Στατιστική - Πιθανότητες

1.1 Αριθμητικές Μέθοδοι Σύνοψης Δεδομένων

Μη Ομαλοποιημένα Δεδομένα

Ομαλοποιημένα Δεδομένα

Μέτρα θέσης - Κεντρικής Τάσης Αριθμητικός Μέσος

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\overline{X} \cong \frac{\sum_{i=1}^{k} f_i m_i}{n}, \ n = \sum_{i=1}^{k} f_i$$

Σταθμικός Αριθμητικός Μέσος

$$\overline{X}_w = \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}$$

Δ ιάμεσος

- Αν n περιττός: M η τιμή της παρατήρησης στη θέση $\frac{n}{2} + \frac{1}{2}$

$$M \cong L_M + \frac{\delta}{f_M} \left(\frac{n}{2} - F_{M-1} \right)$$

$$M = X_{\left(\frac{n}{2} + \frac{1}{2}\right)}$$

• Αν η άρτιος:

$$M = \frac{1}{2} \left(X_{\left(\frac{n}{2}+1\right)} + X_{\left(\frac{n}{2}\right)} \right)$$

Επικρατούσα Τιμή

 $T_0\colon\operatorname{H}$ τιμή με τη μεγαλύτερη συχνότητα εμφάνισης

$$T_0 = L_{T_0} + \delta \frac{\Delta_1}{\Delta_1 + \Delta_2}$$

i-Τεταρτημόριο

Το
$$i=1,2,3$$
 τεταρτημόριο (Q_i) βρίσκεται στην $[\frac{i(n+1)}{4}]$ θέση. Η τιμή του $i=1,2,3$ τεταρτημορίου (Q_i) είναι

$$Q_i = L_{Q_i} + \frac{\delta}{f_{Q_i}} \left(\frac{n \cdot i}{4} - F_{Q_i - 1} \right)$$

 $IR = Q_3 - Q_1$

$$Q_i = X_{(A_Q)} + \Delta_Q[X_{(A_Q+1)} - X_{(A_Q)}]$$

όπου A_Q είναι το αχέραιο μέρος του πηλίχου $[\frac{i(n+1)}{4}]$ και Δ_Q είναι το δεκαδικό μέρος του πηλίχου $[\frac{i(n+1)}{4}].$

Μέτρα Διασποράς

Εύρος

$$R = X_{max} - X_{min}$$

Ενδοτεταρτημοριακό Εύρος

$$IR = Q_3 - Q_1$$

Τεταρτημοριακή Απόκλιση

$$Q = \frac{Q_3 - Q_1}{2}$$

$$Q = \frac{Q_3 - Q_1}{2}$$

 Δ ιακύμανση

$$S_{\text{op}}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$$

$$S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$

$$S^2 = \frac{\sum_{i=1}^n X_i^2 - n\overline{X}^2}{n-1} = \frac{\sum_{i=1}^n X_i^2}{n-1} - \frac{(\sum_{i=1}^n X_i)^2}{n(n-1)}$$

$$S^2 \cong \frac{\sum_{i=1}^k f_i (m_i - \overline{X})^2}{n-1}, n = \sum_{i=1}^k f_i$$

$$S^2 \cong \frac{\sum_{i=1}^k f_i m_i^2 - n\overline{X}^2}{n-1} = \frac{\sum_{i=1}^k f_i m_i^2}{n-1} - \frac{(\sum_{i=1}^k f_i m_i)^2}{(n-1)n}$$

Τυπική Απόκλιση

$$S_{\mathrm{op}} = +\sqrt{S_{\mathrm{op}}^2}$$
 $\acute{\eta}$ $S = +\sqrt{S^2}$
$$S = +\sqrt{S^2}$$

Μέτρα Σχετικής Μεταβλητότητας

Συντελεστής Μεταβλητότητας

$$CV = \frac{S}{X}$$
 $CV = \frac{S}{X}$

Μέτρα Ασυμμετρίας Συντελεστές Ασυμμετρίας

$$S_P = \frac{\overline{X} - T_0}{S}$$

$$S_P = \frac{\overline{X} - T_0}{S}$$

$$\beta_3 = \frac{\sum_{i=1}^n (X_i - \overline{X})^3}{\frac{n}{S^3}}$$

$$\beta_3 \frac{\sum_{i=1}^k f_i (m_i - \overline{X})^3}{\frac{n}{S^3}}$$

Μέτρα Κύρτωσης

Συντελεστής Κύρτωσης

$$\beta_4 = \frac{\sum_{i=1}^n (X_i - \overline{X})^4}{\frac{n}{S^4}} \qquad \beta_4 = \frac{\sum_{i=1}^k f_i (m_i - \overline{X})^4}{\frac{n}{S^4}}$$

1.2 Πιθανότητες

Αξιώματα του Kolmogorov

Έστω S ένας δειγματικός χώρος και έστω ${m B}$ το σύνολο όλων των ενδεχομένων του S. Ορίζουμε ως συνάρτηση πιθανότητας μια συνάρτηση $P\colon {m B} o {\mathbb R}$, η οποία σε κάθε ενδεχόμενο A αντιστοιχεί έναν πραγματικό αριθμό P(A) έτσι ώστε να ικανοποιούνται τα παρακάτω αξιώματα:

i)
$$P(A) \ge 0$$

ii)
$$P(S) = 1$$

ii)
$$P(S) = 1$$

iii) $P\left(\bigcup_{i=1}^{\infty} A_i\right) = P(A_1) + P(A_2) + \dots + P(A_n)$

Βασικά Θεωρήματα Πιθανοτήτων

Θεώρημα 1.2.1. Για κάθε ενδεχόμενο A ισχύει P(A')=1-P(A)

Θεώρημα 1.2.2. $I\sigma\chi\dot{\upsilon}\epsilon\imath$ ότι $P(\emptyset)=0$

Θεώρημα 1.2.3. Για κάθε ενδεχόμενο A ισχύει $P(A) \le 1$

Θεώρημα 1.2.4. Για οποιαδήποτε ενδεχόμενα A_1 και A_2 ισχύει:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

Παρατηρήσεις 1.2.1.

• Το θεώρημα 1.2.4 γενιχεύεται για την περίπτωση n ενδεχομένων. Στην περίπτωση όπου n=3 γίνεται:

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) - P(A_1 \cap A_2 \cap A_3)$$

• Για δύο ενδεχόμενα τα οποία είναι ασυμβίβαστα το θεώρημα 1.2.4 οδηγεί στο συμπέρασμα:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), \quad A_1 \cup A_2 = \emptyset$$

το οποίο είναι ειδική περίπτωση του 3ου αξιώματος.

Δεσμευμένη Πιθανότητα

$$P(A_1 \mid A_2) = \frac{P(A_1 \cap A_2)}{P(A_2)}, \quad P(A_2) \ge 0$$

$$P(A_2 \mid A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}, \quad P(A_1) \ge 0$$

Ανεξάρτητα Ενδεχόμενα

- 2 ενδεχόμενα A_1, A_2 είναι ανεξάρτητα αν $P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$.
- 3 ενδεχόμενα A_1, A_2, A_3 είναι aνεξάρτητα αν

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1) \cdot P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2) \cdot P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3).$$

• n ενδεχόμενα A_1, A_2, \ldots, A_n είναι $a\nu\epsilon\xi a\rho\tau\eta\tau a$ αν για κάθε συνδυασμό δύο ή περισσοτέρων από αυτά ισχύει

$$P\left(\bigcap_{j=1}^k A_{i_j}\right) = P(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k}) = P(A_{i_1})\cdot P(A_{i_2})\cdots P(A_{i_k}),$$
 we $1\leq i_1\leq i_2\leq\cdots\leq i_k\leq n.$

Ενδεχόμενα Ανεξάρτητα κατά Ζεύγη

Τα ενδεχόμενα A_1,A_2,\ldots,A_n λέγονται ανεξάρτητα κατά ζεύγη αν

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$$
, για κάθε $i, j = 1, 2, ..., n$, $i \neq j$.

Προφανώς, n ενδεχόμενα μπορεί να είναι ανεξάρτητα κατά ζεύγη χωρίς να είναι ανεξάρτητα.

Κανόνας Πολλαπλασιασμού Πιθανοτήτων

• Για 2 ενδεχόμενα

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2 \mid A_1) = P(A_2) \cdot P(A_1 \mid A_2)$$

• Για 3 ενδεχόμενα

$$P[A_1 \cap A_2 \cap A_3] = P[A_1] \cdot P[A_2 \mid A_1] \cdot P[A_3 \mid A_1 \cap A_2]$$

Για n ενδεχόμενα

$$P[A_1 \cap A_2 \cap \dots \cap A_n] = P[A_1] \cdot P[A_2 \mid A_1] \cdot P[A_3 \mid A_1 \cap A_2] \cdots P\left[A_n \mid \bigcap_{i=1}^{n-1} A_i\right]$$

Θεώρημα της Ολικής Πιθανότητας

Έστω ότι A_1,A_2,\ldots,A_n είναι μια διαμέριση του δειγματικού χώρου S τέτοια ώστε $P(A_i)\neq 0,\ i=1,2,\ldots,n.$ Τότε για κάθε ενδεχόμενο E έχουμε ότι

$$P(E) = \sum_{i=1}^{n} P(A_i) \cdot P(E \mid A_i)$$

Θεώρημα του Bayes

Έστω ότι A_1,A_2,\ldots,A_n είναι μια διαμέριση του δειγματικού χώρου S τέτοια ώστε $P(A_i)\neq 0,\ i=1,2,\ldots,n.$ Τότε για κάθε ενδεχόμενο E με P(E)>0 έχουμε ότι

$$P(A_k \mid E) = \frac{P(A_k) \cdot P(E \mid A_k)}{\sum_{i=1}^{n} P(A_i) \cdot P(E \mid A_i)} = \frac{P(A_k) \cdot P(E \mid A_k)}{P(E)}$$

1.3 Αρχές Απαρίθμησης

Μεταθέσεις

Επαναληπτικές Μεταθέσεις

 n^x

$$\frac{n!}{n_1! \cdot n_2! \cdots n_k!}$$

 Δ ιατάξεις

Επαναληπτικές Διατάξεις

$$P(n,x) = \frac{n!}{(n-x)!}$$

Συνδυασμοί

$$C(n,x) = \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

 $P_n = n!$

1.4 Κατανομές Πιθανότητας

Διακριτή Τυχαία Μεταβλητή

Η συνάρτηση πιθανότητας P(X=x) μιας διακριτής τυχαίας μεταβλητής X ικανοποιεί τις συνθήκες:

i)
$$P(X = x) \ge 0$$
, $\forall x$ στο Πεδίο Ορισμού

ii)
$$\sum_{x} P(X=x) = 1$$

Η αθροιστική συνάρτηση κατανομής F(a) μιας διακριτής τυχαίας μεταβλητής X υπολογίζεται με βάση τη σχέση:

$$F(a) = P(X \le a) = \sum_{x \le a} (P(X = x)), \forall a \in \mathbb{R}$$

Η μέση (αναμενόμενη) τιμή $\mu=E(X)$ μιας διακριτής τυχαίας μεταβλητής X υπολογίζεται με βάση τον τύπο:

$$E(X) = \sum_{x} x P(X = x) < +\infty$$

Αν X διαχριτή τυχαία μεταβλητή και $g(\cdot)$ μια πραγματιχή συνάρτηση, τότε η μέση τιμή της τυχαίας μεταβλητής g(X) δίνεται από τη σχέση:

$$E[g(X)] = \sum_{x} g(x) P(X = x) < +\infty$$

Συνεχής Τυχαία Μεταβλητή

Η συνάρτηση πυκνότητας πιθανότητας f(x) μιας συνεχούς τυχαίας μεταβλητής X ικανοποιεί τις συνθήκες:

i)
$$f(x) \ge 0, -\infty < x < +\infty$$

ii)
$$\int_{-\infty}^{+\infty} f(x) \, dx = 1$$

Η αθροιστική συνάρτηση κατανομής F(a) μιας συνεχούς τυχαίας μεταβλητής X υπολογίζεται με βάση τη σχέση:

$$F(a) = P(X \le a) = \int_{-\infty}^{+\infty} f(t) dt, \forall a \in \mathbb{R}$$

Η μέση (αναμενόμενη) τιμή E(X) μιας συνεχούς τυχαίας μεταβλητής X υπολογίζεται με βάση τον τύπο:

$$E(X) = \int_{-\infty}^{+\infty} x f(x) \, dx < +\infty$$

Αν X συνεχής τυχαία μεταβλητή και $g(\cdot)$ μια πραγματική συνάρτηση, τότε η μέση τιμή της τυχαίας μεταβλητής g(X) δίνεται από τη σχέση:

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) dx < +\infty$$

Ιδιότητες της Μέσης Τιμής

- 1. E[ag(X) + b] = aE[g(X)] + b, όπου a, b σταθερές.
- 2. $E[a_1g_1(x) + a_2g_2(x)] = a_1E[g_1(x)] + a_2E[g_2(x)]$, όπου a_1, a_2 σταθερές.

Δ ιακύμανση

Έστω X τυχαία μεταβλητή (διακριτή ή συνεχής) με μέση τιμή $\mu=E(X)$. Η διακύμανση της X συμβολίζεται με V(X) η σ^2 και δίνεται από τη σχέση:

$$V(X) = \sigma^2 E[X - E(X)]^2 = E(X - \mu)^2 = E(X^2) - \mu^2$$

Ιδιότητα της Διακύμανσης

1. $V(aX + b) = a^2V(X)$, όπου a, b σταθερές

Ειδικές Κατανομές

Διακριτές Κατανομές

Όνομα Κατανομής	Παράμετροι	Συνάρτηση πιθανότητας	Σύνολο τιμών	Μέση τιμή	Διασπορά
Δ ιωνυμιχή $B(n,p)$	$n \in \mathbb{Z}_+$ 0	$\binom{n}{x}p^x(1-p)^{n-x}$	$x = 0, 1, \dots, n$	np	np(1-p)
Poisson $P(\lambda)$	$\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$x = 0, 1, \dots$	λ	λ
Γ εωμετριχή $G(p)$	0	$p(1-p)^{x-1}$	$x = 0, 1, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Υπεργεωμετρική $H(n,a,b)$	$a, b \in \mathbb{Z}_+$ $n \le a + b$	$\frac{\binom{a}{x}\binom{b}{n-x}}{\binom{a+b}{n}}$	$x = 0, 1, \dots, n$	$\frac{a}{a+b}$	$\frac{nab}{(a+b)^2}$

Συνεχείς Κατανομές

Όνομα Κατανομής	Παράμετροι	Συνάρτηση πιθανότητας	Σύνολο τιμών	Μέση τιμή	Διασπορά
Κανονική $N(\mu,\sigma^2)$	$-\infty < \mu < +\infty$ $\sigma > 0$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$-\infty < x < +\infty$	μ	σ^2
$Ε$ κ ϑ ετικ $\acute{m{\eta}}$	$\lambda > 0$	$\lambda e^{-\lambda x}$	$0 < x < +\infty$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Ομοιόμορφη $U(a,b)$	$-\infty < a,b < +\infty$	$\frac{1}{b-a}$	a < x < b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
${ m T}$ υποποιημένη ${ m K}$ ανονική ${\cal N}(0,1)$	$-\infty < Z = \frac{X - \mu}{\sigma} < +\infty$	$\frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}z^2}$	$-\infty < z < +\infty$	0	1

1.5 Συντελεστές Ευθείας Παλινδρόμησης

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

$$\hat{\beta}_1 = \frac{\sum [(Y_i - \overline{Y})(X_i - \overline{X})]}{\sum [(X_i - \overline{X})^2]} = \frac{\sum X_i Y_i - \frac{\sum X_i \sum Y_i}{n}}{\sum X_i^2 - \frac{(\sum X_i^2)}{n}}$$

$$\hat{\beta}_0 = \frac{\sum Y_i}{n} - \hat{\beta}_1 \frac{\sum X_i}{n} = \overline{Y} - \hat{\beta}_1 \overline{X}$$

1.6 Συντελεστής Συσχέτισης

$$r = \frac{\sum [(Y_i - \overline{Y})(X_i - \overline{X})]}{\sqrt{\sum (Y_i - \overline{Y})^2 \sum (X_i - \overline{X})^2}} = \frac{\sum X_i Y_i - \frac{\sum X_i \sum Y_i}{n}}{\sqrt{[\sum X_i^2 - \frac{(\sum X_i)^2}{n}][\sum Y_i^2 - \frac{(\sum Y_i)^2}{n}]}}, r \in [-1, 1]$$

1.7 Συντελεστής Προσδιορισμού

$$R^{2} = \frac{(\sum[(Y_{i} - \overline{Y})(X_{i} - \overline{X})])^{2}}{\sum(Y_{i} - \overline{Y})^{2}\sum(X_{i} - \overline{X})^{2}} = \frac{(\sum X_{i}Y_{i} - \frac{\sum X_{i}\sum Y_{i}}{n})^{2}}{[\sum X_{i}^{2} - \frac{(\sum X_{i})^{2}}{n}][\sum Y_{i}^{2} - \frac{(\sum Y_{i})^{2}}{n}]}, R^{2} \in [0, 1]$$

Μιγαδικοί Αριθμοί

2.1 Μιγαδικοί Αριθμοί

Ορισμός

Έστω $a,b\in\mathbb{R}$ και $i=\sqrt{-1}$ η φανταστική μονάδα. Κάθε παράσταση της μορφής a+bi παριστάνει έναν μιγαδικό αριθμό. Με $\operatorname{Re} z$ και $\operatorname{Im} z$ συμβολίζουμε το πραγματικό και το φανταστικό μέρος αντίστοιχα, του μιγαδικού αριθμού z=a+bi. Ισχύει, $\operatorname{Re} z=a$ και $\operatorname{Im} z=b$. Το σύνολο των μιγαδικών αριθμών το συμβολίζουμε με $\mathbb C$.

Ισότητα

Έστω $z_1 = a + bi$ και $z_2 = c + di$ μιγαδικοί αριθμοί.

$$z_1=z_2 \Leftrightarrow a=c$$
 ха. $b=d$

Γεωμετρική Αναπαράσταση των Μιγαδικών Αριθμών

Έστω xOy καρτεσιανό σύστημα αξόνων και z=a+bi μιγαδικός αριθμός. Στον μιγαδικό αριθμό z αντιστοιχίζουμε το ζεύγος (a,b) και επομένως το σημείο M(a,b) με συντεταγμένες a,b το οποίο ονομάζουμε γεωμετρική εικόνα του μιγαδικού z.

Επίσης στο σημείο M(a,b) και άρα και στον μιγαδικό αριθμό z αντιστοιχίζουμε το διάνυσμα θέσης \vec{OM} .

Μέτρο

Το μέτρο του μιγαδικού αριθμού z=a+bi το συμβολίζουμε με |z| και ισχύει

$$|z| = \sqrt{a^2 + b^2}.$$

- $OM = \sqrt{(a^2 + b^2)} = |z|$
- $|a| = |\operatorname{Re} z| \le |z|$
- $|b| = |\operatorname{Im} z| \le |z|$

Πράξεις

Έστω $z_1 = a + bi$ και $z_2 = c + di$ μιγαδικοί αριθμοί.

Πρόσθεση

$$z_1 + z_2 = (a+bi) + (c+di) = (a+c) + (b+d)i$$

$z_1 + z_2 = (w + vv) + (v + wv) = (w + v) + (v + wv)$

Πολλαπλασιασμός

$$z_1 \cdot z_2 = (a+bi) \cdot (c+di)$$
$$= ac + adi + bci + bdi^2$$
$$= ac - bd + (ad + bc)i$$

Αφαίρεση

$$z_1 - z_2 = (a + bi) - (c + di) = (a - c) + (b - d)i$$

Δ ιαίρεση

$$\begin{split} \frac{z_1}{z_2} &= \frac{(a+bi)}{(c+di)} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} \\ &= \frac{ac+bd+(-ad+bc)}{b^2+d^2} \\ &= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2} \end{split}$$

Συνοπτικά

•
$$z_1 + z_2 = (a+c) + (b+d)i$$

•
$$z_1 - z_2 = (a - c) + (b - d)i$$

•
$$z_1 \cdot z_2 = (ac - bd) + (ad + bc)i$$

•
$$\frac{z_1}{z_2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Ιδιότητες των Πράξεων

Έστω z_1, z_2, z_3 και z μιγαδικοί αριθμοί.

Πρόσθεση

Πολλαπλασιασμός

$$z_1 + z_2 = z_2 + z_1 \qquad z_1 \cdot z_2 = z_2 \cdot z_1$$

$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3 \qquad z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$$

$$z + 0 = 0 + z = z \qquad z \cdot 1 = 1 \cdot z = z$$

$$z + (-z) = (-z) + z = 0 \qquad z \cdot z^{-1} = z^{-1} \cdot z = 1$$

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$

Δυνάμεις

Έστω $z \in \mathbb{C}$, $n \in \mathbb{Z}$.

•
$$z^n = \underbrace{z \cdot z \cdots z}_{n \text{ wasks}}, n > 0$$

•
$$z^0 = 1$$

•
$$z^n = (z^{-1})^{-n}, n < 0$$

Ιδιότητες των Δυνάμεων

Έστω $z, z_1, z_2 \in \mathbb{C}, n \in \mathbb{Z}$.

$$z^m \cdot z^n = z^{m+n}$$

$$\bullet \ \frac{z^m}{z^n} = z^{m-n}$$

$$(z^m)^n = z^{m \cdot n}$$

$$\bullet \ (z_1 \cdot z_2)^n = z_1^n \cdot z_2^n$$

$$\bullet \ (\frac{z_1}{z_2})^n = \frac{z_1^n}{z_2^n}$$

•
$$z = 0 \Rightarrow 0^n = 0, n > 0$$

Δυνάμεις της Φανταστικής Μονάδας

•
$$i^0 = 1$$

•
$$i^1 = i$$

•
$$i^2 = -1$$

•
$$i^3 = i^2 \cdot i = -i$$

$$\bullet \ i^4 = i^3 \cdot i = 1$$

•
$$i^5 = i^4 \cdot i = i$$

•
$$i^6 = i^5 \cdot i = -1$$

$$\bullet \ i^7 = i^6 \cdot i = -i$$

Αποδεικνύεται με επαγωγή ότι για κάθε n>0

•
$$i^{4n} = 1$$

$$\bullet \ i^{4n+1} = i$$

•
$$i^{4n+2} = -1$$

$$\bullet \ i^{4n+3} = -i$$

•
$$i^n = (i^{-1})^{-n} = \left(\frac{1}{i}\right)^{-n} = (-i)^{-n}, n < 0$$

Συζυγής

Έστω z=a+bi μιγαδικός αριθμός. Με \overline{z} συμβολίζουμε τον συζυγή μιγαδικό αριθμό του z και ισχύει $\overline{z}=a-bi$.

Ιδιότητες Συζυγών

$$\bullet \ \overline{\overline{z}} = z$$

•
$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$
 και

•
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
 και

$$\bullet \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \, z_2 \neq 0$$

$$\bullet \ \overline{z^n} = \overline{z}^n$$

•
$$z \cdot \overline{z} = a^2 + b^2$$

•
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$

$$\bullet \ \overline{\left(\sum_{k=1}^{n} z_{k}\right)} = \sum_{k=1}^{n} \overline{z}_{k} \Leftrightarrow \overline{z_{1} + z_{2} + \dots + z_{n}} = \overline{z_{1}} + \overline{z_{2}} + \dots + \overline{z_{n}}$$

$$\bullet \ \overline{\left(\prod_{k=1}^{n} z_{k}\right)} = \prod_{k=1}^{n} \overline{z}_{k} \Leftrightarrow \overline{z_{1} \cdot z_{2} \cdots z_{n}} = \overline{z_{1}} \cdot \overline{z_{2}} \cdots \overline{z_{n}}$$

•
$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$

•
$$\operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

Ιδιότητες Μέτρου

•
$$|z| \ge 0$$
 kal $|z| = 0 \Leftrightarrow z = 0$

$$\bullet -|z| \le \operatorname{Re} z \le |z|$$

•
$$-\overline{z} < \operatorname{Re} z < |\operatorname{Re} z| < \overline{z}$$

•
$$-\overline{z} < \operatorname{Im} z < |\operatorname{Im} z| < \overline{z}$$

•
$$|z| = |-z| = |\overline{z}| = |-\overline{z}|$$

•
$$z \cdot \overline{z} = |z|^2 \in \mathbb{R}$$

•
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

•
$$|z_1 - z_2| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

$$\bullet \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0$$

$$\bullet \left| \prod_{k=1}^{n} z_k \right| = \prod_{k=1}^{n} |z_k|$$

$$\bullet \left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|$$

•
$$|z^k| = |z|^k$$
, $k \in \mathbb{Z}$, άρα $|z^{-1}| = |z|^{-1}$, $z \neq 0$

•
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

•
$$|z+1| \ge \frac{1}{\sqrt{2}}$$
 aal $\left|z^2+1\right| \ge 1$

•
$$|z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_1 + z_2 + z_3|^2$$

•
$$|1 + z_1 \overline{z_2}|^2 \pm |z_1 - z_2|^2 = (1 \pm |z_1|^2)(1 \pm |z_2|^2)$$

•
$$|z_1 + z_2 + z_3|^2 + |-z_1 + z_2 + z_3|^2 + |z_1 - z_2 + z_3|^2 + |z_1 + z_2 - z_3|^2 = 4(|z_1|^2 + |z_2|^2 + |z_3|^2)$$

Πολική μορφή Μιγαδικού αριθμού

Έστω z=a+bi μιγαδικός αριθμός. Έστω r=|z| και θ η γωνία που σχηματίζει το διάνυσμα θέσης του z με τον θετικό ημιάξονα x και η οποία μετριέται σε ακτίνια. Τότε $x=r\cos\theta$ και $y=r\sin\theta$ και επομένως ο μιγαδικός z μπορεί να γραφεί σε τριγωνομετρική ή πολική μορφή ως:

$$z = r(\cos\theta + i\sin\theta)$$

και χρησιμοποιώντας την ταυτότητα Euler $e^{ix} = \cos x + i \sin x$, $x \in \mathbb{R}$ σε εκθετική μορφή ως:

$$z = re^{i\theta}$$

Οι τιμές των r, θ λέγονται πολικές συντεταγμένες του z. Κάθε τιμή του θ λέγεται όρισμα του z, και με $\arg z$ συμβολίζουμε το σύνολο των ορισμάτων του z, που είναι άπειρα και διαφέρουν μεταξύ τους κατά 2π . Αν z=0 τότε δεν ορίζεται το όρισμα του. Ισχύει:

$$\tan \theta = \frac{y}{x}$$

Το Πρωτεύον όρισμα του $\arg z$ το συμβολίζουμε με $\operatorname{Arg} z$ και είναι η μοναδική εκείνη τιμή του $\theta \in \operatorname{arg} z$ ώστε $0 \le \theta < 2\pi$. Ισχύει:

$$\arg z = \operatorname{Arg} z + 2k\pi, \quad k \in \mathbb{Z}$$

Από τον ορισμό του $\operatorname{Arg} z$ προχύπτει ότι αν z=a+bi, τότε:

1. Αν $a \neq 0$ τότε από τη σχέση $\tan \theta = \frac{y}{x}$ έχουμε:

$$\operatorname{Arg} z = \arctan \frac{b}{a} + k\pi, \quad \text{όπου} \quad k = \begin{cases} 0, & \text{για} \quad a > 0, b \geq 0 \\ 1, & \text{για} \quad a < 0 \\ 2, & \text{για} \quad a > 0, b < 0 \end{cases}$$

2. Αν a=0 και $b\neq 0$ τότε

$$Arg = \begin{cases} \pi/2, & \text{yid} \quad b > 0\\ 3\pi/2, & \text{yid} \quad b < 0 \end{cases}$$

Έστω $z_1 = r_1(\cos\theta_1 + i\sin\theta_1), z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ και $z = r(\cos\theta + i\sin\theta)$

Ισότητα σε Πολική μορφή

$$z_1=z_2\Leftrightarrow r_1=r_2$$
 και $\operatorname{Arg} z_1=\operatorname{Arg} z_2$ ή $\theta_1=\theta_2+2k\pi,$ $k\in\mathbb{Z}$

Πράξεις σε Πολική μορφή

Τριγωνομετρική μορφή	Εκθετική μορφή
$z_1 \cdot z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i(\sin\theta_1 + \theta_2)]$ $\frac{z_1}{z_2} = \frac{r_1}{r_2} [(\cos(\theta_1 - \theta_2) + i(\sin\theta_1 - \theta_2))]$ $z^{-1} = \frac{1}{z} = \frac{1}{r} (\cos\theta - i\sin\theta)$ $\overline{z} = r(\cos\theta - i\sin\theta)$	$z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$ $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$ $z^{-1} = \frac{1}{r} e^{-i\theta}$ $\overline{z} = r e^{-i\theta}$

Θεώρημα De Moivre

 $Aν z = r(\cos \theta + i \sin \theta)$ και $n \in \mathbb{N}$ τότε

$$z^n = r^n(\cos n\theta + i\sin n\theta)$$

Ρίζες Μιγαδικού αριθμού

Κάθε μιγαδικός αριθμός της μορφής $a=r(\cos\theta+i\sin\theta), a\neq0$ έχει n ακριβώς διαφορετικές n-οστές ρίζες, που δίνονται από τον τύπο:

$$z_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n - 1$$

Αλγεβρικές Ταυτότητες

$$\begin{split} &(x+y)^2 = x^2 + 2xy + y^2 \\ &(x-y)^2 = x^2 - 2xy + y^2 \\ &(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \\ &(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \\ &(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \\ &(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4 \\ &(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5 \\ &(x-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5 \\ &(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6 \\ &(x-y)^6 = x^6 - 6x^5y + 15x^4y^2 - 20x^3y^3 + 15x^2y^4 - 6xy^5 + y^6 \end{split}$$

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{4} - y^{4} = (x - y)(x^{3} + x^{2}y + xy^{2} + y^{3})$$

$$= (x^{2} - y^{2})(x^{2} + y^{2}) = (x - y)(x + y)(x^{2} + y^{2})$$

$$x^{4} + y^{4} = (x^{2} - \sqrt{2}xy + y^{2})(x^{2} + \sqrt{2}xy + y^{2})$$

$$x^{5} - y^{5} = (x - y)(x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4})$$

$$x^{5} + y^{5} = (x + y)(x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4})$$

$$x^{6} - x^{6} = (x^{2} - y^{2})(x^{4} + x^{2}y^{2} + y^{4}) = (x - y)(x + y)(x^{4} + x^{2}y^{2} + y^{4})$$

$$= (x - y)(x + y)(x^{2} + xy + y^{2})(x^{2} - xy + y^{2})$$

$$x^{3} + x^{2}y + xy^{2} + y^{3} = (x + y)(x^{2} + xy + y^{2})$$

$$x^{4} + x^{2}y^{2} + y^{4} = (x^{2} + xy + y^{2})(x^{2} - xy + y^{2})$$

$$x^{5} + x^{4}y + x^{3}y^{2} + x^{2}y^{3} + xy^{4} + y^{5} = (x + y)(x^{2} - xy + y^{2})$$

$$(x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2zx$$

$$(x + y + z)^{3} = x^{3} + y^{3} + z^{3} + 3x^{2}y + 3xy^{2} + 3y^{2}z + 3z^{2}x + 3zx^{2} + 6xyz$$

$$(x + y + z + w)^{2} = x^{2} + y^{2} + z^{2} + w^{2} + 2xy + 2xz + 2xw + 2yz + 2yw + 2zw$$

$$\begin{split} x^{2n+1} - y^{2n+1} &= (x-y)(x^{2n} + x^{2n-1}y + x^{2n-2}y^2 + \dots + y^{2n}) \\ &= (x-y)\left(x^2 - 2xy\cos\frac{2\pi}{2n+1} + y^2\right)\left(x^2 - 2xy\cos\frac{4\pi}{2n+1} + y^2\right) \dots \left(x^2 - 2xy\cos\frac{2n\pi}{2n+1} + y^2\right) \\ &= (x-y)\prod_{k=1}^n \left(x^2 - 2xy\cos\frac{2k\pi}{2n+1} + y^2\right) \\ x^{2n+1} + y^{2n+1} &= (x+y)(x^{2n} - x^{2n-1}y + x^{2n-2}y^2 - \dots + y^{2n}) \\ &= (x+y)\left(x^2 + 2xy\cos\frac{2\pi}{2n+1} + y^2\right)\left(x^2 + 2xy\cos\frac{4\pi}{2n+1} + y^2\right) \dots \left(x^2 + 2xy\cos\frac{2n\pi}{2n+1} + y^2\right) \\ &= (x+y)\prod_{k=1}^n \left(x^2 + 2xy\cos\frac{2k\pi}{2n+1} + y^2\right) \\ x^{2n} - y^{2n} &= (x-y)(x+y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots)(x^{n-1} - x^{nn-2}y + x^{n-3}y^2 - \dots) \\ &= (x-y)(x+y)\left(x^2 - 2xy\cos\frac{\pi}{n} + y^2\right)\left(x^2 - 2xy\cos\frac{2\pi}{n} + y^2\right) \dots \left(x^2 - 2xy\cos\frac{(n-1)\pi}{n} + y^2\right) \\ &= (x-y)(x+y)\prod_{k=1}^{n-1} \left(x^2 - 2xy\cos\frac{k\pi}{n} + y^2\right) \\ x^{2n} + y^{2n} &= \left(x^2 + 2xy\cos\frac{\pi}{2n} + y^2\right)\left(x^2 + 2xy\cos\frac{3\pi}{2n} + y^2\right) \dots \left(x^2 + 2xy\cos\frac{(2n-1)\pi}{2n} + y^2\right) \\ &= \prod_{k=0}^{n-1} \left(x^2 + 2xy\cos\frac{(2k+1)\pi}{2n} + y^2\right) \\ \end{split}$$

3.1 Παραγοντικό

Aν n = 1, 2, 3, ... τότε το n παραγοντικό ορίζεται ως:

$$n = n(n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$

Ορίζουμε επίσης:

$$0! = 1$$

3.2 Διωνυμικό Ανάπτυγμα

3.2.1 Τύπος του Διωνύμου

Aν n = 1, 2, 3, ... τότε:

$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^3 + \dots + y^n$$

3.2.2 Διωνυμικοί Συντελεστές

Αν $0 \le k \le n$ με n = 1, 2, 3, ... τότε ο παραπάνω τύπος μπορεί να ξαναγραφεί ως:

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \binom{n}{3}x^{n-3}y^3 + \dots + \binom{n}{n}y^n$$

όπου οι συντελεστές λέγονται διωνυμικοί συντελεστές και δίνονται από τη σχέση:

$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$

3.2.3 Ιδίότητες Διωνυμικών Συντελεστών

- 1. Οι διωνυμικοί συντελεστές δίνονται και από το **τρίγωνο του Pascal**, το οποίο έχεις τις εξής 2 ιδιότητες:
 - i) Ο πρώτος και ο τελευταίος αριθμός κάθε γραμμής είναι 1.
 - ii) Οποιοσδήποτε άλλος αριθμός σε κάθε γραμμή, είναι το άθροισμα των 2 αριθμών που βρίσκονται ακριβώς από πάνω του στην αμέσως προηγούμενη γραμμή.

Η ιδιότητα 1 παρακάτω ιδιότητα των διωνυμικών συντελεστών:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = 1a+b1$$

$$(a+b)^{2} = 1a^{2} + 2ab + b^{2}1$$

$$(a+b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + b^{3}1$$

$$(a+b)^{4} = 1a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}1$$

$$(a+b)^{5} = 1a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}1$$

$$(a+b)^{6} = 1a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6}1$$

$$2. \binom{n}{n} = 1$$

$$3. \binom{n}{1} = \binom{n}{n-1} = n$$

$$4. \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$$

5.
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0$$

6.
$$\binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \dots + \binom{n+m}{n} = \binom{n+m+1}{n+1}$$

7.
$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = 2^{n-1}$$

8.
$$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots = 2^{n-1}$$

9.
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}^2$$

10.
$$\binom{m}{0}\binom{n}{p} + \binom{m}{1}\binom{n}{p-1} + \dots + \binom{m}{p}\binom{n}{0} = \binom{m+n}{p}$$

11.
$$1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + 3 \cdot \binom{n}{3} + \dots + n \cdot \binom{n}{n} = n2^{n-1}$$

12.
$$1 \cdot \binom{n}{1} - 2 \cdot \binom{n}{2} + 3 \cdot \binom{n}{3} - \dots + (-1)^n n \cdot \binom{n}{n} = 0$$

3.3 Πολυωνυμικό Ανάπτυγμα

Αν n_1, n_2, \ldots, n_r είναι μη-αρνητικοί ακέραιοι τέτοιοι ώστε $n_1 + n_2 + \cdots + n_r = n$, τότε η παράσταση

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

λέγεται πολυωνυμικός συντελεστής και προκύπτει από τον τύπο του πολυωνυμικού αναπτύγματος

$$(x_1 + x_2 + \dots + x_p)^n = \sum \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}$$

όπου το άθροισμα υπολογίζεται πάνω σε όλους τους δυνατούς πολυωνυμικούς συντελεστές.

3.4 Εκθετικές και Λογαριθμικές Συναρτήσεις

3.4.1 Ιδιότητες των Δυνάμεων

Αν p,q είναι πραγματικοί αριθμοί, a,b θετικοί πραγματικοί αριθμοί και m,n θετικοί ακέραιοι, τότε:

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{p} \cdot a^{q} = a^{p+q}$$

$$(a^{p})^{q} = a^{p \cdot q}$$

$$(a \cdot b)^{p} = a^{p} \cdot b^{p}$$

$$\sqrt[n]{a^{m}} = a^{\frac{m}{n}}$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$a^{1} = a$$

$$a^{1} = a$$

$$a^{p} = a^{p-q}$$

$$a^{-p} = \frac{1}{a^{p}}$$

$$\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

Η συνάρτηση $y=a^x$, λέγεται εχθετιχή συνάρτηση.

3.4.2 Λογάριθμοι

Αν $a^p=b$ με $a>0,\ a\neq 1$ και b>0 τότε με $p=\log_a b$ συμβολίζουμε τον **λογάριθμο** του b με βάση το a.

Η συνάρτηση $y=\log_a x$, λέγεται λογαριθμική συνάρτηση και είναι η αντίστροφη της εκθετικής. Δηλαδή ισχύει:

$$y = a^x \Leftrightarrow x = \log_a y$$

$$\begin{split} \log_a 1 &= 0 & \log_a a = 1 \\ \log_a (x \cdot y) &= \log_a x + \log_a y & \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \\ \log_a x^k &= k \cdot \log_a x & (\log_a b) \cdot (\log_b a) = 1 \end{split}$$

3.4.3 Αλλαγή Βάσης

$$\log_a b = \frac{\log_c b}{\log_c a} = \log_a c \cdot \log_c b$$

Πιο συγκεριμένα, ισχύει:

$$\log_e b = \ln b = \frac{\log_{10} b}{\log 10e} = \ln 10 \cdot \log_{10} b = 2.30258509294... \cdot \log_{10} b$$
$$\log_{10} b = \log b = \frac{\log_e b}{\log_{10} e} = \log_{10} e \cdot \ln b = 0.434294... \cdot \ln b$$

Υπερβολικές Συναρτήσεις

4.0.1 Ορισμοί

Υπερβολικό Ημίτονο:	$\sinh x = \frac{e^x - e^{-x}}{2}$
Υπερβολικό Συνημίτονο:	$ \cosh x = \frac{e^x + e^{-x}}{2} $
Υπερβολική Εφαπτομένη	$e^x + e^{-x}$
Υπερβολική Συνεφαπτομ	$\rho^x \perp \rho^{-x}$
Υπερβολική Τέμνουσα:	$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$
Υπερβολική Συντέμνουσ	

4.0.2 Ταυτότητες μεταξύ Υπερβολικών συναρτήσεων

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sinh x + \cosh x = \frac{1}{\cosh x - \sinh x}$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\operatorname{sech} x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}$$

$$\operatorname{coth}^2 x - \operatorname{csch}^2 x = 1$$

$$\operatorname{sech}^2 x + \tanh^2 x = 1$$

$$\sinh(-x) = -\sinh x$$

$$\cosh(-x) = \cosh x$$

$$\tanh(-x) = -\tanh x$$

$$\coth(-x) = -\coth x$$

$$\operatorname{sech}(-x) = \operatorname{sech} x$$

$$\operatorname{csch}(-x) = -\operatorname{csch} x$$

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

$$\coth(x \pm y) = \frac{\coth x \coth y \pm 1}{\coth y \pm \coth x}$$

$$\sinh 2x = 2\sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$= 2\cosh^2 x - 1$$

$$= 1 + 2\sinh^2 x$$

$$\tanh 2x = \frac{2\tanh x}{1 + \tanh^2 x}$$

$$\sinh \frac{x}{2} = \sqrt{\frac{\cosh x - 1}{2}}, \quad x > 0$$

$$\cosh \frac{x}{2} = \sqrt{\frac{\cosh x + 1}{2}}$$

$$\tanh \frac{x}{2} = \sqrt{\frac{\cosh x - 1}{\cosh x + 1}}, \quad x > 0$$

$$\tanh \frac{x}{2} = -\sqrt{\frac{\cosh x - 1}{2}}, \quad x < 0$$

$$\tanh \frac{x}{2} = -\sqrt{\frac{\cosh x - 1}{\cosh x + 1}}, \quad x < 0$$

$$= \frac{\sinh x}{\cosh x + 1}$$

$$= \frac{\cosh x - 1}{\sinh x}$$

$$\sinh 3x = 3 \sinh x + 4 \sinh^{3} x$$

$$\cosh 3x = 4 \cosh^{3} x - 3 \cosh x$$

$$\tanh 3x = \frac{3 \tanh x + \tanh^{3} x}{1 + 3 \tanh^{2} x}$$

$$\sinh 4x = 8 \sinh^{3} x \cosh x + 4 \sinh x \cosh x$$

$$\cosh 4x = 8 \cosh^{4} x - 8 \cosh^{2} x + 1$$

$$\tanh 4x = \frac{4 \tanh x + 4 \tanh^{3} x}{1 + 6 \tanh^{2} x + \tanh^{4} x}$$

$$\sinh^{2} x = \frac{1}{2} \cosh 2x - \frac{1}{2}$$

$$\cosh^{2} x = \frac{1}{2} \cosh 2x + \frac{1}{2}$$

$$\sinh^{3} x = \frac{1}{4} \sinh 3x - \frac{3}{4} \sinh x$$

$$\cosh^{3} x = \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x$$

$$\sinh^{4} x = \frac{3}{8} - \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$$

$$\cosh^{4} x = \frac{3}{8} + \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$$

$$\sinh x + \sinh y = 2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$$

$$\sinh x - \sinh y = 2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$$

$$\cosh x + \cosh y = 2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$$

$$\cosh x - \cosh y = 2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$$

$$\sinh x \sinh y = \frac{1}{2} \left\{ \cosh(x+y) - \cosh(x-y) \right\}$$

$$\cosh x \cosh y = \frac{1}{2} \left\{ \cosh(x+y) + \cosh(x-y) \right\}$$

$$\sinh x \cosh y = \frac{1}{2} \left\{ \sinh(x+y) + \sinh(x-y) \right\}$$

Αν θεωρήσουμε x>0 τότε ισχύουν οι παρακάτω σχέσεις μεταξύ των υπερβολικών τριγωνομετρικών συναρτήσεων

4.0.3 Γραφικές παραστάσεις

4.0.4 Αντίστροφες Υπερβολικές Συναρτήσεις

$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right) - \infty < x < + \infty$$

$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right) \quad x \ge 1$$

$$\tanh^{-1} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) - 1 < x < 1$$

$$\coth^{-1} x = \frac{1}{2}\ln\left(\frac{x + 1}{x - 1}\right) \quad x > 1 \quad \text{if} \quad x < -1$$

$$\operatorname{sech}^{-1} x = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right) \quad 0 < x \le 1$$

$$\operatorname{csch}^{-1} x = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right) \quad x \ne 0$$

4.0.5 Σχέσεις μεταξύ Υπερβολικών Συναρτήσεων

4.0.6 Γραφικές Παραστάσεις Αντίστροφων Υπερβολικών Σ υναρτήσεων

4.0.7 Σχέσεις μεταξύ Υπερβολικών Τριγωνομετρικών και Τριγωνομετρικών Συναρτήσεων

```
\begin{split} \sin(ix) &= i \sinh x & \sinh(ix) &= i \sin x \\ \cos(ix) &= \cosh x & \cosh(ix) &= \cos x \\ \tan(ix) &= i \tanh x & \tanh(ix) &= i \tan x \\ \cot(ix) &= -i \coth x & \coth(ix) &= -i \cot x \\ \sec(ix) &= \operatorname{sech} x & \operatorname{sech}(ix) &= \operatorname{sec} x \\ \csc(ix) &= -i \operatorname{csch} x & \operatorname{csch}(ix) &= -i \operatorname{csc} x \end{split}
```

4.0.8 Περιοδικότητα Υπερβολικών Συναρτήσεων

$$\sinh(x + 2k\pi i) = \sinh x$$

$$\cosh(x + 2k\pi i) = \cosh x$$

$$\tanh(x + 2k\pi i) = \tanh x$$

$$\coth(x + 2k\pi i) = \coth x$$

$$\operatorname{sech}(x + 2k\pi i) = \operatorname{sech} x$$

$$\operatorname{csch}(x + 2k\pi i) = \operatorname{csch} x$$

4.0.9 Σχέσεις μεταξύ αντίστροφων υπερβολικών και αντίστροφων τριγωνομετρικών συναρτήσεων

```
\sin^{-1}(ix) = i \sin^{-1} x \qquad \sinh^{-1}(ix) = i \sin^{-1} x 

\cos^{-1} x = \pm i \cosh^{-1} x \qquad \cosh^{-1} x = \pm i \cos^{-1} x 

\tan^{-1}(ix) = i \tanh^{-1} x \qquad \tanh^{-1}(ix) = i \tan^{-1} x 

\cot^{-1}(ix) = i \coth^{-1} x \qquad \coth^{-1}(ix) = -i \cot^{-1} x 

\sec^{-1} x = \pm i \sec^{-1} x \qquad \operatorname{sech}^{-1} x = \pm i \sec^{-1} x 

\csc^{-1}(ix) = -i \operatorname{csch}^{-1} x \qquad \operatorname{csch}^{-1}(ix) = -i \operatorname{csc}^{-1} x
```

Διαφορικός Λογισμός

5.1 Παράγωγοι

5.1.1 Ορισμός

Η παράγωγος της συνάρτησης y=f(x) ως προς x ορίζεται να είναι το όριο

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

όταν αυτό υπάρχει για κάθε σημείο στο πεδίο ορισμού της, όπου $h=\Delta x$. Η παράγωγος συνάρτηση συμβολίζεται με $\frac{df}{dx}=f'(x)=y'.$

5.1.2 Παράγωγοι Βασικών Συναρτήσεων

$$\begin{aligned} \frac{d}{dx}(c) &= 0 \\ \frac{d}{dx}(x) &= 1 \\ \frac{d}{dx}(x^a) &= ax^{a-1}, \quad a \in \mathbb{R} \\ \frac{d}{dx}\left(\sqrt{x}\right) &= \frac{1}{2\sqrt{x}} \\ \frac{d}{dx}\left(\frac{1}{x}\right) &= -\frac{1}{x^2} \\ \frac{d}{dx}(a^x) &= a^x \ln a, \quad a > 0 \\ \frac{d}{dx}(e^x) &= e^x \\ \frac{d}{dx}(\log_a x) &= \frac{1}{x} \cdot \log_a e, \quad a > 0, \, a \neq 1 \\ \frac{d}{dx}(\ln x) &= \frac{1}{x} \end{aligned}$$

5.1.3 Παραγωγοι Τριγωνομετρικών και Αντίστροφων Τριγωνομετρικών Σ υναρτήσεων

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \quad -\frac{\pi}{2} < \sin^{-1}x < \frac{\pi}{2}$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}, \quad 0 < \cos^{-1}x < \pi$$

$$\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x} \qquad \qquad \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}, \quad -\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$$

$$\frac{d}{dx}(\cot x) = -\frac{1}{\sin^2 x} \qquad \qquad \frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}, \quad 0 < \cot^{-1}x < \pi$$

$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x \qquad \frac{d}{dx}(\sec^{-1}x) = \begin{cases} \frac{1}{x\sqrt{x^2-1}}, & \text{and } 0 < \sec^{-1}x < \frac{\pi}{2} \\ \frac{-1}{x\sqrt{x^2-1}}, & \text{and } 0 < \csc^{-1}x < \pi \end{cases}$$

$$\frac{d}{dx}(\csc x) = -\csc x \cdot \cot x \qquad \frac{d}{dx}(\csc^{-1}x) = \begin{cases} \frac{1}{x\sqrt{x^2-1}}, & \text{and } 0 < \csc^{-1}x < \frac{\pi}{2} \\ \frac{1}{x\sqrt{x^2-1}}, & \text{and } 0 < \csc^{-1}x < \frac{\pi}{2} \end{cases}$$

5.1.4 Παραγωγοι Υπερβολικών και Αντίστροφων Υπερβολικών Συναρτήσεων

$$\frac{d}{dx}(\sinh x) = \cosh x \qquad \qquad \frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{x^2 + 1}}$$

$$\frac{d}{dx}(\cosh x) = \sinh x \qquad \qquad \frac{d}{dx}(\cosh^{-1}x) = \begin{cases} \frac{1}{\sqrt{x^2 - 1}}, & \text{av } \cosh^{-1}x > 0, x > 1\\ \frac{1}{\sqrt{x^2 - 1}}, & \text{av } \cosh^{-1}x < 0, x > 1 \end{cases}$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x \qquad \qquad \frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1 - x^2}, & \text{av } -1 < x < 1$$

$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x \qquad \qquad \frac{d}{dx}(\coth^{-1}x) = \frac{1}{1 - x^2}, & \text{av } x > 1 \ \text{fi} \ x < -1$$

$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \cdot \tanh x \qquad \frac{d}{dx}(\operatorname{sech}^{-1}x) = \begin{cases} \frac{-1}{x\sqrt{1 - x^2}}, & \text{av } \operatorname{sech}^{-1}x > 0, 0 < x < 1\\ \frac{1}{x\sqrt{1 - x^2}}, & \text{av } \operatorname{sech}^{-1}x < 0, 0 < x < 1 \end{cases}$$

$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \cdot \coth x \qquad \frac{d}{dx}(\operatorname{csch}^{-1}x) = \begin{cases} \frac{-1}{x\sqrt{1 + x^2}}, & \text{av } x > 0\\ \frac{-1}{x\sqrt{1 + x^2}}, & \text{av } x > 0 \end{cases}$$

5.1.5 Κανόνες Παραγώγισης

Έστω
$$f=f(x),\,g=g(x)$$
 και $h=h(x),\,a,\,b,\,c$ και n σταθερές.
$$\frac{d}{dx}(cf)=c\frac{df}{dx}$$

$$\frac{d}{dx}(f\pm g)=\frac{df}{dx}\pm\frac{dg}{dx}$$

$$\frac{d}{dx}(fg)=f\frac{dg}{dx}+g\frac{df}{dx}$$

$$\frac{d}{dx}\left(\frac{f}{g}\right)=\frac{f\frac{dg}{dx}-g\frac{df}{dx}}{g^2}$$

$$\frac{d}{dx}(fgh)=fg\frac{dh}{dx}+fh\frac{dg}{dx}+gh\frac{df}{dx}$$

5.1.6 Σύνθετη Παραγώγιση

Έστω y = f(u) και u = g(x). Τότε

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{(Κανόνας Αλυσίδας)}$$

Ο παραπάνω τύπος γενικεύεται και για συναρτήσεις που είναι σύνθεση περισσότερων των δύο συναρτήσεων, όπως για παράδειγμα, αν $y=f(u),\,u=g(v)$ και v=h(x), τότε

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

5.1.7 Παράγωγος Αντίστροφης Συνάρτησης

Έστω y=f(x), συνεχής και γνησίως μονότονη συνάρτηση. Τότε ορίζεται η αντίστροφη συνάρτηση $x=f^{-1}(y)$ και ισχύει:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

5.1.8 Παράγωγοι Ανώτερης Τάξης

$$\begin{split} \Delta & \text{εύτερη Παράγωγος} & \quad \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} = f''(x) = y'' \\ & \text{Τρίτη Παράγωγος} & \quad \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3} = f'''(x) = y''' \\ & \text{Παράγωγος τάξης } n & \quad \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^ny}{dx^n} = f^{(n)}(x) = y^{(n)} \end{split}$$