

X3-Class HiPerFET™ **Power MOSFET**

IXFK400N15X3 IXFX400N15X3

150V 400A $3m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	150	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	150	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	400	A	
I _{L(RMS)}	External Lead Current Limit	160	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	900	А	
I _A	T _C = 25°C	200	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	3.5	J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	20	V/ns	
P _D	T _C = 25°C	1250	W	
T _J		-55 +150	°C	
T_JM		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in	
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb	
Weight	TO-264 PLUS247	10 6	g g	

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	150	V	
V _{DGR}	$T_{_{J}}$ = 25°C to 150°C, $R_{_{GS}}$ = 1M Ω	150	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	400	А	
L(RMS)	External Lead Current Limit	160	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	900	Α	
I _A	$T_{c} = 25^{\circ}C$	200	Α	
E _{as}	$T_{c} = 25^{\circ}C$	3.5	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	20	V/ns	
P _D	T _C = 25°C	1250	W	
T _J		-55 + 150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in	
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb	
Wainbt	TO 064	10		

G = Gate	D = Drain
S = Source	Tab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCha $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 1.5	μA mA
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 0.5 \bullet I_{D2S}$, Note 1			3	mΩ

Symbol Test Conditions Char		Chara	acteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Inless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	35	145	S	
R_{Gi}	Gate Input Resistance		2.15	Ω	
C _{iss}			23.7	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3730	PF	
C _{rss}			140	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related \ \ V _{GS} = 0V		2200	pF	
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		5330	pF	
t _{d(on)}	Resistive Switching Times		36	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		30	ns	
t _{d(off)}	$R_{G} = 10$ (External)		210	ns	
t,	$n_{\rm G} = 152$ (External)		19	ns	
Q _{g(on)}			365	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		103	nC	
Q _{gd}			87	nC	
R _{thJC}				0.10 °C/W	
R _{thCS}			0.15	°C/W	

Source-Drain Diode

Symbol	mbol Test Conditions Characteristic Values				
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			400	Α
I _{SM}	Repetitive, pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			1600	A
V _{SD}	$I_{\rm F} = 100 {\rm A}, V_{\rm GS} = 0 {\rm V}, {\rm Note} 1$			1.4	V
$\left. egin{array}{l} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 150A$, $-di/dt = 100A/\mu s$ $V_R = 100V$		132 580 8.8		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

SYM	INCHES		MILLIM	ETERS
21M	MIN	MAX	MIN	MAX
A	.185	.209	4.70	5.30
A1	.102	.118	2.60	3.00
b	.035	.049	0.90	1.25
b1	.091	.106	2.30	2.70
b2	.110	.126	2.80	3.20
С	.020	.033	0.50	0.85
D	1.012	1.035	25.70	26.30
E	.776	.799	19.70	20.30
е	.215	BSC	5.46	BSC
L	.768	.807	19.50	20.50
L1	.091	.106	2.30	2.70
ØΡ	.122	.138	3.10	3.50
Q	.228	.244	5.80	6.20
Q1	.346	.362	8.80	9.20
øR	.150	.165	3.80	4.20
øR1	.071	.087	1.80	2.20
S	.228	.244	5.80	6.20

Terminals: 1 - Gate 2,4 - Drain 3 - Source

SYM	INCH	łES	MILLIMETERS		
SIM	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2,29	2,54	
A2	.075	.085	1.91	2.16	
Ь	.045	.055	1.14	1.40	
b2	.075	.087	1.91	2.20	
b4	.115	.126	2.92	3,20	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
D1	.650	.690	16.51	17.53	
D2	.035	.050	0.89	1.27	
E	.620	.635	15.75	16.13	
E1	.520	.560	13.08	14.22	
е	.215	BSC	5.45 BSC		
L	.780	.810	19.81	20.57	
L1	.150	.170	3.81	4,32	
Q	.220	.244	5.59	6.20	
R	.170	.190	4.32	4.83	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 I_D - Amperes

© 2017 IXYS CORPORATION, All Rights Reserved

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

