MNTC P01 - Week #7 - Differential Equations - Introduction

Verifying Solutions

1. Show that $y = \frac{2}{3}e^x + e^{-2x}$ is a solution of the differential equation $y' + 2y = 2e^x$.

$$y = \frac{2}{3}e^x + e^{-2x} \Rightarrow y' = \frac{2}{3}e^x - 2e^{-2x}$$

To show that y is a solution of the differential equation, we will substitute the expressions for y and y' in the left-hand side of the equation and show that the left-hand side is equal to the right-hand side.

LHS =
$$y' + 2y = \frac{2}{3}e^x - 2e^{-2x} + 2(\frac{2}{3}e^x + e^{-2x})$$

= $\frac{2}{3}e^x - 2e^{-2x} + \frac{4}{3}e^x + 2e^{-2x} = \frac{6}{3}e^x = 2e^x$
= RHS

- 2. (a) For what values of r does the function $y = e^{rx}$ satisfy the differential equation 2y'' + y' y = 0?
 - (b) If r_1 and r_2 are the values of r that you found in part (a), show that every member of the family of functions $y = ae^{r_1x} + be^{r_2x}$ is also a solution.

(a)

$$y = e^{rx} \Rightarrow y' = re^{rx} \Rightarrow y'' = r^2 e^{rx}$$

Substituting these expressions into the differential equation 2y'' + y' - y = 0, we get

$$2r^{2}e^{rx} + re^{rx} - e^{rx} = 0$$

$$\Rightarrow (2r^{2} + r - 1)e^{rx} = 0$$

$$\Rightarrow (2r - 1)(r + 1) = 0$$

(since e^{rx} is never zero) $r = \frac{1}{2}$ or -1.

(b) Let $r_1 = \frac{1}{2}$ and $r_2 = -1$, so we need to show that every member of the family of functions $y = ae^{x/2} + be^{-x}$ is a solution of the differential equation 2y'' + y' - y = 0.

$$y = ae^{x/2} + be^{-x}$$

$$\Rightarrow y' = \frac{1}{2}ae^{x/2} - be^{-x}$$

$$\Rightarrow y'' = \frac{1}{4}ae^{x/2} + be^{-x}$$

LHS =
$$2y'' + y' - y$$

= $2(\frac{1}{4}ae^{x/2} + be^{-x}) + (\frac{1}{2}ae^{x/2} - be^{-x})$
 $-(ae^{x/2} + be^{-x})$
= $\frac{1}{2}ae^{x/2} + 2be^{-x} + \frac{1}{2}ae^{x/2} - be^{-x}$
 $-ae^{x/2} - be^{-x}$
= $(\frac{1}{2}a + \frac{1}{2}a - a)e^{x/2} + (2b - b - b)e^{-x}$
= 0
= RHS

- 3. (a) For what values of k does the function $y = \cos(kt)$ satisfy the differential equation 4y'' = -25y?
 - (b) For those values of k, verify that every member of the vamily of functions $y = A \sin kt + B \cos kt$ is also a solution.

(a)
$$y = \cos kt \implies y' = -k\sin kt \implies y'' = -k^2\cos kt$$

Substituting expressions into the differential equation 4y'' = -25y, we get

$$4(-k^2 \cos kt) = -25(\cos kt)$$

$$\Rightarrow (25 - 4k^2) \cos kt = 0 \text{ (for all } t)$$

$$\Rightarrow 25 - 4k^2 = 0$$

$$\Rightarrow k^2 = \frac{25}{4} \Rightarrow k = \pm \frac{5}{2}$$

(b)

$$y = A \sin kt + B \cos kt$$

$$\Rightarrow y' = Ak \cos kt - Bk \sin kt$$

$$\Rightarrow y'' = -Ak^2 \sin kt - Bk^2 \cos kt$$

The given differential equation 4y'' = -25y is equivalent to 4y'' + 25y = 0. Thus,

LHS =
$$4y'' + 25y$$

= $4(-Ak^2 \sin kt - Bk^2 \cos kt)$
+ $25(A \sin kt + B \cos kt)$
= $-4Ak^2 \sin kt - 4Bk^2 \cos kt$
+ $25A \sin kt + 25B \cos kt$
= $(25 - 4k^2)A \sin kt + (25 - 4k^2)B \cos kt$
= $0 \quad \text{since } k^2 = \frac{25}{4}$

- 4. Consider the differential equation $\frac{dy}{dx} = -y^2$.
 - (a) If you were asked whether the solutions to this equation would increase or decrease as x increased, what could you say based on only the equation itself?
 - (b) Verify that all members of the family y = 1/(x+C) are solutions of the equation in part (a).
 - (c) Can you think of a (very simple) solution of the differential equation $y' = -y^2$ that is *not* a member of the family in part (b)?
 - (d) Find the solution to the initial-value problem

$$y' = -y^2 \qquad y(0) = 0.5$$

- (a) Since the derivative of $y' = -y^2$ is always negative (or 0 if y = 0), the function y must be **decreasing** (or maybe horizontal) on any interval on which it is defined.
- (b) We sub in the proposed solution into the original equation. To do this, we will need the derivative of y: $y = \frac{1}{x+C} \Rightarrow y' = -\frac{1}{(x+C)^2}$.

LHS = $y' = -\frac{1}{(x+C)^2} = -\left(\frac{1}{x+C}\right)^2 = -y^2 = \text{RHS}$ Therefore, any function of the form $y(x) = \frac{1}{x+C}$ is a solution to $y' = -y^2$.

(c) y = 0 is a simple solution to $y' = -y^2$ that is not a member of the family in part (b). We can confirm this by subbing y = 0 into the DE and checking the LHS equals the RHS. If y = 0, then y' = 0 as well, so LHS = $y' = 0 = -y^2 = RHS$.

(d) We already know that the solutions will be of the form $y(x) = \frac{1}{x+C}$; we just need to sub in the initial value to solve for C.

If
$$y(x) = \frac{1}{x+C}$$
, then $y(0) = \frac{1}{0+C} = \frac{1}{C}$. Since $y(0) = 0.5$, $\frac{1}{C} \frac{1}{2} \Rightarrow C = 2$, so $y = \frac{1}{x+2}$

Numerical ODE Solutions With MATLAB

5. Create a plot for the solution to the differential equation $y' - \frac{y^2}{x^3} = 0$ if y(2) = 1. Include a large enough xspan to see the long-term behaviour.

For this first example of use MATLAB to build a numerical solution to a DE, we will show the full listing of a script that generates a solution to the given differential equation. In later solutions, we will only include the key lines for the MATLAB script.

Notes:

- We set xspan to start at 2 in the line xspan = [2, 30]. This is used because the solution MATLAB is generating will start at the coordinates x_0 = first element of xspan, and y_0 = y0 in the code, and our initial condition is x = 2, y = 1.
- We find the second value in the time span with some trial and error. Any value larger than 15 or 20 would be sufficient to show the long-term trend in the solution.

```
% ode45 solution to y' = -y^2/x^3, y(1) = 1 close all; xspan = [2, 30]; % must start at x=2, from y(2) = 1 y0 = 1; % = y value at the start of xspan; y(2) = 1 [x, y] = ode45(@(x, y) -y.^2./x.^3, xspan, y0); % have MATLAB solve the DE plot(x, y);
```

Link to the MATLAB code:

W07DE01.m

Here is the graph of the solution.

6. Create a plot for the solution to the differential equation $(2y-4)y'-3x^2=4x-4$, if y(1)=3.

To generate a first-order DE solution in MATLAB, the differential equation must be written first in the form $y' = \dots$

$$(2y-4)y' - 3x^{2} = 4x - 4$$
$$(2y-4)y' = 3x^{2} + 4x - 4$$
$$y' = \frac{(3x^{2} + 4x - 4)}{(2y-4)}$$

Link to the MATLAB code:

W07DE02.m

Here is the graph of the solution.

7. Create a plot for the solution to the differential equation $y' = e^{-y}(2t - 4)$ if y(0) = 5

This DE is already in the form $y' = \dots$, so we can input it into MATLAB as-is. Note that the independent variable in this example is t, so we will use that in MATLAB instead of the variable x.

Link to the MATLAB code:

W07DE03.m

Here is the graph of the solution.

8. Create a plot for the solution to the differential equation $ty'-2y=t^5\sin(2t)-t^3+4t^4$, if $y(\pi)=\frac{3}{2}\pi^4$

To generate a first-order DE solution in MATLAB, the differential equation must be written first in the form $y' = \dots$

$$ty' - 2y = t^{5}\sin(2t) - t^{3} + 4t^{4}$$

$$ty' = 2y + t^{5}\sin(2t) - t^{3} + 4t^{4}$$

$$y' = \frac{1}{t}(2y + t^{5}\sin(2t) - t^{3} + 4t^{4})$$

Link to the MATLAB code: W07DE04.m

Here is the graph of the solution.

Note that in this example, because of the $\sin(2t)$ introducing an oscillation in the system, the solution won't look at simple as some of the other examples.

9. Create a plot for the solution to the differential equation $ty' + 2y = t^2 - t + 1$, if y(1) = 0.5.

To generate a first-order DE solution in MATLAB, the differential equation must be written first in the form $y' = \dots$

$$ty' + 2y = t^{2} - t + 1$$
$$ty' = -2y + t^{2} - t + 1$$
$$y' = \frac{1}{t}(-2y + t^{2} - t + 1)$$

Link to the MATLAB code: W07DE05.m

Here is the graph of the solution.

10. Create a plot for the solution to the differential equation $2xy^2 + 4 = 2(3 - x^2y)y'$ if y(5) = 8.

To generate a first-order DE solution in MATLAB, the differential equation must be written first in the form $y' = \dots$ We start by switching both sides of the equation to put y' on the left.

$$2(3 - x^{2}y)y' = 2xy^{2} + 4$$
$$y' = \frac{2xy^{2} + 4}{2(3 - x^{2}y)}$$

Link to the MATLAB code: W07DE06.m

Here is the graph of the solution.

