AMENDMENT TO THE CLAIMS

Claims 1 - 4 (Cancelled).

1		5. (Currently Amended) <u>An</u> The equine
2		dental apparatus of claim 2 for floating the teeth of
3		horses comprising:
4		a tool body, wherein the tool body includes a
5		pivot joint having a pivot axis;
6		a drive shaft disposed along a first axis
7		inside of the tool body, wherein the drive shaft
8		includes a first end configured for attachment to a
9		drive mechanism and a second end opposite the first
10		end, and further wherein the drive shaft includes a
11		first section disposed to rotate about the first axis,
12		a second section disposed to rotate about a second
13		axis, and a ball and socket joint disposed to couple
14		the second section to the first section, wherein the
15		ball and socket joint is disposed inside of the pivot
16		joint; and
17	,	a grinding member connected to the second end
18		and partially housed in the tool body, wherein when the
19		tool body is held in a fixed position with the drive
20		shaft oriented horizontally, the grinding member is
21		capable of pivoting upward through a first range of
22		angles relative to the drive shaft and is further
23		capable of pivoting downward through a second range of
24		angles relative to the drive shaft, and further wherein
25	•	the grinding member pivots through the range of angles
26	•	about the pivot axis.
1		6. (Currently Amended) An The equine
2		dental apparatus for floating the teeth of horses

9	comprising of craim 2 wherein the apparatus rurther
4	comprises :
5	a tool body, wherein the tool body includes a
6	pivot joint having a pivot axis;
7	a drive shaft disposed along a first axis
8	inside of the tool body, wherein the drive shaft
9	includes a first end configured for attachment to a
10	drive mechanism and a second end opposite the first
11	end;
12	a grinding member connected to the second end
13	and partially housed in the tool body, wherein when the
14	tool body is held in a fixed position with the drive
15	shaft oriented horizontally, the grinding member is
16	capable of pivoting upward through a first range of
17	angles relative to the drive shaft and is further
18	capable of pivoting downward through a second range of
19	angles relative to the drive shaft, and further wherein
20	the grinding member pivots through the range of angles
21	about the pivot axis; and
22	a vacuum port disposed to suction enamel dust
23	produced during the floating of teeth, wherein the
24	vacuum port passes through the pivot joint.
1	7. (Currently Amended) <u>An</u> The equine
2	dental apparatus for floating the teeth of horses
3	comprising of claim 2 wherein the apparatus further
4	comprises :
5	a tool body, wherein the tool body includes a
6	pivot joint having a pivot axis;
7	a drive shaft disposed along a first axis
8	inside of the tool body, wherein the drive shaft
9	includes a first end configured for attachment to a

10	<u>drive mechanism and a second end opposite the first</u>
11	end;
12	a grinding member connected to the second end
13	and partially housed in the tool body, wherein when the
14	tool body is held in a fixed position with the drive
15	shaft oriented horizontally, the grinding member is
16	capable of pivoting upward through a first range of
17	angles relative to the drive shaft and is further
18	capable of pivoting downward through a second range of
19	angles relative to the drive shaft, and further whereir
20	the grinding member pivots through the range of angles
21	about the pivot axis; and
22	a source of illumination disposed to
23	illuminate the teeth being floated, wherein the source
24	of illumination passes through the pivot joint.
1	8. (Previously Presented) The equine dental
2	apparatus of claim 7 wherein the source of illumination
3	includes a cable, wherein the cable passes through the pivot
4	joint.
1	9. (Previously Presented) The equine dental
2	apparatus of claim 8 wherein the cable is a fiber optic
3	cable.
1	10. (Currently Amended) An The equine dental
2	apparatus for floating the teeth of horses comprising of
3	claim 1 wherein the apparatus further comprising:
4	a tool body;
5	a drive shaft disposed along a first axis
6	inside of the tool body, wherein the drive shaft
7	includes a first end configured for attachment to a

8	drive mechanism and a second end opposite the first
9	end;
10	a grinding member connected to the second end
11	and partially housed in the tool body, wherein when the
12	tool body is held in a fixed position with the drive
13	shaft oriented horizontally, the grinding member is
14	capable of pivoting upward through a first range of
15	angles relative to the drive shaft and is further
16	capable of pivoting downward through a second range of
17	angles relative to the drive shaft; and
18	a vacuum port disposed to suction enamel dust
19	produced during the floating of teeth, wherein a
20	portion of the vacuum port is disposed inside of the
21	tool body.
1	11. (Currently Amended) <u>An</u> The equine
2	dental apparatus for floating the teeth of horses
3	comprising of claim 1 wherein the apparatus further
4	comprising:
5	a tool body;
6	a drive shaft disposed along a first axis
7	inside of the tool body, wherein the drive shaft
8	includes a first end configured for attachment to a
9	drive mechanism and a second end opposite the first
10	end;
11	a grinding member connected to the second end
12	and partially housed in the tool body, wherein when the
13	tool body is held in a fixed position with the drive
14	shaft oriented horizontally, the grinding member is
15	capable of pivoting upward through a first range of
16	angles relative to the drive shaft and is further
17	capable of pivoting downward through a second range of
18	angles relative to the drive shaft; and

19	a source of illumination disposed to
20	illuminate the teeth being floated, wherein the source
21	of illumination is at least partially disposed inside
22	of the tool body.
1	12. (Previously Presented) The equine dental
2	apparatus of claim 11 wherein the source of illumination
3	includes a cable, wherein the cable is at least partially
4	disposed inside of the tool body.
1	13. (Previously Presented) The equine dental
2	apparatus of claim 12 wherein the cable is a fiber optic
3	cable.
	•
	Claims 14 - 19 (Cancelled).
1	20. (Currently Amended) An The equine
2	dental apparatus for floating the teeth of horses of
3	claim 19 further comprising:
4	a first drive shaft disposed along a first
5	axis and configured for attachment to a drive
6	mechanism;
7	a first housing member, wherein the first
8	drive shaft is at least partially disposed inside of
9	the first housing member;
10	a second drive shaft coupled to the first
11	drive shaft, wherein the second drive shaft pivots
12	relative to the first drive shaft about a second axis
13	different from the first axis, wherein the second axis
14	intersects the first axis;
15	a grinding member attached to the second

16

drive shaft;

17 a second housing member, wherein the second 18 drive shaft is at least partially disposed inside of 19 the second housing member; and a pivot joint connecting the second housing 20 member to the first housing member, wherein the pivot 21 22 joint pivots about the second axis to allow the second 23 housing member to pivot relative to the first housing 24 member.

- 21. (Previously Presented) The equine dental apparatus of claim 20 wherein the apparatus further comprises a vacuum passageway disposed to suction enamel dust produced during the floating of teeth, wherein the vacuum passageway passes through the pivot joint.
- 1 22. (Previously Presented) The equine dental 2 apparatus of claim 20 wherein the apparatus further 3 comprises a source of illumination disposed to illuminate 4 the teeth being floated, wherein the source of illumination 5 passes through the pivot joint.
- 23. (Previously Presented) The equine dental apparatus of claim 22 wherein the source of illumination includes a cable, wherein the cable passes through the pivot joint.
- 1 24. (Previously Presented) The equine dental 2 apparatus of claim 23 wherein the cable is a fiber optic 3 cable.
- 1 25. (Previously Presented) The equine dental 2 apparatus of claim 20 wherein the apparatus further 3 comprises a vacuum passageway disposed to suction enamel

- dust produced during the floating of teeth, wherein a portion of the vacuum passageway is disposed inside of the first and second housing members.
- 26. (Previously Presented) The equine dental apparatus of claim 20 wherein the apparatus further comprises a source of illumination disposed to illuminate the teeth being floated, wherein the source of illumination is at least partially disposed inside of the first and second housing members.
- 27. (Previously Presented) The equine dental apparatus of claim 26 wherein the source of illumination includes a cable, wherein the cable is at least partially disposed inside of the first and second housing members.
- 1 28. (Previously Presented) The equine dental 2 apparatus of claim 27 wherein the cable is a fiber optic 3 cable.

Claims 29 - 36 (Cancelled).

(Previously Presented) An equine dental 1 apparatus for floating the teeth of horses comprising: 2 a first tool body member; 3 a second tool body member; 4 a drive shaft having a first section at least 5 partially disposed inside of the first tool body member 6 and a second section at least partially disposed inside 7 of the second tool body member, wherein the second 8 section is coupled to the first section, and further 9 wherein the first section is disposed to rotate about a 10 first axis; 11

12 a grinding member connected to the second 13 section of the drive shaft and at least partially 14 disposed inside of the second tool body member; and 15 a pivot joint connecting the first tool body 16 member to the second tool body member, wherein when the 17 first tool body member is held in a fixed position such 18 that the first axis is horizontal, the second tool body 19 member is capable of pivoting upward through a first 20 range of angles relative to the first tool body member 21 and is further capable of pivoting downward through a 22 second range of angles relative to the first tool body 23 member.

- 38. (Previously Presented) The equine dental
 apparatus of claim 37 wherein the pivot joint further
 includes a ball and socket joint disposed between the first
 tool body member and the second tool body member.
- 39. (Previously Presented) The equine dental apparatus of claim 38 wherein the ball and socket joint couples the second section of the drive shaft to the first section of the drive shaft.
- 40. (New) The equine dental apparatus of claim 6
 wherein the apparatus is configured for attachment to an
 external light source, and further wherein the apparatus is
 configured to provide light from the external light source,
 through at least a portion of the tool body, to the vicinity
 of the grinding member.
- 1 41. (New) The equine dental apparatus of claim 2 40 further comprising the external light source.

- 42. (New) The equine dental apparatus of claim 7
 wherein the apparatus is configured for attachment to an
 external vacuum source, and further wherein the apparatus is
 configured to provide vacuum suction from the external
 vacuum source, through at least a portion of the tool body,
 to the vicinity of the grinding member to suction material
 produced during the floating of teeth.
- 1 43. (New) The equine dental apparatus of claim 2 42 further comprising the external vacuum source.
- 1 44. (New) The equine dental apparatus of claim
 2 10 wherein the apparatus is configured for attachment to an
 3 external light source, and further wherein the apparatus is
 4 configured to provide light from the external light source,
 5 through at least a portion of the tool body, to the vicinity
 6 of the grinding member.
- 1 45. (New) The equine dental apparatus of claim 2 44 further comprising the external light source.
- The equine dental apparatus of claim 46. (New) 1 11 wherein the apparatus is configured for attachment to an 2 external vacuum source, and further wherein the apparatus is 3 configured to provide vacuum suction from the external 4 vacuum source, through at least a portion of the tool body, 5 6 to the vicinity of the grinding member to suction enamel 7 dust produced during the floating of teeth.
- 1 47. (New) The equine dental apparatus of claim 2 46 further comprising the external vacuum source.

- 1 48. (New) The equine dental apparatus of claim 2 20 wherein the pivot joint further includes a ball and 3 socket joint disposed between the first housing member and 4 the second housing member.
- 1 49. (New) The equine dental apparatus of claim 2 48 wherein the ball and socket joint couples the second 3 drive shaft to the first drive shaft.
- 50. (New) The equine dental apparatus of claim
 wherein the apparatus further comprises a vacuum
 passageway disposed to suction enamel dust produced during
 the floating of teeth, wherein the vacuum passageway passes
 through the pivot joint.
- 51. (New) The equine dental apparatus of claim
 wherein the apparatus further comprises a source of
 illumination disposed to illuminate the teeth being floated,
 wherein the source of illumination passes through the pivot
 joint.
- 52. (New) The equine dental apparatus of claim
 the source of illumination includes a cable,
 wherein the cable passes through the pivot joint.
- 1 53. (New) The equine dental apparatus of claim 2 52 wherein the cable is a fiber optic cable.
- 54. (New) The equine dental apparatus of claim
 37 wherein the apparatus further comprises a vacuum
 3 passageway disposed to suction enamel dust produced during
 4 the floating of teeth, wherein a portion of the vacuum

- 5 passageway is disposed inside of the first and second tool 6 body members.
- 55. (New) The equine dental apparatus of claim
 wherein the apparatus further comprises a source of
 illumination disposed to illuminate the teeth being floated,
 wherein the source of illumination is at least partially
 disposed inside of the first and second tool body members.
- 1 56. (New) The equine dental apparatus of claim 2 55 wherein the source of illumination includes a cable, 3 wherein the cable is at least partially disposed inside of 4 the first and second tool body members.
- 1 57. (New) The equine dental apparatus of claim 2 56 wherein the cable is a fiber optic cable.