Classification and Decision Tree with RPART and RandomForest

Sang Kim

```
library(tidyverse)
## -- Attaching packages -----
----- tidyverse 1.2.1 --
## v ggplot2 3.1.0
                             0.2.5
                    v purrr
## v tibble 1.4.2
                             0.7.8
                    v dplyr
## v tidyr
           0.8.2
                   v stringr 1.3.1
## v readr
           1.3.1
                    v forcats 0.3.0
## -- Conflicts -----
----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                  masks stats::lag()
## x dplyr::lag()
library(dslabs)
library(rpart)
# Regression Tree
data("polls_2008")
qplot(day, margin, data = polls_2008)
```



```
# Partitions feature space into J non-overlappin,
# For every observation that falls within region
# predict with the average of the training observations in the region:
fit <- rpart(margin ~ ., data = polls_2008)

plot(fit, margin = 0.1)
text(fit, cex = 0.75)</pre>
```



```
polls_2008 %>%
  mutate(y_hat = predict(fit)) %>%
  ggplot() +
  geom_point(aes(day, margin)) +
  geom_step(aes(day, y_hat), col="red")
```



```
# rpart(y ~ ,. data= , control=rpart.control(cp=0,minsplit=20 minbucket=round(minsplit/3)))
fit <- rpart(margin ~ ., data = polls_2008, control = rpart.control(cp = 0, minsplit = 2))
polls_2008 %>%
    mutate(y_hat = predict(fit)) %>%
    ggplot() +
    geom_point(aes(day, margin)) +
    geom_step(aes(day, y_hat), col="red")
```



```
pruned_fit <- prune(fit, cp = 0.01)
polls_2008 %>%
  mutate(y_hat = predict(pruned_fit)) %>%
  ggplot() +
  geom_point(aes(day, margin)) +
  geom_step(aes(day, y_hat), col="red")
```



```
# How to pick CP
library(caret)
```

```
## Loading required package: lattice
```

```
##
## Attaching package: 'caret'
```

```
## The following object is masked from 'package:purrr':
##
## lift
```


Resulting Tree plot(train_rpart\$finalModel, margin = 0.1) text(train_rpart\$finalModel, cex = 0.75)


```
polls_2008 %>%
  mutate(y_hat = predict(train_rpart)) %>%
  ggplot() +
  geom_point(aes(day, margin)) +
  #geom_step(aes(day, margin), col="red") +
  #geom_smooth(aes(day, margin), col=2) +
  geom_quantile(aes(day, margin), col=2)
```

Loading required package: SparseM

```
##
## Attaching package: 'SparseM'
```

```
## The following object is masked from 'package:base':
##
## backsolve
```

Smoothing formula not specified. Using: $y \sim x$


```
polls_2008 %>%
  mutate(y_hat = predict(train_rpart)) %>%
  ggplot() +
  geom_point(aes(day, margin)) +
  geom_step(aes(day, margin), col="red") +
  geom_smooth(aes(day, margin), col=2)
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```


#geom_quantile(aes(day, margin), col=2)

Random Forests - improve prediction performance and reduce instability by averaging multiple decision trees (a forest of trees constructed with randomness)

bootstrap aggregation or bagging

Build many decision trees using the training set

Create a bootstrap training set by sampling

N observations from the training set with replacement.

Build a decision tree from bootstrap training set.

For every observation in the test set, form a prediction using Tree

For continuous outcomes, predict

For categorical data classification predict $\$ with majority vote (most frequent class

library(randomForest)

Warning: package 'randomForest' was built under R version 3.5.3

randomForest 4.6-14

Type rfNews() to see new features/changes/bug fixes.

##
Attaching package: 'randomForest'

The following object is masked from 'package:dplyr':
##

combine

```
## The following object is masked from 'package:ggplot2':
##
## margin
```

```
fit <- randomForest(margin~., data = polls_2008)
plot(fit)</pre>
```

fit


```
polls_2008 %>%
  mutate(y_hat = predict(fit, newdata = polls_2008)) %>%
  ggplot() +
  geom_point(aes(day, margin)) +
  geom_line(aes(day, y_hat), col="red")
```

