ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

KHOA KHOA HỌC MÁY TÍNH

PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

BÀI TẬP VỀ NHÀ NHÓM 4

Môn học: Phân tích và thiết kế thuật toán

Sinh viên thực hiện: Đặng Quốc Cường Nguyễn Đình Thiên Quang (Nhóm 1) Giảng viên môn học: Nguyễn Thanh Sơn

Ngày 6 tháng 12 năm 2024

Mục lục

1	Bài 1: Trò Chơi Đối Kháng	2
	.1 Phương Pháp Giải:	. 2
	.2 Mã Giả:	. 2
	.3 Phân Tích Độ Phức Tạp:	. 3
2	Bài 2: Trò Chơi Đồng Xu	3
	.1 Phương Pháp Giải:	. 3
	.2 Mã Giả:	. 3
	.3 Phân Tích Độ Phức Tạp:	. 4

1 Bài 1: Trò Chơi Đối Kháng

1.1 Phương Pháp Giải:

- $p \le 10$:
 - Sử dụng phương pháp backtracking (nhánh cận) để thử tất cả các trạng thái và kiểm tra trạng thái thắng/thua.
- $p \le 10^6$:
 - Áp dụng quy hoạch động với mảng d
p để lưu trạng thái thắng/thua với mỗi giá trị của p.
- $p > 10^6$:
 - Sử dụng chiến thuật:
 - * Nếu p là lẻ, người chơi luôn có lợi thế vì có hai nước đi khả thi (có thể chứng minh).
 - * Nếu p là chẵn, trạng thái thắng/thua phụ thuộc vào p/2.

1.2 Mã Giả:

```
Backtracking (p \le 10):
function canWin(p):
    if p == 0:
        return False
    if p is odd:
        return not canWin(p-1) or not canWin(p+1)
    else:
        return not canWin(p / 2)
Quy Hoạch Động (p \le 10^6):
dp = [-1] * (10^6 + 10)
function canWin(p):
    if p == 0:
        return False
    if dp[p] != -1:
        return dp[p]
    if p is odd:
        dp[p] = not canWin(p - 1) or not canWin(p + 1)
    else:
        dp[p] = not canWin(p / 2)
    return dp[p]
```

Chiến Thuật Lý Thuyết Trò Chơi $(p > 10^6)$:

```
function canWinTheory(p):
    while p > 0:
        if p is odd:
            return True
        p = p / 2
    return False
```

1.3 Phân Tích Độ Phức Tạp:

- Backtracking: $\mathcal{O}(2^p)$, thử tất cả các trạng thái.
- Quy Hoạch Động: $\mathcal{O}(p)$, mỗi trạng thái chỉ tính một lần.
- Lý Thuyết Trò Chơi: $\mathcal{O}(\log p)$.

2 Bài 2: Trò Chơi Đồng Xu

2.1 Phương Pháp Giải:

- $n \le 1000$:
 - Sử dụng quy hoạch động để kiểm tra trạng thái thắng/thua cho mỗi giá trị n.
- $n \le 10^{18}$:
 - Sử dụng chiến thuật với công thức:

$$n \mod (k+1) \neq 0 \implies A \text{ thắng.}$$

- Cách làm:
 - 1. Tìm tất cả các ước d của n, tức là các số nguyên dương d sao cho $n \mod d = 0$.
 - 2. Với mỗi ước d, nếu k+1=d, thì loại bỏ k=d-1.
 - 3. Tính số lương k thỏa mãn:

Tổng số k = n - 1 - số lượng ước d (thỏa mãn d - 1 > 0).

2.2 Mã Giả:

```
Quy Hoạch Động (n \le 1000):
```

```
dp = [False] * (n + 1)
function countWinningK(n):
    count = 0
    for k in range(1, n + 1):
        for x in range(1, k + 1):
```

```
if n - x \ge 0 and not dp[n - x]:
                dp[n] = True
                break
        if dp[n]:
            count += 1
    return count
Chiến Thuật Lý Thuyết Trò Chơi (n \le 10^{18}):
function countWinningK(n):
    divisors = []
    for d in range(1, sqrt(n) + 1):
        if n % d == 0:
            divisors.append(d)
        if d != n // d:
            divisors.append(n // d)
    total_k = n - 1
    for d in divisors:
        if d - 1 > 0:
            total_k -= 1
    return total_k
```

2.3 Phân Tích Độ Phức Tạp:

- Quy Hoạch Động: $\mathcal{O}(n \cdot k)$.
- Lý Thuyết Trò Chơi: $\mathcal{O}(\sqrt{n})$.