

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт (фил	пиал) <u> </u>	<u> КБиСП</u>	направление	12.03.01
Кафедра	КБ6 "Приб	боры и инф	рормационно-измер	ительные системы"
Дисциплина_		6	'РУнБПЛИС''	
	по		ОТЧЕТ рной работе на тем	ıy:
	<u>Проек</u>	гирование	мультиплексора в У	<u>Vivado</u>
Студент			подпись, дата	А.Д. Глухов инициалы и фамилия

Группа БПБО-02-20 шифр 20Б0924

Содержание

Задание на лабораторную работу	. 3
Проектирование мультиплексора в среде Vivado	. 4
Заключение	. 11
Список источников	. 12
Приложение А.	. 13
Приложение Б	. 16

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Необходимо осуществить проектирование мультиплексор 4x1 в среде разработки Xilinx Vivado, написать код модуля на языке Verilog, выполнить тестирование, получить электрическую схему и провести моделирование, доказывающее работоспособность устройства.

ПРОЕКТИРОВАНИЕ МУЛЬТИПЛЕКСОРА В СРЕДЕ VIVADO

При создании нового проекта в среде разработки Vivado необходимо выбрать модель ПЛИС или отладочную плату. Для отработоки проектирования дешифратора на базе ПЛИС плата «ZYNQ-7 ZC702 Evaluation Board». На рисунке 2 представлен скриншот среды Vivado и выбор ПЛИС.

Рисунке 2 - Скриншот среды Vivado и выбор ПЛИС

После создания проекта необходимо создать файл с исходным кодом для дешифратора, который будет написан на языке Verilog. Для этого нужно выбрать инструмент «Add Sources» и создать файл «Design Source» в директории проекта, выбрав расширение Verilog. На рисунке 3 представлен скриншот окна управления исходными файлами.

Рисунок 3 - Скриншот окна управления исходными файлами

Во время создания файла с исходным кодом модуля мультиплексора можно определить входные и выходные сигналы для предварительной генерации или же пропустить и написать их вручную. По знанию принципов функционирования мультиплексора был написан код программы двумя способами, который представлен на рисунках 4, 5.

```
23 module mult(
24 | input [3:0] X,
25
       input [1:0] S,
26
        input EN,
27
        output Y
28
         );
29
30
        reg Y;
31 ;
32 🖨
         always @*
33 🖯
         if (EN)
34 🗇
         begin
35
            Y = 0;
36
            Y = X[S];
37 🖨
         end
38 🗀 endmodule
```

Рисунок 4 — Скриншот с исходным кодом мультиплексора с использованием оператора присвоения

```
24 🖨 module mult(
25 | input [3:0] X,
       input [1:0] S,
26
27
       input EN,
       output Y
28
29
        );
30
31 reg Y;
32 :
33 🖨
       always @*
34 🖯
        if (EN)
35 🗇
       begin
          Y = 0;
37 🖯
          case(S)
38
              2'b00 : Y = X[0];
39 ¦
              2'b01 : Y = X[1];
40
              2'b10 : Y = X[2];
41
              2'b11 : Y = X[3];
42 🖨
         endcase
43 🖨
44 🗀 endmodule
```

Рисунок 5 — Скриншот с исходным кодом мультиплексора с использованием оператора case

Для проверки полученных результатов необходимо написать модуль тестирования (testbench) и осуществить моделирование мультиплексора. Скриншот с кодом модуля тестирования, в котором создаётся экземпляр основного модуля мультиплексора с переопределёнными значениями сигналов, представлен на рисунке 6.

```
42 🖨 module testbench;
43
        reg [1:0] S;
44
         reg EN;
45
         reg [3:0] X;
46
47
         mult m(X,S,EN,Y);
48
49 🖨
         initial
50 🖯
         begin
51
            EN = 1;
52
            S = 0;
53
            X = 1;
54
            #50;
55
            S = 1;
             X = 2;
57
             #50;
58
             S = 2;
59
             X = 4;
60
             #50;
61
             S = 2;
62
             X = 8;
             #50;
63
64 🗀
65 endmodule
```

Рисунок 6 – Скриншот с исходным кодом модуля тестирования

После создания модуля тестирования можно запустить моделирование, предварительно выбрав в опциях симуляции нужный модуль. На рисунке 7 представлен скриншот моделирования мультиплексора 4x1.

Рисунок 7 - Скриншот моделирования мультиплексора 4х1

На симуляции видно временные диаграммы тех сигналов, которые описаны в модуле тестирования. Это важный и обязательный этап проверки описанной схемы, доказывающий её полную работоспособность.

Полный исходный код модуля мультиплексора 4х1 и модуля тестирования представлены в приложениях А, Б.

После создания кода и моделирования, среда разработки Vivado в автоматизированном режиме генерирует электрическую схему модуля мультиплексора 4х1. Схемы для обоих способов реализации представлены на рисунках 8, 9.

Рисунок 8 – Электрическая схема мультиплексора, реализованного 1 способом

Рисунок 8 – Электрическая схема мультиплексора, реализованного 1 способом

ЗАКЛЮЧЕНИЕ

В результате выполнения данной лабораторной работы было осуществлено проектирование мультиплексора 4x1 в среде разработки Xilinx Vivado, написан код модуля на языке Verilog, выполнено тестирование (написан testbench), получена электрическая схему модуля и проведено моделирование, доказывающее работоспособность устройства.

СПИСОК ИСТОЧНИКОВ

- 1. Грушвицкий Р.И., Мурсаев А.Х., Угрюмов Е.П. Проектирование систем на микросхемах программируемой логики. СПб.: БХВ-Петербург, 2002. 608 с.
- 2. Максфилд К. Проектированиена ПЛИС. Курс молодого бойца. М.: Издательский дом «Додэка-XXI», 2007. 408 с. (перевод с английского).
- 3. Тарасов И. Маршрут проектирования ПЛИС Xilinx в САПР Vivado // Компоненты и технологии. 2012. № 12.

приложение а

Исходный код модуля мультиплексора и модуля тестирования

`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 19.09.2022 14:48:54
// Design Name:
// Module Name: m
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module mult(
input [3:0] X,
input [1:0] S,
input EN,
output Y

```
);
   reg Y;
   always @*
   if(EN)
   begin
    Y = 0;
    Y = X[S];
   end
endmodule
module testbench;
  reg [1:0] S;
  reg EN;
  reg [3:0] X;
  mult\ m(X,S,EN,Y);
  initial
  begin
    EN = 1;
    S = 0;
    X = 1;
    #50;
    S = 1;
    X = 2;
    #50;
```

S = 2;

X = 4;

#50;

S = 2;

X = 8;

#50;

end

endmodule

приложение б

Исходный код модуля мультиплексора и модуля тестирования

`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 19.09.2022 15:44:29
// Design Name:
// Module Name: LR_12
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module mult(
input [3:0] X,
input [1:0] S,

```
input EN,
  output \; Y
  );
   reg Y;
   always @*
   if(EN)
   begin
    Y = 0;
    case(S)
       2'b00 : Y = X[0];
       2'b01 : Y = X[1];
       2'b10 : Y = X[2];
       2'b11 : Y = X[3];
    endcase
   end
endmodule
module testbench;
  reg [1:0] S;
  reg EN;
  reg [3:0] X;
  //wire Y;
  mult m(X,S,EN,Y);
  initial
```

```
begin
```

EN = 1;

S = 0;

X = 1;

#50;

S = 1;

X = 2;

#50;

S = 2;

X = 4;

#50;

S = 2;

X = 8;

// EN = 1;

#50;

//\$stop;

end

endmodule