

Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Exponential Functions

Inverse Laplace Transforms: Expressions with Exponential Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$p^{-1}e^{-ap}, a > 0$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ 1 & \text{if } a < x. \end{cases}$
2	$p^{-1}(1-e^{-ap}), a>0$	$\begin{cases} 1 & \text{if } 0 < x < a, \\ 0 & \text{if } a < x. \end{cases}$
3	$p^{-1}(e^{-ap} - e^{-bp}), 0 \le a < b$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ 1 & \text{if } a < x < b, \\ 0 & \text{if } b < x \end{cases}$
4	$p^{-2}(e^{-ap} - e^{-bp}), 0 \le a < b$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ x - a & \text{if } a < x < b, \\ b - a & \text{if } b < x. \end{cases}$
5	$(p+b)^{-1}e^{-ap}, a>0$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ e^{-b(x-a)} & \text{if } a < x. \end{cases}$
6	$p^{-\nu}e^{-ap}, \nu > 0$	$\begin{cases} 0 & \text{if } 0 < x < a, \\ x - a & \text{if } a < x < b, \\ b - a & \text{if } b < x. \end{cases}$ $\begin{cases} 0 & \text{if } 0 < x < a, \\ e^{-b(x-a)} & \text{if } a < x. \end{cases}$ $\begin{cases} 0 & \text{if } 0 < x < a, \\ e^{-b(x-a)} & \text{if } a < x. \end{cases}$ $\begin{cases} 0 & \text{if } 0 < x < a, \\ \frac{(x-a)^{\nu-1}}{\Gamma(\nu)} & \text{if } a < x. \end{cases}$
7	$p^{-1}(e^{ap}-1)^{-1}, a>0$	f(x) = n if $na < x < (n+1)a$; $n = 0, 1,$
8	$e^{a/p} - 1$	$\sqrt{\frac{a}{x}} I_1(2\sqrt{ax})$
9	$p^{-1/2}e^{a/p}$	$\frac{1}{\sqrt{\pi x}}\cosh(2\sqrt{ax})$
10	$p^{-3/2}e^{a/p}$	$\frac{1}{\sqrt{\pi a}}\sinh(2\sqrt{ax})$
11	$p^{-\nu-1}e^{a/p}, \nu > -1$	$(x/a)^{\nu/2}I_{\nu}(2\sqrt{ax})$
12	$1 - e^{-a/p}$	$\sqrt{rac{a}{x}} J_1(2\sqrt{ax})$
13	$p^{-1/2}e^{-a/p}$	$\frac{1}{\sqrt{\pi x}}\cos(2\sqrt{ax})$
14	$p^{-3/2}e^{-a/p}$	$\frac{1}{\sqrt{\pi a}}\sin(2\sqrt{ax})$
15	$p^{-\nu-1}e^{-a/p}, \nu > -1$	$(x/a)^{\nu/2}J_{\nu}(2\sqrt{ax})$
16	$\exp(-\sqrt{ap}), a > 0$	$\frac{\sqrt{a}}{2\sqrt{\pi}} x^{-3/2} \exp\left(-\frac{a}{4x}\right)$

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
17	$\frac{1}{p}\exp(-\sqrt{ap}), a \ge 0$	$\operatorname{erfc}\Bigl(\frac{\sqrt{a}}{2\sqrt{x}}\Bigr)$
18	$\frac{1}{\sqrt{p}}\exp(-\sqrt{ap}), a \ge 0$	$\frac{1}{\sqrt{\pi x}} \exp\left(-\frac{a}{4x}\right)$
19	$\frac{1}{p\sqrt{p}}\exp(-\sqrt{ap}), a \ge 0$	$\frac{2\sqrt{x}}{\sqrt{\pi}}\exp\left(-\frac{a}{4x}\right) - \sqrt{a}\operatorname{erfc}\left(\frac{\sqrt{a}}{2\sqrt{x}}\right)$
20	$\frac{\exp\left(-k\sqrt{p^2+a^2}\right)}{\sqrt{p^2+a^2}}, k > 0$	$\begin{cases} 0 & \text{if } 0 < x < k, \\ J_0(a\sqrt{x^2 - k^2}) & \text{if } k < x. \end{cases}$
21	$\frac{\exp(-k\sqrt{p^2 - a^2})}{\sqrt{p^2 - a^2}}, k > 0$	$\begin{cases} 0 & \text{if } 0 < x < k, \\ I_0 \left(a\sqrt{x^2 - k^2} \right) & \text{if } k < x. \end{cases}$

Notation: erfc z is the complementary error function, $J_{\nu}(z)$ is the Bessel function of the first kind, $I_{\nu}(z)$ is the modified Bessel function of the first kind, $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Exponential Functions

Copyright © 2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv5.pdf