

Topic: Bayesian VAR models

Author: Liana Isayan

Bayesian Statistics, the 2<sup>nd</sup> Midterm

# What is VAR? Why VAR?

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C x_t + \epsilon_t$$

#### where

- $y_t = (y_{1t}, y_{2t}, ..., y_{Kt})$ ' is a k x 1 vector of endogenous variables,
- $x_t = (x_{1t}, x_{2t, ...,} x_{dt})$ ' is a d x 1 vector of exogenous variables,
- $A_1, \ldots, A_p$  are k x k matrices of lag coefficients to be estimated,
- C is a k x d matrix of exogenous variable coefficients to be estimated,
- $e_t = (e_{1t_i}, e_{2t_i, ..., e_{Kt}})$ ' is a k x 1 white noise innovation process, with  $E(e_t) = 0$ ,  $E(e_t, e_t) = \sum_e$ , and  $E(e_t, e_t) = 0$  for  $s \neq t$ .

## Suppose that we have VAR(p) model given by:

$$y_t = a_0 + \sum_{j=1}^p A_j y_{t-j} + \epsilon_t$$

where  $y_t$  for t = 1,...,T is an vector containing observations on m different series and  $e_t$  is an vector of errors where we assume  $e_t$  is i.i.d.  $N(0, \Sigma_e)$ . For compactness we may rewrite the model as:

$$Y = XA + E$$
.

or

$$y = (I_m \otimes X)\theta + e$$

where Y and E are T x m matrices and X =  $(x_1, ..., x_t)$ ' is a T x (mp + 1) matrix for  $x_t = (1, y'_{t-1}, ..., y'_{t-q})$ ,  $I_m$  is the identity matrix of dimention m,  $\theta = \text{vec}(A)$ , and  $e \sim N(0, \Sigma_e \otimes I_T)$ . The likelihood function is:

$$l(\theta, \Sigma_{\epsilon}) \propto \left| \Sigma_{\epsilon} \otimes I_T \right|^{-1/2} \exp \left\{ -\frac{1}{2} (y - (I_m \otimes X)\theta)' (\Sigma_{\epsilon} \otimes I_T)^{-1} (y - (I_m \otimes X)\theta) \right\}$$

To illustrate how to derive the posterior moments, let us assume  $\Sigma_{\epsilon}$  is known and a multivariate normal prior for  $\theta$ :

$$\Pi(\theta) \propto |V_0|^{-1/2} \exp \left\{ -\frac{1}{2} (\theta - \theta_0)' V_0^{-1} (\theta - \theta_0) \right\}$$

where  $\theta_0$  is the prior mean and  $V_0$  is the prior covariance.

## Suppose that we have VAR(p) model given by:

When we combine this prior with the likelihood function given above, the posterior density can be written as:

$$\Pi(\theta | y) = \exp \left\{ -\frac{1}{2} \cdot ((V_0^{-1/2}(\theta - \theta_0))'(V_0^{-1/2}(\theta - \theta_0))'(V_0^{-1/2}(\theta$$

$$+\left.\left\{(\boldsymbol{\Sigma}_{\epsilon}^{-1/2}\otimes\boldsymbol{I}_{T})\boldsymbol{y}-(\boldsymbol{\Sigma}_{\epsilon}^{-1/2}\otimes\boldsymbol{X})\boldsymbol{\theta}\right\}'\left\{(\boldsymbol{\Sigma}_{\epsilon}^{-1/2}\otimes\boldsymbol{I}_{T})\boldsymbol{y}-(\boldsymbol{\Sigma}_{\epsilon}^{-1/2}\otimes\boldsymbol{X})\boldsymbol{\theta}\right\}\right)\right\}$$

which is a multivariate normal pdf. For simplicity, define

$$w \equiv \begin{bmatrix} V_0^{-1/2} \theta_0 \\ (\Sigma_{\epsilon}^{-1/2} \otimes I_T) y \end{bmatrix}$$

$$W \equiv \begin{bmatrix} V_0^{-1/2} \\ (\Sigma_{\epsilon}^{-1/2} \otimes X) \end{bmatrix}$$

Then the exponent in above equation can be written as

$$\Pi(\theta \mid y) \propto \exp \left\{ -\frac{1}{2} (w - W\theta)'(w - W\theta) \right\} \propto$$

$$\exp\left\{-\frac{1}{2}(\theta-\bar{\theta})'W'W(\theta-\bar{\theta})+(w-W\bar{\theta})'(w-W\bar{\theta})\right\}$$

where the posterior mean  $\bar{\theta}$  is

$$\bar{\theta} = (W'W)^{-1}W'w = [V_0^{-1} + (\Sigma_{\epsilon}^{-1} \otimes X'X)]^{-1}[V_0^{-1}\theta_0 + (\Sigma_{\epsilon}^{-1} \otimes X)'y]$$

Since is known, the last part in exponent equation has no randomness about  $\bar{\theta}$ . The posterior therefore may be summarized as:

$$\pi(\theta | y) \propto \exp\left\{-\frac{1}{2}(\theta - \bar{\theta})' W' W(\theta - \bar{\theta})\right\}$$
$$= \exp\left\{-\frac{1}{2}(\theta - \bar{\theta})' \bar{V}^{-1}(\theta - \bar{\theta})\right\}$$

and the posterior covariance  $\overline{V}$  is given as:

$$\overline{V} = [V_0^{-1} + (\Sigma_{\epsilon}^{-1} \otimes X'X)]^{-1}.$$

## **Prior Selection**

- 1. The Litterman/Minnesota prior: A normal prior on  $\beta$  with fixed  $\Sigma$ .
- 2. The normal-flat prior: A normal prior on  $\beta$  that is independent of the distribution for  $\Sigma$ .
- 3. The normal-Wishart prior: A normal prior on  $^{\beta}$  and a Wishart prior on  $^{\Sigma}$ .
- 4. The independent normal-Wishart prior. A normal prior on  $\beta$  and a Wishart prior on where each endogenous equation's coefficients' distributions may be independent from each other.
- 5. The Sims-Zha normal-flat. A structural VAR equivalent of the normal-flat prior.
- 6. The Sims-Zha normal-Wishart prior. A structural VAR equivalent of the normal-Wishart prior.
- 7. The Giannone, Lenza and Primiceri prior. A prior that treats the hyper-parameters as parameters that can be selected through an optimization procedure, etc.

Often a prior is specified that simplifies the posterior analysis. In particular, it is convenient to specify the prior such that the posterior is from a known family of distributions.

#### The Litterman/Minnesota prior:

$$\theta \sim N(\theta_0, V_0)$$

 $\theta_0=0$  (where the hyper-parameter  $\mu_1=0$ , which indicates a zero mean model) and nonzero prior covariance  $V_0\neq 0$ . Note that although the choice of zero mean could lessen the risk of over-fitting, theoretically any value for  $\mu_1$  is possible.

 $V_0$  is assumed to be a diagonal matrix. The diagonal elements corresponding to endogenous variables,  $v_{i,i}$  at lag I are specified by:

$$v_{ij}^{l} = \begin{cases} \left(\frac{\lambda_{1}}{l^{\lambda_{3}}}\right)^{2} & \text{for } (i = j) \\ \left(\frac{\lambda_{1}\lambda_{2}\sigma_{i}}{l^{\lambda_{3}}\sigma_{j}}\right)^{2} & \text{for } (i \neq j) \end{cases}$$

Given this choice of prior, the posterior for  $\theta$  takes the form

$$\theta \sim N(\bar{\theta}, \bar{V})$$

where

$$\overline{V} = \left[ V_0^{-1} + (\hat{\Sigma}_{\epsilon}^{-1} \otimes XX) \right]^{-1}$$

and

$$\bar{\theta} = \overline{V}[V_0^{-1}\theta_0 + (\hat{\Sigma}_{\epsilon}^{-1} \otimes X)'y]$$

#### A numerical comparison: SVAR vs BVAR

The assessment of the impact of the economic shock in Russia by a SVAR auto-regression model



#### Highlight

- According to the results of the analysis, the one unit standard deviation change (i.e. 3.1pp change) of the economic growth of the Russian Federation in the short run leads to a change of the RA GDP growth by up to 2.28 percentage points. The impact of the unit sd change (25.8pp) in oil prices (3.5pp) on the GDP growth of the Republic of Armenia is also transmitted by influencing other variables. However, it fades quickly after 1-3 quarters.
- Meanwhile, the effects of the RUB/USD exchange rate and the GDP growth are more stable. Among the mechanisms of transmission of the economic shock in Russia, the impact of the growth rates of remittances, as well as imports and exports is significant. In the case of the former, 1 unit sd shock effect reaches up to 13.1 percentage points. The impact on the growth of private consumption in Armenia is similar to that of GDP growth.
- In a short run (1 quarter) the one unit standard deviation increase (9.8pp) of the RUB/USD exchange rate shocks the CPI of the Republic of Armenia positively (-0.5 percentage points), while in a two year period it leads to a growth of up to 0.06 percentage points.
- The most significant impact on RA CPI has the inflation shock in Russia (up to 1.36pp), while the most significant impact on the AMD / USD exchange rate has the inflation shock in Russia (up to 2.8 percentage points). In a 1-1.5 year period the REER is also significantly affected by the oil price and RF GDP growth, while the impact of RUB / USD exchange rate shock is seen instantly.

Source: Authors' calculations.

#### A numerical comparison: SVAR vs BVAR

The Bayesian VAR model





#### Highlight

- An one lag Bayesian VAR model was developed with Minessota/Litterman prior and with the following parameters: Mul (AR(1) coefficient for prior) = 0,  $\lambda 1 = 0.1$ ,  $\lambda 2 = 0.99$ , and  $\lambda 3 = 1$ .
- Initial residual covariance option is selected to be Univariate AR estimate.
- The directions and amplitudes of the effects in the two models are almost the same.
- To compare the performance of the two models, a well-known method in time series analysis of out of sample forecasting is applied.

Source: Authors' calculations.

#### A numerical comparison: SVAR vs BVAR

Out of sample forecasts



RMSE indicator for the BVAR model out of sample forecasts (7.26) is smaller than the RMSE indicator (7.64) for the SVAR model out of sample forecasts

#### References

Bock M., Feldkircher M., Siklos P. (2021), International Effects of Euro Area Forward Guidance, *OXFORD BULLETIN OF ECONOMICS AND STATISTICS*, 0305-9049, doi: 10.1111/obes.12438.

Bock M., Feldkircher M., Huber F. (2020), BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R. *Globalization Institute Working Paper No. 395*, Available at SSRN: https://ssrn.com/abstract=3682355 or http://dx.doi.org/10.24149/gwp395.

Chan J., (2021): "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," *International Journal of Forecasting*, 37(3), 1212–1226.

Chan J. (2021), Asymmetric Conjugate Priors for Large Bayesian VARs, Draft, https://arxiv.org/pdf/2111.07170v1.pdf.

Chan J., Koop G., Yu X. (2021), Large Order-Invariant Bayesian VARs with Stochastic Volatility, Draft, https://arxiv.org/pdf/2111.07225v1.pdf.

Doan, T., R. Litterman, and C. Sims (1984): "Forecasting and conditional projection using realistic prior distributions," *Econometric reviews*, 3(1), 1–100.

Enders W. (2015), Applied econometric time series, John Wiley & Sons, Inc., USA (pp 285-305).

Hamilton J. (1994), *Time Series Analysis*, Princeton University Press, Princeton, New Jersey (pp 360-362).

IHS Markit (2020), EViews 12 User's Guide II, Seal Beach, CA, 1411 pages.

Kook J., Vaughn K., DeMaster D., Ewing-Cobbs L., Vannucci M. (2020), BVAR-Connect: A Variational Bayes Approach to Multi-Subject Vector Autoregressive Models for Inference on Brain Connectivity Networks, *Neuroinformatics*, https://arxiv.org/pdf/2006.04608v1.pdf.

Koop, G., Korobilis, D. Pettenuzzo, D. (2019). 'Bayesian compressed vector autoregressions', Journal of Econometrics, Vol. 210, pp. 135–154.

Kotzé K. (2017), Bayesian vector autoregression models, https://kevinkotze.github.io/ts-9-bvar/.

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25–38. https://doi.org/10.2307/1391384.

Nurfalah I., Aam Slamet Rusydiana A., Laila N., Cahyono E. (2018), Early Warning to Banking Crises in the Dual Financial System in Indonesia: The Markov Switching Approach, JKAU: Islamic Econ., Vol. 31 No. 2, pp. 133-156, DOI:10.4197/Islec. 31-2.10.

Schorfheide F., Song D. (2013), Real-time forecasting with a mixed-frequency VAR, Working Paper 19712, Cambridge, MA 02138, http://www.nber.org/papers/w19712.

Sims, C. A., and T. Zha (1998): "Bayesian methods for dynamic multivariate models," *International Economic Review*, 39(4), 949–968.

#### Appendix 1



Forecast Evaluation

Date: 05/22/22 Time: 20:45 Sample: 2002Q1 2021Q4 Included observations: 80

| Variable    | Inc. obs. | RMSE     | MAE      | MAPE     | Theil    |
|-------------|-----------|----------|----------|----------|----------|
| OIL_GR      | 80        | 26.68002 | 20.26156 | 20.24664 | 0.116186 |
| USD RUB GR  | 80        | 10.81261 | 7.438419 | 6.737471 | 0.050401 |
| RUS CPI INF | 80        | 2.562801 | 1.949276 | 82.52901 | 0.389733 |
| RUS_GDP_GR  | 80        | 3.791897 | 2.217284 | 401.3456 | 0.427244 |
| USD_AMD_GR  | 80        | 5.833716 | 4.523339 | 160.7803 | 0.293975 |
| REER_GR     | 80        | 4.697310 | 3.873658 | 3.848860 | 0.023063 |
| EXPORT_GR   | 80        | 24.32010 | 16.67623 | 102.7956 | 0.750270 |
| IMPORT_GR   | 80        | 11.54012 | 8.430824 | 8.470199 | 0.054583 |
| REM_GR      | 80        | 26.91111 | 19.72932 | 108.9811 | 0.507154 |
| CPI_INF_ARM | 80        | 3.318230 | 2.792331 | 202.7482 | 0.500309 |
| PCONS_GR    | 80        | 6.114204 | 4.295627 | 4.232168 | 0.029192 |
| ARM_GDP_GR  | 80        | 5.530471 | 3.907050 | 3.839054 | 0.026038 |

RMSE: Root Mean Square Error

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

Theil: Theil inequality coefficient

#### Appendix 2

### ADF tests for stationarity

Null Hypothesis: ARM\_GDP\_GR has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | iller test statistic<br>1% level<br>5% level<br>10% level | -3.928795<br>-3.511262<br>-2.896779<br>-2.585626 | 0.0029 |
|                                              |                                                           |                                                  |        |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: IMPORT\_GR has a unit root

Exogenous: Constant

Lag Length: 7 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -3.653729<br>-3.519050<br>-2.900137<br>-2.587409 | 0.0068 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: REER\_GR has a unit root

Exogenous: Constant

Lag Length: 9 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -3.430760<br>-3.521579<br>-2.901217<br>-2.587981 | 0.0129 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: CPI\_INF\_ARM has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -2.747058<br>-3.515536<br>-2.898623<br>-2.586605 | 0.0708 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: OIL GR has a unit root

Exogenous: Constant

Lag Length: 6 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -3.292129<br>-3.517847<br>-2.899619<br>-2.587134 | 0.0186 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: REM GR has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -2.332564<br>-3.515536<br>-2.898623<br>-2.586605 | 0.1645 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: EXPORT\_GR has a unit root

Exogenous: Constant

Lag Length: 5 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | uller test statistic<br>1% level<br>5% level<br>10% level | -2.072311<br>-3.516676<br>-2.899115<br>-2.586866 | 0.2563 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: PCONS\_GR has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | uller test statistic<br>1% level<br>5% level<br>10% level | -2.981995<br>-3.515536<br>-2.898623<br>-2.586605 | 0.0410 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Null Hypothesis: RUS\_CPI\_INF has a unit root

Exogenous: Constant

Lag Length: 8 (Automatic - based on AIC, maxlag=11)

|                                              |                                                           | t-Statistic                                      | Prob.* |
|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ıller test statistic<br>1% level<br>5% level<br>10% level | -2.208425<br>-3.520307<br>-2.900670<br>-2.587691 | 0.2051 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

## **Stability conditions: characteristic root test**

RUS\_GDP\_GR: Inverse Roots of AR/MA Polynomial(s) IMPORT\_GR: Inverse Roots of AR/MA Polynomial(s)





PCONS\_GR: Inverse Roots of AR/MA Polynomial(s)









VAR Lag Order Selection Criteria

Endogenous variables: OIL\_GR USD\_RUB\_GR RUS\_CPI\_INF RUS\_GDP\_GR U...

Exogenous variables: C Date: 03/29/22 Time: 22:16 Sample: 2002Q1 2021Q4 Included observations: 77

\*Note: selection calculation does not impose restricted VAR coefficient restrictions

| Lag         | LogL**    | LR                                      | FPE      | AIC                  | SC                    | HQ                    |
|-------------|-----------|-----------------------------------------|----------|----------------------|-----------------------|-----------------------|
| 0<br>1<br>2 | -2708.768 | NA<br>713.4435<br>230.6612<br>243.3121* | 1.89e+19 | 78.84535<br>78.14981 | 83.59383*<br>87.28152 | 80.74470*<br>81.80242 |

\* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

|                                                                                                                            | OIL_GR                                       | USD_RUB                                              | . RUS_CPI_INF                                 | RUS_GDP                                       | USD_AMD                                      | REER_GR                                      | EXPORT_GR                                     | IMPORT_GR                                    | REM_GR                                        | CPI_INF_ARM                                  | PCONS_GR                                     | ARM_GDP                                      |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| OIL_GR(-1)                                                                                                                 | 0.862695<br>(0.12705)<br>[ 6.79022]          | -0.094086<br>(0.05534)<br>[-1.70009]                 | 0.009626<br>(0.01280)<br>[ 0.75217]           | 0.040879<br>(0.02045)<br>[ 1.99894]           | 0.019439<br>(0.02911)<br>[ 0.66769]          | -0.001769<br>(0.02205)<br>[-0.08025]         | 0.257135<br>(0.11344)<br>[ 2.26672]           | 0.189621<br>(0.06401)<br>[ 2.96230]          | -0.039455<br>(0.14303)<br>[-0.27585]          | -0.021164<br>(0.01709)<br>[-1.23809]         | 0.030845<br>(0.03462)<br>[ 0.89086]          | 0.025363<br>(0.03108)<br>[ 0.81601]          |
| USD_RUB_GR(-1)                                                                                                             | 0.074828<br>(0.23209)<br>[ 0.32241]          | 0.626706<br>(0.10110)<br>[ 6.19908]                  | 0.007424<br>(0.02338)<br>[ 0.31753]           | 0.059872<br>(0.03736)<br>[ 1.60268]           | -0.061327<br>(0.05959)<br>[-1.02917]         | -0.047560<br>(0.04537)<br>[-1.04834]         | 0.725994<br>(0.23436)<br>[ 3.09775]           | Inverse                                      | Roots of A                                    | R Characte                                   | ristic Polyr                                 | nomia<br>4791<br>3194)<br>7736]              |
| RUS_CPI_INF(-1)                                                                                                            | -1.543173<br>(0.80140)<br>[-1.92559]         | 0.741801<br>(0.34909)<br>[ 2.12498]                  | 0.806875<br>(0.08073)<br>[ 9.99491]           | -0.297732<br>(0.12900)<br>[-2.30808]          | 0.497768<br>(0.20264)<br>[ 2.45645]          | -0.062755<br>(0.15417)<br>[-0.40704]         | 0.183926<br>(0.79607)<br>[ 0.23104]           | 1.0 -                                        |                                               |                                              |                                              | 2812<br> 133)<br> 1454]                      |
| RUS_GDP_GR(-1)                                                                                                             | -0.973906<br>(0.62625)<br>[-1.55513]         | 0.104122<br>(0.27279)<br>[ 0.38169]                  | 0.049642<br>(0.06309)<br>[ 0.78690]           | 0.591557<br>(0.10080)<br>[ 5.86843]           | -0.549293<br>(0.18390)<br>[-2.98685]         | 0.292996<br>(0.14071)<br>[ 2.08232]          | 0.218614<br>(0.72945)<br>[ 0.29970]           | 0.5 -                                        |                                               | _                                            | •                                            | 2427<br>3625)<br>)363]                       |
| USD_AMD_GR(-1)                                                                                                             | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | 0.680461<br>(0.07016)<br>[ 9.69923]          | 0.097158<br>(0.05453)<br>[ 1.78182]          | -0.141098<br>(0.28577)<br>[-0.49376]          | 0.0                                          |                                               |                                              |                                              | 5877<br>3461)<br>3096]                       |
| REER_GR(-1)                                                                                                                | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | 0.023191<br>(0.09355)<br>[ 0.24789]          | 0.871843<br>(0.07271)<br>[ 11.9907]          | 0.072911<br>(0.38106)<br>[ 0.19134]           | 0.5 –                                        |                                               |                                              |                                              | 6970<br>3615)<br>3126]                       |
| EXPORT_GR(-1)                                                                                                              | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | -0.049283<br>(0.02491)<br>[-1.97813]         | 0.016018<br>(0.01936)<br>[ 0.82723]          | 0.467444<br>(0.10148)<br>[ 4.60623]           | 1.0 -                                        |                                               |                                              |                                              | 2595<br>2294)<br>2064]                       |
| IMPORT_GR(-1)                                                                                                              | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | 0.121662<br>(0.05721)<br>[ 2.12647]          | -0.028456<br>(0.04447)<br>[-0.63991]         | -0.119674<br>(0.23305)<br>[-0.51352]          | 1.5 <del> </del><br>-1.5<br>[ 3.63553]       | -1.0 -0.5<br>[-0.90877]                       | 0.0 0                                        | [2.57364]                                    | 1.5 7339<br>5269)<br>[ 0.70866]              |
| REM_GR(-1)                                                                                                                 | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | -0.027448<br>(0.01827)<br>[-1.50242]         | 0.026756<br>(0.01420)<br>[ 1.88430]          | 0.180934<br>(0.07442)<br>[ 2.43140]           | 0.045609<br>((<br>[ 1                        | 0.349152<br>NA NA                             | 0.008964                                     | 0.014587                                     | -0.021519<br>(0.01682)<br>[-1.27902]         |
| CPI_INF_ARM(-1)                                                                                                            | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | -0.536171<br>(0.13909)<br>[-3.85484]         | 0.229451<br>(0.10810)<br>[ 2.12249]          | 0.211374<br>(0.56655)<br>[ 0.37309]           | 0 NA<br>(0 NA<br>(1 NA<br>(1 NA              | NA NA<br>NA NA<br>NA NA<br>NA NA              | 0 0<br>0 0<br>0 0<br>NA NA                   | 0<br>0<br>0<br>NA                            | -0.107020<br>(0.12809)<br>[-0.83549]         |
| PCONS_GR(-1)                                                                                                               | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | -0.119523<br>(0.10696)<br>[-1.11746]         | -0.102328<br>(0.08313)<br>[-1.23092]         | 1.423155<br>(0.43567)<br>[ 3.26657]           | -0 NA NA NA NA                               | NA NA<br>NA NA<br>NA NA                       | NA NA<br>NA NA<br>NA NA                      | NA<br>NA<br>NA                               | 0.085839<br>(0.09850)<br>[ 0.87144]          |
| ARM_GDP_GR(-1)                                                                                                             | 0.000000                                     | 0.000000                                             | 0.000000                                      | 0.000000                                      | -0.077829<br>(0.11034)<br>[-0.70534]         | 0.155314<br>(0.08576)<br>[ 1.81101]          | -1.343934<br>(0.44946)<br>[-2.99014]          | 0.470004<br>(0.23864)<br>[ 2.00335]          | 0.12/115<br>(0.51023)<br>[ 0.24913]           | 0.06500<br>(0.06388)<br>[1.38715]            | 0.230250<br>(0.13023)<br>[ 1.81413]          | 0.610738<br>(0.10162)<br>[ 6.01012]          |
| С                                                                                                                          | 7.151472<br>(35.9386)<br>[ 0.19899]          | 50.45731<br>(15.6546)<br>[ 3.22316]                  | -1.898176<br>(3.62023)<br>[-0.52432]          | -11.06179<br>(5.78474)<br>[-1.91224]          | 10.26415<br>(15.1999)<br>[ 0.67528]          | 15.58141<br>(11.7254)<br>[ 1.32886]          | -106.1520<br>(61.1363)<br>[-1.73632]          | -24.36057<br>(33.0345)<br>[-0.73743]         | 67.61116<br>(71.6013)<br>[ 0.94427]           | 18.66452<br>(8.83630)<br>[ 2.11226]          | 23.86645<br>(17.9795)<br>[ 1.32742]          | 20.15908<br>(14.6877)<br>[ 1.37252]          |
| R-squared<br>Sum sq. resids<br>Mean dependent<br>S.D. dependent                                                            | 0.562692<br>43872.11<br>111.9310<br>35.86355 | 0.659894<br>8324.359<br>105.9113<br>17.71417         | 0.656453<br>445.1839<br>-0.697553<br>4.075954 | 0.540163<br>1136.671<br>-0.006524<br>5.629475 | 0.815904<br>1991.301<br>0.027317<br>11.77604 | 0.765264<br>1132.198<br>101.6277<br>7.863646 | 0.483588<br>29790.13<br>-0.496203<br>27.19509 | 0.572080<br>9674.696<br>104.3785<br>17.02512 | 0.511285<br>48918.90<br>-0.058780<br>35.82310 | 0.566918<br>689.4776<br>0.231481<br>4.517809 | 0.438782<br>2822.923<br>104.4136<br>8.030388 | 0.497126<br>2360.734<br>105.8241<br>7.757944 |
| Determinant resid covaria<br>Log likelihood<br>Akaike information criterion<br>Schwarz criterion<br>Number of coefficients |                                              | 7.66E+18<br>-2977.504<br>78.51909<br>82.23822<br>124 |                                               |                                               |                                              |                                              |                                               |                                              |                                               |                                              |                                              |                                              |

oil\_gr usd\_rub\_gr d\_rus\_cpi\_inf d\_rus\_gdp\_gr d\_usd\_amd\_gr reer\_gr d\_export\_gr import\_gr d\_rem\_gr

d\_cpi\_inf\_arm pcons\_gr arm\_gdp\_gr

| 0  | 0  | 0  | 0  | 0  | 0  | 1 |
|----|----|----|----|----|----|---|
| 0  | 0  | 0  | 0  | 0  | 0  |   |
| 0  | 0  | 0  | 0  | 0  | 0  |   |
| 0  | 0  | 0  | 0  | 0  | 0  |   |
| NA | NA | NA | NA | NA | NA |   |
| NA | NA | NA | NA | NA | NA |   |
| NA | NA | NA | NA | NA | NA |   |
| NA | NA | NA | NA | NA | NA |   |
| <  |    |    |    |    |    | > |

VAR Lag Order Selection Criteria

Endogenous variables: OIL\_GR USD\_RUB\_GR D\_RUS\_CPI\_INF D\_RUS\_GDP...

Exogenous variables: C Date: 03/23/22 Time: 23:53 Sample: 2001Q1 2021Q4 Included observations: 78

\*Note: selection calculation does not impose restricted VAR coefficient restrictions

| Lag | LogL**    | LR        | FPE       | AIC       | SC        | HQ        |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|
| 0   | -3077.016 | NA        | 4.06e+19  | 79.20553  | 79.56810  | 79.35067  |
| 1   | -2712.508 | 607.5134  | 1.48e+17  | 73.55148  | 78.26489* | 75.43834  |
| 2   | -2551.128 | 219.3110  | 1.21e+17  | 73.10584  | 82.17010  | 76.73443  |
| 3   | -2360.926 | 199.9558  | 7.52e+16  | 71.92118  | 85.33629  | 77.29149  |
| 4   | -2079.391 | 209.3466* | 1.16e+16  | 68.39464  | 86.16060  | 75.50668  |
| 5   | -1719.711 | 156.7836  | 2.05e+15* | 62.86438* | 84.98118  | 71.71814* |

\* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion





- 0.6

- 0.4

- 0.2

0.0

- -0.2

- -0.4



VAR Residual Cross-Correlations

Ordered by variables Date: 03/29/22 Time: 22:38

Sample: 2002Q1 2021Q4 Included observations: 79

|                 | OIL_GR    | USD_RUB_GR | RUS_CPI_INF | RUS_GDP_GR | USD_AMD_GR | REER_GR   | EXPORT_GR | IMPORT_GR | REM_GR    | CPI_INF_ARM | PCONS_GR  | ARM_GDP_GR |
|-----------------|-----------|------------|-------------|------------|------------|-----------|-----------|-----------|-----------|-------------|-----------|------------|
| OIL_GR          | 1.000000  | -0.479793  | 0.137369    | 0.598651   | -0.030391  | -0.356869 | 0.198438  | 0.392353  | 0.480466  | 0.363486    | 0.495655  | 0.587781   |
| OIL_GR(-1)      | 0.217935  | -0.172486  | -0.078645   | 0.250844   | -0.030880  | -0.153771 | 0.029636  | 0.025654  | 0.082006  | 0.153598    | 0.012220  | 0.161625   |
| USD_RUB_GR      | -0.479793 | 1.000000   | 0.278993    | -0.304882  | 0.296556   | 0.470214  | -0.219383 | -0.316501 | -0.487401 | -0.161256   | -0.276340 | -0.277017  |
| USD_RUB_GR(-1)  | -0.101114 | 0.118989   | 0.327436    | -0.328996  | 0.245852   | 0.134079  | -0.223676 | -0.145989 | -0.179335 | 0.103159    | -0.097290 | -0.250354  |
| RUS_CPI_INF     | 0.137369  | 0.278993   | 1.000000    | -0.176775  | 0.362283   | 0.065354  | -0.291816 | -0.065522 | -0.210130 | 0.439202    | 0.047471  | 0.040911   |
| RUS_CPI_INF(-1) | 0.231223  | -0.210055  | 0.362899    | 0.066517   | 0.060028   | -0.134329 | -0.022060 | 0.045390  | 0.054006  | 0.377522    | 0.115548  | 0.092435   |
| RUS_GDP_GR      | 0.598651  | -0.304882  | -0.176775   | 1.000000   | -0.355931  | -0.167430 | 0.402680  | 0.536381  | 0.484870  | 0.152054    | 0.477786  | 0.651638   |
| RUS_GDP_GR(-1)  | 0.021352  | -0.038510  | -0.196015   | 0.205803   | -0.050801  | -0.031893 | 0.034025  | 0.010998  | -0.024594 | -0.080096   | -0.079228 | 0.024030   |
| USD_AMD_GR      | -0.030391 | 0.296556   | 0.362283    | -0.355931  | 1.000000   | -0.378141 | -0.237142 | -0.153639 | -0.189160 | 0.058586    | -0.105244 | -0.211342  |
| USD_AMD_GR(-1)  | 0.106349  | -0.042767  | 0.207722    | -0.134880  | 0.263729   | -0.092475 | -0.169939 | -0.014267 | -0.004098 | 0.118179    | 0.051650  | 0.061165   |
| REER_GR         | -0.356869 | 0.470214   | 0.065354    | -0.167430  | -0.378141  | 1.000000  | -0.271650 | -0.339641 | -0.377276 | 0.105223    | -0.297921 | -0.238932  |
| REER_GR(-1)     | -0.225647 | 0.207827   | 0.171387    | -0.179364  | -0.037754  | 0.248146  | -0.178528 | -0.271387 | -0.147921 | 0.044754    | -0.215431 | -0.243315  |
| EXPORT_GR       | 0.198438  | -0.219383  | -0.291816   | 0.402680   | -0.237142  | -0.271650 | 1.000000  | 0.641697  | 0.292425  | -0.163731   | 0.401555  | 0.359465   |
| EXPORT_GR(-1)   | 0.132075  | 0.018872   | -0.089094   | 0.143374   | 0.081258   | 0.004510  | -0.017969 | -0.012394 | 0.026342  | 0.043777    | -0.002745 | 0.102097   |
| IMPORT_GR       | 0.392353  | -0.316501  | -0.065522   | 0.536381   | -0.153639  | -0.339641 | 0.641697  | 1.000000  | 0.333404  | -0.066453   | 0.628255  | 0.618181   |
| IMPORT_GR(-1)   | 0.072753  | -0.020146  | -0.161621   | 0.239662   | 0.033699   | -0.105441 | 0.050088  | 0.017357  | 0.051020  | -0.026550   | 0.033892  | 0.058650   |
| REM_GR          | 0.480466  | -0.487401  | -0.210130   | 0.484870   | -0.189160  | -0.377276 | 0.292425  | 0.333404  | 1.000000  | 0.064573    | 0.421201  | 0.321781   |
| REM_GR(-1)      | -0.056495 | -0.079646  | -0.206215   | 0.157750   | -0.054597  | -0.069741 | 0.136492  | 0.094253  | 0.035571  | -0.027226   | -0.112918 | 0.053567   |
| CPI_INF_ARM     | 0.363486  | -0.161256  | 0.439202    | 0.152054   | 0.058586   | 0.105223  | -0.163731 | -0.066453 | 0.064573  | 1.000000    | 0.024028  | 0.151288   |
| CPI_INF_ARM(-1) | 0.113121  | -0.216396  | 0.191170    | 0.191454   | -0.027693  | -0.160262 | 0.045857  | 0.121516  | 0.046279  | 0.200005    | 0.048767  | 0.194736   |
| PCONS_GR        | 0.495655  | -0.276340  | 0.047471    | 0.477786   | -0.105244  | -0.297921 | 0.401555  | 0.628255  | 0.421201  | 0.024028    | 1.000000  | 0.661120   |
| PCONS_GR(-1)    | 0.037235  | -0.093856  | -0.129430   | 0.172175   | -0.028649  | -0.118731 | 0.045128  | -0.001637 | 0.109936  | -0.041803   | 0.038400  | 0.043338   |
| ARM_GDP_GR      | 0.587781  | -0.277017  | 0.040911    | 0.651638   | -0.211342  | -0.238932 | 0.359465  | 0.618181  | 0.321781  | 0.151288    | 0.661120  | 1.000000   |
| ARM_GDP_GR(-1)  | 0.025108  | -0.123701  | -0.158350   | 0.160239   | 0.040141   | -0.166430 | -0.009339 | -0.032356 | 0.058025  | -0.031353   | -0.009956 | -0.077853  |

Bayesian VAR Estimates Date: 05/20/22 Time: 00:32

Sample (adjusted): 2002Q3 2021Q4 Included observations: 78 after adjustments

Prior type: Litterman / Minnesota

Initial residual covariance: Univariate AR

Constant included in covariance calculation Hyper-parameters: Mu1: 1, L1: 0.1, L2: 0.99, L3: 1, L4: inf

Standard errors in ( )

|                 | OIL_GR    | USD_RUB   | RUS_CPI_INF | RUS_GDP   | USD_AMD   | REER_GR   | EXPORT_GR | IMPORT_GR | REM_GR    | CPI_INF_ARM | PCONS_GR  | ARM_GDP   |
|-----------------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|
| OIL_GR(-1)      | 0.936620  | -0.007390 | 0.002791    | 0.005174  | -0.001906 | 0.009294  | 0.058745  | 0.038547  | -0.029685 | 0.000591    | 0.005023  | 0.008947  |
|                 | (0.07874) | (0.03591) | (0.00685)   | (0.01250) | (0.01782) | (0.01442) | (0.07750) | (0.04148) | (0.09883) | (0.01048)   | (0.02229) | (0.01888) |
| OIL_GR(-2)      | -0.039718 | 0.012890  | 0.000138    | -0.004446 | 0.002454  | 0.003522  | -0.001223 | -0.002856 | -0.005107 | -0.002538   | 0.004628  | -0.002053 |
|                 | (0.04683) | (0.02130) | (0.00406)   | (0.00742) | (0.01057) | (0.00855) | (0.04598) | (0.02460) | (0.05863) | (0.00622)   | (0.01322) | (0.01120) |
| USD_RUB_GR(-1)  | 0.022612  | 0.894129  | 0.004358    | -0.012398 | -0.015910 | -0.016862 | 0.073412  | 0.003060  | 0.042647  | -0.002802   | -0.028539 | -0.018628 |
|                 | (0.16886) | (0.07794) | (0.01478)   | (0.02697) | (0.03845) | (0.03110) | (0.16721) | (0.08948) | (0.21323) | (0.02261)   | (0.04810) | (0.04073) |
| USD_RUB_GR(-2)  | 0.019985  | -0.031435 | -0.006602   | 0.008636  | -0.021629 | -0.004991 | 0.042476  | 0.026855  | 0.026868  | -0.001312   | 0.008052  | 0.010914  |
|                 | (0.10015) | (0.04635) | (0.00877)   | (0.01600) | (0.02281) | (0.01845) | (0.09920) | (0.05309) | (0.12650) | (0.01342)   | (0.02853) | (0.02416) |
| RUS_CPI_INF(-1) | -0.554366 | 0.072975  | 0.903007    | -0.033450 | 0.147493  | -0.062516 | 0.377410  | -0.160792 | -0.497631 | -0.010866   | -0.155649 | -0.034310 |
|                 | (0.75976) | (0.34860) | (0.06685)   | (0.12139) | (0.17304) | (0.14000) | (0.75253) | (0.40272) | (0.95963) | (0.10179)   | (0.21645) | (0.18330) |
| RUS_CPI_INF(-2) | -0.445465 | 0.182147  | -0.083504   | -0.027615 | 0.004102  | 0.031725  | -0.212295 | -0.071755 | -0.298627 | -0.062083   | -0.044919 | -0.066794 |
|                 | (0.50611) | (0.23221) | (0.04468)   | (0.08087) | (0.11528) | (0.09325) | (0.50136) | (0.26829) | (0.63930) | (0.06780)   | (0.14421) | (0.12212) |
| RUS_GDP_GR(-1)  | -0.405576 | -0.023860 | 0.025069    | 0.912341  | -0.206965 | 0.145225  | 0.032104  | -0.028653 | 0.045616  | 0.031134    | -0.032570 | -0.000799 |
|                 | (0.49778) | (0.22833) | (0.04357)   | (0.08005) | (0.11337) | (0.09170) | (0.49304) | (0.26384) | (0.62873) | (0.06668)   | (0.14180) | (0.12009) |
| RUS_GDP_GR(-2)  | -0.041547 | 0.021610  | 0.012649    | -0.031855 | -0.005230 | 0.017056  | -0.037345 | -0.031827 | 0.085172  | 0.008863    | 0.026149  | 0.001920  |
|                 | (0.29216) | (0.13404) | (0.02558)   | (0.04711) | (0.06654) | (0.05383) | (0.28940) | (0.15487) | (0.36903) | (0.03914)   | (0.08324) | (0.07049) |
| USD_AMD_GR(-1)  | -0.136621 | -0.013881 | -0.010832   | 0.036045  | 0.884908  | 0.028786  | 0.125198  | 0.017138  | 0.155917  | 0.043452    | -0.017871 | 0.004414  |
|                 | (0.29603) | (0.13583) | (0.02592)   | (0.04732) | (0.06780) | (0.05456) | (0.29325) | (0.15693) | (0.37398) | (0.03966)   | (0.08435) | (0.07143) |
| USD_AMD_GR(-2)  | -0.082333 | -0.009766 | -0.012238   | 0.012230  | -0.104829 | 0.028583  | 0.114594  | 0.027258  | 0.079999  | 0.000358    | 0.013652  | -0.010402 |
|                 | (0.19147) | (0.08785) | (0.01676)   | (0.03060) | (0.04397) | (0.03528) | (0.18967) | (0.10150) | (0.24186) | (0.02565)   | (0.05455) | (0.04620) |
| REER_GR(-1)     | -0.250336 | 0.095507  | 0.029439    | -0.074515 | 0.102748  | 0.923052  | 0.034164  | -0.161287 | -0.203717 | -0.066041   | 0.001778  | -0.046584 |
|                 | (0.38156) | (0.17506) | (0.03341)   | (0.06097) | (0.08693) | (0.07069) | (0.37796) | (0.20227) | (0.48197) | (0.05112)   | (0.10871) | (0.09206) |
| REER_GR(-2)     | 0.076237  | -0.019178 | 0.000405    | 0.001341  | 0.057785  | -0.052241 | 0.042570  | 0.059366  | -0.143301 | -0.002808   | 0.007930  | 0.021286  |
|                 | (0.24569) | (0.11272) | (0.02151)   | (0.03926) | (0.05596) | (0.04566) | (0.24338) | (0.13024) | (0.31035) | (0.03292)   | (0.07000) | (0.05928) |
| EXPORT_GR(-1)   | 0.011898  | -0.010602 | -0.002381   | -0.002277 | -0.010318 | 0.002674  | 0.846303  | -0.004464 | -0.129643 | 0.003654    | -0.005337 | -0.002176 |
|                 | (0.08148) | (0.03738) | (0.00713)   | (0.01302) | (0.01856) | (0.01501) | (0.08125) | (0.04320) | (0.10292) | (0.01092)   | (0.02321) | (0.01966) |
| EXPORT_GR(-2)   | -0.013318 | -0.006918 | -0.001849   | -0.001687 | -0.001364 | -0.001597 | -0.014005 | -0.007118 | 0.031143  | -0.000972   | -0.004699 | -0.002852 |
|                 | (0.04749) | (0.02179) | (0.00416)   | (0.00759) | (0.01082) | (0.00875) | (0.04747) | (0.02517) | (0.05999) | (0.00636)   | (0.01353) | (0.01146) |
| IMPORT_GR(-1)   | -0.089623 | 0.022182  | -0.004181   | -0.010486 | 0.011214  | 0.006933  | -0.137542 | 0.862383  | -0.118968 | 0.005262    | -0.011035 | -0.016042 |
|                 | (0.15714) | (0.07209) | (0.01376)   | (0.02511) | (0.03579) | (0.02895) | (0.15568) | (0.08390) | (0.19849) | (0.02105)   | (0.04478) | (0.03792) |
| IMPORT_GR(-2)   | -0.041151 | 0.014024  | 0.000620    | -0.011645 | 0.007511  | 0.002984  | -0.047172 | -0.033896 | 0.000643  | -0.000644   | -0.013419 | -0.008675 |
|                 | (0.08783) | (0.04030) | (0.00769)   | (0.01403) | (0.02000) | (0.01618) | (0.08700) | (0.04698) | (0.11095) | (0.01177)   | (0.02503) | (0.02119) |
| REM GR(-1)      | -0 002002 | -0 004290 | 0.001835    | -0.001083 | -0 017923 | 0.012122  | 0 075939  | 0 023207  | 0.818195  | 0 001824    | -0 002295 | -0 001387 |

## With AR (myu) = 1







|           |                                          |             |                  | •               |          |          |           |           |          |             |          |          |   |
|-----------|------------------------------------------|-------------|------------------|-----------------|----------|----------|-----------|-----------|----------|-------------|----------|----------|---|
| View Proc | Object Print                             | Name Freeze | Estimate Forecas | t Stats Impulse | Resids   |          |           |           |          |             |          |          |   |
|           | VAR Posterior Residual Covariance Matrix |             |                  |                 |          |          |           |           |          |             |          |          |   |
|           | OIL_GR                                   | USD_RUB     | . RUS_CPI_INF    | RUS_GDP         | USD_AMD  | REER_GR  | EXPORT_GR | IMPORT_GR | REM_GR   | CPI_INF_ARM | PCONS_GR | ARM_GDP  | Γ |
| OIL_GR    | 776.4536                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| USD       | 0.000000                                 | 163.4391    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| RUS       | 0.000000                                 | 0.000000    | 5.950329         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| RUS       | 0.000000                                 | 0.000000    | 0.000000         | 19.82564        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| USD       | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 40.27831 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| REER      | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 26.35700 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| EXPO      | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 761.8983  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| IMPO      | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 218.1912  | 0.000000 | 0.000000    | 0.000000 | 0.000000 |   |
| REM_GR    | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 1238.897 | 0.000000    | 0.000000 | 0.000000 |   |
| CPI_IN    | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 13.93528    | 0.000000 | 0.000000 |   |
| PCON      | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 63.03501 | 0.000000 |   |
| ARM       | 0.000000                                 | 0.000000    | 0.000000         | 0.000000        | 0.000000 | 0.000000 | 0.000000  | 0.000000  | 0.000000 | 0.000000    | 0.000000 | 45.20268 |   |
|           |                                          |             |                  |                 |          |          |           |           |          |             |          |          |   |

#### Out of sample – 15%: BVAR

Bayesian VAR Estimates Date: 05/22/22 Time: 20:43

Sample (adjusted): 2002Q2 2018Q4 Included observations: 67 after adjustments

Prior type: Litterman / Minnesota Initial residual covariance: Univariate AR Constant included in covariance calculation

Hyper-parameters: Mu1: 0, L1: 0.1, L2: 0.99, L3: 1, L4: inf

|                 | OIL_GR    | USD_RUB   | RUS_CPI_INF | RUS_GDP   | USD_AMD   | REER_GR   | EXPORT_GR | IMPORT_GR | REM_GR    | CPI_INF_ARM | PCONS_GR  | ARM_GDP.  |
|-----------------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|
| OIL_GR(-1)      | 0.293524  | -0.091134 | 0.010843    | 0.019188  | 0.003210  | 0.004986  | 0.004689  | 0.058012  | 0.010464  | 0.003113    | 0.019023  | 0.019969  |
|                 | (0.07770) | (0.04001) | (0.00911)   | (0.01154) | (0.02614) | (0.01760) | (0.06912) | (0.03827) | (0.09735) | (0.01212)   | (0.01839) | (0.01813) |
| USD_RUB_GR(-1)  | -0.315466 | 0.290465  | 0.021763    | -0.000197 | 0.022209  | -0.001670 | 0.090004  | -0.052254 | -0.046148 | -0.014309   | -0.081712 | -0.028996 |
|                 | (0.14811) | (0.07711) | (0.01745)   | (0.02212) | (0.05011) | (0.03374) | (0.13248) | (0.07335) | (0.18661) | (0.02323)   | (0.03525) | (0.03475) |
| RUS_CPI_INF(-1) | -0.361335 | 0.614903  | 0.397810    | -0.158084 | 0.274279  | 0.194118  | -0.005298 | -0.419528 | -1.344309 | 0.050623    | -0.230836 | 0.037112  |
|                 | (0.59459) | (0.30790) | (0.07044)   | (0.08883) | (0.20125) | (0.13552) | (0.53207) | (0.29460) | (0.74949) | (0.09330)   | (0.14155) | (0.13956) |
| RUS_GDP_GR(-1)  | 0.146589  | 0.002253  | -0.019551   | 0.370173  | -0.537032 | 0.153811  | 0.317181  | 0.264157  | 1.188631  | 0.102985    | -0.011769 | 0.183256  |
|                 | (0.50067) | (0.25921) | (0.05902)   | (0.07522) | (0.16948) | (0.11408) | (0.44803) | (0.24807) | (0.63110) | (0.07856)   | (0.11919) | (0.11752) |
| USD_AMD_GR(-1)  | -0.154104 | 0.124176  | -0.001361   | -0.003530 | 0.324649  | -0.057724 | -0.068362 | -0.028820 | -0.071965 | 0.028856    | -0.006923 | -0.015163 |
|                 | (0.21280) | (0.11020) | (0.02509)   | (0.03180) | (0.07241) | (0.04852) | (0.19045) | (0.10544) | (0.26827) | (0.03339)   | (0.05066) | (0.04995) |
| REER_GR(-1)     | -0.254568 | 0.203189  | 0.088948    | -0.093913 | -0.062291 | 0.424107  | -0.122358 | -0.296431 | -0.445514 | -0.047563   | 0.020682  | -0.029814 |
|                 | (0.30451) | (0.15767) | (0.03591)   | (0.04549) | (0.10312) | (0.06973) | (0.27251) | (0.15089) | (0.38383) | (0.04778)   | (0.07250) | (0.07147) |
| EXPORT_GR(-1)   | 0.018059  | -0.003606 | 0.001090    | 0.014456  | -0.029975 | -0.007442 | 0.121440  | 0.043489  | -0.164157 | 0.001521    | -0.013500 | -0.011553 |
|                 | (0.08990) | (0.04655) | (0.01060)   | (0.01343) | (0.03043) | (0.02049) | (0.08098) | (0.04455) | (0.11332) | (0.01411)   | (0.02140) | (0.02110) |
| IMPORT_GR(-1)   | 0.028157  | -0.030197 | -0.007401   | 0.009415  | 0.000580  | -0.022917 | -0.027546 | 0.180664  | -0.150208 | 0.020562    | 0.044737  | 0.030006  |
|                 | (0.16032) | (0.08302) | (0.01890)   | (0.02395) | (0.05427) | (0.03654) | (0.14349) | (0.07995) | (0.20209) | (0.02516)   | (0.03817) | (0.03764) |
| REM_GR(-1)      | -0.005394 | -0.030339 | -0.001197   | 0.005667  | -0.045570 | 0.015293  | 0.047123  | 0.018198  | 0.195442  | 0.010152    | 0.007310  | -0.004916 |
|                 | (0.06204) | (0.03213) | (0.00731)   | (0.00927) | (0.02100) | (0.01414) | (0.05552) | (0.03074) | (0.07870) | (0.00974)   | (0.01477) | (0.01456) |
| CPI_INF_ARM(-1) | -0.260478 | -0.163260 | 0.048840    | 0.005061  | -0.281118 | 0.174095  | -0.168691 | -0.002092 | 0.921662  | 0.295914    | -0.065726 | -0.048682 |
|                 | (0.47284) | (0.24484) | (0.05575)   | (0.07065) | (0.16005) | (0.10776) | (0.42317) | (0.23429) | (0.59607) | (0.07461)   | (0.11257) | (0.11099) |
| PCONS_GR(-1)    | 0.348757  | -0.191161 | 0.038380    | -0.026808 | 0.025176  | 0.004718  | 0.021125  | 0.131490  | -0.144272 | -0.012431   | 0.134722  | 0.123081  |
|                 | (0.33863) | (0.17536) | (0.03992)   | (0.05059) | (0.11461) | (0.07717) | (0.30303) | (0.16780) | (0.42682) | (0.05313)   | (0.08115) | (0.07950) |
| ARM_GDP_GR(-1)  | -0.013610 | -0.035543 | 0.020483    | 0.014642  | -0.042601 | 0.070306  | -0.467232 | 0.192707  | -0.010348 | 0.025133    | 0.102919  | 0.257854  |
|                 | (0.32687) | (0.16924) | (0.03853)   | (0.04884) | (0.11063) | (0.07449) | (0.29252) | (0.16198) | (0.41200) | (0.05129)   | (0.07784) | (0.07718) |
| С               | 100.1233  | 92.44797  | -18.57556   | 7.454350  | 5.389637  | 52.98164  | 51.85818  | 80.91392  | 77.58084  | 2.560156    | 79.33779  | 66.80055  |
|                 | (58.0293) | (30.0816) | (6.84187)   | (8.66960) | (19.6430) | (13.2405) | (51.9297) | (28.7573) | (73.1423) | (9.10495)   | (13.8338) | (13.6336) |
| R-squared       | 0.523672  | 0.636889  | 0.609220    | 0.633067  | 0.763426  | 0.659882  | 0.205802  | 0.594259  | 0.495951  | 0.452737    | 0.577332  | 0.522331  |
| di. R-squared   | 0.417821  | 0.556198  | 0.522380    | 0.551526  | 0.710854  | 0.584301  | 0.029314  | 0.504094  | 0.383940  | 0.331123    | 0.483406  | 0.416182  |
| dum sq. resids  | 33406.17  | 8606.423  | 463.6288    | 692.2432  | 2483.024  | 1548.296  | 23231.31  | 6167.545  | 40905.95  | 784.6563    | 1278.437  | 1765.977  |
| decension       | 24.87233  | 12.62451  | 2.930140    | 3.580408  | 6.780997  | 5.354639  | 20.74149  | 10.68709  | 27.52304  | 3.811912    | 4.865672  | 5.718678  |
| -statistic      | 4.947272  | 7.892914  | 7.015419    | 7.763818  | 14.52156  | 8.730717  | 1.166094  | 6.590815  | 4.427704  | 3.722732    | 6.146664  | 4.920749  |
| Mean dependent  | 112.3512  | 105.9168  | -1.049787   | -0.122579 | -0.149283 | 101.6753  | -1.294030 | 105.6015  | -2.575302 | -0.006210   | 105.0340  | 106.4836  |
| dependent       | 32.59780  | 18.95046  | 4.239815    | 5.346431  | 12.61059  | 8.305017  | 21.05235  | 15.17608  | 35.06590  | 4.660898    | 6.769682  | 7.484400  |

Forecast Evaluation Date: 05/22/22 Time: 20:45 Sample: 2002Q1 2021Q4 Included observations: 80

| Variable    | Inc. obs. | RMSE     | MAE      | MAPE     | Theil    |
|-------------|-----------|----------|----------|----------|----------|
| OIL GR      | 80        | 26.68002 | 20.26156 | 20.24664 | 0.116186 |
| USD RUB GR  | 80        | 10.81261 | 7.438419 | 6.737471 | 0.050401 |
| RUS CPI INF | 80        | 2.562801 | 1.949276 | 82.52901 | 0.389733 |
| RUS GDP GR  | 80        | 3.791897 | 2.217284 | 401.3456 | 0.427244 |
| USD_AMD_GR  | 80        | 5.833716 | 4.523339 | 160.7803 | 0.293975 |
| REER GR     | 80        | 4.697310 | 3.873658 | 3.848860 | 0.023063 |
| EXPORT GR   | 80        | 24.32010 | 16.67623 | 102.7956 | 0.750270 |
| IMPORT GR   | 80        | 11.54012 | 8.430824 | 8.470199 | 0.054583 |
| REM GR      | 80        | 26.91111 | 19.72932 | 108.9811 | 0.507154 |
| CPI INF ARM | 80        | 3.318230 | 2.792331 | 202.7482 | 0.500309 |
| PCONS GR    | 80        | 6.114204 | 4.295627 | 4.232168 | 0.029192 |
| ARM_GDP_GR  | 80        | 5.530471 | 3.907050 | 3.839054 | 0.026038 |
|             |           |          |          |          |          |

RMSE: Root Mean Square Error MAE: Mean Absolute Error MAPE: Mean Absolute Percentage Error

130

ARM GDP GR Theil: Theil inequality coefficient





Vector Autoregression Estimates (with restrictions)
Date: 05/22/22 Time: 21:34

Out of sample - 15%: SVAR

Sample (adjusted): 2002Q2 2018Q4

Ineluded observations: 67 after adjustments

Iterated GLS convergence achieved after 15 iterations

Standard errors in ( ) & t-statistics in [ ]

Determinant resid covariance

Akaike information criterion

Log likelihood

Schwarz criterion Number of coefficients

Number of restrictions

3.11E+18

-2480.551

77.74780 81.82813

124

32

| Standard errors in ( ) & t-s                                    | statistics in [ ]                            |                                              |                                               |                                               |                                               |                                              |                                               |                                              |                                               |                                               |                                              |                                              |
|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                                                 | OIL_GR                                       | USD_RUB                                      | RUS_CPI_INF                                   | RUS_GDP                                       | USD_AMD                                       | REER_GR                                      | EXPORT_GR                                     | IMPORT_GR                                    | REM_GR                                        | CPI_INF_ARM                                   | PCONS_GR                                     | ARM_GDP                                      |
| OIL_GR(-1)                                                      | 0.774918<br>(0.13173)<br>[ 5.88274]          | -0.117896<br>(0.06909)<br>[-1.70639]         | 0.015143<br>(0.01607)<br>[ 0.94203]           | 0.051098<br>(0.01906)<br>[ 2.68065]           | -0.009485<br>(0.03585)<br>[-0.26462]          | 0.007996<br>(0.02638)<br>[ 0.30306]          | 0.144514<br>(0.12319)<br>[ 1.17308]           | 0.204375<br>(0.06232)<br>[ 3.27971]          | -0.013151<br>(0.15260)<br>[-0.08618]          | -0.016720<br>(0.02139)<br>[-0.78165]          | 0.002293<br>(0.02855)<br>[ 0.08034]          | 0.004432<br>(0.03339)<br>[ 0.13271]          |
| USD_RUB_GR(-1)                                                  | -0.038525<br>(0.22961)<br>[-0.16778]         | 0.587677<br>(0.12043)<br>[ 4.87971]          | 0.011785<br>(0.02802)<br>[ 0.42059]           | 0.083348<br>(0.03323)<br>[ 2.50848]           | -0.144695<br>(0.07001)<br>[-2.06691]          | -0.023031<br>(0.05219)<br>[-0.44134]         | 0.592824<br>(0.24465)<br>[ 2.42314]           | 0.260929<br>(0.12509)<br>[ 2.08588]          | 0.141160<br>(0.30073)<br>[ 0.46940]           | -0.058565<br>(0.04178)<br>[-1.40178]          | -0.178629<br>(0.05709)<br>[-3.12894]         | -0.034404<br>(0.06502)<br>[-0.52911]         |
| RUS_CPI_INF(-1)                                                 | -1.817179<br>(0.73871)<br>[-2.45995]         | 0.976427<br>(0.38745)<br>[ 2.52013]          | 0.805138<br>(0.09014)<br>[ 8.93159]           | -0.379311<br>(0.10689)<br>[-3.54845]          | 0.524480<br>(0.22594)<br>[ 2.32131]           | -0.000122<br>(0.16848)<br>[-0.00073]         | 0.127515<br>(0.78993)<br>[ 0.16142]           | -1.153052<br>(0.40401)<br>[-2.85404]         | -2.191142<br>(0.97081)<br>[-2.25702]          | 0.057658<br>(0.13484)<br>[ 0.42760]           | -0.401978<br>(0.18436)<br>[-2.18037]         | -0.006999<br>(0.20985)<br>[-0.03335]         |
| RUS_GDP_GR(-1)                                                  | -0.809443<br>(0.57763)<br>[-1.40132]         | 0.155033<br>(0.30297)<br>[ 0.51172]          | 0.067443<br>(0.07049)<br>[ 0.95679]           | 0.669729<br>(0.08359)<br>[ 8.01246]           | -0.546135<br>(0.20136)<br>[-2.71224]          | 0.300770<br>(0.15182)<br>[ 1.98104]          | 0.382893<br>(0.71427)<br>[ 0.53606]           | -0.501044<br>(0.36856)<br>[-1.35945]         | 2.322788<br>(0.87207)<br>[ 2.66352]           | 0.156703<br>(0.12018)<br>[ 1.30389]           | -0.087451<br>(0.16768)<br>[-0.52154]         | 0.273044<br>(0.18651)<br>[ 1.46398]          |
| USD_AMD_GR(-1)                                                  | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | 0.659923<br>(0.07206)<br>[ 9.15793]           | 0.120687<br>(0.05629)<br>[ 2.14394]          | -0.407547<br>(0.26756)<br>[-1.52321]          | -0.121015<br>(0.14161)<br>[-0.85456]         | 0.163455<br>(0.32019)<br>[ 0.51049]           | 0.135621<br>(0.04302)<br>[ 3.15244]           | 0.110642<br>(0.06388)<br>[1.73212]           | -0.009596<br>(0.06613)<br>[-0.14509]         |
| REER_GR(-1)                                                     | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | 0.027259<br>(0.09579)<br>[ 0.28456]           | 0.879111<br>(0.07483)<br>[ 11.7477]          | -0.078399<br>(0.35568)<br>[-0.22042]          | -0.263998<br>(0.18825)<br>[-1.40236]         | -0.343901<br>(0.42565)<br>[-0.80794]          | -0.043323<br>(0.05719)<br>[-0.75753]          | 0.201215<br>(0.08492)<br>[ 2.36960]          | -0.004686<br>(0.08792)<br>[-0.05330]         |
| EXPORT_GR(-1)                                                   | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | -0.057730<br>(0.03133)<br>[-1.84246]          | 0.021916<br>(0.02448)<br>[ 0.89537]          | 0.289074<br>(0.11634)<br>[ 2.48475]           | 0.086398<br>(0.06158)<br>[ 1.40313]          | -0.544768<br>(0.13923)<br>[-3.91285]          | -0.000260<br>(0.01871)<br>[-0.01392]          | -0.046908<br>(0.02777)<br>[-1.68888]         | -0.051778<br>(0.02876)<br>[-1.80059]         |
| IMPORT_GR(-1)                                                   | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | 0.127140<br>(0.05879)<br>[ 2.16255]           | -0.032928<br>(0.04593)<br>[-0.71696]         | -0.062417<br>(0.21829)<br>[-0.28593]          | 0.419875<br>(0.11554)<br>[ 3.63416]          | -0.228293<br>(0.26123)<br>[-0.87390]          | 0.062662<br>(0.03510)<br>[ 1.78528]           | 0.123123<br>(0.05211)<br>[ 2.36253]          | 0.011478<br>(0.05396)<br>[ 0.21273]          |
| REM_GR(-1)                                                      | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | -0.058060<br>(0.01995)<br>[-2.91031]          | 0.044156<br>(0.01558)<br>[ 2.83336]          | 0.115878<br>(0.07407)<br>[ 1.56437]           | 0.056173<br>(0.03920)<br>[ 1.43279]          | 0.395683<br>(0.08864)<br>[ 4.46368]           | 0.013587<br>(0.01191)<br>[ 1.14082]           | 0.017463<br>(0.01768)<br>[ 0.98747]          | -0.014106<br>(0.01831)<br>[-0.77042]         |
| CPI_INF_ARM(-1)                                                 | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | -0.579157<br>(0.14443)<br>[-4.01003]          | 0.255088<br>(0.11282)<br>[ 2.26094]          | -0.283543<br>(0.53625)<br>[-0.52875]          | 0.119186<br>(0.28382)<br>[ 0.41993]          | 1.239597<br>(0.64175)<br>[1.93160]            | 0.598722<br>(0.08622)<br>[ 6.94373]           | -0.247201<br>(0.12803)<br>[-1.93088]         | -0.170505<br>(0.13255)<br>[-1.28635]         |
| PCONS_GR(-1)                                                    | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | -0.236649<br>(0.12654)<br>[-1.87021]          | -0.071646<br>(0.09885)<br>[-0.72481]         | 1.406533<br>(0.46983)<br>[ 2.99373]           | 0.065462<br>(0.24867)<br>[ 0.26325]          | -0.278824<br>(0.56225)<br>[-0.49591]          | -0.190060<br>(0.07554)<br>[-2.51590]          | 0.006299<br>(0.11217)<br>[ 0.05616]          | 0.082545<br>(0.11613)<br>[ 0.71080]          |
| ARM_GDP_GR(-1)                                                  | 0.000000                                     | 0.000000                                     | 0.000000                                      | 0.000000                                      | -0.059810<br>(0.11456)<br>[-0.52206]          | 0.155206<br>(0.08950)<br>[ 1.73422]          | -1.517890<br>(0.42538)<br>[-3.56834]          | 0.384004<br>(0.22514)<br>[ 1.70562]          | -0.075017<br>(0.50906)<br>[-0.14736]          | 0.099443<br>(0.06840)<br>[ 1.45391]           | 0.216428<br>(0.10155)<br>[ 2.13115]          | 0.593799<br>(0.10514)<br>[ 5.64753]          |
| С                                                               | 27.48560<br>(37.1448)<br>[ 0.73996]          | 58.05475<br>(19.4825)<br>[ 2.97985]          | -3.066765<br>(4.53281)<br>[-0.67657]          | -14.98040<br>(5.37505)<br>[-2.78703]          | 31.59518<br>(19.2356)<br>[ 1.64254]           | 8.729737<br>(14.7918)<br>[ 0.59017]          | -50.87744<br>(69.9946)<br>[-0.72688]          | -11.47690<br>(36.6490)<br>[-0.31316]         | 78.82251<br>(84.4977)<br>[ 0.93284]           | 15.37648<br>(11.4825)<br>[1.33913]            | 66.04982<br>(16.5908)<br>[ 3.98111]          | 36.87282<br>(17.7277)<br>[ 2.07995]          |
| R-squared<br>Sum sq. resids<br>Mean dependent<br>S.D. dependent | 0.602896<br>27849.95<br>112.3512<br>32.59780 | 0.676755<br>7661.531<br>105.9168<br>18.95046 | 0.650437<br>414.7283<br>-1.049787<br>4.239815 | 0.690885<br>583.1667<br>-0.122579<br>5.346431 | 0.829382<br>1790.763<br>-0.149283<br>12.61059 | 0.790968<br>951.5636<br>101.6753<br>8.305017 | 0.295219<br>20615.77<br>-1.294030<br>21.05235 | 0.658948<br>5184.220<br>105.6015<br>15.17608 | 0.605489<br>32016.46<br>-2.575302<br>35.06590 | 0.555291<br>637.6153<br>-0.006210<br>4.660898 | 0.638112<br>1094.597<br>105.0340<br>6.769682 | 0.577702<br>1561.267<br>106.4836<br>7.484400 |
| D-4iii-                                                         |                                              | 0.445.40                                     |                                               |                                               |                                               |                                              |                                               |                                              |                                               |                                               |                                              |                                              |

```
ARM_GDP_GR = 0.00443192037393*OIL_GR(-1) -
0.0344044378544*USD_RUB_GR(-1) -
0.00699862447512*RUS_CPI_INF(-1) +
0.273044178892*RUS_GDP_GR(-1) -
0.00959552751209*USD_AMD_GR(-1) -
0.00468634031582*REER_GR(-1) -
0.0517783172753*EXPORT_GR(-1) +
0.0114783716861*IMPORT_GR(-1) - 0.0141057391752*REM_GR(-1) - 0.170505486638*CPI_INF_ARM(-1) +
0.0825447424991*PCONS_GR(-1) +
```

0.593798504952\*ARM\_GDP\_GR(-1) + 36.8728209358