Esercitazione 1

Geometria e Algebra Lineare GE110 - AA 2022–2023 Esercitatore: Amos Turchet

27 Febbraio, 1 Marzo 2023

Nel seguito, quando non specificato K è un campo, $M_{n,p}(K)$ indica lo spazio vettoriale di tutte le matrici $n \times p$ a coefficienti in K, $\mathbf{0}$ indica la matrice nulla, I_n indica la matrice identità $n \times n$.

Una matrice quadrata $A \in M_{n,n}(K)$, $A = (a_{i,j})$ si dice

- diagonale se $a_{i,j} = 0$ per ogni $i \neq j$;
- triangolare superiore (risp. inferiore) se $a_{i,j} = 0$ per ogni i > j (risp. per ogni i < j);

Esercizio 1. Siano $A, B \in M_n(K)$ due matrici quadrate. Dimostrare che

- 1. se A è diagonale, per ogni $k \ge 1$, A^k è diagonale;
- 2. se A è triangolare superiore (risp. inferiore), per ogni $k \ge 1$, A^k è triangolare superiore (risp. inferiore);
- 3. se $A = (a_{ij})$ è diagonale, allora $A^k = (a_{i,j}^k)$ (cioè gli elementi di A^k sono le potenze k-esime degli elementi di A);
- 4. se A è diagonale e B è qualsiasi allora $A \cdot B = B \cdot A$.

Esercizio 2. Sia $A \in M_{n,n}(K)$ una matrice quadrata con $A = (a_{i,j})$, e ^tA la sua trasposta.

- 1. Dimostrare che se A è antisimmetrica allora $a_{ii}=0$ per ogni $i=1,\ldots,n$;
- 2. Si dimostri che, qualunque sia A, la matrice $A + {}^{t}A$ è simmetrica;
- 3. Si dimostri che, qualunque sia A, la matrice $A {}^{t}A$ è antisimmetrica;
- 4. Dedurre che ogni matrice si può esprimere come somma di una matrice simmetrica e di una antisimmetrica.

Esercizio 3. Una matrice quadrata $A \in M_n(K)$ si dice *nilpotente* se esiste un intero $k \ge 1$ tale che $A^k = \mathbf{0}$.

- 1. Classificare tutte le matrici diagonali nilpotenti.
- 2. Dimostrare che una matrice quadrata triangolare (superiore o inferiore) $A = (a_{i,j}) \in M_n(K)$, con $a_{i,i} = 0$ per ogni i = 1, ..., n, è nilpotente.
- 3. Dimostrare che una matrice nilpotente non è invertibile.

Esercizio 4. Sia $A \in M_2(\mathbb{R})$ un matrice 2×2 con $A = (a_{ij})$.

1. Dimostrare la seguente uguaglianza di matrici

$$A^{2} - (a_{1,1} + a_{2,2}) \cdot A + (a_{1,1}a_{2,2} - a_{1,2}a_{2,1}) \cdot I_{2} = \mathbf{0};$$

- 2. Usando il punto precedente, assumendo che $(a_{1,1}a_{2,2} a_{1,2}a_{2,1}) \neq 0$ e A sia invertibile, trovare una formula per A^{-1} ;
- 3. Caratterizzare le matrici invertibili 2×2 .

Esercizio 5. Sia S un sistema lineare in n variabili e n equazioni.

- \bullet Se la matrice dei coefficenti di \mathcal{S} è diagonale, il sistema è compatibile?
- Se la matrice dei coefficienti di \mathcal{S} è triangolare superiore (o inferiore), il sistema \mathcal{S} è compatibile?
- ullet É possibile descrivere un algoritmo per la risoluzione del sistema $\mathcal S$ in questi casi?