ALGEBRA Chapter 6

POLINOMIOS ESPECIALES

MATEMÁTICO PRESTIGIOSO

AL ordenar el polinomio mostrado de manera descendente, los coeficientes formaran el nombre de un matemático famoso ¿Quién es?

$$P(x) = Ux^2 + S + Gx^4 + Sx + Ax^3$$

Rpta: GAUSS

POLINOMIOS ESPECIALES

1.-POLINOMIO ORDENADO

EL ORDEN SE DA EN BASE A LOS EXPONENTES

Los exponentes aumentan es decir están ordenados en forma ascendente o creciente. 1. -ASCENDENTE

Ejem:
$$P(X)=3x^2+2x^3+x^4$$

Los exponentes disminuyen es decir están ordenados en forma descendente o decreciente. 2.-DESCENDENTE

$$Q(x) = 1 + 4x + 2x^3 + x^5$$

Ejem:
$$M(X)=3x^{4}+2x^{3}+5x$$

 $N(x)=4x^{2}+2x+1$

HELICO | THEORY

2.-POLINOMIO COMPLETO

Se presentan todos los exponentes, desde cero hasta el mayor

Ejemplos:

$$P(x) = 2x^3 - 5x^2 + x + 4$$

$$Q(x) = -4x^2 + 2x^4 + x^3 + 1 + x$$

3.-POLINOMIO HOMOGÉNEO:

En polinomios de dos o mas variables, los grados absolutos de sus términos deben ser iguales

Ejemplos:
$$GA = 5$$
 $GA = 5$ $GA = 5$ $R(x, y) = 7x^2y^3 + 2x^4y + x^3y^2$

HELICO | THEORY

3.-POLINOMIOS IDENTICOS

$$\mathsf{Si}\;\mathsf{P}(\mathsf{x})\equiv Q(x)$$

Los coeficientes de sus términos semejantes son iguales

$$ax^{2} + bx + c \equiv mx^{2} + nx + p$$

$$a = m$$

$$b = n$$

$$c = p$$

Ejemplos: Si
$$P(x) \equiv Q(x)$$

$$P(x) = 5x^2 + 2x + 3$$

$$Q(x) = (d+3)x^2 + (e-1)x + 3$$

Hallar los valores de d y e

Solucion:

Igualando coeficientes

$$d + 3 = 5$$

 $d = 2$

$$e - 1 = 2$$

 $e = 3$

4.-POLINOMIO IDENTICAMENTE NULO:

Polinomio en el cual todos sus coeficientes son ceros

$$P(x) = ax^2 + bx + c \equiv 0$$

$$a = 0$$

$$c = 0$$

Ejemplo: Hallar m, n, p si P(x) es idénticamente nulo

$$P(x) = (m-2)x^2 + (n+1)x + p$$

Solucion:

Igualando cada uno de los

coeficientes a cero
$$*m-2=0$$
 $*n+1=0$ $*p=0$ $m=2$ $n=-1$

PROBLEMA 1

Si el polinomio es completo y ordenado en forma ascendente. $P(x)=5+3x+7x^{m-3}-5x^{n-5}, \text{ calcule } m+n+2$

Resolución

$$*m - 3 = 2$$
 $m = 5$
 $*n - 5 = 3$
 $n = 8$

Luego
$$m + n + 2 = 5 + 8 + 2$$
 $= 15$

PROBLEMA 2

El polinomio es completo y ordenado.

Resolución

$$*a + 5 = 4$$
 $a = -1$
 $*b - 3 = 3$
 $b = 6$

$$* c - 1 = 2$$
 $c = 3$

Luego:

$$a+b+c=8$$

PROBLEMA 3

Si el polinomio es completo. Hallar el valor de m

$$P(x) = 7x^{1} + 6x^{m} + 6x^{2} + 2x^{2}$$

Resolución

$$m - 4 = 0$$

$$m = 4$$

PROBLEMA 4

Hallar
$$a + b$$
, $\sin P(x) \equiv Q(x)$ y
$$P(x) = (2a - 1)x^{2} + (b - 2)x + 5$$

$$Q(x) = x^{2} + 5x + 5$$

Resolucion

$$(2a-1)x^{2} + (b-2)x + 5 \equiv 1x^{2} + 5x + 5$$

$$* 2a - 1 = 1 * b - 2 = 5$$

$$a = 1 b = 7$$

$$a + b = 8$$

PROBLEMA 5

Si
$$P(x) \equiv 0$$

$$P(x) = (a-2)x^2 + (b-4)x + c - 1$$
Calcule $a + b + c$

Resolucion

$$(a-2)x^{2} + (b-4)x + c - 1 = 0$$

$$*a-2 = 0 *b-4 = 0 *c-1 = 0$$

$$a = 2$$

$$b = 4$$

$$a+b+c=7$$

c = 1

PROBLEMA 6

Si el polinomio es completo y ordenado

$$P(x) = 2 + 5x + 7x^2 + \dots + 6x^{n-2} + 7x^{n-1}$$

Y además tiene 20 términos, halle el valor de n

Resolucion

Grado: n-1

N° de términos: 20

Grado +1= N°términos

$$n-1+1 = 20$$

$$n = 20$$

RECUERDA

En un polinomio completo

Grado +1= N°términos

PROBLEMA 7

Si el polinomio es homogéneo

$$P(x,y) = 3x^{a+3}y^7 + 4x^6y^{12} + 6x^{b-1}y^8$$

El valor de a+b, me indica la edad de mi padre hace 20 años. Determine la edad actual de mi padre.

Resolucion

$$a+3+7$$

$$6 + 12$$

$$b - 1 + 8$$

$$P(x,y) = 3x^{a+3}y^7 + 4x^6y^{12} + 6x^{b-1}y^8$$

Por ser homogéneo

$$* a + 3 + 7 = 18$$
 $a + 10 = 18$
 $a = 8$

*
$$18 = b - 1 + 8$$

 $18 = b + 7$
 $\rightarrow 11 = b$

$$a + b = 19$$
 (hace 20 años)
Entonces su edad actual es
 $19+20 = 39$ años

PROBLEMA 8

Sean los polinomios

$$P(x) = (3m - 5)x^2 + (2n - 3)x + 9$$
$$Q(x) = (n + 8)x^2 + (n + 2)x + 9$$

Polinomio Idénticos. Calcule $\sqrt{m+n-2}$

Resolucion

$$(3m-5)x^2 + (2n-3)x + 9 \equiv (n+8)x^2 + (n+2)x + 9$$

$$3m - 5 = n + 8$$
 $2n - 3 = n + 2$
 $3m - 5 = 5 + 8$ $n = 5$
 $m = 6$ $\therefore \sqrt{m + n - 2} = \sqrt{6 + 5 - 2} = 3$