

Module 9 ROS Hands-on Turtlebot3

SLAM

map update interval = 20.0

To create a practice session using TurtleBot3 for SLAM (Simultaneous Localization and Mapping), you will need the following key components:

- ROS (Robot Operating System)
- TurtleBot3 Packages
- Gazebo Simulation Environment
- SLAM Packages
- Teleoperation Node
- Map Visualization (RVIZ)

Step 0.1: Install Turtlebot

\$ sudo apt-get install ros-melodicdynamixel-sdk

\$ sudo apt-get install ros-melodicturtlebot3-msgs

\$ sudo apt-get install ros-melodicturtlebot3

Original TurtleBot

(Discontinued)

TurtleBot 2 Family

(Discontinued)

TurtleBot 2i

TurtleBot Euclid

TurtleBot 3 Family

Burger

Waffle

Waffle Pi

TurtleBot 4 Family

Lite

Step 0.2: Install Navigation Stack

sudo apt-get install ros-melodic-amcl \
ros-melodic-map-server \
ros-melodic-gmapping \
ros-melodic-navigation \
ros-melodic-teleop-twist-joy\
ros-melodic-teleop-twist-keyboard\
ros-melodic-joy \
ros-melodic-interactive-markers \
ros-melodic-move-base ros-melodic-urdf ros-melodic-xacro

Step 0.3: Install Gazebo and Rviz

sudo apt-get install ros-melodicgazebo-ros-control \

ros-melodic-gazebo-ros-pkgs \

ros-melodic-rviz

Step 1: Choose Turtlebot model

export TURTLEBOT3_MODEL=burger export TURTLEBOT3_MODEL=waffle export TURTLEBOT3_MODEL=waffle_pi

Step 2: Initiate Gazebo Virtual Environment(New Terminal)

roslaunch turtlebot3_gazebo turtlebot3_world.launch

Step 3: Activate the SLAM Stack (New Terminal)

Gmapping is used as a default SLAM method

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

Step 4: Run the Teleoperation Node (New Terminal)

Moving around:

w a s d x

w/x: increase/decrease linear velocity a/d: increase/decrease angular velocity space key, s: force stop

CTRL-C to quit

process[turtlebot_teleop_keyboard-1]: started with pid [31241] Control Your Turtlebot! Moving around: q/z : increase/decrease max speeds by 10% //x : increase/decrease only linear speed by 10% e/c : increase/decrease only angular speed by 10% space key, k : force stop anything else : stop smoothly CTRL-C to quit currently: speed 0.2 turn 1 currently: speed 0.22 turn 1 currently: speed 0.242 turn 1.1 currently: speed 0.2662 turn 1.1 currently: speed 0.29282 turn 1.21

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Step 5: Save Maps (New Terminal)

Both map.pgm (Portable Grey Map) and map.yaml will be saved


```
image: map.pgm
resolution: 0.050000
prigin: [-100.000000, -100.000000, 0.000000]
negate: 0
pccupied_thresh: 0.65
free_thresh: 0.196
```

rosrun map_server map_saver -f ~/map

Step 6: Run the Navigation Node (New Terminal)

roslaunch turtlebot3_navigation turtlebot3_navigation.launch map_file:=\$HOME/map.yaml

Submission: Submit map file, screenshots of maps and Navigation in action

