Exercicio 1

Seja $(u_n)_n$ uma sucessão definida por: $u_n = \frac{1-3n}{n+1}$

 \mathbf{a}

Verifique se $-\frac{14}{5}$ é um dos termos de $(u_n)_n$

$$\frac{1-3n}{n+1} = -\frac{14}{5}$$

$$n = 19$$

$$u_{19} = -\frac{14}{5}$$

b)

Estude $(u_n)_n$ quanto à monotonia

 $(u_{n+1}) - (u_n) < 0$ é monótona decrescente $(u_{n+1}) - (u_n) > 0$ é monótona crescente

$$\left[\frac{n+1}{n+1}\right] \left[\frac{-3n-2}{n+2}\right] - \left[\frac{1-3n}{n+1}\right] \left[\frac{n+2}{n+2}\right]$$

$$\frac{-3n^2 - 3n - 2n - 2}{\left(n + 1\right)\left(n + 2\right)} - \frac{n + 2 - 3n^2 - 6n}{\left(n + 1\right)\left(n + 2\right)}$$

$$\frac{-3n^2 - 3n - 2n - 2 - n - 2 + 3n^2 + 6n}{(n+1)(n+2)}$$

$$\frac{-4}{(n+1)(n+2)} < 0, \forall n \in \mathbb{N}$$

 u_n é monótona decrescente

 $\mathbf{c})$

 $\left(u_{n}\right)_{n}$ é uma sucessão convergente? E limitada? Justifique.

$$\lim_{n} \frac{1-3n}{n+1} = \lim_{n} \frac{\varkappa(\frac{1}{n}-3)}{\varkappa(1+\frac{1}{n})} = \frac{\frac{1}{n}-3}{1+\frac{1}{n}} = -3$$

 $(u_n)_n$ é convergente pois tende para um número real. Toda a sucessão convergente é limitada. Como $(u_n)_n$ é decrescente sabemos que:

$$\frac{1-3n}{n+1} = -3 + \frac{4}{n+1}$$

 $\frac{4}{n+1} > 0$, então qualquer termo será sempre superior a -3

Exercicio 2

Exercicio 3

a)

$$\lim_n \frac{-7n^3 - 5n^2 + n}{3\sqrt{n^2 + 1}} \stackrel{\cong}{=}$$

b)

$$\lim_{n} \frac{-7n^3 - 5n^2 + n}{3\sqrt{n^2 + 1}} \stackrel{\underline{\infty}}{=}$$

 $\mathbf{c})$

$$\lim_{n} \frac{-7n^3 - 5n^2 + n}{3\sqrt{n^2 + 1}} \stackrel{\underline{\infty}}{=}$$

d)
$$\lim_{n} \frac{-7n^3 - 5n^2 + n}{3\sqrt{n^2 + 1}} \stackrel{\cong}{\cong}$$