Long-term Retention and Analysis of CTT for In-memory (IM) Analog Compute

Siyun Qiao, Steven Moran, Zhe Wan, Sudhakar Pamarti, Subramanian S. Iyer, UCLA

Introduction

Background

- CTT for in-memory analog compute engine
- Input data stored in CTT for arithmetic/logic operation

Evaluations of CTT as Analog NVM Device

- Range of current for data representation
- Noise-induced current fluctuations
- Data encoding precision
- Long-term retention characteristics

Target Current for Data Encoding

Application: NeuroCTT0p3

- Multiply-accumulate (MAC) operation for neural network inference
- Twin-cell architecture
 - Single device: (100, 700) nA
 - Twin-cell range: (-600, 600) nA

Noise-induced Current Fluctuations

Root Causes

- 1/f noise and random telegraph noise (RTN)
- May exist other unknown sources of noise

Virgin vs. After PRG **Device 2** 1.00E-06 🗕 virgin 💻 400h after PRG 7.50E-0 5.00E-0 2.50E-07

Device 1

- 600 nA
- Virgin state
 - ±9 nA fluctuation, or 1.1%
- 400 hours after program
 - ±9 nA fluctuation, or 1.4%

Device 2

100 nA

- > Virgin state
 - ±13 nA fluctuation, or 1.6%

Current vs. Program Steps

- > 400 hours after program
- ±1.5 nA fluctuation, or 1.3%

Bi-directional Programming

- Set target level
- Fine-tune current level by PRG/ERS
- Achieve high encoding precision
 - Up to 0.5%

PCM

ReRAM

Long-term Retention Characteristics

Characteristics of Data Retention

- Large current drift in uni-directional programmed device
- Better long-term stability offered by bi-directional programming

Flash

A comparison between analog IM compute device candidates

Flash vs. CTT vs. ReRAM vs. **PCM**

Material Property/ Technology Node	Floating Gate Transistor	Logic nFET (FDSOI)	Compatible with different tech nodes	Compatible with different tech nodes
Cell Configuration	2T (in two arrays)	2Т	2T2R	1T1R
Target Resolution Per Cell	4-bit	> 3-bit	Binary (Analog: 3-bit)	Binary (Analog: 3-bit)
Dynamic Range	1 ~ 1000nA (<1% STD/mean)	-600 ~ 600nA (<1% STD/mean)	$R_{on}/R_{off} \le 20$	$R_{on}/R_{off} \ll 100$
Operating Voltage	2 - 6V	0.2V		
Data Retention		Up to 200h reported	Up to 10 ⁴ s (< 3h) reported	Up to 10 ⁴ s (< 3h) reported
Durability	Digital: > 10 ⁴ P/E cycles	Digital: > 10 ⁴ P/E cycles		Digital: > 10 ⁴ P/E cycles
	Technology Node Cell Configuration Target Resolution Per Cell Dynamic Range Operating Voltage Data Retention	Technology Node Transistor Cell Configuration 2T (in two arrays) Target Resolution Per Cell 1 ~ 1000nA (<1% STD/mean) Operating Voltage 2 - 6V Data Retention Digital: > 10 ⁴ P/E	Technology Node Transistor (FDSOI) Cell Configuration 2T (in two arrays) 2T Target Resolution Per Cell 4-bit > 3-bit Dynamic Range 1 ~ 1000nA (<1% STD/mean)	Technology NodeTransistor(FDSOI)different tech nodesCell Configuration2T (in two arrays)2T2T2RTarget Resolution Per Cell4-bit> 3-bitBinary (Analog: 3-bit)Dynamic Range $1 \sim 1000$ nA (<1% STD/mean)

CTT

Future Work

- Design experiment for large-sample CTT long-term retention characterization
- Modeling retention characteristics with physics-based model

Data Encoding Precision

<u>Uni-directional Programming</u>

- Set target level
- Stop when reading exceeds target

Conclusions

- Twin-cell configuration with (-600, 600) nA current range
- Minimum noise-induced current fluctuations
- High precision bi-directional data encoding scheme
- Encouraging data retention characteristics with bi-directional programming

This work is supported in part by the UCLA CHIPS Consortium, the Defense Advanced Research Projects Agency (DARPA), and UC Multicampus Research Programs and Initiatives (UC-MRPI). We would like to thank GlobalFoundries and ON-Semiconductor for their support.

Reference

X. Gu, et. al, "Charge-Trap Transistors for CMOS-Only Analog Memory," in IEEE Transactions on Electron Devices, Oct. 2019

