

随机过程

作者: Huang

时间: May 7, 2025

目录

第1章	离散时间马尔可夫链	1
1.1	马氏链及其转移概率	1
1.2	转移概率矩阵	6
1.3	状态的分类及性质	10
1.4	常返性	12
1.5	不变分布	21

第1章 离散时间马尔可夫链

1.1 马氏链及其转移概率

有一类随机过程,它具备所谓的"无后效性"(Markov 性),即要确定过程将来的状态,知道它此刻的情况就足够了,并不需要对它以往状况的认识,这类过程称为 Markov 过程. 我们将介绍离散时间的 Markov 链(简称马氏链).

本章假定: $T=\{0,1,\cdots\},\ S=\{0,1,2,\cdots,N\}$ (或者 $S:=\mathbb{N}$),所有 r.v. 均定义在同一个概率空间上。用 i,j 表示 S 中元素。

定义 1.1.1 (离散时间马尔可夫链)

随机过程 $\{X_n, n=0,1,2,\cdots\}$ 称为 Markov 链,若它只取有限或可列个值(若不另外说明,以非负整数集 $\{0,1,2,\cdots\}$ 来表示),并且对任意的 $n\geq 0$,及任意状态 $i,j,i_0,i_1,\cdots,i_{n-1}$,有

$$P\{X_{n+1} = j | X_0 = i_0, X_1 = i_1, \cdots, X_{n-1} = i_{n-1}, X_n = i\} = P\{X_{n+1} = j | X_n = i\}$$

$$(1.1)$$

其中 $X_n=i$ 表示过程在时刻 n 处于状态 i,称为 S。式 (1.1) 刻画了 Markov 链的特性,称为 Markov 性,或马氏性,或无记忆性。

定义 1.1.2 (转移概率)

设 $\{X_n, n = 0, 1, ...\}$ 为马氏链, 称

$$P\{X_{n+1} = j | X_n = i\} =: p_{ij}(n)$$

为n 时刻的一步转移概率。若它与n 无关,则记作 p_{ij} ,并称相应的马氏链为齐次的或时齐的。令 $P=(p_{ij})$,称P 为齐次马氏链的转移概率矩阵,简称为转移矩阵, p_{ij} 为一步转移概率。我们只考虑齐次马氏链。

$$P\{X_{n+1} = j | X_0 = i_0, X_1 = i_1, \cdots, X_{n-1} = i_{n-1}, X_n = i\}$$

= $P\{X_{n+1} = j | X_n = i\}$ 马尔可夫性
= $P\{X_1 = j | X_0 = i\}$ 齐次

设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链,具有转移矩阵 $P=(p_{ij})$,则有

$$p_{ij} \ge 0 \quad \forall i, j \in S \coprod$$

$$\sum_{j \in S} p_{ij} = \sum_{j \in S} P(X_1 = j | X_0 = i) = P(X_1 \in S | X_0 = i) = 1 \quad \forall i \in S.$$

定义 1.1.3 (随机矩阵)

称矩阵 $A = (a_{ij})_{S \times S}$ 为随机矩阵,若 $a_{ij} \ge 0 (\forall i, j \in S)$,且 $\sum_{i \in S} a_{ij} = 1 (\forall i \in S)$ 。

由该定义知转移矩阵是随机矩阵。

例题 1.1 赌徒破产问题 系统的状态是 $0 \sim n$,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为 n 时,赌博停止,否则他将持续赌博。每次以概率 p 赢得 1,以概率 q = 1 - p 输掉 1。则每个时刻,该赌徒拥有的钱数服从马尔可夫性吗?能否写出对应的转移概率矩阵?

证明 这个系统的转移矩阵为

例题 1.2 简单随机游动 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是 p,向左移动一步的概率是 q,在原地不动的概率为 r,且 p+q+r=1。 X_0 表示初始状态, X_n 表示质点在时间 n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,证明

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \\ p_{i,i} = P(X_{n+1} = i | X_n = i) = r \end{cases}$$

例题 1.3 设有一蚂蚁在下图爬行,当两个结点相临时,蚂蚁将爬向它临近的一点,并且爬向任何一个邻居的概率 是相同的。

证明 此 Markov 链的转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

定理 1.1.1

设 A, B, C 为三个随机事件,则 P(BC|A) = P(B|A)P(C|AB).

证明

$$P(BC|A) = \frac{P(ABC)}{P(A)} = \frac{P(AB)P(ABC)}{P(A)P(AB)} = P(B|A)P(C|AB).$$

注令 $P(\cdot|A) := P_A$, 则应用乘法公式 $P(BC|A) = P_A(BC) = P_A(C|B) \cdot P_A(B) = P(C|BA)P(B|A)$.

定理 1.1.2

对于事件 A, B, C, 当 P(AB) > 0, 条件

$$P(C|BA) = P(C|B),$$

和条件

$$P(AC|B) = P(A|B)P(C|B)$$

等价。

(

证明

$$\frac{P(ACB)}{P(B)} = \frac{P(AB)}{P(B)} \frac{P(BC)}{P(AB)} \ \ \text{Fix} \ \frac{P(ACB)}{P(AB)} = \frac{P(BC)}{P(B)}. \ \ \mathbb{E} P(C|BA) = P(C|B).$$

定理 1.1.3

对于事件 A, B, C, 当 P(AB) > 0, 条件

$$P(C|BA) = P(C|B),$$

和条件

$$P(AC|B) = P(A|B)P(C|B)$$

等价。

 \Diamond

马氏性的解释:

过去: $A = (X_0 = i_0, \dots, X_{n-1} = i_{n-1}),$

现在: $B = (X_n = i_n)$,

将来: $C = (X_{n+1} = i_{n+1})$ 。

马氏性代表在已知现在的情况下,将来与过去无关。

定理 1.1.4

设S 是马氏链 $\{X_n\}$ 的状态空间,则有

1. 对任意的 $n, m \ge 1$ 有

$$P(X_{n+1} = i_{n+1}, \dots, X_{n+m} = i_{n+m} | X_0 = i_0, \dots, X_n = i)$$

= $P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+m} = i_{n+m} | X_n = i)$

2. 对任意的 $n, m \ge 1$, 以及 $C \subset S^m, A \subset S^n$ 有

$$P((X_{n+1}, X_{n+2}, \dots, X_{n+m}) \in C | (X_0 \dots, X_{n-1}) \in A, X_n = i)$$

$$= P((X_{n+1}, X_{n+2}, \dots, X_{n+m}) \in C | X_n = i)$$

3. 对任意的 $k,m \geq 1$,以及 $t_0 < t_1 < \ldots < t_k < t_{k+1} < \ldots < t_{k+m}, i \in S, C \subset S^m, A \subset S^k$ 有

$$P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | (X_{t_0}, \dots, X_{t_{k-1}}) \in A, X_{t_k} = i)$$

$$= P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} = i)$$

证明 (1) 对 m 进行归纳证明。当 m=1 时有马氏性即得。现在设对 m=k 成立,即已知

$$P(X_{n+1} = i_{n+1}, \dots, X_{n+k} = i_{n+k} | X_0 = i_0, \dots, X_n = i)$$

= $P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+k} = i_{n+k} | X_n = i)$

$$= P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1})$$

$$P(X_{n+1} = i_{n+1} | X_n = i)$$

$$= P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_n = i)$$

$$P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_n = i, X_{n+1} = i_{n+1})$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+k+1} = i_{n+k+1}, \dots, X_{n+2} = i_{n+2}, X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$/ P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$/ P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n+1}, X_n = i, X_{n-1} = i_{n+1}, X_{n+1} = i_{n+1})$$

$$(2)$$

$$P((X_{n+1}, \dots, X_{n+m}) \in C([X_0, \dots, X_{n-1}] \in A, X_n = i, X_{n-1} = i_{n+1}, X_{n+1} = i_{n+1}$$

 $P(X_{n+1} = i_{n+1}, \dots, X_{n+k+1} = i_{n+k+1} | X_0 = i_0, \dots, X_n = i)$

 $P(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i)$

 $= P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_0 = i_0, \dots, X_{n+1} = i_{n+1})$

 $\hat{C} := \{(i_7, i_6, i_5, i_4) | (i_7, i_5) \in C, i_6 \in S, i_4 \in S\}, \ \tilde{A} := \{(i_2, i_1, i_0) | i_2 \in S, i_1 \in A, i_0 \in S\}$

 $C|X_3=i$

$$\begin{split} P((X_7,X_5) \in C | X_3 = i, X_1 \in A) \\ &= P((X_7,X_6,X_5,X_4) \in \tilde{C} | X_3 = i, (X_2,X_1,X_0) \in \tilde{A}) \\ &= P((X_7,X_6,X_5,X_4) \in \tilde{C} | X_3 = i) \\ &= P((X_7,X_5) \in C | X_3 = i) \end{split}$$

注 设 S 是马氏链 $\{X_n\}$ 的状态空间,对任意的 $k, m \ge 1$,以及 $t_0 < t_1 < \ldots < t_k < t_{k+1} < \ldots < t_{k+m}$, $B \subset S$, $A \subset S^k$, $C \subset S^m$,有

$$P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} \in B, (X_{t_{k-1}}, \dots, X_{t_0}) \in A) \neq P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} \in B)$$

注 看不懂也没关系,不影响后面的学习

例题 1.4 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是 p,向左移动一步的概率是 q = 1 - p。 X_0 表示初始状态, X_n 表示质点在时间 n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

设初始分布 $P(X_0 = 0) = P(X_0 = 2) = \frac{1}{2}$, $D := \{1,3\}$ 。证明: 当 $p \neq q$ 时, $P(X_2 = 2|X_0 = 0, X_1 \in D) \neq P(X_2 = 2|X_1 \in D)$.

证明

$$P(X_1 = 1) = P(X_0 = 0)P(X_1 = 1 | X_0 = 0) + P(X_0 = 2)P(X_1 = 1 | X_0 = 2) = \frac{1}{2}p + \frac{1}{2}q = \frac{1}{2},$$

$$P(X_1 = 3) = P(X_1 = 3, X_0 = 2) + P(X_1 = 3, X_0 = 0) = P(X_0 = 2)P(X_1 = 3 | X_0 = 2) = \frac{1}{2}p.$$

故

$$\begin{split} P(X_2 = 2|X_1 \in D) \\ &= \frac{P(X_2 = 2, X_1 \in D)}{P(X_1 \in D)} \\ &= \frac{P(X_2 = 2, X_1 = 1) + P(X_2 = 2, X_1 = 3)}{P(X_1 \in D)} \\ &= \frac{P(X_1 = 1)P(X_2 = 2|X_1 = 1) + P(X_1 = 3)P(X_2 = 2|X_1 = 3)}{P(X_1 = 1) + P(X_1 = 3)} \\ &= \frac{\frac{1}{2}p + \frac{1}{2}pq}{\frac{1}{2} + \frac{1}{2}p} = p\frac{1+q}{1+p} \\ &= \frac{P(X_2 = 2|X_1 \in D, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} \\ &= \frac{P(X_2 = 2, X_1 \in D, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} \\ &= \frac{P(X_2 = 2|X_1 = 1, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} = p \end{split}$$

 $P(X_2=2|X_0=0,X_1\in D)=P(X_2=2|X_0=0,X_1=1)=p\circ\ \ \ \, \exists\ p\neq q\ \ \, \exists,\ \ P(X_2=2|X_0=0,X_1\in D)\neq P(X_2=2|X_1\in D).$

定理 1.1.5

设随机过程 $\{X_n, n \geq 0\}$ 满足:

1.
$$X_n = f(X_{n-1}, \xi_n) (n \ge 1)$$
, 其中 $f: S \times S \to S$, 且 ξ_n 取值在 S 上,

2. $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立,则 $\{X_n, n \geq 0\}$ 是马尔可夫链,而且其一步转移概率为

$$p_{ij} = P(f(i, \xi_1) = j).$$

注 这个定理讲的是如何生成一个马尔可夫链。

例题 1.5 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是p,向左移动一步的概率是q=1-p。 X_0 表示初始状态, X_n 表示质点在时间n的状态。假设初始状态与每次移动相互独立。证明 $\{X_n\}$ 是马氏链,且

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

证明 令 X_n 为质点在时刻 $n \ge 0$ 的位置,

$$\xi_n := \begin{cases} 1 & \text{第n 次向右移动} \\ -1 & \text{第n 次向左移动} \end{cases}$$

 $X_n = X_{n-1} + \xi_n$ 。 转移概率:

$$p_{ij} = P(i + \xi_1 = j) = P(\xi_1 = j - i) = \begin{cases} q & j = i - 1 \\ p & j = i + 1 \end{cases}$$

注 这道例题就是讲述如何生成一个马尔可夫链。

设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链, 具有转移矩阵 $P=(p_{ij})$, 则有

$$p_{ij} \ge 0 \quad \forall i, j \in S \coprod \sum_{j \in S} p_{ij} = 1 \quad \forall i \in S.$$

1.2 转移概率矩阵

定义 1.2.1 (随机矩阵)

称矩阵 $A=(a_{ij})_{S\times S}$ 为随机矩阵,若 $a_{ij}\geq 0 (\forall i,j\in S)$,且 $\sum_{i\in S}a_{ij}=1 (\forall i\in S)$ 。

注 随机矩阵就是转移矩阵。

特别地,记 $P^0 = I(S \perp h)$ 单位矩阵),

$$p_{ij}^{(0)} = \delta_{ij} = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

且.

$$p_{ij}^{(n)} := P(X_n = j | X_0 = i) = P(X_{n+m} = j | X_m = i) \quad \exists m \; £ !$$

表示从 i 出发经 n 步到达 j 的概率。称 $P^{(n)}:=(p_{ij}^{(n)})_{i,j\in S}$ 为 $\{X_n\}$ 的 n 步转移概率矩阵。显然 $P^{(n)}$ 为随机矩阵。

定理 1.2.1 (Chapman-Kolmogorov 方程)

设 $\{X_n\}$ 是齐次马氏链, 具有转移矩阵 P, 则对任意的 $m, n \geq 0$, 有

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \quad \forall i,j \in S, m,n \geq 0. \label{eq:pij}$$

$$P^{(n+m)}=P^{(m)}P^{(n)}=P^{n+m}$$
, 其中 P^{n+m} 表示矩阵 P 的 $n+m$ 次乘积

证明

$$\begin{split} p_{ij}^{(n+m)} &= P(X_{n+m} = j | X_0 = i) = P(X_{n+m} = j, X_n \in S | X_0 = i) \\ &= \sum_{k \in S} P(X_n = k, X_{n+m} = j | X_0 = i) \\ &= \sum_{k \in S} P(X_n = k | X_0 = i) P(X_{n+m} = j | X_0 = i, X_n = k) \\ &= \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}. \end{split}$$

从状态i出发经n+m步到达j的概率可以由转移矩阵P及归纳法证明。

定理 1.2.2

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \quad \forall i,j \in S, m,n \geq 0. \label{eq:pij}$$

$$P^{(n+m)} = P^{(m)}P^{(n)} = P^{n+m}, \text{其中}P^{n+m}$$
表示矩阵 P 的 $n + m$ 次乘积

推论 1.2.1

对任意的正整数 $n, m, k, n_1, n_2, \cdots, n_k$ 和状态 i, j, l, 有

- 1. $p_{ij}^{(n+m)} \geq p_{il}^{(n)} p_{lj}^{(m)};$ 2. $p_{ii}^{(n+m+k)} \geq p_{ij}^{(n)} p_{jl}^{(k)} p_{li}^{(m)};$ 3. $p_{ii}^{(n_1+n_2+\cdots+n_k)} \geq p_{ii}^{(n_1)} p_{ii}^{(n_2)} \cdots p_{ii}^{(n_k)};$ 4. $p_{ii}^{(nk)} \geq (p_{ii}^{(n)})^k.$

证明

$$P^{(n)} = P^{(n-1)}P = P^{(n-2)}P \cdot P = \dots = P^n.$$

例题 1.6 已知马氏链的一步转移概率矩阵为

$$\mathbf{P} = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

求 $P^{(2)}$, $P^{(4)}$ 。

证明

$$\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix}$$

$$\mathbf{P}^{(4)} = \mathbf{P}^{(2)} \cdot \mathbf{P}^{(2)} = \begin{pmatrix} 0.5749 & 0.4251 \\ 0.5668 & 0.4332 \end{pmatrix}$$

例题 1.7 系统的状态是 $0 \sim n$,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为 n 时,赌博停止,否

则他将持续赌博。每次以概率 p 赢得 1,以概率 q = 1 - p 输掉 1。这个系统的转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ q & 0 & p & 0 & \cdots & 0 & 0 & 0 \\ 0 & q & 0 & p & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & q & 0 & p \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}_{(p+1)\times(p+1)}$$

 $n=3, p=q=\frac{1}{2}$ 。赌博者从 2 元赌金开始赌博,求解他经过 4 次赌博之后输光的概率。 证明 这个概率为 $p_{20}^{(4)}=P\{X_4=0|X_0=2\}$,一步转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

利用矩阵乘法得

$$\mathbf{P}^{(4)} = \mathbf{P}^4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{5}{16} & \frac{1}{16} & 0 & \frac{5}{16} \\ \frac{5}{16} & 0 & \frac{1}{16} & \frac{5}{8} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

例题 1.8 甲乙两人进行某种比赛,设每局甲胜的概率是 p,乙胜的概率是 q,和局的概率是 r,p+q+r=1。设 每局比赛后,胜者记"+1"分,负者记"-1"分,和局不记分,且当两人中有一人获得 2 分时结束比赛。以 X_n 表示比赛至第 n 局时甲获得的分数,则 $\{X_n, n=0,1,2,\cdots\}$ 为时齐 Markov 链,求在甲获得 1 分的情况下,不超过 两局可结束比赛的概率。

证明 $\{X_n, n = 0, 1, 2, \dots\}$ 的一步转移概率矩阵为

$$\mathbf{P} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & q & r & p & 0 & 0 & 0 \\ 0 & 0 & q & r & p & 0 & 0 \\ 1 & 0 & 0 & 0 & q & r & p \\ 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

两步转移概率矩阵为

$$\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ q + rq & r^2 + pq & 2pr & p^2 & 0 & 0 \\ q^2 & 2rq & r^2 + 2pq & 2pr & p^2 & 0 \\ 0 & q^2 & 2qr & r^2 + pq & p + pr & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

故在甲获得1分的情况下,不超过两局可结束比赛的概率为

$$p_{1,2}^{(2)} + p_{1,-2}^{(2)} = p + pr$$

例题 1.9 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是p,向左移动一步的概率是q = 1 - p。 X_0 表示初始状态, X_n 表示质点在时间n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,求 $P^{(n)}$ 。

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

$$\begin{cases} x + y = n \\ i - x + y = j \end{cases}$$

故 $x=\frac{n-(j-i)}{2}$ 且 $y=\frac{n+j-i}{2}$,其中 n+j-i 必须是偶数 (n+j-i)+[n-(j-i)]=2n。

回顾 $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$ 与 $P(X_n = j)$

$$\pi_i(n) = P(X_n = i), i \in \mathcal{S},$$

$$\pi(n) = (\pi_i(n), i \in \mathcal{S}).$$

即 $\pi(n)$ 表示 n 时刻 X_n 的概率分布,称 $\pi(0) := (\pi_i(0), i \in S)$ 为马氏链 $\{X_n, n = 0, 1, ...\}$ 的初始分布。 对任意的 $n \ge 0$,

$$\sum_{i \in \mathcal{S}} \pi_i(n) = P(X_n \in \mathcal{S}) = 1.$$

定理 1.2.3

$$\pi(n+1) = \pi(n)\mathbf{P}, \quad \pi(n) = \pi(0)\mathbf{P}^n,$$

其中 \mathbf{P}^n 是 \mathbf{P} 的 n 次幂, 特别有 $\pi(n) = \pi(k)\mathbf{P}^{n-k}$, $0 \le k \le n$.

证明

$$\pi_{j}(n+1) = P(X_{n+1} = j) = P(X_{n} \in \mathcal{S}, X_{n+1} = j)$$

$$= \sum_{i \in \mathcal{S}} P(X_{n} = i, X_{n+1} = j)$$

$$= \sum_{i \in \mathcal{S}} P(X_{n} = i) P(X_{n+1} = j | X_{n} = i) = \sum_{i \in \mathcal{S}} \pi_{i}(n) p_{ij}.$$

令 $P_{:,j} := (p_{ij}, i \in S)'$ 为一步转移概率矩阵的第 j 列。

则 $\pi_i(n+1) = \pi(n)P_{ii}$ 。 写成向量形式, 即为 $\pi(n+1) = \pi(n)P$.

由马氏性可得:对任意 $i_0, i_1, \ldots, i_m \in \mathcal{S}$,和 $n_0 < n_1 < \cdots < n_m$ 有

$$P(X_{n_0} = i_0, X_{n_1} = i_1, \dots, X_{n_{m-1}} = i_{m-1}, X_{n_m} = i_m)$$

$$= P(X_{n_0} = i_0, X_{n_1} = i_1, \dots, X_{n_{m-1}} = i_{m-1}) \cdot P(X_{n_m} = i_m | X_{n_0} = i_0, X_{n_1} = i_1, \dots, X_{n_{m-1}} = i_{m-1})$$

$$= P(X_{n_0} = i_0, X_{n_1} = i_1, \dots, X_{n_{m-1}} = i_{m-1}) P(X_{n_m} = i_m | X_{n_{m-1}} = i_{m-1})$$

$$= P(X_{n_0} = i_0, \dots, X_{n_{m-2}} = i_{m-2}) \cdot P(X_{n_{m-1}} = i_{m-1} | X_{n_{m-2}} = i_{m-2}, \dots, X_{n_1} = i_1, X_{n_0} = i_0) p_{i_{m-1}i_m}^{(n_m - n_{m-1})}$$

$$= \cdots$$

$$= \pi_{i_0}(n_0) p_{i_0 i_1}^{(n_1 - n_0)} p_{i_1 i_2}^{(n_2 - n_1)} \cdots p_{i_{m-1} i_m}^{(n_m - n_{m-1})}.$$

从而知,马氏链 $\{X_n, n=0,1,\cdots\}$ 的任何有限维联合分布由转移矩阵**P**及其初始分布完全确定。

例题 1.10

$$P(X_2 = 1, X_5 = 3, X_7 = 2)$$

$$= P(X_5 = 3, X_2 = 1)P(X_7 = 2|X_5 = 3, X_2 = 1)$$

$$= P(X_2 = 1)P(X_5 = 3|X_2 = 1)P(X_7 = 2|X_5 = 3)$$

$$= \pi_1(2)p_{13}^{(3)}p_{32}^{(2)}$$

上面讨论可知,给定齐次马氏链,可得一随机矩阵 \mathbf{P} ,而且该马氏链的若干转移概率均可由 \mathbf{P} 确定。反之,若给定一随机矩阵 \mathbf{P} ,我们可否确定一齐次马氏链,使其转移概率为给定的 \mathbf{P} 相同?答案是肯定的!

定理 1.2.4 (马氏链的存在性)

对任给的随机矩阵 $\mathbf{P} = (p_{ij})_{S \times S}$, S 上的概率分布为 $\mu = \{\mu_i, i \in S\}$, 存在唯一的概率空间 $(\Omega, \mathcal{F}, \tilde{P})$ 及其上的随机过程 $\{X_n, n = 0, 1, \dots\}$ 使得:

- 1. μ 为该过程的初始分布, 即 $\tilde{P}(X_0 = i) = \mu_i, i \in S$;
- 2. $\{X_n, n=0,1,\cdots\}$ 是以 \mathbf{P} 为转移矩阵的齐次马氏链,即

$$\tilde{P}(X_{n+1} = j | X_n = i) = p_{ij} \quad \forall i, j \in \mathcal{S}, n \geq 0.$$

1.3 状态的分类及性质

定义 1.3.1

设S 是 Markov Chain $\{X_n\}$ 的状态空间

- 1. 如果 $p_{ii}=1$,则称 i 是吸收状态(即可知 $p_{ii}^{(n)}\equiv 1, n\geq 1$);
- 2. 称状态 i 可达状态 j,如果存在状态 $i_1, \ldots, i_n \in S$,使得 $p_{i_1 i_2} p_{i_2 i_3} \cdots p_{i_n j} > 0$ 。或等价地,存在 $n \geq 0$,使得 $p_{i_1}^{(n)} > 0$,则称 i 通 j,记为 $i \to j$.
- 3. 如果 $i \to j$ 且 $j \to i$, 则称 $i \to j$ 是互通的,记为 $i \leftrightarrow j$. 若对一切 $i, j \in S$,均有 $i \leftrightarrow j$ 成立,则称 转移矩阵(或马氏链)是不可约.

命题 1.3.1

互通有下列关系

- 1. 对称性 $i \leftrightarrow j$, 则 $j \leftrightarrow i$;
- 2. 传递性 $i \leftrightarrow j, j \leftrightarrow k$, 则 $i \leftrightarrow k$;

例题 1.11 记某设备的状态为 1,2,3, 其中 1 表示设备运行良好, 2 表示运行正常, 3 表示设备失效。以 X_n 表示设备在时刻 n 的状态, 且假设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链。在有维修及更换条件下,其转移矩阵为

$$\mathbf{P} = \begin{pmatrix} \frac{2}{3} & \frac{3}{12} & \frac{1}{12} \\ 0 & \frac{4}{5} & \frac{1}{5} \\ 0 & 0 & 1 \end{pmatrix}$$

试说明: $1 \rightarrow 2, 2 \rightarrow 3, 3$ 是吸收的。

证明 如图

例题 1.12 记马氏链 $\{X_n, n \geq 0\}$ 的状态空间 $S = \{1, 2, 3\}$ 。对应的一步转移概率矩阵为

$$\mathbf{P} = \begin{pmatrix} \frac{1}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

则状态 1 是否可达状态 2?

证明

$$\frac{2}{3}$$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$

虽然 $p_{12}=0$,但 $p_{12}^{(2)} \geq p_{13}p_{32}=\frac{2}{9}>0$ 。故仍然有 $1\to 2$ 。

定义 1.3.2 (周期)

集合 $\{n,p_{ii}^{(n)}>0\}$ 非空,d(i) 为 $\{n,p_{ii}^{(n)}>0\}$ 的最大公约数,则称 d(i) 为 i 的周期。特别地,当 d(i)=1时,称 i 为非周期的。若集合 $\{n,p_{ii}^{(n)}>0\}=\emptyset$,则称 i 的周期为 ∞ 。

假设 i 状态为 d,能不能推出对所有的 n, $p_{ii}^{(nd)} > 0$?

注

由定义1.3.2 知道,虽然有周期 d,但并不是对所有的 n, $p_{ii}^{(nd)}$ 都大于 0。 但是可以证明,当 n 充分大之后一定有 $p_{ii}^{(dn)} > 0$ 。

例题 1.13 考察如下图

由状态 1 出发再回到状态 1 的可能步长为 $T=\{4,6,8,10,\cdots\}$,它的最大公约数是 2,虽然从状态 1 出发 2 步并不能回到状态 1,我们仍然称 2 是状态 1 的周期。

例题 1.14 如果质点每次向前、向后移动一步的概率是 $\frac{1}{3}$,向后移动两步概率为 $\frac{1}{3}$,则每个状态均为非周期的。

证明 对任意的 i, $p_{i,i+1} = p_{i,i-1} = p_{i,i-2} = \frac{1}{3}$.

$$p_{ii}^{(2)} \ge p_{i,i+1}p_{i+1,i} = \frac{1}{3} \cdot \frac{1}{3} > 0.$$

 $p_{ii}^{(3)} \ge p_{i,i-2}p_{i-2,i-1}p_{i-1,i} = \left(\frac{1}{3}\right)^3 > 0.$
由于 2.3 互素,可知 i 非周期。

例题 1.15 在直线上,如果质点每次向前移动一步的概率为 p,向后移动 5 步概率是 q=1-p,pq>0,则每个状态周期均为 6。

证明 任取 n 满足 $p_{ii}^{(n)} > 0$,则记向前移动次数为 x,向后移动的次数记为 y。

$$\begin{cases} x + y = n \\ x = 5y \end{cases}$$

故可知 n=6y。 同时 $p_{ii}^{(6)} \geq p_{i,i+1}p_{i+1,i+2}p_{i+2,i+3}p_{i+3,i+4}p_{i+4,i+5}p_{i+5,i} > 0$ 。 故周期为 6。

定理 1.3.1

设 $i \leftrightarrow j$,则d(i) = d(j)。

证明 d(i)|d(j) 且 d(j)|d(i)。 证明 d(i) 为 $\{k|p_{jj}^{(k)}>0\}$ 的公约数。

证明 令 $p_{ii}^{(r)} > 0, p_{ij}^{(s)} > 0 (r, s \ge 1)$ 。 任取 $n \in \{k | p_{jj}^{(k)} > 0\}$ 。 则有

$$p_{ii}^{(r+n+s)} \geq p_{ij}^{(s)} p_{jj}^{(n)} p_{ji}^{(r)} > 0, \quad p_{ii}^{(r+s)} \geq p_{ij}^{(s)} p_{ji}^{(r)} > 0.$$

从而由周期的定义知 d(i)|(r+n+s), d(i)|(r+s),故有 d(i)|n。于是 d(i) 为 $\{k|p_{jj}^{(k)}>0\}$ 的公约数。因此,d(i)|d(j)。同理可得 d(j)|d(i)。

引理 1.3.1

设 $m\geq 2$, 正整数 s_1,s_2,\ldots,s_m 的最大公因数为 d, 则存在正整数 N, 使得 n>N 时,必有非负整数 c_1,c_2,\ldots,c_m 使得 $nd=\sum_{i=1}^m c_is_i$ 。

定理 1.3.2

设 $i \in S, d(i) \ge 1$,则存在 $N \ge 1$ 使得 $p_{ii}^{(nd(i))} > 0$ 对一切 $n \ge N$ 成立。

证明 将集合 $\{n \geq 1 : p_{ii}^{(n)} > 0\}$ 按其中元素递增的顺序重新排列成 $\{n_1, \ldots, n_k, \ldots\}$ 。令 \hat{d}_k 为 $\{n_1, n_2, \ldots, n_k\}$ 的最大公约数,则有

$$\hat{d}_1 \ge \hat{d}_2 \ge \ldots \ge \hat{d}_k \ge \hat{d}_{k+1} \ge \ldots \ge d(i)$$

因 $\hat{d_i}$ 和 d(i) 均有限,故存在 n_0 使得: $\hat{d_k}=d(i)$ 对一切 $k>n_0$ 。则由初等数论知: $\exists N\geq 1$,当 $n\geq N$ 时,有非负整数 $s_1\geq 0,\ldots,s_{n_0}\geq 0$ 使得 $nd(i)=s_1n_1+\ldots+s_{n_0}n_{n_0}$ 。故

$$p_{ii}^{(nd(i))} \ge (p_{ii}^{(n_1)})^{s_1} \dots (p_{ii}^{(n_{n_0})})^{s_{n_0}} > 0$$

1.4 常返性

定义 1.4.1 (首达时间)

设对 $j \in S$,令

$$T_{ij} := \begin{cases} \min\{n : n \ge 1, X_n = j, X_0 = i\} & \text{ $\not = 1$} | X_n = j, X_0 = i\} \ne \emptyset \\ +\infty & \text{ $\not = 1$} | X_n = j, X_0 = i\} = \emptyset. \end{cases}$$

若 $X_0 = i$,则称 T_{ij} 为从i出发首次到达j的时间,而 T_{ii} 则表示从i出发首次回到i的时间。

定义 1.4.2 (首达概率)

 $\forall i, j \in S$, 令

$$f_{ij}^{(n)} = P(T_{ij} = n | X_0 = i), \quad n \ge 1.$$

称 $f_{ij}^{(n)}$ 为从 i 出发经过 n 步首次到达 j 的概率。 $f_{ii}^{(n)}$ 为从 i 出发经过 n 步首次回到 i 的概率。

由定义易知:

$$\begin{split} f_{ij}^{(n)} &= P(X_k \neq j, 1 \leq k \leq n-1, X_n = j | X_0 = i) \\ &= \sum_{i_k \neq j, 1 \leq k \leq n-1} P(X_k = i_k, 1 \leq k \leq n-1, X_n = j | X_0 = i) \\ &= \sum_{i_k \neq j, 1 \leq k \leq n-1} p_{ii_1} p_{i_1 i_2} \cdots p_{i_{n-1} j} \\ &= \sum_{i_{n-1} \neq j} \sum_{i_{n-2} \neq j} \cdots \sum_{i_1 \neq j} p_{ii_1} p_{i_1 i_2} \cdots p_{i_{n-1} j} \end{split}$$

例题 1.16 记某设备的状态为 1,2,3,其中 1 表示设备运行良好,2 表示运行正常,3 表示设备失效。以 X_n 表示 设备在时刻 n 的状态,且假设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链。在有维修及更换条件下,其转移矩阵为

$$\mathbf{P} = \begin{pmatrix} \frac{2}{3} & \frac{3}{12} & \frac{1}{12} \\ 0 & \frac{4}{5} & \frac{1}{5} \\ 0 & 0 & 1 \end{pmatrix}$$

求 $f_{13}^{(1)}$, $f_{13}^{(2)}$, $f_{13}^{(3)}$ 。

- 1. $f_{13}^{(1)}=P(T_{13}=1|X_0=1)=p_{13}=\frac{1}{12};$ 2. $f_{13}^{(2)}=p_{11}p_{13}+p_{12}p_{23}=\frac{19}{180};$ 3. $P(T_{13}\geq 3|X_0=1)=1-f_{13}^{(1)}-f_{13}^{(2)}=\frac{73}{90}.$ 表示设备在 [0,3] 内运行的可靠性。

$$\begin{split} f_{13}^{(3)} &= P(T_{13} = 3 | X_0 = 1) \\ &= P(X_3 = 3, X_2 \neq 3, X_1 \neq 3 | X_0 = 1) \\ &= P(X_3 = 3, X_2 = 1, X_1 = 1 | X_0 = 1) \\ &+ P(X_3 = 3, X_2 = 1, X_1 = 2 | X_0 = 1) \\ &+ P(X_3 = 3, X_2 = 2, X_1 = 1 | X_0 = 1) \\ &+ P(X_3 = 3, X_2 = 2, X_1 = 2 | X_0 = 1) \\ &= \frac{1}{27} + 0 + \frac{1}{30} + \frac{1}{25} = \frac{149}{1350} \end{split}$$

$$f_{ij} := \sum_{n=1}^{\infty} f_{ij}^{(n)}$$

$$= \sum_{n=1}^{\infty} P(X_k \neq j, 1 \leq k \leq n-1, X_n = j | X_0 = i)$$

$$= \sum_{n=1}^{\infty} P(T_{ij} = n | X_0 = i) = P(T_{ij} < \infty | X_0 = i)$$

 $f_{ij} \coloneqq \sum_{n=1}^{\infty} f_{ij}^{(n)}$ 表示从 i 出发经有限步首次到达 j 的概率。同理可解释 f_{ii}

定义 1.4.3 (常返状态)

若 $f_{ii} = 1$, 则称 i 为常返。否则, 称 i 为非常返 (或暂留, 瞬时的)。

注

吸收状态 i 满足 $f_{ii} = f_{ii}^{(1)} = 1$

下面分析各状态的性质,以及如何根据转移矩阵 P 来判断其常返性,不可约性等。

定理 1.4.1

对任意 $i, j \in S, n \ge 1$,有:

(a)
$$f_{ij}^{(n)} = \sum_{m=1}^{n} f_{ij}^{(m)} p_{ij}^{(n-m)}$$
 (注意, $p_{ij}^{(0)} \equiv 1$);
(b) $f_{ij}^{(n)} = \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)} I_{\{n>1\}} + p_{ij} I_{\{n=1\}}$;

(b)
$$f_{ij}^{(n)} = \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)} I_{\{n>1\}} + p_{ij} I_{\{n=1\}};$$

(c)
$$i \to j \iff f_{ij} > 0; i \leftrightarrow j \iff f_{ij}f_{ji} > 0$$
.

注由(a) 可知 $p_{ij}^{(n)} \geq f_{ij}^{(n)}$

(a) 证明用的是首次进入方法。即依照首次进入状态j的时刻进行分解(即下面的第二个等式):

$$\begin{aligned} p_{ij}^{(n)} &= P(X_n = j | X_0 = i) = P(X_n = j, T_{ij} \le n | X_0 = i) \\ &= \sum_{m=1}^{n} P(T_{ij} = m, X_n = j | X_0 = i) \\ &= \sum_{m=1}^{n} P(T_{ij} = m | X_0 = i) P(X_n = j | X_0 = i, T_{ij} = m) \\ &= \sum_{m=1}^{n} f_{ij}^{(m)} P(X_n = j | X_0 = i, X_1 \ne j, \dots, X_{m-1} \ne j, X_m = j) \\ &= \sum_{m=1}^{n} f_{ij}^{(m)} p_{ij}^{(n-m)}. \end{aligned}$$

(b) 当n=1时,由 $f_{ij}^{(1)}=p_{ij}$,结论显然成立。对 $n\geq 2$,因为

$$\{T_{ij} = n\} = \{X_1 \neq j, \dots, X_{n-1} \neq j, X_n = j\}$$
$$= \bigcup_{k \neq j} \{X_1 = k, X_2 \neq j, \dots, X_{n-1} \neq j, X_n = j\}.$$

$$f_{ij}^{(n)} = P(T_{ij} = n | X_0 = i)$$

$$= \sum_{k \neq j} P(X_1 = k, X_2 \neq j, \dots, X_{n-1} \neq j, X_n = j | X_0 = i)$$

$$= \sum_{k \neq j} p_{ik} \cdot P(X_2 \neq j, \dots, X_{n-1} \neq j, X_n = j | X_0 = i, X_1 = k)$$

$$= \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)}.$$

(马氏性与齐次性)

(c) 由 (a) 知 $p_{ij}^{(n)} \geq f_{ij}^{(n)}$ ($\forall i \in S, n \geq 1$)。 当 $f_{ij} > 0$ 时,有 $i \rightarrow j$ 。另一方面,若 $i \rightarrow j$,则有 $n \geq 1$ 使得 $p_{ij}^{(n)} > 0$ 。 当 n = 1 时,知 $f_{ij}^{(1)} = p_{ij}^{(1)} > 0$,从而 $f_{ij} > 0$ 。 当 $n \geq 2$ 时,由 (a) 知,

$$p_{ij}^{(n)} = \sum_{m=1}^{n} f_{ij}^{(m)} p_{ij}^{(n-m)} > 0.$$

故有 $1 \le m \le n$ 使得 $f_{ij}^{(m)} > 0$,从而 $f_{ij} > 0$ 。 下面有一个有意思的结论, 务必要记下来

命题 1.4.1

$$\begin{split} f_{ij}^{(k)} &= P(X_k \neq j, 1 \leq k \leq n-1, X_n = j | X_0 = i) \\ &= \sum_{i_k \neq j, 1 \leq k \leq n-1} p_{ii_1} p_{i_1 i_2} \cdots p_{i_{n-1} j} \\ &= \sum_{i_{n-1} \neq j} \sum_{i_{n-2} \neq j} \cdots \sum_{i_1 \neq j} p_{ii_1} p_{i_1 i_2} \cdots p_{i_{n-1} j} \\ &= \sum_{i_{n-1} \neq j} \left(\sum_{i_{n-2} \neq j} \cdots \left(\sum_{i_2 \neq j} \left(\sum_{i_1 \neq j} p_{ii_1} p_{i_1 i_2} \right) p_{i_2 i_3} \right) \cdots p_{i_{n-2} i_{n-1}} \right) p_{i_{n-1} j} \\ &= \sum_{i_1 \neq j} p_{i_1 i_1} \left(\sum_{i_2 \neq j} \cdots \sum_{i_{n-3} \neq j} \left(\sum_{i_{n-2} \neq j} \left(\sum_{i_{n-1} \neq j} p_{i_{n-2} i_{n-1}} p_{i_{n-1} j} \right) \right) \right). \end{split}$$

用矩阵表示:对任意的 $k \geq 2$,

$$f_{ij}^{(k)} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1,j-1} & p_{1,j+1} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2,j-1} & p_{2,j+1} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p_{j-1,1} & p_{j-1,2} & \cdots & p_{j-1,j-1} & p_{j-1,j+1} & \cdots & p_{j-1,n} \\ p_{j+1,1} & p_{j+1,2} & \cdots & p_{j+1,j-1} & p_{j+1,j+1} & \cdots & p_{j+1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{n,j-1} & p_{n,j+1} & \cdots & p_{nn} \end{pmatrix}^{k-2} \begin{pmatrix} p_{1j} \\ p_{2j} \\ \vdots \\ p_{j-1,j} \\ p_{j+1,j} \\ \vdots \\ p_{nj} \end{pmatrix}$$
 $\stackrel{\textbf{1}}{\succeq}$ 左边行向量是转移矩阵的第 i 行去掉第 j 个元素,右边列向量是转移矩阵的第 j 列去掉第 i 个元素,中间的

 \mathbf{E} 左边行向量是转移矩阵的第i 行去掉第j 个元素,右边列向量是转移矩阵的第j 列去掉第i 个元素,中间的 矩阵是转移矩阵去掉第 i 行和第 j 列。

例题 1.17

$$\mathbf{P} = \begin{pmatrix} \frac{2}{3} & \frac{3}{12} & \frac{1}{12} \\ 0 & \frac{4}{5} & \frac{1}{5} \\ 0 & 0 & 1 \end{pmatrix}$$

求 $f_{13}^{(3)}$ 。

证明

$$f_{13}^{(3)} = \begin{pmatrix} \frac{2}{3} & \frac{3}{12} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & \frac{3}{12} \\ 0 & \frac{4}{5} \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ \frac{1}{5} \end{pmatrix}$$
$$= \frac{149}{1350}$$

(1)
$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1-f_{ii}}$$

(2)
$$i$$
 常返 $\iff \sum_{n=0}^{\infty} p_{ii}^{(n)} = +\infty$

(1)
$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}}$$

(2) i 常返 $\iff \sum_{n=0}^{\infty} p_{ii}^{(n)} = +\infty$
(3) i 非常返 $\iff \sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}} < \infty$

证明 (1,2,3) 引进母函数:

$$P_{ij}(s) \triangleq \sum_{n=0}^{\infty} s^n p_{ij}^{(n)}, \quad F_{ij}(s) \triangleq \sum_{n=1}^{\infty} s^n f_{ij}^{(n)}, \quad s \in (0,1).$$

于是有:

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} s^n = \sum_{n=1}^{\infty} \left[\sum_{m=1}^{n} f_{ij}^{(m)} p_{ij}^{(n-m)} \right] s^n = \sum_{m=1}^{\infty} \left[f_{ij}^{(m)} s^m \sum_{n=m}^{\infty} p_{ij}^{(n-m)} s^{n-m} \right],$$

$$P_{ij}(s) - \delta_{ij} = P_{ij}(s) F_{ij}(s).$$

这样有: $F_{ii}(s) = 1 - \frac{1}{P_{ii}(s)}$ 。 任取 N > 1,则有

$$\sum_{n=0}^{N} p_{ii}^{(n)} s^{n} < P_{ii}(s) < \sum_{n=0}^{\infty} p_{ii}^{(n)},$$

令 $s \uparrow 1$, 在令 $N \to \infty$ 由单调收敛定理可知 $P_{ii}(s) \to \sum_{n=0}^{\infty} p_{ii}^{(n)}$, 令 $f_{ii} = \lim_{s \uparrow 1} F_{ii}(s)$, 及 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \lim_{s \uparrow 1} P_{ii}(s)$ 可得: 若 $f_{ii} = 1$, 则有 $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$ 。故 (1)(2)(3) 得证。

推论 1.4.1

若j为非常返状态,则对任意的 $i \in S$,

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty, \quad \lim_{n \to \infty} p_{ij}^{(n)} = 0.$$

证明 对给定的 N,

$$\sum_{n=1}^{N} p_{ij}^{(n)} = \sum_{n=1}^{N} \sum_{l=1}^{n} f_{ij}^{(l)} p_{ij}^{(n-l)}$$

$$= \sum_{l=1}^{N} \sum_{n=l}^{N} f_{ij}^{(l)} p_{ij}^{(n-l)}$$

$$= \sum_{l=1}^{N} f_{ij}^{(l)} \sum_{m=0}^{N-l} p_{ij}^{(m)}$$

$$\leq \sum_{l=1}^{N} f_{ij}^{(l)} \sum_{n=0}^{N} p_{ij}^{(n)}.$$

 $\diamondsuit N \to \infty$,

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} \le \sum_{l=1}^{\infty} f_{ij}^{(l)} \left(1 + \sum_{n=1}^{\infty} p_{ij}^{(n)} \right) \le 1 + \sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty.$$

由于 $p_{ij}^{(n)} \ge 0$,故 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ 。

推论 1.4.2

若 j 为常返状态,则当 $i \rightarrow j$ 时,

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty.$$

 \sim

证明 由于 $i \rightarrow j$, 故存在m > 0使得 $p_{ij}^{(m)} > 0$, 故

$$p_{ij}^{(m+n)} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)} \geq p_{ij}^{(m)} p_{jj}^{(n)}$$

故 $\sum_{n=1}^{\infty} p_{ij}^{(m+n)} \ge p_{ij}^{(m)} \sum_{n=1}^{\infty} p_{jj}^{(n)} = \infty$ 。

$$I_n(i) := \begin{cases} 1 & X_n = i \\ 0 & X_n \neq i \end{cases}$$

$$S(i) := \sum_{n=0}^{\infty} I_n(i)$$

则可证明

$$E(S(i)|X_0 = i) = E\left[\sum_{n=0}^{\infty} I_n(i)|X_0 = i\right]$$
$$= \sum_{n=0}^{\infty} E[I_n(i)|X_0 = i]$$
$$= \sum_{n=0}^{\infty} p_{ii}^{(n)}.$$

即由 i 出发回到 i 的平均次数。

$$g_{ij} := P(有无穷多个n \ge 1使得X_n = j|X_0 = i)$$

定理 1.4.3

对一切的i,j

(i) $g_{ii} = \lim_{n \to \infty} (f_{ii})^n$, $g_{ij} = f_{ij}g_{jj}$.

(ii) 设i为常返态, $i \rightarrow j$,则 $g_{ij} = f_{ij} = 1$.

故 $g_{ij}(m) \downarrow g_{ij}$

$$= \sum_{k=1}^{\infty} P(X_k = j, X_v \neq j, 0 < v < k | X_0 = i) \cdot P(\text{$\underline{\Sigma}$} \text{\underline{V}} \text{$\underline{\eta}$} \text{\underline{n}} \text{\underline{V}} \text{\underline{N}} + 1 \text{ $\underline{\psi}$} \text{\underline{H}} \text{\underline{H}} \text{\underline{H}} \text{\underline{H}} = j | X_k = j, X_v \neq j, 0 < v < k, X_k = j)$$

$$= \sum_{k=1}^{\infty} f_{ij}^{(k)} P(\mathbb{E} \, \text{\not} \, \text{f} \, m \, \text{\uparrow} \, n \ge 1 \, \text{\not} \, \text{\notin} \, X_n = j | X_0 = i)$$
$$= \sum_{k=1}^{\infty} f_{ij}^{(k)} g_{ij}(m) = f_{ij} g_{ij}(m)$$

令 $m \to \infty$,则有 $g_{ij} = f_{ij}g_{ij}$ 由 $g_{ij}(m+1) = f_{ij}g_{ij}(m)$ 可知有

$$g_{ij}(m+1) = f_{ij}g_{ij}(m) = \cdots (f_{ij})^{m+1}.$$

故 (i) $g_{ii} = \lim_{n \to \infty} g_{ii}(n) = \lim_{n \to \infty} (f_{ii})^n$, $g_{ij} = f_{ij}g_{ij}$.

定理 144

设i为常返态, $i \rightarrow j$,则 $g_{ij} = f_{ij}g_{ii} = 1$.

证明 对任意的 $m \ge 1$ 以及 $l \in S$

$$g_{il} = P(有无穷多个n \ge 1 使得X_n = l | X_0 = i)$$

 $= P(X_m \in S, 有无穷多个n \ge 1 使得X_n = l | X_0 = i)$
 $= \sum_k P(X_m = k; 有无穷多个n \ge 1 使得X_n = l | X_0 = i)$
 $= \sum_k P(X_m = k; 有无穷多个n \ge m + 1 使得X_n = l | X_0 = i)$
 $= \sum_k P(X_m = k)P(有无穷多个n \ge m + 1 使得X_n = l | X_m = k, X_0 = i)$
 $= \sum_k p_{ik}^{(m)} P(有无穷多个n \ge m + 1 使得X_n = l | X_m = k, X_0 = i)$
 $= \sum_k p_{ik}^{(m)} g_{kl}$

由于i常返,

$$0 = 1 - g_{ii} = \sum_{k} p_{ik}^{(m)} (1 - g_{kl}).$$

从而对一切 $m \ge 1$ 以及 $k \in S$, $p_{ik}^{(m)}(1 - g_{kl}) = 0$. 若 $i \to j$, 则存在 $m \ge 1$ 使得 $p_{ij}^{(m)} > 0$,此时有 $g_{ij} = 1$,但 $f_{ij} \ge g_{ij}$.

定理 1.4.5

设i常返,若 $i \rightarrow j$,则 $g_{ij} = f_{ij} = f_{ii} = 1$, $j \leftrightarrow i$,并且j也是常返的。

 \sim

证明 设 n, m 使得 $p_{ij}^{(m)} p_{ji}^{(n)} > 0$ 。 对任意的 $s \ge 1$,

$$p_{ij}^{(m+s+n)} \ge p_{ij}^{(n)} p_{ij}^{(s)} p_{ij}^{(m)}$$
.

两边对s求和得

$$\sum_{n=1}^{\infty} p_{ij}^{(m+s+n)} \ge p_{ij}^{(n)} p_{ij}^{(m)} \sum_{n=1}^{\infty} p_{ii}^{(s)} = \infty.$$

故由(2)可知状态 j 常返。

例题 1.18 考虑直线上无限制的随机游动,状态空间为 $S = \{0, \pm 1, \pm 2, \cdots\}$,转移概率为 $p_{i,i+1} = 1 - p, p_{i,i-1} = p, i \in S(0 。对于状态 0,可知 <math>p_{00}^{(2n+1)} = 0, n = 1, 2, \cdots$,即从 0 出发奇数次不可能返回到 0。而

$$p_{00}^{(2n)} = {2n \choose n} p^n (1-p)^n = \frac{(2n)!}{n!n!} [p(1-p)]^n$$

即经过偶数次回到0当且仅当它向左、右移动距离相同。

由 Stirling 公式知,当 n 充分大时, $n! \sim n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}$,则 $p_{00}^{(2n)} \sim \frac{[4p(1-p)]^n}{\sqrt{\pi n}}$ 。而 $p(1-p) \leq \frac{1}{4}$ 且 $p(1-p) = \frac{1}{4} \iff p = \frac{1}{2}$ 。于是 $p = \frac{1}{2}$ 时, $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$,否则 $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty$,即当 $p \neq \frac{1}{2}$ 时状态 0 是非常返状态, $p = \frac{1}{2}$ 时是常返状态。显然,过程的各个状态都是相通的,故以此可得其他状态的常返性。(请读者自己考虑它们的周期是什么?)

定义 1.4.4 (正常返状态)

设i常返,若

$$\mu_i := \sum_{n=1}^{\infty} n f_{ii}^{(n)} = \sum_{n=1}^{\infty} n P(T_{ii} = n | X_0 = i) < \infty,$$

则称 i 为正常返的; 否则称之为零常返的

明显: $E[T_{ii}|X_0=i]=\mu_i$ 为从 i 出发回到 i 的平均时间。

定义 1.4.5 (遍历性)

若状态 i 是正常返且非周期的,则称它是遍历的。

例题 **1.19** 记 $S = \{1, 2, 3, 4\}$.

$$\mathbf{P} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & \frac{1}{3} & \frac{2}{3} & 0\\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

判断状态 1, 2, 3, 4 是常返性还是非常性。若是常返,进一步判断是正常返还是零常返?

证明 $f_{444}^{(n)} = 0, f_{444} = 0 \quad \forall n \ge 1;$

$$f_{33}^{(1)} = \frac{2}{3}, f_{33}^{(n)} = 0, f_{33} = f_{33}^{(1)} = \frac{2}{3} \forall n \ge 2;$$

因此: 3和4非常返。

$$f_{11}^{(1)} = \frac{1}{2}, f_{11}^{(2)} = p_{12}p_{21} = \frac{1}{2}, f_{11}^{(n)} = 0, \forall n \geq 3; f_{11} = \sum_{n=1}^{\infty} f_{11}^{(n)} = 1.$$

$$f_{11}^{(1)} = \frac{1}{2}, f_{11}^{(2)} = p_{12}p_{21} = \frac{1}{2}, f_{11}^{(n)} = 0, \forall n \geq 3; f_{11} = \sum_{n=1}^{\infty} f_{11}^{(n)} = 1.$$

$$f_{222}^{(1)} = 0, f_{222}^{(2)} = p_{21}p_{12} = \frac{1}{2}, f_{22}^{(3)} = p_{21}p_{11}p_{12} = \frac{1}{2} \cdot \frac{1}{2}, \cdots, f_{22}^{(n+1)} = \frac{1}{2^n}, \forall n \geq 1; f_{22} = \sum_{n=1}^{\infty} f_{22}^{(n)} = 1.$$

$$\boxtimes \mathbb{H}: \ \mu_1 = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{3}{2}; \mu_2 = \sum_{n=1}^{\infty} n f_{22}^{(n)} = \sum_{n=2}^{\infty} n \cdot \frac{1}{2^{n-1}} = 3.$$

于是: 1和2均正常返, 3和4非常返。

定理 1.4.6

设P不可约,周期d>1,则有

- (a) 对任给定的 $i,j \in S$,若 $p_{ij}^{(m)} > 0, p_{ij}^{(n)} > 0$,则有 d|(n-m)。同时存在唯一的 r,使得只要 $p_{ii}^{(n)} > 0$ 就有 n = kd + r。
- (b) 状态空间 S 可分成 d 个不相交的集合的并:

$$S = G_1 \cup G_2 \cup \cdots \cup G_d,$$

其中,从任一 G_m 中的状态出发,下一步到达 $G_{m+1(\mod d)}$ 中某状态的概率大于0;

(c) 链 P^d 是非周期的,且 $\sum_{k \in G_m} p_{ik}^{(d)} = 1 \ \forall i \in G_m$ 。且将 P^d 限制在 G_m 上时,构成一个不可约非周 期的子链。

证明 (a) 由 $j \to i$, 存在 $k \ge 1$ 使得 $p_{ij}^{(k)} > 0$, 于是有

$$p_{ii}^{(n+k)} \ge p_{ij}^{(n)} p_{ji}^{(k)} > 0, \quad p_{ii}^{(m+k)} \ge p_{ij}^{(m)} p_{ji}^{(k)} > 0$$

故 $d \mid (n+k)$ 且 $d \mid (m+k)$, 于是有 $d \mid (n-m)$ 。 因此存在唯一的 r, 使得 $n = k_1 d + r$, $m = k_2 d + r$ 。

(b) 先固定 $i \in S$, 令

$$G_1 \triangleq \{k : \exists n, \ p_{ik}^{(nd+1)} > 0\},\$$

$$G_2 \triangleq \{k_2 : \exists k_1 \in G_1 \notin \mathcal{P}_{k_1 k_2} > 0\},\$$

$$G_m \triangleq \{k_m : \exists k_{m-1} \in G_{m-1} \notin \{p_{k_{m-1}k_m} > 0\} \quad (m = 2, \dots, d).$$

对任意的 $k_1 \in G_1$, 由 $\sum_{j \in S} p_{k_1,j} = 1$ 知存在 $k_2 \in S$ 使得 $p_{k_1k_2} > 0$, 故 $G_2 \neq \emptyset$ 。依次类推, $G_m \neq \emptyset$ (m = 2, ..., d)。 由 (a) 知 G_1, \ldots, G_d 互不相交。若存在 $j \in G_{d_1} \cap G_{d_2}$,则有

$$p_{ij}^{(nd+d_1)} > 0, \quad p_{ij}^{(md+d_2)} > 0$$

因此 $d \mid (d_2 - d_1)$,故 $G_{d_1} = G_{d_2}$ 。

由 P 不可约知 $G_1 \cup \cdots \cup G_d = S$ (即 $i \to i_1 \to \cdots \to i_n \to j$)。事实上,任取 $j \in S$,存在 m 使得 $p_{ij}^{(m)} > 0$ 。 设m = kd + r,则 $j \in G_r$ 。

(c) 由定理 1.3.2知 P^d 是非周期的。令 $\widetilde{P}:=P^d$ 为一步转移矩阵。对任意 $j\in S$,存在 N 使得当 $n\geq N$ 时 $p_{i,i}^{(nd)}>0$ 。取

$$\widetilde{p}_{ij}^{(N)} := p_{ij}^{(Nd)} > 0, \quad \widetilde{p}_{ij}^{(N+1)} := p_{ij}^{((N+1)d)} > 0$$

其中 $\widetilde{p}_{ik} := p_{ik}^{(d)}$ 。由于(N, N+1) = 1,故 \widetilde{P} 非周期。

由 (b) 知
$$\sum_{k \in G_m} p_{jk}^{(d)} = 1 \ (\forall j \in G_m, G_m \in \{G_1, \dots, G_d\})$$
。 因此

$$P^d|_{G_m} := \left(p_{ij}^{(d)}\right)_{i,j \in G_m}$$

为随机矩阵。对任意 $j,k\in G_m$,由不可约性存在 $l\in\mathbb{N}$ 使得 $p_{jk}^{(ld)}>0$,即在 $P^d|_{G_m}$ 中 l 步可达,故 $P^d|_{G_m}$ 不可约。

 \succeq (c) 将周期矩阵 P^d 限制在 G_m 上时,构成一个不可约非周期的子链。

例题 **1.20** 记 $S = \{1, 2, 3, 4, 5, 6\}.$

$$\mathbf{P} = \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 \end{pmatrix}$$

证明 取初始状态 1,则有

$$G_1 := \{3, 5\}.$$

$$G_2 := \{2\}.$$

$$G_3 := \{1, 4, 6\}.$$

例题 1.21

$$\mathbf{P}^{(3)} = \begin{pmatrix} \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{7}{12} & 0 & \frac{5}{12} & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 & \frac{7}{12} & 0 & \frac{5}{12} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

证明

$$P^{(3)}|_{G_1} = \begin{pmatrix} \frac{7}{12} & \frac{5}{12} \\ \frac{7}{12} & \frac{5}{12} \end{pmatrix}$$

$$P^{(3)}|_{G_2} = \begin{pmatrix} 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

1.5 不变分布

若知极限 $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j$ 存在且不依赖于 i,则由

$$P^{n+1} = P^n P \quad (p_{ij}^{(n+1)} = \sum_{l \in S} p_{il}^{(n)} p_{lj})$$

及 Fatou 引理知:

$$\pi_j \ge \sum_i \pi_i p_{ij} \quad \forall j \in S \coprod \sum_i \pi_j \le 1.$$

从而设存在一状态 $k \in S$ 使得 $\pi_k > \sum_i \pi_i p_{ik}$ 。

$$\sum_{j} \pi_{j} > \sum_{j} \sum_{i} \pi_{i} p_{ij} = \sum_{i} \pi_{i} \sum_{j} p_{ij} = \sum_{i} \pi_{i},$$

矛盾。

故

$$\pi_j = \sum_i \pi_i p_{ij} \quad \forall j \in S.$$

记 $\pi := (\pi_i, i \in S)$,则有 $\pi = \pi P$.

定义 1.5.1

称 $v=\{v_i,i\in\mathcal{S}\}$ 为 P 的不变测度,如果 $0\leq v_i<\infty (i\in\mathcal{S})$ 且 $v=vP,v\neq0.$

$$v_j = \sum_i v_i p_{ij} \quad \forall j \in \mathcal{S}.$$

定义 1.5.2 (不变分布)

若 $\{\pi_i, i \in \mathcal{S}\}$ 为 \mathcal{S} 上的概率分布,且它满足对任意的 $j \in \mathcal{S}$ 有 $\pi_j = \sum_i \pi_i p_{ij}$,则称 $\{\pi_i, i \in \mathcal{S}\}$ 为 P (或该马氏链) 的不变分布或平稳分布.

回顾 $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$ 与 $P(X_n = j)$

$$\pi_i(n) = P(X_n = i), i \in \mathcal{S},$$

$$\pi(n) = (\pi_i(n), i \in \mathcal{S}).$$

即 $\pi(n)$ 表示 n 时刻 X_n 的概率分布,称 $\pi(0) := (\pi_i(0), i \in S)$ 为马氏链 $\{X_n, n = 0, 1, \ldots\}$ 的初始分布.

$$\pi(n+1) = \pi(n)P,$$

$$\pi(n) = \pi(0)P^n,$$

设 $\pi := (\pi_i, i \in S)$ 为不变分布,即 $\pi = \pi P$ 。

若令马氏链的初始分布 $\pi(0) := \pi$ 。会怎样?则有递归关系:

$$\pi = \pi P = \pi P \cdot P = \pi \cdot P^2 = \dots = \pi P^n.$$

即 $\pi(0) = \pi(0)P^n = \pi(n)$ 。即马氏链任意时刻的分布都为初始分布。

现在考虑

$$e_{ji}^{(n)} = P(X_n = i, X_m \neq j, 0 < m < n | X_0 = j)$$
(5.2)

$$e_{ji} := \sum_{n=1}^{\infty} e_{ji}^{(n)}.$$

定理 1.5.1

若j常返,则有: $V := (v_i := e_{ji}, i \in S)$ 为不变测度,且

$$e_{jj} = \sum_{n=1}^{\infty} f_{jj}^{(n)} = 1.$$

注

$$e_{jj}^{(n)} = f_{jj}^{(n)}.$$

证明 由定义知

$$e_{ji}^{(n)} = P(X_n = i, X_m \neq j, 0 < m < n | X_0 = j) \quad e_{ji}^{(1)} = p_{ji}.$$
 (5.3)

$$\begin{split} e_{ji}^{(n+1)} &= P(X_{n+1} = i, X_v \neq j, 0 < v < n+1 | X_0 = j) \\ &= \sum_{k \neq j} P(X_{n+1} = i, X_n = k, X_v \neq j, 0 < v < n | X_0 = j) \\ &= \sum_{k \neq j} P(X_n = k, X_v \neq j, 0 < v < n | X_0 = j) p_{ki} \\ &= \sum_{k \neq j} e_{jk}^{(n)} p_{ki}. \end{split}$$

$$e_{ji} = \sum_{n=1}^{\infty} e_{ji}^{(n)}$$

$$= \sum_{n=2}^{\infty} \sum_{k \neq j} e_{jk}^{(n-1)} p_{ki} + p_{ji}$$

$$= \sum_{k \neq j} \sum_{n=1}^{\infty} e_{jk}^{(n)} p_{ki} + p_{ji}$$

$$= \sum_{k \neq j} e_{jk} p_{ki} + p_{ji}$$

由于 $e_{jj}^{(n)}=f_{jj}^{(n)}$,故 $e_{jj}=\sum_{n=1}^{\infty}f_{jj}^{(n)}=f_{jj}=1>0$ 。 令 $v:=(v_i:=e_{ji},i\in\mathcal{S})$ 。下证 v 为不变测度。由上式可知 $e_{ji}:=\sum_k e_{jk}p_{ki}$ 即 $v_i:=\sum_k v_kp_{ki}$ 。同时迭代 可知

$$e_{ji} = \sum_{k \in \mathcal{S}} e_{jk} p_{ki} = \sum_{k \in \mathcal{S}} \left(\sum_{s \in \mathcal{S}} e_{js} p_{sk} \right) p_{ki} = \sum_{s \in \mathcal{S}} e_{js} \sum_{k \in \mathcal{S}} p_{sk} p_{ki} = \sum_{s \in \mathcal{S}} e_{js} p_{si}^{(2)}.$$

且由 $e_{ii} = 1 > 0$ 可知 $\{e_{ii}, i \in \mathcal{S}\}$ 非负且不全为 0。

$$e_{ji} = \sum_{k \in \mathcal{S}} e_{jk} p_{ki} = \sum_{k \in \mathcal{S}} \left(\sum_{s \in \mathcal{S}} e_{js} p_{sk} \right) p_{ki} = \sum_{s \in \mathcal{S}} e_{js} \sum_{k \in \mathcal{S}} p_{sk} p_{ki} = \sum_{s \in \mathcal{S}} e_{js} p_{si}^{(2)}$$
$$= \sum_{s \in \mathcal{S}} e_{js} p_{si}^{(n)}$$

且由 $e_{ii} > 0$ 可知 $\{e_{ii}, i \in \mathcal{S}\}$ 非负且不全为 0。下证 $v_i = e_{ii} < \infty$ 。

若j不可达状态i,则有 $v_i := e_{ii} = 0$ 。

 $\ddot{a} j \to i$, 则由常返可知, $i \leftrightarrow j$ 。 故存在 $n \ge 1$ 使得 $p_{ii}^{(n)} > 0$ 。

故
$$1 = v_i = e_{ji} = \sum_{k \in S} e_{jk} p_{ki}^{(n)} \ge e_{ji} p_{ij}^{(n)}$$
。

因此,
$$e_{ji} \leq \frac{1}{p_{ii}^{(n)}} < \infty$$
。

引理 1.5.1

设马氏链有不变测度 $V=(v_i,i\in\mathcal{S})$ 。若 $v_i>0,\ i\to j,\ 则\ v_j>0$ 。特别地,若链不可约,则 $v_j>0$, $j\in\mathcal{S}$ 。

证明 由于 $v_i > 0$, $i \to j$, 则存在 $n \ge 1$ 使得 $p_{ij}^{(n)} > 0$ 。 由 $v_j = \sum_k v_k p_{kj}^{(n)} \ge v_i p_{ij}^{(n)} > 0$. 由于不变测度不恒为 0, 至少存在 $v_i > 0$ 。由于该链不可约,则对任意的 $j \in \mathcal{S}$ 有 $i \to j$ 。故 $v_i > 0$ 。

引理 1.5.2

设链常返不可约,则不计一个常数因子,不变测度唯一。

m

证明

证明可见何声武《随机过程引论》定理 5.3.

即证明任取 $\mu := (\mu_i, i \in \mathcal{S})$ 为另一不变测度。则有对任意的 $i \in \mathcal{S}$ 有 $\mu_i = \mu_j e_{ji}$. 即 $(\mu_i, i \in \mathcal{S})$ 与 $(e_{ji}, i \in \mathcal{S})$ 只差一个常数。

引理 1.5.3

设 $V = (v_i, i \in S)$ 为马氏链 $\{X_n\}$ 的平稳分布, $v_i > 0$ 则j 为常返态。

 \heartsuit

证明 反证法:设 j 为非常返态。由推论 4.6 可知对任意的 $i \in \mathcal{S}$ 有 $\lim_{n \to \infty} p_{ij}^{(n)} = 0$ 。由于 $v_j = \sum_{i \in \mathcal{S}} v_i p_{ij}^{(n)}$,令 $n \to \infty$,由控制收敛定理可知 $v_j = 0$ 。矛盾。

引理 1.5.4

$$\sum_{i \in \mathcal{S}} e_{ji} = \begin{cases} \mu_j := E[T_{ij}|X_0 = j] & \textit{若j为常返态 \\ \infty & \textit{若j为非常返态 \end{cases}$$

 $^{\circ}$

证明 对任意的 $n \ge 1$ 以及 $i, j \in S$ 。

$$\sum_{i \in \mathcal{S}} e_{ji}^{(n)} = \sum_{i \in \mathcal{S}} P(X_n = i, X_v \neq j, 0 < v < n | X_0 = j)$$

$$= P(X_v \neq j, 0 < v < n | X_0 = j)$$

$$= P(T_{ij} \ge n | X_0 = j)$$

$$= P(T_{ij} = \infty | X_0 = j) + \sum_{v=n}^{\infty} P(T_{ij} = v | X_0 = j)$$

$$= (1 - f_{jj}) + \sum_{v=n}^{\infty} f_{jj}^{(v)}.$$

引理 1.5.5

$$\sum_{i \in \mathcal{S}} e_{ji} = \begin{cases} \mu_j := E[T_{ij}|X_0 = j] & \textit{若j为常返态 \\ \infty & \textit{\textit{若j}为非常返态 \end{cases}$$

C

证明

$$\sum_{i \in S} e_{ji} = \sum_{i \in S} \sum_{n=1}^{\infty} e_{ji}^{(n)} = \sum_{n=1}^{\infty} \left[(1 - f_{jj}) + \sum_{v=n}^{\infty} f_{jj}^{(v)} \right].$$

故若 j 为非常返态, $f_{jj} < 1$, 则 $\sum_{i \in S} e_{ji} = \infty$ 。

若
$$j$$
 为常返态, $f_{jj}=1$,则 $\sum_{i\in S}e_{ji}=\sum_{n=1}^{\infty}\sum_{v=n}^{\infty}f_{jj}^{(v)}=\sum_{v=1}^{\infty}vf_{jj}^{(v)}=\mu_{j}$.从上述结论可知若 j 是正常返的,则若令 $\nu_{i}:=\frac{e_{ji}}{\mu_{j}}$ 。则有

$$\sum_{i \in \mathcal{S}} \nu_i = \sum_{i \in \mathcal{S}} \frac{e_{ji}}{\mu_j} = 1,$$

且由 $e_{ji} = \sum_{k \in \mathcal{S}} e_{jk} p_{ki}$,可知 $\nu_i = \sum_{k \in \mathcal{S}} \nu_k p_{ki}$ 。即 $\nu := (\nu_i, i \in \mathcal{S})$ 为平稳分布。

设 $P=(P_1,P_2,\ldots,P_m)$ 是马氏链的一步转移概率矩阵, P_j 是 P 的第 j 列,设 $\pi:=(\pi_1,\pi_2,\ldots,\pi_m)$ 为平稳 分布。则方程组

$$\pi = \pi P, \quad \sum_{j=1}^{m} \pi_j = 1$$
 (5.1)

和

$$(\pi_1, \pi_2, \dots, \pi_{m-1}) = \pi(P_1, P_2, \dots, P_{m-1}), \quad \sum_{j=1}^m \pi_j = 1$$
 (5.2)

等价。实际上,

$$\pi = \pi P \text{ ID}(\pi_1, \pi_2, \dots, \pi_{m-1}, \pi_m) = \pi(P_1, P_2, \dots, P_{m-1}, P_m).$$