

Economic Growth II: Technology, Empirics, and Policy

Presentation Slides

Modified by Andra Hiriscau

Macroeconomics

N. Gregory Mankiw

IN THIS CHAPTER, YOU WILL LEARN:

How to incorporate technological progress in the Solow model

About policies to promote growth

About growth empirics: confronting the theory with facts

Two simple models in which the rate of technological progress is endogenous

Introduction

In the Solow model of Chapter 8,

- the production technology is held constant.
- income per capita is constant in the steady state.

Neither point is true in the real world:

- 1900–2016: U.S. real GDP per person grew by a factor of 8.58, or 1.9% per year.
- examples of technological progress abound (see the next slide).

Examples of technological progress

- U.S. farm sector productivity nearly tripled from 1950 to 2012.
- The real price of computer power has fallen an average of 30% per year over the past three decades.
- 2000: 361 million Internet users, 740 million cell phone users
 2016: 3.4 billion Internet users, 5.0 billion cell phone users
- 2001: iPod capacity = 5GB, 1,000 songs. Not capable of playing episodes of *Game of Thrones*.
 - 2018: iPod touch capacity = 64GB, 30,000 songs. Can play episodes of *Game of Thrones*.

- A new variable: **E** = labor efficiency
- Assume:
 Technological progress is labor-augmenting:
 it increases labor efficiency at the exogenous rate g:

$$oldsymbol{g} = rac{\Delta oldsymbol{E}}{oldsymbol{E}}$$

We now write the production function as:

$$Y = F(K, L \times E)$$

- where $L \times E$ = number of effective workers
 - Increases in labor efficiency have the same effect on output as increases in the labor force.

Notation:

Production function per effective worker:

$$y = f(k)$$

Saving and investment per effective worker:

$$sy = sf(k)$$

 $(\boldsymbol{\delta} + \boldsymbol{n} + \boldsymbol{g}) \, \boldsymbol{k} = \text{break-even investment:}$ the amount of investment necessary to keep \boldsymbol{k} constant. Consists of:

- δ k to replace depreciating capital
- n k to provide capital for new workers
- g k to provide capital for the new "effective" workers created by technological progress

$$\Delta \mathbf{k} = \mathbf{s} \ \mathbf{f}(\mathbf{k}) - (\mathbf{\delta} + \mathbf{n} + \mathbf{g})\mathbf{k}$$

Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

Steady-state growth rates in the Solow model with tech. progress

Variable	Symbol	Steady-State Growth Rate
Capital per effective worker	$k = K/(E \times L)$	0
Output per effective worker	$y = Y/(E \times L) = f(k)$	0
Output per worker	$Y/L = y \times E$	g
Total output	$Y = y \times (E \times L)$	n + g

The Golden Rule with technological progress

To find the Golden Rule capital stock, express c^* in terms of k^* :

$$c^* = y^* - i^*$$

$$= f(k^*) - (\delta + n + g)$$

c* is maximized when

$$MPK = \delta + n + g$$

Or, equivalently,

$$MPK - \delta = n + g$$

In the Golden
Rule steady state,
the marginal product
of capital net of
depreciation equals
the
population growth
rate plus the rate of
tech progress.

Growth empirics: Balanced growth

- The Solow model's steady state exhibits balanced growth: many variables grow at the same rate.
 - The Solow model predicts that Y/L and K/L grow at the same rate (g), so K/Y should be constant. This is true in the real world.
 - The Solow model predicts that real wage grows at the same rate as Y/L, while real rental price is constant.
 Also true in the real world.

Growth empirics: Convergence, part 1

- Solow model predicts that, other things equal, poor countries (with lower Y/L and K/L) should grow faster than rich ones.
- If true, then the income gap between rich and poor countries would shrink over time, causing living standards to converge.
- In the real world, many poor countries do NOT grow faster than rich ones. Does this mean the Solow model fails?

Growth empirics: Convergence, part 2

- No, the Solow model does not fail because it predicts that, other things equal, poor countries (with lower Y/L and K/L) should grow faster than rich ones.
 - In samples of countries with similar savings and population growth rates, income gaps shrink about 2% per year.
 - In larger samples, after controlling for differences in saving, population growth, and human capital, incomes converge by about 2% per year.

Growth empirics: Convergence, part 3

- What the Solow model really predicts is conditional convergence: countries converge to their own steady states, which are determined by saving, population growth, and education.
- This prediction comes true in the real world.

Growth empirics: Factor accumulation vs. production efficiency, part 1

- Differences in income per capita among countries can be due to differences in:
 - 1. capital—physical or human—per worker
 - 2. the efficiency of production (the height of the production function)
- Studies:
 - Both factors are important.
 - The two factors are correlated: countries with higher physical or human capital per worker also tend to have higher production efficiency.

Growth empirics: Factor accumulation vs. production efficiency, part 2

- Possible explanations for the correlation between capital per worker and production efficiency:
 - Production efficiency encourages capital accumulation.
 - Capital accumulation has externalities that raise efficiency.
 - A third, unknown variable causes capital accumulation and efficiency to be higher in some countries than others.

Policy issues

- Are we saving enough? Too much?
- What policies might change the saving rate?
- How should we allocate our investment between privately owned physical capital, public infrastructure, and human capital?
- How do a country's institutions affect production efficiency and capital accumulation?
- What policies might encourage faster technological progress?

- Use the Golden Rule to determine whether the U.S. saving rate and capital stock are too high, too low, or about right.
 - If $(MPK \delta) > (n + g)$, the U.S. economy is below the Golden Rule steady state and should increase s.
 - If $(MPK \delta) < (n + g)$, the U.S. economy is above the Golden Rule steady state and should reduce s.

To estimate $(MPK - \delta)$, use three facts about the U.S. economy:

- 1. k = 2.5 yThe capital stock is about 2.5 times one year's GDP.
- 2. δk = 0.1 y About 10% of GDP is used to replace depreciating capital.
- 3. $MPK \times k = 0.3 y$ Capital income is about 30% of GDP.

- 1. k = 2.5 y
- 2. $\delta k = 0.1 \text{ y}$
- 3. $MPK \times k = 0.3 y$

To determine δ , divide 2 by 1:

$$\frac{\delta \mathbf{k}}{\mathbf{k}} = \frac{0.1 \mathbf{y}}{2.5 \mathbf{y}} \Rightarrow \delta = \frac{0.1}{2.5} = 0.04$$

1.
$$k = 2.5 y$$

2.
$$\delta k = 0.1 \text{ y}$$

3.
$$MPK \times k = 0.3 y$$

To determine MPK, divide 3 by 1:

$$\frac{\text{MPK} \times k}{k} = \frac{0.3 \, y}{2.5 \, y} \Rightarrow \text{MPK} = \frac{0.3}{2.5} = 0.12$$

Hence, $MPK - \delta = 0.12 - 0.04 = 0.08$

- From the last slide: $MPK \delta = 0.08$
- U.S. real GDP grows an average of 3% per year, so n + g
 = 0.03
- Thus,

$$MPK - \delta = 0.08 > 0.03 = n + g$$

Conclusion:

The U.S. is below the Golden Rule steady state: Increasing the U.S. saving rate would increase consumption per capita in the long run.

Policy issues: How to increase the saving rate

- Reduce the government budget deficit (or increase the budget surplus).
- Increase incentives for private saving:
 - Reduce capital gains tax, corporate income tax, and estate tax, as they discourage saving.
 - Replace federal income tax with a consumption tax.
 - Expand tax incentives for IRAs (individual retirement accounts) and other retirement savings accounts.

Policy issues: Allocating the economy's investment, part 1

- In the Solow model, there's one type of capital.
- In the real world, there are many types, which we can divide into three categories:
 - private capital stock
 - public infrastructure
 - human capital: the knowledge and skills that workers acquire through education
- How should we allocate investment among these types?

Policy issues: Allocating the economy's investment, part 2

Two viewpoints:

 Equalize tax treatment of all types of capital in all industries and let the market allocate investment to the type with the highest marginal product.

2. Industrial policy:

Government should actively encourage investment in capital of certain types or in certain industries because it may have positive externalities that private investors don't consider.

Possible problems with industrial policy

- The government may not have the ability to "pick winners" (choose industries with the highest return to capital or biggest externalities).
- Politics (e.g., campaign contributions) rather than economics may influence which industries get preferential treatment.

Policy issues: Establishing the right institutions

- Creating the right institutions is important for ensuring that resources are allocated to their best use. Examples:
 - <u>Legal institutions</u>, to protect property rights.
 - <u>Capital markets</u>, to help financial capital flow to the best investment projects.
 - A corruption-free government, to promote competition, enforce contracts, etc.

Establishing the right institutions: North versus South Korea

After WW2, Korea split into:

- North Korea with institutions based on authoritarian communism
- South Korea with Westernstyle democratic capitalism

Today, GDP per capita is over 10 times higher in S. Korea than in N. Korea.

Jason Reed/Reuters/Newscom

Policy issues: Encouraging technological progress

- Patent laws: encourage innovation by granting temporary monopolies to inventors of new products
- Tax incentives for R&D
- Grants to fund basic research at universities
- Industrial policy: encourages specific industries that are key for rapid technological progress (subject to the preceding concerns).

CASE STUDY: Is free trade good for economic growth? Part 1

- Since Adam Smith, economists have argued that free trade can increase production efficiency and living standards.
- Research by Sachs & Warner:

Average annual growth rates, 1970–89

	Open	Closed
Developed nations	2.3%	0.7%
Developing nations	4.5%	0.7%

CASE STUDY: Is free trade good for economic growth? Part 2

- To determine causation, Frankel and Romer exploit geographic differences among countries:
 - Some nations trade less because they are farther from other nations or landlocked.
 - Such geographic differences are correlated with trade but not with other determinants of income.
 - Hence, they can be used to isolate the impact of trade on income.
- Findings: increasing trade/GDP by 2% causes GDP per capita to rise 1%, other things equal.

Endogenous growth theory

- Solow model:
 - Sustained growth in living standards is due to technological progress.
 - The rate of technological progress is exogenous.
- Endogenous growth theory:
 - In this set of models, the growth rate of productivity and living standards is endogenous.

The basic model, part 1

- Production function: Y = A K
 where A is the amount of output for each unit of capital (A is exogenous and constant)
- Key difference between this model and Solow: MPK is constant here, diminishes in Solow
- Investment: sY
- Depreciation: δK
- Equation of motion for total capital:
 - $\Delta K = sY \delta K$

The basic model, part 2

$$\Delta K = sY - \delta K$$

Divide through by K and use Y = A K to get:

$$\frac{\Delta \mathbf{Y}}{\mathbf{Y}} = \frac{\Delta \mathbf{K}}{\mathbf{K}} = \mathbf{s}\mathbf{A} - \delta$$

- If $s A > \delta$, then income will grow forever, and investment is the "engine of growth."
- Here, the permanent growth rate depends on s. In Solow model, it does not.

Does capital have diminishing returns or not?

- It depends on the definition of capital.
- If capital is narrowly defined (only plant and equipment), then yes.
- Advocates of endogenous growth theory argue that knowledge is a type of capital.
- If so, then constant returns to capital is more plausible, and this model may be a good description of economic growth.

A two-sector model, part 1

- Two sectors:
 - manufacturing firms produce goods.
 - <u>research</u> universities produce knowledge that increases labor efficiency in manufacturing.
- u = fraction of labor in research (u is exogenous)
- Manufacturing production function:
 - Y = F[K, (1 u)EL]
- Research production function: $\Delta E = g(u)E$
- Capital accumulation: $\Delta K = s Y \delta K$

A two-sector model, part 2

- In the steady state, manufacturing output per worker and the standard of living grow at rate
 ΔE/E = g (u).
- Key variables:
 - s: affects the level of income but not its growth rate (same as in the Solow model)
 - *u*: affects level and growth rate of income

DISCUSSION QUESTION The merits of raising *u*

Question:

In what ways would raising u (that is, devoting more labor to research) benefit the economy? What are the costs of raising u?

Facts about R&D

- 1. Much research is done by firms seeking profits.
- Firms profit from research:
 Patents create a stream of monopoly profits.
 There is extra profit in being first on the market with a new product.
- 3. Innovation produces externalities that reduce the cost of subsequent innovation.

Much of the new endogenous growth theory attempts to incorporate these facts into models to better understand technological progress.

Is the private sector doing enough R&D?

- The existence of positive externalities in the creation of knowledge suggests that the private sector is not doing enough R&D.
- But there is much duplication of R&D effort among competing firms.
- Estimates: social return to R&D ≥ 40% per year
- Thus, many believe the government should encourage R&D.

Economic growth as "creative destruction"

- Schumpeter (1942) coined term "creative destruction" to describe displacements resulting from technological progress:
 - The introduction of a new product is good for consumers but often bad for incumbent producers, who may be forced out of the market.
- Examples:
 - Luddites (1811–1812) destroyed machines that displaced skilled mill workers in England.
 - Walmart displaces many mom-and-pop stores.

CHAPTER SUMMARY, PART 1

- Key results from the Solow model with technological progress:
 - The steady-state growth rate of income per person depends solely on the exogenous rate of technological progress.
 - The United State has much less capital than the Golden Rule steady-state level.
- Ways to increase the saving rate:
 - increase public saving (reduce budget deficit)
 - tax incentives for private saving

CHAPTER SUMMARY, PART 2

- Empirical studies
 - The Solow model explains balanced growth, conditional convergence.
 - Cross-country variation in living standards is due to differences in capital accumulation and in production efficiency.
- Endogenous growth theory: Models that
 - examine the determinants of the rate of technological progress, which Solow takes as given.
 - explain decisions that determine the creation of knowledge through R&D.