In [45]:

```
#importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [46]:

```
df = pd.read_csv("AirPassengers.csv")
df
```

Out[46]:

	Month	#Passengers		
0	1949-01	112		
1	1949-02	118		
2	1949-03	132		
3	1949-04	129		
4	1949-05	121		
139	1960-08	606		
140	1960-09	508		
141	1960-10	461		
142	1960-11	390		
143	1960-12	432		

144 rows × 2 columns

In [47]:

```
plt.rcParams.update({'figure.figsize':(12,6)})
df['#Passengers'].plot()
```

Out[47]:

<AxesSubplot:>

Method 1 - Differencing and Seasonal differencing

```
In [48]:
```

```
df['#Passengers'].shift(1)
Out[48]:
```

```
0
          NaN
1
        112.0
2
        118.0
3
        132.0
4
        129.0
139
        622.0
140
        606.0
141
        508.0
        461.0
142
```

Name: #Passengers, Length: 144, dtype: float64

In [49]:

```
df['#Passengers_diff'] = df['#Passengers'] - df['#Passengers'].shift(1)
```

In [50]:

```
df['#Passengers_diff'].dropna().plot()
```

Out[50]:

<AxesSubplot:>

In [51]:

```
# Seasonal Differencing meaning - y(t) = y(t) - y(t-n)
```

In [52]:

```
df['#Passengers_diff_7'] = df['#Passengers'] - df['#Passengers'].shift(7)
df['#Passengers_diff_7'].dropna().plot()
```

Out[52]:

<AxesSubplot:>

Method 2 - Transformation

In [53]:

```
#Create transformation columns
import numpy as np

#calculate the log
df['adj_log'] = np.log(df['#Passengers'])

#calculate the square root
df['adj_sqrt'] = np.sqrt(df['#Passengers'])

#calculate the cubed root
df['adj_cbrt'] = np.cbrt(df['#Passengers'])
```

In [54]:

```
df['adj_log'].dropna().plot()
```

Out[54]:

<AxesSubplot:>

In [55]:

df['adj_sqrt'].dropna().plot()

Out[55]:

<AxesSubplot:>

In [56]:

df['adj_cbrt'].dropna().plot()

Out[56]:

<AxesSubplot:>

In [57]:

```
df['adj_log'].dropna().plot()
df['adj_sqrt'].dropna().plot()
df['adj_cbrt'].dropna().plot()
```

Out[57]:

<AxesSubplot:>

In [58]:

```
df['training_diff'] = df['adj_log'] - df['adj_log'].shift(1)
df['training_diff'].dropna().plot()
```

Out[58]:

<AxesSubplot:>

In []:

In []:			