2025년 ICT 한이음 드림업 프로젝트 수행계획서

1. 프로젝트 개요

프로젝트명	사용자 친화 반응형 키오스크					
주제영역	■ 생활 □ 업무 □ 공공/교통 □ 금융/핀테크 □ 의료 □ 교육 □ 유통/쇼핑 □ 엔터테인먼트					
기술분야	■ SW·AI □ 방송·콘텐츠 □ 블록체인·융합 □ 디바이스 □ 차세대보안 □ 미래통신·전파					
성과목표	■ 논문게재 및 포스터 발표 □ 앱등록 □ 프로그램등록 □ 특허 □ 기술이전 □ 실용화 ■ 공모전(ICT 한이음, TU-VCC) □ 기타()					
수행기간	2025. 4. 1. ~ 2025. 10. 31.					
프로젝트 소개 및 제안배경	- 사용자를 카메라로 인식 및 분석하여 키오스크 UI와 스크린위치를 동적으로 변환 - 디지털 격차로 인해, 키오스크 사용에 대한 더 나은 환경이 필요함 - 현대사회에 중요한 가치인 디지털 접근성을 향상시키고자 함 - 다양한 사람들이 이용하는 공공 디지털 장치이지만, 제공되는 형태의 서비스는 동 일한 UI 및 형태로 고착화					
주요기능	- 객체 인식 : 카메라를 통해 영상을 받아서 얼굴 인식 - 인식된 객체를 딥러닝 된 모델을 통해 나이대 분석 - 사용자의 눈높이에 따른 화면 높낮이 조절 - 결제 기능 - 조회 및 예매기능 - 사용자 맞춤형 ui 변경					
적용 기술	- 합성곱 신경망 인공지능 모델 - tailwindCSS - haar cascade - React Hook - axios - docker container - React router - rest API					
예상 결과물						
기대효과 및 활용 분야	디지털 격차로 인해 사용에 어려움을 겪는 계층에 대한 디지털 접근성을 향상시키고, 다양한 연령층을 수용해야하는 업장에서 보다 효율적으로 키오스크를 이용할 수있도록 한다. 기존 키오스크에서 신체적 제약이 있는 사용자들의 물리적 접근 장벽을 낮추고 사용 편의성을 향상시킨다.					

Ⅱ. 프로젝트 수행계획

1. 프로젝트 개요

가. 프로젝트 소개

- ㅇ 사용자를 카메라로 인식한다.
- ㅇ 사용자의 나이대를 분석한다.
- o 키오스크 UI와 디스플레이 위치를 사용자에 맞추어 동적으로 변환한다.

나. 추진배경 및 필요성

- ㅇ 디지털 격차로 인해, 키오스크 사용에 대한 더 나은 환경이 필요함
- ㅇ 현대사회에 중요한 가치인 디지털 접근성을 향상시키고자 함
- o 다양한 사람들이 이용하는 공공 디지털 장치이지만, 제공되는 형태의 서비스는 동일한 UI 및 형태로 고착화

2. 프로젝트 내용

가. 주요 기능 # 필요 시 줄 추가/삭제

구분	기능	설명
S/W	UI 제작(노년/청년별)	• 영화 예매, 조회, 결제 등의 UI 디자인 및 개발 • 인식된 연령층에 해당하는 UI로 변경
S/W	API 작성 및 DB	• 호출되는 API 작성 및 DB 데이터 관리
S/W	사용자를 인식	일정 거리 내에 접근시 사용자 인식 인식된 사용자 촬영
S/W	나이대 분석	답러닝 된 모델을 통해 나이대 분석 도출된 결과를 통해 사용자 연령층을 인식
H/W	키오스크 높낮이 조절	• 키오스크 디바이스를 탐지된 눈높이에 맞게 이동

나. 적용 기술

- ㅇ 합성곱 신경망 인공지능 모델
- o haar cascade
- o axios
- o React router
- o tailwindCSS
- React Hook
- o docker container
- o rest API

다. 필요 기자재(기자재/장비) # 필요 시 줄 추가/삭제

품목	활용계획
서버용 그래픽 카드	AI 학습용
터치 스크린	키오스크 디스플레이
고토크 스테핑모터	키오스크 높낮이 조절
볼스크류	키오스크 높낮이 조절
카메라 센서	사용자 얼굴 인식
3D 프린터 및 필라멘트	하드웨어 제작
라즈베리파이	키오스크

라. 예상 결과물 # 필요시 줄 추가/삭제

예상 결과물 이미지	설명
	● 키오스크에 탑재된 카메라를 통해 사용자의 눈높이와 나이대를 인식하여 사용자에 맞게 UI를 변경한다.
	● 사용자의 눈높이에 따라 키오스크 디바이스를 탐지된 눈높이에 맞게 이동(최저 140 ~ 최고 180)하여 지체장애를 가진 사람부터 비장애인까지 다양한 사람들이 편하게 높이를 조절한다.

마. 성과목표 # 성과목표에 대한 계획과 활용방안 작성

□ 특허출원 ■ 논문발표 □ 앱등록 □ 프로그램등록 □ 기술이전 □ 실용화 ■ 공모전(ICT 한이유, TU-VCC) □ 기타(
□ ≥6되 ■ 6포만(ICI 전기급, IO-VCC) □ 기디()

- ㅇ 논문 작성
- o ICT 한이음, TU-VCC 등의 공모전을 통하여 팀 활동, 보고서 작성 등의 역량향상

3. 프로젝트 수행방법

가. 프로젝트 추진일정 # 프로젝트 기간은 노란색 셀 색상으로 표시, 필요 시 줄 추가

그브	구분 추진내용		추진일정									
十世			3월	4월	5월	6월	7월	8월	9월	10월		
계획	주제선정 및 업무분담											
분석	요구사항 정의 및 분석											
설계	UI/UX , API 설계											
	필터링 모델 설계											
	UI/UX개발											
개발	API, DB 개발											
	모델, 하드웨어 개발											
테스트	1/2차 프로토타입											
종료	데모 및 문서화											
오프라인 미팅계획	멘토님과 협의 이후 추후 예정											

나. 의사소통방법 # 팀원 간 커뮤니케이션 방법 및 협업 툴, 프로젝트 수행방법 등 작성

- ㅇ 협업 툴 : Git Hub, Discord, Teams, Figma
- o 애자일 방법론을 적용하여 스피린트 주기를 3주 간격으로 지정 및 스프린트 발표

다. 프로젝트 Ground Rule (기본원칙) # 팀별 프로젝트 수행원칙 작성 (주 1회 진행현황 공유 등)

- ㅇ 매주 정기 회의를 통해 진행 상황 보고
- ㅇ 애자일 방법론 적용

Ⅲ. 기대효과 및 활용분야

1. 기대효과

- 가. 작품의 기대효과 # 해당 프로젝트를 통한 기존 서비스와의 차별성 등 작성
- ㅇ 디지털 접근성 향상
- ㅇ 서비스 다양성
- 나. 참여 멘티의 교육적 기대효과
- ㅇ 딥러닝 모델 학습 능력 향상
- ㅇ 프레임워크 및 언어 개발경험 향상

2. 활용분야 # 해당 프로젝트를 통한 서비스 활용분야에서의 실질적 효과 작성

- o 영화관, 음식점 등과 같은 다양한 연령대가 방문하는 장소에 설치하여 디 지털 격차 감소
- o 노안으로 인해 잘 보이지 않는 분들을 고려하여 노년층 UI를 설계 하였으 며 영유아나 휠체어를 사용하는 분들을 고려하여 화면 높낮이를 조절하여 사용