

Name:		

1. (20 points) Use the known values of the function $f(x) = \sin(x)$ (with y = f(x)) at $x = 0, \pi/6, \pi/4, \pi/3$ and $\pi/2$ in order to derive an interpolating polynomial p(x) using a **monomial basis**, i.e., $\phi_j(x) = x^j$. What is the **degree** of your polynomial? What is the **interpolation error magnitude** $|p(1.2) - \sin(1.2)|$? Make a plot of your data points and the underlying interpolating polynomial for $x \in [0, \pi/2]$ on the same graph.

Attach any codes/scripts producing your figure and the figure itself.

2. (20 points) Assume the data pairs $\{(x_i, y_i)\}_{i=0}^n$ together with the functions:

$$\rho_j = \prod_{i \neq j} (x_j - x_i), \quad j = 0, 1, \dots, n,$$

$$\psi(x) = \prod_{i=0}^n (x - x_i).$$

(a) (12 points) Show that:

Math 451

$$\rho_j = \psi'(x_j).$$

(b) (8 points) While using Lagrange interpolation, show that the interpolating polynomial of degree at most n can be written as

$$p_n(x) = \psi(x) \sum_{j=0}^{n} \frac{y_j}{(x - x_j) \psi'(x_j)}.$$

3. (10 points) Consider the data set $\{x_i\}_{i=0}^n$ containing (n+1) distinct points and the corresponding Lagrange basis functions $\{L_i(x)\}_{i=0}^n$. Then, prove that

$$\sum_{j=0}^{n} L_j(x) = 1.$$

Hint: Consider interpolating the function f(x) = 1 at the points given!

- 4. (30 points) Let f(x) = 1/x and data points $x_0 = 2$, $x_1 = 3$ and $x_2 = 4$. Note that you can use the abscissae to find the corresponding ordinates.
 - (a) (8 points) Find by hand the Lagrange form, the standard form, and the Newton form of the interpolating polynomial $p_2(x)$ of f(x) at the given points. State which is which! Then, expand out the Newton and Lagrange form to verify that they agree with the standard form of p_2 that you obtained [this is true due to the uniqueness of polynomial interpolation!]. Also, verify that $p_2(x_i) = f(x_i)$ for i = 0, 1, 2.
 - (b) (10 points) Use the **Polynomial Interpolation Error** theorem to find an upper bound for the error

$$||f - p_2||_{\infty} = \max_{2 \le x \le 4} |f(x) - p_2(x)|.$$

- (c) (12 points) Find the **exact value** of $||f p_2||_{\infty}$ to at least 5 decimal places of accuracy. Of course, the answer should be less than or equal to the upper bound you found in part (b).
- 5. (20 points) For some function f, the divided difference table is given:

i	x_i	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
0	1	$f[x_0]$	1		_
1	5	$f[x_1]$	$f[x_0, x_1]$	_	_
2	6	4	0	-1/4	_
3	4	2	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$

Fill in the unknown entries in the table.