Highest Response Ration Next (HRRN) NPE

)	PID/P #	AT	ВТ
	I	0	3
	2	2	6
	3	4	4
	4	6	5
	5	8	2

✓ Response Ratio = (w+s)/s; where w is wait time s is service time

✓ Criteria is Response Ratio

Maximisation; Non Premptive

✓ SJF Variant to mitigate Starvation

√ Favours shorter jobs but also limits

wait time of longer jobs

✓ Jobs long waiting over shorter ones

PI	P2	Р3	P5	P4

15 3 13

20

Calculate RR for P3 toP5 when there is competition RR @ t=9; P3=(5+4)/4 = 2.25 P4=(3+5)/5=1.6P5=(I+2)+2=1.5

HRRN – 2nd Example

PID/P #	AT	ВТ
1	1	I
2	4	2
3	5	6
4	6	2
5	7	4

Response Ratio @ t=6; P3=(1+6) / 6 = 1.1 P4= (0+2)/2=1

@ 12: P4=(6+2)/2=4 P5=(5+4)/4=2.05

E	PI	E	P2	Р3	P4	P5

0 1 2 4 6 12 14 18

A Few more numericals on RR

✓ Assume there are 4 processes in a setup with burst times of 4, 1,8 and 1 respectively. Assume all arrive at the same time instant t and TQ=1. Compute the finish times and wait times of all processes.

Assume there are n processes following a Round Robin scheduling strategy with context switch time of s. Find the time quantum q for a process Pi to get its turn back at the processor for a gurantee of t seconds.

From above setup; t= 4s+3q; q= (t-4s)/3; in general q= (t-ns)/(n-1)

Numericals on Scheduling

	PID/P	AT	CPUTimeI	IO Time		FT
Q	#				Time2	
	I	0		2	2	5
	2		2	4	5	I 3
	3	2	3	6	8	22

Given the above process setup; compute the finish times of all processes; a process spends time both on cpu and io. I/O time can be overlapped with CPU but cpu times cannot be overlapped and the ordering of CPU I followed by IO followed by CPU 2 needs to be maintained. (also IO is not overlapped across processes)

PI	P2	P2	PI	PI	P3	P3	P3	P2	IDL	E	P3	CPU
0 I	2	3	. 4	1 !	5 (5	7	8	13	14	22	
I	PI-IC)	P2-I	0			I	P3-	-10		IDLE	10

Overlapped IO Scheduling

	PID/P#	AT	IO Time I	CPU	IOTime 2	FT
)	I	0	4	14	2	20
	2	0	8	28	4	50
	3	0	12	42	6	94

	PI	PI	PI	P2			Р3			CPU
0 4		8	12	18	20	46	50	88	3	
PI		IDL	.E	PI	1	DLE				Ю
P2-	10		IC	LE			P2	IDLE		10
P3-I	0		IDLE						P3	