Big Data Engineering: Assignment 6

Leo Forster, Maximilian Prinz, Bastian Simon

1

Plan Enumeration

Subproblem 1

a) Determine the optimal join order using only "left-deep" plans. Complete and extend the following table with subplans of size two, three and four:

subplan	costs	result size	
A	cost(A) = 0	50	
B	cost(B) = 0	95	
C	cost(C) = 0	20	
D	cost(D) = 0	65	

subplan	costs	result size
$A\bowtie B$	$cost(A) + cost(B) + cost(A \bowtie B) \implies 0 + 0 + (50 + 95) = 145$	40
$A\bowtie C$	$cost(A) + cost(C) + cost(A \bowtie C) \implies 0 + 0 + (50 + 20) = 70$	70
$A \times D$	$cost(A) + cost(D) + cost(A \times D) \implies 0 + 0 + (50 * 65) = 3250$	3250
$B\bowtie C$	$cost(B) + cost(C) + cost(B \bowtie C) \implies 0 + 0 + (95 + 20) = 115$	100
$B \times D$	$cost(B) + cost(D) + cost(B \times D) \implies 0 + 0 + (95 * 65) = 6175$	6175
$C\bowtie D$	$cost(C) + cost(D) + cost(C \bowtie D) \implies 0 + 0 + (20 + 65) = 85$	180

subplan	costs	result size
$(A \bowtie B) \bowtie C$	$cost(A\bowtie B) + cost(C) + cost((A\bowtie B)\bowtie C) \implies 145 + 0 + (40 + 20) = 205$	40
$(A \bowtie C) \bowtie B$	$cost(A \bowtie C) + cost(B) + cost((A \bowtie C) \bowtie B) \implies 70 + 0 + (70 + 95) = 235$	40
$(B \bowtie C) \bowtie A$	$cost(B\bowtie C)+cost(A)+cost((B\bowtie C)\bowtie A)\implies 115+0+(100+50)=265$	40
$(A \bowtie B) \times D$	$cost(A\bowtie B) + cost(D) + cost((A\bowtie B)\times D) \implies 145 + 0 + (40*65) = 2745$	2600
$(A \times D) \bowtie B$	$cost(A \times D) + cost(B) + cost((A \times D) \bowtie B) \implies 3250 + 0 + (3250 + 95) = 6595$	2600
$(B \times D) \bowtie A$	$cost(B \times D) + cost(A) + cost((B \times D) \bowtie A) \implies 6175 + 0 + (6175 + 50) = 12400$	2600
$(A \bowtie C) \bowtie D$	$cost(A\bowtie C) + cost(D) + cost((A\bowtie C)\bowtie D) \implies 70 + 0 + (70 + 65) = 205$	300
$(A \times D) \bowtie C$	$cost(A \times D) + cost(C) + cost((A \times D) \bowtie C) \implies 3250 + 0 + (3250 + 20) = 6520$	300
$(C \bowtie D) \bowtie A$	$cost(C\bowtie D) + cost(A) + cost((C\bowtie D)\bowtie A) \implies 85 + 0 + (180 + 50) = 315$	300
$(B\bowtie C)\bowtie D$	$cost(B\bowtie C) + cost(D) + cost((B\bowtie C)\bowtie D) \implies 115 + 0 + (100 + 65) = 280$	543
$(B \times D) \bowtie C$	$cost(B \times D) + cost(C) + cost((B \times D) \bowtie C) \implies 6175 + 0 + (6175 + 20) = 12370$	543
$(C \bowtie D) \bowtie B$	$cost(C\bowtie D) + cost(B) + cost((C\bowtie D)\bowtie B) \implies 85 + 0 + (180 + 95) = 360$	543

subplan	costs	result size
$(A\bowtie B\bowtie C)\bowtie D$	$cost(A\bowtie B\bowtie C)+cost(D)+cost((A\bowtie B\bowtie C)\bowtie D)\implies 205+0+(40+65)=310$	8
$(A \bowtie B \times D) \bowtie C$	$cost(A\bowtie B\times D)+cost(C)+cost((A\bowtie B\times D)\bowtie C)\implies 2745+0+(2600+20)=5365$	8
$(A\bowtie C\bowtie D)\bowtie B$	$cost(A\bowtie C\bowtie D)+cost(B)+cost((A\bowtie C\bowtie D)\bowtie B)\implies 205+0+(300+95)=600$	8
$(B \bowtie C \bowtie D) \bowtie A$	$cost(B\bowtie C\bowtie D)+cost(A)+cost((B\bowtie C\bowtie D)\bowtie A)\implies 280+0+(543+50)=873$	8

Here we can see that $(A \bowtie B \bowtie C) \bowtie D$ has the lowest cost and therefore is the optimal join order.

Subproblem 2

b) Draw the join graph for the given query. Label the edges with the respective join predicates.

Graph is above the Question somehow :D

Subproblem 3

c) How could you have used the join graph to exclude certain entries in the table from Task (a)?

We can omit the Cartesian products $A \times D$ and $B \times D$ because in the join graph we see that there is no direct connection between A-D and B-D.