RICOH

R1126N SERIES

LOW NOISE 150mA LDO REGULATOR

NO. EA-130-0512

OUTLINE

The R1126N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low on Resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a short current limit circuit, a chip enable circuit, and so on.

These ICs perform with low dropout voltage and the chip-enable function. The supply current at no load of this IC is only 10μ A, and the line transient response and the load transient response of the R1126N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The supply current at no load of R1126x Series is remarkably reduced compared with R1114x Series. The mode change signal to reduce the supply current is not necessary. The output voltage accuracy is also improved. $(\pm 1.5\%)$

The output voltage of these ICs is fixed with high accuracy. Since the package for these ICs is SOT-23-5 therefore high density mounting of the ICs on boards is possible.

R1116N Series that a pin configuration differs from R1126N Series are available.

FEATURES

Low Supply Current	Typ. 10μA
Standby Current	Typ. 0.1μA
Input Voltage Range	1.8V to 6.0V
Output Voltage Range	1.5V to 4.0V
Low Dropout Voltage	Тур. 0.29V (Іоит=150mA, Vоит=2.8V)
High Ripple Rejection	Тур. 70dB (f=1kHz, Vоит=3.0V)
	Typ. 53dB (f=10kHz)
High Output Voltage Accuracy	$\pm 1.5\%$ (1.5V \leq Vout \leq 3.0V), $\pm 2.0\%$ (Vout>3.0V)
• Low Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Excellent Line Regulation	Typ. 0.02%/V
Small Packages	SOT-23-5
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
 Ceramic capacitors are recommended to be used with this IC 	C _{IN} =C _{OUT} =1.0μF (Ceramic)

APPLICATIONS

- Power source for portable communication equipment.
- Power source for portable music player.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;

$$\begin{array}{ccc} R1126N\underline{x}\underline{x}1x\underline{-}\underline{x}\underline{x} & \leftarrow \text{Part Number} \\ \uparrow \uparrow & \uparrow \uparrow \uparrow \\ \text{a b c d} \end{array}$$

Code	Contents
а	Designation of Package Type: N: SOT-23-5
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible. Exceptions:2.85V=R1126N281x5, 1.85V=R1126N181x5
С	Designation of Active Type: B: active high type D: active high, with auto discharge
d	Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.)

PIN CONFIGURATION

PIN DESCRIPTION

• R1126N

Pin No.	Symbol	Description
1	CE	Chip Enable Pin
2	GND	Ground Pin
3	NC	No Connection
4	Vouт	Output pin
5	V _{DD}	Input Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
VCE	Input Voltage (CE Pin)	6.5	V
Vout	Output Voltage	-0.3~V _{IN} +0.3	V
Іоит	Output Current	160	mA
PD	Power Dissipation (SOT-23-5) *	420	mW
Topt	Operating Temperature Range	-40~85	°C
Tstg	Storage Temperature Range	-55~125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ELECTRICAL CHARACTERISTICS

• R1126Nxx1B/D

Topt=25°C

Symbol	Item	Conditio	ns	Min.	Тур.	Max.	Unit
Vоит	Output Voltage	VIN = Set Vour+1V	$V_{\text{OUT}} \le 3.0 V$	×0.985		×1.015	V
V 001	Output Voltage	$1mA \le I_{OUT} \le 30mA$	V _{OUT} > 3.0V	×0.980		×1.020	V
louт	Output Current	VIN-VOUT=1.0V		150			mA
Δ V ουτ/ Δ I ουτ	Load Regulation	$\begin{array}{l} V_{\text{IN}}\!\!=\!\!Set\ V_{\text{OUT}}\!+\!1V \\ 1mA & \leq I_{\text{OUT}} \leq 150mA \\ 1.5V & \leq V_{\text{OUT}} < 2.0V \\ 2.0V & \leq V_{\text{OUT}} < 3.0V \\ 3.0V & \leq V_{\text{OUT}} \end{array}$			28 33 35	55 66 80	mV
V _{DIF}	Dropout Voltage	Refer to th	e ELECTRICAL by OUTPUT			TICS	
Iss	Supply Current	VIN=Set VOUT+1V, IOUT	=0mA		10	18	μΑ
Istandby	Supply Current (Standby)	VIN=Set VOUT+1V, VCE	=V _{DD}		0.1	1.0	μΑ
ΔV _{OUT} / ΔV _{IN}	Line Regulation	Iout=30mA Set Vout+0.5V ≤ Vin :	≦ 6.0V		0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz f=10kHz Ripple 0.2Vp-p VIN-VOUT=1.0V,IOUT=3	0mA		70 53		dB
Vin	Input Voltage			1.8		6.0	V
ΔV _{OUT} / ΔTopt	Output Voltage Temperature Coefficient	lоuт=30mA -40°C ≤ Topt ≤ 85°C	<u> </u>		±100		ppm /°C
llim	Short Current Limit	Vout=0V			40		mA
I PD	CE Pull-down Current				0.5		μА
VCEH	CE Input Voltage "H"			1.0		6.0	V
Vcel	CE Input Voltage "L"			0.0		0.3	V
en	Output Noise	BW=10Hz to 100kHz			30		μVrms
RLOW	On Resistance of Nch Tr. for auto-discharge (Only for D version)	Vce=0V			70		Ω

• ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$

Output Voltage	Dropout Voltage VDF (V)		
V оит (V)	Condition	Тур.	Max.
Vоит = 1.5V		0.54	0.86
1.5V < Vout ≦ 1.6V	Iоит=150mA	0.50	0.75
1.6V < Vout ≦ 1.7V		0.46	0.70
1.7V < Vout ≦ 2.0V		0.44	0.65
2.0V < Vout ≦ 2.7V		0.37	0.56
$2.7V < V_{\text{OUT}} \le 4.0V$		0.29	0.46

TYPICAL APPLICATIONS

(External Components)

 C_2 Ceramic 1.0 μ F Ex. Murata GRM155B30J105KE18B Kyocera CM05X5R105K06AB

C₁ Ceramic 1.0µF

TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.3 Ripple Rejection, Line Transient Response Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

R1126N

3) Supply Current vs. Input Voltage (Topt=25°C)

4) Output Voltage vs. Temperature

5) Supply Current vs. Temperature R1126N151x

R1126N

6) Dropout Voltage vs. Temperature

7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)

8) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, C_{IN} = none, C_{OUT} = 1 μF)

9) Ripple Rejection vs. Frequency (C_{IN}=none)

10) Input Transient Response (Iou τ =30mA, CIN= none, tr=tf=5 μ s, Cou τ = Ceramic 1 μ F)

11) Load Transient Response (tr=tf=0.5 μ s, C_{IN}=Ceramic 1 μ F)

R1126N

12) Turn-on/off speed with CE pin (D version) (C_{IN}=Ceramic 1.0μF, C_{OUT}=Ceramic 1.0μF) R1126N151D R1126N151D

R1126N

TECHNICAL NOTES

(External Components)

 C_2 Ceramic 1.0 μ F Ex. Murata GRM155B30J105KE18B

Kyocera CM05X5R105K06AB

C₁ Ceramic 1.0μF

When using these ICs, consider the following points:

1.Mounting on PCB

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $1.0\mu F$ or more as C1 between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

2. Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C₂ with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between Iout (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.

Measurement conditions

 $V_{IN}=V_{OUT}+1V$

Cout: GRM155B30J105KE18B Frequency Band: 10Hz to 2MHz Temperature: -40°C to 25°C

• SOT-23-5 (SC-74A)

Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%	
Through-hole	φ0.5mm × 44pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125–25°C)/0.42W=263°C/W	400°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

R1126N SERIES MARK SPECIFICATION

• SOT-23-5 (SC-74A)

①, ②, ③ : Product Code (refer to Part Number vs. Product Code)

④, ⑤ : Lot Number (④, ⑤ : alphabetic character)

• Part Number vs. Product Code

Part Number	Product Code			
Part Number	1	2	3	
R1126N151B	2	1	5	
R1126N161B	2	1	6	
R1126N171B	2	1	7	
R1126N181B	2	1	8	
R1126N191B	2	1	9	
R1126N201B	2	2	0	
R1126N211B	2	2	1	
R1126N221B	2	2	2	
R1126N231B	2	2	3	
R1126N241B	2	2	4	
R1126N251B	2	2	5	
R1126N261B	2	2	6	
R1126N271B	2	2	7	
R1126N281B	2	2	8	
R1126N291B	2	2	9	
R1126N301B	2	3	0	
R1126N311B	2	3	1	
R1126N321B	2	3	2	
R1126N331B	2	3	3	
R1126N341B	2	3	4	
R1126N351B	2	3	5	
R1126N361B	2	3	6	
R1126N371B	2	3	7	
R1126N381B	2	3	8	
R1126N391B	2	3	9	
R1126N401B	2	4	0	
R1126N181B5	2	4	1	
R1126N281B5	2	4	2	

Part Number	Proc	luct (
Part Number	Product Co		Code
	1	2	3
R1126N151D	3	1	5
R1126N161D	3	1	6
R1126N171D	3	1	7
R1126N181D	3	1	8
R1126N191D	3	1	9
R1126N201D	3	2	0
R1126N211D	3	2	1
R1126N221D	3	2	2
R1126N231D	3	2	3
R1126N241D	3	2	4
R1126N251D	3	2	5
R1126N261D	3	2	6
R1126N271D	3	2	7
R1126N281D	3	2	8
R1126N291D	3	2	9
R1126N301D	3	3	0
R1126N311D	3	3	1
R1126N321D	3	3	2
R1126N331D	3	3	3
R1126N341D	3	3	4
R1126N351D	3	3	5
R1126N361D	3	3	6
R1126N371D	3	3	7
R1126N381D	3	3	8
R1126N391D	3	3	9
R1126N401D	3	4	0
R1126N181D5	3	4	1
R1126N281D5	3	4	2