CHAP 12 - ESPACES VECTORIELS

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Structure d'espace vectoriel

1.1 Définitions

Définition 1

Soit E un ensemble.

On appelle loi de composition interne sur E toute application de $E \times E$ dans E.

On appelle loi de composition externe sur E toute application de $\mathbb{K} \times E$ dans E.

Exemple 1

Si $E=\mathcal{V}$ l'ensemble des vecteurs de l'espace et $\mathbb{K}=\mathbb{R}$:

La somme de deux vecteurs : $(\overrightarrow{u}, \overrightarrow{v}) \mapsto \overrightarrow{u} + \overrightarrow{v}$ est une loi de composition interne sur \mathscr{V} .

Le produit d'un vecteur par un réel : $(\lambda, \overrightarrow{u}) \mapsto \lambda \overrightarrow{u}$ est une loi de composition externe sur \mathscr{V} .

Définition 2

On appelle **espace vectoriel sur** \mathbb{K} ou \mathbb{K} -**espace vectoriel** tout ensemble E muni d'une loi de composition interne, notée +, et d'une loi de composition externe sur \mathbb{K} , notée \cdot , telles que :

- \bigstar La loi interne + vérifie les propriétés suivantes :
 - (1) $\forall (x, y, z) \in E^3$, (x+y) + z = x + (y+z).
 - (2) $\forall (x,y) \in E^2, x+y=y+x.$
 - (3) $\exists ! \ e \in E, \forall x \in E, x + e = x$. Cet élément se note 0_E ou plus simplement 0.
 - (4) $\forall x \in E, \exists! \ x' \in E, x + x' = 0.$ Cet élément se note -x.
- \bigstar La loi externe vérifie les propriétés suivantes pour tous $(\lambda, \mu) \in \mathbb{K}^2$ et $(x, y) \in E^2$:
 - (1) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
 - (2) $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$
 - (3) $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$
 - (4) $1 \cdot x = x$

Proposition 1

$$\forall (\lambda, x) \in \mathbb{K} \times E, \quad (\lambda \cdot x = 0) \Leftrightarrow (x = 0 \text{ ou } \lambda = 0)$$

Corollaire

$$\forall x \in E, -x = (-1) \cdot x$$

Définition 3

Les éléments d'un \mathbb{K} -espace vectoriel sont appelés **vecteurs**. Les éléments de \mathbb{K} sont appelés **scalaires**.

1.2 Exemples

- $(\mathbb{R}, +, \cdot)$ est un \mathbb{R} -espace vectoriel.
- $(\mathbb{C}, +, \cdot)$ est un \mathbb{C} -espace vectoriel et un \mathbb{R} -espace vectoriel.
- Soient X un ensemble non vide, et E un \mathbb{K} -espace vectoriel. L'ensemble $(E^X, +, \cdot)$ des applications de X dans E muni des lois usuelles est un \mathbb{K} -espace vectoriel.

En particulier, l'ensemble $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ des suites de \mathbb{K} muni des lois usuelles est un \mathbb{R} -espace vectoriel.

- L'ensemble des vecteurs du plan ou de l'espace, muni de la somme et du produit par un scalaire est un \mathbb{R} -espace vectoriel.
- $(\mathcal{M}_{n,p}(\mathbb{K}), +, \cdot)$ est un \mathbb{K} -espace vectoriel.
- $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Proposition 2

Soient E_1, E_2, \dots, E_n des K-espaces vectoriels. On note $E = E_1 \times E_2 \times \dots \times E_n$.

Alors E est un \mathbb{K} -espace vectoriel pour les lois suivantes :

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

 $\lambda \cdot (x_1, x_2, \dots, x_n) = (\lambda \cdot x_1, \lambda \cdot x_2, \dots, \lambda \cdot x_n)$

Exemple 2

Pour $n \in \mathbb{N}, n \geq 2$, on munit ainsi \mathbb{R}^n d'une structure de \mathbb{R} -espace vectoriel.

1.3 Sous-espaces vectoriels

Définition 4

Soient E un \mathbb{K} -espace vectoriel, et $F \subset E$.

On dit que F est un sous-espace vectoriel de E s'il vérifie :

- (1) $F \neq \emptyset$
- $(2) \ \forall (x,y) \in F^2, x+y \in F$
- (3) $\forall (\lambda, x) \in \mathbb{K} \times F, \lambda \cdot x \in F$

Proposition 3

F est un sous-espace vectoriel de E si, et seulement si : $0_E \in F$ et $\forall (\lambda, x, y) \in \mathbb{K} \times F^2, x + \lambda \cdot y \in F$.

Remarque 1

- (a) Tout sous-espace vectoriel d'un \mathbb{K} -espace vectoriel est un \mathbb{K} -espace vectoriel pour les lois induites par celles de E.
- (b) $\{0_E\}$ et E sont des sous-espaces vectoriels de E.

Proposition 4

Soient E un \mathbb{K} -espace vectoriel, et $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E.

Alors
$$F = \bigcap_{i \in I} F_i$$
 est un sous-espace vectoriel de E .

Attention! La proposition est fausse pour l'union.

Définition 5

Soient E un \mathbb{K} -espace vectoriel, et A une partie non vide de E. L'intersection de tous les sous-espaces vectoriels de E contenant A s'appelle le **sous-espace vectoriel engendré par** A. On le note $\operatorname{Vect}(A)$.

Remarque 2

Pour toute partie non vide A d'un \mathbb{K} -espace vectoriel E, $\operatorname{Vect}(A)$ est le plus petit sous-espace vectoriel de E contenant A pour l'inclusion.

Exemple 3

Dans $\mathbb{R}[X]$, Vect($\{X^0\}$) est l'ensemble des polynômes constants.

Définition 6

Soit A une partie non vide de E. On dit que x est une **combinaison linéaire d'éléments de A** s'il existe une famille finie $(x_i)_{1 \le i \le n}$ d'éléments de A et des scalaires $(\lambda_i)_{1 \le i \le n}$ tels que

$$x = \sum_{i=1}^{n} \lambda_i \cdot x_i$$

Proposition 5

Le sous-espace vectoriel engendré par une partie A de E est l'ensemble des combinaisons linéaires des éléments de A.

Définition 7

Soient E un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E.

On note $F_1 + F_2 = \{x \in E, \exists (x_1, x_2) \in F_1 \times F_2, x = x_1 + x_2\}.$

 $F_1 + F_2$ est appelé **somme** de F_1 et F_2 .

Remarque 3

$$F_1 \subset F_1 + F_2$$
 et $F_2 \subset F_1 + F_2$

Proposition 6

Soit E un \mathbb{K} -espace vectoriel. Si F_1 et F_2 sont deux sous-espaces vectoriels de E, alors $F_1 + F_2$ est un sous-espace vectoriel de E.

Définition 8

Soient E un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E.

On dit que F_1 et F_2 sont en **somme directe** si la décomposition de tout vecteur de $F_1 + F_2$ comme somme d'un élément de F_1 et d'un élément de F_2 est unique, c'est-à-dire :

$$\forall x \in F_1 + F_2, \exists ! (x_1, x_2) \in F_1 \times F_2, \quad x = x_1 + x_2$$

On note alors $F_1 + F_2 = F_1 \oplus F_2$.

Proposition 7

Soient E un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E. F_1 et F_2 sont en somme directe si, et seulement si $F_1 \cap F_2 = \{0_E\}$.

Définition 9

Soient E un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E. On dit que F_1 et F_2 sont **supplémentaires** si $F_1 \oplus F_2 = E$.

Exemple 4

 $\mathbb{C} = \mathbb{R} \oplus i \mathbb{R}$.

2 Bases d'un espace vectoriel

Dans la suite du chapitre, E désigne un \mathbb{K} -espace vectoriel.

2.1 Familles génératrices

Définition 10

On appelle **partie génératrice de** E une partie non vide A de E telle que Vect(A) = E. Si A est une famille de vecteurs $(x_i)_{i \in I}$, finie ou infinie, on dit que cette famille est une **famille génératrice de** E.

Remarque 4

Soient A et B des parties de E. Si A est une partie génératrice de E alors $A \cup B$ est une partie génératrice de E.

Exemple 5

- (a) $\{1\}$ est une famille génératrice du \mathbb{R} -espace vectoriel \mathbb{R} et du \mathbb{C} -espace vectoriel \mathbb{C} .
- (b) $\{1,i\}$ est une famille génératrice du \mathbb{R} -espace vectoriel \mathbb{C} .
- (c) u = (1,0) et v = (0,1) forment une famille génératrice du \mathbb{R} -espace vectoriel \mathbb{R}^2 .

Définition 11

On appelle **cardinal d'un ensemble** le nombre d'éléments qu'il contient s'il est fini, sinon on dit que le cardinal de l'ensemble est infini.

Définition 12

On dit qu'un espace vectoriel est **de dimension finie** s'il admet une famille génératrice de cardinal fini. Sinon, on dit qu'il est **de dimension infinie**.

Exemple 6

Soit $n \in \mathbb{N}^*$.

- (a) \mathbb{K}^n est un espace vectoriel de dimension finie : $\mathbb{K}^n = \text{Vect}\{(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1)\}$.
- (b) $\mathbb{K}_n[X]$ un espace vectoriel de dimension finie : $\mathbb{K}_n[X] = \text{Vect}\{X^i, i \in [0, n]\}$.

Proposition 8

Soient $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n, x_{n+1}) \in E^{n+1}$. Si $\{x_1, \dots, x_n, x_{n+1}\}$ est une famille génératrice de E et si $x_{n+1} \in \text{Vect } \{x_1, \dots, x_n\}$, alors $\{x_1, \dots, x_n\}$ est une famille génératrice de E.

2.2 Familles libres

Définition 13

Soient $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in E^n$. On dit que la famille $\{x_1, \dots, x_n\}$ est une **famille libre** si

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad \left(\sum_{k=1}^n \lambda_k \cdot x_k = 0_E\right) \Rightarrow (\forall k \in [1, n], \ \lambda_k = 0)$$

Les éléments d'une famille libre sont dit linéairement indépendants.

Une famille qui n'est pas libre est dite liée. Ses éléments sont dits linéairement dépendants. Lorsque **DEUX** vecteurs sont liés, on dit qu'ils sont **colinéaires**.

Exemple 7

- (a) Dans le \mathbb{R} -espace vectoriel \mathbb{C} , les familles $\{1,i\}$ et $\{1+i,1-i\}$ sont libres.
- (b) Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , la famille $\{(1,0,1),(1,1,1),(1,0,0)\}$ est libre, mais la famille $\{(1,0,1),(1,1,1),(1,0,0),(1,-1,0)\}$ est liée.
- (c) Dans le \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$, la famille $\{x \mapsto e^x, x \mapsto xe^x\}$ est libre.
- (d) Dans le \mathbb{R} -espace vectoriel $\mathbb{R}_n[X]$, la famille $\{X^0, X, \dots X^n\}$ est libre.

Remarque 5

- (a) Toute sous-famille d'une famille libre est libre.
- (b) Une famille de E est liée si, et seulement si au moins un de ses vecteurs est combinaison linéaire des autres.
- (c) La famille $\{x,y\}$ est liée si et seulement si x=0 ou il existe $\lambda \in \mathbb{K}$, tel que $y=\lambda \cdot x$

Proposition 9

Soient $n \in \mathbb{N}^*$ et $\{x_1, \dots, x_n\}$ une famille libre de E. Si $x_{n+1} \notin \text{Vect}\{x_1, \dots, x_n\}$ alors la famille $\{x_1, \dots, x_n, x_{n+1}\}$ est libre.

Définition 14

Une famille de polynômes $\{P_k, 1 \le k \le n\}$ est dite à degrés échelonnés si on a :

$$\deg(P_1) < \deg(P_2) < \dots < \deg(P_n)$$

Proposition 10

Toute famille de polynômes de $\mathbb{K}[X]$ à degrés échelonnés est libre.

2.3 Bases

Définition 15

On appelle base de E toute famille libre et génératrice de E.

Exemple 8

- (a) Dans le \mathbb{R} -espace vectoriel $\mathbb{R}_n[X], n \in \mathbb{N}^*, (X^0, X, \dots, X^n)$ est une base.
- (b) Dans le K-espace vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$, $(E_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ est une base.

Proposition 11

Soit $n \in \mathbb{N}^*$. Dans le \mathbb{K} -espace vectoriel \mathbb{K}^n , une base est donnée par la famille (e_1, \dots, e_n) telle que pour $k \in [1, n]$, le n-uplet e_k est constitué de 0, sauf à la k-ème place où se trouve un 1.

Définition 16

La famille donnée dans la proposition précédente est appelée base canonique de \mathbb{K}^n .

Proposition 12

Une famille $\mathscr{B} = (e_1, e_2, \cdots, e_n)$ est une base de E si et seulement si

$$\forall x \in E, \exists! (x_1, x_2, \dots, x_n) \in \mathbb{K}^n, \quad x = \sum_{k=1}^n x_k \cdot e_k$$

Définition 17

Les scalaires (x_1, x_2, \dots, x_n) de la proposition précédente sont appelés **coordonnées**, ou **composantes** de x dans la base \mathscr{B} .

Théorème 1

Tout espace vectoriel $E \neq \{0\}$ admet au moins une base.

3 Espaces vectoriels de dimension finie

Dans ce paragraphe, on suppose que E est un \mathbb{K} -espace vectoriel non réduit à $\{0\}$ de dimension finie.

3.1 Dimension d'un espace vectoriel

Théorème 2

Soient $(e_i)_{i \in \mathscr{G}}$ une famille finie génératrice de E, et $\mathscr{L} \subset \mathscr{G}$ tel que la famille $(e_i)_{i \in \mathscr{L}}$ soit une famille libre de E. Alors il existe \mathscr{B} tel que $\mathscr{L} \subset \mathscr{B} \subset \mathscr{G}$ et $(e_i)_{i \in \mathscr{B}}$ est une base de E.

Corollaire

• Théorème de la base extraite

De toute famille génératrice, on peut extraire une base.

• Théorème de la base incomplète

Toute famille libre peut être complétée en une base.

Remarque 6

Tout espace vectoriel non réduit à $\{0\}$ de dimension finie admet une base formée d'un nombre fini de vecteurs.

Proposition 13

Si E admet une famille génératrice de n éléments, alors toute famille de n+1 vecteurs est liée.

Remarque 7

Il découle de la proposition précédente que si un \mathbb{K} -espace vectoriel de dimension finie admet un famille génératrice de n éléments, alors toute famille libre admet au plus n éléments.

Théorème 3

Toutes les bases d'un K-espace vectoriel de dimension finie ont le même cardinal.

Définition 18

Le cardinal des bases d'un espace vectoriel de dimension finie est appelé la dimension de l'espace vectoriel. On le note $\dim_{\mathbb{K}}(E)$ ou plus simplement $\dim(E)$ s'il n'y a pas d'ambigüité sur \mathbb{K} . Par convention, $\dim(\{0\}) = 0$.

Exemple 9

- (a) Pour $n \in \mathbb{N}^*$, dim $(\mathbb{K}^n) = n$.
- (b) Pour $n \in \mathbb{N}^*$, dim $(\mathbb{K}_n[X]) = n + 1$.
- (c) Pour $(n,p) \in (\mathbb{N}^*)^2$, dim $(\mathcal{M}_{n,p}(\mathbb{K})) = np$.

Proposition 14

Soit $n \in \mathbb{N}^*$. Dans le \mathbb{K} -espace vectoriel $\mathbb{K}_n[X]$, toute famille de n+1 polynômes à degrés échelonnés est une base.

Proposition 15

Dans un espace vectoriel de dimension n, toute famille libre de n éléments est une base, et toute famille génératrice de n éléments est une base.

Définition 19

- Dans un espace vectoriel de dimension finie, on appelle dimension d'un sous-espace vectoriel la dimension de l'espace vectoriel induit.
- Un sous-espace vectoriel de dimension 1 est appelé droite vectorielle.
- Dans un espace de dimension $n \ge 2$, on appelle **hyperplan** tout sous-espace vectoriel de dimension n-1. Si n=3, on dit simplement **plan vectoriel**.

Remarque 8

- (a) Une droite vectorielle est engendrée par n'importe lequel de ses vecteurs non nuls.
- (b) Un plan vectoriel est engendré par deux vecteurs non colinéaires.

Proposition 16

Soient E et F deux espaces vectoriels de dimensions finies. Alors $E \times F$ est de dimension finie, et

$$\dim(E \times F) = \dim(E) + \dim(F)$$

Remarque 9

Cette propriété s'étend au produit cartésien de n espaces vectoriels de dimensions finies.

3.2 Rang d'une famille de vecteurs

Définition 20

Soit \mathscr{F} une famille de vecteurs de E. On appelle **rang** de \mathscr{F} l'entier naturel $\operatorname{rg}(\mathscr{F}) = \dim(\operatorname{Vect}(\mathscr{F}))$.

Proposition 17

Soit \mathscr{F} une famille finie de vecteurs de E.

- $rg(\mathcal{F})$ est le plus grand cardinal des sous-familles libres de \mathcal{F} .
- \mathscr{F} est libre si, et seulement si $rg(\mathscr{F}) = card(\mathscr{F})$.

3.3 Sous-espaces vectoriels en dimension finie

Proposition 18

Soit E un espace-vectoriel de dimension finie.

Tout sous-espace vectoriel F de E est de dimension finie, et $\dim(F) \leq \dim(E)$.

De plus on a $\dim(F) = \dim(E)$ si, et seulement si F = E.

Proposition 19

Si $\dim(E) = n$ et si F est un sous-espace vectoriel de E de dimension p alors :

- \bullet F admet au moins un supplémentaire dans E.
- Tout supplémentaire de F dans E est de dimension n-p.

Remarque 10

$$E = F \oplus G \Rightarrow \dim(E) = \dim(F) + \dim(G)$$

Proposition 20

Soient F et G deux sous-espaces vectoriels non nuls de E, (x_1, \dots, x_p) une base de F et (y_1, \dots, y_q) une base de G. Alors, $E = F \oplus G$ si, et seulement si $(x_1, \dots, x_p, y_1, \dots, y_q)$ est une base de E. Une telle base de E est dite base adaptée à la décomposition $F \oplus G$.

Théorème 4 Théorème de Grassmann

Si F et G sont deux sous-espaces vectoriels de E alors :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

Proposition 21

Soient F et G deux sous-espaces vectoriels de dimensions finies.

Les propositions suivantes sont équivalentes :

- (i) $E = F \oplus G$
- (ii) $F \cap G = \{0_E\}$ et $\dim(E) = \dim(F) + \dim(G)$
- (iii) E = F + G et $\dim(E) = \dim(F) + \dim(G)$