CREDIT RISK PREDICTION

Problem Statement:

The goal is to build a Credit Risk Prediction Model that determines whether a borrower will default (1) or not default (0) on a loan. This helps lenders mitigate financial risks.

```
In [1]: import pandas as pd # for data manipulation
import numpy as np # for Mathematical Operations

In [2]: path = 'C:/Users/Sanayak/Desktop/Credit Risk Dataset/credit_risk_dataset.csv'
    df_loan = pd.read_csv(path)
    df_loan.sample(10)
```

Out[2]:		person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt
	27289	27	130000	MORTGAGE	1.0	HOMEIMPROVEMENT	В	21000
	8720	25	60000	MORTGAGE	6.0	HOMEIMPROVEMENT	В	4000
	1844	21	30000	MORTGAGE	0.0	MEDICAL	А	7125
	10305	22	66396	MORTGAGE	6.0	EDUCATION	С	15000
	32564	53	45000	RENT	0.0	PERSONAL	С	5600
	19527	32	49000	RENT	2.0	HOMEIMPROVEMENT	В	12000
	14410	23	105600	MORTGAGE	2.0	PERSONAL	А	25000
	6423	22	40000	RENT	1.0	MEDICAL	В	6000
	28555	27	80000	MORTGAGE	7.0	MEDICAL	В	7400
	18573	33	67800	RENT	3.0	HOMEIMPROVEMENT	В	18000
	4							•

Variables Definition:

1. Person_age (Customer's age): Helps identify age groups that may be more prone to default.

- 2. Person income (Annual income): The client's repayment capacity is strongly associated with their income.
- 3. Person_home_ownership (Home ownership): Indicates whether the client owns a home, rents, is mortgaged, etc. This influences financial stability.
- 4. Person_emp_length (Years of employment): Longer employment tenure often corresponds to lower default risk.
- 5. Loan_intent (Loan intent): The purpose of the loan (e.g., education, car, home) can influence the risk, as different loan types have varying default probabilities.
- 6. Loan_grade (Loan grade): An internal rating assigned to the loan indicating the initial perceived risk level.
- 7. Loan_amnt (Loan amount): Higher loan amounts mean greater exposure to risk.
- 8. Loan_int_rate (Interest rate): Higher interest rates are often associated with higher default risk.
- 9. loan_status (Loan status target variable): 0 means non-default, 1 means default.
- 10. Loan_percent_income (Percent of income dedicated to the loan): A metric relating the loan amount to the borrower's income, indicating financial burden.
- 11. Cb_person_default_on_file (Historical defaults): Indicates if the client has previously defaulted.
- 12. Cb_person_cred_hist_length (Length of credit history): A longer credit history provides better insight into a client's behavior.

```
The number of missing values for each column are:
       person_age
       person income
                                          0
       person_home_ownership
                                          0
       person_emp_length
                                        887
       loan_intent
                                          0
       loan grade
                                          0
       loan amnt
                                          0
       loan_int_rate
                                       3095
       loan_status
       loan percent income
                                          0
       cb_person_default_on_file
       cb_person_cred_hist_length
       dtype: int64
         df loan.describe()
In [6]:
Out[6]:
                             person income person emp length
                                                                   loan amnt
                                                                               loan int rate
                                                                                              loan status loan percent income cb pe
                  person age
         count 32416.000000
                               3.241600e+04
                                                    31529.00000
                                                                 32416.000000 29321.000000
                                                                                            32416.000000
                                                                                                                 32416.000000
                                                                  9593.845632
                   27.747008
                               6.609164e+04
                                                        4.79051
                                                                                  11.017265
                                                                                                 0.218688
                                                                                                                     0.170250
         mean
                    6.354100
                               6.201558e+04
                                                        4.14549
                                                                  6322.730241
                                                                                   3.241680
                                                                                                0.413363
                                                                                                                     0.106812
           std
                   20.000000
                               4.000000e+03
                                                        0.00000
                                                                   500.000000
                                                                                   5.420000
                                                                                                 0.000000
                                                                                                                     0.000000
           min
                                                                                                0.000000
                                                                                                                     0.090000
          25%
                   23.000000
                               3.854200e+04
                                                        2.00000
                                                                  5000.000000
                                                                                   7.900000
                                                                                                 0.000000
          50%
                   26.000000
                               5.500000e+04
                                                        4.00000
                                                                  8000.00000
                                                                                  10.990000
                                                                                                                     0.150000
          75%
                                                                                                0.000000
                                                                                                                     0.230000
                   30.000000
                               7.921800e+04
                                                        7.00000
                                                                 12250.000000
                                                                                  13.470000
                  144.000000
                               6.000000e+06
                                                      123.00000 35000.000000
                                                                                  23.220000
                                                                                                1.000000
                                                                                                                     0.830000
          max
         # Fill null with median value for the individual columns
         df_loan[['person_emp_length','loan_int_rate']] = df_loan[['person_emp_length',
                                                                      'loan_int_rate']].fillna(df_loan[['person_emp_length',
                                                                                                          'loan_int_rate']].median
        df_loan[['person_emp_length','loan_int_rate']].isna().sum()
In [8]:
```

```
Out[8]: person_emp_length
        loan int rate
        dtype: int64
In [9]:
        df_loan.info()
      <class 'pandas.core.frame.DataFrame'>
      Index: 32416 entries, 0 to 32580
      Data columns (total 12 columns):
           Column
                                       Non-Null Count Dtype
           person age
                                       32416 non-null int64
                                      32416 non-null int64
           person income
           person home ownership
                                      32416 non-null object
           person emp length
                                       32416 non-null float64
           loan intent
                                      32416 non-null object
           loan grade
                                      32416 non-null object
           loan amnt
                                      32416 non-null int64
           loan int rate
                                      32416 non-null float64
       8 loan status
                                     32416 non-null int64
       9 loan percent income
                                 32416 non-null float64
       10 cb person default on file 32416 non-null object
       11 cb person cred hist length 32416 non-null int64
      dtypes: float64(3), int64(5), object(4)
      memory usage: 3.2+ MB
```

Observations:

The Age column has an Highest value of 144 and the employment length has an Highest value of 123 which might be caused due to human error

```
In [10]: # Define a function that removes the 95 percentile

def remove_outliers(df,columns):
    for col in columns:
        threshold = df[col].quantile(0.95)
        df = df[df[col] <= threshold]
        return df

cleaned_df = remove_outliers(df_loan, columns=['person_age','person_emp_length'])
    print('Original DataFrame:')
    print(df_loan[['person_age','person_emp_length']].max())</pre>
```

```
print('Cleaned DataFrame:')
         print(cleaned_df[['person_age','person_emp_length']].max())
        Original DataFrame:
        person_age
                              144.0
        person_emp_length
                              123.0
        dtype: float64
        Cleaned DataFrame:
        person_age
                              40.0
        person_emp_length
                              12.0
        dtype: float64
         Outliers:
         Outliers were identified in:
          person_age : Maximum = 144 (unrealistic).
          person_emp_length : Maximum = 123.
          To fix this, values above the 95th percentile were removed.
          Post-cleaning:
          person_age capped at 40.
          person_emp_length capped at 12.
         cleaned_df.describe()
In [11]:
```

Out[11]:		person_age	person_income	person_emp_length	loan_amnt	loan_int_rate	loan_status	loan_percent_income	cb_pe
	count	29543.000000	2.954300e+04	29543.000000	29543.000000	29543.000000	29543.000000	29543.000000	
	mean	26.557729	6.401581e+04	4.207325	9497.601801	11.028543	0.222015	0.171306	
	std	4.410420	4.431807e+04	3.123315	6262.114024	3.076598	0.415608	0.106809	
	min	20.000000	4.080000e+03	0.000000	500.000000	5.420000	0.000000	0.000000	
	25%	23.000000	3.800000e+04	2.000000	5000.000000	8.490000	0.000000	0.090000	
	50%	25.000000	5.500000e+04	4.000000	8000.00000	10.990000	0.000000	0.150000	
	75%	29.000000	7.800000e+04	6.000000	12000.000000	13.160000	0.000000	0.230000	
	max	40.000000	1.200000e+06	12.000000	35000.000000	23.220000	1.000000	0.830000	
	4								>

Exploratory Data Analysis


```
In [14]: plt.figure(figsize=(6,4))
    sns.histplot(cleaned_df['person_age'],kde=False,bins=20)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [15]: loan_intent_counts=cleaned_df['loan_intent'].value_counts()
    labels = ['PERSONAL','VENTURE','EDUCATION','MEDICAL','HOMEIMPROVEMENT','DEBTCONSOLIDATION']
    plt.figure(figsize=(6,4))
    plt.pie(loan_intent_counts,labels=labels,autopct="%1.f%%")
    plt.title('Sectorial Representation of Loan Intent')
    plt.show()
```

Sectorial Representation of Loan Intent


```
In [17]: plt.figure(figsize=(6,4))
    sns.countplot(x='person_home_ownership', data=cleaned_df,hue='loan_status')
    plt.title('Home Ownership Type Distribution')
    plt.xlabel('Home Ownership Type')
    plt.ylabel('Frequency')
    plt.xticks(rotation=45)
    plt.legend()
    plt.show()
```


Home Ownership Type

```
In [18]: from sklearn.preprocessing import StandardScaler, OneHotEncoder
    from sklearn.compose import ColumnTransformer
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from xgboost import XGBClassifier
    from sklearn.pipeline import Pipeline
    from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
```

```
In [19]: # Split in to feature(X) and target variable(y)
X = cleaned_df.drop('loan_status',axis=1)
y = cleaned_df['loan_status']

# Split in to training and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y,
```

```
test_size = 0.25,
random_state = 42)
```

Data Preprocessing

- Categorical Features:
 - Encoded using **OneHotEncoder**.
- Numerical Features:
 - Standardized using StandardScaler.
- Split data into **train (75%)** and **test (25%)** sets.

```
In [21]: # Create a pipeline for the xgboost classifier
    xgb_pipeline = Pipeline(steps=[('preprocessor', preprocessor),('classifier',XGBClassifier(random_state=42))])

# Create a pipeline for the randomforest classifier
    rf_pipeline = Pipeline(steps=[('preprocessor', preprocessor),('classifier',RandomForestClassifier(random_state=42))])

#Train the xgboost model
    xgb_pipeline.fit(X_train, y_train)

# Train the randomforest classifier
    rf_pipeline.fit(X_train, y_train)
```


Model Training

Two classifiers were built using pipelines:

- 1. XGBoost.
- 2. Random Forest.

Both models were trained and tested on the cleaned dataset.

```
In [22]: # Make predictions on the testset
    xgb_y_pred = xgb_pipeline.predict(X_test)
    rf_y_pred = rf_pipeline.predict(X_test)

xgb_accuracy = accuracy_score(xgb_y_pred, y_test)
    rf_accuracy = accuracy_score(rf_y_pred, y_test)

xgb_class_report = classification_report(xgb_y_pred, y_test)

rf_class_report = classification_report(rf_y_pred,y_test)

In [23]: print(f'XGBoost Model Accuary: {xgb_accuracy:.2f}')
    print('XGBoost Classification Report:\n', xgb_class_report)
    print('XGBoost Classification Report:\n', rf_class_report)
    print('RandomForest Classification Report:\n', rf_class_report)
```

XGBoost Model Accuary: 0.93 RandomForest Model Accuary: 0.93 XGBoost Classification Report: precision recall f1-score support 0 0.99 0.93 0.96 6059 1 0.75 0.95 0.84 1327 0.93 7386 accuracy macro avg 0.87 0.94 0.90 7386 weighted avg 0.95 0.93 0.94 7386 RandomForest Classification Report: precision recall f1-score support 0 0.99 0.92 0.96 6131 1 0.72 0.97 0.83 1255 0.93 7386 accuracy macro avg 0.86 0.95 0.89 7386 weighted avg 0.95 0.93 0.94 7386

- Both models achieved 93% accuracy.
- XGBoost performed slightly better on recall for defaults.

```
grid search rf = GridSearchCV(rf pipeline, param grid rf, cv=5, scoring='accuracy')
         # Fit the GridSearch object to training data
         grid_search_xgb.fit(X_train, y_train)
         grid_search_rf.fit(X_train, y_train)
         # Print the best parameters and score for each model
         print('Best parameters for XGBoost:', grid_search_xgb.best_params_)
         print('Best Score for XGBoost:', grid_search_xgb.best_score_)
         print('Best parameters for Random Forest:', grid_search_rf.best_params_)
         print('Best Score for Random Forest:', grid_search_rf.best_score_)
        Best parameters for XGBoost: {'classifier__learning_rate': 0.1, 'classifier__max_depth': 7, 'classifier__n_estimator
        s': 200}
        Best Score for XGBoost: 0.9346935196478373
        Best parameters for Random Forest: {'classifier__max_depth': 15, 'classifier__min_samples_leaf': 1, 'classifier__min_
        samples split': 5, 'classifier n estimators': 300}
        Best Score for Random Forest: 0.9314440046211994
In [25]: # use the best model to make predictions and evaluate
         best xgb model = grid search xgb.best estimator
         best_rf_model = grid_search_rf.best_estimator_
         xgb predictions = best xgb model.predict(X test)
         rf predictions = best rf model.predict(X test)
         xgb class report grid = classification report(xgb predictions,y test)
         rf class report grid = classification report(rf predictions,y test)
         # Print the classification report for both models
         print('XGBoost Classification Report:\n', xgb class report grid)
         print('RandomForest Classification Report:\n', rf class report grid)
```

XGBoost Class	sification Repo	rt:		
precision		recall f1-score		support
0	0.99	0.93	0.96	6099
1	0.74	0.97	0.84	1287
accuracy			0.94	7386
macro avg	0.87	0.95	0.90	7386
weighted avg	0.95	0.94	0.94	7386
RandomForest	Classification	Report:		
	precision	recall	f1-score	support
0	0.99	0.92	0.96	6144
1	0.72	0.98	0.83	1242
accuracy			0.93	7386
macro avg	0.86	0.95	0.89	7386
weighted avg	0.95	0.93	0.94	7386

Hyperparameter Tuning

- Performed GridSearchCV to optimize model parameters:
 - XGBoost:
 - Best Parameters: max_depth=7, learning_rate=0.1, n_estimators=200.
 - Best Accuracy: 93.47%.
 - Random Forest:
 - Best Parameters: max_depth=15, min_samples_split=5, n_estimators=300.
 - Best Accuracy: 93.14%.

Final Results

- After tuning, XGBoost outperformed Random Forest slightly in recall and accuracy.
- **XGBoost** is the preferred model for Credit Risk Prediction.

Additional Considerations:

- -Model Selection: Experiment with different models.
- -Regularization: Apply techniques like L1 and L2 regularization to prevent overfitting.

Conclusion:

The project successfully built and optimized a Credit Risk Prediction Model.

Key takeaways:

- Age and loan intent play significant roles in default likelihood.
- Data cleaning and feature engineering improved model performance.
- XGBoost, with hyperparameter tuning, delivered the best results.

```
In [26]: import joblib
In [27]: joblib.dump(best_xgb_model, 'best_xgb_model.pkl')
Out[27]: ['best_xgb_model.pkl']
```

Prepared By: Victor Itinah Iniobong

Tools Used: Python, Pandas, Scikit-Learn, XGBoost, Matplotlib, Seaborn.