

IIC1253 — Matemáticas Discretas — 1' 2019

TAREA 3

Publicación: Viernes 19 de Abril.

Entrega: Viernes 26 de Abril hasta las 10:15 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sea A un conjunto no vacío y $R \subseteq A \times A$. Para cada afirmación siguiente, responda si es verdadera o falsa. En caso de ser verdadera, demuestrelo y, en caso de ser falsa, de un contraejemplo.

- 1. Si R es conexa, entonces $R \cup R \circ R$ es transitiva.
- 2. Si R es transitiva, entonces $R \cap R^{-1}$ es transitiva.

Pregunta 2

Dado un grafo finito no dirigido G = (V, E) con $V \subseteq \mathbb{N}$, se definen las siguientes operaciones sobre G:

■ Dada una arista $e = \{u, v\} \in E$, se define la operación eliminación de e en G:

$$Delete(e, G) = H$$

donde $H = (V, E - \{e\})$, esto es, H es el grafo al eliminar la arista e de G.

■ Dada una arista $e = \{u, v\} \in E$ con u < v, se define la operación de contracción de e en G:

$$Contract(e, G) = H$$

donde $H = (V - \{u\}, (E - E') \cup E'')$ es un nuevo grafo tal que $E' = \{\{u, x\} \mid \{u, x\} \in E\}$ y $E'' = \{\{v, x\} \mid \{u, x\} \in E \land x \neq v\}$. Es decir, el grafo que se conforma al "fusionar" u en v: se eliminan las aristas asociadas a u y se agregan a v (notar que no se repiten aristas en el grafo H).

Sea \mathcal{G} el conjunto de todos los grafos finitos no dirigidos G=(V,E) con $V\subseteq\mathbb{N}$. Se define la relación binaria \leq sobre \mathcal{G} tal que $H\subseteq G$ si existe una secuencia de operaciones de eliminación o contracción $\mathrm{OP}_1,\mathrm{OP}_2,\ldots,\mathrm{OP}_n\in\{\mathrm{Delete},\mathrm{Contract},\epsilon\}$ (ϵ significa no realizar operación) y aristas e_1,e_2,\ldots,e_n tales que:

$$H = \operatorname{OP}_1(e_1, \operatorname{OP}_2(e_2, \ldots, \operatorname{OP}_n(e_n, G) \ldots))$$

En otras palabras, una secuencia de operaciones de eliminación y contracción que transforman a G en H. Por ejemplo, considere los siguientes grafos G y H:

Es fácil ver que $H \leq G$ dado que uno puede obtener H a partir de G con la siguiente secuencia de operaciones:

$$H = \text{Delete}(e_1, \text{Delete}(e_2, \text{Delete}(e_3, \text{Delete}(e_4, \text{Contract}(e_5, G))))).$$

- 1. Demuestre que \leq es un orden parcial sobre \mathcal{G} .
- 2. Demuestre que \leq NO es un orden total sobre \mathcal{G} .
- 3. Dado $S \subseteq \mathcal{G}$, conjunto finito con $S \neq \emptyset$, ¿es verdad que S siempre tiene un supremo bajo \leq ?

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.