Notes in APPM 4650 Adam Norris

Zachary Vogel

November 9, 2015

Project Continued

$$F + 0x$$
, $T \Big|_{t=0} = T_0$ and at $T = T_0$

F+0x, $T\bigg|_{t=0}=T_0$ and at $T=T_0$ Cons of E: $\rho c_p \frac{\partial T}{\partial t} = A_f e^{-\frac{E}{RT}} + A(T-T_0) A_f$ exponential term is heat generation, other term on RHS is heat loss.

Non-dimensional problem.

$$\frac{d\theta}{d\sigma} = \delta e^{\theta} - \theta$$

Initial condition $\theta\Big|_{\mathfrak{T}=0}=0.$ Theta as a function of \mathfrak{T} is highly exponential.

$$\delta \propto \frac{1}{H}$$

$$\delta < \frac{1}{e}$$

fizzle

$$\delta > \frac{1}{e}$$

explotion.

$$\delta = 1, \delta = \frac{1}{5}$$

 $\delta=1, \delta=\frac{1}{5}$ integrate $\frac{\delta\theta}{\delta\sigma}=\delta e^{\theta}-\theta$ with too small of step size you will step right over the interesting part of the

for the explosion case, you want to solve:

$$\frac{d\sigma}{d\theta} = \frac{1}{\delta e^{\theta} - \theta}$$

asymptotic value for this guy above and the original in the fizzle case.

$$0 = \delta e^{\theta_f} - \theta_f$$

can solve this with root finding.

 ${\rm RK4}$ for the differential equations. fizzle problem

σ	θ
0	0
0.1	
0.2	
:	:
	θ_f
	$egin{array}{c} heta_f \ heta_f \end{array}$

explotion problem

early solution:

$$\frac{d\theta}{d\sigma} = \delta e^{\theta} - \theta$$

I.C.
$$\theta \Big|_{\sigma=0} = 0$$
.
taylor series of e^{θ} .
diff eq \approx

$$\delta(1 + \theta + \frac{\theta^2}{2} + \dots) - \theta$$

$$\approx \delta + \theta(\delta - 1)$$

$$\theta \Big|_{\theta = \sigma} = 0$$

$$\frac{d\theta}{d\theta} \approx \delta + \theta(\delta - 1)$$

$$\frac{d\theta}{d\sigma} \approx \delta + \theta(\delta - 1)$$
$$\frac{d\theta}{\delta + \theta(\delta - 1)} = d\sigma$$

$$\frac{d\theta}{\theta + \frac{\delta}{\delta - 1}} = (\delta - 1)d\sigma$$

$$\ln(\theta + frac\delta\delta - 1) = (\delta - 1)\sigma + c$$

$$\ln\left(\frac{\delta}{\delta - 1}\right) = c$$

$$\ln\left(\theta + \frac{\delta}{\delta - 1}\right) = (\delta - 1)\sigma + \ln\left(\frac{\delta}{\delta - 1}\right)$$

$$\ln\left(\frac{\theta + \frac{\delta}{\delta - 1}}{\frac{\delta}{\delta - 1}}\right) = (\delta - 1)\sigma$$

$$\theta = \frac{\delta}{\delta - 1}e^{(\delta - 1)\sigma} - \frac{\delta}{\delta - 1}$$

or $0 = \dots$

Clearly this is the first project. Start plotting these at the beginning of the problem next to the actual solutions.

 θ_f is the late solution for the fizzle, and we have early solutions for the fizzle and explosion. Need late solution for the explosion.

late solution to $\frac{d\theta}{d\sigma} = \delta e^{\theta} - \theta$.

$$\frac{d\theta}{d\sigma} = \delta e^{\theta}$$

.

$$\begin{split} e^{-\theta}d\theta &= \delta d\sigma \\ -e^{-\theta} &\approx \delta \sigma + c \\ \theta &\to \infty \\ 0 &= \delta \sigma_{\rm explosion} + c \\ c &= -\delta \sigma_{\rm explosion} \\ -e^{-\theta} &= \delta \sigma - \delta \sigma_{\rm explosion} \\ -e^{-\theta} &= \delta (\sigma - \sigma_{\rm explosion}) \end{split}$$