Multiplicity dependence of strange and multi-strange particle in jets in pp collisions at $\sqrt{s}=7$ TeV

4 authors

5 Abstract

Comprehensive results on the production of unidentified charged particles, π^{\pm} , K^{\pm} , p, K_S^0 , K^{*0} , ϕ , Λ , Ξ^{\pm} , Ω^{\pm} hadrons in jets in proton-proton (pp) collisions at $\sqrt{s}=7$ TeV are presented with two developed color reconnection models, the new color reconnection model and the rope hadronization model, in PYTHIA 8 generator. The observables are ratios of identified hadron yields as a function of the transverse momentum (p_T) and the final-state activity (the charged multiplicity).

11 Introduction

1

10

In heavy-ion collisions at ultra-relativistic energies, it is well established that a strongly coupled Quark-Gluon-Plasma (QGP) is formed [? ? ? ?]. Recent measurements in high multiplicity pp, p-A and d-A collisions at different energies have revealed strong flow-like effects even in these small collision 14 systems [? ? ? ? ? ? ? ? ?]. The baryon-to-meson ratios p/π and Λ/K_S^0 , in pp and p-Pb collision 15 systems, exhibit a characteristic depletion at $p_{\rm T} \sim 0.7$ GeV/c and an enhancement at intermediate $p_{\rm T}$ (\sim 16 3 GeV/c), which is qualitatively similar to that observed in Pb–Pb collisions [?]. In a letter [?], the 17 ALICE Collaboration reported the multiplicity dependent enhancement of strange $(K_S^0, \Lambda \text{ and } \overline{\Lambda})$ and 18 multi-strange $(\Xi^-, \overline{\Xi}^+, \Omega^- \text{ and } \overline{\Omega}^+)$ particle in pp collisions at $\sqrt{s} = 7$ TeV. As well as, those results 19 were complemented by the measurement of π^{\pm} , K^{\pm} , p, \bar{p} , K^{*0} and ϕ with ALICE [?]. Such behaviour 20 cannot be reproduced by any of the MC models commonly used, suggesting that further developments 21 are needed to obtain a complete microscopic understanding of strangeness production and indicating the 22 presence of a phenomenon novel in high-multiplicity pp collisions. 23

In a recent study, to provide further insight into the particle production mechanisms in high-multiplicity pp and p-Pb events, the ALICE Collaboration has studied baryon-to-meson ratios with a new method: by studying the ratios in two parts of the events separately – inside jets and in the event portion perpendicular to a jet cone [?]. In contrast to the inclusive distribution, the p_T -differential Λ/K_S^0 ratio within jets in pp and p-Pb collisions does not exhibit baryon enhancement at intermediate p_T . It is plausible that the baryon enhancement may therefore be attributable to the soft (low Q^2) component of the collision as discussed in [?].

In this work, inspired by this paper [?], we study the "strangeness to pion ratio increase with multiplicity" and the "baryon-to-meson ratio enhancement at intermediate p_T " with charged-particle jet probe by PYTHIA model. In this contribution we consider two of the models: the new colour reconnection (CR) model [??] and the colour rope model [??] in the PYTHIA 8 generator. Both considered colour reconnection models are built upon the Lund model for string hadronization [??]. In these models, outgoing partons are connected with string-like color fields, which fragment into hadrons when moving apart.

- The paper is structured as follows: in Sec. 2 will give a brief introduction about the models we used, the
- results compared to data are provided in Sec. 3, the predictions results can be find in Sec. 4, and in the
- end, the paper will be summarized in Sec. 5,

41 2 Models

42 2.1 New color reconnection model

43 2.2 Color rope model

- 44 As rope formation is expected to give increased rates of strange particles and baryons, which may mimic
- effects of plasma formation, it makes signals for a phase transition more difficult to interpret. It has also
- been suggested that ropes may initiate the formation of a quark-gluon plasma [????]. At LHC
- 47 energies many overlapping strings are also expected in pp scattering, where plasma formation normally
- 48 is not expected.

49 3 Compare to data

The models performs as intended when comparing to existing data. The inclusive measurements on the charged particle pseudo-rapidity and multiplicity distributions are presented in Figure 1.

Figure 1: Charged particle pseudo-rapidity (η_{trk}) (left) and number of mid-rapidity tracks (N_{mid}) (right) distribution for pp collisions at $\sqrt{s} = 7$ TeV. The experimental data are taken from [?].

4 Predictions

53 **Summary**

References

51

55 A Model parameters

Parameters	Values
MultiPartonInteractions:pT0Ref	2.15
BeamRemnants:remnantMode	1
BeamRemnants:saturation	5
ColourReconnection:reconnect	on
ColourReconnection:mode	1
ColourReconnection:allowDoubleJunRem	off
ColourReconnection:m0	0.3
ColourReconnection:allowJunctions	on
ColourReconnection:junctionCorrection	1.2
; ColourReconnection:timeDilationMode	2
ColourReconnection:timeDilationPar	0.18

Table A.1: Colour reconnection model parameters

Parameters	Values
Ropewalk:RopeHadronization	on
Ropewalk:doShoving	on
Ropewalk:tInit	1.5
Ropewalk:deltat	0.05
Ropewalk:tShove	0.1
Ropewalk:gAmplitude	0.
Ropewalk:doFlavour	on
Ropewalk:r0	0.5
Ropewalk:m0	0.2
Ropewalk:beta	0.1

Table A.2: Rope hadronization model parameters