Titre de l'article

Prénom
1 $\mathbf{Nom1^1},\,\mathbf{Prénom2\ Nom2^2}$

- $1.\ adresse1\\ name 1@email$
- 2. adresse2 name2@email

RÉSUMÉ. Résumé.

ABSTRACT. Abstract in English MOTS-CLÉS: Quelques mots clés

KEYWORDS: En anglais

2 SAGEO'2017

1. Introduction

2. Section 1

2.1. Sous-section 1

2.1.1. Sous-sous-section 1

 ${\tt Figure}\ {\it 1.}\ {\it Une}\ {\it grenouille}\ {\it bien}\ {\it verte}.$

2.2. Sous-section 2

3. Section 2

Listes:

-ligne 1 (cf. équation 1)

- ligne 2 (cf. équation 2)

Formules:

$$R = \frac{d_1}{d_2} \tag{1}$$

$$\sin(\alpha) = \frac{h}{I} \tag{2}$$

Table 1. Exemple de tableau

Clients	Départ		Arrivée	
	Station	Période de Temps	Station	Période de Temps
client 1 (c1)	3	2	1	4
client 2 (c2)	2	2	3	3
client 3 (c3)	2	2	3	4
client 4 (c4)	3	2	2	3
client 5 (c5)	3	2	2	4
client 6 (c6)	2	4	3	5
client 7 (c7)	3	3	2	6
client 8 (c8)	1	5	3	6
client 9 (c9)	2	6	3	7
client 10 (c10)	3	7	1	9
client 11 (c11)	1	6	2	7

Exemple d'algorithme :

```
Algorithme 1 : un algorithme très glouton
```

```
Data: G(V, A, C, R, U);
    /* commentaire
    \mathbf{Result:}\ Paths_{Cars},\ Relocation,\ Satisfied Demands, Paths_{Aqents}
 1 initialization;
 2 Paths_{Agents} \leftarrow \emptyset /* l'ensemble de chemins... */;
 \mathbf{3} \ j \leftarrow 1 \ ;
 4 costPath_j \leftarrow 0;
 5 while (j \leq nb_{Veh}) \wedge (costPath_j \leq 0) do
        path_j \leftarrow Dijkstra(G(V, A, C, R));
        costPath_j \leftarrow Cost(path_j);
        forall (v_{t'}^k, v_t^i) \in path \ \mathbf{do}
             forall U_{r_{t'',t''+1}^i} do
10
          Paths_{Cars} \leftarrow Paths_{Cars} \cup path_j ;
11
        j \leftarrow j + 1;
13 Paths_{Agents} \leftarrow routeAgents(Relocation);
```

4. Conclusion

Blabla (Newton, 1704), mais aussi (Castel, 1740) et encore (Adam, 2007; Andrienko, Andrienko, 2006; Adhitya, Kuuskankare, 2012) 1 .

^{1.} Ces travaux s'inscrivent...

4 SAGEO'2017

Bibliographie

Adam C. (2007). Emotions: from psychological theories to logical formalization and implementation in a BDI agent. Thèse de doctorat non publiée, INP, Toulouse, France.

Adhitya S., Kuuskankare M. (2012). SUM: from Image-based Sonification to Computeraided Composition. In CMMR, London.

Andrienko N., Andrienko G. (2006). Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer Verlag.

Castel L.-B. (1740). L'optique des couleurs.

Newton I. (1704). Opticks.