305 Lecture 11.5 - Example Models

Brian Weatherson

 To illustrate what we've done so far with some worked examples.

Associated Reading

• Boxes and Diamonds, section 3.6 and 3.7.

I'm going to go through the table on page 49 of the textbook, and show how there can be models where each of them is false. And I'll add a couple more in besides.

I'm going to go through the table on page 49 of the textbook, and show how there can be models where each of them is false. And I'll add a couple more in besides. Here is what we'll cover

- 1. $\Box(A \lor B) \to (\Box A \lor \Box B)$
- 2. $(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$
- 3. $A \rightarrow \Box A$ $4. \Box A \rightarrow A$
- 5. $\square \diamondsuit A \rightarrow B$
- 6. $\square \diamondsuit A \rightarrow A$
- 7. $\Box \Box A \rightarrow \Box A$ 8. $\Box A \rightarrow \Box \Box A$

10. $\Box A \rightarrow \Diamond A$

- 9. $\Box \Diamond A \rightarrow \Diamond \Box A$

$$\Box(\mathsf{A}\vee\mathsf{B})\to(\Box\mathsf{A}\vee\Box\mathsf{B})$$

At all points, either A or B is true, so \Box (A \vee B) is true.

 $\Box(\mathsf{A}\vee\mathsf{B})\to(\Box\mathsf{A}\vee\Box\mathsf{B})$

At all points, either A or B is true, so \Box (A \vee B) is true.

But □A and □B are false everywhere.

 $\Box(\mathsf{A}\vee\mathsf{B})\to(\Box\mathsf{A}\vee\Box\mathsf{B})$

At all points, either A or B is true, so \Box (A \vee B) is true.

But □A and □B are false everywhere.

So the conditional is false everywhere.

 $\Box(\mathsf{A}\vee\mathsf{B})\to(\Box\mathsf{A}\vee\Box\mathsf{B})$

Note that this is overkill. We just need to show that the formula can be false somewhere in order to show that it is not a theorem.

$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$

$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$

At w_1 , we have $\Diamond A \land \Diamond B$ true.

But nowhere is $A \wedge B$ true, so $\diamondsuit(A \wedge B)$ is false at w_1 . So the conditional is false.

$(\Diamond A \land \Diamond B) \rightarrow \Diamond (A \land B)$

At w_1 , we have $\Diamond A \land \Diamond B$ true.

But nowhere is $A \wedge B$ true, so $\diamondsuit(A \wedge B)$ is false at w_1 . So the conditional is false.

Again, this is overkill.

 $A \rightarrow \Box A$

- At w₁ A is true.
- But

 A is false, since w₁ can access w₂, and A is false there.
- So $A \rightarrow \Box A$ is false.

 $\Box A \rightarrow A$

- At w₁ □A is true. The only accessible world is w₂, and A is true there.
- · But A is false there.
- So $\square A \rightarrow A$ is false.

 $\Box \Diamond A \rightarrow B$

- At w₁ □ ♦ A is true. The only accessible world is w₂, and ♦ A is true there. (Why?)
- But B is false at w₁.
- So $\square \diamondsuit A \rightarrow B$ is false.

$\Box \Diamond A \rightarrow A$

- At w₁ □ ◇ A is true. At every world, w₂ is accessible, and A is true there.
- But A is false at w₁.
- So $\square \diamondsuit A \rightarrow A$ is false at w_1 .

 $\Box \Box A \rightarrow \Box A$

- The only world w₂ can access is w₃, and A is true there, so □A is true at w₂.
- The only world w₁ can access is w₂, and □A is true there, so □ □ A is true at w₁.
- But □A is false at w₁.
- So \square \square A \rightarrow \square A is false at w_1 .

 $\Box A \rightarrow \Box \Box A$

- Since A is false at w₃, and w₂ can access w₃, □A is false at w₂.
- Since □A is false at w₂, and w₁ can access w₂, □ □ A is false at w₁.
- But □A is true at w₁.
- So $\square A \rightarrow \square \square A$ is false at w_1 .

- Focus on w₃.
- There is no accessible world where A is false, so □A is true there.
- But there is no accessible world where A is true, so ◇A is false there.
- So $\Box A \rightarrow \Diamond A$ is false there.

Whenever there are no accessible worlds, the following two weird things happen.

- All

 -sentences (i.e.,

 sentences that start with a

 that takes scope over the

 whole sentence) are true.
- All <-sentences (i.e.,
 sentences that start with a <>
 that takes scope over the
 whole sentence) are false.

We will start looking at frames - what you get when you remove the valuation from a model.