Computergrafik

Mitschrift von

Markus Vieth

David Klopp

13. Dezember 2016

Vorwort

Dieses Skript basiert auf unserer Mitschrift der Vorlesung Computergrafik und VR im WS 2016/17 an der JGU Mainz (Dozent: Prof. Dr. E. Schömer).

Es handelt sich nicht um eine offizielle Veröffentlichung der Universität.

Wir übernehmen keine Gewähr für die Fehlerfreiheit und Vollständigkeit des Skripts.

Fehler können unter Github gemeldet werden. Die aktuelle Version dieses Skriptes ist ebenfalls auf Github zu finden.

Inhaltsverzeichnis

V	orwor	t	
1	VBC		1
	1.1	Baryzentrische Koordinaten	2
	1.2	Texturen	3
		Texturen 1.2.1 Mipmap	3
2	3 D-	Objekte	6
	2.1		6
	2.2	Orthogonalprojektion	7
3	Bele	euchtung 1	11
		3.0.1 Smoothing	11
	3.1	Phong Lichtmodell	12
		3.1.1 Phong	
4	Obe	erflächen 1	L 4
	4.1	Texturen	14
	4.2		15

1 VBO

Abbildung 1.1: Beispiel Raster?

1.1 Baryzentrische Koordinaten

Abbildung 1.2: Baryzentrisches Koordinatensystem

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

$$x = \alpha \cdot a + \beta \cdot b + \gamma \cdot c \wedge \alpha + \beta + \gamma = 1$$

$$\Rightarrow f(x) = \alpha \cdot f(a) + \beta \cdot f(b) + \gamma \cdot f(c)$$

1.2 Texturen

1.2.1 Mipmap

$$S = \sum_{i=0}^{\infty} (\frac{1}{4})^i = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

2 3D-Objekte

2.1 Orthogonalprojektion

$$x \in [l,r]$$

$$y \in [b,t]$$

$$z \in [-f,-n]$$

 $Sichtquader \rightarrow Einheitsquader$

$$x' \in [-1, 1]$$

 $y' \in [-1, 1]$
 $z' \in [-1, 1]$

$$x' = a\alpha \cdot x + \beta$$
$$l \mapsto -1, \ r \mapsto 1$$

(1)
$$-1 = \alpha \cdot l + \beta$$
(2)
$$1 = \alpha \cdot r + \beta$$
(2)
$$2 = \alpha \cdot r - \alpha \cdot l \Rightarrow \alpha = \frac{2}{r - l}$$

$$1 = \frac{2 \cdot r}{r - l} + \beta$$

$$\beta = 1 - \frac{2r}{r - l} = \frac{r - l - 2r}{r - e} = -\frac{r + l}{r - l}$$

2.2 Perspektivische Projektion

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & \frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & \frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{Q} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$z' = -\frac{2}{f-n}z - \frac{f+n}{f-n}$$

$$z = n$$
 $z* = \frac{2n - (f+n)}{f-n} = \frac{n-f}{f-n} = -1$

$$-n \mapsto -1, -f \mapsto 1$$

Qmatrix4x4.ortho(1,n,b,t,n,f);

2.2 Perspektivische Projektion

$$\frac{y'}{-n} = \frac{y}{z}$$

$$y' = -\frac{n \cdot y}{z}$$

$3D ext{-}Objekte$

Sichtpyramide \rightarrow Einheitswürfel

$$y' = -\frac{n \cdot y}{z}$$

$$[b, t] \mapsto [-1, 1]$$

$$y'' = \alpha \cdot y' + \beta$$

$$y'' = \frac{2}{t \cdot b} \cdot y' - \frac{t + b}{t - b}$$

$$y'' = \frac{-2n}{t - b} \cdot \frac{y}{z} - \frac{t + b}{t - b}$$

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \xrightarrow{\text{Dehomogen-}} \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix}$$
 Kartesiche koord.

$$\begin{pmatrix} x'' \\ y'' \\ z'' \\ w'' \end{pmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$y'' = \frac{2n}{t-b} \cdot y + \frac{t+b}{t-b} \cdot z$$

$$w'' = -z$$

$$\frac{y''}{w''} = \frac{2n}{t-b} \frac{y}{(-z)} + \frac{t+b}{t-b} \frac{z}{(-z)}$$

$$z''' = \frac{z''}{w''} = \frac{\alpha \cdot z + \beta}{-z} = -\alpha - \frac{\beta}{z}$$

$$-n \mapsto -1, -f \mapsto 15$$

$$-\alpha - \frac{\beta}{-n} = -1$$

$$-\alpha - \frac{\beta}{-f} = 1$$

$$-\alpha + \frac{\beta}{n} = -1(1)$$

$$-\alpha + \frac{\beta}{f} = 1(2)$$

$$\frac{\beta}{f} - \frac{\beta}{n} = 2(2) - (1)$$

$$\beta \left(\frac{1}{f} - \frac{1}{n}\right) = 2$$

$$\beta \left(\frac{n - f}{fn}\right)$$

$$\beta = \frac{-2nf}{f - n}$$

$$\alpha = \frac{\beta}{f} - 1 = -\frac{2n - (f - n)}{f - n} = \frac{f + n}{f - n}$$

$$p' = R_{\vartheta,x} \cdot R_{\varphi,y} \cdot p$$

$$0 \quad 0 \quad 0$$
Drehung um Drehung um

Drehung um Drehung um die Welt-x-Achse die Welt-y-Achse

$2\ 3D ext{-}Objekte$

3D-Brille

3 Beleuchtung

3.0.1 Smoothing

3 Beleuchtung

Lambert

$$I_D = I_L \cdot \left(n^T \cdot \ell \right)$$

3.1 Phong Lichtmodell

$$|n| = |\ell| = |r| = |v| = 1$$
$$r = 2n(n^T \ell) - \ell$$

S = Shininess

$$I_S = I_L(\cos \alpha)^S = I_L(r^T v)^S, \quad I_D = I_L(n^T \ell)$$

3.1.1 Phong

$$I_{\mathrm{Color}} = I_{\mathrm{Ambient,Color}} + I_{\mathrm{Diffuse,Color}} + I_{\mathrm{Specular,\ Color}}$$

$$\mathrm{Color} \in \{\mathrm{Red,Green,Blue}\}$$

```
1 void main() {
2
       vec3 normal = normalize(vNormal);
3
       vec3 lightDir = normalize(lighPos - vPos);
       vec3 reflectDie = reflect(lightDir, normal);
 4
5
       vec3 viewDir = normalize(-vPos);
 7
       float lambertian = max(dot(loghtDir, normal), 0.0.);
8
       float specular = 0.0;
10
       if ( lambertian > 0.0) {
           float specAngle = max(dot(reflectDir, viewDir), 0.0);
11
12
           specular = pow(specAngle, uShininess);
13
14
       gl_FragColor = vec4(uAmbient + lambertian * uDiffuse + specular * uSpecular, 1.0);
15 }
```


Abbildung 3.2: Zu ignorierende Lichtquelle

4 Oberflächen

4.1 Texturen

$$(\varphi, \vartheta) \mapsto \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \vartheta \cdot \sin \varphi \\ \sin \vartheta \\ \cos \vartheta \cdot \cos \varphi \end{pmatrix}$$
$$0 \le \varphi \le 2\pi$$
$$-\frac{\pi}{2} \le \vartheta \le \frac{\pi}{2}$$

Abbildung 4.1: Field of view

perspective(fov, aspectratio, n, f);

4.2 Cube-Mapping

4.2 Cube-Mapping

