MachineLearning Clustering

-Rathiga Ramesh
Full Stack Developer,Al Enthusiast

Affinity Propagation

How it works:

- Uses "message passing" between data points to identify exemplars (most representative points).
- Does not require pre-specifying the number of clusters.

Strengths:

- Works well with small to medium-sized datasets.
- Finds **natural clusters** without forcing a fixed structure.

Weaknesses:

- High computational cost (O(N²) memory/time complexity).
- Sensitive to damping factor and preference parameter.

Best for:

Small datasets where the number of clusters is unknown (e.g., gene expression, image segmentation). from sklearn.cluster import AffinityPropagation
aff = AffinityPropagation(random_state=5)
y_pred = aff.fit_predict(X)

AgglomerativeClustering (Hierarchical Clustering)

How it works:

- **Bottom-up approach**: Starts with each point as a cluster, then **merges closest pairs** iteratively.
- Uses linkage criteria (ward, complete, average, single).

Strengths:

- Produces a dendrogram for multi-level clustering analysis.
- Flexible with different distance metrics.

Weaknesses:

- Not scalable for large datasets (O(N³) time complexity).
- Once merged, clusters cannot be split.

Best for:

 Medium-sized datasets where hierarchy matters (e.g., taxonomy, document clustering).

Rathiga ML Cluster

from sklearn.cluster import AgglomerativeClustering
agg = AgglomerativeClustering(n_clusters=3)
y_pred = agg.fit_predict(X)

K-Means

How it works:

- Partitions data into K clusters by minimizing **inertia** (within-cluster variance).
- Uses iterative centroid updates.
- Strengths:
 - **Fast and scalable** (O(N*K) per iteration).
 - Works well with spherical clusters.
- Weaknesses:
 - **Sensitive to initialization** (k-means++ helps).
 - Struggles with non-convex clusters.
- Best for:
 - Large datasets with clear separation (e.g., market segmentation, image compression).

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=5)
y_pred = kmeans.fit_predict(X)
```


Mean Shift

- How it works:
 - **Kernel density estimation** to find cluster modes.
 - Shifts points towards high-density regions.
- Strengths:
 - No predefined cluster count needed.
 - Robust to **outliers**.
- /Weaknesses:
 - **Computationally expensive** $(O(N^2))$.
 - **Bandwidth selection** is critical.
- Best for:
 - Image segmentation, object tracking.

from sklearn.cluster import MeanShift
ms = MeanShift(bandwidth=2)
y_pred = ms.fit_predict(X)

MiniBatch K-Means

- How it works:
 - Approximate K-Means using random minibatches.
 - Faster but less accurate than full K-Means.
- Strengths:
 - Scalable to very large datasets.
 - Useful for online learning.
- Weaknesses:
 - **Lower accuracy** due to approximations.
- Best for:
 - Big data applications (e.g., real-time clustering, recommendation systems).

from sklearn.cluster import MiniBatchKMeans
mbk = MiniBatchKMeans(n_clusters=3, random_state=5)
y_pred = mbk.fit_predict(X)

BIRCH (Balanced Iterative Reducing & Clustering using Hierarchies)

How it works:

- Builds a Clustering Feature (CF) Tree for incremental clustering.
- Compresses data into subclusters before final clustering.

Strengths:

- Memory-efficient for large datasets.
- Handles **high-dimensional data** better than K-Means.

Weaknesses:

- Sensitive to input order of data.
- Struggles with non-spherical clusters.

Best for:

 Large-scale datasets (e.g., customer segmentation, anomaly detection).

```
from sklearn.cluster import Birch
birch = Birch(n_clusters=3)
y_pred = birch.fit_predict(X)
```


HDBSCAN (Hierarchical DBSCAN)

How it works:

Extends DBSCAN with hierarchical clustering.

Automatically extracts clusters using stability analysis.

Strengths:

No need for eps parameter (unlike DBSCAN).

Better for varying densities.

Weaknesses:

Slower than DBSCAN.

Best for:

Complex datasets with varying densities (e.g., bioinformatics, social network analysis).

```
(Requires hdbscan library: pip install hdbscan)

python

import hdbscan
hdb = hdbscan.HDBSCAN(min_cluster_size=5)
y_pred = hdb.fit_predict(X)
```


9

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

How it works:

Groups points based on density (core, border, noise points).

- No predefined cluster count needed.
- Strengths:

Robust/to noise and arbitrary cluster shapes.

Works well with spatial data.

Weaknesses:

\$\forall truggles with varying densities.

Sensitive to eps and min_samples parameters.

Best for:

Anomaly detection, geographic data, and irregularly shaped clusters. Rathiga_ML_Cluster

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
y_pred = dbscan.fit_predict(X)
```


OPTICS (Ordering Points To Identify Clustering Structure)

How it works:

Generalized DBSCAN that creates a reachability plot.

Extracts clusters at multiple density levels.

Strengths:

Handles varying densities better than DBSCAN.

No single eps parameter needed.

Weaknesses:

Slower than DBSCAN.

- Best for:
- Datasets with nested clusters (e.g., astronomy, geology).

```
from sklearn.cluster import OPTICS
optics = OPTICS(min_samples=5)
y_pred = optics.fit_predict(X)
```


Spectral Clustering

How it works:

- Uses graph Laplacian to project data into lower dimensions.
- Applies K-Means on eigenvectors.

Strengths:

- Works with non-convex clusters.
- Effective for graph-based data.

■ Weaknesses:

- ▶ **Not scalable** (O(N³) for eigen decomposition).
- Best for:
 - Image segmentation, community detection in networks.

```
from sklearn.cluster import SpectralClustering
spec = SpectralClustering(n_clusters=3, random_state=5)
y_pred = spec.fit_predict(X)
```


Summary Table

Algorithm	Best For	Strengths	Weaknesses
AffinityPropagation	Small datasets, unknown K	No need for K, finds exemplars	High computational cost
Agglomerative	Hierarchical clustering	Dendrogram, flexible linkage	Slow for large data
BIRCH	Large datasets	Memory-efficient, fast	Sensitive to data order
DBSCAN	Noise, irregular shapes	No predefined K, robust	Struggles with varying density
K-Means	Large, spherical clusters	Fast, scalable	Needs K, sensitive to init
HDBSCAN	Varying densities	Automatic K, robust	Slower than DBSCAN
Mean Shift	Density peaks	No K needed	Computationally heavy
OPTICS	Nested clusters	Multi-density handling	Slower than DBSCAN
Spectral	Non-convex clusters	Works on graphs	Not scalable

Summary Table with Visual Behavior

Algorithm	Туре	Diagram Behavior	Best Use Case
K-Means	Partition-based	Spherical clusters	Well-separated data
DBSCAN	Density-based	Arbitrary shapes, noise-resistant	Spatial data, anomalies
Agglomerative	Hierarchical	Dendrogram, nested clusters	Taxonomy, bioinformatics
Mean Shift	Density-based	Smooth blobs, no fixed K	Image segmentation
Affinity Prop.	Exemplar-based	Finds "representative" points	Small datasets
Spectral	Graph-based	Non-convex clusters	Image, network data
OPTICS	Density-hierarchy	Multi-level density clusters	Nested structures
BIRCH Rathigo	Hierarchical ML Cluster	CF-Tree compression	Large-scale data

When to Use Which?

- **Default choice: K-Means** (if data is spherical and K is known).
- Irregular shapes: DBSCAN / HDBSCAN.
- Hierarchical structure: Agglomerative / BIRCH.
- Unknown K: AffinityPropagation / Mean Shift / HDBSCAN.
- Very large data: MiniBatch K-Means / BIRCH.