Linearna algebra nad polkolobarji

Jimmy Zakeršnik

mentor: prof. dr. Tomaž Košir

20. maj 2022

Napovednik:

- 1 Motivacija
- 2 Kanonično urejeni monoidi in grupe
- 3 Polkolobarji
- 4 Dioidi
- 5 Polmoduli
- 6 Linearne preslikave nad polkolobarji
- 7 Baze polmodulov
- 8 Kardinalnost baz
- 9 Pomožna Trditev 1
- 10 Trditev 2
- 11 Dokaz trditve 2

Napovednik:

- 12 Končne baze
- 13 Bideterminanta
- 14 Nekatere lastnosti bideterminante
- 15 Bideterminanta produkta matrik
- 16 Permanenta
- 17 ε -determinanta
- 18 Karakteristični Bipolinom
- 19 Cayley-Hamiltonov izrek

Motivacija:

Polkolobarjev je veliko - pojavljajo se v skoraj vsakem področju matematike. Nekateri primeri so:

- \mathbb{N}_0 oz. \mathbb{Z}^+ , \mathbb{Q}^+ , \mathbb{R}^+ za standardne operacije + in *
- max-plus algebra $(\mathbb{R} \cup \{-\infty\}, max, +)$ in min-plus algebra $(\mathbb{R} \cup \{\infty\}, min, +)$
- Boolove algebre
- Polkolobarji (pod)množic za ∪ in ∩

Kanonično urejeni monoidi in grupe:

Definicija

Za komutativen monoid (M,*) pravimo, da je kanonično urejen, če je operacija * usklajena s kanonično delno urejenostjo \le na M. To pomeni:

$$a \leq \acute{a} \Rightarrow a * \^{a} \leq \acute{a} * \^{a}$$
 za vse $a, \acute{a}, \^{a} \in M$.

Izrek

Komutativen monoid M ne more hkrati biti kanonično urejen in grupa.

Razred monoidov torej lahko razdelimo na razred grup, razred kanonično urejenih monoidov in na razred ostalih.

Polkolobarji:

Definicija

Za neprazno množico R, ki je opremljena z operacijama \oplus in \otimes pravimo, da je *polkolobar*, če zanjo velja naslednje:

- \bullet (R, \oplus) je komutativen monoid z nevtralnim elementom 0,
- (R, \otimes) je monoid z enoto 1,
- $0 \otimes a = 0 = a \otimes 0; \forall a \in R 0$ izniči operacijo \otimes .

Oznaka: (R, \oplus, \otimes) .

Dioidi:

Klasifikacija monoidov ⇒ klasifikacija polkolobarjev: kolobarji, dioidi in ostali.

Definicija

Polkolobarju (R, \oplus, \otimes) , na katerem je kanonična relacija šibke urejenosti \leq , definirana preko \oplus , delna urejenost, pravimo dioid.

Trditev

Kanonična delna urejenost je v dioidu usklajena z obema operacijama.

Če je (R,+) kanonično urejen komutativen monoid in $H=\{\varphi:R\to R\mid \varphi \text{ endomorfizem}\},$ je $(H,+,\circ)$ dioid.

Polmoduli

Definicija

Naj bo R polkolobar. Levi R-polmodul je komutativen monoid (M,+) z aditivno identiteto θ , na katerem imamo definirano množenje s skalarjem $\cdot: R \times M \to M$, ki zadošča naslednjim pogojem za vsaka $\lambda, \mu \in R$ in vsaka $a,b \in M$:

- 2 $\lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b \text{ in } (\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$,

Če je \otimes na R komutativna, koncepta levega in desnega R-polmodula sovpadata.

Če je R dioid in (M,+) kanonično urejen, pravimo, da je M (levi) moduloid.

Linearne preslikave in matrike nad polkolobarji

Tudi na polmodulih lahko definiramo linearne preslikave: Zahtevamo aditivnost in homogenost.

Nad polkolobarjem $(R,+,\cdot)$ lahko definiramo mxn matrike, za poljubna $m,n\in\mathbb{N}$. Pri tem seštevanje definiramo enako kot za matrike nad obsegi (po komponentah), množenje pa na sledeč način za $A\in M_{m\times n}(R), B\in M_{n\times l}(R)$:

$$A \times B = C \in M_{m \times l}(R); \ c_{ij} = \sum_{k=1}^{n} (a_{ik}b_{kj}) \forall i \in \underline{m} \& \forall j \in \underline{l}$$

Baze Polmodulov

Definicija

Družina $X=(x_i)_{i\in I}$ elementov levega R-polmodula M je linearno neodvisna natanko tedaj, ko:

$$\forall I_1, I_2 \subset I; I_1 \cap I_2 = \emptyset : \langle X_{I_1} \rangle \cap \langle X_{I_2} \rangle = \{\theta\}$$

Če X ni linearno neodvisna, pravimo, da je linearno odvisna.

Definicija

Pravimo, da je X baza levega R-polmodula M, če je linearno neodvisna in generira M. Baza X za M je prosta, če lahko vsak element iz M enolično zapišemo kot linearno kombinacijo elementov iz X.

Kardinalnost Baz

Izrek

Če levi R-polmodul premore kako neskončno bazo, so vse njegove baze neskončne.

Definicija

Naj bo $(M,+,\cdot)$ levi polmodul nad polkolobarjem (R,\oplus,\otimes) in denimo, da imamo dano neko množico vektorjev $V=(V_k)_{k\in K}\subset M$. Vektor x je $\mathit{razcepen}$ nad $\langle V \rangle$ natanko tedaj, ko obstajata taka vektorja $y,z\in \langle V \rangle$, ki sta oba različna od x, da velja x=y+z. V primeru ko x ni razcepen, pravimo da je $\mathit{nerazcepen}$.

Trditev 1

Trditev

Naj no (R, \oplus, \otimes) dioid in označimo z 0 nevtralni element za \oplus ter z 1 nevtralni element za \otimes . Denimo dodatno, da velja:

 $r\oplus p=1\Rightarrow r=1$ ali p=1. Naj bo $(M,+,\cdot)$ R-moduloid, ki je kanonično urejen glede na +. Z \propto označimo kanonično delno urejenost na M. Dodatno predpostavimo, da za $x,y\in M$, ki zadoščata pogojem $x\neq y\ \&\ y\neq \theta$ in $\lambda\in R$ velja:

$$y = \lambda \cdot y + x \Rightarrow \lambda = 1$$

Trdimo, da če veljajo omenjene predpostavke, za linearno neodvisno družino

 $X=(x_i)_{i\in I}$ elementov iz M (kjer velja $x_i\neq\theta \forall i\in I$) velja, da je za vsak indeks $j\in I$ element x_j nerazcepen nad $\langle X\rangle$.

Trditev 2

Trditev

Denimo, da veljajo vse predpostavke trditve 1 in naj poleg tega velja še $r,p\in R: r\otimes p=1 \Rightarrow r=1$ in p=1. Potem, če ima $(M,+,\otimes)$ bazo, je enolično določena.

Dokaz Trditve 2

- Denimo, da imamo dve bazi $X=(x_i)_{i\in I}$ in $Y=(y_j)_{j\in J}$.
- Ker sta X in Y linearno neodvisni, so po trditvi 1 vsi x_i in vsi y_j nerazcepni nad $\langle X \rangle = M = \langle Y \rangle$
- Izberemo poljuben $x_i \in X$ in zapišemo $x_i = \sum_{j \in J} \mu_j^i \cdot y_j$.
- $\bullet \ \exists j \in J : x_i = \mu^i_j \cdot y_j \text{ za nek } \mu^i_j \in R \text{ in } y_j \in Y.$
- Enako $\exists k \in I : y_j = \nu_k^j \cdot x_k$ za nek $\nu_k^j \in R$ in $x_k \in X$.
- sledi $x_i = (\mu_i^i \otimes \nu_k^j) \cdot x_k \Rightarrow k = i$
- Sledi $(\mu^i_j \otimes \nu^j_k) = 1$
- Sledi $\mu_j^i=1$ in $\nu_k^j=1$, posledično $x_i=y_j$
- ullet Za vsak $x_i \in X$ smo našli $y_j \in Y$, da je $x_i = y_j$

Končne baze:

Med dvema končnima bazama lahko definiramo prehodno matriko.

Trditev

Naj ima levi R-polmodul M prosto bazo in naj bo r(M)=r kardinalnost najmanjše množice, ki generira M. Naj bo T prosta baza za M. Potem so za bazo S za M naslednje trditve ekvivalentne:

- lacktriangle S je prosta baza za M
- **2** |S| = r
- f 3 Prehodna matrika med bazama T in S je enolično določena in obrnljiva.

Končne baze:

Posledica

V končno generiranem R-polmodulu M sta naslednji trditvi ekvivalentni:

- $oldsymbol{0}$ Vse baze za M imajo enako kardinalnost
- 2 Vse baze za M so proste baze.

Trditev

Za vsak komutativen polkolobar R je kardinalnost vsake baze R^n enaka n natanko tedaj, ko je

 $\max\{t \in \mathbb{N} \mid R\text{-polmodul } R \text{ ima bazo s } t \text{ elementi}\} = 1$

Bideterminanta kvadratne matrike

Definicija

Naj bo $\sigma \in S_n$ permutacija. Količino $w(\sigma) = \prod_{i=1}^n a_{i,\sigma(i)}$ imenujemo utež permutacije σ .

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R. Bideterminanta matrike A je urejeni par $\Delta(A) = (det^+(A), det^-(A))$, kjer sta vrednosti $det^+(A)$ in $det^-(A)$ definirani na naslednji način:

$$det^{+}(A) = \sum_{\sigma \in Per^{+}(n)} w(\sigma)$$
$$det^{-}(A) = \sum_{\sigma \in Per^{-}(n)} w(\sigma)$$

Velja: $\Delta(A) = \Delta(A^{\top})$.

Nekatere lastnosti bideterminante

- Če kak stolpec/vrstica v A vsebuje samo aditivno enoto 0, je $\det^+(A) = \det^-(A) = 0$
- Če ima matrika A dva identična stolpca oz. vrstici, je $\det^+(A) = \det^-(A)$
- Naj v polkolobarju (R, \oplus, \otimes) velja, da so vsi elementi R okrajšljivi glede na \oplus in vsi elementi $R \setminus \{0\}$ okrajšljivi za \otimes . Če so stolpci v $A \in M_n(R)$ linearno odvisni, velja $\det^+(A) = \det^-(A)$.
- Še več zanimivih latnosti na določenih tipih dioidov.

Bideterminanta produkta matrik

Izrek

Naj bosta A in B $n \times n$ kvadratni matriki nad komutativnim polkolobarjem (R, \oplus, \otimes) . Potem velja:

$$det^{+}(A \times B) = det^{+}(A) \otimes det^{+}(B) \oplus det^{-}(A) \otimes det^{-}(B) \oplus \gamma$$
$$det^{-}(A \times B) = det^{+}(A) \otimes det^{-}(B) \oplus det^{-}(A) \otimes det^{+}(B) \oplus \gamma$$

kjer je

$$\gamma = \sum_{f \in \acute{F}(n)} \sum_{\sigma \in Per^{+}(n)} \left(\prod_{i=1}^{n} a_{i,f(i)} \otimes b_{f(i),\sigma(i)} \right)$$

in \acute{F} množica preslikav $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$, ki niso permutacije.

Permanenta kvadratne matrike

Definicija

Naj bo $\Delta(A)$ bideterminanta matrike $A \in M_n(R)$ nad polkolobarjem R. Permanenta matrike A je definirana kot:

$$\mathsf{Perm}(A) = \det^+(A) \oplus \det^-(A) = \sum_{\sigma \in Per(n)}^{\oplus} w(\sigma)$$

Opazimo, da če v matriki A pomnožimo kak stolpec ali vrstico z neničelnim skalarjem λ_i , se potem tudi permanenta pomnoži z λ_i .

ε -determinanta kvadratne matrike

Poleg bideterminante lahko kvadratni matriki priredimo še t. i. ε -determinanto, ki nam tudi zna povedati kar veliko o dani matriki.

Definicija

Naj bo R polkolobar. Bijekcija ε na R se imenuje ε -funkcija, če velja:

- ε je idempotentna,
- ε je aditivna,
- ullet $arepsilon(a\otimes b)=a\otimesarepsilon(b)=arepsilon(a)\otimes b$ za vse $a,b\in R$
- $\varepsilon(a) = -a$ za aditivno obrnljive $a \in R$.

ε -determinanta kvadratne matrike

Defincija

Naj bo R komutativen polkolobar z ε funkcijo in $A \in M_n(R)$ ε -determinanto matrike A, označimo z $\det_{\varepsilon}(A)$ in definiramo s predpisom:

$$\mathsf{det}_{\varepsilon}(A) = \sum_{\sigma \in S_n}^{\oplus} \varepsilon^{t(\sigma)} \otimes (a_{1\sigma(1)} \otimes a_{2\sigma(2)} \otimes \ldots \otimes a_{n\sigma(n)})$$

Kjer je $t(\sigma)$ enako številu transpozicij permutacije σ in $\varepsilon^{(k)}(a)=\varepsilon^{(k-1)}(\varepsilon(a)); \varepsilon^{(0)}(a)=a.$

Več o tem v nalogi.

Karakteristični bipolinom

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R. Karakteristični bipolinom matrike A je dvojica $(P_A^+(\lambda), P_A^-(\lambda))$, kjer sta $P_A^+(\lambda)$ in $P_A^-(\lambda)$ polinoma stopnje n v spremenljivki λ , definirana na naslednji način:

$$\begin{split} P_A^+(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^+(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)} (a_{i,\sigma(i)}) \right) \right) \otimes \lambda^{n-q} \right) \oplus \lambda^n \\ P_A^-(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^-(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)} (a_{i,\sigma(i)}) \right) \right) \otimes \lambda^{n-q} \right) \end{split}$$

Karakteristični bipolinom

V posebnem primeru, ko v bipolinom vstavimo aditivno enoto 0, dobimo naslednje:

- $P_A^+(0) = \sum_{\substack{\sigma \in Part^+(n) \ |dom(\sigma)|=n}} \left(\prod_{i=1}^n a_{i,\sigma(i)} \right)$
- $P_A^-(0) = \sum_{\substack{\sigma \in Part^-(n) \ |dom(\sigma)|=n}} \left(\prod_{i=1}^n a_{i,\sigma(i)} \right)$

Ker je za $|dom(\sigma)|=n$ karakteristika $char(\sigma)=(-1)^n\otimes sign(\sigma)$, je za sode n $Part^+(n)=Per^+(n)$, za lihe n je pa $Part^+(n)=Per^-(n)$. V prvem primeru je torej $P_A^+(0)=\det^+(A)$ in $P_A^-(0)=\det^-(A)$, v drugem pa $P_A^+(0)=\det^-(A)$ in $P_A^-(0)=\det^+(A)$.

Cayley-Hamiltonov izrek nad polkolobarji

Izrek:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem z nevtralnim elementom 0 in enoto 1 in naj bo $(P_A^+(\lambda),P_A^-(\lambda))$ bipolinom, ki pripada matriki A. Tedaj velja:

$$P_A^+(A) = P_A^-(A) {1}$$

kjer sta $P_A^+(A)$ in $P_A^-(A)$ matriki, ki ju dobimo, če v $P_A^+(\lambda)$ in $P_A^-(\lambda)$ λ^{n-q} zamenjamo z A^{n-q} . Pri tem razumemo A^0 kot multiplikativno identiteto v polkolobarju $M_n(R)$.

Literatura:

- Yi-Jia Tan Invertible matrices over semirings, https://www.tandfonline.com/doi/abs/10.1080/ 03081087.2012.703191
- Yi-Jia Tan Bases in semimodules over commutative semirings,, https://www.sciencedirect.com/science/article/pii/S0024379513007234
- Yi-Jia Tan Determinants of matrices over semirings, https://www.tandfonline.com/doi/abs/10.1080/ 03081087.2013.784285
- Michel Gondran, Michel Minoux Combinatorial Properties of (Pre)-Semirings, https:

```
//www.researchgate.net/publication/319772435_
Combinatorial_Properties_of_Pre-Semirings
```


Litaratura:

- Jonathan S. Golan Semirings and their applications,
- Semiring, https://en.wikipedia.org/wiki/Semiring