Câu 1) Cho nguồn $X = \{x_1, x_2, ... x_i, ... x_n\}$ rời rạc, không nhớ. Tính xác suất điều kiện $P(x_{i/} x_1 x_2 ... x_i \pm 1... x_n)$. $(i = \overline{1 \div n})$

A. P(X ₂)	B. $P(X_n)$
C. P(X ₁)	D. $P(X_i)$

Câu 2) Cho kênh đối xứng $P(Y|X) = \begin{pmatrix} 0.35 & 0.15 & 0.5 \\ 0.5 & 0.35 & 0.15 \\ 0.15 & 0.5 & P_{33} \end{pmatrix}$. Tính P_{33}

A. 0.35	B. 1
C. 0.5	D. 0.15

Câu 3) Cho nguồn $X = \{x_1, x_2, x_3, x_4\}$ với phân phối xác suất $P_x = \{p_1, p_2, p_3, p_4\}$, $p_i = P(X = x_i)$; $i = \overline{1 \div 4}$. Tính thông tin I(X)

A. 1	B. 4
C. log ₄	$D. \log_2$

Câu 4) Cho nguồn $X = \{x_1, x_2, x_3, x_4\}$ rời rạc không nhớ với phân phối xác suất $P_x = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{3}{16}\}$. Tính xác suất điều kiện $P(x_3/x_1x_2x_4)$.

A. 3/16	B. 1/2
C. 1/16	D. 1/4

Câu 5) Cho mã khối tuyến tính C $(5,2) = \{00000,01011,10101,11110\}$. Tính khoảng cách Hamming của bộ mã

A. 4	B. 3
C. 1	D. 2

Câu 6) Cho kênh tin với ma trận kênh $P(Y|X) = \begin{pmatrix} 0.2 & 0.3 & 0.5 \\ 0.3 & 0.5 & 0.2 \\ 0.5 & 0.2 & 0.3 \end{pmatrix}$. Tính khả năng thông qua của kênh.

A. log3+(0.2log0.2+0.3log0.3+0.5log0.5)
B. 1-(0.2log0.2+0.3log0.3+0.5log0.5)
C. log3-(0.2log0.2+0.3log0.3+0.5log0.5)
D. 1+(0.2log0.2+0.3log0.3+0.5log0.5)

Câu 7) Cho bộ mã $\{00,10,010,1101\}$. Tính $\sum_{i=1}^{5} m^{-li}$ với m là cơ sở của bộ mã li, là chiều dài của từ mã thứ i (i= $\overline{1 \div 5}$)

A. 1	B. 3/8
C. 3/4	D. 1/4

Câu 8) Nếu w=1011011 là mã tuyến tính hệ thống loại 1 thì bản tin tương ứng U=

A. 1110	B. 1011
C. 1101	D. 0101

Câu 9) Ma trận kênh đối xứng là có dạng $\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$

Câu 10) Biểu diễn mặt phẳng tọa độ của từ mã u=1101 là

A. (13,4)	B. (2,8)
C. (10,2)	D. (2,10)
E. (4,13)	

Câu 11) Mã vòng C(7,4) với đa thức sinh $g(x) = 1+x+x^3$. Phương trình kiểm tra của vecter nhận v là S(v)=0, trong đó S(v)=0

A. $v(x).h(1/x)$	B. $v(x).g(x)$
C. $v(x).g(1/x)$	$D. \ v(x).h(x)$

Câu 12) Hàm cấu trúc của bộ mã $\{00,010,011,1111,110,10\}$ có giá trị G(2) là

A. 3	B. 2
C. 4	D. 6

Câu 13) Ma trận $G = \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{bmatrix}$ với giá trị $g_i = g_{i1}$, g_{i2} , g_{i3} , g_{i4} , g_{i5} , g_{i6} , g_{i7} ; i = 1, 2, 3 là ma trận

của khối tuyến tính C(4,7). Tính Rank G

A. 3	B. 2
C. 4	D. 1

Câu 14) Mã vòng C(3,4) với đa thức sinh g(x)=1+x có da thức kiểm tra h(x) là

A. $x^3 + x^2 + x + 1$	B. $1 + x^2 + x^3$
C. $x + x^2 + x^3$	D. $1 + x + x^3$

Câu 15) Ma trận kênh có dạng là $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$

Câu 16) Hiệu suất lập mã của bộ mã nhị phân prefix bất kỳ h=

A. $\frac{H(x)+1}{\bar{I}}$	B. $\frac{\bar{I}}{\overline{H(x)}}$
C. $\frac{\bar{I}}{H(x)+1}$	D. $\frac{H(x)}{\bar{I}}$

Câu 17) Bộ mã prefix nhị phân có chiều dài $\{2,2,3,4,4\}$. Tính $\sum_{i=1}^{5} m^{-li}$ với li là chiều dài của từ mã thứ i $(i=\overline{1\div 5})$

A. 3/4	B. 3/8
C. 1/4	D. 1

Câu 18) Kênh được gọi là không mất (không tổn thất) nếu H(X|Y) bằng

A. H(Y)	B. H(X)/H(Y)
C. H(X)	D. 0

Câu 19) Mã vòng C(7,4) với ma trận sinh $G = \begin{pmatrix} 1101000 \\ 0110100 \\ 0011010 \\ 0001101 \end{pmatrix}$ có đa thức sinh tương ứng

g(x) là

A. $1+x+x^2$	B. $1+x^2+x^3$
C. $x+x^2+x^3$	D. $1+x+x^3$

Câu 20) Cho bộ mã {00000,01101,10110,11011}. Số bit mà bộ mã trên có

A. 1	B. 3
C. 2	D. 0

Câu 21) Cho kênh tin: $P(Y|X) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} v \acute{\sigma} i \ P_x = \{\frac{1}{4}, \frac{3}{4}\}. \ Tính \ H(Y|X)$

A. $-(\frac{1}{4}\log\frac{1}{4} + \frac{3}{4}\log\frac{3}{4})$	B. $-(\frac{2}{3}\log\frac{2}{3} + \frac{1}{3}\log\frac{1}{3})$
C. $(\frac{2}{3}log\frac{2}{3} + \frac{1}{3}log\frac{1}{3})$	D. $1 + (\frac{2}{3}\log\frac{2}{3} + \frac{1}{3}\log\frac{1}{3})$

Câu 22) Cho mã tuyến tính C(3,6) với ma trận sinh $G = \begin{pmatrix} 100011 \\ 010101 \\ 001111 \end{pmatrix}$. Vector nhận

v=101000 là vector sai ở bit thứ

A. 4	B. 2
C. 1	D. 3

Câu 23) Mã vòng C (7,4) có ma trận kiểm tra $H=\begin{pmatrix} 1011100\\0101110\\0010111 \end{pmatrix}$ có đa thức kiểm tra

h(x) là

A. $1+x+x^2+x^4$	B. $x + x^2 + x^3 + x^4$
C. $1+x^2+x^3+x^4$	D. $x^2 + x^3 + x^4$

Câu 24) Cho nguồn $X = \{x_1, x_2, x_3, x_4\}$ với phân phối xác suất $Px = \{\frac{1}{8}, \frac{1}{8}, \frac{1}{2}, \frac{1}{4}\}$. Khi đó, bộ mã x_1 : =10, x_2 : =100, x_3 : =010, x_4 : =011 là

A. Tối ưu	B. Prefix
C. Không tối ưu	D. Tách được