

MSC Embedded Fibrin Loading of Poly(propylene) Fumarate Scaffolds for Bone Tissue Engineering: A SCID Mouse Model

WEXNER MEDICAL CENTER

Authors: Megan Posukonis¹, Briana Swan¹, Ruchi Mishra¹, Briana Roux², Eric Brey² David Dean¹
Institutions: ¹Department of Plastic Surgery, The Ohio State University, Columbus, OH; ²Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL

Introduction

Background:

3D-printed poly(propylene fumarate) (PPF) scaffolds have been developed for bone regeneration to provide structural support for tissue ingrowth and development. Fibrin gels have been shown to increase vascularization *in vivo*^{1,2}. The vascularization of the newly formed bone is essential for tissue survival and function¹. To promote and enhance this, we explored incorporating mesenchymal stem cells (MSCs) into the fibrin matrix.

Hypothesis:

We hypothesize that loading the PPF scaffold with a fibrin hydrogel as well as an MSC cell spheroid aggregate will promote tissue invasion and vascularization in an *in vivo* SCID mouse model.

Objective:

Develop a method to load the fibrin and cell aggregate into the scaffold such that these constructs contain equal volumes of the hydrogel as well as a viable aggregate at the time of surgical implantation in the rodent model. Confirm through histology this method worked.

Materials and methods:

Scaffold Preparation

- Scaffolds were printed and washed with acetone, 70% EtOH, and distilled water.
- Scaffolds were post-cured in a UV box for 8 hours and dried in an oven at 37°C before loading.

Aggregate Formation

• Cell aggregates were created using P3 canine MSCs at 5000 cells per aggregate using a combination of methylcellulose and DMEM and left to incubate at least 24 hours prior to suspension in fibrin gel.

Preparation of Fibrin Gel

- Scaffolds were loaded in 3 layers. Layer 1: 10 uL of 10 mg/mL fibrinogen (Fg) + 0.5 uL 100 U/mL Thrombin (Tb). Layer 2: cell aggregate suspended in ~1 uL of PBS. Layer 3: 14 uL of 2 mg/mL Fg + 1 uL of 100 U/mL Tb.
- Each layer was allowed to incubate for 15-20 minutes in order for gel to form a firm but elastic layer.

Implantation of Loaded Constructs

- Loaded scaffolds were implanted dorsally on 5 male outbred ICR mice using subcutaneous pockets.
- Explants were retrieved post formalin perfusion after 1 week of growth and analyzed with H&E and Masson's Trichrome Staining.

Results

Preliminary Imaging of Scaffolds Before Implantation

Hope to have microscopy images of fibrin loaded scaffold here. I emailed Ruchi, hopefully she can get them to me since she never uploads anything to box. If I can't get them, maybe best to use pictures you uploaded last December? Either that or I can include solidworks pics for future directions.

Empty Scaffold

H&E Staining After 1 Week of Growth

Surrounding Tissue

Scaffold Interior

Masson's Trichrome Staining After 1 Week of Growth

Full Scaffold View

Surrounding Tissue

Scaffold Interior

Conclusions

- The cell aggregates are present in about 50% of loaded scaffolds immediately after loading.
- Only about 50% of scaffolds that were loaded had the full amount of fibrin gel at at the time of imaging (pre-implant).
- Few if any scaffolds still contained both gel and aggregate at the time of implantation.
- The current loading method is not adequate for preparing implants.

Future Directions

- Adjust the scaffold geometry to include more PPF surface area for gel to cling to (scaffold becomes more matrix-like, shown below)
- Adjust scaffold geometry to include a cap at one end, preventing gel from possibly leaking out prior to formation (shown below)
- Increase concentration of fibrinogen in mixture to create a firmer gel
- CD31, alpha-smooth muscle actin staining, and lectin imaging to analyze formation of vasculature
- 1 week SCID mouse model and 3 week SCID mouse model studies

Alternate Scaffold Geometry: Matrix, Section View

Alternate Scaffold Geometry: Cap

References

Alternate Scaffold Geometry: Matrix

¹Jiang,B., Waller, T.M., Larson, J.C., Appel, A.A., Brey, E.M. Fibrin-Loaded Porous Poly(Ethylene Glycol) Hydrogels as Scaffold Materials for Vascularized Tissue Formation. Tissue Eng Part A, 224, 19, 2013.

²Brey, E.M., McIntire, L.V., Johnston, C.M., Reece, G.P., and Patrick, C.W., Jr. Three-dimensional, quantitative analysis of desmin and smooth muscle alpha actin expression during angiogenesis. Ann Biomed Eng 32, 1100, 2004.

Acknowledgments

We would like to acknowledge Charlie Martin, Dr. Stephanie Lewis, and the ULAR staff for assistance in developing our surgical technique. We also thank the Histology/IHC lab and the CMIF for assistance in processing our histology samples.