ECE180J Advanced Renewable Energy Sources

Lecture 9: Probability Theory Revisited

Dr. Yu Zhang

ECE Department
University of California, Santa Cruz

- H. Stark and J. Woods, "Probability, Random Processes, and Estimation Theory for Engineers".
- A. Papoulis, "Probability, Random Variables, and Stochastic Processes".

Probability Space

Probability space is a three-tuple (Ω, \mathcal{F}, P) :

- Sample space Ω : the set of all outcomes of a random experiment.
 - Ω may be finite ($\{H, T\}$), countably infinite ($\Omega = \{1,2,3,...\}$), or uncountably infinite ([0,1]).
- Event space \mathcal{F} : a set whose elements $A \in \mathcal{F}$ are subsets of Ω .
- Probability function P: satisfies three axioms:
 - $P(A) > 0, \forall A \in \mathcal{F}$.
 - $P(\Omega) = 1$.
 - If $A_1, A_2, ...$ are mutually exclusive events $(A_i \cap A_j = \emptyset$, for $i \neq j$), then $P(\bigcup_i A_i) = \sum_i P(A_i)$.

2/23

Properties of Probability

Consider events $A, B, C \subseteq \Omega$. Let P(AB) denote $P(A \cap B)$.

- $A \subseteq B \Rightarrow P(A) \le P(B)$.
- $P(AB) \le \min\{P(A), P(B)\}.$
- $P(A \cup B) = P(A) + P(B) P(AB)$.
- $P(\bar{A}) = 1 P(A)$: $\bar{A} = \Omega \backslash A$.
- Complement rule (De Morgan's Law): $\overline{AB} = \bar{A} \cup \bar{B}$; $\overline{A \cup B} = \bar{A}\bar{B}$
- P(AB) = P(A|B)P(B) = P(B|A)P(A).
- Conditional probability: $P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$ (Bayes' theorem).
- If A and B are independent, then P(AB) = P(A)P(B).
- Distributive law: $(A \cup B) \cap C = (AC) \cup (BC)$.

3 / 23

Venn Diagram

Figure: A Venn diagram is a diagram that shows the relationship between and among a finite collection of sets.

Conditional vis-à-vis Unconditional Probability

Q:
$$P(A|B) \leq P(A)$$
?

A: It can be any case in general.

Take a standard deck of cards (52 cards without Jokers). Remove all black queens and kings. When picking a card, define 3 events:

- A: The card picked is a face card.
- B_1 : The card picked is a heart.
- B_2 : The card picked is a spade.

Question: Find the values of P(A), $P(A|B_1)$, $P(A|B_2)$.

- A: 48 cards left with 8 face cards: $P(A) = \frac{1}{6}$.
- B_1 : 13 cards of hearts left with 3 face cards: $P(A|B_1) = \frac{3}{13}$.
- B_2 : 11 card of spades left with only 1 face card (the Jack of Spades): $P(A|B_2) = \frac{1}{11}$.

We have $P(A|B_2) < P(A) < P(A|B_1)$.

Random Variables

Definition (Random Variable (RV))

Let Ω be the sample space of an experiment, and $\mathbb R$ denote the set of real numbers. Then, a random variable $X:\Omega\mapsto\mathbb R$ associated with this experiment is a function that assigns each outcome in Ω to a real number. The range of X is denoted as $\operatorname{val}(X)$.

Example. Flip a coin 5 times. Let X denote the random variable for the number of times the coin came up heads. Then $X(\omega_0)=3$, for the outcome $\omega_0=\{\mathrm{HHTHT}\}$. There are two different types of random variables that are often studied: discrete and continuous.

Random Variables (Cont'd)

If X is a discrete random variable, we use the notation

$$\Pr(X = k) := \Pr(\{\omega : X(\omega) = k\})$$

for the probability of the event X = k.

If X is a continuous random variable, we use the notation

$$\Pr(a \leq X \leq b) \coloneqq \Pr(\{\omega : a \leq X(\omega) \leq b\})$$

for the probability of the event $a \leq X \leq b$.

7 / 23

Cumulative Distribution Function (CDF)

Definition

Let X be a random variable associated with an experiment. Then,

$$F_X(x) := \Pr(X \le x)$$

is a cumulative distribution function.

Properties of CDFs:

- (a) $0 \le F_X(x) \le 1$.
- (b) $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to +\infty} F_X(x) = 1$.
- (c) F_X is nondecreasing, namely if $x \leq y$ then $F_X(x) \leq F_X(y)$.
- (d) F_X is right-continuous, i.e. $\lim_{x\to a^+} F_X(x) = F_X(a)$.

CDF for Discrete and Continous RVs

Figure: CDF of a discrete random variable.

Figure: CDF of a continuous random variable.

Yu Zhang (UCSC) ECE180J: Lecture 9 9 / 23

PMF and PDF

For discrete random variables, we have the probability mass function (PMF):

$$p_X(x) \coloneqq \Pr(X = x),$$

where $\sum_{x \in \text{val}(X)} p_X(x) = 1$.

For continuous random variables, we instead consider probability density function (PDF),

$$f_X(x) := \frac{dF_X(x)}{dx} = F_X'(x),$$

provided that F_X is differentiable at x.¹ Notice that $f_X(x)$ and $\Pr(X=x)$ are two different concepts, which can be related by

$$\Pr(x \le X \le x + \Delta x) \approx f_X(x)\Delta x$$

and

$$\Pr(X \in A) = \int_{x \in A} f_X(x) dx,$$

where $A \subseteq val(X)$.

Yu Zhang (UCSC) ECE180J: Lecture 9

10 / 23

¹Note that F_X may not be everywhere differentiable even for continuous random variable X.

Common Distributions

Name of the probability distribution	Probability distribution function	Mean	Variance
Binomial distribution	$\Pr\left(X=k ight)=inom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
Geometric distribution	$\Pr\left(X=k\right)=(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
Normal distribution	$f\left(x\mid\mu,\sigma^{2} ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}e^{-rac{(x-\mu)^{2}}{2\sigma^{2}}}$	μ	σ^2
Uniform distribution (continuous)	$f(x\mid a,b) = egin{cases} rac{1}{b-a} & ext{for } a\leq x\leq b, \ 0 & ext{for } x< a ext{ or } x>b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential distribution	$f(x\mid \lambda) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$

Figure: PDF or PMF of commonly used random variables (Wiki).

Gaussian (Normal) Distribution

Figure: PDF and CDF of Gaussian distribution.

PDF of Gaussian distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

CDF of standard Gaussian distribution ($\mu = 0$ and $\sigma = 1$):

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

Yu Zhang (UCSC) ECE180J: Lecture 9 12 / 23

Expectation

Definition (Expectation)

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable, discrete or continuous, then the *expectation* of the random variable g(X) is

$$\mathrm{E}[g(X)] := \sum_{x \in \mathrm{val}(X)} g(x) p_X(x) \quad \text{or} \quad \mathrm{E}[g(X)] := \int\limits_{x \in \mathrm{val}(X)} g(x) f_X(x) dx,$$

respectively.

Linearity of the expectation operator:

- (a) $\mathrm{E}[ag(X)+bh(X)]=a\mathrm{E}[g(X)]+b\mathrm{E}[h(X)]$ for any constants a,b, and arbitrary functions $g(\cdot),h(\cdot)$.
- (b) $X \perp \!\!\!\perp Y \Rightarrow \mathrm{E}[XY] = \mathrm{E}[X]\mathrm{E}[Y].$

The indicator function:
$$\mathbf{1}_A \coloneqq \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{otherwise.} \end{cases} \Rightarrow$$

$$E[\mathbf{1}_A] = \Pr(A) \times 1 + \Pr(\bar{A}) \times 0 = \Pr(A), \ F_X(x) = E[\mathbf{1}_{\{X \le x\}}].$$

Yu Zhang (UCSC) ECE180J: Lecture 9 13/23

Variance

Given a distribution of a random variable, its variance to measure how concentrated that distribution is around the expectation (mean). Formally, we have

Definition (Variance)

$$\mathrm{Var}[X] \coloneqq \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - (\mathrm{E}[X])^2 \text{, where } \mathrm{E}[X^2] \text{ is the second moment of } X.$$

The following can be derived immediately from the definition:

- (a) $Var[cX] = c^2 Var[X]$.
- (b) Var[c] = 0 for any constant c.
- (c) $\operatorname{Var}[aX \pm bY] = a^2 \operatorname{Var}[X] + b^2 \operatorname{Var}[Y] \pm 2ab \times \operatorname{Cov}[X, Y].$

Examples

Let $X \sim \exp(\lambda)$ whose density function is $f_X(x) = \lambda e^{-\lambda x}$. Find E[X] and Var[X].

Solution: From the definition of expectation and integration by parts, we have

$$E(X) = \int_0^\infty x f_X(x) dx$$

$$= \lambda \int_0^\infty x e^{-\lambda x} dx$$

$$= -x e^{-\lambda x} \Big|_0^\infty + \int_0^\infty e^{-\lambda x} dx$$

$$= 0 + \frac{e^{-\lambda x}}{-\lambda} \Big|_0^\infty = \frac{1}{\lambda}.$$

$$\begin{split} V(X) &= \int_0^\infty x^2 f_X(x) \, dx - \frac{1}{\lambda^2} \\ &= \lambda \int_0^\infty x^2 e^{-\lambda x} \, dx - \frac{1}{\lambda^2} \\ &= -x^2 e^{-\lambda x} \Big|_0^\infty + 2 \int_0^\infty x e^{-\lambda x} \, dx - \frac{1}{\lambda^2} \\ &= -x^2 e^{-\lambda x} \Big|_0^\infty - \frac{2x e^{-\lambda x}}{\lambda} \Big|_0^\infty - \frac{2}{\lambda^2} e^{-\lambda x} \Big|_0^\infty - \frac{1}{\lambda^2} = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} \; . \end{split}$$

Multivariate Random Variables

Definition (Joint CDF)

Let X, Y be two random variables associated with an experiment. Then the *joint* cumulative distribution function of X and Y is

$$F_{XY} := \Pr(X \le x, Y \le y)$$

and the marginal cumulative distribution function of X is

$$F_X(x) := \lim_{y \to +\infty} \Pr(X \le x, Y \le y).$$

Similarly, the joint PMF $p_{XY}(x,y)\coloneqq\Pr(X=x,Y=y)$ the marginal PMF of X, $p_X(x)\coloneqq\sum_{y\in\mathrm{val}(Y)}\Pr(X=x,Y=y)$.

The joint PDF of continuous X and Y is $f_{XY}(x,y) \coloneqq \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$ the marginal PDF of X: $f_X(x) \coloneqq \int\limits_{y \in \mathrm{val}(Y)} f_{XY}(x,y) dy$.

Conditional Distribution

The above summation or integral operation is called marginalization. Note that

$$\iint\limits_A f_{XY}(x,y) dx dy = \Pr\Big((x,y) \in A\Big).$$

Definition (Conditional Distribution for Discrete RVs)

Let X and Y be discrete random variables. The $\emph{conditional distribution}$ of Y given

$$p_{Y|X}(y \mid x) := \frac{p_{XY}(x,y)}{p_X(x)},$$

provided that $p_X(x) \neq 0$.

We say that X and Y are independent if $p_{Y|X}(y \mid x) = p_Y(y)$.

Note that $X \perp \!\!\!\perp Y \Leftrightarrow p_{XY}(x,y) = p_X(x)p_Y(y)$.

Q: If $X \perp\!\!\!\perp Y$. For arbitrary functions $g(\cdot)$ and $h(\cdot)$, are $g(X) \perp\!\!\!\perp h(Y)$?

A: Yes.

X = x is

Covariance & Correlation

Definition (Covariance and Correlation)

Let X and Y be two random variables. Their *covariance* is defined as

$$\mathrm{Cov}[X,Y] \coloneqq \mathrm{E}[(X - \mathrm{E}[X])(Y - \mathrm{E}[Y])] = \mathrm{E}[XY] - \mathrm{E}[X]\mathrm{E}[Y].$$

Their correlation is defined as

$$Corr[X, Y] := \frac{Cov[X, Y]}{\sqrt{Var(X)Var(Y)}}.$$

- 1. $Corr[X, Y] \in [-1, 1]$ is a measure of linear association between X and Y.
- 2. X and Y are uncorrelated if Corr[X, Y] = 0.
- 3. $Corr[X, Y] = \pm 1 \Leftrightarrow Y = aX + b$ for some constants a and b.
- 4. If $X \perp \!\!\!\perp Y \implies$ they are uncorrelated.
- 5. X and Y can be uncorrelated yet dependent due to a nonlinear relationship.

Example: $X \sim N(0,1), Y = X^2 \implies \operatorname{Corr}[X,Y] = \operatorname{E}[XY] - \operatorname{E}[X]\operatorname{E}[Y] = \operatorname{E}[X^3] = 0$ (all odd-order moments of X are equal to zero). Hence, X and Y are uncorrelated. But they're clearly dependent since Y is a function of X.

Example 1 of Covariance

Let X and Y be discrete random variables, with joint probability function $p_{X,Y}$ given by

$$p_{X,Y}(x, y) = \begin{cases} 1/2 & x = 3, y = 4\\ 1/3 & x = 3, y = 6\\ 1/6 & x = 5, y = 6\\ 0 & \text{otherwise.} \end{cases}$$

Then
$$E(X) = (3)(1/2) + (3)(1/3) + (5)(1/6) = 10/3$$
, and $E(Y) = (4)(1/2) + (6)(1/3) + (6)(1/6) = 5$. Hence,

$$Cov(X, Y) = E((X - 10/3)(Y - 5))$$

$$= (3 - 10/3)(4 - 5)/2 + (3 - 10/3)(6 - 5)/3 + (5 - 10/3)(6 - 5)/6$$

$$= 1/3. \blacksquare$$

Example 2 of Covariance

Let X be any random variable with Var(X) > 0. Let Y = 3X, and let Z = -4X. Then $\mu_Y = 3\mu_X$ and $\mu_Z = -4\mu_X$. Hence,

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E((X - \mu_X)(3X - 3\mu_X))$$

= 3 E((X - \mu_X)^2) = 3 Var(X),

while

$$Cov(X, Z) = E((X - \mu_X)(Z - \mu_Z)) = E((X - \mu_X)((-4)X - (-4)\mu_X))$$

= $(-4)E((X - \mu_X)^2) = -4 \text{Var}(X)$.

Note in particular that Cov(X, Y) > 0, while Cov(X, Z) < 0. Intuitively, this says that Y increases when X increases, whereas Z decreases when X increases.

PDF of Sum of Two Random Variables

For independent random variables X and Y, the distribution f_Z of Z=X+Y equals the **convolution** of f_X and f_Y :

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y(z - x) f_X(x) dx$$

LLN and CLT

Theorem (Law of Large Numbers (LLN))

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables so that $\mathrm{E}[X_1] = \mathrm{E}[X_2] = \cdots = \mathrm{E}[X_n] < \infty$. Let

$$\bar{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$

denote the sample mean of those n random variables. Then $\bar{X}_n \to E[X_1]$ as $n \to \infty$ almost surely (a.s., strong law) and in probability (i.p., weak law).

Theorem (Central Limit Theorem (CLT))

Let X_1,X,\ldots,X_n be a sequence of i.i.d. random variables, and assume that $\mathrm{E}[X_i]=\mu$ and $\mathrm{Var}[X_i]=\sigma^2$, for all i. Let $S_n:=X_1+X_2+\cdots+X_n$. Then, $\mathrm{E}[S_n]=n\mu$, $\mathrm{Var}[S_n]=n\sigma^2$ and we have the standardization of S_n ,

$$rac{S_n-n\mu}{\sigma\sqrt{n}}\stackrel{\textit{i.p.}}{\longrightarrow} N(0,1)$$
 as $n o\infty$

where N(0,1) denotes the standard normal random variable.

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/