U.S./China Trade: Imports and Exports

Jarrett Rennie, Hannah Goldstein, Nicolas Renaud, Brendan Hennessey

Agenda

- 1. Introduction
- 2. Exploratory Data Analysis
- 3. ETS & SARIMA
- 4. Nonlinearity & Neural Networks
- 5. Retrospective & Comparison of All Models
- 6. Conclusions & Future Work
- 7. Questions?

Introduction

Background

Subject: bilateral trade volume between the world's (current) largest economies

Source of data: U.S. Bureau of Economic Analysis (FRED)

https://fred.stlouisfed.org/source?soid=18

Two time series analyzed:

- 1. Chinese **imports** to U.S. in millions of USD, by month (Jan. 1985-Sept. 2019)
- 2. U.S. **exports** to China in millions of USD, by month (Jan. 1985-Sept. 2019)

Questions to guide investigation

- 1. What do imports and exports look like over time?
- 2. Is there any sort of noticeable trend, seasonality?
- 3. How about linearity; do imports and exports need to be modeled via nonlinear methods?
- 4. Can a reasonably good model be fit to each series?
 - Is that model as good at forecasting (test) as it is at simulating (train)?

Key trade relations dates

- **2000:** U.S. and China normalize trade relations
- **2001:** PRC joins the World Trade Organization
- 2006: China overtakes Mexico as U.S.'s second largest trading partner
- **2010:** China becomes world's second largest economy
- March, 2018: First tariffs totalling at least \$50 billion are placed on respective imports
- July, 2018: \$34 billion in additional tariffs are enacted by each side
- May, 2019: tariffs on Chinese goods increased by 15% affecting \$200 billion; China responds with \$60 billion in tariffs on U.S.

Source: https://www.cfr.org/timeline/us-relations-china

Exploratory Data Analysis

Shape of each series

	Imports	Exports
F _T	0.988	0.982
F _s	0.509	0.267

#check entropy SampEn(imp.ts) ## [1] 0.1134533 SampEn(exp.ts) ## [1] 0.1184296

Imports & Exports with Current Events

Polar plots

Seasonality through polarmap for US Exports to Chil

Lag plots

Series decomposition

ETS & ARIMA

ETS

data	method	model	lambda	sigma**2	subset	mape	mase	residuals			
insusant	t ets M,Ad,M N/A 0.076	-t- MAAM N/A 0.0763	NA A-LAA	ata NA Ad NA NI/A	0.4.00		train	5.494712	0.3703234	daaaadaat	
import		N/A	0.0703	test	7.537235	1.763118	dependent				
ownert	ote	NA A-1 NA NI/A	NI/A	0.1551	train	10.37534	0.5103051	dependent			
export	ort ets M,Ad,M	N/A	0.1551	test	15.89129	2.8818206	aependent				

ARIMA/SARIMA

Imports, no lambda:

Exports, no lambda:

Checking ARIMA/SARIMA

data	method	model	lambda	sigma**2	significant parameter s	subset	mape	mase	residuals
import	carina			train	5.356059	0.3627931	danandant		
import	sarima	ARIMA(2,1,1)(2,1,0)[12]	N/A	1180427	YES	test	6.900162	1.6583602	dependent
import	carima	ADIMA(2.1.1\/2.1.0\/1.2\	0.1627200	0.07760	YES	train	4.977908	0.3433272	dependent
import	sarima	ARIMA(2,1,1)(2,1,0)[12]	0.1637399	0.07768	152	test	7.287937	1.7651253	dependent
ownert	carima	ADIMA(2.1.1)(0.1.1)[12]	NI/A	110224	VEC	train	11.35756	0.4513094	indopondent
export	sarima	ARIMA(2,1,1)(0,1,1)[12]	N/A	119334	YES	test	19.70742	3.5138966	independent
ovnort	carima	ADIA4A/2 4 4\/2 0 0\/421ish diift	0.000100	0.4770	VES	train	10.81068	0.4775985	independent
export	sarima	ARIMA(2,1,1)(2,0,0)[12] with drift	0.220129	0.4778	YES	test	22.87962	4.1109044	muependent

Nonlinearity & Neural Networks

Nonlinearity - Imports

```
#non-linear testing
nonlinearityTest(train.imp.ts)
        ** Teraesvirta's neural network test **
        Null hypothesis: Linearity in "mean"
        X-squared = 14.54697 df = 2 p-value = 0.0006936909
        ** White neural network test **
        Null hypothesis: Linearity in "mean"
        X-squared = 14.67384 df = 2 p-value = 0.0006510522
        ** Keenan's one-degree test for nonlinearity **
##
        Null hypothesis: The time series follows some AR process
##
        F-stat = 20.80022 p-value = 7.11869e-06
        ** Mclend-li test **
        Null hypothesis: The time series follows some ARIMA process
        Maximum p-value = 0
         ** Tsay's Test for nonlinearity **
        Null hypothesis: The time series follows some AR process
         F-stat = 110.6 p-value = 3.2e-15
        ** Likelihood ratio test for threshold nonlinearity **
        Null hypothesis: The time series follows some AR process
        Alternative hypothesis: The time series follows some TAR process
        X-squared = 111.4864 p-value = 1.121134e-10
```

Nonlinearity - Exports

```
nonlinearityTest(train.exp.ts)
        ** Teraesvirta's neural network test **
        Null hypothesis: Linearity in "mean"
        X-squared = 39.29675 df = 2 p-value = 2.929673e-09
        ** White neural network test **
        Null hypothesis: Linearity in "mean"
        X-squared = 42.37493 df = 2 p-value = 6.286389e-10
        ** Keenan's one-degree test for nonlinearity **
        Null hypothesis: The time series follows some AR process
        F-stat = 6.013017 p-value = 0.01470146
##
##
        ** Mcleod-li test **
##
        Null hypothesis: The time series follows some ARIMA process
        Maximum p-value = 0
        ** Tsay's Test for nonlinearity **
        Null hypothesis: The time series follows some AR process
        F-stat = 9.493 p-value = 1.722e-06
        ** Likelihood ratio test for threshold nonlinearity **
        Null hypothesis: The time series follows some AR process
        Alternative hypothesis: The time series follows some TAR process
        X-squared = 62.49455 p-value = 0.002001879
```

Neural Network

data	method	model	lambda	sigma**2	subset	mape	mase
import	neural	NNAR(4,1,3)[12]	N/A	1618448	train	7.23142	0.4292306
Import	import neural		IN/A	1010440	test	8.17489	2.02708
import	rt neural NNAR(1,1,2)[12] 0.1637399 0.		0.1308	train	6.597035	0.5082465	
IIIport	Heurai	NNAR(1,1,2)[12]	0.103/399	0.1308	test	8.48026	2.0782421
ovport	MNAD/4 4 3\[43\]		195589	train	12.53733	0.5520151	
export	neural	NNAR(1,1,2)[12]	N/A	195589	test	19.45795	3.5122214
ovnort	noural	NNAP/2 4 2)[42]		0.5041	train	11.04153	0.5366247
export	port neural NNAR(2,1,2)[12] 0.220129		0.5041	test	16.06305	2.9532921	

Bagged model

data	method	lambda	subset	mape	mase
import	haggod	N/A	train	5.215448	0.3438924
import	bagged	IN/A	test	8.673755	2.0504201
immort bogged		and 0.1637300		60220.0962	22417.894
import	bagged	0.1637399	test	147209.9	62004.77
ovnort	baggod	NI/A	train	9.4366	0.4757732
export	rt bagged N/A		test	15.04068	2.7782196
ovport	0.220120		train	13916.27189	3543.666
export	bagged	0.220129	test	35757.59	10691.656
	10				

Rolling CV & Comparison of All Models

Rolling Window CV

Not our most important accuracy consideration - not focused too much on "tomorrow" in our time series.

Comparison of all models

data	method	model	lambda	sigma**2	subset	mape	mase	residuals	
import	ets	M,Ad,M	N/A	0.0763	train test	5.494712 7.537235	0.3703234 1.763118	dependent	
export	ets	M,Ad,M	N/A	0.1551	train test	10.37534 15.89129	0.5103051 2.8818206	dependent	
data	method	model	lambda	sigma**2	significant parameter s	subset	mape	mase	residuals
import	sarima	ARIMA(2,1,1)(2,1,0)[12]	N/A	1180427	YES	train test	5.356059 6.900162	0.3627931 1.6583602	dependent
import	sarima	ARIMA(2,1,1)(2,1,0)[12]	0.1637399	0.07768	YES	train test	4.977908 7.287937	0.3433272 1.7651253	dependent
export	sarima	ARIMA(2,1,1)(0,1,1)[12]	N/A	119334	YES	train test	11.35756 19.70742	0.4513094 3.5138966	independent
export	sarima	ARIMA(2,1,1)(2,0,0)[12] with drift	0.220129	0.4778	YES	train test	10.81068 22.87962	0.4775985 4.1109044	independent

	data	method	model	lambda	sigma**2	subset	mape	mase
imports bost poplinger model	import	naural	NNAD(4.1.2)[12]	NI/A	1610440	train	7.23142	0.4292306
imports best nonlinear model->	import	neural	NNAR(4,1,3)[12]	N/A	1618448	test	8.17489	2.02708
	import	neural	NNAR(1,1,2)[12]	0.1637399	0.1308	train	6.597035	0.5082465
	Import	11101t 11cdid 111101(1,1,1,1,1,1)	0.1037333	0.1300	test	8.48026	2.0782421	
	export	neural	NNAR(1,1,2)[12]	N/A	195589	train	12.53733	0.5520151
	export	lleurar	MINAU(I,I,Z)[IZ]	IV/A	155565	test	19.45795	3.5122214
	export	neural	NNAR(2,1,2)[12]	0.220129	0.5041	train	11.04153	0.5366247
	export		0.220123	0.3041	test	16.06305	2.9532921	
	QUICE I					1000 10000	-	
	data	method	lambda	subset	mape	mase	<u> </u> '	
	import	bagged	N/A	train	5.215448	0.3438924		
	import bagged N/A	.70	test	8.673755	2.0504201	4'		
	import	bagged	0.1637399	train	60220.0962	22417.894		
	Import	Daggeu	0.1037377	test	147209.9	62004.77		
exports best nonlinear model->	export	bagged	N/A	train	9.4366	0.4757732	<u> </u>	
exports best nonlinear moder->	export	Daggeu	IN/A	test	15.04068	2.7782196		
	evport	bagged	0.220129	train	13916.27189	3543.666		
	export	Daggeu	0.220125	test	35757.59	10691.656		
[]								
1								

Linear models rules out with NL tests

Imports:

NNAR(4,1,3)[12]

Sigma: 1,272.18

95% PI width = 4,986.95 million USD

Exports: Bagged (see MAPE and MASE)

Visual comparison

Prediction Patterns for winners

Imports: NNET(4,1,3)[12]

Exports: Bagged Model

Export Bagging predictions: "Intervals are calculated as min and max values over the point forecasts from the models in the ensemble. I.e., the intervals are not prediction intervals, but give an indication of how different the forecasts within the ensemble are." - https://rdrr.io/cran/forecast/man/forecast.baggedModel.html

Conclusions & Future Work

Conclusion

- Nonlinearity of data was a prime factor for us to select a neural network model for Chinese imports, and a bagged model for U.S. exports to China
- Changing relationship non-stationary data. Relatively low entropy, though.
- Seasonality is consistent Peaks late in each year.

Future Work

- Trade balance
- Looking at similar countries to see if model works for other bilateral relationships
- Adding in regressors population, GDP, Median Income
- Check back in once the new tariffs have been in place for longer, see how it changes the models and overall trend strength.
- Seasonality causes?

Questions?