Symulacja procesów biologicznych

Ćwiczenie: 3

Autor: Wojciech Laskowski, Bioinformatyka, rok III

Wprowadzenie

Celem ćwiczenia było wykonanie lokalnej i globalnej analizy wrażliwości dla deterministycznego modelu opisującego dynamikę białka p53 w komórkach. Analiza miała na celu określenie, które parametry modelu mają największy wpływ na poziom białka p53 w czasie, w dwóch scenariuszach biologicznych:

- Scenariusz A (zdrowa komórka): brak uszkodzeń DNA, aktywny PTEN, brak siRNA
- Scenariusz C (komórka nowotworowa): uszkodzone DNA, nieaktywny PTEN, brak siRNA

Do analizy wykorzystano wcześniej przygotowany solver RK4, ale został ulepszony w porównaniu z ćwiczeniami 1 na potrzeby ćwiczenia – daje w tym przypadku lepsze wyniki.

Opis metod

Metoda lokalnej analizy wrażliwości

Lokalna analiza opiera się na funkcjach wrażliwości (ang. sensitivity functions), które mierzą, jak bardzo zmienia się poziom białka p53 w odpowiedzi na zmianę wartości wybranego parametru.

Aproksymacja pochodnych została wykonana numerycznie jako: $dS/d\theta \approx (S(\theta+\Delta\theta)-S(\theta-\Delta\theta))/(2*\Delta\theta)$ Względna czułość (znormalizowana):

 $S_{ij} = (\theta_{j} / S_{i}) * (\partial S_{i} / \partial \theta_{j})$

Metoda globalna (wskaźniki Sobola)

Wskaźniki Sobola analizują wpływ zmienności danego parametru w kontekście możliwych wartości. Każdy parametr losowano z przedziału ±20% wokół wartości początkowej. Dla każdego zestawu parametrów obliczano średni poziom p53, a następnie określano współczynnik Sobola:

 $S_i = Var(Y_i) / Var(Y)$

Gdzie Y_i to średni poziom p53 po losowej zmianie tylko parametru i, a Y to poziom p53 dla całej populacji próbek.

Ranking parametrów

Dla obu metod wykonano dwa typy rankingów:

- średni wpływ w czasie (0-48h)
- wpływ w chwili końcowej (48h)

Wyniki rankingów są zgodne z oczekiwaniami: najistotniejszy wpływ ma parametr p1 (produkcja p53), natomiast najmniejszy k3 lub p3 (zależnie od scenariusza).

Wizualizacje wyników

W ramach analizy zostało wygenerowanych łącznie 12 wykresów. Poniżej przedstawiono zestawienie plików oraz ich zawartość:

Wykresy dla scenariusza "normal"

- normal_local_d1_change.png: Zmiana parametru d1 (najbardziej wrażliwy lokalnie) o ±20% analiza lokalna
- normal_local_k3_change.png: Zmiana parametru k3 (najmniej wrażliwy lokalnie) o ±20% analiza lokalna
- normal_global_p1_change.png: Zmiana parametru p1 (najbardziej wrażliwy globalnie) o ±20% analiza globalna
- normal_global_p3_change.png: Zmiana parametru p3 (najmniej wrażliwy globalnie) o ±20% analiza globalna
- normal_sensitivity.png: Funkcje wrażliwości dla parametru najbardziej i najmniej wrażliwego lokalnie
- normal_global_sensitivity.png: Funkcje wrażliwości globalnej w czasie dla top/bottom parametru (Sobol podobna)

Wykresy dla scenariusza "cancerous"

- cancerous_local_d1_change.png: Zmiana parametru d1 (najbardziej wrażliwy lokalnie) o ±20%
 analiza lokalna
- cancerous_local_p3_change.png: Zmiana parametru p3 (najmniej wrażliwy lokalnie) o ±20% analiza lokalna
- cancerous_global_p1_change.png: Zmiana parametru p1 (najbardziej wrażliwy globalnie) o ±20% – analiza globalna
- cancerous_global_k1_change.png: Zmiana parametru k1 (najmniej wrażliwy globalnie) o ±20%
 analiza globalna
- cancerous_sensitivity.png: Funkcje wrażliwości dla parametru najbardziej i najmniej wrażliwego lokalnie
- cancerous_global_sensitivity.png: Funkcje wrażliwości globalnej w czasie dla top/bottom parametru (Sobol podobna)

Wnioski

- 1. Parametr p1 (produkcja białka p53) ma dominujący wpływ na poziom białka zarówno lokalnie, jak i globalnie.
- 2. Parametry: k3, p3 czy k2 wykazują bardzo małą czułość, co sugeruje, że nie wpływają silnie na dynamikę p53 w danym modelu.
- 3. Kolejność parametrów w rankingach zmienia się tylko nieznacznie pomiędzy metodami i scenariuszami, co sugeruje, że model jest wiarygodny.
- 4. Warianty ±20% potwierdzają, że zmiany wartości parametrów o małej czułości praktycznie nie wpływają na wynik.

Wykresy znajdują się w repozytorium github

Standardowo jak przy poprzednich raportach załączam opisy parametrów:

Parametr Znaczenie		Opis biologiczny
p1	produkcja p53	Stała szybkość produkcji białka p53 w komórce.
p2	produkcja MDM2	Szybkość transkrypcji MDM2 indukowana przez p53.
р3	produkcja PTEN	Szybkość transkrypcji PTEN aktywowana przez p53.

Parametr Znaczenie		Opis biologiczny
d1	degradacja p53	Zależna od poziomu MDM2 w jądrze. Im więcej MDM2, tym silniejsze hamowanie p53.
d2	degradacja MDM2	Degradacja MDM2 (zarówno jądrowego, jak i cytoplazmatycznego).
d3	degradacja PTEN	Zmniejszenie ilości PTEN z czasem.

Parametr Znaczenie		Opis biologiczny
k1	transport MDM2	Kontroluje przepływ MDM2 z cytoplazmy do jądra.
k2	aktywacja transkrypcji	Stała nasycenia dla aktywacji transkrypcji MDM2/PTEN przez p53.
k3	hamowanie transportu MDM2	Zależność od poziomu PTEN — hamuje migrację MDM2.

Modyfikacja	Znaczenie	Efekt w modelu
dna_damage	uszkodzenie DNA	Gdy True, stabilizacja p53 przez obniżenie d2. Gdy False, degradacja MDM2 (a tym samym p53) jest silniejsza.
siRNA	terapia siRNA	Gdy True, tłumiona produkcja MDM2 (p2 *= 0.02).
pten_active	aktywność PTEN	Gdy False, wyłączona jest produkcja PTEN (p3 = 0).