

Critical Reviews in Food Science and Nutrition

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20

The future is bright: Biofortification of common foods can improve vitamin D status

Holly R. Neill, Chris I. R. Gill, Emma J. McDonald, W. Colin McRoberts & L. Kirsty Pourshahidi

To cite this article: Holly R. Neill, Chris I. R. Gill, Emma J. McDonald, W. Colin McRoberts & L. Kirsty Pourshahidi (2021): The future is bright: Biofortification of common foods can improve vitamin D status, Critical Reviews in Food Science and Nutrition, DOI: <u>10.1080/10408398.2021.1950609</u>

To link to this article: https://doi.org/10.1080/10408398.2021.1950609

+	View supplementary material 🗹
	Published online: 22 Jul 2021.
	Submit your article to this journal 🗷
ılıl	Article views: 137
a a	View related articles 🗷
CrossMark	View Crossmark data ☑

REVIEW

The future is bright: Biofortification of common foods can improve vitamin D status

Holly R. Neill^a (D), Chris I. R. Gill^a (D), Emma J. McDonald^b, W. Colin McRoberts^c, and L. Kirsty Pourshahidi^a (D)

^aNutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK; ^bDevenish Nutrition Ltd., Lagan House, Belfast, UK; ^cAgri-Food and Biosciences Institute, Headquarters, Belfast, UK

ABSTRACT

Vitamin D deficiency is a global concern, linked to suboptimal musculoskeletal health and immune function, with status inadequacies owing to variations in UV dependent cutaneous synthesis and limited natural dietary sources. Endogenous biofortification, alongside traditional fortification and supplement usage is urgently needed to address this deficit. Evidence reviewed in the current article clearly demonstrates that feed modification and UV radiation, either independently or used in combination, effectively increases vitamin D content of primary produce or ingredients, albeit in the limited range of food vehicles tested to date (beef/pork/chicken/eggs/fish/bread/mushrooms). Fewer human trials have confirmed that consumption of these biofortified foods can increase circulating 25-hydroxyvitamin D [25(OH)D] concentrations (n = 10), which is of particular importance to avoid vitamin D status declining to nadir during wintertime. Meat is an unexplored yet plausible food vehicle for vitamin D biofortification, owing, at least in part, to its ubiquitous consumption pattern. Consumption of PUFA-enriched meat in human trials demonstrates efficacy (n = 4), lighting the way for exploration of vitamin D-biofortified meats to enhance consumer vitamin D status. Response to vitamin D-biofortified foods varies by food matrix, with vitamin D₃-enriched animal-based foods observing the greatest effect in maintaining or elevating 25(OH)D concentrations. Generally, the efficacy of biofortification appears to vary dependent upon vitamer selected for animal feed supplementation (vitamin D₂ or D₃, or 25(OH)D), baseline participant status and the bioaccessibility from the food matrix. Further research in the form of robust human clinical trials are required to explore the contribution of biofortified foods to vitamin D status.

KEYWORDS

25-hydroxyvitamin D (25(OH)D); feed supplementation; UV radiation; fortification; RCT; bioavailability; meat

Introduction

Biofortification, also referred to as 'bio-addition' or 'bioenrichment', differs from exogenous or post-production fortification as the nutritional composition of a chosen food is naturally altered through a change in agronomic practices (Bouis and Saltzman 2017). In the case of animal production, for example, biofortification of primary produce can be achieved by altering the feed component or housing environment as part of animal husbandry. Alternative horticultural strategies and/or technologies have also been used in mushroom production, for example, to increase their nutritional value. Such strategies have successfully enhanced nutrient content of iron, vitamin A, zinc, selenium and vitamin D in a range of foodstuffs (for reviews, see Bouis and Saltzman 2017; Cardwell et al. 2018; Guo, Lovegrove, and Givens 2018; Jha and Warkentin 2020; Malagoli et al. 2015). The current review focuses on the different vitamin D biofortified foods researched to-date, the efficacy of these foods in human intervention trials and subsequently presents an argument for considering meat as a biofortification vehicle to improve population vitamin D status.

Vitamin D deficiency is a global public health priority issue as many populations fail to meet the recommended nutrient intake (RNI) and particularly during wintertime, at higher latitudes, vitamin D endogenous synthesis is at its nadir. However, estimates of the year-round prevalence of sub-optimal vitamin D status vary from 13% (increasing to 18% in winter) to 40% across Europe depending on whether deficiency is defined in accordance with the US Institute of Medicine (2011) as a 25-hydroxyvitamin D (25(OH)D) concentration in blood <30 nmol/l (12 ng/ml) or <50 nmol/l (20 ng/ml) as recommended by the Endocrine Society (Cashman et al. 2016a; Holick et al. 2011). These discrepancies are often owed to differences in the primary endpoint health outcome being considered (i.e. skeletal or non-skeletal benefits) as well as the lack of diversity in study populations which values were based upon (for reviews, see Bouillon et al. 2013; Holick et al. 2012; Pilz et al. 2019). Specifically in the UK, consumption rates are much lower than the recommended 10 µg/day (Scientific Advisory Committee on Nutrition (SACN) 2016) even when accounting for the contribution of supplements (approx. 3-4 µg/day) (Public Health England 2018). Hence, additional food-based strategies are

required to bridge the gap between recommended vitamin D intakes and current 25(OH)D concentrations (Buttriss and Lanham-New 2020; Cashman 2020a; Cashman 2020b).

As animals synthesize vitamin D following natural or artificial ultraviolet-B (UVB) exposure and meat is a popular food in UK diets (Cocking et al. 2020; Public Health England 2018), this may be a feasible vitamin D biofortification vehicle to increase population vitamin D status. In recent years, there has been a decline in consumption levels of red and processed meats in UK populations $(74 \pm 57 \text{ g to})$ 62 ± 51 g/day) (Public Health England 2018) owing to health and global sustainability concerns (Aune et al. 2013; Bouvard et al. 2015; World Cancer Research Fund 2018). Despite meat being a major contributor to vitamin D dietary intakes (Public Health England 2018), it is often under-valued and not widely recognized as a source of vitamin D (McNeill and Van Elswyk 2012). Accordingly, there is an opportunity to further enhance its nutritional profile through biofortification to ensure meat continues to remain one of the significant contributors to total vitamin D intakes despite lower quantities of meat being consumed. Moreover, it is not simply the concentration of vitamin D within the food source, but also the effects of food processing and the bioaccessibility from the food matrix which will impact upon bioavailability post-consumption which must be considered for biofortified sources. To date, numerous human studies have already demonstrated the bioavailability of vitamin D and subsequent status enhancement using the traditional exogenous, or post-production fortification routes (Black et al. 2012; Itkonen, Erkkola, et al. 2018; Pilz et al. 2018). However, the evidence surrounding the efficacy of endogenous vitamin D biofortification is less clear.

Therefore, the aims of the present review were to 1) summarize current evidence showing efficacy of vitamin D biofortification; 2) evaluate the efficacy of consumption of endogenously biofortified vitamin D-enriched products; 3) identify the feasibility of meat as a vehicle for endogenous nutrient biofortification.

Vitamin D biofortification in foodstuffs

Vertebrates as well as fungi and yeast are capable of synthesizing vitamin D₃ and vitamin D₂, respectively following exposure to UVB radiation (wavelength 290-315 nm) (Jäpelt and Jakobsen 2013; Wacker and Holick 2013). In humans and animals, 7-dehydrocholesterol (provitamin D₃) in the epidermis of skin is converted to pre-vitamin D₃ before undergoing thermal isomerization to cholecalciferol and then two hydroxylation steps in the liver and kidneys to produce 25-hydroxyvitamin D₃ (25(OH)D₃) and the final active metabolite, 1,25-dihydroxyvitamin D₃ (1,25(OH)D₃), respectively. A detailed overview of vitamin D pathology has been documented in detail elsewhere (Bikle 2014; Christakos et al. 2016). Considering this in-built endogenous synthesis, one effective method to enhance the vitamin D concentration of foodstuffs is to expose the animal or plant to UV radiation, either naturally or artificially.

Recent reviews have explored the impact of feed supplementation on vitamin D concentrations found in various animal-based foods (for reviews, see Barnkob, Argyraki, and Jakobsen 2020; Duffy et al. 2018a; Guo, Lovegrove, and Givens 2018), whilst others have extensively investigated how UV exposure impacts the vitamin D content of fresh mushrooms (for reviews, see Cardwell et al. 2018; Friedman 2016; Kohn 2016; Taofiq et al. 2017). These are collated and summarized alongside eighteen additional studies which are described and fully referenced in Table 1. UV exposure resulted in elevated vitamin D2 concentrations in baker's yeast and mushrooms, with differences observed between UVA, UVB and UVC. Of those that specified UV wavelength, UVB was the most popular type of irradiation, followed by UVC and then UVA (75%, 31% and 25% of studies, respectively). Some recorded use of more than one UV form. Artificial irradiation was favored with 81% studies using lamps compared to 11% relying on natural exposure and the remainder investigating both forms. It is important, therefore, to be cognizant of variability regarding intensity, wavelength, narrowband and broadband lamps, the spectrum of broadband, and the duration of UV exposure which limits comparability of data. Supplementing animal feed with vitamin D₃ increased vitamin D₃ concentrations in tissue, blood and meat of beef cattle, pigs and fish, as well as in egg yolk and cow's milk. In view of this data, it can be concluded that biofortification through feed supplementation or UV radiation is effective at enhancing vitamin D content in a variety of foods, especially animalbased products.

Vitamin D biofortification in human trials

Despite many studies highlighting the feasibility of enhancing the vitamin D content of various foods, and particularly meat sources using biofortification methodologies, remarkably few randomized controlled trials (RCTs) to-date have investigated their efficacy in elevating concentrations of circulating serum 25(OH)D in human participants. Following a systematic approach (see Supplemental Material for search strategy), ten studies were identified that investigate how participants vitamin D status has been influenced following consumption of foods exposed to biofortification practices, namely enriched eggs (Hayes et al. 2016), bread baked with UV-treated yeast (Itkonen et al. 2016), fish (Graff et al. 2016) and mushrooms (Keegan et al. 2013; Mehrotra et al. 2014; Nieman et al. 2013; Shanely et al. 2014; Stephensen et al. 2012; Stepien et al. 2013; Urbain et al. 2011). Table 2 describes results from these vitamin D biofortification human RCTs. Notably, to-date mushrooms represent the most popular vehicle for biofortification studies and have been comprehensively reviewed by others (Cardwell et al. 2018; Cashman et al. 2016b; Kamweru and Tindibale 2016; Kohn 2016; Taofiq et al. 2017) so while not the focus of this review, they have been included in Table 2 for completeness.

Consumption of vitamin D₃ enriched eggs and fish had a positive impact on endpoint total 25(OH)D concentrations,

Table 1. Summary of studies investigating the outcome of feed supplementation or UV exposure on vitamin D enrichment in animals or plant-based foods.

		Biofo	rtificati	Biofortification method	pou	J			
Food vehicle	ص	25(OH)D ₃	D_2	Mushroom D ₂		Λ	Summary of outcomes		Study reference
Beef cattle	×		×	×		×	Witamin D_3 diet $=\uparrow$ vitamin D_3 in meat $^{1\cdot 2.47}$ UV exposure $=\uparrow$ vitamin D in milk 3 & blood 3		Duffy et al. 2018b ¹ ; Duffy et al. 2017a ² , Jakobsen et al. 2015 ³ ; Korn et al. 2013 ⁴ , Montgomery et al. 2004 ⁵ ; Montgomery et al. 2000 ⁷
Pigs	×	×	×	×		X 25 tiss Vit Vit	25(OH)D ₃ diet = \uparrow total vitamin D activity in LT ¹⁰ & higher 25(OH)D ₃ in tissue ¹⁵ , LT ¹⁰ & serum ^{10,15} Vitamin D ₃ diet = \uparrow vitamin D ₃ in tissue ^{15,19} , blood ^{12,16,18} & LT ^{10,17-18} UV exposure = \uparrow total vitamin D content of loin tissue ^{9,13} & \uparrow serum vitamin D ₃ *9,11-13.16 & \uparrow vitamin D ₃ in skin ^{14,16}	(OH)D ₃ in _F 10,17-18 serum 4,16	Jakobsen, Nielsen, and Jakobsen 2020 8 , Barnkob et al. 2019 9 ; Duffy et al. 2018 6 . Alexander et al. 2017 11 ; Kolp et al. 2017 12 ; Larson-Meyer et al. 2017 13 ; Barnkob et al. 2016 14 ; Burild et al. 2016 15 ; Burild et al. 2015 16 ; Jakobsen et al. 2007 17 ; Wilborn et al. 2004 18 ; Clausen et al. 2003 19
Chickens (egg yolk)	×	×	×	×		X Vit 25 25 eg eg Vit	Vitamin D ₃ diet = \uparrow vitamin D ₃ in yolk ^{21,23,26,27,30,32,36,40} 25(OH)D ₃ diet = \uparrow 25(OH)D ₃ in yolk ^{23,27,32,37,42} & \uparrow total vitamin D activity in egg ²⁴ Vitamin D ₂ diet = \uparrow vitamin D in yolk ⁴¹ UV exposure = \uparrow vitamin D or 25(OH)D ₃ in plasma ^{22,25,29,31} & yolk ^{20,25,28-29,38-39}	.⊑ ≻	Kühn et al. 2019 ²⁰ ; Wen, Livingston, and Persia 2019 ²¹ ; Geng et al. 2018 ²² . Duffy et al. 2017b ²³ ; Cashman et al. 2015 ²⁴ , Kühn et al. 2015 ²⁵ ; Plaimast et al., 2015; Browning and Cowieson 2014 ²⁷ ; Kühn et al. 2015 ²⁸ ; Schutkowski et al. 2013 ²⁹ ; Yao et al. 2013 ³⁰ , Lietzow et al. 2012 ³¹ ; Mattila, Valkonen, and Valaja 2011 ³² ; Park et al. 2005 ³³ ; Mattila et al. 2003 ³⁴ ; Mattila et al. 2003 ³⁵ , Mattila et al. 1999 ³⁴ ; Chiang, Hwang, and Holick 1996 ³⁹ ; Kawazoe et al. 1994 ⁴¹ ; Koshv and Van Der Slik 1979 ⁴²
Chickens (meat)					×	≤ ×	UV exposure $=\uparrow$ vitamin D in meat ⁴³		Schutkowski et al. 2013 ⁴³
Fish	×				^	× ×	Highest vitamin D ₃ diet = \uparrow vitamin D ₃ in whole fish ⁴⁶ , fillet ^{44,48} & liver ^{46,49} No correlation between vitamin D ₃ diet & rainbow trout muscle ⁴⁷ UV exposure = \uparrow vitamin D in skin ⁴⁵	,48 & liver ^{46,49} e ⁴⁷	Jakobsen, Melse-Boonstra, et al. 2019^{44} ; Pierens and Fraser 2015^{45} ; Graff et al. 2002^{46} ; Mattila et al. $1999b^{47}$; Horvli, Lie, and Aksnes 1998^{48} ; Vielma et al. 1998^{49}
Dairy goats & sheep					×	≤ ×	UV exposure $=\uparrow$ 25(OH)D in serum ⁵⁰		Nemeth, Wilkens, and Liesegang 2017 ⁵⁰
Cows (milk)	×	×			~	X 25	25(OH)D ₃ diet = \uparrow 25(OH)D ₃ in serum ⁵² Vitamin D ₃ diet = \uparrow vitamin D ₃ & 25(OH)D ₃ in plasma ⁵³ & milk ⁵⁴⁻⁵ IIVB consoling = \uparrow 25(OH)D is alread ⁵¹ 0.4 vitamin D 0.25OHD is milk ⁵¹	54-5 اتبالتہ تا صلح	Jakobsen et al. 2015 ⁵¹ ; Weiss et al. 2015 ⁵² ; McDermott et al. 1985 ⁵³ ; Reeve, Jorgensen, and Deluca 1982 ⁵⁴ ; Hollis et al. 1981 ⁵⁵
Baker's yeast*					×	> >	UVB exposure = $ z_3(\text{DI})D_3 $ in plasma $\propto v_1 $ wramin $D_3 \propto z_2 \text{DI}$ UV exposure = \uparrow vitamin D in yeast $^{26-57}$	E CHO	Degre and Zhang 2014 ⁵⁶ ; Degre, Zhang, and Edwards 2008 ⁵⁷
Fresh mushrooms					^	^ ^ @ ^ & € E E	UVA or UVC exposure $=\uparrow$ vitamin D ₂ in mushrooms $^{58,63-64,76,82,86,91,95-99,101}$ UVB exposure $=\uparrow$ vitamin D ₂ in mushrooms $^{59-62,65-75,77-90,92-94,98,100-101}$ (extended exposure/dose $=\downarrow$ vitamin D ₂ in mushrooms vs UVA exposure 96 Post-harvest UVB exposure $=\uparrow$ vitamin D ₂ vi tamin D ₂ vs exposure during growth phase 84 Gills facing UV source $=\uparrow$ vitamin D ₂ vs caps facing UV source 99	2,86,91,95-99,101 ,98,100-101 96 growth e ⁹⁹	Hu et al. 2020 ⁵⁸ , Bilbao-Sainz et al. 2017 ⁵⁹ ; Chien et al. 2017 ⁶⁰ ; Won et al. 2018 ⁶¹ ; Banlangsawan and Sanoamuang 2016 ⁶² ; Guan et al. 2016 ⁶³ ; Huang, Cai, and Xu 2017 ⁶⁴ ; Lee and Aan 2016 ⁶² ; Nölle et al. 2017 ⁶⁶ ; Sławińska et al. 2016 ⁶⁷ ; Urbain, Valverde, and Jakobsen 2016 ⁶⁸ ; Huang, Lin, and Tsai 2015 ⁶⁹ ; Urbain and Jakobsen 2015 ⁷⁰ ; Zhang et al. 2015 ⁷¹ ; Krings and Berger 2014 ⁷² ; Mehrotra et al. 2013 ⁷⁶ ; Calvo et al. 2013 ⁷⁷ ; Keegan et al. 2013 ⁷⁸ ; Phillips and Rasor 2013 ⁷⁸ ; Stepien et al. 2013 ⁸⁹ ; Wittig, Krings, and Berger 2013 ⁸¹ ; Kalaras, Beelman, and Elias 2012 ⁸² ; Kalaras et al. 2012 ⁸³ ; Kalaras, Beelman, and Lias 2012 ⁸² ; Stephensen et al. 2012 ⁸³ ; Kistensen, Rosenqvist, and Jakobsen 2012 ⁸² ; Stephensen et al. 2012 ⁸³ ; Koyyalamudi et al. 2011 ⁸⁸ ; Simon et al. 2011 ⁸⁹ ; Urbain et al. 2011 ⁹⁹ ; Koyyalamudi et al. 2009 ⁹¹ ; Lee et al. 2009 ⁹² ; Ko et al. 2008 ⁹³ ; Roberts, Teichert, and McHugh 2008 ⁹² ; Jasinghe, Perera, and Sablani 2007 ⁹⁵ ; Teichmann et al. 2007 ⁹⁶ ; Jasinghe, Perera, and Barlow 2006 ⁹⁷ ; Jasinghe and Perera 2005 ⁹⁷ ; Perera et al. 2003 ⁹⁷ ; Mall. Chen, and Yann 1998 ¹⁰¹
			:			0,10,		-	

LT, Longissimus thoracis; vitamin D activity = vitamin D₃ + (25(OH)D₃ × 5). Superscript numerals correspond with study outcomes and their respective references.
*The European Food Safety Authority (EFSA Panel on Dietetic Products and Nutrition and Allergies (NDA) 2014) and U.S. Food and Drug Administration (FDA, 2012) have approved the use of UV-irradiated baker's yeast (Saccharomyces Cerevisiae), patented by LALLEMAND, USA Inc (Montreal, Canada).

Study	Location	Age, y ^b	Age, y ^b BMI, kg/m ^{2 b} Duration, wk	Duration, wk	Season	Study groups (type of food)	Vitamin D dose, μ g/d $^{\circ}$	outcome, nmol/L ^d
Bread (yeast) Itkonen et al. 2016 (n = 33, 0% M)	Helsinki, Finland (60°N)	27.2 ± 5.1	22.2 ± 2.3	∞	Winter (Feb-April)	$\begin{array}{l} \textit{Placebo capsule} + \textit{bread} \\ \textit{Vitamin D}_2 \ \textit{supplement} + \textit{bread} \\ \textit{Vitamin D}_3 \ \textit{supplement} + \textit{bread} \\ \textit{Placebo capsule} + \textit{UV-bread} \\ \end{array}$	0 24.4 D ₂ 25.0 D ₃ 26.3 D ₂	No change Δ + 9.6 Δ + 17.0* No change
Eggs Hayes et al. 2016 (n = 51, 49% M)	Cork, Ireland (51°N)	45–70	25.6 ± 4.1	∞	Winter (Jan-March)	Placebo eggs Vitamin D ₃ -eggs 25(OH)D ₃ -eggs	<6.8 D 24.5 D 31.5 D	$41.2 \pm 14.1 \rightarrow 34.8 \pm 11.4^*$ $48.2 \pm 18.9 \rightarrow 50.4 \pm 21.4$ $49.4 \pm 15.8 \rightarrow 49.2 \pm 16.5$
Fish Graff et al. 2016 $(n = 122, 0\% \text{ M})$	Bergen, Norway (60°N)	55.0 (5.0) ^e	55.0 (5.0) ^e 24.6 (5.0) ^e	12	Spring (Feb-May)	High vitamin D_3 + high vitamin K_1 salmon (+ Ca supplement) High vitamin D_3 + low vitamin K_1 salmon (+ Ca supplement) Low vitamin D_3 + high vitamin K_1 salmon (+ Ca supplement) Vitamin D + calcium supplement) 16.3 D ₃ 15.0 D ₃ 3.9 D ₃ 15.0 D ₃	$\Delta + 11.4 \pm 16.0^{*}$ $\Delta + 12.1 \pm 16.8^{*}$ $\Delta - 1.2 \pm 12.3$ $\Delta + 13.7 \pm 17.0^{*}$
Mushrooms Mehrotra et al. 2014 $(n = 36, 42\% \text{ M})$	New York, United States (41°N)	49±12	>25	91	Winter + Spring (Nov-April)	Placebo capsule $+$ (low) UV-mushroom Placebo capsule $+$ (high) UV-mushroom Vitamin D ₃ supplement (low) $+$ mushroom Vitamin D ₃ supplement (high) $+$ mushroom	12.1 D ₂ 65.2 D ₂ 31.1 D ₃ 183.0 D ₃	NR $42.5 \pm 12.3 \rightarrow 46.3 \pm 10.3$ $40.3 \pm 8.8 \rightarrow 71.3 \pm 2.8*$ $47.0 \pm 10.5 \rightarrow 81.3 \pm 9.5*$
Mushrooms Shanely et al. 2014 (n = 33, 100% M)	North Carolina, United States (36°N)	16.2 ± 1.1	23.4–24.7	9	Winter (Jan–Feb)	UV-mushroom capsule Placebo mushroom capsule	15.0 D_2 62.2 ± 12.9 Below limit of detection 64.5 ± 20.1	$62.2 \pm 12.9 \rightarrow 69.0 \pm 12.6^*$ n $64.5 \pm 20.1 \rightarrow 62.0 \pm 20.7$
Mushrooms Keegan et al. 2013 (n = 25, 24% M)	Massachusetts, United States (42°N)	35.2	N	12	Winter (NR)	Vitamin D_2 supplement Vitamin D_3 supplement UV-mushroom capsule	50.0 D ₂ 50.0 D ₃ 50.0 D ₂	$48.5 \pm 5.8 \rightarrow 73.0 \pm 5.0$ * $42.8 \pm 3.5 \rightarrow 86.0 \pm 3.3$ * $51.5 \pm 6.0 \rightarrow 75.3 \pm 6.5$ *
Mushrooms Nieman et al. 2013 (n = 28, 100% M)	North Carolina, United States (36°N)	27.2 ± 4.5	28.2–29.8	9	Winter (Oct–Jan)	UV-mushroom powder Placebo mushroom powder	95.0 D ₂	$91.5 \pm 15.3 \rightarrow 93.5 \pm 17.1$ $102 \pm 20.3 \rightarrow 96.5 \pm 17.4$
Mushrooms Stepien et al. 2013 $(n = 85, 35\% \text{ M})$	Dublin, Ireland (53°N)	40–65	25.2–26.0	4	Winter (Feb–March)	UV-mushroom powder Placebo mushroom powder Vitamin D_3 supplement Placebo capsule	15.0 D ₂ 0 15.0 D ₂ 0	49.0 ± 19.0 → 36.8 ± 16.6 39.8 ± 12.7 → 30.6 ± 15.1 47.8 ± 17.2 → 57.3 ± 17.7* 54.9 ± 21.1 → 41.7 ± 20.1
Mushrooms Stephensen et al. 2012 $(n = 35, 34\% M)$	California, United States (39°N)	20–59	22.5–24.7	9	Summer + Autumn (June–Nov)	Vitamin D_2 supplement $+$ mushroom Placebo capsule $+$ (low) UV-mushroom Placebo capsule $+$ (high) UV-mushroom Placebo capsule $+$ mushroom	28.2 D ₂ 8.8 D ₂ 17.1 D ₂ 0.8 D ₂	$\Delta - 7.3 \pm 2.9$ $\Delta - 6.5 \pm 3.7$ $\Delta - 10.5 \pm 6.0^*$ $\Delta + 2.6 \pm 3.3$
Mushrooms Urbain et al. 2011 (n = 26, 35% M)	Freiburg, Germany 30.8±5.8 (48°N)	30.8±5.8	22.1 ± 2.5	5	Winter (Jan–March)	Vitamin D_2 supplement $+$ mushroom Placebo capsule $+$ UV-mushroom Placebo capsule $+$ mushroom	100.2 D ₂ 100.0 D ₂ 0.2 D ₂	$27.3 \pm 6.0 \rightarrow 65.3 \pm 15.0*$ $37.6 \pm 5.0 \rightarrow 59.6 \pm 12.2*$ $30.4 \pm 6.0 \rightarrow 26.2 \pm 5.6*$

aUnless otherwise specified, data is presented as mean±SD.

bAge and BMI is reported as range where mean±SD was unavailable.

cWhen daily vitamin D dose was not presented in original data, concentration was calculated from weekly dosage; study by Hayes et al. (2016) is presented as mean total vitamin D activity [vitamin D3 + (25(OH)D3 x 5)].

dDemonstrates significant effect of dietary regime (*P < 0.05).

eData reported as median (interquartile range).

compared to control groups (Graff et al. 2016; Hayes et al. 2016). Vitamin D₃ and 25(OH)D₃-enriched eggs maintained wintertime total serum 25(OH)D concentrations at around 50 nmol/l (a non-significant change from baseline, P > 0.05) whereas, the group receiving placebo eggs observed the expected 25(OH)D seasonal decline (mean \pm SD; 41.2 \pm 14.1 to $34.8 \pm 11.4 \,\mathrm{nmol/l}$, P = 0.001). There was no significant difference between endpoint 25(OH)D concentrations in vitamin D₃ and 25(OH)D₃-enriched egg groups, however both groups were significantly higher in endpoint 25(OH)D from control ($P \le 0.005$). In the study by Graff et al. (2016), participants offered fish with the highest vitamin D₃ content observed a significant treatment effect in serum 25(OH)D concentrations from baseline to endpoint (median (IQR); 74.2 (32.5) to 84.0 (15.6) nmol/l, P < 0.001). This differs to the 25(OH)D maintenance reported by Hayes et al. (2016) with enriched eggs; however, the weekly vitamin D₃ dose from enriched fish was much greater than the highest vitamin D₃ egg group (114 vs. 7.28 μg). Contrasting with traditional vitamin D₂ fortification in bread which has shown positive outcomes (Mocanu and Vieth 2013; Natri et al. 2006; Nikooyeh et al. 2016), consuming bread baked with UV-treated yeast had no impact on participant total 25(OH)D concentrations compared to baseline or compared to control (placebo) bread (Itkonen et al. 2016). As the vitamin D₂ supplement group in the same study observed an increase in endpoint total 25(OH)D concentration (+9.6 nmol/l; +14.7%), even with relatively equivalent dosage to vitamin D₂-enriched bread (24.4 µg D₂/supplement; 26.3 μg D₂/bread portion), it has been proposed this may in part be caused by the baking process or digestibility of the yeast preventing liberation of vitamin D₂. Lastly, response to vitamin D₂-enriched mushrooms varied. All studies observed increasing 25(OH)D₂ concentrations, suggesting enriched mushrooms do not have to overcome the same vitamin D₂ entrapment limitation reported within UV-treated yeast; however only two studies (Nieman et al. 2013; Urbain et al. 2011) were deemed successful in elevating total 25(OH)D concentrations post-consumption of biofortified mushrooms compared to control. In all studies, little to no difference was observed in circulating parathyroid hormone (PTH) or calcium concentrations in any of the bio-enriched food intervention groups over time.

Taken together, these findings indicate that biofortification, particularly vitamin D₃-enrichment in animal-based foods, may be a viable concept to offer consumer protection against the expected decline in vitamin D status to nadir during winter. The complexity of vitamin D human intervention studies, however, must be acknowledged, both in terms of study design, and in drawing comparisons between trials. Such research is often conducted during the winter months to avoid confounding by sun exposure, and thus a significant seasonal decline in the control group is often observed which is at variance to that typically expected in a micronutrient trial. Interpretation therefore can be complicated by differing hypotheses, in particular whether the desired outcome is to maintain or increase 25(OH)D concentrations within the intervention groups. Moreover, many

other reasons may exist for the observed heterogeneity of results in the present review however, arguably, the main factors include efficacy differences between vitamin D₂ and D₃, as well as different vitamin D responses between parental vitamin D₃ and its metabolite, 25(OH)D₃, the effect of participants baseline status and the impact of the food matrix in which vitamin D is encompassed.

Relative effectiveness of parent forms, vitamin D₂ and Da

Both vitamin D parental forms, vitamin D₂ (ergocalciferol) and vitamin D₃ (cholecalciferol) have been enriched in biofortification studies for mushroom/bread and animal-based foods, respectively. Within the present review, eight RCTs included at least one vitamin D2 study arm (Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al. 2014; Nieman et al. 2013; Shanely et al. 2014; Stephensen et al. 2012; Stepien et al. 2013; Urbain et al. 2011) and six studies included vitamin D₃ (Graff et al. 2016; Hayes et al. 2016; Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al. 2014; Stepien et al. 2013), albeit only two studies increased vitamin D₃ by biofortification (Graff et al. 2016; Hayes et al. 2016) whilst the remaining included supplemental vitamin D₃ as a comparison to a biofortified product. Participants serum responses differ depending on the specific vitamer which was either enhanced in the food item or provided in supplement form as seen in Table 2. Prohormones vitamin D2 and D3 differ only by side chain structure, with the former containing an extra double bond. Much research has questioned if both are equipotent and interchangeable, however accumulating evidence suggests otherwise (Armas, Hollis, and Heaney 2004; Binkley et al. 2011; Glendenning et al. 2009; Heaney et al. 2011; Jakobsen et al. 2017; Leventis and Kiely 2009; Logan et al. 2013; Melhem, Aiedeh, and Hadidi 2015; Oliveri et al. 2015; Wetmore et al. 2016) and has been reviewed elsewhere (Tripkovic et al. 2012; Wilson et al. 2017). From the current review, where comparative vitamin D₂ vs. D₃ intervention groups exist, mainly within a supplement matrix, vitamin D₃ has always resulted in higher total serum 25(OH)D concentrations at endpoint (n = 4 studies) (Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al. 2014; Stepien et al. 2013).

Specifically, it has been postulated that a competitive situation may exist between the two metabolites. Vitamin D₂ is reported to escalate at the apparent expense of vitamin D_3 , meaning as dietary vitamin D2 intake and serum 25(OH)D2 increases, a concomitant decrease is observed in vitamin D₃ and its vitamers, thus affecting the overall total vitamin D pool (Hammami et al. 2019; Martineau et al. 2019). The suggested mechanisms have been presented elsewhere (Armas, Hollis, and Heaney 2004; Hammami et al. 2019; Houghton and Vieth 2006; Jones et al. 2014; Shieh et al. 2016). This may, in part, offer an explanation for the lack of change or lower total 25(OH)D concentrations post-intervention compared to baseline in a number of the biofortification studies, which have been enriched with vitamin D₂

(Mehrotra et al. 2014; Nieman et al. 2013; Stephensen et al. 2012; Stepien et al. 2013).

In general, participants assigned to vitamin D₂-enriched groups observed significant increases in circulating $25(OH)D_2$ compared to baseline (range +45.0 to +5.0 nmol/ l) but either a decrease (range -16.5 to -20.6 nmol/l) or no significant change was observed in circulating 25(OH)D₃ (Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al. 2014; Nieman et al. 2013; Shanely et al. 2014; Stephensen et al. 2012; Stepien et al. 2013). The impact of vitamin D₂ biofortified foods, however, on total 25(OH)D concentration compared to baseline varies. There was either no change or a decrease in circulating total 25(OH)D concentrations in five studies (Itkonen et al. 2016; Mehrotra et al. 2014; Nieman et al. 2013; Stephensen et al. 2012; Stepien et al. 2013), whilst three mushroom studies observed a significant increase in 25(OH)D concentrations compared to baseline (Keegan et al. 2013; Shanely et al. 2014; Urbain et al. 2011). Vitamin D biofortified bread baked with UV-treated yeast was not effective in elevating vitamin D status in human participants (Itkonen et al. 2016). Whilst serum 25(OH)D₂ observed a mean change of +6.4 nmol/l, total 25(OH)D and 25(OH)D₃ concentrations remained unchanged amongst the vitamin D₂-enriched bread group. These findings, therefore, potentially confirm the assertion from previous studies that vitamin D₂ is less potent (Heaney et al. 2011; Wilson et al. 2017), with an inverse relationship existing between vitamin D₂ and D₃ (Cashman et al. 2016b). Human studies investigating biofortified animal products (eggs and fish) and thus, enrich with vitamin D_3 rather than vitamin D_2 , only reported on total 25(OH)D. As such, comments regarding the specific impact of its consumption on 25(OH)D₃ and 25(OH)D₂ are limited. However, based on supplemental data, a similar inverse relationship would be assumed.

Despite extensive research investigating supplemental vitamin D_2 vs D_3 (for reviews, see Bouillon, Verlinden, and Verstuyf 2016; Tripkovic et al. 2012; Wilson et al. 2017), research directly comparing the effect of vitamin D_2 and D_3 from biofortified foods on 25(OH)D concentrations is lacking. Unlike supplementation trials, however, where the form of vitamin D can be controlled, the selected biofortification food vehicle will naturally determine whether vitamin D_2 or D_3 is predominantly increased. As such, differing food matrices will limit direct comparisons between vitamin D_2 and D_3 from biofortified sources.

Whilst some uncertainty remains as to the impact of dosing-schedule, sex, age, ethnicity and genetic variation (Hammami and Yusuf 2017; Nimitphong et al. 2013) on vitamin D_2 and D_3 potency, the consensus to date, predominantly from supplemental studies may provide validation to vitamin D_3 being the more common vitamer when fortifying or biofortifying food. Nonetheless, the value of vitamin D_2 biofortified products should not be overlooked, especially amongst those who follow a vegan or vegetarian diet as well as consumers with cultural considerations who rely on plant sources or consciously limit their intake of animal products and/or sun exposure, and to whom the vitamin D_3 metabolite will most likely be lacking.

Relative effectiveness of parent form, vitamin D_3 and its metabolite, $25(OH)D_3$

When supplementing animal feed for biofortification, either parental vitamin D or its hydroxylated form (25(OH)D) may be selected to increase the vitamin D content within the end food product. This demands careful consideration when implementing biofortification practices, as evidence suggests that these vitamers affect vitamin D status differently. Within the present review, only one study compared vitamin D₃ and 25(OH)D₃ biofortification. In Hayes et al. (2016), both vitamin D enhanced eggs resulted in higher post-intervention participant serum 25(OH)D concentrations compared to control, with a similar response noted between groups (vitamin D₃ eggs vs 25(OH)D₃ eggs). Nevertheless, regarding acute pharmacokinetics, 25(OH)D₃ would be expected to reach its peak significantly earlier, around 11 hours compared to 22 hours for equivalent vitamin D_3 , depending on the dosage (Guo et al. 2017; Jetter et al. 2014). This may be owed to polar 25(OH)D₃ having higher solubility than parental vitamin D₃ (Cesareo et al. 2019; Cianferotti et al. 2015). Consumption of 25(OH)D₃ negates the hepatic metabolism of vitamin D₃ within the liver, and thus may be advantageous for those with impaired liver function (Guo, Lovegrove, and Givens 2019; Sosa Henríquez Gómez de Tejada Romero 2020). Furthermore, 25(OH)D is less dependent on bile acids and micelle formation for absorption (Maislos, Silver, and Fainaru 1981; Maislos and Shany 1987). This accumulated evidence has stimulated debate on the exact potency of 25(OH)D in comparison to vitamin D, with ranges from 1 to 9 proposed, depending on dermal synthesis, host-related characteristics such as baseline status or genotype, dose, intervention duration and study design (for reviews, see Cashman et al. 2017; Guo, Lovegrove, and Givens 2018; Jakobsen, Melse-Boonstra, et al. 2019; Quesada-Gomez and Bouillon 2018). As no international consensus exists, national food composition tables vary in the factor used to quantify total vitamin D activity [vitamin $D_3 + (25-OH-D_3 \times n)$]. Some food databases, including the United Kingdom, Denmark and Switzerland apply a factor of five, whilst others use a factor of one or do not account for concentration of 25(OH)D, such as the Netherlands, Canada and the United States (Federal Department of Home Affairs 2019; Health Canada 2015; National Food Institute 2019; NEVO online version 6.0 2019; Public Health England 2019; U.S. Department of Agriculture (USDA), Agricultural Research Service 2019).

Commercial perspective of vitamin D biofortification

From an industry perspective, there may be additional concerns when deciding whether to enrich with vitamin D or 25(OH)D as The European Food Safety Authority (EFSA) currently only recognizes and regulates the presence of vitamin D_3 and D_2 (cholecalciferol and ergocalciferol, respectively) within a product when establishing a health claim (EFSA Panel on Dietetic Products and Nutrition and Allergies (NDA) 2010), and not total vitamin D activity (including 25(OH)D content within the product). Further

well-designed long-term RCTs are required to cement this concept and generate legislative change. Albeit convincing data exists to suggest intake of 25(OH)D is of greater advantage owing to a more rapid increase in vitamin D status (Bischoff-Ferrari et al. 2012), increased potency (Barger-Lux et al. 1998; Cashman et al. 2012; Jetter et al. 2014; Navarro-Valverde et al. 2016; Shieh et al. 2017; Vaes et al. 2018), higher intestinal absorption efficacy (Davies, Mawer, and Krawitt 1980; Sitrin and Bengoa 1987) and less fluctuations in serum 25(OH)D compared to vitamin D₃ after intermittent intake (Quesada-Gomez and Bouillon 2018; Russo et al. 2011). Considering animal-based products, EFSA has approved and informed the quantity of vitamin D and 25(OH)D permitted in feed of all animal species, of which Hayes et al. (2016) adhered to and thus reflected commercial application (European Food Safety Authority 2009; European Food Safety Authority 2017). From a business perspective, selecting to supplement animal feed with vitamin D₃ could result in an end-product meeting the quantitative requirement for a front-of-pack vitamin D health claim. This marketing may increase the likelihood of a consumer purchasing a biofortified product, compared to a similar 25(OH)D₃ enriched food without such advertising, and thus regulations may also dictate the vitamer most suitable for biofortification.

Impact of baseline status on serum response

When investigating the efficacy of vitamin D biofortified foods, a participant's baseline status may elucidate varying levels of intervention response (for reviews, see Jakobsen, Melse-Boonstra, et al. 2019; Mazahery and von Hurst 2015; Quesada-Gomez and Bouillon 2018). Although some research suggests the baseline status has little to no effect, recent large-scale randomized control trials have confirmed different serum 25(OH)D responses between deficient and sufficient participants, cementing the general consensus that those with lower baseline vitamin D status would be expected to observe a greater effect on health outcomes than individual's with higher baseline status (Borel, Caillaud, and Cano 2015; Manson et al. 2019; Pittas et al. 2019; Scragg 2019). Participants consuming enriched bread baked with UV-treated yeast had relatively high mean baseline vitamin D concentrations $(64.6 \pm 15.1 \text{ nmol/l})$ which reflects the status of the Finnish population but may underrepresent the effectiveness of UV-treated yeast (Itkonen et al. 2016). As the study was carried out in Finland, where the majority of liquid milk products (1 µg vitamin D/100g) and fat spreads (20 µg vitamin D/100g) are fortified based on voluntary recommendations (National Nutrition Council 2010), this will naturally have repercussions on the vitamin D status of the selected study population. Interestingly, participants assigned enriched salmon also had high total 25(OH)D baselines status (median (IQR); 75.4 (30.5) nmol/l) yet significant changes in serum 25(OH)D were still observed (Graff et al. 2016). This elevated status will likely be owed to the popularity of cod liver oil supplements in Norway (Brustad, Braaten, and Lund 2004; Brustad et al. 2003), alongside

modest voluntary fortification of some types of low-fat milk (0.4 μg vitamin D/100g), margarine and butter (10 μg vitamin D/100g) (Itkonen et al. 2020), resulting in higher vitamin D concentrations compared to other European regions (Hilger et al. 2014). From mushroom studies, when baseline status was higher, increases in vitamin D2 also observed similar decreases in vitamin D₃, whereas when baseline concentrations were lower, vitamin D2 increases were accompanied with more modest reductions in vitamin D₃ and resulted in significant response on serum 25(OH)D (Cashman et al. 2016b). As noted previously, the complexity in directly comparing vitamin D RCTs with different hypotheses is also relevant here. Modest or no increase in participant vitamin D concentrations may not necessarily reflect an unviable biofortification vehicle, rather that the participant's baseline status may be at such a level, a significant change is not observed. In light of this, widespread vitamin D biofortification of staple foods may be of particular benefit to populations with sub-optimal status who would observe a greater response comparatively to those with sufficient vitamin D status prior to the inclusion of biofortified products within their diet.

Bioaccessibility and bioavailability of vitamin D from food matrix

Understanding the bioaccessibility and bioavailability of nutrients is paramount to recognizing its availability for physiological activity. Often these terms are wrongly used interchangeably. Bioaccessibility refers to the release of bioactive compounds from its encapsulating matrix in the gastrointestinal tract allowing for absorption, whilst bioavailability determines the rate of absorption efficiency and availability of metabolic utilization for physiological functions or storage (Benito and Miller 1998; Fairweather-Tait 1993; Fernández-García, Carvajal-Lérida, and Pérez-Gálvez 2009; Godber 1990; Hedrén, Mulokozi, and Svanberg 2002; Jackson 1997; Saura-Calixto, Serrano, and Goñi 2007). Thus, considering the food vehicle is an important factor when assessing the effectiveness of biofortified foods.

Biofortification studies vary in how vitamin D enriched sources are provided to participants, either as a mushroom extract within a capsule (Keegan et al. 2013; Shanely et al. 2014), within a meal as was the case for five mushroom studies (Mehrotra et al. 2014; Nieman et al. 2013; Stephensen et al. 2012; Stepien et al. 2013; Urbain et al. 2011), or left to the discretion of the participant to decide how to consume as part of the habitual diet as instructed for studies investigating biofortified fish, eggs and bread baked with UV-treated yeast (Graff et al. 2016; Hayes et al. 2016; Itkonen et al. 2016).

Vitamin D-enriched yeast has also been used in animal and in vitro studies, but with equivocal results (Hohman et al. 2011; Itkonen et al. 2016; Itkonen, Pajula, et al. 2018; Lipkie, Ferruzzi, and Weaver 2016). In vitro research shows 6-7% vitamin D bioaccessibility of yeast-fortified breads, with no difference between whole wheat and white wheat bread (Lipkie, Ferruzzi, and Weaver 2016). This contrasts

starkly with 71-85% vitamin D bioaccessibility from bovine milks and infant formula. In vitro and rat in vivo digestion suggests yeast vitamin D_2 fortified bread has $\sim 4x$ and $\sim 2x$ lower bioaccessibility than bread fortified with crystalline vitamin D₂, respectively (Hohman et al. 2011; Lipkie, Ferruzzi, and Weaver 2016). Such evidence suggests that vitamin D₂ is not fully released as simulation of oral, gastric and small intestine digestions resulted in unchanged yeast cells (Lipkie, Ferruzzi, and Weaver 2016). The same research group postulated that harsher lyophilization, autolysis or purification may enhance digestive release of vitamin D₂ from yeast.

Both studies providing capsules of UV-exposed mushrooms observed significant increases in vitamin D status (Keegan et al. 2013; Shanely et al. 2014). It could be hypothesized that the single, dried food component was advantageous to meal settings as it negated the more complex digestion and release required from food matrices. The array of additional nutritional components in food meal settings, together with the multiplicity of interactions, warrants bioaccessibility implications, as unlike supplemental isolated vitamin D forms, it must be released from the incorporated food matrix in the human gastrointestinal tract (Aguilera 2019). Being a fat-soluble vitamin, dietary fat content may be of particular interest to vitamin D and the food matrix context. Some evidence to date suggests that neither the amount of fat consumed alongside vitamin D, nor the food matrix, have any impact on the bioavailability of fortified food and supplemental forms of vitamin D and are extraneous to total vitamin D activity (for reviews, see Borel, Caillaud, and Cano 2015; Jakobsen, Melse-Boonstra, et al. 2019). However, in healthy older adults, ingesting a vitamin D₃ supplement alongside a low-fat meal resulted in increased absorption compared to a high-fat meal or no meal (Dawson-Hughes et al. 2013). In addition, a prospective cohort study observed improved absorption when a vitamin D supplement was consumed with the largest meal of the day (Mulligan and Licata 2010). Fatty acids, vitamins A, E and K, and dietary fibers may require specific consideration as they have previously demonstrated an affect on vitamin D absorption efficiency (Maurya and Aggarwal 2017), however it is doubtful these would have influenced the current biofortification studies. The heterogeneity of vitamin D biofortification vehicles proves difficult to confirm the exact influence of the matrix on bioaccessibilty and bioavailability, and is an area which demands future research to confirm the optimal food group. If pursuing biofortification, industries must be conscious of not simply the nutrient of interest but the use of a matrix which ensures physiological relevance to the consumer.

In essence, with the exception of mushrooms, research regarding the efficacy of biofortified foods to increase serum 25(OH)D concentrations in humans is in its infancy but some encouraging results have been observed (see Table 2). Additional RCTs in other foods/food groups are required to add to the body of evidence in support of vitamin D biofortification efficacy and allow a greater understanding of the

long-term implications for both healthy and disease-state populations.

Meat as biofortification vehicle

Enriching food vehicles via biofortification, namely eggs, fish and mushrooms, with vitamin D can result in a positive response on participant status. Poultry and red meat, naturally a source of protein, B-vitamins, zinc and iron (Marangoni et al. 2015; Williams 2007), could be another plausible vehicle for vitamin D biofortification. It is evident that UV exposure and feed supplementation can improve the vitamin D content in animals, however it is critical to understand its implication on human participants 25(OH)D concentrations. We conducted a systematic review which identified four human intervention trials investigating enriched meat via feed alterations. All of the eligible studies increased PUFA concentrations in meat (see Supplementary Table 1). To the best of the authors' knowledge, no studies have investigated the impact of biofortified meat on human participant vitamin D status, however evidence exists on the efficacy of this food vehicle choice from PUFA models.

Encouragingly, the majority of meat biofortification studies showed that the increased presence of PUFA within the meat matrix effectively improved fatty acid status in human participants (Coates et al. 2008; Haug et al. 2012; McAfee et al. 2011), with the exception of one study which only reported a decrease in total cholesterol and no concurrent change in circulating fatty acids (Sandström et al. 2000). Direct comparison proves limited owing to different fatty acid sources targeted across the studies and substantial variation in the quantified markers (see Supplementary Table 2). Overall, consuming enriched meat increased participants' fatty acid profiles, albeit the specific fatty acids which did so differed across studies.

Biofortification aligns with the need to optimize the nutritional quality of meat products, especially within the broader context of health and environmental advice to limit red and processed meat consumption (Godfray et al. 2010; Scientific Advisory Committee on Nutrition (SACN) 2010; Springmann et al. 2018; Willett et al. 2019).

Impact of meat product on human participant response

The form of meat offered to participants may have impacted upon their fatty acid response. Higher PUFA concentration was apparent in homogenous products, such as mince and sausage meat than that in unprocessed cuts of meat $(182 \pm 29 \text{ vs. } 89 \pm 5 \text{ mg}/100 \text{ g})$, most probably owing to the inclusion of multiple meat cuts from a larger range of animals processed with added higher fat (Haug et al. 2012; McAfee et al. 2011; Sioutis et al. 2008). This suggests that food processing impacts upon PUFA concentrations in meat offered to participants. In addition, inter- and intra-variation may be prevalent amongst meat, depending on the quantity of supplemented feed consumed by the respective animal. Naturally this would then impact the nutritional content of meat which could have repercussions on human status if the

enriched meat product offered to participants does not include a combination of animal samples. Furthermore, these findings may hint toward a substantial limitation in human feeding studies, whereby processed products offer an arguably more homogenized study design, yet may not be reflective of normal, or indeed, recommended consumption patterns. One example meal plan provided participants with three sausage-based eating occasions per day (Sandström et al. 2000) and another successfully increased PUFA concentrations but required participants to consume supra-physiological quantities (1000 g pork/week) (Coates et al. 2008), neither of which are reflective of typical 'real-life' intakes and would contradict current health advice in its translational application. Both studies, however, do highlight proof of concept, given the popularity of pork consumption globally (OECD 2020) and stimulate thought that biofortification could enhance n-3 concentration, or other nutrients, albeit within smaller portion sizes. Considering long-term public health implications, small changes across multiple products may be more realistic.

Vitamin D biofortification in meat

Increasing the vitamin D biofortification portfolio has been suggested by many as a viable way to address poor status globally (Cashman 2020b; Guo, Lovegrove, and Givens 2019; Guo et al. 2017; Hayes and Cashman 2017; Saternus, Vogt, and Reichrath 2019). The positive results from n-3 PUFAenriched meat arguably justifies the plausibility of vitamin D biofortification of meat as a vehicle to safely elevate 25(OH)D status in participants. Although, a paucity of data exists on the effect of consuming vitamin D-enriched meat, on-farm evidence has clearly demonstrated that supplementing feed and/or exposing animals to UV light significantly increases vitamin D concentrations in meat (see Table 1). For example, Duffy et al. (2017a) observed a 145% increase in total vitamin D activity in the Longissimus thoracis of beef heifers offered the EU limit of enriched vitamin D₃ feed (4000 IU/kg) compared to those receiving no vitamin D₃. In another example, considering UV exposure, an 18fold difference was observed in lean meat vitamin D₃ concentration between control pork and the highest UVexposed pork meat $(0.2 \pm 0.03 \text{ vs } 3.7 \pm 1.0 \text{ ng/g})$ (Barnkob et al. 2019). While meat naturally contains both vitamin D₃ and 25(OH)D₃, the quantities of each and the vitamin D₃:25(OH)D₃ ratio likely vary by species as well as by part of animal (e.g. muscle and offal) and season (Cashman et al. 2020). Consequently, such inherent variability coupled with downstream effects of food processing, have implications for the success of any biofortification strategy. Offsetting this, biofortification merits greater consumer acceptability as it could be perceived as a more natural option (Kotta et al. 2015). Animals for example, naturally synthesize vitamin D endogenously and are capable of self-regulation owing to the negative feedback system involving PTH secretion and 1,25-dihydroxyvitamin D (1,25(OH)₂D) (Bikle 2009; Nussey and Whitehead 2001). Consequently, reducing the risk of vitamin D toxicity within the animal and ensuring a

maximum plateau concentration, thus limiting the risk of consumers over-dosing from a portion of biofortified meat, which may be a cause of concern when using vitamin D supplements (Galior, Grebe, and Singh 2018).

Owing to the popularity of meat in many Western countries, particularly in the UK $(108 \pm 68 \text{ g/day})$ (Cocking et al. 2020; Public Health England 2018), a beneficial and realistic dose could theoretically be ingested. Nevertheless, it is important to acknowledge the recent shift toward lower meat intakes owing to environmental and public health concerns. If the trend toward lower consumption rates continues, it may appear questionable to use meat as a vitamin D biofortification vehicle. However, whilst striving to reduce potentially detrimental effects of excessive meat consumption, it is important that the health-benefiting nutritional composition of meat are still preserved; thus, ensuring vitamin D levels can be maintained even with fewer eating occasions or smaller portions of meat. Furthermore, those with lower incomes are less likely to access sustainable healthy diets (Drewnowski et al. 2020), consume red and processed meats more often (Clonan, Roberts, and Holdsworth 2016) and are at greater risk of low vitamin D status (Lin et al. 2021). A range of vitamin D biofortified meat products may therefore provide a more meaningful contribution to lower socioeconomic status consumers. Whilst vitamin D biofortification alone will not solve the vitamin D crisis, it may offer an additional, feasible, potentially cost-effective strategy to contribute toward its eradication in certain subgroups.

Determining the long-term efficacy of including realistic portion sizes of vitamin D biofortified meat in diets to reduce rates of hypovitaminosis D and maintain optimal 25(OH)D concentrations year-long, will necessitate validation by high-quality RCTs. Moreover, dietary modeling facilitates the opportunity to explore at a population level, the impact on vitamin D status if such bio-enriched meats were widely available and consumed.

Future research

Evidence regarding the effectiveness of consuming biofortified products is clearly lacking, and challenges exist in replicating habitual consumption patterns or imitating expected home preparations in a robust scientific study design. However, biofortification warrants undeniable potential to complement public health policies to improve population nutritional status. Additional factors requiring attention to ensure the successful implementation of biofortification include assessing consumer acceptability, shelf-life, stability of vitamin D-enriched food over time and manufacturing costs (Buttriss and Lanham-New 2020). Demonstration of bioaccessibility and status impact from vitamin D biofortified meat via feed supplementation and/or UV exposure awaits conclusive outcomes from RCTs. Moreover, further research should also consider the role of free 25(OH)D as an additional marker of vitamin D bioactivity (Shieh et al. 2016). In vitro research may be considered to screen potential vitamin D meat biofortification approaches prior to

human interventions. As discussed, future research demands careful consideration toward the selected form of vitamin D. participants baseline status and the food matrix to allow robust application of beneficiary outcomes.

Conclusion

Biofortification can be a simple, noninvasive, convenient way in which to increase nutritional intake amongst participants and may offer preventative health benefits in the longer-term. Vitamin D₃-enriched animal products, specifically eggs and fish, are effective in elevating or maintaining wintertime human vitamin D status, compared to enrichedmushrooms and bread baked with UV-treated yeast which produced heterogenous outcomes. Biofortified meat is an unexploited area in human research which, based on results from vitamin D on-farm work and PUFA-enriched meat RCTs, may offer an exciting opportunity. Nevertheless, the greatest benefit from consuming either vitamin D₃ or D₂ biofortified foods will be observed amongst those with lower baseline status. In combination with traditional fortification processing, biofortification and supplement usage may help to reduce the prevalence of vitamin D deficiency.

Acknowledgements

The authors acknowledge the funding received to conduct this review as part of a PhD studentship awarded to H.R.N. The authors would also like to thank Rachael McAleenon for her assistance with the screening process.

Disclosure statement

The authors have no conflicts of interest to declare.

Funding

This work was funded as part of a Department for the Economy (DfE) Co-operative Awards in Science and Technology (CAST) PhD studentship, supported by Devenish Nutrition Limited.

ORCID

Holly R. Neill (b) http://orcid.org/0000-0003-4816-367X Chris I. R. Gill http://orcid.org/0000-0003-4335-7571 L. Kirsty Pourshahidi http://orcid.org/0000-0003-2251-5251

References

- Aguilera, J. M. 2019. The food matrix: implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition 59 (22):3612-29. doi: 10.1080/10408398.2018.1502743.
- Alexander, B. M., B. C. Ingold, J. L. Young, S. R. Fensterseifer, P. J. Wechsler, K. J. Austin, and D. E. Larson-Meyer. 2017. Sunlight exposure increases vitamin D sufficiency in growing pigs fed a diet formulated to exceed requirements. Domestic Animal Endocrinology 59:37-43. doi.org/10.1016/j.domaniend.2016.10.006. doi: 10.1016/j. domaniend.2016.10.006.
- Armas, L. A., B. W. Hollis, and R. P. Heaney. 2004. Vitamin D₂ is much less effective than vitamin D₃ in humans. The Journal of

- Clinical Endocrinology & Metabolism 89 (11):5387-91. doi: 10.1210/ ic.2004-0360.
- Aune, D., D. S. Chan, A. R. Vieira, D. A. Navarro Rosenblatt, R. Vieira, D. C. Greenwood, E. Kampman, and T. Norat. 2013. Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes & Control 24 (4):611-27. doi: 10.1007/s10552-012-0139-z.
- Banlangsawan, N., and N. Sanoamuang. 2016. Effect of UV-B irradiation on contents of ergosterol, vitamin D2, vitamin B1 and vitamin B₂ in Thai edible mushrooms. Chiang Mai Journal of Science 43 (1): 45-53.
- Barger-Lux, M. J., R. P. Heaney, S. Dowell, T. C. Chen, and M. F. Holick. 1998. Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men. Osteoporosis International 8 (3):222-30. doi: 10.1007/s001980050058.
- Barnkob, L. L., A. Argyraki, and J. Jakobsen. 2020. Naturally enhanced eggs as a source of vitamin D: a review. Trends in Food Science & Technology 102:62-70. doi.org/10.1016/j.tifs.2020.05.018. doi: 10. 1016/j.tifs.2020.05.018.
- Barnkob, L. L., A. Argyraki, P. M. Petersen, and J. Jakobsen. 2016. Investigation of the effect of UV-LED exposure conditions on the production of vitamin D in pig skin. Food Chemistry 212:386-91. doi: 10.1016/j.foodchem.2016.05.155.
- Barnkob, L. L., P. M. Petersen, J. P. Nielsen, and J. Jakobsen. 2019. Vitamin D enhanced pork from pigs exposed to artificial UVB light in indoor facilities. European Food Research and Technology 245 (2): 411-8. doi: 10.1007/s00217-018-3173-6.
- Benito, P., and D. Miller. 1998. Iron absorption and bioavailability: an updated review. Nutrition Research 18 (3):581-603. doi.org/10.1016/ S0271-5317(98)00044-X. doi: 10.1016/S0271-5317(98)00044-X.
- Bennett, L., C. Kersaitis, S. L. Macaulay, G. Münch, G. Niedermayer, J. Nigro, M. Payne, P. Sheean, P. Vallotton, D. Zabaras, et al. 2013. Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS One 8 (10):e76362. doi: 10.1371/journal.pone.0076362.
- Bikle, D. 2009. Nonclassic actions of vitamin D. The Journal of Clinical Endocrinology and Metabolism 94 (1):26-34. doi: 10.1210/jc.2008-1454.
- Bikle, D. D. 2014. Vitamin D metabolism, mechanism of action, and clinical applications. Chemistry & Biology 21 (3):319-29. doi.org/ 10.1016/j.chembiol.2013.12.016. doi: 10.1016/j.chembiol.2013.12.016.
- Bilbao-Sainz, C., B. S. Chiou, T. Williams, D. Wood, W. X. Du, I. Sedej, Z. Ban, V. Rodov, E. Poverenov, Y. Vinokur, et al. 2017. Vitamin D-fortified chitosan films from mushroom waste. Carbohydrate Polymers 167 (1):97-104. doi: 10.1016/j.carbpol.2017. 03.010.
- Binkley, N., D. Gemar, J. Engelke, R. Gangnon, R. Ramamurthy, D. Krueger, and M. K. Drezner. 2011. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. The Journal of Clinical Endocrinology & Metabolism 96 (4): 981-8. doi: 10.1210/jc.2010-0015.
- Bischoff-Ferrari, H. A., B. Dawson-Hughes, E. Stöcklin, E. Sidelnikov, W. C. Willett, J. O. Edel, H. B. Stähelin, S. Wolfram, A. Jetter, J. Schwager, et al. 2012. Oral supplementation with 25(OH)D₃ versus vitamin D₃: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 27 (1):160-9. doi: 10.1002/jbmr.551.
- Black, L. J., K. M. Seamans, K. D. Cashman, and M. Kiely. 2012. An updated systematic review and meta-analysis of the efficacy of vitamin D food fortification. The Journal of Nutrition 142 (6):1102-8. doi: 10.3945/jn.112.158014.
- Borel, P., D. Caillaud, and N. J. Cano. 2015. Vitamin D bioavailability: state of the art. Critical Reviews in Food Science and Nutrition 55 (9):1193-205. doi: 10.1080/10408398.2012.688897.
- Bouillon, R., N. M. Van Schoor, E. Gielen, S. Boonen, C. Mathieu, D. Vanderschueren, and P. Lips. 2013. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. The Journal of Clinical Endocrinology and Metabolism 98 (8):E1283-304. doi: 10. 1210/jc.2013-1195.

- Bouillon, R., L. Verlinden, and A. Verstuyf. 2016. Is vitamin D₂ really bioequivalent to vitamin D₃? Endocrinology 157 (9):3384-7. doi.org/ 10.1210/en.2016-1528. doi: 10.1210/en.2016-1528.
- Bouis, H. E., and A. Saltzman. 2017. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security 12:49-58. doi: 10.1016/j.gfs.2017.01.009.
- Bouvard, V., D. Loomis, K. Z. Guyton, Y. Grosse, F. E. Ghissassi, L. Benbrahim-Tallaa, N. Guha, H. Mattock, and K. Straif. 2015. Carcinogenicity of consumption of red and processed meat. The Lancet. Oncology 16 (16):1599-600. doi: 10.1016/S1470-2045(15)00444-1.
- Browning, L. C., and A. J. Cowieson. 2014. Vitamin D fortification of eggs for human health. Journal of the Science of Food and Agriculture 94 (7):1389-96. doi: 10.1002/jsfa.6425.
- Brustad, M., T. Braaten, and E. Lund. 2004. Predictors for cod-liver oil supplement use-the Norwegian women and cancer study. European Journal of Clinical Nutrition 58 (1):128-36. doi: 10.1038/sj.ejcn.
- Brustad, M., T. Sandanger, T. Wilsgaard, L. Aksnes, and E. Lund. 2003. Change in plasma levels of vitamin D after consumption of cod-liver and fresh cod-liver oil as part of the traditional north Norwegian fish dish "Mølje. International Journal of Circumpolar Health 62 (1): 40-53. doi: 10.3402/ijch.v62i1.17527.
- Burild, A., H. L. Frandsen, M. Poulsen, and J. Jakobsen. 2015. Tissue content of vitamin D₃ and 25-hydroxy vitamin D₃ in minipigs after cutaneous synthesis, supplementation and deprivation of vitamin D₃. Steroids 98:72-9. doi: 10.1016/j.steroids.2015.02.017.
- Burild, A., C. Lauridsen, N. Faqir, H. M. Sommer, and J. Jakobsen. 2016. Vitamin D₃ and 25-hydroxyvitamin D₃ in pork and their relationship to vitamin D status in pigs. Journal of Nutritional Science 5: e3. doi: 10.1017/jns.2015.28.
- Buttriss, J. L., and S. A. Lanham-New. 2020. Is a vitamin D fortification strategy needed? Nutrition Bulletin 45 (2):115-22. doi.org/10.1111/ nbu.12430. doi: 10.1111/nbu.12430.
- Calvo, M. S., U. S. Babu, L. H. Garthoff, T. O. Woods, M. Dreher, G. Hill, and S. Nagaraja. 2013. Vitamin D_2 from light-exposed edible mushrooms is safe, bioavailable and effectively supports bone growth in rats. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 24 (1):197-207. doi: 10.1007/s00198-012-1934-9.
- Cardwell, G., J. F. Bornman, A. P. James, and L. J. Black. 2018. A Review of mushrooms as a potential source of dietary vitamin D. Nutrients 10 (10):1498. doi: 10.3390/nu10101498.
- Cashman, K. D. 2020a. Food-based strategies for prevention of vitamin D deficiency as informed by vitamin D dietary guidelines, and consideration of minimal-risk UVB radiation exposure in future guidelines. Photochemical and Photobiological Sciences 19:800-9. doi: 10. 1039/c9pp00462a.
- Cashman, K. D. 2020b. Vitamin D deficiency: defining, prevalence, causes, and strategies of addressing. Calcified Tissue International 106 (1):14-29. doi: 10.1007/s00223-019-00559-4.
- Cashman, K. D., K. G. Dowling, Z. Škrabáková, M. Gonzalez-Gross, J. Valtueña, S. De Henauw, L. Moreno, C. T. Damsgaard, K. F. Michaelsen, C. Mølgaard, et al. 2016a. Vitamin D deficiency in Europe: pandemic? The American Journal of Clinical Nutrition 103 (4):1033-44. doi: 10.3945/ajcn.115.120873.
- Cashman, K. D., S. Duffy, A. Hayes, K. Seamans, J. Kerry, A. Kelly, J. Jakobsen, and J. O'Doherty. 2015. Biofortification of eggs and pork with vitamin D as a means of increasing dietary supply. The FASEB Journal 29 (S1):758-13. doi: 10.1096/fasebj.29.1_supplement.758.13.
- Cashman, K. D., M. Kiely, K. M. Seamans, and P. Urbain. 2016b. Effect of ultraviolet light-exposed mushrooms on vitamin D status: liquid chromatography-tandem mass spectrometry reanalysis of biobanked sera from a randomized controlled trial and a systematic review plus meta-analysis. The Journal of Nutrition 146 (3):565-75. doi: 10.3945/jn.115.223784.
- Cashman, K. D., S. M. O'Sullivan, K. Galvin, and M. Ryan. 2020. Contribution of vitamin D2 and D3 and their respective 25-hydroxy metabolites to the total vitamin D content of beef and lamb.

- Current Developments in Nutrition 4 (7):nzaa112. doi: 10.1093/cdn/ nzaa112..
- Cashman, K. D., K. M. Seamans, A. J. Lucey, E. Stöcklin, P. Weber, M. Kiely, and T. R. Hill. 2012. Relative effectiveness of oral 25-hydroxyvitamin D_3 and vitamin D_3 in raising wintertime serum 25-hydroxyvitamin D in older adults. The American Journal of Clinical Nutrition 95 (6):1350-6. doi: 10.3945/ajcn.111.031427.
- Cashman, K. D., E. G. van den Heuvel, R. J. Schoemaker, D. P. Prévéraud, H. M. Macdonald, and J. Arcot. 2017. 25-Hydroxyvitamin D as a biomarker of vitamin D status and its modeling to inform strategies for prevention of vitamin D deficiency within the population. Advances in Nutrition (Bethesda, Md.) 8 (6): 947-57. doi: 10.3945/an.117.015578.
- Cesareo, R., A. Falchetti, R. Attanasio, G. Tabacco, A. M. Naciu, and A. Palermo. 2019. Hypovitaminosis D: is it time to consider the use of calcifediol? Nutrients 11 (5):1016. doi.org/10.3390/nu11051016. doi: 10.3390/nu11051016.
- Chiang, Y. H., S. I. Hwang, and M. F. Holick. 1996. Influence of different time of ultraviolet irradiation on performance and vitamin D₃ metabolism in laying hens. Korean Journal of Animal Nutrition & Feedstuffs 20 (6):497-508.
- Chiang, Y. H., S. I. Hwang, and M. F. Holick. 1997. Effect of vitamin D₃ oral dose or ultraviolet irradiation on yolk vitamin D₃, plasma minerals, eggshell thickness and intensity in laying hens. Korean Journal of Animal Nutrition & Feedstuffs 21 (6):475-88.
- Chien, R. C., S.-C. Yang, L. M. Lin, and J. L. Mau. 2017. Anti-inflammatory and antioxidant properties of pulsed light irradiated Lentinula edodes. Journal of Food Processing and Preservation 41 (4): e13045. doi: 10.1111/jfpp.13045.
- Christakos, S., P. Dhawan, A. Verstuyf, L. Verlinden, and G. Carmeliet. 2016. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews 96 (1):365-408. doi.org/ 10.1152/physrev.00014.2015. doi: 10.1152/physrev.00014.2015.
- Cianferotti, L., C. Cricelli, J. A. Kanis, R. Nuti, J. Y. Reginster, J. D. Ringe, R. Rizzoli, and M. L. Brandi. 2015. The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). Endocrine 50 (1): 12-26. doi: 10.1007/s12020-015-0606-x.
- Clausen, I., J. Jakobsen, T. Leth, and L. Ovesen. 2003. Vitamin D₃ and 25-hydroxyvitamin D₃ in raw and cooked pork cuts. Journal of Food Composition and Analysis 16 (5):575-85. doi: 10.1016/S0889-1575(03)00064-4.
- Clonan, A., K. E. Roberts, and M. Holdsworth. 2016. Socioeconomic and demographic drivers of red and processed meat consumption: implications for health and environmental sustainability. The Proceedings of the Nutrition Society 75 (3):367-73. doi.org/10.1017/ S0029665116000100. doi: 10.1017/S0029665116000100.
- Coates, A. M., S. Sioutis, J. D. Buckley, and P. R. Howe. 2008. Regular consumption of n-3 fatty acid-enriched pork modifies cardiovascular risk factors. British Journal of Nutrition 101 (4):592-7. doi: 10.1017/ S0007114508025063.
- Cocking, C.,. J. Walton, L. Kehoe, K. D. Cashman, and A. Flynn. 2020. The role of meat in the European diet: current state of knowledge on dietary recommendations, intakes and contribution to energy and nutrient intakes and status. Nutrition Research Reviews 33 (2): 181-9. doi: 10.1017/S0954422419000295.
- Davies, M., E. B. Mawer, and E. L. Krawitt. 1980. Comparative absorption of vitamin D₃ and 25-hydroxyvitamin D₃ in intestinal disease. Gut 21 (4):287-92. doi: 10.1136/gut.21.4.287.
- Dawson-Hughes, B., S. S. Harris, N. J. Palermo, L. Ceglia, and H. Rasmussen. 2013. Meal conditions affect the absorption of supplemental vitamin D₃ but not the plasma 25-hydroxyvitamin D response to supplementation. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 28 (8):1778-83. doi: 10.1002/jbmr.1896.
- Degre, R., and Z. Zhang. 2014. Yeast cell walls comprising vitamin D2, uses thereof and method of producing the same, LALLEMAND Inc.

- [WO/2014/114342 A1] EP2948004A1 (EU), CA2897551A1 (Canada), filed January 24, 2013, and issued July 31, 2014.
- Degre, R., Z. Zhang, and G. Edwards. 2008. Novel vitamin D2 yeast preparation, a method for producing the same and the use thereof, LALLEMAND Inc. [1020090106462] US20080138469A1 (US), EP2092055A4 (EU), filed October 26, 2007, and issued October 09,
- Drewnowski, A., E. C. Monterrosa, S. de Pee, E. A. Frongillo, and S. Vandevijvere. 2020. Shaping physical, economic, and policy components of the food environment to create sustainable healthy diets. Food and Nutrition Bulletin 41 (2_suppl):74S-86S. doi: 10.1177/ 0379572120945904.
- Duffy, S. K., A. K. Kelly, G. Rajauria, and J. V. O'Doherty. 2018a. Biofortification of meat with vitamin D. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 13 (045):1-11. doi: 10.1079/PAVSNNR201813045.
- Duffy, S. K., A. K. Kelly, G. Rajauria, J. Jakobsen, L. C. Clarke, F. J. Monahan, K. G. Dowling, G. Hull, K. Galvin, K. D. Cashman, et al. 2018c. The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content. Meat Science 143:60-8. doi: 10.1016/j.meatsci.2018.04.014.
- Duffy, S. K., G. Rajauria, L. C. Clarke, A. K. Kelly, K. D. Cashman, and J. V. O'Doherty. 2017b. The potential of cholecalciferol and 25hydroxyvitamin D₃ enriched diets in laying hens, to improve egg vitamin D content and antioxidant availability. Innovative Food Science & Emerging Technologies 44:109-16. doi: 10.1016/j.ifset.2017. 07.007.
- Duffy, S. K., J. V. O'Doherty, G. Rajauria, L. C. Clarke, A. Hayes, K. G. Dowling, M. N. O'Grady, J. P. Kerry, J. Jakobsen, K. D. Cashman, et al. 2018b. Vitamin D-biofortified beef: a comparison of cholecalciferol with synthetic versus UVB-mushroom-derived ergosterol as feed source. Food Chemistry 256:18-24. doi: 10.1016/j.foodchem. 2018.02.099.
- Duffy, S. K., J. V. O'Doherty, G. Rajauria, L. C. Clarke, K. D. Cashman, A. Hayes, M. N. O'Grady, J. P. Kerry, and A. K. Kelly. 2017a. Cholecalciferol supplementation of heifer diets increases beef vitamin D concentration and improves beef tenderness. Meat Science 134:103-10. doi: 10.1016/j.meatsci.2017.07.024.
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2014. Scientific opinion on the safety of vitamin D-enriched UVtreated baker's yeast. EFSA Journal 12 (1):3520. doi: 10.2903/j.efsa. 2014.3520.
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2010. Scientific Opinion on the substantiation of health claims related to vitamin D and normal function of the immune system and inflammatory response (ID 154, 159), maintenance of normal muscle function (ID 155) and maintenance of normal cardiovascular function (ID 159) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 8 (2):1468. doi: 10.2903/j.efsa.2010.1468.
- European Food Safety Authority. 2009. Commission regulation (EC) No 887/2009. Accessed May 06, 2020. https://eur-lex.europa.eu/ LexUriServ/LexUriServ.do?uri=OJ:L:2009:254:0068:0070:EN:PDF.
- European Food Safety Authority. 2017. Commission implementing regulation (EU) 2017/1492. Accessed May 06, 2020. https://eur-lex. europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1492& from=EN
- Fairweather-Tait, S. J. 1993. Bioavailability of nutrients. In: Encyclopaedia of food science, food technology and nutrition, ed. R. Macrae, R. K. Robinson and M. J. Sadler, 384-8. London: Academic
- Federal Department of Home Affairs. 2019. Swiss food composition database (V6.0). Accessed November 03, 2020. https://www.naehrwertdaten.ch/en/.
- Fernández-García, E., I. Carvajal-Lérida, and A. Pérez-Gálvez. 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research (New York, N.Y.) 29 (11):751-60. doi: 10.1016/j.nutres.2009.09.016.
- Food and Drug Administration2012. Food additives permitted for direct addition to food for human consumption; vitamin D2. Accessed May 04, 2020. https://www.federalregister.gov/documents/2012/08/

- 29/2012-21353/food-additives-permitted-for-direct-addition-to-foodfor-human-consumption-vitamin-d2.
- Friedman, M. 2016. Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5 (4):80. doi: 10.3390/foods5040080.
- Galior, K., S. Grebe, and R. Singh. 2018. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports. Nutrients 10 (8):953. doi: 10.3390/nu10080953.
- Geng, Y., Q. Ma, Z. Wang, and Y. Guo. 2018. Dietary vitamin D₃ supplementation protects laying hens against lipopolysaccharideinduced immunological stress. Nutrition & Metabolism 15 (58):58 doi: 10.1186/s12986-018-0293-8.
- Glendenning, P., G. T. Chew, H. M. Seymour, M. J. Gillett, P. R. Goldswain, C. A. Inderjeeth, S. D. Vasikaran, M. Taranto, A. A. Musk, and W. D. Fraser. 2009. Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone 45 (5):870-5. doi: 10. 1016/j.bone.2009.07.015.
- Godber, J. S. 1990. Nutrient bioavailability in humans and experimental animals. Journal of Food Quality 13 (1):21-36. doi.org/10.1111/ j.1745-4557.1990.tb00003.x. doi: 10.1111/j.1745-4557.1990.tb00003.x.
- Godfray, H. C., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science (New York, N.Y.) 327 (5967):812-8. doi: 10.1126/science. 1185383.
- Graff, I. E., J. Øyen, M. Kjellevold, L. Frøyland, C. G. Gjesdal, B. Almås, G. Rosenlund, and Ø. Lie. 2016. Reduced bone resorption by intake of dietary vitamin D and K from tailor-made Atlantic salmon: a randomized intervention trial. Oncotarget 7 (43):69200-15. doi: 10.18632/oncotarget.10171.
- Graff, I. E., S. Høie, G. K. Totland, and Ø. Lie. 2002. Three different levels of dietary vitamin D-3 fed to first-feeding fry of Atlantic salmon (Salmo salar L.): effect on growth, mortality, calcium content and bone formation. Aquaculture Nutrition 8 (2):103-11. doi: 10. 1046/j.1365-2095.2002.00197.x.
- Guan, W., J. Zhang, R. Yan, S. Shao, T. Zhou, J. Lei, and Z. Wang. 2016. Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus). Food Chemistry 210:129-34. doi: 10.1016/ j.foodchem.2016.04.023.
- Guo, J., J. A. Lovegrove, and D. I. Givens. 2018. 25(OH)D₃-enriched or fortified foods are more efficient at tackling inadequate vitamin D status than vitamin D₃. The Proceedings of the Nutrition Society 77 (3):282-91. doi: 10.1017/S0029665117004062.
- Guo, J., J. A. Lovegrove, and D. I. Givens. 2019. Food fortification and biofortification as potential strategies for prevention of vitamin D deficiency. Nutrition Bulletin 44 (1):36-42. doi: 10.1111/nbu.12363.
- Guo, J., K. G. Jackson, C. S. B. Che Taha, Y. Li, D. I. Givens, and J. A. Lovegrove. 2017. A 25-hydroxycholecalciferol-fortified dairy drink is more effective at raising a marker of postprandial vitamin D status than cholecalciferol in men with suboptimal vitamin D status. The Journal of Nutrition 147 (11):2076-82. doi: 10.3945/jn.117.254789.
- Hammami, M. M., and A. Yusuf. 2017. Differential effects of vitamin D₂ and D₃ supplements on 25-hydroxyvitamin D level are dose, sex, and time dependent: a randomized controlled trial. BMC Endocrine Disorders 17 (1):12. doi: 10.1186/s12902-017-0163-9.
- Hammami, M. M., K. Abuhdeeb, S. Hammami, and A. Yusuf. 2019. Vitamin-D₂ treatment-associated decrease in 25(OH)D₃ level is a reciprocal phenomenon: a randomized controlled trial. BMC Endocrine Disorders 19 (1):8. doi: 10.1186/s12902-019-0337-8.
- Haug, A., N. F. Nyquist, T. J. Mosti, M. Andersen, and A. T. Høstmark. 2012. Increased EPA levels in serum phospholipids of humans after four weeks daily ingestion of one portion chicken fed linseed and rapeseed oil. Lipids in Health and Disease 11 (1):104. doi: 10.1186/1476-511X-11-104.
- Hayes, A., and K. D. Cashman. 2017. Food-based solutions for vitamin D deficiency: putting policy into practice and the key role for research. The Proceedings of the Nutrition Society 76 (1):54-63. doi: 10.1017/S0029665116000756.

- Hayes, A., S. Duffy, M. O'Grady, J. Jakobsen, K. Galvin, J. Teahan-Dillon, J. Kerry, A. Kelly, J. O'Doherty, S. Higgins, et al. 2016. Vitamin D-enhanced eggs are protective of wintertime serum 25hydroxyvitamin D in a randomized controlled trial of adults. The American Journal of Clinical Nutrition 104 (3):629-37. doi: 10.3945/ ajcn.116.132530.
- Health Canada. 2015. The Canadian nutrient file (CNF). Accessed November 23, 2020. https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/nutrient-data/canadian-nutrientfile-2015-download-files.html.
- Heaney, R. P., R. R. Recker, J. Grote, R. L. Horst, and L. A. Armas. 2011. Vitamin D₃ is more potent than vitamin D₂ in humans. The Journal of Clinical Endocrinology & Metabolism 96 (3):E447-52. doi: 10.1210/jc.2010-2230.
- Hedrén, E., G. Mulokozi, and U. Svanberg. 2002. In vitro accessibility of carotenes from green leafy vegetables cooked with sunflower oil or red palm oil. International Journal of Food Sciences and Nutrition 53 (6):445-53. doi.org/10.1080/09637480220164334. doi: 10.1080/ 09637480220164334.
- Hilger, J., A. Friedel, R. Herr, T. Rausch, F. Roos, D. A. Wahl, D. D. Pierroz, P. Weber, and K. Hoffmann. 2014. A systematic review of vitamin D status in populations worldwide. The British Journal of Nutrition 111 (1):23-45. doi: 10.1017/S0007114513001840.
- Hohman, E. E., B. R. Martin, P. J. Lachcik, D. T. Gordon, J. C. Fleet, and C. M. Weaver. 2011. Bioavailability and efficacy of vitamin D₂ from UV-irradiated yeast in growing, vitamin D-deficient rats. Journal of Agricultural and Food Chemistry 59 (6):2341-6. doi: 10. 1021/jf104679c.
- Holick, M. F., N. C. Binkley, H. A. Bischoff-Ferrari, C. M. Gordon, D. A. Hanley, R. P. Heaney, M. H. Murad, and C. M. Weaver. 2012. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. The Journal of Clinical Endocrinology and Metabolism 97 (4):1153-8. doi.org/10.1210/jc.2011-2601. doi: 10. 1210/jc.2011-2601.
- Holick, M. F., N. C. Binkley, H. A. Bischoff-Ferrari, C. M. Gordon, D. A. Hanley, R. P. Heaney, M. H. Murad, and C. M. Weaver. 2011. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism 96 (7):1911-30. doi.org/10.1210/ jc.2011-0385. doi: 10.1210/jc.2011-0385.
- Hollis, B. W., B. A. Roos, H. H. Draper, and P. W. Lambert. 1981. Vitamin D and its metabolites in human and bovine milk. The Journal of Nutrition 111 (7):1240-8. doi: 10.1093/jn/111.7.1240.
- Horvli, O., Ø. Lie, and L. Aksnes. 1998. Tissue distribution of vitamin D₃ in Atlantic salmon Salmo salar: effect of dietary level. Aquaculture Nutrition 4 (2):127-31. doi: 10.1046/j.1365-2095.1998. 00062.x.
- Houghton, L. A., and R. Vieth. 2006. The case against ergocalciferol (vitamin D₂) as a vitamin supplement. The American Journal of Clinical Nutrition 84 (4):694-7. doi: 10.1093/ajcn/84.4.694.
- Hu, D., W. Chen, X. Li, T. Yue, Z. Zhang, Z. Feng, C. Li, X. Bu, Q. X. Li, C. Y. Hu, et al. 2020. Ultraviolet irradiation increased the concentration of vitamin D₂ and decreased the concentration of ergosterol in shiitake mushroom (Lentinus edodes) and oyster mushroom (Pleurotus ostreatus) powder in ethanol suspension. ACS Omega 5 (13):7361-8. doi: 10.1021/acsomega.9b04321.
- Huang, G., W. Cai, and B. Xu. 2017. Vitamin D₂, ergosterol, and vitamin B₂ content in commercially dried mushrooms marketed in China and increased vitamin D₂ content following UV-C irradiation. International Journal for Vitamin and Nutrition Research 87 (5-6): 1-10. doi: 10.1024/0300-9831/a000294.
- Huang, S.-J., C.-P. Lin, and S.-Y. Tsai. 2015. Vitamin D₂ content and antioxidant properties of fruit body and mycelia of edible mushrooms by UV-B irradiation. Journal of Food Composition and Analysis 42:38-45. dio:10.1016/j.jfca.2015.02.005. doi: 10.1016/j.jfca.
- Institute of Medicine, et al. 2011. Overview of Vitamin D. In Dietary Reference Intakes for Calcium and Vitamin D, ed. A. C. Ross, C. L. Taylor, A. L. Yaktine, Washington (DC): The National Academies Press (US). www.ncbi.nlm.nih.gov/books/NBK56061/.

- Itkonen, S. T., E. Skaffari, P. Saaristo, E. M. Saarnio, M. Erkkola, J. Jakobsen, K. D. Cashman, and C. Lamberg-Allardt. 2016. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D₃ on serum 25-hydroxyvitamin D metabolites: an 8-week randomised-controlled trial in young adult Finnish women. British of Nutrition 115 (7):1232-9.doi: 10.1017/ Iournal S0007114516000192.
- Itkonen, S. T., E. T. Pajula, K. G. Dowling, G. L. Hull, K. D. Cashman, and C. J. Lamberg-Allardt. 2018. Poor bioavailability of vitamin D₂ from ultraviolet-irradiated D2-rich yeast in rats. Nutrition Research 59:36-43. doi: 10.1016/j.nutres.2018.07.008.
- Itkonen, S. T., M. Erkkola, and C. Lamberg-Allardt. 2018. Vitamin D fortification of fluid milk products and their contribution to vitamin D intake and vitamin D status in observational studies-A review. Nutrients 10 (8):1054. doi: 10.3390/nu10081054.
- Itkonen, S. T., R. Andersen, A. K. Björk, Å. Brugård Konde, H. Eneroth, M. Erkkola, K. Holvik, A. A. Madar, H. E. Meyer, I. Tetens, et al. 2020. Vitamin D status and current policies to achieve adequate vitamin D intake in the Nordic countries. Scandinavian Journal of Public Health. Advance online publication doi: 10.1177/ 1403494819896878.
- Jackson, M. J. 1997. The assessment of bioavailability of micronutrients: introduction. European Journal of Clinical Nutrition 51
- Jakobsen, J., A. Melse-Boonstra, and M. Rychlik. 2019. Challenges to quantify total vitamin activity: how to combine the contribution of diverse vitamers? Current Developments in Nutrition 3 (10):nzz086 doi: 10.1093/cdn/nzz086.
- Jakobsen, J., C. Smith, A. Bysted, and K. D. Cashman. 2019. Vitamin D in wild and farmed Atlantic salmon (Salmo salar)-what do we know? Nutrients 11 (5):982. doi: 10.3390/nu11050982.
- Jakobsen, J., E. Andersen, T. Christensen, R. Andersen, and S. Bügel. 2017. Vitamin D vitamers affect vitamin D status differently in young healthy males. Nutrients 10 (1):12. doi.org/10.3390/ nu10010012. doi: 10.3390/nu10010012.
- Jakobsen, J., H. Maribo, A. Bysted, H. Sommer, and O. Hels. 2007. 25-Hydroxyvitamin D₃ affects vitamin D status similar to vitamin D₃ in pigs - but the meat produced has a lower content of vitamin D. British Journal of Nutrition 98 (5):908-13. doi: 10.1017/ S0007114507756933.
- Jakobsen, J., S. K. Jensen, L. Hymøller, E. W. Andersen, P. Kaas, A. Burild, and R. B. Jäpelt. 2015. Short communication: artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. Journal of Dairy Science 98 (9):6492-8. doi: 10.3168/jds.2014-
- Jakobsen, S. S., J. P. Nielsen, and J. Jakobsen. 2020. Effect of UVB light on vitamin D status in piglets and sows. The Journal of Steroid Biochemistry and Molecular Biology 200(:105637. doi: 10.1016/j. jsbmb.2020.105637.
- Jäpelt, R. B., and J. Jakobsen. 2013. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in Plant Science 4: 136. doi: 10.3389/fpls.2013.00136.
- Jasinghe, V. J., and C. O. Perera. 2005. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chemistry 92 (3): 541-6. doi: 10.1016/j.foodchem.2004.08.022.
- Jasinghe, V. J., and C. O. Perera. 2006. Ultraviolet irradiation: the generator of vitamin D₂ in edible mushrooms. Food Chemistry 95 (4): 638-43. doi: 10.1016/j.foodchem.2005.01.046.
- Jasinghe, V. J., C. O. Perera, and P. J. Barlow. 2006. Vitamin D₂ from irradiated mushrooms significantly increases femur bone mineral density in rats. Journal of Toxicology and Environmental Health. Part A 69 (21):1979-85. doi: 10.1080/15287390600751413.
- Jasinghe, V. J., C. O. Perera, and S. S. Sablani. 2007. Kinetics of the conversion of ergosterol in edible mushrooms. Journal of Food Engineering 79 (3):864-9. doi: 10.1016/j.jfoodeng.2006.01.085.
- Jetter, A., A. Egli, B. Dawson-Hughes, H. B. Staehelin, E. Stoecklin, R. Goessl, J. Henschkowski, and H. A. Bischoff-Ferrari. 2014. Pharmacokinetics of oral vitamin D₃ and calcifediol. Bone 59:14-9. doi: 10.1016/j.bone.2013.10.014.

- Jha, A. B., and T. D. Warkentin. 2020. Biofortification of pulse crops: status and future perspectives. Plants 9 (1):73. doi: 10.3390/
- Jones, K. S., S. Assar, D. Harnpanich, R. Bouillon, D. Lambrechts, A. Prentice, and I. Schoenmakers. 2014. 25(OH)D₂ half-life is shorter than 25(OH)D₃ half-life and is influenced by DBP concentration and genotype. The Journal of Clinical Endocrinology & Metabolism 99 (9):3373-81. doi: 10.1210/jc.2014-1714.
- Kalaras, M. D., R. B. Beelman, and R. J. Elias. 2012a. Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D₂ content and quality attributes. Journal of Agricultural and Food Chemistry 60 (1):220-5. doi: 10. 1021/jf203825e.
- Kalaras, M. D., R. B. Beelman, M. F. Holick, and R. J. Elias. 2012b. Generation of potentially bioactive ergosterol-derived products following pulsed ultraviolet light exposure of mushrooms (Agaricus bisporus). Food Chemistry 135 (2):396-401. doi: 10.1016/j.foodchem.
- Kamweru, P. K., and E. L. Tindibale. 2016. Vitamin D and vitamin D from ultraviolet-irradiated mushrooms (review). International Journal of Medicinal Mushrooms 18 (3):205-14. doi: 10.1615/ IntJMedMushrooms.v18.i3.30.
- Kawazoe, T., K. Yuasa, K. Noguchi, M. Yamazaki, and M. Ando. 1996. Effect of different sources of vitamin D on transfer of vitamin D to egg yolk. Nippon Shokuhin Kagaku Kogaku Kaishi 43 (4):444-50. doi: 10.3136/nskkk.43.444.
- Kawazoe, T., K. Yuasa, M. Yamazaki, and M. Ando. 1994. Production of Vitamin D-fortified eggs by feeding vitamin D2-fortified shiitake. Nippon Shokuhin Kogyo Gakkaishi 41 (12):891-6. doi: 10.3136/ nskkk1962.41.891.
- Keegan, R. J., Z. Lu, J. M. Bogusz, J. E. Williams, and H. F. Holick. 2013. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-endocrinology 5 (1):165-76. doi: 10.4161/ derm.23321.
- Ko, J. A., B. H. Lee, J. S. Lee, and H. J. Park. 2008. Effect of UV-B exposure on the concentration of vitamin D₂ in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry 56 (10): 3671-4. doi: 10.1021/jf073398s.
- Kohn, J. B. 2016. Are mushrooms a significant source of vitamin D? Journal of the Academy of Nutrition and Dietetics 116 (9):1520. doi: 10.1016/j.jand.2016.07.001.
- Kolp, E., M. R. Wilkens, W. Pendl, B. Eichenberger, and A. Liesegang. 2017. Vitamin D metabolism in growing pigs: influence of UVB irradiation and dietary vitamin D supply on calcium homeostasis, its regulation and bone metabolism. Journal of Animal Physiology and Animal Nutrition 101 (Suppl 1):79-94. doi: 10.1111/jpn.12707.
- Korn, K. T., R. P. Lemenager, M. C. Claeys, M. Engstrom, and J. P. Schoonmaker. 2013. Supplemental vitamin D₃ and zilpaterol hydrochloride. I. Effect on performance, carcass traits, tenderness, and vitamin D metabolites of feedlot steers. Journal of Animal Science 91 (7):3322–31. doi: 10.2527/jas.2012-5960.
- Koshy, K. T., and A. L. Van Der Slik. 1979. High-performance liquid chromatographic method for the determination of 25-hydroxycholecalciferol in chicken egg yolks. Journal of Agricultural and Food Chemistry 27 (1):180-3. doi: 10.1021/jf60221a033.
- Kotta, S., D. Gadhvi, N. Jakeways, M. Saeed, R. Sohanpal, S. Hull, O. Famakin, A. Martineau, and C. Griffiths. 2015. "Test me and treat me"-attitudes to vitamin D deficiency and supplementation: a qualitative study . BMJ Open 5 (7):e007401. doi: 10.1136/bmjopen-2014-
- Koyyalamudi, S. R., S.-C. Jeong, C.-H. Song, K. Y. Cho, and G. Pang. 2009. Vitamin D₂ formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. Journal of Agricultural and Food Chemistry 57 (8):3351-5. doi: 10.1021/
- Koyyalamudi, S. R., S.-C. Jeong, G. Pang, A. Teal, and T. Biggs. 2011. Concentration of vitamin D₂ in white button mushrooms (Agaricus bisporus) exposed to pulsed UV light. Journal of Food Composition and Analysis 24 (7):976-9. doi: 10.1016/j.jfca.2011.02.007.

- Krings, U., and R. G. Berger. 2014. Dynamics of sterols and fatty acids during UV-B treatment of oyster mushroom. Food Chemistry 149: 10-4. doi: 10.1016/j.foodchem.2013.10.064.
- Kristensen, H. L., E. Rosenqvist, and J. Jakobsen. 2012. Increase of vitamin D₂ by UV-B exposure during the growth phase of white button mushroom (Agaricus bisporus). Food & Nutrition Research 56 (1): 7114. (doi: 10.3402/fnr.v56i0.7114.
- Kühn, J., A. Schutkowski, F. Hirche, A. C. Baur, N. Mielenz, and G. I. Stangl. 2015. Non-linear increase of vitamin D content in eggs from chicks treated with increasing exposure times of ultraviolet light. The Journal of Steroid Biochemistry and Molecular Biology 148:7-13. doi: 10.1016/j.jsbmb.2014.10.015.
- Kühn, J., A. Schutkowski, H. Kluge, F. Hirche, and G. I. Stangl. 2014. Free-range farming: a natural alternative to produce vitamin Denriched eggs. Nutrition 30 (4):481-4. doi: 10.1016/j.nut.2013.10.002.
- Kühn, J., C. Wassermann, S. Ebschke, A. Schutkowski, K. Thamm, M. Wensch-Dorendorf, E. von Borell, and G. I. Stangl. 2019. Feasibility of artificial light regimes to increase the vitamin D content in indoor-laid eggs. Poultry Science 98 (10):5177-87. doi: 10.3382/ps/
- Larson-Meyer, D. E., B. C. Ingold, S. R. Fensterseifer, K. J. Austin, P. J. Wechsler, B. W. Hollis, A. J. Makowski, and B. M. Alexander. 2017. Sun exposure in pigs increases the vitamin D nutritional quality of pork. PLoS One 12 (11):e0187877. doi: 10.1371/journal.pone. 0187877.
- Lee, G.-S., H.-S. Byun, K.-H. Yoon, J.-S. Lee, K.-C. Choi, and E.-B. Jeung. 2009. Dietary calcium and vitamin D₂ supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. European Journal of Nutrition 48 (2):75-83. doi: 10.1007/s00394-008-0763-2.
- Lee, N. K., and B. Y. Aan. 2016. Optimization of ergosterol to vitamin D₂ synthesis in Agaricus bisporus powder using ultraviolet-B radiation. Food Science and Biotechnology 25 (6):1627-31. doi: 10.1007/ s10068-016-0250-0.
- Leventis, P., and P. D. Kiely. 2009. The tolerability and biochemical effects of high-dose bolus vitamin D2 and D3 supplementation in patients with vitamin D insufficiency. Scandinavian Journal of Rheumatology 38 (2):149-53. doi: 10.1080/03009740802419081.
- Lietzow, J., H. Kluge, C. Brandsch, N. Seeburg, F. Hirche, M. Glomb, and G. I. Stangl. 2012. Effect of short-term UVB exposure on vitamin D concentration of eggs and vitamin D status of laying hens. Journal of Agricultural and Food Chemistry 60 (3):799-804. doi: 10. 1021/jf204273n.
- Lin, L. Y., L. Smeeth, S. Langan, and C. Warren-Gash. 2021. Distribution of vitamin D status in the UK: a cross-sectional analysis of UK Biobank. BMJ Open 11 (1):e038503. doi.org/10.1136/ bmjopen-2020-038503. doi: 10.1136/bmjopen-2020-038503.
- Lipkie, T. E., M. G. Ferruzzi, and C. M. Weaver. 2016. Low bioaccessibility of vitamin D2 from yeast-fortified bread compared to crystalline D₂ bread and D₃ from fluid milks. Food & Function 7 (11): 4589–96. doi.org/10.1039/c6fo00935b. doi: 10.1039/C6FO00935B.
- Logan, V. F., A. R. Gray, M. C. Peddie, M. J. Harper, and L. A. Houghton. 2013. Long-term vitamin D₃ supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. British Journal of Nutrition 109 (6):1082-8. doi: 10.1017/S0007114512002851.
- Maislos, M., and S. Shany. 1987. Bile salt deficiency and the absorption of vitamin D metabolites. In vivo study in the rat. Israel Journal of Medical Sciences 23 (11):1114-7.
- Maislos, M.,. J. Silver, and M. Fainaru. 1981. Intestinal absorption of vitamin D sterols: differential absorption into lymph and portal blood in the rat. Gastroenterology 80 (6):1528-34. doi: 10.1016/0016-5085(81)90268-7.
- Malagoli, M., M. Schiavon, S. dall'Acqua, and E. A. Pilon-Smits. 2015. Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science 6(:280 doi: 10.3389/fpls.2015.00280.
- Manson, J. E., N. R. Cook, I. M. Lee, W. Christen, S. S. Bassuk, S. Mora, H. Gibson, D. Gordon, T. Copeland, D. D'Agostino, et al. 2019. Vitamin D supplements and prevention of cancer and

- cardiovascular disease. The New England Journal of Medicine 380 (1):33-44. doi: 10.1056/NEJMoa1809944.
- Marangoni, F., G. Corsello, C. Cricelli, N. Ferrara, A. Ghiselli, L. Lucchin, and A. Poli. 2015. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document. Food & Nutrition Research 59:27606. doi: 10.3402/fnr. v59.27606.
- Martineau, A. R., K. E. Thummel, Z. Wang, D. A. Jolliffe, B. J. Boucher, S. J. Griffin, N. G. Forouhi, and G. A. Hitman. 2019. Differential effects of oral boluses of vitamin D2 vs vitamin D3 on vitamin D metabolism: a randomized controlled trial. The Journal of Clinical Endocrinology and Metabolism 104 (12):5831-9. doi: 10. 1210/jc.2019-00207.
- Mattila, P. H., E. Valkonen, and J. Valaja. 2011. Effect of different vitamin D supplementations in poultry feed on vitamin D content of eggs and chicken meat. Journal of Agricultural and Food Chemistry 59 (15):8298-303. doi: 10.1021/jf2012634.
- Mattila, P., J. Valaja, L. Rossow, E. Venäläinen, and T. Tupasela. 2004. Effect of vitamin D₂- and D₃-enriched diets on egg vitamin D content, production, and bird condition during an entire production period. Poultry Science 83 (3):433-40. doi: 10.1093/ps/83.3.433.
- Mattila, P., K. Lehikoinen, T. Kiiskinen, and V. Piironen. 1999a. Cholecalciferol and 25-hydroxycholecalciferol content of chicken egg yolk as affected by the cholecalciferol content of feed. Journal of Agricultural and Food Chemistry 47 (10):4089-92. doi: 10.1021/ jf990183c.
- Mattila, P., T. Rokka, K. Könkö, J. Valaja, L. Rossow, and E. L. Ryhänen. 2003. Effect of cholecalciferol-enriched hen feed on egg quality. Journal of Agricultural and Food Chemistry 51 (1):283-7. doi: 10.1021/jf020743z.
- Mattila, P., V. Piironen, T. Hakkarainen, T. Hirvi, E. Uusi-Rauva, and P. Eskelinen. 1999b. Possibilities to raise vitamin D content of rainbow trout (Oncorhynchus mykiss) by elevated feed cholecalciferol contents. Journal of the Science of Food and Agriculture 79 (2): 195-8. 10.1002/(SICI)1097-0010(199902)79:2 < 195::AID-JSFA166 > 3.0.CO; 2-C.
- Mau, J. L., P.-R. Chen, and J.-H. Yang. 1998. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. Journal of Agricultural and Food Chemistry 46 (12):5269-72. doi: 10.1021/ if980602q.
- Maurya, V. K., and M. Aggarwal. 2017. Factors influencing the absorption of vitamin D in GIT: an overview. Journal of Food Science and Technology 54 (12):3753-65. doi: 10.1007/s13197-017-2840-0.
- Mazahery, H., and P. R. von Hurst. 2015. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients 7 (7):5111-42. doi.org/10.3390/nu7075111. doi: 10.3390/
- McAfee, A. J., E. M. McSorley, G. J. Cuskelly, A. M. Fearon, B. W. Moss, J. A. Beattie, J. M. Wallace, M. P. Bonham, and J. J. Strain. 2011. Red meat from animals offered a grass diet increases plasma and platelet n-3 PUFA in healthy consumers. British Journal of Nutrition 105 (1):80-9. doi: 10.1017/S0007114510003090.
- McDermott, C. M., D. C. Beitz, E. T. Littledike, and R. L. Horst. 1985. Effects of dietary vitamin D₃ on concentrations of vitamin D and its metabolites in blood plasma and milk of dairy cows. Journal of Dairy Science 68 (8):1959-67. doi: 10.3168/jds.S0022-0302(85)81057-
- McNeill, S., and M. E. Van Elswyk. 2012. Red meat in global nutrition. Meat Science 92 (3):166-73. doi: 10.1016/j.meatsci.2012.03.014.
- Mehrotra, A., M. S. Calvo, R. B. Beelman, E. Levy, J. Siuty, M. D. Kalaras, and J. Uribarri. 2014. Bioavailability of vitamin D₂ from enriched mushrooms in prediabetic adults: a randomized controlled trial. European Journal of Clinical Nutrition 68 (10):1154-60. doi.org/10.1038/ejcn.2014.157. doi: 10.1038/ejcn.2014.157.
- Melhem, S. J., K. M. Aiedeh, and K. A. Hadidi. 2015. Effects of a 10day course of a high dose calciferol versus a single mega dose of ergocalciferol in correcting vitamin D deficiency. Annals of Saudi Medicine 35 (1):13-8. doi: 10.5144/0256-4947.2015.13.
- Mocanu, V., and R. Vieth. 2013. Three-year follow-up of serum 25hydroxyvitamin D, parathyroid hormone, and bone mineral density

- in nursing home residents who had received 12 months of daily bread fortification with 125 µg of vitamin D₃. Nutrition Journal 12: 137. doi.org/10.1186/1475-2891-12-137. doi: 10.1186/1475-2891-12-
- Montgomery, J. L., F. C. Parrish, Jr., D. C. Beitz, R. L. Horst, E. J. Huff-Lonergan, and A. H. Trenkle. 2000. The use of vitamin D₃ to improve beef tenderness. Journal of Animal Science 78 (10):2615-21. doi: 10.2527/2000.78102615x.
- Montgomery, J. L., M. A. Carr, C. R. Kerth, G. G. Hilton, B. P. Price, M. L. Galyean, R. L. Horst, and M. F. Miller. 2002. Effect of vitamin D₃ supplementation level on the postmortem tenderization of beef from steers. Journal of Animal Science 80 (4):971-81. doi: 10.2527/ 2002.804971x.
- Montgomery, J. L., M. B. King, J. G. Gentry, A. R. Barham, B. L. Barham, G. G. Hilton, J. R. Blanton, R. L. Horst, M. L. Galyean, K. J. Morrow, et al. 2004. Supplemental vitamin D₃ concentration and biological type of steers. II. Tenderness, quality, and residues of beef. Journal of Animal Science 82 (7):2092-104. doi: 10.2527/2004. 8272092x.
- Mulligan, G. B., and A. Licata. 2010. Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25hydroxyvitamin D. Journal of Bone and Mineral Research 25 (4): 928-30. doi: 10.1002/jbmr.67.
- National Food Institute. 2019. Danish food composition databank (version 4). Accessed November 03, 2020. https://frida.fooddata.dk/. Technical University of Denmark.
- National Nutrition Council. 2010. Valtion ravitsemusneuvottelukunta. D-vitamiinityöryhmän raportti [Report of vitamin D working group]. Accessed May 14, 2021. https://www.ruokavirasto.fi/globalassets/teemat/terveytta-edistava-ruokavalio/ravitsemus-ja-ruokasuositukset/erityisohjeet-ja-rajoitukset/d-vitamiiniraportti2010.pdf.
- Natri, A.-M., P. Salo, T. Vikstedt, A. Palssa, M. Huttunen, M. U. Kärkkäinen, H. Salovaara, V. Piironen, J. Jakobsen, and C. J. Lamberg-Allardt. 2006. Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. The Journal of Nutrition 136 (1):123-7. doi.org/10.1093/jn/136.1.123. doi: 10.1093/jn/136.1.123.
- Navarro-Valverde, C., M. Sosa-Henríquez, M. R. Alhambra-Expósito, and J. M. Quesada-Gómez. 2016. Vitamin D₃ and calcidiol are not equipotent. The Journal of Steroid Biochemistry and Molecular Biology 164:205-8. doi: 10.1016/j.jsbmb.2016.01.014.
- Nemeth, M. V., M. R. Wilkens, and A. Liesegang. 2017. Vitamin D status in growing dairy goats and sheep: influence of ultraviolet B radiation on bone metabolism and calcium homeostasis. Journal of Dairy Science 100 (10):8072-86. doi: 10.3168/jds.2017-13061.
- NEVO online version 6.0. 2019. Dutch Food Composition Database. RIVM National Institute for Public Health and the Environment, Bilthoven. Accessed November 23, 2020. https://www.rivm.nl/en/ dutch-food-composition-database.
- Nieman, D. C., N. D. Gillitt, R. A. Shanely, D. Dew, M. P. Meaney, and B. Luo. 2013. Vitamin D₂ supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes. Nutrients 6 (1):63-75. doi: 10.3390/nu6010063.
- Nikooyeh, B., T. R. Neyestani, M. Zahedirad, M. Mohammadi, S. H. Hosseini, Z. Abdollahi, F. Salehi, J. Mirzay Razaz, N. Shariatzadeh, A. Kalayi, et al. 2016. Vitamin D-fortified bread is as effective as supplement in improving vitamin D status: a randomized clinical trial. The Journal of Clinical Endocrinology & Metabolism 101 (6): 2511-9. doi.org/10.1210/jc.2016-1631. doi: 10.1210/jc.2016-1631.
- Nimitphong, H., S. Saetung, S. Chanprasertyotin, L. O. Chailurkit, and B. Ongphiphadhanakul. 2013. Changes in circulating 25-hydroxyvitamin D according to vitamin D binding protein genotypes after vitamin D₃ or D₂ supplementation. Nutrition Journal 12 (1) doi: 10. 1186/1475-2891-12-39.
- Nölle, N.,. D. Argyropoulos, S. Ambacher, J. Müller, and H. K. Biesalski. 2017. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. LWT - Food Science and Technology 85 (B):400-4. doi: 10.1016/j.lwt.2016.11.072.

- Nussey, S., and S. Whitehead. 2001. The parathyroid glands and vitamin D. In Endocrinology: an integrated approach. Oxford: BIOS Scientific Publishers. www.ncbi.nlm.nih.gov/books/NBK24/.
- OECD. 2020. Meat consumption. Accessed April 01, 2020. doi: 10. 1787/fa290fd0-en.
- Oliveri, B., S. R. Mastaglia, G. M. Brito, M. Seijo, G. A. Keller, J. Somoza, R. A. Diez, and G. D. Girolamo. 2015. Vitamin D₃ seems more appropriate than D₂ to sustain adequate levels of 25OHD: a pharmacokinetic approach. European Journal of Clinical Nutrition 69 (6):697-702. doi: 10.1038/ejcn.2015.16.
- Park, S. W., H. Namkung, H. J. Ahn, and I. K. Paik. 2005. Enrichment of vitamins D₃, K and iron in eggs of laying hens. Asian-Australasian Journal of Animal Sciences 18 (2):226-9. doi.org/ doi: 10.5713/ajas.2005.226.
- Perera, C. O., V. J. Jasinghe, F. L. Ng, and A. S. Mujumdar. 2003. The effect of moisture content on the conversion of ergosterol to vitamin D in shiitake mushrooms. Drying Technology 21 (6):1091-9. doi: 10. 1081/DRT-120021876.
- Phillips, K. M., and A. S. Rasor. 2013. A nutritionally meaningful increase in vitamin D in retail mushrooms is attainable by exposure to sunlight prior to consumption. Journal of Nutrition and Food Sciences 3 (6) doi: 10.4172/2155-9600.1000236.
- Phillips, K. M., D. M. Ruggio, R. L. Horst, B. Minor, R. R. Simon, M. J. Feeney, W. C. Byrdwell, and D. B. Haytowitz. 2011. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. Journal of Agricultural and Food Chemistry 59 (14):7841-53. doi: 10.1021/jf104246z.
- Pierens, S. L., and D. R. Fraser. 2015. The origin and metabolism of vitamin D in rainbow trout. The Journal of Steroid Biochemistry and Molecular Biology 145:58-64. doi: 10.1016/j.jsbmb.2014.10.005.
- Pilz, S., A. Zittermann, C. Trummer, V. Theiler-Schwetz, E. Lerchbaum, M. H. Keppel, M. R. Grübler, W. März, and M. Pandis. 2019. Vitamin D testing and treatment: a narrative review of current evidence. Endocrine Connections 8 (2):R27-R43. doi.org/10.1530/EC-18-0432. doi: 10.1530/EC-18-0432.
- Pilz, S., W. März, K. D. Cashman, M. E. Kiely, S. J. Whiting, M. F. Holick, W. B. Grant, P. Pludowski, M. Hiligsmann, C. Trummer, et al. 2018. Rationale and plan for vitamin D food fortification: a review and guidance paper. Frontiers in Endocrinology 9:373. doi: 10.3389/fendo.2018.00373.
- Pittas, A. G., B. Dawson-Hughes, P. Sheehan, J. H. Ware, W. C. Knowler, V. R. Aroda, I. Brodsky, L. Ceglia, C. Chadha, R. Chatterjee., et al. 2019. Vitamin D supplementation and prevention of type 2 diabetes. The New England Journal of Medicine 381 (6): 520-30. doi:10.1056/NEJMoa1900906N.
- Plaimast, H., S. Kijparkorn, and P. Ittitanawong. 2015. Effects of Vitamin D-3 and Calcium on Productive Performance, Egg quality and Vitamin D-3 Content in Egg of Second Production Cycle Hens. The Thai Veterinary Medicine 45 (2):189-95.
- Public Health England2018. NDNS results from years 7 and 8 (combined): data tables. Last Modified April 11, 2018. Accessed May 27, https://assets.publishing.service.gov.uk/government/uploads/ system/uploads/attachment_data/file/699242/NDNS_yr_7_to_8_statistics.xlsx.
- Public Health England2019. McCance and Widdowson's composition of foods integrated dataset. Accessed May 05, 2020. https://assets. publishing.service.gov.uk/government/uploads/system/uploads/ attachment_data/file/788485/McCance_Widdowson_Comp_Foods_ Integrated_Dataset_User_Guide_2019__1_.pdf.
- Quesada-Gomez, J. M., and R. Bouillon. 2018. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 29 (8):1697-711. doi: 10.1007/ s00198-018-4520-y.
- Reeve, L. E., N. A. Jorgensen, and H. F. Deluca. 1982. Vitamin D compounds in cows' milk . The Journal of Nutrition 112 (4):667-72. doi: 10.1093/jn/112.4.667.
- Roberts, J. S., Teichert, A. A., and T. H. McHugh. 2008. Vitamin D₂ formation from post-harvest UV-B treatment of mushrooms

- (Agaricus bisporus) and retention during storage. Journal of Agricultural and Food Chemistry 56 (12):4541-4. doi: 10.1021/ jf0732511.
- Ruslan, K., R. A. Reza, and S. Damayanti. 2011. Effect of ultraviolet radiation on the formation of ergocalciferol (vitamin D2) in Pleurotus streatus. Bionatura-Jurnal Ilmu-Ilmu Hayati Dan Fisik 13 (3):255-61.
- Russo, S., L. Carlucci, C. Cipriani, A. Ragno, S. Piemonte, R. D. Fiacco, J. Pepe, V. Fassino, S. Arima, E. Romagnoli, et al. 2011. Metabolic changes following 500 µg monthly administration of calcidiol: a study in normal females. Calcified Tissue International 89 (3):252-7. doi: 10.1007/s00223-011-9513-1.
- Sandström, B., S. Bügel, C. Lauridsen, F. Nielsen, C. Jensen, and L. H. Skibsted. 2000. Cholesterol-lowering potential in human subjects of fat from pigs fed rapeseed oil. The British Journal of Nutrition 84 (2):143-50. doi: 10.1017/S0007114500001367.
- Sapozhnikova, Y., W. C. Byrdwell, A. Lobato, and B. Romig. 2014. Effects of UV-B radiation levels on concentrations of phytosterols, ergothioneine, and polyphenolic compounds in mushroom powders used as dietary supplements. Journal of Agricultural and Food Chemistry 62 (14):3034-42. doi: 10.1021/jf403852k.
- Saternus, R., T. Vogt, and J. Reichrath. 2019. A critical appraisal of strategies to optimize vitamin D status in Germany, a population with a Western diet. Nutrients 11 (11):2682. doi doi: 10.3390/ nu11112682.
- Saura-Calixto, F., J. Serrano, and I. Goñi. 2007. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101 (2): 492-501. doi: 10.1016/j.foodchem.2006.02.006.
- Schutkowski, A., J. Kramer, H. Kluge, F. Hirche, A. Krombholz, T. Theumer, and G. I. Stangl. 2013. UVB exposure of farm animals: study on a food-based strategy to bridge the gap between current vitamin D intakes and dietary targets. PLoS One 8 (7):e69418. doi: 10.1371/journal.pone.0069418.
- Scientific Advisory Committee on Nutrition (SACN). 2010. Iron and Health Report. Accessed August 02, 2019. https://assets.publishing. service.gov.uk/government/uploads/system/uploads/attachment_data/ file/339309/SACN_Iron_and_Health_Report.pdf.
- Scientific Advisory Committee on Nutrition (SACN). 2016. Vitamin D and Health. Accessed August 19, 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/ file/537616/SACN_Vitamin_D_and_Health_report.pdf.
- Scragg, R. 2019. Overview of results from the Vitamin D Assessment (ViDA) study. Journal of Endocrinological Investigation 42 (12): 1391-9. doi: 10.1007/s40618-019-01056-z.
- Shanely, R. A., D. C. Nieman, A. M. Knab, N. D. Gillitt, M. P. Meaney, F. Jin, W. Sha, and L. Cialdella-Kam. 2014. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. Journal of Sports Sciences 32 (7):670-9. doi: 10.1080/02640414.2013. 847279.
- Shieh, A., C. Ma, R. F. Chun, S. Witzel, B. Rafison, H. Contreras, J. Wittwer-Schegg, L. Swinkels, T. Huijs, M. Hewison, et al. 2017. Effects of cholecalciferol vs calcifediol on total and free 25-hydroxyvitamin D and parathyroid hormone. The Journal of Clinical Endocrinology & Metabolism 102 (4):1133-40. doi: 10.1210/jc.2016-
- Shieh, A., R. F. Chun, C. Ma, S. Witzel, B. Meyer, B. Rafison, L. Swinkels, T. Huijs, S. Pepkowitz, B. Holmquist, et al. 2016. Effects of high-dose vitamin D2 versus D3 on total and free 25-hydroxyvitamin D and markers of calcium balance. The Journal of Clinical Endocrinology & Metabolism 101 (8):3070-8. doi: 10.1210/jc.2016-
- Simon, R. R., K. M. Phillips, R. L. Horst, and I. C. Munro. 2011. Vitamin D mushrooms: comparison of the composition of button mushrooms (Agaricus bisporus) treated postharvest with UVB light or sunlight. Journal of Agricultural and Food Chemistry 59 (16): 8724-32. doi: 10.1021/jf201255b.
- Sioutis, S.,. A. M. Coates, J. D. Buckley, T. W. Murphy, H. A. Channon, and P. R. C. Howe. 2008. N-3 enrichment of pork with fishmeal: effects on production and consumer acceptability.

- European Journal of Lipid Science and Technology 110 (8):701-6. doi: 10.1002/ejlt.200700253.
- Sitrin, M. D., and J. M. Bengoa. 1987. Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in chronic cholestatic liver disease. The American Journal of Clinical Nutrition 46 (6):1011-5. doi: 10.1093/ajcn/46.6.1011.
- Sławińska, A., E. Fornal, W. Radzki, K. Skrzypczak, M. Zalewska-Korona, M. Michalak-Majewska, E. Parfieniuk, and A. Stachniuk. 2016. Study on vitamin D2 stability in dried mushrooms during drying and storage. Food Chemistry 199:203-9. doi: 10.1016/j.foodchem. 2015.11.131.
- Sosa Henríquez, M., and M. J. Gómez de Tejada Romero. 2020. Cholecalciferol or calcifediol in the management of vitamin D deficiency. Nutrients 12 (6):1617. doi.org/10.3390/nu12061617. doi: 10. 3390/nu12061617.
- Springmann, M., M. Clark, D. Mason-D'Croz, K. Wiebe, B. L. Bodirsky, L. Lassaletta, W. de Vries, S. J. Vermeulen, M. Herrero, K. M. Carlson, et al. 2018. Options for keeping the food system within environmental limits. Nature 562 (7728):519-25. doi: 10. 1038/s41586-018-0594-0.
- Stephensen, C. B., M. Zerofsky, D. J. Burnett, Y. P. Lin, B. D. Hammock, L. M. Hall, and T. McHugh. 2012. Ergocalciferol from mushrooms or supplements consumed with a standard meal increases 25-hydroxyergocalciferol but decreases 25-hydroxycholecalciferol in the serum of healthy adults. The Journal of Nutrition 142 (7):1246-52. doi.org/10.3945/jn.112.159764. doi: 10.3945/jn.112. 159764.
- Stepien, M., L. O'Mahony, A. O'Sullivan, J. Collier, W. D. Fraser, M. J. Gibney, A. P. Nugent, and L. Brennan. 2013. Effect of supplementation with vitamin D₂-enhanced mushrooms on vitamin D status in healthy adults. Journal of Nutritional Science 2, e29. doi: 10.1017/jns. 2013.22.
- Taofiq, O., A. Fernandes, A. Barros, M. F. Barreiro, and I. C. F. R. Ferreira. 2017. UV-irradiated mushrooms as a source of vitamin D₂: a review. Trends in Food Science & Technology 70:82-94. doi: 10. 1016/j.tifs.2017.10.008.
- Teichmann, A., P. C. Dutta, A. Staffas, and M. Jägerstad. 2007. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: effects of UV irradiation. LWT - Food Science and Technology 40 (5):815-22. doi: 10.1016/j.lwt.2006.04.003.
- Terry, M., M. Lanenga, J. L. McNaughton, and L. E. Stark. 1999. Safety of 25-hydroxyvitamin D₃ as a source of vitamin D₃ in layer poultry feed. Veterinary and Human Toxicology 41 (5):312-6.
- Tripkovic, L., H. Lambert, K. Hart, C. P. Smith, G. Bucca, S. Penson, G. Chope, E. Hyppönen, J. Berry, R. Vieth, et al. 2012. Comparison of vitamin D₂ and vitamin D₃ supplementation in raising serum 25hydroxyvitamin D status: a systematic review and meta-analysis. The American Journal of Clinical Nutrition 95 (6):1357-64. doi: 10.3945/ ajcn.111.031070.
- U.S. Department of Agriculture (USDA), Agricultural Research Service. 2019. FoodData Central. Accessed November 03, 2020. https://ndb. nal.usda.gov/ndb/foods/show/112.
- Urbain, P., and J. Jakobsen. 2015. Dose-response effect of sunlight on vitamin D₂ production in Agaricus bisporus mushrooms. Journal of Agricultural and Food Chemistry 63 (37):8156-61. doi: 10.1021/acs.
- Urbain, P., F. Singler, G. Ihorst, H. K. Biesalski, and H. Bertz. 2011. Bioavailability of vitamin D₂ from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25-hydroxyvitamin D: a randomized controlled trial. European Journal of Clinical Nutrition 65 (8):965-71. doi: 10.1038/ejcn.2011.53.
- Urbain, P., J. Valverde, and J. Jakobsen. 2016. Impact on vitamin D₂, vitamin D₄ and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Foods for Human Nutrition 71 (3):314-21. doi: 10.1007/s11130-016-0562-5.
- Vaes, A., M. Tieland, M. F. de Regt, J. Wittwer, L. van Loon, and L. de Groot. 2018. Dose-response effects of supplementation with

- calcifediol on serum 25-hydroxyvitamin D status and its metabolites: a randomized controlled trial in older adults. Clinical Nutrition 37 (3):808-14. doi: 10.1016/j.clnu.2017.03.029.
- Vielma, J., S. P. Lall, J. Koskela, F.-J. Schöner, and P. Mattila. 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture 163 (3-4):309-23. doi: 10.1016/S0044-8486(98)00240-3.
- Wacker, M., and M. F. Holick. 2013. Sunlight and Vitamin D: a global perspective for health. Dermato-endocrinology 5 (1):51-108. doi: 10. 4161/derm.24494.
- Weiss, W. P., E. Azem, W. Steinberg, and T. A. Reinhardt. 2015. Effect of feeding 25-hydroxyvitamin D₃ with a negative cation-anion difference diet on calcium and vitamin D status of periparturient cows and their calves. Journal of Dairy Science 98 (8):5588-600. doi: 10. 3168/jds.2014-9188.
- Wen, J., K. A. Livingston, and M. E. Persia. 2019. Effect of high concentrations of dietary vitamin D₃ on pullet and laying hen performance, skeleton health, eggshell quality, and yolk vitamin D₃ content when fed to W36 laying hens from day of hatch until 68 wk of age. Poultry Science 98 (12):6713-20. doi: 10.3382/ps/pez386.
- Wetmore, J. B., C. Kimber, J. D. Mahnken, and J. R. Stubbs. 2016. Cholecalciferol v. ergocalciferol for 25-hydroxyvitamin D (25(OH)D) repletion in chronic kidney disease: a randomised clinical trial. British Journal of Nutrition 116 (12):2074-81. doi: 10.1017/ S000711451600427X.
- Wilborn, B. S., C. R. Kerth, W. F. Owsley, W. R. Jones, and L. T. Frobish. 2004. Improving pork quality by feeding supranutritional concentrations of vitamin D3. Journal of Animal Science 82 (1): 218-24. doi: 10.2527/2004.821218x.
- Willett, W.,. J. Rockström, B. Loken, M. Springmann, T. Lang, S. Vermeulen, T. Garnett, D. Tilman, F. DeClerck, A. Wood, et al. 2019. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England) 393 (10170):447-92. doi: 10.1016/S0140-6736(18)31788-4.
- Williams, P. 2007. Nutritional composition of red meat. Nutrition & Dietetics 64 (s4 The Role of):S113-S9. doi: 10.1111/j.1747-0080.2007. 00197.x.
- Wilson, L. R., L. Tripkovic, K. H. Hart, and S. A. Lanham-New. 2017. Vitamin D deficiency as a public health issue: using vitamin D₂ or vitamin D₃ in future fortification strategies. The Proceedings of the Nutrition Society 76 (3):392-9. doi: 10.1017/S0029665117000349.
- Wittig, M., U. Krings, and R. G. Berger. 2013. Single-run analysis of vitamin D photoproducts in oyster mushroom (Pleurotus ostreatus) after UV-B treatment. Journal of Food Composition and Analysis 31 (2):266-74. doi: 10.1016/j.jfca.2013.05.017.
- Won, D. J., S. Y. Kim, C. H. Jang, J. S. Lee, J. A. Ko, and H. J. Park. 2018. Optimization of UV irradiation conditions for the vitamin D₂fortified shiitake mushroom (Lentinula edodes) using response surface methodology. Food Science and Biotechnology 27 (2):417-24. doi: 10.1007/s10068-017-0266-0.
- World Cancer Research Fund. 2018. Diet, nutrition, physical activity and cancer: a global perspective. Accessed June 15, 2020. www.dietandcancerreport.org.
- Wu, W. J., and B. Y. Ahn. 2014. Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS One 9 (4):e95359 doi: 10.1371/journal.pone.0095359.
- Yao, L., T. Wang, M. Persia, R. L. Horst, and M. Higgins. 2013. Effects of vitamin D(3) -enriched diet on egg yolk vitamin D(3) content and yolk quality. Journal of food science78 (2):C178-83. doi: 10. 1111/1750-3841.12032.
- Zhang, Y., W.-J. Wu, G.-S. Song, and B.-Y. Ahn. 2015. Optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in shitake mushrooms (Lentinula Edodes) by using response surface methodology. Journal of Applied Biological Chemistry 58 (1):25-9. doi: 10. 3839/jabc.2015.006.