1

JEE MAINS 2020 September 2 - Shift 1

EE24BTECH11061 - Rohith Sai

1) A line parallel to the straight line 2x - y = 0 is tangent to the hyperbola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ at the point (x_1, y_1) . Then $x_1^2 + 5y_1^2$ is equal to:

a) 6

b) 10

d) 5

2) The domain of the function $f(x) = \sin^{-1}\left(\frac{|x|+5}{x^2+1}\right)$ is $(-\infty, -a] \cup [a, \infty)$. Then a is equal to:

a) $\frac{\sqrt{17}-1}{2}$ b) $\frac{\sqrt{17}}{2}$

c) $\frac{1+\sqrt{17}}{2}$ d) $\frac{\sqrt{17}}{2} + 1$

3) If a function f(x) defined by

$$f(x) = \begin{cases} ae^x + be^{-x}, & \text{if } -1 \le x < 1\\ cx^2, & \text{if } 1 \le x \le 3\\ ax^2 + 2cx, & \text{if } 3 < x \le 4 \end{cases}$$

be continuous for some $a, b, c \in \mathbb{R}$ and f'(0) + f'(2) = e, then the value of a is:

a)
$$\frac{1}{e^2-3e+13}$$

b) $\frac{1}{e^2-3e+13}$

c)
$$\frac{e}{e^2 + 3e + 13}$$

d) $\frac{e}{e^2 + 3e + 13}$

$$\frac{e}{e^2 - 3e - 13} \qquad \qquad \text{d) } \frac{e}{e^2 - 3e}$$

4) The sum of the first three terms of G.P is S and their product is 27. Then all such S lie in

a)
$$(-\infty, -9] \cup [3, \infty]$$

c)
$$(-\infty, -9]$$

b)
$$[-3, \infty)$$

c)
$$(-\infty, -9]$$

d) $(-\infty, -3] \cup [9, \infty)$

5) If $R = \{(x, y) : x, y \in \mathbb{Z}, x^2 + 3y^2 \le 8\}$ is relation on the set of integers \mathbb{Z} , then the domain of R⁻¹ is:

6) The value of
$$\left(\frac{1+\sin\frac{2\pi}{9}+\iota\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-\iota\cos\frac{2\pi}{9}}\right)^3$$

a) $\frac{-1}{2} (1 - \iota \sqrt{3})$ b) $\frac{1}{2} (1 - \iota \sqrt{3})$	c) $\frac{-1}{2} \left(\sqrt{3} - \iota \right)$ d) $\frac{1}{2} \left(\sqrt{3} - \iota \right)$	2
7) Let $\mathbf{P}(h, k)$ be a point on the of Then the equation of the norm	curve $y = x^2 + 7x + 2$, nearest to the line, $y = 3x - 3x + 3x + 3x + 3x + 3x + 3x + 3x +$	- 3.
a) $x + 3y - 62 = 0$ b) $x - 3y - 11 = 0$	c) $x - 3y + 22 = 0$ d) $x + 3y + 26 = 0$	

- 8) Let A be a 2×2 real matrix with entries from $\{0,1\}$ and $A \ne 0$. Consider the following two statements:
 - (P) If $A \neq I_2$, then A = -1
 - (Q) If $\det A = 1$, then tr(A) = 2,

where I_2 denotes 2×2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then:

- a) Both (P) and (Q) are false
- c) Both (P) and (Q) are false
- b) (P) is true and (Q) is false
- d) (P) is false and (O) is true
- 9) Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a non-prime number. The probability that the card was drawn from Box I is:
- 10) If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1and a local minimum value 4 at x = 2; then p(0) is equal to:
 - a) 12

c) -24

b) -12

- d) 6
- 11) The contra-positive of the statement "If I reach teh station in time, then i will catch the train" is:
 - a) If I will catch the train, then I reach c) If I do not reach the station in time, the station in time.
- then I will not catch the train.
 - then I will catch the train.
 - b) If I do not reach the station in time, d) If I will not catch the train, then I do not reach the station in time.
- 12) Let α and β be the roots of the equation, $5x^2 + 6x 2 = 0$. If $S_n = \alpha^n + \beta^n$, $n = 1, 2, 3, \dots$ then:

a)
$$5S_6 + 6S_5 + 2S_4 = 0$$

c)
$$6S_6 + 5S_5 + 2S_4 = 0$$

b)
$$6S_6 + 5S_5 = 2S_4$$

d)
$$5S_6 + 6S_5 = 2S_4$$

13) If the tangent to the curve $y = x + \sin y$ at a point (a, b) is parallel to the line joining $\left(0,\frac{3}{2}\right)$ and $\left(\frac{1}{2},2\right)$, then:

a)
$$b = (\frac{\pi}{2} + a)$$

b) $|a + b| = 1$

c)
$$|b - a| = 1$$

b)
$$|a + b\bar{b}| = 1$$

d)
$$b = a$$

14) Area (in sq. units) of the region outside $\frac{x}{2} + \frac{y}{3} = 1$ and inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

a)
$$3(\pi - 2)$$

c)
$$6(4-\pi)$$

b)
$$6(\pi - 2)$$

d)
$$3(4-\pi)$$

15) If |x| < 1, |y| < 1, and xy, then the sum to infinity of the following series

$$(x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots$$

is:

a)
$$\frac{x+y+xy}{(1-x)(1-y)}$$

c)
$$\frac{x+y+xy}{(1+x)(1+y)}$$

b)
$$\frac{x+y-xy}{(1-x)(1-y)}$$

d)
$$\frac{(1+x)(1+y)}{(1+x)(1+y)}$$