8. Programirljivi moduli (1)

Sadržaj predavanja

- koncept programirljivih modula
- permanentna memorija
- programirljivo logičko polje
- poluprogramirljivo logičko polje
- složeni programirljivi moduli
- programirljivo polje logičkih blokova

Koncept programirljivih modula

- programirljivi moduli
 - ~ "programirljive naprave", PLD (engl. Programmable Logic Devices):
 - ostvarivanje složenije funkcije koja *nije* unaprijed određena
 moduli opće namjene
 - mogućnost naknadnog "programiranja"
 - ~ konfiguriranje sklopa u smislu određivanja "izvana opazivog ponašanja":
 - u posebnim uređajima
 - unutar uređaja u kojem se modul koristi

Koncept programirljivih modula

- struktura složenija (puno "logike"), ali nije fiksirana:
 - logički sklopovi ("vrata", engl. gates)
 ili skupovi logičkih sklopova (~ "logički blokovi")
 - tvornički izvedeni kontakti ili programirljive sklopke:
 - različita povezivanja logičkih sklopova
 - konfiguriranje skupova logičkih sklopova unutar modula
 - osnovna struktura
 - ~ dvodimenzijsko polje dekoder-koder: permanentna memorija

Koncept programirljivih modula

- podjela programirljivih modula:
 - jednostavni PLD (engl. Simple PLD, SPLD):
 - programirljivo logičko polje, PLA
 - poluprogramirljivo logičko polje, PAL
 - složeni PLD (engl. Complex PLD, CPLD)
 - ~ više programirljivo povezanih SPLD u modulu
 - programirljiva polja logičkih blokova (engl. Field Programmable Gate Arrays, FPGA)
 - ~ *veliki broj* programirljivo povezanih *programirljivih* logičkih blokova

Sadržaj predavanja

- koncept programirljivih modula
- permanentna memorija
 - funkcionalnost i struktura
 - tehnologija izvedbe
 - ostvarivanje Booleovih funkcija
 - karakteristične primjene
- programirljivo logičko polje
- poluprogramirljivo logičko polje
- složeni programirljivi moduli
- programirljivo polje logičkih blokova

- funkcijski pogled
 - ~ sklop s *permanentno* upisanim sadržajem: *memorija*
 - jedan upis (obično pri proizvodnji), ostalo čitanje
 ispisna memorija:
 "samo-se-čita", ROM (engl. Read Only Memory)
 - može i više upisa, ali zanemarivo malo u odnosu na broj čitanja
- izvedba
 - ~ kombinacijski sklop
 - podatak upisan nekom vrstom "ožičenja"
 - mogućnost "programiranja"

- karakteristična struktura
 ~ dva polja:
 - ulazno ili *dekodersko* polje:
 - generiranje potrebnog broja internih adresnih linija
 - potpuno adresiranje: "1-od-2ⁿ"
 - dekoder
 ~ I sklopovi na izlazima → I polje
 - izlazno ili kodersko polje:
 - generiranje bitova adresirane "riječi"
 aktiviranje željenih izlaza:
 "kodiranje" pojedinih simbola
 - koder
 - ~ ILI sklopovi na izlazima → *ILI polje* (izlaz = podatak1 ILI podatak2 ILI ...)

- karakteristična struktura:
 - dva polja
 - broj "memorijskih riječi" = 2ⁿ
 - broj bitova/riječ = b
 - kapacitet: W = 2ⁿ x b
- programiranje (kodera!) ~ upis uzorka 1 i 0
 - ∀ memorijsku riječ

- karakteristična struktura s dva polja
 - ~ izvorno diodna matrica
 - osnovni logički sklopovi ostvareni diodnim mrežama
 - struktura tipa funkcije drugog reda (suma minterma)
 ~ oblik ILI-I
 - električka funkcija dioda
 ~ onemogućiti povratno djelovanje s drugih "šina" (engl. rails)
 - suvremene strukture
 poopćenja diodne matrice

• izvedba diodne matrice iz diodnih sklopova I i ILI

Zadatak: temeljeći sa na izvedbi permanentne memorije diodnom mrežom nacrtati:

- sklop 1-bitnog potpunog zbrajala
- sklop 1-bitnog potpunog odbijala
- sklop 1-bitnog potpunog zbrajala/odbijala (uputa: predvidjeti upravljačku varijablu K za odabir zbrajanja (K = 0), odnosno oduzimanja (K = 1))
- na raspolaganju su varijable i komplementi

- izvedbe ~ tehnologija:
 - bez mogućnosti programiranja, ROM
 - s mogućnošću jednokratnog programiranja, PROM (engl, Programmable ROM)
 - s mogućnošću *višekratnog* programiranja i brisanja UV svjetlom, EPROM (engl. Erasable PROM)
 ~ kućište sa staklenim prozorčićem
 - s mogućnošću višekratnog programiranja i brisanja *električkim* putem, EAROM (engl. Electrically Alterable ROM), EEPROM (engl. Electrically EPROM)

- "klasična" permanentna memorija, ROM:
 - uobičajena tehnologija~ MOSFET
 - programiranje u proizvodnji:
 - zadnja se maska izrađuje po narudžbi i sadrži potrebne veze
 - t_a ~ 100 ns

Zadatak: temeljeći sa na izvedbi permanentne memorije MOSFET tranzistorima nacrtati:

- sklop 1-bitnog potpunog zbrajala
- sklop 1-bitnog potpunog oduzimala
- sklop 1-bitnog potpunog zbrajala/oduzimala (uputa: predvidjeti upravljačku varijablu K za odabir zbrajanja (K = 0), odnosno oduzimanja (K = 1))

- s mogućnošću jednokratnog programiranja, PROM:
 - bipolarna tehnologija, tipično TTL
 višeemiterski tranzistor
 - za male serije
 ~ programiranje "na licu mjesta" (engl. in-the-field)
 - programiranje
 račom strujom (U_B >>)
 - $t_a \sim 30 \div 50 \text{ ns}$

- s mogućnošću višekratnog programiranja i brisanja UV svjetlom, EPROM:
 - tehnologija MOSFET
 posebna izvedba NMOS tranzistora
 "s lebdećom elektrodom", FAMOS
 (engl. Floating-gate Avalanche Injection MOS)
 - programiranje
 ~ U_{G2D} ~ 25 V
 prodor elektrona u G₁ lavinskim probojem
 - t_a ~ 200 ns

- s mogućnošću višekratnog programiranja i brisanja električkim putem, EAROM, EEPROM:
 - izbjeći probleme EPROM
 dugo brisanje cijelog sadržaja u posebnom uređaju
 - smanjen razmak G₁ i D
 upisivanje i brisanje podatka tuneliranjem
 (upis: U_{G2D} ~ 10 V, brisanje: U_{G2D} ~ -10 V)
 - t_a ~ 250 ns

Primjer: ROM s 8 4-bitnih riječi (ROM 8x4)

riječ	A ₂	A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1	0	1
1	0	0	1	0	0	1	1
2	0	1	0	1	0	0	0
3	0	1	1	1	1	0	1
4	1	0	0	0	1	1	0
5	1	0	1	1	0	0	1
6	1	1	0	1	0	1	0
7	1	1	1	0	1	1	0

polje = matrica~ matrični prikaz

- primjena ROM:
 - pohranjivanje značajnih podataka važnih za rad cjelokupnog digitalnog sustava (npr. računalo)
 - pohranjivanje sustavskih programa
 - upravljačka memorija kod *mikroprogramiranja* posebna izvedba upravljačke jedinice procesora
 - pretvorba koda
 - ~ naročito generatori znakova za rasterske prikaze (zasloni, matrični pisači)
 - aritmetički sklopovi:
 - ~ izvedbe tablica posebnih funkcija (npr. trigonometrijske)
- problem
 - ~ ROM je *sporiji*, jer ima više razina logike

Zadatak: permantnom memorijom ostvariti slijedeće pretvornike koda:

- BCD u 2421
- BCD u 7-segmentni
- koji su parametri (broj riječi x broj bitova/riječ) potrebnih permanentnih memorija?

Primjer: sklop za množenje 8-bitnih brojeva

- tablica množenja ugrađena u ROM
 ~ pregledna tablica (engl. Look-Up Table, LUT)
- efikasnija izvedba:
 - kombinacija izvjesnog broja ROMova značajno manjeg kapaciteta (parcijalni produkti) i zbrajala
 - veća kašnjenja!

množenje 8-bitnih brojeva
potreban kapacitet *prevelik*:

$$C = (8+8) \cdot 2^{8+8} = 2^4 \cdot 2^{16} = 2^{20} = 1Mbit$$

"rastavljanje" multiplikanda i multiplikatora:

$$M = (m_7 m_6 m_5 m_4) \cdot 2^4 + (m_3 m_2 m_1 m_0) = m \cdot 2^4 + \Delta m$$

$$N = (n_7 n_6 n_5 n_4) \cdot 2^4 + (n_3 n_2 n_1 n_0) = n \cdot 2^4 + \Delta n$$

$$P = M \cdot N$$

$$= (m \cdot 2^4 + \Delta m) \cdot (n \cdot 2^4 + \Delta n) =$$

$$= (m \cdot n) \cdot 2^8 + (\Delta m \cdot n + m \cdot \Delta n) \cdot 2^4 + \Delta m \cdot \Delta n$$

dovoljan puno manji kapacitet:

$$C' = (4+4) \cdot 2^{4+4} = 2Kbit; C_{ukupni} = 4 \cdot C' = 8Kbit$$

sklop zasnovan na kompoziciji manjih ROMova:

- interpretacija podataka "pohranjenih" u ROM:
 - logičke funkcije (više njih!)
 - svaki izlaz
 jedna logička funkcija
 - sve funkcijevišeizlazna funkcija
 - ROM~ generator funkcija

$$f_i(A_2, A_1, A_0) = D_i \quad 0 \le i \le 3$$

$$f_0 = \sum m(0,1,3,5)$$

$$f_1 = \sum m(1,4,6,7)$$

$$f_2 = \sum m(0,3,4,7)$$

$$f_3 = \sum m(2,3,5,6)$$

- zapažanje
 - ~ sklopovski povoljnije koristiti raspodijeljeni dekoder (engl. split decoder)

 razvoj ostvarivanja funkcija raspodijeljenim dekodiranjem ROMa ~ ostvarivanje funkcija multipleksorom!

• simulacija permanentne memorije:

ostvarivanja funkcija ROMom i multipleksorom
 ~ Shannonova ekspanzija:

$$f(A,B,C) = f(0,B,C) \cdot \overline{A} + f(1,B,C) \cdot A$$

$$f(A,B,C) = f(0,0,C) \cdot \overline{A} \cdot \overline{B} + f(0,1,C) \cdot \overline{A} \cdot B$$

$$+ f(1,0,C) \cdot A \cdot \overline{B} + f(1,1,C) \cdot A \cdot B$$

$$f(A,B,C) = f(0,0,0) \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} + f(0,0,1) \cdot \overline{A} \cdot \overline{B} \cdot C$$

$$+ f(0,1,0) \cdot \overline{A} \cdot B \cdot \overline{C} + f(0,1,1) \cdot \overline{A} \cdot B \cdot C$$

$$+ f(1,0,0) \cdot A \cdot \overline{B} \cdot \overline{C} + f(1,0,1) \cdot A \cdot \overline{B} \cdot C$$

$$+ f(1,1,0) \cdot A \cdot B \cdot \overline{C} + f(1,1,1) \cdot A \cdot B \cdot C$$

npr. $\varphi_3(C), \varphi_2(C), \varphi_1(C), \varphi_0(C)$

 parcijalne funkcije kod Shannonova ekspanzije u kojima je neki od literala fiksiran (0 ili 1)
 ~ kofaktori, rezidui (ostaci), rezidualne funkcije

$$f(A, B, C) = f(0,0,C) \cdot \overline{A} \cdot \overline{B} + f(0,1,C) \cdot \overline{A} \cdot B$$

$$+ f(1,0,C) \cdot A \cdot \overline{B} + f(1,1,C) \cdot A \cdot B$$

$$\varphi_0(C) = f(0,0,C)$$

$$\varphi_1(C) = f(0,1,C)$$

$$\varphi_2(C) = f(1,0,C)$$

$$\varphi_3(C) = f(1,1,C)$$

Primjer: potpuno zbrajalo/odbijalo

- izvedba s ROMom 8x4 i 2 MUXa 2/1
 - K=0: zbrajalo, K=1: odbijalo
 - uočiti: S_i = D_i, simetrija C_i i Z_i

A_2	A_1	A_0	D_2	D_0	D_3	D_1
A_i	B_{i}	C_{i-1}	S_{i}	C_{i}	D_{i}	Z_{i}
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

- izvedba s 2 MUXa 8/1 u funkciji ROMova
 - K=0: zbrajalo, K=1: odbijalo

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 7: Standardni kombinacijski moduli.
- koncept programirljivih modula: str. 276
- permanentna memorija: str. 267-275

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 7: Standardni kombinacijski moduli.
- permanentna memorija: 7.27-7.29

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 5: Standardni kombinacijski moduli.
- permanentna memorija:
 - riješeni zadaci: 5.12b-5.15