17) Generalized Additive Models (GAMs)

Vitor Kamada

March 2019

Reference

Tables, Graphics, and Figures from

1) James et al. (2017): Ch 7.7, and 7.8.3 2) Hastie et al. (2017): Ch 9.1

GAMs for Regression Problems

$$y_i = \beta_0 + \sum_{j=1}^{p} f_j(x_{ij}) + \epsilon_i$$

$$= \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + ... + f_p(x_{ip}) + \epsilon_i$$

$$wage = eta_0 + f_1(year) + f_2(age) + f_3(educ) + \epsilon$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

3 / 21

Vitor Kamada ECO 7100 Econometrics I March 2019

2 Natural Splines and 1 Step Function

2 Smoothing Splines and 1 Step Function

GAMs for Classification Problems

$$\log \left[\frac{p(X)}{1-p(X)} \right] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$log\left[\frac{p(X)}{1-p(X)}\right] = \beta_0 + f_1(X_1) + f_2(X_2) + ... + f_p(X_p)$$

$$log\left[\frac{p(X)}{1-p(X)}\right] = \beta_0 + \beta_1 year + f_2(age) + f_3(educ)$$

$$p(X) = Pr(wage > 250|year, age, educ)$$

Vitor Kamada ECO 7100 Econometrics I March 2019

Logistic Regression GAM (wage>250)

Linear, Smoothing Spline, and Step Function

Excluding the Observations for which educ is <HS

library(ISLR); attach(Wage); library(splines); library(gam)

$$\label{eq:gam1} \begin{split} & \mathsf{gam1} \!\!=\!\! \mathsf{gam}(\mathsf{wage} \!\!\sim\! \mathsf{ns}(\mathsf{year},\! 4) \!\!+\! \mathsf{ns}(\mathsf{age},\! 5) \!\!+\! \mathsf{education}, \\ & \mathsf{data} \!\!=\!\! \mathsf{Wage}) \end{split}$$

par(mfrow=c(1,3)); plot(gam1, se=TRUE,col="red")

9/21

$\label{eq:gam.m3=gam(wage~s(year,4)+s(age,5)+education,} $$ data=Wage)$

par(mfrow=c(1,3)); plot(gam.m3, se=TRUE,col="blue")

Vitor Kamada ECO 7100 Econometrics I March 2019 10 / 21

gam.m1=gam(wage~s(age,5)+education, data=Wage)

```
 \begin{split} & gam.m2 = gam(wage \sim year + s(age, 5) + education, \\ & data = Wage) \\ & anova(gam.m1, gam.m2, gam.m3, test = "F") \end{split}
```

```
Model 1: wage ~ s(age, 5) + education

Model 2: wage ~ year + s(age, 5) + education

Model 3: wage ~ s(year, 4) + s(age, 5) + education

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2990 3711731

2 2989 3693842 1 17889.2 14.4771 0.0001447 ***

3 2986 3689770 3 4071.1 1.0982 0.3485661

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

summary(gam.m3)

```
Anova for Parametric Effects
            Df Sum Sq Mean Sq F value Pr(>F)
             1 27162 27162 21.981 2.877e-06 ***
s(year, 4)
s(age, 5) 1 195338 195338 158.081 < 2.2e-16 ***
             4 1069726 267432 216.423 < 2.2e-16 ***
education
Residuals 2986 3689770 1236
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova for Nonparametric Effects
           Npar Df Npar F Pr(F)
(Intercept)
s(year, 4)
               3 1.086 0.3537
s(age, 5)
                4 32.380 <2e-16 ***
education
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

gam.lo=gam(wage~s(year,df=4)+ lo(age,span=0.7)+education, data=Wage)

plot(gam.lo, se=TRUE,col="green")

Vitor Kamada ECO 7100 Econometrics I March 2019 13 / 21

gam.lr=gam(I(wage>250)~year+s(age,df=5) +education, family=binomial,data=Wage)

par(mfrow=c(1,3)); plot(gam.lr,se=T,col="green")

14 / 21

Vitor Kamada ECO 7100 Econometrics I March 2019

table(education,I(wage>250))

education	FALSE	TRUE
 < HS Grad 	268	0
2. HS Grad	966	5
Some College	643	7
College Grad	663	22
Advanced Degree	381	45

March 2019

15 / 21

gam.lr.s=gam(I(wage>250)~year+s(age,df=5) +education, family=binomial, data=Wage, subset=(education!="1. < HS Grad"))

plot(gam.lr.s,se=T,col="green")

Predicting Email Spam

E-mails from Hewlett-Packard laboratories

	Training	Test	Total
E-mail	3065	1536	4601

57 predictors:

% of words: business, free, george

% of characters: ch;, ch!, ch\$

CAPAVE: average length of capital letters

CAPMAX: length of the longest capital letters

CAPTOT: sum of the length of capital letters

https://en.wikipedia.org/wiki/Confusion_matrix

True condition			ondition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True pos	curacy (ACC) = itive + Σ True negative otal population	
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	ion = Σ False positive Σ Predicted condition positive		
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$		
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR), Miss rate	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ Specificity (SPC), Selectivity, True negative rate (TNR)	Positive likelihood ratio (LR+) = TPR FPR Negative likelihood ratio (LR-)	Diagnostic odds ratio (DOR) = LR+LR-	F ₁ score = 2 · Precision · Recall Precision + Recall	
		= $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	= FNR TNR			

GAM: Logistic Cubic Smoothing Spline

Each variable is decomposed into a linear and nonlinear component

Nominal df: $4 = trace[S_j(\lambda_j)] - 1$

	Predicted Class		
True Class	email(0)	$\operatorname{\mathtt{spam}} (1)$	
email(0)	58.3%	2.5%	
spam(1)	3.0%	36.3%	

	Test Error Rate
Additive Logistic	5.5%
Linear Logistic	7.6%

Additive Logistic - Spam Training Data

Name	Num.	df	Coefficient	Std. Error	Z Score	Nonlinea P-value	
			Positive e	effects			_
our	5	3.9	0.566	0.114	4.970	0.052	_
over	6	3.9	0.244	0.195	1.249	0.004	
remove	7	4.0	0.949	0.183	5.201	0.093	
internet	8	4.0	0.524	0.176	2.974	0.028	
free	16	3.9	0.507	0.127	4.010	0.065	
business	17	3.8	0.779	0.186	4.179	0.194	
hpl	26	3.8	0.045	0.250	0.181	0.002	
ch!	52	4.0	0.674	0.128	5.283	0.164	
ch\$	53	3.9	1.419	0.280	5.062	0.354	
CAPMAX	56	3.8	0.247	0.228	1.080	0.000	
CAPTOT	57	4.0	0.755	0.165	4.566	0.063	
			Negative	effects			_
hp	25	3.9	-1.404	0.224	-6.262	0.140	
george	27	3.7	-5.003	0.744	-6.722	0.045	
1999	37	3.8	-0.672	0.191	-3.512	0.011	
re	45	3.9	-0.620	0.133	-4.649	0.597	
edu	46	4.0	-1.183	0.209	-5.647	0.000	99
Vitor Kama	da		ECO 7100 Econo	ometrics I		March 2019	20 / 2

Nonlinearity Picks up the Discontinuity at 0

