Package 'Wisclakebathy'

November 10, 2021

2 calculate_volumes

```
area_loss_given_depth_change
```

Calculate percent loss of lake area with Xft change in lake depth

Description

Given a data frame with information about "WBIC", "depth_feet", and "area_acres" and what reduction in max depth (ft) to assume, calculates the estimated change in lake area (Assumes a linear change in depth and area between specified contour intervals in order to approximate lower lake area

Usage

```
area_loss_given_depth_change(df, depth_change_ft = 1)
```

Arguments

df data frame with information about "WBIC", "lake", depth_feet", and "area_acres".

Input data frame may have other columns, but must have these.

depth_change_ft

Specify what reduction in lake depth from maximum lake depth to evaluate.

Defaults to 1 (ft).

Value

data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in the input data frame. Typically something like

"easthorsehead", just to help with quick identification)

max_depth maximum lake depth (ft)

max_area lake area corresponding to maximum lake depth (acres)

lower_depth lake depth assuming Xft reduction (as input, default is 1ft reduction) (ft)

lower_area volume corresponding to lowered depth (acres)

area_pcnt_loss percentage change in lake area relative to maximum lake area given a Xft reduc-

tion in lake depth (as input, default is 1ft reduction)

depths (ft)

Description

Given a data frame with information about "WBIC", "depth_feet", and "area_acres" and which type of volume estimate to use ("trapezoidal" or "conical"), calculates the lake volume in acre-ft associated with each lake depth. Note that this approach assumes that information about "depth_feet" is arranged such that the maximum depth value corresponds with the lake surface and the maximum lake volume value, while a depth value of 0 corresponds with the lake bottom and a lake volume of 0.

Usage

```
calculate_volumes(df, method = "trapezoidal")
```

Arguments

df data frame with information about "WBIC", "depth_feet", and "area_acres". In-

put data frame may have other columns, but must have these.

method Specify which volume estimation approach to use. Options include "trape-

zoidal" or "conical". Defaults to "trapezoidal".

Value

the input data frame with an additional column for "volume_acre_ft" appended, which represents the lake volume at the given lake depth (acre-ft).

convert_data_thief_volumes

Convert depth vs. volume information obtained via DataThief into standard format

Description

Given the path of a directory where txt files from DataThief output live, reads in information about depth (ft) vs. volume (acre-ft) relationship and converts to standard format for other analyses.

Usage

```
convert_data_thief_volumes(path, max_file, flip = TRUE, depth_interval = 3)
```

Arguments

path	Path of directory containing all txt files with depth and volume info (extracted from bathymetry maps using DataThief), e.g. "data-raw/CS_DataThief". See details in description about expected format of these txt files.
max_file	Name of csv file with information about maximum areas of each lake, e.g. "WI_maxes.csv". See details in description about expected format of this csv file.
flip	Indicates whether should flip depths so that the maximum depth/volume corresponds to the lake surface and a depth/volume of zero corresponds to the lake bottom (TRUE) or keep as-is, with a depth of zero corresponding to the lake surface (FALSE). Defaults to TRUE to flip.

depth_interval optional parameter specifies what depth contour interval to extrapolate volume information at. Defaults to 3ft.

Details

Expects txt files with depth vs. volume information to adhere to the following conventions: * All txt files are stored in the same directory (specified by "path") * Filenames are "singlelakename_WBIC.csv", e.g. "easthorsehead_1523000.txt" * Each file starts with a header from DataThief that should be deleted * Columns are unnamed but represent (in order): "volume_acre_ft", "depth_feet" * A depth/volume value of 0 represents the top of the lake, maximum values represent the bottom of hte lake. * Every txt file following this convention should have a corresponding entry in the maximums txt file.

Expects that information about maximum lake depth (ft) and lake volume (acre-ft) adheres to the following conventions: * Information is in a single csv file (specified by "max_file") stored in the same directory as includes the individual txt files. * Every lake with a DataThief txt file should have an entry here * Columns include: "WBIC", "Depth_feet", and "Volume_acre_ft" (may include others as well, but unused here). * Missing values are denoted by NA (capitalized). * If there is a value for "Depth_feet", but "Volume_acre_ft" is NA, will use maximum depth plus the DataThief information to estimate what maximum volume is likely to be (and vice versa, if has maximum volume but maximum depth is NA).

Note that the returned data frame lists the lake volume (acre-ft) corresponding to lake depths such that 0ft is the lake bottom, 5ft is 5ft above the the lake bottom, and the maximum depth value represents the surface of the lake. If the parameter "flip" is set to FALSE, the returned data frame instead retains the conventions in the DataThief txt files, where 0 values for depth and volume represent the lake surface and maximum values represent the bottom of the lake.

Value

a data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in csv filename (will be a single word, e.g. "easthorse-

head", just to help with quick identification)

depth_feet lake depth (ft)

volume_acre_ft lake volume at this lake depth (acre-ft)

convert_proportion_areas

Convert proportional area hypsography to areas in acres

Description

Given the path of a directory where csv files live, reads in information about depth (ft) vs. proportional area relationship, maximum areas, and converts to depth (ft) vs. area (acres) relationships.

Usage

```
convert_proportion_areas(path, max_area_file, flip = TRUE)
```

Arguments

path Path of directory containing all csv files with depth and proportional area info

(extracted from bathymetry maps using imageJ), e.g. "data-raw/Wisconsin_Hypsography".

See Details about expected format of these csv files.

max_area_file Name of csv file with information about maximum areas of each lake, e.g.

"WI_areas.csv". See Details about expected format of this csv file.

flip Indicates whether should flip depths so that the maximum depth corresponds

to the lake surface and a depth of zero corresponds to the lake bottom (TRUE) or keep as-is, with a depth of zero corresponding to the lake surface (FALSE).

Defaults to TRUE to flip.

Details

Expects csv files with depth vs. proportional area information to adhere to the following conventions: * All csv files are stored in the same directory (specified by "path") * Filenames are "singlelakename_WBIC.csv", e.g. "easthorsehead_1523000.csv" * Columns are (in order): "depth_ft", "proportion_area" * A proportion area of "1" corresponds with a depth_ft of "0" and represents the maximum area as measured at the top of the lake. * Every csv file following this convention should have a corresponding entry in the maximum lake area csv file.

Expects that information about maximum lake areas (in acres) adheres to the following conventions: * Information is in a single csv file (specified by "max_area_file") stored in the same directory as includes the individual csv files. * Columns are (in order): "WBIC" and "Area_acres" * Every lake with a proportional area csv file should have an entry here

Note that the returned data frame lists the lake area (acres) corresponding to lake depths such that 0ft is the lake bottom, 5ft is 5ft above the the lake bottom, and the maximum depth value represents the surface of the lake. If the parameter "flip" is set to FALSE, the returned data frame instead retains the conventions in the proportional area csv files, where lake areas correspond to lake depth contours such that 0ft is the lake surface, 5ft is 5ft below the lake surface, and the maximum depth value represents the bottom of the lake.

Value

a data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in csv filename (will be a single word, e.g. "easthorse-

head", just to help with quick identification)

depth_ft lake depth (ft)

area_acres lake area at this lake depth (acres)

depth_change_given_area_loss

Calculate change in lake depth with X percent loss of lake area

Description

Given a data frame with information about "WBIC", "depth_feet", and "area_acres" and what percentage area loss to assume, calculates the estimated change in lake depth from the maximum lake depth/area Assumes a linear change in depth and area between specified contour intervals in order to approximate lower lake depth.

Usage

```
depth_change_given_area_loss(df, pcnt_loss = 10)
```

Arguments

df data frame with information about "WBIC", "lake", depth_feet", and "area_acres".

Input data frame may have other columns, but must have these.

pcnt_loss Specify what percentage loss of lake area from maximum lake area to evaluate.

Defaults to 10 (percent).

Value

data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in the input data frame. Typically something like

"easthorsehead", just to help with quick identification)

max_area maximum lake area (acres)

max_depth lake depth corresponding to maximum lake area (ft)

lower_area area assuming X pcnt loss (as input, default is 10 pcnt loss) (acres)

lower_depth lake depth corresponding to lowered lake area (ft)

depth_change change in lake depth corresponding to X pcnt loss (as input, default is 10 pcnt

loss) in lake area (ft)

depth_change_given_volume_loss

Calculate change in lake depth with X percent loss of lake volume

Description

Given a data frame with information about "WBIC", "depth_feet", and "volume_acre_ft" and what percentage volume loss to assume, calculates the estimated change in lake depth from the maximum lake depth/volume. Assumes a linear change in depth and volume between specified contour intervals in order to approximate lower lake depth.

Usage

```
depth_change_given_volume_loss(df, pcnt_loss = 10)
```

Arguments

df data frame with information about "WBIC", "lake", depth_feet", and "volume_acre_ft".

Input data frame may have other columns, but must have these.

evaluate. Defaults to 10 (percent).

Value

data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in the input data frame. Typically something like

"easthorsehead", just to help with quick identification)

max_vol maximum lake volume (acre-ft)

max_depth lake depth corresponding to maximum lake volume (ft)

lower_vol volume assuming X pcnt loss (as input, default is 10 pcnt loss) (acre-ft)

lower_depth lake depth corresponding to lowered lake volume (ft)

depth_change change in lake depth corresponding to X pcnt loss (as input, default is 10 pcnt

loss) in lake volume (ft)

volume_loss_given_depth_change

Calculate percent loss of lake volume with Xft change in lake depth

Description

Given a data frame with information about "WBIC", "depth_feet", and "volume_acre_ft" and what reduction in max depth (ft) to assume, calculates the estimated change in lake volume (Assumes a linear change in depth and volume between specified contour intervals in order to approximate lower lake volume.

Usage

```
volume_loss_given_depth_change(df, depth_change_ft = 1)
```

Arguments

df data frame with information about "WBIC", "lake", depth_feet", and "volume_acre_ft".

Input data frame may have other columns, but must have these.

depth_change_ft

Specify what reduction in lake depth from maximum lake depth to evaluate.

Defaults to 1 (ft).

Value

data frame with the following columns:

WBIC Wisconsin Water Body Identification Code (WBIC) of lake

lake name of lake as included in the input data frame. Typically something like

"easthorsehead", just to help with quick identification)

max_depth maximum lake depth (ft)

max_vol lake volume corresponding to maximum lake depth (acre-ft)

lower_depth lake depth assuming Xft reduction (as input, default is 1ft reduction) (ft)

lower_vol volume corresponding to lowered depth (acre-ft)

vol_pcnt_loss percentage change in lake volume relative to maximum lake volume given a Xft

reduction in lake depth (as input, default is 1ft reduction)

Index

```
area_loss_given_depth_change, 2
calculate_volumes, 2
convert_data_thief_volumes, 3
convert_proportion_areas, 4
depth_change_given_area_loss, 5
depth_change_given_volume_loss, 6
volume_loss_given_depth_change, 7
```