

Solving the Problem of

Overfitting

Review

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Logistic Regression

DUE Oct 7, 2:59 PM SGT **ATTEMPTS** 3 every 8 hours

Reading: Lecture Slides Logistic Regression

LATEST SUBMISSION GRADE Quiz: Logistic Regression 5 guestions

100%

Correct

Submit your assignment

Try again

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{ heta}(x)$ = 0.7. This means (check all that apply):

1 / 1 point

Receive grade TO PASS 80% or higher

Grade 100%

View Feedback

2. Suppose you have the following training set, and fit a logistic regression classifier

1/1 point

We keep your highest score

 $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2).$

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

Correct

3. For logistic regression, the gradient is given by $rac{\partial}{\partial heta_j}J(heta)=rac{1}{m}\sum_{i=1}^m(h_{ heta}(x^{(i)})-y^{(i)})x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of lpha? Check all that apply.

1/1 point

/ Correct

4. Which of the following statements are true? Check all that apply.

1/1 point

/ Correct

5. Suppose you train a logistic classifier $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2)$. Suppose $| heta_0|=6, heta_1=0, heta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

1/1 point

✓ Correct