

Administration IT — Bienvenue

Objectifs de ce cours

- A la fin de ce cours, vous devriez...
 - ... être capable de concevoir et mettre en oeuvre des stratégies de sauvegarde
 - ... être capable de concevoir des architectures de services avec haute performance
 - ... et de les mettre en ouvre
 - ... être capable de concevoir des architectures de services avec haute disponibilité
 - ... et de les mettre en oeuvre
 - ... connaître les technologies de virtualisation
 - ... être capables d'agir dans des situations réelles et de proposer des solutions concrètes
 - ... être capables de vous former et de vous mettre à niveau de manière autonome dans votre vie future

Contenu du cours

- La sauvegarde
 - Stratégies, technologies de stockage, synchronisation, ...
- Les systèmes à haute performance
 - Load balancing, caching, ...
- Les systèmes à haute disponibilité
 - Tolérance aux fautes, redondance, failover, ...
- La virtualisation
 - Hyperviseurs, stockage virtuel, réseaux virtuels, ...

Pré-requis

- Administration système
 - Bases de la ligne de commande
 - Scripting avec Bash
 - → Cours ADS
- Réseaux
 - Communication client-serveur
 - Accès à distance
 - → Cours RES

Forme du cours

- Comment apprendre à devenir autonome ?
- Comment rechercher sur un sujet ?
- Comment agir en situation réelle ?

- Exposés en classe par le professeur
- Exposés en classe par les étudiants
 - Deux rounds de six sujets
 - Travail en groupe de trois
 - Documentation de départ fournie
 - Coaching par le professeur
- Laboratoires

Travail sur les présentations

- Thème des sujets : Utilisation de logiciels Open Source et commerciaux pour obtenir une solution de sauvegarde / haute performance / haute disponibilité
- Documentation initiale fournie
- Deux "terrains de jeu" Cloud Computing sont à disposition pour faire des essais et créer des démonstrations pratiques :
 - Amazon Web Services
 - HEIG-Cloud OpenStack

Répartition du travail

- 4 crédits ECTS : 160 périodes
- Travail encadré : 64 périodes
 - Exposés en classe : 26 périodes
 - Exposés par les étudiants : 12 périodes
 - Laboratoires : 26 périodes
- Travail personnel : 96 périodes

Évaluation

- Note de contrôle continu
 - Un travail écrit
 - Deux présentations par étudiant
- Note de laboratoire
- Note finale = 60% contrôle continu + 40% laboratoire

Présentations

- Chaque étudiant aura deux présentations à réaliser
 - Documentation initiale fournie, à étoffer avec d'autres sources
 - Côté pratique (démonstration) important
- Rendu
 - Présentation (PDF)
 - Feuillet de synthèse, au moins 1 page A4 (PDF)
 - Code de la démonstration

Espace de cours Moodle

- Naviguez sur https://cyberlearn.hes-so.ch
- Cherchez 2019 HEIG-VD Administration IT -Marcel Graf
- Mot de passe scalavail

Comment nous contacter

- Marcel Graf < marcel.graf@heig-vd.ch >
- Bastian Gardel <<u>bastian.gardel@heig-vd.ch</u>>
- Yann Lederrey <<u>yann.lederrey@heig-vd.ch</u>>