

Embedded Systems

Tassadaq Hussain

Assistant Professor: Riphah International University
Research Collaborations: Microsoft Barcelona Supercomputing Center
University of Valenciennes, France (CNRS UMR)
UCERD Pvt Ltd Pakistan

Single Board Computer

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer.

Types of SBC

High Performance
Low Power and Low Cost

Intel Embedded System

Atom Processor

Parallela

18-core credit card sized computer

- #1 in energy efficiency @ 5W
- 16-core Epiphany RISC SOC
- Zynq SOC (FPGA + ARM A9)
- Gigabit Ethernet
- 1GB SDRAM
- Micro-SD storage
- Up to 48 GPIO pins
- HDMI, USB (optional)
- Open source design files
- Runs Linux

Jetson GPU

GPU: NVIDIA Kepler "GK20a" GPU with 192 SM3.2 CUDA cores (upto 326 GFLOPS)

CPU: NVIDIA "4-Plus-1" 2.32GHz ARM quad-core Cortex-A15 CPU with Cortex-A15 battery-saving shadow-core.

ODROID

- * Samsung Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octacore CPUs
- * Mali-T628 MP6(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full profile)
- * 2Gbyte LPDDR3 RAM PoP stacked
- * eMMC5.0 HS400 Flash Storage
- * 2 x USB 3.0 Host, 1 x USB 2.0 Host
- * Gigabit Ethernet port
- * HDMI 1.4a for display
- * Size: 83 x 58 x 22 mm approx.(including cooling fa
- * Linux Kernel 4.9 LTS

RaspberyPi

Model Name	Release Date	CPU	RAM	Graphics	USB	Power
					Ports	Requirements
Raspberry Pi 1 Model A	February 2012	700 MHz single-core	256 MB	Broadcom VideoCore IV	1	1.5 W
Raspberry Pi 1 Model B	February 2012	700 MHz single-core	256 MB	Broadcom VideoCore IV	2	3.5 W
Raspberry Pi 1 Model A+	February 2013	700 MHz single-core	$256\mathrm{MB}$	Broadcom VideoCore IV	1	1.0 W
Raspberry Pi 1 Model A+ Revision 2	N/A	700 MHz single-core	512 MB	Broadcom VideoCore IV		1.0 W
Raspberry Pi 1 Model B revision 2	August 2012	700 MHz single-core	512 MB	Broadcom VideoCore IV		3.5 W
Raspberry Pi 1 Model B+	February 2013	700 MHz single-core	512 MB	Broadcom VideoCore IV	4	3.0 W
Raspberry Pi 2 Model B	February 2015	900 MHz quad-core	1 GB	Broadcom VideoCore IV	4	4.0 W
Raspberry Pi Zero	November 2015	1,000 MHz single-core	512 MB	Broadcom VideoCore IV	1 OTG	0.8 W
Raspberry Pi 3 Model B	February 2016	1,200 MHz quad-core	1 GB	Broadcom VideoCore IV with higher clock speeds	4	4.0 W

RaspberryPi Hardware

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCore IV

RAM: 1GB LPDDR2 (900 MHz)

Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

Storage: microSD

GPIO: 40-pin header, populated

 Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI)

RaspberryPi Hardware

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCoro IV/

RAM: 1GB LPDDR2 (90

Networking: 10/100 Ethe

Bluetooth: Bluetooth 4.1

Storage: microSD

GPIO: 40-pin header, pc

 Ports: HDMI, 3.5mm and Serial Interface (CSI), D

Brand	Models	CPU	RAM	+	Price	Туре	Connectivity
Arduino	20+ and many clones (Spark, Intel, and so on)	ATmega, 8–64 MHz, Intel Curie, Linino	16 KB- 64 MB	Largest community	~30 USD	RTOS, Linux, hobbyists	Pluggable extension boards (Wi- Fi, GPRS, BLE, Zigbee, and so on
Raspberry Pi	A, A+, B, B+, 2, 3, Zero	ARMv6 or v7, 700 MHz -1.2 GHz	256–1 GB	Full Linux, GPU, large community	~5-35 USD	Linux, hobbyists	Ethernet, extension through USB, BLE (Pi3)
Intel	Edison	Intel Atom 500 MHz	1 GB	X86, full Linux	~50 USD	Linux, hobbyist to industrial	Wi-Fi, BLE
BeagleBoard	BeagleBone Black, X15, and so on	AM335x 1 GHz ARMv7	512 MB- 2 GB	Stability, full Linux, SDK	~50 USD	Linux, hobbyist to industrial	Ethernet, exten- sion through USB and shields
Texas Instru- ments	CC3200, SoC loT, and so on	ARM 80 MHz, etc.	from 256 KB	Cost, Wi-Fi	<10 USD	RTOS, industrial	Wi-Fi, BLE, Zigbee
Marvell	88MC200, SoC loT, and so on	ARM 200 MHz, etc.	from 256 KB	Cost, Wi-Fi, SDK	<10 USD	RTOS, indus- trial	Wi-Fi, BLE, Zigbee
Broadcom	WICED, and so on (also at the heart of the Raspberry Pls)	ARM 120 MHz, and so on	from 256 KB	Cost, Wi-Fi, SDK	<10 USD	RTOS, industrial	Wi-Fi, BLE, Zig- bee, Thread

Source: Building the Web of Things: book.webofthings.io Creative Commons Attribution 4.0

Architecture: RasPi

Using RPi

Because it has an ARM cortex-a processor, it can run the full range of ARM GNU/Linux distributions, including Snappy Ubuntu Core, as well as Microsoft Windows 10.

ARM Cortex-A53 Architecture

GPIOs: General Purpose Input Outputs

	Raspberry	PIZ GI	PIO Header	
Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)		Ground	20
21	GPIO09 (SPI_MISO)		(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground		(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	000	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Raspi Usage and Applications

