Zadanie: SKL

Spójne składowe – zadanie trudniejsze

Laboratorium z ASD, egzamin poprawkowy. Dostępna pamięć: 256 MB.

18.02.2017

Napisz program, który dla podanego w kompaktowy sposób grafu nieskierowanego G=(V,E) wyznaczy liczbę jego spójnych składowych. Zakładamy, że każdy wierzchołek $v\in V$ ma etykietę p(v) będącą nieujemną liczbą całkowitą. Krawędzie grafu zadane są przez formułę:

$$(v, w) \in E$$
 wtedy i tylko wtedy, gdy $(p(v) \& p(w)) \neq 0$,

gdzie & jest operacją bitową AND.

Wejście

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą n ($1 \le n \le 1\,000\,000$), oznaczającą liczbę wierzchołków grafu. Niech $V = \{v_1, \dots, v_n\}$. Drugi wiersz zawiera ciąg etykiet wierzchołków: i-ta liczba w wierszu oznacza etykietę $p(v_i)$ ($0 \le p(v_i) \le 1\,000\,000\,000$).

Wyjście

Twój program powinien wypisać na wyjście jedną liczbę całkowitą, oznaczającą liczbę spójnych składowych wejściowego grafu.

Przykład

Dla danych wejściowych:

5

4 1 3 0 1

poprawnym wynikiem jest:

Wyjaśnienie do przykładu:

- pierwsza spójna składowa: $\{v_1\}$ (z etykietą 4)
- \bullet druga spójna składowa: $\{v_2,v_3,v_5\}$ (z etykietami 1, 3, 1)
- trzecia spójna składowa: $\{v_4\}$ (z etykietą 0)