DTE 2 125

Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries

Hélène Barucq², Michel Duprez¹, Florian Faucher², Emmanuel Franck³, **Frédérique Lecourtier**¹, Vanessa Lleras^{1,4}, Victor Michel-Dansac³ and Nicolas Victorion²

> ¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team Makutu, Inria, TotalEnergies, Pau, France ³Project-Team MACARON, Inria, Strasbourg, France ⁴IMAG, University of Montpellier, Montpellier, France

February 20, 2025

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

accurate quick + parameterized

Parametric linear elliptic PDE : For one or several $m{\mu}\in\mathcal{M}$, find $u:\Omega o\mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}),$$

where ${\cal L}$ is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto R(\mathbf{x}, \boldsymbol{\mu})u + C(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (D(\mathbf{x}, \boldsymbol{\mu}) \nabla u),$$

and some Dirichlet, Neumann or Robin BC (which can also depend on μ).

Ω	Spatial domain		Dielet besetzele
d	Spatial dimension	J	Right-hand side
$\mathbf{x} = (x_1, \dots, x_d)$	Spatial coordinates	R	Reaction coefficient
$\frac{\lambda - (\lambda_1, \dots, \lambda_d)}{\lambda_d}$	Parameter space	С	Convection coefficient
<i>7</i> 01		D	Diffusion matrix
ρ	Number of parameters	Pe	Péclet number
$\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$	Parameter vector		. ceret name

Pipeline of the Enriched FEM

Correction: Enriched continuous Lagrange finite element approximation spaces using the PINN prediction.

Physics-Informed Neural Networks

Standard PINNs : Find the optimal weights θ^{\star} that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_b J_b(\theta) \right), \tag{1}$$

with the residual loss function and the boundary loss function defined by

$$J_r(\theta) = \int_{\mathcal{M}} \int_{\Omega} |\mathcal{L}(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu}) - f(\mathbf{x}, \boldsymbol{\mu})|^2 d\mathbf{x} d\boldsymbol{\mu},$$

$$J_b(\theta) = \int_{\mathcal{M}} \int_{\partial\Omega} \left| u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) - g(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network, g is the Dirichlet BC. In (1), the weights ω_r and ω_b (hyperparameters) are used to balance the different terms of the loss function.

Monte-Carlo method: Discretize the cost functions by random process.

Physics-Informed Neural Networks

Improved PINNs¹ : Find the optimal weights θ^* that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_{\theta} J_{\overline{\theta}}(\theta) \right), \tag{2}$$

with $\omega_r=1$ and the residual loss function defined by

$$J_r(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network defined by

$$u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = \varphi(\mathbf{x})w_{\theta}(\mathbf{x}, \boldsymbol{\mu}) + g(\mathbf{x}, \boldsymbol{\mu}),$$

with φ a level-set function, w_{θ} a NN and g the Dirichlet BC.

Monte-Carlo method: Discretize the residual cost function by random process.

 $\varphi > 0$

¹Lagaris et al. [1998]; Franck et al. [2024]

Finite Element Method

How improve PINN prediction with FEM?

Additive approach

Theorerical results

Numerical results - 2D Poisson problem

2D Poisson problem

Numerical results - 2D anysotropic Elliptic problem

2D anysotropic Elliptic problem

Conclusion

Conclusion

References

- E. Franck, V. Michel-Dansac, and L. Navoret. Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks. J. Comput. Phys., 512:113144, 2024. ISSN 0021-9991. doi: 10.1016/j.jcp.2024.113144.
- I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw., 9(5):987-1000, 1998. ISSN 1045-9227. doi: 10.1109/72.712178.

Appendix

Appendix 1: Standard FEM

Appendix 1: General Idea

