Implications of the EKL for Stars surrounding SMBHB

Gongjie Li¹

Main Collaborators: Smadar Naoz², Bence Kocsis³,
Abraham Loeb¹

¹Harvard, ²UCLA, ³IAS/Eotvos

Dynamics and Accretion at the Galactic Center Aspen, Feb, 2016

Stars Surrounding SMBHB

• SMBHBs originate from mergers between galaxies.

 SMBHBs with mostly -kpc separation have been observed with direct imagine.

(e.g., Woo et al. 2014; Komossa et al. 2013, Fabbiano et al. 2011, Green et al. 2010, Civano et al. 2010, Liu et al. 2010, Rodriguez et al. 2006, Komossa et al. 2003, Hutchings & Neff 1989)

Multicolor image of NGC 6240. Red p soft (0.5–1.5 keV), green p medium (1.5–5 keV), and blue p hard (5–8 keV) X-ray band. (Komossa et al. 2003)

Stars Surrounding SMBHB

• At -1pc separation it is more difficult to identify SMBHBs. SMBHBs can be observed with photometric or spectral features.

(e.g., Shen et al. 2013, Boroson & Lauer 2009, Valtonen et al. 2008, Loeb 2007)

Example of multi-epoch spectroscopy (Shen et al. 2013):

Stars Surrounding SMBHB

• Identify SMBHB at -1 pc separation by stellar features due to interactions with SMBHB.

(e.g., Chen et al. 2009, 2011, Wegg & Bode 2011, Li et al. 2015)

Perturbations on Stars Surrounding SMBHB

• Identify SMBHB at -1 pc separation by stellar features due to interactions with SMBHB.

(e.g., Chen et al. 2009, 2011, Wegg & Bode 2011, Li et al. 2015)

Configuration of Hierarchical 3-body System

System is stationary and can be thought of as interaction between two orbital wires (secular approximation):

- Inner wires (1): formed by m_I and m_J .
- Outer wires (2): m₂ orbits the center mass of m₁ and m_t.
- $\mathcal{J}_{1/2}$: Specific orbital angular momentum of inner/outer wire.
- i: inclination between the two orbits.

Kozai-Lidov Mechanism

Kozai-Lidov Mechanism

- Expand Hamiltonian in series of (a_1/a_2) .
- Octupole level $O((a_1/a_2)^3)$ is zero.
- Quadrupole level $O((a_1/a_2)^2)$ is sufficient.

=>
$$Jz = \sqrt{1 - e_1^2} \cos i_1$$
 conserved (axi-symmetric potential).

=> when i>40°, e₁ and i oscillate with large amplitude.

Example of Kozai-Lidov Mechanism.

Octupole Kozai-Lidov Mechanism

- e, # o (Eccentric Kozai-Lidov Mechanism) or m_J ≠ 0:
- (e.g., Naoz et al. 2011, 2013, test particle case: Katz et al. 2011, Lithwick & Naoz 2011):

 Jz NOT constant, • when i>40°: e₁ However, Jz₁
when i>

: quadrupole only.

Red: quadrupole + octupole. Naoz et al 2013

NEW MECHANISM: Coplanar Flip

Starting with i ≈ 0, e₁≥0.6, e₂ ≠
 o:

 $e_1 \rightarrow 1$, i_1 flips by $\approx 180^{\circ}$ (*Li et al. 2014a*).

- => Increase the parameter space of interesting behaviors.
- => Produces counter orbiting hot Jupiters.
- => Enhance tidal disruption rates (*Li et al. 2015*).

(Li et al. 2014a)

Maximum e₁: Enhancement of Tidal Disruption Rates

e_{I, max} determines the closest distance:

$$r_p \propto (I-e_I)$$

$$t_K = \frac{8}{3} P_{in} \frac{m_1}{m_2} \left(\frac{a_2}{a_1}\right)^3 (1 - e_2^2)^{3/2}$$

e_{max} reaches 1-10⁻⁶ over -30t_K

Starting at a-10⁶R_t, it's still possible to be disrupted in -30t_K!

co-planar flip Li et al. 2014

• Eccentricity excitation suppressed when precession timescale < Kozai timescale.

 $m_0 = 10^7 M_{\odot}, m_2 = 10^9 M_{\odot}, e_1 = 2/3, a_2 = 0.3 \text{ pc}, m_1 = 1 M_{\odot}, e_2 = 0.7.$ (Li et al. 2015)

• Eccentricity excitation suppressed when precession timescale < Kozai timescale.

 $e_1 = 2/3$, $a_2 = 0.3$ pc, $m_1 = 1M_{\odot}$, $e_2 = 0.7$.

(Li et al. 2015)

- Eccentricity excitation suppressed when precession timescale < Kozai timescale.
- Stars around SMBHB: GR and NT precession.

Due to general relativity Due to stellar system self-gravity

 Kozai affects more stars when perturber more massive.

Effects on Stars Surrounding SMBHB

- Example: $m_1 = 10^7 \,\mathrm{M}_{\odot}$, $m_2 = 10^8 \,\mathrm{M}_{\odot}$, $a_2 = 0.5 \,\mathrm{pc}$, $e_2 = 0.5$, Run time: 1Gyr.
- 57/1000 disrupted; 726/1000 scattered.
- => Scattered stars may change stellar density profile of the BHs.
- => Disruption rate can reach ~10⁻³/yr.

Effects of EKM on Stars Surrounding BBH

• Example: $m_1 = 10^7 \,\mathrm{M}_{\odot}$, $m_2 = 10^8 \,\mathrm{M}_{\odot}$, $a_2 = 0.5 \,\mathrm{pc}$, $e_2 = 0.5$, $\alpha = 1.75$ (Runtime: 1Gyr)

Effects of EKM on Stars Surrounding BBH

• Example: $m_1 = 10^7 \,\mathrm{M}_{\odot}$, $m_2 = 10^8 \,\mathrm{M}_{\odot}$, $a_2 = 0.5 \,\mathrm{pc}$, $e_2 = 0.5$, $\alpha = 1.75$. Run time: 1Gyr.

(Li, et al. 2015)

Effects on Stars Surrounding an IMBH in GC

• Example: $m_1 = 10^4 \,\mathrm{M}_{\odot}$, $m_2 = 4 \times 10^6 \,\mathrm{M}_{\odot}$, $a_2 = 0.1 \,\mathrm{pc}$, $e_2 = 0.7$ (Run time: 100 Myr)

Effects on Stars Surrounding an IMBH in GC

• Example: $m_1 = 10^4 \,\mathrm{M}_{\odot}$, $m_2 = 4 \times 10^6 \,\mathrm{M}_{\odot}$, $a_2 = 0.1 \,\mathrm{pc}$, $e_2 = 0.7$ (Run time: 100)

Myr)

• 40/1000 disrupted; 500/1000 scattered.

=> ~50% stars survived.

=> Disruption rate can reach ~10⁻⁴/yr.

Effects on Stars Surrounding an IMBH in GC

• Example: $m_1 = 10^4 \,\mathrm{M}_{\odot}$, $m_2 = 4 \times 10^6 \,\mathrm{M}_{\odot}$, $a_2 = 0.1 \,\mathrm{pc}$, $e_2 = 0.7$, $\alpha = 1.75$ (Run time: 100Myr)

(Li, et al. 2015)

Take Home Messages

- * EKL mechanism drives stars to high e and causes the stars to either scatter off the second SMBH or get disrupted
- * For SMBH masses 107M_o and 108M_o, the TDE rate can reach 10⁻²/yr.
- * The final geometry of the stellar distribution around the IMBH is a torus.

Thank you!