Master: Proba-stat.

2023-2024

Analyse Fonctionelle

Exercice 1: Soit $T: \mathbb{R}^2 \to \mathbb{R}^3$ défini par

$$T(x,y) = (3x + y, x - 3y, 4y)$$

Montrer que $T \in B(\mathbb{R}^2, \mathbb{R}^3)$, et calculer la norme de T, (||T||).

Exercice 2:

Soit $(c_n)_{n\in\mathbb{N}}$ une suite des nombres réelles. Définir un opérateur T sur l^2 par

$$Tx = (c_1x_1, c_2x_2, ...)$$

.

Montrer que T est borné si et seulement si c_n est bornée, et dans ce cas $||T|| = \sup_{n \in \mathbb{N}} |c_n|$

Exercice 3: Soit $x \in l^2$, et soit $Tx = y = (0, 4x_1, x_2, 4x_3, x_4, ...) \in l^2$

Montrer que T est bien définie et continu.

Trouver la norme de T

Exercice 4: On munit X = R[X] l'espace des polynomes de la norme $||P||_{\infty} = \sup_{n \in \mathbb{N}} \left\{ \left| \frac{P^{(n)}(0)}{n!} \right| \right\}$

1. Vérifier brièvement que $\|P\|_{\infty}$ est une norme sur X.

Soit T l'operateur de X défini par $\forall P \in X, TP = XP$.

2. Démontrer que l'application T est continue et déterminer ||T||