Module 1 Homework

ISE-529 Predictive Analytics Chinmay Gherde

```
In [1]:

# importing libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1. For this problem, we will be using the file "Cars Data.csv"

a. Load the file Cars Data.csv into a dataframe named cars and display the first 10 rows of the dataframe.

```
In [2]:
#loading the file from local path

cars = pd.read_csv(r'C:\Users\Chinmay\Downloads\cars.csv', header=3, index_col=None)
cars.head(10)
```

Out[2]:

	Make	Model	DriveTrain	Origin	Туре	Cylinders	Engine Size (L)	Horsepower	Invoice	Len
0	Acura	3.5 RL 4dr	Front	Asia	Sedan	6.0	3.5	225	\$39,014	
1	Acura	3.5 RL w/Navigation 4dr	Front	Asia	Sedan	6.0	3.5	225	\$41,100	
2	Acura	MDX	All	Asia	SUV	6.0	3.5	265	\$33,337	
3	Acura	NSX coupe 2dr manual S	Rear	Asia	Sports	6.0	3.2	290	\$79,978	
4	Acura	RSX Type S 2dr	Front	Asia	Sedan	4.0	2.0	200	\$21,761	
5	Acura	TL 4dr	Front	Asia	Sedan	6.0	3.2	270	\$30,299	
6	Acura	TSX 4dr	Front	Asia	Sedan	4.0	2.4	200	\$24,647	
7	Audi	A4 1.8T 4dr	Front	Europe	Sedan	4.0	1.8	170	\$23,508	
8	Audi	A4 3.0 4dr	Front	Europe	Sedan	6.0	3.0	220	\$28,846	
9	Audi	A4 3.0 convertible 2dr	Front	Europe	Sedan	6.0	3.0	220	\$38,325	
4										•

Answer 1a complete

b. Use the describe() function to produce a numerical summary of the variables in the dataset. (10 points)

In [3]:

cars.describe()

Out[3]:

	Cylinders	Engine Size (L)	Horsepower	Length (IN)	MPG (City)	MPG (Highway)	Weight (LBS)	
count	426.000000	428.000000	428.000000	428.000000	428.000000	428.000000	428.000000	
mean	5.807512	3.196729	215.885514	186.362150	20.060748	26.843458	3577.953271	
std	1.558443	1.108595	71.836032	14.357991	5.238218	5.741201	758.983215	
min	3.000000	1.300000	73.000000	143.000000	10.000000	12.000000	1850.000000	
25%	4.000000	2.375000	165.000000	178.000000	17.000000	24.000000	3104.000000	
50%	6.000000	3.000000	210.000000	187.000000	19.000000	26.000000	3474.500000	
75%	6.000000	3.900000	255.000000	194.000000	21.250000	29.000000	3977.750000	
max	12.000000	8.300000	500.000000	238.000000	60.000000	66.000000	7190.000000	
4							•	

Answer 1b complete

c. Use the groupby() and size() functions to create a table of the number of observations in the dataset of each car Make (e.g., Acura, Audi, etc.) (15 points)

In [4]:

```
grouped_by_make_size = cars.groupby(["Make"]).size()
print(grouped_by_make_size)
```

Make	
Acura	7
Audi	19
BMW	20
Buick	9
Cadillac	8
Chevrolet	27
Chrysler	15
Dodge	13
Ford	23
GMC	8
Honda	17
Hummer	1
Hyundai	12
Infiniti	8
Isuzu	2
Jaguar	12
Jeep	3
Kia	11
Land Rover	3
Lexus	11
Lincoln	9
MINI	2
Mazda	11
Mercedes-Benz	26
Mercury	9
Mitsubishi	13
Nissan	17
Oldsmobile	3
Pontiac	11
Porsche	7
Saab	7
Saturn	8
Scion	2
Subaru	11
Suzuki	8
Toyota	28
Volkswagen	15
Volvo	12
dtype: int64	

Answer 1c complete

d. Use the corr() function to create a correlation matrix of the numeric attributes in the cars dataset. Use the "pearson" correlation coefficient algorithm (15 points)

In [5]:

In order to create correlation matrix, only numerical attributes will have to be consider #Checking the dtypes of the data

cars.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 428 entries, 0 to 427 Data columns (total 15 columns):

D G C G	COTA (COCAT T.		
#	Column	Non-Null Count	Dtype
0	Make	428 non-null	object
1	Model	428 non-null	object
2	DriveTrain	428 non-null	object
3	Origin	428 non-null	object
4	Туре	428 non-null	object
5	Cylinders	426 non-null	float64
6	Engine Size (L)	428 non-null	float64
7	Horsepower	428 non-null	int64
8	Invoice	428 non-null	object
9	Length (IN)	428 non-null	int64
10	MPG (City)	428 non-null	int64
11	MPG (Highway)	428 non-null	int64
12	MSRP	428 non-null	object
13	Weight (LBS)	428 non-null	int64
14	Wheelbase (IN)	428 non-null	int64
dtype	es: float64(2), in	nt64(6), object(7)
memor	ry usage: 50.3+ Ki	3	

H In [6]:

```
correlation_matrix = cars.corr(method="pearson")
print(correlation_matrix)
```

```
Engine Size (L)
                 Cylinders
                                               Horsepower
                                                           Length (IN)
Cylinders
                   1.000000
                                    0.908002
                                                 0.810341
                                                               0.547783
Engine Size (L)
                  0.908002
                                    1.000000
                                                 0.787435
                                                               0.637448
Horsepower
                  0.810341
                                    0.787435
                                                 1.000000
                                                               0.381554
                                    0.637448
Length (IN)
                  0.547783
                                                 0.381554
                                                               1.000000
MPG (City)
                  -0.684402
                                    -0.709471
                                                -0.676699
                                                              -0.501526
MPG (Highway)
                  -0.676100
                                    -0.717302
                                                -0.647195
                                                              -0.466092
                                    0.807867
Weight (LBS)
                  0.742209
                                                 0.630796
                                                               0.690021
Wheelbase (IN)
                  0.546730
                                    0.636517
                                                 0.387398
                                                               0.889195
                 MPG (City)
                              MPG (Highway)
                                              Weight (LBS)
                                                             Wheelbase (IN)
                                                  0.742209
Cylinders
                   -0.684402
                                  -0.676100
                                                                   0.546730
Engine Size (L)
                                                  0.807867
                                                                   0.636517
                   -0.709471
                                  -0.717302
Horsepower
                   -0.676699
                                  -0.647195
                                                  0.630796
                                                                   0.387398
Length (IN)
                   -0.501526
                                  -0.466092
                                                  0.690021
                                                                   0.889195
                                   0.941021
MPG (City)
                   1.000000
                                                 -0.737966
                                                                  -0.507284
MPG (Highway)
                   0.941021
                                   1.000000
                                                 -0.790989
                                                                  -0.524661
                                  -0.790989
                                                  1.000000
Weight (LBS)
                   -0.737966
                                                                   0.760703
Wheelbase (IN)
                   -0.507284
                                  -0.524661
                                                  0.760703
                                                                   1.000000
```

In [7]: ▶

```
# In otrder to better visualize this:
sns.heatmap(correlation_matrix, annot=True)
```

Out[7]:

<AxesSubplot:>

Answer 1d complete

- e. Add a new attribute to the dataframe called HP_Groups which has one of the following values:
 - "Low": Horsepower is <= 200
 - "Medium": Horsepower is > 200 and <= 300
 - "High": Horsepower is > 300

Hint: create a function that takes a number and return one of the three bins and then use the apply method

```
In [8]:

#Creating a function first

def groups(hp):
    if hp <= 200:
        return "Low"
    elif hp>200 and hp<=300:
        return "Medium"
    elif hp>300:
        return "High"
```

In [9]:

```
cars["HP_Groups"] = cars["Horsepower"].apply(groups)
```

```
In [10]:
```

```
cars[["Horsepower", "HP_Groups"]].head()
```

Out[10]:

	Horsepower	HP_Groups
0	225	Medium
1	225	Medium
2	265	Medium
3	290	Medium
4	200	Low

Answer 1e complete

f. Using a Seaborn, create side-by-side boxplots showing the MPG (City) for each of the three HP_Groups

```
In [11]:

plt.figure(figsize=[20,10])
sns.boxplot(x=cars["HP_Groups"], y=cars["MPG (City)"])
plt.plot()
```

Out[11]:

[]

Answer 1f complete

2. Function Definition

A common metric of health is the Body Mass Index (BMI), which is calculated simply as the weight in kilograms divided by the height in meters squared (BMI = kg/m2)

a. Create a function called calculate_bmi() that takes height in inches and weight in pounds as parameters and returns the BMI. Use the conversions inches * 0.025 = m and pounds * 0.453592 = kg. Test the function with a height of 72" and a weight of 190 lbs. (15 points)

```
In [12]:

def calculate_bmi(height, weight):
    height_m = height*0.025
    weight_kgs = weight*0.45392
    bmi = weight_kgs/(height_m)**2
    return bmi
In [13]:
```

```
height = 72
weight = 190
calculate_bmi(height, weight)
```

Out[13]:

26.618765432098762

Answer 2a complete

- b. General standard categories for BMI are given by:
 - BMI < 18.5: Underweight
 - BMI 18.5 24.9: Normal weight
 - BMI 25 29.9: Overweight
 - · BMI 30 or greater: Obese

Create a function called determine_weight_category that takes height in inches and weight in pounds as parameters and returns the category the person falls into. Test your function with the following values: (15 points)

- · Height 60" / Weight 160 lbs
- Height 68" / Weight 160 lbs
- · Height 72" / Weight 160 lbs

In [14]: ▶

```
def determine_weight_category(height, weight):
    bmi = calculate_bmi(height, weight)
    if bmi<18.5:
        return "Underweight"
    elif bmi>=18.5 and bmi<=24.9:
        return "Normal weight"
    elif bmi>=25 and bmi<=29.9:
        return "Overweight"
    elif bmi>=30:
        return "Obese"
```

```
In [15]:
```

```
case1 = determine_weight_category(60,160)
case2 = determine_weight_category(68,160)
case3 = determine_weight_category(72,160)

print(case1)
print(case2)
print(case3)
```

Obese Overweight Normal weight

Answer 2b complete

c. You want to create a plot of the BMI for a 180-pound individual at various heights from 60" to 84" (in one-inch increments). Create a vector 'heights' to hold the various heights from 60 to 84 and write a for-loop to call your calculate_bmi() function for each value of heights. Then, use these two vectors to create a scatter plot showing the relationship. Give the chart a title of 'BMI at Various Heights for a 180-Pound Individual'. For full credit, label the axes and give the chart a title.

```
In [44]:
heights_vector = np.arange(60,84+1,1)
print(heights_vector)

[60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84]

In [45]:
weight_vector = 180

bmi_vector = []
for h in heights_vector:
    ans = calculate_bmi(h, weight_vector)
    bmi_vector.append(ans)
```

In [49]:

```
plt.scatter(x=heights_vector, y=bmi_vector)
plt.title("BMI at various Heights for a 180-Pound individual")
plt.xlabel("Height from 60 inches-84 inches")
plt.ylabel("BMI")
plt.plot()
```

Out[49]:

[]

Answer 2c complete

d. Repeat part c from above but without using a loop

```
In [63]:
## Using the map function
weight_vector_2 = [weight_vector]*25
```

bmi_vector_2 = list(map(calculate_bmi, heights_vector, weight_vector_2))

In [66]: ▶

```
print(bmi_vector_2)
```

[36.3136, 35.13274926095135, 34.00857440166493, 32.93750566893423, 31.916249 99999994, 30.941765680473374, 30.01123966942148, 29.122067275562486, 28.271 833910034598, 27.45829867674858, 26.679379591836735, 25.9331402499504, 25.21 77777777776, 24.531611934696937, 23.87307523739956, 23.240704, 22.63313019 3905817, 22.049074042840275, 21.487337278106505, 20.946796987662232, 20.426 4, 19.925157750342937, 19.44214158239143, 18.976478443896063, 18.52734693877 5512]

```
In [67]: ▶
```

```
plt.scatter(x=heights_vector, y=bmi_vector_2)
plt.xlabel("Height from 60 inches-84 inches")
plt.ylabel("BMI")
plt.title("BMI at various Heights for a 180-Pound individual")
plt.plot()
```

Out[67]:

[]

Answer 2d complete

3) Demographics Dataset Analysis

a. For this problem, load the file "demographics.csv" into a DataFrame called "demos". Uset the "type" function to verify that it is a dataframe

```
In [16]:

demos = pd.read_csv(r'C:\Users\Chinmay\Downloads\demographics.csv')
demos.head()
```

Out[16]:

	CONT	NAME	Region	Population	Urban Pop Percentage	AdultLiteracyPct	MaleSchoolPct	Female
0	91	BAHAMAS	AMR	323063	0.90	NaN	0.85	
1	91	BELIZE	AMR	269736	0.49	0.77	0.98	
2	91	CANADA	AMR	32268243	0.81	NaN	1.00	
3	91	COSTA RICA	AMR	4327228	0.62	0.96	0.90	
4	91	CUBA	AMR	11269400	0.76	1.00	0.96	

In [18]:
print(type(demos))

<class 'pandas.core.frame.DataFrame'>

Answer 3a complete

b. For each continent, summarize the average (mean) city size

```
In [19]:

summary_avg_size = demos.groupby(["Region"]).agg({"Population":["mean"]})
print(summary_avg_size)
```

Population mean Region AFR 1.604529e+07 AMR 2.532383e+07 EMR 2.561912e+07 EUR 1.930423e+07 SEAR 1.505935e+08 WPR 6.178509e+07

Answer 3b complete

c. Find the size of the largest country in each continent

•

In [124]: ▶

```
largest_country_cont = demos[['Region','NAME','Population']].sort_values('Population',ascen
largest_country_cont
```

Out[124]:

	NAME	Population
Region		
AFR	NIGERIA	131529669
AMR	UNITED STATES	298212895
EMR	PAKISTAN	157935075
EUR	RUSSIA	143201572
SEAR	INDIA	1103370802
WPR	CHINA	1323344591

Answer 3c complete

d. What is the average percentage of males and females that attend school in each continent?

```
In [20]:
```

```
avg_school_attendance = demos.groupby(["Region"]).agg({"MaleSchoolPct":['mean'], "FemaleSch
print(avg_school_attendance)
```

	MaleSchoolPct	FemaleSchoolPct
	mean	mean
Region		
AFR	0.733250	0.673750
AMR	0.931290	0.924839
EMR	0.816111	0.767222
EUR	0.941020	0.935510
SEAR	0.861429	0.844286
WPR	0.932857	0.920476

Answer 3d complete

e. What is the average percentage of females that attend school in each continent. Sort the list from highest to lowest.

In [31]:

```
avg_female_attendance = demos.groupby(["Region"]).agg({"FemaleSchoolPct": ["mean"]})
#desc_avg_female_attendance = avg_female_attendance.sort_values(by=['FemaleSchoolPct mean']

sorted_ans = avg_female_attendance.sort_values(by=[("FemaleSchoolPct", "mean")], ascending=
print(sorted_ans)
```

	FemaleSchoolPct
	mean
Region	
EUR	0.935510
AMR	0.924839
WPR	0.920476
SEAR	0.844286
EMR	0.767222
AFR	0.673750

Answer 3e complete