9. 비지도학습_군집분석

- 1. 비지도 학습 개요
- 2. 타깃 마케팅을 위한 소비자 군집 분석하기

1. 비지도 학습 개요

❖ 비지도 학습(Unsupervised Learning)

- 지도 학습과 달리 타겟 값(Y)이 없는 입력 데이터(X)만을 학습하는 방법
- 입력데이터에 내재되어 있는 패턴이나 특정을 찾아 내는 용도

❖ 비지도 학습의 종류

■ 군집화(Clustering): 유사한 포인트들 끼리 그룹을 만드는 방법

1. 비지도 학습 개요

❖ 비지도 학습의 종류

- 잠재변수 모델(Latent Variable Model)
 - 표현된 데이터 속에 내재되어 있는 요인을 찾는 것
 - 현재 데이터 속에 내재되어 있는 정보가 관측되지 않은 상태에서 z라는 내재되어 있는 변수를 찾아 냄
 - 종류
 - 주성분 분석(Principal Component Analysis, PCA)
 - 특이 값 분해(Singular Value Decomposition SVD)
 - 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF)
 - 잠재 디리슐레 할당(Latent Dirichlet Allocation, LDA) :
 - Topic Modeling :문서에서 주제를 찾는 모델링

잠재변수모델

1. 비지도 학습 개요

❖ 비지도 학습의 종류

- 밀도 추정(Density Estimation)
 - 관측된 데이터를 이용하여 데이터 생성에 대한 확률밀도함수를 추정
 - 가우시안 혼합모델 : 정규분포
 - 커널 밀도 추정 : 커널이라고 하는 몇가지 분포를 이용해서 데이터 추정

❖ 비지도 학습의 종류

- 이상치 탐지
 - 다른 포인트들과 비교하여 많이 벗어나 있는 포인트 찾아내기

- 종류
 - 1) Local Outlier Factor (LOF)
- 2) Isolation Forest
- 3) One-class Support Vector Macine (SVM)
- -예)LOF

- 대다수의 점들과 모여있지 않은 주변에 떨어진 점들의 수가 LOF모델로 계산 할 수 있는 점수를 나타냄
- 점수가 큰 것들을 데이터 포인트들과 떨어져 있는 anomaly로 생각

❖ 분석 미리보기

	타깃 마케팅을 위한 소비자 군집 분석하기
목표	온라인 판매 데이터를 분석하여 타깃 마케팅에 필요한 소비자 군집을 구성한다.
핵심 개념	타겟 마케팅, 비지도 학습, 군집화, K-평균, 엘보우 방법, 실루엣 분석
데이터 수집	온라인 판매 데이터: UCI Machine Learning Repository에서 다운로드
데이터 준비 및 탐색	1. 데이터 정제: 자료형 변환, 오류 및 중복 데이터 제거 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성 3. 로그 함수를 이용한 데이터 분포 조정: 데이터 치우침 조정
분석 모델 구축	사이킷런의 K-평균 군집화 모델 구축

결과 시각화

1. 클러스터의 비중을 가로 바 차트로 시각화

2. 클러스터의 데이터 분포를 스캐터 차트로 시각화

목표설정

■ K-평균으로 온라인 판매 데이터를 분석한 후 타깃 마케팅을 위한 소비자 군집을 만듬

❖ 핵심 개념 이해

- 비지도 학습
 - 훈련 데이터에 타깃값이 주어지지 않은 상태에서 학습을 수행하는 방식
 - 훈련 데이터를 학습하여 모델을 생성하면서 유사한 특성(관계, 패턴 등)을 가지는 데이터를 클러스터로 구성
 - 새로운 데이터의 특성을 분석하여 해당하는 클러스터를 예측

그림 12-1 머신러닝의 비지도 학습 구조

그림 12-2 데이터 군집화의 예

$\mathbf{01}$. [K-평균 군집화 분석 + 그래프] 타깃 마케팅을 위한 소비자 군집 분석하기

🎽 핵심 개념 이해

- K-평균 알고리즘
 - k개의 중심점을 임의 위치로 잡고 중심점을 기준으로 가까이 있는 데이터를 확인한 뒤 그들과의 거리(유클리디안 거리의 제곱을 사용하여 계산)의 평균 지점으로 중심점을 이동하는 방식
 - 가장 많이 활용하는 군집화 알고리즘이지만, 클러스터의 수를 나타내는 k를 직접 지정해야 하는 문제가 있음

■ 엘보 방법

- 왜곡: 클러스터의 중심점과 클러스터 내의 데이터 거리 차이의 제곱값의합
- 클러스터의 개수 k의 변화에 따른 왜곡의 변화를 그래프로 그려보면 그래프가 꺾이는 지점인 엘보가 나타나는데. 그 지점 의 k를 최적의 k로 선택

■ 실루엣 분석

- 클러스터 내에 있는 데이터가 얼마나 조밀하게 모여있는지를 측정하는 그래프 도구
- 데이터 i가 해당 클러스터 내의 데이터와 얼마나 가까운가를 나타내는 클러스터 응집력 a(i)
- 가장 가까운 다른 클러스터 내의 데이터 와 얼마나 떨어져있는가를 나타내는 클러스터 분리도b(i)를 이용
- 실루엣 계수 s(i)를 계산
- -1에서 1 사이의 값을 가지며 1에 가까울수록 좋은 군집화를 의미

$$- s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

❖ 데이터 수집

1. 온라인 거래 데이터 수집하기

UCI Machine Learning Repository(https://archive.ics. uci.edu)에 접속하여 'online retail'을 검색

그림 12-3 UCI Machine Learning Repository 사이트에서 'online retail' 검색

❖ 데이터 수집

2. 검색 결과 목록에서 'Online Retail Data Set - UCI Machine Learning Repository'를 클릭

그림 12-4 검색 목록에서 다운로드할 데이터셋 선택

❖ 데이터 수집

3. Online Retail Data Set 페이지가 나타나면 Data Folder를 클릭하여 'Online Retail. xlsx'를 다운로드

그림 12-5 데이터셋 다운로드

❖ 데이터 수집

4. My_Python 폴더에 data 폴더를 만든 뒤 다운로드한 'Online Retail.xlsx' 파일을 옮기고 파일 이름을 'Online_Retail.xlsx'로 수정

In [1]:		•	import pandas as pd import math										
In [2]:			retail_df = pd. read_excel ('data/Online_Retail.xlsx') retail_df. head()										
Out[2]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country				
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom				
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom				
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom				
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom				
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom				

In [1]: 필요한 모듈을 임포트

In [2]: 'Online_Retail.xlsx' 파일을 로드, 내용을 확인하기 위해 상위 5개 레코드를 표시

❖ 데이터 준비 및 탐색

- 1. 데이터 정제하기
 - 1. 데이터 정보 확인하기 데이터에 대한 정보를 확인하기 위해 다음을 입력

In [3]:	retail_df.info()
Out[3]:	<class 'pandas.core.frame.dataframe'=""></class>
	RangeIndex: 541909 entries, 0 to 541908
	Data columns (total 8 columns):
	InvoiceNo 541909 non-null object
	StockCode 541909 non-null object
	Description 540455 non-null object
	Quantity 541909 non-null int64
	InvoiceDate 541909 non-null datetime64[ns]
	UnitPrice 541909 non-null float64
	CustomerID 406829 non-null float64
	Country 541909 non-null object
	dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
	memory usage: 33.1+ MB

- 데이터를 구성하는 항목 8개
 - invoiceNo: 6자리 정수로 이루어진 송장 번호. 'C'로 시작하는 것은 취소 주문
 - StockCode: 제품 고유의 품목 코드
 - Description: 제품 설명
 - Quantity: 주문 수량
 - Country: 주문 고객의 국적
 - InvoiceDate: 주문 날짜와 시간
 - UnitPrice: 제품 단가(£, 영국 파운드화)
 - CustomerID: 주문 고객 번호

In [3]: 데이터셋의 정보를 확인

❖ 데이터 준비 및 탐색

1. 데이터 정제하기

2. 데이터 정제하기 - CustomerID는 정수 형태이므로 자료형을 정수형으로 변경, CustomerID가 없는 데이터는 분석에 사용할 수 없으므

로 제거, Quantity와 UnitPrice가 음수인 것도 제거

In [4]:	#오류 데이터 정제 retail_df = retail_df[retail_df['Quantity']>0] retail_df = retail_df[retail_df['UnitPrice']>0] retail_df = retail_df[retail_df['CustomerID'].notnull()] #'CustomerID' 자료형을 정수형으로 변환 retail_df['CustomerID'] = retail_df['CustomerID'].astype(int) retail_df.info()
	print(retail_df.isnull().sum()) print(retail_df.shape)
In [5]:	retail_df.info() print(retail_df.isnull().sum()) print(retail_df.shape)

In [4]: 오류 데이터를 필터링하고 CustomerID의 자료형을 정수형으로 변환astype(int)

In [5]: 정리한 결과를 확인하면retail_df.info() 데이터는 397,884개

In [6]: 중복 레코드를 제거하면drop_duplicates() 데이터는 392,692개

_	Out[5]:	<class 'pandas.core.frame.dataframe'=""></class>
	[-]	Int64Index: 397884 entries, 0 to 541908
		Data columns (total 8 columns):
		InvoiceNo 397884 non-null object
		StockCode 397884 non-null object
		Description 397884 non-null object
		Quantity 397884 non-null int64
		InvoiceDate 397884 non-null datetime64[ns]
		UnitPrice 397884 non-null float64
		CustomerID 397884 non-null int32
		Country 397884 non-null object.
		dtypes: datetime64[ns](1), float64(1), int32(1), int64(1), object(4)
		memory usage: 25.8+ MB
		InvoiceNo 0
		StockCode 0
		Description 0
		Quantity 0
		InvoiceDate 0
\dashv		UnitPrice 0
		CustomerID 0
		Country 0
		dtype: int64
		(397884, 8)
	In [6]:	#중복 레코드 제거
		retail df.drop duplicates(inplace = True)
		print(retail_df.shape) #작업 확인용 출력
	Out[6]:	(392692, 8)
- 1		

❖ 데이터 준비 및 탐색

- 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성하기
 - 1. 데이터 탐색을 위해 제품 수, 거래 건수, 고객 수를 알아보고 고객의 국적도 확인

In [7]:	pd.DataFrame([{'Product':len(retail_df['StockCode'].value_counts()),
	'Transaction':len(retail_df['InvoiceNo'].value_counts()),
	'Customer':len(retail_df['CustomerID'].value_counts())}],
	columns = ['Product', 'Transaction','Customer'], index = ['counts'])
Out[7]:	Product Transaction Customer counts 3665 18532 4338
In [8]:	retail df['Country'].value counts()
	United Kingdom 349203
Out[8]:	Germany 9025
	France 8326
	EIRE 7226
	Spain 2479
	Netherlands 2359
	···

In [7]: 개별 제품을 알 수 있는 StockCode의 개수value_counts()로 제품 수, InvoiceNo의 개수로 거래 건수, CustomerID의 개수로 고객 수를 구함 고객의 수는 4,338명

In [8]: 중복 레코드를 제거하면drop_duplicates() 데이터는 392,692개

❖ 데이터 준비 및 탐색

- 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성하기
 - 2. 마케팅에 이용하기 위해 고객의 주문 횟수, 주문 총액, 그리고 마지막 주문 후 며칠이 지났는지에 대한 정보를 추출

In [9]:		retail	_df['Sale	걸럼 추가 eAmount'] = retail d() #작업 확인용		nitPrice']*	retail_	df['Quar	ntity']	
Out[9]:										
		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	SaleAmount
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850	United Kingdom	15.30
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850	United Kingdom	20.34
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850	United Kingdom	22.00
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850	United Kingdom	20.34
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850	United Kingdom	20.34

In [9]: 제품 단가UnitPrice와 주문 개수Quantity를 곱하여 주문 금액SaleAmount을 계산하고 컬럼으로 추가

❖ 데이터 준비 및 탐색

- 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성하기
 - 2. 마케팅에 이용하기 위해 고객의 주문 횟수, 주문 총액, 그리고 마지막 주문 후 며칠이 지났는지에 대한 정보를 추출

In [10]:	aggregations = { 'InvoiceNo':'count', 'SaleAmount':'sum', 'InvoiceDate':'max'} customer_df = retail_df.groupby('CustomerID').agg(aggregations) customer_df = customer_df.reset_index() customer_df.head() #작업 확인용 출력									
Out[10]:		ustomerID	InvoiceNo	SaleAmount	InvoiceDate					
Out[10]:	0	12346	InvoiceNo	***************************************	InvoiceDate 2011-01-18 10:01:00					
Out[10]:	-			77183.60	2011-01-18 10:01:00					
Out[10]:	-	12346	1	77183.60 4310.00	2011-01-18 10:01:00					
Out[10]:	0	12346 12347	1 182	77183.60 4310.00	2011-01-18 10:01:00 2011-12-07 15:52:00					

In [10]: 각 고객의 정보를 추출하기 위해 CustomerID를 기준으로 그룹을 만들고groupby(), 주문 횟수를 계산하기 위해 InvoiceNo의 개수count를 구함. 주문 금액SaleAmount의 총액sum을 구하고, 주문일InvoiceDate 중에서 가장 최근 날짜max를 찾아 새로운 데이터프레임 객체인 customer_df를 생성

❖ 데이터 준비 및 탐색

- 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성하기
 - 2. 마케팅에 이용하기 위해 고객의 주문 횟수, 주문 총액, 그리고 마지막 주문 후 며칠이 지났는지에 대한 정보를 추출

In [11]:		_		ner_df.renai 작업 확인 8	•	oiceNo':'Freq', 'InvoiceDate':'Elaps	edDays'
Out[11]:	126	CustomerID	Freq	SaleAmount	ElapsedDays		
	0	12346	1	77183.60	2011-01-18 10:01:00		
	1	12347	182	4310.00	2011-12-07 15:52:00		
	2	12348	31	1797.24	2011-09-25 13:13:00		
	3	12349	73	1757.55	2011-11-21 09:51:00		
	4	12350	17	334.40	2011-02-02 16:01:00		

In [11]: customer_df의 컬럼 이름을 변경rename()

❖ 데이터 준비 및 탐색

- 2. 데이터프레임의 컬럼 추출 및 분석용 데이터 생성하기
 - 3. 마지막 주문일로부터 며칠이 지났는지에 대한 값을 ElapsedDays 컬럼에 저장 '기준 날짜 - 마지막 구매일'로 계산해 구함(날짜기준: 2011년 12월 10일)

In [12]:	cu	-	_df[Elapsed	Days'] = datetin #작업확인용 를	ne.datetime(2011,12,10) - customer_df['ElapsedDays'] 출력
Out[12]:		ustomerID	Freq	SaleAmount	ElapsedDays	
	0	12346	1	77183.60	325 days 13:59:00	
	1	12347	182	4310.00	2 days 08:08:00	In [12]: '기준 날짜 - 마지막 구매일'을 계산
	2	12348	31	1797.24	75 days 10:47:00	
	3	12349	73	1757.55	18 days 14:09:00	
In [13]:	4 Cu:	12350 stomer	17 _df[310 days 07:59:00 Days'] = custom	ner_df['ElapsedDays'].apply(lambda x: x.days+1)
In [13]: Out[13]:	cu	stomer stomer	_df[_df.l	Elapsed nead() #	Days'] = custom #작업확인용 출	
	cu	stomer stomer	_df[_df.l	Elapsed nead() #	Days'] = custom #작업확인용를	호르 · · · · · · · · · · · · · · · · · · ·
	CU:	stomer stomer	_df[_df.l	Elapsednead() #	Days'] = custom #작업확인용 출 t ElapsedDays	'호력 In [13]: 마지막 구매 후 몇 일이 지났는지를
	CU:	stomer stomer stomerID	_df[_df.l	Elapsed nead() # saleAmount 77183.60	Days'] = custom #작업확인용를 ElapsedDays	호르 · · · · · · · · · · · · · · · · · · ·
	CU:	stomer stomer stomerID 12346 12347	_df[_df.l	Elapsed nead() # SaleAmount 77183.60 4310.00	Days'] = custom #작업확인용를 ElapsedDays 326 3	<i>토력</i> In [13]: 마지막 구매 후 몇 일이 지났는지를
	CU:	stomer stomer stomerID 12346 12347 12348	_df[_df.l	Elapsed nead() # SaleAmount 77183.60 4310.00 1797.24	Days'] = custom #작업확인용를 ElapsedDays 326 3	'호력 In [13]: 마지막 구매 후 몇 일이 지났는지를

❖ 데이터 준비 및 탐색

3. 데이터 분포 조정하기

❖ 데이터 준비 및 탐색

- 3. 데이터 분포 조정하기
 - 2. 로그 함수를 적용하여 값의 분포를 고르게 조정 파란색 점으로 표시된sym='bo' 아웃레이어 값이 많은 것은 데이터 값이 치우침을 나타냄

In [15]:	impor	rt nump	y as	np					
	custo	mer_df mer_df	['Sale ['Ela _l	eAmount_ osedDays_	log'] = np. log'] = np	log1p(c .log1p(c		['SaleAmount'] ['ElapsedDays'	•
	custo	mer_dt.	nead	d() # <i>작업</i>	작간장 결	=			
Out[15]:		mer_df.		··			SaleAmount_log	ElapsedDays_log	
Out[15]:				··	ElapsedDays		SaleAmount_log 11.253955	ElapsedDays_log 5.789960	
Out[15]:	Cı	ustomerID	Freq	SaleAmount	ElapsedDays	Freq_log	The state of the s		
Out[15]:	Cı	ustomerID 12346	Freq 1	SaleAmount 77183.60	ElapsedDays 326 3	Freq_log 0.693147	11.253955	5.789960	
Out[15]:	0 1	12346 12347	Freq 1 182	SaleAmount 77183.60 4310.00	ElapsedDays 326 3 76	Freq_log 0.693147 5.209486	11.253955 8.368925	5.789960 1.386294	

In [15]: 컬럼 값에 로그 함수log1p()를 취한 값을 새 컬럼으로 추가하여 저장

❖ 데이터 준비 및 탐색

- 3. 데이터 분포 조정하기
 - 2. 로그 함수를 적용하여 값의 분포를 고르게 조정

❖ 분석 모델 구축

- 1. K-평균 군집화 모델을 이용하여 분석 모델 구축하기
 - 1. X_features를 정규 분포로 스케일링하기

In [17]:	from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, silhouette_samples
In [18]:	<pre>X_features = customer_df[['Freq_log', 'SaleAmount_log',</pre>
In [19]:	from sklearn.preprocessing import StandardScaler
	X_features_scaled = StandardScaler (). fit_transform (X_features)

In [17]: K-평균 군집화 모델링을 위한 KMeans와 실루엣 계수 계산에 사용할 silhouette_score, silhouette_samples를 임포트

In [18]: K-평균 모델에 사용할 값을 위해 Freq_log, SaleAmount_log, ElapsedDays_ log 컬럼을 X_features에 저장

In [19]: X_features를 정규 분포로 스케일링StandardScaler().fit_transform하여 X_features_ scaled에 저장

❖ 분석 모델 구축

- 1. K-평균 군집화 모델을 이용하여 분석 모델 구축하기
 - 2. 엘보 방법으로 클러스터 개수 k 선택하기

In [20]: K-평균 모델을 생성하고KMeans() 훈련하는fit() 작업을 클러스터의 개수인 1부터 10 까지 반복하면서 왜곡 값inertia_을 리스트distortions에 저장append(). 클러스터 개수에 따른 왜곡 값의 변화를 그래프로 그려서plot() 시각화

❖ 분석 모델 구축

- 1. K-평균 군집화 모델을 이용하여 분석 모델 구축하기
 - 3. 클러스터의 개수 k를 3으로 설정하여 K-평균 모델을 다시 구축한 뒤 모델에서 만든 클러스터 레이블을 확인

In [21]:	kmeans = KMeans (n_clusters= 3 , random_state=0) # <i>모델 생성</i> # <i>모델 학습과 결과 예측(클러스터 레이블 생성</i>) Y_labels = kmeans. fit_predict (X_features_scaled)									
In [22]:	customer_df['ClusterLabel'] = Y_labels customer_df.head() #작업확인용출력									
Out[22]:			CustomerID	Freq	SaleAmount	ElapsedDays	Freq_log	SaleAmount_log	ElapsedDays_log	ClusterLabel
		0	12346	1	77183.60	326	0.693147	11.253955	5.789960	0
		1	12347	182	4310.00	3	5.209486	8.368925	1.386294	2
		2	12348	31	1797.24	76	3.465736	7.494564	4.343805	0
		3	12349	73	1757.55	19	4.304065	7.472245	2.995732	0

In [21]: 클러스터의 개수를 3으로 설정하고n clusters=3 다시 K-평균 군집화 모델을 생성

생성된 모델에서 X_features_scaled를 적용하여 학습하고 클러스터에 대한 레이블 예측 값Y_labels을 구함fit_predict()

In [22]: 레이블 예측값Y_labels을 customer_df에 컬럼으로 추가하고 확인

❖ 결과 분석 및 시각화

1. 클러스터의 비중과 데이터 분포를 차트로 시각화하기

1. 각 클러스터의 비중을 가로 바 차트로 시각화

```
from matplotlib import cm
 In
[23]:
            def silhouetteViz(n cluster, X features):
              kmeans = KMeans(n clusters = n cluster, random state = 0)
              Y labels = kmeans.fit predict(X features)
            silhouette values = silhouette samples(X features, Y labels, metric = 'euclidean')
            y ax lower, y ax upper = 0, 0
            y ticks = []
            for c in range(n cluster):
              c silhouettes = silhouette values[Y labels == c]
              c silhouettes.sort()
              y ax upper += len(c silhouettes)
              color = cm.jet(float(c) / n_cluster)
              plt.barh(range(y_ax_lower, y_ax_upper), c_silhouettes, height = 1.0, edgecolor = 'none', color = color)
              y ticks.append((y ax lower + y ax upper) / 2.)
              y ax lower += len(c silhouettes)
            silhouette avg = np.mean(silhouette values)
            plt.axvline(silhouette avg, color = 'red', linestyle = '--')
            plt.title('Number of Cluster: '+ str(n cluster) + '\n' \ + 'Silhouette Score: '+ str(round(silhouette avg,3)))
            plt.yticks(y ticks, range(n cluster))
            plt.xticks([0, 0.2, 0.4, 0.6, 0.8, 1])
            plt.ylabel('Cluster')
            plt.xlabel('Silhouette coefficient')
            plt.tight_layout()
            plt.show()
```

In [23]: 실루엣 계수를 구하고, 각 클러스터의 비중을 가로 바 차트barh()로 시각화하기 위해 silhouetteViz 함수를 정의

❖ 결과 분석 및 시각화

- 1. 클러스터의 비중과 데이터 분포를 차트로 시각화하기
 - 2. 클러스터의 데이터 분포를 확인하기 위해 스캐터 차트로 시각화

```
In [24]:
           def clusterScatter(n cluster, X features):
           c colors = []
            kmeans = KMeans(n clusters = n cluster, random state = 0)
            Y labels = kmeans.fit predict(X features)
            for i in range(n cluster):
             c color = cm.jet(float(i) / n cluster) #클러스터의 색상 설정
             c colors.append(c color)
             #클러스터의 데이터 분포를 동그라미로 시각화
             plt.scatter(X features[Y labels == i,0], X features[Y labels == i,1], marker = 'o',
                color = c color, edgecolor = 'black', s = 50, label = 'cluster '+ str(i))
           #각 클러스터의 중심점을 삼각형으로 표시
           for i in range(n cluster):
              plt.scatter(kmeans.cluster centers [i,0], kmeans.cluster centers [i,1], marker = '^',
                color = c colors[i], edgecolor = 'w', s = 200)
              plt.legend()
              plt.grid()
              plt.tight layout()
              plt.show()
```

In [24]: 클러스터에 대한 데이터의 분포를 스캐터 차트scatter()로 시각화하기 위해 cluster Scatter 함수를 정의

❖ 결과 분석 및 시각화

- 1. 클러스터의 비중과 데이터 분포를 차트로 시각화하기
 - 3. In [20]에서 생성한 그래프를 고려하여 클러스터 개수가 3, 4, 5, 6인 경우의 실루엣 계수 와 각 클러스터의 비중, 그리고 데이터 분포를 시각화하여 비교

In [25]:	silhouetteViz(3, X_features_scaled)
In [26]:	silhouetteViz(4, X_features_scaled)
In [27]:	silhouetteViz(5, X_features_scaled)
In [28]:	silhouetteViz(6, X_features_scaled)

In [25]~[28]: silhouetteViz 함수를 호출하여 실루엣 계수와 클러스터의 비중을 시각화

그림 12-6 클러스터의 비중 시각화

❖ 결과 분석 및 시각화

- 1. 클러스터의 비중과 데이터 분포를 차트로 시각화 하기
 - 4. 클러스터 분포를 이용하여 최적의 클러스터 수를 확인

In [29]:	clusterScatter(3, X_features_scaled)
In [30]:	clusterScatter(4, X_features_scaled)
In [31]:	clusterScatter(5, X_features_scaled)
In [32]:	clusterScatter(6, X_features_scaled)

In [29]~[32]: clusterScatter 함수를 호출하여 클러스터의 데이터 분포(원으로 표시)와 클러스터의 중심점 위치(삼각형으로 표시)를 시각화

그림 12-7 클러스터의 데이터 분포 시각화

$\mathbf{01}$. [K-평균 군집화 분석 + 그래프] 타깃 마케팅을 위한 소비자 군집 분석하기

❖ 결과 분석 및 시각화

- 1. 클러스터의 비중과 데이터 분포를 차트로 시각화하기
 - 5. silhouetteViz 함수를 호출한 결과에서 클러스터가 4개인 경우가 더 좋은 것으로 나타났으므로 최종적으로 최적의 클러스터 개수 k를 4로 결정

In [33]:	best_cluster = 4 kmeans = KMeans(n_clusters = best_cluster, random_state = 0) Y_labels = kmeans.fit_predict(X_features_scaled)								
In [34]:	customer_df['ClusterLabel'] = Y_labels customer_df.head()								
Out[34]:	С	ustomerID	Freq	SaleAmount	ElapsedDays	Freq_log	SaleAmount_log	ElapsedDays_log	ClusterLabel
	0	12346	1	77183.60	326	0.693147	11.253955	5.789960	3
	1	12347	182	4310.00	3	5.209486	8.368925	1.386294	1
	2	12348	31	1797.24	76	3.465736	7.494564	4.343805	3
	3	12349	73	1757.55	19	4.304065	7.472245	2,995732	3
	4	12350	17	334.40	311	2.890372	5.815324	5.743003	0
In [35]:	cus	stomer	_df.	to_csv('	data/Onl	ine_Re	etail_Custo	mer_Cluste	r.csv')

In [33]: 최적의 K-평균 군집화 모델의 레이블 예측값Y_labels을 구함

In [34]: 레이블 예측값Y_labels을 customer_df에 저장

In [35]: customer df를 CSV 파일로 저장

❖ 결과 분석 및 시각화

- 1. 클러스터의 비중과 데이터 분포를 차트로 시각화하기
 - '타깃 마케팅에 필요한 소비자 군집'

그림 12-8 완성된 소비자 군집 파일

❖ 결과 분석 및 시각화

- 2. 추가 분석하기
 - 1. 클러스터의 특징을 살펴보기 위해 먼저 ClusterLabel을 기준으로 그룹을 만듬

In [36]:	customer_df.groupby('ClusterLabel')['CustomerID'].count()						
Out[36]:	ClusterLabel						
	0 1370						
	1 868						
	2 893						
	3 1207						
	Name: CustomerID, dtype: int64						

전체 고객 4,338명 중에서 클러스터 0은 1,370명이고 클러스터 1은 868명, 클러스터 2는 893명, 클러스터 3은 1,207명으로 구성

❖ 결과 분석 및 시각화

- 2. 추가 분석하기
 - 2. 고객 클러스터에서 총 구매 빈도와 총 구매 금액, 마지막 구매 이후 경과일 정보를 추출하고, 구매 1회당 평균 구매, 금액도 계산

In [37]:	customer_cluster_df = customer_df.drop(['Freq_log', 'SaleAmount_log', 'ElapsedDays_log'],axis = 1, inplace = False)									
In [38]:	#주문1회당 평균 구매금액: SaleAmountAvg customer_cluster_df['SaleAmountAvg'] = custom customer_cluster_df.head()	ner_cluster_df['SaleAmount']/customer_cluster_df['Freq']								
Out[38]:	CustomerID Freq SaleAmount ElapsedDays ClusterLabel SaleAmountAvg 0 12346 1 77183.60 326 3 77183.600000 1 12347 182 4310.00 3 1 23.681319 2 12348 31 1797.24 76 3 57.975484 3 12349 73 1757.55 19 3 24.076027 4 12350 17 334.40 311 0 19.670588	고객 클러스터 1은 다른 클러스터보다 구매 횟수가 월등히 높지만 구매당 평균 금액은 두 번째로 높음.								
In [39]:	customer_cluster_df.drop(['CustomerID'],axis = 1	L, inplace = False).groupby('ClusterLabel').mean()								
Out[39]:	Freq SaleAmount ElapsedDays SaleAmountAvg ClusterLabel 0 15.100000 298.966147 188.241606 43.290636 1 279.207373 7031.952834 13.479263 96.921011 2 37.793953 603.425354 20.959686 32.226856 3 79.455675 1520.324252 95.595692 103.086284	구매당 평균 금액은 고객 클러스터 3이 가장 높음								