Università degli Studi di Catania Corso di Laurea in FISICA

Prova intermedia di Analisi Matematica 1

24 febbraio 2020

	1 Pignandara ad almona una della gaguanti demanda:
	1.Rispondere ad almeno una delle seguenti domande:
	(1) Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$.
	Si dice che A è dotato di minimo se (completare la definizione).
	Si dice che A è $limitato$ $inferiormente$ se (completare la definizione).
	Se A è limitato inferiormente, si chiama estremo inferiore di A (completare la definizione).
	Stabilire se le seguenti affermazioni sono vere o false. Dimostrare quelle vere e portare un controesempio per quelle false.
	$\hfill \square$ Se A è dotato di minimo allora A è limitato inferiormente ;
	$\hfill \square$ se A è limitatato inferiormente allora A è dotato di minimo.
	(2) Sia $\{a_n\}$ una successione di numeri reali. Completare le seguenti definizioni.
	Si dice che $\{a_n\}$ è di Cauchy se
	Si dice che $\{a_n\}$ è limitata, se
	Stabilire se le seguenti affermazioni sono vere o false. Per quelle false portare un controesempio.
	\square Se $\{a_n\}$ è di Cauchy allora $\{a_n\}$ è limitata ;
	\square se $\{a_n\}$ è limitata allora $\{a_n\}$ è di Cauchy.
2.	Rispondere ad almeno una delle seguenti domande:

- - (1) Enunciare e dimostrare il teorema sul limite delle funzioni monotone.
 - (2) Enunciare e dimostrare il teorema di Weierstrass.

- 3. Risolvere almeno uno dei seguenti esercizi:
- (1) Studiare il carattere della successione

$$\left\{\frac{\sqrt[n]{n!}}{n}\right\}.$$

(2) Calcolare, se esistono, i seguenti limiti

$$\lim_{x\to +\infty} x^4 \left(1+\frac{\sin^3 x}{x}\right), \quad \lim_{x\to 0^+} \frac{\log(1+x+x^2)}{\sqrt{x}(1-\cos x)}.$$

- 4. Risolvere almeno uno dei seguenti esercizi:
- (1) Sia $\{a_n\}$ una successione numerica tale che

$$a_1 = 1$$
, $a_{n+1} = (n^2 + 1)a_n \quad \forall n > 1$.

Provare che

$$a_n > 0 \quad \forall n \in \mathbb{N}.$$

Cosa si può dire del

$$\lim_{n \to +\infty} \frac{1}{a_n}$$

 $\lim_{n \to +\infty} \frac{1}{a_n}?$ (2) Data la funzione definita dalla legge

$$f(x) = \sup_{n \in \mathbb{N}} \left(\sqrt{\frac{x|x|}{x+2}} \right)^n$$

- 1) determinarne il dominio;
- 2) stabilire se f è prolungabile per continuità in $\mathbb R$ e, in caso affermativo, costruirne un prolungamento continuo.