E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 0$$
$$x - z = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

Solution:

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_4 = -1$$

Solution:

$$\begin{bmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -1 & 0 & 7 \\ 1 & -1 & 0 & 3 & -1 \end{bmatrix}$$

 ${f E1.}$ Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 4 & 1 & -7 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

Solution:

$$2x_1 - x_2 = 1$$
$$-x_1 + 4x_2 + x_3 = -7$$
$$x_1 + 2x_2 - x_3 = 0$$

 ${\bf E1.}\;$ Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

Solution:

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & -1 \\ 3 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 3 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -3 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ -3 & 5 & 2 & 0 \\ 1 & -2 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 2 & 2 & 6 \\ 0 & -1 & -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & -1 & -1 & -3 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & | & -\frac{2}{3} \\ -8 & 2 & -1 & | & 6 \\ 0 & 2 & 3 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & | & -\frac{2}{3} \\ 0 & 2 & 3 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & | & -\frac{2}{3} \\ 0 & -\frac{2}{3} & -1 & | & \frac{2}{3} \\ 0 & 2 & 3 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & | & -\frac{2}{3} \\ 0 & 1 & \frac{3}{2} & | & -1 \\ 0 & 2 & 3 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & | & -1 \\ 0 & 1 & \frac{3}{2} & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

E2. Find the reduced row echelon form of the matrix below.

$$\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 2 & 1 & -1 & 0 & | & 5 \\ 3 & -1 & 0 & -2 & | & 0 \\ -1 & 0 & 5 & 0 & | & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 5 & 0 & | & -1 \\ 2 & 1 & -1 & 0 & | & 5 \\ 3 & -1 & 0 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 0 & | & 1 \\ 2 & 1 & -1 & 0 & | & 5 \\ 3 & -1 & 0 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 0 & | & 1 \\ 0 & 1 & 9 & 0 & | & 3 \\ 0 & -1 & 15 & -2 & | & -3 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 3 & -2 & 1 & 8 & | & -5 \\ 2 & 2 & 0 & 6 & | & -2 \\ -1 & 1 & 1 & -4 & | & 6 \end{bmatrix}$$

Solution:

$$RREF A = \begin{bmatrix} 1 & 0 & 0 & 3 & | & -2 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & -1 & | & 3 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -7 & | & 4 \\ 1 & -3 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix}$$

Solution:

$$\text{RREF}\,A = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -1 & 5 & | & 4 \\ -1 & 0 & -2 & | & -1 \\ 1 & 3 & -1 & | & -5 \end{bmatrix}$$

RREF
$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & 2 & 1 & 2 & | & -1 \\ 1 & 1 & 2 & 4 & | & 5 \\ 3 & 3 & -1 & -2 & | & 1 \end{bmatrix}$$

Solution:

$$RREF A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

E3. Solve the system of equations

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 2$$

Solution:

$$RREF\left(\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So the solution set is

$$\left\{ \begin{bmatrix} 1 - 3c \\ c \\ -1 \end{bmatrix} \middle| c \in \mathbb{R} \right\}$$

E3. Solve the system of equations

$$-3x + y = 2$$
$$-8x + 2y - z = 6$$
$$2y + 3z = -2$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solutions are

$$\left\{ \begin{bmatrix} -1 - \frac{c}{2} \\ -1 - \frac{3c}{2} \\ c \end{bmatrix} \mid c \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} c - 1 \\ 3c - 1 \\ -2c \end{bmatrix} \mid c \in \mathbb{R} \right\}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

$$\operatorname{RREF}\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\3-21a\\-7a\\12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = -1$$
$$3x_1 + 6x_3 + x_4 = 5$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = -7$$

Solution: Let
$$A = \begin{bmatrix} 2 & -2 & 6 & -1 & | & -1 \\ 3 & 0 & 6 & 1 & | & 5 \\ -4 & 1 & -9 & 2 & | & -7 \end{bmatrix}$$
, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix}$. It follows that the solution set is given by
$$\begin{bmatrix} 2 - 2a \\ 3 + a \\ a \\ -1 \end{bmatrix}$$
 for all real numbers a .

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 8 \\ 1 & 1 & -1 & 5 & 3 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the solution set is given by $\begin{bmatrix} 2-2a-b \\ 2+3a-4b \\ a \\ b \end{bmatrix}$ for all real numbers

a, b.

E3. Solve the following linear system.

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 5$$
$$-2x_3 - 4x_4 = 3$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = -1$$

 $\textbf{Solution:} \quad \text{Let } A = \begin{bmatrix} 4 & 4 & 3 & -6 & 5 \\ 0 & 0 & -2 & -4 & 3 \\ 2 & 2 & 1 & -4 & -1 \end{bmatrix}, \text{ so } \text{RREF } A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$

It follows that the system is inconsistent with no solutions (since the bottom row implies the contradiction 0 = 1).

E3. Solve the following linear system.

$$3x + 2y + z = 7$$
$$x + y + z = 1$$
$$-2x + 3z = -11$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 7 \\ 1 & 1 & 1 & 1 \\ -2 & 0 & 3 & 11 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$. It follows that the system has exactly one solution: $\begin{bmatrix} 4 & -2 & -1 \end{bmatrix}$

E4. Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$
$$x + 3y - z - w = 0$$
$$2x + 6y + 3z + 8w = 0$$
$$x + 3y - 2z - 3w = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix}
-3a - b \\
a \\
-2b \\
b
\end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is

$$\left\{ \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \\ -1 & 0 & 2 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} a \\ 2a \\ -2a \\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix} \right\}$.

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & \frac{5}{7} & \frac{3}{7} \\ 0 & 1 & \frac{8}{7} & \frac{2}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} -\frac{5}{7}a - \frac{3}{7}b \\ -\frac{8}{7}a - \frac{2}{7}b \\ a \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} -\frac{5}{7} \\ -\frac{8}{7} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{3}{7} \\ -\frac{2}{7} \\ 0 \\ 1 \end{bmatrix} \right\}$, or $\left\{ \begin{bmatrix} 5 \\ 8 \\ -7 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ -7 \end{bmatrix} \right\}$.

E4. Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$.

E4. Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 0 \\ 1 & 1 & -1 & 5 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

E4. Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

Solution: Let
$$A = \begin{bmatrix} 4 & 4 & 3 & -6 & 0 \\ 0 & 0 & -2 & -4 & 0 \\ 2 & 2 & 1 & -4 & 0 \end{bmatrix}$$
, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$.

It follows that the basis for the solution set is given by
$$\left\{ \begin{bmatrix} -1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 3\\0\\-2\\1 \end{bmatrix} \right\}$$
.

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

Solution: Let
$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
, so RREF $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$. It follows

- that the basis for the solution set is given by $\left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$.
- **E4.** Find the solution set for the following system of linear equations.

$$2x_1 - 2x_2 + 6x_3 - x_4 = 0$$
$$3x_1 + 6x_3 + x_4 = 0$$
$$-4x_1 + x_2 - 9x_3 + 2x_4 = 0$$

$$\textbf{Solution:} \quad \operatorname{Let} A = \begin{bmatrix} 2 & -2 & 6 & -1 & 0 \\ 3 & 0 & 6 & 1 & 0 \\ -4 & 1 & -9 & 2 & 0 \end{bmatrix}, \operatorname{so} \operatorname{RREF} A = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

It follows that the basis for the solution set is given by
$$\left\{ \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix} \right\}$$
.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that this scalar multiplication ⊙ is associative.
- (b) Determine if V is a vector space or not. Justify your answer

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$. To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$
$$= c (dx - 3(d - 1)) - 3(c - 1)$$
$$= cdx - 3(cd - 1)$$
$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.
- 5) Associativity shown above
- 6) $1 \odot x = x 3(1 1) = x$

7)

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

Therefore V is a vector space.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

- (a) Show that this vector space has an additive identity element.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$; then $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.

Now we will show the other seven properties. Let $(x_1, y_1), (x_2, y_2) \in V$, and let $c, d \in \mathbb{R}$.

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) The additive identity is (1,1).
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\,(dx_1-(d-1))-(c-1),c\,(dy_1-(d-1)))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

- 6) $1 \odot (x_1, y_1) = (x_1 (1 1), y_1 (1 1)) = (x_1, y_1)$
- 7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$
$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

Therefore V is a vector space.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

- (a) Show that this scalar multiplication \odot distributes over scalar addition.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$, and let $c, d \in \mathbb{R}$. Then

$$(c+d)\odot(x_1,y_1) = (0,(c+d)y_1) = (0,cy_1)\oplus(0,dy_1) = c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

However, V is not a vector space, as $1 \odot (x_1, y_1) = (0, y_1) \neq (x_1, y_1)$.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1), (x_2, y_2) \in V$ and let $c \in \mathbb{R}$.

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

$$(c+d)\odot(x_1,y_1) = ((c+d)^2x_1,(c+d)^3y_1) \neq ((c^2+d^2)x_1,(c^3+d^3)y_1) = c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus g) = c \odot (f' + g') = c(f' + g')' = cf'' + cg'' = c \odot f \oplus c \odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

V1. Let V be the set of all real numbers with the operations, for any $x,y\in V,\,c\in\mathbb{R},$

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

V2. Determine if
$$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$$
 can be written as a linear combination of the vectors $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

$$RREF\left(\left[\begin{array}{cc|c} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{array}\right]\right) = \left[\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

Since this system has a solution, $\begin{bmatrix} 0\\-1\\2\\6 \end{bmatrix}$ can be written as a linear combination

of the vectors
$$\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$, namely

$$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

V2. Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

$$RREF \left(\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \end{bmatrix}$

$$\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix} \text{ and } \begin{bmatrix} 1\\ 5\\ -5 \end{bmatrix}.$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -1 & 1 & | & 0 \\ -9 & 5 & | & 0 \\ 15 & -5 & | & 2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

Since this system has no solution, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ cannot be written as a linear combination

of the vectors $\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 5\\ -5 \end{bmatrix}$.

V2. Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $\begin{bmatrix} -3\\-2\\5 \end{bmatrix}$.

RREF
$$\left(\begin{bmatrix} 2 & 1 & -3 & 1 \\ 3 & -1 & -2 & 4 \\ -1 & 0 & 5 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Since this system has a solution, $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is a linear combination of the three vectors.

V2. Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 3\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}$, and $\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$.

Solution:

RREF
$$\left(\begin{bmatrix} 3 & 1 & 5 & 1 \\ 0 & -1 & 1 & 4 \\ -1 & 4 & -6 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is not a linear combination of the three vectors.

V3. Determine if the vectors
$$\begin{bmatrix} -3\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

$$RREF\left(\begin{bmatrix} -3 & 5 & 2 & 0\\ 1 & -1 & 0 & 2\\ 1 & -2 & -1 & -1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 5\\ 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

V3. Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} =$

 $\begin{bmatrix}1\\1\\2\\1\end{bmatrix}$, so the set is linearly dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V3. Determine if the vectors $\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & -3 & -1 & 4 \\ 21 & -8 & -3 & 11 \\ -7 & 3 & 2 & -5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

V3. Determine if the vectors $\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

V3. Determine if the vectors $\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since every row contains a pivot, the vectors span \mathbb{R}^4 .

V4. Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Solution: This set is closed under addition, but not under scalar multiplication so it is not a subspace.

V4. Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

Solution: It is closed under addition and scalar multiplication, so it is a subspace. Alternatively, it is the image of the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^4$ given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \to \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix}.$$

V4. Let W be the set of all 2 by 2 matrices which are not invertible. Determine if W is a subspace of $M_{2,2}$.

Solution: W is closed under scalar multiplication, but not under addition.

 ${f V4.}$ Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since each column is a pivot column, the vectors are linearly independent.

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution: Since $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$ has an eigenvalue of 0 (from problem 2) it is not invertible, and therefore the set is linearly dependent.

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

S2. Determine if the set
$$\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^3

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

S2. Determine if the set
$$\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$$
 is a basis of \mathcal{P}_2

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

S3. Let
$$W = \text{span}\left(\left\{\begin{bmatrix} 1\\1\\2\\1\end{bmatrix}, \begin{bmatrix} 3\\3\\6\\3\end{bmatrix}, \begin{bmatrix} 3\\-1\\3\\-2\end{bmatrix}, \begin{bmatrix} 7\\-1\\8\\-3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is
$$\left\{ \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix} \right\}$$
.

S3. Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$. Find a basis for W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is $\{x^3 + x^2 + 2x + 1, 3x^3 - x^2 + 3x - 2\}$.

S3. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$.

Since the first two columns are pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

S3. Let W be the subspace of \mathcal{P}_2 given by $W = \operatorname{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute RREF $(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are pivot columns, $\{-3x^2 - 8x, x^2 + 2x + 2\}$ is a

S3. Let $W = \text{span}\left\{ \left\{ \begin{array}{c} 2 \\ 0 \\ -2 \\ 0 \end{array}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{array}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right\}$. Find a basis of W.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$
 is a basis of W .

S3. Let $W = \text{span}\left(\left\{\begin{array}{c|c} 1 \\ -1 \\ 3 \\ -3 \end{array}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}\right\}\right)$. Find a basis of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then $\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$ is a basis for W.

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$$
. Find the dimension of W .

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

S4. Let $W = \text{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\2\end{bmatrix}, \begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since there are two pivot columns, dim W = 2.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}2\\0\\-2\\0\end{bmatrix},\begin{bmatrix}3\\1\\3\\6\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\0\\1\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$. Compute the dimension of W.

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

S4. Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

S4. Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.