Problema 02: Estudo comparativo de sistemas FIR pelo método de janela

Aurelio Rocha Barreto*, Kevin Cerqueira Gomes[†], Roberto Maia[‡] *Universidade Estadual de Feira de Santana*Feira de Santana, Brasil

aurelionadjabarreto@gmail.com*, kevingomes.uefs@gmail.com[†], robertomaia@gmail.com[‡]

Resumo—Este artigo apresenta um estudo comparativo de sistemas FIR (Finite Impulse Response) pelo método de janela, aplicado à filtragem de sinais de voz em tempo discreto. O objetivo principal é avaliar o desempenho de diferentes funçõesjanela na implementação de filtros digitais, focando em cinco tipos de janelas: Retangular, Hamming, Hanning, Blackman e Kaiser. As especificações do projeto foram definidas para obter filtros passa-baixas, passa-altas e passa-faixas, utilizando o Octave como ferramenta para a implementação e validação experimental. Os resultados são discutidos em termos de eficiência espectral e número de coeficientes necessários, visando oferecer uma análise detalhada e comparativa dos métodos utilizados.

Palavras-chave—Filtros FIR, funções-janela, processamento de sinais, filtragem digital

I. INTRODUÇÃO

A filtragem de sinais é uma área fundamental no processamento de sinais digitais, com aplicações que variam desde a comunicação até a análise de áudio. Filtros FIR são amplamente utilizados devido à sua estabilidade e resposta em fase linear [1]. Estes filtros podem ser projetados utilizando diferentes técnicas, sendo a mais comum o método de janela. Este artigo se propõe a explorar a eficácia de várias funçõesjanela na implementação de filtros FIR, especificamente para sinais de voz.

O projeto de filtros FIR envolve a determinação dos coeficientes do filtro que melhor se aproximam da resposta desejada no domínio da frequência. Funções-janela são utilizadas para limitar o número de coeficientes, tornando o filtro realizável em termos práticos. Neste estudo, são analisadas cinco funções-janela populares: Retangular, Hamming, Hanning, Blackman e Kaiser. Cada uma dessas janelas possui características únicas que influenciam o desempenho do filtro, como a largura da faixa de transição e a atenuação fora da faixa de passagem.

A análise comparativa será realizada através de implementações em Octave, sem o uso de funções proprietárias, garantindo a transparência e a reprodutibilidade dos resultados. Os sinais de voz utilizados para os testes serão amostrados e filtrados pelos filtros projetados, permitindo uma avaliação prática do desempenho de cada função-janela. A discussão dos resultados focará na eficiência espectral, na quantidade de coeficientes necessários e na qualidade do sinal filtrado.

Este artigo está organizado da seguinte forma: a seção de Fundamentação Teórica apresenta os conceitos e as técnicas utilizadas no projeto de filtros FIR; a seção de Metodologia

descreve os procedimentos experimentais; os Resultados e Discussões abordam a análise comparativa; e, finalmente, a Conclusão resume os principais achados e sugere possíveis extensões do trabalho.

II. FUNDAMENTAÇÃO TEÓRICA

Para alcançar o resultado esperado no desenvolvimento deste trabalho, foi essencial adquirir alguns conceitos discutidos durante as sessões tutoriais. Esta seção apresenta as definições teóricas fundamentais para a solução do problema proposto.

A. Filtros FIR

Filtros FIR (*Finite Impulse Response*) são amplamente utilizados em processamento digital de sinais devido às suas vantagens, como a estabilidade incondicional e a facilidade de implementação com resposta linear de fase. O projeto desses filtros é baseado na aproximação direta da resposta em frequência ou da resposta ao impulso desejada do sistema de tempo discreto. Um dos métodos mais simples e eficazes para o projeto de filtros FIR é o método do janelamento.

Muitos sistemas idealizados têm respostas ao impulso não causais e infinitamente longas devido a respostas em frequência constantes por partes ou suaves por partes, com descontinuidades nas extremidades entre as faixas. O método mais direto para obter uma aproximação FIR para tais sistemas consiste em truncar a resposta ao impulso ideal por meio do processo conhecido como janelamento.

1) Método do Janelamento: O método do janelamento é uma técnica prática para projetar filtros FIR, começando com uma resposta em frequência desejada ideal. Essa resposta ideal pode ser representada como $H_d(e^{j\omega})$, onde ω é a frequência angular e $h_d[n]$ é a sequência de resposta ao impulso correspondente, expressa em termos de $H_d(e^{j\omega})$.

O processo de janelamento envolve multiplicar a resposta ao impulso ideal por uma janela finita w[n], resultando em uma resposta ao impulso de comprimento finito h[n] e, portanto, implementável. O sinal h[n] é dado por:

$$h[n] = h_d[n] \cdot w[n]$$

2) Janelas Comuns: As janelas mais comuns utilizadas são a retangular, Hamming, Hanning, Blackman, Kaiser e Bartlett, cada uma com características específicas de atenuação de lóbulos laterais e largura de lóbulo principal, selecionadas com base nos requisitos do sistema de filtragem desejado. O método do janelamento permite a transformação de respostas ideais, frequentemente não causais e infinitamente longas, em respostas ao impulso finitas e realizáveis em sistemas de tempo discreto. A seguir, estão apresentadas as equações dessas principais janelas.

• Janela Retangular:

$$w[n] = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{caso contrário} \end{cases}$$

onde w[n] é a função janela e N é o tamanho da janela.

Janela de Hamming:

$$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

onde w[n] é a função janela, n é a amostra e N é o tamanho da janela.

Janela de Hanning (ou Hann):

$$w[n] = 0.5 \left(1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right), \quad 0 \le n \le N - 1$$

onde w[n] é a função janela, n é a amostra e N é o tamanho da janela.

• Janela de Blackman:

$$w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right), \quad 0 \le n$$

onde w[n] é a função janela, n é a amostra e N é o tamanho da janela.

Janela de Kaiser:

$$w[n] = \frac{I_0 \left(\pi \beta \sqrt{1 - \left(\frac{2n}{N-1} - 1\right)^2} \right)}{I_0(\pi \beta)}, \quad 0 \le n \le N - 1$$

onde w[n] é a função janela, n é a amostra, N é o tamanho da janela, β é um parâmetro que determina a forma da janela, e I_0 é a função modificada de Bessel de primeira espécie e ordem zero.

• Janela de Bartlett (ou Triangular):

$$w[n] = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} < n \le N-1 \end{cases}$$

onde w[n] é a função janela, n é a amostra e N é o tamanho da janela.

3) Comparativo das Janelas: Os filtros FIR podem ser projetados utilizando diferentes funções-janela. Cada janela possui características próprias que influenciam na resolução em frequência e na supressão de vazamento. A Tabela I apresenta um comparativo entre as janelas mais comumente utilizadas.

Tabela I: Comparativo entre as janelas

Janela	Resol. em Freq.	Supressão	Recomendação
Hamming	Moderada	Moderada	Geral
Hanning	Moderada	Moderada	Geral
Retangular	Alta	Baixa	Resolução Crítica
Blackman	Baixa	Alta	Supressão Crítica
Bartlett	Moderada	Moderada	Simplificação
Kaiser	Depende de β	Depende de β	Flexibilidade

A escolha da janela adequada depende das características desejadas para o filtro. A janela de Hamming, por exemplo, é bastante utilizada devido à sua atenuação característica de 53 dB, que é suficiente para um bom resultado na filtragem de áudio ruidoso.

III. METODOLOGIA

Neste estudo, a metodologia segue uma abordagem sistemática para implementar e avaliar filtros FIR (Finite Impulse Response) utilizando diferentes funções-janela. A metodologia está dividida em várias etapas que abrangem desde a leitura dos dados até a análise e validação dos resultados. O diagrama na Figura 1 ilustra o fluxo do processo de filtragem, desde a entrada do sinal até a análise dos resultados.

Figura 1: Procedimento metodológico

A. Filtro FIR

O filtro FIR opera em sinais digitais e é caracterizado por ter uma resposta ao impulso com duração finita. Com isso, ele é próprio para sistemas de memória limitada, BIBO (Bounded Input - Bounded Output) estáveis e com resposta desejada de fase linear. Sua função de transferência é definida por:

$$H(z) = \sum_{n=0}^{M} b_n \cdot z^{-n}$$

onde H(z) é a função de transferência do filtro, b_n são os coeficientes do filtro e M é a ordem do filtro.

B. Filtragem

A filtragem consiste em um processo que envolve a aplicação de uma operação sobre um sinal de entrada, com o objetivo de remover elementos indesejados, como ruídos, deixando apenas a informação desejada. Dessa forma, é possível obter um sinal mais limpo e preciso.

Como pode ser observado na Figura 2, ao passar o sinal de entrada x[n] pelo sistema h[n], obtém-se o sinal filtrado y[n].

Essa operação pode ser representada no domínio de n como uma convolução [1]:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k]$$

onde y[n] é o sinal filtrado, x[n] é o sinal de entrada e h[n] é a resposta ao impulso do filtro. Aplicando a Transformada de Tempo Discreto de Fourier, obtém-se:

$$Y(e^{j\Omega}) = X(e^{j\Omega}) \cdot H(e^{j\Omega})$$

onde $Y(e^{j\Omega})$ é a transformada do sinal filtrado, $X(e^{j\Omega})$ é a transformada do sinal de entrada e $H(e^{j\Omega})$ é a resposta em frequência do filtro.

Figura 2: Diagrama de filtragem.

1) Projeto de Filtro FIR por janelamento: O método de janelamento é o mais simples para o projeto de filtros do tipo FIR. Esse método utiliza a resposta em frequência de um filtro ideal. A resposta em frequência desejada é representada como $D(e^{j\Omega})$, onde Ω é a frequência angular. A sequência de resposta ao impulso correspondente d[n] é obtida pela Transformada Inversa de Fourier de Tempo Discreto:

$$d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} D(e^{j\Omega}) e^{j\Omega n} d\Omega$$

 $D(e^{j\Omega})$ é um filtro passa-baixa retangular com amplitude igual a 1 e limitado pela frequência de corte Ω_c :

$$D(e^{j\Omega}) = \begin{cases} 1, & |\Omega| \le \Omega_c \\ 0, & \Omega_c \le |\Omega| \le \pi \end{cases}$$

Assim, d[n] será:

$$d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} D(e^{j\Omega}) e^{j\Omega n} d\Omega \Rightarrow$$

$$\frac{1}{2\pi jn}[e^{j\Omega_c n} - e^{-j\Omega_c n}] = \frac{\sin(\Omega_c n)}{\pi n}$$

Para efeito de implementação em hardware, é necessário truncar a função d[n], dado que a mesma apresenta duração infinita e funções dessa natureza não podem ser implementadas em meio digital. O truncamento resultará em um filtro aproximado, com características distintas do filtro original.

Além disso, como filtros FIR são filtros causais, o que significa que só levam em consideração um número finito de amostras anteriores do sinal de entrada para calcular o valor do sinal de saída atual, é necessário realizar um deslocamento para que d[n] tenha valores apenas a partir de n=0:

$$h_d[n] = d\left[n - \frac{M}{2}\right]$$

$$h_d[n] = \frac{\sin((n - \frac{M}{2}) \cdot \Omega_c N)}{\pi(n - \frac{M}{2})}$$

Dessa forma, para resolver o problema de truncamento, a função $h_d[n]$ é limitada a partir de uma janela w[n]. Esse processo pode ser expresso analiticamente como:

$$\begin{split} h[n] &= h_d[n] \cdot w[n] \\ DTFT\{h[n]\} &= DTFT\{h_d[n] \cdot w[n]\} \\ H(e^{j\Omega}) &= H_d(e^{j\Omega}) * W(e^{j\Omega}) \end{split}$$

Então, $H(e^{j\Omega})$ representa um filtro passa-baixa aproximado no domínio da frequência.

O ideal seria que a função $h_d[n]$ fosse truncada por uma janela retangular expressa como:

$$w[n] = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & c.c. \end{cases}$$

Entretanto, como não é possível obter essa função na prática, é utilizada uma janela previamente calculada. Dentre elas, as mais comuns são: Hamming, Hanning, Bartlett, Blackman. Para este trabalho, foi escolhida a janela de Hamming, devido à sua atenuação característica de 53 dB ser o suficiente para um bom resultado na filtragem do áudio ruidoso.

2) Janela de Hamming: A janela de Hamming é definida

$$w[n] = \begin{cases} 0.54 - 0.46 \cdot \cos(\frac{2\pi n}{M-1}), & 0 \le n \le M-1\\ 0, & c.c. \end{cases}$$

onde w[n] é a função janela e M é o tamanho da janela.

- 3) Filtro Passa-Baixa: Após definida a janela que será utilizada, pode-se começar o projeto do filtro. As seguintes configurações foram definidas:
 - Frequência de passagem: $f_p = 1500 \text{ Hz}$
 - Frequência de rejeição: $f_r = 2000 \text{ Hz}$
 - Frequência de amostragem: $F_s = 44100 \text{ Hz}$

 - Faixa de transição: $f_t=f_r-f_p\Rightarrow f_t=500~{\rm Hz}$ Frequência de corte: $f_c=\frac{f_r+f_p}{2}\Rightarrow f_c=1750~{\rm Hz}$

O fator de normalização (FN) pode variar de acordo com o projeto, dependendo das características do sistema em questão. Para o filtro passa-baixa FIR desenvolvido, definiu-se FN =2. As frequências normalizadas foram calculadas da seguinte maneira:

$$\Omega_p = 2\pi \cdot \frac{f_p}{F_s} \Rightarrow \Omega_p \approx 0.213 \text{ rad}$$

onde Ω_p é a frequência de passagem normalizada, f_p é a frequência de passagem e F_s é a frequência de amostragem.

$$\Omega_r = 2\pi \cdot \frac{f_r}{F_s} \Rightarrow \Omega_r \approx 0.284 \text{ rad}$$

onde Ω_r é a frequência de rejeição normalizada e f_r é a frequência de rejeição.

$$\Omega_t = 2\pi \cdot \frac{f_t}{F_s} \Rightarrow \Omega_t \approx 0.0712 \text{ rad}$$

onde Ω_t é a faixa de transição normalizada e f_t é a faixa de transição.

$$\Omega_c = 2\pi \cdot \frac{f_c}{F} \Rightarrow \Omega_c \approx 0.249 \text{ rad}$$

onde Ω_c é a frequência de corte normalizada e f_c é a frequência de corte. Com a frequência de corte normalizada calculada, é possível então encontrar a quantidade de coeficientes e a ordem do filtro (N):

$$N = \frac{const}{\Omega_t/2\pi} \Rightarrow N = \frac{8\pi}{\Omega_t} \Rightarrow N = 8\pi/0.0712 \Rightarrow N \approx 353$$

onde N é o número de coeficientes do filtro.

$$M = N - 1 \Rightarrow M = 353 - 1 \Rightarrow M = 352$$

onde M é a ordem do filtro.

- 4) Filtro Passa-Alta: Para o filtro passa-alta, as seguintes configurações foram definidas:
 - Frequência de passagem: $f_p = 4000 \text{ Hz}$
 - Frequência de rejeição: $f_r = 4500 \text{ Hz}$
 - Frequência de amostragem: $F_s = 44100 \text{ Hz}$

 - Faixa de transição: $f_t=f_r-f_p\Rightarrow f_t=500~{\rm Hz}$ Frequência de corte: $f_c=\frac{f_r+f_p}{2}\Rightarrow f_c=4250~{\rm Hz}$

O fator de normalização (FN) novamente pode variar, mas para o filtro passa-alta FIR desenvolvido, definiu-se FN2. As frequências normalizadas foram calculadas da seguinte maneira:

$$\Omega_t = 2\pi \cdot \frac{f_t}{F_s} \Rightarrow \Omega_t \approx 0.1425 \text{ rad}$$

onde Ω_t é a faixa de transição normalizada e f_t é a faixa de transição.

$$\Omega_c = 2\pi \cdot \frac{f_c}{F_s} \Rightarrow \Omega_c \approx 0.6061 \text{ rad}$$

onde Ω_c é a frequência de corte normalizada e f_c é a frequência de corte. A quantidade de coeficientes e a ordem do filtro (N) foram então calculadas:

$$M = \frac{8\pi}{\Omega_{\bullet}} \Rightarrow M = 41.507 \Rightarrow M \approx 42$$

onde M é o número de coeficientes do filtro.

$$N = M - 1 \Rightarrow N = 42 - 1 \Rightarrow N = 41$$

onde N é a ordem do filtro.

Dessa forma, foi possível implementar tanto o filtro passabaixa quanto o filtro passa-alta com a metodologia proposta, utilizando o método de janelamento com a janela de Hamming para obtenção dos coeficientes e avaliação da resposta em frequência dos filtros.

IV. RESULTADOS E DISCUSSÕES

Nesta seção, são apresentados os resultados dos filtros projetados utilizando diferentes janelas. Cada conjunto de resultados inclui o filtro projetado, a resposta em frequência do filtro, os espectros do filtro e do sinal original, e o espectro do áudio filtrado.

A. Filtro Passa-Baixa

Os resultados para os filtros passa-baixa utilizando diferentes janelas são apresentados nas Figuras 3, 4, 5, 6, e 7. Cada figura mostra o filtro projetado para N amostras, a resposta em frequência do filtro, os espectros do filtro e do sinal original, e o espectro do áudio filtrado.

A Figura 3 apresenta os resultados do filtro passa-baixa utilizando a janela de Bartlett. Esta janela é conhecida por sua simplicidade e moderada supressão de vazamento. Na Figura 4, observamos o filtro passa-baixa utilizando a janela de Blackman, que oferece alta supressão de vazamento, ideal para situações onde a precisão na eliminação de frequências indesejadas é crítica. A Figura 5 mostra o filtro passa-baixa com a janela de Hamming, que oferece uma boa atenuação de lóbulos laterais com uma resolução em frequência moderada.

Em seguida, a Figura 6 apresenta os resultados do filtro passa-baixa com a janela de Hanning, semelhante à janela de Hamming, mas com uma ligeira diferença na atenuação dos lóbulos laterais. Por fim, a Figura 7 mostra o filtro passabaixa utilizando a janela Retangular, que possui alta resolução em frequência, mas baixa supressão de vazamento, tornando-a adequada para aplicações onde a resolução crítica é necessária.

Figura 3: Resultados do filtro passa-baixa utilizando a janela de Bartlett.

Figura 4: Resultados do filtro passa-baixa utilizando a janela de Blackman.

Figura 5: Resultados do filtro passa-baixa utilizando a janela de Hamming.

Figura 6: Resultados do filtro passa-baixa utilizando a janela de Hanning.

Figura 7: Resultados do filtro passa-baixa utilizando a janela Retangular.

B. Filtro Passa-Alta

Os resultados para os filtros passa-alta utilizando diferentes janelas são apresentados nas Figuras 8, 9, 10, 11, e 12. Assim como nos filtros passa-baixa, cada figura mostra o filtro projetado para N amostras, a resposta em frequência do filtro, os espectros do filtro e do sinal original, e o espectro do áudio filtrado.

A Figura 8 apresenta os resultados do filtro passa-alta utilizando a janela de Bartlett. A Figura 9 mostra o filtro passa-alta com a janela de Blackman, que é ideal para situações onde a supressão crítica de vazamento é necessária. Na Figura 10, vemos o filtro passa-alta utilizando a janela de Hamming, que proporciona uma boa atenuação de lóbulos laterais.

A Figura 11 apresenta os resultados do filtro passa-alta utilizando a janela de Hanning, semelhante à janela de Hamming, mas com características de atenuação ligeiramente diferentes. Finalmente, a Figura 12 mostra o filtro passa-alta utilizando a janela Retangular, que oferece alta resolução em frequência.

Figura 8: Resultados do filtro passa-alta utilizando a janela de Bartlett.

Figura 9: Resultados do filtro passa-alta utilizando a janela de Blackman.

Figura 10: Resultados do filtro passa-alta utilizando a janela de Hamming.

Figura 11: Resultados do filtro passa-alta utilizando a janela de Hanning.

Figura 12: Resultados do filtro passa-alta utilizando a janela Retangular.

V. Conclusão

Neste estudo, foi analisado o desempenho de filtros FIR projetados com diferentes janelas. A escolha do melhor filtro depende do uso específico, mas em geral, as janelas de Hamming e Hanning mostraram-se bastante eficazes devido à sua boa atenuação de lóbulos laterais e resposta em frequência moderada. Essas janelas são recomendadas para aplicações gerais de filtragem de sinais.

A escolha do número de amostras N também é crucial para o desempenho do filtro. Um número maior de amostras N resulta em uma maior resolução em frequência, mas aumenta a complexidade computacional. Portanto, é necessário encontrar um equilíbrio entre a resolução desejada e a capacidade de processamento disponível. Para os filtros analisados, um valor típico de N foi de aproximadamente 350 amostras.

Os filtros FIR projetados neste estudo têm várias aplicações reais, incluindo a equalização de áudios. A equalização permite ajustar as componentes de frequência de um sinal de áudio, melhorando a qualidade sonora e atendendo às preferências do ouvinte.

Na conclusão, podemos ajustar os eixos do áudio e fazer um método de escolha de janela de acordo com a atenuação, parâmetros, etc. Além disso, como projeto futuro, seria interessante calcular o ripple nas faixas de passagem e transição para uma análise mais detalhada do desempenho dos filtros.

Em resumo, a metodologia proposta e os resultados obtidos demonstram a eficácia dos filtros FIR com diferentes janelas na filtragem de sinais digitais. A escolha adequada da janela e do número de amostras é essencial para otimizar o desempenho do filtro para a aplicação desejada.

REFERÊNCIAS

[1] A. V. Oppenheim and R. W. Schafer, "Processamento em tempo discreto de sinais," <u>Tradução Daniel Vieira. 3ª ed.-São Paulo: Pearson Education do Brasil, 2012.</u>