CLASSIFICATION METHODS

Chapter 04 (part 01)

LOGISTIC REGRESSION

Outline

- >Cases:
 - > Orange Juice Brand Preference
 - > Credit Card Default Data
- ➤ Why Not Linear Regression?
- >Simple Logistic Regression
 - Logistic Function
 - > Interpreting the coefficients
 - Making Predictions
 - Adding Qualitative Predictors
- > Multiple Logistic Regression

Case 1: Brand Preference for Orange Juice

- We would like to predict what customers prefer to buy:
 Citrus Hill or Minute Maid orange juice?
- The Y (Purchase) variable is <u>categorical</u>: 0 or 1
- The X (LoyalCH) variable is a numerical value (between 0 and 1) which specifies the how much the customers are loyal to the Citrus Hill (CH) orange juice
- Can we use Linear Regression when Y is categorical?

Why not Linear Regression?

>When Y only takes on values of 0 and 1, why standard linear regression in inappropriate?

Problems

- The regression line $\beta_0 + \beta_1 X$ can take on any value between negative and positive infinity
- In the orange juice classification problem, Y can only take on two possible values: 0 or 1.
- Therefore the regression line almost always predicts the wrong value for Y in classification problems

Solution: Use Logistic Function

- Instead of trying to predict Y, let's try to predict P(Y = 1),
 i.e., the probability a customer buys Citrus Hill (CH) juice.
- Thus, we can model P(Y = 1) using a function that gives outputs between 0 and 1.
- We can use the logistic function
- Logistic Regression!

$$p = P(Y = 1) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Logistic Regression

- Logistic regression is very similar to linear regression
- We come up with b_0 and b_1 to estimate β_0 and β_1 .
- We have similar problems and questions as in linear regression
 - e.g. Is β_1 equal to 0? How sure are we about our guesses for β_0 and β_1 ?

If LoyalCH is about .6 then $Pr(CH) \approx .7$.

Case 2: Credit Card Default Data

- We would like to be able to predict customers that are likely to default
- ➤ Possible X variables are:
 - >Annual Income
 - Monthly credit card balance
- ➤ The Y variable (Default) is <u>categorical</u>: Yes or No
- ➤ How do we check the relationship between Y and X?

The Default Dataset

Why not Linear Regression?

If we fit a linear regression to the Default data, then for very low balances we predict a negative probability, and for high balances we predict a probability above 1!

When Balance < 500,

Pr(default) is negative!

Logistic Function on Default Data

 Now the probability of default is close to, but not less than zero for low balances. And close to but not above 1 for high balances

Interpreting β₁

- Interpreting what β_1 means is not very easy with logistic regression, simply because we are predicting P(Y) and not Y.
- If β_1 =0, this means that there is no relationship between Y and X.
- If β_1 >0, this means that when X gets larger so does the probability that Y = 1.
- If β_1 <0, this means that when X gets larger, the probability that Y = 1 gets smaller.
- But how much bigger or smaller depends on where we are on the slope

Are the coefficients significant?

- We still want to perform a hypothesis test to see whether we can be sure that are β_0 and β_1 significantly different from zero.
- We use a Z test instead of a T test, but of course that doesn't change the way we interpret the p-value
- Here the p-value for balance is very small, and b₁ is positive, so we are sure that if the balance increase, then the probability of default will increase as well.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Making Prediction

Suppose an individual has an average balance of \$1000.
 What is their probability of default?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$$

- The predicted probability of default for an individual with a balance of \$1000 is less than 1%.
- For a balance of \$2000, the probability is much higher, and equals to 0.586 (58.6%).

Qualitative Predictors in Logistic Regression

- We can predict if an individual default by checking if she is a student or not. Thus we can use a qualitative variable "Student" coded as (Student = 1, Non-student = 0).
- b₁ is positive: This indicates students tend to have higher default probabilities than non-students

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Multiple Logistic Regression

We can fit multiple logistic just like regular regression

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

Multiple Logistic Regression- Default Data

- Predict Default using:
 - Balance (quantitative)
 - Income (quantitative)
 - Student (qualitative)

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Predictions

 A student with a credit card balance of \$1,500 and an income of \$40,000 has an estimated probability of default

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

An Apparent Contradiction!

	Coefficient	Std. Error	Z-statistic	P-value	
Intercept	-3.5041	0.0707	-49.55	< 0.0001	
student[Yes]	0.4049	0.1150	3.52	0.0004	
	Positive	Э			

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Negative

Students (Orange) vs. Non-students (Blue)

To whom should credit be offered?

 A student is risker than non students if no information about the credit card balance is available

 However, that student is less risky than a non student with the same credit card balance!