Particle spectrograph

Wave operator and propagator

	$\sigma^{\sharp 1}_{1^+lphaeta}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1-lpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_1^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	$\frac{6k^2(2r_1+r_5)+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$-\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{k^2 \left(6 k^2 \left(2 r_1 + r_5\right) + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 \left(2 r_1 + r_5\right) \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_1^{\!\#1}\! \uparrow^lpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_{1}^{\! ext{#2}}\dagger^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

	_		
${\mathscr A}_{2^{\text{-}}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
${\mathscr A}_{2^+lphaeta}^{\#1}f_{2^+lphaeta}^{\#1}$	<u>£1</u>	$\frac{ikt_1}{\sqrt{2}}$	0
	$\mathcal{A}_{2}^{\#1} + ^{\alpha \beta}$	$f_2^{#1} + \alpha \beta$	$\mathcal{A}_{2}^{#1} + \alpha \beta \chi$
$f_{0}^{\#2} \mathcal{A}_{0}^{\#}$			

Source constraints						
SO(3) irreps	Fundamental fields	Multiplicities				
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1				
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1				
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3				
$\tau_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3				
	$2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = =$					
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$					
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$					
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$					
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$					
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$					
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$					
$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$						
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$					
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$					
	6 $i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -					
	2 $\eta^{\alpha\beta}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi}_{\chi}$ -					
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}{}_{\delta}) == 0$					
Total constraints/gauge generators: 16						

										$\mathcal{A}_{0}^{\#1}$		$f_{0+}^{#1}$
*2	0	0	0	$i k t_1$	0	0	0	$\mathcal{A}_{0}^{\#1}$		-t ₁	_	$\sqrt{2} kt_1$
$\alpha f_1^{#2}$								$f_{0}^{#1}$		$i\sqrt{2} kt$	1 -2	$2k^2t_1$
$^{lpha}f_{1}^{\#1}$	0	0	0	0	0	0	0	$f_{0+}^{#2}$		0		0
$\mathcal{A}_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\mathcal{A}_0^{\#1}$	†	0		0
${\mathcal A}_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath} k t_1$	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	٥ عالم	0 1	$\frac{2}{2 k^2 r_1 + t_1}$	
				k^2				$\tau_{2}^{\#1}\alpha\beta$	2 i √2 k	$\frac{4k^2}{(1+2k^2)^2 t_1}$	0	
$f_{1}^{\#1}\!$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$i k (t_1 + t_2)$	$_{1}+t_{2}$		((, 5			
$f_1^{\#1}$	$-\frac{ik(t_1}{3}$	$\frac{1}{3}\vec{l}k(t)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0	$\sigma_{2}^{\#1}{}_{+}$	$\frac{2}{(1+2)^{2})^{2}}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\frac{2}{\pi}$	$\frac{t_1-2t_2}{3\sqrt{2}}$, 2 2	$_1 + t_2)$					l	•		Χθχ	
${\mathscr{A}}_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1^{-1}}{3}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0		$\sigma_{2}^{\#1} + ^{\alpha \beta}$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	
	4 t ₂)							$\sigma_{0^{\bar{-}}}^{\#1}$	0	0	0	$\frac{1}{t_2}$
	· t ₁ +							$\tau_{0}^{\#2}$	0	0	0	0
${\mathscr{A}}_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6} (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0	${\mathfrak c}_0^{\#1}$	$i \sqrt{2} k$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
	$\beta \frac{1}{6} (6 k^2)$	β	β	α	α	α	α	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\mathcal{A}_1^{\#1} + ^{lphaeta}$	$\mathcal{A}_1^{\#2} + ^{\alpha\beta}$	$f_1^{\#1} + \alpha\beta$	$\mathcal{A}_{1}^{\#_{1}}$ †	$\mathcal{A}_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}1}}^{\#_1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$		i	i		+
	R	R	f_1^{i}	G)	(h)	•	_		$\sigma_0^{\#1}$ †	τ ^{#1} +	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

Quadratic (free) action
S==
$\iiint (\frac{1}{6} (6t_1 \mathcal{A}_{\alpha}^{\alpha i} \mathcal{A}_{i\theta}^{\theta} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 12t_1 \mathcal{A}_{\alpha\theta}^{\theta} \partial_i f^{\alpha i} + 12$
$t_1 \mathcal{A}_{i\theta}^{\theta} \partial^i f^{\alpha}_{\alpha} - 6t_1 \partial_i f^{\theta}_{\theta} \partial^i f^{\alpha}_{\alpha} - 6t_1 \partial_i f^{\alpha i} \partial_{\theta} f^{\theta}_{\alpha} +$
$12 t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f_{i}^{\theta} + 4 t_1 \mathcal{R}_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4 t_2 \mathcal{R}_{i\theta\alpha} \partial^{\theta} f^{\alpha i} -$
$4t_1\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i}+2t_2\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i}-4t_1\partial_{\alpha}f_{\theta i}\partial^{\theta}f^{\alpha i}-$
$t_2 \partial_{\alpha} f_{\theta i} \partial^{\theta} f^{\alpha i} + 2 t_1 \partial_i f_{\alpha \theta} \partial^{\theta} f^{\alpha i} - t_2 \partial_i f_{\alpha \theta} \partial^{\theta} f^{\alpha i} +$
$4t_1 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + 2t_1 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} -$
$t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 2 (t_1 + t_2) \mathcal{A}_{\alpha i\theta} (\mathcal{A}^{\alpha i\theta} + 2 \partial^{\theta} f^{\alpha i}) +$
$2 \mathcal{A}_{\alpha\theta \iota} ((t_1 - 2t_2) \mathcal{A}^{\alpha \iota \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha \iota}) -$
$8r_1\partial_{\beta}\mathcal{A}_{\alpha_I\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_I} + 4r_1\partial_{\beta}\mathcal{A}_{\alpha\theta_I}\partial^{\theta}\mathcal{A}^{\alpha\beta_I} -$
$16r_1\partial_{\beta}\mathcal{A}_{_{I}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime}-4r_1\partial_{_{I}}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime}+$
$4 r_1 \partial_{\theta} \mathcal{R}_{\alpha\beta i} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 4 r_1 \partial_{\theta} \mathcal{R}_{\alpha i\beta} \partial^{\theta} \mathcal{R}^{\alpha\beta i} + 6 r_5 \partial_{i} \mathcal{R}_{\theta \kappa}^{\kappa}$
$\partial^{\theta}\mathcal{A}^{\alpha_{l}}_{\alpha}-6r_{5}\partial_{\theta}\mathcal{A}_{l}^{\kappa}_{\kappa}\partial^{\theta}\mathcal{A}^{\alpha_{l}}_{\alpha}-6r_{5}\partial_{\alpha}\mathcal{A}^{\alpha_{l}\theta}\partial_{\kappa}\mathcal{A}_{l}^{\kappa}_{\theta}+$
$12 r_5 \partial^{\theta} \mathcal{A}^{\alpha_{l}}_{\alpha} \partial_{\kappa} \mathcal{A}_{l\theta}^{\kappa} + 6 r_5 \partial_{\alpha} \mathcal{A}^{\alpha_{l}\theta} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa} -$
$12 r_5 \partial^{\theta} \mathcal{A}^{\alpha_l}_{\alpha} \partial_{\kappa} \mathcal{A}_{\theta_l}^{\kappa}))[t, x, y, z] dz dy dx dt$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$				
Spin:	1				
Parity:	Even				

Massive partic	(No	
Pole residue:	ma	
Polarisations:	5	ssle
Square mass:	ss pa	
Spin:	2	rtic
Parity:	Odd	les)

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$