Специальные методы моделирования Типовой расчет № 2 «Моделирование непрерывных распределений»

Следуя Указаниям выполнить следующие Задания.

Задание 1. Моделирование показательного распределения.

Получить две выборки из N = 200 псевдослучайных чисел, распределенных по показательному закону с параметром λ :

- 1) используя метод обратной функции распределения и псевдослучайные числа, равномерно распределенные на интервале (0,1);
- 2) используя одну из функций Python, например, numpy.random.exponential $(1/\lambda, N)$. Полученные выборки упорядочить по возрастанию, построить по ним группированные выборки в форме таблицы 1 из **Указания**.

Проверить при уровне значимости $\alpha = 0.05$ гипотезы о соответствии каждой выборки теоретическому распределению.

Задание 2. Моделирование гиперпоказательного распределения.

Получить выборку из N = 200 псевдослучайных чисел, распределенных по гиперпоказательному закону с параметрами (λ_1 , λ_2 , λ_3 , q_1 , q_2 , q_3), используя метод дискретной суперпозиции, псевдослучайные числа, равномерно распределенные на интервале (0,1) и формулы из лекций.

Полученную выборку упорядочить по возрастанию, построить по ней группированную выборку в форме таблицы 1 из **Указания**.

Проверить при уровне значимости $\alpha = 0.05$ гипотезу о соответствии выборки теоретическому распределению.

Указания

В разделе отчета Краткие теоретические сведения для каждого распределения привести выражения для функции распределения, плотности, математического ожидания, дисперсии. В этом разделе должны быть описаны используемые методы моделирования непрерывных распределений (метод обратной функции распределения на примере показательного распределения, метод дискретной суперпозиции на примере гиперпоказательного распределения).

В Задании 1 рассмотреть показательное распределение:

функция распределения
$$F(x) = \begin{cases} 0, x \le 0; \\ 1 - e^{-\lambda x}, x > 0; \end{cases}$$
 плотность распределения
$$f(x) = \begin{cases} 0, x < 0; \\ \lambda e^{-\lambda x}, x \ge 0; \end{cases}$$
 математическое ожидание
$$\frac{1}{\lambda};$$
 дисперсия
$$\frac{1}{\lambda^2}.$$

В Задании 2 рассмотреть гиперпоказательное распределение:

функция распределения
$$F(x) = \begin{cases} 0, x \leq 0; \\ 1-q_1 e^{-\lambda_1 x} - q_2 e^{-\lambda_2 x} - q_3 e^{-\lambda_3 x}, x > 0; \end{cases}$$
 $\lambda_i > 0$, $q_1 + q_2 + q_3 = 1$; плотность распределения $f(x) = \begin{cases} 0, x < 0; \\ q_1 \lambda_1 e^{-\lambda_1 x} + q_2 \lambda_2 e^{-\lambda_2 x} + q_3 \lambda_3 e^{-\lambda_3 x}, x \geq 0; \end{cases}$ математическое ожидание $q_1 \lambda_1^{-1} + q_2 \lambda_2^{-1} + q_3 \lambda_3^{-1};$ дисперсия $q_1 \lambda_1^{-2} + q_2 \lambda_2^{-2} + q_3 \lambda_3^{-2}.$

В разделе отчета **Результаты расчетов** для каждого задания и каждой выборки должны иметься 2 таблицы 20×10 (20 строк, 10 столбцов): с полученной выборкой и упорядоченной по возрастанию выборкой. Затем нужно

1) составить группированную выборку в форме следующей таблицы:

Интервал	n_i	w_i	p_i	$ w_i - p_i $
$[a_{\scriptscriptstyle 0},a_{\scriptscriptstyle 1}]$				
$(a_1,a_2]$				
$[a_{\scriptscriptstyle m-1},a_{\scriptscriptstyle m}]$				
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$	$\sum_{i=1}^{m} p_i$	$\Delta_{ ext{max}}$

Таблица 1. Сравнение относительных частот и теоретических вероятностей

где $m=1+[\log_2 N],\ n_i$ — число значений выборки x_j , попавших в i-ый интервал; границы интервалов находятся по формулам $a_0=0\,,$ $a_m=\max\{x_j\}\,,$ $a_i-a_{i-1}=\frac{a_m-a_0}{m},\quad i=1,...,m\,;$

 w_i — относительная частота попадания в i-ый интервал $w_i = \frac{n_i}{N}$, $N = \sum_{i=1}^m n_i$,

 p_i — теоретическая вероятность попадания в i-ый интервал $p_i = F(a_i) - F(a_{i-1})$ (F(x)—теоретическая функция распределения, при этом положить $F(a_m) = 1$), $\Delta_{\max} = \max\{|w_i - p_i|, i = 1,...,m\}$;

2) построить гистограммы относительных частот (площадь i-ого столбца гистограммы равна w_i), с наложенными на них графиками плотностей соответствующих теоретических распределений;

3) построить таблицу вида

i	a_i	$F(a_i)$	w_i	p_i	$\frac{N(w_i - p_i)^2}{p_i}$
0	a_0	0	_	_	_
1	a_1	$F(a_1)$	w_1	$p_{_{1}}$	$\frac{N(w_1 - p_1)^2}{p_1}$
• • •			• • •	•••	•••
m-1	a_{m-1}	$F(a_{m-1})$	w_{m-1}	p_{m-1}	$\frac{N(w_{m-1} - p_{m-1})^2}{p_{m-1}}$
m	a_m	1	W_m	p_m	$\frac{N(w_m - p_m)^2}{p_m}$
			$\sum_{i=1}^{m} w_i$	$\sum_{i=1}^{m} p_i$	$\sum_{i=0}^{m} \frac{N(w_i - p_i)^2}{p_i}$

Таблица 2. Расчёт значения критерия $\chi_B^2 = \sum_{i=0}^m \frac{N(w_i - p_i)^2}{p_i}$

4) сравнить найденное значение критерия $\chi_B^2 = \sum_{i=0}^m \frac{N(w_i - p_i)^2}{p_i}$ с критическим значением $\chi_{\kappa p,\alpha}^2(l)$, где α – уровень значимости, $\alpha = 0.05$, l = m-1 – число степеней свободы и сделать вывод о возможности принятия гипотезы:

если $\chi_B^2 \le \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки теоретическому распределению не противоречит экспериментальным данным при уровне значимости $\alpha=0.05$;

если $\chi_B^2 > \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки теоретическому распределению противоречит экспериментальным данным при уровне значимости $\alpha=0.05$.

Критические значений $\chi^2_{\kappa p,\alpha}(l)$ можно найти с помощью функции Python scipy.stats.chi2.ppf(1- α ,l).

Данные к типовому расчету № 2

Вариант	λ	λ_1	λ_2	λ_3	q_1	q_2	q_3
1	0,99	0,79	1,49	1,09	0,21	0,32	0,47
2	1,68	0,86	0,88	0,82	0,24	0,45	0,31
3	1,51	0,27	1,31	0,93	0,34	0,29	0,37
4	1,5	0,55	1,45	1,22	0,55	0,31	0,14
5	0,53	1,24	1,64	1,21	0,37	0,45	0,18
6	1,09	1,13	1,33	0,59	0,22	0,47	0,31
7	1,49	1,14	1,25	1,39	0,51	0,33	0,16
8	0,81	0,55	1,87	0,32	0,34	0,43	0,23
9	1,37	1,36	1,04	0,58	0,38	0,23	0,39
10	1,48	0,43	1,03	0,84	0,27	0,32	0,41
11	1,61	1,25	0,85	0,63	0,38	0,33	0,29
12	1,31	0,31	0,67	0,48	0,18	0,37	0,45
13	1,93	0,73	1,75	1,67	0,29	0,32	0,39
14	1,31	1,33	0,95	0,55	0,39	0,25	0,36
15	1,87	0,79	1,05	1,45	0,28	0,34	0,38
16	1,96	1,15	1,59	0,33	0,36	0,33	0,31