Cluster Spatial Capture-Recapture Models for Autonomous Recording Units

Ben C. Augustine¹, J. Andrew Royle², Richard B. Chandler³, and Angela K. Fuller⁴

¹ U.S. Geological Survey John Wesley Powell Center and Cornell University
 ² U.S. Geological Survey, Patuxent Wildlife Research Center
 ³Warnell School of Forestry and Natural Resources, University of Georgia
 ⁴ U.S. Geological Survey, NY Cooperative Fish and Wildlife Research Unit, Cornell University

Autonomous Recording Units (ARUs)

- Many species difficult to monitor using cameras or DNA, but easy to hear
- ARU Data
 - Species-classified detections
 - Individual-classified detections
 - Limited by species/technology
- ARU Analyses
 - Occupancy
 - Density (limited)
 - Distance Sampling
 - Spatial capture-recapture (SCR)

SCR ARU Density Estimation – Challenges

- Variable Individual Identity
 - Known
 - Unknown
 - Partial

- Individual calls clustered in space
- Stationary and mobile calling
- Informative of individual ID

Unknown individual call rate

SCR ARU Density Estimation – Challenges

Frequency (Hz)

Frequency (Hz)

5.000

10.000

Time (ms)

15.000

- Partial individual identity
 - Individual ID can be obtained from call spectrograms
 - Spectrogram features can be treated as partial identities

Can we exploit to inform individual ID?

DOI: 10.1111/2041-210X.13520 Methods in Ecology and Evolution RESEARCH ARTICLE Unsupervised acoustic classification of individual gibbon females and the implications for passive acoustic monitoring Dena J. Clink Holger Klinck 🗓 Frequency (Hz) 10,000 Time (ms) Time (ms)

Frequency (Hz)

Time (ms)

SCR ARU Density Estimation – Current Solutions

	Known ID	Unknown ID	Partial ID
Stationary Callers	Stevenson et al. (2021) Estimate call rate from detection data	Stevenson et al. (2015) Requires call rate estimate Does not use spatial info to inform ID	NA
Mobile Callers	NA	NA	NA

• Objective: Develop models and estimation algorithms for these scenarios

Cluster SCR – Model Structure

- Abundance
 - N ~ Binomial(ψ , M)
- Individual activity centers
 - $s_i \sim Uniform(S)$
- Cluster size
 - $c_i \sim Poisson(\lambda^C)$
- Cluster dispersion
 - u₁: location of call 1
 - Movement: $u_1 \sim BVN(s_i, \sigma^C)$
 - No movement: $u_1 = s_i \ (\sigma^C = 0)$

Thomas Point Process

Cluster SCR – Model Structure

- Observation model
- y_{lj} : the received sound level of call l at ARU j
- Expected sound level:
 - $\mu_{li} = B_0 + B_1 \times d(u_l, x_i)$

- Minimum sound level, α
- Indicator for "exceeds α ": δ_{lj}
- $y_{lj} \sim (Normal(\mu_{lj}, \sigma^d))^{\delta_{lj}} \times \left(\Phi\left(\frac{\alpha \mu_{lj}}{\sigma^d}\right)\right)^{1 \delta_{lj}}$

Linear Sound Attenuation with Error

Probability of Nondetection

Distance

Cluster SCR – Model Structure

Partial Identity Submodel

- "True features" measured at ARU with error
- $G^{true}_{im} \sim Normal(\mu^G_{m'}, \sigma^G_m)$
 - for i = 1,..., N individuals
 - $m = 1, ..., n^{cov}$ covariates
- $G^{obs}_{lim} \sim Normal(G^{true}_{im}, \sigma^{obs})$
 - for call I belonging to individual i
 - j = 1,..., J ARUs

Partial ID Covariates in Feature Space

Simulation Study

- Scenarios
 - Stationary: known vs. unknown ID
 - Mobile: known vs. unknown ID
 - Mobile: known vs partial ID

- Can we estimate density precisely in these scenarios?
 - With a small number of ARUs?
 - Cluster designs
 - Coefficient of variation for abundance (N CV)

- Is estimation computationally feasible?
 - Run time
 - Abundance effective sample size (N ESS)

Simulation Scenarios - Stationary

N = 50, n (detected) = 25

•
$$N = 50$$

- $\lambda^{C} = 10$
- 6 clusters of 9 ARUs
- Known ID
 - N CV: 16.2%
 - Mean chain runtime: 39 minutes
 - N ESS: 27,900
- Unknown ID
 - N CV: 17.2%
 - Mean chain runtime: 6.1 hours
 - N ESS: 16,550

Simulation Scenarios - Mobile

- N = 35
- $\lambda^{C} = 20$
- $\sigma^{c} = 0.25$
- 4 clusters of 16 ARUs
- Known ID
 - N CV: 16.8%
 - Mean chain runtime: 5.9 hours
 - N ESS: 1,099
- Unknown ID
 - N CV: 18.8%
 - Mean chain
 - runtime: 23.0 hours
 - N ESS: 10,260

Simulation Scenarios – Mobile, Partial ID

- N = 49
- $\lambda^{C} = 20$
- $\sigma^{c} = 0.50$
- 4 clusters of 16 ARUs
- 3 partial ID covariates >
- Clink and Klinck (2021)
 - 177 Mel-frequency cepstral coefficients (MFCCs) provided 71% classification accuracy

Simulation Scenarios – Mobile, Partial ID

- N = 49
- $\lambda^{C} = 20$
- $\sigma^{c} = 0.50$
- Known ID
 - N CV: 15.6%
 - Mean chain runtime: 5.6 hours
 - N ESS: 2,536
- Partial ID
 - N CV: 16.8%
 - Mean chain runtime: 2.6 days
 - N ESS: 19,166

Summary

- Can estimate density estimation with:
 - Known, unknown and partially-known individual ID
 - Stationary or mobile callers
 - No independent call rate or movement data
- Parameter estimates precise with not many individuals/calls
 - Fewer required calls, less potential for movement
- Not much precision lost without known individual ID
 - In scenarios considered
- Long runtimes
 - Limits the number of individuals and calls
 - Parallel processing

Future Directions

- Apply cluster SCR methods to real acoustic data set
- Evaluate study designs
 - Observation models
 - ID requirements
 - ARU placement
- More complex movement models
- Other cluster applications
 - Group or pack living species
 - Others?

Acknowledgements

