CHAPTER 5 REVIEW PAGE 378

Exercises

1. $\frac{8}{3}$ 3. $\frac{7}{12}$ **5.** $\frac{4}{3} + 4/\pi$ **7.** $64\pi/15$ **9.** $1656\pi/5$

11. $\frac{4}{3}\pi(2ah+h^2)^{3/2}$ **13.** $\int_{-\pi/3}^{\pi/3} 2\pi(\pi/2-x)(\cos^2x-\frac{1}{4}) dx$

15. (a) $2\pi/15$ (b) $\pi/6$ (c) $8\pi/15$

17. (a) 0.38 (b) 0.87

19. Solid obtained by rotating the region $0 \le y \le \cos x$,

 $0 \le x \le \pi/2$ about the y-axis

21. Solid obtained by rotating the region $0 \le x \le \pi$,

 $0 \le y \le 2 - \sin x$ about the x-axis

25. $\frac{125}{3}\sqrt{3}$ m³ **23**. 36 **27.** 3.2 J

29. (a) $8000\pi/3 \approx 8378$ ft-lb (b) 2.1 ft

31. f(x)

PROBLEMS PLUS - PAGE 380

1. (a) $f(t) = 3t^2$ (b) $f(x) = \sqrt{2x/\pi}$ 3. $\frac{32}{27}$

5. (b) 0.2261 (c) 0.6736 m

(d) (i) $1/(105\pi) \approx 0.003$ in/s (ii) $370\pi/3$ s ≈ 6.5 min

9. $y = \frac{32}{9}x^2$

11. (a) $V = \int_0^h \pi [f(y)]^2 dy$

(c) $f(y) = \sqrt{kA/(\pi C)} y^{1/4}$. Advantage: the markings on the container are equally spaced.

13. b = 2a

CHAPTER 6

EXERCISES 6.1 - PAGE 390

- **1.** (a) See Definition 1.
- (b) It must pass the Horizontal Line Test.
- **3**. No **5**. No **7**. Yes **9**. No **11**. Yes
- **17.** (a) 6 (b) 3 **19**. 4 **15**. No
- **21.** $F = \frac{9}{5}C + 32$; the Fahrenheit temperature as a function of the Celsius temperature; $[-273.15, \infty)$

23. $f^{-1}(x) = \frac{3}{2} - \frac{1}{2}x$ **25.** $y = \frac{1}{3}(x-1)^2 - \frac{2}{3}, x \ge 1$

27. $y = \left(\frac{1-x}{1+x}\right)^2, -1 < x \le 1$

29. $f^{-1}(x) = \sqrt[4]{x-1}$ 31.

33. (a) $f^{-1}(x) = \sqrt{1 - x^2}$, $0 \le x \le 1$; f^{-1} and f are the same function. (b) Quarter-circle in the first quadrant

35. (b) $\frac{1}{12}$ (c) $f^{-1}(x) = \sqrt[3]{x}$,

37. (b) $-\frac{1}{2}$ (c) $f^{-1}(x) = \sqrt{9-x}$, $domain = \mathbb{R} = range$ domain = [0, 9], range = [0, 3]

39. $\frac{1}{7}$ **41.** $2/\pi$ 43. 3 **45.** $1/\sqrt{28}$

The graph passes the Horizontal Line Test.

 $f^{-1}(x) = -\frac{1}{6}\sqrt[3]{4}\left(\sqrt[3]{D - 27x^2 + 20} - \sqrt[3]{D + 27x^2 - 20} + \sqrt[3]{2}\right),$ where $D = 3\sqrt{3}\sqrt{27x^4 - 40x^2 + 16}$; two of the expressions are complex.

49. (a) $q^{-1}(x) = f^{-1}(x) - c$ (b) $h^{-1}(x) = (1/c)f^{-1}(x)$

EXERCISES 6.2 PAGE 401

1. (a) $f(x) = a^x, a > 0$ (b) \mathbb{R} (c) $(0, \infty)$

(d) See Figures 6(c), 6(b), and 6(a), respectively.

All approach 0 as $x \to -\infty$, all pass through (0, 1), and all are increasing. The larger the base, the faster the rate of increase.

The functions with base greater than 1 are increasing and those with base less than 1 are decreasing. The latter are reflections of the former about the y-axis.

11.

- **13.** (a) $y = e^x 2$ (b) $y = e^{x-2}$ (c) $y = -e^x$
- (d) $y = e^{-x}$ (e) $y = -e^{-x}$
- **15.** (a) $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ (b) $(-\infty, \infty)$
- **17.** $f(x) = 3 \cdot 2^x$ **21.** At $x \approx 35.8$ **23**. ∞ **25**. 1
- **27.** 0 **29.** 0 **31.** f'(x) = 0
- **33.** $f'(x) = e^x(x^3 + 3x^2 + 2x + 2)$ **35.** $y' = 3ax^2e^{ax^3}$
- **37.** $y' = e^{-kx}(-kx+1)$ **39.** $f'(u) = (-1/u^2)e^{1/u}$
- **41.** $F'(t) = e^{t \sin 2t} (2t \cos 2t + \sin 2t)$ **43.** $y' = \frac{3e^{3x}}{\sqrt{1 + 2e^{3x}}}$
- **45.** $y' = e^{e^x} e^x$ **47.** $y' = \frac{(ad bc)e^x}{(ce^x + d)^2}$
- **49.** $y' = \frac{4e^{2x}}{(1+e^{2x})^2} \sin \frac{1-e^{2x}}{1+e^{2x}}$ **51.** y = 2x+1
- **57.** -4, -2 **59.** $f^{(n)}(x) = 2^n e^{2x}$
- **61.** (b) -0.567143
- **63.** (a) 1 (b) $kae^{-kt}/(1 + ae^{-kt})^2$

(c) 1

- **65.** -1 **67.** $f(2) = 2/\sqrt{e}, f(-1) = -1/\sqrt[8]{e}$
- **69.** (a) Inc. on $(2, \infty)$; dec. on $(-\infty, 2)$
- (b) CU on $(-\infty, 3)$; CD on $(3, \infty)$ (c) $(3, -2e^{-3})$
- **71.** A. $\{x \mid x \neq -1\}$
- B. y-int. 1/e C. None
- D. HA y = 1; VA x = -1
- E. Inc. on $(-\infty, -1), (-1, \infty)$
- G. CU on $(-\infty, -1), (-1, -\frac{1}{2});$
- CD on $\left(-\frac{1}{2}, \infty\right)$; IP $\left(-\frac{1}{2}, 1/e^2\right)$
- H. See graph at right.
- **73.** A. \mathbb{R} B. y-int. $\frac{1}{2}$ C. None
- D. HA y = 0, y = 1
- E. Inc on \mathbb{R} F. None
- G. CU on $(-\infty, 0)$; CD on $(0, \infty)$;

IP $(0,\frac{1}{2})$ H. See graph at right.

75. 28.57 min, when the rate of increase of drug level in the bloodstream is greatest; 85.71 min, when rate of decrease is greatest

77. Loc. max. $f(-1/\sqrt{3}) = e^{2\sqrt{3}/9} \approx 1.5$; loc. min. $f(1/\sqrt{3}) = e^{-2\sqrt{3}/9} \approx 0.7$;

IP(-0.15, 1.15), (-1.09, 0.82)

- **79.** $\frac{1}{e+1}+e-1$ **81.** $\frac{1}{\pi}(1-e^{-2\pi})$ **83.** $\frac{2}{3}(1+e^x)^{3/2}+C$ **85.** $\frac{1}{2}e^{2x}+2x-\frac{1}{2}e^{-2x}+C$ **87.** $e^{\tan x}+C$ **89.** $e^{-\sqrt{e}}$ **91.** 4.644 **93.** $\pi(e^2-1)/2$

EXERCISES 6.3 - PAGE 408

- 1. (a) It's defined as the inverse of the exponential function with base a, that is, $\log_a x = y \iff a^y = x$.
- (b) $(0, \infty)$ (c) \mathbb{R} (d) See Figure 1.
- **3.** (a) 3 (b) -3 **5.** (a) 4.5 (b) -4
- **7.** (a) 3 (b) −2
- **9.** $\frac{1}{2} \ln a + \frac{1}{2} \ln b$ **11.** $2 \ln x 3 \ln y 4 \ln z$
- **13.** $\ln \frac{x^2 y^3}{x^7}$ **15.** $\ln 1215$ **17.** $\ln \frac{\sqrt{x}}{x+1}$
- **19.** (a) 0.402430 (b) 1.454240 (c) 1.651496 21. $y = \log_{1.5} x$

All graphs approach $-\infty$ as $x \to 0^+$, all pass through (1,0), and all are increasing. The larger the base, the slower the rate of increase.

- **23**. (a)
- **25.** (a) $(0, \infty)$; $(-\infty, \infty)$ (b) e^{-2}

- **27.** (a) $\frac{1}{4}(7 \ln 6)$ (b) $\frac{1}{3}(e^2 + 10)$
- **29.** (a) $5 + \log_2 3$ or $5 + (\ln 3)/\ln 2$ (b) $\frac{1}{2}(1 + \sqrt{1 + 4e})$
- **31.** $-\frac{1}{2} \ln(e-1)$ **33.** e^e **35.** $\ln 3$

- **37.** (a) 0.5210 (b) 3.0949
- **39.** (a) 0 < x < 1 (b) $x > \ln 5$

A89

- **43.** 8.3 **41.** About 1,084,588 mi
- **45.** (a) $f^{-1}(n) = (3/\ln 2) \ln(n/100)$; the time elapsed when there are *n* bacteria (b) After about 26.9 hours
- **47.** $-\infty$ **49.** 0 **51.** ∞ **53.** $(-\infty, -3) \cup (3, \infty)$
- **55.** (a) $\left(-\infty, \frac{1}{2} \ln 3\right]$ (b) $f^{-1}(x) = \frac{1}{2} \ln(3 x^2), \left[0, \sqrt{3}\right]$
- **57.** (a) $(\ln 3, \infty)$ (b) $f^{-1}(x) = \ln(e^x + 3)$; \mathbb{R}
- **59.** $y = e^x 3$ **61.** $f^{-1}(x) = \sqrt[3]{\ln x}$ **63.** $y = \frac{1}{10^x 1}$
- **65.** $\left(-\frac{1}{2}\ln 3, \infty\right)$
- **67.** (b) $f^{-1}(x) = \frac{1}{2}(e^x e^{-x})$ **69.** f is a constant function **73.** $-1 \le x < 1 \sqrt{3}$ or $1 + \sqrt{3} < x \le 3$

EXERCISES 6.4 = PAGE 418

- 1. The differentiation formula is simplest.

- 3. $f'(x) = \frac{\cos(\ln x)}{x}$ 5. $f'(x) = -\frac{1}{x}$ 7. $f'(x) = \frac{3x^2}{(x^3 + 1) \ln 10}$ 9. $f'(x) = \frac{\sin x}{x} + \cos x \ln(5x)$
- **11.** $G'(y) = \frac{10}{2y+1} \frac{y}{y^2+1}$ **13.** $g'(x) = \frac{2x^2-1}{x(x^2-1)}$
- **15.** $f'(u) = \frac{1 + \ln 2}{u[1 + \ln(2u)]^2}$ **17.** $f'(x) = 5x^4 + 5^x \ln 5$
- **19.** $y' = \sec^2(\ln(ax + b)) \frac{a}{ax + b}$ **21.** $y' = \frac{-x}{1 + x}$
- **23.** $y' = \frac{1}{\ln 10} + \log_{10} x$ **25.** $f'(t) = 10^{\sqrt{t}} \ln 10/(2\sqrt{t})$
- **27.** $y' = x + 2x \ln(2x); y'' = 3 + 2 \ln(2x)$ **29.** $y' = \frac{1}{\sqrt{1+x^2}}; y'' = \frac{-x}{(1+x^2)^{3/2}}$
- **31.** $f'(x) = \frac{2x 1 (x 1)\ln(x 1)}{(x 1)[1 \ln(x 1)]^2}$
- $(1, 1 + e) \cup (1 e)$
- **33.** $f'(x) = \frac{2(x-1)}{x(x-2)}$; $(-\infty, 0) \cup (2, \infty)$ **35.** $\frac{1}{2}$
- **37.** y = 3x 9 **39.** $\cos x + 1/x$ **41.** 7
- **43.** $y' = (x^2 + 2)^2(x^4 + 4)^4 \left(\frac{4x}{x^2 + 2} + \frac{16x^3}{x^4 + 4}\right)$
- **45.** $y' = \sqrt{\frac{x-1}{x^4+1}} \left(\frac{1}{2x-2} \frac{2x^3}{x^4+1} \right)$
- $49. y' = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$

- **53.** $y' = (\tan x)^{1/x} \left(\frac{\sec^2 x}{x \tan x} \frac{\ln \tan x}{x^2} \right)$ **55.** $y' = \frac{2x}{x^2 + y^2 2y}$ **57.** $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x-1)^n}$
- **61.** CU on $(e^{8/3}, \infty)$, CD on $(0, e^{8/3})$, IP $(e^{8/3}, \frac{8}{3}e^{-4/3})$

- **63.** A. All x in $(2n\pi, (2n + 1)\pi)$ (n an integer)
- B. x-int $\pi/2 + 2n\pi$ C. Period 2π D. VA $x = n\pi$
- E. Inc on $(2n\pi, \pi/2 + 2n\pi)$; dec on $(\pi/2 + 2n\pi, (2n + 1)\pi)$
- F. Loc max $f(\pi/2 + 2n\pi) = 0$ G. CD on $(2n\pi, (2n + 1)\pi)$

- **65.** A. \mathbb{R} B. *y*-int 0; *x*-int. 0
- C. About y-axis D. None
- E. Inc. on $(0, \infty)$;
- dec. on $(-\infty, 0)$
- F. Loc. min. f(0) = 0
- G. CU on (-1, 1); CD on
- $(-\infty, -1), (1, \infty);$
- IP $(\pm 1, \ln 2)$ H. See graph at right.
- **67.** Inc. on (0, 2.7), (4.5, 8.2), (10.9, 14.3);
- IP (3.8, 1.7), (5.7, 2.1), (10.0, 2.7), (12.0, 2.9)
- **69.** (a) $Q = ab^t$ where $a \approx 100.01244$ and $b \approx 0.000045146$
- (b) $-670.63 \mu A$
- **71.** $3 \ln 2$ **73.** $\frac{1}{3} \ln \frac{5}{2}$ **75.** $\frac{1}{2}e^2 + e \frac{1}{2}$
- 77. $\frac{1}{3}(\ln x)^3 + C$ 79. $-\ln(1 + \cos^2 x) + C$ **81.** 90/(ln 10)
- **85.** $\pi \ln 2$ **87.** 45,974 J **89.** $\frac{1}{3}$
- **91.** $0 < m < 1, m 1 \ln m$

EXERCISES 6.2* ■ PAGE 428

- **1.** $\frac{1}{2} \ln a + \frac{1}{2} \ln b$ **3.** $2 \ln x 3 \ln y 4 \ln z$
- **5.** $\ln \frac{x^2 y^3}{x}$ **7.** $\ln 1215$ **9.** $\ln \frac{\sqrt{x}}{x+1}$

- **15.** $-\infty$ **17.** $f'(x) = (2 + \ln x)/(2\sqrt{x})$
- **19.** $f'(x) = \frac{\cos(\ln x)}{x}$ **21.** $f'(x) = -\frac{1}{x}$
- **23.** $f'(x) = \frac{\sin x}{x} + \cos x \ln(5x)$ **25.** $g'(x) = -\frac{2a}{a^2 x^2}$
- **27.** $G'(y) = \frac{10}{2y+1} \frac{y}{y^2+1}$ **29.** $g'(x) = \frac{2x^2-1}{x(x^2-1)}$
- **31.** $f'(u) = \frac{1 + \ln 2}{u[1 + \ln(2u)]^2}$ **33.** $y' = \frac{10x + 1}{5x^2 + x 2}$
- **35.** $y' = \sec^2(\ln(ax + b)) \frac{a}{ax + b}$
- **37.** $v' = x + 2x \ln(2x)$; $v'' = 3 + 2 \ln(2x)$

39.
$$f'(x) = \frac{2x - 1 - (x - 1)\ln(x - 1)}{(x - 1)[1 - \ln(x - 1)]^2}$$
;

$$(1, 1 + e) \cup (1 + e, \infty)$$

41.
$$f'(x) = -\frac{1}{2x\sqrt{1-\ln x}}$$
; $(0,e]$ **43.** $\frac{1}{2}$

43.
$$\frac{1}{2}$$

45.
$$\cos x + 1/x$$

47.
$$y = 2x - 2$$
 49. $y' = \frac{2x}{x^2 + y^2 - 2y}$

51.
$$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x-1)^n}$$
 53. 2.958516, 5.290718

If $f(x) = e^x$, then f'(0) = 1.

55. A. All x in
$$(2n\pi, (2n + 1)\pi)$$
 (n an integer)

B. x-int
$$\pi/2 + 2n\pi$$
 C. Period 2π D. VA $x = n\pi$

E. Inc on
$$(2n\pi, \pi/2 + 2n\pi)$$
; dec on $(\pi/2 + 2n\pi, (2n + 1)\pi)$

E. Inc on
$$(2n\pi, \pi/2 + 2n\pi)$$
, dec on $(\pi/2 + 2n\pi, (2n + 1)\pi)$
F. Loc max $f(\pi/2 + 2n\pi) = 0$ G. CD on $(2n\pi, (2n + 1)\pi)$

- **57.** A. \mathbb{R} B. *y*-int 0; *x*-int. 0
- C. About y-axis D. None
- E. Inc. on $(0, \infty)$;
- dec. on $(-\infty, 0)$
- F. Loc. min. f(0) = 0
- G. CU on (-1, 1); CD on
- $(-\infty, -1), (1, \infty);$
- IP $(\pm 1, \ln 2)$ H. See graph at right.
- **59.** Inc. on (0, 2.7), (4.5, 8.2), (10.9, 14.3);
- IP (3.8, 1.7), (5.7, 2.1), (10.0, 2.7), (12.0, 2.9)

61.
$$y' = (x^2 + 2)^2 (x^4 + 4)^4 \left(\frac{4x}{x^2 + 2} + \frac{16x^3}{x^4 + 4} \right)$$

63.
$$y' = \sqrt{\frac{x-1}{x^4+1}} \left(\frac{1}{2x-2} - \frac{2x^3}{x^4+1} \right)$$

- **65.** $3 \ln 2$ **67.** $\frac{1}{3} \ln \frac{5}{2}$ **69.** $\frac{1}{2}e^2 + e \frac{1}{2}$
- **71.** $\frac{1}{3}(\ln x)^3 + C$ **73.** $-\ln(1 + \cos^2 x) + C$
- **77.** $\pi \ln 2$ **79.** 45,974 J **81.** $\frac{1}{3}$ **83.** (b) 0.405
- **87.** $0 < m < 1, m 1 \ln m$

EXERCISES 6.3* - PAGE 434

1.

- **3.** (a) $\frac{1}{25}$ (b) 10
- **5.** (a) $\frac{1}{4}(7 \ln 6)$ (b) $\frac{1}{3}(e^2 + 10)$

- 7. (a) $\frac{1}{3}(\ln k 1)$ (b) $\frac{1}{2}(1 + \sqrt{1 + 4e})$
- **9.** $-\frac{1}{2}\ln(e-1)$ **11.** $\ln 3$
- **13.** (a) 0.5210 (b) 3.0949
- **15.** (a) 0 < x < 1 (b) $x > \ln 5$

- **21.** (a) $\left(-\infty, \frac{1}{2} \ln 3\right]$ (b) $f^{-1}(x) = \frac{1}{2} \ln(3 x^2), \left[0, \sqrt{3}\right)$
- **23.** $y = e^x 3$ **25.** $f^{-1}(x) = \sqrt[3]{\ln x}$ **27.** 1 **29.** 0
- **31.** 0 **33.** f'(x) = 0 **35.** $f'(x) = e^x(x^3 + 3x^2 + 2x + 2)$ **37.** $y' = 3ax^2e^{ax^3}$ **39.** $y' = e^{-kx}(-kx+1)$

- **41.** $f'(u) = (-1/u^2)e^{1/u}$ **43.** $F'(t) = e^{t \sin 2t}(2t \cos 2t + \sin 2t)$

 $t \approx 7.4 \text{ h}$

- **51.** $y' = \frac{4e^{2x}}{(1+e^{2x})^2} \sin \frac{1-e^{2x}}{1+e^{2x}}$ **53.** y = 2x+1 **55.** $y' = \frac{y(y-e^{x/y})}{y^2-xe^{x/y}}$ **59.** -4, -2 **61.** $f^{(n)}(x) = 2^n e^{2x}$

- **63.** (b) -0.567143
- **65.** (a) 1 (b) $kae^{-kt}/(1 + ae^{-kt})^2$

- **69.** $f(2) = 2/\sqrt{e}$, $f(-1) = -1/\sqrt[8]{e}$ **67.** −1
- **71.** (a) Inc. on $(2, \infty)$; dec. on $(-\infty, 2)$
- (b) CU on $(-\infty, 3)$; CD on $(3, \infty)$ (c) $(3, -2e^{-3})$
- **73.** A. $\{x \mid x \neq -1\}$
- B. y-int. 1/e C. None
- D. HA y = 1; VA x = -1
- E. Inc. on $(-\infty, -1), (-1, \infty)$
- G. CU on $(-\infty, -1), (-1, -\frac{1}{2});$
- CD on $\left(-\frac{1}{2}, \infty\right)$; IP $\left(-\frac{1}{2}, 1/e^2\right)$
- H. See graph at right.
- **75.** A. \mathbb{R} B. y-int. $\frac{1}{2}$ C. None
- D. HA y = 0, y = 1
- E. Inc on \mathbb{R} F. None
- G. CU on $(-\infty, 0)$; CD on $(0, \infty)$;
- IP $(0, \frac{1}{2})$ H. See graph at right.
- 77. 28.57 min, when the rate of increase of drug level in the bloodstream is greatest; 85.71 min, when rate of decrease is greatest

A91

79. Loc. max. $f(-1/\sqrt{3}) = e^{2\sqrt{3}/9} \approx 1.5$; loc. min. $f(1/\sqrt{3}) = e^{-2\sqrt{3}/9} \approx 0.7$: IP(-0.15, 1.15), (-1.09, 0.82)

- **81.** $\frac{1}{e+1} + e 1$ **83.** $\frac{1}{\pi} (1 e^{-2\pi})$
- **85.** $\frac{2}{3}(1+e^x)^{3/2}+C$ **87.** $\frac{1}{2}e^{2x}+2x-\frac{1}{2}e^{-2x}+C$ **89.** $e^{\tan x}+C$ **91.** $e^{-\sqrt{e}}$ **93.** 4.644 **95.** $\pi(e^2-1)/2$ **99.** $\approx 4512 \text{ L}$ **101.** $\frac{1}{2}$

EXERCISES 6.4* ■ PAGE 444

- **1.** (a) $a^x = e^{x \ln a}$ (b) $(-\infty, \infty)$ (c) $(0, \infty)$
- (d) See Figures 1, 3, and 2.
- **3.** $e^{-\pi \ln 4}$ **5.** $e^{x^2 \ln 10}$
- **7.** (a) 3 (b) -3 **9.** (a) 3 (b) -2
- All approach 0 as $x \to -\infty$, all pass through (0, 1), and all are increasing. The larger the base, the faster the rate of increase.
- **13**. (a) 0.402430 (b) 1.454240 (c) 1.651496
- $v = \ln x$
- All graphs approach $-\infty$ as $x \to 0^+$, all pass through (1,0), and all are increasing. The larger the base, the slower the rate of increase
- **17.** $f(x) = 3 \cdot 2^x$ **19.** (b) About 1,084,588 mi
- **21.** ∞ **23.** 0 **25.** $f'(x) = 5x^4 + 5^x \ln 5$
- **27.** $f'(t) = 10^{\sqrt{t}} \ln 10/(2\sqrt{t})$ **29.** $L'(v) = 2v \ln 4 \sec^2(4^{v^2}) \cdot 4^{v^2}$
- **31.** $f'(x) = \frac{3}{(3x-1)\ln 2}$ **33.** $y' = \frac{1}{\ln 10} + \log_{10} x$
- **35.** $y' = x^x (1 + \ln x)$ **37.** $y' = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$
- **39.** $y' = (\cos x)^x (-x \tan x + \ln \cos x)^x$
- **41.** $y' = (\tan x)^{1/x} \left(\frac{\sec^2 x}{x \tan x} \frac{\ln \tan x}{x^2} \right)$
- **43.** $y = (10 \ln 10)x + 10(1 \ln 10)$ **45.** $90/(\ln 10)$
- **47.** $(\ln x)^2/(2 \ln 10) + C \left[\text{or } \frac{1}{2} (\ln 10) (\log_{10} x)^2 + C \right]$
- **49.** $3^{\sin \theta} / \ln 3 + C$ **51.** $16/(5 \ln 5) 1/(2 \ln 2)$
- **53.** 0.600967 **55.** $y = \frac{1}{10^x 1}$ **57.** 8.3

- **59.** $10^8/\ln 10 \text{ dB/(watt/m}^2)$
- **61.** (a) $Q = ab^t$ where $a \approx 100.01244$ and $b \approx 0.000045146$
- (b) $-670.63 \mu A$

EXERCISES 6.5 - PAGE 451

- 1. About 235
- **3.** (a) $100(4.2)^t$ (b) ≈ 7409 (c) $\approx 10,632$ bacteria/h
- (d) $(\ln 100)/(\ln 4.2) \approx 3.2 \text{ h}$
- **5.** (a) 1508 million, 1871 million (b) 2161 million
- (c) 3972 million; wars in the first half of century, increased life expectancy in second half
- 7. (a) $Ce^{-0.0005t}$ (b) $-2000 \ln 0.9 \approx 211 \text{ s}$
- **9.** (a) $100 \times 2^{-t/30}$ mg (b) ≈ 9.92 mg (c) ≈ 199.3 years
- **11.** ≈ 2500 years **13.** (a) $\approx 137^{\circ}$ F (b) ≈ 116 min
- **15.** (a) $13.\overline{3}^{\circ}$ C (b) $\approx 67.74 \text{ min}$
- **17.** (a) $\approx 64.5 \text{ kPa}$ (b) $\approx 39.9 \text{ kPa}$
- **19.** (a) (i) \$3828.84 (ii) \$3840.25 (iii) \$3850.08
- (iv) \$3851.61 (v) \$3852.01 (vi) \$3852.08
- (b) dA/dt = 0.05A, A(0) = 3000

EXERCISES 6.6 - PAGE 459

- **1.** (a) $\pi/6$ (b) π **3.** (a) $\pi/4$ (b) $\pi/4$
- **5.** (a) 10 (b) $\pi/3$
- **9.** $\frac{2}{3}\sqrt{2}$ **13.** $x/\sqrt{1+x^2}$ **7.** $2/\sqrt{5}$
- 15.
 - $y = \sin^{-1} x$
- The second graph is the reflection of the first graph about the line y = x.
- **23.** $y' = \frac{2 \tan^{-1} x}{1 + x^2}$ **25.** $y' = \frac{1}{\sqrt{-x^2 x}}$ **27.** $y' = \sin^{-1} x$ **29.** $y' = -\frac{2e^{2x}}{\sqrt{1 e^{4x}}}$ **31.** $y' = -\frac{\sin \theta}{1 + \cos^2 \theta}$

- 33. h'(t) = 0 35. $y' = \frac{\sqrt{a^2 b^2}}{a + b \cos x}$ 37. $g'(x) = \frac{2}{\sqrt{1 (3 2x)^2}}$; [1, 2], (1, 2) 39. $\pi/6$
- **41.** $1 \frac{x \arcsin x}{\sqrt{1 x^2}}$ **43.** $-\pi/2$ **45.** $\pi/2$
- **47.** At a distance $5 2\sqrt{5}$ from A **49.** $\frac{1}{4}$ rad/s
- **51.** A. $\left[-\frac{1}{2}, \infty\right)$
- B. *y*-int. 0; *x*-int. 0
- C. None
- D. HA $y = \pi/2$ E. Inc. on $\left(-\frac{1}{2}, \infty\right)$
- F. None
- G. CD on $\left(-\frac{1}{2},\infty\right)$
- H. See graph at right

53. A. ℝ

B. *y*-int. 0; *x*-int. 0

C. About (0, 0)

D. SA $y = x \pm \pi/2$

E. Inc. on \mathbb{R} F. None

G. CU on $(0, \infty)$; CD on $(-\infty, 0)$;

IP(0,0)

H. See graph at right.

55. Max at x = 0, min at $x \approx \pm 0.87$, IP at $x \approx \pm 0.52$

57. $F(x) = \tan^{-1}x + x + C$ **59.** $4\pi/3$ **61.** $\pi^2/72$

63. $\tan^{-1}x + \frac{1}{2}\ln(1+x^2) + C$ **65.** $\ln|\sin^{-1}x| + C$

67. $\frac{1}{3}\sin^{-1}(t^3) + C$ **69.** $2\tan^{-1}\sqrt{x} + C$ **73.** $\pi/2 - 1$

EXERCISES 6.7 - PAGE 467

1. (a) 0 (b) 1 **3.** (a) $\frac{3}{4}$ (b) $\frac{1}{2}(e^2 - e^{-2}) \approx 3.62686$

5. (a) 1 (b) 0

21. sech $x = \frac{3}{5}$, sinh $x = \frac{4}{3}$, csch $x = \frac{3}{4}$, tanh $x = \frac{4}{5}$, coth $x = \frac{5}{4}$

23. (a) 1 (b) -1 (c) ∞ (d) $-\infty$ (e) 0 (f) 1

(g) ∞ (h) $-\infty$ (i) 0

31. $f'(x) = x \cosh x$ **33.** $h'(x) = \tanh x$

35. $y' = 3e^{\cosh 3x} \sinh 3x$ **37.** $f'(t) = -2e^t \operatorname{sech}^2(e^t) \tanh(e^t)$

39. $G'(x) = \frac{-2 \sinh x}{(1 + \cosh x)^2}$ **41.** $y' = \frac{1}{2\sqrt{x(x-1)}}$

43. $y' = \sinh^{-1}(x/3)$ **45.** $y' = -\csc x$

51. (a) 0.3572 (b) 70.34°

53. (a) 164.50 m (b) 120 m; 164.13 m

55. (b) $y = 2 \sinh 3x - 4 \cosh 3x$

57. $(\ln{(1+\sqrt{2})}, \sqrt{2})$

59. $\frac{1}{3} \cosh^3 x + C$ **61.** $2 \cosh \sqrt{x} + C$ **63.** $-\operatorname{csch} x + C$

65. $\ln\left(\frac{6+3\sqrt{3}}{4+\sqrt{7}}\right)$ **67.** $\tanh^{-1}e^x + C$

69. (a) 0, 0.48 (b) 0.04

EXERCISES 6.8 - PAGE 477

1. (a) Indeterminate (b) 0 (c) 0

(d) ∞ , $-\infty$, or does not exist (e) Indeterminate

3. (a) $-\infty$ (b) Indeterminate (c) ∞

5. $\frac{9}{4}$ 7. 2 9. $-\frac{1}{3}$ 11. $-\infty$ 13. 2 15. $\frac{1}{4}$

17. 0 19. $-\infty$ 21. $\frac{8}{5}$ 23. 3 25. $\frac{1}{2}$ 27. 1

29. 1 **31.** $1/\ln 3$ **33.** 0 **35.** $-1/\pi^2$ **37.** $\frac{1}{2}a(a-1)$

39. $\frac{1}{24}$ **41.** π **43.** 3 **45.** 0 **47.** $-2/\pi$ **49.** $\frac{1}{2}$

51. $\frac{1}{2}$ **53.** ∞ **55.** 1 **57.** e^{-2} **59.** 1/e

61. 1 **63.** e^4 **65.** $1/\sqrt{e}$ **67.** e^2 **69.** $\frac{1}{4}$ **73.** 1

75. A. \mathbb{R} B. *y*-int 0; *x*-int 0

C. None D. HA y = 0

E. Inc on $(-\infty, 1)$, dec on $(1, \infty)$

F. Loc max f(1) = 1/e

G. CU on $(2, \infty)$; CD on $(-\infty, 2)$

IP $(2, 2/e^2)$

H. See graph at right.

77. A. \mathbb{R} B. *y*-int 0; *x*-int 0 C. About (0, 0) D. HA y = 0

E. Inc on $(-1/\sqrt{2}, 1/\sqrt{2})$; dec on $(-\infty, -1/\sqrt{2}), (1/\sqrt{2}, \infty)$

F. Loc min $f(-1/\sqrt{2}) = -1/\sqrt{2e}$; loc max $f(1/\sqrt{2}) = 1/\sqrt{2e}$

G. CU on $(-\sqrt{3/2}, 0), (\sqrt{3/2}, \infty)$; CD on $(-\infty, -\sqrt{3/2}), (0, \sqrt{3/2})$;

IP $(\pm\sqrt{3/2}, \pm\sqrt{3/2}e^{-3/2}), (0, 0)$

H. $y = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}e}\right)$

79. A. $(-1, \infty)$ B. *y*-int 0; *x*-int 0

C. None D. VA x = -1

E. Inc on $(0, \infty)$; dec on (-1, 0)

F. Loc min f(0) = 0

G. CU on (-1, ∞)

H. See graph at right.

(b) $\lim_{x\to 0^+} x^{-x} = 1$

(c) Max value $f(1/e) = e^{1/e} \approx 1.44$ (d) 1.0

83. (a) 2 0

(b) $\lim_{x\to 0^+} x^{1/x} = 0$, $\lim_{x\to\infty} x^{1/x} = 1$

(c) Loc max $f(e) = e^{1/e}$ (d) IP at $x \approx 0.58, 4.37$

85. f has an absolute minimum for c > 0. As c increases, the minimum points get farther away from the origin.

91. $\pi/6$ **93.** $\frac{16}{9}a$ **95.** $\frac{1}{2}$ **97.** 56 **101.** (a) 0

CHAPTER 6 REVIEW - PAGE 481

True-False Quiz

True
 False
 True
 True
 False
 True
 True
 True

Exercises

1. No **3.** (a) 7 (b) $\frac{1}{8}$

0

 $y = -\ln x$

- **11.** (a) 9 (b) 2
- **13.** $e^{1/3}$
- **15.** $\ln \ln 17$ **17.** $\sqrt{1+e}$
- **19.** tan 1 **21.** $f'(t) = t + 2t \ln t$
- **23.** $h'(\theta) = 2 \sec^2(2\theta)e^{\tan 2\theta}$ **25.** $y' = 5 \sec 5x$

27.
$$y' = \frac{4x}{1 + 16x^2} + \tan^{-1}(4x)$$
 29. $y' = 2 \tan x$

$$1 + 16x^{2}$$
31. $y' = -\frac{e^{1/x}(1+2x)}{x^{4}}$
33. $y' = 3^{x \ln x}(\ln 3)(1 + \ln x)$

35.
$$H'(v) = \frac{v}{1+v^2} + \tan^{-1}v$$

37.
$$y' = 2x^2 \cosh(x^2) + \sinh(x^2)$$
 39. $y' = \cot x - \sin x \cos x$

41.
$$y' = -(1/x)[1 + 1/(\ln x)^2]$$

43.
$$y' = 3 \tanh 3x$$
 45. $y' = (\cosh x)/\sqrt{\sinh^2 x - 1}$

47.
$$y' = \frac{-3\sin(e^{\sqrt{\tan 3x}})e^{\sqrt{\tan 3x}}\sec^2(3x)}{2\sqrt{\tan 3x}}$$
 49. $e^{g(x)}g'(x)$

51.
$$g'(x)/g(x)$$
 53. $2^{x}(\ln 2)^{n}$ **57.** $y = -x + 2$ **59.** $(-3,0)$

61. (a)
$$y = \frac{1}{4}x + \frac{1}{4}(\ln 4 + 1)$$
 (b) $y = ex$

63. 0 **65.** 0 **67.**
$$-\infty$$
 69. -1

79. A.
$$[-\pi, \pi]$$
 B. y-int 0; x-int $-\pi, 0, \pi$

C. None D. None

E. Inc on
$$(-\pi/4, 3\pi/4)$$
; dec on $(-\pi, -\pi/4), (3\pi/4, \pi)$

F. Loc max
$$f(3\pi/4) = \frac{1}{2}\sqrt{2}e^{3\pi/4}$$
, loc min $f(-\pi/4) = -\frac{1}{2}\sqrt{2}e^{3\pi/4}$

G. CU on
$$(-\pi/2, \pi/2)$$
; CD on $(-\pi, -\pi/2), (\pi/2, \pi)$;

IP
$$(-\pi/2, -e^{-\pi/2}), (\pi/2, e^{\pi/2})$$

- **81.** A. (0, ∞) B. *x*-int 1
- C. None D. None
- E. Inc on $(1/e, \infty)$; dec on (0, 1/e)
- F. Loc min f(1/e) = -1/e
- G. CU on (0, ∞)
- H. See graph at right.

- **83**. A. ℝ
- B. y-int -2; x-int 2
- C. None D. HAy = 0
- E. Inc on $(-\infty, 3)$; dec on $(3, \infty)$
- F. Loc max $f(3) = e^{-3}$
- G. CU on $(4, \infty)$; CD on $(-\infty, 4)$; IP $(4, 2e^{-4})$
- H. See graph at right.

As |c| increases, the max and min points and the IPs get closer to the origin.

87.
$$v(t) = -Ae^{-ct}[c\cos(\omega t + \delta) + \omega\sin(\omega t + \delta)],$$

$$a(t) = Ae^{-ct} [(c^2 - \omega^2)\cos(\omega t + \delta) + 2c\omega\sin(\omega t + \delta)]$$

89. (a)
$$200(3.24)^t$$
 (b) $\approx 22,040$

(c)
$$\approx 25,910 \text{ bacteria/h}$$
 (d) $(\ln 50)/(\ln 3.24) \approx 3.33 \text{ h}$

91. 4.32 days **93.**
$$\frac{1}{4}(1-e^{-2})$$
 95. arctan $e-\pi/4$

97.
$$2e^{\sqrt{x}} + C$$
 99. $\frac{1}{2}\ln|x^2 + 2x| + C$

101.
$$-\frac{1}{2}[\ln(\cos x)]^2 + C$$
 103. $2^{\tan \theta}/\ln 2 + C$

105.
$$-(1/x) - 2 \ln |x| + x + C$$
 109. $e^{\sqrt{x}}/(2x)$

111.
$$\frac{1}{3} \ln 4$$
 113. $\pi^2/4$ **115.** $\frac{2}{3}$ **117.** $2/e$

121.
$$e^{2x}(1+2x)/(1-e^{-x})$$

PROBLEMS PLUS = PAGE 486

- **3.** Abs $\max f(-5) = e^{45}$, no abs min
- n 9.
 - **9.** $1/\sqrt{2}$ **11.** $a = \frac{1}{2}$

A93

15. $2\sqrt{e}$ **17.** $a \le e^{1/e}$

CHAPTER 7

EXERCISES 7.1 = PAGE 492

- **1.** $\frac{1}{3}x^3 \ln x \frac{1}{9}x^3 + C$ **3.** $\frac{1}{5}x \sin 5x + \frac{1}{25} \cos 5x + C$
- **5.** $-\frac{1}{3}te^{-3t} \frac{1}{9}e^{-3t} + C$
- 7. $(x^2 + 2x) \sin x + (2x + 2) \cos x 2 \sin x + C$
- **9.** $x \ln \sqrt[3]{x} \frac{1}{3}x + C$ **11.** $t \arctan 4t \frac{1}{8}\ln(1 + 16t^2) + C$
- **13.** $\frac{1}{2}t \tan 2t \frac{1}{4} \ln |\sec 2t| + C$
- **15.** $x(\ln x)^2 2x \ln x + 2x + C$
- **17.** $\frac{1}{13}e^{2\theta}(2\sin 3\theta 3\cos 3\theta) + C$
- **19.** $z^3e^z 3z^2e^z + 6ze^z 6e^z + C$

21.
$$\frac{e^{2x}}{4(2x+1)} + C$$
 23. $\frac{\pi-2}{2\pi^2}$

25.
$$1 - 1/e$$
 27. $\frac{81}{4} \ln 3 - 5$ **29.** $\frac{1}{4} - \frac{3}{4}e^{-2}$

31.
$$\frac{1}{6}(\pi + 6 - 3\sqrt{3})$$
 33. $\sin x (\ln \sin x - 1) + C$