

May 27th 2015

# Numerical Optimization: Basic Concepts and Algorithms

R. Duvigneau



#### Outline

- ► Some basic concepts in optimization
- ► Some classical descent algorithms
- Some (less classical) semi-deterministic approaches
- ▶ Illustrations on various analytical problems
- Constrained optimality
- Some algorithm to account for constraints



Some basic concepts



# Problem description

Definition of a single-criterion parametric problem with real unknown

$$\begin{array}{lll} \text{Minimize} & f(x) & x \in \mathbb{R}^n & \textit{cost fonction} \\ \text{Submitted to} & g_i(x) = 0 & i = 1, \cdots, l & \textit{equality constraints} \\ & h_j(x) \geqslant 0 & j = 1, \cdots, m & \textit{inequality constraints} \end{array}$$

What does your cost function look like?





# Some commonly used algorithms

- Descent methods: adapted to convex cost functions steepest descent, conjugate gradient, quasi-Newton, Newton, etc.
- Evolutionary methods: adapted to multi-modal cost functions genetic algorithms, evolution strategies, particle swarm, ant colony, simulated annealing, etc.
- Pattern search methods: adapted to noisy cost functions
  Nelder-Mead simplex, Torczon's multidirectional search, etc.



# Optimality conditions

#### Definition of a minimum

 $x^*$  is a minimum of  $f: \mathbb{R}^n \mapsto \mathbb{R}$  if and only if there exists  $\rho > 0$  such as:

- f defined on  $\mathcal{B}(x^*, \rho)$
- $f(x^*) < f(y)$   $\forall y \in \mathcal{B}(x^*, \rho)$   $y \neq x^*$

 $\rightarrow$  not very useful to build algorithms ...

#### Characterization

A sufficient condition for  $x^*$  to be a minimum is (if f twice differentiable):

- ▶  $\nabla f(x^*) = 0$  (stationarity of gradient vector)
- ▶  $\nabla^2 f(x^*) > 0$  (Hessian matrix positive definite)



Some classical descent algorithms



#### Descent methods

# Model algorithm

For each iteration k (starting from  $x_k$ ):

- ▶ Evaluate gradient  $\nabla f(x_k)$
- ▶ Define a search direction  $d_k(\nabla f(x_k))$
- lacktriangle Line search : choice of step length  $ho_k$
- ▶ Update:  $x_{k+1} = x_k + \rho_k d_k$



#### Choice of the search direction

### Steepest-descent method:

- $ightharpoonup d_k = -\nabla f(x_k)$
- ▶ Descent condition ensured :  $\nabla f(x_k) \cdot d_k = -\nabla f(x_k) \cdot \nabla f(x_k) < 0$
- ▶ But this yields an oscillatory path:  $d_{k+1} \cdot d_k = (-\nabla f(x_{k+1})) \cdot d_k = 0$  (if exact line search)
- Linear convergence rate:  $\lim_{k\to\infty} \frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|} = a > 0$



Illustration of steepest-descent path



### Choice of the search direction

### quasi-Newton method

- ▶  $d_k = -H_k^{-1} \cdot \nabla f(x_k)$  où  $H_k$  approximate of the Hessian matrix  $\nabla^2 f(x_k)$
- H should fulfill the following conditions:
  - Symmetry
  - Positive definite:  $\nabla f(x_k) \cdot d_k = -\nabla f(x_k) \cdot H^{-1} \cdot \nabla f(x_k) < 0$
  - ▶ 1D approximation of the curvature:  $H_{k+1}(x_{k+1}-x_k) = \nabla f(x_{k+1}) - \nabla f(x_k)$
- ► Ex: BFGS method  $H_{k+1} = H_k \frac{1}{s_k^T H_k s_k} H_k s_k s_k^T H_k^T + \frac{1}{y_k^T s_k} y_k y_k^T$ où  $s_k = x_{k+1} - x_k$  et  $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$





Illustration of quasi-Newton method



# Choice of the step length

A classical criterion to ensure convergence : Armijo-Goldstein

• 
$$f(x_k + \rho_k d_k) < f(x_k) + \alpha \nabla f(x_k) \cdot \rho_k d_k$$
 (Armijo)

• 
$$f(x_k + \rho_k d_k) > f(x_k) + \beta \nabla f(x_k) \cdot \rho_k d_k$$
 (Goldstein)



Illustration of Armijo-Goldstein criterion



# Choice of the step length

An other criterion to ensure convergence (gradient required) : Armijo-Wolfe

• 
$$f(x_k + \rho_k d_k) < f(x_k) + \alpha \nabla f(x_k) \cdot \rho_k d_k$$
 (Armijo)



Illustration of Armijo-Wolfe criterion



# Choice of the step length

The step length is determined using an iterative 1D search:

- Start from an initial guess  $\rho_k^{(p)}$  (p=0)
- ▶ Update to  $\rho_k^{(p+1)}$ :
  - ► Bisection method
  - ► Polynomial interpolation
  - ▶ .
- until stopping criteria are fulfilled

A balance is necessary between the computational cost and the accuracy



Some (less classical) semi-deterministic approaches



# Evolutionary algorithms

# Principles

#### Inspired by Darwinian theory of evolution:

- A population is composed of individuals who have different characteristics
- Most fitted individuals can survive and reproduce
- ► An offspring population is generated from survivors

ightarrow Mechanisms to improve progressively the population performance !





# **Evolution strategies**

# Model algorithm $(\lambda, \mu)$ -ES

At each iteration k, a population is characterized by its mean  $\bar{x}_k$  and its variance  $\bar{\sigma}_k^2$ .

#### Generation of population k+1:

- Generation of  $\lambda$  perturbation amplitudes  $\sigma_i = \bar{\sigma}_k e^{\tau N(0,1)}$
- ▶ Generation of  $\lambda$  new individuals  $x_i = \bar{x}_k + \sigma_i \ N(0, Id)$  (mutation) with N(0, Id) multi-variate normal distribution
- lacktriangle Evaluation of the fitness of the  $\lambda$  individuals
- ▶ Choice of  $\mu$  survivors among the  $\lambda$  new individuals (selection)
- ▶ Update of the population characteristics (crossover et self-adaptation) :

$$\bar{x}_{k+1} = \frac{1}{\mu} \sum_{i=1}^{\mu} x_i \qquad \bar{\sigma}_{k+1} = \frac{1}{\mu} \sum_{i=1}^{\mu} \sigma_i$$



# **Evolution strategy**

#### Some results

- $\begin{array}{l} \textbf{ Proof of convergence towards the global} \\ \textbf{ optimum } \text{ in a statistical sense :} \\ \forall \epsilon > 0 \quad & \lim_{k \to \infty} P(|f(\bar{\mathbf{x}}_k) f(\mathbf{x}^\star)| \leqslant \epsilon) = 1 \end{array}$
- ► Linear convergence rate
- Capability to avoid local optima
- ▶ Limited to a rather small number of parameters  $(\mathcal{O}(10))$



Illustration of evolution strategy step



### **Evolution strategies**

### Method CMA-ES (Covariance Matrix Adaption)

#### Imprvement of ES algorithm by using an anisotropic distribution

• offspring population is generated using a covariance matrix  $C_k$ :

$$x_i = \bar{x}_k + \bar{\sigma}_k \ N(0, C_k) = \bar{x}_k + \bar{\sigma}_k \ B_k D_k N(0, Id)$$

avec  $B_k$  matrix of eigenvectors of  $C_k^{1/2}$  et  $D_k$  eigenvalues matrix

lterative construction of the covariance matrix:

$$C_0 = Id \qquad C_{k+1} = \underbrace{(1-c)C_k}_{\text{previous estimation}} + \underbrace{\frac{c}{m}p_kp_k^T}_{\text{1D update}} + \underbrace{c(1-\frac{1}{m})\sum_{i=1}^{\mu}\omega^i(y_i)(y_i)^T}_{\text{covariance of parents}} \text{ with } :$$

 $p_k$  evolution path (last moves) et  $y_i = (x_i - \bar{x}_k)/\sigma_k$ 





Some illustrations using analytical functions



### Rosenbrock function

- ▶ Non-convex unimodal function "Banana valley"
- ▶ Dimension n = 16





### Rosenbrock function









### Rosenbrock function







### Camelback function

- ▶ Dimension n = 2
- ► Six local minima
- ► Two global minima





### Camelback function





Optimization path



### Camelback function





Optimization path



Constrained optimality



#### Introduction

# Necessity of constraints

- Often required to define a well-posed problem from mathematical point of view (existence, unicity)
- Often required to define a problem that make sense from industrial point of view (manufacturing)

# Different types of constraints

- Equality / inequality constraints
- ► Linear / non-linear constraints



#### Linear contraints

### Optimality conditions

A sufficient condition for  $x^*$  to be a minimum of f subject to  $A \cdot x = b$ :

- $A \cdot x^* = b$  (admissibility)
- ▶  $\nabla f(x^*) = \lambda^* \cdot A$  with  $\lambda^*$  Lagrange multipliers (stationnarity)
- ▶  $A \cdot \nabla^2 f(x^*) \cdot A > 0$  (projected Hessian positive definite)



Illustration of optimality conditions for linear constraints



#### Linear constraints

### Projection algorithm for descent methods

At each iteration k, from an admissible point  $x_k$ :

- ▶ Evaluation of gradient  $\nabla f(x_k)$
- ▶ Choice of an admissible search direction  $Z \cdot d_k$  with Z a projection matrix (in the admissible space:  $A \cdot Z = 0$ )
- ▶ Line search: choice of step length  $\rho_k$
- ▶ Update :  $x_{k+1} = x_k + \rho_k Z \cdot d_k$



#### Non-linear constraints

### Optimality conditions

A sufficient condition for  $x^*$  to be a minimum of f subject to c(x) = 0:

- $ightharpoonup c(x^*) = 0$  (admissibility)
- ▶  $\nabla f(x^*) = \lambda^* \cdot A(x^*)$  with  $A(x) = \nabla c(x)$  (stationnarity)
- ▶  $A(x^*) \cdot \nabla^2 \mathcal{L}(x^*, \lambda^*) \cdot A(x^*) > 0$  with  $\mathcal{L}(x, \lambda) = f(x) \lambda \cdot c(x)$  (projected Lagrangian positive definite)



Illustration of optimality conditions for non-linear constraints



#### Non-linear constraints

### Quadratic penalization algorithm

Cost function with penalization:  $f_q(x, \kappa) = f(x) + \frac{\kappa}{2}c(x) \cdot c(x)$ 

It can be shown that:  $\lim_{\kappa \to \infty} x^{\star}(\kappa) = x^{\star}$ 

Algorithm with quadratic penalization:

- ▶ Initialisation of  $\kappa$
- ▶ Minimisation of  $f_q(x, \kappa)$
- Increase κ to reduce constraint violation



Illustration of quadratic penalization



#### Non-linear constraints

### Absolute penalization algorithm

Cost function with penalization:  $f_a(x,\kappa) = f(x) + \kappa \|c(x)\|$ 

It can be shown that:  $\exists \kappa^*$  such that  $x^*(\kappa) = x^* \quad \forall \kappa > \kappa^*$ 

Algorithm with absolute penalization :

- Initialisation of κ
- Minimisation of  $f_a(x, \kappa)$
- ▶ Increase  $\kappa$  until constraint satisfied



Illustration of absolute penalization



#### Non linear constraints

Optimality condition in terms of Lagrangian  $\mathcal{L}(x,\lambda) = f(x) - \lambda \cdot c(x)$ 

- ▶  $\nabla_{\lambda} \mathcal{L}(x^{\star}, \lambda^{\star}) = 0$  (admissibility)
- ▶  $\nabla_{x} \mathcal{L}(x^{\star}, \lambda^{\star}) = 0$  (stationnarity)
- ▶  $A(x) \cdot \nabla^2 \mathcal{L}(x^*, \lambda^*) \cdot A(x) > 0$  (positive-definite)

SQP algorithm (Sequential Quadratic Programing)

At each iteration k, Newton method applied to  $(x, \lambda)$ :

$$\begin{pmatrix} \nabla^2 f(x_k) - \lambda_k \cdot \nabla^2 c(x_k) & -A(x_k) \\ -A(x_k) & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta x \\ \delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) + \lambda_k \cdot A(x_k) \\ c(x_k) \end{pmatrix}$$



#### Some references

#### Classical methods

- G. N. Venderplaats. Numerical optimization techniques for engineering design. McGraw-Hill, 1984.
- R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.
- P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.

### Evolutionary methods

- Z. Michalewics. Genetic algorithms + data structures = evolutionary programs. Al series. Springer-Verlag, New York, 1992.
- D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
  Addison Wesley Company Inc., 1989.

