13.7 Sequences

Benjamin Basseri

January 9, 2025

Problem 1

Prove that $\left\{\frac{2^n}{n!}\right\}$ converges to 0.

Prove this using the product law for limits. View 2^n as $2 \times 2 \times ... \times 2$, which has n factors. So does n!. Write the general term as

$$\frac{2^n}{n!} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \ldots \cdot \frac{2}{n-1} \cdot \frac{2}{n}$$

See how after the first two factors, the denominator will always be larger than the numerator. Using the limit law for products, we get

$$\lim_{n\to\infty}\frac{2^n}{n!}=\left(\lim_{n\to\infty}\frac{2}{1}\right)\cdot\left(\lim_{n\to\infty}\frac{2}{2}\right)\cdot\ldots\cdot\left(\lim_{n\to\infty}\frac{2}{n-1}\right)\cdot\left(\lim_{n\to\infty}\frac{2}{n}\right)=2\cdot0=0$$

Problem 2

Prove that $\left\{5 + \frac{2}{n^2}\right\}$ converges to 5.

Apply the limit sum rule to the general term:

$$\lim_{n \to \infty} 5 + \frac{2}{n^2} = \lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{2}{n^2} = 5 + 0 = 5$$

Problem 3

Prove that $\left\{\frac{2n^2+1}{3n-1}\right\}$ diverges to ∞ .

Simplify the general term by multiplying by $\frac{1/n}{1/n}$ and applying limit laws:

$$\lim_{n \to \infty} \frac{2n^2 + 1}{3n - 1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{2n - \frac{1}{n}}{3 - \frac{1}{n}} = \frac{\lim_{n \to \infty} 2n - \frac{1}{n}}{\lim_{n \to \infty} 3 - \frac{1}{n}} = \frac{1}{3} \lim_{n \to \infty} 2n = +\infty$$

Problem 4

Prove that $\left\{1 - \frac{1}{2^n}\right\}$ converges to 1.

Apply the limit sum rule to the general term:

$$\lim_{n \to \infty} 1 - \frac{1}{2^n} = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n} = 1 - 0 = 1$$

1

Problem 5

Prove that $\left\{\frac{2n+1}{3n-1}\right\}$ converges to $\frac{2}{3}$.

Simplify the general term by multiplying by $\frac{1/n}{1/n}$ and applying limit laws:

$$\lim_{n \to \infty} \frac{2n+1}{3n-1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{2+\frac{1}{n}}{3-\frac{1}{n}} = \frac{\lim_{n \to \infty} 2+\frac{1}{n}}{\lim_{n \to \infty} 3-\frac{1}{n}} = \frac{2}{3}$$

Problem 6

Prove that $\left\{\frac{5n^2+n+1}{4n^2+2}\right\}$ converges to $\frac{5}{4}$.

Simplify the general term by multiplying by $\frac{1/n^2}{1/n^2}$ and applying limit laws:

$$\lim_{n \to \infty} \frac{5n^2 + n + 1}{4n^2 + 2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{5 + \frac{1}{n} + \frac{1}{n^2}}{4 + \frac{2}{n^2}} = \frac{\lim_{n \to \infty} 5 + \frac{1}{n} + \frac{1}{n^2}}{\lim_{n \to \infty} 4 + \frac{2}{n^2}} = \frac{5}{4}$$

Problem 7

Prove that if a sequence diverges to infinity, the it diverges.

This is a tautology because 'diverge to infinity' is contained in the definition of divergence. But to formalize it, suppose a_n diverges to infinity. Then the sequence can obtain arbitrarily large values. ATAC that sequence does converge to some limit L. By assumption, for any $\epsilon > 0$ there exists an N sufficiently large that n > N implies $|a_n - L| < \epsilon$. But since the series diverges to infinity there is an M sufficiently large that n > M implies $a_n > L + \epsilon$. Then choose $P = \max(N, M)$ and any n > P implies

$$|a_n - L| \ge a_n - L > \epsilon$$
 and $|a_n - L| < \epsilon$

which is a contradiction.

Problem 8

Prove that the **constant sequence** c, c, c, c, \ldots converges to c for any $c \in \mathbb{R}$.

This can be done with an $\epsilon - \delta$ proof since viewing the sequence as a function, the difference between any function value and c will always be 0. So for any $\epsilon > 0$ and any $c \in \mathbb{R}$, let $\delta = \epsilon$. Then for any n > 0 we have $|a_n - c| = 0 < \epsilon$.

Problem 9

Prove that if $\{a_n\}$ converges to L, and $c \in \mathbb{R}$, then the sequence $\{ca_n\}$ converges to cL.

Apply the limit law for functions times constants:

$$\lim_{n \to \infty} c \cdot a(n) = c \lim_{n \to \infty} a(n) = c \cdot \lim_{n \to \infty} a_n = cL$$

Problem 10

Prove that if $\{a_n\}$ converges to L and $\{b_n\}$ converges to M then the sequence $\{a_n + b_n\}$ converges to L + M.

2

Apply the addition rule to the general term after viewing the sequences as functions: since $a_n \to L$ this means the function that a(n) approaches L as n approaches infinity. Similarly b(n) approaches M. Then

$$\lim_{n\to\infty} a(n) + b(n) = \lim_{n\to\infty} a(n) + \lim_{n\to\infty} b(n) = L + M$$

Problem 11

Prove that if $\{a_n\}$ converges to L and $\{b_n\}$ converges to M then the sequence $\{a_n \cdot b_n\}$ converges to $L \cdot M$.

Apply the product rule to the general term as in the previous problems. Since $a_n \to L$ this means that for any $\epsilon > 0$ there exists an N sufficiently large that for n > N, $|a(n) - L| < \epsilon$. Likewise for b_n there exists a threshold M such that n > M implies $|b(n) - M| < \epsilon$. Then for $n > \max(N, M)$. Then for scratchwork:

$$\begin{aligned} |a(n)b(n) - LM| &< \epsilon \\ |a(n)b(n) - Lb(n) + Lb(n) - LM| &< \epsilon \\ |b(n)(a(n) - L) + L(b(n) - M)| &< \epsilon \\ |b(n)||a(n) - L| + |L||b(n) - M| &< \epsilon \end{aligned}$$

As in the previous section's proof, we can make |a(n) - L| and |b(n) - M| arbitrarily small, so each term ends up less than $\epsilon/2$. For the first term, we want to bound |b(n)| so it no longer depends on n. Since $b(n) \to M$, we can say for sufficiently large n that |b(n)| < |M| + 1. Then if we make $|a(n) - L| < \epsilon/2(|M| + 1)$ and $|b(n) - M| < \epsilon/2(|L| + 1)$, then the sum of the two terms will be less than ϵ .

So the formal proof proceeds that for any $\epsilon > 0$, there exists an N so large that n > N implies $|a(n) - L| < \epsilon/2(|M| + 1)$ and $|b(n) - M| < \epsilon/2(|L| + 1)$. Then for n > N we have $|a(n)b(n) - LM| < \epsilon$ by following the scratchwork above.

Problem 12

Prove that if $\{a_n\}$ converges to L and $\{b_n\}$ converges to $M \neq 0$ then the sequence $\{a_n/b_n\}$ converges to L/M. (You may assum that $b_n \neq 0$ for each $n \in \mathbb{N}$.)

Apply the division rule to the general term:

$$\lim_{n \to \infty} \frac{a(n)}{b(n)} = \frac{\lim_{n \to \infty} a(n)}{\lim_{n \to \infty} b(n)} = \frac{L}{M}$$

Problem 13

For any sequence $\{a_n\}$, there is a corresponding sequence $\{|a_n|\}$. Prove that if $\{|a_n|\}$ converges to 0, then $\{a_n\}$ converges to 0. Give an example of a sequence $\{a_n\}$ for which $\{|a_n|\}$ converges to a number $L \neq 0$ but $\{a_n\}$ diverges.

To find a sequence where $\{|a_n|\}$ converges to a number $L \neq 0$ but $\{a_n\}$ diverges, we need to find one where taking the terms' absolute value somehow makes the sequence more well-behaved. One example would be the alternating sequence $-1, 1, -1, 1, \ldots$ or $a_n = (-1)^n$. Then $\{|a_n|\}$ is the constant 1 sequence which converges to 1, but $\{a_n\}$ diverges because it oscillates between two values forever.

Problem 14

Suppose that $\{a_n\}, \{b_n\}$ and $\{c_n\}$ are sequences for which $a_n \leq b_n \leq c_n$ for all sufficiently large n. (That is, $a_n \leq b_n \leq c_n$ for all n > M for some integer M.) Prove that if $\{a_n\}$ and $\{c_n\}$ converge to the same limit L, then $\{b_n\}$ also converges to L.

While this 'squeeze theorem' makes intuitive sense, let's prove it formally using $\epsilon - \delta$. For any $\epsilon > 0$ let N_1 be large enough that $n > N_1$ implies $|a_n - L| < \epsilon$ and N_2 be large enough that $n > N_2$ implies $|c_n - L| < \epsilon$. Choose $N = \max(N_1, N_2)$. Then for any n > N we have

$$a_n \in (L - \epsilon, L + \epsilon)$$
 and $c_n \in (L - \epsilon, L + \epsilon)$

By the constraint that $a_n \leq b_n \leq c_n$, we must have c_n in the same interval $(L - \epsilon, L + \epsilon)$. Written with absolute values this means $|b_n - L| < \epsilon$. So for any $\epsilon > 0$ there exists an N such that n > N implies $|b_n - L| < \epsilon$.