Esercizi per il Corso di ALGEBRA LINEARE

Basi ortonormali

- 1.¹ Si consideri il sottospazio $U = \langle v_1, v_2 \rangle$ generato da $v_1 = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$. Si trovi una base ortonormale \mathcal{A} di U.
- 2.¹ Si consideri il sottospazio $U = \langle v_1, v_2 \rangle$ generato da $v_1 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$ e $v_2 = \begin{pmatrix} -3 \\ 14 \\ -7 \end{pmatrix}$. Si trovi una base ortonormale \mathcal{B} di U.
- 3. Si trovi una base ortonormale del sottospazio C(A) dove

$$A = \begin{pmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{pmatrix}.$$

 $4.^{1}$ Si trovi una base ortonormale del sottospazio C(A) dove

$$A = \begin{pmatrix} -1 & 6 & -4 \\ 3 & -8 & -2 \\ 1 & -2 & 0 \\ 1 & -4 & -2 \end{pmatrix}.$$

- 5. Si calcolino i coefficienti di $u = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ rispetto alla base ortonormale $\mathcal A$ dell'Esercizio 1.
- 6. Si calcolino i coefficienti di $u=\begin{pmatrix} 0\\10\\-2\end{pmatrix}$ rispetto alla base ortonormale $\mathcal B$ dell'Esercizio 2.

¹Esercizio estratto/adattato dal libro D. Lay, S. Lay and J. McDonald, *Linear Algebra and its applications*, Pearson (2016)