# Signal Processing and Communications Hands-On Using scikit-dsp-comm Part 3

©2017 Mark Wickert

# **Communications Theory & Practice**

- In this part of the tutorial the focus is on signal processing for communications
- The Labs will involve the use of the RTL-SDR or optionally archived captures found in the tutorial repository

# **Top Level Block Diagram**



- Communication system modeling and simulation are woven throughout all of the scikit-dsp-comm package
- The flavors of communication are *analog* and *digital* modulation
  - The above block diagram is digital as bits flow into the encode block and out the decoder block
  - To analog is a misnomer as the channel is waveform based, which is also analog signal processing too
  - In analog communications the message or information signal is directly *modulated* on to the channel

## **Use Case: Modeling Satellite Commnunications Systems**



Wideband Sat-Comm simulation model

# **Baseband or Carrier Based**

- The signals or waveforms that carry communication information are either baseband or carrier based
- Wired Ethernet is an example of baseband, as are interconnects within our devices
- Wireless communications uses a radio frequency (RF) carrier to allow free space propagation to serve as the channel to carry the signal from the transmitter (tx) to the receiver (rx)
  - There is also free space optical and optical fiber

### **Carrier Modulation**

• A modulated carrier can be represented as

$$x_c(t) = A(t)\cos\left[2\pi f_c t + \phi(t)\right] \tag{1}$$

where A(t) is linear modulation,  $f_c$  the carrier frequency, and  $\phi(t)$  is phase modulation

- Amplitude modulation is where radio started, and still is in use today in both analog and digital communications
- Phase modulation encompasses frequency modulation (FM) as well, since the two are related by differentiation/integration, e.g.,

$$\phi(t) =$$
Phase Deviation of the Carrier in radians (2)

$$\frac{1}{2\pi} \cdot \frac{d\phi(t)}{dt} = \text{Frequency Deviation in Hz of the carrier}$$
 (3)

### Carrier Demodulation in Python with the RTL-SDR

- **Demodulation**: Undoing at the receiver what was done at the transmitter to recover the data bits or analog signal
- As a quick review, an FM modulated carrier applies the message signal m(t) to the carrier signal  $x_c(t)$  such that the derivative of the phase deviation,  $d\phi(t)/dt$ , (also the frequency deviation) is proportional to the message:

$$x_c(t) = A_c \cos \left[ 2\pi f_c t + \phi(t) \right] = A_c \cos \left[ 2\pi f_c t + 2\pi k_d \int^t m(\alpha) d\alpha \right],$$
 (4)

where  $k_d$  is the modulator frequency deviation constant.

• To demodulate FM you first consider the ideal discriminator which takes in  $x_c(t)$  and operates on the phase deviation to produce

$$y_D(t) = \frac{1}{2\pi} K_D \frac{d\phi(t)}{dt} \tag{5}$$

where  $K_{\mathcal{D}}$  is the discriminator gain constant

ullet Notice that for FM, that is  $\phi(t)=2\pi f_D\int^t m(lpha)dlpha$  as defined above,

$$y_D(t) = \underbrace{K_D}_{v/Hz} \cdot \underbrace{f_D}_{v/Hz} \cdot \underbrace{m(t)}_{v}$$
(6)

- To demodulate FM, the *complex baseband discriminator*, also known as the *quadricorrelator*, has a convenient DSP implementation
- At complex baseband  $x_c(t)$  is of the form

$$\tilde{x}_c(t) = \cos[\underbrace{2\pi\Delta f t + \phi(t)}_{\theta(t)}] + j\sin[\underbrace{2\pi\Delta f t + \phi(t)}_{\theta(t)}] = x_I(t) + jx_Q(t), \tag{7}$$

where I have assumed a small frequency error  $\Delta f$  in the frequency translation of  $x_c(t)$  to baseband

• The frequency discriminator obtains  $d\theta(t)/dt$  where in terms of the I and Q signals

$$\theta(t) = \tan^{-1}\left(\frac{x_Q(t)}{x_I(t)}\right) \tag{8}$$

• The derivative of  $\theta(t)$  is

$$\frac{d\theta(t)}{dt} = \frac{x_I(t)x_Q'(t) - x_I'(t)x_Q(t)}{x_I^2(t) + x_Q^2(t)}$$
 (9)

- In DSP  $x_I(t)\Rightarrow x_I(nT)=x_I[n]$  and  $x_Q(t)\to x_Q(nT)=x_Q[n]$ , where T is the sample spacing and  $1/T=f_s$  is the sampling rate. The derivatives,  $x_I'(t)$  and  $x_Q'(t)$ , are approximated by the backwards difference  $x_I[n]-x_I[n-1]$  and  $x_Q[n]-x_Q[n-1]$  respectively
- Inside rtlsdr\_helper this is impolkemented in y = discrim(x) as:

# **RTL-SDR Architecture**

### **Inside the Dongle**



Moving the Signal from the Carrier to Complex Baseband



# **Generic Demodulation Algorithm**



# Signals Of Interest in the Tutorial

### **Broadcast FM Mono**



### **Broadcast FM Stereo**



# Frequency Shift Keying Demod (Arduino-based FM/FSK Stereo tx)



Move to working with the hardware using various Jupyter notebooks