Notation

Some specific sets

Real numbers.

 \mathbf{R}^n Real *n*-vectors ($n \times 1$ matrices).

 $\mathbf{R}^{m \times n}$ Real $m \times n$ matrices.

 $\mathbf{R}_{+}, \, \mathbf{R}_{++}$ Nonnegative, positive real numbers.

Z Integers.

 \mathbf{Z}_{+} Nonnegative integers. \mathbf{S}^{n} Symmetric $n \times n$ matrices.

 $\mathbf{S}_{+}^{n}, \mathbf{S}_{++}^{n}$ Symmetric positive semidefinite, positive definite, $n \times n$

matrices.

Vectors and matrices

1 Vector with all components one.

 e_i ith standard basis vector.

I Identity matrix.

 X^T Transpose of matrix X.

 X^H Hermitian (complex conjugate) transpose of matrix X.

 $\operatorname{tr} X$ Trace of matrix X.

 $\lambda_i(X)$ ith largest eigenvalue of symmetric matrix X.

 $\lambda_{\max}(X), \, \lambda_{\min}(X)$ Maximum, minimum eigenvalue of symmetric matrix X.

 $\sigma_i(X)$ ith largest singular value of matrix X.

 $\begin{array}{ll} \sigma_{\max}(X),\,\sigma_{\min}(X) & \text{Maximum, minimum singular value of matrix } X. \\ X^{\dagger} & \text{Moore-Penrose or pseudo-inverse of matrix } X. \\ x \perp y & \text{Vectors } x \text{ and } y \text{ are orthogonal: } x^Ty = 0. \\ V^{\perp} & \text{Orthogonal complement of subspace } V. \end{array}$

 $\operatorname{\mathbf{diag}}(x)$ Diagonal matrix with diagonal entries x_1,\ldots,x_n . $\operatorname{\mathbf{diag}}(X,Y,\ldots)$ Block diagonal matrix with diagonal blocks X,Y,\ldots

 $\operatorname{rank} A$ Rank of matrix A. $\mathcal{R}(A)$ Range of matrix A. $\mathcal{N}(A)$ Nullspace of matrix A.

698 Notation

Norms and distances

•	A norm.
$\ \cdot\ _*$	Dual of norm $\ \cdot\ $.
$ x _2$	Euclidean (or ℓ_2 -) norm of vector x .
$ x _1$	ℓ_1 -norm of vector x .
$ x _{\infty}$	ℓ_{∞} -norm of vector x .
$ X _{2}$	Spectral norm (maximum singular value) of matrix X .
B(c,r)	Ball with center c and radius r .
$\mathbf{dist}(A,B)$	Distance between sets (or points) A and B .

Generalized inequalities

$x \leq y$	Componentwise inequality between vectors x and y .
$x \prec y$	Strict componentwise inequality between vectors x and y
$X \preceq Y$	Matrix inequality between symmetric matrices X and Y .
$X \prec Y$	Strict matrix inequality between symmetric matrices X
	and Y .
$x \leq_K y$	Generalized inequality induced by proper cone K .
$x \prec_K y$	Strict generalized inequality induced by proper cone K .
$x \preceq_{K^*} y$	Dual generalized inequality.
$x \prec_{K^*} y$	Dual strict generalized inequality.

Topology and convex analysis

$\operatorname{\mathbf{card}} C$	Cardinality of set C .
$\operatorname{int} C$	Interior of set C .
$\mathbf{relint} C$	Relative interior of set C .
$\operatorname{\mathbf{cl}} C$	Closure of set C .
$\mathbf{bd}C$	Boundary of set C : bd $C = \mathbf{cl} C \setminus \mathbf{int} C$
$\operatorname{\mathbf{conv}} C$	Convex hull of set C .
$\mathbf{aff}\ C$	Affine hull of set C .
K^*	Dual cone associated with K .
I_C	Indicator function of set C .
S_C	Support function of set C .
f^*	Conjugate function of f .
•	•

Probability

$\mathbf{E} X$	Expected value of random vector X .
$\operatorname{\mathbf{prob}} S$	Probability of event S .
$\mathbf{var}X$	Variance of scalar random variable X .
$\mathcal{N}(c,\Sigma)$	Gaussian distribution with mean c , covariance (matrix) Σ .
Φ	Cumulative distribution function of $\mathcal{N}(0,1)$ random vari-
	able.

Notation 699

Functions and derivatives

```
\begin{array}{lll} f:A\to B & f \text{ is a function on the set } \operatorname{\mathbf{dom}} f\subseteq A \text{ into the set } B. \\ \operatorname{\mathbf{dom}} f & \operatorname{Domain of function } f. \\ \operatorname{\mathbf{epi}} f & \operatorname{Epigraph of function } f. \\ \nabla f & \operatorname{Gradient of function } f. \\ \nabla^2 f & \operatorname{Hessian of function } f. \\ Df & \operatorname{Derivative (Jacobian) matrix of function } f. \end{array}
```