Mathematics

Robin Adams

September 19, 2023

Contents

1	Prir	mitive Terms and Axioms							
	1.1	Primitive Terms							
	1.2	Axioms							
	1.3	Consequences of the Axioms							
		1.3.1 Definitions							
		1.3.2 The Empty Set							
		1.3.3 The Singleton							
		1.3.4 Subsets							
	1.4	Composition							
	1.5	Axioms Part Two							
	1.6	Cartesian Product							
	1.7	Quotient Sets							
2	Тор	ology 1							
	2.1	Topological Spaces							
		2.1.1 Subspaces							
		2.1.2 Topological Disjoint Union							
		2.1.3 Product Topology							
		2.1.4 Bases							
		2.1.5 Subbases							
	2.2	Continuous Functions							
	2.3	Convergence							
	2.4	Connected Spaces							
	2.5	Hausdorff Spaces							
	2.6	Compactness							
	2.7	Quotient Spaces							
	2.8	Gluing							
	2.9	Metric Spaces							
	2.10	Complete Metric Spaces							
3	Homotopy Theory 19								
	3.1	Homotopies							
	3 9	Homotopy Faujyalanca							

4		CONTENTS

4	-	Continuous Actions	21					
5	Topological Vector Spaces 23							
	5.1	Cauchy Sequences	23					
	5.2	Seminorms	24					
	5.3	Fréchet Spaces	24					
	5.4	Normed Spaces	24					
	5.5	Inner Product Spaces	25					
	5.6		25					
	5.7	Hilbert Spaces	25					
	5.8	Locally Convex Spaces	26					

Primitive Terms and Axioms

1.1 Primitive Terms

Let there be sets. We write A: Set for: A is a set.

For any set A, let there be *elements* of A. We write a : El(A) for: a is an element of A.

For any sets A and B, let there be functions from A to B. We write $f:A\to B$ iff f is a function from A to B.

For any function $f: A \to B$ and element a: El(A), let there be an element f(a): El(B), the value of the function f at the argument a.

1.2 Axioms

Axiom Schema 1.1 (Choice). Let P[X, Y, x, y] be a formula where X and Y are set variables, x : El(X) and y : El(Y). Then the following is an axiom.

Let A and B be sets. Assume that, for all a : El(A), there exists b : El(B) such that P[A, B, a, b]. Then there exists a function $f : A \to B$ such that $\forall a : El(A) . P[A, B, a, f(a)]$.

Axiom 1.2 (Pairing). For any sets A and B, there exists a set $A \times B$, the Cartesian product of A and B, and functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ such that, for all a : El(A) and b : El(B), there exists a unique $(a,b) : \text{El}(A \times B)$ such that $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$.

Definition 1.3 (Injective). A function $f: A \to B$ is injective or an injection iff, for all x, y: El(A), if f(x) = f(y) then x = y.

Axiom Schema 1.4 (Separation). For every property P[X,x] where X is a set variable and x : El(X), the following is an axiom:

For every set A, there exists a set $S = \{x : \text{El}(A) \mid P[A, x]\}$ and an injection $i: S \to A$ such that, for all x : El(A), we have

$$(\exists y : S.i(y) = x) \Leftrightarrow P[A, x]$$
.

Axiom 1.5 (Infinity). There exists a set \mathbb{N} , an element $0 : \text{El}(\mathbb{N})$, and a function $s : \mathbb{N} \to \mathbb{N}$ such that:

- $\forall n : \text{El}(\mathbb{N}) . s(n) \neq 0$
- $\forall m, n : \text{El}(\mathbb{N}) . s(m) = s(n) \Rightarrow m = n.$

1.3 Consequences of the Axioms

1.3.1 Definitions

Definition 1.6. Let $f, g : A \to B$. We say f and g are equal, f = g, iff $\forall x : \text{El}(A) . f(x) = g(x)$.

Definition 1.7 (Surjective). A function $f: A \to B$ is *surjective* iff, for all y: El(B), there exists x: El(A) such that f(x) = y.

Definition 1.8 (Bijective). A function $f: A \to B$ is bijective or a bijection iff it is injective and surjective.

Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

If we prove there exists a set X such that P(X), and that any two sets that satisfy P are bijective, then we may introduce a constant C and define "Let C be the set such that P(C)".

1.3.2 The Empty Set

Theorem 1.9. There exists a set which has no elements.

Proof:

 $\langle 1 \rangle 1$. Pick a set A

PROOF: By the Axiom of Infinity, a set exists.

 $\langle 1 \rangle 2$. Let: $S = \{x : \text{El}(A) \mid \bot\}$ with injection $i : S \to A$ Proof: Axiom of Separation.

 $\langle 1 \rangle 3$. S has no elements.

Theorem 1.10. If E and E' have no elements then $E \approx E'$.

Proof:

- $\langle 1 \rangle 1$. Let: E and E' have no elements.
- $\langle 1 \rangle 2$. PICK a function $F: E \to E'$.

PROOF: Axiom of Choice since vacuously $\forall x : \text{El}(E) . \exists y : \text{El}(E') . \top$.

```
\langle 1 \rangle 3. F is injective.
  PROOF: Vacuously, for all x, y : El(E), if F(x) = F(y) then x = y.
\langle 1 \rangle 4. F is surjective.
  PROOF: Vacuously, for all y : El(E), there exists x : El(E) such that F(x) =
П
Definition 1.11 (Empty Set). The empty set \emptyset is the set with no elements.
          The Singleton
1.3.3
```

Theorem 1.12. There exists a set that has exactly one element.

Proof:

 $\langle 1 \rangle 1$. PICK a set A that has an element. PROOF: By the Axiom of Infinity, there exists a set that has an element. $\langle 1 \rangle 2$. Pick a : El(A)

 $\langle 1 \rangle 3$. Let: $R: A \hookrightarrow A$ be the relation such that, for all x, y: El(A), we have xRy if and only if x = y = a.

PROOF: By the Axiom of Comprehension.

 $\langle 1 \rangle 4$. Let: |R| be the tabulation of R with projections $p, q: |R| \to A$. Prove: |R| has exactly one element. PROOF: By the Axiom of Tabulations.

(1)5. Let: r: El(|R|) be the element such that p(r) = q(r) = a

PROOF: Since aRa by $\langle 1 \rangle 3$.

 $\langle 1 \rangle 6$. Let: s : El(|R|)Prove: s = r

 $\langle 1 \rangle 7$. p(s)Rq(s)

PROOF: By the Axiom of Tabulations.

 $\langle 1 \rangle 8. \ p(s) = q(s) = a$ Proof: By $\langle 1 \rangle 3$.

 $\langle 1 \rangle 9$. p(s) = p(r) and q(s) = q(r)

Proof: By $\langle 1 \rangle 5$.

 $\langle 1 \rangle 10.$ s=r

Proof: By the Axiom of Tabulations.

Theorem 1.13. If A and B both have exactly one element then $A \approx B$.

Proof:

- $\langle 1 \rangle 1$. Let: A and B both have exactly one element.
- $\langle 1 \rangle 2$. Let: $F: A \hookrightarrow B$ be the relation such that, for all x: El(A) and y: El(B), we have xFy.

 $\langle 1 \rangle 3$. F is a function.

PROOF: If xFy and xFy' then y = y' because B has only one element.

 $\langle 1 \rangle 4$. F is injective.

PROOF: If F(x) = F(x') then x = x' because A has only one element.

```
\langle 1 \rangle5. F is surjective.

\langle 2 \rangle1. Let: y: El (B)

\langle 2 \rangle2. Let: x be the element of A.

\langle 2 \rangle3. F(x) = y
```

Definition 1.14 (Singleton). Let 1 be the set that has exactly one element. Let * be its element.

1.3.4 Subsets

Definition 1.15 (Subset). A *subset* of a set A is a relation $1 \hookrightarrow S$. Given $S: 1 \hookrightarrow S$ and a: El(A), we write $a \in S$ for *Sa.

Theorem Schema 1.16. For any property P[X,x] where X is a set variable and x : El(X), the following is a theorem:

For any set A, there exists a set B and injection $i: B \to A$ such that, for all x: El(A), we have P[A, x] if and only if there exists b: El(B) such that i(b) = x.

Proof:

 $\langle 1 \rangle 1$. LET: $S: 1 \hookrightarrow A$ be the relation such that, for all e: El(1) and a: El(A), we have eSa if and only if P[A, a].

Proof: Axiom of Comprehension.

- $\langle 1 \rangle$ 2. Let: B be the tabulation of S with projections $p: B \to 1$ and $i: B \to A$. Proof: Axiom of Tabulations.
- $\langle 1 \rangle 3$. *i* is injective.
 - $\langle 2 \rangle 1$. Let: r, s : El(B)
 - $\langle 2 \rangle 2$. Assume: i(r) = i(s)
 - $\langle 2 \rangle 3. \ p(r) = p(s)$

PROOF: Since 1 has only one element.

 $\langle 2 \rangle 4. \ r = s$

Proof: Axiom of Tabulations.

- $\langle 1 \rangle 4$. For all x : El(A), we have P[A, x] if and only if there exists b : El(B) such that i(b) = x.
 - $\langle 2 \rangle 1$. Let: x : El(A)
 - $\langle 2 \rangle 2$. If P[A, x] then there exists b : El(B) such that i(b) = x
 - $\langle 3 \rangle 1$. Assume: P[A, x]
 - $\langle 3 \rangle 2. *Sx$

Proof: $\langle 1 \rangle 1$

 $\langle 3 \rangle 3$. There exists b : El(B) such that p(b) = * and i(b) = x

Proof: Axiom of Tabulations.

- $\langle 2 \rangle 3$. For all b : El(B) we have P[A, i(b)]
 - $\langle 3 \rangle 1$. Let: b : El(B)
 - $\langle 3 \rangle 2. \ p(b)Si(b)$

Proof: Axiom of Tabulations.

 $\langle 3 \rangle 3. P[A, i(b)]$

Proof: $\langle 1 \rangle 1$

1.4 Composition

Definition 1.17 (Composite). Let $\phi : A \hookrightarrow B$ and $\psi : B \hookrightarrow C$. The *composite* $\psi \circ \phi : A \hookrightarrow C$ is the relation such that $a(\psi \circ \phi)c$ iff there exists b such that $a\phi b$ and $b\psi c$.

Definition 1.18 (Identity). For any set A, the *identity* function $id_A : A \to A$ is the function defined by $id_A(a) = a$.

Theorem 1.19. Composition of relations is associative, and the identity function is an identity for composition. The composite of functions is a function. The composite of injective functions is injective. The composite of surjective functions is surjective. The composite of bijections is a bijection. A function $f: A \to B$ is a bijection iff there exists a function $f^{-1}: B \to A$ such that $f^{-1}f = \mathrm{id}_A$ and $ff^{-1} = \mathrm{id}_B$, in which case f^{-1} is unique.

1.5 Axioms Part Two

Axiom 1.20 (Power Set). For any set A, there exists a set $\mathcal{P}A$, the power set of A, and a relation \in : $A \hookrightarrow \mathcal{P}A$, called membership, such that, for any subset S of A, there exists a unique $\overline{S} \in \mathcal{P}A$ such that, for all $x \in A$, we have $x \in \overline{S}$ if and only if $x \in S$.

We usually write just S for \overline{S} .

Axiom Schema 1.21 (Collection). Let P[X,Y,x] be a formula with set variables X and Y and an element variable $x \in X$. Then the following is an axiom. For any set A, there exists a set B, a function $p:B \to A$, a set Y and a relation $M:B \hookrightarrow Y$ such that:

- $\forall b \in B.P[A, \{y \in Y : bMy\}, p(b)]$
- For all $a \in A$, if $\exists Y.P[A, Y, a]$, then there exists $b \in B$ such that a = p(b).

Definition 1.22 (Universe). Let $E:U \hookrightarrow X$ be a relation. Let us say that a set A is *small* iff there exists $u \in U$ such that $A \approx \{x \in X : uEx\}$.

Then (U, X, E) form a *universe* if and only if:

- \mathbb{N} is U-small.
- For any *U*-small sets *A* and *B* and relation $R: A \hookrightarrow B$, the tabulation of *R* is *U*-small.
- If A is U-small then so is $\mathcal{P}A$
- Let $f: A \to B$ be a function. If B is U-small and $f^{-1}(b)$ is U-small for all $b \in B$, then A is U-small.

• If $p: B \to A$ is a surjective function such that A is U-small, then there exists a U-small set C, a surjection $q: C \to A$, and a function $f: C \to B$ such that q = pf.

Axiom 1.23 (Universe). There exists a universe.

Let $E:U \hookrightarrow X$ be a universe. We shall say a set is small iff it is U-small, and large otherwise.

1.6 Cartesian Product

Definition 1.24 (Cartesian Product). Let A and B be sets. The *Cartesian product* of A and B, $A \times B$, is the tabulation of the relation $A \hookrightarrow B$ that holds for all $a \in A$ and $b \in B$. The associated functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ are called the *projections*.

Given $a \in A$ and $b \in B$, we write (a, b) for the unique element of $A \times B$ such that $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$.

1.7 Quotient Sets

Proposition 1.25. Let \sim be an equivalence relation on X. Then there exists a set X/\sim , the quotient set of X with respect to \sim , and a surjective function $\pi: X \twoheadrightarrow X/\sim$, the canonical projection, such that, for all $x,y: \mathrm{El}(X)$, we have $x \sim y$ if and only if $\pi(x) = \pi(y)$.

Further, if $p: X \to Q$ is another quotient with respect to \sim , then there exists a unique bijection $\phi: X/\sim \approx Q$ such that $\phi \circ \pi = p$.

Category Theory

2.1 Categories

Definition 2.1. A category C consists of:

- a set Ob(C) of *objects*
- for any objects X and Y, a set Mor(X,Y) of morphisms from X to Y. We write $f: X \to Y$ for f: El(Mor(X,Y)).
- for any objects X, Y and Z, a function $\circ : \operatorname{Mor}(Y, Z) \times \operatorname{Mor}(X, Y) \to \operatorname{Mor}(X, Z)$, called *composition*.

such that:

- Given $f: X \to Y, g: Y \to Z$ and $h: Z \to W$, we have $h \circ (g \circ f) = (h \circ g) \circ f$
- For any object X, there exists a morphism $id_X : X \to X$, the *identity morphism* on X, such that:
 - for any object Y and morphism $f: Y \to X$ we have $\mathrm{id}_X \circ f = f$
 - for any object Y and morphism $f: X \to Y$ we have $f \circ \mathrm{id}_X = f$

Topology

3.1 Topological Spaces

Definition 3.1 (Topological Space). Let X be a set and $\mathcal{O} \subseteq \mathcal{P}X$. Then we say (X, \mathcal{O}) is a *topological space* iff:

- For any $\mathcal{U} \subseteq \mathcal{O}$ we have $\bigcup \mathcal{U} \in \mathcal{O}$.
- For any $U, V \in \mathcal{O}$ we have $U \cap V \in \mathcal{O}$.
- $X \in \mathcal{O}$

We call \mathcal{O} the topology of the topological space, and call its elements open sets. We shall often write X for the topological space (X, \mathcal{O}) .

Definition 3.2 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* iff X - A is open.

Proposition 3.3. A set B is open if and only if X - B is closed.

Proposition 3.4. Let X be a set and $C \subseteq \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that C is the set of closed sets if and only if:

- For any $\mathcal{D} \subseteq \mathcal{C}$ we have $\bigcap \mathcal{D} \in \mathcal{C}$
- For any $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.
- $\varnothing \in \mathcal{C}$

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{X - C : C \in \mathcal{C}\}.$

Definition 3.5 (Neighbourhood). Let X be a topological space, $Sx \in X$ and $U \subseteq X$. Then U is a *neighbourhood* of x, and x is an *interior* point of U, iff there exists an open set V such that $x \in V \subseteq U$.

Proposition 3.6. A set B is open if and only if it is a neighbourhood of each of its points.

Proposition 3.7. Let X be a set and $\mathcal{N}: X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that, for all $x \in X$, we have \mathcal{N}_x is the set of neighbourhoods of x, if and only if:

- For all $x \in X$ and $N \in \mathcal{N}_x$ we have $x \in N$
- For all $x \in X$ we have $X \in \mathcal{N}_x$
- For all $x \in X$, $N \in \mathcal{N}_x$ and $V \subseteq \mathcal{P}X$, if $N \subseteq V$ then $V \in \mathcal{N}_x$
- For all $x \in X$ and $M, N \in \mathcal{N}_x$ we have $M \cap N \in \mathcal{N}_x$
- For all $x \in X$ and $N \in \mathcal{N}_x$, there exists $M \in \mathcal{N}_x$ such that $M \subseteq N$ and $\forall y \in M.M \in \mathcal{N}_y$.

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{U : \forall x \in U.U \in \mathcal{N}_x\}.$

Definition 3.8 (Exterior Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is an *exterior point* of B iff B - X is a neighbourhood of x.

Definition 3.9 (Boundary Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is a boundary point of B iff it is neither an interior point nor an exterior point of B.

Definition 3.10 (Interior). Let X be a topological space and $B \subseteq X$. The *interior* of B, B° , is the set of all interior points of B.

Proposition 3.11. The interior of B is the union of all the open sets included in B.

Definition 3.12 (Closure). Let X be a topological space and $B \subseteq X$. The *closure* of B, \overline{B} , is the set of all points that are not exterior points of B.

Proposition 3.13. The closure of B is the intersection of all the closed sets that include B.

Proposition 3.14. A set B is open iff $X - B = \overline{X - B}$.

Proposition 3.15 (Kuratowski Closure Axioms). Let X be a set and $\neg: \mathcal{P}X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} such that, for all $B \subseteq X$, \overline{B} is the closure of B, if and only if:

- $\overline{\varnothing} = \varnothing$
- For all $A \subseteq X$ we have $A \subseteq \overline{A}$
- For all $A \subseteq X$ we have $\overline{\overline{A}} = \overline{A}$
- For all $A, B \subseteq X$ we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$

In this case, \mathcal{O} is unique and is defined by $\mathcal{O} = \{U : X - U = \overline{X - U}\}.$

3.1.1 Subspaces

Definition 3.16 (Subspace). Let X be a topological space and $X_0 \subseteq X$. The subspace topology on X_0 is $\{U \cap X_0 : U \text{ is open in } X\}$.

Example 3.17. The unit sphere S^2 is $\{x \in \mathbb{R}^3 : ||x|| = 1\}$ as a subspace of \mathbb{R}^3 .

3.1.2 Topological Disjoint Union

Definition 3.18. Let X and Y be topological spaces. The *disjoint union* is X + Y where $U \subseteq X + Y$ is open if and only if $\kappa_1^{-1}(U)$ is open in X and $\kappa_2^{-1}(U)$ is open in Y.

3.1.3 Product Topology

Definition 3.19. Let X and Y be topological spaces. The *product topology* on $X \times Y$ is the set of all subsets $W \subseteq X \times Y$ such that, for all $(x, y) \in W$, there exist neighbourhoods U of x in X and Y of y in Y such that $U \times V \subseteq W$.

3.1.4 Bases

Definition 3.20 (Basis). Let X be a topological space. A *basis* for the topology on X is a set of open sets \mathcal{B} such that every open set is the union of a subset of \mathcal{B} .

3.1.5 Subbases

Definition 3.21 (Subbasis). Let X be a topological space. A *subbasis* for the topology on X is a subset $S \subseteq \mathcal{P}X$ such that every open set is a union of finite intersections of S.

3.2 Continuous Functions

Definition 3.22 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* iff, for every open set V in Y, the inverse image $f^{-1}(V)$ is open in X.

Proposition 3.23. 1. id_X is continuous

- 2. The composite of two continuous functions is continuous.
- 3. If $f: X \to Y$ is continuous and $X_0 \subseteq X$ then $f \upharpoonright X_0 : X_0 \to Y$ is continuous.
- 4. If $f: X + Y \to Z$, then f is continuous iff $f \circ \kappa_1 : X \to Z$ and $f \circ \kappa_2 : Y \to Z$ are continuous.
- 5. If $f: Z \to X \times Y$, then f is continuous iff $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous.

Definition 3.24 (Homeomorphism). Let X and Y be topological spaces. A homeomorphism between X and Y is a bijection $f: X \approx Y$ such that f and f^{-1} are continuous.

Definition 3.25 (Retraction). Let X be a topological space and A a subspace of X. A continuous function $\rho: X \to A$ is a *retraction* iff $\rho \upharpoonright A = \mathrm{id}_A$. We say A is a *retract* of X iff there exists a retraction.

3.3 Convergence

Definition 3.26 (Convergence). Let X be a topological space. Let (x_n) be a sequence in X. A point a : El(X) is a *limit* of the sequence iff, for every neighbourhood U of a, there exists n_0 such that $\forall n \ge n_0.x_n \in U$.

3.4 Connected Spaces

Definition 3.27 (Connected). A topological space is *connected* iff it is not the union of two nonempty open disjoint subsets.

Proposition 3.28. The continuous image of a connected space is connected.

Proposition 3.29. Let X be a topological space and $A, B \subseteq X$. If $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are connected, then X is connected.

Proposition 3.30. If X and Y are nonempty topological spaces, then $X \times Y$ is connected if and only if X and Y are connected.

Definition 3.31 (Path-connected). A topological space X is path-connected iff, for any points $a, b \in X$, there exists a continuous function $\alpha : [0,1] \to X$, called a path, such that $\alpha(0) = a$ and $\alpha(1) = b$.

Proposition 3.32. The continuous image of a path connected space is path connected.

Proposition 3.33. Let X be a topological space and $A, B \subseteq X$. If $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are path connected, then X is path connected.

Proposition 3.34. If X and Y are nonempty topological spaces, then $X \times Y$ is path connected if and only if X and Y are path connected.

3.5 Hausdorff Spaces

Definition 3.35 (Hausdorff). A topological space is a *Hausdorff* space or a T_2 space iff any two distinct points have disjoint neighbourhoods.

Proposition 3.36. In a Hausdorff space, a sequence has at most one limit.

Proposition 3.37. 1. Every subspace of a Hausdorff space is Hausdorff.

- 2. The disjoint union of two Hausdorff spaces is Hausdorff.
- 3. The product of two Hausdorff spaces is Hausdorff.

Proposition 3.38. Let A be a topological space and B a Hausdorff space. Let $f,g:A\to B$ be continuous. Let $X\subseteq A$ be dense. If f and g agree on X, then f=g.

Proof:

```
\langle 1 \rangle 1. Assume: for a contradiction a \in A and f(a) \neq g(a).
```

 $\langle 1 \rangle 2$. PICK disjoint neighbourhoods U and V of f(a) and g(a) respectively.

$$\langle 1 \rangle 3$$
. Pick $x \in f^{-1}(U) \cap g^{-1}(V)$

$$\langle 1 \rangle 4. \ f(x) = g(x) \in U \cap V$$

 $\langle 1 \rangle$ 5. Q.E.D.

П

Proof: This is a contradiction.

Proposition 3.39. Let X and Y be metric spaces. Let $f: X \to Y$ be uniformly continuous. Let \hat{X} and \hat{Y} be the completions of X and Y. Then f extends uniquely to a continuous map $\hat{X} \to \hat{Y}$.

PROOF: The extension maps $\lim_{n\to\infty} x_n$ to $\lim_{n\to\infty} f(x_n)$.

3.6 Compactness

Definition 3.40 (Compact). A topological space is *compact* iff every open cover has a finite subcover.

Proposition 3.41. Let X be a compact topological space. Let P be a set of open sets such that, for all $U, V \in P$, we have $U \cup V \in P$. Assume that every point has an open neighbourhood in P. Then $X \in P$.

Proof:

```
\langle 1 \rangle 1. P is an open cover of X
```

 $\langle 1 \rangle 2$. PICK a finite subcover $U_1, \ldots, U_n \in P$

$$\langle 1 \rangle 3. \ X = U_1 \cup \cdots \cup U_n \in P$$

Corollary 3.41.1. Let f be a compact space and $f: X \to \mathbb{R}$ be locally bounded. Then f is bounded.

PROOF: Take $P = \{U \text{ open in } X : f \text{ is bounded on } U\}$. \square

Proposition 3.42. The continuous image of a compact space is compact.

Proposition 3.43. A closed subspace of a compact space is compact.

Proposition 3.44. Let X and Y be nonempty spaces. Then the following are equivalent.

- 1. X and Y are compact.
- 2. X + Y is compact.
- 3. $X \times Y$ is compact.

Proposition 3.45. A compact subspace of a Hausdorff space is closed.

Proposition 3.46. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

3.7 Quotient Spaces

Definition 3.47 (Quotient Space). Let X be a topological space and \sim an equivalence relation on X. The *quotient topology* on X/\sim is defined by: U: El $(\mathcal{P}X)$ is open in X/\sim if and only if $\pi^{-1}(U)$ is open in X.

Proposition 3.48. Let X and Y be topological spaces. Let \sim be an equivalence relation on X. Let $f: X/\sim \to Y$. Then f is continuous if and only if $f\circ \pi$ is continuous.

Proposition 3.49. Let X and Y be topological spaces. Let \sim be an equivalence relation on X. Let $\phi: Y \to X/\sim$.

Assume that, for all $y \in Y$, there exists a neighbourhood U of y and a continuous function $\Phi: U \to X$ such that $\pi \circ \Phi = \phi \upharpoonright U$. Then ϕ is continuous.

Proposition 3.50. A quotient of a connected space is connected.

Proposition 3.51. A quotient of a path connected space is path connected.

Proposition 3.52. Let X be a topological space and \sim an equivalence relation on X. If X/\sim is Hausdorff then every equivalence class of \sim is closed in X.

Definition 3.53. Let X be a topological space and $A_1, \ldots, A_r \subseteq X$. Then $X/A_1, \ldots, A_r$ is the quotient space of X with respect to \sim where $x \sim y$ iff x = y or $\exists i (x \in A_i \land y \in A_i)$.

Definition 3.54 (Cone). Let X be a topological space. The *cone over* X is the space $(X \times [0,1])/(X \times \{1\})$.

Definition 3.55 (Suspension). Let X be a topological space. The *suspension* of X is the space

$$\Sigma X := (X \times [-1,1])/(X \times \{-1\}), (X \times \{1\})$$

Definition 3.56 (Wedge Product). Let $x_0 \in X$ and $y_0 \in Y$. The wedge product $X \vee Y$ is $(X \times \{y_0\}) \cup (\{x_0\} \times Y)$ as a subspace of $X \times Y$.

Definition 3.57 (Smash Product). Let $x_0 \in X$ and $y_0 \in Y$. The *smash product* $X \wedge Y$ is $(X \times Y)/(X \vee Y)$.

3.8. GLUING 19

Example 3.58. $D^n/S^{n-1} \cong S^n$

Proof:

 $\langle 1 \rangle 1$. Let: $\phi: D^n/S^{n-1} \to S^n$ be the function induced by the map $D^n \to S^n$ that maps the radii of D^n onto the meridians of S^n from the north to the south pole.

 $\langle 1 \rangle 2$. ϕ is a bijection.

 $\langle 1 \rangle 3$. ϕ is a homeomorphism.

PROOF: Since D^n/S^{n-1} is compact and S^n is Hausdorff.

3.8 Gluing

Definition 3.59 (Gluing). Let X and Y be topological spaces, $X_0 \subseteq X$ and $\phi: X_0 \to Y$ a continuous map. Then $Y \cup_{\phi} X$ is the quotient space $(X + Y) / \sim$, where \sim is the equivalence relation generated by $x \sim \phi(x)$ for all x : El(X).

Proposition 3.60. *Y* is a subspace of $Y \cup_{\phi} X$.

Definition 3.61. Let X be a topological space and $\alpha: X \cong X$ a homeomorphism. Then $(X \times [0,1])/\alpha$ is the quotient space of $X \times [0,1]$ by the equivalence relation generated by $(x,0) \sim (\alpha(x),1)$ for all $x: \mathrm{El}(X)$.

Definition 3.62 (Möbius Strip). The *Möbius strip* is $([-1,1] \times [0,1])/\alpha$ where $\alpha(x) = -x$.

Definition 3.63 (Klein Bottle). The *Klein bottle* is $(S^1 \times [0,1])/\alpha$ where $\alpha(z) = \overline{z}$

Proposition 3.64. Let M be the Möbius strip and K the Klein bottle. Then $M \cup_{\mathrm{id}_{\partial M}} M \cong K$.

Proof:

```
\langle 1 \rangle 1. Let: f: ([-1,1] \times [0,1]) + ([-1,1] \times [0,1]) \rightarrow S^1 \times [0,1] be the function that maps \kappa_1(\theta,t) to (e^{\pi i\theta/2},t) and \kappa_2(\theta,t) to (-e^{-\pi i\theta/2},t). \langle 1 \rangle 2. f induces a bijection M \cup_{\mathrm{id}_{\partial M}} M \approx K
```

 $\langle 1 \rangle 3$. f is a homeomorphism.

3.9 Metric Spaces

Definition 3.65 (Metric Space). Let X be a set and $d: X^2 \to \mathbb{R}$. We say (X, d) is a *metric space* iff:

- For all $x, y \in X$ we have $d(x, y) \ge 0$
- For all $x, y \in X$ we have d(x, y) = 0 iff x = y
- For all $x, y \in X$ we have d(x, y) = d(y, x)

• (Triangle Inequality) For all $x, y, z \in X$ we have $d(x, z) \leq d(x, y) + d(y, z)$

We call d the *metric* of the metric space (X, d). We often write X for the metric space (X, d).

Definition 3.66 (Topology of a Metric Space). Let (X,d) be a metric space. The topology *induced* by the metric d is defined by: for $V \subseteq X$, we have V is open if and only if, for all $x \in V$, there exists $\epsilon > 0$ such that $\{y \in X : d(x,y) < \epsilon\} \subseteq V$.

Definition 3.67 (Metrizable). A topological space is *metrizable* iff there exists a metric that induces its topology.

Proposition 3.68. Every metrizable space is Hausdorff.

3.10 Complete Metric Spaces

Definition 3.69 (Complete). A metric space is *complete* iff every Cauchy sequence converges.

Example 3.70. \mathbb{R} is complete.

Proposition 3.71. The product of two complete metric spaces is complete.

Proposition 3.72. Every compact metric space is complete.

Proposition 3.73. Let X be a complete metric space and $A \subseteq X$. Then A is complete if and only if A is closed.

Definition 3.74 (Completion). Let X be a metric space. A *completion* of X is a complete metric space \hat{X} and injection $i: X \rightarrowtail \hat{X}$ such that:

- The metric on X is the restriction of the metric on \hat{X}
- X is dense in \hat{X} .

Proposition 3.75. Let $i_1: X \to Y_1$ and $i_2: X \to Y_2$ be completions of X. Then there exists a unique isometry $\phi: Y_1 \cong Y_2$ such that $\phi \circ i_1 = i_2$.

PROOF: Define $\phi(\lim_{n\to\infty} i_1(x_n)) = \lim_{n\to\infty} i_2(x_n)$. \square

Theorem 3.76. Every metric space has a completion.

PROOF: Let X be the set of Cauchy sequences in X quotiented by \sim where $(x_n) \sim (y_n)$ if and only if $d(x_n, y_n) \to 0$. \square

Homotopy Theory

4.1 Homotopies

Definition 4.1 (Homotopy). Let X and Y be topological spaces. Let $f, g: X \to Y$ be continuous. A homotopy between f and g is a continuous function $h: X \times [0,1] \to Y$ such that

- $\forall x : \text{El}(X) . h(x, 0) = f(x)$
- $\forall x : \text{El}(X) . h(x, 1) = g(x)$

We say f and g are *homotopic*, $f \simeq g$, iff there exists a homotopy between them. Let [X,Y] be the set of all homotopy classes of functions $X \to Y$.

Proposition 4.2. Let $f, f': X \to Y$ and $g, g': Y \to Z$ be continuous. If $f \simeq f'$ and $g \simeq g'$ then $g \circ f \simeq g' \circ f'$.

4.2 Homotopy Equivalence

Definition 4.3 (Homotopy Equivalence). Let X and Y be topological spaces. A homotopy equivalence between X and Y, $f: X \simeq Y$, is a continuous function $f: X \to Y$ such that there exists a continuous function $g: Y \to X$, the homotopy inverse to f, such that $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$.

Definition 4.4 (Contractible). A topological space X is *contractible* iff $X \simeq 1$.

Example 4.5. \mathbb{R}^n is contractible.

Example 4.6. D^n is contractible.

Definition 4.7 (Deformation Retract). Let X be a topological space and A a subspace of X. A retraction $\rho: X \to A$ is a deformation retraction iff $i \circ \rho \simeq \mathrm{id}_X$, where i is the inclusion $A \rightarrowtail X$. We say A is a deformation retract of X iff there exists a deformation retraction.

Definition 4.8 (Strong Deformation Retract). Let X be a topological space and A a subspace of X. A strong deformation retraction $\rho: X \to A$ is a continuous function such that there exists a homotopy $h: X \times [0,1] \to X$ between $i \circ \rho$ and id_X such that, for all $a: \mathrm{El}(X)$ and $t: \mathrm{El}([0,1])$, we have h(a,t)=a.

We say A is a strong deformation retract of X iff a strong deformation retraction exists.

Example 4.9. $\{0\}$ is a strong deformation retract of \mathbb{R}^n and of D^n .

Example 4.10. S^1 is a strong deformation retract of the torus $S^1 \times D^2$.

Example 4.11. S^{n-1} is a strong deformation retract of $D^n - \{0\}$.

Example 4.12. For any topological space X, the singleton consisting of the vertex is a strong deformation retract of the cone over X.

Topological Groups

Definition 5.1 (Topological Group). A topological group is a group G with a topology such that the function $G^2 \to G$ that maps (x, y) to xy^{-1} is continuous.

Example 5.2. $GL(n,\mathbb{R})$ and $GL(n,\mathbb{C})$ are topological groups.

Proposition 5.3. Any subgroup of a topological group is a topological group under the subspace topology.

Definition 5.4 (Homogeneous Space). A homogeneous space is a topological space of the form G/H, where G is a topological group and H is a normal subgroup of G, under the quotient topology.

Proposition 5.5. Let G be a topological group and H a normal subgroup of G. Then G/H is Hausdorff if and only if H is closed.

Proof: See Bourbaki, N., General Topology. III.12

5.1 Continuous Actions

Definition 5.6 (Continuous Action). Let G be a topological group and X a topological space. A *continuous action* of G on X is a continuous function $\cdot : G \times X \to X$ such that:

- $\forall x : \text{El}(X) . ex = x$
- $\forall g, h : \text{El}(G) . \forall x : \text{El}(X) . g(hx) = (gh)x$

A G-space consists of a topological space X and a continuous action of G on X.

Definition 5.7 (Orbit). Let X be a G-space and $x \in X$. The *orbit* of x is $\{gx : g \in G\}$.

The orbit space X/G is the set of all orbits under the quotient topology.

Proposition 5.8. Define an action of SO(2) on S^2 by $g(x_1, x_2, x_3) = (g(x_1, x_2), x_3)$. Then $S^2/SO(2) \cong [-1,1]$.

Proof:

- $\langle 1 \rangle 1.$ Let: $f_3: S^2/SO(2) \rightarrow$ [-1,1] be the function induced by $\pi_3: S^2 \rightarrow$ [-1, 1]
- $\langle 1 \rangle 2$. f_3 is bijective.
- $\langle 1 \rangle 3. S^2/SO(2)$ is compact.

PROOF: It is the continuous image of S^2 which is compact.

- $\langle 1 \rangle 4$. [-1,1] is Hausdorff.
- $\langle 1 \rangle 5$. f_3 is a homeomorphism.

Definition 5.9 (Stabilizer). Let X be a G-space and $x \in X$. The stabilizer of $x \text{ is } G_x := \{g : \text{El}(G) \mid gx = x\}.$

Proposition 5.10. The function that maps gG_x to gx is a continuous bijection from G/G_x to Gx.

Proof:

- $\langle 1 \rangle 1$. If $gG_x = hG_x$ then gx = hx.
 - $\langle 2 \rangle 1$. Assume: $gG_x = hG_x$
 - $\langle 2 \rangle 2.$ $g^{-1}h \in G_x$ $\langle 2 \rangle 3.$ $g^{-1}hx = x$

 - $\langle 2 \rangle 4$. gx = hx
- $\langle 1 \rangle 2$. If gx = hx then $gG_x = hG_x$.

Proof: Similar.

 $\langle 1 \rangle 3$. The function is continuous.

Proof: Proposition 2.48.

Topological Vector Spaces

Definition 6.1 (Topological Vector Space). Let K be either \mathbb{R} or \mathbb{C} . A topological vector space over K consists of a vector space E over K and a topology on E such that:

- Substraction is a continuous function $E^2 \to E$
- Multiplication is a continuous function $K \times E \to E$

Proposition 6.2. Every topological vector space is a topological group under addition.

Proof: Immediate from the definition. \square

Theorem 6.3. The usual topology on a finite dimensional vector space over K is the only one that makes it into a Hausdorff topological vector space.

PROOF: See Bourbaki. Elements de Mathematique, Livre V: Espaces Vectoriels Topologiques, Th. 2, p. 18 \square

Proposition 6.4. Let E be a topological vector space and E_0 a subspace of E. Then $\overline{E_0}$ is a subspace of E.

Definition 6.5. Let E be a topological vector space. The topological space associated with E is $E/\{0\}$.

6.1 Cauchy Sequences

Definition 6.6 (Cauchy Sequence). Let E be a topological vector space. A sequence (x_n) in E is a *Cauchy sequence* iff, for every neighbourhood U of 0, there exists n_0 such that $\forall m, n \ge n_0.x_n - x_m \in U$.

Definition 6.7 (Complete Topological Vector Space). A topological vector space is *complete* iff every Cauchy sequence converges.

6.2 Seminorms

Definition 6.8 (Seminorm). Let E be a vector space over K. A *seminorm* on E is a function $\| \| : E \to \mathbb{R}$ such that:

- 1. $\forall x : \text{El}(E) . ||x|| \ge 0$
- 2. $\forall \alpha : \text{El}(K) . \forall x : \text{El}(E) . ||\alpha x|| = |\alpha||x||$
- 3. Triangle Inequality $\forall x, y : \text{El}(E) . ||x + y|| \le ||x|| + ||y||$

Example 6.9. The function that maps (x_1, \ldots, x_n) to $|x_i|$ is a seminorm on \mathbb{R}^n .

Definition 6.10. Let E be a vector space over K. Let Λ be a set of seminorms on E. The topology generated by Λ is the topology generated by the subbasis consisting of all sets of the form $B_{\epsilon}^{\lambda}(x) = \{y \in E : \lambda(y-x) < \epsilon\}$ for $\epsilon > 0, \ \lambda \in \Lambda$ and $x : \mathrm{El}(E)$.

Proposition 6.11. E is a topological vector space under this topology. It is Hausdorff iff, for all x : El(E), if $\forall \lambda \in \Lambda. \lambda(x) = 0$ then x = 0.

6.3 Fréchet Spaces

Definition 6.12 (Pre-Fréchet Space). A *pre-Fréchet space* is a Hausdorff topological vector space whose topology is generated by a countable set of seminorms.

Proposition 6.13. Let E be a pre-Fréchet space whose topology is generated by the family of seminorms $\{\| \|_n : n \in \mathbb{Z}^+ \}$. Then

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|x - y\|_n}{1 + \|x - y\|_n}$$

is a metric that induces the same topology. The two definitions of Cauchy sequence agree.

Definition 6.14 (Fréchet Space). A *Fréchet space* is a complete pre-Fréchet space.

6.4 Normed Spaces

Definition 6.15 (Normed Space). Let E be a vector space over K. A *norm* on E is a function $\| \ \| : E \to \mathbb{R}$ is a seminorm such that, $\forall x \in E. \|x\| = 0 \Leftrightarrow x = 0$. A *normed space* consists of a vector space with a norm.

Proposition 6.16. If E is a normed space then d(x,y) = ||x-y|| is a metric on E that makes E into a topological vector space. The two definitions of Cauchy sequence agree on E.

Proposition 6.17. Let $\| \ \|$ be a seminorm on the vector space E. Then $\| \ \|$ defines a norm on $E/\{0\}$.

Proposition 6.18. Let E and F be normed spaces. Any continuous linear map $E \to F$ is uniformly continuous.

Definition 6.19. For $p \ge 1$. let $\mathcal{L}^p(\mathbb{R}^n)$ be the vector space of all Lebesgue-measurable functions $f: \mathbb{R}^n \to \mathbb{R}$ such that $|f|^p$ is Lebesgue-integrable. Then

$$||f||_p := \sqrt{p} \int_{\mathbb{R}^n} |f(x)|^p dx$$

defines a seminorm on $\mathcal{L}^p(\mathbb{R}^n)$. Let

$$L^p(\mathbb{R}^n) := \mathcal{L}^p(\mathbb{R}^n)/\overline{\{0\}}$$
.

6.5 Inner Product Spaces

Proposition 6.20. If E is an inner product space then $||x|| = \sqrt{\langle x, x \rangle}$ is a norm on E.

6.6 Banach Spaces

Definition 6.21 (Banach Space). A Banach space is a complete normed space.

Example 6.22. For any topological space X, the set C(X) of bounded continuous functions $X \to \mathbb{R}$ is a Banach space under $||f|| = \sup_{x \in X} |f(x)|$.

Proposition 6.23. The completion of a normed space is a Banach space.

Proposition 6.24. Let E and F be normed spaces. Let $f: E \to F$ be a continuous linear map. Then the extension to the completions $\hat{E} \to \hat{F}$ is linear.

Proposition 6.25. $L^p(\mathbb{R}^n)$ is a Banach space.

6.7 Hilbert Spaces

Definition 6.26 (Hilbert Space). A *Hilbert space* is a complete inner product space.

Example 6.27. The set of square-integrable functions is the set of Lebesgue integrable functions $[-\pi, \pi] \to \mathbb{R}$ quotiented by: $f \sim g$ iff $\{x \in [-\pi, \pi] : f(x) \neq g(x)\}$ has measure 0. This is a Hilbert space under

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi} \pi f(x) g(x) dx$$
.

Proposition 6.28. The completion of an inner product space is a Hilbert space.

6.8 Locally Convex Spaces

Definition 6.29 (Locally Convex Space). A topological vector space is *locally convex* iff every neighbourhood of 0 includes a convex neighbourhood of 0.

Proposition 6.30. A topological vector space is locally convex if and only if its topology is generated by a set of seminorms.

PROOF: See Köthe, G. Topological Vector Spaces 1. Section 18.

Proposition 6.31. A locally convex topological vector space is a pre-Fréchet space if and only if it is metrizable.

PROOF: See Köthe, G. Topological Vector Spaces 1. Section 18.

Example 6.32. Let E be an infinite dimensional Hilbert space. Let E' be the same vector space under the *weak topology*, the coarsest topology such that every continuous linear map $E \to \mathbb{R}$ is continuous as a map $E' \to \mathbb{R}$. Then E is locally convex Hausdorff but not metrizable.

Proof: See Dieudonne, J. A., Treatise on Analysis, Vol. II, New York and London: Academic Press, 1970, p. 76.

Definition 6.33 (Thom Space). Let E be a vector bundle with a Riemannian metric, $DE = \{x : \operatorname{El}(E) \mid ||x|| \le 1\}$ its disc bundle and $SE := \{v : \operatorname{El}(E) \mid ||v|| = 1\}$ its sphere bundle. The *Thom space* of E is the quotient space DE/SE.