Guide d'étapes clés : Construisez un modèle de scoring

Comment utiliser ce document?

Ce guide vous propose un découpage du projet en étapes. Vous pouvez suivre ces étapes selon vos besoins. Dans chacune, vous trouverez :

- des recommandations pour compléter la mission ;
- les points de vigilance à garder en tête ;
- une estimation de votre avancement sur l'ensemble du projet (attention, celui-ci peut varier d'un apprenant à l'autre).

Suivre ce guide vous permettra ainsi:

- d'organiser votre temps ;
- de gagner en autonomie;
- d'utiliser les cours et ressources de façon efficace ;
- de mobiliser une méthodologie professionnelle que vous pourrez réutiliser.

Gardez en tête que votre progression sur les étapes n'est qu'une estimation, et sera différente selon votre vitesse de progression.

Recommandations générales

- Assurez-vous de comprendre la problématique métier et l'objectif du projet avant de commencer.
- Familiarisez-vous avec les méthodologies et techniques utilisées dans l'apprentissage supervisé en Machine Learning.
- Veillez à acquérir une compréhension technique des différents types de modèles de Machine Learning couramment utilisés pour la tâche identifiée.
- Familiarisez-vous avec le jeu de données et les variables disponibles pour la modélisation.

- Gardez à l'esprit l'importance de l'interprétabilité du modèle pour les utilisateurs finaux.
- Soyez prêt à justifier vos choix tout au long du projet, en tenant compte du contexte métier.

Étape 1 : Choisissez un kernel et effectuez un analyse exploratoire

10% de progression

Avant de démarrer cette étape, je dois avoir :

- Compris les exigences du projet et les objectifs du modèle de scoring.
- Revu les ressources fournies pour vous aider à choisir un kernel Kaggle pertinent.

Une fois cette étape terminée, je devrais avoir :

- Effectué une analyse exploratoire du jeu de données pour comprendre sa structure et ses caractéristiques.
- Identifié des opportunités de feature engineering pour améliorer la performance du modèle.

Recommandations:

- Utilisez le kernel recommandé pour la préparation des données et l'analyse exploratoire.
- Créez au moins trois nouvelles variables pertinentes à partir des variables existantes.
- N'hésitez pas à adapter le kernel en ajoutant des commentaires pour expliquer vos actions.

Points de vigilance :

- Assurez-vous d'utiliser le bon fichier (application_train.csv) pour l'analyse exploratoire.
- Vérifiez les valeurs manquantes et les valeurs extrêmes dans le jeu de données.

Ressources:

 Appuyez-vous sur le cours <u>Nettoyer et analysez votre jeu de données</u> pour la méthodologie d'analyse. • Utilisez le kernel <u>start-here-a-gentle-introduction</u> pour l'exploration et l'inspiration de techniques de feature engineering.

Étape 2 : Définissez une métrique adaptée à la problématique métier

30% de progression

Avant de démarrer cette étape, je dois avoir :

- Compris l'importance du coût des erreurs de prédiction dans le contexte financier.
- Compris comment créer une fonction de coût métier pour évaluer les performances des modèles.

Une fois cette étape terminée, je devrais avoir :

- Mis en place une fonction de coût métier prenant en compte les coûts des faux positifs et des faux négatifs.
- Calculé un score "métier" pour évaluer les performances des différents modèles.

Recommandations:

- Utilisez la fonction de coût métier pour optimiser les hyper paramètres des modèles.
- Assurez-vous de calculer le seuil optimal pour le score "métier".

Points de vigilance :

- Assurez-vous de comprendre le coût des erreurs de prédiction dans le contexte financier.
- Vérifiez que votre score "métier" est calculé correctement en prenant en compte les faux positifs et les faux négatifs.

Ressources:

• Appuyez-vous sur le cours <u>evaluez les performances d'un modèle</u> pour comprendre comment créer un score "métier" adapté.

Étape 3 : Optimisation et évaluation des modèles de Machine Learning

40% de progression

Avant de démarrer cette étape, je dois avoir :

- Compris l'importance de tester différents types de modèles pour le problème identifié.
- Etudié les différentes ressources théoriques mises à disposition.

Une fois cette étape terminée, je devrais avoir :

- Testé et comparé différents modèles, des plus simples aux plus complexes.
- Utilisé des techniques pour gérer le déséquilibre des classes.
 Maîtrisé l'utilisation des pipelines scikit learn pour l'optimisation et l'évaluation des modèles

Recommandations:

- Utilisez la Cross-Validation pour évaluer les performances des modèles de manière robuste.
- Explorez différentes valeurs d'hyper paramètres pour obtenir des modèles performants à l'aide de Grid Search.
- Synthétiser vos résultats (tableau comparatif + courbe ROC)

Points de vigilance:

- Assurez-vous de tester une variété de modèles, des modèles simples aux modèles plus complexes.
- Vous devrez veiller à équilibrer vos classes. Vous devrez justifier votre démarche.
- Des scores AUC supérieurs à 0.82 pourraient révéler une fuite de données dans le pipeline mis en place.

Ressources:

- Utilisez les ressources externes et les <u>cours recommandés</u> pour comprendre et réaliser le benchmark des modèles
- Utilisez la <u>fonction pipeline</u> fournie par scikit learn
- Rééquilibre vos classes grâce à la librairie Imbalanced-learn

Étape 4 : Développez un module d'explicabilité de votre modèle de Machine Learning

80% de progression

Avant de démarrer cette étape, je dois avoir :

- Compris l'importance de l'interprétation du modèle pour les utilisateurs finaux.
- Revu les concepts de feature importance globale et locale.

Une fois cette étape terminée, je devrais avoir :

- Utilisé des librairies spécialisées pour calculer la feature importance globale et locale.
- Fourni des informations pour expliquer les prédictions du modèle aux chargés d'étude.

Recommandations:

 Assurez-vous de comprendre comment interpréter les résultats de l'analyse.

Points de vigilance:

• Soyez prêt à expliquer aux chargés d'étude comment les features influencent les prédictions du modèle.

Ressources:

 Utilisez les librairies <u>SHAP</u> ou <u>LIME</u> pour comprendre et mettre en œuvre l'analyse de la feature importance.

Projet terminé!