

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T \mathcal{Y} \ \text{им. H. Э. Баумана})$

ФАКУЛЬТЕТ	Фундаментальные науки	
 КАФЕДРА	Прикладная математика	

ОТЧЕТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ "МЕТОДЫ ОПТИМИЗАЦИИ"

Студент	ФН2-52Б		_ А. Д. Егоров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководите	ль курсовой работы		А.В. Чередниченко
	7	(Подпись, дата)	(И. О. Фамилия)

2

Оглавление

1.	Лабораторная работа $N \hspace{-1pt} = \hspace{-1pt} 6$	3
	1.1. Постановка задачи	3
	1.2. Тестовые примеры и результаты расчетов	4
2.	Лабораторная работа №7	5
	2.1. Постановка задачи	5
	2.2. Тестовые примеры и результаты расчетов	6
	2.3. Выводы	9
3.	Лабораторная работа №8	10
	3.1. Постановка задачи	10
	3.2. Тестовые примеры и результаты расчетов	11
	3.3. Выводы	19
Ст	INCOV HCHOTI ZODOHULIV HCTOHUHVOD	20

1. Лабораторная работа №6

1.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума и минимальное значение целевой функции. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- \bullet овражности функции (параметра α в функции Розенброка).

Используемые методы:

- циклический покоординатный спуск;
- метод Хука-Дживса
- метод Розенброка.

Целевые функции:

- $f_1(x,y) = 5x^2 + 4xy + 2y^2 + 4\sqrt{5}(x+y) 35$;
- $f_2(x,y) = (x^2 y)^2 + (x 1)^2$;
- $f_3(x,y) = 75(x^2 y)^2 + (x 1)^2$.

Заданная точность:

- $\varepsilon = 0.01$;
- $\varepsilon = 0.000001$.

1.2. Тестовые примеры и результаты расчетов

Входные данные	Точка минимума	Наименьшее значение функции	Количество итераций	Количество вычисленных функций
Квадратичная функция, Метод ПС, $\varepsilon = 0.01, [x,y] = [-1,-2]$	x = -2.23 $y = -4.45$	-28	19	22
Квадратичная функция, Метод Хука-Дживса, $\varepsilon = 0.000001, [x,y] = [-2,1]$	x = -2.23607 $y = -4.47213$	-28	32	28
Функция Розенброка $lpha = 1, \varepsilon = 0.01,$ $[x,y] = [-2,1]$	x = 0.98 $y = 0.96$	0	21	26
Функция Розенброка $\alpha = 1, \varepsilon = 0.000001, \\ [x,y] = [-2,1]$	x = 0.999994 $y = 0.999987$	0	180	318
Функция Розенброка $lpha=75, arepsilon=0.01, \ [x,y]=[-2,1]$	x = 0.66 $y = 0,44$	0.1	19	22
Функция Розенброка $\alpha=75, \varepsilon=0.000001,$ $[x,y]=[-2,1]$	x = 0.999459 $y = 0.998917$	0	11304	22566

Таблица 1. Результаты вычислений для регулярного симплекса при начальной длине ребра l=2 и коэффиценте редукции $\delta=\frac{1}{2}$ в зависимости от функции и точности

2. Лабораторная работа №7

2.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума и минимальное значение целевой функции. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- \bullet овражности функции (параметра α в функции Розенброка).

Используемые методы:

- регулярный симплекс;
- нерегулярный симплекс (метод Нелдера-Мида).

Целевые функции:

- $f_1(x,y) = 6x^2 4xy + 4\sqrt{5}(x+2y) + 3y^2 + 22$;
- $f_2(x,y) = (x^2 y)^2 + (x 1)^2$;
- $f_3(x,y) = 75(x^2 y)^2 + (x 1)^2$.

Заданная точность:

- $\varepsilon = 0.01$;
- $\varepsilon = 0.000001$.

2.2. Тестовые примеры и результаты расчетов

Входные данные Квадратичная	Точка минимума $x = -2.23$	Наименьшее значение функции	Количество итераций	Количество вычисленных функций
функция, $\varepsilon = 0.01$, $[x, y] = [-2, 1]$	y = -4.45	-28	19	22
Квадратичная	x = -2.23607 $y = -4.47213$	-28	32	28
Функция Розенброка $\alpha=1,\varepsilon=0.01,$ $[x,y]=[-2,1]$	x = 0.98 $y = 0.96$	0	21	26
Функция Розенброка $\alpha = 1, \varepsilon = 0.000001, \\ [x,y] = [-2,1]$	x = 0.999994 $y = 0.999987$	0	180	318
Функция Розенброка $lpha=75, arepsilon=0.01, \ [x,y]=[-2,1]$	x = 0.66 $y = 0,44$	0.1	19	22
Функция Розенброка $\alpha = 75, \varepsilon = 0.000001,$ $[x,y] = [-2,1]$	x = 0.999459 $y = 0.998917$	0	11304	22566

Таблица 2. Результаты вычислений для регулярного симплекса при начальной длине ребра l=2 и коэффиценте редукции $\delta=\frac{1}{2}$ в зависимости от функции и точности

Входные данные Квадратичная функция, $\varepsilon = 0.01$,	x = -2.23	Наименьшее значение функции -28	Количество итераций 18	Количество вычисленных функций
[x,y] = [-2,1]	y = -4.45			
Квадратичная	x = -2.23609 $y = -4.47311$	-28	30	162
Функция Розенброка $\alpha = 1, \varepsilon = 0.01,$ $[x,y] = [-2,1]$	x = 1.01 $y = 1.01$	0	15	84
Функция Розенброка $\alpha = 1, \ \varepsilon = 0.000001, \\ [x,y] = [-2,1]$	x = 1.00026 $y = 1.00115$	0	36	192
Функция Розенброка $\alpha = 75, \varepsilon = 0.01, \\ [x,y] = [-2,1]$	x = 0.75 $y = 0,56$	0.06	55	294
Функция Розенброка $\alpha = 75, \varepsilon = 0.000001, \\ [x,y] = [-2,1]$	x = 0.981937 $y = 0.964099$	0.0	124	654

Таблица 3. Результаты вычислений для нерегулярного симплекса при начальной длине ребра l=2, коэффицентах отражения $\alpha=1$, растяжения $\beta=2$, сжатия $\gamma=1/2$, редукции $\delta=\frac{1}{2}$ в зависимости от функции и точности

Рис. 1. Визуализация метода регулярного симплекса при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 2. Визуализация метода регулярного симплекса при $\varepsilon=0.000001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$

Начальная точка	[-2,1]	[-2, 10]	[-10, 1]	[10, 10]	[0, 0]
		Метод	регулярного сі	иплекса	
Количество итераций	21	335	41	544	22
Количество вычисленых функций	26	654	66	1072	28
		Метод н	ерегулярного (сиплекса	
Количество итераций	15	27	37	35	10
Количество вычисленых функций	84	144	196	184	54

Таблица 4. Результаты вычислений для функции Розенброка $f_2(x,y)$ для регулярного симплекса и нерегулярного симплекса при начальной длине ребра l=2, коэффицентах отражения $\alpha=1$, растяжения $\beta=2$, сжатия $\gamma=1/2$, редукции $\delta=\frac{1}{2}$ в зависимости от начальной точки

Рис. 3. Визуализация метода нерегулярного симплекса при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 4. Визуализация метода нерегулярного симплекса при $\varepsilon=0.00001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$

2.3. Выводы

В результате выполнения лабораторной работы были реализованы два метода:

- Регулярный симплекс,
- Нерегулярный симплекс (метод Нелдера-Мида).

Во всех методах с заранее заданной точностью были получены точка минимума и минимальное значение в этой точке.

При поиске точки минимума для квадратичной функции оба методы показывают хорошие результаты, но эффективнее оказался поиск с помощью регулярного симплекса, так как требовал меньшего количества вычислений функции, так как случае нерегулярного симплекса много вычислений уходит на одномерную минимизацию. При поиске точки минимума для функции Розенброка лучшие результаты у метода нерегулярного симплекса: метод регулярного симплекса требовал меньшего вычисления функций при малой точности, но при увеличении точности гораздо эффективнее было использование нерегулярного симплекса.

К плюсами данных методов можно отнести то, что для их реализации не требуется находить градиенты или матрицы Гесса, а их поиск, в свою очередь, порой является весьма нетривиальной задачей.

3. Лабораторная работа №8

3.1. Постановка задачи

В лабораторной работе необходимо найти с заданной точностью точку минимума, принадлежащей заданному допустимому множеству, и минимальное значение целевой функции в ней. При исследовании для каждой функции брать два параметра точности поиска. Также для каждой функции и каждого параметра точности поиска взять две различные начальные точки. Выявить влияние на стоимость методов (количество вычисленных значений целевой функции)

- параметров точности поиска;
- начальной точки;
- выпуклости;
- \bullet овражности функции (параметра α в функции Розенброка).

Используемые методы:

- метод внутренних штрафных функций (барьерных функций);
- метод внешних штрафных функций.

Целевые функции:

- $f_1(x,y) = 6x^2 4xy + 4\sqrt{5}(x+2y) + 3y^2 + 22$;
- $f_2(x,y) = (x^2 y)^2 + (x 1)^2$;
- $f_3(x,y) = 75(x^2 y)^2 + (x 1)^2$.

Заданная точность:

- $\varepsilon = 0.01$;
- $\varepsilon = 0.000001$.

Заданное допустимое множество:

- $\bullet \ A: \quad x \le 0, \quad y \le 0, \quad x+y \geqslant 10;$
- $B: \frac{(x+3)^2}{4} + \frac{(y+4)^2}{9} \le 10.$

3.2. Тестовые примеры и результаты расчетов

Входные		Min.	Кол.	Коллич	нество вычис	ленний
данные	Точка min.	значение	кол. итераций	функций	градиентов	матриц
		3110 131111	шоращи	47	Традионтов	Гессе
Квад. ф.,	x = 0.002					
$\varepsilon = 0.01,$	y = 0.002	22.06	20	21	97	97
[x,y] = [-2,2]	g = 0.001					
Квад. ф.,	x = 0.002608					
$\varepsilon = 0.000001,$	x = 0.002008 y = 0.001847	22.5646	20	21	118	118
[x,y] = [-2,2]	y = 0.001647					
Ф. Розенброка	x = 1.01					
$1, \varepsilon = 0.01,$	$\begin{cases} x = 1.01 \\ y = 1.02 \end{cases}$	0	14	15	49	49
[x,y] = [-2,2]	y = 1.02					
Ф. Розенброка	x = 1.00009					
$1, \varepsilon = 0.000001,$		0	20	21	77	77
[x,y] = [-2,2]	y = 1.00021					
Ф. Розенброка	x = 1.01					
75, $\varepsilon = 0.01$,		0	14	15	82	82
[x,y] = [-2,2]	y = 1.02					
Ф. Розенброка	m 1,00000					
75, $\varepsilon = 0.000001$,	x = 1.00009	0	20	21	124	124
[x,y] = [-2,2]	y = 1.00018					

Таблица 5. Результаты вычислений для метода внутренних штрафных функций и для допустимого множества A в зависимости от функции и точности

Входные		Min.	Кол.	Колли	чество вычис	ленний
данные	Точка min.	значение	кол. итераций	функций	градиентов	матриц
данные		JIIA ICIINC	итерации	функции	традиситов	Гессе
Квад. ф.,	x = -2.23					
$\varepsilon = 0.01,$	$\begin{vmatrix} x = 2.25 \\ y = -4.47 \end{vmatrix}$	-28	10	11	6	6
[x,y] = [-2,2]	<i>y</i> — 4.41					
Квад. ф.,	x = -2.23607					
$\varepsilon = 0.000001,$	x = -2.23007 y = 4.47214	-28	20	21	20	20
[x,y] = [-2,2]	y = 4.47214					
Ф. Розенброка	x = 0.98					
$1, \varepsilon = 0.01,$	x = 0.98 $y = 0.97$	0	11	12	19	19
[x,y] = [-2,2]	y = 0.97					
Ф. Розенброка	x = 0.999988					
$1, \varepsilon = 0.000001,$		0	20	21	44	44
[x,y] = [-2,2]	y = 0.999972					
Ф. Розенброка	x = 0.98					
$75, \varepsilon = 0.01,$	$\begin{array}{c} x = 0.98 \\ y = 0.97 \end{array}$	0	11	12	33	33
[x,y] = [-2,2]	y = 0.97					
Ф. Розенброка	m 0.000000					
75, $\varepsilon = 0.000001$,	x = 0.999988	0	20	21	64	64
[x,y] = [-2,2]	y = 0.999975					

Таблица 6. Результаты вычислений для метода внутренних штрафных функций и для допустимого множества B в зависимости от функции и точности

Входные		Min.	Кол.	Колли	чество вычис	ленний
данные	Точка min.	значение		функций	градиентов	матриц Гессе
Квад. ф., $\varepsilon = 0.01$, $[x,y] = [-2,2]$	x = -0.0002 $y = -0.0005$	21.98	10	11	11	11
Квад. ф., $\varepsilon = 0.000001,$ $[x, y] = [-2, 2]$	$\begin{vmatrix} x = 0 \\ y = 0 \end{vmatrix}$	22	23	24	24	24
Φ . Розенброка $1 \; , \; \varepsilon = 0.01, \ [x,y] = [-2,2]$	x = 0.99 $y = 0.99$	0	2	3	5	5
Φ . Розенброка $1, \varepsilon = 0.000001, \ [x,y] = [-2,2]$	$\begin{vmatrix} x = 1 \\ y = 1 \end{vmatrix}$	0	2	3	7	7
Φ . Розенброка $75, \varepsilon = 0.01, \ [x,y] = [-2,2]$	x = 0.99 $y = 0.99$	0	2	3	11	11
Φ . Розенброка $75, \varepsilon = 0.000001, \ [x,y] = [-2,2]$	x = 1 $y = 1$	0	2	3	12	12

Таблица 7. Результаты вычислений для метода внешних штрафных функций и для допустимого множества A в зависимости от функции и точности

Входные		Min.	Кол.	Колли	чество вычис	ленний
данные	Точка min.	значение	Кол. итераций	функций	градиентов	матриц
данные		значение	итерации	функции	традиситов	Гессе
Квад. ф.,	x = -2.23					
$\varepsilon = 0.01,$	$\begin{vmatrix} x - 2.29 \\ y = -4.47 \end{vmatrix}$	-28	2	21	1	1
[x,y] = [-2,2]	9 - 1.11					
Квад. ф.,	x = -2.23607					
$\varepsilon = 0.000001,$	y = -4.447214	-28	2	3	1	1
[x,y] = [-2,2]	9 - 4.441214					
Ф. Розенброка	x = 1					
$1, \varepsilon = 0.01,$	$\begin{vmatrix} x - 1 \\ y = 1 \end{vmatrix}$	0	2	3	6	6
[x,y] = [-2,2]	g-1					
Ф. Розенброка	x = 1					
$1, \varepsilon = 0.000001,$	$\begin{vmatrix} x - 1 \\ y = 1 \end{vmatrix}$	0	2	3	7	7
[x,y] = [-2,2]	g-1					
Ф. Розенброка	x = 1					
$75, \varepsilon = 0.01,$	$\begin{vmatrix} x - 1 \\ y = 1 \end{vmatrix}$	0	2	3	5	5
[x,y] = [-2,2]	y — 1					
Ф. Розенброка	x = 1					
75, $\varepsilon = 0.000001$,	$\begin{vmatrix} x - 1 \\ y = 1 \end{vmatrix}$	0	2	3	5	5
[x,y] = [-2,2]	y-1					

Таблица 8. Результаты вычислений для метода внешних штрафных функций и для допустимого множества B в зависимости от функции и точности

Начальная точка	[-2, 2]	[2,4]	[2, 2]
Количество	Метод внутре	нних штрафных	функций на А
Итераций	14	14	14
Вычисленных функций	15	15	15
Вычисленных градиентов	49	23	25
Вычисленных матриц Гессе	49	23	25
Количество	Метод внешн	их штрафных ф	ункций на <i>А</i>
Итераций	2	2	2
Вычисленных функций	3	3	3
Вычисленных градиентов	5	2	4
Вычисленных матриц Гессе	5	2	4

Таблица 9. Результаты вычислений для функции Розенброка $f_2(x,y)$ для методов внутренних и внешних штрафных функций на допустимом множестве A в зависимости от начальной точки

Начальная точка	[-2, 2]	[2,4]	[2, 2]
Количество	Метод внутренних штрафных функций на B		
Итераций	11	11	11
Вычисленных функций	12	12	12
Вычисленных градиентов	19	25	32
Вычисленных матриц Гессе	19	25	32
Количество	Метод внешних штрафных функций на <i>В</i>		
Итераций	2	2	2
Вычисленных функций	3	3	3
Вычисленных градиентов	6	8	7
Вычисленных матриц Гессе	6	8	7

Таблица 10. Результаты вычислений для функции Розенброка $f_2(x,y)$ для методов внутренних и внешних штрафных функций на допустимом множестве B в зависимости от начальной точки

Рис. 5. Визуализация метода внутренних штрафных функций на допустимом множестве A при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 6. Визуализация метода внутренних штрафных функций на допустимом множестве A при $\varepsilon=0.000001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 7. Визуализация метода внутренних штрафных функций на допустимом множестве B при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 8. Визуализация метода внутренних штрафных функций на допустимом множестве B при $\varepsilon=0.000001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 9. Визуализация метода внешних штрафных функций на допустимом множестве A при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 10. Визуализация метода внешних штрафных функций на допустимом множестве A при $\varepsilon=0.000001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 11. Визуализация метода внешних штрафных функций на допустимом множестве B при $\varepsilon=0.01$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

Рис. 12. Визуализация метода внешних штрафных функций на допустимом множестве B при $\varepsilon=0.000001$ для а) квадратичной функции $f_1(x,y)$, б) функции Розенброка $f_2(x,y)$ в) функции Розенброка $f_3(x,y)$

3.3. Выводы

В результате выполнения лабораторной работы были реализованы два метода:

- Метод внутренних штрафных функций (барьерных функций);
- Метод внешних штрафных функций.

Во всех методах с заранее заданной точностью были получены точка минимума и минимальное значение в этой точке. В случае нахождения точки минимума функции внутри допустимого множества поиска алгоритмы быстро к ней сходятся. Метод внешних штрафных функций сходится даже быстрее, так как исследуемая функция не меняется в допустимой области. В случае нахождения точки минимума функции за границей допустимого множества алгоритмы сходятся медленнее к наименьшей точке на границе. При этом метод внутренних штрафных функций сходится изнутри области, а внешних — снаружи. Первая итерация методов делает большой шаг в сторону точки минимума, а следующие уточняют её положение с изменением штрафной функции.

Список использованных источников

1. Аттетков А. В. Методы оптимизации: Учеб. для вузов / А. В. Аттетков, С. В. Галкин, В.С. Зарубин – М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. – 440 с.