DM-Quiz-2020-Q2

17 Questions

- **1.** Select the intercept-only models, if any:
- **4/12 A** y=b0+b1*x
- 2/12 **B** y=b0+b1*x1+b2*x2
- 4/12 C ln(y)=b0
- 0/12 **D** $y=e^{(b1*x)}$
- 2/12 E I do not know
 - **2.** The interpretation of adjusted R^2 for multiple linear regression is the same as the interpretation of R^2 for simple linear regression.
- **5/12 A** True
- 6/12 B False
- 1/12 C I do not know
 - **3.** Which one is observable ("visible")?
- 6/12 A e (residuals)
- **4/12 B** ε (regression error)
- 0/12 C neither
- 2/12 D I do not know
 - **4.** The estimation of β is distributed as:
- 3/12 **A** $b \sim N(0, \sigma^2)$
- **2/12 B** $b \sim N(\beta, \sigma^2)$
- 2/12 C b~N(β , $\sigma^2(X^TX)^{-1}$)
- 5/12 D It does not have distribution
- 0/12 E I do not know

5.	• How many parameters are estimated by OLS in the case of simple linear regression?	
1/12	A	1
7/12	В	2
3/12	C	3
1/12	D	I do not know
6.	Es	timation of e (residuals) is distributed as:
7/12	A	e~N(0, σ²)
4/12	В	$e\sim N(0, \sigma^2 M)$ (M is a matrix)
0/12	C	It does not have distibution
1/12	D	I do not know
7.	bβ	parameters can be computed using only
7/11	A	OLS
2/11	В	ML
2/11	C	Neither
0/11	D	I do not know
8.	In ¹	the case of multiple linear regression
5/11	A	adj R^2 < 1 (always)
5/11	В	adj R^2 <= 1 (always)
1/11	C	I do not know
9.	b=	
6/12	A	$(X'X)^{-1}X'Y$
3/12	В	$(X'X)^{-1}Y'X$
1/12	C	$(Y'X)^{-1}Y'X$
2/12	D	I do not know
10.	Th	e total sum of squares equals
4/11	A	Sum((y-mean(y))^2)

4/11 A Sum((y-mean(y))^2)

2/11 B Sum((y_hat-mean(y))^2)

4/11 C Sum((y-y_hat)^2)

1/11 D I do not know

11. The regression sum of squares equals 2/12 A Sum((y-mean(y))^2) 5/12 B Sum((y_hat-mean(y))^2) **4/12 C** Sum((y-y_hat)^2) 1/12 **D** I do not know 12. If RSS is the regression sum of squares and ESS is the error sum of squares then 7/11 A R2 = 1 - ESS/TSS0/11 **B** R2 = ESS/TSS3/11 **C** R2 = ESS/RSS1/11 **D** I do not know 13. Multicollinearity occurs when 1/12 A rank(X)<m (m is the number of explanatory variables) 5/12 **B** $var(\varepsilon) = \sigma^2 I$ **2/12 C** $E(\varepsilon) = 0$ 3/12 **D** $cov(\epsilon i, \epsilon j) = const$ 1/12 E I do not know 14. In simple linear regression model response variable (y) can be **0/11 A** binary 1/11 B categorical 10/11 **C** numeric 0/11 D ordinal 0/11 E I do not know 15. In a simple linear regression model, explanatory variables can be **0/12 A** binary 0/12 B categorical 9/12 C numeric 0/12 D ordinal 1/12 E I do not know 2/12 F all answers are correct

0/12 G Neither

- 16. If A is a matrix, X is the vector of random variables, then var(AX)=
 2/11 A A'var(X)A
 6/11 B A^2var(X)
 2/11 C var(x)
 0/11 D Can not be calculated
- 17. Which of the answers can be used to conclude about the significance of variables (if any)?

 6/12 A t values
- 3/12 B Estimated coefficients (only)
- 3/12 **c** SE of estimated coefficients (only)
- 0/12 D I do not know

1/11 E I do not know