#flo

1 | Talking about the reading (vector spaces)

1.1 | Vector space

1.1.1 | Identity

- It would be the additive identity, because the multiplicitive one doesn't count because multiply doesn't take two elements from the same field #### Operations
- · Scalar multiplication
 - Not a multiplication on V
 - We need another field of scalars
 - Fundamental difference: operates on different objects (only happens on scalar multiplications)
- · addition #### Linearity
- · Something that's linear means "things work for addition and scalar multiplication"
- Take -2x + 1y = 3
 - Multiplying by scalars
 - adding them
 - similar to a line in standard form-slope stays constant
- Take 2x 3y + 1z = 2
 - a plane in 3d
 - if you pick a direction, the slope stays the same
 - thus, a plane is linear #### Vector
- · Something in a vector space
- · inifinite lists
 - It's like decimals, except you can chose any number instead of just [0-9]
 - base infinity basically
- Most common vector space
 - \mathbb{F}^n , like \mathbb{R}^3 (might also be \mathbb{C}^2 or something, although that's hard to visualize)
 - #definition canonical
 - * something "standard", basically everyone should know what you are talking about
 - \star canonical vector space is \mathbb{R}^2 #### Distributive property
- · Important to tie operations together

Exr0n • 2021-2022 Page 1

1.1.2 | Vector Space as a Set of Functions

- like $\mathbb{R}^{[0,1]}$: the functions from [0,1] that end up as real numbers
 - Identity = f(x) = 0 #### Subspaces
- · A subspace of this has to be a group on it's own
- · Conditions for a subspace
 - See 1.34
 - Just check
 - * additive identity
 - * closed under addition
 - * closed under scalar multiplication
- What other subspaces of this vector space are there that also have a domain from [0,1]?
 - Like continuous functions from zero to one
 - functions who's derivatives are continuous or constant or zero
 - even functions are also a subspace KBe20math530srcEvenFunctionsAreSubspacesOfFtotheS.png
- Subspaces of \mathbb{F}^3
 - Most contain infinite vectors (except {0})
 - $-\begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$ is a subspace with infinite vectors #### Notation
- #note \mathbb{F}^2 is almost always either \mathbb{R}^2 or \mathbb{C}^2 , mostly \mathbb{R}^2

1.2 | Direct sums

- · Something that isn't a direct sum
 - $\text{ in } \mathbb{R}^3, \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} x \\ x \\ 0 \end{bmatrix}$
 - \star Two ways to write 0:

$$\cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} ### \mathbb{F}^{\infty}$$

- Functions from naturals to your field, (assign an element to each natural)
 - that would be the same as ordering the elements in your field?
 - Tons of functions, any one is an infinite vector??

2 | If and Only If proofs (iff)

- You have to take the proof in both directions
- Assumption: "now suppose the only way to write 0 as a sum of $u_1 + ... \mid u_m$, where each u_j is in U_j , is by taking each u_j equal to 0"
 - Assume the red part, then show the green part. Then, assume the green and show it gets the red.
 - KBe20math530srcIfOnlyIfProofs.png
- #future geometrical interpretation of determinants

Exr0n • 2021-2022 Page 3