

AD-A098 277 ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FO--ETC F/G 7/4

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA. (U)

MAR 81 M SALOMON

UNCLASSIFIED DELET-TR-81-6

NL

END

DATE

FILED

5-81

DTIC

LEVEL ✓

12

RESEARCH AND DEVELOPMENT TECHNICAL REPORT

DELET-TR-81-6

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA

AD A 098 277

MARK SALOMON
ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

MARCH 1981

DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

ERIC FILE COPY

ERADCOM

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703

81 4 28 056

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 14 DELET-TR-81-6	2. GOVT ACCESSION NO. AD 1A098277	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) Simplified Analysis of Complex Conductivity Data		5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s) Mark Salomon	8. CONTRACT OR GRANT NUMBER(s) <i>(9) Research Project #111 present to the report</i>		
9. PERFORMING ORGANIZATION NAME AND ADDRESS USA Electronics Technology & Devices Lab(ERADCOM) ATTN: DELET-PR Fort Monmouth, New Jersey 07703	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 16 111 62705AH94 11-251		
11. CONTROLLING OFFICE NAME AND ADDRESS USA Electronics Technology & Devices Lab(ERADCOM) ATTN: DELET-PR Fort Monmouth, New Jersey 07703	12. REPORT DATE 111 March 1981		
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) <i>(17) 11 (12) 15</i>	13. NUMBER OF PAGES 11		
15. SECURITY CLASS. (of this report) Unclassified			
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Conductivity Ion Pairs Lithium Batteries			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A simplified method is presented for the analysis of conductivity data for complex situations which involve ion pairing. The method was tested by comparing results with more elaborate analyses using published data for a number of salts in various solvents. The method is then used to analyze the conductivity data for several salts in thionyl chloride. These latter analyses are important for selecting electrolytes for lithium primary batteries.			

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	<u>Page</u>
INTRODUCTION	1
RESULTS	5

TABLES

1. RESULTS OF ANALYSES OF CONDUCTIVITY DATA BY VARIOUS METHODS .	6
2. RESULTS OF ANALYSES BASED ON EQUATION (18) FOR SALTS IN SOCl ₂	7

APPENDIX

A. TI-59 PROGRAM FOR SOLUTION OF EQUATION (15)	8
--	---

Accession For	
NTIS	GRA&I
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Avail and/or	
Dist	Special
A	

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA

INTRODUCTION

Conductivity measurements constitute some of the most accurate data which can be obtained in the laboratory. There is a long history of the theory and experimental techniques of conductivity data, and one of the most important features of this data is that it allows one to analyze the complex behavior of electrolyte solutions in solvents possessing a large range of dielectric constants. The development of the mathematical treatments of these data, particularly in analyzing for ion pair formation, has reached the point where sophisticated computational facilities are required. The purpose of this report is to present a method which simplifies the computational analyses, and at the same time retain the essential features of modern theory. A brief introduction to the analytical expressions for conductivity data for 1:1 electrolytes developed over the years will be given first.

The first expression developed by Onsager¹ which applies to very dilute solutions is:

$$\Lambda = \Lambda^\infty - (\Lambda^\infty \beta_1 + \beta_2) c^{\frac{1}{2}} = \Lambda^\infty - S c^{\frac{1}{2}} \quad (1)$$

Here Λ is the experimental molar conductivity for a completely dissociated salt at concentration c mol dm⁻³, Λ^∞ is the molar conductivity at infinite dilution, and β_1 and β_2 are constants which reflect upon ion-ion interactions. As early as 1883, Arrhenius proposed that the reason why Λ values for certain electrolytes were much smaller than expected was due to the association of ions. Arrhenius thus expressed the degree of ionization, α , of a salt in terms of conductivities as:

$$\alpha = \Lambda / \Lambda^\infty \quad (2a)$$

The equation holds at very high dilutions, and a more accurate expression for α is defined as the ratio of the experimental molar conductivity, Λ , to the molar conductivity Λ_f , which would be observed if the salt was completely ionized.

$$\alpha = \Lambda / \Lambda_f \quad (2b)$$

The chemical equation involving ion pairing of M⁺ cations and X⁻ anions is given by

where MX is the undissociated ion pair. The thermodynamic dissociation

¹L. Onsager, Z. Physik 27, 388 (1926); 28, 277 (1927).

constant for reaction (3) is given by:

$$K_D^0 = [M^+][X^-]y_+^2/[MX]y_n \quad (4a)$$

where y_+ and y_n are, respectively, the mean molar activity coefficients for the ions and the neutral species MX. In terms of the degree of dissociation, Equation (4a) becomes:

$$K_D^0 = \alpha^2 c y_+^2 / (1 - \alpha) y_n \quad (4b)$$

and rearranging,

$$\alpha = 1 - \alpha^2 c y_+^2 / K_D^0 y_n \quad (4c)$$

Taking Λ_f equal to that value given by the Onsager Equation (1), the equation for the experimental conductivity connected for ion pairing is obtained by combining Equations (1), (2b), and (4c):

$$\Lambda = \Lambda^\infty - S(\alpha c)^{1/2} - \Lambda \alpha c y_+^2 / K_D^0 y_n \quad (5)$$

A semiempirical form of Equation (5) has been developed by Fuoss and Kraus² and by Shedlovsky:³

$$\frac{1}{\Lambda F(z)} = \frac{1}{\Lambda^\infty} + \frac{\Lambda F(z) y_+^2 c}{K_D^0 (\Lambda^\infty)^{3/2}} \quad (6)$$

In Equation (6), the activity coefficient y_n is assumed to equal unity, and the function $F(z)$ is defined as follows:

$$F(z) = \left[(z/2) + \left[1 + (z/2)^2 \right]^{1/2} \right]^2 \quad (7)$$

and

$$z = S(\alpha c)^{1/2} / (\Lambda^\infty)^{3/2} \quad (8)$$

Equation (6), which suggests that Λ^∞ and $K_D^0 (\Lambda^\infty)^{3/2}$ can be obtained from a plot of $1/\Lambda F(z)$ against $F(z)y_+^2 c$, was used as the primary method of analysis for several decades. Its use is now being restricted since it still applies to very dilute solutions, and accurate Λ^∞ and K_D^0 values are obtained only when K_D^0 is in the range of 10^{-1} to 10^{-3} mol dm⁻³. A major problem associated with the use of the Onsager Equation (1) is that it fails to account for higher order terms involving relaxation fields and electrophoretic velocity.

²R. M. Fuoss and C. A. Kraus, J. Am. Chem Soc. 55, 476 (1933).

³T. Shedlovsky, J. Franklin Inst. 225, 739 (1938).

One of the first attempts to produce a more accurate relation for expressing conductivity data was by Fuoss and Onsager:⁴

$$\Lambda = \Lambda^\infty - S c^{\frac{1}{2}} + E c \ln c + J c \quad (9)$$

where E is a constant dependent upon the nature of the solvent, and J is a constant dependent in part on the distance (R) of approach of the free ions. Combining Equations (2b), (4c), and (9) yields:

$$\Lambda = \Lambda^\infty - S (\alpha c)^{\frac{1}{2}} + E \alpha c \ln(\alpha c) + J \alpha c - \Lambda \alpha c y_{\pm}^2 / K_D^0 y_n \quad (10)$$

Later work⁵ produced a more accurate expression which takes the form^{6,7}

$$\Lambda = \Lambda^\infty - S c^{\frac{1}{2}} + E c \ln c + J_1 c - J_2 c^{3/2} \quad (11)$$

Combining this equation with Equations (2b) and (4c) yields

$$\Lambda = \Lambda^\infty - S (\alpha c)^{\frac{1}{2}} + E \alpha c \ln(\alpha c) + J_1 \alpha c - J_2 (\alpha c)^{3/2} - \Lambda \alpha c y_{\pm}^2 / K_D^0 y_n \quad (12)$$

Both J_1 and J_2 are complex functions of the distance R , and complete analysis of Equation (12) requires the use of high speed computers. There is little doubt that both J_1 and J_2 terms are significant and essential for high accuracy. In solving Equation (12) for Λ^∞ and K_D^0 , it is generally assumed that the extended Debye-Hückel relation (13) can be used for the mean molar activity coefficient,

$$\log y_{\pm} = - A (\alpha c)^{\frac{1}{2}} / \{ 1 + B R (\alpha c)^{\frac{1}{2}} \} \quad (13)$$

and that y_n is unity. In Equation (13), B is a constant and R is the distance of closest approach of the free ions. Since Justice⁸ has presented convincing evidence that the distance R should be associated with the Bjerrum⁹ critical distance q defined by

$$R = q = z^2 q^2 / (2 \epsilon kT), \quad (14)$$

much controversy^{10,11} has been centered on the correct value for R . It is to be noted that if R is associated with q which has values about 10 times

⁴R. M. Fuoss and L. Onsager, *J. Phys. Chem.* 61, 668 (1957).

⁵R. M. Fuoss and K. L. Hsia, *Proc. Nat. Acad. Sci.* 57, 1550 (1967).

^{6a}E. Pitts, *Proc. Roy Soc. (London)* A217, 43 (1953).

^{6b}E. Pitts, B.F. Tabor, and J. Daly, *Trans. Faraday Soc.* 65, 849 (1969).

⁷R. Fernandez-Prini, "Physical Chemistry of Organic Solvent Systems,"

A. K. Covington and T. Dickinson, eds., Plenum Press, London, 1973.

⁸J.-C. Justice, *J. Chim. Phys.* 65, 353 (1968); *Electrochim Acta* 16, 701 (1971).

⁹N. Bjerrum, *K. Danske Videnskab Selskab; Mat.-Fys.-Medd.* 7, 9 (1926).

¹⁰R. Fernandez-Prini and J. E. Prue, *Trans. Faraday Soc.* 62, 1257 (1966).

¹¹J.-C. Justice, R. Bury, and C. Treiner, *J. Chim. Phys.* 65, 1708 (1968).

greater than that required by Debye-Hückel theory, then by increasing y_{\pm} (see Equation (13)), compensating changes will occur in the numerical values of J_1 and J_2 . In order to simplify the analysis of Equation (12) and avoid the controversy involving the correct magnitude of R , a method has been developed which can be used with a hand-held calculator such as the TI-59 pocket calculator. The details of this method are discussed below and applications to numerous electrolytes and solvents are discussed which include analyses of conductivity data for systems of importance in lithium primary battery development.

METHOD

The Fuoss-Hsia Equation (12) is recast into an empirical form

$$\Lambda = \Lambda^\infty - S(\alpha c)^{1/2} + E \alpha c \ln(\alpha c) + J'_1 \alpha c + J'_2 (\alpha c)^{3/2} - \Lambda \alpha c y_{\pm}^2 / K_D^0 y_n \quad (15)$$

where J'_1 and J'_2 are now empirical constants. The mean molar activity coefficient for the ions is also calculated empirically using the Davies equation

$$\log y_{\pm} = -A(\alpha c)^{1/2} / \left[1 + (\alpha c)^{1/2} \right] + 0.3 A \alpha c \quad (16)$$

For the activity coefficient of the neutral ion pair, it is assumed that

$$\log y_n = 0.3 A \alpha c \quad (17)$$

Equation (17) appears to hold well for aqueous solutions. Equation (15) can be rearranged in the form

$$Y = J'_1 + J'_2 (\alpha c)^{1/2} \quad (18)$$

where

$$Y = \Lambda \{ 1 + y_{\pm}^2 \alpha c / (K_D^0 y_n) \} / \alpha c - \{ \Lambda^\infty - S(\alpha c)^{1/2} + E \alpha c \ln(\alpha c) \} / \alpha c \quad (19)$$

In evaluating Equation (18) by least squares, values of Λ^∞ and K_D^0 are varied until the error, σ_Λ , in the observed conductivities is minimized. σ_Λ is defined by

$$\sigma_\Lambda = \{ \sum (\Lambda_{\text{obs}} - \Lambda_{\text{calc}})^2 / (N-3) \}^{1/2} \quad (20)$$

where N is the number of data points. To perform the calculations, initial guesses at Λ^∞ and K_D^0 are made, and α calculated by an iteration method using Equations (4b) and (16). The calculations are then repeated until σ_Λ is minimized by the appropriate Λ^∞ and K_D^0 values. All calculations are begun by evaluating S , E , and the Debye-Hückel constants A and B :

$$\Lambda / \text{mol}^{-1/2} \text{ dm}^{3/2} = 1.8246 \times 10^6 / (\epsilon T)^{3/2} \quad (21)$$

$$B/cm \text{ mol}^{-\frac{1}{2}} \text{ dm}^{3/2} = 5.029 \times 10^7 / (\epsilon T)^{\frac{1}{2}} \quad (22)$$

For the Onsager constant $S = \Lambda^\infty \beta_1 + \beta_2$

$$\beta_1 / \text{mol}^{-\frac{1}{2}} \text{ dm}^{3/2} = 8.2046 \times 10^5 / (\epsilon T)^{3/2} \quad (23)$$

$$\beta_2 / S \text{ cm}^2 \text{ mol}^{-3/2} \text{ dm}^{3/2} = 82.487 / \ln(\epsilon T)^{\frac{1}{2}} \quad (24)$$

For the Fuoss-Onsager constant $E = \Lambda^\infty E_1 - E_2$,

$$E_1 / \text{mol}^{-1} \text{ dm}^3 = 2.94257 \times 10^{12} / (\epsilon T)^3 \quad (25)$$

$$E_2 / S \text{ cm}^2 \text{ mol}^{-1} \text{ dm}^3 = 4.33244 \times 10^7 / \ln(\epsilon T)^2 \quad (26)$$

Finally, the present method of treatment of conductivity data also permits a simple solution of Equation (10) by the least squares method; i.e.,

$$Y = J' - \Lambda y_{\pm}^2 / K_D^0 y_n \quad (27)$$

where

$$Y = \{\Lambda - \Lambda^\infty + S (\alpha c)^{\frac{1}{2}} - E \alpha c \ln(\alpha c)\} / \alpha c \quad (28)$$

RESULTS

To test the accuracy of the present method for evaluating Λ^∞ and K_D^0 , the conductance data for various electrolytes in solvents having dielectric constants varying from $\epsilon = 78.3$ D to $\epsilon = 9.53$ D were analyzed and compared to previous results. The results of these analyses are given in Table 1 where all data refer to 25°C. The use of Equation (18) is seen to lead to equivalent values for Λ^∞ and K_D^0 when comparisons are made with the results obtained from the direct analyses of Equations (10) and (12). In several cases, the present method appears superior as indicated by much smaller σ_Λ values. In Table 2 results are given for the analyses of conductivity data for salts in thionyl chloride. These salts are all of interest for improvement of lithium primary batteries (Note: Pr_4N refers to the tetrapropylammonium ion $(\text{C}_3\text{H}_7)_4\text{N}^+$). The program written for the TI-59 calculator to solve Equation (15) is given in Appendix A.

TABLE I.* RESULTS OF ANALYSES OF CONDUCTIVITY DATA BY VARIOUS METHODS

Solvent (ε/D) (η/cP)	Salt	Reference	N	$10^4 c_{\max}$	Equation Number	J_1	J_2	Λ^∞ (σ)	K_D^0	q_A
water (78.30) (0.8901)	AgNO_3	12 ^a 13	26 ?	915 9	26 9	237.60 235.09	-279.77 -268.95	133.39 133.43 133.43(0.04) 133.43(0.04)	0.56 1.15 1.04(0.02) 1.06(0.02)	0.016 0.028 0.030 0.031
water	CH_3COOH	14 ^a 8 8	10 130 130	100 18 27	c 18 -303.4	540.7 -52,872	390.59 390.70(0.16) 390.71(0.16)	$1.753 \cdot 10^{-5}$ $1.751 \cdot 10^{-5}(1 \cdot 10^{-8})$ $1.751 \cdot 10^{-5}(2 \cdot 10^{-8})$ 0.034 0.029	
acetonitrile (35.95) (0.3409)	Am_4NbAm_4	15 ^c 8 ^b 7	7 29 29	29 12 18	10 2403 2237.5	1633.2 -7905 -8143.3	116.48 114.33(0.23) 114.35(0.02) 0.42(0.16) 0.70(0.11)	0.04 0.22 0.02	
methanol (32.62) (0.5445)	Me_4NCl	16 ^a 8	8 85	86 18	10 2662.2 -6610.2	120.82 121.098(0.004)	0.137 0.046($2 \cdot 10^{-5}$)	0.04 0.033	
n-propanol (20.33) (2.004)	Me_4NCl	17 ^a 8 ^b 18	9 7 7	56 43 43	10 12 10 -1326	25.02 25.29(0.07)	$2.19 \cdot 10^{-3}$ $1.70 \cdot 10^{-3}(5 \cdot 10^{-6})$	0.01 0.01	
82 wt% p-dioxane in water	HCl	19 ^c 8 ^b 4	21 4 15	41 6 12	83390 52424	-675000 -279423	57.93(0.08) 57.30(0.004)	$2.03 \cdot 10^{-3}(2 \cdot 10^{-7})$ $2.55 \cdot 10^{-3}(5 \cdot 10^{-8})$	0.01 0.002	

⁸ See page 3.12 J. D. McKenzie and R. M. Fuoss, *J. Phys. Chem.*, **73**, 1501 (1969).13 E. Hanna, A. D. Pethybridge, and J. E. Prue, *Electrochim. Acta*, **16**, 677 (1971).14 D. A. MacInnes and T. Shedlovsky, *J. Am. Chem. Soc.*, **54**, 1429 (1932).15 J. F. Coetzee and G. P. Cunningham, *J. Am. Chem. Soc.*, **87**, 2529 (1965).16 R. L. Kay, C. Zawoyski, and D. F. Evans, *J. Phys. Chem.*, **69**, 4208 (1965).17 D. F. Evans and P. Gardham, *J. Phys. Chem.*, **72**, 3281 (1968).18 P. Beronius, *Acta Chem. Scand.*, **A29**, 289 (1975).19 B. Owen and G. W. Waters, *J. Am. Chem. Soc.*, **60**, 2371 (1938).

*NOTES:
 N is the number of data points and c_{\max}
 is the highest concentration used
 in the calculations.

a - This is the reference to the
 original publications which contain
 the Λ and c data.
 b - See Reference ⁸ for method.
 c - See Reference ¹⁴ for method.

TABLE 2.* RESULTS OF ANALYSES BASED ON EQUATION (18) FOR SALTS IN SOCl_2

SALT	J_1	$-J_2$	$\Lambda^\infty(\sigma)$	$10^5 K_D^\infty(\sigma)$	c_A
LiAlCl_4	7.649×10^4	3.531×10^5	75.5 (1.7)	3.0 (0.1)	0.28
Pr_4NClO_4	1.015×10^5	2.142×10^5	106.2 (1.2)	6.0 (0.2)	0.72
Pr_4NCI	1.302×10^5	9.768×10^5	106.6 (1.3)	15.0 (0.6)	0.82
$\text{Pr}_4\text{NAlCl}_4$	8.411×10^4	8.149×10^4	97.0 (2.0)	10.0 (0.5)	0.88

*All data are for 25°C. Λ^∞ units are $\text{S cm}^2 \text{mol}^{-1}$, and K_D^∞ units are mol dm^{-3} .

APPENDIX A. -- TI-59 PROGRAM FOR SOLUTION OF EQUATION (15)

TITLE Solution of equation 15 PAGE OF
 PROGRAMMER M. Salomon DATE 1980

TI Programmable
Program Record

Partitioning (Op 17) [6,3,9,19] Library Module N/A Printer Cards

USER INSTRUCTIONS

STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1	Enter Debye-Bückel and Onsager constants	A		A
		B ₁	R/S	B ₁
		B ₂	R/S	B ₂
		E ₁	R/S	E ₁
		E ₂	R/S	E ₂
2	Enter A''	A''	2nd	A'
3	Enter K _D ⁰	K _D ⁰		B
4	Enter data for i = 1,.....,n	A _i		C
		c _i	R/S	a _i
		trial a	R/S	refined a _i
	If desired, read activity coefficients:		R/S	y _i
			R/S	y _n
5	Compute constants J ₁ ' and J ₂ ' and the correlation coefficient, r.			J ₁ '
			R/S	J ₂ '
			R/S	r
6	Calculate standard deviations.			0
	(a)	A _i	R/S	A _i
	(b)	c _i	R/S	c _i
	(c) refined a _i		R/S	-1
				.
				.
		a _n	R/S	$\sigma(A)$
			R/S	$\sigma(K_D^0)$
			R/S	$\sigma(A'')$
7	Reset pointer to step 6(a)		2nd	E'
8	Remove last set of A _i , c _i , a _i from step 6.		2nd	B'
9	After step 6 completed, to recalculate the std devs, press 2nd D'		2nd	D'
			R/S	$\sigma(A)$
			R/S	$\sigma(K_D^0)$
			R/S	$\sigma(A'')$

000	76	LBL	059	42	STD	116	11	11	177	43	RCL
001	11	R	060	25	25	119	91	R/S	178	12	12
002	42	STD	061	71	SBR	120	43	RCL	179	34	FW
003	00	00	062	23	LNN	121	13	13	180	54	=
004	91	R/S	063	71	SBR	122	91	R/S	181	95	=
005	42	STD	064	33	X	123	43	RCL	182	22	INT
006	01	01	065	75	-	124	14	14	183	28	LOG
007	91	R/S	066	43	RCL	125	91	R/S	184	42	STD
008	42	STD	067	25	25	126	76	LBL	185	13	13
009	02	02	068	95	=	127	32	X/T	186	33	X
010	91	R/S	069	50	INV	128	01	1	187	65	X
011	42	STD	070	22	INV	129	52	EE	188	43	RCL
012	03	03	071	77	GE	130	06	6	189	12	12
013	91	R/S	072	00	00	131	94	+/-	190	55	-
014	42	STD	073	86	86	132	32	X/T	191	43	RCL
015	04	04	074	43	RCL	133	92	RTN	192	14	14
016	91	R/S	075	11	11	134	76	LBL	193	95	=
017	76	LBL	076	66	PAU	135	25	CLR	194	42	STD
018	16	R*	077	65	X	136	00	0	195	15	15
019	42	STD	078	43	RCL	137	42	STD	196	92	RTN
020	05	05	079	10	10	138	34	34	197	76	LBL
021	65	X	080	95	=	139	42	STD	198	59	INT
022	43	RCL	081	42	STD	140	35	35	199	42	STD
023	01	01	082	12	12	141	42	STD	200	09	09
024	85	+	083	61	GTO	142	36	36	201	91	R/S
025	43	RCL	084	00	00	143	42	STD	202	42	STD
026	02	02	085	57	57	144	37	37	203	10	10
027	95	=	086	71	SBR	145	42	STD	204	91	R/S
028	42	STD	087	45	YX	146	38	38	205	42	STD
029	06	06	088	43	RCL	147	42	STD	206	11	11
030	43	RCL	089	09	09	148	39	39	207	65	X
031	05	05	090	65	X	149	92	RTN	208	43	RCL
032	65	X	091	53	C	150	76	LBL	209	10	10
033	43	RCL	092	01	1	151	23	LNN	210	95	=
034	03	03	093	85	+	152	43	RCL	211	42	STD
035	75	-	094	43	RCL	153	00	00	212	12	12
036	43	RCL	095	15	15	154	65	X	213	92	RTN
037	04	04	096	55	+	155	43	RCL	214	76	LBL
038	95	=	097	43	RCL	156	12	12	215	45	YX
039	42	STD	098	08	08	157	65	X	216	53	C
040	07	07	099	54)	158	93	3	217	43	RCL
041	71	SBR	100	75	-	159	03	3	218	05	05
042	25	CLR	101	43	RCL	160	95	=	219	76	-
043	91	R/S	102	16	16	161	22	INV	220	43	RCL
044	76	LBL	103	95	=	162	28	LOG	221	06	06
045	12	B	104	55	+	163	42	STD	222	65	X
046	42	STD	105	43	RCL	164	14	14	223	43	RCL
047	08	08	106	12	12	165	28	LOG	224	12	12
048	71	SBR	107	95	=	166	75	-	225	34	FW
049	25	CLR	108	42	STD	167	43	RCL	226	65	+
050	91	R/S	109	19	19	168	00	00	227	43	RCL
051	76	LBL	110	43	RCL	169	65	X	228	12	12
052	13	C	111	12	12	170	43	RCL	229	65	X
053	71	SBR	112	34	FW	171	12	12	230	23	LNN
054	59	INT	113	42	STD	172	34	FW	231	65	X
055	71	SBR	114	20	20	173	55	-	232	43	RCL
056	32	X/T	115	71	SBR	174	53	-	233	07	07
057	43	RCL	116	44	SUN	175	01	1	234	95	=
058	11	11	117	43	RCL	176	85	+	235	42	STD

236	16	16	295	95	=	354	42	SUM	413	32	30
237	54)	296	44	SUM	355	16	R/S	414	91	SUM
238	92	RTN	297	37	37	356	91	R/S	415	71	SUM
239	76	LBL	298	43	RCL	357	43	RCL	416	59	INT
240	33	X ²	299	19	19	358	17	17	417	71	SUM
241	53)	300	44	SUM	359	91	R/S	418	45	T%
242	43	RCL	301	38	38	360	43	RCL	419	71	SUM
243	08	08	302	33	X ²	361	36	36	420	23	LBN
244	65	X	303	44	SUM	362	55	-	421	43	RCL
245	43	RCL	304	39	39	363	43	RCL	422	16	16
246	14	14	305	92	RTN	364	34	34	423	85	-
247	55	-	306	76	LBL	365	75	-	424	43	RCL
248	43	RCL	307	14	I	366	53	-	425	18	18
249	13	13	308	43	RCL	367	43	RCL	426	65	X
250	33	X ²	309	34	34	368	35	35	427	43	RCL
251	95	=	310	65	X	369	55	-	428	12	12
252	42	STD	311	43	RCL	370	43	RCL	429	85	+
253	21	21	312	36	36	371	34	34	430	43	RCL
254	33	X ²	313	75	-	372	54	-	431	17	X
255	85	+	314	43	RCL	373	33	X ²	432	65	C
256	04	4	315	35	35	374	95	=	433	53	RCL
257	65	X	316	33	X ²	375	34	I	434	43	12
258	43	RCL	317	95	=	376	42	STD	435	12	12
259	21	21	318	42	STD	377	23	23	436	45	T%
260	65	X	319	22	22	378	43	RCL	437	03	-
261	43	RCL	320	35	I	379	39	39	438	54	-
262	10	10	321	65	X	380	55	-	439	34	I
263	95	=	322	53	C	381	43	RCL	440	95	-
264	34	FN	323	43	RCL	382	34	34	441	55	-
265	75	-	324	34	34	383	75	-	442	53	-
266	43	RCL	325	65	X	384	53	-	443	01	I
267	21	21	326	43	RCL	385	43	RCL	444	85	+
268	95	=	327	37	37	386	38	38	445	43	RCL
269	55	+	328	75	-	387	55	-	446	15	15
270	02	2	329	43	RCL	388	43	RCL	447	55	+
271	55	-	330	38	38	389	34	34	448	43	RCL
272	43	RCL	331	65	X	390	54	-	449	08	08
273	10	10	332	43	RCL	391	33	X ²	450	54	>
274	95	=	333	35	35	392	95	=	451	95	-
275	42	STD	334	54	>	393	34	I	452	75	-
276	11	11	335	95	=	394	35	I	453	43	RCL
277	54)	336	42	STD	395	65	X ²	454	09	09
278	92	RTN	337	17	I	396	43	RCL	455	95	=
279	76	LBL	338	43	RCL	397	17	I	456	33	X ²
280	44	SUM	339	36	36	398	65	X	457	42	STD
281	01	I	340	65	X	399	43	RCL	458	27	27
282	44	SUM	341	43	RCL	400	23	23	459	44	SUM
283	34	34	342	38	38	401	95	=	460	30	30
284	43	RCL	343	75	-	402	91	R/S	461	43	RCL
285	20	20	344	43	RCL	403	76	LBL	462	09	09
286	44	SUM	345	35	35	404	15	E	463	65	X
287	35	35	346	65	>	405	00	0	464	43	RCL
288	33	X ²	347	43	RCL	406	40	SUM	465	15	I
289	44	SUM	348	37	I	407	28	29	466	55	-
290	36	36	349	95	=	408	42	STD	467	53	-
291	34	FN	350	55	-	409	30	30	468	43	RCL
292	65	X	351	43	RCL	410	42	STD	469	16	16
293	43	RCL	352	22	22	411	31	31	470	85	+
294	19	19	353	95	=	412	42	STD	471	43	RCL

472	18	18		531	65	X		590	31	31
473	65	-		532	43	RCL		591	55	-
474	43	RCL		533	12	12		592	43	RCL
475	12	12		534	34	EX		593	33	33
476	85	+		535	54	-		594	95	=
477	43	RCL		536	85	+		595	34	EX
478	17	17		537	43	RCL		596	91	R/S
479	65	X		538	02	02		597	43	RCL
480	53	C		539	65	X		598	32	32
481	43	RCL		540	43	RCL		599	55	-
482	12	12		541	12	12		600	43	RCL
483	45	EX		542	34	EX		601	33	33
484	03	3		543	95	=		602	95	=
485	54	2		544	55	-		603	34	EX
486	34	EX		545	53	C		604	91	R/S
487	75	-		546	01	1		605	76	LBL
488	43	RCL		547	75	-		606	17	B'
489	09	09		548	43	RCL		607	43	RCL
490	54	2		549	01	01		608	27	27
491	95	=		550	65	X		609	94	+/-
492	75	-		551	43	RCL		610	44	SUM
493	43	RCL		552	12	12		611	30	30
494	08	08		553	34	EX		612	43	RCL
495	95	=		554	54	2		613	28	28
496	33	X ²		555	75	-		614	94	+/-
497	42	STD		556	43	RCL		615	44	SUM
498	28	28		557	05	05		616	31	31
499	44	SUM		558	95	=		617	01	1
500	31	31		559	33	X ²		618	94	+/-
501	43	RCL		560	44	SUM		619	44	SUM
502	09	09		561	32	32		620	29	29
503	65	X		562	43	RCL		621	61	GTO
504	53	C		563	34	34		622	04	04
505	01	1		564	32	X ² T		623	14	14
506	85	+		565	01	1		624	76	LBL
507	43	RCL		566	44	SUM		625	10	E'
508	15	15		567	29	29		626	61	GTO
509	55	+		568	43	RCL		627	04	04
510	43	RCL		569	29	29		628	14	14
511	08	08		570	67	E0		629	76	LBL
512	54	2		571	05	05		630	19	B'
513	75	-		572	77	77		631	61	GTO
514	43	RCL		573	94	+/-		632	05	05
515	12	12		574	61	GTO		633	01	01
516	65	X		575	04	04				
517	23	LNX		576	14	14				
518	65	X		577	75	-				
519	43	RCL		578	03	3				
520	07	07		579	95	=				
521	75	-		580	42	STD				
522	43	RCL		581	33	33				
523	12	12		582	35	1/2X				
524	65	X		583	65	X				
525	53	C		584	43	RCL				
526	43	RCL		585	30	30				
527	18	18		586	95	=				
528	85	+		587	34	EX				
529	43	RCL		588	91	R/S				
530	17	17		589	43	RCL				

**DAI
ILM**