九州大学大学院数理学府 平成 26 年度修士課程入学試験 専門科目問題

- 注意 問題 [1][2][3][4][5][6][7][8][9][10] の中から2題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.
- [1] 2つの行列

$$A = \begin{pmatrix} \frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$$

で生成される \mathbb{C} 上 2 次の一般線形群 $GL(2,\mathbb{C})$ の部分群を G とする.このとき以下の間に答えよ.

- (1) $B^{-1}AB = A^{-1}$ を示せ.
- (2) Gの位数を求めよ.
- (3) Gの元で位数 2 のものをすべて求めよ.
- (4) Gから位数3の群への全射準同型写像が存在するかどうか答えよ.

- [2] p を素数とする. $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ は位数 p の有限体とし, 0 以外の \mathbb{F}_p の元全体が 乗法によりなす群を \mathbb{F}_p^{\times} で表す. $M_r(\mathbb{F}_p)$ は成分が \mathbb{F}_p の元からなる $r \times r$ -行列全体 の集合とする. さらに $A \in M_r(\mathbb{F}_p)$ に対して |A| は A の行列式を表す. 行列の乗法に関して、以下の間に答えよ.
 - (1) $GL_r(\mathbb{F}_p) = \{A \in M_r(\mathbb{F}_p) : |A| \neq 0\}$ は群であることを示せ.
 - (2) $SL_r(\mathbb{F}_p) = \{A \in M_r(\mathbb{F}_p) : |A| = 1\}$ は $GL_r(\mathbb{F}_q)$ の正規部分群であることを示せ.
 - (3) $GL_r^{(2)}(\mathbb{F}_p) = \{A \in M_r(\mathbb{F}_p) : |A| \in \mathbb{F}_p^{*,2}\}$ は $GL_r(\mathbb{F}_p)$ の正規部分群であることを示せ、ただし、 $\mathbb{F}_p^{*,2} = \{x^2 : x \in \mathbb{F}_p^*\}$ とする.
 - (4) $GL_r(\mathbb{F}_p)$ と $SL_r(\mathbb{F}_p)$ の位数を決めよ.
 - (5) $GL_r^{(2)}(\mathbb{F}_p)$ の位数を決めよ.
- [3] $\mathbb{F}_{11} = \mathbb{Z}/11\mathbb{Z}$ を位数 11 の有限体とする. 0 以外の \mathbb{F}_{11} の元全体が乗法によりなす群を \mathbb{F}_{11}^{\times} で表し, $\mathbb{F}_{11}[T]$ は 1 変数 T の \mathbb{F}_{11} 上の多項式環を表す. このとき以下の問に答えよ.
 - (1) $2 \in \mathbb{F}_{11}^{\times}$ の位数を求めよ.
 - (2) 多項式 T^2-2 で生成されるイデアル (T^2-2) に対し商環 $K=\mathbb{F}_{11}[T]/(T^2-2)$ は体になることを示せ.
 - (3) K 係数の多項式 X^3-1 は K 上で 1 次式の積に因数分解できることを示せ.
 - (4) $\alpha \in K$ を T で代表される元とするとき,K に含まれる 1 の原始 3 乗根を $k\alpha + l$ (ただし k, l は \mathbb{F}_{11} の元)の形で表せ.