STUDY OF ENDPLATE VASCULAR CHANNELS IN THE VERTEBRAL BODY

Iris Shieh; Tomonori Yamaguchi; Won C Bae, PhD; Robert L Sah, MD, ScD; Nozomu Inoue, MD, PhD; Koichi Masuda, MD

UCSD-Doshisha Medical Imaging Research Center 4th Symposium September 1, 2011

University of California
San Diego
ORTHOPAEDIC SURGERY

Background

- One of the most prominent diseases in industrialized countries.¹
- Most adults are affected by spinal pain at some point in their lives.²
- Greatly decreases a person's general quality of life.²
- In the U.S. 80% of the population has experienced back pain, 40% of those cases are connected to degenerative disc disease, DDD.3

Low back pain⁴

Disc Degeneration

- Uneven distribution of loads across the entire disc
 - Site-specific damage
- Endplate fissures
 - Loss of hydration
- Loss of Nutrients
 - Adult disc is avascular
 - Disc nutrition:
 - Vertebral body (vessels) → bony endplate (capillary network) → cartilage endplate (diffusion) → disc matrix (diffusion) → disc cells

Degenerative Disc Disease

"MRI of the lumbar spine.
Sagittal T2 image showing
DDD at L5-S1. Note the loss of
white signal (dehydration) and
loss of disc height."5

- Occurs due to both impaired nutrient transport and/or unusual mechanical loading.
- Impaired nutrient transport has more negative consequences.
- Diffusion capacity is decreased as vascular channels in degenerated discs are compromised.⁶

Evaluation of Bony Endplate

- Micro-Computerized Tomography
- Vascular tracer
 - Sodium fluorescein
 - UV microscopy
- Nitrous oxide (as a tracer)
 - Electrochemical measurement
- Immunocytochemistry
- Immunohistochemistry

Evaluation of Bony Endplate

Sand rat injected *in vivo* with a fluorescein vascular tracer; red blood cells are indicated by the arrows.⁷

MicroCT 3D images of L5-6 and L6-7 discs of 2, 8, and 23-month old sand rats.⁷

Histologic view of disc and endplates.7

Project Outline

Overall Aim

– to evaluate the surface roughness of vertebral endplate in cadaveric human lumbar spines and to determine variation with disc grade, level, and anatomic region by using micro-computed tomography to examine the microstructure of the endplate tissue, specifically the vascular canals, and correlate the variations with different levels of disc degeneration.

Specific Aim

 to find the practical resolution for visualizing the microstructure of the vertebral endplate

Scanning Methodology

Shimadzu SMX-160CTS

Cored sample

Sample holder

Rotating platform

Sample Holder

Soft eraser

Hard eraser

4.0mm soft straw-

Hard straw
5.0mm outer diameter
4.0mm inner diameter

5.0mm soft straw

Place sample here

Calibration needle (stuck into the hard eraser and stabilized by glue)

Original metal rod

Metal base

Samples

- 5 cadaveric spines
- 4.9mm cylindrical cores (of varying lengths)
 obtained from lumbar superior and inferior
 vertebral surfaces at L2/3 and L4/5 (L2i, L3s,
 L4i, and L5s) for each spine
- 5 cores obtained at each vertebral surface
- Total number of samples: 100

Diameter: 4.9mm

Scoutview Scan

MIMICS (slice)

Settings

Sample used: TS593_L5S_Z

Scan 1	Scan 2	Scan 3
68kV	68kV	68kV
100mA	100mA	100mA
512x512 voxels	512x512 voxels	512x512 voxels
SID: 293.0mm	SID: 293.0mm	SID: 293.0mm
SOD: 10.0mm	SOD: 7.5mm	SOD: 5.0mm
4.35 microns	3.264 microns	2.176 microns
Diameter: 2.2mm	Diameter: 1.66mm	Diameter: 1.1mm

SID: Source to Imagery Distance SOD: Source to Object Distance

Scoutview Scan

2D CT Scans

4.351 microns Diameter: 2.2mm

3.264 microns Diameter: 1.66mm

2.176 microns Diameter: 1.1mm

3D Bon (Post-Reconstruction)

2.2mm

1.66mm

1.1mm

Scan One
Diameter: 2.2mm
4.351 microns

Scan Two
Diameter: 1.66mm
3.264 microns

2.2mm

1.66mm

1.1mm

Scan One
Diameter: 2.2mm
4.351 microns

Scan Two
Diameter: 1.66mm
3.264 microns

2.2mm

1.66mm

1.1mm

Scan One
Diameter: 2.2mm
4.351 microns

Scan Two
Diameter: 1.66mm
3.264 microns

2.2mm

1.66mm

1.1mm

Scan One
Diameter: 2.2mm
4.351 microns

Scan Two
Diameter: 1.66mm
3.264 microns

2.2mm

1.66mm

1.1mm

Scan One
Diameter: 2.2mm
4.351 microns

Scan Two
Diameter: 1.66mm
3.264 microns

Discussion

- Accomplished/Established
 - High resolution scanning of the vertebral endplate
 - Practical resolution needed to visualize the microstructure of the vertebral endplate
 - Simple MIMICS 3D reconstruction
- Future Goals
 - Produce quantifiable data
 - Segment canals in MIMICS
 - Perform surface roughness analysis in MATLAB
 - Correlate to age, location, lumbar level, and disc degeneration

Bibliography

- 1. Andersson GB. 1998. Epidemiology of low back pain. Acta Orthop Scand Suppl 281:28-31
- 2. Masuda, K. (2010). New challenges for intervertebral disc treatment using regenerative medicine. *Tissue Engineering*, 16, 147-154.
- 3. Rodriguez, A. "Morphology of the Human Vertebral Endplate." Journal of Orthopaedic Research (2011): n. pag. Web. 26 Aug 2011. http://www.ncbi.nlm.nih.gov/pubmed/21812023.
- 4. http://whatisbackpain.com/wp-content/uploads/2011/07/sharplowerbackpain.jpg
- 5. http://www.vancouverspinedoctor.com/degenerative-disc-disease.php
- 6. Masuda, K. "Growth factors and the intervertebral disc." Spine Journal 4.6 (2004): 330-340. Web. 26 Aug 2011.
- 7. Gruber, H. "Vertebral Endplate Architecture and Vascularization: Application of Micro-Computerized Tomography, a Vascular Tracer, and Immunocytochemistry in Analyses of Disc Degeneration in the Aging Sand Rat." SPINE (2005).

Acknowledgments

Laboratories and People

- Dr. Gabriele Wienhausen, Associate Dean of Education, Division of Biology, UC San Diego.
- Prof. Koichi Masuda, Skeletal Translational Research Lab, UC San Diego
- Prof. Nozomu Inoue, Tissue Engineering Lab, Doshisha University
- Prof. Robert Sah, Cartilage Tissue Engineering Lab, UC San Diego
- Prof. Noriko Koizumi, Research Center for Inflammation and Regenerative Medicine,
 Doshisha Univeristy
- Dr. Peter Arzberger, Principal Investigator, Pacific Rim Application and Grid Middleware Assembly (PRAGMA)

Programs and Supporting Agencies

- Department of Biomedical Engineering, Doshisha University
- Pacific RIM undergraduate Experience, UC San Diego
- California Institute for Telecommunications and Information Technology
- National Science Foundation, IOSE-0710726e

