

CoSoLoRec: Joint Factor Model with Content, Social, Location for Heterogeneous Point-of-Interest Recommendation

Hao Guo, Xin Li, Ming He, Xiangyu Zhao, Guiquan Liu, Guandong Xu

University of Science and Technology of China

IFLYTEK Research
University of Technology Sydney

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - □ Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - □ Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

Location based Social Networks

- Location-based Social Networks(LBSNs) grow rapidly, such as Foursquare, Gowalla and so on.
- LBSNs break the boundary between the physical world and virtual networks.
- Point-of-Interest Recommendation not only benefit merchants but also benefit customers.

Heterogeneous Point-of-Interest Recommendation

- 1958 1958 aug
- Task: to recommend Point-of-Interest(POIs) based on different factors, such as geographical, social and textual information.
- Various factors can influence performance of recommendation:
 - Tobler's Law of Geographical Influence
 - Homophily of Social Correlation
 - Heterogeneous Information
- We propose a novel probabilistic latent factor model by considering the above three factors simultaneously.

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

Model Construction

 Our model consists of four-fold: physical distance, psychological distance, explicit interest and implicit interest.

Model Construction

Fused Probabilistic Latent Factor Model

- - Implicit interest(topic distribution of users and POIs): $\eta_1\left(i,j
 ight) = m{ heta_i^T}m{\pi_j}$
 - **Explicit** interest(latent factor combination): $\eta_2\left(i,j\right) = oldsymbol{u_i^T}oldsymbol{v_j}$
- \square each user has an intended visiting probability $p_f(i,j)$ with respect to POI j on the basis of friend-based Collaborative Filtering.
- \square geographical influence impels user i to estimate the probability he or she will visits POI j denoted as $p_l(i,j)$ based on Kernel Density Estimation.

Whole Model

- 1. Draw a user interest
 - (a) Generator user latent factor $u_{iw} \sim Gamma(\alpha_U, \beta_U)$
 - (b) Generator item latent factor $v_{jw} \sim Gamma(\alpha_V, \beta_V)$
 - (c) user's explicit interest $\eta_1(i,j) = \theta_i^T \pi_j$, implicit interest $\eta_2(i,j) = \mathbf{u_i^T v_j}$
 - (d) user's interest $\eta(i,j) = \eta_1(i,j) + \eta_2(i,j)$
- 2. $y(i,j) \sim P(p(i,j))$ where $p(i,j) = (\eta_1(i,j) + \eta_2(i,j)) ((1-\lambda) p_l(i,j) + \lambda p_f(i,j))$

Model Construction-Geographical Influence

we employ Kernel Density Estimation (KDE) to model the geographical influence of POIs on users' visiting behaviors.

$$p_l(i,j) = P\left(\bigcup_{t=1}^{|L_i|} (c_t \to c_0)\right) = 1 - P\left(\bigcap_{t=1}^{|L_i|} \overline{c_t \to c_0}\right) = 1 - \prod_{t=1}^{|L_i|} (1 - P(c_t \to c_0))$$

$$P(c_t \to c_0) = \frac{1}{|X_i|} \sum_{x \in X_i} K\left(\frac{z_t - x}{\delta}\right) = \frac{1}{\sqrt{2\pi}|X_i|} \sum_{x \in X_i} e^{-\frac{(z_t - x)^2}{2\delta^2}} \qquad \delta \approx 1.06\hat{\delta}|X_i|^{-1/5}.$$

 $lue{}$ The computational complexity grows rapidly with the increment of L_i . We use approximation algorithm.

Model Construction-Social Correlation

we adopt the user-based collaborative filtering(CF) by regarding all of i's friends as neighbors named as Friend-based Collaborative Filtering.

$$p_f(i,j) = \frac{\sum_{i' \in \mathcal{F}_i} sim(i,i') r_{i'j}}{\sum_{i' \in \mathcal{F}_i} sim(i,i')} \cdot \frac{1}{r_{max}}$$

 \square We choose cosine similarity to validate sim(i,j).

Model Construction-Probabilistic Latent Factor Mode

- the process of Probabilistic Latent Factor Model is as follows:
 - 1. for all w, generate $u_{iw} \sim p\left(u_{iw}|\Phi_{u_{iw}}\right)$
 - 2. for all w, generate $v_{jw} \sim p\left(v_{jw}|\Phi_{v_{jw}}\right)$
 - 3. generate \hat{f}_{ij} from user i to location j with equation $\hat{f}_{ij} = \sum_{w=1}^{d} u_{iw} v_{jw} = u_i v_j$
 - 4. generate $\hat{y_{ij}} \sim P\left(\hat{f_{ij}}\right)$

$$p(U|\alpha_{U}, \beta_{U}) = \prod_{i=1}^{m} \prod_{w=1}^{d} \frac{u_{iw}^{\alpha_{U}-1} \exp\left(-u_{iw}/\beta_{U}\right)}{\beta_{U}^{\alpha_{U}} \Gamma\left(\alpha_{U}\right)}$$
$$p(V|\alpha_{V}, \beta_{V}) = \prod_{i=1}^{m} \prod_{w=1}^{d} \frac{v_{jw}^{\alpha_{V}-1} \exp\left(-v_{jw}/\beta_{V}\right)}{\beta_{V}^{\alpha_{V}} \Gamma\left(\alpha_{V}\right)}$$

$$P\left(\hat{y_{ij}}|\hat{f_{ij}}\right) = (u_i v_j)^{\hat{y_{ij}}} \frac{\exp\left(-u_i v_j\right)}{\hat{y_{ij}}!}$$

Model Construction-Textual Analysis

- In order to extract users' explicit interest, we use an aggregated LDA model.
- In order to learn users' interests, we aggregate all the reviews written by each user into a document. Thus, user and document are interchangeable in reflecting user's interest.

$$\pi_{js} = \frac{n_j^{(s)} + \alpha}{\sum_{s=1}^{K} n_j^{(s)} + K\alpha}$$

$$\theta_{is} = \frac{n_i^{(s)} + \alpha}{\sum_{s=1}^K n_i^{(s)} + K\alpha}$$

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

Learning and Inference

- Given the observed data collection $\mathcal{D} = \{p(i,j)\}^{I_{ij}}$ where p(i,j) is the user visiting probability, and $I_{ij} = 1$ when user i visited POI j, and $I_{ij} = 0$ otherwise.
- □ Maximum likelihood estimation (MLE) method to learn parameters $\Lambda = \{U, V\}$

$$\mathcal{L}\left(U,V;\mathcal{D}\right) = \sum_{i=1}^{M} \sum_{j=1}^{N} I_{ij}\left(y\left(i,j\right)\log p\left(i,j\right) - p\left(i,j\right)\right) + \sum_{i=1}^{M} \sum_{w=1}^{d} \left(\left(\alpha_{U} - 1\right)\log u_{iw} - \frac{u_{iw}}{\beta_{U}}\right) + \sum_{j=1}^{N} \sum_{w=1}^{d} \left(\left(\alpha_{V} - 1\right)\log v_{jw} - \frac{v_{jw}}{\beta_{V}}\right)$$

$$p\left(i,j\right) = \left(u_{i}^{T}v_{j} + \theta_{i}^{T}\pi_{j}\right)\left(\left(1 - \lambda\right)p_{l}\left(i,j\right) + \lambda p_{f}\left(i,j\right)\right)$$

$$($$

 Stochastic gradient descent(SGD) method to optimize them and update parameters iteratively using all training samples.

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

Experimental Results

Datasets: Foursquare and Yelp

Table 2. Data Description

	Yelp	Foursquare
Number of users	366715	571700
Number of locations	61184	8318919
Review items	1569265	5550203
User-location matrix density	6.99×10^{-5}	1.17×10^{-6}
Number of Cities	10	50

- Foursquare:6895 users for 13208 POIs with 166989 ratings
- Yelp: 3059 users, 26446 business with 180755 review records.

Evaluation Method

- Baselines: PMF, NMF, BNMF, GT-BNMF, Geo-PFM
- Our model: CoSoLoRec, CoSoLo-PMF, CoSoLo-NMF, CoSoLo-BNMF.
- Evaluation Metrics:
 - □ Relative precision:

$$rPrecision@N = \frac{|S_{N,rec} \cap S_{visited}| \cdot |C|}{|S_{visited}| \cdot N}$$

□ RMSE:

$$RMSE = \sqrt{\frac{1}{N} \sum_{(u,i) \in E} (r_{ui} - \hat{r_{ui}})^2}$$

Relative precision

- CoSoLoRec model outperforms all the baselines in these two datasets under our situations.
- CoSoLo-PMF, CoSoLo-NMF and CoSoLo-BNMF show almost equivalent performance in precision.
- Heterogeneous information can reflect user's interests accurately.

RMSE

- Our model(CoSoLoRec) achieves less RMSE than baselines with different dimensions of latent factors
- Heterogeneous information can ensure more accuracy in recommending POIs

Table 3. Performance comparison in different dimensions

	D	Metrics	PMF	NMF	BNMF	C-PMF	C-NMF	C-BNMF	GT-BNMF	Geo-PFM	CoSoLoRec
Yelp	10	RMSE	0.8225	0.7644	0.766	0.7639	0.7824	0.7769	0.7241	0.7076	0.6692
		Improve	18.64%	12.45%	12.64%	12.40%	14.47%	13.86 %	7.58 %	5.43 %	
	20	RMSE	0.8455	0.7502	0.7564	0.7365	0.7716	0.7672	0.7573	0.6881	0.6693
		Improve	20.84%	10.78%	11.52%	9.12%	13.26%	12.76%	11.62%	2.73 %	
4sq	10	RMSE	0.8792	0.8515	0.8624	0.8335	0.8612	0.8454	0.8282	0.7815	0.7476
		Improve	14.97%	12.20%	13.31 %	10.31 %	13.19 %	11.57%	9.73 %	4.34 %	
	20	RMSE	0.8763	0.8498	0.85	0.8019	0.8509	0.8334	0.8132	0.7739	0.7319
		Improve	16.48%	13.87%	13.89%	8.73 %	13.99%	12.18%	10.00 %	5.43 %	

Parameter Sensitivity and Model Robust

- Both geographical and social influence play comparative roles.
- User's text information contributes greater than geographical and social influence in precision of recommending.

(a) r-Pre and RMSE on Yelp (b) r-Pre and RMSE on 4sq (c) Robust for Yelp and 4sq

- Background and Motivation
- Model Construction
 - Geographical Influence
 - Social Correlation
 - Probabilistic Latent Factor Model
 - Textual Analysis
- Learning and Inference
- Experimental Results
- Conclusion

Conclusion

- we proposed CoSoLoRec model which fused geographical information, social information and text information.
- Experimental results show that our fused model is superior to all other approaches evaluated, such as PMF, NMF, GT-BNMF and Geo-PFM.
- Our model performs better in any different combinations between geographical and social influence.
- Text information is more important than above two factors.

Thank You!