8.

1

2

WHAT IS CLAIMED IS:

1	1.	A stator assembly comprising:	
2		a plurality of stator coil assemblies; and	
3		a stator coil support structure constructed of a non-magnetic,	
4		thermally-conductive material, said stator coil support structure including:	
5		an axial passage for receiving a rotor assembly; and	
6		a plurality of channels positioned radially about said axial	
7		passage, each said channel being configured to receive one or more of	
8		said stator coil assemblies.	
1	2.	The stator assembly of claim 1 wherein each said stator coil assembly is surrounded	
2	by a ground plane assembly.		
	3		
1	3.	The stator assembly of claim 1 further comprising a magnetic annular assembly	
2	surrounding said stator coil support structure, wherein said magnetic annular assembly		
3	inclu	des a plurality of axial coolant passages.	
1	4.	The stator assembly of claim 3 further comprising a coolant circulation system for	
2		lating a cooling liquid through said axial coolant passages.	
1	5.	The stator assembly of claim 1 wherein said non-magnetic, thermally conductive	
2	material is a sheet material, said sheet material being laminated to form said stator coil		
3	support structure.		
1	6.	The stator assembly of claim 5 wherein said sheet material is a polymer-based	
2	adhe	sive.	
1	7.	The stator assembly of claim 5 wherein said sheet material a graphite-based material.	

said stator coil assemblies and said stator coil support structure.

The stator assembly of claim 1 further comprising an epoxy filler disposed between

1

1

2

1	9.	A superconducting rotating machine comprising:
2		a stator assembly including a plurality of stator coil assemblies, and a stator
3		coil support structure constructed of a non-magnetic, thermally-conductive material,
4		said stator coil support structure including:
5		an axial passage for receiving a rotor assembly; and
6		a plurality of channels positioned radially about said axial passage,
7		each said channel being configured to receive one or more of said stator coil
8		assemblies; and
9		a rotor assembly configured to rotate within said stator assembly, said rotor
10		assembly including an axial shaft, and at least one superconducting rotor winding
11		assembly.

- 10. The superconducting rotating machine of claim 9 wherein each said stator coil assembly is surrounded by a ground plane assembly.
- 11. The superconducting rotating machine of claim 9 wherein said stator assembly further includes a magnetic annular assembly surrounding said stator coil support structure, wherein said magnetic annular assembly includes a plurality of axial coolant passages.
- 1 12. The superconducting rotating machine of claim 11 further comprising a coolant circulation system for circulating a cooling liquid through said axial coolant passages.
- 1 13. The superconducting rotating machine of claim 9 wherein said non-magnetic,
- thermally conductive material is a sheet material, said sheet material being laminated to form
- 3 said stator coil support structure.
- 1 14. The superconducting rotating machine of claim 13 wherein said sheet material is a polymer-based adhesive.

F&R Docket No.: 05770-170001 / ASC-546

- 1 15. The superconducting rotating machine of claim 13 wherein said sheet material is a
- 2 graphite-based material.
- 1 16. The superconducting rotating machine of claim 9 further comprising an epoxy filler
- disposed between said stator coil assemblies and said stator coil support structure.
- 1 The superconducting rotating machine of claim 9 wherein said at least one
- superconducting rotor winding assembly is constructed using a high-temperature,
- 3 superconducting material.
- 1 18. The superconducting rotating machine of claim 17 wherein said high temperature,
- 2 superconducting material is chosen from the group consisting of: thallium-barium-calcium-
- 3 copper-oxide; bismuth-strontium-calcium-copper-oxide; mercury-barium-calcium-copper-
- 4 oxide; and yttrium-barium-copper-oxide.
- 1 19. The superconducting rotating machine of claim 9 further comprising a refrigeration
- 2 system for cooling said at least one superconducting rotor winding assembly.

3

1	20.	A method of manufacturing a stator coil support structure comprising:	
2		forming a non-magnetic, thermally conductive cylindrical structure;	
3		forming a plurality of axial channels radially about the non-magnetic,	
4		thermally conductive cylindrical structure; and	
5		positioning one or more stator coil assemblies in each of the channels.	
1	21.	The method of claim 20 wherein said forming a non-magnetic, thermally conductive	
2	cylin	drical structure includes laminating multiple layers of a non-magnetic, thermally	
3	conductive sheet material to form the non-magnetic, thermally conductive cylindrical		
4	struct	ture.	
1	22.	The method of claim 20 wherein said forming a non-magnetic, thermally conductive	
2	cylin	drical structure includes casting a non-magnetic, thermally conductive material to form	
3	the non-magnetic, thermally conductive cylindrical structure.		
1	23.	The method of claim 20 further comprising:	
2		providing a plurality of axial coolant passages in the non-magnetic, thermally	
3		conductive cylindrical structure.	
1	24.	The method of claim 20 further comprising:	
2		depositing an epoxy filler between the stator coil assemblies and the non-	

magnetic, thermally conductive cylindrical structure.

1	25.	A method of manufacturing a stator coil support structure comprising:	
2		forming a non-magnetic, thermally conductive cylindrical structure;	
3		forming a plurality of axial slots radially about the non-magnetic, thermally	
4		conductive cylindrical structure;	
5		inserting into each axial slot a heat-sinking member, thus forming a channel	
6		between each pair of adjacent heating-sinking members; and	
7		positioning one or more of the stator coil assemblies in each of the channels.	
1	26.	The method of claim 25 wherein said forming a non-magnetic, thermally conductive	
2	cyline	lrical structure includes laminating multiple layers of a non-magnetic, thermally	
3	conductive sheet material to form the non-magnetic, thermally conductive cylindrical		
4	structure.		
1	27.	The method of claim 25 wherein said forming a non-magnetic, thermally conductive	
2	cylindrical structure includes casting a non-magnetic, thermally conductive material to form		
3	the non-magnetic, thermally conductive cylindrical structure.		
1	28.	The method of claim 25 further comprising:	
2		providing a plurality of axial coolant passages in the non-magnetic, thermally	
3		conductive cylindrical structure.	
1	29.	The method of claim 25 further comprising:	
	49.	depositing an epoxy filler between the stator coil assemblies and the non-	
2			
3		magnetic, thermally conductive cylindrical structure.	

1	30.	A stator assembly comprising:	
2		a plurality of stator coil assemblies;	
3		a magnetic annular assembly; and	

- a plurality of non-magnetic, thermally-conductive heat sinking
 members positioned radially about said magnetic annular assembly, thus
 forming a plurality of channels, each being configured to receive one or more
 of said stator coil assemblies.
- 1 31. The stator assembly of claim 30 wherein said magnetic annular assembly includes a plurality of axial coolant passages.
- 1 32. The stator assembly of claim 31 further comprising a coolant circulation system for circulating a cooling liquid through said axial coolant passages.
- 1 33. The stator assembly of claim 30 wherein said non-magnetic, thermally-conductive
- 2 heat sinking members are constructed of a non-magnetic, thermally conductive sheet
- material, wherein said sheet material is laminated to form said non-magnetic, thermally-
- 4 conductive heat sinking members.
- 1 34. The stator assembly of claim 33 wherein said sheet material is a polymer-based adhesive.
- 1 35. The stator assembly of claim 33 wherein said sheet material a graphite-based material.
- 1 36. The stator assembly of claim 30 further comprising an epoxy filler disposed between
- 2 said stator coil assemblies and said non-magnetic, thermally-conductive heat sinking
- 3 members.

2

1	37.	A method of manufacturing a stator coil support structure comprising:
2		forming a magnetic annular assembly;
3		forming a plurality of non-magnetic, thermally-conductive heat sinking
4		members;
5		positioning the heat-sinking members radially about the magnetic annular
6		assembly, thus forming a channel between each pair of adjacent heating-sinking
7		members; and
8		positioning one or more of the stator coil assemblies in each of the channels.
1	38.	The method of claim 37 wherein said forming a plurality of non-magnetic, thermally
2	condi	active heat-sinking members includes laminating multiple layers of a non-magnetic,
3	thermally conductive sheet material to form the non-magnetic, thermally conductive heat-	
4	sinkii	ng members.
1	39.	The method of claim 37 wherein said forming a plurality of non-magnetic, thermally
2	condi	active heat-sinking members includes casting a non-magnetic, thermally conductive
3	mater	rial to form the non-magnetic, thermally conductive heat-sinking members.
1-	40.	The method of claim 37 further comprising providing a plurality of axial coolant
2	passa	ges in the magnetic annular assembly.
1	41.	The method of claim 37 further comprising depositing an epoxy filler between the

stator coil assemblies and the non-magnetic, thermally conductive heat-sinking members.