炼数成金

标题: 分类指标准确率(Precision)和正确率(Accuracy)的区别

作者: cowryzhao 时间: 2016-10-19 01:06

标题: 分类指标准确率(Precision)和正确率(Accuracy)的区别

一、引言

分类算法有很多,不同分类算法又用很多不同的变种。不同的分类算法有不同的特定,在不同的数据集上表现的效果也不同,我们需要根据特定的任务进行算法的选择,如何选择分类,如何评价一个分类算法的好坏,前面关于决策树的介绍,我们主要用的正确率(accuracy)来评价分类算法。

正确率确实是一个很好很直观的评价指标,但是有时候正确率高并不能代表一个算法就好。比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:不发生地震、1:发生地震。一个不加思考的分类器,对每一个测试用例都将类别划分为0,那那么它就可能达到99%的正确率,但真的地震来临时,这个分类器毫无察觉,这个分类带来的损失是巨大的。为什么99%的正确率的分类器却不是我们想要的,因为这里数据分布不均衡,类别1的数据太少,完全错分类别1依然可以达到很高的正确率却忽视了我们关注的东西。接下来详细介绍一下分类算法的评价指标。

二、评价指标

1、几个常用的术语

这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是:

- 1) True positives(TP):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);
- 2) False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
- 3) False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
- 4) True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。

预测类别

		Yes	No	总计
实际类别	Yes	TP	FN	P(实际为Yes)
	No	FP	TN	N(实际为No)
	总计	P'(被分为Yes)	N'(被分为No)	P+N

上图是这四个术语的混淆矩阵,我只知道FP叫伪阳率,其他的怎么称呼就不详了。注意P=TP+FN表示实际为正例的样本个数,我曾经误以为实际为正例的样本数应该为TP+FP,这里只要记住True、False 描述的是分类器是否判断正确,Positive、Negative是分类器的分类结果。如果正例计为1、负例计为-1,即positive=1、negtive=-1,用1表示True,-1表示False,那么实际的类标=TF*PN,TF为 true或false,PN为positive或negtive。例如True positives(TP)的实际类标=1*1=1为正例,False positives(FP)的实际类标=(-1)*1=-1为负例,False negatives(FN)的实际类标=(-1)*(-1)=1为正例,True negatives(TN)的实际类标=1*(-1)=-1为负例。

- 2、评价指标
- 1)正确率(accuracy)

正确率是我们最常见的评价指标,accuracy = (TP+TN)/(P+N),这个很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好;

2)错误率 (error rate)

错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accuracy = 1 - error rate;

3) 灵敏度 (sensitive)

sensitive = TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力;

4)特效度(specificity)

specificity = TN/N,表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力;

5)精度(precision)

精度是精确性的度量,表示被分为正例的示例中实际为正例的比例,precision=TP/(TP+FP);

6) 召回率 (recall)

召回率是覆盖面的度量,度量有多个正例被分为正例,recall=TP/(TP+FN)=TP/P=sensitive,可以看到召回率与灵敏度是一样的。

- 7) 其他评价指标
- 计算速度:分类器训练和预测需要的时间;
- 鲁棒性:处理缺失值和异常值的能力;

- 可扩展性:处理大数据集的能力;
- 可解释性:分类器的预测标准的可理解性,像决策树产生的规则就是很容易理解的,而神经网络的 一堆参数就不好理解,我们只好把它看成一个黑盒子。

对于某个具体的分类器而言,我们不可能同时提高所有上面介绍的指标,当然,如果一个分类器能正 确分对所有的实例,那么各项指标都已经达到最优,但这样的分类器往往不存在。比如我们开头说的地震 预测,没有谁能准确预测地震的发生,但我们能容忍一定程度的误报,假设1000次预测中,有5次预测为 发现地震,其中一次真的发生了地震,而其他4次为误报,那么正确率从原来的999/1000=99.9%下降 到996/1000=99.6,但召回率从0/1=0%上升为1/1=100%,这样虽然谎报了几次地震,但真的地震 来临时,我们没有错过,这样的分类器才是我们想要的,在一定正确率的前提下,我们要求分类器的召回 率尽可能的高。

http://blog.sciencenet.cn/blog-460603-785098.html

分类是一种重要的数据挖掘算法。分类的目的是构造一个分类函数或分类模型(即分类器),通过分类器 将数据对象映射到某一个给定的类别中。分类器的主要评价指标有准确率(Precision)、召回率

(Recall)、Fb-score、ROC、AOC等。在研究中也有采用Accuracy(正确率)来评价分类器的。但准确率 和正确率这两个概念经常有人混了。【没有耐心看下面内容的博友请看最后的结论】

准确率(Precision)和召回率(Recall)是信息检索领域两个最基本的指标。准确率也称为查准率,召回率也 称为杳全率。它们的定义如下:

Precision=系统检索到的相关文件数量/系统检索到的文件总数量

Recall=系统检索到的相关文件数量/系统所有相关文件数量

Fb-score是准确率和召回率的调和平均: Fb=[(1+b2)*P*R]/(b2*P+R), 比较常用的是F1。

在信息检索中,准确率和召回率是互相影响的,虽然两者都高是一种期望的理想情况,然而实际中常常 是准确率高、召回率就低,或者召回率低、但准确率高。所以在实际中常常需要根据具体情况做出取舍, 例如对一般搜索的情况是在保证召回率的情况下提升准确率,而如果是疾病监测、反垃圾邮件等,则是在 保证准确率的条件下,提升召回率。但有时候,需要兼顾两者,那么就可以用F-score指标。

ROC和AUC是评价分类器的指标。ROC是受试者工作特征曲线 receiver operating characteristic curve)的简写,又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感 受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已[1]。ROC是 反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量 设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横 坐标绘制成曲线。AUC是ROC曲线下面积(Area Under roc Curve)的简称,顾名思义,AUC的值就是处 于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,AUC越大,诊断准确性越 高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。

为了解释ROC的概念,让我们考虑一个二分类问题,即将实例分成正类(positive)或负类

(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被预测成正类,即为 真正类 (True positive) ,如果实例是负类被预测成正类,称之为假正类 (False positive) 。相应地,如 果实例是负类被预测成负类,称之为真负类(Truenegative),正类被预测成负类则为假负类

(falsenegative)。列联表或混淆矩阵如下表所示,1代表正类,0代表负类。

实际

True Positive (TP) False Positive (FP)

假正

真正 预测

False Negative (FN) True Negative TN

假负 直负

基于该列联表,定义敏感性指标为:sensitivity=TP/(TP+FN)。敏感性指标又称为真正类率 (truepositive rate, TPR), 刻画的是分类器所识别出的正实例占所有正实例的比例。

另外定义负正类率(false positive rate, FPR),计算公式为:FPR=FP/(FP+TN).负正类率计算的是分类 器错认为正类的负实例占所有负实例的比例

定义特异性指标为:Specificity=TN/(FP+TN)=1-FPR。特异性指标又称为真负类率 (True Negative Rate, TNR).

我们看,实际上,敏感性指标就是召回率,特异性指标=1-FPR。

ROC曲线由两个变量绘制。横坐标是1-specificity,即负正类率(FPR),纵坐标是 Sensitivity,即真正 类率(TPR)。

在此基础上,还可以定义正确率(Accuracy)和错误率(Error)。 Accuracy=

(TP+TN)/(TP+FP+TN+FN), Error=(FP+FN)/(TP+FP+TN+FN)。如果把预测为1看作检索结果,则 准确率Precision = TP/(TP+FP)。

结论:

分类正确率(Accuracy),不管是哪个类别,只要预测正确,其数量都放在分子上,而分母是全部数据数 量,这说明正确率是对全部数据的判断。而准确率在分类中对应的是某个类别,分子是预测该类别正确的 数量,分母是预测为该类别的全部数据的数量。或者说,Accuracy是对分类器整体上的正确率的评价,而 Precision是分类器预测为某一个类别的正确率的评价。

https://argcv.com/articles/1036.c

自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作,而其评价指 标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure。

本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。 现在我先假定一个具体场景作为例子。

假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生. 现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了. 作为评估者的你需要来评估(evaluation)下他的工作

首先我们可以计算准确率(accuracy),其定义是:对于给定的测试数据集,分类器正确分类的样本数与总 样本数之比。也就是损失函数是0-1损失时测试数据集上的准确率[1].

这样说听起来有点抽象,简单说就是,前面的场景中,实际情况是那个班级有男的和女的两类,某人(也就 是定义中所说的分类器)他又把班级中的人分为男女两类。accuracy需要得到的是此君分正确的人占总人 数的比例。很容易,我们可以得到:他把其中70(20女+50男)人判定正确了,而总人数是100人,所以它的 accuracy就是70 %(70 / 100).

由准确率,我们的确可以在一些场合,从某种意义上得到一个分类器是否有效,但它并不总是能有效的评 价一个分类器的工作。举个例子,google抓取了argcv 100个页面,而它索引中共有10,000,000个页面, 随机抽一个页面,分类下,这是不是argcv的页面呢?如果以accuracy来判断我的工作,那我会把所有的页 面都判断为"不是argcv的页面",因为我这样效率非常高(return false,一句话),而accuracy已经到了 99.999%(9,999,900/10,000,000),完爆其它很多分类器辛辛苦苦算的值,而我这个算法显然不是需求 期待的,那怎么解决呢?这就是precision,recall和f1-measure出场的时间了.

无关(NonRelevant),负类

伪娘横行,这个错常有人犯)

们一准儿就会在此处)

false positives(FP 负类判定为正类,"存伪",

例子中就是分明是男生却判断为女生,当下

在说precision,recall和f1-measure之前,我们需要先需要定义TP,FN,FP,TN四种分类情况. 按照前面例子,我们需要从一个班级中的人中寻找所有女生,如果把这个任务当成一个分类器的话,那么女生

就是我们需要的,而男生不是,所以我们称女生为"正类",而男生为"负类".

相关(Relevant),正类

true positives(TP 正类判定为正类,例子中就 被检索到 (Retrieved) 是正确的判定"这位是女生")

未被检索到 false negatives(FN 正类判定为负类,"去真", true negatives(TN 负类判定为负类,也就 (Not 例子中就是,分明是女生,这哥们却判断为男生-是一个男生被判断为男生,像我这样的纯爷 Retrieved) -梁山伯同学犯的错就是这个)

通过这张表,我们可以很容易得到这几个值:

TP=20

FP=30

FN=0

精确率(precision)的公式是P=TPTP+FP,它计算的是所有被检索到的item中,"应该被检索到"的item占 的比例。

在例子中就是希望知道此君得到的所有人中,正确的人(也就是女生)占有的比例.所以其precision也就是 40%(20女生/(20女生+30误判为女生的男生)).

召回率(recall)的公式是R=TPTP+FN,它计算的是所有检索到的item占所有"应该检索到的item"的比 例。

在例子中就是希望知道此君得到的女生占本班中所有女生的比例,所以其recall也就是100%(20女生/(20 女生+0 误判为男生的女生))

F1值就是精确值和召回率的调和均值,也就是

2F1=1P+1R

调整下也就是

F1=2PRP+R=2TP2TP+FP+FN

例子中 F1-measure 也就是约为 57.143%(2*0.4*10.4+1).

需要说明的是,有人[2]列了这样个公式

Fa=(a2+1)PRa2(P+R)

将F-measure一般化.

F1-measure认为精确率和召回率的权重是一样的,但有些场景下,我们可能认为精确率会更加重要,调整参 数a,使用Fa-measure可以帮助我们更好的evaluate结果.

话虽然很多,其实实现非常轻松,点击此处可以看到我的一个简单的实现.

References

- [1] 李航. 统计学习方法[M]. 北京:清华大学出版社,2012.
- [2] 准确率 (Precision) 、召回率 (Recall) 以及综合评价指标 (F1-Measure)

作者: Miko_zhang 时间: 2016-10-20 11:18

好详细呀!~多谢楼主分享,学习啦

作者: snailpt 时间: 2016-10-20 20:09 不知道spark里有没有现成的函数可以直接用 **作者:** lgj573 **时间:** 2016-10-22 21:32

谢谢分享 学习了

作者: 隔壁老唐 **时间:** 2016-10-23 11:41

学习了,谢谢分享,很详细

作者: luotitan 时间: 2016-10-23 21:38

不错的分享,学习了,谢谢!

欢迎光临 炼数成金 (http://f.dataguru.cn/)

Powered by Discuz! X3.2