

I C Y T E

Escala de multas por diferentes criterios

Exceso en el límite de velocidad:

$$Valor\ de\ la\ multa = \begin{cases} 0 & si\ v \le 50 \\ 120 & si\ 50 < v < 60 \\ 366 & si\ 60 \le v < 70 \\ 720 & si\ v \ge 70 \end{cases}$$

¿Tiene sentido pagar lo mismo si se ha excedido 1km/h o si se ha excedido 10 km/h?

Alcoholemia:

$$Valor\ de\ la\ multa = \begin{cases} 0 & si\ indice \le 0.22\\ 120 & si\ 0.22 < indice < 0.30\\ 366 & si\ 0.30 \le indice < 0.40\\ 720 & si\ indice \ge 0.40 \end{cases}$$

¿Es justo pagar lo mismo si se ha excedido 0.01 o si se ha excedido en 0.07?

De valores por rangos a valores difusos

Exceso en el límite de velocidad:

Valor de la multa =
$$\begin{cases} 0 & si \ v \le 50 \\ 120 & si \ 50 < v < 60 \\ 360 & si \ 60 \le v < 70 \\ 720 & si \ v \ge 70 \end{cases}$$

Diferentes valores del Parámetro de la función sigmoidea

Posible solución

Multa: proporcional a cuán cierto es que "la velocidad es alta"

p = "La velocidad es alta"
$$multa = 720 \times \mu_p$$

Posibles funciones de pertenencia

Dualidad conjunto <-> proposición

$$p(x) \equiv$$
 "El píxel x es GRIS-OSCURO"

El píxel pertenece al conjunto GRIS-OSCURO

Conjunto NO difuso:

$$\mu_A(x) = \begin{cases} 1 & \text{si } y \text{ s\'olo si} & x \in A \\ 0 & \text{si } y \text{ s\'olo si} & x \notin A \end{cases}$$

Conjunto difuso:

$$A = \{ [x, \mu_A(x)] \ con \ x \in X \}$$

 $\mu_A(x) \in [0, 1]$

Operadores booleanos y difusos

CONJUNCIÓN

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

IMPLICACIÓN

p	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg p \land (p \lor q)$$

DISYUNCIÓN

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

NEGACIÓN

p	$\neg p$
0	1
1	0

¿Cómo trabajaríamos si consideramos el 0 y 1 como valores de verdad, que operen numéricamente?

Operadores como valores de verdad

CONJUNCIÓN

μ_p	μ_q	$c(\mu_p,\mu_q)$
0	0	0
0	1	0
1	0	0
1	1	1

IMPLICACIÓN

μ_p	μ_q	$d(1-\mu_p,\mu_q)$
0	0	1
0	1	1
1	0	0
1	1	1

DISYUNCIÓN

μ_p	μ_q	$d(\mu_p,\mu_q)$
0	0	0
0	1	1
1	0	1
1	1	1

NEGACIÓN

μ_p	$1-\mu_p$
0	1
1	0

Las operaciones con los valores de verdad son ARITMÉTICAS, no lógicas.

CONJUNCIÓN

μ_p	μ_q	$c(\mu_p,\mu_q)$
0	0	0
0	1	0
1	0	0
1	1	1
0,1	0,5	
0,1	0,2	
0,1	0,9	
0,8	0,1	

$$c(\mu_p, \mu_q) = \min(\mu_p, \mu_q)$$

$$c(\mu_p,\mu_q)=\mu_p\,\mu_q$$

$$c(\mu_p,\mu_q) = \sqrt{\mu_p \mu_q}$$

DISYUNCIÓN

μ_p	μ_q	$d(\mu_p,\mu_q)$
0	0	0
0	1	1
1	0	1
1	1	1
0,1	0,5	
0,1	0,2	
0,1	0,9	
0,8	0,1	

$$c(\mu_p, \mu_q) = \max(\mu_p, \mu_q)$$

$$c(\mu_p, \mu_q) = \mu_p + \mu_q - \mu_p \mu_q$$

$$c(\mu_p, \mu_q) = 1 - \sqrt{(1 - \mu_p)(1 - \mu_q)}$$

Extensión difusa de AND y OR

AND

T-Norm $T(\mu_A(x), \mu_B(x))$

OR

S-Norm $S(\mu_A(x), \mu_B(x))$

Minimum

 $MIN(\mu_A(x), \mu_B(x))$

Algebraic product

$$\mu_A(x)\mu_B(x)$$

Drastic product

$$MIN(\mu_A(x), \mu_B(x))$$
 if $MAX(\mu_A(x), \mu_B(x)) = 1$

0 otherwise

Lukasiewicz AND (Bounded Difference)

$$MAX(0, \mu_A(x) + \mu_B(x) - 1)$$

Einstein product

$$\mu_A(x)\mu_B(x)/(2-(\mu_A(x)+\mu_B(x)-\mu_A(x)\mu_B(x)))$$

Hamacher product

$$\mu_A(x)\mu_B(x)/(\mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x))$$

Yager operator

$$1 - MIN(1, ((1 - \mu_A(x))^b + (1 - \mu_B(x)^b)^{1/b}))$$

Maximum

$$MAX(\mu_A(x), \mu_B(x))$$

Algebraic sum

$$\mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x)$$

Drastic sum

$$MAX(\mu_A(x), \mu_B(x))$$
 if $MIN(\mu_A(x), \mu_B(x)) = 0$

1 otherwise

Lukasiewicz OR (Bounded Sum)

$$MIN(1, \mu_A(x) + \mu_B(x))$$

Einstein sum

$$(\mu_A(x) + \mu_B(x))/(1 + \mu_A(x)\mu_B(x))$$

Hamacher sum

$$(\mu_A(x) + \mu_B(x) - 2\mu_A(x)\mu_B(x))/(1 - \mu_A(x)\mu_B(x))$$

Yager operator

MIN(1,
$$(\mu_A(x)^b + \mu_B(x)^b)^{1/b}$$
)

Valor de verdad de una proposición

Por medio de una función de pertenencia

Requiere variable lingüística.

Por medio de opciones

Como la escala de Likert. $p(x) \equiv$ "El servicio x es bueno."

$\mu_{p} = 0$	$\mu_p = 0.25$	$\mu_{p} = 0.5$	$\mu_{p} = 0.75$	$\mu_p = 1$
Totalmente en desacuerdo	En desacuerdo	Ni de acuerdo, ni en desacuerdo	De acuerdo	Totalmente de acuerdo

$p(x) \equiv$ "El píxel x es gris oscuro"

Subjetivamente

Un experto asigna cuán cierta es una proposición.

$$p(x) \equiv$$
 "El sistema es apropiado."

Proposiciones compuestas

Expresión lingüística: $p(x) \equiv$ "El candidato x es joven y tiene experiencia."

Expresión lógica:

$$p(x) \equiv q(x) \wedge r(x)$$

Valor de verdad:

$$\mu_p \equiv max(\mu_q,\mu_r)$$
 o $\mu_p \equiv \sqrt{\mu_q \; \mu_r}$ o ...

Como árbol:

Operando con los grados de verdad de las PROPOSICIONES SIMPLES

se calcula el grado de verdad de las PROPOSICIONES COMPUESTAS.

Proposición compuesta más compleja

 $p(x) \equiv$ "El candidato x es apropiado cuando es joven, tiene buena formación o tiene experiencia en el tema, y se expresa correctamente."

Proposiciones simples:

 $p(x) \equiv$ "El candidato x es apropiado"

 $q(x) \equiv$ "El candidato x es joven"

 $f(x) \equiv$ "El candidato x tiene buena formación"

 $e(x) \equiv$ "El candidato x tiene experiencia en el tema"

 $w(x) \equiv$ "El candidato x se expresa correctamente."

Expresión lógica:

$$p(x) \equiv j(x) \wedge [f(x) \vee e(x)] \wedge w(x)$$

Como árbol:

Cálculo del valor de verdad (compensatoria)

 $p(x) \equiv$ "El candidato x es apropiado cuando es joven, tiene buena formación o tiene experiencia en el tema, y se expresa correctamente."

$$p(x) \equiv j(x) \land [f(x) \lor e(x)] \land w(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Predicados Simples

Variable difusa

Etiqueta

Numérico continuo

Predicados Compuestos

Y (And)

O (Or)

No (Not)

Resultados de la evaluación

(Haga click sobre una celda de resultad	o para obtener el diagrama	a detallado de la evaluación de ese registro)
,		

翻	icid ▽+	Iree ▽中	Rareza2 ▽ 中	Criticid ▽中	Irre ▽中	In ▽中	Duración ▽+	Exte ▽中	Inefi ▽中	Estándar / Máx-M ▽+	Probabilístico / ∇ 🗸 🗗	GMBCL (Geometri ▽中	AMBCL (Arithmeti ▽中
1		0,1	75	0,2		0,5	0,9		0,8	0,9	0,9098	0,7557	0,7821
2		0,2	25	0,1	0,1	0,2	0,6	0,8	0,8	0,8	0,8792	0,7257	0,7438
3		0,3	3	0,4	0,5	0,7	0,6	0,1	0,9	0,7	0,8755	0,7756	0,7353
4		0,7	10	0,9	0	0,8	0,2	0,01	0,8	0,8	0,7965	0,6975	0,7285
5		0,9	18	0,3	0,2	0,2	0,1	0,8	0,5	0,5	0,4185	0,4862	0,5366
6		1	5	0,7	1	0,5	0,8	0,5	0,2	0,0474	0,0451	0,1941	0,1405
7		0,9	87	0,1	0,9	0,8	0,6	0,2	0,2	0,0474	0,0444	0,181	0,1371
8	5	0,2	10	0,8	0,8	0,8	0,2	0	0,1	0,018	0,0151	0,0983	0,0779

			1 11 10 11 11 11		
Pa	Para todo = 0,018	Para todo = 0	Para todo = 0,3865	Para todo = 0,1944	
	Existe = 0,9	Existe = 0,9999	Existe = 0,5605	Existe = 0,6651	

Ejemplo sencillo de aplicación

 $pr(x) \equiv$ "El paciente x debe llamar a emergencias cuando tiene fiebre alta y además tiene alguno de los siguientes síntomas: tos, dolor de garganta, dificultad para respirar."

Expresión lógica:

$$p(x) \equiv f(x) \wedge [t(x) \vee g(x) \vee r(x)]$$

Como árbol:

Proposiciones simples:

