Used Cars Selling Price Report

To begin with, we searched the internet for a data set to work on and we found the following data set from a website called kaggle (a brief part from the data set):

vear	make	model	trim	body	transmissi vin	state	condition	odometer	color	interior	seller	mmr	sellingpricsaleda	te			
2015					automatic 5xyktca69		5		white	black	kia motor				12:20:00 GM	T 0000 (DST)	
							5										
2015		Sorento			automatic 5xyktca69		_		white	beige	kia motor						
		3 Series	328i SULEV		automatic wba3c1c5		4.5		gray	black	financial s						
2015	Volvo	S60	T5	Sedan	automatic yv1612tb4	ca	4.1		white	black	volvo na r	27500	27750 Thu Ja	n 29 2015 (04:30:00 GM	T-0800 (PST)	
2014	BMW	6 Series G	650i	Sedan	automatic wba6b2c5	ca	4.3	2641	gray	black	financial s	66000	67000 Thu De	c 18 2014	12:30:00 GN	T-0800 (PST)	
2015	Nissan	Altima	2.5 S	Sedan	automatic 1n4al3ap1	ca	1	5554	gray	black	enterprise	15350	10900 Tue De	c 30 2014	12:00:00 GN	T-0800 (PST)	
2014	BMW	M5	Base	Sedan	automatic wbsfv9c51	ca	3.4	14943	black	black	the hertz	69000	65000 Wed D	ec 17 2014	12:30:00 G	/T-0800 (PST)	
2014	Chevrolet	Cruze	1LT	Sedan	automatic 1g1pc5sb2	ca	2	28617	black	black	enterprise	11900	9800 Tue De	c 16 2014	13:00:00 GN	T-0800 (PST)	
2014	Audi	A4	2.0T Prem	Sedan	automatic wauffafl3	ca	4.2	9557	white	black	audi missi	32100	32250 Thu De	c 18 2014	12:00:00 GN	T-0800 (PST)	
2014	Chevrolet	Camaro	LT	Convertib	automatic 2g1fb3d37	ca	3	4809	red	black	d/m auto	26300	17500 Tue Ja	n 20 2015 0	4:00:00 GM	T-0800 (PST)	
2014	Audi	A6	3.0T Prest	Sedan	automatic wauhgafo	ca	4.8	14414	black	black	desert aut	47300	49750 Tue De	c 16 2014	12:30:00 GN	T-0800 (PST)	
2015	Kia	Optima	LX	Sedan	automatic 5xxgm4a7	ca	4.8	2034	red	tan	kia motor:	15150	17700 Tue De	c 16 2014	12:00:00 GN	T-0800 (PST)	
2015	Ford	Fusion	SE	Sedan	automatic 3fa6p0hdx	ca	2	5559	white	beige	enterprise	15350	12000 Tue Ja	n 13 2015 1	2:00:00 GM	T-0800 (PST)	
2015	Kia	Sorento	LX	SUV	automatic 5xyktca66	ca	5	14634	silver	black	kia motor	20600	21500 Tue De	c 16 2014	12:30:00 GN	T-0800 (PST)	
2014	Chevrolet	Cruze	2LT	Sedan	automatic 1g1pe5sb	ca		15686	blue	black	avis rac/sa	13900	10600 Tue De	c 16 2014	12:00:00 GN	T-0800 (PST)	
2015	Nissan	Altima	2.5 S	Sedan	automatic 1n4al3ap5	ca	2	11398	black	black	enterprise	14750	14100 Tue De	c 23 2014	12:00:00 GN	T-0800 (PST)	
2015	Hyundai	Sonata	SE	Sedan	5npe24af4	ca		8311	red	â€"	avis tra	15200	4200 Tue De	c 16 2014	13:00:00 GN	T-0800 (PST)	
2014	Audi	Q5	2.0T Prem	SUV	automatic wa1lfafpx	ca	4.9	7983	white	black	audi north	37100	40000 Thu De	c 18 2014	12:30:00 GN	T-0800 (PST)	
2014	Chevrolet	Camaro	LS	Coupe	automatic 2g1fa1e39	ca	1.7	13441	black	black	wells farg	17750	17000 Tue De	c 30 2014	15:00:00 GN	T-0800 (PST)	
2014	BMW	6 Series	650i	Convertib	automatic wbayp9c5	ca	3.4	8819	black	black	the hertz	68000	67200 Wed D	ec 17 2014	12:30:00 G	/T-0800 (PST)	

Through working on this current data set, there was a lot going on and had to be done.

Firstly, the data set had multiple misplaced data, empty records, pointless data, etc.

The data set was about 55k rows and 16 columns.

At first, the data looked ugly and hideous. After cleaning the data, we were able to put the data set to work as soon as possible since it was usable once again.

Data Processing using Python:

To begin with, these are the libraries we needed to import so that we can start working on our data set.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from datasist.structdata import detect_outliers
from sklearn.datasets import fetch_openml
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import BernoulliNB
from sklearn.impute import SimpleImputer

We started by

importing the libraries Numpy and Pandas in order to manipulate the records inside the data set, Seaborn and Matplotlib.pyplot for visualization and graphing, and finally, Sklearn for machine learning.

10 color

mmr

13

15

11 interior

saledate

memory usage: 72.5+ MB

16 Unnamed: 16 26 non-null

12 seller

We then loaded the data set and set the low_memory to false since we are dealing with a massive data set.

Since we're dealing with a massive data set, we needed a general idea about the datatypes used in the dataset, therefore, calling the function .info() was a good example of displaying what we needed.

After getting a glimpse of what we're dealing with, we found out that the "condition" and "mmr" columns are in the wrong datatypes.

So, we used the pandas command "To_Numeric" to change their datatype from object to float64 and int64.

```
car.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 558837 entries, 0 to 558836
Data columns (total 17 columns):
    Column
                  Non-Null Count
                                   Dtype
                                   int64
    year
                  558837 non-null
    make
                  548536 non-null object
    model
                  548438 non-null object
    trim
                  548186 non-null
                                   object
    body
                  545642 non-null
                                   object
    transmission 493484 non-null
                                   object
    vin
                  558833 non-null
                                   object
    state 558837 non-null condition 547043 non-null
7
                                   object
                                   object
                558743 non-null float64
    odometer
```

558088 non-null

558088 non-null

558837 non-null

558837 non-null

558837 non-null object

sellingprice 558837 non-null int64

dtypes: float64(1), int64(2), object(14)

object

object

object

object

object

Now that the dataset had the correct datatypes, we needed to check how many null values are there in each column. So, we used the ".isnull().sum()" and this was the outcome of the command:

We were overwhelmed by the number of empty cells. Work had to be done.

car.isnull().sum()					
year	0				
make	10301				
model	10399				
trim	10651				
body	13195				
transmission	65353				
vin	4				
state	0				
condition	11794				
odometer	94				
color	749				
interior	749				
seller	0				
mmr	0				
sellingprice	0				
saledate	0				
Unnamed: 16	558811				
dtype: int64					

Data Cleaning

Initially, we had to get rid of "unnamed: 16" since it only held null cells only, "saledate" since we had no use for the date of sold cars, and "vin" since it held unique ids for every car in the data set, so we had no use for it.

Then we proceeded to use ".head()" command to check how the data set looked like so far and the following was the result:

	year	make	model	trim	body	transmission	state	condition	odometer	color	interior	seller	mmr	sellingprice
0	2015	Kia	Sorento	LX	SUV	automatic	ca	5	16639.0	white	black	kia motors america, inc	20500	21500
1	2015	Kia	Sorento	LX	SUV	automatic	ca	5	9393.0	white	beige	kia motors america, inc	20800	21500
2	2014	BMW	3 Series	328i SULEV	Sedan	automatic	ca	4.5	1331.0	gray	black	financial services remarketing (lease)	31900	30000
3	2015	Volvo	\$60	T5	Sedan	automatic	ca	4.1	14282.0	white	black	volvo na rep/world omni	27500	27750
4	2014	BMW	6 Series Gran Coupe	650i	Sedan	automatic	ca	4.3	2641.0	gray	black	financial services remarketing (lease)	66000	67000

We fixed a part of the null values and unused data in the data set; however, we still have a vast number of null values to deal with.

We created a variable to store the mode of the "transmission" column so we can fill in the null values of that column with the mode of the "transmission" column.

Then we proceeded to do the same process with the "condition" and "mmr" columns except we used the median of the column to fill in the null values.

The outcome of the previous processes:

year	0
make	10301
model	10399
trim	10651
body	13195
transmission	0
state	0
condition	11794
odometer	94
color	749
interior	749
seller	0
mmr	0
sellingprice	0
dtype: int64	

The rest of the null values barely represented 3% of the data set and we couldn't deal with them, so we deleted the records with null values by using ".dropna" command.

The result was delightful.

:	year	0
	make	0
	model	0
	trim	0
	body	0
	transmission	0
	state	0
	condition	0
	odometer	0
	color	0
	interior	0
	seller	0
	mmr	0
	sellingprice	0
	dtype: int64	

After dealing with the null values, we noticed that there were some duplicated data since there were upper- and lower-case letters.

So first, we had to display the number of unique values in the data set, and to do that, we used the ".nunique" command:

year	26
make	53
model	776
trim	1525
body	87
transmission	4
state	64
condition	41
odometer	169292
color	46
interior	17
seller	13995
mmr	1101
sellingprice	1869
dtype: int64	

In order to deal with the duplicate data, we defined a function called "lower" that takes the argument "c" (which is a column) and returns the whole column in lower-case letters. Then, we proceeded to apply this function to all columns with the data type "object".

We also noticed that the "transmission" column contained 3 unique values after applying the lower function when it should only contain 2 which are "automatic" and "manual".

So, we replaced the extra value which was "sedan" with the median of the "transmission" column. The following was the result of the lower function:

year	26
make	53
model	772
trim	1506
body	46
transmission	2
state	64
condition	41
odometer	169292
color	46
interior	17
seller	13995
mmr	1101
sellingprice	1869
dtype: int64	

We also noticed that the "color" column had plenty of unique values. So, while checking the values of color, we noticed some numbers were there and strange symbols.

In order to deal with the numbers first, we used the ".apply(lambda x: str(x).isdigit())]". The "~" symbol is to remove the numbers if the outcome of the command is true.

Then we replaced the strange symbols with the median of the column by storing the median of the column in a variable then using the ".replace" command.

We also did the same process to the interior column since it had the same strange symbols. We stored the median of the column in a variable then replaced the symbols with the variable's content.

The final result of the cleaning:

year	26
make	53
model	772
trim	1505
body	45
transmission	2
state	38
condition	41
odometer	169283
color	19
interior	16
seller	13993
mmr	1101
sellingprice	1869
dtype: int64	