

Lecture 8-2: Nyquist Criterion, Phase Margin, and Gain Margin

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Review

- Stability of Discrete-time Systems
 - **Definition:** Bounded input Bounded output
- Stability Check
 - Manual Check: If all poles lies inside the closed unit circle (|poles|<1)
 - For High-order Systems: Jury Test
- Internal Stability
 - Definition: For a closed-loop system, internal stability requires all signals in the system are bounded.
 - Two Conditions for Internal Stability
 - A closed-loop system is internal stable if the following two conditions hold:
 - The characteristic Polynomial $1 + C(z)G_{ZAS}(z)$ has no zeros **on** or **outside** the unit circle.
 - The loop gain $C(z)G_{ZAS}(z)$ has no pole-zero cancellation **on** or **outside** the unit circle.

More Details in Manual Check

- BIBO Stability Definition:
 - For a stable discrete-time system, if a bounded input signal is provided, the output will also be bounded.
 - Bounded Input Bounded Output BIBO definition.
- How to determine whether a discrete-time system is stable?
 - Depending on system's poles.
 - If all poles are within the unit circle -> System is stable
 - If one or more (not repeated) poles are on the unit circle ->
 Marginally Stable
 - If repeated poles on the unit circle -> Unstable
 - If one pole is outside of the unit circle -> Unstable

Review of Stability for Discrete-time Systems

Time responses as a function of the poles location

Example

 Find the stable range of the gain K for the unity feedback digital cruise control system with the analog transfer function (the sampling time is 0.02 s):

Solution:

• First, we obtain the overall z-domain transfer function DAC, Analog Subsystem, and ADC (i.e., $G_{ZAS}(z)$)

$$G_{ZAS}(z) = (1 - z^{-1}) \mathcal{Z} \left\{ \mathcal{Z}^{-1} \left[\frac{G(s)}{s} \right] \right\}$$
$$= (1 - z^{-1}) \mathcal{Z} \left\{ \mathcal{Z}^{-1} \left[\frac{K}{s(s+3)} \right] \right\}$$

Example (Continued)

Solution (Continued):

$$G_{ZAS}(z) = (1 - z^{-1}) \mathcal{Z} \left\{ \mathcal{Z}^{-1} \left[\frac{G(s)}{s} \right] \right\}$$
$$= (1 - z^{-1}) \mathcal{Z} \left\{ \mathcal{Z}^{-1} \left[\frac{K}{s(s+3)} \right] \right\}$$

Using the partial fraction expansion:

$$\frac{K}{s(s+3)} = \frac{K}{3} \left[\frac{1}{s} - \frac{1}{s+3} \right] \qquad \frac{1}{s} \to \frac{1}{1-z^{-1}}$$

We obtain the transfer function:

$$G_{ZAS}(z) = \frac{1.9412 \times 10^{-2} K}{z - 0.9418}$$

Note: Z-transform pairs

$$\frac{1}{s} \rightarrow \frac{1}{1 - z^{-1}}$$

$$\frac{1}{s+a} \rightarrow \frac{1}{1 - e^{-aT}z^{-1}}$$

$$(T = 0.02 \text{ for this question})$$

• Thus, the original system diagram can be simplified as:

Example (Continued)

Solution (Continued)

- For the above unity feedback systems, the closed-loop characteristic equation is $1+G_{ZAS}(z)=0$
- Which can be simplified to:

$$z - 0.9418 + 1.9412 \times 10^{-2}$$
 $K = 0$

• From the above equation, we have a pole at

$$z = 0.98418 - 1.9412 \times 10^{-2} K$$

- To make the system stable, we need to make sure that this pole is **within** the **unit circle**, i.e., |z| < 1 or -1 < z < 1.
- Thus, the stability conditions are

$$0.9418 - 1.9412 \times 10^{-2}$$
 $K < 1$
 $-0.9418 + 1.9412 \times 10^{-2}$ $K < 1$

• Thus, the stable range of K is

$$-3 < K < 100.03$$

Nyquist Criterion Introduction

- The Nyquist Criterion is a tool that solves two questions:
 - Does the system have closed-loop poles outside the unit circle?
 - If yes, how many poles are outside the unit circle?
- The answer of the first question can be used to determine the system's stability.
 - If the system have closed-loop poles outside the unit circle (no matter how many) -> The system is unstable.
- Before we introduce the Nyquist Criterion, we need to understand the concept of **Contour**.

Definition of Contour:

A Contour is a **closed directed** simple curve.

A contour must be

- Closed
- Have a Direction (either clockwise or counterclockwise)

Nyquist Curve

Nyquist Curve:

- It is a **contour plot** of the **frequency response** of a system.
- For a continuous-time system L(s), the **frequency response** is $L(j\omega)$, $\omega \in [0, \infty)$.

$$|L(j\omega)|$$
 and $\angle L(j\omega)$ Continuous-time System frequency response

- The graphical contour of frequency response of L(s) -> Nyquist Curve.
- For instance, let $L(s) = \frac{100}{(s+1)(\frac{1}{10}s+1)}$,
 - We can calculate $|L(j\omega)|$ and $\angle L(j\omega)$ with different ω values.

ω	0	0.1	0.76	1	2	10	20	100	∞
$ L(j\omega) $	100	96	79.6	70.7	50.2	6.8	2.24	0.10	0
$/L(j\omega)$	0	-5.7	-41.5	-50.7	-74.7	-129.3	-150.5	-173.7	-180
(degrees)									

• Then, make a diagram for $|L(j\omega)|$ and $\angle L(j\omega)$, we will have

Nyquist Curve

ω	0	0.1	0.76	1	2	10	20	100	
$ L(j\omega) $	100	96	79.6	70.7	50.2	6.8	2.24	0.10	0
$/L(j\omega)$	0	-5.7	-41.5	-50.7	-74.7	-129.3	-150.5	-173.7	-180
(degrees)									

Nyquist Curve

Nyquist Curve

- For a **discrete-time** system G(z), its **frequency response** include: $|G(e^{j\omega T})| \angle G(e^{j\omega T})$
 - With different values of ω , we can also generate a **Nyquist Curve**.
- · For instance, if

$$G(z) = \frac{0.066z + 0.055}{z^2 - 1.45z + 0.571}$$

• Assume sample period T=0.4, the **Nyquist Curve** can be plotted as:

An Important Observation

Consider a closed-loop discrete-time control system as shown below:

• The TF of the above system is

$$H(z) = \frac{C(z)G(z)}{1 + C(z)G(z)}$$

• Thus, the characteristic equation is

$$1 + C(z)G(z) = 0$$

- Important Observation:
 - The **Zeros** of 1 + C(z)G(z) = 0 are equal to the **Poles** of H(z)
 - We can quickly verify it by assuming C(z) = 1 and $G(z) = \frac{z}{z-1}$

An Important Observation (Continued)

The **Zeros** of 1 + C(z)G(z) = 0 are equal to the **Poles** of H(z)

- Thus, to check the stability of a closed-loop system (i.e., H(z)), we can find **Zeros** of 1 + C(z)G(z) = 0
 - If all **Zeros** of 1 + C(z)G(z) = 0 are **within** the unit circle -> Closed-loop System is **Stable**
 - If any **Zeros** of 1 + C(z)G(z) = 0 is **outside** the unit circle -> Closed-loop System is **Unstable**
- Unstable Region: Outside of the unit circle.
 - We can present the Unstable Region as a contour:
 - The inner circle is the unit circle.
 - The outer circle includes everything outside.

If any **Zeros** of 1 + C(z)G(z) = 0 lie within **Nyquist Contour** -> The Closed-loop System is Unstable

An Important Observation (Continued)

If any **Zeros** of 1 + C(z)G(z) = 0 lie within **Nyquist Contour** -> The Closed-loop System is Unstable

- Therefore, for a stable closed-loop system, we don't want any Zeros of 1 + C(z)G(z) = 0 lie within **Nyquist Contour.**
 - Denote the number of Zeros of 1+C(z)G(z) inside this Contour as Z
 - For a Stable System, Z=0
 - For an Unstable System, $Z \neq 0$
- How to determine the value of Z?
 - Nyquist Criterion

Nyquist Criterion

Nyquist Criterion

A Closed-Loop system has Z poles **inside** the Nyquist Contour with

$$Z = P - N$$

P is the number of Poles of L(z) inside the Nyquist Contour; N is the number of **anticlockwise contour encirclement** of (-1, 0) given the **Nyquist Curve** of L(z).

Nyquist Criterion Explanation

Nyquist Criterion

A Closed-Loop system has Z poles **inside** the Nyquist Contour with

$$Z = P - N$$

P is the number of Poles of L(z) inside the Nyquist Contour; N is the number of anticlockwise contour encirclement of (-1, 0) given the Nyquist Curve of L(z).

Examples of encirclement in different directions:

Nyquist Criterion Explanation

Nyquist Criterion

A Closed-Loop system has Z poles **inside** the Nyquist Contour with

$$Z = P - N$$

P is the number of Poles of L(z) inside the Nyquist Contour; N is the number of **anticlockwise contour encirclement** of (-1, 0) given the **Nyquist Curve** of L(z).

• Examples of encirclement in **different times**:

Nyquist Criterion Explanation

Nyquist Criterion

A Closed-Loop system has Z poles **inside** the Nyquist Contour with

$$Z = P - N$$

P is the number of Poles of L(z) inside the Nyquist Contour; N is the number of anticlockwise contour encirclement of (-1, 0) given the Nyquist Curve of L(z).

- The Nyquist Criterion is simple to use:
 - If L(z) has no poles inside the Nyquist Contour, i.e., P=0
 - Then, for a closed-loop system to be **stable** (i.e., Z=0), N must be 0
 - Since N = P Z = 0
 - In other words, the Nyquist Curve of L(z) must not encircle (-1, 0)

Examples

- Given the following Nyquist Curves, determine the closed-loop system's stability.
 - Assume P = 0 for all cases.

Stable

Marginally Stable

Unstable

Example 2

Consider the following closed-loop discrete-time

- Where C(z) = 1 and $G(z) = \frac{5z+4}{(z-2)(z-3)}$.
- Given the Nyquist Curve of G(z), determine the stability of this closed-loop system.

Example 2 Solution

Solution:

- We first need to determine the value of P.
 - P is the number of poles of **loop gain** outside the unit circle.
 - In this work, loop gain is

$$G(z) = \frac{5z + 4}{(z - 2)(z - 3)}$$

- Two poles are at 2 and 3, which are both outside the unit circle.
 - Thus, P = 2
- For a stable system, Z = P N should be 0
 - Here P = 2, thus, Z = 2 N = 0
 - *N* is the encirclement of (-1, 0) for the Nyquist curve. However, in this diagram, the Nyquist curve does not encircle (-1, 0).
 - Thus, the system is **not stable**.

Gain Margin and Phase Margin

- Stability Criteria Gain Margin and Phase Margin
 - Think of both of these as safety margins for an open-loop system which you would like to make closed-loop.
- Take a real-world example
 - Think if you are walking next to a cliff, you want a **positive space** or "margin" of safety between you and a big disaster.
 - So that **positive margins** indicate there is still a safety margin before instability.
 - Conversely, negative margins in an openloop system indicate instability issues if you try to close this loop.

Closing the Loop

Consider a Closed-loop Control System:

- Assume C(z) = 1
- The closed-loop TF is: $G_{cl}(z) = \frac{G(z)}{1 + G(z)}$
 - Replacing z with $e^{j\omega T}$, we have the frequency response (assume T=1):

$$G_{cl}(e^{j\omega}) = \frac{G(e^{j\omega})}{1 + G(e^{j\omega})}$$

• For this closed-loop system, the **instability** occurs when:

$$1 + G(e^{j\omega}) = 0$$

- For this to happen, we need $G(e^{j\omega})=-1$, which means:
 - $|G(e^{j\omega})| = 1$ and $\angle G(e^{j\omega}) = -180^{\circ}$.

Gain Margin and Phase Margin

- Stability Margins, including **Gain Margin** and **Phase Margin**, measure how far we are from the point |G|=1 and $\angle G=-180^{\circ}$
- We can find Gain Margin and Phase Margin using Bode Plot.
 - Bode Plot is a diagram that demonstrate a system's frequency response.
 - Bode Plot includes two sub-diagrams:

Magnitude Plot

Shows ω vs. $|G(e^{j\omega T})|$ Usually, we convert magnitude in to decibel via

$$db = 20 \log_{10} |G(e^{j\omega T})|$$

Phase Plot

Shows ω vs. $\angle G(e^{j\omega})$ Usually, the unit for phase angle is degree.

Frequency ω

Gain Margin

- Gain margin (GM) is defined as the reciprocal of the gain at the frequency at which the phase angle reaches -180° .
- Here is an example of finding Gain Margin:
 - 1. Find the frequency where the PHASE becomes -180 degrees.
 - In the pic, this frequency is 100 rad/sec.
 - 2. Find the GAIN, *G* (in dB), at the same frequency (from the upper plot).
 - For blue line, G = 14.1 dB
 - For red line, G = -25.9 dB
 - 3. Gain Margin = 0 G dB
 - For blue line, GM = -14.1 dB
 - For red line, GM = 25.9 dB

Phase Margin

- Phase Margin refers to the amount of phase, which can be increased or decreased without making the system unstable.
- To find Phase Margin
 - 1. Find the frequency where the GAIN is 0 dB.
 - For the blue Bode plot, the 0 dB crossover occurs at 181 rad/sec; For the red Body plot, this happens at 5 rad/sec.
 - 2. Find the PHASE, *P* (in degrees), at the same frequency (look at the lower plot)
 - 3. Phase Margin = P + 180 degrees
 - For blue line, P = -231 degrees. Thus, PM = -50.0 degrees
 - For red line, P = -81.3 degrees. Thus, PM = 98.7 degrees.

Undefined Stability Margins

- Note that sometimes the margins are undefined
 - When there is no crossover at 0 dB
 - When there is no crossover at 180°

Example

 Given the following Bode Plot of a closed-loop discrete-time system, determine the Gain Margin and Phase Margin.

• Solution:

Gain Margin: 0 – 7.75 = -7.75 dB

Phase Margin: -133 + 180 = 47 degrees

