TD 3: EQUILIBRES CHIMIQUES

Dans les exercices qui suivent et sauf mention contraire, on considèrera tous les solides comme étant non miscibles entre eux.

Exercice 1

Soit la réaction A $_{gaz}$ + B $_{gaz}$ \leftrightarrow C $_{gaz}$ + D $_{gaz}$ réalisée à 298 K caractérisée par une variation d'enthalpie libre standard $\Delta_r G^{\circ}_{298} = -2722 \text{ J.mol}^{-1}$.

- a. Calculer la constante d'équilibre K à 298 K.
- **b.** Quel est le sens d'évolution du système à 298 K :
 - \circ si initialement $P_A = P_B = P_C = P_D = 1$ bar
 - \circ si initialement $P_A = P_B = 1$ bar $P_C = P_D = 1,5$ bar
 - \circ si initialement $P_A = P_B = 1$ bar $P_C = P_D = 2$ bars
 - \circ si initialement $P_A = P_B = 1$ bar (A et B seuls corps présents)

Exercice 2

Soit la réaction de dissociation $2A_{gaz} \leftrightarrow B_{gaz}$ caractérisée à 298 K par la constante $K_{298}=1,5$.

- **a.** Calculer $\Delta_r G^{\circ}_{298}$ pour cette réaction.
- **b.** Quel est le sens d'évolution du système à T = 298 K en partant de $P_A = P_B = 1$ bar ?
- **c.** Si initialement seul A est présent avec $P_A = 2$ bar, à partir de quelle valeur P_B le système évolue-t-il dans le sens 2, si l'on travaille à pression constante ?

Exercice 3 : Lois de déplacement des équilibres

1/ Influence de la température

a. Soit la réaction : $H_2O_{gaz} + CO_{gaz} \leftrightarrow CO_{2gaz} + H_{2gaz}$ $\Delta_r H^{\circ}_{800} = -35.5 \text{ kJ.mol}^{-1}$

A partir du système à l'équilibre à 800 K, on élève la température. Quelle sera l'évolution du système ?

b. Mêmes questions pour le système suivant à l'équilibre à 1000 K :

$$2 \text{ BaO}_{2 \text{ solide}} \leftrightarrow 2 \text{ BaO}_{\text{ solide}} + O_{2 \text{ gaz}}$$
 $\Delta_r H^{\circ}_{1000} = 158 \text{ kJ.mol}^{-1}$

2/ Influence de la pression

Quelle est l'influence d'une augmentation de la pression sur les systèmes suivants à l'équilibre:

- **a.** $H_2O_{gaz} + CO_{gaz} \leftrightarrow CO_{2gaz} + H_{2gaz}$
- **b.** $PCl_{5 \text{ gaz}} \leftrightarrow PCl_{3 \text{ gaz}} + Cl_{2 \text{ gaz}}$
- c. $2 C_{sol.} + O_{2 gaz} \leftrightarrow 2 CO_{gaz}$

3/ Influence d'une augmentation de la quantité de l'un des constituants du système

- **a.** A <u>T et V constants</u>, prévoir l'évolution des systèmes suivants :
- $ightharpoonup H_2O_g + CO_g \leftrightarrow CO_{2g} + H_{2g}$ si à partir de la position d'équilibre atteinte, on ajoute du CO
- \triangleright 2C_{sol.} + O_{2 g} ↔ 2 CO g si à partir de la position d'équilibre atteinte, on ajoute du CO / du C_{sol.} / du O₂
- \triangleright CaCO_{3 sol.} \leftrightarrow CaO_{sol.} + CO_{2 g} si à partir de la position d'équilibre atteinte on ajoute du CO₂
- **b.** Mêmes questions pour les mêmes exemples si l'on travaille à T et P constantes.

4/ Influence de l'introduction d'un gaz chimiquement inerte

a. Prévoir l'évolution du système si à la position d'équilibre atteinte on ajoute de l'azote, à T et V constants, pour les systèmes suivants :

$$\begin{array}{l} H_2O_{gaz} + CO_{gaz} \leftrightarrow H_{2\,gaz} + CO_{2\,gaz} \\ 2 \; SO_{2\,gaz} + O_{2\,gaz} \leftrightarrow 2 \; SO_{3\,gaz} \end{array}$$

b. Mêmes questions si l'on effectue l'ajout d'azote à T et P constantes.

Exercice 4: Équilibre homogène

On examine la déshydrogénation du propane-2-ol initialement à 450 K ($K_{450} = 0,44$)

$$H_3C$$
 CH CH_3 (gaz) H_3C C CH_3 (gaz) CH_4 CH_5 $CH_$

On appellera α le degré de deshydrogénation de l'alcool lorsque l'équilibre est atteint.

- **a.** Exprimer littéralement la constante d'équilibre K en fonction de la pression totale à l'équilibre et de α .
- **b.** Calculer le coefficient de deshydrogénation α à 450 K si la pression totale à l'équilibre vaut:
 - * 1 bar
 - * 0.4 bar

Justifier les différences de valeurs de α entre ces 2 conditions opératoires par application des lois de modération de Le Chatelier.

- c. Calculer les pressions partielles des constituants à l'équilibre dans chaque cas du b.
- **d.** Calculer l'enthalpie standard de la réaction de déshydrogénation du propane-2-ol à 450 K.
- e. En admettant que le $\Delta_r H^{\circ}_T$ puisse être considéré comme indépendant de la température dans le domaine 450-650 K, en déduire à 650K la valeur de K. Justifier les écarts entre K_{450} et K_{650} .

On donne les valeurs des enthalpies de dissociation à 450 K :

$$\begin{array}{ll} D^{\circ}(C=O) = 719 \text{ kJ.mol}^{-1} & D^{\circ}(C-O) = 351 \text{ kJ.mol}^{-1} & D^{\circ}(C-H) = 413 \text{ kJ.mol}^{-1} \\ D^{\circ}(O-H) = 462 \text{ kJ.mol}^{-1} & D^{\circ}(H-H) = 435 \text{ kJ.mol}^{-1} \end{array}$$

Exercice 5:

A température élevée, l'iode diatomique initialement pur se dissocie selon la réaction :

$$I_{2\;gaz}\!\leftrightarrow 2\;I_{\;gaz}$$

a. Cette réaction est étudiée à pression constante P=1 bar. On mesure les densités du mélange gazeux à l'équilibre par rapport à l'hydrogène H_2 dans les mêmes conditions de température et de pression : à 1300 K, d=101,6 et à 1200 K, d=112,4.

En déduire à ces deux températures :

- le coefficient de dissociation de I₂
- la constante d'équilibre K
- l'enthalpie libre standard de réaction
- **b.** Que valent $\Delta_r H^\circ$ et $\Delta_r S^\circ$ qu'on supposera indépendants de la température ? Justifier le signe de $\Delta_r S^\circ$.
- **c.** Dans une autre expérience, on introduit 12,7 g de I_2 dans un récipient de volume 9,91 ℓ , indéformable, initialement vide de tout gaz, maintenu à 1200 K.

Déterminer la pression totale et les pressions partielles à l'équilibre.

Donnée : M(I) = 126,9 g/mol

Exercice 6:

On considère l'équilibre homogène réalisé à 250°C :

$$PCl_{5 gaz} \leftrightarrow PCl_{3 gaz} + Cl_{2 gaz}$$

- **a.** On chauffe à 250°C une certaine quantité de PCl₅ pur dans un récipient de 12 ℓ indéformable. A l'équilibre, on a 0,21 moles de PCl₅, 0,32 moles de PCl₃ et 0,32 moles de Cl₂. Quel était le
- nombre de moles initial no de PCl₅ ?
- **b.** Calculer:
 - le coefficient de dissociation α de PCl₅ à l'équilibre
 - la pression initiale P_{ini} et la pression totale à l'équilibre
 - la constante d'équilibre

c. On réalise cette fois l'équilibre à pression constante, égale à P_{ini} (1,92 bar) mais toujours à 250°C. Calculer le nouveau coefficient de dissociation α de PCl_5 . Comparer cette valeur à celle trouvée précédemment et justifier à l'aide des lois de déplacement des équilibres.

Exercice 7 : Équilibre hétérogène

a. La pression de CO₂ en bar à l'équilibre en fonction de la température est donnée par la relation:

$$Ln\left(\frac{P_{CO2}}{P^{\circ}}\right) = 4,390 - \frac{5150}{T}$$

En déduire les valeurs de $\Delta_r H^\circ$ et $\Delta_r S^\circ$ pour la réaction de décomposition de CaCO₃ (on négligera leur variation avec la température).

- **b.** Calculer la constante d'équilibre K à 900°C.
- c. A 900°C, prévoir le sens d'évolution du système si :
- initialement seul est présent CaCO3 dans un récipient indilatable vide de tout gaz
- initialement CaCO₃ et CaO sont présents et $P_{CO2} = 0.5$ bar
- initialement CaCO₃ et CaO sont présents et $P_{CO2} = 1$ bar
- initialement CaCO₃ et CaO sont présents et P_{CO2} = 1,5 bar
- initialement $CaCO_3$ est le seul solide présent et $P_{CO2} = 0.5$ bar
- initialement CaCO₃ est le seul solide présent et P_{CO2} = 1,5 bar
- **d.** Dans un récipient indéformable de 1 ℓ maintenu à 900°C, initialement vide de tout gaz, on introduit d'abord 5.10^{-3} mol de CaCO₃ puis 2.10^{-2} mol de CaCO₃.

Décrire en termes de nombre de moles l'état final du système pour ces deux cas.

Exercice 8:

Le tétrafluorure d'uranium réagit avec la vapeur d'eau suivant la réaction :

$$UF_{4 \text{ solide}} + 2 H_2O_{gaz} \leftrightarrow UO_{2 \text{ solide}} + 4 HF_{gaz}$$

- a. Exprimer la constante d'équilibre K en fonction des pressions partielles.
- **b.** On étudie la réaction d'hydrolyse à partir d'un excès de UF₄ sous pression constante (P_0 =1bar) dans un récipient où l'on introduit une mole d'eau. On appelle α la fraction molaire d'eau ayant réagi à l'équilibre. Exprimer K en fonction de α . Sachant que dans les conditions précédentes α = 0,02 à 227°C et α = 0,1 à 427°C, calculer K à ces 2 températures et Δ_r H° de la réaction d'hydrolyse dont on négligera la variation avec la température.

Exercice 9:

On considère la réaction de décomposition thermique d'un excès d'hydrogéno-carbonate de sodium NaHCO3 (communément appelé bicarbonate de soude) initialement seul corps présent :

$$2 \text{ NaHCO}_{3 \text{ solide}} \leftrightarrow \text{Na}_{2}\text{CO}_{3 \text{ solide}} + \text{H}_{2}\text{O}_{\text{gaz}} + \text{CO}_{2 \text{ gaz}}$$

La pression totale P régnant dans l'enceinte à l'équilibre a été mesurée en fonction de la température.

- **a.** Exprimer littéralement K en fonction de P. Déterminer graphiquement à l'aide du tableau précédent $\Delta_r H^{\circ}$ et le $\Delta_r S^{\circ}$ de la réaction de décomposition (on négligera leur variation avec T).
- **b.** Dans un récipient de 1 ℓ où l'on a fait préalablement le vide, on introduit 2 g de NaHCO₃ et on chauffe jusqu'à obtenir une pression de 1 bar. Quelle est alors la composition du système ? Même question, si on a initialement 5 g de NaHCO₃.

Exercice 10: Equilibre en phase liquide homogène

On fait réagir à 25°C, 1,5 mole d'acide acétique sur 1,5 mole d'éthanol dans 1 ℓ de solvant ne participant pas à la réaction réalisée <u>en phase liquide homogène</u>. A l'équilibre, il s'est formé 1 mole d'eau. On assimilera les activités aux concentrations.

- (1) $CH_3COOH + C_2H_5OH \leftrightarrow CH_3COOC_2H_5 + H_2O$
- a. Calculer la constante d'équilibre K₁ de cette réaction.
- **b.** Au mélange précédent à l'équilibre, on ajoute 54 ml d'eau.

Dans quel sens la réaction évolue-t-elle ? Quelle est la composition du mélange à l'équilibre ?

- **c.** Au mélange initial à l'équilibre, on ajoute 0,5 mole d'acide acétique, mêmes questions qu'en b.
- **d.** On mélange dans le même solvant une mole d'acide acétique avec une mole d'éthanol et une mole de méthanol. Les 2 équilibres 1 et 2 se produisent simultanément.
- (2) $CH_3COOH + CH_3OH \leftrightarrow CH_3COOCH_3 + H_2O$ $K_2 = 5,40$ à $25^{\circ}C$ Sachant qu'à l'équilibre il s'est formé 0,86 mole d'eau, calculer la composition du mélange à l'équilibre.
- e. En déduire la constante d'équilibre K₃ de la réaction :
 - (3) $CH_3COOC_2H_5 + CH_3OH \leftrightarrow CH_3COOCH_3 + C_2H_5OH$

Exercice 11:

Dans les milieux physiologiques, l'ATP n'existe pratiquement pas sous sa forme libre, mais sous forme de son complexe avec l'ion Mg^{2+} .

$$ATP^{4-} + Mg^{2+} \leftrightarrow Mg-ATP^{2-}$$

- **a.** Calculer la constante de cet équilibre ainsi que la concentration des trois espèces à l'équilibre lorsque l'on part d'un mélange contenant 5.10⁻³ mol.l⁻¹ d'ATP⁴⁻ et 5.10⁻³ mol.l⁻¹ d'ions Mg²⁺.
- **b.** En déduire le sens dans lequel va évoluer le système pour atteindre l'état d'équilibre.

Espèce (mol.l ⁻¹)	Mélange I	Mélange II	Mélange III
$[Mg - ATP^{2-}]$	2.10^{-3}	2.10^{-3}	2.10^{-3}
$[Mg^{2+}]$	10^{-4}	10-3	1,6.10 ⁻⁵
[ATP ⁴⁻]	10 ⁻⁶	4.10 ⁻⁶	1,6.10 ⁻⁵

c. Lorsqu'un équilibre est atteint on augmente la température. Que va-t-il se passer ?

Données : à T = 300 K $\Delta_r H^{\circ} = +18.3 \text{ kJ.mol}^{-1}$; $\Delta_r S^{\circ} = +193 \text{ J.K}^{-1} \cdot \text{mol}^{-1}$.

Exercice 12:

Le phosphate de calcium Ca_3 (PO₄)₂ a plusieurs utilisations thérapeutiques. C'est un composé solide de masse molaire $M=310~g.mol^{-1}$ qui se dissout faiblement dans l'eau en donnant des ions PO₄³⁻ et Ca^{2+} .

Son produit de solubilité est $K_S = 1,3.10^{-29}$.

Quelle quantité (en g) de phosphate de calcium peut-on dissoudre :

- **a.** dans 1 litre d'eau pure ?
- **b.** dans 1 litre d'eau contenant déjà 0,1 mole de CaCl₂ (très soluble) ?