

CSE 204 - INTRO TO DATABASE SYSTEMS E-R MODELING

Joseph LEDET
Department of Computer Engineering
Akdeniz University
josephledet@akdeniz.edu.tr

OUTLINE

- How to use Entity–Relationship (ER) modeling in database design.
- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model using Unified Modeling Language (UML).
- How to identify and resolve problems with ER models called connection traps.
- · How to build an ER model from a requirements specification.

ER DIAGRAM OF BRANCH USER VIEWS OF DREAMHOME

CONCEPTS OF THE ER MODEL

- Entity types
- Relationship types
- Attributes

ENTITY TYPE

- Entity type
 - Group of objects with same properties, identified by enterprise as having an independent existence.
- Entity occurrence
 - · Uniquely identifiable object of an entity type.

EXAMPLES OF ENTITY TYPES

Physical existence

Staff Part

Property Supplier

Customer Product

Conceptual existence

Viewing Sale

Inspection Work experience

ER DIAGRAM OF STAFF AND BRANCH ENTITY TYPES

RELATIONSHIP TYPES

- Relationship type
 - Set of meaningful associations among entity types.
- Relationship occurrence
 - Uniquely identifiable association, which includes one occurrence from each participating entity type.

SEMANTIC NET OF HAS RELATIONSHIP TYPE

ER DIAGRAM OF BRANCH HAS STAFF RELATIONSHIP

RELATIONSHIP TYPES

- Degree of a Relationship
 - · Number of participating entities in relationship.
- Relationship of degree :
 - two is binary
 - three is ternary
 - four is quaternary.

RELATIONSHIPS

RELATIONSHIP TYPES

- Recursive Relationship
 - Relationship type where same entity type participates more than once in different roles.
- Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.

RECURSIVE RELATIONSHIP CALLED SUPERVISES WITH ROLE NAMES

ENTITIES ASSOCIATED THROUGH TWO DISTINCT RELATIONSHIPS WITH ROLE NAMES

ATTRIBUTES

- Attribute
 - Property of an entity or a relationship type.
- Attribute Domain
 - Set of allowable values for one or more attributes.
- Simple Attribute
 - Attribute composed of a single component with an independent existence.
- Composite Attribute
 - Attribute composed of multiple components, each with an independent existence.

ATTRIBUTES

- Single-valued Attribute
 - Attribute that holds a single value for each occurrence of an entity type.
- Multi-valued Attribute
 - Attribute that holds multiple values for each occurrence of an entity type.
- Derived Attribute
 - Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity type.

KEYS

- Candidate Key
 - Minimal set of attributes that uniquely identifies each occurrence of an entity type.
- Primary Key
 - Candidate key selected to uniquely identify each occurrence of an entity type.
- Composite Key
 - A candidate key that consists of two or more attributes.

ER DIAGRAM OF STAFF AND BRANCH ENTITIES AND THEIR ATTRIBUTES

ENTITY TYPE

- Strong Entity Type
 - Entity type that is not existence-dependent on some other entity type.
- Weak Entity Type
 - · Entity type that is existence-dependent on some other entity type.

STRONG ENTITY TYPE CALLED CLIENT AND WEAK ENTITY TYPE CALLED PREFERENCE

RELATIONSHIP CALLED ADVERTISES WITH ATTRIBUTES

STRUCTURAL CONSTRAINTS

- Main type of constraint on relationships is called multiplicity.
- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called business rules) established by user or company.

STRUCTURAL CONSTRAINTS

- The most common degree for relationships is binary.
- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)

SEMANTIC NET OF STAFF MANAGES BRANCH RELATIONSHIP TYPE

MULTIPLICITY OF STAFF MANAGES BRANCH (1:1) RELATIONSHIP

SEMANTIC NET OF STAFF OVERSEES PROPERTYFORRENT RELATIONSHIP TYPE

MULTIPLICITY OF STAFF OVERSEES PROPERTYFORRENT (1:*) RELATIONSHIP TYPE

SEMANTIC NET OF NEWSPAPER ADVERTISES PROPERTYFORRENT RELATIONSHIP TYPE

MULTIPLICITY OF NEWSPAPER ADVERTISES PROPERTYFORRENT (*:*) RELATIONSHIP

STRUCTURAL CONSTRAINTS

- Multiplicity for Complex Relationships
 - Number (or range) of possible occurrences of an entity type in an n-ary relationship when other (n-1) values are fixed.

SEMANTIC NET OF TERNARY REGISTERS RELATIONSHIP WITH VALUES FOR STAFF AND BRANCH ENTITIES FIXED

MULTIPLICITY OF TERNARY REGISTERS RELATIONSHIP

SUMMARY OF MULTIPLICITY CONSTRAINTS

Alternative	ways	to	represent
multiplicity	const	rai	nts

Meaning

0..1

1..1 (or just 1)

0..* (or just *)

1..*

5..10

0, 3, 6-8

Zero or one entity occurrence

Exactly one entity occurrence

Zero or many entity occurrences

One or many entity occurrences

Minimum of 5 up to a maximum of 10 entity occurrences

Zero or three or six, seven, or eight entity occurrences

STRUCTURAL CONSTRAINTS

- Multiplicity is made up of two types of restrictions on relationships: cardinality and participation.
- Cardinality
 - Describes maximum number of possible relationship occurrences for an entity participating in a given relationship type.
- Participation
 - Determines whether all or only some entity occurrences participate in a relationship.

MULTIPLICITY AS CARDINALITY AND PARTICIPATION CONSTRAINTS

PROBLEMS WITH ER MODELS

- Problems may arise when designing a conceptual data model called connection traps.
- Often due to a misinterpretation of the meaning of certain relationships.
- Two main types of connection traps are called fan traps and chasm traps.
- Fan Trap
 - Where a model represents a relationship between entity types, but pathway between certain entity occurrences is ambiguous.
- Chasm Trap
 - Where a model suggests the existence of a relationship between entity types, but pathway does not exist between certain entity occurrences.

AN EXAMPLE OF A FAN TRAP

SEMANTIC NET OF ER MODEL WITH FAN TRAP

At which branch office does staff number SG37 work?

RESTRUCTURING ER MODEL TO REMOVE FAN TRAP

SEMANTIC NET OF RESTRUCTURED ER MODEL WITH FAN TRAP REMOVED

SG37 works at branch B003.

AN EXAMPLE OF A CHASM TRAP

SEMANTIC NET OF ER MODEL WITH CHASM TRAP

At which branch office is property PA14 available?

ER MODEL RESTRUCTURED TO REMOVE CHASM TRAP

SEMANTIC NET OF RESTRUCTURED ER MODEL WITH CHASM TRAP REMOVED

CHAPTER 13 - OUTLINE

- Limitations of basic concepts of the ER model and requirements to represent more complex applications using additional data modeling concepts.
- Most useful additional data modeling concept of Enhanced ER (EER) model is called specialization/generalization.
- A diagrammatic technique for displaying specialization/generalization in an EER diagram using UML.

ENHANCED ENTITY-RELATIONSHIP MODEL

- Since 1980s there has been an increase in emergence of new database applications with more demanding requirements.
- Basic concepts of ER modeling are not sufficient to represent requirements of newer, more complex applications.
- Response is development of additional 'semantic' modeling concepts.
- Semantic concepts are incorporated into the original ER model and called the Enhanced Entity-Relationship (EER) model.
- Examples of additional concept of EER model is called specialization / generalization.

SPECIALIZATION / GENERALIZATION

- Superclass
 - An entity type that includes one or more distinct subgroupings of its occurrences.
- Subclass
 - A distinct subgrouping of occurrences of an entity type.
- Superclass/subclass relationship is one-to-one (1:1).
- · Superclass may contain overlapping or distinct subclasses.
- Not all members of a superclass need be a member of a subclass.

SPECIALIZATION / GENERALIZATION

Attribute Inheritance

 An entity in a subclass represents same 'real world' object as in superclass, and may possess subclass-specific attributes, as well as those associated with the superclass.

Specialization

 Process of maximizing differences between members of an entity by identifying their distinguishing characteristics.

Generalization

 Process of minimizing differences between entities by identifying their common characteristics.

ALLSTAFF RELATION HOLDING DETAILS OF ALL STAFF

SPECIALIZATION/GENERALIZATION OF STAFF ENTITY

INTO SU

SPECIALIZATION/GENERALIZATION OF STAFF ENTITY INTO JOB ROLES AND CONTRACTS OF EMPLOYMENT

EER DIAGRAM WITH SHARED SUBCLASS AND SUBCLASS WITH ITS OWN SUBCLASS

CONSTRAINTS ON SPECIALIZATION / GENERALIZATION

- Two constraints that may apply to a specialization/generalization:
 - participation constraints
 - disjoint constraints.
- Participation constraint
 - Determines whether every member in superclass must participate as a member of a subclass.
 - May be mandatory or optional.

CONSTRAINTS ON SPECIALIZATION / GENERALIZATION

- Disjoint constraint
 - Describes relationship between members of the subclasses and indicates whether member of a superclass can be a member of one, or more than one, subclass.
 - May be disjoint or nondisjoint.
- There are four categories of constraints of specialization and generalization:
 - mandatory and disjoint
 - optional and disjoint
 - mandatory and nondisjoint
 - optional and nondisjoint.

DREAMHOME WORKED EXAMPLE - STAFF SUPERCLASS WITH SUPERVISOR AND MANAGER SUBCLASSES

DREAMHOME WORKED EXAMPLE - OWNER SUPERCLASS WITH PRIVATEOWNER AND BUSINESSOWNER SUBCLASSES

DREAMHOME WORKED EXAMPLE - OWNER SUPERCLASS WITH PRIVATEOWNER AND BUSINESSOWNER SUBCLASSES

