Bài 3. PHƯƠNG TRÌNH MẶT CẦU

XÁC ĐỊNH CÁC YẾU TỐ CƠ BẢN MẶT CẦU

- $\mbox{\bf \Theta}$ Phương trình mặt cầu (S) có dạng $(x-a)^2+(y-b)^2+(z-c)^2=R^2$ thì mặt cầu có tâm I(a;b;c) và có bán kính R.
- $\mbox{\Large \ \ \, }$ Phương trình mặt cầu (S) có dạng $x^2+y^2+z^2-2ax-2by-2cz+d=0$ với $a^2 + b^2 + c^2 - d > 0$ thì để xác định tọa độ tâm I(a;b;c) và bán kính R ta thức hiện như sau:
 - Xác định tọa độ tâm I: $\begin{cases} -2a = \dots \\ -2b = \dots \\ -2c = \dots \end{cases}$
 - Xác định bán kính: $R = \sqrt{a^2 + b^2 + c^2 d}$.

- $oldsymbol{\Theta}$ Có thể xác định tọa độ tâm I(a;b;c) và bán kính R của phương trình mặt $c\grave{a}u$ (S) có dang $x^2+y^2+z^2-2ax-2by-2cz+d=0$ bằng cách nhóm $nh\hat{a}n \ t \dot{u} \ d \hat{e} \ dua \ v \hat{e} \ dang \ (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2.$
- **O** Để một phương trình là một phương trình mặt cầu, cần thỏa mãn hai điều $ki\hat{e}n$: $H\hat{e}$ số trước x^2 , y^2 , z^2 phải bằng 1 và $a^2 + b^2 + c^2 - d > 0$.
- Θ Nếu IM = R thì M nằm trên mặt cầu.
- \odot Nếu IM < R thì M nằm trong mặt cầu.
- Θ Nếu IM > R thì M nằm ngoài mặt cầu.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Cho điểm M nằm ngoài mặt cầu S(O;R). Khẳng định nào dưới đây đúng?

$$(\mathbf{A}) OM < R.$$

$$(\mathbf{B})OM = R.$$

$$(\mathbf{C})OM > R.$$

$$\bigcirc OM \leq R.$$

CÂU 2. Trong KG Oxyz, cho mặt cầu (S): $x^2 + (y-2)^2 + (z+1)^2 = 6$. Đường kính của (S) bằng

$$(\mathbf{A})\sqrt{6}$$
.

(c)
$$2\sqrt{6}$$
.

$$(\mathbf{D})3$$

CÂU 3. Mặt cầu (S): $3x^2 + 3y^2 + 3z^2 - 6x + 12y + 2 = 0$ có bán kính bằng

$$\mathbf{A} \frac{\sqrt{7}}{2}.$$

B
$$\frac{2\sqrt{7}}{3}$$
. **C** $\frac{\sqrt{21}}{3}$.

$$\bullet$$
 $\frac{\sqrt{21}}{3}$

(D)
$$\sqrt{\frac{13}{3}}$$
.

CÂU 4. Trong KG Oxyz, cho mặt cầu (S): $(x-2)^2 + (y+1)^2 + (z-3)^2 = 4$. Tâm của (S)có tọa độ là

$$(A)$$
 $(-2;1;-3).$

(B)
$$(-4; 2; -6)$$
. **(C)** $(4; -2; 6)$.

$$(\mathbf{c})(4:-2:6)$$

$$(\mathbf{D})(2:-1:3).$$

CÂU 5. Trong KG Oxyz, mặt cầu (S): $(x+1)^2 + (y-2)^2 + z^2 = 9$ có bán kính bằng **(A)** 3. **(B)** 81. **(C)** 9. **(D)** 6.

CÂU 6. Trong KG Oxyz, cho mặt cầu (S) có tâm I(1;-4;0) và bán kính bằng 3. Phương trình của (S) là

$$(\mathbf{A})(x+1)^2 + (y-4)^2 + z^2 = 9.$$

B)
$$(x-1)^2 + (y+4)^2 + z^2 = 9$$
.

$$(x-1)^2 + (y+4)^2 + z^2 = 9.$$

$$(\mathbf{D})(x+1)^2 + (y-4)^2 + z^2 = 3.$$

CÂU 7. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + (z - 1)^2 = 16$. Bán kính của (S) là

CÂU 8. Trong KG Oxyz, cho mặt cầu (S): $(x+1)^2 + (y+2)^2 + (z-3)^2 = 9$. Tâm của (S)có tọa độ là

$$(-2; -4; 6).$$

B)
$$(2; 4; -6)$$
.

$$(\mathbf{C})(-1;-2;3).$$
 $(\mathbf{D})(1;2;-3).$

$$(\mathbf{D})(1:2:-3).$$

CÂU 9. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 8x + 10y - 6z + 49 = 0$. Tính bán kính R của mặt cầu (S).

$$\mathbf{A}$$
 $R=1$.

(B)
$$R = 7$$
.

(c)
$$R = \sqrt{151}$$
.

(D)
$$R = \sqrt{99}$$
.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•

* *************************************	
QUICK NOTE	C T
	1
	C
	C
	S
	_
	()
	()
	C
	_
	2
	C
	tó
	F
	C F
	k
	K

CÂU 10. Trong KG Oxyz, cho mặt cầu có phương trình $(x-1)^2 + (y+2)^2 + (z-3)^2 = 4$. Tìm tọa độ tâm I và bán kính R của mặt cầu đó.

(A) I(-1;2;-3); R=2.

B) I(-1;2;-3); R=4.

 $(\mathbf{C}) I(1; -2; 3); R = 2.$

 $(\mathbf{D}) I(1; -2; 3); R = 4.$

CÂU 11. Trong KG Oxyz, trong các mặt cầu dưới đây, mặt cầu nào có bán kính R=2?

- (A) (S): $x^2 + y^2 + z^2 4x + 2y + 2z 3 = 0$.
- **(B)** (S): $x^2 + y^2 + z^2 4x + 2y + 2z 10 = 0$.
- **(c)** (S): $x^2 + y^2 + z^2 4x + 2y + 2z + 2 = 0$.
- $(\hat{\mathbf{D}})(S)$: $x^2 + y^2 + z^2 4x + 2y + 2z + 5 = 0$.

CÂU 12. Cho các phương trình sau

- a) $(x-1)^2 + y^2 + z^2 = 1$;
- b) $x^2 + (2y 1)^2 + z^2 = 4$;

c) $x^2 + y^2 + z^2 + 1 = 0$;

d) $(2x+1)^2 + (2y-1)^2 + 4z^2 = 16$.

Số phương trình là phương trình mặt cầu là

- \bigcirc 4.
- **B**)3
- $(\mathbf{C})2$
- $(\mathbf{D})1.$

CÂU 13. Trong không gian với hệ trực tọa độ Oxyz, gọi I là tâm mặt cầu (S): $x^2 + y^2 + (z-2)^2 = 4$. Độ dài $|\overrightarrow{OI}|$ bằng

- \bigcirc 2.
- (B) 4.
- $(\mathbf{c})_{1.}$
- $(\mathbf{D})\sqrt{2}$.

CÂU 14. Trong KG Oxyz có tất cả bao nhiều giá trị nguyên m để phương trình $x^2 + y^2 + z^2 + 4mx + 2my - 2mz + 9m^2 - 28 = 0$ là phương trình mặt cầu?

- \bigcirc 7.
- (**B**) 8.
- $(\widetilde{\mathbf{C}})$ 9.
- \bigcirc 6.

CÂU 15. Trong KG Oxyz, có tất cả bao nhiêu giá nguyên của m để $x^2+y^2+z^2+2$ (m+2) x-2 (m-1) $z+3m^2-5=0$ là phương trình một mặt cầu?

- $\widehat{\mathbf{A}}$) 4.
- (B) 6.
- (\mathbf{C}) 5
- **D** 7.

CÂU 16. Cho phương trình $x^2 + y^2 + z^2 - 4x + 2my + 3m^2 - 2m = 0$ với m là tham số. Tính tổng tất cả các giá trị nguyên của m để phương trình đã cho là phương trình mặt cầu.

- \mathbf{A} 0.
- $(\mathbf{B}) 1.$
- $(\mathbf{C})_2$
- (**D**):

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 17.** Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + (z+2)^2 = 9$ có tâm I và bán kính R. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Tọa độ tâm mặt cầu (S) là $I(0;0;2)$.		
b) Bán kính mặt cầu (S) là $R=9$.		
c) Khoảng cách từ tâm mặt cầu đến mặt phẳng (P) : $x+y+z=0$ bằng $\frac{2\sqrt{3}}{3}$.		
d) Diện tích mặt cầu (S) bằng 36π .		

CÂU 18. Trong KG Oxyz, cho mặt cầu (S): $(x+3)^2 + y^2 + (z-2)^2 = 16$ có tâm I và bán kính R. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Điểm $M(-1;0;3)$ nằm trong mặt cầu (S) .		
b) Bán kính mặt cầu (S) là $R=4$.		
c) Tọa độ tâm mặt cầu (S) là $I(-3;0;2)$.		
d) Thể tích mặt cầu (S) là $V = \frac{16384\pi}{3}$.		

CÂU 19. Trong không gian với hệ toạ độ Oxyz, cho điểm M(2;0;2) và mặt cầu $(S): x^2 + (y+2)^2 + (z-2)^2 = 8$. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Điểm $M\left(2;0;2\right)$ thuộc mặt cầu $\left(S\right).$		
b) Bán kính mặt cầu (S) là $R=2\sqrt{2}$.		
c) Tọa độ tâm mặt cầu (S) là $I(0;-2;2)$.		
d) Hình chiếu của tâm mặt cầu lên trục Ox là điểm có tọa độ $(0;0;2)$.		

CÂU 20. Trong KG Oxyz, mặt cầu (S): $(x-1)^2 + (y+2)^2 + (z-4)^2 = 20$. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Bán kính mặt cầu (S) là 20.		
b) Diện tích mặt cầu (S) là 1600π .		
c) Tọa độ tâm mặt cầu (S) là $I(-1;2;-4)$.		
d) Điểm đối xứng của tâm mặt cầu (S) qua mặt phẳng (Oyz) là $I\left(-1;-2;4\right)$.		

CÂU 21. Trong KG Oxyz, cho các phương trình sau

- a) (S_1) : $x^2 + y^2 + z^2 + x 2y + 4z 3 = 0$,
- b) (S_2) : $2x^2 + 2y^2 + 2z^2 x y z = 0$,
- c) (S_3) : $2x^2 + 2y^2 + 2z^2 + 4x + 8y + 6z + 3 = 0$.
- d) (S_4) : $x^2 + y^2 + z^2 2x + 4y 4z + 10 = 0$.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) (S_1) là phương trình của một mặt cầu.		
b) (S_2) là phương trình của một mặt cầu.		
${f c}$) (S_3) không phải là phương trình của một mặt cầu.		
\mathbf{d}) (S_4) không phải là phương trình của một mặt cầu.		

CÂU 22. Trong KG Oxyz, cho các phương trình sau

- a) (S_1) : $x^2 + y^2 + z^2 2x = 0$,
- b) (S_2) : $x^2 + y^2 z^2 + 2x y + 1 = 0$,
- c) (S_3) : $2x^2 + 2y^2 = (x+y)^2 z^2 + 2x 1$, d) (S_4) : $(x+y)^2 = 2xy z^2 1$.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) (S_1) là phương trình của một mặt cầu.		
${f b}$) (S_2) là phương trình của một mặt cầu.		
${f c}$) (S_3) là phương trình của một mặt cầu.		
\mathbf{d}) (S_4) không phải là phương trình của một mặt cầu.		

CÂU 23. Trong KG Oxyz, cho các phương trình sau

- a) (S_1) : $x^2 + y^2 + z^2 2x = 0$,
- b) (S_2) : $2x^2 + 2y^2 = (x+y)^2 z^2 + 2x 1$,
- c) $(S_3): x^2 + y^2 + z^2 + 2x 2y + 1 = 0$, d) $(S_4): (x+y)^2 = 2xy z^2 + 1 4x$.

Các mệnh đề sau đây đúng hay sai?

QUICK NOTE	Mệnh đề	Đ	S
	a) (S_1) là phương trình của một mặt cầu.		
	b) (S_2) là phương trình của một mặt cầu.		
	c) (S_3) là phương trình của một mặt cầu.		
	d) (S_4) là phương trình của một mặt cầu.		
	a) (24) to phoofig time out myt mat out.	<u> </u>	
	CÂU 24. Trong KG $Oxyz$, cho các phương trình sau		
	a) (S_1) : $(x-1)^2 + (2y-1)^2 + (z-1)^2 = 6$, b) (S_2) : $(x-1)^2 + (y-1)^2 + (y-1)^2 = 6$	$(z-1)^{-1}$	$(1)^2 = 0$
	c) (S_3) : $(2x-1)^2 + (2y-1)^2 + (2z+1)^2 = 6$, d) (S_4) : $(x+y)^2 = 2xy - z^2$	+3-	6x.
	Các mệnh đề sau đây đúng hay sai?		
	Mênh đề	Ð	S
	·	Ð	5
	a) (S_1) không phải là phương trình của một mặt cầu.		
	b) (S_2) không phải là phương trình của một mặt cầu.		
	c) (S_3) không phải là phương trình của một mặt cầu.		
	d) (S_4) không phải là phương trình của một mặt cầu.		
	CÂU 25. Trong không gian với hệ trục $Oxyz$, cho phương trình (S) : $x^2 + y^2$ $2)x + 4my - 2mz + 5m^2 + 9 = 0$. Các mệnh đề sau đây đúng hay sai?	$+z^{2}$	-2(m
	$2jx + 4my - 2mz + 5m^2 + 9 = 0$. Cac menn de sau day dung nay sar:		
	Mệnh đề	Ð	S
	a) Với $m=0$ thì (S) là phương trình của một mặt cầu.		
	b) Với $m=1$ thì (S) là phương trình của một mặt cầu có tâm $I(3;-2;1)$.		
	c) Với $m=3$ thì (S) là phương trình của một mặt cầu có bán kính là		
	R=4.		
	d) Với $m < -5$ hoặc $m > 1$ thì (S) là phương trình của một mặt cầu.		
	Phần III. Học sinh điền kết quả vào ô trống.		
	CÂU 26. Trong KG $Oxyz$, cho mặt cầu (S) : $(x-1)^2 + (y+2)^2 + (z-3)^2$ tâm của mặt cầu (S) là $(a;b;c)$. Khi đó $a+b+c$ bằng bao nhiêu?	= 16.	Tọa
	KQ:		
	CÂU 27. Trong không gian với hệ trục tọa độ $Oxyz$, tất cả các giá trị của m để $x^2+y^2+z^2-2(m+2)x+4my+19m-6=0$ là phương trình mặt cầu là $S=(-\infty)$	phươ	ng trì
	$x + y + z - 2(m+2)x + 4my + 19m - 0 = 0$ là phương trình mặt cấu là $S = (-\infty)$ Giá trị $a + b$ bằng	$(a) \cup (a)$	$(v, \pm 0)$
	KQ:		
			2
	CÂU 28. Trong không gian với hệ trục tọa độ $Oxyz$, có bao nhiều giá trị ngư phương trình $x^2 + y^2 + z^2 + 2x - 4y + 2(m+1)z + 2m^2 + 6 = 0$ là phương tr		
	KQ:		
	CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, có bao nhiều giá trị nguy m để phương trình $x^2 + y^2 + z^2 - 2(m+2)x + 4my - 2mz + 5m^2 + 9 = 0$		
	phương trình mặt cầu.		, r
	KQ:		
	CÂU 30. Trong không gian với hệ trục tọa độ $Oxyz$, có bao nhiều giá trị ngư	ıvên c	 ila m
	phương trình $x^2 + y^2 + z^2 - 2(3 - m)x - 2(m + 1)y - 2mz + 2m^2 + 7 = 0$		
	phương trình mặt cầu.		
	KQ:		

CÂU 31. Trong KG Oxyz, cho hai điểm A(1;2;1), B(3;1;-2). Tập hợp điểm M(x;y;z) sao cho thỏa mãn $MA^2 + MB^2 = 30$ là phương trình mặt cầu tâm I(a;b;c). Giá tri a+b+cbằng

CÂU 32. Trong KG Oxyz, cho hai điểm A(1;2;1), B(3;1;-2). Tập hợp điểm M(x;y;z) sao cho thỏa mãn $\frac{MB}{MA} = 2$ là phương trình mặt cầu tâm I(a;b;c). Giá trị a+b+c gần bằng

CÂU 33. Trong KG Oxyz, cho hai điểm A(-1;2;0), B(0;1;-2). Tập hợp điểm M(x;y;z)sao cho thỏa mãn MA = MB là mặt phẳng có phương trình x + ay + bz + c = 0. Giá tri a + b + c bằng

CÂU 34. Trong KG Oxyz, cho hai điểm A(-1;0;1), B(1;-1;2). Tập hợp điểm M(x;y;z)sao cho thỏa mãn $\widehat{AMB} = 90^{\circ}$ là mặt cầu tâm I(a;b;c) và bán kính $R = \sqrt{d}$. Giá trị a+b+c+d bằng

LẬP PHƯƠNG TRÌNH MẶT CẦU DẠNG CƠ BẢN

Mặt cầu tâm I(a;b;c) và có bán kính R có phương trình

(S):
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$
.

Phương trình $x^2+y^2+z^2-2ax-2by-2cz+d=0$ với $a^2+b^2+c^2-d>0$ là phương trình của mặt cầu tâm I(a;b;c) và bán kính $R=\sqrt{a^2+b^2+c^2-d}$.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong KG Oxyz, cho mặt cầu (S) có tâm I(-1;3;0) và bán kính bằng 2. Phương trình của mặt cầu (S) là

$$(x-1)^2 + (y+3)^2 + z^2 = 2.$$

B
$$(x-1)^2 + (y+3)^2 + z^2 = 4$$
.

$$(x+1)^2 + (y-3)^2 + z^2 = 4.$$

$$(x+1)^2 + (y-3)^2 + z^2 = 2.$$

CÂU 2. Trong KG Oxyz, cho mặt cầu (S) có tâm I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là

$$(\mathbf{A}) \dot{x^2} + y^2 + (z+3)^2 = 25.$$

(B)
$$x^2 + y^2 + (z+3)^2 = 5$$
.

$$\mathbf{C}$$
 $x^2 + y^2 + (z - 3)^2 = 25.$

$$(\mathbf{D})x^2 + y^2 + (z-3)^2 = 5.$$

CÂU 3. Trong KG Oxyz, cho hai điểm A(1;-2;7), B(-3;8;-1). Mặt cầu đường kính ABcó phương trình là (A) $(x+1)^2 + (y-3)^2 + (z-3)^2 = \sqrt{45}$. (B) $(x-1)^2 + (y+3)^2 + (z+3)^2 = 45$.

$$(x+1)^2 + (y-3)^2 + (z-3)^2 = \sqrt{45}$$

$$(\mathbf{B})(x-1)^2 + (y+3)^2 + (z+3)^2 = 45$$

$$\mathbf{C}(x-1)^2 + (y-3)^2 + (z+3)^2 = \sqrt{45}.$$

$$(\mathbf{D})(x+1)^2 + (y-3)^2 + (z-3)^2 = 45.$$

CÂU 4. Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0), đi qua điểm B(0;1;2)?

(A) (S):
$$(x+2)^2 + (y+1)^2 + z^2 = 8$$
.

B
$$(S)$$
: $(x-2)^2 + (y-1)^2 + z^2 = 8$.

(c)
$$(S)$$
: $(x-2)^2 + (y-1)^2 + z^2 = 64$.

(D)
$$(S)$$
: $(x+2)^2 + (y+1)^2 + z^2 = 64$.

CÂU 5. Trong KG Oxyz cho điểm I(2;3;4) và A(1;2;3). Phương trình mặt cầu tâm I và đi qua A có phương trình là

$$(x+2)^2 + (y+3)^2 + (z+4)^2 = 3.$$

B)
$$(x+2)^2 + (y+3)^2 + (z+4)^2 = 9$$
.

©
$$(x-2)^2 + (y-3)^2 + (z-4)^2 = 45.$$

$$(\mathbf{D})(x-2)^2 + (y-3)^2 + (z-4)^2 = 3.$$

CÂU 6. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;3), B(5;4;-1). Phương trình mặt cầu đường kính AB là

$$(x-3)^2 + (y-3)^2 + (z-1)^2 = 9.$$

(B)
$$(x-3)^2 + (y-3)^2 + (z-1)^2 = 6$$
.

$$\mathbf{C}(x+3)^2 + (y+3)^2 + (z+1)^2 = 9.$$

$$(\mathbf{D})(x-3)^2 + (y-3)^2 + (z-1)^2 = 36.$$

CÂU 7. Trong KG Oxyz, cho hai điểm M(3, -2, 5), N(-1, 6, -3). Mặt cầu đường kính MNcó phương trình là

$$(x+1)^2 + (y+2)^2 + (z+1)^2 = 6.$$

B)
$$(x-1)^2 + (y-2)^2 + (z-1)^2 = 6$$
.

QUICK NOTE

٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•					•	•	•	•	•	•	•						•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•	•	•	•	•	•	•	•	•	•				•		•	•	•	•	•	•	•	•	•								•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	

•	•	•	•	•						•	•	•	•	•	•						

•																

		-4	_	м		т	т
ລແ	П	-	•	N	О		

(c)
$$(x+1)^2 + (y+2)^2 + (z+1)^2 = 36.$$

$$(\mathbf{D})(x-1)^2 + (y-2)^2 + (z-1)^2 = 36.$$

CÂU 8. Cho hai điểm A, B cố định trong không gian có độ dài AB là 4. Biết rằng tập hợp các điểm M trong không gian sao cho MA=3MB là một mặt cầu. Bán kính mặt cầu đó bằng

$$\bigcirc 9$$

$$\bigcirc$$
 $\frac{3}{2}$.

CÂU 9. Trong KG Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0), B(3;0;3), C(0;3;3), D(3;3;3). Phương trình mặt cầu (S) là

(A)
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 + \left(z - \frac{3}{2}\right)^2 = \frac{3\sqrt{3}}{2}$$
.

(c)
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 + \left(z + \frac{3}{2}\right)^2 = \frac{27}{4}$$
.

CÂU 10. Trong KG Oxyz, cho tứ diện đều ABCD có A(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD) là H(4; -3; -2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD.

$$\bullet$$
 $I(3;-2;-1).$

B)
$$I(2;-1;0)$$
.

$$\bullet$$
 $I(3;-2;1).$

$$(\mathbf{D})I(-3;-2;1).$$

CÂU 11. Trong không gian tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G(-6; -12; 18). Tọa độ tâm của mặt cầu (S) là

$$(\mathbf{A})$$
 (9; 18; -27).

$$(\mathbf{B})$$
 $(-3; -6; 9).$

$$\bigcirc$$
 (3; 6; -9).

$$\bigcirc$$
 (-9; -18; 27).

CÂU 12. Trong hệ truc tọa độ Oxyz, cho mặt cầu

(S):
$$(x - \cos \alpha)^2 + (y - \cos \beta)^2 + (z - \cos \gamma)^2 = 4$$

với α , β và γ lần lượt là ba góc tạo bởi tia Ot bất kì với 3 tia Ox, Oy và Oz. Biết rằng mặt cầu (S) luôn tiếp xúc với hai mặt cầu cố định. Tổng diện tích của hai mặt cầu cố định đó bằng

(A) 40π .

$$\bigcirc$$
 4π .

(c)
$$20\pi$$
.

$$\bigcirc$$
 36π .

CÂU 13. Trong KG Oxyz, cho điểm M(1; -2; 3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

$$(\mathbf{A})(x-1)^2 + y^2 + z^2 = 13.$$

B)
$$(x+1)^2 + y^2 + z^2 = 17$$
.

$$(x+1)^2 + y^2 + z^2 = 13.$$

$$(x-1)^2 + y^2 + z^2 = \sqrt{13}$$

CÂU 14. Trong KG Oxyz, cho điểm I(1;-2;3). Viết phương trình mặt cầu tâm I, cắt trục Ox tại hai điểm A và B sao cho $AB = 2\sqrt{3}$

$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 16.$$

B)
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 20$$
.

$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 25.$$

$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9.$$

CÂU 15. Trong KG Oxyz, cho điểm M(1; -2; 3). Goi I là hình chiếu vuông góc của M trên truc Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I bán kính IM?

$$(A) $(x-1)^2 + y^2 + z^2 = \sqrt{13}.$$$

(B)
$$(x-1)^2 + y^2 + z^2 = 13$$
.

$$(\mathbf{c})(x+1)^2 + y^2 + z^2 = 13.$$

$$(\mathbf{D})(x+1)^2 + y^2 + z^2 = 17.$$

CÂU 16. Trong KG Oxyz, cho tứ diện ABCD có toa độ đỉnh A(2;0;0), B(0;4;0), C(0;0;6), A(2;4;6). Goi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp 2 lần bán kính của mặt cầu (S).

(A)
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 56$$
. **(B)** $x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$.

(B)
$$x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$$

$$(\mathbf{c})(x+1)^2 + (y+2)^2 + (z+3)^2 = 14.$$

$$(\mathbf{D})x^2 + y^2 + z^2 - 2x + 4y + 6z - 12 = 0.$$

CÂU 17. Trong KG Oxyz, mặt cầu tâm I(2;1;-3) và tiếp xúc với trục Oy có phương trình

$$(x-2)^2 + (y-1)^2 + (z+3)^2 = 4.$$

B
$$(x-2)^2 + (y-1)^2 + (z+3)^2 = 13.$$

$$(x-2)^2 + (y-1)^2 + (z+3)^2 = 9.$$

$$(x-2)^2 + (y-1)^2 + (z+3)^2 = 10.$$

CÂU 18. Trong KG Oxyz, cho mặt cầu (S): $(x-1)^2+(y-1)^2+z^2=4$. Một mặt cầu (S')có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Phương trình mặt cầu (S') là

$$(x-9)^2 + (y-1)^2 + (z-6)^2 = 64.$$

B
$$(x-9)^2 + (y-1)^2 + (z-6)^2 = 144.$$

$$(\mathbf{c})(x-9)^2 + (y-1)^2 + (z-6)^2 = 36.$$

$$(x+9)^2 + (y+1)^2 + (z+6)^2 = 25.$$

CÂU 19. Trong KG Oxyz, cho điểm H(1;2;-2). Mặt phẳng (α) đi qua H và cắt các trục Ox, Oy, Oz tại A, B, C sao cho H là trực tâm tạm giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (α) .

 $(\mathbf{A}) x^2 + y^2 + z^2 = 81.$

(B) $x^2 + y^2 + z^2 = 1$.

 $(\mathbf{C}) x^2 + y^2 + z^2 = 9.$

 $(\hat{\mathbf{D}})x^2 + y^2 + z^2 = 25.$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 20.** Trong KG Oxyz, cho mặt cầu (S) có tâm I(0; -2; 1), bán kính bằng 2. Các mệnh đề sau đây đúng hay sai?

Mệnh đề			
a) Phương trình của mặt cầu (S) là $x^2 + (y+2)^2 + (z-1)^2 = 2$.			
b) Phương trình của mặt cầu (S) là $x^2 + (y-2)^2 + (z+1)^2 = 2$.			
c) Phương trình của mặt cầu (S) là $x^2 + (y-2)^2 + (z+1)^2 = 4$.			
d) Phương trình của mặt cầu (S) là $x^2 + (y+2)^2 + (z-1)^2 = 4$.			

CÂU 21. Trong KG Oxyz, cho hai điểm I(1;1;1) và A(1;2;3). Gọi (S) là mặt cầu tâm Ivà đi qua điểm A. Các mệnh đề sau đây đúng hay sai?

Mệnh đề				
a) Phương trình mặt cầu (S) là $(x+1)^2 + (y+1)^2 + (z+1)^2 = 5$.				
b) Phương trình mặt cầu (S) là $(x+1)^2 + (y+1)^2 + (z+1)^2 = 29$.				
c) Phương trình mặt cầu (S) là $(x-1)^2 + (y-1)^2 + (z-1)^2 = 5$.				
d) Phương trình mặt cầu (S) là $(x-1)^2 + (y-1)^2 + (z-1)^2 = 25$.				

CÂU 22. Trong KG Oxyz, cho hai điểm A(2;-1;-3); B(0;3;-1). Gọi (S) là mặt cầu đường kính AB. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Phương trình của mặt cầu (S) là $(x-1)^2+(y-1)^2+(z+2)^2=6$.		
b) Phương trình của mặt cầu (S) là $(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$.		
c) Phương trình của mặt cầu (S) là $(x+1)^2 + (y+1)^2 + (z-2)^2 = 24$.		
d) Phương trình của mặt cầu có tâm là trung điểm AB và đi qua hai điểm A , B là $(x-1)^2 + (y-1)^2 + (z+2)^2 = 6$.		

CÂU 23. Gọi (S) là mặt cầu đi qua bốn điểm A(2;0;0), B(1;3;0), C(-1;0;3), D(1;2;3). Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Mặt cầu (S) có tọa độ tâm là $(1; -1; 1)$.		
b) Mặt cầu (S) có tọa độ tâm là $(0;1;1)$.		
c) Bán kính R của mặt cầu (S) là $R=6$.		
d) Bán kính R của mặt cầu (S) là $R = \sqrt{6}$.		

CÂU 24. Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Các mệnh đề sau đây đúng hay sai?

Mệnh đề		
a) Tọa độ tâm (I) của mặt cầu (S) là $(2;-1;0)$.		
b) Tọa độ tâm (I) của mặt cầu (S) là $(-2;1;0)$.		
c) Bán kính R của mặt cầu (S) là $R = \sqrt{26}$.		

......

.....

......

GV.VŨ NGỌC PHÁT ————————————————————————————————————		
n kính R của mặt cầu (S) là $R=\sqrt{26}.$		
a độ tâm (I) của mặt cầu (S) là $(-2;1;0)$.		
a độ tâm (I) của mặt câu (S) là $(2;-1;0)$.		

QUICK NOTE	Mệnh đề	Ð	\mathbf{S}
	d) Bán kính R của mặt cầu (S) là $R=26$.		
	CÂU 25. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $A(1;1;2)$, $B(0;0)$	(3; 2; -	-3). Mặ
	cầu (S) có tâm I thuộc Ox và đi qua hai điểm $A,B.$ Các mệnh đề sau đây đ		
	Mệnh đề	Ð	\mathbf{S}
	a) Tọa độ tâm (I) của mặt cầu (S) là $I(4;0;0)$.		
	b) Bán kính R của mặt cầu (S) là $R=14$.		
	c) Mặt cầu (S) có phương trình $x^2 + y^2 + z^2 - 8x + 2 = 0$.		
	d) Mặt cầu (S) có phương trình $x^2 + y^2 + z^2 - 8x - 2 = 0$.	+	
	a) That can (5) to placing thin a + y + z to 2 to		
	CÂU 26. Trong KG $Oxyz$, mặt cầu (S) đi qua điểm $A(1;-1;4)$ và tiếp xứ	c với	các mặ
	phẳng tọa độ. Các mệnh đề sau đây đúng hay sai?		
	Mệnh đề	Ð	\mathbf{S}
	a) Mặt cầu (S) có phương trình $(x-3)^2 + (y+3)^2 + (z+3)^2 = 16$.		
	b) Mặt cầu (S) có phương trình $(x-3)^2 + (y+3)^2 + (z-3)^2 = 9$.		
	c) Mặt cầu (S) có phương trình $(x+3)^2 + (y-3)^2 + (z+3)^2 = 36$.		
	d) Mặt cầu (S) có phương trình $(x+3)^2 + (y-3)^2 + (z-3)^2 = 49$.	†	
	a) limit out (5) to placing thin $(x + y) + (y + y) + (x + y) = 10$.		
	Phần III. Học sinh điền kết quả vào ô trống.		
	CÂU 27. Trong KG $Oxyz$, mặt cầu (S) có tâm $I(0;1;-2)$ và bán kính bằng 3.	Phươ	ng trìnl
	của (S) có dạng $x^2+y^2+z^2-2ax-2by-2cz+d=0$. Tìm d .		
	KQ:		
	CÂU 28. Trong KG $Oxyz$, cho mặt cầu có tâm $I(1; -4; 3)$ và đi qua điểm $A(3; -4; 4)$ và đi qua điể	5; -3; 5	2). Tính
	KQ:		
		1 ~	
	CÂU 29. Trong KG $Oxyz$, cho hai điểm $A(1;1;1)$ và $B(1;-1;3)$. Phương trì: đường kính AB có dạng $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$. Tính tổng $S = 2ax - 2by - 2cz + d = 0$.		
	KQ:		
	CÂU 20 Than a MC Commanda 4/ (1.0.0) R(0.0.2) C(02.0) That bin	1-41-	
	CÂU 30. Trong KG $Oxyz$, cho $A(-1;0;0)$, $B(0;0;2)$, $C(0;-3;0)$. Tính bán ngoại tiếp tứ diện $OABC$ (làm tròn đến hàng phần nghìn).	Kinn	mạt cai
	KQ:		
		1)	
	CÂU 31. Trong KG $Oxyz$, gọi $I(a;b;c)$ là tâm mặt cầu đi qua điểm $A(1;-1;$ với tất cả các mặt phẳng tọa độ. Tính $P=a-b+c$.	4) va	пер хис
	KQ:		
		1_ à.	
	CÂU 32. Trong không gian $Oxyz$, tìm giá trị dương của m (làm tròn đến hàn sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu $(x-3)^2 + y^2(z-2)^2 = m^2 + 1$		n ngnin
	KQ:		
	CÂU 33. Trong không gian với hệ trực tọa độ $Oxyz$, cho ba điểm $A(1;2;-4)$, B Tính đường kính của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt (I) by this lift current than I hàng phần chua.		
	(Làm tròn kết quả đến hàng phần chục).		
	KQ:		
	CÂU 34. Trong không gian $Oxyz$, gọi (S) là mặt cầu đi qua điểm $D(0;1;2)$ vác trục Ox,Oy,Oz tại các điểm $A(a;0;0),B(0;b;0),C(0;0;c)$ trong đó a,b		
	Tính bán kính của (S) (làm tròn kết quả đến hàng phần chục).		
	KΩ:	1	1

CÂU 35. Trong không gian với hệ trực tọa độ Oxyz, cho ba điểm A(1;0;0), C(0;0;3), B(0;2;0) Tập hợp các điểm M thỏa mãn $MA^2 = MB^2 + MC^2$ là mặt cầu có bán kính là bao nhiêu? (làm tròn kết quả đến hàng phần nghìn).

KQ:				
-----	--	--	--	--

CÂU 36. Trong không gian với hệ trục tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng $x^2 + y^2 + z^2 - 4x + 2y - 2az + 10a = 0$. Có tất cả bao nhiêu giá trị thực của a để (S) có chu vi đường tròn lớn bằng 8π .

CÂU 37. Trong KG Oxyz, cho mặt cầu (S): $(x-1)^2+(y-2)^2+(z-3)^2=25$ và hình nón (H) có đỉnh A(3;2;-2) và nhận AI làm trục đối xứng với I là tâm mặt cầu. Một đường sinh của hình nón (H) cắt mặt cầu tại M,N sao cho AM=3AN. Tìm bán kính của mặt cầu đồng tâm với mặt cầu (S) và tiếp xúc với các đường sinh của hình nón (H) (làm tròn kết quả đến hàng phần nghìn).

KQ:		

CÂU 38. Trong KG Oxyz, cho bốn điểm A(0;-1;2), B(2;-3;0), C(-2;1;1), D(0;-1;3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức $\overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MC} \cdot \overrightarrow{MD} = 1$. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu? (Làm tròn kết quả đến hàng phần nghìn).

ỨNG DỤNG MẶT CẦU TRONG KHÔNG GIAN

BÀI 1. Trong không gian với hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét) một trạm phát sóng rađa của Nga được đặt trên bán đảo Crimea ở vị trí I(-2;1;-1) và được thiết kế phát hiện máy bay của địch ở khoảng cách tối đa $500\,\mathrm{km}$.

- a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của rađa trong không gian.
- b) Hai chiếc máy bay do thám của Mỹ và Anh đang bay ở vị trí có tọa độ lần lượt là M(-200;100;-250) và N(350;-100;300). Hỏi rađa của Nga có thể phát hiện ra hai chiếc máy bay do thám của Mỹ và Anh không?

BÀI 2. Trong không gian với hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), đài kiểm soát không lưu sân bay Cam Ranh - Khánh Hòa ở vị trí O(0;0;0) và được thiết kế phát hiện máy bay ở khoảng cách tối đa $600\,\mathrm{km}$. Một máy bay của hãng Việt Nam Airlines đang ở vị trí $A(-1\,000;-200;10)$, chuyển động theo đường thẳng d có phương trình

$$\begin{cases} x = -1000 + 100t \\ y = -200 + 80t \end{cases}$$
 $(t \in \mathbb{R})$ và hướng về đài kiểm soát không lưu (như hình vẽ).
$$z = 10$$

- a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của đài kiểm soát không lưu trong không gian.
- b) Xác định tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa và tọa độ vị trí mà máy bay bay ra khỏi màn hình ra đa.
- c) Tính khoảng cách ngắn nhất giữa máy bay với đài kiểm soát không lưu.

 • • • •

♥ VNPmath - 0962940819 ♥
QUICK NOTE

Vị trí tương đối giữa mặt phẳng với mặt cầu

Cho mặt cầu S(I;R) và mặt phẳng (P). Gọi H là hình chiếu vuông góc của I lên (P)và có d = IH là khoảng cách từ I đến mặt phẳng (P). Khi đó:

 Θ Nếu d > R: Mặt cầu và mặt phẳng không có điểm chung.

 \bullet Nếu d=R: Mặt phẳng tiếp xúc mặt cầu. Lúc đó (P) là mặt phẳng tiếp diện của (S) và H là tiếp điểm.

 $\ensuremath{\mathbf \Theta}$ Nếu d < R: mặt phẳng (P) cắt mặt cầu theo thiết diện là đường tròn có tâm Hvà bán kính $r = \sqrt{R^2 - IH^2}$.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 2y - 2z - 2z = 0$ và mặt phẳng (P): 3x - 2y + 6z + 14 = 0. Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) bằng

$$(\mathbf{A})$$
 2.

$$\bigcirc$$
 4.

CÂU 2. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 = 1$ và mặt phẳng (P): x + 2y -2z + 1 = 0. Tìm bán kính r đường tròn giao tuyến của (S) và (P).

(B)
$$r = \frac{2\sqrt{2}}{3}$$
. **(C)** $r = \frac{1}{2}$.

$$\bigcirc r = \frac{1}{2}.$$

CÂU 3. Trong KG Oxyz cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$. Đường tròn giao tuyến của (S) với mặt phẳng (Oxy) có bán kính là

(A)
$$r = 3$$
.

$$\mathbf{(B)} \, r = \sqrt{5}.$$

(C)
$$r = \sqrt{6}$$
.

$$\widehat{(\mathbf{D})} \, r = \sqrt{14}.$$

CÂU 4. Trong KG Oxyz, cho mặt cầu (S) tâm I(a;b;c) bán kính bằng 1, tiếp xúc mặt phẳng (Oxz). Khẳng định nào sau đây luôn đúng?

$$\bigcirc$$
 $|a|=1.$

(B)
$$a + b + c = 1$$
.

$$(c)|b| = 1.$$

$$(\mathbf{D})|c| = 1.$$

CÂU 5. Trong KG Oxyz, cho mặt cầu (S): $(x-2)^2 + (y+1)^2 + (z+2)^2 = 4$ và mặt phẳng (P): 4x - 3y - m = 0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung.

$$(\mathbf{A}) m = 1.$$

$$(\mathbf{B}) m = -1 \text{ hoặc } m = -21.$$

(c)
$$m = 1$$
 hoặc $m = 21$.

(D)
$$m = -9$$
 hoặc $m = 31$.

CÂU 6. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 4y + 2z - 3 = 0$. Viết phương trình mặt phẳng (Q) chứa trục Ox và cắt (S) theo một đường tròn bán kính bằng 3.

(A)
$$(Q)$$
: $y + 3z = 0$.

B)
$$(Q)$$
: $x + y - 2z = 0$.

(C)
$$(Q)$$
: $y - z = 0$.

$$(\mathbf{D})(Q)$$
: $y - 2z = 0$.

CÂU 7. Trong KG Oxyz, cho mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z+1)^2 = 45$ và mặt phẳng (P): x+y-z-13=0. Mặt cầu (S) cắt mặt phẳng (P) theo giao tuyến là đường tròn có tâm I(a;b;c) thì giá trị của a+b+c bằng

$$(A)$$
 -11.

$$(\mathbf{C})$$
 2.

$$\widehat{\mathbf{D}}$$
)1.

CÂU 8. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 2z - 7 = 0$, mặt phẳng (P): 4x + 3y + m = 0. Tìm tất cả các giá trị của m để mặt phẳng (P) cắt mặt cầu (S).

$$\boxed{\mathbf{A}} \begin{bmatrix} m > 11 \\ m < -19 \end{bmatrix}.$$

$$\boxed{ \textbf{B} } -19 < m < 11. \qquad \boxed{ \textbf{C} } -12 < m < 4.$$

$$\bigcirc$$
 -12 < m < 4.

$$\bigcirc \boxed{m>4}$$
 $m<-12$

CÂU 9. Trong KG Oxyz, cho mặt cầu (S): $(x-a)^2+(y-2)^2+(z-3)^2=9$ và mặt phẳng (P): 2x + y + 2z = 1. Tìm tất cả các giá tri của a để (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C).

B
$$-\frac{17}{2} < a < \frac{1}{2}$$

$$(c)$$
 $-8 < a < 1$

CÂU 10. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 4x + 2y + 2z - 10 = 0$, mặt phẳng (P): x + 2y - 2z + 10 = 0. Mệnh đề nào dưới đây đúng?

- (A) (P) tiếp xúc với (S).
- $(\mathbf{B})(P)$ cắt (S) theo giao tuyến là đường tròn khác đường tròn lớn.
- $(\mathbf{C})(P)$ và (S) không có điểm chung.
- $(\mathbf{D})(P)$ cắt (S) theo giao tuyến là đường tròn lớn.

CÂU 11. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): mx+2y-z+1=0(m là tham số). Mặt phẳng (P) cắt mặt cầu (S): $(x-2)^2 + (y-1)^2 + z^2 = 9$ theo một đường tròn có bán kính bằng 2. Tìm tất cả các giá trị thực của tham số m.

$$(\mathbf{A}) m = \pm 1.$$

(B)
$$m = \pm 2 + \sqrt{5}$$
.

(c)
$$m = \pm 4$$
.

$$\mathbf{(D)}\,m = 6 \pm 2\sqrt{5}$$

CÂU 12. Trong KG Oxyz, cho mặt phẳng (P): 2x + 3y + z - 11 = 0. Mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng (P) tại điểm H, khi đó H có tọa độ là

(A)
$$H(-3;-1;-2)$$
.

(B)
$$H(-1; -5; 0)$$
.

(C)
$$H(1;5;0)$$
.

$$(\mathbf{D})H(3;1;2).$$

CÂU 13. Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (α) có phương trình 2x + y - z - 1 = 0 và mặt cầu (S) có phương trình $(x - 1)^2 + (y - 1)^2 + (z + 2)^2 = 4$. Xác

$$\mathbf{c} r = \frac{2\sqrt{15}}{3}.$$

$$\mathbf{D} r = \frac{2\sqrt{7}}{3}.$$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 14. Cho mặt cầu (S) có phương trình (S): $(x-3)^2 + (y+2)^2 + (z-1)^2 = 100$ và mặt phẳng (α) có phương trình 2x-2y-z+9=0. Tính bán kính của đường tròn là giao tuyến của mặt phẳng (α) và mặt cầu (S).

KQ:				
-----	--	--	--	--

CÂU 15. Trong KG Oxyz, cho mặt phẳng (P): 2x - y - 2z - 1 = 0 và điểm M(1; -2; 0). Mặt cầu tâm M, bán kính bằng $\sqrt{3}$ cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).

KQ:				
-----	--	--	--	--

CÂU 16. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y + z $m^2 - 3m = 0$ và mặt cầu (S): $(x-1)^2 + (y+1)^2 + (z-1)^2 = 9$. Gọi T là tập hợp tất cả các giá trị của m để (P) tiếp xúc với (S). Tính tổng các phần tử của T

cua 1	•		
KQ:			

CÂU 17. Trong không gian Oxyz, cho mặt cầu $(S): (x-2)^2 + (y-4)^2 + (z-1)^2 = 4$ và mặt phẳng (P): x+my+z-3m-1=0. Gọi T là tập hợp tất cả các giá trị của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có đường kính bằng 2. Tính tổng các phần tử của T.

KQ:		

QUICK NOTE	$y^2 + z^2 + 2x - 4y - 6z + m - 3 = 0$. Gọi T là	$Oxyz$, cho mặt cầu có phương trình $(S): x^2 +$ tập hợp tất cả các giá trị của m để mặt phẳng đường tròn có chu vi bằng 8π . Tính tổng các
	pnan tu cua 1 .	KQ:
	CÂU 19. Trong KG $Oxyz$ cho hai mặt phẳng 0. Hỏi có bao nhiều mặt cầu đi qua $A(1; -2;$	(P): 2x-y+z-2 = 0 và (Q): 2x-y+z+1 = 1) và tiếp xúc với hai mặt phẳng (P), (Q)? $KQ:$
	CÂU 20. Trong KG $Oxyz$, cho mặt cầu (S) $M(2; 3; 1)$. Từ M kẻ được vô số các tiếp tuyế tròn (C) . Tính bán kính r của đường tròn (C)): $(x-1)^2 + (y-1)^2 + z^2 = 4$ và một điểm ến tới (S) , biết tập hợp các tiếp điểm là đường (S) . $(K\acute{e}t\ quả\ làm\ tròn\ tới\ hàng\ phần\ trăm)$.
		$(0;0;1),\ B\ (m;0;0),\ C\ (0;n;0),\ D\ (1;1;1)$ với , n thay đổi, tồn tại một mặt cầu cố định tiếp n bán kính R của mặt cầu đó.
	LẬP PHƯƠNG TRÌNH MẶT CẦU	UÊN QUAN BÊN MẮT BUẨNG
	LAP PHOONG IRINH MAI CAU	LIEN QUAN ĐEN MẠI PHANG
	L	
	Phần I. Mỗi câu hỏi học sinh chọn một	trong bốn phương án A, B, C, D. mặt cầu có tâm $I(2;1;-4)$ và tiếp xúc với mặt
	phẳng $(\alpha): x-2y+2z-7=0$.	nat cau co tam $I(2;1;-4)$ va tiep xuc voi mat
	CÂU 2. Trong KG $Oxyz$, cho mặt cầu (S) có phẳng nào dưới đây tiếp xúc với (S) tại A ?	tâm $I\left(3;2;-1\right)$ và đi qua điểm $A\left(2;1;2\right) .$ Mặt
		B) $x + y - 3z + 3 = 0$.
	CÂU 3. Trong KG $Oxyz$, cho mặt phẳng $(P$ Viết phương trình mặt cầu (S) có tâm I và): $x - 2y + 2z - 2 = 0$ và điểm $I(-1; 2; -1)$. cắt mặt phẳng (P) theo giao tuyến là đường
	tròn có bán kính bằng 5.	
	A $(S): (x+1)^2 + (y-2)^2 + (z+1)^2 = 2$ B $(S): (x+1)^2 + (y-2)^2 + (z+1)^2 = 1$	
	(c) $(S): (x+1) + (y-2) + (z+1) = 1$ (c) $(S): (x-1)^2 + (y+2)^2 + (z-1)^2 = 3$	
	$ (S): (x+1)^2 + (y-2)^2 + (z+1)^2 = 3 $	
		$I\left(-1;2;1\right)$ và tiếp xúc với mặt phẳng $\left(P\right) :x-$
	$2y - 2z - 2 = 0$ có phương trình là $(\mathbf{A})(x+1)^2 + (y-2)^2 + (z-1)^2 = 3.$	$(\mathbf{R})(x-1)^2 \pm (u+2)^2 \pm (v+1)^2 = 0$
		$ (x-1) + (y+2) + (z+1) = 9. $ $ (x-1)^2 + (y-2)^2 + (z+1)^2 = 3. $
		có tâm $I(1;2;1)$ và cắt mặt phẳng $(P):2x-$
	y+2z+7=0 theo một đường tròn có đường	kính bằng 8. Phương trình mặt cầu (S) là
	$(\mathbf{A})(x-1)^2 + (y-2)^2 + (z-1)^2 = 81.$ $(\mathbf{C})(x+1)^2 + (y+2)^2 + (z+1)^2 = 9.$	(B) $(x-1)^2 + (y-2)^2 + (z-1)^2 = 5$. (D) $(x-1)^2 + (y-2)^2 + (z-1)^2 = 25$.
	CAU 6. Trong không gian với hệ trục toạ độ trình của mặt cầu có tâm $I(3;1;0)$ và tiếp xú	$\partial Oxyz$, phương trình nào dưới đây là phương tr với mặt phẳng $(P): 2x + 2y - z + 1 = 0$?
	$ (x+3)^2 + (y+1)^2 + z^2 = 3. $	B $(x+3)^2 + (y+1)^2 + z^2 = 9.$
	$(x-3)^2 + (y-1)^2 + z^2 = 3.$	(D) $(x-3)^2 + (y-1)^2 + z^2 = 9.$
	2z + 2 = 0. Biết mặt phẳng (P) cắt mặt cầu	có tâm $I(2;1;1)$ và mặt phẳng $(P):2x+y+(S)$ theo giao tuyến là một đường tròn có bán
	kính bằng 1. Viết phương trình của mặt cầu (S): $(x+2)^2 + (y+1)^2 + (z+1)^2 = 8$	` '

.....

......

.....

......

......

..........

- **(B)** $(S): (x+2)^2 + (y+1)^2 + (z+1)^2 = 10.$
- $(S): (x-2)^2 + (y-1)^2 + (z-1)^2 = 8.$
- $(S): (x-2)^2 + (y-1)^2 + (z-1)^2 = 10.$

CÂU 8. Trong không gian với hệ trục tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3), N(2;-1;-1), P(-2;-1;3) và có tâm thuộc mặt phẳng $(\alpha): 2x + 3y - z + 2 = 0$?

- (A) $x^2 + y^2 + z^2 + 4x 2y + 6z + 2 = 0$. (B) $x^2 + y^2 + z^2 2x + 2y 2z 2 = 0$.
- \mathbf{C} $x^2 + y^2 + z^2 2x + 2y 2z 10 = 0$. \mathbf{D} $x^2 + y^2 + z^2 4x + 2y 6z 2 = 0$.

CÂU 9. Trong KG Oxyz, cho điểm I(-3;0;1). Mặt cầu (S) có tâm I và cắt mặt phẳng (P): x-2y-2z-1=0 theo một thiết diện là một hình tròn. Diện tích của hình tròn này bằng π . Phương trình mặt cầu (S) là

- $\mathbf{A}(x+3)^2 + y^2 + (z-1)^2 = 4.$
- **(B)** $(x+3)^2 + y^2 + (z-1)^2 = 25$. **(D)** $(x+3)^2 + y^2 + (z-1)^2 = 2$.
- **(c)** $(x+3)^2 + y^2 + (z-1)^2 = 5$.

CÂU 10. Trong KG Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1; 2; -1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.

- (A) (S): $(x+1)^2 + (y-2)^2 + (z+1)^2 = 25$. (B) (S): $(x+1)^2 + (y-2)^2 + (z+1)^2 = 16$.
- (S): $(x-1)^2 + (y+2)^2 + (z-1)^2 = 34$.
- $(\mathbf{p})(S): (x+1)^2 + (y-2)^2 + (z+1)^2 = 34.$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 11. Trong KG Oxyz, cho điểm A(1;2;3). Tính bán kính của mặt cầu tâm A và tiếp xúc với mặt phẳng x - 2y + 2z + 3 = 0.

CÂU 12. Trong KG Oxyz, cho mặt phẳng (P): x + 2y - 2z + 3 = 0 và mặt cầu (S) có tâm I(0;-2;1). Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có diện tích 2π . Tính bán kính mặt cầu (kết quả làm tròn đến hàng phần trăm).

CÂU 13. Trong không gian, cho bốn mặt cầu có bán kính lần lượt là 2, 3, 3, 2 (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu nhỏ nhất tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng bao nhiêu? (kết quả làm tròn đến hàng phần trăm).

CÂU 14. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + (z - \sqrt{2})^2 = 3$. Có tất cả bao nhiêu điểm A(a;b;c), (a,b,c) là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?

KQ:

CÂU 15. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + (z-1)^2 = 5$. Có tất cả bao nhiêu điểm A(a,b,c) (a,b,c) là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?

KQ:

CÂU 16. Trong KG Oxyz, cho điểm H(1;2;-2). Mặt phẳng (α) đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Tính bán kính mặt cầu ngoại tiếp tứ diện OABC (làm tròn kết quả đến hàng phần trăm).

CÂU 17. Trong không gian Oxyz, mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với ba mặt phẳng (P): x = 1, (Q): y = -1 và (R): z = 1 có bán kính bằng bao nhiêu?

KQ:

CÂU 18. Trong KG Oxyz, xét số thực $m \in (0;1)$ và hai mặt phẳng (α) : 2x-y+2z+10=0 và (β) : $\frac{x}{m}+\frac{y}{1-m}+\frac{z}{1}=1$. Biết rằng, khi m thay đổi có hai mặt cầu cố định tiếp xúc đồng thời với cả hai mặt phẳng (α) , (β) . Tổng bán kính của hai mặt cầu đó bằng bao nhiêu?

QUICK NOTE		KQ:
	$(m^2-1)z-10=0$. Biết rằng khi m thay để	$1; -5$) và mặt phẳng $(P): 2mx + (m^2 + 1)y$ ổi, tồn tại hai mặt cầu cố định tiếp xúc với mặn của hai mặt cầu đó bằng bao nhiêu? (kết qu
		KQ:
		(1;-1;5) và mặt phẳng (P) : $2x-y+2z+11=0$ cúc với (P) tại điểm C . Biết C luôn thuộc mới a đường tròn (T) .
		KQ:
		$(2;1;4),\ N(5;0;0),\ P(1;-3;1).$ Gọi $I(a;b;c)$ lyz) đồng thời đi qua các điểm $M,\ N,\ P.$ Tìm
	biết rằng $a+b+c < 5$.	
		KQ:
		NG LIÊN QUAN ĐẾN MẶT PHẨNG,
	MẶT CẦU	
	Phần I. Mỗi câu hỏi học sinh chọn một CÂU 1. Trong không gian tọa độ $Oxyz$, cho $B(-4;0;7)$. Viết phương trình mặt phẳng $(B(-4;0;7))$	mặt cầu (S) có đường kính AB với $A(6;2;-5$
	(P): 5x + y - 6z + 62 = 0.	B (P) : $5x + y - 6z - 62 = 0$.
	(P): 5x - y - 6z - 62 = 0.	(P): 5x + y + 6z + 62 = 0.
) song song với mặt phẳng (P) : $2x-2y+z+7 = (z-1)^2 + (z-1)^2 = 25$ theo một đường tròn có bá ng trình là (B) $2x - 2y + z + 17 = 0$. (D) $2x - 2y + z - 17 = 0$.
		$x^2 + y^2 + z^2 + 2x - 4y - 6z + 5 = 0$. Mặt phẩn
	tiếp xúc với (S) và song song với mặt phẳn là	ng (P) : $2x - y + 2z - 11 = 0$ có phương trìn
	$\mathbf{A} 2x - y + 2z - 7 = 0.$	(B) $2x - y + 2z + 9 = 0$. (D) $2x - y + 2z - 9 = 0$.
		ư áa trục Ox và cắt mặt cầu $(S)\colon x^2+y^2+z^2$ ường tròn có bán kính bằng 3 có phương trìn
	$\hat{\mathbf{A}}$ $y - 2z = 0$. $\hat{\mathbf{B}}$ $y + 2z = 0$.	$(\mathbf{r})u + 3x = 0$ $(\mathbf{r})u - 3x = 0$
		<u> </u>
		$x^2+y^2+z^2+2z-2=0$ và điểm $K(2;2;0)$ c tiếp điểm của các tiếp tuyến vẽ từ K đến mà
	$\hat{\mathcal{L}}$ câu (S) .	
		(B) $6x + 6y + 3z - 8 = 0$. (D) $6x + 6y + 3z - 3 = 0$.
		$x^2 + y^2 + z^2 - 2x + 6y - 4z - 2 = 0 \text{ và mà}$
	phẳng (α) : $x + 4y + z - 11 = 0$. Viết phươn	ng trình mặt phẳng (P) , biết (P) song song vo
	giá của véc-tơ $\overrightarrow{v} = (1;6;2)$, vuông góc với (c	α) và tiếp xúc với (S) . 3x + y + 4z + 1 = 0
	$ \begin{bmatrix} x - 2y + z + 3 = 0 \\ x - 2y + z - 21 = 0 \end{bmatrix} $ $ \begin{bmatrix} 4x - 3y - z + 5 = 0 \\ 4x - 3y - z - 27 = 0 \end{bmatrix} $	$ \begin{array}{c} \textbf{B} \begin{bmatrix} 3x + y + 4z + 1 = 0 \\ 3x + y + 4z - 2 = 0 \end{bmatrix} \\ \textbf{D} \begin{bmatrix} 2x - y + 2z + 3 = 0 \\ 2x - y + 2z - 21 = 0 \end{bmatrix} $
	\mathbf{c} $4x - 3y - z + 5 = 0$	$\sum_{x} \left[2x - y + 2z + 3 = 0 \right]$
	4x - 3y - z - 27 = 0	
		độ $Oxyz$, cho mặt phẳng (P) có phương trình ương trình $(x-1)^2+(y+2)^2+(z+3)^2=0$
		(±) (g =) (~ 0) =

Tìm phương trình mặt phẳng song song với mặt phẳng (P) đồng thời tiếp xúc với mặt cầu

 \mathbf{A} x - 2y - 2z + 1 = 0.

(B) -x + 2y + 2z + 5 = 0.

 $(\mathbf{C})x - 2y - 2z - 23 = 0.$

 $(\mathbf{D}) - x + 2y + 2z + 17 = 0.$

CÂU 8. Trong không gian với hệ truc toa độ Oxyz cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x + z^2 +$ 6y-4z-2=0, mặt phẳng (α) : x+4y+z-11=0. Gọi (P) là mặt phẳng vuông góc với (α) , (P) song song với giá của véc-tơ $\vec{v} = (1; 6; 2)$ và (P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).

- (A) 2x y + 2z 2 = 0 và x 2y + z 21 = 0.
- **(B)** x 2y + 2z + 3 = 0 và x 2y + z 21 = 0.
- **(c)** 2x y + 2z + 3 = 0 và 2x y + 2z 21 = 0.
- **(D)** 2x y + 2z + 5 = 0 và 2x y + 2z 2 = 0.

CÂU 9. Trong KG Oxyz, viết phương trình mặt phẳng tiếp xúc với mặt cầu $(x-1)^2$ + $y^2 + (z+2)^2 = 6$ đồng thời song song với hai đường thẳng d_1 : $\frac{x-2}{3} = \frac{y-1}{-1} = \frac{z}{-1}$

 $d_2 \colon \frac{x}{1} = \frac{y+2}{1} = \frac{z-2}{-1}.$ $(A) \begin{bmatrix} x-y+2z-3=0\\ x-y+2z+9=0 \end{bmatrix}.$

CÂU 10. Trong KG Oxyz, cho mặt phẳng (P) chứa đường thẳng $d: \frac{x-4}{3} = \frac{y}{1} = \frac{z+4}{-4}$ và tiếp xúc với mặt cầu (S): $(x-3)^2 + (y+3)^2 + (z-1)^2 = 9$. Khi đó (P) song song với mặt phẳng nào sau đây?

 $(\mathbf{A}) 3x - y + 2z = 0.$

(B) -2x + 2y - z + 4 = 0.

(c) x + y + z = 0.

(D) Đáp án khác.

CÂU 11. Trong KG Oxyz, cho mặt cầu (S): $(x+1)^2+(y-1)^2+(z+2)^2=2$ và hai đường thẳng d: $\frac{x-2}{1}=\frac{y}{2}=\frac{z-1}{-1}$; Δ : $\frac{x}{1}=\frac{y}{1}=\frac{z-1}{-1}$. Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và Δ ?

- **(A)** y + z + 3 = 0. **(B)** x + z + 1 = 0.
- $(\mathbf{C})x + y + 1 = 0.$

CÂU 12. Trong KG Oxyz, cho mặt cầu (S): $(x-1)^2+(y-2)^2+(z-3)^2=1$, đường thẳng Δ : $\frac{x-6}{-3}=\frac{y-2}{2}=\frac{z-2}{2}$ và điểm M(4;3;1). Trong các mặt phẳng sau mặt phẳng nào đi qua M, song song với Δ và tiếp xúc với mặt cầu (S)?

- **(A)**<math>2x 2y + 5z 22 = 0.
- **(B)** 2x + y + 2z 13 = 0.

 $(\mathbf{c}) 2x + y - 2z - 1 = 0.$

 $(\mathbf{D}) 2x - y + 2z - 7 = 0.$

CÂU 13. Trong KG Oxyz cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ và mặt phẳng (α) : 4x+3y-12z+10=0. Lập phương trình mặt phẳng (β) thỏa mãn đồng thời các điều kiện: Tiếp xúc với (S); song song với (α) và cắt trục Oz ở điểm có cao độ dương.

- $(\mathbf{A}) 4x + 3y 12z 78 = 0.$
- **(B)** 4x + 3y 12z 26 = 0.
- $\mathbf{C} 4x + 3y 12z + 78 = 0.$
- \mathbf{D} 4x + 3y 12z + 26 = 0.

CÂU 14. Trong không gian với hệ trực tọa độ Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x + z^2 + z^2$ 2z+1=0 và đường thẳng $d\colon \frac{x}{1}=\frac{y-2}{1}=\frac{z}{-1}$. Hai mặt phẳng $(P),\,(P')$ chứa d và tiếp xúc với (S) tại $T,\,T'.$ Tìm tọa độ trung điểm H của TT'.

- **(A)** $H\left(-\frac{7}{6}; \frac{1}{3}; \frac{7}{6}\right)$. **(B)** $H\left(\frac{5}{6}; \frac{2}{3}; -\frac{7}{6}\right)$. **(C)** $H\left(\frac{5}{6}; \frac{1}{3}; -\frac{5}{6}\right)$.

CÂU 15. Trong KG Oxyz, cho hai điểm A(1;0;0), B(0;0;2) và mặt cầu $(S): x^2 + y^2 + z^2 - z^2$ 2x-2y+1=0. Số mặt phẳng chứa hai điểm A, B và tiếp xúc với mặt cầu (S) là

(A) 1 mặt phẳng.

(**B**) 2 mặt phẳng.

© 0 mặt phẳng.

(D) vô số mặt phẳng.

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 16. Trong KG Oxyz, cho mặt phẳng (P): x-2y+z+7=0 và mặt cầu $(S): x^2+z+7=0$ $y^2 + z^2 - 2x + 4z - 10 = 0$. Gọi (Q) là mặt phẳng song song với mặt phẳng (P) và cắt mặt cầu (S) theo một giao tuyến là đường tròn có chu vi bằng 6π . Biết phương trình của (Q) có dạng ax + by + cz + d = 0, giá trị của a + b + c + d là

QUICK NOTE	KQ:				
	CÂU 17. Trong KG $Oxyz$, cho mặt cầu (S) : $x^2 + y^2 + z^2 - 2x - 4y - phẳng (\alpha): 4x + 3y - 12z + 10 = 0. Lập phương trình mặt phẳng (\beta) t các điều kiện: tiếp xúc với (S); song song với (\alpha) và cắt trục Oz ở điển Biết (\beta) có dạng ax + by + cz + d = 0, giá trị của a + b + c + d là$	hỏa	mãn đ	lồng	thời
	KQ :				
	CÂU 18. Trong không gian với hệ trục toạ độ $Oxyz$ cho mặt phẳng $(Cx-2y+z-5=0$ và mặt cầu S có phương trình $(x-1)^2+y^2+(z+2)^2$ (P) song song với mặt phẳng (Q) và cắt mặt cầu (S) theo giao tuyến là chu vi bằng 6π . Gọi phương trình của mặt phẳng (Q) có dạng $x+by+t$ trị $V=a+b+c+d$.	$m\hat{o}t$	15. Mà đường	ặt pl g trò	hẳng òn có
	KQ:				
	CÂU 19. Trong không gian với hệ trục toạ độ $Oxyz$ cho mặt cầu $(S(x-1)^2+(y-2)^2+(z-3)^2=1$ và điểm $A(2;3;4)$. Biết tập hợp điển cho đường thẳng AM tiếp xúc với (S) là mặt phẳng có phương trình x Tính giá trị $V=a\cdot b\cdot c\cdot d$.	$\dot{m} M$	thuộc	(S)) sao
	KQ:				
	CÂU 20. Trong không gian với hệ trục $Oxyz$ cho điểm $A(2;-2;2)$ và mặt trình $x^2+y^2+(z+2)^2=1$. Điểm M di chuyển trên mặt cầu (S) đ $\overrightarrow{OM}\cdot\overrightarrow{AM}=6$. Biết tập hợp điểm M thoả mãn điều kiện là mặt phẳt $x+by+cz+d=0$. Tính giá trị $V=1+b+c+d$.	ồng	thời tl	hoả	mãn
	KQ:				
	CÂU 21. Trong không gian với hệ trục toạ độ $Oxyz$ cho mặt cầu $(S(x-1)^2+(y-1)^2+(z-1)^2=1$ và điểm $A(2;2;2)$. Xét các điểm M th cho đường thẳng AM luôn tiếp xúc với (S) . Gọi tập hợp điểm M thoả m phẳng có phương trình $2x+by+cz+d=0$. Tính giá trị $V=2-b+c$	nuộc iãn đi	mặt c iều kiệ	ầu S	S sao
	KQ:				
	CÂU 22. Trong không gian với hệ trục toạ độ $Oxyz$, cho ba điểm A $C(0;0;c)$ với $a,b,c>0$. Biết rằng (ABC) đi qua điểm $M\left(\frac{1}{7};\frac{2}{7};\frac{3}{7}\right)$ và the (S) có phương trình $(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}$. Tính $\frac{1}{a^2}+\frac{1}{b^2}$ quả đến hàng phần chục).	iếp x	úc với	mặt	t cầu
	KQ:				
	CÂU 23. Trong không gian với hệ trục $Oxyz$ cho các điểm $M(2;1;4)$, $N(Gọi\ I(a,b,c)$ là tâm của mặt cầu tiếp xúc với mặt phẳng $Oxyz$ đồng th $M,\ N,\ P$. Tìm c , biết rằng $a+b+c<5$.				
	KQ:				
	CÂU 24. Trong không gian với hệ trục $Oxyz$, cho mặt cầu (S) : $x^2 + y$ điểm $A(2;2;2)$. Từ A kẻ ba tiếp tuyến AB , AC , AD với B , C , D là phương trình mặt phẳng (BCD) là phương trình có dạng $2x + by + cz + V = 2 + b + c + d$.	các t	tiếp đi	iểm.	. Gọi
	KQ:				
	CÂU 25. Trong KG $Oxyz$, cho hai mặt cầu (S) và (S') có phương trìn $y^2 + (z-1)^2 = 25$ và $(x-1)^2 + (y-2)^2 + (z-3)^2 = 1$. Mặt phẳng (P) (S) theo giao tuyến là một đường tròn có chu vi 6π . Viết khoảng cách dạng số thập phân, lấy 2 chữ số sau dấu phẩy.	tiếp z	xúc (S	") và	à cắt
	$\mathrm{KQ:}\left[\right.$				
	CÂU 26. Trong không gian với hệ toạ độ $Oxyz$ cho mặt cầu (S) có phư $z^2+2(a+4b)x+2(a-b+c)y+2(b-c)z+d=0$, tâm I nằm trên mặt				

Biết rằng 4a+b-2c=4. Khoảng cách từ điểm D(1;2;-2) đến mặt phẳng (α) có dạng $\frac{1}{\sqrt{R}}$. Tim R.

KQ:		

CÂU 27. Trong không gian với hệ trực Oxyz, cho ba điểm A(1;2;1), B(3;-1;1) và C(-1;-1;1)Gọi (S_1) là mặt cầu có tâm A, bán kính bằng 2, (S_2) và (S_3) là hai mặt cầu có tâm lần lượt là B và C và có bán kính đều bằng 1. Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt câu $(S_1), (S_2), (S_3)$?

CÂU 28. Trong không gian với hệ trục Oxyz, cho hai điểm $A\left(\frac{5+\sqrt{3}}{2};\frac{7-\sqrt{3}}{2};3\right)$ và

$$B\left(\frac{5-\sqrt{3}}{2}; \frac{7+\sqrt{3}}{2}; 3\right) \text{ và mặt cầu } (S) \text{ có phương trình } (x-1)^2 + (y-2)^2 + (z-3)^2 = 6.$$

Xét mặt phẳng (P) có phương trình ax + by + cz + d = 0 $(a, b, c, d \in \mathbb{Z}; d < -5)$ là mặt phẳng thay đổi luôn đi qua hai điểm A và B. Gọi (N) là hình nón có đỉnh là tâm của mặt cầu (S) và đường tròn đáy là đường tròn giao tuyến của (P) và (S). Tính giá trị của |a+b+c+d| khi thiết diện qua trục của hình nón (N) có diện tích lớn nhất.

CÂU 29. Trong không gian với hệ trực Oxyz, cho ba mặt cầu (S_1) : $(x+3)^2 + (y-2)^2 +$ $(z-4)^2=1$; $(S_2): x^2+(y-2)^2+(z-4)^2=4$; $(S_3): x^2+y^2+z^2+4x-4y-1=0$. Höi có bao nhiều mặt phẳng tiếp xúc với cả ba mặt cầu (S_1) , (S_2) , (S_3) ?

Vị trí tương đối của đường thẳng với mặt cầu

Cho mặt cầu (S) có tâm I, bán kính R và đường thắng Δ . Để xét vị trí tương đối giữa Δ và (S) ta tính d (I, Δ) rồi so sánh với bán kính R.

- \bigcirc Nếu d $(I, \Delta) > R$ thì Δ không cắt (S).
- \bullet Nếu d $(I, \Delta) = R$ thì Δ tiếp xúc với (S) tại H.
- \bullet Nếu d $(I, \Delta) < R$ thì Δ cắt (S) tại hai điểm phần biệt A, B.

$$\Theta$$
 $(P) \perp (Q) \Leftrightarrow A_1 A_2 + B_1 B_2 + C_1 C_2 = 0.$

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•

/	/NPmath - 0962940819 Q																								
					(•	j	Į	J	(Ć)	K	(١	()						I
	•	•	•	•	-	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
					•	•																			

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong không gian với hệ trục Oxyz, cho đường thẳng $\Delta : \frac{x+2}{-1} = \frac{y}{1} = \frac{z-3}{-1}$ và và mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y + 6z - 67 = 0$. Số điểm chung của Δ và (S) là

CÂU 2. Trong không gian với hệ trục Oxyz, cho đường thẳng $\Delta : \frac{x}{2} = \frac{y-1}{1} = \frac{z-2}{-1}$ và và mặt cầu $(S)\colon x^2+y^2+z^2-2x+4z+1=0.$ Số điểm chung của $\tilde{\Delta}$ và (\tilde{S}) là

CÂU 3. Trong không gian với hệ trục Oxyz, cho đường thẳng Δ : $\begin{cases} x=2+t \\ y=1+mt \text{ và mặt cầu} \\ z=-2t \end{cases}$

(S): $(x-1)^2 + (y+3)^2 + (z-2)^2 = 1$. Tìm tất cả các giá trị thực của m để đường thẳng Δ không cắt mặt cầu (S).

CÂU 4. Trong không gian với hệ trục Oxyz, cho đường thẳng Δ : $\begin{cases} x=2+t\\ y=1+mt \text{ và mặt cầu}\\ z=-2t \end{cases}$

CÂU 5. Trong không gian với hệ trục Oxyz, cho đường thẳng Δ : $\begin{cases} x=2+t \\ y=1+mt \text{ và mặt cầu} \\ z=-2t \end{cases}$

(S): $(x-1)^2+(y+3)^2+(z-2)^2=1$. Giá trị của m để đường thẳng Δ cắt mặt cầu (S) tại hai điểm phân biệt là

Lập phương trình mặt cầu liên quan đến đường thẳng

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong không gian với hệ trục Oxyz, cho điểm I(1;-2;3). Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là

(a)
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$
.
(b) $(x-1)^2 + (y+2)^2 + (z-3)^2 = 10$.
(c) $(x+1)^2 + (y-2)^2 + (z+3)^2 = 10$.
(d) $(x-1)^2 + (y+2)^2 + (z-3)^2 = 10$.

CÂU 2. Trong không gian với hệ trục Oxyz, phương trình mặt cầu tâm I(2;3;-1) sao cho mặt cầu cắt đường thẳng d có phương trình tại hai điểm A, B sao cho

AB = 16 là

(A)
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 280$$
.
(B) $(x+2)^2 + (y+3)^2 + (z-1)^2 = 289$.
(C) $(x-2)^2 + (y-3)^2 + (z+1)^2 = 17$.
(D) $(x-2)^2 + (y-3)^2 + (z+1)^2 = 289$.

CÂU 3. Trong không gian với hệ trục Oxyz, biết mặt cầu (S) có tâm O và tiếp xúc với mặt phẳng (P): x-2y+2z+9=0 tại điểm H(a;b;c). Giá trị của tổng a+b+c bằng $(\mathbf{C})1.$

CÂU 4. Trong không gian với hệ trục Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y}{-1} = \frac{z}{1}$ và điểm I(1;0;2). Gọi (S) là mặt cầu có tâm I, tiếp xúc với đường thẳng d. Bán kính của (S) bằng

	5
(A)	$\frac{1}{3}$

$$\bigcirc$$
 $\frac{\sqrt{30}}{3}$.

CÂU 5. Trong KG Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+2}{1}$. Gọi (S) là mặt cầu có bán kính R=5, có tâm I thuộc đường thẳng d và tiếp xúc với trục Oy. Biết rằng I có tung độ dương. Điểm nào sau đây thuộc mặt cầu (S)?

$$\mathbf{A}$$
 $M(-1; -2; 1)$.

B
$$N(1;2;-1)$$
.

$$P(-5;2;-7).$$

$$\bigcirc Q(5;-2;7).$$

CÂU 6. Trong KG Oxyz, cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng (P): x+y+z=0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của Atrên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó.

$$\mathbf{A} R = \sqrt{3}.$$

$$\mathbf{B} R = 2.$$

$$\bigcirc R = 1.$$

$$\mathbf{D} R = \sqrt{6}.$$

CÂU 7. Trong không gian với hệ trực Oxyz, mặt phẳng (P): 2x+6y+z-3=0 cắt trực Oz và đường thẳng d: $\frac{x-5}{1}=\frac{y}{2}=\frac{z-6}{-1}$ lần lượt tại A và B. Phương trình mặt cầu đường kính AB là

$$(A) (x+2)^2 + (y-1)^2 + (z+5)^2 = 36.$$

(B)
$$(x-2)^2 + (y+1)^2 + (z-5)^2 = 9$$
.

$$(x+2)^2 + (y-1)^2 + (z+5)^2 = 9.$$

B
$$(x-2)^2 + (y+1)^2 + (z-5)^2 = 9.$$

D $(x-2)^2 + (y+1)^2 + (z-5)^2 = 36.$

CÂU 8. Trong không gian với hệ trục Oxyz, cho đường thẳng $d : \frac{x}{2} = \frac{y-3}{1} = \frac{z-2}{1}$ và hai mặt phẳng (P): x-2y+2z=0, (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng (d) và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Mặt cầu (S) có phương trình là

(A)
$$(S)$$
: $(x+2)^2 + (y+4)^2 + (z+3)^2 = 1$. (B) (S) : $(x-2)^2 + (y-4)^2 + (z-3)^2 = 6$.

B
$$(S)$$
: $(x-2)^2 + (y-4)^2 + (z-3)^2 = 6$

©
$$(S)$$
: $(x-2)^2 + (y-4)^2 + (z-3)^2 = \frac{2}{7}$

©
$$(S)$$
: $(x-2)^2 + (y-4)^2 + (z-3)^2 = \frac{2}{7}$. **©** (S) : $(x-2)^2 + (y+4)^2 + (z+4)^2 = 8$.

CÂU 9. Trong không gian với hệ trục Oxyz, cho đường thẳng $d : \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{1}$ và điểm I(1;0;0). Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, Bsao cho tam giác IAB đều là

(A)
$$(x+1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

B
$$(x-1)^2 + y^2 + z^2 = \frac{20}{3}$$

(a)
$$(x+1)^2 + y^2 + z^2 = \frac{20}{3}$$

(c) $(x-1)^2 + y^2 + z^2 = \frac{16}{4}$

B
$$(x-1)^2 + y^2 + z^2 = \frac{20}{3}$$
.
D $(x-1)^2 + y^2 + z^2 = \frac{5}{3}$.

Phần III. Học sinh điền kết quả vào ô trống.

CẦU 10. Trong không gian với hệ toạ độ Oxyz, cho điểm I(1;-2;3) và đường thắng d có phương trình $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{-1}$. Phương trình mặt cầu tâm A, tiếp xúc với d có dạng $(x-a)^2 + (y-b)^2 + (z-c)^2 = d$. Tính a+b+c-d.

CÂU 11. Trong không gian với hệ trực Oxyz, cho đường thẳng $d : \frac{x+5}{2} = \frac{y-7}{-2} = \frac{z}{1}$ và điểm M(4;1;6). Đường thẳng d cắt mặt cầu (S) có tâm M, tại hai điểm A, B sao cho AB = 6. Phương trình của mặt cầu (S) có dạng có dạng $(x-a)^2 + (y-b)^2 + (z-c)^2 = d$. Tính $a \cdot b + c \cdot d$.

CÂU 12. Trong KG Oxyz, cho mặt phẳng (P): 2x - 2y - z - 4 = 0 và điểm I(1;2;3). Mặt cầu tâm I tiếp xúc với (P) tại điểm H(a;b;c). Tính a+b+c.

KQ:				
-----	--	--	--	--

CÂU 13. Trong không gian với hệ trực Oxyz, cho hai mặt cầu (S_1) , (S_2) có phương trình lần lượt là $(S_1): x^2 + y^2 + z^2 = 25$ và $(S_2): x^2 + y^2 + (z-1)^2 = 4$. Một đường thẳng d vuông góc với vecto $\vec{u} = (1; -1; 0)$ tiếp xúc với mặt cầu (S_2) và cắt mặt cầu (S_1) theo một đoạn thẳng có độ dài bằng 8. Một vectơ chỉ phương của d có tọa độ là (1;a;b). Tính $a\cdot b$.

	(-,,	-)	
KQ:			

CÂU 14. Trong không gian với hệ trục Oxyz, cho mặt cầu (S): $x^2+y^2+z^2+4x-6y+m=0$

VNPmath - 0962940819	☑ PHƯƠNG IRINH MẠI CAU
OUICK NOTE	$\int x = 4 + 2t$
QUICK NOTE	$(m \text{ là tham số})$ và đường thẳng Δ : $\begin{cases} x - 4 + 2t \\ y = 3 + t \end{cases}$. Biết đường thẳng Δ cắt mặt cầu (S) tạ
	(<i>m</i> is than 50) vs duong thang Δ : But duong thang Δ cat high cad (5) to $z=3+2t$
	hai điểm phân biệt A, B sao cho $AB = 8$. Tìm giá trị của m .
	KQ:
	CÂU 15. Trong KG $Oxyz$ cho mặt phẳng $(P): z + 2 = 0$, điểm $K(0; 0; -2)$ và đường thẳng
	$d: \frac{y}{1} = \frac{z}{1}$. Phương trình mặt cầu tâm thuộc đường thẳng d và cắt mặt phẳng (P) the
	1 1 1 thiết diện là đường tròn tâm K , bán kính $r=\sqrt{5}$ có dạng $(x-a)^2+(y-b)^2+(z-c)^2=a$
	Tính $a+b+c+d$.
	KQ:
	CÂU 16. Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm $A(-2;0;0)$, $B(0;-2;0)$, $C(0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;$
	Gọi D là điểm khác O sao cho DA , DB , DC đôi một vuông góc nhau và $I(a;b;c)$ là tân mặt cầu ngoại tiếp tứ diện $ABCD$. Tính $S=a+b+c$.
	KQ:
	CÂU 17. Trong không gian $Oxyz$, cho (P) : $2x + y + 2z - 1 = 0$, $A(0;0;4)$, $B(3;1;2)$. Mộ mặt cầu (S) luôn đi qua A, B và tiếp xúc với (P) tại C . Biết rằng, C luôn thuộc một đườn
	tròn cố định bán kính r . Bán kính r của đường tròn đó có dạng $\frac{a\sqrt{5}}{3}$, tính giá trị $a+b$.
	KQ:
	CÂU 18. Trong không gian cho mặt phẳng $(P): x - z + 6 = 0$ và hai mặt cầu $(S_1): x^2 - y^2 + z^2 = 25$, $(S_2): x^2 + y^2 + z^2 + 4x - 4z + 7 = 0$. Biết rằng tập hợp tâm I các mặt cầ
	tiếp xúc với cả hai mặt cầu (S_1) , (S_2) và tâm I nằm trên (P) là một đường cong. Diện tíc
	hình phẳng giới hạn bởi đường cong đó bằng $\frac{a}{b}\pi$, tính tổng $S=a+b$.
	KQ:
	CÂU 19. Trong KG $Oxyz$, mặt cầu (S) có tâm thuộc mặt (P) : $x + 2y + z - 7 = 0$ và c
	qua hai điểm $A(1;2;1)$ và $B(2;5;3)$. Bán kính nhỏ nhất của mặt cầu (S) bằng $(k\acute{e}t~qu\acute{a}~l\grave{a}r)$
	tròn đến hàng phần trăm).
	KQ:
	9 Lập PTĐT liên quan đến mặt cầu
	Lap Fibrilen quan den mar cau
	Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.
	x - 1 $y - 2$ $x = 1$
	CÂU 1. Trong KG $Oxyz$, cho điểm $A(3;1;1)$, $d_1: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z}{2}$, $d_2: \begin{cases} x = 1 \\ y = t \end{cases}$. Mặ
	z = 0 cầu (S) đi qua A , có tâm I nằm trên d_1 , biết rằng (S) cắt d_2 tại hai điểm B , C sao ch
	$\widehat{BAC} = 90^{\circ}$. Tìm tọa độ điểm I .
	A $I(2;3;2)$. B $I(3;4;4)$. C $I(1;2;0)$. D $I(0;0;2)$.
	CÂU 2. Trong KG $Oxyz$, cho mặt cầu (S) : $x^2 + y^2 + z^2 = 4$ và đường thẳng
	$d: \frac{x-3}{1} = \frac{y-3}{1} = \frac{z}{1}$. Hai mặt phẳng (P) , (P') chứa d và tiếp xúc với (S) tại A và E
	Đường thẳng $\stackrel{\frown}{AB}$ đi qua điểm có tọa độ là
	CÂU 3. Trong không gian với hệ tọa độ $Oxyz$, cho điểm $E(1;1;1)$, mặt cầu $(S): x^2+y^2+z^2=0$
	4 và mặt phẳng (P) : $x - 3y + 5z - 3 = 0$. Gọi Δ là đường thẳng đi qua E , nằm trong (P)

và I(a;b;c) là tâm 0;4), B(3;1;2). Một ôn thuộc một đường tính giá trị a + b. mặt cầu $(S_1): x^2 +$ tâm I các mặt cầu ờng cong. Diện tích y + z - 7 = 0 và đi ') bằng (kết quả làm A, B, C, D. $\begin{cases} x = 1 \\ y = t \end{cases}$ Mặt $\begin{cases} x = 1 \\ y = t \end{cases}$ Mặt điểm B, C sao cho I(0;0;2).thẳng với (S) tại A và B. $\left(\frac{1}{3}; \frac{1}{3}; -\frac{4}{3}\right).$ $\operatorname{in}(S): x^2 + y^2 + z^2 =$ a E, nằm trong (P)và cắt mặt cầu (S) tại hai điểm A, B sao cho tam giác OAB là tam giác đều. Phương trình GV. VŨ NGOC PHÁT 20

CÂU 4.	Trong khô	ng gian h	iệ tọa độ (Oxyz, ch	o hai d	tiểm $A($	1; 1; 1),	B(2; 2; 1) và mặ	t phẳng
(P): $x +$	+y+2z=	0. Mặt cầ	$\mathrm{u}(S)$ thay	y đổi qua	A, B	và tiếp	xúc với	(P) tai	H. Biết	H chạy
trên 1 đ	ường tròn	cố định.	Γìm bán k	ánh của (đường	tròn đó).			

 $\mathbf{A}) \, 3\sqrt{2}.$

(B) $2\sqrt{3}$.

 $(\mathbf{C})\sqrt{3}$.

CÂU 5. Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x + z^2 +$ 2z+1=0 và đường thẳng $d\colon \frac{x}{1}=\frac{y-2}{1}=\frac{z}{-1}$. Hai mặt phẳng (P),(P') chứa d và tiếp

CÂU 6. Trong không gian với hệ trục tọa độ Oxyz, cho điềm E(1;1;1), mặt phẳng (P):x-3y + 5z - 3 = 0 và mặt cầu (S): $x^2 + y^2 + z^2 = 4$. Gọi Δ là đường thẳng qua E, nằm trong mặt phẳng (P) và cắt (S) tại 2 điểm phân biệt A, B sao cho AB = 2. PTĐT Δ là

CÂU 7. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z+3=0 và mặt cầu $(S): (x-1)^2+(y+3)^2+z^2=9$ và đường thẳng $d: \frac{x}{-2}=\frac{y+2}{1}=\frac{z+1}{2}$. Cho các phát biểu sau đây:

- I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
- II. Mặt phẳng (P) tiếp xúc với mặt cầu (S).
- III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung.
- IV. Đường thẳng d cắt mặt phẳng (P) tại một điểm.

Số phát biểu đúng là

(A) 4.

(B) 1.

CÂU 8. Trong KG Oxyz, cho mặt cầu $(S): (x-2)^2 + (y-3)^2 + (z-4)^2 = 14$ và mặt phẳng (α) : x + 3y + 2z - 5 = 0. Biết đường thẳng Δ nằm trong (α) , cắt trục Ox và tiếp xúc với (S). Vec-tơ nào sau đây là vec-tơ chỉ phương của Δ ?

 $(\mathbf{A}) \vec{u} = (4; -2; 1).$

(B) $\vec{v} = (2; 0; -1).$

 $(\mathbf{C})\vec{m} = (-3; 1; 0).$

 $(\mathbf{D}) \vec{n} = (1; -1; 1).$

CÂU 9. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 2y - z + 9 = 0 và mặt cầu $(S): (x-3)^2 + (y+2)^2 + (z-1)^2 = 100$. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C). Tìm tọa độ tâm K và bán kính r của đường tròn (C) là

(A) K(3; -2; 1), r = 10.

BK(-1;2;3), r=8.

 $(\mathbf{C}) K(1; -2; 3), r = 8.$

 $(\mathbf{D})K(1;2;3), r=6.$

CÂU 10. Trong KG Oxyz, cho mặt phẳng (P): x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5; -3; 5), bán kính $R = 2\sqrt{5}$. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB = 4.

(A) $OA = \sqrt{11}$.

 $(\mathbf{B}) OA = 5.$

(**C**) OA = 3.

CÂU 11. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 = 9$ và điểm $M(x_0; y_0; z_0)$ thuộc

y=1+2t. Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho MA, MB, MC

là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng (ABC) đi qua điểm D(1;1;2). Tổng T= $x_0^2 + y_0^2 + z_0^2$ bằng

(**A**) 30.

 $(\mathbf{C}) 20.$

(**D**)21.

CÂU 12. Trong KG Oxyz cho hai điểm A(0;0;3), B(-2;0;1) và mặt phẳng $(\alpha):2x-y+$ 2z + 8 = 0. Hỏi có bao nhiêu điểm C trên mặt phẳng (α) sao cho tam giác ABC đều?

(A) 2.

(B) 1.

 $(\mathbf{C}) 0.$

 (\mathbf{D}) Vô số.

CÂU 13. Trong KG Oxyz, cho mặt cầu (S) tâm I(1;3;9) bán kính bằng 3. Gọi M, N là hai điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thắng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kính bằng $\frac{13}{2}$. Gọi A là tiếp điểm của MNvà (S), giá trị $AM \cdot AN$ bằng

(**A**) 39.

(B) $12\sqrt{3}$.

(C) 18.

(D) $28\sqrt{3}$.

QUICK NOTE		g không gian <i>O</i> lần lượt thuộc					
		cầu ngoại tiếp			- -		. ,
		á trị $AM \cdot AN$		v co ban kinn	2. doi	zi ia tiep a	ioni caa
	$ \qquad \qquad \mathbf{A} 6\sqrt{2}. $	(B) 14	_	(c) 8.	(D	$9\sqrt{2}$.	
		oc sinh điền kế		0		,	
	1	g không gian vớ	_	_	$u(S): x^2 + y^2$	$x^2 + z^2 - 2x$	x - 4y +
	6z - 13 = 0 và	đường thẳng d	$x = \frac{x+1}{1} = \frac{y+1}{1}$	$\frac{2}{z} = \frac{z-1}{z}$. Do	iểm $M(a;b;c)$	(a > 0) n	ằm trên
		sao cho từ M k					
		điểm) và \widehat{AMB}					
	tính $m+n$.				_		<i>11</i>
					KQ:		
	CÂU 16. Tron	g không gian <i>O</i> :	xyz, cho mặt c	\hat{a} u (S) tâm I (1; 4; 2), bán kí	ính bằng 2.	Goi M ,
		lần lượt thuộc					
	đồng thời mặt	cầu ngoại tiếp	tứ diện $OIMN$	V có bán kính	bằng $\frac{7}{2}$. Gọi	A là tiếp đ	iểm của
		nh giá trị AM ·			_		
					KQ:		
	CÂU 17 Tron	g KG $Oxyz$ cho	mặt cầu (S) t	âm I(0:3:1) h	L án kính bằng.	3 Goi M	N là hại
		thuộc 2 trục <i>O:</i>					
		tiếp tứ diện O					
		rị $AM \cdot AN$ (là					
					KQ:		
	CÂU 40 Trans	V.C. O1	1	¥1 - È (C)	222		
		g KG <i>Oxyz</i> , cho = 0. Biết rằng vớ					
		r của đường trờ					
					KQ:		
•••••						$\int x = 3 + t$	
	CÂU 19. Tron	g không gian với	hệ trục tọa độ	Oxyz, cho đườ	${ m fing}\ { m th}{ m lpha}{ m ng}\ \Delta$:	$\begin{cases} y = -1 - \end{cases}$	$-t,,(t\in$
						z = -2 +	
	\mathbb{R}), điểm $M(1;$	(2;-1) và mặt	cầu (S) : $x^2 +$	$y^2 + z^2 - 4x -$	+10y + 14z +	64 = 0. G	oi Δ' là
	đường thẳng đ	i qua M cắt đu	ường thẳng Δ t	tại A , cắt mặt	cầu tại B sa	o cho $\frac{AM}{AB}$	$=\frac{1}{3}$ và
	điểm B có hoà	nh độ là số ngư	ıyên. Phương t				
	2x + by + cz +	d=0. Khi đó t	o + c + d băng		T/O [
					KQ:		
	CÂU 20. Một	doanh nghiệp d	ự kiến lợi nhuậ	n khi sản xuất	x sản phẩm ($(0 \le x \le 30)$)0) được
	cho bởi hàm số	$y = -x^3 + 300$	$0x^2$ (đơn vị: đô	ng).			
	a) Nêu ra ca	ác khoảng số lươ	ợng sản phẩm	mà doanh ngh	iệp luôn có lợ	i nhuận?	
	b) Nêu ra ca	ác khoảng số lươ	ợng sản phẩm	mà doanh ngh	iệp luôn thiệt	hại?	
	c) So sánh l	ợi nhuận khi sả	n xuất 100 sản	n phẩm 200 sả	ın phẩm và 30)0 sản phẩr	n?
	,				_	_	
		ghiệp cần sản xư đó là bao nhiêu		an pham de da	ạt lợi nhuận lo	m nhat? Lọ	л nhuạn
	/	nh nghiệp muốn ao nhiêu sản ph				-	sản xuất
	2mz - m - 3 =	g KG $Oxyz$, cho = 0. Biết rằng vớ r của đường trờ	ới mọi số thực	m thì (S_m) luc	òn chứa một đ	lường tròn	
					KO.		

CÂU 22. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng Δ : $\begin{cases} x = 3 + t \\ y = -1 - t, (t \in z = -2 + t) \end{cases}$

 \mathbb{R}), điểm M(1;2;-1) và mặt cầu $(S)\colon x^2+y^2+z^2-4x+10y+14z+64=0$. Gọi Δ' là đường thẳng đi qua M cắt đường thẳng Δ tại A, cắt mặt cầu tại B sao cho $\frac{AM}{AB}=\frac{1}{3}$ và điểm B có hoành độ là số nguyên. Biết phương trình mặt phẳng trung trực đoạn AB có dạng ax+by+cz+d=0. Tình 2a+b-12c+d.

KQ:		
11℃.		

CÂU 23. Trong KG Oxyz, cho (S): $(x+3)^2+(y-2)^2+(z-5)^2=36$, điểm M(7;1;3). Gọi Δ là đường thẳng di động luôn đi qua M và tiếp xúc với mặt cầu (S) tại N. Tiếp điểm N di động trên đường tròn (T) có tâm J(a;b;c). Gọi k=2a-5b+10c, tính giá trị của k.

CÂU 24. Trong KG Oxyz, cho mặt cầu (S): $x^2+y^2+z^2-4x+4y-2z-7=0$ và đường thẳng d_m là giao tuyến của hai mặt phẳng x+(1-2m)y+4mz-4=0 và 2x+my-(2m+1)z-8=0. Khi đó m thay đổi các giao điểm của d_m và (S) nằm trên một đường tròn cố định. Tính bán kính r của đường tròn đó (làm tròn kết quả đến hàng phần mười).

10

GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT LIÊN QUAN ĐẾN MẶT CẦU

 $\underline{B\grave{a}i\ to\acute{a}n:}$ Cho điểm A và mặt cầu (S) có tâm I, bán kính R, M là điểm di động trên (S). Tìm giá trị nhỏ nhất và giá trị lớn nhất của AM.

Lời giải:

Xét A nằm ngoài mặt cầu (S).

Gọi M_1 , M_2 lần lượt là giao điểm của đường thẳng AI với mặt cầu $(S) (AM_1 < AM_2)$ và (α) là mặt phẳng đi qua M và đường thẳng AI.

Ta có $\widehat{M_1MM_2}=90^\circ$, nên $\widehat{AMM_2}$ và $\widehat{AM_1M}$ là các góc từ

Ta có $AI - R = AM_1 \le AM \le AM_2 = AI + R$.

Tương tự với A nằm trong mặt cầu ta c
ó $R-AI \leq AM \leq R+AI$.

Vậy min AM = |AI - R|, max AM = R + AI.

CÂU 1. Trong không gian với hệ trực tọa độ Oxyz, cho các điểm A(0;-1;3), B(-2;-8;-4), C(2;-1;1) và mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 14$. Gọi $M(x_M;y_M;z_M)$ là điểm trên (S) sao cho biểu thức $|3\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}|$ đạt giá trị nhỏ nhất. Tính $P=x_M+y_M$.

$$(\mathbf{A}) P = 0.$$

(B)
$$P = 6$$
.

(c)
$$P = \sqrt{14}$$
.

(D)
$$P = 3\sqrt{14}$$
.

CÂU 2. Trong không gian với hệ tọa độ Oxyz cho ba điểm A(8;5;-11), B(5;3;-4), C(1;2;-6) và mặt cầu (S): $(x-2)^2 + (y-4)^2 + (z+1)^2 = 9$. Gọi điểm M(a;b;c) là điểm trên (S) sao cho $|\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC}|$ đạt giá trị nhỏ nhất. Hãy tìm a+b.

B) 2

CÂU 3. Cho mặt cầu (S): $(x-2)^2+(y-1)^2+(z-3)^2=9$ và hai điểm A(1;1;3), B(21;9;-13). Điểm M(a;b;c) thuộc mặt cầu (S) sao cho $3MA^2+MB^2$ đạt giá trị nhỏ nhất. Khi đó giá trị của biểu thức T=abc bằng

	$\overline{}$		
-/	_	1	0
	Δ	-)	3

B) 8.

(C
(6)	O.

$$(\mathbf{D}) - 18.$$

CÂU 4. Trong không gian Oxyz cho $A(0;0;2),\,B(1;1;0)$ và mặt cầu

 $(S)\colon x^2+y^2+(z-1)^2=\frac{1}{4}.$ Xét điểm M thay đổi thuộc (S). Giá trị nhỏ nhất của biểu thức MA^2+2MB^2 bằng

	1	
(A)	$\frac{1}{2}$	•

 \bigcirc \bigcirc $\frac{3}{4}$

 $\bigcirc \frac{19}{4}$.

 \bigcirc $\frac{21}{4}$

QUICK NOTE		ông gian tọa độ $Oxyz$, = 25 thỏa mãn $AB = 6$ (B) 6.		v đổi trên mặt cầu biểu thức $OA^2 - OB^2$ là \mathbf{D} 24.
	•			\smile
				ầu (S) : $(x-1)^2 + (y-2)^2 +$ đổi trên (S) . Gọi m, n là giá
	trị lớn nhất và giá	í trị nhỏ nhất của biểu	thức $P = 2MA^2 - M$	B^2 . Xác định $m-n$.
	(A) 64.	B) 68.	© 60.	(D) 48.
	C(3; -6; 0), D(2; -6; 0)	-2;-1). Điểm $M(x;y;$	(z) thuộc mặt phẳng	BC với $A(2;1;3), B(1;-1;2),(P): x-y+z+2=0$ sao
	cho $S = MA^2 + P = x^2 + y^2 + z^2$.	$MB^2 + MC^2 + MD^2$	đạt giá trị nhỏ nhất	. Tính giá trị của biểu thức
	$\mathbf{A} \cdot 6.$	B 2.	© 0.	\bigcirc -2 .
	CÂU 8. Trong kh	ông gian với hệ trục tọ	a độ $Oxyz$, cho mặt c	$\hat{a}u(S): (x-1)^2 + (y-2)^2 +$
	$(z+1)^2 = 9$ và h	ai điểm $A(4;3;1), B(3)$	$(3;1;3);\; M\;$ là điểm tha	y đổi trên (S) . Gọi m, n lần
	lượt là giá trị lớn $(m-n)$.	nhất và giá trị nhó n	hất của biểu thức P^2	$=2MA^2-MB^2$. Xác định
	(<i>M</i>) 64.	B 68.	© 60.	(D) 48.
	CÂU 9. Trong kho	0	_	A(2; -2; 4), B(-3; 3; -1)
	và mặt cầu (S) : (s	$(x-1)^2 + (y-3)^2 + (z-1)^2$	$(-3)^2 = 3$. Xét điểm M	thay đổi thuộc mặt cầu (S) ,
		$\overset{\circ}{\text{ua}} 2MA^2 + 3MB^2 \text{ bàr}$	~	(D) 100.
	(A) 103.	(B) 108.	(C) 105.	_
				$C(0;2;-3), D(2;0;\sqrt{7}).$ Gọi a mãn $MA^2 + 2\overrightarrow{MB}.\overrightarrow{MC} = 8.$
		$\operatorname{sing} MD$ đạt giá trị lới		
		B $2\sqrt{7}$.	© $3\sqrt{7}$.	D $4\sqrt{7}$.
				(0), B(-1;1;0), C(0;-1;0),
		0). M là điểm thay đổi thức $P = 2 \overrightarrow{MA} + \overrightarrow{M} $		$\frac{d^2+(y-1)^2+z^2}{ME}$ là
	(A) 12.	$\stackrel{ }{(\mathbf{B})} 12\sqrt{2}.$	© 24.	$(\mathbf{D}) 24\sqrt{2}.$
	•	hông gian với hệ trục ($(x+1)^2 + (y-4)^2 + z^2 = 8$
				cầu, tìm giá trị nhỏ nhất của
	biểu thức $P = M$. \bigcirc		$\bigcirc P = 4\sqrt{2}.$	$\bigcirc P = 6\sqrt{2}.$
	CÂU 13. Trong k	hông gian với hệ trục (Oxyz, cho mặt cầu (S)	$: (x+1)^2 + (y-4)^2 + z^2 = 8$
	và điểm $A(3;0;0)$, $B(4;2;1)$. Điểm M th		cầu, tìm giá trị nhỏ nhất của
	biểu thức $P = M$. \bigcirc	A + 2MB.		
		(B) $P = 3\sqrt{2}$.	$(\mathbf{c}) P = 4\sqrt{2}.$	$(\widehat{\mathbf{D}})P = 6\sqrt{2}.$
	\smile			
	CÂU 14. Trong I		$(S): (x-1)^2 + y^2 + y$	
	CÂU 14. Trong $A(1;2;-4)$ và $B(1;2;-4)$ bằng		1 (S) : $(x-1)^2 + y^2 + $ đổi trên mặt cầu (S) .	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA + 1)^2$
	CÂU 14. Trong $A(1;2;-4)$ và $B(12MB)$ bằng A $2\sqrt{82}$.		a (S) : $(x-1)^2 + y^2 + $ đổi trên mặt cầu (S) .	$+(z-2)^2=10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)$
	CÂU 14. Trong K $A(1;2;-4)$ và $B(12MB)$ bằng (A) $2\sqrt{82}$.		dối trên mặt cầu (S) : $(x-1)^2 + y^2 + d$ ối trên mặt cầu (S) .	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)$ $\sqrt{20}$ $\sqrt{82}$. $\sqrt{20}$ $\sqrt{82}$.
	CÂU 14. Trong A $A(1; 2; -4)$ và $B(1; 2MB)$ bằng (A) $2\sqrt{82}$. CÂU 15. Trong A chứa đường tròn g		1 (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y-1)^2 + ($	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA + \sqrt{2})$ $\sqrt{82}$. $(z+1)^2 + z^2 = 4$ và $(z+1)^2 + z^2 = 4$
	CÂU 14. Trong A $A(1;2;-4)$ và $B(12MB)$ bằng A $2\sqrt{82}$. CÂU 15. Trong A chứa đường tròn g A	$\mathbf{B} \ P = 3\sqrt{2}.$ $\mathbf{KG} \ Oxyz, \ \text{cho mặt cầu} \ \mathbf{I}; 2; 14). \ \text{Diểm} \ M \ \text{thay}$ $\mathbf{B} \ 3\sqrt{79}.$ $\mathbf{KG} \ Oxyz, \ \text{cho hai điển giao tuyến của hai mặt } \mathbf{I} = 0. \ \text{X\'et} \ M, \ N \ \text{là hai điển của} \ AM + BN \ \text{bằng}$	dổi trên mặt cầu (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) .	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)^2 = 3\sqrt{82}$. 3; 4). Gọi (P) là mặt phẳng $(P)^2 + z^2 = 4$ và (S_2) : $x^2 + 1$ phẳng (P) sao cho $MN = 1$.
	CÂU 14. Trong A $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng Â $2\sqrt{82}$. CÂU 15. Trong A chứa đường tròn g $y^2 + z^2 + 2y - 2 = 0$ Giá trị nhỏ nhất c Â 5 .	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu 1; 2; 14). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt = 0. Xét M , N là hai đị của $AM + BN$ bằng (B) 3.	1 (S) : $(x-1)^2 + y^2 + \frac{1}{2}$ đổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y_1)^2$ tiểm bất kỳ thuộc mặt	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)^2$ $\sqrt{82}$. 3; 4). Gọi (P) là mặt phẳng $(P)^2 + z^2 = 4$ và $(S_2): x^2 + 2$ phẳng (P) sao cho $MN = 1$.
	CÂU 14. Trong FA $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng A $2\sqrt{82}$. CÂU 15. Trong FA chứa đường tròn g $y^2 + z^2 + 2y - 2 = 0$ Giá trị nhỏ nhất co A 5. CÂU 16. Trong FA	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu 1; 2; 14). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt = 0. Xét M , N là hai đi của $AM + BN$ bằng (B) 3. KG $Oxyz$, cho các điể	1 (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y^2 + d)$ tiểm bất kỳ thuộc mặt © 6 . In $A(0;0;2)$ và $B(3;4)$	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)^2 = 3\sqrt{82}$. 3; 4). Gọi (P) là mặt phẳng $(P)^2 + z^2 = 4$ và (S_2) : $x^2 + 1$ phẳng (P) sao cho $MN = 1$. 1; 1). Gọi (P) là mặt phẳng (P) sao cho (P) là mặt phẳng (P) là mặt phẳng (P) là mặt phẳng (P) là mặt phẳng
	CÂU 14. Trong FA $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng A $2\sqrt{82}$. CÂU 15. Trong FA chứa đường tròn giái trị nhỏ nhất co A 5. CÂU 16. Trong FA chứa đường tròn giái trìnhỏ giái tròn giái trìnhỏ giái tròng Tròng FA chứa đường tròng giái trìnhỏ	\mathbf{B} $P=3\sqrt{2}$. KG $Oxyz$, cho mặt cầu \mathbf{E} ; 2; 14). Điểm M thay \mathbf{B} $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt \mathbf{E} 0. Xét M , N là hai đi của $AM+BN$ bằng \mathbf{B} \mathbf{B} \mathbf{B}	1 (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y_1)$ iểm bất kỳ thuộc mặt © 6 . In $A(0;0;2)$ và $B(3;4)$ toầu (S_1) : $(x-1)^2 + (y_1)$	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)^2 = 3\sqrt{82}$. 3; 4). Gọi (P) là mặt phẳng $(z+1)^2 + z^2 = 4$ và $(S_2): x^2 + 2$ phẳng (P) sao cho $MN = 1$. 4; 1). Gọi (P) là mặt phẳng $(y-1)^2 + (z+3)^2 = 25$ với
	CÂU 14. Trong A $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng A $2\sqrt{82}$. CÂU 15. Trong A chứa đường tròn giá trị nhỏ nhất chữa đường tròn giáng A	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu $1;2;14$). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt 0 0. Xét 0 10 Nhà hai đi của 0 10 A 0 10 Nhà hai đi giao tuyến của hai mặt 0 10 C 0 10 C 0 10 Nhà hai đi 0 10 Nhà hai mặt 0 10 Nhà hai mặt 0 10 Nhà hai mặt 0 10 Nhà hai	1 (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y^2 + d)$ thuộc mặt © 6 . In $A(0;0;2)$ và $B(3;4)$ thuộc (S_1) : $(x-1)^2 + d$ thuộc (S_1) thuộc $(S$	Giá trị nhỏ nhất của $(MA + (z - 2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA + 3\sqrt{82})$. 3; 4). Gọi (P) là mặt phẳng $(z + 1)^2 + z^2 = 4$ và (S_2) : $z^2 + 2\sqrt{8}$ phẳng (P) sao cho $MN = 1$. 4; 1). Gọi (P) là mặt phẳng $(y - 1)^2 + (z + 3)^2 = 25$ với pc (P) sao cho $MN = 1$. Giá
	CÂU 14. Trong FA $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu $1;2;14$). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt 0 0. Xét M , N là hai đi của $AM + BN$ bằng (B) 3 . KG $Oxyz$, cho các điể giao tuyến của hai mặt 0 2 0 2 0 2 0 3 0 4 0 4 0 5 0 5 0 6 0 6 0 7 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	1 (S) : $(x-1)^2 + y^2 + d$ ổi trên mặt cầu (S) . © $5\sqrt{79}$. In $A(-1;0;0)$ và $B(2;$ cầu (S_1) : $(x-1)^2 + (y_1)$ tiểm bất kỳ thuộc mặt © 6 . In $A(0;0;2)$ và $B(3;4)$ to cầu (S_1) : $(x-1)^2 + d$ M , N là hai điểm thuốt © $\sqrt{34}$.	Giá trị nhỏ nhất của $(MA + (z - 2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA + 3\sqrt{82})$. 3; 4). Gọi (P) là mặt phẳng $(P + 1)^2 + z^2 = 4$ và (S_2) : $x^2 + 2\sqrt{8}$ phẳng (P) sao cho $MN = 1$. 4; 1). Gọi (P) là mặt phẳng $(y - 1)^2 + (z + 3)^2 = 25$ với ộc (P) sao cho $MN = 1$. Giá
	CÂU 14. Trong A $A(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ và $B(1;2;-4)$ bằng A $2\sqrt{82}$. CÂU 15. Trong A chứa đường tròn giá trị nhỏ nhất chứa đường tròn giái A	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu $1;2;14$). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt 0 0. Xét 0 1 0 2 0 3 0 3 0 4 0 5 0 5 0 6 0 7 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	dổi trên mặt cầu (S) .	$(z-2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA+1)^2 = 3\sqrt{82}$. 3; 4). Gọi (P) là mặt phẳng $(y+1)^2 + z^2 = 4$ và $(S_2): x^2 + 2$ phẳng (P) sao cho $MN = 1$. 4; 1). Gọi (P) là mặt phẳng $(y-1)^2 + (z+3)^2 = 25$ với ộc (P) sao cho $MN = 1$. Giá \bigcirc 3. $+y^2 + z^2 - 4x + 2y - 2z - 3 = 0$
	CÂU 14. Trong K $A(1;2;-4)$ và $B(1;2;-4)$ và B	(B) $P = 3\sqrt{2}$. KG $Oxyz$, cho mặt cầu $1;2;14$). Điểm M thay (B) $3\sqrt{79}$. KG $Oxyz$, cho hai điển giao tuyến của hai mặt 0 0. Xét 0 1 0 2 0 3 0 3 0 4 0 5 0 5 0 6 0 7 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	dổi trên mặt cầu (S) .	Giá trị nhỏ nhất của $(MA + (z - 2)^2 = 10$ và hai điểm Giá trị nhỏ nhất của $(MA + (MA +$

CÂU 18. Trong KG $Oxyz$ cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ và mặt cầu $(S): (x+1)$
$(3)^2 + (y+4)^2 + (z+5)^2 = 729$. Cho biết điểm $A(-2; -2; -7)$, điểm B thuộc giao tuyến của
mặt cầu (S) và mặt phẳng (P) : $2x + 3y + 4z - 107 = 0$. Khi điểm M di động trên đường
thẳng d giá tri nhỏ nhất của biểu thức $MA + MB$ bằng

CÂU 19. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu (S_1) : $x^2+y^2+z^2=1$, $(S_2): x^2 + (y-4)^2 + z^2 = 4$ và các điểm $A(4;0;0), B\left(\frac{1}{4};0;0\right), C(1;4;0), D(4;4;0).$ Gọi Mlà điểm thay đổi trên (S_1) , N là điểm thay đổi trên (S_2) . Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN + 4BClà

(A) $2\sqrt{265}$.

 $(A) 5\sqrt{30}.$

(B) $\sqrt{265}$.

(C) $3\sqrt{265}$.

 (\mathbf{C}) $5\sqrt{29}$.

(D) $4\sqrt{265}$.

(D) $\sqrt{742}$.

CÂU 20. Trong KG Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 4 = 0$ và hai điểm A(4;2;4), B(1;4;2). MN là dây cung của mặt cầu thỏa mãn \overrightarrow{MN} cùng hướng với $\overrightarrow{u} =$ (0;1;1) và $MN=4\sqrt{2}.$ Tính giá trị lớn nhất của |AM-BN|.

(A) $\sqrt{41}$.

(B) $4\sqrt{2}$.

(C) 7.

CÂU 21. Trong KG Oxyz, gọi điểm M(a;b;c) (với a,b,c là các phân số tối giản) thuộc mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 4z - 7 = 0$ sao cho biểu thức T = 2a + 3b + 6c đạt giá trị lớn nhất. Khi đó giá trị biểu thức P=2a-b+c bằng

(B) 8.

CÂU 22. Cho x, y, z, a, b, c là các số thực thay đổi thỏa mãn $(x+1)^2 + (y+1)^2 + (z-2)^2 = 1$ và a+b+c=3. Tìm giá trị nhỏ nhất của $P=(x-a)^2+(y-b)^2+(z-c)^2$.

 $(A) \sqrt{3} - 1.$

(B) $\sqrt{3} + 1$.

 $(\mathbf{c}) 4 - 2\sqrt{3}.$

(D) $4 + 2\sqrt{3}$.

CÂU 23. Trong KG Oxyz, cho hai điểm A(-2;2;-2); B(3;-3;3). Điểm M trong không gian thỏa mãn $\frac{MA}{MB} = \frac{2}{3}$. Khi đó độ dài OM lớn nhất bằng

(A) $6\sqrt{3}$.

(B) $12\sqrt{3}$.

 $\bigcirc \frac{5\sqrt{3}}{2}$.

 $(\mathbf{D})5\sqrt{3}$

CÂU 24. Trong KG Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 + 2x - 4y - 2z + \frac{9}{2} = 0$ và hai điểm $A(0;2;0),\,B(2;-6;-2).$ Điểm M(a;b;c) thuộc (S) thỏa mãn $\overrightarrow{MA}\cdot\overrightarrow{MB}$ cố giá trị nhỏ nhất. Tổng a + b + c bằng

(A) -1.

(C) 3.

CÂU 25. Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 = 3$. Một mặt phẳng (α) tiếp xúc với mặt cầu (S) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C thỏa mãn $OA^2 + OB^2 + OC^2 = 27$. Phương trình mặt phẳng (α) là

(A)<math>x + y + z + 3 = 0.

(B) x + y + z - 3 = 0.

 $(\mathbf{C})x + 2y + 3z - 3 = 0.$

 $(\mathbf{D})x + 2y + 3z + 3 = 0.$

CÂU 26. Trong KG Oxyz, cho mặt phẳng (P): x+y+z-1=0, đường thẳng $d: \frac{x-15}{1}=0$ $\frac{-22}{2} = \frac{z-37}{2}$ và mặt cầu (S): $x^2 + y^2 + z^2 - 8x - 6y + 4z + 4 = 0$. Một đường thẳng (Δ) thay đổi cắt mặt cầu (S) tại hai điểm A,B sao cho AB=8. Gọi $A',\,B'$ là hai điểm lần lượt thuộc mặt phẳng (P) sao cho AA', BB' cùng song song với d. Giá trị lớn nhất của biểu thức AA' + BB' là

(A) $\frac{8+30\sqrt{3}}{}$

B $\frac{24+18\sqrt{3}}{5}$. **C** $\frac{12+9\sqrt{3}}{5}$. **D** $\frac{16+60\sqrt{3}}{9}$.

CÂU 27. Trong KG Oxyz cho mặt cầu (S): $x^2 + y^2 + z^2 = 1$. Điểm $M \in (S)$ có tọa độ dương; mặt phẳng (P) tiếp xúc với (S) tại M cắt các tịa Ox; Oy; Oz tại các điểm A, B, C. Giá trị nhỏ nhất của biểu thức $T = (1 + OA^2) (1 + OB^2) (1 + OC^2)$ là

(A) 24.

CÂU 28. Cho a, b, c, d, e, f là các số thực thỏa mãn $\begin{cases} (d-1)^2 + (e-2)^2 + (f-3)^2 = 1 \\ (a+3)^2 + (b-2)^2 + c^2 = 9. \end{cases}$ Gọi giá trị lớn nhất, giá trị nhỏ nhất của biểu thức $F = \sqrt{(a-d)^2 + (b-e)^2 + (c-f)^2}$ lần

lượt là M, m. Khi đó, M-m bằng

(**A**) 10.

(B) $\sqrt{10}$.

 $(\mathbf{C})8.$

(D) $2\sqrt{2}$.

ຄ	Ш	CK	Ν	OI	-
	u	$-\kappa$		v.	-

CÂU 29. Trong KG Oxyz, Cho điểm A(2t; 2t; 0), B(0; 0; t) (với t > 0). Điểm P di động thỏa mãn $\overrightarrow{OP} \cdot \overrightarrow{AP} + \overrightarrow{OP} \cdot \overrightarrow{BP} + \overrightarrow{AP} \cdot \overrightarrow{BP} = 3$. Biết rằng có giá trị $t = \frac{a}{h}$ với a, b nguyên dương và $\frac{a}{b}$ tối giản sao cho OP đạt giá trị lớn nhất bằng 3. Khi đó giá trị của Q=2a+b bằng

(**A**) 5.

(c) 11.

GIÁ TRI LỚN NHẤT, GIÁ TRI NHỎ NHẤT LIÊN QUAN ĐẾN GÓC VÀ KHOẢNG CÁCH

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Cho x, y, z là ba số thực thỏa $x^2 + y^2 + z^2 - 4x + 6y - 2z - 11 = 0$. Tìm giá trị lớn nhất của P = 2x + 2y - z.

 $(\mathbf{A}) \max P = 20.$

(B) $\max P = -18$.

 $\mathbf{\widehat{c}}) \max P = 18.$

 $(\mathbf{D}) \max P = 12.$

CÂU 2. Trong KG Oxyz, cho d: $\begin{cases} x=2\\y=t & \text{và mặt cầu }(S)\colon x^2+y^2+z^2-2x-4y+2z+5=0.\\z=1-t \end{cases}$

Tọa độ điểm M trên (S) sao cho $\mathrm{d}(M,d)$ đạt giá trị lớn nhất là

(A) (1; 2; -1).

(B) (2; 2; -1).

 $(\mathbf{C})(0;2;-1).$

 $(\mathbf{D})(-3;-2;1).$

CÂU 3. Trong KG Oxyz, cho điểm A(-3;3;-3) thuộc mặt phẳng $(\alpha): 2x-2y+z+15=0$ và mặt cầu (S): $(x-2)^2+(y-3)^2+(z-5)^2=100$. Đường thẳng Δ qua A, nằm trên mặt phẳng (α) cắt (S) tại A, B. Để độ dài AB lớn nhất thì PTĐT Δ là

Thing (a) tai (b) tai A, B. I
(a)
$$\frac{x+3}{1} = \frac{y-3}{4} = \frac{z+3}{6}$$
.
(c) $\begin{cases} x = -3 + 5t \\ y = 3 \\ z = -3 + 8t \end{cases}$.

$$(\mathbf{D}) \, \frac{x+3}{1} = \frac{y-3}{1} = \frac{z+3}{3}.$$

CÂU 4. Trong KG Oxyz, cho điểm A(-3;3;-3) thuộc mặt phẳng $(\alpha): 2x2y+z+15=0$ và mặt cầu (S): $(x-2)^2 + (y-3)^2 + (z-5)^2 = 100$. Đường thẳng Δ qua A, nằm trên mặt phẳng (α) cắt (S) tại A, B. Để độ dài AB nhỏ nhất thì PTĐT Δ là

B
$$\frac{x+3}{1} = \frac{y-3}{4} = \frac{z+3}{6}$$
.

(a)
$$\cot(3) \cot(3) \cot(3) + \cot(3) \cdot \cot(3) \cdot$$

CÂU 5. Trong KG Oxyz, cho hai điểm A(3;0;2), B(3;0;2) và mặt cầu $x^2 + (y+2)^2 + (z-1)^2 + (z-1)$ $(1)^2 = 25$. Phương trình mặt phẳng (α) đi qua hai điểm A, B và cắt mặt cầu (S) theo một đường tròn bán kính nhỏ nhất là

(A) x - 4y - 5z + 17 = 0.

B) 3x - 2y + z - 7 = 0.

 $(\mathbf{C})x - 4y + 5z - 13 = 0.$

 $\mathbf{(D)} 3x + 2y + z - 11 = 0.$

CÂU 6. Trong KG Oxyz, cho mặt phẳng (P): x - 2y + 2z - 3 = 0 và mặt cầu $(S): x^2 + 2z - 3 = 0$ $y^2 + z^2 + 2x - 4y - 2z + 5 = 0$. Giả sử $M \in (P)$ và $N \in (S)$ sao cho \overrightarrow{MN} cùng phương với vecto $\vec{u} = (1; 0; 1)$ và khoảng cách giữa M và N lớn nhất. Tính MN.

 $(\mathbf{A})MN = 3.$

(B) $MN = 1 + 2\sqrt{2}$. **(C)** $MN = 3\sqrt{2}$.

CÂU 7. Cho A(0;8;2) và mặt cầu (S): $(x-5)^2+(y+3)^2+(z-7)^2=72$ và điểm A(9;-7;23). Viết phương trình mặt phẳng (P) đi qua A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) là lớn nhất. Giả sử $\vec{n}=(1;m;n)$ là một vectơ pháp tuyến của (P). Lúc đó

 $(\mathbf{A}) \, m \cdot n = 4.$

(B) $m \cdot n = 2$.

 $(\mathbf{C}) m \cdot n = -4.$

 $(\mathbf{D}) m \cdot n = -2.$

GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT LIÊN QUAN ĐẾN BÁN KÍNH MĂT CẦU. ĐƯỜNG TRÒN

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong KG Oxyz, cho mặt cầu (S): $(x-3)^2 + (y-1)^2 + z^2 = 4$ và đường thẳng

y=-1+t, $(t\in\mathbb{R})$. Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính

nhỏ nhất có phương trình là

(A)
$$y + z + 1 = 0$$
.

(B)
$$x + 3y + 5z + 2 = 0$$
.

$$(\mathbf{C})x - 2y - 3 = 0.$$

$$\mathbf{D}$$
 $3x - 2y - 4z - 8 = 0$.

CÂU 2. Trong KG Oxyz, cho hai điểm A(3;-2;6), B(0;1;0) và mặt cầu (S): $(x-1)^2 +$ $(y-2)^2 + (z-3)^2 = 25$. Mặt phẳng (P): ax + by + cz - 2 = 0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T=a+b+c.

$$\mathbf{\widehat{A}} T = 3.$$

$$\mathbf{B}) T = 4.$$

$$\mathbf{C}$$
 $T=5$.

$$\mathbf{D} T = 2.$$

CÂU 3. Trong KG Oxyz, cho hai điểm A(1;2;4), B(0;0;1) và mặt cầu $(S):(x+1)^2+(y-1)^2$ $(1)^2 + z^2 = 4$. Mặt phẳng (P): ax + by + cz - 4 = 0 đi qua A, B và cắt (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tính T = a + b + c?

$$\mathbf{C}T = 1.$$

CÂU 4. Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): $(x-1)^2+(y-2)^2+(z-3)^2=$ 9, điểm A(0;0;2). Mặt phẳng (P) qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất, phương trình (P) là

(A)
$$(P)$$
: $x - 2y + 3z - 6 = 0$.

(B)
$$(P)$$
: $x + 2y + 3z - 6 = 0$.

(c)
$$(P)$$
: $3x + 2y + 2z - 4 = 0$.

(D)
$$(P)$$
: $x + 2y + z - 2 = 0$.

CÂU 5. Trong KG Oxyz cho mặt cầu (S): $(x-1)^2+(y+2)^2+(z-3)^2=27$. Gọi (α) là mặt phẳng đi qua 2 điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), là hình tròn (C) có thể tích lớn nhất. Biết mặt phẳng (α) có phương trình dạng ax + by - z + c = 0, khi đó a - b + c bằng

(A) 8.

$$\bigcirc$$
 -4

CÂU 6. Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là $x^2 + y^2 + z^2 - 2x - 2y - 6z + 7 = 0$. Cho ba điểm A, M, B nằm trên mặt cầu (S) sao cho $AMB = 90^{\circ}$. Diện tích tam giác AMB có giá trị lớn nhất bằng?

(A) 4.

(B) 2.

(**D**) Không tồn tại.

CÂU 7. Trong KG Oxyz, cho điểm $M\left(\frac{1}{2}; \frac{\sqrt{3}}{2}; 0\right)$ và mặt cầu $(S): x^2 + y^2 + z^2 = 8$. Đường

thẳng d thay đổi, đi qua điểm M, cắt mặt cầu (S) tại hai điểm phân biệt A, B. Tính diện tích lớn nhất S của tam giác OAB.

(A) $S = \sqrt{7}$.

(B) S = 4.

 $\mathbf{C} S = 2\sqrt{7}.$

(D)
$$S = 2\sqrt{2}$$
.

CÂU 8. Trong không gian với hệ trực Oxyz cho hai đường thẳng Δ_1 : $\frac{x+1}{2} = \frac{y+1}{1} = \frac{z+1}{2}$

và Δ_2 : $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{1}$. Tính diện tích mặt cầu có bán kính nhỏ nhất, đồng thời tiếp xúc với <u>cả</u> hai đường thẳng Δ_1 và Δ_2 .

(A) $R = \frac{\sqrt{17}}{2}$. **(B)** $R = \frac{\sqrt{17}}{3}$.

© $R = \frac{\sqrt{17}}{6}$. **©** $R = \frac{\sqrt{17}}{17}$

CÂU 9. Trong KG Oxyz, cho hai đường thẳng d_1 : $\begin{cases} x=2t \\ y=t \text{ và } d_2 \end{cases} \begin{cases} x=3-t' \\ y=t' \end{cases}$. Viết z=0

phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d_1 và d_2 .

(A)
$$(S)$$
: $(x+2)^2 + (y+1)^2 + (z+2)^2 = 4$. **(B)** (S) : $(x-2)^2 + (y-1)^2 + (z-2)^2 = 16$.

B
$$(S)$$
: $(x-2)^2 + (y-2)^2 + (y-$

©
$$(S)$$
: $(x-2)^2 + (y-1)^2 + (z-2)^2 = 4$. **©** (S) : $(x+2)^2 + (y+1)^2 + (z+2)^2 = 16$.

CÂU 10. Trong KG Oxyz cho hai đường thẳng chéo nhau d_1 : $\begin{cases} x = 4 - 2t \\ y = t \\ z = 3 \end{cases}$ và d_2 : $\begin{cases} x = 1 \\ y = t' \\ z = -t' \end{cases}$

 $(t, t' \in \mathbb{R})$. Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng $(d_1), (d_2)$ là

$$\mathbf{A}\left(x+\frac{3}{2}\right)^2 + y^2 + (z+2)^2 = \frac{9}{4}.$$

B
$$\left(x+\frac{3}{2}\right)^2 + y^2 + (z+2)^2 = \frac{3}{2}.$$

$$(\mathbf{C}) \left(x - \frac{3}{2} \right)^2 + y^2 + (z - 2)^2 = \frac{9}{4}.$$

$$(\mathbf{D}) \left(x - \frac{3}{2} \right)^2 + y^2 + (z - 2)^2 = \frac{3}{2}.$$

QUICK NOTE

♥ VNPmath - 0962940819 ♥
▼ VINPITIAITI - 0902940619 ▼
QUICK NOTE

CÂU 11. Trong KG Oxyz, cho hai đường thẳng $\Delta_1: \frac{x-4}{3} = \frac{y-1}{-1} = \frac{z+5}{-2}$ và $\Delta_2: \frac{x-2}{1} = \frac{z+5}{-2}$ $\frac{y+3}{3}=\frac{z}{1}$. Trong tất cả mặt cầu tiếp xúc với cả hai đường thẳng Δ_1 và Δ_2 . Gọi (S) là mặt cầu có bán kính nhỏ nhất. Bán kính của mặt cầu (S) là **CÂU 12.** Trong KG Oxyz cho mặt cầu $(x-3)^2+(y-1)^2+z^2=4$ và đường thẳng $y=-1+t,\,t\in\mathbf{R}$. Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là **(B)** x + 3y + 5z + 2 = 0. (A) y + z + 1 = 0. $(\mathbf{C})x - 2y - 3 = 0.$ $\mathbf{(D)} 3x - 2y - 4z - 8 = 0$ **CÂU 13.** Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x-y+2z+2=0và mặt cầu (S): $(x-1)^2 + (y+2)^2 + z^2 = 4$ có tâm I. Gọi tọa độ điểm $M(x_0; y_0; z_0)$ thuộc (P) sao cho đoạn IM ngắn nhất. Tổng $T=x_0^2+y_0^2+z_0^2$ bằng $\frac{7}{3}$. **CÂU 14.** Trong KG Oxyz, cho mặt cầu (S) tâm I(1;-2;1); bán kính R=4 và đường thẳng $d\colon \frac{x}{2}=\frac{y-1}{-2}=\frac{z+1}{-1}$. Mặt phẳng (P) chứa d và cắt mặt cầu (S) theo một đường tròn có diện tích nhỏ nhất. Hỏi trong các điểm sau điểm nào có khoảng cách đến mặt phẳng (P)lớn nhất? **(B)** $A\left(1; \frac{3}{5}; -\frac{1}{4}\right)$. **(C)** B(-1; -2; -3). **(D)** C(2; 1; 0). \bigcirc O(0;0;0).

Bài 3.	Phương trình mặt cầu	1
	□ Dạng 1. XÁC ĐỊNH CÁC YẾU TỐ CƠ BẢN MẶT CẦU	1
	🗁 Dạng 2. LẬP PHƯƠNG TRÌNH MẶT CẦU DẠNG CƠ BẨN	5
	□ Dạng 3. ỨNG DỤNG MẶT CẦU TRONG KHÔNG GIAN	9
	Dạng 4. Vị trí tương đối giữa mặt phẳng với mặt cầu	10
	🗁 Dạng 5. LẬP PHƯƠNG TRÌNH MẶT CẦU LIÊN QUAN ĐẾN MẶT PHẨNG	12
	🗁 Dạng 6. LẬP PHƯƠNG TRÌNH MẶT PHẨNG LIÊN QUAN ĐẾN MẶT PHẨNG, MẶT CẦU	14
	Dạng 7. Vị trí tương đối của đường thẳng với mặt cầu	17
	Dạng 8. Lập phương trình mặt cầu liên quan đến đường thẳng	18
	🗁 Dạng 9. Lập PTĐT liên quan đến mặt cầu	20
	🗁 Dạng 10. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT LIÊN QUAN ĐẾN MẶT CẦU	23
	Dạng 11. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT LIÊN QUAN ĐẾN GÓC VÀ KHOẢ	١NG
	CÁCH	26
	Dạng 12. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT LIÊN QUAN ĐỀN BÁN KÍNH MẶT C ĐƯỜNG TRÒN	ÂU,

