SPD File Format Reference Guide

Product Version 16.6 January 2014

Document Updated on: May 7, 2014

© 2014 Cadence Design Systems, Inc. All rights reserved.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Table of Contents

1	Introduction	.1
	What is .spd File Format?	1
	Additional Documentation	
	Conventions Used in this Guide	
	How to Contact Technical Support	
	To we consider recommend support	
2	General Format of .spd Files	.3
	.spd File Sections	3
	Default Units	4
	Scale Factors	5
	Naming Conventions	5
	Line Types	5
	Title Lines	5
	Comment Lines	6
	End Lines	6
	Trace Reference Check	6
3	Global Parameter Lines	.7
4	Computation Parameter Description Lines	.9
	.Transient Description Lines	
	.Mesh Description Lines	
	.TEMP Description Lines	
	.MaterialFileName Description Lines	
	Outline Description Lines	
5	Package Shape and Layout Description Lines1	15
	The Package Commands	
	Definition of Color	
	Package Shape Description Lines	
	The Shape Command	
	Box Parameter	
	Polygon Parameter	
	Circle Parameter	
	UnionizedShape Lines	
	Cutting Polygon Examples	
	Cutting Boundary Description Lines	
	Package Layout Description Lines	
	Plane Layer Description Lines	
	Signal Layer Description Lines	
	Medium Description Lines	
	Patch Description Lines	
	Trace Surface Roughness Description Lines	
	Padstack Description Lines	
	The Padstack Commands	
	THE LAUSTREE COMMISSION	55

	The PadDef Commands	34
	Material Description Lines	36
	Specify Material Model	
	Node Description Lines	
	Via Description Lines	
	Wirebond Description Lines	
	Wirebond Example 1	
	Wirebond Example 2	
	Wirebond Models	
	WirebondGroup Description Lines	
	Trace Description Lines	
	ClippedTrace Lines	
	Segmented Trace Lines	
	CPL Description Lines	
	GCPL Description Block	
	GCPL Illustration	
	Lead Description Lines	
	LeadGroup Description Lines	
	······································	
6	Circuit Component Description Lines	55
	Partial Circuit Network	
	Circuit Component Description Lines	
	Arbitrary Mathematical Expression Processing	
	Mathematical Expressions	
	Voltage Variables	
	Current Variable	
	Parameters in Mathematical Expressions	
	Values of G and E Components	
	Values of R, L, and C Components	
	Parameter Names	
	Global Parameters (.Param)	
	Local Parameters	
	Partial Circuit Command.	
	Nested Sub circuit Definition	
	.Connect - Circuit Package Connection Lines	
	.CompCollection - Component Collection Description Lines	
	Pattern Component Pattern Descriptions	
	. Model Description Lines	
	Model Parameter Descriptions	
	Capacitor Parameter Descriptions	
	Diode Parameter Descriptions	
	MOSFET Level 1 Parameter Descriptions	
	Resistor Parameter Descriptions	
	Small Signal Parameter Data Frequency Table Model (SP Model)	
	Coupled Transmission Lines Parameters for ModelType W	
	Tabular W Model	
	S Parameter Descriptions	
	Bulk to Source / Drain Diodes - DC Part Parameters	
	Bulk to Source / Drain Diodes - Capacitance Part Parameters	
	Drain and Source Resistance Parameters	

Gate Capacitances Parameters	
Effective Length and Width Parameters	
Threshold Voltage Parameters	83
Impact Ionization Parameters	84
Temperature Effects Parameters	84
MOSFET BSIM 3 v3 Level 49 / 53	85
BSIM3 v3 Specific Element Parameter Descriptions	86
BSIM3 v3 Model Selector Parameter Descriptions	86
BSIM3 v3 ACM-0, 1, 2, 3 Parameter Descriptions	86
BSIM3v3 STI / LOD Model Parameter Descriptions	
MOSFET BSIM4 Level 54	
BSIM4 Specific Element Parameter Descriptions	
Additional BSIM4 Model Parameters in SPDSIM	
Subcircuit Command	
Nested Subcircuit Definition	
GC - Capacitor Description Line	
Cmatrix - Mutual Capacitor Matrix Description Lines	
D - Diode Description Lines	
E - Foster Pole-residue Form Gain Function	
E - Poster Fore-residue Form Gain Function	
1	
Using the Parameters	
E – Voltage Controlled Voltage Source (VCVS)	
Delay	
Linear	
Polynomial	
Piecewise Linear	
Mathematic Expression	
Multi-Input Gates	
Transformer	
F – Current Controlled Current Source (CCCS)	
Delay	
Linear	
Multi-Input Gates	
Piecewise Linear	102
Polynomial	
G - Foster Pole-residue Form Trans-conductance Function	103
G - Laplace and Pole-zero Trans-conductance Function	104
Laplace	104
Pole	
Using the Trans-conductance Parameters	104
G – Voltage Controlled Capacitor (VCCAP)	
Linear	
Mathematic Expression	
Piecewise Linear	
Polynomial	
G – Voltage Controlled Current Source (VCCS)	
Linear	
Delay	
Mathematic Expression.	
Multi-Input Gates	
Piecewise Linear	
1 1000 N 100 11110u1	10/

Polynomial	108
Mathematical Expressions	
G – Voltage Controlled Resistor (VCR)	
Linear	
Mathematic Expression	
Multi-Input Gates	
Piecewise Linear	
Polynomial	
H – Current Controlled Voltage Source (CCVS)	
Linear	
Delay	
Multi-Input Gates	
Piecewise Linear	
Polynomial	
I - Current Source Description Line	
_	
K - Mutual Inductor Description Lines	
_Lmatrix - Inductor Matrix Description Lines	
M - MOSFET Description Lines	
R - Resistor Description Lines	
S - S Parameters Description Lines	
S Parameter Descriptions	
T - Transmission Line Description Lines	
V - Voltage Source Description Lines	
W - Coupled Transmission Description Lines	
Using the Coupled Transmission Parameters	
X - Subcircuit Description Lines	
Device Model Options (.Option)	
Device Temperatures (.Temp)	
Mutual Capacitor Matrices	
Transient Waveform Specifications	
Digital_PWL Waveform	
Digital_Ramp Waveform	
Digital_Sinesquare Waveform	
Exponential Waveform	
Frequency-Modulated Waveform	
Waveform Amplitude	
Gaussian Waveform	135
Piecewise Linear Waveform	136
Pulse Waveform	137
Sinesquare Waveform	138
Sinusoidal Waveform	139
Waveform Amplitude Parameter Descriptions	140
Random Bits Waveform	
Examples of Source with Random Bits Waveform	
Partial Circuit And Package Connection Description Lines	
Polynomial Functions in Nonlinear Circuit Elements	
Bit Usage	

	View Parameter Lines	145
	.ViewCktVoltage Command Lines	145
	.ViewPkgVoltage Command Lines	146
	.ViewCurrent Command Lines	147
	.View3D Command Lines	147
	Net Management Lines	149
	NetList Statement	149
	UNIX Window Parameter Lines	150
8	PowerSI Formats	153
	Section Lines	153
	Option Description Lines	153
	Frequency Sweep Description Lines	154
	Port Description Lines	155
	.DiffChannels Commands	156
	Surface Roughness Models	157
	Source Types	157
	Transient Waveform Specifications	
	S-Element	159
9	SPEED2000 Format	161
	SPEED2000 Commands	
	Common Description Lines	161
	.Mode Description Lines	
	.Distribution Command Lines	
	Description Lines in TDR/TDT Mode	
	.TDR Description Lines	
	Description Lines in DDR Mode	
	.DDR Description Lines	
	.SignalPin Description Lines	
	.BusGroup Description Lines	
	Description Lines in SSO Mode	
	.SSO Description Lines	165
	Description Lines in General SI Mode	166
	.PGnets Description Lines	
	.TermComp Description Lines	166
	.Topology Description Lines	169
	I/O Buffer Information Specification (IBIS)	170
	Supported Keywords	170
	Random Bits	171
	IBIS Statements	171
	IBIS Input Buffer	174
	IBIS Input Buffer Illustration	175
	IBIS Output Buffer	176
	Output Buffer Illustration	177
	IBIS Tristate Buffer	
	IBIS Tristate Buffer Illustration	179
	IBIS I/O Buffer	180
	I/O Buffer Illustration	181
	IBIS Open Drain Buffer	182

	Index	23 9
	MOSFET BSIM4 (Level 54) Parameter Descriptions	
	MOSFET Level 1 Parameter Descriptions	
11	MOSFET BSIM4 Model Parameters	221
	STI/LOD Model Parameters	220
	Temperature Parameters	
	Geometry Parameters	
	AC Model Parameters	
	DC Parameters	
	MOSFET BSIM3v3 Model Parameter Descriptions	
10	MOSFET BSIM3v3 Model Parameters	209
	Output3DCurrent Command Lines	
	Output3DVoltage Command Lines	
	Output Parameter Lines	
	.LIB Command	
	Library Command Support	
	Include Command Support	
	Data Selection for typ = fast / slow	
	Add an Associated IBIS File	
	IBIS Series Switch Buffer Illustration	
	IBIS Series Switch Buffer	
	IBIS Series Buffer	
	Series Switch Type	
	Series Models	
	IBIS Terminator Buffer IBIS Terminator Buffer Illustration	
	IBIS I/O ECL Buffer Illustration	
	IBIS I/O ECL Buffer Illustration	
	IBIS Tristate ECL Buffer Illustration	
	IBIS Tristate ECL Buffer	
	IBIS Out ECL Buffer Illustration	
	IBIS Out ECL Buffer	
	IBIS Input ECL Buffer Illustration	
	IBIS Input ECL Buffer	
	IBIS I/O Open Source Buffer Illustration	
	IBIS I/O Open Source Buffer	
	IBIS Open Source Buffer Illustration	
	IBIS Open Source Buffer	
	IBIS I/O Open Sink Buffer Illustration	
	IBIS I/O Open Sink Buffer	
	IBIS Open Sink Buffer Illustration	
	IBIS Open Sink Buffer	
	IBIS I/O Open Drain Buffer Illustration	
	IBIS I/O Open Drain Buffer	184
	IBIS Open Drain Buffer Illustration	183

Introduction

This manual is designed to give you an introduction to the .spd file format used by Sigrity tools. The basic concepts and requirements are explained in details. The goal is to aid you in your successfully using a new type of power and signal integrity software tool.

WHAT IS .SPD FILE FORMAT?

The .spd file is the native file format used by Sigrity products to provide the data, view and output parameters for simulation

In most cases the same .spd file format works with both SPEED2000 and PowerSI. A limited number of statements have meaning in either PowerSI or SPEED2000 only.

we have produced this document to provide descriptions of the .spd file format and options.

Refer to Mesh Plane Emulation in *Plane Layer Description Lines* for the special case when hand-editing is required.

ADDITIONAL DOCUMENTATION

In addition to this manual, refer to the following documentation for more information.

- PowerSI Getting Started Guide
- PowerSI User Guide
- SPEED2000 Getting Started Guide

• SPEED2000 User's Guide

CONVENTIONS USED IN THIS GUIDE

CONVENTION	USE
Bold	GUI text, special names, terms (window names, buttons, menus, etc.).
Arial	Examples.
>	Menu hierarchy.

How to Contact Technical Support

We are committed to helping you in using the Sigrity tools. If you have any questions, contact the <u>Cadence Online Support</u>.

General Format of .spd Files

The .spd file is an ASCII formatted text file that can be read by text editors.

SPD FILE SECTIONS

All .spd files contain similar sections and each section provides specific information. Many sections are delimited by specific taglines that begin and end the sections. The .spd data file contains the following types of lines:

- Circuit Component Description Lines
- Circuit-Package Connection Lines
- Comment Lines
- Computation Parameter Lines
- END Lines
- Net Management Lines
- Package Shape and Layout Description Lines
- PowerSI Lines
- Title Lines
- Viewing and Output Parameter Lines
- Window Parameter Lines (for UNIX systems now deprecated)

Any line except the first line can be a blank line. A line which is a continuation of the previous line is marked by the plus symbol (+) at the first column of the continued line and at least one blank space right after the symbol.

.SPD File Example

The comment lines may be located anywhere in the file except in the first line.

The order of the lines should be the same as the order shown in the **demoshort.spd - Notepad** example below.

DEFAULT UNITS

The following units are used within calculations:

MEASURE	UNIT
Length	Meter
Time	Second
Voltage	Volt
Current	Ampere
Admittance, Conductivity	Siemens
Inductance	Henry
Capacitance	Farad
Resistance	Ohm

Scale Factors

The following suffixes (to indicate scale) are allowed with any numerical values:

T=10 ¹²	G=10 ⁹	Meg=10 ⁶	K=10 ³	m=10 ⁻³
u=10 ⁻⁶	n=10 ⁻⁹	p=10 ⁻¹²	f=10 ⁻¹⁵	mil=25.4x10 ⁻⁶ meter

NAMING CONVENTIONS

When providing names for package and circuit components, the following conventions apply:

- Alphabetical characters are case insensitive.
- Total length of the name should not exceed 255.
- Reserved characters (which you should not use) are: space, =, comma, {}, :: and !!
- Reserved letter combinations (which you should not use) are:
 - CCCS
 - CCVS
 - POLY
 - PWL(1)
 - VCCAP
 - VCCS
 - VCR
 - VCVS

LINE TYPES

Three line types are used in .spd files: title lines, comment lines and end lines.

Title Lines

• It may contain a brief description or the title of the file.

• The title line must be the first single line in the input data file.

Comment Lines

- Comment lines may be placed anywhere except the first line in the input data file.
- The asterisk in the first column indicates that the line (a single line) is a comment line.

General Form for Comment Lines

* any comment

.End Lines

- Any lines which appear after the .End statement will not participate in simulations.
- The end line is the last effective line in the input data file.

General Form for End Lines

.End

.End Line Example

Lines that begin

Backupshape

BackupUnionizedShape

and

.EndShape

have purposes related to backing up information and NET operations.

TRACE REFERENCE CHECK

- If **TraceReferenceCheck** is set **As Warning** (by default), the current .spd file header is not changed.
- If TraceReferenceCheck is set As Error, the line shown in the example is added to the .spd file header.

Trace Reference Check Example

Title - PowerSI file for version 2000.09

*Please do NOT edit special void criteria manually.

.DoglegHoleThreshold = 0.001500

.ThermalHoleThreshold = 0.001500

.SmallHoleThreshold = 0.00300

.ViaHoleThreshold = 0.001500

.TraceReferenceCheck

Global Parameter Lines

The Global Parameter Lines specify the global simulation parameters.

Global Parameter Descriptions

PARAMETER	EFFECT OR MEANING
.DoglegHole Threshold	Minimum Threshold below which Dogleg Hole is converted to a Special Void during Shape processing.
.ThermalHole Threshold	Minimum Threshold below which Thermal Hole is converted to Special Void during Shape processing.
.SmallHole Threshold	Minimum Threshold below which Small Hole is converted to Special Void during Shape processing.
.ViaHole Threshold	Minimum Threshold below which Via Hole is converted to Special Void during Shape processing.
.ViaAntipadeSearchFactor	These factors are used to create the missing Antipads during Shape processing.
.ViaAntipadDistanceRangeFactor	First, all the edges whose shortest distance from the Via center is > (Via-Antipad DistanceRangeFactor = 1.1) x shortest distance. Then, average the sum of the shortest distances for remaining edges to get an average distance value. It is then used to create the Antipad Shape. Users can change the Via Antipad search factor and the Via-Antipad DistanceRangeFactor settings to create Antipads for more Vias that do not get covered with the default settings.

PARAMETER	Effect or Meaning
	During Shape processing, when connected to a Via:
.ThermalVia ToShapeFactor	If the total Trace length is less than n (Default 2; editable) times the Pad equivalent radius; then it is converted to a Shape.
	In this example, <i>n</i> is ThernalViaToShapeFactor.
	During Shape processing, when connected to a Shape:
ThermalShape ToShape Threshold	If the total Trace length is less than n millimeters (Default 1.0; editable); then it is converted to a Shape.
	In this example, n is ThermalShapeToShapeThreshold.

Chapter

Computation Parameter Description Lines

The computation parameter lines specify the overall simulation parameters.

TRANSIENT DESCRIPTION LINES

The .Transient line specifies the overall transient simulation parameters.

General Form for the Transient Line

```
Transient [Finaltime = f1]

+ [Timesteps = n1]

+ [Viewstep = n2]

+ [DC = YES(NO)]

+ [Window = YES(NO)]

+ [IntMethod = BACKWARD (TRAPEZOID)]

+ [PlaneSkinEffect = YES(NO)]

+ [TransmissionLineMetalLoss = YES(NO)]

+ [NonTotalReflectionBoundary = YES(NO)]

+ [InterPlaneCoupling = YES(NO)]

+ [PassivityCheck = As Warning(As Error)]

+ [PassivityCheck = Yes (NO)]

+ DielectricLossDispersion = Yes (NO)]

+ Fmax_TransmissionLine = value

+ [IdealPowerGround = Yes(No)]
```

Note!

The .Transient line is ignored by PowerSI software.

Transient Line Parameter Descriptions

PARAMETER EFFECT OR MEANING			
Finaltime = f1	The total time of simulation in terms of seconds. Default: 100 time steps of package simulator.		
Timesteps = n1	The total number of time steps of package simulator. Default value: 100 or the time steps corresponding to the total time of simulation specified in the "Finaltime" option.		
Viewstep = n2	The display interval of time steps for the simulation status. Default value: 10. The display of time steps is for batch simulation only.		
	DC		
= YES	Executes initial DC analysis before transient simulation (Default)		
No DC analysis before transient simulation. DC analysis computes voltage currents in circuit components and in vias and traces. Planes that are interconected among each other are treated as one node.			
	Window		
= YES Open windows for graphic display of real time animations. (Default			
= NO	Do not open windows for graphic display. These parameters are effective for UNIX version only.		
	IntMethod		
= BACKWARD	Backward method is used for time integration in circuit solvers.		
= TRAPEZOID	Trapezoidal method is used for time integration in circuit solvers. (Default: TRAPEZOID)		
	PlaneSkinEffect		
= Yes	Includes skin effect loss of planes during transient calculation. (Default)		
= NO	No skin effect loss of planes during transient calculations. DC loss of planes is always included during transient simulation, but is not included during initial DC analysis.		
	TransmissionLineMetalLoss		
= YES Includes metal loss of transmission lines (including the trace and gring transient simulation.			
= NO	No metal loss of transmission lines during the transient simulation. Transmission lines are modeled as lossless transmission lines. (Default)		

PARAMETER	EFFECT OR MEANING	
	NonTotalReflectionBoundary	
= YES	Natural boundary (non-total reflection) condition at shape edges is used during simulation. (Default)	
= NO	Magnetic wall (total reflection) condition at shape edges is used during simulation.	
	InterplanePlaneCoupling	
= YES	Inter plane coupling will be taken into account in simulation. (Default)	
= NO	Inter plane coupling will be ignored in simulation.	
	PassivityCheck	
= YES	A more stable and slower scheme will be used for the extraction of transmission line parameters for modeling the skin effect loss and/or dielectric loss. The passivity of the transmission model is checked.	
= NO	The passivity of the transmission line model is not checked for lines modeled with skin effect loss and/or dielectric loss. (Default)	
	DielectricLossDispersion	
= YES	Dielectric loss and dispersion will be considered in transient simulations for parallel-plate fields and transmission lines.	
= NO	Dielectric will be considered lossless and non-dispersive. If the dielectric constant is provided by a data file, the data at 1 GHz will be used. (Default)	
Fmax_TransmissionLine	The frequency-dependency of the conductor loss and dielectric loss in the transient transmission line simulation is considered in the range from zero to Fmax_TransmissionLine. Default: 5GHz.	
IdealPowerAndGround		
= Yes	The power and ground nets are ideal in simulation.	
= NO	Do not apply ideal power and ground nets in simulation. Default.	

.MESH DESCRIPTION LINES

The .Mesh description line specifies the mesh density used for numerical discretization and calculations.

General Form for the Mesh Line

.Mesh Pkg = s1 Mesh X = n1 Mesh Y = n2

Mesh Line Parameter Descriptions

PARAMETER	Effect or Meaning
Pkg = s1	Name of the package or board.
Mesh_X =n1	Number of mesh elements in the x direction.(Default=60).
Mesh_Y =n2	Number of mesh elements in the y direction.(Default=60).

Note!	If only Mesh_X is specified, Mesh_Y is set automatically so that dx=dy; and vice versa;
	where dx= mesh length in the x direction and dy = mesh length in the y direction of a cartesian coordinate system.

.TEMP DESCRIPTION LINES

The .Temp description line specifies the temperature used for the device model calculation and the metal material conductivity calculation.

General Form for the Temp Line

.Temp temperature_value

.MATERIALFILENAME DESCRIPTION LINES

The .MaterialFileName description line specifies the material file name.

General Form for the MaterialFileName Line

.MaterialFileName "path / material_file_name"

.OUTLINE DESCRIPTION LINES

The .Outline description line specifies the design outline.

General Form for the Outline Line

.Outline [StartLayer = layer1 EndLayer = layer2] {x, y, w, h | x, y, r | x0, y0, ..., xn, yn}

Multiple outlines exist when the design is multiple board and package merged together.

• StartLayer and EndLayer - used to define layers for the package (or board) when a package (or board) is merged on a board

- the rest parameters are used to define the package (or board) outline
- if omitted, the outline is defined for the whole design
- x, y, w, h used when the outline is a rectangle
 - (x, y): the lower left corner coordinates
 - w: width
 - h: height
- x, y, r used when the outline is a circle
 - (x, y): the center coordinates
 - r: radius
- x0, y0, ..., xn, yn used when the outline is a polygon
 - (xi, yi): the vertex coordinates

Package Shape and Layout Description Lines

The **Package Shape and Layout** section of the .**spd** file starts with the command .Package and ends with the command .EndPackage.

THE PACKAGE COMMANDS

General Form for .Package Command

.Package PackageName [Trace_Color = s1] [Via_Color = s2] [Hole_Color = s3]

- + [Top_Mesh_Color = s4] [Whole_Mesh_Color = s5]
- + [Plane_Color = s6] [Trace_Combine = YES(NO)]
- + [Fdtdthickness = YES(NO)] [r_default = f1]
- + via_conductivity_default

.EndPackage

Package Parameter Descriptions

PARAMETER	EFFECT OR MEANING
PackageName	A character string for the name of the package or board structure.
Trace_Color = s1	s1 is the name of the color for displaying Traces. Default color: white.
Via_Color = s2	s2 is the name of the color for displaying Vias. Default: white.
Hole_Color = s3	s3 is the name of the color for displaying Via holes. Default color: white.

PARAMETER	Effect or Meaning		
Top_Mesh_Color = s4	s4 is the name of the color for displaying numerical mesh for the top plane. Default color: white.		
Whole_Mesh_Color = s5	s5 is the name of the color for displaying the whole numerical mesh for the structure.Default color: white.		
Plane_Color = s6	s6 is the name of the color for displaying planes. Default color: white.		
	Trace_Combine		
= YES	Combines multi-segment traces to a single transmission line if there is no branch.		
= NO	Does not combine multi-segment traces to a single transmission line. Default.		
Fdtdthickness			
= YES	The thickness of traces is taken into account for field computation between planes. (Default)		
= NO	The thickness of traces is not taken into account.		
Via_Conductivity_Default	Default value used in computations that require Via conductivity when the conductivity is not specified in the Via description line. Default: 5.8e+7.		
Via_Material_Default	Specify a default material for Vias. You can use either this setting or Via_Conductivity_Default but, not both. If this setting is not specified, default conductivity is not used.		

Note!

The conductivity parameter in this command is an **optional** value. If it is omitted, the Via_Conductivity_Default parameter value of the .Package command is used.

Definition of Color

24 colors are supported in Allegro Sigrity tools, including:

{RGB(255, 0, 0), (_T("red"))}
{RGB(0, 255, 0), (_T("green"))}
{RGB(0, 0, 255), (_T("blue"))}
{RGB(0, 255, 255), (_T("cyan"))}
{RGB(190,190,190), (_T("grey"))}
{RGB(0, 0, 0), (_T("black"))}
{RGB(255, 255, 255), (_T("white"))}

```
{RGB(255, 255, 0), (_T("yellow"))}
{RGB(255, 0, 255), (_T("magenta"))}
{RGB(0, 0, 128), (_T("darkblue"))}
{RGB(0,128, 0), (_T("darkgreen"))}
{RGB(0,128,128), (_T("darkcyan"))}
{RGB(128, 0, 0), (_T("darkred"))}
{RGB(128, 0,128), (_T("darkmagenta"))}
{RGB(128,128, 0), (_T("darkyellow"))}
{RGB(128,128,128), (_T("darkgrey"))}
{RGB(240, 248, 255), (_T("lightblue"))}
{RGB(173, 255, 47), (_T("lightgreen"))}
{RGB(224, 255, 255), (_T("lightcyan"))}
{RGB(255, 69, 0), (_T("lightred"))}
{RGB(255,131, 255), (_T("lightmagenta"))}
{RGB(255, 255, 224), (_T("lightyellow"))}
{RGB(247, 247, 247), (_T("lightgrey"))}
{RGB(255, 255, 0), (_T("hilight"))}
```

PACKAGE SHAPE DESCRIPTION LINES

Shape description lines specify Shapes of objects on plane or signal layers. Types of shapes include box, polygon and circle. Each shape has a specific syntax specification detailed in this section.

The Shape Description Line section begins with the command .Shape and ends with the command .EndShape.

You can specify the following shapes:

- Box Parameter
- Circle Parameter
- Polygon Parameter
- UnionizedShape Lines

The Shape Command

General Form

.Shape ShapeName [Color = s1]

.EndShape

Shape Command Example

.Shape Shape002 Color = green

Box8Zgx34::VSS- -6.600000e+000mm -6.600000e+000mm 1.320000e+001mm

+ 1.320000e+001mm

.EndShape

Shape Parameter Descriptions

PARAMETER	Effect or Meaning
.Shape	Keyword for shape line.
ShapeName	A character string for the name of the shape.
Color = s1	Name of color for drawing the shape. Default: white.

Box Parameter

General Form

Box[Affix]xxx[::NetName]{+|-} [Special void type] [PadShape][Sub-element] Color = s1 x0 y0 w h

Box Parameter Example

Box8Zgx34::VSS- -6.600000e+000mm -6.600000e+000mm 1.320000e+001mm

+ 1.320000e+001mm

Box Parameter Descriptions

PARAMETER	Effect or Meaning
Box	Box keyword.
Affix	Optional 1 to 4 characters.
xxx	A character string for the name of the box.
::NetName	Optional net name associated with the object.
+ or -	A + sign means add an object. A - sign means subtract the object from metals. If no sign is provided, the spacing is preserved and the default adds an Object. The order of the objects is important.
	Special void type field can have one of the following values:
	NormalHole_M — Normal hole (manually set)
	SmallHole_A — Small hole (automatically set)
	SmallHole_M — Small hole (manually set)
Special void type	DoglegHole_A — Dogleg hole (automatically set)
opeciai void type	DoglegHole_M — Dogleg hole (manually set)
	ThermalViaHole_A — Thermal via hole (automatically set)
	ThermalViaHole_M — Thermal via hole (manually set)
	ViaHole_A — Via hole (automatically set)
	ViaHole_M — vVa hole (manually set)
PadShape	Indicates that the shape element is inside a special void. This field is automatically generated and should not be edited.
Sub-element	This field is automatically generated and should not be edited
Color = s1	s1 is the name of the box color. Default is in the .Shape line.
x0	X coordinate of the lower left corner of the box.
y0	Y coordinate of the lower left corner of the box.
w	Length of the box along the horizontal x-axis direction.

PARAMETER	Effect or Meaning
h	Length of the box along the vertical y-axis direction.

Polygon Parameter

General Form

 $\begin{tabular}{ll} Polygon[Affix]xxx[::NetName] [\{+|-\}] [Special\ void\ type] [PadShape] [Sub-element]Color = $1\ x1\ y1\ x2\ y2\ ...\ xn\ yn \end{tabular}$

Polygon Parameter Example

Polygon8Zgx01234::VSS -6.879373e+000mm -6.961050e+000mm 6.868323e+000mm + -6.950000e+000mm 6.884824e+000mm 6.950000e+000mm 6.894257e+000mm + -6.961050e+000mm

Polygon Parameter Descriptions

PARAMETER	Effect or Meaning
Polygon	Polygon key word.
Affix	Optional 1 to 4 characters.
xxx	A character string for the name of the polygon.
::NetName	Optional net name associated with the object.
+ or -	+ sign means add object sign means subtract object from metals. If no sign, spacing is preserved; default adds object. Order of objects is important.
Special void type	Special void type field can have one of the following values: NormalHole_M — Normal hole (manually set) SmallHole_A — Small hole (automatically set) SmallHole_M — Small hole (manually set) DoglegHole_A — Dogleg hole (automatically set) DoglegHole_M — Dogleg hole (manually set) ThermalViaHole_A — Thermal via hole (automatically set) ThermalViaHole_M — Thermal via hole (manually set) ViaHole_A — Via hole (automatically set) ViaHole_M — Via hole (manually set)
PadShape	Indicates that the shape element is inside a special void. This field is automatically generated and should not be edited.
Sub-element	This field is automatically generated and should not be edited.
Color = s1	s1 is the name of the box color. Default is specified in .Shape line.
x1	X coordinate of the first vertex of the polygon.
y1	Y coordinate of the first vertex of the polygon.

PARAMETER	EFFECT OR MEANING
x2	X coordinate of the second vertex of the polygon.
y2	Y coordinate of the second vertex of the polygon.
xn	X coordinate of the nth vertex of the polygon.
yn	Y coordinate of the nth vertex of the polygon.

Circle Parameter

General Form

Circle[Affix]xxx[::NetName] [{+|-}] [Special void type] [PadShape] [Sub-element] Color = s1 x0 y0 R

Circle Parameter Example

 $Circle8Zgx32:: VDD- \ -1.050000e + 001mm \ -1.650000e + 001mm \ 2.270300e - 001mm$

Circle Parameter Descriptions

PARAMETER	Effect or Meaning
Circle	Circle key word.
Affix	Optional 1 to 4 characters.
xxx	A character string for the name of the polygon.
::NetName	Optional net name associated with the object.
+ or -	A + sign means adding an object. A - sign means subtracting the object from metals. If no sign is provided, the spacing is preserved. Default is adding an object. The order of the objects is important.
Special void type	If present, the Special void type field can have one of the following values: NormalHole_M — Normal hole (manually set) SmallHole_A — Small hole (automatically set) DoglegHole_M — Small hole (manually set) DoglegHole_A — Dogleg hole (automatically set) ThermalViaHole_A — Thermal via hole (automatically set) ThermalViaHole_M — Thermal via hole (manually set) ViaHole_A — Via hole (automatically set) ViaHole_M — vVa hole (manually set)
PadShape	Indicates that the shape element is inside a special void. This field is automatically generated and should not be edited.

PARAMETER	Effect or Meaning
Sub-element	This field is automatically generated and should not be edited.
Color = s1	s1 is the name of the color for the box. Default color is color specified in the .Shape line.
х0	X coordinate of the center of the circle.
у0	Y coordinate of the center of the circle.
R	Radius of the circle.

UnionizedShape Lines

Use the shape unionization procedure to add the following line in the .spd file after the Shape descriptions.

This line contains information used internally by the executable modules and it should not be altered by the user.

General Form

UnionizedShape = s1

UnionizedShape Line Example

UnionizedShape = 28545C0B-23545D13-23545515-2854550B

Cutting Polygon Examples

CuttingPolygon01 Used = TRUE CutOuter = TRUE ForCuttingZone = FALSE

+ -2.650000e+001mm 2.950000e+001mm 4.500000e+000mm 2.400000e+001mm 2.000000e+000mm 4.500000e+000mm -2.000000e+001mm 2.500000e+000mm

Cutting Boundary Description Lines

CuttingPolygonXXX Used = f1 CutOuter = f2 ForCuttingZone = f3

+ x1 y1 x2 y2 ... xn yn

Mode Line Parameter Descriptions

PARAMETER	EFFECT OR MEANING
CuttingPolygonXXX	Cutting polygon's name. XXX can be any characters.
	The flag indicates whether this polygon is used for cutting.
Used = f1	• When Used = TRUE, this line is used.
	• When Used = FALSE, this line is not used.

PARAMETER	EFFECT OR MEANING	
	The flag indicates whether this polygon is used for cutting outside elements.	
CutOuter = f2	• When CutOuter = TRUE, this line is used for cutting outside elements.	
	• When CutOuter = FALSE, this line is used for cutting inside elements.	
	The flag indicates whether this polygon is used for other objects.	
ForCuttingZone = f3	• When ForCuttingZone = TRUE, this line is used by others.	
	• When ForCuttingZone = FALSE, this line is not used by others.	
x1	X coordinate of the first vertex of the polygon.	
y1	Y coordinate of the first vertex of the polygon.	
x2	X coordinate of the second vertex of the polygon.	
y2	Y coordinate of the second vertex of the polygon.	
xn	X coordinate of the nth vertex of the polygon.	
yn	Y coordinate of the nth vertex of the polygon.	

PACKAGE LAYOUT DESCRIPTION LINES

Package layout description lines specify properties of packaging components (listed below). They are placed after the Shape Description Lines.

General Form

Keyword parameter1 parameter2 . . .

Note!	The Plane, Medium and Signal layers should be placed strictly in top-to-bottom order as they appear in actual packages.
	Plane and Signal layers have to be separated by medium layer(s).

Package Layout Parameter Descriptions

Component	Property
Plane	Plane layers
Signal	Signal layers
Medium	Dielectric media
Patch	Metal patch on signal layers
Node	Labeling of specific locations in package
Via	Vertical vias

Trace	Horizontal traces
CPL	Groups of coupled lines consisting of n single lines.
GCPL	Groups of coupled lines consisting of n line series.
.Model	Components such as diode.

The order of the Layout Description Lines follows a logical hierarchy.

- 1. Layers (Plane or Medium or Signal and/or Patch).
- 2. Nodes that use those layers (to specify vertical placement.
- **3.** Via and Trace (statements that use previously defined nodes).
- **4.** CPL (after Traces that it uses).
- **5.** GPL (after Traces that it uses).

Plane Layer Description Lines

SPEED2000 emulates the effects of mesh planes by making adjustments in the field solver module.

- Admittance
- Capacitance
- Inductance
- Resistance parameters

Currently, entries for optional *mesh plane emulation* statement parameters must be introduced manually to the text file using a text editor.

IMPORTANT

You must enter the additional information in all three description lines (patch, medium and signal).

General Form

Planexxxx thickness = f1 [Conductivity = f2 | Material = s1Shape = s2] [Color = s3]

- + [AreaAdj=<([X0 = f3 Y0 = f4 Xw = f5 Yw = f6]
- + [Rxr = f7] [Ryr = f8]),
- + $([X0 = f9 \ Y0 = f10 \ Xw = f11 \ Yw = f12] \ [Rxr = f13] \ [Ryr = f14]),$
- + ... >]

Plane Layers Example 1

Plane\$VCC Thickness = 3.560000e+001u Conductivity = 5.800000e+007 Shape = Shape001

+ Color = cyan

Plane Layers Example 2

Plane01 Thickness = 3.560000e+001u Conductivity = 5.800000e+007

- + Shape = Shape001 Color = cyan
- + AreaAdj=<
- + (X0 = 0 Y0 = 1 Xw = 3 Yw = 2
- + Rxr = 1.0 Ryr = 4.0),
- $+ (X0 = -1 \ Y0 = -2 \ Xw = 4 \ Yw = 1$
- + Rxr = 2.0 Ryr = 3.0)

+ >

Plane Layers Example 3

Plane01 Thickness = 3.560000e+001u Material = Copper

Plane Layers Example 4

Plane\$LYR_2 Thickness = 1.800000e-002mm Conductivity = 5.813953e+007 Shape = Shape\$LYR_2 Color = magenta DoglegHole Threshold = 0.0015 ThermalHole Threshold = 0.0016 SmallHoleThreshold = 0.0015 ViaHole Threshold = 0.0015

Plane Layer Parameter Descriptions

PARAMETER	Effect or Meaning
Planexxxx	Name of plane layer, where xxxx can be any characters.

PARAMETER	EFFECT OR MEANING
Thickness = f1	Thickness of plane.
Conductivity = f2	Conductivity of metal plane.Default value: 5.8e7 S/m.
Material = f3	The material of metal plane.
Shape =s1	Name of Shape specified in the shape description lines.
Color =s2	Color name for frame of the plane. Default: white or plane color set in .Package command line.
	Keyword of the resistance adjustment option. Both "< >" pair and "()" pairs are required delimiters in the "AreaAdj" option. Symbol "<" indicates start of an AreaAdj"option; symbol ">" indicates end of the option.
	Data enclosed in each parenthesis "()" pair denotes content of one adjustment item. AreaAdj option may contain more than one adjustment item.
A = = A di = - 4 (In each adjustment item, all or none of X0, Y0, Xw and Yw parameters should exist.
AreaAdj = < (), (),>	If none of the X0, Y0, Xw and Yw parameters is specified, adjustment range is whole layer.
	The order of adjustment items in AreaAdj option is meaningful in case of overlap.
	If adjustment areas (determined by X0, Y0, Xw and Yw parameters) in two adjustment items overlap , latter of two items is the base to adjust resistance within overlapping area in plane or patch layer.
X0 = f3, f9,	X coordinate of the lower left corner of rectangular adjustment area.
Y0 = f4, f10,	Y coordinate of the lower left corner of rectangular adjustment area.
Xw = f5, f11,	Length of rectangular area along horizontal X direction. Must be positive number.
Yw = f6, f12,	Length of rectangular area along vertical Y direction. Must be positive number.
Rxr = f7, f13,	Adjustment ratio of distributed resistance Rx in x direction. Must be positive number. Default: 1.0.
Ryr = f8, f14,	Adjustment ratio of distributed resistance Ry y direction. Must be positive number. Default: 1.0.
DoglegHole Threshold	Minimum Threshold below which Dogleg Hole is converted to Special Void during Shape processing.
ThermalHole Threshold	Minimum Threshold below which Thermal Hole is converted to Special Void Shape Processing.
SmallHole Threshold	Minimum Threshold below which Small Hole is converted to Special Void during Shape processing.
ViaHole Threshold	Minimum Threshold below which Via Hole is converted to Special Void during Shape processing.

Signal Layer Description Lines

General Form

Signalxxxx thickness = f1[Conductivity = f2] [Material = f1] [Width = f3] [Color = s2]

Signal Layer Example 1

Signal\$TOP Thickness = 3.560000e+001u Conductivity = 5.800000e+007

+ Width = 2.286000e+002u Color = blue

Signal Layer Example 2

Signal01 Thickness = 3.560000e+001u Material = Copper

Signal Layer Example 3

Signal01\$BOTTOM Thickness = 1.500000e+001u Conductivity = 3.174600e+007 Width = 0.0016 SmallHoleThreshold = 0.0015 ViaHoleThreshold = 0.0015

Signal Layer Parameter Descriptions

PARAMETER	Effect or Meaning
Signalxxxx	Name of the signal layer, where xxxx can be any characters.
Thickness = f1	Thickness of Signal Traces. Default = 3.56e-002
Material = 21	Material of Signal.
Conductivity = f2	Conductivity of Signal Traces. Default value: 5.8e7 S/m.
Width = <u>f3</u>	Width of Signal Traces. Default = 10 ⁻⁴ m
Color =s1	Signal layer color name. Default: blue

SPD File Format Parameter Descriptions

PARAMETER	Effect or Meaning
DoglegHoleThreshold	Minimum Threshold below which Dogleg Hole is converted to Special Void during Shape processing
ThermalHoleThreshold	Minimum Threshold below which Thermal Hole is converted to Special Void Shape Processing
SmallHoleThreshold	Minimum Threshold below which Small Hole is converted to Special Void during Shape processing

PARAMETER	EFFECT OR MEANING
ViaHoleThreshold	Minimum Threshold below which Via Hole is converted to Special Void during Shape processing

Medium Description Lines

SPEED2000 emulates the effects of mesh planes by adjusting the capacitance, inductance, admittance and resistance parameters in the field solver module.

Required entries for optional statement parameters must be introduced manually to the text file using a text editor. Enter additional information in all three description lines (Patch, Medium and Signal).

General Form

MediumXXXX thickness = f1 [Permittivity = f2] [LossTangent = f3] [Material = s1]

- + [Conductivity = f4] [File = s1 Model = s2]
- + [AreaAdj=<([X0 = f5 Y0 = f6 Xw = f7 Yw = f8]
- + [Cr = f9] [Gr = f10] [Lxr = f11] [Lyr = f12]),
- + ([X0 = f13 Y0 = f14 Xw = f15 Yw = f16]
- + [Cr = f17] [Gr = f18] [Lxr = f19] [Lyr = f20]),
- + ... >]

Medium Example 1

Medium\$5 Thickness = 1.270000e+002u Permittivity = 4.000000e+000

+ Conductivity = 1.000000e-002

Medium Example 2

Medium04 Thickness = 5.000000e+002u Permittivity = 4.000000e+000

- + LossTangent = 0.000000e+000
- + AreaAdj=<
- + (X0 = 0 Y0 = 1 Xw = 3 Yw = 2
- + Cr = 0.5 Gr = 0.2 Lxr = 0.4 Lyr = 0.8),
- + (X0 = -1 Y0 = -2 Xw = 4 Yw = 1
- + Cr = 0.6 Gr = 0.1 Lxr = 0.8 Lyr = 0.7)

+ >

Medium Example 3

Medium03 Thickness = 5.000000e+002u Material = FR4

+ LossTangent = 0.000000e+000

Medium Parameter Descriptions

PARAMETER	Effect or Meaning
Mediumxxxx	Name of the dielectric medium, where xxxx can be any characters
Thickness = f1	Thickness of dielectric medium
	Relative permittivity of the dielectric medium
Permittivity = f2	If a data file is provided for the dielectric medium (see <i>File</i> parameter below), the loss tangent of the dielectric medium will be determined by the data file and values in the entries of LossTangent and Conductivity will be overwritten.
LossTangent = f3	Loss tangent of the dielectric medium. Default is 0.
Conductivity = f4	Conductivity of the dielectric medium. Default = 10 ⁻⁵⁰ S/m
Material = f3	Material of medium
If Loss Tangent and Conductivity are both given, the loss of the dielectric medium is determined by the Loss Tangent.	
File = <i>s1</i>	Character string for the name of the data file that stores the dielectric model.
Model = s2	Character string for the name of the model in the data file s1

PARAMETER	EFFECT OR MEANING
	Keyword of the capacitance, inductance and admittance adjustment option. Both "< >" pair and "()" pairs are required delimiters in the "AreaAdj" option.
	Symbol "<" indicates the start of an AreaAdj option, and symbol ">" indicates the end of the option. An AreaAdj option may contain more than one adjustment items.
	Data enclosed in each parenthesis "()" pair denote the content of one adjustment item.
AreaAdj = < (), (),>	In each adjustment item, either all or none of X0, Y0, Xw and Yw parameters should exist. If none of the X0, Y0, Xw and Yw parameters is specified, the adjustment range is the whole layer.
	The order of the adjustment items in AreaAdj option is meaningful in the case of overlap.
	If the adjustment areas (determined by X0, Y0, Xw and Yw parameters) in two adjustment items overlap, the latter one of the two adjustment items is taken as the base to adjust capacitance, inductance and admittance within the overlapping area in the medium layer.
X0 = f5, f13,	X coordinates of the lower left corner of the rectangular adjustment area.
Y0 = f6, f14,	Y coordinates of the lower left corner of the rectangular adjustment area.
Xw = f7, f15,	Lengths of the rectangular adjustment area along the horizontal x direction. Must be a positive number.
Yw = f8, f16,	Lengths of the rectangular adjustment area along the vertical y direction. Must be a positive number.
Cr = f9, f17,	Adjustment ratios of the distributed capacitance C. Must be a positive number. Default value: 1.0.
Gr = f10, f18,	Adjustment ratios of the distributed admittance G. Must be a positive number. Default value: 1.0.
Lxr = f11, f19,	Adjustment ratios of the distributed inductance Lx in x direction. Must be a positive number. Default value: 1.0.
Lyr = f12, f20,	Adjustment ratios of the distributed inductance Ly in y direction. Must be a positive number. Default value: 1.0.

Patch Description Lines

SPEED2000 emulates the effects of mesh planes by adjusting the capacitance, inductance, admittance and resistance parameters in the field solver module.

Required entries for optional statement parameters must be introduced manually to the text file using a text editor. Enter the additional information in all three description lines (patch, medium, and signal).

For detailed information refer to *Medium Description Lines*.

General Form

Patchxxxx [Thickness = f1] [Conductivity = f2] Shape = s1 Layer = s2

- + [AreaAdj=<([X0 = f3 Y0 = f4 Xw = f5 Yw = f6]
- + [Rxr = f7] [Ryr = f8]),
- + ([X0 = f9 Y0 = f10 Xw = f11 Yw = f12] [Rxr = f13] [Ryr = f14]),
- + ... >]

Patch Example 1

Patch\$GND Thickness = 3.048000e+001u Conductivity = 5.959000e+007

+ Shape = Shape\$GND

Patch Example 2

Patch01 Thickness = 3.560000e+001u Conductivity = 5.800000e+007

- + Shape = Shape001
- + Layer = Signal01
- + AreaAdj=<
- + (X0 = 0 Y0 = 1 Xw = 3 Yw = 2
- + Rxr = 1.0 Ryr = 4.0),
- $+ (X0 = -1 \ Y0 = -2 \ Xw = 4 \ Yw = 1$
- + Rxr = 2.0 Ryr = 3.0)

+ >

Patch Parameter Descriptions

PARAMETER	Effect or Meaning
Patchxxxx	Name of the patch, where xxxx can be any characters.

PARAMETER	Effect or Meaning
Thickness = f1	Metal patch thickness. Default: Thickness of the signal layer where patch is located.
Conductivity = f2	Conductivity of the metal patch. Default value: 5.8e7 S/m.
Shape = s1	Name of the Shape specified in the shape description lines.
Layer = s2	Signal layer name for the metal patch.
	Keyword of resistance adjustment option. Both < > and () pairs are required delimiters in the AreaAdj option.
	Symbol < indicates start of an AreaAdj option. Symbol > indicates end of the option. Data enclosed in parenthesis () pair denotes content of one adjustment item.
AreaAdj = < (),	An AreaAdj option may contain more than one adjustment item. In each adjustment item, either all or none of X0, Y0, Xw and Yw parameters should exist.
(),>	If none of the X0, Y0, Xw and Yw parameters is specified, adjustment range is the whole layer.
	Order of adjustment items in AreaAdj option is meaningful in case of overlap.
	If adjustment areas (determined by X0, Y0, Xw and Yw parameters) in two adjustment items overlap, the latter one of the two adjustment items is taken as the base to adjust resistance within the overlapping area in the plane or patch layer.
X0 = f3, f9,	x coordinate of the lower left corner of the rectangular adjustment area.
Y0 = f4, f10,	y coordinate of the lower left corner of the rectangular adjustment area.
Xw = f5, f11,	Length of the rectangular adjustment area along the horizontal x direction. Must be a positive number.
Yw = f6, f12,	Length of the rectangular adjustment area along the vertical y direction. Must be a positive number.
Rxr = f7, f13,	Adjustment ratio of the distributed resistance Rx in x direction. Must be a positive number. Default value: 1.0.
Ryr = f8, f14,	Adjustment ratio of the distributed resistance Ry in y direction. Must be a positive number. Default value: 1.0.

Trace Surface Roughness Description Lines

Each Trace surface roughness description line stores the root mean square deviation of stores Trace thickness for Traces on associated layers.

General Format

[{.TraceSurfaceRoughness [Layer = layer] Roughness = rms}]

Trace Surface Roughness Parameter Descriptions

PARAMETER	Effect or Meaning
Layer	If Layer is not present, the roughness is defined for Traces on all layers. This is the global roughness.
	If Layer is present, the roughness is defined for traces on that layer. This is the local roughness. Local roughness overrides global roughness.
Roughness	The root mean square deviation of Trace thickness and is in length unit. Layer is a layer name. Default: 0, means smooth surface.

Padstack Description Lines

The Padstack information is used to translate the pad geometry information.

Each Padstack stores the pad geometry for associated layers.

General Format

.PadStackDef PadStackName [OuterRadius] [InnerRadius] [Material = material name] [Conductivity = conductivity value]

.PadDef LayerName

[Regular { Circle r | Box w h | Square a | RoundedRect_X w h | Rounded Rect_Y w h | Polygon $\{x, y\}$ } offSetX = xOff> offSetY = xOff>]

[Anti { Circle r | Box w h | Square a | RoundedRect_X w h | Rounded Rect_Y w h | Polygon {x, y} } offSetX = <xOff> offSetY = <yOff>]

[Thermal { Circle r | Box w h | Square a | RoundedRect_X w h | Rounded Rect_Y w h | Polygon {x, y} } offSetX = <xOff> offSetY = <yOff>]

.EndPadDef

. . .

.EndPadStackDef

The Padstack Commands

General Form

.PadStackDef PadStackName [OuterRadius] [InnerRadius] [Material = material name | Conductivity = conductivity value]]

General Form

This line indicates the end of a padstack definition.

.EndPadStackDef

Padstack Parameter Descriptions

PARAMETER	Effect or Meaning
PadStackName	The name of the padstack.
OuterRadius	Optional field. It is not required for surface mounted pads
InnerRadius	Optional field. It is not required for surface mounted pads
Material	Optional field. It is not required for surface mounted pads
Conductivity	Optional field. It is not required for surface mounted pads

The PadDef Commands

This command begins the pad geometry for a particular layer. There can be multiple .**PadDef** sections in a Padstack, depending on the layers.

Pads with Polygon Shapes

- Shape Stored in .PadPolyShapeDef
- Shapename Stored in the padstack definition

General Form

```
.PadDef LayerName
```

```
[Regular { Circle r \mid Box w \mid h \mid Square a \mid RoundedRect_X w \mid h \mid Rounded Rect_Y w \mid h \mid Polygon {x, y} } offSetX = <xOff> offSetY = <yOff> ]
```

```
[Anti { Circle r \mid Box w h \mid Square a \mid RoundedRect_X w h \mid Rounded Rect_Y w h \mid Polygon {x, y} } offSetX = <xOff> offSetY = <yOff> ]
```

[Thermal { Circle $r \mid \text{Box } w \mid h \mid \text{Square } a \mid \text{RoundedRect} x \mid w \mid h \mid \text{Rounded Rect} x \mid w \mid h \mid \text{Polygon } \{x, y\} \} \text{ offSetX} = <xOff> offSetY = <yOff>]$

.EndPadDef

Padstack Definition Example

```
.PadStackDef PAD60SQ36D 0.100000 0.00000
```

.PadDef TOP

Regular Circle 0.120000 offSetX = 0.1 offSetY= 0.1

Anti Circle 0.160000 offSetX = 0.022 offSetY = 0.022

Thermal Circle 0.160000 * offSetX = 0.0 offSetY= 0.0

.EndPadDef

.PadDef INNER1

Regular Circle 0.120000 offSetX = 0.0 offSetY= 0.1

Anti Circle 0.160000 offSetX = 0.0 offSetY= 0.1

Thermal Circle 0.160000 * offSetX = 0.0 offSetY= 0.1

.EndPadDef

.PadDef BOTTOM

Regular Circle 0.120000 offSetX = 0.0 offSetY= 0.0

Anti Circle 0.160000 offSetX = 0.0 offSetY= 0.1

Thermal Circle 0.160000 * offSetX = 0.0 offSetY= 0.1

.EndPadDef

.EndPadStack Def

Polygon Pad Support Example

The following examples would cover polygon pad support.

.PadStackDef POLY_PAD 0.100000 0.00000

.PadDef TOP

Regular Polygon .022 0.56 0.45 0.6 0.55 0.99 0.66 0.88

0.900.87 0.98 0.87

Anti Circle 0.160000 offSetX=0.022 offSetY=0.022

Thermal Circle 0.160000 * offSetX=0.0 offSetY=0.0

.EndPadDef

.EndPadStackDef

PadDef Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
LayerName	The name of the layer for a particular pad geometry. If the keyword, DefaultLibLayer, is used, the pad definition is applied to all layers.	
LayerName	The pad definitions for individual layers in this section can override the DefaultLibLayer definition.	
Regular		
• Anti	Keywords that refer to the type of pad being defined. *Thermal pad information is currently ignored in SPDSIM.	
Thermal*	Thermal pad information is editerity ignored in or Bollwi.	
Circle	Keywords that refer to the shape assigned to a particular type of pad geometry. For a given	
• Box	shape:	
Square	r ¹ — Radius of a given circle	
• Polygon	w — Length of a box (rectangular) shape	
RoundedRect	h — Width of a rectangular (rectangular) shape	
	a — Length of one side of a square	

1. The radius information was in the Via Description Line. The padstack definition now contains this information.

Material Description Lines

Material description lines specify information of material models.

The Material description lines section begins with the command .Material and ends with the command .EndMaterial.

Specify Material Model

You can specify the following material model:

- .DielectricModel
- .MetalModel
- .ThermalModel

The model description ends with:

- .EndDielectricModel
- .EndMetalModel
- .EndThermalModel

General Form

- .Material
- .MetalModel ModelName
- *CommentLine

TemperatureValue ConductivityValue

.EndMetalModel

.DielectricModel ModeName

*CommentLine

FrequencyValue PermittivityValue LossTangentValue

.EndDielectricModel

.ThermalModel ModelName

*CommentLine

TemperatureValueConductivityValue DensityValue HeatcapacityValue

.EndThermalModel

.EndMaterial

Material Section Command Example

.Material

.MetalModel silver

*Temperature(C) Conductivity(S/m)

2.0000000e+001 6.301000e+007

.EndMetalModel

.DielectricModel FR4_4.2

*Frequency(MHz) Permittivity LossTangent 1.000000e+002 4.200000e+000 2.300000e-002

.EndDielectricModel

.ThermalModel silver

 ${}^* Temperature(C) \quad Conductivity(W/(m.K)) \quad Density(kg/m3) \quad \quad Heat capacity(J/(kg.K))$

2.700000e+001 4.290000e+002 1.050000e+004 2.320000e+002

.EndThermalModel

.EndMaterial

Material Model Parameter Descriptions

PARAMETER	Effect or Meaning
.Material	Keyword for beginning of material models section line
.EndMaterial	Keyword for end of material models section line
ModelName	A character string for the name of the material model
TemperatureValue	Value of Temperature
ConductivityValue	Value of Conductivity
FrequencyValue	Value of Frequency
PermittivityValue	Value of Permittivity

PARAMETER	EFFECT OR MEANING
LossTangentValue	Value of Loss Tangent
DensityValue	Value of Density
HeatcapacityValue	Value of Heat Capacity

Node Description Lines

General Form

Node[Affix]xxx[!!PinName][::NetName]

[PolygonVertex]

x = f1

y = f2

Layer = s1

[Contact = n1]

[Padstack = PadStackName]

[AbsoluteRotation = Angle]

Note!

A Node can only be on a Plane or a Signal layer. If the Node is an end Node of a Trace, electric contact with the Trace is assumed, and the **Contact** option does not need to be specified.

If a Node is an upper or lower end of a Via located on a plane or patch, two possibilities exist: (1) the Node is in contact with the metal or (2) the Node is NOT in contact with the metal.

Node Example

Node8Zgx4080!!U27-1::VSS X = -2.200912e+001mm Y = -2.000912e+001mm

+ Layer = Signal_Ground Contact = 1

Node Padstack Information Example

Node9321!!1::R_BNC_5P X = 1.194100e+001mm Y = 2.009700e+001mm Layer = Signal\$L1_TOPSIDE Contact = 1 PadStack = PAD88CIR78D AbsoluteRotation = 180

Node Parameter Descriptions

PARAMETER	Effect or Meaning		
Node	Node keyword		
Affix	Optional 1 to 4 characters		
XXX	A character string for the name of the Node		
!!PinName	Optional name associated with the pin		
::NetName	Optional Net name associated with the object		
PolygonVertex	If PolygonVertex is present, the node coincides with a polygon vertex. The Trace, of which the Node is a terminal, connects to a metal patch.		
x =f1	X coordinate of the Node with respect to the package origin		
y = f2	Y coordinate of the Node with respect to the package origin		
Layer =s1	Name of the Plane or Signal layer on which the Node resides		
	Contact		
= 1	The Node has electric contact with the metal shape or patch. Default		
= 0	The Node has no electric contact with the metal Shape (or Patch)		
[Padstack = PadStackName]	The name of the Padstack. Optional		
[AbsoluteRotation = Angle]	The angle of absolute rotation in degrees. Optional		

Via Description Lines

General Form

Via[Affix]xxx[::NetName]

UpperNode = s1

LowerNode = s2

+ [Conductivity = f1]

[Color = s4]

[Padstack = PadStackName]

[AbsoluteRotation = Angle]

Via Example

Via8Zgx0100::GND UpperNode = Node04227 LowerNode = Node3373 Radius = R0

+ Conductivity = 5.80e+007 Color = red

Via Padstack Information Example

Via1:GND UpperNode = Node13815::GND LowerNode = Node13816::GND Color = yellow Pad-Stack = PAD60SQ36D AbsoluteRotation = 270

NOTE!	Radius information is stored in Padstack.
	Parameter [radius = value] is not valid.

Via Parameter Descriptions

PARAMETER	Effect or Meaning
Via	Via keyword
Affix	Optional 1 to 4 characters
xxx	A character string for the name of the Via
::NetName	Optional net name associated with the Object
UpperNode =s1	Name of the node at the upper end of the Via
LowerNode =s2	Name of the node at the lower end of the Via.
	Conductivity of the Via. Default value: 5.8e7 S/m.
Conductivity =f1	(Via_Conductivity_Default). The conductivity parameter in .this statement is an optional value.
	If it is omitted, Via_Conductivity_Default parameter value of .Package command is used.
Color =s4	Via color name. Default: Via color set at the .Package command line
[Padstack = PadStackName]	The name of the Padstack. Optional
[AbsoluteRotation=Angle]	The angle of absolute rotation in degrees. Optional

Wirebond Description Lines

Wirebond data is managed in two groups: Wirebond models and Wirebonds.

General Form

.WirebondModel Diameter = d1 {Conductivity = c1| Material = m1} Er =e1

+ ({modelname Type = 4_point H1 = h1 Alpha = alf (Diameter = d1)({Material = d1 |

```
Conductivity = c1)(Er = e1) |
```

- + modelname Type = 5_point H1 = h1 Alpha =alf eta = beta (Diameter = d1)({Material = | Conductivity = c1})(Er = e2))|
- + modelname Type = Reverse_4_point H1 h1 Alph = alf Beta = beta H2 = h2 (Diameter = d1) ({Material = d1| Conductivity = c1})(Er = e1)})
- + modelname Type = Discrete {FullyDefSeg}
- + [{FromEnd | PartiallyDefSeg FromEnd PartiallyDefSeg} { FullyDefSeg }]
- + [Diameter = d1] [{Material = m1| Conductivity = c1}] [Er = e2]

PartiallyDefSeg ::= {VH = h1| A = a1 | HL = I1 | HP = p%}

.EndWirebondModel

Wirebond Example 1

.WirebondModel Diameter = 2.540000e-002mm Conductivity = 5.700000e+007 Er=1.000000 StackUp = Die Up

default0 Type = 4_Point H1 = 1.200000e-001mm Alpha = 75.000000 Diameter = 1.000e-002mm Er=1.500000

default1 Type = 4_Point H1 = 1.800000e-001mm Alpha = 75.0000000 Material = Gold

default2 Type = 4_Point H1 = 2.700000e-001mm Alpha = 75.000000 Diameter = 1.000e-002mm Material = Silver Er=1.200000

wbmodel3 Type = Reverse_4_Point H1 = 3.300000e-005mm Alpha = 3.300000 Beta = 2.200000 H2 = 2.200000e-005mm Conductivity = 5.700000+007

default6 Type = 4_Point H1 = 9.300000e-001mm Alhoa = 75.000000 Er=1.600000 Material = gold

default7 Type = 5_Point H1 = 1.170000e+000mm Alpha = 75.000000 Beta = 2.200000

wbmodel8 Type=Discrete VH=2.500000e-000mm A=60.0000000 VH=1.500000e-000mm A=30.0000000 FromEnd HL=2.0000000e-000mm A=40.0000000 HP=20.0000000 A=30.0000000

.EndWirebondModel

Wirebond Example 2

WirebondModel Diameter = 2.540000e-002mm Material = copper Er = 1.000 StackUp = Die Up

Wirebond Parameter Descriptions

PARAMETER	EFFECT OR MEANING
WirebondModel	Keyword
Diameter = s1	Diameter of the Wirebond model
Conductivity = c1	Conductivity of the Wirebond model
Material = m1	Material of Wirebond model
Er = e1	Relative permittivity of the Wirebond model
modelname Type	Choose from: 4_point 5_point Reverse_4_point .KNS Standard .KNS Loop Discrete
H1 = <i>h1</i>	Height of the Wirebond starting from the die
Alpha = alf	Angle between H1 and the length of the Wirebond
Beta = beta	Angle between H2 and the length of the Wirebond
H2 = <i>h</i> 2	Height of the Wirebond starting from the Via
Span = <i>s1</i>	Horizontal section length in the K&S loop model as a fraction of separation between starting and ending Node locations
Diameter = d1	Diameter of the Trace, which becomes the diameter of the Wirebond
Material = m1	If selecting a data file, use a meta type to calculate the conductivity of the model
Direction = d1	Whether the Wirebond is above (Die-Up) or below (Die_Down) the die
Flip	Starts the model description at the Wirebond starting Node (NO) or ending Node (YES)
conductivity	Conductivity of the given Wirebond
Er	Use the common value if set to empty. Relative permittivity of the Wirebond
VH	Vertical height of Wirebond segment in Discrete model description
HL	Horizontal length of Wirebond segment in Discrete model description
HP	Horizontal percent of Wirebond segment to total distance of starting and ending Nodes in Discrete model description
A	Angle of Wirebond segment to horizontal axis in Discrete model description

Wirebond Models

The following illustrations display the different Wirebond models:

- Four Point
- Five Point

- Reverse Four Point
- KNS Standard
- KNS Loop
- Discrete

Four Point Model

Five Point Model

Reverse 4-Point Model

The K&S Standard Model

The K&S Loop Model

The Cadence Discrete Model

This **Type** defines a discredited Wirebond model by introducing pairs of horizontal and vertical parameters.

Horizontal Parameters

- **HL** Horizontal length of the segment
- **HP** Percentage of the horizontal length of the segment to the total horizontal distance (D) between the starting and ending Nodes

Vertical parameters

- VH Vertical height of the segment
- A Angle (Alpha) of the segment to horizontal xis

Both or either of horizontal and vertical parameters can be defined for one segment:

- Fully defined If it is the first case
- Partially defined If either horizontal or vertical parameter is defined

If a segment is induced by linking the two terminals of two fully defined segments, the segment is called free segment.

The intersection of two partially defined segments is called free Node.

NOTE!

Free segment or free Node can occur only once at any location in the model. They cannot occur at the same time in the same model.

WirebondGroup Description Lines

General Form for WirebondGroup

(.WirebondGroup *DieName* [Ref = Wirebond Reference Layer Name]

- + (Wirebond[Affix]xxx[::Netname] StartingNode=n1 EndingNode=n2
- + Model=*m* [Color=*c*])

.EndWirebondGroup)

WireBondGroup Example

.WirebondGroup Test_17 Ref = Signal\$01

Wirebond01 StartingNode = Node021 EndingNode = Node022 Model=WBModel1

Wirebond02 StartingNode = Node023 EndingNode = Node024 Model=WBModel1

Wirebond03 StartingNode = Node025 EndingNode = Node026 Model=WBModel1

Wirebond04 StartingNode = Node027 EndingNode = Node028 Model=WBModel1

.EndWirebondGroup

WirebondGroup Parameter Descriptions

PARAMETER	EFFECT OR MEANING
WirebondGroup	Key word
DieName	Name of the die that the Wirebond group belongs
Ref = Wirebond Reference Layer Name	The reference layer, which is calculated
Affix	Optional 1 to 4 characters
xxx	A character string for the name of the Trace
::NetName	Optional Net name associated with the Object
StartingNode = n1	Name of the Node at one end of the Wirebond
EndingNode = n2	Name of the Node at the other end of the Wirebond
Model = m	The model name
Color =s3	Wirebond color name Default: Trace color set at Signal layer description line

Trace Description Lines

General Form for Trace

Trace[Affix]xxx[::NetName] [Thermal] StartingNode = s1 EndingNode = s2

- + [Width = f1] [EndingWidth = f2]
- + [Thickness = f3] [Conductivity = f4] [Color = s3]
- + [BreakPoint = r1 r2 ... rn]

- + [UpperRef = LayerNameU1 LayerNameU2 ... LayerNameUn+1]
- + [LowerRef = LayerNameL1 LayerNameL2 ... LayerNameLn+1]

Trace Example

Trace04 StartingNode = Node07 EndingNode = Node08 Width = 1.000000e-001mm

- + Thickness = 3.560000e-002mm Conductivity = 5.800000e+007
- + BreakPoint = 2.574126396738219e-002 2.293906973103277e-001
- + 3.246442126982831e-001 3.763440901941133e-001
- + 3.901500090657101e-001 6.243196402083977e-001
- + UpperRef = Plane02
- + N/A
- + N/A
- + Plane02
- + Plane02
- + N/A
- + Plane02
- + LowerRef = Plane03
- + Plane03
- + N/A
- + N/A
- + Plane03
- + Plane03
- + Plane03

Trace Parameter Descriptions

PARAMETER	Effect or Meaning
Trace	Trace keyword
Affix	Optional 1 to 4 characters
xxx	A character string for the name of the Trace
::NetName	Optional Net name associated with the Object

PARAMETER	EFFECT OR MEANING
Thermal	If the <i>Thermal</i> keyword is present, the Trace is a thermal Trace, and the Break-Point, UpperRef, and LowerRef sections will not exist in the statement
	If the <i>Thermal</i> keyword is absent, the BreakPoint, UpperRef, and LowerRef sections exist in the statement
StartingNode =s1	Name of the Node at one end of the Trace
EndingNode =s2	Name of the Node at the other end of the Trace
Thickness = f1	Thickness of the Trace Default: Thickness defined in Signal layer description
	Width of the Trace. Default: Width defined in Signal layer description line
Width = <i>f</i> 2	If EndingWidth is specified, this field is the width of the Trace at the starting Node
EndingWidth = f3	Width of the Trace at the ending Node. If the values of Width and EndingWidth aren't equal, the Trace is called a Tapered Trace; otherwise, Uniform Trace
Conductivity =f4	Conductivity of the Trace conductor Default: Conductivity defined in Signal layer description line
Color =s3	Trace color name Default: Trace color set at Signal layer description line
BreakPoint = r1 r2 rn	ri is the ratio (0 \sim 1) of the distance from the starting Node to the <i>ith</i> -breakpoint over the whole length of the Trace
UpperRef	Name of the upper reference plane for the Trace section
LowerRef	Name of the lower reference plane for the Trace section

ClippedTrace Lines

The Trace clipping procedure in the program adds following line in the .spd file after the Via and Trace section.

General Form

ClippedTrace = s1

ClippedTrace Example

Where s1 is information used internally by executable modules and it should not be modified by the user.

ClippedTrace = 540A09FF-6FF475BF-4F822248-956A6934

Segmented Trace Lines

The **Trace over split plane** algorithm in the program adds the following line in the .**spd** file after the Via and Trace section.

General Form

SegmentedTrace = s1

where *s1* is information used internally by executable modules and it should not be modified by the user.

SegmentedTrace Example

SegmentedTrace = 540A09FF-6FF475BF-4F822248-956A6934

CPL Description Lines

Use this line for a coupled line object consisting of single Trace segments.

This description is deprecated in favor of the GCPL description discussed in *GCPL Description Block*.

General Form

CPLxxxx Trace1 Trace2 ... TraceN

CPL Parameter Descriptions

PARAMETER	EFFECT OR MEANING
CPLxxxx	Name of the coupled Trace object, where xxxx can be any characters
Trace1 Trace2 TraceN	List of Trace names

GCPL Description Block

Use this line for a coupled line object, often consisting of multiple Trace segments. This description may also be used in the case of couple line objects consisting of single Trace segments.

Our internal algorithms adjust starting and ending positions of the coupling lines, so that the distance along all of the coupled lines is of the same line length.

General Form

GCPLxxxx N=n1 L=f1

S12 S23 ...

TraceName11 TraceName12 ...

TraceName21 TraceName22 ...

...

TraceNamen11 TraceNamen12

GCPL Illustration

Internal algorithims adjust the coupling line positions (pre- and post-) L= The adjusted internal line length derived after internal calculations.

GCPL Parameter Descriptions

PARAMETER	EFFECT OR MEANING
GCPLxxxx	Name of the coupled line object, where xxxx can be any characters.
N=n1	Number of coupled lines.
L=f 1	Length of the coupled lines. The length of the couple lines is computed by an internal algorithm at the time the coupled lines are set up.
S12 S23	Separations between n1 coupled lines. First number is the separation between line 1 and 2. Second number is the separation between line 2 and 3, etc. The separation between two lines is the average separation computed by an internal algorithm.
TraceName 11 TraceName 12	List of Trace names for line 1. Note the lines are recorded in the .spd file from bottom coupled line to top coupled line.
TraceName21 TraceName22	List of Trace names for line 2.

Lead Description Lines

Lead is a structure. Lead data is managed in two groups.

- Lead Instances
- Lead Models

General Form for LeadModel

.LeadModel {Conductivity = c1| Material = m1} Er = e1

{ {modelname Type = LeadType_1 Thickness = t Width = w L_up=l_1 L_low=l_2 ({Conductivity = c1| Material = m1})(Er = e1)|

modelname Type = LeadType_2 Thickness = t Width = w Ratio_up=r1 Ratio_low=r2 ({Conductivity = c1 | Material = m1})(Er = e1)|

modelname Type = LeadType 3 Thickness = t WWidth=wu NWidth=wl NarrowRatio=r0

+ L_up=l_1 L_low=l_2 R_up=Ru R_low=Rl ({Conductivity = c1| Material =m1})(Er = e1)|

modelname Type = LeadType_4 Thickness = t WWidth=wu NWidth=wl NarrowRatio=r0

+ Ratio_up=r1 Ratio_low=r2 R_up=Ru R_low=Rl ({Conductivity = c1| Material = m1})(Er = e1)} }

.EndLeadModel

Lead Model Example

* Lead Model Section

LeadModel Conductivity = 5.100000e+007 Er = 4.000000

Ifm1 Type = LeadType_1 Thickness = 2.540000e-002mm Width = 2.540000e-002mm + L_up = 2.100000e+001mm L_low = 1.800000e+001mm Material = copper Er = 3.000000

Ifm2 Type = LeadType_2 Thickness = 2.540000e-002mm Width = 2.540000e-002mm + Ratio_up = 0.400000 Ratio_low = 0.300000 Conductivity = 5.200000e+007

Ifm3 Type = LeadType_3 Thickness = 2.540000e-002mm WWidth = + 5.540000e-002mm NWidth = 2.540000e-002mm NarrowRatio = 0.500000

- + L_up = 2.100000e+001mm L_low = 1.800000e+001mm R_up =
- + 1.000000e+001mm R low = 1.000000e+001mm Er = 3.300000

Ifm4 Type = LeadType_4 Thickness = 2.540000e-002mm WWidth =

- + 5.540000e-002mm NWidth = 2.540000e-002mm NarrowRatio = 0.500000
- + Ratio_up = 0.400000 Ratio_low = 0.300000 R_up =

+ 1.000000e+001mm R_low = 1.000000e+001mm

.EndLeadModel

LeadModel Conductivity = 5.100000e+007 Er = 4.000000

Ifm5 Type = LeadType_1 Thickness = 2.540000e-002mm Width = 2.540000e-002mm

+ L_up = 2.100000e+001mm L_low = 1.800000e+001mm Conductivity = 5.100000+007 Er = 3.400000

Ifm6 Type = LeadType_2 Thickness = 2.540000e-002mm Width = 2.540000e-002mm

+ Ratio_up = 0.400000 Ratio_low = 0.300000 Material = copper

Ifm7 Type = LeadType_3 Thickness = 2.540000e-002mm WWidth =

- + 5.540000e-002mm NWidth = 2.540000e-002mm NarrowRatio = 0.500000
- + L_up = 2.100000e+001mm L_low = 1.800000e+001mm R_up =
- + 1.000000e+001mm R_low = 1.000000e+001mm

Ifm8 Type = LeadType_4 Thickness = 2.540000e-002mm WWidth =

- + 5.540000e-002mm NWidth = 2.540000e-002mm NarrowRatio = 0.500000
- + Ratio_up = 0.400000 Ratio_low = 0.300000 R_up =
- + 1.000000e+001mm R_low = 1.000000e+001mm

.EndLeadModel

Lead Parameter Descriptions

PARAMETER	Effect or Meaning
LeadModel	Keyword of lead model definition
Conductivity = c1	Conductivity of the lead model
Material = m1	Material of medium
Er = e1	Relative permittivity of the lead model
modelname Type	Choose from: Lead Type_1 Lead Type_2 Lead Type_3 Lead Type_4
Thickness = t	Thickness of lead model
Width = w	Width of lead model
L_up = <i>l</i> _1	See the following figures

PARAMETER	Effect or Meaning
L_low = <i>L_2</i>	See the following figures
Ratio_up = r1	See the following figures
Ratio_low = r2	See the following figures
WWidth = wu	See the following figures
NWidth = w1	See the following figures
NarrowRatio = r0	See the following figures

The following illustrations display different lead models:

- LeadType_1
- LeadType_2
- LeadType_3
- LeadType_4

LeadType_1 and LeadType_2

LeadType_3 and LeadType_4

LeadGroup Description Lines

General Form

{.LeadGroup Name

{+ Lead[Affix]xxx[::Netname] StartingNode= n1 EndingNode = n2

+Model=m [Color = c]}

EndLeadGroup}

LeadGroup Example

* Lead Group Section

.LeadGroup Ifg1

Lead inst1 StartingNode = Node089::GND EndingNode = Node0209!!4::VDD25 Model

+ = Ifm1 Color = red

Lead_inst2 StartingNode = Node065::GND EndingNode = N=ode0210!!5::VDD25 Model

+ = Ifm2 Color = green

Lead_inst3 StartingNode = Node083::GND EndingNode = Node0212! !9::VDD25 Model

+ = Ifm3 Color = blue

Lead_inst4 StartingNode = Node095::GND EndingNode = Node0220!!2::DATA2 Model

+ = Ifm4 Color = pink

.EndLeadGroup

LeadGroup Parameter Descriptions

PARAMETER	EFFECT OR MEANING
LeadGroup	Key word of lead instance definition

PARAMETER	EFFECT OR MEANING
Name	Name of lead group
Affix	Optional 1 to 4 characters
xxx	A character string for the name of the lead instance
::NetName	Optional Net name associated with the object
StartingNode = n1	Name of the Node at one end of the lead
EndingNode = n2	Name of the Node at the other end of the lead
Model = m	Model name that the lead instance belongs to
Color = c	Lead instance color name

Circuit Component Description Lines

This chapter covers circuit component description lines. These lines specify components in partial circuits. They are placed between the commands .PartialCkt and .EndP.

PARTIAL CIRCUIT NETWORK

- Partial circuit is a circuit network that is connected to a package only
- □ Partial circuit can not be connected to another partial circuit
- □ Partial circuit definition describes circuit components and interconnections between different circuit components within a partial circuit network
- ☐ Partial circuit network needs to be defined before it is used
- □ Several identical partial circuit networks can share one partial circuit definition

Circuit Component Description Lines

General Form for Circuit Component

Keyword parameter1 parameter2 . . .

NOTE! A sub circuit cannot call itself directly or indirectly.

Circuit Component Parameter Descriptions

KEYWORD	Effect or Meaning
В	Buffers of IBIS models
С	Capacitor

_Cmatrix	Mutual capacitor matrix
D	Diode
Е	Voltage controlled voltage source (VCVS) OR Laplace or Pole-zero Voltage Gain Function
F	Current controlled current source (CCCS)
G	Voltage controlled resistor (VCR) OR voltage controlled current source (VCCS) OR voltage controlled capacitor (VCCAP) OR Laplace or Pole-zero Trans-conductance Function
Н	Current controlled voltage source (CCVS)
I	Current source
К	Mutual inductor
L	Inductor
_Lmatrix	Mutual inductor matrix
М	MOSFET
R	Resistor
Т	Tansmission line
V	Voltage source
W	Coupled transmission
Х	Subvariety

ARBITRARY MATHEMATICAL EXPRESSION PROCESSING

A controlled component modeled with controlling variables and mathematical functions such as the Exponential function, Power function, etc. can be represented by a mathematical expression in SPEED2000.

General Form for Arbitrary Mathematical Expression Processing

A pair of single quotation marks enclose a valid mathematical expression. Letters in a given mathematical expression are case insensitive.

'Mathematic_Expression'

In SPEED2000, a valid mathematical expression is comprised of:

- Constant numbers
- Local and global defined parameters
- Mathematical functions
- Mathematical operations
 - + addition
 - subtraction
 - * multiplication
- division
- Parentheses () are used to establish precedence of operation within expressions
- Voltage or current variables

The math constant PI (Circumference / Diameter) is internally defined in SPEED2000 as Pi = 3.14159265358979323846 ...

Mathematical Expressions

FUNCTION	MEANING	COMMENT
sin(x)	Sine function	Specify x in radians
cos(x)	Cosine function	Specify x in radians
tan(x)	Tangent function	Specify x in radians.
asin(x)	Arc Sine function	The value is returned in radians x must be less than or equal to 1.0
acos(x)	Arc Cosine function	The value is returned in radians x must be less than or equal to 1.0
atan(x)	Arc Tangent function	The value is returned in radians
sinh(x)	Hyperbolic Sine function	Specify x in radians
cosh(x)	Hyperbolic Cosine function	Specify x in radians
tanh(x)	Hyperbolic Tangent function	Specify x in radians. The value is returned in radians
abs(x)	Absolute Value function	
sqrt(x)	Square Root function	x must be larger than or equal to zero
x ^ y	Power function	Example: 3^2 = 9
log(x)	Natural Logarithm function	x must be larger than zero
log10(x)	Base 10 Logarithm function	x must be larger than zero
exp(x)	Exponential function	

Mathematical Expression Example

```
10 * Exp ( - oef * V(pos, neg) )
Factor * Sqrt ( V(1) ^ 2.0 + V(2) ^ 2.0 )
Sin (2 * pi * freq )
```

Voltage Variables

A voltage variable stands for the voltage of one Circuit Node relative to another Circuit Node.

General Form

V(node1, node2)

where the letter V (case insensitive).

The parentheses are required for a voltage variable expression.

The comma is required to separate the two Nodes.

NOTE!

Voltage variables may not appear in math expressions for R, L and C components.

Voltage Variable Example

The example represents the voltage difference by subtracting the voltage of node2 from the voltage of node1.

V(node1, node2) = V(node1)-V(node2)

This expression denotes the voltage of circuit node, node1, relative to circuit node, node2.

V(node1, node2)

Current Variable

A current variable represents the current flowing through an independent voltage source.

Current flows from the positive Node to the negative Node.

- □ Letter I Required and is case insensitive
- □ **Parentheses** Required for a current variable
- □ vsource Name of an independent voltage source

Note!

Current variables may not appear in math expressions for R, L and C components.

The Current variable form is not presently used in any Speed2000 statements.

Current Variable Example

I(vsource)

Parameters in Mathematical Expressions

Either local or global parameters can be used in an expression. All reserved words are case insensitive. These reserved keywords cannot be used as a parameter name:

```
sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, sqrt, abs, pi, v, i.
```

Parameters Example 1

```
' 10 * Exp ( - Coef * V(pos, neg) ) '
```

Coef — Local (or global) parameter names.

V(pos, neg) — The voltage difference between circuit node "pos" and circuit node "neg".

Exp — The exponential function.

Parameters Example 2

```
'Factor * Sqrt ( V(1,3) ^ 2.0 + V (2,4) ^ 2.0 ) '
```

In this example Factor is a local (or global) parameter

V(1,3) — The voltage difference between circuit node 1 and 3

V(2,4) — The voltage difference between circuit node 2 and 4

Sqrt — The square root function

The power function

Parameters Example 3

```
'Sin (2* pi * freq)'
```

freq — Local or global parameter

pi — Constant (3.1415926535897932384)

Sin — Sine function

Values of G and E Components

The controlling functions of G and E components can be mathematical expressions.

General Forms

```
Exxxx n+ n- [VCVS] [Max=val] [MIN=val] [ABS=1] name1 = 'mathematic expression'

Gxxxx n+ n- [VCCS] [Max=val] [MIN=val] [ABS=1] [M=val]

name2='mathematic expression'

Gxxxx n+ n- VCR [Max=val] [MIN=val] [M=val] name3 = 'mathematic expression'

Gxxxx n+ n- VCCAP [Max=val] [MIN=val] [M=val] name4 = 'mathematic expression'
```

Related Topics

- E Voltage Controlled Voltage Source (VCVS)
- G Foster Pole-residue Form Trans-conductance Function
- G Voltage Controlled Resistor (VCR)

G and **E** Parameter Descriptions

PARAMETER	Effect or Meaning
n+	Name of the circuit Node where a controlled voltage source is connected
n-	Name of the other circuit Node where a controlled voltage source is connected
Exxxx	A character string, starting with E, for the name of a voltage controlled source
Gxxx	A character string, starting with G, for the name of a Voltage Controlled Resistor
VCVS	Keyword for voltage controlled voltage source VCVS is a reserved word and should not be used as a Node name
VCCS	G element key word for Voltage Controlled Current Source.
VCR	Required key word to identify the type of Voltage Controlled Resistor. An error is reported if it is spelled incorrectly
VCCAP	Required key word to identify the type of Voltage Controlled Capacitor An error is reported if it is spelled incorrectly
ABS=1	Output is absolute value if ABS=1
M=val	Number of elements in parallel
MAX=val	Maximum current value Default is undefined and sets no maximum value
MIN=val	Minimum current value Default is undefined and sets no minimum value
nama	Name of the mathematical expression The same name may be used for different expressions
name	The name must be followed by an equal sign and a valid mathematical expression
	A valid mathematical expression must be put within a pair of single quotation marks
'mathematic expression'	Local and global defined parameters and voltage variables may appear in all G and E type components mathematical expressions
	Current variables may not appear

Values of R, L, and C Components

The values of the R, L, and C components can be represented by mathematical expressions. These expressions cannot contain voltage and current variables.

General Form

```
Rxxxx Node1 Node2 {Value | name = 'mathematic expression' }

Ixxxx Node1 Node2 [IC = f1] [R_0 = f2] {Value | name = 'mathematic expression'}

Cxxxx Node1 Node2 [IC = f1] {Value | name = 'mathematic expression'}
```

R, L, and C Components Example

```
R1 1 2 R='V0/I0'
Lx 3 4 ind='L0/3'
C0 5 6 cap='cap1+cap2'
```

In these examples, V0, I0, L0, cap1, and cap2 must be constant local/global parameters.

Related Topics

- Arbitrary Mathematical Expression Processing
- GC Capacitor Description Line
- GC Capacitor Description Line
- GC Capacitor Description Line

R, L, and C Component Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Rxxxx	A character string, starting with R, for the name of a resistor
Lxxxx	A character string, starting with L, for the name of an inductor
Схххх	A character string, starting with C, for the name of a capacitor
name	Name of the mathematical expression The same name may be used for different expressions The name must be followed by an equal sign and a valid mathematical expression
'mathematic expression'	A valid mathematical expression must be put within a pair of single quotation marks
Node1	Name of the circuit Node connected to one end of the inductor
Node2	Name of the circuit Node connected to the other end of the inductor
IC = f1	For an Inductor — Initial current flowing from Node1 to Node2 inside the inductor For a Capacitor — Initial voltage between Node1 and Node2 inside the capacitor
R_0 = f2	Resistance (for DC analysis). Default value: 0.0001 ohm

PARAMETER NAMES

When defining parameter names, the following rules apply.

- □ Parameter name consists of letters and numbers
- ☐ First character must be a letter
- ☐ There may be more than one .Param lines in .spd file
- ☐ If *value* is not defined before it is used, SPEED2000 prompts an error message.
- ☐ The .Param lines must exist outside the data block enclosed by a pair of dots ('.') (*Example .Param 1*)
- ☐ If the same parameter is defined as both a local and global parameter, the local parameter precedes the global (*Example .Param 2*)
- ☐ The order of parameter definitions is important. If a parameter is defined more than once, only the last definition of that parameter is effective (*Parameter Order Example*)

Example .Param 1

.PARAM Cvalue=5p

.PARAM Rvalue=50

.PartialCkt RCload

R 1 2 Rvalue

C 1 2 Cvalue

.endPartialCkt

Example .Param 2

.Param VCC=5V

.PartialCkt Source VCC=3V rvalue=50 rvalue=100

V pwr gnd VCC

R sig gnd rvalue

.EndP

In this example, the value of VCC is 3v, because the local parameter overwrites the global parameter. The value of rvalue is 100 because the latter definition overwrites the previous value of 50.

Parameter Order Example

.Param Rload = 100k

.Param Rload = 50k

The last definition of Rload with a value of 50k is used

GLOBAL PARAMETERS (.PARAM)

The numerical values in .PartialCkt and .Subckt statements an be represented by parameter names.

- Capacitances
- Currents
- Inductance
- Resistances
- Time delays
- Voltages

Global parameters are parameters defined in the **.Param** description lines. The effective scope is all partial and subcircuit definitions.

General Form

The general form can be expressed in one of two ways: ParameterName or Value.

.Param {ParameterName = value}

LOCAL PARAMETERS

Local parameters, defined in the same line as **.Partial** or **.SubCkt** description lines, only affect the partial or subcircuit for which they are defined.

If the same parameter is defined as both a local parameter and a global parameter (within the .param line), the local parameter overrides the global parameter.

Local parameters defined in the same line as **SubCkt** description lines only affect the subcircuit for which they are defined.

Local variables defined only in a sub circuit cannot be seen outside the sub circuit. (**SUBCKT Example** 3).

If the same local parameter is defined more than once in the same circuit definition, the latter definition is used (*PartialCkt Example 3*).

Local parameters can be overwritten by specifying the same name parameter when making a sub circuit call. (*SUBCKT Example 4*).

PARAMETER	Effect or Meaning
ParameterName	The name used for the parameter. Please see the notes below.
Value	A number or a defined parameter name.

Local Parameter Descriptions

PARAMETER	Effect or Meaning
PartialCKTName	A character string for the name of the partial circuit definition
IBIS=IBISFileName	IBIS file name

PARAMETER	Effect or Meaning	
ComponentsComponentName	IBIS components. If more than one exists in the IBIS file, this clause might appear, otherwise the first component of the file is used	
Component=ComponentName	If spaces exist in the ComponentName field, it should be surrounded by single (' ') or double (" ") quotes	
PinName	Specifies component pins of the IBIS file Options are set in the following parenthesis	
ModelName	Specifies the actual model the pin uses when the model name (given in the pin section) is a model selector	
	Specifies the enable signal for the pin, if applicable	
EnableSignal	EnableSignal is a reserved word or the name of a sub-circuit definition, which a voltage source is defined with a 0~1 volt	
	For this variable, the following are reserved words: Output, Input, and Output_High_Z	
StimulusSignal	Specifies the stimulus signals. StimulusSignal is a reserved word or the name of a sub-circuit definition, which a voltage source is defined with a 0~1 voltage	
	For this variable, the following are reserved words: Stuck_High, Stuck_Low	

PARTIAL CIRCUIT COMMAND

General Form

.PartialCkt PartialCKTDefName [TYPE=HSPICE] [ExtNode={NodeName}] [{ParameterName = ParameterValue}]

Partial Circuit End Line Example

```
.EndPartialCkt [PartialCKTDefName]
```

[IBIS=IBISFilename [Component=ComponentName]]

[{PinName = ([ModelName] [, [typ] [, [EnableSignal] [, [StimulusSignal] [, [ramp_fwf]

PartialCkt Example 1

.PartialCkt E	R_50m			
V1	1	0	PWL	FILE=source_per.dat
RS	1	2	28.0	
.EndPartialC	Ckt			
.PartialCkt	R28			
R1	1	0	28	
.EndPartialC	ckt			
.PartialCkt D)есар			
C1	0	2	0.047u	
L1	2	3	0.9n	
R1	3	1	844m	
.EndPartialC	Ckt			

PartialCktExample 2

.PartialCkt Load rvalue1=30 rvalue2=50
Rload1 1 2 rvalue1
Rload2 2 3 rvalue2
.EndP

PartialCkt Example 3

.Param VCC=5V

.PartialCkt Source VCC=3V rvalue=50 rvalue=100

V pwr gnd VCC R sig gnd rvalue .EndP

In *PartialCkt Example 3*, the value of VCC is 3V because the local parameter assignment overrides the global assignment (within the .param line).

The value of rvalue is 100 because the latter local parameter overwrites the previously assigned local parameter.

Nested Sub circuit Definition

SPICE-compatible nested sub circuit definition is supported in SPDGEN, PowerSI and PowerDC.

Several **SubcircuitName** entries can be defined in .**SUBCKT** command for local reference in hierarchy. The syntax of nested sub circuit definitions is the same as a top-level .**SUBCKT** command.

Nested Sub circuit Example 1

.SUBCKT IOBufferD nd pu nd pd nd out nd in gnd nd fend

B_io nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_in

+ file='t96b.ibs' model="DQ FULL'

+buffer=input_output

+package=yes

.SUBCKT stim 1 2 ref

V1 1 ref pulse (0V 2.5v 0n 0.5n 0.5n 1n 4n)

V2 2 ref 2.5v

.ENDS

.SUBCKT connector 1 2 ref

C1 1 ref 0.415pF

L1 1 1a 2.4n

R1 1a 2 2.4

C2 2 ref 0.415pF

.ENDS

```
Xstim nd_in nd_en gnd stim

Xconn nd_out nd_fend gnd connector

.ENDS
```

In this case subcircuit stim and connector are defined embedded in IOBufferD. They can only be referred to and used by top circuit IOBufferD.

Parallel nested subcircuit can be referred to by each other, like usual subcircuit definition and instantiation.

Related Topic

Broadband SPICE User's Guide

```
Nested Subcircuit Example 2
```

```
.param trp=50p tfp=50p
.param pw=1.4n per=3.0n
.SUBCKT IOBufferD nd pu nd pd nd out nd in gnd nd fend
B_io nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_in
+ file='t96b.ibs' model="DQ_FULL'
+buffer=input_output
+package=yes
.param vil=0 vih=2.5
.SUBCKT stim 1 2 ref
.param dly=0
V1 1 ref pulse (vil vih dly trp tfp pw per)
V2 2 ref vih
.ENDS
.SUBCKT connector 1 2 ref
C1 1 ref cload
L1 1 1a 2.4n
R1 1a 2 rs
C2 2 ref cload
.param rs=2.4
.ENDS
```

Xstim nd_in nd_en gnd stim

Xconn nd_out nd_fend gnd connector

.param cload=0.415pF

.ENDS

In this case global defined parameters (trp, tfp, pw, per) and local defined parameters (vil, vih, dly, cload, rs) can be referred to by circuit element definition.

Global and higher-level defined parameters can be referred to by lower-level circuit and elements.

Example

Parameter **cload** definition scope is the same with subcircuit **connector**, so it can be referred to by the capacitor element in **connector** definition.

Partial Circuit Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
PartialCKTDefName	A character string for the name of the partial circuit definition	
Type=HSPICE	This variable only applies to users using HSPICE If this clause is missing, the type is a Allegro Sigrity partial circuit	
ExtNode=NodeName	Lists all of the external nodes ExtNode is independent of the Type clause	
ParameterName= ParameterValue	Local parameter specification. This assignment affects only the partial circuit where it is defined, except any sub circuits (of the partial circuit) are not affected by the assignment	
	A local parameter specification overrides a global parameter specification (made in the .param line) If the same local variable name is used more than once in a circuit definition, the latter value assignment is the one used	
	Where ParameterValue is a character string for the name of the parameter, the "=" sign is required and ParameterValue specifies the value of the parameter	
	Refer to the <i>SPEED2000 User's Guide</i> for details of the implementation of local and global parameter in .spd files	

.CONNECT - CIRCUIT PACKAGE CONNECTION LINES

The partial circuit connection description lines starts with the command .Connect. It ends with the command .EndC.

Between .Connect and .EndC are the specifications of connections between circuit nodes and package nodes.

The .Connect line establishes a partial circuit name corresponding to a partial circuit definition.

General Form

.Connect PartialCKTName PartialCKTDefName [Absent] [Usage=nnnn]

General Form

.EndC PartialCKTName

PartialCKTName

PartialCKTName is a character string for the name of the physical partial circuit network. The line indicates the end of partial circuit calls

Circuit Package Connection Parameters

PARAMETER	Effect or Meaning	
.Connect	Keyword for .Connect line	
PartialCKTName	A character string for the partial circuit name	
PartialCKTDefName	A character string for the name of the partial circuit definition given in the .PartialCKT command	
Absent ¹	When present, it means a circuit will not be considered in the simulation and every bit triplet is set to 001	
	A number, in any system:	
	Decimal	
	Hexadecimal (format: 0xnnnn or 0Xnnnn)	
nnnn	Octal (format: 0nnnn)	
	Binary (format: 0b <i>nnnn</i> or 0B <i>nnnn</i>)	
	This number, once translated into its binary counterpart, governs the usage in each tool.	

^{1.} The highest precedence keyword. It supersedes the usage flag.

.COMPCOLLECTION - COMPONENT COLLECTION DESCRIPTION LINES

The component collection description lines start with the command .CompCollection and end with the command .EndCompCollection, with the component extra properties in between.

Component Collection Parameters

PARAMETER	EFFECT OR MEANING	
.Footprint	Footprint library description lines	
.Fanout	Fanout Library description lines	
.Part	Part description lines	
.Component	Component description lines	

PARAMETER	Effect or Meaning
.Pattern	Component pattern description lines

.Pattern Component Pattern Descriptions

Component pattern lines are used for component tags automatical generation.

General Form

.Pattern PatternString Tag = {TagName}

Pattern Example

.Pattern "C*" Tag = "Capacitor"

.Pattern "U*" Tag = "Tuner"

Component Pattern Parameters

PARAMETER	EFFECT OR MEANING	
.Pattern	Keywords for .Pattern lines	
PatternString	Pattern string	
TagName	Name of tag	

.MODEL DESCRIPTION LINES

The statement should appear before all .PartialCkt and .Subckt definitions. This statement currently works with the modeling feature of SPEED2000. It is only available in SPEED2000.

- Capacitor
- Coupled transmission line
- Diode
- MOSFET
- Resistor
- Small signal parameter data frequency table
- S parameter

General Form

.MODEL ModelName ModelType [pname1 = val1 pname2 = val2 ...]

Model Diode Example

.MODEL Diode1 D IS=1E-13 N=1.05

Model Parameter Descriptions

PARAMETER	Effect or Meaning
ModelName	0Model name
ModelType	C: Capacitor D: Diode NMOS: n-type MOSFET PMOS: p-type MOSFET R: Resistor W: Coupled transmission line S: S parameters
pname1, pname2,	Model parameter names. Parameter names for different types of models may be different
val1, val2,	Model parameter values

Capacitor Parameter Descriptions

NAME (ALIAS)	UNIT	DEFAULT	EFFECT OR MEANING
CAP	F	0	Capacitance value
CAPSW	F	0	Sidewall capacitance
COX	F/m ²	0	Bottom-wall capacitance
DEL	m	0	Difference between drawn and actual length or width DELeff = DEL * SCALM
DI		0	Relative Dielectric Constant.
L	m	0	Length of capacitor Lscaled = L * SHRINK * SCALM
SCALE		1	Capacitance scale factor
SHRINK		1	Shrink factor
TC1		0	Capacitance 1 st temperature coefficient
TC2		0	Capacitance 2 nd temperature coefficient
THICK	m	0	Insulator thickness
TREF (TNOM)		25	Reference temperature
W	m	0	Width of capacitor Wscaled = W * SHRINK * SCALM

Diode Parameter Descriptions

For ModelType D (Diode), the following parameter names are used.

NAME (ALIAS)	UNIT	DEFAULT	EFFECT OR MEANING
		Diode	DC Parameter
LEVEL		1	Diode model selector LEVEL=1 Selects the non-geometric junction diode model LEVEL=3 Selects the geometric junction diode model
AREA	LEVEL=1 Unitless LEVEL=3 m ²	1.0	Junction Area LEVEL=1 AREAeff = AREA * M LEVEL=3 AREAeff = AREA * SCALM ² * SHRINK ² * M If L and W is given AREAeff = Weff * Leff * M
PJ	LEVEL=1 Unitless LEVEL=3 m	0.0	Junction periphery LEVEL = 1 PJeff = PJ * M LEVEL = 3 PJeff = PJ * SCALM * SHRINK * M If L and W is given PJeff = (2 * Weff + 2 * Leff) * M
EXPLI	amp/AREAeff	0.0	Forward current explosion parameter. The i-v characteristics are linear with the slope at the explosion point, when diode current is larger than EXPLIeff EXPLIeff = EXPLI * AREAeff
EXPLIR	amp/AREAeff	0.0	Reverse current explosion parameter. The i-v characteristics are linear with the slope at the explosion point, when diode current is less then EXPLReff EXPLIReff = EXPLIR * AREAeff
IB (IBV)	amp/AREAeff	1.0e-3	Current when vd = breakdown voltage IBeff = IB / SCALM ² * AREAeff
IK (IKF, JBF)	amp/AREAeff	0.0	Forward knee current. IKeff = IK * AREAeff
IK (JBR)	amp/AREAeff	0.0	Reverse knee current. IKReff =IKR * AREAeff
IS (JS)	amp/AREAeff	LEVEL=1 1.0e-14 LEVEL=3 0.0	Saturation current per unit area. If ISeff is less than EPSMIN, ISeff will be set to EPSMIN LEVEL = 1 ISeff = IS * AREAeff LEVEL = 3 IS / SCALM ² * AREAeff
JSW (ISP)	amp/PJeff	0.0	Sidewall saturation current per unit pj. If ISWeff is less than EPSMIN, ISWeff is set to EPSMIN LEVEL =1 JSWeff = JSW * PJeff LEVEL = 3 JSWeff = JSW / SCALM * PJeff
L	m	0.0	Length of the diode Leff = L * SHRINK * SCALM + XWeff

W	m	0.0	Width of the diode Weff = WE * SHRINK * SCALM + XWeff
N		1.0	Emission coefficient
NBV		N	Breakdown emission coefficient
RS	ohm*AREAeff	0.0	Parasitic resistance LEVEL=1 RSeff = RSD / AREAeff LEVEL=3 RSWeff = RS * SCALM ² / AREAeff
SHRINK		1.0	Shrink factor
VB (BV, VAR, VRB)	V	0.0	Reverse breakdown voltage
xw	m	0.0	Accounts for masking and etching effects XWeff = XW * SCALM
JTUN	amp/AREAeff	0.0	Tunneling saturation current LEVEL=1 JTUNeff = JTUN * AREAeff LEVEL=3 JTUNSWeff = JTUNSW / SCALM * AREAeff
JTUNSW	amp/PJeff	0.0	Tunneling sidewall saturation current LEVEL=1 JTUNSWeff = JTUNSW * AREAeff LEVEL=3 JTUNSW / SCALM * AREAeff
NTSUN		30	Tunneling emission coefficient.
		Diode Capa	acitance Parameters
CJ (CJA, CJO)	F/AREAeff	0.0	Zero-bias junction capacitance LEVEL=1 CJeff = CJ * AREAeff LEVEL=3 CJeff = CJ / SCALM ² *AREAeff
CJP (CJSW)	F/PJeff	0.0	Zero-bias junction sidewall capacitance LEVEL=1 CJeff = CJP * AREAeff LEVEL=3 CJPeff = CJP / SCALM * AREAeff
FC		DCAP=1/2 0.5 DCAP=3 4	Coefficent for forward depletion junction area capacitance. DCAP=1/2 Maximum value: 0.9999 DCAP=3 Minimum value: 1.1
FCS		DCAP=1/2 0.5 DCAP=3 4	Coefficent for forward depletion junction periphery capacitance when DCAP=1. DCAP=1/2 Maximum value: 0.9999 DCAP=3 Minimum value: 1.1
M (EXA, MJ)		0.5	Grading coefficient for junction area.
MJSW (EXP)		0.5	Grading coefficient for junction periphery
PB (PHI, VJ, PHA)	V	0.8	Contact potential for junction area
PHP	V	0.8	Contact potential for junction periphery

TT	S	0.0	Transit time.
		Metal and Poly C	apacitor for LEVEL = 3 Diode
LM	m	0.0	Length of metal LMeff = LM * SCALM * SHRINK
WM	m	0.0	Width of metal WMeff = WM * SCALM * SHRINK
LP	m	0.0	Length of poly LPeff = LP * SCALM * SHRINK
WP	m	0.0	Width of Poly. WPeff = WP * SCALM * SHRINK
XOI		10k	Thickness of the poly oxide
XOM		10k	Thickness of the metal oxide
XM	m	0.0	Accounts for masking and etching effect in metal XMeff = XM * SCALM
XP	m	0.0	Accounts for masking and etching effect in poly XPeff = XP * SCALM
		Temperatu	ıre Effects Parameters
СТА	1/K	0.0	Temperature effect parameter for CJ
СТР	1/K	0.0	Temperature effect parameter for CJP
EG	eV	TLEV=0,1 1.11 TLEV=2 1.16	Energy gap
GAP1	eV/K	7.02e-4	First bandgap correction factor
GAP2		1108	Second bandgap correction factor
TCV	1/K	0.0	Temperature effect parameter for BV
TLEV		0.0	Temperature equation selector. Work together with TLEVC
TLEVC		0.0	Temperature equation selector. Work together with TLEV.
TM1	1/K	0.0	First temperature effect parameter fro M
TM2	1/K ²	0.0	Second temperature effect parameter for M
TPB	V/K	0.0	Temperature effect parameter for PB
TPHP	V/K	0.0	Temperature effect parameter for PHP
TREF (TNOM)	С	25.0	Model nominal temperature
TRS	1/K	0.0	Temperature effect parameter for RS

TTT1	1/K	0.0	First temperature effect parameter for TT
TTT2	1/K ²	0.0	Second temperature effect parameter for TT
XTI (PT)		3.0	Temperature effect parameter for IS / JSW
XTITUN		3.0	Temperature effect parameter for JSTUN / JSTUNSW

MOSFET Level 1 Parameter Descriptions

This table shows the Model Selector descriptions.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
ACM	1	0 if LEVEL=49 10 if LEVEL=53	No	Selects MOS S / D parasitic model Set ACM = 10, 11,12, 13 to enable Berkeley junction diode current and capacitance equation
				The parasitic resistor equation is correspond to the ACM = 0, 1, 2, 3 equations
APWARN	-	0	No	Set APWARN > 0 to turn off warning messages when PS / PD< Weff
BINFLAG	-	0	No	Set BINFLAG > 0.9 to use WREF, LREF in binning parameter calculation
				Effective in ACM=12
CALCACM	-	0	No	Set CALCACM to 1 in ACM = 12, then the calculation of source / drain area / perimeter is the same equation as ACM = 2
STIMOD	-	0	No	Set STIMOD to 1 to enable UC Berkeley STI / LOD stress effect model

Resistor Parameter Descriptions

NAME (ALIAS)	UNIT	DEFAULT	DESCRIPTION
W	М	0	Width Wscaled = W * SHRINK * SCALM
DW	М	0	Difference between drawn and actual width DWscaled = DW * SCALM
L	М	0	Length Lscaled = L * SHRINK * SCALM
DLR	М	0	Difference between drawn and actual length DLRscaled = DLR * SHRINK * SCALM
TC1R (TC1)	/K	0	First temperature coefficient for R

TC2R (TC2)	.K ²	/K ²	Second temperature coefficient for R
TREF (TNOM)	С	25	Nominal temperature
SHRINK		1	Shrink factor
SCALE		1	Scale factor for resistance
RES	Ohm	0	Default resistance
RSH	Ohm/ sq	0	Sheet resistance per square

This table shows the Model Selector Parameters.

NAME (ALIAS)	UNIT	DEFAULT	DESCRIPTION
WMIN	М	0	Minimum width
WMAX	М	1	Maximum width
LMIN	М	0	Minimum length
LMAX	М	1	Maximum length

Small Signal Parameter Data Frequency Table Model (SP Model)

PARAMETERS	Effect or Meaning
Name	Model name
N	Matrix dimension. Default = 1
FSTART	Starting frequency point for data. Default = 0
FSTOP	Final frequency point for date. Use this parameter only for the LINEAR and LOG spacing formats.
NI	Number of frequency points per interval Use this parameter only for the DEC and OCT spacing formats Default = 10

PARAMETERS	EFFECT OR MEANING		
	Data sample spacing format: LIN (LINEAR): Uniform spacing with frequency step of (FSTOP-FSTART_/(npts-1) Default		
	OCT: Octave variation with FSTART as the starting frequency and NI points per octave NPTS (See parameter DATA) sets the final frequency		
SPACING	DEC: Decade variation with FSTART as the starting frequency and NI points per decade NPTS sets the final frequency		
	LOG: Logarithmic spacing. FSTART and FSTOP are the starting and final frequencies		
	POI: Non-uniform spacing. Pairs data		
	(NONUNIFORM) points with frequency points		
	Matrix (data point) format:		
	SYMMETRIC: Symmetric matrix. Specifies only lower-half triangle of a matrix (default)		
	HERMITIAN: Similar to SYMMETRIC; Off-diagonal terms are complex-conjugates of each other		
MATRIX	NONSYMMETRIC: Non-symmetric (full) matrix		
	VALTYPE Data type of matrix elements:		
	 REAL: Real entry CARTESIAN: Complex number in real/imaginary format (default) POLAR: Complex number in polar format. Specify angles in radians 		
INFINITY	Data point at infinity. Typically real-valued. This data format must be consistent with MATRIX and VALTYPE specifications. NPTS does not count this point.		
INTERPOLATION	Interpolation scheme:		
	STEP: Piecewise step. Default		
	LINEAR: Piecewise linear		
	SPLINE: B-spline curve fit		
	Note: Interpolation and extrapolation occur after the simulator internally converts the Z and S-parameter data to Y-parameter data		

Coupled Transmission Lines Parameters for ModelType W

PARAMETERS	Effect or Meaning
N	Number of conductors
L	Lower triangular part of DC inductance matrix, per unit length (H/m)
С	Lower triangular part of DC <i>capacitance</i> matrix, per unit length (F m)
Ro	Lower triangular part of DC resistance matrix, per unit length (Ω/m)
Go	Lower triangular part of DC shunt <i>conductance</i> matrix, per unit length (S m)

PARAMETERS	EFFECT OR MEANING	
Rs	Lower triangular part of skin effect resistance matrix, per unit length $\frac{\Omega}{m} \sqrt{m} \sqrt{Hz}$.	
Gd	Lower triangle part of Dielectric loss <i>conductance</i> matrix, per unit length $S/(m \cdot Hz)$.	

Coupled Transmission Lines Example

.Model example_rlc W MODELTYPE=RLGC N=3

- + Lo =
- + 2.311e-6
- + 4.14e-7 2.988e-6
- + 8.42e-8 5.27e-7 2.813e-6
- +Co =
- + 2.392e-11
- + -1.08e-12 -5.72e-12 2.447e-11
- + Ro =
- + 42.5
- + 0 41.0
- + 0 0 33.5
- + Rs =
- + 0.00135
- + 0 0.001303
- + 0 0 0.001064
- + Go =
- + 0.000609
- + -0.0001419 0.000599
- + -0.00002323 -0.00009 0.000502
- + Gd =
- + 5.242e- 13
- + -1.221e-13 5.164e- 13
- + -1.999e- 14 -7.747e- 14 4.321e- 13

Tabular W Model

PARAMETERS	EFFECT OR MEANING	
N	Number of signal conductors	
LMODEL	SP model name for the inductance matrix array	

PARAMETERS	EFFECT OR MEANING
CMODEL	SP model name for the capacitance matrix array
RLMODEL	SP model name fro the resistance matrix array. Default zero
GMODEL	SP model name for the conductance matrix array. Default zero

To ensure accuracy, the W-element tabular model requires the following:

- 1. R and G tables require zero frequency points. To specify a zero point, you may use DC keyword or f=0 data entry in the DATA field of the SP model.
- **2.** L and C tables require infinity frequency points as well as zero frequency points. To specify an infinity frequency point, use the INFINITy keyword of the SP model.

Tabular Example

MODEL W_model W MODEL TYPE=TABLE

- + N=4
- + LMODEL = I_SPmodel CMODEL = c_SPmodel
- + RMODEL = r_SPmodel GMODEL = g_SPmodel

S Parameter Descriptions

The following parameter names are used for ModelType S.

PARAMETERS	Effect or Meaning
RFMFILE	RMF file name
BNPFILE	BNP file name
TSTONEFILE	TOUTCHSTONE file name
Fmax	Max frequency of inverse Fourier Transform when using BNP or TOUCHSTONE files Default Fmax = 1 / (simulation time interval)
Fbase	The base frequency of inverse Fourier Transform when using BNP or TOUCHSTONE files Default Fbase = 1 / (simulation period)

S Parameters Example

Model example_S1 S

+ TSTONEFILE = example_s.s2p

Model example_S2 S

- + RFMFILE= example s.rmf
- +Fmax = 15g
- +Fbase = 250 Meg

Model example_S3 S

- +BNPFILE=example_s.bnp
- +Fmax = 15g
- +Fbase = 250Meg

Bulk to Source / Drain Diodes - DC Part Parameters

PARAMETER (ALIAS)	UNITS	DEFAULT	Effect or Meaning
ACM	-	0	Selects MOS S/D parasitics model. ACM=0 is SPICE style Use ACM=2 or 3 for LDD
JS	A/m ²	0	Bulk Junction saturation current JSscaled=JS/SCALM ² For ACM=1 unit is A/m and JSscaled=JS/SCALM
JSW	A/m	0	Sidewalk bulk junction saturation current: JSWscaled=JSWSCALM
IS	А	1e-14	Bulk junction saturation current
N	-	1	Emission coefficient
NDS	-	1	Reverse bias slope coefficient
VNDS	V	-1	Reverse diode current transition point

Bulk to Source / Drain Diodes - Capacitance Part Parameters

PARAMETER (ALIAS)	UNITS	DEFAULT	EFFECT OR MEANING
CBD	F	0	Zero bias bulk-drain junction capacitance Used only if CJ and CJSW are 0.0
CBS	F	0	Zero bias bulk-source junction capacitance Use only if CJ and CJSW are 0.0

PARAMETER (ALIAS)	Units	DEFAULT	EFFECT OR MEANING
CJ (CBD, CSB, CJA)	F/m ²	579.11uF/m ²	Zero-bias bulk junction capacitance: CJscaled = CJ / SCALM ² For ACM = 1 the unit is F / m CJscaled = CJSW / SCALM
CJSW (CJP)	F/m ²	0.0	Zero-bias sidewalk bulk junction capacitance CJSWscaled = CJGASW / SCALM
CJGAE	F/m	CJSW	Zero-bias gate-edge sidewalk bulk junction capacitance (ACM = 3 only) CJGATEscaled = CJGATE / SCALM
FC	-	0.5	Forward bias depletion capacitance coefficient (not used in MOS diode calculation)
MJ (EXA, EXJ, EXS, EXD)	-	0.5	Source / drain bulk junction grading coefficient
MJSW (EXP)	-	0.33	Sidewall junction grading coefficient
PB(PHA, PHS, PHD)	V	0.8	Source / drain bulk junction potential
PHP	V	РВ	Sidewall junction potential
TT	s	0	Transit time

Drain and Source Resistance Parameters

PARAMETE R (ALIAS)	Units	DEFAULT	Effect or Meaning
RD	ohm/sq	0	Drain resistance for ACM > 1
RDC	ohm		Additional drain resistance due to contact resistance
RS	ohm/sq	0	Source resistance for ACM > 1
RSC	ohm	0.0	Additional source resistance due to contact resistance
RSH(RL)	ohm/sq	0	Sheet resistance
HDIF	m	0.0	Length of heavily-doped diffusion, from contact to lightly-doped region (ACM = 2, 3 only) HDIF scaled = HDIF * SCALM
LDIF	m	0.0	Length of lightly-doped diffusion adjacent to the gate (ACM = 1, 2) LDIF scaled = LDIF * SCALM

Gate Capacitances Parameters

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
CAPOP	-	1 (HSPICE default is 2)	MOS gate cap model selector CAPOP = 0 SPICE Meyer Gate Capacitances CAPOP = 1 Modified Meyer Gate Capacitances Only CAPOP = 0 and CAPOP = 1 is supported
COX(CO)	F/m ²	3.453e-4	Oxide capacitance If COX is not specified, simulation calculates it from TOX Default corresponds to the TOX default of 1e-7 COX scaled = COX / SCALM
тох	m	1e-7	Oxide thickness For TOX > 1, simulation assumes that the unit is Angstroms
CGBO(CGB)	F/m	-	Gate-bulk overlap capacitance If CGBO is not specified, it is calculated from WD and TOX CGDOscaled = CGDO / SCALM
CGDO (CGD, C2)	F/m	-	Gate-drain overlap capacitance If CGDO is not specified, it is calculated from LD, METO and TOX CGDOscaled = CGDO / SCALM
CGSO(CGS,C1)	F/m	-	Gate-source overlap capacitance If CGSO is not specified, it is calculated from LD, METO and TOX CGSOscaled = CGSO / SCALM
МЕТО	m	0.0	Fringing field factor for gate-to-source and gate-to-drain over- lap capacitance METO scaled = METO * SCALM
CF5	-	0.66667	Capacitance multiplier for cgs in the saturation region
CGBEX	-	0.5	CGB exponent for CAPOP = 1

Effective Length and Width Parameters

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
DEL	m	0.0	Channel length reduction on each side DELscaled = DEL * SCALM
LMLT	-	1.0	Gate length shrink factor.

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
LD (DLT, LATD)	m	0.75XJ	Lateral diffusion into the channel from the source and the drain diffusion LDscaled = LD * SCALM
LREF	m	0.0	Channel length reference LREFscaled = LREF * SCALM
WD	m	0.0	Lateral diffusion into the channel from the bulk along the width WDscaled = WD * SCALM
WMLT	-	1.0	Diffusion layer and width shrink factor
WREF	m	0.0	Channel width reference WREFscaled = WREF * SCALM
XJ	m	0.0	Metallurgical junction depth XJscaled = XJ*SCALM
XL(DL,LDEL)	m	0.0	Length bias accounts for the masking and etching effects. XLscaled = XL * SCALM.
XLREF	m	0.0	Difference between the physical (on the wafer) and the drawn reference channel length XLREFscaled = XLREF * SCALM
XW	m	0.0	Difference between the physical (on the wafer) and the drawn S / D active width XWscaled = XW * SCALM
XWREF	m	0.0	Difference between the physical (on the wafer) and the drawn reference channel width XWREFscaled = XWREF * SCALM

Threshold Voltage Parameters

PARAMETER (ALIAS)	Units	DEFAULT	EFFECT OR MEANING
DELVTO	V	0	Threshold voltage shift Sum of DELVTO in model card and DELVTO in element card
GAMMA	V ^{1/2}	0.527625	Body effect factor. If GAMMA is not specified, simulation calculates it from NSUB.
NGATE	cm ⁻³	-	Polysilicon gate doping Undoped Polysilicon is represented by a small value If NGATE < = 0.0, it is set to 1e + 18
NSS	cm ²	0.0	Surface state density

PARAMETER (ALIAS)	Units	DEFAULT	EFFECT OR MEANING
NSUB(DNB, NB)	cm ⁻³	1e15	Bulk surface doping If NSUB is not specified, it is calculated from GAMMA
PHI	V	0.576	Surface inversion potential If PHI is not specified, it is calculated from NSUB
TPG	-	1.0	Type of gate material for analytical models TPG=0 Al-gate TPG=1 same as source-drain diffusion TPG=-1 opposite to source-drain diffusion
VTO(VT)	V	0.0	Zero-bias threshold voltage If VTO is not specified, simulation calculates it

Impact Ionization Parameters

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
ALPHA	V ⁻¹	0.0	Impact ionization coefficient
LALPHA	um/V	0.0	ALPHA length sensitivity
WALPHA	um/V	0.0	ALPHA width sensitivity
VCR	V	0.0	Critical voltage
LVCR	um*V	0.0	VCR length sensitivity
WVCR	um*V	0.0	VCR width sensitivity
IIRAT	-	0	Impact ionization current partitioning factor 1 corresponds to 100% source 0 corresponds to 100% bulk

Temperature Effects Parameters

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
BEX	-	1.5	Temperature exponent of UO
TLEV	-	0.0	Temperature equation selector. Only TLEV=0 is supported
TLEVC	-	0.0	Temperature equation selector for junction capacitances and potentials. Only TLEVC = 0 is supported
TRD	1/K	0.0	Temperature coefficient of drain resistances

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
TRS	1/K	0.0	Temperature coefficient of source resistances
XTI	-	0.0	Temperature exponent of saturation current

MOSFET BSIM 3 v3 Level 49 / 53

BSIM3v3 is the industry-standard MOSFET model from the BSIM Group at the University of California at Berkeley.

BSIM3v3 is implemented in SPDSIM as level 49 and 53. Level 53 is exactly as BSIM3v3 standard. In SPDSIM, BSIM3v3 version is selected by model parameter VERSION.

VERSION VALUE	BSIM 3 v3 Version
3.10	3.1.0
3.11	3.1.1
3.20	3.2.0
3.21	3.2.1
3.22	3.2.2
3.23	3.2.3
3.24	3.2.4
3.30	3.3.0

General Form for BSIM3 v3

Mxxx nd ng ns mname [L =]length] [[W =] width] [AD = val]

- + [AS = val] [PD = val] [PS = val] [NRS = val]
- + [RDC = val] [RSC = val] [OFF] [IC = vds. vgs. vbs] [M = val]
- + [DTEMP = val] [GEO = va;] [DELVTO = val]
- + [MULU0 = val] [MULUA = val] [MULUB = val]
- + [SA = val] [SB = val] [SD = val] [STIMOD = val]

BSIM3 v3 Parameters

The following four tables show all the BSIM3 v3 parameter descriptions.

- □ BSIM3 v3 Specific Element Parameter Descriptions
- □ BSIM3 v3 Model Selector Parameter Descriptions
- □ BSIM3 v3 ACM-0, 1, 2, 3 Parameter Descriptions
- □ BSIM3v3 STI / LOD Model Parameter Descriptions

BSIM3 v3 Specific Element Parameter Descriptions

Name	Default	Description
MULU0	1.0	U0 multiplier
MULUA	1.0	UA multiplier
MULUB	1.0	UB multiplier
SA	0.0	Distance between OD edge to Poly from one side
SB	0.0	Distance between OD edge to Poly from the other side
SD	0.0	Distance between neighboring fingers
STIMOD	0	STI/LOD model selector

BSIM3 v3 Model Selector Parameter Descriptions

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
ACM	-	0 if LEVEL=49 10 if LEVEL=53	NO	Selects MOS S / D parasitic model Set ACM = 10, 11, 12, 13 to enable the Berkeley junction diode current and capacitance equation Parasitic resistor equation corresponds to the ACM = 0, 1, 2, 3 equations
APWARN	-	0	No	Set APWARN > 0 to turn of warning messages when PS / PD < Weff
BINFLAG	-	0	No	Set BINFLAG > 0.9 to us WREF, LREF in binning parameter calculation
CALCACM	-	0	No	Effective in ACM=12. Set CALCACM to 1 in ACM = 12, then the calculation of source / drain area / perimeter is the same equation as ACM = 2
STIMOD	-	0	No	Set STIMOD to 1 to enable UC Berkeley STOLOD stress effect model

BSIM3 v3 ACM-0, 1, 2, 3 Parameter Descriptions

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
N	-	1	No	Emission coefficient
IS			No	Bulk junction saturation current

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
CJGATE	F/m	CJSW	No	Zero-bias gate-edge sidewall bulk junction capacitance (ACM = 3 only)
CBD	F	0	No	Zero bias bulk-drain junction capacitance Used only if CJ and CJSW are 0.0
CBS	F	0	No	Zero bias bulk-source junction capacitance Use only if CJ and CJSW are 0.0
PHP	V	РВ	No	Sidewall junction potential
DEL	m	0.0	No	Channel length reduction on each side
LMLT	-	1.0	No	Gate length shrink factor
WMLT	-	1.0	No	Diffusion layer and width shrink factor
LREF	m	0.0	No	Channel length reference
WREF	m	0.0	No	Channel width reference
HDIF	m	0.0	No	Length of heavily-doped diffusion, from contact to lightly-doped region (ACM = 2, 3 only)
Ldif	m	0.0	No	Length of lightly-doped diffusion adjacent to the gate (ACM = 1, 2)
RD	ohm/gq	0	No	Drain resistance for ACM > 1
RS	ohm/sq	0	No	Source resistance for ACM > 1
TT	s	0	No	Transit time
NDS	-	1	No	Reverse bias slope coefficient
VNDS	V	-1	No	Reverse diode current transition point

BSIM3v3 STI / LOD Model Parameter Descriptions

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
SAREF	m	1.0e-6	NO	Reference distance between OD and edge to poly of one side
SBREF	m	1.0e-6	NO	Reference distance between OD and edge to poly of the other side
WLOD	m	0.0	NO	Width parameter for stress effect
KU0	m	0.0	NO	Mobility degradation / enhancement parameter for stress effect

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
KVSAT	m	0.0	NO	Saturation velocity degradation / enhancement parameter for stress effect
TKU0	m	0.0	No	Temperature coefficient of KU0
LKU0	m	0.0	No	Length dependence of KU0
PKU0	-	0.0	No	Cross-term dependence of KU0
LLODKU0	-	0.0	No	Length parameter for u0 stress effect
WLODKU0	-	0.0	No	Width parameter for u0 stress effect
KVTH0	V	0.0	No	Threshold shift parameter for stress effect
LKVTH0	-	0.0	No	Length dependence of KVTH0
WKVTH0	-	0.0	No	Width dependence of KVTH0
PKVTH0	-	0.0	No	Cross-term dependence of KVTH0
LLODVTH	-	0.0	No	Length parameter for Vth stress effect
WLODVTH	-	0.0	No	Width parameter for Vth stress effect
STK2	m	0.0	No	K2 shift factor related to Vth0 change
LODK2	-	1.0	No	K2 shift modification factor for stress effect
STETA0	m	0.0	No	Eta0 shift factor related to Vth0
LODETA0	-	1.0	No	Eta0 shift modification factor for stress effect

MOSFET BSIM4 Level 54

BSIM4 is the latest industry-standard MOSFET model from the BSIM Group at the University of California at Berkeley. BSIM4 is implemented in spdsim as level 54. Level 53 is exactly the same as BSIM3v3 standard.

In spdsim, BSIM4 version is selected by model parameter VERSION.

VERSION Value	BSIM4 Version
4.00	4.0.0
4.10	4.1.0
4.20	4.2.0
4.21	4.2.1
4.30	4.3.0
4.40	4.4.0
4.50	4.5.0

4.60	4.6.0
4.61	4.6.1

General Form

Mxxx nd ng ns nb mname [L=VAL] [W=VAL] [M=VAL]

- + [AD=VAL] [AS=VAL] [PD=VAL] [PS=VAL]
- + [NRS=VAL] [NRD=VAL] [DELVTO=VAL]
- + [RDC=VAL] [RSC=VAL] [DTEMP = va;]
- + [OFF] [IC=Vds, Vgs, Vbs]
- + [RGATEMOD=VAL] [RBODYMOD=VAL]
- + [GEOMOD=VAL] [RGEOMOD=VAL]
- + [NF=VAL] [RBPB=VAL] [RBPD=VAL]
- + [RBPS=VAL] [RBDB=VAL] [RBSB=VAL]
- + [MIN=VAL] [DELTOX=VAL]
- + [MULU0=VAL] [DELK1=VAL] [DELNFCT=VAL]
- + [SA=VAL] [SB=VAL] [SD=VAL] [STIMOD=VAL]
- + [SCA=VAL] [SCB=VAL] [SCC=VAL] [SC=VAL]
- + [XGW=VAL] [NGCON=VAL]

BSIM4 Specific Element Parameter Descriptions

NAME	DEFAULT	DESCRIPTION
RGATEMOD	0	Gate resistance model selector
RBODYMOD	0	Substrate resistance network model selector
TRNQSMOD	0	Transient NQS model selector
GWOMOD	0	Geometry-dependent parasitics model selector
RGEOMOD	0	Source / drain diffusion resistance and contact model selector
RBPB	50ohm	Resistance connected between bNodePrime and bNode
RBPD	50ohm	Resistance connected between bNodePrime and dbNode
RBPS	50ohm	Resistance connected between bNodePrime and sbNode
RBDB	50ohm	Resistance connected between dbNode and bNode.
RBSB	50ohm	Resistance connected between sbNode and bNode
NF	1	Number of fingers

NAME	DEFAULT	DESCRIPTION
MIN	0	Whether to minimize the number of drain or source diffusions for even- number fingered device
XGW	0m	Distance from the gate contact to the channel edge
NGCON	1	Number of gate contacts
MULU0	1.0	U0 multiplier
DELK1	0.0	Shift in K1
DELNFCT	0.0	Shift in NFACTOR
DELTOX	0.0	Shift in TOXE and TOXP
STIMOD	0	STI / LOD model selector
SCA	0.0	Integral of the first distribution function for scattered well dopant
SCB	0.0	Integral of the second distribution function for scattered well dopant
SCC	0.0	Integral of the third distribution function for scattered well dopant
SC	0.0m	Distance to a single well edge

Additional BSIM4 Model Parameters in SPDSIM

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
STIMOD	-	Version < 4.3 0 Version >= 4.30 1	No	STI / LOD model selector Set STIMOD to 0 to disable STI / LOD model To Version > = 4.30, STIMOD is ignored.
TRS	-	0.0	No	Temperature coefficient of source resistance
TRD	-	0.0	No	Temperature coefficient of drain resistance
LMLT	-	1.0	No	Channel length multiplier
WMLT	-	1.0	No	Channel width multiplier

SUBCIRCUIT COMMAND

If a partial circuit contains subcircuits, none of the local variables that are defined in the partial circuit can be seen inside the subcircuit. the name of the subcircuit definition.

General Form

.SUBCKT SubCKTName {ExtNodeName} [{ParameterX=valueX}]

General Form for .EndS

.EndS SubCKTName

SUBCKT Example 1

connector

.SUBCKT

2

gnd

V in nd in gnd pulse (0V 2.5v 0n 0.5n 0.5n 1n 4n) 2.5v V_en nd_en gnd .EndS

SUBCKT Example 2

.SUBCKT Cap 1 2 3 rvalue=1 cvalue=1p 2 R 1 rvalue 2 С 3 cvalue .EndP

SUBCKT Example 3

In Example 3, rvalue is defined in the partial circuit, Circuit.

It cannot be used by the subcircuit, Sub1; therefore, rvalue in Sub1 is an undefined parameter, unless it is defined globally within .Param lines.

SUBCKT Example 4

.EndP

In Example 4, C0=3p specifies the default for C0.

When the subcircuit, Cap, is called in, the partial circuit, Decap, the capacitor, C=1p (not 3p), because C0=1p overwrites the default value.

Nested Subcircuit Definition

SPICE-compatible nested subcircuit definition is supported in SPDGEN, PowerSI and PowerDC.

Several **SubcircuitName** entries can be defined in .SUBCKT command for local reference in hierarchy.

The syntax of nested subcircuit definition is totally the same with top-level .SUBCKT command.

Nested Subcircuit Example 1

.SUBCKT IOBufferD nd_pu nd_pd nd_out nd_in gnd nd_fend B_io nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_in + file='t96b.ibs' model="DQ_FULL' +buffer=input_output +package=yes

.SUBCKT stim 1 2 ref

V1 1 ref pulse (0V 2.5v 0n 0.5n 0.5n 1n 4n) V2 2 ref 2.5v .ENDS

.SUBCKT connector 1 2 ref C1 1 ref 0.415pF L1 1 1a 2.4n R1 1a 2 2.4 C2 2 ref 0.415pF .ENDS

Xstim nd_in nd_en gnd stim

Xconn nd_out nd_fend gnd connector
.ENDS

In this case subcircuit stim and connector are defined embedded in IOBufferD, so they can only be referred to and used by top circuit IOBufferD.

Parallel nested subcircuit can be referred to by each other, like usual subcircuit definition and instantiation.

Nested Subcircuit Example 2

.param trp=50p tfp=50p .param pw=1.4n per=3.0n .SUBCKT IOBufferD nd_pu nd_pd nd_out nd_in gnd nd_fend B io nd pu nd pd nd out nd in nd en gnd nd out in + file='t96b.ibs' model="DQ FULL' +buffer=input_output +package=yes .param vil=0 vih=2.5 .SUBCKT stim 1 2 ref .param dly=0 V1 1 ref pulse (vil vih dly trp tfp pw per) V2 2 ref vih .ENDS .SUBCKT connector 1 2 ref C1 1 ref cload L1 1 1a 2.4n R1 1a 2 rs C2 2 ref cload .param rs=2.4 .ENDS Xstim nd_in nd_en gnd stim Xconn nd out nd fend gnd connector .param cload=0.415pF

Global defined parameters (trp, tfp, pw, per) and local defined parameters (vil, vih, dly, cload, rs) can be referred to by circuit element definition in proper scope. Global and higher-level defined parameters can be referred to by lower-level circuit and elements.

For example, since parameter **cload** definition scope is the same with subcircuit **connector**, so it can be referred to by the capacitor element in **connector** definition.

NOTE!

.ENDS

1. Parameter definition in expression is NOT supported now. Following definition is regarded as invalid definition:

.param A = 'B/2-0.3' B=5.0n

2. Unable to define active element(B-element, Independent Voltage/ Current source, and so on) in PowerSI extraction mode, and following error message will pop up:

Empty definition or unsupported circuit elements found for XXX

Related Topic

• Broadband SPICE User's Guide

Subcircuit Parameter Definitions

PARAMETER	Effect or Meaning	
.SUBCKT	.SUBCKT keyword	
SubCKTName	Character string for the name of the subcircuit definition	
ExtNodeName	Names of external nodes of the subcircuit	
ParameterX=valueX	Local parameter specification. Affects only the partial circuit where it is defined; except any sub circuits (of the partial circuit) are not affected by the assignment.	
	A local parameter specification overrides a global parameter specification (made in the .param line)	
	If the same local parameter name is used more than once in a circuit definition, the latter value assignment is used	
	Where ParameterX is a character string for the name of the parameter, the = sign is required; value1 specifies the value of the parameter	

GC - Capacitor Description Line

General Form

Cxxx n1 n2 [mname] [C =] val|'expression' [[TC1 =]val]

+ [[TC2 =] val] [[SCALE =] val] [IC = val] [M = val] [W = val] [L = val]

+ [DTEMP = val]

C-Capacitor Example

C31 21 22 0.047u

C32 1 2 value2 = 'CAP'

In this example, CAP is a previously defined variable name equal to a constant value.

Capacitor Parameters

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
Cxxx			A character string, starting with C, for the name of a capacitor.
Node1			Name of the circuit node connected to one end of the capacitor.
Node2			Name of the circuit node connected to the other end of the capacitor.

PARAMETER (ALIAS)	Units	DEFAULT	Effect or Meaning
R	Ohm	0	Capacitance. It can be: Numerical value Parameter Parameter expressions in single quotes
TC1		0	First temperature coefficient for R. Overwrite model parameter TC1.
TC2		0	Second temperature coefficient for R. Overwrite model parameter TC2.
SCALE		1	Scale factor for capacitance. Overwrite model parameter SCALE.
M		1	Multiplier.
DTEMP		0	Temperature difference between element and circuit.
L	m	0	Length - Overwrite model parameter L.
W	m	0	Width - Overwrite model parameter W
IC	V	0	Initial voltage across the capacitor (potential at Node1 - potential at Node2).

_Cmatrix - Mutual Capacitor Matrix Description Lines

General Form

_Cmatrixxxxx N = n1 file = s1 Node0 Node1 ... NodeN

Mutual Capacitor Matrix Parameter Descriptions

PARAMETER	Effect or Meaning
_Cmatrixxxxx	A character string, starting with _Cmatrix, for the name of a mutual capacitor matrix.
N = <i>n</i> 1	Number of nodes involved, other than the reference node.
file = <i>s1</i>	Character string for the name of the data file in disk that stores the mutual capacitance values.
Node0	Name of the reference node in the mutual capacitor matrix.
Node 1 to NodeN	Names of N nodes, other than the reference node, of the mutual capacitor matrix.

D - Diode Description Lines

General Form

Dxxx Node1 Node2 ModelName [[AREA =]val] [[PJ =]val

+ [WP = val] [LP = val] [WP = val] [LM = val] [OFF]

+ [IC = vd] [M = val] pDTEMP = val]

or

Dxxx Node1 Node2 ModelName [W = width] [L = length]

+ [WP = val] [LP = val] [WM = val] [LM = val] [OFF]

+ [IC = vd] [M = val] [DTEMP = val]

D-Diode Example d1 1 2 diode1

Diode Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Dxxx	Diode name.
Node1	Positive node (anode) name.
Node2	Negative node (cathode) name.
ModelName	Diode model name.
	Area factor. Unit: unit-less for LEVEL=1 diode, and m ² for LEVEL=3 diode. Default value: 1.0.
AREA	The SCALE option does not affect AREA for LEVEL=1 diode. Overwrite diode model parameter AREA.
	For LEVEL=3 diode, if AREA is not specified, it is calculated from W and L.
	Periphery of diode. Unit=unit-less for LEVEL=1 diode, and m for LEVEL=3 diode. Default value: 0.0.
PJ	The SCALE option does not affect PJ for LEVEL=1 diode.
	Overwrite diode model parameter PJ. For LEVEL=3 diode, if P is not specified, it is calculated from W and L.
WP	Width of poly-silicon capacitor for LEVEL=3 diode. Unit: m Default value: 0.0 Overwrite model parameter WP.
LP	Length of poly-silicon capacitor for LEVEL=3 diode. Unit: m Default value: 0.0 Overwrite model parameter LP.
WM	Width of metal capacitor for LEVEL=3 diode. Unit: m. Default value: 0.0. Overwrite model parameter WM.
LM	Length of metal capacitor for LEVEL=3 diode. Unit: m Default value: 0.0. Overwrite model parameter LM.
W	Width of diode for LEVEL=3 diode. Unit: m Default value: 0.0. Overwrite model parameter W.
L	Length of the diode for LEVEL=3 diode. Unit: m Default value: 0.0. Overwrite model parameter L.
OFF	If diode is OFF, diode initial voltage is set to zero when initializing the iteration in DC analysis.
IC	Diode initial voltage. This parameter is not used. It exists for compatibility with SPICE format.
DTEMP	Temperature at which a diode is to operate. Unit: C (Celsius). Default value: 27

PARAMETER	Effect or Meaning
	Multiplier to simulate multiple diodes in parallel.
М	This parameter together with "AREA" parameter affects saturation current, ohmic resistance and zerobias junction capacitance parameters which are defined in the diode.
	Model statement. Unit: (no unit). Default: 1

E - Foster Pole-residue Form Gain Function

It is only supported in SPEED2000.

General Form

Exxx n+ n- Foster in+ in K0, K1

- + (Real(r1), Imag(r1)/ (Real(p1), Imag(p1))
- + (Real(r2), Imag(r2))/ (Real(p2), Imag(p2))
- +
- + (Real(rn), Imag(rn))/(Real(pn), Imag(pn))

Where Real(X) means the real part of X, Imag(X) means the imagine part of X.

Gain Function Example

$$H(s) = k_0 + k_1 s + \left(\frac{s - r_1}{s - p_1} + \frac{s - r_1^{\bullet}}{s - p_1^{\bullet}}\right) + \left(\frac{s - r_2}{s - p_2} + \frac{s - r_2^{\bullet}}{s - p_2^{\bullet}}\right) + \dots + \left(\frac{s - r_n}{s - p_n} + \frac{s - r_n^{\bullet}}{s - p_n^{\bullet}}\right)$$

Trans-conductance Parameter Descriptions

PARAMETER	Effect or Meaning
Exxx	A character string, starting with E, for the name of a Foster Pole-Residue form gain function.
in+	Name of the circuit node where the positive end of the controlling voltage is connected.
in-	Name of the circuit node where the negative end of the controlling voltage is connected.
n+	Name of circuit nodes which a controlled voltage source connected.
n-	Name of the other circuit node to which controlled voltage source connected.
K0	The constant term of the gain function.
K1	The first order term coefficient of the gain function.
r1, r2,, rn	The residues of the gain function.
p1, p2,, pn	The Poles of the gain function.

E - Laplace and Pole-zero Voltage Gain Function

There are two general forms: Laplace and Pole. They are only supported in SPEED2000.

General Form for Laplace

Exxx
$$n+n$$
-LAPLACE $in+in \ k_0, \ k_1, \ ..., \ k_n \ / \ d_0, \ d_1, \ ..., \ d_m$

General Form for Pole

Exxx
$$n+n-POLE$$
 $in+in$ a a_{71} , f_{71} , ..., a_{7n} , f_{7n} / b , a_{91} , f_{91} , ..., a_{9n} , f_{9n}

Using the Parameters

- □ -k_n Should not be all zero
- □ -d_m Should not be all zero
- $\ \Box \ -a_{\rm zn}$, $f_{\rm zn}$ Should be all non-negative
- $f -a_{pn}$, f_{pn} Should be all non-negative
- □ -a, b Should not be zero

Parameters Example 1

$$H(s) = \frac{k_0 + k_1 s + \dots + k_n s^n}{d_0 + d_1 s + \dots + d_n s^m} (m \ge n)$$

Parameters Example 2

$$H(s) = \frac{a(s + \alpha_A + i \, 2\pi f_A)(s + \alpha_A - i \, 2\pi f_A)...(s + \alpha_m + i \, 2\pi f_m)(s + \alpha_m - i \, 2\pi f_m)}{b(s + \alpha_A + i \, 2\pi f_A)(s + \alpha_A - i \, 2\pi f_A)...(s + \alpha_m + i \, 2\pi f_m)(s + \alpha_m - i \, 2\pi f_m)}$$

Voltage Gain Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Exxx	A character string for name of Laplace or Pole-zero voltage gain function.
in+	Circuit node where positive end of controlling voltage connected.
in-	Circuit node where negative end of controlling voltage connected.
n+	Name of circuit nodes where a controlled current source connected.
n-	Name of other circuit node to which controlled current source connected.
k ₀ , k ₁ ,, k _n d ₀ , d ₁ ,, d _m	The corresponding parameters in a voltage gain function.
a a _{z1} , f _{z1} ,, a _{zn} , f _{zn} b a _{p1} , f _{p1} ,, a _{pn} , f _{pn}	The corresponding parameters in a voltage gain function.

E – Voltage Controlled Voltage Source (VCVS)

There are six general forms:

- Delay
- Linear
- Polynomial
- Piecewise Linear
- Mathematic Expression
- Multi-Input Gates

Linear, Polynomial, Piecewise Linear, Mathematic Expression and Multi-Input Gates are only supported in SPEED2000.

Delay

Gxxx n+ n- [VCCS] DELAY TD=val in1+in1-

Linear

Exxxx n+ n- [VCVS] in+ in- gain [MAX=va/] [MIN=va/] [ABS=1] [IC=va/]

Polynomial

Exxxx n+ n- [VCVS] POLY(ndim) in1+ in1- ... inndim+ inndim-

+ [MAX=val][MIN=val] [ABS=1] p0 [p1...] [IC=vals]

Piecewise Linear

Exxxx n+ n- [VCVS] PWL(1) in+ in- x1,y1,x2,y2, ... x100,y100 [IC=val]

Mathematic Expression

Exxxx n+ n- [VCVS] [Max=val] [MIN=val] [ABS=1] +name = 'mathematic expression'

Multi-Input Gates

Gxxx n+ n- [VCCS] gatetype(ndim) in1+in1- inndim+inndim-

+ [M=val] [ABS=1] x1,y1 ... x1000,y100[IC=val]

Transformer

Exxx n+ n- TRANSFORMER in+ in- k

Related Topics

- Transient Waveform Specifications
- Arbitrary Mathematical Expression Processing

Voltage Controlled Voltage Parameter Descriptions

PARAMETER	Effect or Meaning
Exxxx	Character string, starting with E, for the name of a voltage controlled source.
ABS=1	Output is absolute value if ABS=1.
DELAY	Delay Key function.
gain	Voltage gain. The ratio between the controlled voltage and the controlling voltage. $gain = V_{n^+,n^-}/V_{in^+,in^-}$
gatetype	Multi-Input Gates Key function. Can be AND, NAND, OR, NOR.
IC=val	Initial condition. The initial estimate of the value(s) of the controlling voltage(s). If IC is not specified, the default=0.0. For IC=vals there can be up to three values.
in+	Name of circuit node to which the positive end of the controlling voltage is connected.
in-	Name of circuit node to which the negative end of the controlling voltage is connected.
in1+,, inndim+	Names of the circuit nodes to which positive ends of the controlling voltages are connected.
in1-,, inndim-	Names of circuit nodes to which negative ends of the controlling voltages are connected.
k	Ideal transformer turn ratio: V(n+,n-)=k* V(in+,in-) or number of gates input.
MAX=val	Maximum output voltage value. Default is undefined and sets no maximum value.
MIN=val	Minimum output voltage value. Default is undefined and sets no minimum value.
n+	Name of the circuit node where a controlled voltage source is connected.
n-	Name of the other circuit node where a controlled voltage source is connected.

PARAMETER	Effect or Meaning
ndim	Polynomial dimensions. If POLY(<i>ndim</i>) is not specified, a one-dimensional polynomial is assumed. Multi-Input dimensions: Number of Multi-Inputs. <i>ndim</i> must not be less than 1.
p0, p1	The polynomial coefficients.
POLY	Polynomial keyword function.
PWL(1)	Piecewise linear keyword function.
vcvs	Keyword for voltage controlled voltage source. VCVS is a reserved word and should not be used as a node name.
TRANSFORMER	Keyword for an ideal transformer. TRANSFORMER is a reserved word. Do not use it as a node name.
x1, y1, x2, y2,, xn, yn	N pairs of data representing the relation between the controlling voltages (x's) and the controlled voltages (y's). A comma separates each value. At least two pairs of data need to be provided.
	An error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma.
	The maximum number of pairs is 100.
	Name of the mathematical expression.
name	The same name may be used for different expressions.
	The name must be followed by an equal sign and a valid mathematical expression.
	A valid mathematical expression must be put within a pair of single quotation marks.
'mathematic expression'	Local and global defined variable names and voltage variables may appear in all G and E type components. Current variables may not appear.

F – Current Controlled Current Source (CCCS)

There are five general forms for current controlled current source:

- Delay
- Linear
- Multi-input gates
- Piecewise linear
- Polynomial

Linear, multi-input gates, piecewise linear, and polynomial are only supported in SPEED2000.

Delay

Fxxx n+ n- [CCCS] DELAY TD=val in1

Linear

Fxxx n+ n- [CCCS] vn1 gain [MAX=val] [MIN=val] [M=val] [ABS=1] [IC=val]

Multi-Input Gates

Fxxx n+ n- [CCCS] gatetype(ndim) vn1 ... vnndim + [M=1] [ABS=1] x1,y1 ... x1000,y100[IC=val]

Piecewise Linear

Fxxx n+ n- [CCCS] PWL(1) vn1 [M=val] x1,y1, x2,y2, ... x100,y100 [IC=val]

Polynomial

Fxxx n+ n- [CCCS] POLY(ndim) vn1 [... vnndim] [MAX=val] [MIN=val] + [M=val] [ABS=1] p0 [p1...] [IC=vals]

CCCS Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Fxxx	A character string, starting with F, for the name of the current controlled current source.
ABS=1	Output is absolute value if ABS=1.
CCCS	Keyword for a current controlled current source.
DELAY	Delay Key function.
gain	Current gain. For example, the ratio of the controlled current and the controlling current. $gain = I_{n^+, n^-}/I_{in^+, in^-}$
gatetype	Multi-Input Gates Key function. Can be AND, NAND, OR, NOR.
IC=val	Initial condition. The initial estimate of the values of the controlling currents in amps. If IC is not specified, the default=0.0. For IC=vals there can be up to three values.
M=val	Number of elements in parallel.
MAX=val	Maximum output current value. Default is undefined and sets no maximum value.
MIN=val	Minimum output current value. Default is undefined and sets no minimum value.
n+	Name of the circuit node where a controlled current source is connected.
n-	Name of the other circuit node where a controlled current source is connected.
ndim	Polynomial dimensions or Multi-Input dimensions. Polynomial dimensions. If POLY(<i>ndim</i>) is not specified, a one-dimensional polynomial is assumed. Number of Multi-Inputs. <i>ndim</i> not less than 1.
p0, p1	Polynomial coefficients.

PARAMETER	EFFECT OR MEANING
POLY	Polynomial keyword function.
PWL(1)	Piecewise linear keyword function.
TD	Propagation delay time.
vn1	Names of voltage sources through which the controlling current flows. One name must be specified for each dimension. Other types of circuit elements are NOT valid.
vnndim	Names of voltage sources through which the controlling current flows. One name must be specified for each dimension. Other types of circuit elements are NOT valid.
x1, y1, x2, y2, , xn, yn	N pairs of data representing the relation between the controlling currents (x's) and the controlled currents (y's). A comma separates each value. At least two pairs of data need to be provided. An error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma. Maximum number of pairs = 100.

G - Foster Pole-residue Form Trans-conductance Function

This function is only supported in SPEED2000.

General Form

Gxxx n+ n- Foster in+ in K_0 , K_1

- + (Real(r1), Imag(r1)/ (Real(p1), Imag(p1))
- + (Real(r2), Imag(r2))/ (Real(p2), Imag(p2))
- +
- + (Real(rn), Imag(rn))/(Real(pn), Imag(pn))

Where Real(X) means the real part of X, Imag(X) means the imagine part of X.

Trans-conductance Function Example

$$H\left(s\right) = k_0 + k_1 s + \left(\frac{s - r_1}{s - p_1} + \frac{s - r_1^{\bullet}}{s - p_1^{\bullet}}\right) + \left(\frac{s - r_2}{s - p_2} + \frac{s - r_2^{\bullet}}{s - p_2^{\bullet}}\right) + \ldots + \left(\frac{s - r_n}{s - p_n} + \frac{s - r_n^{\bullet}}{s - p_n^{\bullet}}\right)$$

Trans-conductance Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Gxxx	A character string, starting with G, for the name of a Foster Pole-Residue form Trans-conductance function.
in+	Name of the circuit node where positive end of the controlling voltage is connected.

PARAMETER	EFFECT OR MEANING
in-	Name of the circuit node where the negative end of the controlling voltage is connected.
n+	Name of circuit nodes where a controlled current source is connected. By convention, current flows from n+ through the source to n
n-	Name of the other circuit node to which controlled current source is connected.
K0	The constant term of the Trans-conductance function.
K1	The first order term coefficient of the Trans-conductance function.
r1, r2,, rn	The residues of the Trans-conductance function.
p1, p2,, pn	The Poles of the Trans-conductance function.

G - Laplace and Pole-zero Trans-conductance Function

There are two forms: Laplace and Pole. They are only supported in SPEED2000.

Laplace

Gxxx
$$n+n$$
- LAPLACE $in+in$ k_0 , k_1 , ..., k_n / d_0 , d_1 , ..., d_m

Pole

Gxxx n+ n- POLE in+ in a
$$a_{z1}$$
, f_{z1} , ..., a_{zn} , f_{zn} / b , a_{p1} , f_{p1} , ..., a_{pn} , f_{pn}

Using the Trans-conductance Parameters

- \Box - k_n Should not be all zero
- \Box - $d_{\rm m}$ Should not be all zero
- \Box - a_{zn} , f_{zn} Should be all non-negative
- \Box - a_{pn} , f_{pn} Should be all non-negative
- \Box -a, b Should not be zero

Trans-conductance Example 1

$$H(s) = \frac{k_0 + k_1 s + ... + k_n s^n}{d_0 + d_1 s + ... + d_n s^n} (m \ge n)$$

Trans-conductance Example 2

$$H(s) = \frac{\alpha(s + \alpha_A + i \, 2\pi f_A)(s + \alpha_A - i \, 2\pi f_A)...(s + \alpha_m + i \, 2\pi f_m)(s + \alpha_m - i \, 2\pi f_m)}{b(s + \alpha_A + i \, 2\pi f_A)(s + \alpha_A - i \, 2\pi f_A)...(s + \alpha_m + i \, 2\pi f_m)(s + \alpha_m - i \, 2\pi f_m)}$$

Trans-conductance Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Gxxx	A character string, starting with E, for the name of a Laplace or Pole-zero trans-conductance function.
in+	Name of the circuit node where the positive end of the controlling voltage is connected.
in-	Name of the circuit node where the negative end of the controlling voltage is connected.
n+	Name of the circuit nodes where a controlled current source is connected. By convention, current flows from n+ through the source to n
n-	Name of the other circuit node to which controlled current source is connected.
k ₀ , k ₁ ,, k _n d ₀ , d ₁ ,, d _m	The corresponding parameters in a trans-conductance function.
$ \begin{bmatrix} a & & \\ a_{z1}, f_{z1}, , a_{zn} , \\ f_{zn} b & & \\ a_{p1}, f_{p1} , , a_{pn} , \\ f_{pn} & & \end{bmatrix} $	The corresponding parameters in a trans-conductance function.

G – Voltage Controlled Capacitor (VCCAP)

There are four general forms for VCCAP:

- Linear
- Mathematic expression
- Piecewise linear
- Polynomial

They are only supported in SPEED2000.

Linear

Gxxx n+ n- VCCAP in+ in- transfactor [MAX=val] [MIN=val] [M=val] [IC=val]

Mathematic Expression

Gxxxx n+ n- VCCAP [Max=val] [MIN=val] [M=val] + name = 'mathematic expression'

Piecewise Linear

 $Gxxx \ n+n \text{-} \ \text{VCCAP PWL} (1) \ in+in \text{-} \ [\text{M}=\textit{val}] \ x1, y1, x2, y2 \ \dots \ x100, y100 \ [\text{IC}=\textit{val}]$

Polynomial

Gxxx n+ n- VCCAP POLY(ndim) in1+ in1- ... [inndim+ inndim-] [MAX=val]

+ [MIN=val] [M=val] p0 [p1...] [IC=vals]

VCCAP Example

- G 1 0 VCCAP PWL(1) cp 0
- + 1, 10p
- + 2, 50p

Related Topic

• Arbitrary Mathematical Expression Processing

VCCAP Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Gxxx	A character string, starting with G, for the name of a Voltage Controlled Capacitor.
IC=val	Initial estimate of the value of the controlling voltage. If IC is not specified, default = 0.0. For IC=vals there can be up to three values.
in+	Name of the circuit node where the positive end of the controlling voltage is connected.
in1+,, inndim+	Names of the circuit nodes where positive ends of controlling voltages are connected.
in-	Name of the circuit node where the negative end of the controlling voltage is connected.
in1-,, inndim-	Names of the circuit nodes where negative ends of controlling voltages are connected.
M=val	Number of elements in parallel.
MAX=val	Maximum capacitance value. Default is undefined and sets no maximum value.
MIN=val	Minimum capacitance value. Default is undefined and sets no minimum value.
n+	Name of the circuit node where a controlled capacitor is connected.
n-	Name of the other circuit node where a controlled capacitor is connected.
ndim	Polynomial dimensions. Choices are 1, 2 and 3. If POLY(<i>ndim</i>) is not specified, a one-dimensional polynomial is assumed.
p0, p1	The polynomial coefficients.
POLY	Polynomial keyword function.
PWL(1)	Required key word for Piecewise Linear format. Error is reported if it is missing or incorrectly spelled.
transfactor	Voltage-to-capacitance conversion factor. It equals to the ratio of the controlled capacitor capacitance and the controlling voltage.
VCCAP	Required key word to identify the type of Voltage Controlled Capacitor. An error is reported if it is missing or incorrectly spelled.

PARAMETER	Effect or Meaning
x1, y1, x2, y2,, xn, yn	N pairs of data representing the relation between Voltage (x 's) and Capacitance (y 's). A comma separates each value. At least two pairs of data need to be provided. An error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma. Maximum number of pairs = 100.
name	Name of the mathematical expression. Same name may be used for different expressions. Name must be followed by an equal sign and a valid mathematical expression.
'mathematic expression'	Valid mathematical expression must be put within a pair of single quotation marks. Local and global defined variable names and <i>v</i> oltage variables may appear in all G and E type components mathematical expressions. Current variables may not appear.

G – Voltage Controlled Current Source (VCCS)

There are six general forms for VCCS:

- Linear
- Delay
- Mathematic expression
- Multi-input gates
- Piecewise linear
- Polynomial

Delay, mathematic expression, multi-input gates, piecewise linear, and polynomial are only supported in SPEED2000.

Linear

Gxxx n+ n- [VCCS] in+ in- transconductance [MAX=val] [MIN=val] + [M=val] [IC=val]

Delay

Gxxx n+ n- [VCCS] DELAY TD=val in1+in1-

Mathematic Expression

Gxxxx n+ n- [VCCS] [Max=val] [MIN=val] [ABS=1] [M=val] + name = 'mathematic expression'

Multi-Input Gates

Gxxx n+ n- [VCCS] gatetype(ndim) in1+in1- inndim+inndim+ [M=val] [ABS=1] x1,y1 ... x1000,y100[IC=val]

Piecewise Linear

Gxxx n+ n- [VCCS] PWL(1) in+ in- [M=val] x1,y1,x2,y2, ... x100,y100 [IC=val]

Polynomial

 $Gxxx \ n+n-[VCCS] \ POLY \ (ndim \) \ in1+in1-... \ [inndim+inndim-] \ [MAX=val] + [MIN=val] \ [M=val] \ p0 \ [p1...] \ [IC=vals]$

Related Topics

- Arbitrary Mathematical Expression Processing
- Transient Waveform Specifications

VCCS Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Gxxx	A character string, starting with G, for the name of a Voltage Controlled Current Source.
DELAY	Delay Key function.
gatetype	Multi-Input Gates Key function. Can be AND, NAND, OR, NOR.
IC=val	Initial estimate of the value of the controlling voltage. If IC is not specified, the default = 0.0. For IC=vals up to three values.
in+	Name of circuit node where the positive end of the controlling voltage is connected.
in-	Name of circuit node where the negative end of the controlling voltage is connected.
in1+,, inndim+	Names of circuit nodes where positive ends of controlling voltages are connected.
in1-,, inndim-	Names of circuit nodes where negative ends of controlling voltages are connected.
M=val	Number of elements in parallel.
MAX=val	Maximum current value. Default is undefined and sets no maximum value.
MIN=val	Minimum current value. Default is undefined and sets no minimum value.
n+	Name of the circuit node where a controlled current source is connected. By convention, current flows from n+, through the source, to n
n-	Name of the other circuit node to which controlled current source is connected.
	Polynomial dimensions or Multi-Input dimension. Polynomial dimensions.
ndim	If POLY(ndim) is not specified, a one-dimensional polynomial is assumed.
	Multi-Input dimensions: Number of Multi-Inputs. <i>ndim</i> must not be less than 1.
p0, p1	The polynomial coefficients.
POLY	Polynomial keyword function.
PWL(1)	Required key word. An error is reported if it is missing or incorrectly spelled.

PARAMETER	Effect or Meaning
TD	Propagation delay time.
Transconductance	Voltage-to-current conversion factor. It equals to the ratio of controlled current and controlling voltage. $transconductance = I_{n^+,n^-}/V_{in^+,in^-}$
vccs	G element key word for Voltage Controlled Current Source.
	N pairs of data representing the relation between the controlling voltages (x's) and the controlled currents (y's).
x1, y1, x2, y2,,	A comma separates each value.
xn, yn	At least two pairs of data need to be provided.
	An error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma. Max number of pairs is 100.
name	Name of the mathematical expression. Same name may be used for different expressions.
	Name must be followed by an equal sign and a valid mathematical expression.
'mathematic expression'	A valid mathematical expression must be put within a pair of single quotation marks.
	Local and global defined variable names and voltage variables may appear in all G and E type components.
	Current variables may not appear.

Mathematical Expressions

The controlling voltages denote voltage variables of the first form. A voltage variable of the first form expresses the voltage difference between two circuit nodes.

General Forms

Gy ref y1 CUR=' deltai * (V(w1, gnd) * V(f1, gnd) + V(w2, gnd) * V(f2, gnd)) '

- □ "deltai" is a previously defined variable name
- □ "ref" is the positive node of the G component
- □ "y1" is the negative node of the G component
- □ VCCS "Gy" is controlled by four controlling voltages:
 - V(w1, gnd)
 - V(f1, gnd)
 - V(w2, gnd)
 - V(f2, gnd)

Related Topic

• Arbitrary Mathematical Expression Processing

G – Voltage Controlled Resistor (VCR)

There are five general forms for VCR. They are only supported in SPEED2000.

- Linear
- Mathematic expression
- Multi-input gates
- Piecewise linear
- Polynomial

Linear

Gxxx n+ n- VCR in+ in- transfactor [MAX=val] [MIN=val] [ABS=1] [M=val] [IC=val]

Mathematic Expression

Multi-Input Gates

Gxxx n+ n- [VCR] gatetype(ndim) in1+ in1- inndim+ inndim+ [M=val] [ABS=1] x1, y1, ... x100,y100 [IC=val]

Piecewise Linear

Gxxx n+ n- VCR PWL(1) in+ in- [M=val] x1,y1,x2,y2 ... x100,y100 [IC=val]

Polynomial

 $\begin{aligned} & Gxxx \; n + \; n \text{- VCR POLY}(ndim) \; in1 + \; in1 \text{- } \dots \; [inndim + \; inndim \text{-}] \; [\text{MAX=} val] \\ & + \; [\text{MIN=} val] \; [\text{ABS=}1] \; [\text{M=} val] \; p0 \; [p1 \dots] \; [\text{IC=} vals] \end{aligned}$

VCR Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Gxxx	A character string, starting with G, for the name of a Voltage Controlled Resistor.
DELAY	Delay Key function.
gatetype	Multi-Input Gates Key function. Can be AND, NAND, OR, NOR.
IC=val	Initial estimate of the value of the controlling voltage. If IC is not specified, the default = 0.0. For IC=vals there can be up to three values.
in+	Name of circuit node where the positive end of the controlling voltage is connected.
in1+,, inndim+	Names of circuit nodes where positive ends of controlling voltages are connected.

PARAMETER	EFFECT OR MEANING
in-	Name of circuit node where the negative end of the controlling voltage is connected.
in1-,, inndim-	Names of circuit nodes where negative ends of controlling voltages are connected.
M=val	Number of elements in parallel.
MAX=val	Maximum resistance value. Default is undefined and sets no maximum value.
MIN=val	Minimum resistance value. Default is undefined and sets no minimum value.
n+	Name of the circuit node where a controlled resistor is connected.
n-	Name of the other circuit node where a controlled resistor is connected.
	Polynomial dimensions or Multi-Inpt dimension.
ndim	If POLY(ndim) is not specified, a one-dimensional polynomial is assumed.
	Multi-Input dimension: Number of Multi-Inputs. <i>ndim</i> must not be less than 1.
p0, p1	The polynomial coefficients.
POLY	Polynomial keyword function.
PWL(1)	Required key word for Piecewise Linear format. Error is reported if it is missing or incorrectly spelled.
TD	Propagation delay time.
	Voltage-to-resistance conversion factor. It equals to the ratio of the controlled resistor
transfactor	and the controlling voltage. $transfactor = R_{n^+, n^-}/V_{in^+, in^-}$
VCR	Required key word to identify the type of Voltage Controlled Resistor. Error is reported if it is missing or incorrectly spelled.
	N pairs of data representing the relation between Voltage (x's) and Resistance (y's).
x1, y1, x2, y2,,	A comma separates each value. At least two pairs of data need to be provided.
xn, yn	Error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma. Maximum number of pairs is 100.
name	Name of mathematical expression. Same name may be used for different expressions.
	Name must be followed by an equal sign and a valid mathematical expression.
	Valid mathematical expression must be put within a pair of single quotation marks.
'mathematic expression'	Local and global defined variable names and voltage variables may appear in all G and E type components mathematical expressions.
	Current variables may not appear.

H - Current Controlled Voltage Source (CCVS)

There are five general forms for current controlled voltage source: linear, delay, multi-input gates, piecewise linear, and polynomial.

Delay, multi-input gates, piecewise linear, and polynomial are only supported in SPEED2000.

Linear

Hxxx n+ n- [CCVS] vn1 transresistance [MAX=val] [MIN=val] [ABS=1] [IC=val]

Delay

Hxxx n+ n- [CCVS] DELAY TD=val in1

Multi-Input Gates

Piecewise Linear

Hxxx n+ n- [CCVS] PWL(1) vn1 x1,y1,x2,y2, ... x100,y100 [IC=val]

Polynomial

Hxxx n+n-[CCVS] POLY(ndim) vn1 [... vnndim] [MAX=val] [MIN=val] + [ABS=1] p0 [p1...] [IC=vals]

Related Topic

• Transient Waveform Specifications

CCVS Parameter Descriptions

PARAMETER	EFFECT OR MEANING		
Hxxx	A character string, starting with H, for name of a Current Controlled Voltage Source.		
ABS=1	Output is absolute value if ABS = 1.		
CCVS	Keyword for current controlled voltage source.		
DELAY	Delay Key function.		
gatetype	Multi-Input Gates Key function. Can be AND, NAND, OR, NOR.		
IC=val	Initial condition. Initial estimate of the values of the controlling currents in amps. If IC is not specified, the default = 0.0. For IC = vals. There can be up to three values.		

PARAMETER	EFFECT OR MEANING			
MAX=val	Maximum output voltage value. Default is undefined and sets no maximum value.			
MIN=val	Minimum output voltage value. Default is undefined and sets no minimum value.			
n+	Name of the circuit node where a controlled voltage source is connected.			
n-	Name of the other circuit node where a controlled voltage source is connected.			
	Polynomial dimensions or Multi-Input dimension.			
ndim	If POLY(<i>ndim</i>) is not specified, a one-dimensional polynomial is assumed. Multi-Input dimension:Number of Multi-Inputs. <i>ndim</i> must not be less than 1.			
p0, p1	Polynomial coefficients.			
POLY	Polynomial keyword function.			
PWL(1)	Piecewise linear keyword function.			
TD	Propagation delay time.			
transresistance	Current to voltage conversion factor. $transresistance = V_{n^+, n^-} / I_{in^+, in^-}$			
vn1 vnndim	Names of voltage sources through which the controlling current flows. One name more specified for each dimension. Other types of circuit elements are NOT valid.			
x1, y1, x2, y2,,	N pairs of data representing the relation between the controlling currents (x's) and the controlled voltages (y's). A comma separates each value. At least two pairs of data need to be provided.			
xn, yn	An error is reported if the data provided is less than two pairs, not correctly paired, or not separated by comma. Maximum number of pairs = 100.			

I - Current Source Description Line

General Form

lxxxx s1 s2 [[DC] fdc] [transient waveform specification] <AC=acmag>, <acphase>>
<M=val>

Current Source Example

The following example defines the AC voltage and current sources.

Related Topic

• Transient Waveform Specifications

Current Source Parameter Descriptions

PARAMETER	EFFECT OR MEANING		
lxxxx	A character string, starting with I, for the name of a current source.		
s1	Name of the circuit node that the current flows into the current source from outside.		
s2	Name of the circuit node that the current flows out of the current source.		
fdc	DC value in amperes. ¹		
transient waveform specification	The transient waveform can be of eleven different types: Gaussian, Exponential, Pulse, Piecewise, Frequency-Modulated, Sinusoidal, Sinesquare, Digital_Sinesquare, Digital_Ram, Digital_Piecewise and Random Bits		
AC ²	The AC source keyword for use in AC small-signal analysis		
acmag	Magnitude (RMS) of the AC source in volts.		
acphase	Phase of the AC source in degrees. Default = 0.0		

- 1. For AC/spatial mode simulations in PowerSI, the DC is ignored. In the PowerSI extraction mode, all partial circuits, including independent sources are not visible.
- For transient simulations in SPEED2000, the AC arguments are ignored. In PowerSI, if a user selects spatial mode, at least one independent source with valid AC arguments must be present in the connected partial circuits before the simulation can be started.

K - Mutual Inductor Description Lines

General Form for Mathematical Expression

Kxxxx Inductor1 Inductor2 Value

In the following example, phase dot is on node 1 of Inductor L11 and on Node 21 of Inductor L18.

Mutual Inductor Example

L11 1 2 1n

L18 21 24 2n

Ka L11 L12 0.6

The phase dot convention is used to determine the sign of the mutual inductance.

Within the .spd file the phase dot is on the first node of the inductor description line.

Mutual Inductor Parameter Descriptions

PARAMETER	EFFECT OR MEANING			
Kxxxx	A character string, starting with K, for the name of a mutual inductor.			
Inductor1	Name of one coupled inductor.			
Inductor2	Name of the other coupled inductor.			
Value	Coupling coefficient of Inductor1 and Inductor2. The mutual inductance value is calculated as: Coupling_Coefficient \times sqrt (L1 \times L2) where L1 = inductance of inductor 1 and L2 = inductance of the other inductor.			

_Lmatrix - Inductor Matrix Description Lines

General Form

```
Lmatrixxxxx N = n1 file = s1 Node1 Node2 ... NodeM
```

Each line of the file describes one self or mutual inductor with the following format:

branchi branchj Value

_LMatrix Indicator Example 1

The following is an example of the _Lmatrix statement as it appears in a .spd file and the cmat.dat file that it calls.

L-Matrix Indicator Example 2

Circuit description lines 3-5 are equivalent to line 12. Lines 20-22 represent the data file. The use of a data file permits more than one .spd file to use the same matrix.

- 1: V 1 0 pulse (0 1 0 10n 10n 10n 1)
- 2: R1 1 2 1
- 3: L1 2 0 1n
- 4: L2 3 0 1n

5: K L1 L2 0.1

6: R2 3 0 1

10: V 1 0 pulse (0 1 0 10n 10n 10n 1)

11: R1 1 2 1

12: _Lmatrix N=2 file = lmat.dat 2 0 3 0

13: R2 3 0 1

where the content of lmat.dat file is:

20: 1 1 1n 21: 2 2 1n 22: 1 2 0.1

Inductor Matrix Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
_Lmatrix <i>xxxx</i>	A character string, starting with _Lmatrix, for a mutual inductor matrix.	
N = n1	Total number of branches involved.	
file = s1 Character string for the name of the data file in disk that stores the mutual invalues.		
Names of nodes for branches involved in the mutual inductor matrix where and Node1 to NodeM Node3 and Node4 correspond to the second branch, and so on.		

Branch Parameter Descriptions

PARAMETER	Effect or Meaning			
Branchi	Branch number associated with the self or mutual inductor.			
Branchj	Branch number associated with the self or mutual inductor.			
Value	Self inductance value if <i>Branchi</i> and <i>Branchj</i> are the same or coupling coefficient L of inductors in <i>Branchi</i> and <i>Branchj</i> if <i>Branchi</i> and <i>Branchj</i> are different.			
	The mutual inductance value is calculated through: Coupling_coefficient * sqrt (Li * Lj) where Li and Lj are the self-inductance of Branchi and Branchj respectively.			

L - Inductor Description Lines

General Form for Mathematical Expression

Lxxxx Node1 Node2 [IC = f1] [R_0 = f2] {Value | name = 'mathematic expression'}

L-Inductor Example

L22 3 4 0.1n IC = 1m

L23 1 2 value = 'IND'

In this example, IND is a previously defined parameter name equal to a constant value. See and local and global parameter usage descriptions.

Related Topics

- Global Parameters (.Param)
- Arbitrary Mathematical Expression Processing

Inductor Parameter Descriptions

PARAMETER	EFFECT OR MEANING			
Lxxxx	A character string, starting with L, for the name of an inductor.			
Node1	Name of the circuit node connected to one end of the inductor.			
Node2	Name of the circuit node connected to the other end of the inductor.			
IC = f1	Initial current flowing from Node1 to Node2 inside the inductor. Default value: 0.			
R_0 = f2	Resistance (for DC analysis). Default value: 0.0001 ohm.			
Value	Inductance value.			
name	Name of the mathematical expression. The same name may be used for different expressions. The name must be followed by an equal sign and a valid mathematical expression.			
'mathematic expression'	A valid mathematical expression must be put within a pair of single quotation marks.			

M - MOSFET Description Lines

This statement is a modeling feature of Speed2000. It is only available in Speed2000.

General Form

Mxxx nd ng ns nb mname [L =]length] [[W =]width] [AD = val]

+ [AS = val] [PD = val] [PS = val] [NRD = val] [NRS = val]

+ [RDC = val] [RSC = val] [OFF] [IC = vds, vgs, vbs] [M = val]

+ [DTEMP = val] [GEO = val] [DELVTO = val]

or

.OPTION WL

Mxxx nd ng ns nb mname [width] [length] [other options ...]

M-MOSFET Example M 1 d g s b NCH L = 2u W = 10u

MOSFET Parameter Descriptions

NAME	DEFAULT	DESCRIPTION
Mxxx	-	MOSFET element name. Must begin with "M".
nd	-	Drain node.
ng	-	Gate node.
ns	-	Source node.
nb	-	Bulk node, which is NOT optional.
mname	-	Referenced MOSFET model name.
L	DEFL	MOSFET channel length in meters. Maximum: 0.1m.
W	DEFW	MOSFET channel width in meters.
AD	DEFAD if ACM=0	Drain diffusion area.
AS	DEFAS if ACM=0	Source diffusion area. Overrides DEFAS in OPTIONS statement.
PD	DEFPD if ACM=0 or 1 0.0 if ACM=2 or 3	Perimeter of the drain junction, including the channel edge.
PS	DEFPS if ACM=0 or 1 0.0 if ACM=2 or 3	Perimeter of the source junction, including the channel edge.
NRD	DEFNRD if ACM=0 or 1 0.0 if ACM=2 or 3	Number of squares of drain diffusion for resistance calculations.
NRS	DEFNRS if ACM=0 or 1 0.0 if ACM=2 or 3	Number of squares of source diffusion for resistance cogitations.
RDC	0.0	Additional drain resistance due to contact resistance with units of ohms. Overrides RDC in the MOSFET model card.
RSC	0.0	Additional source resistance due to contact resistance with units of ohms. Overrides RSC in the MOSFET model card.
OFF	ON.	If written, sets initial condition to OFF in DC analysis.
IC=vds, vgs, vbs	-	Initial voltage across the external drain and source (vds), gate and source (vgs), and bulk and source terminals (vbs).
М	1.0	Multiplier to simulate multiple MOSFETs in parallel.
DTEMP	0.0	The difference between the element temperature and the circuit temperature in Celsius.

NAME	DEFAULT	DESCRIPTION
GEO	0.0	Source / drain sharing selector for MOSFET model parameter value ACM=3.
DELVTO	0.0	Zero-based threshold voltage shift.

R - Resistor Description Lines

General Form

Rxxxx Node1 Node2 [mname] R [TC1 [TC2 [SCALE]]] [M=val]

+ [DTEMP = val] [L=val] [W=val]

Rxxx Node1 Node 2 [mname] [R =] val|'equation' [[TC1 =]val]

+ [[TC2 =] val] [[SCALE] = val] [M = val]

+ [DTEMP = val] [L = val] [W = val]

Note!

Voltage variables and Current variables may not appear in math expressions for R, L and C components.

R-Resistor Example 1

R 4 2 844m

R-Resistor Example 2

In this example, resistor, R1, has a value in the form of a mathematical expression.

Both V0 and I0 must be constant parameters.

R1 1 2 R='V0/I0'

Resistor Parameter Descriptions

PARAMETER (ALIAS)	Units	DEFAULT	DESCRIPTION
Rxxx			A character string, starting with R, for the name of resistor.
Node1			Name for the circuit node connected to one end of the resistor.
Node2			Name of the circuit node connected to the other end of the resistor.

PARAMETER (ALIAS)	Units	DEFAULT	DESCRIPTION
R	Ohm	0	Resistance. It can be: Numerical value Parameter Parameter expressions in single quotes Function of branch voltages
TC1 (TC)		0	First temperature coefficient for R. Overwrite model parameter TC1.
TC2		0	Second temperature coefficient for R. Overwrite model parameter SCALE.
SCALE		1	Scale factor for R. Overwrite model parameter SCALE.
М		1	Multiplier.
DTEMP		0	Temperature difference between element and circuit.
L	m	0	Length. Overwrite model parameter L.
W	m	0	Width. Overwrite model parameter W.

S - S Parameters Description Lines

General Form for S Parameters

Sxxx {nd1 n2 ... ndN ndRef | nd1 ndRef1 nd2 ndRef2... ndN ndRef}

- + {MNAME=Smodel_name | model=data_file}
- + [fmax=f_max] [fbase=f_base]

S Parameter Descriptions

PARAMETER	Effect or Meaning	
nd1 nd2 ndN ndRef	Node names. nd1 nd2 ndN: Port nodes. ndRef: Reference node.	
nd1 ndRef1 nd2 ndRef2 ndN ndRef	Node names. nd1 nd2 ndN: Port nodes. ndRef1 ndRef2 ndRef: Reference nodes.	
MNAME	Name of S model, which is defined in .model description lines.	
Model	Data file name. Speed2000 supports BNP, TOUTCHSTONE and RFM files, while PowerSI only supports BNP and TOUTCHSTONE files.	
Fmax	The max frequency of inverse Fourier Transform when using BNP or TOUCHSTONE files. Default Fmax = 1/ (simulation time interval).	

PARAMETER	EFFECT OR MEANING	
Fbase	The base frequency of inverse Fourier Transform when using BNP or TOUCHSTONE files.	
	Default Fbase = 1/ (simulation period).	

T - Transmission Line Description Lines

There are two forms for the Transmission Line Description line: PowerSI and SPDSIM.

General Form for PowerSI

Txxx Node1 Node2 Node3 Node4 Z0=f1 TD=f2 [R_0 = f3]

General Form for SPDSIM

Txxx Node1 Node2 Node3 Node4 Z0=f1 TD=f2 $[R_0 = f3] [L = f4]$

Transmission Example

A transmission line with 50 Ohms characteristic impedance, and a 3-ns propagation delay connected between circuit nodes: In, Gnd and Out, Gnd.

T1234 In Gnd Out Gnd Z0=50 TD=3n

Transmission Parameter Descriptions

PARAMETER	Effect or Meaning	
Тхххх	A character string, starting with T, for the name of a transmission line.	
Node1, Node2	Names of the circuit node connected to one end of the transmission line. Voltage measured at this end is by the potential at <i>Node1</i> minus the potential at <i>Node2</i> .	
Node3, Node4 ¹	Names of the circuit node connected to the other end of the transmission line. Voltage measured at this end is by the potential at <i>Node3</i> minus the potential at <i>Node4</i> .	
Z0=f1	Characteristic impedance in Ohms. Note: character is zero.	
TD=f2	Transmission delay per unit length in seconds / meter.	
R_0=f3	DC Resistance for DC analysis. Character is zero. Default: 0.0001 Ohm.	
L=f4	Physical length of transmission line in meters. Default L = 1.	

^{1.} For PowerSI: If the node names for Node2 and Node4 are different, a warning is given to the user: "Assigning the input reference node and the output reference node of a transmission line to a different circuit node, may lead to incorrect simulation results."

V - Voltage Source Description Lines

General Form

Vxxxx s1 s2 [[DC] fdc] [transient waveform specification] [R_0=fr] <AC=acmag><acphase><M=val>

Voltage Source Example

The following example defines the AC voltage source.

Vxxxx n+ n- AC=1.0,90

Related Topic

• Transient Waveform Specifications

Voltage Source Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
Vxxxx	A character string, starting with V, for the name of a voltage source.	
s1	Name of the circuit node connected to the positive end of the voltage source.	
s2	Name of the circuit node connected to the negative end of the voltage source.	
fdc	DC value in volts.	
transient waveform specification	The transient waveform can be of eleven different types: Gaussian, Exponential, Pulse, Piecewise, Frequency-Modulated, Sinusoidal, Sinesquare, Digital_Sinesquare, Digital_Ramp, Digital_Piecewise and Random Bits.	
R_0= fr ¹	Inner resistance in ohms.	
AC ²	The AC source keyword for use in AC small-signal analysis	
acmag	Magnitude (RMS) of the AC source in amperes.	
acphase	Phase of the AC source in degrees. Default = 0.0	
М	The multiplier used for simulating multiple parallel current sources. The source current value is multiplied by M. Default = 1.0	

- 1. This value is ignored by PowerSI
- 2. For transient simulations in SPEED2000, the AC arguments are ignored. In PowerSI, if a user selects spatial mode, at least one independent source with valid AC arguments must be present in the connected partial circuits before the simulation can be started.

W - Coupled Transmission Description Lines

General Form

Wxxx i1 i2 ... iN iR o1 o2 ... oN oR

- + N=val
- + L=val
- + {RLGCMODEL=name | RLGCFILE=name}
- + [INCLUDERSIMAG=YES|NO]
- + [FGD=val]

Using the Coupled Transmission Parameters

- □ W-element supports single or coupled lossless lines
- □ W-element supports single or coupled lossy lines
- □ INCLUDERSIMAG and FDG are optional
- \Box The total quantity of i1 i2 ... iN iR o1 o2 ... oN oR must be even
- \square N is a positive integer
- □ L is a positive number
- □ **FDG** is a non-negative number

Coupled Transmission Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
N	Number of signal conductors (excluding the reference conductor).	
i1 iN	Node names for the near-end signal-conductor terminal.	
iR	Node name for the near-end reference-conductor terminal.	
o1 oN	Node names for the far-end signal-conductor terminal.	
oR	Node name for the far-end reference-conductor terminal.	
L	Length of the transmission line in meters. Default L=1.	
RLGCMODEL	Name of the RLCG model.	
RLGCFILE	Name of the external file with RLGC parameters.	
INCLUDERSIMAG	Imaginary term of the skin effect to be considered. The default value is YES.	
FGD	Specifies the cut-off frequency of dielectric loss.	

_X - Subcircuit Description Lines

General Form

Xxxxx Node1 Node2 ... Noden SubCKTName

Subcircuit Example

Subcircuit Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
Xxxxx	A character string, starting with X, for the instance name of the subcircuit.	
Node1 Node2 Noden	Noden Aliases mapping to external nodes of the subcircuit.	
SubCKTName	Subcircuit definition name. Subcircuit definition must appear previous to this description line, which uses it.	

Device Model Options (.Option)

In the device model simulation options can modify various aspects, including parameter defaults and integration methods.

General Form

.Option {OptionName} {OptionName = value }

NOTE! The .Option {OptionName} can only be used for WL.

Device Model Option Parameter Descriptions

OPTION NAME	DEFAULT	DESCRIPTION	
WL Syntax: .option WL or .option WL=value	0 WL not specified	Reverses the order of width and length in MOSFET element statement if L= and W= are not written. Default assigns the first value to length and the second value to width.	
SCALE	1	Scale element parameters.	
SCALM	1	Scale model parameters.	
DEFL	1e-4	Default MOSFET channel length.	
DWFW	1e-4	Default MOSFET channel width.	
DEFAD	0	Default MOSFET drain diode area.	
DEFAS	0	Default MOSFET source diode area.	
DEFPD	0	Default MOSFET drain diode perimeter.	
DEFPS	0	Default MOSFET source code perimeter.	
DEFNRD	0	Default number of squares of the drain resistor.	
DEFNRS	0	Default number of squares of the source resistor.	
EPSMIN	1e-28	Smallest number a computer can add or subtract.	
TNOM	25	Reference temperature of model cards.	
METHOD	TRAP	MOSFET numerical integration method in transient analysis. Can be GEAR or TRAP.	

Device Temperatures (.Temp)

The TEMP statement sets the temperature for all the semiconductor devices.

The individual element temperature is calculated by:

Temperature set in the .temp statement + DTEMP element parameter

General Form

.TEMP temperature

Mutual Capacitor Matrices

Each line of the data file describes a self or mutual capacitor.

The default mutual capacitance value is zero. Only the non-zero mutual capacitance values need to be listed.

General Form

Node1 Node2 Value

Example 1 for Mutual Capacitor Matrices

The **_Cmatrix** statement as it appears in a .spd file and the cmat.dat file that it calls.

Example 2 for Mutual Capacitor Matrices

Circuit description lines 1-6 are equivalent to lines 10-13. Lines 20-22 are the data file, cmat.dat.

The use of a data file permits more than one .spd file to use the same matrix.

- 1: V 1 0 pulse (0 1 0 10n 10n 10n 1)
- 2: R1 1 2 1
- 3: C1 2 0 1n
- 4: C2 2 3 0.1n
- 5: C3 3 0 1n
- 6: R2 3 0 1
- 10: V 1 0 pulse (0 1 0 10n 10n 10n 1)
- 11: R1 1 2 1
- 12: _Cmatrix1 N=2 file = cmat.dat 0 2 3
- 13: R2 3 0 1

where the content of the cmat.dat file is:

20: 1 0 1n

21: 1 2 0.1n

22: 2 0 1n

Mutual Capacitor Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
Node1	Name of one circuit node associated with the self or mutual capacitor.	
Node2	Name of the other circuit node associated with the self or mutual capacitor.	
Value	Capacitance value.	

TRANSIENT WAVEFORM SPECIFICATIONS

There are ten transient waveform specifications.

- Digital PWL Waveform
- Digital Ramp Waveform
- Digital Sinesquare Waveform
- Exponential Waveform
- Frequency-Modulated Waveform
- Gaussian Waveform
- Piecewise Linear Waveform
- Pulse Waveform
- Sinesquare Waveform
- Sinusoidal Waveform
- Random Bits Waveform

Digital_PWL Waveform

General Form

```
Digital_PWL(FT1, F11, FT2, F12,...FTN, FIN)
+ Pattern=( {0|1}, {0|1},...{0|1} ) [T0 = t0]
or
Digital_PWL FILE=s1
+ Pattern=( {0|1}, {0|1},...{0|1} ) [T0 = t0]
```

Pattern Bit Change

The simulation tool checks the pattern bit change at:

```
t0+M*bit_time (M=1,2,3,...)
```

- \Box If 0->0, then use the value fi1l for (t0 + M * bit_time) < t < (t0 + (M + 1) * bit_time).
- ☐ If 0->1, then use the first half of the PWL data for (t0 + M * bit_time) < t < (t0 + (M + 1) * bit_time).
- ☐ If 1->0, then use the second half of the PWL data for (t0 + M * bit_time) < t < (t0 + (M + 1) * bit_time).
- If 1->1, then use the value ftm (ftm=bit_time) for (t0 + M * bit_time) < t < (t0 + (M + 1) * bit_time).

Digital_PWL Example

Pattern = (1, 1, 0, 0, 0) digital_pwl waveform illustration.

Digital_PWL Waveform Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
FT1, FT2,, FTN	Time, unit: second. where ftN = 2*bit_time.	
FI1, FI2,, FIN	Value of the waveform at FT1, FT2,, FTN, respectively.	
FILE = s1	Name of the file which contains: FT1, FI1 FT2, FI2 FTN, FIN	
T0 = <i>t0</i>	Delay. Unit: second. Default = 0.	

Digital_Ramp Waveform

General Form

Digital_Ramp (f1, f2, f3, f4, f5, f6)

+ Pattern = ($\{0|1\}, \{0|1\}, \{0|1\}, ..., \{0|1\}$)

Digital Ramp Waveform Example

Pattern = (1, 1, 0, 0, 0) digital_ramp waveform illustration

Digital_Ramp Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
f1	Low value of the waveform.	
f2	High value of the waveform. Highvalue>=Lowvalue.	
f3	Time difference between the time starting points of two adjacent bits. The midpoint of a rising or falling edge is the starting point of the bit after the edge. It's also the ending point of the bit before the edge. bitwidth > 0 and bitwidth > = 0.5 * (risetime + falltime).	
f4	Time delay before the first bit starts. Unit: second. delay > = 0.	
f5	Time length for the waveform to rise from the low value to the high value. One half of the time length is contained in the bit with pattern value 0. The other half in the bit with pattern value 1. Unit: second"risetime > 0.	

PARAMETERS	EFFECT OR MEANING	
f6	Time length for the waveform to fall from the high value to the low value. One half of the time length is contained in the bit with pattern value 1. The other half of the time length is contained in the bit with pattern value 0.	
	Unit: second falltime > 0	
	The value of the option is a comma separated list of numbers consisting of either 1 or 0 which comprise a repeating pattern.	
Pattern=({0 1},{0 1},)	Each value in the list indicates the state of the waveform during the time width of each bit in the pattern. The first value in the list indicates the state of the first bit. The second value indicates the state of the second bit, and so on.	
	If a value is 1, the waveform during the corresponding time width keeps the high value. If a value is 0, the waveform during the corresponding time width keeps the low value (except for those bits where a rising or falling transition occurs - see <i>risetime/falltime</i>).	
	The values in the list are repeatedly applied to the waveform as a pattern.	
	For example: Pattern = (1, 0) is equivalent to Pattern = (1, 0, 1, 0, 1, 0,) and Pattern = (1, 0, 0, 0, 1) is equivalent to Pattern = (1, 0, 0, 0, 1, 1, 0, 0, 0, 1,)	

Digital_Sinesquare Waveform

General Form

Digital_Sinesquare (f1, f2, f3, f4, f5, f6)

+ Pattern = $(\{0|1\}, \{0|1\}, \{0|1\}, ..., \{0|1\})$

Digital Sinesquare Waveform Example

Pattern = (1, 1, 0, 0, 0) digital_sinesquare waveform illustration

Digital_Sinesquare Waveform Parameter Descriptions

PARAMETERS	Effect or Meaning		
f1	Low value of the waveform.		
f2	High value of the waveform. Highvalue>=Lowvalue.		
f3	Time difference between the time starting points of two adjacent bits. Midpoint of a rising or falling edge is the starting point of the bit after the edge. Also the ending point of the bit before the edge.		
	Unit: second. bitwidth > 0 and bitwidth > = 0.5 * (risetime + falltime).		
f4	Time delay before the first bit starts. Unit: second; Delay > = 0.		
f5	Time length for the waveform to rise from the low value to the high value. One half of the time length is contained in the bit with pattern value 0. The other half of the time length is contained in the bit with pattern value 1.		
	Unit: second risetime > 0.		
f6	Time length for the waveform to fall from the high value to the low value. One half of the time length is contained in the bit with pattern value 1. The other half in the bit with pattern value 0.		
	Unit: second falltime > 0.		
	The value of the option is a comma separated list of numbers consisting of either 1 or 0 which comprise a repeating pattern.		
Pattern=({0 1},{0 1},)	Each value in the list indicates the state of the waveform during the time width of each bit in the pattern. The first value in the list indicates the state of the first bit. The second value indicates the state of the second bit, and so on.		
	If a value is 1, the waveform during the corresponding time width keeps the high value. If a value is 0, the waveform during the corresponding time width keeps the low value (except for those bits where a rising or falling transition occurs - see <i>risetime/falltime</i>).		
	The values in the list are repeatedly applied to the waveform as a pattern.		
	For example: Pattern = (1, 0) is equivalent to Pattern = (1, 0, 1, 0, 1, 0,) and Pattern = (1, 0, 0, 0, 1) is equivalent to Pattern = (1, 0, 0, 0, 1, 1, 0, 0, 0, 1,).		

Exponential Waveform

General Form

EXP(f1 f2 [f3] [f4] [f5] [f6])

Waveform Amplitude

f1	(t <f3)< th=""></f3)<>
f1+(f2-f1)(1-exp(-(t-f3)/f4))	(f3 <t<f5)< td=""></t<f5)<>
$f1+(f2-f1)(1-\exp(-(t-f3)/f4)-(1-\exp(-(t-f5)/f6)))$	(t>f5)

Exponential Waveform Example

Exponential Waveform Parameter Descriptions

PARAMETERS	Effect or Meaning
f1	Initial value.
f2	Peak value.
f3	Rise(fall) delay, unit: sec., default: 0.
f4	Rise(fall) time constant, unit: sec., default: simulation time step.
f5	Fall(rise) delay, unit: sec., default: f3 + simulation time step.
f6	Fall(rise) time constant, unit: sec., default: simulation time step.

Frequency-Modulated Waveform

General Form SFFM (f1 f2 [f3] [f4] [f5])

Waveform Amplitude

 $f1+f2 \sin(2\pi \ f3 \ t + f4 \sin(2\pi \ f5 \ t))$

Frequency Modulated Waveform Example

Frequency Modulated Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING
f1	Offset value
f2	Peak amplitude of value.
f3	Carrier frequency, unit: hertz. Default: 0.
f4	Modulation index. Default: 0.
f5	Modulation frequency, unit: hertz. Default: 0.

Gaussian Waveform

General Form

GAUSSIAN (F1 F2 F3 F4 [F5])

Waveform Amplitude Example

 $f1+(f2-f1) \exp(-((t-f3)/(0.2887*f4))^2)$ (in the first period)

Gaussian Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING
f1	Initial value
f2	Peak value
f3	Time delay, unit: sec., suggested value: 1.3~1.5 times f4
f4	Pulse width, unit: sec., measured at 5% of (peak value - initial value)
f5	Period, unit: sec. Default: infinity.

Piecewise Linear Waveform

General Form

PWL (ft1 fi1 ft2 fi2 ft3 fi3 ft4 fi4 ... [R[=repeat]])

or

PWL FILE=s1 [R[=repeat]])

Piecewise Linear Waveform Example

Note!

If there are N pairs of time and values: with no keyword, R: Waveform amplitude = fi1 (t < ft1) fiN (t > ftN)

For keyword R, with no argument, the source repeats from the beginning of the function. *Repeat* is the time, in units of seconds, which specifies the start point of the waveform to repeat.

This time needs to be less than the greatest time point, ftn.

Piecewise Linear Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING
ft1, ft2, ft3,	Time, unit: second.
fi1, fi2, fi3,	Value of the waveform at ft1, ft2, ft3,, respectively.
FILE=s1	Name of the file which contains: ft1 fi1 ft2 fi2 ft3 fi3
R=Repeat	Time, unit: seconds which specify the start point of the repeating waveform.

Pulse Waveform

General Form

PULSE(f1 f2 [f3] [f4] [f5] [f6] [f7])

Pulse Waveform Example

Pulse Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
f1	Initial value	
f2	Peak value of the pulse.	
f3	Delay, unit: sec., default: 0.	
f4	Rise time, unit: sec., default: simulation time step.	
f5	Fall time, unit: sec., default: simulation time step.	
f6	Pulse width, unit: sec., default: infinity.	
f7	Period, unit: sec., default: infinity.	

Waveform Amplitude Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
f1	(t <f3)< td=""></f3)<>	
f1+(f2-f1)(t-f3)/f4	(f3 <t<f3+f4)< td=""></t<f3+f4)<>	
f2	(f3+f4 <t<f3+f4+f6)< td=""></t<f3+f4+f6)<>	
f2-(f2-f1)(t-f3-f4-f6)/f5	(f3+f4+f6 <t<f3+f4+f6+f5)< td=""></t<f3+f4+f6+f5)<>	
f1	(f3+f4+f6+f5 <t<f3+f7)< td=""></t<f3+f7)<>	

Sinesquare Waveform

General Form

SINESQUARE(f1 f2 [f3] [f4] [f5] [f6] [f7])

Sinesquare Waveform Example

Sinesquare Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
f1	Initial value	
f2	Peak value	
f3	Delay, unit: sec. Default: 0.	
f4	Rise time, unit: sec. Default: simulation time step.	
f5	Fall time, unit: sec. Default: simulation time step.	
f6	Pulse width, unit: sec. Default: infinity. Time the waveform amplitude remains at <i>f</i> 2.	
f7	Period, unit: sec., default: infinity.	

Waveform Amplitude Parameter Descriptions

PARAMETERS	Effect or Meaning
f1	(t <f3)< td=""></f3)<>
f1+0.5(f2-f1)(1-cos(π(t-f3)/f4))	(f3 <t<f3+f4)< td=""></t<f3+f4)<>
f2	(f3+f4 <t<f3+f4+f6)< td=""></t<f3+f4+f6)<>

$f1+0.5(f2-f1)(1+\cos(\pi(t-f3-f4-f6)/f5))$	(f3+f4+f6 <t<f3+f4+f6+f5)< th=""></t<f3+f4+f6+f5)<>
f1	(f3+f4+f6+f5 <t<f3+f7)< td=""></t<f3+f7)<>

Sinusoidal Waveform

General Form

SIN(f1 f2 [f3] [f4] [f5] [f6])

Sinusoidal Waveform Example

Sinesquare Waveform Equation

Sinusoidal Waveform Parameter Descriptions

PARAMETERS	EFFECT OR MEANING	
f1	Offset value	
f2	Peak amplitude of the sine function.	
f3	Frequency, unit: hertz, default: 0.	
f4	Delay, unit: sec., default: 0.	
f5	Damping factor, unit: 1/sec., default: 0.	
f6	Phase, unit: degree, default: 0.	

Waveform Amplitude Parameter Descriptions

PARAMETERS	EFFECT OR MEANING
$f1 + f2 \sin(2\pi \ f6 / 360)$	(t < f4)
f1 + f2 sin (2π (f3 (t - f4)+ f6 / 360)) exp (- (t-f4) f5)	(t > f4)

Random Bits Waveform

General Form

Random_Bit (

+ f1

+ f2

+ {BITP=d_bitp | DATA_RATE=d_data_rate}

+ [DELAY = d_delay]

+ [TR=d_tr]

 $+ [TF = d_tf]$

+ [POLY = i_poly]

+[SEED = i_seed]

+ [BITS = filename_bits]

+ [LEADBITS = filename_leadbits]

+ [JITTER=d_jit]

+ [NOISE=d_noise])

+[CODE={8b10b | 64b66b}])

Random Bits Waveform Parameter Descriptions

PARAMETERS	Effect or Meaning
f1	Initial amplitude of the random bits sequence.
f2	Peak amplitude of the random bits sequence.
BITP	Bit period of the random bits sequence, unit: sec.
DATA_RATE	Data rate of the random bits sequence, unit: Hz.
DELAY	Delay, unit: sec. Default DELAY= 0.
TR	Rising time, unit: sec. Default: simulation time step.
TF	Falling time, unit: sec. Default: simulation time step.

POLY	The rank of polynomial for generating PRBS. The sequence is PRBS when this option is applied.
SEED	Initial value of the random bits sequence. SEED is a positive integer. Default SEED=1.
BITS	The file name of user-defined bits. See <i>The Bits File Format</i> .
LEADBITS	The file name of the leading bits. See <i>The Bits File Format</i> .
JITTER	The deterministic jitter of the random bits sequence, unit: UI (unit interval). Default: JITTER=0.
NOISE	The noise to $ f2 - f1 $ ratio of the random bit sequence, $0 < d_noise < 1$. Default: NOISE=0.
CODE	The data coding of the random bit sequence.

The Bits File Format

The data in the bits file format is digital waveform, which is const of 0 and 1.

If add ... at the end of the waveform, it is repeated.

Bits File Format Example

0001110001 10001 100100000 10011 .

Examples of Source with Random Bits Waveform

Random Bits Waveform Example 1

```
V1 1 2
```

+ RANDOM_BIT (

+ 0

+ 0.5

+ DATA_RATE = 5g

+ POLY = 23

+ TR = 0.01n

+ TF = 0.01n

+ JITTER=0.2

+ NOISE=0.05)

Random Bits Waveform Example 2

|1 1 2

+ RANDOM_BIT (

+ 0.5

+ 1

+ BITP= 0.2n

+ DELAY = 0.1n

+ TR = 0.01n

- + TF = 0.01n
- + JITTER = 0.1
- + NOISE = 0.01)

Partial Circuit And Package Connection Description Lines

General Form

CktNode PkgNode

Partial Circuit and Package Connection Example 1

.Connect d12 Driver
Pvdd \$Package.Node120:VCC
Out \$Package.Node409:D12
Nvss \$Package.Node276:GND
.EndC

Partial Circuit and Package Connection Example 2

.Connect Rpd0 Rterm
1 \$Package.Node584:D0
2 \$Package.Node219:GND
.EndC

Partial Circuit and Package Connection Example 3

.Connect Rpd1 Rterm 1 \$Package.Node578:D1

2 \$Package.Node219:GND

.EndC

Partial Circuit and Package Connection Example 4

.Connect Rpd2 Rterm
1 \$Package.Node560:D2
2 \$Package.Node219:GND
.EndC

NOTE! Multiple circuit nodes can be mapped to one package node.

Partial Circuit and Package Connection Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
CktNode	Name of the circuit node defined in the partial circuit definition.	
PkgNode	PkgName.NodeName:NetName. Name of a package node NodeName in the package PkgName. A net association is given a :NetName	

POLYNOMIAL FUNCTIONS IN NONLINEAR CIRCUIT ELEMENTS

General Form

POLY(1): One-dimensional function.

POLY(2): Two-dimensional function.

POLY(3): Three-dimensional function.

p0, p1, p2, p3, ... are coefficients in the polynomial definition.

One-dimensional Function

$$f = p0 + p1*x + p2*x^2 + p3*x^3 + ...$$

Two-dimensional Function

$$f = p0$$
+ $p1*x + p2*y$
+ $p3*x^2 + p4*xy + p5*y^2$
+ $p6*x^3 + p7*x^2y + p8*xy^2 + p9*y^3$
+ ...

Three-dimensional Function

$$f = p0$$

$$+ p1*x + p2*y + p3*z$$

$$+ p4*x^{2} + p5*xy + p6*xz + p7*y^{2} + p8*yz + p9*z^{2}$$

$$+ p10*x^{3} + p11*x^{2}y + p12*x^{2}z + p13*xy^{2} + p14*xyz + p15*xz^{2}$$

$$+ p16*y^{3} + p17*y^{2}z + p18*yz^{2} + p19*z^{3}$$

$$+ p20*x^{4} + ...$$

N-Dimensional Function

An N-dimensional polynomial function can be expressed as:

$$FV = p_0 + \sum_{j=1}^{k} (p_{1j}Fx_1 + p_{2j}Fx_2 + \dots + p_{nj}Fx_n)^{j}$$

Where:

$$Fx_1, Fx_2, F_n,$$

represents the n independent controlling branch current or nodal voltage and the coefficients are:

Pij,
$$i = 1, 2,, n, j = 1, 2,, k$$

BIT USAGE

The usage in each tool is governed by three bits as displayed in this illustration.

- ☐ If the lowest (right most) bit is 1, then the circuit is not considered in the simulation; otherwise it is.
- ☐ The two upper (left most) bits record the user selection on the circuit.
 - If the value is 00, the user surrenders to the automatic circuit selection procedure.
 The circuit selection status is solely determined by the automatic circuit selection procedure.
 - If the value is 11, the user has manually unselected the circuit, and it is not considered in the simulation. In this case, the lowest bit is always set to 1.
 - If the value is 01, the circuit is manually selected by the circuit.

 In this case, the lowest bit is set to 0 unless the circuit definition of the circuit referred to is incorrect; or, all the nets to which the circuit is connected are unselected.

Triple bits are used to represent usage in the different Sigrity applications.

- □ SPEED2000.
- □ PowerSI extracting mode.
- PowerSI spatial mode.

Other General Description Lines

The following chapter describes other types of description lines used for both PowerSI and SPEED2000.

VIEW PARAMETER LINES

View lines specify the display of simulation results on screen.

Keywords for View Lines

- □ View3D View spatial distribution of voltage between planes as 3D surface or 2D color intensity plot
- ☐ ViewCktVoltage View node voltages of circuits as 2D curves
- □ ViewCurrent View currents as 2D curves
- □ ViewPkgVoltage View voltages between planes as 2D curves

.ViewCktVoltage Command Lines

General Form

```
.ViewCktVoltage Node1 = s1 Node2 = s2 [Curve_Color = s3]
```

+ [Time_Interval = *n1*]

Note! If

If only one node is specified, the other node is assumed to be the ground node, __GND.

.ViewCktVoltage Parameter Descriptions

PARAMETER	Effect or Meaning
.ViewCktVoltage	Keyword for the .ViewCktVoltage line.
Node1 = <i>s1</i>	PartialCKT1Name.PartialCKT1DefName.Node1Name. The name of the node Node1Name in the partial circuit PartialCKT1Name, defined in ParticalCKT1DefName. The voltage displayed is V(Node1) V(Node2)
The voltage displayed is V(Node1)-V(Node2)	
Node2 = <i>s</i> 2	PartialCKT2Name.PartialCKT2DefName.Node2Name. The name of the node Node2Name in the partial circuit PartialCKT2Name, defined in ParticalCKT2DefName. Voltage displayed is V(Node1)-V(Node2)
Curve_Color = s3	s3 is the name of the color for displaying the curve. Default color: white.
Time_Interval = n1	Simulated result is displayed for every <i>n1</i> time steps. Default value: 1.

.ViewPkgVoltage Command Lines

General Form for ViewPkgVoltage

.ViewPkgVoltage PkgName.UpperLayerName_LowerLayerName

+ [Curve_Color = s1] Coord.x = f1 Coord.y = f2 [Time_Interval = n1]

.ViewPkgVoltage Parameter Descriptions

PARAMETER	Effect or Meaning
.ViewPkgVoltage	Keyword for .ViewPkgVoltage line.
Pkg- Name.UpperLayerName_LowerLayerName	The name of the upper layer and the name of the lower layer. Between these two layers, there is a voltage at a specified location displayed for the package named <i>PkgName</i> .
Curve_Color = s1	s1 is the name of the color for displaying the curve. Default: white.
Coord.x = f1	x coordinate of the output location.
Coord.y = f2	y coordinate of the output location.
Time_Interval = n1	Simulated result is displayed for every <i>n1</i> time steps. Default value:1.

.ViewCurrent Command Lines

General Form for ViewCurrent

.ViewCurrent Element = s1 Polarity = s2 [Curve_Color = s3]

+ [Time_Interval = *n1*]

.ViewCurrent Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
.ViewCurrent	Keyword for .ViewCurrent line.	
	PartialCKTName.PartialCKTDefName.ElementName. The name of the element ElementName in the partial circuit PartialCKTName, defined in ParticalCKTDefName. PackageName.ElementName	
Element = s1	The name of the element <i>ElementName</i> in the package <i>PackageName</i> " For Transmission Lines: -> Port1 or -> Port2 could be appended to <i>ElementName</i> to specify current at port 1 or port 2. Default: ->Port1.	
	For Traces: -> Nodename could be appended to ElementName to specify a node of the two terminal nodes.	
	Default: -> TraceStartingNodeName.	
Polarity=s2	s2: + or -+: current from the positive node to the negative node.-: current from the negative node to the positive node.	
Curve_Color = s3	s3 is the name of the color for displaying the curve. Default color: white.	
Time_Interval = n1	Simulated result is displayed for every <i>n1</i> time steps. Default value: 1.	

.View3D Command Lines

General Form

.View3D PkgName.UpperLayerName_LowerLayerName [Color_Intensity = YES(NO)]

- + $[Mesh_Color = s1]$ $[Frame_Color = s2]$ [Vmin = f1] Vmax = f2
- + [Space_Interval = *n1*] [Time_Interval = *n2*]

.View3D Parameter Descriptions

PARAMETER	EFFECT OR MEANING
.View3D	Keyword for .View3D line.
	Name of the upper metal layer and the name of the lower metal layer.
PkgName.UpperLayerName_LowerLayerName	Between these two layers there is a spatial distribution of voltage that is displayed for the package named PkgName
	Color intensity plot for display.
Color_Intensity= YES	Mesh_Color, Frame_Color, Vmin and Vmax are for 3D surface plot and have no effects if YES is specified.
Color_Intensity= NO	3D surface plot for display. Default.
Mesh_Color = s1	s1 is the name of the color for displaying the mesh. Default color: white.
Frame_Color = s2	s2 is the name of the color for displaying the frame of the mesh. Default color: white.
Vmin = <i>f1</i>	Numerical value which is mapped to the black color, for the minimum value, in the color intensity plot when
VIIIII – 77	Color_Intensity = YES. Default value: -0.001.
	Numerical value which is mapped to the red color, for the maximum value, in the color intensity plot when
Vmax = <i>f</i> 2	Color_Intensity = YES. Default value: no default value. If Vmax isn't specified, then SPD.
Space_Interval = n1	Simulated result is displayed for every <i>n1</i> space steps. Default value: 1.
Time_Interval = n2	Simulated result is displayed for every <i>n2</i> time steps. Default value: 1.

NET MANAGEMENT LINES

Within SPDGEN and PowerSI nets can be conveniently selected for simulation. These statements delimit the **Net Management** section of the .spd file.

NetList Statement

The parameters of the .NetList statement are defined in this section.

.NetList

.EndNetList

General Form

.NetList [Name1 [$\{->|\}$ [Name2]]] [:: $\{$ Unselected|BranchUnselected $\}$ RiseTime = r1 +%Coupling = c1 GroundNet = g1] [BusGroup = Data] [BusType = Data] [TimingRef = SignaI]

NetList Parameter Descriptions

PARAMETER	EFFECT OR MEANING
GroundNet = g1	Paired ground net.
Name1	Denotes a net or class or electrical net name. Name1 may not be present. Unnamed net includes all the elements that do not belong to any named net.
Name2	Specifies a class or electrical net to which Name1 belongs to establish a hierarchy. If Name2 is missing, Name1 belongs to the last occurrence of Name2. If there is no last occurrence of Name2, then Name1 does not belong to any other class.
->	Optional arrow symbol minus character + greater than character = arrow. If arrow present, it means Name1 belongs to the class specified by Name2. Name2 may not be present; in which case the value becomes the previous last occurrence of Name2.
	This symbol is implemented so that in printed NetLists, perhaps containing thousands of members, the hierarchy is clear upon visual inspection. If arrow is missing, it means Name1 belongs to the same class as Name2 in the previous line.
::Unselected	Indicates that the specific item (class or net) denoted by Name1 is not selected for simulation. If the parameter ::Unselected appears at the beginning of a net listing, it means the unnamed net is not selected for simulation.
::BranchUnselected	Indicates that this specific item denoted by Name1 and its children (if there are any) are not selected for simulation.
RiseTime = r1	Indicates that the net or class name has been selected for auto-coupled line calculation. Value must be in ps.
%Coupling = c1	Indicates the net or class name has been selected for auto-coupled line calculation.
.INC	Include another file into the current file.

PARAMETER	Effect or Meaning
.LIB	Read libraries of commonly-used commands, device models, sub-circuits and partial circuits in library files.
BusGroup	Bus group name.
BusType	Bus type. Must be Data, Ctrl, Addcmd or Clk.
TimingRef	Signal type. Must be Signal or Timing Ref.

UNIX Window Parameter Lines

These lines are for **.spd** files intended to be viewed on UNIX systems.

IMPORTANT	Due to the emphasis of Sigrity development for the PC platform, these lines are now deprecated in .spd files.
	· ·

There is one menu window for the control of computation and display.

Display Windows

- □ Window1 Display of circuit voltage curves during or after simulation.
- □ Window2 Display of 3D view of the package structure.
- □ Window3 Display of 3D surface plot of spatial distributions or 2D color intensity plot.
- □ Window4 Display of 2D layers of the package structure.
- □ Window5 Display of package voltage curves during or after simulation.
- □ Window6 Display of element current curves during or after simulation.

When the **Window Parameter Line** is not provided and the **Window** option in the **.Transient** command line is specified as YES, the six windows will be opened at default locations with default sizes.

General Form

Window	Window1X = $f1$	Window1Y = $f2$	Window1W = f3	Window1H = f4
	Window2X = f5	Window2Y = f6	Window2W = f7	Window2H = f8
	Window3X = f9	Window3Y = f10	Window3W = f11	Window3H = f12
	Window4X = f13	Window4Y = f14	Window4W = f15	Window4H = f16
	Window5X = f17	Window5Y = f18	Window5W = f19	Window5H = <i>f20</i>
	Window6X = $f21$	Window6Y = f22	Window6W = f23	Window6H = f24
	MenuX = <i>f</i> 25	MenuY = <i>f</i> 26		

UNIX Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Window1X = f1	X coordinate, in pixels, of the upper left corner of Window1. Default: 0.
Window1Y = $f2$	Y coordinate, in pixels, of the upper left corner of Window1. Default: 235.
Window1W = f3	Width, in pixels, of Window1. Default: 270.
Window1H = f4	Height, in pixels, of Window1. Default: 150.
Window2X = f5	X coordinate, in pixels, of the upper left corner of Window2. Default: 280.
Window2Y = f6	Y coordinate, in pixels, of the upper left corner of Window2. Default: 10.
Window2W = f7	Width, in pixels, of Window2. Default: 270.
Window2H = f8	Height, in pixels, of Window2. Default: 205.
Window3X = $f9$	X coordinate, in pixels, of the upper left corner of Window3. Default: 0.
Window3Y = $f10$	Y coordinate, in pixels, of the upper left corner of Window3. Default: 10.
Window3W = f11	Width, in pixels, of Window3. Default: 270.
Window3H = f12	Height, in pixels, of Window3. Default: 205.
Window4X = $f13$	X coordinate, in pixels, of the upper left corner of Window4. Default: 280.
Window4Y = $f14$	Y coordinate, in pixels, of the upper left corner of Window4. Default: 235.
Window4W = $f15$	Width, in pixels, of Window4. Default: 270.
Window4H = f16	Height, in pixels, of Window4. Default: 150.
Window5X = $f17$	X coordinate, in pixels, of the upper left corner of Window5. Default: 0.
Window5Y = f18	Y coordinate, in pixels, of the upper left corner of Window5. Default: 410.
Window5W = f19	Width, in pixels, of Window5. Default: 270.
Window5H = f20	Height, in pixels, of Window5. Default: 100.
Window6X =f21	X coordinate, in pixels, of the upper left corner of Window6. Default: 280.
Window6Y =f22	Y coordinate, in pixels, of the upper left corner of Window6. Default: 410.
Window6W =f23	Width, in pixels, of Window6. Default: 270.
Window6H =f24	Height, in pixels, of Window6. Default: 150.
MenuX = <i>f</i> 25	X coordinate, in pixels, of the upper left corner of the Menu Window Default: 565.
MenuY = <i>f</i> 26	Y coordinate, in pixels, of the upper left corner of the Menu Window. Default: 30.

PowerSI Formats

This chapter describes some of the .spd file formats used for PowerSI only, in addition to the ones used for both PowerSI and SPEED2000.

SECTION LINES

PowerSI section lines specify parameters that are unique to PowerSI. The PowerSI section begins with .PowerSI and ends with .EndPowerSI.

General Form

- .PowerSI
- .EndPowerSI

OPTION DESCRIPTION LINES

The settings in the **Options** window are all saved in the .spd file, following the .PowerSI command.

Example

- .MeshSimplification = TRUE
- .CoarseMesh = FALSE
- .MaxEdgeLength = 4.953000e-003
- .ReferenceImpedance = 5.000000e+001
- .ReferenceImpedance2 = 5.000000e+001
- .BoundaryCompensationWithShapeWidth = TRUE
- .DC_BBS_Setting DCFitted = 1 BBSFitted = 1

FREQUENCY SWEEP DESCRIPTION LINES

The .FrequencySweep line specifies frequency simulation parameters, such as:

- Starting and ending frequency
- Frequency increment for linear type sweeping
- Maximum sampling frequencies for the adaptive type sweeping

General Form

.FrequencySweep dStartingFrequency dEndingFrequency

- + {dIncrement | nPointsPerDecade | nMaxSamples}
- + [{Linear | Log | Adaptive}]

. . .

.FrequencySweep dStartingFrequency dEndingFrequency

- + {dIncrement | nPointsPerDecade | nMaxSamples}
- + [{Linear | Log | Adaptive}]

Frequency Sweep Example 1

This sample defines the sweeping scheme as linear, starting from 10MHz going to 2GHz, stepping by 20MHz.

.FrequencySweep 10MHz 2GHz 20MHz Linear

Frequency Sweep Example 2

This sample defines the sweeping scheme as adaptive, starting from 10MHz going to 2GHz, with a maximum of 30 samples.

.FrequencySweep 10MHz 2GHz 30 Adaptive

FrequencySweep Parameter Descriptions

PARAMETER	EFFECT OR MEANING
.FrequencySweep	Keyword for frequency sweeping parameters line.
dStartingFrequency	Starting frequency. Default = 10MHz.
dEndingFrequency	Ending frequency. Default = 2GHz.
dIncrement	Frequency increment for linear sweeping. Default = 10MHz.
nPointsPerDecade	Number of points per decade.
nMaxSamples	Max samples for adaptive sweeping. Default = 40 * integer [(dEndingFrequency - dStartingFrequency) / 2GHz] + 40
Linear	Linear sweeping.
Log	Logarithmic sweeping.
Adaptive	Adaptive sweeping. Default = Linear.

PORT DESCRIPTION LINES

Ports are defined between the **.Port** and **.EndPort** command lines. A unique port statement, **Portxxxx**, is inserted to define each port. Each port has a positive terminal and a negative terminal.

General Form for Portxxxx

Portxxxx

- + PositiveTerminal [PkgNodeName [PkgNodeName]...]
- + NegativeTerminal [PkgNodeName [PkgNodeName]...]

Portxxxx Example 1 - One Port Defined

.Port

Port0001

- + PositiveTerminal \$Package.Node94::VCC
- + NegativeTerminal \$Package.Node302::GND

.EndPort

Portxxxx Example 2 - Multiple Ports Defined

.PowerSI

.FrequencySweep 1.000000e+001MHz 2.000000e+000GHz 40 Adaptive

.Port

Port1

- + PositiveTerminal Package1.Node09
- + NegativeTerminal Package1.Node029

Port2

+ PositiveTerminal Package1.Node010

+ NegativeTerminal Package1.Node031

Port3

- + PositiveTerminal Package1.Node011
- + NegativeTerminal Package1.Node033

Port4

- + PositiveTerminal Package1.Node012
- + NegativeTerminal Package1.Node035

.EndPort

.EndPowerSI

.Portxxxx Parameter Descriptions

PARAMETER	EFFECT OR MEANING	
Portxxxx	A character string, starting with Port, for the name of the port.	
PkgNodeName	Names of the package nodes. Define the positive and negative terminals of the port.	

.DIFFCHANNELS COMMANDS

Differential channel ports are defined between the .DiffChannels and .EndDiffChannels command lines. A unique differential channel statement, Diff_Channel_xxxx_\$_yyyy, is inserted to define a differential channel setting.

This section follows the .NetList section in the .spd file.

General Form for Diff_Channel_xxxx_\$_yyyy

Diff_Channel_xxxx_\$_yyyy

- + "xxxx" "yyyy"
- + "PortName1" "PortName2" "PortName3" "PortName4" ...

Diff_Channel_xxxx_\$_yyyy Example

.DiffChannels

Diff_Channel_IO_L26P_10_\$_IO_L29N_10"IO_L26P_10" "IO_L29N_10"

- + "Port1_D1_922::IO_L26P_10"
- + "Port2_D1_936::IO_L29N_10"
- + "Port3_B1_T4::IO_L26P_10"
- + "Port4_B1_U4::IO_L29N_10"

.EndDiffChannels

.Diff_Channel_xxxx_\$_yyyy Parameter Descriptions

Parameter	Meaning
xxxx	Net 1
уууу	Net 2 (Net1 and Net2 composed of a differential net pair, seen in Net Manager with a tie sign.)
PortName1	Name of port in Net 1
PortName2	Name of port in Net 2 (PortName1 and PortName2 compose of differential channel port pair. These ports can be observed in the 'Diff Channel Ports' dialog in the Port dialog.)

Note!	A differential channel can contain one or more than one port pair.
NOIE	The port (in Net1 or Net2) of pair must exist and be enabled.

SURFACE ROUGHNESS MODELS

SurfaceRoughness Description Lines

SurfaceRoughness specifies the roughness for layers' upper and lower faces. You can define several models.

General Form

LayerName ... SurfaceRoughnessUpper = {ModelName}

SurfaceRoughnessLower = {ModelName}

.SurfaceRoughnessMode type = {Huray | ModifiedHammerstad } name = {name}

SurfaceRatio = {value} | RoughnessFactor = {value}

SnowballRadius = {value} | RMSHeight = {value}

Examples

 $Signal 02 \dots Surface Roughness Upper = Modified Hammerstad Model \ Surface Roughness Lower = Huray Model$

 $Signal 01 \dots Surface Roughness Upper = Huray Model \ Surface Roughness Lower = Modified Hammer-stad Model$

.SurfaceRoughnessMode type = Huray name = HurayModel SurfaceRatio= 1 SnowballRadius= 2e-006

.SurfaceRoughnessMode type = ModifiedHammerstad name = ModifiedHammerstadModel RoughnessFactor= 3 RMSHeight= 4e-006

SOURCE TYPES

In PowerSI you cannot use periodic and non-periodic sources at the same time. PowerSI dose not sup-

port Random Bit source and SFFM source.

Transient Waveform Specifications

General Form for Frequency Piecewise Linear Waveform

FPWL FILE=s1 <DATAFORMAT = {ri|ma|db]>

Frequency Piecewise Linear Waveform Example

Frequency Piecewise Linear Waveform Parameter Descriptions

PARAMETER	EFFECT OR MEANING
ff1, ff2, fdf3	Frequency, unit: Hz. Allows values followed by units.
fr1, fr2, fr3,	Value 1 of the wave form at ff1, ff2, ff3, respectively.
fi1, fi2, fi3	Value 2 of the wave form at ff1, ff2, ff3, respectively.
FILES=s1	Name of the file containing: ff1 fr1 fi1 ff2 fr2 fi2 ff3 fr3 fi3
<dataformat =<br="">[ri ma db]></dataformat>	Keyword DATAFORMAT is optional. Default value is R1. DATAFORMAT takes the following values: R1 — Two values are given as real and imaginary parts. MA — Two values are given as amplitude and phase. DB — Two values are given as the log scale amplitude and phase.

S-ELEMENT

The S-Element is used strictly for including an S-Element in the Sigrity PowerSI application. It provides a convenient way to incorporate:

- A multi-terminal or multi-port network.
- Subsystems into a package.
- A board for simulation.

The S-Element is characterized by its frequency-dependent multi-port network parameters including:

- Admittance parameter (Y-parameter)
- Impedance parameter (Z-parameter)
- Scattering parameter (S-parameter)

General Form

Sxxx {nd1 nd2 ... ndN ndRef | nd1 ndRef1 nd2 ndRef2... ndN ndRef} + {MNAME=Smodel_name | model=data_file}

S-Element Example

S1234 DieVCC DieGnd BrdVCC BrdGnd Model="packagepgmodel.s2p" S1234 DieVCC DieGnd BrdVCC BrdGnd mname=s_model

S - Element Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Sxxx	A character string, starting with S, for the name of an S-Element.
nd1 nd2 ndN ndRef	Node names. nd1 nd2 ndN: Port nodes. ndRef: Reference node.
nd1 ndRef1 nd2 ndRef2.	Node names. nd1 nd2 ndN: Port nodes. ndRef1.
ndN ndRef	ndref2ndRef: Reference nodes.
model	BNP or Touchstone file name.
mname	Name of S model; defined in .model description lines.

.spd File	Format	Reference	Guide	16.6

S-Element

SPEED2000 Format

This chapter describes the spd file format strictly used by SPEED2000 in addition to the more common formats used by both SPEED2000 and PowerSI.

SPEED2000 COMMANDS

General Form

.SPEED2000

.EndSPEED2000

Common Description Lines

This section describes the commands used in all modes in SPEED2000.

.Mode Description Lines

This Mode description line specifies the simulation mode of SPEED2000.

General Form

.mode = mode_name

.Mode Line Parameter Descriptions

I	PARAMETER	Effect or Meaning
r	mode_name	Simulation mode name, can be SSO, TDR/TDT, DDR or General SI.

TDR/TDT mode

.SPEED2000

.Mode = TDR/TDT

.TDR TDRport1 True TDTport1

.TDR TDRport2 True TDTport2

.

.

.TDR TDRportn True TDTportn

.EndSPEED2000

SSO checking mode

.SPEED2000

.Mode = SSO LossyPeel = 0

.SSO NEXTport1 FEXTport1 Enable=YES

.SSO NEXTport2 FEXTport2 Enable=YES

.

.SSO NEXTportn FEXTportn Enable=YES

.EndSPEED2000

General SI Mode

.SPEED2000

.Mode = General SI

.

.EndSPEED2000

.Distribution Command Lines

General Form

.Distribution PkgName.UpperLayerName_LowerLayerName

+ [Amplitude Peak(Average)] File_Name = s2

.Distribution Parameter Descriptions

PARAMETER	EFFECT OR MEANING
.Distribution	Keyword for .Distribution line.

PARAMETER	EFFECT OR MEANING
PkgName. UpperLayerName_LowerLayerName	Name of the upper metal layer and the name of the lower metal layer. Between these two layers there is the peak or the average value of voltage distribution that is saved for the package named by <i>Pkg-Name</i> .
Amplitude = Peak	Store the peak amplitude of the voltage distribution in file s2;
Amplitude=Average	Store the average amplitude of the voltage distribution in file s2.
File_Name = s2	A character string for the name of the output file.

Description Lines in TDR/TDT Mode

This section describes the commands used in TDR/TDT mode.

.TDR Description Lines

This **TDR** description line specifies the TDR and TDT ports in TDR / TDT mode.

General Form

.TDR TDRport usage TDTport

.TDR Line Parameter Descriptions

PARAMETER	Effect or Meaning
TDRport	TDR port name.
TDTport	TDT port name.
usage	Flag indicates whether this TDR line is used for simulation. When usage = TRUE, this line is used. When usage = False, it is not used.

Description Lines in DDR Mode

This section describes the commands used in DDR mode.

.DDR Description Lines

This DDR description line specifies the bus tree property in DDR mode.

General Form

```
.DDR UniqueID = 1 Type = 0 [Parent = 0] [PreSibling = 2] [IBIS = "SODIMM_vrm_2_IBIS\J1_ddr3.ibs"] [Sel = "1"] [DataRate = 1.000000e+000] [Bits = 4] [Delay = "0"] [EnablePower = 1] [DeltaT = 0.000000e+000] [Couple = 1.200000e+001] [RiseTime = 1.000000e+002] [EnableCPL = 0]
```

.DDR Line Parameter Descriptions

PARAMETER	EFFECT OR MEANING
UniqueID	Unique ID for DDR tree node.
Name	Node name.
Parent	ID of parent node.
PreSibling	ID of previous sibling node.
Туре	Node type. ROOT = 0, Ctrl = 1, Memory = 2, IBIS = 3, MCP = 4.
Sel	If it is selected.
IBIS	The IBIS file used.
DataRate	Datarate setting. Unit: Gbps.
Bits	Bits for pattern setting.
Delay	Delay estimation. Unit: ns.
EnablePower	If Ideal Power/Ground is enabled.
DeltaT	Simulation time interval. Unit: ps.
Enable CPL	If CPL is enabled.
Couple	Coupling percentage setting (%).
RiseTime	Rising Time Setting. Unit: ps.

.SignalPin Description Lines

This SignalPin description line specifies the bus pin property in DDR mode.

General Form

.SignalPin CKT = 'U1' Pin = 'sig1' Pattern = '1010' Offset = '0' IOModel = 'Z372091_BI7' TMT = 'Z372091_BI7' RCV = 'Z372091_BI7' RCVStby = 'Z372091_BI7'

.SignalPin Line Parameter Descriptions

PARAMETER	EFFECT OR MEANING
СКТ	Circuit component name.
Pin	Pin name.
Pattern	Stimulus pattern.
Offset	Stimulus pattern offset.

PARAMETER	Effect or Meaning
IOModel	Model selector name.
TMT	Transmit model.
RCV	Receive model.
RCVStby	Receive standby model.

.BusGroup Description Lines

This BusGroup description line specifies the bus group property in DDR mode.

General Form

.BusGroup BGName = DATA PNet = PWR GNet = GND VRM = VRM VOL = 1.5 SNet = signal2 [PassiveCom = -] [SNet2 = -] Ctrl = U1 Mem = "U2"

.BusGroup Line Parameter Descriptions

PARAMETER	Effect or Meaning
BGName	Bus group name.
PNet	Selected power net.
GNet	Selected ground net.
VRM	Selected VRM component.
VOL	Voltage. Unit: V.
SNet	Signal net.
PassiveCom	Passive component.
SNet2	Signal net connected through the passive component.
Ctrl	Controller component.
Mem	Memory component.

Description Lines in SSO Mode

This section describes the commands used in SSO checking mode.

.SSO Description Lines

This **SSO** description line specifies the SSO ports in SSO checking modes.

General Form

.SSO NEXTport FEXTport Enable = usage

.SSO Line Parameter Descriptions

PARAMETER	EFFECT OR MEANING
NEXTport	Near End Cross Talk port name.
FEXTport	Far End Cross Talk port name.
usage	Flag indicates whether this SSO line is used for simulation. When usage = YES, this line is used. When usage = NO, it is not used.

Description Lines in General SI Mode

This section describes the commands used in General SI mode.

.PGnets Description Lines

This PGnets description line specifies the voltage of power and ground nets in General SI mode. The value may override that in **Net Manager**.

General Form

- . PGnets
- + NetName = DDR_1.8 Type = power Voltage = 1.8
- + NetName = GND Type = ground Voltage = 0

.

.TermComp Description Lines

This TermComp description line specifies the information of components. One data section is for one component.

General Form

- .TermComp
- + CompName = DDR_1.8
- + CompType = IC
- + PartName =ABC

.AssignModel

+ ModelType = NA or TP

. . .

.PinInfo PinName = pin1 NetName=net1 Direct = Input ModelType = Output IOModel = DQ2 Model = a2 Pattern = '1010..' Offset = '0' UI = '0.5T' Belement=b1

+ node1= n1 node2 = n2 node1p = n1p node2p = n2p Pullup = power PullDn = gnd Vol

= 1.8 Probed = YES

. . .

.EndTermComp

Note!

Component type can be IC, R, L, C, Rpack, Lpack, Cpack, NA(Note Assigned), TP(Test Point).

.AssignModel Description Lines

 \Box When CompType = NA, TP

.AssignModel

+ ModelType= NA or TP

 \Box When CompType = R, L,C,Rpack, Cpack

.AssignModel

+ ModelType = R or L or C or Rpack or Cpack

+ Value =1e-3

+ Unit = ohm

СомрТуре	UNIT
R	mOhm, Ohm, kOhm
L	nH, H
С	pF, nF, uF, F

- \Box When CompType = IC
 - ModelType = IBIS

.AssignModel

- + ModelType=IBIS
- + File = "IBIS\file" Comp = "abc" SubCKTname = sub_name PackageModel = 0
 - ModelType = Term
 - TermType= Rparallel

.AssignModel

- + ModelType = Term
- + TermType = Rparallel
- + ValueR =1e-3 Unit R = ohm Vref = 0.1 UnitV = V
 - TermType = Cparallel

.AssignModel

+ ModelType = Term

- + TermType = Cparallel
- + ValueC = 1e-3 Unit C = ohm Vref = 0.1 UnitV = V
 - TermType = RCparallel

.AssignModel

- + ModelType = Term
- + TermType = RCparallel
- + ValueR = 0.1 UnitR = ohm ValueC = 1 UnitC = pf Vref = 1 UnitV = V
 - TermType = Rpullupdown

.AssignModel

- + ModelType = Term
- + TermType = Rpullupdown
- + ValueR = 0.1 UnitR = ohm Vref =1
- + UnitV = V ValueRd = 0.1 UnitRd = ohm Vrefd =1 UnitVd = V
 - TermType = Rdiff

.AssignModel

- + ModelType = Term
- + TermType = Rdiff
- + ValueR = 1e-3 UnitR = ohm

.PinInfo Description Lines

- \square ModelType = IBIS
 - .PinInfo PinName = pin1 NetName = net1 Direct = Input ModelType = Output IOModel = DQ2 Model = a2 Pattern = '1010..' Offset = '0' UI = '0.5T' Belement = b1
 - + node1= n1 node2 = n2 node1p = n1p node2p = n2p Pullup = power PullDn = gnd Vol = 1.8 Probed = YES
- ☐ ModelType = Other
 - .PinInfo PinName = pin1 NetName = net1 Direct = Input Belement = NA
 - + node1= n1 node2 = n2 node1p = NA node2p = NA Probed = NO

PARAMETER	DESCRIPTION
node1	whole circuit name of a pin
node2	ground pin name
node1p	pad name
node2p	ground name usually the same as node2

.Topology Description Lines

This Topology description line specifies how to record the topologies.

General Form

- .Topology
- .NetInfo Net1 Net2 Net3
- .EndTopology

I/O BUFFER INFORMATION SPECIFICATION (IBIS)

SPEED2000 can read in and simulate IBIS models. This section describes the file format for the IBIS standard (version 5.0) buffers.

Related Topics

- To review the IBIS specification refer to: http://www.eigroup.org (maintained by the IBIS committee)
- Pointers to IBIS models of different IC manufacturers can be found at the following sites: http://www.eigroup.org/IBIS/ibis%20table/models.htm

This site is maintained by the IBIS committee.

http://www.mentor.com/icx/modeling/ibis_modeling.html#manufacturer

This site is maintained by Mentor Graphics.

Supported Keywords

SPDSIM currently parses the following data sections for an IBIS file:

[Bandwidth]	[L Series]	[Pullup Reference]
[Cac]	[Manufacturer]	[Rac]
[C Series]	[Model]	[Ramp]
[Capacitance Matrix]	[Model Data]	[Rc Series][Series Current]
[Component]	[Model Selector]	[Resistance Matrix]
[Composite Current]	[Number Of Pins]	[Rgnd]
[Driver Schedule]	[Number Of Sections]	[Rising Waveform]
[Define Package Model]	[Off]	[RI Series]
[End Package Model]	[On]	[Row]
[End]	[Package]	[Rpower]
[End Model Data]	[Package Model]	[R Series]
[Falling Waveform]	[Pin]	[Series MOSFET]
[GND_Clamp]	[Pin Mapping]	[Series Pin Mapping]
[GND Clamp Reference]	[Pin Numbers]	[Series Switch Groups]
[GND Pulse Table]	[POWER Clamp]	[Submodel]
[Inductance Matrix]	[POWER Clamp Reference]	[Submodel Spec]
[ISSO PD]	[POWER Pulse Table]	[Voltage Range]
[ISSO PU]	[Pulldown]	

[Lc Series]

Random Bits

SPEED2000 accepts the Random Bit source.

Put the initial value on a new line.

V_in Out Nvss RANDOM_BIT (

- + 0 0.5 DATA_RATE=5G POLY=23
- + TR=0.01n TF=0.01n JITTER=0.2 NOISE=0.05)

If everything is typed on one line or the first parameter on the line with the source name then the source will not be accepted.

The following example shows how a single line will not work.

V_in Out Nvss RANDOM_BIT (0 0.5 DATA_RATE=5G POLY=23 TR=0.01n TF=0.01n JITTER=0.2 NOISE=0.05)

IBIS Statements

General Form

Bxxxx node1 node2 ...

- + file=file_name model=model_name
- + [typ={typ|min|max|fast|slow}]
- + [buffer=type of IBIS buffer]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Parameter Descriptions

PARAMETER	EFFECT OR MEANING
Bxxxx	A character string, starting with B, for the name of a buffer described in IBIS format.
node1 node2	Node names.
file = file_name	Name of the IBIS file.
model = model_name	Model name inside the IBIS file.
typ = typ min max fast slow	Refers to typical minimum / maximum data selected or whether transient response is fast or slow. Default is typ = typ.
	When fast or slow are selected, data in IBIS files is selected.
buffer = type of IBIS buffer	Optional. It is superseded by information in the IBIS file. Parameters ramp_fwf and ramp_rwf are independent and can take different values.
	Enables the user to specify how to choose voltage-time curves from an IBIS file. Parameter ramp_fwf affects choosing falling curves.
	Choose either 0, 1 or 2. Default value is ramp_fwf = 2 {Falling_Waveform].
ramp_fwf = {2 1 0}	Value 0 means use the falling ramp data in the model.
Tamp_twi = {2 1 0}	Value 1 means use the first falling waveform in the model. If there is no falling waveform in a model, use the falling ramp data.
	Value 2 is the default. It means use as many as possible (up to 2) falling waveforms in the model. If a model contains more than two falling waveforms, then use only the first two falling waveforms. If there is no falling waveform in a model, use the falling ramp data.
	Enables the user to specify how to choose voltage-time curves from an IBIS file. Parameter ramp_rwf affects choosing rising curves.
	Choose either 0, 1 or 2. The default value is ramp_rwf = 2 [Rising_Waveform].
ramp_rwf = {2 1 0}	Value 0 means use the rising ramp data in the model.
- ταπιρ_ινι	Value 1 means use the first rising waveform in the model. If there is no rising waveform in a model, use the rising ramp data.
	Value 2 is the default. It means use as many as possible (up to 2) rising waveforms in the model. If a model contains more than two rising waveforms, then use only the first two rising waveforms. If there is no rising waveform in a model, use the rising ramp data.

PARAMETER	EFFECT OR MEANING
	These options denote the fractions of die capacitance — IBIS parameter C_comp.
	If at least one of the values of the four options is larger than zero, die capacitance between node_out (node_in for the input buffer) and the ground node of the B element disappears. Instead, die capacitance is split into up to four capacitors connected respectively to node_pullup, node_pulldown, node_powerclamp or node_groundclamp.
	When c_com_pu + c_com_pd + c_com_pc + c_com_gc = 1, it represents that C_comp in the IBIS file is used and split into up to four parts.
	If c_com_pu + c_com_pd + c_com_pc + c_com_gc is larger or less than 1, it stands for — a user wants to use a C_comp value other than the one provided in the IBIS file during the simulation. That way, users benefit from the flexibility to adjust either the value or the connection of split C_comp to satisfy their need in the simulation.
c_com_pu=c_com_pu_value c_com_pd=c_com_pd_value c com pc=c com pc value	Rules when applying c_com_pu , c_com_pd, c_com_pc, c_com_gc to different types of IBIS buffers
c_com_gc=c_com_gc_value	 For output, input_output and three_state buffers, if nodes node_pc and node_gc are not specified, c_com_pc is added to c_com_pu and c_com_gc is added to c_com_pd.
	 For open_drain, open_sink, io_open_drain and io_open_sink buffers, if nodes node_pc and node_gc are not specified, c_com_pc is ignored, c_com_gc is added to c_com_pd.
	 For open_source and io_open_source buffers, if nodes node_pc and node_gc are not specified, c_com_gc is ignored, c_com_pc is added to c_com_pu.
	 For output_ecl, io_ecl and three_state_ecl buffers, if nodes node_pc and node_gc are not specified, c_com_pc and c_com_gc are ignored — if c_com_pd is not zero, it is added to c_com_pu.
	The values of the four options are dimensionless and should be larger than or equal to zero. Default values:
	- c_com_pu = 0.5 - c_com_pd = 0.5 - c_com_pc = 0 - c_com_gc=0
pkgfile = pkgfile_name	The package file (pkgfile) with the name extension (pkgfile_name).
	Yes, means include RLC package model under keyword [Package] and [Pin].
package = {yes model no}	Model means include more complex package model between keyword [Define Package Model] and [End Package Model] in .ibs or .pkg file.
	No means do not include the package model. Default = no.

PARAMETER	Effect or Meaning
	These two options are in effect only if package =YES.
	When they are in effect, SPDSIM reads the package parameters (package R, L and C) from the specified component and pin section in an IBIS file, instead of from the package section.
component -	These two parameters are always used together.
component = component_name pin = pin_name	If package =YES, and either one of them or both is missing, then SPDSIM reads the first available package parameters in the package section(s) from an IBIS file.
	These two parameters are useful when user wants to use the package parameters related to a special pin. Component parameter is also necessary because an IBIS file may contain several component definitions.
	There is no default value for these two options.
	The flag for adding initial power for the IBIS buffer.
power = {on off}	ON — Add the initial power. OFF — Do not add the initial power. Default value.

IBIS Input Buffer

General Form

Bxxxx nd_pc nd_gc nd_in gnd nd_out_of_in

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=input]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Input Buffer Illustration

The components inside the box do not appear when package = no.

NOTE! The rule for determining buffer state is the same as Output Buffer.

IBIS Input Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pc	Node of power clamp.
nd_gc	Node of ground clamp.
nd_in	Node of input, nd_in is nd_in0 above.
nd_pin	Appears only when package=yes and it functions as nd_in.
gnd	Ground node.
nd_out_of_in	Node which is linked with the digital signal of input buffer.

PARAMETER	EFFECT OR MEANING
	Digital output signal (value = 0 or 1).
	V_out_of_in signal value is determined by V_nd_in, Vinl, Vinh and Polarity.
	Vinl, Vinh and Polarity values are given in the referenced IBIS file.
	V_nd_in — Voltage of nd_in0 (or nd_in) relative to gnd
	Vinl — Input logic low DC voltage. Default value: 0.2V
	Vinh — Input logic high DC voltage. Default value: 0.8V
	Polarity — Model polarity. It has two values: Non-Inverting and Inverting.
	Default value: Non-Inverting.
	Rules for Determining the Value of V_out_of_in
	At beginning of the transient simulation (t=0) or in DC analysis when Polarity=Non-Inverting:
V_out_of_in	V_out_of_in = 1 if V_nd_in>=(Vinh+Vinl)/2V_out_of_in = 0 if V_nd_in<(Vinh+Vinl)/2
	When Polarity= Inverting: • V_out_of_in = 0 if V_nd_in>=(Vinh+Vinl)/2 • V_out_of_in = 1 if V_nd_in<(Vinh+Vinl)/2
	During the transient simulation (t>0) when Polarity=Non-Inverting: • V_out_of_in = 1 if V_nd_in>Vinh • V_out_of_in = 0 if V_nd_in <vinl change="" does="" if="" not="" v_out_of_in="" value="" vinl<="V_nd_in<=Vinh</td" •=""></vinl>
	 When Polarity= Inverting: V_out_of_in = 0 if V_nd_in>Vinh V_out_of_in = 1 if V_nd_in<vinl< li=""> V_out_of_in does not change value if Vinl<=V_nd_in<=Vinh </vinl<>

IBIS Output Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=output]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]

- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

Output Buffer Illustration

The components inside the box do not appear when **package=no**.

IBIS Output Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	Node of output, nd_out is nd_out0 above
nd_pin	This node appears only when package=yes. Functions as nd_out.
nd_in	Node which is linked with the triggering signal
gnd	Ground node
nd_pc	Node of power clamp

PARAMETER	Effect or Meaning
nd_gc	Node of ground clamp
	Voltage source linked between <i>nd_in</i> and <i>gnd</i> . Controls buffer switch. Output buffer has two states: LOW and HIGH. Buffer state is determined by V_in, Polarity, and the previous buffer state. Polarity value is given in the referenced IBIS file.
	V_in — Value changes between 0 and 1
	 Polarity — Has two values: Non-Inverting and Inverting. Default value: Non-Converting. Polarity value is given in the referenced IBIS file
	Rules for Determining the Buffer State
	At beginning of the transient simulation (t=0) or in DC analysis When Polarity=Non-Inverting: Buffer is in HIGH state if V_in>=0.5V. Buffer is in LOW state if V_in<0.5V. When Polarity=Inverting: Buffer is in LOW state if V_in>=0.5V. Buffer is in HIGH state if V_in<0.5V.
V_in	During the transient simulation (t>0) when Polarity=Non-Inverting:
	Transition from LOW to HIGH starts if V_in>0.8V and buffer is not in HIGH state.
	Buffer stays HIGH state if V_in>0.8 and buffer is already in HIGH state.
	Transition from HIGH to LOW starts if V_in<0.2V and buffer is not in LOW state.
	Buffer stays LOW state if V_in<0.2V and buffer is already in LOW state.
	Buffer state does not change if 0.2V<=V_in<=0.8V.
	When Polarity=Inverting:
	Transition from HIGH to LOW <i>starts</i> if V_in>0.8V and buffer is not in LOW state.
	Buffer stays LOW state if V_in>0.8V and buffer is already in LOW state.
	Transition from LOW to HIGH starts if V_in<0.2V and buffer is not in HIGH state.
	Buffer stays HIGH state if V_in<0.2V and buffer is already in HIGH state.
	Buffer state doesn't change if 0.2V<=V_in<=0.8V.

IBIS Tristate Buffer

The Tristate buffer has two major states: ENABLE and DISABLE. The ENABLE state differentiates between HIGH and LOW. There are totally three states for tristate buffer: LOW, HIGH and DISABLE.

The buffer state is determined by: V_in, V_en, Polarity, Enable and the previous buffer state. Polarity and Enable values are given in the referenced IBIS file.

General Form

Bxxxx nd_pu nd_pd nd_out nd_in nd_en gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=three_state]

- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}] default=no
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Tristate Buffer Illustration

The components inside the box do not appear when **package=no**.

IBIS Tristate Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	Node of output, nd_out is nd_out0 above
nd_pin	This node appears only when package=yes. It functions as nd_out
nd_in	Node which is linked with the triggering signal.
nd_en	Node which is linked with the ENABLE signal

PARAMETER	Effect or Meaning
gnd	Ground node
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Input controlling signal. Value generally changes between 0V and 1V. This signal is meaningful only if buffer is in ENABLE state. ENABLE and DISABLE states are controlled by V_eN.
V_en	Enable controlling signal. Value <i>generally</i> changes between 0V and 1V. Signal supersedes V_in in controlling the buffer state and the transition between different states.
Polarity	Value is stated in the referenced IBIS specification. Two values are possible: Non-Inverting and Inverting. Default value: Non-Inverting.
Enable	Model parameter that affects how V_en works. Value is stated in the IBIS specification. Two values are possible: Active-High and Active-Low. Default Value: Active-High.
	Rules for determining the buffer state
	At beginning of transient simulation (t=0) or in DC analysis:
	When Enable = Active-High Buffer changes to ENABLE state if V_en > = 0.5V
	Buffer changes to DISABLE state if V_en < 0.5V
	When Enable = Active-Low Buffer changes to DISABLE state if V_en > =0.5V
	Buffer changes to ENABLE state if V_en < 0.5V
	During transient simulation (t >0):
	When Enable = Active-Low Buffer changes to DISABLE state if V_en> 0.8V Buffer changes to ENABLE state if V_en < 0.2V
	Buffer ENABLE or DISABLE state doesn't change if 0.2V < = V_en < = 0.8V
• DISABLE	V_in is superseded by V_en and doesn't have any effect on controlling the buffer state.
• ENABLE	V_in controls the buffer HIGH and LOW state in the same way as in output buffer.

IBIS I/O Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_of_in [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=input_output]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]

- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component_name]
- + [pin=pin_name]
- + [power={on|off}]

I/O Buffer Illustration

V_in and V_en are voltage sources; they control the buffer switch. The components inside the box do not appear when **package=no**.

IBIS I/O Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor

Because this is an I/O type buffer, nd_out can be used in two ways. f the buffer is used as an input buffer, then nd_out is an input node.
f the buffer is used as an output buffer, then nd_out is an output node. nd_out here is nd_out0.
Appears only when <i>package=yes</i> and it functions as <i>nd_out</i>
Node which is linked with the triggering signal
Node which is linked with the ENABLE signal
Ground node
Node which is linked with the digital signal of I/O buffer
Node of power clamp
Node of ground clamp
f I/O buffer is used as an input buffer f I/O buffer is used as an output buffer or a tristate buffer The buffer state is determined in the same way as in General Form. The Tristate buffer has two major states: ENABLE and DISABLE. The ENABLE state differentiates between HIGH and LOW. There are totally three states for tristate buffer: LOW, HIGH and DISABLE.

IBIS Open Drain Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=open_drain]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfilr_name]
- + [package={yes|model|no}]

- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Open Drain Buffer Illustration

V_in is a voltage source; it controls the buffer switch. The components inside the box do not appear when **package=no**.

IBIS Open Drain Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	Node of output; also nd_out here is nd_out0 above
nd_pin	Appears only when package=yes and it functions as nd_out.
nd_in	Node which is linked with the triggering signal
gnd	Ground node
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as Output Buffer

IBIS I/O Open Drain Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_of_in [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=io_open_drain]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS I/O Open Drain Buffer Illustration

 V_{in} and V_{en} are voltage sources. They control the buffer switch.

IBIS I/O Open Drain Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	 I/O type buffer. nd_out can be used in two ways: If the buffer is used as an input buffer, then nd_out is an input node. If the buffer is used as an output buffer, then nd_out is an output node. nd_out here is nd_out0.
nd_pin	This node appears only when package=yes and it functions as nd_out
nd_in	Node which is linked with the triggering signal
nd_en	Node which is linked with the ENABLE signal
gnd	Ground node

PARAMETER	EFFECT OR MEANING
nd_out_of_in	Node which is linked with the digital signal of I/O open drain buffer
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as I/O Buffer
V_en	Rules for determining buffer state same as I/O Buffer
V_out_of_in	Rules for determining buffer state same as I/O Buffer

IBIS Open Sink Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=open_sink]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Open Sink Buffer Illustration

V_in is a voltage source. It controls the buffer switch. The components inside the box do not appear when **package=no**.

nd_pu nd_pc nd_in Power V(t) Pullup Clamp R_pkg L_pkg nd_pin nd_out0 V_in C_pkg C_comp GND down Clamp $nd\underline{pd}$ gnd nd gc gnd

IBIS Open Sink Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	Node of output; also <i>nd_out</i> here is <i>nd_out0</i> above
nd_pin	Appears only when package=yes and it functions as nd_out.
nd_in	Node which is linked with the triggering signal
gnd	Ground node
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state are the same as Output Buffer

IBIS I/O Open Sink Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_of_in [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=io_open_sink]
- + [ramp_fwf={0|1|2}]

- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS I/O Open Sink Buffer Illustration

V_in and **V_en** are voltage sources. They control the buffer switch. The components inside the box do not appear when **package=no**.

IBIS I/O Open Sink Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor

PARAMETER	EFFECT OR MEANING
nd_out	Because this is an I/O type buffer, nd_out can be used in two ways. If the buffer is used as an input buffer, then nd_out is an input node. If the buffer is used as an output buffer, then nd_out is an output node. nd_out here is nd_out0.
nd_pin	Appears only when package=yes and it functions as nd_out.
nd_in	Node linked with the triggering signal
nd_en	Node inked with the ENABLE signal
gnd	Ground node
nd_out_of_in	Node linked with the digital signal of I/O Open Sink buffer
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as I/O Buffer
V_en	Rules for determining buffer state same as I/O Buffer
V_out_of_in	Rules for determining buffer state same as I/O Buffer

IBIS Open Source Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=open_source]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

IBIS Open Source Buffer Illustration

V_in is a voltage source. It controls the buffer switch.

The components inside the box do not appear when **package=no**.

IBIS Open Source Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor
nd_out	Node of output. <i>nd_out</i> here is <i>nd_out0</i> above
nd_pin	Appears only when package=yes and it functions as nd_out
nd_in	Node linked with the triggering signal
gnd	Ground node
nd_pc	Node of power clamp
nd_gc	Node of ground clamp.
V_in	Rules for determining buffer state same as Output Buffer

IBIS I/O Open Source Buffer

General Form

Bxxxx nd_pu nd_pd nd_out nd_in nd_en gnd nd_out_of_in [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=io_open_source]

- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]

IBIS I/O Open Source Buffer Illustration

V_in and **V_en** are voltage sources. They control the buffer switch.

IBIS I/O Open Source Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_pd	Node of Pulldown transistor

PARAMETER	Effect or Meaning
	I/O type buffer. nd_out can be used in two ways:
nd_out	If the buffer is used as an input buffer, then nd_out is an input node.
	If the buffer is used as an output buffer, then nd_out is an output node.
	nd_out here is nd_out0.
nd_pin	Appears only when package=yes and it functions as nd_out
nd_in	Node which is linked with the triggering signal
nd_en	Node which is linked with the ENABLE signal
gnd	Ground node
nd_out_of_in	Node which is linked with the digital signal of I/O Open
	Source buffer
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as I/O Buffer
V_en	Rules for determining buffer state same as I/O Buffer
V_out_of_in	Rules for determining buffer state same as I/O Buffer

IBIS Input ECL Buffer

General Form

Bxxxx nd_pc nd_gc nd_in gnd nd_out_of_in

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=input_ecl]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]

IBIS Input ECL Buffer Illustration

The input ECL buffer is similar to the input buffer. The only difference is in default values for **Vinl** and **Vinh**.

V out of in is a digital signal controlled by voltage between nd in0 and gnd.

The components inside the boxes do not appear when package = no.

IBIS Input ECL Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
nd_in	Node of input, nd_in is nd_in0
nd_pin	Appears only when package=yes and it functions as nd_in
gnd	Ground node
nd_out_of_in	Node which is linked with the digital signal of input ECL buffer
V_out_of_in	Value of V_out_of_in is determined the same way as IBIS buffer

IBIS Output ECL Buffer

General Form

Bxxxx nd_pu nd_out nd_in gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]

- + [buffer=output_ecl]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]

IBIS Out ECL Buffer Illustration

The output ECL buffer does not have a pulldown node.

V in is a voltage source linked between nd in and gnd. It controls the buffer switch.

The components inside the box will not appear when package=no.

IBIS Output ECL Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor.
nd_out	Node of output; also <i>nd_out</i> here is <i>nd_out0</i> above.

PARAMETER	Effect or Meaning
nd_pin	Appears only when <i>package=yes</i> and it functions as <i>nd_out</i> .
nd_in	Node which is linked with the triggering signal.
gnd	Ground node.
nd_pc	Node of power clamp.
nd_gc	Node of ground clamp.
V_in	The rules for determining buffer state is the same as I/O Buffer.

IBIS Tristate ECL Buffer

General Form

Bxxxx nd_pu nd_out nd_in nd_en gnd [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=three_state_ecl]
- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component name]
- + [pin=pin_name]

IBIS Tristate ECL Buffer Illustration

The tristate ECL buffer does not have a pulldown node. **V_in** and **V_en** are voltage sources. They control the buffer switch.

The components inside the box will not appear when package=no.

IBIS Tristate ECL Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor
nd_out	Node of output; also <i>nd_out</i> here is <i>nd_out0</i> above
nd_pin	Appears only when package=yes and it functions as nd_out
nd_in	Node linked with the triggering signal
nd_en	Node linked with the ENABLE signal
gnd	Ground node
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as I/O Buffer
V_en	Rules for determining buffer state same as I/O Buffer

IBIS I/O ECL Buffer

General Form

Bxxxx nd_pu nd_out nd_in nd_en gnd nd_out_of_in [nd_pc nd_gc]

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=io_ecl]

- + [ramp_fwf={0|1|2}]
- + [ramp_rwf={0|1|2}]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]

IBIS I/O ECL Buffer Illustration

The tristate ECL buffer does not have a pulldown node. V_{in} and V_{en} are voltage sources. They control the buffer switch.

IBIS I/O ECL Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_pu	Node of Pullup transistor

PARAMETER	EFFECT OR MEANING
	I/O type buffer. nd_out can be used in two ways.
	If the buffer is used as an input buffer, then nd_out is an output node.
nd_out	If the buffer is used as an output buffer, then nd_out is an input node.
	nd_out here is nd_out0.
nd_pin	Appears only when package=yes and it functions as nd_out.
nd_in	Node linked with the triggering signal
nd_en	Node linked with the ENABLE signal
gnd	Ground node
nd_out_of_in	Node linked with the digital signal of I/O ECL buffer
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
V_in	Rules for determining buffer state same as I/O Buffer
V_en	Rules for determining buffer state same as I/O Buffer
V_out_of_in	Rules for determining buffer state same as I/O Buffer

IBIS Terminator Buffer

General Form

Bxxxx nd_pc nd_gc nd_in gnd

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=terminator]
- + [c_com_pu=c_com_pu_value]
- + [c_com_pd=c_com_pd_value]
- + [c_com_pc=c_com_pc_value]
- + [c_com_gc=c_com_gc_value]
- + [pkgfile=pkgfile_name]
- + [package={yes|model|no}]
- + [component=component_name]
- + [pin=pin_name]
- + [power={on|off}]

Terminators include capacitors, termination diodes, and pull-up resistors.

IBIS Terminator Buffer Illustration

The Terminator Buffer is an input-only model that can have analog loading effects on the circuit being simulated. The Terminator Buffer has no digital logic thresholds.

IBIS Terminator Buffer Parameter Descriptions

PARAMETER	EFFECT OR MEANING
nd_pc	Node of power clamp
nd_gc	Node of ground clamp
nd_in	Node input, nd_in is nd_in0 above
nd_pin	This node appears only when package=yes and it functions nd_in
gnd	Ground node

SERIES MODELS

The **Series** type buffer is for series models that can be described by these keywords:

[R Series] [L Series] [RI Series] [C Series] [Lc Series] [Rc Series] [Series Current] [Series MOSFET]

Series Switch Type

The **Series_switch** type buffer is for series switch models that can be described by these keywords:

[On] [Off] [R Series] [L Series] [RI Series] [C Series] [Lc Series] [Rc Series] [Series Current] [Series MOSFET]

□ ss_state — A series switch state is:

Only used in the series switch buffer.

The state of series switch state.

Default value is ss_state=on.

□ all_sm — All series MOSFET VI tables.

Can be used in both series and series switch type buffers.

When all sm=0, only the first Vgs-lds table(vds!=0) is used.

Otherwise, when all_sm=1, all Vgs-lds tables are used for the Series MOSFET.

Default values is all $_sm=0$.

Series and Series Switch Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_in	Node of input.
nd_pin	Node of output.

IBIS Series Buffer

General Form

Bxxxx nd_in nd_out

- + file='file_name' model='model_name'
- + [typ={typ|min|max|fast|slow}]
- + [buffer=series]
- + [all_sm={0|1}]]

IBIS Series Buffer Parameter Descriptions

PARAMETER	Effect or Meaning
nd_in	Node of input.
nd_pin	Node of output.

IBIS Series Switch Buffer

General Form

Bxxxx nd_in nd_out

+ file='file_name' model='model_name'

- + [typ={typ|min|max|fast|slow}]
- + [buffer=series switch]
- + [ss_state={on|off}]
- + [all_sm={0|1}]

IBIS Series Switch Buffer Illustration

ADD AN ASSOCIATED IBIS FILE

The Series Pin Editor pane opens if the selected IBIS component has a Series or Series Switch model.

The Series Pin Editor becomes populated with the Series Pin Mapping information in the IBIS component. The Series Pin Mapping information can be gathered from the IBIS file or edited by the user.

1. To create a new partial circuit definition or edit an existing definition click:

Edit IBIS

The **Pin Editor** pane appears.

- 2. Browse for the IBIS file you want to use.
- **3.** Select the appropriate IBIS file. In most cases, the name of the IBIS file corresponds to the name of the component.
 - If **Package Model** is selected, then the package model in the IBIS file and package file is supported.
- **4.** Press **Fields** to select any additional fields that you might need.

Some fields (for example, **Stimulus** and **Enable**) are required to provide the necessary information for some model definitions.

5. Press **OK**.

Data Selection for typ = fast / slow

	PARAMETER/DATA	FAST	SLOW
1	C_comp	min	max
2	Temp_Range	max	min
3	Voltage_Range	max	min
4	Pullup_Ref	max	min
5	Pulldown_Ref	min	max
6	POWER_Clamp_Ref	max	min
7	GND_Clamp_Ref	min	max
8	Rgnd	max	min

9	Rpower	max	min
10	Rac	max	min
11	Cac	min	max
12	Pulldown	max	min
13	Pullup	max	min
14	GND_ Clamp	max	min
15	POWER_Clamp	max	min
16	Ramp	max	min
17	Rising_waveform	max	min
18	Falling_waveform	max	min
19	V_fixture	max	min

INCLUDE COMMAND SUPPORT

- Use this command to include another file into the current file.
- ☐ If **file path** is not an absolute path, then the path starts from the location of the current file.
- ☐ If the included file is not found, then the path starts from the location of the .spd file.
- ☐ The following terms are supported in the INCLUDE file:
 - Parameter definition
 - Model card
 - Partial circuit definition
 - Subcircuit definition
 - .INC command
 - .LIB command

General Form

.INCLUDE '<filepath>filename'

.INCLUDE Example

.INCLUDE 'C:\work\mycircuit.cir'

LIBRARY COMMAND SUPPORT

Use this command to read from libraries of commonly-used commands, device models, sub-circuits and partial circuits in library files.

The following terms are supported in the include file:

- Parameter definition
- Model card
- Partial circuit definition
- Subcircuit definition

- .INCLUDE command
- .LIB command

If **file path** is not an absolute path, then the path started from the location of current file.

If the library file is not found, then the path starts from the location of the .spd file.

.LIB Command

General Form

.LIB '<firlepath>filename' entryname\

.LIB Syntax

Use the following syntax to define library files.

- .LIB entryname1
- * allowed items
- .ENDL entryname1
- .LIB entryname2
- * allowed items
- .ENDL entryname2
- .LIB entryname3
- * allowed items
- .ENDL entryname3

.LIB Example

- * Library Call
- .LIB 'MODEL.LIB' TT

Content of file "MODEL.LIB":

- * Library Definition
- .LIB TT
- .MODEL NCH NMOS LEVEL=49
- .ENDL TT

OUTPUT PARAMETER LINES

The data for spatial distribution of voltages between metal planes, and spatial distribution of parallel-mode currents on the plane surfaces (UP, DOWN or combined) can be stored in data files.

The .Output3DVoltage and .Output3DCurrent description lines need to be manually inserted into the corresponding .spd file at this moment.

IMPORTANT

Use these two commands with caution. The output data file may be quite large.

.Output3DVoltage Command Lines

This command will generate a data file containing voltage distribution between planes. The position of the command line is after the .View3D command lines.

General Form

.Output3DVoltage PkgName.UpperLayerName_LowerLayerName

+ [Space_Interval=n1] [Time_Inteval=n2] File_Name=s1 [DC=YES]

Note!

Time_Interval = LAST is acceptable, which means only output the voltage at the last time step of simulation.

.Output3DVoltage Parameter Descriptions

PARAMETER	EFFECT OR MEANING
.Output3DVoltage	Keyword for .Output3DVoltage line.
PkgName. UpperLayerName_LowerLayerName	Name of the upper metal layer and the name of the lower metal layer. Between these layers the spatial distribution of voltage is displayed for the package named <i>PkgName</i> .
Space_Interval = n1	Simulated result is saved for every <i>n1</i> space steps. Default: 1.
Time_Interval = n2	Simulated result is saved for every <i>n2</i> time steps. Default: 1.
File_Name = s1	A character string for the name of the output file.
DC	Optional Parameter for Speed2000 only
DC = YES	Output voltage is the summation of the transient and DC. SPDSIM does not output fixed DC voltages in the Output3D data file.
DC = NO	Output voltage does not contain the DC component, only transient results.

.Output3DCurrent Command Lines

This command generates the parallel-plate mode surface or total current of planes and patches. Three output data files are generated: Ix, Iy and Im.

☐ Ix and Iy are the vector currents in X-direction and Y-direction.

- \Box Im is the magnitude of the currents and equals SQRT(Ix²+Iy²).
- □ The Output3DCurrent command line is located after the .Output3DVoltage command lines.

General Form

- .Output3DCurrent PkgName.LayerName [Surface= s1]
- + [Space_Interval=n1] [Time_Interval=n2] File_Name=s2

NOTE!

Time_Interval = LAST is acceptable, which means only output the current at the last time step of simulation.

.Output3D Current Example 1

This example specifies the output of the time varying current on the UP surface of Plane02.

- .Output3DCurrent Package1.Plane02 Surface = UP
- + file_name = output_current.dat
- + time_interval = 3 space_interval = 4

.Output3D Current Example 2

This example specifies the output of the time varying current on the DOWN surface of the patch on layer Signal02.

- .Output3DCurrent Package1.Signal02 Surface = DOWN
- + file_name = output_current_signal02
- + time_interval = 10 space_interval = 2

.Output3D Current Example 3

This example specifies the output of one-frame of the total plane current. In this example, the simulation is a RAMP response of 5201 time steps. Setting the Time_Interval=5200 gets the last frame of the steady-state current distribution on the plane.

.Output3DCurrent package1.Plane02 Space_Interval=1 Time_Interval=5200 File_Name=p2

.Output3DCurrent Parameter Descriptions

PARAMETER	Effect or Meaning
.Output3DCurrent	Keyword for .Output3DCurrent line.
PkgName.LayerName	Name of the metal layer.
	UP or DOWN If Surface=UP, Ix, Iy and Imagnitude will be the upper surface currents induced by the electromagnetic fields above the plane.
	If Surface=DOWN, Ix, Iy and Imagnitude will be the lower surface currents induced by the electromagnetic fields below the plane.
Surface = s1	These two options are mainly for viewing the high-frequency plane currents when the skin depth is smaller than the plane thickness.
	If the Surface parameter is omitted, then Ix=Ix.up+Ix.down and Iy=Iy.up+Iy.down.
	Now lx, ly and Imagnitude become the total currents flowing through the plane.
	This option can be used for viewing steady-state plane current or the total plane current due to electromagnetic fields around both surfaces of the plane, when the skin depth is larger than the plane thickness.
Space_Interval = n1	Simulated result is saved for every n1 space steps. Default: 1.
Time_Interval = n2	Simulated result is saved for every n2 time steps. Default: 1.
File_Name = s2	A character string for the name of the output files. The three output files will be: s2_X, s2_Y, and s2_MAGNITUDE.

MOSFET BSIM3v3 Model Parameters

This chapter contains a complete list of MOSFET BSIM3v3 (LEVEL 49/53) parameters.

MOSFET BSIM3v3 Model Parameter Descriptions

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
LEVEL	-	1.0	NO	Set LEVEL to 49 or 53 to identify the model as BSIM3v3 model.
VERSION	-	3.30	NO	Select from BSIM3 Version: 3.1, 3.2, 3.21, 3.22, 3.23, 3.24 and 3.30.
PARAMCHK	-	0	NO	Set PARAMCHK to 1 to check additional parameter value.
APWARN	-	0	NO	Set APWARN > 0 to turn off warning messages when PS/PD < Weff.
BINFLAG	-	0	NO	Set BINFLAG > 0.9 to use WREF, LREF in binning parameter calculation.
MOBMOD	-	1	NO	Mobility model selector.
CAPMOD	-	3	NO	Capacitance model selector.
ACM	-	0 if LEVEL=49 10 if LEVEL=53	NO	Selects MOS S/D parasitic model. Set ACM = 10, 11, 12, 13 to enable the Berkeley junction diode current and capacitance equation. The parasitic resistor equation corresponds to the ACM = 0, 1, 2, 3 equations.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
CALCACM	-	0	NO	Effective in ACM = 12. Set CALCACM to 1 in ACM = 12, then the calculation of source /drain area / perimeter is the same equation as ACM = 2.
BINUNIT	-	1.0	NO	If BINUNIT is 1, the unit of Left and Weff in the bin- ning parameter equations is microns; otherwise, it is meters.
NQSMOD	-	0	NO	Set NQSMOD to 1 enable Non Quasi Static (NQS) model.
STIMOD	-	0	NO	Set STIMOD to 1 to enable UC Berkeley STI/LOD stress effect model.

DC PARAMETERS

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
TOX	m	1.5e-8	NO	Gate oxide thickness.
TOXM	m	TOX	NO	Reference gate oxide thickness.
XJ	m	1.5e-7	YES	Junction depth.
GAMMA1	V ^{1/2}	Calculated	YES	Body-effect coefficient near the surface.
GAMMA2	V ^{1/2}	Calculated	YES	Body-effect coefficient in the bulk.
NCH	1/cm ³	1.7e17	YES	Channel doping concentration.
NSUB	1/cm ³	6e16	YES	Substrate doping concentration.
VBX	V	Calculated	YES	VBS at which the depletion region width equals to XT.
XT	m	1.55e-7	YES	Doping depth.
VTH0 (VTHO)	V	0.7 (NMOS) -0.7 (PMOS)	YES	Ideal threshold voltage of long channel device without body bias.
VFB	V	-3.0	YES	Flat band voltage.
K1	V ^{1/2}	2.2	YES	First order body effect coefficient.
K2	-	0.53	YES	Second order body effect coefficient.
K3	-	-0.032	YES	Narrow width coefficient.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
КЗВ	1/V	0.0	YES	Body effect coefficient of narrow width coefficient.
W0	m	5.3e6	YES	Narrow width parameter.
NLX	m	1.74e-7	YES	Lateral non-uniform doping parameter.
VBM	V	-3.0	YES	Maximum applied body bias for Vth calculation.
DVT0	-	2.2	YES	First coefficient of short-channel effect.
DVT1	-	0.53	YES	Second coefficient of short-channel effect.
DVT2	1/V	-0.032	YES	Body-bias coefficient of short-channel effect.
DVT0W	1/m	0.0	YES	First coefficient if narrow width effect in small channel length device.
DVT1W	1/m	5.3e6	YES	Second coefficient of narrow width effect in small channel length device.
DVT2W	1/V	-0.032	YES	Body-bias coefficient of narrow width effect in small channel length device.
U0	cm ² /Vs	0.0	YES	Mobility at nominal temperature.
UA	m/V	2.25e-9	YES	First order mobility degradation coefficient.
UB	(m/V) ²	5.87e-19	YES	Second order mobility degradation coefficient.
UC	m/V ² if MOB- MOD=1, 2 1/V if MOD- MOD=3	-4.65e-11 if MOB- MOD=1,2 -0.046 if MOBMOD=3	YES	Body-effect mobility degradation coefficient.
VSAT	m/sec	8.0e4	YES	Saturation velocity at nominal temperature.
AO	-	1.0	YES	Bulk charge effect coefficient of channel length.
AGS	1/V	0.0	YES	Gate bias coefficient of ABULK.
В0	m	0.0	YES	Bulk charge effect coefficient of channel width.
B1	m	0.0	YES	Bulk charge effect coefficient of channel width.
KETA	1/V	-0.047	YES	Body-bias coefficient of bulk charge effect.
A1	1/V	0.0	YES	First non-saturation effect parameter.
A2	-	1.0	YES	Second non-saturation effect parameter.
RDSW	ohm*um wr	0.0	YES	Parasitic resistance per unit width.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
PRWB	V ^{-1/2}	0.0	YES	Body effect coefficient of RDSW.
PRWG	1/V	0.0	YES	Gate bias effect coefficient of RDSW.
WR	-	1.0	YES	Width Offset from Weff for Rds calculation.
WINT	m	0.0	NO	Width offset fitting parameter from I-V without bias.
LINT	m	0.0	NO	Length offset fitting parameter from I-V without bias.
DWG	m/V	0.0	YES	Gate dependence coefficient of Weff.
DWB	m/V ^{1/2}	0.0	YES	Substrate body bias coefficient of Weff.
VOFF	V	-0.08	YES	Offset voltage in the sub-threshold region at large W and L.
NFACTOR	-	1.0	YES	Subthreshold swing factor.
ETA0	-	0.08	YES	DIBL coefficient in subthreshold region.
ETAB	1/V	-0.07	YES	Body bias coefficient of the subthreshold DIBL effect.
DSUB	-	DROUT	YES	Subthreshold region DIBL coefficient exponent.
CIT	F/m ²	0.0	YES	Interface trap capacitance.
CDSC	F/m ²	2.4e-4	YES	Drain/Source to channel coupling capacitance.
CDSCB	F/Vm ²	0.0	YES	Body-bias sensitivity of CDSC.
CDSCD	F/Vm ²	0.0	YES	Drain-bias sensitivity of CDSC.
PCLM	-	1.3	YES	Channel length modulation parameter.
PDIBLC1	-	0.39	YES	First output resistance DIBL effect correction parameter.
PDIBLC2	-	0.0086	YES	Second output resistance DIBL effect correction parameter.
PDIBLCB	1/V	0	YES	Body effect coefficient of DIBL correction parameters.
DROUT	-	0.56	YES	L dependence coefficient of the DIBL correction parameter in Rout.
PSCBE1	V/m	4.24e8	YES	First substrate current body-effect parameter.
PSCBE2	m/V	1.0e-5	YES	Second substrate current body-effect parameter.
PVAG	-	0.0	YES	Gate dependence of Early voltage.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
DELTA	V	0.01	YES	Effective Vds parameter.
NGATE	cm ³	0	YES	Polygate doping concentration.
ALPHA0	m/V	0	YES	The first parameter of impact ionization current.
ALPHA1	1/V	0.0	YES	Length scaling parameter of impact ionization current.
ВЕТА0	V	30	YES	The second parameter of impact ionization current.
RSH	ohm/sq	0.0	NO	Source/Drain sheet resistance.
JSW	A/m	0.0	NO	Source/Drain side wall saturation current density.
JS	A/m ²	0.0 if ACM=0,1,2,3 1.0e-4 if ACM=10,11,12, 13	NO	Source/Drain junction saturation current density.
IJTH	Α	0.1	NO	Diode limiting current.
NJ	-	1.0	NO	Emission coefficient of junction. Used in ACM = 10, 11, 12, 13
N	-	1.0	NO	Emission coefficient of junction. Used ACM = 0, 1, 2, 3
IS	А	0.0 if ACM=0,1,2,3 1e-14 if ACM=10,11,12,	NO	Bulk junction saturation current.
NDS	-	1	NO	Reverse bias slope coefficient.
VNDS	V	-1	NO	Reverse diode current transition point.
RD	ohm/sq	0	NO	Drain resistance for ACM > 1.
RDC	ohm		NO	Additional drain resistance due to contact resistance.
RS	ohm/sq	0	NO	Source resistance for ACM > 1.
RSC	ohm	0.0	NO	Additional source resistance due to contact resistance.
HDIF	m	0.0	NO	Length of heavily-doped diffusion, from contact to lightly-doped region. ACM = 2, 3

DC Parameters

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
LDIF	m	0.0	NO	Length of lightly-doped diffusion adjacent to the gate. ACM = 1, 2

AC MODEL PARAMETERS

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
XPART	-	1.0 if ACM=0,1,2,3 0.0 if ACM=10,11,12,	NO	Charge partitioning flag.
CGSO	F/m	Calculated	NO	Non-LDD region source-gate overlap capacitance per channel length.
CGDO	F/m	Calculated	NO	Non-LDD region drain-gate overlap capacitance per channel length.
CGBO	F/m	0	NO	Gate bulk overlap capacitance per unit channel.
CJ	F/m ²	1.01851e-4 if ACM=0,1,2,3 5.0e-4 if ACM=10,11,12,	NO	Source / Drain bottom junction capacitance per unit area at zero bias.
MJ	-	0.5	NO	Source / Drain bottom junction capacitance grating coefficient.
MJSW	-	0.33	NO	Source / Drain side wall junction capacitance grading coefficient.
CJSW	F/m	0.0 if ACM=0,1,2,3 5.0e-10 if ACM=10,11,12,	NO	Source / Drain side wall junction capacitance per unit area.
CJSWG	F/m	CJSW	NO	Source / Drain gate side wall junction capacitance grading coefficient. Used in ACM = 10, 11, 12, 13.
CJGATE	F/m	CJSW	NO	Source/Drain gate side wall junction capacitance grading coefficient. Used in ACM = 0, 1, 2, 3.
MJSWG	-	MJSW	NO	Source/Drain gate side wall junction capacitance grading coefficient.
PBSW	V	1.0	NO	Source / Drain side wall junction built-in potential. Used if ACM = 10, 11, 12, 13.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
PHB	V	РВ	NO	Source / Drain side wall junction built-in potential. Used if ACM = 0, 1, 2, 3.
РВ	V	0.8 if ACM=0,1,2,3 1.0 if ACM=10,11,12,	NO	Source / Drain bottom built-in potential.
PBSWG	V	PBSW	NO	Source / Drain gate side wall junction built-in potential.
CGSL	F/m	0.0	YES	Light doped source-gate region overlap capacitance.
CGDL	F/m	0.0	YES	Light doped drain-gate region overlap capacitance.
CKAPPA	V	0.6	YES	Coefficient for lightly doped region overlap capacitance fringing field capacitance.
CF	F/m	Calculated	YES	Fringing field capacitance.
CLC	m	0.1e-6	YES	Constant term for the short channel model.
CLE	-	0.6	YES	Exponential term for the short channel model.
DLC	m	LINT	YES	Length offset fitting parameter from C-V.
DWC	m	WINT	YES	Width offset fitting parameter from C-V.
VFBCV	V	-1	YES	Flat-band voltage parameter for CAPMOD = 0 only.
ACDE	m/V	1.0	YES	Exponential coefficient for charge thickness in CAPMOD = 3 for accumulation and depletion regions.
MOIN	-	15.0	YES	Coefficient for the gate-bias dependent surface potential.
CBD	F	0	NO	Zero bias bulk-drain junction capitulating. Used only if CJ and CJSW are 0.0.
CBS	F	0	NO	Zero bias bulk-source junction capacitance. Use only if CJ and CJSW are 0.0.
TT	s	0	NO	Transit time.

GEOMETRY PARAMETERS

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
LL	m ^{LLN}	0.0	NO	Coefficient of length dependence of length offset.
LLN	-	1.0	NO	Power of length dependence of length offset.
LW	m ^{LWN}	0.0	NO	Coefficient of width dependence of length offset.
LWL	m ^{LWN+L} LN	0.0	NO	Coefficient of length and width cross term of width offset.
WL	m ^{WLN}	0.0	NO	Coefficient of length dependence of width offset.
WLN	-	1.0	NO	Power of length dependence of width offset.
WW	m ^{WWN}	0.0	NO	Coefficient of width dependence of width offset.
WWN	-	1.0	NO	Power of width dependence of width offset.
WWL	m ^{WWN+} WLN	0.0	NO	Coefficient of length and width cross term of width offset.
LLC	m ^{LLN}	LL	NO	Coefficient of length dependence of channel length offset.
LWC	m ^{LWN}	LW	NO	Coefficient of width dependence of C-V channel length offset.
LWLC	m ^{LWN+L} LN	LWL	NO	Coefficient of length and width dependence of C-V channel length offset.
WLC	m ^{WLN}	WL	NO	Coefficient of length dependence of C-V channel width offset.
WWC	m ^{WWN}	ww	NO	Coefficient of width dependence of C-V channel width offset.
WWLC	m ^{WWN+} WLN	WWL	NO	Coefficient of length and width dependence of C-V channel width offset.
LMIN	m	0.0	NO	Minimum channel length.
LMAX	m	1.0	NO	Maximum channel length.
WMIN	m	0.0	NO	Minimum channel width.
WMAX	m	1.0	NO	Maximum channel width.
DEL	m	0.0	NO	Channel length reduction on each side.
LMT	-	1.0	NO	Gate length shrink factor.
LREF	m	0.0	NO	Channel length reference.

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	Effect or Meaning
WMLT	-	1.0	NO	Diffusion layer and width shrink factor.
WREF	m	0.0	NO	Channel width reference.
XL (DL, LDEL)	m	0.0	NO	Length bias accounts for the masking and etching effects.
XLREF	m	0.0	NO	Difference between the physical (on the wafer) and the drawn reference channel length.
xw	m	0.0	NO	Difference between the physical (on the wafer) and the drawn S/D active width.
XWREF	m	0.0	NO	Difference between the physical (on the wafer) and the drawn reference channel width.

TEMPERATURE PARAMETERS

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
UTE	-	-1.5	YES	Mobility temperature exponent.
KT1	V	-0.11	YES	Temperature coefficient for threshold voltage.
KT1L	Vm	0.0	YES	Channel length dependence of the temperature coefficient for threshold voltage.
KT2	-	0.022	YES	Body-bias coefficient of Vth temperature effect.
UA1	m/V	4.31e-9	YES	Temperature coefficient for Ua.
UB1	(m/V) ²	-7.61e-18	YES	Temperature coefficient for Ub.
UC1	m/V ² if MOB- MOD=1/ 2 1/V if MOB- MOD=3	-5.6e-11 if MOB- MOD=1/2 -0.056 if MOB- MOD=3	YES	Temperature coefficient for Uc.
AT	m/sec	3.3e4	YES	Temperature coefficient for saturation velocity.
PRT	ohm*um	0.0	YES	Temperature coefficient for Rdsw.
XTI	-	3.0	YES	Junction current temperature exponent coefficient.
TPB	V/K	0.0	NO	Temperature coefficient of PB.
TPBSW	V/K	0.0	NO	Temperature coefficient of PBSW.
TPBSWG	V/K	0.0	NO	Temperature coefficient of PBSWG.
TCJ	1/K	0.0	NO	Temperature coefficient of CJ.
TCJSW	1/K	0.0	NO	Temperature coefficient of CJSW.
TCJSWG	1/k	0.0	NO	Temperature coefficient of CJSWG.

STI/LOD MODEL PARAMETERS

PARAMETER (ALIAS)	Units	DEFAULT	BINNING	EFFECT OR MEANING
SAREF	m	1.0e-6	No	Reference distance between OD and edge to poly of one side.
SBREF	m	1.0e-6	No	Reference distance between OD and edge to poly of the other side.
WLOD	m	0.0	No	Width parameter for stress effect.
KU0	m	0.0	No	Mobility degradation/enhancement coefficient for stress effect.
KVSAT	m	0.0	No	Saturation velocity degradation / enhancement parameter for stress effect.
TKU0	-	0.0	No	Temperature coefficient of KU0.
LKU0	-	0.0	No	Length dependence of KU0.
WKU0	-	0.0	No	Width dependence of KU0.
PKU0	-	0.0	No	Cross-term dependence of KU0.
LLODKU0	-	0.0	No	Length parameter for u0 stress effect.
WLODKU0	-	0.0	No	Width parameter for u0 stress effect.
KVTH0	V	0.0	No	Threshold shift parameter for stress effect.
LKVTH0	-	0.0	No	Length dependence of KVTH0.
WKVTH0	-	0.0	No	Width dependence of KVTH0.
PKVTH0	-	0.0	No	Cross-term dependence of KVTH0.
LLODVTH	-	0.0	No	Length parameter for Vth stress effect.
STK2	m	0.0	No	K2 shift factor related to Vth0 change.
LODK2	-	1.0	No	K2 shift modification factor for stress effect.
STETA0	m	0.0	No	Eta0 shift factor related to Vth0.
LODETA0	-	1.0	No	Eta0 shift modification factor for stress effect.

MOSFET BSIM4 Model Parameters

This chapter contains a complete list of parameters for BSIM3v3 MOSFET BSIM3v3.

MOSFET Level 1 Parameter Descriptions

PARAMETER (ALIAS)	UNITS	DEFAULT	EFFECT OR MEANING
LEVEL	-	1.0	DC model selector LEVEL=1 (default) is the Schichman-HCodges model
TREF (TNOM)	С	25	Nominal temperature for model in Celsius
KP (BET, BETA)	A/V ²	2.0718e-5(N), 8.632e-6(P)	Intrinsic transconductance parameter. If it is not specified, KP is calculated from U0 and COX. KP = U0 * COX
LAMBDA (LAM, LA)	V ⁻¹	0.0	Channel length modulation
UO (UB, UBO)	cm ² /(Vs)	600(N) 250(P)	Low-field bulk mobility

MOSFET BSIM4 (Level 54) Parameter Descriptions

Parameter (Alias)	Units	Default	Binning	Effect or Meanings			
	Model Selectors						
LEVEL	-	1.0	No	Set LEVEL to 54 to identify the model as BSIM4			
VERSION	-	4.61	No	Select from BSIM4 versions: 4.00, 4.10, 4.20, 4.21, 4.30, 4.40, 4.50, 4.0, 4.61			
BINUNIT	-	1	No	Binning unit selector			
PARAMCHK	-	1	No	Switch for parameter value check			
MOBMOD	-	1	No	Mobility model selector			
RDSMOD	-	0	No	Bias-dependent source / drain resistance model selector			
IGCMOD	-	0	No	Gate-to-channel tunneling current model selector			
IGBMOD	-	0	No	Gate-to-substrate tunneling current model selector.			
CAPMOD	-	2	No	Capacitance model selector			
RGATEMOD	-	0	No	Gate resistance model selector			
RBODYMOD	-	0	No	Substrate resistance network model selector			
TRNQSMOD	-	0	No	Transient NQS model selector			
DIOMOD	-	1	No	Source / drain junction diode I-V model selector			
PERMOD	-	1	No	Whether PS / PD includes gate-edge perimeter			
GEOMOD	-	0	No	Geometry-dependent parasitics model selector.			
				Specifies how end S / D diffusions are connected.			
RGEOMOD	-	0	No	Source / drain diffusion resistance and contact model selector. Specifies the end S / D contact type: Point Wide			
				Merged			
				Specifies how S/D parasitics resistance is computed.			
STIMOD	-	Version < 4.30 Version > = 4.301	No	STI / LOD model selector			

Parameter (Alias)	Units	Default	Binning	Effect or Meanings				
	Process Parameters							
EPSROX	-	3.9	No	Gate dielectric constant relative to vacuum				
TOXE	m	3.0e-9	No	Electrical gate equivalent oxide thickness				
TOXP	m	TOXE	No	Physical gate equivalent oxide thickness				
TOXM	m	TOXE	No	Tox at which parameters are extracted				
DTOX	m	0.0	No	TOXE-TOXP				
XJ	m	1.5e-7	No	S / D junction depth				
GAMMA1	V ^{1/2}	Calculated	Yes	Body-effect coefficient near the surface				
GAMMA2	V ^{1/2}	Calculated	Yes	Body-effect coefficient in the bulk				
NDEP	cm ⁻³	1.7e17	Yes	Channel doping concentration at depletion edge for zero body bias				
NSUB	cm ⁻³	6.0e16	Yes	Substrate doping concentration				
NGATE	cm ⁻³	0.0	Yes	Poly SI gate doping concentration				
NSD	cm ⁻³	1.0e20	Yes	Source / drain doping concentration				
VBX	V	Calculated	No	Vbs at which the depletion region width equals XT				
XT	m	1.55e-7	Yes	Doping depth				
RSH	ohm/ square	0.0	No	Source / drain sheet resistance				
RSHG	ohm/ square	0.1	No	Gate electrode sheet resistance				
			Basic Mode	Pl Parameters				
VTHO (VTHO)	V	0.7 (NMOS) -0.7(PMOS)	Yes	Long-channel threshold voltage at Vbs=0				
VFB	V	-1.0	Yes	Flat-band voltage				
PHIN	V	0.0	Yes	Non-uniform vertical doping effect on surface potential				
K1	V ¹²	0.5	Yes	First-order body bias coefficient				
K2	-	0.0	Yes	Second-order body bias coefficient				
K3	-	80.0	Yes	Narrow width coefficient				
К3В	V ⁻¹	0.0	Yes	Narrow width parameter				

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
W0	m	2.5e-6	Yes	Body effect coefficient of K3
LPEO	m	1.74e-7	Yes	Lateral non-uniform doping parameter at V _{bs} = 0
LPEB	m	0.0	Yes	Lateral non-uniform doping effect on K
VBM	V	-3.0	Yes	Maximum applied body bias in VTH0 calculation
DVT0	-	2.2	Yes	First coefficient of short-channel effect on V _{th}
DVT1	-	0.53	Yes	Second coefficient of short-channel effect on V _{th}
DVT2	V ⁻¹	-0.032	Yes	Body-bias coefficient of short-channel effect on V _{th}
DVTP0	М	0.0	Yes	First coefficient of drain-induced V _{th} shift due to long- channel pocket devices
DVTP1	V ⁻¹	0.0	Yes	Second coefficient of drain-induced V _{th} shift due to long-channel pocket devices
DVT0W	-	0.0	Yes	First coefficient of narrow width effect on V _{th} for small channel length
DVT1W	m ⁻¹	5.3e6	Yes	Second coefficient of narrow width effect on V _{th} for small channel length
DVT2W	V ⁻¹	-0.032	Yes	Body-bias coefficient of narrow width effect for small channel length
U0	m ² /(Vs)	0.067 (NMOS) 0.0.25 (PMS)	Yes	Low-field mobility
UA	m/V	1.0e-9 (MO BMOD = 0.1) 1.0e-15 (MO BMOD = 2)	Yes	Coefficient of first-order mobility degradation due to vertical field
UB	m ² N ²	1.0e-19	Yes	Coefficient of second-order mobility degradation due to vertical field
UC	V ⁻¹	-0.0465 (MO BMOD = 1) 0.0465e-9 (MO BMOD = 0.2)	Yes	Coefficient of mobility degradation due to body-bias effect
EU	m/V ²	1.67(NMOS) 1.0(PMOS)	Yes	Exponent for mobility degradation of MOBMOD = 2
VSAT	-	8.0e-4	Yes	Saturation velocity

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
A0	m/s	1.0	Yes	Coefficient of channel-length dependence of bulk charge effect
AGS	-	0.0	Yes	Coefficient of V _{gs} dependence of bulk charge effect
В0	V ⁻¹	0.0	Yes	Bulk charge effect coefficient for channel width
B1	m	0.0	Yes	Bulk charge effect width offset
KETA	V ⁻¹	-0.047	Yes	Body-bias coefficient of bulk charge effect
A1	V ⁻¹	0.0	Yes	First non-saturation effect parameter
A2	-	1.0	Yes	Second non-saturation effect factor
WINT	m	0.0	No	Channel-width offset parameter
LINT	m	0.0	No	Channel-length offset parameter
DWG	m/V	0.0	Yes	Coefficient of gate bias dependence of Weff
DWB	m/V ^{1/2}	0.0	Yes	Coefficient of body bias dependence of Weff bias dependence
VOFF	V	-0.08	Yes	Offset voltage in subthreshold region for large W and L
VOFFL	mV	0.0	No	Channel-length dependence of VOFF
NFACTOR	-	1.0	Yes	Sub-threshold swing factor
ETA0	-	0.08	Yes	DIBL coefficient in sub-threshold region
ETAB	V ⁻¹	-0.07	Yes	Body-bias coefficient for the subthreshold DIBL effect
DSUB	-	DROUT	Yes	DIBL coefficient exponent in sub-threshold region
CIT	F/m ²	0.0	Yes	Interface trap capacitance
CDSC	F/m ²	2.4e-4	Yes	Coupling capacitance between source / drain and channel
CDSCB	F/(Vm ²)	0.0	Yes	Body-bias sensitivity of CDSC
CDSCD	F/(Vm ²)	0.0	Yes	Drain-bias sensitivity of CDSC
PCLM	-	1.3	Yes	Channel length modulation parameter
PDIBLC1	-	0.39	Yes	First coefficient for DIBL effect on Route
PDIBLC2	-	0.0086	Yes	Second coefficient for DIBL effect on Route
PDIBLCB	V ⁻¹	0.0	Yes	Body bias coefficient of DIBL effect on Route

Parameter (Alias)	Units	Default	Binning	Effect or Meanings		
DROUT	-	0.56	Yes	Channel-length dependence of DIBL effect on Route		
PSCBE1	V/m	4.24e8	Yes	First substrate current induced body effect parameter		
PSCBE2	m/V	1.0e-5	Yes	Second substrate current induced body-effect parameter		
PVAG	-	0.0	Yes	Gate-bias dependence of Early voltage		
DELTA	V	0.01	Yes	Parameter for DC Vdseff		
FPROUT	V/m ^{1/2}	0.0	Yes	Effect of pocket implant on Route degradation		
PDITS	V ⁻¹	0.0	Yes	Impact of drain-induced Vth shift on Route		
PDITSL	m ⁻¹	0.0	No	Channel-length dependence of drain induce Vth shift for Route		
PDITSD	V ⁻¹	0.0	Yes	Vds dependence of drain-induced Vth shift for Route		
Arithmetic and Bias-Dependent Rds Model Parameters						
RDSW	ohm (um) ^{WR}	200.0	Yes	Zero bias LDD resistance per unit width for RDS-MOD = 0		
RDSWMIN	ohm (um) ^{WR}	0.0	No	LDD resistance per unit width at high Vgs and zero Vbs for RDSMOD = 0		
RDW	ohm (um) ^{WR}	100.0	Yes	Zero bias lightly-doped drain resistance Rd(V) per unit width for RDSMOD = 1		
RDWMIN	ohm (um) ^{WR}	0.0	No	Lightly-doped drain resistance per unit width at high Vgs and zero Vbs for RDSMOD = 1		
RSW	ohm (um) ^{WR}	100.0	Yes	Zero bias lightly-doped source resistance Rs(V) per unit width for RDSMOD = 1		
RSWMIN	ohm (um) ^{WR}	0.0	No	Lightly-doped source resistance per unit width at high Vgs and zero Vbs for RDSMOD = 1		
PWRG	V ⁻¹	1.0	Yes	Gate-bias dependence of LDD resistance		
PRWB	V ^{-1/2}	0.0	Yes	Body-bias dependence of LDD resistance		
WR	-	1.0	Yes	Channel-width dependence parameter of LDD resistance		
	•	Impact lor	nization Cur	rent Model Parameters		
ALPHA0	Am/V	0.0	Yes	First parameter of impact ionization current		
ALPHA1	V	0.0	Yes	Isub-parameter for length scaling.		

Parameter (Alias)	Units	Default	Binning	Effect or Meanings			
ВЕТА0	V	Version < = 4.40 30.0 Version > = 4.50 0.0	Yes	The second parameter of impact ionization current			
	Gate-Induced Drain Leakage Model Parameters						
AGIDL	mho	0.0	Yes	Pre-exponential coefficient for GIDL			
BGIDL	V/m	2.3e-9	Yes	Exponential coefficient for GIDL			
OGIDL	V^3	0.5	Yes	Parameter for body-bias effect on GIDL			
EGIDL	V	0.8	Yes	Fitting parameter for band bending for GIDL			
Gate Dielectric Tunneling Current Model Parameters							
AIGBACC	₁ (Fs ² /g) ^{0.5} m	Version < 4.50 0.43 Version > = 4.50 1.36e -2	Yes	Parameter for Igb in accumulation			
BIGBACC	₁ (Fs ² g) ^{0.5} m ¹ V ⁻¹	Version < 4.54 0.43 Version > = 4.50 1.71e -3	Yes	Parameter for Igb in accumulation			
CIGBACC	V ⁻¹	0.075	Yes	Parameter for Igh in accumulation			
NIGBACC	-	1.0	Yes	Parameter for Igh in accumulation			
AIGBINV	₁ (Fs ² g) ^{0.5} m ⁻	Version < 4.50 0.35 Version > = 4.50 1.11e -2	Yes	Parameter for Igh in inversion			
BIGBINV	(Fs ² /g) ^{0.5} m ⁻ ¹ V ⁻¹	Version < 4.50 0.03 Version > = 4.50 9.49e -4	Yes	Parameter for Igh in inversion			
CIGBINV	V ⁻¹	0.006	Yes	Parameter for Igh in inversion			
EIGBINV	V	1.1	Yes	Parameter for Igh in inversion			
NIGVINV	-	3.0	Yes	Parameter for Igh in inversion			
AIGC	₁ (Fs ² g) ^{0.5} m ⁻	Version < = 4.40 0.43 (NMOS) 0.31 (PMOS) Version > = 4.50 1.36e -3 (NMOS) 7.50e -4 (PMOS)	Yes	Parameter for Igcs and Igcd			

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
BIGC	₁ (Fs ² g) ^{0.} ⁵ m ⁻ V ⁻¹	Version < = 4.40 0.54 (NMOS) 0.31 (PMOS) Version > = 4.50 1.36e -2 (NMOS) 9.80e -3 (PMOS)	Yes	Parameter for Igcs and Igcd
CIGC	V ⁻¹	0.075 (NMOS) 0.03 (PMOS)	Yes	Parameter for Igcs and Igcd
AIGSD	₁ (Fs ² / g) ^{0.5} m	Version < = 4.50 0.43 (NMOS) 0.31 (PMOS) Version > = 4.50 1.36e -2 (NMOS) 9.80e -3 (PMOS)	Yes	Parameter for Igs and Igd
BIGSD	₁ (Fs ² g) ^{0.} ⁵ m ⁻ V ⁻¹	Version < = 4.50 0.54 (NMOS) 0.24 (PMOS) Version > = 4.50 1.71e -3 (NMOS) 7.59e- 4 (PMOS)	Yes	Parameter for Igs and Igd
CIGSD	V ⁻¹	0.075 (NMOS) 0.03 (PMOS)	Yes	Parameter for Igs and Igd
DLCIG	m	LINT	Yes	Source/drain overlap length for lgs and lgd
NIGC	-	1.0	Yes	Parameter for Igcs, Igcd, Igs, Igd
POXEDGE	-	1.0	Yes	Factor for the gate oxide thickness in source / drain overlap regions
PIGCD	-	1.0	Yes	Vds dependence of Igcs and Igcd
NTOX	-	1.0	Yes	Exponent for the gate oxide ratio
TOXREF	m	3.0e-9	No	Nominal gate oxide thickness for gate dielectric tunneling current model only

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
	<u> </u>	Charge a	nd Capacita	ince Model Parameters
XPART	-	0.0	No	Charge partition parameter
CGSO	F/m	Calculated	No	Non LDD region source-gate overlap capacitance per unit channel width
CGDO	F/m	Calculated	No	Non LDD region drain-gate overlap capacitance per unit channel width
CGBO	F/m	0.0	No	Gate-bulk overlap capacitance per unit channel length
CGSL	F/m	0.0	Yes	Overlap capacitance between gate and lightly-doped source region
CGDL	F/m	0.0	Yes	Overlap capacitance between gate and lightly-doped source region
CKAPPAS	V	0.6	Yes	Coefficient of bias-dependent overlap capacitance for the source side
CKAPPAD	V	CKAPPAS	Yes	Coefficient of bias-dependent overlap capacitance for the drain side
CF	F/m	Calculated	Yes	Coefficient of bias-dependent overlap capacitance for the drain side
CLC	m	1.0e-7	Yes	Fringing field capacitance
CLE	-	0.6	Yes	Constant term for the short channel model
DLC	m	LINT	No	Channel-length offset parameter for CV model
DWC	m	WINT	No	Channel-width offset parameter for CV model
VFBCV	V	-1.0	Yes	Flat-band voltage parameter (for CAPMOD=0 only)
NOFF	-	1.0	Yes	CV parameter in Vgsteff For weak to strong inversion
VOFFCV	V	0.0	Yes	CV parameter in Vgsteff For weak to strong inversion
ACDE	m/V	1.0	Yes	Exponential coefficient for charge thickness in CAP-MOD=2 for accumulation and depletion regions
MOIN	-	15.0	Yes	Coefficient for the gate-bias dependent surface potential
		High	-Speed/RF	Model Parameters
XRCRG1	-	12.0	Yes	Parameter for distributed channel resistance effect for both intrinsic input resistance and charge-deficit NQS models

Parameter (Alias)	Units	Default	Binning	Effect or Meanings			
XRCRG2	-	1.0	Yes	Parameter to account for the excess channel diffusion resistance for both intrinsic input resistance and charge-deficit NQS models			
RBPB	ohm	50.0	No	Resistance connected between bNodePrime and bNode			
RBPD	ohm	50.0	No	Resistance connected between bNodePrime and dbNode			
RBPS	ohm	50.0	No	Resistance connected between bNodePrime and sbNode			
RBDB	ohm	50.0	No	Resistance connected between dbNode and sbNode			
RBSB	ohm	50.0	No	Resistance connected between dbNode and bNode			
GBMIN	ohm	1.0e-12	No	Conductance in parallel with each of the five substrate resistances to avoid potential numerical instability due to unreasonably too large a substrate resistance			
	Layout-Dependent Parasitics Model Parameters						
DMCG	m	0.0	No	Distance from S/D contact center to the gate edge			
DMCI	m	DMCG	No	Distance from S/D contact center to the isolation edge in the channel-length direction			
DMDG	m	0.0	No	Same as DMCG but for merged device only			
DMCGT	m	0.0	No	DMCG of test structures			
NF	-	1	No	Number of device fingers			
DWJ	m	DWC	No	Offset of the S/D junction width			
MIN	-	0	No	Minimize the number of drain or source diffusions for even-number fingered device			
XGW	m	0.0	No	Distance from the gate contact to the channel edge			
XGL	m	0.0	No	Offset of the gate length due to variations in patterning			
NGCON	-	1	No	Number of gate contacts			
	Asy	mmetric Sour	ce/Drain Jur	nction Diode Model Parameters			
IJTHSREV	А	0.1	No	Limiting current in reverse bias region			
IJTHDREV	А	IJTHSREV	No	Limiting current in reverse bias region			
IJTHSFWD	А	0.1	No	Limiting current in forward bias region			
IJTHDFWD	А	IJTHSFWD	No	Limiting current in forward bias region			

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
XJBVS	-	1.0	No	Fitting parameter for diode breakdown
XJBVD	-	XJBVS	No	Fitting parameter for diode breakdown
BVS	V	10.0	No	Breakdown voltage
BVD	V	BVS	No	Breakdown voltage
JSS	A/m ²	1.0e-4	No	Bottom junction reverse saturation current density
JSD	A/m ²	JSS	No	Bottom junction reverse saturation current density
JSWS	A/m	0.0	No	Isolation-edge sidewall reverse saturation current density
JSWD	A/m	JSWS	No	Isolation-edge sidewall reverse saturation current density
JSWGS	A/m	0.0	No	Gate-edge sidewall reverse saturation current density
JSWGD	A/m	JSWGS	No	Gate-edge sidewall reverse saturation current density
CJS	F/m ²	0.0	No	Bottom junction capacitance per unit area at zero bias
CJD	F/m ²	CJS	No	Bottom junction capacitance per unit area at zero bias
MJS	-	0.5	No	Bottom junction capacitance grating coefficient
MJD	-	MJS	No	Bottom junction capacitance grating coefficient
MJSWS	-	0.33	No	Isolation-edge sidewall junction capacitance grading coefficient
MJSWD	-	MJSWS	No	Isolation-edge sidewall junction capacitance grading coefficient
MJSWGS	-	MJSWS	No	Gate-edge side wall junction capacitance grading coefficient
MJSWGD	-	MJSWS	No	Gate-edge sidewall junction capacitance grading coefficient
CJSWS	F/m	5.0e-10	No	Isolation-edge sidewall junction capacitance per unit area
CJSWD	F/m	CJSWS	No	Isolation-edge sidewall junction capacitance per unit area
CJSWGS	F/m	CJSWS	No	Gate-edge sidewall junction capacitance per unit length

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
CJSWGD	F/m	CJSWS	No	Gate-edge sidewall junction capacitance per unit length
PBS	V	1.0	No	Bottom junction built-in potential
PBD	V	PBS	No	Bottom junction built-in potential
PBSWS	V	1.0	No	Isolation-edge sidewall junction built-in potential
PBSWD	V	PBSWS	No	Isolation-edge sidewall junction built-in potential
PBSWGS	V	PBSWS	No	Isolation-edge sidewall junction built-in potential
PBSWGD		PBSWS	No	Isolation-edge sidewall junction built-in potential
		Tempe	rature Depe	ndence Parameters
TNOM (TREF)	°C	27	No	Temperature at which parameters are extracted
UTE	-	-1.5	Yes	Mobility temperature exponent
KT1	V	-0.11	Yes	Temperature coefficient for threshold
KT1L	Vm	0.0	Yes	Channel length dependence of the temperature coefficient for threshold voltage
KT2	-	0.022	Yes	Body-bias coefficient of Vth temperature effect
UA1	m/V	1.0e-9	Yes	Temperature coefficient for UA.
UB1	(m/V) ²	-1.0e-18	Yes	Temperature coefficient for UB
UC1	V ⁻¹ m/V ²	0.067 (MO BMOD = 1) 0.025 (MO BMOD = 0.2)	Yes	Temperature coefficient for UC
AT	m/s	3.3e4	Yes	Temperature coefficient for saturation velocity
PRT	ohm*m	0.0	Yes	Temperature coefficient for Rdsw
NJS	-	1.0	Yes	Emission coefficients of junction for source junction
NJD	-	NJS	No	Emission coefficients of junction for drain junction
XTIS	-	3.0	No	Junction current temperature exponents fro source junction
XTID	-	XTIS	No	Junction current temperature exponents for drain junction
TPB	V/K	0.0	No	Temperature coefficient of PB
TPBSW	V/K	0.0	No	Temperature coefficient of PBSW
TPBSWG	V/K	0.0	No	Temperature coefficient of PBSWG

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
TCJ	K ¹	0.0	No	Temperature coefficient of CJ
TCJSW	K ¹	0.0	No	Temperature coefficient of CJSW
TCJSWG	K ¹	0.0	No	Temperature coefficient of CJSWG
	· ·	1	1	
TRS	-	0.0	No	Temperature coefficient of source resistance
TRD	-	0.0	No	Temperature coefficient of drain resistance
			dW and dL	Parameters
WL	m ^{WLN}	0.0	No	Coefficient of length dependence for width offset
WLN	-	1.0	No	Power of length dependence of width offset
WW	m ^{WWN}	0.0	No	Coefficient of width dependence for width offset
WWN	-	1.0	No	Power of width dependence of width offset
WWL	m ^{WWN +} WLN	1.0	No	Coefficient of length and width cross term dependence for width offset
LL	m ^{LLN}	0.0	No	Coefficient of length dependence for length offset
LLN	-	1.0	No	Power of length dependence for length offset
LW	m ^{LWN}	0.0	No	Coefficient of width dependence for length offset
LWN	-	1.0	No	Power of width dependence for length offset
LWL	m ^{LWN +} LLN	0.0	No	Coefficient of length and width cross term dependence for length offset
LLC	m ^{LLN}	LL	No	Coefficient of length dependence for CV channel length offset
LWC	m ^{LWN}	LW	No	Coefficient of width dependence for CV channel length offset
LWLC	m ^{LWN +} LLN	LWL	No	Coefficient of length and width cross-term dependence for CV channel length offset
WLC	m ^{WLN}	WL	No	Coefficient of length dependence for CV channel width offset
WWC	m ^{WWN}	ww	No	Coefficient of width dependence for CV channel width offset
WWLC	m ^{WWN +} WLN	WWL	No	Coefficient of length and width cross-term dependence for CV channel width offset

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
LMLT	-	1.0	No	Channel length multiplier
WMLT	-	1.0	No	Channel width multiplier
		Range P	arameters f	or Model Applications
LMIN	m	0.0	No	Minimum channel length
LMAX	m	1.0	No	Maximum channel length
WMIN	m	0.0	No	Minimum channel width
WMAX	m	0.0	No	Maximum channel width
	1	BSIM4.2	2.0 Introduc	ed Model Parameters
XL	m	0.0	No	Channel length offset due to mask / etch effect
XW	m	0.0	No	Channel width offset due to mask / etch effect
	l	BSIM4.3	3.0 Introduc	es Model Parameters
TEMPMOD	-	0	No	Temperature mode selector
LAMBDA	-	0.0	Yes	Velocity overshoot coefficient
VTL	m/s	2.05e5	Yes	Thermal velocity
LC	m	0.0	No	Velocity back scattering coefficient
XN	-	3.0	Yes	Velocity back scattering coefficient
	, i	BSIM4.3.0 Intro	duced - Str	ess Effect Model Parameters
SAREF	m	1.0e-6	No	Reference distance between OD and edge to poly of one side
SBREF	m	1.0e-6	No	Reference distance between OD and edge to poly of the other side
WLOD	m	0.0	No	Width parameter for stress effect
KUO	m	0.0	No	Mobility degradation / enhancement coefficient for stress effect
KVSAT	m	0.0	No	Saturation velocity degradation / enhancement parameter for stress effect
TKU0	-	0.0	No	Temperature coefficient of KU0
LKU0	-	0.0	No	Length dependence of ku0
WKU0	-	0.0	No	Width dependence of ku0
PKU0	-	0.0	No	Cross-term dependence of ku0

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
LLODKU0	-	0.0	No	Length parameter for u0 stress effect
WLODKU0	-	0.0	No	Width parameter for u0 stress effect
KVTH0	Vm	0.0	No	Threshold shift parameter for stress effect
LKVTH0	-	0.0	No	Length dependence of kvth0
WKVTH0	-	0.0	No	Width dependence of kvth0
PKVTH0	-	0.0	No	Cross-term dependence of kvth0
LLODVTH	-	0.0	No	Length parameter for Vth stress effect
WLODVTH	-	0.0	No	Width parameter for Vth stress effect
STK2	m	0.0	No	K2 shift factor related to Vth change
LODK2	-	1.0	No	K2 shift modification factor for stress effect
STETA0	m	0.0	No	eta0 shift factor related to Vth0 change
LODETA0	-	1.0	No	eta0 shift modification factor for stress effect
BSIM4.4.0 Introduced Model Parameters				
JTSS	A/m ²	0.0	No	Bottom trap-assisted saturation current density
JTSD	A/m ²	JTSS	No	Bottom trap-assisted saturation current density
JTSSWS	A/m	0.0	No	STI sidewall trap-assisted saturation current density
JTSSWD	A/m	JTSSWS	No	STI sidewall trap-assisted saturation current density
JTSSWGS	A/m	0.0	No	Gate-edge sidewall trap-assisted saturation current density
JTSSWGD	A/m	JTSWGS	No	Gate-edge sidewall trap-assisted saturation current density
NJTS	-	20.0	No	Non-ideality factor for JTSS, JTSD
NJTSW	-	20.0	No	Non-ideality factor for JTSSWS, JTSSWD
NJTSWG	-	20.0	No	Non-ideality factor for JTSSWGS, JTSSWGD
XTSS	-	0.02	No	Power dependence of JTSS on temperature
XTSD	-	0.02	No	Power dependence of JTSS on temperature
XTSSWS	-	0.02	No	Power dependence of JTSSWS on temperature
XTSSWD	-	0.02	No	Power dependence of JTSSWD on temperature
XTSSWGS	-	0.02	No	Power dependence of JTSSWGS on temperature
XTSWGD	-	0.02	No	Power dependence of JTSSWGS on temperature

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
VTSS	V	10	No	Bottom trap-assisted voltage dependent parameter
VTSD	V	VTSS	No	Bottom trap-assisted voltage dependent parameter
VTSSWS	V	10	No	STI sidewall trap-assisted voltage dependent parameter
VTSSWD	V	VTSSWS	No	STI sidewall trap-assisted voltage dependent parameter
VTSSWGS	V	10	No	Gate-edge sidewall trap-assisted voltage dependent parameter
VTSSWGD	V	VTSSWGS	No	Gate-edge sidewall trap-assisted voltage dependent parameter
TNJTS	-	0.0	No	Temperature coefficient for NJTS
TNJTSSW	-	0.0	No	Temperature coefficient for NJTSSW
TNJTSSWG	-	0.0	No	Temperature coefficient for NJTSSWG
VFBSD	V	0.0	Yes	Flat-band Voltage Offset Parameter
LINTNOI	m	0.0	No	Length Reduction Parameter Offset
		BSIM4.5	.0 Introduce	ed Model Parameters
UD	1/m ²	Version = 4.50 1e14 Version > 4.50 0	Yes	Mobility scattering coefficient
UD1	-	0.0	Yes	Temperature coefficient for UD
UP	1/m ²	0	Yes	Mobility channel length coefficient
LP	М	1e-8	Yes	Mobility channel length exponential coefficient
TVOFF	K-1	0.0	Yes	Temperature coefficient of VOFF
TVFBSDOFF	K ⁻¹	0.0	Yes	Temperature coefficient of VFBSDOFF
	BSIM	4.5.0 Introduce	ed - Well-Pr	oximity Effect Model Parameters
WPEMOD	-	0.0	No	Flag for WPE model
WEB	-	0.0	No	Coefficient for SCB
WEC	-	0.0	No	Coefficient for SCC
KVTH0WE	-	0.0	Yes	Threshold shift factor for well proximity effect
K2WE	-	0.0	Yes	K2 shift factor for well proximity effect
KU0WE	-	0.0	Yes	Mobility degradation factor for well proximity effect

Parameter (Alias)	Units	Default	Binning	Effect or Meanings	
SCREF	m	1.0e-6	No	Reference distance to calculate SCA, SCB and SCC	
		BSIM4.6	.0 Introduce	ed Model Parameters	
AGISL	mho	AGIDL	Yes	Pre-exponential coefficient for GISL	
BGISL	V/m	BGIDL	Yes	Exponential coefficient for GISL	
CGISL	V ³	CGIDL	Yes	Parameter for body-bias effect on GISL	
EGISL	V	EGIDL	Yes	Fitting parameter for band bending for GISL	
AIGS	(Fs ² / g) ^{0.5} m ⁻¹	1.36e-2 (NMOS) 9.8e-3 (PMOS)	Yes	Parameter for Igs	
BIGS	(Fs ² / g) ^{0.5} m ⁻	1.7 1e-3 (NMOS) 7.59e-4 (PMOS)	Yes	Parameter for Igs	
CIGS	V ⁻¹	0.075 (NMOS) 0.03 (PMOS)	Yes	Parameter for Igs	
AIGD	(Fs ² / g) ^{0.5} m ⁻¹	1.36e-2 (NMOS) 9.8e-3 (PMOS)	Yes	Parameter for Igd	
BIGD	(Fs ² / g) ^{0.5} m ⁻	1.71e-3 (NMOS) 7.59e-4 (PMOS)	Yes	Parameter for Ig	
CIGD	V ⁻¹	0.075 (NMOS) 0.03 (PMOS)	Yes	Parameter for Igd	
NJTSD	-	NJTS	No	Non-ideality factor for JTSD	
NJTSSWD	-	NJTSSW	No	Non-ideality factor for JTSSW	
NJTSSWGD	-	NJTSSWEG	No	Non-ideality factor for JTSSWG	
TNJTSD	-	TNJTS	No	Temperature coefficient for NJTSD	
TNJTSSWD	-	TNJTSSW	No	Temperature coefficient for NJTSSWD	
TNJTSSWGD	-	TNJTSSWG	No	Temperature coefficient for NJTSSWGD	
DLCIGD	m	LINT	No	Source/drain overlap length for Igd	
BSIM4.6.1 Introduced Model Parameters					

Parameter (Alias)	Units	Default	Binning	Effect or Meanings
CVCHAR- GEMOD	-	0	No	Threshold voltage for C-V model selector
MTRLMOD	-	0	No	New material model selector
EOT	m	1.5e-9	No	Equivalent SiO2 thickness
VDDEOT	V	1.5INMOS) -1.5(PMOS)	No	Gate voltage at which EOT is measured
ADOS	-	1	No	Density of states parameter to control charge centroid
BDOS	-	1	No	Density of states parameter to control charge centroid
PHIG	V	4.05	No	Gate work function
EPSRGATE	-	11.7	No	The dielectric constant of gate relative to vacuum
EASUB	eV	4.05	No	Dielectric constant of substrate relative to vacuum
EPSRSUB	-	11.7	No	Dielectric constant of gate relative to vacuum
NI0SUB	m ³	1.45e16	No	Intrinsic carrier concentration at T = 300.15K
BG0SUB	eV	1.16	No	Band-gap of substrate at T = 0K
TBGASUB	eV/K	7.02e-4	No	First parameter of band-gap change due to temperature
TBGBSUB	К	1108.0	No	Second parameter of band-gap change due to temperature
VOFFCVL	-	0.0	No	Second parameter of band-gap change due to temperature
VOFFCVL	-	0.0	No	Channel-length dependence of VOFFCV
MINVCV	-	0.0	Yes	V gsteff. CV fitting parameter for moderate inversion condition

Index

Symbols	.View3D 147, 206	В
_Cmatrix 56, 119	.ViewCktVoltage 145	backupshape 6
Cmatrix statement 126	.ViewCurrent 147	BackupUnionizedShape 6
Lmatrix 56, 115	.ViewPkgVoltage 146	backward 10
LMatrix Indicator Example 1 115		bandgap correction factor 74
.CompCollection 69	Α	band-gap of substrate 238
Connect 68	abs = 1 102	base 10 logarithm function 58
Connect keyword 69	abs(x) 58	base frequency 79, 121
Connect line 68	absent 69	berkeley junction diode 75
DielectricModel 36	absolute path 204, 205	bias depletion capacitance
DiffChannels 156	absolute rotation 39	coefficient 81
Distribution 149, 162	absolute value 61, 112	bias-dependent source/drain
End 6	absolute value function 58	resistance model 222
End statement 6	AC arguments 114	BINFLAG 86
EndC 68	AC source keyword 114	binning unit selector 222
EndC line 68	AC voltage 113	bit before the edge 132
EndCompCollection 69	ACM 86	bit period 140
EndDielectricModel 36	ACM>1 81	bit with pattern value 0 130
EndDiffChannels 156	acos(x) 58	bits file format 141
EndMaterial 36	adaptive sweeping 155	bits file format example 141
EndMetalModel 36	adaptive type sweeping 154	blank line 3
EndPort 155	add IBIS file 201	blank space 3
EndPowerSI 153	adjacent bits 130, 132	bNode 89, 230
EndShape 6, 18, 19	adjustment ratio 26, 32	bNodePrime 89, 230
EndThermalModel 36	adjustment ratio of distributed	BNP 121, 159
Material 36	resistance 26	BNP file name 79
MaterialFileName 12	admittance 5	body bias 211, 224
Mesh description line 12	admittance parameter 159	body bias coefficient 212
Mesh line 12	affix 54	body effect coefficient 210
MetalModel 36	aliases mapping 124	body effect factor 83
Model 24	alpha 44	body-bias coefficient 211, 219, 225
NetList 156	ALPHA length sensitivity 84	body-effect coefficient 210, 223
Output3D 206	ALPHA width sensitivity 84	bottom junction reverse
Output3DCurrent 206	alphabetical characters 5	saturation 231
Output3DVoltage 206	amplitude 163	bottom trap-assisted saturation
Param 64	AND 110	current density 235
Param lines 63	appropriate IBIS file 202	bottom trap-assisted voltage 236
Partial 64	APWARN 86	box color 19
PartialCkt 64, 70	arc cosine function 58	box keyword 19
.Port 155	arc sine function 58	box parameter 19
PowerSI 153	arc tangent function 58	box parameter example 19
Shape 18	area factor 96	branch number 116
spd data file 3	AreaAdj 32	branch parameters 116
spd file 126, 156	AreaAdj option 26, 30	branches 116
spd file example 3	as error 6	BSIM3v3 85, 221
spd file format 1	as warning 6	BSIM4 88, 222
SubCkt 64	ASCII 3	buffer state 178, 187
SUBCKT command 66, 92	asin(x) 58	buffer switch 181, 183, 185
Subckt definitions 70	asterisk 6	bulk charge 211
Subckt statements 64	atan(x) 58	bulk charge effect 211
Temp description line 12	auto-coupled 149	bulk Junction saturation current 80
TEMP statement 126	automatic circuit selection	bulk junction saturation current 86
ThermalModel 36	procedure 144	213
Transient line 9		bulk node 118

Index 2 3 9

bulk surface doping 84 bulk to source/drain diodes 80	circuit node connected to one end of the inductor 62	cosine function 58 coupled inductor 115
	circuit nodes 109	coupled line object 48
C	circuit not considered in	coupled lossless lines 123
c_comp value 173	simulation 69	coupled lossy lines 123
CALCACM 86	circuit temperature 118	coupled traces 48
capacitance 5	circuit-package 198	coupled transmission line description
capacitance matrix 77	CJ 216	line 123
capacitance model selector 209, 222	CJSW 216	coupled transmission parameters 123
capacitance multiplier 82	CJSWG 219	coupling capacitance 225
capacitance part parameters 80	ClippedTrace 47	coupling coefficient 115
capacitance value 127	ClippedTrace example 47	coupling coefficient L of
capacitor 55, 94	cload definition scope 93	inductors 116
capacitor element 93	cmat.dat file 126, 127	coupling lines 48
capacitor example 94	ematrix 95	CPL 24, 48
capacitor parameters 94	coefficient for R 75	create a new partial circuit
capacitors 198	coefficient of first-order mobility	definition 201
CAPMOD 216	degradation 224	critical voltage 84
carrier frequency 134	color 54	cross-term dependence 88, 234
cartesian coordinate system 12	color intensity plot 148	current 5
CCCS 56, 101	comma separated list 131	current controlled current source 56,
CCCS parameters 102	comment lines 3, 5, 6	102
CCVS 56, 112	commonly-used commands 204	current controlled voltage source 112
CCVS parameters 112	component parameter 174	current file 204
CDSC 212	component pins 65	current flows 59
CGB exponent 82	ComponentName field 65	current flows into the current
channel doping 223	components inside the box 183	source 114
channel doping concentration 210	computation and display 150	current flows out of the current
channel edge 230	computation parameter lines 9	source 114
channel length 87, 211, 217	conductance 230	current gain 102
channel length modulation 221	conductivity 26, 27, 29, 32, 34, 40, 47,	current source 56, 102, 113, 114
channel length multipler 234	54	current source example 113
channel length reduction 82, 87	conductivity parameter 40	current source parameters 114
channel length reference 83	connection lines 68	current sources 113
channel pocket devices 224	connections 68	current variable 59
channel width 218	connector definition 93	current variable example 59
channel width reference 83	contact 39	CV model 229
channel-length dependence 225, 226	contact resistance 81	_
character string 61, 62, 68, 102, 122,	controlled component 57	D
172	controlled current source 98, 102,	damping factor 139
character string for the name of the	104, 105	data block 63
output file 163	controlled currents 103, 109	data file 126
characteristic impedance 121	controlled resistor 111	data file in disk 116
charge thickness 216	controlled source	data file name 120
circle key word 21	CCCS 101	data sections for an IBIS file 170
circle parameter 21	CCVS 112	data selected 172
circle parameter example 21	VCCS 61, 107, 109	dbNode 230
circuit	VCR 61, 110, 111	DC analysis 10, 62
format 55	VCVS 99	DC model selector 221
circuit components 55	controlled voltage source 97, 113	DC parameters 88, 210
circuit definition 64	controlling current flows 103, 113	DC resistance 121
circuit description 115	controlling the buffer state 180	DC voltages 206
circuit element definition 68	controlling variables 57	default fbase 79, 121
circuit network 55	controlling voltage 105, 108	default locations with default
circuit node 61, 104, 106	controlling voltages 100, 109	sizes 150
circuit node connected 62, 117	$\cos(x)$ 58	default resistance 76
	cosh(x) 58	define each port 155

defined veriable name 04	damad diffusion 212	ExtNode 68
defined variable name 94	doped diffusion 213	EXTINOUE 08
degradation coefficient 211	doped source-gate region 216	F
degradation/enhancement	doping depth 210, 223	
coefficient 234	drain and source resistance	fall 133
delay 101	parameters 81	falling curves 172
delay key function 100, 102, 108, 112	drain diffusion for resistance	falling ramp data 172
deltai 109	calculations 118	falling time 140
DELVTO 83	drain junction 118	falling waveforms 172
depletion junction 73	drain node 118	far-end reference-conductor
depletion region 210	drain or source diffusions 90, 230	terminal 123
determining buffer state 186	drain resistance 81, 87, 213	far-end signal-conductor
determining the buffer state 178	drain/source to channel 212	terminal 123
		FDG 123
device model calculation 12	drain-bias 212	field solver module 24, 28, 30
device model simulation options 125	drain-gate overlap capacitance 215	
device models 204	drain-gate region 216	fields 202
DIBL coefficient 212	drawn and actual width 75	file path 204, 205
DIBL coefficient exponent 225	_	finaltime 10
die capacitance 173	E	first parameter 171
dielectric constant of substrate	E type components 109	fitting parameter for band
relative to vacuum 238	ECL buffer 193, 194	bending 237
dielectric loss 11, 78, 123	edit an existing definition 201	flat band voltage 210
dielectric medium 29	effective length and width	flat-band voltage 223
dielectric model 29	parameters 82	flatband voltage offset parameter 236
Dielectric LossDispersion 11	effective scope 64	Fmax TransmissionLine 11
•	electric contact 39	foster pole-residue form gain
DieName 45	electrical net 149	function 97
Diff_Channel_xxxx_\$_yyyy 156		
Diff_Channel_xxxx_\$_yyyy	element current curves 150	foster pole-residue form trans-
example 156	element temperature 118, 126	conductance function 103
different lead models 52	elements in parallel 61, 102, 108	fourier transform 121
differential channel ports 156	emission coefficient 73, 80, 86, 213	fractions 173
diffusion layer 218	emission coefficients of junction for	free node 44
digital logic thresholds 199	drain junction 232	free segment 44
digital output signal 176	enable 178, 203	freq 60
digital signal 175, 182	enable signal 179, 182, 189	frequency increment 154, 155
digital signal controlled by	enable signal for the pin 65	frequency modulated waveform 138
voltage 193	enable values 178	frequency piecewise linear waveform
digital waveform 141	EnableSignal 65	example 158
dimension 113	end line 6	frequency simulation parameters 154
diode 24, 56, 72	end line example 6	frequency sweep example 1 154
	end lines 5	frequency sweep example 2 154
diode description line 95		
diode example 96	ending frequency 155	frequency sweep line 154
diode initial voltage 96	EndingNode 45, 47, 54	fringing field 216
diode is off 96	energy gap 74	fringing field capacitance 229
diode limiting current 213	Eta0 88	fringing field factor 82
diode model 96	Eta0 shift factor 220	_
diode model parameter PJ 96	Eta0 shift modification factor 88	G
diode model selector 72	example of signal layer 28	G and E components 60
diode name 96	executable modules 22	G and E Parameters 61
diode parameters 96	EXP 133	G and E type components 61
disable 178	$\exp(x)$ 58	G element key word 61
discretized wirebond model 44	explosion parameter 72	gain function 97
dispersion 11	exponent for mobility degration 224	gain function example 97
	exponential coefficient 227, 229	gamma 83
displaying the mesh 148	exponential function 57, 58	gate bias coefficient 211
distributed admittance 30		gate bias effect 212
distributed resistance 26	expression 60	
DMCG of test structures 230	expressions 62	gate bulk overlap 215
dogleg hole 7	external drain and source 118	gate capacitances parameters 82

gate contacts 90 gate dependence 212	I/O Buffer Illustration 181	Im 206 Imag(X) 97, 103
gate dielectric 223	I/O open 192	imagine part of X 97, 103
gate electrode sheet resistance 223	I/O open drain buffer 186	imagnitude 207
gate length shrink factor 82, 87	I/O open sink buffer 189	impact ionization 84, 213
gate material 84	I/O type buffer 182, 189	impact ionization coefficient 84
gate node 118	IBIS 170	impact Ionization parameters 84
gate oxide thickness 210, 228	IBIS committee 170	Impedance parameter 159
gate resistance 222	IBIS component 201	INCLUDERSIMAG 123
gate resistance model selector 89	IBIS components 65	independent voltage source 59
gate work function 238	IBIS file 65, 170, 172, 202	inductance 5, 115, 117
gate-bias dependence of early	IBIS file o3, 170, 172, 202 IBIS file name 64	inductance 3, 113, 117
voltage 226	IBIS I/O buffer 180	inductor L11 114
gate-bias dependent 216	IBIS I/O ECL buffer 196	inductor L18 114
	IBIS I/O ECL buffer illustration 197	
gate-bulk overlap capacitance 82		inductor matrix description line 115
gate-drain overlap capacitance 82	IBIS I/O open drain buffer 184	industry-standard MOSFET
gate-edge sidewall trap-assisted	IBIS I/O open drain buffer	model 88
saturation 235	illustration 185	Initial condition 100
gate-source overlap capacitance 82	IBIS I/O open sink buffer 187	initial condition 102, 112
gate-to-channel tunneling 222	IBIS I/O open sink buffer	initial current 62
GCPL 24	illustration 188	initial value 133, 135, 171
GCPL description 48	IBIS I/O open source buffer 190	inner resistance 122
GCPL description block 48	IBIS I/O open source buffer	InnerRadius 34
GCPL illustration 49	illustration 191	input buffer 182
gear 125	IBIS input buffer 174	input data file 6
general form for LeadGroup 53	IBIS input buffer illustration 175	input logic 176
general form for material section 36	IBIS input ECL buffer 192, 193	input node 189
general form for PowerSI 121	IBIS input ECL buffer	input-only model 199
general form for SPDSIM 121	illustration 193	interface trap capacitance 212, 225
general forms for current controlled	IBIS models 55	IntMethod 10
current source 101	IBIS open drain 182	intrinsic carrier concentration 238
general forms for VCCAP 105	IBIS open drain buffer	intrinsic transconductance
general forms for VCCS 107	illustration 183	parameter 221
general forms for VCR 110	IBIS open sink buffer 186	IOBufferD 67, 92
geometry-dependent parasitics model	IBIS open sink buffer illustration 186	ionization current 226
selector 222	IBIS open source buffer	isolation edge 230
GIDL 227	illustration 190	isolation-edge sidewall junction 232
global defined parameters 68, 93	IBIS out ECL buffer illustration 194	isolation-edge sidewall junction
global parameter 64	IBIS output buffer 176	capacitance 231
global parameter specification 68, 94	IBIS output ECL buffer 193	isub parameter for length scaling 226
global parameters 60, 64	IBIS terminator buffer	Ix 206
gnd 193	illustration 199	Iy 206
grading coefficien 73	IBIS tristate buffer 178	_
ground clamp 175, 178, 180, 183	IBIS tristate buffer illustration 179	J
ground node 175, 177, 180, 183	IBIS tristate ECL buffer 195	junction area 72
Gy 109	IBIS tristate ECL buffer	junction depth 210
	illustration 195	junction periphery 73
Н	IC 108	12
HDIFscaled 81	ideal threshold voltage 210	K
heavily-doped diffusion 81	ideal transformer 100	K2 shift factor 235
horizontal distance 44	identical partial circuit networks 55	K2 shift modification 220
horizontal xis 44	Igb 227	keywords 145, 170
HSPICE 68	Igcd 227	keywords of package layout lines 23
hyperbolic cosine function 58	Igcs 227	knee current 72
hyperbolic tangent function 58	Igd 228	KU0 88, 220
	Igh 227	KVTH0 220
	Igs 228	

L	log(x) 58	metallurgical junction depth 83
laplace 98, 104	log10(x) 58	minimum channel width 234
laplace and pole-zero trans-	logarithmic sweeping 155	minimum current value 61, 108
conductance function 104	loss tangent and conductivity 29	minimum resistance value 111
laplace and pole-zero voltage gain	LossTangent 29	missing antipads 7
function 97	lower layer 146	mobility channel length exponential
last effective line 6	lower reference plane 47	coefficient 236
lateral diffusion 83	lower-level circuit and elements 68	mobility degradation 211
lateral non-uniform doping	LowerNode 40	mobility degradation/enhancement
effect 224	low-field mobility 224	parameter 87
lateral non-uniform doping		mobility model selector 209
parameter 211	M	mobility temperature exponent 219,
layers of the package structure 150	magnetic wall (total reflection)	232
lead 49	condition 11	mode description line 161
lead data 49	magnitude 114	model 24, 29, 52, 54
lead group section 53	magnitude of the currents 207	model definitions 203
lead model example 50	mask/etch effect 234	model description ends 36
LeadGroup 53	masking and etching effects 73	model description line 70
LeadGroup example 53	material 34	model diode example 75
LeadGroup name 53	material conductivity calculation 12	model name 45
LeadType_1 52	material description lines 36	model name inside the IBIS file 172
LeadType_2 52	material section command	model parameter names 71
LeadType_3 52	example 37	model parameter SCALE 95
LeadType_4 52	mathematic expression 99	model parameter values 71
length 5, 120	mathematic functions 57	model parameter VERSION 85, 88
length bias 83, 218	mathematical expression 57, 61, 62,	model parameters 71
length dependence 217	101, 107, 109, 119	model polarity 176
length of the name 5	mathematical expression example 58	model selector parameters 76
length offset 212	mathematical expression	model the pin uses 65
length scaling parameter 213	examples 59	modeling feature 70
less than two pairs 101	mathematical expressions 60, 62	modeling feature of SPEED2000 117
letter "I" 59	mathematical functions 57	modelname type 54
level 49 85	mathematical operations 57	ModelType 71
level 53 85, 88	max frequency of inverse Fourier	ModelType D 72
level 54 88	Transform 79	ModelType S 79
library file is not found 205	maximum current value 61, 108	modulation frequency 134
library files 204	maximum output voltage 113	modulation index 134
lightly-doped diffusion 87	maximum resistance value 111	modulation parameter 212
L-inductor example 117	maximum sampling frequencies 154	MOS gate cap model selector 82
line types 5	medium 23	MOS S/D 75
linear 99, 101	medium example 1 28	MOS S/D parasitics model 80
linear sweeping 155	medium example 2 29	MOSFET 56
linked with the triggering signal 185	medium example 3 29	MOSFET BSIM3v3 209
linking the two terminals 44	medium layer description line 28	MOSFET BSIM3v3 Level 45/53
lmatrix 115	mentor graphics 170	Descriptions 85
L-matrix indicator example 2 115	mesh density 12	MOSFET BSIM3v3 level 45/53
local and global defined	mesh length 12	descriptions 209
parameters 57	mesh plane emulation 24	MOSFET channel length 118, 125
local and global parameter 63	mesh planes 24, 28, 30	MOSFET description line 117
local defined parameters 68, 93	mesh_X 12	MOSFET description line 117
local parameter 63, 64	mesh_Y 12	MOSFET drain diode area 125
local parameter name 94	metal and poly capacitor 74	MOSFET alament name 118
local parameter specification 68, 94	metal layer 163 206	MOSFET element name 118
local parameters 64	metal layer 163, 206	MOSFET element statement 125
local variables 90	metal plane 36	MOSFET model 85
location of the .spd file 204	metal plane 26	MOSFET model 85
location of the current file 204	metal shape 39	MOSFET model card 118

MOSFET parameters 118	network 55	output 183
MOSFET source code perimeter 125	new partial circuit definition 201	output buffer 182, 198
MOSFET source diode area 125	NFACTOR 90	output buffer illustration 177
multi-inpt dimension 111	NGATE 83	output current value 102
multi-input dimension 113	NJTS 236	output location 146
multi-input gates 99, 101	NJTSSW 236	output voltage 206
multi-input gates key function 100,	NJTSSWG 236	output voltage value 100, 113
102, 108, 110	no rising waveform in a model 172	output3D current example 207
multiple .PadDef sections 34	node 23	output3D current example 2 208
multiple diodes 97	node 1 114	output3D current example 3 208
multiple ports defined 155	node 21 114	output3Dcurrent 205, 208
multiple trace segments 48	node description line 36	output3Dcurrent command line 207
multi-port network 159	node example 39	output3Dvoltage 205
multi-port network parameters 159	node names 120	overlapping area 26
mutual capacitor matrices 126	node of output 177	overrides 64
mutual capacitor matrix 56, 95	*	oxide capacitance 82
mutual capacitor matrix description	node padstack information example 39	oxide thickness 82, 223
line 95	nominal gate oxide thickness 228	Oxide unexhess 62, 223
mutual capacitor matrix		P
parameters 95	nominal temperature 76, 211	package 159
mutual inductance 116	non LDD region drain-gate overlap	
mutual inductance 116	capacitance 229	package commands 15 package file 202
	non-ideality factor 235	
mutual inductor 56, 114, 115	non-LDD region 215	Package layout description lines 23
mutual inductor example 114	non-negative number 123	package layout description lines 23
mutual inductor matrix 56, 116	non-periodic sources 157	package model 202
mutual inductor parameters 115	non-zero mutual capacitance	package origin 39
N	values 126	package parameters 174
	NOR 110	package=no 177
name extension 173	not correctly paired 101	package=yes 175, 177
name of S model 159	NSUB 84	PackageName 15
name of the IBIS file 202	number of conductors 77	pad equivalent radius 8
names for package and circuit	number of nodes involved 95	pad geometry 33, 34
components 5	number, in any system 69	pad geometry for associated
names of external nodes 94	numerical discretization and	layers 33
narrow width coefficient 210, 223	calculations 12	PadDef commands 34
narrow width effect 211	numerical value which is mapped to	PadPolyShapeDef 34
native file format 1	the black color 148	padstack commands 33
natural boundary (non-total	numerical values 64	padstack definition 34
reflection) condition 11		padstack description line 32
natural logarithm function 58	0	padstack information 33
ND_Clamp_Ref 203	object 39	PadStackName 34
nd_in0 193	OD 220	pairs of horizontal and vertical
nd_out 177, 192	OD edge 86	parameters 44
near-end signal-conductor	offset fitting parameter 216	parallel 111
terminal 123	offset value 134	parallel nested subcircuit 67
negative end of controlling	offset voltage 212, 225	parallel-mode currents 205
voltage 97, 98, 104	Ohms 121	parallel-plate mode surface 206
negative end of the controlling	omponents inside the box 177	param line 66
voltage 100, 108	one-dimensional function 143	parameter definitions 63
negative end of the voltage	ontrolling voltages 109	parameter name 63, 117
source 122	optional net name 19, 45	parameter names 63, 64
negative node 147	optional parameter 206	parameter value check 222
negative terminal 155	optional statement parameters 28	ParameterName 64
nested subcircuit definition 66	options are dimensionless 173	parameters 172
net management section 149	OR 110	parameters example 1 60, 98
net operations 6	order 3, 24	parameters example 2 60, 98
netList statement 149	OuterRadius 34	•

parameters in mathematic	pkg 12	propagation delay 113
expressions 60	plane 23	propagation delay time 111
parameters that are unique to	plane layer 25	propogation delay time 103, 109
PowerSI 153	plane layer description line 24	pulldown node 194
parasitic resistance 211	plane layers example 1 25	pulldown transistor 177, 179, 183,
parasitic resistor equation 86	plane layers example 2 25	187, 188
parentheses 59	plane layers example 3 25	pull-up resistors 198
partial circuit 55, 90	planes 206	pullup transistor 177, 179
partial circuit and package	planexxxx 25	PULSE 137
connection description	pocket implant on rout	pulse width 135
line 140	degradation 226	PWL 136
partial circuit and package	polarity 147, 176, 178	_
connection example 1 142	polarity value 178	R
partial circuit and package	polarity= inverting 176	R, L, and C component
connection example 2 142	polarity=non-Inverting 176	parameters 62
partial circuit and package	pole 98, 104	R, L, and C components 62
connection example 3 142	poles 104	radius 22
partial circuit and package	pole-zero trans-conductance 105	radius information 40
connection example 4 142	POLY 113	random bits sequence 140
partial circuit and package	poly fromone side 86	random bits waveform example
connection parameters 142	polygate doping 213	1 141
partial circuit connection 68	polygon key word 20	random bits waveform example
partial circuit definition 55, 64, 68	polygon parameter 20	2 141
partial circuit definition name 69	polygon parameter example 20	random_bit source 171
partial circuit end line example 65	polygon shapes 34	ratio of controlled current 109
partial circuit name 68, 69	PolygonVertex 39	RDC 118
partial circuit network 55	polynomial 99, 101	Rds calculation 212
partial circuits 55, 204	polynomial coefficients 102, 108, 111	RDSMOD 226
partitioning flag 215	polynomial dimensions 101, 102, 106,	RDSW 212
passivity 11	108, 111	real and imaginary parts 158
PassivityCheck 11	polynomial keyword 113	real part of X 97, 103
patch 23, 30	polynomial keyword function 101,	real(X) 97, 103
patch example 1 31	108, 111	rectangular adjustment 32
patch example 2 31	polysilicon capacitor 96	rectangular adjustment area 26, 30, 32
pattern bit change 128	polysilicon gate doping 83	ref 109
PBSW 219	ports defined 155	reference channel length 83 reference channel width 83
PBSWG 219	portxxxx 155	
peak amplitud 139	portxxxx example 1 - one port	reference distance 220
peak amplitude 134	defined 155	reference gate oxide thickness 210
peak value 133	portxxxx example 2 - multiple ports defined 155	reference node 95 referenced IBIS file 178
period 135	positive end of controlling	referenced MOSFET model
periodic 157	voltage 97, 98, 103	name 118
periphery of diode 96	positive end of the controlling	relation between the controlling
permittivity 29	voltage 100, 108	voltages 101
phase dot 114	positive end of the voltage	relative permittivity 29
phase of the AC source 114, 122	source 122	required key word 61, 108
physical gate equivalent oxide	positive integer 123	reserved characters 5
thickness 223	positive number 123	reserved keywords 60
physical length of transmission	positive terminal 155	reserved word 5
line 121	power clamp 175, 177, 180, 183	reserved words 60
pi 60	power dependence 235	residues 97, 104
piecewise linear 99, 101	power function 57, 58	resistance 5, 62, 117, 120, 230
piecewise Linear format 106	power integrity 1	resistance adjustment option 26
piecewise linear format 111	PowerSI lines example 153	resistor 56, 119
piecewise linear keyword 113	PowerSI section lines 153	resistor parameters 119
pin 39	PRBS 141	reverse bias region 230
pin section 174	I KDU 171	10,0130 0103 1051011 230

reverse bias slope 213	series pin mapping information 201	source/drain 81, 213, 215
reverse bias slope coefficient 80	series switch state 200	source/drain area/perimenter 86
reverse breakdown voltage 73	series switch type buffers 200	source/drain bulk junction
reverse current explosion	series type buffe 199	potential 81
parameter 72	series_switch type buffer 199	source/drain diffusion resistance 89
reverse diode current 213	SFFM 134	source/drain junction saturation
reverse diode current transition	shape command example 18	current density 213
_		
point 80	shape definition 34	source/drain sharing 119
reverses 125	shape description lines 18	source/drain side wall junction
rise 133	shape descriptions 22	capacitance 215
rising curves 172	shapename 34	space_interval 148, 206
rising or falling edge 130	shapes of objects 18	spatial distribution 205
rising ramp data 172	sheet resistance per square 76	spd file format example 27
rising time 140	shift factor 235	SPDSIM 170, 206
rising waveforms 172	short channel model 216	special pin 174
RLC package model 173	short-channel effect 211	special void criteria example 27
RLCG model 123	shrink factor 73	specify information of material
RLGC parameters 123	shunt conductance matrix 77	models 36
RMF file nam 79	sidewalk bulk junction saturation	SPICE-compatible nested
root mean square deviation 32	current 80	subcircuit 66
Rpower 204	sidewall junction grading	sqrt(x) 58
R-Resistor example 2 119	coefficient 81	square root function 58
RSC 118	sidewall junction potential 81, 87	squares of the drain resistor 125
rules for determining buffer state 189	signal 23, 27	squares of the source resistor 125
rvalue 66	signal conductors 123	ss state=on 200
	signal integrity 1	SSO checking mode 165
S	signal layer description 47	SSO description line 165
S model 120	signal layer description line 27	SSO ports 165
S/D active width 83	signal layer example 27	starting and ending nodes 44
S/D diffusions 222	signal layer example 2 27	starting frequency 155
saturation current 72	signal layers 18	StartingNode 45, 47
saturation velocity 211, 220, 224	simulated result 148, 208	STI sidewall trap-assisted
saturation velocity degradation/	simulated result is saved 206	saturation 235
enhancement parameter 88	simulating multiple parallel current	STI sidewall trap-assisted voltage
sbNode 230	sources 122	dependent parameter 236
SCALE 120	simulation mode 161	STI/LOD 86
scale element 125	simulation period 79	stimulus 203
scale factor 120	simulation results 145	StimulusSignal 65
scale factor for capacitance 95	sin 60, 139	STOLOD 86
scale factor for resistance 76	$\sin(x)$ 58	stores the mutual capacitance
scale model 125	sine function 58, 139	values 95
scattering parameter 159	SINESQUAR 138	stress effect 87, 220
SCB 236	sinesquare 122	subcircuit 56, 64
SCC 236	single line 6	subcircuit command 85, 209, 220
second-order mobility	single line will not work 171	subcircuit connector 93
degradation 224	single quotation marks 62, 101, 117	subcircuit definition 67, 90
SegmentedTrace example 48	sinh(x) 58	subcircuit definition name 124
SegmentedTrace line 47	sinusoidal 122	subcircuit description line 124
S-element 159	Sinusoidal Waveform 138	subcircuit example 124
S-element example 159	Sinusoidal Waveform example 140	subcircuit example 124 subcircuit parameters 94, 124
self inductance value 116	skin effect resistance matrix 78	SubcircuitName entries 66
self or mutual capacitor 126, 127	small hole 7	sub-circuits 204
semiconductor devices 126	source diffusion 118	SUBCKT example 1 91
separate the two nodes 59	source junction 118	sub-element 19
separated by comma 113	source name 171	substrate doping 210
series models 199	source node 118	substrate doping concentration 223
series pin editor 201	source resistance 81, 87	substrate doping concentration 223 substrate resistance 89
Delieu pin cuitor 201	500100 10515tan00 01, 07	Substitute resistance of

subsystems 159	TOXE 90	unique differential channel
subthreshold swing factor 212, 225	TOXE-TOXP 223	statment 156
suffixes 5	TOXP 90	unique port statement 155
supported in SPEED2000 99, 101,	trace 24, 45	units 4
103, 104, 105, 107, 112	trace clipping 47	unix 150
surface inversion potential 84	trace description line 45	unnamed net 149
surface mounted pads 34	trace example 46, 47	unselected circuit 144
surface state density 83	trace length 8	upper layer 146
syntax specification 18	trace over split plane algorithm 47	upper metal layer 148
	trace reference check 6	upper reference plane 47
Т	trace reference check example 6	UpperNode 40
tan(x) 58	trace_color 15	
tangent function 58	trace_combine 16	V
tanh(x) 58	trans-conductance example 1 104	V_en 185
TDR / TDT mode 163	trans-conductance function 104, 105	V_in 178, 185
TDR description line 163	trans-conductance function	V_out_of_in 193
temp_range 203	example 103	valid mathematical expression 111
temperature 12, 96	trans-conductance parameters 105	value 63, 64
temperature coefficient 84, 88, 120,	transient command line 150	value of the controlling voltage 110
219, 220	transient line 9	value of V_out_of_in 176
temperature difference 120	transient NQS 89	variable names 101, 107
temperature effect 74	transient NQS model selector 222	VBS 210
temperature effects parameters 74, 84	transient simulation 176, 178	VCCAP 105
temperature equation 84, 90	transient simulation parameters 9	VCCAP example 106
temperature exponent 84, 85, 90	transient waveform 114, 122	VCCAP parameters 106
temperature of model cards 125	transit time 74, 81, 216	VCCS 56, 107
temperature parameters 219	transmission delay 121	VCCS parameters 108
termination diodes 198	transmission example 121	VCR 56
terminator buffer 199	transmission line 56, 121	VCR length sensitivity 84
terminators 198	transmission line description 121	VCR parameters 110
text editor 30	transmission lines 121, 147	VCR width sensitivity 84
text editors 3	transmission parameters 121	VCVS 56, 99
text file 30	TransmissionLineSkinEffect 10, 11	Vds parameter 213
thermal hole 7	TRAP 125	vector currents 206
thermal keyword 47	trap-assisted voltage dependent 236	velocity back scattering
thermal velocity 234	trapezoidal 10	coefficient 234
ThermalShapeToShapeThreshold 8	triggering signal 177, 182, 183	vertex 20
thickness 26, 27, 29, 32, 47, 54	tristate buffer 178, 182	vertical height of the segment 44
three_state buffers 173	tristate ECL buffer 195	via 23
three-dimensional function 143	tunneling saturation current 73	via antipad search factor 7
threshold shift factor 236	tunneling sidewall saturation 73	via description line 39
threshold shift parameter 88, 220, 235	turn off warning messages 75	via example 40
threshold voltage parameters 82	two-dimensional function 143	via hole 7
threshold voltage shift 83	type 44	via padstack information example 40
time 5	type clause 68	via_color 15
time delay 135		via_conductivity_default
time length for the waveform 132	U	parameter 40
time starting points 130	U0 multipler 86	view node voltages 145
time_interval 146, 147, 148, 206	u0 stress effect 235	view of the package structure 150
timesteps 10	UA multipler 86	view spatial distribution 145
title line 6	UB multipler 86	View3D 145
title lines 5	undefined parameter 91	viewstep 10
TLEVC 84	unionization 22	voltage 5, 176
tool checks 128	UnionizedShape 22	voltage across the capacitor 95
top-level .SUBCKT command 66	UnionizedShape line 22	voltage controlled capacitor 105, 106
TOUCHSTONE 121	UnionizedShape line example 22	voltage controlled current source 109

touchstone 159

voltage controlled resistor 61, 110, voltage controlled voltage parameters 100 voltage controlled voltage source 61, 101 voltage conversion 113 voltage difference 59 voltage gain 100 voltage gain function 98 voltage gain parameters 98 voltage measured 121 voltage of one circuit node relative to another circuit node 59 voltage source 56, 122, 178, 183 voltage source example 122 voltage source parameters 122 voltage sources 181, 185 voltage variable example 59 voltage variable expression 59 voltage variables 61, 109 voltage range 203 voltage-time curves 172 voltage-to-capacitance conversion factor 106 voltage-to-current conversion factor 109 voltage-to-resistance conversion factor 111 vsource 59 Vth stress effect 235 Vth0 88 Vth0 change 220 VTO 84

W

wafer 83, 218 waveform 129, 130 waveform amplitude parameters 140 waveform specifications 128 waveform state 131 waveform time length 132 waveform value 132 Weff 225 W-element tabular model 79 well dopant. 90 width 27, 47, 120 width of the diode 73 width offset 212 window option 150 window parameter line 150 wirebond data 40 wirebond example 42 wirebond group 45 wirebond model 42 wirebond models 42 WireBondGroup example 45

Χ

x ^ y 58 X subcircuit 56

7

zero bias 226 zero bias bulk-drain junction capacitance 80 zero bias bulk-source junction capacitance 80 zero bias LDD resistance 226 zero-based threshold voltage shift 119 zero-bias bulk junction capacitance 81 zero-bias gate-edge sidewalk bulk junction capacitance 81 zero-bias gate-edge sidewall bulk junction capacitance 87 zero-bias junction capacitance 73 zero-bias junction capacitance parameters 97 zero-bias sidewalk bulk junction capacitance 81 zero-bias threshold voltage 84