Asignment 4

Ujjwal Chowdhury

Assignment on regularised regression

Select a dataset from the UCI dataset on regression (exclude categorical ovaribales for now). First inspect the predictors for multicollinearity and select a subset which is linearly independent. Next find solution of linear regression model using normal equations and sequential gradient descent (Widrow Hoff). Next fit a LASSO and Ridge model using scipy.optimize library. Plot the solution path for different values of α using "lassopath" and "ridgepath" libraries of scipy. Compare the three models in terms of the solution obtained, prediction accuracy etc. Interpret the Lasso and Ridge solutions in terms of selection and shrinkage. Upload two files - one code and one pdf with the brief report.

Report

Data Set: I am using the Superconductivity Data Set from UCI.

Summary of the data :- I get the summary of the data using the .info function.

Filtering the data :- In this step I remove all other columns except the weighted columns.

Counting NA values:- In this step I check whether any NA values are inside any columns. In this case there is no NA value.

Multicollinearity :- Checking the correlation between each columns in the data frame using Heat map correlation matrix.

Selecting Features:- Here I have created a function which remove all highly correlated columns (threshold value = 0.6).

```
correlation_select(df_c,0.6)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21263 entries, 0 to 21262
Data columns (total 14 columns):
    Column
                                     Non-Null Count Dtype
                                     _____
                                     21263 non-null float64
    wtd_mean_atomic_mass
0
                                     21263 non-null float64
1
    wtd_entropy_atomic_mass
 2
    wtd_std_atomic_mass
                                     21263 non-null float64
 3
    wtd mean fie
                                    21263 non-null float64
 4
                                    21263 non-null float64
    wtd_range_atomic_radius
 5
    wtd_mean_ElectronAffinity
                                    21263 non-null float64
    wtd_entropy_ElectronAffinity
 6
                                    21263 non-null float64
 7
    wtd_std_ElectronAffinity
                                     21263 non-null
                                                    float64
                                     21263 non-null float64
 8
    wtd_mean_FusionHeat
9
    wtd_mean_ThermalConductivity
                                    21263 non-null float64
    wtd_gmean_ThermalConductivity 21263 non-null float64
 11 wtd_entropy_ThermalConductivity 21263 non-null float64
 12 wtd_mean_Valence
                                     21263 non-null float64
    wtd_std_Valence
                                     21263 non-null float64
```

OLS:

Dep. Variable: cri	tical_temp	R-sq	uared (unce	ntered):		0.826	
Model:	OLS	Adj.	R-squared	(uncentered)	:	0.826	
Method: Lea	st Squares	F-st	atistic:			7220.	
Date: Mon, 0	4 Apr 2022	Prob	(F-statist	ic):		0.00	
Time:	14:04:07	Log-	Likelihood:			-94122.	
No. Observations:	21263	AIC:				1.883e+05	
Df Residuals:	21249	BIC:				1.884e+05	
Df Model:	14						
Covariance Type:	nonrobust						
=============	=======	coef	std err	t	P> t	[0.025	0.975]
wtd mean atomic mass	0.	0154	0.006	2.613	0.009	0.004	0.027
wtd entropy atomic mass	16.	4392	0.796	20.650	0.000	14.879	18.000
wtd_std_atomic_mass	0.	1584	0.010	16.666	0.000	0.140	0.177
wtd mean fie	0.	0184	0.001	18.083	0.000	0.016	0.020
wtd range atomic radius	0.	0068	0.005	1.350	0.177	-0.003	0.017
wtd mean ElectronAffinity	-0.	1462	0.006	-23.018	0.000	-0.159	-0.134
wtd entropy ElectronAffinit	y -23.	8004	0.741	-32.127	0.000	-25.252	-22.348
wtd_std_ElectronAffinity	0.	0805	0.010	8.259	0.000	0.061	0.100
wtd mean FusionHeat	0.	0198	0.015	1.342	0.180	-0.009	0.049
wtd_mean_ThermalConductivit	y 0.	4737	0.006	79.897	0.000	0.462	0.485
wtd_gmean_ThermalConductivi	ty -0.	4951	0.008	-61.739	0.000	-0.511	-0.479
wtd_entropy_ThermalConducti	vity 17.	7504	0.712	24.938	0.000	16.355	19.146
wtd mean Valence	-1.	9158	0.215	-8.920	0.000	-2.337	-1.495
wtd_std_Valence	-11.	4171	0.406	-28.126	0.000	-12.213	-10.621
======================================	351.542	Durb	in-Watson:		 0.828	:	
Prob(Omnibus):	0.000):	699.383		
Skew:	-0.035		(JB):	, .	1.35e-152		
Kurtosis:	3.886		. No.		6.11e+03		

Batch Gradient Descent:

Total number of iterations = 984 Train Score: 0.41684103478349477 Test Score: 0.4286460967327166

Sequential Gradient Descent:

Total number of iterations = 987 Train Score: 0.6430747438781501 Test Score: 0.6432614848770073

SGD coefficients

	Coefficient Estimate
Columns	
wtd_mean_atomic_mass	1.273164e+11
wtd_entropy_atomic_mass	3.825199e+10
wtd_std_atomic_mass	-1.119290e+11
wtd_mean_fie	-4.729064e+10
wtd_range_atomic_radius	4.023643e+09
wtd_mean_ElectronAffinity	1.938587e+11
wtd_entropy_ElectronAffinity	-3.526704e+10
wtd_std_ElectronAffinity	8.467363e+10
wtd_mean_FusionHeat	5.015692e+10
wtd_mean_ThermalConductivity	-8.937411e+10
wtd_gmean_ThermalConductivity	1.037190e+11
wtd_entropy_ThermalConductivity	1.681675e+11
wtd_std_Valence	-3.921789e+10

LASSO:-

MSE training set 448.64022669539935 MSE test set 466.01888024885574

Accuracy of training set 0.6170671926145267 Accuracy of test set 0.6079409994390365

LASSO coefficients

	Coefficient Estimate
Columns	
wtd_mean_atomic_mass	-0.000000
wtd_entropy_atomic_mass	0.000000
wtd_std_atomic_mass	0.000000
wtd_mean_fie	0.073033
wtd_range_atomic_radius	-0.000000
wtd_mean_ElectronAffinity	-0.000000
wtd_entropy_ElectronAffinity	0.000000
wtd_std_ElectronAffinity	0.000000
wtd_mean_FusionHeat	-0.000000
wtd_mean_ThermalConductivity	0.068023
wtd_gmean_ThermalConductivity	-0.000000
wtd_entropy_ThermalConductivity	-0.000000
wtd_mean_Valence	-0.000000
wtd std Valence	-0,000000

Ridge Regression :-

MSE of training set = 419.2101073342187 Accuracy of training set 0.6507528338821016 Accuracy of test set 0.6473209505616128

Coefficients estimates

MSE = 412.8128055949876

	Coefficient Estimate
Columns	
wtd_mean_atomic_mass	0.024337
wtd_entropy_atomic_mass	17.026830
wtd_std_atomic_mass	0.159140
wtd_mean_fie	0.023474
wtd_range_atomic_radius	0.013268
wtd_mean_ElectronAffinity	-0.151132
wtd_entropy_ElectronAffinity	-23.373274
wtd_std_ElectronAffinity	0.077065
wtd_mean_FusionHeat	0.022391
wtd_mean_ThermalConductivity	0.480450
wtd_gmean_ThermalConductivity	-0.493430
wtd_entropy_ThermalConductivity	18.731995
wtd_mean_Valence	-1.589036
wtd_std_Valence	-11.633624

Elastic Net:-

Accuracy of training set 0.6063905407734923 Accuracy of test set 0.5975760671689727

Coefficients estimates

Columns

Columns	
wtd_mean_atomic_mass	-0.002080
wtd_entropy_atomic_mass	1.139267
wtd_std_atomic_mass	0.091971
wtd_mean_fie	0.041641
wtd_range_atomic_radius	-0.026168
wtd_mean_ElectronAffinity	-0.210998
wtd_entropy_ElectronAffinity	-0.317390
wtd_std_ElectronAffinity	0.080545
wtd_mean_FusionHeat	-0.006153
wtd_mean_ThermalConductivity	0.503547
wtd_gmean_ThermalConductivity	-0.491537
wtd_entropy_ThermalConductivity	1.123867
wtd_mean_Valence	-1.106421
wtd_std_Valence	-2.506409

In LASSO regularization some coefficient values are becoming zero.

Plotting LASSO coefficients as a function of alpha

Comparing OLS & LASSO Coefficients:

Comparing OLS & Ridge Coefficients:

Comparing LASSO & Ridge Coefficients:

Comparing LASSO, Ridge and Elastic Net Coefficients:

Comparing OLS, LASSO, Ridge, Elastic Net Coefficients:

Comparing LASSO & Elastic Net Coefficients:

LASSO LRAS Paths:

Ridge Paths:-

