

KA-3784

First Year B.C.A. (Sem. I) Examination September/October - 2012

102: Mathematics

(Old Course)

Time: Hours] [Total Marks:

Instructions:

(1)

નીચે દર્શાવેલ 🚁 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી.	Seat No.:
Fillup strictly the details of - signs on your answer book. Name of the Examination :	
FIRST YEAR B.C.A. (SEM. I)	
Name of the Subject :	 (
◆ 102 : Mathematics (Old Course)	
Subject Code No.: 3 7 8 4 Section No. (1, 2,): Nil	Student's Signature

- (2) All questions are compulsory.
- (3) Figures to the right indicate full marks.
- 1 Answer the following questions:
 - (i) Define proper and improper subsets.
 - (ii) If $A = \{1,3,5,7\}$, $B = \{5,7,8,9\}$ then find $(A \cup B) (A \cap B)$.
 - (iii) When do you say that given function is on to?
 - (iv) Find the domain for which the functions $f(x) = 2x^2 1$ and g(x) = 1 3x are equal.
 - (v) Define Tautology.
 - (vi) What is the difference between a sentence and a statement?

(vii) If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then find A^{-1} .

- (viii) Define symmetric matrix.
- (ix) What is the difference between co-factors and minor?
- (x) Find the equation of a line passing through origine and having slope $\frac{1}{6}$.

KA-3784] 1 [Contd...

- 2 (a) State and prove De'Morgans law for intersection. 12
 - (b) If $A = \{x \mid x \in R, x^2 3x 4 = 0\}$ and $B = \{x \mid x \in z, x^2 = x\}$ then find (i) $A \cup B$ (ii) $A \Delta B$.
 - (c) If $A = \{1, 2, 3\}$, $B = \{2, 6, 7\}$, $C = \{2, 7\}$ then prove that $A \times (B C) = (A \times B) (A \times C)$.

OR.

- 2 (a) State and prove distributive law of intersection over union. 12
 - (b) If $A = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{1, 3, 5\}$ then find
 - (i) $A \times (B \cap C)$
 - (ii) $A \times (B \cap C)$
 - (iii) $(A \times B) \cup (A \times C)$
 - (c) If $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 3, 5, 6\}$, $C = \{1, 2, 3\}$ then verify
 - (i) $(A-B) \cup B = A \cup B$
 - (ii) $(A-B) \cup (B-A) = (A \cup B) (A \cap B)$.
- 3 (a) The variable cost of processing 1 gm of coffee bean is 12 Rs. 1 and fixed cost per day is Rs. 300. Give linear cost function and find the cost of processing 2000 gms of coffee beans in a day.
 - (b) If $f(x) = \frac{x^2 25}{x 5}$; $x \in z \{5\}$ and g(x) = x + 5; $x \in z$. Is f(x) = g(x)?
 - (c) If $f(x) = \frac{x^2 + 5x 7}{x^2 + 2}$; $x \in \mathbb{Z}$ then find $\frac{f(1) + f(-2)}{f(-1) + f(0)}$.

OR

3 (a) Define Domain and Range of the function. 12 If f: A-B f(x)=3x-2 and range $R_f=\{-5,-8,7\}$ then find Domain.

KA-3784] 2 [Contd...

- (b) If $f(x) = \frac{1}{x} + \frac{3}{x-1}$; $x \in \mathbb{R} \div \{0, 1\}$ then find $f(2), f(3), f(\frac{1}{2}), f(-2)$.
- (c) If $f(x) = \frac{1}{x}$; $x \in z \{-1, 0, 1\}$ then prove that $f(x+1) f(x-1) = \frac{2}{1-x^2}$.
- 4 (a) Let D_{16} be the set of positive divisors of 16. Define $+, \bullet \& /$ on D_{16} as a+b=1.c.m. of a&b a•b=g.c.d. of a&b $a^1=16/a$ then verify that $(D_{16},+,\bullet,/,1,16)$ is a boolean Algebra.
 - (b) Verify using truth table $p \lor (q \land r) = (p \lor q) \land (p \lor r)$.
 - (c) In a boolean algebra B. Prove that $(x+y) \cdot (x'+y') = x' \cdot y'$ OR
- 4 (a) Let D_9 be the set of positive divisors of g. Define $+, \bullet, \&, /$ an D_9 as a+b=1.c.m. of a&b a•b=g.c.d. of a&b $a'=\frac{g}{9}$. Then verify that $(D_9,+,\bullet,/,1,9)$ is a boolean algebra.
 - (b) Verify using truth table. $p \land (q \lor r) = (p \land q) \lor (p \land r)$.
 - (c) In a Boolean algebra prove that $(x+y)' = x' \cdot y'$.

5 (a) Without expanding prove that
$$\begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

(b) If
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -2 & 4 \\ 0 & 3 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 2 & 5 \\ 7 & -1 & 1 \\ 4 & 3 & 4 \end{bmatrix}$ and $3A + C = 4B$ then find C .

(c) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then prove that $A^2 - 4A - 5I = 0$.

OR

5 (a) Find the value of
$$\begin{vmatrix} x+y & z & 1 \\ y+z & x & 1 \\ z+x & y & 1 \end{vmatrix}$$
.

- (b) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then find B such that $A + 2B = A^2$.
- (c) Find the matrix A such that 2A 3B + 5C = 0 where $B = \begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$.
- 6 (a) Prove that (2,-1),(3,4),(-2,3) & (-3,-2) are the vertices of a rhombus.
 - (b) Find the equation of a line passing through (1,3) and (3,4) and determine its intercept with co-ordinate axes.
 - (c) Find the area of the triangle having the vertices A(-5,-5), B(-3,-5) & C(10,5).

OR

- **6** (a) Find the equation of a line passing through (3,5) making equal intercept an axes also find slope.
 - (b) Find the area of the quadrilateral generated by the points (1,1), (3,4), (5,-2) & (4,7).
 - (c) Find the equation of a line whose. X-intercept is 3 and Y-intercept is 5. Also find its slope.