Credit Card fraud detection

Importing libraries

```
In [3]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split, KFold, StratifiedKFold, cross
        from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.preprocessing import StandardScaler
        from sklearn.feature_selection import SelectFromModel
        from imblearn.pipeline import Pipeline
        from imblearn.over_sampling import SMOTE
        from sklearn.feature_selection import SelectKBest, mutual_info_classif
        from category_encoders import WOEEncoder
        from sklearn.feature_selection import RFE
        from sklearn.linear model import LogisticRegression
        from imblearn.pipeline import Pipeline as ImbPipeline
```

Reading dataset

```
In [5]: df=pd.read_csv("fraud test.csv")
    df.head()
```

Out[5]:		Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	amt	
	0	0	21/06/2020 12:14	2.291160e+15	fraud_Kirlin and Sons	personal_care	2.86	
	1	1	21/06/2020 12:14	3.573030e+15	fraud_Sporer- Keebler	personal_care	29.84	J
	2	2	21/06/2020 12:14	3.598220e+15	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	
	3	3	21/06/2020 12:15	3.591920e+15	fraud_Haley Group	misc_pos	60.05	
	4	4	21/06/2020 12:15	3.526830e+15	fraud_Johnston- Casper	travel	3.19	1

5 rows × 23 columns

Checking null values in data

```
In [8]: df.isnull().sum()
```

```
Out[8]: Unnamed: 0
        trans_date_trans_time
        cc_num
                                  0
                                  0
        merchant
        category
                                  0
                                  0
        amt
                                  0
        first
                                  0
        last
        gender
                                  0
        street
                                  0
        city
                                  0
        state
                                  0
        zip
                                  0
        lat
                                  0
        long
                                  0
                                  0
        city_pop
                                  0
        job
        dob
                                  0
                                  0
        trans_num
        unix_time
                                  0
        merch_lat
                                  0
                                  0
        merch_long
                                  0
        is_fraud
        dtype: int64
```

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 555719 entries, 0 to 555718
Data columns (total 23 columns):

Data	COLUMNIS (COCAL 25 COLO	, iiii 13 <i>)</i> •	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	555719 non-null	int64
1	<pre>trans_date_trans_time</pre>	555719 non-null	object
2	cc_num	555719 non-null	float64
3	merchant	555719 non-null	object
4	category	555719 non-null	object
5	amt	555719 non-null	float64
6	first	555719 non-null	object
7	last	555719 non-null	object
8	gender	555719 non-null	object
9	street	555719 non-null	object
10	city	555719 non-null	object
11	state	555719 non-null	object
12	zip	555719 non-null	int64
13	lat	555719 non-null	float64
14	long	555719 non-null	float64
15	city_pop	555719 non-null	int64
16	job	555719 non-null	object
17	dob	555719 non-null	object
18	trans_num	555719 non-null	object
19	unix_time	555719 non-null	int64
20	merch_lat	555719 non-null	float64
21	merch_long	555719 non-null	float64
22	is_fraud	555719 non-null	int64
d+vn/	$ac \cdot f(a) + 64(6) = in + 64(6)$	(12)	

dtypes: float64(6), int64(5), object(12)

memory usage: 97.5+ MB

In [10]: df.describe()

		_		_
Ωı	14-	Γ1	0	٦.
vι		1 .		

	Unnamed: 0	cc_num	amt	zip	lat	
count	555719.000000	5.557190e+05	555719.000000	555719.000000	555719.000000	555719.0
mean	277859.000000	4.178387e+17	69.392810	48842.628015	38.543253	-90.2
std	160422.401459	1.309837e+18	156.745941	26855.283328	5.061336	13.7
min	0.000000	6.041621e+10	1.000000	1257.000000	20.027100	-165.6
25%	138929.500000	1.800430e+14	9.630000	26292.000000	34.668900	-96.7
50%	277859.000000	3.521420e+15	47.290000	48174.000000	39.371600	-87.4
75%	416788.500000	4.635330e+15	83.010000	72011.000000	41.894800	-80.1
max	555718.000000	4.992350e+18	22768.110000	99921.000000	65.689900	-67.9

Distribution of fraudulent transaction

```
In [12]: fraud = df[df['is_fraud'] == 1]
    non_fraud = df[df['is_fraud'] == 0]
    outlierFraction = len(fraud)/float(len(non_fraud))
```

```
print(outlierFraction)
    print('Fraud Cases: {}'.format(len(df[df['is_fraud'] == 1])))
    print('Non fraud Transactions: {}'.format(len(df[df['is_fraud'] == 0])))

0.003874820710510248
    Fraud Cases: 2145
    Non fraud Transactions: 553574

In [13]: fraud_counts = df['is_fraud'].value_counts()

# Plot the pie chart
    plt.figure(figsize=(5, 4))
    plt.pie(fraud_counts, labels=['Non-fraud', 'Fraud'], autopct='%1.1f%%', colors=['gr plt.title('Distribution of fraud and non-fraud trxns')
    plt.show()
```

Distribution of fraud and non-fraud trxns

Distribution of gender verses fraudulent transactions

```
In [15]: fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(8, 5))

# Gender distribution Pie chart
explode = [0.1, 0.1]
df.groupby('gender')['is_fraud'].count().plot.pie(explode=explode, autopct="%1.1f%%
axs[0].set_title("Gender Distribution")

# Fraud Status by gender Count Plot
ax = sns.countplot(x="gender", hue="is_fraud", data=df, ax=axs[1], palette='Set2')

# Add values on top of each bar
for p in ax.patches:
    ax.annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height() ha='center', va='center', xytext=(0, 10), textcoords='offset points'

# Set Labels and title
axs[1].set_title("Distribution of Gender with Fraud Status")
```

```
axs[1].set_xlabel("Gender")
axs[1].set_ylabel("Count")

# Show the plot
plt.tight_layout()
plt.show()
```


Category verses fraudulent and non-fraudulent activities

```
In [17]: sns.barplot(x = "amt", y = "category", data = df, hue = "is_fraud")
    plt.show()
```


Distribution of fraudulent activities by hour

```
In [19]: # Convert 'trans_date_trans_time' column to datetime format
         df['trans_date_trans_time'] = pd.to_datetime(df['trans_date_trans_time'])
        C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\243000987.py:2: UserWarning: Parsi
        ng dates in %d/%m/%Y %H:%M format when dayfirst=False (the default) was specified. P
        ass `dayfirst=True` or specify a format to silence this warning.
          df['trans_date_trans_time'] = pd.to_datetime(df['trans_date_trans_time'])
In [20]: # Convert 'trans_date_trans_time' column to datetime and extract the hour
         df['hour'] = pd.to_datetime(df['trans_date_trans_time']).dt.hour
         # Create a figure with two subplots
         fig, axes = plt.subplots(1, 2, figsize=(15, 5), sharey=True)
         # Plot histogram for non-fraudulent transactions
         sns.histplot(x='hour', data=df[df["is_fraud"] == 0],
                      stat="density", bins=24, ax=axes[0], color="orange")
         axes[0].set_title("Not Fraud")
         axes[0].set_xlabel("Hour of Day")
         axes[0].set_ylabel("Density")
         axes[0].set_xticks(range(24))
         # Plot histogram for fraudulent transactions
         sns.histplot(x='hour', data=df[df["is_fraud"] == 1],
                      stat="density", bins=24, ax=axes[1], color="green")
         axes[1].set_title("Fraud")
         axes[1].set_xlabel("Hour of Day")
         axes[1].set_ylabel("Density")
```

```
axes[1].set_xticks(range(24))

# Adjust Layout and display the plot
plt.tight_layout()
plt.show()
```


Transaction Amount by category and Fraud Status

```
In [22]: # Txn amt by cat and fraud
plt.figure(figsize=(8,6))
sns.scatterplot(x = "category", y = "amt", data = df, hue = "is_fraud")
plt.grid(True)
plt.xticks(rotation=90)
plt.title('Transaction Amount by Category and Fraud Status')
plt.xlabel('Transaction Category')
plt.ylabel('Transaction Amount ($)')
```


Counts of Fraudulent Transactions by Category

```
In [24]: fraud_counts = df.groupby('category')['is_fraud'].sum()

plt.figure(figsize=(8, 6))
    fraud_counts.plot(kind='bar', color='skyblue')

plt.xlabel('Transaction Category')
    plt.ylabel('Count of Fraudulent Transactions')
    plt.title('Counts of Fraudulent Transactions by Category')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
```


Checking outliers

```
In [26]:
    columns = ['amt', 'lat', 'long', 'city_pop']
    fig, axes = plt.subplots(nrows=1, ncols=len(columns), figsize=(6*len(columns), 6))
    for i, col in enumerate(columns):
        sns.boxplot(x=df[col], ax=axes[i], orient='h', palette='Set2')
        axes[i].set_title(f'Box Plot of {col}')
        axes[i].set_xlabel(col)

plt.tight_layout()
    plt.show()
```

```
C:\Users\Ifean\AppData\Local\Temp\ipykernel 20284\409219191.py:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1
4.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(x=df[col], ax=axes[i], orient='h', palette='Set2')
C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\409219191.py:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1
4.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(x=df[col], ax=axes[i], orient='h', palette='Set2')
C:\Users\Ifean\AppData\Local\Temp\ipykernel 20284\409219191.py:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1
4.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(x=df[col], ax=axes[i], orient='h', palette='Set2')
C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\409219191.py:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1
4.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(x=df[col], ax=axes[i], orient='h', palette='Set2')
                                                                        Box Plot of city_pop
```

Feature Engineering

```
In [28]: # 1. Age at Transactions
    df['dob'] = pd.to_datetime(df['dob'])
    df['trans_date_trans_time'] = pd.to_datetime(df['trans_date_trans_time'])
    df['age_at_txns'] = (df['trans_date_trans_time'] - df['dob']).dt.days // 365

# 2. Time Since Last Transactions
    df.sort_values(['cc_num', 'trans_date_trans_time'], inplace=True)
    df['time_since_last_txn'] = df.groupby('cc_num')['trans_date_trans_time'].diff().dt

# 3. Transaction Amount Relative to Average
    df['avg_txn_amount'] = df.groupby('cc_num')['amt'].transform('mean')
    df['txn_amount_relative_to_avg'] = df['amt'] / df['avg_txn_amount']

# 4. Cumulative Transactions Amount
    df['cumulative_txn_amount'] = df.groupby('cc_num')['amt'].cumsum()

print(df[['age_at_txns', 'time_since_last_txn', 'txn_amount_relative_to_avg', 'cumu']
```

```
C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\3040901476.py:2: UserWarning: Pars
ing dates in %d/%m/%Y format when dayfirst=False (the default) was specified. Pass `
dayfirst=True` or specify a format to silence this warning.
   df['dob'] = pd.to_datetime(df['dob'])
        age at txns time since last txn txn amount relative to avg \
```

	age_at_txii3	CTILIC STILCE TO SC CVII	cxii_aiiloairc_i etactve_co_avg	١
157	34	NaN	1.874601	
741	34	0.0	1.180761	
3047	34	0.0	0.981211	
4351	34	0.0	1.319409	
7695	34	0.0	2.225882	
		• • •	•••	
552584	65	0.0	1.046956	
552892	65	0.0	0.072532	
553559	65	0.0	1.519678	
553560	65	0.0	2.367252	
553883	65	0.0	0.325442	

	cumulative txn amount
157	124.66
741	203.18
3047	268.43
4351	356.17
7695	504.19
552584	54223.53
552892	54228.11
553559	54324.07
553560	54473.55
553883	54494.10

[555719 rows x 4 columns]

Dropping some columns and data transformation

```
In [30]: # Drop the 'Unnamed' and cc_num column
    df.drop(columns=['Unnamed: 0','cc_num'], inplace=True)

In [31]: df=df.drop(columns=['first', 'unix_time', 'dob', 'zip', 'city','street', 'state', '

In [32]: df['merchant'] = df['merchant'].apply(lambda x : x.replace('fraud_',''))
    df['gender'] = df['gender'].map({'F': 0, 'M': 1})
```

Converting categorical columns into numeric

```
In [34]: encode_column = ['job', 'merchant', 'category', 'lat']
   woe_encoder = WOEEncoder()

   df_trasform = woe_encoder.fit_transform(df[encode_column], df['is_fraud'])

   df[encode_column] = df_trasform
In [35]: df_trasform.head()
```

```
Out[35]:
                       job
                            merchant
                                       category
                                                      lat
                -1.264408
                            -0.291217
                                       -1.092515 43.0048
            741
                 -1.264408
                             0.369140
                                       -0.606015 43.0048
                 -1.264408
          3047
                             0.735637
                                       -0.341222 43.0048
          4351
                 -1.264408
                            -1.280704
                                       -1.049973 43.0048
          7695 -1.264408
                            -0.407388
                                      -0.762903 43.0048
          df.head()
In [36]:
Out[36]:
                 merchant
                            category
                                         amt gender
                                                            lat
                                                                     long
                                                                           city_pop
                                                                                           job
                                                                                                merch
                                       124.66
            157
                 -0.291217
                            -1.092515
                                                       43.0048
                                                                -108.8964
                                                                               1645
                                                                                     -1.264408
                                                                                                42.945
            741
                  0.369140
                            -0.606015
                                        78.52
                                                       43.0048
                                                                -108.8964
                                                                               1645
                                                                                     -1.264408 42.193
          3047
                  0.735637
                            -0.341222
                                        65.25
                                                       43.0048
                                                                -108.8964
                                                                               1645
                                                                                     -1.264408 43.932
          4351
                 -1.280704
                           -1.049973
                                        87.74
                                                       43.0048
                                                                -108.8964
                                                                               1645
                                                                                     -1.264408
                                                                                               43.546
          7695
                 -0.407388 -0.762903
                                      148.02
                                                       43.0048
                                                               -108.8964
                                                                               1645
                                                                                    -1.264408 42.876
In [37]:
          # Drop irrelevant columns
          df.drop(columns=['hour','age_at_txns', 'long', 'city_pop', 'merchant','lat','time_s
In [38]:
          df.describe()
Out[38]:
                                                                                    merch lat
                       category
                                           amt
                                                       gender
                                                                          job
                                                                                                 merc
          count 555719.000000 555719.000000
                                                 555719.000000
                                                                555719.000000
                                                                               555719.000000
                                                                                               555719.
           mean
                       -0.337399
                                      69.392810
                                                      0.451367
                                                                     -0.566606
                                                                                    38.542798
                                                                                                  -90.
             std
                       0.781185
                                    156.745941
                                                      0.497630
                                                                     1.285966
                                                                                     5.095829
                                                                                                   13.
            min
                       -1.092515
                                       1.000000
                                                      0.000000
                                                                     -2.733942
                                                                                    19.027422
                                                                                                  -166.
            25%
                                       9.630000
                                                      0.000000
                                                                                                  -96.
                      -1.017154
                                                                     -1.711002
                                                                                    34.755302
            50%
                       -0.606015
                                      47.290000
                                                      0.000000
                                                                     -0.864405
                                                                                    39.376593
                                                                                                  -87.
            75%
                       0.106981
                                      83.010000
                                                                                                  -80.
                                                      1.000000
                                                                      0.588900
                                                                                    41.954163
            max
                       1.152850
                                  22768.110000
                                                      1.000000
                                                                      8.037234
                                                                                    66.679297
                                                                                                  -66.
In [39]: scaler = StandardScaler()
          # Fit and transform the data
          df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
          # Check the scaled data
          print(df_scaled.head())
```

```
category
                 amt
                         gender
                                    job merch_lat merch_long is_fraud
0 -0.966630 0.352591 -0.907034 -0.54263
                                           0.863987
                                                      -1.332516 -0.062248
1 -0.343857 0.058229 -0.907034 -0.54263
                                           0.716338
                                                      -1.343523 -0.062248
2 -0.004893 -0.026430 -0.907034 -0.54263
                                          1.057714
                                                      -1.417631 -0.062248
3 -0.912171 0.117051 -0.907034 -0.54263
                                          0.981836
                                                      -1.382180 -0.062248
4 -0.544691 0.501622 -0.907034 -0.54263
                                                      -1.390938 -0.062248
                                          0.850449
   avg_txn_amount
0
        -0.156213
        -0.156213
1
2
        -0.156213
3
        -0.156213
4
        -0.156213
```



```
In [41]: X = df.drop(labels='is_fraud', axis=1)
y = df.loc[:,'is_fraud']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
```

Balancing dataset using SMOTE

```
In [43]: smote = SMOTE(random_state=1)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
```

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base
Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle
arn.utils.validation.validate_data` instead. This function becomes public and is par
t of the scikit-learn developer API.
 warnings.warn(

```
In [44]: class_counts = y_train_resampled.value_counts()

# Create a pie chart
plt.figure(figsize=(6, 6))
plt.pie(class_counts, labels=class_counts.index, autopct='%1.1f%%', startangle=140)
plt.title('Distribution of Class in Resampled Training Data')
plt.axis('equal')
plt.show()
```

Distribution of Class in Resampled Training Data

Imbalanced classification modelling with synthetic oversampling and stratified K-fold cross-validation

```
In [46]: skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
In [47]: # Define the classifier
         classifier = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
         # List to store metrics
         roc_auc_scores, fprs, tprs, precisions, recalls, f1_scores = [], [], [], [], []
         confusion_matrices, accuracies = [], []
         # Stratified cross-validation
         skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
         for train_index, test_index in skf.split(X_train_resampled, y_train_resampled):
             X_train_fold, X_test_fold = X_train_resampled.iloc[train_index], X_train_resamp
             y_train_fold, y_test_fold = y_train_resampled.iloc[train_index], y_train_resamp
             # Fit and predict
             classifier.fit(X_train_fold, y_train_fold)
             y_scores = classifier.predict_proba(X_test_fold)[:, 1]
             y_pred = (y_scores > 0.5)
             # Calculate metrics
             fpr, tpr, _ = roc_curve(y_test_fold, y_scores)
             fprs.append(fpr)
             tprs.append(tpr)
             roc_auc_scores.append(auc(fpr, tpr))
             precision, recall, _ = precision_recall_curve(y_test_fold, y_scores)
             precisions.append(precision)
             recalls.append(recall)
             conf_mat = confusion_matrix(y_test_fold, y_pred)
             confusion_matrices.append(conf_mat)
             accuracies.append(accuracy_score(y_test_fold, y_pred))
             f1_scores.append(f1_score(y_test_fold, y_pred))
         # Results
         print(f'Average Accuracy for Random Forest: {np.mean(accuracies):.2f}')
         print(f'Average F1 Score for Random Forest: {np.mean(f1_scores):.2f}')
         print(f'Average ROC AUC Score for Random Forest: {np.mean(roc_auc_scores):.2f}')
         print(f'Average Precision for Random Forest: {np.mean([np.mean(precision) for preci
         print(f'Average Recall for Random Forest: {np.mean([np.mean(recall) for recall in r
         def plot_roc_curves(fprs, tprs, model_name):
             plt.figure(figsize=(8, 6))
             for i in range(len(fprs)):
                 plt.plot(fprs[i], tprs[i], lw=1, label=f'Fold {i+1}')
             plt.plot([0, 1], [0, 1], linestyle='--', color='r', label='Random Guess')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title(f'ROC Curves for {model_name}')
             plt.legend(loc='lower right')
             plt.show()
```

```
def plot_precision_recall_curves(precisions, recalls, model_name):
   plt.figure(figsize=(8, 6))
   for i in range(len(precisions)):
        plt.plot(recalls[i], precisions[i], lw=1, label=f'Fold {i+1}')
   plt.xlabel('Recall')
   plt.ylabel('Precision')
   plt.title(f'Precision-Recall Curves for {model_name}')
   plt.legend(loc='lower left')
   plt.show()
def plot_confusion_matrix(conf_matrix, model_name):
   plt.figure(figsize=(8, 6))
   sns.heatmap(conf_matrix.astype(int), annot=True, fmt="d", cmap="Blues")
   plt.title(f'Confusion Matrix for {model_name}')
   plt.xlabel('Predicted labels')
   plt.ylabel('True labels')
   plt.show()
# Visualisation
plot_roc_curves(fprs, tprs, "Random Forest")
plot_precision_recall_curves(precisions, recalls, "Random Forest")
plot_confusion_matrix(np.mean(confusion_matrices, axis=0), "Random Forest")
# Feature Importance
feature_importances = pd.Series(classifier.feature_importances_, index=X_train_resa
plt.figure(figsize=(8, 6))
feature_importances.sort_values().plot(kind='barh')
plt.title('Feature Importance - Random Forest')
plt.show()
```

Average Accuracy for Random Forest: 1.00 Average F1 Score for Random Forest: 1.00 Average ROC AUC Score for Random Forest: 1.00 Average Precision for Random Forest: 0.99 Average Recall for Random Forest: 0.99

0.4

False Positive Rate

0.8

1.0

0.6

0.2

0.0

Decision Tree Modelling

```
In [49]: # Define classifier
         classifier = DecisionTreeClassifier(random_state=42)
         # List to store metrics
         roc_auc_scores, fprs, tprs, precisions, recalls, f1_scores = [], [], [], [], []
         confusion_matrices, accuracies = [], []
         # Cross-validation
         skf = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         for train index, test index in skf.split(X train resampled, y train resampled):
             X_train_fold, X_test_fold = X_train_resampled.iloc[train_index], X_train_resamp
             y_train_fold, y_test_fold = y_train_resampled.iloc[train_index], y_train_resamp
             # Fit and predict
             classifier.fit(X_train_fold, y_train_fold)
             y_scores = classifier.predict_proba(X_test_fold)[:, 1]
             y_pred = (y_scores > 0.5)
             # Calculate metrics
             fpr, tpr, _ = roc_curve(y_test_fold, y_scores)
             fprs.append(fpr)
             tprs.append(tpr)
             roc_auc_scores.append(auc(fpr, tpr))
             precision, recall, _ = precision_recall_curve(y_test_fold, y_scores)
             precisions.append(precision)
             recalls.append(recall)
             conf_mat = confusion_matrix(y_test_fold, y_pred)
             confusion_matrices.append(conf_mat)
             accuracies.append(accuracy_score(y_test_fold, y_pred))
             f1_scores.append(f1_score(y_test_fold, y_pred))
         #results
         print(f'Average Accuracy for Decision Tree: {np.mean(accuracies):.2f}')
         print(f'Average F1 Score for Decision Tree: {np.mean(f1_scores):.2f}')
         print(f'Average ROC AUC Score for Decision Tree: {np.mean(roc_auc_scores):.2f}')
         print(f'Average Precision for Decision Tree: {np.mean([np.mean(precision) for preci
         print(f'Average Recall for Decision Tree: {np.mean([np.mean(recall) for recall in r
         def plot_roc_curves(fprs, tprs, model_name):
             plt.figure(figsize=(8, 6))
             for i in range(len(fprs)):
                 plt.plot(fprs[i], tprs[i], lw=1, label=f'Fold {i+1}')
             plt.plot([0, 1], [0, 1], linestyle='--', color='r', label='Random Guess')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title(f'ROC Curves for {model_name}')
             plt.legend(loc='lower right')
             plt.show()
         def plot_precision_recall_curves(precisions, recalls, model_name):
             plt.figure(figsize=(8, 6))
```

```
for i in range(len(precisions)):
         plt.plot(recalls[i], precisions[i], lw=1, label=f'Fold {i+1}')
     plt.xlabel('Recall')
     plt.ylabel('Precision')
     plt.title(f'Precision-Recall Curves for {model_name}')
     plt.legend(loc='lower left')
     plt.show()
 def plot confusion matrix(conf matrix, model name):
     plt.figure(figsize=(8, 6))
     sns.heatmap(conf_matrix.astype(int), annot=True, fmt="d", cmap="Blues")
     plt.title(f'Confusion Matrix for {model_name}')
     plt.xlabel('Predicted labels')
     plt.ylabel('True labels')
     plt.show()
 # Visualisations
 plot_roc_curves(fprs, tprs, "Decision Tree")
 plot_precision_recall_curves(precisions, recalls, "Decision Tree")
 plot_confusion_matrix(np.mean(confusion_matrices, axis=0), "Decision Tree")
 # Feature importance visualization
 feature_importances = pd.Series(classifier.feature_importances_, index=X_train_resa
 plt.figure(figsize=(8, 6))
 feature_importances.sort_values().plot(kind='barh')
 plt.title('Feature Importance - Decision Tree')
 plt.show()
Average Accuracy for Decision Tree: 1.00
Average F1 Score for Decision Tree: 1.00
Average ROC AUC Score for Decision Tree: 1.00
```

Average Precision for Decision Tree: 0.83 Average Recall for Decision Tree: 0.67

KNN Modelling

```
In [51]: # Define classifier
         classifier = KNeighborsClassifier()
         # Store metrics
         roc_auc_scores, fprs, tprs, precisions, recalls, f1_scores = [], [], [], [], []
         confusion_matrices, accuracies = [], []
         # Cross-validation
         skf = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         for train index, test index in skf.split(X train resampled, y train resampled):
             X_train_fold, X_test_fold = X_train_resampled.iloc[train_index], X_train_resamp
             y_train_fold, y_test_fold = y_train_resampled.iloc[train_index], y_train_resamp
             # Fit and predict
             classifier.fit(X_train_fold, y_train_fold)
             y_scores = classifier.predict_proba(X_test_fold)[:, 1]
             y_pred = (y_scores > 0.5)
             # Collect and calculate metrics
             fpr, tpr, _ = roc_curve(y_test_fold, y_scores)
             fprs.append(fpr)
             tprs.append(tpr)
             roc_auc_scores.append(auc(fpr, tpr))
             precision, recall, _ = precision_recall_curve(y_test_fold, y_scores)
             precisions.append(precision)
             recalls.append(recall)
             conf_mat = confusion_matrix(y_test_fold, y_pred)
             confusion_matrices.append(conf_mat)
             accuracies.append(accuracy_score(y_test_fold, y_pred))
             f1_scores.append(f1_score(y_test_fold, y_pred))
         # Results
         print(f'Average Accuracy for KNN: {np.mean(accuracies):.2f}')
         print(f'Average F1 Score for KNN: {np.mean(f1_scores):.2f}')
         print(f'Average ROC AUC Score for KNN: {np.mean(roc_auc_scores):.2f}')
         print(f'Average Precision for KNN: {np.mean([np.mean(precision) for precision in pr
         print(f'Average Recall for KNN: {np.mean([np.mean(recall) for recall in recalls]):.
         def plot_roc_curves(fprs, tprs, model_name):
             plt.figure(figsize=(8, 6))
             for i in range(len(fprs)):
                 plt.plot(fprs[i], tprs[i], lw=1, label=f'Fold {i+1}')
             plt.plot([0, 1], [0, 1], linestyle='--', color='r', label='Random Guess')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title(f'ROC Curves for {model_name}')
             plt.legend(loc='lower right')
             plt.show()
         def plot_precision_recall_curves(precisions, recalls, model_name):
             plt.figure(figsize=(8, 6))
```

```
for i in range(len(precisions)):
        plt.plot(recalls[i], precisions[i], lw=1, label=f'Fold {i+1}')
   plt.xlabel('Recall')
   plt.ylabel('Precision')
   plt.title(f'Precision-Recall Curves for {model_name}')
   plt.legend(loc='lower left')
   plt.show()
def plot_confusion_matrix(conf_matrix, model_name):
   plt.figure(figsize=(8, 6))
   sns.heatmap(conf_matrix.astype(int), annot=True, fmt="d", cmap="Blues")
   plt.title(f'Confusion Matrix for {model_name}')
   plt.xlabel('Predicted labels')
   plt.ylabel('True labels')
   plt.show()
# Visualisations
plot_roc_curves(fprs, tprs, "KNN")
plot_precision_recall_curves(precisions, recalls, "KNN")
plot_confusion_matrix(np.mean(confusion_matrices, axis=0), "KNN")
```

Average Accuracy for KNN: 0.99 Average F1 Score for KNN: 0.99 Average ROC AUC Score for KNN: 1.00 Average Precision for KNN: 0.92 Average Recall for KNN: 0.86

ROC Curves for KNN

Precision-Recall Curves for KNN

Dynamic Synthetic Oversampling with Stratified K-Fold Cross-Validation within a Pipeline Framework

```
In [53]: # Define the pipeline
         pipeline = Pipeline([
             ('smote', SMOTE(random_state=1)),
             ('classifier', RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=
         ])
         # Prepare cross-validation
         skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
         scores = []
         cumulative_conf_matrix = np.zeros((2, 2)) # Assuming binary classification
         fig, (ax_roc, ax_pr) = plt.subplots(1, 2, figsize=(12, 6))
         # Cross-validation loop
         for train_index, test_index in skf.split(X_train, y_train):
             X_train_fold, X_test_fold = X_train.iloc[train_index], X_train.iloc[test_index]
             y_train_fold, y_test_fold = y_train.iloc[train_index], y_train.iloc[test_index]
             # Fiting the model
             pipeline.fit(X_train_fold, y_train_fold)
             y_pred = pipeline.predict(X_test_fold)
```

```
y_probs = pipeline.predict_proba(X_test_fold)[:, 1]
   # Metrics collection
   scores.append({
        'roc_auc': roc_auc_score(y_test_fold, y_probs),
        'f1': f1_score(y_test_fold, y_pred),
        'accuracy': accuracy_score(y_test_fold, y_pred),
        'recall': recall_score(y_test_fold, y_pred),
        'precision': precision_score(y_test_fold, y_pred)
   })
   # confusion matrix
   cumulative_conf_matrix += confusion_matrix(y_test_fold, y_pred)
   # ROC curve
   fpr, tpr, _ = roc_curve(y_test_fold, y_probs)
   ax_roc.plot(fpr, tpr, alpha=0.3)
   # Precision-Recall curve
   precision, recall, _ = precision_recall_curve(y_test_fold, y_probs)
   ax_pr.plot(recall, precision, alpha=0.3)
# Average metrics and ploting ROC & Precision-Recall
ax_roc.plot([0, 1], [0, 1], 'k--')
ax_roc.set_title('ROC Curve')
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_pr.set_title('Precision-Recall Curve')
ax_pr.set_xlabel('Recall')
ax_pr.set_ylabel('Precision')
plt.tight_layout()
plt.show()
# Calculate average metrics
average_scores = {metric: np.mean([score[metric] for score in scores]) for metric i
print("Average Metrics:", average_scores)
# display the cumulative confusion matrix
print("Cumulative Confusion Matrix:\n", cumulative_conf_matrix.astype(int))
# Defining the plot function for cumulative confusion matrix
def plot_cumulative_confusion_matrix(matrix):
   fig, ax = plt.subplots()
   cax = ax.matshow(matrix, cmap='Blues')
   plt.title('Cumulative Confusion Matrix')
   fig.colorbar(cax)
   ax.set_xlabel('Predicted labels')
   ax.set ylabel('True labels')
   ax.set_xticklabels([''] + ['Non-fraud', 'Fraud'])
   ax.set_yticklabels([''] + ['Non-fraud', 'Fraud'])
   # Looping over data dimensions and create text annotations.
   for i in range(matrix.shape[0]):
        for j in range(matrix.shape[1]):
```

```
ax.text(j, i, str(matrix[i, j]), ha="center", va="center", color="black

plt.show()

# Call the plot function
plot_cumulative_confusion_matrix(cumulative_conf_matrix)

# Feature Importance Visualisation
feature_importances = pd.Series(pipeline.named_steps['classifier'].feature_importan
plt.figure(figsize=(10, 8))
feature_importances.sort_values().plot(kind='barh')
plt.title('Feature Importance - RandomForest')
plt.show()

# DataFrame for the metrics
metrics_df = pd.DataFrame(scores)
print(metrics_df.describe().transpose()[['mean', 'std']])
```

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par

t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

Average Metrics: {'roc_auc': 0.9832867517538381, 'f1': 0.7346512270440831, 'accurac y': 0.9978856208961536, 'recall': 0.758187134502924, 'precision': 0.713606678537408 4}

Cumulative Confusion Matrix:

[[442334 525] [415 1301]]

C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\1974960730.py:72: UserWarning: set _ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks () or using a FixedLocator.

ax.set_xticklabels([''] + ['Non-fraud', 'Fraud'])

C:\Users\Ifean\AppData\Local\Temp\ipykernel_20284\1974960730.py:73: UserWarning: set _ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks () or using a FixedLocator.

ax.set_yticklabels([''] + ['Non-fraud', 'Fraud'])


```
mean std
roc_auc 0.983287 0.006776
f1 0.734651 0.026385
accuracy 0.997886 0.000226
recall 0.758187 0.035515
precision 0.713607 0.032880
```

Decision Tree

```
In [55]: # Define the pipeline
         pipeline = Pipeline([
             ('smote', SMOTE(random_state=1)),
             ('classifier', DecisionTreeClassifier(random_state=42))
         ])
         # Cross-validation
         skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
         scores = []
         cumulative_conf_matrix = np.zeros((2, 2))
         fig, (ax_roc, ax_pr) = plt.subplots(1, 2, figsize=(12, 6))
         # Cross-validation loop
         for train_index, test_index in skf.split(X_train, y_train):
             X_train_fold, X_test_fold = X_train.iloc[train_index], X_train.iloc[test_index]
             y_train_fold, y_test_fold = y_train.iloc[train_index], y_train.iloc[test_index]
             # Fitting the model
             pipeline.fit(X_train_fold, y_train_fold)
             y_pred = pipeline.predict(X_test_fold)
             y_probs = pipeline.predict_proba(X_test_fold)[:, 1]
             # Metrics collection
             scores.append({
                 'roc_auc': roc_auc_score(y_test_fold, y_probs),
                  'f1': f1_score(y_test_fold, y_pred),
                 'accuracy': accuracy_score(y_test_fold, y_pred),
                 'recall': recall_score(y_test_fold, y_pred),
                  'precision': precision_score(y_test_fold, y_pred)
             })
             # Confusion matrix
             cumulative_conf_matrix += confusion_matrix(y_test_fold, y_pred).astype(int)
             # ROC curve
             fpr, tpr, _ = roc_curve(y_test_fold, y_probs)
             ax_roc.plot(fpr, tpr, alpha=0.3)
             # Precision-Recall curve
             precision, recall, _ = precision_recall_curve(y_test_fold, y_probs)
             ax_pr.plot(recall, precision, alpha=0.3)
         # Finalize ROC & Precision-Recall plots
         ax_roc.plot([0, 1], [0, 1], 'k--')
         ax_roc.set_title('ROC Curve')
```

```
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_pr.set_title('Precision-Recall Curve')
ax_pr.set_xlabel('Recall')
ax_pr.set_ylabel('Precision')
plt.tight_layout()
plt.show()
# Calculate average metrics
average_scores = {metric: np.mean([score[metric] for score in scores]) for metric i
print("Average Metrics for Decision Tree:", average_scores)
def plot_cumulative_confusion_matrix(matrix):
   fig, ax = plt.subplots()
   cax = ax.matshow(matrix, cmap='Blues')
   plt.title('Cumulative Confusion Matrix')
   fig.colorbar(cax)
   ax.set_xlabel('Predicted labels')
   ax.set_ylabel('True labels')
   ax.set_xticks([0, 1, 2]) # Set the ticks first
   ax.set_xticklabels(['', 'Non-fraud', 'Fraud'])
   ax.set_yticks([0, 1, 2]) # Set the ticks first
   ax.set_yticklabels(['', 'Non-fraud', 'Fraud'])
   # Looping over data dimensions and create text annotations.
   for i in range(matrix.shape[0]): # Corrected indentation
       for j in range(matrix.shape[1]): # Corrected indentation
            ax.text(j, i, str(matrix[i, j]), ha="center", va="center", color="black
   plt.show()
plot_cumulative_confusion_matrix(cumulative_conf_matrix)
# Feature importance visualization
feature_importances = pd.Series(pipeline.named_steps['classifier'].feature_importan
plt.figure(figsize=(10, 8))
feature_importances.sort_values().plot(kind='barh')
plt.title('Feature Importance - Decision Tree')
plt.show()
```

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par

t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

Average Metrics for Decision Tree: {'roc_auc': 0.8645736303655047, 'f1': 0.636849924 4464731, 'accuracy': 0.9967744481633757, 'recall': 0.7313443492452059, 'precision': 0.5646127438611479}

KNN

```
In [57]: # Define the pipeline with imblearn's Pipeline
         pipeline = ImbPipeline([
             ('smote', SMOTE(random_state=1)),
             ('classifier', KNeighborsClassifier())
         ])
         # Cross-validation setup
         skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
         scores = []
         cumulative_conf_matrix = np.zeros((2, 2), dtype=int)
         fig, (ax_roc, ax_pr) = plt.subplots(1, 2, figsize=(12, 6))
         # Cross-validation loop
         for train_index, test_index in skf.split(X_train, y_train):
             X_train_fold, X_test_fold = X_train.iloc[train_index], X_train.iloc[test_index]
             y_train_fold, y_test_fold = y_train.iloc[train_index], y_train.iloc[test_index]
             # Fit the model
             pipeline.fit(X_train_fold, y_train_fold)
             y_pred = pipeline.predict(X_test_fold)
             y_probs = pipeline.predict_proba(X_test_fold)[:, 1]
             # Metrics collection
             scores.append({
```

```
'roc_auc': roc_auc_score(y_test_fold, y_probs),
        'f1': f1_score(y_test_fold, y_pred),
        'accuracy': accuracy_score(y_test_fold, y_pred),
        'recall': recall_score(y_test_fold, y_pred),
        'precision': precision_score(y_test_fold, y_pred)
   })
   # Confusion matrix update
   cumulative_conf_matrix += confusion_matrix(y_test_fold, y_pred)
   # ROC curve
   fpr, tpr, _ = roc_curve(y_test_fold, y_probs)
   ax_roc.plot(fpr, tpr, alpha=0.3)
   # Precision-Recall curve
   precision, recall, _ = precision_recall_curve(y_test_fold, y_probs)
   ax_pr.plot(recall, precision, alpha=0.3)
# Finalizing ROC & Precision-Recall plots
ax_roc.plot([0, 1], [0, 1], 'k--')
ax_roc.set_title('ROC Curve')
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_pr.set_title('Precision-Recall Curve')
ax_pr.set_xlabel('Recall')
ax_pr.set_ylabel('Precision')
plt.tight_layout()
plt.show()
# Calculating average metrics
average_scores = {metric: np.mean([score[metric] for score in scores]) for metric i
print("Average Metrics for KNN:", average_scores)
# Display cumulative confusion matrix
plt.figure(figsize=(8, 6))
sns.heatmap(cumulative_conf_matrix, annot=True, fmt="d", cmap='Blues')
plt.title("Cumulative Confusion Matrix - KNN")
plt.xlabel("Predicted labels")
plt.ylabel("True labels")
plt.show()
```

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API. warnings.warn(C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par

t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

C:\Users\Ifean\anaconda3\Lib\site-packages\sklearn\base.py:474: FutureWarning: `Base Estimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `skle arn.utils.validation.validate_data` instead. This function becomes public and is par t of the scikit-learn developer API.

warnings.warn(

Average Metrics for KNN: {'roc_auc': 0.8605726174483929, 'f1': 0.244921399009033, 'a ccuracy': 0.9840656845495177, 'recall': 0.6684652522779818, 'precision': 0.149976740 356965}


```
In [58]: # predictions/probabilities) from model
y_probs = pipeline.predict_proba(X_test)[:, 1] # Probabilities for the positive cl
# Calculate ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_probs)
```

```
# Plot ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label='ROC Curve')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
```

Out[58]: Text(0.5, 1.0, 'ROC Curve')

In [1]: !dir

Directory of C:\Users\Ifean

```
03/26/2025 11:51 AM
                       <DIR>
10/29/2024 03:42 AM
                       <DIR>
10/06/2024 01:13 AM
                       <DIR>
                                     .anaconda
02/09/2025 11:42 PM
                       <DIR>
                                     .azuredatastudio
03/24/2025 06:41 PM
                       <DIR>
                                     .conda
10/06/2024 12:53 AM
                                  25 .condarc
10/06/2024 12:49 AM
                       <DIR>
                                     .continuum
03/21/2025 11:24 AM
                                  53 .git-for-windows-updater
03/20/2025 06:38 PM
                                 208 .gitconfig
03/26/2025 11:47 AM
                                     .ipynb checkpoints
                     <DIR>
10/06/2024 01:13 AM <DIR>
                                     .ipython
03/20/2025 01:12 PM <DIR>
                                     .jupyter
10/06/2024 01:23 AM <DIR>
                                     .matplotlib
03/25/2025 01:03 AM <DIR>
                                     .virtual_documents
12/15/2024 11:19 PM <DIR>
                                     .vscode
10/05/2024 10:48 PM <DIR>
                                     3D Objects
12/15/2024 11:08 PM <DIR>
                                     anaconda3
10/06/2024 03:57 PM
                      <DIR>
                                     Contacts
03/20/2025 07:37 PM
                       <DIR>
                                     Credit-Card-Fraud-Detection
03/25/2025 01:03 AM
                           1,547,779 Credit-Card-Fraud-Detection.ipynb
03/26/2025 11:51 AM
                             529,510 Credit_Card_Fraud_detection .ipynb
02/28/2025 06:12 PM
                       <DIR>
                                     Documents
03/26/2025 11:08 AM
                       <DIR>
                                     Downloads
03/20/2025 05:22 PM
                              41,560 Evaluating Machine Learning Methods in Credit
Card Fraud Detection.ipynb
10/06/2024 03:57 PM
                       <DIR>
                                     Favorites
03/20/2025 01:27 PM
                          143,639,688 fraud test.csv
                          172,927,448 GitHubDesktopSetup-x64.exe
03/20/2025 06:36 PM
10/06/2024 03:57 PM
                                     Links
                       <DIR>
02/07/2025 02:00 AM
                     <DIR>
                                     Microsoft
10/06/2024 03:57 PM
                       <DIR>
                                     Music
03/24/2025 05:30 PM
                             815,733 NNAMDI OKEKE PROJECT CODE.ipynb
                             310,275 NWwaterdata.csv
03/20/2025 01:14 PM
03/22/2025 12:24 AM
                      <DIR>
                                     Octoparse
03/22/2025 12:23 AM
                          85,506,776 Octoparse Setup 8.7.4.exe
03/26/2025 08:56 AM
                                     OneDrive
                       <DIR>
03/22/2025 12:40 AM
                          516,228,608 Orange3-3.38.1-Miniforge-x86_64.exe
10/05/2024 11:46 PM
                       <DIR>
                                     Roaming
10/06/2024 03:57 PM
                                     Saved Games
                       <DIR>
10/06/2024 03:57 PM
                       <DIR>
                                     Searches
10/06/2024 01:14 AM
                               34,660 simulated_water_distribution_dataset.csv
02/09/2025 09:27 PM
                           4,290,992 SQL2022-SSEI-Dev.exe
02/09/2025 09:43 PM
                          496,190,328 SSMS-Setup-ENU.exe
10/07/2024 02:41 AM
                              318,838 synthetic_water_data.csv
                          536,136,512 TableauPublicDesktop-64bit-2024-3-0.exe
02/23/2025 03:14 AM
12/27/2024 01:44 AM
                               5,915 Training.ipynb
10/07/2024 03:47 AM
                             584,692 Untitled.ipynb
10/06/2024 01:25 AM
                             388,915 Untitled1.ipynb
10/07/2024 12:14 AM
                               2,691 Untitled2.ipynb
10/07/2024 12:28 AM
                             596,577 Untitled3.ipynb
10/07/2024 02:40 AM
                             738,292 Untitled4.ipynb
```

```
03/20/2025 01:14 PM
                   1,386,579 Untitled5.ipynb
                           72 Untitled6.ipynb
10/10/2024 10:29 PM
01/26/2025 04:52 AM
                           3,083 Untitled7.ipynb
                          880,187 UU Interview Script.ipynb
10/11/2024 08:30 AM
10/11/2024 08:30 AM
                           880,187 UU Interview.ipynb
01/20/2025 09:31 PM <DIR>
                                  Videos
                           41,516 water_treatment_data.csv
01/26/2025 04:50 AM
            29 File(s) 1,964,027,699 bytes
            28 Dir(s) 373,852,708,864 bytes free
```

In [3]: !jupyter nbconvert "Credit-Card-Fraud-Detection.ipynb" --to webpdf

```
[NbConvertApp] Converting notebook Credit-Card-Fraud-Detection.ipynb to webpdf
[NbConvertApp] WARNING | Alternative text is missing on 29 image(s).
[NbConvertApp] Building PDF
Traceback (most recent call last):
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\webpdf.py", 1
ine 78, in main
   from playwright.async_api import async_playwright # type: ignore[import-not-fou
nd]
   ^^^^^^
ModuleNotFoundError: No module named 'playwright'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
 File "C:\Users\Ifean\anaconda3\Scripts\jupyter-nbconvert-script.py", line 10, in <
module>
   sys.exit(main())
            \wedge \wedge \wedge \wedge \wedge \wedge
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\jupyter_core\application.py", lin
e 283, in launch_instance
   super().launch_instance(argv=argv, **kwargs)
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\traitlets\config\application.py",
line 1075, in launch instance
   app.start()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
420, in start
   self.convert_notebooks()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
597, in convert notebooks
   self.convert_single_notebook(notebook_filename)
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
563, in convert_single_notebook
   output, resources = self.export single notebook(
                      ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
487, in export_single_notebook
   output, resources = self.exporter.from_filename(
                      ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 386, in from_filename
   return super().from_filename(filename, resources, **kw) # type:ignore[return-va
lue]
          ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 201, in from filename
   return self.from file(f, resources=resources, **kw)
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 392, in from_file
   return super().from_file(file_stream, resources, **kw) # type:ignore[return-val
ue]
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 220, in from file
   return self.from_notebook_node(
          ^^^^^
```

```
File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\webpdf.py", 1
ine 174, in from_notebook_node
   pdf data = self.run playwright(html)
             ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\webpdf.py", 1
ine 163, in run_playwright
   pdf_data = pool.submit(run_coroutine, main(temp_file)).result()
             ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\concurrent\futures\ base.py", line 456, in resu
1t
   return self.__get_result()
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\concurrent\futures\_base.py", line 401, in __ge
t_result
   raise self._exception
 File "C:\Users\Ifean\anaconda3\Lib\concurrent\futures\thread.py", line 58, in run
   result = self.fn(*self.args, **self.kwargs)
           ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\webpdf.py", 1
ine 161, in run_coroutine
   return loop.run_until_complete(coro)
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\asyncio\base_events.py", line 687, in run_until
_complete
   return future.result()
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\webpdf.py", 1
ine 84, in main
   raise RuntimeError(msg) from e
RuntimeError: Playwright is not installed to support Web PDF conversion. Please inst
all `nbconvert[webpdf]` to enable.
```

In [5]: !jupyter nbconvert "Credit-Card-Fraud-Detection.ipynb" --to pdf

```
[NbConvertApp] Converting notebook Credit-Card-Fraud-Detection.ipynb to pdf
[NbConvertApp] ERROR | Error while converting 'Credit-Card-Fraud-Detection.ipynb'
Traceback (most recent call last):
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
487, in export_single_notebook
   output, resources = self.exporter.from_filename(
                     ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 386, in from_filename
   return super().from filename(filename, resources, **kw) # type:ignore[return-va
lue]
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 201, in from_filename
   return self.from_file(f, resources=resources, **kw)
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 392, in from_file
   return super().from_file(file_stream, resources, **kw) # type:ignore[return-val
ue]
         ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 220, in from file
   return self.from notebook node(
         ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\pdf.py", line
184, in from_notebook_node
   latex, resources = super().from_notebook_node(nb, resources=resources, **kw)
                    ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\latex.py", li
ne 92, in from_notebook_node
   return super().from notebook node(nb, resources, **kw)
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 424, in from notebook node
   output = self.template.render(nb=nb_copy, resources=resources)
           ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\jinja2\environment.py", line 130
4, in render
   self.environment.handle exception()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\jinja2\environment.py", line 939,
in handle_exception
   raise rewrite_traceback_stack(source=source)
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\index.tex.j
2", line 8, in top-level template code
   ((* extends cell style *))
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\style_jupyt
er.tex.j2", line 176, in top-level template code
   \prompt{(((prompt)))}{(((prompt_color)))}{(((execution_count)))}{(((extra_spac
e)))}
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\base.tex.j
2", line 7, in top-level template code
   ((*- extends 'document_contents.tex.j2' -*))
   ^^^^^^
```

```
File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\document_co
ntents.tex.j2", line 51, in top-level template code
   ((*- block figure scoped -*))
   ^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\display_pri
ority.j2", line 5, in top-level template code
   ((*- extends 'null.j2' -*))
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 30, in top-level template code
   ((*- block body -*))
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\base.tex.j
2", line 222, in block 'body'
   ((( super() )))
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 32, in block 'body'
   ((*- block any_cell scoped -*))
   ^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 85, in block 'any_cell'
   ((*- block markdowncell scoped-*)) ((*- endblock markdowncell -*))
   ^^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\document_co
ntents.tex.j2", line 68, in block 'markdowncell'
   ((( cell.source | citation2latex | strip_files_prefix | convert_pandoc('markdown
+tex_math_double_backslash', 'json',extra_args=[]) | resolve_references | convert_ex
plicitly_relative_paths | convert_pandoc('json','latex'))))
   ^^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\filters\pandoc.py", lin
e 36, in convert_pandoc
   return pandoc(source, from format, to format, extra args=extra args)
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
50, in pandoc
   check_pandoc_version()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
98, in check pandoc version
   v = get pandoc version()
       ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
75, in get_pandoc_version
   raise PandocMissing()
nbconvert.utils.pandoc.PandocMissing: Pandoc wasn't found.
Please check that pandoc is installed:
https://pandoc.org/installing.html
```

```
[NbConvertApp] Converting notebook Credit-Card-Fraud-Detection.ipynb to pdf
[NbConvertApp] ERROR | Error while converting 'Credit-Card-Fraud-Detection.ipynb'
Traceback (most recent call last):
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\nbconvertapp.py", line
487, in export_single_notebook
   output, resources = self.exporter.from_filename(
                     ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 386, in from_filename
   return super().from filename(filename, resources, **kw) # type:ignore[return-va
lue]
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 201, in from_filename
   return self.from_file(f, resources=resources, **kw)
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 392, in from_file
   return super().from_file(file_stream, resources, **kw) # type:ignore[return-val
ue]
         ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\exporter.py",
line 220, in from file
   return self.from notebook node(
         ^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\pdf.py", line
184, in from_notebook_node
   latex, resources = super().from_notebook_node(nb, resources=resources, **kw)
                    ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\latex.py", li
ne 92, in from_notebook_node
   return super().from notebook node(nb, resources, **kw)
         ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\exporters\templateexpor
ter.py", line 424, in from notebook node
   output = self.template.render(nb=nb_copy, resources=resources)
           ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\jinja2\environment.py", line 130
4, in render
   self.environment.handle exception()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\jinja2\environment.py", line 939,
in handle_exception
   raise rewrite_traceback_stack(source=source)
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\index.tex.j
2", line 8, in top-level template code
   ((* extends cell style *))
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\style_jupyt
er.tex.j2", line 176, in top-level template code
   \prompt{(((prompt)))}{(((prompt_color)))}{(((execution_count)))}{(((extra_spac
e)))}
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\base.tex.j
2", line 7, in top-level template code
   ((*- extends 'document_contents.tex.j2' -*))
   ^^^^^^
```

```
File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\document_co
ntents.tex.j2", line 51, in top-level template code
   ((*- block figure scoped -*))
   ^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\display_pri
ority.j2", line 5, in top-level template code
   ((*- extends 'null.j2' -*))
   ^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 30, in top-level template code
   ((*- block body -*))
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\base.tex.j
2", line 222, in block 'body'
   ((( super() )))
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 32, in block 'body'
   ((*- block any_cell scoped -*))
   ^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\null.j2", 1
ine 85, in block 'any_cell'
   ((*- block markdowncell scoped-*)) ((*- endblock markdowncell -*))
   ^^^^^^^
 File "C:\Users\Ifean\anaconda3\share\jupyter\nbconvert\templates\latex\document_co
ntents.tex.j2", line 68, in block 'markdowncell'
   ((( cell.source | citation2latex | strip_files_prefix | convert_pandoc('markdown
+tex_math_double_backslash', 'json',extra_args=[]) | resolve_references | convert_ex
plicitly_relative_paths | convert_pandoc('json','latex'))))
   ^^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\filters\pandoc.py", lin
e 36, in convert_pandoc
   return pandoc(source, from format, to format, extra args=extra args)
          ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
50, in pandoc
   check_pandoc_version()
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
98, in check pandoc version
   v = get pandoc version()
       ^^^^^^
 File "C:\Users\Ifean\anaconda3\Lib\site-packages\nbconvert\utils\pandoc.py", line
75, in get_pandoc_version
   raise PandocMissing()
nbconvert.utils.pandoc.PandocMissing: Pandoc wasn't found.
Please check that pandoc is installed:
https://pandoc.org/installing.html
```

```
Requirement already satisfied: nbconvert[webpdf] in c:\users\ifean\anaconda3\lib\sit
e-packages (7.16.4)
Requirement already satisfied: beautifulsoup4 in c:\users\ifean\anaconda3\lib\site-p
ackages (from nbconvert[webpdf]) (4.12.3)
Requirement already satisfied: bleach!=5.0.0 in c:\users\ifean\anaconda3\lib\site-pa
ckages (from nbconvert[webpdf]) (4.1.0)
Requirement already satisfied: defusedxml in c:\users\ifean\anaconda3\lib\site-packa
ges (from nbconvert[webpdf]) (0.7.1)
Requirement already satisfied: jinja2>=3.0 in c:\users\ifean\anaconda3\lib\site-pack
ages (from nbconvert[webpdf]) (3.1.4)
Requirement already satisfied: jupyter-core>=4.7 in c:\users\ifean\anaconda3\lib\sit
e-packages (from nbconvert[webpdf]) (5.7.2)
Requirement already satisfied: jupyterlab-pygments in c:\users\ifean\anaconda3\lib\s
ite-packages (from nbconvert[webpdf]) (0.1.2)
Requirement already satisfied: markupsafe>=2.0 in c:\users\ifean\anaconda3\lib\site-
packages (from nbconvert[webpdf]) (2.1.3)
Requirement already satisfied: mistune<4,>=2.0.3 in c:\users\ifean\anaconda3\lib\sit
e-packages (from nbconvert[webpdf]) (2.0.4)
Requirement already satisfied: nbclient>=0.5.0 in c:\users\ifean\anaconda3\lib\site-
packages (from nbconvert[webpdf]) (0.8.0)
Requirement already satisfied: nbformat>=5.7 in c:\users\ifean\anaconda3\lib\site-pa
ckages (from nbconvert[webpdf]) (5.10.4)
Requirement already satisfied: packaging in c:\users\ifean\anaconda3\lib\site-packag
es (from nbconvert[webpdf]) (24.1)
Requirement already satisfied: pandocfilters>=1.4.1 in c:\users\ifean\anaconda3\lib
\site-packages (from nbconvert[webpdf]) (1.5.0)
Requirement already satisfied: pygments>=2.4.1 in c:\users\ifean\anaconda3\lib\site-
packages (from nbconvert[webpdf]) (2.15.1)
Requirement already satisfied: tinycss2 in c:\users\ifean\anaconda3\lib\site-package
s (from nbconvert[webpdf]) (1.2.1)
Requirement already satisfied: traitlets>=5.1 in c:\users\ifean\anaconda3\lib\site-p
ackages (from nbconvert[webpdf]) (5.14.3)
Collecting playwright (from nbconvert[webpdf])
  Downloading playwright-1.51.0-py3-none-win amd64.whl.metadata (3.5 kB)
Requirement already satisfied: six>=1.9.0 in c:\users\ifean\anaconda3\lib\site-packa
ges (from bleach!=5.0.0->nbconvert[webpdf]) (1.16.0)
Requirement already satisfied: webencodings in c:\users\ifean\anaconda3\lib\site-pac
kages (from bleach!=5.0.0->nbconvert[webpdf]) (0.5.1)
Requirement already satisfied: platformdirs>=2.5 in c:\users\ifean\anaconda3\lib\sit
e-packages (from jupyter-core>=4.7->nbconvert[webpdf]) (3.10.0)
Requirement already satisfied: pywin32>=300 in c:\users\ifean\anaconda3\lib\site-pac
kages (from jupyter-core>=4.7->nbconvert[webpdf]) (305.1)
Requirement already satisfied: jupyter-client>=6.1.12 in c:\users\ifean\anaconda3\li
b\site-packages (from nbclient>=0.5.0->nbconvert[webpdf]) (8.6.0)
Requirement already satisfied: fastjsonschema>=2.15 in c:\users\ifean\anaconda3\lib
\site-packages (from nbformat>=5.7->nbconvert[webpdf]) (2.16.2)
Requirement already satisfied: jsonschema>=2.6 in c:\users\ifean\anaconda3\lib\site-
packages (from nbformat>=5.7->nbconvert[webpdf]) (4.19.2)
Requirement already satisfied: soupsieve>1.2 in c:\users\ifean\anaconda3\lib\site-pa
ckages (from beautifulsoup4->nbconvert[webpdf]) (2.5)
Collecting pyee<13,>=12 (from playwright->nbconvert[webpdf])
  Downloading pyee-12.1.1-py3-none-any.whl.metadata (2.9 kB)
Collecting greenlet<4.0.0,>=3.1.1 (from playwright->nbconvert[webpdf])
  Downloading greenlet-3.1.1-cp312-cp312-win_amd64.whl.metadata (3.9 kB)
Requirement already satisfied: attrs>=22.2.0 in c:\users\ifean\anaconda3\lib\site-pa
ckages (from jsonschema>=2.6->nbformat>=5.7->nbconvert[webpdf]) (23.1.0)
```

```
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\users\ifea
n\anaconda3\lib\site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert[webpd
f]) (2023.7.1)
Requirement already satisfied: referencing>=0.28.4 in c:\users\ifean\anaconda3\lib\s
ite-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert[webpdf]) (0.30.2)
Requirement already satisfied: rpds-py>=0.7.1 in c:\users\ifean\anaconda3\lib\site-p
ackages (from jsonschema>=2.6->nbformat>=5.7->nbconvert[webpdf]) (0.10.6)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\ifean\anaconda3\li
b\site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert[webpdf])
(2.9.0.post0)
Requirement already satisfied: pyzmq>=23.0 in c:\users\ifean\anaconda3\lib\site-pack
ages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert[webpdf]) (25.1.2)
Requirement already satisfied: tornado>=6.2 in c:\users\ifean\anaconda3\lib\site-pac
kages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert[webpdf]) (6.4.1)
Requirement already satisfied: typing-extensions in c:\users\ifean\anaconda3\lib\sit
e-packages (from pyee<13,>=12->playwright->nbconvert[webpdf]) (4.11.0)
Downloading playwright-1.51.0-py3-none-win_amd64.whl (34.9 MB)
  ----- 0.0/34.9 MB ? eta -:--:-
 ----- 0.3/34.9 MB ? eta -:--:-
  ----- 0.8/34.9 MB 2.2 MB/s eta 0:00:16
  - ----- 1.3/34.9 MB 2.3 MB/s eta 0:00:15
 -- ----- 1.8/34.9 MB 2.2 MB/s eta 0:00:15
 -- ----- 2.4/34.9 MB 2.3 MB/s eta 0:00:15
 --- 2.9/34.9 MB 2.3 MB/s eta 0:00:15
  --- 3.4/34.9 MB 2.3 MB/s eta 0:00:14
 ---- 3.9/34.9 MB 2.3 MB/s eta 0:00:14
 ---- 4.2/34.9 MB 2.3 MB/s eta 0:00:14
 ---- 4.7/34.9 MB 2.3 MB/s eta 0:00:14
 ----- 5.2/34.9 MB 2.3 MB/s eta 0:00:14
  ----- 5.8/34.9 MB 2.3 MB/s eta 0:00:13
 ----- 6.3/34.9 MB 2.3 MB/s eta 0:00:13
 ----- 6.8/34.9 MB 2.3 MB/s eta 0:00:13
 ----- 7.3/34.9 MB 2.3 MB/s eta 0:00:13
 ----- 7.9/34.9 MB 2.3 MB/s eta 0:00:12
 ----- 8.4/34.9 MB 2.3 MB/s eta 0:00:12
 ----- 8.7/34.9 MB 2.3 MB/s eta 0:00:12
  ----- 9.2/34.9 MB 2.3 MB/s eta 0:00:12
 ----- 9.7/34.9 MB 2.3 MB/s eta 0:00:12
 ----- 10.2/34.9 MB 2.3 MB/s eta 0:00:11
  ----- 10.7/34.9 MB 2.3 MB/s eta 0:00:11
 ----- 11.3/34.9 MB 2.3 MB/s eta 0:00:11
  ----- 11.8/34.9 MB 2.3 MB/s eta 0:00:11
  ----- 12.3/34.9 MB 2.3 MB/s eta 0:00:10
  ----- 12.8/34.9 MB 2.3 MB/s eta 0:00:10
 ----- 13.4/34.9 MB 2.3 MB/s eta 0:00:10
 ----- 13.9/34.9 MB 2.3 MB/s eta 0:00:10
  ----- 14.4/34.9 MB 2.3 MB/s eta 0:00:09
 ----- 14.9/34.9 MB 2.3 MB/s eta 0:00:09
  ----- 15.5/34.9 MB 2.3 MB/s eta 0:00:09
 ----- 16.0/34.9 MB 2.3 MB/s eta 0:00:09
 ----- 16.3/34.9 MB 2.3 MB/s eta 0:00:09
 ----- 16.8/34.9 MB 2.3 MB/s eta 0:00:08
 ----- 17.3/34.9 MB 2.3 MB/s eta 0:00:08
  ----- 17.8/34.9 MB 2.3 MB/s eta 0:00:08
```

------ 18.4/34.9 MB 2.3 MB/s eta 0:00:08 ------ 18.9/34.9 MB 2.3 MB/s eta 0:00:08

```
----- 19.4/34.9 MB 2.3 MB/s eta 0:00:07
  ----- 19.9/34.9 MB 2.3 MB/s eta 0:00:07
  ----- 20.4/34.9 MB 2.3 MB/s eta 0:00:07
 ----- 20.7/34.9 MB 2.3 MB/s eta 0:00:07
  ----- 21.2/34.9 MB 2.3 MB/s eta 0:00:06
  ----- 21.8/34.9 MB 2.3 MB/s eta 0:00:06
  ----- 22.3/34.9 MB 2.3 MB/s eta 0:00:06
  ----- 22.8/34.9 MB 2.3 MB/s eta 0:00:06
  ----- 23.3/34.9 MB 2.3 MB/s eta 0:00:06
  ----- 23.9/34.9 MB 2.3 MB/s eta 0:00:05
  ----- 24.4/34.9 MB 2.3 MB/s eta 0:00:05
 ----- 24.9/34.9 MB 2.3 MB/s eta 0:00:05
  ----- 25.4/34.9 MB 2.3 MB/s eta 0:00:05
  ----- 26.0/34.9 MB 2.3 MB/s eta 0:00:04
  ----- 26.5/34.9 MB 2.3 MB/s eta 0:00:04
 ----- 27.0/34.9 MB 2.3 MB/s eta 0:00:04
 ----- 27.5/34.9 MB 2.3 MB/s eta 0:00:04
  ----- 27.8/34.9 MB 2.3 MB/s eta 0:00:04
 ----- 28.3/34.9 MB 2.3 MB/s eta 0:00:03
  ----- 28.8/34.9 MB 2.3 MB/s eta 0:00:03
  ----- 29.4/34.9 MB 2.3 MB/s eta 0:00:03
 ----- 29.9/34.9 MB 2.3 MB/s eta 0:00:03
 ----- 30.4/34.9 MB 2.3 MB/s eta 0:00:02
 ----- 30.9/34.9 MB 2.3 MB/s eta 0:00:02
  ----- 31.5/34.9 MB 2.3 MB/s eta 0:00:02
 ----- 32.0/34.9 MB 2.3 MB/s eta 0:00:02
  ----- 32.2/34.9 MB 2.3 MB/s eta 0:00:02
 ----- -- 32.8/34.9 MB 2.3 MB/s eta 0:00:01
 ----- - 33.3/34.9 MB 2.3 MB/s eta 0:00:01
  ----- 33.8/34.9 MB 2.3 MB/s eta 0:00:01
  ----- 34.3/34.9 MB 2.3 MB/s eta 0:00:01
  ----- 34.6/34.9 MB 2.3 MB/s eta 0:00:01
 ----- 34.9/34.9 MB 2.3 MB/s eta 0:00:00
Downloading greenlet-3.1.1-cp312-cp312-win amd64.whl (299 kB)
Downloading pyee-12.1.1-py3-none-any.whl (15 kB)
Installing collected packages: pyee, greenlet, playwright
 Attempting uninstall: greenlet
  Found existing installation: greenlet 3.0.1
  Uninstalling greenlet-3.0.1:
   Successfully uninstalled greenlet-3.0.1
Successfully installed greenlet-3.1.1 playwright-1.51.0 pyee-12.1.1
```

```
Downloading Chromium 134.0.6998.35 (playwright build v1161) from https://cdn.playwri
ght.dev/dbazure/download/playwright/builds/chromium/1161/chromium-win64.zip
0% of 141.8 MiB
| â - â - â - â - â - â - â - â - â -
10% of 141.8 MiB
20% of 141.8 MiB
30% of 141.8 MiB
â- â- â- â-
                                                                            40% of 141.8 MiB
Downloading Chromium 134.0.6998.35 (playwright build v1161) from https://playwright.
download.prss.microsoft.com/dbazure/download/playwright/builds/chromium/1161/chromiu
m-win64.zip
                                                                                                      ı
0% of 141.8 MiB
|â- â- â- â- â- â- â-
 10% of 141.8 MiB
20% of 141.8 MiB
30% of 141.8 MiB
â- â- â- â-
                                                                            40% of 141.8 MiB
â- â- â- â- â- â- â- â- â- â-
                                                                                                 50%
of 141.8 MiB
\hat{a} - \hat
60% of 141.8 MiB
70% of 141.8 MiB
| 80% of 141.8 MiB
 â- â- â- â- â- â- â-
90% of 141.8 MiB
41.8 MiB
Chromium 134.0.6998.35 (playwright build v1161) downloaded to C:\Users\Ifean\AppData
\Local\ms-playwright\chromium-1161
Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/do
wnload/playwright/builds/ffmpeg/1011/ffmpeg-win64.zip
                                                                                                      0% of 1.3 MiB
|â- â- â- â- â- â- â- â-
 10% of 1.3 MiB
20% of 1.3 MiB
| 30% of 1.3 MiB
```

```
â- â-
                         51%
of 1.3 MiB
60% of 1.3 MiB
| 70% of 1.3 MiB
â- â- â- â- â- â- â-
             | 80% of 1.3 MiB
90% of 1.3 MiB
1.3 MiB
FFMPEG playwright build v1011 downloaded to C:\Users\Ifean\AppData\Local\ms-playwrig
ht\ffmpeg-1011
Downloading Chromium Headless Shell 134.0.6998.35 (playwright build v1161) from http
s://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1161/chromium-hea
dless-shell-win64.zip
0% of 87.8 MiB
| â - â - â - â - â - â - â - â - â -
10% of 87.8 MiB
20% of 87.8 MiB
30% of 87.8 MiB
â- â- â- â-
                    40% of 87.8 MiB
â- â-
of 87.8 MiB
60% of 87.8 MiB
70% of 87.8 MiB
Downloading Chromium Headless Shell 134.0.6998.35 (playwright build v1161) from http
s://playwright.download.prss.microsoft.com/dbazure/download/playwright/builds/chromi
um/1161/chromium-headless-shell-win64.zip
                           0% of 87.8 MiB
|â- â- â- â- â- â- â- â-
10% of 87.8 MiB
20% of 87.8 MiB
| 30% of 87.8 MiB
```

```
â- â-
                                                                                                                                                                  50%
of 87.8 MiB
60% of 87.8 MiB
| 70% of 87.8 MiB
â- â- â- â- â- â- â-
                                                                                     80% of 87.8 MiB
\hat{a}- \hat{a}
7.8 MiB
Chromium Headless Shell 134.0.6998.35 (playwright build v1161) downloaded to C:\User
s\Ifean\AppData\Local\ms-playwright\chromium_headless_shell-1161
Downloading Winldd playwright build v1007 from https://cdn.playwright.dev/dbazure/do
wnload/playwright/builds/winldd/1007/winldd-win64.zip
| â- â- â- â- â- â- â-
| 12% of 0.1 MiB
25% of 0.1 MiB
â- â- â- â-
                                                                                                                                40% of 0.1 MiB
â- â-
                                                                                                                                                                  52%
of 0.1 MiB
| 71% of 0.1 MiB
\hat{a} - \hat
  | 90% of 0.1 MiB
```

Winldd playwright build v1007 downloaded to C:\Users\Ifean\AppData\Local\ms-playwright\winldd-1007

0.1 MiB

 \hat{a} - \hat

```
Error: Request to https://cdn.playwright.dev/dbazure/download/playwright/builds/chro
mium/1161/chromium-win64.zip timed out after 30000ms
    at ClientRequest.rejectOnTimeout (C:\Users\Ifean\anaconda3\Lib\site-packages\pla
ywright\driver\package\lib\server\utils\network.js:76:15)
    at Object.onceWrapper (node:events:632:28)
    at ClientRequest.emit (node:events:518:28)
    at TLSSocket.emitRequestTimeout (node:_http_client:863:9)
    at Object.onceWrapper (node:events:632:28)
    at TLSSocket.emit (node:events:530:35)
    at Socket._onTimeout (node:net:609:8)
    at listOnTimeout (node:internal/timers:594:17)
    at process.processTimers (node:internal/timers:529:7)
Error: Request to https://cdn.playwright.dev/dbazure/download/playwright/builds/chro
mium/1161/chromium-headless-shell-win64.zip timed out after 30000ms
    at ClientRequest.rejectOnTimeout (C:\Users\Ifean\anaconda3\Lib\site-packages\pla
ywright\driver\package\lib\server\utils\network.js:76:15)
    at Object.onceWrapper (node:events:632:28)
    at ClientRequest.emit (node:events:518:28)
    at TLSSocket.emitRequestTimeout (node:_http_client:863:9)
    at Object.onceWrapper (node:events:632:28)
    at TLSSocket.emit (node:events:530:35)
    at Socket._onTimeout (node:net:609:8)
    at listOnTimeout (node:internal/timers:594:17)
    at process.processTimers (node:internal/timers:529:7)
 !jupyter nbconvert "Credit-Card-Fraud-Detection.ipynb" --to webpdf
```