Fundamental Electronic 2

Presented by Dr. A. Djenadi

Motivation: Digital signal processing

Digital signal device

Motivation: Digital signal processing

Digital signal basic process (audio signal)

Motivation: Electrocardiography (ECG)

Block diagram of signal conditioning at the ECG input stage (LPF: Low-Pass Filter, ADC: Analog to Digital converter)

Electrocardiography (ECG)

Motivation: Electrocardiography (ECG)

ECG Circuit: Converting Heart Analog Signals into Digital Data

Module objectives

After completing this course, you should be able to

- > Design and analyze circuits centered around the operational amplifier.
- Generate analog and digital signals.
- Understand the different operating principles of A/D and D/A converters.
- Grasp the operation of basic setups in a data acquisition system (sample and hold circuits, converters, amplifiers, clock).
- Master an analog modulation technique.

CHAPTER 1: OPERATIONAL AMPLIFIER

Chapter 1: Operational Amplifier

PART 1: INTRODUCTION TO OPERATION AMPLIFIER

In fundamental Electronic 1, we learned about circuit design with active "discrete devices" including: transistors (BJT, FET) and diodes, along with passive devices including resistors and capacitors used to set bias, couple and block signals and more.

However, those circuits showcases complexities or imperfections including:

- Low voltage gain.
- Lack for the ability to amplify DC signals
- Nonlinearity (Because its equations are exponential and its parameters vary).
- Variability in voltage V_{BE} and β with the change in the temperature.

A prominent solution is to consider cascading multiple amplifier stages. For instance, the **common emitter / common collector cascade amplifier.**

CE-CC cascade amplifier

Advantages:

- Increased gain
- Better amplification of signals

A better solution consists in <u>applying negative feedback</u> to a high-gain DC amplifier, which linearizes the circuit and provides an accurate gain determined solely by the <u>feedback network</u>.

$$Gain = \frac{Output\ signal}{Input\ signal}$$

Following the same design, more complex circuits were developed for various purposes including the **operational amplifier (op-amp)**.

The op-amps are widely used in the field of electronics.

They are available in a wide range of package types

Op-amps applications

Voltage amplifiers (Ex. audio amplifiers),

Mathematical operations like addition, subtraction.

used in measurement and data acquisition systems.

Signal Conditioning.

Signal Modulation and Demodulation

μΑ741 Functional Block Diagram

Note:

In our study, we consider the entire circuit as a unified device, focusing our attention on the inputs and output.

Component Count	
Transistors	22
Resistors	11
Diode	1
Capacitor	1

Definition

An operational amplifier (op-amp) is a **high-gain differential amplifier** characterized by **high input impedance** and **low output impedance**.

Terminals and Symbols

(a) Symbol

(b) Symbol with dc supply connections

Terminals and Symbols

LM741 terminals description

Output voltage:

- *V_{out}*: Output voltage
- V_{in}^+ : non-inverting input
- V_{in}^- : inverting input
- +V, -V: Supply voltages

$$V_{out} = A_v(V_{in}^+ - V_{in}^-) + V_0$$

$$\begin{cases} V_{in} = V_{in}^{+} - V_{in}^{-} \\ V_{0} = A_{cm} \left(\frac{V_{in}^{+} + V_{in}^{-}}{2} \right) \\ V_{sat}^{-} < V_{out} < V_{sat}^{+} \end{cases}$$

- A_v : Differential gain
- V₀: Common-mode output voltage
- A_{cm} : Common-mode gain
- *V_{sat}*: saturation threshold

Output voltage:

We define: $CMRR = \frac{A_v}{A_{cm}}$ as the common-mode rejection ratio

We have:

$$V_{out} = A_v(V_{in}^+ - V_{in}^-) + V_0 = A_v(V_{in}^+ - V_{in}^-) + A_{cm}\left(\frac{V_{in}^+ + V_{in}^-}{2}\right) = A_v(V_{in}^+ - V_{in}^-) + \frac{A_v}{CMRR} \cdot \frac{V_{in}^+ + V_{in}^-}{2}$$

$$V_{out} = A_v \left[\left(1 + \frac{1}{2CMRR} \right) V_{in}^+ - \left(1 - \frac{1}{2CMRR} \right) V_{in}^- \right]$$

Note: This equation makes the model more accurate but also more complicated

Output voltage:

The CMRR is parameter that is typically very large, For example, a typical LF351 operational amplifier has $A_V = 10^5$ and $CMRR = 10^5$. This means that:

$$V_{out} = A_v \left[\left(1 + \frac{1}{2CMRR} \right) V_{in}^+ - \left(1 - \frac{1}{2CMRR} \right) V_{in}^- \right] = 1000000, 5 \cdot V_{in}^+ - 99999, 5 \cdot V_{in}^-$$

$$V_{out} \approx 100000 \cdot V_{in}^+ - 100000 \cdot V_{in}^- \approx A_v(V_{in}^+ - V_{in}^-)$$

<u>Conclusion</u>: In most cases, negligible error is caused by ignoring the CMRR of the operational amplifier. The CMRR does not need to be considered unless accurate measurements of very small differential voltages must be made in the presence of very large common mode voltages.

Ideal vs. practical op-amp model

Practical op-amp model

- High differential gain A_v (10⁵~10⁹)
- High input impedance R_{in} ($10^6 \sim 10^{12} \Omega$)
- Low output impedance R_{out} (100~1000 Ω)
- Low common-mode output voltage V_0 (~10⁻⁵ volt)

Ideal op-amp model

- Infinite differential gain $A_v = +\infty$
- Infinite input impedance $R_{in} = \infty$
- Null output impedance $R_{out} = 0$
- Null common-mode output voltage $V_0 = 0$

Ideal op-amp model importance

Ideal op-amp model

- Infinite differential gain $A_{v} = \infty$
- Infinite input impedance $R_{in} = \infty$
- Null output impedance $R_{out} = 0$
- Null common-mode output voltage $V_0 = 0$

Inverting and non-inverting voltages are equal:

$$V^{+} = V^{-}$$

Remark: The ideal model simplifies the mathematics involved in deriving gain expressions

Practical op-amp transfer characteristic

There are two operating zones depending on the input voltage values:

- Saturation, in case: $\begin{cases} V_{in} < \frac{-V_{sat}}{A_v} & \rightarrow V_{out} = -V_{sat} \\ & or \\ V_{in} > \frac{+V_{sat}}{A_v} & \rightarrow V_{out} = +V_{sat} \end{cases}$
- **Linear**, in case: $\frac{-V_{\text{sat}}}{A_v} \le V_{in} \le \frac{+V_{\text{sat}}}{A_v} \rightarrow V_{out} = A_v(V_{in}^+ V_{in}^-)$

With:

$$-V + \Delta V < V_{out} < +V - \Delta V$$

Practical op-amp characteristic

Ideal op-amp transfer characteristic

There are two operating zones depending on the input voltage values:

- Saturation, in case: $\begin{cases} V_{in}^+ V_{in}^- < 0 & \rightarrow V_{out} = -V_{sat} \\ or \\ V_{in}^+ V_{in}^- > 0 \rightarrow V_{out} = +V_{sat} \end{cases}$
- **Linear**, in case: $V_{in}^+ V_{in}^- = 0 \rightarrow V_{in}^+ = V_{in}^- \rightarrow V_{out}^- = ???$

Problem: What is the value of V_{out} in the linear zone?

Solution: Negative feedback!

Ideal op-amp characteristic

Remarks

The op-amp based circuits use two major features:

- 1. The Differential amplifier as an inside component,
- 2. The negative feedback

Op-amp composition

The op-amp is based on a differential amplifier as shown in the following diagram

Symbol and basic circuit

Symbol of a diff-amp

Basic diff-amp circuit based on BJT

Differential amplifier: different modes

The possible **input signal** combination are classified as follows:

Note: According to the outputs, 2 combinations are possible differential and single-ended

Basic diff-amp circuit based on BJT

Single-Ended mode

Definition

An input signal is applied to either input with the other input connected to ground, the operation is referred to as "single-ended."

Single-Ended mode

- •The signal V_{in1} is applied to input 1 and input 2 is grounded.
- •Q1 is configured as common-emitter, thus, an **inverted amplified** signal appears in the output Vout1.
- Q1 and Q2 emitters are common, therefore, the Q1 emitter signal is the input signal of Q2
- Q2 is configured as common-base, thus, an non-inverted amplified signal appears in the output V_{out2}.

Single-Ended mode

Question

What will happen if a signal V_{in2} is applied to input 2 and input 1 is grounded?

Differential mode: Differential input

Definition

In the **differential mode (double ended)**, two signals of **opposite polarity** are applied to the inputs. Each input affects the outputs.

