Computational Complexity Theory - Assignment 7

Alex Hoppen (334784), Jan Uthoff (310336)

June 16, 2016

Exercise 25

Exercise 26

Most current results of the time/space tradeoff focus on SAT.

- 1. $\overline{\text{SAT}}$ cannot be solved in $n^{1+o(1)}$ time and $n^{1-\epsilon}$ space for any $\epsilon > 0$ general random-access non-deterministic Turing machines [For00].
- 2. A Turing machine that run in super-linear time an sublinear space can be simulated in alternating linear time [For00].
- 3. SATcannot be solved on general purpose random-access Turing machines in time $n^{1.618}$ and space $n^{O(1)}$.' SATcannot be solved for any constant b less than the golden ratio in time n^a and space n^b [FvM00]. The value of 1.618 is nearly equal to the value named in the book.

Exercise 27

In the following the i-th enumeration represents the i-th paragraph in the proof description.

- 1. $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{co}\text{-}\mathsf{NP} = \Pi_1^p$. Known from theorem 5.4: If $\Sigma_i^p = \Pi_i^p$ the polynomial hierarchy collapses to the i-th level. In this case i=1 so it collapses not to the second level but first level. Furthermore $\mathsf{NP} = \mathsf{co}\text{-}\mathsf{NP}$ does not follow by $\mathsf{NP} = \mathsf{NP}^\mathsf{NP}$. Because $\mathsf{NP} \subseteq \mathsf{P}^\mathsf{NP} \subseteq \mathsf{NP}^\mathsf{NP}$ (trivial) and $\mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{P}^\mathsf{NP}$ (trivial), $\mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{NP}$ follows.
- 2. This paragraph wants to show that $NP \subseteq NP^{NP}$ holds. Therefore they name for every $\mathcal{L} \in NP$ and non-deterministic polynomial time TM \mathcal{M} that recognizes \mathcal{L} . In case a non-deterministic polynomial time oracle TM \mathcal{M}' behaves exactly like \mathcal{M} and so ignoring its oracle \mathcal{M}' recognizes \mathcal{L} too. So $NP \subseteq NP^{NP}$.
- 3. This paragraphs wants to show that $NP^{NP} \subseteq NP$. So assume $\mathcal{L} \in NP^{NP}$. Because $\mathcal{L} \in NP^{NP}$ there exists a non-deterministic polynomial time oracle TM \mathcal{M}' that recognizes \mathcal{L} . Because the oracle, \mathcal{M}' uses, decides problems in NP there exists a non-deterministic polynomial time TM \mathcal{M}'' that can decide the same problems as the oracle. Because the running time of both

TMs \mathcal{M}' and \mathcal{M}'' are polynomial, a new non-deterministic polynomial time TM \mathcal{M}^{\star} can be constructed that calculates the result of the oracle with the TM \mathcal{M}'' and uses that result and continues running like \mathcal{M}' , after \mathcal{M}' uses its oracle. So $\mathcal{L} \in NP$. In the last sentence it is mentioned that $NP = \text{co-NP} = P^{NP} = NP^{NP}$ holds. But $\text{co-NP} = P^{NP}$ still must be shown. $\text{co-NP} \subseteq P^{NP}$ is easy to show.

Proof co-NP \subseteq **P**^{NP} Let be $\mathcal{L}' \in \text{co-NP}$. So $\overline{\mathcal{L}'} \in \text{NP}$. Thus there is a non-deterministic polynomial time TM \mathcal{M} that can recognize $\overline{\mathcal{L}'}$. By calculating the result of \mathcal{M} and invert it, which can obviously be done deterministically, a deterministic polynomial time oracle TM can recognize \mathcal{L}' as well.

 $P^{NP} \subseteq \text{co-NP}$ is non trivial and still to show. So the proof is incomplete.

Exercise 28

Definition: Padding Padding is the technique that fills a given word x and generates a new one $v = \langle x, 1^{u(|x|)} \rangle$. With the new word the TM that is running on it has additional time for the calculation.

Theorem 1. If there is a language $\mathcal{L} \in NTIME(f(n))$ than there exists a padding u(|x|) such that $\langle x, 1^{u(|x|)} \rangle \in \mathcal{L}_{pad}$ and $\mathcal{L}_{pad} \in DTIME(g(n))$ and

$$x \in \mathcal{L} \Leftrightarrow \langle x, 1^{u(|x|)} \rangle \in \mathcal{L}_{pad}$$

for some f, g, u with $f(n) \in O(g(n))$.

References

- [For00] Lance Fortnow. Time-space tradeoffs for satisfiability. *Journal of Computer and System Sciences*, 60:337–353, 2000.
- [FvM00] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic computation. In *Computational Complexity*, 2000. Proceedings. 15th Annual IEEE Conference on, pages 2–13, 2000.