Abitur 2020 Mathematik Infinitesimalrechnung II

Gegeben ist die Funktion $g: x \mapsto \ln (2-x^2)$ mit maximalem Definitionsbereich D_q .

Teilaufgabe Teil A 1a (3 BE)

Skizzieren Sie die Parabel mit der Gleichung $y = 2 - x^2$ in einem Koordinatensystem und geben Sie D_a an.

Teilaufgabe Teil A 1b (2 BE)

Ermitteln Sie den Term der Ableitungsfunktion q' von q.

Die Abbildung 1 zeigt einen Teil des Graphen G_h einer in $\mathbb{R} \setminus \{2\}$ definierten gebrochenrationalen Funktion h.

Die Funktion h hat bei x=2 eine Polstelle ohne Vorzeichenwechsel; zudem besitzt G_h die Gerade mit der Gleichung y = x - 7 als schräge Asymptote.

Teilaufgabe Teil A 2a (3 BE)

Zeichnen Sie in die Abbildung 1 die Asymptoten von G_h ein und skizzieren Sie im Bereich x < 2 einen möglichen Verlauf von G_h .

Teilaufgabe Teil A 2b (2 BE)

Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von G_h einen Näherungswert für $\int h(x) dx$.

Gegeben ist die in \mathbb{R} definierte Funktion $k: x \mapsto \frac{-x^2 + 2x}{2x^2 + 4}$. Ihr Graph wird mit G_k bezeichnet.

Teilaufgabe Teil A 3a (3 BE)

Geben Sie die Nullstellen von k an und begründen Sie anhand des Funktionsterms, dass G_k die Gerade mit der Gleichung y=-0,5 als waagrechte Asymptote besitzt.

Teilaufgabe Teil A 3b (2 BE)

Berechnen Sie die x-Koordinate des Schnittpunkts von G_k mit der waagrechten Asymptote.

Teilaufgabe Teil A 4 (5 BE)

Die Abbildung 2 zeigt den Graphen G_f einer in $[0,8;+\infty[$ definierten Funktion f.

Betrachtet wird zudem die in $[0,8;+\infty[$ definierte Integralfunktion $J:x\mapsto\int\limits_2^xf(t)$ dt.

Begründen Sie mithilfe von Abbildung 2, dass $J(1)\approx -1$ gilt, und geben Sie einen Näherungswert für den Funktionswert J(4,5) an. Skizzieren Sie den Graphen von J in der Abbildung 2.

Gegeben ist die Funktion $f:x\mapsto 1+7e^{-0,2x}$ mit Definitionsbereich \mathbb{R}^+_0 ; die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Abb 1 (Teil B)

Teilaufgabe Teil B 1a (3 BE)

Begründen Sie, dass die Gerade mit der Gleichung y=1 waagrechte Asymptote von G_f ist. Zeigen Sie rechnerisch, dass f streng monoton abnehmend ist.

Für jeden Wert s>0 legen die Punkte (0|1), (s|1), (s|f(s)) und (0|f(s)) ein Rechteck mit dem Flächeninhalt R(s) fest.

Teilaufgabe Teil B 1b (7 BE)

Zeichnen Sie dieses Rechteck für s=5in die Abbildung 1 (Teil B) ein.

Zeigen Sie, dass R(s) für einen bestimmten Wert von s maximal ist, und geben Sie diesen Wert von s an.

(zur Kontrolle: $R(s) = 7s \cdot e^{-0.2s}$)

Teilaufgabe Teil B 1c (7 BE)

Berechnen Sie den Inhalt des Flächenstücks, das von G_f , der y-Achse sowie den Geraden mit den Gleichungen y=1 und x=5 begrenzt wird.

Einen Teil dieses Flächenstücks nimmt das zu s=5 gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

Die in \mathbb{R}^+_0 definierte Funktion $A: x \mapsto \frac{8}{f(x)}$ beschreibt modellhaft die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Südufer eines Sees. Dabei ist x die seit Beobachtungsbeginn vergangene Zeit in Tagen und A(x) der Flächeninhalt in Quadratmetern.

Teilaufgabe Teil B 2a (5 BE)

Bestimmen Sie A(0) sowie $\lim_{x\to +\infty} A(x)$ und geben Sie jeweils die Bedeutung des Ergebnisses im Sachzusammenhang an. Begründen Sie mithilfe des Monotonieverhaltens der Funktion f, dass der Flächeninhalt des Algenteppichs im Laufe der Zeit ständig zunimmt.

Teilaufgabe Teil B 2b (4 BE)

Bestimmen Sie denjenigen Wert x_0 , für den $A\left(x_0\right)=4$ gilt, und interpretieren Sie Ihr Ergebnis im Sachzusammenhang.

(zur Kontrolle: $x_0 \approx 9, 7$)

Teilaufgabe Teil B 2c (4 BE)

Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

Teilaufgabe Teil B 2d (2 BE)

Nur zu dem Zeitpunkt, der im Modell durch x_0 (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von A im Punkt $(x_0|A\ (x_0))$ an, die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 2e (3 BE)

Skizzieren Sie den Graphen der Funktion A unter Verwendung der bisherigen Ergebnisse in der Abbildung 2 (Teil B).

Teilaufgabe Teil B 2f (5 BE)

Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term A(x) die im Exponenten zur Basis e enthaltene Zahl -0,2 durch eine kleinere Zahl ersetzt.

Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

- hinsichtlich der durch A(0) und $\lim_{x\to +\infty} A(x)$ beschriebenen Eigenschaften (vgl. Aufgabe 2a).
- hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

Skizzieren Sie – ausgehend von diesem Vergleich – in der Abbildung 2 (Teil B) den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

Lösung

Teilaufgabe Teil A 1a (3 BE)

Gegeben ist die Funktion $g: x \mapsto \ln (2-x^2)$ mit maximalem Definitionsbereich D_q .

Skizzieren Sie die Parabel mit der Gleichung $y=2-x^2$ in einem Koordinatensystem und geben Sie D_q an.

Lösung zu Teilaufgabe Teil A 1a

Skizze

Definitionsbereich bestimmen

$$g(x) = \ln \left(2 - x^2\right)$$

Erläuterung: Definitionsbereich der Logarithmusfunktion

 $\ln (2-x^2)$ ist eine Logarithmusfunktion des Typs $\ln(h(x))$.

Die l
n-Funktion ist nur für positive Werte in ihrem Argument definiert. Somit gilt für die Argument
funktion: $h(x)>0\,.$

In diesem Fall: $2 - x^2 > 0$

$$2 - x^2 > 0$$

$$\Rightarrow D_g = \left] -\sqrt{2}; \sqrt{2} \right[$$

Teilaufgabe Teil A 1b (2 BE)

Ermitteln Sie den Term der Ableitungsfunktion g' von g.

Lösung zu Teilaufgabe Teil A 1b

Erste Ableitung einer Funktion ermittlen

$$g(x) = \ln \left(2 - x^2\right)$$

Erläuterung: Kettenregel der Differenzialrechnung

Kettenregel:

$$f(x) = u(v(x))$$
 \Rightarrow $f'(x) = u'(v(x)) \cdot v'(x)$

Kettenregel für Logarithmusfunktionen:

$$g(x) = \ln(h(x))$$
 \Rightarrow $g'(x) = \frac{1}{h(x)} \cdot h'(x)$

Hier ist $h(x) = 2 - x^2$.

Dann ist h'(x) = -2x.

$$g'(x) = \frac{1}{2 - x^2} \cdot (-2x) = \frac{-2x}{2 - x^2}$$

Teilaufgabe Teil A 2a (3 BE)

Die Abbildung 1 zeigt einen Teil des Graphen G_h einer in $\mathbb{R}\setminus\{2\}$ definierten gebrochenrationalen Funktion h.

Die Funktion h hat bei x=2 eine Polstelle ohne Vorzeichenwechsel; zudem besitzt G_h die Gerade mit der Gleichung y=x-7 als schräge Asymptote.

Zeichnen Sie in die Abbildung 1 die Asymptoten von G_h ein und skizzieren Sie im Bereich x < 2 einen möglichen Verlauf von G_h .

Lösung zu Teilaufgabe Teil A 2a

Skizze

Teilaufgabe Teil A 2b (2 BE)

Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von G_h einen Näherungswert für $\int_{10}^{20} h(x) dx$.

Lösung zu Teilaufgabe Teil A 2b

$Fl\"{a}chenberechnung$

Schräge Asymptote: y = x - 7

$$\int_{10}^{20} h(x) \, dx \approx \int_{10}^{20} (x - 7) \, dx$$

Flächeninhalt des Trapezes:

$$\int_{10}^{20} h(x) \, dx \approx \int_{10}^{20} (x - 7) \, dx = \frac{(13 + 3) \cdot 10}{2} = 80$$

Alternativ als Flächeninhalt von Rechteck + Dreieck:

$$\int_{10}^{20} h(x) \, dx \approx \int_{10}^{20} (x - 7) \, dx = 10 \cdot 3 + \frac{1}{2} \cdot 10 \cdot 10 = 80$$

Bestimmtes Integral

Alternative Lösung:

$$\int_{10}^{20} h(x) \, dx \approx \int_{10}^{20} (x - 7) \, dx = \left[\frac{1}{2} x^2 - 7x \right]_{10}^{20} = \left(\frac{400}{2} - 140 \right) - \left(\frac{100}{2} - 70 \right) = 80$$

Teilaufgabe Teil A 3a (3 BE)

Gegeben ist die in $\mathbb R$ definierte Funktion $k: x \mapsto \frac{-x^2+2x}{2x^2+4}$. Ihr Graph wird mit G_k bezeichnet.

Geben Sie die Nullstellen von k an und begründen Sie anhand des Funktionsterms, dass G_k die Gerade mit der Gleichung y=-0,5 als waagrechte Asymptote besitzt.

Lösung zu Teilaufgabe Teil A 3a

Nullstellen einer Funktion

$$k(x) = \frac{-x^2 + 2x}{2x^2 + 4}$$

$$k(x) = 0$$

$$\frac{-x^2 + 2x}{2x^2 + 4} = 0$$

$$-x^2 + 2x = 0$$

$$x \cdot (-x+2) = 0$$

1.
$$x_1 = 0$$

$$2. -x + 2 = 0 \implies x_2 = 2$$

$Grenzwert\ bestimmen$

$$\lim_{x \to \infty} \underbrace{\frac{-x^2 + 2x}{2x^2 + 4}}_{x \to \infty} = \lim_{x \to \infty} \frac{x^2 \cdot \left(-1 + \frac{2}{x}\right)}{x^2 \cdot \left(2 + \frac{4}{x^2}\right)} = \lim_{x \to \infty} \frac{-1 + \underbrace{\frac{2}{x}}_{x}}{2 + \underbrace{\frac{4}{x^2}}_{y \to 0}} = -\frac{1}{2}$$

Teilaufgabe Teil A 3b (2 BE)

Berechnen Sie die x-Koordinate des Schnittpunkts von ${\cal G}_k$ mit der waagrechten Asymptote.

Lösung zu Teilaufgabe Teil A 3b

Schnittpunkt zweier Funktionen

$$k(x) = \frac{-x^2 + 2x}{2x^2 + 4}$$
$$y = -\frac{1}{2}$$

$$\begin{split} k(x) &= -\frac{1}{2} \\ &\frac{-x^2 + 2x}{2x^2 + 4} = -\frac{1}{2} \\ &-x^2 + 2x = -x^2 - 2 \end{split} \quad |\cdot| (2x^2 + 4x^2 + 4x$$

$$2x = -2$$

$$\Rightarrow x = -1$$

Teilaufgabe Teil A 4 (5 BE)

Die Abbildung 2 zeigt den Graphen G_f einer in $[0, 8; +\infty]$ definierten Funktion f.

Betrachtet wird zudem die in $[0,8;+\infty[$ definierte Integralfunktion $J:x\mapsto\int\limits_2^x f(t)$ dt.

Begründen Sie mithilfe von Abbildung 2, dass $J(1)\approx -1$ gilt, und geben Sie einen Näherungswert für den Funktionswert J(4,5) an. Skizzieren Sie den Graphen von J in der Abbildung 2.

Lösung zu Teilaufgabe Teil A 4

Abschätzen eines Integrals durch Flächen

Monotonieverhalten der Integralfunktion

Das Flächenstück zwischen G_f und der x-Achse im Bereich $1 \le x \le 2$ befindet sich oberhalb der x-Achse sowie links von der unteren Integrationsgrenze und hat einen Inhalt von etwa 1.

$$\Rightarrow$$
 $J(1) \approx -1$

$$J(4,5) \approx 2, 5 \cdot 0, 5 + 0, 5 = 1, 5$$

Teilaufgabe Teil B 1a (3 BE)

Gegeben ist die Funktion $f: x\mapsto 1+7e^{-0.2x}$ mit Definitionsbereich \mathbb{R}_0^+ ; die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Abb 1 (Teil B)

- $\Rightarrow \quad f'(x) < 0 \quad \text{ für alle } x \in \mathbb{R}_0^+$
- \Rightarrow G_f ist streng monoton fallend

Teilaufgabe Teil B 1b (7 BE)

Für jeden Wert s>0 legen die Punkte (0|1), (s|1), (s|f(s)) und (0|f(s)) ein Rechteck mit dem Flächeninhalt R(s) fest.

Zeichnen Sie dieses Rechteck für s=5 in die Abbildung 1 (Teil B) ein. Zeigen Sie, dass R(s) für einen bestimmten Wert von s maximal ist, und geben Sie diesen Wert von s an.

(zur Kontrolle:
$$R(s) = 7s \cdot e^{-0.2s}$$
)

Lösung zu Teilaufgabe Teil B 1b

Skizze

$$f(5) = 1 + 7e^{-1} \approx 3,58$$

Punkte: (0|1), (5|1), (5|3,58), (0|3,58)

Begründen Sie, dass die Gerade mit der Gleichung y=1 waagrechte Asymptote von G_f ist. Zeigen Sie rechnerisch, dass f streng monoton abnehmend ist.

Lösung zu Teilaufgabe Teil B 1a

Grenzwert bestimmen

$$\lim_{x \to \infty} 1 + 7 \underbrace{e^{-0,2x}}_{\to 0} = 1$$

Monotonieverhalten einer Funktion

Erste Ableitung bilden:

$$f'(x) = 0 + 7e^{-0.2x} \cdot (-0.2) = -1.4e^{-0.2x}$$

Vorzeichen der ersten Ableitung untersuchen:

$$-1,4\underbrace{e^{-0,2x}}_{>0} < 0$$

Extremwert aufgabe

$$R(s) = s \cdot (f(s) - 1) = s \cdot (1 + 7e^{-0.2s} - 1) = 7s \cdot e^{-0.2s}$$

Erste Ableitung bilden:

$$R'(s) = 7 \cdot e^{-0.2s} + 7s \cdot e^{-0.2s} \cdot (-0.2) = 7e^{-0.2s} \cdot (1 - 0.2s)$$

Erläuterung: Notwendige Bedingung

Folgende notwendige Bedingung muss für einen Extrempunkt an der Stelle x^E erfüllt sein:

$$f'\left(x^{E}\right)=0,$$
 daher immer der Ansatz: $f'(x)=0$

Erste Ableitung gleich Null setzen: R'(s) = 0

$$0 = 7 \underbrace{e^{-0.2s}}_{>0} \cdot (1 - 0.2s)$$

$$0=1-0,2s \quad \Rightarrow \quad s=5$$

Vorzeichen der ersten Ableitung untersuchen:

$$7\underbrace{e^{-0.2s}}_{>0} \cdot (1-0.2s) > 0$$

$$1 - 0, 2s > 0$$

$$-0, 2s > -1$$

$$7 \underbrace{e^{-0.2s}}_{>0} \cdot (1-0.2s) < 0$$

$$1 - 0, 2s < 0$$

$$-0.2s < -1$$

Vorzeichenwechsel von "+" nach "-" an der Stelle s=5

$$\Rightarrow$$
 Max $(5|R(5))$

Teilaufgabe Teil B 1c (7 BE)

Berechnen Sie den Inhalt des Flächenstücks, das von G_f , der y-Achse sowie den Geraden mit den Gleichungen y=1 und x=5 begrenzt wird.

Einen Teil dieses Flächenstücks nimmt das zu s=5 gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

Lösung zu Teilaufgabe Teil B 1c

Flächenberechnung

$$A = \int_{0}^{5} \left(f(x) - 1 \right) \, \mathrm{dx}$$

$$A = \int_{0}^{5} 7e^{-0.2x} \, \mathrm{dx}$$

$$A = 7 \cdot \int_0^5 e^{-0.2x} \, \mathrm{dx}$$

$$A = 7 \cdot \left[\frac{1}{-0, 2} \cdot e^{-0.2x} \right]_0^5$$

$$A = 7 \cdot \left(-5e^{-0.2.5} - \left(-5\underbrace{e^0}_{1} \right) \right) = -35e^{-1} + 35 = 35\left(1 - \frac{1}{e} \right)$$

prozentualer Anteil:
$$\frac{R(5)}{A} = \frac{7 \cdot 5 \cdot e^{-0.2 \cdot 5}}{35 \cdot \left(1 - \frac{1}{e}\right)} = \frac{e^{-1}}{1 - \frac{1}{e}} \approx 58,2\%$$

Teilaufgabe Teil B 2a (5 BE)

Die in \mathbb{R}^+_0 definierte Funktion $A: x \mapsto \frac{8}{f(x)}$ beschreibt modellhaft die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Südufer eines Sees. Dabei ist x die seit Beobachtungsbeginn vergangene Zeit in Tagen und A(x) der Flächeninhalt in Quadratmetern.

Bestimmen Sie A(0) sowie $\lim_{x\to +\infty} A(x)$ und geben Sie jeweils die Bedeutung des Ergebnisses im Sachzusammenhang an. Begründen Sie mithilfe des Monotonieverhaltens der Funktion f, dass der Flächeninhalt des Algenteppichs im Laufe der Zeit ständig zunimmt.

Lösung zu Teilaufgabe Teil B 2a

Funktionswert berechnen

$$f(x) = 1 + 7e^{-0.2x}$$

$$A(x) = \frac{8}{f(x)}$$

$$A(0) = \frac{8}{f(0)} = \frac{8}{1+7e^0} = \frac{8}{8} = 1$$

Zu Beobachtungsbeginn beträgt der Flächeninhalt des Algenteppichs 1 m².

Grenzwert bestimmen

$$\lim_{x\to\infty} A(x) = \lim_{x\to\infty} \frac{8}{f(x)} = 8 \qquad \text{(s. Teilaufgabe Teil B 1a)}$$

Der Flächeninhalt nähert sich im Laufe der Zeit dem Wert 8 m².

Monotonieverhalten einer Funktion

A nimmt streng monoton zu, da f streng monoton abnimmt und $A(x) \sim \frac{1}{f(x)}$

Teilaufgabe Teil B 2b (4 BE)

Bestimmen Sie denjenigen Wert x_0 , für den $A\left(x_0\right)=4$ gilt, und interpretieren Sie Ihr Ergebnis im Sachzusammenhang.

(zur Kontrolle: $x_0 \approx 9,7$)

Lösung zu Teilaufgabe Teil B 2b

Schnittpunkt zweier Funktionen

$$A(x_0) = 4$$

$$\frac{8}{1+7e^{-0.2x_0}} = 4 \qquad |\cdot \frac{1}{4} (1+7e^{-0.2x_0})$$

$$2 = 1 + 7e^{-0.2x_0}$$

$$7e^{-0.2x_0} = 1$$

$$e^{-0.2x_0} = \frac{1}{7}$$
 | ln

 $-0, 2x_0 = \ln \frac{1}{7} \qquad | \cdot (-5)$ $\Rightarrow \qquad x_0 = -5 \ln \frac{1}{7} \approx 9, 7$

Etwa 9.7 Tage nach Beobachtungsbeginn beträgt der Flächeninhalt des Algenteppichs 4 m².

Teilaufgabe Teil B 2c (4 BE)

Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

Lösung zu Teilaufgabe Teil B 2c

Erste Ableitung einer Funktion ermittlen

$$f(x) = 1 + 7e^{-0.2x}$$

$$f'(x) = -1, 4e^{-0.2x}$$
 (s. Teilaufgabe Teil B 1a)

$$A(x) = \frac{8}{f(x)}$$

$$A'(x) = \frac{0 \cdot f(x) - 8 \cdot f'(x)}{(f(x))^2} = \frac{-8 \cdot f'(x)}{(f(x))^2}$$

Erläuterung: Momentane Änderungsrate

Die momentane Änderungsrate einer Funktion ist nichts anderes als die Steigung der Funktion.

$$A'(0) = \frac{-8 \cdot f'(0)}{(f(0))^2} = \frac{11,2}{64} = 0,175 \frac{\text{m}^2}{\text{Tag}}$$

Teilaufgabe Teil B 2d (2 BE)

Nur zu dem Zeitpunkt, der im Modell durch x_0 (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von A im Punkt $(x_0|A\ (x_0))$ an,

die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

Lösung zu Teilaufgabe Teil B 2d

Monotonieverhalten einer Funktion

Der Graph von A hat in $(x_0|A\ (x_0))$ einen Wendepunkt, da die erste Ableitung A' von A an der Stelle x_0 ein Maximum und damit die zweite Ableitung A'' von A an der Stelle x_0 eine Nullstelle mit Vorzeichenwechsel hat.

Teilaufgabe Teil B 2e (3 BE)

Skizzieren Sie den Graphen der Funktion A unter Verwendung der bisherigen Ergebnisse in der Abbildung 2 (Teil B).

Lösung zu Teilaufgabe Teil B 2e

Skizze

Bisherige Ergebnisse:

$$A(0) = 1$$

$$\underset{x \to \infty}{\lim} A(x) = 8$$

 G_A ist streng monoton steigend.

 \approx WP (9,7|4) Wendepunkt

Teilaufgabe Teil B 2f (5 BE)

Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term A(x) die im Exponenten zur Basis e enthaltene Zahl -0.2 durch eine kleinere Zahl ersetzt.

Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

- hinsichtlich der durch A(0) und $\lim_{x\to +\infty} A(x)$ beschriebenen Eigenschaften (vgl. Aufgabe 2a).
- hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

Skizzieren Sie – ausgehend von diesem Vergleich – in der Abbildung 2 (Teil B) den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

Lösung zu Teilaufgabe Teil B 2f

Skizze

Eigenschaften einer Funktion

Vergleich der beiden Algenteppiche:

- gleicher Flächeninhalt zu Beobachtungsbeginn; im Laufe der Zeit Annäherung des jeweiligen Flächeninhalts an den gleichen Grenzwert
- größere momentane Änderungsrate des Flächeninhalts zu Beobachtungsbeginn für den Algenteppich am Nordufer