STU11002

Statistical Analysis I

Dr. Hannah Comiskey

Learning objectives

- Download R and Rstudio
- Create a project in Rstudio and save it.
- Write and execute a basic R script

Structure

- ➤ Lectures will take place during weeks 22 to 27 and 29 to 33. Wednesdays' lectures will be held in room CHLLT_0.11 (Chemistry Building), from 10am to 11am, while Thursdays' lectures will take place in room 2039 (Arts Building), from 3pm to 4pm.
- ► Labs will take place every two weeks starting in week 23 (Group A) and in week 24 (Group B):
 - ▶ Group A: labs will take place in weeks 23, 25, 27, 30.
 - ▶ Group B: labs will take place in weeks 24, 26, 29, 31.

Check your timetable to see your time slots.

Assessment

- ➤ Continuous assessment 30% of your final grade for STU11002 will depend on continuous assessment. This will consist of two MCQ tests, which will take place in week 27 and in week 33.
- ► **Final exam** 70% of your final grade for STU11002 will depend on on a written final exam.

CONTACT comiskeh@tcd.ie

What is statistics?

Broadly speaking, Statistics is a discipline that concerns the study of data. Its main areas revolve around:

- ▶ Data collection (how do we properly draw a sample from a population of interest?)
- Summarizing and representing the information in data (what types of measures and/or visualization methods suit best the task at hand?)
- ► Analyse and model the data (how can we postulate and answer research questions using data?)
- ► Interpretation (of any of the above)

Exploring possible relationships

After school shootings, support for gun laws rises but then drops

Number of 15-second cable news clips (CNN, Fox News, MSNBC) in which "school shooting" was mentioned, and overall favorability of stricter gun control laws

Summarizing complex phenomena with indexes

	European Union	Euro area	Ireland	
People at risk of poverty or social exclusion	21.7%	21.9%	20.0%	
(as % of the population)	(2021)	(2021)	(2021)	
Inflation rate	2.9%	2.6%	2.4%	ī
(% change compared to previous year)	(2021)	(2021)	(2021)	
GDP per capita	27 880€	30 890€	70 530€	
(Euro per inhabitant)	(2021)	(2021)	(2021)	
Renewable energy	22.0%	N/A	16.2%	ī
(as % in gross final energy consumption)	(2020)		(2020)	
Electricity prices	252.5€	260.8€	274.1€	
(Euro per MWh, incl. taxes)	(2022-S1)	(2022-51)	(2022-51)	

N/A = Data not available

Click on this icon in the table above to access the source dataset.

Source: https://ec.europa.eu/eurostat

Getting the probabilities right

Independence matters

- ➤ Sally Clark's two infant sons both died of SIDS (cot death), one in 1996, the second in 1998.
- ▶ It was estimated that the probability of SIDS in an affluent family, with non-smoking parents, and a mother with over 26 years of age is approximately 0.000117
- ▶ SIDS deaths were considered independent, so that the probability of two of them happening in the same family, with the aforementioned conditions, is $(0.000117)^2 \approx 0.00000001$. Too unlikely!
- ▶ In November 1999 Sally Clark was convicted and sentenced to life in prison.
- ▶ In January 2003 the conviction was overturned on appeal.

Sally Clark's story - details

Evidence for first conviction:

- Sir Roy Meadow, a pediatrician, stated that:
 - ▶ the chance of two children from an affluent family suffering SIDS was 1 in 73 million.
 - "one sudden infant death in a family is a tragedy, two is suspicious and three is murder unless proven otherwise"
- ► Data used:
 - ► The Clarks were an affluent, non-smoking family
 - ➤ The probability of a single cot death was 1 in 8543. Two SIDS were assumed to be independent so that the probability of them occurring in the same family is around 1 in 73 million (8543 × 8543).
 - Every year in Britain there were approximately 700,000 live births
 - Therefore, a double cot death was expected to occur once every hundred years or so

Sally Clark's story - details

Evidence for appeal:

- Professor of Mathematics Ray Hill stated that
 - "There may well be unknown genetic or environmental factors that predispose families to SIDS"
 - ► The probability of a child dying from SIDS is 1 in 1300
 - ► The 1 in 8500 figure takes into account three additional characteristics
 - "conveniently ignored factors such as both the Clark babies being boys – which make cot death more likely"
 - "if the parents are affluent, in a stable relationship and non-smoking, the prosecution will claim that the chances of the death being natural are greatly reduced ... the very same factors which make a family low risk for cot death also make it low risk for murder"

Cherry-picking and spurious correlations

- Does pork give you cancer? https://fivethirtyeight.com/features/ you-cant-trust-what-you-read-about-nutrition/
- Deaths by Swimming Pool Drowning vs. Nicholas Cage Films https://www.wnycstudios.org/podcasts/otm/
 - articles/spurious-correlations

Selection bias

Survival bias

- During World War II, researchers from the Center for Naval Analyses conducted a study of the damage done to aircraft that had returned from missions.
- ► The researchers recommended that armor be added to the areas that showed the most damage.
- Statistician Abraham Wald: the study only considered the aircraft that had survived their missions
- ➤ The holes in the returning aircraft, then, represented areas where a bomber could take damage and still return home safely.

Machine bias

- ► In the USA, 'COMPAS' is a computer program that predicts the score/likelihood of arrested individuals committing a future crime
- Scores derived from 137 questions (race not included)
- ► Falsely flags black defendants as future criminals at almost twice the rate as white defendants. White defendants mislabeled as low risk more often than black defendants
- Difficult to construct a score that doesn't include items that can be correlated with race (poverty, social marginalization)
- ► No transparency (code is not public)

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Available information and how to use it

Butcher shop example

- Installed sensors outside shop and determined footfall
- Count: How many people stopped to look at window and at sandwich board. Determined that lots of passers by after pubs closed
- Decided to open at that time

Transport for London (TFL)

- ► Early 2000's, London had a population of around 7 million, which was expected to grow to 10 million
- ► TFL had two priorities: Planning services and providing information to customers
- ▶ In 2003 the Oyster card was introduced (with around 19 million taps a day). It provides TFL with info on when and where people are travelling

R

Reading material

There is a lot of excellent reading material free online for R. But it is easy to get overwhelmed! I've uploaded two books to blackboard that are freely available through CRAN:

- ▶ R For Beginners by Emmanuel Paradis
- ► An Introduction to R

Getting started - Download R

- ▶ Have you downloaded R? No?
- R is available from https://cran.r-project.org/
- Most of you will want to click either
 - Download R for Windows
 - Download R for (Mac) OS X
- ▶ Windows : click on base, then at top of page 'Download R-4.2.2 for Windows'
- Mac : click on the appropriate '.pkg' file for your version of OS X

Getting started - Download R Studio

- ► Have you downloaded R Studio?
- Note that you must first install R before trying to install R Studio... it won't work otherwise
- You can get it from https://www.rstudio.com/, following the links to download (top-right of the page).
- Download 'RStudio Desktop Open Source License Free'
- ▶ When you have these installed, try to start up R Studio

Using R Studio

The top left panel is the **Editor**:

- ▶ This is where we write and edit code before running it
- ► This allows us to save it easily
- ▶ If you open a dataset, it will appear in a tab in this panel

The bottom left panel is the **Console**:

- ► This is where we run our code
- ▶ We'll also be able to access the results of our code in the console

Using R Studio

The top right panel has two tabs of note:

- ► Environment: lists all of the objects (datasets, vectors...) that you are working with in the console in this R session (since R Studio was started up)
- ► **History**: lists the things that were last sent to the console and run

Bottom right panel has six tabs:

- ▶ **Files** the file system on your computer
- ▶ **Plots** where plots will appear when created
- Packages The packages you have installed with ticks for inclusion in the session
- ► Help
- Viewer and Presentation

Creating a Project

- Projects are a "'neat way" to work in RStudio
- ► All files needed for a specific project/ analysis can be stored in the corresponding project folder, allowing to bypass the directory setting step
- Clicking on the icon of the 'R Project' file we can quickly access the workspace and the files (in RStudio) for a specific project/ analysis.

Create a project

On the top right panel, click on "Project: (None)":

- 1. Click on 'New Project...'
- 2. Now click on 'New Directory' and then on 'New Project'
- Specify a name (for example 'project1') under 'Directory name' and select where to store your project using "Browse...'

Using the editor

- Let's try to write a script for R in R studio and run it
- Go to the editor and type the following three lines of code (personalized to you)

```
# Hello
name <- "Hannah Comiskey"
cat("\n Hi",name,"welcome to R and R Studio! \n")</pre>
```

- name is a variable that is set equal to the value Hannah Comiskey.
- ► The name given to the variable is not important- we could call it anything...

Using the editor

... so for example, writing the code like this will do exactly the same thing

```
# Hello
x <- "Hannah Comiskey"
cat("\n Hi",x,"welcome to R and R Studio! \n")</pre>
```

- ► We can write a comment by using # which means the line will be ignored when running
- ► Congratulations! You've just written an R script!

Running a script

- Organising your files and folders and knowing where your data is/your scripts are is important when working with R
- Create a project named Rcourse
- Save the script we just created as script1.R. This script will be automatically stored in the folder of the Rcourse project.
- When you are working with datasets and scripts together, it is important to know what is where—it can save a lot of time. You should save all files related to the same project within the same R project folder.