Lesson 3.7.1: Proving Statements on Triangle Congruence

Isosceles Triangle: A triangle is isosceles if two of its sides are congruent. The congruent sides are its legs; the third side is the base; the angles opposite the congruent sides are the base angles; and the angle included by the legs is the vertex angle.

Equilateral Triangle: a triangle in which all three sides have the same length

Equiangular Triangle: a triangle which has all three interior angles congruent

Theorems on Isosceles Triangles

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Converse of Isosceles Triangle Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are also congruent.

Corollaries

- 1. An equilateral triangle is also equiangular.
- 2. An equilateral triangle has three 60° angles.
- 3. An equiangular triangle is also equilateral.

Practice Exercises 3.7.1

Complete the following proofs.

 Given: \(\triangle XYZ\) is equilateral Prove: All angles measure 60°

I N E

bisects

Lesson 3.7.1: Proving Statements on Triangle Congruence

Isosceles Triangle: A triangle is isosceles if two of its sides are congruent. The congruent sides are its legs; the third side is the base; the angles opposite the congruent sides are the base angles; and the angle included by the legs is the vertex angle.

Equilateral Triangle: a triangle in which all three sides have the same length

Equiangular Triangle: a triangle which has all three interior angles congruent

Theorems on Isosceles Triangles

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Converse of Isosceles Triangle Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are also congruent.

Corollaries

- 1. An equilateral triangle is also equiangular.
- 2. An equilateral triangle has three 60° angles.
- 3. An equiangular triangle is also equilateral.

Practice Exercises 3.7.1

Complete the following proofs.

3. Given: $\overline{BN} \perp \overline{IE}$, N is the midpoint of \overline{IE} Prove: $\triangle IBE$ is isosceles

6. Given: \overline{BN} bisects \overline{IE} $\angle BNI \cong \angle BNE$ Prove: $\angle IBN \cong \angle EBN$

Activity 3.7.1

Proof:

Complete the following proofs.

1. Given: $\triangle JUM$ with $\overline{UJ} \cong \overline{UM}$ Prove: $\angle J \cong \angle M$

Statements	Reasons
1. $\overline{UJ} \cong \overline{UM}$	1.
$\frac{2. \text{ Let } P \text{ be the midpoint of }}{JM}$	2.
3. $\overline{JP} \cong \overline{MP}$	3.
4. Connect UP	4.
5. <u>UP</u> ≅ <u>UP</u>	5.
6. $\triangle JUP \cong \triangle MUP$	6.

2. Given: △XYZ is equilateral Prove: △XYZ is equiangular Proof:

7. ∠*J* ≅ ∠*M*

Statements	Reasons
1. △XYZ is equilateral	1.
$2. \overline{XY} \cong \overline{YZ}$	2.
3. ∠ <i>X</i> ≅ ∠ <i>Z</i>	3.
$\overline{4. \ \overline{XY}} \cong \overline{XZ}$	4.
5. ∠Y ≅ ∠Z	5.
6. ∠ <i>X</i> ≅ ∠ <i>Y</i> ≅ ∠ <i>Z</i>	6.
7. △XYZ is equiangular	7.

3. Given: $\overline{FN} \perp \overline{EI}$, $\angle I \cong \angle E$ Prove: $\overline{FI} \cong \overline{FE}$ Proof:

	1 1 4 L
Statements	Reasons
1. <i>FN</i> ⊥ <i>El</i>	1.
2. ∠FNI = 90°, ∠FNE = 90°	2.
3. $\triangle FNI$ and $\triangle FNE$ are right triangles	3.
4. $\overline{FN} \cong \overline{FN}$	4.
5. ∠ <i>I</i> ≅ ∠ <i>E</i>	5.
6. $\triangle FNI \cong \triangle FNE$	6.
7. <i>Fl</i> ≅ <i>FE</i>	7.

Activity 3.7.1

Complete the following proofs.

Given: △JUM with UJ ≅ UM
 Prove: ∠J ≅ ∠M
 Proof:

Statements	Reasons
1. $\overline{UJ} \cong \overline{UM}$	1.
$\frac{2. \text{ Let } P \text{ be the midpoint of }}{JM}$	2.
3. $\overline{JP} \cong \overline{MP}$	3.
4. Connect <u>UP</u>	4.
5. $\overline{UP} \cong \overline{UP}$	5.
6. $\triangle JUP \cong \triangle MUP$	6.
7. ∠ <i>J</i> ≅ ∠ <i>M</i>	7.

 Given: △XYZ is equilateral Prove: △XYZ is equiangular Proof:

Statements	Reasons
1. △XYZ is equilateral	1.
2. $\overline{XY} \cong \overline{YZ}$	2.
3. ∠ <i>X</i> ≅ ∠ <i>Z</i>	3.
$\overline{4.} \ \overline{XY} \cong \overline{XZ}$	4.
5. ∠Y ≅ ∠Z	5.
6. ∠ <i>X</i> ≅ ∠ <i>Y</i> ≅ ∠ <i>Z</i>	6.
7. △XYZ is equiangular	7.

3. Given: $\overline{FN} \perp \overline{El}$, $\angle l \cong \angle E$ Prove: $\overline{Fl} \cong \overline{FE}$ Proof:

Statements	Reasons
1. <i>FN</i> ⊥ <i>El</i>	1.
2. ∠FNI = 90°, ∠FNE = 90°	2.
3. $\triangle FNI$ and $\triangle FNE$ are right triangles	3.
4. $\overline{FN} \cong \overline{FN}$	4.
5. ∠ <i>I</i> ≅ ∠ <i>E</i>	5.
6. △ <i>FNI</i> ≅ △ <i>FNE</i>	6.
7. <i>FI</i> ≅ <i>FE</i>	7.