Exploring Tooth Growth

Matt Moocarme July 25, 2015

Overview

Here I will explore the tooth growth dataset that Rstudio provides. ## Load the data and perform some basic exploratory data analyses.

```
library(lattice)
data(ToothGrowth)
str(ToothGrowth)
                60 obs. of 3 variables:
  'data.frame':
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
   $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
   table(ToothGrowth$supp,ToothGrowth$dose)
##
##
      0.5
          1
      10 10 10
##
    OJ
##
       10 10 10
```

bwplot(ToothGrowth\$len ~ToothGrowth\$supp | ToothGrowth\$dose)

Provide a basic summary of the data

summary(ToothGrowth)

```
##
         len
                    supp
                                  dose
##
           : 4.20
                                    :0.500
   Min.
                    OJ:30
                             Min.
   1st Qu.:13.07
                    VC:30
                             1st Qu.:0.500
## Median :19.25
                             Median :1.000
           :18.81
                                    :1.167
## Mean
                             Mean
## 3rd Qu.:25.27
                             3rd Qu.:2.000
## Max.
           :33.90
                             Max.
                                    :2.000
```

```
aggregate(ToothGrowth$len,list(ToothGrowth$dose,ToothGrowth$supp)
,FUN=function(x) c(x_mean = mean(x), x_sd = sd(x)))
```

```
##
     Group.1 Group.2 x.x_mean
                                 x.x_sd
## 1
         0.5
                 OJ 13.230000 4.459709
## 2
         1.0
                 OJ 22.700000 3.910953
## 3
         2.0
                 OJ 26.060000 2.655058
                 VC 7.980000 2.746634
## 4
        0.5
## 5
         1.0
                 VC 16.770000 2.515309
## 6
         2.0
                 VC 26.140000 4.797731
```

Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

I test the hypothesis that the two different supplements, orange juice and vitamin C, have no affect on tooth length.

```
t.test(len ~ supp, data = ToothGrowth)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

The interval contains zero, but the p-value is above 5% so it is not conclusive.

By comparing all doses with each other I can test the hypothesis that the does does not affect on the tooth length.

```
d5 <- ToothGrowth[which(ToothGrowth$dose==.5),1]
d10 <- ToothGrowth[which(ToothGrowth$dose==1),1]
d20 <- ToothGrowth[which(ToothGrowth$dose==2),1]</pre>
```

```
d510_t1 <- t.test(d5, d10, paired=FALSE, var.equal=TRUE)
d510_t2 <- t.test(d5, d10, paired=FALSE, var.equal=FALSE)
d510 <- data.frame("p-value"=c(d510_t1$p.value, d510_t2$p.value),
                           "Conf-Low"=c(d510 t1$conf[1],d510 t2$conf[1]),
                           "Conf-High"=c(d510_t1$conf[2],d510_t2$conf[2]),
                           row.names=c("t1","t2"), "Dose"="[0.5..1]")
d520 t1 <- t.test(d5, d20, paired=FALSE, var.equal=TRUE)
d520 t2 <- t.test(d5, d20, paired=FALSE, var.equal=FALSE)
d520 \leftarrow data.frame("p-value"=c(d520 t1$p.value, d520 t2$p.value),
                             "Conf-Low"=c(d520 t1$conf[1],d520 t2$conf[1]),
                             "Conf-High"=c(d520_t1$conf[2],d520_t2$conf[2]),
                            row.names=c("t1","t2"), "Dose"="[0.5..2]")
d1020_t1 <- t.test(d10, d20, paired=FALSE, var.equal=TRUE)</pre>
d1020_t2 <- t.test(d10, d20, paired=FALSE, var.equal=FALSE)
d1020 <- data.frame("p-value"=c(d1020_t1$p.value, d1020_t2$p.value),
                            "Conf-Low"=c(d1020_t1$conf[1],d1020_t2$conf[1]),
                           "Conf-High"=c(d1020_t1$conf[2],d1020_t2$conf[2]),
                           row.names=c("t1","t2"), "Dose"="[1..2]")
doseTot <- rbind(d510,d520,d1020)</pre>
doseTot
```

```
## t1 1.266297e-07 -11.983748 -6.276252 [0.5..1]
## t2 1.268301e-07 -11.983781 -6.276219 [0.5..1]
## t11 2.837553e-14 -18.153519 -12.836481 [0.5..2]
## t21 4.397525e-14 -18.156167 -12.833833 [0.5..2]
## t12 1.810829e-05 -8.994387 -3.735613 [1..2]
## t22 1.906430e-05 -8.996481 -3.733519 [1..2]
```

The result of comparing all the doses is that their p-values are very low and the confidence intervals do not contain zero, so we can deny the hypothesis and conclude that the dose does affect the tooth length.

Conclusion

In conclusion I have analysed the tooth growth data and confirmed that an increase if the dose of the supplement increases the tooth growth. It is inconclusive whether the type of supplement, vitamin C or orange juice, affects the tooth The assumptions needed for these coclusions is that the guinea pigs were randonmly selected from a population of guinea pigs.