МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

МЕТОДИЧНІ ВКАЗІВКИ до лабораторної роботи № 2 на тему: РОЗВ'ЯЗУВАННЯ НЕЛІНІЙНИХ РІВНЯНЬ МЕТОДОМ ДОТИЧНИХ ТА МЕТОДОМ ПОСЛІДОВНИХ НАБЛИЖЕНЬ

Мета роботи: ознайомлення на практиці з методом дотичних та методом послідовних наближень для розв'язування нелінійних рівнянь.

3.1. Метод Ньютона (метод дотичних)

Формулювання задачі. Розглянемо рівняння f(x) = 0, де f(x) є неперервною монотонною нелінійною функцією, яка на кінцях відрізку [a,b] приймає значення різних знаків, причому її похідні f'(x)та f''(x)є неперервними та монотонними. Потрібно знайти значення кореня x_* з заданою похибкою ε .

Геометричний зміст (рис. 3.1) методу Ньютона полягає в тому, що дугу кривої y = f(x) на відрізку [a,b] замінюють дотичною до цієї кривої, а наближене значення кореня визначають як абсцису точки перетину дотичної з віссю Ox, проведеної через один із кінців відрізка.

Запишемо рівняння дотичної до кривої y = f(x) в точці $(x_i; f(x_i))$

$$y - f(x_i) = f'(x_i)(x - x_i).$$
 (3.1)

Рис. 3.1. Геометричний зміст методу Ньютона:

- а) графік функції y = f(x) ϵ вгнутим (f'(x) > 0, f''(x) > 0);
- б) графік функції $y = f(x) \epsilon$ опуклим (f'(x) < 0, f''(x) < 0);
- в) графік функції $y = f(x) \epsilon$ опуклим (f'(x) > 0, f''(x) < 0);
- г) графік функції y = f(x) ϵ вгнутим (f'(x) < 0, f''(x) > 0).

Покладемо у співвідношенні (3.1) y = 0 і визначимо x. У результаті отримаємо

$$x = x_i - \frac{f(x_i)}{f'(x_i)}. (3.2)$$

Тоді ітераційні формули запишемо у вигляді

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 0,1,2,...$$
 (3.3)

Для вибору початкового наближення кореня рівняння f(x) = 0 необхідно керуватися таким правилом: за початкову точку слід вибирати той кінець відрізка [a,b], в якому знак функції y = f(x) співпадає зі знаком її другої похідної f''(x).

У першому випадку (рис. 3.1a, δ) f(b)f''(b) > 0 і за початкову точку вибираємо $x_0 = b$, а в другому(рис. 3.1a, ϵ) -f(a)f''(a) > 0 і тому $x_0 = a$. Процес побудови дотичної продовжуємо до тих пір, поки не виконається нерівність $|x_{i+1} - x_i| < \epsilon$, де ϵ — задана точність шуканого розв'язку; x_i , x_{i+1} — наближені значення кореня рівняння f(x) = 0 на i-му та (i+1)-му кроках.

3.2. Метод простої ітерації (метод послідовних наближень)

Одним із найпоширеніших методів чисельного розв'язування нелінійних рівнянь ϵ метод простої ітерації. Іноді його називають методом послідовних наближень.

Формулювання задачі. Розглянемо нелінійне рівняння f(x) = 0, де f(x) є неперервною функцією. Потрібно знайти хоча б один дійсний корінь цього рівняння f(x) = 0 запишемо у канонічній формі

$$x = \varphi(x). \tag{3.4}$$

Довільним способом визначимо наближене значення x_0 кореня рівняння і підставимо його в праву частину співвідношення (3.4). У результаті отримаємо

$$x_1 = \varphi(x_0). \tag{3.5}$$

Підставивши тепер в праву частину рівняння (3.5) замість x_0 значення x_1 , отримаємо $x_2 = \varphi(x_1)$. Повторюючи цей процес, отримаємо ітераційні формули

$$x_i = \varphi(x_{i-1}), i = 1, 2, 3....$$
 (3.6)

Кожний дійсний корінь x_* рівняння (3.6) є абсцисою точки перетину M кривої $y = \varphi(x)$ з прямою y = x (рис. 3.2).

Рис. 3.2. Графічна інтерпретація методу ітерацій

Доведено, що ітераційний процес, визначений формулами (3.6), збігається до єдиного кореня рівняння f(x)=0, якщо на відрізку [a;b], що містить цей корінь, виконується умова:

$$\left|\varphi'(x)\right| \le q = \max_{x \in [a,b]} \left|\varphi'(x)\right| < 1. \tag{3.7}$$

Збіжність процесу ітерації буде тим швидшою, чим меншим є число q, яке задовольняє нерівність (3.7). Якщо умова (3.7) не виконується, то необхідно перетворити рівняння f(x) = 0 до вигляду $x = \varphi(x)$ так, щоб досягти її виконання. Наприклад, можна визначати функцію $\varphi(x)$ зі співвідношення

$$\varphi(x) = x - \frac{f(x)}{k},\tag{3.8}$$

де значення k вибирають так, щоб виконувалась умова $|k| \ge \frac{Q}{2}$. Тут $Q = \max_{x \in [a,b]} |f'(x)|$ та знак k співпадає зі знаком f'(x) на відрізку [a;b].

Ітераційний процес продовжують до тих пір, поки не виконуватиметься умова

$$\left| x_i - x_{i-1} \right| \le \varepsilon \,, \tag{3.9}$$

де ε – задана похибка шуканого кореня x_* .

Зауваження. Методи хорд та дотичних (Ньютона) ϵ частковим випадком методу простої ітерації, де для методу хорд

$$\varphi(x) = x - \frac{f(x)(b-x)}{f(b) - f(x)},$$

а для методу дотичних

$$\varphi(x) = x - \frac{f(x)}{\varphi'(x)}.$$

3.3. Приклади розв'язування задач

Приклад 3.1. Методом Ньютона на відрізку [-11;-10]уточнити з точністю $\varepsilon = 0,01$ корінь рівняння

$$x^4 - 3x^2 + 75x - 10000 = 0$$
.

Розв'язування. Результати обчислень помістимо в таблицю 3.1.

Таблиця 3.1

n	x_n	$f(x_n)$	$f'(x_n)$	$-\frac{f(x_n)}{f'(x_n)}$
0	-11	3453	-5183	0,7
1	-10,3	134,3	-4234	0,03
2	-10,27	37,8	-4196	0,009
3	-10,261	0,2	_	_

Обчислення завершуємо, оскільки $|x_2-x_3|=0,009<\varepsilon$. Тому $x_3=-10.261\,\varepsilon$ шуканим наближеним розв'язком.

Приклад 3.2. Використовуючи метод простої ітерації, уточнити корінь рівняння

$$\arcsin(2x+1)-x^2=0,$$

який потрапляє на відрізок[-0.5;0] з похибкою $\varepsilon = 10^{-4}$.

Розв'язування. Виконаємо деякі перетворення щодо цього рівняння.

$$\arcsin(2x+1) = x^{2},$$

$$\sin(\arcsin(2x+1)) = \sin x^{2},$$

$$2x+1 = \sin x^{2},$$

$$x = 0.5(\sin x^{2} - 1),$$

$$\varphi(x) = 0.5(\sin x^{2} - 1).$$

Знаходимо $\varphi'(x) = x \cos x^2$. Очевидно, що $|\varphi'(x)| = |x \cos x^2| \le 0,5$ для всіх $x \in [-0,5;0]$. Тому ітераційний процес є збіжним.

За початкове наближення приймемо значення $x_0 = -0.4$. Результати обчислень помістимо в таблицю 3.2.

Таблиця 3.2

n	x_n	$\varphi(x_n)$
0	-0.4	-0.4034
1	-0.42034	-0.41212
2	-0.41212	-0.41549
3	-0.41549	-0.41411
4	-0.41411	-0.41468
5	-0.41468	-0.41444
6	-0.41444	-0.41454

7	-0.41454	-0.4145
8	-0.4145	-0.41452
9	-0.41452	-0.41451
10	-0.41451	-

Обчислення завершуємо, оскільки $|x_{10}-x_9|<0.0001$. Значення $x_{10}=-0.41451\ \epsilon$ наближеним розв'язком рівняння.

Завдання

Скласти програму розв'язування нелінійного рівняння методом дотичних та методом простої ітерацій (див. варіанти завдань до лабораторної роботи № 1).

Вимоги до програми

У програмі слід передбачити такі можливості:

- 1. Побудову графіків функцій y = f(x) та y = x і $y = \varphi(x)$.
- 2. Автоматизований режим знаходження розв'язку нелінійного рівняння з точністю $\varepsilon = 10^{-2}$ на відрізку[a;b], визначеному після відокремлення коренів.
- 3. Введення вхідних даних вручну: задати точність ε , відрізок локалізації кореня[a;b]. Виведення повідомлення, якщо введений відрізок не містить розв'язку.
 - 4. Перевірка коректності введення даних.
 - 5. Покрокове виведення результатів для кожного методу.

Контрольні запитання

- 1. Назвати методи уточнення дійсних коренів нелінійних рівнянь.
- 2. Навести алгоритм методу Ньютона і геометрично його зобразити.
- 3. Записати основні ітераційні формули методу Ньютона.
- 4. Показати особливості методу простої ітерації та його обмеження.
- 5. Графічно зобразити метод простої ітерації та записати основні ітераційні формули методу.
- 6. Сформулювати умову завершення ітераційного процесу обчислень за методом простої ітерації.