The Euler-Lagrange Equation

Forest Kobayashi

Harvey Mudd College

April 1st, 2018

Airlines

•000000

A Motivating Problem

▶ Time is fuel. Time is

Airline

000000

A Motivating Problem

Figure: Flight 1 (UPS9859), Saturday 03/23/2019

Airline, cont.

A Motivating Problem

0000000

Figure: Flight 2 (FDX50252), Friday 03/22/2019

Some statistics:

A Motivating Problem

0000000

- ► Total flight distance:
 - Flight 1: 4551km
 - Flight 2: 4670km
- ► Total flight time:
 - Flight 1: 5h 30m 7s
 - Flight 2: 5h 14m 6s

The difference:

A Motivating Problem

0000000

The difference:

A Motivating Problem

0000000

Figure: Wind patterns at 70hPa during Flight 1

The difference:

A Motivating Problem

000000

Figure: Wind patterns at 70hPa during Flight 2

Abstracting

Overview

A Motivating Problem

 \blacktriangleright We want to find some optimal path q(t) satisfying

Proof Sketch

000000

Figure: Wind Vector Field

Proof Sketch

000000

"Cost" function

Proof Sketch

000000

Shortest Time Path

Shortest Path

The statement

A Motivating Problem

Theorem (Euler-Lagrange)

Let $q(t): \mathbb{R} \to \mathbb{R}^n$ be a path. Then if q(t) is an extreme value of the functional

$$S(\mathbf{q}) = \int_{a}^{b} \mathcal{L}(t, \mathbf{q}(t), \dot{\mathbf{q}}(t)) dt$$

then q is a solution to the differential equation

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) = 0$$

