Historische Entwicklung

- Computer History Museum Mountain View, CA, USA
- https://computerhistory.org/
- Explore/Timelines
- Timeline of Computer History
- Filter by Category Computers

Datensammlung

		Price [USD]		
Computer	Year	Introductory	2024	FLOPS
ENIAC	1946	486 804	8 249 375	357
IBM 650	1954	150000	1595260	100
CDC 6600	1964	8500000	84839628	$3.3 \cdot 10^9$
ILLIAC IV	1972	30 000 000	225121890	$50.0\cdot10^6$
IBM 5150	1981	1565	5548	$47.0\cdot10^6$
Intel Paragon	1993	1495000	3233404	$5.0 \cdot 10^9$
PowerMac G5	2003	2000	3395	$4.7\cdot 10^9$
Raspberry Pi	2012	35	48	$41.0\cdot 10^6$
AMD Radeon RX 7600	2023	269	277	$21.5\cdot10^{12}$

Quellen für Datensammlung

- Goldstine, Goldstine, 1966. doi: 10.1109/85.476557
- Martin, 1995. doi: 10.1109/44.476631
- Weik, 1961. www.jstor.org/stable/45363261
- Nelson, 2005. doi: 10.1002/cpe.890
- Ibbett, 1982. doi: 10.1007/978-1-4757-6715-5_6
- Spicer, 2000. web.archive.org/web/20170605132007/
- http://www.drdobbs.com/control-data-6600-the-supercomputer-arri/184404102
- Hockney, Jesshope, 1988. ISBN: 0852748116
- Slotnick, 1982. 10.1109/MAHC.1982.10003
- Qin et al., 2018. doi: 10.1007/978-981-13-0701-0_1
- Cooper, 2021. doi: 10.1093/itnow/bwab033
- www.computerhistory.org/collections/catalog/X1644.99
- en.wikipedia.org/wiki/Power_Mac_G5
- top500.org/system/173225
- en.wikipedia.org/wiki/Raspberry_Pi#History
- en.wikipedia.org/wiki/FLOPS
- Chien, 2022. doi: 10.1017/9781009000598

Price

FLOPS

Price per FLOPS

ENIAC (1946) vs ARM Cortex M3 (2004)

Dampfschiff Sirius

- 4. April 1838: Cork, Irland
- 23. April 1838: Manhattan, USA
- Dauer: 18 Tage und 4 Stunden (= 436 h)

Überschallflugzeug Concorde

- 1976 2003: Paris, New York
- Dauer: 3,5 h

Long-Term Advanced Propulsion Concepts and Technologies

- www.esa.int/techresources/lapcat
- Totale Kosten: 7,1 M Euro
- Start: 15. April 2005
- Dauer: 36 Monate

- www.esa.int/techresources/lapcat_II
- Totale Kosten: 10,4 M Euro
- Start: 1. Oktober 2008
- Dauer: 48 Monate

Long-Term Advanced Propulsion Concepts and Technologies

- Ziel: Brüssel Sydney in 2 h bis 4 h
- Geschwindigkeit: 6 000 km/h
- Entfernung Cork New York: 5000 km
- Geschätzte Dauer: 0,8 h

Instruction Set Architecture (ISA)

Examples of important ISA families

ISA	Supporters	Application Areas
x86	AMD, Intel	laptops, PCs, servers
ARM	Apple, ARM, MediaTek, Qualcomm, Samsung	smart devices, smartphones, IoT
RISC-V	RISC-V International	driven by collaborative community

Instruction Set Compatibility:
Programs run portably across many computers

RISC-V Greencard

Category

Arithmetic

Logical

ADD Immediate

Load Upper Imm

XOR Immediate

OR Immediate

Add Upper Imm to PC

SUBtract

XOR

OR

ADDI

SUB

LUI

XOR

OR

ORI

XORI

rd, rs1, imm

rd, rs1, rs2

rd, rs1, rs2

rd, rs1, imm

rd,rs1,rs2

rd, rs1, imm

rd, imm

AUIPC rd, imm

Fmt

CL

CI

CL

C.LW

C.LWSP

C.FLW

C.FLWSP

MoVe (uses ADDI rd, rs, 0)

RETurn (uses JALR x0,0,ra)

Optional Compressed (16-bit) Instruction Extension: RV32C

rd', rs1', imm

rd',rs1',imm

RVC

rd,imm

rd,imm

R

LW

LW

FLW

FLW

MV rd,rs

RISC-V equivalent

rd, sp, imm*4

rd, sp, imm*8

rd',rs1',imm*4

rd',rs1',imm*8

RET

http://www.riscvbook.com/

ADDIW rd, rs1, imm

SUBW

Category

Loads

rd, rs1, rs2

Name

Load Word

Load Word SP

Float Load Word SP

Float Load Word

Sequenz von Befehlen

```
int foo(int x, int y, int z)
x in x2, y in x3, z in x4
foo:
add x5, x2, x3  # t = x+y
sub x6, x5, x4  # r = t-z
add x6, x6, x2  # r = r+x
add x6, x6, x3  # r = r+y
```

Befehlsausführung

n Anzahl Befehle

<u>k = 7 Teilaufgaben einer Befehlsausführung</u>

- 1. Befehl aus Speicher laden
- 2. Befehlstyp feststellen
- 3. Lade Operanden für Befehl
- 4. Führe Operation mit Operanden aus
- 5. Lade von Speicher, falls erforderlich
- 6. Schreibe Ergebnis in Speicher
- 7. Setze den Befehlszähler

Hardware zur Befehlsausführung

Pipelining (Teil 1)

- Sei G = (V, E) ein gerichteter Graph.
- Knoten $v \in V$ repräsentiert Teilaufgabe.
- Kante u → v ∈ E repräsentiert
 Abhängigkeit: Teilaufgabe u muss
 beendet sein, bevor Teilaufgabe v
 begonnen werden kann.

Pipelining (Teil 2)

Ohne Pipelining

Pipelining (Teil 3)

- n Instanzen eines sequentiellen G mit k
 Teilaufgaben müssen abgearbeitet werden.
- Alle Teilaufgaben benötigen die gleiche Zeit t zur Ausführung.
- Unterschiedliche Teilaufgaben von unterschiedlichen Instanzen können parallel ausgeführt werden.
- Die gleiche Teilaufgabe von unterschiedlichen Instanzen können <u>nicht</u> parallel ausgeführt werden.

Pipelining (Teil 4)

Pipelining (Teil 5)

Zeit für n Instanzen ohne Pipelining:

Zeit für n Instanzen mit Pipelining:

Beschleunigung:

Zylinerkondensator

Koaxialkabel im Querschnitt

Pycлан Измайлов via Wikimedia Commons

Zylinderkoordinaten

$$x = r \cos \varphi$$
$$y = r \sin \varphi$$
$$z = z$$

$$\frac{\partial(x,y,z)}{\partial(r,\varphi,z)} = \begin{bmatrix} \cos\varphi & -r\sin\varphi & 0\\ \sin\varphi & r\cos\varphi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\left| \det \left(\frac{\partial(x, y, z)}{\partial(r, \varphi, z)} \right) \right| = r$$

$$dV = r dr d\varphi dz$$

Kugelkoordinaten

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = \begin{bmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi\\ \cos\theta & -r\sin\theta & 0 \end{bmatrix}$$

$$\left| \det \left(\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)} \right) \right| = r^2 \sin \theta$$

$$dV = r^2 \sin \theta \, dr \, d\theta \, d\varphi$$

Miniaturisierung

 Kapazität eines Zylinderkondensators ist proportional zu seiner Länge:

$$C = \frac{Q}{U} = 2\pi\varepsilon\ell / \ln\frac{r_2}{r_1}$$

 Zylinderkondensator ist einfaches Modell, das in der Praxis <u>nicht</u> verwendet wird. Allerdings sind Eigenschaften realer Komponenten ebenso abhängig von der Länge.

Anzahl der Transistoren

Taktfrequenz

