Демо 2024 УМНОЖЕНИЕ ВЕКТОРА НА ЧИС Если $\vec{a}(2;3)$, то
$2\vec{a}(4;6)$ СЛОЖЕНИЕ ВЕКТОРОВ ЕСЛИ $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то
$\vec{a} + \vec{b} = (x_1 + x_2; y_1 + y_2)$ ДЛИНА ВЕКТОРА ЕСЛИ $\vec{a}(x; y)$, то
$ \vec{a} = \sqrt{x^2 + y^2}$

#1_Д3

#2

#2_Д3

#3_Д3

#4 Д3

#5

#5_Д3

Даны векторы \vec{a} (1; 2), \vec{b} (3; -6) и \vec{c} (4; -3). Найдите значение выражения (\vec{a} + \vec{b}	$(\vec{c}) \cdot \vec{c}$. ИСТОЧНИКИ
	Только МАТНЕGE СЛОЖЕНИЕ ВЕКТОРОВ
	Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то
	$ec{a} + ec{b} = (x_1 + x_2; y_1 + y_2)$ СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ В КООРДИНАТАХ
	Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то $\vec{a}\cdot\vec{b}=x_1\cdot x_2+y_1\cdot y_2$
OTBET	

#7_Д3

	Даны	векторн	ы <i>а</i> (—2)	$(1), \vec{b}$ (7)	7; 4) и б	₹ (2; –6	5). Hai	йдите з	начение	выраже	ения (а	$+\vec{b}$) $\cdot \vec{c}$.	источники
														Только MATHEGE СЛОЖЕНИЕ ВЕКТОРОВ
														Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то
														$\vec{a} + \vec{b} = (x_1 + x_2; y_1 + y_2)$ СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ В
														КООРДИНАТАХ Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то
														$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$
ОТВЕ	T													

Даны векторы \vec{a} (3; 4) и \vec{b} (-4 ; -3). Найдите косинус угла между	у ними. Только МАТНЕБЕ (КАЛЯРНОЕ ПРОИЗВЕДЕНИЕ
	$ec{a} \cdot ec{b} = ec{a} \cdot ec{b} \cdot \cos arphi$ где $arphi$ – угол между векторам СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ I КООРДИНАТАХ
	Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, то $\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$
	ДЛИНА ВЕКТОРА
	Если $\vec{a}(x;y)$, то
	$ \vec{a} = \sqrt{x^2 + y^2}$

#8_Д3

Даны векторы \vec{a} (7; 1) и \vec{b} (-1 ; -7). Найдите косинус угла между	ними. ИСТОЧНИКІ
	Только МАТНЕСЕ
	СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ
	$ \vec{a}\cdot\vec{b} = \vec{a} \cdot \vec{b} \cdot\cos\varphi$
	где $arphi$ – угол между векторам
	СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ КООРДИНАТАХ
	Если $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$, т
	$ec{a}\cdotec{b}=x_1\cdot x_2+y_1\cdot y_2$ Длина Вектора
	Если $\vec{a}(x;y)$, то
	$ \vec{a} = \sqrt{x^2 + y^2}$
TBET	

	Длина вектора \vec{a} равна $2\sqrt{2}$, угол между векторами \vec{a} и \vec{b} равен 45°, а скалярное	источник
	произведение $\vec{a}\cdot\vec{b}$ равно 12. Найдите длину вектора \vec{b} .	Только MATHEGE СКАЛЯРНОЕ ПРОИЗВЕДЕНИ
		$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos \varphi$
		где $arphi$ – угол между вектора
		
)TB	ET	
пэ		
_Д3		
	→ → → → → → → → → → → → → → → → → → →	источник
	Длина вектора \vec{a} равна 3, угол между векторами \vec{a} и \vec{b} равен 45°, а скалярное	
	произведение $\vec{a}\cdot\vec{b}$ равно $15\sqrt{2}$. Найдите длину вектора \vec{b} .	Только MATHEGE СКАЛЯРНОЕ ПРОИЗВЕДЕНИ
		$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos \varphi$
		где $arphi$ – угол между вектора
)TB	ET	
	ET	
	ET	
	ЕТ Найдите длину вектора \vec{a} (6; 8).	источник
		Только МАТНЕСЕ
		Только MATHEGE Длина вектора
		Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
0	Найдите длину вектора \vec{a} (6; 8).	Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
0	Найдите длину вектора \vec{a} (6; 8).	Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только МАТНЕGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то $ \vec{a} = \sqrt{x^2 + y^2}$
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только MATHEGE ДЛИНА ВЕКТОРА Если $\vec{a}(x;y)$, то
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только МАТНЕGE ДЛИНА ВЕКТОРА ЕСЛИ $\vec{a}(x;y)$, то $ \vec{a} = \sqrt{x^2 + y^2}$ ИСТОЧНИК Только МАТНЕGE ДЛИНА ВЕКТОРА
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только МАТНЕGE ДЛИНА ВЕКТОРА ЕСЛИ $\vec{a}(x;y)$, то $ \vec{a} = \sqrt{x^2 + y^2}$
ОТВ	Найдите длину вектора \vec{a} (6; 8).	Только МАТНЕGE ДЛИНА ВЕКТОРА ЕСЛИ $\vec{a}(x;y)$, то $ \vec{a} = \sqrt{x^2 + y^2}$ ИСТОЧНИК Только МАТНЕGE ДЛИНА ВЕКТОРА
ОТВ 10 ОТВ	Найдите длину вектора \vec{a} (6; 8). ЕТ В Найдите длину вектора \vec{a} (—10; 24).	Только МАТНЕGE ДЛИНА ВЕКТОРА ЕСЛИ $\vec{a}(x;y)$, то $ \vec{a} = \sqrt{x^2 + y^2}$

