V.J.T.I

T.Y.B.Tech (ExTc)

Sub: Digital communication system

Sem-V

Course Instructor

Dr. D. P. Rathod

PhD(Technology)Electronics Engg.

Dept. of Electronics Engineering

dprathod@el.vjti.ac.in

Mob-9819003515

Outline

- > Modern digital communication system
- ➤ ECC for data transmission and storage devices
- Hamming Code (n, k)
- Parity Check Matrix H and Generator matrix G
- Properties of matrices
- Cyclic Code (n, k)
- Polynomial g(X) of degree n-k
- Parity check polynomial h(x)
- $> 2^k$, Valid code C
- \triangleright Code rate r = k/n

Outline

- Modern linear abstract Algebra-
- > Irreducible polynomial
- Primitive polynomial
- Primitive elements ?
- > Vector spaces Vn
- > Vector subspaces
- > Linear combination of vectors
- > Dependent / Independent set of vectors
- Spanning set/basis vectors
- Groups G
- > Fields F

Vector Spaces V_n :

- ➤ Let *V* be a set of elements on which a binary operation called addition, +, is defined.
- \triangleright Let F be a field. GF(2)= $\{0,1\}$
- A multiplication operation by ".", between the elements in F and elements in V is also defined.
- The set *V* is called a *vector space* over the field *F* if it satisfies the following conditions:
 - \triangleright V is Commutative under addition. (u+v = v+u)
 - For any element a in *F* and any element **v** in *V*, a.**v** is an element in *V*.

\triangleright Vector Spaces V_n :

Let n =5. the vector space V_5 of all 5-tuples over GF(2) consist of the following set of 32 vectors which are distinct:

(00000)	(00001)	(00010)	(00011)
(00100)	(00101)	(00110)	(00111)
(01000)	(01001)	(01010)	(01011)
(01100)	(01101)	(01110)	(01111)
(10000)	(10001)	(10010)	(10011)
(10100)	(10101)	(10110)	(10111)
(11000)	(11001)	(11010)	(11011)
(11100)	(11101)	(11110)	(11111)

These sets are linear combinations of **basis** vector or **spanning** set (10000, 01000, 00100, 00010, 00001)

- Vector Spaces V_n:
- ► Addition of Vectors, Let $v_1 = (1\ 0\ 1\ 1\ 1) \&\ v_2 = (1\ 1\ 0\ 0\ 1)$
 - The vector sum of $v_1 \& v_2$ is (10111) + (11001) = (1 + 1,0 + 1,1 + 0,1 + 1) = (01110).
- > Scalar multiplication with vectors, Let "0" & "1" are the scalar 0.(11010) = (0.1,0.1,0.0,0.1,0.0) = (00000), 1.(11010) = (1.1,1.1,1.0,1.1,1.0) = (11010),
 - The vector space of all n-tuples over any field F constructed in a similar manner.
 - However, we are mostly concerned with the vector space of all ntuples over GF(2) or over an extension field of GF(2) [e.g. GF(2^m)].
 - Because V is a vector space over a field F, it may happen that subset S of V is also a vector space over F.
 - Such a subset is called a subspace of V.

- ➤ Let S be a nonempty subset of a vector space V over a field F then, S is a subspace of V if the following conditions are satisfied;
- For any two vectors **u** & **v** in *S*, **u** + **v** also a vector in *S*.
- For any element a in F & any vector **u** in S, **a.u** is also in S.
- Consider the vector space of all 5 tuple over GF(2) the set $\{(00000), (00111), (11010), (11101)\}$

- Vector Spaces V_n:
- Linear Combination of vectors
 - Let v_1, v_2, \cdots, v_k be k vectors in vector space V over a field F, let a_1, a_2, \cdots, a_k be k scalars from F. The sum of product of scalar and vector that is

$$a_1v_1 + a_2v_2 + \dots + a_kv_k$$

 \triangleright Clearly, the sum of two linear combinations of v_1, v_2, \cdots, v_k .

$$(a_1v_1 + a_2v_2 + \dots + a_kv_k) + (b_1v_1 + b_2v_2 + \dots + b_kv_k)$$

= $(a_1 + b_1)v_1 + (a_2 + b_2)v_2 + \dots + (a_k + b_k)v_k$

Scalar Product :

 \succ The product of scalar c in F & a linear combination of v_1, v_2, \cdots, v_k .

$$c \cdot (a_1 v_1 + a_2 v_2 + \dots + a_k v_k) = (c \cdot a_1) v_1 + (c \cdot a_2) v_2 + \dots + (c \cdot a_k) v_k$$

\triangleright Vector Spaces V_n :

> Statement:

Let v_1, v_2, \cdots, v_k be k vectors in vector space over a field F. The set of all linear combinations of v_1, v_2, \cdots, v_k forms a subspace of V.

Proof:

 \blacktriangleright A set of vectors v_1, v_2, \cdots, v_k in a vector space V over a field F said to be linearly dependent if and only if there exist k scalars a_1, a_2, \cdots, a_k from field F, not all zero, such that

$$a_k v_1 + a_k v_2 + \dots + a_k v_k = 0$$

ightharpoonup A set of vectors v_1, v_2, \cdots, v_k is said to be *linearly independent* if it is not *linearly dependent*.

\triangleright Vector Spaces V_n :

- That is v_1, v_2, \dots, v_k are **linearly independent**. If and only if $a_k v_1 + a_k v_2 + \dots + a_k v_k \neq 0$

Example:

Consider the vector space of all 5-tuple over GF(2) the linear combinations of (00111) & (11101) are

$$0.(00111) + 0.(11101) = (00000)$$

$$0.(00111) + 1.(11101) = (11101)$$

$$1.(00111) + 0.(11101) = (00111)$$

$$1.(00111) + 1.(11101) = (11010)$$

\triangleright Vector Spaces V_n :

> Example:

- The vectors (10110), (01001), & (11111) are linearly dependent. Since 1.(10110) + 1.(01001) + 1.(11111) = (00000);
- However, (10110), (01001), & (11011) are linearly independent.
- All eight combinations of these vectors are given here:

```
0.(10110) + 0.(01001) + 0.(11011) = (00000),

0.(10110) + 0.(01001) + 1.(11011) = (11011),

0.(10110) + 1.(01001) + 0.(11011) = (01001),

0.(10110) + 1.(01001) + 1.(11011) = (10010),

1.(10110) + 0.(01001) + 0.(11011) = (10110),

1.(10110) + 0.(01001) + 1.(11011) = (01101),

1.(10110) + 1.(01001) + 0.(11011) = (11111),

1.(10110) + 1.(01001) + 1.(11011) = (00100),
```

A set of vectors is said to **span** a vector space *V* if every vector in *V* is a linear combination of vectors in set .

- Basis Vector
- In any vector space or subspace there exist at least one set B of linearly independent vectors that span the space.
- This is called as a basis (or base) of the vector space.
- The number of vectors in a **basis** of a vector space is called as the **dimension** of the vector space.
- \triangleright Consider a vector space V_n of all *n*-tuples over GF(2).
- Let us form the following n, *n-tuples*:

$$e_0 = (1, 0, 0, 0, \dots, 0, 0)$$

$$e_1 = (0, 1, 0, 0, \dots, 0, 0)$$

$$\vdots$$

- \triangleright Where the *n*-tuple \mathbf{e}_i has only one nonzero component at the ith position.
- Then every *n*-tuple $(a_0, a_1, a_2, \cdots, a_{n-1})$ in V_n can be expressed as a linear combination of $e_0, e_1, \cdots, e_{n-1}$ as follows:

$$(a_0, a_1, a_2, \dots, a_{n-1}) = a_0 e_0 + a_1 e_1 + a_2 e_2 + \dots + a_{n-1} e_{n-1}.$$

- ightharpoonup Therefore e_0, e_1, \dots, e_{n-1} span the vector space V_n of n-tuple over GF(2).
- We also see that e_0, e_1, \dots, e_{n-1} are linearly independent.
- \triangleright Hence, they form a basis for V_n , & dimension of V_n is n.
- If $k < n \ \& \ v_1, v_2, \cdots, v_k$ are k linearly independent vectors in V_n , then all the linear combinations of v_1, v_2, \cdots, v_k of the form, $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ form a k- dimensional subspace S of V_n .

- \blacktriangleright Because of each c_i has two possible values 0 or 1, there are 2^k possible distinct linear combinations of $v_1, v_2, ..., v_k$.
- \triangleright Thus, S consists of 2^k vectors and is a k-dimensional subspace of V_n .
- \blacktriangleright Let $\pmb{u}=(u_1,u_2,\cdots,u_{n-1}) \ \& \ \pmb{v}=(v_1,v_2,\cdots,v_{n-1})$ be two *n-tuples* in V_n .
- ➤ We define the inner product or (dot product) of **u** & **v** as:

$$\mathbf{u}.\mathbf{v} = u_0.v_0 + u_1.v_1 + \dots + u_{n-1}.v_{n-1}$$

- Mhere $u_i.v_i$ & $u_i.v_i+u_{i+1}.v_{i+1}$ are carried out in modulo-2 multiplication & addition.
- \triangleright Hence, inner product of u_i . v_i is a scalar in GF(2).
- \triangleright If n = 0 u & v are said to be arthogonal to each other

\triangleright Vector Spaces V_n :

> Statement:

- \triangleright Let S be a k-dimensional subspace of the vector space Vn of n-tuple over GF(2).
- The dimension of its null space Sd is in n-k. in other words,

$$dim(S) + \dim(S_d) = n$$

Irreducible polynomial:

- For a polynomial f(X) over GF(2), if polynomial has an even number of terms, it is devisable by X+1.
- A polynomial p(X) over GF(2) of degree m is said to be *irreducible* over p(X). If it is not divisible by any polynomial over GF(2) of degree less than m but greater than zero.

Irreducible polynomial P(X):

- Among the four polynomials of degree 2, X^2 , X^2+1 , & X^2+X are not irreducible, since they are divisible by X or X + 1;
- However, $X^2 + X + 1$ does not have either 0 or 1 as a root & so is not divisible by any polynomial of degree 1.
- ightharpoonup Therefore $X^3 + X + 1$ is not divisible by X or X + 1.
- Therefore, $X^2 + X + 1$ is an irreducible polynomial of degree 2.
- \triangleright The polynomial $X^3 + X + 1$ is an irreducible polynomial of degree 3.
- $\succ X^3 + X + 1$ is neither divisible by any polynomial of degree 1, nor any polynomial of degree 2 or higher except itself

- An *irreducible polynomial* P(X) of degree m is said to be *primitive* if the smallest positive integer n for which p(X) divides X^n+1 where, $n=2^m-1$
- For Example Consider $P(X) = X^3 + X + 1$ is irreducible polynomial over GF(2)

Primitive Polynomial help us to construct the Extension field of irreducible polynomial P(X) where its roots exist.