

General information

Designation

Diospyros spp. (L)

Typical uses

Fancy articles; inlays; shuttles; turnery; piano keys; finger boards of stringed instruments; bowls.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%
Composition detail (polymers and natural materials	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 6.3e3	-	1.23e4	USD/m^3

Physical properties

Donaity	040		1 1102	ka/m^2
Density	940	-	1.14e3	kg/III/3

Mechanical properties

Mechanical properties				
Young's modulus	9.7	-	11.9	GPa
Yield strength (elastic limit)	26	-	31.8	MPa
Tensile strength	* 115	-	140	MPa
Elongation	* 4.77	-	5.83	% strain
Compressive strength	70.2	-	85.8	MPa
Flexural modulus	12.5	-	15.3	GPa
Flexural strength (modulus of rupture)	123	-	151	MPa
Shear modulus	* 0.72	-	0.88	GPa
Shear strength	11.6	-	14.2	MPa
Bulk modulus	* 3.22	-	3.63	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.5			
Hardness - Vickers	* 16.2	-	19.8	HV
Hardness - Brinell	124	-	152	НВ
Hardness - Janka	* 16.2	-	19.8	kN
Fatigue strength at 10^7 cycles	* 37	-	45.2	MPa

* 0.0064	-	0.0078	
0.24	-	0.3	%
* 0.44	-	0.54	%
* 3.2	-	7	%
9.6	-	11.7	%
20.8	-	23.1	%
* 166	-	203	kJ/m^3
	0.24 * 0.44 * 3.2 9.6 20.8	0.24 - * 0.44 - * 3.2 - 9.6 - 20.8 -	0.24 - 0.3 * 0.44 - 0.54 * 3.2 - 7 9.6 - 11.7 20.8 - 23.1

Impact & fracture properties

Fracture toughness	* 10.4	-	12.7	MPa.m^0.5
--------------------	--------	---	------	-----------

Thermal properties

Glass temperature	77	-	102	$\mathcal C$
Maximum service temperature	120	-	140	$\mathcal C$
Minimum service temperature	* -73	-	-23	$\mathcal C$
Thermal conductivity	* 0.45	-	0.56	W/m.℃
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficient	* 2	-	11	µstrain/℃

Electrical properties

Electrical resistivity	* 6e13	-	2e14	µohm.cm
Dielectric constant (relative permittivity)	* 10.1	-	12.4	
Dissipation factor (dielectric loss tangent)	* 0.124	-	0.152	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m

Magnetic properties

	·	
Magnetic type		Non-magnetic

Optical properties

Transparency	Opaque

Critical materials risk

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable

Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.19	-	1.31	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.089	-	0.0984	kg/kg
Fine machining energy (per unit wt removed)	* 7.6	-	8.4	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.57	-	0.63	kg/kg
Grinding energy (per unit wt removed)	* 14.7	-	16.3	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.1	-	1.22	kg/kg

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	√
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse		
Reference		
Shape		