Title: DIGITAL AUTOMATIC GAIN CONTROL

IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended) A hearing aid, comprising:
 - a microphone to receive an input signal;
 - a speaker to reproduce the input signal; and
- a <u>digital</u> processor to process the input signal at a gain, wherein the processor includes an inhibitor to inhibit distortions and an adjuster to adjust the gain of the input signal, wherein the inhibitor smoothes an envelope of the input signal so as to inhibit distortions arising from apparent modulation of the input signal <u>due to sampling of the input signal</u>.
- 2. (Original) The hearing aid of claim 1, wherein the inhibitor creates two representations that are orthogonal to each other in phase.
- 3. (Original) The hearing aid of claim 1, wherein the inhibitor includes a multiple of time-constant circuits to smooth the envelope of the input signal.
- 4. (Original) The hearing aid of claim 1, wherein the inhibitor includes a detector having a Hilbert filter so as to smooth the envelope of the input signal.
- 5. (Original) The hearing aid of claim 1, wherein the inhibitor includes an estimator that estimates at least one of a minimum and a maximum of two representations of the input signal that are orthogonal to each other in phase, wherein the estimator allows a linear extraction of the amplitude so as to smooth the envelope of the input signal.

- 6. (Currently Amended) A method for providing automatic gain control, comprising: sampling an input signal;
 - smoothing an envelope of an the input signal having a gain; and

adjusting the gain if the envelope is one of two conditions, wherein the two conditions includes being greater than a threshold, and being less than the threshold, wherein the act of smoothing inhibits distortions arising from apparent modulation of the input signal produced by sampling the input signal.

- 7. (Original) The method of claim 6, wherein smoothing includes creating two representations of the input signal, wherein the two representations are orthogonal to each other in phase.
- 8. (Original) The method of claim 7, wherein creating includes creating the magnitude of the two representations to approximate the magnitude of the input signal.
- 9. (Original) The method of claim 7, wherein smoothing includes smoothing using a Hilbert filter.
- 10. (Original) The method of claim 9, wherein smoothing includes squaring each sample to form a squared sample, summing each squared sample with other squared samples to form a sum, and taking a square root of the sum.
- 11. (Currently Amended) A hearing aid An apparatus for processing a digital audio signal, comprising:

an adjuster to adjust a gain so as to amplify an input amplification of the digital audio signal; and

a detector to form a smooth envelope that is a rectified version of the input digital audio signal, wherein the detector presents the smooth envelope to the adjuster, and wherein the smooth envelope excludes apparent modulation of the input digital audio signal.

- 12. (Currently Amended) The hearing aid apparatus of claim 11, further comprising a preamplifier having a gain to amplify the input signal, wherein the adjuster adjusts the gain amplification of the preamplifier.
- 13. (Currently Amended) The hearing aid apparatus of claim 12, further comprising an analog-to-digital converter that receives the input signal, which is amplified by the preamplifier, and produces a digitized input signal.
- 14. (Currently Amended) The hearing aid apparatus of claim 13, further comprising a filter to receive the digitized input signal and to produce a filtered input signal that excludes a direct-current component of the digitized input signal.
- 15. (Currently Amended) The hearing aid apparatus of claim 14, further comprising a digital-to-analog converter that receives a digital adjustment from the adjuster, produces an analog adjustment, and presents the analog adjustment to the preamplifier.
- 16. (Currently Amended) A hearing aid <u>for processing an input signal</u>, comprising:
 a preamplifier having a gain to amplify the input signal <u>and produce an amplified input signal</u>;
 - a sampler to sample the amplified input signal;
 - a detector to form a smooth envelope that is rectified; and
- an adjuster to adjust the gain of the preamplifier if the smooth envelope is one of two conditions, wherein the two conditions includes being greater than a threshold and being less than the threshold, and wherein the smooth envelope is defined to exclude the to reduce distortions due to an apparent modulation that distorts arising from sampling of the amplified input signal.
- 17. (Original) The hearing aid of claim 16, further comprising a filter to produce a filtered input signal that excludes direct current.

Title: DIGITAL AUTOMATIC GAIN CONTROL

- 18. (Original) The hearing aid of claim 17, wherein the detector includes a Hilbert filter, wherein the Hilbert filter receives the filtered input signal, and produces two signals that are 90 degrees out of phase with each other.
- 19. (Original) The hearing aid of claim 18, wherein the detector squares each signal of the two signals, sums the two squared signals to form a sum, and takes the square root of the sum to form the smooth envelope of the input signal.
- 20. (Original) The hearing aid of claim 18, wherein the detector squares each signal of the two signals and sums the two squared signals to form the smooth envelope of the input signal.
- 21. (Currently Amended) A gain control for processing an input signal, comprising:

 <u>a sampler to sample the input signal;</u>

 a detector to detect an envelope of an the input signal using Hilbert filters;

 an adder to provide a difference between the envelope and a threshold; and
 an adjuster that adjust adjusts a gain based on if the difference is one of two conditions,
 wherein the two conditions includes being greater than zero and being less than zero.

wherein the detector is adapted to reduce apparent modulation arising from sampling of the input signal.

- 22. (Previously Presented) The gain control of claim 21, further comprising a filter that removes low frequencies, wherein the filter receives the input signal, removes frequencies less than about 100 Hertz from the input signal, and presents the input signal to the detector.
- 23. (Previously Presented) The gain control of claim 22, further comprising a digital delay element that receives the input signal and presents a delayed input signal.
- 24. (Currently Amended) The gain control of claim 23, further comprising a first Hilbert filter and a second Hilbert filter in a Hilbert filter arrangement, wherein the first Hilbert filter receives the delayed input signal and filters the delayed input signal to form the first filtered

input signal, and wherein the second Hilbert filter receives the input signal and filters the input signal to form the second filtered input signal.

- 25. (Previously Presented) The gain control of claim 24, further comprising a first multiplier and a second multiplier, wherein the first multiplier receives the first filtered input signal and squares the first filtered input signal to form a first squared signal, and wherein the second multiplier receives the second filtered input signal and squares the second filtered input signal to form a second squared signal.
- 26. (Previously Presented) The gain control of claim 25, further comprising another adder to add the first squared signal and the second squared signal to form a sum-of-square signal.
- 27. (Previously Presented) The gain control of claim 26, further comprising a limiter that receives the sum-of-square signal, limits the sum-of-square signal to a desired range, and presents a limited signal to the adder that provides the difference between the envelope and the threshold.
- 28. (Currently Amended) 'A gain control <u>operating on an input signal</u>, comprising:

 <u>a sampler for sampling the input signal</u>;

a detector to detect an envelope of an input signal using <u>a</u> Hilbert filters filter <u>arrangement</u>;

an adder to provide a difference between the envelope and a threshold; and an adjuster that receives the difference, a release time constant, and an attack time constant, wherein the adjuster adjust adjusts a gain if the difference is one of two conditions, wherein the two conditions includes being a negative number and being a positive number, wherein the adjuster increases the gain if the difference is negative, and wherein the adjuster decreases the gain if the difference is positive,

wherein the detector is adapted to reduce apparent modulation arising from sampling of the input signal.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/730200

Filing Date: December 5, 2000

Title: DIGITAL AUTOMATIC GAIN CONTROL

Page 7 Dkt: 899.036US1

29. (Previously Presented) The gain control of claim 28, wherein the adjuster receives a

previous gain, wherein if the difference is negative, the adjuster increases the gain by shifting the

bits of the previous gain to the right by the release time constant to form a new gain and taking

the negative of the new gain.

30. (Previously Presented) The gain control of claim 29, wherein if the difference is positive,

the adjuster decreases the gain by shifting the bits of the difference to the right by the attack time

constant to form the new gain.

31. (Previously Presented) The gain control of claim 30, further comprising a width adjuster

that adjusts the word with of the previous gain and presents an adjusted previous gain.

32. (Previously Presented) The gain control of claim 31, further comprising another adder

that adds the new gain and the adjusted previous gain to form the gain.

33. (Previously Presented) The gain control of claim 32, further comprising a limiter to the

limit the range of the gain so that the gain is positive.

34. (Previously Presented) The gain control of claim 33, further comprising a buffer that

stores the gain and presents the stored gain, wherein the stored gain is defined as the previous

gain, which is presented to the adjuster and the width adjuster.

35. (Previously Presented) The gain control of claim 34, further comprising a rounding

circuit that rounds the stored gain to a smaller precision value so as to be compatible with the

input width of subsequent circuitry that includes a digital-to-analog converter.

Title: DIGITAL AUTOMATIC GAIN CONTROL

- 36. (Currently Amended) A gain control operating on an input signal, comprising:
 - a filter to block low frequencies from an of the input signal;
 - a sampler to sample the input signal;
- a detector to detect an envelope of the <u>sampled</u> input signal using <u>a Hilbert filters filter</u> arrangement;

an adder to provide a difference between the envelope and a threshold; and an adjuster that receives the difference, a release time constant, and an attack time constant, wherein the adjuster adjust adjusts a gain if the difference is one of two conditions, wherein the two conditions includes being a negative number and being a positive number, wherein the adjuster increases the gain if the difference is negative, and wherein the adjuster decreases the gain if the difference is positive, wherein the detector is adapted to reduce the apparent modulation arising from sampling of the input signal.

- 37. (Currently Amended) The gain control of claim 36, wherein the filter <u>to block low</u> frequencies includes a first digital delay that receives the input signal and presents a delayed input signal.
- 38. (Currently Amended) The gain control of claim 37, wherein the filter to block low frequencies includes a first adder that determines a difference between the input signal and the delayed input signal.
- 39. (Currently Amended) The gain control of claim 38, wherein the filter to block low frequencies includes a first multiplier that multiplies the difference and a scale to form a scaled signal, wherein the scaled signal inhibits the filter from overflow.
- 40. (Currently Amended) The gain control of claim 39, wherein the filter to block low frequencies includes a second adder that adds the scaled signal and a blocked signal to form a filtered signal.

Title: DIGITAL AUTOMATIC GAIN CONTROL

- 41. (Currently Amended) The gain control of claim 40, wherein the filter to block low frequencies includes a second digital delay that receives the filtered signal and presents a filtered signal that is delayed.
- 42. (Currently Amended) The gain control of claim 41, wherein the filter to block low frequencies includes a second multiplier that multiplies the filtered signal that is delayed and an alpha signal to form a blocked signal, wherein the alpha signal determines a range of frequencies that will be blocked by the filter.
- 43. (Currently Amended) A gain control <u>for processing an input signal</u>, comprising:

 <u>a sampler to sample the input signal</u>;

a detector to detect an envelope of the input signal using IIR filters <u>in a Hilbert filter</u> configuration;

an adder to provide a difference between the envelope and a threshold; and an adjuster that receives the difference, a release time constant, and an attack time constant, wherein the adjuster adjust adjusts a gain if the difference is one of two conditions, wherein the two conditions includes being a negative number and being a positive number, wherein the adjuster increases the gain if the difference is negative, and wherein the adjuster decreases the gain if the difference is positive,

wherein the detector is adapted to reduce apparent modulation arising from sampling of the input signal.

- 44. (Canceled)
- 45. (Currently Amended) The gain control of claim [44] 43, wherein each infinite-impulse response IIR filter includes a first delay, a second delay, and a scale element, wherein the input signal is delayed by the first delay, delayed by the second delay, and scaled by the scale element to form a scaled signal.

Title: DIGITAL AUTOMATIC GAIN CONTROL

- 46. (Currently Amended) The gain control of claim 45, wherein each infinite impulse response IIR filter includes a first adder that determines a difference between the input signal and a feedback signal.
- 47. (Currently Amended) The gain control of claim 46, wherein each each infinite impulse response IIR filter includes a multiplier that multiplies the difference and a beta signal to form a modified signal, wherein the beta signal modifies the phase of the difference.
- 48. (Currently Amended) The gain control of claim 47, wherein each infinite-impulse response IIR filter includes a third delay that delays the modified signal to form a filtered signal.
- 49. (Currently Amended) The gain control of claim 48, wherein each infinite-impulse response IIR filter includes a fourth delay that delays the filtered signal to form the feedback signal.
- 50. (Currently Amended) A method for controlling a gain of an amplifier, comprising: blocking low frequencies from an input signal that is digitized; forming an envelope that lacks apparent modulation using at least one Hilbert filters filter; and

subtracting the envelope from a threshold to form a difference, wherein the difference is used to control the gain.

- 51. (Original) The method of claim 50, wherein blocking includes blocking low frequencies that are less than about 100 Hertz.
- 52. (Original) The method of claim 50, further comprising determining if the difference is greater than zero.
- 53. (Original) The method of claim 52, further comprising shifting the bits of the difference to the right by an attack constant to form a decreased gain.

Title: DIGITAL AUTOMATIC GAIN CONTROL

- 54. (Original) The method of claim 53, further comprising shifting the bits of a negated signal to the right by a release constant to form an increased gain.
- 55. (Original) The method of claim 54, further comprising switching for presenting the decreased gain as the gain if the difference is greater than zero, or else the act of switching presents the increased gain as the gain if the difference is less than zero.
- 56. (Original) The method of claim 55, further comprising summing the gain and the feedback signal that is delayed to form a modified gain signal.
- 57. (Original) The method of claim 56, further comprising presenting a final gain to an analog-to-digital converter, wherein the final gain is zero if the modified gain signal is less than or equal to zero, and wherein the final gain is one if the modified gain signal is greater than one.
- 58. (Original) The method of claim 57, further comprising delaying the final gain to produce the feedback signal that is delayed.
- 59. (Original) The method of claim 58, further comprising negating the feedback signal that is delayed to form the negated signal.