Assignment 4

Name – Sachin

 $Reg\ no-21BAC10036$

Campus – Vit Bhopal

Code:

1. Load the Dataset

import pandas as pd

dataset = pd.read_csv('winequality-red.csv')

2. Data preprocessing including visualization

Display summary statistics of the dataset

summary_stats = dataset.describe()

print(summary_stats)

Output:

	fixed acidit	y volatile a	cidity	citric	acid	residual	sugar	\	
count	1599.00000	0 1599.	000000	1599.0	00000	1599.0	00000		
mean	8.31963	7 0.	527821	0.2	70976	2.5	38806		
std	1.74109	6 0.	0.179060 0.120000		0.194801		1.409928		
min	4.60000	0.			00000	0.900000			
25%	7.10000	0 0.	0.390000		90000	1.900000			
50%	7.90000	0 0.	520000	0.2	60000	2.2	00000		
75%	9.20000	0.	640000	0.4	20000	2.6	00000		
max	15.90000	0 1.	1.580000		1.000000		15.500000		
	chlorides	free sulfur	dioxide	total	sulfu	r dioxide	de	ensity	\
count	1599.000000	1599	.000000		15	99.000000	1599.0	00000	
mean	0.087467	15	.874922			46.467792	0.9	96747	
std	0.047065	047065 10.460157				32.895324	0.0	01887	
min	0.012000	1.000000				6.000000	0.9	90070	
25%	0.070000 7.000000			22.000000		0.995600			
50%	0.079000	14	.000000			38.000000	0.9	96750	
75%	0.090000	21	.000000			62.000000	0.9	97835	
max	0.611000	72	.000000		2	89.000000	1.0	03690	
	рН	sulphates	alc	ohol	qu	ality			
count	1599.000000	1599.000000	1599.00	0000	1599.0	00000			
mean	3.311113	0.658149	10.42	2983	5.6	36023			
std	0.154386	0.169507	1.06	5668	0.8	07569			
min	2.740000	0.330000	8.40	0000	3.0	00000			
25%	3.210000	0.550000	9.50	0000	5.0	00000			
50%	3.310000	0.620000	10.20	0000	6.0	00000			
75%	3.400000	0.730000	11.10	0000	6.0	00000			
max	4.010000	2.000000	14.90	0000	8.0	00000			

import matplotlib.pyplot as plt

import seaborn as sns

```
# Countplot of wine quality
plt.figure(figsize=(6, 4))
sns.countplot(data=dataset, x='quality')
plt.title('Distribution of Wine Quality')
plt.xlabel('Quality')
plt.ylabel('Count')
plt.show()
Output:
```


3 & 4. Machine Learning Model building and Evaluate the model from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report

X = dataset.drop('quality', axis=1)
y = dataset['quality']

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X train, y train)
y pred = clf.predict(X test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(classification rep)
Output:
Accuracy: 0.66
Classification Report:
```

	precision	recall	f1-score	support
3	0.00	0.00	0.00	1
4	0.00	0.00	0.00	10
5	0.72	0.75	0.73	130
6	0.63	0.69	0.66	132
7	0.63	0.52	0.57	42
8	0.00	0.00	0.00	5
accuracy			0.66	320
macro avg	0.33	0.33	0.33	320
weighted avg	0.63	0.66	0.64	320

5. # Create a random observation

new observation = pd.DataFrame({

'fixed acidity': [7.0],

'volatile acidity': [0.4],

'citric acid': [0.25],

'residual sugar': [2.0],

```
'chlorides': [0.045],

'free sulfur dioxide': [35.0],

'total sulfur dioxide': [120.0],

'density': [0.99],

'pH': [3.2],

'sulphates': [0.6],

'alcohol': [11.0]

})

# Use the trained model to predict the quality of the new observation

predicted_quality = clf.predict(new_observation)

print(f'Predicted Wine Quality: {predicted_quality[0]}')

Output:

Predicted Wine Quality: 6
```