Document for Conceptual Design

Eduardo Cabrera-Lopez
ITAI 3377
Lab: L02 - TensorFlow Lite Deployment
Method Selected: Conceptual
First part: conceptual arrangement of the development environment
Python Set-up
To set Python:
Get the newest edition by visiting https://www.python.org.
Run the installation then check "Add Python to PATH".
Click 'Install Now' to complete setup.
4. Check installation to ensure Pythonversion TensorFlow and TensorFlow Lite
Installations
Install TensorFlow using pip.
TensorFlow Lite finds place within TensorFlow. Regarding stationary:
pip install tflite- runtime
Jupyter Notes book Installement
Install using pip to a notebook.
To start: Jupyter notebook
Part 2: Training of an AI Model Architectural Conceptual Development

Keras allows a basic neural network:

Input form: (28, 28).

Layers: Dense (10, Softmax), Dense (128, ReLU), Flattening

Data loading and preprocessing

Load using Keras: mnist.load data() returns x train, y train and x test, y test.

 x_{train} , $x_{test} = x_{train} / 255.0$, $x_{test} / 255.0$

Model Building and Instruction

Adam was the optimizer.

The loss is sparse categorical crossentropy.

Measurements: accuracy

Epochs: five

Get and train using: model.compile(...) model. fit ()

Third part: conceptual conversion and model saving

Conversion's Goals

Change the model to run effectively on edge hardware.

Actions to Convert and Save

Load model: tf.keras.models.load_model('mnist_model.h5').

From a keras model, converter = tf.lite.TFLiteConverter; tflite_model = converter.convert().

3. Save open ("mnist model.tflite," "wb") as f: write (model tflite)

Part 4: TensorFlow Lite Conceptual Application of the Model Deployment Methodology Interpretor: tf.lite. Interpreter with model path "mnist model.tflite"; allocate tensors here

Get specific information:

outputs = interpreter.get_output_details; inputs = interpreter.get_input_details

Valuating the Model

One should get ready for input: enlarge and translate test images

- 2. Define tensor input.
- 3. Call for interpreter
- 4. Get and understand tensor prediction from output data: np.argmax