Planning Logic

Date	31 January 2025
Team ID	LTVIP2025TMID60812
Project Name	Grain Palette - A Deep Learning Odyssey In Rice Type Classification Through Transfer Learning
Maximum Marks	4 Marks

Planning Logic

Planning logic refers to the structured, step-by-step approach used to guide the development, training, evaluation, and deployment of the rice classification system. It ensures that the project flows logically from problem identification to a working solution.

\square 1. Problem Understanding

- Define the objective: Automate rice grain variety classification using images.
- Identify stakeholders: Farmers, rice millers, traders, quality inspectors.
- Clarify constraints: Limited dataset, need for lightweight models, real-world deployment.

□□ 2. Data Strategy

• Data Collection:

- Acquire images for multiple rice varieties under controlled and variable conditions.
- o Ensure class balance and diversity in the dataset.

• Data Annotation:

Label each image with the correct rice type.

• Data Preprocessing Logic:

- o Resize all images to 224x224 pixels (model input standard).
- o Normalize pixel values (0–1 range or using ImageNet mean/std).
- o Augment dataset (rotation, zoom, brightness) to improve generalization.

☐ 3. Model Selection & Training Logic

• Model Choice:

 Select models based on accuracy, size, and speed (e.g., VGG16, ResNet50, EfficientNetB0).

• Transfer Learning Plan:

- o Load pretrained weights (ImageNet).
- o Freeze base layers (initially) \rightarrow fine-tune later layers \rightarrow unfreeze for full training.

• Classifier Head Design:

o Add GlobalAveragePooling → Dense → Dropout → Softmax layers for classification.

• Training Loop Logic:

- o Use early stopping, learning rate scheduler.
- o Evaluate on validation set after each epoch.
- o Save the best-performing model.

☐ 4. Evaluation Logic

- Split data: 70% training, 15% validation, 15% test.
- Use metrics: Accuracy, Precision, Recall, F1-Score, Confusion Matrix.
- Perform:
 - o Cross-validation to test robustness.
 - o Error analysis on misclassified images.

\square \square 5. Deployment Logic

- Export the trained model to ONNX or TensorFlow Lite if needed.
- Build a simple UI (desktop/web/mobile) for:
 - Image upload
 - Real-time prediction
 - Confidence score display
- Optimize inference time (Quantization, Pruning if needed).

☐ 6. Reporting & Visualization Logic

- Export predictions and metrics.
- Use **Power BI** or **Matplotlib/Seaborn** to visualize:
 - Model comparisons
 - o Class-wise accuracy
 - Data distribution and performance trends

▼7. Final Integration Logic

- Package the solution (model + UI + dataset link).
- Document dependencies, setup instructions, and test cases.
 Provide guidelines for retraining or updating the model with new rice varieties.