Vibrations & Ondes

Vibrations des systèmes continus

Novembre 2020

Généralités

Vibrations dans les milieux élastiques 1D

 $M1 (TC) \rightarrow vibrations des structures à 1 dimension :$

- Vibrations transverses des cordes
- Vibrations longitudinales des poutres
- Vibrations de torsion des arbres
- Vibrations de flexion des poutres

Pourquoi étudier ces systèmes simples ?

- Ils modélisent simplement le comportement de nombreuses structures
- Ils permettent de comprendre les structures plus complexes
- Ils sont les constituants élémentaires des structures en éléments finis

Généralités

Différents types d'équation du mouvement

Limites de l'étude

Géometrie:

- Poutre rectilignes,
- Longueur finie L
- Section constante $S \ll L$

Matériau :

- Homogène,
- Linéaire isotrope
- Non dissipatif

Deux types d'équation différentielle du mouvement

- Vibrations longitudinales
- Vibrations de Torsion
- Vibrations des Cordes

1 même équation d'ordre 2 : l'Équation de d'Alembert

$$\frac{\partial^2 f(x,t)}{\partial x^2} - \frac{1}{c_I^2} \frac{\partial^2 f(x,t)}{\partial t^2} = g(x,t)$$

• Vibrations de flexion Équation d'ordre 4

$$\frac{\partial^{4} f(x,t)}{\partial x^{4}} + \frac{1}{c_{F}^{2}} \frac{\partial^{2} f(x,t)}{\partial t^{2}} = g(x,t)$$

Vibrations longitudinales des barres

Dimensions - Paramètres - Hypothèses

Hypothèses

- Poutre droite : Longueur $L(\gg e,l)$, Section constante S
- Matériau isotrope : ρ, E, ν , non dissipatif
- Distribution de forces f(x,t)
- →Petites perturbations (gravité non prise en compte)
- Grandeur étudiée : déplacement longitudinal local u(x,t)

Méthodes pour écrire et résoudre les équations du mouvement :

- Méthode locale avec le Principe fondamental de la dynamique (PFD) : adaptée aux structures simples.
- Méthode variationnelle : Th. de Hamilton + variations énergétiques Inclue les conditions aux limites
 Adaptée aux structures complexes.

Vibrations longitudinales

Équation du mouvement - Équilibre Local (1)

On écrit l'équilibre dynamique d'une section de longueur dx:

- Déplacement : u(x,t)
- Force à gauche : -F
- Force à droite : $F + \frac{\partial F}{\partial x} dx$
- Force extérieure f(x,t)

On a donc

$$\rho S dx \frac{\partial^2 u}{\partial t^2} = -F + F + \frac{\partial F}{\partial x} dx + f(x, t) dx$$

Vibrations longitudinales

Équation du mouvement - Équilibre Local (2)

$$\begin{split} \rho S dx \frac{\partial^2 u}{\partial t^2} &= \mathcal{F} + \mathcal{F} + \frac{\partial F}{\partial x} dx + f(x,t) dx \\ \Leftrightarrow \rho S \mathcal{A} x \frac{\partial^2 u}{\partial t^2} &= \frac{\partial F}{\partial x} \mathcal{A} x + f(x,t) \mathcal{A} x \\ \Leftrightarrow \rho S \frac{\partial^2 u}{\partial t^2} &= \frac{\partial F}{\partial x} + f(x,t) \end{split}$$

Équation du mouvement = Équation des ondes longitudinales

$$\rho S \frac{\partial^2 u}{\partial t^2} = \frac{\partial F}{\partial x} + f(x, t)$$

Traction/Compression pure:

$$F = \sigma S = E\epsilon S = ES \frac{\partial u}{\partial x}$$

$$\rho S \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} (ES \frac{\partial u}{\partial x}) + f(x, t)$$

Comme E et S constants

$$\rho \frac{\partial^2 u}{\partial t^2} = E \frac{\partial^2 u}{\partial x^2} + \frac{1}{S} f(x, t)$$

On note
$$c^2 = \frac{E}{\rho} \Leftrightarrow c = \sqrt{\frac{E}{\rho}}$$

Finalement:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{1}{\rho S} f(x, t)$$

Vibrations longitudinales

Célérité des ondes longitudinales

- [c] = m/s
- c = célérité du son ou vitesse des ondes longitudinales.
- Ordres de grandeur :

$$c_{acier} = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{2.10^{11}}{8.10^3}} = 0.5.10^4 = 5000 \text{m/s}$$

Autres valeurs

Matériau	c (m/s)	Matériau	c (m/s)
PVC mou	80	Glace	3200
Sable sec	10-300	Hêtre	3300
Béton	3100	Aluminium	5035
Plomb	1200	Verre	5300
PVC dur	1700	Acier	5600-5900
Granit	6200	Péridotite ¹	7700

Rappel: vitesse du son dans l'air: 343m/s, dans l'eau: 1480m/s

¹Roche magmatique constituant la majeur partie de la croûte terrestre

Équation du mouvement - Paramètres

Hypothèses

- Poutre droite : Longueur $L(\gg e, l)$, Section constante S
- Matériau isotrope : ρ, E, ν, G (module de torsion), non dissipatif
- ullet \to Petites perturbations + gravité non prise en compte
- ullet Grandeur étudiée : déplacement angulaire local heta(x,t)

Équation du mouvement - Équilibre local

On écrit l'équilibre dynamique d'une section d'épaisseur dx:

On a donc

• Moment d'inertie:
$$\rho I_x dx$$

• Déplacement :
$$\theta(x,t)$$

• Accélération :
$$\frac{\partial^2 \theta}{\partial t^2}$$

• Moment à gauche :
$$-M$$

• Moment à droite :
$$M + \frac{\partial M}{\partial x} dx$$

$$\rho I_x dx \frac{\partial^2 \theta}{\partial t^2} = -M + M + \frac{\partial M}{\partial x} dx$$

Équation du mouvement - Équilibre local (2)

Équation du mouvement = Équation des ondes de torsion

$$\rho I_x \frac{\partial^2 \theta}{\partial t^2} = \frac{\partial M}{\partial x}$$

Torsion pure:

$$M = GI_x \frac{\partial \theta}{\partial x}$$

Ordre de grandeur :

$$c_{acier} = \sqrt{\frac{G}{\rho}} = \sqrt{\frac{E}{2(1+\nu)\rho}} = \sqrt{\frac{2.10^{11}}{2\times(1+0.3)\times8.10^3}} = 2000 \text{m/s}$$

$$\rho I_x \frac{\partial^2 \theta}{\partial t^2} = \frac{\partial}{\partial x} (GI_x \frac{\partial \theta}{\partial x})$$

Comme G et I_x constants :

$$\rho \frac{\partial^2 \theta}{\partial t^2} = G \frac{\partial^2 \theta}{\partial x^2}$$

On note
$$c^2 = \frac{G}{\rho} \Leftrightarrow c = \sqrt{\frac{G}{\rho}}$$
 Finalement :

$$\frac{\partial^2 \theta}{\partial t^2} - c^2 \frac{\partial^2 \theta}{\partial x^2} = 0$$

Vibrations transverses des cordes

Équation du mouvement - Paramètres

Hypothèses sur la corde

- \bullet Longueur L
- Matériau : ρ (kg/m)
- Non dissipatif
- \bullet Tension constante : T
- →Petites perturbations
- Grandeur étudiée : déplacement vertical local v(x,t)
- Pente locale : $\alpha = \frac{\partial v}{\partial x}$

Vibrations transverses des cordes

Équation du mouvement - Équilibre local

Suivant y :

$$T \sin \alpha(x + dx) - T \sin \alpha(x) = \rho dx \frac{\partial^2 v}{\partial t^2}$$

Bilan des forces

Suivant x:

$$|T(x+dx)|\cos\alpha(x+dx) - |T(x)|\cos\alpha(x) = 0$$

$$(\cos \alpha \approx 1) \Leftrightarrow T(x + dx) = T(x)$$

$$\Leftrightarrow T\alpha(x+dx) - T\alpha(x) = \rho dx \frac{\partial^2 v}{\partial t^2}$$

$$\Leftrightarrow T\frac{\partial\alpha}{\partial x}dx = \rho dx\frac{\partial^2 v}{\partial t^2} \Leftrightarrow \rho\frac{\partial^2 v}{\partial t^2} = T\frac{\partial^2 v}{\partial x^2}$$

$$\frac{\partial^2 v}{\partial t^2} - c^2 \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{avec} \quad c = \sqrt{\frac{T}{\rho}}$$

Solution libres = Solutions de l'équation du mouvement lorsque f(x,t)=0

Aucune distribution de force permanente (mais système hors d'équilibre) :

Équation du mouvement libre :

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \tag{1}$$

$$(1) \Leftrightarrow \frac{\partial^2 \phi}{\partial t^2} X - c^2 \phi \frac{\partial^2 X}{\partial x^2} = 0$$

 \exists 2 types de solutions :

- propagatives
- stationnaires

Solution stationnaire \rightarrow

Hypothèse de variables séparées :

$$u(x,t) = \phi(t)X(x)$$

$$\Leftrightarrow \ddot{\phi}(t)X(x) - c^2\phi(t)X''(x) = 0$$

$$\Leftrightarrow \frac{\ddot{\phi}}{\phi}(t) = c^2 \frac{X^{\prime\prime}}{X}(x) = cte = \alpha \quad \textbf{(2)}$$

Deux équations à résoudre : l'une sur t, l'autre sur x.

Solution stationnaire générale en modes libres

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

avec $u(x,t) = \phi(t)X(x)$

$$\Leftrightarrow \frac{\ddot{\phi}}{\phi}(t) = c^2 \frac{X''}{X}(x) = \alpha$$

d'où une équation sur le temps :

$$\ddot{\phi}(t) - \alpha \phi(t) = 0 \tag{3}$$

et une équation de déformation :

$$X''(x) - \frac{\alpha}{c^2}X(x) = 0$$
 (4)

• Solution stationnaire pour (3)

$$\rightarrow \alpha = -\omega^2 (<0)$$

La solution s'écrit :

$$\phi(t) = A\cos\omega t + B\sin\omega t$$

• Dans (4) on note $\gamma = \frac{\omega}{c}$

$$X''(x) + \gamma^2 X(x) = 0$$

La solution s'écrit :

$$X(x) = C\cos\gamma x + D\sin\gamma x$$

Forme générale de la solution stationnaire en modes libres

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

Mouvement vibratoire longitudinal libre :

$$u(x,t) = (A\cos\omega t + B\sin\omega t)(C\cos\gamma x + D\sin\gamma x)$$

- ullet Mouvement harmonique de pulsation ω
- Conditions initiales (C.I.) du mouvement $\rightarrow (A, B)$
- L'amplitude du mouvement des sections dépend de la position dans la poutre, mais Il faut identifier les pulsations ω possibles
- Conditions aux limites (C.L.) du système $\rightarrow \omega$ et γ .

Les C.L. déterminent les modes propres (ou naturels) de la poutre

Solutions stationnaires particulières - Conditions aux limites

2 cas simples de conditions aux limites peuvent être considérés :

Bord libre :

aucun effort à l'extrémité

$$F = 0 \Leftrightarrow ES \frac{\partial u}{\partial x} = 0$$

• mouvement indéterminé (u = ?)

$$\textbf{Bord Libre} \Leftrightarrow \frac{\partial u}{\partial x} = 0, \forall t$$

• Encastrement :

- Section extrême bloquée : u=0
- Effort indéterminé (F = ?)

Encastrement $\Leftrightarrow u = 0, \forall t$

Modes propres (ou naturels)

3 combinaisons possibles des conditions aux limites:

• Poutre encastrée - encastrée

Poutre encastrée - libre

• Poutre libre - libre

Cas de la poutre encastrée-libre (1)

$$u(x,t) = (A\cos\omega t + B\sin\omega t)(C\cos\gamma x + D\sin\gamma x) = \phi(t)X(x)$$

• Encastrement en x = 0

$$u(0,t) = 0, \forall t \Leftrightarrow X(0) = 0$$

$$\Leftrightarrow C = 0$$

$$\Leftrightarrow X(x) = D\sin\gamma x$$

• Libre en x = L

$$\Leftrightarrow \frac{\partial u}{\partial x}(L,t) = 0, \forall \Leftrightarrow X'(L) = 0$$

$$\Leftrightarrow \cos \gamma L = 0 \Leftrightarrow \gamma L = (2n+1)\frac{\pi}{2}$$

Valeurs possibles de γ :

$$\gamma_n = (2n+1)\frac{\pi}{2L}$$

Cas de la poutre encastrée-libre (2)

Déformées possibles :

$$X_n(x) = \sin \gamma_n x$$

Ce sont les modes propres

$$X_n(x) = \sin\left((2n+1)\frac{\pi x}{2L}\right)$$

avec nécessairement :

$$\gamma = \frac{\omega}{c} \Leftrightarrow \omega_n = c\gamma_n$$

• \Rightarrow Pulsations propres ω_n :

$$\omega_n = (2n+1)\frac{\pi c}{2L}$$

$$\Leftrightarrow \omega_n = (2n+1)\frac{\pi}{2L}\sqrt{\frac{E}{\rho}}$$

Fréquences propres (Hz):

$$f_n = \frac{2n+1}{4L} \sqrt{\frac{E}{\rho}}$$

Cas de la poutre encastrée-libre (3)

• Expression du mode de vibration longitudinale à ω_n :

$$u_n(x,t) = (A'_n \cos \omega_n t + B'_n \sin \omega_n t) \sin \left((2n+1) \frac{\pi x}{2L} \right)$$

$$\Leftrightarrow u_n(x,t) = U_n \cos(\omega_n t + \varphi_n) \sin \left((2n+1) \frac{\pi x}{2L} \right)$$

• Réponse libre complète = Combi. lin. des solutions possibles :

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) = \sum_{n=0}^{\infty} U_n \cos(\omega_n t + \varphi_n) \sin\left((2n+1)\frac{\pi x}{2L}\right)$$

• Conditions initiales $(u(x,0),\dot{u}(x,0)) \to (U_n,\varphi_n)$ ou (A'_n,B'_n)

Modes longitudinaux de la poutre encastrée-libre

$$X_0(x) = \sin\left(\frac{\pi x}{2L}\right)$$

$$X_1(x) = \sin\left(\frac{3\pi x}{2L}\right)$$

$$X_2(x) = \sin\left(\frac{5\pi x}{2L}\right)$$

Résultat pour les 3 combinaisons de C.L.

C.L.	Poutre L-L	Poutre E-L	Poutre E-E
Modes propres	$\cos n \frac{\pi x}{L}$	$\sin(2n+1)\frac{\pi x}{2L}$	$\sin n \frac{\pi x}{L}$
Pulsations propres	$\frac{n\pi}{L}\sqrt{\frac{E}{ ho}}$	$\frac{(2n+1)\pi}{2L}\sqrt{\frac{E}{\rho}}$	$\frac{n\pi}{L}\sqrt{\frac{E}{ ho}}$
$f_{acier}(L=1m)$	$f_1 = 2500Hz$	$f_0 = 1250Hz$	$f_1 = 2500Hz$

Cas de la poutre encastrée aux deux bouts

$$X_0(x) = \sin \frac{\pi x}{L}$$

$$X_1(x) = \sin \frac{2\pi x}{L}$$

$$X_2(x) = \sin \frac{3\pi x}{L}$$

Modes longitudinaux de la poutre libre-libre

$$X_1(x) = \cos \frac{\pi x}{L}$$

$$X_2(x) = \cos \frac{2\pi x}{L}$$

$$X_3(x) = \cos \frac{3\pi x}{L}$$

Orthogonalité des modes propres longitudinaux

On peut écrire la solution libre comme une composition des modes propres :

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) = \sum_{n=0}^{\infty} \phi_n(t) X_n(x)$$

L'équation du mouvement libre est vérifiée pour chaque mode

$$\frac{\partial^2 u_n}{\partial t^2} - c^2 \frac{\partial^2 u_n}{\partial x^2} = 0 \Leftrightarrow -\omega_n^2 X_n - c^2 X_n'' = 0$$

On peut écrire pour les modes n et m :

$$-\omega_n^2 X_n = c^2 X_n'' \quad (\times X_m) \quad \text{ et } \quad -\omega_m^2 X_m = c^2 X_m'' \quad (\times X_n)$$

Orthogonalité des modes propres longitudinaux (2)

On a donc :

$$-\omega_n^2 X_n = c^2 X_n'' \quad (\times X_m) \quad \text{ et } \quad -\omega_m^2 X_m = c^2 X_m'' \quad (\times X_n)$$

Soit en multipliant respectivement par X_m et X_n , puis intégrant sur la longueur de la barre :

$$-\omega_n^2 \int_0^L X_n X_m dx = c^2 \int_0^L X_n'' X_m dx$$
$$-\omega_m^2 \int_0^L X_m X_n dx = c^2 \int_0^L X_m'' X_n dx$$

En intégrant par partie et pour des extrémités encastrées ou libres on obtient :

$$-\omega_n^2 \int_0^L X_n X_m dx = [X_n' X_m]_0^L - c^2 \int_0^L X_n' X_m' dx$$
$$-\omega_m^2 \int_0^L X_m X_n dx = [X_m' X_n]_0^L - c^2 \int_0^L X_m' X_n' dx$$

Orthogonalité des modes propres longitudinaux (3)

On a donc :

$$\omega_n^2 \int_0^L X_n X_m dx = c^2 \int_0^L X_n' X_m' dx \quad \text{et} \quad \omega_m^2 \int_0^L X_m X_n dx = c^2 \int_0^L X_m' X_n' dx$$

En soustrayant les 2 équations :

$$(\omega_n^2 - \omega_m^2) \int_0^L X_n X_m dx = 0$$

avec $\omega_n^2 \neq \omega_m^2$, on obtient les **Relations d'orthogonalité** :

$$\boxed{ \int_0^L X_n X_m dx = 0 } \quad \text{et} \quad \boxed{ \int_0^L X_n' X_m' dx = 0 }$$

Les modes propres et leurs dérivées sont orthogonaux

Paramètres modaux

On a aussi:

$$-\omega_n^2 \int_0^L X_n^2 dx = c^2 \int_0^L X_n'' X_n dx$$

Qui donne par intégration par parties avec les C.L. :

$$\omega_n^2 \int_0^L X_n^2 dx = c^2 \int_0^L X_n'^2 dx$$

$$\Leftrightarrow \omega_n^2 = \frac{ES \int_0^L X_n'^2 dx}{\rho S \int_0^L X_n^2 dx} = \frac{k_n}{m_n}$$

On identifie la masse modale m_n et la raideur modale k_n :

$$m_n =
ho S \int_0^L X_n^2 dx$$
 et $k_n = E S \int_0^L X_n'^2 dx$

$$k_n = ES \int_0^L X_n'^2 dx$$

On peut normaliser les modes de telle sorte que :

$$m_n = 1$$
 alors $k_n = \omega_n^2$

Identification des caractéristiques modales longitudinales

On peut écrire les énergies modales pour identifier les masses et raideurs modales .

• Énergie cinétique modale :

$$T_n = \int_0^L \frac{1}{2} \rho S(\dot{u}_n(x,t))^2 dx = \frac{1}{2} \dot{\phi}_n^2 \rho S \int_0^L X_n^2(x) dx = \frac{1}{2} m_n \dot{\phi}_n^2$$

On identifie la masse modale :

$$m_n = \rho S \int_0^L X_n^2(x) dx$$

• Énergie potentielle modale :

$$U_{n} = \int_{0}^{L} \frac{1}{2} ES \left(\frac{\partial u_{n}}{\partial x}(x, t) \right)^{2} dx = \frac{1}{2} \phi_{n}^{2} ES \int_{0}^{L} X_{n}^{2}(x) dx = \frac{1}{2} k_{n} \phi_{n}^{2}$$

On identifie la raideur modale :

$$k_n = ES \int_0^L X_n'^2(x) dx$$

Expression dans la base modale

Équation du mouvement libre :

$$\ddot{u}(x,t)-c^2u''(x,t)=0$$
 avec
$$u(x,t)=\sum_n\phi_n(t)X_n(x)$$

$$\Leftrightarrow \sum \ddot{\phi}_n X_n - c^2 \phi_n X_n'' = 0$$

$$\Leftrightarrow \sum_{n} \ddot{\phi}_{n} \int_{0}^{L} X_{m} X_{n} dx - c^{2} \phi_{n} \int_{0}^{L} X_{m} X_{n}'' dx = 0$$

Orthogonalité des modes :

$$\Leftrightarrow \ddot{\phi}_n \int_0^L X_n^2 dx - c^2 \phi_n \int_0^L X_n X_n'' dx = 0$$

$$(n=0,...,\infty)$$

Avec les relations suivantes sur les modes propres :

$$\int_0^L X_n^2 dx = \frac{m_n}{\rho S}$$

$$\int_0^L X_n X_n'' dx = -\frac{k_n}{ES}$$

On obtient:

$$\boxed{m_n \ddot{\phi}_n + k_n \phi_n = 0}$$

$$\Leftrightarrow \boxed{\ddot{\phi}_n + \omega_n^2 \phi_n = 0}$$
$$(n = 0, ..., \infty)$$

Chaque mode propre se comporte comme un système à 1 DDL.

Réponse libre en fonction des conditions initiales (1)

On peut écrire une vibration libre quelconque comme une combinaison linéaire des modes propres sous la forme :

$$u(x,t) = \sum_{n} (A_n \cos \omega_n t + B_n \sin \omega_n t) X_n(x)$$

Les constantes A_n et B_n sont déterminées avec les conditions initiales

$$\begin{cases} u(x,0) = u_0(x) \\ \dot{u}(x,0) = \dot{u}_0(x) \end{cases}$$

$$\Leftrightarrow \begin{cases} u(x,0) = \sum_{n} A_n X_n = u_0(x) \\ \dot{u}(x,0) = \sum_{n} \omega_n B_n X_n = \dot{u}_0(x) \end{cases}$$

Réponse libre en fonction des conditions initiales (2)

On peut tirer avantage des propriétés des modes propres :

$$\begin{cases} \sum_{n} A_n X_n = u_0(x) \\ \sum_{n} \omega_n B_n X_n = \dot{u}_0(x) \end{cases} \Leftrightarrow \begin{cases} \sum_{n} A_n \int_0^L X_m X_n dx = \int_0^L X_m u_0(x) dx \\ \sum_{n} \omega_n B_n \int_0^L X_m X_n dx = \int_0^L X_m \dot{u}_0(x) dx \end{cases}$$

avec l'orthogonalité des modes :

$$\begin{cases} A_n \int_0^L X_n^2 dx = \int_0^L X_n u_0(x) dx \\ \omega_n B_n \int_0^L X_n^2 dx = \int_0^L X_n \dot{u}_0(x) dx \end{cases} \Leftrightarrow \begin{cases} A_n = \frac{\rho S}{m_n} \int_0^L X_n u_0(x) dx \\ B_n = \frac{\rho S}{\omega_n m_n} \int_0^L X_n \dot{u}_0(x) dx \end{cases}$$

Les intégrales peuvent être difficiles à évaluer pour des X_n compliqués

 \rightarrow Évaluation numérique des A_n et B_n

Rappel sur les modes propres longitudinaux

Relations d'orthogonalité & Paramètres modaux

• Orthogonalité $\forall m \neq n$ $\forall m \neq n$

$$\int_0^L X_n X_m = 0$$

$$\int_0^L X_n' X_m' = 0$$

Paramètre modaux

Masse modale:

$$m_n = \rho S \int_0^L X_n^2(x) dx$$

Raideur modale:

$$k_n = ES \int_0^L X_n^{\prime 2}(x) dx$$

Vibrations longitudinales forcées

Réponse à une excitation permanente longitudinale (1)

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{1}{\rho S} f(x, t) = g(x, t)$$

On suppose la réponse combinaison linéaire des modes propres :

$$u(x,t) = \sum_{n} \phi_n(t) X_n(x)$$

où les $\phi_n(t)$ sont les contributions inconnues des modes.

On substitue la composition modale dans l'équation du mouvement :

$$\sum_{n} \ddot{\phi}_n X_n - c^2 \sum_{n} \phi_n X_n'' = g(x, t)$$

Vibrations longitudinales forcées

Réponse à une excitation permanente longitudinale (2)

$$\sum_{n} \ddot{\phi}_{n} X_{n} - c^{2} \sum_{n} \phi_{n} X_{n}^{"} = g(x, t)$$

On multiplie par X_m et on intègre de 0 à L :

$$\sum_{n} \ddot{\phi}_{n} \int_{0}^{L} X_{m} X_{n} dx - c^{2} \sum_{n} \phi_{n} \int_{0}^{L} X_{m} X_{n}'' dx = \int_{0}^{L} X_{m} g(x, t) dx$$

Intégration par parties et C.L pour le second terme:

$$\sum_{n} \ddot{\phi}_{n} \int_{0}^{L} X_{m} X_{n} dx + c^{2} \sum_{n} \phi_{n} \int_{0}^{L} X'_{m} X'_{n} dx = \int_{0}^{L} X_{m} g(x, t) dx$$

avec l'orthogonalité des modes :

$$\ddot{\phi}_n \int_0^L X_n^2 dx + c^2 \phi_n \int_0^L X_n'^2 dx = \int_0^L X_n g(x, t) dx$$

Vibrations longitudinales forcées

Réponse à une excitation permanente longitudinale (3)

Composition modale introduite dans l'équation du mouvement forcé :

$$\ddot{\phi}_n \int_0^L X_n^2 dx + c^2 \phi_n \int_0^L X_n'^2 dx = \int_0^L X_n g(x, t) dx$$

On identifie les paramètres modaux :

$$\Leftrightarrow \ddot{\phi}_n \frac{m_n}{\rho S} + \phi_n \frac{k_n}{\rho S} = \frac{1}{\rho S} \int_0^L X_n f(x, t) dx$$

$$\Leftrightarrow m_n \ddot{\phi}_n + k_n \phi_n = \int_0^L X_n f(x, t) dx$$

D'où l'équation de la réponse forcée pour chaque mode :

$$\Leftrightarrow \ddot{\phi}_n + \omega_n^2 \phi_n = \frac{1}{m_n} \int_0^L X_n f(x, t) dx$$

Vibrations longitudinales forcées

Réponse à une excitation harmonique longitudinale (1)

On a donc l'équation de la réponse forcée pour chaque mode :

$$\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{1}{m_n} \int_0^L X_n f(x, t) dx$$

L'excitation harmonique répartie s'écrit :

$$f(x,t) = F(x)\cos\Omega t$$

La réponse harmonique s'écrit :

$$\phi(t) = \Phi \cos \Omega t$$
 et $\ddot{\phi}(t) = -\Omega^2 \Phi \cos \Omega t$

Et l'équation différentielle devient :

$$\Phi(\omega_n^2 - \Omega^2) = \frac{1}{m_n} \int_0^L X_n F(x) dx$$

D'où l'amplitude de la réponse en fonction de la fréquence d'excitation:

$$\Phi(\Omega) = \frac{1}{m_n} \frac{1}{\omega_n^2 - \Omega^2} \int_0^L X_n F(x) dx$$

Cas particulier de l'excitation par vibration du support

Poutre E-L - Excitation quelconque

Le support est animé d'un déplacement variable $u_s(t)$

Déplacement total des sections de la poutre : $u(x,t)+u_s(t)$ Équation du mouvement :

$$\frac{\partial^2(u+u_s)}{\partial t^2} - c^2 \frac{\partial^2(u+u_s)}{\partial x^2} = 0$$

$$\Leftrightarrow (\ddot{u} + \ddot{u}_s) - c^2 u'' = 0 \Leftrightarrow \ddot{u} - c^2 u'' = -\ddot{u}_s$$

On utilise les modes propres de la poutre encastrée libre :

$$u(x,t) = \sum_{n} \phi_n(t) X_n(x)$$
 et $X_n = \sin \frac{(2n+1)\pi}{2L} x$

Pour identifier les $\phi_n(t)$, on résout pour tout $u_s(t)$:

$$\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{-\ddot{u}_s \rho S}{m_n} \int_0^L \sin(2n+1) \frac{\pi x}{2L} dx \Leftrightarrow \boxed{\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{-2L\ddot{u}_s \rho S}{(2n+1)\pi m_n}}$$

Cas particulier de l'excitation par vibration du support

Poutre E-L - Vibration harmonique du support (1)

Pour un mouvement du support on a pour chaque mode :

$$\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{-2L\ddot{u}_s \rho S}{(2n+1)\pi m_n}$$

Si le mouvement du support est harmonique on a :

$$u_s(t) = U_0 \cos \Omega t$$
 et $\ddot{u}_s(t) = -\Omega^2 U_0 \cos \Omega t$

La réponse est harmonique de même fréquence

$$\phi_n(t) = \Phi_n \cos \Omega t$$
 et $\ddot{\phi}_n(t) = -\Omega^2 \Phi_n \cos \Omega t$

d'où

$$(\omega_n^2 - \Omega^2)\Phi_n = \frac{2LU_0\Omega^2\rho S}{(2n+1)\pi m_n} \Leftrightarrow \Phi_n(\Omega) = \frac{2LU_0\rho S}{(2n+1)\pi m_n} \frac{\Omega^2}{\omega_n^2 - \Omega^2}$$

avec

$$m_n = \rho S \int_0^L X_n^2 dx = \rho S \int_0^L \left(\sin \frac{(2n+1)\pi x}{2L} \right)^2 dx = \frac{\rho SL}{2}$$

Excitation par vibration longitudinale du support

Poutre E-L - Vibration harmonique du support (2)

La réponse de chaque mode au mouvement harmonique du support est :

$$\phi_n(t) = \Phi_n(\Omega)\cos\Omega t = \frac{4U_0}{(2n+1)\pi} \frac{\Omega^2}{\omega_n^2 - \Omega^2}\cos\Omega t$$

Le mouvement total de la poutre en vibration longitudinale est :

$$u(x,t) = \sum_{n} \phi_n(t) X_n(x) \Leftrightarrow$$

$$u(x,t) = \frac{4U_0}{\pi} \sum_{n} \frac{1}{2n+1} \frac{\Omega^2}{\omega_n^2 - \Omega^2} \sin\left(\frac{(2n+1)\pi x}{2L}\right) \cos \Omega t$$

Excitation par vibration longitudinale du support

Poutre E-L - Vibration harmonique du support (3)

$$u(x,t) = \frac{4U_0}{\pi} \sum_{n} \frac{1}{2n+1} \frac{\Omega^2}{\omega_n^2 - \Omega^2} \sin\left(\frac{(2n+1)\pi x}{2L}\right) \cos \Omega t$$

Vibrations des poutres en flexion

Équation locale du mouvement pour une poutre - Paramètres

Poutre droite:

- Section constante $S = largeur \times hauteur = l \times e$,
- Longueur $L(\gg e, l)$,
- Moment quadratique de section $I_{\perp}=\frac{le^3}{12}$
- Matériau isotrope : ρ, E, ν , non dissipatif

Variables:

- Distribution de forces transverses f(x,t)
- Petites perturbations + gravité non prise en compte
- Grandeur étudiée : déplacement transverse local (flèche) v(x,t)

Équation locale du mouvement de la poutre - Hypothèses

- Hypothèse d'Euler-Bernoulli : L'inertie de rotation des section est négligée.
- Conséquence : les sections droites restent \perp à la ligne neutre.

Rotation des sections : $\theta(x) = \frac{\partial v}{\partial x}$

Équation locale du mouvement de la poutre - Équilibre Local (1)

On écrit l'équilibre dynamique d'une section d'épaisseur dx :

- Masse: $\rho S dx$
- Déplacement (Flèche): v(x,t)

- Accélération : $\frac{\partial^2 v}{\partial t^2}$
- ullet Effort tranchant à gauche : T
- Effort tranchant à droite : $-\left(T + \frac{\partial T}{\partial x}dx\right)$
- ullet Mt fléchissant à gauche : -M
- Mt fléchissant à droite : $M + \frac{\partial M}{\partial x} dx$
- Force extérieure f(x,t)

Équation locale du mouvement de la poutre - Équilibre Local (2)

Bilan des Résultantes

$$\rho S dx \frac{\partial^2 v}{\partial t^2} = T - T - \frac{\partial T}{\partial x} dx + f(x, t) dx$$

$$\Leftrightarrow \rho S \frac{\partial^2 v}{\partial t^2} = -\frac{\partial T}{\partial x} + f(x, t)$$

Bilan des Moments

$$0 = -M + M + \frac{\partial M}{\partial x}dx - Tdx$$

$$\Leftrightarrow 0 = \frac{\partial M}{\partial x} - T$$

d'après la théorie des poutres :

$$M = EI \frac{\partial \theta}{\partial x} = EI \frac{\partial^2 v}{\partial x^2}$$

$$\Rightarrow T = \frac{\partial}{\partial x} \left(EI \frac{\partial^2 v}{\partial x^2} \right)$$

et EI étant constant :

$$\rho S \frac{\partial^2 v}{\partial t^2} + EI \frac{\partial^4 v}{\partial x^4} = f(x, t)$$

Équation des ondes transverses dans une poutre

On note:

c n'est pas une vitesse!

$$c = \sqrt{\frac{EI}{\rho S}}$$

$$[c] = \frac{m^3}{s^2}$$

Vibrations libres d'une poutre lorsque f(x,t)=0

$$\frac{\partial^4 v}{\partial x^4} + \frac{1}{c^2} \frac{\partial^2 v}{\partial t^2} = 0 \tag{1}$$

Solution stationnaire:

$$v(x,t) = \phi(t)X(x)$$

$$(1) \Leftrightarrow c^2 \phi X'''' + \ddot{\phi} X = 0$$

$$\Leftrightarrow c^2 \frac{X''''}{X}(x) = -\frac{\ddot{\phi}}{\phi}(t) = -\omega^2$$
 (2)

Équation en temps

$$(2) \Leftrightarrow \ddot{\phi}(t) + \omega^2 \phi(t) = 0 \quad (3)$$

Équation sur la déformation

(2)
$$\Leftrightarrow X''''(x) - \gamma^4 X(x) = 0$$
 (4)

avec

$$\gamma^4 = \frac{\omega^2}{c^2}$$

Expression générale des vibrations libres d'une poutre (1)

- Sur le temps : $\ddot{\phi}(t) + \omega^2 \phi(t) = 0 \Leftrightarrow \phi(t) = A \cos \omega t + B \sin \omega t$
- Sur l'espace : $X''''(x) \gamma^4 X(x) = 0 \Leftrightarrow X(x) = X_0 e^{rt}$
 - Équation caractéristique : $r^4 \gamma^4 = 0 \Leftrightarrow r^2 = \pm \gamma^2$
 - 4 racines possibles : $r = -\gamma$, $+\gamma$, $-i\gamma$, $+i\gamma$
 - La solution générale est C.L. des solutions possibles

$$X(x) = Ce^{\gamma x} + De^{-\gamma x} + Ge^{i\gamma x} + He^{-i\gamma x}$$

$$\Leftrightarrow X(x) = C_1 \cos \gamma x + C_2 \sin \gamma x + C_3 \cosh \gamma x + C_4 \sinh \gamma x$$

On peut aussi écrire :

$$\Leftrightarrow X(x) = D_1(\cos\gamma x + \cosh\gamma x) + D_2(\cos\gamma x - \cosh\gamma x)$$

+
$$D_3(\sin\gamma x + \sinh\gamma x) + D_4(\sin\gamma x - \sinh\gamma x)$$

Expression générale des vibrations libres d'une poutre (2)

$$v(x,t) = \phi(t)X(x)$$

• Dépendance temporelle :

$$\phi(t) = A\cos\omega t + B\sin\omega t$$

• Dépendance spatiale

$$X(x) = C_1 \cos \gamma x + C_2 \sin \gamma x + C_3 \cosh \gamma x + C_4 \sinh \gamma x$$

Comment identifier les constantes inconnues ?

- Conditions aux limites $\rightarrow (C_1, C_2, C_3, C_4)$ et (X_n, ω_n)
- Conditions initiales $\rightarrow (A, B)$

Finalement le mouvement libre peut s'écrire comme une combinaison linéaire des modes propres. ((Dé)composition modale).

$$v(x,t) = \sum_{n} X_n (A_n \cos \omega_n t + B_n \sin \omega_n t)$$

Orthogonalité des modes propres

 X_n : Mode propre d'ordre n γ_n^4 : Valeur propre associée

$$\gamma_n^4 = \left(\frac{\omega_n}{c}\right)^2$$

On a

$$\forall n, \quad X_n^{\prime\prime\prime\prime} - \gamma_n^4 X_n = 0 \qquad (5)$$

Double intégration par parties + CL:

$$\Leftrightarrow \begin{cases} [X_{m}X_{n}^{\mu}]_{0}^{L} - [X_{m}^{\prime}X_{n}^{\mu}]_{0}^{L} + \int_{0}^{L} X_{m}^{\prime\prime}X_{n}^{\prime\prime}dx = \gamma_{n}^{4} \int_{0}^{L} X_{m}X_{n}dx \\ [X_{n}X_{m}^{\mu}]_{0}^{L} - [X_{n}^{\prime}X_{m}^{\mu}]_{0}^{L} + \int_{0}^{L} X_{n}^{\prime\prime}X_{m}^{\prime\prime}dx = \gamma_{m}^{4} \int_{0}^{L} X_{n}X_{m}dx \\ \Leftrightarrow (\gamma_{n}^{4} - \gamma_{m}^{4}) \int_{0}^{L} X_{n}X_{m}dx = 0 \end{cases}$$

D'où 3 relations d'orthogonalité des modes quand $m \neq n$:

$$\int_{0}^{L} X_{n} X_{m} dx = 0$$

$$\int_0^L X_n'' X_m'' dx = 0$$

$$\int_{0}^{L} X_{n} X_{m} dx = 0 \qquad \int_{0}^{L} X_{n}^{"} X_{m}^{"} dx = 0 \qquad \int_{0}^{L} X_{n} X_{m}^{""} dx = 0$$

 $(5) \Leftrightarrow \begin{cases} X_n'''' = \gamma_n^4 X_n \\ X_{m'''}''' = \gamma_n^4 X_m \end{cases}$

 $\Leftrightarrow \begin{cases} \int_0^L X_m X_n'''' dx = \gamma_n^4 \int_0^L X_m X_n dx \\ \int_0^L X_n X_n''' dx = \gamma_n^4 \int_0^L X_n X_m dx \end{cases}$

Conditions aux limites pour une poutre (1)

Pour déterminer les constantes de la fonction de forme du mode propre, on peut considérer 3 cas simples avec chacun 2 paramètres connus :

$$T = 0 \Leftrightarrow EI \frac{\partial^3 v}{\partial x^3} = 0$$

Moment de flexion nul au bord

$$M = 0 \Leftrightarrow EI \frac{\partial^2 v}{\partial x^2} = 0$$

Déplacements indéterminés

$$v=?$$
 et $\frac{\partial v}{\partial x}=?$

Bord Libre
$$\Leftrightarrow \frac{\partial^2 v}{\partial x^2} = 0$$
 et $\frac{\partial^3 v}{\partial x^3} = 0, \forall t$

Appui simple :

Flèche nulle au bord

$$v = 0$$

Moment de flexion nul au bord

$$M = 0 \Leftrightarrow EI \frac{\partial^2 v}{\partial x^2} = 0$$

Indéterminés : θ et T

$$\frac{\partial v}{\partial x} = ?$$
 et $\frac{\partial^3 v}{\partial x^3} = ?$

Appui simple
$$\Leftrightarrow v = 0$$
 et $\frac{\partial^2 v}{\partial x^2} = 0, \forall t$

Conditions aux limites pour une poutre (2)

• Encastrement :

Flèche nulle au bord

$$v = 0$$

Rotation nulle au bord

$$\theta = 0 \Leftrightarrow \frac{\partial v}{\partial x} = 0$$

Efforts indéterminés

$$T=?$$
 et $M=?$

Encastrement
$$\Leftrightarrow v = 0$$
 et $\frac{\partial v}{\partial x} = 0, \forall t$

Récapitulatif

C.L.	Bord Libre	Appui simple	Encastrement			
		milim				
$v \to X$?	0	0			
$\theta \to X'$?	?	0			
$M \to X''$	0	0	?			
$T \rightarrow X'''$	0	?	?			

Différentes combinaisons possibles des conditions aux limites pour une poutre

Modes propres de la poutre simplement appuyée (1)

Déplacement X(x) et moment fléchissant X''(x) nuls en x=0 et x=L

$$X(x) = D_1(\cos \gamma x + \cosh \gamma x) + D_2(\cos \gamma x - \cosh \gamma x)$$
$$+ D_3(\sin \gamma x + \sinh \gamma x) + D_4(\sin \gamma x - \sinh \gamma x)$$

$$X''(x) = \gamma^2 (D_1(-\cos\gamma x + \cosh\gamma x) + D_2(-\cos\gamma x - \cosh\gamma x) + D_3(-\sin\gamma x + \sinh\gamma x) + D_4(-\sin\gamma x - \sinh\gamma x))$$

$$X(0)=0 \Rightarrow D_1=0$$
 $X(L)=0$ et $X''(L)=0$ $X''(0)=0 \Rightarrow D_2=0$ $\Rightarrow D_3=D_4$ et $\boxed{\sin \gamma L=0}$

d'où les valeurs possibles de γ et des modes et pulsations propres :

$$\gamma_n = \frac{n\pi}{L} \Leftrightarrow \boxed{X_n(x) = \sin \frac{n\pi x}{L}}$$
 $\omega_n = \gamma_n^2 c \Leftrightarrow \boxed{\omega_n = \left(\frac{n\pi}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}}$

Modes propres de la poutre simplement appuyée (2)

$$X_n(x) = \sin \frac{n\pi x}{L}$$

$$\omega_n = \left(\frac{n\pi}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}$$

$$X_1(x) = \sin \frac{\pi x}{L}$$

$$X_2(x) = \sin \frac{2\pi x}{L}$$

$$X_3(x) = \sin \frac{3\pi x}{L}$$

Modes propres de la poutre libre-libre (1)

•
$$X''(0) = 0 \Rightarrow D_2 = 0$$
 et $X'''(0) = 0 \Rightarrow D_4 = 0$

$$\Rightarrow X = D_1(\cos \gamma x + \cosh \gamma x) + D_3(\sin \gamma x + \sinh \gamma x)$$

 $\begin{array}{ll} \bullet \ X''(L) = 0 & \text{et} \quad X'''(L) = 0 & \text{donnent le système} \\ (S) \left\{ \begin{array}{ll} D_1(-\cos\gamma L + \cosh\gamma L) + D_3(-\sin\gamma L + \sinh\gamma L) = 0 \\ D_1(\sin\gamma L + \sinh\gamma L) + D_3(-\cos\gamma L + \cosh\gamma L) = 0 \end{array} \right. \end{array}$

Le déterminant doit être nul. Ce qui donne l'équation :

$$\det(S) = 0 \Leftrightarrow \boxed{\cos \gamma L \cosh \gamma L = 1}$$

Les racines de cette équation sont trouvées numériquement (ou graphiquement) :

$\gamma_1 L$	$\gamma_2 L$	$\gamma_3 L$	$\gamma_4 L$	$\gamma_5 L$) o ot	(D_2)
4.73	7.85	11	14.13	17.28	$ ightarrow \gamma_n$ et	$(\overline{D_4})_r$

Modes propres de la poutre libre-libre (2)

$$\cos \gamma L \cosh \gamma L = 1 \rightarrow \gamma_0 L, \gamma_1 L, \gamma_2 L, \gamma_3 L, \gamma_4 L, \gamma_5 L, \dots$$

• Les fréquences propres sont obtenues en calculant :

$$\omega_n = c\gamma_n^2 \Leftrightarrow \boxed{f_n = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \left(\frac{\gamma_n L}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}}$$

- En substituant les racines successivement dans le système précédent, on obtient les rapports $\left(\frac{D_1}{D_3}\right)_n$ qui déterminent la forme des modes propres.
- ullet Pas d'expression générale exacte des modes propres
- → solution numérique (cf code Matlab)

Modes propres de la poutre libre-libre (3)

Modes propres de la poutre bi-encastrée (1)

•
$$X(0) = 0 \Rightarrow D_1 = 0$$
 et $X'(0) = 0 \Rightarrow D_3 = 0$

$$\Rightarrow X = D_2(\cos \gamma x - \cosh \gamma x) + D_4(\sin \gamma x - \sinh \gamma x)$$

•
$$X(L) = 0$$
 et $X'(L) = 0$:
$$(S) \left\{ \begin{array}{l} D_2(\cos \gamma L - \cosh \gamma L) + D_4(\sin \gamma L - \sinh \gamma L) \\ D_2(-\sin \gamma L - \sinh \gamma L) + D_4(\cos \gamma L - \cosh \gamma L) \end{array} \right.$$

$$\det(S) = 0 \Leftrightarrow \left[\cos \gamma L \cosh \gamma L = 1 \right]$$

- On a donc les mêmes racines et mêmes fréquences propres.
- ullet Mais les formes des modes sont différentes : $\gamma_n L o \left(rac{D_2}{D_4}
 ight)_n$
- Fréquences propres $\omega_n = c\gamma_n^2 \Leftrightarrow f_n = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \left(\frac{\gamma_n L}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}$

Modes propres de la poutre bi-encastrée (2)

Modes propres de la poutre encastrée-libre (1)

•
$$X(0) = 0 \Rightarrow D_1 = 0$$
 et $X'(0) = 0 \Rightarrow D_3 = 0$
$$\Rightarrow X = D_2(\cos \gamma x - \cosh \gamma x) + D_4(\sin \gamma x - \sinh \gamma x)$$

- X''(L) = 0 et X'''(L) = 0 $\Leftrightarrow \cos \gamma L \cosh \gamma L = -1$
- Racines et modes propres

$\gamma_1 L$	$\gamma_2 L$	$\gamma_3 L$	$\gamma_4 L$	$\gamma_5 L$	$\gamma_6 L$	D_2
1.88	4.69	7.86	11	14.14	17.28	$\neg \left(\overline{D_4}\right)_n$

Fréquences propres

$$\omega_n = c\gamma_n^2 \Leftrightarrow f_n = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \left(\frac{\gamma_n L}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}$$

Modes propres de la poutre encastrée-libre (2)

Résolution graphique de $\cos x \cosh x = \pm 1$

Modes propres de la poutre encastrée-libre (3)

Modes propres de la poutre encastrée-appuyée (1)

•
$$X(0) = 0 \Rightarrow D_1 = 0$$
 et $X'(0) = 0 \Rightarrow D_3 = 0$

$$\Rightarrow X = D_2(\cos \gamma x - \cosh \gamma x) + D_4(\sin \gamma x - \sinh \gamma x)$$

- X(L) = 0 et X''(L) = 0 \Leftrightarrow $\tan \gamma L = \tanh \gamma L$
- Racines et modes propres

$\gamma_1 L$	$\gamma_2 L$	$\gamma_3 L$	$\gamma_4 L$	$\gamma_5 L$	D_2
3.93	7.07	10.21	13.35	16.49	$\bigcap \left(\overline{D_4} \right)_n$

Fréquences propres

$$\omega_n = c\gamma_n^2 \Leftrightarrow f_n = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \left(\frac{\gamma_n L}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}$$

Modes propres de la poutre encastrée-appuyée (2)

Modes propres de la poutre encastrée-appuyée (3)

Comparaison des fréquences propres L et T

Identification des caractéristiques modales en flexion

On peut écrire les énergies associées à chaque mode de vibration (ou énergies modales) en réponse libre ou forcée pour retrouver les masses et raideurs modales .

• Énergie cinétique :

$$T_n = \int_0^L \frac{1}{2} \rho S(\dot{v}_n(x,t))^2 dx = \frac{1}{2} \dot{\phi}_n^2 \int_0^L \rho SX_n^2(x) dx = \frac{1}{2} m_n \dot{\phi}_n^2$$

on identifie la masse modale : $m_n = \int_0^L \rho S X_n^2(x) dx$

• Énergie potentielle :

$$U_n = \int_0^L \frac{1}{2} EI\left(\frac{\partial^2 v_n}{\partial x^2}(x,t)\right)^2 dx = \frac{1}{2} \phi_n^2 \int_0^L EIX_n''^2(x) dx = \frac{1}{2} k_n \phi_n^2$$

on identifie la raideur modale : $k_n = \int_0^L EIX_n''^2(x)dx$

Réponse libre d'une poutre à une déformation et/ou impulsion initiale

On considère la solution écrite par décomposition modale :

$$v(x,t) = \sum_{n} (A_n \cos \omega_n t + B_n \sin \omega_n t) X_n(x)$$

 A_n et B_n à déterminer avec les conditions initiales données :

$$\begin{cases} v(x,0) = \sum_{n} A_n X_n = v_0(x) \\ \dot{v}(x,0) = \sum_{n} \omega_n B_n X_n = \dot{v}_0(x) \end{cases} \Leftrightarrow \begin{cases} A_n = \frac{\rho S}{m_n} \int_0^L X_n v_0(x) dx \\ B_n = \frac{\rho S}{\omega_n m_n} \int_0^L X_n \dot{v}_0(x) dx \end{cases}$$

Intégrales difficiles à évaluer pour des X_n compliqués

ightarrow Évaluation numérique des A_n et B_n

Expression dans la base modale

Les modes propres vérifient les relations suivantes :

$$\int_0^L X_n^2 dx = \alpha_n$$

$$\int_0^L X_n X_n'''' dx = \gamma_n^4 \alpha_n$$

$$\int_0^L X_n''^2 dx = \gamma_n^4 \alpha_n$$

 α_n constante arbitraire, déterminée par normalisation.

Équation du mouvement libre :

$$\rho S\ddot{v}(x,t) + EIv''''(x,t) = 0$$

$$\text{avec } v(x,t) = \sum_{n} \phi_{n}(t)X_{n}(x)$$

$$\Leftrightarrow \sum_{n} \rho S\ddot{\phi}_{n}X_{n} + EI\phi_{n}X_{n}'''' = 0$$

$$\Leftrightarrow \sum_{n} \left(\begin{array}{c} \rho S\ddot{\phi}_{n} \int_{0}^{L} X_{m}X_{n}dx \\ +EI\phi_{n} \int_{0}^{L} X_{m}X_{n}''''dx \end{array} \right) = 0$$

$$\Leftrightarrow \rho S\ddot{\phi}_{n} \underbrace{\int_{0}^{L} X_{n}^{2}dx + EI\phi_{n} \underbrace{\int_{0}^{L} X_{n}X_{n}''''dx}_{\gamma_{n}^{4}\alpha_{n}}} = 0$$

$$(n = 0, \dots \infty)$$

Vibrations libres en flexion

Paramètres modaux

L'équation du mouvement développée en base modale donne :

$$\rho S\ddot{v}(x,t) + EIv''''(x,t) = 0 \Leftrightarrow \rho S\ddot{\phi}_n \alpha_n + EI\phi_n \alpha_n \gamma_n^4 = 0$$
$$\Leftrightarrow \boxed{m_n \ddot{\phi}_n + k_n \phi_n = 0} \quad (n = 0, ..., \infty)$$

avec la masse modale

$$\boxed{m_n = \rho S \int_0^L X_n^2 dx} = \rho S \alpha_n$$

et la raideur modale :

$$\boxed{k_n = EI \int_0^L X_n''^2 dx} \quad \text{et aussi} \quad \boxed{k_n = EI \int_0^L X_n'''' X_n dx}$$

Chaque mode $X_n \Leftrightarrow \mathsf{syst\`eme} \ \mathsf{\grave{a}} \ \mathsf{1ddl}$:

e
$$X_n \Leftrightarrow \text{systeme a Iddl}:$$

$$\ddot{\phi}_n + \omega_n^2 \phi_n = 0 \qquad \qquad \omega_n^2 = \frac{EI \int_0^L X_n''^2 dx}{\rho S \int_0^L X_n^2 dx} = \frac{k_n}{m_n}$$

Rappels sur les modes propres en flexion

Orthogonalité & Paramètres modaux

Orthogonalité

$$\int_0^L X_n X_m dx = 0$$

$$\int_0^L X_n'' X_m'' dx = 0$$

$$\int_0^L X_n X_m''' dx = 0$$

Paramètres modaux

Masse modale:

$$m_n = \rho S \int_0^L X_n^2 dx$$

Raideur modale:

$$k_n = EI \int_0^L X_n^{\prime\prime 2} dx \quad \text{et aussi} \quad k_n = EI \int_0^L X_n^{\prime\prime\prime\prime} X_n dx$$

Réponse permanente à une excitation quelconque

Équation du mouvement :

$$\begin{split} \frac{\partial^4 v}{\partial x^4} + \frac{1}{c^2} \frac{\partial^2 v}{\partial t^2} &= \frac{1}{EI} f(x,t) \quad \text{avec} \quad v(x,t) = \sum_n \phi_n(t) X_n(x) \\ \Leftrightarrow \sum_n X_n'''' \phi_n + \frac{1}{c^2} X_n \ddot{\phi}_n &= \frac{1}{EI} f(x,t) \end{split}$$

Orthogonalité des modes propres :

$$\Leftrightarrow \sum_{n} \phi_{n} \int_{0}^{L} X_{m} X_{n}^{""} dx + \frac{1}{c^{2}} \ddot{\phi}_{n} \int_{0}^{L} X_{m} X_{n} dx = \frac{1}{EI} \int_{0}^{L} X_{m} f(x, t) dx$$

$$\Leftrightarrow \frac{m_n}{c^2 \rho S} \ddot{\phi}_n + \frac{k_n}{EI} \phi_n = \frac{1}{EI} \int_0^L X_n f(x,t) dx \Leftrightarrow \boxed{\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{1}{m_n} \int_0^L X_n f(x,t) dx}$$

Réponse à une excitation harmonique ponctuelle (1)

• Cas général : distribution quelconque : $f(x,t) = F(x) \cos \Omega t$

$$\ddot{\phi}_n + \omega_n^2 \phi_n = \frac{\int_0^L X_n F(x) dx}{m_n} \cos \Omega t \Leftrightarrow \phi_n(t) = \frac{\int_0^L X_n F(x) dx}{m_n(\omega_n^2 - \Omega^2)} \cos \Omega t$$

• Force harmonique ponctuelle appliquée en x_0 :

$$f(x,t) = F_0 \delta(x - x_0) \cos \Omega t$$

La contribution de la force à l'excitation de chaque mode s'écrit :

$$\int_0^L X_n(x)f(x)dx = \int_0^L X_n(x)F_0\delta(x - x_0)dx = F_0X_n(x_0)$$

Finalement:

$$v(x,t) = \sum_{n} X_n(x)\phi_n(t) = F_0 \sum_{n} \frac{X_n(x_0)X_n(x)}{m_n(\omega_n^2 - \Omega^2)} \cos \Omega t$$

Réponse à une excitation harmonique ponctuelle (2)

Force harmonique ponctuelle appliquée en x_0 :

$$f(x,t) = F_0 \delta(x-x_0) \cos \Omega t$$

$$v(x,t) = F_0 \sum_n \frac{X_n(x_0) X_n(x)}{m_n(\omega_n^2 - \Omega^2)} \cos \Omega t$$

La contribution du mode X_n au mouvement forcé dépend de sa valeur au point d'application de la force : $X_n(x_0)$

Par conséquent :

- F_0 à un noeud : $X_n(x_0) = 0 \rightarrow$ contribution nulle
- F_0 à un ventre : $X_n(x_0) = max \rightarrow \text{contribution max}$

Réponse à une excitation harmonique ponctuelle (3)

Cas de la poutre appuyée

$$X_n = \sin\frac{n\pi x}{L} \qquad m_n = \rho S \int_0^L \left(\sin\frac{n\pi x}{L}\right)^2 dx = \frac{\rho SL}{2} \qquad \omega_n = \left(\frac{n\pi}{L}\right)^2 \sqrt{\frac{EI}{\rho S}}$$

$$v(x,t) = \frac{2F_0}{\rho SL} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi x_0}{L} \sin \frac{n\pi x}{L}}{\omega_n^2 - \Omega^2} \cos \Omega t$$

$$v(x,t) = \frac{2F_0}{\rho SL} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2} \sin \frac{n\pi x}{L}}{\omega_n^2 - \Omega^2} \cos \Omega t$$

$$= \frac{2F_0}{\rho SL} \sum_{p=0}^{\infty} \frac{(-1)^p \sin \frac{(2p+1)\pi x}{L}}{\omega_{2p+1}^2 - \Omega^2} \cos \Omega t$$

$$v(x,t) = \frac{2F_0}{\rho SL} \left(\frac{\sin\frac{\pi x}{L}}{\omega_1^2 - \Omega^2} - \frac{\sin\frac{3\pi x}{L}}{\omega_3^2 - \Omega^2} + \frac{\sin\frac{5\pi x}{L}}{\omega_5^2 - \Omega^2} - \frac{\sin\frac{7\pi x}{L}}{\omega_7^2 - \Omega^2} \dots \right) \cos\Omega t$$

Réponse à une excitation harmonique ponctuelle (4)

Cas de la poutre appuyée

$$v(x,t) = \frac{2F_0}{\rho SL} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi x_0}{L} \sin \frac{n\pi x}{L}}{\omega_n^2 - \Omega^2} \cos \Omega t$$

Méthodes approchées

Généralités

- Pour des systèmes continus de forme éventuellement complexe.
- Approximation des fréquences propres ?
- Approximation de la forme des modes propres ?
- Hypothèses raisonnables pour la déformation du système : Les déplacements vérifient les conditions aux limites cinématiques.
- On calcule les énergies cinétiques et potentielles
- Équations de Lagrange→ Équations du mouvement
- une seule fonction de forme : Méthode de Rayleigh
- Plusieurs fonctions de forme : Méthode de Ritz

Méthodes approchées

Expressions générales des énergies cinétique et potentielle

• Pour les vibrations longitudinales :

$$T = \frac{1}{2} \int_0^L \rho S\left(\frac{\partial u(x,t)}{\partial t}\right)^2 dx$$

$$U = \frac{1}{2} \int_0^L ES\left(\frac{\partial u(x,t)}{\partial x}\right)^2 dx$$

Pour les vibrations de flexion :

$$T = \frac{1}{2} \int_0^L \rho S \left(\frac{\partial v(x,t)}{\partial t} \right)^2 dx$$

$$U = \frac{1}{2} \int_0^L EI\left(\frac{\partial^2 v(x,t)}{\partial x^2}\right)^2 dx$$

Méthode de Rayleigh

Exemple : poutre encastrée libre en flexion (1)

Approximation de la déformée en flexion :

$$v(x,t) = \left[3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3\right]\phi(t) \quad \to \phi(t)?$$

- C.L. cinématiques : v(0,t) = 0 $\partial v(0,t)/\partial x = 0$
- Énergies :

$$T = \frac{1}{2}\dot{\phi}^2(t) \int_0^L \rho S \left[3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3 \right]^2 dx$$

$$U = \frac{1}{2}\phi^{2}(t) \int_{0}^{L} EI \left[\frac{6}{L^{2}} - \frac{6x}{L^{3}} \right]^{2} dx$$

Méthode de Rayleigh

Exemple : poutre encastrée libre en flexion (2)

$$v(x,t) = \left[3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3\right]\phi(t)$$

Énergies :

$$T=0.471\rho SL\dot{\phi}^2(t)$$

$$U = \frac{6EI}{L^3}\phi^2(t)$$

Éq. de Lagrange → Équation du mvt :

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\phi}} + \frac{\partial U}{\partial \phi} = 0$$

$$\Leftrightarrow 0.943\rho SL\ddot{\phi} + 12\frac{EI}{L^3}\phi = 0$$

Approximation de la Pulsation propre

$$\omega_{Rayleigh} = \sqrt{\frac{12EI}{0.943\rho SL^4}} = \frac{3.567}{L^2} \sqrt{\frac{EI}{\rho S}}$$

On rappelle la valeur vraie :

$$\omega_{exacte} = \frac{(\gamma_1 L)^2}{L^2} \sqrt{\frac{EI}{\rho S}} = \frac{3.534}{L^2} \sqrt{\frac{EI}{\rho S}}$$

Erreur relative $\frac{\Delta\omega}{\omega} < 2\%$.

Principe

Pour obtenir des approximations des premières fréquences propres :

- Combiner plusieurs fonctions de forme réalistes
- Ces fonctions doivent vérifier les CL cinématiques
- Leur contribution relative $\phi_n(t)$ est à déterminer

Processus

- Calculer les énergies
- Dériver les équations de Lagrange
- Identifier les matrices d'inertie et de raideur
- Diagonaliser → Fréquences propres approchées

Exemple: vibrations longitudinales d'une poutre E-L (1)

Hypothèse de déformée = combinaison de 4 fonctions réalistes.

$\phi_n(t)$?

Remarques:

- Les fonctions vérifient les conditions aux limites cinématiques
- Elles ne sont pas orthogonales

Exemple: vibrations longitudinales d'une poutre E-L (2)

Approximation de la déformée :

$$u(x,t) = \frac{x}{L}\phi_1(t) + \left(\frac{x}{L}\right)^2\phi_2(t) + \left(\frac{x}{L}\right)^3\phi_3(t) + \left(\frac{x}{L}\right)^4\phi_4(t)$$

Énergies:

$$T = \frac{1}{2} \int_0^L \rho S \left(\frac{\partial u(x,t)}{\partial t} \right)^2 dx$$

$$= \frac{1}{2} \rho S \int_0^L \left(\dot{\phi}_1(t) \frac{x}{L} + \dot{\phi}_2(t) \left(\frac{x}{L} \right)^2 + \dot{\phi}_3(t) \left(\frac{x}{L} \right)^3 + \dot{\phi}_4(t) \left(\frac{x}{L} \right)^4 \right)^2 dx$$

$$U = \frac{1}{2} \int_0^L ES \left(\frac{\partial u(x,t)}{\partial x} \right)^2 dx$$

$$= \frac{1}{2} \rho S \int_0^L \left(\phi_1(t) \frac{1}{L} + \phi_2(t) \frac{2x}{L^2} + \phi_3(t) \frac{3x^2}{L^3} + \phi_4(t) \frac{4x^3}{L^4} \right)^2 dx$$

Exemple: vibrations longitudinales d'une poutre E-L (3)

Matrices d'inertie et de raideur :

$$\mathbf{M} = \rho SL \begin{pmatrix} 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \\ 1/5 & 1/6 & 1/7 & 1/8 \\ 1/6 & 1/7 & 1/8 & 1/9 \end{pmatrix} \qquad \mathbf{K} = \frac{ES}{L} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 4/3 & 3/2 & 8/5 \\ 1 & 3/2 & 9/5 & 2 \\ 1 & 8/5 & 2 & 16/7 \end{pmatrix}$$

Équation matricielle du mouvement :

$$\rho SL \begin{pmatrix} 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \\ 1/5 & 1/6 & 1/7 & 1/8 \\ 1/6 & 1/7 & 1/8 & 1/9 \end{pmatrix} \begin{pmatrix} \ddot{\phi}_1 \\ \ddot{\phi}_2 \\ \ddot{\phi}_3 \\ \ddot{\phi}_4 \end{pmatrix} + \frac{ES}{L} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 4/3 & 3/2 & 8/5 \\ 1 & 3/2 & 9/5 & 2 \\ 1 & 8/5 & 2 & 16/7 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix} = 0$$

→ Mise en œuvre des techniques pour systèmes discrets

Exemple: vibrations longitudinales d'une poutre E-L (3)

Diagonalisation → Fréquences et vecteurs propres approchés

$$\omega_{1_{Ritz}} = \frac{1.571}{L} \sqrt{\frac{E}{\rho}} \qquad X_{1_{Ritz}} = \frac{x}{L} + 0.028 \left(\frac{x}{L}\right)^2 - 0.5 \left(\frac{x}{L}\right)^3 + 0.11 \left(\frac{x}{L}\right)^4$$

à comparer à la solution exacte:

$$\omega_{1_{vrai}} = \frac{\pi}{2L} \sqrt{\frac{E}{\rho}} = \frac{1.571}{L} \sqrt{\frac{E}{\rho}} \quad \left(\frac{\Delta \omega_1}{\omega_1} = 0\right) \qquad X_{1_{vrai}} = \sin \frac{\pi x}{2L}$$

et

$$\omega_{2_{Ritz}} = \frac{4.724}{L} \sqrt{\frac{E}{\rho}} \qquad X_{2_{Ritz}} = \frac{x}{L} + 0.69 \left(\frac{x}{L}\right)^2 - 2.56 \left(\frac{x}{L}\right)^3 + 2.06 \left(\frac{x}{L}\right)^4$$

à comparer à la solution exacte :

$$\omega_{2_{vrai}} = \frac{3\pi}{2L} \sqrt{\frac{E}{\rho}} = \frac{4.712}{L} \sqrt{\frac{E}{\rho}} \quad \left(\frac{\Delta \omega_2}{\omega_2} = 0.25\%\right) \qquad X_{2_{vrai}} = \sin\frac{3\pi x}{2L}$$

Exemple: vibrations longitudinales d'une poutre E-L (3)

Comparaison des modes vrais et de leur approximation

Caractéristiques de la plaque

- Forme quelconque
- Dimension caractéristique a
- Épaisseur $h \ll a$
- Matériau homogène et isotrope :
 ρ, Ε, ν
- Les normales au plan médian restent perpendiculaires au plan médian déformé. (Bernouilli)
- Grandeur à identifier :

Équation locale du mouvement libre

• Forme générale

$$D\nabla^2\nabla^2 w + \rho h \frac{\partial^2 w}{\partial t^2} = 0$$

En coordonnées cartésiennes :

Solution de l'équation du mouvement libre

$$\rho h \frac{\partial^2 w}{\partial t^2} + D \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right) = 0$$

Solution à variables séparées

$$w(x, y, t) = \phi(t)X(x)Y(y)$$

Donne:

$$\ddot{\phi}(t) + \omega^2 \phi(t) = 0 \Leftrightarrow \phi(t) = A \cos \omega t + B \sin \omega t$$

et

$$-\omega^2 \rho h XY + D \left(\frac{\partial^4 X}{\partial x^4} Y + X \frac{\partial^4 Y}{\partial y^4} + 2 \frac{\partial^2 X}{\partial x^2} \frac{\partial^2 Y}{\partial y^2} \right) = 0$$

Solution de l'équation du mouvement libre

$$-\omega^2 \rho h XY + D \left(\frac{\partial^4 X}{\partial x^4} Y + X \frac{\partial^4 Y}{\partial y^4} + 2 \frac{\partial^2 X}{\partial x^2} \frac{\partial^2 Y}{\partial y^2} \right) = 0$$

Donne des solutions de la forme :

$$X(x) = a_x e^{\alpha x} + b_x e^{-\alpha x}$$

$$Y(y) = a_y e^{\beta x} + b_y e^{-\beta x} + c_y e^{\gamma y} + d_y e^{-\gamma y}$$

avec les relations :

$$\alpha^2 + \beta^2 = -(\alpha^2 + \gamma^2) = \omega \sqrt{\frac{\rho h}{D}}$$

Conditions aux bords (1)

- Normale au bord : $\mathbf{n} = (n_x, n_y)$,
- Tangente au bord $\mathbf{s} = (-n_u, n_x)$
- ullet Déplacement : w
- Rotation (gradient): $\left(\frac{\partial w}{\partial n_x}, \frac{\partial w}{\partial n_y}\right)$
- Moment Fléchissant :

$$M = D\left[\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) n_x^2 + \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) n_y^2 + 2(1 - \nu) \frac{\partial^2 w}{\partial x \partial y^2} n_x n_y \right]$$

Effort tranchant

$$T = \frac{\partial M}{\partial \mathbf{n}} + D\frac{\partial}{\partial \mathbf{s}} \left[2(1+\nu) \left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2} \right) n_x n_y + 2(1-\nu) \frac{\partial^2 w}{\partial x \partial y} (n_x^2 - n_y^2) \right]$$

Conditions aux bords (2)

C.L.	Bord Libre	Appui simple	Encastrement
w	?	0	0
$\frac{\partial w}{\partial \mathbf{n}}$?	?	0
M	0	0	?
T	0	?	?

Déformations et contraintes

• Déformations dans le petit élément (dx, dy, dz):

$$\epsilon_x = -z \frac{\partial^2 w}{\partial x^2} \quad \epsilon_y = -z \frac{\partial^2 w}{\partial y^2} \quad \epsilon_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}$$

Contraintes résultantes :

$$\sigma_x = \frac{E}{1 - \nu^2} \left(\epsilon_x + \nu \epsilon_y \right) = \frac{Ez}{1 - \nu^2} \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right)$$

$$\sigma_y = \frac{E}{1 - \nu^2} \left(\epsilon_y + \nu \epsilon_x \right) = \frac{Ez}{1 - \nu^2} \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right)$$

$$\sigma_{xy} = G\epsilon_{xy} = -\frac{Ez}{1 + \nu} \frac{\partial^2 w}{\partial x \partial y}$$

Énergies

• Énergie de déformation du petit élément (dx, dy, dz):

$$dU = \frac{1}{2} \left(\epsilon_x \sigma_x + \epsilon_y \sigma_y + \epsilon_{xy} \sigma_{xy} \right) dx dy dz$$

• Énergie de déformation de la plaque:

$$U = \frac{1}{2}D\int_0^a \int_0^b \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 2\nu \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial x^2} + 2(1-\nu) \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right] dx dy$$

où $D = \frac{Eh^3}{12(1-\nu^2)}$: Rigidité de flexion de la plaque

• Énergie cinétique de la plaque:

$$T = \frac{1}{2}\rho h \int_0^a \int_0^b \dot{w}^2 dx dy$$

Cas de la plaque rectangulaire appuyée aux bords (1)

- Seule configuration pour laquelle ∃ une solution analytique
- Avec les conditions aux limites, on obtient :

$$X_m(x) = \sin \frac{m\pi x}{L_x} \quad Y_n(y) = \sin \frac{n\pi y}{L_y} \quad \omega_{mn} = \pi^2 \left(\frac{m^2}{L_x^2} + \frac{n^2}{L_y^2}\right) \sqrt{\frac{D}{\rho h}}$$

Finalement

$$w(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \cos(\omega_{mn} t + \phi_{mn}) \sin \frac{m\pi x}{L_x} \sin \frac{n\pi y}{L_y}$$

Cas de la plaque rectangulaire appuyée aux bords (2)

Étude des vibrations d'un groupe motopropulseur

Diverses configurations

Configuration 1

Configuration 2

Étude des vibrations d'un groupe motopropulseur

Diverses configurations

Étude des vibrations d'un groupe motopropulseur

Comparaison des modes EF/Mesure

Étude de la restauration d'un clavecin du $XVII^{eme}$

Étude de la restauration d'un clavecin du $XVII^{eme}$

Spectre acoustique de la table d'harmonie

Étude de la restauration d'un clavecin du $XVII^{eme}$

Comparaison des modes EF/Mesure

Étude de la restauration d'un clavecin du $XVII^{eme}$

Comparaison des modes EF/Mesure

Analyse modale expérimentale

Étude des vibrations d'une table d'harmonie de violon

Présentation des mesures

Analyse modale expérimentale

Étude des vibrations d'une table d'harmonie de violon

Identification des paramètres dynamiques

Analyse modale expérimentale

Étude des vibrations d'une table d'harmonie de violon

Comparaison Analyse modale / EF

Ce qu'il faut retenir des systèmes continus

- Établir et connaitre les équations des ondes L et T
- Établir et connaitre leur solution générale (Séparation des variables)
- Interpréter et Écrire les conditions aux limites
- En déduire les fréquences et modes propres
- Connaitre les relations d'orthogonalité des modes
- Exprimer la solution libre en fonction des modes propres
- Déterminer la solution libre en fonction des CI
- Exprimer la solution forcée en fonction des modes propres
- Interpréter tout cela physiquement
- Connaitre les méthodes de Rayleigh et Rayleigh-Ritz