- 1. Let C(K,T) and P(K,T) be the <u>time 0</u> premium (price) of the K-strike call option and K-strike put option with <u>T years to expiration</u> respectively.
- 2. Assume the underlying asset pays no dividends.

	Floors	Caps	Covered Call	Covered Put	Bull Spread	Bear Spread
At $t = 0$	Long a K-strike put	Long a K-strike	Sell a <i>K</i> -strike call	Sell a <i>K</i> -strike put	Long a K ₁ -strike call +	Sell a <i>K</i> ₁ -strike call +
	+ Long the	call + Short the	+ Long the	+ Short the	Sell a K ₂ -strike call	Long a K_2 -strike call
	underlying asset	underlying	underlying asset	underlying asset		
		asset				
Cost @ <i>t</i> =	$P(K, T) + S_0$	$C(K, T) - S_0$	$-C(K, T) + S_0$	$-P(K, T) - S_0$	$C(K_1, T) - C(K_2, T)$	$-C(K_1, T) + C(K_2, T)$
0						
Payoff @ T	$\max(K-S_T,0)+S_T$	$\max(S_T - K, 0) - S_T$	$-\max(S_T-K, 0) +$	$-\max(K-S_T,0)$ –	$\max(S_T - K_1, 0) - \max(S_T$	$-\max(S_T-K_1, 0) + \max(S_T$
			S_T	S_T	$-K_2, 0)$	$-K_2, 0)$
Profit @ T	$\max(K-S_T,0)+S_T$	$\max(S_T - K, 0) - S_T$	$-\max(S_T - K, 0) +$	$-\max(K-S_T, 0)$ –	$\max(S_T - K_1, 0) - \max(S_T$	$-\max(S_T-K_1, 0) + \max(S_T$
	$-\operatorname{FV}(P(K,T)+S_0)$	$-\operatorname{FV}(C(K, T) - S_0)$	S_T	S_T	$-K_2$, 0) – FV($C(K_1, T)$ –	$-K_2, 0) -$
			$FV(-C(K, T) + S_0)$	$FV(-P(K, T) - S_0)$	$C(K_2, T)$	$FV(-C(K_1, T) + C(K_2, T))$
Remark					➤ Both calls have the	➤ Both calls have the
					same maturity	same maturity
					$ ightharpoonup K_1 < K_2.$	$\succ K_1 < K_2.$
					Can be constructed	Can be constructed
					using puts.	using puts.

	Collar	Straddles	Written Straddles	Strangles	Butterfly Spreads
At $t = 0$	Long a K ₁ -strike	Long a K-strike	Sell a K-strike call	Long a K ₁ -strike put	Sell a <i>K</i> -strike call + sell a <i>K</i> -
	put + sell a K_2 -	call + Long a K-	+ sell a <i>K</i> -strike put	+ Long a K ₂ -strike	strike put + Long a K_2 -strike
	strike call	strike put		call	call + Long a K_1 -strike put
Cost @ <i>t</i> =	$P(K_1, T) - C(K_2, T)$	C(K, T) + P(K, T)	-C(K, T) - P(K, T)	$P(K_1, T) + C(K_2, T)$	$-C(K, T) - P(K, T) + C(K_2, T) +$
0					$P(K_1, T)$
Payoff @ T	$\max(K_1 - S_T, 0) -$	$\max(S_T - K, 0) +$	$-\max(S_T-K,0)$ –	$\max(K_1 - S_T, 0) +$	$-\max(S_T-K, 0) - \max(K-S_T,$
	$\max(S_T-K_2,0)$	$\max(K-S_T,0)$	$\max(K-S_T,0)$	$\max(S_T-K_2,0)$	$0) + \max(S_T - K_2, 0) + \max(K_1 -$
					S_T , 0)
Profit @ T	$\max(K_1 - S_T, 0) -$	$\max(S_T - K, 0) +$	$-\max(S_T-K,0)$ –	$\max(K_1 - S_T, 0) +$	$-\max(S_T-K,0)-\max(K-S_T,$
	$\max(S_T-K_2, 0)$ –	$\max(K-S_T,0)$ –	$\max(K - S_T, 0) +$	$\max(S_T - K_2, 0) -$	$0) + \max(S_T - K_2, 0) + \max(K_1 -$
	$FV(P(K_1, T) -$	FV(C(K, T) +	FV(C(K, T) + P(K,	$FV(P(K_1, T) + C(K_2,$	$S_T, 0) - FV(-C(K, T) - P(K, T)$
	$C(K_2, T)$	P(K,T))	<i>T</i>))	<i>T</i>))	$+ C(K_1, T) + P(K_2, T)$
Remark	➤ Both options			$\triangleright K_1 < K_2$.	$\triangleright K_1 < K < K_2.$
	have the same				➤ Written <i>K</i> -strike Straddle +
	maturity				Long a Strangle with strike
	$ ightharpoonup K_1 < K_2.$				prices of K_1 and K_2 .