

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

УЧЕБНА ПРОГРАМА	Утв	ърді	ил:			 ⁄декан				
ОКС "бакалавър"	Утвъ	рден	іа с р	еше	ние	на Ф	Ссі	прот	окол:	
Избираема дисциплина			Nº	8 от	25.0	06.20	18			
редовна форма на обучение)									
Специалност:	(код и наименование)									
Информатика, Информаг информатика, Софтуерно		ОМП	ютър	они	на	уки,	Ма	тема	атика	я и
Дисциплина:		(ĸoċ) и на	имен	юван	iue)	Ж	7	2	7
Практическа роботика и	умни "неща"									
Practical Robotics and Smart	Things									
Учебната програма е разра	аботена и предложена	а за у	твъ	ожд	аван	e om	кат	едра	э:	
Информационни технологи	iu									
<i>om:</i> ас. Траян Илиев										

Преподавателските екипи се утвърждават ежегодно от Факултетен съвет.

Заетост и кредити		
	Обща заетост:	150
	Кредити:	5
Учебна заетост	Форма	Хорариум
	Лекции	30
Аудиторна заетост	Семинарни упражнения	C
	Практически упражнения (хоспитиране)	30
	Обща аудиторна заетост:	60
	Кредити аудиторна заетост:	2
	Подготовка на домашни работи	10
	Контролни работи и подготовка за тях	
	Учебен проект	
Извънаудиторна	Самосотятелна работа в библиотека или с	10
заетост	интернет ресурси	10
	Доклад/Презентация	10
	Курсов учебен проект	50
	Подготовка за финален тестови изпит	10
	Обща извънаудиторна заетост:	90
	Кредити извънаудиторна заетост:	3

Предвидена форма на оценяване:	КИ
И - изпит, КИ - комбинирано изпитване; ТО - текущо оценява	не

Форми	Формиране на оценката по дисциплината		
Nº	Показател	%	
1	Финален курсов проект	40%	
2	Финален тестови изпит	40%	
3	Домашни работи през семестъра (текущ контрол)	10%	
4	Работа в час (задачи по време на упражнения)	10%	

Анотация на учебната дисциплина

Интелигентните устройства са навсякъде около нас – автомобилите и домовете стават "умни", дрехите включват "интелигентни материи" и незабележимо вградена електроника (wearable electronics), почти всички електроуреди и предмети на бита придобиват способности за комуникация помежду си и с отдалечени услуги "в облака" (cloud computing). Често взаимодействието става с гласови команди (Amazon Alexa). В крайна сметка цялата тази информация и възможност за контрол стават достъпни за нас през удобен вграден, мобилен или гласов интерфейс от всяко място, по всяко време (consumer application dashboards).

С помощта на множество практически проекти, курсът запознава с бързо-развиващата се област на "Интернет на нещата" (Internet of Things – IoT), обслужващата и социална роботика (service and social robotics). Акцентът е върху придобиване на реален опит при реализация на вградени и мрежово свързани устройства и малки роботи (Arduino, Raspberry Pi 2/3/Zero, ESP 8266, Lego, сензори, актуатори и др.) и най-вече върху начина, по който тези устройства комуникират помежду си и със заобикалящия ги свят (социална способност).

За да реализираме на практика тези проекти се нуждаем от рамка за моделиране на взаимодействието между устройствата, разглеждани като интелигентни агенти (Intelligent Agents - IA) в рамките на една многоагентна система (Multi-Agent System - MAS). Разглеждат се основните характеристики на интелигентните агенти - автономност, способност за реагиране, проактивност, способност за самообучение (адаптивност), социална способност (езици за комуникация между агенти - ACLs), рационалност, мобилност, както и различни парадигми и архитектури за реализация — йерархична (базирана на планиране), реактивна (Subsumption Architecture), и хибридна. Включено е запознаване с Belief-Desire-Intention (BDI) модел на практически разсъждения като основа за моделиране на света, комуникация и автономно вземане на решения от агентите. Знанията се представят и реферират с помощта на онтологии и Semantic Web W3C стандарти (RDF/RDFS, OWL).

Курсът изгражда цялостна картина на необходимите технологии започвайки от хардуерния слой (практически проекти с Arduino, Raspberry Pi и ESP 8266 + най-различни сензори и актуатори: ултразвукови и инфрачервени за дистанция, оптично масиви за следене на линия, камери, енкодери, двигатели и драйвери, серво- механизми за хващане на предмети и движение на камерата, сензорни ТFT екрани и други), през обработката на събитийни потоци в реално време с помощта на микро-контролери и серийна USB (UART), I2C, SPI, комуникация, софтуерни библиотеки от ниско ниво (Java: LeJOS, Pi4J), до горните слоеве на приложението за реактивна обработка на събития реализирани със Spring Reactor, Akka, Eclipse IoT (Kura, Paho, Californium) платформи.

Следващите нива в IoT/ Service Robotics архитектурата включват механизми и протоколи за комуникация - Constrained Application Protocol (CoAP), MQ Telemetry Transport (MQTT), HTTP, уеб услуги (REpresentational State Transfer - REST APIs), "облачни технологии" (Docker, Kubernetes, Apache Brooklyn, Ansible), бази от данни в реално време (Prometheus, Graphite, InfluxDB, RethinkDB).

Включени са също така и технологии за изграждане на вградени (Java Swing, JavaFX) и мобилни (Angular + TypeScript + Material Design / Ionic) уеб интерфейси и интерактивни "табла за управление" (dashboards), както и технологии за визуализация и анализ на събития в реално време (Grafana).

Целта е освен практическите проекти реализирани по време на упражнения, участниците да сформират екипи за реализиране на собствени роботи/ IoT много-агентни системи и/или компоненти за тях, които да бъдат демонстрирани в края на курса. Дългосрочната цел е сформиране на екип за участие в национални и международни състезания от типа на RoboCup (http://www.robocup.org/), където роботи изпълняват задачи с различна степен на сложност – играят футбол, спасяват хора при бедствия и аварии, кооперират се с хора за изпълнение на задачи у дома, в промишлеността и логистиката.

Информация за някои от роботите, които ще сглобяваме и програмираме по време на курса можете да намерите на адрес: http://robolearn.org/.

Кодът е достъпен в GitHub: https://github.com/iproduct/course-social-robotics

Предварителни изисквания

Очаква се студентите да могат да боравят свободно с технически английски език. Необходимо е добро познаване на езика Java, желателно и на езика Python. Препоръчителна, но не задължителна, е също базова техническа грамотност за работа с цифрова схемотехника.

Очаквани резултати

По време на курса студентите ще придобият знания и умения за:

- многоагентните системи с разпределен изкуствен интелект, кооперативната, социалната и домашната роботика и автоматизация;
- обектно-ориентирано, актьор-ориентирано и агентно-ориентирно софтуерно архитектурно моделиране, реактивно програмиране (reactive programming) и actor model – Spring Reactor, RxJava, RxJS, Akka;
- реализация на вградени интерфейси за IoT устройства и роботи с *Java Swing /Java FX* на ARM Linux платформа;
- реализация на мобилни уеб/ native интерфейси за *loT* устройства и роботи с *Angular* 5, *TypeScript, Material Design / Ionic;*
- практически опит с платформи *Raspberry Pi 3, Lego® Mindstorms EV3* и *Arduino* за изграждане на малки роботи и *IoT* устройства;
- свързване на сензори (ултразвукови и инфрачервени за дистанция, оптично масиви за следене на линия, камери, енкодери), актуатори (двигатели и драйвери, сервомеханизми за хващане на предмети и движение на камерата), вградени интерфейси (сензорни TFT екрани touchscreens), и комуникационни модули (WiFi, BlueTooth Low Energy BLE, ESP 8266 System-On-Chip);
- IoT архитектури и протоколи за комуникация (MQTT, CoAP, AMQP) и конфигуриране на устройства (OMA-DM, LWM2M);
- практическа реализация на *IoT Greenhou*se проект с *Eclipse IoT* платформа (*Kura, Paho, Californium MQTT* и *CoAP* комуникационни протоколи);
- Визуализация на данни в реално време с *Grafana*;
- Java® програмиране на **Lego**® роботи с използване на библиотеката **LeJOS**;

- Java® програмиране на **Raspberry Pi 3** роботи и мрежово-свързани, вградени устройства с използване на библиотеката **Pi4J**;
- управление сензори и актуатори през *GPIO* интерфейс протоколи: *Serial UART, I2C, SPI*;
- програмиране на *Arduino* хардуер, сензори, актуатори и комуникационни протоколи с използване на *Arduino IDE / Eclipse (C++)*;
- обработка на изображения и компютърно зрение с библиотеката *OpenCV*;
- планиране на действия и манипулиране на обекти със **STRIPS** (Stanford Research Institute Problem Solver);
- Belief-Desire-Intention (BDI) модел на човешките практически разсъждения и езици за комуникация между интелигентни агенти;
- представяне на знания с помощта на онтологии и W3C стандарти за изграждане на **Семантична Мрежа (Semantic Web)**: Resource Description Framework (RDF) и Web Ontology Language (OWL).

Студентите ще изградят също умения за целенасочено търсене, анализ и употреба на информация, както и умения за работа в екип по избран от тях практически *IoT / Robotics* проект.

	Учебно съдържание			
Nº	Тема	Хорариум л. / с.упр. / пр.		
1	Представяне на курса, въведение в областта на "Интернет на нещата" (Internet of Things — IoT), обслужващата и социална роботика (service and social robotics), умни домове (smart homes), автономни транспортни средства (autonomous vehicles), интелигентни материи (smart fabrics & wearable electronics), агрегация и обработка на сложни събития (Complex Event Processing - CEP) в облака (cloud computing). Разпределена обработка на потоци от събития в реално време. Ламбда архитектура: Apache Spark, Storm, Kafka, Apex, Flink, Beam. Многослойна референтна архитектура на IoT. Platform as a Service (PaaS). Наблюдение и управление на IoT мрежи, устройства и роботи чрез вградени и мобилни уеб/ native интерфейси — application dashboards c Grafana.	4		
2	Приложение на многоагентните системи с разпределен изкуствен интелект в кооперативната, социалната и домашната роботика и автоматизация. Обектно-ориентирано, актьор-ориентирано и агентно-ориентирано софтуерно инженерство. Реактивно програмиране (reactive programming) и actor model — Spring Reactor, RxJava, RxJS, Akka. Отличителни характеристики на интелигентните агенти. Видове интелигентни агенти. Интелигентни агенти с хардуерна архитектура — роботика. Колаборативна и социална роботика. Хардуерни платформи за изграждане на малки роботи и IoT устройства — запознаване с Raspberry Pi 2, Lego® Mindstorms EV3 и Arduino.	4		

3	Рационални агенти — AIMA (Artificial Intelligence: Modern Approach) агенти. Структура на рационални агенти. Агенти базирани на таблица. Агенти с прости рефлекси. Агенти с вътрешно състояние. Агенти базирани на цели. Агенти базирани на полезност. Агентни среди — видове и свойства. Програмна реализация на агенти и агентни среди. Примери.	4
4	Изграждане на роботи с Lego® Mindstorms. Програмиране на Lego® роботи. Java® програмиране на Lego® роботи с използване на LeJOS — Wifi конфигуриране, разработка с LeJOS, билд файлове, използване на сензори, мотори, инструменти, ssh достъп до EV3 блока, примерни програми и практически упражнения с LeJaRo робот и LeJOS — избягване на препятствия, хващане на предмети, следване на линия.	4
5	Програмиране на Raspberry Pi 3 роботи и IoT устройства с използване на Java библиотеката Pi4J. Управление на сензори и актуатори през GPIO интерфейс — основни протоколи за комуникация: Serial, I2C, SPI. Елементи на схемотехниката — аналогово-цифрови преобразуватели, level shifters и др. Сглобяване на малък робот с Raspberry Pi 3. Управление на драйвера на двигателите през GPIO с Pulse Width Modulation (PWM). Добавяне на сензори за дистанция и програмиране на прости рефлекси у Raspberry Pi робота.	
6	Хардуерна и софтуерна платформа с отворен код <i>Arduino</i> – хардуер, сензори и актуатори, комуникационни протоколи, езици за програмиране, среди за разработка <i>Arduino IDE / Eclipse (C++)</i> . Сглобяване и програмиране на примерни <i>Arduino</i> проекти със сензори и актуатори.	4
7	Интернет на нещата (IoT) - практически проекти с ESP 8266 WiFi SOC (System-On-Chip) модули с интегриран TCP/IP стек от протоколи. IoT архитектури и протоколи за комуникация (MQTT, CoAP, AMQP) и конфигуриране на устройства (OMA-DM, LWM2M). Eclipse IoT платформа, проекти: Edje, Paho, Wakaama, Kura, OpenHAB/SmartHome, Californium, Mosquitto, Leshan, Hono, hawkBit, BIRT. Реализация на примерен проект Greenhouse Tutorial с Eclipse Kura, Paho и Californium.	4
8	Взаимодействие и кооперация между хора и интелигентни агенти с хардуерна архитектура (роботи). Проектиране и реализация на графични интерфейси за вградени устройства и роботи с Java Swing / Java FX на ARM Linux платформа.	4
9	Разработка на уеб интерфейси за управление на <i>IoT</i> устройства с <i>JavaScript</i> библиотеките <i>Angular 2</i> , <i>TypeScript, Material Design. Angular CLI. Ionic 2</i> платформа за разработка на <i>native</i> мобилни приложения с <i>Angular u TypeScript</i> .	4

10	Акка toolkit за разработка на масивно конкурентни, разпределени и устойчиви към грешки събитийно-ориентирани актьор (actor) системи — референции, състояние, поведение, наследници, супервайзинг стратегия, прекъсване. Наблюдение и контрол — стратегии One-For-One и All-For-One. Делегиране на задачи на наследници. Референции, пътища и адреси на актьори. Селекция по път. Обработка на изключения и грешки. Жизнен цикъл на актьор — DeathWatch. Изпращане и получаване на съобщения — tell, ask, reply. Спиране на актьори. Динамично добавяне/замяна на поведения на актьори — become and unbecome (шаблон State Актьори със stash. Диспечери на съобщения. Mailboxes — типове конфигурация и приоритети. Маршрутизация на съобщения и стратегии за маршрутизация. Реализация на машини на състояние (крайни автомати) с помощта на актьори.	4
11	Компютърно зрение и разпознаване на обекти – запознаване с библиотеките <i>OpenCV-Java, OpenCV-Python</i> и <i>NumPi</i> . Практически примери за обработка на изображения и компютърно зрение с <i>Pi Camera Module v</i> 2	
12	Планиране на действия и манипулиране на обекти - декомпозиция на проблема и алгоритми за планиране и извод. Представяне на състоянията целите и действията. Търсене на път в пространство на състоянията - forward u backward chaining. Евристично търсене. Граф на планиране (planning graph). Използване на съждителна логика. STRIPS (Stanford Research Institute Problem Solver) планиране. Практическа реализация на езика Java.	4
13	Самообучение и адаптивно поведение при интелигентни агенти. Проектиране на самообучаващи се системи. Индуктивно логическо самообучение - представяне на хипотези, научаването на понятие като търсене в пространство на хипотезите, пространство на версиите (version space), inductive bias. Използване на дърво на решенията (decision tree). Използване на невронни мрежи (neural networks). Deep learning.	
14	FIPA стандарти на за изграждане на многоагентни системи. Belief-Desire-Intention (BDI) модел на човешките практически разсъждения и езици за комуникация между интелигентни агенти (Agent Communication Languages – ACLs). Представяне на знания с помощта на онтологии и W3C стандарти за изграждане на Семантична Мрежа (Semantic Web): Resource Description Framework (RDF) и Web Ontology Language (OWL). Практическа реализация на онтология с Protege. Достъп до онтологията с Java - Арасhe Jena Ontology API.	4
15	Финален тест и обсъждане на курсовите проекти. Допълнителни въпроси. Перспективи пред IoT и социалната роботика.	4

	Конспект за изпит
Nº	Въпрос

1	"Интернет на нещата" (Internet of Things — IoT), обслужващата и социална роботика (service and social robotics), умни домове (smart homes), автономни транспортни средства (autonomous vehicles), интелигентни материи (smart fabrics & wearable electronics), агрегация и обработка на сложни събития (Complex Event Processing - CEP) в облака (cloud computing). Разпределена обработка на потоци от събития в реално време. Ламбда архитектура: Apache Spark, Storm, Kafka, Apex, Flink, Beam. Многослойна референтна архитектура на IoT. Platform as a Service (PaaS). Наблюдение и управление на IoT мрежи, устройства и роботи чрез вградени и мобилни уеб/ native интерфейси — application dashboards с Grafana.
2	Приложение на многоагентните системи с разпределен изкуствен интелект в кооперативната, социалната и домашната роботика и автоматизация. Обектноориентирано, актьор-ориентирано и агентно-ориентирано софтуерно инженерство. Реактивно програмиране (reactive programming) и actor model — Spring Reactor, RxJava, RxJS, Akka. Отличителни характеристики на интелигентните агенти. Видове интелигентни агенти. Интелигентни агенти с хардуерна архитектура — роботика. Колаборативна и социална роботика. Платформи за изграждане на малки роботи и IoT устройства—запознаване с Raspberry Pi 2, Lego® Mindstorms EV3 и Arduino.
3	Рационални агенти — <i>AIMA (Artificial Intelligence: Modern Approach)</i> агенти. Структура на рационални агенти. Агенти базирани на таблица. Агенти с прости рефлекси. Агенти с вътрешно състояние. Агенти базирани на цели. Агенти базирани на полезност. Агентни среди — видове и свойства. Програмна реализация на агенти и агентни среди. Примери.
4	Изграждане на роботи с <i>Lego</i> ® <i>Mindstorms</i> . Програмиране на <i>Lego</i> ® роботи. <i>Java</i> ® програмиране на <i>Lego</i> ® роботи с използване на <i>LeJOS</i> – <i>Wifi</i> конфигуриране, разработка с <i>LeJOS</i> , билд файлове, използване на сензори, мотори, инструменти, <i>ssh</i> достъп до <i>EV3</i> блока, примерни <i>LeJOS</i> програми – избягване на препятствия, хващане на предмети, следване на линия.
5	Програмиране на <i>Raspberry Pi 3</i> роботи и IoT устройства с използване на Java библиотеката <i>Pi4J</i> . Управление на сензори и актуатори през <i>GPIO</i> интерфейс – основни протоколи за комуникация: <i>Serial, I2C, SPI</i> . Елементи на схемотехниката – аналоговоцифрови преобразуватели, <i>level shifters</i> и др. Сглобяване на малък робот с <i>Raspberry Pi 3</i> . Управление на драйвера на двигателите през <i>GPIO</i> с <i>Pulse Width Modulation (PWM)</i> . Сензори за дистанция и програмиране на прости рефлекси у <i>Raspberry Pi</i> робота.
6	Хардуерна и софтуерна платформа с отворен код <i>Arduino</i> – хардуер, сензори и актуатори, комуникационни протоколи, езици за програмиране, среди за разработка <i>Arduino IDE / Eclipse (C++)</i> . Програмиране на <i>Arduino</i> проекти със сензори и актуатори.
7	Интернет на нещата (IoT) - практически проекти с ESP 8266 WiFi SOC (System-On-Chip) модули с интегриран TCP/IP стек от протоколи. IoT архитектури и протоколи за комуникация (MQTT, CoAP, AMQP) и конфигуриране на устройства (OMA-DM, LWM2M). Eclipse IoT платформа, проекти: Edje, Paho, Wakaama, Kura, OpenHAB/SmartHome, Californium, Paho, Mosquitto, Leshan, Hono, hawkBit, BIRT.
8	Взаимодействие и кооперация между хора и интелигентни агенти с хардуерна архитектура (роботи). Проектиране и реализация на графични интерфейси за вградени устройства и роботи с <i>Java Swing / Java FX</i> на <i>ARM Linux</i> платформа.
9	Разработка на уеб интерфейси за управление на <i>IoT</i> устройства с <i>JavaScript</i> библиотеките <i>Angular 2, TypeScript, Material Design. Angular CLI. Ionic 2</i> платформа за разработка на native мобилни приложения с <i>Angular</i> и <i>TypeScript</i> .

10	Akka toolkit за разработка на масивно конкурентни, разпределени и устойчиви към грешки събитийно-ориентирани актьор (actor) системи — референции, състояние, поведение, наследници, супервайзинг стратегия, прекъсване. Наблюдение и контрол — стратегии One-For-One и All-For-One. Делегиране на задачи на наследници. Референции, пътища и адреси на актьори. Селекция по път. Обработка на изключения и грешки. Жизнен цикъл на актьор — DeathWatch. Изпращане и получаване на съобщения — tell, ask, reply. Спиране на актьори. Динамично добавяне/замяна на поведения на актьори — become and unbecome (шаблон State). Актьори със stash. Диспечери на съобщения. Mailboxes — типове конфигурация и приоритети. Маршрутизация на съобщения и стратегии за маршрутизация. Реализация на машини на състояние (крайни автомати) с помощта на актьори.
11	Компютърно зрение и разпознаване на обекти – запознаване с библиотеките OpenCV-Java, OpenCV-Python и NumPi. Практически примери за обработка на изображения и компютърно зрение с Pi Camera Module v2.
12	Планиране на действия и манипулиране на обекти - декомпозиция на проблема и алгоритми за планиране и извод. Представяне на състоянията целите и действията. Търсене на път в пространство на състоянията - forward и backward chaining. Евристично търсене. Граф на планиране (planning graph). Използване на съждителна логика. STRIPS (Stanford Research Institute Problem Solver) планиране. Практическа реализация на езика Java.
13	Самообучение и адаптивно поведение при интелигентни агенти. Проектиране на самообучаващи се системи. Индуктивно логическо самообучение - представяне на хипотези, научаването на понятие като търсене в пространство на хипотезите, пространство на версиите (version space), inductive bias. Използване на дърво на решенията (decision tree). Използване на невронни мрежи (neural networks). Deep learning.
14	FIPA стандарти на за изграждане на многоагентни системи. Belief-Desire-Intention (BDI) модел на човешките практически разсъждения и езици за комуникация между интелигентни агенти (Agent Communication Languages – ACLs). Представяне на знания с помощта на онтологии и W3C стандарти за изграждане на Семантична Мрежа (Semantic Web): Resource Description Framework (RDF) и Web Ontology Language (OWL). Практическа реализация на онтология с Protege. Достъп до онтологията с Java - Apache Jena Ontology API.

Библиография

Основна

- 1. GitHub ресурси за роботика и IoT https://github.com/iproduct/course-social-robotics/wiki
- 2. Информация за роботите **LeJaRo** и **IPTPI** http://robolearn.org/
- 3. Сайт на W3C за семантична мрежа http://www.w3.org/standards/semanticweb/
- 4. Официален уеб сайт на Lego® Mindstorms http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com
- 5. Официален уеб сайт на **LeJOS** http://sourceforge.net/projects/lejos/
- 6. Сайт на проекта с отворен код Arduino http://arduino.cc/
- 7. Ресурси на български езика за платформата **Arduino** http://playground.arduino.cc/Bulgarian/Nachalo
- 8. Akka toolkit for concurrent & distributed applications http://akka.io/
- 9. Сайт на Foundation for Intelligent Physical Agents (FIPA) http://www.fipa.org/
- 10. Сайт на **Spring Reactor** библиотека за реактивно програмиране с Java https://projectreactor.io/
- 11. Сайт на **RxJS** библиотека за реактивно програмиране с JavaScript https://github.com/ReactiveX/rxjs

- 12. Сайт на **Akka** платформа за разработка на actor-oriented приложения с Java/Scala http://akka.io/
- 13. Сайт на **Protege** редактор за създаване на онтологии и изграждане на интелигентни системи http://protege.stanford.edu/
- 14. Сайт на **Apache Jena** библиотека за достъп до онтологии и изграждане на приложения за "Семантична мрежа" с Java https://jena.apache.org/
- 15. Сайт на ESP 8266 System-On-Chip (SOC) http://www.esp8266.com/wiki
- 16. Murch R., Johnson T., Intelligent Software Agents, Prentice Hall, 1999
- 17. Russel S., Norvig P., Artificial Intelligence: a Modern Approach (3rd Ed.), Prentice Hall, 2009

Дата:	20.04.2018 г	Съставил:	ас. Траян Илиев
	Програмата е приета н	на заседание на КС – прот	ОКОЛ ОТ

СПРАВКА ПРЕПОДАВАТЕЛСКИ ЕКИПИ

Информатика, Информационни системи, Компютърни науки, Математика и информатика, Софтуерно инженерство;

Практическа роботика и умни "неща" ; Ж727

уч. година	титуляр	асистент	пояснение
018/2019			2+ курс, 4/л. сем.
			31 7 *