Construction of extremal Type II \mathbb{Z}_8 -codes

Sara Ban Martinović

sban@math.uniri.hr

Faculty of Mathematics, University of Rijeka

Joint work with Sanja Rukavina

This work was supported by the Croatian Science Foundation under the project number HRZZ-IP-2022-10-4571 and by the University of Rijeka under the project uniri-iskusni-prirod-23-62

1 Type II \mathbb{Z}_{2k} -codes

2 Doubling method

3 Construction of extremal Type II \mathbb{Z}_8 -codes

S. Ban, S. Rukavina, Construction of extremal Type II \mathbb{Z}_8 -codes via doubling method, arXiv: 2405.00584 (2024).

Let \mathbb{Z}_{2k} denote the ring of integers modulo 2k. A linear code C of length n over \mathbb{Z}_{2k} (i.e., a \mathbb{Z}_{2k} -code) is a \mathbb{Z}_{2k} -submodule of \mathbb{Z}_{2k}^n .

Two \mathbb{Z}_{2k} -codes are *equivalent* if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates.

An element of a code is called a *codeword*.

The Euclidean weight of a codeword $x=(x_1,x_2,\ldots,x_n)\in\mathbb{Z}_{2k}^n$ is

$$wt_E(x) = \sum_{i=1}^n \min\{x_i^2, (2k - x_i)^2\}.$$

We will denote by $d_E(C)$ the minimum Euclidean weight of the code C.

Let C be a \mathbb{Z}_{2k} -code of length n. The dual code C^{\perp} of the code C is defined as

$$C^{\perp} = \{ x \in \mathbb{Z}_{2k}^n \mid \langle x, y \rangle = 0 \text{ for all } y \in C \},$$

where $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \pmod{2k}$ for $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$.

The code *C* is *self-dual* if $C = C^{\perp}$.

Type II \mathbb{Z}_{2k} -codes are self-dual \mathbb{Z}_{2k} -codes which have the property that all Euclidean weights are divisible by 4k.

E. BANNAI, S. T. DOUGHERTY, M. HARADA, M. OURA, *Type II Codes, Even Unimodular Lattices and Invariant Rings*, IEEE Trans. Inf. Theory, **45**(4), 1194–1205 (1999).

Theorem

Let C be a Type II \mathbb{Z}_{2k} -code of length n. Then $n \equiv 0 \pmod{8}$ and

$$d_{E}(C) \leq 4k \left\lfloor \frac{n}{24} \right\rfloor + 4k \tag{1}$$

holds for $k \le 6$, and for $k \ge 7$ it holds under the assumption that $\left| \frac{n}{24} \right| \le k - 2$.

We say that a Type II \mathbb{Z}_{2k} -code meeting (1) with equality is *extremal*.

Extremal Type II \mathbb{Z}_8 -codes of length up to 48 can be found in:

- E. BANNAI, S. T. DOUGHERTY, M. HARADA, M. OURA, *Type II Codes, Even Unimodular Lattices and Invariant Rings*, IEEE Trans. Inf. Theory, **45**(4), 1194–1205 (1999).
- R. Chapman, P. Solé, *Universal codes and unimodular lattices*, J. de th. des nombres de Bordeaux, **8**, 369–376 (1996).
- J. H. CONWAY, N. J. A. SLOANE, Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag, New York (1999).
- S. GEORGIOU, M. HARADA, C. KOUKOUVINOS, *Orthogonal designs and Type II codes over* \mathbb{Z}_{2k} , Des. Codes Cryptogr. **25**, 163–174 (2002).
- T. A. GULLIVER, M. HARADA, Extremal Self-Dual Codes over \mathbb{Z}_6 , \mathbb{Z}_8 and \mathbb{Z}_{10} , AKCE J. Graphs. Combin. 2(1), 11–24 (2005).

A generator matrix of a \mathbb{Z}_{2k} -code C is a matrix whose rows generate C.

Each code C over \mathbb{Z}_{2^m} is permutation-equivalent to a code with a generator matrix in *standard form*

$$\begin{pmatrix} I_{k_1} & A_{1,2} & A_{1,3} & A_{1,4} & \cdots & \cdots & A_{1,m+1} \\ 0 & 2I_{k_2} & 2A_{2,3} & 2A_{2,4} & \cdots & \cdots & 2A_{2,m+1} \\ 0 & 0 & 4I_{k_3} & 4A_{3,4} & \cdots & \cdots & 4A_{3,m+1} \\ \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 2^{m-1}I_{k_m} & 2^{m-1}A_{m,m+1} \end{pmatrix},$$

where the matrix $A_{i,j}$ has elements in $\mathbb{Z}_{2^{j-1}}$. We say that C is of $type(k_1, k_2, k_3, \ldots, k_m)$.

If C is a \mathbb{Z}_{2^m} -code, then the code

$$C^{(2^k)} = \{x \pmod{2^k} \mid x \in C\}, \ 1 \le k \le m - 1,$$

is the \mathbb{Z}_{2^k} -residue code of C.

Doubling method

Theorem (SBM, S. Rukavina, 202*)

Let $k \geq 2$. Let C be a Type II \mathbb{Z}_{2k} -code of length n and let $n_i(x)$ denote the number of coordinates i in $x \in \mathbb{Z}_{2k}^n$. Let $ku \in \mathbb{Z}_{2k}^n \setminus C$ be a codeword with all coordinates equal to 0 or k with the following property: if k is odd, $n_k(ku)$ is divisible by four, if k is even and not divisible by four, $n_k(ku)$ is even. Let $C_0 = \{v \in C \mid \langle ku, v \rangle = 0\}$. Then $\widetilde{C} = C_0 \oplus \langle ku \rangle$ is a Type II \mathbb{Z}_{2k} -code.

Theorem (SBM, S. Rukavina, 202*)

Let $m \geq 2$. Let C be a Type II \mathbb{Z}_{2^m} -code of length n and type (k_1, k_2, \ldots, k_m) . The choice of $2^{m-1}u \in \mathbb{Z}_{2^m}^n \setminus C$ in previous theorem can be limited to codewords with zeroes on the first $k_1 + k_2 + \cdots + k_m$ coordinates.

Theorem (SBM, S. Rukavina, 202*)

Let $m \geq 2$. Let C be a Type II \mathbb{Z}_{2^m} -code of length n and type (k_1,k_2,\ldots,k_m) . Let G be a generator matrix of C in standard form and G_i the i^{th} row of G. Let $2^{m-1}u \in \mathbb{Z}_{2^m}^n \setminus C$ be a codeword with zeroes on the first $k_1 + k_2 + \cdots + k_m$ coordinate positions such that $n_{2^{m-1}}(2^{m-1}u)$ is even if m=2. Let $B=\{G_1,\ldots,G_{k_1+k_2+\cdots+k_m}\}$. The following process yields a generator matrix \widetilde{G} of the \mathbb{Z}_{2^m} -code \widetilde{C} obtained from C and $2^{m-1}u$ by the doubling method.

Step 1: Let
$$B_E = \{G_i \in B \mid \langle G_i, 2^{m-1}u \rangle = 0\}$$
 and $B_O = B \setminus B_E$.

Step 2: Pick
$$G_i \in B_O$$
 arbitrarily. Define $B_O' = \{G_i + G_j \mid G_j \in B_O\}$.

Step 3: Let G be a matrix whose rows are the elements of the set $B_O' \cup B_E \cup \{2^{m-1}u\}$.

The resultant code \widetilde{C} is of type

$$\begin{cases} (k_1-1,k_2+2), & \text{if } m=2, \\ (k_1-1,k_2+1,k_3+1), & \text{if } m=3, \\ (k_1-1,k_2+1,k_3,\ldots,k_{m-1},k_m+1), & \text{if } m\geq 4. \end{cases}$$

The code \widetilde{C} is independent of the choice of G_i in Step 2.

Construction of extremal Type II \mathbb{Z}_8 -codes

Theorem (SBM, S. Rukavina, 202*)

Let $n \in \{24, 32, 40\}$. Denote by $S_i(w)$ the set of positions with the element $i \in \mathbb{Z}_8$ in $w \in \mathbb{Z}_8^n$. Let C be an extremal Type II \mathbb{Z}_8 -code of length n and type (k_1, k_2, k_3) where $C^{(4)}$ is extremal. Suppose $4u \in \mathbb{Z}_8^n$ is a codeword with all coordinates equal to 0 or 4 such that $S_4(4u) \subseteq \{k_1 + k_2 + k_3 + 1, \ldots, n\}$, where $|S_4(4u)| \ge 2$. If there is no codeword v of C that satisfies any of the following conditions:

$$|S_4(4u) \setminus S_4(v)| + |S_4(v) \setminus S_4(4u)| = 1 \text{ and } wt_E(v \pmod{4}) = 0,$$

then the Type II \mathbb{Z}_8 -code \widetilde{C} generated by 4u and C using the doubling method is extremal. These choices of 4u are the only candidates for the code C in the doubling method which lead to an extremal code.

Algorithm C

Let $n \in \{24, 32, 40\}$. Denote by $S_i(w)$ the set of positions with the element $i \in \mathbb{Z}_8$ in $w \in \mathbb{Z}_8^n$. Let C be an extremal Type II \mathbb{Z}_8 -code of length n and type $(\frac{n}{2}, 0, 0)$, where $C^{(4)}$ is extremal, with the generator matrix $G = \begin{bmatrix} I_{\frac{n}{2}} & A \end{bmatrix}$ in the standard form.

- 1. Let $v = (v_1, \ldots, v_n) \in C^{(4)}$ be a codeword of Euclidean weight 16.
- 1.2. Let $F_v = \{v_1, \dots, v_{\frac{n}{2}}\}, \ A_v = S_2(v) \cap F_v \ \text{and} \ B_v = S_3(v) \cap F_v.$
- 1.3. Repeat the following steps on all $A \subseteq A_V$:
 - 1.3.1. Calculate $v' = \sum_{i=1}^{n} v_i G_i + 4s_A + 4s_{B_V}$, where s_A is the sum of rows in the generator matrix G of C with row indices in A and s_{B_V} is the sum of rows in G with row indices in B_V .
 - 1.3.2. Let

$$O_{v'} = (S_2(v') \cup S_6(v')) \cap \left\{ \frac{n}{2} + 1, \dots, n \right\},$$

$$P_{v'} = S_4(v') \cap \left\{ \frac{n}{2} + 1, \dots, n \right\},$$

$$Q_{v'} = (S_3(v') \cup S_5(v')) \cap \left\{ \frac{n}{2} + 1, \dots, n \right\}.$$

1.3.3. Let \mathcal{B} be the collection of all sets

$$B = O \cup P_{v'} \cup Q_{v'}, O \subseteq O_{v'},$$

where
$$|B| > 2$$
.

- 2. For all $i \in \{1, \ldots, \frac{n}{2}\}$, do the following.
 - 2.1. Let $O_i = S_4(4G_i) \cap \left\{ \frac{n}{2} + 1, \dots, n \right\}$, where G_i is the i^{th} row of G.
 - 2.2. Include all O_i such that $|O_i| > 2$ in \mathcal{B} .

Theorem (SBM, S. Rukavina, 202*)

Let $n \in \{24, 32, 40\}$. Denote by $S_i(w)$ the set of positions with the element $i \in \mathbb{Z}_8$ in $w \in \mathbb{Z}_8^n$. Let C be an extremal Type II \mathbb{Z}_8 -code of length n and type $(\frac{n}{2}, 0, 0)$, where $C^{(4)}$ is extremal. Furthermore, let S be the collection of all $S \subseteq \{\frac{n}{2}+1,\ldots,n\}$ such that $|S| \ge 2$. Then $G = S \setminus B$ is the set of all possible $S_4(4u)$ for the code C in the doubling method which lead to an extremal Type II \mathbb{Z}_8 -code C of length C and type C0 is the set obtained by applying Algorithm C1.

Six inequivalent extremal Type II \mathbb{Z}_8 -codes of length 32 are known: $C_{8,32,i}$, $i=1,\ldots,5$ from

M. HARADA, Construction of extremal Type II \mathbb{Z}_{2k} -codes, Finite Fields Appl. 87, 102154 (2023). and D_{32} from

T. A. Gulliver, M. Harada, Extremal Self-Dual Codes over $\mathbb{Z}_6, \mathbb{Z}_8$ and \mathbb{Z}_{10} , AKCE J. Graphs. Combin. 2(1), 11–24 (2005).

Since all of them are of type (16,0,0), we investigated the possibility of constructing new extremal Type II \mathbb{Z}_8 -codes of length 32 by using the introduced doubling method.

Codes $C_{8,32,1}$ and $C_{8,32,2}$ have extremal \mathbb{Z}_4 -residue codes. We applied Algorithm C and found 23067 candidates 4u for a construction of extremal Type II \mathbb{Z}_8 -codes of type (15,1,1) and length 32 from $C_{8,32,1}$ by doubling method. Also, we found 22818 candidates 4u for a construction of extremal Type II \mathbb{Z}_8 -codes of type (15,1,1) and length 32 from $C_{8,32,2}$ by doubling method.

Further, D_{32} has an extremal \mathbb{Z}_4 -residue code. We applied Algorithm C and found 22965 candidates 4u for a construction of extremal Type II \mathbb{Z}_8 -codes of type (15,1,1) and length 32 from D_{32} by doubling method.

Using Magma, we calculated the weight distributions of the corresponding 68850 binary residue codes and obtained that all constructed extremal Type II \mathbb{Z}_8 -codes are distributed into 10 classes:

	i	0	8	12	16	20	24	32
$C_1^{(2)}$	W_i	1	316	6912	18310	6912	316	1
$C_2^{(2)}$	Wi	1	332	6848	18406	6848	332	1
$C_3^{(2)}$	W_i	1	337	6888	18259	7000	283	0
$C_4^{(2)}$	W_i	1	305	6952	18259	6936	315	0
$C_5^{(2)}$	W_i	1	308	6944	18262	6944	308	1
$C_6^{(2)}$	W_i	1	300	6976	18214	6976	300	1
$C_7^{(2)}$	W_i	1	364	6720	18598	6720	364	1
$C_8^{(2)}$	W_i	1	380	7168	17670	7168	380	1
$C_9^{(2)}$	W_i	1	324	6880	18358	6880	324	1
$C_{10}^{(2)}$	Wi	1	340	6816	18454	6816	340	1

For each of the obtained weight distribution classes we give the generator matrix in standard form for the following class representatives:

$$\begin{split} C_1 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,19,21,22\}, \\ C_2 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,18,20,21\}, \\ C_3 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,19,21\}, \\ C_4 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,19,20,21,22\}, \\ C_5 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,18,19,20\}, \\ C_6 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,18,19,20,21,22\}, \\ C_7 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{18,24,25,27\}, \\ C_8 &= C_{8,32,1_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{20,25\}, \\ C_9 &= C_{8,32,2_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,18,19,21\}, \\ C_{10} &= C_{8,32,2_0} \oplus \langle 4u \rangle \,, \; S_4(4u) = \{17,21,24,25\}. \end{split}$$

Those are, respectively:

 $G_1 =$

 $G_2 =$

 $G_4 =$

 $G_3 =$

 $G_6 =$

 $G_5 =$

 $G_8 =$

 $G_7 =$

 $G_{10} =$

 $G_9 =$

According to

M. GRASSL, Code Tables: Bounds on the parameters of various types of codes:

http://www.codetables.de/,

binary [32,15,8] codes are the optimal binary [32,15] codes. Therefore, all constructed extremal Type II \mathbb{Z}_8 -codes of length 32 have optimal binary residue codes.

Theorem (SBM, S. Rukavina, 202*)

There are at least 16 inequivalent extremal Type II \mathbb{Z}_8 -codes of length 32.