

Phân tích độ phức tạp thuật toán

GV: Nguyễn Thanh Sơn

Nhóm 7:

- Nguyễn Trung Tuấn 19522477
- Nguyễn Khả Tiến 19522337
- Trịnh Nhật Tân 19522179

Nội dung

- 1. Tham số quyết định và phép toán cơ sở.
- 2. Tỉ số tăng là gì?
- 3. Worst-case, Best-case, and Average-Case.
- 4. Các ký pháp Big-Oh, Big-Theta, Big-Omega.

- Chiều dài của một list.
- Bậc của một đa thức hoặc số lượng các hệ số.
- Số lượng bits(b) trong biểu diễn nhị phân của n.

$$b = \log_2 n + 1$$

- Để đo được độ hiệu quả của thuật toán thì phải có một phép đo không dựa trên các yếu tố không liên quan.
- Một cách tiếp cận khả thi là đếm số lần thực thi của mỗi phép toán trong một giải thuật
- ⇒ Phép toán cơ sở: phép toán mà đóng góp thời gian chạy nhiều nhất trong một giải thuật.
- Điển hình là các phép toán số học: +, -, *, /, ... Thứ tự thời gian để thực hiện các phép toán số học là: /, *, (+, -).

```
INSERTION-SORT(A) cost times

1 for j \leftarrow 2 to length[A] c_1 n

2 do key \leftarrow A[j] c_2 n-1

3 \triangleright Insert A[j] into the sorted

\triangleright sequence A[1...j-1]. 0 n-1

4 i \leftarrow j-1 c_4 n-1

5 while i > 0 and A[i] > key c_5 \sum_{j=2}^{n} t_j

6 do A[i+1] \leftarrow A[i] c_6 \sum_{j=2}^{n} (t_j-1)

7 i \leftarrow i-1 c_7 \sum_{j=2}^{n} (t_j-1)

8 A[i+1] \leftarrow key c_8 n-1
```

Problem	Tham số quyết định	Phép toán cơ sở
Tìm giá trị k trong mảng có n phần tử	Số lượng phần tử có trong mảng: <i>n</i>	Phép so sánh
Phép nhân 2 ma trận	Số chiều của ma trận hoặc số lượng các phần tử	Phép nhân
Kiểm tra số n có phải là số nguyên tố	n'size = số chữ số (biểu diễn nhị phân)	Phép chia

- Giả sử c_{op} là thời gian thực thi của một phép toán cơ sở.
- C(n) là số lần thực hiện phép toán cơ sở.
- \Rightarrow Công thức ước lượng thời gian T(n) thực hiện giải thuật:

$$T(n) \approx c_{op}C(n)$$

Giả sử:
$$C(n) = \frac{1}{2}n(n-1)$$

Thời gian gian chạy giải thuật sẽ lâu hơn bao nhiều nếu kích cỡ input lớn gấp đôi?

$$C(n) = \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2$$

$$\Rightarrow \frac{T(2n)}{T(n)} \approx \frac{c_{op}C(2n)}{c_{op}C(n)} \approx \frac{\frac{1}{2}(2n)^2}{\frac{1}{2}n^2} = 4$$

Tỉ suất tăng là gì?

- Kích thước đầu vào nhỏ thông thường được tính một cách ngay lập tức, do đó chúng ta chỉ quan tâm thuật toán hoạt động ra sao khi $n \to \infty$.
- Thực tế, với n là giá trị nhỏ thì phần lớn các giải thuật đều cho ra thời gian đều như nhau. Chỉ khi $n \to \infty$ thì sự khác biệt ngày càng rõ.

Tỉ suất tăng là gì?

n	$log_2 n$	n	$nlog_2 n$	n^2	n^3	2^n	n!
10	3.3	10 ¹	$3.3 \cdot 10^1$	10 ²	10^3	10^3	$3.6 \cdot 10^6$
10 ²	6.6	10 ²	$6.6\cdot10^2$	104	106	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^3	10	10^3	$1.0\cdot 10^4$	10 ⁶	10 ⁹		
10^4	13	104	$1.3\cdot 10^5$	108	10^{12}		
10^5	17	10 ⁵	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10 ⁶	20	10^{6}	$2.0 \cdot 10^7$	10 ¹²	10^{18}		

Worst-case, Best-case, and Average-Case.

Worst-case: trường hợp xấu nhất (hiệu quả thấp nhất)

$$C_{worst}(n) = n$$

- Giải thuật chạy lâu nhất trong số các input phù hợp.
- Cách xác định: Phân tích giải thuật để xem loại input nào cho ra số lần đếm C(n) là lớn nhất giữa những input phù hợp.

Worst-case, Best-case, and Average-Case.

Best-case: trường hợp tốt nhất (hiệu quả nhất)

$$C_{best}(n) = 1$$

- Giải thuật chạy nhanh nhất trong số các input phù hợp.
- Cách xác định: Phân tích thuật toán để biết loại input nào cho ra số lần đếm C(n) là nhỏ nhất giữa những input phù hợp.

Worst-case, Best-case, and Average-Case.

Average-case = trung bình cộng

- Chạy giải thuật nhiều lần bằng những input cùng size n (dùng một số hàm phân phối để tạo ra các input đó).
- Tính tổng thời gian chạy và chia cho số lần thử.

Ký hiệu trong phần này:

- t(n): thời gian chạy của giải thuật.(thông thường là được chỉ ra qua phép đếm C(n)).
- g(n): là hàm dùng đề so sánh với t(n).

Ký pháp Big-Oh:

- O(g(n)) là tập của tất cả các hàm có tỉ suất tăng thấp hơn hoặc cùng với g(n) (với bội số không đổi và $n \to \infty$).
- Ví dụ:

$$n \in O(n^2)$$

$$100n + 5 \in O(n^2)$$

$$n \in O(n^2)$$
 $100n + 5 \in O(n^2)$ $\frac{1}{2}n(n-1) \in O(n^2)$

Định nghĩa toán học: $t(n) \in O(g(n))$

$$\Leftrightarrow t(n) \le cg(n)$$
 $(\exists c > 0, n \ge n_0)$

Chứng minh: $100n + 5 \in O(n^2)$ $100n + 5 \le 100n + n \ (\forall n \ge 5) = 101n \le 100n^2$

Chứng minh xong với c = 101, $n_0 = 5$.

Thực tế là định nghĩa phía trên cho ta rất nhiều cách chọn khác nhau với hai hằng số c và n_0 .

Ví dụ:
$$100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n$$

$$c = 105, n_0 = 1$$

Ký pháp Big-Omega (Ω):

- $\Omega(g(n))$ là tập của tất cả các hàm có tỉ suất tăng cao hơn hoặc bằng với g(n) (với bội số không đổi và $n \to \infty$).
- Ví dụ:

$$n^3 \in \Omega(n^2)$$
 $\frac{1}{2}n(n-1) \in \Omega(n^2)$ but $100n + 5 \in \Omega(n^2)$

Định nghĩa toán học: $t(n) \in \Omega(g(n))$

$$\Leftrightarrow t(n) \ge cg(n)$$
 $(\exists c > 0, n \ge n_0)$

Ví dụ chứng minh: $n^3 \in \Omega(n^2)$

$$n^3 \ge n^2 \quad (\forall n \ge 0)$$

 $\mathring{\mathrm{O}}$ đây chúng ta chọn: c=1, $n_0=0$

Ký pháp Big-Theta (Θ):

- $\Theta(g(n))$ là tập của tất cả các hàm có tỉ suất tăng bằng với g(n) (với bội số không đổi và $n \to \infty$).
- Do đó mọi hàm bậc 2 " $an^2 + bn + c$ ", với mọi a > 0 đều thuộc $\Theta(n^2)$.

Dịnh nghĩa toán học: $t(n) \in \Theta(g(n))$ $\Leftrightarrow c_2 g(n) \le t(n) \le c_1 g(n)$ $(\exists c_1, c_2 > 0, n \ge n_0)$

Chúng minh: $\frac{1}{2}n(n-1) \in \Theta(n^2)$

Chứng minh cận trên, bất đẳng thức vế phải:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \qquad (\forall n \ge 0)$$

Chứng minh cận dưới, bất đẳng thức vế trái:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \ (\forall n \ge 2) = \frac{1}{4}n^2$$

Do đó, chúng ta có thể chọn $c_2 = \frac{1}{4}$, $c_1 = \frac{1}{2} v a$ $n_0 = 2$.

THEOREM If
$$t_1(n) \in O(g_1(n))$$
 and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$

(The analogous assertions are true for the Ω and Θ notations as well.)

PROOF The proof extends to orders of growth the following simple fact about four arbitrary real numbers a_1 , b_1 , a_2 , b_2 : if $a_1 \le b_1$ and $a_2 \le b_2$, then $a_1 + a_2 \le 2 \max\{b_1, b_2\}$.

Since $t_1(n) \in O(g_1(n))$, there exist some positive constant c_1 and some non-negative integer n_1 such that

$$t_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$.

Similarly, since $t_2(n) \in O(g_2(n))$,

$$t_2(n) \le c_2 g_2(n)$$
 for all $n \ge n_2$.

Let us denote $c_3 = \max\{c_1, c_2\}$ and consider $n \ge \max\{n_1, n_2\}$ so that we can use both inequalities. Adding them yields the following:

$$t_1(n) + t_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$

$$\le c_3 g_1(n) + c_3 g_2(n) = c_3 [g_1(n) + g_2(n)]$$

$$\le c_3 2 \max\{g_1(n), g_2(n)\}.$$

Hence, $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$, with the constants c and n_0 required by the O definition being $2c_3 = 2 \max\{c_1, c_2\}$ and $\max\{n_1, n_2\}$, respectively.

Dùng lim để so sánh tỉ số tăng.

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 \\ c \\ \infty \end{cases}$$

Trong đó:

- $\lim = 0$: t(n) có tỉ số tăng nhỏ hơn g(n).
- $\lim = c : t(n)$ có cùng tỉ số tăng với g(n).
- $\lim = \infty$: t(n) có tỉ số tăng lớn hơn g(n).