

Faculdade de Computação COLEGIADO DO CURSO DE SISTEMAS DE INFORMAÇÃO

PLANO DE ENSINO

1. IDENTIFICAÇÃO

COMPONENTE C	URRICULAR: Enge	nharia de Soft	ware		
UNIDADE OFERTANTE: Faculdade de Computação					
CÓDIGO: GSI526		PERÍODO/SÉRIE: 5º Período		TURMA: S	
CARGA HORÁRIA			NATUREZA		
TEÓRICA:	PRÁTICA:	TOTAL:	OBRIGATÓRIA: (X) OPTATIVA:	ODTATIVA. ()	
60	00	60		OPTATIVA: ()	
PROFESSOR: Eduardo Cunha Campos				ANO/SEMESTRE: 2019/1	
OBSERVAÇÕES:					

2. EMENTA

Introdução à Engenharia de Software. Requisitos, Engenharia de Requisitos. Métricas. Gestão do processo de desenvolvimento de software. Projeto da Interface com o usuário. Teste de programas. Qualidade de software. Documentação de software.

3. JUSTIFICATIVA

Esta disciplina é de suma importância pois através dela o aluno irá aprender sobre os conceitos que permeiam a atividade de Engenharia de Software, tais como: Modelo de Processos de Software, Definição da Arquitetura de um Software, Técnicas atualmente usadas para fazer Reuso de Software, Modelos para Melhoria de Processos de Software, etc.

4. OBJETIVO

Ao final da disciplina o aluno estará apto a desenvolver as principais atividades relacionadas a verificação e validação de software e testes de software, bem como discutir as principais responsabilidades de um gerente de projetos no contexto de um processo de desenvolvimento de software. A disciplina objetiva ainda discutir temas relacionados a gerência de projetos, estimativas e métricas, melhoria de processos, projeto de interface com o usuário, aspectos de qualidade e documentação de software e a evolução desses sistemas.

5. CRONOGRAMA

13/mar	Motivação e conceitos fundamentais da Engenharia de Software		
14/mar	Processos de Software, Modelo Cascata, Desenvolvimento Incrementa		
20/mar	Engenharia de Software baseada em Reutilização		
21/mar	Métodos Ágeis de Desenvolvimento de Software		
27/mar	Manifesto Ágil, Programação Extrema (XP)		
28/mar	Scrum: Fases, Papéis e Reuniões		
03/abr	Requisitos de Usuários e Requisitos do Sistema		
04/abr	Requisitos Funcionais e Requisitos Não Funcionais		
10/abr	Prova 1		
11/abr	Arquitetura de Software		
17/abr	Introdução a padrões arquiteturais		
18/abr	Padrões arquiteturais: Da desordem a estrutura		
24/abr	Evolução de Software		
25/abr	Dinâmica da Evolução: Leis de <i>Lehman</i>		
01/mai	Feriado – Dia do Trabalho		
02/mai	Manutenção de Software		
08/mai	Reengenharia, Refatoração e <i>Bad Smells</i>		
09/mai	Reutilização de Software		
15/mai	Panorama de Técnicas para Reutilização de Software		
16/mai	Bibliotecas, <i>Frameworks</i> e Padrões de Projeto		
22/mai	Prova 2		
23/mai	Desenvolvimento Dirigido por Modelos (MDD)		
29/mai	Linha de Produtos de Software (LPS)		
30/mai	Conceitos fundamentais de qualidade de software		
05/jun	Melhoria de processos de software: Medição de processo		
06/jun	Avaliação da mudança de processo		
12/jun	O modelo CMMI e suas representações		
13/jun	O modelo MPS.Br e suas características		
19/jun	Modelos de Qualidade de Processo: conceitos, padrões e normas		
20/jun	Feriado – Corpus Christi		
26/jun	Qualidade do Produto: conceitos, padrões e normas, métricas		
27/jun	Técnicas de modelagem de processos de negócio: BPMN e UML		

03/jul Teste de Software: conceitos, técnicas, ferramentas

04/jul Prova 3

10/jul Apresentação do Seminário

11/jul Entrega das notas finais

6. METODOLOGIA

Será utilizado apresentações em slides e quadro para apresentação do conteúdo da disciplina. A disciplina será desenvolvida de maneira dinâmica e participativa, por meio de aulas teóricas dialogadas, em que serão exemplificadas as diversas situações do cotidiano do profissional de Tecnologia da Informação.

7. AVALIAÇÃO

10/04/19 - Prova 1: 25 pontos

22/05/19 - Prova 2: 30 pontos

04/07/19 - Prova 3: 30 pontos

10/07/19 – Seminário: 15 pontos

8. BIBLIOGRAFIA

Básica

- Ian Sommerville. "Engenharia de Software", 9a. Edição. Pearson, 2011.
- Roger S. Pressman, "Engenharia de Software: Uma Abordagem Profissional", 7a. Edição (McGraw-Hill, 2011).
- Grady Booch, James Rumbaugh, Ivar Jacobson. "UML, Guia do Usuário", 2a Edição. Editora Campus, 2006.

Complementar

- Shari L. Pfleeger, "Engenharia de Software – Teoria e Prática", Prentice Hall, 2004.

(Apresenta uma visão geral da Engenharia de Software voltada para o profissional da área; completo e atualizado).

- Frederick P Brooks. "The mythical man-month: essays on software engineering". Addison-Wesley, 1995.
- Martin Fowler, Kent Beck. "Refactoring: Improving the Design of Existing Code". Addison-Wesley Object Technology Series, 1st Edition, 1999.
- Ricardo R. Gudwin, "Engenharia de Software: Uma Visão Prática", 2a. Edição,

http://www.dca.fee.unicamp.br/courses/EA976/sites/default/files/2s2015/ESUVP2.pdf (acessado em 02/10/2018).

- André Koscianski, Michel dos Santos Soares. "Qualidade de Software", Editora Novatec, São Paulo, 2007.
- Wilson de Pádua Paula Filho. "Engenharia de software: fundamentos, métodos e padrões", (3a. Edição), Editora LTC, 2009.

9. APROVAÇÃO

Aprovado em reunião do Colegiado realizada em:

Coordenação do Curso de Graduação em Sistemas de Informação