Chapter 2.1

Problem 9.

n(n+1) can be approximated to, $n(n+1) \approx n^{\perp}$ The higher order in the function, n(n+1) overrides the lower power meaning $n^{\frac{1}{2}} + n$ can be approximated to n^{2} .

is higher power. when compared with 2000 n° it has the same order of ground ground mit + n and 2000 n° has the highest

yponeer same which is n2. You can bolsker your argument by taking limit.

 $\frac{n(n+1)}{n\to\infty} = \lim_{n\to\infty} \frac{n^2 + n}{n\to\infty} = \lim_{n\to\infty} \frac{1}{n\to\infty}$

Therefore, By taking limit and the value being constant, we can conclude n(n+1) and 2000h have some order of growth.

(৮) 100 n2 and 0.01n3

Tesking limits,

Lim 0 100 n = 4 10

Therefore, 0.01n3 has a higher order of growth in comparison.

logzn and Inn. (C)

First step is to convert the logarithm functions

into same base using

or you can take take on limits directly.

1092h = logzelogen = logze (a unstit)

(d)

log2 n and log_n log2 n using log simplication.
log2 n = log2 n. log2 n.

logzn = 2 logzn

la king limit;

Lim logen logen = It logen >

Ever in the seemed step it is clear log_n hasa heephen order of growth.

rg (2)

(e) 2 n-1 and 2 h $2^{n-1} = \frac{2^n}{2^n}$

2ⁿ⁻¹ and 2ⁿ has same order of grown as 2ⁿ is within a constant omultiple.

(+)(n-1)! and n! n! = (n-1)! n! n! = (n-1)! nLt. (n-1)! = Lt. (n-+)! Lt. = 0 Therefore n! has higher order of growth.

```
Chapter 2. P.
Roblem 6.
```

Pg (3)

(a) Every polynomial of degree k, p(n) = aknk + akn k+1.-ao
with ak > 0, belongs to (nk)

Roof: By taking the limit for the function,

p(n) and nk, we want to show if PKn) belongs

Lim to @(nk) or otherwise.

Lt $\frac{p(n)}{n \times n}$ (Lt = lim)

 $= \frac{Lh}{n \rightarrow \infty} \frac{a_K n^K + a_{K-1} m^{K-1} + \cdots + a_0}{n^K}$

= Lt. $(ak + \frac{ak-1}{h} + \cdots + \frac{ao}{h^{1k}})$

 $= Lt \cdot (Qk) > 0.$

Therefore, $p(n) \in \mathcal{O}(n^k)$.

(b) Exponential function a have different orders of growth for different values of base a >0.

Proof: Assume there are 2 function 9, " and 92, a whole taking limite.

Let a lim $\frac{a_1^n}{a_1^n} = \begin{cases} 0 & \text{if } a_1 < a_2 \leq \text{in } a_1^n \in o(a_1^n) \\ 1 & \text{if } a_1 = a_2 \leq \text{in } a_1^n \in O(a_1^n) \end{cases}$ Here $1 = \begin{cases} 0 & \text{if } a_1 < a_2 \leq \text{in } a_1^n \in o(a_1^n) \\ 0 & \text{if } a_1 > a_2 \leq \text{in } a_2^n \in o(a_1^n) \end{cases}$

Chaples 2.3.

Problem 1

(b)
$$2 + 4 + 8 + 16 + \cdots + 1,024$$

or $2 + 2^{2} + 2^{3} + 2^{4} + \cdots + 2^{10}$
or $\frac{10}{2}$ (1) $= 2 \cdot \frac{2^{10} - 1}{2^{-1}} = 2,046$ Sum.

(c)
$$\frac{n+1}{\sum_{i=3}^{n-1}} = (n+1) - 3 + 1 = n-1$$
 (coly? the sumahing 1 cimply mean it is going to add 1 from $i=3$ to $n+1$)

(d)
$$\frac{n+1}{2}$$
 $i = \sum_{i=0}^{n+1} i - \sum_{i=0}^{n+1} i = \frac{n(n+1)(n+2)}{2} - 3$

$$\lim_{i=3}^{n+2} i = \sum_{i=0}^{n+3} i - \frac{n^2 + 3n + 4}{2}$$
leads to ferms.

a series in Arithmetric

a series in Arithmetic progression.

(e)
$$\sum_{i=0}^{n-1} i(i+i) = \sum_{i=0}^{n-1} (i^2+i) = \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i = \frac{n+1}{6} n + \frac{(n+1)n}{2}$$

$$= \frac{(n^2-1) \cdot n}{3}$$

(9)
$$\sum_{i=1}^{n} j^{i} = \sum_{i=1}^{n} i \sum_{j=1}^{n} j^{j} = \sum_{i=1}^{n} i \frac{n(n+1)}{2} - \frac{n(n+1)}{2} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \frac{n(n+1)}{2}$$

Solving inner summation $\frac{n^{2}(n+1)^{2}}{4}$

(A)
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \sum_{i=1}^{n} \frac{1}{i-1} \left(\frac{1}{i-1} - \frac{1}{i+1} \right) \left[\text{We break} \frac{1}{i(i+1)} - \frac{1}{i+1} \right] = \left[\left(\frac{1}{i-1} - \frac{1}{i-1} \right) + \left(\frac{1}{i-1} - \frac{1}{i+1} \right) + \left(\frac{1}{i-1} - \frac{1}{i+1} \right) + \left(\frac{1}{i-1} - \frac{1}{i+1} \right) \right]$$

Problem 5

- Computs the difference Letwer the array's largest and smallest elements.
- An comparison of elements.

(c)
$$C(n) = \sum_{i=1}^{n-1} 2 = 2(n-1)$$
 [Hook at 1(c)]

- One way to improve is to use one replace the two if statements by 4 A[i] < minual minual + A[i]

+ There are outer warp in which it can be improved.

- Algordon returns true if its input matrix is symmetric and talse if it is not.
- (b) Comparison of 2 matrix elements.

(b) Comparison of a matter (c) (worst (n) =
$$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \left[(n-1) - (i+1) + i \right]$$

$$= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \left[(n-1) + (n-2) + \dots + 1 \right] = (n-1) \cdot i$$

$$= \sum_{i=0}^{n-2} (n-1-i) = (n-1) + (n-2) + \dots + 1 = (n-1) \cdot i$$

$$= \frac{n-2}{\sum_{i=0}^{n-1} (n-1-i)} = (n-1) + (n-2) + \cdots + 1 = \frac{(n-1) \cdot n}{2}$$

How? By definha and ... (d) Quadrahi : Cworst (n) & (n2)

The algorithm is optimal. Long? In worst use, it is going to compare (n-1)n/2 elements for the upper triangular part of the matrix with their symmetril' counterparts in the lower-triangula part, which is

Chapter 2.4 Pg(6) Problem 1(1) $\alpha(n) = \alpha(n+) + n \quad \text{for } n>0 \quad \alpha(0)=0$ x(n) = x(n+) + n= [x(n-2) + (n-1)] + n = x(n-2) + (n-1) + n. = $[\chi(n-3) + (n-2)] + (n-1) + n = \chi(n-3) + (n-2) + (n-1) + n$ $= x(n-i) + (n-i+1) + (n-i+2) + \cdots + n.$ $= \chi(0) + 1 + 2 + \dots + n = \frac{\chi(n+1)}{2}$ 1(e) $\alpha(n) = \alpha(n/3) + 1$ for $n > 1, \alpha(1) = 1$ $\chi(3^k) = \chi(3^{k-1}) + 1$ $= \left[\chi \left(3^{k-2} \right) + 1 \right] + 1 = \chi \left(3^{k-2} \right) + 2$ = $[x(3^{k-3}) + 1] + 2 = x(3^{k-2}) + 3$ = 2 (31<-i)+i = $\chi(3^{k-k}) + k = \chi(1) + k = 1 + \log_3 h$. 3(a) Let T(n) be the # of basic operations (multiplication) The recurrence relation is HE T(n)= T(n-1)+2, M(y=0 Solving the asme caprelsin T(N)= 7(N-1)+2

T(n) = T(n-1) + 2 = [T(n-2) + 2] + 2 = T(n-2) + 2 + 2 = [T(n-3) + 2] + 2 + 2 = T(n-3) + 2 + 2 + 2 = [T(n-3) + 2] + 2 + 2 = T(n-3) + 2 + 2 + 2 + 2 = [T(n-3) + 2] + 2 + 2 = T(n-3) + 2 + 2 + 2 + 2

Mon-recursin version. Pseudocode is

Algorithm HonRecursive S(N)

// Input = A · positue numb n

// Output: Sum of first naules.

SE

for it 2 to n do

St St i * i * i * i

return S.

of busic operators are $\sum_{i=2}^{n} 2 = 2(n-i)$.

"Note: Nonnecursin variant does not have overhead of space due to check.

Broslem 9.

- (a) Computes the value of smallest element in a
- (b) Recurrence relation: C(n) = C(n+1) + 1 for n > 1, C(1) = 0.Of your solve it, you should got. C(n) = n-1.

Recurrence relation for computation of #jbasic operations. Let Tw (n) be the # of times the adjacent matrix is checked in the worst case. (Here, the graph is complete). The recurrence relation for Twith is

 $T_{\omega}(n) = T_{\omega}(n-1) + (n-1)$ for n>1, c(1)=0

(olving

Twcm= Tw(n-1) +n-1 = [Tw (n-2)+n-2]+n-1 = [Tw (n-3)+n-3]+n-2+n-1 = Tw (n-i)+(n-i)+(n-i+1)+..+(n-1) = Tw(1) + 1+2+3+-- (n-1) $= 0 + (n-1) \cdot n/2 = (n-1) n/2$

of the as algorithm checks every dement below the main diagonal of the adjacry matrix of a graph. Note: The worst cone