Lineare Algebra für Informatik

L.105.96100

Vorlesungsskript

1. Mathematische Grundlagen

1.1. Mengen

1.1.1. Definition

Eine Menge ist eine (gedankliche) Zusammenfassung wohlunterschiedener Objekte, gennant Elemente der Menge.

- Ist M eine Menge, so gilt für jedes Objekt x:
 - entweder $x \in M$ ("x ist Element von M")
 - oder $x \notin M$ ("x ist nicht Element von M").

1.1.2. Beispiel (Beschreibung von Mengen)

- (1) Aufzählung
 - (a) Menge der Früchte = {Apfel, Birne, Pflaume, ...}
 - (b) $\mathbb{N} := \{1, 2, 3, ...\}$ natürliche Zahlen
 - (c) $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$ ganze Zahlen
 - (d) $\emptyset = \{\}$ leere Menge

Es kommt nicht auf Reihenfolge und Wiederholung an:

$$\{1,2,3\} = \{3,1,3,2,3,1\}$$

- (2) Angabe einer charakteristischen Eigenschaft
 - (a) $\mathbb{N}_0 = \{ n \mid n \in \mathbb{Z} \text{ und } n \ge 0 \} = \{ n \in \mathbb{Z} \mid n \ge 0 \}$
 - (b) $\{n \in \mathbb{N} \mid n \text{ ist eine Primzahl}\} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...\}$

$$= \{2, 3, 5, 7, 11, 13, ...\}$$

- (3) Beschreibung der Elemente:
 - (a) $\mathbb{Q} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ und } b \neq 0 \right\}$
 - (b) $\{2n+1 \mid n \in \mathbb{Z}\}$ ungerade Zahlen
 - (c) \mathbb{R} = Menge der reellen Zahlen (s. Analysis)

1.1.3. Notation

Seien M und N Mengen. N heißt Teilmenge von M, geschrieben $n \subseteq M$, wenn gilt: wenn $x \in N$, dann gilt $x \in M$.

Abbildung 1: Teilmenge

Falls $N \subseteq M$, definiere $N^c = \overline{N} := \{x \in M \mid x \notin N\}$.

Abbildung 2: Mengenkomplement

Schreibe M=N, falls $N\subseteq M$ und $M\subseteq N$.

1.1.4. Definition

(i) $M \cup N := \{x \mid x \in M \text{ oder } x \in N\}$ Vereinigung

Abbildung 3: Vereinigung

(ii) $M \cap N \coloneqq \{x \mid x \in M \text{ und } x \in N\}$ Durchschnitt

Abbildung 4: Durchschnitt

M und N heißen disjunkt, wenn $M \cap N = \emptyset$.

Abbildung 5: Disjunkte Mengen

Eine disjunkte Vereinigung $M \cup N$ oder $M \sqcup N$ bedeutet $M \cup N$ unter der Bedingung $M \cap N = \emptyset$.

(iii) $M \setminus N \coloneqq \{x \mid x \in M \text{ und } x \not \in N\}$ Differenz

Abbildung 6: Differenz

Falls
$$N \subseteq M$$
, dann gilt $M \setminus N = N$.

(iv)
$$M \times N := \{(m, n) \mid m \in M \text{ und } n \in N\}$$

Dabei ist (m, n) ein geordnetes Paar; es gilt (m, n) = (m', n') genau dann, wenn m = m' und n = n'.

Abbildung 7: Kartesisches Produkt

Beispiel:

$$\{1,2,3\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

Allgemeiner: Für Mengen $M_1, M_2, ..., M_n$ (mit $n \in \mathbb{N}$) setze

$$M_1\times M_2\times...\times M_n:=\prod_{i=1}^n M_i$$

$$:=\{(m_1,m_2,...,m_n)\ |\ m_i\in M; \text{für alle }i=1,2,...,n\}$$

1.2. Aussagen

1.2.1. Definition

Eine Aussage ist ein Satz der entweder wahr (w) oder falsch (f) ist.

1.2.2. Beispiel

- (i) "Alle Gummibärchen sind grün" (falsche) Aussage
- (ii) "Wenn es regnet, wird die Erde nass" (wahre) Aussage
- (iii) "x + 5 = 2" ist keine Aussage
- (iv) "Es gibt ein $x \in \mathbb{N}$ mit x + 5 = 2" (falsche) Aussage
- (v) "Bitte stehen Sie auf" keine Aussage

$$\begin{array}{c|c}
A & \neg A \\
\hline
w & f \\
\hline
f & w
\end{array}$$

A	B	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
W	w	w	w	w	w
w	f	f	w	f	f
f	W	f	w	w	f
f	f	f	f	w	w

1.2.3. Satz

Seien A, B, C Aussagen. Dann gilt

(i)
$$\underbrace{A \vee \neg A}_{\text{Tautologie}}$$
 ist wahr; $\underbrace{A \wedge \neg A}_{\text{Widerspruch}}$ ist falsch

- (ii) $\neg(\neg A) \Leftrightarrow A$
- (iii) $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
- (iv) $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
- (v) $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
- (vi) $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- (vii) $A \Rightarrow B \Leftrightarrow \neg A \lor B$
- (viii) $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A (\Leftrightarrow \neg A \Rightarrow \neg B)$
- (ix) $A \Leftrightarrow B \Leftrightarrow \neg A \Leftrightarrow \neg B$
- (x) $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$

1.2.4. Definition

Sei M eine Menge, und für jedes $x \in M$ sei A(x) eine Aussage.

- (i) " $\forall x \in M : A(x)$ " bedeutet: "Für jedes x in M gilt A(x)." (Allquantor)
- (ii) " $\exists x \in M : A(x)$ " bedeutet: "Es existiert mindestens ein x in M, sodass A(x) gilt." (Existenzquantor)

1.2.5. Bemerkung (Verneinung von Quantoren)

- (a) $\neg(\forall x \in M : A(x)) \Leftrightarrow \exists x \in M : \neg A(x)$
- (b) $\neg(\exists x \in M : A(x)) \Leftrightarrow \forall x \in M : \neg A(x)$

1.3. Abbildungen

1.3.1. Definition

Seien X,Y zwei Mengen. Eine Abbildung $f:X\to Y$ ist ein Vorschrift, die jedem $x\in X$ genau ein $f(x)\in Y$ zuordnet: $x\mapsto f(x)$. x heißt Definitionsbereich und Y Wertebereich von f.

Abbildung

Abbildung 8: Abbildungen