Домашняя работа по ТРЯП N2

Автор - Айвазов Денис из 671 группы 14 сентября 2017

1 HKA no PB $(a(a|b))^*b$

Вот автомат. Докажем, что он принимает язык $L = (a(a|b))^*b$. По индукции по степени выражения $(a(a|b))^*$ докажем, что он принимает язык. База: он принимает слова b.ab, aab и abb.

Шаг индукции: пусть он принимает слова вида $\omega = (a(a|b))^n b$.

Значит если он принял ω , то остановился в q_f . В которое перешёл по b из q2. Т.е. обработав слово вида $(a(a|b))^n$ автомат остановится в q2(или в q0 так как там эпсилон переход). Далее получив на вход (a(a|b))b он пройдёт следующую последовательность $q_2(\varepsilon) \to q_0(a) \to q_1(a|b) \to q_2(a) \to q_f$. Таким образом автомат принял на вход слово вида $(a(a|b))^n(a(a|b))b = (a(a|b))^{n+1}b$. Что и требовалось доказать.

Теперь докажем, что все слова, которые принимаются автоматом имеют вид $(a(a|b))^*b$:

Очевидно, что автомат принимает только слова, оканчивающиеся на b. Получив на вход слово автомат оказывается либо в q0 либо в q2. Если это слово - буква b, то он идёт в qf и слово принято. Получив слово начинающееся с буквы b(длины >1) он ломается, т.к. из qf нет переходов. Если же слово начинается на а, $q_0(a) \to q_1(a|b)q_0[q_f]$. Т.е. слово a(a|b)b будет принято. А если слово вида $a(a|b)a\dots$ То он вернётся по эпсилон переходу в начальное состояние q_0 и начнётся то же самое, пока слово не будет удовлетворять виду $(a(a|b))^*b$

$\mathbf{2}$ * ДКА по НКА вида: $\Sigma^* \omega \Sigma^*$

3 Подстроки abba, abab, baa

Вот автоматы, распозноющие слова, содержащие нужные строки в качестве подслов, поотдельности.

Далее скрепим их с помощью |. Оно работает потому что автомат недетерминированный и будет пытаться проверять по всем веткам одновременно и для достижения q_f достаточно, чтобы он прошёл по какой-то одной ветке.

Заметим, что ничего функционально не изменилось, только теперь это автомат, принимающий любое из слов, которые принимали прошлые автомата. Доказательство корректности следует из утвержений из листка с домашним заданием 2.

4 Построить ДКА распознающий:

4.1 Язык, все слова которого содержат чётное число нулей

Докажем по индукции по числу нулей. База: пустое слово содержит чётное число(0) нулей. 00 будет обработано так: $q_0(0) \to q_1(0) \to q_0$. По построению каждый ноль меняет состояние с q_0 на q_1 и наоборот. Шаг индукции: пусть он принял слово с чётным числом нулей. Т.е. оказался в q_0 . И тогда получив ещё сколько угодно 1 на вход, он останется в q_0 и слово будет принято. Если же 0 оказалось нечётное количество, то автомат окажется в q_1 (даже получив кучу 1 после) и пока чётность нулей не изменится, он останется в непринимающем состоянии.

4.2 Язык, все слова которого содержат нечётное число единиц

Выглядит и работает абсолютно аналогично. Только теперь 1 и 0 из предыдущего номера поменялись местами. И теперь изменилось положение принимающего состояния. Т.е. приняв нечётное число 1 он остановится в принимающем q_1 . в противном случае он не примет слово. Док-во аналогично

4.3 Язык, все слова которого содержат чётное число нулей и нечётное число единиц

Для удобства восприятия в принимающих состояниях напичаны чётности в виде чч,чн,нч,нн(где н= нечётное, ч = чётное. Первая буква говорит о 0, а вторая о 1. Например чн значит, что нулей чётно, а единиц нечётно) Будем смотреть на чётность числа 0 и 1 в обработанном слове при каждом переходе:

```
q_0 в начале 0 ч и 1 ч
q_0(0) \rightarrow q_1 - 0 - н, 1 - ч
q_1(0) 	o q_0 - 0 - ч, 1 - ч
                                                                                            q_1нч
                                                                                                             q_2HH
q_0(1) 	o q_3 - 0 - ч, 1 - н
                                                                                                       1
q_3(1) \rightarrow q_0 - 0 - ч, 1 - ч
                                                                                                          0
                                                                                                                    0
q_1(1) \to q_2 - 0 - н, 1 - н
                                                                                                       1
q_2(1) \rightarrow q_1 - 0 - н, 1 - ч
                                                                                            q_0чч
q_2(0) \to q_3 - 0 - ч, 1 - н
q_3(0) \to q_2 - 0 - H, 1 - H
```

Все вышесказанное следует из переходов и выводов по предудущим задачам. Как мы видим, принимающее состояние имеет описание чн, это значит, что если обработка слова остановилась в нём, то в слове было чётное число 0 и нечётное число 1. Ч.т.д

5 Замена последнего пункта

При алгоритме описанном в листке мы можем рассматривать наш построенный по двум ДКА(A,B) ДКА С в разных случаях как автомат для каждого из A и B в отдельности(игнорируя вторую "координату" состояния). Т.е. если говорить о следующей задаче, можно было бы переходить только по q_i^A и обрабатывать слово для автомата A.

А с учетом того декартового произведения $F_C = F_A \times Q_B \cup Q_A \times F_B$, если нам даётся на вход слово из L(A), то оно по всем состояниям для А приходит в один из $F_A \times Q_B$ и принимается языком. Аналогично со словом из L(B). Из этого и того факта, что $Q_C \supset F_C \supset F_A \times Q_B$ то $L(A) \subset L(C)$ и аналогично $L(B) \subset L(C)$. Но других разрешающих состояний в С нет, значит он не просто принимает, но и распознаёт язык объединения $L(A) \cup L(B)$

Автомат из 4.3 построенный на 4.1 и 4.2 6

По алгоритму приведённому в листках построим ДКА по двум ДКА. Для простоты нарисуем таблички переходов для двух автоматов А и В. У нас были автоматы:

$$A = (Q_A, \Sigma, q_0^A, \delta_A, F_A).$$

 $B = (Q_B, \Sigma, q_0^B, \delta_B, F_B).$

$$A=(Q_A,\ \Sigma,\ q_0^A,\ \delta_A,\ F_A).$$
 $B=(Q_B,\ \Sigma,\ q_0^B,\ \delta_B,\ F_B).$ Где $\Sigma=\{0,1\};\ Q_A=q_0^A,q_1^A;\ Q_B=q_0^B,q_1^B;\ F_A=q_0^A;\ F_B=q_1^B$

δ_A	q_0	q_1	δ_B	q_0	q_1
0	q_1	q_0	0	q_0	q_1
1	q_0	q_1	1	q_1	q_0

Объединим все это в одну автомат: $C = (Q_C, \ \Sigma, \ q_0^C, \ \delta_C, \ F_C)$., где

$$\Sigma = \{0,1\}; \ Q_A = (q_0^A; q_0^B), (q_0^A; q_1^B), (q_1^A; q_0^B), (q_1^A; q_1^B); \ q_0^C = (q_0^A; q_0^B); \ F_c = (q_1^A; q_0^B)$$

$\delta_{A\cap B}$	q_0^A, q_0^B	q_0^A, q_1^B	q_1^A, q_0^B	q_1^A, q_1^B
0	q_1^A, q_0^B	q_1^A, q_1^B	q_0^A, q_0^B	q_0^A, q_1^B
1	q_0^A, q_1^B	q_0^A, q_0^B	q_1^A, q_1^B	q_1^A, q_0^B

Таким образом мы построили автомат по алгоритму с листочка. Все состояния и переходы указаны. И мы получили тот же автомат, корректность которого доказали ранее.