CSE460L: Assignment 1 (Fall 2021)

Sections: 1, 2, 3, 4, 5, 6, 7, 8 & 9

Assignment 1 submission link:

https://docs.google.com/forms/d/e/1FAIpQLSdBeAsmOK4FBdDCAn0XgES7KuZ_JaYTqIb2T5J VVVUb7EE9BA/viewform?usp=sf_link

Assignment 1 deadline: 9 Nov, 2021, 4.59 PM (BDT)

General guidelines

- · Assignments are individual
- Each assignment will contain 3 to 4 problems
- For each problem you will need to prepare 3 parts:
 - 1. Code: attach a screenshot of your code from Quartus.
 - 2. Output: attach *FULL SCREEN* screenshots of
 - o Compilation Report Flow Summary (Compilation report of the .v file)
 - Simulation Report Simulation Waveforms (Simulation report of the .vwf file)

[Tampered/edited/cropped screenshots will be considered as a violation of general guidelines and therefore will not be accepted]

- 3. **Discussion/Explanation:** explain the output waveforms of your simulation report as described in the **Expected Output** section within each problem statement.
- Each problem will be of equal points. You will not be graded on the length/number of code/explanation/outputs; rather on the clarity, readability and precise explanations of your code/logic/outputs
- Points distribution for each problem is

Code: **40%**Output: **20%**

Discussion/Explanation of output: 40%

- You will need to create separate directories/project for each problem
- The name of your working directory for each problem of the assignment should be ...\problem# StudentID [# = 1/2/3/4..]

For example, for problem 1 the name of the directory should be problem1_1406066

- Consequently, the name of your main module in the Verilog file should be problem#_StudentID [# = 1/2/3/4..]
 Continuing from the previous example, the name of the module should be problem1_1406066
- Finally, compile all the problems for a given assignment into a single pdf file
- The name of the pdf should be Section_StudentID_assignment1.pdf (Example: 1_1406066_assignment1.pdf)

Problem for Assignment 1

Design a logic circuit in Verilog that will take one 3-bit input A, check whether all of the input bits are equal or not and determine the logic level (0/1) of the unique bit. Find the possible input conditions and the expected outputs in the following table: [15]

Possible input condition	Output
All bits are equal	3
Unique bit at position 2	2
Unique bit at position 1	1
Unique bit at position 0	0

Expected Output:

Show all possible outputs in your timing diagram with appropriate inputs and briefly explain your results.

Design a 5-bit end around left shift register that operates at the negative edge of a clock in Verilog with external load functionality. For example, the output of the shift register would be (for each negedge clock time t(i) to t(i+2) and so on): [15]

t(i)	t(i+1)	t(i+2)
10110	01101	11010

Expected Output:

Perform the simulation for enough time to get at least **two** repetitions of the initial input after the external **load**. Determine the total number of clock cycles required to get one repetition of the input from the timing diagram and briefly explain your reasoning for that.