M1.21 — Représentation de l'information — Évaluation

IUT Troyes — DUT SRC — 2007-2008

Durée: 1h30

DOCUMENTS ET CALCULATRICES INTERDITS

ATTENTION, développez tous vos calculs sur votre feuille d'examen!

1 Questions de cours (4 points)

Compléter les phrases suivantes (un seul mot à découvrir par phrase) :

- a) Pour jouer un son sur le haut-parleur de l'ordinateur, on doit fournir un signal à l'entrée de ce haut-parleur.
 - b) La fréquence d'un signal s'exprime en
 - c) L'inverse de la fréquence est la
- d) Un filtre analogique qui ne laisse passer que les basses fréquences d'un signal est un filtre

2 Représentation des nombres (2 points)

Représenter en binaire sur 8 bits les nombres entiers relatifs suivants :

- a) $(71)_{10}$
- **b)** $(-119)_{10}$

3 Bases de numération (4 points)

Représenter en base 7 les nombres entiers suivants :

- a) $(91)_{10}$
- b) $(374)_{10}$

Donner la valeur décimale des nombres suivants :

- c) $(234)_5$
- d) $(29)_{33}$

4 Norme IEEE-754 (2 points)

Un nombre réel représenté en norme IEEE-754 se code sous la forme :

$$n = (-1)^s * 2^{(e+127)} * 1, m_b$$

avec s le signe, e l'exposant et m_b la mantisse binaire.

Représenter le nombre réel -32,875 en binaire 32 bits à l'aide de la norme IEEE-754.

5 Circuit électronique (4 points)

La loi d'Ohm sécrit U=RI.

- a) Calculer la résistance R_1 d'un dipôle qui, soumis à une tension $U_1=20V$, est traversé par un courant $I_1=0,05A$.
- b) Calculer l'intensité I_2 du courant qui traverse une résistance $R_2=100\Omega$ soumise à une tension $U_2=100mV$.
- c) Calculer la résistance équivalente R_{eq} du montage suivant, sachant que $R_3=50\Omega$ et $R_4=150\Omega$.

6 Entropie (3 points)

On définit l'entropie d'un message m par :

$$H(m) = -\sum_{i=1}^{N} p(i) * \log_2[p(i)], \sum_{i=1}^{N} p(i) = 1$$

On donne $log_2(1/2^n) = -n$, et donc $log_2(1/2) = -1$, $log_2(1/4) = -2$, . . .

On considère l'alphabet à quatre symboles : a, b, c et d.

a) Donner les probabilités d'apparition a priori de chacun des symboles.

On considère le message m_1 suivant comme caractéristique du comportement du système : m_1 ="ccabaccacdcbadcc"

- b) Donner les probabilités d'apparition de chacun des symboles connaissant m_1 .
- c) Calculer la quantité d'information Q_1 portée par le message m_1 .

7 Cryptographie (1 point)

Décoder le message suivant en laissant la ponctuation inchangée :

f'hvw elhq, yrxv dyhc ghfrgh oh phvvdjh vhfuhw!