Mining Dual Emotion for Fake News Detection

Xueyao Zhang[†]
Institute of Computing Technology,
Chinese Academy of Sciences
University of Chinese Academy of
Sciences
zhangxueyao19s@ict.ac.cn

Qiang Sheng[†]
Institute of Computing Technology,
Chinese Academy of Sciences
University of Chinese Academy of
Sciences
shengqiang18z@ict.ac.cn

Juan Cao* †
Institute of Computing Technology,
Chinese Academy of Sciences
University of Chinese Academy of
Sciences
caojuan@ict.ac.cn

Lei Zhong[†]
Institute of Computing Technology,
Chinese Academy of Sciences
University of Chinese Academy of
Sciences
zhonglei18s@ict.ac.cn

Xirong Li*
Key Lab of Data Engineering and
Knowledge Engineering, Renmin
University of China
Beijing, China
xirong@ruc.edu.cn

Kai Shu Illinois Institute of Technology Chicago, Illinois, USA kshu@iit.edu

WWW'21

210903 Chia-Chun Ho

Outline

Introduction

Related Work

Methodology

Experiments

Conclusion and Future Work

Comments

Sentimental or Emotional signals in existing works

- Some works find a relationship between news veracity and the sentiments of the posted text, and append a sentimental feature (ratio of number of negative and positive words) to help text-only detectors.
- Some works extract richer emotional features from the contents based on emotional lexicons for detection.
- Most existing works leverage the emotional signals of the fake news conveyed be the
 publishers but rarely focus on the emotions of news comments aroused in the crowds.

Sentimental or Emotional signals in existing works

- For spreading in the crowd virally, fake news often evokes high-arousal or activating emotions of the crowds.
- Therefore, in additional to emotions of news contents, it's necessary to explore whether
 - emotions of news comments and
 - the relationship between the two emotions
- are helpful for fake news detection.

Define the two emotions

- Publisher emotion
 - The emotions conveyed by publishers of the news pieces.
- Social emotion
 - The emotions aroused in the crowd facing to the news pieces.
- And adopt dual emotion as general term of these two emotions.

Dual emotion appearances

- Emotion resonances
 - Publisher emotion is same or similar to social emotion.
- Emotion dissonances
 - Publisher emotion is different from the social emotion.
- The data observation statistical findings highlight that the relationship in dual emotion can be indicative of the news veracity and should be considered when modeling.

(a) Emotion resonance in a fake news piece: the publisher emotion and social emotion are both angry.

Publisher emotion: Happy ing! On the 70th Anniversary of the Victory of the Japanese War, Prime Minister of Japan resigns officially. It is celebrating for every Chinese! MENTS Social emotion: Angry Don't readily believe in rumors! So stupid of you. Don't spread it any more! Too naive Think twice before talking.						
y						
So stupid of you. Don't spread it any more!						

(b) Emotion dissonance in a fake news piece: the publisher emotion is happy while the social emotion is angry.

Dual Emotion Features

- To model the dual emotion and emotion resonances and dissonances for fake news detection.
- Proposed *Dual Emotion Features* to represent publisher emotions, social emotion and the similarity and difference of the dual emotion jointly.
- Besides, it's convenient to implement and plug the features into existing fake news detectors as an enhancement.

Contributions of Dual Emotion Features

- Propose and verify that the dual emotion (publisher / social emotion) signal is distinctive between fake and real news.
- First proposed the feature set, *Dual Emotion Features*, to comprehensively represent dual emotion and the relationship between the two kinds of emotions, and exhibit how to plug it into the existing fake news detectors as a complement and enhancement.

Related Work

of fake news detection

- In recent years, researchers begin to utilize deep learning models.
 - GRU-based ('16), CNN-based ('17) models.
- Beyond news content, social contexts such as following are emphasized as well.
 - Texts of comments and reposts ('16-'18)
 - Viewpoints ('16) and stances of the crowd ('18)
 - User credibility ('19)

Related Work

Discovering the distinctive emotional signals

- The approaches as mentioned beginning, some works only leverage the emotion signals of fake news contents but ignore the emotions of fake news comments and the relationship between the two emotions.
- Recently, has propose an adaptive fusion network for fake news detection, modeling emotion embeddings from the contents and the comments.
 - This work focuses on adaptively fusing various features by advanced deep learning models.
 - Do not explore the specific distinction of dual emotion signals between fake and real news.

Overall framework of using Dual Emotion Features for fake news detection

Publisher Emotion

Publisher Emotion

- Given the input sequence of the textual content with length L, $\mathcal{T} = [t_1, t_2, ..., t_L]$, where t_i is the i^{th} word in the text, the goal is to extract emotion features $emo_{\mathcal{T}}$ from \mathcal{T} .
- To comprehensively represent the Publisher Emotion, use variety of features extracted from news contents.
 - Emotion category
 - Emotion lexicon
 - Emotion intensity
 - Sentiment score
 - Other auxiliary features

$$emo_{\mathcal{T}} = emo_{\mathcal{T}}^{cate} \oplus emo_{\mathcal{T}}^{lex} \oplus emo_{\mathcal{T}}^{int} \oplus emo_{\mathcal{T}}^{senti} \oplus emo_{\mathcal{T}}^{aux}$$

Emotion Category

- Use public emotion classifiers (will intro later) to get emotion category features.
- Usually, the output of an emotion classifier is the probabilities that the given text contains certain emotions.
- So obtain the emotion category features $emo_{\mathcal{T}}^{cate} = f(\mathcal{T})$.

Emotion Lexicon

- Usually, a piece of text conveys specific emotions by using several specific words (which are generally included in emotional lexicons).
- The approach is dependent on the existing emotion dictionaries annotated by experts.
- Assume that there're d_e kinds of emotions: $E = \{e_1, e_2, \ldots, e_{d_e}\}$
- The dictionary provides a list of emotional words $\mathscr{E}_e = \{w_{e,1}, w_{e,2}, ..., w_{e,L_e}\}$

Emotion Lexicon

- Given \mathcal{T} , gradually aggregate the scores of each word and the whole text across all the emotions for rich representation.
- For one of the emotion e, firstly calculate the word-level scores $s(t_i, e)$, if t_i is in $\mathscr{E}_{e'}$ consider not only its occurrence frequency but also its contextual words.

$$s\left(t_{i},e\right) = \frac{1_{\mathscr{E}_{e}}\left(t_{i}\right) \times \operatorname{neg}\left(t_{i},w\right) \times \operatorname{deg}\left(t_{i},w\right)}{L}$$

• Example: "I am <u>not very joyful</u> today." $s(joyful, e_{happy}) = -1 \times 2 \times (1/6) = -1/3$

Emotion Lexicon

$$s\left(t_{i},e\right) = \frac{1_{\mathscr{E}_{e}}\left(t_{i}\right) \times \operatorname{neg}\left(t_{i},w\right) \times \operatorname{deg}\left(t_{i},w\right)}{L}$$

$$\operatorname{neg}(t_i, w) = \prod_{j=i-w}^{i-1} \operatorname{neg}(t_j), \operatorname{deg}(t_i, w) = \prod_{j=i-w}^{i-1} \operatorname{deg}(t_j)$$

- Example: "I am not very joyful today." neg(not) = -1, deg(very) = 2
- $s(\text{joyful}, e_{happy}) = -1 \times 2 \times (1/6) = -1/3$

Emotion Lexicon

Then summing the scores of each word in the text, as follow:

$$s(\mathcal{T}, e) = \sum_{i=1}^{L} s(t_i, e), \quad \forall e \in E$$

• Finally, the emotional lexicon features $emo_{\mathcal{T}}^{lex}$ are obtained by concatenating all scores of the d_e emotions.

•
$$emo_{\mathcal{T}}^{lex} = s\left(\mathcal{T}, e_1\right) \oplus s\left(\mathcal{T}, e_2\right) \oplus \cdots \oplus s\left(\mathcal{T}, e_{d_e}\right)$$

Emotion Intensity

- As for emotional lexicons, also consider the emotional intensity of the lexicons.
- For example, when expressing the emotion happy, the word "ecstatic" owns higher intensity than "joyful".
- The extracting process in similar to that of the emotional lexicon features, except for that include the intensity score.

$$s'(\mathcal{T}, e) = \sum_{i=1}^{L} s'(t_i, e) = \sum_{i=1}^{L} \operatorname{int}(t_i) \times s(t_i, e), \quad \forall e \in E$$

Emotion Intensity

$$s'(\mathcal{T}, e) = \sum_{i=1}^{L} s'\left(t_i, e\right) = \sum_{i=1}^{L} \operatorname{int}\left(t_i\right) \times s\left(t_i, e\right), \quad \forall e \in E$$

- $int(t_i)$ denotes the intensity score of the word t_i .
- If t_i is in the dictionary, $int(t_i)$ can be calculated according to emotion dictionary, otherwise $int(t_i) = 0$

$$\bullet emo_{\mathcal{T}}^{int} = s'\left(\mathcal{T}, e_1\right) \oplus s'\left(\mathcal{T}, e_2\right) \oplus \cdots \oplus s'\left(\mathcal{T}, e_{d_e}\right)$$

Sentiment Score

- Also consider the coarse-grained sentiment score of the text.
- Usually, the sentiment score is a positive or negative value, which represents the degree of the positive or negative polarity of the whole text.
- It can be calculated by using sentiment dictionaries or public toolkits.
- Then can get sentiment score feature $emo_{\mathcal{T}}^{senti}$.

Methodology Other Auxiliary Features

- Considering that the above features don't explicitly exploit the information beyond emotion dictionaries.
- Design a set of auxiliary features to capture the emotional signals behind the non-word elements.
- Then can extract the other auxiliary features $emo_{\mathcal{T}}^{aux}$.

Features				
The frequency of happy emoticons				
The frequency of angry emoticons				
The frequency of surprised emoticons				
The frequency of sad emoticons				
The frequency of neutral emoticons				
The frequency of exclamation mark				
The frequency of question mark				
The frequency of ellipsis mark				
The frequency of positive sentimental words				
The frequency of negative sentimental words				
The frequency of degree words				
The frequency of negation words				
The frequency of pronoun first				
The frequency of pronoun second				
The frequency of pronoun third				
The frequency of uppercase letters				

Table 1: Auxiliary Feature List

Social Emotion

Social Emotion

- Extract Social Emotion from the comments of a news piece and then aggregate them as the whole representation.
- Given a set of comments of a news piece: $\mathcal{M} = [\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_{L_{\mathcal{M}}}]$
- As for \mathcal{M}_i , can get $emo_{\mathcal{M}_i}$, then stack the transposed emotion vector of every comment to obtain the whole emotion vector of comments $\widehat{emo_{\mathcal{M}}}$.

$$\widehat{emo}_{\mathcal{M}}^{\mathsf{T}} = emo_{\mathcal{M}_1}^{\mathsf{T}} \oplus emo_{\mathcal{M}_2}^{\mathsf{T}} \oplus \cdots \oplus emo_{\mathcal{M}_{L_{\mathcal{M}}}}^{\mathsf{T}}$$

Social Emotion

 $emo_{\mathcal{M}} = emo_{\mathcal{M}}^{mean} \oplus emo_{\mathcal{M}}^{max}$

- After getting $\widehat{emo}_{\mathcal{M}}$, consider two aggregators to generate the social emotion of the whole comment list:
 - Mean pooling for representing the average emotional signals
 - $emo_{\mathcal{M}}^{mean} = mean(\widehat{emo_{\mathcal{M}}})$
 - Max pooling for capturing the extreme emotional signals
 - $emo_{\mathcal{M}}^{max} = max(\widehat{emo_{\mathcal{M}}})$
- Then concatenate them as Social Emotion: $emo_{\mathscr{M}} = emo_{\mathscr{M}}^{mean} \oplus emo_{\mathscr{M}}^{max}$

Emotion Gap

Emotion Gap

$$emo^{gap} = (emo_{\mathcal{T}} - emo_{\mathcal{M}}^{mean}) \oplus (emo_{\mathcal{T}} - emo_{\mathcal{M}}^{max})$$

- To model the resonances and dissonance of dual emotion, propose Emotion Gap emo^{gap} .
- It's designed as the subtraction between $emo_{\mathcal{T}}$ & $emo_{\mathcal{M}}$, emo^{gap} is concatenated by difference of $emo_{\mathcal{T}}$ & $emo_{\mathcal{M}}^{mean}$ and difference $emo_{\mathcal{T}}$ & $emo_{\mathcal{M}}^{max}$.
 - $emo^{gap} = (emo_{\mathcal{T}} emo_{\mathcal{M}}^{mean}) \oplus (emo_{\mathcal{T}} emo_{\mathcal{M}}^{max})$
- By this means, it can measure the differences (i.e., dissonances) between the dual emotion.
- For emotions resonances, the values in the Emotion Gap vector are tiny (nearly zero).

Dual Emotion Features

Dual Emotion Features

Dual Emotion Features

 $\hat{y} = \text{Softmax}(\text{MLP}([BiGRU_{\mathcal{T}}, emo^{dual}]))$

Datasets

- RumourEval-19 (Twitter, Reddit)
- Weibo-16 (2010.12-2014.04)
 - Deduplication on the subset of fake news based on a clustering algorithm based on text similarity.
- Weibo-20 (2010.12-2018.11)
 - Further collect news from the same source with Weibo-20.

	Veracity	RumourEval-19		Weibo-16		Weibo-20	
		#pcs	#com	#pcs	# com	#pcs	#com
Training	Fake	79	1,135	801	649,673	1,896	749,141
	Real	144	1,905	1,410	482,226	1,920	516,795
	Unverified	104	1,838	-	-	-	-
	Total	327	4,878	2,211	1,131,899	3,816	1,265,936
Validating	Fake	19	824	268	222,149	632	137,941
	Real	10	404	470	146,948	640	185,087
	Unverified	9	212	-	-	-	-
	Total	38	1,440	738	369,097	1,272	323,028
Testing	Fake	40	689	286	193,740	633	245,216
	Real	31	805	471	179,942	641	149,260
	Unverified	10	181	-	-	-	-
	Total	81	1,675	757	373,682	1,274	394,476
Total	Fake	138	2,648	1,355	1,065,562	3,161	1,132,298
	Real	185	3,114	2,351	809,116	3,201	851,142
	Unverified	123	2,231	-	-	-	-
	Total	446	7,993	3,706	1,874,678	6,362	1,983,440

Experiment Setup

- Emotion classifiers
 - Adopt pretrained models of NVIDIA (en) & Baidu AI (ch).
 - Randomly sampled 100 instance to ensure the robustness (NVIDIA / Baidu Acc: 87 / 83%).
- Emotion lexicon and intensity features
 - NRC Emotion lexicon (en) & Affective Lexicon Ontology (ch)
- Calculate sentiment scores by NLTK (en) & HowNet (ch).
- Auxiliary features from Wikipedia, HowNet, Oxford / Cambridge Dictionary.

Baselines

- Select 2 baseline emotion features to evaluate the effectiveness of Dual Emotion Features.
 - Emoratio (ICASSP'19): It's calculated by the ratio of count of negative emotional words and count of positive emotional words.
 - EmoCred (SIGIR'19): Utilize emotional lexicon and intensity features of content texts, calculated based on the lexicons' occurrence frequency.

Fake News Detectors

- For testing the ability of the emotional features to help the text-based fake news detectors (especially those do not explicitly model the emotional signals).
 - BiGRU: As word embedding using GloVe (en) Chinese Word Vectors (ch).
 - BERT (ECAl'20): Adopted to represent semantic signals when detecting fake news. Finetune the pretrained models for task.
 - NileTMRG (SemEval@ACL'17): For RumourEval-19, linear SVM and uses text features, social features, and use comments stance features.
 - HSA-BLSTM (CIKM'18): For Weibo datasets, proposed a hierarchical attention neural network and utilize not only the contents of news pieces but also comments.

Evaluation Questions

- EQ1: Are Dual Emotion Features more effective than baseline features when used alone for fake news detection? How effective are the different types of features in Dual Emotion Features?
- EQ2: Can Dual Emotion Features help improve the performance of text-based fake news detectors?
- EQ3: How robust do the fake news detection models with Dual Emotion Features in real-world scenarios?
- EQ4: How effective are the components of Dual Emotion Features, including the publisher emotion, social emotion, and emotion gap?

Evaluation Questions

- EQ1: Are Dual Emotion Features more effective than baseline features when used alone for fake news detection? How effective are the different types of features in Dual Emotion Features?
- EQ2: Can Dual Emotion Features help improve the performance of text-based fake news detectors?
- EQ3: How robust do the fake news detection models with Dual Emotion Features in real-world scenarios?
- EQ4: How effective are the components of Dual Emotion Features, including the publisher emotion, social emotion, and emotion gap?

Effectiveness of Dual Emotion Features

Source	Emotion Features	R-19	W-16	W-20
	Emoratio	0.185	0.553	0.524
Content	EmoCred	0.253	0.564	0.542
	Publisher Emotion	0.290	0.571	0.573
Comments	Social Emotion	0.296	0.692	0.754
Content,	Emotion Gap	0.332	0.716	0.746
Comments	Dual Emotion Features	0.337	0.728	0.759

- Publisher Emotion is more effective than EmoCred and Emoratio, especially on the RumorEval.
 - It's reveals the effectiveness of Dual Emotion Features in modeling emotional signals.
- Moreover, observe that more improvements of Social Emotion and Emotion Gap,
- Using Dual Emotion Features can further obtain enhancements on the three datasets.
- *Clarified that RumourEval-19 are rather worse than the two Chinese datasets.
 - Because of the amount of news pieces is small and there is a relatively low interannotator agreement for the dataset.

Effectiveness of different types features

Removed type	R-19	W-16	W-20
Emotion Category	0.193	0.679	0.686
Emotion Lexicon	0.239	0.715	0.745
Emotional Intensity	0.216	0.725	0.750
Sentiment Score	0.245	0.723	0.743
Other Auxiliary Features	0.307	0.653	0.722
Dual Emotion Features	0.337	0.728	0.759

- The macro F1 scores of Dual Emotion Features all decrease regardless of the removed type of emotion features.
- Thus, it reveals the necessity of using five types of emotion features jointly.

Evaluation Questions

- EQ1: Are Dual Emotion Features more effective than baseline features when used alone for fake news detection? How effective are the different types of features in Dual Emotion Features?
- EQ2: Can Dual Emotion Features help improve the performance of text-based fake news detectors?
- EQ3: How robust do the fake news detection models with Dual Emotion Features in real-world scenarios?
- EQ4: How effective are the components of Dual Emotion Features, including the publisher emotion, social emotion, and emotion gap?

Performance Comparison: RumourEval-19

Models	Magra E1 sagra	RMSE	F1 score				
Models	Macro F1 score	KWISE	Fake News	Real News	Unverified News		
BiGRU	0.269	0.804	0.500	0.222	0.083		
+ Emoratio	0.275	0.823 0.463		0.160	0.200		
+ EmoCred	0.311	0.797	0.456	0.295	0.182		
+ Dual Emotion Features	0.340	0.752	0.580	0.337	0.104		
BERT	0.272	0.808	0.533	0.105	0.176		
+ Emoratio	0.271	0.857	0.406	0.240	0.167		
+ EmoCred	0.308	0.833	0.367	0.367	0.189		
+ Dual Emotion Features	0.346	0.778	0.557	0.244	0.238		
NileTMRG	0.309	0.770	0.557	0.245	0.125		
+ Emoratio	0.331	0.754	0.571	0.280	0.143		
+ EmoCred	0.307	0.786	0.296	0.500	0.125		
+ Dual Emotion Features	0.342	0.754	0.565	0.565	0.100		

After using Dual Emotion Features, the three fake news detectors are improve a lot.

Performance Comparison: Weibo

	Weibo-16				Weibo-20			
Models	Macro F1 score	Асстиност	F1 score		Macro F1 score	Accessors	F1 score	
	Macro F1 Score	Accuracy	Fake Real		Macro F1 Score	Accuracy	Fake	Real
BiGRU	0.807	0.822	0.754	0.860	0.839	0.839	0.839	0.839
+ Emoratio	0.794	0.810	0.738	0.851	0.850	0.850	0.854	0.846
+ EmoCred	0.766	0.778	0.711	0.820	0.829	0.829	0.836	0.821
+ Dual Emotion Features	0.826	0.838	0.781	0.871	0.855	0.855	0.857	0.852
BERT	0.824	0.845	0.762	0.886	0.900	0.900	0.900	0.900
+ Emoratio	0.837	0.857	0.780	0.894	0.901	0.901	0.900	0.902
+ EmoCred	0.849	0.867	0.797	0.901	0.902	0.902	0.901	0.903
+ Dual Emotion Features	0.867	0.873	0.837	0.896	0.915	0.915	0.913	0.918
HSA-BLSTM	0.849	0.855	0.819	0.879	0.913	0.913	0.912	0.914
+ Emoratio	0.863	0.872	0.829	0.898	0.920	0.920	0.920	0.920
+ EmoCred	0.854	0.861	0.822	0.886	0.903	0.903	0.902	0.905
+ Dual Emotion Features	0.908	0.913	0.885	0.930	0.932	0.932	0.932	0.933

- Observed that Dual Emotion Features outperforms Emoratio & EmoCred on any models.
- However, when using Emoratio & EmoCred on BiGRU, sometimes the metrics even decrease, it reveals that Emoratio & EmoCred are more likely to be overfitted.

Evaluation Questions

- EQ1: Are Dual Emotion Features more effective than baseline features when used alone for fake news detection? How effective are the different types of features in Dual Emotion Features?
- EQ2: Can Dual Emotion Features help improve the performance of text-based fake news detectors?
- EQ3: How robust do the fake news detection models with Dual Emotion Features in real-world scenarios?
- EQ4: How effective are the components of Dual Emotion Features, including the publisher emotion, social emotion, and emotion gap?

Real-world scenarios

- Split dataset temporally.
- Such a scenario can somehow expose the drawback of existing techniques and it requires a model of higher generalizability to cope with novel instances.
- Under this hard setting, Dual Emotion Features still outperform others, reveals the effectiveness and generalization ability to some extent.

Models	Macro F1	Acc.	F1 score		
Models		Acc.	Fake	Real	
BiGRU	0.839	0.839	0.839	0.839	
+ Emoratio	0.850	0.850	0.854	0.846	
+ EmoCred	0.829	0.829	0.836	0.821	
+ Dual Emotion Features	0.855	0.855	0.857	0.852	
BERT	0.900	0.900	0.900	0.900	
+ Emoratio	0.901	0.901	0.900	0.902	
+ EmoCred	0.902	0.902	0.901	0.903	
+ Dual Emotion Features	0.915	0.915	0.913	0.918	
HSA-BLSTM	0.913	0.913	0.912	0.914	
+ Emoratio	0.920	0.920	0.920	0.920	
+ EmoCred	0.903	0.903	0.902	0.905	
+ Dual Emotion Features	0.932	0.932	0.932	0.933	

Models	Macro F1	Acc.	F1 score		
Models		Acc.	Fake	Real	
BiGRU	0.680	0.681	0.694	0.666	
+ Emoratio	0.628	0.632	0.665	0.592	
+ EmoCred	0.659	0.666	0.709	0.609	
+ Dual Emotion Features	0.701	0.702	0.714	0.689	
BERT	0.722	0.728	0.762	0.682	
+ Emoratio	0.719	0.724	0.757	0.681	
+ EmoCred	0.725	0.728	0.752	0.699	
+ Dual Emotion Features	0.734	0.734	0.773	0.692	
HSA-BLSTM	0.776	0.778	0.796	0.686	
+ Emoratio	0.771	0.774	0.796	0.663	
+ EmoCred	0.777	0.781	0.806	0.646	
+ Dual Emotion Features	0.805	0.808	0.827	0.694	

Table 7: Results on Weibo-20 (temporal data split). Acc. is short for Accuracy.

Evaluation Questions

- EQ1: Are Dual Emotion Features more effective than baseline features when used alone for fake news detection? How effective are the different types of features in Dual Emotion Features?
- EQ2: Can Dual Emotion Features help improve the performance of text-based fake news detectors?
- EQ3: How robust do the fake news detection models with Dual Emotion Features in real-world scenarios?
- EQ4: How effective are the components of Dual Emotion Features, including the publisher emotion, social emotion, and emotion gap?

Ablation Study

- Observed that adding Dual Emotion Features into detectors all obtain the highest macro F1 scores.
- Exhibits that adopting Social Emotion or Emotion Gap improves the macro F1 scores more than Publisher Emotion on any models.
- Concludes that Social Emotion and Emotion Gap matter more when detecting fake news.

	Models	R-19	W-16	W-20	W-20(t)
	Publisher Emotion	0.310	0.809	0.842	0.681
BiGRU+	Social Emotion	0.322	0.818	0.847	0.693
DIGICOT	Emotion Gap	0.336	0.811	0.849	0.693
	Dual Emotion	0.340	0.826	0.855	0.701
	Features	0.540	0.020	0.033	0.701
	Publisher Emotion	0.312	0.850	0.889	0.705
BERT+	Social Emotion	0.339	0.856	0.911	0.730
DEK1+	Emotion Gap	0.338	0.858	0.906	0.731
	Dual Emotion	0.346	0.967	0.915	0.734
	Features	0.340	0.867	0.913	0.734
	Publisher Emotion	0.311	-	-	-
Nile	Social Emotion	0.325	_	-	_
TMRG+	Emotion Gap	0.337	_	_	_
	Dual Emotion	0.342			
	Features	0.342	_	_	_
	Publisher Emotion	-	0.876	0.915	0.779
HSA- BLSTM+	Social Emotion	_	0.892	0.922	0.792
	Emotion Gap	_	0.901	0.926	0.800
	Dual Emotion		0.000	0.020	0.005
	Features	_	0.908	0.932	0.805

Table 8: Ablation study of the three components of *Dual Emotion Features*. The evaluation metric is macro F1 scores. R-19: RumourEval-19, W-16: Weibo-16, W-20: Weibo-20, and W-20(t): temporally split Weibo-20.

ExperimentsCase Study

- It exhibits using Emoratio & EmoCred do not help BiGRU detect rightly for the three cases.
- It reveals that mining dual emotion additionally sometimes is a remedy for incompetence of only using semantics for detecting fake news.

Conclusion and Future Work

- Bring a new concept of dual emotion (i.e., publisher emotion, social emotion).
- Uncover the relationship between dual emotion signals (emotion gap).
- Proposed Dual Emotion Features expose the distinctive emotional signals for detecting fake news.
- The proposed features can be easily plugged into existing fake news detectors as enhancement.
- In future work, authors plan to leverage the multi-modal information to capture the emotions more precisely for dual emotion representation.

Commentsof Dual Emotion Features

- Focus on emotion signal to deal with fake news detection.
- Redesign the emotion feature by 5 kinds of statistical feature.
 - Most features are from existing methods or toolkits.
- Discover the relationship between posts & comments.
- Easy to plugged into existing fake news detector as enhancement.