Name:	
J#:	Dr. Clont
Date:	

MASTERY QUIZ DAY 21

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Mark: Standard A3.

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ 2y+3z \\ x-y-2z \end{bmatrix}$
(b) $S: \mathbb{R}^2 \to \mathbb{R}^3$ given by $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x+2y \\ x-y \\ x+4y \end{bmatrix}$

(b)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + 2y \\ x - y \\ x + 4y \end{bmatrix}$

Mark: Standard A4.

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map given by $T\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute the kernel and image of T.

Additional Notes/Marks