РГПУ им. А.И. Герцена

Title min thin i cpacina
К работе допущены
Работа выполнена
Отчёт сдан
Отчет по лабораторной работе №3
«Кольца Ньютона»
Работу выполнили <u>: Воложанин Владислав</u>
Факультет: Информатика и Вычислительная техника
Группа - 2.1

- **1. Цель работы:** определить радиус кривизны линзы, используя интерференционную картину "кольца Ньютона"
- 2. Основные результаты

Таблица Результатов

	Диаметры темных колец (мм)								
No	D ₃ слева	D ₃ справа	D_3	D ₅ слева	D ₅ справа	D_5	D ₇ слева	D ₇ справа	D ₇
1	1.66	7.49	5.83	1.36	7.78	6.42	1.08	8.08	7
2	1.67	7.46	5.79	1.39	7.77	6.38	1.09	8.07	6.98
3	1.66	7.48	5.82	1.42	7.8	6.38	1.09	8.02	6.93
Dcp	1.66	7.48	5.81	1.39	7.78	6.39	1.09	8.06	<mark>6.97</mark>

Абсолютная и относительная погрешности:

$$|\triangle D_{31}| = |D_{\mathrm{cp}} - D_{31}| = |5,81\ \mathrm{mm} - 5,83\ \mathrm{mm}| = 0,020\ \mathrm{mm}$$
 $|\triangle D_{32}| = |D_{\mathrm{cp}} - D_{32}| = |5,81\ \mathrm{mm} - 5,79\ \mathrm{mm}| = 0,020\ \mathrm{mm}$ $|\triangle D_{33}| = |D_{\mathrm{cp}} - D_{33}| = |5,81\ \mathrm{mm} - 5,82\ \mathrm{mm}| = 0,010\ \mathrm{mm}$ $|\triangle D_{3}| = \frac{|\triangle D_{31}| + |\triangle D_{32}| + |\triangle D_{33}|}{3}$ $|\triangle D_{3}| = \frac{|\triangle D_{31}| + |\triangle D_{32}| + |\triangle D_{33}|}{3}$ $|\triangle D_{3}| = \frac{0,02\ \mathrm{mm} + 0,02\ \mathrm{mm} + 0,01\ \mathrm{mm}}{3} = \frac{0,05\ \mathrm{mm}}{3} \approx 0,017\ \mathrm{mm}$ $E_{D3} = \frac{\triangle D3}{D_{3\mathrm{cp}}} * 100\% = \frac{0,017\ \mathrm{mm}}{5,81\ \mathrm{mm}} * 100\% \approx 0,29\%$ $D_{3} = 5,810 \pm 0,017\ \mathrm{mm}\ \mathrm{mm}\ E_{D3} \approx 0,29\%$

$$|\triangle D_{51}| = |D_{\mathrm{cp}} - D_{51}| = |6,39 \ \mathrm{mm} - 6,42 \mathrm{mm}| = 0,030 \ \mathrm{mm}$$
 $|\triangle D_{52}| = |D_{\mathrm{cp}} - D_{52}| = |6,39 \ \mathrm{mm} - 6,38 \ \mathrm{mm}| = 0,010 \ \mathrm{mm}$ $|\triangle D_{53}| = |D_{\mathrm{cp}} - D_{53}| = |6,39 \ \mathrm{mm} - 6,38 \ \mathrm{mm}| = 0,010 \ \mathrm{mm}$ $|\triangle D_{5}| = \frac{0,03 \ \mathrm{mm} + 0,01 \ \mathrm{mm} + 0,01 \ \mathrm{mm}}{3} = \frac{0,05 \ \mathrm{mm}}{3} \approx 0,017 \ \mathrm{mm}$ $E_{D5} = \frac{\Delta D5}{D_{5\mathrm{cp}}} * 100\% = \frac{0,017 \ \mathrm{mm}}{6,39 \ \mathrm{mm}} * 100\% \approx 0,27\%$ $D_{5} = 5,81 \pm 0,017 \ \mathrm{mm} \ \mathrm{m} \ E_{D5} \approx 0,27\%$

$$|\triangle \, D_{71}| = |D_{\rm cp} \, - D_{71}| = |6,97 \, {
m mm} \, - 7 \, {
m mm}| = 0,030 \, {
m mm}$$
 $|\triangle \, D_{72}| = |D_{\rm cp} \, - D_{72}| = |6,97 \, {
m mm} \, - 6,98 \, {
m mm}| = 0,010 \, {
m mm}$ $|\triangle \, D_{73}| = |D_{\rm cp} \, - D_{73}| = |6,97 \, {
m mm} \, - 6,93 \, {
m mm}| = 0,040 \, {
m mm}$

$$|\triangle\,D_7| = rac{0.03\ \mathrm{MM} + 0.01\ \mathrm{MM} + 0.04\ \mathrm{MM}}{3} = rac{0.08\ \mathrm{MM}}{3} pprox 0.027\ \mathrm{MM}$$
 $E_{D7} = rac{\Delta D7}{D_{\mathrm{cp}}} st 100\% = rac{0.027}{6.97} st \ 100\% pprox 0.39\%$ $D_7 = 6.970 \pm 0.027\ \mathrm{MM}\ \mathrm{M}\ E_D \ pprox 0.39\%$

Радиусы:

$$r_3 = \frac{D3}{2} * 0,13 = 0,38 \text{ mm}$$
 $r_5 = \frac{D5}{2} * 0,13 = 0,42 \text{ mm}$
 $r_7 = \frac{D7}{2} * 0,13 = 0,45 \text{ mm}$

Радиусы кривизны:

$$R = \frac{r_{kt}^2 - r_{mt}^2}{(k - m) \lambda}$$

$$R_{75} = \frac{r_7^2 - r_5^2}{(7 - 5) \lambda} = \frac{(0.45 \text{ mm})_7^2 - (0.42 \text{mm})_5^2}{(7 - 5) 0.000558 \text{ mm}} = 23,39 \text{ mm}$$

$$R_{73} = \frac{r_7^2 - r_3^2}{(7 - 3) \lambda} = \frac{(0.45 \text{ mm})_7^2 - (0.38 \text{ mm})_3^2}{(7 - 3) 0.000558 \text{ mm}} = 26,03 \text{ mm}$$

$$R_{53} = \frac{r_5^2 - r_3^2}{(5 - 3) \lambda} = \frac{(0.42 \text{ mm})_5^2 - (0.38 \text{ mm})_3^2}{(5 - 3) 0.000558 \text{ mm}} = 28,67 \text{ mm}$$

$$R_{cp} = \frac{R_{75} + R_{73} + R_{53}}{3}$$

$$R_{cp} = \frac{23,39 + 26,03 + 28,67}{3} = 26,0 \text{ mm}$$

$$|\triangle R_1| = |R_{cp} - R_1| = |26,03 - 23,39| = 2.6 \text{ mm}$$

$$|\triangle R_2| = |R_{cp} - R_2| = |26,03 - 26,03| = 0 \text{ mm}$$

$$|\triangle R_3| = |R_{cp} - R_3| = |26,03 - 28,67| = 2.6 \text{ mm}$$

$$|\triangle R| = \frac{|\triangle R_1| + |\triangle R_2| + |\triangle R_3|}{3}$$

$$|\triangle R| = \frac{2,64 + 0 + 2,64}{2} = \frac{5,28}{2} \approx 1,8 \text{ mm}$$

$$E_R = \frac{\Delta R}{R_{CD}} * 100\% = \frac{1.8}{26.03} * 100\% \approx 6.9\%$$

$$R=26,0\pm1,8$$
 мм и $E_R~\approx~6,9\%$

3. Вывод

Мы вычислили радиус кривизны линзы, используя интерференционную картину "Кольца Ньютона" и получили следующий результат:

$$R = 26.0 \pm 1.8$$
 мм и $E_R \approx 6.9\%$

Погрешности велики, они могли возникнуть из-за неточностей при снятии показаний и оборудования, а также в силу человеческого фактора.