A Visual Analysis Approach to Cohort Study of Electronic Patient Records

Chun-Fu Wang¹, **Jianping Li**¹, Kwan-Liu Ma¹, Chih-Wei Huang², Yu-Chuan Li²

- 1 University of California at Davis
- 2 Taipei Medical University

Electronic Medical Record (EMR)

- Rich information, great value
- 500 petabytes in 2012, 25000 petabytes expected in 2020
- Large and complex challenges and opportunities

Challenges to Analyze EMRs

Date	Patient	Diseases	Medications
2008-02-01	10392	(5710, 4660)	(14040C)
2008-02-03	10296	(07032, V420, 2759)	(A043302100)
2008-02-17	10392	(5235, 5210)	(89004C, 89008C)
2008-03-02	10392	(2819, 2753, 2759)	(B022139100)
2008-03-09	11747	(36610, 37200)	(B016053421)
2008-03-15	10872	(5233)	(A015387100, 92013C)

. . .

Complexities in EMR

- multidimensional
- high variance

14,567 patients histories in 24 years

Opportunities for EMR Visual Analysis

Iterative Visual Mining

EMRs
Data
Processing
Analysis
Bet
Dec

Evidences

Insights

Better Decisions

Our Approach

- An iterative workflow for analyzing large and complex EMR data.
- An interactive visualization system to support exploration of EMRs

Related Work

- LifeFlow novel visualization tool to simplify and aggregate temporal event sequences into a tree-based summary
- V-model compressed causal relationship along the linear time-scale to an ordinal representation
- LifeLines2 visual summary of prevalence and comparison of multiple groups

Workflow

- Choose factors based user knowledge
- Filter patient records using the factors
- Define time stages by partition and align
- Aggregate patients into groups(cohorts)

Factors and Filtering

Partitioning and Aligning

Aggregating to Cohorts

Visual Representation

But with Big Data ...

Cohorts Clustering

- Frequency-based clustering:
 - aggregate small cohorts into a cluster if the number of natient in the cohort is below the threshold

cluster
$$(\mathbf{C}_l) = \begin{cases} \mathbf{c}_{l,h} & \text{if } |\mathbf{c}_{l,h}| \ge x \\ \text{others} & \text{if } |\mathbf{c}_{l,h}| < x \end{cases}$$

- Hierarchical clustering
 - cluster the cohorts based on the common factors

similarity =
$$\frac{|\mathbf{s}_1 \cap \mathbf{s}_2|}{\sqrt{|\mathbf{s}_1| |\mathbf{s}_2|}}$$

Frequency-based Clustering (threshold=300)

Minimum potent size #

Manual grouping

Apply

Case Study - Chronic Kidney Disease(CKD)

14,567 CKD patients extracted from Taiwan NHIDB with over 1 million patients

- Dataset:
 - 6 million records
 - from 1998 to 2011
- Codes:
 - ICD 9-CM
 - NHIDB procedure/drug

TABLE I. FACTOR ASSOCIATION RULES

Disease (abbrev.)	ICD 9-CM/drug/procedure codes	
Glomerulonephritis (GN)	582%, A350	
Diabetes mellitus (DM)	250%, A181	
Hypertension (HTN)	401%, A269	
Hyperlipidemia	272%, A189	
Polycystic kidney disease (PKD)	75312	
Renal stone	5920, A352	
Systemic lupus erythematosus (SLE)	7100, A431	
Cerebrovascular disease (CVA)	430%-438%, A290-A294, A299	
Coronary Artery Disease (CAD)	410%-414%	
Congestive Heart Failure (CHF)	398.91, 402%, 404%, 425.4%-425.9%	
	428%, A260	
Chronic Kidney Disease (CKD)	585, 586, A350	
Hemodialysis (HD)	58001C, 58019C, 58020C-58025C,	
	58027C, 58029C, 58030B	
Peritoneal (PD)	58002C, 58009B, 58010B, 58011C,	
	58012B, 58017C, 58028C	
Renal transplantation (RTPL)	V420	
Proteinuria	7910, A469	

Case Study Objectives

- Investigate CKD related diseases co-occurrence (comorbidity)
- Explore the causal relationship between hemodialysis (HD) and other factors in early stage of CKD and identify the common driving factors of HD
- Explore global structures of cohorts and their changes over time stages

Frequency-based clustering (threshold=250)

Frequency-based clustering (threshold=150)

Conclusion

EMRs

- Large and complex
- Rich and valuable information
- A new EMR visualization tool
 - An iterative process for EMR visual mining
 - An interactive system for visual analysis of EMR

Future Work

- Usability evaluation and improvement
- Comparative visualization
- High performance and scalable visual analytics system for large scale EMR data

Acknowledgement

This research is sponsored in part by the U.S. National Science Foundation and UC Davis RISE program.

Thank You