

# **Triangulation & PnP (3D-2D)**

📰 Dates Taught October 23, 2020

Module
SLAM: Vision

→ Related to All Qu... Empty

#### Oct 23rd agenda

0. Revisiting single view geometry

0.1 Difference between the ray and the image coordinates

4. Triangulation

If they intersected

If they don't intersect

5. PnP

#### 5.0 Introduction

5.0.1 What is the Perspective n Points (PnP) problem?

5.0.2 The P3P/Spatial Resection Problem

5.0.3 Difference between P3P and DLT

### 5.1 Solution to P3P

5.1.1 Revisiting normalized coordinates

5.1.2 Two step process

5.1.3 Length of projection rays

5.1.4 Transformation between camera frame and world frame

## Oct 23rd agenda

- 1. Triangulation
- 2. PnP

Next class: revisiting epipolar geometry and then, computation of F.

## O. Revisiting single view geometry

## 0.1 Difference between the ray and the image coordinates



Pin hole camera

Few simplications:



$$\begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

▼ Coordinates of the image point in the camera coordinate system? Let's call it **normalized** image coordinates.

Ans: 
$$[x, y, f]^T$$

- ▼ What is the relation between normalized image coordinates and 3D object point X?
  Related by a scalar
- **▼** How to arrive at the above vector from homogenous image coordinates [x,y,1]? Forget about the scaling factor. Clue  $\Rightarrow$

$$\lambda \mathbf{x} = \mathbf{K} \mathbf{X}$$

Ans: 
$$\mathbf{K}^{-1}$$
. Consider  $\mathbf{K}^{-1} \times [x, y, 1]^T = ?$ 

So  $eta \ \mathbf{K^{-1}x}$  is a ray connecting camera center and 3D point.

$$x = KTX$$

$$K^{-1}x=T_W^CX_W$$
 =  $X_C$ 

## 4. Triangulation

How to compute the position of a point in 3-space given its image in two views and the camera matrices of those views?



We know  $C_1,C_2$  and  $P_1^\prime,P_2^\prime$  and camera matrix K . We want to find  $P_i$  the world point.

#### **Equations of Lines:**

▶ Revisiting what vector and position vectors are.

Here, I have 2 lines and want to find its intersection.

Every line is determined by a point (position vector) and a direction (vector).

- 1. Is there a point?
- 2. Is there a direction?

► Knowns:

$$egin{aligned} oldsymbol{f} &= oldsymbol{P} + \lambda oldsymbol{r} \ oldsymbol{g} &= oldsymbol{Q} + \mu oldsymbol{s} \end{aligned}$$

**Unknown:** 

 scalars μ and λ. Which will in turn give us the world points.

Rays from the camera to the 3D point in the world:

$$m{r} = K_1^{-1}m{x_1} \ m{s} = R_2^1K_2^{-1}m{x_2}$$

▶ How *s*?

- $x_1, x_2$ : image pixel coordinate (homogeneous) in camera 1 & 2.
- $K_1$  and  $K_2$  are intrinsic matrices for camera 1 and 2.
- $R_2^1$  is the relative orientation of camera 2 with respect to camera 1.

### If they intersected

$$egin{align} 1. & ec{f} = ec{g} \iff \|f\| = \|g\| \ & 2. & \dfrac{ec{f} \cdot ec{g}}{\|f\| \|g\|} = 1 \ \end{align}$$



► Knowns:

#### **Unknown:**

F and G are the world points.

• scalars  $\mu$  and  $\lambda$ .

### If they don't intersect

- Ensure distance is minimum.
- Line (F G) perpendicular to both lines r and s.

$$({m F}-{m G})\cdot{m r}=0 \ ({m F}-{m G})\cdot{m s}=0$$

$$egin{aligned} oldsymbol{f} &= oldsymbol{P} + \lambda oldsymbol{r} \ oldsymbol{g} &= oldsymbol{Q} + \mu oldsymbol{s} \end{aligned}$$

We have two equations and two unknowns  $\lambda$  and  $\mu$ .

$$egin{aligned} (oldsymbol{P} + \lambda oldsymbol{r} - (oldsymbol{Q} + \mu oldsymbol{s})) \cdot oldsymbol{r} = 0 \ (oldsymbol{P} + \lambda oldsymbol{r} - (oldsymbol{Q} + \mu oldsymbol{s})) \cdot oldsymbol{s} = 0 \end{aligned}$$

$$\left[egin{array}{c} r\cdot r-s\cdot r \ r\cdot s-s\cdot s \end{array}
ight] \left[egin{array}{c} \lambda \ \mu \end{array}
ight] = \left[egin{array}{c} (oldsymbol{Q}-oldsymbol{P})\cdot r \ (oldsymbol{Q}-oldsymbol{P})\cdot s \end{array}
ight]$$

$$\left[egin{array}{c} \lambda \ \mu \end{array}
ight] = \left[egin{array}{c} r\cdot r - s\cdot r \ r\cdot s - s\cdot s \end{array}
ight]^{-1} \left[egin{array}{c} (oldsymbol{Q} - oldsymbol{P})\cdot r \ (oldsymbol{Q} - oldsymbol{P})\cdot s \end{array}
ight]$$

- $\lambda$  and  $\mu$  found.
- Obtain  $m{F}$  and  $m{G}$  from right equation.
- Mid-point of this line segment  $m{H} = m{F} m{G}$  is the final estimate for the  $3 \mathrm{D}$  triangulated world point.

$$oldsymbol{f} = oldsymbol{P} + \lambda oldsymbol{r} \ oldsymbol{g} = oldsymbol{Q} + \mu oldsymbol{s}$$

$$ec{h}=ec{f}+rac{\|FG\|}{2}\widehat{fg}$$

## 5. PnP

## 5.0 Introduction

### 5.0.1 What is the Perspective n Points (PnP) problem?

- •
- **Given:** known 3D landmarks positions in the **world frame** and given their 2D image correspondences in the **camera frame**.
- Determine: 6DOF pose of the camera (or camera motion) in the world frame (including the intrinsic parameters if uncalibrated).



- However, if the 3D position of the feature points is known, then at least 3 point pairs (and at least one additional point verification result) are needed to estimate camera motion. (This is P3P)
- ► The 2D-2D epipolar geometry method

### 5.0.2 The P3P/Spatial Resection Problem

#### Given:

- 3D coordinates of object points  $X_i$
- ullet 2D image coordinates  $x_i$  of corresponding object points
- *K* matrix, it is a calibrated camera.

#### Find:

• Extrinsic parameters  $R, X_O$  of the calibrated camera (unlike DLT)



#### 5.0.3 Difference between P3P and DLT

- P3P/Spatial Resection for calibrated cameras
  - o 6 unknowns, so at least 3 points are needed
- DLT for uncalibrated cameras (seen)
  - o 11 unknowns, so at least 6 points are needed

### 5.1 Solution to P3P

## 5.1.1 Revisiting normalized coordinates



$$\mathbf{x} = \mathbf{K}R\left[I_3| - X_O\right]\mathbf{X}$$

$$^k\mathbf{x}_i'=\mathrm{K}^{-1}\mathbf{x}_i'$$

### 5.1.2 Two step process

- 1. Length of projection rays
- 2. Orientation



Clarity about camera frame and world frame: angles and distances between points

## 5.1.3 Length of projection rays

1. Do we know a, b, c?



2. Do we know angles?

$$\cos \gamma = rac{(X_1 - X_0) \cdot (X_2 - X_0)}{\|X_1 - X_0\| \, \|X_2 - X_0\|}$$

Clue: Normalized Coords

Cosine rule:



$$a^2 = s_2^2 + s_3^2 - 2s_2s_3\coslpha \qquad -(1) \ b^2 = s_1^2 + s_3^2 - 2s_1s_3\coseta \qquad -(2) \ c^2 = s_1^2 + s_2^2 - 2s_1s_2\cos\gamma \qquad -(3)$$

We have: 
$$a^2 = s_2^2 + s_3^2 - 2s_2s_3\cos\alpha$$

Define: 
$$u = \frac{s_2}{s_1}$$
  $v = \frac{s_3}{s_1}$  - (4)

$$\implies a^2 = s_1^2 \left( u^2 + v^2 - 2uv\coslpha 
ight)$$

$$s_1^2 = \frac{a^2}{u^2 + v^2 - 2uv\cos\alpha}$$

$$= \frac{b^2}{1 + v^2 - 2v\cos\beta}$$

$$= \frac{c^2}{1 + u^2 - 2u\cos\gamma}$$
(5)

$$b^2 = s_1^2 + s_3^2 - 2s_1s_3\coseta \ c^2 = s_1^2 + s_2^2 - 2s_1s_2\cos\gamma$$

Substitute u in other equation — 4th degree polynomial:

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

$$egin{aligned} A_4 &= \left(rac{a^2-c^2}{b^2}-1
ight)^2 - rac{4c^2}{b^2}\cos^2lpha \ A_3 &= 4\left[rac{a^2-c^2}{b^2}\left(1-rac{a^2-c^2}{b^2}
ight)\coseta \ -\left(1-rac{a^2+c^2}{b^2}
ight)\coslpha\cos\gamma + 2rac{c^2}{b^2}\cos^2lpha\coseta \end{aligned}$$

$$egin{align} A_2 =& 2 \left[ \left( rac{a^2-c^2}{b^2} 
ight)^2 - 1 + 2 \left( rac{a^2-c^2}{b^2} 
ight)^2 \cos^2eta \ & + 2 \left( rac{b^2-c^2}{b^2} 
ight) \cos^2lpha \ & - 4 \left( rac{a^2+c^2}{b^2} 
ight) \coslpha \coseta \cos\gamma \ & + 2 \left( rac{b^2-a^2}{b^2} 
ight) \cos^2\gamma 
ight] \end{array}$$

$$egin{aligned} A_1 = &4\left[-\left(rac{a^2-c^2}{b^2}
ight)\left(1+rac{a^2-c^2}{b^2}
ight)\coseta \ &+rac{2a^2}{b^2}\cos^2\gamma\coseta \ &-\left(1-\left(rac{a^2+c^2}{b^2}
ight)
ight)\coslpha\cos\gamma 
ight] \end{aligned}$$

$$A_0 = \left(1 + rac{a^2 - c^2}{b^2}
ight)^2 - rac{4a^2}{b^2}\cos^2\gamma$$

But upto 4 possible solutions possible. So we consider 4th point to confirm the right solution:

So say we know 2D-3D correspondence of (x,X) of 4th point, say  $(x_4,X_4)$ . Just substitute X of 4th point (we know the K matrix) and the possible solutions of R,t in our camera equation and only one solution will give you the right  $(x_4)$ .

#### 5.1.4 Transformation between camera frame and world frame



P3P while calculating the respect to 'v' as (-b+/-sqrt((b^2)-4ab)/2a) we

you could multiply (1) wi

Shubodh Sai Nov 19, 202 After finding s1 and s3 y (1) and (3) equations to

KaTeX parse error: Got group of unknown type: 'internal'  $\hat{X}$  are unit (direction) vectors..

$$\lambda \mathbf{x} = \mathbf{K} \mathbf{X}$$

 $(\mathbf{K}^{-1}\mathbf{x}_1/its\ norm)$ =  $\sqrt{\times}$  Invalid equation gives direction in camera's frame. Divide by its norm to get the unit vector.

In triangle 
$$\mathbf{X}_0, \mathbf{X}_1, \mathbf{X}_2$$

$$s_1^2 + s_2^2 - 2 \underline{s_1} \underline{s_2} \cos \gamma = \underline{c^2}$$
 wanted known

