15. Развитие на функции в степенен ред. Дефиниции на експоненциалната и тригонометричните функции посредством степенен ред

Развитие на функции в степенен ред

Дефиниция

Нека D е интервал и т. a е вътрешна за D. Казваме, че $f:D\to\mathbb{R}$ се развива в степенен ред в т. a, ако съществуват интервал $E\subseteq D$, за който a е също вътрешна точка, и $a_n\in\mathbb{R},\ n=0,1,\ldots$, такива, че

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n, \quad x \in E.$$
 (1)

Тук се подразбира, че степенният ред вдясно е сходящ в Е.

Единственост на развитието в степенен ред

Теорема 1

Ако f(x) се развива в степенен ред в т. a

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n, \quad x \in E,$$
 (2)

то f(x) притежва производна от всеки ред в т. \boldsymbol{a} и

$$a_n = \frac{f^{(n)}(a)}{n!}, \quad n \in \mathbb{N}_0.$$
 (3)

Бележка: Радиусът на сходимост на реда в (2) не е $\mathbf{0}$, след като той представлява развитие на $f(\mathbf{x})$ в степенен ред.

Доказателство

От (2) с x = a следва, че $f(a) = a_0$ (всички членове за $n \ge 1$ са равни на 0); следователно $a_0 = \frac{f(a)}{0!}$.

По-нататък, от Теорема 3 в Тема 14 следва, че f(x) е диференцируема в околност U на т. a (т.е. $U:=(a-\delta,a+\delta)$ с някакво $\delta>0$) и

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - a)^{n-1}, \quad x \in U.$$
 (4)

В частност при x=a, както по-горе, получаваме $f'(a)=a_1$; следователно $a_1=\frac{f'(a)}{1!}$.

Прилагайки отново Теорема 3 в Тема 14, но този път към реда горе вдясно, установяваме, че неговата сума f'(x) е диференцируема в U

 $f''(x) = \sum_{n=2} n(n-1)a_n(x-a)^{n-2}, \quad x \in U.$ (5)

В частност при x=a, както по-горе, получаваме $f''(a)=2a_2$; следователно $a_2=\frac{f''(a)}{2!}$.

Продължавайки по същия начин, получаваме

$$f'''(x) = \sum_{n=3}^{\infty} n(n-1)(n-2)a_n(x-a)^{n-3}, \quad x \in U.$$
 (6)

В частност при x=a имаме $f'''(a)=3.2.1.a_3$; следователно $a_3=\frac{f'''(a)}{3!}$. И така нататък, изобщо имаме

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(x-a)^{n-k}, \quad x \in U, \quad (7)$$

откъдето при x=a получаваме $f^{(k)}(a)=k(k-1).....1.a_k;$ следователно $a_k=\frac{f^{(k)}(a)}{k!}.$

Ред на Тейлър

Теорема 1 показва, че, ако дадена функция f(x) се развива в степенен ред в т. a, то той непременно има вида

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$
 (8)

Това ни връща към формулата на Тейлър.:

Теорема (формула на Тейлър), ДИС 1, Тема 30, т-ма 2

Нека f(x) притежава производни до ред n+1 включително в $(a-\delta,a+\delta)$, където $\delta>0$. Тогава за всяко $x\in(a-\delta,a+\delta)$ съществува c:=c(x) между a и x такова, че

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \frac{f^{(n+1)}(c(x))}{(n+1)!} (x - a)^{n+1}.$$
 (9)

Изобщо c, освен от x, зависи и от n, затова ще пишем по-нататък $c_n(x)$. Редът в (8) се нарича ред на Тейлър на f(x) в т. a; при a=0 се нарича още ред на Маклорен.

Развитие на функции в ст. ред чрез ф-лата на Тейлър

Нека f(x) притежава производни от всеки ред в $(a - \delta, a + \delta)$, $\delta > 0$. Полагаме:

$$T_n(x) := \sum_{k=0}^n rac{f^{(k)}(a)}{k!} \, (x-a)^k$$
 — частичните суми на реда в (8) (още се нар. полиноми на Тейлър),

$$R_n(x) := rac{f^{(n+1)}(c_n(x))}{(n+1)!}(x-a)^{n+1}$$
— остатъчен чл. във ф-лата на Тейлър

От ф-лата на Тейлър следва, че за $\mathbf{x} \in (\mathbf{a} - \delta, \mathbf{a} + \delta)$ имаме

$$\stackrel{\text{Тейлър}}{\Longleftrightarrow} R_n(x) \underset{n \to \infty}{\longrightarrow} 0.$$

Развитие в ред на Маклорен на **е**^х

Разглеждаме $f(x) := e^x$. Знаем, че $f^{(n)}(x) = e^x$ за всяко n; следователно $f^{(n)}(0) = 1$ и редът на Тейлър на e^x в т. e^x има вида

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
 (11)

За да установим за кои $\mathbf{x} \in \mathbb{R}$ имаме

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!},\tag{12}$$

ще изследваме за кои x остатъчният член във ф-лата на Тейлър клони към 0 при $n \to \infty$.

Сега той има вида

$$R_n(x) = \frac{f^{(n+1)}(c_n(x))}{(n+1)!} x^{n+1} = \frac{e^{c_n(x)}}{(n+1)!} x^{n+1}, \tag{13}$$

където $c_n(x)$ е между 0 и x.

$$|R_n(x)| \le e^{|x|} \frac{|x|^{n+1}}{(n+1)!}.$$
 (14)

Знаем, че редът $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ е сходящ за всяко $x \in \mathbb{R}$. Тогава, както

следва от НУ за сходимост на числови редове (Теорема 3, Тема 5, ДИС 1)

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \quad \forall x \in \mathbb{R}. \tag{15}$$

Оттук и (14) следва

$$\lim_{n\to\infty} |R_n(x)| = 0 \quad \forall x \in \mathbb{R} \quad \Longrightarrow \quad \lim_{n\to\infty} R_n(x) = 0 \quad \forall x \in \mathbb{R}.$$
 (16)

Предвид (10), последното влече

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad x \in \mathbb{R}.$$
 (17)

Сходимост на степенния ред на e^x

Дефиниция на **е**^х

Полученото развитие на e^x в (17) може да се използва за дефиниция на функцията e^x . По-точно това се постига по следния начин.

- 1) Показва се, че редът $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ е сходящ за всяко $x \in \mathbb{R}$. 2) Полагаме $e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $x \in \mathbb{R}$, т.е. означаваме сумата на реда с

Развитие на $\sin x$ и $\cos x$ в ред на Маклорен

Нека $f(x) := \sin x$. Имаме $f^{(n)}(x) = \sin \left(x + \frac{n\pi}{2}\right)$. Следователно $f^{(2k)}(0) = 0$ и $f^{(2k+1)}(0) = (-1)^k$. Следователно редът на Маклорен на $\sin x$ има вида

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad \text{r.e.} \quad x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 (18)

Остатъчният член има вида

$$R_n(x) = \frac{f^{(n+1)}(c_n(x))}{(n+1)!} x^{n+1} = \frac{\sin\left(c_n(x) + \frac{(n+1)\pi}{2}\right)}{(n+1)!} x^{n+1}.$$
 (19)

Както по-горе установяваме

$$|R_n(x)| = \left| \sin \left(c_n(x) + \frac{(n+1)\pi}{2} \right) \right| \frac{|x|^{n+1}}{(n+1)!}$$

$$\leq \frac{|x|^{n+1}}{(n+1)!} \xrightarrow[n \to \infty]{} 0 \quad \forall x \in \mathbb{R}.$$
(20)

Следователно

$$R_n(x) \underset{n \to \infty}{\longrightarrow} 0 \quad \forall x \in \mathbb{R};$$
 (22)

следователно

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$
 (23)

Аналогично се установява, че

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$
 (24)

Както за e^{x} , развитията (23) и (24) може да се използват за дефиниция на $\sin x$ и $\cos x$.

Развитие в ред на Маклорен на $(1+x)^{\alpha}$

Посредством формулата на Тейлър, но с по-прецизна форма на остатъчния член, отколкото тази на Лагранж, се доказва следното развитие

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \tag{25}$$

където

- ако $\alpha \in \mathbb{N}_0$, то $\mathbf{X} \in \mathbb{R}$,
- ако $\alpha > 0$, но $\alpha \not\in \mathbb{N}$, то $\mathbf{X} \in [-1, 1]$,
- ako $-1 < \alpha < 0$, to $x \in (-1, 1]$,
- ако $\alpha \le -1$, то $x \in (-1, 1)$.

Този ред се нарича биномен.

Развитие на ф-ции в ст. ред чрез почленно

диференциране Можем да получим развитието в степепен ред на дадена функция чрез диференциране на вече известно развитие (Т-ма 3, Тема 14). Пример: Вече е известно, че

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$
 (26)

Тогава от Теорема 3, Тема 14 следва за $\mathbf{x} \in \mathbb{R}$

$$\underbrace{\frac{(\sin x)'}{=}}_{=\cos x} \stackrel{\text{(26)}}{=} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)' \stackrel{\text{\tiny T-Ma } 3, \text{\tiny TEMA } 14}{=} \sum_{n=0}^{\infty} \underbrace{\left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)'}_{=(-1)^n \frac{x^{2n}}{(2n)!}}.$$

Така получихме развитието на соз х в ред на Маклорен

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$
 (27)

Развитие на ф-ции в ст. ред чрез почленно интегриране

Можем да получим развитието в степепен ред на дадена функция чрез интегриране на вече известно развитие (Т-ма 4, Тема 14). Пример: Знаем, че

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad x \in (-1,1).$$
 (28)

Следователно

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-x)^n, \quad -x \in (-1,1),$$

$$= \sum_{n=0}^{\infty} (-1)^n x^n, \quad x \in (-1,1).$$
(29)

Тогава от Теорема 4, Тема 14 следва, че за всяко $\mathbf{x} \in (-1,1)$ имаме

$$\underbrace{\int_{0}^{x} \frac{dt}{1+t}}_{1+t} = \int_{0}^{x} \left(\sum_{n=0}^{\infty} (-1)^{n} t^{n} \right) dt$$

$$= \left[\ln(1+t) \right]_{0}^{x} = \ln(1+x)$$

$$= \lim_{t \to a} \frac{1}{n+1} \sum_{n=0}^{\infty} (-1)^{n} = \underbrace{\int_{0}^{x} t^{n} dt}_{n+1}.$$

$$= \frac{t^{n+1}}{n+1} \Big|_{0}^{x} = \frac{x^{n+1}}{n+1}.$$

Така получихме

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad x \in (-1,1).$$
 (30)

Знаем (Теорема 4, Тема 14), че евентуално интервалът за x горе може да се разшири само до включване на краищата му. Явно $x \neq -1$ заради дефиниционната област на $\ln(1+x)$.

В т. x=1 функцията $\ln(1+x)$ е дефинирана и непрекъсната, а дясната страна се свежда до числовия ред $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$, който,

както знаем (Т-ма 3, Пример, тема 7, ДИС 1), е сходящ. Сега от теоремата на Абел (Т-ма 5, тема 14) следва, че (30) е в сила и за $\mathbf{x} = \mathbf{1}$.

Така установихме, че

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad x \in (-1,1].$$
 (31)

Аналогично се доказва и следното развитие в ред на Маклорен

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in [-1, 1].$$
 (32)

В частност, от това равенство при x = 1 получаваме

$$\pi = 4\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^n}{2n+1} + \dots\right). \tag{33}$$

Сходимост на степенния ред на ln(1+x)

Развитие на ф-ции в ст. ред чрез алгебрични операции

Можем да получим развитието в степепен ред на дадена функция от вече известни развития чрез прилагане на елементарни алгебрични операции.

Пример 1: Знаем, че
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, $x \in (-1,1)$. (34)

Следователно

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n, \quad -x^2 \in (-1,1), \tag{35}$$

$$=\sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad x \in (-1,1). \tag{36}$$

Пример 2: като използваме (34), получаваме

$$\frac{1}{2-x} = \frac{1}{2} \frac{1}{1-\frac{x}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n, \quad \frac{x}{2} \in (-1,1), \tag{37}$$

$$= \sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}, \quad x \in (-2,2). \tag{38}$$