Wydział WFiIS	Imię i nazwisko 1.Mateusz Kulig 2.Przemysław Ryś		Rok 2021	Grupa 1	Zespół 3
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Modelowanie	Nr ćwiczenia 31			
Data wykonania 5.12.2021	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W sprawozdaniu opisaliśmy pomiary wartości potencjału i natężenia pola elektrostatycznego za pomocą siatki oporowej. W doświadczeniu wykonaliśmy pomiary dla kondensatorów płaskiego i cylindrycznego. Wyniki zgadzają się z wartościami teoretycznymi.

1. Wstęp teoretyczny

Pole elektrostatyczne wytwarzają w przestrzeni nieruchome ładunki elektryczne. Znalezienie rozkładu pola przy zadanej konfiguracji ładunków polega na określeniu w każdym punkcie przestrzeni funkcji opisujących jego natężenie E i potencjał skalarny V. Można zrobić to rozwiązując podstawowe równania elektrostatyki lub wykonując doświadczenie. Bezpośredni pomiar pola elektrycznego jest trudny ponieważ wprowadzona w badane pole sonda silnie je zakłóca. Można jednak zastąpić pole elektrostatyczne innym polem o identycznym opisie matematycznym, jednak dużo prostszym do zmierzenia. Jest to na przykład pole elektryczne stacjonarnego przepływu prądu w obszarze o stałej oporności właściwej. Potencjalny obu tych pól spełniają równanie Laplace

$$\nabla^2 V = 0 \tag{1}$$

Wiec zakładając identyczne warunki brzegowe otrzymamy takie same powierzchnie ekwipotencjalne.

Do eksperymentalnego zmierzenia potencjału używamy miedzy innymi siatek oporowych. Pomiar potencjału w węzłach kwadratowej siatki wykonujemy woltomierzem cyfrowym. Następnie przybliżoną wartość natężenia pola *E* uzyskujemy obliczając numerycznie gradient potencjału

$$E_x = -\frac{\partial V}{\partial x} \approx \frac{V(x+h,y) - V(x,y)}{h},\tag{2}$$

$$E_{y} = -\frac{\partial V}{\partial y} \approx \frac{V(x, y + k) - V(x, y)}{k},$$
(3)

gdzie h i k są krokami siatki.

W przypadku kondensatora płaskiego pole miedzy okładkami oddalonymi od siebie o odległość *d* jest jednorodne o wartości

$$E = \frac{U}{d}. (4)$$

Potencjał V(x) rośnie liniowo od zera dla elektrody uziemionej, do wartości równej napięciu zasilacza U

$$V(x) = \frac{U}{d}x. (5)$$

Na zewnątrz elektrod pole jest rozproszone. Jeśli rozpatrujemy kondensator cylindryczny wzory na natężenie oraz potencjał pola przyjmują postać

$$V(r) = \frac{U}{\ln \frac{r_z}{r_w}} \ln \frac{r}{r_z},\tag{6}$$

$$E(r) = -\frac{U}{r \ln \frac{r_z}{r_w}},\tag{7}$$

W powyższych wzorach r_z oraz r_w oznaczają promień zewnętrzny i wewnętrzny kondensatora cylindrycznego.

2. Aparatura

W przeprowadzonym eksperymencie użyliśmy następujących przedmiotów

- Zasilacz
- Woltomierz cyfrowy
- Linijka
- Dwie siatki oporowe z kondensatorem płaskim i cylindrycznym

3. Metodyka doświadczenia

Wykonanie doświadczenia rozpoczęliśmy od zmierzenia promienia kondensatora cylindrycznego oraz odległości pomiędzy punktami pomiarowymi. Następnie za pomocą woltomierza cyfrowego dokonaliśmy pomiaru napięcia w odpowiednich punktach siatki. W przypadku kondensatora płaskiego dokonaliśmy pomiaru odległości miedzy okładkami oraz zmierzyliśmy napięcie na trzech różnych liniach pola jednorodnego. Poza okładkami, gdy pole nie jest jednorodne, zmierzyliśmy napięcie w każdym możliwym punkcie oraz kroki siatki oporowej.

4. Analiza danych

1. Płaski układ elektrod

W przypadki płaskiego kondensatora zmierzyliśmy wartości potencjału dla trzech linii leżących wewnątrz płytek. Dane zebrane zostały w poniższej tabeli **Tab.1.**

Tab.1. Tabela wartości potencjałów dla jednorodnego pola pomiędzy okładkami

kondensatora płaskiego. Potencjał teoretyczny wyznaczony ze wzoru (5).

		<i></i>		V + V + V	
<i>x</i> [cm]	V_a [V]	V_b [V]	V_c [V]	$V_{dośw.} = \frac{V_a + V_b + V_c}{3} [V]$	$V_{teor.}[V]$
1	0,88	0,79	0,94	0,87	0,83
2	1,69	1,72	1,67	1,69	1,67
3	2,57	2,55	2,4	2,51	2,5
4	3,43	3,3	3,16	3,3	3,33
5	4,12	4,15	3,97	4,08	4,17
6	4,89	5	4,73	4,87	5
7	5,79	5,87	5,5	5,72	5,83
8	6,62	6,62	6,35	6,53	6,67
9	7,32	7,42	7,12	7,29	7,5
10	8,14	8,16	7,84	8,05	8,33
11	8,88	8,98	8,66	8,84	9,17

Tab.2. Tabela wartości natężeń dla jednorodnego pola pomiędzy okładkami.

Natężenie teoretyczne wyznaczone ze wzoru (4).

x [cm]	$E_{dośw.}\left[\frac{V}{m}\right]$	$E_{teor.} \left[\frac{V}{m} \right]$
1	87	83,33
2	84,67	83,33
3	83,56	83,33
4	82,42	83,33
5	81,60	83,33
6	81,22	83,33
7	81,71	83,33
8	81,63	83,33
9	80,96	83,33
10	80,47	83,33
11	80,36	83,33

Następnie wyznaczyliśmy metodą numeryczną za pomocą wzorów (2) oraz (3) składowe poziome **x** oraz pionowe **y** natężenia pola, dla obszaru, dla którego pole zaczyna być niejednorodne. Wspomniane składowe oraz długość wypadkowego wektora zestawiono w poniższych tabelach **Tab. 3.** oraz **Tab. 4.**

Tab. 3. Tabela wyników składowych natężeń oraz długości wektora wypadkowego. Za pomocą oznaczeń A-C pokazano do których serii punktów odnoszą się wartości

natężenia. Są to trzy serie leżące na skraju okładek.

E_x		E_{y}			E_w			
A	В	C	A	В	C	A	В	C
66	60	71	-10	-31	-12	67	68	72
66	71	51	-15	-11	-15	68	72	53
72	61	65	-4	-15	-7	72	63	65
66	69	60	-7	-6	-6	66	69	60
70	65	60	-2	-1	-4	70	65	60
76	70	70	4	-1	9	76	70	71
67	67	60	4	6	6	67	67	60
74	57	52	21	11	22	77	58	56
78	76	60	23	27	24	81	81	65
72	68	69	27	26	27	77	73	74

Tab. 4. Tabela wyników składowych natężeń oraz długości wektora wypadkowego. Za pomocą oznaczeń D-E pokazano do których serii punktów odnoszą się wartości natężenia.

E_x		E	y	E_w	
D	Е	D	Е	D	Е
2	8	-13	-21	13	22
3	12	-22	-16	22	20
22	26	-26	-12	34	29
25	23	-24	-14	35	27
35	36	-25	-12	43	38
49	38	-14	-16	51	41
53	49	-10	-13	54	51
54	66	-22	-3	58	66
57	37	-2	-5	57	37
59	55	2	-8	59	56
58	59	1	0	58	59
57	54	4	1	57	54
63	55	12	3	64	55
36	62	-14	11	39	63
58	50	-6	13	58	52
66	50	10	11	67	51
49	37	22	11	54	39
48	39	31	18	57	43
20	27	24	18	31	32
10	15	19	15	21	21
2	8	13	12	13	14
2	6	9	10	9	12

Rys.1. Wykres wektorów natężenia dla wybranych serii pomiarów.

2. Cylindryczny układ elektrod

Tab.5. Tabela wartości potencjałów dla jednorodnego pola pomiędzy okładkami kondensatora cylindrycznego. Potencjał teoretyczny wyznaczony ze wzoru (6).

<i>r</i> [cm]	<i>V_a</i> [V]	V_b [V]	V_c [V]	$V_{dośw.} = \frac{V_a + V_b + V_c}{3} \text{ [V]}$	$V_{teor.}[V]$
2,7	8,09	7,95	8,11	8,05	8,14
3,5	6,57	6,05	6,51	6,38	6,52
4,3	5,41	4,85	5,28	5,18	5,24
5,1	4,32	3,92	4,34	4,19	4,18
5,8	4,45	3,06	3,48	3,33	3,38
6,5	2,74	2,27	2,68	2,56	2,68
7,2	2	1,66	1,97	1,88	2,04
8	1,4	1,11	1,3	1,27	1,39
8,7	0,77	0,61	0,66	0,68	0,87

Tab.6. Tabela wartości natężeń dla jednorodnego pola pomiędzy okładkami. Natężenie teoretyczne wyznaczone ze wzoru (7).

r [cm]	$E_{dośw.}\left[\frac{V}{m}\right]$	$E_{teor.}\left[\frac{V}{m}\right]$
2,7	227,71	230,12
3,5	173,54	177,52
4,3	142,74	144,50
5,1	122,11	121,83
5,8	105,40	107,13
6,5	91,54	95,59
7,2	79,34	86,30
8	71,14	77,67
8,7	56,13	71,42

5. Podsumowanie

W wyniku przeprowadzonego eksperymentu polegającego na modelowaniu pola elektrostatycznego otrzymaliśmy wartości zgodne z wynikami przewidzianymi teoretycznie. W przypadku kondensatora płaskiego otrzymaliśmy, iż wartości natężenia pola elektrostatycznego wewnątrz okładek są w przybliżeniu takie same, czyli pole tam obecne możemy traktować jako jednorodne, na brzegach natomiast tak nie było, z tego też powodu w celu wyznaczenia składowych pola poza okładkami należało skorzystać z numerycznych metod obliczania owych wartości. Rezultaty zostały zestawione tabelach **Tab.3.** i **Tab.4.** oraz na rysunku **Rys.1.**. W przypadku kondensatora cylindrycznego natężenie pola nie jest stałe wewnątrz okładek jak to było w przypadku poprzednim.