二面体群

戚天成 ⋈

复旦大学 数学科学学院

2023年9月24日

设 $F \neq \emptyset \subseteq \mathbb{R}^2$ 是平面上一图形, 记平面上全体保持 F 的正交变换为 G_F , 即 $G_F = \{\sigma : \mathbb{R}^2 \to \mathbb{R}^2 | \sigma(F) = F \leq \sigma \in \mathcal{F}\}$, 易见它关于映射复合构成群, 称为图形 F 的对称群 (symmetry group).

Lemma 1. 设 $P \subseteq \mathbb{R}^2$ 是一个多边形, 那么对任何正交变换 $\sigma \in G_P$, σ 将多边形的顶点映到顶点.

Proof. 先证 P 的任一顶点 V 在 σ 作用下必定在 P 的边界上. 再说明 $\sigma(V)$ 不可能落在多边形某条边的内部.

假设 $V' = \sigma(V)$ 在多边形 P 的内部,那么存在闭圆盘 D 满足 D 以 V' 为圆心且 $D \subseteq P$. 于是对介于 0° 到 360° 的任意角 α ,存在 D 中点 $J', K'(J' = \sigma(J), K' = \sigma(K), J, K \in P)$ 使得 $\angle J'V'K' = \alpha$,因为正交变换保持角度,所以 $\angle JVK = \angle J'V'K' = \alpha$. 但 P 中任何以 V 为顶点的角都不超过 $\angle MVN < 360^\circ$,所以选取 $\alpha > \angle MVN$ 即可得到矛盾,于是知 V' 在 P 的边界上.下面说明 V' 不可能在 P 的某条边的内部.假设 V' 在某条边内部.当 $\angle MVN < 180^\circ$ 时,存在 $J', K' \in P$ 使得 $\angle J'V'K' = 180^\circ$,因此 $\angle JVK = 180^\circ$.但 $\angle JVK \leq \angle MVN < 180^\circ$,这就得到了矛盾.

当 $\angle MVN > 180^{\circ}$ 时, 对 $M' = \sigma(M), N' = \sigma(N)$, 有

$$\angle M'V'N' = \angle MVN > 180^{\circ},$$

但 ∠M'V'N' < 180°, 矛盾.

根据上面的引理, 若记多边形 P 的顶点集为 Ver(P), 则每个 $\sigma \in G_P$ 在 Ver(P) 上的限制给出了 Ver(P) 上的置换. 事实上, 每个 σ 被它在顶点上的作用唯一确定, 具体地, 对 $\sigma, \tau \in G_P$, 如果 $\sigma|_{Ver(P)} = \tau|_{Ver(P)}$, 那么 $\sigma = \tau$. 这是因为如果 $\sigma|_{Ver(P)} = \tau|_{Ver(P)}$, 那么 $\sigma \tau^{-1}$ 作为 \mathbb{R}^2 上线性变换固定两个线性无关的向量, 于是 $\sigma = \tau$. 下面我们来看正 n 边形的对称群具有何种性质.

将正 $n(n \geq 3)$ 边形的中心置于 \mathbb{R}^2 原点,第 $k(1 \leq k \leq n)$ 个顶点置于 $v_k = (\cos 2k\pi/n, \sin 2k\pi/n)$,记该正 n 边形的对称群是 D_n ,称为正 n 边形的二面体群 (dihedral group). 由前面的讨论知, D_n 中的元素将多边形顶点映至顶点,我们知道正 n 边形任意两个顶点间的距离最短当且仅当这两个顶点是相邻的,所以由正交变换保持长度可知 D_n 中元素作用每个顶点只可能把该顶点变为相邻顶点. 我们已经看到 D_n 中任何置换 σ 被它在两个顶点上的作用唯一确定,所以只要确定 D_n 中两个顶点被 σ 作用后的像就可以确定 σ . $\sigma(v_1)$ 有 n 种选取方式,当 $\sigma(v_1)$ 确定后 $\sigma(v_2)$ 只有两种选取方式,所以 $|D_n| \leq 2n$. 记 $r \in D_n$ 是绕原点逆时针旋转 $2\pi/n$ 的旋转变换,即满足 $r(v_1) = v_2, r(v_2) = v_3, ..., r(v_n) = v_1$ 的正交变换。记 $s \in D_n$ 是关于 x 轴的镜像反射,即 $s: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x,-y)$,从而 $s(v_1) = v_1, s(v_2) = v_n, s(v_3) = v_{n-1}, ..., s(v_n) = v_2$. 那么 $r^n = 1, r^k \neq 1, \forall 1 \leq k \leq n-1, s^2 = 1, rs = sr^{-1}$. 因为 s 固定 v_1 ,所以 $s \neq r^k, \forall 1 \leq k \leq n-1$. 由此可知 D_n 中包含下述 2n 个元素: $1, r, r^2, ..., r^{n-1}, s, sr, ..., sr^{n-1}$,故 $D_n = \{1, r, r^2, ..., r^{n-1}, s, sr, ..., sr^{n-1}\}$ 恰好有 2n 个元素.设正整数 $n \geq 3$,现在我们来看 D_n 与对称群 S_n 的关系.

Proposition 2. 设 n 是正整数且 $\sigma = (123 \cdots n)$,

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & i & \cdots & n-1 & n \\ 1 & n & n-1 & n-2 & n-3 & \cdots & n+2-i & \cdots & 3 & 2 \end{pmatrix} \in S_n,$$

那么 $\sigma\tau = \tau\sigma^{-1}, \tau^2 = (1), \sigma^n = (1)$. 记 $D = \langle \sigma, \tau \rangle$ 是 $\{\sigma, \tau\}$ 在 S_n 中生成的子群, 那么 $D_n \cong D$. 特别地, 当 n = 3 时, $D_3 \cong S_3$.

Proof. 每个 D_n 中元素都可以唯一地表示为 $s^i r^j$, $0 \le s \le 1$, $0 \le j \le n-1$ 的形式, 命

$$\psi: D_n \to D, s^i r^j \mapsto \tau^i \sigma^j,$$

易验证这是满群同态. 如果对 $0 \le i, k \le 1, 0, l, j \le n-1$ 有 $\psi(s^i r^j) = \psi(s^k r^l)$,那么 $\tau^i \sigma^j = \tau^k \sigma^l$,于是 $\tau^{i-k} = \sigma^{l-j}$. 因为 $\tau = \tau^{-1} \ne \sigma^m$, $\forall 0 \le m \le n-1$,所以必有 i-k=0,从而由 $1-n \le l-j \le n-1$ 可 得 l-j=0,这就得到了 ψ 是单射. 我们得到群同构 $D_n \cong D$. 当 n=3 时, $|D|=|D_3|=6=|S_3|$,这迫使 $D=S_3$,因此 $D_3 \cong S_3$.