Christophe Viroulaud

Première - NSI

Algo 06

Prédiction des espèces d'iris

tude des données

Présentation graphique Utiliser les données

Ugorithme kN

Présentation

Choix du k

En 1936, le biologiste *Ronald Fisher* a rassemblé les mesures de trois espèces d'iris.

Iris setosa

Iris versicolor

Iris virginica

Données étiquetées Présentation graphique

Utiliser les données

Igorithme kN

Choix du k
Calcul de la distance

tude des données

Présentation graphie Utiliser les données

ااgorithme k

Présentation Choix du k Calcul de la distance

Comment prédire une information nouvelle à partir de données brutes ?

Sommaire

1. Étude des données

- 1.1 Données étiquetées
- 1.2 Présentation graphique
- 1.3 Utiliser les données
- 2. Algorithme kNN

Étude des données

Donnees etiquetees
Présentation graphique
Utiliser les données

Algorithme kN

Présentation Choix du k Calcul de la distance Implémentation

Étude des données - Données étiquetées

	_	
petal_length	petal_width	species
4.5	1.7	virginica
4.6	1.5	versicolor
4.6	1.3	versicolor
4.6	1.4	versicolor
4.7	1.4	versicolor
4.7	1.6	versicolor
4.7	1.4	versicolor
4.7	1.2	versicolor
4.7	1.5	versicolor
4.8	1.8	versicolor
4.8	1.4	versicolor
4.8	1.8	virginica
4.8	1.8	virginica

FIGURE 1 – La mesure de chaque fleur a été **étiquetée** : la variété de l'iris a été déterminée.

Prédiction des espèces d'iris

Étude des donné

Données étiquetées

Précontation graphique

A Loronialo con a L

Présentation Choix du k

tude des donnée

Présentation graphique

Utiliser les données

Algorithme kNI

Présentation Choix du k

Calcul de la distance

Implémentation

1. Étude des données

- 1.1 Données étiquetées
- 1.2 Présentation graphique
- 1.3 Utiliser les donnée
- 2. Algorithme kNN

FIGURE 2 – Variétés d'iris en fonction de leurs mesures : Les mesures permettent de différencier les iris.

Algorithme kN

Présentation Choix du k

Calcul de la distance

Implémentation

1. Étude des données

- 1.1 Données étiquetées
- 1.2 Présentation graphique
- 1.3 Utiliser les données
- 2. Algorithme kNN

Activité 1:

FIGURE 3 – Déterminer la variété des iris suivants :

longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85

Etude des données

Données étiquetées

Présentation graphique

Utiliser les données

Algorithme kNN
Présentation
Choix du k
Calcul de la distance

longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85
variété	setosa	virginica	ambigu	ambigu

Observation

Pour certaines mesures, il est difficile de déterminer l'espèce de l'iris.

Etude des donnés Données étiquetées Présentation graphique Utiliser les données

Algorithme kNN Présentation Choix du k Calcul de la distance

. 4

2. Algorithme kNN

- 2.1 Présentation
- 2.2 Choix du k
- 2.3 Calcul de la distance
- 2.4 Implémentation

tude des donnees

Présentation graphique Utiliser les données

Algorithme kNN

Présentation Choix du k Calcul de la distance Implémentation

Données étiquetée

Présentation graphi Utiliser les données

Algorithme kN

Présentation

Calcul de la distance

À retenir

L'algorithme \mathbf{k} Nearest Neighbors (K plus proches voisins) détermine la variété de l'iris inconnu à partir de celles des \mathbf{k} voisins les plus ressemblants.

C'est un algorithme d'apprentissage machine **supervisé** : les données initiales sont étiquetées.

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre k de voisins,

Étude des données

Présentation graph Utiliser les donnée

Ugorithme kNN

Présentation

Calcul de la distance Implémentation

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre *k* de voisins,

▶ attribuer à la fleur inconnue, la variété la plus présente parmi ses *k* voisins.

tude des données Données étiquetées

Présentation graphiq Utiliser les données

Algorithme kN

Présentation

Calcul de la distance Implémentation

Sommaire

Prédiction des espèces d'iris

1 Étudo dos données

- 2. Algorithme kNN
- 2.1 Présentation
- 2.2 Choix du k
- 2.3 Calcul de la distance
- 2.4 Implémentation

Tude des données

Présentation graphique Utiliser les données

Algorithme kNI

Choix du k

hoix du k

Calcul de la distano Implémentation

Présentation Choix du k

Calcul de la distance

FIGURE 4 – Détermination de l'iris (5.05, 1.5) pour k=3

Données étiquetées Présentation graphique

Deferencia

Choix du k

Calcul de la distance Implémentation

 $\label{eq:figure 5-Détermination de l'iris (5.05, 1.5) pour $k=7$}$

À retenir

Un bon choix de la valeur **k** est difficile a priori. Plusieurs tests permettent de déterminer la valeur la plus adaptée à l'étude en cours.

Remarque

En pratique on partage les données en deux parties :

- les données d'entraînement,
- les données tests.

On teste différentes valeurs de k avec les données tests et on choisit la plus adaptée.

Données étiquetées Présentation graphique

Almorithma IAIA

Présentation

Choix du k

Sommaire

Prédiction des espèces d'iris

1 Étude des données

- 2. Algorithme kNN
- 2.1 Présentation
- 2.2 Choix du k
- 2.3 Calcul de la distance
- 2.4 Implémentation

tude des données

Présentation graphique Utiliser les données

Algorithme kNI

Présentation

Calcul de la distance

À retenir

Il existe plusieurs méthodes pour mesurer la distance entre l'élément étudié et son voisin :

- distance euclidienne,
- distance de Manhattan.

Données étiquetées Présentation graphique

Présentation graphique Utiliser les données

gorithme kNI

Choix du k

Calcul de la distance Implémentation

$$d = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

FIGURE 6 – distance euclidienne

tude des données

Présentation graphique Utiliser les données

Igorithme kNIN

Présentation

Calcul de la distance

$d = |x_A - x_B| + |y_A - y_B|$

FIGURE 7 – distance de Manhattan

Prédiction des espèces d'iris

tude des données

Données étiquetées

Présentation graphique

and the land of the NIN

Présentation

Calcul de la distance

1 Étude des données

- 2. Algorithme kNN
- 2.1 Présentation
- 2.2 Choix du k
- 2.3 Calcul de la distance
- 2.4 Implémentation

onnées étiquetées

Présentation graphique Utiliser les données

Algorithme kNI

Choix du k

Calcul de la distano

L'algorithme kNN peut s'écrire :

- Charger les données dans le programme.
- Choisir k.
- Stocker les mesures de la fleur inconnue.
- Calculer la distance euclidienne entre la fleur inconnue et tous les autres iris.
- ► Sélectionner les *k* plus proches iris (en distance) de la fleur inconnue.
- Affecter la variété majoritaire des k plus proches iris (en distance) à la fleur inconnue.

Données étiquetées
Présentation graphique

lgorithme kNf

Choix du k
Calcul de la distance
Implémentation

Données étiquetées
Présentation graphie

.lgorithme kN

Choix du k
Calcul de la dist

Implémentation

Activité 2:

- Télécharger et extraire le dossier compressé iris-eleve.zip depuis le site https://cviroulaud.github.io
- 2. Ouvrir le fichier data-iris.csv avec un tableur pour observer les données.
- 3. Ouvrir le fichier iris-eleve.py

Données étiquetées
Présentation graphique

Algorithme kNI

Présentation Choix du k Calcul de la distanc

petal_length	petal_width	species
1.4	0.2	setosa
1.4	0.2	setosa
1.3	0.2	setosa

Activité 3:

- 4. Compléter la fonction charger_donnees en utilisant les informations du fichier csv.
- Compléter la fonction distance qui calcule le carré de la distance euclidienne entre deux points du plan.
- 6. Compléter la fonction calculer_distances.
- Compléter enfin la fonction trouver_variete. Le dictionnaire compteur_voisins compte le nombre d'apparitions de chaque variété parmi les k premiers voisins.

Données étiquetées
Présentation graphique
Utiliser les données

Présentation
Choix du k
Calcul de la distance

6

.3

```
Données étiquetées
Présentation graphique
iliser les données
gorithme kNN
ésentation
oix du k
kul de la distance
plémentation
```

```
def charger donnees(nom fichier: str) -> list:
    fichier = open(nom fichier, encoding="utf8")
   data_iris = csv.DictReader(fichier, delimiter=",")
   tab iris = []
    # Pour chaque ligne de données
   for iris in data_iris:
        tab_iris.append(
            {"espece": iris["species"],
             "longueur": float(iris["petal_length"]),
             "largeur": float(iris["petal_width"])})
   fichier.close()
   return tab iris
```

Correction

Prédiction des espèces d'iris

Données étiquetées Présentation graphique Utiliser les données

loorithme kNN

Présentation Choix du k

6

```
def calculer distances(donnees: list, inconnu: dict) ->
  list:
    distances = \Pi
                                                            plémentation
    for iris in donnees:
        # iris est un dictionnaire
        d = distance(iris, inconnu)
        # stocke la distance pour cet iris
        distances.append((iris["espece"], d))
    # trie les iris en fonction de la distance
    distances.sort(key=lambda fleur: fleur[1])
    return distances
```

```
def trouver_variete(k: int, distances: list) -> str:

# compte le nombre d'occurences de chaque variété
compteur_voisins = {}
for i in range(k):

# espèce de l'iris de rang i
nom = distances[i][0]

# vérifie si l'espèce a déjà été référencée
```

Code 1 - Début de la fonction trouver_variete

compteur voisins[nom] += 1

compteur voisins[nom] = 1

if nom in compteur voisins:

else:

```
tude des données
```

```
# recherche la variété avec la plus grande valeur
dans compteur_voisins
maxi = 0
nom_maxi = 0
for nom, quantite in compteur_voisins.items():
    if quantite > maxi:
        maxi = quantite
        nom_maxi = nom
```

Code 2 - Fin de la fonction trouver_variete

6

9

return nom_maxi

Données étiquetées
Présentation graphique
Utiliser les données

Algorithme kNN
Présentation
Choix du k
Calcul de la distance
Implémentation

Activité 4 : Tester la fonction avec k=3 puis k=7, pour l'iris inconnu de mesures :

longueur: 5,1

► largeur : 1,55

lcul de la distance plémentation

```
"largeur": 1.55}

varietes = charger_donnees("data-iris.csv")
distances_cible = calculer_distances(varietes, inconnu)
variete = trouver_variete(k, distances_cible)

print("La variété est", variete)
```

"longueur": 5.1,

inconnu = {"espece": "inconnu",

k = 3

4 5 6

.0

Code complet

Prédiction des espèces d'iris

tude des données

Présentation graphique

Algorithme kN

Présentatio

Calcul de la distance

Implémentation

Le code complet est accessible ici.