Inter (Part-I) 2018

Mathematics	Group-l	PAPER: I
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20

Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- Product of all fourth roots of unity is:
 - (a) −1 √
- (b) .0

(c) 1

- (d) i
- The value of $\frac{4!}{0!}$ is:
 - (a) 24 V
- (b) 4

(c) 0

- (d) Infinity
- The set {0, 1} is closed under:
 - (a) Addition
- (b) Multiplication √
- (c) Division
- (d) Subtraction
- The 10th term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, --- is:
 - (a) 30 ^a

- (b) 28
- (c) $\frac{1}{29}$ $\sqrt{^{\circ}P}$
- (d) $\frac{1}{32}$
- If A and B are two sets, then A B = :
 - (a) A ∪ B^c
- (b) (A ∪ B)c
- (c) A \(B^c \)
- (d) (A ∩ B)c
- The fraction $\frac{3x^2+5}{x+4}$ is:
 - (a) Proper fraction (b) Polynomial

 - (c) Partial fraction (d) Improper fraction 1/
- Sum of roots of quadratic equation $ax^2 + bx + c = 0$ is:
 - (a) $\frac{a}{b}$

8	A square matrix A is skew symmetric, if A ^t = :		
	(a) -A √	(b) A	
1	(c) Ā	(d) A ^t	
9-		petween –2 and 8 is:	N:
-	(a) 4	(b) ± 4	
	(c) 8	(d) ± 4i √	
10-			
		- (b) m × m	• `
	(c) n×m √		
11-	Period of $\cos\left(\frac{x}{2}\right)$		
	(a) 2π	(b) $\frac{\pi}{2}$	
	(c) 3π	(d) 4π √	
12-	If A and B are mutu	ally exclusive events, then P(A \cup I	B) =
	•		
		(b) P(A) + P(B) √	
	(c) P(A ∩ B)		•
13-	If cos $x = -\frac{1}{2}$, the	n reference angle is:	37
	(a) $\frac{\pi}{6}$	(b) $-\frac{\pi}{3}$	
	$\frac{\pi}{2}$	$(d) \frac{\pi}{2}$	
	(c) $\frac{\pi}{3} $		
14-	If α , β , γ are angels of	of triangle, then $\tan (\alpha + \beta) + \tan \gamma$	= :
	(a) 1	(b) 0 i∕	
5.5.	(c) 2	(d) -1	٠.
15-	- The value of cos (tan ⁻¹ 0) = :		
	(a) -1	(b) 1 √	
		(d) ∞	
16-	$4^{n} > 3^{n} + 4$ is true	for integral values of n = :	
	(a) 1	(b) n ≤ 1	-
	(c) 0	(d) n ≥ 2 1/	

17- If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant:

(a) 1

(b) 2

(c) 3 √

(d) 4

18- The value escribed circle $r_1 = :$

- (a) $\frac{\Delta}{s-a} \sqrt{}$
- (b) $\frac{\Delta}{s-c}$

(c) $\frac{\Delta}{s}$

(d) $\frac{\Delta}{a}$

19- The 2nd term in expansion of $\left(1 - \frac{1}{3}x\right)^{-1}$ is:

- (a) $\frac{1}{3} \times \sqrt{ }$
- (b) $-\frac{1}{3}x$

(c) 3x

(d) 2x

20- Radius of escribed circle opposite to vertex 'c' of the triangle is:

(a) $\frac{\Delta}{s}$

- (b) $\frac{\Delta}{s-a}$
- (c) $\frac{\Delta}{s-c} \sqrt{c}$
- (d) $\frac{\Delta}{s-b}$

