Contrôle Continu.

Equations différentiels ordinaires

HASNAA ZIDANI - HASNAA.ZIDANI@INSA-ROUEN.FR

Devoir Maison - à rendre le vendredi 7 avril 2023

Les 4 exercices sont indépendants.

Le devoir peut être réalisé seul ou en binôme

Les réponses doivent être justifiées de manière concise.

Il faut déposer le devoir avant le 7 avril midi sur moodle

Exercice 1 On considère l'équation différentielle suivante:

$$y'(t) = 2t(y(t) + y^{2}(t)), \quad y(0) = y_{0}.$$

- 1. Justifier que, pour tout $y_0 \in R$, l'équation admet une solution maximale (y, I) où I est un intervalle contenant 0.
- 2. Supposons que $y_0 = 0$. Déterminer la solution globale de l'équation.
- 3. On suppose maintenant que $y_0 \neq 0$. Résoudre l'équation et discuter si la solution est globale. [Ind. On peut considérer le changement de variable: $z(t) = \frac{1}{y(t)}$]

Exercice 2 Soit $\alpha \in \mathbb{R}$. On considère la matrice

$$A = \begin{pmatrix} 1 & -2 \\ 2 & \alpha \end{pmatrix}.$$

- 1. Déterminer les valeurs propres de A dans \mathbb{C} en fonction du paramètre $\alpha \in \mathbb{R}$.
- 2. Distinguer, selon les valeurs de α , si A est diagonalisable ou pas et étudier la stabilité du système différentiel y'(t) = Ay(t), avec $y(0) \in \mathbb{R}^2$.

Exercice 3 On considère sur $I =]1, +\infty[$ l'équation différentielle

$$y'(t) = 1 + \frac{\cos^2(y(t))}{4t^2}, \quad y(2) = y_0.$$

- 1. Montrer que les solutions maximales existent, sont uniques et globales sur I.
- 2. On pose z(t) := y(t) t. Trouver l'équation différentielle satisfaite par z. Montrer que z est croissante.
- 3. En majorant sa dérivée, montrer que z est majorée. Montrer que z(t) converge vers une limite, que l'on notera ℓ , lorsque $t \to +\infty$. En déduire que $y(\cdot)$ admet pour asymptote la fonction $t \longmapsto t + \ell$.
- 4. La valeur de ℓ dépend de la condition initiale y_0 . Pour indiquer cette dépendance on notera $\ell(y_0)$. Montrer que $y_0 \longmapsto \ell(y_0)$ est une fonction croissante.

1

Exercice 4 On considère les systèmes suivants:

$$\begin{cases} y_1' = y_2 \\ y_2' = -\sin(y_1) \end{cases} \qquad \begin{cases} y_1' = y_2 \\ y_2' = y_1^2 - 3y_2 \end{cases} \qquad \begin{cases} y_1' = -y_1 - y_1 y_2^2 \\ y_2' = -y_2 + 3y_1^2 y_2 \end{cases}$$

Pour chacun de ces systèmes non linéaires:

- (a) trouver les points d'équilibre
- (b) Déterminer le système linéarisé autour de chaque point d'équilibre et étudier la stabilité du système linéarisé
 - (c) Ensuite, étudier la stabilité du système non linéaire