Chapter 5

Computing Components

Chapter Goals

- Read an ad for a computer and understand the jargon
- List the components and their function in a von Neumann machine
- Describe the fetch-decode-execute cycle of the von Neumann machine
- Describe how computer memory is organized and accessed

Chapter Goals

- Name and describe different auxiliary storage devices
- Define three alternative parallel computer configurations
- Explain the concept of embedded systems and give examples from your own home

Computer Components

Consider the following ad:

Insatavialion 640 Laptop

Exceptional Performance and Portability

- Intel[®] Core[™] 2 Duo (2.66GHz/ 1066MHz FSB/6MB cache)
- 15.6 High Definition (1080p) LED Backlit LCD Display (1366 x 768)
- 512MB ATI Mobility Radeon Graphics
- . Built-in 2.0MP Web Camera
- 4GB Shared Dual Channel DDR2 at 800MHz
- 500GB SATA Hard Drive at 5400RPM
- . 8X Slot Load DL DVD+/- RW Drive
- 802.11 a/g/n and Bluetooth 3.0

- . 85 WHr Lithium Ion Battery
- (2) USB 2.0, HDMI, 15-pin VGA, Ethernet 10/100/1000, IEEE 1394 Firewire, Express Card, Audio line-in, line-out, mic-in
- 14.8 W X 1.2 H X 10.1 D, 5.6 lbs
- Microsoft[®] Windows 8[®] Professional
- Microsoft® Office Home and Student 2007
- 36-Month subscription to McAfee Security Center Anti-virus

4

Computer Components

What does all this jargon mean?

Intel® Core™ 2 Duo (2.66GHz/1066Mhz

FSB/6MB cache)

- 4GB Shared Dual Channel DDR2 at 800 MHz
- 500 GB SATA Hard Drive at 5400RPM
- 15.6" High Definition (1080p) LED Backlit

LCD Display (1366 x 768)

- 8X Slot Load DL DVD+/- RW Drive
- 14.8"W X 1.2"H X10.1" D, 5.6 lbs.

Be patient!
If you don't know now, you should know shortly

Computer Components (continued)

- 512 MB ATI Mobility Radeon Graphics
- 85 WHr Lithium Ion Battery
- (2) USB 2.0, HDMI, 15-Pin VGA, Ethernet 10/100/1000
 IEEE 1394 Firewire, Express Card, Audio line-in, line-out, mic-in
- Microsoft® Windows 7® Professional
- Microsoft® Office Home and Student 2007
- 36-Month subscription to McAfee Security Center Antivirus

Sizes in Perspective

Admiral Grace Murray Hopper's Illustration

- A coil of wire nearly 1,000 feet long
 - Distance traveled by an electron along the wire in the space of a microsecond
- A short piece of wire
 - In the space of a nanosecond
- A bag containing grains of pepper
 - In the space of a picosecond

Sizes in Perspective

Power of 10	Power of 2	Value of Power of 2	Prefix	Abbreviation	Derivation
10-12			pico	р	Italian for little
10-9			nano	n	Greek for dwarf
10-6			micro	μ	Greek for small
10-3			milli	m	Latin for thousandth
10 ³	210	1024	kilo	K	Greek for thousand
106	220	1,048,576	mega	M	Greek for large
10 ⁹	230	1,073,741,824	giga	G	Greek for giant
1012	240	not enough room	tera	Т	Greek for monster
1015	250	not enough room	peta	Р	Greek prefix for five

Powers of 10 for time, powers of 2 for storage

What is a Hertz?

Sizes in Perspective

Intel Processor

speed 2.66 GHz

SDRAM

size 4GB

speed 800 MHz

500GB SATA at 5400 RPM

Transfer rate 300MB per second

Flat screen dot pitch .28mm

To which do these apply?

Bigger is better Faster is better Smaller is better

Stored-Program Concept

FIGURE 5.1 The von Neumann architecture.

Instructions and data both stored in memory unit

Memory

Memory

A collection of cells, each with a unique physical address

Most computers are byteaddressable

Cell at address 11111110 contains 10101010

"Little endian" bit numbering:

7	6	5	4	3	2	1	0	-	Bit position
1	0	1	0	1	0	1	0	-	Contents

Address	Contents
00000000	11100011
00000001	10101001
	:
11111100	00000000
11111101	11111111
11111110	10101010
11111111	00110011

Memory

Memory

What does 10101010 mean?

No way to answer that

Could be an instruction, a natural number, a signed integer, a character, part of an image, ...

Address	Contents
00000000	11100011
00000001	10101001
:	:
11111100	00000000
11111101	11111111
11111110	10101010
11111111	00110011

Arithmetic/Logic Unit

Performs basic arithmetic operations such as addition and subtraction

Performs logical operations such as AND, OR, and NOT

Most modern ALUs have a small amount of special storage units called registers that can be accessed faster than main memory

Input/Output Units

Input Unit

A device through which data and programs from the outside world enter the computer system; Can you name three?

Output unit

A device through which results stored in the computer memory are made available outside the computer system

Can you name two?

Control Unit

Control unit

The organizing force in the computer Instruction register (IR)

Contains the instruction that is being executed Program counter (PC)

Contains the address of the next instruction to be executed

Central Processing Unit (CPU)

ALU and the control unit called the Central Processing Unit, or CPU

Latency Numbers Every Programmer Should Know

Flow of Information

Bus

In general: A communication system that transfers data between components inside a computer or between computers; the medium (wires, optical fiber, etc.) and the protocols (rules for sharing the medium nicely)

"The" bus: Connects the CPU, main memory, I/O devices, and possibly other components (e.g. hard disk drive)

FIGURE 5.2 Data flow through a von Neumann machine

What is an N-bit Processor?

It could mean any of these:

- N-bit general registers
- N-bit ALU
- N-bit addresses
- N-bit data bus

The Fetch-Execute Cycle

Fetch the next instruction

Decode the instruction

Get data if needed

Execute the instruction

Why is it called a cycle?

The Fetch-Execute Cycle

FIGURE 5.3 The fetch-execute cycle

RAM and **ROM**

Random Access Memory (RAM)

Memory in which each location can be accessed and changed

Read Only Memory (ROM)

Memory in which each location can be accessed but *not* changed

RAM is volatile, ROM is not

What does volatile mean?

Secondary Storage Devices

Why is it necessary to have secondary storage devices?

Can you name some of these devices?

Magnetic Tape

The first truly mass auxiliary storage device was the magnetic tape drive

Tape drives have a major problem; can you describe it?

Magnetic Disks

FIGURE 5.5 The organization of a magnetic disk

Magnetic Disks

Seek time

Time for read/write head to be over right track

Latency

Time for sector to be in position

Access time

Can you define it?

Transfer rate

Rate at which data moves from the disk to memory

Optical Disks

CD

A compact disk that uses a laser to read information stored optically on a plastic-coated disk; data is evenly distributed around spiral track

CD-ROM read-only memory

CD-DA digital audio

CD-WORM write once, read many

RW or RAM both read from and written to

DVD

Digital Versatile Disk, used for storing audio and video

Blu-ray

Higher capacity DVD allowing higher resolution video, etc.

© Eky Studio/ShutterStock, Inc. Copyright © 2016 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

Flash Drives

Flash Memory

Nonvolatile

Can be erased and rewritten

Supports USB mass storage standard

FIGURE 5.6 Flash drive

@ Brian A. Jackson/Shutterstock, Inc.

Touch screen

A computer monitor that can respond to the user, touching the screen with a stylus or finger

There are four types

- Resistive
- Capacitive
- Infrared
- Surface acoustic wave (SAW)

Resistive touch screen

A screen made up of two layers of electrically conductive material

- One layer has vertical lines, the other has horizontal lines
- When the top layer is pressed, it comes in contact with the second layer which allows electrical current to flow
- The specific vertical and horizontal lines that make contact dictate the location on the screen that was touched

Capacitive touch screen

A screen made up of a laminate applied over a glass screen

- Laminate conducts electricity in all directions; a very small current is applied equally on the four corners
- When the screen is touched, current flows to the finger or stylus
- The location of the touch on the screen is determined by comparing how strong the flow of electricity is from each corner

Infrared touch screen

A screen with crisscrossing horizontal and vertical beams of infrared light

- Sensors on opposite sides of the screen detect the beams
- When the user breaks the beams by touching the screen, the location of the break can be determined

Surface acoustic wave (SAW)

A screen with crisscrossing high frequency sound waves across the horizontal and vertical axes

 When a finger touches the surface, corresponding sensors detect the interruption and determine location of the touch

Embedded Systems

Embedded systems

Computers that are dedicated to perform a narrow range of functions as part of a larger system

Empty your pockets or backpacks.

How many embedded systems do you have?

Parallel Computing

Four general forms:

- Bit-level parallelism
 - Bits can be processed simultaneously
 - Ex: Increasing word size
- Instruction-level parallelism
 - Instructions can be executed simultaneously
 - Ex: Pipelining (overlapping instructions)
 - Ex: Superscalar (multiple execution units)
- Data-level parallelism
 - Data subjected to same operation sequence simultaneously
 - Ex: Calculation of all student's GPAs simultaneously
- Task-level parallelism
 - Entire tasks can be completed simultaneously
 - Ex: Google servers simultaneous independent searches
 - Ex: "Pipelined" processors

Shared Memory Parallel Processor

Communicate through shared memory

FIGURE 5.10 A shared-memory parallel processor

Ethical Issues

Is Privacy a Thing of the Past?

What does Austin Bay say about the printing press? The camera? The telegraph? The telephone?

Do you agree that personal privacy is "all but dead and gone"?

What, if anything, needs to be done about it?

What does Bay say about the future of institutional and state secrecy?

Who am I?

Courtesy of ISU Photo Service

A lawsuit determined my legacy. What was it all about?

Do you know?

Maurice Wilkes made what far-reaching Discovery within six weeks of beginning to program?

What was stolen at Target during the 2013 Christmas shopping season?

Bush received 4,258 votes and Kerry received 260 votes, out of 638 votes cast. ???

Why have spies infiltrated the fantasy world of virtual games?

What did President Obama refuse to give up?