Exercise 1.

(a)(i) We prove that δ is well defined by proving its contrapositive statement i.e.

if
$$\exists a \in \Sigma \ [xa] \neq [ya]$$
, then $[x] \neq [y]$

Now suppose $[xa] \neq [ya]$ for $a \in \Sigma$, then by the definition of the equivalence classes of R_L , $(xa, ya) \notin R_L$.

$$(xa, ya) \notin R_L \Leftrightarrow \exists w \in \Sigma^* \ (xaw \in L \land yaw \notin L \ (or \ vice \ versa))$$

Let z = aw, we now have $xz \in L \land yz \notin L$ (or vice versa).

$$(xz \in L \land yz \notin L) \Leftrightarrow (x,y) \notin R_L \Leftrightarrow [x] \neq [y]$$

Hence, we have proven the contrapositive statement.

(ii) We prove a more general statement i.e.

$$\forall x \in \Sigma^* \ \hat{\delta}([\epsilon], x) = [x]$$

This implies the statement we want to prove since, if $x \in L$, then by the definition of F, $\hat{\delta}([\epsilon], x) \in F$; and conversely, if $\hat{\delta}([\epsilon], x) \in F \Leftrightarrow [x] \in F$, then by the definition of F, $x \in L$. Now we prove the lemma by an induction on |x|.

- Basis case $x = \epsilon$. $\delta([\epsilon], \epsilon) = [\epsilon]$ by the definition of the transition function.
- Step case Assume that $\hat{\delta}([\epsilon], x) = [x]$ for |x| < k. We prove for w = xa where $x \in \Sigma^{k-1}, a \in \Sigma$.

$$\hat{\delta}([\epsilon], xa) = \delta(\hat{\delta}([\epsilon], x), a)$$
 (definition of $\hat{\delta}$)
$$= \delta([x], a)$$
 (IH)
$$= [xa]$$
 (definition of δ)

Hence, we have proven the lemma.

(b).