Two convergent NPA-like hierarchies for the quantum bilocal scenario

Marc-Olivier Renou^{1,2}, Xiangling Xu¹, Laurens T. Ligthart³

¹Inria Paris-Saclay, Bâtiment Alan Turing, Palaiseau, France ²CPHT, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France ³Institute for Theoretical Physics, University of Cologne, Cologne, Germany

Known:

- Characterization of Bell scenarios with NPA hierarchy
- Foundational understanding of quantum correlations
- Device-independent quantum key distribution/cryptography

Tripartite Bell scenario C_{aa}

- Hilbert space $H=H_A\otimes H_B\otimes H_C$ with a shared state τ
- PVMs $\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\}$
- Born's rule: $p(abc \mid xyz) = \text{Tr}(\tau(A_{a\mid x} \otimes B_{b\mid y} \otimes C_{c\mid z})) = \text{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$
- Certify if a given $\overrightarrow{P} = \{p(abc \mid xyz)\}$ comes from Bell scenario?

$B_{b|y}$ $A_{a|x}$ $(A_{a|x})^{\dagger}$ $\operatorname{Tr}_{ au}ig(B_{b|y}ig)$ $(B_{b|y})^{\dagger}$ $(C_{c|z})^{\dagger}$ $(A_{a|x}A_{a'|x'})^{\dagger}$ $(A_{a|x}B_{b|y})^{\dagger}$ $\operatorname{Tr}_{ au}ig(A_{a|x}B_{b|y}C_{c|z}ig)$ $(A_{a|x}B_{b|y}C_{c|z})^{\dagger}$

Our works:

- Network scenarios, multiple independent quantum sources
- NPA hierarchy no longer suffices
- We find two generalizations that can characterize bilocal networks.

Bilocal network scenario $Q_{bilocal}$

- $H = H_A \otimes H_{B_I} \otimes H_{B_R} \otimes H_C$, $\tau = \rho_{AB_L} \otimes \sigma_{B_RC}$
- PVMs $\{A_{a|x}\}, \{B_{b|y}\}, \{C_{c|z}\},$ s.t. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0$
- Alice and Charlie are independent: ${\rm Tr}_{\tau}(A_{a|x}C_{c|z})={\rm Tr}_{\tau}(A_{a|x}){\rm Tr}_{\tau}(C_{c|z})$, also products of $A_{a|x}$, $C_{c|z}$.
- Simplest network, but $Q_{bilocal} \subsetneq C_{qa}$, so the standard NPA is not applicable. Not even convex!

$\operatorname{Tr}_{\tau}\left(A_{a'|x'}A_{a|x}C_{c|z}\right)$ p(abc|xyz) $Q_{bilocal}$

NPA hierarchy: outer approximation

- Hierarchy of necessary conditions Γ^n , $n \geq 2$, such that $\overrightarrow{P} \in C_{aa} \implies \cdots \implies \Gamma^4 \implies \Gamma^3 \implies \Gamma^2$
- Equivalently, if for some n, Γ^n is not satisfied, then $\overrightarrow{P} \not\in C_{aa}$
- Moment matrices, defined such as $\Gamma_{B_{b|y},B_{b|y}}^n = \operatorname{Tr}_{\tau}(B_{b|y}^{\dagger}B_{b|y}) = \operatorname{Tr}_{\tau}(B_{b|y}) = \operatorname{Tr}_{\tau}(\operatorname{Id}^{\dagger} \cdot B_{b|y}) = \Gamma_{1,B_{b|y}}^n$
- SDP (solvable by computers)

Factorisation bilocal hierarchy $\tilde{\Gamma}^n$

- $\tilde{\Gamma}^n = \Gamma^n$ + factorisation constraints
- Almost the same as the standard Γ^n
- But additional factorization constraints: $\tilde{\Gamma}_{A_{a|x},C_{c|z}}^{n} = \operatorname{Tr}_{\tau}(A_{a|x}C_{c|z}) = \operatorname{Tr}_{\tau}(A_{a|x})\operatorname{Tr}_{\tau}(C_{c|z}) = \tilde{\Gamma}_{A_{a|x},1}^{n} \cdot \tilde{\Gamma}_{1,C_{c|z}}^{n}$
- Not SDP!

 $C_{c|z}$

Convergence of standard NPA:

If \overrightarrow{P} admits Γ^n for all $n \to \infty$, then $\overrightarrow{P} \in C_{qc}$ is the **Commutator** iquantum distribution

- . A global Hilbert space H with pure density operator au
- PVMs $\{A_{a|x}\}$, $\{B_{b|y}\}$, $\{C_{c|z}\}$ mutually commute
- 3. $p(abc \mid xyz) = \operatorname{Tr}_{\tau}(A_{a\mid x}B_{b\mid y}C_{c\mid z})$

Tsirelson's problem: $C_{qa} \subsetneq C_{qc}$, but coincides in finite dimension

Main result 1: convergence of factorization NPA:

If \overrightarrow{P} admits $\widetilde{\Gamma}^n$ for all $n \to \infty$, then $\overrightarrow{P} \in Q'_{bilocal}$ is the **Projector bilocal** quantum distribution

- 1. Commutator distribution and
- 2. Projectors ρ , σ on H such that $\tau = \rho \cdot \sigma = \sigma \cdot \rho$
- 3. $[A_{a|x}, \sigma] = [\rho, C_{c|z}] = 0$
- $(B_{b|y})^{\dagger}$ $\operatorname{Tr}_{\tau}\left(A_{a|x}C_{c|z}\right) \quad \cdots \quad \operatorname{Tr}_{\tau}\left(\kappa_{A_{a|x}}\hat{C}_{c|z}\right)$ $(C_{c|z})^{\dagger}$ $(A_{a|x}A_{a'|x'})^{\dagger}$ $(A_{a|x}B_{b|y})^{\dagger}$

Main result 2: Convergence of Scalar extension hierarchy

- To make it SDP, new commutative variables: $\kappa_{A_{a|x}}$, $\kappa_{A_{a|x}B_{b|y}}$, $\kappa_{A_{a|x}A_{a'|x'}C_{c|z}}$..., + complicated constraints
- Also characterizes $Q_{bilocal}^{\prime}$

Conclusion and outlook

We introduced two convergent hierarchies, one of them is SDP, checkable by computers. With [Ligthart&Gross, 2023] and [Klep et al., 2023], bilocal scenario is completely characterized in C^* -algebraic/Heisenberg picture. Next step is to look at more general networks, such as triangle, with possibly quantum inflation technique.