LualATeX と jlreq による文書テンプレート 森 勇稀¹⁾

更新日:2022年6月30日

目次

第1章	使い方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	1
1.1	節 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		1
1.2	文字の装飾・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	1
1.3	単位系 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	1
1.4	数式 • • • • • • • • • • • • • • • • • • •	• • •	2
1.5	表	• • •	2
1.6	プログラム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	2
1.7	定理環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	3
1.8	定義環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	4
1.9	コラム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	4
1.10	図環境 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	4
1.11	参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • •	4
1.12	索引 • • • • • • • • • • • • • • • • • • •		5

第1章 使い方

1.1 節

Sectionは上のようになる。

1.1.1 小節

Subsectionは上のようになる。

(a) 小小節

Subsubsection は上のように、番号がつかないようにしている。

1.2 文字の装飾

文字に対しては**太字 (bold style)** や、斜体 (italic type) などがある。ただし、日本語では斜体が適用されないので、基本的に斜体は使用しないほうが良いと思われる。また、太字に関してはゴシック体の太字も可能である。実際に使用する際には emph{}を使用してこのようにしておくと、English は斜体に、日本語はゴシック体になる。

コードなどを表現したいときはタイプライター形式を利用して void PrintHelloWorld() などのようにする。文字を大きくしたりするのはあまり使わないほうがいいだろう。

脚注はこの $^{1)}$ ようになる。

1.3 単位系

単位は siunitx パッケージを用いて、 $3.14 \log m/s^2$ のように書く。

¹⁾ ここに脚注が現れる

第1章 使い方 1.4 数式

1.4 数式

数式は、以下のようにする。

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 1 - 2\sin^2 x$$

$$= 2\cos^2 x - 1$$
(1.1)

式 (1.1) は、倍角の公式である。

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1.2}$$

一つの式を複数行にする場合には split 環境を、複数の式を揃えるときには aligned 環境を使うと いいらしい。基本的にすべての数式には番号を振り、ラベルもつけておきたい。

1.5 表

表は、例えば以下のようになる。

表 1.1 表のテスト

Name	Case 1-1	Case 1-2	
Timestep	$1.0 \times 10^{-3} \mathrm{s}$		
Spring constant	$1.0 \times 10^3 \mathrm{N/m}$		
Particle diameter	1.0×1	$10^{-4} \mathrm{m}$	
Particle number	10,000	40,000	
CFD grid size	$1 \times 10^{-3} \mathrm{m}$	$2\times 10^{-3}\mathrm{m}$	

1.6 プログラム

以下にプログラムの例を示す。

プログラム 1.1: プログラムの例, Hello world の出力

- #include <iostream>
- using namespace std;
- 3 int main(){

第1章 使い方 1.7 定理環境

```
cout << "Hello world." << endl; //Hello worldと表示
return 0;
}
```

プログラム 1.1 は、Hello world である。

```
出力 1.1: コンソール出力の例
> Hello, world.
```

出力 1.1 は、Hello world の出力例である。プログラムと出力は、それぞれ番号のないものを以下のように使用できる。

```
#include <iostream>
using namespace std;
int main(){

cout << "Hello world." << endl;
return 0;
}</pre>
```

> Hello, world.

1.7 定理環境

以下に定理環境を示す。

命題:番号のない定理

1+1 は 2 である。

【証明】 1+1 の証明は難しい。ペアノの公理を前提とするのであれば、自然数の単位元 1 に対する SUC(1) として 2 を定義すれば、1+1 が 2 であることは自明となる。

第1章 使い方 1.8 定義環境

命題 1.1: 番号のある定理

1+1 は2である。

命題 1.1 は、謎の定理である。

1.8 定義環境

以下に定義環境を示す。

定義:番号のない定義

1+1 は2である。

定義 1.1: 番号のある定義

1+1 は2である。

定義1.1は、謎の定義である。

1.9 コラム

以下はコラムである。

コラム: スパコン

これはコラムである。

1.10 図環境

以下に TikZ 環境を示す。

図 1.1は、座標変換に対するベクトルの普遍性を説明している。

1.11 参考文献

参考文献は、文献 [1] などのように記載する。

第1章 使い方 1.12 索引

図 1.1 座標変換に対するベクトルの普遍性

1.12 索引

索引に用語を表示するには、index 環境を用いて、離散要素法とする。

参考文献

[1] Lord Rayleigh. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200):94–98, aug 1917.

索引

	- 6 -	
離散要素法		5