Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

MATERIALES No Conductores

- ► AISLANTES → Se utilizan para evitar corrientes de conducción.
 - Conductividad casi Nula
 - Corriente de FUGA de bajo valor.
- DIELECTRICOS→ Se utilizan para modificar el valor del campo eléctrico presente.
 - La energía para establecer un campo eléctrico es recuperable como energía eléctrica.

MATERIALES No Conductores

Características Principales

- Permitividad o Constante Dieléctrica
- Pérdidas
- Resistividad interna o Volumétrica
- Resistividad Superficial
- Factor de Potencia
- Factor de Disipación
- Rigidez Dieléctrica

Permitividad

- Permitividad o Constante Dieléctrica
- Es una constante física.
- Los materiales tienden a polarizarse cuando se aplica un campo eléctrico.
- La Permitividad del vacio

$$\varepsilon_0 = 8.8541878176x10^{-2} \left[\frac{C^2}{Nm^2} \right]$$

Permitividad Absoluta

$$\varepsilon = \varepsilon_r * \varepsilon_0$$

Constante Dieléctrica

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$

Material	ϵ_{r}
Aceite Mineral	19.5
Aire	1.00058986
Agua	80.5
Mica	5.4
Vidrio	40-60

Capacidad

La capacidad resultante de aplicar un dieléctrico entre las dos placas es :

$$\frac{C}{C_0} = K * \varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$

- Valor Independiente de la forma del capacitor.
- K→ Constante Dieléctrica
 - Varia con la Temperatura
 - · Varia con la Frecuencia.

Pérdidas

- Energía eléctrica por unidad de tiempo que se transforma en calor.
- Pérdidas por conductividad
 - Despreciables en CA.
 - Factores:
 - Electrones de Conducción
 - lones
 - Impurezas
 - Cargas acumuladas en el dieléctrico
- Pérdidas dieléctricas.
 - Despreciables en CC o baja frecuencia

Resistividad

- Existen corrientes de conducción, debido a
 - Resistividad Interna o Volumétrica
 - Puede definirse como el valor de la *resistencia* entre dos caras opuestas de un volumen. Se suele expresar en [M Ω /cm].
 - Se determina aplicando 500V 1000V y se mide con miliamperímetro - MEGOMETRO
 - · Posee coeficiente térmico negativo.

Resistividad

- Existen corrientes de conducción, debido a
 - Resistividad Superficial
 - Puede definirse como el valor de la resistencia entre dos puntos ubicados sobre un mismo lado de un elemento unitario de superficie.
 - La magnitud está muy influenciada por la humedad, el polvo depositado o adherido.

Resistividad

- Existen corrientes de conducción, debido a
 - Resistencia de Aislación
 - Al aplicar potencial, la corriente resultante será proporcional a la resistencia que resulte según el montaje de los electrodos, pudiendo ser Resistencia Interna o Resistencia Superficial

Pérdidas Dieléctricas

- Se puede plantear un circuito equivalente.
 - Se vinculan a los fenómenos de polarización.
 - Pueden deberse a las impurezas en el material.
 - Son de menor valor en CC o de baja frecuencia.
 - C → Permitancia
 - R1 → Pérdidas dieléctricas
 - R2→ Pédidas por conductividad
 - R1, R2 y C son función de la temperatura, la humedad, la frecuencia, tensión aplicada

Pérdidas Dieléctricas

- Circuito resumido paralelo
 - · C : Permitancia
 - Rp: combina las dos anteriores
 - φ : ángulo de fase
 - δ : ángulo de pérdida

Factor de Potencia

- Es el coseno de φ
- La relación entre la potencia activa y la potencia aparente.

$$\cos\varphi = sen\varphi = \frac{Pd}{E * I}$$

Factor de Disipación

 Es la tangente del ángulo de pérdida (tg δ), y es la inversa del factor de mérito Q.

$$D = tg\,\varphi = \frac{Xp}{Rp} = \frac{1}{Rp * \varpi C} = \frac{1}{Q}$$

En la practica

$$\delta \rightarrow$$
 muychico
 $tg\delta \cong sen\delta = \cos\varphi \Rightarrow D = FP$

 El Factor de Disipación es sensiblemente igual al Factor de Potencia

Pérdidas Dieléctricas

- Circuito resumido serie
 - C : Permitancia
 - Rs: combina las dos anteriores
 - φ : ángulo de fase
 - δ : ángulo de pérdida

Rigidez Dieléctrica

- Se define como **rigidez dieléctrica** de un material, al máximo gradiente de potencial que el mismo puede resistir sin que se produzca una *descarga disruptiva*.
- Se expresa generalmente en V/cm, o KV/cm.

Material	FR2 Pertinax	FR4 bajo Tg	FR4 medio Tg	FR4 alto Tg
Constante Dieléctrica	4.6	4.37 - 1Ghz	4.55 - 1Ghz	4.37 - 1Ghz
Factor de Disipación	0.04	0.0195 - 1Ghz	0.0160 - 1Ghz	0.0195 - 1Ghz
Rigidez Dieléctrica	990	990	1370	1350
Temperatura de transición vitrea Tg	105	135	155	180
Resistencia Superficial	60K	1×10 ⁷		
Resistencia Volumétrica	4K	1x10 ⁸		

Material	Tipos	Características
Caucho	Natural Sintético	Material Flexible Elevada Hidro repulsión Er = 2,5 FP=4,5% Resistividad = 1x10 ¹⁵
Papel	No impregnado Impregnado Kraft Tisú Cartón Presspan	Con impregnantes aumenta su rigidez dieléctrica
Fibras Textiles		
Resinas	Naturales . Goma Laca. Colofonia Artificiales → Derivan de la celulosa	Barnices o desoxidantes para soldadura.

Material	Tipos	Características	
Resinas Sintéticas	 Termofraguantes → Laminados Fenólicos * Amoniresinas 	Pertinax Poxipol	
Resinas Sintéticas	* Plásticas	Polietileno Polietileno Polivinilo Acrílicas (Lusite) Politetrafluoretileno (teflon) Teraftalato de Polietileno (Mylar)	
Aceites	Minerales Sintéticos Vegetales	Derivados del Petróleo Hidrocuarburos Clorados	
Barnices	Mezcla de Resinas y Aceites		

Material	Tipos	Características
Esmaltes	Para aislar mediante capas finas y homogéneas	
Siliconas	Material basado en silicio.	Antihigroscópicas Cauchos Resinas Compound (mezclas)
Mica	sílice, aluminato de potasio, hierro y magnesio	Resistencia Mecánica Antihigroscópicas Resistencia al Calor
Vidrio		
Cerámicas		

Bibliografía

- http://ayudaelectronica.com/perdidas-materiales-no-conductores/
- http://www.eleprint.com.ar/material.htm
- http://www.lab-circuits.com/es/propietats_laminats.php