Date	19 November 2022
Team ID	PNT2022TMID45080
Project Name	Natural Disasters Intensity Analysis and
	Classification using Artificial Intelligence

Model Building

Train Test and Save Model:

Table of Contents:

Step 1 – Import the library

Step 2 – Setting up the Data

Step 3 – Training and Saving the

modelStep 4 – Loading the saved

model

Step 1 – Import the library

From sklearn import model_selection, datasets

From sklearn.tree import

DecisionTreeClassifierFrom sklearn.externals

import joblib

Import pickle

We have imported model_selection, datasets, joblib, DecisionTreeClassifier and pickel which will be needed for the dataset.

Step 2 – Setting up the Data

We have loaded inbuilt wine dataset and stored data in x and target in y. We have used test_train_split to split the dataset such that 30% of data is for testing the model.

```
\label{eq:dataset} Dataset = datasets.load\_wine() X = dataset.data; \ y = dataset.target X\_train, \ X\_test, \ y\_train, \ y\_test = model\_selection.train\_test\_split(X, \ y, \ test\_size=0.3)
```

Master the Art of Classification in Machine Learning to Become a Pro

Step 3 – Training and Saving the Model

We are using DecisionTreeClassifier as a model. We have trained the model by training data. We can save the model by using joblib.dump in which we have passed the parameter as model and the filename.

```
Model =

DecisionTreeClassifier()

Model.fit(X_train, y_train)

Filename =

"Completed_model.joblib"

Joblib.dump(model, filename)
```

Step 4 – Loading the Saved Model

So here we are loading the saved model by using joblib.load and after loading the model we have used score to get the score of the pretrained saved model.

```
\label{eq:loaded_model} Loaded\_model = joblib.load(filename) Result = loaded\_model.score(X\_test, y\_test) Print(result)
```

So the output comes

as:0.9444444444444444