Recall from Proposition 14.15 that when E is a Hermitian space and (e_1, \ldots, e_n) is an orthonormal basis for E, if A is the matrix of a linear map $f: E \to E$ w.r.t. the basis (e_1, \ldots, e_n) , then A^* is the matrix of the adjoint f^* of f. Consequently, a normal linear map has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix.

Furthermore, if (u_1, \ldots, u_n) is another orthonormal basis for E and P is the change of basis matrix whose columns are the components of the u_i w.r.t. the basis (e_1, \ldots, e_n) , then P is unitary, and for any linear map $f: E \to E$, if A is the matrix of f w.r.t (e_1, \ldots, e_n) and B is the matrix of f w.r.t. (u_1, \ldots, u_n) , then

$$B = P^*AP$$
.

Theorem 17.13 and Proposition 17.7 can be restated in terms of matrices as follows.

Theorem 17.22. For every complex normal matrix A there is a unitary matrix U and a diagonal matrix D such that $A = UDU^*$. Furthermore, if A is Hermitian, then D is a real matrix; if A is skew-Hermitian, then the entries in D are pure imaginary or zero; and if A is unitary, then the entries in D have absolute value 1.

17.6 Rayleigh–Ritz Theorems and Eigenvalue Interlacing

A fact that is used frequently in optimization problems is that the eigenvalues of a symmetric matrix are characterized in terms of what is known as the *Rayleigh ratio*, defined by

$$R(A)(x) = \frac{x^{\top}Ax}{x^{\top}x}, \quad x \in \mathbb{R}^n, x \neq 0.$$

The following proposition is often used to prove the correctness of various optimization or approximation problems (for example PCA; see Section 23.4). It is also used to prove Proposition 17.25, which is used to justify the correctness of a method for graph-drawing (see Chapter 21).

Proposition 17.23. (Rayleigh–Ritz) If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and if (u_1, \ldots, u_n) is any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i , then

$$\max_{x \neq 0} \frac{x^{\top} A x}{x^{\top} x} = \lambda_n$$

(with the maximum attained for $x = u_n$), and

$$\max_{x \neq 0, x \in \{u_{n-k+1}, \dots, u_n\}^\perp} \frac{x^\top A x}{x^\top x} = \lambda_{n-k}$$