Practice Exam

 $\mathbf{Q}\mathbf{1}$

A random variable was measured 5 times; the results are shown below. Calculate the running mean and plot it.

10	20	18	20	7
10	20	10	20	'

$\mathbf{Q2}$

Classify each of the following variables as quantitative or categorical . a. years of education (quantitative/categorical)
b. a person's gender (quatitative/categorical)
c. grams of fiber ingested in a day (quatitative/categorical)
d. number of vending machines at BHCC (quantitative/categorical)
e. whether a student is prepared for class (quantitative/categorical)
23
A survey of 300 BHCC students was conducted, and they were asked to respond with the number of classes hey were currently taking.
a. Identify the individuals in the study.
b. Identify the variable being collected.
c. Is the variable quantitative or categorical?
d. What is the sample size ?
e. What is the implied population of this study?

$\mathbf{Q4}$

The heights of 20 cacti were measured in inches. The results are shown below.

- a. How would you describe the **shape** of this distribution of cacti heights?
- b. Estimate the overall **range** of heights.
- c. What percentage of the cacti had heights over 70 inches?
- d. What percentage of the cacti had heights under 80 inches?
- e. What percentage of the cacti with heights over 70 inches had heights under 80 inches?
- f. What height is greater than 15% of the measured cacti's heights? In other words, determine the 15th percentile height.

$\mathbf{Q5}$

The figure below summarizes the *standard deviation rule* for normal distributions. In the figure, \bar{x} is the mean and s is the standard deviation. The percentages show the fraction of measurements that fall within various intervals.

A specific distribution is approximately normal with mean $\bar{x} = 400$ and standard deviation s = 100.

- a. What percent of the measurements are greater than 500?
- b. What percent of the measurements are less than 600?
- c. What measurement is greater than 16% of the measurements?
- d. What measurement is less than 50% of the measurements?
- e. What percent of the measurements are between 300 and 500?

 $\mathbf{Q6}$

From a very large population, a small sample of measurements was taken.

121	133	141	134	134	130	131
141	100	141	104	104	100	101

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

You must fill out the table and show your work.

x	$x-\bar{x}$	$(x-\bar{x})^2$
		, , , ,
$\begin{array}{c c} \Sigma x = \\ \hline \bar{x} = \end{array}$		$\Sigma (x - \bar{x})^2 =$
$\bar{x} =$		

s =

$\mathbf{Q7}$

The volumetric flow rate of 6 different rivers (labeled P through U) was measured on May 1st every year for 25 years. The results are shown below. Answer the questions about the distributions of flows.

- a. Which river had the smallest measured flow?
- b. Which \mathbf{two} rivers had the largest measured flows?
- c. Which **two** rivers had medians less than 600 ft³/s?
- d. Which river had the highest percentage of its measurements above $700 \text{ ft}^3/\text{s}$?
- e. Which river had the largest IQR?

Four different variables were each measured 400 times. The resulting histograms are shown below.

Histogram of A

Histogram of B

Histogram of C

Histogram of D

- a. Which variable's distribution has the largest standard deviation? (Multiple Choice)
 - A, because its measurements tend to be nearest the center.
 - B, because its measurements tend to be nearest the center.
 - C, because the frequencies are all similar.
 - D, because its measurements tend to be farthest from the center.
 - All, because they all have the same range.
 - Impossible to tell, because the exact measurements are unknown.

- b. Which variable's distribution has the smallest standard deviation? (Multiple Choice)
 - A, because its measurements tend to be nearest the center.
 - B, because its measurements tend to be nearest the center.
 - C, because the frequencies are all similar.
 - D, because its measurements tend to be farthest from the center.
 - All, because they all have the same range.
 - Impossible to tell, because the exact measurements are unknown.

$\mathbf{Q9}$

The means and standard deviations for adult human females and males are given.

sex	mean	standard deviation
female male	95.7 cm 97.8 cm	6.8 cm 6.3 cm

We will define the interval of typical measurements as $(\mu - 2\sigma, \mu + 2\sigma)$. For each sex, determine the interval of typical measurements.

Q10

The amounts of money different students spend on textbooks is approximately normal with a **mean** of \$235 and a **standard deviation** of \$20. According to the *standard deviation rule*, about 2.5% of the students spend more than what amount of money on textbooks?

Please make a *relative-frequency table* and a *relative-frequency histogram* from the following (sorted) continuous data by using the supplied classes.

288.51	292.28	292.74	294.14	295.88	297.18	299.28	299.74	300.7	303.02
303.49	303.81	306.1	306.85	307.09	307.17	307.69	307.82	308.94	309.6
311.24	312.16	312.16	312.44	312.58	313.37	315.01	315.94	316.6	319.23
320.87	321.19	321.85	322.01	322.04	322.73	322.77	322.89	322.91	323.27

class	frequency	relative frequency
285 - 290		
290 - 295		
295 - 300		
300 - 305		
305 - 310		
310 - 315		
315 - 320		
320 - 325		

Q11

 $\mathbf{Q12}$

A spinner has equally-sized wedges with outcomes shown below.

Determine the spinner's mean (μ) and standard deviation (σ) .