单选题 本大题共9小题,每小题5分,共45分。在每小题给出的4个选项中,有且只有一项是符合题目要求。

- 1 题型: 单选题 | 分值:5分
- (1) 已知集合 $A = \{1,2,3,4\}$, $B = \{2,4,6,8\}$, 则 $A \cap B =$
- A. {1,2,3,4} B. {2,3,4} C. {2,4} D. .{1}
- 🥳 正确答案

С

🤦 解析

A ∩ B = (2, 4), 显然, 最大公共集。

- 2 题型: 单选题 | 分值:5分
- (2) " $a^3 = b^3$ " 是" $3^a = 3^b$ "的
- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件
- 🥇 正确答案

_

🤦 解析

 $\exists 1 \ a^J=b^J \Leftrightarrow a=b, \quad \mathcal{I}^a=\mathcal{I}^b \Leftrightarrow a=b, \quad a^J=b^J \Leftrightarrow \mathcal{I}^a=\mathcal{I}^b$

3 题型: 单选题 | 分值:5分

以下相关系数最大的是

🥳 正确答案

Α

🤦 解析

选 4. 线性相关系数越大,越接近直线,方差越小

4 题型: 单选题 | 分值:5分

下列函数中,是偶函数的为

A.
$$f(x) = \frac{e^x - x^2}{x^2 + 1}$$
 B. $\frac{\cos x - x^2}{x^2 + 1}$ C. $f(x) = \frac{e^x - x}{x + 1}$ D. $y = \frac{\sin x + 4x}{e^{|x|}}$

$$B. \quad \frac{\cos x - x^2}{x^2 + 1}$$

$$f(x) = \frac{e^x - x}{x + 1}$$

D.
$$y = \frac{\sin x + 4x}{e^{|x|}}$$

🥳 正确答案

В

🤦 解析

B. cosx, x²均为偶函

- 5 题型: 单选题 | 分值:5分
- (5) 若 $a = 4.2^{-0.2}$, $b = 4.2^{0.2}$, $c = \log_{4.2} 0.2$, 则 a, b, c 的大小关系为
- A. c>a>b B. c>b>a C. a>b>c D. b>a>c

🥳 正确答案

D

🤦 解析

显然 $b=4.2^{0.2}>a=4.2^{-0.2}$, $4.2^{\circ}=0,2,c<0$, b>a>0>C 选D

6 题型: 单选题 | 分值:5分

设m,n为两条直线a为一平面,下面说法正确的是()

- A. 若m平行a则m与n垂直
- B. 若m平行a n平行a则m与n平行
- C. 若m平行a n垂直a则m与n垂直
- D. 若m平行a n垂直a则m与n相交

🥳 正确答案

C

🤦 解析

6, 此题考查线面关系。选 C.

A: m//a, m 与 a 的法向量」, n 不 为向量 x

B: m//a, n//a, 说明 m, n 均与 a 的法向量上, ≠平行 ×.

C: √. m//a, n⊥a 明 n 是 a 法向量, m⊥n

D: 不知道在哪儿?

7 题型: 单选题 | 分值:5分

7 题型: 单选题 | 分值:5分

(7) 若 $f(x) = 3\sin\left(\omega x + \frac{\pi}{3}\right)$ $(\omega > 0)$,周期 $T = \pi$,则 f(x) 在 $\left[-\frac{\pi}{12}, \frac{\pi}{6}\right]$ 上的最小值为

A. $-\frac{\sqrt{3}}{2}$ B. $-\frac{3}{2}$ C. 0 D. $\frac{3}{2}$

🥇 正确答案

D

🤦 解析

$$T = \frac{2\pi}{w} = \pi \Rightarrow w = 2, \ f(x) = 3\sin\left(2x + \frac{\pi}{3}\right) \quad x \in \left[-\frac{\pi}{12}, \frac{\pi}{6}\right] \Rightarrow$$

$$2x + \frac{\pi}{3} \in \left[\frac{\pi}{6}, \frac{2}{3}\pi\right], \ \Rightarrow f(x) \in \left[\frac{3}{2}, 3\right]$$

$$\therefore \frac{3}{2}$$

8 题型: 单选题 | 分值: 5分

(8) 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ (a > 0, b > 0) 的左、右焦点分别为 F_1 、 F_2 . 双曲线右支上一点 P 满足 $k_{PF_2} = 2$, $\triangle PF_1F_2$ 为直角三角形,且 $S_{\triangle PF_1F_2} = 8$,则双曲线的方程为

A. $\frac{x^2}{2} - \frac{y^2}{8} = 1$ B. $\frac{x^2}{8} - \frac{y^2}{4} = 1$ C. $\frac{x^2}{8} - \frac{y^2}{2} = 1$ D. $\frac{x^2}{4} - \frac{y^2}{8} = 1$

び 正确答案

Α

🤦 解析

没焦距为 C, 则 $c^2=a^2+b^2$, F_1 $(-c,o)F_2$ (c,0). PF_2 斜为 $2\Rightarrow \tan\theta=2=\frac{pF_2}{PF_2}$. 又根据双曲线定义 $PF_1-pF_2=2a\Rightarrow PF_1=4a$, $PF_2=2a$, 又 $S\triangle PF_1F_2=4a^2=8\Rightarrow a^2=2$, $b^2=4a^2=8$

9 题型: 单选题 | 分值:5分

(9) AE、BD、CF 两两平行,AE=1,BD=2,CF=3,则不规则几何体的体积为

A. $\frac{\sqrt{3}}{6}$ B. $\frac{3\sqrt{3}}{4} + 1$ C. $\frac{\sqrt{3}}{2}$ D. $\frac{3\sqrt{3}}{4} - 1$

🥳 正确答案

С

🤦 解析

三者两两平行, 间距为 1, 相当于正三棱柱分别截取 1、2、3 的棱形式的多面体。 细分或 1 个三棱柱加一个不规则棱锥。

 $V = V_1 + V_2 = \frac{1}{2} \times 1 \times \frac{\sqrt{3}}{2} \times 1 + \frac{1}{3} \times \left(\frac{3}{2} \times \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2},$

- 5
 5
 5
 5
 5
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7</p
- (10) 已知 i 是虚数单位, 化简 $(\sqrt{5}+i)(\sqrt{5}-2i)$ 的结果为_____.

🥇 正确答案

 $7-\sqrt{5i}$.

🤦 解析

$$(\sqrt{5}+i)(\sqrt{5}-i:) = (\sqrt{5})^2 - 2i\sqrt{5}+i\sqrt{5}-2i^2 = 7-\sqrt{5}i.$$

- 5分
 5分
- (11) 在 $\left(\frac{x^2}{3} \frac{3}{x^2}\right)^6$ 的展开式中,常数项为_____.

🥳 正确答案

-20

🤦 解析

$$\left(\frac{x^2}{J} - \frac{J}{x^2}\right)^6$$
 令 $a = \frac{x^2}{J} > 0$, 则 $\left(\frac{x^2}{J} - \frac{J}{x^2}\right)^b = \left(a - \frac{I}{a}\right)^b$ 根据二項式定理,展开式通项为 $T_k = \left(\frac{6}{k}\right) a^{6-k} \left(-\frac{1}{a}\right)^k \implies k = 3$ 时为常数项 $T_J = -\left(\frac{6}{3}\right) = -20$

- 12 题型: 填空题 | 分值: 5分
- (12) 圆 $C: (x-1)^2 + y^2 = 25$ 的圆心为抛物线 $y^2 = 2px$ 的焦点 F,圆 C 和该抛物线交于点 A,则原点到直线 AF 的距离为 _____.

正确答案

5

🤦 解析

國心为
$$c$$
 (1,0) 故 $y^2 = 2px$ 焦点 F (1,0),
$$\begin{cases} y^2 = 2px = 4x \\ (x-1)^2 + y^2 = 25 \end{cases},$$
 $x > 0, \Rightarrow x = 4, y^2 = 16$, 故 A 为 (4,4) 或 (4, -4) 又 $|OF| = 1$, $\tan\theta = \frac{4}{3} \Rightarrow \sin\theta = \frac{4}{5}$, 故 O 到 AF 距离为 $|OF| \cdot \sin\theta = 1 \cdot \frac{4}{5} = \frac{4}{5}$.

■ 颗型:填空颗 | 分值:5分

(13) 甲乙二人要从 A,B,C,D,E 五个小球中任选三个,且他们的选择相互独立,则甲选择 A 的概率为 _______. 已知乙选了 A,则他选 B 的概率为 ______.

🥳 正确答案

0.6 0.5

🤦 解析

甲乙相互独立,故先算甲选 A,从 A、B、C、D、E 任选三个共有——种组合,包

含 A 的组合仅有 ABC、ABD、ABE、ACD、ACE、ADE 六种, 故· $\binom{5}{3}$ P(甲选择 A) = $\frac{\delta}{\binom{5}{3}}$ = $\frac{s}{\delta}$

若已知乙选 A,相当于从 BCDE 选两个,总组合数 $\binom{4}{2}$, 乙同时选中 A、B 则又能

C、D、E 中选一个,共 3 种。所以 P (乙选 B | 乙选 A $) = \frac{\delta}{\binom{4}{2}} = \frac{3}{6} = \frac{1}{2}$

14 题型:填空题 | 分值:5分

(14) 在正方形 ABCD 中, $\overrightarrow{DE} = 2\overrightarrow{EC}$, $\overrightarrow{BE} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BC}$,点 D 为 AB 的中点,则 $\lambda + \mu =$ _____: 若 F 为 BE 上的动点,G 为 AF 的中点,则 $\overrightarrow{AF} \cdot \overrightarrow{DG}$ 的最小值为 _____.

🥇 正确答案

$$-\frac{4}{3}$$
 $-\frac{5}{18}$

🤦 解析

如图建立坐标系

$$\overrightarrow{DB} = 2\overrightarrow{EC} \Rightarrow E\left(\frac{2}{3}, 0\right), B(1,1)$$

$$\therefore \overrightarrow{BE} = \left(-\frac{1}{2}, -1\right), \overrightarrow{BA} = (-1, 0), \overrightarrow{BC} = (0, -1)$$

$$\overrightarrow{\mathrm{BE}}{=}\lambda\overrightarrow{BA}+\mu\overrightarrow{BC}\Rightarrow\lambda=\frac{1}{3},\;\mu=1,\;\therefore\lambda+\mu=\frac{4}{3}$$

BE 方程:
$$y = 3x - 2$$
, $x \in \left[\frac{2}{3}, 1\right]$, $\Rightarrow \overrightarrow{AF} = (x, 3x - 3)$

$$x = \frac{2}{3}$$
 时 $\overrightarrow{AF} \cdot \overrightarrow{OG}$ 最小, 代入得 $(\overrightarrow{AF} \cdot \overrightarrow{OG})_{\min} = -\frac{5}{18}$

15 题型: 填空题 | 分值: 5分

(15) 若函数 $f(x) = 2\sqrt{x^2 - ax} - |ax - 2| + 1$ 恰有一个零点,则 a 的取值范围为______

🥇 正确答案

(-∞, 0) U (0, 1) U (1, +∞).

🤦 解析

15. $f(x) = 2\sqrt{x^2 - ax} - |ax - 2| + 1$, 分段考察, 并画图。 $\alpha = 0$ 时, f(x) = 2/x/-1, 有 2 个 0 点不満足条件, 同理 $\alpha = 1$ 时,

$$f(x) = 2\sqrt{x^2 - x} - |x - 2| + 1$$
 有一个以上零点,不満足。

当 a<0 时,画图,恰好一个 0点。

同理 0<a<1 或 a>1 时也之有一个 0 点

∴a 取值范围 (-∞, 0) U (0, 1) U (1, +∞).

简答题(综合题) 本大题共75分。简答应写出文字说明、证明过程或演算步骤。

16 题型: 简答题 | 分值: 14分

- (16) 在 $\triangle ABC$ 中, 角 A, B, C 所对的边分别是 a, b, c. 已知 a: c = 2:3, $\cos B = \frac{9}{16}$, b = 5.
 - (I) 求 a 的值:
 - (II) 求 sinA;
 - (III) 求 $\cos(2A-B)$.

🥳 正确答案

(1) 4 (2) $\frac{\sqrt{7}}{4}$ (3) $\frac{57}{64}$

🤦 解析

16. (1)

$$\begin{cases} a:c=2:3\Rightarrow a=\frac{2}{3}c\\ \text{\widehat{x}}\text{\widehat{x}}\text{\widehat{x}}\text{\widehat{x}}\text{\widehat{x}}\text{\widehat{b}}^2=25=a^2+c^2-2ac\cdot cos B=a^2+c^2-2ac\cdot \frac{9}{16} \end{cases} \Rightarrow \begin{cases} a=4\\ c=6 \end{cases} \therefore 4$$

(2) 余弦定理
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{5^2 + 6^2 - 4^2}{2 \times 5 \times 6} = \frac{3}{4} \Rightarrow \sin A = \frac{\sqrt{7}}{4}$$

(3) 和差化积
$$\Rightarrow \cos(2A - B) = \cos 2A \cos B + \sin 2A \sin B$$
, $\cos B = \frac{9}{16} \Rightarrow \sin B = \frac{5\sqrt{7}}{16}$
 $\cos 2A = \cos^2 A - \sin^2 A = \frac{1}{8}, \sin 2A = 2 \sin A \cos A = \frac{3\sqrt{7}}{8}$, 代入则 $\cos(2A - B) = \frac{57}{64}$

(17) 如图,已知 A_1A_\perp 平面 ABCD, $AB=AA_1=2$, AC=1, F、E 分别为 B_1C_1 和 CC_1 的中点.

- (I) 求证: BE// 平面 DC1F:
- (II) 求平面 BB_1D_1D 与平面 C_1FD 所成角的余弦值:
- (III) 求点 B 到平面 DFC₁ 的距离.

🥳 正确答案

(1) 略 (2)
$$\frac{2\sqrt{22}}{11}$$
 (3) $\frac{2}{\sqrt{11}}$

🤦 解析

(1) 以A为原点,建立空间直角坐标系。

己知A(0,0,0)B(2,0,0)C(1,1,0)D(0,1,0)

 $A_1 \ (0,0,2) \ B_1 \ (2,0,2) \ C_1(1,1,2) \ D_1 \ (0,1,2) \ \ \mathbb{N}\left(\frac{3}{2},\frac{1}{2},2\right), \ M(0,1,1).$

因为 $\overrightarrow{D_1n} = \left(\frac{3}{2}, \frac{-1}{2}, 0\right)$ $\overrightarrow{CB_1} = (1, -1, 2)$

 \overrightarrow{CM} =(-1, 0, 1), 设丽为 CB, M 的法向量, $\begin{cases} \overrightarrow{M} \cdot \overrightarrow{CB_1} = 0 \\ \overrightarrow{M} \cdot \overrightarrow{CM} = 0 \end{cases}$

可得法向量其中一个解为 $\overrightarrow{M}=(1,3,1)$, 于是 $\overrightarrow{M}\cdot\overrightarrow{D_1n}=0$

又易证 $\overline{D_1n}$ 不在 CB, M 内, 故 $\overline{D_1n}$ // C B_1 M

(2) $\overrightarrow{BD_1}$ = (0,0,2) \overrightarrow{BC} = (-1,1,0) ,设而为 BB_1C_1C 的法向量,

由 $\begin{cases} \vec{n} \cdot \vec{BB_1} = 0, \quad \vec{n} \in \vec{BC} = 0 \end{cases}$ 可得其中一个解为 $\vec{n} = (1, 1, 0)$

故 $\cos(\vec{m}\cdot\vec{n}) = \frac{\vec{m}\cdot n}{|\vec{m}\cdot\vec{m}|} = \frac{2\sqrt{22}}{|\vec{m}\cdot\vec{m}|}$,所以余弦值为 $\frac{2\sqrt{22}}{11}$

(3) $\overrightarrow{BB_1} = (0, 0, 2)$

 $\overrightarrow{m} = (1, 3, 1) \Rightarrow \sin\theta = \left|\cos\left(\overrightarrow{BB_1}, \overrightarrow{m}\right)\right| = \left|\frac{\overrightarrow{BB_1} \cdot \overrightarrow{m}}{\left|\overrightarrow{BB_1} \mid |\overrightarrow{m}|}\right| = \frac{1}{\sqrt{11}} \Rightarrow h = \left|\overrightarrow{BB_1}\right| \cdot \sin\theta = \frac{2}{\sqrt{11}}$

(18) 设椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左项点为A,下项点为B,C为OB中点, $e = \frac{1}{2}$, $S_{\triangle ABC} = \frac{3}{2}\sqrt{3}$.

(I) 求椭圆方程:

(II) 若过C点的直线与椭圆交于P,Q两点,T为y轴上一点满足 \overrightarrow{TP} . $\overrightarrow{TQ} \leq 0$,求T 纵坐标的取值范围。

🥳 正确答案

略

🤦 解析

易知 A (-a, 0), B(0,-b), (为 0B 中点⇒C (0, -b/2)

离心率 0=
$$\sqrt{1-\frac{a^2}{b^2}}$$
 = $\frac{1}{2}$ \Rightarrow $b=\frac{\sqrt{3}}{2}$ a

又 $S_{\Delta ABC} = \frac{1}{2} \cdot |BC| \cdot |OA| = \frac{1}{2} \cdot \frac{b}{2} \cdot a = \frac{3\sqrt{3}}{2}$,代入 $b = \frac{\sqrt{3}}{2} a \Rightarrow a^2 = 12$, $b^2 = 9$,椭圆为 $\frac{x^2}{12} + \frac{y^2}{9} = 1$

(2) 设 PQ 的斜率 k,

由(C) 知 C (0,
$$-\frac{b}{2}$$
) 为 (0, $\frac{3}{2}$) ::PQ: $y=kx-\frac{3}{2}$

由
$$\begin{cases} y = kx - \frac{3}{2} \\ \frac{x^2}{12} + \frac{y^2}{9} = 1 \end{cases}$$
 设 $P(x_1, y_1)$ $Q(x_2, y_2)$ 则 x_1, x_2 为($\frac{1}{12} + \frac{k^2}{9}$) $x^2 - \frac{kx}{3} - \frac{3}{4} = 0$

$$\Rightarrow \begin{cases} x_1 + y_{1=\frac{12k}{3+4k^2}} \\ x_1 x_2 = \frac{-27}{3+4k^2}, & \overrightarrow{TP} \cdot \overrightarrow{TQ}^{=X_1 X_2 + (y_1 - t)} (y_2 - t) \end{cases}$$

$$\uparrow \uparrow \uparrow \downarrow y_f = Kx_1 - \frac{3}{4}, \quad y_2 = Kx_2 - \frac{3}{4}$$

$$\overrightarrow{TP} \cdot \overrightarrow{TQ} = (k^2 + 1) x_1 x_2 - \frac{3}{2} k(x_1 + x_2) + \frac{9}{4} + t^2 - (k(x_1 + x_2) - 3) t$$

$$\begin{cases} x_1 + x_2 = \frac{12k}{3+4k^2} \\ x_1 x_1 = \frac{-27}{3+4k^2} \end{cases} \Rightarrow \overrightarrow{TP} \cdot \overrightarrow{TQ} = \frac{1}{3+4k^2} \left(-27 - 27k^2 + \left(\frac{9}{4} + t\right) \cdot (3+4^2) + 3\pi(3+4^2) - k^2t \cdot 12 \right)$$

 $\overrightarrow{TP} \cdot \overrightarrow{TQ} \leq 0$ 对任意 K 恒成立 \Rightarrow 以 K 配方恒 ≤ 0

已知数列 $\{a_n\}$ 是大于 0 的等比数列其前 n 项和为 S_n 若 $a_1 = 1$ $S_2 = a_3 - 1$

- (1) 求数列 $\{a_n\}$ 前 n 项和为 S_n
- (2) 设 $b_n = \begin{cases} k & n = a_k \\ b_{n-1} + 2k & a_k < n < a_{k+1} \end{cases}$ 其中 k 是大于 1 的正整数
- (i) 当 $n=a_{k+1}$ 时求证: $b_{n-1} \ge a_k \cdot b_n$
- (ii) 求 $\sum_{i=1}^{S_n} b_i$

🥳 正确答案

- (1) $a_n = 2^{n-1}$, $S_n = 2^n 1$.
- (2) 略

🤦 解析

(1) 设公比为 9, 则 C_n = a₁qⁿ⁻¹ = qⁿ⁻¹ S_n = a₁ · ^{1-qⁿ}/_{2-q} = ^{1-qⁿ}/_{2-q} S₂ = ^{1-q²}/_{2-q} = 1 + q.
 (1) a₃=1 · q² S₂=a₃-1⇒1+q=q²-1⇒q=1 或 q=2, 又 /q/≠ /, 故最 9=2
 ∴ a_n = 2ⁿ⁻¹, S_n = 2ⁿ - 1.

(2) 写出 b 的前几项,总结规律 $b_1 = 1$, $b_2 = 2$, $b_3 = b_2 + 2 \times 2 = 6$, $b_4 = 3$. $b_5 = b_4 + 2 \times 3 = 9$, $b_6 = b_5 + 2 \times 3 = 15$, $b_6 = b_1 + 2 \times 3 = 21$, $b_8 = 4$, $b_9 = b_8 + 2 \times 4 = 12 \cdots$

归纳法: (1) $n=a_2=4$ 时 $b_{\eta-2}=b_2=q_{\mathbb{Z}}\cdot b_{\mathbb{D}}=6$,满足。

(2) 假设 $n=a_{k+1}$ 时 $b_{n-1}\geq a_k\cdot b_n$,则考案 $m=a_{k+2}$ 时,由(1) $a_{k+1}=$ $\mathscr S$, $a_{k+2}=\mathscr S^{*+}$,中间隔了 $\mathscr S-1\uparrow_0$

(2) $\therefore b_{m-1} = b_n + (\mathring{Z} - 1) \cdot 2(k+1) = (k+1) + (\mathring{Z} - 1) \cdot 2(k+1) = (k+1)(\cdot \mathring{Z}^{+1} - 1)$ 而 $a_{k+1} \cdot b_m = \mathring{Z} \cdot (k+2)$, 易证 $(k+1)(\mathring{Z}^{*l} - 1) \ge \mathring{Z} \cdot (k+2)$ 亦成立,由此证毕。 因为 $S_n = \mathring{Z}^n - 1$. $\therefore b_{S_n+1} = n+1$, 由 (1) 总结的规率有

 $\sum_{i=1}^{t_n}b_i=1+2+\cdots+n+(n+2xn)+(n+2n+2n)+\cdots+\left(n+2n\cdot(2^n-1)\right).$

故 $\sum_{i=1}^{n} b_i = \sum_{i=1}^{n} \frac{n \cdot (n+2n(\mathcal{F}-I))}{2} \cdot \mathcal{Z}^n = \sum_{i=1}^{n}$,特殊的和, $\sum_{i=1}^{n} (n(\mathcal{Z}^2)^n) = \frac{1}{2} (4^{n+1}-1) - \frac{n}{2} \cdot 4^{n+1}$

20 题型: 简答题 | 分值: 16分

设函数 $f(x) = x \ln x$

- (1) 求f(x)图像上点(1, f(1))处的切线方程
- (2) 若 $f(x) \ge a(x \sqrt{x})$ 在 $x \in (0, +\infty)$ 时恒成立,求a的值
- (3) 若 $x_1, x_2 \in (0,1)$ 证明 $|f(x_1) f(x_2)| \le |x_1 x_2|^{\frac{1}{2}}$

🥳 正确答案

略

🤦 解析

(1) $f(x) = \chi \ln x \Rightarrow f'(x) = x \cdot \frac{1}{x} + I \cdot \ln x = I + \ln x, x > 0$ 故 $f: (I) = I, f(I) = 0, \therefore y = f(x)$ 在 (I, 0) 的加线为。 $y - f(1) = f'(I)(x - 1) \Rightarrow y = x - 1$

(2) $f(x) \ge a(x - \sqrt{\lambda}), \forall x > 0, \Rightarrow \Leftrightarrow g(x) = f(x) - a(x - \sqrt{x}) = x \ln x - ax + a\sqrt{x}$ 而 $\lim_{x \to 0^+} g(x) = 0$,若 $\forall x > 0$ $g(x) \ge 0$ 又须 $g'(x) \ge 0$, 又 $g'(x) \ge 0$, $g'(x) \ge$

(3) 由 (1) 知 f'(x) > 0, $\forall x \in (0, 1)$, >, 不妨假设 $0 < x_1 < x_2 < 1$, $f'(x) = \frac{1}{x} > 0$, $0 < f'(x_1) < f'(x_2) < f'(1) = 1$, 由中值定值, $\exists ita \in (x_1, x_2)$

 $f'(ita)(x_2-x_1) \\ \notin f(x_2)-f(x_1) = \underbrace{ \leq f'(1)(x_2-x_1) \leq x_2-x_1 }_{\leq f} \\ \text{等号在 } \chi_1 = x_2 \text{ 时得又 } 0 < x_1 < x_2 < 1 \Leftrightarrow 0 < x_2-\chi_1 < I \Rightarrow x_2-\chi_1 \leq \sqrt{|x_2-x_1|} \\ \Rightarrow f(x_2)-f(x_2) \leq \sqrt{|x_1-x_2|}, \ 0 < x_2 < x_1 < I \text{ 同理, } \text{ 故}|f(x_2)-f(x_2)| \leq \sqrt{|x_2-x_2|} \end{aligned}$