

Anyagok mechanikai tulajdonságai és vizsgálatuk

Dr. Szabó Péter János szpj@eik.bme.hu

Elektronikai anyagtudomány BMEVIETAA01 2022/2023/2

AZ ELŐADÁS SORÁN MEGISMERJÜK:

- az alapvető anyagi tulajdonságok csoportosítását;
- a rugalmas és a képlékeny alakváltozás jellemzőit;
- a valódi és a mérnöki rendszer feszültség és alakváltozás fogalmát;
- a rugalmas test anyagjellemzőit;
- a szakítóvizsgálattal meghatározható alakváltozási, feszültségi és szívóssági mérőszámokat;
- a keménységmérést;
- a kúszás, a fáradás és a törés fogalmát.

SZERKEZET, FOLYAMAT ÉS TULAJDONSÁGOK

Az anyag tulajdonsága függ a szerkezetétől;
 Pl: az acél keménységének és szerkezetének kapcsolata

Folyamat is megváltoztathatja a szerkezetet,
 Pl.: Szerkezetváltozás a lehűlési sebesség hatására

ANYAGTULAJDONSÁG CSOPORTOK

- Mechanikai (terhelés és alakváltozás hatása)
- Elektromos (elektromos tér hatása)
- Hőfizikai (hőmérsékletmező hatása)
- Mágneses (mágneses tér hatása)
- Optikai (elektromágneses tér hatása)
- Károsodási (kémiai reaktivitás hatása)

RUGALMAS ALAKVÁLTOZÁS

Rugalmas = reverzibilis

Rugalmas alakváltozásnál a térfogat nem állandó.

KÉPLÉKENY ALAKVÁLTOZÁS

HÚZÓ ÉS NYOMÓ IGÉNYBEVÉTEL

Alakváltozás

$$\varepsilon = \frac{l - l_0}{l_0}$$

Feszültség

$$\sigma = \frac{F}{S} \approx \frac{F}{S_0}$$

Rugalmas állapotban

$$\sigma = E \varepsilon$$

(Hooke-törvény)

Húzás

Nyomás

NYÍRÓ IGÉNYBEVÉTEL

$$\tau = \frac{F}{S} \approx \frac{F}{S_0}$$

Rugalmas állapotban

$$\tau = G\gamma$$

$$\tau = \frac{M}{I_p} r$$

SZAKÍTÓVIZSGÁLAT

Szakítódiagram

Próbatestek

- I. Rugalmas alakváltozás
- II. Egyenletes képlékeny alakváltozás
- III. Kontrakció

SZABVÁNYOS MÉRŐSZÁMOK

Feszültségi mérőszámok

Folyáshatár [MPa]

$$R_{e} = rac{F_{e}}{S_{0}}$$

$$R_{eH} = rac{F_{eH}}{S_{0}}, \quad R_{eL} = rac{F_{eL}}{S_{0}}$$

$$R_{p0,2} = rac{F_{p0,2}}{S_{0}}$$

Szakítószilárdság [MPa]

$$R_m = \frac{F_m}{S_0}$$

Alakváltozási mérőszámok

Kontrakció

$$Z = \frac{S_0 - S_u}{S_0} 100 \ [\%]$$

Szakadási nyúlás

$$A = \frac{L_u - L_0}{L_0} 100 \ [\%]$$

MECHANIKAI MENNYISÉGEK

- Mérnöki rendszer
- Valódi rendszer

$$\varepsilon = \frac{l - l_0}{l_0}$$

$$\varepsilon = \frac{S_0}{S} - 1$$

Alakváltozás

$$\varphi = \ln \frac{l}{l_0}$$

$$\varphi = \ln \frac{S_0}{S}$$

$$\sigma^{M} = \frac{F}{S_0}$$

Feszültség

$$\sigma = \frac{F}{S}$$

$$W_{c} = \int_{0}^{\varepsilon_{u}} \sigma^{M} d\varepsilon$$

 $W_c = \int_0^u \sigma^M d\epsilon$ Fajlagos törési munka [J/cm³]

$$W_{c} = \int_{0}^{\phi_{u}} \sigma d\phi$$

FESZÜLTSÉG-ALAKVÁLTOZÁS GÖRBÉK

$$F = \sigma S = \sigma^{M} S_{0} \implies \sigma = \sigma^{M} (1 + \varepsilon)$$

"valódi" rendszer: mindig az aktuális keresztmetszettel (S)

e: rugalmassági határ

m: maximum pont

u: szakadáshoz tartozó

érték

Alakváltozás

LINEÁRIS RUGALMAS TULAJDONSÁGOK

- Rugalmassági modulusz:
 E (Young-modulusz)
- Hooke- törvény:

$$σ = E ε$$

• Poisson-tényező, v.

$$v = -\frac{\mathcal{E}_r}{\mathcal{E}}$$

fémek: $v \sim 0.33$

kerámiák : $v \sim 0.25$

polimerek: $v \sim 0,40$

Egytengelyű igénybevétel

Egységek:

E: [GPa] vagy [MPa]

v: dimenzió nélküli

 ϵ_{r} - radiális alakváltozás

$$E_{kerámia} > E_{fém} >> E_{polimer}$$

KÉPLÉKENY / RIDEG VISELKEDÉS

ha a maradó alakváltozás közel nulla, akkor rideg, ha a maradó alakváltozás jelentős, akkor képlékeny

SZÍVÓSSÁG

Az anyag törésig tartó energiaelnyelő képessége.

kerámia: kis szívósság (nagy szilárdság, rideg viselkedés)

fém: nagy szívósság (közepes szilárdság,

képlékeny viselkedés)

polimer: kis szívósság (kis szilárdság,

képlékeny viselkedés)

SZÍVÓSSÁG

(töréshez szükséges fajlagos energia)

KÜLÖNBÖZŐ ANYAGOK MECHANIKAI TULAJDONSÁGAI 20°C-ON

Anyag	E [GPa]	R _{p0.2} [MPa]	R _m [MPa]	A [%]
Acél	190-210	200-1700	400-1800	65-2
Alumínium-ötv.	69-79	35-550	90-60	45-4
Réz és ötv.	105-150	75-1100	140-1300	65-3
Titán és ötv.	80-130	340-1400	410-1450	25-7
Kerámiák	70-1000	-	140-2600	0
Gyémánt	820-1050	-	-	-
Polimerek	1,4-3,4	-	7-80	1000-5
Karbonszál	275-415	-	2000-3000	0
Kevlárszál	62-120	-	2800	0

KEMÉNYSÉGMÉRÉS

- A (statikus) keménység fogalma:
 - A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben.
- A keménység kapcsolata más tulajdonságokkal:
 - Keménységi adatokból becsülhetők a szilárdsági és technológiai tulajdonságok.
- A keménységmérés kivitelezése:
 - Alakváltozás létrehozásával
 - Fizikai hatások alkalmazásával

BRINELL-KEMÉNYSÉGMÉRÉS

$$HBW = \frac{0.102F}{A} = \frac{0.102F}{D\pi h} = \frac{0.204F}{\pi D \left(D - \sqrt{D^2 - d^2}\right)}$$

F – terhelő erő [N]

A – lenyomat felület $\lceil mm^2 \rceil$

D – golyóátmérő [mm]

d – lenyomat átmérő [mm]

h – lenyomat mélység [mm]

Átlagos keménység értéket ad (inhomogén anyag vizsgálatánál előnyös). Következtetni lehet az anyag szilárdságára. Öntöttvasak, színes- és könnyűfémek, lágyacélok mérésére alkalmazható.

VICKERS-KEMÉNYSÉGMÉRÉS

$$HV = \frac{0.102F}{A} = 0.189 \frac{F}{d^2}$$

F – terhelő erő [N]

A – lenyomat felület $\lceil mm^2 \rceil$

d – lenyomat átló [mm]

Lokális keménység pontos meghatározása. Tetszőleges anyagminőség laboratóriumi vizsgálata. A kis terhelésű és mikro-Vickers eljárás vékony lemezek, rétegek és szövetelemek vizsgálatára használható.

KÚSZÁS

- Tartósfolyás vagy kúszás: állandó terhelés hatására növekszik az anyag alakváltozása
- Tartósfolyási határ: az a feszültség, amely végtelenül hosszú idő alatt sem okoz az előírtnál nagyobb alakváltozást ($\sigma_{T0.2}$)
- Időtartam szilárdság: az a feszültség, amely t idő alatt előírt $\varepsilon_{\rm t}$ alakváltozást hoz létre (pl. $\sigma_{0.2/10}{}^3$)
- Tartósfolyás tipikusan nagy hőmérsékleten lejátszódó jelenség. T > 0.4 T_{olv} [K]
- Alacsony olvadáspontú fémek, ötvözetek (pl. forraszok)
 kúszási jelensége már szobahőmérsékleten is jelentős lehet
- Mérnöki alkalmazás: gázturbina üzemi hőmérséklete 1300 °C
- Utasszállító repülőgép leszállás nélkül átrepüli az óceánt

A KÚSZÁS ÁLTALÁNOS GÖRBÉJE

A, m'- anyagjellemzők, Q_c - aktivációs energia, k – Boltzmann állandó, σ - terhelő feszültség

A KÚSZÁSI GÖRBE HÁROM SZAKASZA

I.Elsődleges (primer) kúszás Az alakváltozási sebesség az idővel és az alakváltozással csökken. A diszlokáció sűrűség nő, a diszlokációs cellaméret csökken az idővel és az alakváltozással.

II. Másodlagos (szekunder) kúszás (állandósult állapot) A keményedési és a megújulási folyamatok egyensúlyban vannak.

III. Harmadlagos (tercier) kúszás Rekrisztallizáció, a második fázisú részecskék durvulása kezdődik, az üregek és repedések kialakulása indul be.

FÁRADÁS

A kifáradás jelenségét A. Wöhler ismerte fel az 1800-as évek végén. Biztonságra méretezett vasúti tengelyek hosszabb üzemidő után az ismétlődő igénybevételek hatására eltörtek, annak ellenére hogy a terhelő feszültség **jóval a folyáshatár alatt** volt. Ez a jelenség hívta fel a figyelmet a kifáradásra.

Szinuszos feszültségváltozás

CIKLIKUS TERHELÉS JELLEMZŐI

 σ

Lengő (pozitív)

$$R = \frac{\sigma_{\min}}{\sigma_{\max}}$$

Lüktető (nullkezdésű)

$$\sigma_m = k \ddot{o}z \acute{e}p feszülts \acute{e}g$$

$$\sigma_a = feszültségamplitúdó$$

Lengő (negatív)

WÖHLER-GÖRBE

Kifáradási határ: az a feszültség-amplitúdó (adott középfeszültségnél), amely végtelen sok igénybevétel esetén sem okoz törést. Tartamszilárdság: az a feszültség-amplitúdó (adott középfeszültségnél), amely megadott igénybevételi számig nem okoz törést.

A FÁRADÁS STATISZTIKUS JELLEGŰ

TÖRÉS

Törés: az anyagban folytonossági hiány jön létre, amitől darabokra eshet szét.

Törés folyamata:

- Repedés keletkezése;
- Repedés terjedése és a törés létrejötte.

Képlékeny (szívós) **törés:** a törést megelőzően jelentős mértékű képlékeny alakváltozás lép fel.

Ridegtörés: hirtelen bekövetkező jelenség, minimális képlékeny alakváltozás előzi meg. A kis hőmérséklet, a bonyolult húzó feszültségi állapot és a nagy terhelési sebesség elősegíti a ridegtörés fellépését.

Repedés mindig van az anyagban, legfeljebb nem tudjuk kimutatni.

REPEDÉS KELETKEZÉSE AZ ÜZEMELÉS SORÁN

- Időleges túlterhelés, illetve környezeti tényezők hatása
- Korróziós fáradás
- Feszültségkorrózió
- Hidrogén okozta elridegedés
- Hőmérséklet és mechanikai terhelés együttes hatása, kúszási repedés
- Hősokk okozta repedés.

Repedések kimutatása:

roncsolásmentes anyagvizsgálati módszerekkel.

Ellenőrző kérdések

Alapfogalmak definiálása:

- rugalmas alakváltozás
- képlékeny alakváltozás
- folyáshatár
- szakítószilárdság
- kontrakció
- szakadási nyúlás
- mérnöki és valódi rendszer közti különbség
- szívósság
- szakítóvizsgálat
- keménységmérés (Brinell, Vickers)
- kúszás, kúszáshatár
- fáradás, kifáradási határ
- Wöhler-görbe

Igaz-hamis kérdések

- Rugalmas alakváltozás során a terhelés megszűnése után az anyag visszanyeri az eredeti alakját. (I)
- A képlékeny alakváltozás térfogatváltozással jár. (H)
- A folyáshatár mértékegysége N (Newton). (H)
- A Vickers-keménységmérés mérőszerszáma egy gyémánt gúla. (I)
- A kúszás ismétlődő igénybevétel hatására bekövetkező tönkremeneteli folyamat. (H)
- A szívósság az anyag törésig tartó energiaelnyelő képessége. (I)