

A Project Report on

Smart Meter Analytics

Submitted for Complete fulfillment of award of

6 WEEKS INTERNSHIP

Certificate

At

Sopra Steria
(A Information technology consulting company, NOIDA)

By

STUDENTS

(Piyush Pandey)(1422210108) (Prince Saini)(1422210117) (Ifteshan Aftab)(1422210067) (Himanshu Goel)(1422210064) (Mohit Sharma)(1422210094)

Under the Guidance of Mrs. Ritika Sharma Sopra Steria

I.T.S ENGINEERING COLLEGE GREATER NOIDA

APRIL 2016

CERTIFICATE

Certified that Piyush, Prince, Ifteshan, Himanshu, Mohit has

carried out the Project work presented in this project entitled

"Smart Meter Analytics." for the award of 6 weeks internship

from Sopra Steria, Gr. NOIDA under my supervision. The

Project embodies result of original work and studies carried out by

Student himself and the contents of the Project do not form the

basis for the award of any other degree to the candidate or to

anybody else.

Date: 17/07/2017

ii

ABSTRACT

This project uses data from the UC Irvine Machine Learning Repository, a popular repository for machine learning datasets. In particular, we will be using the "Individual household electric power consumption Data Set" which I have made available at https://github.com/piyush-its-1/smartmeteranalytic

A **smart meter** is an electronic device that records consumption of electric energy in intervals of an hour or less and communicates that information at least daily back to the utility for monitoring and billing. **Smart meters** enable two-way communication between the **meter** and the central system.

Smart meters use a secure national communication network (called the DCC) to automatically and wirelessly send your actual energy usage to your supplier. This means households will no longer rely on estimated energy bills or have to provide their own regular readings.

Smart meters will also come with an in-home display. This display gives the household real-time usage info, including kWh use and cost.

It can helps them monitor their data-in-motion from operated assets in real-time and compare that to deep historical analysis on past trends. That data discovery powers actionable intelligence for remote operations support, and also delivers real-time insights to: increase grid reliability, balance loads, reduce outages, and detect fraud.

ACKNOWLEDGEMENT

It gives us a great sense of pleasure to present the report of the Project undertaken

during . First and foremost We wish to thank our Guide Prof Ashish

Kumar (Head Of Department of Computer Science and Engineering , I.T.S.

Engineering College) and Our Mentor Mrs. Ritika Sharma (Sopra Steria) for

their kind blessings to us. They allowed us the freedom to explore, while at the

same time provided us with invaluable sight without which this Project would not

have been possible.

We also do not like to miss the opportunity to acknowledge the contribution of

faculty members Prof Hardesh Kumar Pachaury (CSE) and all of the Department

for their kind assistance and cooperation during the development of our project.

Piyush Pandey (1422210108)

Prince Saini (1422210117)

Ifteshan Afttab (1422210067)

Himanshu Goel (1422210064)

Mohit Sharma (1422210094)

iv

TABLE OF CONTENTS

CHAPTER NO.		R NO. TITLE	PAGE NO.
		ABSTRACT	iii
		LIST OF FIGURES	viii
		LIST OF SYMBOLS, ABBREVIATIONS	ix
1.	INT	RODUCTION	1
2.	SMART METER		06
	2.1	OVERVIEW	06
	2.2	HISTORY	10
	2.3	PURPOSE	10
	2.4	IMPLEMENTATION EXAMPLE	12
		2.4.1 AUSTRALIA	12
		2.4.2 CANADA	17
	2.5	VIEW OF SMART METER	19
3.	SMART METER APPLICATIONS		20
	3.1	ELECTRIC SMART METER	20
	3.2	WATER SMART METER	24
	3.3	GAS SMART METER	27

	3.4	HEAT ALLOCATION	29
4.	MA	CHINE LEARNING	31
	4.1	THEORY	33
	4.2	HISTORY AND RELATIONSHIP TO OTHER FIELD	35
		4.2.1 RELATION TO STATISTICS	38
	4.3	APPLICATION	38
5.	CO	NCLUSION	41
6.	REFRENCES		43

LIST OF FIGURES

СНАРТЕ	ER NO. TITLE PAG	SE NO.
1	Fig 1.1: Smart Meter	6
2	Fig 2.1: Architecture of Smart Meter Data Analytics System	n 9
3	Fig 2.2: View Of Smart Meter	19
3	Fig 3.1: Electric Smart Meter	20
3	Fig 3.2: Water Smart Meter	24
3	Fig 3.3: Water Consumption Graph	26
3	Fig 3.4 : Gas Smart Meter	27
3	Fig 3.5: Heat Allocation Meter	29
4	Fig 4.1: Machine Learning(1)	31
4	Fig 4.2 : Machine Learning(2)	34

LIST OF SYMBOLS, ABBREVIATIONS

S.No.	Symbol/ Abbreviations	Description
1.	SQL	Sequential Query Language
2.	RDBMS	Relational Database
		Management System
3.	OP	Output
4.	IP	Input