

Chapter 1

Laplace Transform

1.1 Definition of Laplace Transform

Laplace Transform is defined as the following,

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt = F(s)$$

The Laplace Transform is a linear transform since the integral and product operations are both linear operations as well.

$$\mathcal{L}[\alpha f(t)] = \alpha \mathcal{L}[f(t)] \quad , \quad \mathcal{L}[f(t) + g(t)] = \mathcal{L}[f(t)] + \mathcal{L}[g(t)]$$
$$\mathcal{L}[\alpha f(t) + \beta g(t)] = \alpha \mathcal{L}[f(t)] + \beta \mathcal{L}[g(t)]$$

wherein α , β represent constants and f(t), g(t) represent functions of t.

1.2 Transforms of Derivatives

In General form,

$$\mathcal{L}[f(t)] = s^{n} \mathcal{L}[f(t)] - \sum_{k=0}^{n-1} \left[s^{n-1-k} f(0) \right]$$

wherein f(t) represents the n^{th} derivative of the function f(t). Proof is shown below,

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$\int uv' \, dt = uv - \int u'v \, dt$$

$$u = e^{-st} \quad , \quad u' = -se^{-st} \quad , \quad v' = f(t) \quad , \quad v = f(t)$$

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) \, dt = \left[e^{-st} f(t) \right]_0^\infty - \int_0^\infty -se^{-st} f(t) \, dt = -f(0) + s \int_0^\infty e^{-st} f(t) \, dt$$

Generalizing for the second integral term,

$$\int_0^\infty e^{-st} f(t) dt = \left[e^{-st} f(t) \right]_0^\infty + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \int_0^\infty e^{-st} f(t) dt$$

By applying substitution recursively,

$$\mathcal{L}[f(t)] = -\sum_{i=0}^{k} \left[s^{i} \overset{n-1-i}{f(0)} \right] + \prod_{i=0}^{k} \left[s \right] \int_{0}^{\infty} e^{-st} \overset{n-1-k}{f(t)} dt = -\sum_{i=0}^{k} \left[s^{i} \overset{n-1-i}{f(0)} \right] + s^{k+1} \int_{0}^{\infty} e^{-st} \overset{n-1-k}{f(t)} dt$$

Substituting the value for k = n - 1,

$$\mathcal{L}[f(t)] = -\sum_{i=0}^{n-1} \left[s^i f(0) \right] + s^n \int_0^\infty e^{-st} f(t) dt$$

A few things should be noted,

$$\int_0^\infty e^{-st} f(t) dt = \mathcal{L}[f(t)] \quad , \quad \sum_{i=0}^{n-1} \left[s^i f(0) \right] = \sum_{i=0}^{n-1} \left[s^{n-1-i} f(0) \right]$$

By substitution of the counting variable i with k,

$$\mathcal{L}[f(t)] = -\sum_{i=0}^{n-1} \left[s^{i} f(0) \right] + s^{n} \int_{0}^{\infty} e^{-st} f(t) dt = s^{n} \mathcal{L}[f(t)] + \sum_{k=0}^{n-1} \left[s^{n-1-k} f(0) \right] dt$$

1.3 Transforms of Integrals

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}[f(t)]$$

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \int_0^\infty e^{-st} \int_0^t f(\tau)d\tau dt$$

$$\int uv' \, dt = uv - \int u'v \, dt$$

$$u = \int_0^t f(\tau) d\tau \quad , \quad u' = f(t) \quad , \quad v' = e^{-st} \quad , \quad v = -\frac{1}{s}e^{-st}$$

$$\int_0^\infty e^{-st} \int_0^t f(\tau) d\tau \, dt = -\left[\frac{1}{s}e^{-st} \int_0^t f(\tau) d\tau\right]_0^\infty + \int_0^\infty \frac{1}{s}e^{-st} f(t) \, dt$$

It should be noted that since the function f(t) is in exponential order,

$$\left[\frac{1}{s}e^{-st}\int_0^t f(\tau)d\tau\right]_0^\infty = 0$$

Substituting the uv term with zero,

$$\int_0^\infty e^{-st} \int_0^t f(\tau) d\tau \, dt = \int_0^\infty \frac{1}{s} e^{-st} f(t) \, dt = \frac{1}{s} \int_0^\infty e^{-st} f(t) \, dt = \frac{1}{s} \mathcal{L}[f(t)]$$

1.4 Derivative of Transforms

$$\mathcal{L}[t^{n}f(t)] = (-1)^{n}F^{n}(s) = (-1)^{n}\frac{d^{n}}{ds^{n}}\left\{\mathcal{L}[f(t)]\right\}$$

wherein F(s) represents the laplace transform of the function f(t). By the definition of Laplace Transforms discussed earlier,

$$\mathcal{L}[t^n f(t)] = \int_0^\infty e^{-st} t^n f(t) dt \quad , \quad F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

Differentiating the Laplace Transform of f(t) with respect to s iteratively n times,

$$F(s) = \frac{d^n}{ds^n} \{ \mathcal{L}[f(t)] \} = \frac{d^n}{ds^n} \int_0^\infty e^{-st} f(t) \, dt = (-1)^n \int_0^\infty e^{-st} t^n f(t) \, dt$$
$$(-1)^n F(s) = \int_0^\infty e^{-st} t^n f(t) \, dt$$

By substituting the definition for the Laplace Transform of $t^n f(t)$,

$$(-1)^n F^n(s) = \mathcal{L}[t^n f(t)]$$

1.5 Integration of Transforms

$$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(\tau) \, d\tau$$

wherein F(s) represents the laplace transform of the function f(t).

$$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_0^\infty \frac{e^{-st}f(t)}{t} dt \quad , \quad F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st}f(t) dt$$

$$\int_s^\infty F(\tau) d\tau = \int_s^\infty \int_0^\infty e^{-\tau t}f(t) dt d\tau = \int_0^\infty \int_s^\infty e^{-\tau t}f(t) d\tau dt = \int_0^\infty \left[-\frac{1}{t}e^{-\tau t}f(t)\right]_{\tau=s}^{\tau=\infty} dt$$

$$\int_s^\infty F(\tau) d\tau = -\int_0^\infty \frac{f(t)}{t} \left[e^{-\tau t}\right]_{\tau=s}^{\tau=\infty} dt = -\int_0^\infty \frac{f(t)}{t} \left[\lim_{\tau \to \infty} (e^{-\tau t}) - e^{-st}\right] dt$$
Taking into account that, $\lim_{\tau \to \infty} (e^{-\tau t}) = 0$,

$$\int_{s}^{\infty} F(\tau) d\tau = -\int_{0}^{\infty} \frac{f(t)}{t} \left[-e^{-st} \right] dt = \int_{0}^{\infty} \frac{e^{-st} f(t)}{t} dt$$

By substituting the definition of the laplace transform of $\frac{f(t)}{t}$,

$$\int_{s}^{\infty} F(\tau) d\tau = \mathcal{L} \left[\frac{f(t)}{t} \right]$$

1.6 Translation of Transforms

$$\mathcal{L}\left[u(t-c)f(t)\right] = e^{-cs}\mathcal{L}\left[f(t+c)\right]$$

By definition of Laplace Transform,

$$\mathcal{L}\left[u(t-c)f(t)\right] = \int_0^\infty e^{-st}u(t-c)f(t)\,dt = \int_c^\infty e^{-st}f(t)\,dt + \int_0^c e^{-st} \times 0\,dt$$

$$\mathcal{L}\left[u(t-c)f(t)\right] = \int_c^\infty e^{-st}f(t)\,dt$$

Using the substitution $t=\tau+c$. When $t=\infty$, $\tau=\infty$ and when t=c , $\tau=0$. Therefore,

$$\mathcal{L}\left[u(t-c)f(t)\right] = \int_{t=c}^{t=\infty} e^{-s(\tau+c)} f(\tau+c) \, dt = \int_{\tau=0}^{\tau=\infty} e^{-s(\tau+c)} f(\tau+c) \, d\tau$$

$$\mathcal{L}\left[u(t-c)f(t)\right] = \int_{\tau=0}^{\tau=\infty} e^{-s\tau-sc} f(\tau+c) d\tau = \int_{\tau=0}^{\tau=\infty} e^{-cs} e^{-s\tau} f(\tau+c) d\tau$$

Since variables s and c are not changing with time, the term e^{-cs} could be treated as some form of constant. Therefore,

$$\mathcal{L}\left[u(t-c)f(t)\right] = e^{-cs} \int_0^\infty e^{-s\tau} f(\tau+c) d\tau$$

It should be noted that the change of variables allows,

$$\mathcal{L}\left[f(t+c)\right] = \int_0^\infty e^{-st} f(t+c) dt = \int_0^\infty e^{-s\tau} f(\tau+c) d\tau$$

By substitution.

$$\mathcal{L}\left[u(t-c)f(t)\right] = e^{-cs}\mathcal{L}\left[f(t+c)\right]$$

1.7 Transforms of Translated Functions

$$\mathcal{L}[e^{ct}f(t)] = F(s-c)$$

Reiterating the definition of laplace transforms,

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt = F(s)$$

$$\mathcal{L}[e^{ct} f(t)] = \int_0^\infty e^{ct} e^{-st} f(t) dt = \int_0^\infty e^{-st+ct} f(t) dt$$

$$\mathcal{L}[e^{ct} f(t)] = \int_0^\infty e^{-(s-c)t} f(t) dt = F(s-c)$$

1.8 Convolution

$$f * g(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

The convolution is a commutative transformation. Therefore,

$$f * g(t) = g * f(t) = \int_0^t f(\tau)g(t-\tau) d\tau = \int_0^t g(\tau)f(t-\tau) d\tau$$

One useful property of the convolution function,

$$\mathcal{L}\left[f*g(t)\right] = \mathcal{L}\left[f(t)\right] \times \mathcal{L}\left[g(t)\right]$$

wherein

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$
 , $G(s) = \mathcal{L}[g(t)] = \int_0^\infty e^{-st} g(t) dt$

By a substitution of variables t = u it could be re-written,

$$F(s) = \mathcal{L}[f(u)] = \int_0^\infty e^{-su} f(u) \, du$$
 , $G(s) = \mathcal{L}[g(u)] = \int_0^\infty e^{-su} g(u) \, du$

Examining the Laplace Transform of g(u), and making the substitution $u = t - \tau$

$$\mathcal{L}[g(t-\tau)] = \int_{u=0}^{u=\infty} e^{-s(t-\tau)} g(t-\tau) dt$$

When $u = \infty$, $t = \infty$ and when u = 0 , $t = \tau$. Therefore,

$$\mathcal{L}[g(t-\tau)] = \int_{t=\tau}^{t=\infty} e^{-s(t-\tau)} g(t-\tau) dt$$

The $e^{\tau s}$ term could be isolated because both variables τ and s in this case are non-changing with t. The next form is identical to the laplace transform at the Translation of Transforms section,

$$\int_{\tau=0}^{\tau=\infty} e^{-s(\tau+c)} f(\tau+c) \, d\tau = e^{-cs} \int_{0}^{\infty} e^{-s\tau} f(\tau+c) \, d\tau$$

By substituting τ in the Translation of Transforms section with t, substituting c with $-\tau$, and substituting the arbitrary function g with the arbitrary function f,

$$\int_{t=0}^{t=\infty} e^{-s(t-\tau)} g(t-\tau) \, dt = e^{\tau s} \int_{0}^{\infty} e^{-st} g(t-\tau) \, dt$$

Therefore,

$$\mathcal{L}[g(t-\tau)] = G(s) = e^{\tau s} \int_0^\infty e^{-st} g(t-\tau) dt$$

Proving the Convolution Property by first examining the product of the two Laplace Transforms,

$$F(s) \times G(s) = G(s) \int_0^\infty e^{-su} f(u) du = \int_0^\infty e^{-su} G(s) f(u) du$$

The above would be perfectly legal operations because G(s) is a function in terms of s and is unchanging with respect to variable t. Therefore, the function

G(s) could be treated as a constant that can be place inside and outside of the integral.

$$F(s) \times G(s) = \int_0^\infty e^{-s\tau} f(\tau) \times e^{\tau s} \int_0^\infty e^{-st} g(t-\tau) dt d\tau$$
$$F(s) \times G(s) = \int_0^\infty \int_0^\infty e^{-st} f(\tau) g(t-\tau) dt d\tau$$

By chaging the order of integration,

$$F(s) \times G(s) = \int_0^\infty e^{-st} \int_0^\infty f(\tau)g(t-\tau) d\tau dt = \mathcal{L} \left[\int_0^\infty f(\tau)g(t-\tau) d\tau \right]$$
$$F(s) \times G(s) = \mathcal{L} \left[f * g(t) \right]$$