

Cinética con ecuación del movimiento	PRACTICA	# 6
	FECHA	12/10/2023

1. Objetivo

A través del software MATLAB, abordaremos problemas de cinética utilizando los conceptos que hemos aprendido en clase, con el objetivo de aplicarlos de manera más práctica y efectiva en esta plataforma.

2. Marco Teórico

• Dinámica y Cinética:

La dinámica es una rama de la física que se enfoca en el estudio de los movimientos de los objetos y las fuerzas que los impulsan. La cinética, en particular, se centra en entender y predecir cómo los objetos cambian su posición, velocidad y aceleración en función del tiempo y las fuerzas involucradas.

• Segunda Ley de Newton:

La ecuación "Fuerza = Masa x Aceleración" representa la segunda ley de Newton, que establece que la aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre él e inversamente proporcional a su masa. Esta ley es fundamental para comprender cómo los objetos reaccionan a las fuerzas que experimentan.

• Tipos de Fuerzas:

En esta práctica, se explorarán varios tipos de fuerzas, como la fuerza gravitatoria, la fricción, la tensión en cuerdas o resortes, entre otras. Comprender la magnitud y la dirección de estas fuerzas es esencial para aplicar la segunda ley de Newton de manera efectiva.

3. Formulación

Para esta practica empleamos un nuevo comando solve()

Este comando nos permite resolver ecuaciones, buscando una variable, los parámetros se ponen de la siguiente forma

```
a = solve ("Ecuación", "Variable a despejar");
```

La función nos devuelve el valor de la variable despejado de la ecuación.

4. Implementación en MATLAB y Resultados

• **Problema 13.7:**

```
Código Utilizado
%% Definicion de Variables
g = 9.807; % m/s^2
m = 250; %Kg
w = m*g; %N
d = 45; %m
v = 20*(1/3600)*(1000); %m/s
%% Solucion de la Problematica
t = d/v;
syms a;
a = solve(-v^2 == 2*a*d, a);
F = m*a;
% Display the results
fprintf('\n Aceleracion = %1.2f m/s^2', a);
fprintf('\n Fuerza F horizontal = %1.2f N', F);
                                 Resultados
                      >> Practica6
                       Aceleracion = -0.34 \text{ m/s}^2
                       Fuerza F horizontal = -85.73 N>>
```

• **Problema 13.9:**

```
Código Utilizado
%% Definicion de Variables
% Aceleracion
g = 9.807; % m/s^2
% Masa (Kg)
m_123 = 30000;
m_R = 12000;
```



```
% Fuerzas (N)
w 123 = m 123*q;
w R = m R*g;
F h2o = 2000;
F rem = 1500;
% Velocidad (m/s)
v = 4;
%% Solucion de la Problematica
syms F T; syms a;
F T = solve(F T - F rem - 3*F h2o == 0, F T);
a = solve(F T - F rem - 2*F h2o == (m R + 2 * m 123)* a, a);
% Display the results
fprintf('\n Aceleracion = %1.4f \text{ m/s}^2', a);
fprintf('\n Fuerza F T horizontal = %1.2f N', F T);
                                 Resultados
                     Aceleracion = 0.0278 \text{ m/s}^2
                     Fuerza F T horizontal = 7500.00 N>>
```

• Problema 13.71:

```
Código Utilizado
%% Definicion de Variables
% Aceleracion
q = 9.807; % m/s^2
% Masa (Kg)
m = 5000;
% Fuerzas (N)
w = m*g;
% Velocidad (m/s)
v = 350*(1/3600)*(1000);
% Angulo (°)
theta = 15;
%% Solucion de la Problematica
syms F L; syms a;
F L = w/cosd(theta);
r = (v^2*m)/(sind(theta)*F L);
% Display the results
fprintf('\n Radio = %1.4f m', r);
fprintf('\n Fuerza de elevacion L = %1.2f N', F L);
```

Resultados

Radio = 3597.0167 m Fuerza de elevación L = 50764.77 N>>

5. Conclusión

Se ha cumplido con éxito el objetivo de la práctica, y he tenido la oportunidad de fortalecer significativamente mis habilidades en el uso del software. Es impresionante la velocidad y precisión con la que MATLAB resuelve problemas matemáticos, además de la amplia variedad de funciones que ofrece.