Greedy Algorithms

19CSE302: Design and Analysis of Algorithms

Optimization Problems

- Optimization problems
 - Problems that involve searching through set of configurations
 - Maximize or minimize objective function given some set of constraints
- Greedy Solution
 - Choose best possible or well understood configuration
 - Proceed with best available configuration at each step
 - Usually local optimum is chosen

Greedy Choice Property

- Global optimal solution can be reached by a series of locally optimal choices
 - Choices available currently
 - If greedy choice property satisfied, greedy strategy is optimal and correct
- Example of Greedy Algorithms
 - Path Finding
 - Coin changing problem
 - Scheduling problem
 - Knapsack problem

Fractional Knapsack

 Determine the amount of each item to take so that it fits the sack, and total utility is maximized

19CSE302: Design and Analysis of Algorithms

The optimization problem

- Given set S of n items, where each item i has
 - Benefit $b_i >= 0$ and Weight w_i
- We can take a fraction x_i of each item i
- We have knapsack that can carry weight atmost
- Goal Maximize total benefit s.t $\sum_{i \in S} x_i \leq W$
- Objective function to maximize

$$\sum_{i \in S} b_i (x_i / w_i)$$

The Greedy Solution

- For each item *i* in S, give a value $v_i = b_i/w_i$
- Let current weight of knapsack be w
 - Remove from S an item with highest value v_i
 - Let a be min{w_i, W-w}
 - Check if the chosen object can fit the knapsack
 - set x_i to a, and increment w by a
 - Stop when $w \ge W$ or no more items in sack to add

- Suppose you have a knapsack with capacity 10 and there are 4 items:
 - item 1 has weight 6 and benefit 9
 - item 2 has weight 3 and benefit 6
 - item 3 has weight 2 and benefit 8
 - item 4 has weight 2 and benefit 2
- What is the best set of items for the fractional knapsack problem?

Proof of Correctness

- Assume there are two objects i and j
 - Value of i less than value of j
 - $x_i < w_i$ and $x_j > 0$
 - Let $y = \min\{w_i x_i, x_i\}$
- Can replace amount y of item j with equal amount of i
 - Increase total benefit without increasing weight
 - Can correctly compute optimal amounts for items by greedily choosing items with largest value index

- Let $S = \{a,b,c,d,e,f,g\}$ be a collection of objects with benefit-weight values as follows
 - a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f:(7,1), g: (9,6)
- What is an optimal solution to the fractional knapsack problem for S assuming we have a sack that can hold objects with total weight 18

Task Scheduling

- Given a set of n tasks T
 - Each task i has start time s_i and end time e_i
 - $s_i < e_i$ and task is guaranteed to finish by e_i
 - Each machine can execute only one task at a time
- •Goal:
 - Schedule all tasks in T on the fewest machines possible in a way that is non conflicting
- Similar to scheduling meetings, classes in limited number of rooms

Greedy Strategy

- Take the task i with smallest start time
 - If it does not conflict with task on machine j (initially 0) schedule on machine j
 - Else add a new machine and schedule task i
- Repeat this greedy process till all tasks are scheduled
- Running time O(nlogn)
- Proof by contradiction
 - Show the tasks cannot be scheduled in k-1 machines in a non conflicting way

- Solve the task scheduling problem for the following set of tasks
 - The tasks are specified as pairs of start times and end times
 - $T = \{(1,2), (1,3), (1,4), (2,5), (3,7), (4,9), (5,6), (6,8), (7,9)\}$

Activity Selection Problem

- Schedule several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities
 - have a set $S = \{a_1, a_2, ..., a_n\}$ of n proposed activities
 - activity a, has a start time s, and a finish time f, where 0 $\leq S_i < f_i < \infty$
 - Activities a_i and a_i are compatible if the intervals [s_i,f_i) and $[s_i, f_i]$ do not overlap.
- Select a maximum-size subset of mutually compatible activities
 19CSE302: Design and
 Amrita School of Engineering

Analysis of Algorithms

Amrita Vishwa Vidyapeetham

Sample problem

i	1	2	3	4	5	6	7	8	9 8 12	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

19CSE302: Design and Analysis of Algorithms

Greedy Solution

- Order the tasks by finish time
 - Choose the task with earliest finishing time and schedule it.
 - The next task is the one which does not start earlier that the current task
- Theorem
 - Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Huffman Coding

- It is an encoding algorithm for encoding text
 - Characters are stored with their probabilities or frequency of occurrence
- Codes can be of variable or fixed size (variable more efficient)
 - Number of bits of the coded characters is based on frequency
 - Shortest code is assigned to most frequently occurring character.
- Can use a greedy algorithm to find an efficient code for a text file

Huffman Coding problem

- Goal : Minimize total number of bits needed to encode a file
- For Huffman coding, a binary tree is constructed
 - Leaves are characters to be encoded
 - Nodes contain occurrence probabilities of the characters belonging to the subtree.
 - 0 and 1 are assigned to the branches of the tree arbitrarily
 - different Huffman codes possible for the same data.
- The number of bits B(T) to encode a file T is

$$B(T) = \sum_{c \in C} freq(c).d_T(c)$$

 $d_{\tau}(c)$ is the length of the codeword for character c

19CSE302: Design and Analysis of Algorithms

Huffman Coding

- Each character is assigned a probability
 - Characters form leaves
- Characters with lowest probabilities combined in first binary tree
 - Combined probability is probability at parent node
- Each edge to the parent is assigned a bit, either 1 or 0 arbitrary
 - This is repeated (lowest two nodes combined) till all are combined at root
- e.g P(A) = 0.16, P(B) = 0.51, P(C) = 0.09, P(D) = 0.13

Sample

19CSE302: Design and Analysis of Algorithms

Amrita Vishwa Vidyapeetham

Consider the following alphabet $A = \{a, c, e, h, r, s, t, y\}$. Let the occurence probability be - P(a) = 0.2, P(c) = 0.12, P(e) = 0.3, P(h) = 0.04, P(r) = 0.1, P(s) = 0.08, P(t) = 0.11, P(y) = 0.05.

 Determine the Huffman codes for A, and encode the word "heart"

