Question 12.2

Exercise 12.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where each data page of the relation holds 10 records. R is organized as a sorted file with dense secondary indexes. Assume that R.a is a candidate key for R, with values lying in the range 0 to 4,999,999, and that R is stored in R.a order. For each of the following relational algebra queries, state which of the following three approaches is most likely to be the cheapest:

- Access the sorted file for R directly.
- Use a (clustered) B+ tree index on attribute R.a.
- Use a linear hashed index on attribute R.a.
 - 1. $\sigma_{a<50,000}(R)$
 - 2. $\sigma_{a=50,000}(R)$
 - 3. $\sigma_{a>50,000 \land a<50,010}(R)$
 - 4. $\sigma_{a\neq 50,000}(R)$

Answer 12.2 1. σ_{a<50,000}(R) - For this selection, the choice of accessing the sorted file is slightly superior in cost to using the clused B+ tree index simply because of the lookup cost required on the B+ tree.

- σ_{a=50,000}(R) A linear hashed index should be cheapest here.
- σ_{a>50.000∧a<50.010}(R) A B+ tree should be the cheapest of the three.
- 4. σ_{a≠50,000}(R) Since the selection will require a scan of the available entries, and we're starting at the beginning of the sorted index, the sorted file should be slightly more cost-effective, again because of the lookup time.

Question 12.4

Exercise 12.4 Consider the following schema with the Sailors relation:

```
Sailors(sid: integer, sname: string, rating: integer, age: real)
```

For each of the following indexes, list whether the index matches the given selection conditions. If there is a match, list the primary conjuncts.

- 1. A B+-tree index on the search key (Sailors.sid).
 - (a) σ_{Sailors.sid}<50,000 (Sailors)
 - (b) $\sigma_{|Sailors.sid=50,000}(Sailors)$
- 2. A hash index on the search key (Sailors.sid).
 - (a) O'Sailo's.sid<50,000 (Sailors) Range search not supported
 - (b) σ_{Sailors.sid=50,000}(Sailors)
- 3. A B+-tree index on the search key (Sailors.sid, Sailors.age).
 - (a) σSailors.sid<50,000 \Sailors.age=21 (Sailors)
 - (b) \[\sigma_{Sailors,sid=50,000\sigma_Sailors,age>21}\)(Sailors)
 - (c) $\sigma_{Sailors.sid=50,000}(Sailors)$ Matched since Prefix order is maintained
 - (d) $\sigma_{Sailors.age=21}(Sailors)$ Even for partial match, Prefix order needs to be maintaied
- 4. A hash-tree index on the search key (Sailors.sid, Sailors.age).
 - (a) σ_{Sailors.sid=50,000}∧_{Sailors.age=21} (Sailors)
 - (b) $\sigma_{Sailors.sid} = 50,000 \land Sailors.age > 21 (Sailors)$ Range search not supported
 - (c) $\sigma_{Sailors,sid=50,000}(Sailors)$ Partial match not supported
 - (d) σSailors.age=21 (Sa'ilors) Partial match not supported

Solution

Marked in question.