Wykorzystanie systemu operacyjnego Linux we wbudowanych systemach wizyjnych zrealizowanych na platformie Zynq.

Autor: inż. Wojciech Gumuła Promotor: dr inż. Tomasz Kryjak

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Zakres pracy

- Analiza możliwości platformy Zynq w konteście systemów wizyjnych z uwzględnieniem systemu operacyjnego PetaLinux.
- Integracja rozwiązań realizowanych przy użyciu logiki reprogramowalnej z klasycznym oprogramowaniem komputerowym.
- Opracowanie zagadnień związanych z konfiguracją funkcjonalności układu.

CPU vs FPGA w systemach wizyjnych

FPGA

- Wysoka wydajność w systemach potokowych.
- Trudności implementacyjne części algorytmów.

CPU

- Powszechna dostępność rozwiązań algorytmicznych - OpenCV.
- "Prostota" realizacji zadań obliczeniowych.

Platforma Zynq (1)

Platforma Zynq (2)

- Połączenie logiki programowalnej (obliczenia równoległe) i systemu procesorowego (obliczenia sekwencyjne).
- Możliwość uruchomienia programu bare-metal, systemu operacyjnego lub systemu czasu rzeczywistego.
- Zalety SoC: duża wszechstronność, energooszczędność, niezawodność...

Badane funkcjonalności

System operacyjny

Obliczenia równoległe

Komunikacja sieciowa

Biblioteka OpenCV

Przerwania systemowe

Interfejs www

Integracja rozwiązań w systemach wizyjnych (1)

 Implementacja algorytmu równoległego w logice programowalnej.

 Analiza wyników i ich prezentacja z poziomu aplikacji systemowej PetaLinux.

Integracja rozwiązań w systemach wizyjnych (2)

Moduł odejmowania ramek

Integracja rozwiązań w systemach wizyjnych (3)

- Moduł generacji tła
 - Podział algorytmu na część sprzętową i programową.
 - Prezentacja wyników i konfiguracja przez interfejs www.

Integracja rozwiązań w systemach wizyjnych (4)

Trudności implementacyjne

- Wykorzystanie pamięci RAM przy użyciu AXI.
- Opóźnienia prowadzące do zakleszczania komunikacji.
- Synchronizacja strumieni wizyjnych.
- Ograniczony zasób dokumentacji.

Podsumowanie

- Platforma Zynq umożliwia realizację algorytmów o wydajności układów FPGA i interaktywności aplikacji systemowych.
- Realizacja algorytmów wiąże się z szeregiem trudności.
- Dalsze kierunki rozwoju:
 - zastosowanie karty do realizacji złożonych aplikacji wizyjnych,
 - poprawa działania modułu generacji tła,
 - biblioteka modułów logiki programowalnej i w języku C++ przyspieszająca proces prototypowania aplikacji wizyjnych.