

# **National Technical Systems Test Report for** Electromagnetic Interference (EMI) Testing of the **FVT**

**Prepared For** 

Pro V&V, Inc. | 6705 Odyssey Dr NW Ste C | Huntsville, AL 35806

National Technical Systems | 1736 Vista View Drive | Longmont, CO. 80504 | (303) 776-7249 |





This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems (NTS) makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS.



#### **Revision History**

| Rev. | Description                                                       | Issue Date |
|------|-------------------------------------------------------------------|------------|
| 0    | ITR-PR121029-00                                                   | 03/30/2021 |
| 1    | Section 5.1 – corrected calibration information for Asset # 1281. | 10/06/2021 |



#### **Table of Contents**

| 1.0     | Introduction                                               | 4  |
|---------|------------------------------------------------------------|----|
| 2.0     | References                                                 | 4  |
| 3.0     | Product Selection and Description                          | 4  |
| 3.1     | Security Classification                                    |    |
| 4.0     | General Test Requirements                                  | 4  |
| 4.1     | Test Equipment.                                            | 4  |
| 4.2     | Measurement Uncertainties                                  | 4  |
| 4.3     | Notice of Deviation                                        | 4  |
| 5.0     | Test Descriptions and Results                              | 5  |
| 5.1     | Electrostatic Discharge                                    |    |
| 5.2     | Radiated RF Immunity                                       | 14 |
| 5.3     | Electrical Fast Transient / Burst                          | 20 |
| 5.4     | Surge Immunity                                             | 24 |
| 5.5     | Conducted RF Immunity                                      | 29 |
| 5.6     | Power Frequency H-Field Immunity                           | 33 |
| 5.7     | Voltage Dips and Interruptions                             | 38 |
| 6.0     | Test Log                                                   | 41 |
|         | List of Tables                                             |    |
| Table : | 3.0-1: Product Identification - Equipment Under Test (EUT) | 4  |
|         | 5 0-1: Summary of Test Information & Results               | -  |



#### 1.0 Introduction

This document presents the test procedures used and the results obtained during the performance of an Electromagnetic Interference test program. The test program was conducted to assess the ability of the specified Equipment Under Test (EUT) to successfully satisfy the requirements listed in Section 2.0.

#### 2.0 References

The following references listed below form a part of this document to the extent specified herein.

- Pro V&V, Inc. Purchase Order(s) 2020-005,2020-007, Signed COS, dated 07/02/2020,10/21/2020,02/11/2021
- National Technical Systems (NTS) Quote(s) OP0565856, dated 10/22/2020
- NTS Corporate Quality Policy Manual, Revision 9, dated 9/20/2018
- ISO/IEC 17025:2017(E) General Requirements for the Competence of Testing and Calibration Laboratories, dated 11/1/2017
- Test Specification: EAC 2005 VVSG

#### 3.0 Product Selection and Description

Pro V&V, Inc. selected and provided the test sample(s) to be used as the Equipment Under Test. Details below:

Table 3.0-1: Product Identification - Equipment Under Test (EUT)

| Item | Qty. | Name/Description | Part Number | Serial Number |
|------|------|------------------|-------------|---------------|
| 1    | 1    | FVT              | FVT         | FVT-BBU-002   |

#### 3.1 Security Classification

Non-classified

#### 4.0 General Test Requirements

#### 4.1 Test Equipment

NTS-provided equipment is calibrated according to ISO/IEC 17025:2017(E) and calibration is traceable to the National Institute of Standards and Technology (NIST). Calibration records are maintained on file at NTS.

#### 4.2 Measurement Uncertainties

Measurement uncertainty data is available upon request.

#### 4.3 Notice of Deviation

In accordance with NTS' quality procedures, when the EUT is observed to exceed or display susceptibility, a Notice of Deviation (NOD) document is generated by the technician performing the test. This NOD documents the requirement, how the EUT deviated from the requirement, and allows room for resolution of the deviation.

This document is reviewed and approved by the NTS Program Manager or Engineer and the NTS Quality Assurance Representative, and then forwarded to the customer contact. Once mitigated (or passed over), the steps taken to correct the deviation (or simply instruction from the customer to continue testing) are recorded in the NOD and a copy of the NOD is integrated into the body of the report, in the appropriate location.



#### 5.0 Test Descriptions and Results

Table 5.0-1: Summary of Test Information & Results

| Section | Test                                 | Specification | Test Facility | Test Date                  | Part # | Serial #    | Test Result* |
|---------|--------------------------------------|---------------|---------------|----------------------------|--------|-------------|--------------|
| 5.1     | Electrostatic Discharge              | EAC 2005 VVSG | Longmont      | 01/13/2021 -<br>01/13/2021 | FVT    | FVT-BBU-002 | Complied     |
| 5.2     | Radiated RF Immunity                 | EAC 2005 VVSG | Longmont      | 09/14/2020 -<br>09/14/2020 | FVT    | FVT-BBU-002 | Complied     |
| 5.3     | Electrical Fast Transient / Burst    | EAC 2005 VVSG | Longmont      | 01/13/2021 -<br>01/13/2021 | FVT    | FVT-BBU-002 | Complied     |
| 5.4     | Surge Immunity                       | EAC 2005 VVSG | Longmont      | 01/12/2021 -<br>01/12/2021 | FVT    | FVT-BBU-002 | Complied     |
| 5.5     | Conducted RF Immunity                | EAC 2005 VVSG | Longmont      | 01/13/2021 -<br>01/13/2021 | FVT    | FVT-BBU-002 | Complied     |
| 5.6     | Power Frequency H-<br>Field Immunity | EAC 2005 VVSG | Longmont      | 01/13/2021 -<br>01/13/2021 | FVT    | FVT-BBU-002 | Complied     |
| 5.7     | Voltage Dips and Inter-<br>ruptions  | EAC 2005 VVSG | Longmont      | 01/11/2021 -<br>01/11/2021 | FVT    | FVT-BBU-002 | Complied     |

<sup>\*</sup>The decision rule used to state compliance is in accordance with the test specification used for testing. Unless otherwise noted, testing was performed in accordance with the latest published version of test specification at time of test.



#### 5.1 Electrostatic Discharge

## Electrostatic Discharge per IEC / EN 61000-4-2

Manufacturer: Unisyn/Pr0V&V Project Number: PR121029-00
B80802

Customer Representative: Michael Walker Test Area: GP #1

Model: FVT S/N: FVT-BBU-002

Standard Referenced: EAC 2005 VVSG Date: January 13, 2021

Temperature: 23.5°C Humidity: 32% Pressure: 834 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Normal Operating Mode

Test Engineer: Casey Lockhart

| Test<br>Location                        | Voltage<br>Level                       | Pola | rity<br>- | Number<br>of Pulses | Pulses<br>Per | Comments                    | Criteria<br>Met | Pass /<br>Fail |
|-----------------------------------------|----------------------------------------|------|-----------|---------------------|---------------|-----------------------------|-----------------|----------------|
| (kV) ' Second Indirect Discharge Points |                                        |      |           |                     |               |                             |                 |                |
|                                         |                                        |      |           |                     |               |                             | D               |                |
| VCP                                     | 8                                      | X    | X         | 10                  | 1             | Front Side                  | A               | Pass           |
| VCP                                     | 8                                      | X    | X         | 10                  | 1             | Left Side                   | A               | Pass           |
| VCP                                     | 8                                      | X    | X         | 10                  | 1             | Right Side                  | A               | Pass           |
| VCP                                     | 8                                      | X    | X         | 10                  | 1             | Back Side                   | A               | Pass           |
|                                         |                                        |      |           |                     |               |                             |                 |                |
| HCP                                     | 8                                      | X    | X         | 10                  | 1             | Edge of HCP at Front of UUT | A               | Pass           |
|                                         | Contact Discharge Points - RED Arrows. |      |           |                     |               |                             |                 |                |
| Figure A2                               | 8                                      | X    | X         | 10                  | 1             |                             | A               | Pass           |
| Figure A3                               | 8                                      | X    | X         | 10                  | 1             |                             | A               | Pass           |
| Figure A4                               | 8                                      | X    | X         | 10                  | 1             |                             | A               | Pass           |
| Figure A5                               | 8                                      | X    | X         | 10                  | 1             |                             | A               | Pass           |
| Figure A6                               | 8                                      | X    | X         | 10                  | 1             |                             |                 |                |
|                                         |                                        |      |           | Air Di              | scharge Poir  | nts - BLUE Arrows.          |                 |                |
| Figure A2                               | 2, 4, 8, 15                            | X    | X         | 10                  | 1             | No discharge points found.  |                 |                |
| Figure A3                               | 2, 4, 8, 15                            | X    | X         | 10                  | 1             | No discharge points found.  |                 |                |
| Figure A4                               | 2, 4, 8, 15                            | X    | X         | 10                  | 1             | No discharge points found.  |                 |                |
| Figure A5                               | 2, 4, 8, 15                            | X    | X         | 10                  | 1             | No discharge points found.  |                 | -              |
| Figure A6                               | 2, 4, 8, 15                            | X    | X         | 10                  | 1             |                             | A               | Pass           |



Manufacturer: Unisyn/Pr0V&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG Standard Referenced: Date: January 13, 2021



Figure A1. Electrostatic Discharge Test Setup.



Manufacturer: Unisyn/Pr0V&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG Standard Referenced: Date: January 13, 2021



Figure A2. Electrostatic Discharge Test Setup.



PR121029-00 Manufacturer: Unisyn/Pr0V&V Project Number: B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG Standard Referenced: Date: January 13, 2021 B80802-4-2.doc FR0100



Figure A3. Electrostatic Discharge Test Setup.



Manufacturer: Unisyn/Pr0V&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG Standard Referenced: Date: January 13, 2021



Figure A4. Electrostatic Discharge Test Setup.



PR121029-00 Manufacturer: Unisyn/Pr0V&V Project Number: B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG January 13, 2021 Standard Referenced: Date:



Figure A5. Electrostatic Discharge Test Setup.



Manufacturer: Unisyn/Pr0V&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT FVT-BBU-002 Model: S/N: EAC 2005 VVSG Standard Referenced: Date: January 13, 2021 FR0100



Figure A6. Electrostatic Discharge Test Setup.



| Electrostatic | Discharge per | · IEC / EN | 61000-4-2 |
|---------------|---------------|------------|-----------|
|---------------|---------------|------------|-----------|

| Manufacturer:            | Unisyn/Pr0V&V  | Project Number: | PR121029-00      |
|--------------------------|----------------|-----------------|------------------|
|                          |                |                 | B80802           |
| Customer Representative: | Michael Walker | Test Area:      | GP #1            |
| Model:                   | FVT            | S/N:            | FVT-BBU-002      |
| Standard Referenced:     | EAC 2005 VVSG  | Date:           | January 13, 2021 |
| B80802-4-2.doc           |                |                 | FR0100           |

# **Test Equipment List**

| ID<br>Number | Manufacturer | Model # | Serial # | rial # Description                     |            | Cal Due    |
|--------------|--------------|---------|----------|----------------------------------------|------------|------------|
| 1041         | Fluke        | 83-3    | 70130434 | Multimeter/Frequency Meter             | 06/29/2020 | 06/29/2021 |
| 1281         | EMC Partner  | ESD3000 | 284      | 284 ESD Test System                    |            | 01/30/2021 |
| 1901         | EXTECH       | 445703  | 0617     | 0617 Hygrometer-Thermometer (WC059899) |            | 06/29/2021 |



#### 5.2 Radiated RF Immunity

# Radiated RF Immunity per IEC / EN 61000-4-3

| Manufacturer:            | Unisyn                | Project Number: | PR121029-00        |
|--------------------------|-----------------------|-----------------|--------------------|
|                          |                       |                 | B80802             |
| Customer Representative: | Michael Walker        | Test Area:      | GP0                |
| Model:                   | FVT                   | S/N:            | FVT-BBU-001        |
| Standard Referenced:     | IEC 61000-4-3         | Date:           | September 14, 2020 |
| Temperature:             | 24°C Humidity: 34%    | Pressure:       | 846mb              |
| Input Voltage:           | 120Vac/60Hz           |                 |                    |
| Configuration of Unit:   | Normal Operating Mode |                 |                    |
| Test Engineer:           | Kevin Johnson         | _               |                    |

| Frequency |      | Mo | dulation |      | Step     | Field | Polarity    | Dwell | Comments   | Criteria | Pass / |
|-----------|------|----|----------|------|----------|-------|-------------|-------|------------|----------|--------|
| (MHz)     | Туре | %  | Freq     | Form | Size (%) | (V/m) | (V or<br>H) | (sec) |            | Met      | Fail   |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | V           | 3     | Front side | A        | Pass   |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | Н           | 3     |            | A        | Pass   |
|           |      |    |          |      |          |       |             |       |            |          |        |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | V           | 3     | Right Side | A        | Pass   |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | Н           | 3     |            | A        | Pass   |
|           |      |    |          |      |          |       |             |       |            |          |        |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | V           | 3     | Back Side  | A        | Pass   |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | Н           | 3     |            | A        | Pass   |
|           |      |    |          |      |          |       |             |       |            |          |        |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | V           | 3     | Left Side  | A        | Pass   |
| 80 - 1000 | AM   | 80 | 1kHz     | Sine | 1        | 10    | Н           | 3     |            | A        | Pass   |



Manufacturer:UnisynProject Number:PR121029-00<br/>B80802Customer Representative:Michael WalkerTest Area:GP0Model:FVTS/N:FVT-BBU-001Standard Referenced:IEC 61000-4-3Date:September 14, 2020



Figure B1. Radiated RF Immunity Test Setup – Front Side.



Manufacturer: Unisyn Project Number: PR121029-00

B80802

Michael Walker Customer Representative: GP0 Test Area:

FVT Model: S/N: FVT-BBU-001

IEC 61000-4-3 Standard Referenced: Date: September 14, 2020



Figure B2. Radiated RF Immunity Test Setup – Right Side.



Manufacturer: Unisyn Project Number: PR121029-00

\_\_\_\_\_\_B80802

Customer Representative: Michael Walker Test Area: GP0

Model: FVT S/N: FVT-BBU-001

Standard Referenced: IEC 61000-4-3 Date: September 14, 2020



Figure B3. Radiated RF Immunity Test Setup – Back Side.



Manufacturer: Unisyn Project Number: PR121029-00

B80802

Customer Representative: Michael Walker Test Area: GP0

Model: FVT S/N: FVT-BBU-001

Standard Referenced: IEC 61000-4-3 Date: September 14, 2020



Figure B4. Radiated RF Immunity Test Setup – Left Side.



| Radiated | RF | <b>Immunity</b> | per IEC | /EN | 61000-4-3 |
|----------|----|-----------------|---------|-----|-----------|
|----------|----|-----------------|---------|-----|-----------|

| Manufacturer:            | Unisyn         | Project Number: | PR121029-00        |
|--------------------------|----------------|-----------------|--------------------|
|                          |                | _               | B80802             |
| Customer Representative: | Michael Walker | Test Area:      | GP0                |
| Model:                   | FVT            | S/N:            | FVT-BBU-001        |
| Standard Referenced:     | IEC 61000-4-3  | Date:           | September 14, 2020 |
| B80802-4-3 doc           |                |                 | FR0100             |

## **Test Equipment List**

|              |                                |                   | 1. 1      | ,                                                     |            |            |
|--------------|--------------------------------|-------------------|-----------|-------------------------------------------------------|------------|------------|
| ID<br>Number | Manufacturer                   | Model #           | Serial #  | Description                                           | Cal Date   | Cal Due    |
| 1181         | EMCI                           | RFS               | V2.5.8    | Initial Release 02 July 2004                          | NA         | NA         |
| 1323         | Rohde&Schwa rz                 | SMT03             | 100204    | Signal Generator, 5 kHz to 3 GHz                      | 05/05/2020 | 05/05/2021 |
| 1454         | Giga-tronics                   | GT-8888A          | 8888A0338 | 10 MHz to 8 GHz, +20 dBm, 25<br>Vdc Power Meter (WC07 | 07/20/2020 | 07/20/2021 |
| 1456         | Werlatone                      | C3908-10          | 98095     | 1500 Watts, 50 dB Dual<br>Directional Coupler (WC0597 | 06/29/2020 | 06/29/2021 |
| 1476         | ETS Lindgren                   | HI-6053           | 00144805  | 10 MHz to 40 GHz Isotropic<br>Electric Field Probe    | 04/27/2020 | 04/27/2021 |
| 1478         | Ophir                          | 5127F             | 1100      | RF Amplifier, 200 Watt, 20 - 1000 MHz                 | NA         | NA         |
| 1722         | ETS -Lindgren                  | 3142B             | 1624      | Antenna                                               | NA         | NA         |
| 1761         | Braden<br>Shielding<br>Systems | RF Shield<br>Room | N/A       | GP0                                                   | 05/15/2020 | 05/15/2021 |
| 1901         | EXTECH                         | 445703            | 0617      | Hygrometer-Thermometer (WC059899)                     | 06/29/2020 | 06/29/2021 |



#### **5.3** Electrical Fast Transient / Burst

## Electrical Fast Transient/Burst per IEC / EN 61000-4-4

| Manufacturer:            | Unisyn/ProV&V    |           |     | Project Number: | PR121029-00      |
|--------------------------|------------------|-----------|-----|-----------------|------------------|
|                          |                  |           |     |                 | B80802           |
| Customer Representative: | Michael Walker   |           |     | Test Area:      | GP #1            |
| Model:                   | FVT              |           |     | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG    |           |     | Date:           | January 13, 2021 |
| Temperature:             | 23.4°C           | Humidity: | 25% | Pressure:       | 834 mb           |
| Input Voltage:           | 120Vac/60Hz      |           |     |                 |                  |
| Configuration of Unit:   | Normal Operating | Mode      |     |                 |                  |
| Test Engineer:           | Casey Lockhart   |           |     |                 |                  |

| Voltage<br>(kV) | Pola<br>+ | rity<br>- | Time (sec) | Injection<br>Type | L<br>1 | L<br>2 | L<br>3 | N | P<br>E | Rep<br>Freq. | Comments | Criteria<br>Met | Pass /<br>Fail |
|-----------------|-----------|-----------|------------|-------------------|--------|--------|--------|---|--------|--------------|----------|-----------------|----------------|
| 2.0             | X         |           | 60         | CDN               | х      |        |        |   |        | 100k<br>Hz   | AC       | A               | Pass           |
| 2.0             |           | X         | 60         | CDN               | х      |        |        |   |        | 100k<br>Hz   |          | A               | Pass           |
| 2.0             | X         |           | 60         | CDN               |        | х      |        |   |        | 100k<br>Hz   |          | A               | Pass           |
| 2.0             |           | X         | 60         | CDN               |        | х      |        |   |        | 100k<br>Hz   |          | A               | Pass           |
| 2.0             | X         |           | 60         | CDN               |        |        |        |   | X      | 100k<br>Hz   |          | A               | Pass           |
| 2.0             |           | Х         | 60         | CDN               |        |        |        |   | X      | 100k<br>Hz   |          | A               | Pass           |
| 2.0             | Х         |           | 60         | CDN               | х      | Х      |        |   | X      | 100k<br>Hz   |          | A               | Pass           |
| 2.0             |           | Х         | 60         | CDN               | х      | Х      |        |   | X      | 100k<br>Hz   |          | A               | Pass           |



#### Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer: Unisyn/ProV&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVTModel: S/N: VST 150 003 EAC 2005 VVSG Standard Referenced: Date: January 13, 2021



Figure C1. Electrical Fast Transient Test Setup.



#### Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer: Unisyn/ProV&V Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVTModel: S/N: VST 150 003 EAC 2005 VVSG Standard Referenced: Date: January 13, 2021



Figure C2. Electrical Fast Transient Test Setup – AC Mains.



| Electrical Fast Transi   | ent/Burst per IEC / EN 61000-4-4 |                 |             |  |
|--------------------------|----------------------------------|-----------------|-------------|--|
| Manufacturer:            | Unisyn/ProV&V                    | Project Number: | PR121029-00 |  |
|                          |                                  | _               | B80802      |  |
| Customer Representative: | Michael Walker                   | Test Area:      | GP #1       |  |

 Model:
 FVT
 S/N:
 VST 150 003

 Standard Referenced:
 EAC 2005 VVSG
 Date:
 January 13, 2021

B80802-4-4.doc FR0100

## **Test Equipment List**

| ID<br>Number | Manufacturer | Model #     | Serial # | Description                                | Cal Date   | Cal Due    |
|--------------|--------------|-------------|----------|--------------------------------------------|------------|------------|
| 1283         | KeyTek       | EMCPro Plus | 0601237  | Advanced EMC Immunity Tester               | 10/22/2020 | 10/22/2021 |
| 1372         | Tektronix    | TDS2002B    | C103489  | Oscilloscope, 60 MHz, 2-channel (WC059683) | 06/29/2020 | 06/29/2021 |
| 1901         | EXTECH       | 445703      | 0617     | Hygrometer-Thermometer (WC059899)          | 06/29/2020 | 06/29/2021 |



#### 5.4 Surge Immunity

# Surge Immunity per IEC / EN 61000-4-5

| Manufacturer:            | Unisyn                | Project Number: | PR121029-00      |
|--------------------------|-----------------------|-----------------|------------------|
| Customer Representative: | Michael Walker        | Test Area:      | GP #2            |
| Model:                   | FVT                   | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG         | Date:           | January 12, 2021 |
| Temperature:             | 24°C Humidity: 27%    | Pressure:       | 840 mb           |
| Input Voltage:           | 120Vac/60Hz           |                 |                  |
| Configuration of Unit:   | Normal Operating Mode |                 |                  |
| Test Engineer:           | T. Wittig             |                 |                  |

PR121029-00-4-5.doc FR0100

| Voltage<br>(kV) | Pola | rity | L<br>1 | L<br>2 | L<br>3 | N | P<br>E | Phase (deg) | Number of Pulses | Delay<br>(sec) | Comments            | Criteria<br>Met | Pass /<br>Fail |
|-----------------|------|------|--------|--------|--------|---|--------|-------------|------------------|----------------|---------------------|-----------------|----------------|
| 0.5             | X    | _    | X      |        |        | х |        | 0           | 5                | 30             | Differential Mode   | A               | Pass           |
| 0.5             |      | Х    | X      |        |        | X |        | 0           | 5                | 30             | Differential Wood   | A               | Pass           |
| 0.5             | Х    |      | X      |        |        | X |        | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    | X      |        |        | X |        | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      | Х      |        |        | х |        | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | Х    | Х      |        |        | Х |        | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             | Х    |      | Х      |        |        | х |        | 270         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    | х      |        |        | X |        | 270         | 5                | 30             |                     | A               | Pass           |
|                 |      |      |        |        |        |   |        |             |                  |                |                     |                 |                |
| 0.5             | Х    |      | Х      |        |        |   | х      | 0           | 5                | 30             | Common Mode Line    | A               | Pass           |
| 0.5             |      | Х    | Х      |        |        |   | х      | 0           | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      | Х      |        |        |   | Х      | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    | х      |        |        |   | х      | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             | х    |      | х      |        |        |   | х      | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    | Х      |        |        |   | Х      | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      | X      |        |        |   | X      | 270         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    | X      |        |        |   | X      | 270         | 5                | 30             |                     | A               | Pass           |
|                 |      |      |        |        |        |   |        |             |                  |                |                     |                 |                |
| 0.5             | X    |      |        |        |        | X | X      | 0           | 5                | 30             | Common Mode Neutral | A               | Pass           |
| 0.5             |      | X    |        |        |        | X | X      | 0           | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      |        |        |        | X | X      | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    |        |        |        | X | X      | 90          | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      |        |        |        | X | X      | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    |        |        |        | X | X      | 180         | 5                | 30             |                     | A               | Pass           |
| 0.5             | X    |      |        |        |        | X | X      | 270         | 5                | 30             |                     | A               | Pass           |
| 0.5             |      | X    |        |        |        | X | X      | 270         | 5                | 30             |                     | A               | Pass           |
|                 |      |      |        |        |        |   |        |             |                  |                |                     |                 |                |
| 1.0             | X    |      | X      |        |        | X |        | 0           | 5                | 45             | Differential Mode   | A               | Pass           |



#### Surge Immunity per IEC / EN 61000-4-5

| Manufacturer:            | Unisyn         |           |     | Project Number: | PR121029-00      |
|--------------------------|----------------|-----------|-----|-----------------|------------------|
| Customer Representative: | Michael Walker |           |     | Test Area:      | GP #2            |
| Model:                   | FVT            |           |     | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG  |           |     | Date:           | January 12, 2021 |
| Temperature:             | 24°C           | Humidity: | 27% | Pressure:       | 840 mb           |
| Input Voltage:           | 120Vac/60Hz    |           |     |                 | _                |

Configuration of Unit: Normal Operating Mode

Test Engineer: T. Wittig

PR121029-00-4-5.doc FR0100

| Voltage | Pol | arity    | L | L | L | N  | P | Phase | Number    | Delay | Comments                                      | Criteria | Pass / |
|---------|-----|----------|---|---|---|----|---|-------|-----------|-------|-----------------------------------------------|----------|--------|
| (kV)    | +   | - ar ity | 1 | 2 | 3 | 14 | E | (deg) | of Pulses | (sec) | Comments                                      | Met      | Fail   |
| 1.0     |     | х        | х |   |   | х  |   | 0     | 5         | 45    |                                               | A        | Pass   |
| 1.0     | X   |          | X |   |   | X  |   | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | X        | X |   |   | X  |   | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     | X   |          | X |   |   | X  |   | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | X        | X |   |   | X  |   | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     | X   |          | X |   |   | X  |   | 270   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | X        | Х |   |   | Х  |   | 270   | 5         | 45    |                                               | A        | Pass   |
| 1.0     | x   |          | х |   |   |    | X | 0     | 5         | 45    | Common Mode Line                              | A        | Pass   |
| 1.0     |     | х        | Х |   |   |    | Х | 0     | 5         | 45    |                                               | A        | Pass   |
| 1.0     | х   |          | Х |   |   |    | х | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | Х        | Х |   |   |    | X | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     | X   |          | X |   |   |    | X | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | X        | X |   |   |    | X | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     | x   |          | X |   |   |    | X | 270   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | х        | X |   |   |    | X | 270   | 5         | 45    |                                               | A        | Pass   |
| 1.0     | X   |          |   |   |   | Х  | X | 0     | 5         | 45    | Common Mode Neutral                           | A        | Pass   |
| 1.0     |     | х        |   |   |   | Х  | х | 0     | 5         | 45    |                                               | A        | Pass   |
| 1.0     | Х   |          |   |   |   | х  | х | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | х        |   |   |   | Х  | х | 90    | 5         | 45    |                                               | A        | Pass   |
| 1.0     | х   |          |   |   |   | X  | х | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | Х        |   |   |   | х  | х | 180   | 5         | 45    |                                               | A        | Pass   |
| 1.0     | х   |          |   |   |   | х  | х | 270   | 5         | 45    |                                               | A        | Pass   |
| 1.0     |     | х        |   |   |   | Х  | X | 270   | 5         | 45    |                                               | A        | Pass   |
| 2.0     | X   |          | х |   |   | х  |   | 0     | 5         | 45    | Differential Mode                             | A        | Pass   |
| 2.0     | 71  | Х        | X |   |   | X  |   | 0     | 5         | 45    | 2 III oli ili ili ili ili ili ili ili ili ili | A        | Pass   |
| 2.0     | Х   |          | X |   |   | X  |   | 90    | 5         | 45    |                                               | A        | Pass   |



# Surge Immunity per IEC / EN 61000-4-5

| Manufacturer:            | Unisyn         |             | Project Number:  | PR121029-00      |  |
|--------------------------|----------------|-------------|------------------|------------------|--|
| Customer Representative: | Michael Walker |             | Test Area: GP #2 |                  |  |
| Model:                   | FVT            |             | S/N:             | VST 150 003      |  |
| Standard Referenced:     | EAC 2005 VVSG  |             | Date:            | January 12, 2021 |  |
| Temperature:             | 24°C Hui       | midity: 27% | Pressure:        | 840 mb           |  |

Input Voltage: 120Vac/60Hz

Configuration of Unit: Normal Operating Mode

Test Engineer: T. Wittig

PR121029-00-4-5.doc FR0100

| 1 K121029-0     |      |              |        |        |        |   |        |             |                     |             |                     |                 | TROTOO         |
|-----------------|------|--------------|--------|--------|--------|---|--------|-------------|---------------------|-------------|---------------------|-----------------|----------------|
| Voltage<br>(kV) | Pola | arity<br>  - | L<br>1 | L<br>2 | L<br>3 | N | P<br>E | Phase (deg) | Number<br>of Pulses | Delay (sec) | Comments            | Criteria<br>Met | Pass /<br>Fail |
| 2.0             |      | х            | Х      |        |        | х |        | 90          | 5                   | 45          |                     | A               | Pass           |
| 2.0             | Х    |              | X      |        |        | X |        | 180         | 5                   | 45          |                     | A               | Pass           |
| 2.0             |      | х            | X      |        |        | X |        | 180         | 5                   | 45          |                     | A               | Pass           |
| 2.0             | х    |              | X      |        |        | X |        | 270         | 5                   | 45          |                     | A               | Pass           |
| 2.0             |      | X            | X      |        |        | Х |        | 270         | 5                   | 45          |                     | A               | Pass           |
|                 |      |              |        |        |        |   |        |             |                     |             |                     |                 |                |
| 2.0             | X    |              | X      |        |        |   | X      | 0           | 5                   | 60          | Common Mode Line    | A               | Pass           |
| 2.0             |      | х            | X      |        |        |   | X      | 0           | 5                   | 60          |                     | A               | Pass           |
| 2.0             | X    |              | X      |        |        |   | X      | 90          | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | X            | X      |        |        |   | X      | 90          | 5                   | 60          |                     | A               | Pass           |
| 2.0             | х    |              | X      |        |        |   | X      | 180         | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | х            | X      |        |        |   | X      | 180         | 5                   | 60          |                     | A               | Pass           |
| 2.0             | X    |              | X      |        |        |   | X      | 270         | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | х            | X      |        |        |   | X      | 270         | 5                   | 60          |                     | A               | Pass           |
|                 |      |              |        |        |        |   |        |             |                     |             |                     |                 |                |
| 2.0             | X    |              |        |        |        | X | X      | 0           | 5                   | 60          | Common Mode Neutral | A               | Pass           |
| 2.0             |      | x            |        |        |        | X | X      | 0           | 5                   | 60          |                     | A               | Pass           |
| 2.0             | х    |              |        |        |        | X | X      | 90          | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | Х            |        |        |        | х | X      | 90          | 5                   | 60          |                     | A               | Pass           |
| 2.0             | х    |              |        |        |        | X | X      | 180         | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | X            |        |        |        | X | X      | 180         | 5                   | 60          |                     | A               | Pass           |
| 2.0             | х    |              |        |        |        | X | X      | 270         | 5                   | 60          |                     | A               | Pass           |
| 2.0             |      | х            |        |        |        | X | X      | 270         | 5                   | 60          |                     | A               | Pass           |



# Surge Immunity per IEC / EN 61000-4-5

Manufacturer: Unisyn Project Number: PR121029-00 Michael Walker Test Area: GP #2 Customer Representative: Model: FVTS/N: VST 150 003 EAC 2005 VVSG Standard Referenced: January 12, 2021 Date:

PR121029-00-4-5.doc FR0100



Figure D1. Surge Immunity Test Setup.



| Surge Immunity per | IEC / EN | 61000-4-5 |
|--------------------|----------|-----------|
|--------------------|----------|-----------|

| Manufacturer:            | Unisyn         | Project Number: | PR121029-00      |
|--------------------------|----------------|-----------------|------------------|
| Customer Representative: | Michael Walker | Test Area:      | GP #2            |
| Model:                   | FVT            | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG  | Date:           | January 12, 2021 |
| PR121029-00-4-5.doc      |                |                 | FR0100           |

# **Test Equipment List**

| ID<br>Number | Manufacturer                             | Model #     | Serial # | Description                                            | Cal Date   | Cal Due    |
|--------------|------------------------------------------|-------------|----------|--------------------------------------------------------|------------|------------|
| 1013         | KeyTek                                   | EMC Pro     | 0008347  | Advanced EMC Immunity Tester                           | 10/22/2020 | 10/22/2021 |
| 1038         | Fluke                                    | 85          | 66180455 | Multimeter/Frequency Meter                             | 05/26/2020 | 05/26/2021 |
| 1184         | KeyTek                                   | CE Ware     | 4.0      | KeyTek EMC Pro Control<br>Software for EFT, Surge, H-F | NA         | NA         |
| 1295         | California<br>Instruments<br>Corporation | CTS-115-230 | S72726   | PACS-1 Power Analyzer<br>Compliance Test System (WC05  | 08/20/2020 | 08/20/2021 |
| 1371         | Tektronix                                | TDS2002B    | C103483  | Oscilloscope, 60 MHz, 2-channel                        | 02/24/2020 | 02/24/2021 |
| 1901         | EXTECH                                   | 445703      | 0617     | Hygrometer-Thermometer (WC059899)                      | 06/29/2020 | 06/29/2021 |
| 1902         | EXTECH                                   | 445703      | 1218-1   | Hygrometer-Thermometer (WC059900)                      | 06/29/2020 | 06/29/2021 |

FR0100



#### 5.5 Conducted RF Immunity

#### Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer: Unisyn Project Number: PR121029-00

Customer Representative: Michael Walker Test Area: GP #1

Model: FVT S/N: VST 150 003

Standard Referenced: EAC 2005 VVSG Date: January 13, 2021

Temperature: 23.7°C Humidity: 25% Pressure: 834 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Normal Operating Mode

Test Engineer: Casey Lockhart

PR121029-0-4-6.doc

| Frequency    | N    | Iodulat | ion   | Level  | Dwell | Comments        | Criteria | Pass / |
|--------------|------|---------|-------|--------|-------|-----------------|----------|--------|
| (MHz)        | Type | %       | Freq  | (Vrms) | (sec) |                 | Met      | Fail   |
| 0.150 - 80.0 | AM   | 80      | 1 kHz | 10     | 3     | AC using M3 CDN | A        | Pass   |



## Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:UnisynProject Number:PR121029-00Customer Representative:Michael WalkerTest Area:GP #1

Model: FVT S/N: VST 150 003

Standard Referenced: EAC 2005 VVSG Date: September 16, 2020

PR121029-0-4-6.doc FR0100



Figure E1. Conducted RF Immunity Test Setup.



## Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:UnisynProject Number:PR121029-00Customer Representative:Michael WalkerTest Area:GP #1Model:FVTS/N:VST 150 003Standard Referenced:EAC 2005 VVSGDate:September 16, 2020

Standard Referenced: EAC 2005 VVSG Date: September 16, 2020 PR121029-0-4-6.doc FR0100



Figure E2. Conducted RF Immunity Test Setup – AC Mains.



# Conducted RF Immunity per IEC / EN 61000-4-6

| Manufacturer:            | Unisyn         | Project Number: | PR121029-00      |
|--------------------------|----------------|-----------------|------------------|
| Customer Representative: | Michael Walker | Test Area:      | GP #1            |
| Model:                   | FVT            | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG  | Date:           | January 13, 2021 |
| PR121029-0-4-6.doc       |                |                 | FR0100           |

# **Test Equipment List**

| ID<br>Number | Manufacturer                            | Model #            | Serial #           | Description                                           | Cal Date   | Cal Due    |
|--------------|-----------------------------------------|--------------------|--------------------|-------------------------------------------------------|------------|------------|
| 1226         | EMCI                                    | EMCI-CDN-<br>M3-16 | EMCI011            | M3 CDN, 16A, 250 VAC                                  | 10/24/2019 | 10/24/2021 |
| 1274         | IFI                                     | M100               | L594-0108          | 100W Power Amplifier, 0.01<br>MHz to 220 MHz          | NA         | NA         |
| 1353         | Fischer<br>Custom<br>Communicatio<br>ns | F2031-23mm         | 329                | EM Injection Clamp                                    | 10/24/2019 | 10/24/2021 |
| 1477         | Hewlett<br>Packard                      | 8648A              | 3636A02899         | Signal Generator, 100 kHz to 1<br>GHz                 | 05/27/2020 | 05/27/2022 |
| 1526         | Aeroflex/Wein schel                     | 40-6-34            | RX850              | Hi power attenuator 6dB                               | 02/11/2020 | 02/11/2022 |
| 1533         | Werlatone                               | C9475              | 102544             | 100 Watt Dual Directional<br>Coupler, 10 kHz to 250 M | 10/24/2019 | 10/24/2021 |
| 1547         | Rigol<br>Technologies,<br>Inc           | DSA815             | DSA8A160300<br>184 | 9 kHz to 1.5 GHz Spectrum<br>Analyzer (WC059656)      | 05/09/2020 | 05/09/2022 |
| 1902         | EXTECH                                  | 445703             | 1218-1             | Hygrometer-Thermometer (WC059900)                     | 06/29/2020 | 06/29/2021 |



## 5.6 Power Frequency H-Field Immunity

## Power Frequency H-field Immunity per IEC / EN 61000-4-8

| Manufacturer:            | Unisyn           |           |     | Project Number: | PR121029-00      |
|--------------------------|------------------|-----------|-----|-----------------|------------------|
|                          |                  |           |     |                 | B80802           |
| Customer Representative: | Michael Walker   |           |     | Test Area:      | GP #1            |
| Model:                   | FVT              |           |     | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG    |           |     | Date:           | January 13, 2021 |
| Temperature:             | 23.5°C           | Humidity: | 25% | Pressure:       | 834 mb           |
| Input Voltage:           | 120Vac/60Hz      |           |     |                 |                  |
| Configuration of Unit:   | Normal Operating | Mode      |     |                 |                  |
| Test Engineer:           | Casey Lockhart   |           |     |                 |                  |
| PP 121020 00             |                  |           |     |                 | ED0100           |

PR121029-00 FR0100

-4-8.doc

| Frequer<br>50 | 1cy (Hz) | Field<br>Strength<br>(A/m) | EUT Axis<br>Location | Dwell<br>Time<br>(sec) | Comments | Criteria<br>Met | Pass /<br>Fail |
|---------------|----------|----------------------------|----------------------|------------------------|----------|-----------------|----------------|
| Х             |          | 30                         | X                    | 60                     |          | A               | Pass           |
|               | X        | 30                         | X                    | 60                     |          | A               | Pass           |
| X             |          | 30                         | Y                    | 60                     |          | A               | Pass           |
|               | X        | 30                         | Y                    | 60                     |          | A               | Pass           |
| X             |          | 30                         | Z                    | 60                     |          | A               | Pass           |
|               | X        | 30                         | Z                    | 60                     |          | A               | Pass           |



## Power Frequency H-field Immunity per IEC / EN 61000-4-8

Manufacturer: Unisyn Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT Model: S/N: VST 150 003 Standard Referenced: EAC 2005 VVSG Date: January 13, 2021 PR121029-00 FR0100





Figure F1. Power Frequency H-field Immunity Test Setup.



## Power Frequency H-field Immunity per IEC / EN 61000-4-8

Manufacturer: Unisyn Project Number: PR121029-00 B80802 Customer Representative: Michael Walker GP #1 Test Area: FVT Model: S/N: VST 150 003 EAC 2005 VVSG Standard Referenced: Date: January 13, 2021 PR121029-00 FR0100

-4-8.doc



Figure F2. Power Frequency H-field Immunity Test Setup.



## Power Frequency H-field Immunity per IEC / EN 61000-4-8

Manufacturer: Unisyn Project Number: PR121029-00 B80802 Michael Walker GP #1 Customer Representative: Test Area: FVT Model: S/N: VST 150 003 Standard Referenced: EAC 2005 VVSG Date: January 13, 2021 FR0100

PR121029-00 -4-8.doc



Figure F3. Power Frequency H-field Immunity Test Setup.



| Power Frequency H-1      | ield Immunity per IEC / EN 61000-4-8 |                 |             |
|--------------------------|--------------------------------------|-----------------|-------------|
| Manufacturer:            | Unisyn                               | Project Number: | PR121029-00 |
|                          |                                      |                 | B80802      |
| Customer Representative: | Michael Walker                       | Test Area:      | GP #1       |

 Model:
 FVT
 S/N:
 VST 150 003

 Standard Referenced:
 EAC 2005 VVSG
 Date:
 January 13, 2021

PR121029-00 FR0100

-4-8.doc

## **Test Equipment List**

| ID<br>Number | Manufacturer                         | Model #              | Serial #   | Description                                   | Cal Date   | Cal Due    |
|--------------|--------------------------------------|----------------------|------------|-----------------------------------------------|------------|------------|
| 1262         | EMCI                                 | EMCI-4-8-2m-<br>1.5m | 0001       | HField Loop, 2m x 1.5m                        | NA         | NA         |
| 1372         | Tektronix                            | TDS2002B             | C103489    | Oscilloscope, 60 MHz, 2-channel (WC059683)    | 06/29/2020 | 06/29/2021 |
| 1484         | Pearson<br>Electronics               | 110A                 | 88593      | Current Monitor, 1 Hz to 20 MHz<br>(WC070471) | 07/12/2020 | 07/12/2021 |
| 1548         | California<br>Instruments/A<br>metek | 1251P                | 1423A06347 | AC Power supply                               | NA         | NA         |



#### 5.7 Voltage Dips and Interruptions

## **Voltage Dips and Interrupts per IEC / EN 61000-4-11**

| Manufacturer:            | Unisyn                | Project Number: | PR121029-00      |
|--------------------------|-----------------------|-----------------|------------------|
| Customer Representative: | Michael Walker        | Test Area:      | GP #2            |
| Model:                   | FVT                   | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG         | Date:           | January 11, 2021 |
| Temperature:             | 25°C Humidity: 26%    | Pressure:       | 842 mb           |
| Input Voltage:           | 120Vac/60Hz           | _               |                  |
| Configuration of Unit:   | Normal Operating Mode | -               |                  |
| Test Engineer:           | T. Wittig             |                 |                  |

| 380802-4-11.d | No. of       | I        | Phase A   | ngle (de  | eg)       | Time                         | Number      | Comments  | Criteria | Pass / |
|---------------|--------------|----------|-----------|-----------|-----------|------------------------------|-------------|-----------|----------|--------|
| Nominal       | Cycles       | 0        | 90        | 180       | 270       | between<br>dropouts<br>(sec) | of tests    | Commences | Met      | Fail   |
| 70%           | 0.6          | Х        |           |           |           | 10                           | 3           |           | A        | Pass   |
| 70%           | 0.6          |          | х         |           |           | 10                           | 3           |           | A        | Pass   |
| 70%           | 0.6          |          |           | х         |           | 10                           | 3           |           | A        | Pass   |
| 70%           | 0.5          |          |           |           | X         | 10                           | 3           |           | A        | Pass   |
| 40%           | 6.0          | X        |           |           |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 6.0          |          | X         |           |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 6.0          |          |           | х         |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 6.0          |          |           |           | X         | 10                           | 3           |           | A        | Pass   |
| 40%           | 60           | X        |           |           |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 60           |          | X         |           |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 60           |          |           | X         |           | 10                           | 3           |           | A        | Pass   |
| 40%           | 60           |          |           |           | X         | 10                           | 3           |           | A        | Pass   |
| 0%            | 300          | X        |           |           |           | 10                           | 3           |           | A        | Pass   |
| 0%            | 300          |          |           | X         |           | 10                           | 3           |           | A        | Pass   |
|               |              |          |           |           | Lin       | e Voltage Vari               | ation tests |           |          |        |
| 29Vac Line    | Voltage Va   | riations | s (+7.5%  | 6 of non  | ninal 120 | OV) 2hrs.                    |             |           | A        | Pass   |
| 05Vac Line    | Voltage Va   | riations | s (-12.5° | % of no   | minal 12  | 0V) 2 Hrs.                   |             |           | A        | Pass   |
| Surges of +1: | 5% line vari | ations   | of nomi   | nal volta | age (138) | V) 2 Hrs.                    |             |           | A        | Pass   |
| Surges of -15 | % line vari  | ations c | of nomir  | nal volta | ge (102X  | 7) 2. Hrs.                   |             |           | A        | Pass   |



## **Voltage Dips and Interrupts per IEC / EN 61000-4-11**

Manufacturer: Unisyn Project Number: PR121029-00 Michael Walker Test Area: GP #2 Customer Representative: Model: FVTS/N: VST 150 003 EAC 2005 VVSG Standard Referenced: January 11, 2021 Date:



Figure G1. Voltage Dips and Interruptions Test Setup



# **Voltage Dips and Interrupts per IEC / EN 61000-4-11**

| Manufacturer:            | Unisyn         | Project Number: | PR121029-00      |
|--------------------------|----------------|-----------------|------------------|
| Customer Representative: | Michael Walker | Test Area:      | GP #2            |
| Model:                   | FVT            | S/N:            | VST 150 003      |
| Standard Referenced:     | EAC 2005 VVSG  | Date:           | January 11, 2021 |
| B80802-4-11.doc          |                |                 | FR0100           |

# **Test Equipment List**

| ID<br>Number | Manufacturer                             | Model #     | Serial # | Description                                            | Cal Date   | Cal Due    |
|--------------|------------------------------------------|-------------|----------|--------------------------------------------------------|------------|------------|
| 1013         | KeyTek                                   | EMC Pro     | 0008347  | Advanced EMC Immunity Tester                           | 10/22/2020 | 10/22/2021 |
| 1038         | Fluke                                    | 85          | 66180455 | Multimeter/Frequency Meter                             | 05/26/2020 | 05/26/2021 |
| 1184         | KeyTek                                   | CE Ware     | 4.0      | KeyTek EMC Pro Control<br>Software for EFT, Surge, H-F | NA         | NA         |
| 1295         | California<br>Instruments<br>Corporation | CTS-115-230 | S72726   | PACS-1 Power Analyzer<br>Compliance Test System (WC05  | 08/20/2020 | 08/20/2021 |
| 1371         | Tektronix                                | TDS2002B    | C103483  | Oscilloscope, 60 MHz, 2-channel                        | 02/24/2020 | 02/24/2021 |
| 1901         | EXTECH                                   | 445703      | 0617     | Hygrometer-Thermometer (WC059899)                      | 06/29/2020 | 06/29/2021 |
| 1902         | EXTECH                                   | 445703      | 1218-1   | Hygrometer-Thermometer (WC059900)                      | 06/29/2020 | 06/29/2021 |



#### Test Log 6.0

| EMI T | Γest | Log |
|-------|------|-----|
|-------|------|-----|

| EMII Test Log            |                |                 |             |
|--------------------------|----------------|-----------------|-------------|
| Manufacturer:            | Unisyn         | Project Number: | PR121029-00 |
|                          |                |                 | B80802      |
| Model:                   | FVT            | S/N:            | FVT-BBU-001 |
|                          |                |                 | FVT-BBU-002 |
| Customer Representative: | Michael Walker |                 |             |
| Standard Referenced:     | FCC            |                 |             |
|                          |                |                 |             |

FR0105

#### **Ground Planes / CALC**

| Test | Test<br>Code | Date                               | Event                                                                                       | O<br>T | Time<br>(hrs) | Result | Initials |
|------|--------------|------------------------------------|---------------------------------------------------------------------------------------------|--------|---------------|--------|----------|
| 4-3  |              | September 14,<br>2020              | Radiated RF Immunity 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell, 120/60 VAC |        | 8.0           | Pass   | KJ       |
|      |              | 0800 - 1630                        | 120Vac/60Hz                                                                                 |        |               |        |          |
| 4-11 |              | September 16,                      | Voltage Dips and Interruptions                                                              |        | 0.5           | Pass   | MT       |
|      |              | 2020<br>1330-1400                  | 70% nom, $0.6$ cycles / $40%$ nom, $6$ cycles & 1 sec. / $0%$ nom, $300$ cycles             |        |               |        |          |
|      |              |                                    | 120Vac/60Hz                                                                                 |        |               |        |          |
| 4-11 |              | 1400-1600                          | Voltage Dips and Interruptions                                                              |        | 2.0           | Pass   | MT       |
|      |              |                                    | (Inc./Red. of Nom. Voltage)                                                                 |        |               |        |          |
|      |              |                                    | Electric power increases of 7.5% and reductions of 12.5% of nominal specified power.        |        |               |        |          |
|      |              |                                    | 120/60 VAC                                                                                  |        |               |        |          |
|      |              |                                    | Line Voltage Variations (+7.5% of nominal 120V) 2hrs.                                       |        |               |        |          |
|      |              |                                    | 129Vac/60Hz                                                                                 |        |               |        |          |
| 4-11 |              | September 17,<br>2020<br>0830-1030 | Voltage Dips and Interruptions                                                              |        | 2.0           | Pass   | MT       |
|      |              |                                    | (Inc./Red. of Nom. Voltage)                                                                 |        |               |        |          |
|      |              |                                    | Electric power increases of 7.5% and reductions of 12.5% of nominal specified power.        |        |               |        |          |
|      |              |                                    | 120/60 VAC                                                                                  |        |               |        |          |
|      |              |                                    | Line Voltage Variations (-12.5% of nominal 120V) 2hrs.                                      |        |               |        |          |
|      |              |                                    | 105Vac/60Hz                                                                                 |        |               |        |          |
| 4-11 |              | 1030-1230                          | Voltage Dips and Interruptions                                                              |        | 2.0           | Pass   | MT       |
|      |              |                                    | (Surge of +/- 15%)                                                                          |        |               |        |          |
|      |              |                                    | Surge of +/- 15% line variation of nominal line voltage                                     |        |               |        |          |
|      |              |                                    | 120/60 VAC                                                                                  |        |               |        |          |
|      |              |                                    | Surges of +15% line variations of nominal voltage 2 Hrs. 138Vac/60Hz                        |        |               |        |          |



#### **Ground Planes / CALC**

| Test | Test<br>Code | Date                               | Event                                                                                                                           | O<br>T | Time (hrs) | Result        | Initials |
|------|--------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|----------|
| 4-11 |              | 1230-1430                          | Voltage Dips and Interruptions (Surge of +/- 15%)                                                                               |        | 2.0        | Pass          | MT       |
|      |              |                                    | Surge of +/- 15% line variation of nominal line voltage 120/60 VAC                                                              |        |            |               |          |
|      |              |                                    | Surges of -15% line variations of nominal voltage 2 Hrs. 102Vac/60Hz                                                            |        |            |               |          |
| 4-5  |              | September 18,<br>2020<br>0800-1400 | Surge Immunity Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) 120/60 VAC                                                      |        | 6.5        | Pass          | MT       |
| P    | er Clien     | t and NTS mana                     | gement EUT was swapped with a EUT that does not have a                                                                          | uSI    | 3 extende  | er cable atta | ched     |
| 4-4  |              | September 21,<br>2020              | Electrical Fast Transient / Burst<br>Mains: +/- 2kV, I/O: +/- 1kV, 120/60 VAC                                                   |        | 1.0        | Pass          | CL       |
| 4-6  |              | 0900 - 1000<br>1000 - 1100         | Conducted RF Immunity<br>10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s<br>dwell, 120/60 VAC                             |        | 1.0        | Pass          | CL       |
| 4-8  |              | 1100 - 1200                        | Power Frequency H-Field Immunity 30A/m, 50 / 60 Hz, 3 axes, 120/60 VAC                                                          |        | 1.0        | Pass          | CL       |
| 4-2  |              | 1200 - 1600                        | Electrostatic Discharge<br>+/- 8kV Contact, +/-2, 4, 8, 15kV Air, 120/60 VAC                                                    |        | 4.0        | Pass          | CL       |
|      |              |                                    | Re-Test                                                                                                                         | I      |            |               | 1        |
| 4-11 |              | January 11,                        | Voltage Dips and Interruptions                                                                                                  |        |            | Pass          | TW       |
|      |              | 2021<br>0800                       | (Inc./Red. of Nom. Voltage) Electric power increases of 7.5% and reductions of 12.5% of nominal specified power., 120Vac/60 VAC |        |            |               |          |
|      |              |                                    | Voltage Dips and Interruptions (Surge of +/- 15%)                                                                               |        |            |               | TW       |
|      |              |                                    | Surge of +/- 15% line variation of nominal line voltage 120Vac/60 VAC                                                           |        |            |               |          |
|      |              | 1600                               | Done for the day                                                                                                                |        |            |               | TW       |
| 4-11 |              | January 12,<br>2021<br>0800        | Resumed Voltage Dips and Interruptions                                                                                          |        |            |               | TW       |
|      |              | 1030                               | Completed 4-11 testing                                                                                                          |        |            |               | TW       |
|      |              | 1030                               | Setup for Surge Immunity                                                                                                        |        |            |               | 1,,,     |
|      |              |                                    | Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)<br>120/60 VAC                                                                  |        |            |               |          |
| 4-5  |              | 1045                               | Begin Surge testing                                                                                                             |        |            |               |          |
| 4-5  |              |                                    | Setup for Surge Immunity  Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)                                                      |        |            |               | TW       |
|      |              |                                    | 120/60 VAC                                                                                                                      |        |            |               |          |
| 4-5  |              | 1045                               | Begin Surge testing                                                                                                             |        |            |               | TW       |
| _    |              | 1630                               | Completed Surge Immunity                                                                                                        |        |            |               | TW       |



#### **Ground Planes / CALC**

| Test | Test<br>Code | Date                              | Event                                                                                                                   | O<br>T | Time (hrs) | Result | Initials |
|------|--------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|------------|--------|----------|
| 4-6  |              | January 13,<br>2021<br>0800 - 100 | Conducted RF Immunity (PR121029-00)<br>10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s<br>dwell, 120/60 VAC       |        | 2.0        | Pass   | CL       |
| 4-4  |              | 1000 - 1030                       | Electrical Fast Transient / Burst<br>Mains: +/- 2kV, I/O: +/- 1kV, 120/60 VAC                                           |        | .5         | Pass   | CL       |
| 4-8  |              | 1030 - 1100                       | Power Frequency H-Field Immunity 30A/m, 50 / 60 Hz, 3 axes, 120/60 VAC                                                  |        | .5         | Pass   | CL       |
| 4-2  |              | 1100 - 1200                       | Electrostatic Discharge<br>+/- 8kV Contact, +/-2, 4, 8, 15kV Air, 120/60 VAC                                            |        | 1.0        |        | CL       |
|      |              | 1200 - 1230                       | Lunch                                                                                                                   |        |            |        | CL       |
| 4-2  |              | 1230 - 1330                       | Electrostatic Discharge<br>+/- 8kV Contact, +/-2, 4, 8, 15kV Air, 120/60 VAC                                            |        | 1.0        | Pass   | CL       |
| 4-6  |              | 1330 - 1430                       | Conducted RF Immunity ( <b>PR121029</b> )<br>10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s<br>dwell, 120/60 VAC |        | 1.0        | Pass   | CL       |
| 4-4  |              | 1430 - 1530                       | Electrical Fast Transient / Burst ( <b>PR121029</b> )<br>Mains: +/- 2kV, I/O: +/- 1kV, 120/60 VAC                       |        | 1.0        | Pass   | CL       |
| 4-8  |              | 1530 - 1600                       | Power Frequency H-Field Immunity ( <b>PR121029</b> ) 30A/m, 50 / 60 Hz, 3 axes, 120/60 VAC                              |        | .5         | Pass   | CL       |



**End of Report**