| lmię i nazwisko                 | Nr indeksu                                            | Kierunek    | Wydział<br>(skrót) | Data       | Wersja<br>sprawozdania |
|---------------------------------|-------------------------------------------------------|-------------|--------------------|------------|------------------------|
| Dawid Królak<br>Michał Matuszak | 145383<br>145403                                      | Informatyka | WIIT               | 05.12.2020 | 1.0                    |
| Nr ćwiczenia                    | Tytuł ćwiczenia                                       |             |                    |            |                        |
| Ćw.3                            | Kinematyka i lokalizacja dwukołowego robota mobilnego |             |                    |            |                        |

## 0. Opis ćwiczenia.

Celem ćwiczenia jest wyprowadzenie modelu kinematyki dwukołowego robota mobilnego orazpoznanie budowy i zasady działania systemu pomiarowego odometrii inkrementalnej służącegodo określania bieżącej pozycji i orientacji platformy robota w globalnym układzie współrzędnych.

**1.1** Wyznaczenie macierzowego równania stanu robota dwukołowego ( wektor stanu  $\mathbf{q} = [\varphi \times y]^\mathsf{T}$ , sterowanie  $\mathbf{u} = [\omega \ v]^\mathsf{T}$ .

$$q = \begin{bmatrix} 1 & 0 \\ 0 & \cos(\varphi) \\ 0 & \sin(\varphi) \end{bmatrix} \cdot \begin{bmatrix} \omega \\ v \end{bmatrix}$$

Zrzut ekranu 1: Kod źródłowy funkcji wyznaczającej macierz stanu ze sterowania  $u = \lceil w \ v \rceil$ .

1.2 Wyznaczenie macierzowego równania stanu robota dwukołowego ( wektor stanu  $\mathbf{q} = [\varphi \times y]^\mathsf{T}$ , sterowanie  $\mathbf{u} = [\omega_P \ \omega_L]^\mathsf{T}$ .

$$q = \begin{bmatrix} \frac{R}{D} & \frac{-R}{D} \\ \frac{R \cdot \cos(\varphi)}{2} & \frac{R \cdot \cos(\varphi)}{D} \\ \frac{R \cdot \sin(\varphi)}{2} & \frac{R \cdot \cos(\varphi)}{D} \end{bmatrix} \cdot \begin{bmatrix} \omega_P \\ \omega_L \end{bmatrix}$$

Zrzut ekranu2: Kod źródłowy funkcji wyznaczającej macierz stanu ze sterowania  $u = [wp \ wl].$ 

## 2. Obliczanie pozycji i orientacji robota.

Wartości pozycji i orientacji obliczono wykorzystując dyskretyzację metodą Eulera wstecz. Startowe wartości orientacji i pozycji przyjęto jako 0, okres próbkowania  $T_P = 0.01$ , parametr D = 0.073m.

```
T = [0]_# Cras
Fi = [0]_# Orientacje robota
X = [0]_# Pozycje X robota
Y = [0]_# Pozycje Y robota
W = [0]_# Predkość katowa robota
U = [0]_# Predkość liniowa robota
U1 = [1]_# Lista macierzy stanu u = [w v]
U2 = []_# Lista macierzy stanu u = [wp wl]

Tp = 0.01_# Okres próbkowania
R = 0.021_# Promień kół robota
D = 0.073_# Szerokość robota

with open("profile_predkości_V2.txt") as file:
    lines = file.readlines()
    i = 0
for line in lines:
        t, wl, wp = line.split("\t")

        T.append(t)
        W.append((float(wp)-float(wl))*R/D)_# Wyprowadzenie zależności w(t) oraz v(t)
        V.append((float(wp)+float(wl))*R/2)_# na podstawie danych

        U1.append([[W[-1]]_[V[-1]]]) # Utworzenie listy kolejnych
        U2.append(([float(wp)]_[float(wl)]])_# macierzy sterowad

# Ustalenie funkcji fi(t), x(t), y(t)
for i in range(1, len(lines)):
        Fi.append(X[i - 1] + Tp * (W[i]))
        X.append(X[i - 1] + Tp * (V[i]*math.cos(Fi[i])))
        Y.append(Y[i - 1] + Tp * (V[i]*math.sin(Fi[i])))
```

Zrzut ekranu 3: Kod obliczający wartości pozycji i orientacji oraz prędkości kątowych i liniowych robota w zależności od czasu

## 3. Wykres przemieszczenia robota oraz pozycja i orientacja końcowa.



Zrzut ekranu 4: Rysunek trajektorii przemieszczania się robota

Orientacja i pozycja końcowa robota:

 $\varphi$  = 1.5118217299787955

 $\dot{x} = 0.176832378573989$ 

y = 0.5133492914017785