

Université Abdelmalek Essaâdi Faculté des Sciences et Techniques de Tanger Département : Génie Informatique

Base de Données Structurées et Non Structurées Partie 4: Dépendance fonctionnelles (Construction du MCD)

Prof. Badr-Eddine BOUDRIKI SEMLALI

Email: badreddine.boudrikisemlali@uae.ac.ma

2024/2025

Plan de cours

- 1. Introduction aux bases de données et méthode de conception MERISE
- 2. Modélisation des traitements : MCC, MCT, MOT
- 3. Modélisation des données: (MCD) → modèle « E/A »
- 4. Dépendance fonctionnelles (Construction du MCD)
- 5. Normalisation (5 formes de normalisation)
- 6. Le Modèle Logique de Données (relationnel) : MLD
- 7. Le Modèle Physique de Données : MPD
- 8. Le Modèle relationnel: Concepts de bases
- 9. Structure de base de données
- 10. Règles d'intégrité structurelle
- 11.Algèbre relationnel

Modélisation par dépendances fonctionnelles (DF)

Démarche:

- 1. Dictionnaire des données.
- 2. Énoncé des règles de gestion.
- 3. Détermination des dépendances fonctionnelles.
- 4. Construction du MCD.

Concepts de Dépendance Fonctionnelle

Définition:

Une propriété *Y* dépend fonctionnellement d'une propriété *X* si et seulement si une valeur de *X* induit une unique valeur de *Y*.

Exemple: $X \longrightarrow Y$ (X détermine Y) (source) \longrightarrow (but)

Num client → Nom client

Il existe une DF entre Num client et Nom client, car si on connaît une valeur de la propriété Num client (ex : 4553), il ne peut lui correspondre qu'une seule valeur de la propriété nom client.

La réciproque est fausse : Nom client

Num client, n'est pas une DF

□DF à partie gauche (source) composée

Il peut exister des dépendances fonctionnelles à partir de plusieurs propriétés (en source), qui permettent de connaître une valeur unique du but.

Exemple:

Considérons une commande qui comporte plusieurs produits (Num_Commande , Ref_Produit) → quantité commandée

Démarche de recherche des DF

A partir du dictionnaire des données (propriétés), il faudra :

- Rechercher les DF à deux rubriques élémentaires et directes
- Rechercher les DF à partie gauche composée.

Rechercher les DF à deux rubriques élémentaires et directes

On commence par rechercher les DF à deux rubriques en commençant par les plus évidentes du genre: Numéro de client > nom de client

☐ Si on a une DF du type: Numéro client → adresse, il faudra la décomposer en

Numéro de client → code postal

Numéro de client → rue

Numéro de client \rightarrow localité

☐ Parfois, la DF est **symétrique**. Numéro état civi → numéro de sécurité sociale.

Dans ce cas, on supprime une des deux pour garder la plus fréquemment utilisée.

Rechercher les DF à partie gauche composée

■ Quand on traite des DFPGC, il faut toujours se poser les deux questions suivantes , si on a une DFPGC du type: A, B, C \rightarrow D

n'y aurait-il pas des DF du style $D \rightarrow A$ ou $D \rightarrow B$?

Exemple:

```
( date commande, n° client ) → n° commande. On préférera pourtant n° commande → n° client et n° commande → date commande
```

 \triangleright n'y aurait-il pas, entre A, B, C et D une ou des DFPGC de moins de rubriques que celle citée , du type D, A \rightarrow B Dans ce cas, il faut la privilégier.

Exemple:

```
(jour, heure, classe, salle) → professeur
où jour donne lundi , mardi, ...; heure nous donne 1ère heure, 2ème heure, ...; salle nous donne son n° et classe 1ère info, ...
On préférera : (jour, heure, professeur) → classe
```

Mode de représentation des DF

Pour représenter les DF dans un ensemble de données:

 \rightarrow 2 modes

- **La matrice des DF**
- **Le graphe des DF**

La matrice des DF

≻Principe:

Les différentes propriétés recensées dans le dictionnaire des données sont répertoriées en lignes et répétées par des numéros identiques en colonnes. On a donc au départ une matrice carré; en ligne se trouvent les données BUTS de dépendance fonctionnelle; en colonne sont indiquées les données SOURCES de DF; le 1 à l'intersection de la ligne et de la colonne indique la dépendance entre la donnée source et la donnée but.

Buts		SOURCES de DF					
		1	2	3	4	•••	
1	N° Étudiant						
2	Nom Étudiant	1					
3	Code diplôme						
•••							

L'extrait de matrice ci-dessus décrit la DF: N°Étudiant -> Nom Étudiant

La matrice des dépendances fonctionnelle : Exemple

Matrice des dépendances fonctionnelle relatives à l'organisation d'un examen :

Buts		Sources									
		1	2	3	4	5	6	7	8	9	10
1	Num_Epreuve										
2	Lib_Epreuve	1									
3	Coef	1									
4	4 Num_Cand										
5	5 Nom_Cand				1						
6	Prénom_Cand				1						
7	Code_Ets				1						
8 Nom_Ets								1			
9	9 Ville_Ets							1			
10	Note										

La matrice des dépendances fonctionnelle : Exemple (suite)

Première Etape

Les identifiants sont soulignés.

« Num_Epreuve », « Num_Cand » et « Code_Ets »

La matrice peut être simplifiée en éliminant les colonnes vides.

	Sources Buts	1	4	7
1	Num_Epreuve			
2	Lib_Epreuve	1		
3	Coef	1		
4	Num_Cand			
5	Nom_Cand		1	
6	Prénom_Cand		1	
7	Code_Ets		1	
8	Nom_Ets			1
9	Ville_Ets			1
10	Note			

La matrice des dépendances fonctionnelle : Exemple (suite)

Deuxième Etape

- Certaines données ne sont pas reliées aux autres par un 1 en colonne ou en ligne. Il s'agit de propriétés isolées qui ne sont pas en DF avec un identifiant.
- La donnée « note » n'est pas reliée aux autres par un 1 en colonne ou en ligne.
- Il faut donc voir à présent, en prenant les identifiants deux par deux ou trois par trois, si on peut obtenir la propriété non reliée aux autres par un 1.
- On peut obtenir « Note » à partir de « Num_Epreuve » et de « Num_Cand ».
- La concaténation des identifiants « Num_Epreuve » et « Num_Cand » permet de créer une DF élémentaire vers la propriété isolée « Note ».
- Num_Epreuve , Num_Cand ----> Note

Dictionnaire des données

Le dictionnaire de données : Il a pour but essentiel de recenser toutes les informations utiles à l'entreprise et de distinguer :

- Il doit être à la fois épuré (ne pas comporter des synonymes) et exhaustif (ne pas Comporter de propriétés aux significations multiples).
- Les données paramétrées : cette information prendra toujours la même valeur.
- Les données calculées : cette information pourra être retrouvée par le biais d'un calcul, à l'aide d'une requête, grâce aux données élémentaires et paramétrées.
- Les données élémentaires : cette information pourra prendre plusieurs valeurs.
- On ne retiendra par la suite que les données élémentaires.
 - > On peut proposer la présentation sous forme de tableau:

F.	7Δ 1	m	nl	Δ.	

	N°	Nom de la propriété	signification	type	Domaine de définition
	1				
	2				
	3				
L	•				

Merise: Modélisation des Données (DD) Dictionnaire des données : Exemple

Soit le Dictionnaire des données relatives à l'organisation d'un examen :

Dictionnaire des données

Rubrique	Type (E : élémentaire ; C : calculé ; CD : calculée datée ; Conc. : concaténé)	Commentaire (règles d'intégrité pour vérifier la pertinence de l'information, règles de calcul)				
Num Epreuve	Е	9999 (Signification : numérique sur 4 positions)				
Lib Epreuve	E					
Coef Epreuve	E	9 (Signification : numérique sur 1 position)				
Num Cand	E	9999 (Signification : numérique sur 4 positions)				
Nom Cand	E					
Prénom Cand	E					
Code Ets	E	999999 (Signification : numérique sur 6 positions)				
Nom Ets	E					
Ville Ets	E					
Note	E	[0;20]				
Total	C	\sum (Note × Coef.)				
Décision	С	Si total ≥ 210, alors décision : «Admis». Sinon, décision «Ajourné».				

Règles de gestion : Exemple

Règles de gestion relatives à l'organisation d'un examen :

- Règle 1: chaque épreuve comporte un libellé, un numéro sur 4 positions et un coefficient sur seule position;
- Règle 2: les candidats sont identifiés par un numéro sur 4 positions et décrits par un nom et un prénom;
- Règle 3: les établissements scolaires sont référencés par un code sur 6 positions, ils sont ensuite décrits par leur nom et leur ville d'implantation;
- **Règle 4:** à chaque épreuve, les candidats obtiennent une notre sur 20. A l'issue de la correction des copies, un nombre total de points est calculé à partir des notes obtenues et des coefficients. Si le total des point est d'au moins 210, le candidat est déclaré admis ; sinon, il est ajourné.

Première Etape

A ce stade, seules 10 propriétés sont portés dans la matrice des DF.

Lecteur de la matrice en colonne

Pour remplir la matrice, on va se poser la question suivante : pour une valeur de la donnée en colonne, existe-t-il au maximum une seule valeur de la donnée située en ligne ? Si la réponse est oui, on inscrit un 1 à l'intersection pour indiquer l'existence d'une DF.

Dans notre exemple : « Num_Epreuve » est en DF avec « Lib_Epreuve » et « Coef ».

- « Num_Cand » est en DF avec « Nom_Cand », « Prénom_Cand » et « Code_Ets ».
- « Code_Ets » est en DF avec « Nom_Ets » et « Ville_Ets ».
- « Num_Epreuve », « Num_Cand » et « Code_Ets » sont des identifiants.

Lecteur de la matrice en ligne

Il convient de ne trouver qu'un seul 1 sur même ligne. Lorsqu'il y a deux 1 sur une même ligne, il y a un risque important de présence de DF transitive entrainant une redondance d'information.

Une Df (A \rightarrow B) est dite transitive s'il existe une donnée C telle que : A \rightarrow C et C \rightarrow B.

Elaboration du MCD

A partir de la matrice des dépendances fonctionnelles, le MCD est élaboré.

	Sources Buts	1	4	7
1	Num_Epreuve			
2	Lib_Epreuve	1		
3	Coef	1		
4	Num_Cand			
5	Nom_Cand		1	
6	Prénom_Cand		1	
7	Code_Ets		1	
8	Nom_Ets			1
9	Ville_Ets			1
10	Note			

Conception du MCD (résumé)

