Rottenberg, Cole Harrison Class #: 20931 November 12, 2023

REQUIREMENTS NOT MET

• All requirements were met.

PROBLEMS ENCOUNTERED

• No problems were encountered.

INTRODUCTION

In Lab 9, we explore low and high pass RC filters. We also define differences between active and passive filters.

DISCUSSION

9.5 Pre-Lab Requirements:9.5.1 LTSpice Simulations:

- 1. Review AC Analysis in LTSpice
- 2. Build a simple lowpass filter, Figure 9.2a, but set R=10 k Ohm and $C=0.001~\mu F$. Set the voltage source to an AC amplitude of 1 and run an AC analysis with the following settings: Decade, 100, 1, 1Meg. Save an image of the circuit, a plot of the output, and table the 3 dB frequency for submission.

Figure 1: Plot of Low Pass Filter

Figure 2: Circuit of Low Pass Filter

3. High Pass Filter

Figure 3: Plot of High Pass Filter

Figure 4: Circuit of High Pass Filter

HIGH-PASS | 1.063 kHz | 45 deg

4. Active Low Pass Filter with $R=1k\Omega$ and $C=0.1\mu F$

Figure 5: Plot of Active Low Pass Filter

Figure 6: Circuit of Active Low Pass Filter

ACTIVE LOW-PASS | 1.59 kHz | 45 deg

5. Active High Pass Filter with $R_1=3.3k\Omega, R_2=33k\Omega$ and $C=0.1\mu F$

Figure 7: Plot of Active High Pass Filter

Figure 8: Circuit of Active High Pass Filter

ACTIVE HIGH-PASS | 482.3 Hz | 45 deg

9.5.2 Breadboard Implementation:

- 1. Review Network Analyzer tool in Digilent Waveforms.
- 2. Build Active Low Pass Filter with $R=1k\Omega$ and $C=0.1\mu F$.
- 3. Network Analysis of Circuit

EEL3111C - Circuits Lab 9: Filters Revision: 0

Rottenberg, Cole Harrison Class #: 20931 November 12, 2023

Figure 9: Plot of Active Low Pass Filter

9.7 Write-Up:

31. 1120 SP					
		Low-Pass	High-Pass	Active Low-Pass	Active High-Pass
	Simulated	16 kHz	$1.063~\mathrm{kHz}$	$1.59~\mathrm{kHz}$	$482.3~\mathrm{Hz}$
	Actual	$15.674~\mathrm{kHz}$	$1.035~\mathrm{kHz}$	$1.593~\mathrm{kHz}$	460.9 Hz
	Percent Error	2.03%	2.63%	0.1%	4.44%

Figure 10: Passive Low Pass Filter

Figure 11: Passive High Pass Filter

Figure 12: Active Low Pass Filter

Figure 13: Active High Pass Filter

CONCLUSION

The purpose of lab 9 is to explore the working characteristics of RC filters. However, we explore how to create active filters which can create a gain and a filter in one amplifier. As we can see from the previous section, our physical circuits worked within a 5% tolerance of simulated values.