Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Fuhrmann, Mehl, Penn-Karras, Scherfner SS 04 15. Juli 2004

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:				. 			
Matr.–Nr.:		Studi	engang	:			
Die Lösungen sind in Reinschr schriebene Klausuren können ni				_	ben. M	it Blei	stift ge-
Dieser Teil der Klausur umfasst e Rechenaufwand mit den Kenntn wenn nichts anderes gesagt ist, i	issen a	aus der	Vorles	sung lö	sbar se	in. Gel	0
Die Bearbeitungszeit beträgt eir	ne Stu	nde.					
Die Gesamtklausur ist mit 32 v beiden Teile der Klausur mindes					-		
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 3 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x + e^{yz}$, und eine Kurve γ , die auf der Einheitssphäre vom Punkt (1,0,0) zum Punkt (0,0,1) verläuft. Welchen Wert hat das Kurvenintegral $\int_{\mathbb{R}^3} \operatorname{grad} f \cdot \vec{ds}$?

2. Aufgabe 5 Punkte

Wie groß ist der Wert des Flussintegrals $\iint_S \vec{V} \cdot d\vec{O}$ des Vektorfeldes $\vec{V}: \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{V}(x,y,z) = (2x+y^2 \ , \ z-\sin^2 x \ , \ y-z)^T$, wobei $S=\partial B$ die Oberfläche des regulären Bereichs $B=\{(x,y,z)\in \mathbb{R}^3 \mid x^2+y^2+z^2\leq 1 \ , \ z\geq 0\}$ ist.

Hinweis: Verwenden Sie einen geeigneten Integralsatz und elementargeometrische Kenntnisse.

3. Aufgabe 8 Punkte

Berechnen Sie folgendes Integral, indem Sie die Integrationsreihenfolge ändern:

$$\int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{1}{1+x^{3}} dx dy .$$

4. Aufgabe 7 Punkte

Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{x^2 \sqrt{|y|}}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

im Punkt (0,0) stetig ist.

Existiert auch die partielle Ableitung $\frac{\partial f(0,0)}{\partial y}$?

5. Aufgabe 5 Punkte

Die Punkte $P_1 = (1,0)$, $P_2 = (0,1)$ und $P_3 = (-1,0)$ mit $f(P_1) = 2$, $f(P_2) = -1$ und $f(P_3) = 0$ seien die einzigen kritischen Punkte einer stetig differenzierbaren Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ unter der Nebenbendingung $g(x,y) = x^2 + y^2 - 1 = 0$. Bei welchem Punkt handelt es sich um eine Maximalstelle, Minimalstelle bzw. Sattelstelle?

6. Aufgabe 12 Punkte

Welche der folgenden Aussagen sind wahr (Begründung!), welche sind falsch (Gegenbeispiel!)?

- a) Eine differenzierbare Funktion $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ hat immer globale Maxima und Minima.
- b) Jede Folge, deren sämtliche Glieder in einer kompakten Menge liegen, ist konvergent.
- c) Wenn für $f: \mathbb{R}^3 \to \mathbb{R}$ alle partiellen Ableitungen existieren und stetig sind, dann ist f stetig.
- d) Kompakte, nichtleere Mengen in \mathbb{R}^3 sind niemals offen.
- e) Seien $a,b,c,d\in\mathbb{R}$ und $f\colon\mathbb{R}^2\to\mathbb{R}$ eine stetige Funktion. Dann gilt: $\int\limits_a^b\int\limits_c^df(x,y)\ dxdy=\int\limits_c^d\int\limits_a^bf(x,y)\ dydx.$