DIFFÉRENCE DE DEUX PUISSANCES

Déterminer tous les couples d'entiers naturels (m; n) tels que $3^m - 2^n = 1$.

Deux solutions évidentes sont (1; 1) et (2; 3). Il s'agit donc de rechercher des solutions pour m > 2 et n > 3.

Pour n > 3 on a $2^n \equiv 0$ [8], ce qui implique que $3^m - 1 \equiv 0$ [8]. On remarque que $3^2 \equiv 1$ [8] d'où l'on déduit que les puissances paires de 3 sont congrues à 1 modulo 8 et que les puissances impaires sont congrues à 3 modulo 8. Il en résulte que m doit être un nombre pair.

Soit m = 2k ($k \in \mathbb{N}$ et k > 1 si m > 2). On peut écrire $3^{2k} - 1 = 2^n \Rightarrow (3^k + 1)(3^k - 1) = 2^n$. Puisque $k \neq 0$, les deux facteurs $3^k + 1$ et $3^k - 1$ doivent être des puissances de 2, c'est à dire : $3^k + 1 = 2^p$ et $3^k - 1 = 2^q$ (avec p > q et p + q = n).

De

$$\begin{cases} 3^k + 1 = 2^p \\ 3^k - 1 = 2^q \end{cases}$$

on tire, en soustrayant membre à membre, $2 = 2^p - 2^q \Rightarrow 1 = 2^{p-1} - 2^{q-1}$ avec p-1 > q-1.

En remarquant que si k > 1, alors q > 1 ($k > 1 \Rightarrow 3^k > 3 \Rightarrow 3^k - 1 > 2 \Rightarrow 2^q > 2 \Rightarrow q > 1$), on en déduit que 2^{p-1} et 2^{q-1} sont des nombres pairs et donc que l'équation $1 = 2^{p-1} - 2^{q-1}$ est impossible pour k > 1, c'est à dire pour m > 2.

Les deux seules solutions pour m et n tels que $3^m - 2^n = 1$ sont donc (1; 1) et (2; 3).