Organización de la materia Algorítmos voraces El problema union-find Problema: camino de costo minimo Conclusiones

Algoritmos y Estructuras de Datos II

Algoritmos voraces

8 de mayo de 2019

Clase de hoy

- 🚺 Organización de la materia
- Algoritmos voraces
 - Forma general
 - Problema de la moneda
 - Problema de la mochila
 - Árboles generadores de costo mínimo
- El problema union-find
 - Primer intento
 - Segundo intento
 - Tercer intento
 - Último intento
- Problema: camino de costo mínimo
 - Algoritmo de Dijkstra
 - Idea del algoritmo

Organización de la materia

- cómo vs. qué
- 3 partes
 - análisis de algoritmos
 - tipos de datos
 - técnicas de resolución de problemas
 - divide y vencerás
 - algoritmos voraces
 - backtracking
 - programación dinámica
 - recorrida de grafos

Algoritmos Voraces (o Glotones, Golosos) (Greedy)

- Es la técnica más sencilla de resolución de problemas.
- Normalmente se trata de algoritmos que resuelven problemas de optimización, es decir, tenemos un problema que queremos resolver de manera óptima:
 - el camino más corto que une dos ciudades,
 - el valor máximo alcanzable entre ciertos objetos,
 - el costo mínimo para proveer un cierto servicio,
 - el menor número de billetes para pagar un cierto importe,
 - el menor tiempo necesario para realizar un trabajo, etc.
- Los algoritmos voraces intentan construir la solución óptima buscada paso a paso,
- eligiendo en cada paso
- la componente de la solución
- que parece más apropiada.

Características

- Nunca revisan una elección ya realizada,
- confían en haber elegido bien las componentes anteriores.
- Por ello, lamentablemente, no todos los problemas admiten solución voraz,
- pero varios problemas interesantes sí admiten solución voraz,
- y entonces, dichas soluciones resultan muy eficientes.

Problemas con solución voraz

- Problema de la moneda (casos especial).
- Problema de la mochila (caso especial).
- Problema del camino de costo mínimo en un grafo.
- Problema del árbol generador de costo mínimo en un grafo.
- Muchos otros problemas menos conocidos.

Organización de la materia
Algoritmos voraces
El problema union-find
Problema: camino de costo mínimo
Conclusiones

Forma general Problema de la moneda Problema de la mochila Árboles generadores de costo mínimo

Ingredientes comunes de los algoritmos voraces

- se tiene un problema a resolver de manera **óptima**,
- un conjunto de candidatos a integrar la solución,
- los candidatos se van clasificando en 3: los aún no considerados, los incorporados a la solución parcial, y los descartados,
- existe una función que chequea si los candidatos incorporados ya forman una solución del problema (sin preocuparse por si la misma es o no óptima),
- una segunda función que comprueba si un conjunto de candidatos es factible de crecer hacia una solución (sin preocuparse por cuestiones de optimalidad),
- finalmente, una tercer función que selecciona de entre los candidatos aún no considerados, el más promisorio.

Receta general de los algoritmos voraces

- Inicialmente ningún candidato ha sido considerado, es decir, ni incorporado ni descartado.
- En cada paso se utiliza la función de selección para elegir cuál candidato considerar.
- Se utiliza la función factible para evaluar si el candidato considerado se incorpora a la solución o no.
- Se utiliza la función solución para comprobar si se ha llegado a una solución o si el proceso de construcción debe continuar.

Forma general

```
fun voraz(C) ret S  \{ \text{C: conjunto de candidatos, S: solución a construir} \}  S:= \{ \}  do S no es solución \rightarrow c:= seleccionar de C  \text{C:= C-\{c\}}  if \text{S}\cup\{c\} es factible \rightarrow S:= \text{S}\cup\{c\} fi od end fun
```

Lo más importante es el criterio de selección.

Problema de la moneda

- Tenemos una cantidad infinita de monedas de cada una de las siguientes denominaciones:
 - 1 peso,
 - 50 centavos,
 - 25 centavos,
 - 10 centavos,
 - 5 centavos
 - y 1 centavo.
- Se desea pagar un cierto monto de manera exacta.
- Se debe determinar la manera de pagar dicho importe exacto con la menor cantidad de monedas posible.

Solución al problema de la moneda

- Seleccionar una moneda de la mayor denominación posible que no exceda el monto a pagar,
- utilizar exactamente el mismo algoritmo para el importe remanente.

Criterio de selección claramente establecido.

Algoritmo voraz

```
fun cambio(m: monto) ret S: conjunto de monedas var c, resto: monto  C := \{100, 50, 25, 10, 5, 1\}   S := \{\}   resto := m   do \ resto > 0 \rightarrow c := mayor \ elemento \ de \ C \ tal \ que \ c \leq resto   S := S \cup \{una \ moneda \ de \ denominación \ c\}   resto := resto - c   od   end \ fun
```

Algoritmo voraz

end fun

Versión más parecida al esquema general de algoritmos voraces

```
fun cambio(m: monto) ret S: conjunto de monedas var c, resto: monto  C:= \{100, 50, 25, 10, 5, 1\}   S:= \{\}   resto:= m   do \ resto > 0 \rightarrow c:= mayor \ elemento \ de \ C   C:= C - \{c\}   S:= S \cup \{resto \ div \ c \ monedas \ de \ denominación \ c\}   resto:= resto \ mod \ c   od
```

Algoritmo voraz

Versión más detallada

```
fun cambio(m: monto) ret S: array[1..6] of nat
   var resto: monto
   resto := m
   S[1]:= resto div 100
   resto:= resto mod 100
   S[2]:= resto div 50
   resto:= resto mod 50
   S[3]:= resto div 25
   resto:= resto mod 25
   S[4]:= resto div 10
   resto:= resto mod 10
   S[5]:= resto div 5
   resto:= resto mod 5
   S[6]:= resto
end fun
```

Algoritmo voraz

Detallado pero genérico, asumiendo arreglo ordenado de denominaciones

```
 \begin{aligned} & \{ \text{Pre: d[1]} \geq \text{d[2]} \geq \ldots \geq \text{d[n]} \, \} \\ & \text{fun } \text{ cambio}(\text{d:array}[1..n] \text{ of nat, m: monto) ret S: array}[1..n] \text{ of nat} \\ & \text{var } \text{resto : monto} \\ & \text{resto := m} \\ & \text{for } i\text{:= 1 to n do} \\ & \text{S[i]:= resto div d[i]} \\ & \text{resto:= resto mod d[i]} \\ & \text{od} \\ & \text{end fun} \end{aligned}
```

Sobre este algoritmo

- El orden del algoritmo es n, es decir, el número de denominaciones.
- Si el arreglo de denominaciones no está ordenado requiere n log n ordenarlo y luego n más el algoritmo, en total es n log n.
- No siempre funciona, depende del conjunto de denominaciones.
- Para un conjunto razonable, funciona.

Conjunto de denominaciones para el que no funciona

- Sean 4, 3 y 1 las denominaciones y sea 6 el monto a pagar.
- El algoritmo voraz intenta pagar con una moneda de denominación 4, queda un saldo de 2 que solamente puede pagarse con 2 monedas de 1, en total, 3 monedas.
- Pero hay una solución mejor: dos monedas de 3.
- De todas formas, el algoritmo anda bien para todas las denominaciones de uso habitual.

Problema de la mochila

- Tenemos una mochila de capacidad W.
- Tenemos n objetos de valor v_1, v_2, \ldots, v_n y peso w_1, w_2, \ldots, w_n .
- Se quiere encontrar la mejor selección de objetos para llevar en la mochila.
- Por mejor selección se entiende aquélla que totaliza el mayor valor posible sin que su peso exceda la capacidad W de la mochila.
- Para que el problema no sea trivial, asumimos que la suma de los pesos de los n objetos excede la capacidad de la mochila, obligándonos entonces a seleccionar cuáles cargar en ella.

Criterio de selección

¿Cómo conviene seleccionar un objeto para cargar en la mochila?

- El más valioso de todos.
- El menos pesado de todos.
- Una combinación de los dos.

Análisis del primer criterio de selección El más valioso primero

- Razonabilidad: el objetivo es cargar la mochila con el mayor valor posible, escogemos los objetos más valiosos.
- Falla: puede que al elegir un objeto valioso dejemos de lado otro apenas menos valioso pero mucho más liviano.
- Ejemplo: Mochila de capacidad 10, objetos de valor 12, 11 y 9, y peso 7, 5 y 5.
- De elegir primero el de mayor valor (12) ocuparíamos 7 de los 10 kg de la mochila, no quedando lugar para otro objeto.
- En cambio, de elegir el de valor 11, ocuparíamos solamente 5 kg quedando 5 kg para el de valor 9, totalizando un valor de 20.

Análisis del segundo criterio de selección El menos pesado primero

- Razonabilidad: hay que procurar aprovechar la capacidad de la mochila, escogemos los objetos más livianos.
- Falla: puede que al elegir un objeto liviano dejemos de lado otro apenas más pesado pero mucho más valioso.
- Ejemplo: Mochila de capacidad 13, objetos de valor 12, 11 y 7, y peso 6, 6 y 5.
- De elegir primero el de menor peso (5) obtendríamos su valor (7) más, en el mejor de los casos, 12, totalizando 12+7=19.
- En cambio, de elegir los dos de peso 6, no se excede la capacidad de la mochila y se totaliza un valor de 23.

Análisis del tercer criterio de selección Combinando ambos criterios

- Debemos asegurarnos de que cada kg utilizado de la mochila sea aprovechado de la mejor manera posible: que cada kg colocado en la mochila valga lo más posible.
- Criterio: elegir el de mayor valor relativo (cociente entre el valor y el peso): dicho cociente expresa el valor promedio de cada kg de ese objeto.
- Falla: puede que al elegir un objeto dejemos de lado otro de peor cociente, pero que aprovecha mejor la capacidad.
- Ejemplo: Mochila de capacidad 10, objetos de valor 12, 11 y 8, y peso 6, 5 y 4.
- El critero elige al que pesa 5, ya que cada kg de ese objeto vale más de 2. Pero convenía elegir los otros dos.

Problema de la mochila Versión simplificada

- El problema de la mochila no admite solución voraz.
- Se simplifica permitiendo fraccionar objetos.
- Ahora sí el tercer criterio funciona.
- (En el ejemplo anterior, elegimos primero el que vale 11 y luego 5/6 del que vale 12 obteniendo como valor total 11 + 10 = 21).

Algoritmo voraz

```
\{ \text{Pre: } \sum_{i=1}^{n} w[i] \geq W \}
fun mochila(v: array[1..n] of valor, w: array[1..n] of peso, W: peso)
                                                 ret s: arrav[1..n] of real
    var resto: peso; c: nat
    for i:= 1 to n do s[i]:= 0 od
    resto:= W
    do resto > 0 \rightarrow c:= tal que s[c] = 0 \land v[c]/w[c] máximo
                        if w[c] \leq resto \rightarrow s[c]:= 1
                                              resto:= resto - w[c]
                           w[c] > resto \rightarrow s[c] := resto/w[c]
                                              resto := 0
                        fi
    od
```

Sobre este algoritmo

- Si los objetos ya están ordenados según su cociente valor/peso, el orden del algoritmo es n, es decir, el número de objetos.
- Si los objetos no están ordenado según su cociente valor/peso, requiere n log n ordenarlo y luego n más el algoritmo, en total es n log n.
- Si los objetos en total exceden muy largamente la capacidad de la mochila, en vez de ordenar puede convenir utilizar una cola de prioridades, en cuyo caso el orden es n.
- funciona siempre que esté permitido fraccionar objetos.

Algoritmo voraz si los objetos están ordenados

```
\{\text{Pre: } \sum_{i=1}^{n} w[i] \geq W \wedge \forall i. v[i]/w[i] \geq v[i+1]/w[i+1]\}
fun mochila(v: array[1..n] of valor, w: array[1..n] of peso, W: peso)
                                                ret s: array[1..n] of real
    var resto: peso; c: nat
    for i:= 1 to n do s[i]:= 0 od
    resto:= W
    c = 1
    do w[c] \leq resto \rightarrow s[c]:= 1
                           resto:= resto - w[c]
                           c = c + 1
    od
    s[c]:= resto/w[c]
end fun
```

Árbol generador de costo mínimo

- Sea G = (V, A) un grafo conexo no dirigido con un costo no negativo asociado a cada arista.
- Se dice que T ⊆ A es un árbol generador (intuitivamente, un tendido) si el grafo (V, T) es conexo y no contiene ciclos.
- Su costo es la suma de los costos de sus aristas.
- Se busca T tal que su costo sea mínimo.

Árbol generador de costo mínimo

- El problema de encontrar un árbol generador de costo mínimo tiene numerosas aplicaciones en la vida real.
- Cada vez que se quiera realizar un tendido (eléctrico, telefónico, etc) se quieren unir distintas localidades de modo que requiera el menor costo en instalaciones (por ejemplo, cables) posible.
- Se trata de realizar el tendido siguiendo la traza de un árbol generador de costo mínimo.

Ejemplo

Ejemplo

Dos estrategias

Hay dos grandes ideas de cómo resolverlo:

- La de Prim: se parte desde un vértice origen y se va extendiendo el tendido a partir de ahí:
 - en cada paso se une el tendido ya existente con alguno de los vértices aún no alcanzados, seleccionando la arista de menor costo capaz de incorporar un nuevo vértice
- La de Kruskal: se divide el grafo en distintas componentes (originariamente una por cada vértice) y se van uniendo componentes,
 - en cada paso se selecciona la arista de menor costo capaz de unir componentes.

Algoritmo de Prim

Algoritmo de Kruskal

Algoritmos y Estructuras de Datos II

Implementación del Algoritmo de Prim

Algoritmos voraces

```
fun Prim(G=(V,A) con costos en las aristas, k: V)
                                             ret T: conjunto de aristas
    var c: arista
    C:= V-\{k\}
   T:=\{\}
    do n-1 times \rightarrow
            c:= arista \{i, j\} de costo mínimo tal que i \in \mathbb{C} y j \notin \mathbb{C}
            C := C - \{i\}
            T:=T\cup\{c\}
    od
end fun
donde n = |V|. La condición del ciclo podría reemplazarse por
|T| < n - 1 o C \neq \{\} entre otras
```

Implementación del Algoritmo de Kruskal

```
fun Kruskal(G=(V,A) con costos en las aristas)
                                              ret T: conjunto de aristas
    var i,j: vértice; u,v: componente conexa; c: arista
    C = A
    T:=\{\}
    do |T| < n - 1 \rightarrow c:= arista \{i, j\} de C de costo mínimo
                        C := C - \{c\}
                        u := find(i)
                        v := find(i)
                        if u \neq v \rightarrow T := T \cup \{c\}
                                     union(u,v)
                        fi
```

El problema union-find

Es el problema de cómo mantener un conjunto finito de elementos distribuidos en distintas componentes. Las operaciones que se quieren realizar son tres:

- init inicializar diciendo que cada elemento está en una componente integrada exclusivamente por ese elemento,
- find encontrar la componente en que se encuentra un elemento determinado,
- union unir dos componentes para que pasen a formar una sola que tendrá la unión de los elementos que había en ambas componentes.

Primer intento Segundo intento Tercer intento Último intento

El problema union-find

- De sólo manipularse por estas tres operaciones, las componentes serán siempre disjuntas
- y siempre tendremos que la unión de todas ellas dará el conjunto de todos los elementos.
- Una componente corresponde a una clase de equivalencia donde la relación de equivalencia sería "a ≡ b sii a y b pertenecen a la misma componente."

¿cómo implementar una componente?

- Podemos pensar que una componente estará dada por un representante de esa componente.
- Esto permite implementarlas a través de una tabla que indica para cada elemento cuál es el representante de (la componente de) dicho elemento.
- Dado que asumimos una cantidad finita de elementos, los denotamos con números de 1 a n.
- La tabla que indica cuál es el representante de cada elemento será entonces un arreglo indexado por esos números:

type trep = array[1..n] of nat

Primer intento

Segundo intento Tercer intento Último intento

Algoritmo de Kruskal, primer intento

Primer intento Segundo intent

Segundo intento Tercer intento Último intento

Primer intento

```
proc init(out rep: trep)
     for i:= 1 to n do rep[i]:= i od
end proc
fun find(rep: trep, i: nat) ret r: nat
    r:= rep[i]
end fun
\{ \text{Pre: } u \neq v \land u = rep[u] \land v = rep[v] \}
proc union(in/out rep: trep, in u,v: nat)
     for i = 1 to n do
          if rep[i]=u \rightarrow rep[i]:= v fi
     od
end proc
```

Organización de la materia Algoritmos voraces El problema union-find Problema: camino de costo mínimo Conclusiones

Primer intento Segundo intento Tercer intento Último intento

Primer intento Análisis

init es lineal find es constante union es lineal

Algoritmo de Kruskal, segundo intento

Segundo intento

```
fun is rep(rep: trep, i: nat) ret b: bool
    b := (rep[i] = i)
end fun
{Pre: u \neq v \land is rep(rep,u) \land is rep(rep,v)}
proc union(in/out rep: trep, in u,v: nat)
     rep[u]:= v
end proc
fun find(rep: trep, i: nat) ret r: nat
    var i: nat
    j:= j;
    do \neg is rep(rep,j) \rightarrow j:= rep[j] od
    r:= j
end fun
```

Organización de la materia Algoritmos voraces El problema union-find Problema: camino de costo mínimo Conclusiones

Primer intento Segundo intento Tercer intento Último intento

Segundo intento Análisis

init es lineal find es lineal en el peor caso union es constante

Tercer intento

```
fun find(in/out rep: trep, i: nat) ret r: nat
    var j,k: nat
    j:= i
    do \neg is rep(rep,j) \rightarrow j:= rep[j] od
    r:= i
    j:= i
    do \neg is rep(rep,j) \rightarrow k:= rep[j]
                               rep[i]:= r
                               i := k
    od
end fun
```

Primer intento Segundo intento Tercer intento Último intento

Explicación

- Una vez calculado el representante r, la función find realiza una segunda recorrida desde i actualizando el arreglo rep.
- Tanto en la posición i, como en las posiciones de los j que fueron representantes de i se asigna directamente r.
- Esto vuelve constantes las futuras llamadas a find(rep,i) o find(rep,j).
- Observar el uso excepcional de in/out asociado al parámetro rep.
- Esto se debe a que find no es estrictamente una función ya que modifica dicho parámetro.
- De todas formas se comporta como función ya que find(rep,i) == find(rep,i) siempre da verdadero.

Algoritmo de Kruskal, tercer intento

Primer intento Segundo intento Tercer intento Último intento

Tercer intento

init es lineal

find es lineal en el peor caso, pero se torna constante después de ejecutarse

union es constante

Último intento

```
proc init(out rep: trep)
     for i:= 1 to n do rep[i]:= -1 od
end proc
fun is rep(rep: trep, i: nat) ret b: bool
    b := (rep[i] < 0)
end fun
proc union(in/out rep: trep, in u,v: nat)
     if rep[u] > rep[v] \rightarrow rep[v] := rep[u] + rep[v]
                            rep[u]:= v
       rep[u] < rep[v] \rightarrow rep[u] := rep[u] + rep[v]
                             rep[v]:= u
     fi
```

Último intento

Como vemos, ahora el arreglo debe permitir también números negativos:

type trep = array[1..n] of int

Último intento

end fun

Repetimos la definición de find para comprobar que sólo se efectúa j:= rep[j] y k:= rep[j] cuando rep[j] es un natural:

```
fun find(in/out rep: trep, i: nat) ret r: nat var j,k: nat j:= i do \neg is_rep(rep,j) \rightarrow j:= rep[j] od r:= j j:= i do \neg is_rep(rep,j) \rightarrow k:= rep[j] rep[j]:= r j:= k od
```

Algoritmo de Kruskal, último intento

Primer intento Segundo intento Tercer intento Último intento

Último intento Análisis

init es lineal find en la práctica, es constante union es constante

Camino de costo mínimo

- Sea G = (V, A) un grafo dirigido con costos no negativos en sus aristas, y sea $v \in V$ uno de sus vértices.
- Se busca obtener los caminos de menor costo desde v hacia cada uno de los demás vértices.

- El algoritmo de Dijkstra realiza una secuencia de n pasos, donde n es el número de vértices.
- En cada paso, "aprende" el camino de menor costo desde
 v a un nuevo vértice.
- A ese nuevo vértice lo pinta de azul.
- Tras esos n pasos, conoce los caminos de menor costo a cada uno de los vértices.

- Tratemos de entenderlo a través de un ejemplo.
- En casa paso, en los vértices azules anotamos el costo del camino de menor costo de v a ese vértice.
- En casa paso, en los vértices blancos anotamos el costo del camino azul de menor costo de v a ese vértice.
- Un camino azul es uno que a lo sumo tiene al vértice destino blanco, sus otros vértices son azules.

Paso 1 (a): sabemos lo que cuesta llegar de v a v

Paso 1 (b): Actualizamos los costos de los caminos azules óptimos

Paso 2 (a): sabemos lo que cuesta llegar de v a un nuevo vértice

Paso 2 (b): Actualizamos los costos de los caminos azules óptimos

Paso 3 (a): sabemos lo que cuesta llegar de v a un nuevo vértice

Paso 3 (b): Actualizamos los costos de los caminos azules óptimos

Paso 4 (a): sabemos lo que cuesta llegar de v a un nuevo vértice

Paso 4 (b): Actualizamos los costos de los caminos azules óptimos

Paso 5 (a): sabemos lo que cuesta llegar de v a un nuevo vértice

Paso 5 (b): Actualizamos los costos de los caminos azules óptimos

El algoritmo

- Asumiremos que el grafo viene dado por el conjunto de vértices V = {1,2,...,n}
- y los costos por una matriz L : array[1..n,1..n] of costo,
- que en L[i,j] mantiene el costo de la arista que va de i a j.
- En caso de no haber ninguna arista de i a j, $L[i,j] = \infty$.
- Asumimos L[j,j] = 0.
- El algoritmo funciona también para grafos no dirigidos, simplemente se tiene L[i, j] = L[j, i] para todo par de vértices i y j.

El algoritmo Versión simplificada

- En vez de hallar el camino de costo mínimo desde v hasta cada uno de los demás, halla sólo el costo de dicho camino.
- Es decir, halla el costo del camino de costo mínimo desde v hasta cada uno de los demás.
- El resultado estará dado por un arreglo D: array[1..n] of costo,
- en D[j] devolverá el costo del camino de costo mínimo que va de v a j.
- El conjunto C es el conjunto de los vértices hacia los que todavía desconocemos cuál es el camino de menor costo.

```
\label{eq:fundamental problem} \begin{tabular}{ll} \textbf{fun Dijkstra}(L: \textbf{array}[1..n]..n] \ \textbf{of} \ costo, \ v: \ \textbf{nat} \\ \hline \textbf{ret D: array}[1..n] \ \textbf{of} \ costo \\ \textbf{var c: nat} \\ \hline C:= \{1,2,\ldots,n\}\mbox{-}\{v\} \\ \textbf{for } j:= 1 \ \textbf{to} \ \textbf{n do} \ D[j]:= L[v,j] \ \textbf{od} \\ \textbf{do} \ \textbf{n-2 times} \ \rightarrow \ c:= \ \text{elemento} \ \textbf{de} \ C \ \textbf{que minimice} \ D[c] \\ \hline C:= \ C\mbox{-}\{c\} \\ \textbf{for } j \ \textbf{in} \ C \ \textbf{do} \ D[j]:= \ min(D[j],D[c]+L[c,j]) \ \textbf{od} \\ \textbf{od} \\ \textbf{end fun} \\ \end{tabular}
```

Vértices azules

- Llamamos vértices azules a los que no pertenecen a C.
- O sea, a los pintados de azul en nuestra animación anterior.
- Inicialmente el único vértice azul es v.
- Un camino azul es un camino cuyos vértices son azules salvo quizá el último.
- Inicialmente, los caminos azules son el camino vacío (que va de v a v y tiene costo L[v, v] = 0)
- y las aristas que van de v a j que tienen costo L[v, j].

Idea del algoritmo

- En todo momento, D mantiene en cada posición j, el costo del camino azul de costo mínimo que va de v a j.
- Inicialmente, por lo dicho en el párrafo anterior, D[j] debe ser L[v, j].
- Eso explica la inicialización de D que se realiza en el primer for.

Vértice azul y camino mínimo

- Cuando un vértice c es azul, ya se conoce el costo del camino de costo mínimo que va de v a c,
- y es el que está dado en ese momento por D[c].
- En efecto, esto se cumple inicialmente: el vértice v es el único azul y el valor inicial de D[v], es decir, 0, es el costo del camino de costo mínimo para ir desde v a v.

Invariante

Lo dicho puede expresarse en el siguiente invariante:

```
\forall j \notin C.D[j] = \text{costo del camino de costo mínimo de } v \text{ a } j
\forall j \in C.D[j] = \text{costo del camino } \mathbf{azul} \text{ de costo mínimo de } v \text{ a } j
```

- Para entender el algoritmo es importante prestar atención a la palabra azul.
- Cuando conocemos el costo del camino azul de costo mínimo no necesariamente hemos obtenido lo que buscamos,
- buscamos el costo del camino de costo mínimo, el mínimo de todos, azul o no.

Un nuevo vértice azul

- El algoritmo de Dijkstra elimina en cada ciclo un vértice c de C.
- Para que se mantenga el invariante es imprescindible saber que para ese c
- (que pertenecía a C y por lo tanto por el invariante D[c] era el costo del camino azul de costo mínimo de v a c),
- D[c] es en realidad el costo del camino (no necesariamente azul) de costo mínimo de v a c.

¿Cómo podemos asegurarnos de eso?

- El algoritmo elige $c \in C$ de modo de que D[c] sea el mínimo.
- Es decir, elige un vértice c que aún no es azul y tal que D[c] es mínimo.
- Sabemos, por el invariante, que D[c] es el costo del camino azul de costo mínimo de v a c.
- ¿Puede haber un camino no azul de v a c que cueste menos?

¿Puede haber un camino **no azul** de *v* a *c* que cueste menos?

- Si lo hubiera, dicho camino necesariamente debería tener, por ser no azul, algún vértice intermedio no azul.
- Sea w el primer vértice no azul que ocurre en ese camino comenzando desde v.
- El camino no azul consta de una primera parte que llega a w.
- Esa primera parte es un camino azul de v a w, por lo que su costo, dice el invariante, debe ser D[w].
- El costo del camino completo no azul de v a c que pasa por w costará al menos D[w] ya que ése es apenas el costo de una parte del mismo.

¿Puede haber un camino **no azul** de *v* a *c* cueste menos?

- Dijimos que ese camino pasaría por w como primer vértice no azul y por ello costaría al menos D[w].
- Sin embargo, como c fue elegido como el que minimiza (entre los vértices no azules) D[c], necesariamente debe cumplirse D[c] ≤ D[w].
- Esto demuestra que no puede haber un camino no azul de v a c que cueste menos que D[c].
- Por ello, c puede sin peligro ser considerado un vértice azul ya que D[c] contiene el costo del camino (azul o no) de costo mínimo de v a c.

Nuevos caminos azules

- Inmediatamente después de agregar c entre los vértices azules, es decir, inmediatamente después de eliminarlo de C,
- surgen nuevos caminos azules ya que ahora se permite que los mismos pasen también por el nuevo vértice azul c.
- Eso obliga a actualizar D[j] para los j no azules de modo de que siga satisfaciendo el invariante.
- Ahora un camino azul a j puede pasar por c.
- Sólo hace falta considerar caminos azules de v a j cuyo último vértice azul es c.

¿Por qué?

- Dijimos que sólo hace falta considerar caminos azules de v a j cuyo último vértice azul es c.
- ¿Por qué?
- Los caminos azules de v a j que pasan por c y cuyo último vértice azul es k no ganan nada por pasar por c
- ya que c está antes de k en esos caminos y entonces el costo del tramo hasta k, siendo k azul, sigue siendo como mínimo D[k],
- es decir, en el mejor de los casos lo mismo que se tenía sin pasar por c.

Recalculando D

- Consideremos entonces solamente los caminos azules a j que tienen a c como último vértice azul.
- El costo de un tal camino de costo mínimo está dado por D[c] + L[c, j],
- la suma entre el costo del camino de costo mínimo para llegar hasta c (D[c]) más el costo de la arista que va de c a j (L[c, j]).
- Este costo debe compararse con el que ya se tenía, el que sólo contemplaba los caminos azules antes de que c fuera azul.
- Ese valor es D[j].
- El mínimo de los dos es el nuevo valor para D[j].
- Eso explica el segundo for.

Últimas consideraciones

- Por último, puede observarse que en cada ejecución del ciclo un nuevo vértice se vuelve azul.
- Inicialmente v lo es.
- Por ello, al cabo de n-2 iteraciones, tenemos solamente 1 vértice no azul.
- Sea k ese vértice.

Postcondición

El invariante resulta

 $\forall j \neq k. D[j] = \text{costo del camino de costo mínimo de } v \text{ a } j$ D[k] = costo del camino azul de costo mínimo de v a k

pero siendo k el único vértice **no azul** todos los caminos de v a k (que no tengan ciclos en los que k esté involucrado) son **azules**. Por ello, se tiene

 $D[k] = {\sf costo}$ del camino de costo mínimo de v a k y por consiguiente

 $\forall j.D[j] = \text{costo del camino de costo mínimo de } v \text{ a } j$

Algoritmo de Dijkstra

```
fun Dijkstra(L: array[1..n,1..n] of costo, v: nat)
   ret D: array[1..n] of costo
                                                ret E: array[1..n] of nat
   var c: nat
   C := \{1,2,\ldots,n\}-\{v\}
   for i = 1 to n do D[i] = L[v,i] od
   for j:=1 to n do E[j]:=v od
   do n-2 times \rightarrow c:= elemento de C que minimice D[c]
                      C := C - \{c\}
                      for j in C do
                          if D[c]+L[c,i] < D[i] then D[i]:=D[c]+L[c,i]
                                                      E[i]:= c
                          fi
                      od
   od
end fun
```

¿Cuál es el orden de este algoritmo?

Algoritmo de Dijkstra

od end fun

```
fun Dijkstra(L: array[1..n,1..n] of costo, v: nat)

ret D: array[1..n] of costo

var c: nat

C:=\{1,2,\ldots,n\}-\{v\}

for j:= 1 to n do D[j]:= L[v,j] od

do n-2 times \rightarrow c:= elemento de C que minimice D[c]

C:= C-\{c\}

for j in C do D[j]:= min(D[j],D[c]+L[c,j]) od
```

Respuesta: n². La versión que devuelve además el camino, también.

Implementación del Algoritmo de Prim

```
fun Prim(G=(V,A) con costos en las aristas, k: V)
                                                  ret T: conjunto de aristas
    var c: arista
    C := V - \{k\}
    T:=\{\}
    do n-1 times \rightarrow
            c:= arista \{i, j\} de costo mínimo tal que i \in \mathbb{C} y j \notin \mathbb{C}
             C := C - \{i\}
            T:=T\cup\{c\}
    od
end fun
donde n = |V|. La condición del ciclo podría reemplazarse por
 |T| < n-1 o C \neq \{\}, entre otras.
```

Algoritmo de Prim en detalle (L[x, y] = L[y, x])

```
fun Prim(L: array[1..n,1..n] of costo, v: nat) ret T: conjunto de aristas
   var D: array[1..n] of costo var E: array[1..n] of nat
   var c: nat
   C := \{1,2,\ldots,n\}-\{v\} T := \{\}
   for i = 1 to n do D[i] = L[v,i] od
   for j:=1 to n do E[j]:=v od
   do n-1 times \rightarrow c:= elemento de C que minimice D[c]
                     C := C - \{c\} T := T \cup \{(E[c],c)\}
                      for i in C do
                         if L[c,i] < D[i] then D[i] := L[c,i]
                                              E[i]:= c
                         fi
                      od
   od
end fun
```

Implementación del Algoritmo de Kruskal

```
fun Kruskal(G=(V,A) con costos en las aristas)
                                                  ret T: conjunto de aristas
    var i,j: vértice; u,v: componente conexa; c: arista
    C := A
   T:=\{\}
   do |T| < n - 1 \rightarrow c := arista \{i, j\} de C de costo mínimo
                        C := C - \{c\}
                        u := find(i)
                        v := find(i)
                        if u \neq v \rightarrow T := T \cup \{c\}
                                     union(u,v)
                        fi
    od
end fun
```

Conclusión

Sea n el número de vértices de un grafo.

- El algoritmo de Dijkstra es del orden de n².
- El algoritmo de Dijkstra que devuelve también el camino, es del orden de n².
- El algoritmo de Prim es del orden de n².
- El algoritmo de Kruskal es del orden de n² * log n.
- En principio son buenos órdenes, un grafo puede tener del orden de n² aristas.
- Cuando el grafo tiene mucho menos de n² aristas, en general todos estos algoritmos pueden reescribirse de modo de que su orden mejore.