

Φυλλάδιο Ασκήσεων

Μαθηματικά Γ' Γυμνασίου

Ημερομηνία Παράδοσης :

Ονοματεπώνυμο:

- Ορισμός τετραγωνικής ρίζας
- Ιδιότητες ριζών

Θεωρία - Τετραγωνική Ρίζα

• Τετραγωνική ρίζα ενός θετικού αριθμό x (\sqrt{x}) είναι ο θετικός αριθμός που όταν υψωθεί στο τετράγωνο μας δίνει τον αριθμό x.

π.x
$$\sqrt{16} = 4$$
 γιατί $4^2 = 16$

- Η τετραγωνική ρίζα του 0 ισούται με 0, δηλαδή $\sqrt{0}=0$
- Γενικά: $\sqrt{\alpha^2} = |\alpha|$ για κάθε πραγματικό αριθμό α π.χ $\sqrt{3^2} = |3|$ επειδή $\sqrt{3^2} = \sqrt{9} = 3$ (γιατί $3^2 = 9$) π.χ $\sqrt{(-5)^2} = |5|$ επειδή $\sqrt{(-5)^2} = \sqrt{25} = 5$ (γιατί $5^2 = 25$)

Θεωρία

Av
$$\beta \geq 0$$
 tóte $(\sqrt{\beta})^2 = \beta$ n.x $(\sqrt{4})^2 = 4$ yiatí $(\sqrt{4})^2 = (2)^2 = 4$

Θεωρία - Ιδιότητες Ριζών

- $\sqrt{\alpha}\cdot\sqrt{\beta}=\sqrt{\alpha\beta}$ **n.x** $\sqrt{4}\cdot\sqrt{9}=\sqrt{4\cdot 9}$ yiatí $\sqrt{4}\cdot\sqrt{9}=2\cdot 3=6$ kai $\sqrt{4\cdot 9}=\sqrt{36}=6$
- $\frac{\sqrt{\alpha}}{\sqrt{\beta}} = \sqrt{\frac{\alpha}{\beta}} \ \mu \epsilon \ \beta > 0$ $\mathbf{n.x} \ \frac{\sqrt{4}}{\sqrt{9}} = \sqrt{\frac{4}{9}} \ \text{grat} \ \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3} \ \text{kar} \ \sqrt{\frac{4}{9}} = \frac{2}{3}$

Άσκηση 1

Επιλέξτε τη σωστή απάντηση:

- 1) το $\sqrt{25}$ ισούται με
 - i) 5

ii) -5

iii) δεν ορίζεται

2) το $\sqrt{4^2}$ ισούται με

www.math24.gr

i) 4

ii) -4

iii) δεν ορίζεται

- 3) το $\sqrt{-3^2}$ ισούται με
 - i) 3

ii) -3

iii) δεν ορίζεται

- 4) το $\sqrt{(-6)^2}$ ισούται με
 - i) -|-6|

ii) |-6|

iii) δεν ορίζεται

- 5) το $\sqrt{7^2}$ ισούται με
 - i) -|7|

ii) |7|

iii) δεν ορίζεται

- 6) το $\sqrt{(-8)^2}$ ισούται με
 - i) -|8|

ii) |8|

iii) δεν ορίζεται

- 7) το $\sqrt{3\cdot 4}$ ισούται με
 - i) $4\sqrt{3}$

ii) $3\sqrt{3}$

iii) $\sqrt{3} \cdot \sqrt{4}$

- 8) το $\sqrt{4\cdot 8}$ ισούται με
 - i) $2\sqrt{8}$

ii) $8\sqrt{4}$

iii) $\sqrt{4} + \sqrt{8}$

- 9) το $\sqrt{9 \cdot 16}$ ισούται με
 - i) $16\sqrt{9}$

ii) $9\sqrt{16}$

iii) 3·4

- 10) το $\sqrt{5} \cdot \sqrt{6}$ ισούται με
 - i) $\sqrt{5\cdot 6}$

ii) $5\sqrt{6}$

iii) 6√5

- 11) το $\sqrt{2} \cdot \sqrt{7}$ ισούται με
 - i) $7\sqrt{2}$

ii) $2\sqrt{7}$

iii) $\sqrt{14}$

- 12) το $\sqrt{2} \cdot \sqrt{50}$ ισούται με
 - i) 50

ii) 2

iii) 10

- 13) το $\sqrt{\frac{6}{7}}$ ισούται με
 - i) $\frac{\sqrt{6}}{\sqrt{7}}$

ii) $\frac{\sqrt{6}}{7}$

iii) $\frac{6}{\sqrt{7}}$

- 14) το $\frac{\sqrt{2}}{\sqrt{8}}$ ισούται με
 - i) $\sqrt{\frac{2}{8}}$

ii) $\frac{\sqrt{2}}{8}$

iii) $\frac{2}{\sqrt{8}}$

15) το $\frac{\sqrt{250}}{\sqrt{10}}$ ισούται με

i) 5

ii) 25

iii) 10

Άσκηση 2

Να αποδείξετε τις παρακάτω σχέσεις:

i)
$$\sqrt{40} = 2\sqrt{10}$$

ii)
$$\sqrt{125} = 5\sqrt{5}$$

iii)
$$\sqrt{32} = 4\sqrt{2}$$

iv)
$$\sqrt{3} \cdot \sqrt{12} = 6$$

v)
$$\sqrt{32} \cdot \sqrt{2} = 8$$

Άσκηση 3

Να υπολογίσετε τις παρακάτω παραστάσεις:

i)
$$2\sqrt{7} + 3\sqrt{7} + 6\sqrt{7}$$

ii)
$$5\sqrt{11} - 2\sqrt{11} + 6\sqrt{11}$$

iii)
$$3\sqrt{3} + 5\sqrt{3} - \sqrt{12}$$

iv)
$$4\sqrt{5} - 2\sqrt{3} - 6\sqrt{5} + 8\sqrt{3}$$

Άσκηση 4

Να μετατρέψετε τα παρακάτω κλάσματα που έχουν άρρητους παρονομαστές σε ισοδύναμα κλάσματα με ρητούς παρονομαστές:

i)
$$\frac{3}{\sqrt{5}}$$

ii)
$$\frac{1}{\sqrt{7}}$$

iii)
$$\frac{\sqrt{12}}{\sqrt{3}}$$

iv)
$$\frac{\sqrt{2}}{\sqrt{8}}$$

v)
$$\frac{\sqrt{3}}{\sqrt{7}}$$