Math 170B Winter 2017

Problem Set 5

Lecturer: Steven Heilman Kyle Barron

Exercise 1

Let X be a standard Gaussian random variable. Let t > 0 and let n be a positive even integer. Show that

$$\mathbf{P}(X > t) \le \frac{(n-1)(n-3)\cdots(3)(1)}{t^n}.$$

That is, the function $t \mapsto \mathbf{P}(X > t)$ decays faster than any monomial.

Proof: Let X be a standard Gaussian random variable and let t > 0. Let n be a positive even integer. Recall that from problem set 3, question 2, we found that for n even, $E[X^n] = (n-1)(n-3)\cdots 1$. Now using the Markov Inequality we have

$$\mathbf{P}(X > t) \le \mathbf{P}(|X| > t) = \mathbf{P}(X^n > t^n) \le \frac{\mathbf{E}[X^n]}{t^n} = \frac{(n-1)(n-3)\cdots 1}{t^n},$$

where the second equality is since n is even, and the inequality is using the Markov Inequality, since X^n is nonnegative.

Exercise 2

Let X be a random variable. Let t > 0. Show that

$$\mathbf{P}(|X| > t) \le \frac{\mathbf{E}X^4}{t^4}.$$

Proof: Let X be a random variable and let t > 0.

$$\mathbf{P}(|X| > t) = \mathbf{P}(|X|^4 > t^4)$$
$$= \mathbf{P}(X^4 > t^4)$$
$$\leq \frac{\mathbf{E}[X^4]}{t^4}.$$

where the first equality is true because x^4 is an increasing function when $x \ge 0$ (and here both |X| and t are nonnegative), the second equality is true because $x^4 \ge 0$ always, and the third line uses the Markov Inequality.

Exercise 3

(The Chernoff Bound.) Let X be a random variable and let r > 0. Show that, for any t > 0,

$$\mathbf{P}(X > r) \le e^{-tr} M_X(t).$$

Problem Set 5 5-2

Consequently, if X_1, \ldots, X_n are independent random variables with the same CDF, and if r, t > 0,

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>r\right)\leq e^{-trn}(M_{X_{1}}(t))^{n}.$$

For example, if X_1, \ldots, X_n are independent Bernoulli random variables with parameter 0 , and if <math>r, t > 0,

 $\mathbf{P}\left(\frac{X_1 + \dots + X_n}{n} - p > r\right) \le e^{-trn} (e^{-tp} [pe^t + (1-p)])^n.$

And if we choose t appropriately, then the quantity $\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_i-p)>r\right)$ becomes exponentially small as either n or r become large. That is, $\frac{1}{n}\sum_{i=1}^{n}X_i$ becomes very close to its mean. Importantly, the Chernoff bound is much stronger than either Markov's or Cheyshev's inequality, since they only respectively imply that

$$\mathbf{P}\left(\left|\frac{X_1+\cdots+X_n}{n}-p\right|>r\right)\leq \frac{2p(1-p)}{nr},\quad \mathbf{P}\left(\left|\frac{X_1+\cdots+X_n}{n}-p\right|>r\right)\leq \frac{p(1-p)}{nr^2}.$$

Proof: Let X be a random variable and let r > 0. Then we have that

$$\mathbf{P}(X \ge r) = \mathbf{P}(e^{tX} \ge e^{tr}) \le \frac{\mathbf{E}[e^{tX}]}{e^{tr}} = e^{-tr} M_X(t),$$

where the first equality uses that t > 0 so the exponential function is increasing, and the inequality uses the Markov inequality (which is valid since $e^x \ge 0$ for all x).

Now suppose that $X_1,...X_n$ are independent and identically distributed. Then

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} > r\right) = \mathbf{P}\left(\sum_{i=1}^{n}X_{i} > rn\right)$$

$$\leq e^{-trn}M_{\sum_{i=1}^{n}X_{i}}(t)$$

$$= e^{-trn}\left(M_{X_{1}}(t)\right)^{n}$$

Exercise 4

Let X_1, X_2, \ldots be independent random variables, each with exponential distribution with parameter $\lambda = 1$. For any $n \ge 1$, let $Y_n := \max(X_1, \ldots, X_n)$. Let 0 < a < 1 < b. Show that $\mathbf{P}(Y_n \le a \log n) \to 0$ as $n \to \infty$, and $\mathbf{P}(Y_n \le b \log n) \to 1$ as $n \to \infty$. Conclude that $Y_n / \log n$ converges to 1 in probability as $n \to \infty$.

Proof: Let $X_1, X_2, ...$ be independent random variables, each exponentially distributed with $\lambda = 1$. For any $n \ge 1$, define $Y_n := \max(X_1, ..., X_n)$. First let c > 0. Then

$$\mathbf{P}(Y_n \le c \log n) = \mathbf{P}(\max(X_1, ..., X_n) \le c \log n)$$

$$= \mathbf{P}(X_1 \le c \log n \cap X_2 \le c \log n \cap \cdots \cap X_n \le c \log n)$$

$$= \mathbf{P}(X_1 \le c \log n) \cdots \mathbf{P}(X_n \le c \log n)$$

$$= \mathbf{P}(X_1 \le c \log n)^n$$

$$= (1 - e^{-c \log n})^n.$$

Problem Set 5

Now define $f(u) = e^u$ and let $g(n) = n \log(1 - \frac{1}{n^c})$.

$$\lim_{n \to \infty} \mathbf{P}(Y_n \le c \log n) = \lim_{n \to \infty} (1 - e^{-c \log n})^n$$
$$= \lim_{n \to \infty} e^{n \log(1 - \frac{1}{n^c})}$$

Now just consider $n \log(1 - \frac{1}{n^c})$, which we can rewrite as $\frac{\log(1 - \frac{1}{n^c})}{\frac{1}{n}}$. This limit as $n \to \infty$ is an indeterminate firm, so we use l'hopital's rule

$$\frac{d}{dn}(\log(1 - \frac{1}{n^c})) = \frac{c}{n^{c+1} - n}$$
$$\frac{d}{dn}(\frac{1}{n}) = \frac{-1}{n^2}.$$

Now note that again $\lim_{n\to\infty}\frac{-cn^2}{n^{c+1}-n}=\lim_{n\to\infty}\frac{-cn}{n^c-1}$ which is again an indeterminate form. Using l'hopital's rule again, we get:

$$\frac{d}{dn}(-cn) = -c$$
$$\frac{d}{dn}(n^c - 1) = cn^{c-1}.$$

So this limit becomes $\lim_{n\to\infty} \frac{-1}{n^{c-1}}$. Now consider the case when $c\in(0,1)$ and when c>1.

- Let $c \in (0,1)$. Then $c-1 \in (-1,0)$ and $\lim_{n\to\infty} \frac{-1}{n^{c-1}} = -\infty$. So we have $\lim_{n\to\infty} g(n) = -\infty$. Then by the limit chain rule, we have $\lim_{u\to-\infty} f(u) = \lim_{u\to-\infty} e^u = 0$.
- Let c > 1. Then c 1 > 0, so $\lim_{n \to \infty} \frac{-1}{n^{c-1}} = 0$. So $\lim_{n \to \infty} g(n) = 0$. Then by the limit chain rule, $\lim_{u \to 0} f(u) = e^0 = 1$.

Therefore, we have that $\lim_{n\to\infty} \mathbf{P}(Y_n \le c\log n) = \begin{cases} 0, & c \in (0,1) \\ 1, & c>1. \end{cases}$ Now we need to conclude that $\frac{Y_n}{\log n} \to 1$ as $n\to\infty$ in probability. First, note that $x \le c, |x-1| > \epsilon$ is true if and only if $x > 1 + \epsilon$ or $x < 1 - \epsilon$.

$$\mathbf{P}(|\frac{Y_n}{\ln n} - 1| > \epsilon) = \mathbf{P}(\frac{Y_n}{\ln(n)} - 1 > \epsilon) + \mathbf{P}(\frac{Y_n}{\ln n} - 1 < -\epsilon).$$

Now let $c=1+\epsilon$. Note that $\mathbf{P}(\frac{Y_n}{\ln n}-1<-\epsilon)\to 0$ corresponds to case 1 above and $\mathbf{P}(\frac{Y_n}{\ln(n)}-1>\epsilon)\to 1$ corresponds to case 2 above. Then note that the complement of $(\frac{Y_n}{\ln n}\leq 1+\epsilon)$ is $(\frac{Y_n}{\ln n}-1>\epsilon)$. So $\mathbf{P}(\frac{Y_n}{\ln n}-1>\epsilon)=1-\mathbf{P}(\frac{Y_n}{\ln n}\leq 1+\epsilon)$, and in the limit this converges to zero. Therefore, $\mathbf{P}(|\frac{Y_n}{\ln n}-1|)$ converges in probability to 1.

Exercise 5

We say that random variables X_1, X_2, \ldots converge to a random variable X in L_2 if

$$\lim_{n \to \infty} E|X_n - X|^2 = 0.$$

Show that, if X_1, X_2, \ldots converge to X in L_2 , then X_1, X_2, \ldots converges to X in probability. Is the converse true? Prove your assertion. Problem Set 5 5-4

Proof: Let $X, X_1, X_2, ...$ be random variables such that $X_1, X_2, ...$ converge to X in L_2 . That is,

$$\lim_{n \to \infty} \mathbf{E}[|X_n - X|^2] = 0.$$

We want to show that $X_1, X_2, ...$ converges to X in probability, that is, if for all $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}(|X_n - X| > \epsilon) = 0.$$

First recall that the Markov Inequality says that

$$\mathbf{P}(|Z| \ge t) \le \frac{\mathrm{E}[|Z|^2]}{t^2}, \forall t > 0.$$

Let $\epsilon > 0$, let $t = \epsilon$, and let $Z = X_n - X$. So then we have

$$\mathbf{P}(|X_n - X| > \epsilon) \le \frac{\mathrm{E}[(X_n - X)^2]}{\epsilon^2}.$$

Since we know that $X_1, X_2, ...$ converge to X in L_2 ,

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0 \Rightarrow \lim_{n \to \infty} \mathbf{P}(|X_n - X| > \epsilon) = 0.$$

So X_1, X_2, \dots converge in probability.

The converse is not true: convergence in probability does not imply convergence in L_2 . For a counterexample, let X_n be a random variable such that for n = 1, 2, ...,

$$X_n = \begin{cases} e^n, & \text{with probability } \frac{1}{n} \\ 0, & \text{with probability } 1 - \frac{1}{n}. \end{cases}$$

Then for all $\epsilon > 0$, $\mathbf{P}(|X_n| < \epsilon) = 1 - \frac{1}{n} \to 1$ as $n \to \infty$. Therefore, X_n converges to 0 in probability since $\mathbf{P}(|X_n| > \epsilon) = 1 - \mathbf{P}(|X_n| < \epsilon)$. However $\mathbf{E}[|X_n - 0|^2] = \mathbf{E}[|X_n|^2] = \frac{e^{2n}}{n}$. Since $\frac{e^{2n}}{n} \to \infty$ as $n \to \infty$, X_n does not converge to 0 in L_2 .

Exercise 6

Let $X_1, X_2, ...$ be independent, identically distributed random variables such that $E|X| < \infty$ and $var(X) < \infty$. For any $n \ge 1$, define

$$Y_n := \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Show that Y_1, Y_2, \ldots converges in probability. Express the limit in terms of EX and var(X).

Proof: Let $X_1, X_2, ...$ be independent and identically distributed with $E[|X|] < \infty$ and $Var(X) < \infty$. Define

$$Y_n := \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Let $\epsilon > 0$. To show that $Y_1, Y_2, ...$ converges in probability we need to show that $\lim_{n \to \infty} \mathbf{P}(|Y_n - Y| > \epsilon) = 0$. I'll show that Y, the limit of Y_n as $n \to \infty$, is equal to the second moment of X_1 (which is the same for

Problem Set 5 5-5

all X since they're independent and identically distributed). I use Markov's inequality with n = 2 and then simplify:

$$\begin{aligned} \mathbf{P}(|Y_n - Y| > \epsilon) &= P\left(\left|\frac{x_1^2 + \dots + x_n^2}{n} - \mathbf{E}[X_1^2]\right| > \epsilon\right) \\ &\leq \frac{1}{\epsilon^2} \mathbf{E}\left[\left|\frac{x_1^2 + \dots + x_n^2}{n} - \mathbf{E}[X_1^2]\right|^2\right] \\ &= \frac{1}{\epsilon^2} \mathbf{E}\left[\left(\frac{x_1^2 + \dots + x_n^2}{n} - \frac{n\mathbf{E}[X_1^2]}{n}\right)^2\right] \\ &= \frac{1}{\epsilon^2} \mathbf{E}\left[\left(\frac{x_1^2 + \dots + x_n^2}{n} - \frac{\mathbf{E}[X_1^2] + \dots + \mathbf{E}[X_n^2]}{n}\right)^2\right] \\ &= \frac{1}{\epsilon^2} \mathbf{E}\left[\left(\frac{x_1^2 + \dots + x_n^2}{n} - \frac{\mathbf{E}[X_1^2 + \dots + X_n^2]}{n}\right)^2\right] \\ &= \frac{1}{\epsilon^2 n^2} \mathbf{E}\left[\left(x_1^2 + \dots + x_n^2 - \mathbf{E}[X_1^2 + \dots + X_n^2]\right)^2\right] \\ &= \frac{1}{\epsilon^2 n^2} \mathbf{Var}(X_1^2 + \dots + x_n^2) \\ &= \frac{1}{\epsilon^2 n} \mathbf{Var}(X_1^2). \end{aligned}$$

Now letting $n \to \infty$, we have that $\frac{\operatorname{Var}(X_1^2)}{\epsilon^2 n} \to 0$. Since probabilities are nonnegative and we have that $\mathbf{P}(|Y_n - Y| > \epsilon) \le \frac{\operatorname{Var}(X_1^2)}{\epsilon^2 n}$, we know that $\mathbf{P}(|Y_n - Y| > \epsilon) \to 0$. Therefore, Y_1, Y_2, \ldots converges in probability to $\mathrm{E}[X_1^2] = \operatorname{Var}(X_1) + \mathrm{E}[X_1]^2$. (Note that this is well defined since both the variance and mean of X_1 are finite.)