination	10
27	Probability	11
28	Binomial Distribution	12
29	Normal Distribution	13
30	Sampling	14
31	Hypothesis Testing	15
32	Correlation and Regression	16

Graphing Techniques

Exponential and Logarithmic Functions

- 1. Given that $\log_2 x = p$ and $\log_8 y = q$, express the following terms of p and/or q:
 - (a) $\log_2 xy$

Sol.

$$\log_8 y = q$$

$$\frac{\log_2 y}{\log_2 8} = q$$

$$\frac{\log_2 y}{3} = q$$

$$\log_2 y = 3q$$

$$\log_2 xy = \log_2 x + \log_2 y$$
$$= p + 3q$$

(b) $\log_4 \frac{x}{y}$

Sol.

$$\log_2 x = p$$

$$\frac{\log_4 x}{\log_4 2} = p$$

$$\frac{\log_4 x}{\frac{1}{2}} = p$$

$$\log_4 x = \frac{p}{2}$$

$$\log_8 y = q$$

$$\frac{\log_4 y}{\log_4 8} = q$$

$$\frac{\log_4 y}{\frac{3}{2}} = q$$

$$\log_4 y = \frac{3q}{2}$$

$$\log_4 \frac{x}{y} = \log_4 x - \log_4 y$$
$$= \frac{p}{2} - \frac{3q}{2}$$
$$= \frac{p - 3q}{2}$$

(c) $\log_x 4y$

Sol.

$$\log_{x} 4y = \log_{x} 4 + \log_{x} y$$

$$\log_{x} 4 = \frac{\log_{2} 4}{\log_{2} x}$$

$$= \frac{2}{p}$$

$$\log_{x} y = \frac{\log_{2} y}{\log_{2} x}$$

$$= \frac{3q}{p}$$

$$\log_x 4y = \frac{2}{p} + \frac{3q}{p}$$
$$= \frac{2+3q}{p}$$

(d) x^2y

Sol.

$$\log_2 x^2 y = \log_2 x^2 + \log_2 y$$
$$= 2\log_2 x + \log_2 y$$
$$= 2p + 3q$$

$$x^{2}y = 2^{2p+3q}$$
$$= 2^{2p}2^{3q}$$
$$= 4^{p}8^{q}$$

Equations and Inequalities

Differenciation Techniques

Application of Differentiation (I)

Application of Differentiation (II)

Integration Techniques

Application of Integration - Area

Permutation and Combination

Probability

Binomial Distribution

Normal Distribution

Sampling

Hypothesis Testing

Correlation and Regression