

BetaFold: A Lightweight Protein Prediction Architecture

Sheikh Shams Azam

3rd Year Ph.D. Student Elmore Family School of ECE Purdue University

Project Presentation for ECE 695 BH Apr. 20, 2022

Outline

- Problem Definition
- Method
- Implementation
- Evaluation
- Conclusion

Problem Definition

AlphaFold I

AlphaFold II

Bottlenecks:

- · Open-source implementation for running the inference and not the training
- · Released code does not help determine the preprocessing.
- The inference per amino-acid sequence is around 10 mins on a 8 GB Quattro RTX 400, 128 GB machine.
- · A major portion of inference is due to Multi-Sequence Alignment (MSA).
- Total size of the original data is around 2TB and ore-training time is over 2 weeks.

Method

BetaFold as a step towards solution:

- Breakdown Alphafold into its constituent and concentrate on Evoformer
- Skip Alphafold preprocessing (not available openly) instead use preprocessing as mentioned in [1].
- Skip MSA prediction: harder to handle 400 channel input feature on a small GPU.
- Focus on distogram prediction as it can be handled as an "image"-to-"image" translation task.

AlphaFold I

AlphaFold II

) Jones, D. T. and Kandathil, S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34(19):3308–3315, 2018.

Method

BetaFold as a step towards solution:

- Amino-acid sequence preprocessing as proposed in [1].
- Distogram prediction as an "image"-to-"image" translation task.

¹⁾ Jones, D. T. and Kandathil, S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34(19):3308–3315, 2018.

Implementation

BetaFold as a step towards solution:

- Amino-acid sequence preprocessing as proposed in [1].
- Distogram prediction as an "image"-to-"image" translation task.

¹⁾ Jones, D. T. and Kandathil, S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34(19):3308–3315, 2018.

Implementation

- Two types of task: (i) contact prediction, (ii) true distance prediction
- · Contact prediction: binary classification with threshold of 6 angstrom using binary cross-entropy loss
- True distance prediction: using log_cosh and inv_log_cosh, s.t.,

$$\log_{-}\mathsf{cosh}(\mathtt{y}, \boldsymbol{\hat{\mathtt{y}}}) = \log(\mathsf{cosh}(\boldsymbol{\hat{\mathtt{y}}} - \mathtt{y}))$$

$$\texttt{inv_log_cosh}(\texttt{y}, \boldsymbol{\hat{\texttt{y}}}) = \texttt{log}\left[\texttt{cosh}\left(\frac{\texttt{K}}{\boldsymbol{\hat{\texttt{y}}} + \varepsilon} - \frac{\texttt{K}}{\texttt{y} + \varepsilon}\right)\right]$$

works like MSE for small values and MAE for large values (i.e., not strongly affected by outliers)

- In practice log-cosh works better but with inverted distances (K/y).
- Implementation at: https://github.com/shams-sam/BetaFold

Evaluation

#	Task	Hyper-parameters	Metric	Performance
1	True Distance Pred.	$loss = inv_log_cosh, lr = 1e - 2$	MAE	0.27
2	True Distance Pred.	${ t loss = inv_log_cosh, lr = 1e-3}$	MAE	0.14
3	True Distance Pred.	${\tt log_cosh, lr = 1e-2}$	MAE	0.30
4	True Distance Pred.	${\tt log_cosh, lr = 1e-3}$	MAE	0.31
5	True Distance Pred.	$log_cosh, lr = 1e - 2$ with inverted distances	MAE	0.08
6	True Distance Pred.	$log_cosh, lr = 1e - 3$ with inverted distances	MAE	0.08
7	Contact Pred.	${\tt log_cosh, lr = 1e-2}$	Accuracy	0.93
8	Contact Pred.	${\tt log_cosh}, {\tt lr} = {\tt 1e} - {\tt 3}$	Accuracy	0.92

Conclusion

- · AlphaFold is a highly specialized architecture with huge networks trained on really large dataset.
- · Lightweight architectures are only possible if we can think of solutions around shrinking the MSA representations.
- Possibly use domain knowledge to bake more inductive priors within the network. Currently attention does the work.
- We try to emulate the task of Evoformer as an "image"-to-"image" translation task.
- · Possible application of manifold learning in predicting the 3D structures from 2D distograms.

¹⁾ Jones, D. T. and Kandathil, S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34(19):3308–3315, 2018.

Thank you!

Any questions/feedback?

Email: <u>azam1@purdue.edu</u>

References

- 1. Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." *Nature* 596.7873 (2021): 583-589.
- 2. Senior, Andrew W., et al. "Improved protein structure prediction using potentials from deep learning." *Nature* 577.7792 (2020): 706-710.