```
In [1]:
            1 # import libraries
             3 import numpy as np
             4 import pandas as pd
             6 %matplotlib inline
             7 import matplotlib.pyplot as plt
             8 plt.style.use('fivethirtyeight')
             9
            10 from sklearn.linear_model import LinearRegression, Lasso, LassoCV, Ridge, RidgeCV
            11 from sklearn.preprocessing import StandardScaler
            12 from sklearn.model_selection import train_test_split, KFold
            13 from sklearn.metrics import r2_score, mean_squared_error, confusion_matrix, ConfusionMatrixDisplay, accuracy_score
            14 from sklearn.ensemble import RandomForestClassifier
            15 from sklearn.tree import plot_tree
            16
            17 from scipy.optimize import minimize
            18 from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
            20 from tqdm import notebook
            21
            22 import seaborn as sns
```

LOAD DATAFRAME and INITIAL EXPLORATION

- In [2]: ▶ 1 # Loads dataframe; prints head
 - 2 pisa_df = pd.read_csv("https://raw.githubusercontent.com/babnigg/DATA11900/main/economics_and_education_dataset_CSV.csv")
 - 3 pisa_df.head()

Out[2]:

]: _	index_code	expenditure_on _education_pct_gdp	mortality_rate_infant	gini_index	gdp_per_capita_ppp	inflation_consumer_prices	intentional_homicides	unemployment	gros
(AUS-2003	5.246357	4.9	33.5	30121.818418	2.732596	1.533073	5.933	
•	AUS-2003	5.246357	4.9	33.5	30121.818418	2.732596	1.533073	5.933	
2	2 AUS-2003	5.246357	4.9	33.5	30121.818418	2.732596	1.533073	5.933	
;	B AUS-2006	4.738430	4.7	NaN	34846.715630	3.555288	1.372940	4.785	
4	AUS-2006	4.738430	4.7	NaN	34846.715630	3.555288	1.372940	4.785	

```
pisa_df_tot = pisa_df[pisa_df["sex"]==agg]
 4
    pisa_df_tot.info()
 6 pisa df tot.describe()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 214 entries, 2 to 633
Data columns (total 20 columns):
     Column
                                             Non-Null Count Dtype
    index_code
0
                                             214 non-null
                                                             object
     expenditure on education pct gdp
                                                             float64
                                             202 non-null
    mortality_rate_infant
                                             214 non-null
                                                             float64
                                                             float64
     gini index
                                             181 non-null
     gdp_per_capita_ppp
                                             214 non-null
                                                             float64
    inflation_consumer_prices
                                             214 non-null
                                                             float64
    intentional_homicides
                                             187 non-null
                                                             float64
     unemployment
                                             214 non-null
                                                             float64
    gross_fixed_capital_formation
                                             214 non-null
                                                             float64
     population_density
                                             214 non-null
                                                             float64
    suicide mortality rate
                                             214 non-null
                                                             float64
 11 tax_revenue
                                             198 non-null
                                                             float64
 12 taxes on income profits capital
                                                             float64
                                             198 non-null
                                                             float64
    alcohol consumption per capita
                                             37 non-null
     government_health_expenditure_pct_gdp
                                             214 non-null
                                                             float64
    urban_population_pct_total
                                                             float64
                                             214 non-null
 16 country
                                             214 non-null
                                                             object
17 time
                                             214 non-null
                                                             int64
 18 sex
                                             214 non-null
                                                             object
 19 rating
                                             214 non-null
                                                             float64
dtypes: float64(16), int64(1), object(3)
memory usage: 35.1+ KB
           expenditure_on
                         mortality_rate_infant
       _education_pct_gdp
```

1 # filters out dataframe to only include total sex aggregate; prints info and describes numerical variables

In [3]:

Out[3]:

2 agg = "TOT"

gini_index gdp_per_capita_ppp inflation_consumer_prices intentional_homicides unemployment gross_fixed_ 202.000000 214.000000 181.000000 214.000000 214.000000 187.000000 214.000000 count 5.237384 5.062150 36176.526959 3.119124 7.643659 mean 33.411050 2.300823 std 1.105318 4.090917 6.816531 16451.684140 2.742357 6.122298 4.021760 3.040150 1.900000 24.400000 9587.557951 -4.478103 0.000000 2.246000 min 25% 4.460890 3.000000 28.100000 26081.142138 0.799862 0.833583 4.892500 50% 5.058085 3.700000 32.700000 1.980056 1.095505 6.843000 34305.514059

	expenditure_on _education_pct_gdp	mortality_rate_infant	gini_index	gdp_per_capita_ppp	inflation_consumer_prices	intentional_homicides	unemployment	gross_fixed_
75%	5.796320	5.100000	35.400000	42993.833915	2.991248	1.842371	9.333500	
max	8.448880	25.300000	57.600000	116498.512081	21.602438	29.581371	24.981000	

In [4]:

- 1 # plots histogram of PISA score distribution in original data
- 2 plt.figure().set_facecolor("lightgrey")
- 3 plt.hist(pisa_df_tot.rating, color = "orange")
- 4 plt.title("PISA Score Distribution (Original Data)")
- 5 plt.ylabel("Number of Observations")
- 6 plt.xlabel("PISA Score")
- 7 plt.show()

DATA CLEANING and EXPLORATION

country

time

sex

rating

dtype: int64

```
In [5]:
            1 # counts and prints number of NA values per column
             2 np.sum(pisa_df_tot.isna(),axis=0)
   Out[5]: index_code
                                                       0
           expenditure_on _education_pct_gdp
                                                      12
           mortality_rate_infant
                                                       0
           gini_index
                                                      33
           gdp_per_capita_ppp
                                                       0
           inflation_consumer_prices
                                                       0
           intentional homicides
                                                      27
           unemployment
                                                       0
           gross_fixed_capital_formation
                                                       0
           population_density
                                                       0
           suicide_mortality_rate
                                                       0
           tax_revenue
                                                      16
           taxes_on_income_profits_capital
                                                      16
           alcohol_consumption_per_capita
                                                     177
           government_health_expenditure_pct_gdp
                                                       0
           urban population pct total
                                                       0
```

0

0

0

0

```
In [6]: ▶ 1 # defining function to impute data with the mean for the column
             2 def fill missing with mean(group):
                 '''fill the missing values with the mean of each feature (column) for each country.'''
                 columns_to_fill = ['expenditure_on _education_pct_gdp', 'gini_index', 'intentional_homicides',
                                       'tax_revenue', 'taxes_on_income_profits_capital', 'alcohol_consumption_per_capita']
             5
             6
                 for column in columns to fill:
                      group[column] = group[column].fillna(group[column].mean())
             7
             8
                  return group
             9
            10 # apply the function to each group (country)
            11 pisa_df_tot = pisa_df_tot.groupby('country', group_keys=False).apply(fill_missing_with_mean)
            12
            13 # glance at data head after imputing
            14 display(pisa_df_tot.head())
            15
            16 # counts and prints number of NA values per column after imputing
            17 np.sum(pisa df tot.isna(),axis=0)
```

	index_code	expenditure_on _education_pct_gdp	mortality_rate_infant	gini_index	gdp_per_capita_ppp	inflation_consumer_prices	intentional_homicides	unemployment	gro
2	AUS-2003	5.246357	4.9	33.5	30121.818418	2.732596	1.533073	5.933	
5	AUS-2006	4.738430	4.7	33.9	34846.715630	3.555288	1.372940	4.785	
8	AUS-2009	5.081320	4.2	33.9	40312.395119	1.771117	1.214170	5.565	
11	AUS-2012	4.866670	3.6	33.9	42866.604330	1.762780	1.069106	5.225	
14	AUS-2015	5.315520	3.3	33.9	46292.095439	1.508367	0.990754	6.055	

Out[6]: index code expenditure on education pct gdp mortality rate infant gini_index 12 gdp_per_capita_ppp inflation_consumer_prices intentional_homicides unemployment gross_fixed_capital_formation population_density suicide_mortality_rate tax_revenue taxes_on_income_profits_capital alcohol consumption per capita 2

government_health_expenditure_pct_gdp

urban_population_pct_total	0
country	0
time	0
sex	0
rating	0
dtype: int64	

Since there are some countries that don't have any entry for certain variables we can just drop those countries.

Countries: BEL, JPN, NZL, CRI, LTU.

We also choose to drop countries with the characteristically low PISA scores in comparison to other countries in dataset to normalize the score distribution.

Countries: MEX, BRA, CHL, TUR, COL

```
In [7]: ▶ 1 # dropping countries with lone NaN values
             2 # Last 5 countires in list are lowest scoring countries
             3 countries_to_drop = ['BEL', 'JPN', 'NZL','CRI','LTU','MEX','BRA','CHL','TUR','COL']
             4 pisa_df_tot = pisa_df_tot.drop(pisa_df_tot[pisa_df_tot['country'].isin(countries_to_drop)].index)
             6 # 'sex' is a redundant column as we already control the dataset on sex='TOT'
             7 pisa_df_tot = pisa_df_tot.drop(['sex'],axis=1)
             8
            9 # informative 'index code' column can be used to replace default index
            10 pisa_df_tot.reset_index(drop=True,inplace=True)
            11 pisa_df_tot.set_index('index_code',inplace=True)
            12
            13 # printing remaining number of countries in the dataset
            14 print("Number of remaining countries in dataset:",len(pisa_df_tot.country.unique()))
            15 print("\n")
            16
            17 # glance at data head after cleaning
            18 display(pisa_df_tot.head())
            19
            20 # counts and prints number of NA values per column after removing countries
            21 print(np.sum(pisa_df_tot.isna(),axis=0))
```

Number of remaining countries in dataset: 29

gdp_per_capita_ppp

inflation_consumer_prices

	expenditure_on _education_pct_gdp	mortality_rate_infant	gini_index	gdp_per_capita_ppp	inflation_consumer_prices	intentional_homicides	unemployment	gross_fi
index_code								
AUS-2003	5.246357	4.9	33.5	30121.818418	2.732596	1.533073	5.933	
AUS-2006	4.738430	4.7	33.9	34846.715630	3.555288	1.372940	4.785	
AUS-2009	5.081320	4.2	33.9	40312.395119	1.771117	1.214170	5.565	
AUS-2012	4.866670	3.6	33.9	42866.604330	1.762780	1.069106	5.225	
AUS-2015	5.315520	3.3	33.9	46292.095439	1.508367	0.990754	6.055	
expenditure mortality_r gini_index	e_on _education_pc rate_infant	t_gdp 0 0 0						

intentional_homicides	(
unemployment	(
<pre>gross_fixed_capital_formation</pre>	(
population_density	(
suicide_mortality_rate	(
tax_revenue	(
taxes_on_income_profits_capital	(
alcohol_consumption_per_capita	(
<pre>government_health_expenditure_pct_gdp</pre>	(
urban_population_pct_total	(
country	(
time	(
rating	(
dtyne: int64	

dtype: int64

EXPLORATION

expenditure_on _education_pct_gdp	1	-0.21	-0.26	0.1	0.01	0.03	-0.26	-0.04	-0.28	0.07	0.41	0.07	-0.25	0.49	0.39	-0.03	0.11	Г	1.00
mortality_rate_infant	-0.21	1	0.32	-0.44	0.25	0.52	0.2	0.12	-0.03	0.2	-0.29	0.13	0.08	-0.3	-0.28	-0.44	-0.09		
gini_index	-0.26	0.32	1	0	-0.07	0.44	0.23	-0.12	0.08	-0.29	-0.22	0.36	-0.23	-0.19	0.11	0.02	-0.41		0.75
gdp_per_capita_ppp	0.1	-0.44	0	1	-0.22	-0.21	-0.39	-0.14	0.06	-0.26	0.1	0.33	-0.03	0.25	0.41	0.42	0.07		
inflation_consumer_prices	0.01	0.25	-0.07	-0.22	1	0.08	-0.08	0.19	-0.1	0.14	0.07	-0.02	-0.05	-0.12	-0.01	-0.28	-0.03		0.50
intentional_homicides	0.03	0.52	0.44	-0.21	0.08	1	0.13	0.11	-0.27	0.22	-0.23	0.13	0.17	-0.1	-0.04	-0.1	-0.12		
unemployment	-0.26	0.2	0.23	-0.39	-0.08	0.13	1	-0.4	-0.21	-0.15	-0.06	-0.28	0.02	-0.12	-0.26	-0.02	-0.4		0.25
gross_fixed_capital_formation	-0.04	0.12	-0.12	-0.14	0.19	0.11	-0.4	1	0.02	0.41	-0.22	0.03	0.19	-0.32	-0.07	-0.2	0.37		
population_density	-0.28	-0.03	0.08	0.06	-0.1	-0.27	-0.21	0.02	1	0.03	-0.11	-0.09	-0.23	-0.25	0.19	0.04	0.19		0.00
suicide_mortality_rate	0.07	0.2	-0.29	-0.26	0.14	0.22	-0.15	0.41	0.03	1	-0.17	-0.31	0.4	-0.32	-0.26	-0.12	0.46		
tax_revenue	0.41	-0.29	-0.22	0.1	0.07	-0.23	-0.06	-0.22	-0.11	-0.17	1	0.08	-0.19	0.27	0.17	0.03	-0.21		-0.25
taxes_on_income_profits_capital	0.07	0.13	0.36	0.33	-0.02	0.13	-0.28	0.03	-0.09	-0.31	0.08	1	-0.19	0.31	0.36	0.01	0.06		
alcohol_consumption_per_capita	-0.25	0.08	-0.23	-0.03	-0.05	0.17	0.02	0.19	-0.23	0.4	-0.19	-0.19	1	-0.04	-0.47	-0	0.32		-0.50
government_health_expenditure_pct_gdp	0.49	-0.3	-0.19	0.25	-0.12	-0.1	-0.12	-0.32	-0.25	-0.32	0.27	0.31	-0.04	1	0.27	0.12	-0.03		
urban_population_pct_total	0.39	-0.28	0.11	0.41	-0.01	-0.04	-0.26	-0.07	0.19	-0.26	0.17	0.36	-0.47	0.27	1	0.07	0.09		-0.75
time	-0.03	-0.44	0.02	0.42	-0.28	-0.1	-0.02	-0.2	0.04	-0.12	0.03	0.01	-0	0.12	0.07	1	-0.1		
rating	0.11	-0.09	-0.41	0.07	-0.03	-0.12	-0.4	0.37	0.19	0.46	-0.21	0.06	0.32	-0.03	0.09	-0.1	1		-1.00
	n_pct_gdp	ate_infant	gini_index	apita_ppp	ner_prices	nomicides	ployment	formation	n_density	ality_rate	<_revenue	ts_capital	er_capita	e_pct_gdp	_pct_total	time	rating		1.00

expenditure_on_education

mortality_r

gdp_per_c

gdp_per_c

inflation_consum

unem

gross_fixed_capital_

populatio

suicide_mort

taxes_on_income_proff

alcohol_consumption_g

government_health_expenditure

urban_population_g

```
In [9]: ▶ 1 # exploratory data analysis based on correlation matrix
             3 # list of features that has quite high correlation score
             4 features = ["mortality_rate_infant", "gini_index", "intentional_homicides",
                           "inflation_consumer_prices", "government_health_expenditure_pct_gdp", "intentional_homicides",
             6
                           "alcohol_consumption_per_capita", "unemployment", "suicide_mortality_rate"
             7
             8 colors = ['blue', 'orange', 'green', 'red', 'purple', 'brown', 'black', 'gray', 'olive']
            10 # create subplots
            11 fig, axes = plt.subplots(3, 3, figsize=(18, 18))
            12
            13 # flatten axes for easy iteration
            14 axes = axes.flatten()
            15
            16 # plot scatter plots for each feature
            17 for i, (feature, color) in enumerate(zip(features, colors)):
            18
                   ax.scatter(pisa_df_tot[feature], pisa_df_tot['rating'],color=color)
            19
            20
                   ax.set xlabel(feature)
                   ax.set_ylabel('rating')
            21
                   ax.set_title(f'{feature} vs rating')
            22
            23
            24 # adjust Layout
            25 plt.tight_layout()
            26 plt.show()
```


	expenditure_on _education_pct_gdp	mortality_rate_infant	gini_index	gdp_per_capita_ppp	inflation_consumer_prices	intentional_homicides	unemployment	gross_fi
index_code								
AUS-2003	-0.029140	0.831882	0.462126	-0.546819	0.507257	0.142289	-0.426994	
AUS-2006	-0.496382	0.679648	0.559458	-0.258194	0.968513	-0.005489	-0.695237	
AUS-2009	-0.180958	0.299063	0.559458	0.075682	-0.031812	-0.152009	-0.512982	
AUS-2012	-0.378414	-0.157639	0.559458	0.231708	-0.036486	-0.285880	-0.592426	
AUS-2015	0.034482	-0.385990	0.559458	0.440957	-0.179127	-0.358186	-0.398488	

5 rows × 50 columns

```
1 # plots histogram of PISA score distribution after data cleaning
2 plt.figure().set_facecolor("lightgrey")
3 plt.hist(pisa_df_tot.rating, color = "orange")
4 plt.title("PISA Score Distribution")
5 plt.ylabel("Number of Observations")
6 plt.xlabel("PISA Score")
7 plt.show()
```

In [11]:

LINEAR, RIDGE, and LASSO MODELS: SELECTING BEST MODEL

```
In [14]: • 1 # calcualtes best RIDGE and LASSO alphas for each model using cross-validation from training dataset
              2 # RIDGE
              3 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model1x,y_train)
              4 alpha1r = ridgeCV.alpha_
              5 print("Most appropriate Ridge alpha for model 1:", alpha1r)
              7 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model2x,y_train)
              8 alpha2r = ridgeCV.alpha
              9 print("Most appropriate Ridge alpha for model 2:", alpha2r)
             10
             11 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model3x,y_train)
             12 alpha3r = ridgeCV.alpha
             13 print("Most appropriate Ridge alpha for model 3:", alpha3r)
             14
             15 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model4x,y_train)
             16 alpha4r = ridgeCV.alpha_
             17 print("Most appropriate Ridge alpha for model 4:", alpha4r)
             18
             19 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model5x,y_train)
             20 alpha5r = ridgeCV.alpha
             21 print("Most appropriate Ridge alpha for model 5:", alpha5r)
             22
             23 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model6x,y_train)
             24 alpha6r = ridgeCV.alpha_
             25 print("Most appropriate Ridge alpha for model 6:", alpha6r)
             26
             27 ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model7x,y_train)
             28 alpha7r = ridgeCV.alpha_
             29 print("Most appropriate Ridge alpha for model 7:", alpha7r, "\n")
             30
             31 # LASSO
             32 lassoCV = LassoCV(cv = None, n alphas = 100).fit(model1x,y train)
             33 alpha1l = lassoCV.alpha_
             34 print("Most appropriate LASSO alpha for model 1:", alpha11)
             35
             36 lassoCV = LassoCV(cv = None, n_alphas = 100).fit(model2x,y_train)
             37 alpha21 = lassoCV.alpha
             38 print("Most appropriate LASSO alpha for model 2:", alpha21)
             40 lassoCV = LassoCV(cv = None, n_alphas = 100).fit(model3x,y_train)
             41 alpha3l = lassoCV.alpha
             42 print("Most appropriate LASSO alpha for model 3:", alpha31)
             43
             44 lassoCV = LassoCV(cv = None, n alphas = 100).fit(model4x,y train)
             45 alpha4l = lassoCV.alpha_
             46 print("Most appropriate LASSO alpha for model 4:", alpha41)
```

```
47
48 lassoCV = LassoCV(cv = None, n alphas = 100).fit(model5x,y train)
49 alpha51 = lassoCV.alpha_
50 print("Most appropriate LASSO alpha for model 5:", alpha51)
51
52 lassoCV = LassoCV(cv = None, n_alphas = 100).fit(model6x,y_train)
53 alpha61 = lassoCV.alpha
54 print("Most appropriate LASSO alpha for model 6:", alpha61)
55
56 lassoCV = LassoCV(cv = None, n_alphas = 100).fit(model7x,y_train)
57 alpha7l = lassoCV.alpha
58 print("Most appropriate LASSO alpha for model 7:", alpha71)
Most appropriate Ridge alpha for model 1: 7.01
Most appropriate Ridge alpha for model 2: 6.76
Most appropriate Ridge alpha for model 3: 65.81
Most appropriate Ridge alpha for model 4: 76.21000000000001
Most appropriate Ridge alpha for model 5: 62.86
Most appropriate Ridge alpha for model 6: 21.460000000000000
Most appropriate Ridge alpha for model 7: 1.36
```

Most appropriate LASSO alpha for model 1: 0.009688719668735267

Most appropriate LASSO alpha for model 2: 0.49820294669828463

Most appropriate LASSO alpha for model 3: 0.1195576940589756

Most appropriate LASSO alpha for model 4: 0.8309474024852266

Most appropriate LASSO alpha for model 5: 1.8648432123347791

Most appropriate LASSO alpha for model 6: 0.6142078784174095

Most appropriate LASSO alpha for model 7: 0.11582748247194662

```
In [15]:
              1 # implementing K-fold to test for best model (manual)
              3 # initializes k group IDs, creating modified training dataframes for cross-validation
              4 kgroup_ids = np.arange(1,6)
              5 kgroups_array = np.repeat(kgroup_ids,27)
              6 np.random.shuffle(kgroups_array)
              7 x_train["k_group"] = kgroups_array
              8 y train_cv= pd.DataFrame({'rating':y_train,'k_group':kgroups_array})
              9
             10 y_train1 = y_train_cv.loc[y_train_cv["k_group"] != 1]['rating']
             11
             12 # implementing Kfold to select the best model
             13 ridge_1_mses = []
             14 ridge_2_mses = []
             15 ridge_3_mses = []
             16 ridge_4_mses = []
             17 ridge_5_mses = []
             18 ridge_6_mses = []
             19 ridge_7_mses = []
             20
             21 linear_1_mses = []
             22 linear_2_mses = []
             23 linear 3 mses = []
             24 linear_4_mses = []
             25 linear_5_mses = []
             26 linear_6_mses = []
             27 linear_7_mses = []
             28
             29 lasso_1_mses = []
             30 lasso_2_mses = []
             31 lasso_3_mses = []
             32 lasso_4_mses = []
             33 lasso_5_mses = []
             34 lasso_6_mses = []
             35 lasso_7_mses = []
             36
             37 for k in kgroup_ids:
                   print('working on fold', k, "...")
             38
                   x_train1 = x_train.loc[x_train["k_group"] != k]
                   y_train1 = y_train_cv.loc[y_train_cv["k_group"] != k]['rating']
                   x_test1 = x_train.loc[x_train["k_group"] == k]
             41
                   y_test1 = y_train_cv.loc[y_train_cv["k_group"] == k]['rating']
             42
             43
             44
             45
                   model1x = x_train1[["gini_index","unemployment"]]
                   model2x = x train1[["mortality rate infant", "intentional homicides", "suicide mortality rate"]]
             46
```

```
47
     model3x = x_train1[["government_health_expenditure_pct_gdp","expenditure_on _education_pct_gdp"]]
48
     model4x = x_train1[["population_density","urban_population_pct_total"]]
     model5x = x_train1[["tax_revenue","taxes_on_income_profits_capital","gdp_per_capita_ppp"]]
49
50
     model6x = x_train1[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
51
                         "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp"]]
52
     model7x = x_train1[["alcohol_consumption_per_capita","intentional_homicides","urban_population_pct_total"]]
53
54
55
     model1tst = x_test1[["gini_index","unemployment"]]
     model2tst = x_test1[["mortality_rate_infant","intentional_homicides","suicide_mortality_rate"]]
56
57
     model3tst = x_test1[["government_health_expenditure_pct_gdp","expenditure_on _education_pct_gdp"]]
     model4tst = x_test1[["population_density","urban_population_pct_total"]]
58
     model5tst = x_test1[["tax_revenue","taxes_on_income_profits_capital","gdp_per_capita_ppp"]]
59
60
     model6tst = x_test1[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
61
                         "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp"]]
     model7tst = x_test1[["alcohol_consumption_per_capita","intentional_homicides","urban_population_pct_total"]]
62
63
64
     ridgereg = Ridge(alpha = alpha1r).fit(model1x,y_train1)
65
     predicted_y1 = ridgereg.predict(model1tst)
66
     print("----")
67
     # print("MSE for Model 1 Ridge regression:",mean_squared_error(y_test1,predicted_y1))
     ridge_1_mses.append(mean_squared_error(y_test1,predicted_y1))
68
69
70
     ridgereg = Ridge(alpha = alpha2r).fit(model2x,y_train1)
     predicted_y2 = ridgereg.predict(model2tst)
71
72
     # print("MSE for Model 2 Ridge regression:",mean_squared_error(y_test1,predicted_y2))
     ridge 2_mses.append(mean_squared_error(y_test1,predicted_y2))
73
74
75
     ridgereg = Ridge(alpha = alpha3r).fit(model3x,y_train1)
76
     predicted_y3 = ridgereg.predict(model3tst)
     # print("MSE for Model 3 Ridge regression:",mean_squared_error(y_test1,predicted_y3))
77
     ridge_3_mses.append(mean_squared_error(y_test1,predicted_y3))
78
79
80
     ridgereg = Ridge(alpha = alpha4r).fit(model4x,y_train1)
81
     predicted_y4 = ridgereg.predict(model4tst)
82
     # print("MSE for Model 4 Ridge regression:",mean_squared_error(y_test1,predicted_y4))
83
     ridge_4_mses.append(mean_squared_error(y_test1,predicted_y4))
84
85
     ridgereg = Ridge(alpha = alpha5r).fit(model5x,y_train1)
     predicted_y5 = ridgereg.predict(model5tst)
86
87
     # print("MSE for Model 5 Ridge regression:",mean_squared_error(y_test1,predicted_y5))
     ridge_5_mses.append(mean_squared_error(y_test1,predicted_y5))
88
89
90
     ridgereg = Ridge(alpha = alpha6r).fit(model6x,y_train1)
     predicted_y6 = ridgereg.predict(model6tst)
91
     # print("MSE for Model 6 Ridge regression:",mean_squared_error(y_test1,predicted_y6))
92
```

```
93
      ridge_6_mses.append(mean_squared_error(y_test1,predicted_y6))
 94
 95
      ridgereg = Ridge(alpha = alpha7r).fit(model7x,y_train1)
96
      predicted_y7 = ridgereg.predict(model7tst)
      # print("MSE for Model 7 Ridge regression:",mean_squared_error(y_test1,predicted_y7))
97
      ridge_7_mses.append(mean_squared_error(y_test1,predicted_y7))
98
99
100
      linearReg = LinearRegression().fit(model1x,y train1)
101
      predicted_y1 = linearReg.predict(model1tst)
      # print("MSE for Model 1 Linear regression:",mean_squared_error(y_test1,predicted_y1))
102
      linear_1_mses.append(mean_squared_error(y_test1,predicted_y1))
103
104
105
      linearReg = LinearRegression().fit(model2x,y train1)
106
      predicted_y2 = linearReg.predict(model2tst)
      # print("MSE for Model 2 Linear regression:",mean_squared_error(y_test1,predicted_y2))
107
      linear_2_mses.append(mean_squared_error(y_test1,predicted_y2))
108
109
110
      linearReg = LinearRegression().fit(model3x,y_train1)
111
      predicted_y3 = linearReg.predict(model3tst)
      # print("MSE for Model 3 Linear regression:",mean squared error(y test1,predicted y3))
112
      linear_3_mses.append(mean_squared_error(y_test1,predicted_y3))
113
114
115
      linearReg = LinearRegression().fit(model4x,y train1)
116
      predicted_y4 = linearReg.predict(model4tst)
117
      # print("MSE for Model 4 Linear regression:",mean squared error(y test1,predicted y4))
      linear 4 mses.append(mean squared error(y test1,predicted y4))
118
119
120
      linearReg = LinearRegression().fit(model5x,y train1)
121
      predicted y5 = linearReg.predict(model5tst)
      # print("MSE for Model 5 Linear regression:",mean_squared_error(y_test1,predicted_y5))
122
      linear_5_mses.append(mean_squared_error(y_test1,predicted_y5))
123
124
      linearReg = LinearRegression().fit(model6x,y_train1)
125
126
      predicted_y6 = linearReg.predict(model6tst)
      # print("MSE for Model 6 Linear regression:",mean squared error(y test1,predicted y6))
127
      linear_6_mses.append(mean_squared_error(y_test1,predicted_y6))
128
129
130
      linearReg = LinearRegression().fit(model7x,y train1)
131
      predicted_y7 = linearReg.predict(model7tst)
132
      # print("MSE for Model 7 Linear regression:", mean squared error(y test1, predicted y7))
      linear 7 mses.append(mean squared error(y test1,predicted y7))
133
134
135
      lassoreg = Lasso(alpha = alpha11).fit(model1x,y train1)
136
      predicted y1 = lassoreg.predict(model1tst)
      # print("MSE for Model 1 LASSO regression:",mean_squared_error(y_test1,predicted_y1))
137
      lasso_1_mses.append(mean_squared_error(y_test1,predicted_y1))
138
```

```
139
140
       lassoreg = Lasso(alpha = alpha21).fit(model2x,y train1)
       predicted_y2 = lassoreg.predict(model2tst)
141
142
      # print("MSE for Model 2 LASSO regression:",mean_squared_error(y_test1,predicted_y2))
      lasso 2_mses.append(mean_squared_error(y_test1,predicted_y2))
143
144
145
       lassoreg = Lasso(alpha = alpha31).fit(model3x,y train1)
146
       predicted y3 = lassoreg.predict(model3tst)
147
      # print("MSE for Model 3 LASSO regression:",mean_squared_error(y_test1,predicted_y3))
      lasso_3_mses.append(mean_squared_error(y_test1,predicted_y3))
148
149
150
       lassoreg = Lasso(alpha = alpha41).fit(model4x,y_train1)
       predicted y4 = lassoreg.predict(model4tst)
151
152
       # print("MSE for Model 4 LASSO regression:",mean squared error(y test1,predicted y4))
      lasso_4_mses.append(mean_squared_error(y_test1,predicted_y4))
153
154
155
       lassoreg = Lasso(alpha = alpha51).fit(model5x,y train1)
      predicted_y5 = lassoreg.predict(model5tst)
156
157
      # print("MSE for Model 5 LASSO regression:",mean_squared_error(y_test1,predicted_y5))
       lasso 5 mses.append(mean squared error(y test1,predicted y5))
158
159
       lassoreg = Lasso(alpha = alpha61).fit(model6x,y train1)
160
       predicted y6 = lassoreg.predict(model6tst)
161
162
      # print("MSE for Model 6 LASSO regression:",mean_squared_error(y_test1,predicted_y6))
      lasso_6_mses.append(mean_squared_error(y_test1,predicted_y6))
163
164
165
       lassoreg = Lasso(alpha = alpha71).fit(model7x,y_train1)
       predicted y7 = lassoreg.predict(model7tst)
166
      # print("MSE for Model 7 LASSO regression:",mean_squared_error(y_test1,predicted_y7))
167
      lasso_7_mses.append(mean_squared_error(y_test1,predicted_y7))
168
      print(' ')
169
170
171 print("Ridge Model 1 Mean MSE:",np.mean(ridge 1 mses))
172 print("Ridge Model 2 Mean MSE:",np.mean(ridge 2 mses))
173 print("Ridge Model 3 Mean MSE:",np.mean(ridge 3 mses))
174 print("Ridge Model 4 Mean MSE:",np.mean(ridge_4_mses))
175 print("Ridge Model 5 Mean MSE:",np.mean(ridge_5_mses))
176 print("Ridge Model 6 Mean MSE:",np.mean(ridge 6 mses))
177 print("Ridge Model 7 Mean MSE:",np.mean(ridge_7_mses))
178 print(" ")
179 print("Linear Model 1 Mean MSE:",np.mean(linear 1 mses))
180 print("Linear Model 2 Mean MSE:",np.mean(linear_2_mses))
181 print("Linear Model 3 Mean MSE:",np.mean(linear_3_mses))
182 print("Linear Model 4 Mean MSE:",np.mean(linear 4 mses))
183 print("Linear Model 5 Mean MSE:",np.mean(linear_5_mses))
184 print("Linear Model 6 Mean MSE:",np.mean(linear_6_mses))
```

```
185 print("Linear Model 7 Mean MSE:",np.mean(linear_7_mses))
186 print(" ")
187 print("LASSO Model 1 Mean MSE:",np.mean(lasso_1_mses))
188 print("LASSO Model 2 Mean MSE:",np.mean(lasso_2_mses))
189 print("LASSO Model 3 Mean MSE:",np.mean(lasso 3 mses))
190 print("LASSO Model 4 Mean MSE:",np.mean(lasso_4_mses))
191 print("LASSO Model 5 Mean MSE:",np.mean(lasso_5_mses))
192 print("LASSO Model 6 Mean MSE:",np.mean(lasso 6 mses))
193 print("LASSO Model 7 Mean MSE:",np.mean(lasso_7_mses))
working on fold 1 ...
_____
working on fold 2 ...
_____
working on fold 3 ...
_____
working on fold 4 ...
_____
working on fold 5 ...
_____
Ridge Model 1 Mean MSE: 363.7181114761211
Ridge Model 2 Mean MSE: 340.127916178825
Ridge Model 3 Mean MSE: 481.6210147382588
Ridge Model 4 Mean MSE: 479.99420935256694
Ridge Model 5 Mean MSE: 464.2527818044
Ridge Model 6 Mean MSE: 312.111458519555
Ridge Model 7 Mean MSE: 359.3239565787832
Linear Model 1 Mean MSE: 365.94373077459625
Linear Model 2 Mean MSE: 341.93861017178915
Linear Model 3 Mean MSE: 483.76836839344367
Linear Model 4 Mean MSE: 486.364547771024
Linear Model 5 Mean MSE: 462.6127208819713
Linear Model 6 Mean MSE: 312.89516216022065
Linear Model 7 Mean MSE: 359.18027384626623
LASSO Model 1 Mean MSE: 365.9243065813704
LASSO Model 2 Mean MSE: 342.83312831290635
LASSO Model 3 Mean MSE: 483.7333773999268
LASSO Model 4 Mean MSE: 483.7819812744141
LASSO Model 5 Mean MSE: 465.9111772009381
```

LASSO Model 6 Mean MSE: 312.8410662011376 LASSO Model 7 Mean MSE: 359.4036447530108

```
In [16]: ▶ 1 # recursively implementing K-fold to test for best model a number of times
              2 # will contextualize how the ORIGINAL test-train split affects best model
              3
              4 # a list of the 7 chosen possible models, in order model 1-7
              5 models = [["gini_index","unemployment"],
                           ["mortality rate infant", "intentional homicides", "suicide mortality rate"],
              7
                           ["government_health_expenditure_pct_gdp","expenditure_on _education_pct_gdp"],
              8
                           ["population_density", "urban_population_pct_total"],
                           ["tax revenue", "taxes on income profits capital", "gdp per capita ppp"],
              9
                           ["gini_index", "mortality_rate_infant", "intentional_homicides", "suicide_mortality_rate", \
             10
                                      "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp"],
             11
                           ["alcohol_consumption_per_capita","intentional_homicides","urban_population_pct_total"]]
             12
             13
             14 # for each K-fold CV, records best model (out of 21), and their MSEs and R2s
             15 best_models = np.array([])
             16 best_mses = np.array([])
             17 best_r2s = np.array([])
             18
             19 # THIS PART WILL TAKE LONG TO RUN: CAN LIMIT K-FOLDS TO ONE: range(100) -> range(1)
             20 for split in notebook.tqdm(range(100)):
                  # creates a shuffled K-fold indicies of given folds (default=5)
             21
             22
                   k = 5
                   kfold = KFold(n splits=k,shuffle=True)
             23
             24
             25
                   model_mses = np.zeros((3,7))
                   model r2s = np.zeros((3,7))
             26
             27
                   # does a randomized initial test-train split before running K-Fold CV
             28
                   x_traink, x_testk, y_traink, y_testk = train_test_split(x_df, y_df, test_size = 0.2)
             29
             30
                   # iterates over each of the models
             31
                   for m,model in enumerate(models):
             32
             33
                     # calculates best fitting RIDGE and LASSO alphas using new initial training dataframe and model
             34
                     ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(x traink[model],y traink)
                     ralpha = ridgeCV.alpha
             35
                     lassoCV = LassoCV(cv=None,n_alphas=500).fit(x_traink[model],y_traink)
             36
                     lalpha = lassoCV.alpha_
             37
             38
             39
                     # for each K-fold, record that fold's MSE and R2 values
             40
                     mses = np.zeros((3,k))
                     r2s = np.zeros((3,k))
             41
             42
                     # fold number (0 to k-1)
                     ki = 0
             43
             44
             45
                     # performs K-fold CV
                     for train index,test index in kfold.split(x traink):
             46
```

```
47
         # test and train split for specific fold, from initial training dataframe and model
48
         X tr, X te, y tr, y_te = x_traink.iloc[train_index], x_traink.iloc[test_index], y_traink.iloc[train_index], y_traink.iloc[test_index]
49
50
          # performs linear regression on training fold, predicts y using test fold
51
          linearReg = LinearRegression().fit(X tr[model],y tr)
         predicted_y = linearReg.predict(X_te[model])
52
53
         mses[0][ki] = mean_squared_error(y_te,predicted_y)
54
         r2s[0][ki] = r2_score(y_te,predicted_y)
55
         # performs RIDGE regression on training fold, predicts y using test fold
56
         ridgeReg = Ridge(alpha = ralpha).fit(X_tr[model],y_tr)
57
58
         predicted_y = ridgeReg.predict(X_te[model])
         mses[1][ki] = mean_squared_error(y_te,predicted_y)
59
60
         r2s[1][ki] = r2_score(y_te,predicted_y)
61
         # performs LASSO regression on training fold, predicts y using test fold
62
63
         lassoReg = Lasso(alpha = lalpha).fit(X tr[model],y tr)
         predicted_y = lassoReg.predict(X_te[model])
64
65
         mses[2][ki] = mean_squared_error(y_te,predicted_y)
         r2s[2][ki] = r2_score(y_te,predicted_y)
66
67
68
         # increases fold number
         ki += 1
69
70
71
       # across all folds, calculates the mean MSE
72
       model mses[0][m] = np.mean(mses[0])
73
       model_mses[1][m] = np.mean(mses[1])
       model_mses[2][m] = np.mean(mses[2])
74
75
76
       # across all folds, calculates the mean R2 score
       model_r2s[0][m] = np.mean(r2s[0])
77
       model r2s[1][m] = np.mean(r2s[1])
78
       model_r2s[2][m] = np.mean(r2s[2])
79
80
81
     # out of a given K-Fold CV, appends best model, and its MSE and R2
     best_models = np.append(best_models,np.argmin(model_mses))
82
83
      best mses = np.append(best mses,np.min(model mses))
     best_r2s = np.append(best_r2s,model_r2s[np.argmin(model_mses)//7][np.argmin(model_mses)%7])
84
85
86 #Printing the statistics for the first 10 runs of the loop (to find the best model)
87 print("Best Models (#):",best models[:9])
88 print("Best Model MSE:",best_mses[:9])
89 print("Best Model R^2:",best_r2s[:9])
 0%|
              | 0/100 [00:00<?, ?it/s]
```

```
Best Models (#): [12. 13. 12. 0. 7. 19. 0. 12. 12.]
```

Best Model MSE: [316.33573026 315.97420626 313.46558336 340.64742678 335.42158805 313.5229693 288.13779761 302.59490713 308.19019473]
Best Model R^2: [0.19927372 0.17397247 0.22717893 0.21235763 0.21328092 0.24138915 0.22510881 0.24042682 0.24014788]

```
In [17]: ▶ 1 # results from recursive K-Fold tries
              3 # matches model number to an informative name
             4 \mod s_s = []
              5 for mo in range(21):
                if mo//7 = = 0:
                    models_s.append("model"+str(mo%7+1)+"_linear")
              7
                  elif mo//7==1:
                    models_s.append("model"+str(mo%7+1)+"_ridge")
             10
                  else:
             11
                    models_s.append("model"+str(mo%7+1)+"_lasso")
             12
             13 # gets best models, and their occurances over the number of K-Folds
             14 x,height = np.unique(best models,return counts=True)
             15 best_models_df = pd.DataFrame({"model":x,"count":height})
             16 best_models_df["model"] = best_models_df["model"].replace(np.arange(21),models_s)
             17 # plots histogram of best model over multiple K-Folds
             18 best_models_df.plot.barh(x="model",y="count",color="purple")
             19 plt.title("Best Model Occurances Over Different K-Fold CVs")
             20 plt.ylabel("Model")
             21 plt.xlabel("Number of Observations")
             22 plt.show()
```



```
In [19]: ▶ 1 # choosing best model based on histogram; running a normal CV using original test-train split
              3 # best model: model 6, RIDGE
              4 model6_train = x_train[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
                                        "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp"]]
              6 model6_test = x_test[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
                                        "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp"]]
              8
             9 # recalculates and saves RIDGE alpha for clarity
             10 best_ridgeCV = RidgeCV(alphas = np.arange(0.01,100,0.05)).fit(model6_train,y_train)
             11 best_alpha = best_ridgeCV.alpha_
             12
             13 # performs regression, predicts using test dataframe
             14 best_ridgereg = Ridge(alpha=best_alpha).fit(model6_train,y_train)
             15 best_predicted_y = best_ridgereg.predict(model6_test)
             16
             17 # calculates MSE and r2
             18 best_mse = mean_squared_error(y_test,best_predicted_y)
             19 best_r2 = r2_score(y_test,best_predicted_y)
```

BEST MODEL ANALYSIS

```
In [20]: ▶ 1 # looking at the best model's residuals & comparing when we also control for country
              2 print("MSE for Model 6 Ridge regression:",best mse)
              3
              4 # plotting the residuals for the best model
              5 plt.scatter(best predicted y, best predicted y - y test)
              6 plt.ylim(-41,41)
              7 plt.axhline(0,color='red',linewidth = 2)
              8 plt.title('Residuals Plot: Best Model')
              9 plt.xlabel("Predicted Values")
             10 plt.ylabel("Residuals")
             11 plt.show()
             12
             13
             14 # getting the MSE for the best model + controlling for country
             15 country_control = x_train[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
                                            "alcohol_consumption_per_capita", "government_health_expenditure_pct_gdp", 'country_AUT', 'country_CAN', '
             16
                                            'country_CHE', 'country_CZE', 'country_DEU', 'country_DNK', 'country_ESP', 'country_EST', 'country FIN', '
             17
             18
                                            'country_FRA', 'country_GBR', 'country_GRC', 'country_HUN', 'country_IRL', 'country_ISL', 'country_ISR',
                                            'country_KOR', 'country_LUX', 'country_LVA', 'country_NLD', 'country_NOR', 'country POL', 'country PRT',
             19
             20
                                            'country SVN', 'country SWE', 'country USA']]
             21
             22 ridgeCV = RidgeCV(alphas=np.arange(0.01,100,0.05)).fit(country control,y train)
                 print("Most appropriate Ridge alpha for model 6 (with country control):", ridgeCV.alpha)
             24
                 country_control_tst = x_test[["gini_index","mortality_rate_infant","intentional_homicides","suicide_mortality_rate", \
                                    "alcohol consumption per capita", "government health expenditure pct gdp", 'country AUT', 'country CAN', \
             26
                                            'country_CHE', 'country_CZE', 'country_DEU', 'country_DNK', 'country_ESP', 'country_EST', 'country_FIN', '
             27
                                            'country_FRA', 'country_GBR', 'country_GRC', 'country_HUN', 'country_IRL', 'country_ISL', 'country_ISR',
             28
                                            'country KOR', 'country LUX', 'country LVA', 'country NLD', 'country NOR', 'country POL', 'country PRT',
             29
                                            'country_SVN', 'country_SWE', 'country_USA']]
             30
             31
             32 ridgereg = Ridge(alpha=ridgeCV.alpha ).fit(country control,y train)
             33 predicted_y_cc = ridgereg.predict(country_control_tst)
             34 print("MSE for Model 6 + Country Variable Ridge regression:",mean_squared_error(y_test,predicted_y_cc))
             35
             36 plt.scatter(predicted_y_cc,predicted_y_cc-y_test)
             37 plt.axhline(0,color='red',linewidth = 2)
             38 plt.ylim(-41,41)
             39 plt.title('Residuals Plot: Best Model + Country Variable')
             40 plt.xlabel("Predicted Values")
             41 plt.ylabel("Residuals")
             42 plt.show()
```


Most appropriate Ridge alpha for model 6 (with country control): 0.11 MSE for Model 6 + Country Variable Ridge regression: 94.60608174263879


```
In [21]: • 1 # analyze how countries cluster over influential variables and the PISA score
                                      3 colors = ["b", "g", "r", "c", "m", "y", "k", "hotpink", "orangered", "gold", "teal", "violet", "maroon", "slategrey", "blueviolet", "peru", "yellov
                                                                        ,"navy","slateblue","rebeccapurple","lightblue","seagreen","rosybrown","dodgerblue","khaki","darkgreen","lightcoral","dar
                                      6 for i,country in enumerate(pisa df tot.country.unique()):
                                                   plt.scatter(pisa_df_tot.loc[pisa_df_tot["country"] == country].suicide_mortality_rate,pisa_df_tot.loc[pisa_df_tot["country"] == country].suicide_mortality_rate,pisa_df_tot["country"] == country_tot["country"] == 
                                                                                   label = country,color = colors[i])
                                      8
                                                   plt.legend(ncols=5,loc='upper center',bbox to anchor=(0.5, -0.11))
                                                   plt.xlabel("(standardized) suicide_mortality_rate")
                                    10
                                                   plt.ylabel("PISA Rating")
                                   12 plt.show()
                                   13
                                   14 print("\n")
                                   15 for i,country in enumerate(pisa_df_tot.country.unique()):
                                                   plt.scatter(pisa_df_tot.loc[pisa_df_tot["country"] == country].gini_index,pisa_df_tot.loc[pisa_df_tot["country"] == country].rati
                                                                                   label = country,color = colors[i])
                                    17
                                                   plt.legend(ncols=5,loc='upper center',bbox_to_anchor=(0.5, -0.11))
                                    18
                                                   plt.xlabel("(standardized) gini_index")
                                    19
                                                   plt.ylabel("PISA Rating")
                                   21 plt.show()
```


CLUSTERING ANALYSIS

```
In [22]:
            1 # define dataframe for clustering, with best model including the PISA score
              2 bestmodel_df = pisa_df_tot[["gini_index","mortality_rate_infant","intentional_homicides", \
                                          "suicide mortality rate", "alcohol consumption per capita", "government health expenditure pct gdp", "rating'
              3
              4
              5 # standardize PISA score
              6 scaler = StandardScaler()
              7 bestmodel_df[["rating"]] = scaler.fit_transform(bestmodel_df[["rating"]])
              8
              9 # display the dataframe
             10 display(bestmodel_df.head())
            <ipython-input-22-494ca2238d20>:7: SettingWithCopyWarning:
            A value is trying to be set on a copy of a slice from a DataFrame.
            Try using .loc[row indexer,col indexer] = value instead
            See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-
            copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
              bestmodel_df[["rating"]] = scaler.fit_transform(bestmodel_df[["rating"]])
```

 $gini_index \quad mortality_rate_infant \quad intentional_homicides \quad suicide_mortality_rate \quad alcohol_consumption_per_capita \quad government_health_expenditure_pct_g$

-0.186219

0.121143

0.6812

index_code						
AUS-2003	0.462126	0.831882	0.142289	-0.660127	0.121143	-0.3303
AUS-2006	0.559458	0.679648	-0.005489	-0.642575	0.121143	-0.2698
AUS-2009	0.559458	0.299063	-0.152009	-0.537262	0.121143	0.0593
AUS-2012	0.559458	-0.157639	-0.285880	-0.449501	0.121143	0.0187

-0.358186

AUS-2015 0.559458

-0.385990

```
In [23]: ▶ 1 # required definitions to perform K-Means Clustering
              3 def distance(pt1, pt2):
                     """Return the distance between two points, represented as arrays"""
              4
              5
                     return np.sqrt(sum((pt1 - pt2)**2))
              6
              7 def initialize centroids(df,K):
                     random_ids = np.random.permutation(df.shape[0])
              9
                     centroids = df.iloc[random_ids[:K]]
             10
                     return centroids
             11
             12 def compute distance(df, centroids):
                     K=centroids.shape[0]
             13
                     distances_ar = np.zeros((df.shape[0], K))
             14
                     for k in range(K):
             15
                         point=centroids.iloc[k]
             16
                         def distance_from_point(row):
             17
             18
                             return distance(point, np.array(row))
                         distances_ar[:,k] = df.apply(distance_from_point,axis=1).values
             19
             20
                     return distances ar
             21
             22 def compute_sse(df, labels, centroids,K):
             23
                     distances_ar = np.zeros(df.shape[0])
                     for k in range(K):
             24
                         point=centroids.iloc[k]
             25
                         def distance from point(row):
             26
                             return distance(point, np.array(row))
             27
             28
                         distances_ar[labels == k] = df[labels == k].apply(distance_from_point,axis=1).values
             29
                     return np.sum(distances_ar)
             30
             31 def compute_centroids(df, labels, K):
                     centroids = np.zeros((K, df.shape[1]))
             32
             33
                     for k in range(K):
                         centroids[k, :] = df[labels == k].mean()
             34
             35
                     return centroids
             36
             37 def Kmeans(df,K):
             38
                     max iter=20
             39
                     centroids=initialize_centroids(df,K)
             40
             41
                     for i in range(max_iter):
             42
                             old centroids = centroids
             43
                             dist matrix = compute distance(df, old centroids)
             44
                             clust=np.argmin(dist_matrix,axis = 1)
             45
                             centroids = pd.DataFrame(compute centroids(df,clust,K))
             46
```

```
47
48
       return centroids, clust
49
50 def Kmeans_sse(df,K):
       '''performs Kmeans returns centroids and prints sse of each new centroids'''
51
52
       #define the maximum number of iterations
53
       max_iter=20
54
       #initialize centroids
55
       centroids=initialize_centroids(df,K)
56
57
58
       for i in range(max_iter):
               old_centroids = centroids
59
               dist matrix = compute_distance(df, old_centroids)
60
               clust=np.argmin(dist_matrix, axis=1)
61
               centroids = pd.DataFrame(compute_centroids(df,clust,K))
62
63
       # return the centroids
64
65
       return compute_sse(df,clust,old_centroids,K)
```



```
In [26]: ▶ 1 # return centroids and clusters used chosen K=3
              2 centroids,clust = Kmeans(bestmodel_df,3)
              4 # show the clusters created by K-Means Clustering!
              5 pd.set_option('display.max_rows', None)
             7 country_names = bestmodel_df.index
             8 cluster_countries = pd.DataFrame({"country":country_names,"cluster_label":clust})
             9 cluster_countries
             10
             11 cluster0_countries = cluster_countries[cluster_countries["cluster_label"] == 0]
             12 display(cluster0_countries)
             13
             14 cluster1_countries = cluster_countries[cluster_countries["cluster_label"] == 1]
             15 display(cluster1_countries)
             16
             17 cluster2_countries = cluster_countries[cluster_countries["cluster_label"] == 2]
             18 display(cluster2_countries)
```

	country	cluster_label
4	AUS-2015	0
5	AUS-2018	0
52	GRC-2003	0
53	GRC-2006	0
54	GRC-2009	0
55	GRC-2012	0
56	GRC-2015	0
57	GRC-2018	0
65	ISL-2006	0
67	ISL-2012	0
68	ISL-2015	0
69	ISL-2018	0

```
In [27]: ▶
             1 # perform hierarchical clustering
              2 lbls = np.array(bestmodel_df.index)
              3
              4 cluster = linkage(bestmodel_df, method ='complete',metric = "euclidean")
              5 plt.figure(figsize=(18, 7))
              6 dendrogram(cluster,
                            orientation='top',
              7
                            labels=lbls,
              8
                            distance_sort='descending')
              9
             10 plt.axhline(6,c="black",linewidth = 2)
             11 plt.title("Euclidean Distance")
             12 plt.show()
             13 print()
             14
             15 # print out the clusters, using K=4
             16 labels = fcluster(cluster, t=6.0, criterion='distance')
             17 for k in np.arange(1,1+len(np.unique(labels))):
                  print("group",k)
             18
                  print(bestmodel_df[labels==k].index.values)
                  print('\n')
             20
```



```
group 1
['LVA-2003' 'LVA-2006' 'LVA-2009' 'USA-2003' 'USA-2006' 'USA-2009'
 'USA-2012' 'USA-2015' 'USA-2018']
group 2
['GRC-2003' 'GRC-2006' 'GRC-2009' 'GRC-2012' 'GRC-2015' 'GRC-2018'
 'ISR-2006' 'ISR-2009' 'ISR-2012' 'ISR-2015' 'ISR-2018' 'ITA-2003'
 'ITA-2006']
group 3
['AUS-2003' 'AUS-2006' 'AUS-2009' 'AUS-2012' 'AUS-2015' 'AUS-2018'
            'AUT-2006' 'AUT-2012' 'AUT-2015' 'AUT-2018'
 'AUT-2003'
                                                        'CAN-2003'
 'CAN-2006' 'CAN-2009' 'CAN-2012' 'CAN-2015' 'CAN-2018' 'CZE-2003'
 'CZE-2006' 'CZE-2009' 'CZE-2012' 'CZE-2015' 'CZE-2018'
                                                        'DNK-2003'
 'DNK-2006'
            'DNK-2009' 'DNK-2012' 'DNK-2015' 'DNK-2018'
                                                        'FIN-2003'
 'FIN-2006'
            'FIN-2009' 'FIN-2012' 'FIN-2015' 'FIN-2018'
                                                        'FRA-2003'
 'FRA-2006'
            'FRA-2009' 'FRA-2012' 'FRA-2015' 'FRA-2018'
                                                         'DEU-2003'
 'DEU-2006'
            'DEU-2009' 'DEU-2012' 'DEU-2015' 'DEU-2018'
                                                        'HUN-2012'
 'HUN-2015' 'HUN-2018' 'ISL-2003' 'ISL-2006' 'ISL-2009'
                                                        'ISL-2012'
 'ISL-2015' 'ISL-2018' 'IRL-2003' 'IRL-2006' 'IRL-2009'
                                                        'IRL-2012'
 'IRL-2015' 'IRL-2018' 'ITA-2009' 'ITA-2012' 'ITA-2015' 'ITA-2018'
 'LUX-2003' 'LUX-2006' 'LUX-2009' 'LUX-2012' 'LUX-2015' 'LUX-2018'
 'NLD-2003' 'NLD-2006' 'NLD-2009' 'NLD-2012' 'NLD-2015' 'NLD-2018'
 'NOR-2003' 'NOR-2006'
                       'NOR-2009' 'NOR-2012' 'NOR-2015' 'NOR-2018'
 'POL-2003' 'POL-2006'
                       'POL-2009' 'POL-2012' 'POL-2015' 'POL-2018'
 'PRT-2003' 'PRT-2006'
                       'PRT-2009' 'PRT-2012' 'PRT-2015' 'PRT-2018'
 'SVN-2006'
            'SVN-2009' 'SVN-2012' 'SVN-2015' 'SVN-2018' 'ESP-2003'
 'ESP-2006' 'ESP-2009' 'ESP-2012' 'ESP-2015' 'ESP-2018' 'SWE-2003'
 'SWE-2006' 'SWE-2009' 'SWE-2012' 'SWE-2015' 'SWE-2018' 'CHE-2003'
 'CHE-2006'
            'CHE-2009' 'CHE-2012' 'CHE-2015' 'CHE-2018' 'GBR-2006'
 'GBR-2009' 'GBR-2012' 'GBR-2015' 'GBR-2018']
group 4
['EST-2006'
            'EST-2009' 'EST-2012' 'EST-2015' 'EST-2018' 'HUN-2003'
 'HUN-2006'
            'HUN-2009' 'KOR-2003' 'KOR-2006' 'KOR-2009' 'KOR-2012'
            'KOR-2018' 'LVA-2012' 'LVA-2015' 'LVA-2018' 'SVK-2003'
 'KOR-2015'
 'SVK-2006' 'SVK-2009' 'SVK-2012' 'SVK-2015' 'SVK-2018']
```