AI24BTECH11002 - K.AKSHAY TEJA

Question:

Find the area bounded by the curve $x^2 = 4y$ and the line x + 2 = 4y.

Solution:

Equation	Description
$x^2 = 4y$	Parabola(conic)
x + 2 = 4y	Line

TABLE 0: Information

The given curve can be expressed as a conic of parameters

$$v = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, u = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, f = 0 \tag{0.1}$$

The given line parameters are

$$h = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}, m = \begin{pmatrix} 1 \\ \frac{1}{4} \end{pmatrix} \tag{0.2}$$

From (??), the points of intersection of line and conic are

$$\mathbf{x}_1 = \begin{pmatrix} 2\\1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -1\\\frac{1}{4} \end{pmatrix} \tag{0.3}$$

As you can see in the figure, the area bounded by the curve $x^2 = 4y$ and the line x - 2 = 4y is given by

$$\int_{-1}^{2} \left(\frac{x+2}{4} - \frac{x^2}{4} \right) dx = \frac{9}{8}$$
 (0.4)

l

Fig. 0.1: Line and Vectors