UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN CÁLCULO CIENTÍFICO (6109)

TALLER 9 - Spline

Parte Introductoria

Para la elaboración de este taller se requiere el uso de las siguientes funciones de MATLAB:

- c = polyfit(x,y,n): Encuentra los coeficientes de un polinomio $p_n(x)$ de grado n tal que $p_n(x_i) = y_i$.. Específicamente c es un vector de longitud n+1 tal que $p_n(x) = c(1)x^n + c(2)x^{n-1} + ... + c(n)x + c(n+1)$
- y = polyval(c,v):, donde c es un vector de longitud n+1 que representan los coeficientes de un polinomio p_n de grado n. Esta función evalúa a p_n en v y deja el resultado en y, es decir, $y = p_n(v) = c(1)v^n + c(2)v^{n-1} + ... + c(n)v + c(n+1)$
- p = spline(x,y):, función que construye, con los datos x, y, un spline cúbico, cuyos coeficientes son retornados en el arreglo p. La función polyval se puede emplear para evaluar dicho
- y = ppval(c,x):, función que evalua el polinomio a trozos definido por los coeficientes contenidos en el vector c, en el punto x. x puede ser un número real o un vector de números reales.

Parte Práctica

1. Considere la siguiente tabla de datos:

X	3	4	5	6	
У	9/2	8	25/2	18	

- Grafique los valores contenidos en la tabla.
- ¿Cuál es el menor grado posible del polinomio que se puede construir con cada par de puntos consecutivos?. Justifique su respuesta.
- Denote como $S_i(x)$ al polinomio definido entre $[x_i, x_{i+1}]$ con $i = 0, 1, \dots, n-1$. ¿Cuántos S_i se pueden obtener para la tabla dada?
- Plantee un mecanismo para obtener los coeficientes de cada S_i .
- Grafique a cada S_i

- Considere la función $f(x) = \frac{x^2}{2}$. Grafique a f en el intervalo $\left[\frac{5}{2}, \frac{13}{2}\right]$ en la misma ventana donde graficó los valores de la tabla y los S_i .
- Considera Ud que los S_i aproximan a f(x). Justifique su respuesta.
- Considere la siguiente función a trozos:

$$S(x) = \begin{cases} S_0(x) & \text{si} \quad x \in [x_0, x_1] \\ S_1(x) & \text{si} \quad x \in [x_1, x_2] \\ S_2(x) & \text{si} \quad x \in [x_2, x_3] \end{cases}$$

iEs S(x) una función continua?. Justifique su respuesta.

2. La producción de frutas cítricas de cierto país ha variado a través de los años de la siguiente manera:

Año	1965	1970	1980	1985	1990	1991
Producción ($\times 10^5$ Kg.)	17769	24001	25961	34336	29036	33417

Use el polinomio interpolante y el *spline* cúbico natural para estimar la producción en 1962, 1977 y 1992. Compare estos resultados con los valores reales: 12380, 27403 y 32059 respectivamente.

Grupo Docente de Cálculo Científico I / Realizado por M. Monsalve