ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Lê Xuân Hiếu

NGHIÊN CỦU CÔNG CỤ MÔ PHỎNG GPSS VÀ PETRI NET CHO BÀI TOÁN HỆ THỐNG HÀNG ĐỢI

LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH

Thái Nguyên - 2013

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Lê Xuân Hiểu

NGHIÊN CỨU CÔNG CỤ MÔ PHỎNG GPSS VÀ PETRI NET CHO BÀI TOÁN HỆ THỐNG HÀNG ĐỢI

Chuyên ngành: Khoa học máy tính

Mã số: 60 48 01

LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH

NGƯỜI HƯỚNG DẪN KHOA HỌC

TS. Lê Quang Minh

Thái Nguyên - 2013

LÒI CAM ĐOAN

Tôi xin cam đoan luận văn này là do tôi thực hiện được hoàn thành trên cơ sở tìm kiếm, thu thập, nghiên cứu, tổng hợp phần lý thuyết và các phương pháp kĩ thuật được trình bày bằng văn bản trong nước và trên thế giới. Mọi tài liệu tham khảo đều được nêu ở phần cuối của luận văn. Luận văn này hoàn toàn mới và không sao chép nguyên bản từ bất kì một nguồn tài liệu nào khác.

Nếu có gì sai sót, tôi xin chịu mọi trách nhiệm./.

HỌC VIÊN

Lê Xuân Hiếu

MỤC LỤC

ĐẶT VẤN ĐỂ	1
Chương 1. TỔNG QUAN VỀ HỆ THỐNG HÀNG ĐỢI	3
1.1. Vai trò của hệ thống hàng đợi	3
1.2. Mô tả hệ thống hàng đợi	3
1.2.1. Mô hình hóa một hệ thống hàng đợi	5
1.2.2. Công thức Little	7
1.2.3. Hệ thống hàng đợi theo cách viết của Kendall và các phân phối li	iên
quan	7
1.3. Các yếu tố của hệ thống hàng đợi.	
1.3.1. Dòng yêu cầu đầu vào	10
1.3.2. Hàng đợi	
1.3.3. Kênh phục vụ	12
1.3.4. Dòng yêu cầu đầu ra	13
1.3.5 Các quy luật hoạt động của hệ thống phục vụ	13
1.4. Trạng thái hệ thống phục vụ	15
1.4.1. Định nghĩa về trạng thái của hệ thống phục vụ	15
1.4.2. Quá trình thay đổi trạng thái của hệ thống phục vụ	15
1.4.3. Sơ đồ trạng thái	16
1.4.4. Qui tắc thiết lập hệ phương trình trạng thái	16
Chương 2. CÁC CÔNG CỤ MÔ PHỎNG BÀI TOÁN HÀNG ĐỢI	19
2.1. Quy trình chung của việc phân tích, mô phỏng hệ thống hàng đợi	19
2.2. Một số ngôn ngữ lập trình bậc cao dùng để giải quyết bài toán hàng đợi.	20
2.2.1. Ngôn ngữ lập trình Matlab	20
2.2.2. Ngôn ngữ lập trình Java	21
2.2.3. Ngôn ngữ lập trình C++ và bộ công cụ Visual Studio.net	22
2.3. Ngôn ngữ mô phỏng GPSS và công cụ GPSS World	
2.3.1. Giới thiệu về ngôn ngữ GPSS	
2.3.2. Sự ra đời của ngôn ngữ GPSS	

2.3.3. Những ưu điểm của ngôn ngữ GPSS	25
2.3.4. Các ứng dụng của công cụ mô phỏng GPSS World	26
2.3.5. GPSS World Student Version	28
2.4. Các công cụ mô phỏng sử dụng ngôn ngữ đặc tả Petri-net	29
2.4.1. Các khái niệm cơ bản về Petri-net	29
2.4.2. Mô tả toán học về Petri-net	31
2.4.3. Một số thuộc tính của Petri-net	32
2.4.4. Một số công cụ sử dụng ngôn ngữ Petri-net	33
2.4.5. Úng dụng của mạng Petri-net	34
2.5. So sánh giữa P/T net và GPSS	34
Chương 3. SỬ DỤNG GPSS VÀ PETRI NET	36
TRONG BÀI TOÁN MÔ PHỎNG HỆ THỐNG HÀNG ĐỢI	36
3.1. Mô phỏng bài toán hàng đợi không ưu tiên	36
3.1.1. Phát biểu bài toán	36
3.1.2. Phân tích bài toán	37
3.1.3. Phân tích kết quả của bài toán bằng lý thuyết hàng đợi	37
3.1.4. Mô phỏng bài toán bằng công cụ GPSS WORLD	39
3.1.5. Mô phỏng bài toán bằng mô hình mạng Petri	43
3.2. Mô phỏng bài toán hàng đợi có ưu tiên	51
3.2.1 Phát biểu bài toán	51
3.2.2. Phân tích bài toán	52
3.2.3. Phân tích kết quả bài toán bằng lý thuyết hàng đợi	54
3.2.4. Mô phỏng bài toán bằng GPSS World	55
3.2.5. Mô phỏng bài toán bằng mô hình mạng Petri	59
3.3. Đánh giá các kết quả mô phỏng	64
KÉT LUẬN VÀ KIẾN NGHỊ	66
TÀI LIỆU THAM KHẢO	68

DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT

Ký hiệu	Tiếng Anh	Giải thích theo tiếng Việt
CEC	Current Event Chain	Chuỗi sự kiện hiện tại
GPSS	General Purpose Simulation	Ngôn ngữ mô phỏng hệ thống
	System	GPSS
GPSS/PC	General Purpose Simulation	Môi trường lập trình cho ngôn
	System/Personal Computer	ngữ GPSS
FEC	Future Event Chain	Chuỗi sự kiện tương lai
PABX	Private Automatic Branch	Tổng đài liên lạc dành cho một
	Exchange	tổ chức, đơn vị độc lập
P/T net	Place/ Transition Network	Một loại ngôn ngữ mô tả toán
		học, dựa trên lý thuyết về tập
		hợp

DANH MỤC CÁC BẢNG BIỂU

	Trang
Bảng 1.1 Các yếu tố cấu thành hàng đợi	4
Bảng 1.2 Các tham số đặc trưng trong hệ thống hàng đợi	6
Bảng 1.3 Các yếu tố theo quy tắc Kendall khi mô tả về hàng đợi	8
Bảng 1.4 Các phân phối xác suất liên quan đến A và B trong mô tả Kendall	9
Bảng 1.5 Một số phương pháp phục vụ áp dụng trong lý thuyết hàng đợi	14
Bảng 2.1 So sánh giữa Petri Net và GPSS	34
Bảng 3.1 Thời gian chờ T1 ở vị trí P1	45
Bảng 3.2 Thời gian chờ Tx-T8 ở vị trí P12	45
Bảng 3.3 Thời gian chờ T5 ở vị trí P7	46
Bảng 3.4 Thời gian chờ T5 ở vị trí P8	46
Bảng 3.5 Kết quả phân tích hàng chờ T	47
Bảng 3.6 Kết quả phân tích vị trí các đỉnh P	47
Bảng 3.7 Thời gian chờ T1 ở vị trí P1 (Khi T1 thay đổi)	48
Bảng 3.8 Thời gian chờ T5 ở vị trí P7 (Khi T5 thay đổi)	49
Bảng 3.9 Thời gian chờ T6 ở vị trí P8 (Khi T6 thay đổi)	49
Bảng 3.10 Kết quả phân tích hàng chờ T khi T1,T5,T6 thay đổi	50
Bảng 3.11 Kết quả phân tích vị trí các đỉnh P khi T1,T5,T6 thay đổi	50
Bảng 3.12 So sánh kết quả tính toán theo lý thuyết với tính toán trong GPSS và Petri Net	51
Bảng 3.13 So sánh kết quả tính toán theo lý thuyết với tính toán trong GPSS với thời gian T = 1.440 phút	58
Bảng 3.14 Thời gian chờ T1 ở vị trí P1	60
Bảng 3.15 Thời gian chờ T2 ở vị trí P2	61
Bảng 3.16 Kết quả phân tích hàng chờ T	62
Bảng 3.17 Kết quả phân tích vị trí các đỉnh P	62
Bảng 3.18 So sánh kết quả tính toán theo lý thuyết với tính toán trong GPSS và Petri Net	63
Bảng 3.19 So sánh kết quả tính toán theo lý thuyết với tính toán trong GPSS và Petri Net theo thời gian	64

DANH MỤC CÁC HÌNH VỄ

	Trang
Hình 1.1 Mô hình cơ bản của hệ thống hàng đợi (hay hệ thống phục vụ đám đông)	3
Hình 1.2 Mô hình hóa các yếu tố của một hệ thống hàng đợi	5
Hình 1.3 Mô tả hệ thống đợi	7
Hình 1.4 Sơ đồ trạng thái của hệ thống phục vụ	16
Hình 2.1 Minh họa công cụ Netlab tích hợp trên nền tảng Matlab	21
Hình 2.2 Minh họa Applet: The Petri - Net - Simulator chạy trên nền Java	22
Hình 2.3 Minh họa công cụ YASPER phát triển trên công nghệ .Net	23
Hình 2.4 Minh họa cửa sổ làm việc của GPSS World	25
Hình 2.5 Ví dụ về một cửa sổ REPORT GPSS World Student Version	29
Hình 2.6 Ví dụ Petri-net	30
Hình 2.7 Minh họa tính tiếp cận của Petri-net	32
Hình 2.8 Minh họa tính bất tử của Petri-net	33
Hình 2.9 Minh họa tính không có đường bao giới hạn của Petri-Net	33
Hình 2.10 Minh họa tính bảo thủ của Petri-net	33
Hình 3.1 Mô phỏng điều kiện bài toán xe cẩu trên thực tế	37
Hình 3.2 Mô phỏng điều kiện bài toán xe cẩu theo toán học	37
Hình 3.3 Sơ đồ khối thuật toán bài toán xe cẩu	39
Hình 3.4 Mô hình bài toán xe cẩu theo mạng Petri	43
Hình 3.5 Điều kiện bài toán mô phỏng mô hình hệ thống điều khiển đường băng sân bay	52
Hình 3.6 Sơ đồ thuật toán bài toán mô phỏng mô hình hệ thống điều khiển đường băng sân bay	53
Hình 3.7 Mô hình hàng đợi theo dạng M/M/1 bài toán mô phỏng mô hình hệ thống điều khiển đường băng sân bay	54
Hình 3.8 Mô hình hóa bằng mạng Petri bài toán mô phỏng mô hình hệ thống điều khiển đường băng sân bay	60

ĐẶT VẤN ĐỀ

Trong thực tế, chúng ta bắt gặp rất nhiều các hệ thống được thiết lập bởi các yêu cầu (của khách hàng), trong đó các thời điểm xuất hiện được xem như một đại lượng ngẫu nhiên, còn nhu cầu được đặc trưng bằng khối lượng các công việc phải làm để phục vụ, thứ tự ưu tiên trước sau, thời gian hoàn thành công việc và toàn bộ công việc. Đó là những hệ thống như: Xếp hàng mua vé vào rạp hát, xếp hàng thanh toán tiền ở quầy thu ngân ở siêu thị, máy bay cất cánh (hạ cánh), mạng máy tính, bãi đậu xe, phi trường... Những hệ thống này được gọi là *hệ thống hàng đợi* (hay hệ thống phục vụ đám đông)[1],[3],[6],12].

Nhìn chung các hệ thống hàng đợi là các hệ thống phức tạp, việc vận hành và tính toán các đặc trưng của hệ thống để tư vấn cho nhà quản lý là một vấn đề hết sức cần thiết. Việc xây dựng mô hình toán học cho mỗi hệ thống là rất cần thiết để giảm chi phí tối đa cho các hoạt động đặc tả nó. Việc đặc tả và tính toán một số đặc điểm của hệ thống hàng đợi có thể đem lại các kết quả dự báo quan trọng cho hệ thống. Khi đó tính chất đầy đủ của các mô hình mô phỏng cần đạt được việc mô phỏng quá trình làm việc của mỗi phần tử trong hệ thống với việc đảm bảo các logic, quy tắc của sự tương tác và phát triển của chúng cả trong không gian và trong thời gian.

Để xây dựng mô hình mô phỏng bằng cách sử dụng các ngôn ngữ lập trình truyền thống là khá phức tạp, khó khăn do khi lập trình, chúng ta phải quản lý các sự kiện theo một mô hình nhiều sự kiện xảy ra đồng thời (song song) với việc xây dựng các hàm tạo ngẫu nhiên các sự kiện (random) cũng không hề đơn giản, chính vì vậy đã xuất hiện các ngôn ngữ mô phỏng chuyên dụng. Hiện nay có một số phương pháp đánh giá, mô phỏng được sử dụng rộng rãi và có hiệu quả trên thực tế là phương pháp mô hình hoá và các mô hình được sử dụng hiện nay là mô hình hàng đợi, mạng Petri, General Purpose Simulation System (GPSS), đồ thị, và các mô hình lai ghép... Trong đó mô hình hàng đợi là một mô hình đơn giản và tỏ ra có hiệu quả trong thực tế.