## **Solution to Orr-Sommerfeld Equation**

Plane Poiseuille flow of a Newtonian fluid. The eigenvalue is  $c = c_r + ic_i$  in this code.

B.C.s: v(-1) = 0, v(1) = 0, v'(-1) = 0, v'(1) = 0In[52]:= Clear["`\*"] k = 1;Rey = 10000.0; nG = 201;za = -1.;**zb** = **1.**; Creating the Differentiation matrices (d1 and d2) ln[58] = cA = (zb - za) / 2; cB = (zb + za) / 2; zptoz = (z - cB) / cA;leszp = -Table  $\left[ \cos \left[ (\pi j) / nG \right], \{j, 0, nG \} \right];$ lesz = N[cA leszp + cB]; leszInt = Take[lesz,  $\{2, nG\}$ ]; di =  $(2 nG^2 + 1) / 6$ ; lesInt =  $\{2, nG\}$ ; cbar = Table[Switch[j, 0, 2, nG, 2, \_, 1], {j, 0, nG}]; diag = Table [Switch[i, 0, -di, nG, di, \_,  $\cos[(\pi i)/nG]/(2(\sin[(\pi i)/nG])^2)]$ , {i, 0, nG}];  $d1 = (cA^{-1})$  Table [Switch [i - j, 0, diag[[i + 1]], \_, (cbar[[i + 1]] (-1)^(i + j + 1)) /  $\left(\operatorname{cbar}\left[\left[j+1\right]\right]\left(\operatorname{Cos}\left[\left(\pi i\right)/\operatorname{nG}\right]-\operatorname{Cos}\left[\left(\pi j\right)/\operatorname{nG}\right]\right)\right], \{i, 0, nG\}, \{j, 0, nG\}\right] // N;$ d2 = d1.d1;(\*equivalently d2=d1.d1\*) d4 = (d2.d2); $l_{n[67]}$  basevel = Table  $[1 - lesz[[i+1]]^2$ , {i, 0, nG}]; (\* base velocity on each grid point\*) In[68]:= matA = I \* k \* DiagonalMatrix[basevel] .d2 - I \* k^3 DiagonalMatrix[basevel] + 2\*I\*k\* IdentityMatrix[nG+1] - 1/(Rey) (d4 - 2k^2d2 + k^4 IdentityMatrix[nG+1]); matB = I \* (d2 - k^2 IdentityMatrix[nG + 1]);  $ln[70] = Table[matA[[1, j]] = 0, {j, 2, nG + 1}]; matA[[1, 1]] = 1;$ Table  $[matA[[nG+1, j]] = 0, {j, 1, nG}];$ matA[[nG + 1, nG + 1]] = 1;matA[[2]] = d1[[1]]; matA[[nG]] = d1[[nG + 1]]; Table [matB[[1, j]] = 0,  $\{j, 1, nG + 1\}$ ]; Table  $[matB[[nG+1, j]] = 0, {j, 1, nG+1}];$ Table [matB[[2, j]] = 0,  $\{j, 1, nG + 1\}$ ]; Table[matB[[nG, j]] = 0,  $\{j, 1, nG+1\}$ ];

```
In[81]:= res = Reverse[Eigenvalues[{matA, matB}]];
ListPlot[res /. Complex[a_, b_] \rightarrow {a, b},
Frame \rightarrow True, PlotRange \rightarrow {{-0.1, 1.1}, {-0.5, 0.02}},
\label{eq:frameLabel} \texttt{FrameLabel} \rightarrow \{\texttt{Style["Re}(\lambda)", \texttt{18]}, \texttt{Style["Im}(\lambda)", \texttt{18]}\},
PlotLabel \rightarrow "Most dangerous mode:\n \lambda=" <>
    ToString [NumberForm[res[[1]], NumberFormat → (Row[{#1, "e", #3}] &)]]]
```

