

Xingyu Cai, Jiahong Yuan, Renjie Zheng, Liang Huang, Kenneth Church

Baidu Research, USA

- Speech emotion recognition (SER) detects the speakers' emotion from their speech signals.
- ❖ It is often treated as a classification task, with labels like *Happy*, *Angry*, *Sad* and *Neutral*.
- Bai<mark>d US</mark>A
- ➤ Multi-task learning (MTL) simultaneously optimize multiple objectives in different tasks, using a shared backbone model.
- ➤ MTL is widely adopted in ASR, TTS, language model training, etc. It is also related to transfer-learning and continuous learning.

Our contributions:

- 1. We build an end-to-end model that achieves the state-of-the- art SER results on the standard IEMOCAP dataset.
- 2. We leverage the pretrained wav2vec-2.0 for speech feature extraction, and fine-tune on SER data through two tasks: SER (emotion classification) and ASR (speech recognition).
- 3. Ablation study verifies the effectiveness of the MTL approach, and discusses how the ASR affects the SER.
- 4. The speech transcription could be obtained as a byproduct.

Model Architecture:

(We use Wav2vec2.0 as the feature extractor)

- 1. Training phase: Two tasks are represented using orange and blue paths.
 - Orange: CTC loss training for text recognition
 - Blue: Cross-entropy loss training for emotion classification
 - $L = L_{CE} + \alpha \times L_{CTC}$
- 2. Inference phase: Only blue path is kept

Method	Description	
Wu et al. [37]	capsule network	2019
Sajjad et al. [13]	ResNet-101 + bi-LSTM	2020
Lu et al. [35]	pretrained ASR + bi-LSTM + attention	2020
Liu et al. [38]	local + global representation learning	2020
Wang et al. [39]	Dual-Sequence LSTM	2020
Pappagari et al. [40]	ResNet based x-vector model	2020
Peng et al. [14]	3D convolution + ASRNN	2020

List of Recent Baselines

Table 3: Speech emotion recognition (SER) results.

Main Result: We achieve best classification accuracy on IEMOCAP compared to other recent baselines

method	cross-validation	acc
Wu et al. [37]	10-fold	72.73%
Sajjad et al. [13]	5-fold	72.25%
Lu et al. [35]	10-fold	72.6%
Liu et al. [38]	5-fold	70.78%
Wang et al. [39]	5-fold	73.3%
Pappagari et al. [40]	5-fold	70.30%
Peng et al. [14]	5-fold	62.6%
ours	10-fold	78.15%

30 August – 3 September 2021 INTERSPEECH 2021 BRNO | CZECHIA Speech everywhere!

Ablation Study:

The table shows: α plays an important role. $\alpha = 0$ means emotion classification task only. This leads to poor performance.

The two figure shows: when α is strong (e.g. $\alpha = 0.1$), the emotion classification accuracy converges slower than others in the beginning phases (the blue curve in the left plot). However, after the word-err-rate converges (at around epoch 12), the accuracy climbs quickly and outperforms others in the end.

This verifies the effectiveness of MTL.

	acc	wer
$\alpha = 0$	71.66%	0.9981
$\alpha = 0.001$	73.97%	0.2233
$\alpha = 0.01$	76.34%	0.2007
$\alpha = 0.1$	78.15%	0.1929
$\alpha = 1$	77.35%	0.1877

Thank You!

Our code is available at:

https://github.com/TideDancer/interspeech21_emotion