BeOI training - carnival 2015 Data structures II

Guillaume DERVAL Benoît LEGAT

Belgian Olympiad in Informatics

19 février 2015

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse tab

A short reminder

A short reminder

Sets and Maps

Heaps

Union find

Segment Trees

Fenwick Tree

Sparse table

You should already know...

- Arrays
- Linked Lists
- Stack & Queues

Array

- Keys : $\{0, \dots, n-1\}$
- Access in $\mathcal{O}(1)$
- Modify in $\mathcal{O}(1)$

With dynamic array (ArrayList or std::vector), n is not fixed.

- ullet Add in amortized $\mathcal{O}(1)$
- Remove in $\mathcal{O}(n)$ if not at the end

Linked list

- Access and modify in $\mathcal{O}(n)$
- ullet Modify and modify in $\mathcal{O}(1)$ at extremities
- ullet Add and remove in $\mathcal{O}(1)$

Stack and Queue

Specific Linked List (a bit faster and limited capability)

Stack LIFO, Last in First out.

```
Stack<Integer> s = new Stack<Integer>();
q.push(1);
int top = q.peek(); // just watch
top = q.pop();
```

Queue FIFO, First in First out.

```
Queue < Integer > q = new LinkedList < Integer > ();
q.add(1);
int first = q.peek(); // just watch
fitst = q.poll();
```

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse tab

Sets and Maps

A short reminder

Sets and Maps
Some definitions
Hash maps & sets
Binary Search Tree

Heaps

Union find

Segment Trees

Fenwick Tree

Sparse table

Sets

"A collection that contains no duplicate elements" (Java 7 doc) Three main actions :

- Add element
- Delete element
- Check presence of element

Maps

"An object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value." (Java 7 doc) Four main actions :

- Add (key,value) pair
- Delete value from its key
- Check presence of value by its key
- Get value from its key

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse table

Overview of the implementations

Unique key

sorted unsorted

std::set std::unordered_set

TreeSet HashSet

std::map std::unsorted_map

TreeMap HashMap

complexity $\mathcal{O}(\log(n))$ $\mathcal{O}(1)$ on average

Different elements can have the same key

existence

association

sorted unsorted

existence std::multiset std::unordered_multiset association std::multimap std::unsorted_multimap complexity $\mathcal{O}(\log(n))$ $\mathcal{O}(1)$ on average

Hash maps I

Principle

There is a number N of buckets. The key is mapped to a bucket by hashing it to a number between 0 and N-1.

- 1. Transform the key to a number k of type $size_t$;
- 2. Get that number between 0 and N-1 (e.g. $k \pmod{N}$);
- 3. Access the bucket with that index.

For now, $\mathcal{O}(1)$!

Hash maps II

Collision

But there can be collision so it is $\mathcal{O}(1)$ on average! In case of collision, 2 solutions

- Store in each bucket all the collisions;
- Probe a empty spot (linear probing, quadratic probing, ...).

It is only $\mathcal{O}(1)$ on average if the load factor is good (e.g. $\ll 1$). When load factor get close to 1, increase N.

Binary Search Tree I

Binary Search Tree II

```
To get \mathcal{O}(\log(n))
```

- Balanced
- Comparison in $\mathcal{O}(1)$ (strings have $\mathcal{O}(m\log(n))$ where m is their length)
- Balancing operation in log(n)

Balanced trees are tricky to code! Use $\mathtt{std}::\mathtt{set}$, $\mathtt{TreeSet}$ and $\mathtt{std}::\mathtt{map}$, $\mathtt{TreeMap}$!

Array, TreeMap, or HashMap?

When to use a BST or a hash map

- When you want an array to be indexed by another thing than an int
- When there is lot of empty "key" space in your array

Choosing between HashMap and TreeMap

- ullet HashMap is "magically" $\mathcal{O}(1)$, most of the time faster than TreeMap
- But TreeMap can provide you all the values, ordered by keys

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse table

Heaps

A short reminder

Sets and Maps

Heaps

Introduction Definition Example

Union find

Segment Trees

Fenwick Tree

Sparse table

A short introduction

Read problem 10954 from UVA!

A naive method

With a linked list or an array

- 1. Sort everything $(\mathcal{O}(n \log(n)))$
- 2. Take the two smallest numbers $(\mathcal{O}(1))$
- 3. Make the sum $(\mathcal{O}(1))$
- 4. Add the result to the collection (keeping it sorted) $(\mathcal{O}(n))$
- 5. Go back to step 2 (do this *n* times)

$$\mathcal{O}(n^2)$$

We can do better

We want a structure such that...

- 1. Sort the collection $(\mathcal{O}(n \log(n)))$
- 2. Take the two smallest numbers $(\mathcal{O}(\log(n)))$
- 3. Make the sum $(\mathcal{O}(1))$
- 4. Add the result to the collection (keeping it sorted) $(\mathcal{O}(\log(n)))$
- 5. Go back to step 2 (do this *n* times)

$$\mathcal{O}(n\log(n))$$

Heap

(here we explain Binary Heap, but there are more types of heaps) A binary tree that satisfies these properties :

Shape

The tree is a complete binary tree (only the last level can be not fully filled)

Heap property

All nodes are lesser than (or any other comparison you may choose) each of their children

Heap vs. BST

- BST is for **searching**, Heap is for **sorting**
- BST is always fully sorted
- Only the first element of Heap is sorted
- Optimal BST is very difficult to implement, while Heap is very simple and effective
- Always choose the simplest data structure for what you want to do!

An example of Binary Heap

Push I

Push II

Push III

Push IV

Push V

Pop I

Pop II

Pop III

Pop IV

Pop V

Pop VI

Pop VII

Implémentation I

```
int hsize;
1
   int hid[MAX]; // give id from index
   int hval[MAX]; // give val from index
   int hlookup[MAX]; // give index from id
5
   void heap swap (int a, int b) { // a and b are the indexes
   int tmp = hval[a];
7
   hval[a] = hval[b]:
   hval[b] = tmp;
10
   hlookup[hid[a]] = b;
11
   hlookup[hid[b]] = a;
12
13
   tmp = hid[a];
14
   hid[a] = hid[b];
15
   hid[b] = tmp;
16
17
18
   void heap_up (int a) { // a is the index
19
      int up = (a-1)/2;
20
   if (0 < a && hval[a] < hval[up]) {</pre>
   heap_swap(a, up);
22
   heap up(up);
24
25
26
```

Implémentation II

```
void heap_down (int a) { // a is the index
27
    int left = 2*a+1, right = 2*a+2;
28
    if (left < hsize && (hsize <= right || hval[left] < hval[right]) &&
29
        hval[left] < hval[a]) {
    heap swap(a, left);
30
    heap_down(left);
31
32
    else if (right < hsize && hval[right] < hval[a]) {</pre>
33
    heap_swap(a, right);
34
    heap down(right);
35
36
37
```

- Do not implement it yourself! Most of the time not needed.
- Java : PriorityQueue
- C++: std::priority_queue

We are nearly done with heaps...

... Finish the problem 10954 from UVA! (and/or do a short break before we view the union-find)

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse tab

Union find

A short reminder

Sets and Maps

Heaps

Union find

Problem Algorithm Exemples

Segment Trees

Fenwick Tree

Sparse table

A wild problem appear

n objects $0, \ldots, n-1$ are initially alone in their respective sets. We have two types of query

Union We merge 2 sets designated by 2 respective members Find We ask if 2 objects are in the same set

	{1}	{2}	{3}	{4 }	{5 }
(1,5)	$\{1,5\}$	{2}	{3}	{4 }	
(2,4)	$\{1,5\}$	$\{2,4\}$	{3}		
(2,3)	$\{1,5\}$	$\{2,3,4\}$			
(3,4)	$\{1,5\}$	$\{2,3,4\}$			
(4,5)	$\{1,2,3,4,5\}$				

A naive solution

- Array + Linked Lists
- Array containing linked list entries
- Class = first element of the list
- Union : merge two linked lists $(\mathcal{O}(n))$
- Find : move to the first node of the list $(\mathcal{O}(n))$

$$\mathcal{O}(n)$$

A less naive solution

- Array + Trees
- Array containing tree nodes
- Class = root of the tree
- *Union*: merge two trees by connecting one root to the other $(\mathcal{O}(n))$
- Find : move to the root of the tree $(\mathcal{O}(n))$

(a better) $\mathcal{O}(n)$

A non-that-naive solution

- Array + Trees
- Array containing tree nodes
- Class = root of the tree
- Union : merge two trees by connecting root of the smaller tree to the other, which is taller, minimizing the resulting height $(\mathcal{O}(\log(n)))$
- Find : move to the root of the tree $(\mathcal{O}(\log(n)))$

$$\mathcal{O}(\log(n))$$

A perfect solution

- Array + Trees
- Array containing tree nodes
- Class = root of the tree
- Union : merge two trees by connecting root of the smaller tree to the other, which is taller, minimizing the resulting height $(\mathcal{O}(\alpha(n)))$
- Find : move to the root of the tree, and move all nodes in the path to the root of the tree $(\mathcal{O}(\alpha(n)))$

$$\mathcal{O}(\alpha(n))$$
!

$$\alpha(n)$$

$$\alpha(n) = f^{-1}(n)$$

where

$$f(n) = A(n,n)$$

where

$$A(m,n) = \begin{cases} n+1 & \text{si } m=0\\ A(m-1,1) & \text{si } m>0 \text{ et } n=0\\ A(m-1,A(m,n-1)) & \text{si } m>0 \text{ et } n>0. \end{cases}$$

Arckermann's function grows rapidly

n	A(n,n)		
0	1		
1	3		
2	7		
3	61		
	2 ^{2⁶⁵⁵³⁶}		
4	2 ²		
5	[insert a very big number here]		

$$\alpha(n) \le 4 \text{ for } n \le 2^{2^{2^{65536}}}!!!$$

(for all n in fact...)

Union find solution

```
class UnionFind {
1
      int rank[MAX_N];
2
      int leader[MAX_N];
3
      UnionFind(int n) {
        memset(rank, 0, n * sizeof(int));
5
        for(int i = 0: i < n: i++) leader[i] = i:</pre>
6
7
      int find(int a) {
8
        if(a != leader[a])
9
          leader[a] = find(leader[a]);
10
        return leader[a];
11
12
      void union(int a, int b) {
13
        int leaderA = find(a):
14
        int leaderB = find(b):
15
        if(leaderA == leaderB) return;
16
        if(rank[leaderA] > rank[leaderB]) {
17
          union(leaderB, leaderA); return;
18
19
        leader[leaderA] = leaderB;
20
        if (rank[leaderA] == rank[leaderB])
21
          rank[leaderB]++;
22
23
   };
24
```

Example: gridland I

Grid $n \times m$ avec $1 \le n, m \le 1 \times 10^3$. Two squares are connected if they are activated and there is a path of activated square from one to the other. Initially, squares are only connected to themselves.

There is $1 \le q \le 1 \times 10^6$ queries

add a x y activate the square at (x, y)

connected? c xa ya xb yb see if (xa, ya) and (xb, yb) are connected.

Example: gridland II

c 2 5 5 1

>> 0

Other examples

- 11503 from UVA (do it!)
- uhunt.felix-halim.net 2.4.2.
- Kruskal (impossible to get $\mathcal{O}(n \log(n))$ without it)

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree Sparse tab

Segment Trees

A short reminder

Sets and Maps

Heaps

Union find

Segment Trees Motivation Solution Implementation

Fenwick Tree

Sparse table

Range Minimum Query

You have an array A of size n, with integer values inside. Given two integer a and b (a < b), can you give me the minimum value of A between A[a] and A[b]?

min
$$A[i]$$
 for $a \le i \le b$

Range Minimum Query

You have an array A of size n, with integer values inside. Given two integer a, b, can you give me the minimum value of A between A[a] and A[b]?

min A[i] for $a \le i \le b$

100000 times?

Similar problems

- Dynamic Range Minimum Query
- Dynamic Range Sum Query (Fenwick Tree is simpler)
- Dynamic Range [insert any function here] Query

I love naive solutions

Using an array... Spatial complexity $\mathcal{O}(n)$ Update time complexity $\mathcal{O}(1)$ Query time complexity $\mathcal{O}(n)$ Total Query time complexity $\mathcal{O}(mn) \Rightarrow \textit{TLE}$

A better solution: the segment tree

Spatial complexity $\mathcal{O}(n \log(n))$ Update time complexity $\mathcal{O}(\log(n))$ Query time complexity $\mathcal{O}(\log(n))$ Total Query time complexity $\mathcal{O}(m \log(n)) \Rightarrow \mathbf{AC}$

Segment Tree implementation I

```
class SegmentTree {
1
     int[] st, A;
2
     int n;
3
     int left (int p) { return p << 1; }</pre>
     int right(int p) { return (p << 1) + 1; }</pre>
5
6
     void build(int p, int L, int R) {
7
       if (L == R)
8
         st[p] = L; // or R
       else {
10
         int mid = (L + R) / 2;
11
         12
         build(right(p), mid + 1, R);
13
         int p1 = st[left(p)], p2 = st[right(p)];
14
         st[p] = (A[p1] \le A[p2]) ? p1 : p2;
15
     } }
16
     int rmq(int p, int L, int R, int i, int j) { // O(log n)
18
       if (i > R || j < L) return -1; // outside query range
19
       if (i <= L && R <= j) return st[p]; // inside query range</pre>
20
       int mid = (L + R) / 2:
       22
       int p2 = rmq(right(p), mid + 1, R , i, j);
24
       if (p1 == -1) return p2;
                                        // outside query range
25
       if (p2 == -1) return p1;
26
```

Segment Tree implementation II

```
return (A[p1] <= A[p2]) ? p1 : p2; }</pre>
27
28
     int update(int p, int L, int R, int i, int j, int v) {
29
       if (i > R || j < L)
                                            // outside update range
30
         return st[p]:
31
       //if (i <= L && R <= j) // could be lazy here !! Depends on
32
            application
       if (L == R) {
33
         A[i] = v;
34
         return st[p] = L; // or R
36
       int mid = (L + R) / 2;
37
       38
       int p2 = update(right(p), mid + 1, R , i, j, v);
39
       return st[p] = (A[p1] <= A[p2]) ? p1 : p2;</pre>
40
41
42
43
     public:
44
     SegmentTree(int[] A) {
45
       A = A: n = A.length:
46
       st = new int[4 * n];
47
       for (int i = 0; i < 4 * n; i++) st[i] = 0;
48
       build(1, 0, n - 1):
49
50
     int rmq(int i, int j) { return rmq(1, 0, n - 1, i, j); }
51
     int update_point(int i, int v) {
52
```

Segment Tree implementation III

```
return update(1, 0, n - 1, i, i, v); }
int update_interval(int i, int j, int v) {
    return update(1, 0, n-1, i, j, v); }
};
```

- IOI-2013 day 2 : "game"
- http://codeforces.com/problemset/problem/474/E

A short reminder Sets and Maps Heaps Union find Segment Trees **Fenwick Tree** Sparse tab

Fenwick Tree

A short reminder

Sets and Maps

Heaps

Union find

Segment Trees

Fenwick Tree

Sparse table

Fenwick Tree I

Dynamic Range Sum Query
What are the numbers smaller that 1011001000?

- 1011000???
- 1010??????
- 100???????
- 0????????

```
 \begin{split} \mathsf{rsq}(1011001000) &= \mathsf{ft}(1011001000) + \mathsf{ft}(1011000000) \\ &\quad + \mathsf{ft}(1010000000) + \mathsf{ft}(1000000000) \end{split}
```

```
adjust(01011001000,1):

    ft[01011010000]++

    ft[01011100000]++

    ft[01100000000]++

    ft[1000000000]++
```

Fenwick Tree II

```
class FenwickTree {
1
2
     int *ft:
     int n;
3
     int LSOne(int S) { return (S & (-S)); }
4
     public:
5
     FenwickTree(int n) { // ignore index 0
6
      this -> n = n:
7
      ft = new int[n+1];
8
       for (int i = 0; i \le n; i++) ft[n] = 0;
9
10
     11
       int sum = 0; for (; b > 0; b -= LSOne(b)) sum += ft[b];
12
       return sum:
13
14
     int rsq(int a, int b) { // returns RSQ(a, b) PRE 1 <= a,b <= n
15
       return rsq(b) - (a == 1 ? 0 : rsq(a - 1));
16
17
     void adjust(int k, int v) { // n = ft.size() - 1 PRE 1 <= k <= n</pre>
18
       for (; k <= n; k += LSOne(k)) ft[k] += v;</pre>
19
20
   };
21
```

Fenwick Tree III

Exemples:

- NWERC 2011 Problem C
- http://codeforces.com/contest/504/problem/B
- http://codeforces.com/problemset/problem/459/D

A short reminder Sets and Maps Heaps Union find Segment Trees Fenwick Tree **Sparse table**

Sparse table

A short reminder

Sets and Maps

Heaps

Union find

Segment Trees

Fenwick Tree

Sparse table

Sparse Table

Static Range Minimum Query m[i][j] stores the smallest of $[i;i+2^j[.min([a;b[)=min(m[a][k],m[b-2^k][k])$ for k such that $2^{k-1} < b-a \le 2^k$

Tricky example

Get a tree flat with DFS then apply RSQ and RMQ.

- Least Common Ancestor : LCA
- http://codeforces.com/contest/383/problem/C