Step-1

Let *A* is symmetric positive definite and Q is an orthogonal matrix.

If Q is an orthogonal matrix, therefore, Q must contain eigenvectors of A.

Hence, $Q^T A Q$ is not a diagonal matrix.

Step-2

(b)

The matrix Q is an orthogonal,

Implies;

$$Q^{T}Q = QQ^{T}$$
$$= I$$

Therefore,

$$Q^T = Q^{-1}$$

Thus,

$$Q^T A Q = A$$

$$Q^{-1}AQ = A$$

Therefore, the eigenvalues of A are equal to eigenvalues of $Q^T A Q$.

Since, A is symmetric positive definite implies Q^TAQ is also symmetric positive definite

Thus, (b) True

Step-3

(c)

As, the eigenvalues of A are equal to eigenvalues of $Q^T A Q$

Hence, statement is true

Step-4

(d)

If λ is the Eigen value of A

Then $e^{-\lambda}$ is the Eigen value of $e^{-\lambda}$

And it is known that $e^{-\lambda} \ge 0$ for any value of λ

Thus,

 e^{-A} is symmetric positive definite;

Hence, statement is true

(a)False(b)True(c)True(d)True