INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4031B MSI

64-stage static shift register

Product specification
File under Integrated Circuits, IC04

January 1995

64-stage static shift register

HEF4031B MSI

DESCRIPTION

The HEF4031B is an edge-triggered 64-stage static shift register with two serial data inputs (D_A , D_B), a data select input \overline{A}/B , a clock input (CP), a buffered clock output (CO), and buffered outputs from the 64th bit position (O_{63} , \overline{O}_{63}). The output O_{63} is capable of driving one TTL load.

Data from D_A or D_B , as determined by the state of \overline{A}/B , is shifted into the first shift register position and all the data in

the register is shifted one position to the right on the LOW to HIGH transition of CP. D_{A} is selected by a LOW, and D_{B} by a HIGH on $\overline{\text{A}}/\text{B}$. Registers can be cascaded either by connecting all CP inputs together or by driving CP of the most right-hand register with the system clock and connecting CO to CP of the preceding register. When the second technique is used in the recirculating mode, a flip-flop must be used to store O_{63} of the most right-hand register until the most left-hand register is clocked.

PINNING

 D_A , D_B data inputs \overline{A}/B data select input

CP clock input (LOW to HIGH edge-triggered)

CO buffered clock output

O₆₃ buffered output from the 64th stage

O₆₃ complementary buffered output from the 64th

stage

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4031BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4031BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4031BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

64-stage static shift register

HEF4031B MSI

DC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}; V_I = V_{SS} \text{ or } V_{DD}$

					T _{amb} (°c)						
	V _{DD} V	V _{OH} V	V _{OL}	SYMBOL	-40		+ 25		+ 85		
		-			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output (source)	5	4, 6			1,0		0,85		0,65		mA
current	10	9,5		-l _{OH}	3,0		2,5		2,0		mA
HIGH; O ₆₃	15	13,5			10,0		8,5		6,5		mA
HIGH; O ₆₃	5	2,5		-I _{OH}	3,0		2,5		2,0		mΑ
Output (sink)	4,75		0,4		2,7		2,3		1,8		mA
current	10		0,5	I _{OL}	9,5		8,0		6,3		mΑ
LOW; O ₆₃	15		1,5		24,0		20,0		16,0		mA

64-stage static shift register

HEF4031B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN. TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays					
$CP \rightarrow O_{63}$	5		180	360 ns	167 ns + (0,26 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130 ns	57 ns + (0,16 ns/pF) C _L
	15		45	90 ns	40 ns + (0,11 ns/pF) C _L
	5		170	340 ns	148 ns + (0,45 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	65	130 ns	56 ns + (0,19 ns/pF) C _L
	15		45	90 ns	39 ns + (0,13 ns/pF) C _L
$CP \rightarrow \overline{O}_{63}$	5		190	380 ns	163 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	75	150 ns	64 ns + (0,23 ns/pF) C _L
	15		50	100 ns	42 ns + (0,16 ns/pF) C _L
	5		190	380 ns	163 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	75	150 ns	64 ns + (0,23 ns/pF) C _L
	15		50	100 ns	42 ns + (0,16 ns/pF) C _L
$CP \to CO$	5		70	140 ns	43 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	35	70 ns	24 ns + (0,23 ns/pF) C _L
	15		25	50 ns	17 ns + (0,16 ns/pF) C _L
	5		55	110 ns	28 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	60 ns	19 ns + (0,23 ns/pF) C _L
	15		25	50 ns	17 ns + (0,16 ns/pF) C _L
Output transition times;	5		25	50 ns	5 ns + (0,40 ns/pF) C _L
O ₆₃	10	t _{THL}	12	24 ns	3 ns + (0,18 ns/pF) C _L
HIGH to LOW	15		8	16 ns	2 ns + (0,13 ns/pF) C _L
	5		40	80 ns	8 ns + (0,65 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	20	40 ns	5 ns + (0,30 ns/pF) C _L
	15		13	26 ns	3 ns + (0,20 ns/pF) C _L
Output transition times; \overline{O}_{63} , CO	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

64-stage static shift register

HEF4031B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Set-up times	5		25	0	ns	
$D_A,D_B{\to}CP$	10	t _{su}	25	-5	ns	
	15		10	-10	ns	
	5		30	10	ns	
$\overline{A}/B o CP$	10	t _{su}	15	0	ns	
	15		10	-5	ns	
Hold times	5		40	10	ns	
$D_A,D_B\to CP$	10	t _{hold}	40	10	ns	soo also wayoforms Fig 4
	15		40	10	ns	see also waveforms Fig.4
	5		40	10	ns	
$\overline{A}/B o CP$	10	t _{hold}	40	10	ns	
	15		40	10	ns	
Minimum clock						
pulse width;	5		180	90	ns	
LOW	10	t _{WCPL}	70	35	ns	
	15		50	25	ns	
Maximum clock	5		2,5	5	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		10	20	MHz	

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	4000 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	where
dissipation per	10	19 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	54 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L =load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

64-stage static shift register

HEF4031B MSI

Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

An example of an application for the HEF4031B is:

· Serial shift register.

7

NSI

Product specification

64-stage static shift register

APPLICATION INFORMATION

 V_{DD} 063 output data HEF4031B A/B HEF4031B HEF4031B HEF4031B D_B CP (1) 1111 7777 7777 clock driver 7Z84278 (1) Recirculating input. (2) Mode control: V_{DD} = recirculation; ground (V_{SS}) = new data. Fig.5 Cascading using direct clocking for high speed operation (see clock rise and fall time requirements).

- (2) Mode control: V_{DD} = recirculation; ground (V_{SS}) = new data.
- (3) For recirculation mode only, FF to delay data until first register delayed clocking has occurred.
- (4) Delayed clock-to-clock; new data into first register.

Fig.6 Cascading using delayed clocking for reduced clock drive requirements.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.