

COE-C2004 - Materials Science and Engineering

Exercise 3

Prof. Junhe Lian Wenqi Liu, Jiaojiao Wu (Teaching assistant)

Outline

- Software introduction
 - Materials hardening law
 - ABAQUS

Materials hardening law - Flow curve derivation

Materials hardening law

- In numerical simulation, a smooth and extended flow curve is necessary.
- waved exp. data
- in Abaqus, the strain value shall be always in increasing order
- measured true strain limitation ~<1
- local true strain could >2~3 during deformation
- Flow curve derivation based on mathematic functions, i.e. hardening laws.

Materials hardening law

Individual or combined format, e.g. combined Swift-Voce or Hollomon-Voce

Model	equation g
Hollomon [25]	$\sigma(\varepsilon) = C_1 \cdot \varepsilon^{C_2}$
Ludwik [26]	$\sigma(\varepsilon) = C_1 + C_2 . \varepsilon^{C_3}$
Swift [27]	$\sigma(\varepsilon) = C_1.(C_2 + \varepsilon)^{C_3}$
Voce [28]	$\sigma(\varepsilon) = C_1 + (C_2 - C_1) \cdot \exp(-C_3 \cdot \varepsilon)$
Hockett/Sherby [29]	$\sigma(\varepsilon) = C_2 - (C_2 - C_1) \cdot \exp(-C_3 \cdot \varepsilon^{C_4})$
Gosh [30]	$\sigma(\varepsilon) = C_1 + C_2 \cdot (C_3 + \varepsilon)^{C_4}$
Swift-Voce [31]	$\sigma(\varepsilon) = C_1.\sigma_{Swift}(\varepsilon) + (1 - C_2).\sigma_{Voce}(\varepsilon)$
Swift-Hockett/Sherby [32]	$\sigma(\varepsilon) = C_1 \cdot (C_2 + \varepsilon)^{C_3} + C_4 \cdot \exp(-C_5 \cdot \varepsilon^{C_6})$
El-Magd [33]	$\sigma(\varepsilon) = C_1 + C_2 \cdot \varepsilon + C_3 \cdot [1 - \exp(-C_4 \cdot \varepsilon)]$
Voce generalised [34]	$\sigma(\varepsilon) = C_1 + (C_2 + C_3.\varepsilon).[1 - \exp(-C_4.\varepsilon)]$
Bergström [35], [36]	$\sigma(\varepsilon) = C_1 + C_2 \cdot \left(C_3 \cdot \left(C_4 + \varepsilon \right) + \left\{ 1 - \exp\left[-C_5 \cdot \left(C_4 + \varepsilon \right) \right] \right\}^{C_6} \right)$

1000

800

HX220BD

Voce generalised

Flow curve derivation - example by Matlab

File Fit View Tools Desktop Window Help Curve Fitting Tool Flow Curve derivation - example by Matlab

Flow curve derivation - example by Matlab

Flow curve derivation - example by Matlab

Summary

```
%% Import the exp. data
% Assign to stress and starin variables
                                                                           Tip: The flow curve fitting and
strain=flowcurve(:,1);
                                                                           extension can also be achieved
stress=flowcurve(:,2);
                                                                           by Origin, Excel, Python, etc.
%% Fit the exp. flow curve by 'Curve Fitting' or your own codes.
%% To improve the fitting quality, you can delete some data at the beginning range.
strain(1:20,:)=[];
                                                                                         Flow curve derivation
                                                                                 900
stress(1:20,:)=[];
                                                                                 800
                                                                                 700
%% After fitting
                                                                                 600
% Define the strain values to 2 based on the proper intervals.
                                                                                 500
x=[0:0.0001:0.001,0.002:0.001:0.1,0.11:0.01:2];
                                                                                 400
% Calculate the stress according to the fitted harndening law.
                                                                                 300
% e.g. the combined Hollomon-Voce law.

    Exp.

                                                                                 200
v=0.478*(700.2.*x.^0.5414)+(1-0.478)*(695.1+(425.7-695.1)*exp(-13.41.*x));
                                                                                                             Fit.
                                                                                 100
% Obtain your fitted flow curve for Abagus simulation.
FitFlowCurve=[y',x'];
                                                                                               1.0
                                                                                   0.0
                                                                                         0.5
                                                                                                     1.5
                                                                                                           2.0
                                                                                                                  2.5
                                                                                                True strain, -
```