最短距離(二)

Created by Mr. Francis Hung

如圖一,已給 $\angle MON(<60^\circ)$,A 在 OM 上,D 在 ON 上,在 ON 上找出 B 點、在 OM 上找出 C 點,使得 AB+BC+CD 為最短。 1

作圖方法如下(圖二):

- (1) 將 ΔMON 沿 OM 反射,得 ΔMON_1 , D_1 為 D 的 反射點。
- (2) 將 ΔMON_1 沿 ON_1 反射,得 ΔM_2ON_1 , A_2 為 A 的 反射點。
- (3) 連接 A_2D , 交 ON_1 於 B_1 , 交 OM 於 C。
- (4) 將 B₁ 沿 OM 反射, 得 B。

作圖完畢。

由反射所得, $\Delta AB_1C\cong \Delta ABC$, $\Delta B_1CD_1\cong \Delta BCD$, $\Delta A_2OB_1\cong \Delta AOB_1$

$$\ell = AB + BC + CD = AB_1 + B_1C + CD$$

 $\boldsymbol{\ell} = A_2B_1 + B_1C + CD$

當 A_2 、 B_1 、C、D 共綫時,ℓ為最短。

證明完畢。

Last updated: 2023-07-03

圖二

註一:為能確保可作一直緩 A_2D ,橫過OM 及 ON_1 , $3×<math>\angle MON$ < 180° ,即 $\angle MON$ < 60°

註二:若 $A_2 imes B_1 imes C imes D$ 不成一直綫時(如圖三), $oldsymbol{\ell}$ 較長。

練習題:

試將以下題目改寫,並以尺規作圖找出答案。

HKMO 2007 初賽團體項目第9題

在座標平面上,點 $A = (-6, 2) \cdot B = (-3, 3) \cdot C = (0, n)$ 及 D = (m, 0)组成一個四邊形 $ABCD \circ 求 n$ 的值使得該四邊形 ABCD 的周界為最短。

¹此題是由 HKMO 1999 初賽團體項目第 9 題轉化出來的。 原題 目為:

在圖中, $\angle MON = 20^{\circ}$,A 為 OM 上的一點, $OA = 4\sqrt{3}$,D 為 ON 上的一點, $OD = 8\sqrt{3}$,C 為 AM 上的任意一點,B 為 OD 上的任意一點。若 $\ell = AB + BC + CD$,求 ℓ 的最小值。