Math 240: Homework 9

Daniel Ko

Spring 2020

-	-
v	4
. 7	_

Let A be any nonempty set. (You do not get to decide what A is)
a. Let R be a relation on A . Explain what is wrong with the following "proof" that if R is symmetric and transitive, then it is reflexive.
"Proof": Let $a \in A$. Take an element $b \in A$ such that $(a, b) \in R$. Because R is symmetric, we also have $(b, a) \in R$. Now using the transitive property, we can conclude that $(a, a) \in R$ because $(a, b) \in R$ and $(b, a) \in R$
<i>Proof.</i> This proof is wrong because it assumes a priori that $(a, b) \in R$ when no such definition of the relation R is defined.
b. Give an example of a relation R on A which is symmetric and transitive, but not reflexive. Justify your answer.
<i>Proof.</i> The most trival example is a non empty set A and the empty set R . It is vacuously true that R is symmetric and transitive. However, R is not reflexive because there are no relations in it, i.e. the following statement does not hold: $\forall a \in A : (a, a) \in R$.
§2
Give an example of a relation R on $\mathbb N$ such that if S is a relation on $\mathbb N$ which contains R , then S is not antisymmetric. Justify your answer. (This implies that the antisymmetric closure of R does not exist.)
<i>Proof.</i> Consider the relation $R = \{(1, 2), (2, 1)\}$. It is clear that $1 \neq 2$, hence R is not antisymmetric. Therefore, if S contains R , then S is not antisymmetric.
§3
Come up with a topological ordering of the following DAG, i.e., write down the vertices in some

order such that if (i, j) is an edge, then i is to the left of j.

Proof. Using Kahn's algorithm, we get the topological ordering of 2, 3, 4, 6, 1, 5.

§4

Let R be the relation on \mathbb{R} defined by $(x, y) \in R$ if and only if x - y is rational. Is R symmetric? Antisymmetric? Reflexive? Transitive? Justify your answers. (You may use basic properties about rational numbers without proving them)

Proof.

a. R is symmetric

This is because there is closure under addition/subtraction for rational numbers. If x - y is a rational number then y - x is a rational number, hence $(y, x) \in R$.

b. R is not antisymmetric

Consider the following relation in R: (1,2) and (2,1). It is clear that $1 \neq 2$. Therefore, R is not antisymmetric.

c. R is reflexive

Suppose $x \in \mathbb{R}$. Any number subtracted by itself will be zero. Zero is a rational number. Thus, $(x, x) \in R$. Therefore, R is reflexive.

d. R is transitive

Suppose (x, y) and (y, z) are in R. This means that x - y and y - z are rational numbers. Now consider,

$$x - z = (x - y) + (y - z)$$

Since there is closure under addition for rational numbers, x-z must be a rational number. Hence, $(x, z) \in R$. Therefore, R is transitive.

§5

Let R be a relation on a set A. Prove that if R is reflexive, then $R \subseteq R^n$ for all $n \ge 1$.

Proof. We proceed by induction on $n \ge 1$. Let P(n) be the predicate if R is reflexive, then $R \subseteq R^n$. **Base case:** We prove that P(1) holds. Since $R^1 = R$, P(1) holds.

Inductive step: Suppose that $n \ge 1$ such that P(n) holds. We prove that P(n+1) holds. Suppose $(a,c) \in R$. By our inductive hypothesis, $(a,c) \in R^n$. Since $R^n = R^{n-1} \circ R$, there must be some some $b \in A$ such that $(a,b) \in R$ and $(b,c) \in R^{n-1}$. Since R is reflexive, there exists $(c,c) \in R$. This directly implies that $(a,c) \in R^{n+1}$. Therefore, P(n+1) holds and this concludes our inductive step.

We have proved by induction that if R is reflexive, then $R \subseteq R^n$ for all $n \ge 1$.

86

Let R be a relation on a set A. Prove that for any $m, n \ge 1$, $R^n \circ R^m = R^{n+m}$. (You may assume that composition of relations is associative, i.e., $(Q \circ R) \circ S = Q \circ (R \circ S)$

Proof. Fix a positive nonzero m. We prove by induction on $n \in \mathbb{N}^+$ that $R^n \circ R^m = R^{n+m}$. **Base case:** We prove that P(1) holds. Since n = 1, $R^1 \circ R^m = R^{1+m}$, P(1) holds.

Inductive step: Suppose that $n \in \mathbb{N}^+$ such that P(n) holds. We prove that P(n+1) holds. Since P(n) holds, $R^n \circ R^m = R^{n+m}$. We apply R to both sides,

$$R^{n} \circ R^{m} = R^{n+m}$$

$$R \circ R^{n} \circ R^{m} = R \circ R^{n+m}$$

$$R^{n+1} \circ R^{m} = R^{n+m+1}$$

$$R^{n+1} \circ R^{m} = R^{(n+1)+m}$$

as desired. Therefore, P(n+1) holds and this concludes our inductive step. We have proved by induction that for any $m, n \ge 1$, $R^n \circ R^m = R^{n+m}$.