Autoformalizating Siegel's lemma

April 30, 2024

Theorem 0.1 (Lemma 8.1). Let 0 < M < N, and a_{jk} be rational integers satisfying

$$|a_{jk}| \le A$$
 where $1 \le A$, $1 \le j \le M$ and $1 \le k \le N$. (1)

Then there exists a set of rational integers $x_1...,x_N$, not all zero, satisfying

$$a_{j1}x_1 + \dots + a_{jN}x_N = 0, \ 1 \le j \le M$$
 (2)

and

$$|x_k| \le (NA)^{\frac{M}{N-M}}, \ 1 \le k \le N.$$
 (3)

Proof. Let

$$H = (NA)^{\frac{M}{N-M}}.$$
(4)

Then

$$NA < (H+1)^{\left(\frac{N-M}{M}\right)}. (5)$$

Hence

$$(NAH) + 1 \le NA(H+1) \tag{6}$$

and

$$NA(H+1) < (H+1)^{\frac{N}{M}}$$
 (7)

Define

$$y_j = a_{j1}x_1 + \dots + a_{jN}x_N, \ 1 \le j \le M.$$
 (8)

We define B_j as the sum of the $-min(0, a_{jk})$ for all a_{jk} . Similarly, we define C_j as the sum of the $max(0, a_{jk})$ for all a_{jk} . For any set of integers (x_1, \ldots, x_N) satisfying

$$0 \le x_k \le H, \ 1 \le k \le N. \tag{9}$$

we have that

$$-B_j H \le y_j \le C_j H,\tag{10}$$

and

$$B_i + C_i \le NA. \tag{11}$$

The number of sets of (x_1, \ldots, x_N) satisfying

$$0 \le x_k \le H, \ 1 \le k \le N. \tag{12}$$

is $(H+1)^{N}$.

And the corresponding number of set of sets (y_1, \ldots, y_M) is at most

$$(NAH+1)^M$$
.

It follows from the fact

$$(NAH) + 1 \le NA(H+1) < (H+1)^{\frac{N}{M}}$$
(13)

and the pigeonhole principle that there must be two sets (x'_1, \ldots, x'_N) and (x''_1, \ldots, x''_N) which correspond to the same set (y_1, \ldots, y_M) . Let $x_k = x'_k - x''_k, (1 \le k \le N)$ so that (x_1, \ldots, x_N) is now the required set

satisfying

$$a_{j1}x_1 + \dots + a_{jN}x_N = 0, \ 1 \le j \le M$$
 (14)

and

$$|x_k| \le (NA)^{\frac{M}{N-M}}, 1 \le k \le N.$$
 (15)