FIG. 1

FIG.4

FIG.5dual conversion receiver

FIG.8

FIG.9

FIG. 10

FIG. 11

RF OUT VIDEO OUTPUT 5706 MODULATOR SIGNAL SWITCH UNIT C B RECORDING UNIT 5 -5708 ⋖ TAPE ΣZ 5710-VCR BLOCK DIAGRAM PROCESSOR AUDIO SIGNAL SIGNAL **PROCESSOR** AUDIO IN O CONTROLLER RECORDING VIDEO SYNC OR ACC DETECTOR VIDEO TAPE LNN ON-SCREEN DISPLAY **PROCESSOR** VIF AND SIF AMPLIFIERS AND DETECTORS 5708-RECEIVER **KEYBOARD** EEPROM LOCAL <u>~</u> -5702 CONTROL CONTROL ASSEMBLY TUNER BAND TIMER ROM CPU RAM -5704

FIG. 14

FIG. 18

FIG.20

PPL Xtal REFERENCE=10MHz LO-1, 10MHz FREQUENCY STEPS LO-2, 100kHz FREQUENCY STEPS

44MHz IF

TABLE OF FREQUENCIES BASED ON COARSE/FINE PLL SOLUTION:

NOTE • LO-2 REF=100KHz, SO DIVIDE RANGE=9216 TO 9280

Frf (MHz)	.20	99	62	89	74	80	98	92	98	104	110	116	122	128	=	05.4	090
														1		3	000
	┸	#															_
LQ-I(MRZ)	1220	1260	1260	1270	1270	1280	1290	1290	1300	1300	1310	1320	1320	1330	=	2050	2060
												1				3	3
IT 4 /AALEN	٠.	#															
(INILEZ)	2007	1204	1198	1202	1196	1200	1204	1198	1202	1196	1200	1204	1198	1202	=	1196	1200
10.2/ML5		Ŀ	0000	_													
LO-Z(IVITZ)	324.0	320.0	323.2	926.4	921.6		924.8 928.0 923.2	923.2	926.4 921.6	921.6	924.8	928.0 923.2		926.4	=	921.6	924.8
1E.2/M151	275 2	0.320			, , , ,					1							
	21.0.5	2/0.0	2/4.0	2/2.0	2/4.4	2/4.4 2/5.2 2/6.0 274.8 275.6 274.4 275.2	276.0	274.8	275.6	274.4	275.2	276.0	274.8 275.6	275.6	=	274.4	275.2
						•											
LO-3(MHz) 2312	231.2	232	230 B	222	220	2024	200	500	3	100	18						
	!!!	╧	200.0	202	3	3	232	23	232	730	23.	232	231	232	=	230	231
E-2/ML51	77.0	L	l														
11 - 2(101112)	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	=	44.0	44.0
•													- 1			·	>

2107.

197

PPL Xtal REFERENCE=10MHz LO-1, 10MHz FREQUENCY STEPS LO-2, 100kHz FREQUENCY STEPS

36MHz IF

TABLE OF FREQUENCIES BASED ON COARSE/FINE PLL SOLUTION:

NOTE
-LO-2 REF=100KHz,
SO DIVIDE RANGE=9280 TO 9340

Frf (MHz)	20	58	99	74	82	06	86	106	114	122	130	138	146	154	=	852	030
												3	2			700	000
LO-1(MHz)	1250	1260	1270	1270	1280	1290	1300	1310	1310	1320	1330	1340	1350	1350	=	2050	2060
												?	3	3		7	2000
IF-1 (MHz)	1200	1202	1204	1196	1198	1200	1202	1204	1196	1198	1200	1202	1204	1196	=	1.08	1200
																3	2
LO-2(MHz)	931.2	932.8	934.4	928.0	930	931	933	934	928.0	930	931	933	934	928.0	=	929 60	931.2
													1				
IF-2(MHz)	268.8	269.2	269.6	268.0	268.4	268.8	269.2	269.6	268.0	268.4	268.8	269.2	269.6 268.0	268.0	=	268.4	268 B
																	2
LO-3(MHz)	232.8	233.2	233.6	232	232	233	233	234	232	232	233	233	234	2320	=	232 4	230 B
													1				202.0
IF-3(MHz)	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	38.0	36.0	36.0	=	0 36	0 90
									3	2:22	?	2:30	0.00	0.00		20.0	20.0

FIG.23

FIG.24a

FIG.25

FIG.26

FIG.28

FIG.29

FIG.30

FIG.31

FIG.34

FIG.35

1

FIG.38

PGA SETTINGS

FIG.39

FIG.40

FIG. 41

FIG.42

NON-MONOTONICITY

FIG.43
CLAMPING CONTROL RANGE

FIG. 45

FIG. 47

IF AGC 0-20dB 36 OR 44MHz REJECT 275MHz FILTER TUNING <u>∝</u> 4 PLL 2-NARROWBAND 925MHz $\begin{array}{l} NTSC: \\ L_{\text{dw}} = 2.5 \text{kHz} \\ f_{rcl} = 25 \text{kHz} \end{array}$ 275MHz LC FILTER $f_{rcl} = 100kHz$ $\frac{\text{OAM:}}{L_{\text{QW}}=10\text{kHz}}$ FIG.53| | || | LPF IR REJECT PLL 2 XTAL OSCILLATOR 10MHz 1200MHz LC FILTER FILTER TUNING 1200MHz 민 1 PLL 1-WIDEBAND | 1250-2060MHz | -5304 AGC RF

FIG.54

