A Book of Abstract Algebra (2nd Edition)

(Chapter 27, Problem 3EG Bookmark Show all steps: ON
	Problem
	Let F be a field, and let c be transcendental over F . Prove the following:
	If c is transcendental over F, so are $c + 1$, kc (where $k \in F$ and $k \ne 0$), c^2 .
	Step-by-step solution
	Step 1 of 3 A
	Consider that F is any arbitrary field and let $c \in F$ is transcendental over F . Assume that K is some extension field of F . Objective is to prove that $c+1$, kc (where $k \in F$, $k \ne 0$), and c^2 will also be transcendental over F .
	Suppose, by way of contradiction, that $a=c+1$ is not transcendental, that is, a is algebraic over K . Note that since 1 and $c \in F$, therefore $c+1 \in F$.
	Comment
	Step 2 of 3 ^
	The set of all elements of F which are algebraic over K form a field. Since $a, 1 \in F$, it implies that $a-1=c$ is algebraic over F . but this contradicts the hypothesis that c is transcendental over F .
	Similarly, let $a = kc$ is algebraic over F . Note that since $k, c \in F$, therefore $kc \in F$. Since $a, k \in F$, it implies that $a \mid k = c$ is algebraic over F . but this contradicts the hypothesis that c is transcendental over F .
	Suppose that c^2 is algebraic over K . Then there is some $p(x) \in F[x]$ whose root will be c^2 . This shows that c will be the root of square root of $p(x)$, that is,
	$\sqrt{p(c)} = 0$
	a contradiction,
	Comment
	Step 3 of 3 ^
	Hence, if c is transcendental over F , so are $c+1, kc$ (where $k \in F, k \neq 0$), c^2 .
	Comment

2 4 B