Regressão Lasso

Guilherme Seidyo Imai Aldeia

Universidade Federal do ABC
Programa de Pós Graduação em Ciência da Computação
Fundamentos de Matemática para Computação
Prof. Dr. Saul de Castro Leite

Santo André/SP 2020

Índice

- Introdução
- Regressão Linear
- Regularização
- 4 Implementação
- Teste
- Conclusões

Introdução

- Durante o curso, aprendemos sobre a regressão linear, e vimos diferentes formas fechadas de calcular sua solução.
- Nesta apresentação, iremos estudar uma variação: a Regressão Lasso.
- Veremos a fundamentação matemática e uma implementação do método.

Artigo de referência

- Este projeto foi baseado no artigo **Regression Shrinkage** and **Selection via the Lasso** ☑ , publicado em 1996 por *Robert Tibshirani*.
- As referências secundárias (sites com discussões interessantes), que ajudaram a entender melhor o artigo principal, serão apresentadas como leitura complementar.

Índice

- 1 Introdução
- Regressão Linear
- Regularização
- 4 Implementação
- Teste
- Conclusões

Revisando a regressão linear I

Técincas de regressão

Ajustam os coeficientes de uma função matemática, mapeando uma ou mais variáveis x, com $x \in \mathbb{R}$ ou $\mathbf{x} \in \mathbb{R}^n$ (chamadas de variáveis explanatórias ou variáveis independentes) a uma variável y (variável alvo, ou variável dependente), $y \in \mathbb{R}$.

Revisando a regressão linear II

Podemos ter o caso onde há apenas uma variável explanatória $(x \in \mathbb{R})$; ou o caso comn variáveis explanatórias (onde \mathbb{R}^n , \mathbf{x} é um vetor de tamanho n, onde cada elemento x_i corresponde a uma variável explanatória).

Definindo uma convenção

No restante das explicações que seguem, será tratado sempre o caso em que $\mathbf{x} \in \mathbb{R}^n$. Utilizaremos esta análise pois as conclusões para \mathbb{R}^n também são válidas para o caso onde n=1, isto é, \mathbb{R} , sem perda de generalidade.

Revisando a regressão linear III

Suponha que exista uma função $f(\mathbf{x}) = y$ desconhecida — a tarefa de regressão é ajustar uma função $\hat{f}(\mathbf{x})$, com $\hat{f}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$, através da escolha de coeficientes internos de \hat{f} de forma a minimizar uma função de custo entre os valores reais y observados com os valores preditos $\hat{y} = \hat{f}(\mathbf{x})$ para cada par (\mathbf{x}, y) de pontos dados.

Geralmente, esses pares de pontos são obtidos de experimentos e observações, e deseja-se modelar uma função que descreva o comportamento observado.

Revisando a regressão linear IV

Existem, 3 tipos de regressões:

- Paramétricas: o caso que f é definida previamente, e ajustamos apenas coeficientes livres dessa função (i.e. regressão linear);
- Não paramétricas: quando tanto os coeficientes livres quanto a própria função são ajustados durante o processo (i.e. regressão simbólica);
- Semi-paramétricas: quando a função apresenta uma parte fixa (pré definida) e uma parte ajustável nos mesmos moldes que regressões não paramétricas (i.e. modelo geoaditivo).

Revisando a regressão linear V

livres de forma a minimizar o erro.

A regressão linear é paramétrica, e sua solução vem do ajuste de coeficientes livres (β_i , com $i=1,2,\ldots,n$) da combinação linear das n variáveis explanatórias do problema, e costuma incluir também um coeficiente não associado às variáveis, representando o intercepto (β_0). Sendo assim, queremos estimar valores para os coeficientes

Revisando a regressão linear VI

Seja o conjunto de d pontos observados $\{\mathbf{x_i}, y_i\}_{i=1,2,\dots,d}$. Partimos da suposição de que a função f realiza a combinação linear das x_i variáveis dependentes, com $i=1,2,\dots,n$ sendo que cada variável x_i tem um peso associado. Chamaremos de \widehat{f} a função estimada, que é definida por:

$$\widehat{y} = \widehat{f}(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n,$$

ou, em forma de vetores:

$$\widehat{\mathbf{y}} = \mathbf{x}^T \boldsymbol{\beta},$$

onde β_0 é o intercepto.

Revisando a regressão linear VII

Note que isso é a definição de um hiper-plano, uma generalização de uma reta para o espaço \mathbb{R}^n . Nosso objetivo é minimizar o erro entre esse hiper-plano definido por \widehat{f} e os pontos observados $\{\mathbf{x_i}, y_i\}$ — dessa forma, a regressão linear busca ajustar os coeficientes de um hiperplano no espaço das variáveis explanatórias.

Geralmente, o erro é medido pela Soma dos Resíduos ao Quadrado (RSS, da sigla em inglês):

$$RSS = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2,$$

onde $\hat{y}_i - y_i$ é o resíduo ϵ .

Revisando a regressão linear VIII

Para ajustar \widehat{f} , queremos encontrar um vetor β ótimo $(\widehat{\beta})$ que minimize o RSS. Supondo que y é a solução do sistema $y = \mathbf{x}^T \widehat{\beta}$, queremos então:

$$\widehat{\beta} = \min \mathsf{RSS}(\beta),$$

Onde o RSS para um dado β é calculado por:

$$RSS(\beta) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{\mathsf{T}} \beta - y_{i})^{2}.$$

Revisando a regressão linear IX

Esse problema tem solução única desde que as *n* colunas sejam L.I.. Esse sistema pode ser escrito e resolvido de forma matricial. Existe uma forma de derivação desse problema, chamado de **Método dos Mínimos Quadrados** (OLS, da sigla em inglês), que dá o seguinte resultado:

$$(X^TX)\widehat{\beta} = X^Ty,$$

onde X e y são o conjunto de todos os pontos observados:

$$X = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d,1} & x_{d,2} & \dots & x_{d,n} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{bmatrix}$$

Revisando a regressão linear X

Dessa forma, isolando $\widehat{\beta}$:

$$\widehat{\beta} = (X^T X)^{-1} X^T y.$$

A ideia por trás do Método dos Mínimos Quadrados é que, ao minimizar a soma dos quadrados dos resíduos, estamos estimando \hat{y} . De uma forma geral:

$$\widehat{\mathbf{y}} = \beta \mathbf{x}_i^T + \epsilon_i.$$

Revisando a regressão linear XI

Dessa forma, se derivarmos RSS(β) e igualarmos a zero:

$$\frac{d}{d\beta} \mathsf{RSS}(\beta) = 0,$$

podemos encontrar a solução ótima — é dessa forma que obtemos a solução ótima na forma fechada pelos mínimos quadrados \square .

Revisando a regressão linear XII

A regressão linear apresenta bons resultados quando as variáveis explanatórias e a variável alvo interagem de forma linear. Porém, em alguns casos, pode ser de interesse evitar alguns problemas como o *overfit* nos dados. A próxima sessão irá apresentar uma estratégia para contornar o problema.

Índice

- 1 Introdução
- 2 Regressão Linear
- Regularização
- 4 Implementação
- Teste
- 6 Conclusões

Regularização I

A regularização de e o processo de se adicionar informações para resolver um problema de regressão, buscando prevenir o *overfit*.

Regularização II

Até agora, estamos encontrando a solução dos coeficientes da regressão linear resolvendo o seguinte problema:

$$\widehat{\beta} = \min(\sum_{i=1}^{n} (\widehat{y}_i - y_i)^2).$$

Vamos adicionar um termo regularizador na nossa função, chamado de R(f). Denotando o RSS por V, temos:

$$\widehat{\beta} = \min(V + R(f)).$$

Agora, precisamos escolher o termo regularizador R(f) de forma que imponha uma penalidade de complexidade f, restringindo o espaço de soluções em uma região que contenha candidatos desejáveis.

Norma

Antes de continuar, vamos recordar o conceito de **norma**. Toda função $N: \mathbb{R}^n \to \mathbb{R}$, que satisfaz as condições:

- **1** $\|\alpha x\| = |\alpha| \|x\|$;
- **2** ||x|| > 0, para todo $x \in \mathbb{R}^n$, $e ||x|| = 0 \Leftrightarrow x = 0$;
- 3 ||x+y|| < ||x|| + ||y|| (inequação do triângulo);

é uma norma. De forma geral, temos uma norma-p definida como:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}},$$

onde $p \in [1, \infty)$.

Regularizando a regressão linear I

Relembrando, o RSS é definido como:

$$RSS = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2,$$

onde \mathbf{y} é uma matriz coluna com os valores de y_i , e \mathbf{X} é a matriz de variáveis explanatórias descrita anteriormente. Se incluirmos nessa equação uma penalidade sobre β , dada por $\lambda \|\beta\|_1$, com λ sendo o coeficiente de penalidade (ou parâmetro de regularização), temos agora que nosso $\hat{\beta}$ será calculado por:

$$\widehat{\beta} = \min(\mathsf{RSS} + \lambda \left\|\beta\right\|_1) = \min(\sum_{i=1}^n (y_i - \beta \mathbf{x}_i^T)^2 + \lambda \sum_{i=1}^n |\beta_i|).$$

Regularização da regressão linear II

O primeiro termo dessa equação $(\sum_{i=1}^{n} (y_i - \beta \mathbf{x}_i^T)^2)$ é a já conhecida soma dos erros.

O segundo termo $(\lambda \sum_{j=1}^{n} |\beta_j|)$ é a penalidade adicionada. Na literatura, utilizar como penalidade a norma l_1 para a tarefa de regressão recebe um nome especial: Regressão Lasso, Regressão com normalização L_1 , ou apenas Lasso.

Justificativa do uso da norma L_1

A adição do termo de penalidade gera uma restrição no espaço de busca, com forma de "diamante".

Implicações do termo regularizador I

Com isso, dado que λ seja adequado, $\widehat{\beta}$ será encontrado em um ponto ótimo tal que, seja a região de diamante a região da função objetivo Lasso, e as elipses o gradiente da função MSE minimizada pelo OLS, o ponto ótimo (que seja mínimo dentro da região permitida) ocorre na intersecção entre as duas regiões.

Implicações do termo regularizador II

O ponto ótimo cairá dentro de um dos vértices do "diamante", resultando em uma ou mais variáveis explanatórias com coeficientes iguais a zero, enquanto o OLS pode fazer com que os coeficientes assumam valores muito próximos de zero, mas não necessariamente nulos (=0).

Com isso, a penalidade restringe o espaço de busca dentro de uma região propício à anulação de um ou mais coeficientes, podendo resultar em menos variáveis utilizadas na equação, podendo aliviar o overfit ou melhorar a qualidade e interpretabilidade do resultado.

Implicações do termo regularizador III

Além disso, por conta da anulação de algumas variáveis, a regressão Lasso costuma ser empregada no campo de Aprendizado de Máquina (ML da sigla em inglês) para a tarefa de seleção de atributos (feature selection, do inglês), diminuindo a dimensionalidade dos dados, e melhorando a interpretabilidade dos resultados e desempenho computacional.

Implicações do termo regularizador IV

Então, temos que a restrição imposta ainda compartilha resultados bons com o OLS, mas se restringe à região onde soluções mais simples existem. Em um vértice qualquer do diamante, ao menos um coeficiente β_i será nulo. Dessa forma, o lasso tem poder de produzir soluções esparsas, onde vários parâmetros de $\widehat{\beta}$ são iguais a zero. Todo modelo estimado pela regressão Lasso terá cardinalidade min(d, n), onde n é o número ve variáveis e d o número de pontos.

Limitações

Porém, o lasso tem algumas limitações:

- Quando d ≫ n, o lasso selecionará até n variáveis antes de saturar, por conta do problema convexo de otimização (como alternativa, temos técnicas como o ElasticNet, que contorna esse problema). Dessa forma, ele só selecionará n variáveis;
- O lasso assume independência entre variáveis. No caso onde há variáveis correlacionadas (que é o que ocorre normalmente em problemas do mundo real), ele selecionará apenas 1 desse grupo e descarta os outros.

Leituras complementares

- Definição formal e propriedades do Lasso. Unicidade de solução ♂;
- Resumo de passos importantes. Convergência ♂;
- Lasso para seleção de variáveis ♂ ;
- Intuições sobre o Lasso ☐;
- Desvantagens do Lasso ♂.

Índice

- Introdução
- Regressão Linear
- Regularização
- 4 Implementação
- Teste
- 6 Conclusões

Nova função de custo

Vamos definir L_1 como a função de custo da regressão linear com regularização l_1 :

$$L_1 = \sum_{i=1}^n (y_i - \beta \mathbf{x}_i^T)^2 + \lambda \sum_{j=1}^n |\beta_j|.$$

Então que $\widehat{\beta}=\min(L_1)$. Para a solução da regressão linear, a solução de forma fechada vem da resolução da derivada do sistema (pois, se queremos minimizar, a derivada resultará em um extremo da função, que corresponde ao mínimo global, pois a função de custo da regressão linear é convexa) — mas note que, neste caso, L_1 não é diferenciável, pois $|\beta|$ não é contínua em 0.

Convexidade da nova função de custo

Ambos os termos da equação Lasso são convexos, de forma que existe um mínimo global, mas o termo da penalidade não é estritamente convexa, podendo existir vários valores de $\widehat{\beta}$ que minimizem a função de erro. Isso faz com que não exista uma solução explícita (fechada) para o problema, que encontre um valor ótimo, por não ser único.

Por isso, costumam ser utilizados métodos de otimização numérica \Box — técnicas de otimização e análise convexa para resolver o problema de regressão com penalidade l_1 .

Implementações antigas

Implementações mais antigas da regressão Lasso utilizavam o Least Angle Regression (LARS) para encontrar a solução (em python, essa implementação é feita no scikit-learn sob o nome Lasso LARS . mas técnicas atuais conseguem realizar a tarefa com um menor custo computacional.

Vamos ver à seguir uma implementação por descida de coordenadas (*coordinate descent*, a técnica que a principal implementação do Lasso no *scikit-learn* se baseia 2).

Implementações mais modernas I

Por ser uma função de custo convexa, a otimização parâmetro-por-parâmetro converge para o ótimo, de forma que podemos iterar entre os parâmetros, um a um, fazendo uma atualização a cada passo, até chegar no ponto de convergência. O uso do *coordinate descent* é bom pois:

- Não envolve fatorações da matriz ou operações complicadas, apenas produtos internos;
- ② Escala de forma linear para $n \in d$.

Implementações mais modernas II

Seja o problema de minimizar L_1 . A cada iteração, vamos percorrer o vetor β , um a um, sendo que quando estamos em um passo no β_j , todos os outros β_{-j} são fixados — como fazemos a otimização coordenada a coordenada, é como se trabalhássemos no caso unidimensional. Seja o resíduo (desconsiderando o β_j) dado por:

$$r_{i,j} = y_i - \sum_{k \neq i} x_{i,k} \beta_k,$$

e seja o estimador OLS baseado em $\{r_{i,j}, x_{i,j}\}_{i=1}^d$:

$$Z_j = \sum_{i=1}^d x_{i,j} r_{i,j},$$

Algoritmo de *coordinate descent* l

Algoritmo 1: Algoritmo geral de coordinate descent para ajuste do $\widehat{\beta}$

```
\beta = [1, 1, ..., 1];
// para t iterações
for t=0, 1, 2, ... do
    // para cada \beta_i
    for j=1, 2, ..., n do
         \beta^{t+1}[j] = \min F(\beta) à respeito de \beta_i;
         \beta^{t+1}[i] = \beta[i], para todo i \neq i;
         \beta = \beta^{t+1}:
    end
end
return \beta;
```

Algoritmo de coordinate descent II

Note que, para implementar o algoritmo anterior, precisamos saber quem é o mínimo da função de custo F. Como no nosso problema a função de custo é:

$$F(\beta) = L_1 = \sum_{i=1}^{n} (y_i - \beta x_i^T)^2 + \lambda \sum_{j=1}^{n} |\beta_j|,$$

com $\beta \in \mathbb{R}^n$, a iteração t+1 define β^{t+1} à partir de β^t , ajustando um parâmetro por vez, minimizando a função de custo em relação a β_j . Queremos minimizar a função da mesma forma que fazemos para obter a solução da regressão pelo OLS — queremos derivar L_1 para obter essa expressão.

Algoritmo de *coordinate descent* III

Note que $L_1 = OLS + \lambda \|\beta\|$, e sabemos que $\frac{d}{dv}(f+g) = \frac{d}{dv}f + \frac{d}{dv}g$. Pelo termo OLS, derivando parcialmente para um β_i :

$$\frac{d}{d\beta_j}OLS(\beta) = \sum_{i=1}^d x_j^{(i)} \left[y^{(i)} - \sum_{k=1}^n \beta_k x_k^{(i)} \right].$$

Podemos tirar o caso k = i de dentro do último somatório:

$$\frac{d}{d\beta_{j}}OLS(\beta) = \sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=1, k \neq j}^{n} \beta_{k} x_{k}^{(i)} - \beta_{j} x_{j}^{(i)} \right].$$

Algoritmo de coordinate descent IV

Sabemos que não há derivada da penalidade Lasso, onde $\beta_j = 0$. Essa observação feita é importante quando tentamos derivar o termo de penalidade Lasso:

$$\lambda \|\beta\| = \lambda |\beta| = \lambda |\beta_j| + \lambda \sum_{k=1, k \neq j}^{n} |\beta_k|.$$

Para derivar essa parte da equação, vamos utilizar os conceitos de subderivadas, uma forma de generalizar a derivada de funções convexas que não são necessariamente diferenciáveis. A função de custo L_1 é convexa pois os termos OLS e Lasso são convexos.

Algoritmo de coordinate descent V

Temos 3 propriedades importantes de subderivadas:

- Uma função convexa em x_0 só é diferenciável nesse ponto se o conjunto de subderivada só tem um ponto, que será a derivada em x_0 ;
- ② (Teorema Morea-Rockafellar) Sejam f e g convexas com subderivadas, então a subderivada de f+g é $\partial(f+g)=\partial f+\partial g$
- (condição estacionária) Um ponto x_i é o mínimo global de f se e somente se o 0 está contido no conjunto de subderivadas.

Algoritmo de coordinate descent VI

Com essas propriedades, podemos calcular a subderivada para o termo Lasso, como:

$$\frac{\partial}{\partial \beta_j} (\lambda |\beta_j|) = \begin{cases} -\lambda, \text{ se } \beta_j < 0\\ [-\lambda, \lambda], \text{ se } \beta_j = 0\\ \lambda, \text{ se } \beta_j > 0 \end{cases}$$

Note que o segundo caso irá conter, dentro do intervalo, o valor 0.

Algoritmo de coordinate descent VII

Dessa forma, sabemos agora calcular a subderivada de L_1 para um dado β_i :

$$\frac{\partial}{\partial \beta_{i}} L_{1}(\beta) = \frac{\partial}{\partial \beta_{i}} OLS(\beta) + \frac{\partial}{\partial \beta_{i}} \lambda \|\beta\|_{1}.$$

Como queremos o mínimo global da função de custo:

$$\sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=1, k \neq i}^{n} \beta_{k} x_{k}^{(i)} - \beta_{j} x_{j}^{(i)} \right] + \frac{\partial}{\partial \beta_{j}} \lambda \|\beta\|_{1} = 0.$$

Algoritmo de coordinate descent VIII

Sejam ρ_j a derivada da função de custo do OLS, e Z_j o fator de normalização dos dados, definidos por:

$$\rho_{j} = \sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=0, k \neq j}^{n} \beta_{k} x_{k}^{(i)} - \beta_{j} x_{j}^{(i)} \right],$$

$$Z_{j} = \sum_{i=1}^{d} (x_{j}^{(i)})^{2},$$

Dessa forma, utilizando as propriedades de subderivadas, e combinando as derivadas do OLS e do termo Lasso, temos:

$$\frac{\partial}{\partial \beta_j} L_1(\beta) = \begin{cases} \rho_j - \lambda, & \text{se } \beta_j < 0 \\ 0, & \text{se } \beta_j = 0 \\ \rho_i + \lambda, & \text{se } \beta_i > 0 \end{cases},$$

Algoritmo de coordinate descent IX

Lembrando da função de custo:

$$\frac{d}{d\beta_{j}}L_{1}(\beta) = \sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=1, k \neq j}^{n} \beta_{k} x_{k}^{(i)} - \beta_{j} x_{j}^{(i)} \right] + \frac{\partial}{\partial \beta_{j}} \lambda \left\| \beta \right\|_{1} = 0,$$

podemos isolar o termo com β_i :

$$\sum_{i=1}^{d} x_{j}^{(i)} \beta_{j} x_{j}^{(i)} = \sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=1, k \neq j}^{n} \beta_{k} x_{k}^{(i)} \right] + \frac{\partial}{\partial \beta_{j}} \lambda \|\beta\|_{1}.$$

Dividindo os dois lados pelo termo que multiplica β_i :

$$\beta_{j} = \frac{\sum_{i=1}^{d} x_{j}^{(i)} \left[y^{(i)} - \sum_{k=1, k \neq j}^{n} \beta_{k} x_{k}^{(i)} \right] + \frac{\partial}{\partial \beta_{j}} \lambda \left\| \beta \right\|_{1}}{\sum_{i=1}^{d} x_{i}^{(i)} x_{i}^{(i)}} = \frac{\rho_{j} + \lambda}{Z_{j}}.$$

Algoritmo de coordinate descent X

Agora que sabemos calcular um valor para β_j , podemos ver quando ele cairá em cada um dos casos. Note que isso depende então de ρ_i , Z_i , e λ :

$$\begin{cases} \beta_j < 0, \text{ se } \rho_j < -\lambda \\ \beta_j \in [-\lambda, \lambda], \text{ se } -\lambda < \rho_j < \lambda \\ \beta_j > 0 \text{ se } \rho_j > \lambda \end{cases}$$

Podemos então definir a atualização de β_i por:

$$\begin{cases} \beta_j = \frac{\rho_j + \lambda}{Z_j}, \text{ se } \rho_j < -\lambda \\ \beta_j = 0, \text{ se } -\lambda < \rho_j < \lambda \\ \beta_j = \frac{\rho_j - \lambda}{Z_i}, \text{ se } \rho_j > \lambda \end{cases}$$

Sendo assim podemos definir uma função $S(\rho_j, \lambda, Z_j)$, chamada de *Soft Threshold*, que faz a computação acima.

Algoritmo de *coordinate descent* XI

Algoritmo 2: Algoritmo final de $coordinate \ descent$ para ajuste do $\widehat{\beta}$

```
\beta = \begin{bmatrix} 1,1,...,1 \end{bmatrix} ; for t=0,\ 1,\ 2,\ ... do for j=1,\ 2,\ ...,\ n do calcule \rho_j utilizando \beta ; calcule Z_j utilizando \beta ; \beta[j] = S(\rho_j,\lambda,Z_j) ; end
```

end

Leituras complementares

- Como implementar o Lasso com coordinate descent ☐;
- Discussão sobre convergência do método ♂;
- Como os coeficientes respondem de acordo com o parâmetro de regularização ☐;
- Regularization Path For Generalized linear Models by Coordinate Descent, Friedman, Hastie & Tibshirani, J Stat Softw, 2010;
- An Interior-Point Method for Large-Scale
 L1-Regularized Least Squares. S. J. Kim, K. Koh,
 M. Lustig, S. Boyd and D. Gorinevsky, in IEEE
 Journal of Selected Topics in Signal Processing, 2007.

Índice

- Introdução
- Regressão Linear
- Regularização
- 4 Implementação
- 6 Teste
- Conclusões

Executando um pequeno teste

Criando um caso simples, sem ruído e onde os dados são gerados à partir da combinação linear de apenas 2 das 5 variáveis, o seguinte resultado foi obtido:

	<i>x</i> ₁	X ₂	X3	<i>X</i> 4	<i>X</i> ₅
Coeficientes Originais	0.000	0.000	0.000	97.996	45.705
Coeficientes pelo OLS <i>scikit</i>	-4.279e-14	-1.421e-14	2.664e-15	97.996	45.705
Coeficientes pelo Lasso <i>scikit</i>	0.000	0.000	0.000	96.846	44.665
Coeficientes implementação	0.000	0.000	0.000	97.996	45.705

Convergência dos coeficientes

Gráficos de convergência dos betas em função do parâmetro de regularização

Lambda

Índice

- 1 Introdução
- 2 Regressão Linear
- Regularização
- 4 Implementação
- Teste
- 6 Conclusões

Conclusões

Vemos que o Lasso pode ajudar a diminuir o *overfit* e melhorar os resultados por restringir o espaço de busca a soluções esparsas. Isso também pode gerar um aumento na interpretabilidade do resultado obtido, por diminuir a quantidade de termos utilizados, e inclusive por esse motivo o Lasso é utilizado no campo de ML como um pré processamento para diminuir a dimensionalidade dos dados.

Pelo gráfico de convergência, vemos que no momento em que o lambda se torna maior que a menor importância de variável, o algoritmo "quebra"e passa a dar resultados incorretos. Isso ocorre pois o tamanho do passo é maior que o mínimo necessário para ajustar corretamente a importância daquela variável.