

大模型AI训练的数据加速

肖文聪

2024. 4. 13 Qcon 北京站

极客邦科技 2024 年会议规划

促进软件开发及相关领域知识与创新的传播

肖文聪

• 阿里云-PAI机器学习 高级技术专家

• 负责PAI灵骏GPU集群管理、容错和稳定性、AI数据加速、LLM推理等方向

• 在OSDI/NSDI/ATC等系统顶会上发表论文30余篇,引用2000+

目录

• 大模型存储需求背景

• 通用存储架构下的挑战

• 改进的系统设计

• 阿里云DatasetAcc产品

快速增长的大模型规模

○ ← GPT5 ??T

GPT4 1.8T

Mistral 8*22B

Qwen 72B

至今国内开源模型仍无法追平2020年的GPT3

(猜测)

快速增长的大模型规模

○ ← GPT5 ??T

快速增长的大模型规模

激增的AI训练数据

• GPT3约570GB

• GPT4预估20TB

- SORA预估100TB
 - 多模态数据
 - 文本
 - 图片
 - 视频
 - 合成数据

*Chatgpt3.5, Chatgpt4, SORA均引用互联网公开讨论猜测数据规模

Scaling Law

• 算力、数据、模型越大,效果越好!

Test Loss

---- $L = (C_{\min}/2.3 \cdot 10^8)^{-0.050}$

Compute
PF-days, non-embedding

- 算力: 千卡 -->万卡
- 数据: 3000~50000B tokens
- 模型: 7B-->32B-->200B···

Scaling Laws for Neural Language Models

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

大模型带来的规模化数据

- 模型规模增大(Ckpt在~TB级别)
- 训练数据的增长(RawData在~100TB级别)
 - 多模态融合
 - 合成数据
 - 数据增强

回顾AI大模型训练流程

数据划分

回顾AI大模型训练流程

挑战1: 读数据

- 通用存储系统
 - 强一致Meta管理
 - 高可用的三副本

Figure 1: GFS Architecture

云存储: OSS/NAS等均沿用类似于GFS的架构设计

挑战1: 读数据

- 通用存储系统
- AI小文件随机访问
 - Meta访问压力
 - 有限的IOPS*
 - OSS: 10K
 - NAS: 100K

Figure 1: GFS Architecture

云存储: OSS/NAS等均沿用类似于GFS的架构设计

挑战2: 写数据

- 大规模分布式AI训练(e.g., 千卡规模)硬件故障不可避免
 - 通常采用周期性Ckpt进行容错

- 典型场景30min保存一次全量模型Ckpt
 - E.g., 150GB for Qwen 72B 模型

挑战2: 写数据

• 大文件写入带宽Bound

高帯宽:場 保存 训练 保存 训练 保存 训练

• 低带宽:

训练保存训练保存训练

- 带宽 vs 成本
 - 高带宽全闪存储带来昂贵的成本

	带宽(GB/s)	价格(元/GB月)
OSS (对象存储)	1.25	0.033
CPFS (全闪)	10	1.6
倍数	8	48.48

*以阿里云乌兰察布为例

挑战3: 性能隔离

- 作业异常
 - 迭代时间变长
 - GPU利用率下降
 - 性能抖动

挑战3: 性能隔离

根因:文件存储系统并非为AI任务设计

• AI训练要求"随机"访问数据对通用存储系统不友好

- AI训练带来大量爆发式Ckpt流量
- · AI任务是大规模同步训练易受影响
- · AI任务的特性没有被文件系统很好的利用

AI训练真的需要通用存储吗?

AI训练任务

通用存储系统 对象存储(OSS)、文件系统(NAS)

AI训练真的需要通用存储吗?

- 通用文件系统的弊端
 - 强一致性限制了架构的可扩展性
 - 多副本限制性能抬高成本
 - 读写混合潜藏着干扰
 - 缺乏任务间隔离能力

Revisit the Core Concepts of File System

探讨:一个可能的缓存系统架构

核心设计: 读写分离缓存提供性能隔离

通用存储系统 对象存储(OSS)、文件系统(NAS)

核心设计: Meta裁剪+主动近端Cache

- 并不是所有的Meta都有用
 - E.g., 修改时间, 创建时间…

- 优先PyTorch DataLoader的需求
 - 文件名、大小

- 典型的H100服务器有2TB内存
 - 优先缓存Meta信息,可支持~100TB数据集

核心设计: 平衡带宽与性价比

• 高速单副本缓存叠加廉价持久化存储

核心设计: 平衡带宽与性价比

- 与全闪文件系统相比
 - 性能相似,一样的磁盘写入带宽
 - 价格分析
 - 因仅需单副本,相比3副本高可用文件系统,成本仅1/3
 - 可靠性: Ckpt可以接受极端情况下丢失

PAI-DatasetAcc

全托管、面向机器学习的云原生AI数据集加速服务

云原生

完全基于云原生基础设施 Kubernetes native, 容器化 支持客户自建ACK场景

多样加速策略

适配多种存储:对象存储、NAS、CPFS、ODPS 多级样本加速,训练效率达到最优 网络、训练框架协同制定最优加速策略

云上全托管

弹性资源,动态伸缩 可运维,多级监控和管理

更易用

PAI-DSW、PAI-DLC 深度适配 训练代码无侵入 标准 OpenAPI,易于被集成

PAI-DatasetAcc

全托管、面向机器学习的云原生AI数据集加速服务

加速槽性能隔离

• 按需按量加速, 文件夹级性能隔离

- E.g., 10T加速实例
 - 1T只读加速训练数据
 - 5T为任务A加速Ckpt
 - 4T为任务B加速Ckpt

•显式区分"只读""读写",极致优化性能

加速IO瓶颈的AI训练任务

• 更优的AI数据集读取性能

AI读取训练数据速率 (训练文件个数/SECONDS)

模型类型	业务模型	相比于云上对象存储(OSS)的加速比	
		文件存储(极速型)	PAI-DatasetAcc
图像分类	RetNet50	7. 20X	12. 31X
	SwinTransformer	8. 67X	12. 83X
多模态	OfaSys	6. 5X	8. 0X
语音识别	Wenet	36. 89X	41. 73X
NLP	Bert	1X	1x

视觉任务 文本任务 语音任务 多模态任务

*测试环境: 单机8卡A100

高性价比加速模型Checkpoint

- Qwen 72B训练
 - 快照耗时: ~分钟
 - DatasetAcc+OSS价格是全闪存储的70%

加速大数据结构化数据

- 500w条生产数据端到端性能测试
 - 2~3x性能提升

测试编号	BatchSize	使用DatasetAcc 加速读取 (单位 秒)	使用原生MaxCompute耗时 (单位秒)
1	512	14.71841049194336	39.86837840080261
2	1024	15.056357860565186	44.40856122970581
3	2048	15.917996883392334	37.80163049697876

总结:是时候为AI构建专属存储系统了!

大模型训练

AI特定场景:

LLM推理

Agent工作流

• • •

AGI进程:

从单模态到多模态

AI专属 存储系统

AI特性:

随机梯度下降

Ckpt无需严格可靠

并行策略 (e.g., TP)

• • •

系统特性:

易用性POSIX

扩展性

成本

• • •

AI场景 存储产品

极客邦科技 2024 年会议规划

促进软件开发及相关领域知识与创新的传播

谢谢 & QA

© Copyright by Alibaba Cloud All rights reserved

WWW.ALIYUN.COM