$2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Karthik Inbasekar

Tata Institute of Fundamental Research, Mumbai

04 June 2015

Based on

• K.I, S.Jain, S.Mazumdar, S.Minwalla, V.Umesh, S.Yokoyama: Arxiv 1505.06571

Related earlier work

 S.Jain, M.Mandlik, S.Minwalla, T.Takimi, S.Wadia, S.Yokoyama: Arxiv 1404.6373 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Onshell supersymmetry and the S matrix

of all orders S

Jnitarity

Pole structure

Plan of the talk

Introduction

Preliminaries

Level Rank duality

Duality and the S matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry

S matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channel

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Preliminaries

reliminaries

Duality and the S

Our work

Onshell upersymmetry

Exact computation of all orders S

. . .

Unitarity

ole structur

CS matter theories

- Non-Abelian U(N) gauge theories in 2+1 dimensions are rich.
- ullet Yang-Mills + Chern-Simons action

$$\frac{i\kappa}{4\pi} \int \operatorname{Tr}\left(AdA + \frac{2}{3}A^3\right) - \frac{1}{4g_{YM}^2} \int d^3x \operatorname{Tr} F_{\mu\nu}^2$$

- Describes massive gluons with mass $\propto \kappa g_{YM}^2$.
- Low energies : pure Chern-Simons theory, topological.
- Chern-Simons gauge theory coupled to matter gives rise to interesting dynamics.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Preliminaries

Level Rank duality
Duality and the S
matrix
Our work

Onshell upersymmetry nd the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

CS matter theories: Anyons

 Equations of motion for abelian theory with scalar matter of unit charge

$$\kappa \varepsilon^{\mu\nu\rho} F_{\nu\rho} = 2\pi J^{\mu}$$

- Chern-Simons interaction ties $\frac{1}{\kappa}$ units of flux to the charged scalar.
- Aharonov-Bohm effect: Exchange of two unit charge particles result in a phase $\frac{\pi}{\kappa}$.
- Chern-Simons gauge field interacting with matter turns them into anyons with anyonic phase $\pi\nu=\frac{\pi}{\kappa}$.
- non-abelian case: for eg exchange of U(N) matter quanta R_1 and R_2 gives a phase operator $\nu_R = \frac{T_{R_1} \cdot T_{R_2}}{\kappa} = \frac{C_2(R_1) + C_2(R_2) C_2(R)}{2\kappa}$

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

ntroduction

Preliminaries

Level Rank duality
Duality and the S
matrix
Our work

Onshell supersymmetry and the S matrix

of all orders S matrix

Unitarity

'ole structur

Level rank duality in CS matter theory

• $U(N_B)$ Chern-Simons theory coupled to fundamental boson [Giombi, Minwalla, Prakash, Trivedi, Wadia]

$$S = \int d^3x igg(i \epsilon^{\mu
u
ho} rac{\kappa_B}{4\pi} Tr(A_\mu \partial_
u A_
ho - rac{2i}{3} A_\mu A_
u A_
ho) \ D_\mu ar{\phi} D^\mu \phi + \sigma ar{\phi} \phi + N_B rac{m_B^2}{b_4} \sigma - N_B rac{\sigma^2}{2b_4} igg)$$

Wilson-Fisher limit

$$b_4 o \infty \; , \; m_B o \infty \; , \; 4\pi rac{m_B^2}{b_4} = {\it fixed}$$

• $U(N_F)$ Chern-Simons theory coupled to fundamental fermion

$$S = \int d^3x igg(i \epsilon^{\mu
u
ho} rac{\kappa_F}{4\pi} Tr(A_\mu \partial_
u A_
ho - rac{2i}{3} A_\mu A_
u A_
ho)
onumber \ + ar{\psi} \gamma^\mu D_\mu \psi + m_F ar{\psi} \psi igg)$$

2 → 2 scattering in supersymmetric matter Chern-Simons

Introduction
Preliminaries
Level Rank duality
Duality and the S

theories at large N

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

Level rank duality in CS matter theory

Statement of duality

 $U(N_B)$ CS+fundamental boson at Wilson Fisher limit

$$\Leftarrow$$
 dual \Rightarrow

 $U(N_F)$ CS+fundamental fermion

under the duality map

$$\kappa_F = -\kappa_B$$
 $N_F = |\kappa_B| - N_B$
 $\lambda_B = \lambda_F - sgn(\lambda_F)$
 $m_F = -m_B^{cri}\lambda_B$

with condition

$$\lambda_F m_F > 0$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S

Onshell upersymmetry and the S matrix

xact computation f all orders S natrix

Initarity

ole structure

Evidence for duality

 Spectrum of single trace operators and three point functions on both sides match.
 [Giombi, Minwalla, Prakash, Trivedi, Wadia] ,
 [Aharony, Gur-Ari, Yacoby], [Maldacena, Zhiboedov]

Thermal partition functions on both sides match.
 [Jain, Trivedi, Wadia, Yokoyama] ,
 [Aharony, Giombi, Gur-Ari, Maldacena, Yacoby], [Takimi]

- Duality follows from a deformation of the known Giveon-Kutasov duality in supersymmetric theory. [Jain,Minwalla,Yokoyama]
- 2 → 2 S matrices for purely bosonic and purely fermionic theories have been computed to all orders in t'Hooft coupling and map to one another under duality [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S

nshell persymmetry d the S matrix

act computation all orders S

Jnitarity

Pole structure

Conjectured Duality for susy matter CS

ullet Jain, Minwalla, Yokoyama conjectured that $\mathcal{N}=1,2$ supersymmetric matter coupled Chern-Simons theories are self dual

$$Theory(\lambda', w', m') \iff Theory(\lambda, w, m)$$

under the map

$$\lambda' = \lambda - \text{Sgn}(\lambda) \; , \; w' = \frac{3 - w}{1 + w} \quad m'_0 = \frac{-2m_0}{1 + w}$$
 $N' = |\kappa| - N + 1 \; , \; \kappa' = -\kappa$

with a pole mass

$$m = \frac{2m_0}{2 + (-1 + w)\lambda \operatorname{Sgn}(m)}$$

• m' = -m under duality and $\lambda m(m_0, w) \ge 0$

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S
matrix

nshell persymmetry nd the S matrix

of all orders S matrix

Unitarity

ole structure

Duality and the S matrix

- The statement of duality is actually a statement of bosonization of fermions.
- Bosonic and fermionic S matrices related by duality is equivalent to a bosonization map.
- Such a mapping is possible in 2+1 dimensions: Dirac equation uniquely determines the polarization spinors as a function of the momentum.
- In large N limit, only planar diagrams contribute. Possible to get exact results as a function of λ .
- It has been shown that the S matrices for 2 → 2 processes in the CS+bosonic theory map to the CS+fermionic theory under duality.
 [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S
matrix

Our work

Onshell supersymmetry and the S matrix

of all orders S matrix

Initarity

Pole structu

Duality and the S matrix: Peculiarities

- Bosonic and fermionic S matrices map to one another under duality.
- In singlet (S) channel S matrices obtained from naive crossing symmetry rules conflict with unitarity and has an incorrect non-relativistic limit.
- Conjecture: S channel S matrices

$$\begin{split} \mathcal{S}_{B}^{\mathcal{S}}(s,\theta) &= 8\pi \sqrt{s} \text{cos}(\pi\lambda) \delta(\theta) + i \frac{\text{sin}(\pi\lambda)}{\pi\lambda} \mathcal{T}_{B}^{\mathcal{S}; \text{naive}}(s,\theta) \\ \mathcal{S}_{F}^{\mathcal{S}}(s,\theta) &= 8\pi \sqrt{s} \text{cos}(\pi\lambda) \delta(\theta) + i \frac{\text{sin}(\pi\lambda)}{\pi\lambda} \mathcal{T}_{F}^{\mathcal{S}; \text{naive}}(s,\theta) \end{split}$$

• Duality invariant, unitary, correct non-relativistic limit.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Preliminaries
Level Rank duality
Duality and the S
matrix

Our work

Inshell upersymmetry nd the S matrix

Exact computation of all orders S

nitarity

Pole structu

Peculiarities: Why Singlet channel is singled out?

- Particle: fundamental rep of U(N), Anti-Particle: Anti-fundamental representation of U(N).
- particle-particle: symmetric and anti-symmetric reps are non-anyonic in large N limit

$$u_{\mathit{sym}} \sim
u_{\mathit{Asym}} \sim O\left(\frac{1}{\mathit{N}}\right)$$

particle - Antiparticle: Adjoint rep non-anyonic in large

N

$$u_{Adj} \sim O\left(\frac{1}{N}\right)$$

• particle - Antiparticle: Singlet rep anyonic

$$u_{\mathsf{Sing}} \sim \mathit{O}(1)$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S
matrix

ur work

Inshell
Upersymmetry
Ind the S matrix

Exact computation of all orders S

nitarity

Pole structur

Our work

- Test the conjecture in a completely different system.
- System: most general renormalizable supersymmetric $\mathcal{N}=1$ Chern-Simons matter theory.
- Superspace manifest supersymmetry, Work in large N
 only planar diagrams .
- Compute off-shell four point correlator, take on-shell limit and extract the S matrix.
- Provide evidence for duality and subject the conjecture to stringent unitarity test.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S

Our work

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

ole structur

Main results

- Results in perfect agreement with duality.
- Unitarity requires the delta function at forward scattering and crossing symmetry rules modified by exactly the same way as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]
- Substantial evidence for universality of the conjecture.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction
Preliminaries
Level Rank duality
Duality and the S

Our work

Onshell supersymmetry and the S matrix

=xact computation of all orders S matrix

Initarity

ole structure

Bonus results

- Results of $\mathcal{N}=2$ theory obtained at special value of quartic scalar coupling.
- \bullet Non-renormalization of pole mass and vertex for ${\cal N}=2$ theory good things happen with more susy .
- $\mathcal{N}=1$ S matrix has interesting pole structure, with vanishing pole mass on a self-dual codimension one surface in the space of couplings.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction
Preliminaries
Level Rank duality
Duality and the S

Our work

Onshell supersymmetry and the S matrix

Exact computation of all orders S

Initarity

Pole structur

Onshell supersymmetry and the S matrix

Introduction

Preliminaries

Level Rank duality

Duality and the 5 matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry S matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channe

Unitarity

Pole structur

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

troduction

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry S matrix in onshell superspace

of all orders S matrix

Unitarity

ole structur

mmary

Supersymmetric scattering

- 2 → 2 scattering amplitude: transition between free incoming and free outgoing onshell particles.
- Initial and final states of Φ_i are effectively subject to free equations of motion

$$(D^2+m)\,\Phi=0$$

Solution

$$\Phi(x,\theta) = \int \frac{d^2p}{\sqrt{2p^0}(2\pi)^2} \left[\left(a(\mathbf{p})(1+m\theta^2) + \theta^{\alpha} u_{\alpha}(\mathbf{p})\alpha(\mathbf{p}) \right) e^{ip.x} + \left(a^{c\dagger}(\mathbf{p})(1+m\theta^2) + \theta^{\alpha} v_{\alpha}(\mathbf{p})\alpha^{c\dagger}(\mathbf{p}) \right) e^{-ip.x} \right]$$

• action of off-shell supersymmetry operator on onshell superfields $[Q_{\alpha}, \Phi] = Q_{\alpha}\Phi = i\left(\frac{\partial}{\partial \theta^{\alpha}} - \theta^{\beta}p_{\beta\alpha}\right)\Phi$

$$-iQ_{\alpha} = u_{\alpha}(\mathbf{p}_{i})\left(a\partial_{\alpha} + a^{c}\partial_{\alpha^{c}}\right) + u_{\alpha}^{*}(\mathbf{p}_{i})\left(-\alpha\partial_{a} + \alpha^{c}\partial_{a^{c}}\right) \\ + v_{\alpha}(\mathbf{p}_{i})\left(a^{\dagger}\partial_{\alpha^{\dagger}} + (a^{c})^{\dagger}\partial_{(\alpha^{c})^{\dagger}}\right) + v_{\alpha}^{*}(\mathbf{p}_{i})\left(\alpha^{\dagger}\partial_{a^{\dagger}} + (\alpha^{c})^{\dagger}\partial_{(a^{c})^{\dagger}}\right)$$

Onshell superspace

Introduce creation and annihilation operator superfields

$$A_i(\mathbf{p}) = a_i(\mathbf{p}) + \alpha_i(\mathbf{p})\theta_i ,$$

$$A_i^{\dagger}(\mathbf{p}) = a_i^{\dagger}(\mathbf{p}) + \theta_i \alpha_i^{\dagger}(\mathbf{p}) .$$

Action of supersymmetry operator

$$[Q_{\alpha}, A_{i}(\mathbf{p}_{i}, \theta_{i})] = Q_{\alpha}^{1} A_{i}(\mathbf{p}_{i}, \theta_{i})$$

$$[Q_{\alpha}, A_{i}^{\dagger}(\mathbf{p}_{i}, \theta_{i})] = Q_{\alpha}^{2} A_{i}^{\dagger}(\mathbf{p}_{i}, \theta_{i})$$

$$Q_{\beta}^{1} = i \left(-u_{\beta}(\mathbf{p}) \frac{\overrightarrow{\partial}}{\partial \theta} - v_{\beta}(\mathbf{p})\theta\right)$$

$$Q_{\beta}^{2} = i \left(v_{\beta}(\mathbf{p}) \frac{\overrightarrow{\partial}}{\partial \theta} - u_{\beta}(\mathbf{p})\theta\right).$$

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry S matrix in onshell superspace

of all orders S matrix

Unitarity

ole structure

nmary

Supersymmetry and dual supersymmetry

Action of bose-fermi duality

$$a^D = \alpha$$
, $\alpha^D = a$ $m^D = -m$

• dual supersymmetry operator has the form

$$(Q^{D})_{\beta}^{1} = i \left(-u_{\beta}(\mathbf{p}, -m) \overrightarrow{\frac{\partial}{\partial \theta}} - v_{\beta}(\mathbf{p}, -m)\theta \right) ,$$

 $(Q^{D})_{\beta}^{2} = i \left(v_{\beta}(\mathbf{p}, -m) \overrightarrow{\frac{\partial}{\partial \theta}} - u_{\beta}(\mathbf{p}, -m)\theta \right) .$

• using $u(m,p) = -v(-m,p), \quad v(m,p) = -u(-m,p)$ and $\theta \leftrightarrow \frac{\partial}{\partial \theta}$

$$(Q^D)^1 \propto Q^1, \quad (Q^D)^2 \propto Q^2$$

- Quantities invariant under usual supersymmetry also invariant under dual supersymmetry.
- Onshell supersymmetry commutes with duality

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

supersymmetry and the S matrix Supersymmetry and dual supersymmetry

superspace

Exact computation

matrix

Initarity

ole structur

nmary

S matrix in onshell superspace

• 2 \rightarrow 2 *S* matrix: $p_1 + p_2 \rightarrow p_3 + p_4$

$$S(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4}) \sqrt{(2p_{1}^{0})(2p_{2}^{0})(2p_{3}^{0})(2p_{4}^{0})} =$$

$$\langle 0|A_{4}(\mathbf{p}_{4}, \theta_{4})A_{3}(\mathbf{p}_{3}, \theta_{3})UA_{2}^{\dagger}(\mathbf{p}_{2}, \theta_{2})A_{1}^{\dagger}(\mathbf{p}_{1}, \theta_{1})|0\rangle$$

Supersymmetric ward identity for the S matrix

$$egin{align} \left(\overrightarrow{Q}_{lpha}^{1}(\mathbf{p}_{1}, heta_{1})+\overrightarrow{Q}_{lpha}^{1}(\mathbf{p}_{2}, heta_{2})
ight. \ +\overrightarrow{Q}_{lpha}^{2}(\mathbf{p}_{3}, heta_{3})+\overrightarrow{Q}_{lpha}^{2}(\mathbf{p}_{4}, heta_{4})
ight)S(\mathbf{p}_{1}, heta_{1},\mathbf{p}_{2}, heta_{2},\mathbf{p}_{3}, heta_{3},\mathbf{p}_{4}, heta_{4})=0 \end{split}$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

S matrix in onshell superspace

S matrix in onshell superspace

• S matrix solution (in-states: p_1, p_2 , out-states p_3, p_4) is determined in terms of two functions S_B and S_F of momenta, couplings and mass.

$$\begin{split} & S(\mathbf{p}_{1},\theta_{1},\mathbf{p}_{2},\theta_{2},\mathbf{p}_{3},\theta_{3},\mathbf{p}_{4},\theta_{4}) = \mathcal{S}_{B} + \mathcal{S}_{F} \; \theta_{1}\theta_{2}\theta_{3}\theta_{4} + \\ & \left(\frac{1}{2}\mathcal{C}_{12}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{34}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{2} + \left(\frac{1}{2}\mathcal{C}_{13}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{24}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{3} \\ & + \left(\frac{1}{2}\mathcal{C}_{14}\mathcal{S}_{B} + \frac{1}{2}\mathcal{C}_{23}^{*}\mathcal{S}_{F}\right) \; \theta_{1}\theta_{4} + \left(\frac{1}{2}\mathcal{C}_{23}\mathcal{S}_{B} + \frac{1}{2}\mathcal{C}_{14}^{*}\mathcal{S}_{F}\right) \; \theta_{2}\theta_{3} \\ & + \left(\frac{1}{2}\mathcal{C}_{24}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{13}^{*}\mathcal{S}_{F}\right) \; \theta_{2}\theta_{4} + \left(\frac{1}{2}\mathcal{C}_{34}\mathcal{S}_{B} - \frac{1}{2}\mathcal{C}_{12}^{*}\mathcal{S}_{F}\right) \; \theta_{3}\theta_{4} \end{split}$$

- No θ term: four boson scattering, four θ term: four fermion scattering.
- All other processes (two boson to two fermion etc) determined completely in terms of the two independent functions S_B and S_F .

S matrix in onshell superspace

$$\frac{1}{2}C_{12} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})v^{*}(\mathbf{p}_{2}) \quad \frac{1}{2}C_{23} = -\frac{1}{4m}v^{*}(\mathbf{p}_{2})u^{*}(\mathbf{p}_{3})
\frac{1}{2}C_{13} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})u^{*}(\mathbf{p}_{3}) \quad \frac{1}{2}C_{24} = -\frac{1}{4m}v^{*}(\mathbf{p}_{2})u^{*}(\mathbf{p}_{4})
\frac{1}{2}C_{14} = -\frac{1}{4m}v^{*}(\mathbf{p}_{1})u^{*}(\mathbf{p}_{4}) \quad \frac{1}{2}C_{34} = -\frac{1}{4m}u^{*}(\mathbf{p}_{3})u^{*}(\mathbf{p}_{4})
\frac{1}{2}C_{12}^{*} = \frac{1}{4m}v(\mathbf{p}_{1})v(\mathbf{p}_{2}) \quad \frac{1}{2}C_{23}^{*} = \frac{1}{4m}v(\mathbf{p}_{2})u(\mathbf{p}_{3})
\frac{1}{2}C_{13}^{*} = \frac{1}{4m}v(\mathbf{p}_{1})u(\mathbf{p}_{3}) \quad \frac{1}{2}C_{24}^{*} = \frac{1}{4m}v(\mathbf{p}_{2})u(\mathbf{p}_{4})
\frac{1}{2}C_{14}^{*} = \frac{1}{4m}v(\mathbf{p}_{1})u(\mathbf{p}_{4}) \quad \frac{1}{2}C_{34}^{*} = \frac{1}{4m}u(\mathbf{p}_{3})u(\mathbf{p}_{4})$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

troduction

supersymmetry and the S matrix Supersymmetry and dual supersymmetry S matrix in onshell supersoace

of all orders S

Unitarity

ole structure

nmary

Exact computation of all orders S matrix

Introduction

Preliminaries

Level Rank duality

Duality and the S matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry

S matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N limit

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering S matrix in (singlet) S channel

Unitarity

Pole structure

Summary

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

troduction

Onshell supersymmetry

Exact computation of all orders S matrix

Theor

Exact propagator in large N limit

Exact four point correlator in large N limit

matrix in on-anyonic channels f scattering matrix in (singlet) S

nnel

Unitarity

Pole structur

ummarv

Theory

• General renormalizable ${\cal N}=1$ theory coupled to single fundamental matter multiplet Φ

$$\begin{split} \mathcal{S}_{\mathcal{N}=1} &= -\int d^3x d^2\theta \left[\frac{\kappa}{2\pi} \, \text{Tr} \bigg(-\frac{1}{4} D_\alpha \Gamma^\beta D_\beta \Gamma^\alpha \right. \\ & \left. -\frac{1}{6} D^\alpha \Gamma^\beta \{ \Gamma_\alpha, \Gamma_\beta \} - \frac{1}{24} \{ \Gamma^\alpha, \Gamma^\beta \} \{ \Gamma_\alpha, \Gamma_\beta \} \bigg) \right. \\ & \left. -\frac{1}{2} (D^\alpha \bar{\Phi} + i \bar{\Phi} \Gamma^\alpha) (D_\alpha \Phi - i \Gamma_\alpha \Phi) \right. \\ & \left. + m_0 \bar{\Phi} \Phi + \frac{\pi w}{\kappa} (\bar{\Phi} \Phi)^2 \right] \end{split}$$

$$\begin{split} \Phi &= \phi + \theta \psi - \theta^2 F \ , \bar{\Phi} &= \bar{\phi} + \theta \bar{\psi} - \theta^2 \bar{F} \ , \\ \Gamma^{\alpha} &= \chi^{\alpha} - \theta^{\alpha} B + i \theta^{\beta} A_{\beta}^{\ \alpha} - \theta^2 (2 \lambda^{\alpha} - i \partial^{\alpha \beta} \chi_{\beta}) \ . \end{split}$$

• Φ : complex superfield, Γ_{α} : real superfield

• Integer parameters N, κ , matter coupling constant w, 't Hooft coupling $\lambda = \frac{N}{\kappa}$.

Supersymmetric light cone gauge

Supersymmetric generalisation of light cone gauge

$$\Gamma_-=0 \ \Rightarrow \ A_-=A_1+iA_2=0$$

Gauge self interactions vanish

$$S = -\int d^3x d^2\theta \left[-\frac{\kappa}{8\pi} Tr(\Gamma^- i\partial_{--}\Gamma^-) - \frac{1}{2} D^\alpha \bar{\Phi} D_\alpha \Phi \right.$$
$$\left. -\frac{i}{2} \Gamma^- (\bar{\Phi} D_- \Phi - D_- \bar{\Phi} \Phi) \right.$$
$$\left. + m_0 \bar{\Phi} \Phi + \frac{\pi w}{\kappa} (\bar{\Phi} \Phi)^2 \right]$$

 Susy light cone gauge maintains manifest supersymmetry. $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduct

Onshell supersymmetry and the S matrix

Exact computation of all orders S

Theory

Exact propagator in large N limit Exact four point correlator in large N limit

non-anyonic channels of scattering S matrix in (singlet)

ımmary

Bare Propagators

• The bare scalar superfield propagator:

$$\langle \bar{\Phi}(\theta_1,p)\Phi(\theta_2,-p') \rangle = \frac{D_{\theta_1,p}^2 - m_0}{p^2 + m_0^2} \delta^2(\theta_1 - \theta_2)(2\pi)^3 \delta^3(p-p')$$

The gauge superfield propagator:

$$\langle \Gamma^{-}(\theta_1, p) \Gamma^{-}(\theta_2, -p') \rangle = -\frac{8\pi}{\kappa} \frac{\delta^2(\theta_1 - \theta_2)}{\rho_{--}} (2\pi)^3 \delta^3(\rho - p')$$

where
$$p_{--} = -(p_1 + ip_2) = -p_{-}$$
.

 Gauge field component propagators have same form as non-susy light cone gauge

$$\langle A_+(p)A_3(-p')\rangle = \frac{4\pi i}{\kappa} \frac{1}{p_-} (2\pi)^3 \delta^3(p-p')$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Theory

Susy constraints on two-point correlator

Supersymmetric ward identity for two point correlator

$$(\mathit{Q}_{ heta_{1},p}+\mathit{Q}_{ heta_{2},-p})\langlear{\Phi}(heta_{1},p)\Phi(heta_{2},-p)
angle=0$$

Exact propagator solves the ward identity

$$\langle \bar{\Phi}(p,\theta_1)\Phi(-p',\theta_2)\rangle = (2\pi)^3 \delta^3(p-p')P(\theta_1,\theta_2,p)$$

$$P(\theta_1, \theta_2, p) = (C_1(p^{\mu})D_{\theta_1, p}^2 + C_2(p^{\mu}))\delta^2(\theta_1 - \theta_2)$$

eg for bare propagator

$$C_1 = \frac{1}{p^2 + m_0^2} \; , \; C_2 = \frac{m_0}{p^2 + m_0^2}$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

nshell persymmetry nd the S matri:

Exact computation of all orders S

Theory

Exact propagator in large N limit

correlator in large N

5 matrix in non-anyonic channels of scattering 5 matrix in (singlet) S

- -- --

ummanı

Exact propagator in large N limit

• Integral equation for self-energy

$$\Sigma(p,\theta_{1},\theta_{2}) = 2\pi\lambda w \int \frac{d^{3}r}{(2\pi)^{3}} \delta^{2}(\theta_{1} - \theta_{2}) P(r,\theta_{1},\theta_{2})$$

$$-2\pi\lambda \int \frac{d^{3}r}{(2\pi)^{3}} D_{-}^{\theta_{2},-p} D_{-}^{\theta_{1},p} \left(\frac{\delta^{2}(\theta_{1} - \theta_{2})}{(p-r)_{--}} P(r,\theta_{1},\theta_{2}) \right)$$

$$+2\pi\lambda \int \frac{d^{3}r}{(2\pi)^{3}} \frac{\delta^{2}(\theta_{1} - \theta_{2})}{(p-r)_{--}} D_{-}^{\theta_{1},r} D_{-}^{\theta_{2},-r} P(r,\theta_{1},\theta_{2})$$

Exact propagator in large N limit

Solution to exact propagator is extremely simple

$$P(p,\theta_1,\theta_2) = \frac{D^2 - m}{p^2 + m^2} \delta^2(\theta_1 - \theta_2)$$

- Same structure as the bare propagator with m_0 replaced by m .
- *m* is the pole mass

$$m = \frac{2m_0}{2 + (-1 + w)\lambda \operatorname{Sgn}(m)}$$

is duality invariant, agrees with the pole mass computed by Jain, Minwalla, Yokoyama

• Bonus: In the $\mathcal{N}=2$ limit (w=1), no mass renormalization for $\mathcal{N}=2$ theory !

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S

Theory
Exact propagator in large N limit

Exact four point correlator in large N

S matrix in non-anyonic channel of scattering S matrix in (singlet)

Unitarity

Pole stru

ımmarv

Susy constraints on four-point function

Supersymmetric ward identity for four point function

$$(Q_{\theta_1,p+q} + Q_{\theta_2,-p} + Q_{\theta_3,-k-q} + Q_{\theta_4,k})V(\theta_1,\theta_2,\theta_3,\theta_4,p,k,q) = 0$$

$$\langle \bar{\Phi}((p+q+\frac{1}{4}),\theta_1)\Phi(-p+\frac{1}{4},\theta_2)\Phi(-(k+q)+\frac{1}{4},\theta_3)\bar{\Phi}(k+\frac{1}{4},\theta_4)\rangle$$

$$=(2\pi)^3\delta(I)V(\theta_1,\theta_2,\theta_3,\theta_4,p,k,q)$$

Susy constraints on four-point function

Solution of the ward identity

$$V = \exp\left(\frac{1}{4}X.(p.X_{12}+q.X_{13}+k.X_{43})\right)F(X_{12},X_{13},X_{43},p,q,k)$$

$$X = \sum_{i=1}^{4} \theta_i , \ X_{ij} = \theta_i - \theta_i ,$$

- F is a shift invariant function $\theta_i \to \theta_i + \gamma$.
- V may be taken to be invariant under the Z_2 symmetry

$$\begin{aligned} p \rightarrow k + q, k \rightarrow p + q, q \rightarrow -q , \\ \theta_1 \rightarrow \theta_4, \theta_2 \rightarrow \theta_3, \theta_3 \rightarrow \theta_2, \theta_4 \rightarrow \theta_1 \end{aligned}$$

An integral equation for the four point function

Figure: The diagrams in the first line pictorially represents the Schwinger-Dyson equation for offshell four point function. The second line represents the tree level contributions from the gauge superfield interaction and the quartic interactions.

An integral equation for the four point function

- Most general form of F can be parameterized in terms of 32 bosonic functions of p, k and q.
- leads to 32 coupled integral equations tedious.
- In the kinematic regime $q_{\pm} = 0$ the ansatz

$$V = \exp\left(\frac{1}{4}X.(p.X_{12} + q.X_{13} + k.X_{43})\right)F(X_{12}, X_{13}, X_{43}, p, q, k)$$

$$F = \frac{X_{12}^{+}X_{43}^{+}\left(A(p, k, q)X_{12}^{-}X_{43}^{-}X_{13}^{+}X_{13}^{-} + B(p, k, q)X_{12}^{-}X_{43}^{-}\right)}{+C(p, k, q)X_{12}^{-}X_{13}^{+} + D(p, k, q)X_{13}^{+}X_{43}^{-}}$$

is closed under the multiplication rule induced by the RHS of the integral equation.

An integral equation for the four point function

• Schematically the integral equations are of the form

$$V(\theta_i, p_i) = V_0(\theta_i, p_i) + \int \frac{d^3r}{(2\pi)^3} d^2\theta_j' V_0(\theta_i, \theta_j', p_i, r)$$

$$P(\theta_j', p_i + r) P(\theta_j', r) V(\theta_j', \theta_i, p_i)$$

- solved integral equations exactly in large N limit for arbitrary values of the t'Hooft coupling λ and determined the offshell four point function in the kinematic regime $q_{\pm}=0$.
- Onshell limit directly gives the S matrix for T (adjoint), U_d (direct) and U_e (exchange) channels of scattering $(q_\mu$ is momentum transfer).
- Impossible to extract S (singlet) channel S matrix since q_{μ} is center of mass energy (cannot be spacelike).

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Exact propagator in large N limit Exact four point correlator in large N

limit

S matrix in
non-anyonic channels
of scattering
S matrix in (singlet) S

Unitarity

Pole struc

mman/

S matrix in T , U_d , U_e channels of scattering

• S matrix: onshell limit of off-shell four point correlator

$$\begin{split} \mathcal{T}_B = & \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu} (p-k)^{\nu} (p+k)^{\rho}}{(p-k)^2} + J_B(q,\lambda) \; , \\ \mathcal{T}_F = & \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu} (p-k)^{\nu} (p+k)^{\rho}}{(p-k)^2} + J_F(q,\lambda) \; , \end{split}$$

$$J_B(q,\lambda) = \frac{4\pi q}{\kappa} \frac{N_1 N_2 + M_1}{D_1 D_2} ,$$

$$J_F(q,\lambda) = \frac{4\pi q}{\kappa} \frac{N_1 N_2 + M_2}{D_1 D_2} ,$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

troduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Exact propagat

large N limit
Exact four point
correlator in large N
limit

S matrix in non-anyonic channels of scattering

.....

Unitarity

S matrix in T , U_d , U_e channels of scattering

$$\begin{split} N_1 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (w - 1)(2m + iq) + (w - 1)(2m - iq) \right) , \\ N_2 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (q(w + 3) + 2im(w - 1)) + (q(w + 3) - 2im(w - 1)) \right) , \\ M_1 &= -8mq((w + 3)(w - 1) - 4w) \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} , \\ M_2 &= -8mq(1 + w)^2 \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} , \\ D_1 &= \left(i \left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (w - 1)(2m + iq) - 2im(w - 1) + q(w + 3) \right) , \\ D_2 &= \left(\left(\frac{2|m| + iq}{2|m| - iq} \right)^{-\lambda} (-q(w + 3) - 2im(w - 1)) + (w - 1)(q + 2im) \right) . \end{split}$$

Bonus: S matrix in T , U_d , U_e channels for $\mathcal{N}=2$ theory

• Remarkable simplification in the $\mathcal{N}=2$ limit (w=1)

$$\begin{split} \mathcal{T}_{B}^{\mathcal{N}=2} &= \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu}(p-k)^{\nu}(p+k)^{\rho}}{(p-k)^{2}} - \frac{8\pi m}{\kappa} \; , \\ \mathcal{T}_{F}^{\mathcal{N}=2} &= \frac{4i\pi}{\kappa} \epsilon_{\mu\nu\rho} \frac{q^{\mu}(p-k)^{\nu}(p+k)^{\rho}}{(p-k)^{2}} + \frac{8\pi m}{\kappa} \end{split}$$

 All orders S matrix is just tree level - no loop corrections - non renormalization. $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S

Theory

large N limit
Exact four point
correlator in large N

S matrix in non-anyonic channels of scattering

annel

Unitarity

Pole struc

ummarv

Duality invariance of $\mathcal{N}=1$ and $\mathcal{N}=2$ S matrices

Under the duality transformation

$$w' = \frac{3-w}{w+1}, \lambda' = \lambda - \operatorname{sgn}(\lambda), m' = -m, \kappa' = -\kappa$$

$$J_B(q,\kappa',\lambda',w',m') = -J_F(q,\kappa,\lambda,w,m) ,$$

$$J_F(q,\kappa',\lambda',w',m') = -J_B(q,\kappa,\lambda,w,m) .$$

- Duality maps the purely bosonic and purely fermionic *S* matrices into one another upto overall phase.
- Concrete evidence for duality.
- Supersymmetric ward identity guarantees the duality invariance of all other processes.

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

Introduct

Onshell supersymmetry

Exact computation of all orders S

Exact propagator in large N limit Exact four point correlator in large N

S matrix in non-anyonic channels of scattering

ilailiici

Unitarity

Pole structu

S matrix in (singlet) S channel

- We cannot extract the S channel S matrix directly because of kinematic restriction $q_{\pm}=0$.
- Usual rules of crossing symmetry in quantum field theory predict particle - anti particle scattering from particle particle scattering or vice-versa
- Naive analytic continuation gives a non-unitary S matrix in the S channel as observed in earlier work.
- Any analytic continuation cannot produce the non-analytic delta function piece required for unitarization.
- Remedy: Modify crossing symmetry rules as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama]

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

Introduc

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

neory
sact propagator in
rge N limit
sact four point
rrelator in large N
nit

non-anyonic channels of scattering S matrix in (singlet) S channel

. .

Dala etruc

ımmarv

Conjectured S matrix in S channel $\mathcal{N}=1$ theory

ullet Conjectured S matrix for the ${\cal N}=1$ theory in center of mass frame

$$S_B^{S}(s,\theta) = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda} \left(4\pi i\lambda\sqrt{s}\cot(\theta/2) + J_B(\sqrt{s},\lambda)\right) ,$$

$$S_F^{S}(s,\theta) = 8\pi\sqrt{s}\cos(\pi\lambda)\delta(\theta) + i\frac{\sin(\pi\lambda)}{\pi\lambda} \left(4\pi i\lambda\sqrt{s}\cot(\theta/2) + J_F(\sqrt{s},\lambda)\right) .$$

$$J_B(\sqrt{s},\lambda) = -4\pi i\lambda\sqrt{s} \frac{N_1N_2 + M_1}{D_1D_2} \; ,$$

 $J_F(\sqrt{s},\lambda) = -4\pi i\lambda\sqrt{s} \frac{N_1N_2 + M_2}{D_1D_2}$

Conjectured S matrix in S channel $\mathcal{N}=1$ theory

$$\begin{split} N_1 &= \left((w-1)(2m+\sqrt{s}) + (w-1)(2m-\sqrt{s})e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) , \\ N_2 &= \left((-i\sqrt{s}(w+3)+2im(w-1)) + (-i\sqrt{s}(w+3)-2im(w-1))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) , \\ M_1 &= 8mi\sqrt{s}((w+3)(w-1)-4w)e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} , \\ M_2 &= 8mi\sqrt{s}(1+w)^2e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} , \\ D_1 &= \left(i(w-1)(2m+\sqrt{s}) - (2im(w-1)+i\sqrt{s}(w+3))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|} \right)^{\lambda} \right) , \end{split}$$

 $D_2 = \left((\sqrt{s}(w+3) - 2im(w-1)) + (w-1)(-i\sqrt{s} + 2im)e^{i\pi\lambda} \left(\frac{\sqrt{s} + 2|m|}{\sqrt{s} - 2|m|} \right)^{\lambda} \right)$

Straightforward non-relativistic limit of the $\mathcal{N}=1$ S matrix

• Non-rel limit: $\sqrt{s} \to 2m$ with all other parameters held fixed.

$$\mathcal{T}_{B}^{S}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + 4\sqrt{s} \sin(\pi\lambda) (i\cot(\theta/2) - 1) ,$$

$$\mathcal{T}_{F}^{S}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + 4\sqrt{s} \sin(\pi\lambda) (i\cot(\theta/2) + 1) .$$

- conjectured S channel S matrix has simple non-relativistic limit leading to known Aharonov-Bohm result.
- Surprisingly this result is also same as the $\mathcal{N}=2$ S channel S matrix.
- Presumably supersymmetry enhancement in non-relativistic limit.

Unitarity

Introduction

Preliminaries

Level Rank duality

Duality and the S matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry

S matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N limi

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channel

Unitarity

Pole structur

Summary

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

troduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

ummarv

Product of *S* matrices

• General multiplication rule for two S matrices

$$S_{1} \star S_{2} \equiv \int d\Gamma S_{1}(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{k}_{3}, \phi_{1}, \mathbf{k}_{4}, \phi_{2})$$

$$\exp(\phi_{1}\phi_{3} + \phi_{2}\phi_{4})2k_{1}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{k}_{3} - \mathbf{k}_{1})2k_{2}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{k}_{4} - \mathbf{k}_{2})$$

$$S_{2}(\mathbf{k}_{1}, \phi_{3}, \mathbf{k}_{2}, \phi_{4}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4})$$

$$d\Gamma = \frac{d^{2}k_{3}}{2k_{3}^{0}(2\pi)^{2}}\frac{d^{2}k_{4}}{2k_{4}^{0}(2\pi)^{2}}\frac{d^{2}k_{1}}{2k_{3}^{0}(2\pi)^{2}}\frac{d^{2}k_{2}}{2k_{3}^{0}(2\pi)^{2}}d\phi_{1}d\phi_{3}d\phi_{2}d\phi_{4}$$

supersymmetry invariant Identity operator

$$I(\mathbf{p}_{1}, \theta_{1}, \mathbf{p}_{2}, \theta_{2}, \mathbf{p}_{3}, \theta_{3}, \mathbf{p}_{4}, \theta_{4}) = \exp(\theta_{1}\theta_{3} + \theta_{2}\theta_{4})I(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4})$$
$$I(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}) = 2p_{3}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{p}_{1} - \mathbf{p}_{3})2p_{4}^{0}(2\pi)^{2}\delta^{(2)}(\mathbf{p}_{2} - \mathbf{p}_{4})$$

Multiplication rule with Identity operator

$$S \star I = I \star S = S$$

 More generally product of two supersymmetric S matrices is supersymmetric.

Unitarity equation

• Define on-shell superfield S^{\dagger} as

$$S^{\dagger}(\mathbf{p}_1,\theta_1,\mathbf{p}_2,\theta_2,\mathbf{p}_3,\theta_3,\mathbf{p}_4,\theta_4) = S^*(\mathbf{p}_3,\theta_3,\mathbf{p}_4,\theta_4,\mathbf{p}_1,\theta_1,\mathbf{p}_2,\theta_2)$$

- Supersymmetric ward identity for S^{\dagger} implies S^{\dagger} is supersymmetric if and only if S is supersymmetric.
- The supersymmetric unitarity equation is

$$(S\star S^{\dagger}-I)=0$$

- Recall that the superfield expansion for S is completely specified by S_B and S_F .
- Sufficient to check the LHS for no θ and four θ terms.

Unitarity equation in center of mass frame

- Writing $S_B = I + iT_B$, $S_F = I + iT_f$
- No theta term:

$$\frac{1}{8\pi\sqrt{s}}\int d\theta \bigg(-Y(s)(\mathcal{T}_B(s,\theta)+4Y(s)\mathcal{T}_f(s,\theta))(\mathcal{T}_B^*(s,-(\alpha-\theta))+4Y(s)\mathcal{T}_f^*(s,-(\alpha-\theta)))$$
$$+\mathcal{T}_B(s,\theta)\mathcal{T}_B^*(s,-(\alpha-\theta))\bigg)=i(\mathcal{T}_B^*(s,-\alpha)-\mathcal{T}_B(s,\alpha))$$

Four theta term:

$$\frac{1}{8\pi\sqrt{s}}\int d\theta \bigg(Y(s)(\mathcal{T}_B(s,\theta)+4Y(s)\mathcal{T}_f(s,\theta))(\mathcal{T}_B^*(s,-(\alpha-\theta))+4Y(s)\mathcal{T}_f^*(s,-(\alpha-\theta)))$$
$$-16Y(s)^2\mathcal{T}_f(s,\theta)\mathcal{T}_f^*(s,-(\alpha-\theta))\bigg)=i4Y(s)(-\mathcal{T}_f(s,\alpha)+\mathcal{T}_f^*(s,-\alpha))$$

$$Y(s) = \frac{-s + 4m^2}{16m^2}$$

Unitarity equations for T, U_d and U_e channels

• The S matrices in the T, U_d and U_e channels are all O(1/N) - unitarity equation is linear

$$\begin{split} \mathcal{T}_B(p_1,p_2,p_3,p_4) &= \mathcal{T}_B^*(p_3,p_4,p_1,p_2) \;, \\ \mathcal{T}_F(p_1,p_2,p_3,p_4) &= \mathcal{T}_F^*(p_3,p_4,p_1,p_2) \end{split}$$

- Linearity: No branch cuts in the physical domain of scattering in these channels.
- Explicitly checked that unitarity conditions are obeyed using

$$J_B(q,\lambda) = J_B^*(-q,\lambda) , \ J_F(q,\lambda) = J_F^*(-q,\lambda)$$

Unitarity equations in the S channel

• The S matrix in the S channel is O(1) - the unitarity conditions are non-linear

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(-Y(s)(\mathcal{T}_B^{S}(s,\theta) - \mathcal{T}_F^{S}(s,\theta))(\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{S*}(s,-(\alpha-\theta))) \\ +\mathcal{T}_B^{S}(s,\theta)\mathcal{T}_B^{S*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_B^{S*}(s,-\alpha) - \mathcal{T}_B^{S}(s,\alpha)) \end{split}$$

$$\begin{split} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(Y(s) (\mathcal{T}_B^{\mathcal{S}}(s,\theta) - \mathcal{T}_F^{\mathcal{S}}(s,\theta)) (\mathcal{T}_B^{\mathcal{S}*}(s,-(\alpha-\theta)) - \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta))) \\ -\mathcal{T}_F^{\mathcal{S}}(s,\theta) \mathcal{T}_F^{\mathcal{S}*}(s,-(\alpha-\theta)) \bigg) &= i(\mathcal{T}_F^{\mathcal{S}}(s,\alpha) - \mathcal{T}_F^{\mathcal{S}*}(s,-\alpha)) \end{split}$$

- Under duality $\mathcal{T}_B \to \mathcal{T}_F$ and vice versa; both the equations map to one another.
- Unitarity conditions are compatible with duality.

Unitarity equations in the S channel

• Consider the general structure $(T(\theta) = i \cot(\theta/2))$.

$$\mathcal{T}_B^S = H_B T(\theta) + W_B - i W_2 \delta(\theta) \; , \; \mathcal{T}_F^S = H_F T(\theta) + W_F - i W_2 \delta(\theta) \; , \label{eq:TB}$$

• first unitarity equation

$$\begin{split} H_B - H_B^* &= \frac{1}{8\pi\sqrt{s}}(W_2 H_B^* - H_B W_2^*) \ , \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}}(W_2 W_2^* + 4\pi^2 H_B H_B^*) \ , \\ W_B - W_B^* &= \frac{1}{8\pi\sqrt{s}}(W_2 W_B^* - W_2^* W_B) - \frac{i}{4\sqrt{s}}(H_B H_B^* - W_B W_B^*) - \frac{iY}{4\sqrt{s}}(W_B - W_F)(W_B^* - W_F^*) \end{split}$$

Second unitarity equation

$$\begin{split} H_F - H_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 H_F^* - H_F W_2^*) \;, \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}} (W_2 W_2^* + 4\pi^2 H_F H_F^*) \;, \\ W_F - W_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 W_F^* - W_2^* W_F) - \frac{i}{4\sqrt{s}} (H_F H_F^* - W_F W_F^*) - \frac{iY}{4\sqrt{s}} (W_B - W_F) (W_B^* - W_F^*) \end{split}$$

Unitarity equation in the S channel

• Unitarity equations are verified using

by very complicated functions.

$$H_B = H_F = 4\sqrt{s}\sin(\pi\lambda), \ W_2 = 8\pi\sqrt{s}(\cos(\pi\lambda)-1), \ T(\theta) = i\cot(\theta/2)$$

$$W_B = J_B(\sqrt{s},\lambda) \frac{\sin(\pi\lambda)}{\pi\lambda} \; ,$$
 $W_F = J_F(\sqrt{s},\lambda) \frac{\sin(\pi\lambda)}{\pi\lambda} \; .$ $lacktriangle$ Algebraic-miracle: Non-linear unitarity equations obeyed

- A missed factor of two or one incorrect sign is doomed to failure - unitarity is an extremely sensitive test.
- Important to note that the crossing symmetry rules have to be modified exactly as conjectured in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama], else the unitarity test fails spectacularly.

Unitarity in the S channel $-\mathcal{N}=2$ case

- The $\mathcal{N}=2$ T matrix is tree level exact in T,U channels.
- Naive crossing symmetry would imply the same for S channel, unitarity equation $i(T^{\dagger} T) = TT^{\dagger}$ would never be obeyed (LHS would be zero).
- modified crossing rules resolve this puzzle:

$$\mathcal{T}_{B}^{S;\mathcal{N}=2}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + \sin(\pi\lambda) (4i\sqrt{s}\cot(\theta/2) - 8m) ,$$

$$\mathcal{T}_{F}^{S;\mathcal{N}=2}(s,\theta) = -8\pi i \sqrt{s} (\cos(\pi\lambda) - 1)\delta(\theta) + \sin(\pi\lambda) (4i\sqrt{s}\cot(\theta/2) + 8m).$$

• Non-analytic piece makes \mathcal{T}_B , \mathcal{T}_F not Hermitian, both LHS and RHS are non-zero and non-linear unitarity equation is obeyed.

Pole structure of the S matrix

Introduction

Preliminaries

Level Rank duality

Duality and the *S* matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymmetry

5 matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N lim

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

S matrix in (singlet) S channe

Unitarity

Pole structure

Summary

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

troduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Jnitarity

Pole structure

Analytic structure of S channel S matrix

- The *S* matrix in the singlet channel has an interesting analytic structure.
- As a function of s (at fixed t), there is the expected two particle branch cut starting at $s=4m^2$.
- For smaller but positive values of s there exist poles in the *S* matrix for a range of coupling parameters.
- These poles represent bound states that exist at large but finite N.
- At some critical value of the scalar coupling $w = w_c(\lambda)$ the pole becomes massless!

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Poles of the S matrix

• Both bosonic and fermionic S matrix have a pole at threshold for $w \le -1$. Near $w = -1 - \delta w, y = 1 - \delta y$ the S matrix has the pole structure $(y = \sqrt{s}/2m)$

$$\mathcal{T}_{B} \sim rac{\left(rac{\delta y}{2}
ight)^{|\lambda|}}{\delta w - 2\left(rac{\delta y}{2}
ight)^{|\lambda|}} \; , \; \mathcal{T}_{F} \sim rac{\left(rac{\delta y}{2}
ight)^{1+|\lambda|}}{\delta w - 2\left(rac{\delta y}{2}
ight)^{|\lambda|}}$$

• As w is decreased further and as it hits a critical value $w = w_c$

$$w = w_c(\lambda) = 1 - \frac{2}{|\lambda|}$$

• the pole becomes massless!. Near $w=w_c-\delta w$ and $y=\delta y$ the poles approach zero mass quadratically

$$\mathcal{T}_{B} \sim \mathcal{T}_{F} - rac{64|m|\sin(\pi\lambda)(-1+|\lambda|)}{|\lambda|\left(\delta w^{2}\lambda^{2}-4\delta y^{2}(1-|\lambda|)^{2}
ight)}$$

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

ımmary

Poles of the S matrix

• As w is further decreased and as $w \to -\infty$ the pole approaches threshold once again. Near $w = -\frac{1}{\delta w}, y = 1 - \delta y$ the S matrix has the pole structure

$$\mathcal{T}_B \sim rac{\left(rac{\delta y}{2}
ight)^{2-|\lambda|}}{\delta w - rac{1}{2}\left(rac{\delta y}{2}
ight)^{1-|\lambda|}} \; , \; \mathcal{T}_F \sim rac{\left(rac{\delta y}{2}
ight)^{1-|\lambda|}}{\delta w - rac{1}{2}\left(rac{\delta y}{2}
ight)^{1-|\lambda|}}$$

- To summarize, a one parameter tuning of the superpotential interaction parameter w - sufficient to produce massless bound states in our massive theory.
- w can be scaled to w_c possible decoupled QFT description of light states.
- ullet Is this a $\mathcal{N}=1$ Wilson-Fischer theory made of single real superfield?

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Unitarity

Pole structure

Summary

Introduction

Preliminaries

Level Rank duality

Duality and the S matrix

Our work

Onshell supersymmetry and the S matrix

Supersymmetry and dual supersymme

S matrix in onshell superspace

Exact computation of all orders S matrix

Theory

Exact propagator in large N limi

Exact four point correlator in large N limit

S matrix in non-anyonic channels of scattering

5 matrix in (singlet) 5 chann

Pole structur

Summary

 $\begin{array}{c} 2 \rightarrow 2 \text{ scattering} \\ \text{in supersymmetric} \\ \text{matter} \\ \text{Chern-Simons} \\ \text{theories at large N} \end{array}$

roduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Officarity

Pole structure

- Computations and conjectures for the all orders $w \to 2$ S matrix in the most general renormalizable $\mathcal{N}=1$ Chern-Simons matter theory with a single fundamental matter multiplet.
- Used supersymmetric ward identity to derive conditions and constraints on off-shell correlators, on-shell S matrices and derive unitarity conditions.
- Computed exact offshell four point correlators in the large N limit in kinematic regime $q_{\pm} = 0$.
- Obtained S matrices by taking onshell limit of offshell four point correlator.
- Conjectured S matrix in the singlet channel.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

Initarity

ole structure

- Results are consistent with duality.
- Results are consistent with unitarity if and only if we assume that the usual results of crossing symmetry are modified in precisely the manner proposed in [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama].
- The S channel S matrix has an interesting analytic structure. In a certain range of superpotential parameters the S matrix has a bound state pole.
- A one parameter tuning of superpotential parameters can be used to set the pole mass to zero.
- Simple non-relativistic limit reproduces the known Aharonov-Bohm result.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introductio

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

ole structure

- simple non-relativistic limit of $\mathcal{N}=1$ S matrix gives Aharonov-Bohm result will be nice to derive from a supersymmetric Schroedinger equation.
- $\mathcal{N}=2$ S matrices are tree level exact in non-anyonic channels and depend on λ very simple way in the anyonic channel can it reproduced from general principles and $\mathcal{N}=2$ supersymmetry?
- Generalisation to higher supersymmetry mass deformed $\mathcal{N}=3$, and mass deformed $\mathcal{N}=6$ ABJ theory make contact with results from perturbative computations of scattering amplitudes.
- Four point correlator: useful in computation of 2,3,4 point functions of gauge invariant operators explicit computation in $\mathcal{N}=2$ theory?, possible $\mathcal{N}=2$ generalisation of Maldacena-Zhiboedov solutions.

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

mannadi casti a m

Onshell supersymmetry and the S matrix

xact computation f all orders S natrix

Initarity

Pole structure

 The results of our work give substantial evidence to the modified crossing rules of [Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama].

 In a long shot: Rigorous proof, generalisation to finite N and κ.

- From perturbative pov modified crossing rules could be related to IR divergences.
- Theory of IR divergences extensively studied in literature.
- Study of IR divergence of relevant feynman graphs may lead to proof and generalisation.

2 → 2 scattering in supersymmetric matter Chern-Simons theories at large N

Introduction

Onshell supersymmetry and the S matrix

Exact computation of all orders S matrix

nitarity

Pole structure

Thank You!

 $2 \rightarrow 2$ scattering in supersymmetric matter Chern-Simons theories at large N

ntroduction

Onshell supersymmetry and the S matrix

exact computation of all orders S matrix

Unitarit

ole structure