

Feature selection using SHAP: An Explainable Al approach

Author: Miguel Pimentel

Advisor: Phd. Nilton Correia da Silva

Reserach Goals

- Understand how SHAP works as feature selection tool by measuring performance metrics, training time, accuracy
- We apply SHAP as study of case

Background: Black Box

- Black boxes are models usually complex that present comprehension gaps, impairing people's understanding.
- Brings questions such as:
 - Why did you do that?
 - When Can I trust you?
 - When do You succeed?
 - How do I correct an error?

Background: Black Box

E.g Black Box - Source: XenonStack

Background: Explainable Al

- Explainable AI (XAI) is an area of artificial intelligence research related to the ability in which humans can understand AI solutions.
- XAI contrasts with the concept of "black box"
- There was a common belief that a trade off must be done in favour of interpretability or accuracy

Background: Explainable Al

XAI Initial Concept - Source: DARPA XAI

Background: Explainable Al

- XAI presents other relevant characteristics:
 - Verification of the system
 - Improvement of the System
 - Learning from the system
 - Compliance to legislation

Background: SHAP - General Idea

Suppose you had to explain a machine learning model that calculates the value of an apartment. There are several attributes that can set your price, for example, covered parking, swimming pool, pets friendly, size, location, etc.

Background: **SHAP**

- Shapley Values
- Understand the impact of each feature in the final prediction
- Post-hoc
- Model Agnostic
- Optimized library for Shapley Values
- Python Library

Background: **SHAP**

SHAP Repository - Source: SHAP

Background: **SHAP**

Example SHAP Output - Source: SHAP

Background: Feature Selection

- This concept of selecting features that are relevant to an Al model is called feature selection
- Feature Selection can be classified as: Filter; Wrapper; and Embedded.
- Feature Selection could bring some benefits, such as: Reduces Overfitting; Improves Accuracy; and Reduces Training Time.

Background: **Modelos**

- In the experiments were used the following models:
 - Random Forest
 - Catboost
 - LightGBM
 - XGBoost

Materials & Methods: Metrics

- Performance: Accuracy; Precision; Recall; and F1 Score
- Training time
- Storage

Materials & Methods: Hardware

- **Processor:** Intel Core i5 (10th generation), 4 cores and 2.0 GHz, Turbo Boost up to 3.8 GHz, with 6 MB shared L3 cache
- RAM memory: 16GB LPDDR4X integrated memory with 3733 MHz
- **Graphics Chip**: Intel Iris Plus Graphics
- Storage: 512 GB SSD
- Operating System: macOS Big Sur 11.2.3

Faculdade UnB Gama \Upsilon

Dataset: Cancer Breast Dataset

Data Set Characteristics Multivariate

Attribute Characteristics Real

Associated Tasks Classification

Number of Instances 569 Number of Attributes 32 Missing Values No

Area Life

Date Donated 01-11-1195

Number of Web Hits 1485620

Dataset: Credit Card Fraud Dataset

Data Set Characteristics Multivariate

Attribute Characteristics Real

Associated Tasks Classification

Number of Instances 284807

Number of Attributes 31

Missing Values No

Area Finance

Date Donated 12-09-2013

Number of Web Hits N.A.

Universidade de Brasília

Faculdade UnB Gama

Materials & Methods: **Experiment**

Breast Cancer Dataset - Accuracy

Breast Cancer Dataset - F1 Score

Breast Cancer Dataset - Precision

Breast Cancer Dataset - Recall

Breast Cancer Dataset - Storage

Breast Cancer Dataset - Training Time

CC Fraud Detection - Accuracy

CC Fraud Detection - F1 Score

CC Fraud Detection - Precision

Universidade de Brasília

CC Fraud Detection - Training Time

CC Fraud Detection - Storage

Conclusion

- SHAP allows to understand how relevant each feature is.
- In some cases, with a small group of features are possible to obtain great results (storage, training time, and performance metrics)
- In future works, studies about how we can development machine learning models based on SHAP could be performed, since SHAP can be used in different ways.

Thank you!

Any questions?

