МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ

по лабораторной работе №1.01 «Исследование распределения случайной величины»

> Выполнил: Хороших Дмитрий - Р3217 Преподаватель: Коробков Максим Петрович

Содержание

1	Введение	3
2	Результаты прямых измерений и их обработка 2.1 Прямые измерения	4
3	Вывод	6
4	Приложение	6

1. Введение

1. Цель работы:

Вычисление распределения случайной величины на примере измерений амплитуд частот в записи шума и сравнение его с нормальным распределением.

2. Задачи:

- 1. С помощью микрофона записать несколько секунд звукового шума.
- 2. Получить массив амплитуд по всем записываемым частотам.
- 3. Построить гистограмму распределения результатов измерений.
- 4. Вычислить выборочное среднее и выборочное среднеквадратичное отклонение.
- 5. Сравнить гистограмму с графиком функции нормального распределения (функции Гаусса) с таким же как и у экспериментального распределения средним значением и среднеквадратичным отклонением.
- 6. Высчитать среднеквадратичное отклонение среднего значения и доверительный интервал для этого среднего значения.

3. Объект исследования:

5-секундный звуковой файл с шумом (в формате .WAV).

4. Метод экспериментального исследования:

Однократный прямой замер амплитуд набора частот.

5. Рабочие формулы:

Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right) \tag{1}$$

Выборочное среднее (приближение мат. ожидания):

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i \tag{2}$$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
(3)

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N * (N-1)} * \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (4)

Доверительный интервал для среднего значения амплитуды:

$$\Delta t = t_{\alpha,N} * \sigma_{\langle t \rangle} \tag{5}$$

6. Исходные данные:

Файл с полученными амплитудами доступен по ссылке: https://github.com/Dimankarp/Studies/blob/main/Physics/Lab1/measures.txt.

7. Измерительные приборы:

№ п/п	Наименование	Тип	Используемый диапазон	Погрешность прибора
1	Микрофон WH-CH500	Электронный	-	-

2. Результаты прямых измерений и их обработка

2.1. Прямые измерения

Получим список амплитуд (в единицах измерения dBFS) ¹ из звукового файла и отразим его в таблице. В силу большого числа обрабатываемых данных в таблице приведены лишь начальные и конечные измерения. Полная таблица 2.1 доступна по ссылке: https://github.com/Dimankarp/Studies/blob/main/Physics/Lab1/table1.txt.

$N_{ar{0}}$	t_i , dBFS	$t_i - \langle t \rangle_N$, dBFS	$(t_i - \langle t \rangle_N)^2, (dBFS)^2$
1	346.0	96.945	9398.294
2	333.0	83.945	7046.729
3	343.0	93.945	8825.625
•••			
4998	264.0	14.945	223.347
4999	288.0	38.945	1516.697
5000	323.0	73.945	5467.833
	$\langle t \rangle_N = 249.06 \text{ dBFS}$	$\sum_{t=1}^{N} (t_i - \langle t \rangle_N) = -7.63 * 10^{-11} \text{ dBFS}$	$\sigma_N = 56.91 \text{ dBFS}$ $\rho_{max} = 0.007 dBFS^{-1}$

Таблица 1: Результаты прямых измерений

2.2. Построение гистограммы и функции Гаусса

Подготовим данные для построения гистограммы плотности распределения вероятности и графика функции нормального распределения. Аналогично, случаю с прямыми измерениями, таблица 2.2 приведена частично и доступна полностью по ссылке: https://github.com/Dimankarp/Studies/blob/main/Physics/Lab1/table2.txt.

Гистограмма плотности распределения вероятности и график функции нормального распределения приведены на рисунке 1.

 $[\]overline{\ \ }^1{
m dBFS}$ (decibels to full scale) - опорный сигнал (мощность, напряжение) соответствует полной шкале аналогоцифрового преобразователя

Γ раницы интервалов, $dBFS$	ΔN	$\frac{\Delta N}{N*\Delta t}$, $dBFS^{-1}$	t, dBFS	$\rho, dBFS^{-1}$
[79.0;83.47]	2	9e-05	81.235	9e-05
[83.47;87.94]	1	4e-05	85.705	0.00011
[87.94;92.41]	1	4e-05	90.175	0.00014
			•••	
[248.91;253.39]	178	0.00796	251.15	0.00701
[253.39;257.86]	138	0.00617	255.625	0.00696
[257.86;262.33]	203	0.00908	260.095	0.00688
			•••	
[378.59;383.06]	5	0.00022	380.825	0.00048
[383.06;387.53]	2	9e-05	385.295	0.0004
[387.53;392.0]	2	9e-05	389.765	0.00033

Таблица 2: Данные для построения гистограммы

Рис. 1: Сравнение плотности распределения вероятности с функцией Гаусса (функцией нормального распределения)

2.3. Сравнение полученного распределения с нормальным

При визуальном сравнение гистограммы и графика очевидно сходство их общей формы и некоторой симметрии относительно математического ожидания.

Рассмотрим таблицу соответствия долей попавших σ -интервалы амплитуд к соответствующим значениям вероятности нормального распределения.

	Интерва	л, $dBFS$	ΔN	$\frac{\Delta N}{N}$	P
	ОТ	до	<u></u>		
$\langle t \rangle_N \pm \sigma_N$	192.146	305.964	3319	0.664	≈ 0.683
$\langle t \rangle_N \pm 2\sigma_N$	135.237	362.873	4781	0.956	≈ 0.954
$\langle t \rangle_N \pm 3\sigma_N$	78.328	419.783	5000	1.000	≈ 0.997

Таблица 3: Данные для построения гистограммы

Заметим, что значения $\frac{\Delta N}{N}$ доли попавших в интервал амплитуд близко к вероятности, соответствующей нормальному распределению.

2.4. Отклонение среднего значения и его доверительный интервал

Вычислим среднеквадратичное отклонение среднего значения и его доверительный интервал.

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N * (N-1)} * \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} \approx 0.805$$

Табличное значение коэффециент Стьюдента для числа измерений N=5000 и доверительной вероятности $\alpha=0.95$ равно $t_{\alpha,N}\approx 1.9604$.

Таким образом доверительный интервал равен:

$$\Delta t = t_{\alpha,N} * \sigma_{\langle t \rangle} \approx 1.578$$

3. Вывод

Таким образом, в ходе выполнения лабораторной работы удалось, взяв в качестве исходных данных массив амплитуд из аудиозаписи шума, вычислить распределение случайной величины и установить её схожесть с нормальным распределением.

4. Приложение

Проект этой лабораторной работы, содержащий полные таблицы, фалй с Python-кодом, использованным для вычисления, аудиозапись шума и исходны TeX-файлы доступен по ссылке: https://github.com/Dimankarp/Studies/tree/main/Physics/Lab1.