清华大学本科生考试试题专用纸

考试课程 微积分 A(2) B &

2021年6月15日

一. 填空题 (每空3分, 共10题)

- 设 $\mathbf{F}(x, y, z) = (e^{x+y+z}, 1, 1), P_0 = (0, 0, 0), 则 rot \mathbf{F}(P_0) =$
- 设 $\mathbf{F}(x,y,z) = (x \ln(y+z), y \ln(z+x), z \ln(x+y)), P_0 = (1,1,1), 则 div \mathbf{F}(P_0) = 1$
- 3. 设 a 为常数,且 $\forall A, B \in \mathbb{R}^2$,积分 $\int_{L(A)}^{(B)} (x^2 + ayz) dx + (y^2 + 2zx) dy + (z^2 + 2xy) dz$ 与路 径无关,则a=
- 4. 设 2π 周期函数 $f(x) = \begin{cases} x, & x \in (0, \pi]; \\ 0, & x \in (-\pi, 0] \end{cases}$ 的形式 Fourier 级数的和函数为 S(x) ,则 $S(\pi) = 0$

- 微分方程($y\cos x + \cos y$) $dx + (\sin x x\sin y)dy = 0$ 的通解为
- 7. 幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n} x^{2n}$ 在 (-1,1) 的和函数为__
- 设 $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\}$, $f \in C[0,1]$, 将二重积分 $I = \iint (f(x) + f(y)) dxdy$

化成一重定积分的表达式,则I=

- 9. 设 L为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的上半周, A = (-a, 0), B = (a, 0),则 $\int_{L(A)}^{(B)} (x+y) dx + (x-y) dy =$
- 10. 2π 周期函数在区间 $[-\pi,\pi)$ 的定义为 $f(x) = \begin{cases} x+1, & x \in (0,\pi]; \\ 1, & x \in (-\pi,0] \end{cases}$,设f(x)的形式 Fourier

- 二. 解答题 (共6题) (请写出详细的计算过程和必要的根据!)
- 11. (12分) 设 $D = \{(x,y) | x^2 + 4y^2 \le 1\}$, 求 $\iint_D (x^2 + y^2) dxdy$ 。
- 12. (16 分)设 S^+ : $z=1-x^2-y^2$ ($z \ge 0$), 其正法向量的z 分量大于等于0, 求 $\iint_{S^+} x^3 \mathrm{d}y \wedge \mathrm{d}z + y^3 \mathrm{d}z \wedge \mathrm{d}x + (x^2+y^2) \mathrm{d}x \wedge \mathrm{d}y$.
- (12 分) 设 S 为 上 半 球 面 $z = \sqrt{R^2 x^2 y^2}$ (R > 0) 包 含 在 圆 柱 面 $\left(x \frac{R}{2}\right)^2 + y^2 = \frac{R^2}{4} \text{ 内的部分, } 求 \iint_S z^3 dS.$
- 14. (10分)设 L 为曲线 $\begin{cases} x = \cos t + t \sin t \\ y = \sin t t \cos t \end{cases}$, $t \in [0, 2\pi]$, 求 $\int_{L} (x^{2} + y^{2}) dl$.
- 15. (12分)设 $a_n > 0, n = 1, 2, 3, \cdots$ 。
- (I) 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 是否收敛? 若收敛, 证明之; 若不收敛, 举反例;
- (II) 若级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 收敛,级数 $\sum_{n=1}^{\infty} a_n$ 是否收敛?若收敛,证明之;若不收敛,举反例;
- (III) 若 $\{a_n\}$ 单调,且级数 $\sum_{n=1}^{\infty}\sqrt{a_na_{n+1}}$ 收敛,此时级数 $\sum_{n=1}^{\infty}a_n$ 是否收敛?若收敛,证明之;若不收敛,举反例。
- 16. (8分)设 Ω ⊂ \mathbf{R}^3 为有界闭区域,其边界面 $\partial\Omega$ 为光滑正则曲面。
- (1) 设 $f, g \in C^{(2)}$, 求证: $\iint_{\partial\Omega} f \frac{\partial g}{\partial \mathbf{n}} dS = \iiint_{\Omega} f \Delta g dx dy dz + \iiint_{\Omega} \nabla f \cdot \nabla g dx dy dz$, 其中 $\mathbf{n} \to \partial\Omega$
- 的外法向量,算子 $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$;
- (II) 函数 $u=u(x,y,z), v=v(x,y,z) \in C^{(2)}(\Omega)$ 。 若 u 为 调 和 函 数 ($\Delta u=0$),且 当 $(x,y,z) \in \partial \Omega$ 时, u(x,y,z)-v(x,y,z)=0, 求证:

$$\iiint_{\Omega} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right) dxdydz \le \iiint_{\Omega} \left(\left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right) dxdydz.$$

三. 附加题: 已知 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, 求证: $\lim_{x \to 1^-} \sum_{n=1}^{\infty} \frac{x^n (1-x)}{n(1-x^{2n})} = \frac{\pi^2}{12}$.