

Classification task on Spiking Heidelberg Digits Dataset

AYUSH BODADE, ayushbodade1@gmail.com

My Code

https://github.com/ayushb03/snn-working-memory-edge-ai (V0: SNN_2, V1: SNN_3, V2: SNN_4) https://github.com/ayushb03/event-ssm

Research Paper on Deep State-Space Models: <u>Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models</u>

Dataset

https://tonic.readthedocs.io/en/latest/generated/tonic.datasets.SHD.html (SHD served by tonic library)

https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/ (raw)

Analaysis

https://github.com/ayushb03/snn-working-memory-edge-ai/blob/main/notebooks/SHD_visualisation.ipynb

Data Pre-Processing

The dataset is pre-processed into frames using the SHD2Raster transform, which encodes spikes into binary frames with a time resolution of 128 steps.

```
# tensor has dimensions (time_steps, encoding_dim)
tensor = np.zeros((events["t"].max()+1, self.encoding_dim), dtype=i
np.add.at(tensor, (events["t"], events["x"]), 1)
#return tensor[:self.sample_T,:]
tensor = tensor[:self.sample_T,:]
tensor = np.minimum(tensor, 1)
#tensor = np.packbits(tensor, axis=0) pytorch does not have an unpa
return tensor
```

Architecture

Input: 700 channels, transformed to 128 time steps.

Model	Network Architecture	Layer Configuration	
SNN_2_lif_hidden_64_epochs_100	2 layers of LIF neurons	$700 \rightarrow 64 \rightarrow 20$ (output, no reset)	
SNN_3_lif_hidden_64_epochs_100	3 layers of LIF neurons	$700 \rightarrow 64 \rightarrow 64 \rightarrow 20$ (output, no reset)	
SNN_4_lif_hidden_128_epochs_100	4 layers of LIF neurons	$700 \rightarrow 128 \rightarrow 128 \rightarrow 128 \rightarrow 20$ (output, no reset)	
Deep State-Space Models			

Training

EPOCHS = 100

BATCH SIZE = 256

Model	Loss Function	Optimizer	Learning Rate	Additional Notes
SNN_2_lif_hidden_64_epochs_100	Cross-entropy with label smoothing (0.3)	Adam	5e-4	-
SNN_3_lif_hidden_64_epochs_100	Cross-entropy with label smoothing (0.3)	Adam	5e-4	Learning rate decay
SNN_4_lif_hidden_128_epochs_100	Cross-entropy with label smoothing (0.3)	Adam	5e-4	Step decay every 10 epochs

Deep State-Space Models:

• EPOCHS: 30

• CONFIG: https://github.com/ayushb03/event-ssm/blob/main/outputs/2024-11-08-12-31-56/hydra-outputs/2024-11-08-12-31-56/hydra/config.yaml

Results

Test Accuracy

SNN_2_lif_hidden_64_epochs_100: 57.23%

SNN_3_lif_hidden_64_epochs_100: 66.94%

SNN_4_lif_hidden_128_epochs_100: **71.68%**

Deep State-Space Model for Neuromorphic Computing: 93.3%

Confusion Matrix

SNN_2_lif_hidden_64

SNN_3_lif_hidden_64

SNN_4_lif_hidden_128

Train Accuracy

Train Loss

Comments

- SCONV2DLSTM, RLEAKY, SLSTM show strong potential for improved performance.
- Further learning optimizations can boost accuracy.
- Employing deeper SNNs could enhance results.
- Perhaps Deep State Space Models could be explored