

Lecture 3: Dynamic Programming

N8EN18B - Contrôle et Apprentissage

Guilherme IECKER RICARDO IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

- 1 Introduction
- Policy Evaluation
 - Iterative Policy Evaluation
 - Example: Evaluating a Random Policy
- 3 Policy Iteration
- 4 Value Iteration
- 5 Questions?

Recap - Bellman Equations

Bellman Expectation Equation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \cdot \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \cdot v_{\pi}(s') \right)$$

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') \cdot q_{\pi}(s', a')$$

$$(1)$$

Bellman Optimality Equation

$$v_*(s) = \max_{a \in \mathcal{A}} \left\{ \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \cdot v_*(s') \right\}$$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \cdot \max_{a' \in \mathcal{A}} \left\{ q_*(s', a') \right\}$$
(2)

Introduction

- **Dynamic:** seguential or temporal component to the problem
- **Programming:** optimizing a "problem", i.e., a policy
 - c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused

MDPs satisfy both properties, i.e.,

- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- Either for prediction:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π (or MRP)
 - Output: Value function v_{π}
- Or for control:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: Optimal value function v_* and optimal policy π_*

Policy Evaluation

irit Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - \blacksquare where s' is a successor state of s
- (Maybe) We will discuss asynchronous backups later
- \blacksquare (Maybe) Convergence to v_{π} will be proved at the end of the lecture

Iterative Policy Evaluation

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \cdot \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \cdot v_k(s') \right)$$

 $\mathbf{v}_{k+1} = \mathbf{\mathcal{R}}^{\pi} + \gamma \cdot \mathbf{\mathcal{P}}^{\pi} \cdot \mathbf{v}_{k}$

(3)

Example: Small Gridworld

Rules:

- Undiscounted episodic MDP, i.e., $\gamma = 1$
- Non-terminal states 1,...,14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is r = -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(\uparrow | \cdot) = \pi(\rightarrow | \cdot) = \pi(\downarrow | \cdot) = \pi(\leftarrow | \cdot) = 0.25$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

irin Hands-on Example: Small Gridworld

https://guilhermeir.github.io/teaching/rl/dp.ipynb Notebook's exercises (1) - (4)

- Describe the MDP
- Define the policy evaluation function
- Evaluate a random policy
- Evaluate a better (?) policy

Policy Iteration

- \blacksquare Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+s} + \dots | S_t = s]$$
 (4)

Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_{\pi}) \tag{5}$$

- In general, it needs more iterations of improvement / evaluation
- But this process of **policy iteration** always converges to π^*

Gridworld Example - Textbook §4.2 - Figure 4.1

Policy Evaluation: Estimate v_{π} Iterative

policy evaluation

Policy Improvement: Generate $\pi' > \pi$ Greedy

policy improvement

iri Policy Iteration - Algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization
 - $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$; $V(terminal) \doteq 0$
- 2. Policy Evaluation

Loop:

$$\begin{array}{l} P \cdot \\ \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{s',r} p(s',r \mid s,\pi(s)) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{array}$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r | s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Policy Iteration - Proof of Optimality 1/3

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily, i.e.,

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} q_{\pi}(s, a) \tag{6}$$

 \blacksquare This improves the value from any state s over one step, because

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$
(7)

Policy Iteration - Proof of Optimality 2/3

Policy iteration improves value function, i.e., $v_{\pi'}(s) \geq v_{\pi}(s)$, because

$$v_{\pi} \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma \cdot q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma \cdot R_{t+2} + \gamma^{2} \cdot q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma \cdot R_{t+2} + \gamma^{2} \cdot R_{t+3} + \dots | S_{t} = s]$$

$$= v_{\pi'}(s)$$
(8)

If improvements stop, i.e.,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$
(9)

■ Then the Bellman optimality equation has been satisfied, i.e.,

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) \tag{10}$$

- Therefore $v_{\pi}(s) = v_{*}(s), \forall s \in \mathcal{S}$
- \blacksquare so π is an optimal policy

- In order to obtain the optimal policy π_* , do we need to converge to v_{π} ?
- Include stop criterion:
 - \blacksquare ϵ -convergence of value function
 - after k iterations of PE-PI
- Gridworld Example Textbook §4.2 Figure 4.1
- What if we update the policy at every iteration of the PE (i.e., stop with k = 1)?

Notebook's exercises (5) - (6)

- Observe the application of Policy Improvement
- Define the policy iteration function

- Implement the Policy Iteration algorithm
- Observe the convergence in practice

Value Iteration

Any optimal policy can be subdivided into two components:

- \blacksquare An optimal first action a_*
- \blacksquare Followed by an optimal policy from successor state s'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, iff

- \blacksquare For any state s' reachable from s
- \blacksquare π achieves the optimal value from state s', $v_{\pi}(s) = v_{*}(s)$

- If we know the solution to subproblems $v_*(s')$, then
- \blacksquare solution $v_*(s)$ can be found by Bellman Optimality Equations, i.e.,

$$v_*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \cdot v_*(s') \right], \tag{11}$$

- which is called one-step lookahead
- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Problem

٧.

 V_2

V₃

 V_4

 V_5

V₇

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$
- Using synchronous backups:
 - At each iteration k+1,
 - for all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later (maybe)
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
Loop for each s \in S:
         V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Notebook's exercises (7) - (8)

- Define the Value Iteration function
- Compare Policy Iteration and Value Iteration

Questions?