Planche nº 30. Comparaison des fonctions en un point

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1

Etudier l'existence et la valeur éventuelle des limites suivantes

1)
$$\lim_{x \to \pi/2} (\sin x)^{1/(2x-\pi)}$$
 2) $\lim_{x \to \pi/2} |\tan x|^{\cos x}$
4) $\lim_{x \to 0} (\cos x)^{\ln |x|}$ 5) $\lim_{x \to \pi/2} \cos x \times e^{1/x}$

2)
$$\lim_{x \to \pi/2} |\tan x|^{\cos x}$$

3)
$$\lim_{n \to +\infty} \left(\cos \left(\frac{n\pi}{3n+1} \right) + \sin \left(\frac{n\pi}{6n+1} \right) \right)^n$$
6)
$$\lim_{x \to \pi/3} \frac{2\cos^2 x + \cos x - 1}{2\cos^2 x - 3\cos x + 1}$$

4)
$$\lim_{x \to \infty} (\cos x)^{\ln |x|}$$

5)
$$\lim_{x \to \pi/2} \cos x \times e^{1/(1-\sin x)}$$

6)
$$\lim_{x \to \pi/3} \frac{2\cos^2 x + \cos x - 1}{2\cos^2 x - 3\cos x + 1}$$

7)
$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \ln x} \right)^{1/\sin x}$$
8)
$$\lim_{x \to e, \ x < e} (\ln x)^{\ln(e - x)}$$

8)
$$\lim_{x \to e, x < e} (\ln x)^{\ln(e-x)}$$

9)
$$\lim_{x \to 1, x > 1} \frac{x^x - 1}{\ln(1 - \sqrt{x^2 - 1})}$$

10)
$$\lim_{x \to +\infty} \frac{x \ln(\operatorname{ch} x - 1)}{x^2 + 1}$$

10)
$$\lim_{x \to +\infty} \frac{x \ln(\operatorname{ch} x - 1)}{x^2 + 1}$$
 11) $\lim_{x \to 0, x > 0} \frac{(\sin x)^x - x^{\sin x}}{\ln(x - x^2) + x - \ln x}$

12)
$$\lim_{x \to +\infty} \left(\frac{\ln(x+1)}{\ln x} \right)^x$$

13)
$$\lim_{x \to 1/\sqrt{2}} \frac{(Arcsin x)^2 - \frac{\pi^2}{16}}{2x^2 - 1}$$

13)
$$\lim_{x \to 1/\sqrt{2}} \frac{(\operatorname{Arcsin} x)^2 - \frac{\pi^2}{16}}{2x^2 - 1}$$
 14)
$$\lim_{x \to +\infty} \left(\frac{\cos\left(\alpha + \frac{1}{x}\right)}{\cos\alpha}\right)^x \text{ (où } \cos\alpha \neq 0)$$

Exercice nº 2

Déterminer les développements limités à l'ordre demandé au voisinage des points indiqués :

1)
$$\frac{1}{1-x^2-x^3}$$
 (ordre 7 en 0)

2)
$$\frac{1}{\cos x}$$
 (ordre 7 en 0)

3) Arccos
$$\sqrt{\frac{x}{\tan x}}$$
 (ordre 3 en 0)

4)
$$\tan x$$
 (ordre 3 en $\frac{\pi}{4}$)

5)
$$(\operatorname{ch} x)^{1/x^2}$$
 (ordre 2 en 0)

6)
$$\tan^3 x \left(\cos\left(x^2\right) - 1\right)$$
 (ordre 8 en 0

7)
$$\frac{\ln(1+x)}{x^2}$$
 (ordre 3 en 1)

8)
$$Arctan(cos x)$$
 (ordre 5 en 0)

9) Arctan
$$\sqrt{\frac{x+1}{x+2}}$$
 (ordre 2 en 0)

10)
$$\frac{1}{x^2} - \frac{1}{\text{Arcsin}^2 x}$$
 (ordre 5 en 0)

13) $\tan \sqrt[3]{4(\pi^3 + \chi^3)}$ (ordre 3 en π)

11)
$$\int_{x}^{x^{2}} \frac{1}{\sqrt{1+t^{4}}} dt$$
 (ordre 10 en 0)

1)
$$\frac{1}{1-x^2-x^3}$$
 (ordre 7 en 0) 2) $\frac{1}{\cos x}$ (ordre 7 en 0) 3) Arccos $\sqrt{\frac{x}{\tan x}}$ (ordre 3 en 0) 4) $\tan x$ (ordre 3 en $\frac{\pi}{4}$) 5) $(\cot x)^{1/x^2}$ (ordre 2 en 0) 6) $\tan^3 x$ ($\cos(x^2) - 1$) (ordre 8 en 0) 7) $\frac{\ln(1+x)}{x^2}$ (ordre 3 en 1) 8) Arctan($\cos x$) (ordre 5 en 0) 9) Arctan $\sqrt{\frac{x+1}{x+2}}$ (ordre 2 en 0) 10) $\frac{1}{x^2} - \frac{1}{\frac{Arcsin^2 x}{x^2}}$ (ordre 5 en 0) 11) $\int_x^{x^2} \frac{1}{\sqrt{1+t^4}}$ dt (ordre 10 en 0) 12) $\ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)$ (ordre 100 en 0)

Exercice nº 3

Soit 0 < a < b. Etude complète de la fonction $f(x) = \left(\frac{a^x + b^x}{2}\right)^{1/x}$.

Exercice nº 4

Etude au voisinage de $+\infty$ de $\sqrt{x^2-3}-\sqrt[3]{8x^3+7x^2+1}$.

Exercice nº 5

Soit $f(x) = \frac{x}{1-x^2}$. Calculer $f^{(n)}(0)$ en moins de 10 secondes puis $f^{(n)}(x)$ pour $|x| \neq 1$ en à peine plus de temps).

Exercice nº 6

- 1) Equivalent simple en $+\infty$ et $-\infty$ de $\sqrt{x^2 + 3x + 5} x + 1$.
- 2) Equivalent simple en 0, 1, 2 et $+\infty$ de $3x^2 6x$
- 3) Equivalent simple en 0 de $(\sin x)^{x-x^2} (x-x^2)^{\sin x}$.
- 4) Equivalent simple en $+\infty$ de $x^{\text{th }x}$.
- 5) Equivalent simple en 0 de $\tan(\sin x) \sin(\tan x)$.

Exercice nº 7

Développement asymptotique à la précision $\frac{1}{n^3}$ de $u_n = \frac{1}{n!} \sum_{k=0}^{n} k!$.

Exercice nº 8

- 1) Développement asymptotique à la précision x^2 en 0 de $\frac{1}{x(e^x-1)} \frac{1}{x^2}$.
- 2) Développement asymptotique à la précision $\frac{1}{x^3}$ en $+\infty$ de $x \ln(x+1) (x+1) \ln x$.

Exercice nº 9

Soient a > 0 et b > 0. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $f_n(x) = \left(1 + \frac{x}{n}\right)^n$.

- 1) Equivalent simple quand n tend vers $+\infty$ de $f_n(a+b) f_n(a)f_n(b)$.
- 2) Même question pour $e^{-a}f_n(a) 1 + \frac{a^2}{2n}$.

Exercice nº 10

Soit $u_0 \in \left[0, \frac{\pi}{2}\right]$. Pour $n \in \mathbb{N}$, on pose $u_{n+1} = \sin(u_n)$.

- 1) Montrer brièvement que la suite $\mathfrak u$ est strictement positive et converge vers $\mathfrak 0$.
- 2) a) Déterminer un réel α tel que la suite $u_{n+1}^{\alpha}-u_n^{\alpha}$ ait une limite finie non nulle.
 - b) En utilisant le lemme de CESARO, déterminer un équivalent simple de un.

Exercice nº 11

Soit u la suite définie par la donnée de son premier terme $u_0>0$ et la relation $\forall n\in\mathbb{N},\ u_{n+1}=u_ne^{-u_n}$. Equivalent simple de u_n quand n tend vers $+\infty$.

Exercice nº 12

- 1) Montrer que l'équation $\tan x = x$ a une unique solution dans l'intervalle $[n\pi, (n+1)\pi]$ pour n entier naturel donné. On note x_n cette solution.
- 2) Trouver un développement asymptotique de x_n à la précision $\frac{1}{n^2}$.

Exercice nº 13

- 1) Montrer que l'équation $x + \ln x = k$ admet, pour k réel donné, une unique solution dans $]0, +\infty[$, notée x_k .
- 2) Montrer que, quand k tend vers $+\infty$, on $a: x_k = ak + b \ln k + c \frac{\ln k}{k} + o \left(\frac{\ln k}{k}\right)$ où a, b et c sont des constantes à déterminer.

Exercice nº 14

Soit $f(x) = 1 + x + x^2 + x^3 \sin \frac{1}{x^2}$ si $x \neq 0$ et 1 si x = 0.

- 1) Montrer que f admet en 0 un développement limité d'ordre 2.
- **2)** Montrer que f est dérivable sur \mathbb{R} .
- 3) Montrer que f' n'admet en 0 aucun développement limité d'aucun ordre que ce soit.

Exercice nº 15

Etude au voisinage de 0 de $f(x) = \frac{1}{x} - \frac{1}{Arcsin x}$ (existence d'une tangente?)

Exercice nº 16

- 1) La fonction $x \mapsto \operatorname{Arccos} x$ admet-elle en 1 (à gauche) un développement limité d'ordre 0? d'ordre 1?
- 2) Equivalent simple de Arccos x en 1.

Exercice nº 17

- 1) Développement limité à l'ordre n en 0 de $f(x) = \frac{1}{(1-x)^2(1+x)}$.
- $\textbf{2)} \text{ Soit } \alpha_k \text{ le k-\`eme coefficient. Montrer que } \alpha_k \text{ est le nombre de solutions dans } \mathbb{N}^2 \text{ de l'\'equation } p+2q=k.$