EVALUACIÓN 3

Manuel Vicente Bolaños Quesada

Problema 1

a) Veamos primero que $\{x_n\}$ es estrictamente creciente.

Sea $A = \{n \in \mathbb{N} : x_{n+1} > x_n\}$, y veamos que este conjunto es inductivo. Está claro que $A \subseteq \mathbb{N}$. Veamos que $1 \in A$:

$$x_2 = f(x_1) = f(a) > a = x_1.$$

Supongamos ahora que $n \in A$, es decir $x_{n+1} > x_n$, y demostremos que $n+1 \in A$: $x_{n+2} = f(x_{n+1}) > f(x_n) = x_{n+1}$, donde hemos usado que f es estrictamente creciente. Por lo tanto, A es un conjunto inductivo, y $A = \mathbb{N}$.

Es fácil ver que la sucesión está acotada, ya que para todo natural $n > 1, x_n = f(x_{n-1})$ y se cumple que $a < f(x_{n-1}) \le b \implies a < x_n \le b$. Como $x_1 = a$, tenemos que $a \le x_n \le b \ \forall n \in \mathbb{N}$

Como la sucesión es estrictamente creciente y está acotada, converge a un número $\beta \in]a,b]$

b) $C = \{f(x) : x \in [a, b], x < \beta\}, \text{ y como } \beta \le b, \ C = \{f(x) : x \in [a, \beta]\}.$

Como f es estrictamente creciente, y $\{x_n\} \to \beta$, para todo $\varepsilon > 0$, existe un natural m tal que $\beta - \varepsilon < x_m < \beta$, por lo que $\beta - \varepsilon < f(x_{m-1}) < \beta$, de donde $\beta \in Mayor(C)$. Supongamos que hay un $\alpha < \beta$, tal que $\alpha \in Mayor(C)$, entonces, por lo dicho anteriormente, existe un natural m tal que $\alpha < f(x_m) < \beta$, y por lo tanto α es menor que un elemento de C, lo que es una contradicción, y por lo tanto, $\beta = sup(C)$.

Sea x un real tal que $\beta > x \ge a$. Como f es estrictamente creciente, tenemos que $f(\beta) > f(x)$, por lo que $f(\beta) \in Mayor(C)$. Usando que β es el mínimo mayorante de C, tenemos que $f(\beta) \ge \beta$, tal y como queríamos demostrar.

c) Sabemos que $f(\beta) \geq \beta$. Supongamos que $f(\beta) > \beta$. Como la imagen de f es un intervalo, existe un real α tal que $f(\beta) > f(\alpha) > \beta$. De la primera desigualdad, y usando que f es estrictamente creciente, obtenemos que $\beta > \alpha$. Como $\alpha \in [a, \beta[$, deducimos que $f(\alpha) \in C$. Como β es el supremo de C, tenemos que $f(\alpha) < \beta$. En conclusión, tenemos que $f(\beta) > f(\alpha) > \beta > f(\alpha)$, que es una contradicción, y por lo tanto, la hipótesis era incorrecta. Así pues, $\beta = f(\beta)$.

Problema 2

a) Consideremos la función $f: \mathbb{R}^+ \to \mathbb{R}$ definida por $f(x) = \frac{4x+a}{x+4}$. Sean x,y números reales tales que 0 < x < y. Entonces:

$$f(y) - f(x) = \frac{4y + a}{y + 4} - \frac{4x + a}{x + 4} = \frac{4xy + ax + 16y + 4a - 4xy - 16x - ay - 4a}{(x + 4)(y + 4)}$$
$$= \frac{a(x - y) + 16(y - x)}{(x + 4)(y + 4)}$$
$$= \frac{(y - x)(16 - a)}{(x + 4)(y + 4)} > 0,$$

de donde f(x) < f(y), y la función es creciente.

Veamos, en primer lugar, que la sucesión $\{x_n\}$ es estrictamente creciente. Para ello, consideremos el conjunto $A = \{n \in \mathbb{N} : x_n < x_{n+1}\} \subseteq \mathbb{N}$, y veamos que es un conjunto inductivo. Para ello, vamos a ver que

 $x_1 = 2 = \frac{8+4}{6} < \frac{8+a}{6} = \frac{4x_1+a}{x_1+4} = x_2$, por lo que, efectivamente, $1 \in A$. Supongamos ahora que $n \in A$, es decir, $x_n < x_{n+1}$ y demostremos que $n + 1 \in A$. Como $x_n < x_{n+1}$, usando que f es creciente, tenemos que $f(x_n) < f(x_{n+1}) \implies x_{n+1} < x_{n+2}$. Por lo

tanto, el conjunto A es inductivo, y $A = \mathbb{N}$.

Veamos ahora que la sucesión está mayorada. Tenemos que $x_n + 4 > 0$ para todo natural n, por lo que $x_{n+1} = \frac{4x_n + a}{x_n + 4} < \frac{4x_n + 16}{x_n + 4} = 4$, para todo natural n, y por lo tanto la sucesión está mayorada. Como $\{x_n\}$ está mayorada y es creciente, es convergente. Su límite, l, será la solución de la ecuación

 $l = \frac{4l+a}{l+A} \implies l^2 + 4l = 4l+a \implies l = \sqrt{a}$. Por lo tanto, $\{x_n\} \to \sqrt{a}$

b) Probemos primero que $0 < \sqrt{a} - x_{n+1} < \frac{1}{3}(\sqrt{a} - x_n)$.

La desigualdad de la izquierda es trivial, ya que la sucesión $\{x_n\}$ converge a \sqrt{a} , y por lo tanto, $x_n < \sqrt{a} \implies 0 < \sqrt{a} - x_n$

Demostremos ahora que $\sqrt{a} - x_{n+1} < \frac{1}{3}(\sqrt{a} - x_n) \Leftrightarrow \frac{\sqrt{a} - x_{n+1}}{\sqrt{a} - x_n} < \frac{1}{3}$ (podemos dividir por $\sqrt{a} - x_n$, ya que es mayor estricto que 0).

Sabemos que $4 < a \implies 2 < \sqrt{a} \implies -\sqrt{a} < -2$, y que $2 < x_n$. Entonces,

$$\frac{\sqrt{a} - x_{n+1}}{\sqrt{a} - x_n} = \frac{\sqrt{a} - \frac{4x_n + a}{x_n + 4}}{\sqrt{a} - x_n}$$

$$= \frac{x_n \sqrt{a} + 4\sqrt{a} - 4x_n - a}{(\sqrt{a} - x_n)(x_n + 4)}$$

$$= \frac{x_n(\sqrt{a} - 4) + \sqrt{a}(4 - \sqrt{a})}{(\sqrt{a} - x_n)(x_n + 4)}$$

$$= \frac{(\sqrt{a} - 4)(x_n - \sqrt{a})}{(\sqrt{a} - x_n)(x_n + 4)}$$

$$= \frac{4 - \sqrt{a}}{x_n + 4} < \frac{4 - 2}{2 + 4} = \frac{2}{6} = \frac{1}{3},$$

tal y como queríamos demostrar.

Tenemos entonces que $\sqrt{a} - x_{n+1} < \frac{1}{3}(\sqrt{a} - x_n)$. Escribiendo la desigualdad para $n = 1, 2, \ldots, n$, usando que $x_i < \sqrt{a} \implies \sqrt{a} - x_i > 0$, y multiplicándolas todas ellas, obtenemos que:

$$0 < \prod_{i=2}^{n+1} (\sqrt{a} - x_i) < \left(\frac{1}{3}\right)^n \prod_{i=1}^n (\sqrt{a} - x_i)$$

$$\Leftrightarrow 0 < \sqrt{a} - x_{n+1} < \frac{1}{3^n} (\sqrt{a} - x_1) = \frac{1}{3^n} (\sqrt{a} - 2),$$

que es lo que se pedía demostrar.