

Integrated Vehicle Health Management (IVHM) Activities at Kennedy Space Center

Jack Fox

October 11, 2000

Integrated Vehicle Health Management

IVHM

Integrated Vehicle Health Management

Discussion Topics

- ♦ Technology Goals & Objectives
- ♦ Background
- ♦ Current Status
- ♦ Major Accomplishments
- ♦ Near Term Plans
- ♦ Contact Info

- ♦ Overall Program Goals
 - Substantially reduce the technical, programmatic and business risk associated with development of a safe, reliable and affordable 2nd Generation Reusable Launch Vehicle (RLV)
- ♦ IVHM Goals
 - Develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations

<u>Now</u>	<u>Near Term</u>	<u>Future</u>
Maintain	Monitor	Management
Human Control	Distributed Control	Autonomous Vehicle
Reporting	Processing	Reacting
Analyze	Diagnosis	Prognosis
Sensors	Intelligent Sensing	Integrated Sensor Suites
Component	Subsystems/Vehicles	System

Integrated Vehicle Health Management

Technology Goals & Objectives

♦ **KSC IVHM Goals**

- **Reduce ground and flight operations costs for vehicles and payloads**

- Automated in-situ vehicle checkout
- Ground maintenance on exception-only basis
- On-board failure isolation = reduced ground troubleshooting efforts
- Automated servicing and checkout
- Reduced size of flight and ground controller teams
- Standardized payload interfaces
- Containerized payloads with off-line testing

- **Improve Safety & Reliability**

- Faster identification of failures
- Prediction of failures
- Reduced human error through pre-programmed responses
- Increased redundancies
- Use of modern non-intrusive sensors in high criticality systems

- ◆ **KSC IVHM Focus Areas**
 - Flight and Ground-based Test Beds
 - Advanced Sensors (Hazardous Gas Detection, Wireless)
 - Evolved Control Room Technologies with Advanced Applications
 - Informed Maintenance (IM)
 - Diagnostics / Prognostics
 - Automated Maintenance Scheduling
 - Automated Logistics Coordination (People/Parts/Paper)
 - Paperless Documentation
 - Data Mining

- ◆ 1st Generation Ground Operations Reality
- ◆ 2nd Generation Ground Operations Vision
- ◆ 3rd Generation Ground Operations Vision

1st Generation Ground Operations Reality

- Best described as manual integration of planned and unplanned operations
- Planned - checkout based on FMEA, R&R of limited life components, servicing
- Unplanned - IFAs and other failures - involves removals for access, troubleshooting, failures and copper path retest
- Paper intensive
- Logistics coordination (people/parts/papers) attempts to use statistics of 4 vehicle fleet, but largely manual
- Conflicts identified by representatives of subsystem engineering, shop, quality, other at scheduling meetings
- Schedules adjusted manually every shift - move magnet bars on wall!

2nd Generation Ground Operations Vision

- Described as semi-automated
- Ground systems highly integrated with flight systems from day one of design phase
- Extensive use of highly automated test and checkout equipment
- Paperless work environment
- Informed Maintenance implemented
 - Maintenance schedules automatically generated and updated taking into account planned and unplanned operations
 - Flight and ground based diagnostic/prognostic health algorithms integrated and use multi-mission data mining
- Extensive use of intelligent applications for engineering advisories for near real-time launch and ground operations decisions
- Ground receives periodic health summary data from flight vehicles
 - Logistics coordination and test requirement determination statistically oriented

3rd Generation Ground Operations Vision

- Described as fully automated
- Informed Maintenance implemented with the following considerations
 - Use scaled up elements of 2nd Generation IM system
 - Very large fleet and very high launch rate - large number of component health tracking down to serial number level
 - Maintenance “at the gate” in terms of hours by very small team - rapid routing and staging of proper skilled personnel and equipment as well as procedures
 - “3rd Gen” diagnostic/prognostic health algorithms and applications for engineering advisories for near real-time launch and ground ops decisions

- ♦ SSME HMS/OPADS
- ♦ X-34 NITEX
- ♦ X-37 IVHM and IM
- ♦ X-38 DARTH
- ♦ CLCS
- ♦ iTPS
- ♦ PHARM
- ♦ REMA

♦ Space Shuttle Main Engine Health Monitoring System (SSME HMS)

- Optical Plume Anomaly Detection System (OPADS) Flight Experiment
 - Planned for three flights, first mid-2002

Integrated Vehicle Health Management
Current Status

★ X-34 NASA IVHM Technology Experiment for X-vehicles (NITEX)

- Propulsion system health monitoring experiment
- Fly as payload on X-34
- Multiple flights (first late 2001)
- Develop prognostication

★ X-37 IVHM and IM

- Electro Mechanical Actuator & Power Systems Health Monitoring Experiment
- Embedded in vehicle avionics
- Operate during B-52 drop tests (1/2002) and Shuttle/ELV payload (11/2002)
- Informed Maintenance

Integrated Vehicle Health Management

Current Status

★X-38 Crew Return Vehicle (CRV)

- Provide interface between X-38 vehicle and Orbiter
 - X-38 has Device to Allow Return Telemetry Handling (DARTH)
 - Orbiter has Vehicle Analysis And Data Recording (VADAR)
- Fly as Space Shuttle payload on STS-113 (2/2002)

X-38

Integrated Vehicle Health Management

Current Status

♦ Checkout and Launch Control System (CLCS)

- Complete replacement of 1970s era Launch Processing System in work, first launch late 2002

OLD (LCC) Single Workstations

NEW (OCR) CLCS Work Groups

Integrated Vehicle Health Management

Current Status

- ◆ Intelligent Thermal Protection System (iTPS)
 - ARC-led effort, KSC role is to develop Space Shuttle flight experiments

- ◆ Informed Maintenance - Predictive Health And Reliability Management (PHARM)

- Boeing KSC and NASA KSC
 - Develop an end-to-end Informed Maintenance system, planned completion 12/2000
 - Plan to integrate into X-34, X-37 and Spaceport Technology Test Complex

- ◆ Reconfigurable Electro-Mechanical Actuator (REMA)

- Oklahoma State University and NASA KSC
 - Develop parallel neural network control systems for EMA operated aerosurface
 - Previous work was neural network for solenoid valve signature recognition

Major Accomplishments

Integrated Vehicle Health Management

- ♦ IVHM HTDs
- ♦ FCMS
- ♦ OMS/RCS IVHM Test Bed
- ♦ u WIS
- ♦ Wireless VJ Sensor System
- ♦ SOCC

Space Shuttle IVHM HEDS Technology Demonstrations

Example Problems

- Fuel Cell single cell volt test
- Aft & PLB haz gas detection
- Crit 1 GOX temp probes
- MPS LH2 FCV testing
- SSME inspections
- Radiator inspections
- MPS pneumatic system testing
- ET/Orbiter plate gap testing

Solutions

- ✓ Fuel Cell Monitoring System
- Smart H₂ & O₂ sensors + FBG FO
- Use non-intrusive sensors, wireless
- Hall Effect sensors w/ NN
- SSME HMs, FFT accels, OPADS
- ★ Acoustic emission sensors
- Helium leak detection sensors
- Delta Press sensors

✓ = implemented ➤ = demo on HTD ★ = needs development

Space Shuttle IVHM HEDS Technology Demonstrations (cont'd)

John Glenn with custom CB

Thrust structure
strain & temp

ET/QRB plate gap
delta P

GOX skin temps

Conduits on cooled ATR

Space Shuttle OMS/RCS Helium System IVHM Test Bed

- Service and test 8 systems in parallel

Integrated Vehicle Health Management
Major Accomplishments

- ◆ **Micro Wireless Instrumentation System (u WIS)**
 - NASA JSC and KSC effort
 - Two configurations: Micro-sensor/recorder packages and wireless sensors/laptop package
 - Flew STS-96, STS-101, STS-106, International Space Station

- ◆ **Wireless Vacuum Jacketed Line Sensor System**

- Spin-off of IVHM HTD technology
- University of Florida, Boeing KSC and NASA KSC
- For use at Space Shuttle Launch Complex 39

- ◆ **Florida Spaceport Authority Space Operations Control Center (SOCC)**

- Boeing KSC effort
- Funded by state of Florida
- Can support commercial payloads and launchers

Integrated Vehicle Health Management

Major Accomplishments

Integrated Vehicle Health Management
Near Term Plans

- ◆ **STTC**
- ◆ **MMS**
- ◆ **IHGDS**
- ◆ **APHARM**
- ◆ **ICS**

- ♦ **Spaceport Technology Test Complex (STTC)**
 - Develop rapid servicing and checkout technologies for “Iron Rocket” (non-flight RLV) – target 24 hour turnarounds
 - Partnership with industry, academia, other NASA Centers
 - Serve as test bed for maturing RLV technologies through rigorous multiple cycle testing in operational environment – even to the point of failure
 - Also develop new LC-39 LOX pumps, replacement Space Shuttle Orbiter LH₂ Recirculation Pumps and other large-scale industrial cryogenic components
 - In addition, provide hands-on training for Space Shuttle technicians, quality control specialists, engineers as well as industry and academia
- ♦ **Miniature Mass Spectrometer (MMS)**
 - Jet Propulsion Laboratory, NASA JSC and NASA KSC effort
 - Develop hand-held device for post-EVA toxic vapor detection and clean-up while still in airlock prior to entering Space Shuttle or International Space Station

◆ Intelligent Hazardous Gas Detection System (IHGDS)

- University of Florida, Boeing KSC and NASA KSC effort
- Develop on-board leak localization system using mini-mass spectrometers (leveraged from JPL and others' work) and/or smart sensors (leveraged from Bantam/GRC/MSFC/KSC work)
- Develop complex flow circulation models for algorithms and optimal sensor placements
- Develop 1/5 scale Orbiter aft compartment for model validation
- Space Shuttle flight experiments planned

◆ Informed Maintenance – Advanced Predictive Health And Reliability Management (APHARM)

- Scale-up PHARM efforts into 2nd and 3rd Generation IM system
- Leverage Phase II SBIR - Intelligent Automation, Inc. for 3 dimensional neural network visualization technology

◆ Intelligent Checkout Systems

- Automated video, communication and telemetry switching and retest
- Virtual control rooms for remote commanding and monitoring

Contact Info

Integrated Vehicle Health Management

Jack J. Fox
Manager, Spaceport Technology Projects
NASA/YA-E6
Kennedy Space Center, FL 32899
jack.fox-1@ksc.nasa.gov
(321) 867-4413

Scott B. Wilson
OPADS and uWIS Project Manager
NASA/YA-E6
Kennedy Space Center, FL 32899
scott.wilson-1@ksc.nasa.gov
(321) 867-3326

Janet F. Letchworth
NITEX Project Manager
NASA/YA-E4
Kennedy Space Center, FL 32899
janet.letchworth-1@ksc.nasa.gov
(321) 867-3331

Robert A. Cunningham
IM Project Manager
NASA/YA-D4
Kennedy Space Center, FL 32899
robert.cunningham-1@ksc.nasa.gov
(321) 867-8754