Math Prep Course Day Four

Ashhad Shahzad

September 2025

1 Function Composition

Problem 1.1. Find the domain of

$$f(x) = \frac{7 - \sqrt{x^2 - 9}}{\sqrt{25 - x^2}}$$

Solution. We can decompose f(x) into its numerator and denominator functions and take the intersection of their domain. That can be done as follows

$$x^{2} - 9 \ge 0$$
$$x^{2} \ge 9$$
$$x \ge |3|$$

$$25 - x^2 \ge 0$$
$$x^2 \le 25$$
$$x \le |5|$$

And so the intersection of the domains is simply $(-5, -3] \cup [3, 5)$.

Problem 1.2. Let
$$f(x) = \sqrt{x}$$
, $g(x) = \frac{4}{5-x}$, $h(x) = x^2$. Find

$$(h(h \circ g \circ f - f))(4)$$

And it's domain

$$h(h \circ g \circ f - f) = \left(\left(\frac{4}{5 - \sqrt{x}}\right)^2 - \sqrt{x}\right)^2$$
$$(h(h \circ g \circ f - f))(4) = \left(\left(\frac{4}{5 - \sqrt{4}}\right)^2 - \sqrt{4}\right)^2$$
$$= \left(\left(\frac{4}{5 - 2}\right)^2 - 2\right)^2$$
$$= \left(\left(\frac{4}{3}\right)^2 - 2\right)^2$$
$$= \frac{4}{81}$$

The domain is clearly $[0, \infty)/\{25\}$

2 Polynomials

I've solved some of these using long division instead of the remainder theorem for my own sake. The remainder theorem is however far more efficient.

Problem 2.1. Given that (x-3) is a factor of

$$f(x) = x^3 - 2x^2 + kx + 6$$

Show that k = -5.

Solution.

Since 3k + 15 = 0, we obtain k = -5

Problem 2.2. Evaluate

$$(x^5 - 4x^4 + 2x^3 - 3x^2 + 4x + 1) \div (x^2 + x + 1)$$

Problem 2.3. Find the remainder

$$(4x^3 - 2x^2 + x + 1) \div (x - 1)$$

Solution.

Problem 2.4.

$$f(x) = ax^3 - 7x^2 + 1$$

Has the factor (x-1). Find a.

Solution.

$$\begin{vmatrix} x-1 \\ ax^2 & ax^3 - 7x^2 + 1 \\ -ax^3 + ax^2 \end{vmatrix}$$

$$\begin{vmatrix} (a-7)x & (a-7)x^2 + 1 \\ (7-a)x^2 + (a-7)x \end{vmatrix}$$

$$\begin{vmatrix} (7-a) & (a-7)x + 1 \\ (7-a)x + (a-7) \end{vmatrix}$$

$$\begin{vmatrix} a-6 & ax^3 - 7x^2 + 1 \\ (7-a)x^2 + (a-7)x \end{vmatrix}$$

Since the remainder must be zero, we obtain a = 6

Problem 2.5.

$$5x^6 - 3x^5 - x^4 + 1 = (x - 1)(x - 2) - x^2 + 3x + 1$$

$$5x^{6} - 3x^{5} - x^{4} + 1 = x^{2} - 3x + 2 - x^{2} + 3x + 1$$
$$5x^{6} - 3x^{5} - x^{4} = 0$$
$$x^{4}(5x^{2} - 3x - 1) = 0$$

Solving for the quadratic, we obtain the solutions

$$x = \left\{0, \ \frac{3 \pm \sqrt{29}}{10}\right\}$$

3 Logarithmic and Exponential Functions

Problem 3.1.

$$\log_2 x = \log_2 x^2 - 4$$

Solution.

$$\log_2 x = 2\log_2 x - 4$$
$$\log_2 x = 4$$
$$x = 2^4$$
$$x = 16$$

Problem 3.2.

$$2^x = 64$$

Solution.

$$2^x = 64$$
$$x = \log_2(2^6)$$
$$x = 6$$

Problem 3.3.

$$\ln(x-1) - \ln(x^2 - 1) = e$$

Solution.

$$\ln\left(\frac{x-1}{x^2-1}\right) = e$$

$$\ln(x+1) = -e$$

$$x+1 = e^{-e}$$

$$x = e^{-e} - 1$$

However, $e^{-e}-1<1$, which makes the expression $\ln(x-1)$ invalid, therefore we have an extraneous solution and the equation is unsatisfiable in $\mathbb R$

Problem 3.4. Find the domain and range of $x = \ln(e^x)$.

Solution. Observe that e^x is defined over all of \mathbb{R} and has range $(0, \infty)$. Note that this is precisely the domain of the ln function, which has the range $(-\infty, \infty)$. Therefore the domain and range of the function are both \mathbb{R} .

In fact its just the constant function x since its the composition of a function with its inverse lmao.

Problem 3.5.

$$\log_2 x + \log_x 2 + 1 = 0$$

Solution.

$$\log_2 x + \frac{\log_2 2}{\log_2 x} + 1 = 0 \qquad \qquad \because \log_a b = \frac{\log_c b}{\log_c a}$$
$$\log_2 x + \frac{1}{\log_2 x} + 1 = 0$$
$$(\log_2 x)^2 + \log_2 x + 1 = 0$$
$$y^2 + y + 1 = 0 \qquad \qquad \because let \ y = \log_2 x$$

Since the solution is complex, I'm not going to evaluate it further.

Problem 3.6.

$$\log_5 x + \log_{10} 8 = 1$$

Solution.

$$\log_5 x = 1 - \log_{10} 8$$
$$x = 5^{(1 - \log_{10} 8)}$$

Problem 3.7.

$$(e^x)^2 + \ln e^{e^x} + e^{\ln_e 5} = 0$$

Solution.

$$(e^x)^2 + e^x + 5 = 0$$

 $y^2 + y + 5 = 0$ $\therefore y = e^x$

Again, the solution is complex.

Problem 3.8.

$$x^2 = e^{\ln(\frac{1}{5}x) + \ln(5x)} + \log_{10} e^{10}$$

$$x^{2} = \left(\frac{x}{5}\right)(5x) + 10\log_{10} e$$
$$0 = 10\log_{10} e$$

Thus the equation has no solutions.