Theorem 2.7. Let $0 \le \alpha < 1$ and $0 \le \gamma \le \gamma_{\alpha}$, where $\gamma_{\alpha} = \tanh^{2}(\pi\sqrt{1-\alpha}/2\sqrt{2})$. If $p \in \mathfrak{P}_{\mathcal{LP}}$, then $p \in \mathcal{P}_{\alpha}$, i.e p(z) is a Carathéodory function of order α , in the disc $|z| < \gamma_{\alpha}$.

Proof. Since $p \in \mathfrak{P}_{\mathcal{LP}}$, then by definition of subordination and Schwarz Lemma, there exists an analytic function w(z) with $|w(z)| \le |z| < 1$ and w(0) = 0, such that $p(z) = \mathcal{LP}(w(z))$. Suppose $w(z) = Re^{i\theta}$ ($-\pi < \theta \le \pi$), then $|w(z)| = R \le |z| = r < 1$. On applying Lemma 2.1 for $p \in \mathfrak{P}_{\mathcal{LP}}$, we get $\operatorname{Re} p(z) \ge \mathcal{LP}(r)$. Further $p \in \mathfrak{P}_{\mathcal{LP}}$ is Carathéodory of order α ($0 \le \alpha < 1$) if $\mathcal{LP}(r) \ge \alpha$, provided $r \le \gamma_{\alpha} = \tanh^{2}(\pi\sqrt{1-\alpha}/2\sqrt{2})$. The function $f_{0}(z)$ given by (1.2), is the extremal.

Upon replacing p(z) with zf'(z)/f(z) in Theorem 2.7, we deduce the next result.

Corollary 2.8. Let $0 \le \alpha < 1$ and $0 \le \gamma \le \gamma_{\alpha}$, where γ_{α} is as defined in Theorem 2.7. If $f \in \mathcal{F}_{\mathcal{LP}}$, then f(z) is starlike of order α in the disc $|z| < \gamma_{\alpha}$. This result is sharp.

Remark 2.9. Put $\alpha = 0$ in Theorem 2.7, we get a sharp \mathcal{P} — radius for the class $\mathfrak{P}_{\mathcal{L}\mathcal{P}}$. Infact for the class $\mathcal{F}_{\mathcal{L}\mathcal{P}}$, Corollary 2.8 gives sharp radius of starlikeness $\gamma_0 = \tanh^2(\pi/2\sqrt{2})$. Moreover, $r = \gamma_0 < 1$ serves as the sharp radius of univalence for the class $\mathcal{F}_{\mathcal{L}\mathcal{P}}$.

Theorem 2.10. Assume $0 < \alpha \le 1$, then the sharp $S^*(1 + \alpha z)$ radius for the class $\mathcal{F}_{\mathcal{LP}}$ is the unique positive root $r_{\alpha} = \tanh^2(\pi\sqrt{\alpha}/2\sqrt{2})$ of the equation

$$2\left(\log((1+\sqrt{r})/(1-\sqrt{r}))\right)^2 - \alpha\pi^2 = 0,$$
(2.3)

where α is the radius of the disc $\{\omega : |\omega - 1| < \alpha\}$.

Proof. In view of Remark 2.4 for the circle |z| = r < 1, we have

$$\max_{|z| \le r < 1} |\mathcal{LP}(z)| = 1 - \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{r}}{1 - \sqrt{r}} \right) \right)^2 = \mathcal{LP}(r), \tag{2.4}$$

which is a decreasing function. Infact $\mathcal{LP}(r) = 0$ if and only if $r = \tanh^2(\pi/2\sqrt{2}) \approx 0.6469...$ As $f \in \mathcal{F}_{\mathcal{LP}}$, then there exists a Schwarz's function w(z) with w(0) = 0, so that

$$\frac{zf'(z)}{f(z)} = \mathcal{LP}(w(z)).$$

Assume $w(z) = Re^{i\theta}$ where $R \le r < 1$. Now observe that for $0 < \alpha \le 1$, equation (2.4) yields

$$|\mathcal{LP}(z) - 1| \le |\mathcal{LP}(R) - 1| \le |\mathcal{LP}(r) - 1| = |\mathcal{P}_0(r)| \le \alpha,$$

provided $r \leq \tanh^2(\pi\sqrt{\alpha}/2\sqrt{2}) = r_{\alpha}$. Further, at $z_0 = r_{\alpha}$, the function $f_0(z)$ (defined in (1.2)) such that $zf_0'(z)/f_0(z) = \mathcal{LP}(z)$, works as the extremal function.

As a consequence of Theorem 2.10, $\mathcal{S}^*(1+\alpha z)$ radii for some well-known Ma-Minda subclasses of starlike functions, namely, \mathcal{S}_e^* , \mathcal{S}_s^* , \mathcal{S}_{ϱ}^* , \mathcal{S}_{\wp}^* , \mathcal{S}_{ρ}^* , \mathcal{S}_{SG}^* and $\mathcal{S}_{N_e}^*$ (see Table 1 in Appendix) are stated in Corollary 2.11 Moreover, sharpness of Corollary 2.11 is illustrated by **Fig.** 4

Corollary 2.11. Let $f \in \mathcal{A}$ belong to $\mathcal{F}_{\mathcal{LP}}$, then the following radii are sharp for the class $\mathcal{F}_{\mathcal{LP}}$, (see **Fig.**

- (i) The S_e^* -radius is $r_1 = \tanh^2(\lambda \pi)$, where $\lambda = (1/2)\sqrt{(e-1)/2e}$.
- (ii) The S_s^* -radius is $r_2 = \tanh^2(\pi/\lambda)$, where $\lambda = 2\sqrt{2 \csc 1}$.
- (iii) The S_o^* -radius is $r_3 = \tanh^2(\pi \lambda/2)$, where $\lambda = \sin(1/2)$.
- (iv) The S_{\wp}^* -radius is $r_4 = \tanh^2(\pi/2\sqrt{2e})$.
- (v) The S_{ρ}^* -radius is $r_5 = \tanh^2(\pi\sqrt{\lambda}/2)$, where $\lambda = (1/2)\sinh^{-1}1$.
- (vi) The S_{SG}^* -radius is $r_6 = \tanh^2(\lambda \pi/2\sqrt{2})$, where $\lambda = \sqrt{(e-1)/(e+1)}$.
- (vii) The $S_{N_c}^*$ -radius is $r_7 = \tanh^2(\pi/2\sqrt{3})$.