Higgs Boson Machine Learning Challenge

Group Project

Team 2WD

Ruonan Ding Joseph Wang Frank Wang

AGENDA

- Data Exploration and Preprocessing
 - data and feature overview
 - handling missing value
- Model
 - Logistic Regression with PCA
 - Random Forest
 - Gradient Boosting
 - Neural Network
 - XGboost
- Conclusion

LHC Underground Layout

LHC

LHC Detectors

Max proton energy: E = 7 TeV

v = 0.999999991 *c*

Bunch diameter = $16 \mu m$ (hair $50 \mu m$)

of p / bunch = 10^{11}

Features

- Missing
- Weak Signal and Strong background
- Energy sensitive

Red: background, Blue: signal

Data Features

- Large missing data
 - 7 columns missing up to 70%
 - 3 columns missing up to 40%
 - Missing data includes both signal and background
 - Each sample can has missing data up to 35%

miss data in each col

DER mass MMC	0.152456
DER mass transverse met lep	0.000000
DER mass vis	0.000000
DER pt h	0.000000
<u> </u>	0.709828
DER mass jet jet	0.709828
	0.709828
	0.000000
DER pt tot	0.000000
	0.000000
	0.000000
DER met phi centrality	0.000000
	0.709828
PRI tau pt	0.000000
PRI tau eta	0.000000
PRI tau phi	0.000000
PRI lep pt	0.000000
PRI lep eta	0.000000
PRI lep phi	0.000000
PRI_met	0.000000
PRI_met_phi	0.000000
PRI_met_sumet	0.000000
PRI_jet_num	0.000000
PRI_jet_leading_pt	0.399652
PRI_jet_leading_eta	0.399652
	0.399652
PRI_jet_subleading_pt	0.709828
PRI_jet_subleading_eta	0.709828
PRI_jet_subleading_phi	0.709828
PRI_jet_all_pt	0.000000
DDT 1	

With the 42 variables we currently have, we were able to reduce the dimension down to the 15 synthetic variables. Next step is to reconstruct the given variables in terms of newly created Principle Components.

LOGISTIC REGRESSION USING DIMENSION REDUCTION

Next step is to fit a Logistic Regression after using the newly constructed Principle Components.

Using 5 folds cross-validation and repeated 5 times on the sample data. Note that the metric to optimize is accuracy in this case. This could potentially be the reason of a lower AMS in the overalls

LOGISTIC REGRESSION USING DIMENSION REDUCTION

Result:

Using 80% of the df.Train: The accuracy is 68.4%. AMS score is 1.545

20% of the df.Test: The accuracy is 68.7%. AMS score is 0.781.

The submission result:

1591	↑1	Samuel Kováčik	1.61048	
-		RuonanDing	1.60790	
Post-Deadline Entry If you would have submitted this entry during the competition, you would have				
1592	↑5	Austin 2	1.60426	

Learning Experience:

- For PCA, data imputation and scaling is very important. Need to validate my imputation and scaling
- In terms of model tuning, I should have used AMS. Accuracy is not the same as AMS.
- Cross validation could have done in a bigger scale for this model since the running time was ok.

ROC Curves

Left is the result on the training data set.

ntree= 500;

Learning Rate = 0.1;

Interaction.depth = 10;

n.minobsinnode = 10;

cv.folds = 2

probability of false alarm (1-Specificity)

Performed a 2 fold cross-validation twice on the entire training data.

Lessons learned:

After doing some research, I make a cutoff on the probability prediction and call the upper 14% of events as signal. You can optimize this threshold to maximize the AMS. I used a testing grid. After running several tests around, the best cutoff is the top 14% (0.86).

referece: https://dbaumgartel.wordpress.com/2014/06/15/the-kaggle-higgs-challenge-beat-the-benchmarks-with-s

RANDOM FOREST

Number of trees: 500

No. of variables tried at each split: 7

fmodel

Test dataset : Area under the curve: 0.8563. Accuracy = 0.8026. (vs. 0.8476 in training) AMS = 1.243051

RANDOM FOREST

1276 ↑**10** Bonhomie 2.68827

RuonanDing

2.68824

Post-Deadline Entry

If you would have submitted this entry during the competition, you would have

1277 16 Sam Dhinnan 262/20

Lessons Learned:

mtry matters. So does the number of tree.

After cutdown some the variables, the RF might be performing better in term of accuracy.

The tricky case is to find the threshold. I improved in the next try.

PCA ANALYSIS

20 components are taken!!

PREDICTION MEASURES BY NEURAL NETWORK

CONCLUSION AND FURTHER IMPROVEMENT:

- The one layer neural network is not good enough for the data we have
- The problem is due to strong background observations than Higgs boson particles
- We can identify these weak learners and put it back to our training data to compensate the imbalance.

XGBoost

Parameters tuning:

- eta, max_depth, subsample, gamma, colsample_bytree..
- CPU time; step by step tuning
- Best AMS=3.6X

Lesson learned:

- Accuracy!=AMS
- Easy to overfitting, CV
- Variation of the score

584 ↑ 76 AlKhwarizmi‡	3.59685	30	Tue, 02 Sep 2014 01:12:28 (-18d)		
- wang frank	3.59660	-	Sun, 12 Jun 2016 18:20:00 Post-Deadline		
Post-Deadline Entry If you would have submitted this entry during the competition, you would have been around here on the leaderboard.					

XGBoost

Note

 Page 2(LHC layout), and 5 (data plot) can be dropped, if we have more than enough.....

- Got to practice various models.
- Learned from every submission.
- We want to explore more on every model individually.
- Didn't finish SVM tuning.
- Teamwork