Capitolo 5

Livello di collegamento

Stiamo rendendo queste diapositive disponibili gratuitamente a tutti (docenti, studenti, lettori). Sono in formato PowerPoint, quindi puoi vedere le animazioni; e può aggiungere, modificare ed eliminare le diapositive (inclusa questa) e il contenuto delle diapositive in base alle proprie esigenze.

Ovviamente rappresentano molto lavoro da parte nostra. In cambio dell'uso, chiediamo solo quanto seque:

- Se usi queste diapositive (ad esempio, in una classe) e menzioni la loro fonte (dopotutto, vorremmo che le persone usassero il nostro libro!)
- Se pubblichi diapositive su un sito www, tieni presente che sono adattate da (o forse identiche a) le nostre diapositive e prendi nota del nostro copyright su questo materiale.

Grazie e buon divertimento! JFK/KWR

Tutto il copyright del materiale 1996-2012 JF Kurose e KW Ross, Tutti i diritti riservati

Computer Rete: A

Approccio
7thedizione
Jim Kurose, Keith
Ross
Addison Wesley
aprile 2016

Capitolo 5: Livello di collegamento

i nostri obiettivi:

- -comprendere i principi alla base dei servizi a livello di collegamento:
 - rilevamento degli errori, correzione
 - condivisione di un canale di trasmissione: accesso multiplo
 - indirizzamento del livello di collegamento
 - reti locali: Ethernet, VLAN

Livello di collegamento, LAN: cenni

5.1 introduzione, Servizi

5.2rilevamento degli errori, correzione

5.3accesso multiplo protocolli

5.4LAN

indirizzamento, ARP

Ethernet

interruttori

VLAN

Livello di collegamento:

introduzione

terminologia:

- host e router:nodi
- canali di comunicazione che collegano adiacenti nodi lungo percorso di comunicazione:link
 - collegamenti cablati
 - __ collegamenti senza fili
 - LAN
- pacchetto di livello 2:telaio, incapsula il datagramma

Livello di collegamento 5-4

livello di collegamento datiha la responsabilità di trasferire il datagramma da un nodo a fisicamente adiacentenodo su un collegamento

Livello di collegamento: contesto

- datagramma trasferito
 tramite collegamento diverso
 protocolli su collegamenti
 diversi:
 - ad esempio, Ethernet sul primo collegamento, frame relay sull'intermedio collegamenti, 802.11 sull'ultimo collegamento
- ogni protocollo di collegamento fornisce diversi **Servizi**
 - ad esempio, può o non può fornire rdt tramite link

trasporto analogia:

- viaggio da Princeton a Losanna
 - limousine: da Princeton a JFK
 - aereo: JFK a Ginevra
 - treno: da Ginevra a Losanna
- turista =datagramma
- segmento di trasporto = legame di comunicazione
- modalità di trasporto = protocollo del livello di collegamento
- agente di viaggio =algoritmo di instradamento

Servizi a livello di collegamento

- inquadratura, collegamento di accesso:
 - incapsula il datagramma nel frame, aggiungendo header, trailer
 - accesso al canale se mezzo condiviso
 - "MAC" utilizzati nelle intestazioni dei frame per identificare l'origine, la destinazione
 - diverso dall'indirizzo IP!
- consegna affidabile tra nodi adiacenti
 - usato raramente su collegamenti a basso errore di bit (fibra, qualche doppino intrecciato)
 - collegamenti wireless: alti tassi di errore

Servizi a livello di collegamento (altro)

- controllo del flusso:
 - stimolazione tra nodi di invio e ricezione adiacenti
- *rilevamento errori:*
 - errori causati da attenuazione del segnale, rumore.
 - il ricevitore rileva la presenza di errori:
 - segnala al mittente la ritrasmissione o elimina il frame
- Correzione dell'errore:
 - il ricevitore identificae correggeerrori di bit senza ricorrere alla ritrasmissione
- half duplex e full duplex
 - con half duplex, i nodi ad entrambe le estremità del collegamento possono trasmettere, ma non contemporaneamente

Dove è implementato il livello

di collegamento?

- in ogni ospite
- livello di collegamento implementato in "adattatore" (aka scheda di rete NIC) o su un chip
 - scheda ethernet, scheda 802.11; Chipset Ethernet
 - implementa il collegamento,
 Strato fisico
- si collega ai bus di sistema dell'host
- combinazione di hardware software, firmware

Adattatori comunicanti

- · lato di invio:
 - incapsula datagramma nel frame
 - aggiunge bit di controllo degli errori, rdt, flusso controllo, ecc.

- lato ricevente
 - cerca errori, rdt, controllo di flusso, ecc
 - estrae il datagramma, passa in alto strato alla ricezione lato

Livello di collegamento, LAN: cenni

- **5.1**introduzione, Servizi
- **5.2**rilevamento degli errori, correzione
- 5.3accesso multiplo protocolli

5.4LAN

indirizzamento, ARP

Ethernet

interruttori

VLAN

N

EDC= Bit di rilevamento e correzione degli errori (ridondanza)

D = Dati protetti dal controllo degli errori, possono includere campi di intestazione

- Rilevamento errori non affidabile al 100%!
 - il protocollo può perdere alcuni errori, ma raramente
 - un campo EDC più ampio produce una migliore rilevazione e correzione

Controllo di parità

parità a bit singolo:

 rilevare errori a bit singolo

parità di bit bidimensionale:

rilevare e correggere errori a bit singolo

Somma di controllo Internet(revisione)

obiettivo:rilevare "errori" (ad esempio, bit capovolti) in pacchetto trasmesso (nota: utilizzato solo a livello di trasporto)

mittente:

- segmento di trattamento contenuto come sequenza di 16 bit interi
- somma di controllo: addizione (complemento di 1 somma) del segmento Contenuti
- mittente mette
 valore di checksum in
 Campo checksum UDP

ricevitore:

- calcolare il checksum del segmento ricevuto
- controlla se il checksum calcolato è uguale valore del campo checksum:
 - NO errore rilevato
 - SÌ nessun errore rilevato. Ma **forse errori** ciò nonostante?

Controllo di ridondanza ciclico

- codifica di rilevamento degli errori più potente
- ampiamente utilizzato nella pratica (Ethernet, WiFi 802.11)
- visualizzare bit di dati, D, come numero binario
- scegli r+1 bit pattern (generatore), G
- obiettivo: scegliere r bit CRC,R, tale che
 - <D,R> esattamente divisibile per G (modulo 2)
 - il ricevitore conosce G, divide <D,R> per G. Se resto diverso da zero: errore rilevato!

D*2^r XOR R

mathematical formula

Esempio CRC

Volere:

D.2RXORR=nG

equivalentemente:

D.2R = nG XOR R

equivalentemente:

se dividiamo D.2R di G, vuoi resto R a

soddisfare:

$$R = resto[$$
 $\frac{D.2R}{G}$

ABA	XOR B
00	0
01	1
10	1
11	0

Proprietà CRC

- Sono stati definiti generatori standard di 8,12,16 e 32 bit
- Ad esempio, il CRC32per diversi protocolli di collegamento dati è:

 GCRC-32=1000001001100000100011101101101111
- CRC può rilevare:
 - burst di errore inferiore a r+1 bit
 - tutti i numeri dispari di errori di bit

Livello di collegamento, LAN: cenni

- **5.1**introduzione, Servizi
- 5.2rilevamento degli errori, correzione
- 5.3accesso multiplo protocolli

5.4LAN
indirizzamento, ARP
Ethernet
interruttori

VLAN

Collegamenti di accesso multipli, protocolli

due tipi di "link":

- punto a punto
 - PPP per l'accesso dial-up
 - collegamento punto-punto tra switch Ethernet, host
- trasmissione (cavo o mezzo condiviso)
 - Ethernet vecchio stile
 - LAN senza fili 802.11

filo condiviso (ad es. Ethernet cablata)

RF condivisa (ad es. Wi-Fi 802.11)

RF condivisa (satellitare)

umani a cocktail party (aria condivisa, acustica)

Protocolli di accesso multipli

- singolo canale di trasmissione condiviso
- due o più trasmissioni simultanee da parte dei nodi: interferenza
 - collisionese il nodo riceve due o più segnali contemporaneamente

protocollo di accesso multiplo

- algoritmo distribuito che determina come i nodi condividono il canale, cioè determina quando il nodo può trasmettere
- la comunicazione sulla condivisione del canale deve utilizzare il canale stesso!
 - nessun canale fuori banda per il coordinamento

Protocollo di accesso multiplo ideale

dato:canale di trasmissione di velocità R bps desiderata:

- 1. quando un nodo vuole trasmettere, può trasmettere alla velocità R.
- 2. quando M nodi vogliono trasmettere, ognuno può trasmettere a velocità media R/M
- 3. completamente decentralizzato:
 - nessun nodo speciale per coordinare le trasmissioni
 - nessuna sincronizzazione di orologi, slot
- 4. semplice

Protocolli MAC: tassonomia

tre grandi classi:

- partizionamento dei canali
 - dividere il canale in "pezzi" più piccoli (fasce orarie, frequenza, codice)
 - allocare pezzo al nodo per uso esclusivo
- accesso casuale
 - canale non diviso, consentire collisioni
 - "recuperare" dalle collisioni
- "cambiare direzione"
 - i nodi si alternano, ma i nodi con più nodi da inviare possono richiedere turni più lunghi

Protocolli di partizionamento dei canali: TDMA

TDMA: accesso multiplo a divisione di tempo

- accesso al canale in "giri"
- ogni stazione ottiene uno slot di lunghezza fissa (lunghezza = pkt trans time) in ogni round
- gli slot inutilizzati diventano inattivi

Protocolli di partizionamento dei canali: FDMA

FDMA: accesso multiplo a divisione di frequenza

- spettro del canale suddiviso in bande di frequenza
- a ciascuna stazione è assegnata una banda di frequenza fissa
- il tempo di trasmissione inutilizzato nelle bande di frequenza diventa inattivo

Protocolli di accesso casuale

- quando il nodo ha un pacchetto da inviare
 - trasmettere alla massima velocità dati del canale R.
 - nessun coordinamento a priori tra i nodi
- due o più nodi trasmittenti→ "collisione",
- protocollo MAC ad accesso casualespecifica:
 - come rilevare le collisioni
 - come recuperare dalle collisioni (ad esempio, tramite ritrasmissioni ritardate)
- esempi di protocolli MAC ad accesso casuale:
 - ALOHA scanalato
 - CSMA, CSMA/CD, CSMA/CA

ALOHA scanalato

ipotesi:

- tutte le cornici della stessa dimensione
- tempo diviso in slot di uguali dimensioni (tempo per trasmettere 1 frame)
- i nodi iniziano a trasmettere solo slot inizio
- i nodi sono sincronizzato
- se 2 o più nodi trasmettono nello slot, tutti i nodi rilevano la collisione

funzionamento:

- quando il nodo ottiene un nuovo frame, trasmette nello slot successivo
 - se non c'è collisione: il nodo può inviare un nuovo frame nello slot successivo
 - in caso di collisione: il nodo ritrasmette il frame in ogni slot successivo con prob. p fino al successo

ALOHA scanalato

Professionisti:

- singolo nodo attivo può trasmettere continuamente a piena velocità del canale
- altamente decentralizzato:
 solo slot nei nodi
 devono essere sincronizzati
- semplice

Contro:

- collisioni, spreco di slot
- slot inattivi
- i nodi possono essere in grado di rilevare la collisione in meno tempo per trasmettere il pacchetto
- sincronizzazione dell'orologio

Scanalato ALOHA: efficienza

efficienza: lunga corsa frazione di successo slot (molti nodi, tutti con molti frame da inviare)

- supponiamo: N nodi con molti frame da inviare, ognuno trasmette in slot con probabilità p
- prob quel dato nodo ha successo in uno slot = p(1-p)_{N-1}
- prob che qualsiasi nodo ha successo = Np(1-p)_{N-1}

- max efficienza: trova p*
 che massimizza
 Np(1-p)_{N-1}
- per molti nodi, prendi il limite di Np*(1-p*)№1 mentre N tende all'infinito, dà:

efficienza massima = 1/e = .37

al massimo:

canale usato per utile trasmissioni 37% di tempo!

CSMA (carrier sense multiple access)

CSM:ascolta prima di trasmettere:

se il canale è stato rilevato inattivo:trasmettere intero telaio

se il canale è stato rilevato occupato, rinviare la trasmissione

analogia umana: non interrompere gli altri!

disposizione spaziale dei nodi

- possono ancora verificarsi collisioni:propagazione ritardo significa due i nodi potrebbero non sentirsi l'un l'altro trasmissione
- collisione:intero trasmissione a pacchetto tempo sprecato
 - distanza e ritardo di propagazione svolgere un ruolo in in determinazione della collisione probabilità

t₁

CSMA/CD (rilevamento collisione)

CSMA/CD:rilevamento della portante, differimento come in CSM

- collisioni rilevate in breve tempo
- le trasmissioni in collisione sono state interrotte, riducendo lo spreco di canale
- rilevamento delle collisioni:
 - facile nelle LAN cablate: misura l'intensità del segnale, confronta i segnali trasmessi e ricevuti
 - difficile nelle LAN wireless: potenza del segnale ricevuto sopraffatta dalla potenza della trasmissione locale
- analogia umana: il conversatore educato

CSMA/CD (rilevamento collisione)

EthernetCSMA/CD algoritmo

- 1.NIC riceve il datagramma dal livello di rete, crea cornice
- 2.Se il NIC rileva il canale inattivo, avvia il frame trasmissione. Se NIC percepisce il canale occupato, attende fino a quando il canale è inattivo, quindi trasmette.
- 3.Se la NIC trasmette l'intero frame senza rilevare un'altra trasmissione, NIC è fatto con cornice!

- 4.Se il NIC rileva un'altra trasmissione mentre trasmissione, interrompe e invia il segnale di inceppamento
- 5.Dopo l'interruzione, entra NICbinario backoff (esponenziale):
 - dopo l'ennesima collisione, NIC sceglie K a caso tra {0,1,2, ..., 2м-1}. Il NIC attende K∙512 bit volte, torna al passaggio 2
 - intervallo di backoff più lungo con più collisioni

Efficienza CSMA/CD

- Tpuntello = max prop delay tra 2 nodi in LAN
- Ttrans= tempo per trasmettere frame di dimensioni massime

- · l'efficienza va a 1
 - come tpuntello Va a 0
 - come t_{trans}va all'infinito
- prestazioni migliori rispetto ad ALOHA: e semplice, economico, decentralizzato!

Protocolli "a turno".

protocolli MAC di partizionamento dei canali:

- condividere il canale in modo efficiente ed equo a carico elevato
- inefficiente a basso carico: ritardo nell'accesso al canale, larghezza di banda 1/N allocata anche se solo 1 nodo attivo!

protocolli MAC ad accesso casuale

- efficiente a basso carico: il singolo nodo può utilizzare completamente il canale
- carico elevato: collisione sopra la testa

protocolli "a turno".

cerca il meglio di entrambi i mondi!

Protocolli "a turno".

sondaggi:

- nodo principale
 "invita" lo schiavo
 nodi da trasmettere
 a sua volta
- tipicamente usato con lo schiavo "stupido". dispositivi
- preoccupazioni:
 - polling sopraelevato
 - latenza
 - singolo punto di errore (master)

Protocolli "a turno".

passaggio di gettoni:

- controllogettone
 passato da uno
 nodo al successivo
 sequenzialmente.
- messaggio simbolico
- preoccupazioni:
 - gettone in alto
 - latenza
 - singolo punto di errore (token)

Sintesi dei protocolli MAC

- partizionamento dei canali, per tempo, frequenza o codice
 - Divisione di tempo, divisione di frequenza
- accesso casuale(dinamico),
 - ALOHA, CSMA, CSMA/CD
 - rilevamento della portante: facile in alcune tecnologie (filo), difficile in altre (wireless)
 - CSMA/CD utilizzato in Ethernet
 - CSMA/CA utilizzato in 802.11
- cambiare direzione
 - polling dal sito centrale, passaggio di token
 - bluetooth, token ring