Teilvorhabenbeschreibung

Förderprogramm: "Digitale Technologien für die Wirtschaft"

Bilaterale deutsch-französische Kooperationen "Innovationsprojekte Für Künstliche Intelligenz"

GreenBot-FORCE

Im Verbund

GreenBotAI: Frugal and adaptive AI for flexible industrial Robotics

Name und Adresse des Antragstellers

Hochschule München University of Applied Sciences Lothstr. 34 80335 München

Ausführende Stelle:

Fakultät für angewandte Naturwissenschaften und Mechatronik - FK 06 Prof. Ruth Otto - Professorin für Robotik und Automatisierungstechnik T +49 (0)89 1265-1650 E rotto@hm.edu

Projektleitung

Herr M.Eng, Diplôme d'ingénieur Rico Lser +49 371 5397-1431 Rico.Loeser@iwu.fraunhofer.de

Inhaltsverzeichnis

1.	Zie	ele		2
	1.1	Ges	samtziel des Teilvorhabens	2
	1.2	Bez	zug zu förderpolitischen Zielen	3
	1.3 werd		ssenschaftliche und/oder technische Arbeitsziele und wie diese eri	
2.	Sta	and d	ler Wissenschaft und Technik	6
	2.1	Arb	eiten und Ergebnisse Dritter	6
	2.2	Bis	herige eigene Arbeiten zum Thema	6
	2.3	Sch	nutzrechte	8
3.	. A u	ısfüh	rliche Beschreibung des Arbeitsplanes	8
	3.1	Ein	führende Beschreibung des Arbeitsablaufs über die Projektzeit	8
	3.2	Aus	sführliche Beschreibung der Arbeitspakete	12
	3.3	Res	ssourcenplanung	26
	3.3	3.1	Material	26
	3.3	3.2	FE-Fremdleistungen	26
	3.3	3.3	Investitionen/AfA	27
	3.3	3.4	Reisen	28
	3.3	3.5	Innerbetriebliche Leistungen	28
	3.3	3.6	Sonstige unmittelbare Vorhabenkosten	28
	3.3	3.7	Verwaltungskosten	28
	3.3	3.8	Personal	29
4.	. Ve	rwert	tungsplan	29
	4.1	Wir	tschaftliche Erfolgsaussichten mit Zeithorizont	29
	4.2	Wis	ssenschaftliche und/oder technische Erfolgsaussichten mit Zeitho	r izont 30
	4.3	Wis	senschaftliche und wirtschaftliche Anschlussfähigkeit	30
	4.4	Ver	wertungstabelle	31
5.	. Ar	beits	teilung / Zusammenarbeit mit Dritten	31
6.	No	twen	digkeit der Zuwendung	31
7	1 14	oratu	IP	22

1. Ziele

1.1 Gesamtziel des Teilvorhabens

Das Teilvorhaben GreenBot-FORCE knüpft an die Ziele des Verbundvorhabens mit einer Fokussierung auf die Kraft-Momenten-Regelung an.

Im Verbundvorhaben werden Ansätze entwickelt und Lösungen erarbeitet, die es ermöglichen, Roboterprogrammierung im gesamten Lebenszyklus einer Anlage kognitiv, adaptiv und damit nachhaltig zu gestalten. GreenBot-FORCE demonstriert die Entwicklungen im Rahmen einer Applikation zum Fügen von Kegelrädern umgesetzt als Mensch-Roboter-Kollaboration.

Bei einem Fügevorgang muss der Roboter unter Aufbringung von Kräften und Momenten in unterschiedlichen Richtungen und Orientierungen schrittweise Zwischenpositionen anfahren, um die Endlage des Bauteils und damit die finale Fügeposition zu erreichen.

In jedem Regelvorgang ist ein Soll-Ist-Abgleich der Kraft- und Momentenwerte hinterlegt, der je nach Robotersteuerung in einem definierten Takt durchgeführt wird und in eine Regeldifferenz resultiert. Daraus ergibt sich eine neue Regelstrecke. Je schneller diese Differenz gegen Null geht, desto schneller erreicht der Roboter die optimale Position und die nächste Zwischenaufgabe oder Gesamtaufgabe kann umgesetzt werden.

Die Programmierung einer derartigen Applikation wird meist an einem Bauteil durchgeführt und danach an einigen weiteren getestet. Sämtliche Parameter werden auf diese Bauteile optimiert eingestellt. Dabei ist die Parameterwahl immer ein Kompromiss aus den für die Programmierung verwendeten Gegebenheiten. Zusätzlich kann es durch Lagetoleranzen, Bauteiltoleranten oder Änderungen im Werkstoff großen Unterschieden und damit zu erheblich längeren Regelzyklen und Qualitätsunterschieden kommen.

Ein weiterer Punkt sind die Rahmenbedingungen. Bei der Programmierung wird von einer definierten Position ausgegangen. Durch die Bestimmung der Bauteillage sowohl als Startbedingung als auch im Verlauf der Anwendung können die Einflüsse dieser Randbedingungen in die Regelung miteingebracht und bei der Berechnung berücksichtigt werden.

Ein weiterer Ansatz gilt der Kraft-Momenten-Regelung, die speziell für den Bereich der Mensch-Roboter-Kollaboration benötigt wird. Mensch-Roboter-Kollaboration wird immer mehr fester Bestandteil der Automatisierung. Zum einen zeigt der demographische Wandel die Notwendigkeit auf, Arbeitsplätze in der Art zu gestalten, dass eine optimale Aufteilung der Tätigkeiten in kognitiv und repetitiv gewährleistet ist. Zum anderen wird dadurch die Teilautomatisierung von Tätigkeiten ermöglicht, die einen hohen manuellen Anteil besitzen. Eine stark vereinfachte Inbetriebnahme und Programmierung bietet somit die Möglichkeit, den Produktionsstandort Europa auszubauen und wirtschaftlich reizvoll umzusetzen.

Um die Zusammenarbeit zwischen Mensch und Roboter sicher zu gestalten, werden auf Grundlage der Normen DIN EN 10218, sowie ISO TS 15066 Kraft-Leistungs-Tests durchgeführt und im Rahmen einer Sicherheitsabnahme dokumentiert. Die Parametrierung der zulässigen Kräfte und Momente muss zugleich den prozessrelevanten Anforderungen wie Geschwindigkeiten, Beschleunigungen, Prozesskräften, Bauteiltoleranzen und Taktzeiten gerecht werden.

Dadurch ist für die sicherheitstechnische Konformität ein hoher Anteil an Arbeitszeit, Prozess- und Sicherheitstests und damit ein hoher Energieverbrauch verbunden.

Über die Rückkopplung aus den Kraft-Leistungs-Messungen in Verbindung mit den auftretenden Kräften und Momenten, den entsprechenden Körperteilen, sowie den vorliegenden Geschwindigkeiten, Beschleunigungen und Achsstellungen sollen Vorgaben für die Parametrierung der Kräfte und Momente am Roboter eruiert werden, um Inbetriebnahme-Zeiten und den damit verbundenen Energieverbrauch erheblich zu reduzieren.

Die Integration des von GrAI Matter Labs zu entwickelnden PCB ist hier Grundlage, um für den Anwendungsfall "Adaptionsfähige Kraft-Momenten Montage für Kegelräder in der Mensch-Roboter-Kollaboration" folgende Aufgaben umzusetzen:

- Parametrierung der Anlage für die Mensch-Roboter-Kollaboration
- Fügeprozess für Kegelräder mit veränderten Lagebedingungen

Zusammenfassend soll durch den innovativen Ansatz der "On the fly" Ausführung die Reduzierung des Energieverbrauchs je Roboter von bis zu 50 % nachgewiesen werden. Grundlage dafür liefern speziell entwickelte Algorithmen, durch die sowohl die Bahnplanung und damit die Taktzeit optimiert wird und zusätzlich die Inbetriebnahme- und Umrüstzeiten verkürzt werden. Änderungen in den Randbedingungen werden so mit ML-Ansätzen kontinuierlich integriert und führen zu einer Stabilisierung des Prozesses und ermöglichen damit auch eine zukünftige flexiblere Anwendung. Mit der Umsetzung eines resilienten Automatisierungskonzepts soll die Grundlage für weitere Anwendungsfelder geschaffen werden.

Die Ergebnisse werden anhand eines Demonstrators für den Anwendungsfall "Adaptionsfähige Kraft-Momenten Montage für Kegelräder in der Mensch-Roboter-Kollaboration" verwertet. Denkbar ist hier ebenfalls eine vergleichbare Anwendung im Bereich der sensitiven Montage. Der Demonstrator dient hierbei als Multiplikator für weitere Forschungsvorhaben und als Grundlage für die Entwicklung industrietauglicher Lösungen für andere Anwendungsfälle.

Abbildung 1 Schaubild Teilvorhaben GreenBot-FORCE

1.2 Bezug zu förderpolitischen Zielen

In Deutschland sind – nach den im Rahmen des EU-Klimaziel-Plans "Fit for 55" formulierten Zielsetzungen – bis 2030 die Treibhausgasemissionen (THG-Emissionen) gegenüber 1990 um 55 % zu senken. Für 2050 ist die Klimaneutralität angestrebt.

Gerade die Automatisierungsbranche hat damit die Aufgabe, ihren Beitrag dazu zu leisten und in zukünftigen Entwicklungen immer mehr die Reduzierung des Energieverbrauchs als wichtigen Bestandteil mitaufzunehmen.

GreenBot-FORCE hat sich hier zum Ziel gesetzt, durch die Reduzierung des Energieverbrauchs bei der Automatisierung von Roboteranlagen die Auswirkungen auf die Umwelt gerade im europäischen Raum zu minimieren. So wird an einem konkreten Anwendungsfall versucht, eine automatisierte Lösung zu entwickeln, die durch eine optimale Einsteuerung von Prozessgrößen die Bearbeitungszeit reduziert, den Verschleiß von Werkzeugen und Material minimiert und dadurch die Qualität steigert. Zudem ist damit eine deutliche Vereinfachung beziehungsweise Reduzierung der Programmierung und ein erheblicher Zeitgewinn verbunden.

GreenBot-FORCE unterstützt zudem maßgeblich, die Bestrebungen Montage-Arbeitsplätze zu automatisieren und Mensch-Roboter-Kollaboration in Kombination mit Kraft-Momenten-geregelter Montage oder jedes für sich als adaptiv kognitive Lösung umzusetzen, Damit wird ein großer Beitrag geleistet, um den Standort Europa wettbewerbsfähig zu halten und gerade nach den Erfahrungen im Zuge der Covid-19-Pandemie als Produktionsstandort zu erweitern. Dazu leistet auch der Aspekt der Sicherheitsparametrierung in der Mensch-Roboter-Kollaboration einen weiteren Beitrag. Durch die Vereinfachung und zeitliche Reduzierung, wird der Einsatz von kollaborierenden Robotern zusätzlich gestärkt. Hierdurch

wird die Automatisierung von arbeitskraftintensiven und meist nicht ergonomischen Produktionsanlagen in Europa gestärkt.

Die bilaterale Kooperation erhöht den erzielbaren Impact zur Reduzierung von THG-Emissionen gegenüber nationalen Projekten erheblich. Darüber hinaus hat eine solche Zusammenarbeit den Vorteil einen Technologievorsprung zu erzielen, da die spezifischen Kompetenzen der beteiligten Partner bzw. Kooperationsländer zielführend zusammen genutzt werden können. Ein Transfer auf ausländische Anwendungsbereiche und Märkte ist zudem einfacher umsetzbar und erhöht die wirtschaftliche Tragweite des Vorhabens signifikant. Hochqualifizierte Arbeitsplätze können in Europa gehalten und neue geschaffen werden.

Unsere Motivation ist, dass mit der Entwicklung adaptiver Technologien die Entscheidung von Unternehmen für eine Produktion in Europa gestärkt wird. Hierfür finden resiliente Automatisierungskonzepte Anwendung. Diese sollen einfach umsetzbar sein und eine hohe Variantenvielfalt ermöglichen, um schließlich kleine Losgrößen mit einem komplexen Aufgabenprofil umsetzen zu können. Nachfolgende Tabelle fasst den konkreten Beitrag und die Wirkungen auf gesellschaftlicher Ebene von

Nachfolgende Tabelle fasst den konkreten Beitrag und die Wirkungen auf gesellschaftlicher Ebene von *GreenBot-FORCE* zur Erreichung der Ziele einer nachhaltigen Entwicklung der Bundesrepublik Deutschland zusammen:

Tabelle 1: Bewertung des Beitrag von GreenBot-FORCE auf gesellschaftlicher Ebene

Ziel	Wirkung nach Umfang	Eintrittswahr- scheinlichkeit	Beschreibung mit ggf. quanti- tativer Abschätzung
7.1a bzw. 8.1: Ressourcenschonung Ressourcen sparsam und effizient nutzen	Hohe Wirkung	Sehr wahrscheinlich	Leistet hohen Beitrag zur Erhö- hung der Endenergie- und Ge- samtrohstoffproduktivität (BIP pro Einheit eingesetzter Energie)
8.3 Wirtschaftliche Zukunftsvorsorge Gute Investitionsbedingungen schaffen – Wohlstand dauerhaft erhalten	Moderate Wir- kung	Sehr Wahrscheinlich	Leistet Beitrag zur Investitionen in neue Ausrüstungen und in Forschung und Entwicklung dank neuer energiesparender Fertigungsmethodik
8.4 Wirtschaftliche Leistungsfähigkeit Wirtschaftsleistung umwelt- und sozial- verträglich steigern	Hohe Wirkung	Sehr wahrscheinlich	Ressourcenschonende Produktion, Automatisierung von nicht ergonomischen Tätigkeiten möglich, Resiliente Fertigung dank vereinfachter Implementierung neuer Automatisierungstechnologien und kontinuierlicher Fertigung
13.1.a Klimaschutz Treibhausgase reduzieren	Sehr hohe Wir- kung	Sehr wahrscheinlich	Geringerer Energieeintrag durch effizienten Materialeinsatz, Pro- zessrückkoppelung und redu- zierte Produktionszeiten; Redu- zierung des Energiebetrags pro Roboter bis zu 50 % durch "on the fly" Programmierung und Ein- satz Edge-KI

1.3 Wissenschaftliche und/oder technische Arbeitsziele und wie diese erreicht werden sollen

GreenBotAl hat sich im Verbund zum Ziel gesetzt Anwendungen in der industriellen Robotik mit Hilfe von KI flexibel, adaptiv und einfach zu gestalten. Um gerade die Vielfältigkeit beim Einsatz von Robotern in unterschiedlichen Anwendungsfeldern nicht zu beschränken, ist es notwendig, für dieses Vorhaben Kompetenzen aus unterschiedlichen Bereichen einzusetzen und auch zu bündeln. Für das Vorhaben sind herausragende Kompetenzen im Bereich des Maschinenbaus, der Simulation, der Robotik und der

Künstlichen Intelligenz erforderlich. Ein wichtiger Aspekt des Programms sieht den Austausch von Wissenschaftlern im Rahmen von experimentellen Arbeiten, Projekttreffen und Publikationen, sowie die Einbindung von Studierenden im Rahmen von Forschungsmasterprojekten vor. Die gemeinsamen Forschungsprojekte haben für alle Partner eine strategische Bedeutung. Das Teilvorhaben GreenBot-FORCE beinhaltet die technologischen Schwerpunkte (1) Adaptive Kraft-Momenten-Regelung, (2) Echtzeitfähige Roboter, (3) Aufbau eines Demonstrators, (4) Kraftgeregelte Montage im MRK Betrieb. Durch die unterschiedliche Ausprägung der Aufgabenstellungen und Arbeitsschwerpunkte bringt jeder Projektpartner seine Fähigkeiten in seinem Teilvorhaben speziell. Durch die Konsolidierung im Verbund können die Entwicklungen und Ausprägungen der Arbeiten von den anderen Partnern jeweils in ihrem Teilvorhaben integriert und damit ein zusätzlicher Projektfortschritt erzielt werden. Um einen kontinuierlichen Austausch der Projektpartner zu stärken, sind regelmäßige Arbeitstreffen und ein fachlicher Austausch im Projekt vorgesehen. Ein Überblick über Umsetzung der Schwerpunkte und anzuwendende Lösungswege ist in nachfolgender Tabelle dargestellt.

Tabelle 2: Zusammenfassung der wissenschaftlich-technischen Herausforderungen mit Lösungswegen

Adaptive Kraft-Momenten-Rege- lung	KI-basierte Kraft-Momen- ten-Regelung	 Verwendung von Gelenk-Moment-Sensoren, sowie eines Kraft-Momenten-Sensors im Rahmen einer standardisierten Kraft-Momenten-Regelung zur Datengewinnung des Soll-Ist-Verlaufs. Gegenüberstellung und Evaluierung von parameterbasierten KI-Modellen zum Einsatz in kraftgeregelten Applikationen unter Berücksichtigung der Rückführung in die Regelung, sowie Integration zusätzlicher merkmalsbasierter KI-Modelle zur Optimierung der Rahmenbedingungen bei Kraft-Leistungs-Messungen und deren Einfluss und Ausprägungen in Verbindung mit den gegebenen Normen und betroffenen Körperstellen
Echtzeitfähige Roboter	Robuste (und echtzeitfä- hige) Kraft-Momenten- Regelung	Integration des Hardwarekits von GrAl Matter Labs mit Latenzzeiten im Millisekundenbereich Anlernen der Algorithmen anhand von simulierten und realen Beispielen im digitalen Zwilling sowie am Demonstrator. Integration einer linearen Bewegung während des Prozesses bei zusätzlicher kraftgeregelter Montage. Erstellung eines Wissenskatalogs, um gewonnene Erkenntnisse im Konsortium auszutauschen und entwickelte Algorithmen zu testen
Aufbau eines Demonstrators	Abbildung des Anwendungsfalls Bewertung des Energieeinsparpotenzials	Kopplung an digitalen Zwilling zur Bewertung gewonnener Taktzeiten infolge adaptierter Regelparameter. Geeignete Definition der Abweichungen der Applikationsbedingungen für repräsentative Aussagen. Evaluierung adaptierter Regelparameter zur Kraft-Leistungs-Begrenzung unter Berücksichtigung des gewonnenen Einsparpotentials.
Kraftgeregelte Montage im MRK Betrieb	Inbetriebnahme und An- passung durch Kraft- Leistungs-Rückführung	Entwicklung einer ROS-Schnittstelle zwischen dem Robotersystem mit Kraft-Momenten-Regelung, dem Kamerasystem, dem Kraft-Leistungs-Messsystem und zum von GRAI Matter Labs entwickelten Chips, um über die konsolidierten Daten eine Aussage über das Ergebnis der Kraftregelung und die Qualität durchführen zu können. Im Rahmen von erweiterten Kraft-Leistungs-Messungen während des Betriebs werden die Daten ausgewertet, und die Einhaltungen der erforderlichen Normen bewertet.

2. Stand der Wissenschaft und Technik

2.1 Arbeiten und Ergebnisse Dritter

Der Einsatz von KI Algorithmen in Robotik bietet Lösungen für Problemstellungen, die durch eine klassische Roboterprogrammierung nicht, nur sehr schwer oder mit kompromissbedingten Qualitäts- und Resourceneinbusen gelöst werden können. Ein Bespiel dafür ist die kraftgeregelte Montage, bei der mit großem Programmieraufwand und viel Expertenwissen eine Applikation programmiert und parametriert werden muss. Bereits leicht veränderte Startbedingungen, sowie Unterschiede im Material oder Bauteiltoleranzen haben eine große Auswirkung auf die Taktzeit und gegebenenfalls auf die Qualität des Ergebnisses. Zusätzlich ist damit häufig eine Programm- und Parameteranpassung verbunden, um erneut ein optimales Ergebnis zu erzeugen. So wird versucht, über einen KI-basierten rein kraftgeregelten Ansatz, die Startposition zu finden, um eine Fügeoperation durchzuführen [15]. Einen weiteren Bereich, der eng mit der Kraft-Momenten-Regelung einer Robotersteuerung verbunden ist, stellt Bahnplanung dar. Hier wurde ebenso eine [4] Methode durch den Einsatz eines KI-Modells entwickelt, die mittels sample-basierter Bahnplanung, eine wesentlich bessere Performance erzielt. In der Mensch-Roboter-Kollaboration stellt die Gewährleistung der Personensicherheit die entscheidende Herausforderung dar. Gerade die Sicherheitsparametrierung bedeutet einen erheblichen Aufwand in der Planung und Umsetzung, was eine Automatisierung oder Teilautomatisierung häufig unwirtschaftlich macht. Um hier Lösungen anzubieten werden die unterschiedliche Ansätze und Lösungsvorschläge entwickelt [16]. Außerdem wurde eine Methode im Bereich der KI entwickelt, bei dem versucht wird, durch eine offline Bahngenerierung basierend auf Sensordaten ein Hindernis zu umfahren. [17]

Die Bahnplanung eines Roboters stellt ein Echtzeitsystem dar, das gerade im Bereich der Kraft-Momenten-Regelung zusätzliche Faktoren innerhalb des Systemtakts berücksichtigen muss. Werden zusätzlich zu den Kraft-Momenten-Werten noch weitere Daten – wie aus dem Bereich der Bildverarbeitung - berücksichtigt, spielt die Latenz und Effizienz des eingesetzten Systems eine große Rolle. Dabei sind die eingesetzte Hardware und die verwendeten Algorithmen gleichermaßen wichtig.

Die Optimierung verschiedener Hardware-Architekturen für den Einsatz beim Maschinellen Lernen ist Gegenstand aktueller Forschungsarbeiten [5]. In [6] wurde ein Speichersystem für den Einsatz bildverarbeitender Modelle entwickelt. Sogenannte Field Programmable Gate Arrays (FPGA) können anstelle von CPUs oder GPUs genutzt werden, um die Latenz oder den Energieverbrauch der Auswertealgorithmen zu verbessern. In [7] wurde ein FPGA genutzt, um die Latenz beim Einsatz eines Decision Trees wesentlich zu verkürzen.

Neben der Hardware gibt es auch viele Ansätze, die darauf abzielen die Effizienz der verwendeten Algorithmen zu verbessern.

Den Antragstellern sind keine Arbeiten bekannt, die das Zusammenspiel aus optimierter Hardware und frugalen Algorithmen nutzen, um eine ressourcen- und latenzarme Robotersteuerung mit ML-Methoden und "on the fly"-Ausführung konkreter Aufgaben zu gewährleisten.

2.2 Bisherige eigene Arbeiten zum Thema

Die Kompetenzen der Hochschule liegen in der anwendungsorientierten Forschung und Entwicklung. Im Rahmen von Projekten, die gemeinsam mit der Industrie aufgesetzt und durchgeführt werden, stehen Fragen in Zusammenhang mit dem Einsatz von Sensorik – bildgebend oder kraftgeregelt – in Verbindung mit Robotik häufig im Vordergrund. Aufgabenstellungen zur Optimierung von kraftgeregelten Tätigkeiten sind ein Anwendungsfeld. So wurde durch die kontinuierliche Einsteuerung von Sollwerten die Möglichkeit geschaffen, eine Kraftregelung an neue Gegebenheiten anzupassen. Ein Ergebnis dieser Arbeit ist, dass die Soll-/Ist Differenz in der Regelung bei gleichbleibender Konfiguration nicht komplett oder nur über einen langen Zeitraum abgebaut werden kann. Dies ist ein Thema, das im Rahmen des Teilvorhabens bearbeitet und mit Hilfe von frugalen Algorithmen und auf der Grundlage von aufgezeichneten Daten gelöst werden soll.

Abbildung 2 Entwicklung von Kraftwerten bei variierender Sollwertvorgabe

Ein weiterer Kompetenzbereich ist die Mensch-Roboter-Kollaboration. So sind für eine Sicherheitsinbetriebnahme viele unterschiedliche Test erforderlich. Im Falle einer Anpassung der Anlage ist eine erneute Durchführung der Tests notwendig, um die Personensicherheit zu jedem Zeitpunkt zu gewährleisten. Diese Tatsache bedeutet einen hohen wirtschaftlichen Einsatz gerade auch, wenn Flexibilität ein wichtiger Aspekt für eine Automatisierung ist. Viele Tests im Rahmen von Industrieprojekten liefern Messungen für Kraft und Leistung, die im Falle einer Kollision auftreten.

Abbildung 3 Messungen Kraft und Leistung mit Einordnung ins Körpermodell

Diese Ergebnisse werden normgerecht in die Werte des Körpermodells eingeordnet und festgelegt. Eine Rückführung und Weiterverwertung der gemessenen Werte, sowie die Integration des Körpermodels für eine modelbasierte Voraussage der Parameter, ist Teil des Vorhabens und wird einen deutlichen Vorsprung im Bereich der Flexibilität und Wirtschaftlichkeit von MRK-Anlagen bedeuten.

2.3 Schutzrechte

Patent	Titel	Anmelder, Datum	Bewertung					
DE 197 46 639 A1	Verfahren zur digitalen Erfassung räumlicher Objekte und Szenen für eine 3D-Bildkarte	GTA Geoinformatik GmbH, 17033 Neu- brandenburg, DE, 22.10.1997	Die Erzeugung einer 3-dimensionalen Szene anhand von Einzelaufnahmen ist nicht relevant.					
DE 39 17 760 C1	Verfahren und Vorrich- tung zur Erkennung von Objekten in Video- Echtzeit	Wimmer, Maximilian, 8000 München, DE, 31.05.1989	Erkennung von Objekten in Videos ist nicht relevant .					
DE 103 48 911 A1	Verfahren zum Bestimmen der Disparität zwischen einem Referenzbild und einem Suchbild	Siemens AG, 80333 München, DE, 21.10.2003	Bestimmung der Disparität ist nicht relevant.					
EP 2 048 599 B1	System und Verfahren zur 3D-Objekterken- nung	MVTec Software GmbH, 81675 Mün- chen (DE), 11.10.2007	Zu entwickelndes Ver- fahren zur 3D-Lagebe- stimmung anhand von 2D-Bildern grenzt sich von dem im Patent be- schriebenen Verfahren ab.					

3. Ausführliche Beschreibung des Arbeitsplanes

3.1 Einführende Beschreibung des Arbeitsablaufs über die Projektzeit

Das Teilvorhaben (TV) *GreenBot-FORCE* folgt der grundlegenden Struktur des binationalen Verbundvorhaben GreenBotAl mit insgesamt neun Verbundarbeitspaketen (VAP).

In VAP1 wird ein Gesamtkonzept entwickelt, das als Grundlage für die weiteren Entwicklungen dient und zeitgleich eine zeitliche und aufwandstechnische Einordung ermöglicht. Das Konzept soll die Gesamtziele des Verbundvorhabens, die Energieeinsparung je Roboter von bis zu 50 % abbilden. Im TV der Hochschule München erfolgt dies für den in Kapitel 1 beschriebenen Anwendungsfall "Adaptionsfähige Kraft-Momenten Montage für Kegelräder in der Mensch-Roboter-Kollaboration".

Das VAP 2 zielt auf die Entwicklung einer neuen Chip-Generation mit zugehöriger Leiterplatte ab. Dieses Kit-System ist als zentrales Element aller im Konsortium zu entwickelnder Demonstratoren anzusehen und soll die Echtzeitfähigkeit der Anwendungen, sowie die angestrebte Energieminderung ermöglichen. Die Hochschule München übernimmt hier eine unterstützende Rolle. Auf Basis von mehreren Testreihen unter realen Einsatzbedingungen für den konkreten Anwendungsfall werden die Funktionalitäten des Kits evaluiert und Optimierungen abgeleitet.

Da am Realsystem Roboter Fehlversuche schnell mit mechanischen bzw. personellen Schäden verbunden sind, verfolgt VAP3 die Umsetzung einer Laufzeitumgebung für KI-Simulationen sowie eines digitalen Zwillings. Dieser soll zum einen die Prozesse ganzheitlich abbilden sowie als Evaluierungsumgebung für zu entwickelnde Algorithmen dienen. Die Hochschule München plant als weitere Funktionalität die Integration des Körpermodels auf Basis der Technical Specification ISO TS 15066.

Im VAP4 werden die frugalen Algorithmen prototypisch für die Softwaremodule Objekterkennung, Segmentation, Positionserkennung, Griffwinkelbestimmung, mit einem Hauptaugenmerk auf die Themen Bahnplanung und Kollisionsdetektion, sowie Kraft-Momenten-Regelung bei integrierter Qualitätskontrolle entwickelt. Im aus VAP3 erarbeiteten digitalen Zwilling kann die Funktionalität überprüft werden und Optimierungen abgeleitet werden. Die bereits generierte Datengrundlage kann folglich erweitert werden, was zudem die Robustheit der KI-basierten Lernalgorithmen erhöht.

Im folgenden VAP5 werden die einzelnen Softwaremodule, Objekterkennung, Bahnplanung mit dem Focus auf Kraft-Momenten-Kontrolle bei abschließender Qualitätskontrolle der Ergebnisse, schrittweise auf die industrienahe Hardware appliziert und in den aufzubauenden Systemdemonstrator implementiert. Der Anwendungsfall "Adaptionsfähige Kraft-Momenten Montage für Kegelräder in der Mensch-Roboter-Kollaboration" wird damit vollumfänglich demonstriert. Die im Konsortium erarbeiteten Lösungen im Bereich Chip und Algorithmen für die Anwendungsfälle der Partner werden ebenfalls integriert. Der im Konsortium zu erfolgende Austausch zu Softwarelösungen ist im VAP6 festgehalten.

Wenn alle Teilmodule erfolgreich appliziert wurden, kann das komplette Zusammenspiel aller prototypischen Softwarefunktionen in VAP7 erprobt, validiert und optimiert werden. Es erfolgen die Funktionstests der Demonstratoren im Anwendungsszenario. Gemäß den entwickelten Versuchsplänen werden Versuche durchgeführt und die zuvor entwickelten Optimierungsstrategien auf die Szenarien angewendet. Abschließend erfolgt eine Validierungsphase unter Produktionsbedingungen, welche durch die assoziierten Firmen und Konsortialpartner begleitet werden. Eine Bewertung des Impacts auf die Nachhaltigkeit wird umgesetzt.

In VAP8 verfolgt die Weitergabe der Ergebnisse in Form von Publikation und Fachtagungen, um die neuen Lösungen von GreenBotAl in Europa einem breiten Publikum zu präsentieren.

Abschließend ist noch VAP9 zu erwähnen, welches den kontinuierlichen Projektfortschritt gewährleisten soll. Für eine bessere Steuerung und Evaluierung des Projektfortschritts wurden für das TV zusätzliche Meilensteine zu den vier Verbundmeilensteinen eingeführt:

Meilenstein	Monat	Beschreibung
M1	4	Anforderungskatalog abgeschlossen
M2	9	Grobkonzeption abgeschlossen & Wissenskatalog zu geeigneten KI-Si- mulationen und Algorithmen erstellt, Robotersystem + KMS für Daten- grundlage In Betrieb genommen
M3	16	Beschaffung der restlichen Komponenten des Demonstrators erfolgt & Prototyp virtuelle Testumgebung & Algorithmen für Grundfunktionen virtuell erprobt
M4	24	Funktionsnachweis der entwickelten Algorithmen unter Einsatz des Prototyp Demonstrators bei realen Bedingungen, Optimierungspotenziale abgeleitet
M5	29	Demonstrator mit geforderten Spezifikationen vollumfänglich in Betrieb genommen, Energieeinsparungspotenzial abgeleitet
M6	33	Validiertes und optimiertes Gesamtsystem mit im Projekt entwickelter Hardware unter Laborbedingungen umgesetzt

M1 mit folgenden Zielen:

- Definition der Randbedingungen und Anforderungen an Demonstrator, inkl. Story und Design
- Nachweis der Umsetzbarkeit des Vorhabens
- Pflichtenheft als Grundlage für die Weiterbearbeitung

Abbruchkriterien	Alternatives Vorgehen
Randbedingungen und Anwendungsfall aufgrund von Verzögerungen noch nicht abgeschlossen	Kommunikation Konsortialpartnern stärken, Zeitverzug durch parallele Arbeiten an verbleibenden Inhalten aus AP1 und AP2 ausgleichen
Kein stimmiger Anforderungskatalog sowie Story und Design für Anwendungsfall	-

M2 mit folgenden Zielen:

- Anforderungen sind klar definiert und bilden ein Gesamtkonzept
- Wissenskatalog in Zusammenarbeit mit Partnern erstellt
- Inbetriebnahme des rudimentären Aufbaus zur folgenden Datengenerierung

Abbruchkriterien	Alternatives Vorgehen
Kein definierbares Gesamtkonzept	-
Lieferschwierigkeiten Roboter / KMS	Datengenerierung bei Projektpartner
Stark unterschiedliches Knowhow	Workshops mit dem Ziel Wissenstransfer

M3 mit folgenden Zielen:

- restliche Komponenten für Demonstrator definiert und beschafft
- Umsetzung virtuelle Testumgebung Prototyp
- Datengenerierung
- Nachweis Funktionalität entwickelter Algorithmen

Abbruchkriterien	Alternatives Vorgehen
Lieferverzögerungen bei Beschaffung und Ausschreibung notwendiger Komponenten	Kontakt mit Lieferanten stärken, Alternativen suchen

M4 mit folgenden Zielen:

- Integration Körpermodell abgeschlossen
- Nachweis der Umsetzung im Bereich MRK Einsparpotential

Abbruchkriterien	Alternatives Vorgehen
Verzögerung bei Chip Entwicklung 1.Gen	Optimierung der Algorithmen, Austausch mit Chipent-
	wickler
Energieeinsparungspotenzial nicht nachweisbar	Optimierung der Modelle, Überprüfung der Vorgehensweise und Methoden

M5 mit folgenden Zielen:

- Validierung Inbetriebnahme MRK
- Integration und Test Kraft-Momenten-Regelung mit Qualitätsprognose
- Nachweis Einsparungspotential 30%

Abbruchkriterien	Alternatives Vorgehen
Echtzeitanforderung nicht ausreichend	Weitere Optimierungen integrieren
Einsparpotential nicht ausreichend	Weitere Ansätze integrieren

M6 mit folgenden Zielen:

- Applikation adaptive Kraftregelung im MRK-Bereich als Demonstrator integriert
- Energieeinsparpotential von 50%
- Chip der zweiten Generation integriert
- Qualitätsprognose integriert

							20	022					-			-		202	23	-,-		-,-								202	4						
Arbeitspakete		1	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan
THE STATE OF THE S	Vergleich	FhG-HM		04			07	08	09	10	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01
	80,0	80,0	1,2	1,7	1,9	3,2	2,9	2,9	2,6	3,6	3,4	3,4	2,7	2,7	2,4	2,4	2,4	2,7	2,4	2,8	2,0	2,3	2,3	2,0	2,2	2,0	2,2	2,2	2,7	2,5	1,2	1,3	1,0	1,3	1,3	1,0	1,7
Konzeptentwicklung	5,0	5,0	0,50	1,00	1,00	1,00	1,00	0,50				\neg												\neg													\Box
1 Anforderungsanalyse	1,0	1,0	0,50	0,50																																	\Box
2 Story- und Design	2,0	2,0		0,50	1,00	0,50						\neg																								\neg	\Box
3 Schnittstellenentwicklung für Modularitätsanforderungen	2,0	2,0				0,50	1,00	0,50				\neg												\neg												\neg	$\overline{}$
Entwicklung einer Hardware-Plattform	4,0	4,0			0.50															0.25	0.25	0.50	0.50	0.25	0.25							0.25	0.25	0.25	0.25		
1 Definition Hardwarespezifikationen erste Generation	1.0	1.0			0.50	0.50																		\neg													
.3 Test und Erprobung erste Generation	1,0	1,0			-,,	-,,						\neg								0.25	0.25	0,25	0.25														
4 Definition optimierte Hardwarespezifikationen zweite Generation	1,0	1,0										\neg	\neg	-			-			-,	-,			0,25	0.25											\neg	\Box
.6 Test und Erprobung zweite Generation	1,0	1,0										\neg		\neg	\neg		\neg															0,25	0,25	0,25	0,25	\neg	\Box
Entwicklung virtuelle Testumgebung	9,0	9,0				0.25	0.25	1.00	1.50	1.25	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.25	0.25	0.25				\neg								-,		-			$\overline{}$
1 Entwicklung echtzeitfähiger 3D-Modelle	1,0	1.0					0,25			-			-	-		-	-					$\overline{}$		\neg	$\overline{}$												$\overline{}$
.2 Auswahl und Adaption geeigneter KI-Simulationen	1,0	1,0				0,23	0,20	0,50	0.50	0,25	0.25	\neg	\neg											\neg												\neg	$\overline{}$
.3 Aufbau Datengrundlage	3,0	3,0								0,50		0.25	0.25	0.25	0.25	0.25	0.25							\neg													
4 Entwicklung digitale Zwilling für Demonstrator	4.0	4.0						0.50		0,50								0.25	0.25	0.25	$\overline{}$	\rightarrow	_	\rightarrow	\rightarrow											\rightarrow	\vdash
Entwicklung frugaler Algorithmen	19,0	19,0				0.50	0.50			1,50											\rightarrow	\rightarrow			\rightarrow											\neg	\vdash
1 Erstellung Wissenskatalog zu Machine Learning	2.0	2,0								0.25				-	-		-	Jise	3,10	-,	_	\rightarrow	_	\rightarrow	\rightarrow											\rightarrow	\vdash
.2 Entwicklung Objekterkennung und Segmentierung	2,0	2,0		+		0,50	0,50	0,23	0,23			0,25	0.25	0.25	0.25	\rightarrow	_				_	\rightarrow	_	\rightarrow	\rightarrow										\rightarrow	-	\vdash
3 Entwicklung Positionserkennung und Greifwinkelbestimmung	2,0	2,0								0,30		0,25				0.25	0.25	0.25							\rightarrow											-	\vdash
4 Entwicklung Bahnplanung und Kollisionsüberwachung	5,0	5,0		+						0.75	1,00				0,25						_	_	\rightarrow	\rightarrow	\rightarrow										\rightarrow	\rightarrow	\vdash
5 Entwicklung Qualitätskontrolle	2,0	2,0	\vdash	+				-		0,75	1,00			0,25			0,25		0,25		_	$\overline{}$	-	\rightarrow	\rightarrow										-	\rightarrow	\vdash
6 Entwicklung Kraft-Momenten-Regelung	6.0	6.0		+				-		\rightarrow	_	0,75							0,50	0.50	\rightarrow	_	\rightarrow	\rightarrow	\rightarrow										\rightarrow	-	\vdash
Implementierung Demonstrator, Benchmarking	22,0	22,0	_	+	_	0.50	0.75	0.75	0.50	0.50		0,73	1,00	2,00			0,25				150	1.50	150	150	1.50	150	150	1.50	1.25	1 25					_		\vdash
1 Aufbau und Inbetriebnahme der Systemdemonstratoren	8.0	8.0	_	_		0.50		0,25			0,23	\rightarrow	\rightarrow	_			0.25									0,50									\rightarrow	\rightarrow	\vdash
2 Systemimplementierung Objekt greifen	2.0	2,0	_	_		0,50		0,25	0,25	0,25	_	\rightarrow	\rightarrow		0,25	0,25	0,25			0,50				0,50	0,50	0,50	0,50	0,50	0,25	0,23					_	-	\vdash
3 Systemimplementierung Gojekt greifen	4,0		_	_	_		0,25		0.05	0,25	0.05	\rightarrow	-	_	-	-	_	0,25				0,25		0.50	0.50	0.50									\rightarrow	-	\vdash
Systemimplementierung bannplanung Systemimplementierung Visual Servoing und Kraft-Moment-Kontrolle	6,0	4,0 6,0	_	-				0,25	0,25	0,25	0,25	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_	0,25				0,25			0,50		0,50	0.50	0.50				-	-	-	$\overline{}$	\vdash
5 Systemimplementierung Qualitätskontrolle	2.0	2.0	_	_				-		\rightarrow	_	\rightarrow	_	\rightarrow	-	-	\rightarrow		0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50		0,50							\rightarrow	-	\vdash
Software-Plattform	4,0		2.50	0.50		0.00	0.05	0.00			_	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_				0.10										0.10				\rightarrow	\vdash
		4,0		0,50					0,1/	0,17	_	\rightarrow	-	\rightarrow	-	\rightarrow	-	_		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,17	-	\vdash
1 Vergleich verfügbarer Softwareplattformen und Schnittstellen	2,0	2,0	0,50	0,50	0,25	0,25	0,25	0,25			_	\rightarrow	-	\rightarrow	\rightarrow	-	\rightarrow	_				2.12														-	\vdash
.2 Integration der entwickelten Bibliotheken und Algorithmen des Konsortiums	2,0	2,0	_	+	_	—			0,17	0,17	_	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_		0,10	0,10	0,10	0,10	0,10	0,10							0,10				\rightarrow	\vdash
Validierung und Optimierung	7,0	7,0	_	+-		—		\vdash		\longrightarrow	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_		-	\rightarrow	\rightarrow	-	_	0,20					0,95	0,95	0,75	0,50	0,75	0,75	\rightarrow	\vdash
.1 Erprobung und Optimierung Objekt greifen	1,0	1,0	_	$\overline{}$				\vdash		\longrightarrow	_	\rightarrow	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	_		_	\rightarrow	_		_	0,20	0,20							_		$\overline{}$	-	\leftarrow
.2 Erprobung und Optimierung Bahnplanung	1,0	1,0	_	\vdash	_	—		$\overline{}$		\longrightarrow	_	\rightarrow	-	\rightarrow	\rightarrow	-	\rightarrow	_		_	\rightarrow	-	-	\rightarrow	\rightarrow		0,20	0,20		0,20					_	-	\vdash
.3 Erprobung und Optimierung Visual Servoing und Kraft-Moment-Kontrolle	4,0	4,0	_	\vdash				\vdash		\longrightarrow	_	\rightarrow		\rightarrow	\rightarrow	\rightarrow	\rightarrow				\rightarrow		_	\rightarrow	\rightarrow							0,50	0,50	0,75	0,75	-	\leftarrow
.4 Erprobung und Optimierung Qualitätskontrolle	1,0	1,0	_	\vdash				$\overline{}$		\longrightarrow	_	\rightarrow	_	\rightarrow	\rightarrow	_	\rightarrow				\rightarrow		_	\rightarrow	_				0,25	0,25	0,25	0,25	_		\rightarrow		\vdash
Dokumentation, Ergebnisdissemination	4,0	4,0										_		_	_		_						_	_												0,83	
Projektmanagement (Konsortial	6,0	6,0	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0.17	0,17
11 Anforderungskatalog abgeschlossen		Т	\top			M1						-												-											-	\neg	\Box
Grobkonzeption abgeschlossen & Wissenskatalog zu geeigneten KI-		1										\neg	\neg			\neg							\neg	\neg													$\overline{}$
Simulationen und Algorithmen erstellt, Robotersystem + KMS für		1	1								M2	- 1												- 1													1
2 Datengrundlage Inbetrieb genommen		1																																			
Beschaffung der restlichen Komponenten des Demonstrators erfolgt &		1																																		\neg	
Virtuelle Testumgebung prototypisch erschaffen & Algorithmen für		1	1									- 1						M3						- 1													1
Grundfunktionen virtuell erprobt		1				\Box						\rightarrow												\rightarrow													\vdash
Funktionsnachweis der entwickelten Algorithmen unter Einsatz des		1																																			
Prototyp Demonstratorsbei realen Bedingungen, Optimierungspotenziale		1	1																					- 1		M4											1
abgeleitet		1	_								_	_		_	_		_								_										$\overline{}$	\square	\vdash
Demonstrator mit geforderten Spezifikationen vollumfänglich in Betrieb		1	1																					- 1							MS						1
5 genommen, Energieeinsparungspotenzial abgeleitet		1	-	-		\vdash				-	-	\rightarrow	\rightarrow	\rightarrow	-	-	-	_			-	-	-		\rightarrow										\rightarrow	-	\vdash
Validiertes und optimiertes Gesamtsystem mit im Projekt entwickelter		1	1									- 1												I											M6		1
M6 Hardware unter Laborbedingungen umgesetzt			_			\Box		\Box			_	_		_	_	_	_				_		_	_	_							\perp	_		.mo		L

3.2 Ausführliche Beschreibung der Arbeitspakete

ADN 44								
AP-Nr.: 1.1	Anforderungsanalyse							
Startdatum:	03/2022							
Enddatum:	04/2022 tspaketes/Unterarbeitspaketes	T						
Erstellung An								
2. Voraussetzun								
	er Entwicklungen und Arbeiten							
3. Lösungsweg	anar und im Kanaartium haraita varhandanar Erkanntniaaa							
	ener und im Konsortium bereits vorhandener Erkenntnisse ingen sollen Anforderungen für das TV definiert werden.							
	pezifische Austauschplattform wird eingerichtet.							
Arbeitsschritt		1 PM (Master)						
	vorhandener Kompetenzen für Konsortium und Definition	i i ivi (iviastor)						
Anforderunge								
Personalaufwand		1 PM						
4. Ergebnis (Out								
	analyse als Bestandteil für Anforderungskatalog							
5. Sonstige Res								
	334, 33.7							
AP-Nr.: 1.2	Story und Design							
Startdatum:	04/2022							
Enddatum:	06/2022							
	tspaketes/Unterarbeitspaketes							
	des Anwendungsfalls inkl. der Randbedingungen							
Voraussetzun								
Anforderungs								
3. Lösungsweg	,							
In Abstimmun								
	emonstrator spezifiziert werden. Modulare Anforderungen							
	oung werden erarbeitet. Ein erstes Konzept des Demonst-							
rators wird en	twickelt.							
Arbeitsschritt	1:	1 PM (Master)						
Erarbeitung P	flichtenheft inkl. Konzept für Anwendungsfall "Adaptionsfä-	1 PM (Bachelor)						
hige Kraft-Mo	menten Montage für Kegelräder in der Mensch-Roboter-							
Kollaboration ^a	(
Personalaufwand	gesamt (in PM)	2 PM						
Ergebnis (Out								
	ür Anwendungsfall "Adaptionsfähige Kraft-Momenten							
	Kegelräder in der Mensch-Roboter-Kollaboration"							
Sonstige Res	sourcen							
<u>-</u>								
AP-Nr.: 1.3	Schnittstellenentwicklung für Modularitätsanforderungen							
Startdatum:	06/2022							
Enddatum:	08/2022	T						
	tspaketes/Unterarbeitspaketes							
	definition für Hardwarekomponenten und Softwarebau-							
steine	a (Innut)							
	2. Voraussetzung (Input)							
	Anforderungsanalyse (AP 1.1), Erste Ergebnisse aus Story und Design							
	(AP 1.2)							
3. Lösungsweg	z schon zu Beginn multiple Kriterien zu verfolgen, werden							
	zwischen den in AP 1.2. ausgearbeiteten Anwendungsfäl-							
	t. Weiterhin werden konkret Anforderungen an Hardware							
	für "Adaptionsfähige Kraft-Momenten Montage für Kegel-							
and Soliware	.a. ,, .aaptionoraingo i tait inomonion montago fai i teger	1						

räder in der Mensch-Roboter-Kollaboration" erarbeitet und erste Schnitt- stellen (z.B., Java, ROS 2) in bestehende Software exemplarisch um- gesetzt.	
Arbeitsschritt 1:	1 PM (Master)
Identifikation und Umsetzung von Schnittstellen	1 PM (Bachelor)
Personalaufwand gesamt (in PM)	2 PM
4. Ergebnis (Output)	
Schnittstellen zur Übertragbarkeit erarbeiteter Lösungen	
5. Sonstige Ressourcen	
-	

AP-Nr.	· 21	Definition Hardwarespezifikationen erste Generation	
Startda		05/2022	
Enddat		06/2022	
		tspaketes/Unterarbeitspaketes	
		zifikationen für Chip	
2.	Voraussetzun		
		analyse (AP 1.1)	
3.	Lösungsweg		
		Anforderungsanalyse werden Hardwarespezifikation für	
		zu entwickelnden Chip definiert.	
	Arbeitsschritt	1:	1 PM (Master)
	Unterstützung	bei der Ausarbeitung der Hardwarespezifikationen auf	
	Basis eigener	Entwicklungen und für den konkreten Anwendungsfall	
		gesamt (in PM)	1 PM
4.	Ergebnis (Out		
		ste Generation	
5.	Sonstige Res	sourcen	
AP-Nr.	- 23	Test und Erprobung erste Generation	
Startda		08/2023	
Enddat		11/2023	
		tspaketes/Unterarbeitspaketes	
		s Chips an Demonstrator	
2.	Voraussetzun		
	Prototyp 1 des	S Chips von GML (AP 2.2) & frugale Algorithmen (AP 4)	
3.	Lösungsweg		
		fähigkeit des entwickelten Prototyps des Chips von GML	
		en Einsatzbedingungen am bereits verfügbaren (Teil-)De-	
		den von der Hochschule München (HM) ausgewählten	
		all getestet werden.	
	Arbeitsschritt		0,5 PM (Master) 0,5 PM (Bachelor)
		es Chips in bestehenden Demonstrator (ROS-Schnitt-	0,5 FIVI (Bacrielor)
Г.		are-Anbindung) und Durchführung definierter Testzyklen	1 PM
		gesamt (in PM)	I PIVI
4.	Ergebnis (Out	put) katalog für zweite Generation	
5	Sonstige Res	-	
5.	-	sourcen	
AP-Nr.	2.4	Definition optimierte Hardwarespezifikationen zweite Gen	eration
Startda		10/2023	
Enddat		01/2024	
1.		tspaketes/Unterarbeitspaketes	
		achsen für zweite Generation	
2.	Voraussetzun		
		estergebnisse aus AP 2.3	
	Lösungsweg	T / / / T	
	Auf Basis der	Testergebnisse aus AP 2.3 werden in Zusammenarbeit	

mit GML Optil dungsfall iden	mierungsachsen für die zweite Generation für den Anwen- ntifiziert	
Arbeitsschritt		0,5 PM (Master) 0,5 PM (Bachelor)
Personalaufwand		1 PM
3. Ergebnis (Out		
	katalog für zweite Generation	
Sonstige Res	sourcen	
-		
AP-Nr.: 2.6	Test und Erprobung zweite Generation	
Startdatum:	08/2024	
Enddatum:	11/2024	
	itspaketes/Unterarbeitspaketes	
	sbestätigung der zweiten Generation	
Voraussetzun		
	s Chips von GML (AP 2.2) & frugale Algorithmen (AP 4)	
Lösungsweg		
	fähigkeit des optimierten entwickelten Chip-Prototyps von	
	umfänglich am Demonstrator getestet werden.	
Arbeitsschritt		1 PM (Bachelor)
	es Chips zweite Generation in bestehenden Demonstrator	
und Funktions		4 504
Personalaufwand		1 PM
4. Ergebnis (Out		
l	er und optimierter Chip zweite Generation in Demonstra-	
tor		
5. Sonstige Res	sourcen	
-		

AP-Nr.: 3.1	Entwicklung echtzeitfähiger 3D-Modelle	
Startdatum:	06/2022	
Enddatum:	08/2022	
	itspaketes/Unterarbeitspaketes	
Digitale Testu	· ·	
Voraussetzun		
Problemstellu falls.	ng und Randbedingungen des betrachteten Anwendungs-	
Lösungsweg		
	eit-Fähigkeit der Modelle zu adressieren, werden ver-	
	rategien verwendet. Durch die Simulation elementarer	
_	en und Fehlerkontrolltechniken werden die Strategien vali-	
diert. Arbeitsschritt	4.	1 PM (Master)
	ı: on Analysen und Auswahl statistischer Ansätze zur Effi-	i Fivi (iviastei)
	ng und Kartenerstellung	
	.g s.na r tartorior otoriumg	
Personalaufwand	gesamt (in PM)	1 PM
4. Ergebnis (Out	tput)	
Echtzeitfähige		
Sonstige Res		
	durch die EPF	
AP-Nr.: 3.2	Auswahl und Adaption geeigneter KI-Simulationen	
Startdatum:	09/2022	
Enddatum:	11/2022	T
	itspaketes/Unterarbeitspaketes	
	sumgebung, das eine optimale Korrelation aus Monitoring,	
	ngungen und Systemreaktionen liefert	
Voraussetzun	g (Input)	

	Auswahl Softv 3.1)	vareframeworks AP 6.1; Echtzeitfähige 3D Modelle (AP	
3.	Es erfolgt die z bungen. In die Die Modelle w schen Probler passt. Des We	Auswahl und der Test verschiedener KI-Simulationsumge- ese werden die in AP 3.1 erstellten 3D-Modelle integriert. verden zusätzlich an die zu berücksichtigenden physikali- me (Kraft-Momenten-Richtungen, Abbruchkriterien) ange- eiteren werden die physikalischen Modelle durch reale Be- und Messungen korrigiert und in die Simulationsumgebung	
	in Kombination	1: Auswahl verschiedener KI-Simulatoren. n mit einer Evaluierung der Randbedingungen ender Modellerweiterung	0,5 PM (Master)
	Arbeitsschritt 2		0,25 PM (Ba- chelor)
	Arbeitsschritt	1: ing von Rahmenbedingungen im Hinblick auf den konkre-	0,25 PM (Ba- chelor)
Pe		gesamt (in PM)	1 PM
4.		put)	
5.	Sonstige Ress		
AP-Nr.:		Aufbau Datengrundlage	
Startda		09/2022	
Enddat		05/2023	
		tspaketes/Unterarbeitspaketes	
2.	Voraussetzung Entwicklung e nahme der Sy Systemimplen		
3.	Datenbasis da werden die vol die Kraft-Leist zeugte Daten zeichnet, die Maschine auf	neidender Aspekt beim Maschine-Learning die geeignete arstellt, sollen relevante Daten gesammelt werden. Hierfür rhandenen Daten zur Kraft-Momenten-Regelung, sowie für tungs-Messung sowie aus Literatur und Experiment erals Grundlage dienen. Zusätzlich werden Daten aufgein einer vergleichbaren Kraftregelung an der gewählten treten .Eine Vorverarbeitung der Daten (Segmentierung, wie eine Datenanalyse (Dimensionsreduktion, Clustering) in geplant.	
	Arbeitsschritt Erarbeiten ein	1: es virtuellen Versuchsplans	1 PM (Master)
	Arbeitsschritt : Literarische, a	2: pplikationsspezifische Aufnahme von Daten	1 PM (Bachelor)
	Arbeitsschritt 3 Vorverarbeitur		1 PM (Bachelor)
Pe		gesamt (in PM)	3 PM
		· \	1

4. Ergebnis (Out Datenbank	eput)	
Sonstige Res	sourcen	
Roboter, Kraft	t-Momenten-Sensor, Anteil Konstruktion, Anteil SPS	
Unterstützung	durch die EPF	
AP-Nr.: 3.4	Entwicklung digitale Zwilling für Demonstrator	
Startdatum:	10/2022	
Enddatum:	08/2023	
Digitaler Zwilli	tspaketes/Unterarbeitspaketes ing von Demonstrator "Adaptionsfähige Kraft-Momenten Kegelräder in der Mensch-Roboter-Kollaboration"	
2. Voraussetzun Echtzeitfähige erste Daten a	Modelle (AP 3.1), geeignet KI-Simulatoren (AP 3.1),	
und damit vali stimmung mit bedingungen, sis des zuvor lastung der Se	synthetischen Daten werden mit den Realdaten verglichen idiert. Es erfolgt eine Optimierung hinsichtlich der Übereinden Realdaten. Daten für die Regelparameter, Rahmensowie Grenzwerte der verwendeten Sensorik sind auf Barealisierten virtuellen Zwillings zu erzeugen, um eine Überensorik und damit einen Hardwareschaden zu vermeiden.	
Arbeitsschritt Grundstruktur	1: ; Simulationsabbildung	1 PM (Master)
Arbeitsschritt Implementieru		0,5 PM (Master) 1 PM (Bachelor)
Arbeitsschritt Umsetzung si grenzung	3: imulierte Kraft-Momenten-Regelung / Kraft-Leistungs-Be-	0,5 PM (Master) 1 PM (Bachelor)
Personalaufwand	gesamt (in PM)	4 PM
4. Ergebnis (Out		
5. Sonstige Ress Unterstützung	sourcen I durch die EPF	

AP-Nr.: 4.1	Erstellung Wissenskatalog zu Machine Learning	
Startdatum:	06/2022	
Enddatum:	11/2022	
Gemeinsamer	tspaketes/Unterarbeitspaketes r Wissenskatalog zu Machine Learning für einheitliches insichtlich der nötigen Methoden, deren Möglichkeiten so- gen	
	g (Input) ng und Randbedingungen des betrachteten Anwendungs- enspezifisches Wissen und Praxiserfahrung der beteiligten	
Problemstellu dem haben di der Anwendu Zugeschnitten ML-Modelle w werden insbes rithmenklasse	endungsdomäne sind zum Teil verschiedene Begriffe für die ng und die verwendeten ML-Methoden etabliert. Außer- ee Partner des Projektes unterschiedlich viel Erfahrungen in ng von ML-Methoden. In auf die spezifizierten Problemstellungen / Aufgaben der vird eine Auswahl möglicher Methoden festgehalten. Dabei sondere die Erfahrungen der Partner mit bestimmten Algo- en mit einfließen.	
Arbeitsschritt Erarbeitung de thoden an Du	es Wissenskataloges in Workshops, Anwendung der Me-	1 PM (Master) 1 PM (Bachelor)

Pe	rsonalaufwand	gesamt (in PM)	2 PM
4.			
		og (Dokument)	
5.	Sonstige Ress		
		durch die EPF	
AP-Nr.:	: 4.2	Entwicklung Objekterkennung und Segmentierung	
Startda	itum:	10/2022	
Enddat	um:	03/2023	
1.	Ziel des Arbei	tspaketes/Unterarbeitspaketes	
		peitspaket sollen Methoden zur Objekterkennung und Seg-	
		ls Teil des KI-Frameworks für die Rahmenbedingungen	
	•	ition, Bandbewegung) der Montagetätigkeit konzipiert und	
	trainiert werde		
2.	Voraussetzun		
		Modelle (AP 3.1), Erste Ergebnisse aus AP 3.2 und AP	
		meinsames Verständnis und Auswahl der möglichen Me-	
	thoden aus Al	P 4.1	
3.	0 0	anhadian was film antimala Mantana a filmbaia	
		enbedingungen für optimale Montageaufgaben mit einbrin-	
		n, werden klassischer Bildverarbeitungsmethoden verwen-	
		llen aus bildgebender Sensorik (3D- und Farbkamera) auf-	
		nd ausgewertet werden. In Abhängigkeit der detektierten	
		wird die optimale Startposition als zusätzlicher Parameter	
		n und zusätzlich zu den parameterbasierten KI-Modelle mit	
		en Daten aus AP 3.2 verarbeitet.	1 PM (Master)
	Arbeitsschritt		1 PM (Bachelor)
		r Objekterkennung und Kombination der Ergebnisse als	T T W (Dachelor)
Da		reine Kraft-Momenten-Regelung	2 PM
		gesamt (in PM)	Z 1 IVI
4.	Ergebnis (Out	put) rk für Kraft-Momenten-Regelung mit erweitertem Parame-	
		bjekterkennung.	
5	Sonstige Res		
0.		durch die EPF	
AP-Nr.:		Entwicklung Positionserkennung und Griffwinkelbestimmu	ına
Startda		12/2022	9
Enddat		06/2023	
		tspaketes/Unterarbeitspaketes	
• •		s Softwaremodul für Positionserkennung und Griffwinkel-	
	bestimmung		
2.	Voraussetzun	a (Input)	
۷.		e Modelle (AP 3.1), Erste Ergebnisse aus AP 3.2 und AP	
		senskatalog Machine Learning (AP 4.1) und Entwicklung	
		ung und Segmentierung (AP 4.2)	
3.		ang and obgineratorang (711 1.2)	
0.		e aus dem Testdatensatz zur Objekterkennung sowie erste	
		S AP 4.2 sollen hinsichtlich der Eignung zu einer exakten	
		nnung des Objekts evaluiert werden. Die bestimmte Posi-	
	LOSINONSCINC	Griffwinkelbestimmung des Roboters. Bei der Berechnung	
			I
	tion dient als		
	tion dient als und Optimieru	ıng der Algorithmen hinsichtlich ungünstiger Lagen werden	
	tion dient als und Optimieru digitale und re	ung der Algorithmen hinsichtlich ungünstiger Lagen werden eale Ergebnisse, sowie unterschiedliche Verfahren der Er-	
	tion dient als ound Optimieru digitale und re mittlung gegel	ung der Algorithmen hinsichtlich ungünstiger Lagen werden eale Ergebnisse, sowie unterschiedliche Verfahren der Er- nübergestellt.	1 PM (Bachelor)
	tion dient als und Optimieru digitale und re mittlung gege Arbeitsschritt	ung der Algorithmen hinsichtlich ungünstiger Lagen werden eale Ergebnisse, sowie unterschiedliche Verfahren der Er- nübergestellt. 1:	1 PM (Bachelor)
	tion dient als und Optimieru digitale und re mittlung geger Arbeitsschritt Umsetzung Po	ung der Algorithmen hinsichtlich ungünstiger Lagen werden eale Ergebnisse, sowie unterschiedliche Verfahren der Er- nübergestellt. 1: ositionserkennung	, ,
	tion dient als und Optimieru digitale und re mittlung geger Arbeitsschritt Umsetzung Po Arbeitsschritt	ung der Algorithmen hinsichtlich ungünstiger Lagen werden eale Ergebnisse, sowie unterschiedliche Verfahren der Er- nübergestellt. 1: ositionserkennung	1 PM (Bachelor) 1 PM (Bachelor)

			T
4.	Ergebnis (Out		
		k für Kraft-Momenten-Regelung mit erweitertem Parame-	
		sitionserkennung und Griffwinkelbestimmung	
5.	Sonstige Ress		
		durch die EPF	
AP-Nr.:		Entwicklung Bahnplanung und Kollisionsüberwachung	
Startda		10/2022	
Enddat		06/2023	
1.		tspaketes/Unterarbeitspaketes	
	• •	s Softwaremodul für Bahnplanung und Kollisionsüberwa-	
	chung		
2.	Voraussetzun		
		Modelle (AP 3.1), Erste Ergebnisse aus AP 3.2 und AP	
		senskatalog Machine Learning (AP 4.1)	
3.	Lösungsweg		
		erausforderung ist, dass die finalen Algorithmen in Echtzeit	
		rie-Hardware lauffähig sein müssen, um latenzarme Hand-	
	lungen und Re	eaktionen des Roboters zu erhalten, ohne die eine Akzep-	
	tanz und Übe	rführung in industrielles Umfeld nicht gegeben ist. Unter	
	diesen Voraus	ssetzungen werden Algorithmen entwickelt, welche eine	
	schonende Ba	hnplanung und Kollisionsbetrachtung ermöglichen. Als Si-	
	mulationsgrun	dlage dient der prototypische digitale Zwilling. Zusätzlich	
	werden die Be	etrachtungen an der realen Anlage verifiziert. Daraus wer-	
	den Erkenntni	sse in Bezug auf eine Prozessausführung gewonnen und	
		ür den MRK Bereich wird die Bahnplanung und Kollisions-	
		usätzlich um die Anforderungen des Körpermodels erwei-	
		onen zu Beschleunigung, Position und Lage sollen eben-	
	falls integriert		
	Arbeitsschritt		0,5 PM (Master)
		ahnplanung prozessorientiert	0,5 PM (Bachelor)
	Arbeitsschritt 2		0,5 PM (Master)
		ollisionsüberwachung prozessorientiert	0,5 PM (Bachelor)
	Arbeitsschritt 3		0,5 PM (Master)
		ahnplanung MRK	0,5 PM (Bachelor)
	Arbeitsschritt 2	I	0,5 PM (Master)
		collisionsüberwachung MRK	0,5 PM (Bachelor)
	Arbeitsschritt		1 PM (Bachelor)
		o. ler Algorithmen hinsichtlich Laufzeit (Latenz) und Datenef-	Trim (Basiloisi)
	fizienz	er Algorithmen himstentlich Laufzeit (Latenz) und Datener-	
D ₀		gesamt (in PM)	5 PM
			O T IVI
4.	Ergebnis (Out		
1	Kollisionsüber	k sowie Bildverarbeitungspipeline für Bahnplanung und	
		<u> </u>	
5.	Sonstige Ress		
AD Nr		durch die EPF	
AP-Nr.:		Entwicklung Qualitätskontrolle	
Startda		12/2022	
Enddat		07/2023	T
1.		tspaketes/Unterarbeitspaketes	
		es ML-Modells, welches die Produktqualität anhand der	
<u></u>		Input-Daten prognostizieren kann	
2.	Voraussetzung		
		Modelle (AP 3.1), Erste Ergebnisse aus AP 3.2 und AP	
		senskatalog Machine Learning (AP 4.1)	
3.	Lösungsweg		
	Prozessgekop	pelte Inline-Qualitätskontrolle durch ML-Algorithmen. Auf	
		r vorhandenen Parameter und resultierenden Daten soll	
	eine Vorhersa	ge der zu erwartenden Güte gemacht werden.	
	Arbeitsschritt		0,5 PM (Master)
	Konzept der C	Qualitätskontrolle	0,5 PM (Bachelor)
L	др. до. д	,	1

Arbeitsschri		1 PM (Bachelor)
	erung der Prädiktion	0.004
	nd gesamt (in PM)	2 PM
4. Ergebnis (O		
	orhersage der Montagegüte	
5. Sonstige Re		
AP-Nr.: 4.6	ng durch die EPF	
	Entwicklung Kraft-Momenten-Regelung 12/2022	
Startdatum:	08/2023	
Enddatum:		Ī
Erstellung e anhand der	eitspaketes/Unterarbeitspaketes ines ML-Modells, welches die Kraft-Momenten-Regelung vorhandenen Input-Daten sowohl applikationsspezifisch als e MRK-Inbetriebnahme adaptieren kann.	
3.3 sowie W	ge Modelle (AP 3.1), Erste Ergebnisse aus AP 3.2 und AP /issenskatalog Machine Learning (AP 4.1)	
relations-/Ri gen, Param eine geeign der externei Körpermode senschaftlic lung zum ei Rückkopplu botersteuerd	dikationsspezifische Kraft-Momenten-Regelung soll eine Koredundanzbestimmung der verschiedenen Randbedingunteterkonfigurationen und Rückkopplungsdaten erfolgen, um ete Auswahl zu treffen. Zusätzlich soll aus den Datenquellen in Kraft-Leistungs-Sensorik und den Normengrundlagen des ells eine geeignete Datengrundlage gelegt werden. Die wische Herausforderung besteht in der Konzeption und Entwickinen der Verbindung zwischen dem KI Framework und der ing der generierten Daten in die Echtzeit-Regelung der Roung, zum anderen in die Anpassung der ParameterkonfigumRK-Parametrierung.	
	tt 1: - und Sensitivitätsanalyse; Darauf aufbauend Auswahl ge- utdaten/Sensorinformationen, sowie prozessbegleitender	1 PM (Bachelor)
Arbeitsschri Korrelations eigneter Inp	tt 2: und Sensitivitätsanalyse; Darauf aufbauend Auswahl ge- utdaten/Sensorinformationen, zusätzlicher Informationen modells und der Kollisionsstellen	1 PM (Bachelor)
Arbeitsschri Auswahl un		1 PM (Master) 1 PM (Bachelor)
Arbeitsschri Konzeption gelung	tt 4: und Umsetzung der Konfiguration zur Kraft-Momenten-Re-	1 PM (Master) 1 PM (Bachelor)
	nd gesamt (in PM)	6 PM
4. Ergebnis (O Trainierte M fischen Anw	Output) Hodelle für Kraft-Momenten-Regelung zur applikationsspezi- vendung und für MRK-Inbetriebnahme	
 Sonstige Re Unterstützu 	essourcen ng durch die EPF	

AP-Nr.: 5.1	Aufbau und Inbetriebnahme des Systemdemonstrators	
Startdatum:	03/2023	
Enddatum:	06/2024	
	itspaketes/Unterarbeitspaketes Softwaremodule in einem Systemdemonstrator zusam- า	
Voraussetzun	g (Input)	

		cklung (AP 1) sowie erste Ergebnisse aus (AP 3) und (AP	
	4) für Konstru	ktion und Beschaffung; Für Implementierung Entwicklung	
	virtuelle Testu	imgebung und prototypische frugale Algorithmen vorhan-	
	den		
3.	Lösungsweg		
		nritt ist der Systemdemonstrator, entsprechend der Konzi-	
	pierung zu Be	ginn des Projekts, aufzubauen und in Betrieb zu nehmen.	
	Entsprechend	müssen die Komponenten wie Roboter, Steuerung, Ka-	
	meras, Kraft-I	Momenten-Sensorik etc. beschafft werden. Des Weiteren	
		klung eines Schnittstellensystems zur übergeordneten Ko-	
	ordination des	Demonstrators mit dem integrierten Chip umzusetzen. Es	
	muss eine Ko	mmunikation zwischen Roboter, Kraft-Momenten-Sensor	
	aufgebaut we	rden und die Kraftregelung integriert werden. Zusätzlich	
	muss eine Ani	bindung zwischen Roboter und dem Messsystem für Kraft-	
	Leistungs-Mes	ssungen aufgebaut werden. Eine Anbindung an den digita-	
	len Zwilling ist	t ebenfalls vorgesehen.	
	Arbeitsschritt	1:	1,5 PM (Master)
	Konstruktion ι	und Beschaffung Demonstrator	1,5 PM (Bachelor)
	Arbeitsschritt :		1,5 PM (Master)
	Mechanischer	Aufbau und Integration der Schnittstellen des Demonst-	1,5 PM (Bachelor)
	rators		
	Arbeitsschritt	3:	1 PM (Master)
	Softwaretechr	nischer Aufbau des Demonstrator	1 PM (Bachelor)
Pe	rsonalaufwand	gesamt (in PM)	8 PM
4.			
		ind in Betrieb genommener Systemdemonstrator für "Au-	
	tomatisierte		
5.	Sonstige Ress	sourcen	
	Roboter, Steu	erungstechnik, Rechentechnik, Kraft-Momenten-Sensor, Ka	amerasystem,
	Sensorik, Kon	struktion, Kabeltechnik (vgl. Ressourcenbeschreibung Kapi	itel 3.3.1)
A D	- 0		
AP-Nr.	: 5.2	Systemimplementierung Objekt greifen	
AP-Nr. Startda		06/2023	
	ıtum:		
Startda	itum: :um:	06/2023	
Startda Enddat	itum: :um: Ziel des Arbei	06/2023 11/2023	
Startda Enddat 1.	itum: :um: Ziel des Arbei	06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator	
Startda Enddat 1.	atum: cum: Ziel des Arbei <i>Implementieru</i> Voraussetzun	06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator	
Startda Enddat 1.	atum: zum: Ziel des Arbei <i>Implementieru</i> Voraussetzun <i>Frugale Algori</i>	06/2023 11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel-	
Startda Enddat 1.	ntum: cum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input)	
Startda Enddat 1.	ntum: zum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg	06/2023 11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel-	
Startda Enddat 1.	tum: zum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen	06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle-	
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio	06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial-	
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap-	
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw	06/2023 11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial-	
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden.	1 PM (Master)
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden.	1 PM (Master)
Startda Enddat 1.	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1:	1 PM (Master)
Startda Enddat 1.	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen.	1 PM (Master) 1 PM (Bachelor)
Startda Enddat 1.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen.	, ,
Startda Enddat 1. 2.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt Integration Alg	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2:	, ,
Startda Enddat 1. 2.	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt Integration Algersonalaufwand	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM)	1 PM (Bachelor)
Startda Enddat 1. 2. 3.	atum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt : Integration Algersonalaufwand Ergebnis (Out	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM)	1 PM (Bachelor)
Startda Enddat 1. 2. 3.	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt i Integration Algersonalaufwand Ergebnis (Out	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: Ing und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig	1 PM (Bachelor)
Startda Enddat 1. 2. 3.	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt Integration Algersonalaufwand Ergebnis (Out Softwaremodu	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: Ing und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig	1 PM (Bachelor)
Startda Enddat 1. 2. 3.	ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt Integration Alge ersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ing und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen g, Kamerasystem	1 PM (Bachelor) 2 PM
Startda Enddat 1. 2. 3.	ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (i Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt Integration Algersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: Ing und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen x, Kamerasystem Systemimplementierung Bahnplanung und Kollisionsüben	1 PM (Bachelor) 2 PM
Startda Enddat 1. 2. 3. Pe 4. 5. AP-Nr. Startda	ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt i Integration Algersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik : 5.3	11/2023 tspaketes/Unterarbeitspaketes ing der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ing und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen x, Kamerasystem Systemimplementierung Bahnplanung und Kollisionsüben 06/2023	1 PM (Bachelor) 2 PM
Startda Enddat 1. 2. 3. 4. 5. AP-Nr. Startda Enddat	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt : Integration Algersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik : 5.3	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) ulgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen x, Kamerasystem Systemimplementierung Bahnplanung und Kollisionsüben 06/2023 02/2024	1 PM (Bachelor) 2 PM
Startda Enddat 1. 2. 3. Pe 4. 5. AP-Nr. Startda	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt : Integration Algersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik : 5.3 atum: ziel des Arbei	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- inalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen x, Kamerasystem Systemimplementierung Bahnplanung und Kollisionsüben 06/2023 02/2024 tspaketes/Unterarbeitspaketes	1 PM (Bachelor) 2 PM
Startda Enddat 1. 2. 3. 4. 5. AP-Nr. Startda Enddat	tum: Ziel des Arbei Implementieru Voraussetzun Frugale Algori bestimmung (Lösungsweg Die frugalen A Schnittstellen gende Funktio partnern entw plikation ange Arbeitsschritt Implementieru aus KM-Rege Arbeitsschritt : Integration Algersonalaufwand Ergebnis (Out Softwaremodu Sonstige Ress Greifertechnik : 5.3 atum: ziel des Arbei	11/2023 tspaketes/Unterarbeitspaketes ung der entwickelten Pakete in den Demonstrator g (Input) ithmen Objekt- und Positionserkennung sowie Greifwinkel- AP 4.2 und 4.3) Algorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- onalität geprüft. Zusätzlich sollen die von den Konsortial- ickelten Algorithmen auf die Rahmenbedingungen der Ap- passt und integriert werden. 1: ung und Optimierung Objekt (z.B. Direkte Rückkopplung lung als Grundlage) greifen. 2: gorithmen Partner gesamt (in PM) put) ul Objekt greifen lauffähig sourcen x, Kamerasystem Systemimplementierung Bahnplanung und Kollisionsüben 06/2023 02/2024 tspaketes/Unterarbeitspaketes ung der entwickelten Frameworks in Demonstrator	1 PM (Bachelor) 2 PM

		Harrier Bahardan una unad Kallisiana ühan usah unan (AB 4 4)				
		thmen Bahnplanung und Kollisionsüberwachung (AP 4.4)				
D. Se	chnittstellen	lgorithmen und entwickelten Frameworks werden über die in den Demonstrator implementiert und auf ihre grundle- nalität geprüft				
P	gende Funktionalität geprüft. Prozessorientiert erfolgt dies stufenweise für unterschiedliche Teilschritte des Prozesses. Als Zusatz wird die Funktionalität in einem					
Fi na	nächsten Schritt während einer Bandbewegung ausgeführt. Für den MRK-Bereich wird die Funktionalität als Teil einer Inbetrieb- nahme integriert. Eine Anbindung an den entwickelten ersten Prototyp					
ru ve de	ıng zu realisı erbrauch, Ta es Chips abs	notwendig, um eine echtzeitfähige kognitive Programmie- ieren sowie die Performance (Echtzeitfähigkeit, Energie- ktzeit, Bahnplanung etc.) entwickelter Algorithmen und schätzen zu können. Verschiedene Ansätze (eigene und partnern) sollen verglichen und gegebenenfalls angepasst				
W	erden.					
In	rbeitsschritt 1 nplementieru ert am ruhend	ng Bahnplanung und Kollisionsbetrachtung prozessorien-	1 PM (Master) 0,5 PM (Bachelor)			
Ai In tie	rbeitsschritt 2 nplementieru ert am linear	2: ng Bahnplanung und Kollisionsbetrachtung prozessorien- bewegten Objekt	0,5 PM (Master) 0,5 PM (Bachelor)			
	rbeitsschritt 3 <i>nplementieru</i>	3: ng Bahnplanung und Kollisionsbetrachtung MRK	1 PM (Master) 0,5 PM (Bachelor)			
		gesamt (in PM)	4 PM			
В	rgebnis (Outp ahnplanung u auffähig	out) und Kollisionsüberwachung am sich bewegenden Objekt				
5. S	onstige Ress	ourcen n, Greifertechnik, Rechentechnik				
AP-Nr.: 5.		Systemimplementierung Visual Servoing und Kraft-Mome	nt-Kontrolle			
Startdatur	m:	07/2023				
Enddatum		06/2024				
In	nplementieru	spaketes/Unterarbeitspaketes ng der erarbeiteten Lösungen der Projektpartner zu Vi- und Kraft-Moment-Kontrolle in Demonstrator				
2. V	oraussetzung	g (Input) Frameworks und Wissen zu Visual Servoing und Kraft-				
D. Iu	ing sollen in d	en frugalen Algorithmen für die Kraft-Momenten-Rege- den Demonstrator implementiert werden. Hierbei ist wie-				
re W	esultierende k endung der k	ung in die Inbetriebnahme des Roboters und die daraus Konfiguration, sowie die eigentliche prozessorientierte An- Algorithmen durchzuführen. Die Entwicklung des Partners				
m ge	nentiert werde elten Kegelra	sual-Servoing sollen ebenfalls in den Demonstrator imple- en. Hierfür ist der konkrete Anwendungsfall der kraftgere- dmontage zu berücksichtigen. Zusätzliche Sensorik für iche Prozessüberwachung ist zu integrieren.				
A	rbeitsschritt 1		1 PM (Master) 1 PM (Bachelor)			
A	rbeitsschritt 2		1 PM (Master) 1 PM (Bachelor)			
A	rbeitsschritt 3		1 PM (Master) 1 PM (Bachelor)			
		gesamt (in PM)	6 PM			
4. E	rgebnis (Outp					

5. Sonstige Ressourcen						
	Sensorik, Kamerasystem, Greifertechnik, Rechentechnik					
Unterstützung	Unterstützung durch EPF					
AP-Nr.: 5.5	AP-Nr.: 5.5 Systemimplementierung Qualitätskontrolle					
Startdatum:	Startdatum: 03/2024					
Enddatum:	06/2024					
	itspaketes/Unterarbeitspaketes e <i>Qualitätskontrolle</i>					
Voraussetzun Entwickeltes i	g (Input) KI-Framework für Qualitätskontrolle (AP 4.5)					
Systemdemoi Kennzahlen w	Ite KI-Framework zur Vorhersage der Qualität wird in den nstrator implementiert. Die Auswertung von wichtigen vie Schleppfehler, Wiederholbarkeit, Genauigkeit, Energie- er Zykluszeit wird auf dem übergeordneten Rechner aus-					
Arbeitsschritt Integration KI	1: -Framework in Demonstrator	0,75 PM (Master) 0,25 PM (Ba- chelor)				
Arbeitsschritt Auswertung	2: Test und Optimierung	1 PM (Bachelor)				
	Personalaufwand gesamt (in PM)					
4. Ergebnis (Out						
	ialitätsprognose als Ergebnis der Kraftregelung					

AP-Nr.: 6	3.1	Vergleich verfügbarer Softwareplattformen und Schnittstellen			
Startdatu		03/2022			
Enddatur		08/2022			
	Ziel des Arbeitspaketes/Unterarbeitspaketes				
A	Auswahl geeigneter Softwareplattformen und Schnittstellen für Anwendungsfall				
	√oraussetzung A <i>nforderunger</i>				
E		estehender, auf dem Markt verfügbarer Softwareplattformen llen, die für das Projekt geeignet sind (z.B. ROS)			
_	Arbeitsschritt 1 A <i>nalyse bestei</i>	l: hender Softwarelösungen der einzelnen Partner	0,75 PM (Master)		
	Arbeitsschritt 2		0,75 PM (Ba-		
	ldentifikation v freien Software	on Bedarfen, Abgleich mit auf dem Markt verfügbaren oder elösungen	chelor)		
	Arbeitsschritt 3 Fe <i>stlegung de</i>	3: r zu verwendenden Frameworks und Schnittstellen	0,5 PM (Master)		
	nalaufwand ge		2 PM		
	Ergebnis (Outp	1 1			
		verwendende Software Frameworks			
	Sonstige Ress				
AP-Nr.: 6		Integration der entwickelten Bibliotheken und Algorithmen des	Konsortiums		
Startdatu	ım:	09/2022			
Enddatur	m:	11/2024			
1. 2	Ziel des Arbeit	spaketes/Unterarbeitspaketes			
		usch im Konsortium			
2. \	/oraussetzung	g (Input)			
Auswahl Softwareframeworks (AP 6.1)					
L F	3. Lösungsweg Die in AP 6.1 identifizierten Softwareframeworks werden in eine gemeinsame Plattform integriert und damit allen Partnern des Konsortiums zur Verfügung gestellt.				

Arbeitsschritt 1: Integration vorhandener Software-Frameworks in die gemeinsame Plattform	1 PM (Master) 1 PM (Bachelor)
Personalaufwand gesamt (in PM)	1 PM
4. Ergebnis (Output)	
Optimierte Algorithmen, Gleicher Wissensstand wie Projektpartner	
5. Sonstige Ressourcen: -	

AP-Nr.: 7.1	Erprobung und Optimierung Objekt greifen			
Startdatum:	01/2024			
Enddatum:	05/2024			
	itspaketes/Unterarbeitspaketes			
Die entwickelte Lösung für die Aufgabe "Objekt greifen" soll anhand realisti-				
scher Szenarien erprobt und validiert werden. Dabei soll das System auch				
	tigen Bedingungen getestet und optimiert werden, um eine Funk-			
	modifizierten Objekten (Oberflächenstruktur, Beleuchtung) oder			
schwieriger Positionierung zu gewährleisten				
Voraussetzun				
	mentierung Objekt greifen am Demonstrator (AP 5.2)			
	Heritierung Objekt grenen am Demonstrator (AF 3.2)			
3. Lösungsweg	hungung Ontiggian na dan antwickaltan Läaving wandan Taat			
	bung und Optimierung der entwickelten Lösung werden Test-			
	nzipiert, welche eine Anwendungsnahe Bewertung von Funktio-			
	obustheit im Realbetrieb zulassen. Diese werden dann in Versu-			
	nonstrator durchgeführt, um Optimierungspotentiale abzuleiten			
	em iterativ zu verbessern.	0.551.//:-		
Arbeitsschritt		0,5 PM (Mas-		
	nd Durchführung Testszenarien, Identifikation von Optimie-	ter)		
rungspotentia	llen, iterative Verbesserung	0,5 PM (Ba-		
Doroopalaufwand s	vecent (in DM)	chelor) 1 PM		
Personalaufwand g		I FIVI		
4. Ergebnis (Ou				
	f Anwendungsfall zugeschnittene Funktion Objekt greifen			
Sonstige Res				
Greifertechnil				
AP-Nr.: 7.2	Erprobung und Optimierung Bahnplanung			
Startdatum:	03/2024			
Enddatum:	07/2024			
 Ziel des Arbe 	itspaketes/Unterarbeitspaketes			
Die entwickel	te Lösung zur Bahnplanung soll anhand realistischer Szenarien			
erprobt und v	alidiert werden. Hierbei soll besonders die Standardbahnplanung			
und Wiederho	ngeriauigkeit und Reproduzierbarkeit des Systems veriliziert und 1			
	olgenauigkeit und Reproduzierbarkeit des Systems verifiziert und den. Dies ailt sowohl für die Bahnplanung der Kraftregelung des			
optimiert were	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des			
optimiert werd Prozesses als				
optimiert werd Prozesses als guration	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des s auch für eine stabile Bahnplanung der jeweiligen MRK-Konfi-			
optimiert werd Prozesses als guration 2. Voraussetzun	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des s auch für eine stabile Bahnplanung der jeweiligen MRK-Konfi- ng (Input)			
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des s auch für eine stabile Bahnplanung der jeweiligen MRK-Konfi-			
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3)			
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg Erprobung, V	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter			
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter uder Simulation unter stabilen Bedingungen.	1 PM (Ba		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1:	1 PM (Ba-		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durch	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter der Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung	1 PM (Ba- chelor)		
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durch der prozessor	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung.	chelor)		
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durch der prozesson Arbeitsschritt	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter ider Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2:	chelor) 1 PM (Ba-		
optimiert werd Prozesses als guration 2. Voraussetzun Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durc der prozesson Arbeitsschritt Iterative Durc	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter ider Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2: hführung von Testszenarien zur Validierung und Optimierung	chelor)		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durc der prozesson Arbeitsschritt Iterative Durc der Bahnplan	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2: hführung von Testszenarien zur Validierung und Optimierung ung im MRK-Betrieb.	chelor) 1 PM (Ba-chelor)		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durc der prozessor Arbeitsschritt Iterative Durc der Bahnplan Personalaufwand g	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: Inführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2: Inführung von Testszenarien zur Validierung und Optimierung ung im MRK-Betrieb. Ijesamt (in PM)	chelor) 1 PM (Ba-		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durch der prozessor Arbeitsschritt Iterative Durch der Bahnplan Personalaufwand g 4. Ergebnis (Our	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2: hführung von Testszenarien zur Validierung und Optimierung ung im MRK-Betrieb. jesamt (in PM) tput)	chelor) 1 PM (Ba-chelor)		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durch der prozessor Arbeitsschritt Iterative Durch der Bahnplan Personalaufwand g 4. Ergebnis (Our	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des sauch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: Inführung von Testszenarien zur Validierung und Optimierung rientierten Bahnplanung. 2: Inführung von Testszenarien zur Validierung und Optimierung ung im MRK-Betrieb. Ijesamt (in PM)	chelor) 1 PM (Ba-chelor)		
optimiert werd Prozesses als guration 2. Voraussetzum Systemimpler 3. Lösungsweg Erprobung, V Einbeziehung Arbeitsschritt Iterative Durc der prozessor Arbeitsschritt Iterative Durc der Bahnplan Personalaufwand g 4. Ergebnis (Ou	den. Dies gilt sowohl für die Bahnplanung der Kraftregelung des so auch für eine stabile Bahnplanung der jeweiligen MRK-Konfing (Input) mentierung Bahnplanung am Demonstrator (AP 5.3) falidierung und Optimierung der identifizierten Algorithmen unter in der Simulation unter stabilen Bedingungen. 1: hführung von Testszenarien zur Validierung und Optimierung vientierten Bahnplanung. 2: hführung von Testszenarien zur Validierung und Optimierung ung im MRK-Betrieb. gesamt (in PM) tput) ahnplanung mit hohem Energieeinsparpotenzial	chelor) 1 PM (Ba-chelor)		

Startdatum:		05/2024	
Enddat		11/2024	
1.		spaketes/Unterarbeitspaketes	
		pelte Kraft-Momenten-Regelung im MRK Betrieb	
2.	Voraussetzung Kraft-Momente	g (Input) en-Regelung am Demonstrator implementiert (AP 5.4)	
3.	sowohl die Fuitigung möglich werden variierterschiedliche wirkung auf divalidieren, weirungen des Kösentation wird aussagekräftig sowie Prozess	des Systemdemonstrators ist zu vervollständigen. Ziel ist es, nktionsfähigkeit, als auch die Erprobung, Bewertung und Beseiher Fehlverhalten und Einschränkungen zu evaluieren. Dazu ende Rahmenbedingungen, wie ungünstige Startpositionen, un-Materialien und Bauteiltoleranzen vorgegeben und deren Ausas Ergebnis bewertet. Um den MRK Betrieb ausreichend zu rden Kollisionen herbeigeführt und die Einhaltung der Anfordeirpermodells bewertet. Der Aspekt einer kundenwirksamen Prädebenfalls berücksichtigt, indem eine intuitive Bedienung und ge Visualisierungen umgesetzt wird, die den digitalen Zwillings, sparameter für eine ganzheitliche Prozesskontrolle vereint.	
	Arbeitsschritt Erprobung des mit MRK-Betri	s implementierten Systems prozessorientiert in Kombination	0,5 PM (Mas- ter) 1 PM (Ba- chelor)
	Arbeitsschritt 2 Optimierung d	2: les Gesamtsystems hinsichtlich Applikation	0,5 PM (Mas- ter) 1 PM (Ba- chelor)
	lichkeit, Übers	es Gesamtsystems hinsichtlich Präsentation, Bedienerfreund- ichtlichkeit	1 PM (Ba- chelor)
	onalaufwand ge		4 PM
4.	Ergebnis (Outp	put) ähiger Demonstrator für Anwendungsfall	
	Sonstige Ress	ourcen: -	
AP-Nr.:		Erprobung und Optimierung Qualitätskontrolle	
Startda		05/2024	
Enddat		08/2024	
1.		spaketes/Unterarbeitspaketes pelte Qualitätskontrolle im MRK Betrieb	
2.	Voraussetzung Qualitätskontre	g (Input) olle am Demonstrator implementiert (AP 5.5)	
3.	Qualität des E rückgeführten gelegter Rahm Zusätzlich wer tatsächlich erz	der Kraftregelung im MRK-Betrieb soll eine Aussage über die Ergebnisses getroffen werden. So ist zum einen auf Grund der Daten eine Prognose getroffen worden, die anhand vorher festendbedingungen überprüft werden soll. (erreichte Endposition). Irden die Prognosen für die Kraft-Leistungs-Begrenzung mit den teugten Kräften und Drücken abgeglichen und das System auf Ergebnisse nochmals optimiert.	
	Arbeitsschritt f Erprobung des im Prozess be	1: s implementierten Systems durch Verifikation der Prognosen i MRK-Betrieb	0,5 PM (Mas- ter) 0,5 PM (Ba- chelor)
Pers	onalaufwand ge		1 PM
4.	Ergebnis (Outp	put) ähiger Demonstrator für Anwendungsfall	
5.	Sonstige Ress		

AP-Nr.: 8	Dokumentation, Ergebnisdissemination
Startdatum:	12/2024
Enddatum:	02/2025
 Ziel des Arbeit 	spaketes/Unterarbeitspaketes

	Verbreitung der Projektergebnisse eines breiten Publikums, Publikationen	
2.	Voraussetzung (Input) Projektergebnisse	
3.	Lösungsweg Geeignete Präsentationen und Vermarktungsstrategien sollen erarbeitet werden. Die Präsentation gewonnener Erkenntnisse und Lösungen werden exemplarisch anhand des Systemdemonstrators auf Messen und Tagungen realisiert. Dort sind wissenschaftliche Publikationen und Fachvorträge angestrebt. Ein Internetauftritt des Vorhabens soll umgesetzt werden. Für die Verwertung der Einzelmodule werden Strategien	
	Arbeitsschritt 1: Ergebnisdissemination in Form von Tagungen, Publikation o.Ä.	1 PM (Master) 1 PM (Ba- chelor)
	Arbeitsschritt 2: Vermarktungsstrategien, Teilnahmen an Messen	1 PM (Master) 1 PM (Ba- chelor)
Pers	onalaufwand gesamt (in PM)	4 PM
4.	Ergebnis (Output) Interessierte Kunden und Partner für zukünftige Forschungsvorhaben	
5.	Sonstige Ressourcen: Unterstützung durch EPF	

AP-Nr.: 9	Projektmanagement (Konsortialführung)			
Startdatum:	03/2022			
Enddatum:	02/2025			
	tspaketes/Unterarbeitspaketes e und ergebnisorientierte Projektsteuerung zur Sicherung des			
wissenschaftli	chen Fortschritts unter Einhaltung der zeitlichen und finanziel-			
len Rahmenbe	<u> </u>			
2. Voraussetzun Projektstand	g (input)			
jektkoordinatio ßige Telefon- organisatorisc nächsten Teils statustreffen s nisse zu disku vieren. Regeli wendung werd	der IWU übernimmt auf deutscher Seite die übergeordnete Pro- chen mit dem französischen Partner GRAI Matter Labs. Regelmä- Webkonferenzen werden eingeführt. Diese dienen zur Klärung iher Angelegenheiten, zum Statusabgleich und Zielsetzung der schritte und Arbeitstreffen. Mindestens halbjährig sollen Projekt- stattfinden, um detailliert über die erreichten Zwischenergeb- itieren und aktuell anstehende Projektthemen weiter zu intensi- mäßige Risikoanalysen und Maßnahmen zur frühzeitigen Ab- den durchgeführt.			
Arbeitsschritt Konsortialführ	1: ung und Treffen	3 PM (Master)		
Arbeitsschritt 2		3 PM (Master)		
Austausch der Ergebnisse und Planung weiterer Arbeiten				
Personalaufwand gesamt (in PM)		6 PM		
4. Ergebnis (Out Finanziell und dingungen				
Sonstige Ress				

3.3 Ressourcenplanung

3.3.1 Material

Pos. 0838 – 0842 (□□0843 Sonstige allgemeine Verwaltungsausgaben)

Lfd.	Bezeich-	Darstellung der Notwendigkeit	Kosten (ohne
Nr.	nung		MwSt.)
1	Open Access Publikationen	Im Laufe der Projektzeit ist die Veröffentlichung von Projektergebnissen in einschlägigen wissenschaftlichen Journals geplant.lin 2023 und 2023 ist je eine Open Access Publikation im Journal of Advanced Robotic Systems geplant	4.000 €

3.3.2 FE-Fremdleistungen

Die EPF (Ecole d'ingénieur-e-s) in Paris hat eine herausragende Expertise im Bereich der KI. Unter der Leitung von Professorin Elisabeth Lacazedieu Longatte, werden Dr. Cédric Zaccardi und Dr. Amin Zammouri das TV unterstützen. Beide arbeiten bereits seit Jahren im Bereich der künstlichen Intelligenz, speziell auch auf dem Gebiet der embedded Sensorik und Aktorik, sowie Fehlerkontrolle und Reduktionsmethodik, so dass ein gemeinsames Verständnis der Anforderungen und notwendigen Entwicklungsstufen gegeben ist.

Lfd. Nr.	Be- zeich- nung	An- zahl	Darstellung der Notwendigkeit	Kosten (ohne MwSt.)
1	Unter- stüt- zung im Bereich KI Ent- wick- lung	1	Die Hochschule München hat eine langjährige Erfahrung im Bereich der industriellen Anforderungen und deren Lösungen sowohl im Bereich der kraftgeregelten Prozesse als auch im Bereich der Mensch-Roboter-Kollaboration. Um die Anforderungen und Strategien im Bereich der künstlichen Intelligenz weiter zu fokussieren und durch die langjährige Erfahrung der EPF in Paris auf diesem Arbeitsgebiet zu stärken, soll in drei Arbeitspaketen eine Zusammenarbeit mit der EPF stattfinden: • Entwicklung virtuelle Testumgebung • Entwicklung frugaler Algorithmen • Implementierung Demonstrator, Benchmarking Durch diese Zusammenarbeit bedeuten gerade diese Strategien und die gemeinsame Arbeit eine Kompetenzerweiterung für die Hochschule München.	29.000 € Siehe Ange- bot_EPF- proposal contribution to Hochshule project.pdf
2	Schu- lung	1	Durch die Teilnahme am Seminar LBR iiwa - Inbetriebnahme und Programmierung wird die Einarbeitungszeit in herstellerspezifische Programmierung des Roboters verkürzt und die das KnowHow im Bereich der MRK-Programmierung, der Programmierung von Kraftregelungsaufgaben, sowie in Schnittstellen und Kommunikation wird ausgebaut. Damit können die eigentlichen Aufgaben im Projekt effizienter umgesetzt werden.	2.945,25 € Siehe Ange- bot_3200234 168_KUKA_ ProgLBR_K W 49ff.pdf

3.3.3 Investitionen/AfA

Pos. 0831 (Gegenstände bis zu 800 EUR)

Lfd. Nr.	Be- zeich-	An- zahl	Darstellung der Notwendigkeit	Kosten (ohne MwSt.)
	nung			
1	Steue- rungs- technik	10	SPS,CPU, E/A Module, Memory Card, Verkabelungselemente etc. Bibliotheken und Lizenz	5.000€
2	Greifer- system	10	Norm-/Kaufteile zum Einsatz am Roboter als Greifer (z. B. Profile, Elektronik, Antrieb)	5.000€
3	Senso- rik	10	Sensorik zur Absicherung des Demonstrators und als Zusatzelement für das Kraft-Leistungs-Messgerät	4.500 €
4	Kon- struk- tion	10	Befestigungselemente (Roboterstellplatz, Kamerafixierung, Kraft-Leistungs-Messgerät)	5.000€

Pos. 0850 (Gegenstände und andere Investitionen über 800 EUR)

Lfd. Nr.	Be- zeich- nung	An- zahl	Darstellung der Notwendigkeit	Kosten (ohne MwSt.)
1+2	Roboter inkl. Steue- rung (Hard- ware + Soft- ware)	1	Um den Anwendungsfall der adaptiven Kegelradmontage im MRK-Betrieb in geforderter Taktzeit nachzuweisen, wird ein Roboter benötigt, der mit dem sicherheitstechnisch erforderlichen Performance Level (PLd Cat.3) ausgestattet ist. Hierfür wurde ein Leichtbauroboter LBR iiwa gewählt. Dieser Roboter bietet zusätzlich zu der Fähigkeit, im MRK-Bereich zu arbeiten, auch die Funktionalität der Kraft-Momenten-Regelung durch integrierte Gelenkmomentsensoren. Die hohe Konfigurierbarkeit der Robotersteuerung ermöglicht einen umfangreichen Einsatz sowohl im Bereich der Kraft-Momenten-Regelung als Prozesswerkzeug, sowie im MRK-Bereich. Die Traglast und der Arbeitsraum wurden so gewählt, dass durch die Integration einer zusätzlichen Last (Kamera, KMS) das Aufbringen einer Prozesskraft weiterhin möglich ist.	66.304,78 € Siehe Ange- bot_KUKA_R obo- ter_Quote_0 0086489.pdf
3+4	Bildver- arbei- tungs- system (Hard- ware + Soft- ware)	1	Für die Lagebestimmung der Startposition des Roboters und der damit verbundenen Sensordatenfusion der BV-Daten und Kraftregelungsdaten ist die Beschaffung eines Bildverarbeitungssystems notwendig. Zusätzlich soll das System des Partners IWU zu einem späteren Zeitpunkt integriert werden. Hierfür sind zwei zusätzliche Kameras vorgesehen.	19.694,74 € Siehe Ange- bot_RAU- SCHER GmbH_2021 091706.pdf
5	Kraft- Momen- ten- Sensor	1	Bei Standardrobotern ohne Gelenkmomentsensoren wird eine prozessbezogene Kraft-Momenten-Regelung durch den Einsatz eines Kraft-Momenten-Sensors (KMS) umgesetzt. Zusätzlich bietet ein KMS die Möglichkeit, bei schwierigen Ansätzen direkt dort zu messen, wo die Kräfte auftreten und damit ein noch besseres und ein zusätzliches Ergebnis der Messungen zu erhalten. Um eine umfangreiche Datengrundlage im Bereich der Kraft-Momenten-Regelung zu erhalten wurde ein 6D-Sensor eingeplant.	8.796,12 € Siehe Ange- bot_SCHUN K_2021-09- 15_1031404 4.pdf
6	Re- chen- technik	1	Leistungsfähiger Rechner, um die massive parallelisierte Datenauswertung für die Qualitätskontrolle (Kraft-Momenten-Regelung, Geometrieabgleich, Bildverarbeitung) am Demonstrator durchzuführen. Hierfür wurde der selbe Rechner berücksichtigt, den auch das IWU vorschlägt, um bei der Integration	13.533,00 € Siehe TV IWU

			deren Systems ausreichend Kapazität zur Verfügung zu haben.	
7	Bedien- panel	1	Bedienpanel zur benutzerfreundlichen Bedienung der Anlage.	3.000 €

3.3.4 Reisen

Für Inlandsreisen wird die Reisekostenpauschale von 3 % der Personalkosten angesetzt. Diese sind für überregionale mehrtägige Reisen (Projektregelmeeting, Arbeitstreffen mit deutschen Partnern und Konferenzteilnahmen in Deutschland) vorgesehen.

Für europäische Auslandsreisen wird der Satz des DLR von 750 € pro Reise genommen. Für die Arbeitstreffen sind jeweils 2 Personen erforderlich, da die Bereiche (Prozess und Mensch-Roboter-Kollaboration) in entscheidenden Punkten ein spezielles Wissen erfordern, das gerade bei realen Versuchen, die Teil der Arbeitstreffen sind, notwendig ist. Eine Teilnahme an einer europäischen Konferenz mit

Fachbeitrag im europäischen Raum wird 2023/2024 angestrebt:

	Fachbeitrag im europäischen Raum wird 2023/2024 angestrebt:							
Lfd Nr.	Jahr	Reiseziel	Reisezweck	Anzahl Personen	Darstellung der Notwendigkeit			
1	2022	Frankreich	Kick-Off-Meeting bei Projektpartner	1	Finanziell und ergebnisorientiertes Projekt unter Einhaltung aller Rahmenbedingungen			
2	2022	Frankreich	Arbeitstreffen bei Pro- jektpartner	1	Aufarbeitung aktueller Stand an realen Versuchen			
3	2023	Frankreich	Projektregelmeeting	1	Finanziell und ergebnisorientiertes Projekt unter Einhaltung aller Rahmenbedingungen			
4	2023	Frankreich	Arbeitstreffen bei Pro- jektpartner	2	Versuchsdurchführung vor Ort			
5	2023	Portugal	Konferenzteilnahme ICHRCMTA 2023 mit Vortrag	1	Publikation und Ergebnisdis- semination international, Stei- gerung des Bekanntheitsgrad auf internationaler Ebene			
6	2024	Frankreich	Arbeitstreffen bei Pro- jektpartner	2	Versuchsdurchführung vor Ort			
7	2024	Frankreich	Projektregelmeeting	1	Finanziell und ergebnisorientiertes Projekt unter Einhaltung aller Rahmenbedingungen			
8	2024	Portugal	Konferenzteilnahme ICHRCMTA mit Vor- trag	1	Publikation und Ergebnisdis- semination international, Stei- gerung des Bekanntheitsgrad auf internationaler Ebene			
9	2025	Frankreich	Abschlussmeeting	1	Evaluation der Ergebnisse, Planung weiterer Kooperatio- nen			

- 3.3.5 Innerbetriebliche Leistungen
- 3.3.6 Sonstige unmittelbare Vorhabenkosten
- 3.3.7 Verwaltungskosten

3.3.8 Personal

Für die gesamte Projektlaufzeit ist ein wissenschaftlicher Mitarbeiter der Entgeltgruppe 13 mit mehrjähriger Berufserfahrung geplant. Es ist vorgesehen, dass insgesamt 4 Personen aus den Bereichen Produktion und Automatisierungstechnik, Elektrotechnik, Mechatronik, sowie Robotik und künstlichen Intelligenz eingesetzt werden. am Projekt beteiligt sind. Damit ist ein umfassender Kompetenzbereich abgedeckt, um die unterschiedlichen Problemstellungen bearbeiten zu können.

Es ist der Einsatz von 2 Studierenden des MAPR (Master of Applied Research in Engineering Sciences) Studiengangs geplant. Diese arbeiten während des gesamten Studienverlaufs an einem speziellen Thema, das in drei Projektarbeiten gegliedert ist und aufeinander aufbaut. Im Rahmen dieser Projektarbeiten werden MAPR Studierende für das TV eingesetzt.

Zusätzlich werden Studierende mit Bachelor Abschluss entweder im Rahmen einer Masterarbeit (6 Monate) oder studienbegleitend für das TV miteingeplant. Projekte der Studierenden mit BA Abschluss sind für folgende Arbeiten eingeplant:

Mitarbeit Konzepterstellung, Arbeitspakete im Bereich Entwicklung digitaler Zwilling, Programmierung der Kraft-Regelung, Datenaufzeichnung, Erstellen von Testreihen. Entwicklung von Teilalgorithmen, Evaluierung von Testreihen, Aufbau des Demonstrators, Inbetriebnahme des Demonstrators, Dokumentation

Ein wissenschaftlicher Mitarbeiter führt sowohl die organisatorische als auch die wissenschaftliche Projektbearbeitung durch. Des Weiteren koordinieren die wiss. MA die Zusammenarbeit mit den Industriepartnern.

Eine studentische Hilfskraft bzw. ein Bachelorand ist mit einem Einsatz von 40 h/Monat über die gesamte Laufzeit eingeplant, ein weiterer mit 20 h/Monat bis Ende 2023. Diese unterstützen die wissenschaftlichen Mitarbeiter bei der Vorbereitung, Durchführung und Auswertung der experimentellen Untersuchungen. Die Hilfskraft bereitet z.B. die aufgezeichneten Messdaten auf. Sie unterstützt die wiss. MA zudem bei der Dokumentation und Recherche.

4. Verwertungsplan

4.1 Wirtschaftliche Erfolgsaussichten mit Zeithorizont

Der Grundstein für die wirtschaftliche Verwertung für die HM ist durch den Systemdemonstrator gelegt. Da sich der Demonstrator an praxisnahen, anwendungsbezogenen Applikationen orientiert und in Abstimmung mit den assoziierten Partnern definiert und validiert wird, ist eine Unterstützung bei der Umsetzung für alternative Anwendungen im industriellen Umfeld geplant. Ebenso sind als Ergebnis von Präsentationen neue Industrieprojekte zu erwarten, bei denen sowohl andere Montageaufgaben erprobt und in Kombination mit der Industrie weiterentwickelt werden können. Bereits im Vorfeld erstellen assoziierte Partner weitere mögliche Anwendungsbereiche im industriellen Umfeld, so dass ein Transfer der entwickelten Lösung bereits angedacht ist und sich weitere Projekte abzeichnen, um die bestehende Lösung zu transferieren oder für zusätzliche Anforderungen zu erweitern.

Durch die Bereiche kraftgeregelter Prozess und Mensch-Roboter-Kollaboration, die der Systemdemonstrator abdeckt, ist ein noch weiteres Feld der Ergebnisverwertung im wirtschaftlichen Bereich zu sehen.

So ist die Umsetzung einer KI basierten Kraftregelungsstrategie sowohl für Systemintegratoren und Endkunden interessant und auf neue Applikationen anwendbar, als auch für Roboterhersteller, die an der Entwicklung allgemein einsetzbaren Kraftregelungs-Technologien arbeiten. Da in allen Sparten assoziierte Partner Teil des Konsortiums sind, wird von einer Umsetzung adäquater Anwendungen im Anschluss an das Vorhaben ausgegangen. Durch die Präsentation einer Lösung, die kürzere Taktzeiten, geringere Programmierzeiten bei erhöhter Qualität umsetzt, ist von großem Interesse an der Integration der Lösung auszugehen.

Im Bereich der Mensch-Roboter-Kollaboration sind Präsentationen sowohl für Anwendungen mit kraftgeregelten Montagetätigkeiten vorgesehen als auch allgemein für Anwendungen im MRK Bereich. So ist auch in diesem Bereich mit Projekten zu rechnen, die eine Integration in weitere Anwendungen zu Folge hat. Zusätzlich ist von Anschlussprojekten auf Basis der gewonnenen Erkenntnisse aus einer umfangreichen Analyse der Daten im Bereich der Kraft-Leistungs-Begrenzung zu rechnen. Die deutliche Reduzierung der Sicherheitsinbetriebnahme macht im schnell wachsenden Mensch-Roboter-Kollaborations-Bereich einen erheblichen wirtschaftlichen Aspekt aus. Gerade MRK-Projekte werden dadurch unwirtschaftlich und zu wenig flexibel. Dadurch ist mit einem Transfer der Ergebnisse im Rahmen von Industrieprojekten zu rechnen und mit Drittmittelaufträgen durch Integratoren und Anwender.

4.2 Wissenschaftliche und/oder technische Erfolgsaussichten mit Zeithorizont

Das Teilvorhaben verbindet zwei wesentliche Bereiche der Robotik miteinander, die bei Bedarf auch getrennt voneinander weiterentwickelt werden können. Durch eine Modularisierung, die kontinuierlich erweitert werden kann, wird der Einsatz für weitere Anwendungen erleichtert.

So soll der Demonstrator Grundlage für einen wissenschaftlichen und technischen Informationsaustausch sein. Die Projektergebnisse sollen einem breiten Publikum zur Verfügung gestellt werden, so dass sich daraus neue Projekte sowohl im Forschungs- als auch im Industriebereich ergeben. In der prozessbezogenen Kraftregelung ist eine Erweiterung in Richtung der überlagerten Regelung denkbar, damit ist eine Ausweitung von Montageaufgaben hin zu Aufgaben im Bereich des Schleifens oder Polierens möglich. Dies erfordert zusätzliche Anforderungen an zu entwickelnde Modelle, die in Forschungsprojekten erarbeitet werden und eröffnet zugleich weitere Industriebereiche. Durch die assoziierten Partner bietet sich hier ein breites Spektrum an Einsatzmöglichkeiten.

Im Bereich der Mensch-Roboter-Kollaboration gibt es unterschiedliche Ansätze für die Gewährleistung der Personensicherheit. Durch die Teilnahme an Konferenzen, sollen neue Kooperationen geschlossen, Netzwerke ausgebaut und Ideen für eine umfassende Lösung gefunden werden. So kann die Kombination aus Kraft-Leistungs-Begrenzung in Verbindung mit kapazitiver und bildgebender Sensorik ein zusätzliches Spektrum an Forschungs- und/oder Industrieprojekten eröffnen. Mensch-Roboter-Kollaboration macht derzeit noch einen extrem geringen Anteil der weltweit verkauften Roboteranlagen aus, wird aber vom IFR (International Federation of Robotics) als stark wachsende Sparte der Robotik betrachtet. Die Erhöhung der Flexibilität und einfache Integration sind wichtige Bestandteile der Weiterentwicklung auf diesem Bereich. Da der Demonstrator an der Hochschule verbleibt, kann die Verwertung der gewonnenen Ergebnisse in Forschung und Lehre im Rahmen von Bachelor- oder Masterarbeiten weiter ausgebaut werden, in dem Studierende Projekte bearbeiten, die auf unserem Vorhaben aufbauen, und einen weiteren Schritt in Richtung einfache Programmierung, adaptive Kraftregelung und Konfiguration von Mensch-Roboter-Anlagen entwickeln.

4.3 Wissenschaftliche und wirtschaftliche Anschlussfähigkeit

Durch das Konsortium eröffnet sich für die Hochschule eine große Palette an möglichen Applikationen. Zusätzlich bietet die angewandte Ausrichtung der Hochschule durch die Studierenden, die während ihrer Industriepraktika in vielen unterschiedlichen Unternehmen sind, die Möglichkeit unser Projekt über die Partner und deren Verbindungen hinaus bekannt zu machen. Gerade durch die Ausrichtung Robotik – Kraftregelung – MRK – Künstliche Intelligenz schaffen wir die Grundlage für weitere Entwicklungen in Bereichen, die zukünftig immer mehr Teil der Automatisierung und deshalb auch Inhalt der Forschung in diesen Bereichen sein wird. On-the-fly Programmierung im Bereich der Kraftregelung gänzlich ohne Teach-In Programmierung stellt uns noch vor viele ungelöste Fragen, ebenso die sichere Zusammenarbeit zwischen Mensch und Roboter ohne langwierige Inbetriebnahme. Hohe Taktzeiten bei gleichzeitiger Zusammenarbeit mit Kollisionserkennung und/oder –vermeidung. Die Verbindung mit den Konsortialpartnern stellt eine hervorragende Möglichkeit dar, das gemeinsam erlangte Knowhow weiterzuentwickeln. Unterstützt durch die Kombination aus wissenschaftlicher Expertise der Hochschule München und der Kompetenz der Partner sowohl aus der Industrie als auch im Forschungsumfeld können Aufgabenstellungen, wie oben beschrieben, und auch weitere Herausforderungen erarbeitet werden.

Durch die Bearbeitung von Forschungsthemen in den genannten Bereichen wird der Kompetenzbereich der Hochschule erweitert und ihr Ansehen zusätzlich gestärkt. Auch durch den Einsatz internationaler Studierender in Forschungsprojekten mit stark industriellem Hintergrund sind zusätzliche Projekte in Form von Drittmittelaufträgen zu erwarten.

4.4 Verwertungstabelle

Nachfolgende Verwertungstabelle fasst die Verwertung mit Aufgaben für den Zeithorizont nach Projektende zusammen:

Lfd.Nr.	Bezeichnung	Zeithorizont
1	Ausdehnung der Projektrelevanz durch Fachvorträge und Netz-	fortlaufend
	werke	
2	Einreichung mögliches Folgeprojekt	04/2025
3	Präsentation Systemdemonstrator außerhalb assoziierter Part-	07/2025
	ner	
4	Aufträge für Erweiterung des Anwendungsbereichs	09/2025
5	Präsentation Systemdemonstrator mit erweitertem Umfang	06/2026
6	Technologiepaket Kraft-Regelung	01/2027
7	Abschluss Folgeprojekt	01/2028

5. Arbeitsteilung / Zusammenarbeit mit Dritten

Die Zusammenarbeit dieses deutsch-französischen Konsortiums bündelt die Expertise der unterschiedlichen Partner und sorgt damit für einen umfassenden Ansatz in unterschiedlicher Ausprägung. Durch die Verbindung von Partnern aus dem wissenschaftlichen und industriellen Bereich unterstützt von assoziierten Partnern ist es möglich einen breiten Entwicklungsvorsprung zu erreichen und gleichzeitig den Wissenstransfer für einen breitgefächerten Einsatz zu nützen.

Für den Demonstrator *Adaptive Kraft-Momenten-Regelung im MRK Bereich* ist eine Zusammenarbeit im wissenschaftlichen Bereich mit der EPF in Paris als Unterauftragnehmer geplant. Die EPF unterstützt durch ihre langjährige Expertise im Bereich der Modelbildung im KI Bereich bei der Entwicklungsarbeit. Für den anwendungsorientierten Ansatz wird die HM von KUKA Roboter GmbH und EvoBus France SASU als assoziierte Partner begleitet. KUKA unterstützt speziell im Hinblick auf die Entwicklung von MRK-Robotern und standardisierter Technologiepakete. Zusätzlich bringen sie ihr KnowHow aus ganz unterschiedlichen Industriebereichen ein. EvoBus erstellt für die eigene Produktion eine Liste mit möglichen Anwendungsfeldern und will im Rahmen des Projektes eine Strategie für die erste Integration einer kraftgeregelten MRK-Anlage entwickeln.

Erklärung:

Die Verbundpartner sind im Vorfeld zu einer Übereinkunft über die wesentlichen Vertragsinhalte des abzuschließenden Kooperationsvertrages gekommen. Die im Unionsrahmen für staatliche Beihilfen zur Förderung von Forschung, Entwicklung und Innovation enthaltenen Vorgaben für die Zusammenarbeit von Unternehmen und Forschungseinrichtungen werden eingehalten.

Es besteht eine grundsätzliche Übereinkunft zu den wesentlichen Vertragsinhalten gemäß dem BMBF Merkblatt für Antragsteller/Zuwendungsempfänger zur Zusammenarbeit der Partner von Verbundprojekten.

6. Notwendigkeit der Zuwendung

Eine Durchführung des Forschungsvorhabens ohne Zuwendung ist für eine Hochschule nicht umsetzbar. Die benötigten personellen Ressourcen, sowie die erforderlichen Materialien sind aus Hochschulmitteln nicht leistbar. Zusätzlich ist mit der Lösung des Vorhabens ein hoher technischer Anspruch verbunden und damit auch ein erhebliches Risiko. Eine Durchführung der geplanten Entwicklungen erscheint daher für die Projektpartner auf Grund des finanziellen Risikos ohne Zuwendung nicht möglich.

Die beantragte Zuwendung kann die geplanten Entwicklungen beschleunigen und senkt dadurch zusätzlich das verdeutlichte Risiko im Vergleich zu einer Projektdurchführung ohne Beihilfe. Dadurch werden die wirtschaftlichen Erfolgsaussichten wesentlich erhöht, wodurch die Umsetzung vor allem für die Partner aus der Wirtschaft erst sinnvoll wird. Die Zuwendung stärkt somit die Wirtschaftsregionen, in welcher die Projektpartner tätig sind. Auch wird es ermöglicht, den Projektumfang zu erweitern, mehr Personal im Bereich F&E einzusetzen und generell die Gesamtkosten des Vorhabens zu erhöhen, wodurch die erwarteten Projektergebnisse weitreichender sind.

Abweichungen zur Skizze

Zur eingereichten Verbundvorhabenskizze haben sich folgende Änderungen ergeben:

- 1. Im Balkenplan wurden aufgrund verbesserter chronologischer Abfolge die Arbeitspakete 3.3 Datengrundlage (zuvor 3.4) und 3.4 Entwicklung digitale Zwilling getauscht (zuvor 3.3). Die Datengrundlage ermöglicht erst die Erstellung eines virtuellen Abbilds, welches als Testumgebung zur Erprobung zu entwickelnder Algorithmen dient und später zu einem digitalen Zwilling des Prozesses erweitert wird.
- 2. Aufgrund der Notwendigkeit die Datengrundlage für den Bereich der Kraft-Momenten-Regelung an einem reellen Roboter durchzuführen ist es notwendig einen ersten Teil des Arbeitspakets AP 5.1 "Aufbau und Inbetriebnahme der Systemdemonstratoren" bereits früher anzusiedeln, um die grundlegenden Materialien für die Datengenerierung zu erhalten.
- 3. Finanzielle Unterschiede

7. Literatur

- [1] Y. Li, Q. Lei, C. Cheng, G. Zhang, W. Wang, Z. Xu, "A review: machine learning on robotic grasping," Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018), 110412U (15 March 2019)
- [2] Liu, Jingshu, and Yuan Li. "An Image BasedVisual Servo Approach with Deep Learning for Robotic Manipulation." arXiv e-prints, 2019.
- [3] H. Ravichandar, A. S. Polydoros, S Chernova, and A. Billard. "Recent advances in robot learning from demonstration". Annual Review of Control, Robotics, and Autonomous Systems, 3, 2020.
- [4] B. Ichter, J. Harrison, and M. Pavone, "Learning sampling distributions for robot motion planning," in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 7087–7094
- [5] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, "Hardware for Machine Learning: Challenges and Opportunities", arXiv e-prints, 2016.
- [6] Y. Wang, H. Li, and X. Li, "Re-architecting the on-chip memory subsystem of machine-learning accelerator for embedded devices" in Proc. 35th Int. Conf. Comput.-Aided De sign (ICCAD), New York, NY, USA, 2016, pp. 13:113:6.
- [7] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet, "Lowering the latency of data processing pipelines through fpga based hardware acceleration," in PVLDB, 2019.
- [9] D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt. A review of machine learning for the optimization of production processes. In: International Journal of Advanced Manu facturing Technology (2019).
- [10] A. Stoll, N. Pierschel, K. Wenzel, T. Langer. Process Control in a Press Hardening Produc tion Line with Numerous Process Variables and Quality Criteria. In: Machine Learning for Cyber Physical System (2019).

- [11] L. Penter, P. Link, A. Stoll, A. Albert, S. Ihlenfeldt, Predictive Analysis from numerical and experimental data in press hardening. In: IOP Conference Series Materials Science and Engineering (2019).
- [12] A. Stoll, P. Benner, "Machine Learning for Material Characterization with an Application for Predicting Mechanical Properties", GAMM Mitteilungen, 2021
- [13] H. J. Koriath, M. Hoffmann, T. Langer. Digital engineering Industry 4.0 for machine tools and production equipment. In: Avtomatizacija v promyslennosti (2018).
- [14] T. Langer, M. Richter. Digitalisierung und Produktion in Forschung und Wissenschaft. Energieeffizienz vs. Digitalisierung? In: Fachtagung Energie-Effizienz-Strategie Chemnitz (2018).
- [15] Giovanni De Magistris1, Asim Munawar1, Tu-Hoa Pham1, Tadanobu Inoue1, Phongtharin Vinayavekhin1, Ryuki Tachibana1 1 IBM Research Tokyo, Japan. Experimental Force-Torque Dataset for Robot Learning of Multi-Shape Insertion: arXiv:1807.06749v2 [cs.RO] 25 Jul 2018
- [16] Przemyslaw A. Lasota Massachusetts Institute of Technology, USA plasota@mit.edu Terrence Fong NASA Ames Research Center, USA terry.fong@nasa.gov Julie A. Shah Massachusetts Institute of Technology, USA julie_a_shah@csail.mit.eduA Survey of Methods for Safe Human-Robot Interaction: Foundations and Trends R in Robotics Vol. 5, No. 4 (2014) 261–349
- [17] Devendra P. Garga,*, Manish KumarbOptimization techniques appliedt o multiple manipulators for path planning and torque minimization: Engineering Applications of Artificial Intelligence 15 (2002) 241–252