Exercises 7.4.5 — Problem 2

Problem. If f is analytic in a neighborhood of x_0 and $f(x_0) = 0$, show that $f(x)/(x - x_0)$ is analytic in the same neighborhood.

Proof. So we know that f is analytic in some neighborhood $(x_0-1/n,x_0+1/n)$. Let y be any fixed point in $(x_0-1/n,x_0+1/n)$. Since f(x) is analytic at y, there exists a power series expansion $f(x)=\sum_{n=0}^{\infty}a_n(x-y)^n$ about y. By the uniqueness of power series, $\sum_{n=0}^{\infty}a_n(x-y)^n=\sum_{n=0}^{\infty}b_n(x-x_0)^n=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$. Then $b_n=\frac{f(x_0)}{0!}=\frac{0}{1}=0$ and

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

We can divide both sides by $x - x_0$, leaving

$$\frac{f(x)}{x - x_0} = \frac{1}{x - x_0} \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^{n-1}$$

Thus $f(x)/(x-x_0)$ has a power series expansion P about x_0 . Let's now check that the power series P has the same radius of convergence as the power series expansion of f(x) about x_0 . The power series expansion of f(x) about x_0 has radius of convergence 1/R. For P, the radius of convergence is $\limsup_{n\to\infty} \left(\frac{f^{(n)}(x_0)}{n!}\right)^{1/n}$, but this is the exact same expression as the expansion of f(x) so we know its value is also 1/R. Therefore, the two expansions have the same radius of convergence which implies that that $f(x)/(x-x_0)$ is analytic in the same neighborhood.