Redes de computadoras

Solución Cuestionario Introducción Capa de Red

Ι.	ientes afirmaciones es(son) correcta(s)?
	Se modifica el campo TTL incrementándolo en 1
	X Se modifica el campo TTL decrementándolo en 1
	X Se recalcula el campo FCS (checksum)
	Se cambia la dirección IP de origen por la de la interfaz de salida
	Se cambia la dirección IP de destino por la de la interfaz de salida
	X Se mantienen las direcciones IP de origen y destino
2.	¿Cuántos bits representan el identificador de nodo en la dirección 192.150.61.0/29?3 bits
3.	Al definir las clases de direcciones en IPv4, ¿Exactamente cuántas direcciones se perdieron al ser reservadas para usos futuros? (Tip: Son las direcciones de clase E)
	Las direcciones clase E se reconocen porque tienen los cuatro primero bits en "1", por lo que nos quedan 28 bits para identificar direcciones. Esto da $2^28=268,435,456$
4.	A partir de la dirección IP 203.10.93.0/24 se van a crear 30 subredes. Después de la subdivisión, ¿La dirección 203.10.93.30 se puede asignar a un dispositivo? Justifique brevemente.
	Sí, sin problema. Sería la última dirección válida en la red 203.10.93.24/29
5.	Una empresa cuenta con las direcciones de clase C 220.30.52.0, 220.30.53.0, 220.30.59.0 y desea minimizar sus tablas de rutas utilizando CIDR. ¿Qué debe anunciar?
	X 220.30.52.0/22 Y 220.30.56.0/22
	220.30.52.0/21
	220.30.52.0/20
	Debe anunciar todas las direcciones, no se pueden agrupar
6.	Haga supernetting sobre las siguientes direcciones de clase C. ¿Qué es lo que se anuncia? 228.56.24.0/24, 228.56.25.0/24, 228.56.26.0/24, 228.56.27.0/24
	228.56.24.0/22
7.	Seleccione TODAS las respuestas correctas ¿Cuáles de las siguientes direcciones son direcciones de interfaz que están disponibles en la subred a la que está conectada la interfaz

192.168.73.46 si el prefijo de red es /27?

__ 192.168.73.13 y 192.168.73.37

```
X 192.168.73.37 y 192.168.73.55
```

- *X* 192.168.73.55 y 192.168.73.62
- __ 192.168.73.67 y 192.168.73.132
- 8. Suponga **para cada una** de las siguientes direcciones, que pertenece a una red donde se definieron 15 subredes. Indique a qué subred pertenece la dirección

Dirección	Clase	Máscara	Subred
200.58.20.165	C	255.255.255.240	200.58.20.160
128.167.23.20	В	255.255.240.0	128.167.16.0
16.196.128.50	A	255.240.0.0	16.192.0.0
50.156.10.10	A	255.240.0.0	50.144.0.0
250.10.24.96	E	No aplica	No aplica

9. A una pequeña empresa le asignaron una dirección clase C 200.20.30.0. Dicha dirección la debe de dividir en 6 subredes con la siguiente distribución:

Subred	Area	Nodos
1	Dep. Ventas	120
2	Dep. Ingeniería	30
3	Dep. Recursos Humanos	30
4	Dep. Jurídico	10
5	Gerencia	10
6	Enlace Internet	2

Llene la siguiente tabla

	Dir. de red	Máscara	Rango direcciones	Dir. Difusión
Ventas	200.20.30.0	255.255.255.128	200.20.30.1-	200.20.30.127
			200.20.30.126	
Ingenieria	200.20.30.128	255.255.255.224	200.20.30.129-	200.20.30.159
			200.20.30.158	
Rec. Humanos	200.20.30.160	255.255.255.224	200.20.30.161-	200.20.30.191
			200.20.30.190	
Jurídico	200.20.30.192	255.255.255.240	200.20.30.193-	200.20.30.207
			200.20.30.206	
Gerencia	200.20.30.208	255.255.255.240	200.20.30.209-	200.20.30.223
			200.20.30.222	
Enlace	200.20.30.240	255.255.255.252	200.20.30.241-	200.20.30.243
			200.20.30.242	

10. La computadora A (con dirección IP A y dirección MAC x), desea mandar un ping (ICMP request) a la computadora B (con dirección IP B y dirección MAC y), que se encuentra en la misma red local ethernet. Inicialmente A sólo conoce la dirección IP de B. Eventualmente, B responde al ping (ICMP reply). Llene la siguiente tabla.

Tiempo	Dir. MAC Dest	Dir. MAC Fte	Dir. IP Fte.	DIr. IP Dest.	Tipo de Trama
1	FF:FF:FF:FF	MAC x	IP A	IP B	ARP-Req
2	MAC x	MAC y	IP B	IP A	ARP-Reply
3	MAC y	MAC x	IP A	IP B	ICMP-Req
4	MAC x	MAC y	IP B	IP A	ICMP-Reply