# **Project Design Phase Solution Architecture**

| Date    | 25 June 2025                                   |
|---------|------------------------------------------------|
| Team ID | LTVIP2025TMID50075                             |
| Project | Plugging into the Future : An Exploration of   |
| Name    | Electricity Consumption Patterns Using Tableau |
| Maximum | 4 Marks                                        |
| Marks   |                                                |

# **Solution Architecture:**



# F Energylnsight Platform

# **Energy Data Analytics Platform Architecture**

Transforming raw electricity data into actionable insights for consumers, policymakers, and providers through a scalable, multi-stakeholder platform.

#### **Architecture Goals**

Bridge the Gap: Transform raw electricity data into actionable insights for consumers, policymakers, and providers.

Multi-Stakeholder Alignment: Deliver customized Tableau dashboards for each user type.

Scalability: Design for pilot (city-level) → national → global rollout.

#### **Data Layer**

Smart meters (real-time usage) Government open data (urban/rural trends) Weather APIs (correlate demand with temperature)

Tableau Prep: Cleanse data (remove outliers, fill missing values)

Python Integration: Clustering for anomaly



# **Analytics Layer**

#### Core Features:

Tableau Pulse: Al-driven alerts for consumers Scenario Engine: Policy impact simulations Forecasting: Prophet models for demand prediction (via TabPy)



# **Presentation Layer**

#### Dashboards:

Consumer:

Mobile-friendly view with savings tips and leaderboards

Policymaker:

Map-based comparisons + sliders for policy

Provider: Real-time grid heatmaps with overload risk scores



# **Technical Specifications**

| Component      | Tools/Technologies                                          | Purpose                                                    |  |
|----------------|-------------------------------------------------------------|------------------------------------------------------------|--|
| Data Ingestion | Tableau Prep, AWS S3                                        | Collect and store raw data from diverse sources            |  |
| Analysis       | Tableau Desktop, TabPy (Python)                             | Run predictive models (e.g., ARIMA for demand forecasting) |  |
| Visualization  | Tableau Public (pilot) $\rightarrow$ Tableau Server (scale) | Interactive dashboards with role-based access              |  |
| Integration    | REST APIs (for weather/policy data)                         | Enrich datasets with external factors                      |  |

# **Phased Development**

## Phase 1: Pilot

Timeline: 3 months

Deliverable: City-level dashboard (Tableau Public) Success Metric: 1,000+ active users

# Phase 2: Scale

Timeline: 6 months

Deliverable: National integration (government data APIs)

Success Metric: 15% peak-demand reduction in pilot

# Phase 3: Global

Timeline: 12 months

Deliverable: Multi-language support + IoT integrations Success Metric: Partnerships with 3+ utility providers

Pilot: City Scale: National Global: IoT Integration



# **HOW THE SOLUTION WORKS:**

# 1. Architecture Goals

Bridge the Gap: Transform raw electricity data into actionable insights for consumers, policymakers, and providers.

Multi-Stakeholder Alignment: Deliver customized Tableau dashboards for each user type.

**Scalability**: Design for pilot (city-level)  $\rightarrow$  national  $\rightarrow$  global rollout.

# 2.Key Components:

# A. Data Layer

#### Sources:

Smart meters (real-time usage).

Government open data (urban/rural trends).

Weather APIs (correlate demand with temperature).

# **Processing:**

Tableau Prep: Cleanse data (remove outliers, fill missing values).

Python Integration: Clustering for anomaly detection.

# B. Analytics Layer

# **Core Features:**

Tableau Pulse: Al-driven alerts for consumers (e.g., "Unusual 7 PM spike"). Scenario Engine: Policy impact simulations (e.g., solar adoption effects). Forecasting: Prophet models for demand prediction (via TabPy).

### C. Presentation Layer

### Dashboards:

Consumer: Mobile-friendly view with savings tips and leaderboards. Policymaker: Map-based comparisons + sliders for policy testing. Provider: Real-time grid heatmaps with overload risk scores.

# 4. Technical Specifications

| Component      | Tools/Technologies                              | Purpose                                                     |
|----------------|-------------------------------------------------|-------------------------------------------------------------|
| Data Ingestion | Tableau Prep, AWS S3                            | Collect and store raw data from diverse sources.            |
| Analysis       | Tableau Desktop, TabPy (Python)                 | Run predictive models (e.g., ARIMA for demand forecasting). |
| Visualization  | Tableau Public (pilot) → Tableau Server (scale) | Interactive dashboards with role-based access.              |
| Integration    | REST APIs (for weather/policy data)             | Enrich datasets with external factors.                      |

# 5. Phased Development

| Phase     | Timeline  | Deliverable                                 | Success Metric                           |
|-----------|-----------|---------------------------------------------|------------------------------------------|
| 1. Pilot  | 3 months  | City-level dashboard (Tableau               | 1,000+ active users.                     |
|           |           | Public)                                     |                                          |
| 2. Scale  | 6 months  | National integration (government data APIs) | 15% peak-demand reduction in pilot city. |
| 3. Global | 12 months | Multi-language support + IoT integrations   | Partnerships with 3+ utility providers.  |

# 6. Innovation Highlights

**Behavioral Nudges:** Color-coded alerts (red = urgent action) based on psychology. **Policy Sandbox:** Policymakers adjust sliders (e.g., tax rates) → see real-time grid impact. **Edge Al:** Lightweight models on smart meters flag anomalies before cloud processing.

### 7. Stakeholder Benefits

| 7. 0.0       |                                     |                                            |
|--------------|-------------------------------------|--------------------------------------------|
| Stakeholder  | Technical Benefit                   | Business Impact                            |
| Consumers    | Real-time mobile alerts via Tableau | 20% higher engagement in energy-           |
|              | Mobile.                             | saving actions.                            |
| Policymakers | Drag-and-drop scenario testing.     | 50% faster policy drafting.                |
| Providers    | Automated peak forecasts (Tableau + | 30% reduction in grid stabilization costs. |
|              | ML).                                |                                            |

# 8. Compliance & Security

**Data Privacy:** Role-based access (Tableau Server permissions).

**Audit Trails:** Log all policy simulations for transparency.

**Visual Tip**: Include a high-level architecture diagram (like above) and a screenshot of the policymaker dashboard with sliders. convert this into that kind of diagram or else tell me AI tools which can do.