1 集合と集合の演算

学籍番号: 名前

"集合"とは"ある特定の性質を備えたものの集まり"とする. 以下 X, A, B を集合とする.

- $1. \ a \in A \iff a \ \mathsf{lt} \ A \ \mathsf{O}$ 元である. $a \not\in A \iff a \ \mathsf{lt} \ A \ \mathsf{O}$ 元ではない.
- 2. $A \subset B \iff a \in A$ ならば $a \in B$.
- 3. 空集合 \emptyset とは元を一つも含まない集合. いかなる集合 A についても $\emptyset \subset A$.
- 4. ベキ集合 $\mathfrak{P}(A) := \{Y \subset A | Y$ は集合 $\}$.
- 5. 和集合 $A \cup B := \{x | x \in A \text{ または } x \in B\}.$
- 6. 共通部分 (共通集合, 交差) $A \cap B := \{x | x \in A \text{ かつ } x \in B\}.$
- 7. 差集合 $A \setminus B := \{x | x \in A \text{ かつ } x \notin B\}$.
- 8. $A \subset X$ について、補集合 $A^c := \{x \in X | x \notin A\}$.

ド・モルガン (De Morgan, 1806-1871) の法則.

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B) \quad X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B).$$

補集合の言葉で言うなら $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$.

問題 1. 「集合 A,B について $A=(A\setminus B)\cup (A\cap B)$ である.」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]

まず $A \subset (A \setminus B) \cup (A \cap B)$ を示す. $x \in A$ とする. $x \notin B$ ならば $x \in A \setminus B$ である. $x \in B$ ならば, $x \in A \setminus B$ である. よって, $x \in A \setminus B$ または $x \in A \cap B$ が成り立つので, $x \in A \setminus B$ である.

次に $(A \setminus B) \cup (A \cap B) \subset A$ を示す. $x \in (A \setminus B) \cup (A \cap B)$ とする. $x \in A \setminus B$ またば $x \in A \cap B$ である. $x \in A \setminus B$ ならば, $A \setminus B$ こので $x \in A$ である. $x \in A \cap B$ ならば $A \cap B$ こので $x \in A$ である. よって $(A \setminus B) \cup (A \cap B) \subset A$ である.

- 語句群 -

かつ または \subset \supset \in \notin A B $A \setminus B$ $A \cap B$ $A \cup B$

[注意] 今回は演習のためにこのように丁寧に書いているが, 試験等で行う証明においてはもう少し 簡略して書いて良い. (上は丁寧に書きすぎてわかりづらい.)

問題 $2.\,$ $A\cup B=(A\setminus B)\cup B$ の証明が完成するように空欄をうめよ.ただし空欄には後記の語句 群から適切な語句・記号を一つ選んで記入すること.

 $x \in A \cup B$ とする. x B ならば, $x \in A$ であるので, $x \in A \setminus B$. よって $x \in (A \setminus B) \cup B$ $x \in B$ ならば定義から $x \in (A \setminus B) \cup B$. 以上より $(A \setminus B) \cup B \supset A \cup B$ である.

 $\mathtt{chsh}\, A \cup B = (A \setminus B) \cup B \, \mathtt{cmsh}.$

- 語句群 -

 $\subset \quad \supset \quad \in \quad \not \in \quad A \quad B \quad A \setminus B \quad A \cap B \quad A \cup B$ または

問題 3. $A = \{2, 4, \{4, 5\}\}$ とする. 次のうち正しい主張を全て選べ.

- $(1). \{4,5\} \in A$
- $(2). \{4,5\} \subset A$

 $(3). \{\{4,5\}\} \subset A$

理由 (119457 ∈A ○

(6) spaj aca = [{23, 743, \$54.53}] x 2 & Signalacal

- $(4). \ 4 \in \{\{4,5\}\} \cap A$
- $(5). \ 2 \in A$
- (6). $2 \in \{\{a\} | a \in A\}$
- $(7). \{5\} \in A$
- $(8). \{4\} \subset A$
- $(9). \{4\} \in \{\{a\} | a \in A\}$
- $(10). \{2\} \cup \{\{2,4\}\} \subset A$
- (2)5¢A X

(3) 14,59EA O (8) 4EA O

(4)4+ 899,53} X (9) 543 (Spas (ach) O

(5)2€A () (0) {2,4} € A. X

解答: ([1,(3),(5),(8),(9)

問題 4.A = {1, {1}, 岩井 } とする. ベキ集合 ℑ(A) の元を全て列挙せよ. ただし 1 ≠ 岩井 かつ {1} ≠ 岩井 を仮定して良い. □

· 有用,不到了一个影性的 到1,到37,到1,影制,到3,类部, 51,别,差相?"。

 $^{^2}$ 当初「1
eq 岩井 かつ $\{1\}
eq$ 岩井」を証明しようとしたが, 証明できなかった. 「1 も岩井も集合ではないから自明で しょ」と思われるが、自然数 1 は集合を用いて構成し集合である (応用問題の順序数の部分を参照のこと). $1=0.9999\dots$ の例のように、「いろいろとこねくり回して岩井を構成したのちに 1 = 岩井 になる可能性」が否定できない。