

Université de Paris UFR de Mathématiques et Informatique 45 rue des Saints-Pères 75006 Paris

Analyse 3 - Contrôle no. 2

Durée : 30 minutes - Les documents ne sont pas autorisés

NOM:	PRENOM:
NUMERO ETUDIANT :	

Quelques applications directes du cours. Répondre par "VRAI" ou "FAUX", sans justification, aux affirmations suivantes.

Une réponse juste vaut 1 point, une fausse vaut -0.25 point et une absence de réponse vaut 0 point. Dans tout ce qui suit, (u_n) , (v_n) , (w_n) sont des suites réelles. La notation a.p.c.r signifie à partir d'un certain rang.

Solution. (1) (u_n) converge vers $l \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0, \forall n_0 \ge 0, \exists n \ge n_0, |u_n - l| < \varepsilon : \text{FAUX, relire la}$ définition du cours.

- (2) Si (u_n) tend vers $+\infty$ pour $n \to \infty$, alors (u_n) est croissante a.p.c.r : FAUX : considérer des suites qui tendent vers $+\infty$ en oscillant, par exemple $u_n = n + 2(-1)^n$. Cette suite tend vers $+\infty$, mais n'est jamais croissante.
- (3) Si (u_n) tend vers 0 pour $n \to \infty$, alors soit $u_n > 0$ a.p.c.r., soit $u_n < 0$ a.p.c.r : FAUX, prendre $u_n = \frac{(-1)^n}{n}$.
- (4) Si (u_n) tend vers 1 pour $n \to \infty$, alors $u_n > 0$ a.p.c.r : VRAI, cette suite va être dans $\left[\frac{1}{2}, \frac{3}{2}\right]$ à partir d'un certain rang.
- (5) Si $u_n \leq v_n$ pour tout $n \geq 0$ avec (u_n) croissante et non majorée. Alors $v_n \xrightarrow[n \to \infty]{} +\infty$: VRAI, c'est l'application du théorème de convergence des suites monotones pour u suivi d'un théorème des gendarmes.
- (6) Si (u_n) est monotone et non majorée, alors $u_n \xrightarrow[n \to \infty]{} +\infty$: VRAI : les suites décroissantes sont majorées par leur premier terme. Donc la suite en question est croissante non majorée donc tend vers $+\infty$.
- (7) Si la suite ($|u_n|$) converge vers l, alors la suite (u_n) converge vers l ou -l: FAUX, prendre $u_n = (-1)^n$.
- (8) Si pour tout $n \ge 0$, on a $u_n \le v_n \le w_n$ avec $\lim_{n\to\infty} (w_n u_n) = 0$. Alors $\lim_{n\to\infty} v_n$ existe: FAUX, prendre $u_n = v_n = w_n = (-1)^n$.
- (9) Si (u_n) est minorée par 1 et strictement décroissante, alors (u_n) converge vers 1 : grossièrement FAUX : $u_n = 2020 + \frac{1}{n}$.
- (10) Si (u_n) ne tend ni vers $+\infty$, ni vers $-\infty$ alors (u_n) est bornée : FAUX : prendre $u_n = 0$ si n pair et $u_n = n$ pour n impair.

Exercice 1. Démontrer, en utilisant uniquement la définition de la convergence d'une suite, que la suite (u_n) donnée par

$$u_n = \frac{3\sin(n) + 1}{n^2 + 1}$$

tend vers 0 pour $n \to \infty$.

Solution. On a pour tout $n \ge 0$, $|u_n| \le \frac{4}{n^2+1}$. Pour tout $\varepsilon > 0$, on a $\frac{4}{n^2+1} < \varepsilon$ si et seulement si $\frac{4}{\varepsilon} - 1 < n^2$. Deux cas sont possibles : soit $\varepsilon > 4$, auquel cas $\frac{4}{\varepsilon} - 1 < 0$ et donc $\frac{4}{\varepsilon} - 1 < n^2$ est vraie pour tout $n \ge 0$, soit $\varepsilon \le 4$, auquel cas $\frac{4}{\varepsilon} - 1 < n^2$ équivaut à $\sqrt{\frac{4}{\varepsilon} - 1} < n$ puis à (comme n est un entier) $\left\lfloor \sqrt{\frac{4}{\varepsilon} - 1} \right\rfloor + 1 \le n$. Prenons donc en toute généralité $n_0 := \left\lfloor \sqrt{\frac{4}{\varepsilon} - 1} \right\rfloor + 1$. Alors pour $n \ge n_0$, le calcul précédent dit que $\frac{4}{n^2+1} < \varepsilon$ et donc $|u_n| < \varepsilon$. D'où le résultat.

Exercice 2. Soit (u_n) la suite récurrente définie par

$$u_0 = 2$$
 et $u_{n+1} = \sqrt{2u_n - 1}$

(1) Montrer que $u_n \ge 1$ pour tout $n \ge 0$.

Solution. $u_0 = 2 \ge 1$. Supposons par récurrence que $u_n \ge 1$ pour un certain n. Alors, $u_{n+1} = \sqrt{2u_n - 1} \ge \sqrt{2-1} = 1$. D'où la propriété par récurrence.

(2) Etudier la monotonie de (u_n) .

Solution. Pour tout $n \ge 0$, $u_{n+1} - u_n = \sqrt{2u_n - 1} - u_n = \frac{2u_n - 1 - u_n^2}{\sqrt{2u_n - 1} + u_n} = -\frac{(u_n - 1)^2}{\sqrt{2u_n - 1} + u_n} \le 0$, donc (u_n) est décroissante.

(3) La suite (u_n) est-elle convergente? Si oui, calculer sa limite.

Solution. La suite u est décroissante, minorée par 1 donc convergente, vers $\ell \geqslant 1$. Par continuité de $x \mapsto \sqrt{2x-1}$ sur $\left[\frac{1}{2}, +\infty\right)$, par passage à la limite dans l'égalité $u_{n+1} = \sqrt{2u_n-1}$, il vient $\ell = \sqrt{2\ell-1}$ et donc $\ell^2 - 2\ell + 1 = (\ell-1)^2 = 0$ et donc $\ell = 1$.

Quelques commentaires:

- il y a du grand n'importe quoi généralisé quand il s'agit de gérer les calculs d'inégalités. Méfiez-vous des signes! En particulier, il n'est pas normal d'écrire en L2 la phrase suivante : $u_n \ge 1$ et $u_{n+1} \ge 1$ donc $u_n u_{n+1} \ge 1 1 = 0$! C'est une horreur!
- je suis désolé, mais sortir son discriminant pour factoriser le polynôme $\ell^2 2\ell + 1$ est d'une naïveté confondante pour un.e étudiant.e de 2ième année de Licence! Le pire est même atteint quand vous vous trompez dans votre calcul et écrivez n'importe quoi. Pour rappel : https://fr.wikipedia.org/wiki/Identit%C3%A9_remarquable
- Pour la question (2): pour prouver que $u_{n+1}-u_n \leq 0$ certains regardent les variations de la fonction $f(x) = \sqrt{2x-1} x$. Soit. Mais il n'y a aucun lien entre le fait que f soit décroissante et le fait que f soit décroissante. Ce ne sont pas les variations de f qui importent, c'est son signe!