

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

The Model Selection Tool

National Workshops

June 2019

Maria Wind, Kristofer Hasel, Georg Seyerl

List of Models

EUROCORDEX MODELS

CNRM-CERFACS-CNRM-CM5_rcp26_r1i1p1_CNRM-ALADIN53_v1 CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_CNRM-ALADIN53_v1 CNRM-CERFACS-CNRM-CM5_rcp85_r1i1p1_CNRM-ALADIN53_v1 CNRM-CERFACS-CNRM-CM5 rcp45 r1i1p1 CLMcom-CCLM4-8-17 v1 CNRM-CERFACS-CNRM-CM5 rcp85 r1i1p1 CLMcom-CCLM4-8-17 v1 CNRM-CERFACS-CNRM-CM5 rcp45 r1i1p1 SMHI-RCA4 v1 CNRM-CERFACS-CNRM-CM5 rcp85 r1i1p1 SMHI-RCA4 v1 ICHEC-EC-EARTH rcp26 r12i1p1 CLMcom-CCLM4-8-17 v1 ICHEC-EC-EARTH rcp45 r12i1p1 CLMcom-CCLM4-8-17 v1 ICHEC-EC-EARTH rcp85 r12i1p1 CLMcom-CCLM4-8-17 v1 ICHEC-EC-EARTH rcp26 r12i1p1 KNMI-RACMO22E v1 ICHEC-EC-EARTH rcp45 r12i1p1 KNMI-RACMO22E v1 ICHEC-EC-EARTH rcp85 r12i1p1 KNMI-RACMO22E v1 ICHEC-EC-EARTH rcp45 r1i1p1 KNMI-RACMO22E v1 ICHEC-EC-EARTH rcp85 r1i1p1 KNMI-RACMO22E v1 ICHEC-EC-EARTH rcp26 r3i1p1 DMI-HIRHAM5 v1 ICHEC-EC-EARTH rcp45 r3i1p1 DMI-HIRHAM5 v1 ICHEC-EC-EARTH rcp85 r3i1p1 DMI-HIRHAM5 v1 IPSL-IPSL-CM5A-MR rcp45 r1i1p1 IPSL-INERIS-WRF331F v1 IPSL-IPSL-CM5A-MR rcp85 r1i1p1 IPSL-INERIS-WRF331F v1 IPSL-IPSL-CM5A-MR rcp45 r1i1p1 SMHI-RCA4 v1 IPSL-IPSL-CM5A-MR rcp85 r1i1p1 SMHI-RCA4 v1 MOHC-HadGEM2-ES rcp26 r1i1p1 SMHI-RCA4 v1 MOHC-HadGEM2-ES rcp45 r1i1p1 SMHI-RCA4 v1 MOHC-HadGEM2-ES rcp85 r1i1p1 SMHI-RCA4 v1 MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_v1 MOHC-HadGEM2-ES rcp85 r1i1p1 CLMcom-CCLM4-8-17 v1 MOHC-HadGEM2-ES rcp45 r1i1p1 KNMI-RACMO22E v2 MOHC-HadGEM2-ES_rcp85_r1i1p1_KNMI-RACMO22E_v2

MPI-M-MPI-ESM-LR_rcp45_r1i1p1_CLMcom-CCLM4-8-17_v1
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_CLMcom-CCLM4-8-17_v1
MPI-M-MPI-ESM-LR_rcp45_r1i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_rcp45_r2i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_rcp45_r2i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_rcp85_r2i1p1_MPI-CSC-REMO2009_v1
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_SMHI-RCA4_v1a
MPI-M-MPI-ESM-LR_rcp45_r1i1p1_SMHI-RCA4_v1a
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_SMHI-RCA4_v1a
NCC-NorESM1-M_rcp45_r1i1p1_DMI-HIRHAM5_v2
NCC-NorESM1-M_rcp85_r1i1p1_DMI-HIRHAM5_v2

MEDCORDEX MODELS

CNRM-CM5_rcp45_r8i1p1_CNRM-ALADIN52_v1 CNRM-CM5_rcp85_r8i1p1_CNRM-ALADIN52_v1 ICTP-RegCM4_rcp85_r1i1p1_ICTP-RegCM4-3_v1 MPI-ESM-LR_rcp85_r1i1p1_UNIBELGRADE-EBUPOM2c_v1

COOPERATION

- Assists with the selection of a specific climate change scenario
- Compares and visualizes climate change signals of available models

Climate Change signal of parameter x (relative to historical period 1981-2010 x_{hist}):

$$\Delta x_{abs} = x_{future} - x_{hist}$$

$$\Delta x_{rel} = (x_{future} - x_{hist}) / x_{hist}$$

- → Absolute ccs for temperature (max, min)
- → Relative ccs for precipitation and radiation

Find an appropriate model for your needs by specifying the...

- ... region of interest
- country
- custom (lat/lon)

- ... season of interest
- annual
- summer
- winter

- ... emission scenario
- RCP 2.6
- RCP 4.5
- RCP 8.5

- ... time frame of interest
- Near future (2021-2050)
- Mid century (2036-2065)
- End of century (2070-2099)

- ... variable of interest
- temperature (min/max)
- precipitation
- radiation

CLIMAPROOF MODEL SELECTION TOOL			
·	ate change signals of different EURO-CORDEX Mignals are calculated with reference to the period 19		
Interact with the widgets on top to create about the specific model. Download the data via data.ccca.ac.at	e the visualization. Hover over the circles to see	e more information	
Latitude (Format: [MIN, MAX])	Longitude (Format: [MIN, MAX])	Country	
[39.583, 42.659]	[19, 21.05]	Albania	•
Seasonal/Annual Mean:	Experiment:		
annual	rcp85	•	
Update			

Python Installation I

Download Miniconda (Python 3) for your operating system from:

https://conda.io/en/latest/miniconda.html

Linux

Open a terminal window, navigate to the directory with the installation file and run:

bash Miniconda3-latest-Linux-x86_64.sh

Windows

Run the .exe file and follow the instructions of the installer

Python Installation II

- Open a new terminal/cmd window
- Test the installation by typing: conda list
 - → if your installation was successful, a list of installed packages appears
- Update conda:
 conda update conda

Installation of the MST

Download the ClimaProof Toolbox from:

https://github.com/boku-met/climaproof-tools

- Follow the installation instructions in the User Guide
- After the successful installation start the ClimaProof Model Selection Tool with:

bokeh serve —show mst

Have fun exploring the tool!

