Ophthalmologic Issues in VHL Mark W. Johnson, MD University of Michigan Kellogg Eye Center

A Brief History of VHL Disease

- von Hippel (1904)
 - retinal capillary hemangioblastomas
 - several generations of family members
 - several pedigrees
- Lindau (1926)

 - described familial syndromehemangioblastomas (retina and cerebellum)
 - cysts (kidney, pancreas, epididymis)
- Melmon and Rosen (1965)
 - criteria for clinical diagnosis

Ocular Manifestations Retinal Capillary Hemangioblastoma

- May be the first manifestation of VHL disease
- Range from tiny lesions to large tumors with major visual impairment
- Located predominantly in retinal periphery (85%)
- Initial appearance
- subtle red or gray dot With growth, appears as distinct nodule
 - dilated feeding and draining vessels

Retinal & Optic Nerve Hemangioblastoma Natural History

- Can appear at any age
 patients typically have no symptoms initially
 - often discovered on routine or screening exam
- Without treatment

 - rarely regress spontaneously
 usually grow slowly and progressively
 often begin leaking as they enlarge
 eventually displace normal structures
 may completely fill the eye

Retinal & Optic Nerve Hemangioblastoma Natural History/Secondary Complications

- Leakage
 - retinal edema (swelling)
 - lipid (yellow) exudates
- Fibrosis (scar tissue)
- · Retinal detachment

 - exudative (from leakage) tractional (from fibrosis and vitreous traction)
- Bleeding
- Neovascular glaucoma

DiagnosisOcular Hemangioblastoma

- Diagnosis typically based on clinical appearance
- No definitive diagnostic tool
- Confirmatory/useful studies

 - wide-angle fundus photography
 fluorescein angiography
 ultrasonography
 optical coherence tomography
 detection of associated macular edema

Diagnosis VHL Disease CLINICAL CRITERIA Family History + CNS* hemangiobastoma, Pheochromocytoma, or Clear cell renal carcinoma Family History - 2 or more CNS hemangioblastomas or CNS hemangioblastoma + visceral tumor • Up to 20% of cases arise de novo (first affected member of family)--genetic testing extremely helpful in such patients • Family members with mutations should have regular clinical screening studies - ophthalmoscopy yearly starting in infancy

Epidemiology Ocular Manifestations

- Large NEI study (Wong WT, et al, 2008)
 - 38% of patients had ocular involvement
 - mean age 36 years (range, 7 to 84)
 - 47% male
 - 95% white

 - laterality42% unilateral58% bilateral
 - location
 - 85% peripheral
 - 15% optic nerve

Vision Loss in VHL Prevalence

- NEI study
 - 77% had 20/20 vision
 - 5.7% legally blind
 - 20% had visual impairment in one eye

Vision Loss in VHL Causes

- Tumor exudation (leakage)
 - macular edema
 - exudative retinal detachment
- Glial proliferation (scar tissue) retinal distortion
 - traction retinal detachment
- Neovascularization
 - vitreous hemorrhage or retinal traction
- Neurological lesions
 - increased intracranial pressure leading to optic atrophy
 - hemangioblastomas affecting RB optic nerve or optic tract

Ablative Treatment Retinal Hemangioblastomas

Lesion size/location	Treatment modality
Very small (1-2 mm)	Laser (direct)
Small (3-5 mm)	Laser (feeder vessel + direct)
Small, very peripheral	Cryotherapy
Moderate to large (> 5 mm)	Cryotherapy (consider adjunctive steroid or anti-VEGF)
Complicated (traction, retinal detachment, vitreous hemorrhage)	Vitrectomy and/or scleral buckling surgery (with laser, diathermy and/or cryotherapy)

The smaller the lesion, the easier and safer it is to treat

Ablative Treatment

Optic Nerve Hemangioblastomas

- Treatment difficult—no consensus
 - Laser treatment
 - risk of visual acuity and/or visual field loss
 serial, low-intensity treatments promising
 - Photodynamic therapy
 - mixed results

 - risk of optic nerve injury

 Transpupillary thermotherapy
 risk of significant nerve injury (little data)
 - Radiation
 - should be avoided (increases VEGF production)

Pharmacologic Treatment Anti-Angiogenic Agents

- VHL involves high levels of vascular endothelial growth factor (VEGF)
 - drives tumor growth and vessel leakage
- Anti-VEGF treatment is rational approach
- Studies to date
 - decreased leakage

 - no change in tumor size
 anti-VEGF treatment alone appear inadequate
- Successful pharmacologic approaches may need to target multiple proteins upregulated in VHL

