REAL ANALYSIS

MATH 131, HARVEY MUDD COLLEGE

PROF. FRANCIS SU

TODAY: CONTINUOUS FUNCTIONS

11/24/14 - Francis Edward Su 22 - Continuous Functions

Recall: X, Y metric sp's. p ∈ ECX, f: E→Y Say fis continuous at p if

.t.2 O<3 E O<3 Y $d_{x}(x,p) < S \Rightarrow d_{y}(f(x),f(p)) < \epsilon$ ¥ × € E x can be p this was some a

Compare w/limit defn:

Says. "limit is what you expect"

- · Say "fis continuous on E" if fis contin. at all pts of E.
- · Continuity: " Close enough pts get mapped to close pts.

Find a & for every E.

is continuous at P and on E

· CONTINUOUS FUNCTIONS PRESERVE LIMITS

$$\forall$$
 com. seq (x_n) in \exists

$$\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$$

to hows from limit defis.

COR. If Y=R, sums/prods of contin fens are contin fens BODK: If Y= IR (uector version) f contin = all components fi contin.

· Another characterization:

Recall
$$f'(u) = \{x : f(x) \in \mathcal{U}\}$$
 the inverse image of U

The inverse image of open sets

Proof idea: (=>)

Pick p \(\int \) | \(\text{Fino} \) | \(\text{V} \)

we'll show it's interior pt. Shoul \(\text{Shoul} \) \(\text{C-ball} \)

Note \(\int \) is interior to \(\text{U} \),

withessed by some E-ball.

By contin. of f, $\exists s$ -ball whose image lies inside s-ball, which is inside $\mathcal U$. This s-ball witnesses that p is s-interior to $f^{-1}(u)$.

(4) Fix p & X, E > O. Let U be &-ball around f(p); H's open.

By assumption, $f^{-1}(u)$ is open, so $\exists S$ -ball around p showing p is interest of f(u). This is desired S-ball that maps inside ε -ball, shows f is contin at p. And p arbitrary.

Thm. $X \xrightarrow{f} Y \xrightarrow{g} Z$, fæg contin \Rightarrow gof 75 contin. (book proof: uses ε -8 defn)

proof. Given "W in Z, want to show (gof)"(4)

But (g.f) (h) = f-1(g-1(u)) open by contind g
open by " of f.

Gordin \iff \forall closed \forall in \forall , $f^{-1}(\forall)$ is closed in \forall .

invinuages of closed sets is closed.

Say $\{V_{\alpha}\}$ is open over if f(X) in Y. Let $U_{\alpha} = f^{-1}(V_{\alpha})$ in X. Note it is open cover of X. by continuing $\{V_{\alpha}\}$

 χ cpt, so \exists fin. sybacter $\{u_{x_i}\}_{i=1}^n$ coverny χ . Then $\{v_{x_i}\}_{i=1}^n$ covers $\{v_{x_i}\}_{i=1}^n$ covers $\{v_{x_i}\}_{i=1}^n$ $\{v_{x_i}\}_{i=1}^n$ $\{v_{x_i}\}_{i=1}^n$

· COR. f: X cpt - R contin. Then f(X) is dosed a lad.

→ temp

COR. A contin. fun f: X - IR on cpt set.

must achieve its max and min.