Report on Mini Project

Machine Learning -I (DJ19MN4C2)

AY: 2022-23

AIR QUALITY PREDICTION

ISHAN MADHANI - 60004200050

YASH SHAH - 60004200051

SIDDHARTH UNNY - 60004200080

AYUSH JAIN - 60004200132

Guided By

Dr. Surekha Janrao

Name: Ishan Madhani SAP-ID: 60004200050 Branch: Computer Engineering

Machine Learning Minors – Mini Project Task 1

Problem Statement : Air Quality Prediction for Indian Cities

India Air Quality Data

Context : Since industrialization, there has been an increasing concern about environmental pollution. As mentioned in the WHO report 7 million premature deaths annually linked to air <u>pollution</u>, air pollution is the world's largest single environmental risk. Moreover as reported in the NY Times article, <u>India's Air Pollution Rivals China's as World's Deadliest</u> it has been found that India's air pollution is deadlier than even China's.

Using this dataset, one can explore India's air pollution levels at a more granular scale.

Data Content: This data is combined(across the years and states) and largely clean version of the <u>Historical Daily Ambient Air Quality Data</u> released by the Ministry of Environment and Forests and Central Pollution Control Board of India under the National Data Sharing and Accessibility Policy (NDSAP).

The data attributes are as followed,

- 1. 'stn code': The station code,
- 2. 'sampling date': The date when the entry was made,
- 3. 'state': Name of the State of the entry made,
- 4. 'location': City name,
- 5. 'agency': Name of State Pollution Control Board from which the entry was taken,
- 6. 'type': The type of area region for which the entry was calculated,
- 7. 'so2': The SO2 % in air,
- 8. 'no2': The NO2 % in air,
- 9. 'rspm': The Respirable Suspended Particulate Matter % in air,
- 10. 'spm': The Suspended Particulate Matter % in air,
- 11. 'location monitoring station': Location of the monitoring station,
- 12. 'pm2 5': PSI 2.5 and
- 13. 'date': Date of recording

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

df.info()

Checking the over all information on the dataset.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 435742 entries, 0 to 435741

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	stn_code	291665 non-null	object
1	sampling_date	435739 non-null	object
2	state	435742 non-null	object
3	location	435739 non-null	object
4	agency	286261 non-null	object
5	type	430349 non-null	object
6	so2	401096 non-null	float64
7	no2	419509 non-null	float64
8	rspm	395520 non-null	float64
9	spm	198355 non-null	float64
10	location_monitoring_station	408251 non-null	object
11	pm2_5	9314 non-null	float64
12	date	435735 non-null	object

dtypes: float64(5), object(8)

memory usage: 43.2+ MB

Dataset Link: https://www.kaggle.com/datasets/shrutibhargava94/india-air-quality-data

Name: Ishan Madhani SAP-ID: 60004200050 Branch: Computer Engineering

Machine Learning Minors - Mini Project Task 2

Problem Statement : Air Quality Prediction for Indian Cities

Data Understanding

Firstly, we check the data:

	<pre>df.head() # Loading the dataset</pre>												
:	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm	location_monitoring_station	pm2_5	date
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN	NaN	NaN	1990- 02-01
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN	NaN	NaN	1990- 02-01
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN	NaN	NaN	1990- 02-01
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN	NaN	NaN	1990- 03-01
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN	NaN	NaN	1990- 03-01

Next we check the info of all attributes,

```
# Checking the over all information on the dataset.
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to 435741
Data columns (total 13 columns):
   Column
                                Non-Null Count
    stn_code
                                291665 non-null object
    sampling_date
                                435739 non-null object
                                435742 non-null object
    state
    location
                                435739 non-null object
    agency
                                286261 non-null object
                                430349 non-null object
    type
                                401096 non-null float64
    so2
    no2
                                419509 non-null float64
    rspm
                                395520 non-null
                                                 float64
                                198355 non-null float64
   location_monitoring_station 408251 non-null object
11 pm2_5
                                9314 non-null
                                                 float64
                                435735 non-null object
12 date
dtypes: float64(5), object(8)
memory usage: 43.2+ MB
```

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

The shape of data is (43 5742 gt 3) ffiliated to the University of Mumbai)

NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

Now we check for null values,

df.isnull().sum()
There are a lot of missing values present in the dataset

stn_code	144077
sampling_date	3
state	0
location	3
agency	149481
type	5393
so2	34646
no2	16233
rspm	40222
spm	237387
location_monitoring_station	27491
pm2_5	426428
date	7
dtype: int64	

Next, Checking the descriptive stats of the numeric values present in the data like mean, standard deviation, min values and max value present in the data,

df.describe()
Checking the descriptive stats of the numeric values pro

	so2	no2	rspm	spm	pm2_5
count	401096.000000	419509.000000	395520.000000	198355.000000	9314.000000
mean	10.829414	25.809623	108.832784	220.783480	40.791467
std	11.177187	18.503086	74.872430	151.395457	30.832525
min	0.000000	0.000000	0.000000	0.000000	3.000000
25%	5.000000	14.000000	56.000000	111.000000	24.000000
50%	8.000000	22.000000	90.000000	187.000000	32.000000
75%	13.700000	32.200000	142.000000	296.000000	46.000000
max	909.000000	876.000000	6307.033333	3380.000000	504.000000

Syku Shri

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

Checking unique values,

df.nunique()

These are all the unique values present in the dataframe

stn_code	803
sampling_date	5485
state	37
location	304
agency	64
type	10
so2	4197
no2	6864
rspm	6065
spm	6668
location_monitoring_station	991
pm2_5	433
date	5067
dtype: int64	

+ Code

+ Markdown

df.columns

These are all the columns present in the dataset.

Data Visualization

Displaying pair-plot between numeric attributes,

Viewing the count of values present in the state column,

Viewing the count of values present in the type column,

Viewing the counts of values present in the agency column,

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Computer Science and Engineering (Data Science)

Visualizing the name of the state having higher so levels in the air,

Similarly, for no2 level we get West Bengal has the highest no2 level,

Delhi has higher rspm levels than other states,

Delhi has higher spm level compared to other states,

Delhi has higher pm2_5 level compared to other states,

Checking all null values and treating those null values

As you can see below these are the percentages of null values present in the dataset,

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

		The state of the s	The second secon
	Total	Percent	ersity of Mumbai)
pm2_5	426428	97.862497	ance and Eng
spm	237387	54.478797	
agency	149481	34.304933	
stn_code	144077	33.064749	

and Engineering

40222 9.230692 rspm so2 34646 7.951035 location_monitoring_station 27491 6.309009 16233 3.725370 no2 5393 type 1.237659 date 7 0.001606 sampling_date 3 0.000688 location 3 0.000688 0 0.000000 state

Next step,

df['location']=df['location'].fillna(df['location'].mode()[0]) df['type']=df['type'].fillna(df['type'].mode()[0]) # Null value Imputation for categorical data

df.fillna(0, inplace=True) # null values are replaced with zeros for the numerical data

After imputation the dataset is as follows,

	state	location	type	so2	no2	rspm	spm	pm2_5
0	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	4.8	17.4	0.0	0.0	0.0
1	Andhra Pradesh	Hyderabad	Industrial Area	3.1	7.0	0.0	0.0	0.0
2	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.2	28.5	0.0	0.0	0.0
3	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.3	14.7	0.0	0.0	0.0
4	Andhra Pradesh	Hyderabad	Industrial Area	4.7	7.5	0.0	0.0	0.0
						•••		
435737	West Bengal	ULUBERIA	RIRUO	22.0	50.0	143.0	0.0	0.0
435738	West Bengal	ULUBERIA	RIRUO	20.0	46.0	171.0	0.0	0.0
435739	andaman-and-nicobar-islands	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0
435740	Lakshadweep	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0
435741	Tripura	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0

CALCULATE AIR QUALITY INDEX FOR SO2 BASED ON FORMULA

The air quality index is a piecewise linear function of the pollutant concentration. At the boundary between AQI categories, there is a discontinuous jump of one AQI unit. To convert from concentration to AQI this equation is used,

```
def cal_S0i(so2):
    si=0
    if (so2<=40):
        si= so2*(50/40)
    elif (so2>40 and so2<=80):
        si= 50+(so2-40)*(50/40)
    elif (so2>80 and so2<=380):
        si= 100+(so2-80)*(100/300)
    elif (so2>380 and so2<=800):
        si= 200+(so2-380)*(100/420)
    elif (so2>800 and so2<=1600):
        si= 300+(so2-800)*(100/800)
    elif (so2>1600):
        si= 400+(so2-1600)*(100/800)
    return si
```

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

data.head(Pepartment of Computer Science and Engineering # calculating the individual pollutant index for so2(sulphur dioxide)

	so2	SOi
0	4.8	6.000
1	3.1	3.875
2	6.2	7.750
3	6.3	7.875
4	4.7	5.875

```
Function to calculate no2 individual pollutant index(ni)
def cal Noi(no2):
    ni=0
    if(no2<=40):
     ni= no2*50/40
    elif(no2>40 and no2<=80):
     ni = 50 + (no2 - 40) * (50/40)
    elif(no2>80 and no2<=180):
     ni= 100+(no2-80)*(100/100)
    elif(no2>180 and no2<=280):
     ni= 200+(no2-180)*(100/100)
    elif(no2>280 and no2<=400):
     ni= 300+(no2-280)*(100/120)
    else:
     ni= 400+(no2-400)*(100/120)
    return ni
df['Noi']=df['no2'].apply(cal_Noi)
data= df[['no2','Noi']]
data.head()
# calculating the individual pollutant index for no2(nitrogen dioxide)
```



```
us College Affiliated to the University of Mumbai)
                 dited with "A" Grade (CGPA: 3.18)
   17.4
         21.750
                tment of Computer Science and Engineering
                 Science):
   7.0
         8.750
1
2
   28.5
         35.625
3
   14.7
         18.375
         9.375
4
   7.5
```

```
Function to calculate rspm individual pollutant index(rpi)
def cal RSPMI(rspm):
    rpi=0
    if(rpi<=30):
     rpi=rpi*50/30
    elif(rpi>30 and rpi<=60):
     rpi=50+(rpi-30)*50/30
    elif(rpi>60 and rpi<=90):
     rpi=100+(rpi-60)*100/30
    elif(rpi>90 and rpi<=120):
     rpi=200+(rpi-90)*100/30
    elif(rpi>120 and rpi<=250):
     rpi=300+(rpi-120)*(100/130)
    else:
     rpi=400+(rpi-250)*(100/130)
    return rpi
df['Rpi']=df['rspm'].apply(cal RSPMI)
data= df[['rspm','Rpi']]
data.head()
```

calculating the individual pollutant index for rspm(respirable suspended
particualte matter concentration)

	rspm	Rpi
0	0.0	0.0
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.0

```
Function to calculate spm individual pollutant index(spi)
def cal_SPMi(spm):
    spi=0
    if(spm<=50):
        spi=spm*50/50
    elif(spm>50 and spm<=100):
        spi=50+(spm-50)*(50/50)
    elif(spm>100 and spm<=250):</pre>
```

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING


```
spi + 4100 + (spm = 100) * (100/150) to the University of Mumbai)
elif(spm > 250 e and spm < 250) !e (CGPA : 3.18)
    spi = 200 + (spm = 250) * (100/100) puter Science and Engineering
elif(spm > 350 and spm < 2430):
    spi = 300 + (spm - 350) * (100/80)
    else:
        spi = 400 + (spm - 430) * (100/430)
    return spi

df['SPMi'] = df['spm'].apply(cal_SPMi)
data = df[['spm', 'SPMi']]</pre>
```

data.head()
calculating the individual pollutant index for spm(suspended particulate
matter)

	spm	SPMi
0	0.0	0.0
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.0

```
function to calculate the air quality index (AQI) of every data value
def cal_aqi(si,ni,rspmi,spmi):
    aqi=0
    if(si>ni and si>rspmi and si>spmi):
        aqi=si
    if(ni>si and ni>rspmi and ni>spmi):
        aqi=ni
    if(rspmi>si and rspmi>ni and rspmi>spmi):
        aqi=rspmi
    if(spmi>si and spmi>ni and spmi>rspmi):
        aqi=spmi
    return aqi

df['AQI']=df.apply(lambda
x:cal_aqi(x['SOi'],x['Noi'],x['Rpi'],x['SPMi']),axis=1)
data= df[['state','SOi','Noi','Rpi','SPMi','AQI']]
data.head()
# Caluclating the Air Quality Index.
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	state	SOi	Noi	Rpi	SPMi	AQI	f Mumbai)
0	Andhra Pradesh	6.000	21.750	0.0	0.0	21.750	and Engineering
1	Andhra Pradesh	3.875	8.750	0.0	0.0	8.750	
2	Andhra Pradesh	7.750	35.625	0.0	0.0	35.625	
3	Andhra Pradesh	7.875	18.375	0.0	0.0	18.375	
4	Andhra Pradesh	5.875	9.375	0.0	0.0	9.375	

Now Using threshold values to classify a particular values as good, moderate, poor, unhealthy, very unhealthy and Hazardous.

```
def AQI_Range(x):
    if x<=50:
        return "Good"
    elif x>50 and x<=100:
        return "Moderate"
    elif x>100 and x<=200:
        return "Poor"
    elif x>200 and x<=300:
        return "Unhealthy"
    elif x>300 and x<=400:
        return "Very unhealthy"
    elif x>400:
        return "Hazardous"

df['AQI_Range'] = df['AQI'] .apply(AQI_Range)
    df.head()
```

	state	location	type	so2	no2	rspm	spm	pm2_5	SOi	Noi	Rpi	SPMi	AQI	AQI_Range
0	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	4.8	17.4	0.0	0.0	0.0	6.000	21.750	0.0	0.0	21.750	Good
1	Andhra Pradesh	Hyderabad	Industrial Area	3.1	7.0	0.0	0.0	0.0	3.875	8.750	0.0	0.0	8.750	Good
2	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.2	28.5	0.0	0.0	0.0	7.750	35.625	0.0	0.0	35.625	Good
3	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.3	14.7	0.0	0.0	0.0	7.875	18.375	0.0	0.0	18.375	Good
4	Andhra Pradesh	Hyderabad	Industrial Area	4.7	7.5	0.0	0.0	0.0	5.875	9.375	0.0	0.0	9.375	Good

Split data into independent and dependent values

```
X=df[['SOi','Noi','Rpi','SPMi']]
Y=df['AQI']
```

Where X is independent value and Y is dependent value.

Finding Optimum Algorithm

We try algorithms such as,

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

- Random Forest Regressor
- Decision Tree Regressor

From above algorithms we get Random Forest Regressor as the one with highest accuracy

- RSquared value on train: 0.9999860110739481
- RSquared value on test: 0.9998918038557246

Code:

```
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_st
ate=70)
print(X_train.shape,X_test.shape,Y_train.shape,Y_test.shape)
# splitting the data into training and testing data

RF=RandomForestRegressor().fit(X_train,Y_train)
#predicting train
train_preds1=RF.predict(X_train)
#predicting on test
test_preds1=RF.predict(X_test)
RMSE_train=(np.sqrt(metrics.mean_squared_error(Y_train,train_preds1)))
RMSE_test=(np.sqrt(metrics.mean_squared_error(Y_test,test_preds1)))
print("RMSE_TrainingData = ",str(RMSE_train))
print("RMSE_TestData = ",str(RMSE_test))
print('-'*50)
print('RSquared_value_on_train:',RF.score(X_train, Y_train))
print('RSquared_value_on_test:',RF.score(X_test, Y_test))
```