高等微积分

邹文明

第二章: 函数, 函数的极限与连续

§10. 闭区间上连续函数的性质

定理 1. (连续函数介值定理) 如果 $f \in \mathcal{C}[a,b]$, 那么对于介于 f(a), f(b) 之间的任意的实数 μ , 均存在 $\xi \in [a,b]$ 使得 $f(\xi) = \mu$.

证明: 不失一般性, 我们可假设 $f(a) < \mu < f(b)$.

定义 $A = \{x \in [a, b] : f(x) \leq \mu\}$, 且 $\xi = \sup A$. 则 $\forall n \ge 1$, $\exists x_n \in A$ 使得 $\xi - \frac{1}{n} < x_n \le \xi$. 再由 夹逼原理知 $\lim_{n\to\infty} x_n = \xi$. 另外 $\forall n \geqslant 1$, $x_n \in A$, 故 $f(x_n) \leq \mu$, 且 $\xi \in [a,b]$. 由连续性与极限的 保序性立刻可知 $f(\xi) = \lim_{n \to \infty} f(x_n) \leq \mu < f(b)$, 于是 $b > \xi$. 由 ξ 的定义, $\forall x \in (\xi, b], f(x) > \mu$,

从而由连续性以及极限的保序性可得 $f(\xi) = f(\xi+0) = \lim_{x \to \xi^+} f(x) \geqslant \mu,$

进而我们有 $f(\xi) = \mu$.

推论. (零点存在定理) 若函数 $f \in \mathcal{C}[a,b]$ 使得 $f(a)f(b) \leq 0$, 则 $\exists \xi \in [a,b]$ 使得 $f(\xi) = 0$.

证明: 由于 0 介于 f(a), f(b) 之间, 于是由连续函数介值定理可知所证结论成立.

秋风起兮白云飞,草木黄落兮雁南归-汉•刘彻《秋风辞》

同学们辛苦了!

例 1. 如果 $f:[a,b] \to [a,b]$ 连续, 则 $\exists \xi \in [a,b]$ 使得我们有 $f(\xi) = \xi$.

证明: $\forall x \in [a,b]$, 令 F(x) = f(x) - x. 则 F 为 区间 [a,b] 上的连续函数, 并且

$$F(a) \geqslant 0, \ F(b) \leqslant 0,$$

于是由连续函数介值定理可知 $\exists \xi \in [a,b]$ 使得 $F(\xi) = 0$,也即我们有 $f(\xi) = \xi$.

例 2. 任何实系数奇次多项式方程有实根.

证明: 考虑实系数的多项式 $f(x) = \sum_{k=0}^{2n+1} a_k x^k$, 其中 $n \ge 0$ 且 $a_{2n+1} > 0$, 那么 $f \in \mathscr{C}(\mathbb{R})$. 由于 $\lim_{x \to \infty} \frac{f(x)}{x^{2n+1}} = a_{2n+1} > 0$, 从而可知 $\exists M > 0$ 使得 当 $|x| \ge M$ 时,均有 $\frac{f(x)}{r^{2n+1}} > 0$. 于是 f(M) > 0, 且 f(-M) < 0. 进而由连续函数介值定理立刻 可知 $\exists c \in [-M, M]$ 使得 f(c) = 0. 由此得证.

例 3. 假设函数 $f \in \mathcal{C}(a,b)$ 使得 $\lim_{x \to a^+} f(x) = c_1$, $\lim_{x \to b^-} f(x) = c_2$, 其中 c_1, c_2 不相等并且不一定为

 $x \to b^{-1}$, $x \to b^{-1}$,

证明: 不失一般性, 假设 $c_1 < \mu < c_2$. 由函数极限局部保序性知, $\exists \delta_1 \in (a,b)$ 使得 $\forall x \in (a,\delta_1)$, 我们有 $f(x) < \mu$.

同样地, $\exists \delta_2 \in (a,b)$ 使得 $\forall x \in (\delta_2,b)$, 我们均有 $f(x) > \mu$. 由此可知 $\delta_2 \geqslant \delta_1$.

任取 $a_1 \in (a, \delta_1)$,

$$b_1 \in (\delta_2, b)$$
, 那么 $a_1 < b_1$, $f(a_1) < \mu$, $f(b_1) > \mu$.

又因 f 在 $[a_1,b_1]$ 上连续, 于是由连续函数介值 定理可知, $\exists \xi \in (a_1,b_1) \subset (a,b)$ 使得 $\mu = f(\xi)$.

因此所证结论成立.

例 4. 求证: 方程 $x^7 - 3x^4 - 6x^3 + 5x + 1 = 0$ 在 区间 (0,1) 内有一个根.

证明: $\forall x \in [0, 1]$, 我们定义 $f(x) = x^7 - 3x^4 - 6x^3 + 5x + 1.$

则 $f \in \mathcal{C}[0,1]$ 且 f(0) = 1, f(1) = -2. 由连续 函数介值定理可知 $\exists \xi \in (0,1)$ 使得 $f(\xi) = 0$. 命题 1. 如果 X 为区间, 而 $f: X \to \mathbb{R}$ 为连续函数, 则像集 Imf 为区间. 证明: 任取 $y_1, y_2 \in Imf$ $(y_1 \neq y_2)$, 则 $\exists a, b \in X$ 使得 $y_1 = f(a)$, $y_2 = f(b)$. 不失一般性, 我们可

假设 a < b, 否则可调整 y_1, y_2 的编号. 由于 f

在 [a,b] 上连续,则对于介于 y_1,y_2 之间的任意 实数 y, $\exists \xi \in [a,b]$ 使得 $y = f(\xi) \in \text{Im} f$, 故 Im f 包含以 y_1,y_2 为端点的区间,从而 Im f 为区间 $\frac{23}{13}$

命题 2. 如果 X 为区间, 而 $f \in \mathcal{C}(X)$ 为单射, 则 f 必为严格单调函数.

证明: 用反证法, 假设 f 不为严格单调的函数, 因为是单射,则在 X 中存在点 x_1, x_2, x_3 使得 $x_1 < x_2 < x_3$, 但 $f(x_2)$ 却不介于 $f(x_1), f(x_3)$ 之间.

(考虑一种情形) 若 $f(x_1), f(x_3) > f(x_2)$, 则 $\exists \mu \in \mathbb{R}$ 使得

$$f(x_2) < \mu < f(x_1), \ f(x_2) < \mu < f(x_3).$$

从而由连续函数介值定理可得知 $\exists \alpha \in (x_1, x_2)$ 使得 $\mu = f(\alpha)$. 同理 $\exists \beta \in (x_2, x_3)$ 使 $\mu = f(\beta)$. 于是 $f(\alpha) = f(\beta)$, 但 $\beta > \alpha$. 矛盾!

综上所述可知所证结论成立.

命题 3. 设 X 为区间, $f:X\to\mathbb{R}$ 为单调函数, 则 $f \in \mathcal{C}(X)$ 当且仅当像集 Im f 是一个区间. 证明: 必要性源于前面的命题. 下面只需证明 充分性. 不失一般性, 假设 f 单调递增, 否则可 考虑 -f. 用反证法, 假设 f 在点 $x_0 \in X$ 间断. 则由单调有界定理可知或者 $f(x_0+0) > f(x_0)$ 或者 $f(x_0-0) < f(x_0)$.

不失一般性, 我们假设

 $f(x_0 + 0) > f(x_0)$, 对另一种情形可作类似讨论.

则 $\forall x \in X$, 当 $x > x_0$ 时, 我们均有

$$f(x) \geqslant f(x_0 + 0) > f(x_0),$$

而当 $x < x_0$ 时, 则有 $f(x) \le f(x_0)$. 这表明 $(f(x_0), f(x_0 + 0)) \cap \text{Im} f = \emptyset$.

但
$$\exists b \in X$$
 使得 $b > x_0$, 从而 $f(b) \ge f(x_0 + 0)$.
由 $\operatorname{Im} f$ 为区间可知 $[f(x_0), f(b)] \subseteq \operatorname{Im} f$, 矛盾!

故假设不成立, 因此 f 在 X 上连续.

定理 2. (反函数定理) 若 X 为区间, $f \in \mathcal{C}(X)$ 为单射, 则反函数 $f^{-1}: \text{Im} f \to X$ 存在且连续. 证明:由命题1可知Imf为区间,而由命题2 知 f 为严格单调, 从而反函数 $f^{-1}: \operatorname{Im} f \to X$ 存在且单调. 由于 f^{-1} 单调且 $\text{Im} f^{-1} = X$ 为 区间,则由 命题 3 可知 f^{-1} 为连续函数.

定理 3. (最值定理) 若 $f \in \mathcal{C}[a,b]$, 则 f 有最值.

证明: 首先证明 f 在 [a,b] 上有界. 用反证法, 设 f 为无界函数. 则 $\forall n \geq 1$, $\exists a_n \in [a,b]$ 使得 $|f(a_n)| > n$. 但数列 $\{a_n\}$ 有界, 故存在收敛的 子列 $\{a_{k_n}\}$. 将其极限记为 x_0 . 则由极限保序性 可知 $x_0 \in [a,b]$. 又由连续性可得

$$f(x_0) = \lim_{n \to \infty} f(a_{k_n}) = \infty.$$

矛盾! 故函数 f 在 [a,b] 上有界.

令 $M = \sup_{x \in [a,b]} f(x)$. 如果 f 在 [a,b] 上无最大值,

则 $\forall x \in [a,b]$,均有 f(x) < M. 令 $F(x) = \frac{1}{M-f(x)}$.

那么 $F \in \mathcal{C}[a,b]$, 从而有界. $\forall K > 0$, 由 M 的 定义可知 $\exists x \in [a,b]$ 使得 $f(x) > M - \frac{1}{\kappa}$. 从而

又因 $-f \in \mathcal{C}[a,b]$, 则 -f 在 [a,b] 上有最大值, 故 f 也有最小值.

推论. 若 $f \in \mathcal{C}[a,b]$, 则 $\mathrm{Im} f$ 为闭区间.

证明: 由最值定理知, $\exists c, d \in [a, b]$ 使得我们有 $f(c) = \inf_{x \in [a, b]} f(x), \ f(d) = \sup_{x \in [a, b]} f(x),$

于是 $\forall x \in [a,b]$, 我们均有 $f(c) \leq f(x) \leq f(d)$, 从而 $\mathrm{Im} f \subseteq [f(c),f(d)]$. $\forall \mu \in [f(c),f(d)]$, 又由连续函数介值定理可知, 存在 ξ 介于 c,d 之间

取到正值, 求证: f 在 \mathbb{R} 上有正的最大值. 证明: 由题设立刻知, $\exists x_0 \in \mathbb{R}$ 使得 $f(x_0) > 0$. 又 $\lim_{x \to \infty} f(x) = 0 < f(x_0)$, 由函数极限保序性知, $\exists M > 0$ 使得 $\forall x \in \mathbb{R}$, 当 |x| > M 时, 我们均有 $f(x) < f(x_0), \ \mathcal{F} \underset{x \in \mathbb{R}}{\mathbb{R}} \sup f(x) = \sup_{x \in [-M,M]} f(x) > 0.$ 又 f 在 [-M, M] 上连续,则由连续函数的最值 定理可知 f 在 [-M, M] 上有正的最大值, 进而 可知所证结论成立..

例 5. 若 $f \in \mathcal{C}(\mathbb{R})$ 使得 $\lim_{x \to \infty} f(x) = 0$ 且 f 可以

例 6. 若 $f \in \mathcal{C}[a, +\infty)$ 使得 $\lim_{x \to +\infty} f(x) = A \in \mathbb{R}$, 求证: 函数 f 在 $[a, +\infty)$ 上有界.

证明: 由极限定义可知 $\exists M > a$ 使得 $\forall x > M$, 均有 |f(x) - A| < 1, 由此可得 |f(x)| < 1 + |A|. 又 f 在 [a, M] 上连续, 从而有界, 也即 $\exists K > 0$ 使得 $\forall x \in [a, M]$, 均有 |f(x)| < K. 则 $\forall x \ge a$, 我们总有 |f(x)| < 1 + |A| + K. 故所证成立.