18.404/6.840 Lecture 23

shrink me →

Last time:

- $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete
- Thus $EQ_{REX↑}$ ∉ PSPACE
- Oracles and P versus NP

Today:

- Probabilistic computation
- The class BPP
- Branching programs

Probabilistic TMs

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{b \text{ accepts}} Pr[branch b]$$

Pr[M rejects w] = 1 - Pr[M accepts w]

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A] \leq \epsilon$ i.e., $w \in A \to \Pr[M]$ rejects $w \in A \to \Pr[M]$ accepts $w \in A \to P$

The Class BPP

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: If M_1 is a poly-time PTM with error $\epsilon_1 < ^1/_2$ then, for any $0 < \epsilon_2 < ^1/_2$, there is an equivalent poly-time PTM M_2 with error ϵ_2 . Can strengthen to make $\epsilon_2 < 2^{-\mathrm{poly}(n)}$.

Proof idea: $M_2 =$ "On input w

1. Run M_1 on w for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

NP and BPP

Check-in 23.1

Which of these are known to be true? Check all that apply.

- (a) BPP is closed under union.
- (b) BPP is closed under complement.
- (c) $P \subseteq BPP$
- (d) $BPP \subseteq PSPACE$

Example: Branching Programs

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated start node.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function $f: \{0,1\}^m \to \{0,1\}$: Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For $x_1 = 1$, $x_2 = 0$, $x_3 = 1$

BPs are equivalent if they describe the same Boolean function.

Defn: $EQ_{BP} = \{\langle B_1, B_2 \rangle | B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$

Theorem: $EQ_{\rm BP}$ is coNP-complete (on pset 6)

 $EQ_{\mathrm{BP}} \in \mathrm{BPP}$?

Instead, consider a restricted problem.

Read-once Branching Programs

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: $EQ_{ROBP} = \{\langle B_1, B_2 \rangle | B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Theorem: $EQ_{ROBP} \in BPP$

Check-in 23.2

Assuming (as we will show) that $EQ_{ROBP} \in BPP$, can we use that to show $EQ_{BP} \in BPP$ by converting branching programs to read-once branching programs?

- (a) Yes, there is no need to re-read inputs.
- (b) No, we cannot do that conversion in general.
- (c) No, the conversion is possible but not in polynomial-time.

Not read-once

$EQ_{ROBP} \in BPP$

Theorem: $EQ_{ROBP} \in BPP$

Proof attempt: Let $M = \text{"On input } \langle B_1, B_2 \rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What k to chose?

If $B_1 \equiv B_2$ then they always agree so $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] = 1$ If $B_1 \not\equiv B_2$ then want $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] \leq {}^1/_3$ so want $\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq {}^2/_3$.

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments. That would require exponentially many samples to have a good chance of finding a disagreeing assignment and thus would require $k > (2/3)2^m$. But then this algorithm would use exponential time.

Try a different idea: Run B_1 and B_2 on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Label edges from nodes

Label nodes from incoming edges

Arithmetization Method

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:
Start node labeled 1

Works because the BP is acyclic. The execution path can enter a node at most one time.

Non-Boolean Inputs

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Recall labeling rules:

Check-in 23.3

What is the output for this branching program using the arithmetized interpretation if $x_1 = 1$, $x_2 = y$?

(a)
$$(1 - y)$$

(b)
$$(y+1)$$

Quick review of today

- 1. Defined probabilistic Turing machines
- 2. Defined the class BPP
- 3. Sketched the amplification lemma
- 4. Introduced branching programs and read-once branching programs
- 5. Started the proof that $EQ_{ROBP} \in BPP$
- Introduced the arithmetization method