Caso de estudio Regresión

OBJETIVOS

- Construir un modelo que prediga el precio de una casa en función de las características proporcionadas en el conjunto de datos.
- Explorar las características de las viviendas.
- Uno de esos parámetros incluye comprender qué factores son responsables del mayor valor de la propiedad: \$650 mil y más.

PROGRAMAS A UTILIZAR

METODOLOGÍA

- 1. Importar bibliotecas y cargar el conjunto de datos
- 2. Visión general del conjunto de datos
- 3. Limpieza de datos
- 4. Análisis exploratorio de datos (EDA)
- 5. Modelización de datos y examinar el cruzado de modelos
- 6. Conclusión

Bibliotecas

- Pandas
- Seaborn
- Matplotlib.pyplot
- Sklearn.model_selection
- Sklearn.linear_model
- Sklearn.metrics

2. Visión general del conjunto de datos

Datos de <u>21.597</u> propietarios

Ventas entre Mayo 2014 - Mayo 2015

3. Limpieza de datos

- Buscar NaNs.
- Cambiar nombres a Español.
- Dividir columnas categóricas y numéricas.
- Cambiar tipo de código postal string a un formato categórico.

4. Análisis exploratorio de datos (EDA)

Columnas numéricas

precio	1.000000
pies_cuadrados_vivienda	0.701917
calificación	0.667951
pies_cuadrados_sin_sotano	0.605368
pies_cuadrados_salon_15	0.585241
baños	0.525906
vista	0.397370
pies_cuadrados_sótano	0.323799
dormitorios	0.308787
frente_al_mar	0.266398
pisos	0.256804
año_renovación	0.126424
pies_cuadrados_parcela	0.089876
pies_cuadrados_parcela_15	0.082845
año_construcción	0.053953
estado	0.036056
código_postal	-0.053402
Name: precio, dtype: floate	64

Datos más correlacionados

Las características en relación a las dimensiones y la clasificación es lo más relevante

Columnas categóricas

5.MODELOS

Modelo de regresión lineal

R2_score: 0.8 RMSE: 164236.79 MAE: 96394.52

Modelo de regresión lineal sin outliers

R2_score: 0.82 RMSE: 109831.76 MAE: 73258.02

5.MODELOS

MODELO LOGARÍTMICO SIN OUTLIERS

- R²: 0.8661901132515291

- RMSE: 0.1746050194090754

- MAE: 0.12771782713863378

Modelos >650K

Modelo de regresión lineal

R2_score: 0.8 RMSE: 164236.79 MAE: 96394.52

Modelo de regresión lineal sin outliers

R2_score: 0.84 RMSE: 83472.93 MAE: 61972.98

Modelo de logaritmico

R2_score: 0.81 RMSE: 87937.82 MAE: 60461.24

Modelo de KNN

R2_score: 0.39 RMSE: 159184.73 MAE: 123788.41

Modelo de Arbol de decisión:

R2_score: 0.59 RMSE: 130913.51 MAE: 90742.61

Modelo de Random Forest

R2_score: 0.79 RMSE: 92613.17 MAE: 63873.34

Modelo de Gradient Boosting

R2_score: 0.74 RMSE: 104146.96 MAE: 77002.30

6. Conclusiones:

- <u>Tamaño y precio</u>: El tamaño de la vivienda y características como el número de baños y clasificación influyen significativamente en el precio.
- Mejor modelo: El modelo logarítmico es el más preciso y consistente en general.
- Mejor modelo para precios altos: Para viviendas superiores a \$650,000, el mejor modelo es sin outliers y sin transformación logarítmica.