西安交通大学考试题

城绩

课程	大学化学(Ⅱ)	考试日期	2009年	3 月 1 日
票 别		тинд	2 / 4	,,,,,
专业班号	4			
姓 名		学 号	期中	期末

- 一. 判断题 (20分, 在题号后的括号里用"J"表示正确, 用"×"表示错误)
 - 1. () 宏观粒子和微观粒子都具有波动性, 只是宏观粒子的波动性非常微小, 可以忽略不计,
 - 2. () 不论是什么原子,不同亚层原子轨道的能量都不同。
 - 3.() 氧原子的第一电离能大于氟原子的第一电离能。
 - 4. () 1s 原子轨道是球形对称的,从该球面内找到1s 电子的几率为100%。
 - 5.() 范德华力可细分为色散力、诱导力和取向力。
 - 6. () 通常分子间力越大的物质, 其熔点和沸点就越高; 粘度也越大。
- 7. () 离子晶体是由离子键结合而成的, 离子键有方向性和饱和性。
- 8.()没有晶体缺陷的纯晶体物质不会表现出各向异性。
- 9. () CaO 的熔点高于 CaCl, 的熔点。
- 10.() H,O分子的键角大于H,S分子的键角。
- 11.() 价键理论可以解释氧分子的顺磁性。
- 12.() σ键是离子键, 共价键是π键。
- 13. () N, 分子中有一个 π 键, 有两个 σ 键
- 14.() 配位键属于离子键。
- 15. () 一定温度下,增大醋酸溶液的浓度会降低溶液的pH。

16.	() H ₂ (g)的标准摩尔燃烧焓等于H ₂ O(l)的标准摩尔生成焓。
17.	()在零级反应中,反应物的半衰期与其初始浓度的大小无关。
18.	() 不仅可以把氧化还原反应组装成原电池,也可以把许多非氧化还原反应组
		原电池。
19.	() 稀溶液的沸点都高于纯溶剂的沸点。
20.	(在温度和压力一定而且无非体积功时, $\Delta G>0$ 的过程都不能发生。
•	垣	[空题(19分,每个空1分,就填写在试题纸上)
1.	在同	一原子中, 4s 轨道的能量低于3d 轨道的能量。出现这种能级交错的主要原
	于	效应和效应。
2.	铁原	子(Z=26)的核外电子排布式是。
3.	原子	半径共有三种,它们分别是共价半径、金属半径和范德华半径。对于同一种
	-1-27 64-	3 1 1 1 1 T 7 1 1 T 7
	共但 :	最小的原子半径是
4.		责小的原子半径是
	当量	
5.	当置·PCI,	子数 n=3、 m≈1 时, 1 可取的值是。
5. 6.	当量· PCI ₅ CH ₄	子数n=3、m=1时, / 可取的值是。 分子的几何构型是。
5. 6. 7.	当量· PCl, CH,	子数n=3、m≈1时,1可取的值是。 分子的几何构型是。 分子中的碳原子采用的是杂化轨道。
5. 6. 7.	当量· PCI, CH, 硝酸· 苯甲I	子数n=3、m≈1时,1可取的值是。 分子的几何构型是。 分子中的碳原子采用的是。 二氨合银的化学式是。
5. 6. 7. 8.	当量· PCI, CH, 硝酸· 苯甲I	子数n=3、m≈1时,1可取的值是。 分子的几何构型是。 分子中的碳原子采用的是杂化轨道。 二氨合银的化学式是。
5. 6. 7. 8.	当量 PCI, CH, 储酸 甲 晶体原	子数n=3、m≈1时,1可取的值是。 分子的几何构型是。 分子中的碳原子采用的是。杂化轨道。 二氨合银的化学式是。 6分子彼此间存在哪几种力?。 有不同类型。通常熔沸点低、易挥发的晶体是晶体。

西安交通大学考试题

12.	. 在20°C下,0.01mol L ⁻¹ 的蔗糖溶液的渗透压为	Pa ·
13.	. 在500K 下某反应的标准摩尔反应吉布斯函数为 Δ,	$G_{\rm m}^{\Theta} = -120 \text{kJ-mol}^{-1}$,则该反应的标
	准平衡常数等于。	
14.	. 一级反应遗率常数的单位是。	
15.	. 对于电极反应 Cr ₂ O ₇ ²⁻ + 14H* + 6e ⁻ → 2Cr ³⁺ + 7H ₂ r	O, 计算其电极电势的能斯特公式
	可以表示为	•
16.	. 电池 Pt Fe ²⁺ , Fe ³⁺ Ag ⁺ Ag '的正极反应是	
	负极反应是。	
Ξ.	简答题 (25分)	
1.	熵增原理的使用条件是什么?条件不满足时会不会	出现熵减小的过程,请举例说明。
2.	请分析说明,原电池的正极必然发生还原反应。	
3.	为什么标准平衡常数仅仅是温度的函数, 其值与系	统的组成无关。
4.	什么是稀溶液的依数性?稀溶液的依数性主要有哪	儿种?
5.	据你所知,胶体和溶液的主要区别有哪些?	
四.	(12分)在298K下已知下列数据	
	$N_2(g) + O_2(g) = 2NO(g)$	$\Delta_r H_m^{\Theta} = 180.5 \mathrm{kJ \cdot mol^{-1}}$
	$2NO(g) + O_2(g) = 2NO_2(g)$	$\Delta_t H_m^{\Theta} = -114.1 \text{kJ·mol}^{-1}$

 $\Delta_t H_m^{\Theta} = -11.3 \text{ kJ·mol}^{-1}$

1. 在298K下, NO(g) 的标准摩尔生成热是多少?

N2O4(g)

- 2. 在298K下, NO,(g)的标准摩尔生成热是多少?
- 3. 求 298 K 下反应 2NO₂(g) = N₂O₄(g) 的标准摩尔反应热Δ, H_m 。

五. (12分)在298K下已知下列数据

物质	SiO ₂ (s)	C(s)	Cl ₂ (g)	SiCl ₄ (I)	CO(g)
$\Delta_I G_m^{\Theta} / k J \cdot \text{mol}^{-1}$	-856.67	0	0	-619.9	-137.15

- 1. 求 298 K 下反应 $SiO_2(s) + 2C(s) + 2CI_2(g) = SiCI_4(l) + 2CO(g)$ 的 $\Delta_r G_n^{\Theta}$.
- 2. 求298K下该反应的标准平衡常数 K⁶。
- 3. 在 298 K 和 400 kPa 下, 当该反应达到平衡时, 求 Cl, 和 CO 的分压。
- 六. (12 分) 环丁烯 (气态) 异构化为丁二烯 (气态) 的反应在153℃下的半衰 2.1×10³s, 并且其半衰期与环丁烯的初始浓度无关。
 - 1. 153℃下该反应的速率常数。
 - 2. 该反应是几级反应。
 - 3. 在153°C下,如果环丁烯的初始浓度为0.024 mol·L⁻¹,则反应30 min 后环丁烯的是多少?