On Riemann-Roch-Grothendieck theorem for punctured curves with hyperbolic singularities

Finski Siarhei

Institut Fourier, University of Grenoble

23 February 2021 Geometry, Number Theory, and Representation Theory Seminar Edmonton, Canada

Plan of the talk

- 1 Riemann-Roch-Grothendieck theorem and curvature theorem
- 2 Motivation
- 3 Definition of Quillen metric for surfaces with cusps
- 4 Relative compact perturbation theorem
- 5 Anomaly formula
- 6 Curvature theorem for family of curves with cusps

Riemann-Roch-Grothendieck theorem and curvature theorem

Family setting

 $\pi: X \to S$ proper holomorphic submersion, relative dimension 1

$$\omega_{X/S} = (\Lambda^{\max} T^{*(1,0)} X) \otimes (\Lambda^{\max} T^{*(1,0)} S)^{-1}$$

the relative canonical line bundle of π

$$t \in \mathcal{S}, X_t = \pi^{-1}(t)$$

A picture

Dolbeaut complex

 ξ a holomorphic vector bundle over X

$$\Omega^{i,j}(X_t,\xi) = \mathscr{C}^{\infty}(X_t, T^{*(i,j)}X_t \otimes \xi), \quad i,j = 0, 1$$

$$0 \to \Omega^{0,0}(X_t,\xi) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_t,\xi) \to 0$$

$$H^0(X_t,\xi) = \ker(\overline{\partial}), \qquad H^1(X_t,\xi) = \Omega^{0,1}(X_t,\xi) / \operatorname{Im}(\overline{\partial})$$

Grothendieck-Knudsen-Mumford construction

The determinant of the cohomology

$$\lambda(\xi)_t = (\Lambda^{\max} H^0(X_t, \xi|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, \xi|_{X_t}), \quad t \in \mathcal{S}$$
 family of complex lines over \mathcal{S}

Grothendieck-Knudsen-Mumford:

 $\lambda(\xi)_t,\,t\in\mathcal{S}$ form a holomorphic line bundle $\lambda(\xi)$ over \mathcal{S}

Theorem of Riemann-Roch-Grothendieck

Theorem. (Riemann-Roch-Grothendieck, 1957)

The following identity holds in $H^{\bullet}(S, \mathbb{Q})$:

$$c_1(\lambda(\xi)) = -\int_{\pi} \left[\mathrm{Td}(\omega_{X/S}) \mathrm{ch}(\xi) \right]^{[4]}$$

$$Td(\xi) = 1 + \frac{c_1(\xi)}{2} + \frac{c_1(\xi)^2 + c_2(\xi)}{12} + \dots$$
$$ch(\xi) = rk(\xi) + c_1(\xi) + \frac{c_1(\xi)^2 - 2c_2(\xi)}{2} + \dots$$

Chern-Weil theory

- Y a complex manifold (E, h^E) a holomorphic Hermitian vector bundle over Y ∇^E the Chern connection on (E, h^E)
- $lacksquare R^E = (
 abla^E)^2 \in \Omega^{1,1}(Y,\operatorname{End}(E))$

$$\mathrm{ch}(E,h^E) = \mathrm{Tr}igg[\expigg(-rac{R^E}{2\pi\sqrt{-1}}igg)igg] \in \oplus_{
ho\in\mathbb{N}}\Omega^{
ho,
ho}(Y)$$
 $\mathrm{Td}(E,h^E) = \detigg[rac{R^E}{\exp(R^E)-1}igg] \in \oplus_{
ho\in\mathbb{N}}\Omega^{
ho,
ho}(Y)$

- $Td(E, h^E)$, $ch(E, h^E)$ are closed forms
- Chern-Weil: $\left[\operatorname{ch}(E, h^E)\right]_{DR} = \operatorname{ch}(E) \in \bigoplus_{p \in \mathbb{N}} H^{2p}(Y, \mathbb{R})$ $\left[\operatorname{Td}(E, h^E)\right]_{DR} = \operatorname{Td}(E) \in \bigoplus_{p \in \mathbb{N}} H^{2p}(Y, \mathbb{R})$

A natural question

 $\pi: X o S$ proper holomorphic submersion, relative dimension 1 $\|\cdot\|_{X/S}^{\omega} \text{ a Hermitian norm on } \omega_{X/S}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

$$c_1(\lambda(\xi), ?) = -\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega})^2) \operatorname{ch}(\xi, h^{\xi}) \right]^{[4]}$$

L² product and Hodge theory

- L^2 -Hermitian product. Let $\alpha, \alpha' \in \Omega^{0, \bullet}(X_t, \xi)$ $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(x), \alpha'(x) \rangle_h dv_{X_t}(x),$ $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$.
- $\begin{array}{c} \blacksquare \ 0 \to \Omega^{0,0}(X_t,\xi) \stackrel{\overline{\partial}}{\to} \Omega^{0,1}(X_t,\xi) \to 0, \\ \Box_t^{\xi} = \overline{\partial} \ \overline{\partial}^* + \overline{\partial}^* \overline{\partial} \end{array}$
- induces the L^2 -norm $\|\cdot\|_{L^2}$ (g^{TX_t}, h^{ξ}) over $\lambda(\xi)_t = (\Lambda^{\max} H^0(X_t, \xi|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, \xi|_{X_t})$

Infinite product

From now on
$$\square_t^\xi := \square^\xi|_{\Omega^{0,0}(X_t,\xi)}$$

 \square_t^ξ essentially self-adjoint

$$\operatorname{Spec}(\Box_t^{\xi}) = \{\lambda_{1,t}, \lambda_{2,t}, \ldots\}, \ \lambda_{i,t} \ \text{non decreasing}, \ \lambda_{i,t} \to \infty$$

$$\det{}'\Box_t^\xi = \prod_{\lambda_{i,t}
eq 0}^\infty \lambda_{i,t}.$$

Problem: Need to make sense of the infinite product...

Zeta renormalisation

Weyl's law: $\lambda_{i,t}$ increase asymptotically linearly with i

$$\zeta_{\xi,t}(s) = \sum_{\lambda_{i,t}
eq 0}^{\infty} rac{1}{(\lambda_{i,t})^s}, ext{ for } \operatorname{Re}(s) > 1$$

Definition of the determinant. (Ray-Singer, 1973)

$$\det{}'\Box_t^\xi = \exp\Big(-\zeta_{\xi,t}'(0)\Big)$$

Refinement of Riemann-Roch-Grothendieck theorem

Quillen norm

Hermitian norm on $\lambda(\xi)$, given by

$$\left\|\cdot\right\|^{Q}\left(g^{TX_{t}},h^{\xi}\right)=\left(\det{}'\Box_{t}^{\xi}\right)^{1/2}\cdot\left\|\cdot\right\|_{L^{2}}\left(g^{TX_{t}},h^{\xi}\right)$$

Curvature theorem. (Bismut-Gillet-Soulé, 1988)

■ Hermitian norm $\|\cdot\|^Q (g^{TX_t}, h^{\xi})$ is smooth over S

$$\begin{split} c_{1}\left(\lambda(\xi),\left(\left\|\cdot\right\|^{Q}\left(g^{TX_{t}},h^{\xi}\right)\right)^{2}\right) \\ &=-\int_{\pi}\left[\mathrm{Td}(\omega_{X/S},(\left\|\cdot\right\|_{X/S}^{\omega})^{2})\mathrm{ch}(\xi,h^{\xi})\right]^{[4]} \end{split}$$

Motivation

We want to extend the theory of Quillen metrics to surfaces with hyperbolic cusps and degenerating families with singular fibers

What is a surface with hyperbolic cusps?

 \overline{M} a compact Riemann surface

$$D_M = \{P_1, P_2, \dots, P_m\} \subset \overline{M}, M = \overline{M} \setminus D_M$$

 g^{TM} is a Kähler metric on M z_1, \ldots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ Suppose g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

$$\frac{\sqrt{-1}\,dz_id\overline{z}_i}{\left|z_i\log|z_i|\right|^2}.$$

We call $(\overline{M}, D_M, g^{TM})$ a surface with cusps

An important example

Suppose
$$2g(\overline{M}) - 2 + \#D_M > 0$$
, i.e. (\overline{M}, D_M) is stable

By uniformization theorem, there is exactly one csc -1 complete metric $g_{\rm hyp}^{TM}$ of finite volume on $M=\overline{M}\setminus D_M$

The triple $(\overline{M}, D_M, g_{\mathrm{hyp}}^{TM})$ is a surface with cusps

Motivation

We want to extend the theory of Quillen metrics to surfaces with hyperbolic cusps and degenerating families with singular fibers

Why?

- Problem on its own.
- Universal curve $\pi:\mathscr{C}_{g,m}\to\mathscr{M}_{g,m}$ with csc -1 metric $\|\cdot\|_{X/S}^{\omega,\mathrm{hyp}}$

On
$$\mathcal{M}_{g,m}$$
, we have $\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega, \text{hyp}})^2) \right]^{[4]} =^* \omega_{WP}$.

As we expect
$$c_1(\lambda, (\|\cdot\|^Q)^2) = -\int_\pi \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega, \operatorname{hyp}})^2) \right]^{[4]}$$

Regularity of
$$\left\|\cdot\right\|^Q$$
 near $\partial \mathcal{M}_{g,m}$ \downarrow

Regularity of ω_{WP} near $\partial \mathcal{M}_{g,m}$.

- Curvature theorem of Takhtajan-Zograf (csc -1).
- Arithmetic Riemann-Roch theorem for pointed stable curves relation to Freixas, Freixas-von Pippich, Dutour.

The L^2 -norm

$$\left\|\cdot\right\|^Q = \left(\det'\Box\right)^{1/2} \cdot \left\|\cdot\right\|_{L^2}$$

The L^2 -norm

- Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps $\|\cdot\|_M^{\omega}$ the induced Hermitian norm on $\omega_{\overline{M}}$ over M
- $\omega_M(D) = \omega_{\overline{M}} \otimes \mathscr{O}_{\overline{M}}(D_M)$ the twisted canonical line bundle $\omega_M(D) \simeq \omega_{\overline{M}},$ over M induces the Hermitian norm $\|\cdot\|_M$ on $\omega_M(D)$ over M.

 This norm has log singularity $\|dz_i \otimes s_{D_M}/z_i\|_M = |\log |z_i|$

 \blacksquare (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over \overline{M}

$$E_n^{\xi} = \xi \otimes \omega_M(D)^n, \qquad h^{E_n^{\xi}} = h^{\xi} \otimes (\|\cdot\|_M)^{2n}$$

■ For $n \le 0$, by Hodge theory* $\langle \cdot, \cdot \rangle_{L^2}$ induces the L^2 -norm $\| \cdot \|_{L^2}$ on $\lambda(E_n^{\xi}) = (\Lambda^{\max} H^0(\overline{M}, E_n^{\xi}))^{-1} \otimes \Lambda^{\max} H^1(\overline{M}, E_n^{\xi})$

The determinant

$$\|\cdot\|^Q = \left(\det'\Box\right)^{1/2} \cdot \|\cdot\|_{L^2}$$

Problem with the determinant

$$\square^{E_n^\xi}:\!\!\Omega^{0,0}(M,E_n^\xi)\to\Omega^{0,0}(M,E_n^\xi)$$

It is again essentially self-adjoint by the same reason

As M is non-compact, in general $\operatorname{Spec}(\Box^{E_n^\xi})$ is not discrete

$$\det'\Box^{E_n^\xi} \neq \prod_{\lambda_i \neq 0}^\infty \lambda_i.$$

Takhtajan-Zograf approach

{ Length of closed geodesics } \leftrightarrow Spec($\Box^{E_n^{\xi}}$)

Suppose (ξ, h^{ξ}) trivial, $(M, D_M, g_{\text{hyp}}^{TM})$ has csc -1 then the set of simple closed geodesics is discrete

$$Z_{(\overline{M},D_M)}(s) = \prod_{\gamma} \prod_{k=0}^{\infty} (1 - e^{-(s+k)/(\gamma)})$$

 γ simple closed geodesics on M; $I(\gamma)$ is the length of γ .

Takhtajan-Zograf definition using Selberg zeta-function, 1991

$$\det{}'_{\mathcal{T}Z}\Box^{\mathcal{E}_n^{\xi}} = \begin{cases} Z'_{(\overline{M},D_M)}(1), & \text{for } n=0, \\ Z_{(\overline{M},D_M)}(-n+1), & \text{for } n<0. \end{cases}$$

Motivated by a theorem of D'Hoker-Phong, 1986, which says that when m = 0, two sides of the previous equation coincide*

Limitations of this approach

- Restriction on the topology $2g(\overline{M}) 2 + \#D_M > 0$.
- Complex structure predefines the Kähler metric.
- No liberty in choosing (ξ, h^{ξ}) .

Analytic approach to the determinant

$$\lambda^{-s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} \exp(-\lambda t) t^{s-1} dt$$

If M is compact, i.e. m = 0

$$\zeta_{\mathcal{E}_n^{\xi}}(\mathbf{s}) = \sum_{\lambda \in \text{Spec}(\square^{\mathcal{E}_n^{\xi}}) \setminus \{0\}} \lambda^{-\mathbf{s}} \tag{*}$$

$$= \frac{1}{\Gamma(\mathbf{s})} \int_0^{+\infty} \text{Tr}\Big[\exp^{\perp}(-t\square^{\mathcal{E}_n^{\xi}})\Big] t^{\mathbf{s}-1} dt \tag{**}$$

- For m > 0? Idea: define $\zeta_{E_n^{\xi}}(s)$ for m > 0 using $(\star\star)$ and not (\star)
- Problem : $\exp^{\perp}(-t\Box^{E_n^{\xi}})$ is not of trace class for m>0

Regularizing trace, I

The operator $\exp(-t\Box^{E_n^{\xi}})$ has a smooth Schwartz kernel $\exp(-t\Box^{E_n^{\xi}})(x,y) \in (E_n^{\xi})_x \otimes (E_n^{\xi})_y^*, \qquad x,y \in M$ $\exp(-t\Box^{E_n^{\xi}})s = \int_M \Big\langle \exp(-t\Box^{E_n^{\xi}})(x,y), s(y) \Big\rangle dv_M(y).$

- If m = 0, $\operatorname{Tr}\left[\exp(-t\Box^{E_n^{\xi}})\right] = \int_{\overline{M}} \operatorname{Tr}\left[\exp(-t\Box^{E_n^{\xi}})(x,x)\right] dv_M(x)$.
- Idea: define $\operatorname{Tr}^{r}\left[\exp(-t\Box^{E_{n}^{\xi}})\right]$ by taking the finite part of

$$\int_{M_r} \operatorname{Tr} \Big[\exp(-t \Box^{E_n^{\xi}})(x,x) \Big] dv_M(x)$$

as $r \to 0$, where M_r is the non-striped region

Regularizing trace, II

Regularizing trace, III

Theorem. (-, 2018)

For any $(\overline{M}, D_M, g^{TM})$, (ξ, h^{ξ}) , t > 0, the function

$$\mathbb{R}_{>0}\ni r\mapsto \int_{M_r}\mathrm{Tr}\Big[\exp(-t\Box^{E_n^\xi})(x,x)\Big]dv_M(x)-\mathrm{rk}(\xi)\cdot m\cdot g_n(r,t)$$

extends continuously over r = 0.

Regularizing trace, IV

Regularized heat trace

$$\operatorname{Tr}^{\mathbf{r}} \left[\exp(-t \Box^{E_n^{\xi}}) \right]$$

$$= \lim_{r \to 0} \left(\int_{M_r} \operatorname{Tr} \left[\exp(-t \Box^{E_n^{\xi}})(x, x) \right] dv_M(x) - \operatorname{rk}(\xi) \cdot m \cdot g_n(r, t) \right).$$

Regularized zeta function

$$\zeta_{E_n^{\xi}}(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} \mathrm{Tr}^{r} \Big[\exp^{\perp} (-t \Box^{E_n^{\xi}}) \Big] t^{s-1} dt.$$

Theorem. (-, 2018)

- lacksquare $\zeta_{E_n^{\xi}}(s)$ is well-defined and extends meromorphically to $\mathbb C$
- lacksquare 0 \in \mathbb{C} is a holomorphic point of $\zeta_{E_n^{\xi}}(s)$

Finally, the determinant

Definition of the determinant

$$\det'\Box^{E_n^\xi} = \exp\Big(-\zeta'_{E_n^\xi}(\mathbf{0})\Big).$$

Compatibility theorem

Theorem. (-, 2019)

Suppose $(M, D_M, g_{\rm hyp}^{TM})$ has csc -1, (ξ, h^{ξ}) trivial. Then for any $m \ge 0$, $n \le 0$, we have

$$\det{}'\Box^{E_n^{\xi}}=^*\det{}'_{TZ}\Box^{E_n^{\xi}}.$$

=* means up to some computed universal constant

m = 0, D'Hoker-Phong, 1986

Finally, the Quillen norm

Quillen norm

Hermitian norm on $\lambda(E_n^{\xi})$, given by

$$\left\| \cdot \right\|^Q \left(g^{TM}, h^{E_n^\xi} \right) = \left(\, \det{}' \Box^{E_n^\xi} \right)^{1/2} \cdot \left\| \cdot \right\|_{L^2} \left(g^{TM}, h^{E_n^\xi} \right)$$

A question

How to compute the Quillen norm?

A notion of flattening

Flattening of a metric with cusps g^{TM}

is a Kähler metric $g_{
m f}^{\it TM}$ on $\overline{\it M}$ such that

The same for $\|\cdot\|_{M}$

Relative compact perturbation theorem

Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps, (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_{\mathrm{f}}^{TM}, \|\cdot\|_{M}^{\mathrm{f}}$ the flattenings of $g^{TM}, \|\cdot\|_{M}$

Relative compact perturbation theorem calculates

$$\frac{\left\|\cdot\right\|_{Q}\left(g^{TM},h^{\xi}\otimes\left\|\cdot\right\|_{M}^{2n}\right)}{\left\|\cdot\right\|_{Q}\left(g_{\mathrm{f}}^{TM},h^{\xi}\otimes\left(\left\|\cdot\right\|_{M}^{\mathrm{f}}\right)^{2n}\right)}$$

In other words: it answers

How Quillen metric changes under compact perturbation.

The Wolpert norm

$$(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$$
 surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

$$\frac{\sqrt{-1} dz_i d\overline{z}_i}{\left|z_i \log |z_i|\right|^2}$$

Wolpert norm

 $\|\cdot\|^W$ on $\otimes_{i=1}^m \omega_{\overline{M}}|_{P_i}$ is defined by

$$\|\otimes_i dz_i|_{P_i}\|^W=1.$$

$$on \quad D^* \qquad \frac{\sqrt{-1} \, dz d\overline{z}}{\big|z \log |z|\big|^2} \quad \rightsquigarrow \quad \big\| \, dz \big|_0 \big\|^W = 1 \, on \quad D^* \qquad \frac{\sqrt{-1} \, dz d\overline{z}}{\big|z \log \big|2z\big|\big|^2}$$

Wolpert norm is related to the "constant term" of the conformal transformation at cusp

Anomaly formula, setting

$$(\overline{M}, D_M)$$
 a pointed Riemann surface g^{TM}, g_0^{TM} metrics with cusps at D_M

$$\|\cdot\|_M, \|\cdot\|_M^0$$
 the norms induced by g^{TM}, g_0^{TM} on $\omega_M(D)$

$$\|\cdot\|^W, \|\cdot\|^W_0$$
 the associated Wolpert norms on $\otimes_{P\in D_M}\omega_{\overline{M}}|_P$

 ξ holomorphic vector bundle on \overline{M} h^{ξ} , h_0^{ξ} Hermitian metrics on ξ over \overline{M}

Theorem. (-, 2018)

$$\begin{split} 2\log\Bigl(\lVert \cdot\rVert_Q \left(g_0^{TM},h_0^\xi\otimes (\lVert \cdot\rVert_M^0)^{2n}\right)\Big/\lVert \cdot\rVert_Q \left(g^{TM},h^\xi\otimes \lVert \cdot\rVert_M^{2n}\right)\Bigr) \\ &= \int_M \Bigl[\text{Bott-Chern terms, analogic to the anomaly} \\ &\quad \text{for compact manifolds of Bismut-Gillet-Soul\'e} \Bigr] \\ &\quad -\frac{\operatorname{rk}(\xi)}{6}\log\Bigl(\lVert \cdot\rVert^W/\lVert \cdot\rVert_0^W\Bigr) + \sum\log\Bigl(\det(h^\xi/h_0^\xi)|_{P_i}\Bigr). \end{split}$$

What is a family of curves with cusps?

Family of curves with cusps

■ $\pi: X \to S$ proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$)

 $\Sigma_{X/S}$ singular points of the fibers, $\Delta = \pi_*(\Sigma_{X/S})$

- $\sigma_1, \ldots, \sigma_m : S \to X \setminus \Sigma_{X/S}$ hol. non intersect. sections $D_{X/S} = \operatorname{Im}(\sigma_1) + \cdots + \operatorname{Im}(\sigma_m)$
- $\|\cdot\|_{X/S}^{\omega}$ Herm. norm on $\omega_{X/S}$ over $X \setminus (|D_{X/S}| \cup \pi^{-1}(|\Delta|))$ $\|\cdot\|_{X/S}^{\omega}|_{X_t}$ induces metric g^{TX_t} on $X_t \setminus |D_{X/S}|$, $t \in S \setminus |\Delta|$ So that $(X_t, \{\sigma_1(t), \dots, \sigma_m(t)\}, g^{TX_t})$ is a surface with cusps

 $(\pi: X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega})$ a family of curves with cusps

A picture

Grothendieck-Knudsen-Mumford determinant

$$(\pi: X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega})$$
 a family of curves with cusps $\omega_{X/S}(D) = \omega_{X/S} \otimes \mathscr{O}_X(D_{X/S}), \qquad \|\cdot\|_{X/S}$ twisted relative canonical line bundle on X (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

$$egin{aligned} E_n^\xi &= \xi \otimes \omega_{X/S}(D)^n \ \lambda(E_n^\xi)_t &= (\Lambda^{\mathsf{max}} H^0(X_t, E_n^\xi|_{X_t}))^{-1} \otimes \Lambda^{\mathsf{max}} H^1(X_t, E_n^\xi|_{X_t}) \end{aligned}$$

Quillen norm for families of surfaces with cusps

Quillen norm

We define the Quillen norm on $\lambda(\xi \otimes \omega_{X/S}(D)^n)$ by

$$\begin{split} \left\| \cdot \right\|^Q \left(g^{TX_t}, h^{\xi} \otimes \left\| \cdot \right\|_{X/S}^{2n} \right) \\ &= \left(\, \det' \Box_t^{E_n^{\xi}} \right)^{1/2} \cdot \left\| \cdot \right\|_{L^2} \left(g^{TX_t}, h^{\xi} \otimes \left\| \cdot \right\|_{X/S}^{2n} \right). \end{split}$$

Wolpert norm for families

Wolpert norm

We define the Wolpert norm $\|\cdot\|^W$ on $\otimes_i \sigma_i^*(\omega_{X/S})$ over S by gluing the Wolpert norms $\|\cdot\|_t^W$ on $\otimes_i \omega_{X/S}|_{\sigma_i(t)}$ induced by g^{TX_t} .

Riemann-Roch-Grothendieck theorem in the presence of cusps

$$\mathscr{L}_n = \lambda(\mathcal{E}_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

Canonical singular norm

 s_{Δ} the canonical holomorphic section of $\mathscr{O}_{S}(\Delta)$ $\|\cdot\|_{\Delta}^{\operatorname{div}}$ on $\mathscr{O}_{S}(\Delta)$ is defined by $\|s_{\Delta}\|_{\Delta}^{\operatorname{div}}(x) = 1$, $x \in S \setminus |\Delta|$

$$\begin{split} \|\cdot\|^{\mathscr{L}_n} &= \left(\|\cdot\|^Q \left(g^{\mathsf{TX}_l}, h^{\xi} \otimes \|\cdot\|_{X/\mathcal{S}}^{2n}\right)\right)^{12} \otimes \left(\|\cdot\|^W\right)^{-\mathrm{rk}(\xi)} \\ &\otimes (\|\cdot\|_{\Delta}^{\mathrm{div}})^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* h^{\det \xi})^3 \end{split}$$

Theorem. (-, 2018)

Under mild degenerating assumptions on $\|\cdot\|_{X/S}$, the norm $\|\cdot\|^{\mathscr{L}_n}$ extends continuously* over $|\Delta|$, smooth* over $S\setminus |\Delta|$, and on the level of currents over S:

$$c_1\Big(\mathscr{L}_n, (\|\cdot\|^{\mathscr{L}_n})^2\Big) = -12 \int_\pi \left[\mathrm{Td}(\omega_{X/S}(D), \|\cdot\|_{X/S}^2) \mathrm{ch}(\xi, h^\xi) \mathrm{ch}(\omega_{X/S}(D), \|\cdot\|_{X/S}^{2n}) \right]^{[4]}$$

Thank you!