Memoria Real / Física

Stallings 5ta ed. capítulo 7 - 7A. Silberschatz 7ma ed. capítulo 8.

Repaso clase anterior: Deadlock

- Tipos de recursos.
- Condición de carrera.
- Sección crítica.
- Interbloqueo / Deadlock.
- Grafo de asignación de recursos.
- Condiciones necesarias y suficientes.
- Estrategias:
 - Prevención
 - Evasión
 - Detección y Recupero
 - No tratarlo.

Introducción

- Para ejecutar un programa debe cargarse a memoria en forma de proceso.
- La memoria (la RAM) es un vector (muy grande) adminitrado por el sistema operativo.
- La memoria no conoce su contenido.

Introducción

- Para ejecutar un programa debe cargarse a memoria en forma de proceso.
- La memoria (la RAM) es un vector (muy grande) adminitrado por el sistema operativo.
- La memoria no conoce su contenido.

Requisitos

- REUBICACIÓN.
- PROTECCIÓN.
- COMPARTICIÓN.
- ORGANIZACIÓN FÍSICA Y LÓGICA.

Requisitos: PROTECCIÓN

Registro BASE y LIMITE.

Asociación de direcciones (Address Binding)

Asociación de direcciones (Address Binding)

Tiempo de Compilación

Asociación de direcciones (Address Binding) MEMORIA

Asociación de direcciones (Address Binding) MEMORIA

Asociación de direcciones (Address Binding)

Direcciones Lógicas y Físicas

- Dirección Lógica:
 - Referencia a una ubicación de memoria utilizada por los procesos, son independientes de la ubicación real en memoria.
- Dirección Relativa:
 - Un tipo de dirección lógica, en que la dirección se expresa según a un punto conocido.
- Dirección Absoluta o Física: referencia a una verdadera ubicación en memoria

Carga, Enlace y Bibliotecas compartidas

Carga Dinámica, Enlace y Bibliotecas compartidas

Carga Dinámica:

Carga Dinámica, Enlace y Bibliotecas compartidas

• Enlace Dinámico (Biblioteca Compartidas):

Asignación de memoria para procesos

- Cargar procesos en memoria.
- En memoria reside el sistema operativo y procesos de usuario.

Asignación de memoria para procesos

- Particionamiento Fijo
 - Se divide la memoria en particiones tamaño fijos
 - El proceso se ubica en alguna partición del mismo tamaño o menor que el proceso.
 - Dos esquemas:
 - Todas las particiones del mismo tamaño.
 - Particiones de tamaños diferentes.

<u>Particionamiento Fijo</u>

Mismo Tamaño

Sistema
Operativo
8 MB

Sistema

Sistema
Operativo
8 MB
4 MB
6 MB
8 MB
10 MB
12 MB

Diferente Tamaño

Particionamiento Fijo

Mismo Tamaño

Libre/Ocupado

P 1
P 3
LIBRE
P 2
LIBRE

Sistema
Operativo
8 MB

Sistema **Operativo 8 MB** 4 MB **6 MB 8 MB 10 MB 12 MB**

Diferente Tamaño

Particionamiento Fijo

Mismo Tamaño

Libre/Ocupado

P 1
P 3
LIBRE
P 2
LIBRE

Sistema
Operativo
8 MB

Sistema
Operativo
8 MB
4 MB
6 MB
8 MB
10 MB
12 MB

Diferente Tamaño

	Libre/Ocupado	Tamaño
L	P 1	4
2	Р3	6
3	LIBRE	8
1	P 2	10
5	LIBRE	12

Particionamiento Fijo

Particionamiento Fijo

	Libre/Ocupado	Tamaño
1	P 2	4
2	Р3	6
3	P 4	8
4	LIBRE	10
5	LIBRE	12

Particionamiento Fijo

	Libre/Ocupado	Tamaño
1	P 2	4
2	Р3	6
3	P 4	8
4	P 1	10
5	LIBRE	12

- Si hay memoria disponible, a cada proceso se le asigna la memoria que necesita.
- No hay número fijo de particiones.

Particionamiento Dinámico

Sistema
Operativo
8 MB

Memoria Vacía.

- 1) Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3) Se carga el proceso 3.

- 1) Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3) Se carga el proceso 3.
- 4) Se descarga el proceso 2.

- 1)Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3)Se carga el proceso 3.
- 4) Se descarga el proceso 2.
- 5) Se carga el Proceso 4.

- 1) Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3) Se carga el proceso 3.
- 4) Se descarga el proceso 2.
- 5) Se carga el Proceso 4.
- 6) Se descarga el Proceso 1.
- 7) Se carga el proceso 5.

- 1) Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3) Se carga el proceso 3.
- 4) Se descarga el proceso 2.
- 5) Se carga el Proceso 4.
- 6) Se descarga el Proceso 1.
- 7) Se carga el proceso 5.
- 8) Se carga el proceso 1.

Particionamiento Dinámico

Procesos

PID	Inicio	Tamaño
1	29	10
-	-	-
3	23	6
4	11	6
5	0	8

Huecos

Inicio	Tamaño
9	2
17	6
39	6

- Algoritmos de ubicación
 - Primer ajuste: Busca el primer hueco disponible desde el comienzo de la memoria
 - <u>Siguiente ajuste</u>: Busca el primer hueco disponible desde la posición de la última asignación.
 - <u>Mejor ajuste</u>: Busca el hueco más chico donde pueda ubicarse el proceso.
 - <u>Peor ajuste</u>: Busca el hueco más grande donde pueda ubicarse el proceso.

- 1) Se carga el Proceso 1.
- 2) Se carga el proceso 2.
- 3) Se carga el proceso 3.
- 4) Se descarga el proceso 2.
- 5) Se carga el Proceso 4.
- 6) Se descarga el Proceso 1.
- 7) Se carga el proceso 5.
- 8) Se carga el proceso 1.

Buddy System (Descomposición binaria)

- Compensa desventajas de particionamiento fijo y dinámico.
- Se asigna a los procesos tamaños de memoria que son potencias de dos (2ⁿ).
- La memoria asignada es según el tamaño del proceso y se redondea a la siguiente potencia de dos.

Buddy System (Descomposición binaria)

1024MB

Buddy System (Descomposición binaria)

P1 = 200 256MB 1024MB 512MB Carga P1 = 200MB

Buddy System (Descomposición binaria)

Carga P1 = 200MBCarga P2 = 100MB

Buddy System (Descomposición binaria)

Carga P1 = 200MB

Carga P2 = 100MB

Carga P3 = 400MB

Carga P4 = 64 MB

Buddy System (Descomposición binaria)

Carga P1 = 200MB

Carga P2 = 100MB

Carga P3 = 400MB

Carga P4 = 64 MB

Descarga P2

Descarga P1

Buddy System (Descomposición binaria)

Segmentación

- El proceso no necesita estar contiguo en memoria.
- El proceso se divide en segmentos de tamaño variable.
- Cada segmento representa una parte del proceso desde la visión del programador.
 - Código.
 - Pila.
 - Datos.
 - Biblioteca.
 - Heap.

Segmentación

Memoria Real

Segmentación

Tabla de Segmentos del Proceso

	Inicio	Límite
0	0xB000	0xCFFF
1	0x4090	0x8000
2	0x000A	0x10FF
3	0x2000	0x2FFF

Sin Fragmentación Interna

Con Fragmentación Externa

Segmentación

Dirección Lógica a Física:

Segmentación

Dirección Lógica a Física:

Segmentación

Dirección Lógica a Física:

nº de segmento | desplazamiento

50A

0x250A

DF

DL

Segmentación

Dirección Lógica a Física:

nº de segmento | desplazamiento

x bits y bits

Cantidad Máxima de segmentos por proceso = 2^x

Tamaño Máximo de segmento = 2^y

Segmentación

Protección:

Segmentación

Protección:

Cada Segmento puede tener permisos de lectura, escritura y ejecución.

Tabla de Segmentos del Proceso

	Inicio	Límite	Protección
0	0xB000	0xCFFF	R
1	0x4090	0x8000	RX
2	0x000A	0x10FF	RW
3	0x2000	0x2FFF	RW

Paginación

- El proceso no necesita estar contiguo en memoria.
- Los procesos y la memoria se dividen en partes del mismo tamaño.
- Los procesos se dividen en páginas.
- La memoria se divide en marcos (frames).

Memoria Real

Paginación

Proceso 1

página 0 - proceso 1 página 1 - proceso 1 página 2 - proceso 1 página 3 - proceso 1 página 4 - proceso 1 página 5 - proceso 1 página 6 - proceso 1 página 7 - proceso 1	
página 2 - proceso 1 página 3 - proceso 1 página 4 - proceso 1 página 5 - proceso 1 página 6 - proceso 1	página 0 - proceso 1
página 3 - proceso 1 página 4 - proceso 1 página 5 - proceso 1 página 6 - proceso 1	página 1 - proceso 1
página 4 - proceso 1 página 5 - proceso 1 página 6 - proceso 1	página 2 - proceso 1
página 5 - proceso 1 página 6 - proceso 1	página 3 - proceso 1
página 6 - proceso 1	página 4 - proceso 1
	página 5 - proceso 1
página 7 - proceso 1	página 6 - proceso 1
	página 7 - proceso 1

Memoria Real

Paginación

Proceso 1

Memoria	#frame
	0
Página 6 - proceso 1	3
Página 5 - proceso 1	4
	, -
Página 0 - proceso 1	6
Página 7 - proceso 1	7
Página 2 - proceso 1	9
rugina 2 proceso 1	9
Página 1 - proceso 1	11
Dísina A marana A	
Página 4 - proceso 1	14
Página 3 - proceso 1	17
]

Memoria

#frame

Memoria Real

<u>Paginación</u>

Proceso 1

página 0 - proceso 1
página 1 - proceso 1
página 2 - proceso 1
página 3 - proceso 1
página 4 - proceso 1
página 5 - proceso 1
página 6 - proceso 1
página 7 - proceso 1

Tabla de páginas del Proceso 1

0 Página 6 - proceso 1 Página 5 - proceso 1 4 Página 0 - proceso 1 Página 7 - proceso 1 Página 2 - proceso 1 9 Página 1 - proceso 1 11 Página 4 - proceso 1 14 Página 3 - proceso 1 17

Con Fragmentación Interna

Sin Fragmentación Externa

Paginación

Dirección Lógica a Física:

Paginación

Dirección Lógica a Física:

nº de página | desplazamiento

x bits y bits

Cantidad Máxima de páginas por proceso = 2^x Tamaño de la página = 2^y

<u>Paginación</u>

Dirección Lógica a Física:

nº de página | desplazamiento

2 A50 DL

nº de frame | desplazamiento

9 A50 DF

- Ejemplo:
 - 16 páginas por proceso.
 - Páginas de 4096 bytes.

Binario:

0010 101001010000

1001 101001010000

En decimal: **10832** 39504

Paginación

Dirección Lógica a Física:

nº de négine I deenlezemiente

n' ue payma	uespiazamiento	
2	A50 DI	

nº de frame	desplazamient	0
9	A50	DF

- Ejemplo:
 - 16 páginas por proceso.
 - Páginas de 4096 bytes.

Decimal:

(#página * tamaño de página) + desplazamiento

$$(2 * 4096) + 2640 = 10832$$

$$(9 * 4096) + 2640 = 39504$$

Paginación

• Protección:

	# frame	Protección	Válido/Inválido
0	6	R	1
1	8	RX	1
2	2	RW	1
3	9	RW	0

Paginación

Compartición (Sharing):

Paginación

- Tabla de marcos libres:
 - Estructura para determinar que frames de memoria está libres
 - Ejemplo un bitmap de frames:

Segmentación Paginada

- Los segmentos se paginan.
- Combina ventajas de la segmentación y la paginación.

Segmentación Paginada

