(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-262862

(43)公開日 平成5年(1993)10月12日

(51) Int.Cl.5

識別記号

庁内整理番号

C 0 8 G 63/183

NMF

7211-4 J

63/85

NMX 7211-4 J FΙ

技術表示箇所

審査請求 未請求 請求項の数35(全 11 頁)

(21)出願番号

特願平4-338534

(22)出願日

平成4年(1992)12月18日

(31)優先権主張番号 809353

(32)優先日

1991年12月18日

(33)優先権主張国

米国 (US)

(71)出願人 590000330

ヘキスト・セラニーズ・コーポレーション HOECHST CELANESE CO

RPORATION.

アメリカ合衆国ニュージャージー州08876、 サマーヴィル,ルート 202-206 ノース

(番地なし)

(72) 発明者 マーピン・エル・ドアー

アメリカ合衆国ノース・カロライナ州

28226, シャーロット, チャターバード・

コート 7312

(74)代理人 弁理士 湯浅 恭三 (外5名)

最終頁に続く

(54) 【発明の名称】 ポリ(1,3-プロピレンテレフタレート)

(57)【要約】

【目的】 入手可能な原料から容易にポリ(1,3-プ ロピレンテフタレート)を製造するとともに、許容可能 な色を有するポリ (1, 3-プロピレンテフタレート) を製造する。

【構成】 新規な触媒システムを用い、テレフタル酸ま たはテレフタル酸の低級ジアルキルエステルと、1,3 ープロパンジオールとを反応させ、それにより生じたモ ノマーを重合させることからなるポリ (1, 3-プロピ レンテレフタレート)の製造方法。この新規な触媒組成 物は、重縮合反応に有効触媒量の錫を用いることからな る。この触媒システムと登録商標ホスタパーム顔料を用 いると、4未満の黄色度と少なくとも0.80デシリッ トル/gの固有粘度を有するポリ(1,3-プロピレンテ レフタレート)を製造することが可能となる。

【特許請求の範囲】

【請求項1】 (a) テレフタル酸またはテレフタル酸 の低級ジアルキルエステルと、1,3-プロパンジオー ルとを反応させてモノマーおよび反応副生成物を生成さ せ;

- (b) 前記反応中に前記反応副生成物を除去し;
- (c) 前記モノマーを重縮合反応によって重合させて、 ポリ(1,3-プロピレンテレフタレート)と1,3-プロパンジオールとを生成させ;
- (d) 前記重縮合反応中に前記1, 3-プロパンジオー 10 ルを除去する各工程からなり、前記重縮合反応に先立っ て、有効触媒量の錫を添加することを特徴とするポリ (1,3-プロピレンテレフタレート)の製造方法。

【請求項2】 前記1,3-プロパンジオールが、以下 の諸性質、すなわち、少なくとも99.0%の純度; プロプリオンアルデヒド等のカルボニル総量1000pp 四未満; 水分含量0.3重量%未満; および、鉄含 量1ppm未満を有する請求項1記載の製造方法。

【請求項3】 前記1、3-プロパンジオールが、以下 の性質、すなわち、1,3-プロパンジオールと蒸留水 20 で生起する請求項8記載の製造方法。 との50:50プレンド中でのpH6.5~7.5を有 する請求項2記載の製造方法。

【請求項4】 前記低級ジアルキルエステルが、ジメチ ルテレフタレート (DMT) である請求項1記載の製造 方法。

【請求項5】 前記錫が、DMT基準で、約100ppm ~約525ppmの範囲存在する請求項1記載の製造方 法。

【請求項6】 前記錫が、テレフタル酸基準で、約10 Oppm~約650ppmの範囲存在する請求項1記載の製造 30 方法。

【請求項7】 前記重縮合反応が、約240℃~約29 0℃の温度範囲と約0.1~約3.0mmHgの圧力で生起 する請求項1記載の製造方法。

【請求項8】 (a) テレフタル酸またはテレフタル酸 の低級ジアルキルエステルと、1,3-プロパンジオー ルとを反応させてモノマーおよび反応副生成物を生成さ せ;

- (b) 前記反応中に前記反応副生成物を除去し;
- (c) 前記モノマーを重縮合反応によって重合させて、 ポリ(1、3-プロピレンテレフタレート)と1、3-プロパンジオールとを生成させ;
- (d) 前記重縮合反応中に前記1,3-プロパンジオー ルを除去する各工程からなり、チタンおよび錫からなる 群から選択される有効触媒量の触媒を前記反応工程(a) に先立って添加し、有効触媒量の錫を前記重縮合反応に 先立って添加することを特徴とするポリ(1.3-プロ ピレンテレフタレート)の製造方法。

【請求項9】 前記1,3-プロパンジオールが、以下 の諸性質、すなわち、少なくとも99、0%の純度:

カルポニルまたはプロプリオンアルデヒドの総量100 Oppm未満; 水分含量 O. 3 重量 %未満; および、 鉄含量1ppm未満を有する請求項8記載の製造方法。

【請求項10】 前記1、3-プロパンジオールが、以 下の性質、すなわち、1,3-プロパンジオールと蒸留 水との50:50プレンド中でのpH6.5~7.5を 有する請求項9記載の製造方法。

【請求項11】 前記低級ジアルキルエステルが、ジメ チルテレフタレート (DMT) であり、DMTと1、3 - プロパンジオールとをエステル交換反応によって反応 させる請求項8記載の製造方法。

【請求項12】 前記エステル交換反応が、約155℃ ~約245℃の温度範囲と大気圧以下の圧力で生起する 請求項11記載の製造方法。

【請求項13】 1,3-プロパンジオール対ジメチル テレフタレートのモル比が、約1.4~1である請求項 11記載の製造方法。

【請求項14】 前記重縮合反応が、約240℃~約2 90℃の温度範囲と約0.1~約3.0mmHgの減圧範囲

【請求項15】 前記エステル交換反応の触媒としてチ タンを使用する請求項8記載の製造方法。

【請求項16】 前記チタンが、ジメチルテレフタレー ト基準で、約10ppm~約30ppmの範囲存在し、前記錫 が、ジメチルテレフタレート基準で、約100ppm~約 250ppmの範囲存在する請求項15記載の製造方法。

【請求項17】 前記エステル交換反応に先立ち、有効 触媒量のコパルトを添加する請求項16記載の製造方

前記重縮合反応に先立ち、有効触媒量 【請求項18】 の登録商標ホスタパーム顔料を添加する請求項16記載 の製造方法。

【請求項19】 直接エステル化により、テレフタル酸 を1、3-プロパンジオールと反応させる請求項8記載 の製造方法。

【請求項20】 前記直接エステル化が、約200℃~ 約260℃の温度範囲とほぼ大気圧~約100psigの圧 力範囲で生起する請求項19記載の製造方法。

【請求項21】 1,3-プロパンジオール対テレフタ 40 ル酸のモル比が約1. 4~1である請求項19記載の製 造方法。

【請求項22】 前記重縮合反応が、約240℃~約2 90℃の温度範囲と約0.1~約0.3mmHgの圧力範囲 で生起する請求項19記載の製造方法。

【請求項23】 前記直接エステル化の触媒としてチタ ンを用い、前記チタンが、テレフタル酸基準で、約1pp m~約125ppmの範囲で存在し、重縮合触媒用の前記錫 が、テレフタル酸基準で、約100ppm~約650ppmの 範囲で存在する請求項19記載の製造方法。

50 【請求項24】 (a) テレフタル酸またはテレフタル

酸の低級ジアルキルエステルと、1、3-プロパンジオ ールとを反応させてモノマーおよび反応副生成物を生成 させ:

- (b) 前記反応中に前記反応副生成物を除去し:
- (c) 前記モノマーを重縮合反応によって重合させて、 ポリ (1, 3-プロピレンテレフタレート) と1, 3-プロパンジオールとを生成させ:
- (d) 前記重縮合反応中に前記1,3-プロパンジオー ルを除去する各工程からなり、チタンおよび錫からなる 群から選択される有効触媒量の触媒を前記反応工程(a) 10 に先立って添加し、有効触媒量の錫と有効量の登録商標 ホスタパーム顔料とを前記重縮合反応に先立って添加す ることを特徴とするポリ(1,3-プロピレンテレフタ レート)の製造方法。

【請求項25】 前記低級ジアルキルエステルが、ジメ チルテレフタレート (DMT) であり、DMTと1, 3 - プロパンジオールとをエステル交換反応によって反応 させる請求項24記載の製造方法。

【請求項26】 前記エステル交換反応が、約155℃ 請求項25記載の製造方法。

【請求項27】 直接エステル化により、テレフタル酸 を1,3-プロパンジオールと反応させる請求項24記 載の製造方法。

前記直接エステル化が、約200℃~ 【請求項28】 約260℃の温度範囲とほぼ大気圧~約100psigの圧 力範囲で生起する請求項27記載の製造方法。

【請求項29】 1,3-プロパンジオール対テレフタ ル酸のモル比が約1. 4~1である請求項27記載の製 造方法。

前記重縮合反応が、約240℃~約2 【請求項30】 90℃の温度範囲と約0.1~約3.0mHgの減圧範囲 で生起する請求項27記載の製造方法。

【請求項31】 直接エステル化の触媒としてチタンを 用い、前記チタンが、テレフタル酸基準で、約1ppm~ 約125ppmの範囲で存在し、重縮合触媒用の前記錫 が、テレフタル酸基準で、約100ppm~約650ppmの 範囲で存在する請求項27記載の製造方法。

【請求項32】 ASTM法E308-85の下での変 色試験に対して、黄色度 b * 4 未満を有し、オルトクロ 40 ロフェノール溶剤を用い、この溶剤100ミリリットル にその8gを混合して25℃で試験した場合に、少なく とも0.80 デシリットル/gの固有粘度(IV) とを有 するポリ(1、3-プロピレンテレフタレート)。

【請求項33】 ASTM法E308-85の下での変 色試験に対して、黄色度り*4未満を有し、オルトクロ ロフェノール溶剤を用い、この溶剤100ミリリットル にその8gを混合して25℃で試験した場合に、少なく とも0.80 デシリットル/gの固有粘度(IV)とを有 するポリ(1,3-プロピレンテレフタレート)からな 50 コールという用語を使用しているが、これは、本発明に

るモノフィラメント繊維。

【請求項34】 ASTM法E308-85の下での変 色試験に対して、黄色度b * 4未満を有し、オルトクロ ロフェノール溶剤を用い、この溶剤100ミリリットル にその8gを混合して25℃で試験した場合に、少なく とも0.80デシリットル/gの固有粘度(IV)とを有 するポリ(1,3-プロピレンテレフタレート)から製 造されるモノフィラメント繊維からなるラケットのガッ

【請求項35】 請求項34記載のラケットのガットで 構成されるテニスラケット。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリ(1, 3-プロピ レンテレフタレート)(略してPPTと称す)または慣 用名ポリ(トリメチレンテレフタレート)を、テレフタ ル酸 (略してTAと称す) またはテレフタル酸の低級ジ アルキルエステルと1、3-プロパンジオールとから製 造するための方法に関するものである。本発明の特異な ~約245℃の温度範囲と大気圧以下の圧力で生起する 20 触媒システムを用いると、エステル交換反応または直接 エステル化に続き、重縮合により、ポリ(1,3-プロ ピレンテレフタレート)を有利に製造することが可能で ある。特に、重縮合触媒システムは、錫を含有する。さ らに詳しくは、テレフタル酸の低級ジアルキルエステル と1、3-プロパンジオールとのエステル交換用の触媒 として、チタンまたは錫を使用するとともに、重縮合工 程用の触媒として錫を使用する。テレフタル酸と1,3 プロパンジオールとの直接エステル化用としては、重 縮合用の錫触媒のみが必要とされる。

> 【0002】本発明のポリ(1、3-プロピレンテレフ 30 タレート)は、黄色度特性が改善され、より高い固有粘 度(略してIVと称す)で製造することができる。本発 明のPPTは、弾性回復が優れているので、ラケットの ガット用途、例えば、種々のスポーツで使用されるラケ ットに使用することができ、特に限定するわけではない が、テニスラケットおよびパドミントンラケット用に使 用することができる。

[0003]

【従来の技術】従来法においては、PPTは、エステル 交換反応プラス重縮合により、バッチ式の方法で製造さ れる。エステル交換反応においては、ジメチルテレフタ レート (DMT) とトリメチレングリコールとは、典型 的には、触媒、例えば、チタンの存在において、大気圧 および約155℃~245℃の温度で反応させられる。 触媒の存在においては、これらDMTおよびトリメチレ ングリコール成分は、エステル交換されて、中間体モノ マーとメタノールとを生成する。反応は、通常、DMT 約1モルとトリメチレングリコール1.20~2.20 モルで行われる。従来技術において、トリメチレングリ

おいて使用する1,3-プロパンジオールと同義である ことに注意して欲しい。反応中、メタノールを除去する ことにより、本反応は完結する。エステル交換中、中間 体モノマーが、メタノールを除外するとして、主生成物 であり、少量のオリゴマーを含む。

【0004】生成するモノマーは、温度を約240℃~約290℃に上昇させ、適当な重合触媒、例えば、チタンまたはアンチモン化合物の存在下、1mm以下の絶対圧に減圧すると、重縮合反応により重合する。かかる反応により、PPTと1,3ープロパンジオールとが生成 10する。本反応は可逆的であるので、1,3ープロパンジオールは、生成するとともに除去され、こうして、本反応は、PPT生成方向に推進される。

【0005】チタンは、PPTを製造するためのエステル交換反応用触媒として、一般に引用される触媒である。Evans et alに対する米国特許No. 3,671,379は、エステル交換および重縮合反応の両用にチタン触媒化合物を用いるPPT製造方法を開示している。この触媒化合物は、n-ブタノール溶液に溶解させたナトリウムと非常に高濃度のテトラブチルチタネート(DMT基準で201,300ppmより多い)との混合物である。同様の開示は、Pierce et alに対する米国特許No. 3,350,871および英国特許明細書1,075,689にも見られる。

【0006】Whinfield et alに対する米国特許No. 2,4 65,319は、ナトリウムと清浄マグネシウムリボンとを用 いてPPTを製造する方法を開示している。

【0007】Journal of Polymer Science: Part A-1, Volume 4, 1851-1859(1966)に提載された "Preparation and Properties of Poly(methylene) terephthalates" と題する論文は、重合用の触媒として、非常に高濃度の 30 テトライソプロピルチタネート (DMT基準で890~1,030ppm) を用いることを開示している。

【0008】J. Macromol. Sci.-Chem., A22(3), pp 37 3-378 (1985)に提載された "Preparation and Characte rization of Poly(ethylene/Trimethylene Terephthala te)Copolyester" と題する論文は、コポリエステル製造用の触媒として三酸化アンチモンおよび酢酸亜鉛の使用を開示している。

【0009】従来技術において、ポリ(エチレンテレフタレート)(略してPETと称す)を製造するために触 40 媒として錫を使用することは知られている。しかし、錫を使用すると、非常に変色した茶褐色のポリマーを生成する。このため、錫は、ポリ(エチレンテレフタレート)製造用の触媒としては好ましくない。

【0010】 PPTポリマー繊維は、2種の同族テレフタル酸ポリエステル、PETおよびポリ(1,4-プチレンテレフタレート)(略してPBTと称す)と異なる数々の性質を有する。全延伸PPT糸は、優れた弾性(回復性およびレジリエンス)を有する。しかし、PPT糸の使用は、着色するという欠点を有し、また25℃ 50

の溶剤としてオルトクロロフェノールを用い25で測定される少なくとも0.80デシリットル/g (デシリッ

トル/グラム)の固有粘度で定義される有用分子量を有するPPTを製造するための方法がないというので非常に限られたものであった。

[0011]

【発明が解決しようとする課題】本発明の課題は、入手可能な原料から容易にPPTを製造するとともに、許容可能な色を有するPPTを製造することである。

[0012]

【課題を解決するための手段】本発明は、独特な触媒システムの使用を通して、エステル交換または直接エステル化と重縮合反応とを有効ならしめることにより、独特なポリ(1,3-プロピレンテレフタレート)の製造方法を提供するものである。特に、本発明は、錫化合物触媒を重縮合反応に用いることを特徴とするポリ(1,3-プロピレンテレフタレート)の製造方法を含むものである。

【0013】本発明は、最も広義な意味において、テレフタル酸(TA)またはテレフタル酸の低級ジアルキルエステル(LDE)と1、3-プロパンジオールとから(1、3-プロピレンテレフタレート)を製造する方法であって、1、3-プロパンジオールとLDEまたはTAとを、モル比約1.4/1、モノマーおよび副生成物を生成するに十分な好適温度と圧力とで反応させ;生成する副生成物を除去してLDEまたはTAと1、3-プロパンジオールとをより完全に反応させ;その圧力を重縮合を開始するために十分な圧力に減圧し;生成するモノマーを有効量の錫触媒の存在下、好適な温度と減圧とで重合させる各工程からなる製造方法を含むものである。

【0014】本発明はまた、上記方法によって製造されるポリ(1,3-プロピレンテレフタレート)製のモノフィラメント繊維およびかかるモノフィラメント繊維からなる物品をも含むものである。

【0015】本発明はまた、本発明のポリ(1,3-プロピレンテレフタレート)の数々の使用を含むものであり、ラケットのガット、複合マトリックス、カーペット、フィルム、ギター用の糸、釣り糸、血管形成カテーテルチュープ等への使用を含むものである。

【0016】本発明のポリ(1,3-プロピレンテレフタレート)は、テレフタル酸(TA)またはテレフタル酸の低級ジアルキルエステル(LDE)と1,3-プロパンジオールとから製造される。好適なLDEとしては、ジメチルテレフタレート、ジプチルテレフタレート、ジプロピルテレフタレート、ジプチルテレフタレート、ジアルキルナフタレート、例えば、2,6-ジメチルナフタレート、あるいは、これらの2種以上の混合物が挙げられる。

【0017】1、3-プロパンジオールは、デグッサコ

ーポレーションにより市販されており、また、米国特許 No. 4,873,378、同No. 4,873,379および同No. 4,935,55 4の開示に従って製造することもできる。この1,3-プロパンジオールは、以下の諸性質、すなわち、少なく とも99.0%の純度; プロブリオンアルデヒド等の カルポニル総量1000ppm未満; 水分含量0.3重 量%未満; および、鉄含量1ppm未満を有する。ま た、1、3-プロパンジオールと蒸留水との50:50 のプレンドが р Н 6. 5~7. 5を有するのが好まし 11

【0018】本発明において用いられる触媒システム は、その初期反応において、TAが用いられるか、ある いは、LDEが用いられるかに依存する。直接エステル 化において、TAを1、3-プロパンジオールと反応さ せる場合、0~125ppmのチタンを用いることがで き、また、TA基準で、0~約650ppmの錫を用いる こともできる。エステル交換反応において、LDEを 1, 3-プロパンジオールと反応させる場合、LDE基 準で、約10ppm~約30ppmのチタンまたは約100pp m~約250ppmの錫をそのエステル交換反応に用いるこ 20 とができる。上述した反応は、モノマーを生成し、これ が重合または重縮合される。

【0019】重縮合反応において、使用される触媒シス テムとしては、LDE基準で、約100ppm~約525p pmの錫、または、TA基準で、約100~約650ppm の錫が挙げられる。全体のプロセスにおいて使用される 錫は累積し、すなわち、初期反応と重縮合反応の両者に おいて使用される錫の総量である。錫は、全量エステル 交換または直接エステル化に先立って、原料とともに充 ル交換または直接エステル化に先立って添加し、残りを 重縮合に先立って添加しても有効である。重合反応に対 して表される錫の量は、全反応に使用される累積量を表 す。

【0020】重縮合反応においては、錫に加えて、特定 の登録商標ホスタパーム (Hostaperm)顔料がPPTの黄 色度を低下させることが見いだされた。ホスタパーム は、ヘキスト社の登録商標である。特に、ある種のホス タパーム顔料は、PPTの黄色性に著しく作用し、PE TおよびPBTに対してよりもさらに著しく作用する。 特に、実施例において示すように、ホスタパーム顔料を PETに添加すると、黄色度指数b*を2ポイント低下 させ、PBTに対しては、ホスタパーム顔料の添加は、 黄色度指数 b * を約 4 ポイント低下させるだけである が、PPTに対しては、ホスタパームは、CIELAB スケールで黄色度指数 b * を約8ポイントも低下させ

【0021】好ましいホスタパーム顔料としては、シー アイピグメントパイオレット23、別名ブルーイッシュ パイオレット (C.I. Pigment Violet 23) 75%と、シ 50 LDEと1, 3-プロパンジオールとを、155℃~2

ーアイピグメントブルー15、別名、プライトブルー2 5%の混合物が挙げられる。シーアイピグメントパイオ レット23はカルバゾール顔料で、CASナンパー6358 -30-1を有する。シーアイピグメントブルー15は、フ タロシアニン顔料で、CASナンパー147-14-8を有す る。錫触媒を含めてホスタパーム顔料の総量は、LDE またはTA基準で、約1ppm~約4ppmの範囲がよい。ホ スタパーム顔料は、重縮合に先立って添加され、好まし くは、原料であるTAまたはLDEの初期充填とともに 10 添加するのがよい。

【0022】この触媒システムは、その最も有効量使用 される場合には、少なくとも0.80の固有粘度(I V) を有し、1976 CIELAB L‡a*b*スケール基準で、4に 等しいか、あるいは4未満の黄色度の商業的に許容可能 な色を有するポリ(1、3-プロピレンテレフタレー ト) を提供する。"IV"または"固有粘度"によっ て、ポリマーの濃度0における換算粘度を表し、これ は、新鮮な溶剤で連続的に希釈した後のポリマー溶液の 流動時間を測定し、換算粘度を算出し、この換算粘度を 濃度に対してプロットし、0濃度まで外挿することによ り決定される。換算粘度は、以下の式、

[ポリマー溶液の流動時間/溶剤の流動時間 -1]× 1/c

[式中、cは、溶剤100ミリリットル当たりのポリマ ーのグラム数を表す。〕から得られる。ここで、固有粘 度とは、溶剤として、25℃のオルトクロロフェノール を用い、改良オストワルド粘度計で測定したものであ

【0023】一般に、SnまたはTi化合物は、エステ 填してもよく、また、部分に分けて、その一部をエステ 30 ル交換反応の開始に先立って添加する。Snは、本明細 書の以降で詳しく説明するように、エステル交換に続い て重合の開始前または重合中に添加するもので、重縮合 反応用の触媒である。

> 【0024】本発明の触媒システム用の金属について記 載するが、触媒は、多種多様な化合物の形態で添加する こともできる。こうした化合物としては、テトラプチル **チタネート(TBT)、テトライソプロピルチタネート** (TPT)、アトケム (Atochem)社からFascat 4100と して市販されているブチル錫酸(BSA)、ブチル錫ト リス(2-エチルヘキソエート)、オクタン酸第一錫、 ジプチル錫オキシドおよびメチレンピス(メチル錫オキ シド)等が挙げられる。

> 【0025】上述した一般的な処方においては、その他 の添加剤として、例えば、着色剤、艶消剤、不透明化 剤、熱および紫外線安定剤等が挙げられる。これらの添 加剤は、添加しないか、あるいは、本発明において使用 しなくともよい。

【0026】本発明には、エステル交換反応または直接 エステル化が含まれる。エステル交換反応においては、

45℃の温度とほぼ大気圧以下の圧力でパッチ式で反応 させ、モノマーとアルコールとを生成させる。LDEと 1, 3-プロパンジオールとは、錫とチタンとからなる 群から選択される少なくとも1種の触媒の存在下で反応 させ、一般に、1,3-プロパンジオール対LDEのモ ル比約1.4/1で反応させる。このエステル交換反応 は可逆性であるので、形成されるアルコールを除去し て、本反応を前記モノマー生成有利にする必要がある。

【0027】直接エステル化反応においては、TAと 1,3-プロパンジオールとを、約200℃~260℃ 10 の温度とほぼ大気圧~約100psigの圧力でパッチ式に より反応させると、モノマーと水とを生成する。このT Aと1, 3-プロパンジオールとは、好適な触媒、例え ば、錫またはチタンの存在下で反応させてもよく、一般 に、1,3-プロパンジオール対TAのモル比約1.4 **/13で反応させるのがよい。チタンの量は、TA基準** で、0~約125ppmの範囲がよく、錫は、TA基準 で、0~約650ppmの範囲がよい。エステル交換と同 様に、水を除去すると、本反応は完結する。

終了時には、モノマーは、ついで、重縮合反応に付さ れ、ポリ(1、3-プロピレンテレフタレート)と1、 3 - プロパンジオールとを生成する。この重縮合反応 は、240℃~290℃の温度範囲とほぼ0.1~3. 0 mmHgの絶対圧で生起する。この反応は、TA基準で、 約100~約650ppm、または、LDE基準で、約1 00~約525ppmの錫触媒の存在下行われる。この反 応は可逆的であり、したがって、1,3-プロパンジオ ールを連続的に除去すると、この反応は、ポリ(1.3) -プロピレンテレフタレート)の生成方向に推進され、 本反応は完結する。重縮合するためには、先行する反応 の圧力から圧力を減圧にする必要がある。この時間は、 典型的には、パキュームレットダウン時間と称される。 反応容器を開き、減圧を解除すると、パキュームレット ダウンを再開始する必要があるので、重縮合反応用の錫 触媒は、バキュームレットダウンの開始に先立って添加 するのが好ましい。

【0029】一般に、本発明の範囲外の触媒のいずれか の量を使用するのは望ましくない。前記触媒のいずれか について記載した最少量未満の量を使用すると、一般 40 に、本発明で達成されると同等な結果を得ることはでき ない。また、前記触媒のいずれかについて記載した最大 **量を越える量使用すると、例えば、着色が乏しかった** り、望ましくない副生成物を生成したり、高コストとな る等の望ましくない効果を生ずる。

【0030】本技術においては、周知の技術、例えば、 固相重合により、縮合ポリマーの固有粘度(IV)を増 大させることが知られている。

【0031】本発明に従って製造されるPPTは、当業 者公知の種々の方法により、モノフィラメント形態に紡 50 糸することができる。一般に、こうしたPPTポリマー は、チップ形態に切断され、ポリマーの重量基準で、5 Oppm未満の水、好ましくは、20ppm未満の水を含有す るまでに乾燥させられる。PPTチップは、押出機中約 258℃で溶融され、約300~約9,000グラム/ 時の速度で約0.5~約1.5㎜の径を有する1以上の オリフィスを通して押出され、1以上の連続モノフィラ メント糸を形成する。ポリマーは、50~2,000ps

10

【0032】モノフィラメントは、押出に続き、約25 ℃~約50℃の温度を有する急冷水タンクに入る。モノ フィラメントは、ついで、10~25㎡分の速度で回転 する2~4個のローラを有する一連のロールを通す。つ いで、モノフィラメントは、50℃~80℃の温度を有 する水を入れた第2の水タンクを通す。しかる後、モノ フィラメントは、2セットのローラとこれらローラの間 に位置する1つの水タンクを通す。ついで、モノフィラ メントは、2段加熱域を通し、第1の加熱域で約100 ℃に、第2の加熱域で約150℃に加熱する。さらにそ 【0028】エステル交換または直接エステル化反応の 20 の後、モノフィラメントは、さらにもう1セットのロー ルを通し、その後、モノフィラメントは別々のポピンに 巻取る。ロール速度は、紡糸条件に依存する。紡糸方法 およびモノフィラメントの性質のさらに詳細は、以下の 実施例で説明する。

[0033]

igの圧力下で押出される。

【実施例】

実験操作

オートクレーブパッチで、実施例1、実験1~5用のポ リマーおおよそ825gのパッチを1,3-プロパンジ オール (PDO) 対ジメチルテレフタレート (DMT) のモル比ほぼ1. 4:1で、パッチ法で製造するととも に、実施例2および3用のポリマーおおよそ170およ び1,700ポンドのパッチをそれぞれPDO/DMT のモル比約1,4:1から製造した。この各々の場合に おいて、オートクレープに、まずDMT、PDOおよび 触媒、さらには、個々の実験に使用する添加剤を充填し た。このオートクレープを大気圧で200℃~230℃ に加熱すると、エステル交換の開始は約155℃~18 0℃で開始される。

【0034】原料充填中、オートクレープは、不活性ガ ス、例えば、3~6psiの窒素でパージし、酸化を防止 する補助とする。一般に、オートクレープは、スターラ ーで撹拌し、原料を十分に均質混合する。エステル交換 反応の開始時、すなわち、反応器含有物が165℃に到 達すると、窒素ガス流を停止し、開始時間を記録する。 エステル交換中のオートクレープ温度は、ほぼ165℃ の平均値から約225℃~約245℃に上昇した。エス テル交換中、メタノールは連続的に除去され、モノマー 生成方向に反応を推進する。

【0035】実施例1および2については、同一のオー

トクレープで重縮合を行い、実施例3においては、モノマーを減圧可能な別個の容器に移した。

【0036】エステル交換反応および重縮合用の触媒 は、実施例に示す量添加した。メタノールの発生が始ま ると、窒素ガスを停止した。反応が完了したところで、 パキュームレットダウンを開始した。パキュームレット ダウン中、オートクレープを減圧し、約1.0mHg以下 の減圧を達成する。パキュームレットダウンの終了時に は、バッチ温度は、約240℃~約290℃に上昇し、 それにより、重縮合反応を開始した。重縮合反応は、実 10 質完了するまで進行させ、この間、形成される1,3-プロパンジオールは除去した。パキュームレットダウン の終了時に、重縮合時間を記録した。実施例1、実験6 は、TAを出発とするPPTポリマーの生成を表すもの である。パッチ法において、PDO対TAのモル比ほぼ 5:1を用いて、おおよそPPTモノマー29ポン ドのオートクレープパッチを調製した。オートクレープ に、まず、原料TAおよびPDOを充填した。このオー トクレープを240℃に加熱し、50psigに加圧し、直 接エステル化を開始した。直接エステル化が完了した 20 後、生成したモノマーに、重縮合触媒を添加した。この モノマーは、LDE主体のモノマーを重合するために使 用される方法を用いて、重合させた。

【0037】PPTが形成されると、それは、固有粘度(IV) および色について試験した。着色試験は、ASTN法 B-308-85に従って実施した。IVは、オルトクロロフェノール溶剤を用い、PPT8gをオルトクロロフェノール溶剤100ミリットルに溶解させて試験した。

【0038】本発明に従って製造されるPPTは、当業者公知の種々の方法においてモノフィラメントの形態で 30 紡糸される。一般に、こうしたPPTは、チップ形態に切断され、ポリマー重量基準で、水50ppm、好ましくは、水20ppmを含有するまでに乾燥される。PPTチップは、約258℃で押出機中、溶融され、約0.5mm~約1.5mmの径を有する20のオリフィスを通して約6,000~約9,000g/時の速度で押出され、20の連続モノフィラメントを形成する。ポリマーは、50~200psigの圧力下で押出される。

【0039】モノフィラメントは、押出に続き、約25 ℃~約50℃の温度を有する急冷水タンクに入る。モノ 40 フィラメントは、ついで、10~25m/分の速度で回転する2~4個のローラを有する一連のロールを通す。ついで、モノフィラメントは、50℃~80℃の温度を有する水を入れた第2の水タンクを通す。しかる後、モノフィラメントは、2セットのローラとこれらローラの間に位置する1つの水タンクを通す。ついで、モノフィラメントは、2段加熱域を通し、第1の加熱域で約100

12

℃に、第2の加熱域で約150℃に加熱する。さらにその後、モノフィラメントは、さらにもう1セットのロールを通し、その後、モノフィラメントを別個のポピンに巻取る。紡糸方法およびモノフィラメントの性質のさらに詳細は、以下の実施例で説明する。

【0040】実施例 1

種々の触媒システムを用いて、本発明で使用されるシステムが優れていることを示した。従来技術を示す対照実験1~4は、本発明のエステル交換および重縮合反応における種々な触媒の微妙な違いおよび効果を示すためのものであった。特に、対照実験1では、両反応にチタンを用いた。特に、容器に、DMT777g、PDO415gおよびテトラブチルチタネート(登録商標名Tyzor, TBT)を充填した。ついで、この容器を窒素パージし、温度を220℃に設定し、容器の内容物を撹拌した。エステル交換反応が開始されたら、窒素を停止した。エステル交換反応の時間は、70分であった。エステル交換が完了したら、パキュームレットダウンを30分以上、30mmまで行い、ついて、10分以上にわたって0

3. 0 mmまで行い、ついで、10分以上にわたって0. 3 mmまで減圧にした。パキュームレットダウンが完了したら、温度を250℃まで上昇させ、重縮合を220分間続けた。得られたPPTの性質を表1に示す。

【0041】対照実験2は、同様の方法を用いて調製し

た。容器に、DMT 7 7 7g、PDO 4 5 7gおよび 2 n (OA c) 2・2 H₂ O (DMT基準で 2 5 0 ppm)を充填した。エステル交換反応が完了したら、S b₂ O₃ O. 2 7 2g (DMT基準で 3 5 0 ppm)を添加し、モノマーを 2 8 0 ℃で重合し、固有粘度 (IV)を最大とした。 【0042】対照実験1および2の方法を用いて、対照実験3を調製した。容器に、DMT 7 7 7gおよびPDO 6 4 7g、さらにNaO. 5gとTBT 7. 4gをnープチルアルコールで100ミリリットルに希釈して、DMT基準で、Na90ppm以上、およびDMT基準で、TBT1、333ppm以上を含有するようにした触媒溶液14ミリリットルを充填した。重合温度は、250℃であり、Ti濃度が非常に高いにもかかわらず、最大IVを達成するために、6時間を必要とした。PPTの性質を表3に示す。

40 【0043】対照実験1,2および3の方法と同様にして、DMT777g、PDO321gZn (OAc)₂・2H₂O0.556g(DMT基準で715ppm)と、Sb₂O₂0.133g (DMT基準で172ppm) を容器に充填して、対照実験4を調製した。最高EI温度は230℃であり、重縮合温度は270℃で3時間であった。

[0044]

【表 1 】

14

				表1		
	<u>対照実験</u>				実験	
	1	2	3	4	5	6
	DNT	DMT	DNT	DMT	DNT	TA
モル比	1.36	1.50	2.10	1.06	1.40	1.5
EI触媒	Ti	Zn	Na,Ti	Zn	Ti	,
PC触媒	Ti	Sb	Ti	Sp	Sn	Sn
重縮合時間	220	200	360	180	125	120
(分)			•			
IV, dℓ/g	0.59	0.57	0.82	0.23	0.85	0.90
L*	90	87	87	92	92	89
p*	4	8	l 4	8 .	6	9

錫を重縮合触媒としてのみ用い、直接エステル化反応に 20 じた。PDO/DMTのモル比は、約1.4で一定に保 おいては、触媒を用いないことにより、高IVPPTを 製造することができることを示すことが本実験6の目的 であった。

【0045】対照実験1~4は、表1に示すような諸性 質を有する。実験1、2および4から生ずるポリマー は、IVが非常に低く、強度および靭性が非常に弱く、 商業的に許容できない繊維を生ずる。実験3についての 重縮合時間が6時間であると、許容されるIVを得るこ とができた。この時間要件は著しく高いものである。し かし、実験5に示したように、本発明に従いPPTを製 30 造すると、重縮合時間約2時間でPPTを製造すること ができる。また、PDO/DMTおよびPDO/TAの モル比は、対照実験3で用いられるPDO/DMTのモ ル比よりも著しく低いものである。

【0046】実施例 2

製造するPPTのパッチサイズを約170ポンドと大き くした以外は、本実施例においても、前述の実験処方に 従った。比較のため、種々のエステル交換および重縮合 触媒を用いたところ、種々の性質のPPTポリマーを生 持した。

【0047】実験1および2においては、実験1におい て、登録商標名Tyzor TBT100ppmプラスCo(OA c)2・4H2O(CoAc) 100ppmからなるエステ ル交換触媒システムを、実験2において、CoAc50 ppmを用いた。重縮合触媒については、Sb₂O₈300p pmとプチル錫酸100ppmとを両実験で用いた。実験2 においては、登録商標ホスタパーム顔料1.5ppmを添

【0048】実験3および4については、使用触媒を表 2に示す。実験3または4のいずれにおいても、登録商 標ホスタパーム顔料は使用しなかった。

【0049】実験5および6のそれぞれにおいては、い ずれも錫触媒と登録商標ホスタパームとを含有させた。 トリデシルホスファイト(TDP)および熱安定剤は、 6つの実験いずれにおいても添加した。

【0050】実施例2の結果を表2に示す。

[0051]

【表2】

16

<u>裘2</u>							
実験	1	· <u>2</u>	3	4	<u>5</u>	<u>6</u>	
PDO/DMTモル比	1.4	1.4	1.4	1.4	1.4	1.4	
EI触媒	100CoAc	50CoAc		40CoAc	50CoAc	40CoAc	
(ppm)	100TBT	100TBT	2500BSA	100TBT	100TBT	100TBT	
ホスタバーム	-	1.5	-	~	1.5	1.5	
(n qq)							
EI時間(hr)	3.7	3.8	5.2	3.5	3.8	4.8	
BI最高温度	235*	239°	241°	234°	240°	238°	
(°C)							
PC触媒	c0sd2008	300Sb ₂ 0,					
(ppm)	100B3A	100BSA	500BSA	450BSA	450BSA	450BSA	
TDP (ppm)	500	500	500	450	500	450	
PC時間(br)	8.3	3.6	5.1	4.3	4.3	5.7	
PC温度(℃)	252*	260°	252-	254*	253*	252*	
IV(dl/g)	0.67	0.71	0.84	0.83	0.85	0.85	
L*	86	84	88	84	- 87	86	

これらの実験は、周知のPET触媒Sb₂O₃を主要な重 縮合触媒として用いる場合、PPTの有用なIVが達成 30 されないことを示す。実験1および2がこれを示す。

12

l

12

【0052】実験3および4は、錫を使用すると、重縮 合が許容されるIVをを生成し、登録商標ホスタパーム 顔料が存在しないと、高b*で示されるような黄色ポリ マーを生ずることを示す。

【0053】実験5および6に従って製造されるPPT ポリマーは、IVが少なくとも0.80で、黄色度数b *が4未満であることに留意すべきである。

【0054】実施例 3

b*

本実施例においては、生成するPPTのバッチサイズを 40 約1,700ポンドに大きくする以外は、前述の実験処 方に従った。本パッチの重合時間は約4.3時間で、さ らに、バキュームレットダウンに約1時間かかった。

【0055】 実施例3の結果を表3に示す。

[0056] 【表3】

PDO/DNTモル比 EI触媒TBT. ppn ホスタパーム, ppm PC触媒BSA, ppm

10

TiO₂, wt. % 0.28 400

1

3

表3

1.40

125

500

3

TDP, ppm 重縮合時間, hrs 4. 3

重縮合温度. ℃ 253

IV, de/g 0.84

83 b* 4

実施例 4

L*

本実施例は、登録商標名ホスタパーム顔料が、PETお 50 よびPBTと比較して、これら2つのポリエステルにな

い程、PPTの黄色度に予期し得ない結果を及ぼすことを示すものである。対照実験1および2はPETであり、そのうち、対照実験2は登録商標ホスタパーム顔料を含有するものである。同様に、対照実験3および4はPBTであり、対照実験4は登録商標PBT顔料を添加したものである。実験5および6はPPTポリマーであ*

*り、そのうち、実験 6 は登録商標ホスタパーム顔料を含有するものである。MnAcは、共通のPETエステル 交換触媒Mn(OAc) 2・4 H₂Oを表す。

18

【0057】実施例4の結果を表4に示す。 【0058】

【表4】

<u>表4</u>

	<u>対照実験</u>				<u>実験</u>		
	1	2	. 3	4	5	6	
ジオール/DMTモル比	2.2	2.2	1.4	1.4	1.4	1.4	
ジオール	BG	EG	1.4-BD	1.4-BD	1,3-PD	1,3-PD	
BI時間,hr	3.92	3.00	1.17	2.33	3.50	4.75	
EI最高温度,℃	221	220	224	216	234	238	
BI触媒, ppm	170MaAc	170MnAc	150TBT	150TBT	100TBT	100TBT	
	40CoAc	40CoAc	40CoAc	40CoAc	40CoAc	40CoAc	
ホスタパーム	0	1.5	0	1.5	0	1.5	
PC触媒. ppm	450Sb ₂ O ₃	450Sb ₂ 0,	270TBT	270TBT	450BSA	450BSA	
重合時間, br	2.00	1.92	4.17	2.75	4.33	5.67	
PC最高温度,℃	284	285*	252*	252*	254*	252*	
IV, dl/g	0.59	0.59	0.81	0.78	0.83	0.85	
L*	77.1	78.5	93.3	90.3	84.0	85.9	
b*	1.9	-0.2	0.3		10	2.7	
、EGはエチレングリコー		_	[006	1]			
プカトルが一川 1 り	DD1-1-1	n ⊶7⊶	17ニノユ	7F1 Hz G√		0 1 690	

上記表中、EGはエチレングリコール、1,4-BDは1,4-プタンジオール、1,3-PDは1,3-プロバンジオールを表す。

【0059】特に、表4に示すように、登録商標ホスタパーム顔料を添加すると、PETおよびPBTポリマーと比較した場合、PPTポリマーの色が著しく改善される。登録商標ホスタパーム顔料のPPTへの添加は、PETについての黄色度指数b*の低下がわずか2.1ポイントであり、PBTについての黄色度指数b*の低下がわずか4.4ポイントであるのに比較して、黄色度指数b*を約7.4ポイント低下させることがわかる。

【0060】 <u>実施例 5</u>

本実施例においては、実施例3に従い製造されるPPT を固相重合させ、モノフィラメントに紡糸し、ついで、テニスラケット用のガットを形成した。減圧ポンプと熱油加熱システムとを備えた1,000ポンドのジャケット付きタンプルドライヤーでPPTを固相重合させた。PPTチップをドライヤーに充填し、最高温度を設定し、以下のパラメータに従い、減圧とタンプリングを開始した。

【0061】 ドライヤー温度 ℃ 216℃ ドライヤー減圧 mmHg 0.1 暴露時間, hr 18 最終IV, デシリットル/g 1.05

PPT8gをオルトクロロフェノール溶剤に溶かした100ミリリットルの溶液中で測定した固有粘度1.05 デシリットル/gを有するPPTチップを窒素雰囲気下で乾燥した。このチップを窒素でガスシールしたまま、押出機中258℃で溶融し、径0.80㎜を有する20個のオリフィスを通し、8,300g/brの速度で押出して、20本のモノフィラメント糸を形成した。ポリマーは、82psig.の圧力下で押出した。

【0062】モノフィラメントは、押出機から36℃の 急冷水浴に導く。モノフィラメントは、急冷タンクの 後、回転数20m/分で回転している3つのロールを通 す。ついで、モノフィラメントは、70℃の水を満たし たストレッチタンクを通す。モノフィラメントは、この タンクから、回転数91.4m/分で回転する一連のロ 50 ールを通す。モノフィラメントは、しかる後、72℃の

水を満たしたもう1つのストレッチタンクを通す。この ストレッチタンクの後、モノフィラメントは、回転数1 0 4. 3m/分で回転する一連のロールを通す。ついで、 モノフィラメントは、2段の区分加熱機を通す。加熱機 の第1のゾーンでは、モノフィラメントに100℃の空 気を吹き付ける。加熱機の第2のゾーンでは、モノフィ ラメントは、赤外線ヒータを用いて155℃に加熱す る。加熱機を通った後、モノフィラメントは、回転数1 00.0m/分で回転する3連のロールを通す。20本の モノフィラメントは、これらロールをを通過した後、2 10 よい。ポリマー被覆は、PPTであっても、PPTでな 0個の別々のポピンに巻き取られる。 これらの条件下 で紡糸されたPPTモノフィラメントの物理的性質は以 下の通りである。

[0063]

平均径 $-0.25 \, \mathrm{mm}$ デニール -657-2037g 破断強さ 靭性 -3.10g/den 破断時の伸び -35%

10%伸びにおける負荷

-1. 3g/den -24. 6g/den

657デニールのPPTモノフィラメントは、378デ

ニールのナイロン6または372デニールのナイロン6 6よりも破断時のヤング率が低く、伸びが大きい。こう した2つの特性は、ラケットのガット用として非常に好 適である。

20

【0064】1本の長さのラケット用ガットを構成する ためには、多重長さのPPTモノフィラメントが必要と される。モノフィラメントの多重長さは、ポリマー被覆 を用いて1本に結合される。この被覆は、溶融ポリマー または適当な溶剤に溶かしたポリマーとして塗装しても くともよい。

【0065】かくして、本発明に従えば、テレフタル酸 またはテレフタル酸の低級ジアルキルエステルと1.3 プロパンジオールとからポリ(トリメチレンテレフタ レート)を製造する方法とともに、前記した本発明の目 的およびその特性を満足するための触媒システムが提供 されることが明らかとなった。本発明を、その具体的実 施例とともに記載したが、本発明は、これら特定の実施 例に止まらず、前述の記載に照らして、種々の変更、変 20 形および変法が可能であることは言うまでもない。した がって、こうした変更、変形および変法は、全て、本発 明の範囲に含まれるものである。

フロントページの続き

(72)発明者 ジョセフ・ジェイ・ハマー アメリカ合衆国ノース・カロライナ州 28216, シャーロット, サウスミニスタ ー・レーン 5523

(72)発明者 ジェイ・アール・ディース アメリカ合衆国ノース・カロライナ州 28270、シャーロット、リンプリッジ・ド ライブ 2301