Exercise 6.115(d) 711

Exercise 6.115

Answer (a,b,c,d,e).

The solution to this problem follows trivially from the following properties of the Fourier transform:

$$x$$
 is real $\Leftrightarrow X(\omega) = X^*(-\omega) \Leftrightarrow |X(\omega)|$ is even and $\arg X(\omega)$ is odd;
 x is even $\Leftrightarrow X$ is even;

x is odd $\Leftrightarrow X$ is odd;

x is finite energy $\Leftrightarrow X$ is finite energy;

x cannot be both finite duration and have finite bandwidth; and

$$x$$
 is periodic $\Leftrightarrow X(\omega) = \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$.

Exercise 6.115

L Answer (d).

We are given the function

$$X(\omega) = \delta(\omega+3) + \delta(\omega+1) + \delta(\omega-1) + \delta(\omega-3).$$

We can make the following observations:

- Since X is conjugate symmetric, x is real.
- Since *X* is even, *x* is even.
- Since X is of the form $\sum_{k=-\infty}^{\infty} a_k \delta(\omega k\omega_0)$ (where $\omega_0 = 1$), x is periodic.
- Since X is bandlimited, x cannot be finite duration.
- Since X is periodic (and not the zero function), x is not finite energy.

Therefore, we conclude that x is real, even, and periodic, but not finite duration and not finite energy.