

Device architectures for the 5nm technology node and beyond

Nadine Collaert

Distinguished member of technical staff, imec

Outline

- Introduction
- Beyond FinFET: lateral nanowires and vertical transistors
- High mobility materials
- New switching mechanisms
- Summary

Introduction

The future heterogeneous system MAXIMIZING FUNCTIONALITY AND REDUCING POWER DENSITY

Standard CMOS, beyond Si & Beyond CMOS

Standard CMOS and new devices to enable future **heterogeneous** systems Ability to innovate & co-integrate devices to optimize performance & functionality is key

Increase compute power

Beyond FinFET

Power-performance scaling: FinFET scaling to 7nm

Scaling down the fin width to improve electrostatics

For a target gate length of 14nm, fin width has to be reduced to 5nm to meet device electrostatics.

From FinFET to lateral nanowires (NW)

Nanowire FETs provide better electrostatics at relaxed nanowire diameter.

From FinFET to lateral NW

Higher stack is needed for nanowire FETs to compensate smaller cross section than FinFET.

Increased parasitics require the enabling of new features e.g. internal spacers

Power-performance scaling: from FinFET to lateral NW

NW device allows further voltage scaling and performance gains

Lateral NW: an evolutionary path from FinFET

H. Mertens et al., VLSI Symp. 2016.

Demonstration of a 2-stacked lateral nanowire device

H. Mertens et al., VLSI Symp. 2016.

- Demonstrated 2-stacked Si NWFET
- Improved performance and electrostatics as compared to FinFETs

Going vertical

High mobility materials

Why high mobility materials?

New Materials with Major Transport Enhancement over Si

Challenges for high mobility materials

Challenges for epitaxial growth

Ge FinFET using fin replacement technique

FIN PITCH DOWN TO 45NM

L. Witters et al., VLSI Symp. 2015.

High performance III-V devices on 300mm Si

 $V_{DD}=0.5V$ 3000 Rectangles: InAs Q=10 2500 Triangles: InGaAs 300mm GAA **Gm**^{sat} [h**S**/μ**m**] 1500 1000 QW/FF FinFET IIIVol 300mm GAA 300mm FinFET 500 vertical NW IIIVol **CELO** 0 50 100 150 200 250 SS_{sat} [mV/dev]

N. Waldron et al., IEDM, 2015. X. Zhou et al., VLSI 2016.

Need for co-integration with Si

High mobility channels offer more performance but leakage span limited Need Si-channel co-integration for SOC

What about 2D materials?

Advantages:

- Expected reduced SCE
- No dangling bonds
- Large choice of materials and bandgaps

Challenges:

- Large scale growth of MX2
- Choice of MX2 material for NFET and PFET
- Gate stack
- Contacts

Heterogeneous integration with base CMOS 3-D Hetero-SOC

New switching mechanisms

Moving to tunnel FET

ULTRA-LOW VOLTAGE APPLICATIONS

From group IV to III-V

Probability of tunneling is dependent on bandgap

Higher tunneling generation rate for low bandgap materials

Increased performance expected for III-V

Kao et al, TED 59(2), 292 (2012) & [1] Q. Smets et al, SSDM 2013

III-V homojunction n-TFET process and device

A. Alian et al., IEDM, 2015.

- Significant boost with 8nm strained InGaAs (70% In) (quantum confinement & bandgap)
- Very low TAT observed
- SS less degraded by D_{it} in TFET due to energy range for carrier exchange in TFET operations

III-V Heterostructures

Staggered and broken gap configurations

Sb-based materials needed to allow best trade-off between performance & electrostatics

From 3D TFET to 2D TFET

After Eli Yablonovitch 2012, UC Berkeley

- Steepness of the swing over a wide-Vg range limited by 3-D DOS
- Investigate 2-D TFET options

2-D TFETS with 2-D MX₂ (TMD) heterostructures

Negative capacitance FET (NC-FET)

$$SS = \frac{\partial VGS}{\partial \psi_s} \frac{\partial \psi_s}{\partial (logID)} = m \times n$$

- Sub 60mV/dec due to negative capacitance of a ferroelectric oxide based gate stack (m < 1)
- Tunable hysteresis behavior: non-volatile circuits and noise immune logic

Spin logic

Spin based devices offer different Energy-Delay tradeoffs

Spin torque majority gate

D. Nikonov et al., IEEE EDL, 2011.

Spin wave devices

Summary

Summary

- Need for more energy-efficient Core Logic Devices and specialty devices
- Lateral NW is a natural evolution from FinFET and will enable to continue scaling beyond 7nm due to improved electrostatics
- VFET offers 30-40% SRAM area benefit: 1st step towards vertical logic?
- Scaling of supply voltage is required to address power crisis and higher mobility channels are needed to increase performance at reduced V_{DD}
- New switching mechanisms like TFET, NCFET and spin logic being considered for ultra-low power applications

