Homework 3: Non conducting materials and dielectrics

1. An isolated large-plate capacitor (not connected to anything) originally has a potential difference of $800\,V$ with an air gap of $5\,mm$. Then a plastic slab $3\,mm$ thick, with dielectric constant $\varepsilon_r=6$, is inserted into the middle of the air gap as shown in the figure below.

Calculate the potential differential between the two conducting plates ΔV

2. A thin spherical shell of radius R_1 made of plastic carries a uniformly distributed negative charge $-Q_1$. A thin spherical shell of radius R_2 made of glass carries a uniformly distributed positive charge $+Q_2$. The distance between centers is L, as shown in the figure below.

- a) Find the potential difference VB VA. Location A is at the center of the glass sphere, and location B is just outside the glass sphere.
- b) Find the potential difference Vc VB. Location B is just outside the glass sphere, and location C is a distance d to the right of B.
- c) Suppose the glass shell is replaced by a solid metal sphere with radius R₂ carrying charge $+Q_2$. What is the new potential difference $V_B V_A$ is true?
- 3. A uniformly charged (thin) non-conducting rod is located on the central axis a distance b from the center of an uniformly charged non-conducting disk. The length of the rod is L and has a linear charge density λ . The disk has radius a and surface charge density σ . Calculate the total force among these two objects.

4. The figure below shows a parallel-plate capacitor of plate area A and plate separation 2d. The left half of the gap is filled with material of a relative dielectric constant $\varepsilon_{r1}=12$; the top of the right half is filled with material of a relative dielectric constant $\varepsilon_{r2}=20$; the bottom of the right half is filled with material of a relative dielectric constant $\varepsilon_{r3}=30$. What is the capacitance in terms of ε_0 , A, and d?

5. In the figure below, how much charge is stored on the parallel-plate capacitors by the 10 V battery? One is filled with air, and the other is filled with a dielectric for which $\varepsilon_r = 2.0$; both capacitors have a plate area of $2.00 \times 10^{-3} m^2$ and a plate separation of $1.00 \ mm$.

6. Show that the individual dipole moment \vec{p} of a carbon tetrachloride (CCl_4) molecule in an electric field $|\vec{E}| = 10^7 \ volts/m$ is $1.78 \times 10^{-31} C - m$, given the data: molecular weight = 156, density = $1.6 \ g/cm^3$, $\varepsilon_r = \varepsilon/\varepsilon_0 = 2.24$, ε_0 = $8.85 \times 10^{-12} \ C^2/Nm^2$ and Avagadro number = 6.02×1023 . The number of molecules per unit volume is given by ($Avagadro\ number \times density$)/ $mol.\ wt$.

- 7. Consider a point charge +q in a homogeneous isotropic medium of infinite extent. The dielectric medium is linear and dielectric constant is ε_r . Calculate the electric field \vec{E} and the polarization \vec{P} .
- **8.** A disk of radius R has a surface charge distribution given by $\sigma = \sigma_0 R/r$ where σ_0 is a constant and r is the distance from the center of the disk.
 - (a) Find the total charge on the disk.
 - (b) Find an expression for the electric potential at a distance *x* from the center of the disk on the axis that passes through the disk's center and is perpendicular to its plane.