CS-773 Project Final Checkpoint

Hybrid Cache Architecture for Comprehensive Security

Soumik Dutta, Arnab Bhakta, SM Arif Ali **Team Gandiva**

23m0826@iitb.ac.in,23m0835@iitb.ac.in,23m0822@iitb.ac.in

Problem statement

Modern processors are vulnerable to **two** major classes of **attacks**

Conflict based attacks

Transient execution attacks

How can we create an **unified** solution to defend against both attack types keeping performance-security tradeoff in mind?

Prior Works

MIRAGE: Mitigates Conflict-Based Cache Attacks with a Practical Fully-Associative Design USENIX Sec '21

GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation

MICRO '21

Combining them could provide comprehensive **security** but requires careful **integration**

Goal of the Project

Design a **hybrid cache architecture** that:

Metrics of interest: **IPC**, **MPKI**

Recap of Checkpoint 1

Checkpoint 1: Challenges faced

- Version mismatch in gem5 version
 - Original Mirage in gem5 v19 is not replicable
 - Ported to latest gem5 v24
 - Original GhostMinion => gem5 v20
 - Ported to gem5 v24 but not compatible.
 - Sol: fallback to gem5 v20
 - Architecture mismatch
 - Original Mirage => X86; Original GhostMinion => ARM;
 - Ported GhostMinion to **X86** but not supported;
 - Finally, Ported Mirage to **ARM**.
- Running benchmark suite
 - Checkpointing is needed to reproduce results same as given in paper. 6

Checkpoint 1: Work done

- Setup MIRAGE artifact in gem5v24.
- > Setup **GhostMinion** artifact in gem5**v20.1**.
- ➤ Evaluation of the techniques with 7 SPECspeed®2017Integer & 5 SPECspeed®2017Floating Point benchmarks.

Checkpoint 1: Simulation Configuration

Architecture: ARM-64

Core: Single-Core, 8-Wide, Out-of-order, 2.0GHz

L1D: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L1I: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L2: 8MiB, 20-cycle-latency, 16 way, 20 MSHRs

DRAM: 8GiB DDR4 2400MT/s

Warmup-Instruction: 500M

Simulation-Instruction: 500M

MIRAGE Results - Speedup

Why do we get a speedup in some cases?

MIRAGE Results - L1 MPKI

MIRAGE Results - L2 MPKI

MPKI doesn't explain the performance difference

MIRAGE Results - L1 Miss Latency

Significant differences in miss latency between baseline and MIRAGE

MIRAGE Results - Tradeoff

GhostMinion Configuration

Level: L1-D Cache, L1-I Cache

L2 clusivity: Exclusive

D/I GhostMinions: 2KiB, 2-way, accessed with D/I cache

L2 prefetcher: 8 degree, Stride Prefetcher (64-entry RPT)

GhostMinion Results - Speedup

Speculative data hiding and strict-ordering causes commit stall

GhostMinion Results - L1 MPKI

Increased MPKI in non-speculative L1 cache

GhostMinion Results - L2 MPKI

No noticeable differences in L2 MPKI for baseline and GhostMinion

GhostMinion Results: Tradeoff

GhostMinion Tradeoff:: GhostMinion Size vs Execution Time

Insignificant effect on performance on changing GhostMinion size

Entering Checkpoint 2

Action on checkpoint 1 feedback

Feedback Take care of some unexpected results

Action

- Took checkpoint at 10B instruction
- Re-evaluated benchmarks for larger instruction count from checkpoint

MIRAGE Results Previous - Speedup

Revised result Revised - Speedup

Work done in checkpoint-II

- Integrated MIRAGE & GhostMinion in gem5 v20.1
- Implemented checkpointing system to skip first 10B instruction and simulation thereafter.

Configuration in merged technique

- DRAM page management policy
 - GhostMinion: Open adaptive
 - Mirage: Closed
 - Combined: Open adaptive

- > L2 clusivity
 - GhostMinion: exclusive
 - Mirage: Inclusive
 - Combined: Inclusive (exclusive w.r.t ghostminion cache)

Revised Simulation Configuration

Architecture: ARM-64

Core: Single-Core, 8-Wide, Out-of-order, 2.0GHz

L1D: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L1I: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L2: 8MiB, 20-cycle-latency, 16 way, 20 MSHRs

DRAM: 16GiB DDR4 2400MT/s

Warmup-Instruction: 500M

Simulation-Instruction: **2B***

*initially tried with 10B instructions but each benchmark took about 45hrs

Results: Speedup

The combined technique exhibit a 5% slowdown on average

Results - L1 MPKI

bwaves, gcc, mcf, xalanc suffers high MPKI at both L1 and L2

Results - L2 MPKI

Results - L1 Miss Latency

Both lbm and exchange2 encounter significantly lower miss latency

Github link

 https://github.com/sammagnet7/cs773_CompArch-Perf-Security

Final Checkpoint Video

https://www.youtube.com/watch?v=IM6voFCyAXU

MIRAGE Configuration

Level: L2

L2 clusivity: Inclusive

L2 Skews: 2

Tag to Data Ratio: 1.75 (75% extra tags)

Encryption Latency: 2 cycles