Chi-square Tests

1-way Classification: Goodness of Fit Test

<u>Example Question</u>: Are the 3 groups independent of each other (i.e., the same proportion of people in each group?

	Group 1	Group 2	Group 3	Total
Observed	50	10	30	(50+10+30) = 90
Expected	90/3 =30	90/3 =30	90/3 =30	90

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$
, where $O =$ observed values, and $E =$ expected values

$$\chi^2 = \frac{(50 - 30)^2}{30} + \frac{(10 - 30)^2}{30} + \frac{(30 - 30)^2}{30} = \underline{26.6}$$

2-way Classification: Contingency Test

Example Question: Is Category 1 independent of Category 2?

		Category A			Total
		Group A1	Group A2	Group A3	
ory B	Group B1	15 (<i>E</i> =22.2)	5 (<i>E</i> =4.4)	20 (<i>E</i> =13.3)	40
Category	Group B2	35 (<i>E</i> =27.8)	5 (<i>E</i> =5.6)	10 (<i>E</i> =16.7)	50
Total		50	10	30	90

$$E_{ij} = \frac{R_i C_j}{N} \qquad , \quad \text{where R = row, C = column, N = Total,} \\ \chi^2 = \sum \frac{(O-E)^2}{E} \quad , \quad \text{where O = observed values,} \\ \text{and } E = \text{expected values}$$

$$E_{12} = \frac{40 \cdot 10}{90} \qquad E_{23} = \frac{50 \cdot 30}{90}$$

$$\chi^2 = \frac{(15 - 22.2)^2}{22.2} + \frac{(35 - 27.8)^2}{27.8} + \frac{(5 - 4.4)^2}{4.4} + \frac{(5 - 5.6)^2}{5.6} + \frac{(20 - 13.3)^2}{13.3} + \frac{(10 - 16.7)^2}{16.7} \approx 10.3$$