# Metodos de Optimizacion NO lineal

# Integrantes

Juan Pablo Oriana - 60621 Tomas Cerdeira - 60051 Santiago Garcia Montagner - 60352

## Objetivos del trabajo

- Analizar 3 metodos de optimización NO lineal que minimicen el error
  - Gradiente descendiente
  - Gradiente conjugado
  - ADAM

Dados:

$$W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \end{pmatrix} \qquad w = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix} \qquad w_0 = (w_{01}, w_{02})$$

Se busca **minimizar el error** e informar los a**rgumentos y algoritmos óptimos** que más se ajusten a los reactivos iniciales dados como "ciertos".

#### Función F

Dados:

$$g(x) = \frac{e^x}{1+e^x}$$
 Función logística

$$oldsymbol{\xi^k}$$
 Valores de entrada, con  $k=1,2,3$  Valores de salida

$$\Rightarrow F(W, w, w_0, \overline{\xi}) = g(\sum_{j=1}^{2} W_j g(\sum_{k=1}^{3} w_{jk} \overline{\xi_k} - w_{j0}) - W_0)$$

Donde el error resulta 
$$E(W, w, w_0) = \sum_{\mu=1}^{3} (\zeta^{\mu} - F(W, w, \xi^{\mu}))^2$$

## Valores de entrada ξ

$$\xi^{1} = \begin{pmatrix} 4,4793 \\ -4,0765 \\ -4,0765 \end{pmatrix} \qquad \xi^{2} = \begin{pmatrix} -4,1793 \\ -4,9218 \\ 1,7664 \end{pmatrix} \qquad \xi^{3} = \begin{pmatrix} -3,9429 \\ -0,7689 \\ 4,8830 \end{pmatrix}$$
$$\zeta^{1} = 0 \qquad \qquad \zeta^{2} = 1 \qquad \qquad \zeta^{3} = 1$$

## Objetivo de los métodos

 Determinar el valor de las variables independientes, sujetas éstas en muchos casos a restricciones, que maximizan o minimizan el valor de una función

- Se realiza mediante la **penalización de la función objetivo** 
  - o **nueva función objetivo** que contiene a la original y a un término que cuando las restricciones estén próximas a no cumplirse incrementa el valor
    - es un **problema de minimización**

# Metodo de Optimizacion NO lineal gradiente descendente

#### **Gradiente Descendente**

- Definiendo un **número de iteraciones** y una **tasa de aprendizaje**, se busca **llegar al mínimo de la función**.
  - Se escoge un valor de forma aleatoria de w
  - En cada iteración se actualiza el  $w = w \alpha$ . gradiente



# Ejemplo con curvas de nivel







# Ejemplo con curvas de nivel



#### Gradiente Descendente Estocástico

- Método de **gradiente descendiente es costoso** ya que utiliza TODA la muestra de entrenamiento para el cálculo de dirección de decrecimiento.
- Surge, gradiente descendiente estocastico, que en cada iteracion toma una muestra de la población para el cálculo de la dirección

$$\sum_{\mu=1}^k \nabla_w E(\xi^\mu, \mathbf{w}^t), \ k << p.$$

 Los autores del método demuestran que este método converge, pero puede tardar más que el método determinístico

# Metodo de Optimizacion NO lineal gradiente conjugada

## Algunas definiciones

**Definición 3.5.1.** Se dice que  $\{\vec{d_k}\}_{k=1}^n$  son vectores mutuamente conjugados respecto a una matriz G simétrica y positiva definida si

$$\vec{d}_k^t \ G \ \vec{d}_j = 0 \quad j \neq k. \tag{3.13}$$

e.j.

$$(1,0) \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} (1/2,1) = (2 -1)(1/2,1) = 0$$

OBS: En este caso, la matriz G vendría a ser H, la matriz Hessiana de f

# **Gradiente Conjugado**

- Encontrando los dos vectores conjugados, encontramos una solución al problema en menos pasos que el gradiente descendiente.
  - Se **mueve por vectores ortogonales** que pasan por el x que minimiza a F



#### Referencias

Youtube - "Conjugated Gradient Method"

Patricia Saavedra Barrera - "Introducción a la optimización no lineal" (desde pág 68)

# Metodo de Optimizacion NO lineal ADAM (Adaptive Moment Estimation)

## **ADAM (Adaptive Moment Estimation)**

- Adapta la tasa de aprendizaje en cada paso
- La actualización del vector w se realiza coordenada a coordenada
- El algoritmo requiere:

  - $\circ$  β<sub>1</sub> y β<sub>2</sub> tasas de decaimiento. β<sub>1</sub> y β<sub>2</sub>  $\varepsilon$  [0,1)
  - o f función objetivo estocástica
  - $\circ$   $m_0 = 0$ . Donde  $m_0$  es el primer vector de momentos
  - $\circ$   $v_0 = 0$ . Donde  $v_0$  es el segundo vector de momentos
  - w<sub>0</sub> parámetro inicial

# Algoritmo

while  $w_t$  not converge do

$$t:=t+1$$
  $g_t=
abla f(w_{t-1})$  Controlan las tasas de decaimiento exponencial de las medias móviles  $m_t=eta_1 m_{t-1}+(1-eta_1)g_t$   $ightarrow$  Actualiza la media móvil exponencial del gradiente  $v_t=eta_2 v_{t-1}+(1-eta_2)g_t^2$   $ightarrow$  Actualiza la media móvil exponencial del gradiente al cuadrado  $w_t=w_{t-1}-lpha rac{m_t}{\sqrt{v_t+\epsilon}}$ 

# Demo

Gracias por su atencion.

