Listing of Claims. This Listing of Claims replaces all prior versions and listings of Claims in the application.

1

2

3

	width				
1	1. (Withdrawn) An audible alert device for generating a pulse width				
2	modulated signal, the audible alert device connectable to a power source, the				
3	audible alert device comprising:				
4	a circuit including a pulse width modulated signal generator; and				
5	a transducer conductively connected to the circuit.				
1					
1	2. (Withdrawn) The audible alert device of Claim 1 further comprising				
2	the circuit and the transducer at least partially enclosed within a housing.				
1					
1	3. (Withdrawn) The audible alert device of Claim 1 wherein the pulse				
2	width modulated signal generator further comprises:				
3	a first square wave frequency timer for generating a pulse width modulated				
4	signal;				
5	a second square wave frequency timer for generating a square wave; and				
6	a duty cycle controller for controlling a decibel output level of the transducer.				
1					
1	4. (Withdrawn) The audible alert device of Claim 1 wherein the circuit				
2	further comprises a feedback signal processor conductively connected to the pulse				
3	width modulated signal generator.				
1					
1	5. (Withdrawn) The audible alert device of Claim 1 further comprising				
2	an output current sensor conductively connected to the transducer, for				
3	sensing a resistance at the transducer and generating a signal representative of				
4	transducer output current level;				
	a feedback signal processor including;				
5	a recupacit signal processor mereums,				

6	a feedback signal generator conductively connected to the output current					
7	sensor for generating a signal representative of transducer output current level; and					
8	a resonant frequency peaking circuit for processing the signal representative					
9	of transducer output current level and generating a feedback signal representative of					
10	transducer output current level, the pulse width modulated signal generator					
11	responsive to the feedback signal to generate a pulse width modulated signal at a					
12	resonant frequency.					
1						
1	(Withdrawn) The audible alert device of Claim 1 further comprising					
2						
3	sensing a resistance at the transducer and generating an analog signal					
4	representative of transducer output current level;					
5	a feedback signal processor including;					
6	a feedback signal generator conductively connected to the output current					
7	sensor, the feedback signal generator including an analog to digital converter for					
8	converting the analog signal representative of transducer output current level to a					
9	digital value representative of transducer output current level; and					
10						
11	width modulated signal generator for processing the digital value representative of					
12	transducer output power level and generating a feedback signal representative of					
13	transducer output current level, the pulse width modulated signal generator					
14	responsive to the feedback signal to generate a pulse width modulated signal at a					
15	resonant frequency.					
1						
1	(Withdrawn) An audible alert device for generating a pulse width					
2	modulated					
3	signal, the audible alert device connectable to a power source, the audible alert					
4	device comprising:					
5	a transducer;					
6	a circuit including a power conditioning circuit conductively connected to the					
7	transducer: and					

8	a pulse width modulated signal generator conductively connected to the					
9	transducer, the pulse width modulated signal generator including a first square wave					
10	frequency timer for generating a pulse width modulated signal, a second square					
11	wave frequency timer for generating a square wave and a duty cycle controller for					
12	controlling a decibel output level of the transducer.					
1						
1	8. (Withdrawn) The audible alert device of Claim 7 further					
2	comprising the circuit and the transducer at least partially enclosed within a housing.					
1						
1	9. (Withdrawn) The audible alert device of Claim 7 further					
2	comprising:					
3	an output current sensor conductively connected to the transducer, for					
4	sensing a resistance at the transducer and generating a signal representative of					
5	transducer output current level;					
6	a feedback signal processor including;					
7	a feedback signal generator conductively connected to the output current	٠,				
8	sensor for generating a signal representative of transducer output current level; and					
9	a resonant frequency peaking circuit for processing the signal representative of					
10	transducer output current level and generating a feedback signal representative of					
11	transducer output current level, the pulse width modulated signal generator					
12	responsive to the feedback signal to generate a pulse width modulated signal at a					
13	resonant frequency.					
1						
1	10. (Withdrawn) The audible alert device of Claim 7 further comprising	g :				
2	an output current sensor conductively connected to the transducer, for					
3	sensing a resistance at the transducer and generating an analog signal					
4	representative of transducer output current level;					
5	a feedback signal processor including;					
6	a feedback signal generator conductively connected to the output current					
7	sensor, the feedback signal generator including an analog to digital converter for					

8	converting the analog signal representative of transducer output current level to a				
9	digital value representative of transducer output current level; and				
10	a resonant frequency peaking circuit conductively connected to the pulse				
1	width modulated signal generator for processing the digital value representative of				
12	transducer output power level and generating a feedback signal representative of				
13	transducer output current level, the pulse width modulated signal generator				
14	responsive to the feedback signal to generate a pulse width modulated signal at a				
15	resonant frequency.				
1					
1	11. (Currently Amended) A method for manufacturing an audible alert				
2	device includes the steps of:				
3	manufacturing a programmable audible alert device circuit including a pulse				
4	width modulated signal generator conductively connected to the transducer, a power				
5	conditioning circuit conductively connected to the pulse width modulated signal				
6	generator, a power conductor, conductively connected to the power conditioning				
7	circuit, an output current sensor conductively connected to the transducer, a				
8	feedback signal processor connected to the output current sensor and a memory				
9	device conductively connected to the feedback signal processor;				
10	connecting the programmable audible alert device circuit to a transducer;				
11	installing the programmable audible alert device circuit and transducer in a				
12	housing;				
13	casting the programmable audible alert device circuit in a sealing fluid;				
14	connecting the audible alert device to a device programming station; and				
15	programming the audible alert device.				
1					
1	12. (Cancelled) The method for manufacturing an audible alert device of				
2	Claim 11 wherein the step of manufacturing a programmable audible alert device				
3	circuit includes manufacturing a circuit including a pulse width modulated signal				
4	generator conductively connected to the transducer, a power conditioning circuit				
5	conductively connected to the pulse width modulated signal generator, a power				
6	conductor, conductively connected to the power conditioning circuit, an output				

7	current sensor conductively connected to the transducer, a feedback signal					
8	processor connected to the output current sensor and a memory device conductively					
9	connected to	o the feedbac	k signal processor.			
1						
1	13.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 wh	nerein the ste	o of connecting the audible alert device to a device			
3	programming station includes connecting the audible alert device to the device					
4	programming station by one or more power conductors of the programmable audible					
5	alert device	•				
1						
1	14.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 wh	nerein the ste	p of programming the audible alert device includes			
3	transferring	operation mo	de data to the memory device, the operation mode data			
4	representat	ive of pre-sele	ected operation mode data selected from a group data for			
5	operating a	udible alert de	evices.			
1						
1	15.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 wl	nerein the ste	p of programming the audible alert device includes			
3	transferring	resonant pea	aking subroutine data to the memory device.			
1						
1	16.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 w	herein the ste	p of programming the audible alert device includes			
3	transferring decibel peaking subroutine data to the memory device.					
1						
1	17.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 w	herein the ste	p of programming the audible alert device includes			
3	conducting a resonant peaking subroutine.					
1						
1	18.	(Original)	The method for manufacturing an audible alert device of			
2	Claim 11 w	herein the ste	ep of programming the audible alert device includes			
3	conducting	a decibel pea	aking subroutine.			
1	_		Paae e			

1	(Original) A method for operation of an audible alert device in a			
2	normal operations mode includes the steps of:			
3	powering the audible alert device;			
4	monitoring an output current;			
5	conducting a dynamic resonant frequency peaking subroutine;			
6	conducting a dynamic decibel peaking subroutine;			
7	initiating generation of a pulse width modulated signal; and			
8	outputting the pulse width modulated signal at a transducer.			