Model-X knockoffs

$T_1, T_2, T_3, T_4, \dots, T_p, \tilde{T}_1, \tilde{T}_2, \tilde{T}_3, \tilde{T}_4, \dots, \tilde{T}_p$


```
ullet if X_j is null (not important), can show T_j=T_j
```

ullet any distribution of Y given X

any feature importance statistics

finite-sample exact error rate control

your lab

variable importance statistics

Model-X knockoffs

- ullet any distribution of Y given X
- any feature importance statistics
- finite-sample exact error rate control want dependence between \hat{X}_i and X_j to be low for power
- if X_j is null (not important), can show $T_j \stackrel{\circ}{=} \tilde{T}_j$
- if X_i is non-null (important), want $T_i \gtrsim \tilde{T}_i$

Knockoff sampling is difficult

even in the simplest case where distribution of X is known