体論 (第12回)

12. ガロアの基本定理の証明

前回, ガロアの基本定理について説明し, いくつかの具体例を紹介しました. 今回はこの証明についてみていきます. まずは定理の主張を復習しておきます.

定理 11-2 (ガロア理論の基本定理)

L/K を有限次ガロア拡大とする. M を L/K の中間体全体, H を $G=\mathrm{Gal}(L/K)$ の部分群全体とし、写像

$$\Phi: \mathbb{H} \longrightarrow \mathbb{M} \quad (H \longmapsto L^H), \quad \Psi: \mathbb{M} \longrightarrow \mathbb{H} \quad (M \longmapsto H(M))$$

を考える. このとき,

$$\Phi \circ \Psi = Id_{\mathbb{M}}, \quad \Psi \circ \Phi = Id_{\mathbb{H}}.$$

さらに次が成り立つ.

(1) $H_1, H_2 \in \mathbb{H}$ とし, $M_1 = \Phi(H_1), M_2 = \Phi(H_2)$ と置く. このとき,

$$H_1 \subseteq H_2 \iff M_2 \subseteq M_1$$
.

特に $\Phi(G) = K$, $\Phi(\{\mathrm{Id}_L\}) = L$.

H が G の正規部分群 \iff M/K はガロア拡大

が成り立つ.

$\Phi \circ \Psi = \mathbf{Id}_{\mathbb{M}}$ の証明

 $M \in \mathbb{M}$ に対して、

$$(\Phi \circ \Psi)(M) = \Phi(\operatorname{Gal}(L/M)) = L^{\operatorname{Gal}(L/M)}$$

であるので $L^{\operatorname{Gal}(L/M)} = M$ を示せばよい .

定義より $M\subset L^{\operatorname{Gal}(L/M)}$ は明らか. $x\in L^{\operatorname{Gal}(L/M)}$ とする. 定理 9-2 から x の M 上共役全体は

$$\{\sigma(x) \mid \sigma \in \operatorname{Gal}(L/M)\} = \{x\}.$$

従ってxのM上共役はただ1つしかないので $x \in M$. よって $L^{Gal(L/M)} \subset M$.

次に $\Psi \circ \Phi = \mathrm{Id}_{\mathbb{H}}$ を示します. このために次の補題を準備します.

補題 12-1

L/K を有限次ガロア拡大とし、H を $\mathrm{Gal}(L/K)$ の部分群とする. $\alpha \in L$ に対して

$$f(x) = \prod_{\sigma \in H} (x - \sigma(\alpha))$$

と置けば, $f(x) \in L^H[x]$ となる.

[証明]

 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \ (a_i \in L)$ と表す. $\tau \in H$ に対して、

$$f^{(\tau)}(x) = \prod_{\sigma \in H} \left(x - (\tau \circ \sigma)(\alpha) \right)$$

と置くと、 τ は環準同型より

$$f^{(\tau)}(x) = x^n + \tau(a_{n-1})x^{n-1} + \dots + \tau(a_0).$$

一方, H は群より $\{\tau \circ \sigma \mid \sigma \in H\} = H$ が成り立つ. 従って

$$f^{(\tau)}(x) = \prod_{\sigma \in H} \left(x - (\tau \circ \sigma)(\alpha) \right) = \prod_{\sigma \in H} \left(x - \sigma(\alpha) \right) = f(x).$$

これより, $\tau(a_i) = a_i \ (0 \le i \le n-1)$. 従って $a_i \in L^H$ であり, $f(x) \in L^H[x]$ を得る.

問題 12-1 $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$ とし, $G=\mathrm{Gal}(L/\mathbb{Q})$ とする. また $\sigma(\sqrt{2})=-\sqrt{2}$, $\sigma(\sqrt{3})=-\sqrt{3}$ を満たす $\sigma\in G$ を取り, $H=<\sigma>$ と置く. $\alpha=\sqrt{2}+\sqrt{3}$ に対して, 補題 12-1 が成り立つことを確認せよ.

$\Psi\circ\Phi=\mathbf{Id}_{\mathbb{H}}$ の証明

 $H \in \mathbb{H}$ に対して、

$$(\Psi \circ \Phi)(H) = \Psi(L^H) = \operatorname{Gal}(L/L^H).$$

従って $H = \operatorname{Gal}(L/L^H)$ を示せばよい.

定義から $H \subseteq \operatorname{Gal}(L/L^H)$ は直ちに従う.従って $|H| \le |G(L/L^H)| = [L:L^H]$.定理 9-1 より $L = L^H(\alpha)$ ($\alpha \in L$) と表せる.このとき,

$$f(x) = \prod_{\sigma \in H} (x - \sigma(\alpha))$$

と置けば、補題 12-1 より $f(x) \in L^H[x]$ となる. $f(\alpha) = 0$ より、 α の L^H 上の最小多項式を g(x) とすると、

$$|H| = \deg f \geq \deg g = [L^H(\alpha):L^H] = [L:L^H].$$

2

よって $|H| = |\operatorname{Gal}(L/L^H)|$. これと $H \subseteq \operatorname{Gal}(L/L^H)$ を合わせると $H = \operatorname{Gal}(L/L^H)$ が従う.

定理 11-2 (1) の証明

 $H_1 \subseteq H_2$ のとき,

$$L^{H_1} = \{ x \in L \mid \sigma(x) = x \ (\forall \sigma \in H_1) \} \supseteq \{ x \in L \mid \sigma(x) = x \ (\forall \sigma \in H_2) \} = L^{H_2}.$$

従って $M_1 \supset M_2$. 逆は問題にしておく.

問題 12-2 定理 11-2 (1) の状況を考える. $M_2 \subseteq M_1$ のとき, $H_1 \subseteq H_2$ を示せ.

定理 11-2 (2) の証明

 $\Psi\circ\Phi=\operatorname{Id}_{\mathbb{H}}\ \mathop{\sharp}\ \mathop{\mathfrak{h}}$

$$[L:M] = |Gal(L/M)| = |\Psi(M)| = |\Psi(\Phi(H))| = |H|.$$

次に

H が G の正規部分群 $\iff M/K$ はガロア拡大

を示す. まず, M/K をガロア拡大とする. このとき,

$$\varphi: G \to \operatorname{Gal}(M/K) \quad (\sigma \mapsto \sigma|_M) \quad \text{(eq 1)}$$

は群の準同型で,

$$\ker \varphi = \{ \sigma \in G \mid \sigma|_M = \mathrm{Id}_M \} = \mathrm{Gal}(L/M) = H.$$

従ってHはGの正規部分群である.

逆に H が G の正規部分群とする. $\tau \in \operatorname{Hom}_K(M,\mathbb{C})$ とすると, 補題 9-1 より $\sigma|_M = \tau$ を満たす $\sigma \in \operatorname{Hom}_K(L,\mathbb{C}) = G$ が取れる. このとき, $\sigma H \sigma^{-1} = H(\sigma(M))$ が成り立つ (問題 12-3). H は G の正規部分群なので,

$$\Psi(\sigma(M)) = H(\sigma(M)) = \sigma H \sigma^{-1} = H = \Psi(M).$$

 Ψ は単射より $\sigma(M)=M$. これより $\tau(M)=M$. 従って M/K はガロア拡大である.

[補足] 補題 9-1 より (eq 1) の φ は全射であることが分かる. 従って, 準同型定理から群の同型

$$G/H(M) \simeq \operatorname{Gal}(M/K)$$

が得られる.

問題 12-3 定理 11-2 (2) の証明において, $\sigma H \sigma^{-1} = H(\sigma(M))$ を示せ.