Tema **6.1**

Interacción Persona Ordenador (IPO)

Principios, estándares y guías de diseño

Índice

- Principios de Diseño
- Principios de Diseño Universal
- Reglas de oro y heurísticas
- Estándares
- Guías de diseño

Introducción

- Diseñar para maximizar la usabilidad: el objetivo del diseño de interacciones.
 - Principios de diseño para la usabilidad.
 - Comprensión general.
 - Estándares y guías.
 - Directrices para el diseño.
 - Reglas de oro y heurísticas.
 - Métodos empíricos para definir un buen diseño.

Introducción

- Una interfaz bien diseñada debe facilitar el trabajo de los usuarios.
- Para ello es preciso entender el modelo mental del usuario y sus habilidades psíquicas, físicas y psicológicas.
- Los diseñadores no son expertos en estos temas y necesitan unos principios generales de diseño consensuados por los expertos.
- Estos principios son conceptos de muy alto nivel que se plasman en unas reglas de diseño que guían al diseñador con el fin de conseguir productos usables.

Introducción

- La mayoría de los sistemas de interfaces gráficas han publicado directrices que indican cómo asociar estos principios abstractos a entornos de programación concretos: son las guías de estilo.
- Las guías de estilo proporcionan un marco que puede guiar a los diseñadores a tomar decisiones correctas en sus diseños.
- Pueden tener una gran variedad de formas y pueden ser obtenidas en diferentes sitios:
 - Artículos de revistas académicas, profesionales o comerciales.
 - Manuales y guías de estilo de empresas de software .

Tipos de reglas de diseño

Principios:

- Reglas de diseño abstractas
- Baja autoridad
- Alta generalidad

Estándares:

- Reglas de diseño específicas
- Alta autoridad
- Aplicación limitada

Guías:

- Baja autoridad
- Aplicación más general

Principios de Diseño para la usabilidad

Principios de Diseño para la usabilidad

- Un principio es una sentencia en un sentido muy amplio que normalmente está basada en la investigación hecha de cómo las personas aprenden y trabajan.
- Están basados en ideas de alto nivel y de aplicación muy general. Por ejemplo:
 - Asistencia: asistir al usuario en la realización de las diferentes tareas.
- No especifican métodos para obtener sus objetivos. Son bastante abstractos.

Principios de Diseño

- Hay tres tipos de principios de diseño:
 - Facilidad de aprendizaje: Facilidad con la que los nuevos usuarios pueden empezar a interactuar de manera efectiva y alcanzar un máximo rendimiento.
 - Flexibilidad: Las múltiples maneras en las que el usuario y el sistema pueden intercambiar información.
 - Robustez: Nivel de apoyo proporcionado al usuario para determinar que ha conseguido lo que se proponía hacer y la evaluación de sus metas.

Principios: facilidad de aprendizaje (1)

Acción predecible:

- Determinar el efecto de acciones futuras basado en el historial de interacciones pasadas.
- Relacionado con: visibilidad de la operación.

Capacidad de síntesis:

- Evaluar el efecto de acciones pasadas sobre el estado actual.
- Relacionado con: honestidad inmediata frente a honestidad final.

Principios: facilidad de aprendizaje (y 2)

Familiaridad:

- Cómo se puede aplicar el conocimiento previo del usuario, tanto de la vida real como de tipo informático, para interactuar con un nuevo sistema.
- Relacionado con: capacidad de adivinación y affordance.

Capacidad de generalización:

 Extender el conocimiento de una interacción específica a nuevas situaciones similares.

Consistencia:

 Parecido en el comportamiento de entrada/salida que surge de situaciones u objetivos de tareas similares.

Principios: flexibilidad (1)

Iniciativa de diálogo:

- Dar libertad al usuario de limitaciones artificiales impuestas por el sistema sobre el diálogo de entrada.
- Carácter preventivo del sistema frente al usuario.

Multitarea:

- Capacidad del sistema para soportar la interacción del usuario para más de una tarea a la vez.
- Concurrencia o intercalado.
- Multimodalidad.

Migración de tareas:

 Capacidad para pasar la responsabilidad para la ejecución de tareas entre el usuario y el sistema.

Principios: flexibilidad (y 2)

Sustitución:

- Permitir que valores de entrada o salida equivalentes sean sustituidos uno por otro de manera arbitraria..
- Multiplicidad de representación.
- Igual oportunidad.

Personalización:

 Permitir modificar la interfaz de usuario por el usuario (adaptabilidad) o por el sistema ("adaptividad").

Principios: robustez (1)

Estado observable:

- Capacidad del usuario para evaluar el estado interno del sistema según su percepción.
- Browsability"; valores por defecto estáticos/dinámicos; alcance, persistencia, visibilidad de operación.

Capacidad de recuperación:

- Capacidad del usuario para tomar acciones correctoras una vez que se ha reconocido un error.
- Alcance, recuperación hacia adelante/atrás, esfuerzo conmensurado.

Principios: robustez (y 2)

Velocidad y capacidad de respuesta:

- Cómo percibe el usuario la velocidad de comunicación con el sistema.
- Estabilidad.

Conformidad de tareas:

- Grado en el que los servicios del sistema soportan todas las tareas del usuario.
- Completitud de tarea, adecuación de tarea.

Principios de Diseño Universal

7 Principios de Diseño Universal:

(Universidad de Carolina del Norte)

1. Uso equitativo

El diseño ha de ser usable y de un precio razonable para personas con diferentes habilidades.

2. Uso flexible

El diseño se ha de acomodar a un rango amplio de personas con distintos gustos y habilidades.

3. Uso simple e intuitivo

El uso del diseño ha de ser fácil de entender, independientemente de la experiencia del usuario, conocimiento, habilidades del lenguaje y nivel de concentración.

4. Información perceptible

El diseño debe comunicar la información necesaria efectivamente al usuario, independientemente de las condiciones ambientales para las habilidades sensoriales del usuario.

7 Principios de Diseño Universal:

(Universidad de Carolina del Norte)

5. Tolerancia para el error

El diseño ha de minimizar posibles incidentes por azar y las consecuencias adversas de acciones no previstas.

6. Esfuerzo físico mínimo

El diseño se ha de poder usar eficiente y confortablemente con un mínimo de fatiga.

7. Tamaño y espacio para poder aproximarse y usar el diseño

El diseño ha de tener un espacio y un tamaño apropiado para la aproximación, alcance y uso del diseño.

Reglas de oro y heurísticas

Reglas de oro y heurísticas

- Reglas de diseño basadas en la experiencia y la observación de lo que es un buen diseño.
- Es recomendable utilizarlas.
- Diferentes colecciones:
 - 10 reglas heurísticas de Nielsen.
 - 8 reglas de oro de Shneiderman.
 - 7 principios de Norman.

10 reglas heurísticas de Nielsen

- 1. El estado del sistema debe ser siempre visible.
- 2. Utilizar el lenguaje de los usuarios.
- 3. Control y libertad para el usuario.
- 4. Consistencia y estándares.
- 5. Prevención de errores.
- 6. Minimizar la carga de la memoria del usuario.
- 7. Flexibilidad y eficiencia de uso.
- 8. Cuidar la estética y usar diseño minimalista.
- 9. Ayudar a los usuarios a reconocer, diagnosticar y recuperarse de los errores.
- 10. Ayuda y documentación.

http://www.nngroup.com/articles/ten-usability-heuristics/

8 reglas de oro de Shneiderman

- 1. Esforzarse por ser consistente.
- 2. Habilitar atajos para los usuarios frecuentes.
- 3. Ofrecer información de retroalimentación.
- 4. Diseñar diálogos que lleven al "cierre" (no dejas las cosas a medias).
- 5. Ofrecer prevención de errores y manejo de errores simples.
- 6. Permitir reversión sencilla de acciones.
- 7. Soportar el lugar interno de control.
- 8. Reducir la carga de la memoria a corto plazo.

7 principios de Norman

- Usar tanto el conocimiento en el mundo y el conocimiento en la cabeza.
- 2. Simplificar la estructura de tareas.
- 3. Hacer visibles las cosas: crear puentes entre los golfos de ejecución y de evaluación (tema 4).
- 4. Conseguir que las asociaciones se hagan bien.
- 5. Explotar el poder de las limitaciones, tanto naturales como artificiales.
- 6. Diseñar para el error.
- 7. Cuando todo lo demás falla, usar estándares.

Estándares

Estándares

- Un estándar es un requisito, regla o recomendación basada en principios probados y en la práctica. Representa un acuerdo de un grupo de profesionales oficialmente autorizados a nivel local, nacional o internacional.
- Locales, nacionales, internacionales.
- Los estándares requieren una teoría subyacente sólida y una tecnología que cambie lentamente.
- Estándares de interfaces: su objetivo es conseguir un software más fácil y seguro, estableciendo unos requisitos mínimos de fabricación, eliminando inconsistencias y variaciones innecesarias en las interfaces.

Estándares: beneficios

Una terminología común:

 Permite a los diseñadores discutir los mismos conceptos y hacer valoraciones comparativas

El mantenimiento y la evolución:

Todos los programas tienen la misma estructura y el mismo estilo

Una identidad común:

Lo que hace que todos los sistemas sean fáciles de reconocer

Reducción en la formación:

 Los conocimientos son más fáciles de transmitir de un sistema a otro

Salud y seguridad:

 Si los sistemas han pasado controles de estándares es difícil que tengan comportamientos inesperados

- Son generados por comités con estatus legal y gozan del apoyo de un gobierno o institución para producir estándares
- Para hacer un estándar de iure se ha de seguir un proceso complejo:
 - Documento preliminar público
 - Enmiendas
 - Aprobación (tras cierto tiempo, a veces años)
 - Ejemplo: Ansi C

- Los estándares de la interfaz son relativamente recientes.
- Algunos de los más importantes son:
 - ISO/IEC 9126: Evaluación de productos software: características de calidad y directrices para su uso
 - ISO 9241: requisitos ergonómicos para trabajar con terminales de presentación visual (VDT)
 - ISO/IEC 10741: interacción de diálogos
 - ISO/IEC 11581: símbolos y funciones de los iconos
 - ISO 11064: diseño ergonómico de centros de control
 - ISO 13406: requisitos ergonómicos para trabajar con presentaciones visuales basadas en paneles planos
 - ISO 13407: procesos de diseño centrados en la persona para sistemas interactivos

- Algunos aspectos cubiertos por la ISO 9241 (requisitos ergonómicos para trabajar con terminales de presentación visual):
 - Requisitos de la presentación visual
 - Requisitos de teclado
 - Diseño de estaciones de trabajo y requisitos de las posturas
 - Requisitos para la visualización con reflejos
 - Requisitos para colores visualizados
 - Requisitos para dispositivos de entrada no-teclado
 - Principios de diálogos
 - Presentación de información
 - Diálogos de menús
 - Diálogos de manipulación directa
 - Diálogos para completar formularios

Estándares de facto

- Son estándares que nacen a partir de productos de la industria que tienen un gran éxito en el mercado o desarrollos hechos por grupos de investigación en la Universidad que tienen una gran difusión.
- Son aceptados como tales por su uso generalizado.
- Su definición se encuentra en manuales, libros o artículos.
- Ejemplos:
 - Sistema X-Windows.
 - Lenguaje C.
 - Normas CUA (Common User Access, de IBM).

Guías de estilo

Guías de estilo

- Para asegurar la consistencia de las diferentes partes de un sistema o de una familia de sistemas es fundamental para los desarrolladores basar sus diseños en un conjunto de principios y directrices.
- Por este motivo es tan importante para las organizaciones que desarrollan software disponer de una guía que puedan seguir sus desarrolladores.
- Estas guías se denominan guías de estilo y varían mucho en sus objetivos.

Guías de estilo

- Pueden ser de dos tipos:
 - Guías de estilo comerciales.
 - Guías de estilo corporativas.
- Ventaja: aseguran una mejor usabilidad mediante la consistencia que imponen.
- En el lenguaje industrial se hace referencia a las guías de estilo como el *look and feel.*

Guías de estilo comerciales

- Son producidas por fabricantes de software y hardware, y son en general estándares de facto.
 - Apple
 - MotifOS/2
 - Windows
 - Open Look
 - CDE, Common Desktop Environment
 - Java Swing
- Contienen directrices que se concretan a muy bajo nivel.

Apple (1985)

Apple (1985)

Apple (1985)

Document window

Modal dialog box

Movable modal dialog box

Modeless dialog box

Apple (1985)

Distance between controls does not include outside lines of controls

CUA (Common User Access)

- Publicadas en 1987 por IBM y Microsoft.
- Objetivos:
 - Usabilidad y consistencia de la aplicación
 - Consistencia entre aplicaciones
- Se adoptaron universalmente por la fuerza de IBM (estándar de facto).
- Windows, OS/2 y Motif son los estándares más importantes que siguen esta norma.

Guías de estilo CUA Sistemas de ventanas

Guías de estilo CUA Principios básicos de diseño

- Los usuarios tienen el control del diálogo
- Los usuarios tienen que desarrollar un modelo conceptual de la interfaz
 - Uso de metáforas
 - Metáfora del escritorio: los usuarios ven carpetas y documentos, no programas y archivos. El sistema establece la asociación datos-programas
 - Sistema dirigido por el usuario
 - Consistencia
 - Hacer la interfaz transparente

Guías de estilo CUA Modelo gráfico

- Las aplicaciones comparten la pantalla
- Cada una tiene asignada una parte o ventana
- Ventana activa: aquella con la que el usuario interacciona
- Niveles del modelo gráfico:
 - Presentación
 - Acciones
 - Interacción

Guías de estilo CUA Presentación

- Representa el aspecto visual de la interfaz
- Las aplicaciones tienen dos tipos de elementos que hay que presentar:
 - Objetos
 - Cualquier cosa que el usuario pueda manipular
 - Son el centro de atención del usuario
 - Acciones
 - Permiten al usuario crear o manipular objetos
 - Se realizan mediante combinaciones de menús y cajas de diálogo

- Menús
 - Menús desplegables
 - Menús en cascada (no más de dos niveles)

- Cajas de diálogo
 - Presentan/recogen información
 - Ventana móvil de tamaño fijo
 - Aparece durante el procesamiento de una acción del usuario, cuando se requiere información para completarla
 - Se utiliza una elipsis (...) tras el nombre del botón o elemento de menú que abre la caja
 - No usan menús. Usan botones para llamar a las acciones
 - Botones: confirmar, cancelar, ayuda

- Tipos de cajas de diálogo
 - No modal
 - Permite a los usuarios continuar con su trabajo sin completar el diálogo
 - Modal
 - Requiere que los usuarios completen la caja de diálogo antes de continuar

- Caja de mensajes
 - Es un tipo especial de caja de diálogo que se utiliza exclusivamente para mostrar mensajes a los usuarios

- Es el nivel a través del cual los usuarios interaccionan con los componentes de la interfaz
- Consta de:
 - Selección de objeto
 - Los usuarios apuntan a un objeto que desean manipular y lo seleccionan de manera visible
 - Ejecución de la acción
 - Se selecciona una opción de menú y si es preciso se completa con una caja de diálogo
 - La ejecución de la acción debe ser visualizada

Selección de objeto

Ejecución de acción

- Apuntar y seleccionar
 - Los usuarios interaccionan con los componentes de la interfaz
 - Apuntan a lo que desean manipular y lo seleccionan
 - Se utiliza tanto el teclado como el ratón
 - El teclado y el ratón tienen una indicación visual para indicar al usuario dónde se encuentra

- Indicación visual
 - Teclado
 - Selección de campos (caja de líneas discontinuas)
 - Entrada de campos (cursor de texto)
 - Ratón
 - Un puntero indica la posición del ratón

- Énfasis
 - Trata de realzar la importancia de algunos elementos de interacción para que el usuario cuando interacciona pueda saber:
 - Foco de la entrada
 - Opciones disponibles
 - Opciones no disponibles
 - Estado actual de las opciones

- Tipos de énfasis:
 - Énfasis de cursor
 - Énfasis de selección
 - Énfasis de no disponible
 - Énfasis del estado actual

- Selección
 - Selección con el ratón
 - Clic, Doble-clic, Mayus+clic, Ctrl+clic, Arrastrar y seleccionar
 - Selección con el teclado
 - Tabulación, flechas, Mayus y Ctrl (selección), Alt (menús)

- Acciones comunes
 - La consistencia en acciones comunes es importante para reforzar el modelo conceptual del usuario
 - Existen acciones que son comunes a la mayoría de las aplicaciones, y que CUA define:
 - Abrir fichero
 - Imprimir
 - Tipo de letra

Guías de estilo CUA Componentes

- CUA define una serie de componentes y describe sus propiedades
 - Botones de radio (radio button)
 - Botones de comprobación (check button)
 - Botones pulsables (push button)

Guías de estilo CUA Componentes

- Caja de grupo (group box)
- Campo de texto (text box)
- Caja de lista (list box)
- Caja de combinación (combo box)

Guías de estilo CUA Componentes

- Indicador de progreso
 - Cambio del puntero
 - Ventana de progreso de la acción
- Control de desplazamiento

Guías de estilo CUA Ayuda

- Permite resolver las dudas de los usuarios
- Interacción
 - Tecla F1
 - Seleccionando el botón de ayuda
 - Seleccionando el menú de ayuda
- Tipos de ayuda
 - Ayuda contextual
 - Tutorial
 - Glosario

Guías de estilo para la Web

- Diseñar para la Web es diferente de diseñar interfaces de usuario tradicionales.
- Algunos principios son aplicables pero la Web tiene sus particularidades.
- Una característica importante de la Web es la falta de interfaces de usuario comunes. La prioridad es conseguir una interfaz atractiva, diferente de las otras.
- Para afrontar este problema varias empresas y organismos han publicado sus guías de estilo Web.
 - Apple.
 - IBM.
 - Sun.
 - W3C.
 - Yale Center for Advanced Instructional Media.
 - National Cancer Institute (NIC).

http://www.w3.org/WAI/

Web Accessibility

Bibliografía

Lecturas obligatorias:

- A. Dix, J. Finlay, G. D. Abowd y R. Beale, "Design Rules", en Human-Computer Interaction, 3ª edición, Scotprint, Reino Unido: Pearson Prentice Hall, 2004, capítulo 7, páginas 258 – 288.
- A. Dix, J. Finlay, G. D. Abowd y R. Beale, "Universal Design", en Human-Computer Interaction, 3ª edición, Scotprint, Reino Unido: Pearson Prentice Hall, 2004, capítulo 10, páginas 365–368.

Lecturas recomendadas:

 X. Ferré Grau, "Guías de diseño de la interacción", en *Interacción Persona-Ordenador*, coordinador X. Ferré Grau, 1^a edición. Madrid, España: Ediciones CEF, 2015, capítulo 9, páginas 281 – 308.

marlon.cardenas@ufv.es

