## Module 2: Organizing ML Projects



# 87% of ML projects fail\*

## **Module 2 Objectives:**

At the conclusion of this module, you should be able to:

- 1) Organize projects using the CRISP-DM data science process
- 2) Structure a ML project team and define roles
- 3) Organize project team work using best practices and track progress

## ML Projects vs. Software Projects



## ML vs. software projects

- Relative to normal software projects, ML projects:
  - Require a broader set of skills / team
  - Have higher technical risk
  - Are more challenging to plan and estimate
  - Are harder to show progress
  - Require more ongoing support

## **Challenges of ML projects**

- Probabilistic rather than deterministic
  - How to define "good enough"
  - Art of model building
  - Variance of model outputs
- Higher technical risk
  - Data needs and quality
  - Model limitations

## **Challenges of ML projects**

- Much more up-front work required
  - Correct data issues
  - Identify features
- Often require change management
  - Not just another tool changes the user's workflow
  - Build model trust

## CRISP-DM Data Science Process

Duke

PRATT SCHOOL OF ENGINEERING

## Why have a process?

- Prevent the tendency to jump right to solutions / modeling
- Avoid wasting time/money by working on a poorly defined problem
- Ensure discipline in doing the right things, in order
- Organize the work and the team responsibilities

## **CRISP-DM**

- Developed in 1996 by a European consortium of companies
- Developed as a flexible, industry- agnostic approach to data mining projects
- Still the most widely used data science project methodology
- Major corporate champions include IBM

## **CRISP-DM Process**



## 1) Business understanding

| 1.1 Define the problem                                                                                                                                       | 1.2 Define success                                                                                                                                                                                        | 1.3 Identify factors                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>Target user</li> <li>Write the problem statement</li> <li>Why it matters</li> <li>How is it solved today?</li> <li>Gaps in current state</li> </ul> | <ul> <li>Quantify the expected business impact</li> <li>Identify constraints</li> <li>Translate impact into metrics – outcome &amp; output metrics</li> <li>Define success targets for metrics</li> </ul> | <ul> <li>Gather domain expertise</li> <li>Identify potentially relevant factors</li> </ul> |

## 2) Data understanding

| 2.1 Gather data                                                                                        | 2.2 Validate data                                                                                    | 2.3 Explore the data                                                                                                                        |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Identify data sources for each factor</li> <li>Label data</li> <li>Create features</li> </ul> | <ul> <li>Quality control data</li> <li>Resolve data issues – missing, erroneous, outliers</li> </ul> | <ul> <li>Statistical analysis and visualization</li> <li>Dimensionality reduction</li> <li>Identify relationships &amp; patterns</li> </ul> |

## 3) Data preparation

| 3.1 Split data                      | 3.2 Determine feature set                                          | 3.3 Prepare for modeling                                                                                           |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Split data for<br>training and test | <ul> <li>Feature engineering</li> <li>Feature selection</li> </ul> | <ul> <li>Encoding categorical features</li> <li>Scale/standardize data</li> <li>Resolve class imbalance</li> </ul> |

## 4) Modeling

#### 4.1 Model selection 4.2 Model tuning Evaluate algorithms via cross-Hyperparameter optimization validation Documentation and Documentation and versioning versioning Model re-training

## 5) Evaluation

| 5.1 Evaluate results                                                                                   | 5.2 Test solution                                                                                                                              |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Model scoring on test set</li> <li>Interpretation of model outputs and performance</li> </ul> | <ul> <li>Software unit &amp; integration tests</li> <li>Model testing – unit tests,<br/>directional expectation</li> <li>User tests</li> </ul> |

## 6) Deployment

| 6.1 Deploy                                                                                                                                            | 6.2 Monitor                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <ul> <li>API framework</li> <li>Product integration</li> <li>Scaling infrastructure</li> <li>Security</li> <li>Software deployment process</li> </ul> | <ul> <li>Model performance<br/>monitoring</li> <li>Model retraining</li> </ul> |

## **CRISP-DM: Final thoughts**

- Data science work is iterative, not linear
- Each step itself is iterative, as is the whole process
- You may want to adjust steps based on your project
- Skipping a step can be very dangerous!

## **CRISP-DM Case Study**

Duke

PRATT SCHOOL OF ENGINEERING

# POWER OUTAGE PREDICTION TOOL FOR ELECTRIC UTILITIES

### **CRISP-DM Process**



## 1) Business Understanding

#### **Define the problem**

Target user

Electric utility Director of Operations

Problem

Need to decide 2-3 days in advance how many crews to call in to repair expected storm damage

Why it matters

If they call in too many, they waste significant money. If they call in too few, customers are upset

Current state

They use weather forecasts and their own intuition to make an educated guess

## 1) Business Understanding

#### **Define success**

Expected impact

Improve restoration times and minimize wasted cost

Metrics

Outcome: Reduction of average

restoration time

Output: MSE of aggregate predictions

**Targets** 

Outcome: Reduction of average restoration time by X minutes

Output: MSE < XX

Constraints

Predictions must be delivered >48hrs in advance of storm start

## 1) Business Understanding

#### **Identify factors**

- Weather
  - Wind, gusts, precipitation, ice etc
- Density
  - Location/concentration of assets
- Trees
  - Proximity to power lines
  - Seasonality

## 2) Data Understanding

#### Source data

- Sources:
  - Weather: Weather providers
  - Trees: Satellite imagery vendors
  - Density: Utility customers
  - Historical outages (target): Utility customers
- Considerations:
  - How much data?
  - Sensitivity
  - Cost

## 2) Data Understanding

#### **Validate data**

- Significant missing data
- Map disparate sources to common geospatial resolution
- Outlier storms major outages

## 3) Data Preparation

#### **Define Features**

- Many possible features
  - Weather parameters, time scales
- Interactions between features
- Possible missing features

## 4) Modeling

#### **Model Selection**

- Balance of performance & interpretability
- Single model or tailored models

## 5) Evaluation

#### **Evaluate results / testing**

- Performance on test set(s)
- Customer testing live data
- Debugging data issues

## 6) Deployment

#### **Deploy**

- Visualization product integration
- Customer change management

#### **Monitor**

- Model performance & outcomes
- Re-training plan

## Team Organization

Duke

PRATT SCHOOL OF ENGINEERING

## **Project team**

- There is no "right" or "wrong" way to structure a team
  - Some teams are larger, some are smaller
  - Some are directly aligned, some are matrix
  - Different organizations use different titles
- What is important is defining responsibilities

## **Typical team roles**

Some roles may have more than one person, or some people may have more than one role



## Data Scientist vs. ML Engineer

#### Data Scientist

- Statistical / data science background, plus programming skills and domain expertise
- Gather, process & derive insights from data
- Determination of ML approach and prototyping

## Data Scientist vs. ML Engineer

#### ML Engineer / MLOps

- Computer science or engineering background plus ML training
- Develop production data pipelines and ML system
- Work with software engineering & DevOps on model integration & deployment

## Involvement over project cycle

#### Project lifecycle



### **Project Business Sponsor**

- Having a business champion is a key success factor for Al projects
- Business champion secures resources and ensures alignment of project with company strategy
- Particularly important due to higher uncertainty & technical risk – protects team from business pressures

# Organizing the Project

Duke

PRATT SCHOOL OF ENGINEERING

- Sequence of iterative experiments
  - Explore a hypothesis
  - Build it, using more of CRISP-DM each time
  - Observe it in action, get feedback
  - Analyze results and repeat

| Iteration | What                         | CRISP-DM Steps Involved |
|-----------|------------------------------|-------------------------|
| 1         | Mockup of potential solution | Business Understanding  |

| Iteration | What                                                | CRISP-DM Steps Involved                       |
|-----------|-----------------------------------------------------|-----------------------------------------------|
| 1         | Mockup of potential solution                        | Business Understanding                        |
| 2         | Small subset of historical data and mocked up model | Business Understanding, Data<br>Understanding |

| Iteration | What                                                | CRISP-DM Steps Involved                                        |
|-----------|-----------------------------------------------------|----------------------------------------------------------------|
| 1         | Mockup of potential solution                        | Business Understanding                                         |
| 2         | Small subset of historical data and mocked up model | Business Understanding, Data<br>Understanding                  |
| 3         | Real data, heuristic as model                       | Business Understanding, Data<br>Understanding, Data Processing |

| Iteration | What                                                | CRISP-DM Steps Involved                                                     |
|-----------|-----------------------------------------------------|-----------------------------------------------------------------------------|
| 1         | Mockup of potential solution                        | Business Understanding                                                      |
| 2         | Small subset of historical data and mocked up model | Business Understanding, Data<br>Understanding                               |
| 3         | Real data, heuristic as model                       | Business Understanding, Data<br>Understanding, Data Processing              |
| 4         | Real data, simple ML model                          | Business Understanding, Data<br>Understanding, Data Processing,<br>Modeling |
| •••       |                                                     | •••                                                                         |

### **Collaboration - cadence**

- Monthly/quarterly roadmap sessions
  - Align on priorities
- Sprint planning & sprint reviews
  - Bi-weekly work planning
- Daily stand-ups
  - Not just for software dev DoD, NWS
- Regular demo sessions
  - Visualize progress, get input

### **Collaboration - tools**

- Roadmap & requirements
  - Confluence, Google Docs
- Project tracking
  - User stories, sprint planning, tracking
  - Jira, Trello
- Collaboration / version control
  - Git/GitHub



## Measuring Performance

Duke

PRATT SCHOOL OF ENGINEERING

#### **Metrics**

#### **Outcome Metrics**

- Refers to the desired business impact on your organization or for your customer
- Stated in terms of the expected impact (which is often \$)
- Does NOT contain model performance metrics or other technical metrics

#### **Metrics**

#### **Output Metrics**

- Refers to the desired output from the model
- Measured in terms of a model performance metric
- Typically not communicated to the customer
- Set this AFTER setting the desired outcome

### Tracking progress on metrics

### **Output Metrics**

- Model validation and testing
- Can require customer input data

### Outcome Metrics

- Hindsight scenario testing
- A/B testing
- Beta testing

### Non-performance considerations

- Explainability / interpretability
  - Easier to debug issues and identify bias
  - Fault tolerant vs. fault intolerant
- Data and computational cost
  - Cost of sourcing & storing data
  - Compute requirements for training & inference



### Wrap Up

- ML projects differ substantially from software projects
- Process is critical to ensure doing the right things in the right order
- Process does NOT imply linear working ML is highly iterative