Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 4

Виконав студент

<u>ПП-15 Бутов Даниіл Романович</u>
(шифр, прізвище, ім'я, по батькові)

Перевірив

<u>Вєчерковська Анастасія Сергіївна</u>
(прізвище, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 4

Завдання. Обчислити спільний дільник для двох цілих десяткових чисел.

Постановка задачі:

Завдання основане на пошуку НСД двух десяткових чисел, що потрібно ввести. Для пошуку НСД ми будемо використовувати відповідну функцію. Результатом завдання буде ціле число.

Побудова математичної моделі:

Змінна	Тип	Ім'я	Призначення
Перше число	Ціле	a	Початкове
Друге число	Ціле	ь	Початкове
НСД	Ціле	fRes	Результат
Результат функції	Ціле	res	Проміжкове
Знаходження НСД	Ціле	gcd	Проміжкове

Щоб знайти НСД ми повинні розкласти числа на більш прости множники, ми це зробимо за допомогою рекурсивного алгоритму gcd() та отримання остачі від ділення "%". Ми знаходимо НСД завдяки ділення по модулю a та b. У випадку коли b > a, ділення по модулю поверне повне a та поміняє місцями числа при першій ітерації. Оператор розгалуження перевіряє, коли повинно закінчити рекурсивний алгоритм, умова перевірки (b == 0).

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо знаходження НСД. (gcd)

```
Псевдокод:
Осоновна функція:
Крок 1.
Початок
      \textbf{\textit{Введенн}}\textit{\textit{я}}\;a , b
             Знаходження НСД. (gcd)
      Виведення fRes
Кінець
Крок 2.
Початок
      \textbf{\textit{Введення}}\ a , b
             fRes = gcd(a,b)
      Виведення fRes
Кінець
Підпрограма:
gcd(a,b)
       початок
             якщо b == 0
                    T0
                           res = a
                    інакше
                           res = gcd(b, a \% b)
             все якщо
             повернути res
```

кінець

Блок схема:

Основна функція:

Крок 1. Крок 2.

Підпрограма:

Код:

```
#include <iostream>

using namespace std;
int gcd(int a, int b);

bint main() {
    int a, b, fRes;
    setLocale(LC_ALL, "Ukr");
    cout << "\anguage ", cin >> a >> b;
    fRes = gcd(a,b);
    cout << "Peaynbtat: " << fRes;

}

cot t <= "Peaynbtat: " << fRes;

if (b == 0)
    res = a;
    else
    res = gcd(b, b: a % b);
    return res;

return res;

return res;
```

Тестування програми:

```
Знаходження НСД для двох цілих десяткових чисел
Введіть числа: 24 56
Pesynьтar: 8
Process finished with exit code 0
```

Блок	Дія
	Початок
	Введення a,b; a = 24; b = 56;
1	fRes = gcd(24, 56)
	(56 == 0)
	gcd (24, 24 % 56) = gcd(56, 24)
	(24 == 0)
	gcd (24, 56 % 24) = gcd (24 8)
	(8 == 0)
	$\gcd(8, 24 \% 8) = \gcd(8 0)$
	(0 == 0)
	res = 8
2	fRes = res / fRes = 8
	Виведення fRes

Висновок - ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій підпрограм. Склали алгоритм знаходження НСД для двух цілих десяткових чисел рекурсивного характеру.