F-8484 Published Patient monter.

⑩日本国特許庁(JP)

10 特許出願公告

montioned in sper

許 公 報(B2)

平5-38795

識別配号

庁内整理番号

❷❷公告 平成5年(1993)6月11日

8018-4H 8018-4H

発明の数 1 (全5頁)

❷発明の名称

.· /:

コークス炉窯口部の乾留促進方法

创特 顧 昭61-257729 多公 朗 昭63-112686

多出 願 昭61(1986)10月29日 ❷昭63(1988) 5月17日

@発 明 者 西 岡 邦 彦

兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式 会社総合技術研究所内

@発 Ξ 濉 深

兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式

会社総合技術研究所内

住友金属工業株式会社

大阪府大阪市中央区北浜 4丁目 5番33号

勿出 頭 四代 理 弁理士 押田 良久 査 官 唐 木 以知良

1

切特許請求の範囲

1 コークス炉の押出機側、消火車側の各炉蓋に 付設した断熱材と、窯内の装入石炭層もしくはコ ークス層の嶋面に接する加熱板との間に設けたガ 部を炉外から吹込む空気もしくは酸素により燃焼 させ、放ガススペースの温度を700~850℃に保持 することを特徴とするコークス炉窯口部の乾留促 進方法。

発明の詳細な説明

産業上の利用分野

この発明は室炉式コークス炉でコークスを製造 する方法において、不均一乾留を改善するための 窯口部の乾留促進方法に関する。

技術的背景

室炉式コークス製造法は周知の通り、原料炭を 装入した炭化室を両端の燃焼室から煉瓦壁を介し て加熱してコークスを製造する方法であるが、こ の方法で製造されるコークスは炭化室の炉長、炉 差のあることが知られている。近時、コークス炉 の乾留効率化とコークス品質の安定化が重要視さ れるに伴い上記コークス炉内の品質および乾留温 度改善が大きな課題となつている。特に、炉長方 向の品質偏差および乾留温度偏差に関していえ 25 実用性に欠けるものである。

ば、コークスを押出す押出機側およびコークスを 受ける消火車側の窯口部における偏差が極立って 大きく、これら窯口部の不均一の乾留の改善をは からなければコークス炉の乾留効率化とコークス ススペースで、乾留中に発生する可燃性ガスの一 5 品質の安定化はあり得ないとさえ言えるほどであ

> コークス炉の窯口部は通常の操業を行なう限 り、装入炭の嵩密度が低く、かつ端フリユーの温 度が炉長方向のフリユー温度の平均値より100℃ 10 近く、あるいはそれ以上低いことに加え、炉蓋か らの放熱もあるため中央部より乾留が大幅に遅 れ、コークスの乾留温度が低く、コークス品質も 大きく劣ることになる。

従来技術とその問題点

こうした窯口部コークスの乾留遅れと品質劣化 15 を改善する方法として、従来から試みられている 端フリユー温度の向上対策がある。しかし、端フ リユー温度の向上には限度があり、十分な効果が 上がらないのが実態で、大きな改善効果は望めな 高、炉幅の3方向で大きな品質偏差、関留温度偏 20 い。また、窯口部に装入する原料の水分を中央部 に装入する原料より低減する方法が知られている (特願昭58-141628)。この方法は原理的には首肯 できても、水分の異なる原料を窯口部と中央部に 分けて装入する具体的方法が確立されておらず、

ノズル17から吹込む空気または酸素により燃焼 させる構造の炉蓋とし、前配可燃性ガスの燃焼に よりガススペースを700~850℃の温度に保持する 方法である。

ここで、ガススペースの温度を700~850℃に限 定したのは以下に示す理由による。

まず第一に、石炭の乾留に対してはコークス炉 の操業上タール分を含むガスの発生が完了してい ることと、コークスの収縮が十分進んでいること はいずれも炉蓋から放熱を抑制するための改良に 10 が重要である。すなわち、タール分を含むガスが 残存していると窯出し時黒煙の発生や発じんが多 く、環境上好ましくないためであり、またコーク スの収縮が不足していると、コークス炉の炉壁と コークスケーキとの肌能れが不十分でコークスの この発明は従来の前配窯口部コークスの乾留遅 15 窯出しに支障をきたすためである。このような問 題を回避するためには、少なくとも700℃以上の 温度に保持する必要があことを確認している。し かし、窯口部での高温乾留は炉蓋金物の歪みを招 き、乾留中に炉蓋からのガス漏れにつながり好ま 20 しくない。こうした炉蓋のガスシール性確保と炉 蓋およびコークス炉窯口部の耐久性を考慮する と、850℃以下の温度に保持する必要があことを 確認している。従つて、ガススペースでの一部乾 留ガスの燃焼温度としては700~850℃が好まし

実施例 1

コークス炉の炭化室寸法が高さ7.125m、炉幅 460m、長さ16.5mの実操業炉において、押出機 側およびコークス側の炉蓋を第1図(本発明例)、 すなわち、この発明は窯口部コークスの昇温を 30 第3図(従来例)、第4図(従来例)に示す3種 類に変更して、窯口部コークスの昇温状況、炉蓋 からの黒煙発生状況およびコークスの火落状況を 調査した。各炉蓋の諸元を第1表に示す。また、 コークス炉の操業条件としては、平均フリユー温 35 度1185℃、押出機側端フリユー温度987℃、コー クス側フリユー温度1032℃で、装入炭水分8.7~ 9.4%、平均装入炭嵩密度715kg/㎡で行ない、各 種炉蓋の効果の比較には特定窯における連続 5回 の使用テスト結果をもとに評価した。なお、窯口 コークスの昇温状況の調査のために、各炉蓋とも 炉底より3 mの位置で炉蓋中央部に測温孔を設 け、装入石炭階もしくはコークス層の炉蓋に接す る端面の温度とガススペースの温度を測定した。 さらに、本発明法のガススペースでの発生ガスの

また従来、竊口の炉蓋金物に断熱煉耳もしくは キヤスター等の断熱材を付設した炉蓋が採用され ていた。第3図はその一例を示す概略横断面図 で、炉蓋金物 1 に窯内の装入石炭層もしくはコー クス層3と接する断熱材2を張付けた構造の炉蓋 5 である。また近年、第4図に示されるような断熱 材5に支持枠6を介して加熱板7を配置し、断熱 材と加熱板との間にガススペースを設けた構造の 炉蓋が用いられはじめた。しかし、これらの炉蓋 すぎず、窯口部コークスの積極的な昇温効果得ら れないものであり、窯口部コークスの昇温対策と しては不十分であつた。

発明の目的

れおよび品質偏差を改善するためになされたもの で、炉蓋に加熱機構を付与することによって窓口 部コークスの積極的な乾留促進をはかる方法を提 案せんとするものである。

問題点を解決するための手段

この発明は従来の前記問題点を解決するため、 コークス炉の押出機側、消火車側の各炉蓋に付設 した断熱材と、窯内の装入石炭層もしくはコーク ス層の端面に接する加熱板との間に設けたガスス ペースで、乾留中に発生する可燃性ガスの一部を 25 い。 炉外から吹込む空気もしくは酸素により燃焼さ せ、該ガススペースの温度を700~850℃に保持す ることによつて、窯口部コークスの乾留を促進 し、コークス品質の改善をはかる方法である。

促進する方法として、炉蓋に加熱機構を付与した ことと、炉蓋本来の機能であるガスのシール性お よび耐久性を損わないための加熱温度条件を明ら かにした点を特徴とするものである。

発明の図面に基づく開示

第1図はこの発明の一実施例を示す概略横断平 面図で、11は炉蓋金物、12は断熱材、13は 装入石炭層もしくはコークス層、 14は装入石炭 層もしくはコークス層に接する加熱板、15は断 熱材と加熱板をつなぐ支持枠、18はガススペー 40 ス、17は炉外からガススペースに吹込む燃焼用 の空気または酸素の吹込みノズルを示す。

すなわち、この発明はガススペース18を流れ る乾留中に発生する可燃性ガスの一部を、吹込み

6

燃烧のため炉底より30㎝の位置に燃烧用の空気吹 込みノズルを設置し、ノズル先端には電気的スパ ークによる着火装置を設け、乾留初期から乾留中 に発生するガスの一部を燃焼させ、ガススペース の温度を800℃に保持した。

本実施例の結果を第2表および第2図に示す。 示す。

第2表の結果より、窯出し時における窯口部コ ークスの炉蓋の接する端面の温度は、従来法の炉 のの、大略600~660℃程度の温度で充分なコーク ス化温度に達しているとは営えない状況である。 これに対し、本発明例のガススペースでの一部燃 焼法では、窯口部コークスの端面温度は押出機 化温度に達している。これらの差は火落時間に明 確に現われている。すなわち、従来法①②では火 落時間をそれぞれ22.5時間、22.3時間で、窯出し 時間を24時間一定としている操業のため、置き時 窯口部での昇温が早いため、乾留遅れが改善さ れ、火落時間は20.5時間への大幅な改善が確認さ*

*れた。従つて、置き時間も3.5時間となり必要以 上に長い。このことは、逆に言えば置き時間を短 かくしてコークス炉の生産性を向上させるか、炉 温を下げて乾留熱量低減に結びつけられることを 5 意味し、極めてその効果の大きいことがわかる。

また第2図に示す窯口部コークスの昇温状況例 (押出機側端面温度) より、従来法の炉蓋①では 乾留初期は炉蓋の耐火煉瓦に蓄熱があるため400 ℃程度の比較的高い温度を示しているが、常温の 蓋①②とも押出機側、消火車側で温度差はあるも 10 装入石炭に熱を奪われ端面温度はいつたん低下す る。その後、端フリユーからの熱伝導により温度 は回復するものの、窯出し時点でも高々600℃程 度である。また従来法の炉蓋②は加熱板での蓄熱 がないため窯口部コークスの端面温度は乾留初期 側、コークス側とも820~850℃の十分なコークス 15 から端フリユーの熱伝導に依存して昇温する。た だし、従来法の①と比較して耐火煉瓦を有してい ないため、乾留後半での昇温は早く、窯出し時で の温度はむしろ①より若干高くなる傾向にある。

一方、本発明法の場合はガススペースでの燃焼 間は1.5~1.7時間となつているが、本発明法では 20 により、乾留初期から窯口部コークスの端面温度 は急激に昇温し、前記の乾留遅れ改善による火落 時間の短縮に大きく貢献していることがわかる。

		厚さ(素素)	断熱材の 厚さ(m)	断熱材の種 類	加熱板の材 質	ガススペー スの幅(***)	ガススペー スでの撚焼
本発明法		335	105	セラミツク フアイバー	ステンレス 220		有
従来法	1	335	335	耐火煉瓦	_	_	-
	2	335	105	セラミツク フアイバー	ステンレス	220	無

2

		押出機側端面温度(℃)	稍火車側端 面温度(℃)	無煙発 生状況	火落ち時間(hr)	窯出し時間(hr)	置き時 間(hr)
本発明法		823	849	無	20.5	24.0	3.5
従来法	0	597	626	若干有	22,5	24.0	1.5
	2	631	663	若干有	22.3	24.0	1.7

実施例 2

実施例1と同じコークス炉の操業条件および各 種燗定条件で、本発明法におけるガススペースで の保持温度の影響を調査した結果を第3表に示 す。第3表より、ガススペースの保持温度を650 ~900℃の範囲で変更した結果、窯口部コークス の端面温度は保持温度に大体比例して昇温するも のの、650℃保持温度では火落時間の短縮に若干

8

の効果が認められる程度である。さらに、700℃ は上に保持温度を上げると火落時間の短縮は顕著となるが、900℃に保持温度を上げると炉蓋金物の歪みが大きくなり、ガスのシール性が損なわれ、乾留中に激しい黒煙が発生した。すなわち、本発 5明法のガススペースでの発生ガスの燃焼による保持温度は700~850℃が乾留温度の偏差低減による火落ち時間の短縮に効果があり、かつ炉蓋のガスシール性の面からも利用と判断された。 *

* なお、本実施例では窯口部コークスの乾留温度 改善によるコークス品質の改善確認は、コークス のサンプリングが困難なため行なわなかつたが、 従来法の①②の炉蓋使用時の窯口部コークスの端 面温度が600~660℃であるのに対し、本発明法で は740~870℃に達している点を考慮すれば、コー クス品質の改善効果も極めて大きいことを推察し 得る。

第	3	麦
-v-	-	-

ガススペースの保 持温度(℃)	押出機側端面温度(℃)	消火車側端 面温度(℃)	黒煙発生状 況	火落時 間(hr)	窯出時間(hr)	置き時 間(hr)
650	697	718	若干有	22.1	24.0	1.9
700	738	754	無	20.8	24.0	3.2
800	823	849	無	20.2	24.0	3.8
850	866	872	若干有	20.0	24.0	4.0
900	908	914	極めて多い	19,8	24.0	4.2

発明の効果

以上説明したごとく、この発明はコークス炉の押出機側、コークス側に設けたガススペースで乾留中に発生するガスの一部を燃焼させてガススペースの温度を700~850℃に保持することによっ 25 て、乾留の均一化並びに、生産性の向上、乾留熱量の低減およびコークス品質の改善がはかられ、コークス炉の乾留効率化とコークス品質の安定化に大なる効果を奏するものである。

図面の簡単な説明

第1図はこの発明の一実施例を示す概略横断平

面図、第2図はこの発明の実施例における窯口部 コークスの昇温状況を示す図、第3図および第4 図は従来の炉蓋構造例を示す概略横断平面図であ

11……炉蓋金物、12……断熱材、13…… 接入石炭層もしくはコークス層、14……加熱 板、15……支持枠、16……ガススペース、1 7……燃焼用空気または酸素の吹込みノズル。

第1図

第3図

第4図

