Sourabh Shende

■ 513-432-8327 | Shendesc@mail.uc.edu | Sourabh-shende.qithub.io | LinkedIn

Skills

Finite Element Analysis Abaqus, FEniCS, Altair, Ansys ine Learning Frameworks PyTorch, TensorFlow

Machine Learning Frameworks PyTorch, TensorFlow
High Performance Computing SLURM, LSF, MPI, OpenMP

Programming Python, MATLAB, Tcl, VBA, Fortran, C++, MEX

Version Control Git

Work Experience

University of Cincinnati

Cincinnati, Ohio, USA

GRADUATE RESEARCHER - SCIENTIFIC MACHINE LEARNING

Aug. 2018 - Present

- Developed Bayesian optimization (BO) with Gaussian processes (GP) surrogates, reducing finite element (FE) function evaluations by 10x for origami-inspired structures.
- Enhanced BO with gradient and anisotropy data, achieving a 3x speedup in optimal design discovery.
- Applied anisotropy-enriched BO for material calibration of hyperelastic Yeoh models for porcine meniscus.
- Developed a physics-informed machine learning (PIML) framework using system energy minimization to evaluate buckling deformation in hyperelastic multistable structures, eliminating the need for eigenvalue solutions required in finite element methods.
- Developed a physics-informed machine learning (PIML) based approach for phase-field plasticity at the mesoscale, improving plasticity parameter characterization by 6x.

Innovative Numerics LLC Cincinnati, Ohio, USA

SIMULATION AND MACHINE LEARNING INTERN

Jan. 2025 - April 2025

- · Provided finite element (FE) analysis support for complex projects across feminine, fabric, and family care business units.
- Developed expertise in Abaqus subroutines, Coupled Eulerian-Lagrangian (CEL) elements, and Smooth Particle Hydrodynamics (SPH) technology for advanced simulations.
- Designing a graph neural network (GNN)-based machine learning pipeline to accelerate solution prediction, achieving results significantly faster than traditional FE methods.

P&G Digital Accelerator Cincinnati, Ohio, USA

GRADUATE RESEARCH ASSISTANT - MODELING & SIMULATION

Jan. 2019 - Dec. 2024

- Built a microscale finite element model for non-woven paper, incorporating adhesive interactions using connector elements.
- · Developed tensile, compression, and bending performance test protocols to assess material strength.
- · Automated FE pre-processing in Abaqus and HyperMesh, using Python and Tcl scripts, reducing setup time significantly.
- Improved buckling mode failure prediction with a detailed FE model for corrugated cases.
- Conducted top-load simulations for plastic tub designs to optimize structural integrity.

Altair Engineering Troy, Michigan, USA

SOFTWARE INTEGRITY INTERN

May 2018 - Aug. 2018

- Automated testing of new HyperMesh features using Tcl scripts, ensuring quality and performance.
- Validated script outputs against benchmarks, improving software reliability.

Bajaj Auto Limited Pune, Maharashtra, India

SENIOR CAE ENGINEER

Jul. 2015 - Jun. 2017

- Developed and validated FE modeling methodologies for welded components, improving simulation accuracy.
- Conducted durability simulations for exhaust systems, cylinder heads, crankcases, and crankshafts, optimizing fatigue life.
- · Enhanced modal assurance criteria (MAC) correlation to improve FE model validation and structural reliability.
- Standardized welding parameters (weld leg lengths, penetration, root gap, grain size, HAZ extent, hardness) to refine pass/fail criteria based on endurance tests.
- Automated FE modeling workflows using Excel VBA and Tcl scripts, reducing setup time.

Education

University of Cincinnati Cincinnati, US

Doctor of Philosophy, Mechanical Engineering, 4.0/4.0

2020 - Present

 Dissertation: Scientific machine learning approaches for nonlinear computational mechanics Advisor: Dr. Kumar Vemaganti University of Cincinnati Cincinnati, US

MASTER OF SCIENCE, MECHANICAL ENGINEERING, 4.0/4.0

• Thesis: Bayesian topology optimization for efficient design of origami folding structures Advisor: Dr. Kumar Vemaganti

Visvesvaraya National Institute of Technology

Nagpur, India

Bachelor of Technology, Mechanical Engineering, 9.03/10.0

2011 - 2015

2017 - 2020

• Thesis: Design and development of low-cost silicone implant used in augmentation rhinoplasty suitable for the Indian sub-continental population Advisor: Dr. Rashmi Uddanwadiker

Publications & Conferences

- Shende, S., and Vemaganti K. "Application of energy-based physics informed machine learning for multistable beam structure,", European Journal of Mechanics A/Solids (in review).
- Shende, S., and Vemaganti K. "Application of physics informed machine learning for buckling of bi-stable beam structure,", 17th U.S. National Congress on Computational Mechanics, Albuquerque, New Mexico, July 23-27, 2021.
- Long, T., **Shende, S.**, Lin C., and Vemaganti K. "Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains", Biomechanics and Modeling in Mechanobiology, (2022).
- Shende, S., Gillman A., Buskohl P., and Vemaganti K. "Systematic cost analysis of gradient- and anisotropy-enhanced Bayesian design optimization", Structural and Multidisciplinary Optimization, Vol. 65, Issue. 8 (2022): 235-262.
- Shende, S., and Vemaganti K. "Bayesian topology optimization for efficient design of origami folding structures", 16th U.S. National Congress on Computational Mechanics July 25-29, 2021.
- Shende, S., Gillman A., Yoo D., Buskohl P., and Vemaganti K. "Bayesian Topology Optimization for Efficient Design of Origami Folding Structures", Structural and Multidisciplinary Optimization, Vol. 63, Issue. 4 (2021): 1907-1926.
- Inamdar, A., Adhe, N., **Shende, S.**, et al, "Design and development of low cost silicone implant used in augmentation rhinoplasty suitable for the indian sub-continental population", International Journal of Pharma Medicine and Biological Sciences, Vol. 5, Issue. 1 (2016): 81-85.

Selected Projects

· Non-linear Hyper-elastic Response:

- Developed MATLAB script to determine nonlinear force response of hyper-elastic materials with *Ogden* and *Gent* strain energy potentials when subjected to uni-axial, bi-axial, and pure shear deformation modes.
- Implemented the Newton-Raphson method to solve the nonlinear equations iteratively.

• Parallelization of Linear iterative solver:

- Developed a Fortran code to solve 2D Poissons problem using conjugate gradient linear iterative solver.
- Used Message Passing Interface (MPI) to parallelize the solver with 1D and 2D domain decomposition.

Non-linear Bending of Thin Beam:

- Developed a MATLAB script to solve the nonlinear bending of the thin beam when subjected to an extreme moment of force.
- Implemented the modified Newton-Raphson method with the total Lagrangian configuration scheme under plane strain conditions for convergence between each load step.

· Multi-Layer Feed-Forward Neural Network:

- Developed Python script for the multi-layer feed-forward neural network from scratch to classify the digit images from the MNIST dataset.
- Implemented the backpropagation algorithm for the training of the neural networks.

· Finite Element Formulation:

- Developed MATLAB code to formulate 2D *tria3* and *quad4* elements to solve linear static problems.
- Validated the accuracy of the developed scripts by comparing the solution with those generated by a commercial Finite Element software
 package.

• Modal Parameter Estimation (MPE) and Finite Element Validation:

- Extracted modal parameters of Circular (aluminum) and Rectangular (steel) plates using X-modal III software from captured Frequency Response Functions (FRFs).
- Correlated modal frequencies and mode shapes with corresponding finite element models.