Programación Eficiente

Alumno: Jasin Anibal.

Tema: Memoria cache

Fecha entrega: 30/08/2018

Datos

- Velocidad = 1.8 GHz
- CPI-ALU = 1 ciclo
- CPI-MEM-HIT = 1 ciclo
- CPI-MEM-MISS = 100 ciclos
- Cache hit ratio = 0.9

Microprocesador 2

- Velocidad = 2.2 GHz
- CPI-ALU = 1 ciclo
- CPI-MEM-HIT = 2 ciclos
- CPI-MEM-MISS = 150 ciclos
- Cache hit ratio = 0.8

Estos microprocesadores van a utilizarse en general para correr los siguientes programas:

Programa 1

- Cantidad de instrucciones = 15x10^11
- Cantidad de instrucciones de Memoria = 12x10^11

Programa 2

- Cantidad de instrucciones = 4x10^11
- Cantidad de instrucciones de Memoria = 2x10^11

Microprocesador 1 Programa 1

Icount = IALU + IMEM

Icount - IMEM = IALU 15x10^11 - 12x10^11 = IALU

3 x 10^11 = IALU

CPIMEM = CPIMEM-HIT + rMISS × CPIMEM-MISS

CPIMEM = 1 ciclos + (0.1 x 100 ciclos)

CPIMEM = 11 ciclos

CPI = (IALU / Icount) × CPIALU + (IMEM / Icount) × CPIMEM

 $CPI = (3 \times 10^{11} / 15 \times 10^{11}) \times 1 \text{ ciclo} + (12 \times 10^{11} / 15 \times 10^{11}) \times 11$

ciclos

 $CPI = 0.2 \times 1 \text{ ciclo} + 0.8 \times 11 \text{ ciclos}$

CPI = 0.2 ciclos + 8.8 ciclos

CPI = 10 ciclos

Tcycle = 1 / Velocidad

Tcycle = 1 / 1.86 GHz

Tcycle = $5.37 \times 10^{-7} \text{ ms}$

 $T = Icount \times CPI \times Tcycle$

 $T = (15x10^11) x (10 ciclos) x (5.37 x 10^7 ms)$

T = 8055000 ms = 134.25 minutos = 2.2375 horas

Microprocesador 1 Programa 2

Icount = IALU + IMEM

Icount - IMEM = IALU

 $(4x10^11) - (2x10^11) = IALU$

 $2x 10^{11} = IALU$

CPIMEM = CPIMEM-HIT + rMISS × CPIMEM-MISS

 $CPIMEM = 1 ciclos + (0.1 \times 100 ciclos)$

CPIMEM = 11 ciclos

CPI = (IALU / Icount) × CPIALU + (IMEM / Icount) × CPIMEM

 $CPI = (2x 10^1) / (4x10^1) x 1 ciclo + (2x10^1) / (4x10^1) x 11$

ciclos

 $CPI = 0.5 \times 1 \text{ ciclo} + 0.5 \times 11 \text{ ciclos}$

CPI = 1 ciclos + 5.5 ciclos

CPI = 6.5 ciclos

Tcycle = 1 / Velocidad

Tcycle = 1 / 1.86 GHz

Tcycle = $5.37 \times 10^{-7} \text{ ms}$

 $T = Icount \times CPI \times Tcycle$

 $T = (4x10^11) \times (6.5 \text{ ciclos}) \times (5.37 \times 10^-7 \text{ ms})$

T = 1396200 ms = 23.27 minutos

Microprocesador 2 Programa 1

 $T = Icount \times CPI \times Tcycle (1)$

Icount = IALU + IMEM (2)

 $CPI = (IALU / Icount) \times CPIALU + (IMEM / Icount) \times CPIMEM (3)$

MALU = IALU / Icount (4)

MMEM = IMEM / Icount (5)

1 = MALU + MMEM (6)

 $CPI = MALU \times CPIALU + MMEM \times CPIMEM (7)$

 $T = Icount \times (MALU \times CPIALU + MMEM \times CPIMEM) \times Tcycle (8)$ $CPIMEM = CPIMEM-HIT + rMISS \times CPIMEM-MISS (9)$

CPI = (IALU / Icount) × CPIALU + (IMEM / Icount) × CPIMEM

Icount = IALU + IMEM Icount - IMEM = IALU 15x10^11 - 12x10^11 = IALU 3 x 10^11 = IALU

CPIMEM = CPIMEM-HIT + rMISS × CPIMEM-MISS

 $CPIMEM = 2 ciclos + (0.2 \times 150 ciclos)$

CPIMEM = 32 ciclos

 $CPI = (IALU / Icount) \times CPIALU + (IMEM / Icount) \times CPIMEM$ $CPI = (3 \times 10^{11} / 15 \times 10^{11}) \times 1 \text{ ciclo} + (12 \times 10^{11} / 15 \times 10^{11}) \times 32 \text{ ciclos}$

 $CPI = 0.2 \times 1 \text{ ciclo} + 0.8 \times 32 \text{ ciclos}$

CPI = 0.2 ciclos + 25.6 ciclos

CPI = 25.8 ciclos

Tcycle = 1 / Velocidad

Tcycle = 1 / 2.2 GHz

Tcycle = $4.54 \times 10^{-7} \text{ ms}$

 $\mathsf{T} = \mathsf{Icount} \times \mathsf{CPI} \times \mathsf{Tcycle}$

 $T = (15x10^1) x (25.8 ciclos) x (4.54 x 10^7 ms)$

T = 17569800 ms = 292.83 minutos = 4.8805 horas

Microprocesador 2 Programa 2

Icount = IALU + IMEM Icount - IMEM = IALU $(4x10^11) - (2x10^11) = IALU$ 2x 10^11 = IALU

CPIMEM = 32 ciclos

 $CPI = (IALU / Icount) \times CPIALU + (IMEM / Icount) \times CPIMEM$ $CPI = (2x 10^{11}) / (4x10^{11}) \times 1 \text{ ciclo} + (2x10^{11}) / (4x10^{11}) \times 32 \text{ ciclos}$

 $CPI = 0.5 \times 1 \text{ ciclo} + 0.5 \times 32 \text{ ciclos}$

CPI = 0.5 ciclos + 16 ciclos

CPI = 16.5 ciclos

Tcycle = $4.54 \times 10^{-7} \text{ ms}$

 $T = Icount \times CPI \times Tcycle$

 $T = (4x10^11) \times (16.5 \text{ ciclos}) \times (4.54 \times 10^7 \text{ ms})$

T = 2996400 ms = 49.94 minutos

Microprocesador	Programa	Tiempo
M1	P1	134.25 minutos
M1	P2	23.27 minutos
M2	P1	292.83 minutos
M2	P2	49.94 minutos

¿Cuál de los dos microprocesadores conviene comprar?

Comparando los tiempos de cada microprocesador, el **Microprocesador1** obtuvo mejores resultados en ambos programas, a pesar de que este posee una velocidad menor (1.86GHz) que el Microprocesador2 (2.2GHz). Esto se debe a que el Mircroprocesador1 tiene un mayor cache hit ratio y menor promedio de ciclos por cache miss (CPI-MEM-MISS).