Simulation 4

Mengqi Liu

Jul 20, 2023

Setting

- d: number of nodes
- s0: expected number of edges
- graph_type: ER
 - $\, \bullet \,$ ER: Erdős-Rényi Graph randomly choose one from all graphs with d nodes and s0 edges + random orientation
- n: number of samples, n=inf mimics population risk
- sem_type: gauss, exp, gumbel, uniform
- loss_type: l2
- · lambda1: penalty for sparsity
- Here I use MCMC to simulate for 20 times or for 6 times.
- losses:
 - h(W) = 0: constraint function
 - loss_est: loss decided by loss_type
 - loss_I1: loss_est + I1 penalty
 - obj_new: + quadratic penalty of h
 - obj_dual: dual function pertaining to obj_new with Lagrange multiplier α

Results

Experiment 1

Here I set lambda1 =0, $d\in\{10,20,40,60,80\}$, n=10 and s0=d.

Experiment 2

Here I set lambda1 = 0, $n \in \{2, 5, 7, 10, 12\}$, d = 80 and $s0 \in \{10, 80\}$.

Experiment 3

Here I set lambda1 = 0, $n \in \{100, 500, 1000\}$, d = 10 and s0 = d.

Gains and reflection

- When n is fixed, as the d gets bigger, the loss_est gets bigger, where obj_dual remains basically the same. $(n \leq d)$
- When d is fixed, as the n gets bigger, the loss_est gets smaller fisrt and then go bigger, where obj_dual increases very slowly. ($n \leq d$)
- When d is fixed, as the n gets extremely bigger, the loss_est and obj_dual keep constant and the difference loss_est-obj_dual seems to become smaller than in second experiment. (n >> d)

Question: Why doesn't loss_est not approach zero?

Technically,

W_est[np.abs(W_est) < w_threshold] = 0 -> arbitrary threshold -> how about delete this code line? > "2"

- scale_vec = np.zeros(d) -> this noise level may be too large to introduce more messy data -> scale_vec = np.zeros(d) * noise_scale
- if loss_type == 'l2': X = X np.mean(X, axis=0, keepdims=True)

Theoretically,

• Considering the large gap between loss_est/obj_new and obj_dual, it may be that the systematic error of optimizing this problem is relatively large, rather than specific optimization steps.

Ideas for the next experiment:

- Explore whether arbitrary threshold for W_est will effect the losses.
- Will losses be zero if we set noise_scale to be smaller?
- If losses cannot achieve zero, how do they compared to losses with regard to the global true W?

Experiment 4

Here I set lambda1 = 0, $d \in \{15, 25, 40, 60, 80\}$, n = 15 and $s0 = \{15, d\}$.

- Blue lines stand for original W_est and its losses.
- Orange lines stand for W_est2 with "W_est[np.abs(W_est) < w_threshold] = 0" and its losses.
- Green lines stand for true W and its losses.

New gains

- Surprisingly, green lines and orange lines are more close, which means sparsely estimated W_est may behave more like true W.
- Unfortunately, losses associated with estimated matrix are smaller. This may indicate some systematic problem in optimization problem or overfitting.
- The constraint function computed by originally estimated W_est and W_est2 is not strictly 0 in some cases. The severity of the problem is uncertain.
- Smaller noise_scale will lead to smaller losses and shorter running time.