The tropical critical points of an affine matroid SIAM AG 2023, Eindhoven University of Technology, Eindhoven

Raul Penaguiao

MPI MiS Leipzig

July 10th, 2023

Slides can be found at raulpenaguiao.github.io/ Joint work with Federico Ardila and Chris Eur

Optimization of a monomial

Fix some vector $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{Z}_{>0}^n$. Consider $f_{\mathbf{t}} : \mathbf{x} \mapsto x_1^{w_1} \dots x_n^{w_n}$ from a variety $X \subset (\mathbb{C}^*)^n$.

Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of f? Does it depend on the choice of \mathbf{w} ? For generic \mathbf{w} , no! This number is called the **maximum likelihood degree** of a model X.

If X is a vector space, $\mathsf{MLDeg}(X) = \beta(M)$.

Edge weight problem

Fix some vector $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{Z}_{\geq 0}^n$. Can we find **compatible** weights \mathbf{x} of the edges of G, \mathbf{y} of the edges of $(G/_0)^*$?

Figure: Find x and y edge weights that are *compatible*.

- The sum of the weights is w.
- Every cycle has at least two minimal edges (edge 0 has weight 0).

Fix $\mathbf{w} = (0, 1, 1, 2, 2, 5, 3, 4, 7)$.

Figure: Find x and y edge weights that are *compatible*.

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
x	00	01	00	00	02	03	00	00	02
\mathbf{y}	000	01 1 <mark>1</mark> 0	111	2 <mark>2</mark> 2	20	52	33	44	75
\mathbf{w}	0	1	1	2	2	5	3	4	7

Flats

Maximal sets with a fixed rank.

That is, F is a flat if for any $i \notin F$, $r_M(F \cup i) > r_M(F)$.

 $\{\emptyset, \text{ matchings }, \text{ complete subgraphs }, ...\}$

$$\{\emptyset \subsetneq 1 \subsetneq 01 \subsetneq 0167 \subsetneq 0123456789\}$$

Flats: The uniform matroid

Basis of the uniform matroid U(n, k) = all sets of size k in [n]. Any set of size $\leq k$ is independent.

Any set of size $\leq k-1$ is a flat.

Any complete flag of flats is of the form

$$\{\emptyset \subsetneq \{v_1\} \subsetneq \{v_1, v_2\} \subsetneq \cdots \subsetneq \{v_1, \dots, v_{k-1}\} \subsetneq [n]\}$$

$$v_1 | v_2 | \dots | v_{k-1} | ([n] \setminus \{v_1, \dots, v_{k-1}\})$$

Activities

Fix total order in V, ground set of a matroid M.

- $i \in B$ is internal activity if $i = \min C^{\perp}$, where $C^{\perp} \subseteq B^c \cup i$ is a cocircuit (a cut of the graph).
- ullet $e \notin B$ is external activity if $e = \min C$, where $C \subseteq B \cup i$ is a circuit.

$$i(2567) = 0$$
, $e(2567) = 2$, $i(0146) = 2$, $e(0146) = 1$

Tutte polynomial

$$T_M(x,y) = \sum_{A \subset V} (x-1)^{r_M(V) - r_M(A)} (y-1)^{|A| - r_M(A)}$$

$$T_M(x,y) = \sum_{B \in \mathcal{B}} x^{i(B)} y^{e(B)} = \sum_{i,j} b_{i,j} x^i y^j$$

Observation

of bases with no external activities (called nbc bases): independent of the order chosen.

of bases with no external activities and one internal activity (called β -nbc bases) **independent of the order chosen**

The Bergman Fan

$$\Sigma_M = \{ \vec{x} \in \mathbb{R}^n /_{\mathbb{R} \mathbb{1}} | \forall_{C \in \mathcal{C}} \text{ s.t. } \min_{c \in C} x_c \text{ attained twice } \} \,.$$

Figure: The Bergman Fan is a polyhedral fan in $\mathbb{R}^n/\mathbb{R}_1$.

Figure: Two elements in the Bergman fan of the graphical matriod

Theorem (Sturmfels and Feichner, 2004)

The Bergman Fan of a matroid decomposes into the following cones

$$\Sigma_M = \bigcup_{\mathcal{F} \text{ flag of flats}} \mathcal{C}_{\mathcal{F}} = \bigcup_{F_1 \subset \dots \text{ flag of flats}} \{x_i \geq x_j \text{ whenever } i \in F_k, j \not \in F_k\} \ .$$

Problem

Can we compute the degree of the tropical variety Σ_M ?

Figure: A variety: its degree is the # of intersections with a line **in the** complex plane.

Just intersect it with a hyperplane!

Note: Hyperplanes in the tropical world are Bergman fans of $U_{n,k}$.

Example of degree computation

Consider M the graphical matroid of K_5 , of rank 4 (so $\dim \Sigma_M = 3$). One has $\Sigma_M \subseteq \mathbb{R}^{10}/\mathbb{R}_1$, we intersect it with a hyperplane of dim = 6.

$$|\Sigma_{U_{10,7}} + \underbrace{(1,10,100,1000,...,10^9)}_{\widetilde{\omega}} \cap \Sigma_M| = ?$$

Figure: There is only one $\mathbf{x} \in \Sigma_M$ and $\mathbf{y} \in \Sigma_U$ such that $\mathbf{y} + \mathbf{w} = \mathbf{x}$. Such vector \mathbf{x} belongs to the **greedy flag of flats**.

Degree computations

Theorem (Greedy basis algorithm)

$$deg(\Sigma_M) = 1$$

Theorem (Adiprasito, Huh, Katz, 2018)

$$deg(-\Sigma_M) = \#\{ nbc \ bases \}$$

Theorem (Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, Telen 2021 and Ardila, Eur, P 2022)

$$deg(\Sigma_{(M/\mathfrak{o})^{\perp}} \cdot -\Sigma_M) = \#\{\beta - \mathsf{nbc} \ \mathsf{bases} \} = \beta(M)$$

Finding Nemo points form nbc bases

$$\begin{split} \deg(\Sigma_{(M/_0)^\perp} \cdot -\Sigma_M) = ? & \text{Fix generic } \mathbf{w} = (10^{i-1})_i. \\ \text{Find } \mathbf{x} \in \Sigma_M, \, \mathbf{y} \in \Sigma_{(M/_0)^\perp} \text{ such that } \mathbf{x} + \mathbf{y} = \mathbf{w}. \end{split}$$

Find a β -nbc basis $B = 0257 \rightarrow 7|5|24|013689$,

corresponding β -nbc cobasis $B^{\perp}=134689 \rightarrow 9|8|6|74|3|521$.

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
x	0	9	0	9	$10^4 - 1$	0	$10^6 - 10^3 + 9$	0	0
\mathbf{y}	1	1	100	$10^3 - 9$	1	10^{5}	$10^3 - 9$	10^{7}	10^{8}
\mathbf{w}	1	10	100	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}

Biblio

- Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S. (2021). Likelihood Degenerations. Motivation behind ML degree computations
- Adiprasito K., Huh J., Katz E. (2018). Hodge Theory for combinatorial geometries Degree computations in matroids
- Ardila F., Eur C., RP (2022) The maximum likelihood of a matroid.

Thank you

