Section 8

t-test, χ^2 -test, two-sample z/F-test Normal samples and statistics

$$X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2)$$

- Sample mean $\overline{X} = \frac{1}{n}(X_1 + \cdots + X_n), \ E[\overline{X}] = \mu$
- Sample variance $S^2 = \frac{1}{n-1}((X_1-\overline{X})^2+\cdots+(X_n-\overline{X})^2), \ E[S^2] = \sigma^2$

t-test for mean (variance unknown)

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2), \sigma^2 \text{unknown}$$

- Null H_0 : $\mu = \mu_0$, Alternative H_A : $\mu > \mu_0$
- $T = \overline{X}$, Test: Reject H_0 if T > c

How to compute significance level?

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ • Given H_0 , $\frac{T - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$ • For a given sampling, let $S^2 = s^2$ $\alpha = P(T > c | \mu = \mu_0) = P(t_{n-1} > \frac{c - \mu_0}{s/\sqrt{n}})$ $= | -F_{t_{n-1}} (\frac{c - \mu_0}{s/\sqrt{n}})$

 χ^2 -test for variance

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2)$$

- Null H_0 : $\sigma = \sigma_0$, Alternative H_A : $\sigma > \sigma_0$
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$, Test: Reject H_0 if S > c

How to compute significance level?

How to compute significance level?

• Given
$$H_0$$
, $\frac{(n-1)}{\sigma_0^2}S^2 \sim \chi_{n-1}^2$

$$\alpha = P(S > c|H_0) = P(\frac{(n-1)}{\sigma_0^2}S^2 > \frac{(n-1)}{\sigma_0^2}c^2) = P(\chi_{n-1}^2 > \frac{(n-1)}{\sigma_0^2}c^2)$$

$$S > c = I - F_1 \left(\frac{m}{\sigma_0^2}\right)^{\frac{1}{2}}$$

Two samples from normal distribution

$$X_1, \ldots, X_{n_1} \sim \text{iid Normal}(\mu_1, \sigma_1^2)$$
 interest of $Y_1, \ldots, Y_{n_2} \sim \text{iid Normal}(\mu_2, \sigma_2^2)$ interest of $X_1, \ldots, X_n \sim \text{iid Normal}(\mu_1, \sigma_1^2)$

• $\overline{X} \sim \text{Normal}(\mu_1, \sigma_1^2/n_1), \ \overline{Y} \sim \text{Normal}(\mu_2, \sigma_2^2/n_2)$

 $\overline{X} - \overline{Y} \sim \text{Normal}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$

Two sample z-test (known variances)

$$X_1, \dots, X_{n_1} \sim \text{iid Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \text{iid Normal}(\mu_2, \sigma_2^2)$

- Null H_0 : $\mu_1 = \mu_2$, Alternative H_A : $\mu_1 \neq \mu_2$
- $T = \overline{Y} \overline{X}$, Test: Reject H_0 if |T| > c

How to compute significance level?

• Given
$$H_0$$
, $T \sim \text{Normal}(0, \sigma_T^2)$, where $\sigma_T^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

$$\alpha = P(|T| > c|H_0) = P(|\text{Normal}(0, 1)| > \frac{c}{\sigma_T}) = 1 - F_2(\frac{c}{\sigma_T})$$

$$|T| > c \iff \frac{|T|}{\sigma_T} > \frac{c}{\sigma_T}$$

Two sample F-test

$$X_1, \ldots, X_{n_1} \sim \text{iid Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \ldots, Y_{n_2} \sim \text{iid Normal}(\mu_2, \sigma_2^2)$

• Null $H_0: \sigma_1 = \sigma_2$, Alternative $H_A: \sigma_1
eq \sigma_2$

• $T = \frac{S_X^2}{S_Y^2}$, Test: Reject H_0 if $T > 1 + c_R$ or $T < 1 - c_L$

How to compute significance level?

• Given H_0 , $T \sim F(n_1 - 1, n_2 - 1)$

Section 9

Problems on t-test, χ^2 -test and two-sample z/F-test Problem 1

Suppose $X \sim \text{Normal}(\mu, \sigma^2)$ with unknown σ . For n=16 iid samples of X, the observed sample mean is 10.2 and the sample standard deviation is 3. What conclusion would a t-test reach if the null hypothesis assumes $\mu=9.5$ (against an alternative hypothesis $\mu>9.5$) at a significance level of $\alpha=0.05$?

Suppose X is normally distributed with unknown standard deviation σ . For n=16 iid samples of X, the sample standard deviation is 3.5. What conclusion would a χ^2 -test reach if the null hypothesis assumes $\sigma=3$, with an alternative hypothesis that $\sigma>3$, and a signifiance level of $\alpha=0.05$?

Problem 3

Suppose $X \sim \text{Normal}(\mu_1, 3)$ and $Y \sim \text{Normal}(\mu_2, 4)$. For $n_1 = 16$ iid samples of X and $n_2 = 8$ samples of Y, the observed sample means are 10.2 and 8.2, respectively. What conclusion would a two-sample z-test reach if the null hypothesis assumes $\mu_1 = \mu_2$ (against an alternative hypothesis $\mu_1 \neq \mu_2$) at a significance level of $\alpha = 0.05$?

Suppose X_1, X_2, \ldots, X_{30} is an i.i.d. sample from a distribution $X \sim \text{Normal}(\mu_1, \sigma_1^2)$ and suppose Y_1, Y_2, \ldots, Y_{25} is an i.i.d. sample from a distribution $Y \sim \text{Normal}(\mu_2, \sigma_2^2)$ independent of the X_j variables. If $S_X^2 = 11.4$ and $S_Y^2 = 5.1$, what conclusion would an F-test reach for null hypothesis suggesting $\sigma_1 = \sigma_2$, an alternative hypothesis suggesting $\sigma_1 \neq \sigma_2$, and a signifiance level of $\alpha = 0.05$?

Section 10

More problems on t-test, χ^2 -test and two-sample z/F-test

Problem 1

The average annual salary of an entry-level data scientist is reported to be Rs. 8 lakhs per annum. You suspect that this seems too high, and make enquiries with 10 such persons and find that their annual salaries are

6.9, 7.2, 8.7, 7.7, 8.5, 8.0, 8.0, 7.5, 8.7, 7.4

Based on the above, what conclusion can you reach about your suspicion?

The weight of a cooking gas cylinder is reported to have a standard deviation of 500 g, which you suspect is too low. A sample of 10 cylinders had weights (in Kgs) of 15.1, 14.0, 14.8, 14.8, 15.8, 14.8, 16.1, 14.3, 14.8, 14.8. Based on this data, what is your conclusion on the standard deviation?

Problem 3

Weights of a species of squirrels have a standard deviation $\sigma=10$ grams. Suppose a sample of 30 squirrels from two different locations results in respective sample averages of 122.4 grams and 127.6 grams. Do the squirrels have the same average weight in the two locations?

Two instruments for measuring resistors provide the following measurements when measuring a 1000 Ohm and a 3000 Ohm resistor, repeatedly.

	In	strument 1	Instrument	2
		1004	3005 <	= 146.29
	Sx=24.41	999	2995	7
		993	3019	d=0.05/)
1 1		1000	2993	1-c_= F (0.05/2) F(7,7)
11/		1008	2992	=0.2
TIE		1002	2991	
1 vent		994	3015	Since 24.41 =0167<0.3
		999	2986	- Reject Ho.
	7);			_

Do the two instruments have the same variance in their measurements?

Section 11

Likelihood ratio tests

Recall: Is a coin authentic or counterfeit?

An authentic coin is known to have P(H) = 0.5 when tossed, while a counterfeit coin has P(H) = 0.6. Suppose you have a coin that could be authentic or counterfeit. You may toss the coin multiple times and observe the results. How will you test whether the coin is authentic or counterfeit?

Hypothesis testing

- Null H_0 : P(H) = 0.5, Alternative H_A : P(H) = 0.6
- Toss the coin n times: 2ⁿ possible outcomes
 - A: acceptance set, i.e. if outcome is in A, accept H₀; otherwise, reject H₀
- Significance level: $\alpha = P(\text{not } A|H_0)$, Power: $1 \beta = P(\text{not } A|H_A)$

Question: How to decide acceptance subset A?

Size vs power: n = 3 tosses

Goal: For a given α , find A that minimizes β or maximizes $1 - \beta$.

Is this possible for 100 tosses?

Simple hypotheses and likelihood ratio test

$$X_1,\ldots,X_n\sim P$$

Simple null and alternative

 H_0 : $P = f_X$ and H_A : $P = g_X$

Likelihood ratio

$$L(X_1,\ldots,X_n)=\frac{\prod_{i=1}^n g_X(X_i)}{\prod_{i=1}^n f_X(X_i)}$$

Likelihood ratio test

Reject H_0 if $T = L(X_1, ..., X_n) > c$

Recall: Is a coin authentic or counterfeit?

$$X_1, \ldots, X_n \sim \text{Bernoulli}(p)$$

• Null H_0 : P(H) = 0.5, Alternative H_A : P(H) = 0.6

Likelihood ratio test

$$T = \frac{0.6^w \ 0.4^{n-w}}{0.5^n} > c$$
where w is the number of H 's in the samples

• Likelihood ratio test is equivalent to $w > w_c$

• Likelihood ratio test is equivalent to $w > w_c$

Likelihood ratio test is equivalent to w > w_c
 Eg, n = 100: Reject null if number of H > 55

Optimality of likelihood ratio test

Theorem

Suppose both null and alternative hypotheses are simple, and there is some test that achieves a power of $1-\beta$ at a significance level α . Then, there is a likelihood ratio test at significance level α achieving power at least as high as $1-\beta$.

- Good news: For simple null and alternative, likelihood ratio tests are enough.
- Bad news
 - If any of the hypotheses are composite, then the optimality result does not hold.
 - ▶ In most situations, we will not have simple null and alternative!

Fake coin: Size vs power for n = 100 tosses

Optimal test: Reject H_0 if number of heads > c, c = 0, 1, ..., 100

Goodness of fit tests

Example: Assessing goodness of fit

The expected distribution of grades of students in a class (0) andthe actual frequencies of grades are shown below:

Grade	S	Α	В	С	D	E	U
Fit	p/32	p/4	p/2	1-p	p/8	p/16	p/32
Observed	15	97	203	397	55	33	10

ML estimate: $L \propto (1-p)^{397} p^{413}$, $\hat{p}_{ML} = 413/(413+297) = 0.51$ Expected counts of grades:

Grade	S	Α	В	C	D	E	U
Expected	12.9	103.2	206.6	396.9	51.6	25.8	12.9

Question: Is the above a good-enough fit?

Chi-square goodness of fit test

$$X \in \{a_1, \ldots, a_k\}$$
 with $P(X = a_i) = p_i$

Observed vs expected counts: n samples

	a ₁	a ₂	 a _k
Observed	<i>y</i> ₁	<i>y</i> ₂	 Уk
Expected	np_1	np_2	 np_k

 H_0 : Samples are iid X, H_A : Samples are not iid X

Test Statistic:
$$T = \sum_{i=1}^{k} \frac{(y_i - np_i)^2}{np_i}$$
 is approx χ_{k-1}^2

Test: Reject
$$H_0$$
 if $T > c$

Test: Reject
$$H_0$$
 if $T > c$

Significance level: $\alpha = P(T > c | H_0) \approx 1 - F_{\chi^2_{k-1}}(c)$

Problem: Grades data

n = 810 samples, k = 7

Grade	S	Α	В	C	D	E	U
Observed	15	97	203	397	55	33	10
Expected	12.9	103.2	206.6	396.9	51.6	25.8	12.9

 χ^2 test: deg of freedom k-1=6, $\alpha=0.05$, $c=F_{\chi^2_6}^{-1}(1-0.05)=12.59$

$$T = \frac{(15 - 12.9)^2}{12.9} + \frac{(97 - 103.2)^2}{103.2} + \frac{(203 - 206.6)^2}{206.6} + \frac{(397 - 396.9)^2}{396.9} + \frac{(55 - 51.6)^2}{51.6} + \frac{(33 - 25.8)^2}{25.8} + \frac{(10 - 12.9)^2}{12.9} = 3.66$$

$$P-v-1 - 1 - F_{**}(YU) > 0.5$$

Conclusion: Since T < c, accept the fit.

Goodness of fit for continuous distributions

Basic idea: convert continuous to discrete by binning

 $X \sim f_X(x)$, continuous with PDF $f_X(x)$, n samples

Bins: $[a_0, a_1], [a_1, a_2], ..., [a_{k-1}, a_k]$

Bin probabilities: Let $p_i = P(a_{i-1} < X < a_i) = \int_{a_{i-1}}^{a_i} f_X(x) dx$

Observed vs Expected counts:

=	$[a_0, a_1]$	$[a_1, a_2]$	 $[a_{k-1},a_k]$
Observed	<i>y</i> ₁	<i>y</i> ₂	 Уk
Expected	np_1	np_2	 np_k

Pick bins such that each $y_i \ge 5$ and $\sum_i p_i = 1$ est: same as before $T = \sum_{i=1}^{k} \frac{(3i - 7k)^2}{7k!}$ k = k - 1Test: same as before

Example: Beta(3,3) goodness of fit

Bin counts of 100 samples from Beta(3,3) distribution are given below.

	[0.0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]
Observed	7	23	40	28	6
Expected	5.8	25.9	36.5	25.9	5.8

Eg: Expected count for $[0.2, 0.4] = 100(F_{B(3,3)}(0.4) - F_{B(3,3)}(0.2)) = 25.9$

$$T = \frac{(7-5.8)^2}{5.8} + \frac{(23-25.9)^2}{25.9} + \frac{(40-36.5)^2}{36.5} + \frac{(28-25.9)^2}{25.9} + \frac{(6-5.8)^2}{5.8} = 1.09$$

P-value = $1 - F_{\chi_a^2}(1.09) = 0.895$ is quite high. So, accept fit to Beta(3,3). Example: Test for independence

Consider the following cross-tabulation of grades across 3 different courses.

SE-	S	A	В	C	D	E	U	Total
Math I	15	97	203	387	55	33	10	800 1500 2500
Stats I	28	182	381	726	103	62	19	1500
CT	47	303	634	1209	172	103	31	2500
Total	90	582	1218	2321	331	198	60	4800

Are the grades independent of subjects?

- Marginal PMF of grades: P(S) = 90/4800, P(A) = 582/4800 etc.
- Marginal PMF of subjects: P(Math I) = 800/4800, P(Stats I) = 1500/4800 etc.
- If independent, count of (Math I, S) = $\frac{800}{4800} \cdot \frac{90}{4800} = 15$
- If independent, count of (Stats I, A) = $\frac{1500}{4800} \cdot \frac{582}{4800} \cdot 4800 = 181.9$ etc

Example: Observed vs Expected

Observed

ile.	S	Α	В	C	D	E	U	Total
Math I	15	97	203	387	55	33	10	800
Stats I	28	182	381	726	103	62	19	1500
CT	47	303	634	1209	172	103	31	2500
Total	90	582	1218	2321	331	198	60	4800

Expected, if independent

ted, if	indepe	ndent			700	grand	col to
	S	Α	В	С	D	E	U
Math I	15	97	203	386.8	55.2	33	10
Stats I	28.1	181.9	380.6	(725.3)	103.4	61.9	18.8
CT	46.9	303.1	634.4	1208.9	172.4	103.1	31.2

Example: Chi-squared test for independence

Null H_0 : Joint PMF is product of marginals, H_A : It is not

- Test statistic: $T = \sum_{i,j} \frac{(y_{ij} np_{ij})^2}{np_{ii}}$
 - \triangleright p_{ii} : product of marginals for (i, j)
 - npii: expected, if independent
 - We get T = 0.012
- Approximate distribution of T: Chi-squared with (3-1)(7-1)=12degrees of freedom
 - ▶ dof = (no of rows -1)(no of cols -1)

Test: Reject H_0 if T > c

Significance level: $\alpha = 1 - F_{\chi_{12}^2}(c)$

P-value: $1 - F_{\chi^2_{12}}(0.012) = 0.999$, very good fit