As a consequence one computes the growth bound of a multiplication semigroup as follows:

$$\begin{array}{lll} \omega = \sup\{\text{Re } q(x) : x \in X\} & \text{in the case } E = C_0(X) \text{ ,} \\ \omega = \mu \text{-ess-sup}\{\text{Re } q(x) : x \in X\} & \text{in the case } E = L^p(\mu) \text{ .} \end{array}$$

It is a nice exercise to characterize those multiplication operators which generate strongly continuous groups.

We point out that the above results cover the cases of sequence spaces such as c_0 or 1^p , $1 \le p < \infty$. An abstract characterization of generators of multiplication semigroups will be given in C-II,Thm.5.13.

2.4. Translation (Semi) Groups

Let E to be one of the following function spaces $C_{_{O}}(\mathbb{R}_{+})$, $C_{_{O}}(\mathbb{R})$ or $L^{p}(\mathbb{R}_{+})$, $L^{p}(\mathbb{R})$ for $1 \leq p < \infty$. Define T(t) to be the (left) translation operator

$$T(t) f(x) := f(x+t)$$

for x , t $\in \mathbb{R}_+$, resp. x , t $\in \mathbb{R}$ and f \in E . Then $(\mathtt{T(t)})_{t \geq 0}$ is a strongly continous semigroup, resp. group of contractions on E and its generator is the first derivative $\frac{d}{dx}$ with 'maximal' domain. In order to be more precise we have to distinguish the cases E = C_0 and E = L^P :

(i) The generator of the translation (semi)group on $E = C_{\Omega}(\mathbb{R}_{+})$ is

$$\begin{array}{lll} Af \ := \frac{d}{dx}f \ = \ f \ , \\ D\,(A) := \ \{f \ \in \ E \ : \ f \ differentiable \ and \ f' \ \in \ E\} \ . \end{array}$$

<u>Proof.</u> For $f \in D(A)$ it follows that for every $x \in \mathbb{R}_{(+)}$

$$\lim_{h\to 0} \frac{\mathtt{T}(h)\,\mathtt{f}(\mathtt{x}) - \mathtt{f}(\mathtt{x})}{h} = \lim_{h\to 0} \frac{\mathtt{f}(\mathtt{x}+h) - \mathtt{f}(\mathtt{x})}{h} \quad \text{exists}$$

(uniformly in x) and coincides with $\,\text{Af}\,(x)$. Therefore $\,f\,$ is differentiable and $\,f'\,\in\,E$.

On the other hand, take f (E differentiable such that f' (E . Then

$$\left| \frac{f(x+h) - f(x)}{h} - f'(x) \right| \le \frac{1}{h} \int_{x}^{x+h} \left| f'(y) - f'(x) \right| dy$$

where the last expression tends to zero uniformly in x as $h \to 0$. Thus $f \in D(A)$ and f' = Af.