Примечание: В данной лабораторной работе считается, что для прямого измерения доступна только величина y(t), все ее производные $(\dot{y}(t), \ddot{y}(t) \ u \ m.д.)$ к измерению недоступны и не могут быть использоваться в регуляторах напрямую. Общая схема системы, замкнутой регулятором, приведена на рисунке 1.

Рис. 1: Общий вид замкнутой системы

Задание 1. Задача стабилизации с идеальным дифференцирующим звеном

Рассмотреть объект управления 2-го порядка, заданный дифференциальным уравнением

$$a_2\ddot{y} + a_1\dot{y} + a_0y = u. (1)$$

Придумать такие коэффициенты a_2 , a_1 и a_0 , чтобы она содержала хотя бы один неустойчивый полюс. Задаться ненулевыми начальными условиями y(0), $\dot{y}(0)$ и выполнить моделирования свободного движения разомкнутой системы $y_{\text{pas}}(t)$.

Рассмотреть регулятор вида

$$u = k_0 y + k_1 \dot{y} \tag{2}$$

и построить структурную схему замкнутой системы, состоящей из объекта управления (1) и регулятора (2), в режиме стабилизации. Определить, при каких значениях параметров k_0 и k_1 замкнутая система будет устойчивой.

Задаться конкретными значениями параметров k_0 и k_1 , обеспечивающими асимптотически устойчивую замкнутую систему, и выполнить моделирования движения замкнутой системы $y_3(t)$ с начальными условиями, выбранными в рамках предыдущего моделирования. При моделировании в программной среды MATLAB/Simulink для получения производной $\dot{y}(t)$ использовать блок Derivative (см рисунок 2), основанный на использовании конечной разности с малым шагом Δt

$$\dot{y}(t) \approx \frac{y(t) - y(t - \Delta t)}{\Delta t}.$$

Сопоставить результаты экспериментов и сделайте выводы.

Рис. 2: Внешний вид блока Derivative в программной среде MATLAB/Simulink

Ожидаемые результаты:

- Коэффициенты a_2, a_1 и a_0 , выбранные начальные условия y(0) и $\dot{y}(0)$, диапазоны значений k_0 и k_1 , выбранные параметры k_0 и k_1 .
- Листинги аналитических расчетов.
- Структурная схема замкнутой системы.
- Графики сигналов $y_{\text{pas}}(t)$ и $y_{\text{s}}(t)$, их сопоставление.
- Выводы.

Задание 2. Задача стабилизации с реальным дифференцирующим звеном

Модифицировать замкнутую систему из **Задания 1**, заменив аппроксимацию производной $\dot{y}(t)$ на передаточную функцию вида

$$W_{\text{р.дифф.}}(s) = \frac{s}{Ts+1}.$$
 (3)

Определить аналитически критические значения параметра T, при которых система становится неустойчивой для выбранных ранее k_0 и k_1 .

Осуществить аналогичное **Заданию 1** моделирование движения замкнутой системы $y_3(t)$ для нескольких различных значений параметра T, соответствующих устойчивой системе. Привести соответствующие графики выхода y(t) и сопоставить их между собой и с результатом моделирования замкнутой системы из **Задания 1**. Сделать выводы.

Ожидаемые результаты:

- Диапазон значений T, выбранные значения параметра T.
- Листинги аналитических расчетов.
- Графики сигналов $y_3(t)$, их сопоставление.
- Выводы.

Задание 3. Задача слежения для системы с астатизмом нулевого порядка (П-регулятор)

Рассмотреть замкнутую систему, заданную структурной схемой на рисунке 1, где

$$H(s) = k$$

— пропорциональный регулятор. Варианты передаточной функции объекта управления W(s) и характеристики задающего воздействия g(s) приведены в **Таблице 1**. Задаться не менее чем тремя значениями параметра k, которые бы обеспечивали асимптотически устойчивую замкнутую систему.

Исследовать стационарный режим работы при g(t) = A: выполнить моделирование для выбранных значений k, а также аналитически определить предельное значение ошибки $e_{\rm уст}$ для каждого значения k. Сопоставить результаты между собой и сделать выводы о влиянии величины k.

Исследовать режим движения с постоянной скоростью при g(t) = Vt: выполнить моделирование для выбранных значений k. Сопоставить результаты между собой и сделать выводы о влиянии величины k.

Ожидаемые результаты:

- Выбранные значения параметра k.
- Исследование стационарного режима работы:

Графики сигналов y(t), e(t) их сопоставление.

Аналитически посчитанные значения e_{ycr} .

• Исследование режима движения с постоянной скоростью:

Графики сигналов y(t), e(t) их сопоставление.

- Листинги аналитических расчетов.
- Выводы.

Задание 4. Задача слежения для системы с астатизмом первого порядка (И-регулятор)

Рассмотреть замкнутую систему, заданную структурной схемой на рисунке 1, где

$$H(s) = \frac{k}{s}$$

— интегральный регулятор. Варианты передаточной функции объекта управления W(s) и характеристики задающего воздействия g(s) приведены в **Таблице 1**. Задаться не менее чем тремя значениями параметра k, которые бы обеспечивали асимптотически устойчивую замкнутую систему.

Исследовать стационарный режим работы при g(t) = A: выполнить моделирование для выбранных значений k, а также аналитически определить предельное значение ошибки e для каждого значения k. Сопоставить результаты между собой и сделать выводы.

Исследовать режим движения с постоянной скоростью при g(t) = Vt: выполнить моделирование для выбранных значений k, а также аналитически определить предельное значение ошибки e для каждого значения k. Сопоставить результаты между собой и сделать выводы.

Исследовать режим движения с постоянным ускорением при $g(t) = \frac{at^2}{2}$: выполнить моделирование для выбранных значений k. Сопоставить результаты между собой и сделать выводы.

Ожидаемые результаты:

- Выбранные значения параметра k.
- Исследование стационарного режима работы:

Графики сигналов y(t), e(t) их сопоставление.

Аналитически посчитанные значения e_{vcr} .

• Исследование режима движения с постоянной скоростью:

Графики сигналов y(t), e(t) их сопоставление.

Аналитически посчитанные значения e_{ycr} .

• Исследование режима движения с постоянным ускорением:

Графики сигналов y(t), e(t) их сопоставление.

- Листинги аналитических расчетов.
- Выводы.

Задание 5. Задача слежения для системы с астатизмом первого порядка (ПИ-регулятор)

Рассмотреть замкнутую систему, заданную структурной схемой на рисунке 1, где

$$H(s) = \frac{k_{\rm M}}{s} + k_{\rm \Pi}$$

— пропорционально-интегральный регулятор. Варианты передаточной функции объекта управления W(s) и характеристики задающего воздействия g(s) приведены в **Таблице 1**. Задаться не менее чем тремя значениями каждого из параметров $k_{\rm II}$ и составить все возможные комбинации пар выбранных значений параметров. Все пары параметров должны обеспечивать асимптотически устойчивую замкнутую систему.

Исследовать режим движения с постоянной скоростью при g(t) = Vt: выполнить моделирование для выбранных значений k, а также аналитически определить предельное значение ошибки $e_{\rm уст}$ для каждого значения k. Сопоставить результаты между собой и сделать выводы.

Исследовать режим слежения за гармоническим сигналом при $g(t) = a \sin(\omega t)$: выполнить моделирование для выбранных значений k. Сопоставить результаты между собой и сделать выводы.

Ожидаемые результаты:

- Выбранные пары параметров $k_{\rm H}$ и $k_{\rm \Pi}$.
- Исследование режима движения с постоянной скоростью:

Графики сигналов y(t), e(t) их сопоставление.

Аналитически посчитанные значения e_{vcr} .

• Исследование режима слежения за гармоническим сигналом:

Графики сигналов y(t), e(t) их сопоставление.

- Листинги аналитических расчетов.
- Выводы.

Задание 6. Задача слежения за гармоническим сигналом (регулятор общего вида)

Рассмотреть замкнутую систему, заданную структурной схемой на рисунке 1, где

$$H(s) = \frac{\sum_{k=0}^{m} (b_k s^k)}{\sum_{k=0}^{m} (a_k s^k)}$$
 (4)

— регулятор общего вида. Варианты передаточной функции объекта управления W(s) и характеристики задающего воздействия g(s) приведены в **Таблице 1**.

Для задающего гармонического задающего сигнала $g(t) = A \sin(\omega t)$ синтезировать (определить необходимый порядок m и выбрать конкретные параметры b_k и a_k) физически реализуемый регулятор вида (4), способный обеспечить предельное значение ошибки $e_{\text{уст}} = 0$, подтвердить работоспособность аналитическим расчетом $e_{\text{уст}}$. Выполнить моделирование, демонстрирующее работоспособность синтезированного регулятора.

Ожидаемые результаты:

- Регулятор общего вида H(s) в конкретных значениях параметров b_k и a_k .
- Графики сигналов y(t), e(t).
- Аналитически посчитанное значение e_{vcr} .
- Листинги аналитических расчетов.
- Выволы.

Контрольные вопросы для подготовки к защите:

- 1. Какие задачи теории автоматического управления вы знаете?
- 2. Что такое астатизм? Как определить порядок астатизма системы?
- 3. Какая формула у ПИД-регулятора?
- 4. Какое влияние на замкнутую систему оказывают дифференциальные компоненты регуляторов?
- 5. Какое влияние на замкнутую систему оказывают интегральные компоненты регуляторов?
- 6. При каких значениях параметра T реальное дифференцирующее звено (3) приближается к идеальному?
- 7. В каких случаях возможен аналитический расчет установившейся ошибки? Каким образом его можно произвести?

8. Можно ли обеспечить слежение с нулевой установившейся ошибкой за гармоническим сигналом при помощи ПИД-регулятора? Почему?

Таблица 1: Исходные данные для Заданий 3 и 4

Bap.	W(s)	Параметры сигнала g				pp.	W(s)	Параметры сигнала g			
		A	Vt	$\frac{at^2}{2}$	$A\sin\left(\omega t\right)$	Bap.	vv (s)	A	Vt	$\frac{at^2}{2}$	$A\sin\left(\omega t\right)$
1	$\frac{2}{s^2+3s+1}$	1	0.5t	$0.25t^2$	$\sin\left(0.25t\right)$	16	$\frac{3}{2s^2 + 2s + 1.5}$	4	3t	$0.3t^{2}$	$24\sin\left(0.3t\right)$
2	$\frac{3}{s^2 + 2.5s + 1}$	2	2t	$0.5t^{2}$	$2\sin\left(0.5t\right)$	17	$\frac{3}{s^2 + 7.5s + 2}$	4	t	$0.25t^2$	$4\sin\left(0.25t\right)$
3	$\frac{1.5}{s^2 + 0.5s + 1}$	2	4t	$0.2t^{2}$	$2\sin\left(0.2t\right)$	18	$\frac{3}{1.5s^2 + 2s + 4}$	3	2t	$0.45t^2$	$3\sin\left(0.45t\right)$
4	$\frac{1.5}{s^2 + 2s + 1}$	1	t	$0.4t^2$	$\sin\left(0.4t\right)$	19	$\frac{4}{1.5s^2 + 2.5s + 7}$	4	3t	$0.35t^2$	$4\sin\left(0.35t\right)$
5	$\frac{1}{s^2+s+2}$	2	2t	$0.3t^{2}$	$2\sin\left(0.3t\right)$	20	$\frac{2}{s^2 + 3.5s + 1}$	3	2t	$0.5t^{2}$	$3\sin\left(0.5t\right)$
6	$\frac{5}{s^2 + 5s + 6}$	1	t	$0.45t^2$	$\sin\left(0.45t\right)$	21	$\frac{1}{2.5s^2+s+1}$	3	0.5t	$0.2t^{2}$	$3\sin\left(0.2t\right)$
7	$\frac{1}{2s^2+3s+1}$	1	1.5t	$0.25t^2$	$\sin\left(0.25t\right)$	22	$\frac{2}{s^2 + 5s + 4}$	3	3t	$0.1t^{2}$	$3\sin\left(0.1t\right)$
8	$\frac{2}{0.5s^2 + 2s + 1}$	1	2t	$0.2t^{2}$	$\sin\left(0.2t\right)$	23	$\frac{3}{s^2+3s+2}$	4	3t	$0.35t^2$	$4\sin\left(0.35t\right)$
9	$\frac{2}{0.5s^2 + s + 2}$	2	2t	$0.5t^{2}$	$2\sin\left(0.5t\right)$	24	$\frac{4}{3s^2+3s+2}$	4	2t	$0.25t^2$	$4\sin\left(0.25t\right)$
10	$\frac{8}{0.5s^2 + s + 8}$	2	t	$0.3t^{2}$	$2\sin\left(0.3t\right)$	25	$\frac{1}{1.5s^2 + 2s + 1}$	4	3t	$0.15t^2$	$4\sin\left(0.15t\right)$
11	$\frac{1}{0.5s^2 + s + 1}$	2	2t	$0.45t^2$	$2\sin\left(0.45t\right)$	26	$\frac{1}{4s^2+6s+1}$	1	3t	$0.5t^{2}$	$\sin\left(0.5t\right)$
12	$\frac{1}{0.1s^2 + 0.7s + 1}$	4	2t	$0.4t^{2}$	$4\sin\left(0.4t\right)$	27	$\frac{1}{4s^2 + 0.6s + 1}$	3	2.5t	$0.4t^{2}$	$3\sin\left(0.4t\right)$
13	$\frac{2}{0.3s^2 + 0.2s + 1}$	3	2.5t	$0.2t^{2}$	$3\sin\left(0.2t\right)$	28	$\frac{1}{0.1s^2 + 0.8s + 1}$	1	3.5t	$0.3t^{2}$	$\sin\left(0.3t\right)$
14	$\frac{3}{0.5s^2 + 0.9s + 1}$	3	3.5t	$0.35t^2$	$3\sin\left(0.35t\right)$	29	$\frac{2}{s^2+2s+2}$	2	3t	$0.55t^2$	$2\sin\left(0.55t\right)$
15	$\frac{3}{s^2+4s+1}$	3	1.5t	$0.1t^2$	$3\sin\left(0.1t\right)$	30	$\frac{4}{s^2+s+3}$	1	3t	$0.5t^{2}$	$\sin\left(0.5t\right)$