杭州电子科技大学 2015-2016 学年第二学期期末试卷

高等数学 B2

课程号 A0714212 教师号 任课教师姓名 学号(8 年级 专业	考试课程	高等数学	≐ B2	考试日期	2016 年	6月 日	成绩	
考生姓名	课程号	A0714212	教师号	任课教师姓名				
得分 一、 填空题 (本题共 4 小题,每小题 3 分,共 12 分) 1. 设 L 为 $x^2 + y^2 = 1$ 的一周,则 \P $\{(x^2 + y^2)ds =$	102-000-000				年级		专业	
1. 设 L 为 $x^2 + y^2 = 1$ 的一周,则 $\oint_{\Sigma} (x^2 + y^2) ds =$	题 号 得 分	_	=	5-	M		ħ	六
1. 设 $u = 2xy - z^2$,则 u 在 $(2,-1,1)$ 处的方向导数的最大值为 (). (A) $2\sqrt{6}$; (B) 4; (C) $2\sqrt{2}$; (D) 24. 2. 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 在 $ x < 1$ 的和函数是().	 设L为x 设∑为x 交换二重 设f(x); 	$\frac{1}{z^2 + y^2} = 1 \text{ m}^{-2}$ $z^2 + y^2 + z^2 = 1$ $z^2 + y^2 = 1 \text{ m}^{-2}$	一周,则 $\left\{ \left(x^{2} - B \right), y \right\} \left(x^{2} - B \right)$ 周期函数, $\left\{ x^{2} - B \right\}$	$(x^2 + y^2)ds =$ 面积分 $\oint_{\Sigma} (x^2 + y^2)dx =$ 它在区间 $(-1, -1)$	+ y ² + z ²	;)dS =	;) 1
n=1	1. 设 <i>u</i> = 2x	」 xy-z²,则u	在(2,-1,1)女	业的方向导 <mark>数</mark>	的最大值	为()		
	n=	.1); (I	D) -1n (x-1)	등 무성 °

- 3. 曲线 $\begin{cases} x = y^2 \\ z = x^2 \end{cases}$ 上点 (1,1,1) 处的法平面方程是(

- (A) 2x y 4z + 3 = 0; (B) 2x y + 4z 5 = 0; (C) 2x + y + 4z 7 = 0; (D) -2x y + 4z 1 = 0.

 4. 设 L 是从 $A(1, \frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,则 $\int \frac{2x}{y} dx \frac{x^2}{y^2} dy = ($).
 - (A)-3;
- (B) $\frac{3}{2}$: (C) 0:
- 5. 设 \sum 为柱面 $x^2 + y^2 = 1$ 介于平面z = 0与z = 1之间部分的外侧,则 $\iint y^2 dy dz = 0$
- (B) $\frac{2}{3}$: (C) $-\frac{2}{3}$: (D) $-\frac{4}{3}$
- 6. 岩级数 $\sum_{n=1}^{\infty} a_n (x-2)^n$ 在 x=-2 处收敛则此级数在 x=5 处().
- (A)发散; (B)条件收敛; (C)绝对收敛;
- (D)收敛性不能确定.

- 7. 下列级数发散的是(
 - (A) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$; (B) $\sum_{n=1}^{\infty} \frac{n}{3n-1}$; (C) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^n}$; (D) $\sum_{n=1}^{\infty} \frac{n}{3^{n/2}}$.
- 8. $\Re I_1 = \iint_D \cos \sqrt{x^2 + y^2} d\sigma$, $I_2 = \iint_D \cos(x^2 + y^2) d\sigma$, $I_3 = \iint_D \cos(x^2 + y^2)^2 d\sigma$,
 - 其中 $D = \{(x, y) | x^2 + y^2 \le 1\}$,则下列关系成立的是(). (A) $I_3 > I_2 > I_1$: (B) $I_1 > I_2 > I_3$: (C) $I_2 > I_1 > I_3$: (D) $I_3 > I_1 > I_2$.

三、试解下列各題(本题共6小题,每小题6分,共36分)

得分

得分

2. 判定级数 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{n}$ 的敛散性,并给出理由(若是收敛,

要说明是条件收敛还是绝对收敛)。

得分

3. 计算二重积分 $\iint_D xe^{xy} dxdy$,其中区域 D 为 $0 \le x \le 1$, $-1 \le y \le 0$.

得分

4. 计算 $I = \iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 Σ 为曲面 $x^2 + y^2 + z^2 = I$ 的外侧.

$$\int 5. \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \int dy \int_{0}^{\sqrt{1-y^2}} e^{\,c^2-y^2} \, dx \, .$$

得分

6. 设 L 为 闭曲线 $x^2 + y^2 = 4$, 取正向, 计算曲线积分 $\oint_L (2xye^x - y)dx + 2(x-1)e^x dy.$

四、计算题[本题共15分]

得分

1. (7分) 求过点 (2, 1, 1)平行于百线 $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-2}{-1}$ 且垂直于平面 x + 2y - 3z + 5 = 0 的 平面方程.

2. (8 分) 求级数 $\sum_{n=1}^{\infty} (n+2)x^{n+3}$ 的收敛域和它的和函数.

符分

五、综合题[本题8分]

设幂级数 $\sum_{n=1}^{\infty} a_n(x+1)^n$ 在 x=3 处条件收敛,试确定此幂级数的收敛半径,

井说明理由.

六、证明题[本题 5 分] 试证 $2\int_0^a f(x)dx \int_x^a f(y)dy = (\int_0^a f(x)dx)^2$