NCEA Level 3 Calculus (Integration)

24. Kinematics

Calculus was independently developed by Sir Isaac Newton to describe mechanical motion in physics. This use is known as *kinematics* (from the Greek *kinein*, 'to move'). Suppose a particle moves from position x_0 to position x_1 over a time Δt . We call the ratio

$$\frac{x_1 - x_0}{\Delta t}$$

the average velocity of the particle; if we let $x_1 \to x_2$ (or let $t \to 0$), we obtain the derivative $\frac{\mathrm{d}x}{\mathrm{d}t} = v$, the instantaneous velocity of the particle at the point x (usually just abbreviated to velocity).

Similarly, the rate of change of velocity is called *acceleration*. We have $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$. (Out of interest, the third derivative of displacement is known as *jerk*, and the fourth is *jounce*.)

Now, suppose we know the velocity of a particle at each instant over a given time interval. Suppose we split the interval up into small intervals, each of length Δt . Then the total distance travelled is approximated by $\sum v\Delta t$, where the sum is taken for each small interval. If we make the intervals smaller, then clearly our approximation becomes better; and to obtain the true answer, we need only take an integral.

$$\begin{array}{c|c} \textbf{Displacement}, s & & \int_{t_0}^{t_1} v \, \mathrm{d}t \\ & \textbf{Velocity}, v & \frac{\mathrm{d}s}{\mathrm{d}t} & \int_{t_0}^{t_1} a \, \mathrm{d}t \\ & \textbf{Acceleration}, a & \frac{\mathrm{d}v}{\mathrm{d}t} \end{array}$$

We can prove the following *kinematic equations* if acceleration is kept constant over a time period Δt . These equations should be familiar to all of those that took level 2 physics, and they are derived by finding areas underneath a velocity-time graph: in short, via calculus.

$$v_f = v_i + a\Delta t$$

$$s = v_i \Delta t + \frac{1}{2} a\Delta t^2$$

$$v_f^2 = v_i^2 + 2as$$

$$s = \frac{v_f + v_i}{2} \Delta t$$

Questions

All distances are given in m, and all times in s, unless otherwise stated.

- 1. A particle moves from x = 2 m to x = 3 m over 3 s. What is its average velocity over that time?
- 2. $\boxed{\mathtt{M}}$ Derive the kinematic equations, by considering the integrals of a velocity function v(t) with constant derivative a.
- 3. A particle moves from (3,4) to (12,-3) over a time 10 s. If the displacements are measured in metres, what is the magnitude of its average velocity during that period?
- 4. $\boxed{\mathtt{A}}$ An object A has a positive acceleration a, and a second object B has a negative acceleration -a. Both are moving in the same direction. Which of the following is **not** true?
 - (a) Object B is slowing down compared to object A.
 - (b) Object B has a lower velocity than object A.
 - (c) At some point, object B will reach a velocity of zero and then start moving in the opposite direction.
 - (d) If object B is behind object A, the two will never cross paths.

- 5. A Suppose a particle has a velocity of $34 \,\mathrm{m\,s^{-1}}$. How long does it take for the particle to travel 150 m?
- 6. The velocity v of an object t seconds after it moves from the origin is given by

$$v(t) = 3t^2 - 6t - 24.$$

- (a) $\boxed{\mathsf{A}}$ Write down the formula for the acceleration of the particle after t seconds.
- (b) A Work out the initial velocity and acceleration.
- (c) A When is the object at rest momentarily?
- (d) M When did the object return to the origin?
- (e) E What was the total distance travelled by the object before it returned to the origin?
- 7. A well-wrapped food parcel is dropped from an aeroplane flying at a height of $500 \,\mathrm{m}$ above the ground. The constant acceleration due to gravity is $-9.81 \,\mathrm{m\,s^{-2}}$. Air resistance is negligible.
 - (a) How long does it take for the food parcel to hit the ground?
 - (b) How fast is the food parcel moving when it hits the ground?
- 8. $\boxed{\mathtt{A}}$ A racing car travelling at $210\,\mathrm{km}\,\mathrm{h}^{-1}$ skids for a distance of $150\,\mathrm{m}$ after its brakes are applied. The brakes provide a constant deceleration.
 - (a) What is the deceleration in $m s^{-2}$?
 - (b) How long does it take for the car to stop?
- 9. M The following is a graph of the instantaneous velocity of an object moving in one dimension over time.

- (a) Draw the acceleration of the object over time.
- (b) Draw the position of the object over time, if it was originally located at x = 0.
- 10. E The displacement of an object moving in a straight line on either side of a fixed origin is given by

$$s(t) = 2t^3 - 12t^2 + 18t + 3.$$

- (a) Find the minimum velocity of the object. Carefully prove that you have found a minimum.
- (b) What is the distance between the origin and the object when its velocity is at a minimum?
- 11. M The velocity of an Olympic sprinter is modelled by

$$v_r = a(1 - e^{-bt}),$$

where $a = 11.81 \,\mathrm{m \, s^{-1}}$ and $b = 0.6887 \,\mathrm{s^{-1}}$. Find an expression for the distance travelled after time t.

12. M The acceleration of a rocket propelled washing machine is given by $\frac{\mathrm{d}v}{\mathrm{d}t} = 9t^3 - t^4 + t^{-3/2}$, where $0 \le t \le 10$. Find the distance which it has travelled after 10 seconds if its initial velocity (at t = 0) was $90 \,\mathrm{m \, s^{-1}}$.