WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 5/00, 15/00, 15/09, 15/63

(11) International Publication Number: **A1**

WO 98/33887

(43) International Publication Date:

6 August 1998 (06.08.98)

(21) International Application Number:

PCT/US98/02479

(22) International Filing Date:

5 February 1998 (05.02.98)

(30) Priority Data:

08/795,071 5 February 1997 (05:02.97) US 28 April 1997 (28.04.97) 08/847,910 US 23 May 1997 (23.05.97) 08/862,445 US

(71) Applicant: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE [US/US]; 720 Rutland Avenue, Baltimore, MD 21205 (US).

(72) Inventors: LEE, Se-Jin; 6711 Chokeberry Road, Baltimore, MD 21209 (US). MCPHERRON, Alexandra, C.; 3905 Keswick Road, Baltimore, MD 21211 (US).

(74) Agent: HAILE, Lisa, A.; Fish & Richardson P.C., Suite 1400, 4225 Executive Square, La Jolla, CA 92037 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW. MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: GROWTH DIFFERENTIATION FACTOR-8

(57) Abstract

A transgenic non-human animal of the species selected from the group consisting of avian, bovine, ovine and porcine having a transgene which results in disrupting the production of and/or activity of growth differentiation factor-8 (GDF-8) chromosomally integrated into the germ cells of the animal is disclosed. Also disclosed are methods for making such animals, and methods of treating animals, including humans, with antibodies or antisense directed to GDF-8. The animals so treated are characterized by increased muscle tissue.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							•
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	· MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ .	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11.	Israel	MR	Mauritania	UG	Uganda
BY	Belacus	IS	lceland	MW	Malawi	US	United States of America
CA	Санаба	IT	Italy	MX	Mexico	UŽ	Uzbekistan
CF	Central African Republic	JP	Japan	:NE	Niger	· VN	Viet Nam
CG	Congo	· KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,44	Zimoaowe
CM	Cameroon		Republic of Korea	PL	Poland	-	
CN	China	KR	Republic of Korea	PT	Portugal	٠,	
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC 1	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan	•	
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		•
•			•		. 0.1		•

GROWTH DIFFERENTIATION FACTOR-8

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to growth factors and specifically to a new member of the transforming growth factor beta (TGF-β) superfamily, which is denoted, growth differentiation factor-8 (GDF-8) and methods of use for modulating muscle cell and adipose tissue growth.

2. Description of Related Art

The transforming growth factor β (TGF-β) superfamily encompasses a group of structurally-related proteins which affect a wide range of differentiation processes during embryonic development. The family includes, Mullerian inhibiting substance (MIS), which is required for normal male sex development (Behringer, et al., Nature, 345:167, 1990), Drosophila decapentaplegic (DPP) gene product, which is required for dorsal-ventral axis formation and morphogenesis of the imaginal disks (Padgett, et al., Nature, 325:81 -84, 1987), the Xenopus Vg-1 gene product, which localizes to the vegetal pole of eggs ((Weeks, et al., Cell, 51:861-867, 1987), the activins (Mason, et al., Biochem, Biophys. Res. Commun., 135:957-964, 1986), which can induce the formation of mesoderm and anterior structures in Xenopus embryos (Thomsen, et al., Cell, 63:485, 1990), and the bone morphogenetic proteins (BMPs, osteogenin, OP-1) which can induce de novo cartilage and bone formation (Sampath, et al., J. Biol. Chem., 265:13198, 1990). The TGF-βs can influence a variety of differentiation processes, including adipogenesis, myogenesis, chondrogenesis, hematopolesis, and epithelial cell differentiation (for review, see Massague, Cell 49:437, 1987).

The proteins of the TGF- β family are initially synthesized as a large precursor protein which subsequently undergoes proteolytic cleavage at a cluster of basic residues approximately 110-140 amino acids from the C-terminus. The C-terminal regions, or mature regions, of the proteins are all structurally related and the different family

Although the homologies within particular subgroups range from 70% to 90% amino acid sequence identity, the homologies between subgroups are significantly lower, generally ranging from only 20% to 50%. In each case, the active species appears to be a disulfide-linked dimer of C-terminal fragments. Studies have shown that when the proregion of a member of the TGF-β family is coexpressed with a mature region of another member of the TGF-β family, intracellular dimerization and secretion of biologically active homodimers occur (Gray, A. et al., Science, 247:1328, 1990). Additional studies by Hammonds, et al., (Molec. Endocrin. 5:149, 1991) showed that the use of the BMP-2 pro-region combined with the BMP-4 mature region led to dramatically improved expression of mature BMP-4. For most of the family members that have been studied, the homodimeric species has been found to be biologically active, but for other family members, like the inhibins (Ling, et al., Nature, 321:779, 1986) and the TGF-βs (Cheifetz, et al., Cell, 48:409, 1987), heterodimers have also been detected, and these appear to have different biological properties than the respective homodimers.

In addition it is desirable to produce livestock and game animals, such as cows, sheep, pigs, chicken and turkey, fish which are relatively high in musculature and protein, and low in fat content. Many drug and diet regimens exist which may help increase muscle and protein content and lower undesirably high fat and/or cholesterol levels, but such treatment is generally administered after the fact, and is begun only after significant damage has occurred to the vasculature. Accordingly, it would be desirable to produce animals which are genetically predisposed to having higher muscle content, without any ancillary increase in fat levels.

The food industry has put much effort into increasing the amount of muscle and protein in foodstuffs. This quest is relatively simple in the manufacture of synthetic foodstuffs, but has been met with limited success in the preparation of animal foodstuffs. Attempts have been made, for example, to lower cholesterol levels in beef and poultry products by including cholesterol-lowering drugs in animal feed (see *e.g.* Elkin and Rogler, J. Agric.

Food Chem. 1990, 38, 1635-1641). However, there remains a need for more effective methods of increasing muscle and reducing fat and cholesterol levels in animal food products.

SUMMARY OF THE INVENTION

The present invention provides a cell growth and differentiation factor, GDF-8, a polynucleotide sequence which encodes the factor, and antibodies which are immunoreactive with the factor. This factor appears to relate to various cell proliferative disorders, especially those involving muscle, nerve, and adipose tissue.

In one embodiment, the invention provides a method for detecting a cell proliferative disorder of muscle, nerve, or fat origin and which is associated with GDF-8. In another embodiment, the invention provides a method for treating a cell proliferative disorder by suppressing or enhancing GDF-8 activity.

In another embodiment, the subject invention provides non-human transgenic animals which are useful as a source of food products with high muscle and protein content, and reduced fat and cholesterol content. The animals have been altered chromosomally in their germ cells and somatic cells so that the production of GDF-8 is produced in reduced amounts, or is completely disrupted, resulting in animals with decreased levels of GDF-8 in their system and higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels. Accordingly, the present invention also includes food products provided by the animals. Such food products have increased nutritional value because of the increase in muscle tissue. The transgenic non-human animals of the invention include bovine, porcine, ovine and avian animals, for example.

The subject invention also provides a method of producing animal food products having increased muscle content. The method includes modifying the genetic makeup of the germ cells of a pronuclear embryo of the animal, implanting the embryo into the oviduct of a pseudopregnant female thereby allowing the embryo to mature to full term progeny,

testing the progeny for presence of the transgene to identify transgene-positive progeny, cross-breeding transgene-positive progeny to obtain further transgene-positive progeny and processing the progeny to obtain foodstuff. The modification of the germ cell comprises altering the genetic composition so as to disrupt or reduce the expression of the naturally occurring gene encoding for production of GDF-8 protein. In a particular embodiment, the transgene comprises antisense polynucleotide sequences to the GDF-8 protein. Alternatively, the transgene may comprise a non-functional sequence which replaces or intervenes in the native GDF-8 gene.

The subject invention also provides a method of producing avian food products having improved muscle content. The method includes modifying the genetic makeup of the germ cells of a pronuclear embryo of the avian animal, implanting the embryo into the oviduct of a pseudopregnant female into an embryo of a chicken, culturing the embryo under conditions whereby progeny are hatched, testing the progeny for presence of the genetic alteration to identify transgene-positive progeny, cross-breeding transgene-positive progeny and processing the progeny to obtain foodstuff.

The invention also provides a method for treating a muscle or adipose tissue disorder in a subject. The method includes administering a therapeutically effective amount of a GDF-8 agent to the subject, thereby inhibiting abnormal growth of muscle or adipose tissue. The GDF-8 agent may include an antibody, a GDF-8 antisense molecule or a dominant negative polypeptide, for example. In one aspect, a method for inhibiting the growth regulating actions of GDF-8 by contacting an anti-GDF-8 monoclonal antibody, a GDF-8 antisense molecule or a dominant negative polypeptide (or polynucleotide encoding a dominant negative polypeptide) with fetal or adult muscle cells or progenitor cells is included. These agents can be administered to a patient suffering from a disorder such as muscle wasting disease, neuromuscular disorder, muscle atrophy, obesity or other adipocyte cell disorders, and aging, for example.

The invention also provides a method for a method for identifying a compound that affects GDF-8 activity or gene expression including incubating the compound with GDF-8 polypeptide, or with a recombinant cell expressing GDF-8 under conditions sufficient to allow the compounds to interact and determining the effect of the compound on GDF-8 activity or expression.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1a is a Northern blot showing expression of GDF-8 mRNA in adult tissues. The probe was a partial murine GDF-8 clone.

FIGURE 1b is a Southern blot showing GDF-8 genomic sequences identified in mouse, rat, human, monkey, rabbit, cow, pig, dog and chicken.

FIGURE 2 shows partial nucleotide and predicted amino acid sequences of murine GDF-8 (FIGURE 2a; SEQ ID NO:11 and 12, respectively), human GDF-8 (FIGURE 2b; SEQ ID NO: 13 and 14, respectively), rat GDF-8 (FIGURE 2c; SEQ ID NO: 24 and 25, respectively) and chicken GDF-8 (FIGURE 2d; SEQ ID NO: 22 and 23, respectively). The putative dibasic processing sites in the murine sequence are boxed.

FIGURE 3a shows the alignment of the C-terminal sequences of GDF-8 with other members of the TGF-β superfamily. The conserved cysteine residues are boxed. Dashes denote gaps introduced in order to maximize alignment.

FIGURE 3b shows the alignment of the C-terminal sequences of GDF-8 from human, murine, rat and chicken sequences.

FIGURE 4 shows amino acid homologies among different members of the TGF superfamily. Numbers represent percent amino acid identities between each pair calculated from the first conserved cysteine to the C-terminus. Boxes represent homologies among highly-related members within particular subgroups.

FIGURE 5 shows the sequence of GDF-8. Nucleotide and amino acid sequences of murine (FIGURE 5a and 5b)(GenBank accession number U84005; SEQ ID NO:11 and 12, respectively) and human (FIGURE 5c and 5d; SEQ ID NO:13 and 14, respectively) GDF-8 cDNA clones are shown. Numbers indicate nucleotide position relative to the 5' end. Consensus N-linked glycosylation signals are shaded. The putative RXXR proteolytic cleavage sites are boxed.

FIGURE 6 shows a hydropathicity profile of GDF-8. Average hydrophobicity values for murine (FIGURE 6a) and human (FIGURE 6b) GDF-8 were calculated using the method of Kyte and Doolittle (*J. Mol. Biol.*, 157:105-132, 1982). Positive numbers indicate increasing hydrophobicity.

FIGURE 7 shows a comparison of murine and human GDF-8 amino acid sequences. The predicted murine sequence is shown in the top lines and the predicted human sequence is shown in the bottom lines. Numbers indicate amino acid position relative to the N-terminus. Identities between the two sequences are denoted by a vertical line.

FIGURE 8 shows the expression of GDF-8 in bacteria. BL21 (DE3) (pLysS) cells carrying a pRSET/GDF-8 expression plasmid were induced with isopropylthio-β-galactoside, and the GDF-8 fusion protein was purified by metal chelate chromatography. Lanes: total=total cell lysate; soluble=soluble protein fraction; insoluble=insoluble protein fraction (resuspended in 10 Mm Tris pH 8.0, 50 mM sodium phosphate, 8 M urea, and 10 mM β-mercaptoethanol [buffer B]) loaded onto the column, pellet=insoluble protein fraction discarded before loading the column; flow-through=proteins not bound by the column; washes=washes carried out in buffer B at the indicated pH's. Positions of molecular weight standards are shown at the right. Arrow indicates the position of the GDF-8 fusion protein.

FIGURE 9 shows the expression of GDF-8 in mammalian cells. Chinese hamster ovary cells were transfected with pMSXND/GDF-8 expression plasmids and selected in G418. Conditioned media from G418-resistant cells (prepared from cells transfected with constructs in which GDF-8 was cloned in either the antisense or sense orientation) were concentrated, electrophoresed under reducing conditions, blotted, and probed with anti-GDF-8 antibodies and [1251]iodoproteinA. Arrow indicates the position of the processed GDF-8 protein.

FIGURE 10 shows the expression of GDF-8 mRNA. Poly A-selected RNA (5µg each) prepared from adult tissues (FIGURE 10a) or placentas end embryos (FIGURE 10b) at the indicated days of gestation was electrophoresed on formaldehyde gels, blotted, and probed with full length murine GDF-8.

FIGURE 11 shows chromosomal mapping of human GDF-8. DNA samples prepared from human/rodent somatic cell hybrid lines were subjected to PCR, electrophoresed on agarose gels, blotted, and probed. The human chromosome contained in each of the hybrid cell lines is identified at the top of each of the first 24 lanes (1-22, X, and Y). In the lanes designated M, CHO, and H, the starting DNA template was total genomic DNA from mouse, hamster, and human sources, respectively. In the lane marked B1, no template DNA was used. Numbers at left indicate the mobilities of DNA standards.

Figure 12a shows a map of the GDF-8 locus (top line) and targeting construct (second line). The black and stippled boxes represent coding sequences for the pro- and C-terminal regions, respectively. The white boxes represent 5' and 3' untranslated sequences. A probe derived from the region downstream of the 3' homology fragment and upstream of the most distal HindIII site shown hybridizes to an 11.2 kb HindIII fragment in the GDF-8 gene and a 10.4 kb fragment in an homologously targeted gene.

25 Abbreviations: H, HindIII; X, Xba I.

Figure 12b shows a Southern blot analysis of offspring derived from a mating of heterozygous mutant mice. The lanes are as follows: DNA prepared from wild type 129 SV/J mice (lane 1), targeted embryonic stem cells (lane 2), F1 heterozygous mice (lanes 3 and 4), and offspring derived from a mating of these mice (lanes 5-13).

Figure 13 shows the muscle fiber size distribution in mutant and wild type littermates. Figure 13a shows the smallest cross-sectional fiber widths measured for wild type (n = 1761) and mutant (n = 1052) tibialis cranial. Figure 13b shows wild type (n = 900) and mutant (n = 900) gastrocnemius muscles, and fiber sizes were plotted as a percent of total fiber number. Standard deviations were 9 and 10 μm, respectively, for wild type and mutant tibialis cranial is and 11 and 9 μm, respectively, for wild type and mutant gastrocnemius muscles. Legend: o-o, wild type; _-, mutant.

Figure 14a shows the nucleotide and deduced amino acid sequence for baboon GDF-8 (SEQ ID NO:18 and 19, respectively).

Figure 14b shows the nucleotide and deduced amino acid sequence for bovine GDF-8 (SEQ ID NO: 20 and 21, respectively).

Figure 14c shows the nucleotide and deduced amino acid sequence for chicken GDF-8 (SEQ ID NO:22 and 23, respectively).

Figure 14d shows the nucleotide and deduced amino acid sequence for rat GDF-8 (SEQ ID NO:24 and 25, respectively).

Figure 14e shows the nucleotide and deduced amino acid sequence for turkey GDF-8 (SEQ ID NO:26 and 27, respectively).

Figure 14f shows the nucleotide and deduced amino acid sequence for porcine GDF-8 (SEQ ID NO:28 and 29, respectively).

Figure 14g shows the nucleotide and deduced amino acid sequence for ovine GDF-8 (SEQ ID NO:30 and 31, respectively).

الآتى

Figures 15a and 15b show an alignment between murine, rat, human, porcine, ovine, baboon, bovine, chicken, and turkey GDF-8 amino acid sequences (SEQ ID NO:12, 25, 14, 29, 31, 19, 21, 23 and 27, respectively).

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a growth and differentiation factor, GDF-8 and a polynucleotide sequence encoding GDF-8. GDF-8 is expressed at highest levels in muscle and at lower levels in adipose tissue.

The animals contemplated for use in the practice of the subject invention are those animals generally regarded as useful for the processing of food stuffs, *i.e.* avian such as meat bred and egg laying chicken and turkey, ovine such as lamb, bovine such as beef cattle and milk cows, piscine and porcine. For purposes of the subject invention, these animals are referred to as "transgenic" when such animal has had a heterologous DNA sequence, or one or more additional DNA sequences normally endogenous to the animal (collectively referred to herein as "transgenes") chromosomally integrated into the germ cells of the animal. The transgenic animal (including its progeny) will also have the transgene integrated into the chromosomes of somatic cells.

The TGF- β superfamily consists of multifunctional polypeptides that control proliferation, differentiation, and other functions in many cell types. Many of the peptides have regulatory, both positive and negative, effects on other peptide growth factors. The structural homology between the GDF-8 protein of this invention and the members of the TGF- β family, indicates that GDF-8 is a new member of the family of growth and differentiation factors. Based on the known activities of many of the other members, it can be expected that GDF-8 will also possess biological activities that will make it useful as a diagnostic and therapeutic reagent.

25 In particular, certain members of this superfamily have expression patterns or possess activities that relate to the function of the nervous system. For example, the inhibins and

activins have been shown to be expressed in the brain (Meunier, et al., Proc. Natl. Acad. Sci., USA, 85:247, 1988; Sawchenko, et al., Nature, 334:615, 1988), and activin has been shown to be capable of functioning as a nerve cell survival molecule (Schubert, et al., Nature, 344:868, 1990). Another family member, namely, GDF-1, is nervous system-specific in its expression pattern (Lee, S.J., Proc. Natl. Acad. Sci., USA, 88:4250, 1991), and certain other family members, such as Vgr-1 (Lyons, et al., Proc. Natl. Acad. Sci., USA, 86:4554, 1989; Jones, et al., Development, 111:531, 1991), OP-1 (Ozkaynak, et al., J. Biol. Chem., 267:25220, 1992), and BMP-4 (Jones, et al., Development, 111:531, 1991), are also known to be expressed in the nervous system. Because it is known that skeletal muscle produces a factor or factors that promote the survival of motor neurons (Brown, Trends Neurosci., 7:10, 1984), the expression of GDF-8 in muscle suggests that one activity of GDF-8 may be as a trophic factor for neurons. In this regard, GDF-8 may have applications in the treatment of neurodegenerative diseases, such as amyotrophic lateral sclerosis or muscular dystrophy, or in maintaining cells or tissues in culture prior to transplantation.

GDF-8 may also have applications in treating disease processes involving muscle, such as in musculodegenerative diseases or in tissue repair due to trauma. In this regard, many other members of the TGF-β family are also important mediators of tissue repair. TGF-β has been shown to have marked effects on the formation of collagen and to cause a striking angiogenic response in the newborn mouse (Roberts, et al., Proc. Natl. Acad. Sci., USA 83:4167, 1986). TGF-β has also been shown to inhibit the differentiation of myoblasts in culture (Massague, et al., Proc. Natl. Acad. Sci., USA 83:8206, 1986). Moreover, because myoblast cells may be used as a vehicle for delivering genes to muscle for gene therapy, the properties of GDF-8 could be exploited for maintaining cells prior to transplantation or for enhancing the efficiency of the fusion.

The expression of GDF-8 in adipose tissue also raises the possibility of applications for GDF-8 in the treatment of obesity or of disorders related to abnormal proliferation of adipocytes. In this regard, $TGF-\beta$ has been shown to be a potent inhibitor of adipocyte

10

20

25

differentiation in vitro (Ignotz and Massague, Proc. Natl. Acad. Sci., USA 82:8530, 1985).

Polypeptides, Polynucleotides, Vectors and Host Cells

The invention provides substantially pure GDF-8 polypeptide and isolated polynucleotides that encode GDF-8. The term "substantially pure" as used herein refers to GDF-8 which is substantially free of other proteins, lipids, carbohydrates or other materials with which it is naturally associated. One skilled in the art can purify GDF-8 using standard techniques for protein purification. The substantially pure polypeptide will yield a single major band on a non-reducing polyacrylamide gel. The purity of the GDF-8 polypeptide can also be determined by amino-terminal amino acid sequence analysis. GDF-8 polypeptide includes functional fragments of the polypeptide, as long as the activity of GDF-8 remains. Smaller peptides containing the biological activity of GDF-8 are included in the invention.

The invention provides polynucleotides encoding the GDF-8 protein. These polynucleotides include DNA, cDNA and RNA sequences which encode GDF-8. It is understood that all polynucleotides encoding all or a portion of GDF-8 are also included herein, as long as they encode a polypeptide with GDF-8 activity. Such polynucleotides include naturally occurring, synthetic, and intentionally manipulated polynucleotides. For example, GDF-8 polynucleotide may be subjected to site-directed mutagenesis. The polynucleotide sequence for GDF8 also includes antisense sequences. The polynucleotides of the invention include sequences that are degenerate as a result of the genetic code. There are 20 natural amino acids, most of which are specified by more than one codon. Therefore, all degenerate nucleotide sequences are included in the invention as long as the amino acid sequence of GDF-8 polypeptide encoded by the nucleotide sequence is functionally unchanged.

Specifically disclosed herein is a genomic DNA sequence containing a portion of the GDF-8 gene. The sequence contains an open reading frame corresponding to the predicted C-terminal region of the GDF-8 precursor protein. The encoded polypeptide

is predicted to contain two potential proteolytic processing sites (KR and RR). Cleavage of the precursor at the downstream site would generate a mature biologically active C-terminal fragment of 109 and 103 amino acids for murine and human species, respectively, with a predicted molecular weight of approximately 12,400. Also disclosed are full length murine and human GDF-8 cDNA sequences. The murine pre-pro-GDF-8 protein is 376 amino acids in length, which is encoded by a 2676 base pair nucleotide sequence, beginning at nucleotide 104 and extending to a TGA stop codon at nucleotide 1232. The human GDF-8 protein is 375 amino acids and is encoded by a 2743 base pair sequence, with the open reading frame beginning at nucleotide 59 and extending to nucleotide 1184. GDF-8 is also capable of forming dimers, or heterodimers, with an expected molecular weight of approximately 23-30KD (see Example 4). For example, GDF-8 may form heterodimers with other family members, such as GDF-11.

Also provided herein are the biologically active C-terminal fragments of chicken (Figure 2c) and rat (Figure 2d) GDF-8. The full length nucleotide and deduced amino acid sequences for baboon, bovine, chicken, rat, ovine, porcine, and turkey are shown in Figures 14a-g and human and murine are shown in Figure 5. As shown in Figure 3b, alignment of the amino acid sequences of human, murine, rat and chicken GDF-8 indicate that the sequences are 100% identical in the C-terminal biologically active fragment. Figure 15 a and 15b also show the alignment of GDF-8 amino acid sequences for murine, rat, human, baboon, porcine, ovine, bovine, chicken and turkey. Given the extensive conservation of amino acid sequences between species, it would now be routine for one of skill in the art to obtain the GDF-8 nucleic acid and amino acid sequence for GDF-8 from any species, including those provided herein, as well as piscine, for example.

The C-terminal region of GDF-8 following the putative proteolytic processing site shows significant homology to the known members of the TGF-β superfamily. The GDF-8 sequence contains most of the residues that are highly conserved in other family members and in other species(see FIGURES 3a and 3b and 15 a and 15b). Like the TGF-βs and inhibin βs, GDF-8 contains an extra pair of cysteine residues in addition to

10

(4)

the 7 cysteines found in virtually all other family members. Among the known family members, GDF-8 is most homologous to Vgr-1 (45% sequence identity) (see FIGURE 4).

Minor modifications of the recombinant GDF-8 primary amino acid sequence may result in proteins which have substantially equivalent activity as compared to the GDF-8 polypeptide described herein. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous. All of the polypeptides produced by these modifications are included herein as long as the biological activity of GDF-8 still exists. Further, deletion of one or more amino acids can also result in a modification of the structure of the resultant molecule without significantly altering its biological activity. This can lead to the development of a smaller active molecule which would have broader utility. For example, one can remove amino or carboxy terminal amino acids which are not required for GDF-8 biological activity.

The nucleotide sequence encoding the GDF-8 polypeptide of the invention includes the disclosed sequence and conservative variations thereof. The term "conservative variation" as used herein denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acid, or glutamine for asparagine, and the like. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.

DNA sequences of the invention can be obtained by several methods. For example, the DNA can be isolated using hybridization techniques which are well known in the art. These include, but are not limited to: 1) hybridization of genomic or cDNA libraries with probes to detect homologous nucleotide sequences, 2) polymerase chain reaction (PCR) on genomic DNA or cDNA using primers capable of annealing to the DNA sequence of

interest, and 3) antibody screening of expression libraries to detect cloned DNA fragments with shared structural features.

Preferably the GDF-8 polynucleotide of the invention is derived from a mammalian organism, and most preferably from mouse, rat, cow, pig, or human. GDF-8 polynucleotides from chicken, turkey, fish and other species are also included herein. Screening procedures which rely on nucleic acid hybridization make it possible to isolate any gene sequence from any organism, provided the appropriate probe is available. Given the extensive nucleotide and amino acid homology between species, it would be routine for one of skill in the art to obtain polynucleotides encoding GDF-8 from any species. -Oligonucleotide probes, which correspond to a part of the sequence encoding the protein 10 in question, can be synthesized chemically. This requires that short, oligopeptide stretches of amino acid sequence must be known. The DNA sequence encoding the protein can be deduced from the genetic code, however, the degeneracy of the code must be taken into account. It is possible to perform a mixed addition reaction when the sequence is degenerate. This includes a heterogeneous mixture of denatured double-stranded DNA. For such screening, hybridization is preferably performed on either single-stranded DNA or denatured double-stranded DNA. Hybridization is particularly useful in the detection of cDNA clones derived from sources where an extremely low amount of mRNA sequences relating to the polypeptide of interest are present. In other words, by using stringent hybridization conditions directed to avoid non-specific binding, it is possible, for example, to allow the autoradiographic visualization of a specific cDNA clone by the hybridization of the target DNA to that single probe in the mixture which

The development of specific DNA sequences encoding GDF-8 can also be obtained by:

1) isolation of double-stranded DNA sequences from the genomic DNA; 2) chemical manufacture of a DNA sequence to provide the necessary codons for the polypeptide of interest; and 3) in vitro synthesis of a doublestranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell. In the latter case, a

is its complete complement (Wallace, et al., Nucl. Acid Res. 9:879, 1981).

744

double-stranded DNA complement of mRNA is eventually formed which is generally referred to as cDNA.

Of the three above-noted methods for developing specific DNA sequences for use in recombinant procedures, the isolation of genomic DNA isolates is the least common. This is especially true when it is desirable to obtain the microbial expression of mammalian polypeptides due to the presence of introns.

The synthesis of DNA sequences is frequently the method of choice when the entire sequence of amino acid residues of the desired polypeptide product is known. When the entire sequence of amino acid residues of the desired polypeptide is not known, the direct synthesis of DNA sequences is not possible and the method of choice is the synthesis of cDNA sequences. Among the standard procedures for isolating cDNA sequences of interest is the formation of plasmid- or phage-carrying cDNA libraries which are derived from reverse transcription of mRNA which is abundant in donor cells that have a high level of genetic expression. When used in combination with polymerase chain reaction technology, even rare expression products can be cloned. In those cases where significant portions of the amino acid sequence of the polypeptide are known, the production of labeled single or double-stranded DNA or RNA probe sequences duplicating a sequence putatively present in the target cDNA may be employed in DNA/DNA hybridization procedures which are carried out on cloned copies of the cDNA which have been denatured into a single-stranded form (Jay, et al., Nucl. Acid Res., 11:2325, 1983).

A cDNA expression library, such as lambda gt11, can be screened indirectly for GDF-8 peptides having at least one epitope, using antibodies specific for GDF-8. Such antibodies can be either polyclonally or monoclonally derived and used to detect expression product indicative of the presence of GDF-8 cDNA.

In nucleic acid hybridization reactions, the conditions used to achieve a particular level of stringency will vary, depending on the nature of the nucleic acids being hybridized. For example, the length, degree of complementarity, nucleotide sequence composition

(e.g., GC v. AT content), and nucleic acid type (e.g., RNA v. DNA) of the hybridizing regions of the nucleic acids can be considered in selecting hybridization conditions. An additional consideration is whether one of the nucleic acids is immobilized, for example, on a filter.

An example of progressively higher stringency conditions is as follows: 2 x SSC/0.1% SDS at about room temperature (hybridization conditions); 0.2 x SSC/0.1% SDS at about room temperature (low stringency conditions); 0.2 x SSC/0.1% SDS at about 42°C (moderate stringency conditions); and 0.1 x SSC at about 68°C (high stringency conditions). Washing can be carried out using only one of these conditions, e.g., high stringency conditions, or each of the conditions can be used, e.g., for 10-15 minutes each, in the order listed above, repeating any or all of the steps listed. However, as mentioned above, optimal conditions will vary, depending on the particular hybridization reaction involved, and can be determined empirically.

DNA sequences encoding GDF-8 can be expressed *in vitro* by DNA transfer into a suitable host cell. "Host cells" are cells in which a vector can be propagated and its DNA expressed. The term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. However, such progeny are included when the term "host cell" is used. Methods of stable transfer, meaning that the foreign DNA is continuously maintained in the host, are known in the art.

In the present invention, the GDF-8 polynucleotide sequences may be inserted into a recombinant expression vector. The term "recombinant expression vector" refers to a plasmid, virus or other vehicle known in the art that has been manipulated by insertion or incorporation of the GDF-8 genetic sequences. Such expression vectors contain a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific genes which allow phenotypic selection of the transformed cells. Vectors suitable for use in the present invention include, but are not limited

10

to the T7-based expression vector for expression in bacteria (Rosenberg, et al., Gene, 56:125, 1987), the pMSXND expression vector for expression in mammalian cells (Lee and Nathans, J. Biol. Chem., 263:3521, 1988) and baculovirus-derived vectors for expression in insect cells. The DNA segment can be present in the vector operably linked to regulatory elements, for example, a promoter (e.g., T7, metallothionein 1, or polyhedrin promoters).

Polynucleotide sequences encoding GDF-8 can be expressed in either prokaryotes or eukaryotes. Hosts can include microbial, yeast, insect and mammalian organisms. Methods of expressing DNA sequences having eukaryotic or viral sequences in prokaryotes are well known in the art. Biologically functional viral and plasmid DNA vectors capable of expression and replication in a host are known in the art. Such vectors are used to incorporate DNA sequences of the invention. Preferably, the mature C-terminal region of GDF-8 is expressed from a cDNA clone containing the entire coding sequence of GDF-8. Alternatively, the C-terminal portion of GDF-8 can be expressed as a fusion protein with the pro- region of another member of the TGF-β family or co-expressed with another pro-region (see for example, Hammonds, et al., Molec. Endocrin., 5:149, 1991; Gray, A., and Mason, A., Science, 247:1328, 1990).

Transformation of a host cell with recombinant DNA may be carried out by conventional techniques as are well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method using procedures well known in the art. Alternatively, MgCl₂ or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell if desired.

When the host is a eukaryote, such methods of transfection of DNA as calcium phosphate co-precipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes, or virus vectors may be used. Eukaryotic cells can also be cotransformed with DNA sequences encoding the GDF-8

of the invention, and a second foreign DNA molecule encoding a selectable phenotype, such as the herpes simplex thymidine kinase gene. Another method is to use a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papilloma virus, to transiently infect or transform eukaryotic cells and express the protein. (see for example, *Eukaryotic Viral Vectors*, Cold Spring Harbor Laboratory, Gluzman ed., 1982).

Isolation and purification of microbial expressed polypeptide, or fragments thereof, provided by the invention, may be carried out by conventional means including preparative chromatography and immunological separations involving monoclonal or polyclonal antibodies.

10 GDF-8 Antibodies and Methods of Use

The invention includes antibodies immunoreactive with GDF-8 polypeptide or functional fragments thereof. Antibody which consists essentially of pooled monoclonal antibodies with different epitopic specificities, as well as distinct monoclonal antibody preparations are provided. Monoclonal antibodies are made from antigen containing fragments of the protein by methods well known to those skilled in the art (Kohler, et al., Nature, 256:495, 1975). The term antibody as used in this invention is meant to include intact molecules as well as fragments thereof, such as Fab and F(ab')₂, Fv and SCA fragments which are capable of binding an epitopic determinant on GDF-8.

- (1) An Fab fragment consists of a monovalent antigen-binding fragment of an antibody molecule, and can be produced by digestion of a whole antibody molecule with the enzyme papain, to yield a fragment consisting of an intact light chain and a portion of a heavy chain.
- (2) An Fab' fragment of an antibody molecule can be obtained by treating a whole antibody molecule with pepsin, followed by reduction, to yield a molecule consisting of an intact light chain and a portion of a heavy chain. Two Fab' fragments are obtained per antibody molecule treated in this manner.

- (3) An (Fab')₂ fragment of an antibody can be obtained by treating a whole antibody molecule with the enzyme pepsin, without subsequent reduction. A (Fab')₂ fragment is a dimer of two Fab' fragments, held together by two disulfide bonds.
- (4) An Fv fragment is defined as a genetically engineered fragment containing the variable region of a light chain and the variable region of a heavy chain expressed as two chains.
 - (5) A single chain antibody ("SCA") is a genetically engineered single chain molecule containing the variable region of a light chain and the variable region of a heavy chain, linked by a suitable, flexible polypeptide linker.
- As used in this invention, the term "epitope" refers to an antigenic determinant on an antigen, such as a GDF-8 polypeptide, to which the paratope of an antibody, such as an GDF-8-specific antibody, binds. Antigenic determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and can have specific three-dimensional structural characteristics, as well as specific charge characteristics.

As is mentioned above, antigens that can be used in producing GDF-8-specific antibodies include GDF-8 polypeptides or GDF-8 polypeptide fragments. The polypeptide or peptide used to immunize an animal can be obtained by standard recombinant, chemical synthetic, or purification methods. As is well known in the art, in order to increase immunogenicity, an antigen can be conjugated to a carrier protein. Commonly used carriers include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid. The coupled peptide is then used to immunize the animal (e.g., a mouse, a rat, or a rabbit). In addition to such carriers, well known adjuvants can be administered with the antigen to facilitate induction of a strong immune response.

The term "cell-proliferative disorder" denotes malignant as well as non-malignant cell populations which often appear to differ from the surrounding tissue both morphologi-

cally and genotypically. Malignant cells (*i.e.* cancer) develop as a result of a multistep process. The GDF-8 polynucleotide that is an antisense molecule or that encodes a dominant negative GDF-8 is useful in treating malignancies of the various organ systems, particularly, for example, cells in muscle or adipose tissue. Essentially, any disorder which is etiologically linked to altered expression of GDF-8 could be considered susceptible to treatment with a GDF-8 agent (*e.g.*, a suppressing or enhancing agent). One such disorder is a malignant cell proliferative disorder, for example.

The invention provides a method for detecting a cell proliferative disorder of muscle or adipose tissue which comprises contacting an anti-GDF-8 antibody with a cell suspected of having a GDF-8 associated disorder and detecting binding to the antibody. The antibody reactive with GDF-8 is labeled with a compound which allows detection of binding to GDF-8. For purposes of the invention, an antibody specific for GDF-8 polypeptide may be used to detect the level of GDF-8 in biological fluids and tissues. Any specimen containing a detectable amount of antigen can be used. A preferred sample of this invention is muscle tissue. The level of GDF-8 in the suspect cell can be compared with the level in a normal cell to determine whether the subject has a GDF-8-associated cell proliferative disorder. Such methods of detection are also useful using nucleic acid hybridization to detect the level of GDF-8 mRNA in a sample or to detect an altered GDF-8 gene. Preferably the subject is human.

The antibodies of the invention can be used in any subject in which it is desirable to administer *in vitro* or *in vivo* immunodiagnosis or immunotherapy. The antibodies of the invention are suited for use, for example, in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier. In addition, the antibodies in these immunoassays can be detectably labeled in various ways. Examples of types of immunoassays which can utilize antibodies of the invention are competitive and non-competitive immunoassays in either a direct or indirect format. Examples of such immunoassays are the radioimmunoassay (RIA) and the sandwich (immunometric) assay. Detection of the antigens using the antibodies of the invention can be done utilizing immunoassays which are run in either the forward, reverse, or simultaneous modes,

10

20

25

including immunohistochemical assays on physiological samples. Those of skill in the art will know, or can readily discern, other immunoassay formats without undue experimentation.

The antibodies of the invention can be bound to many different carriers and used to detect the presence of an antigen comprising the polypeptide of the invention. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding antibodies, or will be able to ascertain such, using routine experimentation.

There are many different labels and methods of labeling known to those of ordinary skill in the art. Examples of the types of labels which can be used in the present invention include enzymes, radioisotopes, fluorescent compounds, colloidal metals, chemiluminescent compounds, phosphorescent compounds, and bioluminescent compounds. Those of ordinary skill in the art will know of other suitable labels for binding to the antibody, or will be able to ascertain such, using routine experimentation.

Another technique which may also result in greater sensitivity consists of coupling the antibodies to low molecular weight haptens. These haptens can then be specifically detected by means of a second reaction. For example, it is common to use such haptens as biotin, which reacts with avidin, or dinitrophenyi, puridoxal, and fluorescein, which can react with specific antihapten antibodies.

In using the monoclonal antibodies of the invention for the *in vivo* detection of antigen, the detectably labeled antibody is given a dose which is diagnostically effective. The term "diagnostically effective" means that the amount of detectably labeled monoclonal antibody is administered in sufficient quantity to enable detection of the site having the antigen comprising a polypeptide of the invention for which the monoclonal antibodies are specific.

The concentration of detectably labeled monoclonal antibody which is administered should be sufficient such that the binding to those cells having the polypeptide is detectable compared to the background. Further, it is desirable that the detectably labeled monoclonal antibody be rapidly cleared from the circulatory system in order to give the best target-to-background signal ratio.

As a rule, the dosage of detectably labeled monoclonal antibody for *in vivo* diagnosis will vary depending on such factors as age, sex, and extent of disease of the individual. Such dosages may vary, for example, depending on whether multiple injections are given, antigenic burden, and other factors known to those of skill in the art.

10 For *in vivo* diagnostic imaging, the type of detection instrument available is a major factor in selecting a given radioisotope. The radioisotope chosen must have a type of decay which is detectable for a given type of instrument. Still another important factor in selecting a radioisotope for *in vivo* diagnosis is that deleterious radiation with respect to the host is minimized. Ideally, a radioisotope used for *in vivo* imaging will lack a particle emission, but produce a large number of photons in the 140-250 keV range, which may readily be detected by conventional gamma cameras.

For *in vivo* diagnosis radioisotopes may be bound to immunoglobulin either directly or indirectly by using an intermediate functional group. intermediate functional groups which often are used to bind radioisotopes which exist as metallic ions to immunoglobulins are the bifunctional chelating agents such as diethylenetriaminepentacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) and similar molecules. Typical examples of metallic ions which can be bound to the monoclonal antibodies of the invention are ¹¹¹In, ⁹⁷Ru, ⁶⁷Ga, ⁶⁸Gá, ⁷²As, ⁸⁹Zr and ²⁰¹Tl.

The monoclonal antibodies of the invention can also be labeled with a paramagnetic isotope for purposes of *in vivo* diagnosis, as in magnetic resonance imaging (MRI) or electron spin resonance (ESR). In general, any conventional method for visualizing diagnostic imaging can be utilized. Usually gamma and positron emitting radioisotopes

10

are used for camera imaging and paramagnetic isotopes for MRI. Elements which are particularly useful in such techniques include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Cr, and ⁵⁶Fe.

The monoclonal antibodies of the invention can be used *in vitro* and *in vivo* to monitor the course of amelioration of a GDF-8-associated disease in a subject. Thus, for example, by measuring the increase or decrease in the number of cells expressing antigen comprising a polypeptide of the invention or changes in the concentration of such antigen present in various body fluids, it would be possible to determine whether a particular therapeutic regimen aimed at ameliorating the GDF-8-associated disease is effective. The term "ameliorate" denotes a lessening of the detrimental effect of the GDF-8-associated disease in the subject receiving therapy.

Additional Methods of Treatment and Diagnosis

The present invention identifies a nucleotide sequence that can be expressed in an altered manner as compared to expression in a normal cell, therefore it is possible to design appropriate therapeutic or diagnostic techniques directed to this sequence. Treatment includes administration of a reagent which modulates activity. The term "modulate" envisions the suppression or expression of GDF-8 when it is over-expressed, or augmentation of GDF-8 expression when it is underexpressed. When a muscleassociated disorder is associated with GDF-8 overexpression, such suppressive reagents as antisense GDF-8 polynucleotide sequence, dominant negative sequences or GDF-8 binding antibody can be introduced into a cell. In addition, an anti-idiotype antibody which binds to a monoclonal antibody which binds GDF-8 of the invention, or an epitope thereof, may also be used in the therapeutic method of the invention. Alternatively, when a cell proliferative disorder is associated with underexpression or expression of a mutant GDF-8 polypeptide, a sense polynucleotide sequence (the DNA coding strand) or GDF-8 polypeptide can be introduced into the cell. Such muscle-associated disorders include cancer, muscular dystrophy, spinal cord injury, traumatic injury, congestive obstructive pulmonary disease (COPD), AIDS or cachecia. One of skill in the art can determine whether or not a particular therapeutic course of treatment is successful by several methods described herein (e.g., muscle fiber analysis or biopsy). Neurodegenerative

disorders are also envisioned as treated by the method of the invention. In addition, the method of the invention can be used in the treatment of obesity or of disorders related to abnormal proliferation of adipocytes. One of skill in the art can determine whether or not a particular therapeutic course of treatment is successful by several methods described herein (e.g., muscle fiber analysis or biopsy; determination of fat content). The present examples demonstrate that the methods of the invention are useful for decreasing fat content, and therefore would be useful in the treatment of obesity and related disorders (e.g., diabetes). Neurodegenerative disorders are also envisioned as treated by the method of the invention.

Thus, where a cell-proliferative disorder is associated with the expression of GDF-8, nucleic acid sequences that interfere with GDF-8 expression at the translational level can be used. This approach utilizes, for example, antisense nucleic acid and ribozymes to block translation of a specific GDF-8 mRNA, either by masking that mRNA with an antisense nucleic acid or by cleaving it with a ribozyme. Such disorders include neurodegenerative diseases, for example. In addition, dominant-negative GDF-8 mutants would be useful to actively interfere with function of "normal" GDF-8.

Antisense nucleic acids are DNA or RNA molecules that are complementary to at least a portion of a specific mRNA molecule (Weińtraub, Scientific American, 262:40, 1990). In the cell, the antisense nucleic acids hybridize to the corresponding mRNA, forming a double-stranded molecule. The antisense nucleic acids interfere with the translation of the mRNA, since the cell will not translate a mRNA that is double-stranded.

Antisense oligomers of about 15 nucleotides are preferred, since they are easily synthesized and are less likely to cause problems than larger molecules when introduced into the target GDF-8-producing cell. The use of antisense methods to inhibit the *in vitro* translation of genes is well known in the art (Marcus-Sakura, *Anal. Biochem.*, 172:289, 1988).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single-stranded RNA in a manner analogous to DNA restriction endonucleases. Through the modification of nucleotide sequences which encode these RNAs, it is possible to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech, *J. Amer. Med. Assn.*, 260:3030, 1988). A major advantage of this approach is that, because they are sequence-specific, only mRNAs with particular sequences are inactivated.

There are two basic types of ribozymes namely, tetrahymena-type (Hasselhoff, *Nature*, 334:585, 1988) and "hammerhead"-type. Tetrahymena-type ribozymes recognize sequences which are four bases in length, while "hammerhead"-type ribozymes recognize base sequences 11-18 bases in length. The longer the recognition sequence, the greater the likelihood that the sequence will occur exclusively in the target mRNA species. Consequently, hammerhead-type ribozymes are preferable to tetrahymena-type ribozymes for inactivating a specific mRNA species and 18-based recognition sequences are preferable to shorter recognition sequences.

In another embodiment of the present invention, a nucleotide sequence encoding a GDF-8 dominant negative protein is provided. For example, a genetic construct that contain such a dominant negative encoding gene may be operably linked to a promoter, such as a tissue-specific promoter. For example, a skeletal muscle specific promoter (e.g., human skeletal muscle α-actin promoter) or developmentally specific promoter (e.g., MyHC 3, which is restricted in skeletal muscle to the embryonic period of development, or an inducible promoter (e.g., the orphan nuclear receptor TIS1).

Such constructs are useful in methods of modulating a subject's skeletal mass. For example, a method include transforming an organism, tissue, organ or cell with a genetic construct encoding a dominant negative GDF-8 protein and suitable promoter in operable linkage and expressing the dominant negative encoding GDF-8 gene, thereby modulating muscle mass by interfering with wild-type GDF-8 activity.

10

GDF-8 most likely forms dimers, homodimers or heterodimers and may even form heterodimers with other GDF family members, such as GDF-11 (see Example 4). Hence, while not wanting to be bound by a particular theory, the dominant negative effect described herein may involve the formation of non-functional homodimers or heterodimers of dominant negative and wild-type GDF-8 monomers. More specifically, it is possible that any non-functional homodimer or any heterodimer formed by the dimerization of wild-type and/or dominant negative GDF-8 monomers produces a dominant effect by: 1) being synthesized but not processed or secreted; 2) inhibiting the secretion of wild type GDF-8; 3) preventing normal proteolytic cleavage of the preprotein thereby producing a nonfunctional GDF-8 molecule; 4) altering the affinity of the non-functional dimer (e.g., homodimeric or heterodimeric GDF-8) to a receptor or generating an antagonistic form of GDF-8 that binds a receptor without activating it; or 5) inhibiting the intracellular processing or secretion of GDF-8 related or TGF-ß family proteins.

- Non-functional GDF-8 can function to inhibit the growth regulating actions of GDF-8 on muscle cells that include a dominant negative GDF-8 gene. Deletion or missense dominant negative forms of GDF-8 that retain the ability to form dimers with wild-type GDF-8 protein but do not function as wild-type GDF-8 proteins may be used to inhibit the biological activity of endogenous wild-type GDF-8. For example, in one embodiment, the proteolytic processing site of GDF-8 may be altered (e.g., deleted) resulting in a GDF-8 molecule able to undergo subsequent dimerization with endogenous wild-type GDF-8 but unable to undergo further processing into a mature GDF-8 form. Alternatively, a non-functional GDF-8 can function as a monomeric species to inhibit the growth regulating actions of GDF-8 on muscle cells.
- Any genetic recombinant method in the art may be used, for example, recombinant viruses may be engineered to express a dominant negative form of GDF-8 which may be used to inhibit the activity of wild-type GDF-8. Such viruses may be used therapeutically for treatment of diseases resulting from aberrant over-expression or activity of GDF-8 protein, such as in denervation hypertrophy or as a means of

controlling GDF-8 expression when treating disease conditions involving muscle, such as in musculodegenerative diseases or in tissue repair due to trauma or in modulating GDF-8 expression in animal husbandry (e.g., transgenic animals for agricultural purposes).

The invention provides a method for treating a muscle or adipose tissue disorder in a subject. The method includes administering a therapeutically effective amount of a GDF-8 agent to the subject, thereby inhibiting abnormal growth of muscle or adipose tissue. The GDF-8 agent may include a GDF-8 antisense molecule or a dominant negative polypeptide, for example. A "therapeutically effective amount" of a GDF-8 agent is that amount that ameliorates symptoms of the disorder or inhibits GDF-8 induced growth of muscle, for example, as compared with a normal subject.

Gene Therapy

The present invention also provides gene therapy for the treatment of cell proliferative or immunologic disorders which are mediated by GDF-8 protein. Such therapy would achieve its therapeutic effect by introduction of the GDF-8 antisense or dominant negative encoding polynucleotide into cells having the proliferative disorder. Delivery of antisense or dominant negative GDF-8 polynucleotide can be achieved using a recombinant expression vector such as a chimeric virus or a colloidal dispersion system. Especially preferred for therapeutic delivery of antisense or dominant negative sequences is the use of targeted liposomes. In contrast, when it is desirable to enhance GDF-8 production, a "sense" GDF-8 polynucleotide or functional equivalent (e.g., the C-term active region) is introduced into the appropriate cell(s).

Various viral vectors which can be utilized for gene therapy as taught herein include adenovirus, herpes virus, vaccinia, or, preferably, an RNA virus such as a retrovirus. Preferably, the retroviral vector is a derivative of a murine or avian retrovirus. Examples of retroviral vectors in which a single foreign gene can be inserted include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), and Rous Sarcoma Virus (RSV).

A number of additional retroviral vectors can incorporate multiple genes. All of these vectors can transfer or incorporate a gene for a selectable marker so that transduced cells can be identified and generated. By inserting a GDF-8 sequence of interest into the viral vector, along with another gene which encodes the ligand for a receptor on a specific target cell, for example, the vector is now target specific. Retroviral vectors can be made target specific by attaching, for example, a sugar, a glycolipid, or a protein. Preferred targeting is accomplished by using an antibody to target the retroviral vector. Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific polynucleotide sequences which can be inserted into the retroviral genome or attached to a viral envelope to allow target specific delivery of the retroviral vector containing the GDF-8 antisense polynucleotide.

Since recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided, for example, by using helper cell lines that contain plasmids encoding all of the structural genes of the retrovirus under the control of regulatory sequences within the LTR. These plasmids are missing a nucleotide sequence which enables the packaging mechanism to recognize an RNA transcript for encapsulation. Helper cell lines which have deletions of the packaging signal include, but are not limited to ψ2, PA317 and PA12, for example. These cell lines produce empty virions, since no genome is packaged. If a retroviral vector is introduced into such cells in which the packaging signal is intact, but the structural genes are replaced by other genes of interest, the vector can be packaged and vector virion produced.

Alternatively, NIH 3T3 or other tissue culture cells can be directly transfected with plasmids encoding the retroviral structural genes gag, pol and env, by conventional calcium phosphate transfection. These cells are then transfected with the vector plasmid containing the genes of interest. The resulting cells release the retroviral vector into the culture medium.

Another targeted delivery system for GDF-8 polynucleotides is a colloidal dispersion system. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome. Liposomes are artificial membrane vesicles which are useful as delivery vehicles in vitro and in vivo. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2-4.0 µm can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., 6:77, 1981). In addition to mammalian cells, liposomes have been used for delivery of polynucleotides in plant, yeast and bacterial cells. in order for a liposome to be an efficient gene transfer vehicle, the following characteristics should be present: (1) encapsulation of the genes of interest at high efficiency while not compromising their biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information (Manning, et al., Biotechniques, <u>6</u>:682, 1988).

The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.

Examples of lipids useful in liposome production include phosphatidyl compounds, such 25 a s phosphatidyiglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative

phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.

The targeting of liposomes can be classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ-specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.

The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand.

Due to the expression of GDF-8 in muscle and adipose tissue, there are a variety of applications using the polypeptide, polynucleotide, and antibodies of the invention, related to these tissues. Such applications include treatment of cell proliferative disorders involving these and other tissues, such as neural tissue. In addition, GDF-8 may be useful in various gene therapy procedures. In embodiments where GDF-8 polypeptide is administered to a subject, the dosage range is about 0.1 ug/kg to 100 mg/kg; more preferably from about 1 ug/kg to 75 mg/kg and most preferably from about 10 mg/kg to 50 mg/kg.

Chromosomal Location of GDF-8

The data in Example 6 shows that the human GDF-8 gene is located on chromosome 2. By comparing the chromosomal location of GDF-8 with the map positions of various human disorders, it should be possible to determine whether mutations in the GDF-8 gene are involved in the etiology of human diseases. For example, an autosomal recessive form of juvenile amyotrophic lateral sclerosis has been shown to map to chromosome 2 (Hentati, et al., Neurology, 42 [Suppl.3]:201, 1992). More precise mapping of GDF-8 and analysis of DNA from these patients may indicate that GDF-8 is, in fact, the gene affected in this disease. In addition, GDF-8 is useful for distinguishing chromosome 2 from other chromosomes.

Transgenic Animals and Methods of Making the same

Various methods to make the transgenic animals of the subject invention can be employed. Generally speaking, three such methods may be employed. In one such method, an embryo at the pronuclear stage (a "one cell embryo") is harvested from a female and the transgene is microinjected into the embryo, in which case the transgene will be chromosomally integrated into both the germ cells and somatic cells of the resulting mature animal. In another such method, embryonic stem cells are isolated and the transgene incorporated therein by electroporation, plasmid transfection or microinjection, followed by reintroduction of the stem cells into the embryo where they colonize and contribute to the germ line. Methods for microinjection of mammalian species is described in United States Patent No. 4,873,191. In yet another such method, embryonic cells are infected with a retrovirus containing the transgene whereby the germ cells of the embryo have the transgene chromosomally integrated therein. When the animals to be made transgenic are avian, because avian fertilized ova generally go through cell division for the first twenty hours in the oviduct, microinjection into the pronucleus of the fertilized egg is problematic due to the inaccessibility of the pronucleus. Therefore, of the methods to make transgenic animals described generally above, retrovirus infection is preferred for avian species, for example as described in U.S. 5,162,215. If microinjection is to be used with avian species, however, a recently published procedure by Love et al., (Biotechnology, 12, Jan 1994) can be utilized

whereby the embryo is obtained from a sacrificed hen approximately two and one-half hours after the laying of the previous laid egg, the transgene is microinjected into the cytoplasm of the germinal disc and the embryo is cultured in a host shell until maturity. When the animals to be made transgenic are bovine or porcine, microinjection can be hampered by the opacity of the ova thereby making the nuclei difficult to identify-by traditional differential interference-contrast microscopy. To overcome this problem, the ova can first be centrifuged to segregate the pronuclei for better visualization.

The "non-human animals" of the invention bovine, porcine, ovine and avian animals (e.g., cow, pig, sheep, chicken, turkey). The "transgenic non-human animals" of the invention are produced by introducing "transgenes" into the germline of the non-human animal. Embryonal target cells at various developmental stages can be used to introduce transgenes. Different methods are used depending on the stage of development of the embryonal target cell. The zygote is the best target for micro-injection. The use of zygotes as a target for gene transfer has a major advantage in that in most cases the injected DNA will be incorporated into the host gene before the first cleavage (Brinster et al., Proc. Natl. Acad. Sci. USA 82:4438-4442, 1985). As a consequence, all cells of the transgenic non-human animal will carry the incorporated transgene. This will in general also be reflected in the efficient transmission of the transgene to offspring of the founder since 50% of the germ cells will harbor the transgene.

The term "transgenic" is used to describe an animal which includes exogenous genetic material within all of its cells. A "transgenic" animal can be produced by cross-breeding two chimeric animals which include exogenous genetic material within cells used in reproduction. Twenty-five percent of the resulting offspring will be transgenic *i.e.*, animals which include the exogenous genetic material within all of their cells in both alleles. 50% of the resulting animals will include the exogenous genetic material within one allele and 25% will include no exogenous genetic material.

In the microinjection method useful in the practice of the subject invention, the transgene is digested and purified free from any vector DNA e.g. by gel electrophoresis. It is

preferred that the transgene include an operatively associated promoter which interacts with cellular proteins involved in transcription, ultimately resulting in constitutive expression. Promoters useful in this regard include those from cytomegalovirus (CMV), Moloney leukemia virus (MLV), and herpes virus, as well as those from the genes encoding metallothionin, skeletal actin, P-enolpyruvate carboxylase (PEPCK), phosphoglycerate (PGK), DHFR, and thymidine kinase. Promoters for viral long terminal repeats (LTRs) such as Rous Sarcoma Virus can also be employed. When the animals to be made transgenic are avian, preferred promoters include those for the chicken β -globin gene, chicken lysozyme gene, and avian leukosis virus. Constructs useful in plasmid transfection of embryonic stem cells will employ additional regulatory elements well known in the art such as enhancer elements to stimulate transcription, splice acceptors, termination and polyadenylation signals, and ribosome binding sites to permit translation.

Retroviral infection can also be used to introduce transgene into a non-human animal, as described above. The developing non-human embryo can be cultured in vitro to the blastocyst stage. During this time, the blastomeres can be targets for retro viral infection (Jaenich, R., Proc. Natl. Acad. Sci USA 73:1260-1264, 1976). Efficient infection of the blastomeres is obtained by enzymatic treatment to remove the zona pellucida (Hogan, et al. (1986) in Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.). The viral vector system used to introduce the transgene is typically a replication-defective retro virus carrying the transgene (Jahner, et al., Proc. Natl. Acad. Sci. USA 82:6927-6931, 1985; Van der Putten, et al., Proc. Natl. Acad. Sci USA 82:6148-6152, 1985). Transfection is easily and efficiently obtained by culturing the blastomeres on a monolayer of virus-producing cells (Van der Putten, supra; Stewart, et al., EMBO J. 6:383-388, 1987). Alternatively, infection can be performed at a later stage. Virus or virus-producing cells can be injected into the blastocoele (D. Jahner et al., Nature 298:623-628, 1982). Most of the founders will be mosaic for the transgene since incorporation occurs only in a subset of the cells which formed the transgenic nonhuman animal. Further, the founder may contain various retro viral insertions of the transgene at different positions in the genome which generally will segregate in the offspring. In 30

addition, it is also possible to introduce transgenes into the germ line, albeit with low efficiency, by intrauterine retroviral infection of the midgestation embryo (D. Jahner et al., supra).

A third type of target cell for transgene introduction is the embryonal stem cell (ES). ES cells are obtained from pre-implantation embryos cultured *in vitro* and fused with embryos (M. J. Evans *et al. Nature* 292:154-156, 1981; M.O. Bradley *et al., Nature* 309: 255-258, 1984; Gossler, *et al., Proc. Natl. Acad. Sci USA* 83: 9065-9069, 1986; and Robertson *et al., Nature* 322:445-448, 1986). Transgenes can be efficiently introduced into the ES cells by DNA transfection or by retro virus-mediated transduction. Such transformed ES cells can thereafter be combined with blastocysts from a nonhuman animal. The ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal. (For review see Jaenisch, R., *Science* 240: 1468-1474, 1988).

"Transformed" means a cell into which (or into an ancestor of which) has been introduced, by means of recombinant nucleic acid techniques, a heterologous nucleic acid molecule. "Heterologous" refers to a nucleic acid sequence that either originates from another species or is modified from either its original form or the form primarily expressed in the cell.

"Transgene" means any piece of DNA which is inserted by artifice into a cell, and becomes part of the genome of the organism (*i.e.*, either stably integrated or as a stable extrachromosomal element) which develops from that cell. Such a transgene may include a gene which is partly or entirely heterologous (*i.e.*, foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism. Included within this definition is a transgene created by the providing of an RNA sequence which is transcribed into DNA and then incorporated into the genome. The transgenes of the invention include DNA sequences which encode GDF-8, and include GDF-sense, antisense, dominant negative encoding polynucleotides, which may be expressed in a transgenic non-human animal. The term "transgenic" as used herein

WO 98/33887 PCT/US98/02479

- 35 -

additionally includes any organism whose genome has been altered by *in vitro* manipulation of the early embryo or fertilized egg or by any transgenic technology to induce a specific gene knockout. The term "gene knockout" as used herein, refers to the targeted disruption of a gene *in vivo* with complete loss of function that has been achieved by any transgenic technology familiar to those in the art. In one embodiment, transgenic animals having gene knockouts are those in which the target gene has been rendered nonfunctional by an insertion targeted to the gene to be rendered non-functional by homologous recombination. As used herein, the term "transgenic" includes any transgenic technology familiar to those in the art which can produce an organism carrying an introduced transgene or one in which an endogenous gene has been rendered non-functional or "knocked out." An example of a transgene used to "knockout" GDF-8 function in the present Examples is described in Example 8 and FIGURE 12a. Thus, in another embodiment, the invention provides a transgene wherein the entire mature C-terminal region of GDF-8 is deleted.

The transgene to be used in the practice of the subject invention is a DNA sequence comprising a modified GDF-8 coding sequence. In a preferred embodiment, the GDF-8 gene is disrupted by homologous targeting in embryonic stem cells. For example, the entire mature C-terminal region of the GDF-8 gene may be deleted as described in the examples below. Optionally, the GDF-8 disruption or deletion may be accompanied by insertion of or replacement with other DNA sequences, such as a non-functional GDF-8 sequence. In other embodiments, the transgene comprises DNA antisense to the coding sequence for GDF-8. In another embodiment, the transgene comprises DNA encoding an antibody or receptor peptide sequence which is able to bind to GDF-8. The DNA and peptide sequences of GDF-8 are known in the art, the sequences, localization and activity disclosed in WO94/21681 and pending United States patent application 08/033,923, filed on March 19, 1993, incorporated by reference in its entirety. The disclosure of both of these applications are hereby incorporated herein by reference. Where appropriate, DNA sequences that encode proteins having GDF-8 activity but differ in nucleic acid sequence due to the degeneracy of the genetic code may also be used herein, as may truncated 30 forms, allelic variants and interspecies homologues.

The invention also includes animals having heterozygous mutations in GDF-8 or partial inhibition of GDF-8 function or expression. A heterozygote would exhibit an intermediate increase in muscle mass as compared to the homozygote as shown in Table 4 below. In other words, partial loss of function leads to a partial increase in muscle mass. One of skill in the art would readily be able to determine if a particular mutation or if an antisense molecule was able to partially inhibit GDF-8. For example, *in vitro* testing may be desirable initially by comparison with wild-type or untreated GDF-8 (e.g., comparison of northern blots to examine a decrease in expression).

After an embryo has been microinjected, colonized with transfected embryonic stem cells or infected with a retrovirus containing the transgene (except for practice of the subject invention in avian species which is addressed elsewhere herein) the embryo is implanted into the oviduct of a pseudopregnant female. The consequent progeny are tested for incorporation of the transgene by Southern blot analysis of blood samples using transgene specific probes. PCR is particularly useful in this regard. Positive progeny 15 (G0) are crossbred to produce offspring (G1) which are analyzed for transgene expression by Northern blot analysis of tissue samples. To be able to distinguish expression of like-species transgenes from expression of the animals endogenous GDF-8 gene(s), a marker gene fragment can be included in the construct in the 3' untranslated region of the transgene and the Northern probe designed to probe for the marker gene 20 fragment. The serum levels of GDF-8 can also be measured in the transgenic animal to establish appropriate expression. Expression of the GDF-8 transgenes, thereby decreasing the GDF-8 in the tissue and serum levels of the transgenic animals and consequently increasing the muscle tissue content results in the foodstuffs from these animals (i.e. eggs, beef, pork, poultry meat, milk, etc.) having markedly increased muscle content, and preferably without increased, and more preferably, reduced levels of fat and cholesterol. By practice of the subject invention, a statistically significant increase in muscle content, preferably at least a 2% increase in muscle content (e.g., in chickens), more preferably a 25% increase in muscle content as a percentage of body weight, more preferably greater than 40% increase in muscle content in these foodstuffs can be 30 obtained.

Additional Methods of Use

_ (•)

Thus, the present invention includes methods for increasing muscle mass in domesticated animals, characterized by inactivation or deletion of the gene encoding growth and differentiation factor-8 (GDF-8). The domesticated animal is preferably selected from the group consisting of ovine, bovine, porcine, piscine and avian. The animal may be treated with an isolated polynucleotide sequence encoding growth and differentiation factor-8 which polynucleotide sequence is also from a domesticated animal selected from the group consisting of ovine, bovine, porcine, piscine and avian. The present invention includes methods for increasing the muscle mass in domesticated animals characterized by administering to a domesticated animal monoclonal antibodies directed to the GDF-8 polypeptide. The antibody may be an anti-GDF-8, and may be either a monoclonal antibody or a polyclonal antibody.

The invention includes methods comprising using an anti-GDF-8 monoclonal antibody, antisense, or dominant negative mutants as a therapeutic agent to inhibit the growth regulating actions of GDF-8 on muscle cells. Muscle cells are defined to include fetal or adult muscle cells, as well as progenitor cells which are capable of differentiation into muscle. The monoclonal antibody may be a humanized (e.g., either fully or a chimeric) monoclonal antibody, of any species origin, such as murine, ovine, bovine, porcine or avian. Methods of producing antibody molecules with various combinations of "humanized" antibodies are well known in the art and include combining murine variable regions with human constant regions (Cabily, et al. Proc. Natl. Acad. Sci. USA, 81:3273, 1984), or by grafting the murine-antibody complementary determining regions (CDRs) onto the human framework (Richmann, et al., Nature 332:323, 1988). Other general references which teach methods for creating humanized antibodies include Morrison, et al., Science, 229:1202, 1985; Jones, et al., Nature, 321:522, 1986; Monroe, et al., Nature 312:779, 1985; Oi, et al., BioTechniques, 4:214, 1986; European Patent Application No. 302,620; and U.S. Patent No. 5,024,834. Therefore, by humanizing the monoclonal antibodies of the invention for in vivo use, an immune response to the antibodies would be greatly reduced.

The monoclonal antibody, GDF-8 polypeptide, or GDF-8 polynucleotide (all "GDF-8 agents") may have the effect of increasing the development of skeletal muscles. In preferred embodiments of the claimed methods, the GDF-8 monoclonal antibody, polypeptide, or polynucleotide is administered to a patient suffering from a disorder selected from the group consisting of muscle wasting disease, neuromuscular disorder, muscle atrophy or aging. The GDF-8 agent may also be administered to a patient suffering from a disorder selected from the group consisting of muscular dystrophy, spinal cord injury, traumatic injury, congestive obstructive pulmonary disease (COPD), AIDS or cachechia. In a preferred embodiment, the GDF-8 agent is administered to a patient with muscle wasting disease or disorder by intravenous, intramuscular or subcutaneous injection; preferably, a monoclonal antibody is administered within a dose range between about 0.1 mg/kg to about 100 mg/kg; more preferably between about 1 ug/kg to 75 mg/kg; most preferably from about 10 mg/kg to 50 mg/kg. The antibody may be administered, for example, by bolus injunction or by slow infusion. Slow infusion over a period of 30 minutes to 2 hours is preferred. The GDF-8 agent may be formulated in a formulation suitable for administration to a patient. Such formulations are known in the art.

The dosage regimen will be determined by the attending physician considering various factors which modify the action of the GDF-8 protein, e.g. amount of tissue desired to be formed, the site of tissue damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue, the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and the types of agent, such as anti-GDF-8 antibodies, to be used in the composition. Generally, systemic or injectable administration, such as intravenous (IV), intramuscular (IM) or subcutaneous (Sub-Q) injection. Administration will generally be initiated at a dose which is minimally effective, and the dose will be increased over a preselected time course until a positive effect is observed. Subsequently, incremental increases in dosage will be made limiting such incremental increases to such levels that produce a corresponding increase in effect, while taking into account any adverse affects that may appear. The addition of other known growth

factors, such as IGF I (insulin like growth factor I), human, bovine, or chicken growth hormone which may aid in increasing muscle mass, to the final composition, may also affect the dosage. In the embodiment where an anti-GDF-8 antibody is administered, the anti-GDF-8 antibody is generally administered within a dose range of about 0.1 ug/kg to about 100 mg/kg.; more preferably between about 10 mg/kg to 50 mg/kg.

Progress can be monitored by periodic assessment of tissue growth and/or repair. The progress can be monitored, for example, x-rays, histomorphometric determinations and tetracycline labeling.

Screening for GDF-8 Modulating Compounds

In another embodiment, the invention provides a method for identifying a compound or molecule that modulates GDF-8 protein activity or gene expression. The method includes incubating components comprising the compound, GDF-8 polypeptide or with a recombinant cell expressing GDF-8 polypeptide, under conditions sufficient to allow the components to interact and determining the effect of the compound on GDF-8 activity or expression. The effect of the compound on GDF-8 activity can be measured by a number of assays, and may include measurements before and after incubating in the presence of the compound. Compounds that affect GDF-8 activity or gene expression include peptides, peptidomimetics, polypeptides, chemical compounds and biologic agents. Assays include Northern blot analysis of GDF-8 mRNA (for gene expression), Western blot analysis (for protein level) and muscle fiber analysis (for protein activity).

The above screening assays may be used for detecting the compounds or molecules that bind to the GDF-8 receptor or GDF-8 polypeptide, in isolating molecules that bind to the GDF-8 gene, for measuring the amount of GDF-8 in a sample, either polypeptide or RNA (mRNA), for identifying molecules that may act as agonists or antagonists, and the like. For example, GDF-8 antagonists are useful for treatment of muscular and adipose

For example, GDF-8 antagonists are useful for treatment of muscular and adipose tissue disorders (e.g., obesity).

Incubating includes conditions which allow contact between the test compound and GDF-8 polypeptide or with a recombinant cell expressing GDF-8 polypeptide. Contacting includes in solution and in solid phase, or in a cell. The test compound may optionally be a combinatorial library for screening a plurality of compounds. Compounds identified in the method of the invention can be further evaluated, detected, cloned, sequenced, and the like, either in solution or after binding to a solid support, by any method usually applied to the detection of a specific DNA sequence such as PCR, oligomer restriction (Saiki, et al., Bio/Technology, 3:1008-1012, 1985), allele-specific oligonucleotide (ASO) probe analysis (Conner, et al., Proc. Natl. Acad. Sci. USA, 80:278, 1983), oligonucleotide Landegren, et al., Science, 241:1077, 1988), and the like. Molecular techniques for DNA analysis have been reviewed (Landegren, et al., Science, 242:229-237, 1988).

All references cited herein are hereby incorporated by reference in their entirety.

The following examples are intended to illustrate but not limit the invention. While they are typical of those that might be used, other procedures known to those skilled in the art may alternatively be used.

EXAMPLE 1

IDENTIFICATION AND ISOLATION OF A NOVEL TGF-β FAMILY MEMBER

To identify a new member of the TGF-β superfamily, degenerate oligonucleotides were designed which corresponded to two conserved regions among the known family members: one region spanning the two tryptophan residues conserved in all family members except MIS and the other region spanning the invariant cysteine residues near the C-terminus. These primers were used for polymerase chain reactions on mouse genomic DNA followed by subcloning the PCR products using restriction sites placed at the 5' ends of the primers, picking individual *E. coli* colonies carrying these subcloned

inserts, and using a combination of random sequencing and hybridization analysis to eliminate known members of the superfamily.

GDF-8 was identified from a mixture of PCR products obtained with the primers SJL141: 5'-CCGGAATTCGGITGG(G/C/A)A(G/A/T/C)(A/G)A(T/C)TGG(A/G)TI (A/G)TI(T/G)CICC-3' (SEQ ID NO:1)

SJL147:

5

5'-CCGGAATTC(G/A)CAI(G/C)C(G/A)CA(G/A)CT(GIA/T/C)
TCIACI(G/A)(T/C)CAT-3' (SEQ ID NO:2)

PCR using these primers was carried out with 2 µg mouse genomic DNA at 94°C for 1 min, 50°C for 2 min, and 72°C for 2 min for 40 cycles.

PCR products of approximately 280 bp were gel-purified, digested with Eco Rl, gel-purified again, and subcloned in the Bluescript vector (Stratagene, San Diego, CA). Bacterial colonies carrying individual subclones were picked into 96 well microtiter plates, and multiple replicas were prepared by plating the cells onto nitrocellulose. The replicate filters were hybridized to probes representing known members of the family, and DNA was prepared from nonhybridizing colonies for sequence analysis.

The primer combination of SJL141 and SJL147, encoding the amino acid sequences GW(H/Q/N/K/D/E)(D/N)W(V/I/M)(V/I/M)(A/S)P (SEQ ID NO:9) and M(V/I/M/T/A)V(D/E)SC(G/A)C (SEQ ID NO:10), respectively, yielded four previously identified sequences (BMP-4, inhibin,βB, GDF-3 and GDF-5) and one novel sequence, which was designated GDF-8, among 110 subclones analyzed.

Human GDF-8 was isolated using the primers:

ACM13: 5'-CGCGGATCCAGAGTCAAGGTGACAGACACAC-3' (SEQ ID NO:3); and ACM14: 5'-CGCGGATCCTCCTCATGAGCACCCACAGCGGTC-3' (SEQ ID NO:4)

PCR using these primers was carried out with one µg human genomic DNA at 94°C for 1 min, 58°C for 2 min, and 72°C for 2 min for 30 cycles. The PCR product was digested with Bam Hl, gel-purified, and subcloned in the Bluescript vector (Stratagene, San Francisco, CA).

5

EXAMPLE 2

EXPRESSION PATTERN AND SEQUENCE OF GDF-8

To determine the expression pattern of GDF-8, RNA samples prepared from a variety of adult tissues were screened by Northern analysis. RNA isolation and Northern analysis were carried out as described previously (Lee, S.J., *Mol. Endocrinol.*, 4:1034, 1990) except that hybridization was carried out in 5X SSPE, 10% dextran sulfate, 50% formamide, 1% SDS, 200 µg/ml salmon DNA, and 0.1% each of bovine serum albumin, ficoll, and polyvinylpyrrolidone. Five micrograms of twice poly A-selected RNA prepared from each tissue (except for muscle, for which only 2 µg RNA was used) were electrophoresed on formaldehyde gels, blotted, and probed with GDF-8. As shown in FIGURE 1, the GDF-8 probe detected a single mRNA species expressed at highest levels in muscle and at significantly lower levels in adipose tissue.

To obtain a larger segment of the GDF-8 gene, a mouse genomic library was screened with a probe derived from the GDF-8 PCR product. The partial sequence of a GDF-8 genomic clone is shown in FIGURE 2a. The sequence contains an open reading frame corresponding to the predicted C-terminal region of the GDF-8 precursor protein. The predicted GDF-8 sequence contains two potential proteolytic processing sites, which are boxed. Cleavage of the precursor at the second of these sites would generate a mature C terminal fragment 109 amino acids in length with a predicted molecular weight of 12,400. The partial sequence of human GDF-8 is shown in FIGURE 2b. Assuming no PCR-induced errors during the isolation of the human clone, the human and mouse amino acid sequences in this region are 100% identical.

The C-terminal region of GDF-8 following the putative proteolytic processing site shows significant homology to the known members of the TGF-β; superfamily (FIGURE 3). FIGURE 3 shows the alignment of the C-terminal sequences of GDF-8 with the corresponding regions of human GDF-1 (Lee, *Proc. Natl. Acad. Sci. USA*, <u>88</u>:4250-4254, 1991), human BMP-2 and 4 (Wozney, *et al., Science*, <u>242</u>:1528-1534, 1988), human Vgr-1 (Celeste, *et al. Proc. Natl. Acad. Sci. USA*, <u>87</u>:9843-9847, 1990), human OP-1 (Ozkaynak, *et al., EMBO J.*, <u>9</u>:2085-2093, 1990), human BMP-5 (Celeste, *et al., Proc. Natl. Acad. Sci. USA*, <u>87</u>:9843-9847, 1990), human BMP-3 (Wozney, *et al., Science*, <u>242</u>:1528-1534, 1988), human MiS (Cate, *et al. Cell*, <u>45</u>:685-698,1986), human inhibin alpha, βA, and βB (Mason, *et al., Biochem, Biophys. Res. Commun.*, <u>135</u>:957-964, 1986), human TGF-β1 (Derynck, *et al., Nature*, <u>316</u>:701-705, 1985), humanTGF-R2 (deMartin, *et al., EMBO J.*, <u>6</u>:3673-3677, 1987), and human TGF-β3 (ten Dijke, *et al., Proc. Natl. Acad. Sci. USA*, <u>85</u>:4715-4719, 1988). The conserved cysteine residues are boxed. Dashes denote gaps introduced in order to maximize the alignment.

GDF-8 contains most of the residues that are highly conserved in other family members, including the seven cysteine residues with their characteristic spacing. Like the TGF-βs and inhibin βs, GDF-8 also contains two additional cysteine residues. In the case of TGF-β2, these two additional cysteine residues are known to form an intramolecular disulfide bond (Daopin, et al., Science, 257:369, 1992; Schlunegger and Grutter, Nature, 20 358:430, 1992).

FIGURE 4 shows the amino acid homologies among the different members of the TGF-β superfamily. Numbers represent percent amino acid identities between each pair calculated from the first conserved cysteine to the C terminus. Boxes represent homologies among highly-related members within particular subgroups. In this region, GDF-8 is most homologous to Vgr-1 (45% sequence identity).

EXAMPLE 3

ISOLATION OF cDNA CLONES ENCODING MURINE AND HUMAN GDF-8

In order to isolate full-length cDNA clones encoding murine and human GDF-8, cDNA libraries were prepared in the lambda ZAP II vector (Stratagene) using RNA prepared from skeletal muscle. From 5 µg of twice poly A-selected RNA prepared from murine and human muscle, cDNA libraries consisting of 4.4 million and 1.9 million recombinant phage, respectively, were constructed according to the instructions provided by Stratagene. These libraries were screened without amplification. Library screening and characterization of cDNA inserts were carried out as described previously (Lee, *Mol. Endocrinol.*, 4:1034-1040).

From 2.4 x 10⁶ recombinant phage screened from the murine muscle cDNA library, greater than 280 positive phage were identified using a murine GDF-8 probe derived from a genomic clone, as described in Example 1. The entire nucleotide sequence of the longest cDNA insert analyzed is shown in FIGURE 5a and 5b and SEQ ID NO:11. The 2676 base pair sequence contains a single long open reading frame beginning with a methionine codon at nucleotide 104 and extending to a TGA stop codon at nucleotide 1232. Upstream of the putative initiating methionine codon is an in-frame stop codon at nucleotide 23. The predicted pre-pro-GDF-8 protein is 76 amino acids in length. The sequence contains a core of hydrophobic amino acids at the N-terminus suggestive of a signal peptide for secretion (FIGURE 6a), one potential N-glycosylation site at 20 asparagine 72, a putative RXXR proteolytic cleavage site at amino acids 264-267, and a C-terminal region showing significant homology to the known members of the $TGF-\beta$ superfamily. Cleavage of the precursor protein at the putative RXXR site would generate a mature C-terminal GDF-8 fragment 109 amino acids in length with a predicted 25 molecular weight of approximately 12,400.

From 1.9 x 10⁶ recombinant phage screened from the human muscle cDNA library, 4 positive phage were identified using a human GDF-8 probe derived by polymerase chain reaction on human genomic DNA. The entire nucleotide sequence of the longest cDNA

10

insert is shown in FIGURE 5c and 5d and SEQ ID NO:13. The 2743 base pair sequence contains a single long open reading frame beginning with a methionine codon at nucleotide 59 and extending to a TGA stop codon at nucleotide 1184. The predicted pre-pro-GDF-8 protein is 375 amino acids in length. The sequence contains a core of hydrophobic amino acids at the N-terminus suggestive of a signal peptide for secretion (FIGURE 6b), one potential N-glycosylation site at asparagine 71, and a putative RX)(R proteolytic cleavage site at amino acids 263-266. FIGURE 7 shows a comparison of the predicted murine (top) and human (bottom) GDF-8 amino acid sequences. Numbers indicate amino acid position relative to the N-terminus. Identities between the two sequences are denoted by a vertical line. Murine and human GDF-8 are approximately 94% identical in the predicted pro-regions and 100% identical following the predicted RXXR cleavage sites.

EXAMPLE 4 DIMERIZATION OF GDF-8

To determine whether the processing signals in the GDF-8 sequence are functional and whether GDF-8 forms dimers like other members of the TGF-ß superfamily, the GDF-8 cDNA was stably expressed in CHO cells. The GDF-8 coding sequence was cloned into the pMSXND expression vector (Lee and Nathans, J. Biol. Chem., 263:3521,(1988) and transfected into CHO cells. Following G418 selection, the cells were selected in 0.2 μM methotrexate, and conditioned medium from resistant cells was concentrated and 20 electrophoresed on SDS gels. Conditioned medium was prepared by Cell Trends, Inc. (Middletown, MD). For preparation of anti-GDF-8 serum, the C-terminal region of GDF-8 (amino acids 268 to 376) was expressed in bacteria using the RSET vector (Invitrogen, San Diego, CA), purified using a nickle chelate column, and injected into rabbits. All immunizations were carried out by Spring Valley Labs (Woodbine, MD). 25 Western analysis using [125] iodoprotein A was carried out as described (Burnette, W.N., Anal. Biochem., 112:195, 1981). Western analysis of conditioned medium prepared from these cells using an antiserum raised against a bacterially-expressed C-terminal fragment of GDF-8 detected two protein species with apparent molecular weights of approximately

52K and 15K under reducing conditions, consistent with unprocessed and processed forms of GDF-8, respectively. No bands were obtained either with preimmune serum or with conditioned medium from CHO cells transfected with an antisense construct. Under non-reducing conditions, the GDF-8 antiserum detected two predominant protein species with apparent molecular weights of approximately 101K and 25K, consistent with dimeric forms of unprocessed and processed GDF-8, respectively. Hence, like other TGF-ß family members, GDF-8 appears to be secreted and proteolytically processed, and the C-terminal region appears to be capable of forming a disulfide-linked dimer.

EXAMPLE 5

PREPARATION OF ANTIBODIES AGAINST GDF-8 AND EXPRESSION OF GDF-8 IN MAMMALIAN CELLS

In order to prepare antibodies against GDF-8, GDF-8 antigen was expressed as a fusion protein in bacteria. A portion of murine GDF-8 cDNA spanning amino acids 268-376 (mature region) was inserted into the pRSET vector (Invitrogen) such that the GDF-8 coding sequence was placed in frame with the initiating methionine codon present in the vector; the resulting construct created an open reading frame encoding a fusion protein with a molecular weight of approximately 16,600. The fusion construct was transformed into BL21 (DE3) (pLysS) cells, and expression of the fusion protein was induced by treatment with isopropylthio-β-galactoside as described (Rosenberg, *et al.*, *Gene*, 56:125-135). The fusion protein was then purified by metal chelate chromatography according to the instructions provided by Invitrogen. A Coomassie blue-stained gel of unpurified and purified fusion proteins is shown in FIGURE 8.

The purified fusion protein was used to immunize both rabbits and chickens. Immunization of rabbits was carried out by Spring Valley Labs (Sykesville, MD), and immunization of chickens was carried out by HRP, Inc. (Denver, PA). Western analysis of sera both from immunized rabbits and from immunized chickens demonstrated the presence of antibodies directed against the fusion protein.

10

To express GDF-8 in mammalian cells, the murine GDF-8 cDNA sequence from nucleotides 48-1303 was cloned in both orientations downstream of the metallothionein I promoter in the pMSXND expression vector; this vector contains processing signals derived from SV40, a dihydrofolate reductase gene, and a gene conferring resistance to the antibiotic G418 (Lee and Nathans, *J. Biol. Chem.*, 263:3521-3527). The resulting constructs were transfected into Chinese hamster ovary cells, and stable transfectants were selected in the presence of G418. Two milliliters of conditioned media prepared from the G418-resistant cells were dialyzed, lyophilized, electrophoresed under denaturing, reducing conditions, transferred to nitrocellulose, and incubated with anti-GDF-8 antibodies (described above) and [1251]iodoproteinA.

As shown in FIGURE 9, the rabbit GDF-8 antibodies (at a 1:500 dilution) detected a protein of approximately the predicted molecular weight for the mature C-terminal fragment of GDF-8 in the conditioned media of cells transfected with a construct in which GDF-8 had been cloned in the correct (sense) orientation with respect to the metallothionein promoter (lane 2); this band was not detected in a similar sample prepared from cells transfected with a control antisense construct (lane 1). Similar results were obtained using antibodies prepared in chickens. Hence, GDF-8 is secreted and proteolytically processed by these transfected mammalian cells.

EXAMPLE 6

20 EXPRESSION PATTERN OF GDF-8

To determine the pattern of GDF-8, 5 µg of twice poly A-selected RNA prepared from a variety of murine tissue sources were subjected to Northern analysis. As shown in FIGURE 10a (and as shown previously in Example 2), the GDF-8 probe detected a single mRNA species present almost exclusively in skeletal muscle among a large number of adult tissues surveyed. On longer exposures of the same blot, significantly lower but detectable levels of GDF-8 mRNA were seen in fat, brain, thymus, heart, and lung. Hence, these results confirm the high degree of specificity of GDF-8 expression in skeletal muscle. GDF-8 mRNA was also detected in mouse embryos at both gestational

25

ages (day 12.5 and day 18.5 post-coital) examined but not in placentas at various stages of development (FIGURE 10b).

To further analyze the expression pattern of GDF-8, in situ hybridization was performed on mouse embryos isolated at various stages of development.

For all in situ hybridization experiments, probes corresponding to the C-terminal region of GDF-8 were excluded in order to avoid possible cross-reactivity with other members of the superfamily. Whole mount in situ hybridization analysis was carried out as described (Wilkinson, D.G., In Situ Hybridization, A Practical Approach, pp. 75-83, IRL. Press, Oxford, 1992) except that blocking and antibody incubation steps were carried out as in Knecht et al. (Knecht, et al., Development, 121:1927, 1955). Alkaline 10 phosphatase reactions were carried out for 3 hours for day 10.5 embryos and overnight for day 9.5 embryos. Hybridization was carried out using digoxigenin- labelled probes spanning nucleotides 8-811 and 1298-2676, which correspond to the pro- region and 3' untranslated regions, respectively. In situ hybridization to sections was carried out as described (Wilkinson, et al., Cell, 50:79, 1987) using 35S-labelled probes ranging from approximately 100-650 bases in length and spanning nucleotides 8-793 and 1566-2595. Following hybridization and washing, slides were dipped in NTB-3 photographic emulsion, exposed for 16-19 days, developed and stained with either hematoxylin and eosin or toluidine blue. RNA isolation, poly A selection, and Northern analysis were carried out as described previously (McPherron and Lee, J. Biol. Chem., 268:3444, 1993).

At all stages examined, the expression of GDF-8 mRNA appeared to be restricted to developing skeletal muscle. At early stages, GDF-8 expression was restricted to developing somites. By whole mount *in situ* hybridization analysis, GDF-8 mRNA could first be detected as early as day 9.5 post coitum in approximately one-third of the somites. At this stage of development, hybridization appeared to be restricted to the most mature (9 out of 21 in this example), rostral somites. By day 10.5 p.c., GDF-8 expression was clearly evident in almost every somite (28 out of 33 in this example)

shown). Based on *in situ* hybridization analysis of sections prepared from day 10.5 p.c. embryos, the expression of GDF-8 in somites appeared to be localized to the myotome compartment. At later stages of development, GDF-8 expression was detected in a wide range of developing muscles.

GDF-8 continues to be expressed in adult animals as well. By Northern analysis, GDF-8 mRNA expression was seen almost exclusively in skeletal muscle among the different adult tissues examined. A significantly lower though clearly detectable signal was also seen in adipose tissue. Based on Northern analysis of RNA prepared from a large number of different adult skeletal muscles, GDF-8 expression appeared to be widespread although the expression levels varied among individual muscles.

EXAMPLE 7 CHROMOSOMAL LOCALIZATION OF GDF-8

In order to map the chromosomal location of GDF-8, DNA samples from human/rodent somatic cell hybrids (Drwinga, et al., Genomics, 16:311-413, 1993; Dubois and Naylor, Genomics, 16:315-319, 1993) were analyzed by polymerase chain reaction followed by 15 Southern blotting. Polymerase chain reaction was carried out using primer #83, 5'-C-GCGGATCCGTGGATCTAAATGAGAACAGTGAGC-3' (SEQ ID NO: 15) and primer #84, 5'-CGCGAATTCTCAGGTAATGATTGTTTCCGTTGTAGCG-3'(SEQ ID NO:16) for 40 cycles at 94°C for 2 minutes, 60°C for 1 minute, and 72°C for 2 minutes. These primers correspond to nucleotides 119 to 143 (flanked by a Bam H1 recognition 20 sequence), and nucleotides 394 to 418 (flanked by an Eco R1 recognition sequence), respectively, in the human GDF-8 cDNA sequence. PCR products were electrophoresed blotted, gels, on agarose probed and with oligonucleotide #100, 5'-ACACTAAATCTTCAAGAATA-3' (SEQ ID NO:17), which corresponds to a sequence internal to the region flanked by primer #83 and #84. Filters were hybridized in 6 X SSC, 1 X Denhardt's solution, 100µg/ml yeast transfer RNA, and 0.05% sodium pyrophosphate at 50°C.

As shown in FIGURE 11, the human-specific probe detected a band of the predicted size (approximately 320 base pairs) in the positive control sample (total human genomic DNA) and in a single DNA sample from the human/rodent hybrid panel. This positive signal corresponds to human chromosome 2. The human chromosome contained in each of the hybrid cell lines is identified at the top of each of the first 24 lanes (1-22, X, and Y). In the lanes designated M, CHO, and H, the starting DNA template was total genomic DNA from mouse, hamster, and human sources, respectively. In the lane marked B1, no template DNA was used. Numbers at left indicate the mobilities of DNA standards. These data show that the human GDF-8 gene is located on chromosome 2.

10

EXAMPLE 8

GDF-8 TRANSGENIC KNOCKOUT MICE

The GDF-8, we disrupted the GDF-8 gene was disrupted by homologous targeting in embryonic stem cells. To ensure that the resulting mice would be null for GDF-8 function, the entire mature C-terminal region was deleted and replaced by a neo cassette (Figure 12a). A murine 129 SV/J genomic library was prepared in lambda FIX II according to the instructions provided by Stratagene (La Jolla, CA). The structure of the GDF-8 gene was deduced from restriction mapping and partial sequencing of phage clones isolated from this library. Vectors for preparing the targeting construct were kindly provided by Philip Soriano and Kirk Thomas University. R1 ES cells were transfected with the targeting construct, selected with gancyclovir (2 μM) and G418 (250 μg/ml), and analyzed by Southern analysis. Homologously targeted clones were injected into C57BL/6 blastocysts and transferred into pseudopregnant females. Germline transmission of the targeted allele was obtained in a total of 9 male chimeras from 5 independently-derived ES clones. Genomic Southern blots were hybridized at 42°C as described above and washed in 0.2X SSC, 0.1% SDS at 42°C.

For whole leg analysis, legs of 14 week old mice were skinned, treated with 0.2 M EDTA in PBS at 4°C for 4 weeks followed by 0.5 M sucrose in PBS at 4°C. For fiber number and size analysis, samples were directly mounted and frozen in isopentane as described (Brumback and Leech, *Color Atlas of Muscle Histochemistry*, pp. 9-33, PSG Publishing

Company, Littleton, MA, 1984). Ten to 30 µm sections were prepared using a cryostat and stained with hematoxylin and eosin. Muscle fiber numbers were determined from sections taken from the widest part of the tibialis cranialis muscle. Muscle fiber sizes were measured from photographs of sections of tibialis cranialis and gastrocnemius muscles. Fiber type analysis was carried out using the mysosin ATPase assay after pretreatment at pH 4.35 as described (Cumming, et al., Color Atlas of Muscle Pathology, pp. 184-185, 1994) and by immunohistochemistry using an antibody directed against type 1 myosin (MY32, Sigma) and the Vectastain method (Vector Labs); in the immunohistochemical experiments, no staining was seen when the primary antibodies were left out. Carcasses were prepared from shaved mice by removing the all of the internal organs and associated fat and connective tissue. Fat content of carcasses from 4 month old males was determined as described (Leshner, et al., Physiol. Behavior, 9:281, 1972).

For protein and DNA analysis, tissue was homogenized in 150 mM NaCl, 100 mM 15 EDTA. Protein concentrations were determined using the Biorad protein assay. DNA was isolated by adding SDS to 1%, treating with 1 mg/ml proteinase K overnight at 55°C, extracting 3 times with phenol and twice with chloroform, and precipitating with ammonium acetate and EtOH. DNA was digested with 2 mg/ml RNase for 1 hour at 37°C, and following proteinase K digestion and phenol and chloroform extractions, the DNA was precipitated twice with ammonium acetate and EtOH.

Homologous targeting of the GDF-8 gene was seen in 13/131 gancyclovir/G418 doubly-resistant ES cell clones. Following injection of these targeted clones into blastocysts, we obtained chimeras from 5 independently-derived ES clones that produced heterozygous pups when crossed to C57BL/6 females (Figure 12b). Genotypic analysis of 678 offspring derived from crosses of F1 heterozygotes showed 170 +/+ (25%), 380 +/- (56%), and 128 -/- (19%). Although the ratio of genotypes was close to the expected ratio of 1:2:1, the smaller than expected number of homozygous mutants appeared to be statistically significant (p<0.001).

Homozygous mutants were viable and fertile when crossed to C57BL/6 mice and to each other. Homozygous mutant animals, however, were approximately 30% larger than their heterozygous and wild type littermates (Table 1). The difference between mutant and wild type body weights appeared to be relatively constant irrespective of age and sex in adult animals. Adult mutants also displayed an abnormal body shape, with pronounced shoulders and hips. When the skin was removed from animals that had been sacrificed, it was apparent that the muscles of the mutants were much larger than those of wild type animals. The increase in skeletal muscle mass appeared to be widespread throughout the Individual muscles isolated from homozygous mutant animals weighed body. approximately 2-3 times more than those isolated from wild type littermates (Table 2). Although the magnitude of the weight increase appeared to roughly correlate with the level of GDF-8 expression in the muscles examined. To determine whether the increased muscle mass could account for the entire difference in total body weights between wild type and mutant animals or whether many tissues were generally larger in the mutants, we compared the total body weights to carcass weights. As shown in Table 3, the difference in carcass weights between wild type and mutant animals was comparable to the difference in total body weights. Moreover, because the fat content of mutant and wild type animals was similar, these data are consistent with all of the total body weight difference resulting from an increase in skeletal muscle mass, although we have not formally ruled out the possibility that differences in bone mass might also contribute to the differences in total body mass.

To determine whether the increase in skeletal muscle mass resulted from hyperplasia or from hypertrophy, histologic analysis of several different muscle groups was performed. The mutant muscle appeared grossly normal. No excess connective tissue or fat was seen nor were there any obvious signs of degeneration, such as widely varying fiber sizes (see below) or centrally-placed nuclei. Quantitation of the number of muscle fibers showed that at the widest portion of the tibialis cranialis muscle, the total cell number was 86% higher in mutant animals compared to wild type littermates [mutant = 5470 + /- 121 (n = 3), wild type = 2936 + /- 288 (n = 3); p < 0.01]. Consistent with this result was the finding that the amount of DNA extracted from mutant muscle was roughly 50% higher

10

20

25

than from wild type muscle [mutant = 350 μ g (n = 4), wild type = 233 μ g (n = 3) from pooled gastrocnemius, plantaris, triceps brachii, tibialis cranialis, and pectoralis muscles; p = 0.05]. Hence, a large part of the increase in skeletal muscle mass resulted from muscle cell hyperplasia. However, muscle fiber hypertrophy also appeared to contribute to the overall increase in muscle mass. As shown in Figure 13, the mean fiber diameter of the tibialis cranialis muscle and gastrocnemius muscle was 7% and 22% larger, respectively, in mutant animals compared to wild type littermates, suggesting that the cross-sectional area of the fibers was increased by approximately 14% and 49%, respectively. Notably, although the mean fiber diameter was larger in the mutants, the standard deviation in fiber sizes was similar between mutant and wild type muscle, consistent with the absence of muscle degeneration in mutant animals. The increase in fiber size was also consistent with the finding that the protein to DNA ratio (w/w) was slightly increased in mutant compared to wild type muscle [mutant = 871 +/- 111 (n = 4), wild type = 624 +/- 85 (n = 3); p < 0.05].

Table 4 shows a comparison between muscle weight (in grams) from wild-type. (+/+), heterozyous (+/-) and a homozygous knock-out mice (-/-). The muscle mass is increased in heterozyogous as compared to wild-type animals.

Finally, fiber type analysis of various muscles was carried out to determine whether the number of both type I (slow) and type II (fast) fibers was increased in the mutant animals. In most of the muscles examined, including the tibialis cranialis muscle, the vast majority of muscle fibers were type II in both mutant and wild type animals. Hence, based on the cell counts discussed above, the absolute number of type II fibers were increased in the tibialis cranialis muscle. In the soleus muscle, where the number of type I fibers was sufficiently high that we could attempt to quantitate the ratio of fiber types could be quantiated, the percent of type I fibers was decreased by approximately 33% in mutant compared to wild type muscle [wild type = 39.2 + /- 8.1 (n = 3), mutant = 26.4 + /-9.3 (n = 4)]; however, the variability in this ratio for both wild type and mutant animals was too high to support any firm conclusions regarding the relative number of fiber types.

EXAMPLE 9

ISOLATION OF RAT AND CHICKEN GDF-8

In order to isolate rat and chicken GDF-8 cDNA clones, skeletal muscle cDNA libraries prepared from these species were obtained from Stratagene and screened with a murine GDF-8 probe. Library screening was carried out as described previously (Lee, Mol. Endocrinol., 4:1034-1040) except that final washes were carried out in 2 X SSC at 65°C. Partial sequence analysis of hybridizing clones revealed the presence of open reading frames highly related to murine and human GDF-8. Partial sequences of rat and chicken GDF-8 are shown in Figures 2c and 2d, respectively, and an alignment of the predicated rat and chicken GDF-8 amino acid sequences with those of murine and human GDF-8 are shown in Figure 3b. Full length rat and chicken GDF-8 is shown in Figures 14d and 14c, respectively and sequence alignment between murine, rat, human, baboon, porcine, ovine, bovine, chicken, and turkey sequences is shown in Figures 15a and 15b. All sequences contain an RSRR sequence that is likely to represent the proteolytic processing site. Following this RSRR sequence, the sequences contain a C-terminal region that is 100% conserved among all four species. The absolute conservation of the C-terminal region between species as evolutionarily far apart as humans and chickens, and baboons and turkeys, suggests that this region will be highly conserved in many other species as well

- Similar methodology was used to obtain the nucleotide and amino acid sequences for baboon (SEQ ID NO:18 and 19, respectively; Figure 14a); bovine (SEQ ID NO:20 and 21, respectively; Figure 14b); turkey (SEQ ID NO:26 and 27, respectively; Figure 14e); porcine (SEQ ID NO:28 and 29, respectively; Figure 14f); and ovine (SEQ ID NO:30 and 31, respectively; Figure 14g).
- Although the invention has been described with reference to the presently preferred embodiment, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

- 55 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: The Johns Hopkins University School of Medicine
- (ii) TITLE OF THE INVENTION: GROWTH DIFFERENTIATION FACTOR-8
- (iii) NUMBER OF SEQUENCES: 27
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Fish & Richardson P.C.
 - (B) STREET: 4225 Executive Square, Suite 1400
 - (C) CITY: La Jolla
 - (D) STATE: CA
 - (E) COUNTRY: US
 - (F) ZIP: 92037
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: Windows95
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US98/----
 - (B) FILING DATE: 05-February-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/795,071
 - (B) FILING DATE: 05-February-1997
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/847,910
 - (B) FILING DATE: 28-April-1997
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/862,445
 - (B) FILING DATE: 23-May-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lisa A. Haile, Ph.D.
 - (B) REGISTRATION NUMBER: 38,347
 - (C) REFERENCE/DOCKET NUMBER: 07265/129W01
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619/678-5070
 - (B) TELEFAX: 619/678-5099
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:

	(B) CLONE: S	JL141		•
(ix) FEATURE: (A) NAME/KEY (B) LOCATION	: Modified B I: 135	lase	
(xi)_SEQUENCE_D	ESCRIPTION: -	SEQ ID NO:1:	
CCGGAATI	CG GNTGGVANRA	YTGGRTNRTN N	IKCNCC	35
مه دید د هید د هید د هید	(2) INFORMAT	ION FOR SEQ	ID NO:2:	د الله الله الله الله الله الله الله الل
	i) SEQUENCE CH (A) LENGTH: 3 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	3 base pairs leic acid ESS: single		
.(ii) MOLECULE T	YPE: Genomic	DNA	
(vii) IMMEDIATE (B) CLONE: S		•	•.
(ix) FEATURE: (A) NAME/KEY (B) LOCATION	·		
(xi) SEQUENCE D	ESCRIPTION:	SEQ ID NO:2:	
CCGGAATT	CR CANSCRCARC	TNTCNACNRY C	AT	33
	(2) INFORMAT	ION FOR SEQ	ID NO:3:	
(i) SEQUENCE CH (A) LENGTH: 3 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	2 base pairs leic acid ESS: single	S :	
(vii) IMMEDIATE (B) CLONE: A			
	ix) FEATURE: (A) NAME/KEY (B) LOCATION (D) OTHER IN	: 132		
(xi) SEQUENCE D	ESCRIPTION:	SEQ ID NO:3:	-
CGCGGAT	CCA GAAGTCAAGG	TGACAGACAC	AC	32
·	(2) INFORMAT	ION FOR SEQ	ID NO:4:	
·(i) SEQUENCE CH (A) LENGTH: 3 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	3 base pairs leic acid ESS: single	·	
(ii) MOLECULE T	YPE: Genomic	DNA	

- 57 -

		(7			EDIAT			Ε:					-				
		(3	(B)	NAI LO	JRE: ME/KI CATIO HER	ON:	1										
		()	ki) .	SEQUI	ENCE	DESC	CRIP:	rion	: SE	Q ID	NO:	4 :					
	CGC	GGAT(CCT (CCTC	ATGAC	SC A	CCCA	CAGC	G GT	2	•			33			
			(2)	· INI	FORM	OITA	v FOI	R SE	Q ID	NO:	5:						
		(i	(A) (B) (C)	LENC TYPI STRA	OLOGY	550 acle: ONES	base ic ac S: s:	e pa: cid ingle	irs								
		(1			EDIAT												
		(d	ix) I (A) (B)	IAN	JRE: ME/KI CATIO			.436									¹⁶⁰ 2
					HER												
					ENCE												
•	TTA	AGGT	AGG 1	\AGG/	ATTTO	CA GO	GCTC'	TATT.	r AC	AATA	TTGT	TCT	TTCC:	rtt :	[CAC	ACAG	. 58
	AAT Asn 1	CCC Pro	TTT Phe	TTA Leu	GAA Glu 5	GTC Val	AAG Lys	GTG Val	ACA Thr	GAC Asp 10	ACA Thr	CCC Pro	AAG Lys	AGG Arg	TCC Ser 15	CGG Arg	106
	AGA Arg	GAC Asp	TTT Phe	GGG Gly 20	CTT Leu	GAC Asp	TGC Cys	GAT Asp	GAG Glu 25	CAC His	TCC Ser	ACG Thr	GAA Glu	TCC Ser 30	CGG Arg	TGC Cys	154
•	TGC Cys	CGC Arg	TAC Tyr 35	CCC Pro	CTC Leu	ACG Thr	GTC Val	GAT Asp 40	TTT Phe	GAA Glu	GCC Ala	TTT	GGA Gly 45	TGG Trp	GAC Asp	TGG Trp	202
	ATT Ile	ATC Ile 50	GCA Ala	CCC Pro	AAA Lys	AGA Arg	TAT Tyr 55	AAG Lys	GCC Ala	AAT Asn	TAC Tyr	TGC Cys 60	TCA Ser	GGA Gly	GAG Glu	TGT Cys	250
	GAA Glu	TTT Phe	GTG Val	TTT Phe	TTA Leu	CAA Gln	AAA Lys	TAT Tyr	CCG Pro	CAT	ACT Thr	CAT His	CTT Leu	GTG Val	CAC His	CAA Gln	298

70

GCA AAC CCC AGA GGC TCA GCA GGC CCT TGC TGC ACT CCG ACA AAA ATG

Ala Asn Pro Arg Gly Ser Ala Gly Pro Cys Cys Thr Pro Thr Lys Met

75

90 95

80

346

65

- 58 -

TCT CCC ATT AAT ATG CTA TAT TTT AAT GGC AAA GAA CAA ATA ATA TAT 394 Ser Pro Ile Asn Met Leu Tyr Phe Asn Gly Lys Glu Gln Ile Ile Tyr 100 105 110

GGG AAA ATT CCA GCC ATG GTA GTA GAC CGC TGT GGG TGC TCA TGAGCTTTGC 446
Gly Lys Ile Pro Ala Met Val Val Asp Arg Cys Gly Cys Ser

115 125

ATTAGGTTAG AAACTTCCCA AGTCATGGAA GGTCTTCCCC TCAATTTCGA AACTGTGAAT

506

TCCTGCAGCC CGGGGGATCC ACTAGTTCTA GAGCGGCCGC CACC

550

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 326 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: human GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3...326
 - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CA	AAA Lys 1	AGA Arg	TCC Ser	AGA Arg	AGG Arg 5	GAT Asp	TTT Phe	GGT Gly	CTT Leu	GAC Asp 10	TGT	GAT Asp	GAG Glu	CAC His	TCA Ser 15	4.7
ACA Thr	GAA Glu	TCA Ser	CGA Arg	TGC Cys 20	TGT Cys	CGT Arg	TAC Tyr	CCT Pro	CTA Leu 25	Thr	GTG Val	GAT Asp	TTT Phe	GAA Glu 30	GCT Ala	95
TTT	GGA Gly	TGG Trp	GAT Asp 3.5	TGG Trp	ATT Ile	ATC Ile	GCT Ala	CCT Pro 40	Lys	AGA Arg	TAT Tyr	AAC Lys	GCC Ala 45	AAT Asn	TAC	143
									٠,							•
TGC Cys	TCT Ser	GGA Gly 50	GIŲ	TGT Cys	GAA Glu	TTT Phe	GTA Val 55	Phe	TTA Leu	CAA Gln	AAA Lys	TAT Tyr 60	Pro	CAT His	ACT Thr	191
CAT	CTG Leu 65	val	CAC His	CAA Gln	GCA Ala	AAC Asn 70	CCC	AGA Arg	GGT Gly	TCA Ser	GCA Ala 75	GGC Gly	CCT	TGC Cys	TGT Cys	239
ACT Thr 80	Pro	ACA Thr	AAG Lys	ATG Met	Ser 85	CCA Pro	ATT Ile	AAT Asn	ATG Met	CTA Leu 90	Tyr	TTT Phe	AAT Asn	GGC Gly	AAA Lys 95	287
GAA Glu	CAA Gln	ATA	ATA Ile	TAT Tyr 100	GGG Gly	AAA Lys	ATT Ile	CCA Pro	GCG Ala 105	Met	GTA Val	GTA Val				326
				_ • •					T ()							

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 108 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: SJL141
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 1...9
- (D) OTHER INFORMATION: "Xaa at position 3 = His, Gln, Asn, Lys, Asp, or Glu; Xaa at position 4 = Asp or Asn; Xaa at positions 6 and 7 is Val, Ile, or Met; Xaa at position 8 = Ala or Ser.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9
 - Gly Trp Xaa Xaa Trp Xaa Xaa Xaa Pro 1
 - (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: SJL147
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 1...8
- (D) OTHER INFORMATION: "Xaa at position 2 = Val, Ile, Met, Thr or Ala; Xaa at position 4 = Asp or Glu; Xaa at position 7 = Gly, or Ala.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Xaa Val Xaa Ser Cys Xaa Cys

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2676 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Murine GDF-8
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...2676
 - (D) OTHER INFORMATION:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTCTCTCGGA CGGTACATGC ACTAATATTT CACTTGGCAT TACTCAAAAG CAAAAAGAAG

AAA?	raag <i>i</i>	AAC	AAGG	GAAA/	AÀ A	AAAG?	ATTGT	GC:	rga't'	TTT	AAA		ATG Met			115
CTG Leu · 5	CAA Gln	ATG Met	TAT Tyr	GTT Val	TAT Tyr 10	ATT	TAC Tyr	CTG Leu	TTC Phe	ATG Met 15	CTG Leu	ATT Ile	GCT Ala	GCT Ala	GGC Gly 20	. 163
CCA Pro	GTG Val	GAT Asp	CTA Leu	AAT Asn 25	GAG Glu	GGC Gly	AGT Ser	GAG Glu	AGA Arg 30	GAA Glu	GAA Glu	AAT Asn	GTG Val	GAA Glu 35	AAA Lys	211
GAG Glu	GGG Gly	CTG Leu	TGT Cys 40	AAT Asn	GCA Ala	TGT Cys	GCG Ala	TGG Trp 45	AGA Arg	CAA Gln	AAC Asn	ACG Thr	AGG Arg 50	TAC Tyr	TCC Ser	259
AGA Arg	ATA Ile	GAA Glu 55	GCC Ala	ATA Ile	AAA Lys	ATT Ile	CAA Gln . 60	ATC Ile	CTC Leu	AGT Ser	AAG Lys	CTG Leu 65	CGC Arg	CTG Leu	GAA Glu	307
ACA Thr	GCT Ala 70	CCT Pro	AAC Asn	ATC Ile	AGC Ser	AAA Lys 75	GAT Asp	GCT Ala	ATA Ile	AGA Arg	CAA Gln 80	CTT Leu	CTG Leu	CCA Pro	AGA Arg	355
GCG Ala 85	CCT Pro	CCA Pro	CTC Leu	CGG Arg	GAA Glu 90	CTG Leu	ATC Ile	GAT Asp	CAG Gln	TAC Tyr 95	GAC Asp	GTC Val	CAG Gln	AGG Arg	GAT Asp 100	403
GAC Asp	AGC Ser	AGT Ser	GAT Asp	GGC Gly 105	TCT Ser	TTG Leu	GAA Glu	GAT Asp	GAC Asp 110	GAT Asp	TAT Tyr	CAC His	GCT Ala	ACC Thr 115	Thr	~ 4 51
GAA Glu	ACA Thr	ATC Ile	ATT Ile 120	ACC Thr	ATG Met	CCT Pro	ACA Thr	GAG Glu 125	TCT Ser	GAC Asp	TTT Phe	CTA Leu	ATG Met 130	CAA Gln	GCG Ala	499
GAT Asp	GGC Gly	AAG Lys 135	CCC Pro	AAA Lys	TGT Cys	TGC Cys	TTT Phe 140	TTT Phe	AAA Lys	TTT Phe	AGC Ser	TCT Ser 145	AAA Lys	ATA Ile	CAG Gln	*547
TAC Tyr	AAC Asn 150	AAA Lys	GTA Val	GTA Val	Lys	GCC Ala 155	Gln	CTG Leu	TGG Trp	ATA Ile	TAT Tyr 160	CTC Leu	AGA Arg	CCC Pro	GTC Val	595
AAG Lys 165	ACT Thr	CCT Pro	ACA Thr	ACA Thr	GTG Val 170	TTT Phe	GTG Val	CAA Gln	ATC Ile	CTG Leu 175	AGA Arg	CTC Leu	ATC Ile	AAA Lys	CCC Pro 180	643
ATG Met	AAA Lys	GAC Asp	GGT .Gly	ACA Thr 185	AGG Arg	TAT Tyr	ACT Thr	GGA Gly	ATC Ile 190	CGA Arg	TCT Ser	CTG Leu	AAA Lys	CTT Leu 195	GAC Asp	691
ATG Met	AGC Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT- Gly	ATT Ile	TGG Trp	CAG Gln 205	AGT Ser	ATT Ile	GAT Asp	GTG Val	AAG Lys 210	ACA Thr	GTG Val	739
TTG Leu	CAA Gln	AAT Asn 215	TGG Trp	CTC Leu	AAA Lys	CAG Gln	CCT Pro 220	GAA Glu	TCC Ser	AAC Asn	TTA Leu	GGC Gly 225	ATT Ile	GAA Glu	ATC Ile	787
AAA Lys	GCT Ala 230	TTG Leu	GAT Asp	GAG Glu	AAT Asn	GGC Gly 235	CAT His	GAT Asp	CTT Leu	GCT Ala	GTA Val 240	ACC Thr	TTC Phe	CCA Pro	GGA Gly	835

	lu Asp Gly			A GTC AAG GTG u Val Lys Val 5		883
	ys Arg Ser		Phe Gly Le	T GAC TGC GAT u Asp Cys Asp		931
				C ACG GTC GAT u Thr Val Asp 290	Phe Glu	979
Ala Phe G			Ala Pro Ly	A AGA TAT AAG s Arg Tyr Lys 305		1027
,				A CAA AAA TAT u Gln Lys Tyr 320		1075
· ·			· ·	GC TCA GCA GGG y Ser Ala Gly		1123
		-		G CTA TAT TT		.1171
•				CC ATG GTA GTA La Met Val Va 37	l Asp Arg	1219
Cys Gly C	·	SCTTTGC ATTA	AGGTTAG AAA	CTTCCCA AGTCA	TGGAA GGTCT	.1276
TCCCCTCAA	AT TTCGAAAC	IG TGAATTCA	AG CACCACAG	C TGTAGGCCTT	GAGTATGCTC	1336
		•		GA GAGAATAGAT		1396
			• •	GT ATGATTTCCA		1456
	*		•	FA TATTACAACT GG AGGGTATGAT	• • • •	1516 1576
	· ·			AG AATCTATATG		
**				AC TTATATTTGT		1696
		•	· ·	AC ATACACATTG GA ATGGCTCCTA		1756 1816
				TT CCAGGTGCAT		1876
	•		, ·	AA GAATCTTTT		1936
•	· · ·			TG CATCTTAAAA	•	1996
	,			CT GCCTTTATCA TT GTATAAAAGA	•	2056 2116
			· ·	• •		*
	TATAATAT	GI AIACAAIA	TI GIIIIGIN	ur invararere	CITITIOIS	2176
	TATTTTTA	CA CTAATGAA	AT TTCAAATC	AT TAAAGTACAA	AGACATGTCA	2236
TGTATCAC	TA TATTTTTA AA AAAAGGTG	CA CTAATGAA AC TGCTTCTA	AT TTCAAATC TT TCAGAGTG	AT TAAAGTACAA AA TTAGCAGATI	AGACATGTCA CAATAGTGGT	2236 2296
TGTATCACA CTTAAAAC	TA TATTTTTA AA AAAAGGTG IC TGTATGTT	CA CTAATGAA AC TGCTTCTA AA GATTAGAA	AT TTCAAATC TT TCAGAGTG GG TTATATTA	AT TAAAGTACAA AA TTAGCAGATT CA ATCAATTTAT	AGACATGTCA CAATAGTGGT GTATTTTTA	2236 2296 2356
TGTATCACA CTTAAAACT CATTATCAA	TA TATTTTTA AA AAAAGGTG TC TGTATGTT AC TTATGGTT	CA CTAATGAA AC TGCTTCTA AA GATTAGAA TC ATGGTGGC	AT TTCAAATC TT TCAGAGTG GG TTATATTA TG TATCTATG	AT TAAAGTACAA AA TTAGCAGATI	AGACATGTCA CAATAGTGGT GTATTTTTTA AGTCAAATTT	2236 2296
TGTATCACA CTTAAAACT CATTATCAA CAATGCCCC AAATACAA	TATTTTTA AA AAAAGGTG TC TGTATGTT AC TTATGGTT CA CCATTTTA AT ATGGTATC	CA CTAATGAA AC TGCTTCTA AA GATTAGAA TC ATGGTGGC AA AATTACAA TC AATAACAG	AT TTCAAATC TT TCAGAGTG GG TTATATTA TG TATCTATG GC ATTACTAA CT ACTTTTT	AT TAAAGTACAA AA TTAGCAGATT CA ATCAATTTAT AA TGTGGCTCCC AC ATACCAACAT AT TTTATAATTT	AGACATGTCA CAATAGTGGT GTATTTTTTA AGTCAAATTT GTATCTAAAG GACAATGAAT	2236 2296 2356 2416 2476 2536
TGTATCACA CTTAAAACT CATTATCAA CAATGCCCC AAATACAAA ACATTTCT	TATTTTTA AA AAAAGGTG TC TGTATGTT AC TTATGGTT CA CCATTTTA AT ATGGTATC TT TATTTACT	CA CTAATGAA AC TGCTTCTA AA GATTAGAA TC ATGGTGGC AA AATTACAA TC AATAACAG TC AGTTTTAT	AT TTCAAATC TT TCAGAGTG GG TTATATTA TG TATCTATG GC ATTACTAA CT ACTTTTT AA ATTGGAAC	AT TAAAGTACAA AA TTAGCAGATT CA ATCAATTTAT AA TGTGGCTCCC AC ATACCAACAT AT TTTATAATTT TT TGTTTATCAA	AGACATGTCA CAATAGTGGT GTATTTTTTA AGTCAAATTT GTATCTAAAG GACAATGAAT ATGTATTGTA	2236 2296 2356 2416 2476 2536 2596
TGTATCACA CTTAAAACT CATTATCAA CAATGCCCC AAATACAAA ACATTTCTT	TATTTTTA AA AAAAGGTG TC TGTATGTT AC TTATGGTT CA CCATTTTA AT ATGGTATC TT TATTTACT	CA CTAATGAA AC TGCTTCTA AA GATTAGAA TC ATGGTGGC AA AATTACAA TC AATAACAG TC AGTTTTAT TA TTTCTTAC	AT TTCAAATC TT TCAGAGTG GG TTATATTA TG TATCTATG GC ATTACTAA CT ACTTTTT AA ATTGGAAC	AT TAAAGTACAA AA TTAGCAGATT CA ATCAATTTAT AA TGTGGCTCCC AC ATACCAACAT AT TTTATAATTT	AGACATGTCA CAATAGTGGT GTATTTTTTA AGTCAAATTT GTATCTAAAG GACAATGAAT ATGTATTGTA	2236 2296 2356 2416 2476 2536

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 376 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

```
Met Met Gln Lys Leu Gln Met Tyr Val Tyr Ile Tyr Leu Phe Met Leu
Ile Ala Ala Gly Pro Val Asp Leu Asn Glu Gly Ser Glu Arg Glu Glu
Asn Val Glu Lys Glu Gly Leu Cys Asn Ala Cys Ala Trp Arg Gln Asn
Thr Arg Tyr Ser Arg Ile Glu Ala Ile Lys Ile Gln Ile Leu Ser Lys
Leu Arg Leu Glu Thr Ala Pro Asn Ile Ser Lys Asp Ala Ile Arg Gln
Leu Leu Pro Arg Ala Pro Pro Leu Arg Glu Leu Ile Asp Gln Tyr Asp
Val Gln Arg Asp Asp Ser Ser Asp Gly Ser Leu Glu Asp Asp Asp Tyr
His Ala Thr Thr Glu Thr Ile Ile Thr Met Pro Thr Glu Ser Asp Phe
        115
                            120 ·
Leu Met Gln Ala Asp Gly Lys Pro Lys Cys Cys Phe Phe Lys Phe Ser
                        135
Ser Lys Ile Gln Tyr Asn Lys Val Val Lys Ala Gln Leu Trp Ile Tyr
                    150
                                        155
Leu Arg Pro Val Lys Thr Pro Thr Thr Val Phe Val Gln Ile Leu Arg
                                    170
Leu Ile Lys Pro Met Lys Asp Gly Thr Arg Tyr Thr Gly Ile Arg Ser
            180
                                185
Leu Lys Leu Asp Met Ser Pro Gly Thr Gly Ile Trp Gln Ser Ile Asp
                            200
Val Lys Thr Val Leu Gln Asn Trp Leu Lys Gln Pro Glu Ser Asn Leu
                        215
Gly Ile Glu Ile Lys Ala Leu Asp Glu Asn Gly His Asp Leu Ala Val-
                                        235
Thr Phe Pro Gly Pro Gly Glu Asp Gly Leu Asn Pro Phe Leu Glu Val
                245
Lys Val Thr Asp Thr Pro Lys Arg Ser Arg Arg Asp Phe Gly Leu Asp
                                265
Cys Asp Glu His Ser Thr Glu Ser Arg Cys Cys Arg Tyr Pro Leu Thr
                            280
                                                285
Val Asp Phe Glu Ala Phe Gly Trp Asp Trp Ile Ile Ala Pro Lys Arg
                        295
Tyr Lys Ala Asn Tyr Cys Ser Gly Glu Cys Glu Phe Val Phe Leu Gln
                    310
                                        315
Lys Tyr Pro His Thr His Leu Val His Gln Ala Asn Pro Arg Gly Ser
                325
Ala Gly Pro Cys Cys Thr Pro Thr Lys Met Ser Pro Ile Asn Met Leu
            340
                                345
                                                     350
Tyr Phe Asn Gly Lys Glu Gln Ile Ile Tyr Gly Lys Ile Pro Ala Met
        355
                                                365
Val Val Asp Arg Cys Gly Cys Ser
    370
                        375
```

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2743 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(vii) IMMEDIATE SOURCE: (B) CLONE: Human GDF-8

(ix) FEATURE:

- (A) NAME/KEY: CDS

(B) LOCATION: 1...2743
(D) OTHER INFORMATION:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

(XI) SEQUER	NCE DESCRIPTION:	SEQ ID NO:1	3:	
AAGAAAAGTA AAAGGA	AAGAA ACAAGAACAA	GAAAAAAGAT '	TATATTGATT TTAAAATC	58
ATG CAA AAA CTG (Met Gln Lys Leu (1	CAA CTC TGT GTT T Gln Leu Cys Val T 5	TAT ATT TAC Tyr Ile Tyr 10	CTG TTT ATG CTG ATT Leu Phe Met Leu Ile 15	106
GTT GCT GGT CCA C Val Ala Gly Pro V 20	GTG GAT CTA AAT (Val Asp Leu Asn (GAG AAC AGT (Glu Asn Ser (25	GAG CAA AAA GAA AAT Glu Gln Lys Glu Asn 30	154
GTG GAA AAA GAG (Val Glu G	GGG CTG TGT AAT (Gly Leu Cys Asn 1 40	GCA TGT ACT Ala Cys Thr	TGG AGA CAA AAC ACT Trp Arg Gln Asn Thr 45	202
AAA TCT TCA AGA A Lys Ser Ser Arg 1	ATA GAA GCC ATT I Ile Glu Ala Ile I 55	AAG ATA CAA . Lys Ile Gln	ATC CTC AGT AAA CTT Ile Leu Ser Lys Leu 60	250
CGT CTG GAA ACA (Arg Leu Glu Thr A	GCT CCT AAC ATC A Ala Pro Asn Ile S 70	AGC AAA GAT Ser Lys Asp 75	GTT ATA AGA CAA CTT Val Ile Arg Gln Leu 80	298
TTA CCC AAA GCT (Leu Pro Lys Ala I	CCT CCA CTC CGG (Pro Pro Leu Arg (85	GAA CTG ATT Glu Leu Ile 90	GAT CAG TAT GAT GTC Asp Gln Tyr Asp Val 95	346
CAG AGG GAT GAC A Gln Arg Asp Asp S 100	Ser Ser Asp Gly	TCT TTG GAA Ser Leu Glu 105	GAT GAC GAT TAT CAC Asp Asp Asp Tyr His 110	394
GCT ACA ACG GAA AAAAAAAAAAAAAAAAAAAAAAAA	ACA ATC ATT ACC I Thr Ile Ile Thr I 120	ATG CCT ACA Met Pro Thr	GAG TCT GAT TTT CTA Glu Ser Asp Phe Leu 125	442
ATG CAA GTG GAT (Met Gln Val Asp (130	GGA AAA CCC AAA G Gly Lys Pro Lys (135	TGT TGC TTC Cys Cys Phe	TTT AAA TTT AGC TCT Phe Lys Phe Ser Ser 140	490
AAA ATA CAA TAC A Lys Ile Gln Tyr A 145	AAT AAA GTA GTA A Asn Lys Val Val 1 150	AAG GCC CAA Lys Ala Gln 155	CTA TGG ATA TAT TTG Leu Trp Ile Tyr Leu 160	538
Arg Pro Val Glu	ACT CCT ACA ACA (Thr Pro Thr 165	GTG TTT GTG Val Phe Val 170	CAA ATC CTG AGA CTC Gln Ile Leu Arg Leu 175	586
ATC AAA CCT ATG A Ile Lys Pro Met 1 180	Lys Asp Gly Thr	AGG TAT ACT Arg Tyr Thr 185	GGA ATC CGA TCT CTG Gly Ile Arg Ser Leu 190	634

AAA Lys	CTT Leu	GAC Asp 195	ATG Met	AAC Asn	CCA Pro	GGC Gly	ACT Thr 200	GGT Gly	ATT	TGG Trp	CAG Gln	AGC Ser 205	ATT Ile	GAT Asp	GTG Val			682
AAG Lys	ACA Thr 210	GTG Val	TTG Leu	CAA Gln	AAT Asn	TGG Trp 215	CTC Leu	AAA Lys	CAA Gln	CCT Pro	GAA Glu 220	TCC Ser	AAC Asn	TTA Leu	GGC Gly			730
ATT Ile 225	GAA Glu	ATA Ile	AAA Lys	GCT Ala	TTA Leu 230	GAT Asp	GAG Glu	AAT Asn	GGT Gly	CAT His 235	GAT Asp	CTT Leu	GCT Ala	GTA Val	ACC Thr 240			778
TTC Phe	CCA Pro	GGÀ Gly	CCA Pro	GGA Gly 245	GAA Glu	GAT Asp	GGG Gly	CTG Leu	AAT Asn 250	CCG Pro	TTT Phe	TTA Leu	GAG Glu	GTC Val 255	AAG Lys			826
GTA Val	ACA Thr	GAC Asp	ACA Thr 260	CCA Pro	AAA Lys	AGA Arg	TCC Ser	AGA Arg 265	AGG Arg	GAT Asp	TTT Phe	GGT Gly	CTT Leu 270	GAC Asp	TGT Cys			874
GAT Asp	GAG Glu	CAC His 275	TCA Ser	ACA Thr	GAA Glu	TCA Ser	CGA Arg 280	TGC Cys	TGT Cys	CGT Arg	TAC Tyr	CCT Pro 285	CTA Leu	ACT Thr	GTG Val			922
GAT Asp	TTT Phe 290	GAA Glu	GCT Ala	TTT Phe	GGA Gly	TGG Trp 295	GAT Asp	TGG Trp	ATT	ATC Ile	GCT Ala 300	CCT Pro	AAA Lys	AGA Arg	TAT Tyr			970
AAG Lys 305	GCC Ala	AAT Asn	TAC Tyr	TGC Cys	TCT Ser 310	GGA Gly	GAG Glu	TGT Cys	GAA Glu	TTT Phe 315	GTA Val	TTT Phe	TTA Leu	CAA Gln	AAA Lys 320			1018
TAT Tyr	CCT Pro	CAT His	ACT Thr	CAT His 325	CTG Leu	GTA Val	CAC His	CAA Gln	GCA Ala 330	AAC Asn	CCC Pro	AGA Arg	GGT Gly	TCA Ser 335	GCA Ala		•	1066
GGC Gly	CCT Pro	TGC Cys	TGT Cys 340	ACT Thr	CCC Pro	ACA Thr	AAG Lys	ATG Met 345	TCT Ser	CCA Pro	ATT Ile	AAT Asn	ATG Met 350	CTA Leu	TAT Tyr	-	13 * (5)	1114
TTT Phe	AAT Asn	GGC Gly 355	AAA Lys	GAA Glu	CAA Gln	ATA Ile	ATA Ile 360	TAT Tyr	GGG Gly	AAA Lys	ATT Ile	CCA Pro 365	GCG Ala	ATG Met	GTA Val		٠.	1162
vaı	GAC Asp 370	CGC Arg	TGT Cys	GGG Gly	TGC Cys	TCA Ser 375	TGAC	ETTA	AT A	ATTA	\GCG1	T CA	TAAC	TTCC	TAA	ÄAC		1219
ATAT CAGA	GCAA GTTI	TG G	TTGC SAGCT	AGTO CATT AGAA	T AAG GA	TAAG CCAT GATC	CATA CCAA 'AAAT	A AGO A ACA C TAO	TACA AATC ATTT	GTA ATA	TGTA	AACI AAAG TAT	AAA A TT TT TT ATT	AGGC	'ATAG GGAA 'ATTT 'ACAT	T	1 1	.279 .339 .399 .459
GICI	ALLI	CT T	"I'AAA	\mathbf{GTTI}	T GI	TTAA	$\mathbf{T}\mathbf{A}\mathbf{T}\mathbf{I}$	TAC	AGAZ	AAA	TCCZ	מדעה	CA C	יים עים:	TTAA GGTA	7	1	519 579
ATGG	TAGI	AI A	CTTG	GTAA	G AI	'AAAA'	TTCC	: ACA	AAAA	TAG	GGAI	GGTC	CA G	CATA	ATTG	A	1	639 699
GATA	GGCT	'GA A	TGTC	TGAG	G CI	'ACCA	GGTT	TAT	CACA	ΑΑΤ	ΔΔΔΔ	ייד בי	ירא כ	ע ע ע <u>י</u> יי	'AATA ATAG 'TTCT	יוף	1	759 819
TAAT AACT	GIAA	GA A	GAAT	CATI	T TI	CTAG	AGGT	'TGG	CTTI	CAA	TTCT	'GTAC	CA I	ACTI	GGAG	Α	1	.879 .939
CATA	CTTG	GA G	AAGT	'ATGI	ra a'	TTTG TAGA	TCTT	TGG	TTTC AAAA	ATTA	CAAC	CAAA	CC I	TTGC	AATA AACA	C	2	.999 059
TGAA	ACAA	TG C	ATTT	'ATAT	TA A	ATGT	'ATAC	: AAT	'ATTG	CTA TTT	TGTA	ATATI ATAA	GT A AG T	TAAA	AAGA CCTT	C T		119 179

TTTATTTACT	TTGGTATATT	ТТТАСАСТАА	CCACATTTCA	א א שמוא א א שמוא א	TAAGGCACAA	
AGACATGTCA	TGCATCACAC	AAAACCAAACM	CONTRACTOR	AATTAAGTAC	TAAGGCACAA	2239
A A TA CTCCTC	TOCATCACAG	AAAAGCAACT	ACTTATATTT	CAGAGCAAAT	TAGCAGATTA	2299
12111010010	TIMMAMCICC	ATATGTTAAT	CATTACATCC	ערט ענהנה ענה ענהנה		2359
*** * * * T T T T T T T T T T T T T T T	WIGWII WWCW	TTCACTTATG	ርልዣዣሮልጥሮልጥ	ር ር ር ር ጥር ጥ አ ጣ አ አ	A CITICA A COMMO	
AAATTTCAAT	GGTTTACTGT	CATTCTCTTT	AAATCMIONI	GGCIGIAIAA	AGIGAATTTG	2419
GCAAAAACAT	TACTARCTA	CATIGICITI	AAAICICAAC	GTTCCATTAT	TTTAATACTT	2479
GCAAAAACAT	TACTAAGTAT	ACCAAAATAA	TTGACTCTAT	TATCTGAAAT	GAAGAATAAA	2539
- CIONIGCIMI"	CICAACAAIA	-A(-"1"(-"1")")	− תיני א יחיחיחים עיניח−	ייא ע ערוון ע ניינונוניון ע		
CIOCHITIMI	TAMOTICIEL	ΤΠ"Γ(ΨΓΑΑΑΠ"Γ	תיייתית עבונו	שמו או או אוויא איזי	M3	2599
TGACTAAATG	AAATTATTTC	TTACATCTAA	TETTO	IAAICAAATT	TATTGTACTA	2659
TGACTAAATG TGTTTTCACA		TIACATCIAA	TTTGTAGAAA	CAGTATAAGT	TATATTAAAG	2719
IGITITICACA	TITITIGAA	AGAC	<u></u>		-	2743
				•		4/43

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 375 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met 1	Gln	Lys	Leu	Gln 5	Leu	Cys	Val	Tyr	Ile	Tyr	Leu	Phe	Met		Ile
Val	Ala	Gly	Pro 20	Val	Asp	Leu	Asn	Glu 25	10 Asn	Ser	Glu	Gln		15 Glu	Asn
		- J - J	Glu				411	Ala				4		•	
			Arg			22	Ile				$\epsilon \circ$		-	_	•
			Thr		70	Asn				75	Val		-		
			Ala	00					90	Ile				ÒF	
			Asp 100					111	Leu				7 7 0		
		440	Glu				エンし	Met				176			
			Asp			1 1 5	Lys				7 4 0	Lys			
			Tyr		TO 0					766	Leu				
			Glu	エロコ					7 7 N	Val				7 "	
			Met 180					195	Tyr						
			Met					Gly					Ile		
			Leu			<i>~</i> 1 7 '	Leu				Glu	Ser	Asn		
. – –			Lys		43 0					777	Asp				
			Pro	443					うらん	Pro				0 E E	
			Thr 260					ノわち	Arg				222		
		2,7	Ser				280	Cys				200			
	~ ~ ~		Ala			470	Asp				$2 \wedge \wedge$	Pro			_
Lys 305	Ala	Asn	Tyr	Cys	Ser 310	Gly	Glu	Cys	Glu	Phe 315	Val	Phe	Leu	Gln	Lys 320

- 67 -

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: #83
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..34
 - (C) OTHER:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CGCGGATCCG TGGATCTAAA TGAGAACAGT GAGC

34

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: #84
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...37
 - (C) OTHER:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGCGAATTCT CAGGTAATGA TTGTTTCCGT TGTAGCG

37

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- 68 -

				(D)	TOP	OLOG	Ý: 1	inea	r		•	·							,	
			(:	ii)	MOLE	CULE	TYP	E: G	enom	ic D	NA						٠.			
•			(v		IMME				:	- <i>.</i>				- -		•	• .	. · · ·		
			(:	(A (B	FEATO NAI LOO OTI	ME/KI	EY: (CDS	20						·					
		ACA	() CTAA	xi) ;	SEQUI	ENCE AGAA'	DES	CRIP'	TION	: SE	Q ID	NO:	17:						-	_
																•		÷	. 2	U
				(2) IN	FORM	ATIO	N FO	R SE	QID	NO:	18:		-						
			(i)	(A) (B) (C)	QUENC LENC TYPI STRI TOPC	GTH : E : ni ANDEI	105 acle ONES	5 basic ac S: s	se pa cid ingle	airs									·	
			(:	ii)	MOLE	CULE	TYP	E: G	eņom:	ic D	NA								•	٠
			(v:		IMMEI					8		•				•	. •	•	e ³ . g	
				(A (B (D	FEATU) NAI) LOO) OTI	ME/KI CATION HER	ON:	1:	ION:					-					2	
			(X:	1) S	EQUEI	NCE 1	DESC	RIPT	ION:	SEQ	ID I	NO:1	B:			·				
															CAA Gln					9
	•	CTG Leu 5	CAA Gln	CTC Leu	TGT Cys	GTT Val	TAT Tyr 10	ATT Ile	TAC Tyr	CTG Leu	TTT	ATG Met 15	CTG Leu	ATT Ile	GTT Val	GCT Ala	GGT Gly 20		54	
		CCA Pro	GTG Val	GAT Asp	CTA Leu	AAT Asn 25	GAG Glu	AAC Asn	AGT Ser	GAG Glu	CAA Gln 30	AAA	GAA Glu	AAT Asn	GTG Val	GAA Glu 35	AAA Lys		95	
	,	GAG Glu	GGG Gly	CTG Leu	TGT Cys 40	AAT Asn	GCA Ala	TGT Cys	ACT Thr	TGG Trp 45	AGA Arg	CAA Gln	AAC Asn	ACT Thr	AAA Lys 50	TCT Ser	TCA Ser	,	140	
		AGA Arg	ATA Ile	GAA Glu 55	GCC Ala	ATT Ile	AAA Lys	ATA Ile	CAA Gln 60	ATC Ile	CTC Leu	AGT Ser	AAA Lys	CTT Leu 65	CGT Arg	CTG Leu	GAA Glu	·	.185	
	•	ACA Thr	GCT Ala 70	CCT Pro	AAC Asn	ATC Ile	AGC Ser	AAA Lys 75	GAT Asp	GCT Ala	ATA Ile	AGA Arg	CAA Gln 80	CTT Leu	TTA Leu	CCC Pro	AAA Lys	,	230	
		GCG Ala	CCT Pro	CCA Pro	CTC Leu	CGG Arg	GAA Glu	CTG Leu	ATT Ile	GAT Asp	CAG Gln	TAT Tyr	GAT Asp	GTC Val	CAG Gln	AGG Arg	GAT Asp		275	

90

95

100

							ŧ										
GAC Asp	AGC Ser	AGC Ser	GAT Asp	GGC Gly 105	TCT Ser	TTG Leu	GAA Glu	GAT Asp	GAC Asp 110	GAT Asp	TAT Tyr	CAC His	GCT Ala	ACA Thr 115	ACG Thr		.320
GAA Glu	ACA Thr	ATC Ile	ATT Ile 120	ACC Thr	ATG Met	CCT Pro	ACA Thr	GAG Glu 125	TCT Ser	ĞAT Asp	TTT Phe	TTA Leu	ATG Met 130	CAĀ Gln	GTG Val		365
GAT Asp	GGA Gly	AAA Lys 135	CCC Pro	AAA Lys	TGT Cys	TGC Cys	TTC Phe 140	TTT Phe	AAA Lys	TTT Phe	AGC Ser	TCT Ser 145	AAA Lys	ATA Ile	CAA Gln		410
TAC Tyr	AAT Asn 150	AAA Lys	GTG Val	GTA Val	AAG Lys	GCC Ala 155	CAA Gln	CTA Leu	TGG Trp	ATA Ile	TAT Tyr 160	TTG Leu	AGA Arg	CCC Pro	GTC Val		455
GAG Glu 165	ACT Thr	CCT Pro	ACA Thr	ACA Thr	GTG Val 170	TTT Phe	GTG Val	CAA Gln	ATC Ile	CTG Leu 175	AGA Arg	CTC Leu	ATC Ile	AAA Lys	CCT Pro 180		500
ATG Met	AAA Lys	GAC Asp	GGT Gly	ACA Thr 185	AGG Arg	TAT Tyr	ACT Thr	GGA Gly	ATC Ile 190	Arg	TCT Ser	CTG Leu	AAA Lys	CTT Leu 195	GAC Asp	•	545
ATG Met	AAC Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT Gly	ATT Ile	TGG Trp	CAG Gln 205	AGC Ser	ATT Ile	GAT Asp	GTG Val	AAG Lys 210	ACA Thr	GTG Val		590
TTG Leu	CAA Gln	AAT Asn 215	TGG Trp	CTC Leu	AAA Lys	Gln	CCT Pro 220	GAA Glu	TCC Ser	AAC Asn	TTA Leu	GGC Gly 225	ATT Ile	GAA Glu	ATĀ Ile		635
AAA Lys	GCT Ala 230	TTA Leu	GAT Asp	GAG Glu	AAT Asn	GGT Gly 235	His	GAT Asp	CTT Leu	GCT Ala	GTA Val 240	ACC Thr	TTC Phe	CCA Pro	GGA Gly		680
CCA Pro 245	GGA Gly	GAA Glu	GAT Asp	GGG Gly	CTG Leu 250	AAT Asn	CCC Pro	TTT Phe	TTA Leu	GAG Glu 255	GTC Val	AAG Lys	GTA Val	ACA Thr	GAC Asp 260		725
ACA Thr	CCC Pro	AAA Lys	AGA Arg	TCC Ser 265	AGA Arg	AGG Arg	GAT Asp	TTT Phe	GGT Gly 270	CTT Leu	GAC Asp	TGT Cys	GĀT Asp	GAG Glu 275	CAC His		770
ser	Inr	GLu .	280	Arg	Cys	TGT Cys	Arg	Tyr 285	Pro	Leu	Thr	Val	Asp 290	Phe	Glu		815
GCT Ala	ČTT Phě	GGA Gly 295	TGG Trp	GAT Asp	TGG Trp	ATT Ile	ATC Ile 300	GCT Ala	CCT Pro	AAA Lys	AGA Arg	TAT Tyr 305	AAG Lys	GCC Ala	AAT Asn		860
TAC Tyr	TGC Cys 310	TCT Ser	GGA Gly	GAG Glu	TGT Cys	GAA Glu 315	TTT Phe	GTA Val	TTT Phe	TTA Leu	CAA Gln 320	AAA Lys	TAT Tyr	CCT Pro	CAT His		905
ACT Thr 325	CAT His	CTG Leu	GTA Val	CAC His	CAA Gln 330	GCA Ala	AAC Asn	CCC Pro	AGA Arg	GGT Gly 335	TCA Ser	GCA Ala	GGC Gly	Pro	TGC Cys 340		950
TGT Cys	ACT Thr	CCC	ACA Thr	AAG Lys 345	ATG Met	TCT Ser	CCA Pro	ATT Ile	AAT Asn 350	ATG Met	CTA Leu	TAT Tyr	TTT Phe	AAT Asn 355	GGC Gly	·	995

AAA GAA CAA ATA ATA TAT GGG AAA ATT CCA GCC ATG GTA GTA GAC CGC
Lys Glu Gln Ile Ile Tyr Gly Lys Ile Pro Ala Met Val Val Asp Arg
360 365 370

TGC GGG TGC TCA TGA
Cys Gly Cys Ser

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Baboon GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1...376
 - (D) OTHER:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Gln Lys Leu Gln Leu Cys Val Tyr Ile Tyr Leu Phe Met Leu Ile Val Ala Gly 10 15 Pro Val Asp Leu Asn Glu Asn Ser Glu Gln Lys Glu Asn Val Glu Lys 30. Glu Gly Leu Cys Asn Ala Cys Thr Trp Arg Gln Asn Thr Lys Ser Ser Arg Ile Glu Ala Ile Lys Ile Gln Ile Leu Ser Lys Leu Arg Leu Glu 60 Thr Ala Pro Asn Ile Ser Lys Asp Ala Ile Arg Gln Leu Leu Pro Lys Ala Pro Pro Leu Arg Glu Leu Ile Asp Gln Tyr Asp Val Gln Arg Asp 85 90 95 100 Asp Ser Ser Asp Gly Ser Leu Glu Asp Asp Asp Tyr His Ala Thr Thr Glu Thr Ile Ile Thr Met Pro Thr Glu Ser Asp Phe Leu Met Gln Val Asp Gly Lys Pro Lys Cys Cys Phe Phe Lys Phe Ser Ser Lys Ile Gln 140 Tyr Asn Lys Val Val Lys Ala Gln Leu Trp Ile Tyr Leu Arg Pro Val Glu Thr Pro Thr Thr Val Phe Val Gln Ile Leu Arg Leu Ile Lys Pro 170 175 Met Lys Asp Gly Thr Arg Tyr Thr Gly Ile Arg Ser Leu Lys Leu Asp 190 Met Ser Pro Gly Thr Gly Ile Trp Gln Ser Ile Asp Val Lys Thr Val 205 210 Leu Gln Asn Trp Leu Lys Gln Pro Glu Ser Asn Leu Gly Ile Glu Ile 215 220 Lys Ala Leu Asp Glu Asn Gly His Asp Leu Ala Val Thr Phe Pro Gly 235 Pro Gly Glu Asp Gly Leu Asn Pro Phe Leu Glu Val Lys Val Thr Asp 250 Thr Pro Lys Arg Ser Arg Arg Asp Phe Gly Leu Asp Cys Asp Glu His 270 Ser Thr Glu Ser Arg Cys Cys Arg Tyr Pro Leu Thr Val Asp Phe Glu

- 71 -

Ala Phe Gly Trp Asp Trp Ile Ile Ala Pro Lys Arg Tyr Lys Ala Asn 295 300 Tyr Cys Ser Gly Glu Cys Glu Phe Val Phe Leu Gln Lys Tyr Pro His 315 320 Thr His Leu Val His Gln Ala Asn Pro Arg Gly Ser Ala Gly Pro Cys 325 330 335 Cys Thr Pro Thr Lys Met Ser Pro Ile Asn Met Leu Tyr Phe Asn Gly 345 350 Lys Glu Gln Ile Ile Tyr Gly Lys Ile Pro Ala Met Val Val Asp Arg 360 365 370 Cys Gly Cys Ser 375

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1055 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Bovine GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...1055
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

														CAA Gln		9
CTG Leu 5	CAA Gln	ATC Ile	TCT Ser	GTT Val	TAT Tyr 10	ATT Ile	TAC Tyr	CTA Leu	TTT Phe	ATG Met 15	CTG Leu	ATT Ile	GTT Val	GCŢ Ala	GGC Gly 20	54
CCA Pro	GTG Val	GAT Asp	CTG Leu	AAT Asn 25	GAG Glu	AAC Asn	AGC Ser	GAG Glu	CAG Gln 30	AAG Lys	GAA Glu	AAT Asn	GTG Val	GAA Glu 35	AAA Lys	95
GAG Glu	GGG Gly	CTG Leu	TGT Cys 40	AAT Asn	GCA Ala	TGT Cys	TTG Leu	TGG Trp 45	AGG Arg	GAA Glu	AAC Asn	ACT Thr	ACA Thr 50	TCG Ser	TCA Ser	140
AGA Arg	CTA Leu	GAA Glu 55	GCC Ala	ATA Ile	AAA Lys	ATC Ile	CAA Gln 60	ATC Ile	CTC Leu	AGT Ser	AAA Lys	CTT Leu 65	CGC Arg	CTG Leu	GAA Glu	185
ACA Thr	GCT Ala 70	CCT Pro	AAC Asn	ATC Ile	AGC Ser	AAA Lys 75	GAT Asp	GCT Ala	ATC Ile	AGA Arg	CAA Gln 80	CTT Leu	TTG Leu	CCC Pro	AAG Lys	230
GCT Ala 85	CCT Pro	CCA Pro	CTC Leu	CTG Leu	GAA Glu 90	CTG Leu	ATT Ile	GAT Asp	CAG Gln	TTC Phe 95	GAT Asp	GTC Val	CAG Gln	AGA Arg	GAT Asp 100	275
GCC Ala	AGC Ser	AGT Ser	GAC Asp	GGC Gly 105	TCC Ser	TTG Leu	GAA Glu	GAC Asp	GAT Asp 110	GAC Asp	TAČ Tyr	CAC His	GCC Ala	AGG Arg 115	ACG Thr	320

GAA Glu	ACG Thr	GTC Val	ATT Ile 120	ACC Thr	ATG Met	CCC Pro	ACG Thr	GAG Glu 125	TCT Ser	GAT Asp	CTT Leu	CTA Leu	ACG Thr 130	CAA Gln	GTG Val	÷.	365
GAA Glu	GGA Gly	Lys	Pro	Lys	Cys	TGC Cys	Phe	Phe	Lys	Phe	Ser	Ser	Lys	Ile	CAA Gln		410
		•								•	•		,	,		,	
 TAC Tyr	AAT Asn 150	AAA Lys	CTA Leu	GTA Val	AAG Lys	GCC Ala 155	CAA Gln	CTG	TGG Trp	ATA Ile	TAT Tyr 160	CTG Leu	AGG	CCT Pro	GTC Val	، بنيا بالمائية	455
AAG Glu 165	Thr	CCT Pro	GCG Thr	ACA Ala	GTG Val 170	TTT Phe	GTG Val	CAA Gln	ATC Ile	CTG Leu 175	Arg	CTC Leu	ATC Ile	AAA Lys	CCC Pro 180		500
ATG Met	AAA Lys	GAC Asp	GGT Gly	ACA Thr 185	AGG Arg	TAT Tyr	ACT Thr	GGA Gly	ATC Ile 190	CGA Arg	TCT Ser	CTG Leu	AAA Lys	CTT Leu 195	GAC Asp	· .	545
ATG Met	AAC Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT Gly	ATT Ile	TGG Trp	CAG Gln 205	AGC Ser	ATT Ile	GAT Asp	Val	AAG Lys 210	ACA Thr	GTG Val		590
TTG Leu	CAG Gln	AAC Asn 215	Trp	CTC Leu	AAA Lys	CAA Gln	CCT Pro 220	GAA Glu	TCC Ser	AAC Asn	TTA Leu	GGC Gly 225	ATT Ile	GAA Glu	ATC Ile	· .	635
AAA Lys	GCT Ala 230	TTA Leu	GAT Asp	GAG Glu	AAT Asn	GGC Gly 235	CAT His	GAT. Asp	CTT Leu	GCT Ala	GTA Val 240	ACC Thr	TTC Phe	CCA Pro	GAA Glu	•	680
CCA	GGA	GAA	GAT	GGA	CTG	ACT	CCC	ተተተ	ጥጥል	GDD	ĠŤC	אאכ	CTTA	א כי א	CAG	•	705
Pro 245	Gly	Glu	Asp	Gly	Leu 250	Thr	Pro	Phe	Leu	Glu 255	Val	Lys	Val	Thr	Asp 260		725
ACA Thr	CCA Pro	AAA Lys	AGA Arg	TCT Ser 265	AGG Arg	AGA Arg	GAT Asp	TTT Phe	GGG Gly 270	CTT Leu	GAT Asp	TGT Cys	GAT Asp	GAA Glu 275	His		770
TCC Ser	ACA Thr	GAA Glu	TCT Ser 280	CGA Arg	TGC Cys	TGT Cys	CGT Arg	TAC Tyr 285	CCT Pro	CTA Leu	ACT Thr	GTG Val	GAT Asp 290	TTT Phe	GAA Glu		815
GCT Ala	TTT Phe	GGA Gly 295	Trp	GAT Asp	TGG Trp	ATT Ile	ATT Ile 300	GCA Ala	CCT Pro	AAA Lys	AGA Arg	TAT Tyr 305	AAG Lys	GCC Ala	AAT Asn	· • •	860
TAC Tyr	TGC Cys 310	TCT Ser	GGA Gly	GAA Glu	TGT Cys	GAA Glu 315	TTT Phe	GTA Val	TTT Phe	TTG Leu	CAA Gln 320	AAG Lys	TAT Tyr	CCT Pro	CAT His		905
ACC Thr 325	CAT His	CTT Leu	GTG Val	CAC His	CAA Gln 330	GCA Ala	AAC Asn	CCC Pro	AGA Arg	GGT Gly 335	TCA Ser	GCC Ala	GGC Gly	CCC Pro	TGC Cys 340		950
TGT Cys	ACT Thr	CCT Pro	ACA Thr	AAG Lys 345	ATG Met	TCT Ser	CCA Pro	ATT Ile	AAT Asn 350	ATG Met	CTA Leu	TAT Tyr	TTT Phe	AAT Asn 355	GGC Gly		995
GAA Lys	GGA Glu	CAA Gln	ATĀ Ile 360	ATA Ile	TAC Tyr	GGG Gly	AAG Lys	ATT Ile 365	CCA Pro	GCC Ala	ATG Met	GTA Val	GTA Val 370	GAT Asp	CGC Arg	1	L 04 0

- 73 -

TGT GGG TGT TCA TGA Cys Gly Cys Ser 375

1055

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

```
Met Gin Lys
Leu Gln Ile Ser Val Tyr Ile Tyr Leu Phe Met Leu Ile Val Ala Gly
                      10
Pro Val Asp Leu Asn Glu Asn Ser Glu Gln Lys Glu Asn Val Glu Lys
Glu Gly Leu Cys Asn Ala Cys Leu Trp Arg Glu Asn Thr Thr Ser Ser
Arg Leu Glu Ala Ile Lys Ile Gln Ile Leu Ser Lys Leu Arg Leu Glu
Thr Ala Pro Asn Ile Ser Lys Asp Ala Ile Arg Gln Leu Leu Pro Lys
Ala Pro Pro Leu Leu Glu Leu Ile Asp Gln Phe Asp Val Gln Arg Asp
 85
Ala Ser Ser Asp Gly Ser Leu Glu Asp Asp Asp Tyr His Ala Arg Thr
                                                          115
Glu Thr Val Ile Thr Met Pro Thr Glu Ser Asp Leu Leu Thr Gln Val
             120
                                 125
Glu Gly Lys Pro Lys Cys Cys Phe Phe Lys Phe Ser Ser Lys Ile Gln
                                                 145
Tyr Asn Lys Leu Val Lys Ala Gln Leu Trp Ile Tyr Leu Arg Pro Val
    150
                         155
Glu Thr Pro Thr Ala Val Phe Val Gln Ile Leu Arg Leu Ile Lys Pro
Met Lys Asp Gly Thr Arg Tyr Thr Gly Ile Arg Ser Leu Lys Leu Asp
Met Ser Pro Gly Thr Gly Ile Trp Gln Ser Ile Asp Val Lys Thr Val
             200
                                 205
Leu Gln Asn Trp Leu Lys Gln Pro Glu Ser Asn Leu Gly Ile Glu Ile
Lys Ala Leu Asp Glu Asn Gly His Asp Leu Ala Val Thr Phe Pro Glu
                         235
                                             240
Pro Gly Glu Asp Gly Leu Thr Pro Phe Leu Glu Val Lys Val Thr Asp
245
                     250
Thr Pro Lys Arg Ser Arg Arg Asp Phe Gly Leu Asp Cys Asp Glu His
                                     270
Ser Thr Glu Ser Arg Cys Cys Arg Tyr Pro Leu Thr Val Asp Phe Glu
                                 285
Ala Phe Gly Trp Asp Trp Ile Ile Ala Pro Lys Arg Tyr Lys Ala Asn
Tyr Cys Ser Gly Glu Cys Glu Phe Val Phe Leu Gln Lys Tyr Pro His.
    310
                       315
                                             320
Thr His Leu Val His Gln Ala Asn Pro Arg Gly Ser Ala Gly Pro Cys
                                         335
Cys Thr Pro Thr Lys Met Ser Pro Ile Asn Met Leu Tyr Phe Asn Gly
                 345
                                                          355
```

- 74 -

Lys Glu Gln Ile Ile Tyr Gly Lys Ile Pro Ala Met Val Val Asp Arg 360 365 370 Cys Gly Cys Ser 375

_(2)__INFORMATION_FOR SEQ ID NO:22:-

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1055 base pairs(B) TYPE: nucleic acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Chicken GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...1055
 - (D) OTHER:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

				. •	-				.			•					
					• .										AAG Lys		9
5	. 1124	Vai	TAT Tyr	val	10	тте	ıyr	тел	Phe	Met 15	Gln	Ile	Ala	Val	Asp 20		54
-	~ .		Dea	25	GT Å	ser	ser	GIU	30	Lys	Glu	Asn	Val	Glu 35			95
		Deu	TGC Cys 40	ASII	ніа	Cys	inr	1rp 45	Arg	Gln	Asn	Thr	Lys 50	Ser	Ser	•	140
9		55	GCC Ala	116	nys	TIE	60	iie	Leu	Ser	Lys	Leu 65	Arg	Leu	Glu		185
CAA Gln	GCA Ala 70	CCT Pro	AAC Asn	ATT Ile	AGC Ser	AGG Arg 75	GAC Asp	GTT Val	ATT Ile	AAG Lys	CAG Gln 80	CTT Leu	TTA Leu	CCC Pro	AAA Lys	•	230
GCT Ala 85	CCT Pro	CCA Pro	cTG .eu	CAG Gln	GAA Glu 90	CTG Leu	ATT Ile	GAT Asp	CAG Gln	TAT Tyr 95	GAT Asp	GTC Val	CAG Gln	AGG Arg	GAC Asp 100		275
GAC Asp	AGT Ser	AGC Ser	GAT Asp	GGC Gly 105	TCT Ser	TTG Leu	GAA Glu	GAC Asp	GAT Asp 110	GAC Asp	TAT Tyr	CAT His	GCC Ala	ACA Thr 115	ACC Thr		320
, — -		110	ATC Ile 120	1111	Met	PIO	inr	125	Ser	Asp	Phe	Leu	Val 130	Gln	Met	•	365
GAG Glu	GGA Gly.	AAA Lys 135	CCA Pro	AAA Lys	TGT Cys	TGC Cys	TTC Phe 140	TTT Phe	AAG Lys	TTT Phe	AGC Ser	TCT Ser 145	AAA Lys	ATA Ile	CAA Gln	•	410

TAT Tyr	AAC Asn 150	AAA Ļys	GTA Val	GTA Val	AAG Lys	GCA Ala 155	CAA Gln	TTA Leu	TGG Trp	ATA Ile	TAC Tyr 160	TTG Leu	AGG Arg	CAA Gln	GTC Val		455
CAA Gln 165	AAA Lys	CCT Pro	ACA Thr	ACG Thr	GTG Val 170	TTT Phe	GTG Val	CAG Gln	ATC Ile	CTG Leu 175	AGA Arg	CTC Leu	ATT Ile	AAG Lys	CCC Pro 180		500
ATG Met	AAA Lys	GAC Asp	GGT Gly	ACA Thr 185	AGA Arg	TAT Tyr	ACT Thr	GGA Gly	ATT Ile 190	CGA Arg	TCT Ser	TTG Leu	AAA Lys	CTT Leu 195	GAC Asp		545
ATG Met	AAC Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT Gly	ATC	TGG Trp	CAG Gln 205	AGT Ser	ATT Ile	GAT Asp	GTG Val	AAG Lys 210	ACA Thr	GTG Val		590
CTG Leu	CAA Gln	AAT Asn 215	TGG Trp	CTC Leu	AAA Lys	CAG Gln	CCT Pro 220	GAA Glu	TCC Ser	AAT Asn	TTA Leu	GGC Gly 225	ATC Ile	GAA Glu	ATA Ile		635
AAA Lys	GCT Ala 230	TTT Phe	GAT Asp	GAG Glu	ACT Thr	GGA Gly 235	CGA Arg	GAT Asp	CTT Leu	GCT Ala	GTC Val 240	ACA Thr	TTC Phe	CCA Pro	GGA Gly		680
CCA Pro 245	GGA Gly	GAA Glu	GAT Asp	GGA Gly	TTG Leu 250	Asn	CCA Pro	TTT Phe	TTA Leu	GAG Glu 255	GTC Val	AGA Arg	GTT Val	ACA Thr	GAC Asp 260		725
ACA Thr	CCG Pro	AAA Lys	CGG Arg	TCC Ser 265	CGC Arg	AGA Arg	GAT Asp	TTT Phe	GGC Gly 270	CTT Leu	GAC Asp	TGT Cys	GAT Asp	GAG Glu 275	CAC His	· ·	770
TCA Ser	ACG Thr	GAA Glu	TCC Ser 280	CGA Arg	TGT Cys	TGT Cys	CGC Arg	TAC Tyr 285	CCG Pro	CTG Leu	ACA Thr	GTG Val	GAT Asp 290	TTC Phe	GAA Glu		815
GCT Ala	TTT Phe	GGA Gly 295	TGG Trp	GAC Asp	TGG Trp	ATT Ile	ATA Ile 300	GCA Ala	CCT Pro	AAA Lys	AGA Arg	TAC Tyr 305	AAA Lys	GCC Ala	AAT Asn		860
TAC Tyr	TGC Cys 310	TCC Ser	GGA Gly	GAA Glu	TGC Cys	GAA Glu 315	TTT Phe	GTG Val	TTT Phe	CTA Leu	CAG Gln 320	AAA Lys	TAC Tyr	CCG Pro	CAC His		905
ACT Thr 325	CAC His	CTG Leu	GTA Val	CAC His	CAA Gln 330	GCA Ala	AAT Asn	CCC Pro	AGA Arg	GGC Gly 335	TCA Ser	GCA Ala	GGC Gly	CCT Pro	TGC Cys 340		950
TGC Cys	ACA Thr	CCC Pro	ACC Thr	AAG Lys 345	ATG Met	TCC Ser	CCT Pro	ATA Ile	AAC Asn 350	ATG Met	CTG Leu	TAT Tyr	TTC Phe	AAT Asn 355	GGA Gly		995
AAA Lys	GAA Glu	CAA Gln	ATA Ile 360	ATA Ile	TAT Tyr	GGA Gly	AAG Lys	ATA Ile 365	CCA Pro	GCC Ala	ATG Met	GTT Val	GTA Val 370	GAT Asp	CGT Arg	1	1040
TGÇ Cys	GGG Gly	TGC Cys 375	TCA Ser	TĠĀ													L055

⁽²⁾ INFORMATION FOR SEQ ID NO:23:

⁽i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 376 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- -(v)-FRAGMENT-TYPE: internal
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Chicken GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..376
 - (D) OTHER:
- (xi) SEQUENCE DESCRIPTION, CEO.

	()	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	23:		•	٠.	
												7		Lys	
					ΤÛ					15				• •	Asp 20
				45					30					Glu 35	Lys
			* V					45					· E · A	Ser	
		J.J.					60					c c	Arg	Leu	
	, 0					/ 5					ΩΛ			Pro	
00					90			•		95				Arg	100
				エロコ					-1.7Ω					Thr	Thr
			120					125					720	Gln	
		100					140					7 1 5	Lys	Ile	
	4 3 0	٠.				T 2 2					160	Leu		Gln	
					T / O					175	Arg			Lys	100
				TO 2					เษก					Leu 195	Asp
			200					205					210	Thr	
		213					220					225	Ile	Glu	
	450					435					240	Thr		Pro	
					45 0					フ도도	Val			Thr	200
				200					270	Leu				Glu 275	His
			200					285					200	Phe	
		ردع					300					205	Lys	Ala	
	- - -				•	272					3つ0	Lys		Pro	
					220					२ २८	Ser			Pro	240
Cys	Thr	Pro	Thr	Lys 345	Met	Ser	Pro	Ile	Asn 350	Met	Leu	Tyr		Asn 355	Gly
Lys	Glu	Gln	Ile 360	Ile	Tyr	Gly	Lys	Ile 365	Pro	Ala	Met	Val	Val 370	Asp	Arg

- 77 -

Cys Gly Cys Ser 375

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1276 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Rat GDF-8
- (ix) FEATURE:
- (A) NAME/KEY: CDS
 - (B) LOCATION: 1...1276
 - (D) OTHER:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

	•						, .						ATT Ile			115
CCG Pro 5	CAA Gln	ATG Met	TAT Tyr	GTT Val	TAT Tyr 10	ATT	TAC Tyr	CTG Leu	TTT Phe	GTG Val 15	CTG Leu	ATT Ile	GCT Ala	GCT Ala	GGC Gly 20	; 163
CCA Pro	GTG Val	GAT Asp	CTA Leu	AAT Asn 25	GAG Glu	GAC Asp	AGT Ser	GAG Glu	AGA Arg 30	GAG Glu	GCG Ala	AAT Asn	GTG Val	GAA Glu 35	AAA Lys	211
GAG Glu	GGG Gly	CTG Leu	TGT Cys 40	AAT Asn	GCG Ala	TGT Cys	GCG Ala	TGG Trp 45	AGA Arg	CAA Gln	AAC Asn	ACA Thr	AGG Arg	TAC Tyr	TCC Ser	259
AGĀ Arģ	ATA Ile	GAA Glu 55	GCC Ala	ATA Ile	AAA Lys	ATT Ile	CAA Gln 60	ATC Ile	CTC Leu	AGT Ser	AAA Lys	CTC Leu 65	CGC Arg	CTG Leu	GAA Glu	307
ACA Thr	GCG Ala 70	CCT Pro	AAC Asn	ATC	AGC Ser	AAA Lys 75	GAT Asp	GCT Ala	ATA Ile	AGA Arg	CAA Gln 80	CTT Leu	CTG Leu	CCC Pro	AGA Arg	355
GCG Ala 85	CCT Pro	CCA Pro	CTC Leu	CGG Arg	GAA Glu 90	CTG Leu	ATC Ile	GAT Asp	CAG Gln	TAC Tyr 95	GAC Asp	GTC Val	CAG Gln	AGG Arg	GAT Asp 100	4:03
GAC Asp	AGC Ser	AGT Ser	GAC Asp	GGC Gly 105	TCT Ser	TTG Leu	GAA Glu	GAT Asp	GAC Asp 110	GAT Asp	TAT Tyr	CAC His	GCT Ala	ACC Thr 115	ACG Thr	451
GAA Glu	.ACA Thr	ATC Ile	ATT Ile 120	ACC Thr	ATG Met	CCT Pro	ACC Thr	GAG Glu 125	TCT Ser	GAC Asp	TTT Phe	CTA Leu	ATG Met 130	CAA Gln	GCĠ Ala	499
GAT Asp	GGA Gly	AAG Lys 135	CCC Pro	AAA Lys	TGT Cys	TGC Cys	TTT Phe 140	TTT Phe	AAA Lys	TTT Phe	AGC Ser	TCT Ser 145	AAA Lys	ATA Ile	CAG Gln	547

		-																
	TAC	AAC Asn 150	пys	GTG Val	GTA Val	AAG Lys	GCC Ala 155	CAG Gln	CTG Leu	TGG Trp	ATA Ile	TAT Tyr 160	CTG Leu	AGA Arg	GCC Ala	GTC Val	!	595
· ·	Lys	TIIT	PIO	ACA Thr	Inr	vaı	Pne	· val	Gin	Tle	Len	Ara	CTC	ATC	AAA Lys	CCC Pro 180		643
						,	•						•.				•	
	ATG Met	AAA Lys	GAC Asp	GGT Gly	ACA Thr 185	AGG Arg	TAT Tyr	ACC Thr	GGA Gly	ATC Ile 190	Arg	TCT	CTG Leu	AAA Lys	CTT Leu 195	GAC Asp	(591
	ATG Met	AGC Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT Gly	ATT Ile	TGG Trp	CAG Gln 205	AGT Ser	ATT Ile	GAT Asp	GTG Val	AAG Lys 210	Thr	GTG Val	·	739
	TTG Leu	CAA Gln	AAT Asn 215	TGG Trp	CTC Leu	AAA Lys	CAG Gln	CCT Pro 220	GAA Glu	TCC Ser	AAC Asn	TTA Leu	GGC Gly 225	ATT Ile	GAA Glu	ATC Ile	-	787
	AAA Lys	GCT Ala 230	TTG Leu	GAT Asp	GAG Glu	AAT Asn	GGG Gly 235	CAT His	GAT Asp	CTT Leu	GCT Ala	GTA Val 240	ACC Thr	TTC Phe	CCA Pro	GGA Gly	8	335
	CCA Pro 245	GGA Gly	GAA Glu	GAT Asp	GGG Gly	CTG Leu 250	AAT Asn	CCC Pro	TTT Phe	TTA Leu	GAA Glu 255	GTC Val	AAA Lys	GTA Val	ACA Thr	GAC Asp 260	ε	883
	ACA Thr	CCC Pro	AAG Lys	AGG Arg	TCC Ser 265	CGG Arg	AGA Arg	GAC Asp	TTT Phe	GGG Gly 270	CTT Leu	GAC Asp	TGC Cys	GAT Asp	GAA Glu 275	CAC His	9	931
	TCC Ser	ACG Thr	GAA Glu	TCG Ser 280	CGG Arg	TGC Cys	TGT Cys	CGC Arg	TAC Tyr 285	CCC Pro	CTC Leu	ACG Thr	GTC Val	GAT Asp 290	TTC Phe	GAA Glu	9)79
	GCC Ala	TTT Phe	GGA Gly 295	TGG Trp	GAC Asp	TGG Trp	ATT Ile	ATT Ile 300	GCA Ala	CCC Pro	AAA Lys	AGA Arg	TAT Tyr 305	AAG Lys	GCT Ala	AAT Asn	10	27
	TAC Tyr	TGC Cys 310	TCT Ser	GGA Gly	GAG Glu	TGT Cys	GAA Glu 315	TTT Phe	GTG Val	TTC Phe	TTA Leu	CAA Gln 320	AAA Lys	TAT Tyr	CCG Pro	CAT His	10	75
	ACT Thr 325	CAT His	CTT Leu	GTG Val	CAC His	CAA Gln 330	GCA Ala	AAC Asn	CCC Pro	AGA Arg	GGC Gly 335	TCG Ser	GCA Ala	GGC Gly	CCT Pro	TGC Cys 340	11	23
	TGC Cys	ACG Thr	CCA Pro	ACA Thr	AAA Lys 345	ATG Met	TCT Ser	CCC Pro	ATT Ile	AAT Asn 350	ATG Met	CTA Leu	TAT Tyr	TTT Phe	AAT Asn 355	GGC Gly	11	71
	AAA Lys	GAA Glu	CAA Gln	ATA Ile 360	ATA Ile	TAT Tyr	GGG Gly	AAA Lys	ATT Ile 365	CCA Pro	GCC Ala	ATG Met	GTA Val	GTA Val 370	GAC Asp	CGG Arg	12	19
	TGT Cys	GGG Gly	TGC Cys 375	TCG Ser	TGA								· · ·			•	12	76
																		-

⁽²⁾ INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 376 amino acids
- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Rat GDF-8
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..376
 - (D) OTHER:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

	(-	~ . . /	2EQU	GMCE	DES	CKTP	TION	: SE	O ID	NO:	25:				
	•					. •					,	1			Lys
Pro 5	Gln	Met	Tyr	Val	Tyr 10	Ile	Tyr	Leu	Phe	Val 15	Leu	Ile	Ala	Ala	=
Pro	Val	Asp	Leu	Asn 25	Glu	Asp	Ser	Glu	Arg	Glu	Ala	Asn	Val		_
Glu	Gly	Leu	Cys 40		Ala	Cys	Ala	Trp		Gln	Asn	Thr		35 Tyr	Ser
Arg	Ile	Glu 55	Ala	Ile	Lys	Ile	Gln 60	Ile	Leu	Ser	Lys	· ·	50 Arg	Leu	Glu
Thr	Ala 70		Āsn	Ile	Ser	Lys		Ala	Ile	Arg		65 Leu	Leu	Pro	Arg
Ala 85		Pro	Leu	Arg	Glu	75 Leu	Ile	Asp	Gln	Tyr	08 qaA•	Val	Gln	Arg	Asp
-	Ser	Ser	Asp	Gly	90 Ser	Leu	Glu	Asp	Asp	95 Asp	Tyr	His	Ala	Thr	100 Thr
Glu	Thr	Ile	Ile	105 Thr	Met	Pro	Thr	Glu	110 Ser	Ášp	Phe	Leu	Met	115 Gln	Ala
Asp	Gly	Lys 135	120 Pro	Lys	Cys	Cys	Phe	125 Phe	Lys	Phe	Ser	Ser	130 Lys	Ile	Gln
Tyr	Asn		Val	Val	7	Ala	140 Gln	Leu	Trp	Ile	Tyr	145 Leu	Arg	Ala	Val
Lys	150 Thr	Pro	Thr	Thr	Val	155 Phe	Val	Gln	Ile	Leu	160 Arg	Leu	Ile	Lys	Pro
$\tau \phi \supset$					170					175					7.00
			Gly	182					190		-			105	
			Gly 200					205					210		
		215	Trp				220					225			
	230		Asp			235					240				
445			Asp		250					255					260
			Arg	265					270					275	His
		•	Ser 280		-			285					200	Phe	
		433	Trp				300					305	Lys		
	2 T O		Gly			315					3.20	Lys			
Thr 325	His	Leu	Val	His	Gln 330	Ala	Asn	Pro	Ārģ	Gly 335	Ser	Ala	Gly	Pro	
Cys	Thr	Pro	Thr	Lys 345		Ser	Pro	Ile	Asn 350	Met	Leu	Tyr.	Phe		340 Gly
Lys	Glu	Gln	Ile 360		Тут	Gly	Lys	Ile 365	Pro	Ala	Met	Val		355 Asp	Arg
Cys	Gly	Cys						700					370		

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1055 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear ----

(ii) MOLECULE TYPE: Genomic DNA

(vii) IMMEDIATE SOURCE:
 (B) CLONE: Turkey GDF-8

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1...1055
 - (D) OTHER:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

								•		•				CAA A			. 9
CTA Leu 5	GCA Ala	GTC Val	TAT Tyr	GTT Val	TAT Tyr 10	ATT Ile	TAC Tyr	CTG Leu	TTC Phe	ATG Met 15	CAG Gln	ATT Ile	TTA Leu	GTT Val	CAT His 20		54
CCG Pro	GTG Val	GCT Ala	CTT Leu	GAT Asp 25	GGC Gly	AGT Ser	AGT Ser	CAG Glu	CCC Gln 30	ACA Lys	GAG Glu	AAC Asn	GCT Val	GAA Glu 35	AAA Lys		95
GAC Glu	GGA Gly	CTG Leu	TGC Cys 40	AAT Asn	GCT Ala	TGC Cys	ACG Thr	TGG Trp 45	AGA Arg	CAG Gln	AAT Asn	ACT Thr	AAA Lys 50	TCC Ser	TCC Ser		140
AGA Arg	ATA Ile	GAA Glu 55	GCC Ala	ATA Ile	AAA Lys	ATT Ile	CAA Gln 60	ATC Ile	CTC Leu	AGC Ser	AAA Lys	CTG Leu 65	CGC Arg	CTG Leu	GAA Glu		185
CAA Gln	GCA Ala 70	CCT Pro	AAC Asn	ATT Ile	AGC Ser	AGG Arg 75	GAC Asp	GTT Val	ATT Ile	AAA Lys	CAA Gln 80	CTT Leu	TTA Leu	CCC Pro	AAA Lys	. • .	230
GCT Ala 85	CCT Pro	CCG Pro	CTG Leu	CAG Gln	GAA Glu 90	CTG Leu	ATT Ile	GAT Asp	CAG Gln	TAT Tyr 95	GAC Asp	GTC Val	CAG Gln	AGA Arg	GAC Asp 100		275
GAC Asp	AGT Ser	AGC Ser	GAT Asp	GGC Gly 105	Ser	TTG Leu	GAA Glu	GAC Asp	GAT Asp 110	GAC Asp	TAT Tyr	CAT His	GCC Ala	ACA Thr 115	ACC Thr		320
GAA Glu	ACG Thr	ATT Ile	ATC Ile 120	ACA Thr	ATG Met	CCT Pro	ACG Thr	GAG Glu 125	TCT Ser	GAT Asp	TTT Phe	CTT Leu	GTA Val 130	CAA Gln	ATG Met		365
GAG Glu	GGA Gly	AAA Lys 135	CCA Pro	AAA Lys	TGT Cys	TGC Cys	TTC Phe 140	TTT Phe	AAG Lys	TTT Phe	AGC Ser	TCT Ser 145	AAA Lys	ATA Ile	CAA Gln	· .	410
TAT Tyr	AAC Asn 150	AAA Lys	GTA Val	GTA Val	AAG Lys	GCA Ala 155	CAA Gln	TTA Leu	TGG Trp	ATA Ile	TAC Tyr 160	TTG Leu	AGG Arg	CAA Gln	GTC Val		455

CA Gl 16	A AAA n Lys 5	CCT Pro	ACA Thr	ACG Thr	GTG Val 170	TTT Phe	GTG Val	CAG Gln	ATC Ile	CTG Leu 175	AGA Arg	CTC Leu	ATT	AAA Lys	CCC Pro 180	500
AT Me	G AAA t Lys	GAC Asp	GGT Gly	AÇA Thr 185	AGA Arg	TAT Týr	ACT Thr	GGA Gly	ATT Ile 190	CGA Arg	TCT Ser	TTG Leu	AAA Lys	CTT Leu 195	GAC Asp	545
AT Me	G AAC t Ser	CCA Pro	GGC Gly 200	ACT Thr	GGT Gly	ATC Ile	TGG Trp	CAG Gln 205	AGT Ser	ATT Ile	GAT Asp	GTG Val	AAG Lys 210	ACA Thr	GTG Val	590
TT Le	G CAA u Gln	AAT Asn 215	TGG Trp	CTC Leu	AAA Lys	CAG Gln	CCT Pro 220	GAA Glu	TCC Ser	AAT Asn	TTA Leu	GGC Gly 225	ATC Ile	GAA Glu	ATA Ile	635
AA Ly	A GCT s Ala 230	TTT Phe	GAT Asp	GAG Glu	AAT Asn	GGA Gly 235	CGA Arg	GAT Asp	CTT Leu	GCT Ala	GTA Val 240	ACA Thr	TTC Phe	CCA Pro	GGA Gly	680
24:		GIU	Asp	Gly	Leu 250	Asn	Pro	Phe	Leu	Glu 255	Val	Arg	Val	Thr	Asp 260	725
Th	A CCA		Arg	Ser 265	Arg	Arg	Asp	Phe	Gly 270	Leu	Asp	Cys	Asp	Glu 275	His	770
Se	A ACG	GLu	Ser 280	Arg	Cys	Cys	Arg	Tyr 285	Pro	Leu	Thr	Val	Asp 290	Phe	Glu	815
A13	TTT a Phe	295	Trp	Asp	Trp	Ile	11e 300	Ala	Pro	Lys	Arg	Tyr 305	Lys	Ala	Asn	860
C TY:	C TGC Cys 310	ser	GIA	Glu	Cys	G1u 315	Phe	·Val	Phe	Leu	Gln 320	Lys	Tyr	Pro	His	905
32!		Leu	val	His	330	Ala	Asn	Pro	Arg	Gly 335	Ser	Ala	Gly	Pro	Cys 340	950
TG(Cys	C ACA 5 Thr	CCC Pro	ACC Thr	AAG Lys 345	ATG Met	TCC Ser	CCT Pro	ATA Ile	AAC Asn 350	ATG Met	CTG Leu	TAT Tyr	TTC Phe	AAT Asn 355	GGA Gly	995
AA/ Lys	A GAA 5 Glu	CAA Gln	ATA Ile 360	ATA Ile	TAT Tyr	GGA Gly	AAG Lys	ATA Ile 365	CCA Pro	GCC Ala	ATG Met	GTT Val	GTA Val 370	GAT Asp	CGT Arg	1040
TG(Cys	GGG Gly	TGC Cys 375	TCA Ser	TGA	•						•					1055

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(vii) IMMEDIATE SOURCE:

(B) CLONE: Turkey GDF-8

(ix) FEATURE:

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..376
- (D)--OTHER:-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

.....Met.Gin_Lys. Leu Ala Val Tyr Val Tyr Ile Tyr Leu Phe Met Gln Ile Leu Val His Pro Val Ala Leu Asp Gly Ser Ser Glu Gln Lys Glu Asn Val Glu Lys Glu Gly Leu Cys Asn Ala Cys Thr Trp Arg Gln Asn Thr Lys Ser Ser Arg Ile Glu Ala Ile Lys Ile Gln Ile Leu Ser Lys Leu Arg Leu Glu Gln Ala Pro Asn Ile Ser Arg Asp Val Ile Lys Gln Leu Leu Pro Lys Ala Pro Pro Leu Gln Glu Leu Ile Asp Gln Tyr Asp Val Gln Arg Asp Asp Ser Ser Asp Gly Ser Leu Glu Asp Asp Asp Tyr His Ala Thr Thr Glu Thr Ile Ile Thr Met Pro Thr Glu Ser Asp Phe Leu Val Gln Met 120 125. Glu Gly Lys Pro Lys Cys Cys Phe Phe Lys Phe Ser Ser Lys Ile Gln 140 Tyr Asn Lys Val Val Lys Ala Gln Leu Trp Ile Tyr Leu Arg Gln Val 150 Gln Lys Pro Thr Thr Val Phe Val Gln Ile Leu Arg Leu Ile Lys Pro 170 175 Met Lys Asp Gly Thr Arg Tyr Thr Gly Ile Arg Ser Leu Lys Leu Asp 190 Met Ser Pro Gly Thr Gly Ile Trp Gln Ser Ile Asp Val Lys Thr Val 205 Leu Gln Asn Trp Leu Lys Gln Pro Glu Ser Asn Leu Gly Ile Glu Ile 220 Lys Ala Phe Asp Glu Asn Gly Arg Asp Leu Ala Val Thr Phe Pro Gly 235 240 Pro Gly Glu Asp Gly Leu Asn Pro Phe Leu Glu Val Arg Val Thr Asp 245 Thr Pro Lys Arg Ser Arg Arg Asp Phe Gly Leu Asp Cys Asp Glu His Ser Thr Glu Ser Arg Cys Cys Arg Tyr Pro Leu Thr Val Asp Phe Glu Ala Phe Gly Trp Asp Trp Ile Ile Ala Pro Lys Arg Tyr Lys Ala Asn 300 Tyr Cys Ser Gly Glu Cys Glu Phe Val Phe Leu Gln Lys Tyr Pro His 315 Thr His Leu Val His Gln Ala Asn Pro Arg Gly Ser Ala Gly Pro Cys 330 335 Cys Thr Pro Thr Lys Met Ser Pro Ile Asn Met Leu Tyr Phe Asn Gly 345 350 355 Lys Glu Gln Ile Ile Tyr Gly Lys Ile Pro Ala Met Val Val Asp Arg Cys Gly Cys Ser 375

CLAIMS

- 1. A transgenic non-human animal having a transgene disrupting or interfering with expression of growth differentiation factor-8 (GDF-8) chromosomally integrated into the germ cells of the animal.
- 2. The transgenic animal of claim 1, wherein the animal is selected from the group of species consisting of avian, bovine, ovine, piscine, murine, and porcine.
- 3. The transgenic animal of claim 1 where the species is avian.
- 4. The transgenic animal of claim 1 where the species is bovine.
- 5. The transgenic animal of claim 1 where the species is porcine.
- 6. The transgenic animal of claim 1 where the species is ovine.
- 7. The transgenic animal of claim 1 where the species is piscine.
- 8. The transgenic animal of claim 1, wherein the transgene comprises GDF-8 antisense polynucleotide(s).
- 9. The transgenic animal of claim 1, wherein the transgene comprises a gene encoding a dominant negative GDF-8 polypeptide.
- 10. The transgenic animal of claim 1, wherein the animal is homozygous or heterozygous for GDF-8 polynucleotide.
- 11. A chicken or turkey egg produced by the transgenic animal of claim 3.

- 12. Beef obtained from the transgenic animal of claim 4.
- 13. Milk obtained from the transgenic animal of claim 4.
- 14. Pork obtained from the transgenic animal of claim 5.
- 15. Lamb obtained from the transgenic animal of claim 6.
- 16. Chicken or turkey meat produced by the transgenic animal of claim 3.
- 17. A method of producing animal food products having increased muscle mass comprising:
 - a) introducing a transgene disrupting or interfering with expression of growth differentiation factor-8 (GDF-8) into an embryo into germ cells of a pronuclear embryo of the animal;
 - b) implanting the embryo into the oviduct of a pseudopregnant female thereby allowing the embryo to mature to full term progeny;
 - c) testing the progeny for presence of the transgene to identify transgene-positive progeny;
 - d) cross-breeding transgene-positive progeny to obtain further transgene-positive progeny; and
 - e) processing the progeny to obtain foodstuff.
- 18. The method of claim 17, wherein the transgene comprises GDF-8 antisense polynucleotides.
- 19. The method of claim 17, wherein the transgene comprises a gene encoding a dominant negative GDF-8 polypeptide.
- A method of producing avian food products having reduced cholesterol levels comprising:

- a) introducing a transgene disrupting or interfering with expression of growth differentiation factor-8 (GDF-8) into an embryo of an avian animal;
- b) culturing the embryo under conditions whereby progeny are hatched;
- c) testing the progeny for presence of the transgene to identify transgene-positive progeny;
 - d) cross-breeding transgene-positive progeny; and
 - e) processing the progeny to obtain foodstuff.
- The method of claim 20, wherein the transgene comprises GDF-8 antisense polynucleotides.
- The method of claim 20, wherein the transgene comprises a gene encoding a dominant negative GDF-8 polypeptide.
- 23. The transgenic animal of claim 20, wherein the transgene comprises a polynucleotide encoding a truncated GDF-8 polypeptide.
- A method for increasing the muscle mass in an animal comprising administering to the animal an antibody, or fragment thereof, which binds to GDF-8 polypeptide.
- 25. The method of claim 24, wherein anti-GDF-8 antibody is administered to a domesticated animal.
- 26. The method of claim 24, wherein the antibody is a monoclonal antibody or a polyclonal antibody.
- 27. The method of claim 24, wherein the anti-GDF-8 antibody is administered by intravenous, intramuscular, multiple bolus, or subcutaneous injections.
- The method of claim 27, wherein the anti-GDF-8 antibody is administered within a dose range of 0.1 ug/kg to 100 mg/kg.

- 29. The method of claim 27, wherein the antibody is formulated in a formulation suitable for administration by injection into an animal.
- 30. A method of inhibiting the growth regulating actions of GDF-8 comprising contacting a GDF-8 agent with fetal or adult muscle cells or progenitor cells.
- 31. The method of claim 30, wherein the agent is selected from the group consisting of a monoclonal antibody, an antisense nucleic acid and a dominant negative encoding nucleic acid sequence or polypeptide.
- The method of claim 31, wherein the antibody is a humanized monoclonal antibody or a chimeric monoclonal antibody or fragment thereof.
- 33. The method of claim 30, wherein the agent is administered to a patient suffering from a disorder selected from the group consisting of muscle wasting disease, neuromuscular disorder, muscle atrophy and aging.
- The method of claim 30, wherein the agent is administered to a patient suffering from a disorder selected from the group consisting of muscular dystrophy, spinal cord injury, traumatic injury, congestive obstructive pulmonary disease (COPD), AIDS and cachechia.
- 35. The method of claim 30, wherein the agent is administered to a patient with muscle wasting disease or disorder by intravenous, intramuscular or subcutaneous injection.
- The method of claim 31, wherein the monoclonal antibody is administered within a dose range between about 0.1/kg to about 100 mg/kg.
- 37. The method of claim 31, wherein the monoclonal antibody is formulated in a formulation suitable for administration to a patient.

- 38. A method for treating a muscle or adipose tissue disorder in a subject, comprising administering a therapeutically effective amount of a GDF-8 agent to the subject, thereby inhibiting abnormal growth of muscle or adipose tissue.
- The method as in claim 38, wherein the GDF-8 agent is selected from the group consisting of an antisense polynucleotide, a polynucleotide encoding a dominant negative GDF-8 polypeptide, a GDF-8 antibody and a polynucleotide encoding a truncated GDF-8 polypeptide.
- The method of claim 38, wherein the disorder is a cancer selected from the group consisting of muscle, connective tissue, or bone.
- 41. The method of claim 38, wherein the subject has an obesity disorder.
- 42. A method of inhibiting the growth regulating actions of GDF-8 in a subject comprising administering to the subject, a GDF-8 agent that inhibits the action of GDF-8 in the subject.
- 43. The method of claim 42, wherein the GDF-8 agent is selected from the group consisting of an antisense polynucleotide, a polynucleotide encoding a dominant negative GDF-8 polypeptide, a GDF-8 antibody and a polynucleotide encoding a truncated GDF-8 polypeptide.

- A method for identifying a compound that affects GDF-8 activity or gene expression comprising:
- a) incubating the compound with GDF-8 polypeptide, or with a recombinant cell expressing GDF-8 under conditions sufficient to allow the components to interact; and
- b) determining the effect of the compound on GDF-8 activity or expression.
- The method of claim 44, wherein the effect is inhibition of GDF-8 activity or expression.
- The method of claim 44, wherein the effect is stimulation of GDF-8 activity or expression.
- An isolated polynucleotide encoding a truncated GDF-8 polypeptide wherein the truncation is a loss of the C-terminal active fragment of GDF-8.
- 48. The isolated polynucleotide of claim 47, wherein the polynucleotide is as shown in FIGURE 12a.

THYMUS

LUNG

BRAIN

HEART

KIDNEY
SEMINAL VESICLE
PANCREAS
INTESTINE
SPLEEN
TESTIS
FAT
UTERUS
OVARY
LIVER

- 2.9 kb

FIG. 10

rat
human
monkey
rabbit
cow
dog
dog
chick
zebrafish
frog mouse

12.2 **-** 9.2 **-**

6.1 -

3.1 -

1.0 -

Figure 1b

	TTAAGGTAGGAAGGATTTCAGGCTCTATTTACATAATTGTTCTTTCCTTTTCACACAGAA	60
ôΙ	TCCCTTTTTAGAAGTCAAGGTGACAGACACACCCAAGAGGTCCCGGAGAGACTTTGGGCT	120
	PFLEVKVIDIPKRSRRDFGL	120
121	TGACTGCGATGAGCACTCCACGGAATCCCGGTGCTGCCGCTACCCCCTCACGGTCGATTT	180
	DCDEHSTESRCCRYPITVDF	100
181	TGAAGCCTTTGGATGGGACTGGATTATCGCACCCAAAAGATATAAGGCCAATTACTGCTC	240
	EAFGWDWIIAPKRYKANYCS	
241	AGGAGAGTGTGAATTTGTGTTTTTTACAAAAATATCCGCATACTCATCTTGTGCACCAAGC	300
701	GECEFVFLQKYPHTHLVHQA	
JUT	AAACCCCAGAGGCTCAGCAGGCCCTTGCTGCACTCCGACAAAATGTCTCCCATTAATAT	360
361	N P R G S A G P C C T P T K M S P I N M	
J0 i	ACIACIA DE LA CONTROLLA DE LA	420
421	L Y F N C K E Q I I Y C K I P A M V V D	
121	CCGCTGTGGGTGCTCATGAGCTTTGCATTAGGTTAGAAACTTCCCAAGTCATGGAAGGTC	480
481	TICCCCTCAATTICGAAACTGTGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGC	E 40.
541	GGCCGCCACC 550	540
	FIG. 2a	
		•

1	CAAAAAGATCCAGAAGGGATTTTGGTCTTGACTGTGATGAGCACTCAACAGAATCACGAT	60
	KRSRRDFGLDCDEHSTFSRC	
6.1	GCTGTCGTTACCCTCTAACTGTGGATTTTGAAGCTTTTGGATGGGATTGGATTATCGCTC	120
	CRYPLTVDFEAFGWDWITAP	
121	CTAAAAGATATAAGGCCAATTACTGCTCTGGAGAGTGTGAATTTGTATTTTTACAAAAAT	180
	KRYKANYCSGECEFVFIOKY	
181	ATCCTCATACTCATCTGGTACACCAAGCAAACCCCAGAGGTTCAGCAGGCCCTTGCTGTA	240
	PHIHLVHQANPRGSAGPCCT	
241	CICCCACAAAGATGTCTCCAATTAATATGCTATATTTTAATGGCAAAGAACAAATAATAT	300
	PIKMSPINMLYFNGKEDIIY	
301	ATGGGAAAATTCCAGCGATGGTAGTA 326	
	GKIPAMVV	

FIG.2b

GAA GAT GGG CTG AAT CCC TTT TTA GAA GTC AAA GTA ACA GAC ACA CCC AAG AGG TCC CGG E V K V N. 5 F L TOT AGA GAC TIT GGG CIT GAC TGT GAT GAA CAC TCC AGG GAA TCG CGG TGC TGT CGC TAC GCC G C D E S R C C R Y P E н S Ţ CTC ACG GTC GAT TTC GAA GCC TTT GGA TGG GAC TGG ATT ATT GCA CCC AAA AGA TAT AAG F G W D W I D Ε Α I A GCT AAT TAC TGC TCT GGA GAG TGT GAA TTT GTG TTC TTA CAA AAA TAT CCG CAT ACT CAT CTT GTG CAC CAA GCA AAC CCC AGA GGC TCG GCA GGC CCT TGC TGC ACG CCA ACA AAA ATG L V H Q: N P R A A G P C G Ş C T P TOT COO ATT AAT ATG CTA TAT TTT AAT GGC AAA GAA CAA ATA ATA TAT GGG AAA ATT COA S ? I N M F N G L Y K E Q I I GCC ATG GTA GTA GAC CGG TGT GGG TGC TCG TGA GCT TTG CAT TAG CTT TAA AAT TTC CCA A M V V G AAT CGT GGA AGG TCT TCC CCT CGA TTT CGA AAC TGT GAA TTT ATG TAC CAC AGG CTG TAG

Rat GDF-8

FIG. 2c

TTA GTA GTA AAG GCA CAA TTA TGG ATA TAC TTG AGG CAA GTC CAA AAA CCT ACA ACG GTG LWIYLRQVQKP Α Q TIT GIG CAG ATC CIG AGA CIC ATT AAG CCC ATG AAA GAC GGT ACA AGA TAT ACT GGA ATT LIKPMKD I L R GTRYTGI GGA TOT ITG AAA CTT GAC ATG AAC CCA GGC ACT GGT ATC TGG CAG AGT ATT GAT GTG AAG M N P G T G I W Q S I D V K _ K L D AÇA GTG CTG CAA AAT TGG CTC AAA CAG CCT GAA TCC AAT TTA GGC ATC GAA ATA AAA GCT QNWLKQPESNLG IEIKA TIT GAT GAG ACT GGA CGA GAT CIT GCT GTC ACA TIC CCA GGA CCG GGT GAA GAT GGA TIG LAVTFPGPG R D ARC COR TIT THE GAG GTO AGA GTT ACR GAG ACA COG ARA CGG TOO CGC AGA GAT TIT GGO RVTDTPKR Ε V S CTT GAC TGT GAT GAG CAC TCA ACG GAA TCC CGA TGT TGT CGC TAC CCG CTG ACA GTG GAT E H S T E S R C C R Y D C D. P TTC GAA GCT TTT GGA TGG GAC TGG ATT ATA GCA CCT AAA AGA TAC AAA GCC AAT TAC TGC F E ANF G W DWIIAPKRYKAN TCC GGA GAA TGC GAA TTT GTG TTT CTA CAG AAA TAC CCG CAC ACT CAC CTG GTA CAC CAA E F V F L Q K Y P H T SGEC H GCA AAT CCC AGA GGC TCA GCA GGC CCT TGC TGC ACA CCC ACC AAG ATG TCC CCT ATA AAC ANPRGSAGPCCTPTKMS PIN ATG CTG TAT TTC AAT GGA AAA GAA CAA ATA ATA TAT GGA AAG ATA CCA GCC ATG GTT GTA NGKEQIIYGKIPAMVV GAT CGT TGC GGG TGC TCA TGA GGC TGT CGT GAG ATC CAC CAT TCG ATA AAT TGT GGA AGC DRCGCS CAC CAA AAA AAA AAG CTA TAT CCC CTC ATC CAT CTT TGA AAC TGT GAA ATT ACG TAC GCT AGG CAT TGC -C

Chicken GDF-8

FIG. 2d

 $(x^{2})^{2} \in A^{2}$

BNSDOCID: <WO___9833887A1_I_>

GDF-8	SRRDFGLDCDEHSTESRCCRYPLTVDF-EAFGWD-WIIAPKRYKANYCSGEGEFVFLQKYP
_GDF_1_	RPRRDAEPVLGGGPGGACRARRLYVSF-REVGWHRWVIAPRGFLANYCOGQCALPVALSGSGGPP
BMP-2	REKROAKHKORKRLKSSCKRHPLYVDF-SDVGWNDWIVAPPGYHAFYCHGECPFPLADHLNS
BMP-4	KRSPKHHSQRARKKNKNCRRHSLYVDF-SDVGWNDWIVAPPGYQAFYCHGDCPFPLADHLNS
Vgr-1	SRGSGSSDYNGSELKTACKKHELYVSF-QDLGWQDWIIAPKGYAANYCDGECSFPLNAHMNA
OP-1	LRMANVAENSSSDQRQACKKHELYVSF-RDLGWQDWIIAPEGYAAYYCEGECAFPLNSYMNA
BMP-5.	SRMSSVGDYNTSEQKQACKKHELYVSF-RDLGWQDWIIAPEGYAAFYQDGEQSFPLNAHMNA
BMP-3	EQTLKKARRKOWIEPRNCARRYLKVDF-ADIGWSEWIISPKSFDAYYCSGACOFPMPKSLKPS-
MIS	GPGRAORSAGATAADGPCALRELSVDL——RAERSVLIPETYQANNCQGVCGWPQSDRNPRY—
Inhibinα	ALKLLORPPEEPAAHANCHRVALNISF-CELGWERWIVYPPSFIFHYCHGCCGIHIPPNISIDV.
Inhibin \$A	HRRRRGLECDGKV-NICCKKOFFVSF-KDIGWNDWIIAPSGYHANYCEGECPSHIAGTSGSSL-
Inhibin \$B	HRIRKRULECUCKI-NUCCROOFFIDF-RLIGWNDWIJAPTGYYGNYCFGCCDAYLACUDCGAG
$TGF - \beta 1$	HRRALDINYCESSIEKNCCVRQLYIDFRKDLGWK-WIHFPKGYHANFM CPMPYIWSID
TGF-β2	KXKALDAAYCERNVQDNCCLRPLYIDFKRDLGWK-WIHEPKGYNANEGAGARDYI WSSD
TGF− β3	KKRALDTNYCFRNLEENCEVRPLYIDFRODLGWK-WVHEPKGYYANFOSGPCPYLRSAD
-	
ממר מ	
GDF-8	-HTHLVHQANPRGSAGPCQT-PTKMSPINMLYF-NGKFQLLYGKIPAMAVDRCCCS
	TONE TITLE TONE OF THE PARTY OF
GDF-1	ALNHAVLRALMHA—AAPGAADLPCQV—PARLSP I SVLFF-DNSDNVVI ROYFDMVDFTCCR
GDF-1 BMP-2	ALNHAVLRALMHA—AAPGAADLPCQV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECGOR -TNHAIVQTLVNS—VNSKIPKACQV—PTELSAISMLYL-DFNFKVVIKNYODMVVFGCOR
GDF-1 BMP-2 BMP-4	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCOR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVIKNYQFMVVEGCCCR
GDF-1 BMP-2 BMP-4 Vgr-1	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCOR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCOR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCOR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVIIKKYRNMAVRACCH
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECGOR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCGOR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCGOR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCH
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5	ALNHAVLRALMHA—AAPGAADLPCOV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECGR -TNHAIVQTLVNS—VNSKIPKACOV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCGR -TNHAIVQTLVNS—VNSSIPKACOV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCGR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCOH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCOH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRACCOH
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRSCCH -NHAIIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DFNKNVVIKVYPNMTVFSCACR
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRSCCH -NHAIIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DENKNVVLKVYPNMTVESCACR -GNHVVLLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEFR—ISAHHVPNMVATECCR
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibina	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRSCCH -NHAIIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DENKNVVLKVYPNMTVESCACR -GNHVVLLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECCR -PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTISDGGYSFKYFTVPNILTOHCACI
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibina InhibinβA	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DENEKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRACCH -NHAIIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DENKNVVLKVYPNMTVESCACR -GNHVVLLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECCR -PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTTSDGGYSFKYETVPNLLTQHCACI -SFHSTVINHYRMRGHSPFANLKSCCV—PTKLRPMSMLYY—DDGGNIIKKDIONMIVFETCTS
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibin a Inhibin \(\beta \) Inhibin \(\beta \)	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF—DNSDNVVLRQYEDMVVDECGCR —TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL—DENEKVVLKNYQDMVVEGCGCR —TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL—DEYDKVVLKNYQEMVVEGCGCR —TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF—DDNSNVILKKYRNMVVRACGCH —TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF—DDSSNVILKKYRNMVVRACGCH —TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF—DDSSNVILKKYRNMVVRSCGCH —NHATIQSIVRA—VGVVPGIPEPCCV—PEKMSSLSILFF—DENKNVVLKVYPNMTVESCACR —GNHVVLLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECGCR —PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTTSDGGYSFKYETVPNLLTQHCACI —SFHSTVINHYRMRGHSPFANLKSCCV—PTKLRPMSMLYY—DDGQNIIKKDIQNMIVEECCCS —SFHTAVVNQYRMRGLNPGT—VNSCQI—PTKLSTMSMLYY—DDGQNIIKKDIQNMIVEECCCS
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibina InhibinβA InhibinβB	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRSCCH -NHAIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DENKNVVLKVYPNMTVESCACR -GNHVVLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECCR -PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTTSDGGYSFKYETVPNLLTOHCACI -SFHSTVINHYRMRGHSPFANLKSCCV—PTKLRPMSMLYY-DDGQNIIKKDIQNMIVEECCCS -SFHTAVVNQYRMRGLNPGT-VNSCQI—PTKLSTMSMLYF-DDEYNIVKRDVPNMIVEECCCA -TQYSKVLALYNQ—HNPGASAAPCCV—POALFPIPIVYY-VGRKPKV—FOLSMAIVPSCCCCA
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibina InhibinβA InhibinβB TGF-β1 TGF-β2	AL NHAVL RALMHA—AAPGAADL PCCV—PARL SPISVLFF—DNSDNVVLRQYEDMVVDECCOR -TNHAIVQTLVNS—VNSKIPKACCV—PTEL SAISMLYL—DENEKVVLKNYQDMVVEGCCOR -TNHAIVQTLVNS—VNSSIPKACCV—PTEL SAISMLYL—DEYDKVVLKNYQEMVVEGCCOR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF—DDNSNVILKKYRNMVVRACCCH -TNHAIVQTLVHF—INPETVPKPCCA—PTKLNAISVLYF—DDSSNVILKKYRNMVVRACCCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF—DDSSNVILKKYRNMVVRSCCH -NHAIIQSIVRA—VGVVPGIPEPCCV—PEKMSSLSILFF—DENKNVVLKVYPNMTVESCACR -GNHVVLLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECCOR -PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTISDGGYSFKYETVPNLLTQHCACI -SFHSTVINHYRMRCHSPFANLKSCCV—PTKLRPMSMLYY—DDGQNIIKKDIQNMIVEECCS -SFHTAVVNQYRMRGLNPGT—VNSCCI—PTKLSTMSMLYF—DDEYNIVKRDVPNMIVEECCCA -TQYSKVLALYNQ—HNPGASAAPCCV—PQALEPLPIVYY—VGRKPKV—EQLSNMIVRSCKCS -TQHSRVLSLYNI—INPEASASPCCV—SODLEPLTILYY—ICKTPKI—EQLSNMIVRSCKCS
GDF-1 BMP-2 BMP-4 Vgr-1 OP-1 BMP-5 BMP-3 MIS Inhibina InhibinβA InhibinβB	ALNHAVLRALMHA—AAPGAADLPCCV—PARLSPISVLFF-DNSDNVVLRQYEDMVVDECCR -TNHAIVQTLVNS—VNSKIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQDMVVEGCCR -TNHAIVQTLVNS—VNSSIPKACCV—PTELSAISMLYL-DEYDKVVLKNYQEMVVEGCCR -TNHAIVQTLVHL—MNPEYVPKPCCA—PTKLNAISVLYF-DDNSNVILKKYRNMVVRACCH -TNHAIVQTLVHF—INPETVPKPCCA—PTQLNAISVLYF-DDSSNVILKKYRNMVVRACCH -TNHAIVQTLVHL—MFPDHVPKPCCA—PTKLNAISVLYF-DDSSNVILKKYRNMVVRSCCH -NHAIQSIVRA-VGVVPGIPEPCCV—PEKMSSLSILFF-DENKNVVLKVYPNMTVESCACR -GNHVVLLKMQA—RGAALARPPCCV—PTAYAGKLLISLSEER—ISAHHVPNMVATECCR -PGAPPTPAQPYS——LLPGAQPCCAALPGTMRPLHVRTTSDGGYSFKYETVPNLLTOHCACI -SFHSTVINHYRMRGHSPFANLKSCCV—PTKLRPMSMLYY-DDGQNIIKKDIQNMIVEECCCS -SFHTAVVNQYRMRGLNPGT-VNSCQI—PTKLSTMSMLYF-DDEYNIVKRDVPNMIVEECCCA -TQYSKVLALYNQ—HNPGASAAPCCV—POALFPIPIVYY-VGRKPKV—FOLSMAIVPSCCCCA

FIG.3a

FIG. 3b

	• •																							
	[CF-83	33	8	32	7	်သင	∞	2 =	25	36) km	्र) (C)		2	3, 2	74	, ,	P	•	ς C	3 6	3	
	1CF-82	32	28	3	74	<u>, 32</u>	55		25	34	•	3	C.			2 %	23	2 2	5		· UU	2 : 1		
	16F-81	33	26	36		٠ د د د د د د د د د د د د د د د د د د	36	2	??	35			- ·	^ .		38	2 %	۲, 41	, -	•	»— •I			
8 \$ 4	iididal																25			. •		· ·	اـ	
A & n	iididal	37	32	42	40	- T-	4	200	30 20	42	**************************************	**************************************	•				26	1.1	•	•	1	1		
ט מ	ididal	23	20	25	24	Si	76	76	7	22	C	3	c				2 8		- .:		ş	ŧ		
	SIM							,								00		I		•	ì	4		
	BME-3																1	1			1	1		
	S-9MB	46	55	20	25	:.	5.75	42	=	61	S.	<u> </u>	C.		:	. 1	ı	ŧ			i	1		
	1-90	47	52	22	Ţ.		1973 1473	42	2	09	G	3	Ş		;	ŧ	1	ŧ			ì	1		
	Vgr-1	46		33	21	!•	35	\$	~~ <u>~</u>	19	5	3	•			ì	:	ı			1			7
	p-9M8	43	2	20	27		3	88	34	92	3		• 7			1		i			;	1	- •	(
	2-9M8	42	52	23	57	500m	57	4	33	8	• 1	ļ			1	1	ı	ŧ			i			L
	COF-9				•				-				;		:	1	3	1			1	ī		
	8-700	35	~		37	;		8	1	4	r					ı	į				4	i		
	COF-7	48	48	49	8		3	1	ı	ŧ	1	ŀ	;	-	÷	•					ı	ı		
	CDF-6				•			1	, 1	1 -	ı	4	:		. 1	ı	ı	1			1	1		
•	COF-5			- 1	• •	•			ı	ı	ŧ	:	ı		t.	ı	ı	1		_	i	í		
	CDF-3	20	45	<u>ຣ</u> ້	1	1	1	1	1	ı	į	<i>:</i>	1		F	. 1	•	ı			• • .	ı		
	CDE-5	33	8	•	t	3	·I	1	1	1	1	ı	ţ		į	ı	. 1		٠			1		
	CDF-1	90		i	t	F	1		ŧ	ľ	ŧ	1.	÷.		;	ı	t	i			ı	ı		
																	חמ	J BA	€ 60°.	. ***	~:	~		
		1	F-2	~	5-	9	-7	ω	တို	7-5	7-4	Ţ	-		~		ipi	ibi			-82	- B3		·
		COF	ලි	පි	3	පු	ලි	ලි	S	8	番	79	8	8	***	X X	든	민	=	8	16F.	1GF.		

	GICICICGGACGG FACATGCAC FAATATITICACTIGGCATTACTCAAAAGCAAAAAGAAG	60
61	AAATAAGAACAAGGGAAAAAAAAGATTGTGCTGATTTTTAAAATGATGCAAAAACTGCA	120
	M M O K I O	
121	AATGTATGTTTATATTTACCTGTTCATGCTGATTGCTGCTGGCCCAGTGGATCTAAATGA	180
	MYVYIYLFMLIAAGPVDINF	
181	GCGCAGTGAGAGAAAAATGTGGAAAAAGAGGGGCTGTGTAATGCATGTGCGTGGAG	240
	GSEREENVEKEGLCNACAWR	
241	ACAAAACACGAGGTACTCCAGAATAGAAGCCATAAAAATTCAAATCCTCAGTAAGCTGCG	- 300
	ONTRYSRIEAIKIQILSKIR	500
301	CCTGGAAACAGCTCCTAACATCAGCAAAGATGCTATAAGACAACTTCTGCCAAGAGCGCC	360
	LETAPNISKDAIROIIPRAP	500
361	TCCACTCCGGGAACTGATCGATCAGTACGACGTCCAGAGGGATGACAGCAGTGATGGCTC	420
	PLRELIDQYDVQRDDSSDGS	720
421	TTTGGAAGATGACGATTATCACGCTACCACGGAAACAATCATTACCATGCCTACAGAGTC-	480
	LEDDDYHATTETIITMPTES	400
481	TGACTTTCTAATGCAAGCGGATGGCAAGCCCAAATGTTGCTTTTTTAAATTTAGCTCTAA	540
	DFLMQADGKPKCCFFKFSSK	340
541	AATACAGTACAACAAAGTAGTAAAAAGCCCAACTGTGGATATATCTCAGACCCGTCAAGAC	600
	IQYNKVVKAQLWIYLRPVKT	000
601		660
	PITVFVQILRLIKPMKDGIR	000
661	CTATACTCCAATCCCATCTCTCAAACTTCACATCACCACC	720
	Y T G I R S L K L D M S P G T G I W Q S	120
721	TATTGATGTGAAGACAGTGTTGCAAAATTGGCTCAAACAGCCTGAATCCAACTTAGGCAT	780
	IDVKTVLQNWLKQPESNLGI	700
781	TGAAATCAAAGCTTTGGATGAGAATGGCCATGATCTTGCTGTAACCTTCCCAGGACCAGG	840
	EIKALDENGHDLAVTFPGPG	040
841	AGAAGATGGGCTGAATCCCTTTTTAGAAGTCAAGGTGACAGACA	000
	E D G L N P F L E V K V T D T P K R S R	300
901	GAGAGACTTTGGGCTTGACTGCGATGAGCACTCCACGGAATCCCGGTGCTGCCGCTACCC	060
	RDFGLDCDEHSTESRCCRYP	300
961		1020
	LTVDFEAFGWDWIIAPKRYK	1020
021	GGCCAATTACTGCTCAGGAGAGTGTGAATTTGTGTTTTTACAAAAATATCCGCATACTCA	1000
	ANYCSGECEFVFLQKYPHIH	1000
081	TCTTGTGCACCAAGCAAACCCCAGAGGCTCAGCAGGCCCTTGCTGCACTCCGACAAAAAT	1140
	L V H Q A N P R G S A G P C C T P T K M	1140
141	GTCTCCCATTAATATGCTATATTTTAATGCCAAAGAACAAATAATATATGGGAAAATTCC	1200
•	S P I N M L Y F N G K E Q I I Y G K I P	i ZUU
201	AGCCATGGTAGTAGACCGCTGTGGGTGCTCATGAGCTTTGCATTAGGTTAGAAACTTCCC	1250
	A M V V D R C C C S .	1200

FIG.5a

1261	AACTCATCCAACCTCTTCCCCTCAATTTCCAAACCTCTC	•
	AAGTCATGGAAGGTCTTCCCCTCAATTTCGAAACTGTGAATTCAAGCACCACAGGCTGTA	1320
1321	GGCCTTGAGTATGCTCTAGTAACGTAAGCACAAGCTACAGTGTATGAACTAAAAGAGAGAG	1380
1381	ATAGATGCAATGGTTGGCATTCAACCACCAAAATAAACCATACTATAGGATGTTGTATGA	1440
1441	TTTCCAGAGTTTTTGAAATAGATGGAGATCAAATTACATTTATGTCCATATATGTATATT	1500
1501	ACAACTACAATCTAGGCAAGGAAGTGAGAGCACATCTTGTGGTCTGCTGAGTTAGGAGGG	
1561	TATGATTAAAAGGTAAAGTCTTATTTCCTAACAGTTTCACTTAATATTTACAGAAGAATC	1560
1621	TATATCTACCCTTTCTAAACTCTACCATTCTTATCATTTAAAAAA	1620
1681	TATATGTAGCCTTTGTAAAGTGTAGGATTGTTATCATTTAAAAAACATCATGTACACTTAT	1680
	ATTIGTATIGTATACTIGGTAAGATAAAATTCCACAAAGTAGGAATGGGGCCTCACATAC	1740
1741	ACATTGCCATTCCTATTATAATTGGACAATCCACCACGGTGCTAATGCAGTGCTGAATGG	1800
1801	CTCCTACTGGACCTCTCGATAGAACACTCTACAAAGTACGAGTCTCTCTC	1860
1861	GIGCATCTCCACACACACACCACTAAGTGTTCAATGCATTTTCTTTAAGGAAAGAAGAAT	1920
1921	CTTTTTTTCTAGAGGTCAACTTTCAGTCAACTCTAGCACAGCGGGAGTGACTGCTGCATC	1980
1981	TTAAAAGGCAGCCAAACAGTATTCATTTTTTAATCTAAATTTCAAAATCACTGTCTGCCT	2040
2041	TTATCACATGGCAATTTTGTGGTAAAATAATGGAAATGACTGGTTCTATCAATATTGTAT	2100
2101	AAAAGACTCTGAAACAATTACATTTATATAATATGTATACAATATTGTTTTGTAAATAAG	
2161	IGICICCTTTTATATTTACTTTGGTATATTTTTTACACTAATGAAATTTCAAATCATTAAA	2160
2221	GTACAAAGACATGTCATGTATCACAAAAAAGGTGACTGCTTCTATTTCAGAGTGAATTAG	2220
2281	CACATTCAATACTCCTCTTAAAACTCTCTATCTTACATTACAACTCTCTCTATTCACACTCTCTCTATACACTCTCTCTATACACTCTCTCTATACACT	2280
2341	CAGATTCAATAGTGGTCTTAAAACTCTGTATGTTAAGATTAGAAGGTTATATTACAATCA	2340
	ATTTATGTATTTTTTACATTATCAACTTATGGTTTCATGGTGGCTGTATCTATGAATGTG	2400
2401	GCTCCCAGTCAAATTTCAATGCCCCACCATTTTAAAAATTACAAGCATTACTAAACATAC	2460
2461	CAACATGTATCTAAAGAAATACAAATATGGTATCTCAATAACAGCTACTTTTTTATTTTA	2520
2521	TAATTIGACAATGAATACATTICTTTTATTTACTICAGTTTTATAAATTGGAACTTTGTT	2580
2581	TATCAAATGTATTGTACTCATAGCTAAATGAAATTATTTCTTACATAAAAATGTGTAGAA	2640
2641	ACTATAAATTAAAGTGTTTTCACATTTTTGAAAGGC 2676	2010

FIG.5b

	AND THAN THAN SO AND	6 0
61		
ŲΙ	GCAAAAACTGCAACTCTGTGTTTATATTTTACCTGTTTATGCTGATTGTTGCTGGTCCAGT	120
121		
12+	GGATCTAAATGAGAACAGTGAGCAAAAAGAAAAGAAAATGTGGAAAAAGAGGGGGCTGTGTAATGC	180
181		•
	ATGTACTTGGAGACAAAACACTAAATCTTCAAGAATAGAAGCCATTAAGATACAAATCCT C T W R Q N T K S S R I E A I K I Q I I	240
241	CAGTAAACTTCGTCTGGAAACAGCTCCTAACATCAGCAAAGATGTTATAAGACAACTTTT	7.00
211	S K L R L E T A P N: 1:S K D V I R Q L L	300
301	ACCCAAAGCTCCTCCACTCCGGGAACTGATTGATCAGTATGATGTCCAGAGGGATGACAG	700
JO1	PKAPPLRELIDOYDVORDDS	360
361	CAGCGATGGCTCTTTGGAAGATGACGATTATCACGCTACAACGGAAACAATCATTACCAT	
J0 1		420
421	GCCTACAGAGTCTGATTTCTAATGCAAGTGGAAAACCCAAATGTTGCTTCTTAA	
121	PTESDFLMQVDGKPKCCFFK	480
481	ATTTAGCTCTAAAATACAATACAATAAAGTAGTAAAGGCCCAACTATGGATATATTTGAG	5.40
101		540
541		coo
	P V E T P T T V F V Q I L R L I K P M K	600
601	AGACGGTACAAGGTATACTGGAATCCGATCTCTGAAACTTGACATGAACCCAGGCACTGG	660
_	D G T R Y T G I R S L K L D M N P G T G	000
661	TATTTGGCAGAGCATTGATGTGAAGACAGTGTTGCAAAAATTGGCTCAAACAACCTGAATC	720
	IWQSIDVKTVLQNWLKQPES	
721	CAACTTAGGCATTGAAATAAAAGCTTTAGATGAGAATGGTCATGATCTTGCTGTAACCTT	780
	NLGIEIKALDENGHDLAVIF	700
781	CCCAGGACCAGGAGAAGATGGGCTGAATCCGTTTTTAGAGGTCAAGGTAACAGACACACC	840
	PGPGEDGLNPFLEVKVIDIP	010
841	AAAAAGATCCAGAAGGGATTTTGGTCTTGACTGTGATGAGCACTCAACAGAATCACGATG	900
	KRSRRDFGLDCDEHSTESRC	
901		960
	CRYPLTVDFEAFGWDWIIAP	
961	TAAAAGATATAAGGCCAATTACTGCTCTGGAGAGTGTGAATTTGTATTTTTACAAAAATA	1020
:	KRYKANYCSGECEFVFLQKY	
021	TCCTCATACTCATCTGGTACACCAAGCAAACCCCAGAGGTTCAGCAGGCCCTTGCTGTAC	1080
00.	PHTHLVHQANPRGSAGPCCT	
081	TCCCACAAAGATGTCTCCAATTAATATGCTATATTTTAATGGCAAAGAACAAATAATATA	1140
121	PTKMSPINMLYFNGKEQIIY	
141	TGGGAAAATTCCAGCGATGGTAGTAGACCGCTGTGGGTGCTCATGAGATTTATATTAAGC	1200
	GKIPAMVVDRCCCS.	

FIG.5c

1201	CITCATAACTICCIAAAACATCCAACCTITTCCCCTCAACAATTTTCAACCTCT	
1261	GITCATAACTICCTAAAACATGGAAGGTTTTCCCCTCAACAATTTTGAAGCTGTGAAATT	1260
1321	AAGTACCACAGGCTATAGGCCTAGAGTATGCTACAGTCACTTAAGCATAAGCTACAGTAT	1320
	GTAAACTAAAAGGGGGAATATATGCAATGGTTGGCATTTAACCATCCAAACAAA	1380
1381	AAGAAAGTTTTATGATTTCCAGAGTTTTTGAGCTAGAAGGAGATCAAATTACATTTATGT	1440
1441	TCCTATATATTACAACATCGGCGAGGAAATGAAAGCGATTCTCCTTGAGTTCTGATGAAT	1500
1501	TAAAGGAGTATGCTTTAAAGTCTATTTCTTTAAAGTTTTGTTTAATATTTTACAGAAAAT	1560
1561	CCACATACAGTATIGGTAAAATGCAGGATTGTTATATACCATCATTCGAATCATCCTTAA	1620
1621	ACACTTGAATTTATATTGTATGGTAGTATACTTGGTAAGATAAAATTCCACAAAAATAGG	1680
1681	GATGGTGCAGCATATGCAATTTCCATTCCTATTATAATTGACACAGTACATTAACAATCC	1740
1741	ATGCCAACGGTGCTAATACGATAGGCTGAATGTCTGAGGCTACCAGGTTTATCACATAAA	
1801	AAACATTCAGTAAAATAGTAAGTTTCTCTTTTCTTCAGGTGCATTTTCCTACACCTCCAA	1800
1861	ATGAGGAATGGATTTTCTTTAATGTAAGAAGAATCATTTTTCTAGAGGTTGGCTTTCAAT	1860
1921	TCTGTAGCATACTTGGAGAAACTGCATTATCTTAAAAGGCAGTCAAATGGTGTTTGTT	1920
1981	TATCAAAATGTCAAAATAACATACTTGGAGAAGTATGTAATTTTGTCTTTGGAAAATTAC	1980
2041	AACACTGCCTTTGCAACACTGCAGTTTTTATGGTAAAATAATAGAAATGATCGACTCTAT	2040
2101	CAATATICTATAAAAACACICAAACAATCCATTTATATATA	2100
2161	CAATATTGTATAAAAAGACTGAAACAATGCATTTATATATA	2160
2221	GTAAATAAGTGTCTCCTTTTTTATTTACTTTGGTATATTTTTACACTAAGGACATTTCAA	2220
2281	ATTAAGTACTAAGGCACAAAGACATGTCATGCATCACAGAAAAGCAACTACTTATATTTC	2280
	AGAGCAAATTAGCAGATTAAATAGTGGTCTTAAAACTCCATATGTTAATGATTAGATGGT	2340
2341	TATATTACAATCATTTTATATTTTTTTACATGATTAACATTCACTTATGGATTCATGATG	2400
2401	GCTGTATAAAGTGAATTTGAAATTTCAATGGTTTACTGTCATTGTGTTTAAATCTCAACG	2460
2461	TICCATTATTITAATACTIGCAAAAACATTACTAAGTATACCAAAATAATTGACTCTATT	2520
2521	ATCTGAAATGAAGAATAAACTGATGCTATCTCAACAATAACTGTTACTTTTATTTTATAA	2580
2581	TIGATAATGAATATTICTGCATTTATTTACTTCTGTTTTGTAAATTGGGATTTTGTT	2640
2641	AATCAAATTTATTGTACTATGACTAAATGAAATTATTTCTTACATCTAATTTGTAGAAAC	2700
2701	AGTATAAGTTATATAAAGTGTTTTCACATTTTTTTGAAAGAC 2743	2700

FIG.5d

	MMQKLQMYVYIYLFMLIAAGPVDLNEGSEREENVEKEGLCNACAWRQNTR	50
1	MOKLOLCVYTYLFMLTVAGPVDLNENSEQKENVEKEGLCNACTWRONTK	49
51	YSRIEAIKIQILSKLRLETAPNISKDAIRQLLPRAPPLRELIDQYDVQRD	100
50	SSRIEAIKIOILSKLRLETAPNISKDVIRQLLPKAPPLRELIDQYDVQRD	99
101	DSSDGSLEDDDYHATTETI I TMPTESDFLMQADCKPKCCFFKFSSK I QYN	150
100	DSSDGSLEDDDYHATTETIITMPTESDFLMQVDGKPKCCFFKFSSKIQYN	149
151	KVVKAQLWIYLRPVKTPTTVFVQILRLIKPMKDGTRYTGIRSLKLDMSPG	200
150	KVVKAQLWIYLRPVETPTTVFVQILRLIKPMKDGTRYTGIRSLKLDMNPG	199
201	TG IWQS I DVKTVLQNWLKQPESNLG IE I KALDENGHDLAVTFPGPGEDGL	250
200	TG I WQS I DVKTVLQNWLKQPESNLG IE I KALDENCHDLAVTFPGPGEDGL	249
251	NPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWII	300
250	NPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWII	299
301	APKRYKANYCSGECEF VF LQKYPHTHL VHQANPRGSAGPCCTPTKMSP IN	350
300	APKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPIN	349
351	MLYFNGKEQIIYGKIPAMVVDRCGCS 376	
350	MLYFNGKEQIIYGKIPAMVVDRCGCS 375	

FIG.7

FIG.8

TOTAL

SOLUBLE

INSOLUBLE (LOAD)

PELLET

FLOW-THROUGH

WASH pH8

WASH pH6.3

FRACTION 1

FRACTION 2

FRACTION 3

FRACTION 4

FRACTION 5

FRACTION 6

pH5.9

F I G. 9

FIG. 10A

HEART

LUNG

THYMUS

BRAIN

KIDNEY

SEMINAL VESICLE

PANCREAS

INTESTINE

SPLEEN

TESTIS

MUSCLE

LIVER

OVARY

FAT

UTERUS

2.9 kb

WO 98/33887 PCT/US98/02479

18/32

12.5 d PLACENTA 14.5 d PLACENTA 12.5 d EMBRYO 18.5 d EMBRYO

F I G. 10b

rigure Za

11.2 kb - - - 10.4 kb -

Pigure 176

Figur Ba

Figure 13b bottom

FIGURE 144

	./1								•		31/	11								
à	CCC	€7.7	بككك	cts	CAA	CTC	TGT	CII	TAT	ATI	TAC	CTC	TT	ÄTC		: ATT	r Grr			CCA
<u></u>	•	Q	X	ī.	2	i	Ċ	*/	Y	I	Y:	L	F	M	L	Ī	v	i i	G	p
Ó	11/	24									91/	31								
C	TG	-GAT	CTA	447	GAĞ	AAC	AGT	SAG	CAA	AAA	GAA	AAT	GTO	. C33		Cac		· .		AAT
V	•	D .	٤	×	Ξ	N	S	Ξ	0	K	E	N_	_ V.		י ליינילי	- CAC			To	N
:	21	/41			٠,										- K-			L	Ç	21
G	C.A.	TST	ACT	733	ASA	CAA	AAC	ACT	ààà	<u>.</u> الم	TCA	101	273	رنمن						ATC
Ä		c	- .	. 🚧 .	7.	C:	54	A	ĸ	5	ς	D	7	=	, ,,	ATT	AAA	ATA	CAA	I
	`q`⁺∵	/61	<u>-</u>	J. P. 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	·.·						711	 /71	· ~==		. ^		_ <u>K</u>	I	.Q	_I
			277		,- ;-		C2 2	2~1		C-T	211) / L								
٠,		S	*	,	2	1	, CAA	#CA	``	247	***	ALC	ACC	4.4.4	GAT	CCT	ATA	AGA	CYA	CTT
··· _		3 /9:		-		-	Ξ	•	A	•	271	40.	5	\mathbf{K}^*	D	λ	I	3	Č.	Ľ
					~~~	·	 -				271	/91								
•	**		·	<i>ن</i> د.	٠.,	Ç4	CIC	253	GAA	CTG	ATT	GAT	CYC	TAT	GAT	GTC	CAG	AGG	GAT	$C\lambda C$
L	•		.8		7	-	L	2	E	L			Q	Å	D	V	Q	R	D	D .
_		/101			<u> </u>						331,	/111			;		•			
Ą	ĢC.	ACC	GAT	GGC	777	TTG	GAA	GAT	GAC	CAT	TAT	CAC	GCT	AÇA	ACG	GAA	ACA	ATC	-	ACC
S		, 5 .	ב	G	5	<u>r</u> _	ε	Ď	D	D :	Y	H	A	T	T	Ξ		I	-	T
3	51/	/121									391	131					,	_	_	•
A	TG	CCT	XCX	ÇÀG	TÇT	GAT	TTT	TTA	ATG	$C\lambda\lambda$	GTG	CAT	CGA	AAA	כבכ	AAA	TGT	70.		
×		0	~	Ξ,	S	D	F	<u>L</u>	M	Q	V	D	G ·	ĸ	,	ĸ	Ċ		=	=
4	21/	/141		. •					. ′		451	151				•		_	•	•
۸.	$\mathcal{K}\mathcal{F}$		AGC	TCT	AAA	$\lambda T \lambda$	CAA	TAC	ÄAT	λλλ	GTG	GTA	AAG	C	C22'	ونس		303		~~~
X		7	s .	. \$	X	I	Q	Y	N	*	V	V	K	3	0		W			
4	31/	/151									511/	77	••		¥	L		I, ``	•	ب
	S.A.	:::	<u> </u>	CAS	2.27	c : : :	ACA	ACA	GTS	~~~			1	<u></u>	,		ATC			-
3.		?	v.	Ξ	~	Ç	T	7	v	F	V	0	I	L		٠	_			
5	::/	/131								•	571/	_	•	L		.	÷ .	K	•	<u>M</u>
Ä	3.3	GAC	CĠŢ	ACA:	AGG	227	ACT	GGA	atc.	CCL	TCT		333		~ . ~					
3		D	G -	T	3	Y	T	G	T	ם	5	T.	50	Cara	GAC	ATG			CCC	ACT
ő,	a 1 -/	201		•	••	•	•	•	•		631/		~	L	D .	.	N ,	P	G	T
							•				07 T\	411				•				•
-		3		Ċ1G	100	منعت 5	$C \supset T$		335	303										
ے ۔	•	-	-TGG	CAG	AGC	ATT	CAT	GTG	AAG	ACA	GTG	TTG	CAA				AAA	CAA	CCT	GAA
		-	∓ ∞ ¥	CAG Q	yac s	ATT I	D GYI	GTG V	AAG K	ACA T	V	L	CAA Q	AAT N		CTC L		CAA Q	CCT	GAA E
	61/	1 1221	*	Q		Ī.	Đ	V	X	7	V 691/	L 231	Q	N	W	L	x	Q`	D.	É
T	61/ cc	221 AAC	" TTA	GGC	ATT	E.	D ATA	V AAA	x cct	T TTA	V 691/ GAT	L 231 Gàg	Q AAT	N GGT	CYT	L GAT	x	Q`	D.	É
T:	61/ CC	/221 /AAC N	" TTA	GGC		E.	D ATA	V	x cct	T TTA	V 691/ GAT D	L 231 Gàg E	Q AAT	N	CYT	L GAT	x CTT	Q`	P GTA	É
T(S	61/ cc 21/	221 AAC N 241	TTA L	Q GGC G	ATT	I GAA E	D ATA I	V AAA K	K GCŤ A	T TTA L	V 691/ GAT D 751/	L 231 GAG E	Q AAT N	c c v	W CAT H	CAT D	CTT L	Q GCT A	P GTÀ V	E ACC T
T(5)	61/ CC 21/ TC	221 AAC N 241 CCA	TTA L CGA	GGC G CCA	ATT I	САА Е	ATA I GAT	XAA K GGG	GCT A CTG	TTA L AAT	V 691/ GAT D 751/ CCC	L 231 GAG E 251	Q AAT N TTA	N GGT G GAG	W CAT H GTC	CAT D	CTT L	Q GCT A	P GTÀ V	E ACC T
T(5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	61/ CC 21/ TC	221 AAC N 241 CIA P	TTA L	GGC G CCA	ATT	САА Е	ATA I GAT	V AAA K	GCT A CTG	T TTA L	V 691/ GAT D 751/ CCC P	L 231 GAG E 251 TTT F	Q AAT N TTA	N GGT G GAG	W CAT H GTC	CAT D	CTT L	Q GCT A ACA	P GTÀ V	E ACC T
TO 5	61/ CC 21/ TC	221 AAC N 241 CCA P 251	TTA L CGA G	GGC G CCA 2	ATT I GGA G	E CAA E	ATA I GAT	XAA K GGG G	CTG	TTA L AAT N	V 691/ GAT D 751/ CCC P 811/	L 231 GAG E 251 TTT F	Q AAT N TTA L	N GGT G GAG E	W CAT H GTC V	L GAT D AAG K	CIT L GTA V	Q GCT A ACA T	GTA V GAC D	E ACC T ACA T
70 70 70 70 70	61/ CC 21/ TC 91/ CA	221 AAC N 241 CCA P 251 AAA	TTA L CGA G AGA	GGC G CCA 2	ATT I GGA G	Ε (ΑΑ Ε (ΑΑ Ε Α Α Α Α Α Α Α	ATA I GAT D GAT	XAX K GGG G	CTG L GGT	TTA L AAT N	V 691/ GAT D 751/ CCC P 811/	L 231 GAG E 251 TTT F	Q AAT N TTA L	N GGT G GAG E	W CAT H GTC V	L GAT D AAG K	CIT L GTA V	Q GCT A ACA T	GTA V GAC D	E ACC T ACA T
TS 575 CC P	61/ CC 21/ TC 91/ CA	221 AAC N 241 CCA P 251 AAA K	TTA L CGA G	GGC G CCA 2	ATT I GGA G	Ε (ΑΑ Ε (ΑΑ Ε Α Α Α Α Α Α Α	ATA I GAT D GAT	XAA K GGG G	CTG	TTA L AAT N	V 691/ GAT D 751/ CCC P 811/	231 GAG E 251 TT TGT	Q AAT N TTA L GAT	N GGT G GAG E	W CAT H GTC V	L GAT D AAG K	CTT L GTA V	Q GCT A ACA T	GTA V GAC D	E ACC T ACA T
TO 5 77 77 77 77 77 77 77 77 77 77 77 77 7	61/ CC 21/ TC 91/ CA	221 AAC N 241 CCA 251 AAA K 281	TTA L CGA G AGA R	CCA CTCC S	ATT GGA G AGA R	Σ CAA E CAA E ACC R	ATA I GAT D GAT D	XAA K GGG G	CTG L GGT G	TTA L AAT N CTT L	V 691/ GAT D 751/ CCC P 811/ GAC D	L 231 GAG E 251 TT TGT C 291	Q AAT N TTA L GAT D	M GGT GAG E GAG E	W CAT H GTC V CAC H	L GAT D AAG K TCA S	T CTT L GTA V ACA T	Q GCT A ACA T GAA E	GTA V GAC D TCG S	e ACC T ACA T CGA R
TO 5 77 CO P 85 TO	61/ CC 21/ TC 91/ CA	221 AAC N 241 CCA 251 AAA K 281	TTA L CGA G AGA R CGT	CCA CTAC TAC	ATT GGA G AGA R COT	E GAA E GAA E AGG R	ATA I GAT D GAT D	XAA K GGG G	CTG L GGT G	TTA L AAT N CTT L	V 691/ GAT D 751/ CCC P 811/ GAC D	L 231 GAG E 251 TT TGT C 291	Q AAT N TTA L GAT D	M GGT GAG E GAG E	W CAT H GTC V CAC H	L GAT D AAG K TCA S	T CTT L GTA V ACA T	Q GCT A ACA T GAA E	GTA V GAC D TCG S	e ACC T ACA T CGA R
TO S 77 77 77 77 77 77 77 77 77 77 77 77 7	61/ CC 21/ TC 91/ CA 41/	221 AAC N 241 CCA P 251 AAA K 281 TGT	TTA L CGA G AGA R	CCA CTAC TAC	ATT GGA G AGA R COT	E GAA E GAA E AGG R	ATA I GAT D GAT D ACT	AAA K GGG G TTT F	CTG L GGT G	TTA L AAT N CTT L	V 691/ GAT D 751/ CCC P 811/ GAC D	231 GAG E 251 TT TGT C 291 GCT	Q AAT N TTA L GAT D	M GGT GAG E GAG E	W CAT H CAC H TGG	L GAT D AAG K TCA S	TGG	Q GCT A ACA T GAA E	GTA V GAC D TCG S	E ACC T ACA T CGA R
TO S 77 77 77 77 77 77 77 77 77 77 77 77 7	61/ CC 21/ TC 91/ CA 41/ CC	221 AAC N 241 CCA 251 AAA K 281 TGT G	TTA L CGA G AGA R CGT R	CCA CCA TCC S TAC	ATT GGA G AGA R COT P	CAA E CAA E ACC R CTA L	D ATA I GAT D GAT D ACT T	XAA K GGG G TTT F	CTG L GGT G GAT D	TTA L AAT N CTT L TTT F	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAX E 931/	L 231 GAG E 251 TGT C 291 GCT A	Q AAT N TTA L GAT D	GAG E GGA	W CAT H CAC H TGG W	CAT D AAG K TCA S GAT D	TGG	Q GCT A ACA T GAA E ATT I	GTA V GAC D TCG S ATC	E ACC T ACA T CGA R CCT A
70 P 80 C 90 C C	61/ CC 21/ TC 91/ CA 41/ CC	221 AAC N 241 CCA 251 AAA TGT 301 AAA	TTA L CGA G AGA R CGT R	CCA CCA TCC S TAC	ATT GGA G AGA R COT P	CAA E CAA E ACC R CTA L	D ATA I GAT D GAT D ACT T	XAA K GGG G TTT F	CTG L GGT G GAT D	TTA L AAT N CTT L TTT F	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAX E 931/	L 231 GAG E 251 TGT C 291 GCT A	Q AAT N TTA L GAT D	GAG E GGA	W CAT H CAC H TGG W	CAT D AAG K TCA S GAT D	TGG	Q GCT A ACA T GAA E ATT I	GTA V GAC D TCG S ATC	E ACC T ACA T CGA R CCT A
TO 5 77 TO P 8 70 CO P CO P	61/ CC 21/ TC 91/ CA 41/ CT	221 AAC N 241 CCA P 251 AAA X 281 TCT C 301 AAA K	TTA L CGA G AGA R CGT R	CCA CCA CCA TCC S TAC Y TAT	ATT GGA G AGA R COT P	2 CAA E CAA E ACC R CTA L	D ATA I GAT D ACT T AAT	XAA K GGG G TTT F	CTG L GGT G GAT D TCC	TTA L AAT N CTT L TTT F	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAX E 931/	231 GAG E 251 TGT C 291 GCT A 311 GAG	Q AAT N TTA L GAT D CTT L	GAG E GGA	W CAT H CAC H TGG W	L GAT D AAG K TCA S GAT D	TGG	Q GCT A ACA T GAA E ATT I TTA	GTA V GAC D TCG S ATC	E ACC T ACA T CGA R GCT A
TO S 77 TO P 8 TO P 9 CO P 9 6	61/ CC 21/ TC 91/ CA 41/ CC	221 AAC N 241 CCA 251 AAA TGT 301 AAA K 321	TTA L CGA G AGA R AGA R	CCA CCA P TCC S TAC Y	ATT GGA G AGA R COT P AAG K	2 GAA E GAA E AGG R CTA L GGG A	D ATA I GAT D GAT T AAT N	AAA K GGG G TITT F GTG V TAC Y	CTG L GGT G GAT D TGC	TTA L AAT N CTT L TTT F TCT S	V 691/ GAT D 751/ CCC P 811/ GAC D 6AA E 931/ GCA G	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E	Q AAT N TTA L GAT D CTT L	M GGT GAG E GAG E GAA E	W CAT H GTC V CAC H TGG W TTT F	CTA	TTT F	Q GCT A ACA T GAA E ATT I TTA L	GTA V GAC D TCG S ATC I CAA	E ACC T ACA T CGA R GCT A
TO S 77 TF 79 CO P 86 TO CO P 96 TA	61/ CC 21/ TC 91/ CA 41/ CC 71/ TT	221 AAC N 241 CCA 251 AAA K 281 TCT 301 AAA K 321 CCT	TTA L CGA G AGA R CGT R AGA R	OGC G CCA P TCC S TAC Y TAT Y	ATT I GGA G AGA R COT P AAG K CAT	CAA CAA CAA CTA CCC A CTC	D ATA I GAT D GAT T AAT N GTA	AAA K GGG G TITT F GTG V TAC Y	X GCT A CTG L GGT G GAT D TCC CAA	TTA L AAT N CTT L TTT F TCT S	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GGA GGA	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E	Q AAT N TTA L GAT D CTT L TGT C	M GGT GAG E GGA G	W CAT H GTC V CAC H TGG W TTT F	CTA	TTT F	Q GCT A ACA T GAA E ATT I TTA L	GTA V GAC D TCG S ATC I CAA Q	E ACC T ACA T CGA R GCT A AAA K
TO S 77 TF 79 CO P 86 TO CO P 96 TA	61/ CC 21/ TC 91/ CA 41/ CC 71/ TT	221 AAC N 241 CCA 251 AAA TGT 301 AAA K 321	TTA L CGA G AGA R CGT R AGA R	OGC G CCA P TCC S TAC Y TAT Y	ATT I GGA G AGA R COT P AAG K CAT	CAA CAA CAA CTA CCC A CTC	D ATA I GAT D GAT T AAT N GTA	AAA K GGG G TITT F GTG V TAC Y	X GCT A CTG L GGT G GAT D TCC CAA	TTA L AAT N CTT L TTT F TCT S	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GGA GGA	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E	Q AAT N TTA L GAT D CTT L TGT C	M GGT GAG E GGA G	W CAT H GTC V CAC H TGG W TTT F	CTA	TTT F	Q GCT A ACA T GAA E ATT I TTA L	GTA V GAC D TCG S ATC I CAA Q	E ACC T ACA T CGA R GCT A AAA K
TS 77 TF 77 CP 8 TC 9 CP 9 TS 9 10	61/ CC 21/ TC 31/ CA 41/ CC 51/ CT 51/ CC 51/	221 AAC N 241 CCA 251 AAA 281 TGT 301 AAA CCT 241	TTA L CGA G AGA R CGT R AGA E	CCA CCA CCA TAC TAC Y TAT Y ACT T	ATT GGA G AGA R COT P AAG K CAT H	- CAA Ε CAA Ε CAA Ε CAA CTA CTA CTC A	D ATA I GAT D ACT T AAT N CTA V	AAA K GGC G TIT F GTC V TAC Y	COTTO A COTTO L COTTO CAA Q	TTA L AAT N CTT L TTT F TCT S GCA A	V 691/ GAT D 751/ CCC P 811/ GAC D 751/ GAX GGA GGA GGA GGA 1051	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E 331 CCC P /351	Q AAT N TTA L GAT D CTT L TGT C AGA R	M GGT GAG E GAA GGAA E GGT G	W CAT H GTC V CAC H TGG W TTT F	CTA CCA A	TTT F	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC CAA Q TCC	E ACC T ACA T CGA R CCT A AAA K TGT C
TO S 77 TO P 8 TO O P 9 TO X 10 A C	61/ CC 21/ TC 91/ TC 31/ TC 21/ CT 21/	221 AAC N 241 CCA 251 AAA 281 TCT 301 AAA CCC 241 CCC 241	TTA L CGA G AGA R CGT R AGA R AGA R	Q GGC G CCA ? TCC S TAC Y TAT Y ACT T	ATT GGA G AGA R COT P AAG K CAT H ATG	1 GAA Ε GAA Σ ACC A CTA L CCC A CTC TCT	GAT D GAT T AAT N CTA V	AAA K GGC G TTT F GTC V TAC Y CAC H	CTG L GGT G GAT D CAA Q AAT	TTA L AAT N CTT L TTT F TCT S GCA A ATG	V 691/ GAT D 751/ GAC B71/ GAA E 931/ GGA G91/ AAC N 1051	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E 331 CCC P /351	Q AAT N TTA L GAT D CTT L TGT C AGA R	M GGT GAA E GGT G	W CAT H GTC V CAC H TCG W TTT F	CAT	TCG W TTT F CGC G	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC I CAA Q TCC	E ACC T ACA T CGA R GCT A AAA R TGT C
TO 5 77 TO P 8 TO 9 CO P 9 TO A TO	61/ CC 21/ TC 31/ CA 41/ CT 51/ CT 51/	221 AAC N 241 CCA 281 TGT 301 AAA S21 CCC 241 CCC 2	TTA L CGA G AGA R CGT R AGA R AGA T	Q GGC G CCA ? TCC S TAC Y TAT Y ACT T	ATT GGA G AGA R COT P AAG K CAT H ATG	1 GAA Ε GAA Σ ACC A CTA L CCC A CTC TCT	GAT D GAT T AAT N CTA V	AAA K GGC G TTT F GTC V TAC Y CAC H	CTG L GGT G GAT D CAA Q AAT	TTA L AAT N CTT L TTT F TCT S GCA A ATG	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GGA G 991/ AAC N 1051	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E 331 CCC P /351	Q AAT N TTA L GAT D CTT L TGT C AGA R	M GGT GAA E GGT G	W CAT H GTC V CAC H TCG W TTT F	CAT	TCG W TTT F CGC G	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC I CAA Q TCC	E ACC T ACA T CGA R GCT A AAA R TGT C
TO 5 77 CO P 8 TO 9 CO P 9 TA Y 10 A T 10	61/ CC 21/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/	221 AAC 241 251 AA 281 TGT 301 AAA 321 CC 241 CC 241 CC 241 CC 241 CC 241	TTA L CGA G AGA R CGT R AGA R CAT E ACA T	O GGC G GCA P TGC S TAC Y TAT Y AGT T AAG K	ATT GGA G AGA R COT P AAG K CAT H ATG M	CAA E CAA E CAA CTA CTA CTC A CTC A	D ATA I GAT D ACT T AAT N CTA V CCA P	AAA K GGG G TIT F GTG V TAC Y CAC H ATT	COTTO	TTA L AAT N CTT L TTT F TCT S GCA A ATG M	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GCA G 991/ AAC N 1051 CTA L 1111	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E 331 CCC P /351 TAT	Q AAT N TTA L GAT D TTT C AGA R TTT	M GGT GAG E GGA E GGA E GGT G AAT N	W CAT II GTC V CAC II TGG W TTT F TGA S GGG	L GAT D AAG K TCA S GAT D GTA V GCA A AAA K	TCG W TTT F CGC G	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC I CAA Q TCC	E ACC T ACA T CGA R GCT A AAA R TGT C
TO 5 77 CO P 8 TO 9 CO P 9 TA Y 10 A T 10	61/ CC 21/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/ CC 31/	221 AAC 241 251 AA 281 TGT 301 AAA 321 CC 241 CC 241 CC 241 CC 241 CC 241	TTA L CGA G AGA R CGT R AGA R CAT E ACA T	O GGC G GCA P TGC S TAC Y TAT Y AGT T AAG K	ATT GGA G AGA R COT P AAG K CAT H ATG M	CAA E CAA E CAA CTA CTA CTC A CTC A	D ATA I GAT D ACT T AAT N CTA V CCA P	AAA K GGG G TIT F GTG V TAC Y CAC H ATT	COTTO	TTA L AAT N CTT L TTT F TCT S GCA A ATG M	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GCA G 991/ AAC N 1051 CTA L 1111	L 231 GAG E 251 TGT C 291 GCT A 311 GAG E 331 CCC P /351 TAT	Q AAT N TTA L GAT D TTT C AGA R TTT	M GGT GAG E GGA E GGA E GGA E GGT G AAT N	W CAT II GTC V CAC II TGG W TTT F TGA S GGG	L GAT D AAG K TCA S GAT D GTA V GCA A AAA K	TCG W TTT F CGC G	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC I CAA Q TCC	E ACC T ACA T CGA R GCT A AAA R TGT C
TO 5 7 TO P 8 TO 9 CO P 9 TO A TO TA	51/ CC 21/ SC 41/ SC / CT 31/ ST 31/ ST 31/	221 AAC N 241 251 AAC 251 AAC 251 CO 301 AAA 321 CC 27341 CC 27361	TTA L CGA G AGA R CGT R AGA T AAA	GGC G CCA ? TCC S TAC Y TAT Y ACT T AAG K ATT	ATT GGA G AGA R COT P AAG K CAT H ATG M	GAA E GAA E GAA CTA CTA CTC A CTC CCC A CTC CCC CCC C	GAT D GAT T AAT N CTA V	AAA K GGG G TITT F GTG V TAC Y CAC H ATT I	CTA CTA CTA CTA CTA CTA CTA	TTA L AAT N CTT L TTT F TCT S GCA A ATG M GAC	V 691/ GAT D 751/ CCC P 811/ GAC D 871/ GAA E 931/ GCA G 991/ AAC N 1051 CTA L 1111	L 231 GAG 251 TT 271 TGT 291 GAG 331 GAG 231 CCC 7351 TAT 7371	Q AAT N TTA L GAT D CTT L TGT C AGA R	M GGT GAG E GAA E GAA E AAT N TOC	W CAT II GTC V CAC II TGG W TTT F TGA S GGG	L GAT D AAG K TCA S GAT D GTA V GCA A AAA K	TCG W TTT F CGC G	Q GCT A ACA T GAA E ATT I TTA L CCT ?	GTA V GAC D TCG S ATC I CAA Q TCC	E ACC T ACA T CGA R GCT A AAA R TGT C

Baboon CDF-8

FIGURE 14b

1/1										31/11								
	CAR	AAA	CTG	CAA	ATC	TOT	CTT	TAT	ATT	TAC ·C	ra T	T AT	: `C T0		· CTT			
M		K			Ī	S	V	Y	I	YL	£	М	L.	I	V.		G	
61/2	-								_	91/31		•••	-	•	•	Λ	J	. F
GTG		CTG	447	GAG.	AAC	AGC	CAG	CAG	AAC	GAA A	AT GT	'G GA		CAC	ČES		سنات	3.500
v			N		N	Ś		Q	K			Ē		Ξ	G	_	-	N
121/	41							~		151/5		~	••	_	J			è.
		775	TÖS	355	GAA	AAC	ACT	ACA	TCC	TCA A		Ά Ga	. GCC	ATA	444	3~~	Cla	ATC
	С					И		T		S R					K			I
181/	61									211/7				-		-	*	
CTC	AGT	$\lambda\lambda\lambda$	\subset	CCC	CTG	CYY	ACA	CCT	CCT	AAC A	C AC	C AA	GAT	GĊT	ATC	AGA	CAA	CTT
				3		E	T	λ		N I					I	Ŗ	_	L
241/			*							271/9	-						_	
							CTG	Ģλλ	CTG	ATT G	KD TA	G TT	CAT	GTC	CAG	AGA	GAT	GĆC
Ĺ	-	X	À	?	Þ	L	L	Ξ	L	I D	_	Ę	D	V	Q	R	D	λ
301/										33.1/1	_							
										TAC C.		C AGG	; ACG	Gλλ	ACG	CIC	ATT	ACC
S		ס	G	5	L	E	D	D	D	YE		R	T	Ξ	T	V	<u> </u>	T
361/		,	_		C 3 TT		~~.			391/1	_				_			
	b	7	E	5	D					CTC C					_			
421/		•	-	.	U	L	L	1	Q	V E		K	P	K	C	C	Ē	F
		AG-	سبب	330	2-2	CAA	710	227	222	CTA G		دخم م			m aa		- > ÷	
X		S	s	λ 	1	Q				L · V			_	£ 7.0		_		
431/		•	_	••	-	~	• .	••	••	511/1		Α.	Q	L	W	I	Ÿ	L
A33	CIT	CTI	2.3	257	CIT	GEG	ACA	GTG		כדס כ	_		: 20:		3-4	1::		3 ~ ~
Ξ.	7	•;	:	7		A		v						<u>:</u>	I	X	5	M.
541/										571/1		_	••	-	-	•••	•	••
- 4											-							
		GG T	ACA	AGG	TAT	ACT	GGA	ATC	CGA		-	A CTI	GAC	ATG	λλο	CCA	GGC	ACT
1.11	GAC	GGT G	ACA T		TAT Y				CGA P.	TCT C	-	_	GAC D	ATG H	XXC N	CCA P	csç c	ACT T
ኢትአ ኧ 601/	GAC D 201	G	T	ર	Å	T .	C	I	P. .	TCT C'S L 631/2:	S λλ K .1	L	D	Ä	N	5	G	Ţ
ኢትአ ኛ 601/ GOT	GAC D 201 ATT	G TGG	T CÀG	R AGC	Y ATT	T	c ctc	I AAG	R ACA	TCT CTS L 631/2:	'S λλ K .1 'G Cλ	L G ARC	D TGG	C.C.C H	N	5	G	Ţ
AAA K 601/ GGT G	GAC D 201 ATT	G TGG	T CÀG	ર	Y ATT	T	c ctc	I AAG	R ACA	TCT CT S L 631/2: GTG TT V L	K K II C CA Q	L G ARC	D	C.C.C H	N	5	G	Ţ
AAA K 601/ GST G 661/	GAC D 201 ATT 7 221	G TGG W	T CAG Q	R AGC S	i Yll A	T GAT D	G GTS V	i aac K	P. ACA T	TCT CT S L 631/2: GTG T V L 631/2:	K K I G CA Q	L G ARC N	D TGS W	M CTC L	N AAA K	б С 77 5	G CCT P	T GAA E
AAA K 601/ GGT G 661/ TCC	GAC D 201 ATT I 221 AAC	C TCC W TTA	T CAG Q GGC	R AGC S ATT	Y ATT I GAA	T GAT D ATC	G GTG V AAA	I AAG K GCT	P. ACA T TTA	TCT CT S L 631/2: GTG T V L 631/2: GAT GAT	K I C CA Q I G AA	L G AAG N T GGG	TGS W CAT	M CTC L GAT	N AAA K CTT	? C ² 23 Q CCT	G CCT P GTA	T GAA E ACC
AAA K 601/ GGT G 661/ TCC S	GAC D 201 ATT 7 221 AAC N	G TGG W	T CAG Q GGC	R AGC S ATT	Y ATT I GAA	T GAT D ATC	G GTS V	I AAG K GCT	P. ACA T TTA	TCT CT S L 631/2: GTG T V L 691/2: GAT GE D E	K K I G CA Q I G AA N	L G AAG N T GGG	D TGS W	M CTC L	N AAA K	? C ² 23 Q CCT	G CCT P GTA	T GAA E
AAA K 601/ GGT G 661/ TCC S 721/	GAC D 201 ATT 7 221 AAC N 241	C TCC W TTA L	T CAG Q GGC G	R AGC S ATT I	Y ATT I GAA E	T GAT D ATC I	GTG V AAA K	I AAG K GCT A	P. ACA T TTA L	TCT CT S L 631/2: GTG T V L 631/2: GAT GE T T T T T T T T T T T T T T T T T T	K I G CA Q I G AA N I	L G AAC N T GGC G	D TGG W CAT H	M CTC L GAT D	N AAA K CTT L	? C ² -X Q CCT A	CCT P GTA V	T GAA E ACC T
AAA K 601/ GGT G 661/ TCC S 721/ TTC	GAC D 201 ATT 7 221 AAC N 241 CCA	C TCC W TTA L	T CAG Q GGC GGC G	AGC S ATT I	Y ATT I GAA E GAA	T GAT D ATC I GAT	GTG V AAA K	I AAG K GCT A	P. ACA T TTA L ACT	TCT CT S L 631/2: GTG T V L 631/2: GAT GE T T T T T T T T T T T T T T T T T T	C AA C CA C AA C N C TTT	L G AAG N T GGG G	TGG W CAT H	M CTC L GAT D	N AAA K CTT L GTA	? C2.1 Q CCT 1 A AC.1	G CCT P GTA V	T GAA E ACC T
AAA K 601/ GGT G 661/ TCC S 721/	GAC D 201 ATT 7 221 AAC N 241 CCA	G TGG W TTA L GAA E	T CAG Q GGC G	R AGC S ATT I	Y ATT I GAA E GAA	T GAT D ATC I	GTG V AAA K	I AAG K GCT A	P. ACA T TTA L	TCT CT S L 631/2: GTG T L 631/2: GAT	C AA C CA C AA C N C TTT	L G AAC N T GGC G	TGG W CAT H	M CTC L GAT D	N AAA K CTT L	? C2.1 Q CCT 1 A AC.1	G CCT P GTA V	T GAA E ACC T
AAA K 601/ GGT G 661/ TCC S 721/ TTC F	201 ATT 221 AAC N 241 CCA p	G TGG W TTA L GAA E	T CAG Q GGC G	AGC S ATT I GGA G	Y ATT E GAA E GAA E	T GAT D ATC I GAT D	GTG V AAA K GGA G	I AAG K GCT A CTG L	P. ACA T TTA L ACT T	TCT CT S L 631/2: GTG T V L 631/2: GAT GE T T T T T T T T T T T T T T T T T T	G AA I Q I AA I T TT L	L G AAG N T GGG G A GAA	D TGS W CAT H GTC V	M CTC L GAT D AAG K	N AAA K CTT L GTA V	CAA Q CCT A ACA T	GCT PGTA VGAC D	T GAA E ACC T ACA T
AAA K 601/ GGT G 661/ TCC S 721/ TTC F	201 ATT 221 AAC N 241 CCA P 261 AAA	TGG H TTA L GAA E AGA	T CAG GGC GCA P TCT	AGC S ATT I GGA G	Y ATT I GAA E GAA E AGA	T GAT D ATC I GAT D GAT	GTG V AAA K GGA G	I AAG K GCT A CTG L	ACA T TTA L ACT T	TCT CT S L 631/2: GTG T L 631/2: GAT	G AA I G CA I G AA I TT I GA	L GAAG	D TGG W CAT H GTG V	M CTC L GAT D AAG K	N AAA K CTT L GTA V AÇA	? CAA Q CCT A ACA T	GCTAV	T GAA E ACC T ACA T
AAA K 601/ GGT G 661/ TCC S 721/ TTC TTC TTC TTC	201 ATT 221 AAC N 241 CCA 261 AAA K	TGG H TTA L GAA E AGA	T CAG GGC GCA P TCT	R AGC S ATT I GGA G AGG	Y ATT I GAA E GAA E AGA	T GAT D ATC I GAT D GAT	GTG V AAA K GGA G	I AAG K GCT A CTG L	ACA T TTA L ACT T	TCT CT S L 631/2: GTG T L 631/2: GAT GE T T T T T T T T T T T T T T T T T T	G AA I G CA I G AA I TT I GA	L GAAG	D TGS W CAT H GTC V	M CTC L GAT D AAG K	N AAA K CTT L GTA V AÇA	? CAA Q CCT A ACA T	GCTAV	T GAA E ACC T ACA T
AAA K 601/ GGT G 661/ TCC S 721/ TCC 731/ CCA P 841/	201 201 201 221 221 241 CCA 261 AAA K	G TGG W TTA L GAA E AGA R	T CAG GGC GGC TCT S	R AGC S ATT I GUA G AGG R	Y ATT GAA E GAA E AGA R	T GAT D GAT D GAT D	GTG V AAA K GGA G	I AAG K GCT A CTG L GGG G	P. ACA T TTA L ACT T	TCT CT S L 631/2: GTG T L 631/2: GAT GI E 751/2: CCT T T E 811/2: GAT TC D C 871/2:	G AA I G CA I G AA I T T I GA I G AA I T T	L GAAC N GAA	TGS W CAT H GTC V CAC H	M CTC L GAT D AAG K	N ALA K CTT L GTA V ACA T	? CAA Q CCT A ACA T CAA E	GCT PGTA VGAC DTCT S	T GAA E ACC T ACA T CGA R
731/ CCA P 841/ TCC	201 ATT 221 AAC N 241 CCA P 261 AAA K 281 TGT	TCC W TTA L CAA E AGA R	T CAG GGC G CCA P TCT S TAC	R AGC S ATT I GGA G AGG R	Y ATT GAA E GAA E AGA R	T GAT D GAT D GAT D	G GTG V AAA K G G A G TTT F	I AAG K GCT A CTG L GGG G	P. ACA T TTA L ACT T CTT L	TCT CT S L 631/2: GTG T V L 631/2: GAT GAT TC F F 811/2: GAT TC D C	G AA I G CA I G AA I TT I GA I TT	L GAAC N GAAA E GAAA E GAAA	TGS W CAT H GTC V CAC H	M CTC L GAT D AAG K TCC S	N ALA K CTT L GTA V ACA T	CAA Q CCT A ACA T GAA E	GCT PGTAVGACDTCTS	T GAA E ACC T ACA T CGA R
AAA K 601/ GGT G 661/ TCC S 721/ TCC 731/ CCA P 841/ TGC 901/	201 201 201 221 221 241 261 261 261 261 707 C	TCC W TTA L CAA E AGA R COT R	T CAG GGC GGC TCT S TAC Y	R AGC S ATT I GUA G AGG R CTT P	Y ATT GAA E GAA E AGA R CTA L	T GAT D GAT D GAT T	GTG V AAA K GGA GTG V	I AAG X GCT A CTG L GGG GAT D	P. ACA T TTA L ACT T CTT L	TCT CT S L 631/2: GTG T L 631/2: GAT GE T T CT T T T T T T T T T T T T T T T T	G AA I TT L GA I TT I	L GAAC N GAAC E GAAC G	TGG W CAT H CAC H TGG W	M CTC L GAT D AAG K TCC S GAT D	N ALA K CTT L GTA V ACA T TGG	CAA Q CCT A ACA T GAA E ATT I	GCT P GTA V GAC D TCT S ATT	T GAA E ACC T ACA T CGA R GCA A
AAA K 601/ GOT G 661/ TCC 721/ TCC 731/ CCA P 841/ TGC 901/ CCT	201 201 201 221 221 241 202 261 261 281 707 C 301 AAA	G TGG W TTA L GAA E AGA R COT R	T CAG Q GGC G CCA P TOT S TAC Y	R AGC S ATT I GUA G AGG R CTT P	Y ATT GAA E GAA E AGA CTA L GCC	T GAT D GAT D GAT T AAT	GTG V AAA K GGA G TTT F GTG V	I AAG X GCT A CTG L GGG G GAT D	P. ACA T TTA L ACT T CTT L TTT F	TCT CT S L 631/2: GTG T CT C	I GA I TT I GA I TT I A TG	L GAAC N GAAC E GAAC G	TGG W CAT H CAC H TGG W	M CTC L GAT D AAG K TCC S GAT D	N ALA K CTT L GTA V ACA T TGG	CAA Q CCT A ACA T GAA E ATT I	GCT P GTA V GAC D TCT S ATT	T GAA E ACC T ACA T CGA R GCA A
AAA K 601/ GGT G 661/ TCC 721/ TCC 731/ CCA P 841/ TGC 901/ CCI P	201 201 201 221 221 241 202 261 261 281 707 C 301 AAA K	G TGG W TTA L GAA E AGA R COT R	T CAG Q GGC G CCA P TOT S TAC Y	R AGC S ATT I GUA G AGG R CTT P	Y ATT GAA E GAA E AGA CTA L GCC	T GAT D GAT D GAT T AAT	GTG V AAA K GGA GTG V	I AAG X GCT A CTG L GGG G GAT D	P. ACA T TTA L ACT T CTT L TTT F	TCT CT S L 631/2: GTG TT V L 631/2: GAT GAT TC D C 871/2: GAT TC D C 871/2: GAA GC E A 931/3: GGA GA GC E	I GA I TT I GA I TT I A TG	L GAAC N GAAC E GAAC G	TGG W CAC H TGG W TTT	M CTC L GAT D AAG K TCC S GAT D GTA	N AAA K CTT L GTA V ACA T TGG	P CAA Q CCT A ACA T GAA E ATT I	GCT P GTA V GAC D TCT S ATT	T GAA E ACC T ACA T CGA R GCA A
321/ GOT GOT GOT GOT TCC F 731/ TCC F 731/ TCC P 841/ TCC 901/ CCT P 961/	201 201 201 221 221 241 261 261 261 261 261 281 707 C 301 281	TCC W TTA L CAA E AGA R AGA R	T CAG G GGC G CCA P TCT S TAC Y TAT Y	R AGC S ATT I GUA G AGG R CTT P AAG K	Y ATT GAA E GAA E AGA R CTA L GCC A	T GAT D GAT D GAT T AAT N	GTG V AAA K GGA G TTT F GTG V TAC Y	I AAG X GCT A CTG L GGG GAT D TGC G	P. ACA T TTA L ACT T CTT L TTT F	TCT CT S L 631/2: GTG T L 631/2: GAT GAT GAT TC B11/2: GAT TC B71/2: GAA GC E A 931/3: GGA GA	I GA I TT I GA I TT I A C I	L GAAC S GAA E GAA	TGG W CAC H TGG W TTT F	M CTC L GAT D AAG K TCC S GAT D GTA V	N ALA K CIT L GTA V ACA T TGG W TTT	P CAA Q CCT A ACA T GAA E ATT I	GCTA V GAC D TCT S ATT I CAA Q	T GAA E ACC T ACA T CGA R GCA A
721/ TCC 571/ TCC 5721/ TCC 731/ CCA P 841/ TCC 901/ CCT P 961/ TAT	201 ATT 221 AAC N 241 CCA 261 AAA K 281 TGT C 301 AAA K 321 CCT	TCC W TTA L CAA E AGA R AGA R CAT	T CAG Q GGC G GCA P TOT S TAC Y ACC	AGC S ATT I GGA G AGG R CTT P AAG K CAT	Y ATT CAA E CAA E AGA R CTA L GCC A CTT	T GAT D GAT D GAT T AAT N GTG	GTG V AAA K GGA G TTT F GTG V TAC Y CAC	I AAG X GCT A CTG L GGG G GAT D TGC G CAA	P. ACA T TTA L ACT T TTT CTT S GCA	TCT CT S L 631/2: GTG TT V L 631/2: GAT GAT TC B11/2: GAT TC B71/2: GAA GC E A 931/3: GGA GA	I GA I TT I GA I TT I A G I G AG	L GAAC T	TGG W CAC H TGG W TTT F	M CTC L GAT D AAG K TCC S GAT D GTA V GCC	N AAA K CTT L GTA V ACA T TGG W TTT E	P CAA Q CCT A ACA T GAA E ATT I	GCT P GTA V GAC D TCT S ATT I CAA Q	T GAA E ACC T ACA T CGA R GCA A AAG K TGT
AAA K 601/ GOT G 661/ TCC 721/ TCC 731/ CCA P 841/ TCC 901/ CCT P 961/ TAT Y	201 201 201 221 221 241 261 261 261 261 261 261 261 261 261 26	TCC W TTA L GAA E AGA R COT R AGA R CAT H	T CAG Q GGC G GCA P TOT S TAC Y ACC	AGC S ATT I GGA G AGG R CTT P AAG K CAT	Y ATT CAA E CAA E AGA R CTA L GCC A CTT	T GAT D GAT D GAT T AAT N GTG	GTG V AAA K GGA G TTT F GTG V TAC Y CAC	I AAG X GCT A CTG L GGG G GAT D TGC G CAA	P. ACA T TTA L ACT T TTT CTT S GCA	TCT CT S L 631/2: GTG TT V L 631/2: GAT GAT TC D C 871/2: GAA GC E A 931/3: GGA GA	I GA I TT I GA I TT I A GA R	L GAAC T	TGG W CAC H TGG W TTT F	M CTC L GAT D AAG K TCC S GAT D GTA V GCC	N AAA K CTT L GTA V ACA T TGG W TTT E	P CAA Q CCT A ACA T GAA E ATT I	GCT P GTA V GAC D TCT S ATT I CAA Q	T GAA E ACC T ACA T CGA R GCA A AAG K TGT
AAA K 601/ GGT G 661/ TCC 721/ TCC 731/ TCA P 841/ TCC 901/ TCT P 961/ TAT Y 1021	201 201 201 201 201 201 201 201 201 201	TCC W TTA L GAA E AGA R COT R CAT H	T CAG G GGC G CCA P TOT S TAC Y TAT Y ACC T	AGC S ATT I GGA G AGG R CTT P AAG K CAT H	Y ATT GAA E GAA E AGA R CTA L GCC A CTT L	T GAT D GAT D GAT T AAT N GTG V	G GTG V AAA K GGA G TTT F GTG V TAC Y CAC H	I AAG X GCT A CTG GGG GAT D TGC CAA Q	E ACA T TTA L ACT T TTT F TCT S GCA A	TCT CT S L 631/2: GTG T L 631/2: GAT GAT TC B11/2: GAT TC B71/2: GAA GC E A 931/3: GGA GA	I GA I TT I GA I GA I GA I GA I GA I GA	L GAAC T	TGG W CAC H TGG W TTT F	M CTC L GAT D AAG K TCC S GAT D GTA V	N AAA K CTT L GTA V ACA T TGG W TTT E	CAA Q CCT A ACA T GAA E ATT I CCC P	GCT P GTA V GAC D TCT S ATT I CAA Q TGC C	T GAA E ACC T ACA T CGA R GCA A AAG K TGT C
AAA K 601/ GGT G 661/ TCC 721/ TCC 731/ CCA P 841/ TCC 901/ CCT P 961/ TAT Y 1021 ACT	201 201 201 221 221 241 261 261 261 261 261 27 201 201 201 201 201 201 201 201 201 201	TCC W TTA L GAA E AGA R COT R AGA R CAT H	T CAG Q GGC G GGC TCT S TAC Y TAT Y ACC T	R AGC S ATT I GGA G AGG R CTT P AAG K CAT H ATG	Y ATT GAA E GAA CTA CTA L GCC A CTT L	T GAT D ATC I GAT D ACT T AAT N GTG V	G GTG V AAA K G GTG V TAC Y CAC H ATT	I AAG X GCT A CTG GGG GAT D TGC GAA Q AAT	P. ACA T TTA L ACT T TTT F TCT S GCA A ATG	TCT CT S L 631/2: GTG T L 631/2: GTG T T T T T T T T T T T T T T T T T	I GA I TT I GA I TT I A G I TT I	L C AAC N C C C C C C C C C C C C C C C C	TGG W CAC H TGG W TTT F TCA S	E CTC L GAT D AAG K TCC S GAT D GTA V GCC A	N AAA K CTT L GTA V ACA T TGG W TTT E GGG	CAA Q CCT A ACA T GAA E ATT I CCC P CAA	GCTA VGAC DTCT S ATT I CAA Q TGC C ATA	T GAA E ACC T ACA T CGA R AAG K TGT C
AAA K 601/ GGT G 661/ TCC 721/ TCC 731/ CCA P 841/ TCC 901/ TCT P 961/ TAT Y 1021 ACT 1081	201 201 201 201 201 201 201 201 201 201	TCC W TTA L GAA E AGA R CAT H ACA T	T CAG Q GGC G GCA P TOT S TAC Y ACC T AAG K	AGC S ATT I GGA G AGG R CTT P AAG K CAT H ATG H	Y ATT GAA E GAA E AGA R CTA L GCC A CTT L TCT S	T GAT D GAT D GAT T GAT C GAT C C C C C C C C C C C C C C C C C C C	G GTG V AAA K GGA G TTT F GTG V TAC Y CAC H ATT I	I AAG X GCT A CTG GGG GAT D TGC GAA Q AAT N	ACA T TTA L ACT T TTT F TCT S GCA A ATG H	TCT CT S L 631/2: GTG TT V 631/2: GAT GE TT	I GAN I TT I GAN I TT I A CO SI TT TI TT I A CO SI TT TI TT I A CO SI TT TI	L C AAC II GAA I	TGG W CAC H TGG W TTT F TCA S GGC G	M CTC L GAT D AAG K TCC S GAT D GTA V GCC A GAA E	N AAA K CTT L GTA V ACA T TGG W TTT E GGG	CAA Q CCT A ACA T GAA E ATT I CCC P CAA	GCTA VGAC DTCT S ATT I CAA Q TGC C ATA	T GAA E ACC T ACA T CGA R AAG K TGT C
AAA K 601/ GGT G 661/ TCC 721/ TCC 731/ CCA P 841/ TCC 901/ CCT P 961/ TAT 1031 TAC	201 201 201 201 201 201 201 201 201 201	TCC W TTA L GAA E AGA R CAT R ACA T AAG	T CAG Q GGC G GCA P TOT S TAC Y ACC T AAG ATT	AGC S ATT I GGA G AGG R CTT P AAG K CAT H ATG H CCA	Y ATT CAA E GAA E AGA R CTA L GCC A CTT L TCT S	T GAT D ATC I GAT D ATT D ATT V CCA P	G GTG V AAA K GGA G TTT F GTG V TAC Y CAC H ATT I	I AAG X GCT A CTG GGG GAT D TGC GAA Q AAT N GTA	ACA T TTA L ACT T TTT F TCT S GCA A ATG H	TCT CT S L 631/2: GTG T L 631/2: GAT GT T T T T T T T T T T T T T T T T	I GAN I TT I GAN I TT I A CO SI TT TI TT I A CO SI TT TI TT I A CO SI TT TI	L C AAC II GAA I	TGG W CAC H TGG W TTT F TCA S GGC G	M CTC L GAT D AAG K TCC S GAT D GTA V GCC A GAA E	N AAA K CTT L GTA V ACA T TGG W TTT E GGG	CAA Q CCT A ACA T GAA E ATT I CCC P CAA	GCTA VGAC DTCT S ATT I CAA Q TGC C ATA	T GAA E ACC T ACA T CGA R AAG K TGT C

Bovine GDF-8

FIGURE 14c

	1/1						-				31/1									
	ATG	CAA	J.A.C	ETD.	SCA	CTC	TAT	CII	TAT	ATT	TAC	CTG	TTC	ATG	CAG	ATC	CÇS	CIT	CAT	CCC
	<u> </u>	C	K	<u>L</u>	£.	V	Y	V	Υ .	I	Y	L	F	M	Q	I	λ	V	D.	p
	61/2	1					,		•		91/3	31.								
	. – •			53.7	332:	ACT.	AGT.	CAG	ccc	AC 3	CAG	Aác	بمحخ	CAA	2 2 2	CAC	وتدخ			3 3 77
								Q								,				
															K	ט	C	L	C	N
																				
																				ATC
	A	C	. 🖀	¥	R	C .	N	Ţ	K	S .	Ş	R	I	E	A	I.	K	I	Q	I
	181/	61			. . <u>.</u> .						21:1/	71								
																		230	CEG	CTT
								Q									I	-=		.
	-	_	• •	_	••	_	_	7	••	•	271/		Ų	• •		•	•	X	G.	L
	241/						CTC.	~~~	C 3:3	<u> </u>	_							· ·		
								CAG										AGG	CYC	GAC
,	L	P	X	A	2	5	L	Q	Ε.	L			Q	Å	D	V	Q	R	D	D
	301/	101									331/	111								
	AGT	AGC	GAT	GGC	777	TTG	GAA	GAC	CAT'	CXC	TAT	CAT	CCC	ACA.	ACC	GAG	λCG	ATT	ATC	ACA
	5	s ·	<u> </u>	G	5	L	Ξ	D	D	D	Y	H	A	T.	T	Ε	T	I	Ĭ	T
	161/	121									391/	131				· . '				
	•		عضد	CAG		GAT	سنب	CTT	GT3	CAA			CSA	בנב	C'C 3	111	سنج	T	 _	desired.
								L												-
			•	-		•	•	_	•	Ψ .	451/		3	K	•	κ ,			E	•
	421/						4				•				_:.		<u>.</u>			· _ ·
						_										TTA	TÇÇ	ATA	TAC	TTG '
	X	_	S	S	X	Ξ	Q	Ā	И	K				λ	Q	Ļ	W	I	Y	L.
	431/	151								:		171								• • • • • • • • • • • • • • • • • • •
	ನಿತರ	CAA	CTC	C.3.3.	À		ACA.	YES.	G.:2		CTG	CAG	ATC	CTS	ACA.	CTC	2.77	2.3	CCC	ATG
	2	Ç	v	Ç	X	2	T	- •	V.	ξ	r.	•	I	<u>*·</u>	2.	<u>.</u>	I	~	P	M
	541/	riai									571/	-								
			GTT	λCλ	AGA:	ሚጿሞ	200	GGÀ	ATT	CGA		·	444	مہمت	CAC	ATG	3.30	CC3		A CT
	3		C	T	_			G					_	•	D	٠.	N		G	
	• •		•	•		. •	4 :	•	•		631/		K	~	D	M.	N	•	G .	1
	601/															:		·.		
				_	_			GTG												CAA
	C	-	W	Q	5	I	D	V	X	T			Q	И	W	L	K	Q	5	Ξ.
•	661/									•	691/	. – – –		٠, -						
	TCC	AAT	TTA	CCC.	みてこ	GAA	ATA	AAA	CCT	LLL	CAT	GAG	ACT	CCA	CGA	GAT	CIT	<u>ect</u>	CIC	ACA
	S	Ŋ	Ĺ	G	Ī	Ξ	I '	ĸ	λ	F	D	E	T	G	R	D	L	A 🐪	v ·	T
	721/	241								- •	751/	251						: •		
	777	COA	C73.	CCS	GOT	G.3.3.	GAT	GGA	TTG	AAC	CCA		772	GAG	متح	AGA	سنس	λCA:	GAC	ACA
		2	G	, .			D			N				*	Ý.			_	D	T
	731/	1761		•	•	•				•	811/		. •	•	•	•••	•	•	-	
				مارس		3 ~ 3	C 3 T	-		منسب	;		C \ T	~ ·				<i>~</i>		~~
					•						-									CCA
			ĸ	٠ .	κ.	Α .	ט	F	G	نا			D	E	H	5.	T	E	S	R
		281				٠				•	871/		. •						. ,	
		- ,			•			CIC	•					•		CYC.	TGG	ATT	ATA	GCA
	C -	C	R.	Y	5	L	T	v ·	D .	F	E	A	F	Ģ	W	D	₩.	I	I	λ
	901/	301					•			•	931/	311		:	•	٠.,				
	CCT	$\lambda\lambda\lambda$	AGA	TAC	λλλ	CCC	TAA	TAC	TCC	TCC	CGA	Gλλ	TCC	GλA	TIT	GTG	TIT	CTA	CAG	AAA
							-	Y				•		E			F	<u> </u>		K
	961/				•						991			-	-		-	-	_	••
	-		CAC	ልር፣	Cac	نست	CTA	CAC	CAA	GCA			ACA	CCC	TCA	CC3	CCC	مب	4	T
								Н										_		~
	1021			- ,	••	₩.	*	••	. 🛎	••		./351		•	J	A	.	₽ .	· .	
				836	,		سےنے ،		830	, ===						. ,	٠			-ئىر
	T.	D	ACC.	·MAGG	N.G	المرا	CCF	ATA	AAC.	N.G		***	TIC	MAT	ر المريكي م	W-7-4	CAA.	CAA	ATA	
	100	5 12 ^ *	, i	. .		2	Y	I	14	rī.	i	.≰ 	£ '	N		. K	E	Q	I	I
	1031							·				1/371		·	· 					,
								CTT												
	1	C	K	Ĭ	P	λ	M ·	V	V	D	R	C	C	C	S	•				

Chicken GDF-8

WO 98/33887 PCT/US98/02479

27/32

FIGURE 14d

```
31/11
1/1.
ATG ATT CAR ARE CCG CAR ATG TAT GTT TAT ATT TAC CTG TIT GTG CTG ATT GCT GCC
M I Q K P Q M Y
                            IYLFVLIAAG
                       VY
                             91/31
61/21
CON GTO GAT CTA AAT GAG GAG AGT GAG AGA GAG GCG AAT GTG GAA AAA GAG GGG GTG TGT
                             EANVEKE
p v D L N E D
                       Ε
                          ₹.
                    S
                             151/51
121/41
ANT GOO TOT GOO TOO ACA CAN NAC ACA NOO TAG TOO NON ATA GAN GOO ATA ANN ATT GAN
NACAWRQ NTRYSRIEAIKIQ
                             211/71
191/61
ATC CTO ACT ARE CTO COO CTG GAR ACA GOO COT ARC ATO AGO ARA GAT GOT ATA AGA CAR
ILSKLETAPNISKDAIRQ
                             271/91
241/61
CTT CTG CTC AGA GCG CTT CCA CTC CCG GAA CTG ATC GAT CAG TAC GAC GTC CAG AGG GAT
     PRAPPLRELIDOY
                             331/111
301/101
GAC AGE AGE GGE GGE TET TTG GAA GAT GAC GAT TAT CAC GET ACE ACG GAA ACA ATE ATT
                          D D Y H A
                                        T T E
                       D
                             351/131
361/121
ACC ATG COT ACT GAG TOT GAG TIT CITÁ ATG CAA GCG GAT GGA AAG COC AAA TOT TGO TIT
                          MQADGKPK
THPTE
                             451/151
421/141
TIT AND TIT AGE TOT AND ATA CAG THE AND AND AND GTG GTA AND GCC CAG CTG TGG ATA TAT
                    Q Y N K V V K A Q
                             511/171
431/151
CTO AGA GCE GTE AAG ACT GCT AEA AGA GTG TTT GTG CAA ATC CTG AGA CTG ATC AAA GGC
                    T T V F V Q
                                      R A V E T
                             571/191
541/131
ATO ARA GAO GOT ACA AGO TAT ACO GGA ATO GGA TOT GTO BARA CTT GAO ATO ACO COA GGO
                          I
                             RSLKLDMSPG
                       G
                             631/211
601/201
ACT GOT ATT TOO CAG ACT ATT GAT GTG AAG AGA GTG TTG GAA AAT TOO CTC AAA CAG GGT
                             TVLQNWLK
                       V
                          X
              S I
                             631/231
651/221
GAN TEE NAC TIN COE ATT CAN ATE NAN COT TIG CAT CAG MAT GOO CAT CAT COT GOT GTA
                       K A L D E N G H D L A V
ESNLGIE
                             751/251
ACC THE CON GON CON GON GAN GAY GAT GOD GTG ANT COO TITT THA GAN GTG ANA GTA ACA GAC
                            N P F L
                                        EVX
   611/271
731/251
ACA COO AAG AGG TOO COG AGA GAO TIT GGG GTT GAO TOT GAT GAA CAO TOO ACG GAA TOG
TPKRSARDFCLDCDEHSTES
                             871/291
841/231
CGG TGC TGT CGC TAC CCC CTC ACG GTC GAT TTC GAA GCC TTT GGA TGG GAC TGG ATT ATT
                    TVDFEAFGWDWII
R C C R Y P L
                             931/311
901/301
CÉA CCC AAA AGA TAT AAG CCT AAT TAC TOC TCT GGA GÁG TGT GÁÁ TTT GTG TTC TTA CAA
APKRYKANYCSGECEFVFLQ
                             991/331
961/321
ANN THE CCC CAT ACT CAT CTT GTG CAC CAN GCA AND CCC AGA GGC TCG GCA GGC CCT TGC
KYPHTHLVHQANPRCSACPC
                             1051/351
1021/341
TOC ACO COA AGA AAA ATO TOT COO ATT AAT ATO CTA TAT TIT AAT GOO AAA GAA CAA ATA
CTPTKMSPINMLYFNCKEQI
1081/361
                             1111/371
ATA THE GOO AND ATT CON GOO ATO OTH GTA GAC COO TOT GOO TOO TOO TOO
IYCKIPAM V V D R C C C S *
```

Rat GDF-8

FIGURE 14e

1/1									31/1	11								
ATG CAA	AAG	CTA	$CC\lambda$	<u> </u>	TAT	GTT	TAT	ATT	TAC	CIG	TIC	ATG	CYC	ATT	TTA	CTT	CAT	CCG
H Q	X	L	λ	V	Y	V	Y	·I	Y	L	F	M	Q	I	L	V.	H	P
61/21									91/3		***							·.,
حتح ححت	CII	CAT	csc	λST	act	CYC	CCC							CYC	CCA	حيد	TCC	AAT
v A	L	D	G	S	2	Q	P	~	Ξ		A	Ε	ĸ	D	C	L	C	Ŋ
121/41									151/	-					,			
מכד דככ	YCS	733	λÇλ			ACT								ATA"	XXX	V.	CYY	ATC
λC	T	W	7.	Ç	N ·	T	K	5	5	•	I	Ξ	λ	I	K	I	Q __	I
191/61						<i>-</i>			211/		٠					• • •		
כבכ אככ															_		_	_
LS	K	· <u>C</u>	Ĩ.	L	Ξ	Q.	^	P	N 271/		2	.R	ע	V.	I	X	Q	L
241/81 TTA CES					خرسم	- 3 <i>-</i>	C3/3	ينرسم		_	CAG	ም ኒም	CZC	جمسم	ج دے.	363	CAC	GAC
_			2	3			E					Y				_	_	D
E P		Λ	F	•	₩	×	-	~	331		~	•	•		•	••	-	•
301/101 AGT AGG					GAA	GAC	GλŢ	-GAC		,-	GCC	·ACA	ACC	Gλλ	λCG	λτπ	ATC	λαλ
5 5	D	G	5		2	D	D.		Y	H	λ	_		E	T	I	I	T
351/121		•	_						391			_						
ATG CCT		ದಸಿತ	707	CAT	7.7	CTT	GTA	CAA	λτς	GAG	ರವನಿ	AAA	Ċ=X	λλλ	TGT	TGC	777	TIT
й . 5	7	Ξ	5	2	7	L	v	Q	×	Ξ	G	K	5	K	C	C	7	F (
421/143								~	451	/151								
AAG TT	, yes	777	$\lambda\lambda\lambda$	$\lambda T \lambda$	$C\lambda\lambda$	TAT	$\lambda\lambda C$	$\lambda\lambda\lambda$	CTA	CTA	AAG	CCY	CYY	TTA	TCC	ATA	TAC	TIC
K F	5	5	X	I	Q	Ÿ	N	X	V		K	λ	Q	L	W	Z	. Y	L
491/151										/171								
محد حي						ycc.	GTT	-	CTS	CAG	メここ	CIG	ACA	<u></u>	X			
ጸ ር		Ç	2 '	.7	~	7	V		1 -			-	3	ت ا	•	7.	?	
541/151	•			·					571	-			6		~			٠, ــــــــــــــــــــــــــــــــــــ
AAA CAC										L		L					C	
K D	G.	-	2	Y	•	u .	.I	*		/211	~		.		14	•	•	* .
601/201			,	ست (Cam		115	353			CAA	AAT	753	CTC	222	CAG	CCT	GAA.
G I	. IGG	ا درجيه	ς.	+	D	v	X	7	v	L	0	N	¥	L	R	C	3	2 .
651/223		•	•	•			•-	٠.		/231	•	•	•			-		
TEE AA		حتت	λΤΞ	SAA	λΤλ	λλλ	CCT				AAT	CCA	CSÀ	CAT	C:::	CCT	CTA	$\lambda \subset \lambda$
s N	L					X										λ		Ţ
721/24									751	/251								
770 02	المحتد	גבם	csr	CAA	ርኢ፻	CGA									C	$\lambda \subset \lambda$	حدد	XCX
7 7	G	P	C	Ξ		C	Ĺ	N			L	Ξ	V:	ス	V	•	D	T
781/78										/271								
COL AND																CA.		
3 5	_	S	2.	3.	D	F	\$	<u>.</u>			D	Ē	n ·	2	T	=	S	<u>, , , , , , , , , , , , , , , , , , , </u>
841/231 TGT TG					>	_	~: ~	ملبكت		/291				-3-	TOO	3	272	cas.
•	•		2			A 21.2						·G						
C C 901/30:	•	-		•	•			•		/311	•	•	••			•		•
CCT AND				· der-	እአጥ			TCT	,		TST	GÄA	TTC	GTA	TIT	CTA	CAG	λλλ
PK	R	Y	7.	λ	N	Y	C	S	G	E	C	E	7	v	F	L		*
961/32		-				- .				/331							=	
TAC CC	: כאב	ACT	כא⊂	.CTS	σīλ	CAC	CAA	CCA	AAT	CCA	ΑGλ	-GGC	TEA	GCX	ccc	CET	TEC	TCC
? ?	H	T	Ľ	L	V	H	Ç	A	×	2	ス	C	3	አ	C	?	C	C
1021/3									105	1/35	1							
אכא ככנ	באכב	אאכ	ATG	TCC	CCT	ATA	$\lambda\lambda$ C	ATC	CIS	TAT	TTC	AAT	ಡಚ	XXX	حجم	CXA	ATA	ATA
7 P		ĸ	×	S	P	I	N	H.				N	.C	7	E	C	I	I
1081/30	_		_ •	٠					-	1/37	_							
TAT GG																		
r G	Y.	Ţ	₹.	λ	H	V	V	فسل	14	•	Ç	_	3	-				

Turkey GDF-8

29/32

1/1 ATG CAA AAA CTG CAA ATG TAT TAT ATT TAC CTG TIT ATG CTG ATT GTT GCT GG: CCC K L C I Y V Y I Y L F M L I V A G P 91/31 61/21 GTG GAT CTG AAT GAG AAC AGC GAG CAA AAG GAA AAT GTG GAA AAA GAG GGG CTG TGT AAT EQKENVEKEG V D L N E N S 151/51 121/41 GCA TGT ATG TGG AGA CAA AAC ACT AAA TGT TGA AGA CTA GAA GCC ATA AAA ATT CAA ATG A C M W R C N T K S S R L E A I K I Q I 211/71 191/61 CTC AGT ANN CTT CUE CTG GAA ACA GCT CCT AAG ATT AGC AAA GAT GCT ATA AGA CAA CTT LSKLRLETAPNISKDAIRQL 271/91 241/91 TTG GCC AAA GCT CCA CTC CGG GAA CTG ATT GAT CAG TAG GAT GTC CAG AGA GAT GAC LPKAPPLR ELIDQYDVQRDD 331/111 301/101 AGO AGT GAT GGG TOG TTG GAA GAT GAT GAT TAT CAG GET AGG AGG GAA ACG ATG ATT ACC. S S D G S L E YHATTET D Ð D 391/131 361/121 ATG COT AÇA GAÇ TET GAT ÇTT C'TA ATG CAA GTĞ ĞAA GGA AAA COC AAA TGC TGC TTC TTT MPTESDLLMQVEGKPKCCFF 451/151 421/141 ARA THE AGE TOT RALL ATA CAR THE ART ARA GTA GTA RAG GET CAR CTG TGG ATA THE CTG K F S S K I Q Y N K V V K A Q L W I Y L 511/171 431/161 AGA COC GOO AAG ACT COT ACA ACA GOO TOT GOO CAA ATC COG AGA COC ATC AAA COC ATG V F V Q I L R L I K P M 571/191 541/181 ANN GÁC GOT ACA AGO TAT ACT GGA ATO CGA TOT CTG ANN CTT GAO ATG AND CCÁ GGO ACTO... I R S L K L D M N P G T 631/211 601/201 GGT ATT TGG CAG AGG ATT GAT GTG AAG AGA GTG TTG CAA AAT TGG CTC AAA GAA CGT GAA K T V L Q N W L K C GIWQSIDV 691/231 661/221 TOO AND THE GOO ATT GAE ATO AND GOT THE GAT GAG ANT GOT CAT GAT OTH GOT GIA ACO S % L G I E I K A L D E N G H D L A V T 751/251 TTO COA GGA COA GGA GAA GAT GGG CTG AAT COO TTT ATA GAA GTC AAG CTA AGA GAC ACA PGPGEDGLNPFLEVKVTDT 811/271 781/261 CON ANN NOW THE AGG AGA GAT THT GOA CTO GAO TOT GAT GAG CAR TOA AGA GAA TOT CGA D C D E H S T E S FGL 7 R R S R D 871/291 341/281 THE THE COT THE COT CON ACT GTO GAT TOT GAN GOT THE GGA TGG GAO TGG ACT ART GGA 931/311 COC ANN AGN THE NÃO GOC NAT THE TOO TOT GON GRO TOT GRA TIT GTA TÊT TIN CHA ARA PKRYKANYCSGEGEFVF 991/331 961/321 TAC COT CAC ACT CAT CTT GTG CAC CAA GCA AAC CCC AGA GGT TCA GCA GGC CCC TGC TGT Y P H T H U V H Q A N P R G S A G P 1051/351 1021/341 ACT CCC ACA AAG ATG TOT CCA ATC AAT ATG CTA TAT TTT AAT GGC AAA GAA CAA ATA ATA K M S P I N M L Y F N G K E Q I I 1111/371 1081/361 TAT GGG AAA ATT COA GGC ATG GTA GTA GAT CGC TGT GGG TGC TCA TGA YGKIPAMVVDRCGGS

Porcine GDF-8

FIGURE 14F

```
31/11
1/1
ATG CAA AAA CTG CAA ATG TTT GTT TAT ATT TAC CTA TTT ATG CTG CTT GTT GCT GGC CCA
                        Y I Y L F M L L V A G
                     V
                               91/31
61/21
GTG GAT CTG AAT GAG AAC AGC GAG CAG AAG GAA AAT GTG GAA AAA AAG GGG CTG TGT AAT
                               ENVEKKGLCN
         NENSEQ
                               151/51
121/41
GCA TGC TTG TGG AGA CAA AAC AAT AAA TCC TCA AGA CTA GAA GCC ATA AAA ATC CAA ATC
ATTO IL WE TREE ON NOW KINST STEEL A TELL OF THE
131/51
CTC AUT AAU CIT CUC CTG GAA ACA GCT CCT AAC ATC AGC AAA GAT GCT ATA AGA CAA CTT
                               N I S K
                            5
                                           DAI
                               271/91
241/91
TTG CCC AAG GCT CCT CCA CTC CGG GAA CTG ATT GAT CAG TAC GAT GTC CAG AGA GAT GAC
LPKAPPLRELIDQYDVQRDD
                               331/111
301/101
AGO AGO GAO GGO TOO TTO GAA GAO GAT GAO TAO CAO GTT AGG AGG GAA AGG GTO ATT ACO
                              YHVT
                                              ETVI
                               391/131
361/121
ATG CCC ACS GAG TOT GAT OTT GTA GCA GAA GTG CAA GAA AAA CCC AAA TGT TGC TTC TTT
                            E V Q E
                                       K
M P T E
                               451/151
421/141
AAA TIT AGO TOT AAG ATA CAA CAC AAT AAA GTA GTA AAG GCC CAA CTG TGG ATA TAT CTG
                         NKVVKAQLW
                     H
                               511/171
431/151
AGA COT GTO AAG ACT COT ACA ACA GTG TTT GTG CAA ATC CTG AGA CTC ATC AAA COC ATG
                         V F V Q I L R L I K P M
   b A K
            571/191
541/131
ANA GAO GOT AGA AGG TAT AGT GGA ATO CÓA TOT CTG ANA CTT GAO ATG AND COA GGG ACT
                        I R
                               S L K L D M N
                               631/211
601/201
GGT ATT TGG CAG AGG ATT GAT GTG AAG ACA GTG TTG CAA AAC TGG CTC AAA CAA CCT GAA
                         K T V L Q N W
                               691/231
661/221
TOO ARC TTR GGC ATT GAR ATC ARR GCT TTR GRT GRG RAT GGT CAT GRT CTT GCT GTR ACC
                               D
                                 Ξ
                                     N
                                            =
   N L G
                               751/251
721/241
TTO COA GAR COA GGA GAR GAR GGA CTG ART COT TTT TTR GAR GTC ARG GTR ACR GRC ACR
                            N
                               P F
         PGEE
                      G
                               811/271
781/261
CCA ANA AGA TOT AGG AGA GAT TTT GGG CTT GAT TGT GAT GAG CAG TCC ACA GAA TCT CGA
PKRSRRDFGLDCDEHSTESR
                               871/291
841/291
TGC TGT CGT TAC CCT CTA ACT GTG GAT TTT GAA GCT TTT GGA TGG GAT TGG ATT ATT GCA
CCRYPLTVDF
                               EAFGWDWIIA
                               931/311
931/301
CCT AAA AGA TAT AAG GCC AAT TAC TGC TCT GGA GAA TGT GAA TTT TTA TTT TTG CAA AAG
P X R Y K A N Y C S G E C E F L F L Q. K
                                991/331
951/321
TAT COT CAT ACC CAT CTT GTG CAC CAA GCA AAC CCC AAA GGT TCA GCC GGC CCT TGC TGT
YPHTHLVHQANPKGSAGPCC
                               1051/351
1021/341
ACT COT ACA AAG ATG TOT COA ATT AAT ATG CTA TAT TOT AAT GGC AAA GAA CAA ATA ATA
TPTKMSPINMLYFNGKEQII
                               1111/371
1031/351 -
TAT GGG AAG ATT COA GGC ATG GTA GTA GAT CGC TGT GGG TGC TCA TGA
YCKIPCMVVDRCGC
```

Ovine GDF-8

FIGURE 14g

FIGURE 15a

IYGKIPAMVVDRCGCS IYGKIPAMVVDRCGCS chicken

turkey

32/32

TFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES TFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES rat TFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES עבעיוע. TFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES tateen TFPGPGEDGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES porcine TFPEPGEEGLNPFLEVKVTDTPKRSRRDFGLDCDEHSTES ovine TFPSPGEDGLTPFLEVKVTDTPKRSRRDFGLDCDEHSTES TFPGPGEDGLNPFLEV RVTDTPKRSRRDFGLDCDEHSTES chicken RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLO RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLO rat RCCRYPLTVDFEAFGWDWI IAPKRYKANYCSGECEF human RCCRYPLTVDFEALGWDWIIAPKRYKANYCSGECEF izancon. RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLO RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFLFLQ cvine RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEPVFLQ bovine RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLQ chicken RCCRYPLTVDFEAFGWDWIIAPKRYKANYCSGECEFVFLO turkey KYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI murine KYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI rat KYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI human KYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI canoci KYPHTHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI KYPHTHLVHQANPKGSAGPCCTPTEMSPINMLYFNGKEQI RYPHTHIVHOAMPRGSAGPCCTPTKMSPINMLYFNGEGOI RYPETHLVHQANPRGSAGPCCTPTKMSPINMLYFNGKEQI chicken KYPETELVHOAN BRESAEPEETPTRMS PINMLYFNGKEQ murine TYGKIPAMVVDR.CGCS IYGKIPAMVVDRCGCS Tat IYGKIPAMVVDRCGCS IYGKIPAMVVDRCGCS Daboon. pordine IYGKIPAMVVDRCGCS IYGKIPGMVVDRCGCS ovine IYGKIPAMVVDRCGCS covine

Decoration #1': Shade (with solid black) residues that match the Consensus exact...

FIGURE 15b

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02479

			<u></u>
	ASSIFICATION OF SUBJECT MATTER		,
IPC(6)	:C12N 5/00, 15/00, 15/09, 15/63 :Please See Extra Sheet.		•
	to International Patent Classification (IPC) or to both	national classification and IPC	
	LDS SEARCHED		· · · · · · · · · · · · · · · · · · ·
<u> </u>	documentation searched (classification system followed	hy classification symbols)	
· 		•	
0.5.	800/2; 435/172.3, 69.1, 320.1, 325; 530/350, 387.1	; 514/2, 44; 424/9.21	•
Documenta	tion searched other than minimum documentation to the	extent that such documents are included	in the fields seembed
		extent diat such documents are included	in the fields searched
			·
Electronic o	data base consulted during the international search (na	me of data base and where practicable	search terms used)
t	e Extra Sheet.	or data case and, where practicable	, scarcii terms used)
	·		
<u> </u>			· i
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	MCDOWELL et al. Effects of Exoge	enous Growth Hormone on	13
	Milk Production and Nutrient Uptake	by Muscle and Mammary	13
	Tissues of Dairy Cows in Mid-Lactati	on. Australian Journal of	
•	Biological Sciences, Vol. 40, No. 3, pa	ges 295-306, see Abstract.	fig.
Y	EVOCK et al. Pituitary Porcine Grov	wth Hormone (pGH) and a	14
	Recombinant pGH Analog Stimulate Pi	g Growth Performance in a	
	Similar Manner. Journal of Animal Sci	ence, Vol. 66, No. 8, pages	
	1928-1941, see Abstract.		
	,	.,	
			•
			/T *
			**,
	。 Construction 特別等的基本與《		
		·	
<u> </u>			
	ner documents are listed in the continuation of Box C.	See patent family annex.	
		T* later document published after the inte	mational filing date or priority
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention
	lier document published on or after the international filing date	X* document of particular relevance; the considered novel or cannot be consider	claimed invention cannot be
L doc	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	when the document is taken alone	
spe	cual reason (as specified)	Y" document of particular relevance; the considered to involve an inventive	step when the document is
	cument referring to an oral disclosure, use, exhibition of other	combined with one or more other such being obvious to a person skilled in the	documents, such combination
the	priority date claimed	& document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
25 MARC	CH 1998	15 JUN 1998	
Commission	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer	2019 1971
Box PCT Washington	n. D.C. 20231	JULL D. SCHMUCK	
Facsimile N	o. (703) 305-3230	Γelephone No. (703) 308-0196	/

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02479

FLAKOLL et al. Influence of Alpha-Ketoisocaproate on Lamb Growth, Feed, Conversion, and Carcass Composition. Journal of Animal Science, Vol. 69, No. 4, pages 1461-1467, see Abstract.		ntion). DOCUMENTS CONSIDERED TO BE RELEVANT	·	<u> </u>
Growth, Feed, Conversion, and Carcass Composition. Journal of Animal Science, Vol. 69, No. 4, pages 1461-1467, see Abstract. DELI et al. Biochemical Study of Muscle Samples from Chicken Embryos Affected by Wofatox 50 EC. Archives of Toxicology, Vol. 8, pages 277-279, see Abstract. FAULKNER et al. Effect of Testosterone Propionate on Performance and Carcass Characteristics of Heifers and Cows. Journal of Animal Science, Vol. 67, No. 8, pages 1907-1915, see Abstract. ZHU et al. Survey of Major Histocompatibility Complex Class II Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.	Category*	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim N
Embryos-Affected by Wofatox 50 EC. Archives of Toxicology, Vol. 8, pages 277-279, see Abstract. FAULKNER et al. Effect of Testosterone Propionate on Performance and Carcass Characteristics of Heifers and Cows. Journal of Animal Science, Vol. 67, No. 8, pages 1907-1915, see Abstract. ZHU et al. Survey of Major Histocompatibility Complex Class II Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.	Y	Growth, Feed, Conversion, and Carcass Composition. Jo	ournal of	15
FAULKNER et al. Effect of Testosterone Propionate on Performance and Carcass Characteristics of Heifers and Cows. Journal of Animal Science, Vol. 67, No. 8, pages 1907-1915, see Abstract. ZHU et al. Survey of Major Histocompatibility Complex Class II Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.		Embryos-Affected by Wofatox 50 EC. Archives of Tox	Chicken	16
Performance and Carcass Characteristics of Heifers and Cows. Journal of Animal Science, Vol. 67, No. 8, pages 1907-1915, see Abstract. ZHU et al. Survey of Major Histocompatibility Complex Class II Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.	: :	Vol. 8, pages 277-279, see Abstract.		•• •
Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.	?	Performance and Carcass Characteristics of Heifers and Journal of Animal Science, Vol. 67, No. 8, pages 1907-1	Cows.	12
Haplotypes in Four Turkey Lines Using Restriction Fragment Length Polymorphism Analysis with Nonradioactive DNA Detection. Poultry Science, Vol. 74, No. 7, pages 1067-1073, see Abstract.	,			.*
		Haplotypes in Four Turkey Lines Using Restriction Frag Length Polymorphism Analysis with Nonradioactive DN Detection. Poultry Science, Vol. 74, No. 7, pages 1067-	ment A	11
		Abstract.		
				•
	-			
				: ·
	-			
				~
The state of the s				

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02479.

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

800/2; 435/172.3, 69.1, 320.1, 325; 530/350, 387.1; 514/2, 44; 424/9.21

B. FIELDS SEARCHED

0 a. a. .

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, MEDLINE, BIOSIS, EMBASE, CAPLUS, WPIDS, CONFSCI search terms: growth differentiation factor-8, GDF-8, transgene, increased muscle, reduced cholesterol, mouse, pigs or porcine, cows or bovine, sheep or ovine, piscine, chicken or turkey or avian

Form PCT/ISA/210 (extra sheet)(July 1992) *

₹. \$							9	2.1	هموه د	- 2		•				N.		2-1 . - 1			-									* (
-	•						۲۰.	. • 1.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	**************************************	, Á			· · · · ·		¥(e de la companya de l		. P	el e	11	# 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1		- - -			٠.	·	-	*) ()	i Certi	
					•									. ,		- * * * * * * * * * * * * * * * * * * *			×.				:				٠.			A. e	ф <u>ь</u>		
			,										٠.						No. of the second		· •4	(4 8							•		٠	•	
majiri.		٠.	4 · ·		· · · · · · · · · · · · · · · · · · ·	•								,						eja sylva s a se e	• .	~ .		•.									
											% .	-																					
,	,	•			. •		•		e i														. Na	, · ·		• .			,				•
														,			-		-	:										· ·			3.
	_	· ·					·		. 	·.					-		. ′	نا بسد											·		·		
	· ·	• •		•		•		•	•		٠.,									• 6 1 1		ź.	* 20 ×					٠٠,٠	:				***
	. , . -				Town 10					1 						• ~- • • • •	, ,	.′	``	S (4)		. • 	: `\ .				······································			÷	, , , , , , , , , , , , , , , , , , , ,		
	ŕ									•	•	. •					· .	٠.					•••	•	•		•		;	*	Sa #		
		•		*			:-			•					. :		•			•		•	•					:					
		-				- .				<i>:</i> .														· •						1			÷ • • • • • • • • • • • • • • • • • • •
			• • •		,			•				•	· .·	:				•		. •	•				٠,			:		: • •			3.4
			· · • .		•		· segi				-: ·								1.))				,		٠				•	
							•				٠					·	* * *		• //	. • · · · · · · · · · · · · · · · · · ·		·'. ·			· ·		• .			,			
	•								•							.*.				P								· .		•	•	.*	
			·: .																				•		•	•			· ·	·			
·																		r. · ·	· . ·									٠		•			
	 													8	·.	•	•								.: ·								
9								: -					-					•. •	· :	•					•				• .				
				,							•							,,,	ings.								٠.		•	•		•	
		•	•																					•	. •				•		· .	• .	
								•		,			*	• • • • • •																٠			
	Yeri	٠.							.3															•						.			-
								:																•								,	
	, ·		!								,							•						•						•			4
										• •											·.					·		•					
%			:								•	. •				·													,				
V	4.												•	,				•	-										•	•	-	. .	
			Š d		•			٠.			·.					•													•				
p		•										• .	<i>:</i>				,	•												•			
						•						.•								•	,e	•			•								
	. :								•																			» *	;	١			
																					,				•	,			•				
3];			,						•										•								-	•		* :			
			·			,			•	- ;							• .	. 4.7 . 4.1	4				. •					.* .	•	•		•	
*												-							•				_		2-							•	
N ₁ , 1				•		,				•	-				٠.		*			. •		:			٠	*							
																	• .					-											
•								• 1	,				•		-							•										· . ·	
											: -			٠.						•					•			÷	•				
								. J. 75																15		•							

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 5/00, 15/00, 15/09, 15/63

A1

(11) International Publication Number:

WO 98/33887

(43) International Publication Date:

6 August 1998 (06.08.98)

(21) International Application Number:

PCT/US98/02479

(22) International Filing Date:

5 February 1998 (05.02.98)

(30) Priority Data:

· ·

08/795,071 5 February 1997 (05.02.97) US 08/847,910 28 April 1997 (28.04.97) US 08/862,445 23 May 1997 (23.05.97) US

- (71) Applicant: THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE [US/US]; 720 Rutland Avenue, Baltimore, MD 21205 (US).
- (72) Inventors: LEE, Se-Jin; 6711 Chokeberry Road, Baltimore, MD 21209 (US). MCPHERRON, Alexandra, C.; 3905 Keswick Road, Baltimore, MD 21211 (US).
- (74) Agent: HAILE, Lisa, A.; Fish & Richardson P.C., Suite 1400, 4225 Executive Square, La Jolla, CA 92037 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.
With amended claims.

Date of publication of the amended claims:

.11 September 1998 (11.09.98)

(54) Title: GROWTH DIFFERENTIATION FACTOR-8

(57) Abstract

A transgenic non-human animal of the species selected from the group consisting of avian, bovine, ovine and porcine having a transgene which results in disrupting the production of and/or activity of growth differentiation factor-8 (GDF-8) chromosomally integrated into the germ cells of the animal is disclosed. Also disclosed are methods for making such animals, and methods of treating animals, including humans, with antibodies or antisense directed to GDF-8. The animals so treated are characterized by increased muscle tissue.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AŁ	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BĘ	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	•	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Нипдагу	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	· IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	`Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	. VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	· KG	Kyrgyzstan	NO	Norway	ZW ·	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	•	
CM	Сатегооп		Republic of Korea	PL	Poland		
CN	China	ੂKR (Republic of Korea	РT	Portugal		
CŲ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	· LC	Saint Lucia	RU -	Russian Federation	ar - u	
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		-
EE	Estonia	LR	Liberia	SG	Singapore		•

AMENDED CLAIMS

[received by the International Bureau on 21 July 1998 (21.07.98); original claim 2 amended; new claims 49-65 added; remaining claims unchanged (4 pages)]

- 1. A transgenic non-human animal having a transgene disrupting or interfering with expression of growth differentiation factor-8 (GDF-8) chromosomally integrated into the germ cells of the animal.
- 2. The transgenic animal of claim 1, wherein the animal is selected from the group of species consisting of murine, avian, bovine, ovine, piscine, murine, and porcine.
- 3. The transgenic animal of claim 1 where the species is avian.
- 4. The transgenic animal of claim 1 where the species is bovine.
- 5. The transgenic animal of claim 1 where the species is porcine.
- 6. The transgenic animal of claim 1 where the species is ovine.
- 7. The transgenic animal of claim 1 where the species is piscine.
- 8. The transgenic animal of claim 1, wherein the transgene comprises GDF-8 antisense polynucleotide(s).
- 9. The transgenic animal of claim 1, wherein the transgene comprises a gene encoding a dominant negative GDF-8 polypeptide.
- 10. The transgenic animal of claim 1, wherein the animal is homozygous or heterozygous for GDF-8 polynucleotide.
- 11. A chicken or turkey egg produced by the transgenic animal of claim 3.

A Decrees

- A method for identifying a compound that affects GDF-8 activity or gene expression comprising:
- a) incubating the compound with GDF-8 polypeptide, or with a recombinant cell expressing GDF-8 under conditions sufficient to allow the components to interact; and
- b) determining the effect of the compound on GDF-8 activity or expression
- The method of claim 44, wherein the effect is inhibition of GDF-8 activity or expression.
- 46. The method of claim 44, wherein the effect is stimulation of GDF-8 activity or expression.
- An isolated polynucleotide encoding a truncated GDF-8 polypeptide wherein the truncation is a loss of the C-terminal active fragment of GDF-8.
- 48. The isolated polynucleotide of claim 47, wherein the polynucleotide is as shown in FIGURE 12a.
- 49. The transgenic animal of claim 1 where the species is murine.
- A method for producing a transgenic non-human animal having a phenotype characterized by expression of a transgene otherwise not naturally occurring, wherein expression of the transgene disrupts or interferes with growth differentiation factor-8 (GDF-8) activity, comprising:
 - a) introducing a transgene in operable linkage with at least one expression regulatory sequence into a zygote of an animal;
 - b) transplanting the zygote of a) into a pseudopregnant animal;
 - c) allowing the zygote to develope to term; and
 - d) identifying at least one transgenic offspring from c) where expression of the transgene disrupts or interferes with GDF-8 activity.

- The method of claim 50, wherein the introduction of the transgene into the embryo is by introducing an embryonic stem cell containing the transgene into the embryo.
- The method of claim 50, wherein the introduction of the transgene into the embryo is by infecting the embryo with a virus containing the transgene.
- 52. The method of claim 52, wherein the virus is a retrovirus.
- 53. The method of claim 50, wherein the transgene encodes GDF-8 antisense polynucleotide(s).
- The method of claim 50, wherein the transgene encodes a dominant negative protein that disrupts or interferes with GDF-8 activity.
- 55. The method of claim 50, wherein the transgenic animal is homozygous or heterozygous for GDF-8 polynucleotide.
- The method of claim 50, wherein disrupting or interfering with GDF-8 activity in the transgenic non-human animal produces increased muscle mass as compared to a non-transgenic animal of the same species.
- 57. The method of claim 50, wherein the animal is selected from the group consisting of murine, avian, bovine, ovine, piscine, and porcine.

- A method for producing a transgenic non-human animal having a phenotype characterized by expression of a transgene otherwise not naturally occurring, wherein expression of the transgene disrupts or interferes with expression of growth differentiation factor-8 (GDF-8), comprising:
 - a) introducing a transgene in operable linkage with at least one expression regulatory sequence into a zygote of an animal;
 - b) transplanting the zygote of a) into a pseudopregnant animal;
 - c) allowing the zygote to develope to term; and
 - d) identifying at least one transgenic offspring from c) where expression of the transgene disrupts or interferes with expression of GDF-8.
- The method of claim 58, wherein the introduction of the transgene into the embryo is by introducing an embryonic stem cell containing the transgene into the embryo.
- The method of claim 58, wherein the introduction of the transgene into the embryo is by infecting the embryo with a virus containing the transgene.
- 61. The method of claim 60, wherein the virus is a retrovirus.
- The method of claim 58, wherein the transgene encodes GDF-8 antisense polynucleotide(s).
- The method of claim 58, wherein the transgenic animal is homozygous or heterozygous for GDF-8 polynucleotide.
- The method of claim 58, wherein disrupting or interfering with GDF-8 activity in the transgenic non-human animal produces increased muscle mass as compared to a non-transgenic animal of the same species.
- The method of claim 58, wherein the animal is selected from the group consisting of murine, avian, bovine, ovine, piscine, and porcine.