In this paper we investigate an open question posed to us by Gruenhage:

Question 1. Let P be the subspace of the Sorgenfrey line containing only irrational numbers. Does there exist a base \mathcal{B} for P such that for every $\mathcal{C} \subseteq \mathcal{B}$ which is also a base for X, there exists a locally finite subcover $\mathcal{C}' \subseteq \mathcal{C}$?

We begin by tackling a simpler (solved) problem:

Proposition 2. Let R be the Sorgenfrey line, the set of real numbers with the topology generated by the base $\mathcal{B} = \{[a,b) : a < b\}$ (where $[a,b) = \{x : a \le x < b\}$).

For every $C \subseteq \mathcal{B}$ which is also a base for R, there exists a pairwise disjoint subcover $C' \subseteq C$ (and thus a locally finite subcover).

Proof. We begin by letting $b_{n,0} = n$ for each $n < \omega$, and if $b_{n,\alpha}$ is defined for some ordinal $\alpha < \omega_1$ and $b_{n,\alpha} < n+1$, we define its successor $b_{n,\alpha+1}$ as follows:

- $b_{n,\alpha} < b_{n,\alpha+1} \le n+1$
- $[b_{n,\alpha}, b_{n,\alpha+1}) \in \mathcal{C}$

(This is possible as C is a base, and there must be some element of C which contains $b_{n,\alpha}$ and is a subset of $[b_{n,\alpha}, n+1)$.)

(If $b_{n,\alpha} = n+1$, then let $b_{n,\alpha+1} = n+1$ as well.) Finally, if $\alpha < \omega_1$ is a limit ordinal, let $b_{n,\alpha} = \lim_{\beta \to \alpha} b_{n,\beta}$.

Let $C_{n,\alpha} = [b_{n,\alpha}, b_{n,\alpha+1})$. We claim $C' = \{C_{n,\alpha} : n < \omega, \alpha < \omega_1\}$ is a pairwise disjoint cover of R. Pairwise disjoint is evident by definition. To see that it is a cover, suppose it wasn't and missed some $x \in [n, n+1)$. Then we have an uncountable increasing sequence of numbers $\{b_{n,\alpha} : \alpha < \omega_1\}$, which contradicts the countable chain condition on the real line.

This idea can be generalized for the irrationals, but it takes some machinery:

Theorem 3. Let P be a dense subspace of the Sorgenfrey line with the induced topology, which has the base $\mathcal{B} = \{[a,b) : a < b, a \in P\}.$

For every $C \subseteq \mathcal{B}$ which is also a base for P, there exists a pairwise disjoint subcover $C' \subseteq C$ (and thus a locally finite subcover).

Proof. It suffices to show for $[0,1) \cap P$. We begin by constructing a collection of functions $S \subseteq \omega^{\omega_1}$ and numbers c_s , d_s defined by those functions as follows:

- Let $S_0 = \{\emptyset\}$. Let $d_{\emptyset} = 0$ and $c_{\langle -1 \rangle} = 1$.
- Suppose S_{α} has been defined, as well as $d_s \leq c_{s^{\frown}\langle -1 \rangle}$. For $s \in S$, consider the following:
 - If $d_s = c_{s \cap \langle -1 \rangle}$, do nothing.
 - If $d_s < c_{s \cap \langle -1 \rangle}$ and $d_s \in P$, let $S_{\alpha+1}$ contain $s \cap \langle 0 \rangle$ and define $c_{s \cap \langle 0 \rangle}$, $d_{s \cap \langle 0 \rangle}$, $c_{s \cap \langle 0, -1 \rangle}$ such that

$$d_s = c_{s ^{\frown}\langle 0 \rangle} < d_{s ^{\frown}\langle 0 \rangle} \le c_{s ^{\frown}\langle 0, -1 \rangle} = c_{s ^{\frown}\langle -1 \rangle}$$

where $[c_{s} \cap \langle 0 \rangle, d_{s} \cap \langle 0 \rangle) \in \mathcal{C}$.

- If $d_s < c_{s \cap \langle -1 \rangle}$ and $d_s \in P$, let $S_{\alpha+1}$ contain $s \cap \langle n \rangle$ for all $n < \omega$ and define $c_{s \cap \langle n \rangle}$, $d_{s \cap \langle n \rangle}$, $c_{s \cap \langle n, -1 \rangle}$ for all $n < \omega$ such that

$$d_s < \cdots \le c_{s {}^{\frown}\langle 2, -1 \rangle} = c_{s {}^{\frown}\langle 1 \rangle} < d_{s {}^{\frown}\langle 1 \rangle} \le c_{s {}^{\frown}\langle 1, -1 \rangle} = c_{s {}^{\frown}\langle 0 \rangle} < d_{s {}^{\frown}\langle 0 \rangle} \le c_{s {}^{\frown}\langle 0, -1 \rangle} = c_{s {}^{\frown}\langle -1 \rangle}$$
 where $[c_{s {}^{\frown}\langle n \rangle}, d_{s {}^{\frown}\langle n \rangle}) \in \mathcal{C}$ for all $n < \omega$ and $c_{s {}^{\frown}\langle n \rangle} \to d_s$.

• Suppose α is a limit ordinal and S_{β} has been defined for all $\beta < \alpha$. If $s \in \omega^{\alpha}$ and $t \in \bigcup_{\beta < \alpha} S_{\beta}$ for all t < s, let S_{α} contain s and define $d_s = \lim_{t < s} d_t$ and $c_{s \cap \langle -1 \rangle} = \lim_{t < s} c_{t \cap \langle -1 \rangle}$.

By construction, $C' = \{[c_s, d_s) : s \in S\}$ is a disjoint subcollection of C. We claim it also must cover $[0, 1) \cap P$.

Suppose not: $x \in [0,1) \cap P$ is not contained in $[c_s, d_s)$ for any $s \in S$. Note that $d_{\emptyset} < x$ (or else $x \in [c_{\langle 0 \rangle}, d_{\langle 1 \rangle})$). Assume $n_{\beta} < \omega$ is defined for all $\beta < \alpha$, and consider $s \in \omega^{\alpha}$ where $s(\beta) = n_{\beta}$. If $d_s < x$, we claim there is a minimal $n_{\alpha} < \omega$ where $d_{s \cap \langle n_{\alpha} \rangle} < x$.

- This possible when $d_s \notin P$ since $d_{s \cap \langle n \rangle} \to d_s$.
- This is also possible when $d_s \in P$ since $[c_{s \cap \langle 0 \rangle}, d_{s \cap \langle 0 \rangle})$ does not contain x, and thus $d_s = c_{s \cap \langle 0 \rangle} < d_{s \cap \langle 0 \rangle} \le x$. If $d_{s \cap \langle 0 \rangle} = x$ then $d_{s \cap \langle 0 \rangle} \in P$ and $[d_{s \cap \langle 0 \rangle}, d_{s \cap \langle 0, 0 \rangle}) = [c_{s \cap \langle 0, 0 \rangle}, d_{s \cap \langle 0, 0 \rangle})$ contains x, which is a contradiction.

Finally, we notice that by defining $f \in \omega_1^{\omega}$ such that $f(\alpha) = n_{\alpha}$, then $d_{f(\alpha)}$ is an increasing sequence defined for all $\alpha < \omega_1$, which is a contradiction.