Problem 1.

Without using a calculator, sketch the following graphs of conics.

- (a) $y^2 4x = 12$
- (b) $(x+1)^2 + y^2 = 4$
- (c) $\frac{(x-3)^2}{9} + \frac{y^2}{2} = 1$
- (d) $4x^2 + y^2 = 4$
- (e) $8y^2 2x^2 = 16$

Solution

Part (a)

Part (c)

Part (d)

Part (e)

Tutorial B1B Graphs and Transformations I

Problem 2.

Sketch the curves defined by the following parametric equations, indicating the coordinates of any intersection with the axes.

(a)
$$x = 3t^2$$
, $y = 2t^3$

(b)
$$x = \cos^2 t$$
, $y = \sin^3 t$, $0 \le t \le \frac{\pi}{2}$

Solution

Part (a)

Problem 3.

Without using a calculator, sketch the following graphs of conics.

(a)
$$y^2 + 4y + x = 0$$

(b)
$$x^2 + y^2 - 4x - 4y = 0$$

(c)
$$x^2 + 4y^2 - 2x - 24y + 33 = 0$$

(d)
$$4x^2 - y^2 - 8x + 4y = 1$$

(e)
$$x = -\sqrt{17 - y^2}$$

Solution

Part (a)

Part (c)

Part (d)

Part (e)

Problem 4.

Sketch the curves defined by the following parametric equations. Find also their respective Cartesian equations.

(a)
$$x = 4t + 3, y = 16t^2 - 9, t \in \mathbb{R}$$

(b)
$$x = t^2$$
, $y = 2 \ln t$, $t \ge 1$

(c)
$$x = 1 + 2\cos\theta, y = 2\sin\theta - 1, 0 \le \theta \le \frac{\pi}{2}$$

(d)
$$x = t^2, y = \frac{2}{t}, t \neq 0$$

Solution

Part (a)

Since
$$x = 4t + 3$$
, we have $t = \frac{1}{4}(x - 3)$. Thus, $y = 16\left(\frac{1}{4}(x - 3)\right)^2 - 9 = (x - 3)^2 - 9$.

$$y = (x - 3)^2 - 9$$

Since $x = t^2$ and $t \ge 1 > 0$, we have $t = \sqrt{x}$. Thus, $y = 2 \ln t = 2 \ln \sqrt{x} = \ln x$.

$$y = \ln x$$

Part (c)

We have $2\cos\theta = x-1$ and $2\sin\theta = y+1$. Squaring both equations and adding them, we obtain $4\cos^2\theta + 4\sin^2\theta = (x-1)^2 + (y+1)^2$, which simplifies to $(x-1)^2 + (y+1)^2 = 4$.

$$(x-1)^2 + (y+1)^2 = 4$$

Part (d)

Since $x = t^2$, we have $t = \pm \sqrt{x}$. Hence, $y = \pm \frac{2}{\sqrt{x}}$.

$$y = \pm \frac{2}{\sqrt{x}}$$

Problem 5.

The curve C_1 has equation $y = \frac{x-2}{x+2}$. The curve C_2 has equation $\frac{x^2}{6} + \frac{y^2}{3} = 1$.

- (a) Sketch C_1 and C_2 on the same diagram, stating the exact coordinates of any points of intersections with the axes and the equations of any asymptotes.
- (b) Show algebraically that the x-coordinates of the points of intersection of C_1 and C_2 satisfy the equation $2(x-2)^2 = (x+2)^2(6-x^2)$.
- (c) Use your calculator to find these x-coordinates.

Another curve is defined parametrically by

$$x = \sqrt{6}\cos\theta$$
, $y = \sqrt{3}\sin\theta$, $-\pi < \theta < \pi$

(d) Find the Cartesian equation of this curve and hence determine the number of roots to the equation $\sqrt{3}\sin\theta = \frac{\sqrt{6}\cos\theta - 2}{\sqrt{6}\cos\theta + 2}$ for $-\pi \le \theta \le \pi$.

Solution

Part (a)

Part (b)

From C_1 , we have y(x+2) = x - 2. Hence,

$$y^2(x+2)^2 = (x-2)^2$$

From C_2 , we have $x^2 + 2y^2 = 6$. Hence,

$$y^2 = \frac{6 - x^2}{2}$$

Putting both equations together, we have

$$(x-2)^2 = \frac{(6-x^2)(x+2)^2}{2}$$

$$\implies 2(x-2)^2 = (6-x^2)(x+2)^2$$

Part (c)

$$x = -0.515, 2.45$$
 (3 s.f.)

Part (d)

Since $x = \sqrt{6}\cos\theta$ and $y = \sqrt{3}\sin\theta$, we have $x^2 = 6\cos^2\theta$ and $2y^2 = 6\sin^2\theta$. Adding both equations together, we have

$$x^{2} + 2y^{2} = 6\cos^{2}\theta + 6\sin^{2}\theta$$
$$= 6$$
$$\implies \frac{x^{2}}{6} + \frac{y^{2}}{3} = 1$$
$$\frac{x^{2}}{6} + \frac{y^{2}}{3} = 1$$

This is the equation that gives C_1 . We further observe that the equation $\sqrt{3}\sin\theta = \frac{\sqrt{6}\cos\theta - 2}{\sqrt{6}\cos\theta + 2}$ simplifies to $y = \frac{x-2}{x+2}$. This is the equation that gives C_2 . Since there are two intersections between C_1 and C_2 , there are thus two roots to the equation $\sqrt{3}\sin\theta = \frac{\sqrt{6}\cos\theta - 2}{\sqrt{6}\cos\theta + 2}$.

There are 2 roots to
$$\sqrt{3}\sin\theta = \frac{\sqrt{6}\cos\theta - 2}{\sqrt{6}\cos\theta + 2}$$
.