Combinatorial Optimization: Polyhedra and Efficiency

Book · J	anuary 2003				
CITATIONS 2,084		READS 3,397			
1 author	:				
	Alexander Schrijver University of Amsterdam 164 PUBLICATIONS 6,564 CITATIONS				
	SEE PROFILE				
Some of the authors of this publication are also working on these related projects:					
Project	Topology and graphs View project				

Alexander Schrijver

Combinatorial Optimization

Polyhedra and Efficiency

September 1, 2002

Springer

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo

Preface

The book by Gene Lawler from 1976 was the first of a series of books all entitled 'Combinatorial Optimization', some embellished with a subtitle: 'Networks and Matroids', 'Algorithms and Complexity', 'Theory and Algorithms'. Why adding another book to this illustrious series? The justification is contained in the subtitle of the present book, 'Polyhedra and Efficiency'. This is shorthand for Polyhedral Combinatorics and Efficient Algorithms.

Pioneered by the work of Jack Edmonds, polyhedral combinatorics has proved to be a most powerful, coherent, and unifying tool throughout combinatorial optimization. Not only it has led to efficient (that is, polynomial-time) algorithms, but also, conversely, efficient algorithms often imply polyhedral characterizations and related min-max relations. It makes the two sides closely intertwined.

We aim at offering both an introduction to and an in-depth survey of polyhedral combinatorics and efficient algorithms. Within the span of polyhedral methods, we try to present a broad picture of polynomial-time solvable combinatorial optimization problems — more precisely, of those problems that have been proved to be polynomial-time solvable. Next to that, we go into a few prominent NP-complete problems where polyhedral methods were succesful in obtaining good bounds and approximations, like the stable set and the traveling salesman problem. Nevertheless, while we obviously hope that the question "NP=P?" will be settled soon one way or the other, we realize that in the astonishing event that NP=P will be proved, this book will be highly incomplete.

By definition, being in P means being solvable by a 'deterministic sequential polynomial-time' algorithm, and in our discussions of algorithms and complexity we restrict ourselves mainly to this characteristic. As a consequence, we do not cover (but yet occasionally touch or outline) the important work on approximative, randomized, and parallel algorithms and complexity, areas that are recently in exciting motion. We also neglect applications, modelling, and computational methods for NP-complete problems. Advanced data structures are treated only moderately. Other underexposed areas include semidefinite programming and graph decomposition. 'This all just to keep size under control.'

Although most problems that come up in practice are NP-complete or worse, recognizing those problems that are polynomial-time solvable can be very helpful: polynomial-time (and polyhedral) methods may be used in preprocessing, in obtaining approximative solutions, or as a subroutine, for instance to calculate bounds in a branch-and-bound method. A good understanding of what is in the polynomial-time tool box is essential also for the NP-hard problem solver.

* * *

This book is divided into eight main parts, each discussing an area where polyhedral methods apply:

I. Paths and Flows

II. Bipartite Matching and Covering

III. Nonbipartite Matching and Covering

IV. Matroids and Submodular Functions

V. Trees, Branchings, and Connectors

VI. Cliques, Stable Sets, and Colouring

VII. Multiflows and Disjoint Paths

VIII. Hypergraphs

Each part starts with an elementary exposition of the basic results in the area, and gradually evolves to the more elevated regions. Subsections in smaller print go into more specialized topics. We also offer several references for further exploration of the area.

Although we give elementary introductions to the various areas, this book might be less satisfactory as an introduction to combinatorial optimization. Some mathematical maturity is required, and the general level is that of graduate students and researchers. Yet, parts of the book may serve for undergraduate teaching.

The book does not offer exercises, but, to stimulate research, we collect open problems, questions, and conjectures that are mentioned throughout this book, in a separate section entitled 'Survey of Problems, Questions, and Conjectures'. It is not meant as a complete list of all open problems that may live in the field, but only of those mentioned in the text.

We assume elementary knowledge of and familiarity with graph theory, with polyhedra and linear and integer programming, and with algorithms and complexity. To support the reader, we survey the knowledge assumed in the introductory chapters, where we also give additional background references. These chapters are meant mainly just for consultation, and might be less attractive to read from front to back. Some less standard notation and terminology are given on the inside back cover of this book.

For background on polyhedra and linear and integer programming, we also refer to our earlier book *Theory of Linear and Integer Programming* (Wiley, Chichester, 1986). This might seem a biased recommendation, but

this 1986 book was partly written as a preliminary to the present book, and it covers anyway the author's knowledge on polyhedra and linear and integer programming.

Incidentally, the reader of this book will encounter a number of concepts and techniques that regularly crop up: total unimodularity, total dual integrality, duality, blocking and antiblocking polyhedra, matroids, submodularity, hypergraphs, uncrossing. It makes that the meaning of 'elementary' is not unambiguous. Especially for the basic results, several methods apply, and it is not in all cases obvious which method and level of generality should be chosen to give a proof. In several cases we therefore will give several proofs of one and the same theorem, just to open the perspective.

* * *

While I have pursued great carefulness and precision in composing this book, I am quite sure that much room for corrections and additions has remained. To inform the reader about them, I have opened a website at the address

www.cwi.nl/~lex/co

Any corrections (including typos) and other comments and suggestions from the side of the reader are most welcome at

lex@cwi.nl

I plan to provide those who have contributed most to this, with a complimentary copy of a potential revised edition.

* * *

In preparing this book I have profited greatly from the support and help of many friends and colleagues, to whom I would like to express my gratitude.

I am particularly much obliged to Sasha Karzanov in Moscow, who has helped me enormously by tracking down ancient publications in the (former) Lenin Library in Moscow and by giving explanations and interpretations of old and recent Russian papers. I also thank Sasha's sister Irina for translating Tolstoĭ's 1930 article for me.

I am very thankful to András Frank, Bert Gerards, Dion Gijswijt, Willem Jan van Hoeve, Sasha Karzanov, Judith Keijsper, Monique Laurent, Misha Lomonosov, Frédéric Maffay, Gabor Maroti, Coelho de Pina, Bruce Shepherd, and Bianca Spille, for carefully reading preliminary parts of this book, for giving corrections and suggestions improving the text and the layout, and for helping me with useful background information. I am also happy to thank Noga Alon, Csaba Berki, Vasek Chvátal, Michele Conforti, Bill Cook, Gérard Cornuéjols, Bill Cunningham, Guoli Ding, Jack Edmonds, Fritz Eisenbrand, Satoru Fujishige, Alan Hoffman, Tibor Jordán, Gil Kalai, Alfred Lehman, Jan Karel Lenstra, Laci Lovász, Bill Pulleyblank, Herman te Riele, Alexander Rosa, András Sebő, Paul Seymour, Bruno Simeone, Jan Smaus, Adri

VIII Preface

Steenbeek, Laci Szegő, Éva Tardos, Bjarne Toft, and David Williamson, for giving useful insights and suggestions, for providing me with precious and rare papers and translations, for advice on interpreting vintage articles, and for help in checking details.

Sincere thanks are due as well to Truus W. Koopmans for sharing with me her 'memories and stories' and sections from her late husband's war diary, and to Herb Scarf for his kind mediation in this. I am indebted to Steve Brady (RAND) and Dick Cottle for their successful efforts in obtaining classic RAND Reports for me, and to Richard Bancroft and Gustave Shubert of RAND Corporation for their help in downgrading the secret Harris-Ross report.

The assistance of my institute, CWI in Amsterdam, has been indispensable in writing this book. My special thanks go to Karin van Gemert of the CWI Library for her indefatigable efforts in obtaining rare publications from every corner of the world, always in sympathizing understanding for my often extravagant requests. I also appreciate the assistance of other members of CWI's staff: Miente Bakker, Susanne van Dam, Lieke van den Eersten, Thea de Hoog, Jacqueline de Klerk, Wouter Mettrop, Ay Ong, Rick Ooteman, Hans Stoffel, and Jos van der Werf.

In the technical realization of this book, I thankfully enjoyed the first-rate workmanship of the staff of Springer Verlag in Heidelberg. I thank in particular Frank Holzwarth, Leonie Kunz, Ute McCrory, and Martin Peters for their skilful and enthusiastic commitment in finalizing this out-size project.

As it has turned out, it was only by gravely neglecting my family that I was able to complete this project. I am extremely grateful to Monique, Nella, and Juliette for their perpetual understanding and devoted support. Now comes the time for the pleasant fulfilment of all promises I made for 'when my book will be finished'.

 $\begin{array}{c} {\rm Amsterdam} \\ {\rm September} \ 2002 \end{array}$

Alexander Schrijver

Table of Contents

1	Intro	$\mathbf{oduction} \dots \dots$
	1.1	Introduction
	1.2	Matchings
	1.3	But what about nonbipartite graphs? 4
	1.4	Hamiltonian circuits and the traveling salesman problem 5
	1.5	Historical and further notes 6
		1.5a Historical sketch on polyhedral combinatorics 6
		1.5b Further notes
2	Gen	eral preliminaries9
	2.1	Sets9
	2.2	Orders
	2.3	Numbers
	2.4	Vectors, matrices, and functions
	2.5	Maxima, minima, and infinity
	2.6	Fekete's lemma
3	Prel	iminaries on graphs
	3.1	Undirected graphs
	3.2	Directed graphs
	3.3	Hypergraphs
		3.3a Background references on graph theory
4	\mathbf{Prel}	iminaries on algorithms and complexity
	4.1	Introduction
	4.2	The random access machine
	4.3	Polynomial-time solvability
	4.4	P 40
	4.5	NP 40
	4.6	co-NP and good characterizations
	4.7	Optimization problems
	4.8	NP-complete problems
	4.9	The satisfiability problem
	4.10	NP-completeness of the satisfiability problem
	4 11	NP-completeness of some other problems 46

X		Table of Contents
	4.12	Strongly polynomial-time
	4.13	Lists and pointers
	4.14	Further notes
		4.14a Background literature on algorithms and complexity 49
		4.14b Efficiency and complexity historically
5	Prel	iminaries on polyhedra and linear and integer
	prog	ramming 59
	5.1	Convexity and halfspaces
	5.2	Cones
	5.3	Polyhedra and polytopes
	5.4	Farkas' lemma
	5.5	Linear programming
	5.6	Faces, facets, and vertices
	5.7	Polarity
	5.8	Blocking polyhedra
	5.9	Antiblocking polyhedra
	5.10	Methods for linear programming
	5.11	The ellipsoid method
	5.12	Polyhedra and NP and co-NP
	5.13	Primal-dual methods
	5.14	Integer linear programming
	5.15	Integer polyhedra
	5.16	Totally unimodular matrices
	5.17	Total dual integrality
	5.18	Hilbert bases and minimal TDI systems 81
	5.19	The integer rounding and decomposition properties 82
	5.20	Box-total dual integrality
	5.21	The integer hull and cutting planes
		5.21a Background literature
Pai	rt I: I	Paths and Flows
6		test paths: unit lengths 87
	6.1	Shortest paths with unit lengths
	6.2	Shortest paths with unit lengths algorithmically:
		breadth-first search
	6.3	Depth-first search
	6.4	Finding an Eulerian orientation
	6.5	Further results and notes
		6.5a All-pairs shortest paths in undirected graphs 91
		6.5b Complexity survey
		6.5c Ear-decomposition of strongly connected digraphs 93
		6.5d Transitive closure

			Table of Contents	XI
		6.5e Further notes		94
7	Sho	est paths: nonnegative len	$_{ m ngths}$	96
	7.1	Shortest paths with nonnegation	ive lengths	96
	7.2	Dijkstra's method		97
	7.3	Speeding up Dijkstra's algorit	thm with k -heaps	98
	7.4	Speeding up Dijkstra's algorit	hm with Fibonacci heaps	99
	7.5	Further results and notes	_ 	. 101
		7.5a Weakly polynomial-tim	ne algorithms	. 101
		7.5b Complexity survey for	shortest paths with	
		nonnegative lengths		. 103
		7.5c Further notes		. 105
8	Sho	est paths: arbitrary lengtl	hs	. 107
	8.1	Shortest paths with arbitrary		
				. 107
	8.2	Potentials		. 107
	8.3	The Bellman-Ford method		. 109
	8.4	All-pairs shortest paths		. 110
	8.5	-	gth directed circuit	
	8.6	Further results and notes	- 	. 112
		- ,	shortest path without	440
			S	
		-	e shortest path problem	
			ord's method	
			aths in acyclic graphs	
		<u> -</u>	$ h.\dots$	
		8.6g Historical notes on sho	rtest paths	. 119
9	•			
	9.1	_		
			r's theorem	
	9.2	1 0 0		
	9.3		packings	
	9.4			
	9.5		oint case	
	9.6			. 138
			the disjoint $s-t$ paths	
		_		
		v v -	8	
			disjoint paths	
		9.6e Historical notes on Me	nger's theorem	. 142

10	Max	imum flow	. 148
	10.1	Flows: concepts	
	10.2	The max-flow min-cut theorem	
	10.3	Paths and flows	
	10.4	Finding a maximum flow	
		10.4a Nontermination for irrational capacities	
	10.5	A strongly polynomial bound on the number of iterations	
	10.6	Dinits' $O(n^2m)$ algorithm	
		10.6a Karzanov's $O(n^3)$ algorithm	
	10.7	Goldberg's push-relabel method	
	10.8	Further results and notes	
		10.8a A weakly polynomial bound	. 159
		10.8b Complexity survey for the maximum flow problem	. 160
		10.8c An exchange property	. 162
		10.8d Further notes	. 162
		10.8e Historical notes on maximum flow	. 164
11	Circ	ulations and transshipments	. 170
	11.1	A useful fact on arc functions	
	11.2	Circulations	. 171
	11.3	Flows with upper and lower bounds	. 172
	11.4	b-transshipments	. 173
	11.5	Upper and lower bounds on $excess_f$. 174
	11.6	Finding circulations and transshipments algorithmically	. 175
		11.6a Further notes	. 176
12	Min	imum-cost flows and circulations	. 177
	12.1	Minimum-cost flows and circulations	. 177
	12.2	Minimum-cost circulations and the residual graph D_f	
	12.3	Strongly polynomial-time algorithm	
	12.4	Related problems	
		12.4a A dual approach	. 183
		12.4b A strongly polynomial-time algorithm using	
		capacity-scaling	
	12.5	Further results and notes	
		12.5a Complexity survey for minimum-cost circulation	. 190
		12.5b Min-max relations for minimum-cost flows and	
		circulations	
		12.5c Dynamic flows	
		12.5d Further notes	. 195
13		and flow polyhedra and total unimodularity	
	13.1	Path polyhedra	
		13.1a Vertices, adjacency, and facets	
		13.1b. The $s-t$ connector polytone	203

		Table of Contents	XIII
	13.2	Total unimodularity	
		13.2a Consequences for flows	
		13.2b Consequences for circulations	
		13.2c Consequences for transshipments	
		13.2d Unions of disjoint paths and cuts	
	13.3	Network matrices	
	13.4	Cross-free and laminar families	214
14	Part	ially ordered sets and path coverings	217
	14.1	Partially ordered sets	
	14.2	Dilworth's decomposition theorem	
	14.3	Path coverings	
	14.4	The weighted case	
	14.5	The chain and antichain polytopes	
		14.5a Path coverings algorithmically	
	14.6	Unions of directed cuts and antichains	
		14.6a Common saturating collections of chains	
	14.7	Unions of directed paths and chains	
		14.7a Common saturating collections of antichains	
		14.7b Conjugacy of partitions	230
	14.8	Further results and notes	232
		14.8a The Gallai-Milgram theorem	
		14.8b Partially ordered sets and distributive lattices	
		14.8c Maximal chains	
		14.8d Further notes	236
15	Con	nectivity and Gomory-Hu trees	237
	15.1	Vertex-, edge-, and arc-connectivity	
	15.2	Vertex-connectivity algorithmically	
		15.2a Complexity survey for vertex-connectivity	
		15.2b Finding the 2-connected components	
	15.3	Arc- and edge-connectivity algorithmically	
		15.3a Complexity survey for arc- and edge-connectivity	
		15.3b Finding the 2-edge-connected components	
	15.4	Gomory-Hu trees	
		15.4a Minimum-requirement spanning tree	
	15.5	Further results and notes	
	_5.0	15.5a Ear-decomposition of undirected graphs	
		15.5b Further notes	
			55

Part II: Bipartite Matching and Covering

16	Card	linality bipartite matching and vertex cover 259
	16.1	M-augmenting paths
	16.2	Frobenius' and Kőnig's theorems
		16.2a Frobenius' proof of his theorem
		16.2b Linear-algebraic proof of Frobenius' theorem 262
		16.2c Rizzi's proof of Kőnig's matching theorem
	16.3	Maximum-size bipartite matching algorithm 263
	16.4	An $O(n^{1/2}m)$ algorithm
	16.5	Finding a minimum-size vertex cover
	16.6	Matchings covering given vertices
	16.7	Further results and notes
		16.7a Complexity survey for cardinality bipartite
		matching
		16.7b Finding perfect matchings in regular bipartite
		graphs
		16.7c The equivalence of Menger's theorem and Kőnig's
		theorem
		16.7d Equivalent formulations in terms of matrices 276
		16.7e Equivalent formulations in terms of partitions 276
		16.7f On the complexity of bipartite matching and vertex
		cover
		16.7g Further notes
		16.7h Historical notes on bipartite matching
17		ghted bipartite matching and the assignment
		olem
	17.1	Weighted bipartite matching
	17.2	The Hungarian method
	17.3	Perfect matching and assignment problems
	17.4	Finding a minimum-size w-vertex cover
	17.5	Further results and notes
		17.5a Complexity survey for maximum-weight bipartite
		matching
		17.5b Further notes
		17.5c Historical notes on weighted bipartite matching and
		optimum assignment
18		ar programming methods and the bipartite matching
		tope
	18.1	The matching and the perfect matching polytope 301
	18.2	Totally unimodular matrices from bipartite graphs 303
	18.3	Consequences of total unimodularity
	18.4	The vertex cover polytope
	18.5	Further results and notes

Table of Contents

XV

XVI	Table of Contents	

	21.6	Transportation	343			
		21.6a Reduction of transshipment to transportation	345			
		21.6b The transportation polytope	346			
	21.7	b-edge covers and w -stable sets	347			
	21.8	The b -edge cover and the w -stable set polyhedron	348			
	21.9	Simple b -edge covers	349			
	21.10	Capacitated b-edge covers	350			
	21.11	Relations between b -matchings and b -edge covers	351			
	21.12	Upper and lower bounds	353			
	21.13	Further results and notes	355			
		21.13a Complexity survey on weighted bipartite b-matching				
		and transportation	355			
		21.13b The matchable set polytope	359			
		21.13c Existence of matrices	359			
		21.13d Further notes	361			
		21.13e Historical notes on the transportation and				
		transshipment problems	362			
22		sversals				
	22.1	Transversals				
		22.1a Alternative proofs of Hall's marriage theorem				
	22.2	Partial transversals				
	22.3	Weighted transversals				
	22.4	Min-max relations for weighted transversals				
	22.5	The transversal polytope				
	22.6	Packing and covering of transversals				
	22.7	Further results and notes				
		22.7a The capacitated case				
		22.7b A theorem of Rado				
		22.7c Further notes				
		22.7d Historical notes on transversals	391			
23	Com	mon transversals	204			
40	23.1	Common transversals				
	23.1 23.2	Weighted common transversals				
	23.2 23.3	Weighted common partial transversals				
	23.4	The common partial transversal polytope				
	23.4 23.5	The common transversal polytope				
	23.6	Packing and covering of common transversals				
	23.0 23.7	Further results and notes				
	۷٠١.	23.7a Capacitated common transversals				
		23.7b Exchange properties				
		23.7c Common transversals of three families				
		23.7d Further notes	410			

Pai	rt III:	Nonbipartite Matching and Covering
24	Card	linality nonbipartite matching
	24.1	Tutte's 1-factor theorem and the Tutte-Berge formula 413
		24.1a Tutte's proof of his 1-factor theorem 415
		24.1b Petersen's theorem
	24.2	Cardinality matching algorithm
		24.2a An $O(n^3)$ algorithm
	24.3	Matchings covering given vertices
	24.4	Further results and notes
		24.4a Complexity survey for cardinality nonbipartite matching
		24.4b The Edmonds-Gallai decomposition of a graph
		24.4c Strengthening of Tutte's 1-factor theorem
		24.4d Ear-decomposition of factor-critical graphs
		24.4d Ear-decomposition of natching-covered graphs
		- · · · · · · · · · · · · · · · · · · ·
		3 1
		24.4g Two-processor scheduling
		algorithm
		24.4i Further notes
		24.4j Historical notes on nonbipartite matching
		24.4) Thistorical notes on nondipartite matching 451
25	The	matching polytope
	25.1	The perfect matching polytope
	25.2	The matching polytope
	25.3	Total dual integrality: the Cunningham-Marsh formula 440
		25.3a Direct proof of the Cunningham-Marsh formula 442
	25.4	On the total dual integrality of the perfect matching
		constraints
	25.5	Further results and notes
		$25.5a$ Adjacency and diameter of the matching polytope \dots 444
		25.5b Facets of the matching polytope
		25.5c Polynomial-time solvability with the ellipsoid method
		25.5d The matchable set polytope
		25.5e Further notes
26	Weig	shted nonbipartite matching algorithmically 453
	26.1	Introduction and preliminaries
	26.2	Weighted matching algorithm
		26.2a An $O(n^3)$ algorithm
	26.3	Further results and notes

XVIII Table of Contents

		26.3a	Complexity survey for weighted nonbipartite	
			matching	. 458
		26.3b	Derivation of the matching polytope characterization	
			from the algorithm	
		26.3c	Further notes	. 459
27	Nonl	oiparti	ite edge cover	. 461
	27.1	-	num-size edge cover	
	27.2		dge cover polytope and total dual integrality	
	27.3		er notes on edge covers	
			Further notes	
			Historical notes on edge covers $\ldots \ldots \ldots$	
28	Edge	-colou	ring	. 465
	28.1		s's theorem for simple graphs	
	28.2		s's theorem for general graphs	
	28.3		mpleteness of edge-colouring	
	28.4		ere-zero flows and edge-colouring	
	28.5		onal edge-colouring	
	28.6		ctures	
	28.7		colouring polyhedrally	
	28.8	_	ng edge covers	
	28.9		er results and notes	
		28.9a	Shannon's theorem	. 480
		28.9b	Further notes	. 481
		$28.9\mathrm{c}$	Historical notes on edge-colouring \hdots .	. 482
29	T-ioi	ns. ur	ndirected shortest paths, and the Chinese	
				. 485
	29.1		S	
	29.2		nortest path problem for undirected graphs	
	29.3		Chinese postman problem	
	29.4	T-join	s and T-cuts	. 488
	29.5	The u	p hull of the T -join polytope	. 490
	29.6	The T	-join polytope	. 491
	29.7	Sums	of circuits	. 493
	29.8	Intege	r sums of circuits	. 494
	29.9	The T	C-cut polytope	. 498
	29.10	Findin	ng a minimum-capacity T-cut	. 499
	29.11	Furthe	er results and notes	. 500
		29.11a	Minimum-mean length circuit	. 500
		29.11b	Packing T-cuts	. 501
		29.11c	Packing T-joins	. 507
			l Maximum joins	
		29.11e	Odd paths	. 515

		Table of Contents	XIX
		29.11f Further notes	
30	30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.10 30.11 30.12 30.13 30.14 30.15	tchings, 2-covers, and 2-factors 2-matchings and 2-vertex covers Fractional matchings and vertex covers The fractional matching polytope The 2-matching polytope The weighted 2-matching problem 30.5a Maximum-size 2-matchings and maximum-size matchings Simple 2-matchings and 2-factors The simple 2-matching polytope and the 2-factor polytope Total dual integrality 2-edge covers and 2-stable sets Fractional edge covers and stable sets The fractional edge cover polyhedron The 2-edge cover polyhedron Total dual integrality of the 2-edge cover constraints Simple 2-edge covers Graphs with $\nu(G) = \tau(G)$ and $\alpha(G) = \rho(G)$ Excluding triangles 30.16a Excluding higher polygons 30.16b Packing edges and factor-critical subgraphs 30.16c 2-factors without short circuits	521 522 523 524 524 525 527 529 532 532 533 534 534 535 536 540 545
31	b-ma 31.1 31.2 31.3 31.4 31.5 31.6 31.7	b-matchings b-matchings The b-matching polytope Total dual integrality. The weighted b-matching problem If b is even If b is constant Further results and notes 31.7a Complexity survey for the b-matching problem 31.7b Facets and minimal systems for the b-matching polytope 31.7c Regularizable graphs 31.7d Further notes	547 548 551 555 558 559 560 560
32	Capa 32.1 32.2 32.3 32.4	Capacitated b-matchings Capacitated b-matchings The capacitated b-matching polytope Total dual integrality The weighted capacitated b-matching problem	563565567

		32.4a Further notes	568
33	Sim	ple b-matchings and b-factors	570
	33.1	Simple b-matchings and b-factors	
	33.2	The simple b -matching polytope and the b -factor polytope	
	33.3	Total dual integrality	
	33.4	The weighted simple b -matching and b -factor problem	
	33.5	If b is constant	
	33.6	Further results and notes	
	55.0	33.6a Complexity results	
		33.6b Degree-sequences	
		33.6c Further notes	
		55.00 Further notes	919
34	b-ed	ge covers	
	34.1	b-edge covers	576
	34.2	The b-edge cover polyhedron	577
	34.3	Total dual integrality	577
	34.4	The weighted b-edge cover problem	578
	34.5	If b is even	579
	34.6	If b is constant	579
	34.7	Capacitated b-edge covers	580
	34.8	Simple b-edge covers	582
		34.8a Simple b-edge covers and b-matchings	583
		34.8b Capacitated <i>b</i> -edge covers and <i>b</i> -matchings	584
35	Upp	er and lower bounds	585
00	35.1	Upper and lower bounds	
	35.2	Convex hull	
	35.3	Total dual integrality	
	35.4	Further results and notes	
	00.1	35.4a Further results on subgraphs with prescribed	<i>302</i>
		degrees	592
		35.4b Odd walks	
		99.40 Odd warks	994
36	Bidi	rected graphs	
	36.1	Bidirected graphs	
	36.2	Convex hull	598
	36.3	0 1	
	36.4	Including parity conditions	601
	36.5	Convex hull	605
		36.5a Convex hull of vertex-disjoint circuits	606
	36.6	Total dual integrality	
	36.7	Further results and notes	
		36.7a The Chvátal rank	
			609

		Table of Contents	XXI
37	The	dimension of the perfect matching polytope	. 610
	37.1	The dimension of the perfect matching polytope	
	37.2	The perfect matching space	
	37.3	The brick decomposition	
	37.4	The brick decomposition of a bipartite graph	
	37.5	Braces	
	37.6	Bricks	
	37.7	Matching-covered graphs without nontrivial tight cuts	
38	The	perfect matching lattice	. 620
	38.1	The perfect matching lattice	
	38.2	The perfect matching lattice of the Petersen graph	
	38.3	A further fact on the Petersen graph	
	38.4	Various useful observations	
	38.5	Simple barriers	
	38.6	The perfect matching lattice of a brick	
	38.7	Synthesis and further consequences of the previous results .	
	38.8	What further might (not) be true	
	38.9	Further results and notes	
	30.0	38.9a The perfect 2-matching space and lattice	
		38.9b Further notes	
Pa	rt IV:	Matroids and Submodular Functions	
39	Mat	roids	
	39.1	Matroids	. 651
	39.2	The dual matroid	
	39.3	Deletion, contraction, and truncation	. 653
	39.4	Examples of matroids	. 654
		39.4a Relations between transversal matroids and	
		gammoids	
	39.5	Characterizing matroids by bases	. 662
	39.6	Characterizing matroids by circuits	
		39.6a A characterization of Lehman	. 663
	39.7	Characterizing matroids by rank functions	
	39.8	The span function and flats	. 666
		39.8a Characterizing matroids by span functions	. 666
		39.8b Characterizing matroids by flats	
		39.8c Characterizing matroids in terms of lattices	. 668
	39.9	Further exchange properties	. 669
		39.9a Further properties of bases	
	39.10	Further results and notes	
		39.10a Further notes	
		39.10b Historical notes on matroids	. 672

XXII Table of Contents

40		greedy algorithm and the independent set polytope 688
	40.1	The greedy algorithm
	40.2	The independent set polytope
	40.3	The most violated inequality
		40.3a Facets and adjacency on the independent set
		polytope
		40.50 Further notes
41	Mat	roid intersection
	41.1	Matroid intersection theorem
		41.1a Applications of the matroid intersection theorem 702
		41.1b Woodall's proof of the matroid intersection theorem 704
	41.2	Cardinality matroid intersection algorithm
	41.3	Weighted matroid intersection algorithm
		41.3a Speeding up the weighted matroid intersection
		algorithm710
	41.4	Intersection of the independent set polytopes
		41.4a Facets of the common independent set polytope 717
		41.4b The up and down hull of the common base polytope 719
	41.5	Further results and notes
		41.5a Menger's theorem for matroids
		41.5b Exchange properties
		41.5c Jump systems
		41.5d Further notes
42	Mat	roid union
	42.1	Matroid union theorem
		42.1a Applications of the matroid union theorem 727
		42.1b Horn's proof
	42.2	Polyhedral applications
	42.3	Matroid union algorithm
	42.4	The capacitated case: fractional packing and covering of
		bases
	42.5	The capacitated case: integer packing and covering of bases 734
	42.6	Further results and notes
		42.6a Induction of matroids
		42.6b List-colouring
		42.6c Strongly base orderable matroids
		42.6d Blocking and antiblocking polyhedra
		42.6e Further notes
		42.6f Historical notes on matroid union

		Table of Contents	ΛΛΙΙΙ
13	Mat	roid matching	745
	43.1	Infinite matroids	
	43.2	Matroid matchings	
	43.3	Circuits	
	43.4	A special class of matroids	
	43.5	A min-max formula for maximum-size matroid matching	
	43.6	Applications of the matroid matching theorem	
	43.7	A Gallai theorem for matroid matching and covering	
	43.8	Linear matroid matching algorithm	
	43.9	Matroid matching is not polynomial-time solvable in	
		general	762
	43.10	Further results and notes	
		43.10a Optimal path-matching	
		43.10b Further notes	
14	Subr	nodular functions and polymatroids	766
	44.1	Submodular functions and polymatroids	766
		44.1a Examples	
	44.2	Optimization over polymatroids by the greedy method	
	44.3	Total dual integrality	
	44.4	f is determined by EP_f	
	44.5	Supermodular functions and contrapolymatroids	
	44.6	Further results and notes	
		44.6a Submodular functions and matroids	
		44.6b Reducing integer polymatroids to matroids	
		44.6c The structure of polymatroids	
		44.6d Characterization of polymatroids	779
		44.6e Operations on submodular functions and	
		polymatroids	
		44.6f Duals of polymatroids	
		44.6g Induction of polymatroids	
		44.6h Lovász's generalization of Kőnig's matching theorem	
		44.6i Further notes	784
1 5	Subr	nodular function minimization	787
10	45.1	Submodular function minimization	
	45.2	Orders and base vectors	
	45.3	A subroutine	
	45.4	Minimizing a submodular function	
	45.5	Running time of the algorithm	
	45.6	Minimizing a symmetric submodular function	
	45.7	Minimizing a symmetric submodular function over the odd sets	
	10.1	Time of the second section of the ord belo	

XXIV Table of Contents

46	Poly	matroid intersection	796
	46.1	Box-total dual integrality of polymatroid intersection	796
	46.2	Consequences	797
	46.3	Contrapolymatroid intersection	798
	46.4	Intersecting a polymatroid and a contrapolymatroid	799
	46.5	Frank's discrete sandwich theorem	800
	46.6	Integer decomposition	801
	46.7	Further results and notes	802
		46.7a The up and down hull of the common base vectors	
		of two polymatroids	802
		46.7b Further notes	805
47	Poly	matroid intersection algorithmically	806
	47.1	A maximum-size common vector in two polymatroids	
	47.2	Maximizing a coordinate of a common base vector	
	47.3	Weighted polymatroid intersection in polynomial time	810
	47.4	Weighted polymatroid intersection in strongly polynomial	
		time	812
	47.5	Contrapolymatroids	819
	47.6	Intersecting a polymatroid and a contrapolymatroid $\ldots \ldots$	
		47.6a Further notes	820
48	Dilw	orth truncation	821
	48.1	If $f(\emptyset) < 0 \dots$	821
	48.2	Dilworth truncation	822
		48.2a Applications and interpretations	824
	48.3	Intersection	826
49	Subn	nodularity more generally	827
	49.1	Submodular functions on a lattice family	
	49.2	Intersection	829
	49.3	Complexity	
	49.4	Submodular functions on an intersecting family	833
	49.5	Intersection	834
	49.6	From an intersecting family to a lattice family	835
	49.7	Complexity	
	49.8	Intersecting a polymatroid and a contrapolymatroid $\ldots \ldots$	
	49.9	Submodular functions on a crossing family	
	49.10	Complexity	
		49.10a Nonemptiness of the base polyhedron $\ldots\ldots$	
	49.11	Further results and notes	843
		49.11a Minimizing a submodular function over a	
		subcollection of a lattice family	
		49.11b Generalized polymatroids	
		49.11c Supermodular colourings	850

52.8b Concise LP-formulation for shortest r-arborescence ... 905

Table of Contents

XXV

		52.8c Further notes	906
53	Pack	ing and covering of branchings and arborescences	
	53.1	Disjoint branchings	907
	53.2	Disjoint r -arborescences	
	53.3	The capacitated case	910
	53.4	Disjoint arborescences	911
	53.5	Covering by branchings	911
	53.6	An exchange property of branchings	912
	53.7	Covering by r -arborescences	914
	53.8	Minimum-length unions of k r -arborescences	916
	53.9	The complexity of finding disjoint arborescences	921
	53.10	Further results and notes	924
		53.10a Complexity survey for disjoint arborescences	924
		53.10b Arborescences with roots in given subsets	926
		53.10c Disclaimers	
		53.10d Further notes	929
54	Bico	nnectors and bibranchings	931
	54.1	Shortest $R - S$ biconnectors	
	54.2	Longest $R-S$ biforests	933
	54.3	Disjoint $R-S$ biconnectors	
	54.4	Covering by $R-S$ biforests	
	54.5	Minimum-size bibranchings	
	54.6	Shortest bibranchings	
		54.6a Longest bifurcations	940
	54.7	Disjoint bibranchings	943
		54.7a Proof using supermodular colourings	946
		54.7b Covering by bifurcations	
		54.7c Disjoint $R-S$ biconnectors and $R-S$ bibranchings	
		54.7d Covering by $R-S$ biforests and by $R-S$	
		bifurcations	947
55	Mini	imum directed cut covers and packing directed cuts	949
	55.1	Minimum directed cut covers and packing directed cuts	
	55.2	The Lucchesi-Younger theorem	
	55.3	Directed cut k-covers	
	55.4	Feedback arc sets	
	55.5	Complexity	956
	, , , ,	55.5a Finding a dual solution	
	55.6	Further results and notes	
		55.6a Complexity survey for minimum-size directed cut	
		cover	959
		$55.6\mathrm{b}$ Feedback arc sets in linklessly embeddable digraphs	959
		55.6c Feedback vertex sets	961

		55.6d The bipartite case 962 55.6e Further notes 963
56	Mini 56.1 56.2 56.3	mum directed cuts and packing directed cut covers
57	Stron 57.1 57.2 57.3 57.4 57.5	Making a directed graph strongly connected 972 Shortest strong connectors 973 Polyhedrally 976 Disjoint strong connectors 976 Complexity 978 57.5a Crossing families 978
58	58.1 58.2 58.3 58.4 58.5 58.6 58.7 58.8	The traveling salesman problem The traveling salesman problem NP-completeness of the TSP Branch-and-bound techniques The symmetric traveling salesman polytope The subtour elimination constraints 1-trees and Lagrangean relaxation The 2-factor constraints The clique tree inequalities Salesman problem Salesman problem Salesman problem The asymmetric traveling salesman problem Directed 1-trees Saloa An integer programming formulation Salob Further notes on the asymmetric traveling salesman problem Further notes on the traveling salesman problem Salob Historical notes on the traveling salesman problem
59	Mate 59.1 59.2 59.3 59.4 59.5 59.6	The maximum size of a matching forest 1008 Perfect matching forests 1016 An exchange property of matching forests 1017 The matching forest polytope 1014 Further results and notes 1018

XXVIII Table of Contents

		59.6a Matching forests in partitionable mixed graphs 101 59.6b Further notes	
60	Subr	nodular functions on directed graphs	21
	60.1	The Edmonds-Giles theorem	
		60.1a Applications	23
		60.1b Generalized polymatroids and the Edmonds-Giles	
		theorem	23
	60.2	A variant	24
		60.2a Applications	26
	60.3	Further results and notes	28
		60.3a Lattice polyhedra	
		60.3b Polymatroidal network flows	31
		60.3c A general model	
		60.3d Packing cuts and Győri's theorem	
		60.3e Further notes	37
61	Grap	h orientation	38
	61.1	Orientations with bounds on in- and outdegrees 103	
	61.2	2-edge-connectivity and strongly connected orientations $\ldots104$	10
		61.2a Strongly connected orientations with bounds on	
		degrees	
	61.3	Nash-Williams' orientation theorem	
	61.4	k-arc-connected orientations of $2k$ -edge-connected graphs 104	
		61.4a Complexity	18
		61.4b k-arc-connected orientations with bounds on	10
		degrees	18
		61.4c Orientations of graphs with lower bounds on	10
		indegrees of sets	
		61.4d Further notes	O
62	Netv	vork synthesis	52
	62.1	Minimal k -(edge-)connected graphs	
	62.2	The network synthesis problem	
	62.3	Minimum-capacity network design	
	62.4	Integer realizations and r -edge-connected graphs 105	8
63	Coni	nectivity augmentation	
	63.1	Making a directed graph k -arc-connected 106	i1
		63.1a $ k$ -arc-connectors with bounds on degrees $ \ldots 106$	
	63.2	Making an undirected graph 2-edge-connected 106	
	63.3	Making an undirected graph k -edge-connected 106	
		63.3a k -edge-connectors with bounds on degrees 106	
	63.4	r-edge-connectivity and r -edge-connectors 107	
	63.5	Making a directed graph k -vertex-connected 107	$^{\prime}7$

		65.6e The P_4 -structure of a graph and a semi-strong	
		perfect graph theorem	1124
		65.6f Further notes on the strong perfect graph	1105
	65.7	conjecture	
	05.7	65.7a Perz and Rolewicz's proof of the perfect graph	1121
		theorem	1197
		65.7b Kernel solvability	
		65.7c The amalgam	
		65.7d Diperfect graphs	
		65.7e Further notes	
66	Clas	ses of perfect graphs	1137
00	66.1	Bipartite graphs and their line graphs	
	66.2	Comparability graphs	
	66.3	Chordal graphs	
		66.3a Chordal graphs as intersection graphs of subtrees of	
		a tree	1144
	66.4	Meyniel graphs	1145
	66.5	Further results and notes	1147
		66.5a Strongly perfect graphs	1147
		66.5b Perfectly orderable graphs	1148
		66.5c Unimodular graphs	
		66.5d Further classes of perfect graphs	
		66.5e Further notes	1151
67	Perf	ect graphs: polynomial-time solvability	1154
	67.1	Optimum clique and colouring in perfect graphs	
		algorithmically	
	67.2	Weighted clique and colouring algorithmically	
	67.3	Strong polynomial-time solvability	
	67.4	Further results and notes	
		67.4a Further on $\vartheta(G)$	
		67.4b The Shannon capacity $\Theta(G)$	
		67.4d A sharper upper bound $\vartheta'(G)$ on $\alpha(G)$	
		67.4e An operator strengthening convex bodies	
		67.4f Further notes	
		67.4g Historical notes on perfect graphs	
68	T-pe	erfect graphs	1188
	68.1	T-perfect graphs	
	68.2	Strongly t-perfect graphs	
	68.3	Strong t-perfection of odd- K_4 -free graphs	
	68.4		

		Table of Contents	XXX
	68.5	A combinatorial min-max relation	1198
	68.6	Further results and notes	1202
		68.6a The w -stable set polyhedron	1203
		68.6b Bidirected graphs	1203
		68.6c Characterizing odd- K_4 -free graphs by mixing stable	
		sets and vertex covers	
		68.6d Orientations of discrepancy 1	
		68.6e Colourings and odd K_4 -subdivisions	
		68.6f Homomorphisms	
		68.6g Further notes	1209
69	Claw	y-free graphs	1210
	69.1	Introduction	
	69.2	Maximum-size stable set in a claw-free graph	
	69.3	Maximum-weight stable set in a claw-free graph	
	69.4	Further results and notes	
		69.4a On the stable set polytope of a claw-free graph 69.4b Further notes	
	4 3 7 7 T T	M 1/10 I D' ' ' ' D / I	
Pa	rt VII:	: Multiflows and Disjoint Paths	
7 0		iflows and disjoint paths	
	70.1	Directed multiflow problems	
	70.2	Undirected multiflow problems	
	70.3	Disjoint paths problems	
	$70.4 \\ 70.5$	Reductions	
	70.6	Complexity of the disjoint paths problem	
	70.7	The cut condition for directed graphs	
	70.8	The cut condition for undirected graphs	
	70.9		120
		Relations between fractional, half-integer, and integer	
	10.5	Relations between fractional, half-integer, and integer solutions.	123
		solutions	_
	70.10	, , , , ,	_
	70.10	solutions	123
	70.10 70.11	solutions	123
	70.10 70.11	solutions	123 123
	70.10 70.11	solutions	123 123
	70.10 70.11	solutions. The Euler condition. Survey of cases where a good characterization has been found. Relation between the cut condition and fractional cut packing. 70.12a Sufficiency of the cut condition sometimes implies an integer multiflow.	123 123 123
	70.10 70.11	solutions	1236 1236 1236 1246
	70.10 70.11 70.12	solutions	1238 1238 1238 1248 1248
	70.10 70.11 70.12	solutions	1238 1238 1238 1248 1248
	70.10 70.11 70.12	solutions	1238 1238 1248 1248 1244

XXXII Table of Contents

		70.13b Fixing the number of commodities in directed	
		graphs	
		70.13c Disjoint paths in acyclic digraphs	1246
		70.13d A column generation technique for multiflows	1247
		70.13e Approximate max-flow min-cut theorems for	
		multiflows	1249
		70.13f Further notes	1250
		70.13g Historical notes on multicommodity flows	1251
71	Т	commodities	1059
11	71.1	The Rothschild-Whinston theorem and Hu's 2-commodity	1200
	(1.1	flow theorem	1059
			1200
		71.1a Nash-Williams' proof of the Rothschild-Whinston	1056
	71.0	theorem	
	71.2	Consequences	
	71.3	2-commodity cut packing	
	71.4	Further results and notes	
		71.4a Two disjoint paths in undirected graphs	
		71.4b A directed 2-commodity flow theorem	1204
		71.4c Kleitman, Martin-Löf, Rothschild, and Whinston's	1005
		theorem	
		71.4d Further notes	1267
72	Thre	ee or more commodities	1268
72		ee or more commodities	
72	Thre 72.1 72.2	Demand graphs for which the cut condition is sufficient	1268
72	72.1	Demand graphs for which the cut condition is sufficient Three commodities	$\begin{array}{c} 1268 \\ 1273 \end{array}$
72	72.1	Demand graphs for which the cut condition is sufficient Three commodities	$1268 \\ 1273 \\ 1275$
72	72.1	Demand graphs for which the cut condition is sufficient Three commodities	$1268 \\ 1273 \\ 1275 \\ 1277$
	72.1 72.2 72.3	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278
72 73	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient	1268 1273 1275 1277 1278 1282
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient	1268 1273 1275 1277 1278 1282
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287
	72.1 72.2 72.3 T-pa	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290 1291
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290 1291 1292
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290 1291 1292 1292
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities	1268 1273 1275 1277 1278 1282 1282 1287 1287 1288 1299 1291 1292 1292 1293
	72.1 72.2 72.3 T-pa 73.1	Demand graphs for which the cut condition is sufficient Three commodities 72.2a The K _{2,3} -metric condition 72.2b Six terminals Cut packing ths Disjoint T-paths 73.1a Disjoint T-paths with the matroid matching algorithm 73.1b Polynomial-time findability of edge-disjoint T-paths 73.1c A feasibility characterization for integer K ₃ -flows. Fractional packing of T-paths 73.2a Direct proof of Corollary 73.2d Further results and notes 73.3a Further notes on Mader's theorem 73.3b A generalization of fractionally packing T-paths	1268 1273 1275 1277 1278 1282 1282 1287 1288 1289 1290 1291 1292 1292 1293 1294

		73.3f	Further notes	. 1298		
74	Planar graphs					
	74.1	_	ets spanned by one face: the Okamura-Seymour			
			em	. 1299		
		74.1a	Complexity survey			
		74.1b	Graphs on the projective plane			
		74.1c	If only inner vertices satisfy the Euler condition			
			Distances and cut packing			
			1 0			
		74.1f	Directed planar graphs with all terminals on the			
			outer boundary	. 1310		
	74.2	G + H	I planar	. 1310		
			Distances and cut packing			
			Deleting the Euler condition if $G + H$ is planar			
	74.3		ura's theorem			
		74.3a	Distances and cut packing	. 1316		
		74.3b	The Klein bottle	. 1317		
		74.3c	Commodities spanned by three or more faces	. 1319		
	74.4	Furthe	er results and notes	. 1321		
		74.4a	Another theorem of Okamura	. 1321		
		74.4b	Some other planar cases where the cut condition is			
			sufficient	. 1323		
		74.4c	Vertex-disjoint paths in planar graphs			
		74.4d	Grid graphs	. 1326		
		74.4e	Further notes	. 1328		
7 5	Cuts	s, odd	circuits, and multiflows	. 1329		
	75.1		ly and strongly bipartite graphs			
			NP-completeness of maximum cut			
		75.1b	Planar graphs	. 1331		
	75.2	Signed	d graphs	. 1332		
	75.3	Weakl	ly, evenly, and strongly bipartite signed graphs	. 1333		
	75.4	Chara	cterizing strongly bipartite signed graphs	. 1334		
	75.5	Chara	cterizing weakly and evenly bipartite signed graphs	. 1337		
	75.6	Applie	cations to multiflows	. 1344		
	75.7	The c	ut cone and the cut polytope	. 1345		
	75.8	The m	naximum cut problem and semidefinite programming.	. 1349		
	75.9		er results and notes			
			Cuts and stable sets			
		75.9b	Further notes	1353		

XXXIV Table of Contents

76	Homotopy and graphs on surfaces		1355	
	76.1	Graphs, curves, and their intersections: terminology and notation	1955	
	76.2	Making curves minimally crossing by Reidemeister moves		
	76.2	Decomposing the edges of an Eulerian graph on a surface		
	76.4	A homotopic circulation theorem		
	76.5	A homotopic circulation theorem		
	76.6	Homotopic paths in planar graphs with holes		
	76.7	Vertex-disjoint paths and circuits of prescribed homotopies.		
		76.7a Vertex-disjoint circuits of prescribed homotopies	1370	
		76.7b Vertex-disjoint homotopic paths in planar graphs	1971	
		with holes		
		76.7c Disjoint trees	13/4	
Pai	rt VII	I: Hypergraphs		
77	Pack	Packing and blocking in hypergraphs: elementary		
	notic	ons		
	77.1	Elementary hypergraph terminology and notation		
	77.2	Deletion, restriction, and contraction		
	77.3	Duplication and parallelization		
	77.4	Clutters		
	77.5	Packing and blocking		
	77.6	The blocker		
	77.7	Fractional matchings and vertex covers		
	77.8	k-matchings and k -vertex covers	1380	
	77.9	Further results and notes	1381	
		77.9a Bottleneck extrema		
		77.9b The ratio of τ and τ^*	1382	
		77.9c Further notes	1383	
7 8	Idea	l hypergraphs	1385	
	78.1	Ideal hypergraphs		
	78.2	Characterizations of ideal hypergraphs		
	78.3	Minimally nonideal hypergraphs		
	78.4	Properties of minimally nonideal hypergraphs: Lehman's		
		theorem	1389	
		78.4a Application of Lehman's theorem: Guenin's		
		theorem	1394	
		78.4b Ideality is in co-NP	1396	
	78.5	Further results and notes	1397	
		78.5a Composition of clutters	1397	
		78.5b Further notes		

79	Mengerian hypergraphs			
	79.1	Mengerian hypergraphs		
		79.1a Examples of Mengerian hypergraphs		
	79.2	Minimally non-Mengerian hypergraphs		
	79.3	Further results and notes		
		79.3a Packing hypergraphs		
		79.3b Restrictions instead of parallelizations		
		79.3c Equivalences for k -matchings and k -vertex covers		
		79.3d A general technique		
		79.3e Further notes		
80	Ring	ary hypergraphs	1408	
00	80.1	Binary hypergraphs		
	80.1	Binary hypergraphs and binary matroids		
	80.3	The blocker of a binary hypergraph		
	00.5	80.3a Further characterizations of binary clutters		
	80.4	On characterizing binary ideal hypergraphs		
	80.5	Seymour's characterization of binary Mengerian	1410	
	00.5	hypergraphs	1/11	
		80.5a Applications of Seymour's theorem		
	80.6	Mengerian matroids		
	00.0	80.6a Oriented matroids		
	80.7			
	80.7	Further results and notes		
		80.7a $\tau_2(H) = 2\tau(H)$ for binary hypergraphs H		
		80.7b Application: T-joins and T-cuts		
		80.7c Box-integrality of $k \cdot P_H$. 1420	
81	Mat	roids and multiflows	1421	
	81.1	Multiflows in matroids	1421	
	81.2	Integer k-flowing	1422	
	81.3	1-flowing and 1-cycling	1423	
	81.4	2-flowing and 2-cycling	1423	
	81.5	3-flowing and 3-cycling		
	81.6	4-flowing, 4-cycling, ∞ -flowing, and ∞ -cycling	1425	
	81.7	The circuit cone and cycle polytope of a matroid	1426	
	81.8	The circuit space and circuit lattice of a matroid	1427	
	81.9	Nonnegative integer sums of circuits	1427	
	81.10	Nowhere-zero flows and circuit double covers in matroids	1428	
82	Cove	ering and antiblocking in hypergraphs	1430	
	82.1	Elementary concepts		
	82.2	Fractional edge covers and stable sets		
	82.3	k-edge covers and k -stable sets		
	82.4	The antiblocker and conformality		
		82 4a Gilmore's characterization of conformality		

XXXVI Table of Contents

		Perfect hypergraphs
	02.0	82.6a Some equivalences for the k -parameters
83	Bala	nced and unimodular hypergraphs 1441
	83.1	Balanced hypergraphs
	83.2	Characterizations of balanced hypergraphs
		83.2a Totally balanced matrices
		83.2b Examples of balanced hypergraphs 1449
		83.2c Balanced 0, ±1 matrices
	83.3	Unimodular hypergraphs
		83.3a Further results and notes
Sur	vey o	of Problems, Questions, and Conjectures
Rei	ferenc	es
Na	me in	dex
Sul	oject	index
Gre	eek gi	eaph and hypergraph functions