Best Available Copy

(51) Int. Cl.5:

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift (n) DE 41 23 787 A 1

F 02 M 57/00 F 02 M 37/22

DEUTSCHES PATENTAMT

P 41 23 787.0 (21) Aktenzeichen: Anmeldetag: 18. 7.91 21. 1.93 Offenlegungstag:

(71) Anmelder:

Robert Bosch GmbH, 7000 Stuttgart, DE

© Erfinder:

Stegmaier, Alwin, Charleston, US; Zwick, Kenneth J., Philadelphia, Pa., US

Prüfungsantrag gem. § 44 PatG ist gestellt

(4) Verfahren zur Einstellung eines Brennstoffeinspritzventils und Brennstoffeinspritzventil

Bei bekannten Brennstoffeinspritzventilen wird die Stirnseite eines Düsenkörpers zur Einstellung der statischen, während des stationären Öffnungszustandes des Brennstoffeinspritzventils abgegebenen Brennstoffmenge soweit abgeschliffen, bis die gemessene Istmenge der vorgegebenen Sollmenge des Brennstoffs entspricht. Dieses Einstellverfahren hat jedoch den Nachteil, daß die Stirnfläche des Düsenkörpers nur bei einem teilweise demontierten Ventil abgeschliffen werden kann.

Bei dem erfindungsgemäßen Verfahren wird die statische Brennstoffmenge direkt an dem ansonsten fertig montierten Brennstoffeinspritzventil eingestellt, so daß die Streuung der statischen Brennstoffmenge der einzelnen Brennstoffeinspritzventile minimiert wird. Zu diesem Zweck ist stromaufwärts des Ventilsitzes eine der Zumessung des Brennstoffs dienende Drosseleinrichtung (87) vorgesehen, deren freier Strömungsquerschnitt (89) veränderbar ist.

Das erfindungsgemäße Verfahren eignet sich für Brennstoffeinspritzventile verschiedener Art.

Beschreibung

Stand der Technik

Die Erfindung geht aus von einem Verfahren zur Einstellung der statischen, während des stationären Öffnungszustandes abgespritzten Brennstoffmenge eines Brennstoffeinspritzventils nach dem Oberbegriff des Anspruchs 1 bzw. von einem Brennstoffeinspritzventil 10 nach dem Oberbegriff des Anspruchs 4.

Bei dem zum Beispiel aus der DE 35 33 521 A1 bekannten Brennstoffeinspritzventil wird der Hub des Ventilschließkörpers und damit die statische, während des stationären Öffnungszustandes des Brennstoffeinspritzventils abgegebene Strömungsmenge eines Mediums eingestellt, indem die Stirnfläche des Düsenkörpers, an der die den Restluftspalt des Ankers gegenüber dem Kern bestimmende Anschlagplatte anliegt, abgeschliffen wird. Dieses Ventil und das angewendete Einstellverfahren haben jedoch den Nachteil, daß die Stirnfläche des Düsenkörpers nur bei einem teilweise demontierten Ventil abgeschliffen werden kann, so daß die exakte Einstellung des Ventilnadelhubes sehr aufwendig ist.

Ein Brennstoffeinspritzventil mit einem Ventilsitzkörper, der wenigstens eine Abspritzöffnung aufweist, ist in der DE 38 31 196 A1 beschrieben. Der Ventilsitzkörper wird in die Längsöffnung des Düsenhalters eingepreßt, wobei die Einpreßtiefe den Ventilnadelhub bestimmt.

Die Einstellung des Ventilnadelhubes kann zwar an dem fertig montierten Einspritzventil vorgenommen werden, bei dem Einpressen des Ventilsitzkörpers in den Düsenhalter besteht jedoch die Gefahr der Spanbildung an dem Ventilsitzkörper und/oder dem Sitzträger.

Bei dem zum Beispiel aus der DE 36 40 830 A1 bekannten Lochplatten — Brennstoffeinspritzventil weisen die Abspritzöffnungen der Lochplatte vorgegebene, die statische Brennstoffmenge beeinflussende Öffnungsquerschnitte auf. Zur Einstellung der statischen Brennstoffmenge wird die exakte Durchflußmenge einzelner Lochplatten gemessen, um eine Lochplatte mit einer bestimmten Ventilgruppe, die einen bekannten Ventilhub aufweist, zu kombinieren. Abschließend wird das Brennstoffeinspritzventil montiert und mit einem 45 Brennstoffilter versehen, wobei die Gefahr besteht, daß die statische Brennstoffmenge des Ventils in unerwünschter Weise verändert wird.

Ferner ist schon ein elektromagnetisch betätigbares Brennstoffeinspritzventil vorgeschlagen worden, dessen rohrförmiger Innenpol eine konzentrisch zu einer Ventillängsachse verlaufende Durchgangsbohrung hat. In diese Durchgangsbohrung ist eine zur Einstellung der Rückstellfeder dienende Einstellbuchse eingepreßt, in deren Längsöffnung ein fester, nicht einstellbarer Drosselkörper angeordnet ist.

Vorteile der Erfindung

Das erfindungsgemäße Verfahren zur Einstellung der statischen, während des stationären Öffnungszustandes abgegebenen Brennstoffmenge eines Brennstoffeinspritzventils mit den kennzeichnenden Merkmalen des Anspruchs 1 und das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 4 haben den Vorteil einer einfachen und kostengünstigen Einstellung der statischen Brennstoffmenge an dem ansonsten-fertig montierten Brennstoff-

einspritzventil. Das Einstellen an dem ansonsten fertig montierten Brennstoffeinspritzventil ermöglicht ein besonders genaues Einhalten der geforderten statischen Brennstoffmenge, ohne daß die Gefahr besteht, daß sich die tatsächliche statische Brennstoffmenge durch einen nachfolgenden Arbeitsgang, zum Beispiel die Montage eines Brennstoffilters, noch verändert. So ist gewährleistet, daß die in der Serienfertigung hergestellten Brennstoffeinspritzventile besonders geringe Streuungen der statischen Brennstoffmenge aufweisen und daß zum Beispiel den einzelnen Zylindern einer Brennkraftmaschine die gleiche Brennstoffmenge zugemessen wird.

Außerdem ist es möglich, die Anzahl der Varianten der Brennstoffeinspritzventile zu reduzieren, da die erfindungsgemäßen Brennstoffeinspritzventile durch ihre Einstellbarkeit im ansonsten fertig montierten Zustand für verschiedene Abspritzmengen verwendbar sind.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des Verfahrens nach Anspruch 1 bzw. des Brennstoffeinspritzventils nach Anspruch 4 möglich.

Um ein besonders exaktes Einstellen der statischen Brennstoffmenge zu gewährleisten, ist es vorteilhaft, wenn der freie Strömungsquerschnitt der Drosseleinrichtung kontinuierlich veränderbar ist.

Von Vorteil ist es, wenn die statische Brennstoffmenge eines Brennstoffeinspritzventils, das einen rohrförmigen Innenpol, eine konzentrisch zu einer Ventillängsachse verlaufende Strömungsbohrung sowie einen Drosselkörper aufweist, einstellbar ist, indem der freie Strömungsquerschnitt der Drosseleinrichtung durch ein Variieren der Einschubtiefe des Drosselkörpers in der Strömungsbohrung des Innenpols veränderbar ist.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Figur zeigt ein Brennstoffeinspritzventil gemäß des Ausführungsbeispiels.

Beschreibung des Ausführungsbeispiels

In der Figur ist beispielsweise ein Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen dargestellt. Das Brennstoffeinspritzventil hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden Innenpol 3. Die Magnetspule 1 mit einem Spulenkörper 5 ist mit einer Kunststoffumspritzung 7 versehen, wobei zugleich ein elektrischer Anschlußstecker 9 mitangespritzt wird, so daß sich ein die Magnetspule 1 und den Anschlußstecker 9 beinhaltendes eigenständiges Kunststoffspritzteil ergibt. Die in radialer Richtung den gestuften Spulenkörper 5 mit einer in radialer Richtung gestuften Bewicklung 11 aufweisende Magnetspule 1 ermöglicht in Verbindung mit dem einen konstanten Außendurchmesser aufweisenden Innenpol 3 einen besonders kompakten Aufbau des Brennstoffeinspritzventils.

Mit einem unteren Polende 13 des Innenpols 3 ist konzentrisch zu einer Ventillängsachse 15 dicht ein rohrförmiges Zwischenteil 17 beispielsweise durch Schweißen verbunden und übergreift dabei mit einem oberen Zylinderabschnitt 19 das Polende 13 teilweise axial. Der gestufte Spulenkörper 5 übergreift teilweise den Innenpol 3 und mit einer Stufe 21 größeren Durch-

messers den oberen Zylinderabschnitt 19 des Zwischenteiles 17. Das Zwischenteil 17 ist an seinem dem Innenpol 3 abgewandten Ende mit einem unteren Zylinderabschnitt 23 versehen, der einen rohrförmigen Düsenhalter 25 übergreift und mit diesem beispielsweise durch Schweißen verbunden ist. In das stromabwärts liegende Ende des Düsenhalters 25 ist in einer konzentrisch zu der Ventillängsachse 15 verlaufenden Durchgangsöffnung 27 ein zylinderförmiger Ventilsitzkörper 29 durch Schweißen dicht montiert. Der Ventilsitzkörper 29 weist 10 der Magnetspule 1 zugewandt einen festen Ventilsitz 31 auf, stromabwärts dessen im Ventilsitzkörper 29 zum Beispiel zwei beispielsweise durch Erodieren geformte Abspritzöffnungen 33 ausgebildet sind. Die Abspritzöffnungen 33 weisen so große Öffnungsquerschnitte auf, 15 daß die Istmenge des während des stationären Öffnungszustandes des Brennstoffeinspritzventils abgegebenen Brennstoffs die vorgegebene Sollmenge überschreitet, sofern nicht eine weitere Drosseleinrichtung abwärts der Abspritzöffnungen 33 weist der Ventilsitzkörper 29 eine sich in Strömungsrichtung kegelstumpfförmig erweiternde Aufbereitungsbohrung 35 auf.

In eine konzentrisch zu der Ventillängsachse 15 verlaufende abgestufte Strömungsbohrung 37 des Innen- 25 pols 3 ist zur Einstellung der Federkraft einer Rückstellfeder 39 eine rohrförmige Einstellbuchse 41 eingepreßt. Die Rückstellfeder 39 liegt mit ihrem einen Ende an der dem Ventilsitzkörper 29 zugewandten Stirnseite 43 der Einstellbuchse 41 an. Die Einpreßtiefe der Einstellbuch- 30 se 41 in die Strömungsbohrung 37 des Innenpols 3 bestimmt die Federkraft der Rückstellfeder 39 und beeinflußt damit auch die dynamische, während des Öffnungsund des Schließhubes des Ventils abgegebene Brennstoffmenge.

Die Rückstellfeder 39 stützt sich mit ihrem der Einstellbuchse 41 abgewandten Ende in stromabwärtiger Richtung an einer Stirnseite 45 eines Verbindungsrohres 47 ab. Mit dem der Rückstellfeder 39 zugewandten Ende des Verbindungsrohres 47 ist beispielsweise durch 40 Schweißen ein rohrförmiger Anker 49 verbunden, der durch einen Führungsbund 51 des Zwischenteils 17 geführt wird. An dem anderen Ende des Verbindungsrohres 47 ist mit diesem ein mit dem festen Ventilsitz 31 des Ventilsitzkörpers 29 zusammenwirkender, zum Beispiel 45 als Kugel ausgebildeter Ventilschließkörper 53 beispielsweise durch Schweißen verbunden.

Zwischen einer Stirnseite 55 des dem Anker 49 zugewandten Polendes 13 und einer zum oberen Zylinderabschnitt 19 führenden Schulter 57 des Zwischenteils 17 ist 50 ein axialer Spalt 59 gebildet, in dem durch Einklemmen eine einen Restluftspalt zwischen einer zulaufseitigen Stirnseite 61 des Ankers 49 und der Stirnseite 55 des Polendes 13 bildende. den Hub des Ventilschließkörpers 53 beim Öffnungsvorgang des Ventils begrenzende, 55 nichtmagnetische Anschlagscheibe 63 angeordnet ist.

Die Magnetspule 1 ist von wenigstens einem, beispielsweise als Bügel ausgebildeten und als ferromagnetisches Element dienenden Leitelement 65 umgeben, das die Magnetspule 1 in Umfangsrichtung wenigstens teil- 60 weise umgibt sowie mit seinem einen Ende an dem Innenpol 3 und mit seinem anderen Ende an dem Düsenhalter 25 anliegt und mit diesen zum Beispiel durch Schweißen oder Löten verbunden ist. Ein Teil des Brennstoffeinspritzventils ist von einer Kunststoffum- 65 mantelung 67 umschlossen, die sich vom Innenpol 3 ausgehend in axialer Richtung über die Magnetspule 1 und das wenigstens eine Leitelement 65 erstreckt.

In der gestuften Strömungsbohrung 37 des Innenpols 3 ist stromaufwärts der Einstellbuchse 41 in dem Polende 13 abgewandter Richtung ein Brennstoffilter 71 angeordnet. Der in das Brennstoffeinspritzventil eintretende Brennstoff durchströmt den Brennstoffilter 71 in bekannter Weise und tritt in radialer Richtung aus dem Brennstoffilter aus, wobei eventuelle Verunreinigungen des Brennstoffs in dem Brennstoffilter 71 zurückgehalten werden. An dem Umfang seines dem Polende 13 abgewandten oberen Endes 73 weist der Brennstoffilter 71 einen Haltering 75 auf. Der Brennstoffilter 71 ist durch Einschieben in die gestufte Strömungsbohrung 37 des Innenpols 3 montierbar und liegt im montierten Zustand mit seinem Haltering 75 mit einer leichten radialen Pressung an der Wandung eines dem unteren Polende 13 abgewandten Parallelabschnittes 77 der gestuften Strömungsbohrung 37 an.

Ein dem unteren Polende 13 des Innenpols 3 zugewandtes unteres Ende 79 eines das Filtergewebe stützur Zumessung des Brennstoffs vorgesehen ist. Strom- 20 zenden Trägerteils 83 des Brennstoffilters 71 ist mit einem Drosselkörper 81 verbunden, der sich in Richtung der Ventillängsachse 15 der Rückstellfeder 39 zugewandt erstreckt. Der Drosselkörper 81 kann zum Beispiel als Kunststoffbauteil ausgeführt und an das Trägerteil 83 des Brennstoffilters 71 durch Anspritzen mitangeformt sein und ist auf diese Art und Weise einfach und kostengünstig herstellbar. Der Drosselkörper 81 weist eine sich beispielsweise in Strömungsrichtung, also dem Ventilsitz 31 zugewandt kegelstumpfförmig verjüngende Form auf. Neben dieser Form kann der Drosselkörper 81 zum Beispiel auch die Form eines Tetraeders, einer Pyramide oder eine andere, sich vorzugsweise in Brennstoffströmungsrichtung verjüngende Form haben.

> Die Einstellbuchse 41 hat eine sich in Strömungsrichtung des Brennstoffs konzentrisch zu der Ventillängsachse 15 erstreckende zylindrische Längsöffnung 85, die der Brennstoff in Richtung des Ventilsitzes 31 des Brennstoffeinspritzventils durchströmt. Der sich in Strömungsrichtung kegelstumpfförmig verjüngende Drosselkörper 81 ragt zum Beispiel teilweise in die Längsöffnung 85 der Einstellbuchse 41, so daß zwischen dem Umfang des Drosselkörpers 81 und der Wandung der Längsöffnung 85 eine Drosseleinrichtung 87 gebildet ist. Die Drosseleinrichtung 87 weist einen engen, ringförmigen freien Strömungsquerschnitt 89 auf, der an seiner engsten Stelle im Bereich einer dem Brennstoffilter 71 zugewandten oberen Stirnfläche 91 der Einstellbuchse 41 der Zumessung des Brennstoffs dient und dessen Querschnittsfläche die statische, während des stationären Öffnungszustandes abgegebene Brennstoffmenge des Brennstoffeinspritzventils beeinflußt.

> Zur Einstellung der statischen, während des stationären Öffnungszustandes abgegebenen Brennstoffmenge des Brennstoffeinspritzventils wird in einem ersten Verfahrensschritt an dem ansonsten fertig montierten Brennstoffeinspritzventil die Istmenge des abgegebenen Brennstoffs bei vollständig geöffnetem Brennstoffeinspritzventil zum Beispiel mittels einer Brennstoffleitung 95 und eines Brennstoffsammelgefäßes 97 gemessen. Die Abspritzöffnungen 33 weisen bei dem beispielsweise dargestellten Brennstoffeinspritzventil derart große Öffnungsquerschnitte auf, daß die Istmenge des abgegebenen Brennstoffs stets größer als die vorgegebene statische Sollmenge ist. In einem zweiten erfindungsgemäßen Verfahrensschritt wird die Einschubtiefe des Brennstoffilters 71 in der Strömungsbohrung 37 des Innenpols 3 und damit die Tiefe, bis zu der der sich in

Strömungsrichtung kegelstumpfförmig verjüngende Drosselkörper 81 in die Längsöffnung 85 der Einstellbuchse 41 ragt, mit einem Werkzeug 99 so lange variiert, bis sich der enge, den Brennstoff zumessende freie Strömungsquerschnitt 89 an der oberen Stirnseite 91 der 5 Einstellbuchse 41 zwischen dem Umfang des Drosselkörpers 81 und der Wandung der Längsöffnung 85 der Einstellbuchse 41 derart verändert hat, daß die abgegebene Istmenge mit der vorgegebenen statischen Sollmenge des Brennstoffs übereinstimmt. Auf diese Art 10 und Weise läßt sich der freie Strömungsquerschnitt 89 der Drosseleinrichtung 87 und damit die statische, während des stationären Öffnungszustandes abgegebene Brennstoffmenge des Einspritzventils kontinuierlich verändern, wobei der Brennstoffilter 71 und damit auch 15 der mit dem Brennstoffilter 71 verbundene Drosselkörper 81 während des Einstellvorganges sowohl in Brennstoffströmungsrichtung als auch in entgegengesetzter Richtung verschoben werden können.

Es ist auch möglich, daß die Drosseleinrichtung 87 20 zwischen dem Drosselkörper 81 und der Wandung der gestuften Strömungsbohrung 37 des Innenpols 3 gebildet ist.

Das Verfahren nach der Erfindung hat den Vorteil, daß an einem ansonsten fertig montierten Brennstoffeinspritzventil die statische, während des stationären Öffnungszustandes abgegebene Brennstoffmenge direkt eingestellt werden kann. Hierdurch wird nicht nur die Streuung der statischen Brennstoffmengen der einzelnen Brennstoffeinspritzventile minimiert, sondern 30 zugleich eine Reduzierung der Herstellkosten erzielt.

Patentansprüche

- 1. Verfahren zur Einstellung der statischen, wäh- 35 rend des stationären Öffnungszustandes abgegebenen Brennstoffmenge eines Brennstoffeinspritzventils, das ein in einem Strömungskanal liegendes, mit einem Ventilsitz zusammenwirkendes Ventilschließteil und eine stromaufwärts des Ventilsitzes 40 angeordnete, der Zumessung des Brennstoffs dienende Drosseleinrichtung aufweist, dadurch gekennzeichnet, daß in einem ersten Verfahrensschritt an dem ansonsten fertig montierten Brennstoffeinspritzventil die Istmenge des abgegebenen 45 Brennstoffs bei vollständig geöffnetem Brennstoffeinspritzventil gemessen und mit einer vorgegebenen Sollmenge verglichen wird, und in einem zweiten Verfahrensschritt der freie Strömungsquerschnitt (89) der Drosseleinrichtung (87) solange 50 verändert wird, bis die abgegebene Istmenge mit der vorgegebenen Sollmenge des Brennstoffs übereinstimmt.
- 2. Verfahren nach Anspruch 1. dadurch gekennzeichnet, daß der freie Strömungsquerschnitt (89) 55 der Drosseleinrichtung (87) kontinuierlich verändert wird.
- 3. Verfahren nach Anspruch 1 oder 2, wobei das Brennstoffeinspritzventil einen rohrförmigen Innenpol mit einer konzentrisch zu einer Ventillängsachse verlaufenden Strömungsbohrung und einen Drosselkörper hat, dadurch gekennzeichnet, daß der freie Strömungsquerschnitt (89) der Drosseleinrichtung (87) durch ein Variieren der Einschubtiefe des Drosselkörpers (81) in der Strömungsbohrung 65 (37) des Innenpols (3) verändert wird.
- 4. Brennstoffeinspritzventil mit einem in einem Strömungskanal liegenden, mit einem Ventilsitz zu-

sammenwirkenden Ventilschließteil, und mit einer stromaufwärts des Ventilsitzes angeordneten, der Zumessung des Brennstoffs dienenden Drosseleinrichtung, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der freie Strömungsquerschnitt (89) der Drosseleinrichtung (87) an dem ansonsten fertig montierten Brennstoffeinspritzventil veränderbar ist.

- 5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß der freie Strömungsquerschnitt (89) der Drosseleinrichtung (87) kontinuierlich veränderbar ist.
- 6. Brennstoffeinspritzventil nach Anspruch 4 oder 5, mit einem rohrförmigen Innenpol, der eine konzentrisch zu einer Ventillängsachse verlaufende Strömungsbohrung hat, und mit einem Drosselkörper, dadurch gekennzeichnet, daß der freie Strömungsquerschnitt (89) der Drosseleinrichtung (87) durch ein Variieren der Einschubtiefe des Drosselkörpers (81) in der Strömungsbohrung (37) des Innenpols (3) veränderbar ist.
- 7. Brennstoffeinspritzventil nach Anspruch 6, mit einem in der Strömungsbohrung des Innenpoles angeordneten Brennstoffilter, dadurch gekennzeichnet, daß der Drosselkörper (81) mit dem Brennstoffilter (71) verbunden ist.
- 8. Brennstoffeinspritzventil nach Anspruch 7, mit einer in der Durchgangsbohrung des Innenpols angeordneten rohrförmigen Einstellbuchse, die eine Längsöffnung aufweist und stromabwärts des Brennstoffilters angeordnet ist, dadurch gekennzeichnet, daß der Drosselkörper (81) teilweise in die Längsöffnung (85) der Einstellbuchse (41) ragt.
- 9. Brennstoffeinspritzventil nach Anspruch 6, 7 oder 8, dadurch gekennzeichnet, daß sich der Drosselkörper (81) in Brennstoffströmungsrichtung verjüngt.

Hierzu I Seite(n) Zeichnungen

BNSDOCID: <DE __4123787A1_I_>

- Leerseite -

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (O. ...

Nummer.
Int. Cl.⁵:
Offenlegungstag:

DE 41 23 787 A1 F 02 M 65/00 21. Januar 1993

208 063/345