Spline Interpolation Method

Numerical Analysis-I

BS (Mathematics), QUEST

ahsheikh.quest.edu.pk

What is Interpolation?

Given (x_0,y_0) , (x_1,y_1) , (x_n,y_n) , find the value of 'y' at a value of 'x' that is not given.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

- Evaluate
- Differentiate, and
- ■Integrate.

Why Splines?

$$f(x) = \frac{1}{1 + 25x^2}$$

Table: Six equidistantly spaced points in [-1, 1]

x	$y = \frac{1}{1 + 25x^2}$
-1.0	0.038461
-0.6	0.1
-0.2	0.5
0.2	0.5
0.6	0.1
1.0	0.038461

Figure: 5th order polynomial vs. exact function

Why Splines?

Figure: Higher order polynomial interpolation is a bad idea

Spline Development

- a) First-order splines find straight-line equations between each pair of points that
 - Go through the points
- Second-order splines find quadratic equations between each pair of points that
 - Go through the points
 - Match first derivatives at the interior points
- Third-order splines find cubic equations between each pair of points that
 - Go through the points
 - Match first and second derivatives at the interior points

Note that the results of cubic spline interpolation are different from the results of an interpolating cubic.

Linear Interpolation

Given $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})(x_n, y_n)$, fit linear splines to the data. This simply involves forming the consecutive data through straight lines. So if the above data is given in an ascending order, the linear splines are given by $(y_i = f(x_i))$

Figure: Linear splines

Linear Interpolation (contd)

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0), \qquad x_0 \le x \le x_1$$

$$= f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1), \qquad x_1 \le x \le x_2$$

$$\vdots$$

$$\vdots$$

$$= f(x_{n-1}) + \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} (x - x_{n-1}), \quad x_{n-1} \le x \le x_n$$

Note the terms of

$$\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

in the above function are simply slopes between x_{i-1} and x_i .

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using linear splines.

Table Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Figure. Velocity vs. time data for the rocket example

Linear Interpolation

$$t_0 = 15, v(t_0) = 362.78$$

$$t_1 = 20, v(t_1) = 517.35$$

$$v(t) = v(t_0) + \frac{v(t_1) - v(t_0)}{t_1 - t_0} (t - t_0)$$

$$= 362.78 + \frac{517.35 - 362.78}{20 - 15} (t - 15)$$

$$v(t) = 362.78 + 30.913(t - 15)$$
At $t = 16$,
$$v(16) = 362.78 + 30.913(16 - 15)$$

$$= 393.7 \text{ m/s}$$

Quadratic Interpolation

Given (x_0, y_0) , (x_1, y_1) ,...., (x_{n-1}, y_{n-1}) , (x_n, y_n) , fit quadratic splines through the data. The splines

are given by

$$f(x) = a_1 x^2 + b_1 x + c_1, x_0 \le x \le x_1$$

$$= a_2 x^2 + b_2 x + c_2, x_1 \le x \le x_2$$

$$\cdot$$

$$= a_n x^2 + b_n x + c_n, \qquad x_{n-1} \le x \le x_n$$

Quadratic Interpolation (contd)

Each quadratic spline goes through two consecutive data points

$$a_{1}x_{0}^{2} + b_{1}x_{0} + c_{1} = f(x_{0})$$

$$a_{1}x_{1}^{2} + b_{1}x_{1} + c_{1} = f(x_{1})$$

$$\vdots$$

$$a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = f(x_{i-1})$$

$$a_{i}x_{i}^{2} + b_{i}x_{i} + c_{i} = f(x_{i})$$

$$\vdots$$

 $a_n x_n^2 + b_n x_n + c_n = f(x_n)$

 $a_n x_{n-1}^2 + b_n x_{n-1} + c_n = f(x_{n-1})$

This condition gives 2n equations

Quadratic Splines (contd)

The first derivatives of two quadratic splines are continuous at the interior points.

For example, the derivative of the first spline

$$a_1 x^2 + b_1 x + c_1$$
 is $2a_1 x + b_1$

The derivative of the second spline

$$a_2 x^2 + b_2 x + c_2$$
 is $2a_2 x + b_2$

and the two are equal at $x = x_1$ giving

$$2a_1x_1 + b_1 = 2a_2x_1 + b_2$$

$$2a_1x_1 + b_1 - 2a_2x_1 - b_2 = 0$$

Quadratic Splines (contd)

Similarly at the other interior points,

$$2a_2x_2 + b_2 - 2a_3x_2 - b_3 = 0$$

•

$$2a_i x_i + b_i - 2a_{i+1} x_i - b_{i+1} = 0$$

•

 $2a_{n-1}x_{n-1} + b_{n-1} - 2a_nx_{n-1} - b_n = 0$

We have (n-1) such equations. The total number of equations is (2n) + (n-1) = (3n-1).

We can assume that the first spline is linear, that is $a_1 = 0$

Quadratic Splines (contd)

This gives us '3n' equations and '3n' unknowns. Once we find the '3n' constants, we can find the function at any value of 'x' using the splines,

Quadratic Spline Example

The upward velocity of a rocket is given as a function of time. Using quadratic splines

- a) Find the velocity at t=16 seconds
- b) Find the acceleration at t=16 seconds
- c) Find the distance covered between t=11 and t=16 seconds

Table Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Figure. Velocity vs. time data for the rocket example

Solution

$$v(t) = a_1 t^2 + b_1 t + c_1, \quad 0 \le t \le 10$$

$$= a_2 t^2 + b_2 t + c_2, \quad 10 \le t \le 15$$

$$= a_3 t^2 + b_3 t + c_3, \quad 15 \le t \le 20$$

$$= a_4 t^2 + b_4 t + c_4, \quad 20 \le t \le 22.5$$

$$= a_5 t^2 + b_5 t + c_5, \quad 22.5 \le t \le 30$$

Let us set up the equations

Each Spline Goes Through Two Consecutive Data Points

$$v(t) = a_1 t^2 + b_1 t + c_1, \ 0 \le t \le 10$$
$$a_1(0)^2 + b_1(0) + c_1 = 0$$
$$a_1(10)^2 + b_1(10) + c_1 = 227.04$$

Each Spline Goes Through Two Consecutive Data Points

t	v(t)
S	m/s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

$$a_2(10)^2 + b_2(10) + c_2 = 227.04$$

 $a_2(15)^2 + b_2(15) + c_2 = 362.78$
 $a_3(15)^2 + b_3(15) + c_3 = 362.78$
 $a_3(20)^2 + b_3(20) + c_3 = 517.35$
 $a_4(20)^2 + b_4(20) + c_4 = 517.35$
 $a_4(22.5)^2 + b_4(22.5) + c_4 = 602.97$
 $a_5(22.5)^2 + b_5(22.5) + c_5 = 602.97$
 $a_5(30)^2 + b_5(30) + c_5 = 901.67$

Derivatives are Continuous at Interior Data Points

$$v(t) = a_1 t^2 + b_1 t + c_1, \ 0 \le t \le 10$$

$$= a_2 t^2 + b_2 t + c_2, 10 \le t \le 15$$

$$\frac{d}{dt} \left(a_1 t^2 + b_1 t + c_1 \right) \Big|_{t=10} = \frac{d}{dt} \left(a_2 t^2 + b_2 t + c_2 \right) \Big|_{t=10}$$

$$\left(2a_1 t + b_1 \right) \Big|_{t=10} = \left(2a_2 t + b_2 \right) \Big|_{t=10}$$

$$2a_1 \left(10 \right) + b_1 = 2a_2 \left(10 \right) + b_2$$

$$20a_1 + b_1 - 20a_2 - b_2 = 0$$

Derivatives are continuous at Interior Data Points

At t=10
$$2a_1(10) + b_1 - 2a_2(10) - b_2 = 0$$
 At t=15
$$2a_2(15) + b_2 - 2a_3(15) - b_3 = 0$$
 At t=20
$$2a_3(20) + b_3 - 2a_4(20) - b_4 = 0$$
 At t=22.5
$$2a_4(22.5) + b_4 - 2a_5(22.5) - b_5 = 0$$

Last Equation

$$a_1 = 0$$

Final Set of Equations

0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	$\left\lceil a_1 \right\rceil$		$\begin{bmatrix} 0 \end{bmatrix}$	
100	10	1	0	0	0	0	0	0	0	0	0	0	0	0	b_1		227.04	
0	0	0	100	10	1	0	0	0	0	0	0	0	0	0	c_1		227.04	
0	0	0	225	15	1	0	0	0	0	0	0	0	0	0	a_2		362.78	
0	0	0	0	0	0	225	15	1	0	0	0	0	0	0	b_2		362.78	
0	0	0	0	0	0	400	20	1	0	0	0	0	0	0	c_2		517.35	
0	0	0	0	0	0	0	0	0	400	20	1	0	0	0	a_3		517.35	
0	0	0	0	0	0	0	0	0	506.25	22.5	1	0	0	0	b_3	=	602.97	
0	0	0	0	0	0	0	0	0	0	0	0	506.25	22.5	1	c_3	•	602.97	
0	0	0	0	0	0	0	0	0	0	0	0	900	30	1	a_4		901.67	
20	1	0	-20	-1	0	0	0	0	0	0	0	0	0	0	b_4		0	
0	0	0	30	1	0	-30	-1	0	0	0	0	0	0	0	c_4		0	
0	0	0	0	0	0	40	1	0	-40	-1	0	0	0	0	a_5		0	
0	0	0	0	0	0	0	0	0	45	1	0	-45	-1	0	b_5		0	
_ 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\lfloor c_5 \rfloor$		0	

Coefficients of Spline

i	a_i	b_i	c_i
1	0	22.704	0
2	0.8888	4.928	88.88
3	-0.1356	35.66	-141.61
4	1.6048	-33.956	554.55
5	0.20889	28.86	-152.13

Quadratic Spline Interpolation Part 2 of 2

Final Solution

$$v(t) = 22.704t,$$
 $0 \le t \le 10$
 $= 0.8888t^2 + 4.928t + 88.88,$ $10 \le t \le 15$
 $= -0.1356t^2 + 35.66t - 141.61,$ $15 \le t \le 20$
 $= 1.6048t^2 - 33.956t + 554.55,$ $20 \le t \le 22.5$
 $= 0.20889t^2 + 28.86t - 152.13,$ $22.5 \le t \le 30$

Velocity at a Particular Point

a) Velocity at t=16

$$v(t) = 22.704t,$$
 $0 \le t \le 10$
 $= 0.8888t^2 + 4.928t + 88.88,$ $10 \le t \le 15$
 $= -0.1356t^2 + 35.66t - 141.61,$ $15 \le t \le 20$
 $= 1.6048t^2 - 33.956t + 554.55,$ $20 \le t \le 22.5$
 $= 0.20889t^2 + 28.86t - 152.13,$ $22.5 \le t \le 30$

$$v(16) = -0.1356(16)^{2} + 35.66(16) - 141.61$$
$$= 394.24 \text{ m/s}$$

Quadratic Spline Graph

Quadratic Spline Graph

Natural Cubic Spline Interpolation

SPLINE OF DEGREE k = 3

- The domain of S is an interval [a,b].
- S, S', S" are all continuous functions on [a,b].
- There are points t_i (the knots of S) such that $a = t_0 < t_1 < ... t_n = b$ and such that S is a polynomial of degree at most k on each subinterval $[t_i, t_{i+1}]$.

X	t _o	t ₁		t _n
у	y ₀	y ₁	• • •	y _n

t_i are knots

Natural Cubic Spline Interpolation

$$S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1] \\ S_1(x), & x \in [x_1, x_2] \\ & \cdots \\ S_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

S(x) is a cubic polynomial that will be used on the subinterval $[x_i, x_{i+1}]$.

Natural Cubic Spline Interpolation

- $S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$
 - 4 Coefficients with n subintervals = 4n equations
 - There are 4_{n-2} conditions
 - Interpolation conditions
 - Continuity conditions
 - Natural Conditions

•
$$S''(x_0) = 0$$

•
$$S''(x_n) = 0$$

