Lecture 16 – BJT-part1

Chapter 6 from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing

- 8.1 三极管的结构和工作原理
- 8.1.1 重点介绍NPN管的结构和工作原理
- 8.1.2 认识NPN管和PNP管的符号和结构差异
- 8.2 三极管的特性及其等效模型
- 8.2.1 输入特性、输出特性和转移特性
- 8.2.2 π型和T型等效电路(中频)
- 8.3 三极管放大电路的构成及其分析
- 8.3.1 直流偏置电路及其分析
- 8.3.2 三种接法放大电路的分析计算

Introduction

IN THIS CHAPTER YOU WILL LEARN

- The physical structure of the bipolar transistor and how it works. 三极管的物理结构
- How the voltage between two terminals of the transistor controls the current that flows through the third terminal, and the equations that describe these current-voltage relationships. 三极管的"电压电流约束关系"
- How to analyze and design circuits that contain bipolar transistors, resistors, and dc sources. 三极管电路DC分析

Introduction

- This chapter examines another three-terminal device.
 - bipolar junction transistor
 - Presentation of this material mirrors chapter 5.
- BJT was invented in 1948 at Bell Telephone Laboratories.
 - Ushered in a new era of solid-state circuits.
 - It was replaced by MOSFET as predominant transistor used in modern electronics.

三极管的结构

Figure 6.1 A simplified structure of the *npn* transistor.

三极管的结构和符号

三极管的电路符号用"Q",而MOSFET用"M",箭头标在发射极,方向表示电流方向

■ 三极管可看成由不同掺杂半导体构成的三明治结构,如上图所示的npn,另一种可能是pnp; (两侧的掺杂性质一致,并与中间的掺杂性质相反)

6

载流子的注入

思考:如果有自由电子注入到反偏pn结的 耗尽区,会怎样?

- 反偏pn结在耗尽区会形成一个较强的电场,电子若注 入到(暂时不考虑如何注入)耗尽区,就会在电场作 用下,迅速被扫到左侧n区域;
- 这一现象是三极管工作的基础;

Forward Active Region (放大区)

简单的两个二极管相连不会有放 大特性,因此,三极管必有**特殊 的结构**以实现放大性能

- 放大区的定义: BE正偏(V_{BE} > 0),BC反偏(V_{BC} < 0).
- 但三极管并非简单的两个二极管的相连(为何?)

三极管的工作原理 (放大区)

特殊性在于: <mark>基区特别薄</mark>(约10nm)

Figure 6.3 Current flow in an *npn* transistor biased to operate in the active mode. (Reverse current components due to drift of thermally generated minority carriers are not shown.)

① 发射极电流 i, 由两部分组成,但主要是电子电流【三极管的工作需 要两种载流子参与,所以叫Bipolar】

- ② 电子电流在经过基区时,一小部分被空穴复合,形成 i_{в2}
- ③ 电子电流大部分到达收集极,形成i。
- i_{B1}和 i_{B2}组成 i_B

Q: How about MOSFET?

A: 一种,所以MOSFET

也叫unipolar

重点关注:

的少子浓度

 p_{po}

npo

Wo

nno

PN结正偏、反偏时少子浓度的分布

Depletion region, energy band diagram and carrier distribution. (a) Forward bias. (b) Reverse bias.

Figure 6.4 Profiles of minority-carrier concentrations in the base and in the emitter of an *npn* transistor operating in the active mode: $v_{BE} > 0$ and $v_{CB} \ge 0$.

- ①正偏pn结在p侧的电子浓度较高 (V>0)
- ②反偏pn结在p侧的电子浓度很低 (V<0) , ≈0
- ③基区电子浓度存在梯度 → 形成扩散电流
- ④基区很薄 → 电子浓度的分布曲线近似为线性

$$I_{n} = A_{E}qD_{n}\frac{dn_{p}(x)}{dx}$$

$$= A_{E}qD_{n}\left(-\frac{n_{p}(0)}{W}\right)$$

$$I_{S} = A_{E}qD_{n}n_{p0}/W$$

集电极电流

正偏电压影响很大,BC只需反偏即可

再观察一下:

I_C受V_{BE}影响巨大,但不受V_{CE}的影响 → 理想的压控电流源

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$

- · I、与基区宽度W成反比
- Is与发射极结面积AF成正比
- Is与ni2成正比,强温度相关性

似曾相识?

与二极管的I/V 特性一致

不足为奇,因为 BE本来就是一 个正偏的二极管

恒流源特性(I_c不随V_{cF}变化)

■ 理想情况下,I_C不随V_{CE}变化,只决定于V_{BE} → 当V_{BE}固定时,三极管具有很好的恒流源特性;

并联三极管

■ 当两个相同的三极管并联(E、B、C均电位相等)→ 可看做单一的三极管(面积加倍)

简单的三极管电路

- 晶体管将电压转换成电流,那么如何将电流再转换成电压呢? (实际应用中,一般希望是电压放大成电压,而非电压放大成电流)
- 在C极和V_{cc}之间插入一个负载电阻(load resistor),那么流过负载电阻的电压即是输入电压信号的放大。

例

Example 4.5

Determine the output voltage in Fig. 4.10 if $I_S = 5 \times 10^{-16}$ A.

Figure 4.10 Simple stage with biasing.

$$I_C = I_S \exp \frac{V_{BE}}{V_T},\tag{4.9}$$

Solution Using Eq. (4.9), we write $I_C = 1.69 \,\text{mA}$. This current flows through R_L , generating a voltage drop of $1 \,\text{k}\Omega \times 1.69 \,\text{mA} = 1.69 \,\text{V}$. Since $V_{CE} = 3 \,\text{V} - I_C R_L$, we obtain

$$V_{out} = 1.31 \text{ V}.$$
 (4.19)

公式(4.9)的前提是三极管工作在"放大区",即 BE 正偏,BC 反偏

基极电流(i_B)

$$i_{\scriptscriptstyle B} = rac{i_{\scriptscriptstyle C}}{eta}$$

■ I_B由上述两部分组成,但总和与i_C成比例,该比例定义 为电流增益β

发射极电流i_F

■ 应用基尔霍夫电流定 律,i_E是i_B和i_C之和

$$i_E = i_C + i_B$$

$$i_E = \frac{\beta + 1}{\beta} i_C$$

$$i_E = \frac{\beta + 1}{\beta} I_S e^{v_{BE}/V_T}$$

定义:
$$i_C = \alpha i_E$$
 $\alpha = \frac{\beta}{\beta + 1}$

* β很大,所以α接近于1

$$i_E = (I_S/\alpha)e^{v_{BE}/V_T}$$

三极管电流表达式总结

$$I_{C} = I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{B} = \frac{1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$\frac{\beta}{\beta + 1} = \alpha$$

因果,及**计算顺序**: $V_{BE} \rightarrow I_C \rightarrow I_B \rightarrow I_E$ 即,

- ①用公式1从V_{BE}计算出I_C(压控电流源);
- ② I_B 是 I_C 的 I/β ;(工作在放大区时, β 较大,也即 I_B 很小)
- ③ I_E 为 I_C 和 I_B 之和;(工作在放大区时,因为 I_B 很小,所以 $I_E \approx I_{C}$, $I_C = \alpha \times I_F$, $\alpha \approx 1$)

三极管放大区的大信 号模型(Large Signal Model)

所谓大信号模型,就是对信号的幅度要求没有限制,是普遍适用的电路模型,是器件"电压电流约束关系"的等效电路表述。而"小信号模型",是大信号模型某一直流工作点附近的线性化近似

- CE之间用压控电流源表示;
- BE之间用正偏二极管表示(注意β);
- 需注意:始终要确保三极管工作在放大区(即BE正偏, BC反偏)

Figure 6.5 Large-signal equivalent-circuit models of the npn BJT operating in the forward active mode.

An *npn* transistor having $I_S = 10^{-15}$ A and $\beta = 100$ is connected as follows: The emitter is grounded, the base is fed with a constant-current source supplying a dc current of $10 \,\mu$ A, and the collector is connected to a 5-V dc supply via a resistance R_C of 3 k Ω . Assuming that the transistor is operating in the active mode, find V_{BE} and V_{CE} . Use these values to verify active-mode operation. Replace the current source with a resistance connected from the base to the 5-V dc supply. What resistance value is needed to result in the same operating conditions?

$$(1) V_{BE} = V_T \ln \frac{I_B}{I_S/\beta} = 690 \,\mathrm{mV}$$

$$V_{CE} = V_{CC} - R_C I_C$$

$$I_C = \beta I_B$$

$$V_{CE} = +2 \text{ V}$$

An *npn* transistor having $I_S = 10^{-15}$ A and $\beta = 100$ is connected as follows: The emitter is grounded, the base is fed with a constant-current source supplying a dc current of $10 \,\mu$ A, and the collector is connected to a 5-V dc supply via a resistance R_C of 3 k Ω . Assuming that the transistor is operating in the active mode, find V_{BE} and V_{CE} . Use these values to verify active-mode operation. Replace the current source with a resistance connected from the base to the 5-V dc supply. What resistance value is needed to result in the same operating conditions?

$$R_B = \frac{V_{CC} - V_{BE}}{I_B} = \frac{5 - 0.69}{10 \,\mu\text{A}} = 431 \,\text{k}\Omega$$

实际三极管的结构

Figure 6.7 Cross-section of an *npn* BJT.

- BC 结面积远远大于 BE 结面积 → BC 的 I_s >> BE 的 I_s
- 结构非对称,与MOSFET比较
- 从E发射出的电子,经过极薄的B区,被C所收集

若要保证三极管工作于放大区, 负载电阻 R, 最大可为多少?

(a)

- R_L 增加,导致 V_x 下降,若 V_x 下降到小于一定程度,则 BC pn 结反偏的条件不成立,放大器将不再工作于放大区
- 因此,R₁不能无限制地增加,其存在一个最大的可允许 的值,以确保三极管始终工作在放大区

三极管工作于放大 区的条件: Vc最低不得低于 $V_{\rm R}$ -0.4 V

O: How about MOSFET?

Figure 6.8 The $i_C - v_{CB}$ characteristic of an npn transistor fed with a constant emitter current I_E . The transistor enters the saturation mode of operation for $v_{CB} < -0.4 \text{ V}$, and the collector current diminishes.

三极管工作于饱和区

Table 6.1	BJT Modes of Operation		29
Mode	ЕВЈ	СВЈ	
Cutoff	Reverse	Reverse	
Active	Forward	Reverse	
Saturation	Forward	Forward	

Figure 6.9 Modeling the operation of an *npn* transistor in saturation by augmenting the model of Fig. 6.5(c) with a forward-conducting diode D_C . Note that the current through D_C increases i_B and reduces i_C .

- ①BC结正偏,用二极管Dc表征
- ②i。减小,基于A点KCL
- ③ig增加,基于B点KCL
- $4\beta = i_c/i_B减小,可通过控制V_{BC},来控制β的值$
- 5)判断三极管工作于饱和区的方法:

$$-V_C$$
比 V_B 低,且相差不小于 $0.4V$ $V_{CEsat} = V_{BE} - V_{BC}$

- i_c/i_g 比管子标称的(工作于放大区时的)β要小

$$eta_{ ext{forced}} = \left. rac{i_C}{i_B}
ight|_{ ext{saturation}} \leq eta$$

pnp三极管

Figure 6.10 Current flow in a *pnp* transistor biased to operate in the active mode.

Figure 6.11 Two large-signal models for the *pnp* transistor operating in the active mode.

XFORD IVERSITY PRESS

三极管的I/V特性"电压电流约束关系"

惯例:

电流从上往下流 (电压上面高、下面低)

npn, C在上, E在下, 对应NMOS pnp, C在下, E在上, 对应PMOS

Figure 6.12 Circuit symbols for BJTs.

Figure 6.13 Voltage polarities and current flow in transistors operating in the active mode.

XFORD IVERSITY PRESS

三极管工作区域的界限

- 三极管工作于放大区的条件,BE结正偏,以及
 - 对于npn, C点电压最低不得低于V_B-0.4
 - 对于pnp,C点电压最高不得高于V_B+0.4
- How about MOSFET?

Edge of

主意电流方向以及电位高低

Table 6.2 Summary of the BJT Current-Voltage Relationships in the Active Mode

$$i_{C} = I_{S}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right)e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right)e^{v_{BE}/V_{T}}$$

Note: For the *pnp* transistor, replace v_{BE} with v_{EB} .

$$i_C = \alpha i_E$$

$$i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$$

$$i_C = \beta i_B$$

$$i_E = (\beta + 1)i_B$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

 V_T = thermal voltage = $\frac{kT}{q} \simeq 25$ mV at room temperature

The transistor in the circuit of Fig. 6.15(a) has $\beta = 100$ and exhibits a v_{BE} of 0.7 V at $i_C = 1$ mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

Figure 6.15 Circuit for Example 6.2.

$$R_C = \frac{10 \text{ V}}{2 \text{ mA}} = 5 \text{ k}\Omega$$

$$V_{BE} = 0.7 + V_T \ln\left(\frac{2}{1}\right) = 0.717 \text{ V}$$

$$V_E = -0.717 \text{ V}$$

(4)
$$I_E = \frac{I_C}{\alpha} = \frac{2}{0.99} = 2.02 \text{ mA}$$

(5)
$$R_E = \frac{V_E - (-15)}{I_E}$$
$$= \frac{-0.717 + 15}{2.02} = 7.07 \text{ k}\Omega$$

三极管的特性

因是三端器件,分析比较复杂,一般我们不同时变化两个电压量。常规的分析方法是固定 V_{CE} ,分析 I_{C} 随 V_{BE} 的变化(转移特性);或固定 V_{BE} ,分析 I_{C} 随 V_{CE} 的变化(输出特性)

Example: IV 特性

(d) 得到I_C后,I_B、I_E可按比例写出

$$i_C = I_S e^{v_{BE}/V_T}$$
 与二极管的特性一样

v_{BE} 每增加 60 mV,电流 x10

ightarrow 为了快速分析,做近似: $V_{BE} \simeq 0.7 \, {
m V}$

Figure 6.15 The i_C-v_{BE} characteristic for an *npn* transistor.

Q: MOSFET 直流分析时,V_{gs}并 非为一个固定的值,Why?

A: MOSFET 的 I_D 和 V_{GS} 关系为平方关系,变化比指数关系平缓,所以 V_{GS} 可变化范围比 V_{BF} 要大

Figure 6.16 Effect of temperature on the i_C-v_{BE} characteristic. At a constant emitter current (broken line), v_{BE} changes by $-2 \text{ mV/}^{\circ}\text{C}$.

Early Effect (厄雷效应)

With

■ 前面所述 I_c 不随 V_{CE} 变化,这在实际情况中是不精确的;

(a)

- I_c vs V_{ce} 不是保持水平, 而是有轻微上扬;
- 对应于MOSFET中的沟 道调制效应

厄雷效应的起因

■ 当 V_{CE} 增加时, BC pn结的反偏程度增加 → BC 耗尽区变宽 $(x_2 \rightarrow x_2')$ → B区变窄 → 电子浓度的变化加剧(图中直线的斜率变大) → I_C 增加

厄雷效应对Ic的影响

(回忆MOSFET的沟道调制效应)

厄雷效应对大信号模型的影响

- 只需对 CE 之间的压控恒流源添加一修正因子,该修正因子可用一并联电阻表示(数学表达式→电路结构)
- BE之间不变化

Figure 6.19 Large-signal, equivalent-circuit models of an npn BJT operating in the active mode in the common-emitter configuration with the output resistance r_o included.

$$r_o = rac{V_A}{I_C'}$$
 $I_C' = I_S e^{V_{BE}/V_T}$ 不考虑厄雷效应时的 I_C

工作于"饱和区"的三极管

- 当 C 极电压降低,导致 BC pn 结反偏条件不成立时,三极管进入"饱和区"
- 进入饱和区后 I_B 增加(BC正偏,新增B到C的空穴电流) $\rightarrow \beta$ 减小.

Incremental B

value of β (called *incremental*, or ac, β) is a little different from the dc β (i.e., I_C/I_B). Such a distinction, however, is too subtle for our needs in this book. We shall use β to denote both dc and incremental values.¹⁰

处于饱和区三极管的 大信号模型

BC 结的面积 > BE 结的面积
$$\rightarrow$$
 $I_{S, BC} > I_{S, BE}$ \rightarrow $V_{D_BC, on} < V_{D_BE, on} \approx 0.7V; V_{D_BC, on} \approx 0.5V$

饱和区大信号模型

Figure 6.21 A simplified equivalent-circuit model of the saturated transistor.

■ 为了快速估算,特别是对于手算,采用上图所示的简单模型

放大区到饱和区不是突变的,一般把临界处($V_c = V_B - 0.4V$)的饱和区域称为**弱饱和区**;相应地当 V_{cr} 继续降低时,称为**深饱和区**($V_{cr} = 0.2V$ 近似)

For the circuit in Fig. 6.21, it is required to determine the value of the voltage V_{BB} that results in the transistor operating

- (a) in the active mode with $V_{CE} = 5 \text{ V}$
- (b) at the edge of saturation
- (c) deep in saturation with $\beta_{\text{forced}} = 10$

For simplicity, assume that V_{BE} remains constant at 0.7 V. The transistor β is specified to be 50.

$$V_{CC} = 10V$$

$$V_{CC} = 10V$$

$$= \frac{V_{CC} - V_{CE}}{R_C}$$

$$= \frac{I_C}{R_C} = \frac{5}{50} = 0.1 \text{ mA}$$

$$= \frac{10 - 5}{1 \text{ k}\Omega} = 5 \text{ mA}$$

$$V_{BB} = I_B R_B + V_{BE}$$

$$= 0.1 \times 10 + 0.7 = 1.7 \text{ V}$$

(b)
$$V_{CE} = 0.3 \text{ V.}$$
 $I_C = \frac{10 - 0.3}{1} = 9.7 \text{ mA}$ $I_B = \frac{9.7}{50} = 0.194 \text{ mA}$ $V_{BB} = 0.194 \times 10 + 0.7 = 2.64 \text{ V}$

Figure 6.21 Circuit for Example 6.3.

(c)
$$V_{CE} = V_{CEsat} \simeq 0.2 \text{ V}$$
 $I_C = \frac{10 - 0.2}{1} = 9.8 \text{ mA}$

$$I_B = \frac{I_C}{\beta_{\text{forced}}} = \frac{9.8}{10} = 0.98 \text{ mA}$$
 $V_{BB} = 0.98 \times 10 + 0.7 = 10.5 \text{ V}$

PNP 晶体管的方程

SEDRA/SIVITH Microelectronic Circuits

Early Effect

$$I_{C} = I_{S} \exp \frac{V_{EB}}{V_{T}}$$

$$I_{B} = \frac{I_{S}}{\beta} \exp \frac{V_{EB}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{EB}}{V_{T}}$$

$$I_{C} = \left(I_{S} \exp \frac{V_{EB}}{V_{T}}\right) \left(1 + \frac{V_{EC}}{V_{A}}\right)$$

注意: PNP使用V_{EB}、V_{EC}, NPN使用V_{BE}、V_{CE} (电压高的字母在前面,或者使用绝对值)

Table 6.3 (Simplified Models for the Operation of the BJT in DC Circuits

小结

Table 6.1	BJT Modes of Operation	
Mode	ЕВЈ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

- 三极管的工作区域及其特性
 - 放大区

$$i_C = I_S e^{v_{BE}/V_T} \qquad i_B = \frac{i_C}{\beta}$$

$$i_E = i_C + i_B$$

$$i_C = \alpha i_E$$
 $\alpha = \frac{\beta}{\beta + 1}$

- 工作在放大区的条件
 - 看V_c和V_B之间的关系
- 熟练掌握转移特性和输出特性的曲线及关键坐标点
- Table 6.3 大信号模型

作业

6.5 A transistor for which $I_S = 10^{-16}$ A and $\beta = 100$ is conducting a collector current of 1 mA. Find v_{BE} . Also, find I_{SE} and I_{SB} for this transistor.

Ans. 747.5 mV; 1.01×10^{-16} A; 10^{-18} A

6.10 Consider the model in Fig. 6.11(a) applied in the case of a *pnp* transistor whose base is grounded, whose emitter is fed by a constant-current source of 2 mA, and whose collector is connected to a -10-V dc supply. Find the emitter voltage, the base current, and the collector current if $\beta = 50$ and $I_S = 10^{-14}$ A.

Ans. 0.650 V; 39.2 μA; 1.96 mA

6.13 In the circuit shown in Fig. E6.13, the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

Figure E6.13

Ans. 0.93 mA; $18.2 \mu A$; 0.91 mA; +5.45 V

6.14 In the circuit shown in Fig. E6.14, measurement indicates V_B to be +1.0 V and V_E to be +1.7 V. What are α and β for this transistor? What voltage V_C do you expect at the collector?

Figure E6.14

Ans. 0.994; 165; –1.75 V

6.17 Find the output resistance of a BJT for which $V_A = 100 \text{ V}$ at $I_C = 0.1$, 1, and 10 mA. Ans. 1 M Ω ; 100 k Ω ; 10 k Ω

For the circuit in Fig. 6.22, let V_{BB} be set to the value obtained in Example 6.3, part (a), namely, $V_{BB} = 1.7$ V. Verify that the transistor is indeed operating in the active mode. Now, while keeping V_{BB} constant, find the value to which R_C should be increased in order to obtain (a) operation at the edge of saturation and (b) operation deep in saturation with $\beta_{\text{forced}} = 10$.

Ans. (a) 1.94 k Ω ; (b) 9.8 k Ω

For simplicity, assume that V_{BE} remains constant at 0.7 V. The transistor β is specified to be 50.

