CS-417 COMPUTER SYSTEMS MODELING

Spring Semester 2020

Batch: 2016-17

(LECTURE # 30)

FAKHRA AFTAB LECTURER

DEPARTMENT OF COMPUTER & INFORMATION SYSTEMS ENGINEERING NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

Recap of Lecture # 29

Modeling of CS via Petri-Nets (Mutual Exclusion, Logical Conditions, Conflict & Concurrency)

Reachability & Reversibility in Petri-Nets

Deadlocked Petri-Net

Properties of Petri-Net

Chapter # 8 (Cont'd)

PETRI NET-BASED PERFORMANCE MODELING

Example Problem 1

Consider the Petri-Network in Fig 25.

- a) Provide the sets of places, transitions & initial marking.
- b) Provide the sets of all the input and output functions w.r.t the transitions given in the figure.
- c) Suppose at time T_1 , transition t_1 is able to fire. What would be the marking M_1 ?
- d) Identify M_2 , M_3 , M_4 and M_5 at times T_2 , T_3 and T_4 .

Fig 25

Example Problem 2

MATRIX ANALYSIS

- The input and output functions of a PN can be equivalently defined using a matrix notation.
- Let D^- denotes the input matrix. D^- is a $(n_t \times n_p)$ matrix, whose generic element d_{ij}^- is equal to the number of arcs connecting place p_i with transition t_i .
- Similarly the output matrix D^+ is a $(n_t \times n_p)$ matrix, whose generic element d_{ij}^+ is equal to the number of arcs connecting transition t_i with place p_j .
- The *incidence matrix D* is defined by the following relation:

$$D = D^+ - D^-$$

Example

Following are the matrices D^- , D^+ and D for the PN of Fig 26:

$$D^{-} = \begin{bmatrix} t_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ t_2 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ t_3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ t_5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ t_6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D^{+} = \begin{bmatrix} t_1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ t_2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ t_3 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ t_5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ t_6 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Fig 26

- Introducing the vector \underline{e}_j which is a n_t -dimensional row vector with all the entries equal to 0 except entry j equal to 1.
- With this notation the execution rules of a PN becomes:
 - a transition t_j is enabled in marking M iff $M \ge \underline{e}_j D^-$ (note that $\underline{e}_j D^-$ is the j-th row of D^-);
 - firing of t_i in M produces a marking M' given by:

$$M' = M - e_j D^- + e_j D^+ = M + e_j D$$

• Given a PN with initial marking M_1 and a firing sequence $t_i \rightarrow t_j \rightarrow t_k \rightarrow t_j \rightarrow t_i$, the marking obtained at the end of the sequence is given by the following matrix equation:

$$M_{fin} = M_1 + (\underline{e}_i + \underline{e}_j + \underline{e}_k + \underline{e}_j + \underline{e}_i)D$$

Example Problem 3

Q) Consider the figure, find M' if t₃ is enabled to fire.

Input or Pre-Incidence Matrix:

$$D^{-} = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$

Fig

Output or Post-Incidence Matrix:

$$D^{+} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Incidence Matrix:

$$D = \begin{vmatrix} 0 & -1 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

Initial Marking:

$$M_0 = [1 \ 0 \ 1 \ 0]$$

From the Fig, t₃ is enabled:

$$e_j = (0, 0, 1)$$

$$M' = M + e_{j}D$$

$$M' = [1 \ 0 \ 1 \ 0] + [0 \ 0 \ 1] \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$M' = [1 \ 0 \ 0 \ 1]$$

Q) Let the firing sequence be: $t_3t_2t_3t_2t_1$ $\Rightarrow e_1 = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$

$$\Rightarrow e_j = [1 \ 2 \ 2]$$

If
$$M = [1 \ 0 \ 1 \ 0]$$
,

$$M' = [1\ 0\ 1\ 0] + [1\ 2\ 2] \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$M' = [1 \ 3 \ 0 \ 0]$$

Timed Petri Nets

- An activity in a real system takes finite time to perform its operation.
- e.g., to read a file from a disk, to execute a program, or to communicate with some other machine.
- Adding time provides Petri net modeler with another *powerful tool* to study the performance of computer systems.
- Time can be associated with transitions, selection of paths, waiting in places, inhibitors, and with any other component of the Petri net.
- The most typical way that time used in Petri nets is with transitions.
 - the firing of a transition can be viewed as the execution of an event being modeled e.g., a CPU execution cycle.
- These timed transitions are represented graphically as a *rectangle or thick bars*.

The Semantics of the Firing

- When a transition becomes enabled, its clock timer is set and begins to count down.
- Once the timer reaches 0, the transition fires.
- In Fig 27, when token arrives at p_1 , the timer for t_1 set to τ_1 and begins to count down.
- The decrement of the timer must be at a constant fixed speed for all transitions in the Petri net model.

Fig 27: Timed Petri net

- A consideration to think about
 - what occurs when a transition becomes nonenabled due to the initial enabling token being used to ultimately fire a competing transition.
- This condition shown in Fig 28.
- If we assume the time for $\mathbf{t_1}$ is less than that for $\mathbf{t_2}$, then, when $\mathbf{p_1}$ receives a token, the two timers would begin counting down.
- At some time (τ_1) in the future, the timer for t_1 would reach its zero value, resulting in the firing of t_1 .
- Since the token enabling t_2 is now gone, t_2 is no longer enabled and, therefore, its timer (τ_2) would stop ticking down.
- The question now is what to do with transition $\mathbf{t_2}$'s timer.

Fig 28: Timed Petri net with conflict

Two possibilities

- 1) The first is to simply reset the timer on the next cycle.
- In this case, unless place $\mathbf{p_1}$ has a state where it has more than one token present, transition $\mathbf{t_2}$ will never fire.
- 2) Allow transition t_2 's timer to maintain the present clock timer value $(\tau_2 \tau_1)$.
- When the next token is received at p_1 , if the remaining time in t_2 's timer is less than t_1 's timer, then t_2 will fire, leaving t_1 with the remaining time $(\tau_1 (\tau_2 \tau_1))$.

The choice of which protocol to use will depend on the system one wishes to model.

