化学物質ってどれくらいあるの?

ケミカルアブストラクトサービス (CAS)に登録された物質 約1億4千万(2018年5月)

厚生労働省労働安全衛生法に基づいて公表された化学物質約6万7千(2018年2月)

※天然物、副生成物、代謝物、不純物については全く不明

環境基準の例(項目数)

水質 (27項目) 有機化合物16

大気(10項目)有機化合物4

3 2 (= : ,	,
項目	基準値
カドミウム	0.003mg/L以下
全シアン	検出されないこと
鉛	0.01mg/L 以下
六価クロム	0.05mg/L 以下
砒素	0.01mg/L 以下
総水銀	0.0005mg/L以下
アルキル水銀	検出されないこと
PCB	検出されないこと
ジクロロメタン	0.02mg/L以下
四塩化炭素	0.002mg/L以下
1,2-ジクロロエタン	0.004mg/L以下
1,1-ジクロロエチレン	0.1mg/L以下
シス-1,2-ジクロロエチレン	0.04mg/L以下
1,1,1-トリクロロエタン	1 mg/L以下
1,1,2-トリクロロエタン	0.006mg/L以下
トリクロロエチレン	0.01mg/L以下
テトラクロロエチレン	0.01mg/L以下
1,3-ジクロロプロペン	0.002mg/L以下
チウラム	0.006mg/L以下
シマジン	0.003mg/L以下
チオベンカルブ	0.02mg/L以下
ベンゼン	0.01mg/L以下
セレン	0.01mg/L以下
硝酸性窒素及び亜硝酸性窒素	10mg/L以下
ふっ素	0.8mg/L 以下
ほう素	1mg/L以下
1,4-ジオキサン	0.05mg/L以下

物質	環境上の条件(設定年月日等)
	1時間値の1日平均値が0.04ppm以下であり、かつ、1時間値が
	0.1ppm以下であること。(48.5.16告示)
	1時間値の1日平均値が10ppm 以下であり、かつ、1時間値の8
	時間平均値が20ppm 以下であること。(48.5.8告示)
浮遊粒子状物質	1時間値の1 _. 日平均値が0.10mg/m ³ 以下であり、かつ、1時間値
(SPM)	が0.20mg/m ³ 以下であること。(48.5.8告示)
二酸化窒素(NO2)	1時間値の1日平均値が0.04ppmから0.06ppmまでのゾーン内又はそれ以下であること。(53. 7.11告示)
光化学オキシダント (OX)	1時間値が0.06ppm以下であること。(48.5.8告示)

物質	環境上の条件
ベンゼン	1年平均値が0.003mg/m³以下であること。(H9.2.4告示)
トリクロロエチレン	1年平均値が0.2mg/m ³ 以下であること。(H9.2.4告示)
テトラクロロエチレン	1年平均値が0.2mg/m³以下であること。(H9.2.4告示)
ジクロロメタン	1年平均値が0.15mg/m³以下であること。(H13.4.20告示)

物質	境現上の余件
	1年平均値が15 μ g/m³以下であり、かつ、1日平均値が35 μ g/m³以下であること。(H21.9.9告示)

GCxGC-ToFMSによるノンターゲット環境 モニタリングの試みと課題

〇橋本俊次(国立環境研究所・環境計測研究センター)

従来の環境監視

法的根拠、確実、厳格 ↔ 後追い的、疎点的

問題の発生 健康被害・生態異常

原因 探索

毒性・実態調査

基準 設定

監視 (モニタリング)

科学的知見の集積、分析法の開発、法整備

限られた物質の精密分析

新しい環境監視

網羅的、積極的、早期対応 ↔ 精密分析による追試

網羅的監視 (モニタリング)

異常の兆候

早期対策

ノンターゲット (ワイドターゲット)&アッセイ 異常検出と物質検索が 同時進行

- ◆ コスト・時間・労力の削減
- ◆ 被害拡大の阻止
- ◆ 迅速な対応

ノンターゲット環境モニタリング

ノンターゲット環境モニタリングへの 網羅分析法の応用

撹拌子固相抽出 (SBSE)

加熱脱着 (TD) 多次元 ガスクロマト グラフィ (GC×GC)

高分解能 飛行時間型 質量分析計 (HRTofMS) 数千成分が分離検出可能に

従来法 LLE-GC-HRMS 新法 SBSE-GCxGC-HRToFMS

これまでの成果

- ◆ 精製過程の省略により、時間、コスト、資源の削減を達成 (1/10-100)
- ◆ PCBs, PBDEs, PAHsおよびその他のPOPsの一斉定量の実現
- ◆ GCxGC-ToFMSデータからの数千種類の化合物の選択的抽出

データの比較(概念図)

ノンターゲットモニタリングの 異常検出までの流れ

河川水モニタリングへの応用による手法の検証

再現性、試料間差の評価 ― データの概要 ―

x軸: GC1の保持時間 (5-100分) ...abt.857data points

y軸: GC2の保持時間 (0-7秒) ...231data points

データサイズ: 857x231x16,800

abt.198,000 total time data points abt.16,800 total mag

abt.16,800 total mass data points @m/z=1-1000, resolution...10,000

分割試料(n=5)の測定再現性の評価

分割試料(n=5)の測定再現性の評価<成分強度>

RSD of each peak intensity in sub-samples was evaluated for method reproducibility.

	Peak Value RSD(%)												
Nama	2015000507	20150812BZ		` '	2015002007	2015002007	ID Namo	20150805BZ	2015001207	20150819BZ	` '	2015002007	2015092007
nk01	26.3911		22.6557			8.8493	chk41	36.3220	52.6395				
nk02	19.4159		11.9636			13.4090	chk42	28.2523	55.6098				
nk03	17.8035		3.9090		10.8311	17.8585	chk43	6.2172	8.6575			4.0480	
nk04	15.6943		18.1123			13.7843	chk44	8.0997	9.4077				
nk05	14.4521		11.6930			14.5138	chk45	7.0054	8.8061				
1k06	39.8966		8.5632			4.9132	chk46	6.1610	6.2425	14.4796	7.3433		
nk07	10.8861		14.9426			24.0240	chk47	42.6513			14 2070	27.6883	
nk08	E 0244	16.8018	70 5420	41.8876		34.8348	chk48	8.4293	7 41 40	2 2476	14.3870		
nk09	5.9211		78.5430		134.8599		chk49	5.9790	7.4140				
nk10	23.2414		105.7351			67.6117	chk50	12.6089	23.0182				
nk11	7.0624	34.7985	56.7256			69.0901	chk51	38.4835	29.3671		51.2274		
nk12	7.0634		30.1270			17.7192	chk52	39.9008	78.7094				
nk13	75.1321					36.6802	chk53	5.1187	6.4879			9.4404	
nk14	6.1674		13.5027		14.1147	24.0102	chk54	10.5307	9.9337				
nk15		18.4204	57.9817	50.3379		9.1715	chk55	15.4423	13.0106				
nk16		12.7510			25.0677	14.8610	chk56	14.9349	13.7364				
nk17			38.6134	37.7601	28.7547		chk57	7.6486	9.0530				
nk18							chk58		17.7967	7	7.0121	5.8447	7.45
nk19	39.5051					23.5587	chk59	4.9575					
nk20		147.4176				43.4146	chk60	6.8686	28.5166	16.6836			23.57
nk21		21.1148			7.3582	10.7876	chk61				42.1295		
nk22	44.5921		36.1756				chk62	29.4706	14.9646	50.7901			
nk23	7.7682	5.6833	6.8169		7.9314		chk63				39.1804		30.10
nk24			12.7534			28.5931	chk64		7.4087				
nk25	9.5929		18.3441		8.9521	11.1474	chk65	28.6450	23.2320				
nk26	4.7855		13.3135				chk66	19.5445	21.6858	17.8203			
nk27	10.8598		12.1410			17.0442	chk67	76.6485			67.3912		160.00
nk28	7.5729		7.8054				chk68	30.1462	41.4207				
nk29	6.7128		34.5569		36.1148	14.7082	chk69			51.2052	13.4082		
nk30	28.2761		46.6093	25.6748	136.9148	47.5366	chk70		9.6420			17.6270	
nk31		1.8681		12.3974		11.2677	chk71	17.1910		11.9058		15.8170	19.61
nk32	21.4291		13.2201	48.7302		37.8760	chk72	43.2227	22.2125			11.1418	29.85
nk33	10.6527			43.4591	65.8192	33.9994	chk73	6.3164	5.5762	21.6927	16.0173	16.9890)
nk34	27.7095	55.0573	90.2089)	125.6242	60.8110	chk74	0.4985	6.8376	i	10.9090	16.3032	
nk35	8.4673		18.2004	10.2121	14.3746	15.0419	chk75		10.0936			31.5072	
nk36		61.4220	56.4942	28.5181	121.0170	30.8900	chk76	7.3573	6.2508	6.5384	7.1304	7.6357	7 12.30
nk37	6.7233	4.7284	14.2067	9.3265	10.9751	13.5877	chk77						
nk38	17.7719	12.8504	10.7771	13.9157	25.5413	19.2805	chk78	42.9318		17.5751	10.3042	9.4028	30.88
nk39	8.7632		11.8427	7.6939	44.9323	24.2172	chk79	22.8382				7.7353	3
nk40	15.5358	5.6360	26.8769	25.0474	21.8398	35.8991	chk80		18.6696	5			

Criterion 3: Peak intensity

15% >= RSD

154/480

50% >= RSD > 15%

169/480

100% >= RSD > 50%

38/480

RSD > 100%

11/480

約 1/3 の成分については、比較的良好な再現性が得られたが、大半の成分の強度偏差が大きく、改善が必要

各成分の試料間差の検出

Kruskal-Wallis test* was attempted to find difference inter samples.

Peak ID	p-value	Peak ID	p-value	Peak ID	p-value	Peak ID	p-value
chk01	0.006444	chk21	0.001783	chk41	0.001175	chk61	
chk02	0.002514	chk22	0.1475	chk42	0.04261	chk62	0.01758
chk03	0.002047	chk23	0.003898	chk43	0.009716	chk63	0.754
chk04	0.04562	chk24	0.2365	chk44	0.001159	chk64	0.002259
chk05	0.1296	chk25	0.00451	chk45	0.0006528	chk65	0.002325
chk06	0.05233	chk26	0.002817	chk46	8.98e-05	chk66	0.05313
chk07	0.4522	chk27	0.0008761	chk47	0.01438	chk67	0.0001814
chk08	0.9728	chk28	0.00624	chk48	0.0006691	chk68	0.003126
chk09	0.5207	chk29	0.0006098	chk49	0.001176	chk69	0.005857
chk10	0.08511	chk30	0.01129	chk50	0.001054	chk70	0.006965
chk11	0.1458	chk31	0.004617	chk51	0.03218	chk71	0.117
chk12	0.01787	chk32	0.003214	chk52	0.01389	chk72	0.004403
chk13	0.05921	chk33	0.1006	chk53	0.0003541	chk73	0.0012
chk14	0.1177	chk34	0.04687	chk54	0.0005728	chk74	0.0009064
chk15	0.08166	chk35	0.07135	chk55	0.001726	chk75	0.2364
chk16	0.008723	chk36	0.04133	chk56	0.001121	chk76	4.615e-05
chk17	0.1835	chk37	0.04261	chk57	<u>0.0006396</u>	chk77	
chk18		chk38	0.001424	chk58	0.0919	chk78	0.003564
chk19	0.005396	chk39	0.0117	chk59		chk79	0.00329
chk20	0.1492	chk40	0.0881	chk60	0.0145	chk80	

測定再現性は必ずしも良くないが、多くの成分で試料間差 は検出可能であった <u>p<0.01</u>: 40/75 0.01≤p<0.05 : 13/75

0.05≤p: 22/75

R 2.2.3 was used for Kruskal-Wallis test.

^{*}Kruskal-Wallis test is an non-parametric method for testing whether samples originate from the same distribution. It is used for comparing two or more independent samples of equal or different sample sizes.

まとめ(進行中)

- 少量の環境水試料の撹拌子抽出(SBSE)、加熱脱着-多次元ガスクロマトグラフィ-飛行時間型質量分析法(TD-GCxGC-TofMS)による河川水のハイスループットノンターゲットモニタリングの可能性について検討を行った
- GCxGC-TofMSによる河川水の網羅分析の結果、約2,000成分が分離 検出され、そのうちの80成分について再現性と試料間差の評価を 行った
- 分析法の再現性、測定可能物質と感度、分析時間のさらなる短縮など、改良の余地があるものの、Kruskal-Wallis test の結果、多くの成分で試料間差が検出可能であった
- (物質同定前の)測定データの直接比較により個別成分の異常検出が可能であることが確認でき、ノンターゲット環境モニタリングにおける異常検出の自動化の展望が開けた

課題

- 分析法の再現性の向上
- 測定可能物質数の拡大と感度の向上
- 分析時間のさらなる短縮
- 手法の一般化(普及機器による計測、メディアムスペックPCでの処理)
- 目的や地点に応じて、対象範囲を絞る、最適化を図ることが必要 (複数の条件セットを用意する必要)
- GCMSで測れない物質への対応
- 確度が高く、ハイスループットな物質検索法が必要

謝辞

大塚宜寿 博士はじめ埼玉県環境科学国際センターの皆様、 頭士泰之 博士(産総研)、家田曜世 氏、鬼塚弓子 氏はじめ国 環研の皆様、

柏木宣久 先生、金藤浩司 先生、池田思朗 先生(統計数理研究所) に感謝申し上げます。

なお、本研究はJSPS科研費 17H00796の助成を受けたものです。

差が見つかったら (次のステージへ)

差(異常)があった成分の検索同定

当該成分の毒性調査 当該成分の発生源調査

当該成分の監視、抑制対策

2017.8.1現在

				.0.15亿江
概要	種別	動作環境	2D%	HP公開
同位体組成に基づき CI,Brを含むマススペクトルを抽出 する	定性	スタント"アロン Windows	対応	公開中
CF_2 の連続脱離マスフラグメントを検索しPFCsのマススペクトルを抽出する	定性	スタンドアロン Windows	対応	未公開
任意の質量差のマスフラグメントを検索し合致するマススペクトル を抽出する (中性ロススキャンを模擬)	定性	スタント"アロン Windows	対応	未公開
指定した質量数に近い組成式と精密質量、誤差を計算する(候補組成のリストアップ)	定性	ጸタンドアロン Windows	対応	未公開
分子状イオウ(S ₈)のマススペクトルを除去する	定性	ጸタンドアロン Windows	対応	未公開
シロキサン(SiO(CH ₃) ₂) _n のマススペクトルを除去する	定性	ጸタント〝 ፖロン Windows	対応	未公開
データ抜けの補正、ノイズスペクトルの除去を行う(JEOL-MSデータ専用)	定性	スタント"アロン Windows	対応	未公開
マススペクトルと保持時間情報に基づき物質を 自動検索、自動定量 を行う	定量	スタンドアロン Windows	<mark>専用</mark> 、GC対 応予定	公開中
マススペクトルに基づき物質を 自動検索、自動定量 を行う	定量	ጸタンドアロン Windows	専用	公開中
非負値行列因子分解(NMF)によるGCxGCクロマトグラムピークのデコンボリューションを行う	定性	スタンドアロン Windows	専用	公開中
GC(xGC)-HR(TOF)MSデータの特徴づけを行い、 差(異常値)の検 出を支援	定性	スタンドアロン Windows	専用	開発中
同位体組成に基づきCI,Brを含むマススペクトルを抽出する	定性	GCImage用 プラグイン	専用	
GCImage上で指定したピークのマススペクトル情報を多形式でエキスポートする		GCImage用 プ [°] ラケ [*] イン	専用	
GCImage上でGCxGCクロマトグラムピークの 保持時間合わせ を行う	定性 定量	GCImage	専用	製品公開 予定
	同位体組成に基づきCI,Brを含むマススペクトルを抽出する CF2の連続脱離マスフラグメントを検索しPFCsのマススペクトルを抽出する 任意の質量差のマスフラグメントを検索し合致するマススペクトルを抽出する(中性ロススキャンを模擬) 指定した質量数に近い組成式と精密質量、誤差を計算する(候補組成のリストアップ) 分子状イオウ(S8)のマススペクトルを除去する シロキサン(SiO(CH3)2)nのマススペクトルを除去する データ抜けの補正、ノイズスペクトルの除去を行う(JEOL-MSデータ専用) マススペクトルと保持時間情報に基づき物質を自動検索、自動定量を行う マススペクトルに基づき物質を自動検索、自動定量を行う 非負値行列因子分解(NMF)によるGCxGCクロマトグラムピークのデコンボリューションを行う GC(xGC)-HR(TOF)MSデータの特徴づけを行い、差(異常値)の検出を支援 同位体組成に基づきCI,Brを含むマススペクトルを抽出する GCImage上で指定したピークのマススペクトル情報を多形式でエキスポートする GCImage上で指定したピークのマススペクトル情報を多形式でエキスポートする GCImage上でGCxGCクロマトグラムピークの保持時間合わせを行	同位体組成に基づきCI,Brを含むマススペクトルを抽出する 定性 CF2の連続脱離マスフラグメントを検索しPFCsのマススペクトルを 抽出する 任意の質量差のマスフラグメントを検索し合致するマススペクトル を抽出する (中性ロススキャンを模擬) 指定した質量数に近い組成式と精密質量、誤差を計算する (候補組成のリストアップ) 分子状イオウ(S8)のマススペクトルを除去する 定性 シロキサン(SiO(CH3)2)nのマススペクトルを除去する 定性 データ抜けの補正、ノイズスペクトルの除去を行う (JEOL-MSデータ専用) マススペクトルと保持時間情報に基づき物質を自動検索、自動定量を行う マススペクトルに基づき物質を自動検索、自動定量を行う 非負値行列因子分解(NMF)によるGCxGCクロマトグラムピークのデコンボリューションを行う GC(xGC)-HR(TOF)MSデータの特徴づけを行い、差(異常値)の検出を支援 同位体組成に基づきCI,Brを含むマススペクトルを抽出する 定性 GCImage上で指定したピークのマススペクトル情報を多形式でエキスポートする GCImage上で信定したピークのマススペクトル情報を多形式でエキスポートする GCImage上でGCxGCクロマトグラムピークの保持時間合わせを行定性	同位体組成に基づきCI,Brを含むマススペクトルを抽出する 定性 スタンドアDン Windows CF2の連続脱離マスフラグメントを検索しPFCsのマススペクトルを 定性 スタンドアD と と スタンドアD と と と と と と と と と と と と と と と と と と と	概要 種別 動作環境 2D※ 対応 対応 対応 対応 対応 対応 対応 対

作成した(作成中の)ソフトウェア(続き)

2018.4現在

			. 79612		
ソフト名	概要	種別	動作環境	2D%	HP公開
ComEX2, comEX3	組成式から同位体を含む 精密質量マススペクトルを生成 し、データから 一致するマススペクトルを抽出あるいは除去 する	定性	ጸタンドアロン Windows	対応	未公開
ChainGen	(CH ₂)n, (SiO(CH ₃) ₂)n, (CF ₂)n など 鎖状分子の組成式を生成 する	定性	ጸタンドアロン Windows	対応	未公開
MassCalib(改良)	指定した精密質量を用い、データの質量をシフトあるいは一時線形 補正する。 高精度化	定性 定量	スタント"アロン Window 64bit	対応	未公開
NLSim Multi(改良)	任意の質量差のマスフラグメントを検索し合致するマススペクトルを抽出する(中性ロススキャンを模擬)複数の置換基に対応	定性	スタント"アロン Window 64bit	対応	未公開
CBEx(改良)	同位体組成に基づきCI, Brを含むマススペクトルを抽出する CI, Br混合スペクトル検索可能、質量、同位体比計算精度向上	定性	スタント"アロン Window 64bit	対応	未公開
NMFDeco(新規)	非負値行列因子分解(NMF)によりGCxGC-(HRTOF)MSデータの マス スペクトルデコンボリューションを行う	定性 定量	スタント〝アロン Window 64bit	専用	未公開
DataGen(新規)	組成式(フラグメントも含む)を記述することにより 任意のGCxGC-MSデータを生成 する (ソフト検証用)	定性 定量	スタント"アロン Window 64bit	対応	未公開
2DPad(新規)	2次元目の保持時間ズレ を液相溶出スペクトルを基準に 自動補正	定性 定量	スタント〝アロン Window 64bit	専用	未公開
DataPrep64(新規)	精密質量ズレと2次元目の保持時間ズレを自動補正	定性 定量	スタント プロン Window 64bit	専用	未公開
2Display(新規)	GCxGC-MSデータの簡易ビューワー	定性 定量	スタント"アロン Window 64bit	専用	未公開
KDFilter(新規)	質量欠損、Kendrick Scale の利用により、CH2, CH, CF2, CF, CCI2, CCI, CBr2, CBrのユニットから成る物質のマススペクトルを抽出、削除、検出する	定性	スタント、アロン Window 64bit	対応	未公開
CDFTrim(新規)	指定した時間範囲のnetCDF形式データを切り出す	定性 定量	スタント〝アロン Window 64bit	対応	未公開

※ 2D:対応・・・GC、LCなどの1次元データとGCxGC、LCxLCなどの二次元データの両方に対応専用・・・GCxGC、LCxLCなどの二次元データのみに対応

http://www.nies.go.jp/analysis/downloads.html

謝辞: 本研究の一部はJSPS科研費 26241026、17H00796の助成を受けたものです。