WTS. Provide some divergent sequences with the following property.

Proof.

(a) For all $M \in \mathbb{N}$, $|x_n| \geq M$ eventually,

$$\{x_n\} = n$$

(b) x_n is unbounded, but there is some $M \in \mathbb{N}$ with $|x_n| \leq \Lambda$

$${x_n} = n(1 + (-1)^n)/2$$

(c) $\{x_n\}$ is periodic,

$$\{x_n\} = (-1)^n$$

(d) $\{x_n\}$ is bounded, but not eventually periodic.

 $\{x_n\} = 1$, n is prime, 0 otherwise.

WTS. Prove two things

- (a) $x_n \to x \iff |x_n x| \to 0$,
- (b) The convergence of $\{x_n\}$ implies the convergence of $\{|x_n|\}$ converse.

It is at this point we introduce a small Lemma.

Lemma 0.1 (Super Triangle Inequality). For any $x, y, z \in$ denotes a metric space then,

$$\left| d(x,z) - d(y,z) \right| \le d(x,y)$$

Proof. From the regular Triangle Inequality,

$$d(x,z) \le d(x,y) + d(y,z)$$

$$d(y,z) \le d(x,y) + d(x,z)$$

The proof is complete upon isolating d(x, y) in both equations.

Proof of Part A. A sequence $\{x_n\}$ converges to x, if and only $\varepsilon > 0$, eventually for large enough n

$$|x_n - x| < \varepsilon \iff ||x_n - x| - 0| < \varepsilon$$

And the right member above is equivalent to saying that $|x_n -$ completes the proof.

Proof of Part B. Suppose $x_n \to x$ and fix a $\varepsilon > 0$, then $d(x_n, tually)$. Using the Super Triangle Inequality in Lemma 0.1, and z = 0, we obtain

$$|d(x_n,0) - d(x,0)| \le d(x_n,x) < \varepsilon$$

Therefore $|x_n| \to |x|$. To show that the converse does not hold $x_n = (-1)^n$.

WTS. Prove three things

- (a) Give examples of divergent sequences $\{x_n\}$, and $\{y_n\}$ such converges.
- (b) Prove that if $\{x_n\}$ and $\{x_ny_n\}$ are both convergent, and then $\{y_n\}$ is convergent.
- (c) Prove that if $\{nx_n\}$ converges, then $x_n \to 0$.

Proof of Part A. Let $x_n = y_n = (-1)^n$.

We need two lemmas for the next proof.

Lemma 0.2. If $\{x_n\} \in \mathbb{R}$, $x_n \to x \neq 0$, then $(x_n)^{-1} \to x^{-1}$.

Proof. If $x_n \to x \neq 0$, then x_n lies in a ball about x of radius |x|2 so $x_n x \neq 0$. Moreover, using the fact that x_n lies in said b eventually, and

$$|x_n - x| \le |x|2^{-1} \iff |x_n x - x^2| \le |x|^2 2^{-1}$$

$$\iff ||x_n x| - |x|^2| \le |x|^2 2^{-1}$$

$$\iff |x|^2 2^{-1} \le |x_n x| \le 3|x|^2 2^{-1}$$

$$\iff |x_n x|^{-1} \le (|x^2|2^{-1})^{-1} = M^{-1}$$

Now for every $M\varepsilon > 0$, the following must hold eventually,

$$|x_n - x|M^{-1} < \varepsilon \implies \frac{|x_n - x|}{|x_n x|} \le \frac{|x_n - x|}{M} < \varepsilon$$

Therefore,

$$\left| \frac{1}{x_n} - \frac{1}{x} \right| < \varepsilon \to 0$$

Lemma 0.3. Let $\{x_n\}$, and $\{y_n\}$ be sequences of reals, and if $y_n \to y$, then $x_n y_n \to xy$.

Proof. Since $\{x_n\}$ and $\{y_n\}$ are convergent sequences, they must So there exists some $M_1, M_2 \in \mathbb{N}^+$ with $|y| \leq M_1$ and $|x_n| \leq M$

$$|x_n y_n - xy| = |x_n (y_n - y) + y(x_n - x)|$$

$$\leq M_2 |y_n - y| + M_1 |x_n - x|$$

Now fix an $\varepsilon > 0$, and there exists N_1 and N_2 so large that

$$|y_n - y| < \varepsilon M_2^{-1}$$
$$|x_n - x| < \varepsilon M_1^{-1}$$

for all $n \ge N_1 + N_2$. Therefore $|x_n y_n - xy| < \varepsilon$ eventually, and the proof.

Proof of Part B. Apply the Lemmas 0.2 and 0.3, writing $\lim x$ some y, then $y_n = x_n y_n(x_n)^{-1}$, and since $x_n \neq 0$ eventually, we that

$$x_n y_n (x_n)^{-1} = y_n \to y = xy(x)^{-1} \in \mathbb{R}$$

Therefore $\{y_n\}$ converges.

Proof of Part C. Let $a = \lim nx_n$, and $0 = \lim n^{-1}$. Then $\{i \text{ verges by Lemma } 0.3, \text{ and } 0 = \lim n^{-1}\}$.

$$nx_n n^{-1} = x_n \to 0 = 0a$$

WTS. Show that

(a)
$$\frac{(-1)^n n}{n+1}$$
 diverges,

(b)
$$((n+1)^{1/2}-(n)^{1/2})n^{1/2} \to 2^{-1}$$
,

(c)
$$((n+1)^{1/2}-(n)^{1/2})n \to +\infty$$
,

(d)
$$(3\sqrt{n})^{1/2n} \to 1$$
,

(e)
$$(a^{n+1} + b^{n+1})(a^n + b^n)^{-1} \to b$$
, where $0 < a < b$, and

(f)
$$(n!)^{1/n^2} \to 1$$
.

First we begin with an important lemma.

0.1 Lemma

Lemma 0.4. If $\{x_n\}$ is a sequence in \mathbb{R} , and if $x_{n+1}/x_n < 0$ er if $|x_n| \to a > 0$, then x_n diverges.

Proof. Using the fact that $|x_n| \to a$, and fix $\varepsilon = a/2 > 0$, then

$$|x_n| - a < a/2 \iff a/2 < |x_n| < 3a/2$$

Using the fact that $x_{n+1}/x_n < 0$ eventually,

• either
$$-x_{n+1} = |x_{n+1}|$$
,

• or
$$|-x_n + x_{n+1}| = |x_n| + |x_{n+1}|$$
,

We have,

$$d(x_n, x_{n+1}) = \begin{vmatrix} x_n - x_{n+1} \\ = |x_n| + |x_{n+1}| \\ > a/2 + a/2 \\ > a \end{vmatrix}$$

Now suppose that $x_n \to x$ for some $x \in \mathbb{R}$, then for any $\varepsilon =$ must have

$$d(x_n, x_{n+1}) \le d(x_n, x) + d(x_{n+1}, x)$$

Using Equation (1), we get

$$a < a/2 + d(x_{n+1}, x) \implies a/2 < d(x_{n+1}, x) < a/2$$

Therefore $x_n \not\to x$, and this completes the proof.

Proof of 4a. We want to show $\frac{(-1)^n n}{n+1}$ diverges.

Let $\{x_n\}$ be the sequence in question, and we want to use Lem $|x_n| = n(n+1)^{-1}$, and

$$n(n+1)^{-1} = (1+n^{-1})^{-1} \to 1 > 0$$

Also, $x_{n+1}/x_n < 0$ for all $n \ge 1$, therefore by Lemma 0.4, $\{x_n\}$

Proof of 4b. We want to show

$$((n+1)^{1/2} - (n)^{1/2})n^{1/2} \to 2^{-1}$$

Let $\{x_n\}$ be the sequence in question, and note that

$$x_n = n^{1/2} \left(\frac{1}{(n+1)^{1/2} + (n)^{1/2}} \right)$$
$$= \frac{1}{1 + (1+n^{-1})^{1/2}}$$

And a moment's thought will show that $1 + (1 + n^{-1})^{1/2} \rightarrow 2^{-1}$.

Proof of 4c. We want to show

$$((n+1)^{1/2} - (n)^{1/2})n \to +\infty$$

Again, let $x_n = ((n+1)^{1/2} - (n)^{1/2})n$, notice that $x_n = n^{1/2}$ is the same sequence in part 4b. Where $y_n \to 2^{-1}$. Now fix $\varepsilon |y_n - 2^{-1}| < 4^{-1}$ eventually.

Hence, $4^{-1} < |y_n|$ eventually. And multiplication by $n^{1/2}$ on the estimate gives

$$n^{1/2}4^{-1} < |x_n| = x_n$$

Now, fix some $(4M)^2 > 0$, by the Archimedean Property, ther n so large (frequently in \mathbb{N}^+) where

$$n > (4M)^2 \implies n^{1/2}4^{-1} > M \implies |x_n| = x_n > M$$

and sending $M \to +\infty$ gives $x_n \to +\infty$, and this finishes the p

Proof of 4d. We want to show

$$(3\sqrt{n})^{1/2n} \to 1$$

Let $x_n = (3\sqrt{n})^{1/2n}$, be the sequence in the question. Notice the

•
$$n^{1/n} \to 1$$
, and $(n^{1/n})^{1/4} = (n^{1/4})^{1/n} \to 1$,

•
$$3^{1/2} > 1$$
, therefore $(3^{1/2})^{1/n} \to 1$

The proof is complete upon multiplying the two convergent sequ

Remark (Remark about the two bullet points in 4d). The first reuses a fact from Homework 4, and we took square roots on sequence twice. The second bullet point is also from Homework

Proof of 4e. We want to show

$$(a^{n+1} + b^{n+1})(a^n + b^n)^{-1} \to b, \quad \forall 0 < a < b$$

Let $x_n = (a^{n+1} + b^{n+1})(a^n + b^n)^{-1} \to b$, and 0 < a < b, and defithat $r > 1, 0 < r^{-1} < 1$, with $r^{-n} \to 0$.

$$x_n = \frac{a^{n+1}(1+r^{n+1})}{a^n(1+r^n)}$$

$$= a(1+r^{n+1})(1+r^n)^{-1}$$

$$= a(r^{-n}+r)(r^{-n}+1)^{-1}$$

To avoid being too verbose, $r^{-n}+1\to 1$, and $r^{-n}+r\to r$, th ar=b.

Proof of 4f. We want to show

$$(n!)^{1/n^2} \to 1$$

Let $x_n = (n!)^{1/n^2}$, notice that for all $1 \le n$,

$$1 \le n! \implies 1 \le x_n$$

More is true,

$$n! \le n^n \implies (n!)^{1/n^2} \le n^{1/n}$$

Since the constant sequence $a_n = 1$ converges to 1, and $n^{1/n}$ – work 4, x_n converges, and $x_n \to 1$.

Remark. We used the Squeeze Theorem here.

WTS. Let $\{x_n\}$ be a sequence of reals, where $x_n > 0$ even $x_{n+1}/x_n \to L > 1$, then $x_n \to +\infty$.

Proof. This proof modifies that of the 'convergent ratio test'. If (1+L)/2, then 1 < r < L, and let $\varepsilon = L - r > 0$, so that even

$$\left| x_{n+1}/x_n - L \right| < \varepsilon \iff -\varepsilon + L < x_{n+1}/x_n$$

$$\iff rx_n < x_{n+1}$$

Now, fix some $N \in \mathbb{N}$ such that x_n satisfies Equation (2) an every $n \geq N$. A simple induction will show that for all $k \geq 1$,

$$r^k x_N < x_{N+k}$$

Let $c = x_N > 0$, and $\Lambda = r > 1$, and the proof is complete upon $r^k x_N \to +\infty$. Indeed, observe that $1 < r \iff 0 < r^{-1} < 1$, as $k \to +\infty$.

Let $M/x_N > 0$ be arbitrary, and multiply M/x_N with the sequence that $M/x_N r^{-k} \to 0$ as well, and choosing $\varepsilon = 1$,

$$|M/x_N r^{-k}| < 1$$

and it immediately follows that

$$M/x_N r^{-k} < 1 \iff x_N/M > r^{-k}$$

 $\iff M/x_N < r^k$
 $\iff M < r^k x_N < x_{N+k}$

WTS. Apply the ratio test to determine the convergence of

- (a) $b^n/n!$,
- (b) b^{n}/n^{2}

Proof of 6a. Let $x_n = b^n/n!$, and using the ratio test yields

$$|x_{n+1}/x_n| = b(n!/(n+1)!)^{-1} \to 0 < 1$$

Therefore $x_n \to 0$.

Proof of 6b. Let $x_n = b^n/n^2$, and

$$|x_{n+1}/x_n| = b(n/(n+1))^2 = b(1+n^{-1})^{-2} \to b > 1$$

Using Question 5, since $x_n > 0$ eventually, $x_n \to +\infty$.

WTS. Show that if $\{x_n\}$ is a monotone sequence, then

- $x_n \to \sup\{x_n\}$ if $\{x_n\}$ is non-decreasing, and
- $x_n \to \inf\{x_n\}$ if $\{x_n\}$ is non-increasing.

where we allow $\sup\{x_n\}$ and $\inf\{x_n\}$ to also be symbols in the e

We need a small lemma before proceeding.

0.2 Lemma

Lemma 0.5. If A is a non-empty bounded above subset of \mathbb{R} , the $\inf(-1)A$.

Proof. Let $s = \sup(A)$, then

$$(-1)A = \{-x : x \in A\}$$

Evidently, for every $x \in A$

$$x \le s \implies -s \le -x \implies -s \le (-1)A$$

Now fix any $\varepsilon > 0$, then there exists an $x \in A$ such that

$$s - \varepsilon \le x \implies (-1)(s - \varepsilon) \ge -x \implies (-x) \le (-s)$$

Thus establishes $\inf(-1)A = (-1)\sup(A)$.

Corollary 0.5.1. $(-1)\inf(A) = \sup(-1)A$. The proof is triviate A by (-1)A.

Proof of Problem 7. Suppose that $\{x_n\}$ is non-decreasing, if su it means that for any M $x_n \ge M$ eventually, so that $x_n \to +\infty = \sup\{x_n\}$ is finite, then for any $\varepsilon > 0$, there exists $x_N \in \{x_n\}$ wi $\varepsilon < x_N$, but $\{x_n\}$ is non-decreasing, this implies that for every

$$\sup\{x_n\} - \varepsilon < x_N \le x_{n \ge N} \le \sup\{x_n\} < \sup\{x_n\} + \infty$$

and $x_n \in V_{\varepsilon}(\sup\{x_n\})$ eventually; therefore $x_n \to \sup\{x_n\}$.

If $\{x_n\}$ is non-increasing, and if $\inf\{x_n\} = -\infty$ then it is trivial above proof to show that $x_n \to -\infty = \inf\{x_n\}$. For the case v is finite, notice that $\sup\{(-1)x_n\} = (-1)\inf\{x_n\} \neq +\infty$ by Lei $\{(-1)x_n\}$ is a monotone, non-decreasing sequence, hence

$$(-1)x_n \to \sup\{(-1)x_n\} \implies x_n \to (-1)\sup\{(-1)x_n\} =$$