OSNOVE UMETNE INTELIGENCE

2018/19

regresija linearne in lokalne metode ocenjevanje učenja

Pregled

- · strojno učenje
 - uvod v strojno učenje
 - · učenje odločitvenih dreves
 - · učenje dreves iz šumnih podatkov (rezanje dreves)
 - regresijska drevesa
 - linearni modeli
 - metoda k najbližjih sosedov
 - ocenjevanje učenja

Regresijska drevesa

- zvezna ciljna spremenljivka regresijski problem
- regresijska drevesa so podobna odločitvenim drevesom, le za regresijske probleme
- sistemi: CART (Breiman et al. 1984), RETIS (Karalič 1992), M5 (Quinlan 1993), WEKA (Witten and Frank, 2000)
- listi v regresijskem drevesu predstavljajo:
 - predstavljajo povprečno vrednost označb ("razreda") primerov v listu
 - preprost napovedni model (npr. linearna regresija) za nove primere

Gradnja regresijskih dreves

- atribut delimo glede na izbrano mejno vrednost
- drugačna mera za merjenje nedoločenosti/nečistoče: srednja kvadratna napaka v vozlišču v:

$$MSE(v) = \frac{1}{n}\sum_{i=1}^n (y_i - \bar{y})^2$$

- cilj: minimiziramo rezidualno nedoločenost po delitvi primerov glede na vrednosti atributa A
- pričakovana rezidualna nečistost

$$I_{res}(A) = p_{left} \cdot I_{left} + p_{right} \cdot I_{right}$$

Pregled

- strojno učenje
 - uvod v strojno učenje
 - učenje odločitvenih dreves
 - učenje dreves iz šumnih podatkov (rezanje dreves)
 - regresijska drevesa
 - linearni modeli
 - · metoda k najbližjih sosedov
 - ocenjevanje učenja

Linearni modeli

- uporaba pri klasifikaciji (kot separator razredov) in regresiji (kot prileganje skozi podane točke)
- linearni model z eno odvisno spremenlijvko (angl. univariate linear model):

$$h(x) = w_1 x + w_0$$

 w_0 in w_1 sta **uteži** (angl. weights) spremenljivk (koeficienta)

linearna regresija: postopek iskanja funkcije h(x) (oziroma uteži w_0 in w_1), ki se najbolje prilega učnim podatkom

Linearna regresija

optimizacijo izvedemo z minimizacijo srednje kvadratne napake:

$$napaka(h) = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

- prostor koeficientov je konveksen, lokalni minimumi ne obstajajo (samo globalni)
- obstaja analitična rešitev:

Linearna regresija

· primer linearne regresije

				$w_1 = \frac{N(\sum x_j y_j) - (\sum x_j)(\sum y_j)}{N(\sum x_j^2) - (\sum x_j)^2} = \frac{10 \cdot 190 - 55 * 48}{10 \cdot 385 - 55^2}$
x_j	y_j	$x_j y_j$	x_j^2	$N(\sum x_j) - (\sum x_j) = 10 303 33$ $= -0.897$
1	8	8	1	= 0,037
2	9	18	4	$\nabla v_r = w_r (\nabla r_r)$ $48 = (-0.897) \cdot 55$
3	9	27	9	$w_0 = \frac{\sum y_j - w_1(\sum x_j)}{N} = \frac{48 - (-0.897) \cdot 55}{10} = 9,733$
4	6	24	16	
5	4	20	25	10
6	3	18	36	2
7	3	21	49	8
8	1	8	64	7
9	4	36	81	6
10	1	10	100	4
$\sum x_j = 55$	$\sum y_j = 48$	$\sum x_j y_j = 190$	$\sum x_j^2 = 385$	3 2 y=-0,897x+9,7333
				1 0
				0 2 4 6 8 10 12

Posplošitev v več dimenzij

možna je posplošitev v **višje število dimenzij** – več neodvisnih spremenljivk (atributov) (angl. *multivariate linear regression*) $h(x) = w_0 + \sum_i w_i x_{j,i}$

kjer so w_i uteži (koeficienti), $x_{j,i}$ pa i-ta spremenljivka (atribut) primera x_j

- uteži lahko določimo analitično: $w = (X^TX)^{-1}X^Ty$ kjer je X matrika s podatki (vrstice – učni primeri, stolpci – atributi), y pa vektor z vrednostmi odvisnih spremenljivk primerov
- v praksi se odločamo za iskanje koeficientov
- z gradientnim spustom

 $\begin{aligned} & \boldsymbol{w} \leftarrow \text{naključna začetna rešitev} \\ & \text{ponavljaj do konvergence} \\ & \text{za vsak } w_i \ \mathbf{v} \ \boldsymbol{w} \colon \\ & w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} napaka(\boldsymbol{w}) \end{aligned}$

problem s pretiranim prilagajanjem,

regularizacija

Linearni modeli pri klasifikaciji

- linearni model se uporablja za ločevanje primerov, ki pripadajo različnim
- iščemo **odločitveno mejo** (angl. *decision boundary*) oz. **linearni separator** (obstaja samo pri linearno ločljivih problemih)
- za spodnji primer je linearno separator lahko funkcija $-4.9 + 1.7x_1 x_2 = 0$

• hipoteza je torej:
$$h(x) = prag(w \cdot x)$$
, kjer $prag(z) = \begin{cases} 1 & z \ge 0 \\ 0 & sicer \end{cases}$

Linearni modeli pri klasifikaciji

- možnih ustreznih premic je več
- preprosto iskanje rešitve stohastični gradientni spust s posodabljanjem uteži
- za vsak učni primer (x, y) izvedi posodobitev uteži: $w_i \leftarrow w_i + \alpha (y - h(x)) \times x_i$

kjer so w_i uteži (koeficienti), α pa vpliva na hitrost spremembe (korak)

- intuicija:

 - rtuciqia: $\delta = h(x)$, potem se w_i ne spremeni $\delta = \delta = h(x)$, potem se za pozitiven x_i utež poveča in za negativen x_i utež poveča in za negativen x_i utež pramajša $\delta = \delta = 0$, potem se za pozitiven x_i utež pramajša $\delta = \delta = 0$. (Previsoka vrednost hipoteze), potem se za pozitiven x_i utež pramajša in za negativen x_i utež proveča
- algoritem lahko pri ustreznem α najde optimalno rešitev tudi za linearno neločljive podatke
- smiselna izboljšava: logistična pragovna funkcija

Linearni modeli pri klasifikaciji • demo **Nonvergenca algoritma pri linearno riciclijnih podatikh (teor) in linearno ricicl

Pregled • strojno učenje • uvod v strojno učenje • učenje odločitvenih dreves • učenje dreves iz šumnih podatkov (rezanje dreves) • regresijska drevesa • linearni modeli • metoda k najbližjih sosedov • ocenjevanje učenja

Metoda & najbližjih sosedov ** angl. & nearest neighbors** ** lastnosti: ** neparametrična metoda (ne ocenjuje parametrov izbranega modela) ** učenje na podlagi posameznih primerov (angl. instance-based learning) ** leno učenje (angl. lazy learning): z učenjem odlaša vse do povpraševanja o novem primeru ** ideja: ob vprašanju po vrednosti odvisne spremenljivke za novi primer: ** poišči k primerov, ki so najbližji glede na podano mero razdalje ** napovej ** pri klasifikaciji: npr. večinski razred med sosedi ** pri regresiji: npr. povprečno vrednost/mediano označb sosedov ** v izogib neodločenemu glasovanju za večinski razred pri klasifikaciji običajno izberemo, da je k liho število

Metoda k najbližjih sosedov

Pregled

- · strojno učenje
 - · uvod v strojno učenje
 - · učenie odločitvenih dreves
 - · učenje dreves iz šumnih podatkov (rezanje dreves)
 - regresijska drevesa
 - · linearni modeli
 - metoda k najbližjih sosedov
 - · ocenjevanje učenja

Ocenjevanje učenja

- · kriteriji za ocenjevanje hipotez:
 - točnost (angl. accuracy)
 - · kompleksnost (angl. complexity)
 - · razumljivost (angl. comprehensibility) subjektivni kriterij
- · ocenjevanje točnosti:
 - · na učnih podatkih (angl. training set, learning set)
 - · na testnih podatkih (angl. testing set, test set)
 - izločimo del učnih podatkov, s katerimi simuliramo ne-videne podatke
 - želimo si, da je testna množica reprezentativna za nove podatke
 - uporabimo lahko intervale zaupanja v oceno uspešnosti na testni množici, ki upoštevajo število testnih primerov
 - · na novih (ne-videnih) podatkih (angl. new data, unseen data)
 - · na njih bo naučeni sistem dejansko deloval

Ocenjevanje učenja

- · nasprotujoča si cilja:
 - · potrebujemo čim več podatkov za uspešno učenje
 - potrebujemo čim več podatkov za zanesljivo ocenjevanje točnosti (večje število testnih primerov nam daje ožji interval zaupanja v oceno točnosti)
- rešitev:
 - kadar je učnih podatkov dovolj, lahko izločimo testno množico (angl. holdout test set)
 - alternativa: večkratne delitve na učno in testno množico
- · različni načini vzorčenja testnih primerov:
 - naključno, nenaključno (npr. prečno preverjanje)
 - poljubno ali stratificirano (zagotovimo enako porazdelitev razredov kot v učni množici)

Prečno preveranje

- · poseben primer večkratnega učenja in testiranja
- k-kratno prečno preverjanje (angl. k-fold cross-validation):
 - celo učno množico razbij na k disjunktnih podmnožic
 - za vsako od k podmnožic:
 - uporabi množico kot testno množico
 uporabi preostalih k-1 množic kot učno množico
 - uporabi preostalih k-1 množic kot učno množico
 povpreči dobljenih k ocen točnosti v končno oceno

testna množica
učna množica

k ocena

končna (povprečna) ocena točnost

Prečno preveranje

- v praksi najpogosteje: k=10 (10-kratno prečno preverjanje)
- vplive izbranega razbitja podatkov na podmnožice lahko zmanjšamo tako, da tudi prečno preverjanje večkrat (npr. 10x) ponovimo (torej 10x10=100 izvajanj učnega algoritma) in rezultate povprečimo
- poseben primer prečnega preverjanja je metoda izloči enega (angl. leaveone-out, LOO)
 - k je enak številu primerov (vsaka testna množica ima samo en primer)

 k je enak številu primerov (vsaka testna množica ima samo en primer)
 - najbolj stabilna ocena glede učinkov razbitja na podmnožice
 časovno zelo zamudno, primerno za manjše množice
- iz meritev na vseh podmnožicah
- je možno izračunati tudi varianco/ intervale zaupanja

