Session 7: More on Quantifiers

- Quantification over Finite Domains
- Uniqueness Quantifier
- Composite Statements with Quantifiers
- Variable Binding
- Validity and Satisfiability

Quantifiers with Finite Domains

If the domain U is finite, quantified propositions can be expressed without using quantifiers

Example:

If *U* consists of the integers 1,2, and 3:

- $\forall x P(x)$ is equivalent to $P(1) \land P(2) \land P(3)$
- $\exists x P(x)$ is equivalent to $P(1) \lor P(2) \lor P(3)$

Uniqueness Quantifier

 $\exists !x P(x)$ means that P(x) is true for **one and only one** x in the domain U

This is commonly expressed in the following equivalent ways:

- "There is a unique x such that P(x)."
- "There is one and only one x such that P(x)"

Examples:

- If P(x) := x + 1 = 0 and U is the Integers, then $\exists !x P(x)$ is true.
- If P(x) := x > 0, then $\exists ! x P(x)$ is false.

Composite Statements Involving Quantifiers

Connectives from propositional logic can be applied to predicates

- Example: $(\forall x P(x)) \lor Q(x)$
- The quantifiers ∀ and ∃ have higher precedence than all the logical connectives from propositional logic
 - Example: $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
 - $\forall x (P(x) \lor Q(x))$ means something different
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$

Variable Binding

- A quantifier binds the variable of a propositional function
 - P(x) is a propositional function with **free variable** x
 - $\forall x P(x)$ is a proposition with **bound variable** x

Examples:

- Does $\forall x (P(x) \lor Q(x))$ contain a free variable?
- Does $(\forall x P(x)) \lor Q(x)$ contain a free variable?

Validity and Satisfiability

- An statement involving predicates and quantifiers with all variables bound is valid if it is true
 - for all domains
 - every propositional function substituted for the predicates in the assertion (in propositional logic we called this a tautology)
- It is **satisfiable** if it is true
 - for some domains
 - some propositional functions that can be substituted for the predicates in the assertion.
- Otherwise it is unsatisfiable

Examples

$$\forall x \neg S(x) \leftrightarrow \neg \exists x S(x)$$

$$\forall x (F(x) \leftrightarrow T(x))$$

$$\forall x (F(x) \land \neg F(x))$$

Translating from Natural Language to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

First decide on the domain *U*.

Approach 1: If *U* is all students in this class, define a propositional function J(x):= "x has taken a course in Java" and translate as $\forall x J(x)$

Approach 2: But if *U* is all people, also define a propositional function S(x) := ``x is a student in this class'' and translate as $\forall x \ (S(x) \rightarrow J(x))$

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from Natural Language to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

First decide on the domain *U*.

Approach 1: If *U* is all students in this class, translate as $\exists x J(x)$

Approach 2: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$

 $\exists x \ (S(x) \rightarrow J(x))$ is not correct. What does it mean?

Summary

- Quantification over Finite Domains
- Uniqueness Quantifier
- Composite Statements with Quantifiers
- Variable Binding
- Validity and Satisfiability