AI Lab Assignment 2

Domian Pruning while passing messages in CSPs/COPs

Max-Sum Message Passing to solve COPs

x ₃	U_1
R	1
В	3
R	2
В	1
	R B R

X ₂	x ₃	U ₂
R	R	1
R	В	5
В	R	4
В	В	2

X ₃	X ₄	U ₃
R	R	3
R	В	4
В	R	10
В	В	1

$$Q_{i \to j}(x_i) = \sum_{k \in M_i - j} R_{k \to i}(x_i)$$

$$Q_{i \to j}(x_i) = \sum_{k \in M_i - j} R_{k \to i}(x_i)$$

$$R_{j \to i}(x_i) = \max_{x_j - i} [U_j(x_j) + \sum_{k \in N_j - i} Q_{k \to j}(x_k)]$$

Once the variable node has received a message from each of its connected function nodes, the optimal variable assignment is found by locally calculating the function, $z_i(x_i)$,

$$Z_i(x_i) = \sum_{j \in M_i} R_{j \to i}(x_i)$$

where M_i is a set of function indexes, indicating which function nodes are connected to variable node x_i .

Max-Sum Message Passing to solve COPs

Complete Message Passing					
x_1	Steps	Messages			Message Type
R	1	$Q_{1\to 1}(x_1) = \{0,0\}$	$Q_{2\to 2}(x_2) = \{0, 0\}$	$Q_{4\to 3}(x_4) = \{0, 0\}$	Variable to Function
R	2	$R_{1\to 3}(x_3) = \{2,3\}$	$R_{2\to 3}(x_3) = \{4, 5\}$	$R_{3\to 3}(x_3) = \{4, 10\}$	Function to Variable
В	3	$Q_{3\to 1}(x_3) = \{8, 15\}$	$Q_{3\to 2}(x_3) = \{6, 13\}$	$Q_{3\to 3}(x_3) = \{6, 8\}$	Variable to Function
	4	$R_{1\to 1}(x_1) = \{18, 16\}$	$R_{2\to 2}(x_2) = \{18, 15\}$	$R_{3\to4}(x_4) = \{18, 10\}$	Function to Variable
В					At Completion
×į	Y.			(When each Variable	
R	5	$Z_1(x_1) = \{18, 1_{O_{i \to i}}($	$(x_i) = \sum_{k \to i} (x_i)$	has received	
	$k\epsilon M_i - i$			messages from all	
R					of its neighbours)
В					Final Color
В					Assignment to
P = P = R;			Variables after		
$R_{i \to i}(x_i) = \max_{x_{i} \to i} [U_i(x_i) + \sum_{k \to i} (x_k)]$			finding		
$R_{j\to i}(x_i) = \max_{x_j = i} [U_j(x_j) + \sum_{k \in N_j = i} Q_{k\to j}(x_k)]$				$argmax_{x_i}z_i(x_i)$	

$$\begin{array}{c|cccc} \mathbf{x_3} \\ \hline & \mathbf{R} & \mathbf{B} \\ \mathbf{x_2} & \mathbf{R} & \mathbf{1} & \mathbf{5} \\ \hline & \mathbf{B} & \mathbf{4} & \mathbf{2} \\ \end{array}$$

$$Z_i(x_i) = \sum_{j \in M_i} R_{j \to i}(x_i)$$

$$Q_{3\to 3}(x_3) = R_{1\to 3}(x_3) + R_{2\to 3}(x_3)$$
$$Q_{3\to 3}(x_3) = \{2,3\} + \{4,5\} = \{6,8\}$$

$$Z_3(x_3) = R_{1 \to 3}(x_3) + R_{2 \to 3}(x_3) + R_{3 \to 3}(x_3)$$

 $Z_3(x_3) = \{2, 3\} + \{4, 5\} + \{4, 10\} = \{10, 18\}$

Max-Sum Message Passing to solve COPs

x_1	x ₃	U_1
R	R	1
R	В	3
В	R	2
В	В	1

X ₃	× ₄	U ₃
R	R	3
R	В	4
В	R	10
В	В	1

$$Q_{i \to j}(x_i) = \sum_{k \in M_i - j} R_{k \to i}(x_i)$$

$$R_{j \rightarrow i}(x_i) = \max_{x_j - i} [U_j(x_j) + \sum_{k \in N_j - i} Q_{k \rightarrow j}(x_k)]$$

$$Z_i(x_i) = \sum_{j \in M_i} R_{j \to i}(x_i)$$

$$Q_{3\to 3}(x_3) = R_{1\to 3}(x_3) + R_{2\to 3}(x_3)$$
$$Q_{3\to 3}(x_3) = \{2, 3\} + \{4, 5\} = \{6, 8\}$$

x ₃	× ₄	U ₃	$Q_{3-3}(x_3)$	Sum
R	R	3	6	9
В	R	4	8	18
R	В	10	6	10
В	В	1	8	9

$$Z_3(x_3) = R_{1 \to 3}(x_3) + R_{2 \to 3}(x_3) + R_{3 \to 3}(x_3)$$

 $Z_3(x_3) = \{2, 3\} + \{4, 5\} + \{4, 10\} = \{10, 18\}$

Function to Variable Message Computation

	r the	table fo	ity (cost)	Utili
	function node, $F_1(x_1, x_2, x_3)$			
	F ₁	Х3	X ₂	X 1
	5	R	R	R
	10	В	R	R
	12	G	R	R
	13	R	В	R
	12	В	В	R
	35	G	В	R
	9	R	G	R
	38	В	G	R
{1:	11	G	G	R
	12	R	R	В
	14	В	R	В
	38	G	R	В
	10	R	В	В
	3	В	В	В
	9	G	В	В
	40	R	G	В
	14	В	G	В
	13	G	G	В
	10	R	R	G
	37	В	R	G
	12	G	R	G
	39	R	В	G
	13	В	В	G
	14	G	В	G
	11	R	G	G
	12	В	G	G
	4	G	G	G

$Q_{x_1 \rightarrow F_1}(x_1)$	$Q_{x_2 \rightarrow F_1}(x_2)$	F ₁		$R_{F_1 \rightarrow x_3}(x_3)$
122	90	5	217	
122	90	10	222	
122	90	12	224	
122	81	13	216	
122	81	12	215	
122	81	35	238	
122	75	9	206	
122	75	38	235	
122	75	11	208	
130	90	12	232	
130	90	14	234	
130	90	38	<u>258</u>	{ 256 , 263 , 258 }
130	81	10	221	
130	81	3	214	
130	81	9	220	
130	75	40	245	
130	75	14	219	
130	75	13	218	
136	90	10	236	
136	90	37	263	
136	90	12	238	
136	81	39	<u>256</u>	
136	81	13	230	
136	81	14	231	
136	75	11	222	
136	75	12	223	
136	75	4	215	

(a) Computation of a factor-to-variable message (i.e. F_1 to x_3).

Lab Task

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Speeding Up Incomplete GDL-based Algorithms for Multi-agent Optimization with Dense Local Utilities

Yanchen Deng and Bo An

School of Computer Science and Engineering, Nanyang Technological University, Singapore {ycdeng,boan}@ntu.edu.sg

Lab Task

Figure 6: Performance comparison on sparse problems

Figure 7: Performance comparison on dense problems

Figure 8: Performance comparison on the problems with dense local utilities

Figure 9: Performance comparison on NetRad systems