Principles of Computer Architecture

CSE 240A Fall 2024

Hadi Esmaeilzadeh
hadi@ucsd.edu
University of California, San Diego

Hadi Esmaeilzadeh

From Khoy, Iran

Research: ACT Lab

Alternative Computing Technologies

- System design for robotics
- System design for health

- Analog computing
- General-purpose approximate computing
- Bridging neuromorphic and von Neumann models of computing

Agenda

1. Who is Hadi

2. Course organization

3. Why CS 240A Principles of Computer Architecture

Objective

- Learn more about the fundamental design tradeoffs in computer architecture and some of the recent research issues/trends.
- To provide the necessary background and experience to do design and research in computer system design.
- Strong emphasis on
 - Quantitative Evaluations and Trade-offs
 - Hands on programming assignments

Course Information

- Course Resources
 - Gradescope: All assignment submissions
 - Piazza: Course Resources and Q/A
 - TA: Hanyang Xu, hanyang@ucsd.edu
 - Office Hour: 930am-1030am CSE 3rd floor lobby

Format

- Lectures are the main source for exams and homework
- There is no perfect textbook for this course!
 - Recommended reading:
 Sixth Edition of Computer Architecture: A Quantitative Approach by John Hennessy and David Patterson AND Microprocessor architecture by Jean-Loup Baer, Cambridge
- Read the related papers, and do the programming assignments

Grading rubric

Project Assignments

- This course requires heavy programming
- Don't take too many program/project heavy courses together!
- It is 4-credit course but you feel a 5-6 credit course
- The most CSlike course in ECE, the most ECElike course in CS
- Each individual should be expert in all aspects of the work
- Please DO NOT CHEAT! It is just not cool!
 - Follow the UCSD Academic Honor Code
 - Ask me if you are not sure

Agenda

- 1. Who is Hadi
- 2. Course organization

3. Why CSE 240A

- 1. How we became and industry of new capabilities
- 2. Why we might become an industry of replacement

What has made computing pervasive? What is the backbone of computing industry?

Programmability

```
public class TcpClientSample
   public static void Main()
       byte[] data = new byte[1024]; string input, stringData;
        TcpClient server;
            server = new TcpClient(" . . . . ", port);
            Console.WriteLine("Unable to connect to server")
        try
        }catch (SocketException) (
         NetworkStream ns = server.GetStream();
         int recv = ns.Read(data, 0, data.Length);
            ASCII.GetString(data, 0, recv);
         stringData = Encoding.
          Console.WriteLine(stringData);
               input = Console.ReadLine();
                if (input == "exit") break;
                            newchild.Properties["ou"].Add
           while(true) {
                             "Auditing Department";

("Auditing Department");

("Auditing CommitChanges();
```

Networking

What makes computers programmable?

von Neumann architecture

General-purpose processors

- Components
 - Memory (RAM)
 - Central processing unit (CPU)
 - Control unit
 - Arithmetic logic unit (ALU)
 - Input/output system
- Memory stores program and data
- Program instructions execute sequentially

Programmability versus Efficiency

Programmability versus Efficiency

What is the difference between the computing industry and the toothpaste industry?

Industry of Replacement

Industry of New Capabilities

Can we continue being an industry of new possibilities?

Personalized healthcare

Virtual reality

Real-time translators

Agenda

- 1. Who is Hadi
- 2. Course organization
- 3. Why CSE 240C Advanced Microarchitecture

1. How we became and industry of new capabilities

- 2. Why we might become an industry of replacement
- 3. Specialization and accelerators

Transistors/switches Building blocks of computing

Moore's Law

Or, how we became an industry of new capabilities

Every 2 Years

Double the number of transistors

Build higher performance general-purpose processors

- Make the transistors available to masses
- Increase performance (1.8×↑)
- Lower the cost of computing $(1.8 \times \downarrow)$

What is the catch?

Powering the transistors without melting the chip

Dennard scaling:

Doubling the transistors; scale their power down

Transistor: 2D Voltage-Controlled Switch

Dennard Scaling Broke:

Double the transistors; still scale their power down

Transistor: 2D Voltage-Controlled

Why Diminishing Returns?

- Transistor area is still scaling
- Voltage and capacitance scaling have slowed
- Result: designs are power, not area, limited

Dark Silicon

If you cannot power them, why bother making them?

27

Looking Back

Evolution of processors

Are multicores a long-term solution or just a stopgap?

Agenda

- 1. Who is Hadi
- 2. Course organization
- 3. Why CSE 240C Advanced Microarchitecture
 - 1. How we became and industry of new capabilities
 - 2. Why we might become an industry of replacement
 - 3. Specialization and accelerators

Modeling future multicores

Quantify the severity of the problem

Predict the performance of best-case multicores

- From 45 nm to 8 nm
- Parallel benchmarks
- Fixed power and area budget

Transistor
Scaling Model

Single-Core Scaling Model Multicore Scaling Model

Transistor scaling model

From 45 nm to 8 nm

	[Dennard, 1974]	[ITRS, 2010]	[VLSI-DAT, 2010]
	Historical Scaling	Optimistic Scaling Model	Conservative Scaling Model
Area	32×↓	32×↓	32× ↓
Power	32×↓	8.3×↓	4. 5×↓
Speed	5•7×↑	3.9×↑	1.3×↑

Single-core model (45 nm)

Power-Performance and Area-Performance Pareto Optimal Frontiers

Single-core scaling model From 45 nm to 8 nm

Single-core Scaling Model: Single-core Model × Transistor Scaling Model

Multicore scaling model From 45 nm to 8 nm

Single Core Search Space

(Scaled Area and Power Pareto Frontiers)

Constraints

(Area and Power Budget)

Application Characteristics

(% Parallel, % Memory Accesses)

Multicore Organization: CPU-Like, GPU-Like

(# of HW Threads, Cache Sizes)

Multicore Topology

(Symmetric, Asymmetric, Dynamic, Composable)

Microarchitectural Features

(Cache and Memory Latencies, CPI, Memory Bandwidth)

Exhaustive search of multicore design space (Examine 800 design points for every technology node)

Multicore model (Amdahl's Law)

$$Speedup = \frac{1}{\frac{1 - f_{Parallel}}{Serial Speedup} + \frac{f_{Parallel}}{Parallel Speedup}}$$

Serial Speedup = $1 \times \text{Core Performance}$

Parallel Speedup = $N \times Core Performance$

Dark silicon

$$N_{Core} = min(\frac{Area\ Budget}{Area_{Core}}, \frac{Power\ Budget}{Power_{Core}})$$

$$Dark \ Silicon = 1 - \frac{N_{Core} \times Area_{Core}}{AreaBudget}$$

Evaluation Setup

- Applications:
 - 12 PARSEC Parallel Benchmarks
- Baseline:
 - The best multicore design available at 45 nm
- Constraints:
 - Driven from the best multicore design at 45 nm
 - Fixed Power Budget: 125 W
 - Fixed Area Budget: 111 mm²

The New York Times

The Shift Towards Domains-Specific Accelerators

Esmaeilzadeh et al. "Dark Silicon and the End of Multi-Core Scaling," ISCA 2011

CACM Research Highlight
IEEE Micro Top Picks

Progress Hits Snag: Tiny Chips Use Outsize Power

By John Markoff

July 31, 2011

For decades, the power of computers has grown at a staggering rate as designers have managed to squeeze ever more and ever tinier transistors onto a silicon chip — doubling the number every two years, on average, and leading the way to increasingly powerful and inexpensive personal computers, laptops and smartphones.

Industry of replacement?

- Multicores are likely to be a stopgap
 - Not likely to continue the historical trends
 - Do not overcome the transistor scaling trends
 - The performance gap is significantly large
- Radical departures from conventional approaches are necessary
 - Extract more performance and efficiency from silicon while preserving programmability
 - Explore other sources of computing

Agenda

- 1. Who is Hadi
- 2. Course organization
- 3. Why CSE 240C Advanced Microarchitecture
 - 1. How we became and industry of new capabilities
 - 2. Why we might become an industry of replacement
 - 3. Specialization and accelerators

Possible paths forward

Specialization and Do Nothing Co-design **Biological Computing** Technology Breakthrough **Quantum Computing Approximate Computing Software Bloat Reduction** Easy for me! My research! Way long term!

Approximate computing Embracing error

• Relax the abstraction of near-perfect accuracy in general-purpose computing

- Allow errors to happen in the computation
 - Run faster
 - Run more efficiently

WEB IMAGES VIDEOS MAPS NEWS MORE

New landscape of computing

Personalized and targeted computing

Classes of approximate applications

- Programs with analog inputs
 - Sensors, scene reconstruction
- Programs with analog outputs
 - Multimedia
- Programs with multiple possible answers
 - Web search, machine learning
- Convergent programs
 - Gradient descent, big data analytics

Adding a third dimension Embracing Error

A fertile ground for innovation

Approximate computing techniques

Same Model

- Sampling
 - Loop perforation (MIT)
- Compression
 - Sage (Michigan)
- Early termination
 - Green (MSR)
- Replacement
 - Green (MSR)
- Lower voltage
 - Truffle (Rice, UW)

From Model to Model

- von Neumann to Neural
 - NPUs (UW, GaTech, UCSD)

Parrot Algorithmic Transformation

Neural Networks for Code Approximation

Powerful prediction tools

Highly parallel

Efficiently implementable with both digital and analog hardware

Fault tolerant

NPU Acceleration

Neural Processing Units (NPUs)

Esmaeilzadeh et al. "Neural Acceleration for General-Purpose Approximate Programs," Micro 2012

CACM Research Highlights

IEEE Micro Top Picks

NPU design alternatives

Approximate Computing versus Conventional Computing

Possible paths forward

Specialization and Do Nothing Co-design **Biological Computing** Technology Breakthrough **Quantum Computing Approximate Computing Software Bloat Reduction** Easy for me! My research! Way long term!

Programmability versus Efficiency

Microsoft Cloud Services

Capabilities, Costs

Increase Efficiency with Hardware Specialization

One Application's Accelerator

One Application's Accelerator

Integrating FPGAs into the Datacenter

Centralized Distributed

Microsoft Open Compute Server

Two 8-core Xeon 2.1 GHz CPUs
64 GB DRAM
4 HDDs @ 2 TB, 2 SSDs @ 512 GB
10 Gb Ethernet
No cable attachments to server

Air flow

200 LFM

68 °C Inlet

Catapult FPGA Accelerator Card

- Altera Stratix V GS D5
 - 172k ALMs, 2,014 M20Ks, 1,590 DSPs
- 8GB DDR3-1333
- 32 MB Configuration Flash

- PCle Gen 3 x8
- 8 lanes to Mini-SAS
 SFF-8088 connectors
- Powered by PCIe slot

Board Details

16 Layer, FR4089.5cm x 8.8cm x 115.8 mil35mm x 35mm FPGA14.2mm high heatsink

Scalable Reconfigurable Fabric

48 Servers per ½ Rack

6x8 Torus Network among FPGAs

20 Gb over SAS SFF-8088 cald

Catapult propels datacenter services into the future @Bing @MSFTResearch @dcburger #FPGA bit.ly/1lzp10f

RETWEETS 56

FAVORITES 30

3:00 PM - 16 Jun 2014

Flag media

Intel's \$16.7 Billion Altera Deal Is Fueled by Data Centers

by Ian King

June 1, 2015 - 8:34 AM EDT Updated on June 1, 2015 - 4:13 PM EDT

■ Intel Acquiring Altera in \$16.7B Chipmaker Combination

Intel Corp. agreed to buy Altera Corp. for \$16.7 billion to defend its presence in data centers, forging a deal that will add to a record year for industry consolidation.

Google is making a fast specialized TPU chip for edge devices and a suite of services to support it

Comment Matthew Lynley @mattlynley / 2 months ago BaseBoard

Apple says its new A13 Bionic chip brings hours of extra battery life to new iPhones

Plus a 20 percent performance boost across the board

By Sean Hollister | @StarFire2258 | Sep 10, 2019, 2:02pm EDT

The Fifth Day of Creation ...

