Homework 16: The Gram-Schmidt Orthogonalization Process

- 1. §6.3, #37, 43.
- 2. §2.1, #15, 22, 30.
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by reflecting across the plane $x_1 2x_2 + 2x_3 = 0$. The goal of this problem is to find the standard matrix for T.
 - (a) Find an orthogonal basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for \mathbb{R}^3 such that $\mathbf{v}_1, \mathbf{v}_2$ span the plane. There are several ways to do this. Here is one:
 - 1. Find a vector \mathbf{v}_3 which is orthogonal to all vectors in the plane. (This was covered in Math 223. No calculations are required.)
 - 2. Find two vectors $\mathbf{u}_1, \mathbf{u}_2$ which span the plane.
 - 3. Use the Gram-Schmidt process to replace $\mathbf{u}_1, \mathbf{u}_2$ by two orthogonal vectors $\mathbf{v}_1, \mathbf{v}_2$ which span the plane.
 - (b) Find $[T]_B$.
 - (c) Use the change of basis formula to find $[T]_{B'}$, where B' is the standard basis for \mathbb{R}^3 .
 - (d) Find the reflection of $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ across the plane.

Answer to 3(c):
$$[T]_{B'} = \frac{1}{9} \begin{bmatrix} 7 & 4 & -4 \\ 4 & 1 & 8 \\ -4 & 8 & 1 \end{bmatrix}$$