Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2009/2010

AL2 - Algebra 2: Gruppi, Anelli e Campi Prof. F. Pappalardi

Tutorato 10 - 16 Dicembre 2009

Matteo Acclavio, Luca Dell'Anna www.matematica3.com

Esercizio 1.

Si considerino A[X] e $f(x), g(x) \in A[X]$ come indicati in seguito. Per ogni coppia di polinomi nell'anello indicato determinare d(x) := MCD(f(x), g(x))e due polinomi a(x) e $b(x) \in A[X]$ tali che d(x) = a(x)f(x) + b(x)g(x).

•
$$A = \mathbb{Q}$$
 $f(x) = x^8 - 1$ $g(x) = x^6 - 1$

•
$$A = \mathbb{Q}$$
 $f(x) = x^4 + x^3 + 2x^2 + x + 1$ $g(x) = 2x^3 - 3x^2 + 2x + 2$

•
$$A = \mathbb{Q}$$
 $f(x) = 2x^4 - x^3 + x^2 + 3x + 1$ $g(x) = x^3 + 2x^2 + 2x + 1$

•
$$A = \mathbb{C}$$
 $f(x) = x^{10} + 7x^5$ $g(x) = 2x^7 + 4x$
• $A = \mathbb{Z}_2$ $f(x) = x^7 + 1$ $g(x) = x^3 + x$

•
$$A = \mathbb{Z}_2$$
 $f(x) = x^7 + 1$ $g(x) = x^3 + x$

•
$$A = \mathbb{Q}$$
 $f(x) = x^5 + 2x^3 + x^2 + x + 1$ $g(x) = x^4 - 1$

•
$$A = \mathbb{R}$$
 $f(x) = x^4 + x^3 - x^2 + x + 2$ $g(x) = x^3 + 2x^2 + 2x + 1$

Esercizio 2.

Nell'anello degli interi di gauss sia $\alpha = 13 + 5i$ e $\beta = 8 + 9i$. Sia $I = (\alpha)$ e $J=(\beta).$

- Determinare una fattorizzazione di α e β
- Determinare $MCD(\alpha, \beta)$
- Detminare $I \cap J$ e I + J

Esercizio 3.

Sia A un dominio a ideali principali e sia $p \in A$ un elemento irriducibile. Mostrare che ogni elemento $a \in A \setminus \{0\}$ si può scrivere come a = px + b, dove $x \neq 0$ e b = 0 oppure p non divide b.

Esercizio 4.

Determinare gli ideali primi e massimali dell'anello quoziente $\mathbb{Z}[i]/(30+10i)$

Esercizio 5.

Trovare un generatore per gli ideali (1+5i,4+2i) e (3i,1+2i) di $\mathbb{Z}[i]$

Esercizio 6.

Si consideri l'insieme $I := \{m+ni \mid m, n \mid pari\} \subseteq \mathbb{Z}[i].$

- $\bullet\,$ Dimostrare che I è un ideale di $\mathbb{Z}[i]$
- $\bullet\,$ Trovare un generatore di I
- $\bullet\,$ Determinare se I è primo
- $\bullet\,$ Determinare se I è massimale
- Scrivere esplicitamente gli elementi di $\mathbb{Z}[i]/I$ e determinare quali sono invertibili e quali zero divisori

Esercizio 7.

Sia
$$I = (2+i) \subseteq \mathbb{Z}[i]$$

- $\bullet\,$ Determinare se I è massimale.
- Determinare, nel quoziente $\mathbb{Z}[i]/I$ l'inverso della classe 1+i.