GNG 1105E – Engineering Mechanics

CHAPTER D2 - KINEMATICS OF PARTICLES

Assigned readings

2/8 Relative motion

2/9 Constrained motion of connected particles

2/8 Relative motion

2/8 Relative motion

Passengers in the jet transport A flying east at a speed of 800 km/h observe a second jet plane B that passes under the transport in horizontal flight. Although the nose of B is pointed in the 45° northeast direction, plane B appears to the passengers in A to be moving away from the transport at the 60° angle as shown. Determine the true velocity of B.

Car A is accelerating in the direction of its motion at the rate of 3 ft/sec². Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi/hr. Determine the velocity and acceleration which car B appears to have to an observer in car A if car A has reached a speed of 45 mi/hr for the positions represented.

2/9 Constrained motion of connected particles

2/9 Constrained motion of connected particles

In the pulley configuration shown, cylinder A has a downward velocity of 0.3 m/s. Determine the velocity of B.

The tractor A is used to hoist the bale B with the pulley arrangement shown. If A has a forward velocity v_A , determine an expression for the upward velocity v_B of the bale in terms of x.

