Localização da posição do receptor no Global Positioning System

•O sistema GPS (Global Positioning System) é uma constelação de 24 satélites que permite determinar a posição relativa ao centro da Terra (coordenadas ECEF, "Earth Centered,

Earth Fixed").

 Os eixos X, Y e Z se interceptam no centro de massa da Terra;

- •O eixo **Z** é alinhado com o Norte verdadeiro (e não com o eixo de rotação da Terra);
- •O eixo X intercepta o elipsoide da Terra a 0° de latitude (Equador) e 0° de longitude (Greenwich).

- Os satélites são fabricados pela Boeing e controlados pela US Air Force numa base em Colorado Springs.
- São lançados atualmente por foguetes do tipo Delta IV, fabricados pela United Launch Alliance e pela Boeing Defense Systems.
- •O Delta IV é um foguete de dois estágios, de combustível líquido (LH₂+LOX), com dois ou quatro "boosters" com impulsos específicos de 245 s (2,40 km/s) ou 360 s (3,5 km/s).

 As órbitas dos satélites foram calculadas para que em qualquer ponto da superfície da Terra, pelo menos 4 satélites sejam sempre visíveis:

- Seis planos orbitais, a 55° graus de inclinação;
- 4 satélites por plano;
- Altitude de aproximadamente 20.200 km;
- Cada satélite faz duas órbitas completas a cada dia sideral, repetindo a mesma trajetória sobre a superfície da Terra a cada dia.

- •O GPS, para fins civis e uso irrestrito, tem as seguintes características:
 - Precisão horizontal de 100 m;
 - Precisão vertical de 156 m;
 - Erro no tempo de 340 ns.
- O governo dos EUA (agências federais e forças armadas) tem acesso ao sinal GPS mais preciso:
 - Precisão horizontal de 22 m;
 - Precisão vertical de 27,7 m;
 - Erro no tempo de 200 ns.

- Cada satélite GPS transmite continuamente um conjunto de bits que fornece a sua posição (em termos das efemérides da sua órbita) e o tempo dado pelos seus quatro relógios atômicos (dois de césio e dois de rubídio).
 - Não há sincronização entre os relógios dos satélites!

- •Um receptor GPS trabalha com o tempo que um sinal leva para ser recebido dos satélites:
 - Como o sinal trafega à velocidade da luz, bastaria multiplicar esse tempo por c (=299 792 458 m/s) para obter a distância do receptor ao satélite.
- De posse das efemérides (parâmetros) das órbitas de um satélite, é possível determinar a sua posição.

- Note, porém, que a órbita não é uma elipse perfeita, devido à perturbações causadas por:
 - Variação da atração gravitacional (a Terra não é uma esfera com distribuição homogênea de massa);
 - Pequena (mas existente) interação com a Lua;
 - Efeitos de ionização da atmosfera, causada pelo vento solar.

•Observe que, na ausência de quaisquer erros, a distância r_i de um satélite i ao receptor é

$$r_i^2 = (x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2$$

onde $(x_i; y_i; z_i)$ é a posição do satélite e (x; y; z) é a posição do receptor.

 Por outro lado, as distâncias poderiam ser calculadas usando a equação para a velocidade

$$v=rac{\Delta x}{\Delta t}$$

pois as mensagens trafegam à velocidade da luz ($c = 299792458 \ m/s$).

• Note o efeito relatívistico sobre o tempo em função da velocidade!

•Se os tempos no qual a mensagem foi enviada de um satélite (T_i) e no qual foi recebida (T) forem conhecidos e os relógios estiverem sincronizados, então pode-se escrever

$$\rho_i = c(T - T_i) = r_i$$

- Como se pode determinar a posição de um receptor?
 - Conhecidas as posições exatas dos satélites e do receptor, definem-se esferas centradas em cada satélite, cujos centros são as posições dos satélites e os raios as distâncias delas ao receptor:

Quantos satélites são necessários para se determinar a posição?

Com dois satélites, pode-se determinar apenas um disco no qual o receptor se encontra...

Com três satélites, pode-se determinar dois pontos possíveis para a posição do receptor...

•Quantos satélites são necessários para se determinar a posição?

Com quatro satélites, determina-se adequadamente a posição do receptor!

Observe que:

- Os relógios não estão sincronizados entre si;
- Os erros dos relógios dos satélites existem (apesar de serem erros muito pequenos, da ordem de 100ns);
- O erro do relógio do receptor, no entanto, é muito maior (da ordem de milissegundos)!

Diagrama dos tempos de observação no GPS

 O resultado disso é que as esferas centradas nos satélites não se interceptam, em função dos erros nos relógios!

- Então, é necessário corrigir o erro nos tempos medidos, de tal forma que ao anulálo, as esferas interceptem-se.
- Por isso, o erro deve ser tratado como uma variável do problema de determinação da posição, assim como as coordenadas ECEF.

- Note, ainda, que o receptor não tem como saber qual é a sua posição correta (e, portanto, sua distância correta aos satélites).
- •É possível, no entanto, estimá-la; no contexto do GPS, essa estimação é conhecida como pseudodistância e, como ela depende do tempo de chegada das mensagens, essa técnica de estimação é conhecida como TOA ("Time of Arrival").

•Como os relógios não são sincronizados, podemos relacionar o tempo exato, T e T_i , com os tempos medidos no receptor e no satélite, t e t_i , como

$$T = t + \tau$$
$$T_i = t_i + \tau_i$$

onde τ é o "bias" (ou vício) do relógio do receptor e τ_i o vício do relógio do satélite i.

•Usando essas equações e relacionando-as com a equação para ρ_i , podemos expressar a pseudodistância $P_i(t)$ como

$$P_i(t) = c((t+\tau) - (t_i + \tau_i))$$

= $c(t-t_i) + c\tau - c\tau_i = \rho_i + c\tau - c\tau_i$

• Agora, pode-se dizer que ρ_i é a distância medida do receptor (no tempo de recepção) ao satélite (no tempo de transmissão).

•Apesar de haver erros nas medidas dos tempos, podemos relacionar ρ_i com as posições do receptor e do satélite através do Teorema de Pitágoras, i.e.

$$\rho_i^2 = (x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2$$

(onde $\rho_i = r_i$ na ausência de erros).

 Recapitulando, podemos escrever as pseudodistâncias para cada satélite como

$$P_{i}(x, y, z, \tau) = \rho_{i}$$

$$c(t - t_{i}) + c\tau - c\tau_{i} = \sqrt{(x_{i} - x)^{2} + (y_{i} - y)^{2} + (z_{i} - z)^{2}}$$

$$\rho_{i} - c(t - t_{i}) - c\tau + c\tau_{i} = 0$$

 Como essas medidas ocorrem na presença de erros, podemos dizer que a pseudodistância observada é uma pseudodistância modelada mais um ruído, i.e.

$$P_{observada} = P(x, y, z, \tau) + v$$

•Para se obter uma equação que permita corrigir as variáveis de interesse $-x,y,z,\tau$ para seus valores exatos, escrevemos $P(x,y,z,\tau)$ como uma expansão de primeira ordem de Taylor, em torno de valores iniciais x_0, y_0, z_0, τ_0 :

$$\begin{split} P(x,y,z,\tau) &\cong P(x_0,y_0,z_0,\tau_0) + \\ &(x-x_0)\frac{\partial P}{\partial x} + (y-y_0)\frac{\partial P}{\partial y} + (z-z_0)\frac{\partial P}{\partial z} + \\ &(\tau-\tau_0)\frac{\partial P}{\partial \tau} \end{split}$$

•A diferença entre a pseudodistância observada e aquela calculada com os valores iniciais x_0, y_0, z_0, τ_0 é

$$\Delta \mathbf{P} \equiv P_{observada} - P(x_0, y_0, z_0, \tau_0) = \frac{\partial P}{\partial x} \Delta x + \frac{\partial P}{\partial y} \Delta y + \frac{\partial P}{\partial z} \Delta z + \frac{\partial P}{\partial \tau} \Delta \tau + \mathbf{v}$$

ou,

$$\Delta \boldsymbol{P} = \begin{bmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} & \frac{\partial P}{\partial z} & \frac{\partial P}{\partial \tau} \end{bmatrix} \begin{bmatrix} \frac{\Delta x}{\Delta y} \\ \frac{\Delta y}{\Delta z} \\ \frac{\Delta z}{\Delta \tau} \end{bmatrix} + \boldsymbol{v}$$

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS •Como cada pseudodistância é calculada em relação a um satélite i, escrevemos a correção ΔP_i para cada satélite:

$$\begin{bmatrix} \Delta P_1 \\ \Delta P_2 \\ \vdots \\ \Delta P_m \end{bmatrix} = \begin{bmatrix} \frac{\partial P_1}{\partial x} & \frac{\partial P_1}{\partial y} & \frac{\partial P_1}{\partial z} & \frac{\partial P_1}{\partial \tau} \\ \frac{\partial P_2}{\partial x} & \frac{\partial P_2}{\partial y} & \frac{\partial P_2}{\partial z} & \frac{\partial P_2}{\partial \tau} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial P_m}{\partial x} & \frac{\partial P_m}{\partial y} & \frac{\partial P_m}{\partial z} & \frac{\partial P_m}{\partial \tau} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta \tau \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$

ou,

$$\Delta \boldsymbol{P} = J(\boldsymbol{X})\Delta \boldsymbol{X} + \boldsymbol{v}$$

 As derivadas parciais presentes na matriz jacobiana são dadas por

$$\frac{\partial P_i}{\partial x} = \frac{x - x_i}{r_i}, \frac{\partial P_i}{\partial y} = \frac{y - y_i}{r_i}, \frac{\partial P_i}{\partial z} = \frac{z - z_i}{r_i}, \frac{\partial P_i}{\partial \tau} = -c$$

A solução do sistema

$$J(X)\Delta X = \Delta P - v$$

nada mais é do que a correção existente no método de Newton, adicionado ao vetor de erros \boldsymbol{v} .

• Para m=4, temos

$$\Delta X = J^{-1}(\Delta P - v)$$

onde J = J(X).

•Para $m \neq 4$, a matriz de coeficientes do sistema não é quadrada; para obter a solução, consideramos o sistema normal

$$\Delta X = (J^T J)^{-1} (J^T (\Delta P - v))$$

o qual, para m < 4, em geral apresenta uma solução de menor qualidade.

•Note que o problema de localização da posição do receptor GPS é o de determinar um vetor $\boldsymbol{X} = [x, y, z, \tau]^T$, para o qual $\|\boldsymbol{F}(\boldsymbol{X})\| \cong 0$, onde

$$F_i(X) = r_i + c(t - t_i) + c\tau_i + v_i, 1 \le i \le m$$

$$r_i^2 = (x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2$$

 Exemplo: considere os valores na tabela abaixo:

Coord	lanad	ac E	CEE	[m]
COOIU	enau	ias E	CEF	Luuj

Satélite	Х	Y	Z	$t_i [ns]$	$\tau_i [ns]$	t [ns]
1	15598935	17074639	13082600	67380351	226,23	67380439
2	13082627	20358853	10972209	67380533	213,65	67380540
3	10972178	20358795	13082590	67380281	288,91	67380337
4	13082606	17074647	15598941	67380391	233,15	67380457

- Método de Newton usando o vetor de estimativas iniciais $X_0 = [\bar{X} \quad \bar{Y} \quad \bar{Z} \quad 0]$, considerando m satélites.
- Tolerâncias $\tau_r = \varepsilon_M$ e $\tau_a = 10\tau_r$.
- Número máximo de iterações $k_{\max} = 100$.

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS

Exemplo (cont.):

m	X [m]	Y [m]	Z [m]	τ [ns]	F(X)	$ \Delta X $	k
4	13367714	18832487	13367723	9522602,7	$1,17 \times 10^{-9}$	$2,49 \times 10^{-5}$	4
3 (1,2,3)	13209157	18609110	13209155	9482782	$1,36 \times 10^{-9}$	$1,17 \times 10^{-9}$	100
3 (2,3,4)	13209161	18609105	13209159	9482801,6	$9,57 \times 10^{-10}$	$1,19 \times 10^{-4}$	5

• No primeiro caso com m=3, não houve convergência; no segundo, apesar de ter sido alcançada a convergência, há um erro na posição de $3,1651439 \times 10^5$ m.

