

<u>NSG2 - Colusa</u> Structural Calculations

Project Adress: 1017 Bridge Street

Engineer: DG

Issue Date: June 27, 2016

TABLE OF CONTENTS

	PAGES
DESIGN CRITERIA AND DESIGN LOADS	1 - 8
PURLIN DESIGN	9 - 18
BEAM DESIGN	19 - 25
DOUBLE CANT. STRUCTURE	
LATERAL ANALYSIS AND COLUMN DESIGN	26 - 3 <i>5</i>
SEMI-CANT. STRUCTURE	
LATERAL ANALYSIS AND COLUMN DESIGN	36 - 45
FOOTING DESIGN	46 - 64
CONNECTION CHECK	65 - 71

PROJECT NAME: NSG2 - Colusa			
PROJECT LOCATION: 1017 Bridge Stre	eet		
ENGINEER: DG		-	
REVIEWER:			
DATE: 6/21/2016	<u> </u>		:

		REVIEWER:
		DATE: 6/21/2016
Na kirikanik karok-datarin kila akodi kiri da akida dapa perangan makkara menorin inda karo menilamba kan melik		
Project Name: NSG2 - Colusa		
Job Number:		
Project Name: NSG2 - Colusa		
	CODE	
2013 California Building Code / ASCE 7-10		
	<u>_</u>	
	STRUCTURAL NARRATIV	′ E
Gravity loads are supported by steel purlins	which are supported by steel beams and stee	columns. Lateral loads are transmitted through the
(SCCS) requirements. Drilled piers distribute	gravity and lateral loads to the soil.	
	10450	
	LOADS	
Roof:		
Dead Land		
DL:	:	8.0 psf
Roof Live Load	:	
	4	
		0.0 psf
wild		
Occupancy Category	,	ı
V :		100 MPH
Exposure Category :		
Importance Category :		
Mean Root Height:		
K.:		
K ₂₁ :		
κ _z :		
Enclosure Classification :		Open Structure
Seismic		
Occupancy Category		1
		D
Seismic Design Category:		D
κ: Ω:		1.25 1.25
C _d :		1.25
-4		

Phoenix, AZ 775-351-9037 www.unitedstr.com 0.500

PROJECT NAME: NSG2 - Colo	usa		
PROJECT LOCATION: 1017 Bridge	e Street	· <u></u>	
ENGINEER: DG			
REVIEWER:		Ī.,_	
DATE: 6/21/2016			

Dead Load

Solar Panels :	3.0 psf
Purlins ;	1.0 psf
Beams:	2.0 psf
Misc.:	2.0 psf
Total Dead Load :	8.0 psf
Total Dead Load .	

Roof Live Load

The IBC defines Live Loads (Roof) as "Those loads produced (1) during maintence by workers, equipment and materials; (2) during the life of the sturcture by movable objects such as planters or other similar small decorative appurtenances that are not occupacy related; and (3) use and occupancy of the roof such as for roof gardens or assembly areas."

The code also reads "All roof surfaces subject to mainenance worker" be designed for 300# point loads or 20 psf roof live load.

The solar panels for this structure are not to be loaded ontop nor are they intended to support a person as defined by the solar panel manufacterer nor do they need to be re-roofed nor do they need to support any mechanical equipment. Therefore, Roof Live Loads do not apply to this structure. Lr = 0.

Material Strengths

Concrete:	
Assumed f'c:	2500 psl
Steel:	
Rebar:	ASTM A615, Fγ = 60ksi
	ASTM A706, Fy = 60ksi
Bolts:	ASTM A325N
Anchor Rods:	ASTM F1554 Gr. 55
W Section:	ASTM A992, Fy = 50ksi
M, S, C, MC, L Sections:	ASTM A36, Fy = 50ksi
HSS Rect. Section:	ASTM A500 Gr. B, Fy = 46ks
HSS Round. Section:	ASTM A500 Gr. 8, Fy = 42ks
Light Gage Steel:	Fy = 55ksl
Soil:	
Allowable Soil Bearing:	1500 psf
Allowable Lateral Bearing:	150 psf/ft

ASCE 7 Windspeed

ASCE 7 Ground Snow Load

Google

Related Resources

Sponsors

About ATC

Contact

Search Results

Query Date: Tue Jun 21 2016

Latitude: 39.2043 Longitude: -122.0026

ASCE 7-10 Windspeeds (3-sec peak gust in mph*):

Risk Category I: 100 Risk Category II: 110 Risk Category III-IV: 115

MRI** 10-Year: 72 MRI** 25-Year: 79 MRI** 50-Year: 85 MRI** 100-Year: 91

ASCE 7-05 Windspeed: 85 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 75 (fastest mile in mph)

'Miles per hour ''Mean Recurrence interval

Users should consult with local building officials to determine if there are community-specific wind speed requirements that govern,

WINDSPEED WEBSITE DISCLAIMER

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report.

VASHINOTON MONTANA OREGON NEBR United Stat JUTAH COLORADO CALIFORNIA OLas Vegas loi. ARIZONA NEW MEXICO San Diego TEX

PROJECT NAME: NSG2 - Colusa			·	
PROJECT LOCATION: 1017 Bridge Street		1.		•
ENGINEER: DG				
REVIEWER:				
DATE: 6/21/2016	1.1			Ţ.

Open Building Wind Load

EXPOSURE C WIND LOADS

f.,		(2042 100)
Code:	2012 IBC \ ASCE 7-10	(2013 IBC)
Mean Roof Height z:	15.00 ft	ŧ
Basic Wind Speed V:	100 mph	1
Occupancy Category:		
Exposure Category:	C	
Directionality K _d :	0.85	•
Topographic Factor Kzi:	1.00	ì
Type of Windflow:	Clear Wind Flow	
Gust Factor G:	0.85	
Importance Factor l _w :	1	
Structure	Inputs	
Fascia Thickness T ₁ :	1.0 ft	•
Roof Angle :	5.0 deg	r
Total Structure Width B:	37.0 ft	
Total Structure Length L :	132.0 ft	-

Wind Loads - Open Buildings: 0.25 ≤ h/L ≤ 1.0

[Code Ref]

[ASCE 7, Table 26.9-1]

900.0 ft

α=

[ASCE 7, Table 26.9-1]

9.5 0.85

1.00

K_{zt} = 0.85

1.00 I., =

[ASCE 7, eq. 27.3-1]

18.5 psf

Main Wind Force Resisting System for Monoslope Roof

0.85 G=

q_h = 18.5 psf

Roof pressures

			Wind Di	rection	Wind Di	rection
Wind Flow	Load Case		X = 0	deg	γ = 18	0 deg
200			C _{ow}	C _{nl}	Cnw	C _{nl}
	_	Cn =	1.20	0.30	1.20	0.30
Clear Wind	A	p≔	18.8 psf	4.7 psf	18.8 psf	4.7 psf
Flow		Cn =	-1.10	-0.10	-1.10	-0.10
	В		-17.3 psf	-1.6 psf	-17.3 psf	-1.6 psf

NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces.

- 2). Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof.
- 3). Positive pressures act toward the roof. Negative pressures act away from the roof.

Roof pressures - Wind Parallel to Ridge, X = 90 deg

Wind Flow	Load Case	Horizontal Distance from Windward Edge				
			≤h	>h ≤ 2h	> 2h	
		Cn =	-0.80	-0.60	-0.30	
Clear Wind	A	p =	-12.6 psf	-9.4 psf	-4.7 psf	
Flow		Cn =	0.80	0.50	0.30	
	В	p =	12.6 psf	7.9 psf	4.7 psf	

h=

15.0 ft 30.0 ft

NOTE: 1). On denotes net pressures from top and bottom roof surfaces.

Fascia Panels -Horizontal pressures

18.5 psf

Windward fascia: +/-27.71 psf (GCpn = +1.5) Leeward fascia: +/-18.47 psf (GCpn = -1.0)

PROJECT NAME: NSG2 - Colusa			٠.	
PROJECT LOCATION: 1017 Bridge Street		V .		•
ENGINEER: DG				
REVIEWER:	 			
DATE: 6/21/2016				

Open Building Wind Load

Components and Cladding Pressures

a = 3.7 ft

			Clear Wind Flow					
	Effective Wind Area	zo	zone 3		ne 2	zo	ne 1	
		positive	negative	positive	negalive	positive	negalive	
	≤ 13.69 sf	2.93	-3,90	2.20	-1.97	1.47	-1.30	
CN	>13.69, ≤ 54.76 sf	2,20	-1.97	2.20	-1.97	1.47	-1.30	
	> 54.76 sf	1.47	-1.30	1.47	-1.30	1.47	-1.30	
	≤ 13.69 sf	46.1 psi	-61.2 psf	34.5 psf	-30.9 psf	23,0 psf	-20.4 psf	
Pwc&c	>13.69, ≤ 54.76 sf	34.5 psf	-30.9 psf	34.5 psf	-30.9 psf	23.0 psf	-20.4 psf	
İ	> 54.76 sf	23.0 psi	-20.4 psf	23.0 psf	-20.4 psf	23.0 psf	-20.4 psf	

Open Building Wind Load

Location of Wind Pressure Zones

WIND DIRECTION $\gamma = 0^{\circ}, 180^{\circ}$

WIND DIRECTION γ = 90° MAIN WIND FORCE RESISTING SYSTEM

6 ≥ 10°

MONOSLOPE

PITCHED OR TROUGHED ROOF

COMPONENTS AND CLADDING

⊖<10°

USGS Design Maps Summary Report

User-Specified Input

Report Title NSG2 - Colusa

Tue June 21, 2016 22:31:57 UTC

Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)

Site Coordinates 39.2043°N, 122.00261°W

Site Soil Classification Site Class D - "Stiff Soil"

Risk Category I/II/III

USGS-Provided Output

$$S_s = 0.792 g$$

$$S_{MS} = 0.937 \text{ g}$$
 $S_{DS} = 0.625 \text{ g}$

$$S_{pg} = 0.625$$

$$S_1 = 0.331 g$$

$$S_{M1} = 0.575 g$$
 $S_{D1} = 0.383 g$

$$S_{p1} = 0.383 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_N, T_L, C_{RS}, and C_{R1} values, please view the detailed report.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Pheonix, AZ www.unitedstr.com

JOB TITLE	NSG2 -	Colusa

SHEET NO. JOB NO. 6/21/16 CALCULATED BY DG DATE CHECKED BY DATE

Seismic Loads:

ASCE 7-10

Strength Level Forces

Risk Category: Importance Factor (I): 1.00

Site Class: D

Ss (0.2 sec) = 79.20 %g 33.10 %g S1 (1.0 sec) =

1.183 Fa =

Sms = 0.937 Sps = 0.625 Design Category =

D

1.738 Fv =

Sm1 = 0.575 S_{D1} = 0.384

Design Category =

D

Seismic Design Category =

Number of Stories:

Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity

D

Vertical Structural Irregularities: No vertical Irregularity

Flexible Diaphragms: Yes Building System: error

Seismic resisting system: Steel ordinary cantilever column system

System Structural Height Limit: System not permitted for this seismic design category

Actual Structural Height (hn) = 16.1 ft

See ASCE7 Section 12.2.5 for exceptions and other system limitations

DESIGN COEFFICIENTS AND FACTORS

1.25 Response Modification Coefficient (R) =

Over-Strength Factor (Ωo) = 1.25 1.25

Deflection Amplification Factor (Cd) =

0.625

0.384

Seismic Load Effect (E) = $\rho Q_E + -0.2S_{DS} D$

 $= \rho Q_E + /-$ 0.125D ρ = redundancy coefficient Q_E = horizontal seismic force

D = dead load Special Seismic Load Effect (Em) = Ω o Q_E +/- 0.2S_{DS} D $= 1.3 Q_F +/-$ 0.125D

PERMITTED ANALYTICAL PROCEDURES

- Use Equivalent Lateral Force Analysis Simplified Analysis

Equivalent Lateral-Force Analysis - Permitted

0.020 Building period coef. $(C_T) =$

 $C_T h_n^x =$ 0.161 sec x = 0.75 Cu = 1.40

Approx fundamental period (Ta) =

0 sec

Tmax = CuTa = 0.225Use T = 0.161

User calculated fundamental period (T) =

8 ASCE7 map =

Long Period Transition Period (TL) = Seismic response coef. (Cs) =

SpsI/R = 0.500

need not exceed Cs =

1.909 Sd1 I /RT =

but not less than Cs = USE Cs =

0.027 0.044Sdsl =

> 0.500 Design Base Shear V = 0.500W

Model & Seismic Response Analysis

Permitted (see code for procedure)

ALLOWABLE STORY DRIFT

Structure Type:

All other structures

Allowable story drift = 0.020hsx

where hsx is the story height below level x

PROJECT	N962-	Colus	1		
ENGINEER	DIG	<u> </u>	DATE		

PURLIN	DESIGN
1 0 1	

$$w_{DL} = 4PSF(3.25') = 13 PLF$$
 $w_{DL} = 23 PSF(3.25') = 75 PLF$

See Attached Calc

USE 10 x 31/2 x 14 GA.

Typical Cantilever Purlin

Same loads as above

See Attached Calc

USE 10 × 31/2 × 14 CA.

CFS Version 9.0.4

Section: 10x3.5x14 Gauge.cfss Channel 10x3.5x0.8-14 Gage

Rev. Date: 6/21/2016

Printed: 6/21/2016

CFS Version 9.0.4

Section: 10x3.5x14 Gauge.cfss Channel 10x3.5x0.8-14 Gage

Rev. Date: 6/21/2016

Printed: 6/21/2016

Section Inputs

Material: A653 SS Grade 55
No strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 55 ksi
Tensile Strength, Fu 70 ksi
Warping Constant Override, Cw 0 in^6

Torsion Constant Override, J 0 in^4

Stiffened Channel, Thickness 0.075 in Placement of Part from Origin:
X to center of gravity 0 in

Y to center of gravity Outside dimensions, Open shape

O T C D T C C	QIIIIOII DI CI	-, open	- <u>r</u> -				
	Length	Angle	Radius	Web	k	Hole Size	Distance
	(in)	(deg)	(in)		Coef.	(in)	(in)
1	0.800	270.000	0.10690	None	0.000	0.000	0.400
2	3.500	180.000	0.10690	Single	0.000	0.000	1.750
_ -	10.000	90.000	0.10690	Cee	0.000	0.000	5.000
4	3.500	0.000	0.10690		0.000	0.000	1.750
5	0.800	-90.000	0.10690	None	0.000	0.000	0.400

0 in

Page 1

CFS Version 9.0.4

Analysis: Typical Purlin.cfsa 27 ft Span Simple Beam

Rev. Date: 6/21/2016

Printed: 6/21/2016

Analysis Inputs

Meml	pers Section Fil	1.0						Revision Dat	to and Time	•
1	10x3.5x14 (_	fss				_	6/21/2016 4		:
1	Start Loc. (ft) 0.000		Loc. Bi (ft) Fi	lange	R 0.0000	0	k ¢ (k)	Lm (ft) 30.000		
1	ex (in) 0.000		y (in) 0.000							
Supp	ports		T.			,		77		
	Туре 1	Locatio ft)		earing (in)	•	ened		K		
1	TYX	0.00	•	2.00		No	1	.0000	_	
2	XT	9.00	0	1.00)	No	1	.0000		
3	XT	18.00	0	1.00)	No	1	.0000		
4	TYX	27.00	0	2.00)	No	1	.0000		
Load	ding: Dead 1	Load								
	Туре		Angle	Start	Loc.	End	Loc.	Start	End	
			(deg)		(ft)		(ft)	Magnitude		
1	Distributed	ť	90.000		0.000	27	.000	-0.013000	-0.013000	k/ft
Loa	ding: Wind 1	Load								
	Туре		Angle	Start		End		Start	End	
			(deg)		(ft)		(ft)	Magnitude		
1	Distribute	d	90.000		0.000	27	.000	-0.075000	-0.075000	k/ft
Load	ding: -Wind Type		Angle	Start		End	Loc.	Start	End	
1	Distribute	. J	(deg)		(ft)	27	(ft)	Magnitude 0.067000	Magnitude 0.067000	1. / £+-
1	Distribute	u	90.000		0.000	21	.000	0.007000	0.00/000	K/TC

Analysis: Typical Purlin.cfsa 27 ft Span Simple Beam

Rev. Date: 6/21/2016

Printed: 6/21/2016

Load Combination: D

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000

Load Combination: D+0.6W

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000
3 Wind Load 0.600

Load Combination: 0.6D+0.6W

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor
1 Beam Self Weight 0.600
2 Dead Load 0.600
3 -Wind 0.600

Member Check - 2012 North American Specification - US (ASD)

Load Combina						
Design Parame						_
Lx 27.		${f r}{f \lambda}$	9.000 ft	Lt	9.000	ft
Kx 1.0	0000	Ку	1.0000	Kt	1.0000	
Section: 10x3	3.5x14 Gauge	e.cfss				
Material Type	e: A653 SS (Grade 55	, Fy=55 ksi			
Cbx 1.0	0135	Cby	1.0000	ex	0.0000	in
Cmx 1.0	0000	Cmy	1.0000	ey	0.0000	in
Braced Flange	e: None	kø _	0 k	-		
Red. Factor,		Lm	30.000 ft			
•						
Loads:	P	Mx	Vy	Му	٧x	
	(k)	(k-in)	(k)	(k-in)	(k)	
Total	0.000	68.457	0.000	0.000	0.000	
Applied	0.000	68.457	0.000	0.000	0.000	
Strength	11.481	90.651	3.896	25.723	9.703	
			applied loads			
Ae 1.35	5391 in^2		20.708 in^4		2.106	
			4.1415 in^3			
		Sxe(b)	4.1415 in^3	Sye(r)	0.8268	in^3
Internation I	Equations					
Interaction I	-	. Myrl	0.000 + 0.755		0 755 /- 1	
NAS Eq. C5.2			0.000 + 0.755 - 0.000 + 0.755			
NAS Eq. C5.2	· ·					
NAS Eq. C3.3		х, ∀у)	Sqrt(0.425			
NAS Eq. C3.3	. I – I (M)	y, Vx)	Sgrt(0.000 -	+ U.UUU}=	U.UUU <≃ J	

CFS Version 9.0.4 Section: 10x3.5x14 Gauge.cfss Channel 10x3.5x0.8-14 Gage

Rev. Date: 6/21/2016

Printed: 6/21/2016

CFS Version 9.0.4

Section: 10x3.5x14 Gauge.cfss Channel 10x3.5x0.8-14 Gage

Rev. Date: 6/21/2016

Printed: 6/21/2016

Section Inputs

Material: A653 SS Grade 55
No strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 55 ksi
Tensile Strength, Fu 70 ksi
Warping Constant Override, Cw 0 in^6

Torsion Constant Override, J 0 in^4

Stiffened Channel, Thickness 0.075 in Placement of Part from Origin:

X to center of gravity 0 in Y to center of gravity 0 in

Outside dimensions, Open shape

Odebras	Length	Angle	Radius	Web	k	Hole Size	Distance
	(in)	(deg)	(in)		Coef.	(in)	(in)
1	0.800	270.000	0.10690	None	0.000	0.000	0.400
2	3.500	180.000	0.10690	Single	0.000	0.000	1.750
3	10.000	90.000	0.10690	Cee	0.000	0.000	5.000
4	3.500	0.000	0.10690	Single	0.000	0.000	1.750
5	0.800	-90.000	0.10690	None	0.000	0.000	0.400

CFS Version 9.0.4

Analysis: Typical Cantilever Purlin.cfsa 27 ft Span Simple Beam

Rev. Date: 6/21/2016

Printed: 6/21/2016

Analysis Inputs

Section File
1 10x3.5x14 Gauge.cfss 6/21/2016 4:02:12 PM Start Loc. End Loc. Braced R kø Lm (ft) (ft) Flange (k) (ft) 1 -9.000 27.000 None 0.0000 0.0000 30.000 ex ey (in) (in) 1 0.000 0.000 Supports
Start Loc. End Loc. Braced R k
(ft) (ft) Flange (k) (ft) 1 -9.000 27.000 None 0.0000 0.0000 30.000 ex ey (in) (in) 1 0.000 0.000 Supports
(ft) (ft) Flange (k) (ft) 1 -9.000 27.000 None 0.0000 0.0000 30.000 ex ey (in) (in) 1 0.000 0.000 Supports
1 -9.000 27.000 None 0.0000 0.0000 30.000 ex ey (in) (in) 1 0.000 0.000 Supports
ex ey (in) (in) 1 0.000 0.000 Supports
(in) (in) 1 0.000 0.000 Supports
1 0.000 0.000 Supports
1 0.000 0.000 Supports
Type Hooderon Bearing rangement
(ft) (in)
1 XT -9.000 1.00 No 1.0000
2 XYT 0.000 2.00 No 1.0000
3 XT 9.000 1.00 No 1.0000
4 XT 18.000 1.00 No 1.0000
5 XYT 27.000 2.00 No 1.0000
Tanding, Dood Tood
Loading: Dead Load Type Angle Start Loc. End Loc. Start End
Type Angle Start Loc. End Loc. Start End (deq) (ft) (ft) Magnitude Magnitude
1 Distributed 90.000 -9.000 27.000 -0.013000 -0.013000 k/ft
1 Distributed 90.000 5.000 277000 stoucts
Loading: Wind Load
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Distributed 90.000 -9.000 27.000 -0.075000 -0.075000 k/ft
Loading: -Wind _ ,
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Distributed 90.000 -9.000 27.000 0.067000 0.067000 k/ft

Analysis: Typical Cantilever Purlin.cfsa

27 ft Span Simple Beam

Rev. Date: 6/21/2016

Printed: 6/21/2016

Load Combination: D

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000

Load Combination: D+0.6W

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000
3 Wind Load 0.600

Load Combination: 0.6D+0.6W

Specification: 2012 North American Specification - US (ASD)

Inflection Point Bracing: No

Loading Factor

1 Beam Self Weight 0.600
2 Dead Load 0.600
3 -Wind 0.600

Member Check - 2012 North American Specification - US (ASD)

Load Combina Design Parama						
Lx 27	.000 ft	$_{ m LV}$	9.000 ft	Lt	9.000	ft
	0000	Κν	1.0000	Kt	1.0000	
IIX I	0000	1,1	1,0000		2.000	
Section: 10x			- FE 1 '			
Material Type						
	0303	Cby	1.0000	ex	0.0000	
Cmx 1.	0000	Cmy	1.0000	eу	0.0000	in
Braced Flange	e: None	kφ	0 k			
Red. Factor,		Lm	30,000 ft			
nea. ractor,			*****			
Loads:	P	Mx	۷v	My	٧x	
	(k)	(k-in)	(k)	(k-in)	(k)	
Total	0.000	54.089	0.000	0.000	0.000	
	0.000	54.089	0.000	0.000	0.000	
Applied			3.896	25.723	9.703	
Strength	11.481	90.651	3.030	23.123	9.703	
Effective se	ction prope	rties at	applied loads	:		
	5391 in^2		20.708 in^4		2.106	in^4
		Sxe(t)	4.1415 in^3	Sye(1)	2.2093	in^3
		Sxe(b)		_		in^3
		DAC (2)		~] = (-)		
Interaction	Equations					
NAS Eq. C5.2		iv Mod	0.000 + 0.597	+ 0.000 =	0.597 <= 1	1.0
			0.000 + 0.597			
NAS Eq. C5.2			Sgrt(0.265			
NAS Eq. C3.3		lx, Vy)				
NAS Eq. C3.3	.1-1 (M	ly, Vx)	Sqrt(0.000	+ 0.000)=	U.UUU <= .	1.0

CFS Version 9.0.4

Analysis: Typical Cantilever Purlin.cfsa 27 ft Span Simple Beam

Rev. Date: 6/21/2016

Printed: 6/21/2016

Member Check - 2012 North American Specification - US (ASD)

Load Combination: D- Design Parameters at Lx 27.000 ft Kx 1.0000		9.000 ft 1.0000	Lt Kt	9.000 1.0000	ft
Section: 10x3.5x14 Ga Material Type: A653 S Cbx 1.0303 Cmx 1.0000	_	, Fy=55 ksi 1.0000 1.0000	ex ev	0.0000	
Braced Flange: None Red. Factor, R: 0	k¢ Lm	0 k 30.000 ft	-4		
Loads: P (k)	Mx (k-in)	Vy (k)	My (k-in)	Vx (k)	
Total 0.000	54.089	0.000	0.000	0.000	
Applied 0.000	54.089	0.000	0.000	0.000	
Strength 11.481	90.651	3.896	25.723	9.703	
Effective section pro	perties at	applied loads	3:		
Ae 1.35391 in^2	Ixe	20.708 in^4	l Iye	2.106	in^4
		4.1415 in^3		2.2093	in^3
	Sxe(b)				
Interaction Equations	3				
NAS Eq. C5.2.1-1 (P,	Mx, My)	0.000 + 0.597	+ 0.000 =	0.597 <= 1	1.0
NAS Eq. C5.2.1-2 (P,	Mx, My)	0.000 + 0.597	+ 0.000 =	0.597 <= 1	1.0
NAS Eq. C3.3.1-1	(Mx, Vy)	Sqrt(0.265	+ 0.000) =	0.515 <= 1	1.0
NAS Eq. C3.3.1-1	(My, Vx)	Sqrt(0.000	+ 0.000) =	0.000 <= 1	1.0

PROJECT	NSG2	Colusa	
ENGINEER	DIG	DATE	

DESIGN (STRUCTURE 1,2,3,4,5,+6) STEEL BEAM

18'-6"

trib= 21'

 w_{DL}^2 8PSF(21')= 170 PLF w_{W}^2 23PSF(21')= 485 PLF

See Attached Calc

W12x30

Project NSG2 - Co	olusa	· ·		Job Ref.	
Section Structures				Sheet no./rev	-
Calc. by	Date 6/24/2016	Chk'd by	Date	App'd by	Date

STEEL MEMBER ANALYSIS & DESIGN (AISC 360)

In accordance with AISC360 14th Edition published 2010 using the LRFD method

Tedds calculation version 4.1.00

ANALYSIS

Tedds calculation version 1.0.13

Geometry

Nodes

Node	Co-ord	linates	,	Freedom		Coordinate system		Spring		
	х	Z	х	z	Rot.	Name	Angle	Х	Z	Rot.
	(ft)	(ft)					(°)	(kips/ft)	(kips/ft)	kip_ft/°
1	0	0	Fixed	Fixed	Fixed		0	0	0	0
2	18.5	0	Free	Free	Free		0	0	0	0

Materials

Name	Density	Youngs Modulus	Shear Modulus	Thermal Coefficient	
	(lbm/ft³)	ksi	ksi	°C-1	
Steel (AISC)	490	29000	11200	0.000012	

Sections

Name	Area	Moment of inertia		Moment of inertia Shear area	
		Major	Minor	$\mathbf{A}_{\mathbf{y}}$	$\mathbf{A}_{\mathbf{z}}$
	(in²)	(in ⁴)	(in ⁴)	(in²)	(in²)
W 12x30	9	238	20	5	33

Elements

Element	Length	No	des	Section	Material		Releases		Rotated
	(ft)	Start	End			Start moment	End moment	Axial	
1	18.5	1	2	W 12x30	Steel (AISC)	Fixed	Fixed	Fixed	

Members

Name	Elements			
	Start	End		
Beam	1	1		

Project NSG2 - Colusa			Job Ref.		
Section Structures	,			Sheet no./rev.	
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Load cases

Name	me Enabled		Patternable	
Self Weight	yes	1	no	
Dead yes		0	no	
Wind	yes	0	no	

Load combinations

Load combination	Туре	Enabled	Patterned	
1.2D+1.0W	Strength	yes	1.2D+1.0W	
D	Service	yes	D	
0.42W	Service	yes	0.42W	

Load combination: 1.2D+1.0W (Strength)

Load case	Factor
Self Weight	1.2
Dead	1.2
Wind	1

Load combination: D (Service)

Load case	Factor		
Self Weight	1		
Dead	1		

Load combination: 0.42W (Service)

Load case	Factor
Wind	0.42

Member UDL loads

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Member	Load case		Position	Load	Orientation	
		Туре	Start	End		
					(kips/ft)	
Beam	Dead	Ratio	0	1	0.17	GlobalZ
Beam	Wind	Ratio	0	1	0.49	GlobalZ

Results

Forces

Project NSG2 - Co	lusa			Job Ref.	
Section Structures				Sheet no./rev.	
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Resistance factors

 $\begin{array}{lll} \text{Shear} & & & & & & & \\ & & & & & & \\ \text{Flexure} & & & & & \\ & & & & & \\ \text{Tensile yielding} & & & & \\ \text{Tensile rupture} & & & & \\ \text{Compression} & & & & \\ & & & & \\ \end{array}$

Beam - Span 1

Section details

Section type W 12x30 (AISC 14th Edn 2010)

ASTM steel designation A992 Steel yield stress $F_y = 50 \text{ ksi}$ Steel tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity E = 29000 ksi

W 12x30 (AISC 14th Edn 2010) Section depth, d, 12.3 in Section breadth, b, 6.52 in

Lateral restraint

Both flanges have lateral restraint at supports plus 5ft 1.6in & 11ft 9.7in

Consider Combination 1 - 1.2D+1.0W (Strength)

Classification of sections for local buckling - Section B4

Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio

 $b_f / (2 \times t_f) = 7.41$

Limiting ratio for compact section

 $\lambda_{pff} = 0.38 \times \sqrt{[E / F_y]} = 9.15$

Limiting ratio for non-compact section

 $\lambda_{\rm rff} = 1.0 \times \sqrt{[E / F_y]} = 24.08$

Compact

Compact

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio

 $(d - 2 \times k) / t_w = 41.62$

Limiting ratio for compact section

 $\lambda_{pwf} = 3.76 \times \sqrt{[E / F_y]} = 90.55$

Limiting ratio for non-compact section

 $\lambda_{\text{rwf}} = 5.70 \times \sqrt{[E / F_y]} = 137.27$

Section is compact in flexure

Check design at start of span

Design of members for shear - Chapter G

Required shear strength

 $V_{r,x} = 13.4 \text{ kips}$

Web area

 $A_w = d \times t_w = 3.198 \text{ in}^2$

Web plate buckling coefficient

 $k_v = 5$

 $(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(k_v \times E / F_y)}$

Web shear coefficient - eq G2-2

 $C_v = 1.000$

Nominal shear strength - eq G2-1

 $V_{n,x} = 0.6 \times F_y \times A_w \times C_v = 95.9 \text{ kips}$

Design shear strength

 $V_{c,x} = \phi_v \times V_{n,x} = 95.9 \text{ kips}$

 $V_{r,x} / V_{c,x} = 0.14$

PASS - Design shear strength exceeds required shear strength

Design of members for flexure - Chapter F

Required flexural strength

 $M_{r,x} = 124 \text{ kips_ft}$

Job Ref. Project NSG2 - Colusa United Structural Design Phoenix, AZ Sheet no./rev. Section (602) 888-1143 Structures Date Calc. by Date Chk'd by Dale App'd by 6/24/2016 JΕ

Yielding - Section F2.1

Nominal flexural strength for yielding - eq F2-1

 $M_{n,yld,x} = M_{p,x} = F_y \times Z_x = 179.6 \text{ kips_ft}$

Lateral-torsional buckling - Section F2.2

Unbraced length

 $L_b = L_{m1_s1_seg1_B} = 5.135 \text{ ft}$

Limiting unbraced length for yielding - eq F2-5

 $L_p = 1.76 \times r_y \times \sqrt{(E / F_y)} = 5.369 \text{ ft}$

Distance between flange centroids

 $h_0 = 11.9 \text{ in}$

c = 1

 $r_{ts} = 1.77 in$

Limiting unbraced length for inelastic LTB - eq F2-6 $L_r = 1.95 \times r_{ls} \times E / (0.7 \times F_y) \times \sqrt{((J \times c / (S_x \times h_o)) + \sqrt{((J \times c / (S_x \times h_o))^2 + ((J \times$

 $6.76 \times (0.7 \times F_y / E)^2) = 15.604 \text{ ft}$

 $L_b \leftarrow L_p$ - Lateral-torsional buckling does not apply

Design flexural strength - F1

Nominal flexural strength Design flexural strength $M_{n,x} = M_{n,y|d,x} = 179.6 \text{ kips_ft}$

 $M_{c,x} = \phi_b \times M_{n,x} = 161.6 \text{ kips_ft}$

 $M_{r,x} / M_{c,x} = 0.767$

PASS - Design flexural strength exceeds required flexural strength

Consider Combination 3 - 0.42W (Service)

Check design at end of span

Design of members for x-x axis deflection

Maximum deflection

 $\delta_{x} = 0.754 \text{ in}$

Allowable deflection

 $\delta_{x,Allowable}$ = L_{m1_s1} / 90 = 2.467 in

 δ_x / $\delta_{x,Allowable}$ = 0.306

PASS - Allowable deflection exceeds design deflection

PROJECT		
ENGINEER	DATE	

STRUCTURES	1,2,3,4, + 6	2D	ANALYSIS	(Double-Gard)
18'-6	" 18"		##	TRIB = 21'
V	1			201 = 170 PLF
				Www. = See Output

See Attached Output

MAXIMUM COLUMN REACTIONS

Pu = 18.5k Vu = 1.8k Mu = 77.1k.pt

USE WIZX30 , SEE OUTPUT

PROJECT NAME:	NSG2 - Colusa					
PROJECT LOCATION:	1017 Bridge Street	- 11		1		
ENGINEER:	DG			10		
REVIEWER:		1 1	-			
DATE:	6/24/2016		1.		**	

Design Forces

EXPOSURE C WIND LOADS

Code: 2012 IBC \ ASCE 7-10 Structure Inputs 21.0 ft

Trlb Width:

Roof Angle:

5.0 DEG

Fascia Thickness T₁:

1.0 ft

Wind Load Cases

Wind Flow Load Case			Wind D	irection	Wind D	irection
			X = 0 deg		γ = 180 deg	
			Cnw	C _{nl}	Cnw	C _{n1}
Clear Wind	Α	p =	18.8 psf	4.7 psf	18.8 psf	4.7 psf
Flow	R	n=	-17 3 nsf	-1 6 nsf	-17.3 nsf	-1.6 psf

WIND 5 Fascia Shear WIND 1 1.0 k 395.7 plf $V_f =$ W_{nw} = 395.7 plf $W_{nw} =$ 98.9 plf 98.9 plf $W_{nl} =$ $W_{nl} =$ WIND 2 WIND 6 98.9 plf 98.9 plf $W_{nw} =$ $W_{nw} =$ 395.7 plf $W_{nl} =$ $W_{n1} =$ 395.7 plf WIND 3 -362.7 plf W_{nw} = -362.7 plf W_{aw} = -33.0 plf $W_{nl} =$ -33.0 plf $W_{n1} =$

WIND 4 WIND 8 W_{nw} = -33.0 plf -33.0 plf $W_{nw} =$ -362.7 plf $W_{n!} =$ -362.7 plf $W_{nl} =$

Project NSG2 - Colusa				Job Ref.		
Section 2 D Analysis	- Double Cantile	ever		Sheet no./rev		
Calc. by JE	Date 6/24/2016	Chk'd by	Dale	App'd by	Date	

Results

Forces

Member results

Envelope - Strength combinations

Member	Shea	r force		Mon	Vloment		
	Pos (ft)	Max abs (kips)	Pos (ft)	Max (kip_ft)	Pos (ft)	Min (kip_ft)	
BEAM	18.5	-11.7	18.5	31.4	18.5	-108.7	
COLUMN	0	-1.8	0	73.5	0	-77.1	

Job Ref. Project NSG2 - Colusa United Structural Design Sheet no./rev. Phoenix, AZ Section (602) 888-1143 2 D Analysis - Double Cantilever Date App'd by Date Date Chk'd by Calc. by 6/24/2016 JΕ

Envelope - Strength combinations

Member		Axial	force	
	Pos (ft)	Max (kips)	Pos (ft)	Min (kips)
BEAM	18.5	0.4	18.5	-0.4
COLUMN	0	18.5	12.61	-0.6

Project NSG2 - Colusa				Job Ref.		
Section Steel Colu	ımn - Double Canti	lever Structure	e	Sheet no./rev		
Calc. by	Date 6/24/2016	Chk'd by	Date	App'd by	Date	

STEEL COLUMN DESIGN

In accordance with AISC360-10 and the LRFD method

Tedds calculation version 1.0.06

Column and loading details

Column details

Column section

Design loading

Required axial strength

Moment about x axis at end 1

Moment about x axis at end 2

Maximum moment about x axis

Moment about y axis at end 1

Moment about y axis at end 2

Maximum moment about y axis

Maximum shear force parallel to y axis Maximum shear force parallel to x axis

Material details

Steel grade

Yield strength

Ultimate strength

Modulus of elasticity

Shear modulus of elasticity

Unbraced lengths

For buckling about x axis

For buckling about y axis

For torsional buckling

W 12x30

 $P_r = 19 \text{ kips (Compression)}$

 $M_{x1} = 0.0 \text{ kips}_ft$

 $M_{x2} = 77.1 \text{ kips_ft}$

Single curvature bending about x axis

 $M_x = max(abs(M_{x1}), abs(M_{x2})) = 77.1 kips_ft$

 $M_{y1} = 0.0 \text{ kips_ft}$

 $M_{y2} = 0.0 \text{ kips_ft}$

 $M_y = max(abs(M_{y1}), abs(M_{y2})) = 0.0 \text{ kips_ft}$

 $V_{ry} = 1.8 \text{ kips}$

 $V_{rx} = 0.0 \text{ kips}$

A992

 $F_v = 50 \text{ ksi}$

 $F_u = 65 \text{ ksi}$

E = 29000 ksi

G = 11200 ksi

 $L_x = 150 in$

 $L_y = 150 in$

 $L_z = 150 in$

United Structural Design	Project NSG2 - Co	lusa			Job Ref.	
Phoenix, AZ (602) 888-1143	Section Steel Colu	Section Steel Column - Double Cantilever Structure				<i>i</i> .
	Calc. by JE	Date 6/24/2016	Chk'd by	Dale	App'd by	Date

Effective length factors

For buckling about x axis

For buckling about y axis

For torsional buckling

 $K_x = 2.00$

 $K_y = 2.00$

 $K_z = 1.00$

Section classification

Section classification for local buckling (cl. B4)

Critical flange width

Depth between root radii

 $b = b_f / 2 = 3.260 \text{ in}$ $\lambda_f = b / t_f = 7.409$

Width to thickness ratio of flange

 $h = d - 2 \times k = 10.820$ in

Width to thickness ratio of web

 $\lambda_w = h / t_w = 41.615$

Compression

Limit for nonslender flange

 $\lambda_{rf_c} = 0.56 \times \sqrt{(E / F_y)} = 13.487$

The flange is nonslender in compression

Limit for nonslender web

 $\lambda_{\text{rw_c}} = 1.49 \times \sqrt{(E / F_y)} = 35.884$

The web is slender in compression

The section is slender in compression

Flexure

Limit for compact flange

 $\lambda_{\text{pf_f}} = 0.38 \times \sqrt{(E / F_y)} = 9.152$

Limit for noncompact flange

 $\lambda_{rf_{-}f} = 1.0 \times \sqrt{(E / F_y)} = 24.083$

The flange is compact in flexure

Limit for compact web

 $\lambda_{pw_{f}} = 3.76 \times \sqrt{(E / F_y)} = 90.553$

Limit for noncompact web

 $\lambda_{\text{rw f}} = 5.70 \times \sqrt{(E / F_y)} = 137.274$

The web is compact in flexure The section is compact in flexure

Slenderness

Member slenderness

Slenderness ratio about x axis

 $SR_x = K_x \times L_x / r_x = 57.6$

Slenderness ratio about y axis

 $SR_y = K_y \times L_y / r_y = 197.4$

Second order effects

Second order effects for bending about x axis (cl. App 8.1)

Coefficient C_m

 $C_{mx} = 0.6 + 0.4 \times M_{x1} / M_{x2} = 0.600$

Coefficient a

 $\alpha = 1.0$

Elastic critical buckling stress

 $P_{e1x} = \pi^2 \times E \times I_x / (K_{1x} \times L_x)^2 = 3027.6 \text{ kips}$

P-δ amplifier

 $B_{1x} = max(1.0, C_{mx} / (1 - \alpha \times P_r / P_{e1x})) = 1.000$

Required flexural strength

 $M_{1x} = B_{1x} \times M_x = 77.1 \text{ kips_ft}$

Second order effects for bending about y axis (cl. App 8.1)

Coefficient Cm

 $C_{my} = 0.6 + 0.4 \times M_{y1} / M_{y2} = 0.600$

Coefficient α

 $\alpha = 1.0$

Elastic critical buckling stress

 $P_{e1y} = \pi^2 \times E \times I_y / (K_{1y} \times L_y)^2 = 258.2 \text{ kips}$

P-δ amplifier

 $B_{1y} = max(1.0, C_{my} / (1 - \alpha \times P_r / P_{e1y})) = 1.000$

United Structural Design	Project NSG2 - Colu	sa			Job Ref.	
Phoenix, AZ (602) 888-1143	Section Steel Column	ı - Double Cantil	ever Structure)	Sheet no./rev.	
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Required flexural strength

 $M_{ry} = B_{1y} \times M_y = 0.0 \text{ kips_ft}$

Shear strength

Shear parallel to the minor axis (cl. G2.1)

Shear area

 $A_w = d \times t_w = 3.198 \text{ in}^2$

Web plate buckling coefficient

 $k_{v} = 5.0$

Web shear coefficient

 $C_v = 1.000$

Nominal shear strength

 $V_{ny} = 0.6 \times F_y \times A_w \times C_v = \textbf{95.9 kips}$

Design shear strength (cl.G1 & G2.1(a))

Resistance factor for shear

 $\phi_{\rm V} = 1.00$

Design shear strength

 $V_{cy} = \phi_v \times V_{ny} = 95.9 \text{ kips}$

PASS - The design shear strength exceeds the required shear strength

Reduction factor for slender elements

Reduction factor for slender unstiffened elements (E7.1)

No slender unstiffened elements therefore

 $Q_s = 1.000$

Reduction factor for slender stiffened elements (E7.2)

Initial reduction factor

Q = 1.0

For flexural buckling about x axis

Elastic critical buckling stress

 $F_{ex} = (\pi^2 \times E) / (K_x \times L_x / r_x)^2 = 86.3 \text{ ksi}$

Flexural buckling stress

 $F_{crx} = Q \times (0.658^{Q \times Fy/Fex}) \times F_v = 39.2$ ksi

Effective web width

 $b_e = min(h, 1.92 \times t_w \times \sqrt{(E / F_{crx})} \times [1 - 0.34 / (h / t_w) \times \sqrt{(E / F_{crx})}])$

 $b_e = 10.557 \text{ in}$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.722 \text{ in}^2$

Reduction factor

 $Q_{ax} = A_e / A = 0.992$

Resultant reduction factor

 $Q_x = Q_s \times Q_{ax} = 0.992$

For flexural buckling about y axis

Elastic critical buckling stress

 $F_{ey} = (\pi^2 \times E) / (K_y \times L_y / r_y)^2 = 7.3 \text{ ksi}$

Flexural buckling stress

 $F_{cry} = 0.877 \times F_{ey} = 6.4$ ksi

Effective web width

 $b_e = min(h, 1.92 \times t_w \times \sqrt{(E / F_{cry})} \times [1 - 0.34 / (h / t_w) \times \sqrt{(E / F_{cry})}])$

 $b_e = 10.820 in$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.790 \text{ in}^2$

Reduction factor

 $Q_{av} = A_e / A = 1.000$

Resultant reduction factor

 $Q_y = Q_s \times Q_{ay} = 1.000$

For torsional/flexural-torsional buckling

Torsional/flexural-torsional elastic buckling stress

 $F_{el} = [\pi^2 \times E \times C_w / (K_z \times L_z)^2 + G \times J] \times 1 / (I_x + I_y) = 55.3 \text{ ksi}$

Flexural buckling stress

 $F_{crt} = Q \times (0.658^{Q \times Fy/Fet}) \times F_y = 34.2$ ksi

Effective web width

 $b_e = min(h, 1.92 \times t_w \times \sqrt{(E / F_{crt})} \times [1 - 0.34 / (h / t_w) \times \sqrt{(E / F_{crt})}])$

 $b_e = 10.820 \text{ in}$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.790 \text{ in}^2$

Reduction factor
Resultant reduction factor

 $Q_{az} = A_e / A = 1.000$

 $Q_z = Q_s \times Q_{az} = 1.000$

United Structural Design	Project NSG2 - Co	lusa			Job Ref.	
Phoenix, AZ (602) 888-1143	Section Steel Column - Double Cantilever Structure					۸.
·	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Compressive strength

Flexural buckling about x axis (cl. E3)

Elastic critical buckling stress

 $F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 86.3 \text{ ksi}$

Flexural buckling stress about x axis

 $F_{crx} = Q_x \times (0.658^{Qx \times Fy/Fex}) \times F_y = 39.0 \text{ ksi}$

Nominal flexural buckling strength

 $P_{nx} = F_{crx} \times A_g = 342.8 \text{ kips}$

Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress

 $F_{ev} = (\pi^2 \times E) / (SR_v)^2 = 7.3 \text{ ksi}$

Flexural buckling stress about y axis

 $F_{cry} = 0.877 \times F_{ey} = 6.4 \text{ ksi}$

Nominal flexural buckling strength

 $P_{my} = F_{cry} \times A_g = 56.6 \text{ kips}$

Torsional and flexural-torsional buckling (cl. E4)

Torsional/flexural-torsional elastic buckling stress $F_{et} = [\pi^2 \times E \times C_w / (K_z \times L_z)^2 + G \times J] \times 1 / (I_x + I_y) = 55.3 \text{ ksi}$

Torsional/flexural-torsional buckling stress

 $F_{crt} = Q_z \times (0.658^{Qz \times Fy/Fet}) \times F_y = 34.2 \text{ ksi}$

Nom. torsional/flex-torsional buckling strength

 $P_{nt} = F_{crt} \times A_g = 301.0 \text{ kips}$

Design compressive strength (cl.E1)

Resistance factor for compression

 $\phi_{c} = 0.90$

Design compressive strength

 $P_c = \phi_c \times min(P_{nx}, P_{ny}, P_{nl}) = 51.0 \text{ kips}$

PASS - The design compressive strength exceeds the required compressive strength

Flexural strength about the major axis

Yielding (cl. F2.1)

Nominal flexural strength

 $M_{nx yld} = M_{px} = F_y \times Z_x = 179.6 \text{ kips_ft}$

Lateral torsional buckling limiting lengths (cl. F2.2)

Unbraced length

 $L_b = 150.0 \text{ in}$

Limiting unbraced length (yielding)

 $L_p = 1.76 \times r_y \times \sqrt{(E / F_y)} = 64.4 \text{ in}$

 $L_b > L_p$ - Limit state of lateral torsional buckling applies

Effective radius of gyration

 $r_{ls} = \sqrt{(\sqrt{(l_v \times C_w)} / S_x)} = 1.770 \text{ in}$

Distance between flange centroids

 $h_0 = d - t_f = 11.860$ in

Factor c

c = 1.000

Limiting unbraced length (inelastic LTB)

 $L_r = 1.95 \times r_{18} \times E/(0.7 \times F_V) \times \sqrt{(J \times c / (S_x \times h_0))} \times \sqrt{[1 + \sqrt{(1 + 6.76 \times (0.7 \times F_y \times S_x \times h_0 / (E \times J \times c))^2)}]}$

 $L_r = 187.3$ in

Lateral torsional buckling modification factor (cl. F1)

Maximum moment in unbraced segment

 $M_{max} = M_x = 77.10 \text{ kips ft}$

Moment at centreline of unbraced segment

 $M_B = abs((M_{x1} + M_{x2}) / 2) = 38.55 \text{ kips_ft}$ $M_A = abs((M_{x1} + M_B) / 2) = 19.27 \text{ kips_ft}$

Moment at 1/4 point of unbraced segment

Moment at 1/4 point of unbraced segment

 $M_C = abs((M_{x2} + M_B) / 2) = 57.83 \text{ kips_ft}$

Lateral torsional buckling modification factor

 $C_b = 12.5 \times M_{max} / (2.5 \times M_{max} + 3 \times M_A + 4 \times M_B + 3 \times M_C)$

 $C_h = 1.667$

Lateral torsional buckling (cl. F2.2)

Plastic bending moment

 $M_{px} = F_v \times Z_x = 179.6 \text{ kips_ft}$

United Structural Design	Project NSG2 - Colu	ısa			Job Ref.		
Phoenix, AZ (602) 888-1143					Sheet no./rev.	-	
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date	

Nominal flexural strength

 $M_{nx_ltb} = min(M_{px_1} C_b \times [M_{px} - (M_{px} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)])$

 $M_{nx ltb} = 179.6 \text{ kips ft}$

Design flexural strength about the major axis (cl. F1)

Resistance factor for flexure

 $\phi_b = 0.90$

Design flexural strength

 $M_{cx} = \phi_b \times min(M_{nx_yld}, M_{nx_ltb}) = 161.6 \text{ kips_ft}$

PASS - The design flexural strength about the major axis exceeds the required flexural strength

Combined forces

 M_{ry} / M_{cy} < 0.05 - Moments exist primarily in one plane therefore check combined forces in accordance with clause H1.3.

In-plane instability (cl. H1.3(a))

Available comp. strength in plane of bending

 $P_{ci} = \phi_c \times min(P_{nx_1} P_{nt}) = 270.9 \text{ kips}$

Member utilization (eqn H1-1)

 $UR_i = P_r / (2 \times P_{ci}) + M_{rx} / M_{cx} = 0.511$

Out-of-plane buckling and lateral-torsional buckling (cl. H1.3(b))

Available comp. strength out of plane of bending

 $P_{cy} = \phi_c \times min(P_{ny},\, P_{nl}) = \textbf{51.0 kips}$

Available lat-torsional strength (C_b is 1.0)

 $M_{cx_ltb} = 132.9 \text{ kip_ft}$

Member utilization (eqn H1-2)

 $UR_0 = P_r / P_{cy} \times (1.5 - 0.5 \times P_r / P_{cy}) + (M_{rx} / (C_b \times M_{cx_itb}))^2 = 0.600$

PASS - The member is adequate for the combined forces

PROJECT	
ENGINEER	DATE

Semi Cant.	Structure	20 1	waly sis	• • • • • • • • • • • • • • • • • • • •			
	1975					· :	· .
1/6/	18.25			TRIE	= 16,5		
				woc=(8055	(16.5')	
		1		WW =	See G	utput	
		Variable and the second					
						d first man i be bedde	
777			Colum	n Rec	e Hen	: : J e	1 11 11 11 11 11 11 11 11 11 11 11 11 1
						: ·	
			Vu-	9, te 11.3k			
			Mu	= 97.91	6 t	:	
		**************************************		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

USE WIZX30 Colund

PROJECT NAME:	NSG2 - Colusa		
PROJECT LOCATION:	1017 Bridge Street		
ENGINEER:	DG		
REVIEWER:		3	
DATE:	6/24/2016	18 A. A. S.	178 . 1

Design Forces

EXPOSURE C WIND LOADS

Code: 2012 IBC \ ASCE 7-10

Structure Inputs

Trib Width:

16.5 ft 5.0 DEG

Fascla Thickness T₁:

1.0 ft

0.8 k

Wind Load Cases

			Wind D	Irection	Wind D	irection
Wind Flow	d Flow Load Case		X = 0 deg		y = 180 deg	
			C _{nw}	C _{nl}	Cow	C _{nl}
Clear Wind	Α	p =	18.8 psf	4.7 psf	18.8 psf	4.7 psf
Flow	В	n =	-17 3 psf	-1.6 nsf	-17 3 nsf	-1 6 nsf

WIND 1		<u>WIND 5</u>		<u>Fascia Shear</u>
W _{nw} =	310.9 plf	W _{nw} =	310.9 plf	V _f =
W _{nf} =	77.7 plf	$W_{nl} =$	77.7 plf	
WIND 2		WIND 6		
W _{nw} =	77.7 plf	$W_{nw} =$	77.7 plf	
$W_{nl} =$	310.9 plf	W _{nl} =	310.9 plf	
WIND 3		WIND 7		
W _{nw} =	-285.0 plf	W _{nw} =	-285.0 plf	
$W_{nl} =$	-25.9 plf	W _{nl} =	-25.9 plf	
WIND 4		WIND 8		e e
W _{nw} =	-25.9 plf	W _{nw} =	-25.9 plf	
W _{n1} =	-285.0 plf	W _{nl} =	-285.0 plf	

Project NSG2 - Colusa				Job Ref.	
Section 2 D Analysis - I	Partial Cantilev	/er		Sheet no./rev	
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Results

Forces

Project NSG2 - Colusa			Job Ref.		
Section 2 D Analysis -	Partial Cantilev	er/er		Sheet no./rev	
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Member results

Envelope - Strength combinations

Member	Shea	hear force Moment				
	Pos (ft)	Max abs (kips)	Pos (ft)	Max (kip_ft)	Pos (ft)	Min (kip_ft)
BEAM	18.25	-8.1	16.69	8.7	18.25	-83.4
COLUMN	0	1.3	0	22.8	0	-97.9

Project	oject				Job Ref.		
NSG2 - Colusa							
Section				Sheet no./rev.			
2 D Analysis - I	Partial Cantileve	r		3			
Calc. by	Date	Chk'd by	Date	App'd by	Date		
IF	6/24/2016					ĺ	

Envelope - Strength combinations

Member	Axial force					
	Pos (ft)	Max (kips)	Pos (ft)	Min (kips)		
BEAM	18.25	0.4	18.25	0		
COLUMN	0	9	11.13	0.5		

Project NSG2 - Co	Project NSG2 - Colusa				Job Ref.		
Section Steel Colu	Section Steel Column - Double Cantilever Structure						
Calc, by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date		

STEEL COLUMN DESIGN

In accordance with AISC360-10 and the LRFD method

Tedds calculation version 1.0.05

Column and loading details

Column details

Column section

Design loading

Required axial strength

Moment about x axis at end 1

Moment about x axis at end 2

Maximum moment about x axis

Moment about y axis at end 1

Moment about y axis at end 2

Maximum moment about y axis

Maximum shear force parallel to y axis Maximum shear force parallel to x axis

Material details

Steel grade

Yield strength

Ultimate strength Modulus of elasticity

Shear modulus of elasticity

Unbraced lengths

For buckling about x axis For buckling about y axis

For torsional buckling

W 12x30

 $P_r = 9 \text{ kips (Compression)}$

 $M_{x1} = 0.0 \text{ kips_ft}$

 $M_{x2} = 97.9 \text{ kips_ft}$

Single curvature bending about x axis

 $M_x = max(abs(M_{x1}), abs(M_{x2})) = 97.9 \text{ kips_ft}$

 $M_{y1} = 0.0 \text{ kips_ft}$

 $M_{y2} = 0.0 \text{ kips}_{ft}$

 $M_y = max(abs(M_{y1}), abs(M_{y2})) = 0.0 \text{ kips_ft}$

 $V_{ry} = 1.3 \text{ kips}$

 $V_{rx} = 0.0 \text{ kips}$

A992

 $F_y = 50 \text{ ksi}$

Fu = 65 ksi

E = 29000 ksi

G = 11200 ksi

 $L_x = 150 in$

 $L_y = 150 in$

 $L_z = 150 in$

United Structural Design	Project NSG2 - Colus	sa	_		Job Ref.	
Phoenix, AZ (602) 888-1]43	Section S Steel Column - Double Cantilever Structure				Sheet no./rev.	
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Effective length factors

For buckling about x axis

For buckling about y axis

For torsional buckling

 $K_x = 2.00$

 $K_y = 2.00$

 $K_z = 1.00$

Section classification

Section classification for local buckling (cl. B4)

Critical flange width

 $b = b_f / 2 = 3.260 in$

Width to thickness ratio of flange

 $\lambda_f = b / t_f = 7.409$

Depth between root radii

 $h = d - 2 \times k = 10.820$ in

Width to thickness ratio of web

 $\lambda_w = h / t_w = 41.615$

Compression

Limit for nonslender flange

 $\lambda_{rf,c} = 0.56 \times \sqrt{(E / F_y)} = 13.487$

The flange is nonslender in compression

Limit for nonslender web

 $\lambda_{\text{rw_c}} = 1.49 \times \sqrt{(E / F_y)} = 35.884$

The web is slender in compression

The section is slender in compression

Flexure

Limit for compact flange

 $\lambda_{pf_f} = 0.38 \times \sqrt{(E / F_y)} = 9.152$

Limit for noncompact flange

 $\lambda_{\text{rf}_{-}\text{f}} = 1.0 \times \sqrt{(E / F_y)} = 24.083$

The flange is compact in flexure

Limit for compact web

 $\lambda_{pw f} = 3.76 \times \sqrt{(E / F_y)} = 90.553$

Limit for noncompact web

 $\lambda_{\text{rw f}} = 5.70 \times \sqrt{(E / F_y)} = 137.274$

The web is compact in flexure The section is compact in flexure

Slenderness

Member slenderness

Slenderness ratio about x axis

 $SR_x = K_x \times L_x / r_x = 57.6$

Slenderness ratio about y axis

 $SR_y = K_y \times L_y / r_y = 197.4$

Second order effects

Second order effects for bending about x axis (cl. App 8.1)

Coefficient Cm

 $C_{mx} = 0.6 + 0.4 \times M_{x1} / M_{x2} = 0.600$

Coefficient a

 $\alpha = 1.0$

Elastic critical buckling stress

 $P_{e1x} = \pi^2 \times E \times I_x / (K_{1x} \times L_x)^2 = 3027.6 \text{ kips}$

P-δ amplifier

 $B_{1x} = max(1.0, C_{mx} / (1 - \alpha \times P_r / P_{e1x})) = 1.000$

Required flexural strength

 $M_{rx} = B_{1x} \times M_x = 97.9 \text{ kips ft}$

Second order effects for bending about y axis (cl. App 8.1)

Coefficient Cm

 $C_{my} = 0.6 + 0.4 \times M_{y1} / M_{y2} = 0.600$

Coefficient a

 $\alpha = 1.0$

Elastic critical buckling stress

 $P_{e1y} = \pi^2 \times E \times I_y / (K_{1y} \times L_y)^2 = 258.2 \text{ kips}$

P-δ amplifier

 $B_{1y} = max(1.0, C_{my} / (1 - \alpha \times P_r / P_{e1y})) = 1.000$

United Structural Design	Project NSG2 - Co	lusa	Job Ref.	Job Ref.			
Phoenix, AZ (602) 888-1143	Section Steel Colur	Section Steel Column - Double Cantilever Structure				Sheet no /rev.	
	Calc. by JE	Dale 6/24/2016	Chk'd by	Date	App'd by	Date	

Required flexural strength

 $M_{ry} = B_{1y} \times M_y = 0.0 \text{ kips_ft}$

Shear strength

Shear parallel to the minor axis (cl. G2.1)

Shear area

 $A_w = d \times t_w = 3.198 \text{ in}^2$

Web plate buckling coefficient

 $k_v = 5.0$

Web shear coefficient

 $C_v = 1.000$

Nominal shear strength

 $V_{ny} = 0.6 \times F_y \times A_w \times C_v = 95.9 \text{ kips}$

Design shear strength (cl.G1 & G2.1(a))

Resistance factor for shear

 $\phi_{v} = 1.00$

Design shear strength

 $V_{cv} = \phi_v \times V_{nv} = 95.9 \text{ kips}$

PASS - The design shear strength exceeds the required shear strength

Reduction factor for slender elements

Reduction factor for slender unstiffened elements (E7.1)

No slender unstiffened elements therefore

 $Q_s = 1.000$

Reduction factor for slender stiffened elements (E7.2)

Initial reduction factor

For flexural buckling about x axis

Elastic critical buckling stress

 $F_{ex} = (\pi^2 \times E) / (K_x \times L_x / r_x)^2 = 86.3 \text{ ksi}$

Flexural buckling stress

 $F_{crx} = Q \times (0.658^{Q \times Fy/Fex}) \times F_v = 39.2$ ksi

Effective web width

 $b_e = min(h, 1.92 \times t_w \times \sqrt{(E / F_{crx})} \times [1 - 0.34 / (h / t_w) \times \sqrt{(E / F_{crx})}])$

 $b_e = 10.557 in$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.722 \text{ in}^2$

Reduction factor

 $Q_{ax} = A_e / A = 0.992$

Resultant reduction factor

 $Q_x = Q_8 \times Q_{ax} = 0.992$

For flexural buckling about y axis

Elastic critical buckling stress

 $F_{ey} = (\pi^2 \times E) / (K_y \times L_y / r_y)^2 = 7.3 \text{ ksi}$

Flexural buckling stress

 $F_{cry} = 0.877 \times F_{ey} = 6.4$ ksi

Effective web width

 $b_{e} = min(h,\, 1.92 \times t_{w} \times \sqrt{(E \,/\, F_{cry})} \times [1 \,-\, 0.34 \,/\, (h \,/\, t_{w}) \times \sqrt{(E \,/\, F_{cry})]})$

 $b_e = 10.820 in$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.790 \text{ in}^2$

Reduction factor

 $Q_{av} = A_e / A = 1.000$

Resultant reduction factor

 $Q_y = Q_s \times Q_{ay} = 1.000$

For torsional/flexural-torsional buckling

Torsional/flexural-torsional elastic buckling stress

 $F_{et} = [\pi^2 \times E \times C_w / (K_z \times L_z)^2 + G \times J] \times 1 / (I_x + I_y) = 55.3 \text{ ksi}$

Flexural buckling stress

 $F_{crt} = Q \times (0.658^{Q \times Fy/Fel}) \times F_y = 34.2 \text{ ksi}$

Effective web width

 $b_e = min(h, 1.92 \times t_w \times \sqrt{(E / F_{crt})} \times [1 - 0.34 / (h / t_w) \times \sqrt{(E / F_{crt})}])$

 $b_e = 10.820 \text{ in}$

Effective area

 $A_e = A - t_w \times (h - b_e) = 8.790 \text{ in}^2$

Reduction factor

 $Q_{az} = A_e / A = 1.000$

Resultant reduction factor

 $Q_z = Q_s \times Q_{az} = 1.000$

Project				Job Ref.		
NSG2 - Colusa				ł		
Section				Sheet no /rev.	 -	
Steel Column - Double Cantilever Structure				4		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
JE	6/24/2016			1		

Compressive strength

Flexural buckling about x axis (cl. E3)

Elastic critical buckling stress

 $F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 86.3 \text{ ksi}$

Flexural buckling stress about x axis

 $F_{crx} = Q_x \times (0.658^{Qx \times Fy/Fex}) \times F_y = 39.0 \text{ ksi}$

Nominal flexural buckling strength

 $P_{nx} = F_{crx} \times A_g = 342.8 \text{ kips}$

Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress

 $F_{ey} = (\pi^2 \times E) / (SR_y)^2 = 7.3 \text{ ksi}$

Flexural buckling stress about y axis

 $F_{cry} = 0.877 \times F_{ey} = 6.4 \text{ ksi}$

Nominal flexural buckling strength

 $P_{ny} = F_{cry} \times A_g = 56.6 \text{ kips}$

Torsional and flexural-torsional buckling (cl. E4)

Torsional/flexural-torsional elastic buckling stress $F_{el} = [\pi^2 \times E \times C_w / (K_z \times L_z)^2 + G \times J] \times 1 / (I_x + I_y) = 55.3 \text{ ksi}$

Torsional/flexural-torsional buckling stress

 $F_{crt} = Q_z \times (0.658^{Qz \times Fy/Fet}) \times F_v = 34.2 \text{ ksi}$

Nom. torsional/flex-torsional buckling strength

 $P_{nt} = F_{crt} \times A_g = 301.0 \text{ kips}$

Design compressive strength (cl.E1)

Resistance factor for compression

 $\phi_{\rm c} = 0.90$

Design compressive strength

 $P_c = \phi_c \times min(P_{nx}, P_{ny}, P_{nt}) = 51.0 \text{ kips}$

PASS - The design compressive strength exceeds the required compressive strength

Flexural strength about the major axis

Yielding (cl. F2.1)

Nominal flexural strength

 $M_{nx_yld} = M_{px} = F_y \times Z_x = 179.6 \text{ kips_ft}$

Lateral torsional buckling limiting lengths (cl. F2.2)

Unbraced length

 $L_b = 150.0 \text{ in}$

Limiting unbraced length (yielding)

 $L_p = 1.76 \times r_v \times \sqrt{(E / F_v)} = 64.4 \text{ in}$

 $L_b > L_p$ - Limit state of lateral torsional buckling applies

Effective radius of gyration

 $r_{ts} = \sqrt{(\sqrt{(I_y \times C_w)} / S_x)} = 1.770 \text{ in}$

Distance between flange centroids

 $h_0 = d - t_1 = 11.860$ in

Factor c

c = 1.000

Limiting unbraced length (inelastic LTB)

 $L_r = 1.95 \times r_{ls} \times E/(0.7 \times F_v) \times \sqrt{(J \times C/(S_x \times h_0))} \times \sqrt{[1 + \sqrt{(1 + 6.76 \times (0.7 \times F_v \times S_x \times h_0 / (E \times J \times c))^2)]}$

 $L_r = 187.3 in$

Lateral torsional buckling modification factor (cl. F1)

Maximum moment in unbraced segment

 $M_{max} = M_x = 97.90 \text{ kips. ft}$

Moment at centreline of unbraced segment

 $M_B = abs((M_{x1} + M_{x2}) / 2) = 48.95 \text{ kips ft}$ $M_A = abs((M_{x1} + M_B) / 2) = 24.48 \text{ kips_ft}$

Moment at 1/4 point of unbraced segment Moment at 34 point of unbraced segment

 $M_C = abs((M_{x2} + M_B) / 2) = 73.43 \text{ kips_ft}$

Lateral torsional buckling modification factor

 $C_b = 12.5 \times M_{max} / (2.5 \times M_{max} + 3 \times M_A + 4 \times M_B + 3 \times M_C)$

 $C_b = 1.667$

Lateral torsional buckling (cl. F2.2)

Plastic bending moment

 $M_{px} = F_v \times Z_x = 179.6 \text{ kips ft}$

Project Job Ref. NSG2 - Colusa United Structural Design Phoenix, AZ Section Sheet no./rev. (602) 888-1143 Steel Column - Double Cantilever Structure 5 Calc. by Date Chk'd by Date Date App'd by JΕ 6/24/2016

Nominal flexural strength

 $M_{nx_ltb} = min(M_{px}, C_b \times [M_{px} - (M_{px} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)])$

 $M_{nx_llb} = 179.6 \text{ kips_ft}$

Design flexural strength about the major axis (cl. F1)

Resistance factor for flexure

 $\phi_{\rm b} = 0.90$

Design flexural strength

 $M_{cx} = \phi_b \times min(M_{nx_yld}, M_{nx_ltb}) = 161.6 \text{ kips_ft}$

PASS - The design flexural strength about the major axis exceeds the required flexural strength

Combined forces

M_{ry} / M_{cy} < 0.05 - Moments exist primarily in one plane therefore check combined forces in accordance with clause H1.3.

In-plane instability (cl. H1.3(a))

Available comp. strength in plane of bending

 $P_{ci} = \phi_{c} \times min(P_{nx_1} P_{nt}) = 270.9 \text{ kips}$

Member utilization (eqn H1-1)

 $UR_i = P_r / (2 \times P_{ci}) + M_{rx} / M_{cx} = 0.622$

Out-of-plane buckling and lateral-torsional buckling (cl. H1.3(b))

Available comp. strength out of plane of bending

 $P_{cy} = \phi_c \times min(P_{ny_1} P_{nl}) = 51.0 \text{ kips}$

Available lat-torsional strength (Cb is 1.0)

 $M_{cx ltb} = 132.9 \text{ kip ft}$

Member utilization (eqn H1-2)

 $UR_0 = P_r / P_{cy} \times (1.5 - 0.5 \times P_r / P_{cy}) + (M_{rx} / (C_b \times M_{cx_ltb}))^2 = 0.445$

PASS - The member is adequate for the combined forces

PROJECT	
ENGINEER	DATE

FOUNDATION

STRUCTURES 1,2,3,4,+6 (Double-Cant.)

Reactions From 2D Analysis

Pmax = 13.2R

 $V_{\text{max}} = 1.1R$

MMax = 46.3 RP

Soil Value

Allowable Bearing = 1,500 PSF

Passive Pressure = 100 PSF

See Attached Calc

USE 24" OIA. X 11'-0"

STRUCTURE 5

(Semi-Cant.)

Reactions From 2D Analysis

Pmax = 6.68

Vmax = .8k

Mmax = 68 kipt

See Attached Calc

USE 24" DIA. X 11'-6"

ANALYSIS

Tedds calculation version 1.0.13

Geometry

Results

Forces

Member results

Envelope - Service combinations

Member	Member Shear force Mom				ent	
	Pos (ft)	Max abs (kips)	Pos (ft)	Max (kip_ft)	Pos (ft)	Min (kip_ft)
BEAM	18.5	-8.1	18.5	16.8	18.5	-74.7
COLUMN	0	-1.1	0	44.1	0	-46.3

Job Ref. Project NSG2 - Colusa United Structural Design Phoenix, AZ Sheet no./rev. Section (602) 888-1143 2 D Analysis - Double Cantilever 3 Date App'd by Calc. by Date Chk'd by Date 6/24/2016 JΕ

Member	Axial force					
	Pos	Max	Pos	Min		
	(ft) _	(kips)	(ft)	(kips)		
BEAM	18.5	0.3	18.5	-0.3		
COLUMN	0	13.2	12.61	0.1		

Project NSG2 - Colusa				Job Ref.		
Section Double Ca	Section Double Cant. Stuctures Pole Footing					
Calc. by JE	Dale 6/24/2016	Chk'd by	Date	App'd by	Date	

Soil capacity data

Allowable passive pressure

Maximum allowable passive pressure

Load factor 1 (1806.1)

Load factor 2 (1806.3.4)

Pole geometry

Shape of the pole

Diameter of the pole

Laterally restrained

Load data

First point load

Distance of P1 from ground surface

Second point load

Distance of P2 from ground surface

Uniformly distributed load

Start distance of W from ground surface

End distance of W from ground surface

Applied moment

Distance of M₁ from ground surface

Shear force and bending moment

Total shear force

 $L_{\rm sbc} = 100 \ \rm pcf$

 $P_{max} = 1500 psf$

 $LDF_1 = 1.00$

 $LDF_2 = 2.0$

Round

Dia = 24 in

No

 $P_1 = 1100 \text{ lbs}$

 $H_1 = 0.1 \text{ ft}$

 $P_2 = 0$ lbs

 $H_2 = 1 ft$

W = 0 plf a = 2 ft

a₁ = 4 ft

 $M_1 = 46300 \text{ lb_ft}$

 $H_3 = 11 \text{ ft}$

 $F = P_1 + P_2 + W \times (a_1 - a) = 1100 \text{ ibs}$

United Structural Design
Phoenix, AZ
(602) 888-1143

Project NSG2 - Colusa				Job Ref.	Job Ref.	
Section Double Cant. Stuctures Pole Footing				Sheet no./rev.		
Calc. by JE	Date 6/24/2016	Chk'd by	Dale	App'd by	Date	

Total bending moment at grade

Distance of resultant lateral force

Embedment depth (1807.3.2.1)

Embedment depth provided

Allowable lateral passive pressure

Factor A

Embedment depth required

Actual lateral passive pressure

 $M_g = P_1 \times H_1 + P_2 \times H_2 + W \times (a_1 - a) \times (a + a_1) / 2 + M_1 = \textbf{46355} \text{ lb_ft}$

 $h = abs(M_g / F) = 42.14 ft$

D = 10.28 ft

 $S_1 = min(P_{max}, L_{sbc} \times min(D, 12 \text{ ft}) / 3) \times LDF_1 \times LDF_2 = \textbf{685.1} \text{ psf}$

 $A = 2.34 \times abs(F) / (S_1 \times Dia) = 1.9 ft$

 $D_1 = 0.5 \times A \times (1 + (1 + ((4.36 \times h) / A))^{0.5}) = 10.28 \text{ ft}$

 S_2 = (2.34 × abs(F) × ((4.36 × h) + (4 × D))) / (4 × D² × Dia) = **685.1** psf

Job Ref. Project NSG2 - Colusa Sheet no./rev. Section Double Cant. Structures Spread Footing Chk'd by Date App'd by Date Date Calc. by JΕ 6/24/2016

FOUNDATION ANALYSIS & DESIGN (ACI318)

In accordance with ACI318-11 incorporating Errata as of August 8, 2014

Tedds calculation version 3.0.02

FOOTING ANALYSIS

Length of foundation

Width of foundation

Foundation area

Depth of foundation Depth of soil over foundation

Density of concrete

 $L_x = 11 ft$

 $L_v = 6 ft$

 $A = L_x \times L_y = 66 \text{ ft}^2$

h = 24 in

 $h_{soil} = 1$ in

 $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

0.109 ksf

 $I_{x1} = 12.00 in$

 $I_{y1} = 12.00 in$

 $x_1 = 66.00$ in

0.109 ksf

0.911 ksf

Column no.1 details

Length of column Width of column

position in x-axis

 $y_1 = 36.00 in$ position in y-axis

Soil properties

Gross allowable bearing pressure

qallow_Gross = 1.5 ksf γ_{soil} = 120.0 lb/ft³ Density of soil $\phi_b = 30.0 \text{ deg}$ Angle of internal friction $\delta_{bb} = 30.0 \text{ deg}$ Design base friction angle

Coefficient of base friction

Foundation loads

Self weight Soil weight

 $F_{swl} = h \times \gamma_{conc} = 300 \text{ psf}$

 $tan(\delta_{bb}) = 0.577$

 $F_{\text{soil}} = h_{\text{soil}} \times \gamma_{\text{soil}} \approx 10 \text{ psf}$

United Structural Design	Project NSG2 - Co	lusa	-		Job Ref.		
Phoenix, AZ (602) 888-1143	Section Double Car	Section Double Cant. Structures Spread Footing				Sheet no./rev.	
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date	

Column no.1 loads

Dead load in z

 $F_{Dz1} = 13.2 \text{ kips}$

Dead load in x

 $F_{Dx1} = 1.1 \text{ kips}$

Dead load moment in x

 $M_{Dx1} = 46.3 \text{ kip}_{ft}$

Footing analysis for soil and stability

Load combinations per ASCE 7-10

1.0D (0.607)

Combination 1 results: 1.0D

Forces on foundation

Force in x-axis

 $F_{dx} = \gamma_D \times F_{Dx1} = 1.1 \text{ kips}$

Force in z-axis

 $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} = 33.7 \text{ kips}$

Moments on foundation

Moment in x-axis, about x is 0

 $M_{dx} = \gamma_D \times (A \times (F_{swt} + F_{soi}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times X_1 + M_{Dx1} + F_{Dx1} \times h) = 233.6$

kip ft

Moment in y-axis, about y is 0

 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soi}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) = 101.0 \text{ kip_ft}$

Uplift verification

Vertical force

 $F_{dz} = 33.66 \text{ kips}$

PASS - Foundation is not subject to uplift

Stability against overturning in x direction, moment about x is Lx

Overturning moment

 $M_{OTxL} = \gamma_D \times (M_{Dx1} + F_{Dx1} \times h) = 48.5 \text{ kip_ft}$

Resisting moment

 $M_{RxL} = -1 \times (\gamma_D \times (A \times (F_{swl} + F_{soil}) \times L_x / 2)) + \gamma_D \times (F_{Dz1} \times (x_1 - L_x)) = -185.13$

kip_ft

Factor of safety

 $abs(M_{RxL} / M_{OTxL}) = 3.817$

PASS - Overturning moment safety factor exceeds the minimum of 1.00

Stability against sliding

Resistance due to base friction

 $F_{RFriction} = max(F_{dz}, 0 \text{ kN}) \times tan(\delta_{bb}) = 19.434 \text{ kips}$

Stability against sliding in x direction

Total sliding resistance

 $F_{Rx} = F_{RFriction} = 19.434 \text{ kips}$

Factor of safety

 $abs(F_{Rx} / F_{dx}) = 17.67$

PASS - Sliding factor of safety exceeds the minimum of 1.00

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis

 $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 17.291$ in

Eccentricity of base reaction in y-axis

 $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in

Pad base pressures

 $q_1 = F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.109 \text{ ksf}$

 $q_2 = F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.109 \text{ ksf}$

 $q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.911 \text{ ksf}$

 $q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.911 \text{ ksf}$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = 0.109 \text{ ksf}$

Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = 0.911 \text{ ksf}$

Project NSG2 - Colus	•				Job Ref.		
Section Double Cant. Structures Spread Footing				Sheet no./rev			
Calc. by JE	Date 6/24/2016	Chk'd by	Dale	App'd by	Date		

Allowable bearing capacity

Allowable bearing capacity

 $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.607$

PASS - Allowable bearing capacity exceeds design base pressure

FOOTING DESIGN (ACI318)

In accordance with ACI318-11 incorporating Errata as of August 8, 2014

Material details

Compressive strength of concrete

f'c = **2500** psi

Yield strength of reinforcement

 $f_v = 60000 \text{ psi}$

Cover to reinforcement

 $c_{nom} = 3 in$

Concrete type

Normal weight

Concrete modification factor

 $\lambda = 1.00$

Column type

Concrete

Analysis and design of concrete footing

Load combinations per ASCE 7-10

1.4D (0.042)

Combination 1 results: 1.4D

Forces on foundation

Ultimate force in x-axis

 $F_{ux} = \gamma_D \times F_{Dx1} = 1.5 \text{ kips}$

Ultimate force in z-axis

 $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} = 47.1 \text{ kips}$

Moments on foundation

Ultimate moment in x-axis, about x is 0

 $M_{\text{UX}} = \gamma_{\text{D}} \times \left(A \times \left(F_{\text{SW1}} + F_{\text{soil}}\right) \times L_{\text{X}} / 2\right) + \gamma_{\text{D}} \times \left(F_{\text{Dz1}} \times x_1 + M_{\text{Dx1}} + F_{\text{Dx1}} \times h\right) = 327.1$

kip_ft

Ultimate moment in y-axis, about y is 0

 $M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soll}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) = 141.4 \text{ kip_ft}$

Eccentricity of base reaction

Eccentricity of base reaction in x-axis

 $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 17.291$ in

Eccentricity of base reaction in y-axis

 $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in

Pad base pressures

 $q_{u1} = F_{uz} \times$ (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / $L_y)$ / ($L_x \times L_y)$ = 0.153 ksf

 $q_{u2} = F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 0.153 \text{ ksf}$

 $q_{u3} = F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = 1.275 \text{ ksf}$

 $q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 1.275 \text{ ksf}$

Minimum ultimate base pressure

 $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 0.153 \text{ ksf}$

Maximum ultimate base pressure

 $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.275 \text{ ksf}$

Project		Job Ref.				
NSG2 - Co	lusa					
Section	Section				Sheet no./rev.	
Double Car	nt. Structures Spre	ad Footing		4		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
JE	6/24/2016					

Moment design, x direction, positive moment

Ultimate bending moment

Tension reinforcement provided

Area of tension reinforcement provided

Minimum area of reinforcement (10.5.4)

 $M_{u.x.max} = 50.333 \text{ kip. ft}$

8 No.6 bottom bars (9.3 in c/c)

 $A_{sx.bot.prov} = 3.52 in^2$

 $A_{s.min} = 0.0018 \times L_y \times h = 3.11 in^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (10.5.4) $s_{max} = min(3 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom} - \phi_{x,bot} / 2 = 20.625$ in

Depth of compression block $a = A_{sx.bol.prov} \times f_y / (0.85 \times f_c \times L_y) = 1.380 in$

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 1.624$ in

Strain in tensile reinforcement (10.3.5) $\epsilon_t = 0.003 \times d / c - 0.003 = 0.03510$

PASS - Tensile strain exceeds minimum required, 0.004

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 350.853 \text{ kip_ft}$

Flexural strength reduction factor $\phi_I = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 315.767 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.159$

PASS - Design moment capacity exceeds ultimate moment load

Moment design, x direction, negative moment

Ultimate bending moment

Tension reinforcement provided

Area of tension reinforcement provided

 $M_{u.x.min} = -8.333 \text{ kip_ft}$

8 No.6 top bars (9.3 in c/c)

 $A_{\text{sx.top.prov}} = 3.52 \text{ in}^2$

Job Ref. Project NSG2 - Colusa United Structural Design Phoenix, AZ Sheet no./rev. (602) 888-1143 Double Cant. Structures Spread Footing Calc. by Date Chk'd by Date App'd by Date 6/24/2016 JΕ

Minimum area of reinforcement (10.5.4)

 $A_{s.min} = 0.0018 \times L_y \times h = 3.11 in^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (10.5.4)

 $s_{max} = min(3 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement

Depth of compression block

Neutral axis factor

Depth to neutral axis

Strain in tensile reinforcement (10.3.5)

Nominal moment capacity

Flexural strength reduction factor

Design moment capacity

 $d = h - c_{nom} - \phi_{x,top} / 2 = 20.625 in$

 $a = A_{sx,top,prov} \times f_y / (0.85 \times f_c \times L_y) = 1.380 in$

 $\beta_1 = 0.85$

 $c = a / \beta_1 = 1.624$ in

 $\epsilon_l = 0.003 \times d / c - 0.003 = 0.03510$

PASS - Tensile strain exceeds minimum required, 0.004

 $M_0 = A_{sx.top.prov} \times f_y \times (d - a / 2) = 350.853 \text{ kip_ft}$

 $\phi_f = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.900$

 $\phi M_n = \phi_f \times M_n = 315.767 \text{ kip_ft}$ $abs(M_{u.x.min}) / \phi M_n = 0.026$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force

Depth to reinforcement

Shear strength reduction factor

Nominal shear capacity (Eq. 11-3)

Design shear capacity

 $V_{u,x} = 13.453 \text{ kips}$

 $d_v = min(h - c_{nom} - \phi_{x,bot} / 2, h - c_{nom} - \phi_{x,top} / 2) = 20.625 in$

 $\phi_{V} = 0.75$

 $V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times L_y \times d_y = 148.5 \text{ kips}$ $\phi V_n = \phi_v \times V_n = 111.375 \text{ kips}$

 $V_{u,x} / \phi V_n = 0.121$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement

Shear perimeter length (11.11.1.2)

Shear perimeter width (11.11.1.2)

Shear perimeter (11.11.1.2)

Shear area Surcharge loaded area

Ultimate bearing pressure at center of shear area

Ultimate shear load

Ultimate shear stress from vertical load

Column geometry factor (11.11.2.1)

Column location factor (11.11.2.1)

Concrete shear strength (11.11.2.1)

 $d_{v2} = 20.25$ in

 $I_{xp} = 32.250 \text{ in}$

 $l_{yp} = 32.250 \text{ in}$

 $b_0 = 2 \times I_{xp} + 2 \times I_{yp} = 129.000$ in

 $A_p = I_{xp} \times I_{yp} = 1040.063 \text{ in}^2$

 $A_{sur} = A_p - I_{x1} \times I_{y1} = 896.063 \text{ in}^2$

 $q_{up.avg} = 0.714 \text{ ksf}$

 $F_{up} = \gamma_D \times F_{Dz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times A_p = 16.444 \text{ kips}$

 $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 psi) = 6.295 psi$

 $\beta = I_{yi} / I_{x1} = 1.00$

 $\alpha_s = 40$

 $v_{cpa} = (2 + 4 / \beta) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 300.000 \text{ psi}$

 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda \times \sqrt{(f_c \times 1 psi)} = 413.953 psi$

 $v_{cpc} = 4 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 200.000 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 200.000 psi$

 $\phi_{V} = 0.75$ Shear strength reduction factor

Nominal shear stress capacity (Eq. 11-2)

Design shear stress capacity (Eq. 11-1)

 $v_n = v_{cp} = 200.000 \text{ psi}$

 $\phi v_n = \phi_v \times v_n = 150.000 \text{ psi}$

 $v_{ug} / \phi v_0 = 0.042$

Project NSG2 - Colusa				Job Ref.		
Section Double Cant, Structures Spread Footing				Sheet no./rev.		
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date	

Moment design, y direction, positive moment

Ultimate bending moment

Tension reinforcement provided

Area of tension reinforcement provided

Minimum area of reinforcement (10.5.4)

 $M_{u.y.max} = 9.625 \text{ kip_ft}$

13 No.6 bottom bars (10.4 in c/c)

 $A_{\text{sy,bol,prov}} = 5.72 \text{ in}^2$

 $A_{s,min} = 0.0018 \times L_x \times h = 5.702 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (10.5.4)

 $s_{max} = min(3 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement

Depth of compression block

Neutral axis factor

Depth to neutral axis

Strain in tensile reinforcement (10.3.5)

 $d = h - c_{nom} - \phi_{x,bot} - \phi_{y,bot} / 2 = 19.875 in$

 $a = A_{sy,bot,prov} \times f_y / (0.85 \times f_c \times L_x) = 1.224 in$

 $\beta_1 = 0.85$

 $c = a / \beta_1 = 1.439$ in

 $\varepsilon_l = 0.003 \times d / c - 0.003 = 0.03842$

PASS - Tensile strain exceeds minimum required, 0.004

Nominal moment capacity

Flexural strength reduction factor

Design moment capacity

 $M_n = A_{sy,bot,prov} \times f_y \times (d - a / 2) = 550.929 \text{ kip_ft}$

 $\phi_f = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.900$

 $\phi M_n = \phi_I \times M_n = 495.836 \text{ kip_ft}$

 $M_{u,y,max} / \phi M_n = 0.019$

PASS - Design moment capacity exceeds ultimate moment load

Footing geometry factor (15.4.4.2)

Area of reinf. req. for uniform distribution (CRSI)

 $\beta_f = L_x / L_y = 1.833$

 $A_{sreq} = (M_{u.y.max} / (\phi_f \times f_y \times (d - a / 2))) \times 2 \times \beta_f / (\beta_f + 1) = 0.144 in^2$

PASS - Reinforcement can be distributed uniformly

Project NSG2 - Colusa			Job Ref.		
Section Double Ca	Section Double Cant. Structures Spread Footing			Sheet no./rev.	
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

One-way shear design, y direction

Ultimate shear force

Depth to reinforcement

Shear strength reduction factor

Nominal shear capacity (Eq. 11-3)

Design shear capacity

 $V_{u,y} = 2.599 \text{ kips}$

 $d_v = min(h - c_{nom} - \phi_{x,bot} - \phi_{y,bot} / 2, h - c_{nom} - \phi_{y,lop} / 2) = 19.875 in$

 $\phi_{V} = 0.75$

 $V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times L_x \times d_v = 262.35 \text{ kips}$

 $\phi V_n = \phi_v \times V_n = 196.763 \text{ kips}$

 $V_{u,y} / \phi V_n = 0.013$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement

Shear perimeter length (11.11.1.2) Shear perimeter width (11.11.1.2)

Shear perimeter (11.11.1.2)

Shear area

 $d_{v2} = 20.25$ in

 $I_{xp} = 32.250 \text{ in}$

 $l_{yp} = 32.250 \text{ in}$

 $b_0 = 2 \times I_{xp} + 2 \times I_{yp} = 129.000$ in

 $A_{sur} = A_p - I_{x1} \times I_{y1} = 896.063 \text{ in}^2$

 $A_p = I_{xp} \times I_{yp} = 1040.063 \text{ in}^2$

Surcharge loaded area

Ultimate bearing pressure at center of shear area

Ultimate shear load

Ultimate shear stress from vertical load

Column geometry factor (11.11.2.1)

Column location factor (11.11.2.1)

Concrete shear strength (11.11.2.1)

Shear strength reduction factor

Nominal shear stress capacity (Eq. 11-2)

Design shear stress capacity (Eq. 11-1)

 $q_{up.avg} = 0.714 \text{ ksf}$

 $F_{up} = \gamma_D \times F_{Dz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soit} - q_{up.avg} \times A_p = \textbf{16.444 kips}$

 $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 psi) = 6.295 psi$

 $\beta = I_{v1} / I_{x1} = 1.00$

 $\alpha_s = 40$

 $v_{cpa} = (2 + 4 / \beta) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 300.000 \text{ psi}$

 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda \times \sqrt{(f_c \times 1 psi)} = 413.953 psi$

 $v_{cpc} = 4 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 200.000 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 200.000 psi$

 $\phi_{V} = 0.75$

 $v_n = v_{cp} = 200.000 \text{ psi}$

 $\phi v_n = \phi_v \times v_n = 150.000 \text{ psi}$

 $v_{ug} / \phi v_n = 0.042$

PASS - Design shear stress capacity exceeds ultimate shear stress load

United Structural Design	Project NSG2 - Co	lusa	Job Ref.	Job Ref.			
Phoenix, AZ (602) 888-1143	Section Double Car	Section Double Cant. Structures Spread Footing				Sheet no./rev. 8	
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date	

	JE	6/24/2016				
	 					
			•			
		<u>-</u>			<u>.</u>	-
er ere				* 1 * 5		

Results

Forces

Project NSG2 - Colusa				Job Ref.		
Section 2 D Analysis - Partial Cantilever				Sheet no./rev.		
Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Dale	

Member results

Envelope - Service combinations

Member	Shear force		Moment					
	Pos (ft)	Max abs (kips)	Pos (ft)	Max (kip_ft)	Pos (ft)	Min (kip_ft)		
BEAM	18.25	-5.9	14.77	3.8	18.25	-59.3		
COLUMN	0	0.8	0	11.7	0	-68		

Job Ref. Project NSG2 - Colusa United Structural Design Phoenix, AZ Sheet no./rev. Section (602) 888-1143 2 D Analysis - Partial Cantilever 3 Date App'd by Calc. by Date Chk'd by Date JΕ 6/24/2016

Member	Axial force					
	Pos (ft)	Max (kips)	Pos (ft)	Min (kips)		
BEAM	18.25	0.3	18.25	0		
COLUMN	0	6.6	11.13	0.5		

TEDDS calculation version 1.1.01

Soil capacity data

Allowable passive pressure

Maximum allowable passive pressure

Load factor 1 (1806.1) Load factor 2 (1806.3.4)

Pole geometry

Shape of the pole Diameter of the pole

Laterally restrained

Load data

First point load

Distance of P₁ from ground surface

Second point load

Distance of P2 from ground surface

Uniformly distributed load

Start distance of W from ground surface End distance of W from ground surface

Applied moment

Distance of M₁ from ground surface

Shear force and bending moment

Total shear force

 $L_{\text{sbc}} = 100 \text{ pcf}$

 $P_{max} = 1500 \text{ psf}$

 $LDF_1 = 1.00$

 $LDF_2 = 2.0$

Round

Dia = 24 in

No

P₁ = **800** lbs

 $H_1 = 0.1 \text{ ft}$

P₂ = **0** lbs

 $H_2 = 1$ ft

W = **0** plf

vv – o pi

a = 2 ft

 $a_1 = 4 ft$

 $M_1 = 68000 \text{ lb_ft}$

 $H_3 = 11 \text{ ft}$

 $F = P_1 + P_2 + W \times (a_1 - a) = 800 \text{ lbs}$

United Structural Design Phoenix, AZ (602) 888-1143	Project NSG2 - Colusa	Job Ref.				
	Section Partial Cant. St	uctures Pole Fo	Sheet no./rev.			
	Calc. by JE	Date 6/24/2016	Chk'd by	Date	App'd by	Date

Total bending moment at grade $M_g = P_1 \times H_1 + P_2 \times H_2 + W \times (a_1 - a) \times (a + a_1) / 2 + M_1 = 68040 \text{ lb_ft}$ Distance of resultant lateral force $h = abs(M_g / F) = 85.05 \text{ ft}$ Embedment depth (1807.3.2.1)

Embedment depth provided D = 11.35 ftAllowable lateral passive pressure $S_1 = min(P_{max}, L_{sbc} \times min(D, 12 \text{ ft}) / 3) \times LDF_1 \times LDF_2 = 756.4 \text{ psf}$ Factor A $A = 2.34 \times abs(F) / (S_1 \times Dia) = 1.2 \text{ ft}$ Embedment depth required $A = 0.5 \times A \times (1 + (1 + ((4.36 \times h) / A))^{0.5}) = 11.35 \text{ ft}$ Actual lateral passive pressure $A = (2.34 \times abs(F) \times ((4.36 \times h) + (4 \times D))) / (4 \times D^2 \times Dia) = 756.5 \text{ psf}$

Project			Job Ref.		
	NSG	2 - Colusa		ļ	
Section				Sheet no./rev	•
Connection Design					1
Calc. by	Date	Chk'd by	Date	App'd by	Date
JE	6/24/2016			1	

STEEL COLUMN EMBEDMENT IN POLE FOOTING

User Inputs:

Axial Force;

Shear Force;

Moment:

Pole Footing Diamter;

Pole Footing Embedment Restrained;

Pole Footing Embedment Un-Restrained;

Steel Column Embedment in footing;

Concrete Strength;

Column Flange Width;

Column Depth;

Beam Flange Width;

Beam Depth;

Mu=97.9kip_ft

Pu=18.5kips

Vu=1.8kips

Dia=24in

EmbedR=11.5ft

EmbedUR=11.5ft

Dsteel=4ft

f'c=2500psi

bfc=6.5in

dc=12in

bfb=6.5in

db=12in

Pole Footing

Restrained Soil Passive Pressure from Footing Analysis; S2R=756.5psf Un-Restrained Soil Passive Pressure from Footing Analysis; S2UR=756.5psf

Bar Size;

BP=9

Area of Bar;

Ab=1.0in²

Number of Bars on Each Side of Col;

Nbp=2

Spread Footing

Bar Size;

Barsizes=9

Area of Bar;

Absp=1.0in2

Number of Bars on Each Side of Col;

Nbs=3

Hodge Plate Connection;

Plate Strength;

Fy=50ksi

Plate Width;

bpl=5.5in

Check Plate Width;

Checkp=if(bpl<=bfc-1in,"OK","REDUCE PLATE SIZE")="OK";

Check2=if(bpl<bfb,"OK","REDUCE PLATE SIZE")="OK"

Weld Size D (D/16");

D=5

Project				Job Ref.		
	NSG2					
Section			-	Sheet no./rev		
Connection Design					2	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
JE	6/24/2016					

SUMMARY OF RESULTS

Embedment of Steel Column in Pole Footing;

Embedment of Steel Column Check; Embedment of Steel Column DCR;

Pole Footing Reinforcing;

Number of Bars on Each Side of Col;

Pole Footing Reinforcing Check; Pole Footing Reinforcing DCR;

Un-Restrained Pole Footing Reinforcing Check; Un-Restrained Pole Footing Reinforcing DCR;

Spread Footing Column Reinforcing Bar Size;

Number of Bars on Each Side of Col;

Spread Footing Reinforcing Check; Spread Footing Reinforcing DCR;

Hodge Plate Strength;

Hodge Plate Width;

Minimum Hodge Plate Thickness;

Minimum Weld Size D/16; Minimum Weld Length; Dsteel=getsectionvar(1,"Dsteel")=4.00ft Check1=getsectionvar(6,"Check")="OK"

DCR1=getsectionvar(6,"DCR")=0.57

BarSize= getsectionvar(1,"BP")=9.00

Nbp= getsectionvar(1,"Nbp")=2.00

Check2=getsectionvar(2,"Check")="OK"

DCR2=getsectionvar(2,"DCR")=0.32

Check3=getsectionvar(7,"Check")="OK"

DCR3=getsectionvar(7,"DCR")=0.32

BarSizes= getsectionvar(1,"Barsizes")=9.00

Nbs= getsectionvar(3,"Nbs")=3.00

Check4=getsectionvar(3,"Check")="OK"

DCR4=getsectionvar(3,"DCR")=0.60

Fy= getsectionvar(4,"Fy")=50.00ksi

bpl= getsectionvar(4,"bpl")=5.50in

tp= getsectionvar(4,"tp")=0.47in

D= getsectionvar(4,"D")=5.00

L= getsectionvar(4,"L")=16.72in

Project		-		Job Ref.	
	NSG2	- Colusa			
Section				Sheet no./rev	·
	Connection Design				3
Calc. by	Date	Chk'd by	Date	App'd by	Date
JE	6/24/2016				

EMBEDMENT OF STEEL COLUMN IN POLE FOOTING

User Inputs:

Shear Force;

Moment;

Vu= getsectionvar(1,"Vu")=1.80kips

Mu= getsectionvar(1,"Mu")=97.90kip_ft

Steel Column Embedment in footing;

Concrete Strength; Column Flange Width; Dsteel= getsectionvar(1,"Dsteel")=48.00in f'c= getsectionvar(1,"f'c")=2500.00psi

bfc=getsectionvar(1,"bfc")=6.50in

Allowable Bearing on Concrete;

Effective Column Flange Width;

Phi for Bearing on Concrete;

Bearing Capacity;

Bearing Section Modulus;

Bearing Force;

Check;

Demand to Capicity Ration;

effbfc=0.66*bfc=4.29in

φ=0.6

фbn=ф×0.85×f'c=1275.00psi

Sb=effbfc×Dsteel²/6=1647.36in³

bu=Mu/Sb+Vu/(effbfc×Dsteel)=721.88psi

Check=if(\phibn>bu,"OK","No Good")="OK"

DCR=bu/\dpsibn=0.566

Project				Job Ref.	Ref.	
	NSG2					
Section				Sheet no./rev.		
Connection Design					4	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
JE	6/24/2016	1	1	1		

POLE FOOTING REINFOCING (RESTRAINED)

User Inputs:

Axial Force:

Shear Force;

Moment;

Pu=getsectionvar(1,"Pu")=18.50kips

Vu= getsectionvar(1,"Vu")=1.80kips

Mu= getsectionvar(1,"Mu")=97.90kip_ft

Pole Footing Diamter;

Pole Footing Embedment;

Steel Column Embedment in footing;

Column Depth;

Dia= getsectionvar(1,"Dia")=24.00in

Embed= getsectionvar(1,"EmbedR")=11.50ft

Dsteel= getsectionvar(1,"Dsteel")=4.00ft

dc=getsectionvar(1,"dc")=12.00in

Concrete Strength;

fc= getsectionvar(1,"fc")=2500.00psi

Bar Size;

Area of Bar;

Barsizep= getsectionvar(1,"BP")=9.00

Ab= getsectionvar(1,"Ab")=1.00in²

Number of Bars on Each Side of Col;

Nbp= getsectionvar(1,"Nbp")=2.00

Section Modulus of Soil;

Section Modulus of Soil at S1;

Equivalent Force;

Design Moment;

S2=getsectionvar(1,"S2R")=756.50psf

S1=S2*Dsteel/Embed=263.13psf

Peq=(S1+S2)/2×(Embed-Dsteel)×Dia=7.65kips

Mud=Pegx2/3x(Embed-Dsteel)=38.24kip ft

Effective Depth of Concrete Column;

Area of Steel;

a;

d=min(Dia*2/3,dc+3in)=15.00in

As= Ab×Nbp=2.00in²

 $a=As\times60ksi/(0.85\timesfc\timesd)=3.76in$

Flexural Phi;

Concrete Foundation Capacity;

Check;

φf=0.9

 ϕ Mn= ϕ f×As×60ksi×(d-a/2)=118.06kip_ft

Check=if(\phi Mn>Mud,"OK","No Good")="OK"

DCR=Mud/\phiMn=0.324

Demand to Capicity Ration;

Project				Job Ref.	Job Ref.		
NSG2 - Colusa							
Section				Sheet no./rev.			
Connection Design					5		
Calc. by	Date	Chk'd by	Date	App'd by	Date		
JE	6/24/2016						

POLE FOOTING REINFOCING (UN-RESTRAINED CASE)

User Inputs:

Axial Force;

Shear Force;

Moment;

Pu=getsectionvar(1,"Pu")=18.50kips

Vu= getsectionvar(1,"Vu")=1.80kips

Mu= getsectionvar(1,"Mu")=97.90kip_ft

Pole Footing Diamter;

Pole Footing Embedment;

Steel Column Embedment in footing;

Column Depth;

Dia= getsectionvar(1,"Dia")=24.00in

Embed= getsectionvar(1,"EmbedUR")=11.50ft

Dsteel= getsectionvar(1,"Dsteel")=4.00ft

dc=getsectionvar(1,"dc")=12.00in

Concrete Strength;

f'c= getsectionvar(1,"f'c")=2500.00psi

Bar Size:

Area of Bar; Number of Bars on Each Side of Col; Barsizep= getsectionvar(1,"BP")=9.00

Ab= getsectionvar(1,"Ab")=1.00in²

Nbp= getsectionvar(1,"Nbp")=2.00

Section Modulus of Soil;

Section Modulus of Soil at S1;

Equivalent Force;

Design Moment;

S2=getsectionvar(1,"S2UR")=756.50psf

S1=S2*Dsteel/Embed=263.13psf

d=min(Dia*2/3,dc+3in)=15.00in

a=As×60ksi/(0.85×f'c×d)=3.76in

Peq=(S1+S2)/2×(Embed-Dsteel)×Dia=7.65kips

Mud=Peq×2/3×(Embed-Dsteel)=38.24kip_ft

Effective Depth of Concrete Column;

Area of Steel;

a;

As= Ab×Nbp=2.00in2

Flexural Phi;

 $\phi f=0.9$

Concrete Foundation Capacity;

Check;

 ϕ Mn= ϕ f×As×60ksi×(d-a/2)=118.06kip_ft

Check=if(\phiMn>Mud,"OK","No Good")="OK"

DCR=Mud/\phiMn=0.324 Demand to Capicity Ration;

Project				Job Ref.	
NSG2 - Colusa					
Section Connection Design				Sheet no./rev.	
JE	6/24/2016	1			

SPREAD FOOTING COLUMN ANCHORAGE User Inputs:

Axial Force; Shear Force;

Moment;

Vu= getsectionvar(1,"Vu")=1.80kips Mu= getsectionvar(1,"Mu")=97.90kip_ft

Pu=getsectionvar(1,"Pu")=18.50kips

Column Depth;

dc=getsectionvar(1,"dc")=12.00in

Concrete Strength;

fc= getsectionvar(1,"fc")=2500.00psi

Area of Bar;

Absp= getsectionvar(1,"Absp")=1.00in²

Number of Bars on Each Side of Col;

Nbs= getsectionvar(1,"Nbs")=3.00

Calculations;

Ultimate force Vres;

Vru=Pu+Mu/dc=116.40kips

Phi shear;

φ=0.9

Area of Shear Reinforcing;

Av=2×Absp×Nbs=6.00in²

Capacity of Shear Reinforcing;

φVn=φ×0.6×60ksi×Av=194.40kips

Check;

Check=if(\(\psi \n \rangle r \rangle, \cdot \n \rangle r \rangle, \cdot \n \rangle r \rangle \ra

Demand to Capicity Ration;

DCR=Vru/\phiVn=0.599

Project			Job Ref.		
	NSG2	2 - Colusa			
Section Connection Design			Sheel no./rev.		
				7	
Calc. by	Date	Chk'd by	Date	App'd by	Date
JE	6/24/2016			1	

HODGE PLATES STEEL CONNECTION AT TOP OF COLUMN

User Inputs:

Axial Force;

Moment;

Column Flange Width;

Column Depth;

Beam Flange Width;

Beam Depth;

Plate Strength;

Plate Width;

Weld Size D (D/16");

Pu=getsectionvar(1,"Pu")=18.50kips

Mu= getsectionvar(1,"Mu")=97.90kip_ft

bfc= getsectionvar(1,"bfc")=6.50in

dc= getsectionvar(1,"dc")=12.00in

bfb= getsectionvar(1,"bfb")=6.50in

db= getsectionvar(1,"db")=12.00in

Fy= getsectionvar(1,"Fy")=50.00ksi

bpl=getsectionvar(1,"bpl")=5.50in

D= getsectionvar(1,"D")=5.00

Calculations;

Maxium Tensile Foce on Connection;

Tu=Mu/dc+Pu=**116.40**kips φ=0.9

Phi Steel in Tension;

Required Plate Thickness;

Miniumum Weld Length;

_ ... _ .

 $tp=Tu/(\phi \times Fy \times bpl)=0.47in$

L=Tu/(1.392kips/in×D)=16.72in

