

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 «РАБОТА СО СТЕКОМ»

по курсу:

«ТИПЫ И СТРУКТУРЫ ДАННЫХ»

Вариант: 8	
Студент:	
Авдейкина Валерия Павловна, группа ИУ7-33Б	
	(подпись, дата)
Руководители:	
Преподаватель ИУ7	
Силантьева Александра Васильевна	(подпись, дата)
Преподаватель ИУ7	
Барышникова Марина Юрьевна	
	(подпись, дата)
Проверяющий:	
	(подпись, дата)
Оценка:	

Оглавление

Описание условий задачи	3
Техническое задание	4
1 Входные данные	4
2 Выходные данные	4
З Задача, реализуемая программой	5
4 Способ обращения к программе	5
5 Возможные аварийные ситуации и ошибки со стороны пользователя	5
Описание внутренних структур данных	7
Алгоритм	8
Тестирование	10
Оценка эффективности	12
Контрольные вопросы	13
1 Что такое граф?	13
2 Как представляются графы в памяти?	13
3 Какие операции возможны над графами?	13
4 Какие способы обхода графов существуют?	13
5 Где используются графовые структуры?	13
6 Какие пути в графе Вы знаете?	13
7 Что такое каркасы графа?	14
Выволы	15

Описание условий задачи

Создать программу работы со стеком, выполняющую операции добавления, удаления элементов и вывода текущего состояния стека. Реализовать стек:

- а) массивом;
- б) списком.

Все стандартные операции со стеком должны быть оформлены подпрограммами. При реализации стека списком в вывод текущего состояния стека добавить просмотр адресов элементов стека и создать свой список или массив свободных областей (адресов освобождаемых элементов) с выводом его на экран.

<u>Вариантное задание (8):</u> Ввести целые числа в 2 стека. Используя третий стек отсортировать все введенные данные.

Техническое задание

1 Входные данные

- Входные данные при вводе номера выбранной опции меню:
 - Целые беззнаковые числа [0; 14]
- Входные данные для различных опций меню:

Номер опции	Название опции	Входные данные
0	Выход	-
1	Заполнить стеки из файла	Имя файла1, Имя файла2
2	Показать содержимое стеков	-
3	Добавить элемент	Номер выбора, значение элемента
4	Удалить элемент	Номер выбора
5	Выполнить сортировку с помощью 3-го стека	-
6	Выполнить сортировку с анализом	-
7	Очистить все	-
8	Вывести меню	-
9	Вывести правила ввода	-
10 -15	Работа с тестовыми стеками	Различные

Таблица 1: Входные данные опций меню

• Имя файла: символы, не более 255

• Номер выбора: целое неотрицательное число [0;1]

• Значение элемента: целое

2 Выходные данные

- Выходные данные при вводе номера выбранной опции меню:
 - Выходные данные команды в случае корректного ввода
- Выходные данные для различных опций меню:

Номер опции	Название опции	Выходные данные		
0	Выход	Сообщение об успехе Сообщение об ошибке		
1	Заполнить стеки из файла	Сообщение об успехе / Сообщение об ошибке		
2	Показать содержимое стеков	Данные / Сообщение об ошибке		
3	Добавить элемент	Сообщение об успехе / Сообщение об ошибке		
4	Удалить элемент	Сообщение об успехе / Сообщение об ошибке		
5	Выполнить сортировку с помощью 3-го стека	Данные / Сообщение об ошибке		
6	Выполнить сортировку с анализом	Данные / Сообщение об ошибке		
7	Очистить все	Сообщение об успехе / Сообщение об ошибке		
8	Вывести меню	Меню		
9	Вывести правила ввода	Правила ввода		
10 -15	Работа с тестовыми стеками	Различные		

Таблица 2: Выходные данные опций меню

3 Задача, реализуемая программой

Программа реализует обработку стеков с различными реализациями, включая удаление, добавление и сортировку элементов.

4 Способ обращения к программе

Программа вызывается в командной строке без каких-либо аргументов. Ввод данных производится с клавиатуры после соответствующего приглашения к вводу («Команда...» / «Введите..»).

5 Возможные аварийные ситуации и ошибки со стороны пользователя

- 1. Некорректный ввод имени файла:
 - 1.1. Пустой ввод
 - 1.2. Недопустимые символы
 - 1.3. Превышение допустимого количества символов (поведение программы не определено)

- 1.4. Имя несуществующего файла или директории
- 2. Некорректные данные в обрабатываемом файле / вводе с клавиатуры
- 3. Некорректный ввод номера опции:
 - 3.1. Пустой ввод
 - 3.2. Недопустимые символы (поведение программы не определено)
 - 3.3. Недопустимый номер

Описание внутренних структур данных

В ходе работы были составлены следующие структуры (АТД):

- 1. Стек на основе массива:
 - ∘ data массив элементов стека
 - ∘ size размер массива
 - ∘ top позиция вершины стека

```
struct arr_stack
{
   int *data;
   size_t size;
   int top;
};
```

Итоговый размер структуры: 20 байт.

- 2. Стек на основе линейного односвязного списка:
 - ∘ size количество элементов стека
 - max_size максимально допустимый размер стека
 - top указатель на вершину стека элемент структурного типа stack_elem:
 - next указатель на следующий элемент стека
 - value значение элемента стека

```
typedef struct stack_elem *stack_elem_t;
struct stack_elem {
    stack_elem_t next;
    int value;
};
struct stack {
    stack_elem_t top;
    size_t size;
    size_t max_size;
};
```

Итоговый размер структуры:

Алгоритм

Для объединения и сортировки двух стеков с помощью третьего стека используется следующий алгоритм:

- два стека последовательно объединяются в один
- пока объединенный стек не пуст:
 - считываем вершину объединенного стека
 - пока считанная ранее вершина больше, чем вершина объединенного стека, и ее индекс не равен -1
 - добавляем в объединенный стек вершину отсортированного
 - когда вершина отсортированного стека стала меньше, чем считанная ранее, добавляем считанну вершину в отсортированный стек

Для работы со стеком были реализованы следующие функции:

```
ДЛЯ РАБОТЫ СО СТЕКОМ НА ОСНОВЕ МАССИВА:
size_t get_arr_size(arr_stack_t stack)
int get_arr_top(arr_stack_t stack)
int get_arr_top_value(arr_stack_t stack)
int arr_pop(arr_stack_t stack)
void arr_push(arr_stack_t stack, const int value)
arr_stack_t create_arr_stack(const size_t size)
void delete_arr_stack(arr_stack_t *stack)
ДЛЯ РАБОТЫ СО СТЕКОМ НА ОСНОВЕ ЛИНЕЙНОГО ОДНОСВЯЗНОГО
СПИСКА:
int get_top_value(stack_t stack)
void free_elem(stack_elem_t elem)
stack_elem_t create_elem(const int value)
int pop(stack_t stack)
void push(stack t stack, const int value)
stack_t create_stack(const size_t max_size)
size_t get_size(stack_t stack)
size_t get_max_size(stack_t stack)
void delete_stack(stack_t *stack)
```

Таблица 3. Описание основных функций

Тестирование

Команда 1

```
Команда (8 - меню, 9 - правила): 1
Заполнение 1-го стека...
Введите имя файла: ./data/rnd_9.txt
Стек был успешно заполнен
Заполнение 2-го стека...
Введите имя файла: ./data/rnd_16.txt
Стек был успешно заполнен
```

Команда 2

```
Команда (8 - меню, 9 - правила): 2

СТЕК 1:

Максимальный размер: 5000

Количество элементов: 16

Содержимое:

<- [ 10 -5 -3 2 1 2 9 798 6 4 1 3 7 54 2 3 ]

СТЕК 2:

Максимальный размер: 5000

Количество элементов: 9

Содержимое:

<- [ 13 2 0 67 1 44 -3 32 -1 ]
```

Команда 3

```
Команда (8 - меню, 9 - правила): 3

1) в 1-й стек

2) в 2-й стек

Введите номер варианта: 1

Вставка в 1-й стек...

Введите целое число: 10

Элемент был успешно добавлен
```

• Команда 4

```
Команда (8 - меню, 9 - правила): 4

1) из 1-го стека

2) из 2-го стека

Введите номер варианта: 1

Удаление из 1-го стека...

Элемент 0 был успешно удален
```

Команда 5

```
Команда (8 - меню, 9 - правила): 5
Выполняется сортировка стеков...
Слияние прошло успешно
Выполняется сортировка стека...
Сортировка прошла успешно, 1-й стек перезаписан
РЕЗУЛЬТАТ СОРТИРОВКИ
Максимальный размер: 5000
Количество элементов: 25
Содержимое:
<- [ 798 67 54 44 32 13 9 7 6 4 3 3 2 2 2 2 1 1 1 0 0 -1 -3 -3 -5 ]
```

• Команда 6

		Время	(MKC)	Размер	(Б)
	./data/	/500.tx	ĸt		
linked	list:		4331		8016
vector	:		16		2012
./data/1000.txt					
linked	list:		17157		16016
vector	:		33		4012
	./data/	/2000.1	txt		
linked	list:		69827		32016
vector	:		91		8012
	./data/	/500_1 .	.txt		
linked	list:		8491		8016
vector	:		19		2012
	./data/	/5001	1.txt		
linked	list:		17		8016
vector	:		3		2012

• Команда 7

```
Команда (8 - меню, 9 - правила): 7
```

Очистка 1-го стека...

Ошибка: Структура(-ы) пуста(-ы)

Очистка 2-го стека...

Ошибка: Структура(-ы) пуста(-ы)

Оценка эффективности

Измерение времени проводилось в двух плоскостях — сравнивались две разные реализации при сортировке данных различного размера. Количество итераций: 20.

		я (мкс)	Размер	(B)
	./data/500.	txt		
linked	list:	4345		8016
vector	:	16		2012
	./data/1000	.txt		
linked	list:	17208		16016
vector	:	31		4012
	./data/2000	.txt		
linked	list:	70136		32016
vector	:	87		8012
./data/500_1.txt				
linked	list:	8550		8016
vector	:	16		2012
./data/5001.txt				
linked	list:	16		8016
vector	:	3		2012
I				

Из данных, полученных в ходе обработки данных, можно сделать следующие выводы:

- При сортировке небольших данных сортировка при реализации стека на основе списка является более эффективной по времени
- При сортировке больших данных с помощью стека на основе списка тратится больше времени, чем при помощи стека на основе массива это происходит из-за того, что в списке происходит динамическое выделение памяти, которое занимает много времени
- При увеличении размера данных сортировка при обеих реализациях становится дольше
- Под списочный стек выделяется больший объем памяти
- Списочный стек очень выгоден при сортировке данных, отсортированных в обратном порядке

Контрольные вопросы

1 Что такое стек?

Структура данных, представляющая из себя упорядоченный набор элементов, в которой добавление новых элементов и удаление существующих производится с одного конца, называемого вершиной стека.

2 Каким образом и сколько памяти выделяется под хранение стека при различной его реализации?

Если стек реализован в виде статического или динамического массива (вектора), то для его хранения обычно отводится непрерывная область памяти ограниченного размера, имеющая нижнюю и верхнюю границу.

В случае реализации линейным односвязным списком: до начала работы указатель стека показывает на нулевой, физически отсутствующий адрес (т. е. указатель - пустой). При включении элемента в стек сначала происходит выделение области памяти, адрес которой записывается в указатель стека, а затем по значению этого указателя в стек помещается информация.

3 Каким образом освобождается память при удалении элемента стека при различной реализации стека?

При реализации на основе вектора память при удалении стека не освобождается — она освобождается тогда, когда стек полностью опустошается или опустошается некоторый блок.

При реализации на основе линейного односвязного списка память освобождается из-под каждого элемента стека при его удалении.

4 Что происходит с элементами стека при его просмотре?

При просмотре стека его элементы удаляются.

5 Каким образом эффективнее реализовывать стек? От чего это зависит?

Эффективность реализации стека зависит от отсортированности данных, их количества, планируемой деятельности и ограничения по памяти. При больших ограничениях выгоднее использовать списочный стек.

Выводы

В ходе работы были изучены детали обработки стека при его различных реализациях и способ сортировки стека с помощью второго.