Oracle RAC Architecture

By Ahmed Baraka

Objectives

In this lecture, you should learn how to describe the following:

- Oracle RAC hardware requirements
- Shared storage configuration options
- Oracle Grid Infrastructure components
- Oracle Clusterware network configuration
- Oracle RAC connectivity cycle
- Oracle RAC database files locations

Oracle RAC History

- Oracle Parallel Server (OPS)
 - Oracle 6.2 on VAX/VMS.
- Oracle Real Application Cluster (RAC)
 - Oracle 9i

Oracle RAC: Software Stack

- Oracle Grid Infrastructure
 - Clusterware
 - Manage the whole cluster
 - Monitor the availability of the resources
 - Controls the resources startup order
 - Can be programmed for user applications
 - ASM
- Oracle Database

Oracle RAC Basic Architecture

Oracle RAC Architecture Overview

- Every server that is part of the RAC is called node.
- Clients connect to the database through public network.
- Nodes connect to each other via private network (called interconnect)
- Database datafiles are stored in shared storage.
- A RAC database has multiple instances. Every instance is running in a single node.
- For a database to be available to the clients, at least one instance should be up and running.

Oracle RAC: Hardware Requirements

- Two or more servers
 - Similar hardware architecture and same OS
- Two Network cards installed into every node:
 - Public network: connected to the clients
 - Private network: interconnect network among the nodes
 - Redundant private interconnect configuration is highly recommended
- Shared storage
 - High speed storage network required, such as 16GbE FC
 - Redundant connections to the storage with multipathing configuration

Oracle RAC: Memory Requirements

- If the same workload is kept on an instance, when migrating a single-instance database to RAC, more memory is need:
 - 10% more buffer cache
 - 15% more shared pool
 - Memory used by ASM and Clusterware processes
- Memory consumed by client sessions will be distributed among the instances

Shared Storage Options

- ASM (the recommended option)
 - Volume manager and file system for Oracle Databases
 - More efficient for Oracle Databases
 - The only supported option with Oracle Standard Edition
- Oracle ACFS
 - Extends ASM functionality to support all files.
 - Provides: dynamic FS resizing, direct access to ASM DG, I/O parallelism
- OCFS2 (Oracle Cluster File System 2)
 - Open source general-purpose file system developed by Oracle

Shared Storage Options (cont)

- Third-party Certified cluster file systems
 - Examples: Veritas Storage Foundation Cluster File System (SFCFS) for Oracle RAC
- NFS Server
 - Only NFS protocol version 3 (NFSv3) is currently supported

Oracle RAC: Engineered Systems

- Oracle Database Appliance (ODA)
 - Pros: tested for maximum performance, easy management
 - Cons: only two nodes
- Oracle Exadata Database Machine

About Oracle Grid Infrastructure

- Provide clustering features (clusterware) plus ASM
- It must be installed in its own, local home
- Usually owned by a dedicated OS user "grid"
- Cluster Ready Service (CRS) resources:
 - ASM instances SCAN listener
 - ASM Diskgroup database services
 - Virtual IP (VIP) services Oracle Net listener
 - Single Client Access Name (SCAN) Oracle Notification Service (ONS)

About Oracle Clusterware

- Requires shared storage to store:
 - Voting files for node membership
 - Oracle Clusterware Registry (OCR) for cluster configuration information
 - They must be saved in a high-redundant storage
- Further configuration data stored in two local files:
 - Oracle Local Registry (OLR): metadata for the local node
 - Grid Plug and Play (GPnP) profile: network profile and VD
- It used private interconnect network to carry the heartbeat communication

Clusterware: CRS Daemons and Services

Daemon/Ser vice	Process Name	Description	
CRS	CRSD	Start, stop, monitor, and failover operations on resources	
CSS Service	ocssd.bin	Monitors the node membership in the cluster and updates the node status information in VD	
CSS Agent	cssdagent	Monitors, starts, and stops the CSS.	
CSS Monitor	cssdmonitor	or It works with the CSS agent to provide data integrity in the clusterware. Base on the CPU startvation or OS status, it may reboot the node.	
CTSS	octssd.bin	Maintains time synchronization among all the nodes in the cluster	
EVM	evmd.bin	Publishes events to all the cluster nodes	
ONS	ons	Manages the Fast Application Notification (FAN) events	

Clusterware: CRS Daemons and Services (cont)

Daemon/Service	Process Name	Description
Oracle Agent	oraagent	Managing ohasd resources owned by oracle
Oracle Root Agent	orarootagen	Managing ohasd resources owned by root
Oracle ASM		Managing the shared storage and disk volumes

Note: this list is not all the Clusterware processes.

Oracle Clusterware Network Configuration

- Oracle Grid Naming Service (GNS)
 - A subdomain is delegated in the DNS server for the cluster
 - You only define the GNS server VIP in the DNS
 - DHCP is supported only in Linux systems
- Static Configuration:
 - No subdomain is delegated in the DNS server
 - All names and addresses are resolved by DNS:
 - A SCAN name to resolve to three static IP addresses for the cluster
 - A public and virtual IP names and addresses for each node
 - A virtual IP name and address for each node

Oracle Clusterware Network Configuration (cont)

- Single Client Access Name (SCAN)
 - A domain name registered to at least one and up to three IP addresses, either in DNS or GNS.
 - Must be used by the clients when connecting to the RAC database
- Node Virtual IP (VIP) is managed by the Clusterware:
 - Must be assigned to each node
 - Must be on the same subnet as the public IP address
 - Provides rapid failure notification and failover

Client

Oracle RAC Connectivity Cycle

Steps:

1

Client requests connection using a SCAN name and a service name. The DNS or GNS returns to the client on of the SCNA IP addresses

Oracle RAC Connectivity Cycle

Steps:

2

Using a SCAN IP, the client connects to a SCAN Listener providing it with a service name.

Summary

By the end of this lecture, you should have learnt how to describe the following:

- Oracle RAC hardware requirements
- Shared storage configuration options
- Oracle Grid Infrastructure components
- Oracle Clusterware network configuration
- Oracle RAC connectivity cycle
- Oracle RAC database files locations