

ELEGIBILIDAD DE UN PACIENTE PARA ENSAYOS CLÍNICOS DE CÁNCER

Laura Rodriguez Jaime Carvajal John Guzmán

Problema

El objetivo que se esta buscando con el analisis de Machine Learning, es determinar la elegibilidad de un paciente para ensayos clínicos de cáncer a partir del texto descriptivo, esto se debe a que se busca optimizar y acompañar el programa de selección de los pacientes, de forma que se ayude a determinar ciertos criterios que ayuden a definir la eficacia y seguridad de nuevos tratamientos para pacientes de estas características.

Por lo tanto, se plantea que este es un problema de aprendizaje supervisado y de clasificación. Esto se debe a que ya de por si los datos están etiquetados, lo que permite hacer el entrenamiento más fácil y eficiente, y por el otro lado, es un problema de clasificación binaria, pues vamos a definir si un paciente es elegible o no

Comprensión y preparación de los datos

Modelado

Árbol de decisión

Aprendizaje supervisado para tareas de clasificación

Ayuda a definir las caracteristicas más importantes para redecir

Calculo de hiperparámetros con validación cruzada usando GridSearchSV

MEJOR MODELO:

Criterio: 'gini'

máxima profundidad: 6

mínimo de particiones: 5

\longrightarrow

Resultados del modelo

Support Vector Machine

S

Aprendizaje supervisado para tareas de clasificación

Alta velocidad de entrenamiento y obtención de resultados

Un único hiperparametro a optimizar

MEJOR MODELO:

C = 1

Resultados del modelo

Resultados de	predicciones	con datos de prueba			
	precision	recall	f1-score	support	
0	0.77	0.78	0.78	1219	
1	0.77	0.76	0.77	1181	
accuracy			0.77	2400	
macro avg	0.77	0.77	0.77	2400	
weighted avg	0.77	0.77	0.77	2400	

K-Nearest Neighbors

Aprendizaje supervisado para tareas de clasificación

Estimar la probabilidad de que un elemento pertenezca a una clase

Calculo de hiperparámetros con validación cruzada usando GridSearchSV

MEJOR MODELO:

k vecinos = 1 p = 1

\longrightarrow

Resultados del modelo

Matriz para datos de PRUEBA							
	precision	recall	f1-score	support			
0	0.69	0.81	0.74	1228			
1	0.75	0.61	0.67	1172			
accuracy			0.71	2400			
macro avg	0.72	0.71	0.71	2400			
weighted avg	0.72	0.71	0.71	2400			

Regresión Logística

Aprendizaje supervisado para tareas de regresión

Fácil de implementar y se puede usar como base para problemas de clasificación binaria

Proporciona una salida constante, lo que es de mayor utilidad para nuestro problema

MEJOR MODELO:

C = 0.1 penalización = 12 solver = liblincar

\longrightarrow

Resultados del modelo

Predicted

Resultados

De los datos al conocimiento para la toma de decisiones Inteligencia de Negocios **ISIS 3301**

0,80 Precisión inclusión

0,78 0,79 Precisión exclusión Recall exclusión

0,78 MODELO RECOMENDADO Recall inclusión

REGRESIÓN LOGÍSTICA

0,79 Precision

0,79 0,79

Conclusiones

El mejor modelo para para hacer la predicción de la elegibilidad de un paciente dado su diagnostico es la Regresión Logística

De llevarse a cabo una estandarización en la métodología de escribir los informes médicos, se podría incrementar la precisión y recall del modelo

El modelo representa una herramienta para los doctores, sin embargo, no pueden tomar una desición final sobre un paciente solamente con los resultados del modelo.

