CpE 690: Introduction to VLSI Design

Lecture 8 Transient Response and Delay

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from Lecture Notes, David Mahoney Harris CMOS VLSI Design

Activity

1) If the width of a transistor increases, the current will increase decrease not change If the length of a transistor increases, the current will increase decrease not change If the supply voltage of a chip increases, the maximum transistor current will decrease increase not change If the width of a transistor increases, its gate capacitance will increase decrease not change If the length of a transistor increases, its gate capacitance will increase decrease not change If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change

Transient Response

- DC analysis tells us V_{out} if V_{in} is constant
- Transient analysis tells us V_{out}(t) in response to a change in V_{in}
- Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From GND to V_{DD} or vice versa

Delay Definitions

- **t**_{pdr}: rising propagation delay
 - maximum time from input crossing V_{DD}/2 to rising output crossing V_{DD}/2
- t_{pdf}: falling propagation delay
 - maximum time from input crossing V_{DD}/2 to falling output crossing V_{DD}/2
- t_{pd}: average propagation delay

$$- t_{pd} = (t_{pdr} + t_{pdf})/2$$

- t_r: rise time
 - from output crossing 0.2
 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - from output crossing 0.8
 V_{DD} to 0.2 V_{DD}

Delay Definitions (cont.)

- **t**_{cdf}: falling contamination delay
 - minimum time from input crossing V_{DD}/2 to falling output crossing V_{DD}/2
- **t**_{cdr}: rising contamination delay
 - minimum time from input crossing V_{DD}/2 to rising output crossing V_{DD}/2
- t_{cd}: avg. contamination delay

$$- t_{pd} = (t_{cdr} + t_{cdf})/2$$

Delay in CMOS Circuits

- Switching CMOS gate generates output current in response to changing input voltages
- All nodes have some finite capacitance (to ground)
 - gate capacitance
 - parasitic source/drain (diode) capacitance
 - parasitic wiring capacitance
- Transient waveforms found by solving:

$$C_{node} \cdot (dV_{node}/dt) = \sum_{k} I_{k,node}$$
 for each node in circuit

Inverter Step Response

Find step response of inverter driving C_{load}

$$V_{in}(t) = u(t - t_0) \cdot V_{DD}$$

$$V_{out}(t < t_0) = V_{DD}$$

$$dV_{out}(t)/dt = -I_{dsn}(t)/C_{load}$$

$$I_{dsn}(t) = \begin{cases} 0 & \text{for } t < t_0 \\ (\beta/2) \cdot (V_{DD} - V_t)^2 & \text{for } V_{out} > V_{DD} - V_t \\ \beta \cdot (V_{DD} - V_t - V_{out}(t)/2) \cdot V_{out}(t) & \text{for } V_{out} < V_{DD} - V_t \end{cases}$$

$$7$$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
- Uses more accurate I-V models too!
- But simulations take time to write!

Delay Estimation

- We would like to be able to easily estimate delay
 - For exploration of design space, don't need to be as accurate as simulation
 - Want a technique where its easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Can we model conducting transistor as effective resistance?

Effective Resistance

- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $-I_{ds} = V_{ds}/R$ or 0 depending on gate voltage

- R averaged across switching of digital gate
 - Too inaccurate to predict current at any given time
 - But good enough to predict gate delay

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance (gate & diffusion) proportional to width
- Resistance inversely proportional to width

RC Values

Capacitance

- $C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width in 0.6 μm
- Gradually decline to 1 fF/μm in nanometer techs.

Resistance

- R \approx 5-10 K Ω • μ m in 0.6 μ m process
- Improves with shorter channel lengths

Unit transistors

- May refer to minimum contacted device (4/2 λ)
- Or maybe W=1 μm device (doesn't matter as long as you are consistent)

	AMI 0.6μm	TSMC 250nm	TSMC 180nm	IBM 130nm	IBM 65nm
R_n (k Ω . μ m)	9.2	4.0	2.7	2.5	1.3
R_n (k Ω .4 λ)	7.7	8.0	7.5	9.6	10
$R_p (k\Omega.\mu m)$	19.9	8.9	6.5	6.4	2.9
$R_{\rm p} \ (k\Omega.4\lambda)$	16.6	17.8	18.1	24.7	22.3

RC Values

Estimate the delay of a fanout-of-1 inverter

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve (worst case) effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Capacitors

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Capacitors

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

Rise & Fall Delay

What are worst-case rise and fall delays?

How can we estimate delay of these networks?

τ with multiple RC components

$$H(s) = \frac{1}{1 + s[R_1C_1 + (R_1 + R_2).C_2] + s^2R_1C_1R_2C_2}$$

- Second order response is too complicated
 - defeats whole purpose of simplifying to an RC network
- Can approximate to:

$$\tau = \tau_1 + \tau_2 = R_1C_1 + (R_1 + R_2).C_2$$

Elmore Delay

- ON transistors modeled as resistors
- Pullup or pulldown network represented as an RC tree
 - root of tree is driving voltage source (often VDD or GND)
 - leaves are capacitors at end of branches
- Elmore delay to any target (node j) in the branch:

$$t_{pdj} = \sum_{i} R_{sij}. C_i$$

where:

- i represents <u>all</u> the nodes in the branch
- C_i is the capacitance at node i
- R_{sij} is the resistance of the shared path from the source to $node_i$ and from the source to the target $node_i$
- Elmore delay is conservative
 - over-estimates the delay

Shared Path

delay to node N is:

$$R_1C_1 + (R_1+R_2).C_2 + ... + (R_1+R_2+...+R_n).C_N$$

delay to node 2 is:

$$R_1C_1 + (R_1+R_2).C_2 + (R_1+R_2).(C_3+C_4+...+C_N)$$

Example: Elmore Delay

Calculate delay from source to all nodes in circuit:

3-input NAND: pull-down delay

Estimate worst-case rising and falling delay of 3-input NAND

driving *h* identical gates.

Worst case pull-down delay occurs when ABC goes from (110) to (111)

$$t_{pdf} = (3C)(\frac{R}{3}) + (3C)(\frac{R}{3} + \frac{R}{3}) + [(9+5h)C](\frac{R}{3} + \frac{R}{3} + \frac{R}{3})$$
$$t_{pdf} = (12+5h)RC$$

3-input NAND: pull-up delay

 Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

Worst case pull-up delay occurs when ABC goes from (111) to (110)

$$t_{pdr} = [(9 + 5h)C](R) + (3C)(R) + (3C)(R)$$

$$t_{pdr} = (15 + 5h)RC$$

Delay Components

$$t_{pdf} = (12 + 5h)RC$$

$$t_{pdr} = (15 + 5h)RC$$

- Delay has two parts
 - Parasitic delay
 - 15 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Contamination Delay

 Best-case (contamination) delay can be substantially less than propagation delay:

if top nMOS is last to turn on:

i.e. ABC goes from (011) to (111)

if all pMOS turn on simultaneously:

i.e. ABC goes from (111) to (000)

$$R \stackrel{\stackrel{}{\underset{}}}{\underset{}} R \stackrel{\stackrel{}{\underset{}}}{\underset{}} R \stackrel{\stackrel{}{\underset{}}}{\underset{}} Y$$

$$\stackrel{}{\underset{}} U$$

$$t_{cdr} = \left(3 + \frac{5}{3}h\right)RC$$

compare to:
$$t_{pdf} = (12 + 5h)RC$$

$$t_{pdr} = (15 + 5h)RC$$

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
 - but shared on series nMOS chain
- Good layout minimizes diffusion area
- Good NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
- Merged un-contacted diffusion also helps

Layout Comparison

Which layout is better?

Example: Gate delays

For the gate $Y = \overline{A + B.C}$

- a) Draw the schematic
- b) Size the transistors to give pullup and pulldown strength equal to unit size inverter
- c) Annotate with effective R of each transistor and C of each node
- d) Calculate worst case rising & falling propagation delay while driving h similar gates (via input B)
- e) Calculate best case rising & falling contamination delay while driving h similar gates (via input B)