LOS APORTES DE LA BIOANTROPOLOGÍA AL CONOCIMIENTO DE LA VARIABILIDAD BIOLÓGICA DE LOS SUDAMERINDIOS. DESCRIPCIÓN Y ANÁLISIS

Francisco Raúl Carnese* antbiol@filo.uba.ar Universidad de Buenos Aires

RESUMEN En este trabajo se describe y analiza la información proporcionada por los estudios bioantropológicos en poblaciones amerindias sudamericanas. Se evaluaron tres etapas del desarrollo de la antropología biológica, desde el siglo XIX hasta el presente, con la finalidad de analizar los aportes técnicometodológicos y teóricos predominantes en cada una de ellas. Para alcanzar esos objetivos, se consideraron, principalmente, las contribuciones de la genética de poblaciones que abrieron nuevos rumbos para abordar y comprender, desde otra perspectiva, la variabilidad biológica de esos grupos humanos.

PALABRAS CLAVE:

Bioantropología, poblaciones sudamerindias, diversidad genética, descripción y análisis.

^{*} Doctor en Ciencias Naturales, Universidad de Buenos Aires, Argentina.

BIOANTHROPOLOGY CONTRIBUTIONS
TO THE KNOWLEDGE OF
BIOLOGICAL VARIABILITY AMONG
SOUTH AMERICAN INDIANS:
ANALYSIS AND DESCRIPTION

ABSTRACT This paper analyzes and describes bioanthropological studies on South American Amerindians. Three periods in the development of biological anthropology, from the 19th century up to the present, were evaluated with the intention to analyze the technical, methodological and theoretical contributions predominant in each of them. To achieve this objective, contributions on population genetics were considered, opening new ways to approach and understand, from a different perspective, the biological variability of these human groups.

KEY WORDS:

Bioanthropology, Genetic Diversity, South Amerindian Populations, Description and Analysis. OS APORTES DA BIOANTROPOLOGIA
AO CONHECIMENTO DA VARIABILIDADE
BIOLOGICA DOS SUL-AMERINDIOS:
DESCRIÇÃO E ANÁLISE

RESUMO Neste trabalho descreve-se e analisa-se a informação proporcionada pelos estudos bioantropológicos em populações ameríndias sul-americanas. Foram avaliadas três etapas do desenvolvimento da antropologia biológica, desde o século XIX até o presente, com a finalidade de analisar os aportes técnico-metodológicos e teóricos predominantes em cada uma delas. Para alcançar esses objetivos, foram consideradas, principalmente, as contribuições da genética de populações que abriram novos rumos para abordar e compreender, desde outra perspectiva, a variabilidade biológica desses grupos humanos.

PALAVRAS CHAVE:

Bioantropología, populações sul-ameríndias, diversidade genética, descrição e análise.

LOS APORTES DE LA BIOANTROPOLOGÍA AL CONOCIMIENTO DE LA VARIABILIDAD BIOLÓGICA DE LOS SUDAMERINDIOS. DESCRIPCIÓN Y ANÁLISIS

FRANCISCO RAÚI CARNESE

Introducción

N ESTE TRABAJO SE DESCRIBEN y analizan los avances del conocimiento de la biología de las poblaciones indígenas sudamericanas, en las distintas etapas del desarrollo de la antropología biológica. Dada la vastedad de esta tarea, y debido a las limitaciones del espacio y a las propias del autor acerca del conocimiento de las distintas áreas de la bioantropología, el estudio se circunscribió a evaluar, principalmente, las contribuciones realizadas por la genética de poblaciones, disciplina que abrió nuevos caminos para abordar y comprender, desde otra perspectiva, la variabilidad biológica de los indígenas sudamericanos. Dentro de ese marco, el análisis se limitó a considerar los aportes técnico-metodológicos y teóricos más significativos que apun-

talaron el desarrollo de la disciplina. Teniendo en cuenta esas contribuciones, el estudio se dividió en tres períodos, con una extensión temporal que va desde los albores de la antropología a mediados del siglo XIX hasta la época actual.

Para desarrollar la primera de las tres etapas propuestas, se examinaron trabajos de autores de Argentina, Brasil, Chile, Uruguay y Venezuela, sobre la historia de la antropología biológica de sus respectivos países. Estos artículos fueron publicados en la Enciclopedia editada por Spencer (1997). En esta publicación no se registraron estudios realizados por autores de otros países sudamericanos. No obstante, se ha recabado información bibliográfica para el conjunto de los períodos analizados, a partir de otras fuentes no contenidas en esa Enciclopedia. Los libros de Salzano y Callegari-Jacques (1988), Crawford (1992) y artículos originales fueron analizados para valorar el estado de avance de los estudios genético-serológicos en las poblaciones nativas de América, durante

el período que se extendió desde la década de 1920 hasta mediados de los años ochenta. Por último, se consultaron trabajos que evaluaron la variabilidad biológica de esos grupos poblacionales, a partir de la incorporación en los estudios bioantropológicos de técnicas y métodos provenientes de la biología molecular.

LOS PRIMEROS PASOS

Para la mayoría de los autores, los estudios bioantropológicos comienzan en los inicios o a mediados del siglo XIX. Este período se caracterizó por la presencia en las instituciones académicas, museos y universidades de investigadores extranjeros provenientes, principalmente, de países europeos. Posteriormente, muchos de ellos se establecieron en la región (Peter W. Lund, Paul Ehrenreich, Max Uhle, Henri Dumont, Adolf Bastian, Hermann Burmeister, Hermann ten Kate, Lehmann Nitsche, Martin Gusinde, Adolf Ernst, entre otros) y se relacionaron con investigadores nativos que, inicialmente, eran en su mayoría autodidactas.

Según Rothhammer y Aspillaga (1997), en todos los países hubo un período precientífico en la antropología física. Ese período termina en Chile con la publicación del libro *Los aborígenes de Chile*, en 1882, de José T. Medina (1852-1930), quien resumió las contribuciones realizadas por otros autores, y también aportó concepciones modernas que aplicó al estudio de comunidades indígenas. En 1912, Max Uhle, arqueólogo alemán, organizó el Museo de Etnología y Antropología Chilena, en Santiago de Chile. Colaboraron con él Aureliano Oyarzún y Martin Gusinde (1886-1969). Este último autor realizó una exhaustiva descripción de los indios fueguinos que, posteriormente, fue publicada, en idioma español, por el Centro Argentino de Etnología Americana (1990).

En Brasil, João Baptista de Lacerda fue considerado el primer antropólogo biólogo de ese país. Entre 1875 y 1893, realizó estudios morfológicos en poblaciones actuales y extintas de Brasil (ver Lacerda y Peixoto, 1876). El libro *Rondonia*, publicado en 1917 por Edgard Roquette Pinto (1884-1954), fue uno de los hechos más importantes para el desarrollo de la antropología brasileña (Salzano, 1997).

Los estudios realizados por Adolf Ernst (1832-1899) en el Museo de Ciencias Naturales de Caracas fueron profundizados por Gaspar Marcano (1850-1910), nacido en Venezuela y formado en París, quien estudió las características craneométricas de los habitantes precolombinos de varias regiones de Venezuela (Castro de Guerra, 1997).

En Uruguay deben mencionarse los trabajos de José H. Figueira (1860-1946), quien realizó una descripción de las características físicas del material recuperado en enterratorios, ubicados en el este del país (Sans, 1997).

Un hecho trascendente en este período fue el descubrimiento de los restos de Lagoa Santa por Peter W. Lund (1801-1880). En la actualidad, este hallazgo es motivo de interesantes debates, debido a que, por su antigüedad y características morfológicas, estos restos son considerados como pertenecientes a un grupo poblacional que ingresó a América, previamente a la llegada de los amerindios (Neves y Pucciarelli, 1990, 1991; González *et al.*, 2008; Hubbe *et al.*, 2010). En esta época predominaron los estudios antropométricos (craneometría y osteología) y antroposcópicos de poblaciones indígenas actuales y extintas y de grupos neoamericanos. También se realizaron investigaciones sobre mezcla racial, endogamia y consanguinidad.

En general, los principales objetivos de la disciplina se centraron en las clasificaciones biotipológicas de las poblaciones indígenas. Las especulaciones acerca del origen del hombre y del hombre americano fueron también un tema de interés de los investigadores. En este sentido, es importante mencionar las obras de Florentino Ameghino (1854-1911) y sus elucubraciones en torno al origen del hombre en América, que, si bien fueron desvirtuadas por la realidad, tuvieron el mérito de haber despertado e impulsado el interés por estos estudios tanto en Argentina como en el mundo entero. Por ejemplo, Hrdlička, el padre de la bioantropología norteamericana, dedicó un libro entero a los hallazgos de Sudamérica, motivado por los trabajos de Ameghino (Hrdlička, 1912). (Ver Carnese *et al.*, 1997; Carnese y Pucciarelli, 2007).

El darwinismo fue el marco teórico preponderante de la época, no sólo en antropología sino, también, en otras disciplinas científicas. Las concepciones evolucionistas tuvieron una influencia considerable en los ámbitos académicos e institucionales de casi todos los países sudamericanos (Glick, 1989).

Es recién en la década de 1920 cuando comienzan a realizarse los primeros estudios genéticos en poblacionales amerindias de Sudamérica.

LOS APORTES DE LA GENÉTICA SEROLÓGICA

Una segunda etapa en el desarrollo de la disciplina se corresponde, principalmente, con la incorporación de técnicas y métodos provenientes de la genética-serológica. Mediante la determinación de marcadores genéticos eritrocitarios y séricos se realizaron estudios en diversas poblaciones indígenas y neoamericanas.

Uno de los hechos más importante en Sudamérica fue marcado por Bacigalupo, quien difundió, por primera vez, los resultados de sus análisis serológicos en aborígenes argentinos, mediante el empleo de técnicas estadísticas apropiadas (Bacigalupo, 1926, 1934). Casi al mismo tiempo, Mazza y Franke (1927, 1928) determinaron el grupo ABO en más de un centenar de aborígenes del

Chaco argentino, con el objetivo de establecer el origen de esas poblaciones. En esa época, Imbelloni, a pesar de ser un investigador proveniente de la escuela morfológica adscripta al hiperdifusionismo del historicismo cultural, adhirió a la inclusión de los grupos sanguíneos en los estudios bioantropológicos, por su extraordinaria eficacia heurística; porque se heredan independientemente de la edad y el sexo; no se modifican durante el desarrollo ontogénico, y es escasa o nula la influencia ambiental. Por estas razones, entendía que eran de suma utilidad para las clasificaciones raciales (Imbelloni, 1937).

Otro hecho de trascendencia fue producido por Layrisse *et al.* (1955), quienes descubrieron el factor Diego A (DI*A) en una familia indígena venezolana (Castro de Guerra, 1997). Este hallazgo tuvo repercusión en antropología, porque reveló las relaciones genéticas entre las poblaciones amerindias y asiáticas.

A su vez, las tipificaciones de enzimas eritrocitarias y séricas, de las inmunoglobulinas Gm/Km, del sistema HLA y del carácter secretor ABH, entre otras determinaciones, posibilitaron la obtención de un panorama más actualizado sobre la variabilidad biológica de las poblaciones indígenas sudamericanas.

Una de las observaciones más interesantes de estos estudios está relacionada con los grupos sanguíneos. Se constató que los amerindios tenían frecuencias cercanas al 100% para el alelo ABO*O, eran casi todos Rh positivos y, en promedio, un 10% presentaban el alelo Diego A (DI*A).

En relación con el sistema ABO, Crawford (1992: 32) señaló que antropólogos y genetistas sugirieron "que los amerindios se habían separado de las demás poblaciones humanas antes de la evolución de los antígenos A y B, y que ésa sería la causa de la ausencia de esos alelos en la mayoría de las poblaciones americanas". Por consiguiente, se dedujo que la presencia de esos marcadores en grupos amerindios sería consecuencia de mezcla génica con europeos.

Sin embargo, las poblaciones siberianas actuales son polimórficas para el sistema ABO, con una frecuencia del alelo ABO*A1 de casi un 20% en los Chukchi de la península de Chukotka y un 14% entre los esquimales siberianos, quienes, a su vez, presentan un 23% del alelo ABO*B (Crawford, 1992). Estas variantes polimórficas fueron observadas también en otros grupos siberianos. ¿Si esos antígenos estaban presentes en esas poblaciones, y si se admite que ellas fueron parte de los grupos fundadores de América, cómo se explica la ausencia de los mismos en las actuales poblaciones amerindias?

Se sugirieron al respecto varias hipótesis, donde la deriva génica, la selección natural o la acción combinada de ambos mecanismos microevolutivos

¹ La excepción son los indígenas Blodfoots y Blood, que presentaban elevadas frecuencias del alelo A.

habrían sido las causas determinantes de la fijación del alelo ABO*O y la pérdida de los alelos ABO*A y ABO*B.

Afortunadamente, debido a que estos antígenos están presentes en distintos tejidos y órganos del cuerpo humano, y que su capacidad antigénica se preserva del paso del tiempo, se comenzaron a desarrollar investigaciones para detectar esas sustancias en material óseo y/o momificado de épocas precolombinas. Con estos estudios se intentó dar respuesta a los interrogantes arriba formulados.

Los estudios paleoserológicos

La presencia de sustancias grupales sanguíneas, en su forma alcohol soluble, en tejidos humanos posibilitó su determinación mediante técnicas serológicas que habían sido empleadas en medicina legal.

En la tabla 1 se mencionan algunas de ellas, así como las determinaciones realizadas a partir de restos momificados de diferentes regiones de Sudamérica. Se puede observar que los antígenos A y B están presentes, aunque en bajas proporciones, en Colombia, Perú, Chile, Brasil y Argentina. La presencia de B en indios, precontacto con europeos, de la región andina de América del Sur es coincidente con lo remarcado para las poblaciones vivientes de esa misma área. A partir de estos datos se postuló que, si se descarta la acción de factores contaminantes que interfieren en la tipificación de los especímenes, la existencia de los antígenos A y B en América precolombina no sería sólo consecuencia del mestizaje con europeos.

Se consideró, entonces, que la baja o nula frecuencia de esos antígenos en aborígenes actuales podría deberse a la acción de mecanismos microevolutivos como la deriva genética, la cual debió haber cumplido un importante rol en la diferenciación genética de esas poblaciones. A su vez, se sostuvo que un papel destacado pudo haber sido desempeñado por la selección natural, a través de mecanismos de susceptibilidad y resistencia a ciertas enfermedades y en función de determinados genes de grupos sanguíneos (Carnese y Palatnik, 1972).

Estas investigaciones habían proporcionado información de interés para aquellos que intentaban interpretar las relaciones y las variaciones entre las poblaciones pre y poscontacto con los europeos y para hipotetizar acerca de las probables causas que determinaron la composición genética de los indígenas actuales.

Sin embargo, en su momento, estos estudios fueron criticados por Thieme y Otten (1957), quienes sostenían, entre otros argumentos, que la gran distribución en la naturaleza de sustancias semejantes a los antígenos de grupos sanguíneos puede actuar como contaminante, dando lugar a falsas reacciones de inhibición. Los mismos autores analizaron otros factores que influyen sobre

A 1 /A~	Procedencia	N	Método	Resultados				
Autor/Año				А	В	AB	0	ND
Matson, 1934	Perú	12	IA	-	-	-	12	-
Boyd y Boyd, 1937	Perú	127	IA	1	6	2	118	-
Wyman y Boyd, 1937	Perú	133	IA	1	6	2	124	
Gilbey y Lubran, 1952	Colombia	2	IA	2	-	-	-	-
	Perú	3	IA	1	-	-	2	-
Furuhata <i>et al.</i> , 1959	Perú	3	NE	2	-	-	-	1
Otten y Flory, 1963	Chile	7	AM	-	-	-	7	-
Etcheverry et al., 1970	Chile	80	IA	-	-	-	80	-
Lippold, 1971	Perú/Chile	9	AM	-	-	-	9	-
Carnese y Palatnik, 1972	Argentina	10	AM/IA/E	4	1		5	-
Allison et al., 1976	Perú	11	IA/In An	4	1	2	4	-
Allison et al., 1978	Perú	113	IA	27	4	21	61	-
	Chile	49	IA	4	-	-	45	-
Pereira <i>et al.</i> , 1984	Brasil	69	AF	14	-	-	55	-
Llop y Rothhammer, 1988	Chile	54	IA	1	-	-	45	8
Salaberry et al., 1999	Argentina	5	AM/IA/E	4	-	-	-	1
Totales		687		65 (9%)	18 (3%)	27 (4%)	567 (82%)	10 (2%)

Referencias: AM: aglutinación mixta; IA: inhibición de la aglutinación; E: elución del anticuerpo; In An: inducción de la producción de anticuerpos; ND: no determinado; NE: no especificado.

la reproductibilidad de estas determinaciones, como la acción de la actividad enzimática de las bacterias *Clostridium tertium*, *Bacillus fulminans* y *Bacillus cereus*, que descomponen o transforman las sustancias grupoespecíficas ABO.

Estas observaciones, más otras comentadas recientemente (Salaberry *et al.*, 1999), cuestionan estas investigaciones por su falta de reproductibilidad y especificidad. No obstante, en la tabla 1 se observa que tanto los antígenos A como B habían sido detectados en varias muestras precolombinas, de distintas regiones de Sudamérica. La pregunta que cabe formularse es si estos resultados pueden explicarse, exclusivamente, por la acción de factores contaminantes. Recientemente, Lin *et al.* (1996) estudiaron nueve momias del desierto de Taklamakan, en Asia Central. La genotipación del sistema ABO a nivel molecular fue consistente con las determinaciones serológicas realizadas en las mismas muestras, cuando se aplicó el método de absorción-elución.

En consecuencia, los intentos de explicar las causas determinantes de la distribución del sistema ABO en poblaciones amerindias no tienen, todavía, una respuesta satisfactoria. Seguramente, nuevas investigaciones a nivel molecular podrán, en un futuro próximo, aclarar esta cuestión.

En resumen, en este período, las investigaciones realizadas aportaron importante información sobre la biología de las poblaciones sudamerindias. Sin embargo, la incorporación de la genética serológica en los estudios bioantropológicos, si bien constituyó un cambio técnico y metodológico importante, no modificó la concepción básica de la variabilidad biológica de la época. Uno de los objetivos principales de la antropología biológica siguió siendo la caracterización racial de los grupos humanos en entidades discretas, idea que prevaleció hasta mediados del siglo XX. En un trabajo anterior se señaló que "El criterio tipológico de acuerdo a como fuera definido por Mayr (1968) y por Henning (1968) fue nodal en las explicaciones que se brindan en nuestra disciplina. Aún con los trabajos serológicos de Boyd (1950) se llega a una conceptualización raciológica similar, en lo esencial, a la de Blumenbach" (Pucciarelli, 1989: 28; ver Carnese *et al.*, 1991-92: 44).

En esta etapa, el marco teórico predominante en la antropología biológica parece haber sido el darwinismo, por el enfoque dado a las investigaciones, aunque en Argentina se produjo un retroceso de las concepciones evolucionistas y un significativo avance de las ideas hiperdifusionistas de la Escuela Histórica-Cultural, asociada al método tipológico. El máximo representante de esa concepción fue José Imbelloni.

LAS DÉCADAS DE LOS AÑOS SESENTA-OCHENTA

Es a partir de la década de 1960 cuando comienza a producirse un paulatino reemplazo del método tipológico por métodos estadísticos uni y multivariado, que, junto con el desarrollo de la informática, se convirtieron en herramientas fundamentales para el procesamiento y análisis de una significativa cantidad de información. Estos aportes permitieron abrir nuevos caminos para una mejor interpretación de la variabilidad biológica humana. Se profundiza el conocimiento de las estructuras genéticas de las poblaciones indígenas, de los contactos interétnicos que establecieron y de la mezcla génica con grupos no amerindios. Entre otros significativos avances, las variaciones interpoblacionales comienzan a estimarse a partir de diversos coeficientes de distancias biológicas.

Además, surgieron nuevas hipótesis acerca del origen de los amerindios y de los grupos migratorios que ingresaron al continente americano. En ese sentido, el trabajo de Greenberg *et al.* (1986) fue una excelente contribución a toda

38

esa temática. Más adelante, una revisión de los estudios realizados en poblaciones indígenas sudamericanas fue publicada por Salzano y Callegari-Jacques (1988).

En este período, un hecho de trascendencia fue protagonizado por Lewontin (1972), quien demostró, mediante el análisis de diecisiete sistemas genéticos tradicionales, que de toda la variación genética humana, el 85% corresponde a variación entre individuos dentro de una nación o tribu, mientras que el resto se reparte entre naciones (8%) y las razas principales (6%). Posteriormente, los resultados obtenidos por Lewontin fueron confirmados mediante el empleo de marcadores genéticos moleculares (ver Barbujani, 2005). Al respecto, es interesante remarcar que los datos craneométricos son, también, coincidentes con las observaciones registradas a nivel serológico y molecular (ver Relethford, 1994). Estas observaciones originaron interesantes debates acerca de si el concepto de raza es reflejo de una realidad biológica o una construcción social.

LA BIOLOGÍA MOLECULAR

Hacia mediados de la década de 1980 comienza a percibirse un importante cambio en las investigaciones bioantropológicas, con la incorporación de técnicas y métodos provenientes de la biología molecular².

El primer trabajo en amerindios, que incluyó a treinta Warao de Venezuela, fue realizado por Johnson et al. (1983) mediante la técnica de longitud de fragmentos polimórficos de restricción (restriction fragment length polymorphism, RFLP) empleando cinco enzimas de restricción. A partir de este estudio se intensificaron las investigaciones con el empleo de un número mayor de enzimas y la secuenciación de la región control del ADNmt (Wallace et al., 1985; Torroni et al., 1992; Ward et al., 1991). Con estas investigaciones se constató la presencia de cuatro haplogrupos mitocondriales de origen asiático: A, B, C y D, y, posteriormente, sus variantes autóctonas americanas: A2, B2, C1 y D1. Más tarde, Brown et al. (1998) describen un quinto haplogrupo fundador denominado X, que está presente con bajas frecuencias, tanto en amerindios norteamericanos como en poblaciones europeas y siberianas actuales (Derenko et al., 2001), pero no se detectó en los grupos poblacionales que habitan actualmente en el este de Siberia, probablemente, por efecto de la deriva génica (Fagundes et al., 2008). En cambio, otros investigadores sugirieron la existencia de un número mayor de haplogrupos fundadores de América (Bailliet et al., 1994; Bianchi et al., 1995).

Según Salzano (2002), hasta 2001 se habían estudiado 90 muestras de nativos americanos, con un total de 3.809 individuos; 39 de esas muestras pro-

² Para el desarrollo de la primera parte de este apartado se tuvo en consideración la revisión efectuada por Salzano en 2002.

venían de Sudamérica, e incluyen a 1.770 personas. Se observa que el haplogrupo B era, en promedio, el más frecuente (0,318), seguido del C y el D, con valores similares, 0,234 y 0,233, respectivamente, y que el haplogrupo A (0,188) registraba la menor prevalencia. A partir de estos hallazgos, se concluyó que en la región sudamericana hay una distribución bastante uniforme de los cuatro haplogrupos, semejante a la de los amerindios de Norteamérica.

Las primeras investigaciones realizadas a partir del cromosoma Y permitieron indagar los linajes paternos y compararlos con los de origen materno derivados del ADN mitocondrial. Diversos estudios demostraron que su variabilidad era menor a la observada en el ADN mitocondrial.

Bianchi *et al.* (1997) sugirieron la existencia de un simple haplotipo fundador de América, mientras que otros autores plantearon que por lo menos dos serían los linajes paternos que han contribuido al acervo génico de las poblaciones americanas (Rodríguez-Delfin *et al.*, 1997; Karafet *et al.*, 1999; Ruiz-Linares *et al.*, 1999).

En otras investigaciones se analizaron marcadores genéticos autosomales: sistema HLA, polimorfismos de inserción cortos o largos (*Short or Large*, LINE); longitud de fragmentos polimórficos de restricción (RFLP, en inglés); pequeñas secuencias de nucleótidos repetidos en tándem o microsatélites (*Short tandem repeats*, STRs); polimorfismos nucleotídicos simples de sustitución (*Single nucleotide polymorphisms*, SNPS) y número variable de nucleótidos repetidos en tándem (*Variable number of tandem repeats*, VNTRs).

Por otra parte, hasta 2002 fueron escasos los trabajos en los que se utilizaron marcadores genéticos del cromosoma X, para el análisis de poblaciones aborígenes sudamericanas (Salzano, 2002).

A partir de ese año, que se corresponde con la revisión realizada por Salzano, se produjeron significativos aportes técnico-metodológicos que permitieron analizar con mayor profundidad las estructuras y la diversidad genética de las poblaciones indígenas y plantear nuevas hipótesis acerca del poblamiento americano. Es profusa la bibliografía existente sobre estos temas, como para intentar realizar una revisión exhaustiva de la misma.

Por esa razón, se presenta un análisis de la variabilidad biológica de los sudamerindios, a partir de los datos disponibles hasta 2008, que fue comunicado ese mismo año en el Congreso de la Asociación Latinoamericana de Antropología Biológica (ALAB), realizado en la ciudad de La Plata, Argentina (Carnese *et al.*, 2008).

En la tabla 2 se muestran las determinaciones genéticas realizadas en las poblaciones estudiadas, y en la figura 1, la distribución geográfica de las mismas. Como puede observarse, no fueron incluidos en el estudio todos los

Marcadores		Poblaciones			
Proteicos (1)	ABO, MNSs, Rh, Fy, Di, JK, P, KELL, G6PD, HP, TF.	Mapuche (Argentina), Mapuche (Chile), Wichi, Tehuelche, Toba, Mocoví, Pilagá, Chorote,			
	(N = 19519)	Chiriguano, Lengua, Xavante, Yanomami, Wapishama, Aymara, Macushi, Makiritare, Ayoreo, Guarani, Kaingang, Ticuna.			
Moleculares (2)	ADN mitocondrial	Mapuche (Argentina), Mapuche (Chile), Wichi, Tehuelche, Toba, Mocoví, Pilagá, Chorote, Chiriguano, Lengua, Xavante, Yanomami, Wapishama, Aymara, Macushi, Makiritare, Ayoreo, Guarani, Kaingang, Ticuna.			
	(N = 1518)				
	Sistema HLA Clase II: locus HLA-DRB1	Mapuche (Argentina), Mapuche (Chile), Chiriguano, Wichi, Tehuelche, Toba, Pilagá, Lengua,			
	(N = 1118)	Xavante, Guarani (Brasil), Kaingang, Ticuna.			
	Cromosoma Y. Loci: DYS19, DYS390, DYS391, DYS392, DYS393.	Mapuche (Argentina), Tehuelche, Wichí, Toba, Pilagá, Chorote, Lengua, Ayoreo, Guarani			
	(N = 211)	(Brasil), Ticuna.			
	STRs autosómicos I. Loci: D3S1358, D5S818, D7S820, D8S1179, D13S317	Wichí, Toba, Pilagá, Xavante, Kaingang, Gua-			
	(N = 309)	rani, Ayoreo.			
	STRs autosómicos II. Loci: D7S820, D13S317, vWA, D16S539	Mapuche (Argentina), Wichi, Tehuelche, Pilaga Toba, Xavante, Guarani (Brasil), Kaingang,			
	(N = 411)	Ayoreo.			

Referencias: (1) Nagel y Etcheverry, 1963; Matson et al., 1967, 1969; Cabutti y Palatnik, 1975; Pages Larraya et al., 1978; Haas et al., 1985; Salzano y Callegari-Jacques, 1988; Carnese, 1995; Goicoechea et al., 2001; Carnese et al., 2002.

(2) Cerna et al., 1993; Ginther et al., 1993; Torroni et al., 1992-1994; Bailliet et al., 1994; Merriwether et al., 1995; Ward et al., 1996; Blagitko et al., 1997; Bianchi et al., 1997-98; Sala et al., 1999; Pando,1998; Moraga et al., 2000; Demarchi et al., 2001; Hutz et al., 2002; Tsuneto et al., 2003; Demarchi y Michell, 2004; Dornelles et al., 2004; Bravi, 2005; Kohlrausch et al., 2005; Cabana et al., 2006; Catanesi et al., 2006; Marrero et al., 2007; Parolín y Carnese, 2009; Crossetti et al., 2008; Toscanini et al., 2008.

grupos indígenas sudamericanos. Se seleccionaron algunos de ellos, que comparten las mismas determinaciones genéticas y pertenecen a diversos troncos lingüísticos: Araucarian (mapuches); Aymará (Aymará); Patagon (tehuelches); Mataco (wichi, chorote); Guaycurú (toba, mocoví, pilaga); Mascoy (lengua); Zamuco (ayoreo); Kaingang (kaingang), Ge (xavante); Arawak (wapishana); Yanomami (yanomama); Karaib (macushi, makiritare); Tupí-Guaraní (guaraní, chiriguano); Ticuna (lengua independiente). Estas poblaciones fueron analizadas para once marcadores proteicos y ADNmt. A su vez, sólo ha sido posible

4 0

Figura 1.

Poblaciones indígenas de Sudamérica estudiadas a partir de diversos marcadores genéticos.

emplear en el estudio al *locus* HLA*DRB1, porque fue el único estudiado en poblaciones tehuelches, lengua, y en cuatro grupos mapuches de la provincia de Río Negro, Argentina (Parolín y Carnese, 2009). En cambio, para el resto de los sistemas, y debido a que no todas las poblaciones fueron estudiadas para los mismos *loci*, se priorizó, en ciertos casos, el número de poblaciones, en detrimento del número de tipificaciones genéticas, y en otros se procedió de manera inversa, como puede observarse, por ejemplo, en las determinaciones de los STRs autosomales. A pesar de estas limitaciones, se logró arribar a algunas conclusiones que coinciden, en general, con las formuladas por otros autores.

Se constata que la diversidad biológica varía según el sistema genético analizado. En todos los casos, la variabilidad genética intrapoblacional explicó la mayor parte de la variación genética total, que va del 75% en el ADNmt al 93% en los sistemas proteicos. La elevada variación genética interpoblacional a nivel del ADNmt (25%) se explica porque al ser transmitido sólo por línea materna, su tamaño efectivo es ¼ respecto de los sistemas genéticos de transmisión biparental. Un tamaño efectivo reducido acentúa las distancias genéticas entre las poblaciones, similar a la acción de la deriva genética, originando un aumento de la diferenciación genética interpoblacional. Asimismo, los STRs del cromosoma Y y el *locus* DRB1 del sistema HLA registraron, también, en términos relativos, valores elevados de variación genética interpoblacional, 19% y 12%, respectivamente. Estos valores disminuyeron al 9% con los marcadores STRs autosómicos en las dos muestras poblacionales, y al 6% para los sistemas proteicos.

41

Otro aspecto destacable de los amerindios es que el ADNmt presenta una variabilidad más restringida respecto de otras poblaciones mundiales. Hay que tener en cuenta que esos grupos sufrieron reducciones dramáticas de sus poblaciones como consecuencia de los enfrentamientos con los conquistadores europeos y los ejércitos nacionales y, adicionalmente, por las enfermedades y epidemias que asolaron gran parte de esas comunidades. Estos hechos podrían ser una de las causas determinantes de la variabilidad biológica observada en los indígenas actuales.

Para aclarar, en parte, esta problemática, las investigaciones del ADN antiguo se están convirtiendo en una herramienta útil que seguramente, en un futuro mediato, incrementará el conocimiento biológico de las poblaciones precolombinas, permitirá estimar las relaciones genéticas que se han establecido entre ellas, calcular la diversidad genética precontacto con europeos y comparar ésta con la observada en sus descendientes actuales.

Con base en estas consideraciones, se presenta en el siguiente apartado una revisión de los estudios paleogenéticos realizados en grupos precolombinos e históricos de Sudamérica.

Los estudios paleogenéticos

Como se mencionó en los párrafos anteriores, las investigaciones genéticas en poblaciones aborígenes sudamericanas actuales han tenido un significativo desarrollo y contribuyeron al conocimiento de la historia evolutiva de dichos grupos. Desde 1990, con el análisis del ADN antiguo en restos precolombinos se incorporó la dimensión temporal en las investigaciones bioantropológicas.

Con respecto a América del Sur, se realizaron estudios en diferentes sitios arqueológicos, desde el extremo norte del subcontinente hasta Tierra del Fuego (ver la tabla 3). Monsalve *et al.* (1996) analizaron ocho momias precolombinas de Colombia (1526-150 AP) y detectaron tres de los cuatro haplogrupos mitocondriales amerindios (5A, 1B y 2C). Al mismo tiempo, Ribeiro dos Santos *et al.* (1996) amplificaron y secuenciaron la región control del ADN mitocondrial en dieciocho restos esqueletarios precolombinos (4.000-500 AP) de la cuenca amazónica. Diez de ellos presentaron las mutaciones típicas de los haplogrupos A (5), C (4) y D (1). Una muestra más antigua, 4.000 años AP,

Tabla 3. Haplogrupos mitocondriales en grupos precolombinos e históricos de diferentes regiones de Sudamérica.

Sitio / población	N	Haplogrupos					Autor	
		Α	В	С	D	Otros		
Colombia (152-150 AP)	8	0,630	0,120	0,250	0,000	0,000	Monsalve et al., 1996	
Amazonas (4.000-500 AP)	18	0,280	0,050	0,220	0,050	0,390	Ribeiro Dos Santos et al., 1996	
Región Fuego-Patagónica (100-200 AP, incluye 1 muestra de 4.030 AP y 1 muestra de 5.000 AP)	60	0,000	0,000	0,380	0,600	0,020	Lalueza <i>et al.</i> , 1997	
Chile, Momias de Azapa (2.990-6.000 AP)	32	0,312	0,219	0,312	0,031	0,125	Moraga <i>et al.</i> , 2001	
Tiwanaku	13	0,080	0,150	0,230	0,230	0,310	Rothhammer <i>et al.</i> , 2003	
Chile Arcaico Tardío (6.000-3.900 AP)	14	0,500	0,357	0,070	0,070	0,000	Moraga <i>et al.</i> , 2005 (*)	
Chile Horiz. Medio (1.650-1.000 AP)	19	0,316	0,421	0,263	0,000	0,000	Moraga <i>et al.</i> , 2005	
Chile Intermedio Tardío (1.000-500 AP)	15	0,200	0,533	0,200	0,067	0,000	Moraga et al., 2005	
Perú (Paucarcancha, Patallacta y Huata)	35	0,086	0,657	0,220	0,029		Shinoda <i>et al.</i> , 2006	
Argentina, Pampa Grande (650 AP)	19	0,110	0,470	0,000	0,420	0,000	Carnese et al., 2010	

Referencias: Rogan y Salvo (1990), Horai et al. (1991), Lalueza et al. (1993-94), Merriwether et al. (1994) y Demarchi et al. (2001) no detectan la deleción de los 9pb en momias del norte de Chile, en tejido blando ni dientes del Norte, Centro y Sur de Argentina.

García-Bour et al. (2004) secuenciaron 24 restos de los 60 estudiados por Lalueza et al. (1997) y confirmaron la ausencia de los haplogrupos A y B en Tierra del Fuego-Patagonia.

fue asignada al haplogrupo B, que se distingue por la deleción de 9pb en la región V; las restantes muestras no pudieron ser asignadas a linajes mitocondriales amerindios. Previamente, Horai *et al.* (1991) no observaron la deleción de 9pb en momias del norte de Chile.

Por otra parte, en el extremo sur del continente, en la región Fuego-Patagónica, Lalueza *et al.* (1993/4, 1997) no detectaron los haplogrupos A y B en 60 restos de aborígenes fueguinos de colecciones de Chile y Argentina (100-200 BP, incluidas dos muestras de restos esqueletales de 4.030 y 5.000 años). Además, mediante la secuenciación de 24 de esas muestras, García Bour *et al.* (2004) detectaron, en todos los casos, las mutaciones características de los

^(*) La totalidad de los restos de los períodos analizados por Moraga et al., 2005 suman 61 individuos, de los cuales 13 (21%) no pertenecen a los haplogrupos clásicos amerindios y los clasifican como "otros".

haplogrupos C y D, coincidente con los resultados previos realizados por RFLP. A su vez, lograron tipificar varios microsatélites del cromosoma Y.

Cabe destacar que el haplogrupo B no había sido detectado en tejidos blandos, huesos y dientes en 56 restos prehispánicos del norte de Chile, y del norte, centro y sur de Argentina, y, particularmente, en aquellos grupos que habitaron el extremo sur del continente (Rogan y Salvo, 1990; Merriwether *et al.*, 1994; Demarchi *et al.*, 2001).

Sin embargo, Moraga *et al.* (2001), en momias provenientes del valle de Azapa (2.990-6.000 AP), y Rothhammer *et al.* (2003), en varios restos esqueletales provenientes de Tiwanaku, detectaron una frecuencia relativamente alta de B (15% y 22%, respectivamente). Más tarde, una alta prevalencia de B fue observada en grupos prehistóricos provenientes de los valles de Lluta, Azapa y Camarones, en el norte de Chile. En estas regiones, el haplogrupo B varía del 35% en el período Arcaico Tardío (6.000-3.900 BP) al 53% en el período Intermedio Tardío (1.000-500 BP) (Moraga *et al.*, 2005). Además, Shinoda *et al.* (2006) también detectaron altas frecuencias del haplogrupo B (66%) en restos peruanos provenientes de Paucarcancha, Patallacta y Huata, que muestran grandes similitudes con las halladas en las actuales poblaciones Quechua y Aymará de Perú.

Recientemente, en Pampa Grande, provincia de Salta, Argentina, se estudiaron diecinueve restos de una antigüedad de 1310 AP. En este estudio se detectaron elevadas frecuencias de B (47%) y D (42%), baja proporción de A (10%) y ausencia de C. La elevada presencia del haplogrupo B parece sugerir una estrecha relación genética con los antiguos habitantes de la región centrosur andina. A su vez, en este trabajo se determinaron, también, nueve STRs autosomales y once STRs del cromosoma Y (Carnese *et al.*, 2010).

En síntesis, de las series analizadas hasta ahora, se observa una relativamente elevada prevalencia de los haplogrupos A y baja frecuencia del haplogrupo B en Colombia y en la región amazónica; frecuencias altas de B en el norte de Chile y en el noroeste de Argentina y en los antiguos habitantes de las altas tierras de Perú, y ausencia de A y B y altas frecuencias de C y D en fueguinos.

Por otra parte, de descartarse algún artefacto metodológico, los datos obtenidos por Ribeiro dos Santos *et al.* (1996) en la región amazónica, Moraga *et al.* (2001-2005) en el norte de Chile y Rothhammer *et al.* (2003) en Tiwanaku parecen indicar la existencia de otros haplogrupos fundadores de América, además de los clásicos A, B, C, D y X (ver la tabla 3). Estos resultados sugieren la existencia de una mayor variabilidad genética en las poblaciones extintas, respecto de los grupos actuales. Sin embargo, los STRs autosomales determinados en Pampa Grande presentan frecuencias génicas similares a las observadas

en poblaciones amerindias, que habitan actualmente en diversas regiones de Sudamérica (Carnese *et al.*, 2010). Estos datos, por el contrario, nos estarían sugiriendo que no hubo variación en el tiempo, por lo menos en relación con ese sistema, de la diversidad genética de los sudamerindios.

Es evidente que más estudios serán necesarios para aclarar las causas determinantes de la variabilidad biológica de las poblaciones amerindias pre y poscontacto con europeos.

La actual superación de problemas técnico-metodológicos en los estudios de ADN antiguo posibilitará el desarrollo de nuevas investigaciones que contribuirán, como ya señalamos, a analizar las relaciones entre los grupos extintos y actuales de los amerindios en cuanto a continuidad y/o reemplazo y a responder interrogantes aún no resueltos sobre el poblamiento americano.

Por último, del análisis efectuado en esta etapa del desarrollo de la antropología biológica, se puede observar una eclosión de datos acerca de la variabilidad biológica de los sudamerindios. Esta diversidad está siendo analizada desde distintos enfoques y con una magnífica batería de técnicas y métodos, cuyos resultados están aportando datos relevantes para una mejor comprensión de las probables causas que la determinan. Otro aspecto de interés, que excede el análisis aquí realizado, es el surgimiento de nuevas y plausibles hipótesis acerca del origen de los amerindios y de los contactos y rutas migratorias que siguieron en el interior del continente.

Por otra parte, desde el punto de vista teórico, el paradigma predominante en este período es el neodarwinismo, aunque algunos autores como Reig (1984: 583) ya habían sostenido, durante un homenaje a Darwin por los 125 años de la aparición de *El origen de las especies*, que posiblemente estemos transitando "los albores de una nueva síntesis o de un desarrollo expansivo de la síntesis moderna, que se perfila como una teoría jerárquica de la evolución que pretende superar las limitaciones reduccionistas del darwinismo original y de su versión de la síntesis moderna, admitiendo la existencia de distintos ámbitos y niveles de manifestación de los procesos evolutivos".

SÍNTESIS

Se han descrito y analizado, durante las distintas etapas del desarrollo de la antropología biológica, algunas de las contribuciones que apuntalaron el conocimiento de la biología de los amerindios sudamericanos. El análisis efectuado presenta facetas muy interesantes que permiten valorar positivamente lo alcanzado hasta el presente y vislumbrar un futuro promisorio, dado que, con el empleo de las excelentes herramientas técnico-metodológicas disponibles y dentro de un marco teórico apropiado, se podrá indagar y responder a muchos

de los interrogantes que, aún, nos formulamos sobre la biología de las poblaciones originarias de nuestra América.

AGRADECIMIENTOS

A Victoria Lois, por su colaboración en la preparación del presente manuscrito. A los revisores de este trabajo, quienes con sus sugerencias enriquecieron el contenido del artículo. Al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Universidad de Buenos Aires (UBACyT), por su apoyo financiero. **

REFERENCIAS

Allisson, Marvin, Ali Hossaini, Nora Castro, Juan Munizaga y Alejandro Pezzia

1976. "ABO Blood Groups in Peruvian Mummies. I. An Evaluation of Techniques", *American Journal of Physical Anthropology* 44, pp. 55-61.

Allisson, Marvin, Ali Hossaini, Nora Castro, Juan Munizaga y Rosa Fung

1978. "ABO Blood Groups in Chilean and Peruvian Mummies. II. Results of Agglutination-inhibition Technique", *American Journal of Physical Anthropology* 49, pp. 139-142.

Bacigalupo, Juan

1926. "Estadísticas sobre cien casos de grupos sanguíneos", La Semana Médica 2, pp. 734-736.

1934. "Estadísticas sobre grupos sanguíneos", en *V Congreso Nacional de Medicina* VII, pp. 683-685.

Bailliet, Graciela, Francisco Rothhammer, Francisco R. Carnese, Claudio M. Bravi y Néstor O. Bianchi

1994. "Founder Mitochondrial Haplotypes in Amerindian Population", *American Journal of Human Genetic* 54, pp. 27-33.

Barbujani, Guido

2005. "Human Races: Classifying People Vs. Understanding Diversity", *Current Genomics* 6 (4), pp. 215-226.

Bianchi, Néstor O., Graciela Bailliet y Claudio M. Bravi

1995. "Peopling of the Americas as Inferred Through the Analysis of Mitochondrial DNA", *Brazilian Journal of Genetics* 18, pp. 661-668.

Bianchi, Néstor O., Graciela Bailliet, Claudio M. Bravi, Francisco R. Carnese, Francisco Rothhammer, Verónica Martinez-Marignac y Sergio D. J. Pena

1997. "Origin of Amerindian Y-Chromosomes as Inferred by the Analysis of Six Polymorphic Markers", American Journal of Physical Anthropology 102, pp. 79-89.

Bianchi, Néstor, Cecilia Catanesi, Graciela Bailliet, Verónica Martinez-Marignac, Claudio M. Bravi, Lidia Vidal-Rioja, René J. Herrera y Jorge Lopez-Camelo

1998. "Characterization of Ancestral and Derived Y-chromosome Haplotypes of New World Native Populations", *American Journal of Human Genetics* 63, pp. 1862-71.

Blagitko, Nadezda, Colm O'Huigin, Felipe Figueroa, Satoshi Horai, Sunro Sonoda, Kazuo Tajima, David Watkins y Jan Klein

1997. "Polymorphism of the HLA-DRB1 Locus in Colombian, Ecuadorian, and Chilean Amerinds", Human Immunology 54, pp. 74-81.

Boyd, William

1950. "Blood Groups of South American Indians", *Handbook of South American Indians*, Vol. 6. *Bulletin of the Bureau of American Ethnology* 143, pp. 91-95.

Boyd, William C. y Lyle G. Boyd

1937. "Blood Grouping Tests on 300 Mummies, with Notes on the Precipitin-test", *Journal of Immunology* 32, pp. 307-319.

2005. "Análisis de linajes maternos en poblaciones indígenas americanas". Tesis Doctoral. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

Brown, Michael D., Seyed H. Hosseini, Antonio Torroni, Hans-Jürgen Bandelt, Jon C. Allen, Theodore Schurr, Rosaria Scozzari, Fulvio Cruciani y Douglas C. Wallace

1998. "mtDNA Haplogroup X: An Ancient Link between Europe/Western Asia and North America?", American Journal of Human Genetics 63, pp. 1852-1861.

Cabana, Graciela, D. Andrew Merriwether, Keith Hunley y Darío Demarchi

2006. "Is the Genetic Structure of Gran Chaco Populations Unique? Interregional Perspectives on Native

Cabutti, Nilda F. de y Marcos Palatnik 1975. "Aspectos genéticos monofactoriales eritrocitarios", en *Progresos en biología*, eds. F. Barbieri

South American Mitochondrial DNA Variation". American Journal of Physical Anthropology 131.

Carnese, Francisco R.

1995. "Genetic Markers in the Aboriginal Populations of Argentina", *Brazilian Journal of Genetics* 18, pp. 651-656.

Carnese, Francisco R. y Marcos Palatnik

1972. "Estudios paleoserológicos de restos momificados de aborígenes argentinos", Sangre 17, pp. 201-210.

Carnese, Francisco R., Alberto J. Cocilovo y Alicia S. Goicoechea

y A. Legname, pp. 425-434. Tucumán, Fundación Miguel Lillo.

1991-1992. "Historia y situación actual de la antropología biológica en la Argentina", *RUNA* 20, pp. 35-67. 1997. "Argentina", en *History of Physical Anthropology. An Encyclopedia*, ed. Frank Spencer, pp. 101-107. Nueva York y Londres, Garland Publishing, Inc.

Carnese, Francisco R., Alicia Caratini y Alicia S. Goicoechea

2002. "Interethnic Relations in Native-American Populations of Argentine Patagonia: A Genetic Demographic Analysis", en *Contemporary Perspectives on the Native Peoples of Pampa, Patagonia, and Tierra del Fuego,* eds. Claudia Briones y, José Luis Lanata, pp. 121-134 Londres, Bergin & Garvey.pp 121-134

Carnese, Francisco R. y Héctor M. Pucciarelli

2007. "Investigaciones antropobiológicas en Argentina, desde la década de 1930 hasta la actualidad", Relaciones de la Sociedad Argentina de Antropología XXXII, pp. 243-280.

Carnese, Francisco R., Alicia S. Goicoechea, Sergio A. Avena, María Laura Parolín y Cristina B. Dejean

2008. "Diversidad genética en indígenas argentinos", X Congreso de la Asociación Latinoamericana de Antropología Biológica, La Plata, Argentina. 20 al 23 de octubre.

Carnese, Francisco R., Fanny Mandisco, Christine Keyser, Cristina B. Dejean, Jean-Michel Dogoujon, Bertrand Ludes y Eric Crubézy

2010. "Paleogenetical Study of Pre-Columbian Samples from Pampa Grande (Salta, Argentina)", American Journal of Physical Anthropology 141 (3), pp. 452-462.

Castro de Guerra, Dinorah

1997. "Venezuela", en *History of Physical Anthropology. An Encyclopedia*, Ed. Frank Spencer, pp. 1087-1089. Nueva York y Londres, Garland Publishing, Inc.

Catanesi, Cecilia, Noelia Tourret, Francisco R. Carnese y Lidia Vidal-Rioja

2006. "South American Amerindian Diversity at the vWA STR Locus", *Journal of Basic & Applied Genetics* 17 (1), pp. 35-40.

Cerna, Marie, Michela Falco, Horacio Friedman, Eduardo Raimondi, Armando Maccagno, Marcelo Fernández-Viña y Peter Stastny

1993. "Differences in HLA Class II Alleles of Isolated South American Indian Populations from Brazil and Argentina", *Human Immunology* 37, pp. 213-220.

Crawford, Michael H.

1992. Antropología biológica de los indios americanos. Madrid, Ed. Mapfre.

Crossetti, Shaiane, Darío Demarchi, Paulo Raimann, Francisco M. Salzano, Mara H. Hutz y Sidia Callegari-Jacques

2008. "Autosomal STR Genetic Variability in the Gran Chaco Native Population: Homogeneity or Heterogeneity?", *American Journal of Human Biology* 20, pp. 704-711.

4 8

- Demarchi, Darío, Graciela Panzetta-Dutari, Sonia Colantonio y Alberto Marcellino
- 2001. "Absence of the 9-bp deletion of Mitochondrial DNA in Pre-Hispanic Inhabitants of Argentina", *Human Biology* 73 (4), pp. 575-582.
- Demarchi, Darío y R. John Mitchell
- 2004. "Genetic Structure and Gene Flow in Gran Chaco Populations of Argentina: Evidence from Y-chromosome Markers", *Human Biology* 76 (3), pp. 413-429.
- Derenko, Miroslava V., Tomasz Grzybowski, Boris A. Malyarchuk, Jakub Czarny, Danuta Miscicka-Sliwka e Ilia A. Zakharov
- 2001. "The Presence of Mitochondrial Haplogroups X in Altaians from South Siberia", *American Journal of Human Genetics* 69, pp. 237-241.
- Dornelles, Claudia H., Jacqueline Battilana, Nelson Fagundes, Loreta B. Freitas, Sandro L. Bonatto y Francisco M. Salzano
- 2004. "Mitochondrial DNA and Alu Insertions in a Genetically Peculiar Population: The Ayoreo Indians of Bolivia and Paraguay", *American Journal of Human Biology* 16, pp. 479-488.
- Etcheverry, Raúl, Carlos Guzmán, Carlos Regonesi, V. Tonkin, R. M. Urra y Norma Durán 1970. "Grupos sanguíneos A-B-O en las momias precolombinas de los indígenas atacameños", *Revista de Medicina de Chile* 98, pp. 277-282.
- Fagundes, Nelson, Ricardo Kanitz, Roberta Eckert, Ana Valls, Mauricio Bogo, Francisco M. Salzano, David Smith, Wilson Silva Jr., Marco Zago, Andrea Ribeiro dos Santos, Sidney Santos, María Petzl-Erler y Sandro Bonatto
- 2008. "A Reevaluation of the Native American mtDNA Genome Diversity and Its Bearing of the Models of Early Colonization of Beringia", *PloS One* 3 (9), pp. e3157.
- Furuhata, Tanemoto, Hachiro Nakajima, Eiichiro Ishid, Seiichi Izumi, Kazuo Terrada y Yoshitaro Amano
- 1959. "Blood Group Determinations of Peruvian Mummies", *Proceedings of Japan Academy* 35, pp. 305-306.
- García-Bour, Jaume, Alejandro Pérez-Pérez, Sara Álvarez, Eva Fernández, Ana M. López-Parra, Eduardo Arroyo-Pardo y Daniel Turbón
- 2004. "Early Population Differentiation in Extinct Aborigines from Tierra del Fuego-Patagonia: Ancient mtDNA Sequences and Y-Chromosome STR Characterization", *American Journal of Physical Anthropology* 123, pp. 361-370.
- Gilbrey, B. E. y M. Lubran
- 1952. "Blood Groups of South American Indian Mummies", Man 52, pp. 115-117.
- Ginther, Charles, Daniel Corach, R. Penacino, Jorge Rey, Francisco R. Carnese, Mara H. Hutz, A. Anderson, J. Just, Francisco M. Salzano y Marie C. King
- 1993. "Genetic Variation Among the Mapuche Indians from the Patagonian Region of Argentina: Mitochondrial DNA Sequence Variation and Allele Frequencies of Several Nuclear Genes", en *DNA Finger-printing: State of the Science*, eds. Sergio Pena, R. Chakraborty, J. Epplen y A. Jeffreys, pp. 211-219. Basel, Birkhauser Verlag.
- Glick, Thomas F.
- 1989. *Darwin y el darwinismo en el Uruguay y en América Latina*. Montevideo, Uruguay, Ed. Universidad de la República, Facultad de Humanidades y Ciencias, Departamento de Publicaciones.
- Goicoechea, Alicia S., Francisco R. Carnese, Cristina B. Dejean, Sergio A. Avena, Tania A. Weimer, María H. L. P. Franco, Sidia M. Callegari-Jacques, Alberto Estalote, M. L. Simões, Marcos Palatnik y Francisco M. Salzano
- 2001. "Genetic Relationships between Amerindian Populations of Argentina", *American Journal of Physical Anthropology* 115, pp. 133-143.

50

González, José R., M. C. Bortolini, F. R. Santos y S. L. Bonatto

2008. "The Peopling of America: Craniofacial Shape Variation on a Continental Scale and Its Interpretation from an Interdisciplinary View", *American Journal of Physical Anthropology* 137, pp. 175-187.

Greenberg, Joseph H., Christy Turner y Stephen L. Zegura

1986. "The Settlement of the Americas: A Comparison of the Linguistic, Dental, and Genetic Evidence", *Current Anthropology* 27, pp. 477-497.

Gusinde, Martin

1990. Los indios de Tierra del Fuego. Buenos Aires, Centro Argentino de Etnología Americana.

Haas, Emilio, Francisco M. Salzano, H. Araujo, F. Grossman, A. Barbetti, Tania A. Weimer, María H. L. P. Franco, L. Verruno, O. Nasif, V. Morales y R. Arienti

1985. "HLA Antigens and other Genetic Markers in the Mapuche Indians of Argentina", *Human Heredity* 35, pp. 306-313.

Henning, Willi

1968. Elementos de una sistemática filogenética. Buenos Aires, Editorial Universitaria de Buenos Aires (EUDEBA).

Horai, Satoshi, Rumi Kondo, Kumiko Murayama, Seiji Hayashi, Hiroko Koike, Nobuyuki Nakai, K. A. Joysey, G. A. Dover y Svante Päabo

1991. "Phylogenetic Affiliation of Ancient and Contemporary Humans Inferred from Mitochondrial DNA", *Philosophical Transactions of the Royal Society B: Biological Science* 333, pp. 409-418.

Hrdlička, Aleš

1912. *Early Man in South America*. Washington Bureau of American Ethnology Bulletins. Reprint Services Corporation.

Hubbe, Mark, Walter Neves y Katerina Harvati

2010. "Testing Evolutionary and Dispersion Scenarios for the Settlement of the New World", *PLoS ONE* 5: e11105. doi: 10.1371/journal.pone.0011105

Hutz, Mara H., Sidia M. Callegari-Jacques, Sabrina Almeida, Talita Armborst y Francisco M. Salzano

2002. "Low Levels of STRP Variability Are Not Universal in American Indians", *Human Biology* 74, pp. 791-806.

Imbelloni, José

1937. "Razas humanas y grupos sanguíneos", *Relaciones de la Sociedad Argentina de Antropología* 1, pp. 23-49.

Johnson, Michele J., Douglas C. Wallace, Stephen D. Ferris, Mario C. Rattazzi y Luca Cavalli-Sforza

1983. "Radiation of Human Mitochondrial DNA Types Analyzed by Restriction Endonuclease Cleavage Patterns", *Journal of Molecular Evolution* 19, pp. 255-271.

Karafet, Tatiana M., Stephen L. Zegura, Olga Posukh, Ludmila Osipova, A. Bergen, J. Long, D. Goldman, W. Klitz, Shinji Harihara, Peter de Knijff, V. Wiebe, Robert C. Griffiths, Alan R. Templeton y Michael F. Hammer

1999. "Ancestral Asian Source(S) of the New World Y-chromosome Founder Haplotypes", *American Journal of Human Genetics* 64, pp. 817-831.

Kohlrausch, Fabiana, Sidia Callegari-Jacques, Luiza Tsuneto, María Petz-Erler, Kim Hill, A. Magdalena Hurtado, Francisco M. Salzano y Mara H. Hutz

2005. "Geography Influences Microsatellite Polymorphism Diversity in Amerindians", *American Journal of Physical Anthropology* 125, pp. 463-470.

Lacerda F. y R. Peixoto

1876. "Contribuições para o estudo antropológico das raças indígenas do Brazil", *Archivos do Museu Nacional do Rio de Janeiro* 1, pp. 47-79.

Lalueza, Carles, Alejandro Pérez-Pérez, Eva Prats, Pons J. Moreno P. y Daniel Turbón 1993-94. "Ausencia de la deleción de 9bp COII/tRNA^{Lys} en aborígenes de Fuego-Patagonia mediante análisis de ADN antiguo", *Anales del Instituto de la Patagonia* 22, pp. 181-191.

Lalueza, Carles, Alejandro Pérez-Pérez, Eva Prats, Luis Cornudella y Daniel Turbón 1997. "Lack of Founding Amerindian Mitochondrial DNA Lineages in Extinct Aborigines from Tierra del Fuego-Patagonia", *Human Molecular Genetics* 6, pp. 41-46.

Layrisse, Miguel, Tulio Arends y Rafael Domínguez Sisco

1955. "Nuevo grupo sanguíneo encontrado en descendientes de indios", Acta Médica Venezolana 3, pp. 132.

Lewontin, Richard C.

1972. "The Apportionment of Human Diversity", Evolutionary Biology 6, pp. 381-98.

Lin, Z., T. Kondo, T. Minamino, E. Sun, G. Liu y T. Ohshima

1996. "Genotyping of ABO Blood Group System by PCR and RFLP on Mummies Discovered at Taklamakan Desert in 1912", *Nihon Hoigaku Zasshi* 50 (5), pp. 336-342.

Lippold, Lois

1971. "The Mixed Cell Aglutination Method for Typing Mummified Human Tissue", *American Journal of Physical Anthropology* 34, pp. 377-383.

Llop, Elena y Francisco Rothhammer

1988. "A Note on the Presence of Blood Groups A and B in Pre-Columbian South America", *American Journal of Physical Anthropology* 74 (1), pp. 107-111.

Marrero, Andrea, Wilson Silva-Junior, Claudio M. Bravi, Mara H. Hutz, María Petzl-Erler, Andrés Ruiz-Linares, Francisco M. Salzano y María C. Bortolini

2007. "Demographic and Evolutionary Trajectories of the Guarani and Kaingang Natives of Brazil", American Journal of Physical Anthropology 132, pp. 301-310.

Matson, Albin G.

1934. "A Procedure for Determining Distribution of Blood Groups in Mummies", *Proceedings of the Society for Experimental Biology and Medicine* 31, pp. 964-968.

Matson, Albin G., Eldon Sutton, Raul Etcheverry, Jane Swanson y Abner Robinson

1967. "Distribution of Hereditary Blood Groups among Indians in South America. IV. Chile", *American Journal of Physical Anthropology* 27, pp. 157-193.

Matson, Albin G., Eldon Sutton, Jane Swanson y Abner Robinson

1969. "Distribution of Hereditary Blood Groups among Indians in South America. VII. In Argentina", American Journal of Physical Anthropology 30, pp. 61-83.

Mavr. Ernst

1968. Especies animales y evolución. Santiago de Chile, Ed. Universidad de Chile.

Mazza, Salvador e Isabel Franke

1927. "Grupos sanguíneos de indios y de autóctonos del norte argentino (Nota preliminar)", *Boletín del Instituto de Clínica Quirúrgica* 3, pp. 137-140.

1928. "Grupos sanguíneos de indios y de argentinos", La Prensa Médica Argentina 15, pp. 607-610.

Merriwether, D. Andrew, Francisco Rothhammer y Robert Ferrell

1994. "Genetic Variation in the New World: Ancient Teeth, Bone and Tissue as Sources of DNA", *Experientia* 50, pp. 411-430.

1995. "Distribution of the Four Founding Lineage Haplotypes in Native Americans Suggests a Single Wave of Migration for the New World", *American Journal of Physical Anthropology* 98, pp. 411-430.

Monsalve, María Victoria, F. Cárdenas, F. Guhl, A. D. Delaney y D. V. Devine

1996. "Phylogenetic Analysis of mtDNA Lineages in South American mummies", *Annals of Human Genetics* 60, pp. 293-303.

Moraga, Mauricio, Paola Rocco, Juan F. Miquel, Flavio Nervi, Elena Llop, Ranajit Chakraborty, Francisco Rothhammer y Pilar Carvallo

2000. "Mitochondrial DNA Polymorphisms in Chilean Aboriginal Populations: Implications for the Peopling of the Southern Cone of the Continent", *American Journal of Physical Anthropology* 113, pp. 19-29.

Moraga, Mauricio, Eugenio Aspillaga, Calogero M. Santoro, Vivien G. Standen, Pilar Carvallo y Francisco Rothhammer

2001. "Análisis de ADN mitocondrial en momias del norte de Chile avala hipótesis de origen amazónico de poblaciones andinas", *Revista Chilena de Historia Natural* 74, pp. 719-726.

Moraga, Mauricio, Calogero M. Santoro, Vivien G. Standen, Pilar Carvallo y Francisco Rothhammer

2005. "Microevolution in Prehistoric Andean Populations: Chronologic mtDNA Variation in the Desert Valleys of Northern Chile", *American Journal of Physical Anthropology* 127, pp. 170-181.

Nagel, Ronald y Raúl Etcheverry

1963. "Types of Haptoglobins in Araucanian Indians of Chile", *Nature* 197, pp. 187-188.

Neves, Walter y Héctor Pucciarelli

1990. "The Origin of First Americans: An Analysis Based on the Cranial Morphology of Early South American Human Remains", *American Journal of Physical Anthropology* 81, pp. 274.

1991. "Morphological Affinities of the First Americans: An Exploratory Analysis Based on Early South American Human Remains", *Journal of Human Evolution* 21, pp. 261-273.

Otten, Charlotte v Lvnn Florv

1963. "Blood Typing of Chilean Mummy Tissue: A New Approach", *American Journal of Physical Anthropology* 21, pp. 283-285.

Pagés Larraya, Fernando, Norma Contardi y Elsa Servy

1978. "Marcadores genéticos de la población aborigen del Chaco argentino", *Revista del Instituto de Antropología* 6, pp. 217-241.

Pando, Marcelo

1998. "Estudio molecular de la distribución de alelos HLA-DR-DQ en poblaciones normales argentinas y en pacientes con hepatitis crónica autoinmune". Tesis Doctoral, Facultad de Ciencies Exactas y Naturales, Universidad de Buenos Aires.

Parolín, Maria L. y Francisco R. Carnese

2009. "HLA-DRB1 Alleles in four Amerindian Populations from Argentina and Paraguay", *Genetics and Molecular Biology* 32 (2), pp. 212-219.

Pereira, M., J. A. Rohr, Y. Lengyel y O. Barreto

1984. "Os grupos sanguíneos ABO em esqueletos pré-históricos de aborígenes da Ilha Santa Catarina, Brazil", *Ciência e Cultura* 36, pp. 1597-1599.

Pucciarelli, Héctor M.

1989. "Contribución al concepto de antropología biológica", Revista de Antropología 7, pp. 27-31.

Reig, Osvaldo

1984. "La teoría de la evolución a los ciento veinticinco años de la aparición de 'El origen de las especies'", *Boletín de la Academia Nacional de Medicina* 62, pp. 545-586.

Relethford, John H.

1994. "Craniometric Variation among Modern Human Populations", *American Journal of Physical Anthropology* 95 (1), pp. 53-62.

Ribeiro dos Santos, Andrea K., Sidney E. Santos, Ana Machado, Vera Guapindaia y Marco A. Zago

1996. "Heterogeneity of Mitochondrial DNA Haplotypes in Pre-Columbian Natives of the Amazon Region", *American Journal of Physical Anthropology* 101, pp. 29-37.

Rodríguez-Delfin, Luis, Sidney E. Santos y Marco A. Zago

1997. "Diversity of the Human Y Chromosome of South American Amerindians: A Comparison with Blacks, Whites, and Japanese from Brazil", *Annals of Human Genetics* 61, pp. 439-48.

Rogan, Peter K. y Joseph J. Salvo

1990. "Molecular Genetics of Pre-Columbian South American Mummies", *UCLA Symposia on Molecular and Cellular Biology* 122, pp. 223-234.

Rothhammer, Francisco y Eugenio Aspillaga

1997. "Chile", en *History of Physical Anthropology. An Encyclopedia*, ed. Frank Spencer, pp. 271-272. Nueva York y Londres, Garland Publishing, Inc.

Rothhammer, Francisco, Mauricio Moraga, Mario Rivera, Calogero M. Santoro, Vivien G. Standen, Federico García y Pilar Carvallo

2003. "Análisis de ADNmt de restos esqueletales del sitio arqueológico de Tiwanaku y su relación con el origen de sus constructores", *Chungara* 35 (2), pp. 269-274.

Ruiz-Linares, Andrés, Daniel Ortiz-Barrientos, Mauricio Figueroa, Natalia Mesa, Juan G. Múnera, Gabriel Bedoya, Iván Vélez, Luis F. García, Anna Pérez-Lezaun, Jaume Bertranpetit, Marcus Feldman y David B. Goldstein

1999. "Microsatellites Provide Evidence for Y Chromosome Diversity among the Founders of the New World", Proceedings of the National Academy of Sciences of the United States of America 96, pp. 6312-6317.

Sala, Andrea, Gustavo Penacino, Francisco R. Carnese y Daniel Corach

1999. "Reference Database of Hypervariable Genetic Markers of Argentina: Application for Molecular Anthropology and Forensic Casework", *Electrophoresis* 20, pp. 1733-1739.

Salaberry, María T., Alicia S. Goicoechea, Cristina. B. Dejean y Francisco R. Carnese

1999. "Grupos sanguíneos en restos momificados de una población prehispánica: Las Pirguas (Salta, Argentina)", Revista Argentina de Antropología Biológica 2 (1), pp. 267-280.

Salzano, Francisco M.

1997. "Brazil", en *History of Physical Anthropology. An Encyclopedia*, ed. Frank Spencer, pp. 207-213. Nueva York y Londres, Garland Publishing, Inc.

2002. "Molecular variability in Amerindians: Widespread but Uneven Information", *Anais da Academia Brasileira de Ciências* 74 (2), pp. 223-263.

Salzano, Francisco M. y Sidia Callegari-Jacques

1988. South American Indians. A Case Study in Evolution. Oxford, Clarendon Press.

Sans, Mónica

1997. "Venezuela", en *History of Physical Anthropology. An Encyclopedia*, ed. Frank Spencer, pp. 1081-1083. Nueva York y Londres, Garland Publishing, Inc.

Shinoda, Ken-ichi, Noboru Adachi, Sonia Guillén e Izumi Shimada

2006. "Mitochondrial DNA Analysis of Ancient Peruvian Highlanders", *American Journal of Physical Anthropology* 131, pp. 98-107.

1997. History of Physical Anthropology. An Enciclopedia. Nueva York y Londres, Garland Publishing.

Thieme, Frederick P. v Charlotte M. Otten

- 1957. "The Unreliabilityof Blood Typing Aged Bone", *American Journal of Physical Anthropology* 15, pp. 387-397.
- Torroni, Antonio, Theodore G. Schurr, Chi-Chuang Yang, Emöke J. Szathmary, Robert Williams, Moses Schanfield, Gary Troup, William C. Knowler, Dale Lawrence, Kenneth M. Weiss y Douglas C. Wallace
- 1992. "Native American Mitochondrial DNA Analysis Indicates that the Amerind and the Nadene Populations Were Founded by Two Independent Migrations", *Genetics* 130 (1), pp. 153-162.
- Torroni, Antonio, Theodore G. Schurr, M. Cabell, Michael Brown, James Neel, M Larsen, D. Smith, Carlos Vullo y Douglas Wallace
- 1994. "Asian Affinities and Continental Radiation of the Four Founding Native American mtDNAs", American Journal of Human Genetics 53, pp. 563-590.
- Toscanini, Ulises, Leonor Gusmao, Gabriela Berardi, Antonio Amorim, Ángel Carracedo, Antonio Salas y Eduardo Raimondi
- 2008. "Y Chromosome Microsatellite Genetic Variation in Two Native American Populations from Argentina", *Forensic Science international. Genetics* 2 (4), pp. 274-280.
- Tsuneto, Luisa, Christian Probst, Mara H. Hutz, Francisco M. Salzano, Luis Rodríguez-Delfin, Marco Zago, Kim Hill, Magdalena A. Hurtado, Andrea Ribeiro dos Santos y María Petzl-Erler
- 2003. "HLA Class II Diversity in Seven Amerindian Populations. Clues about the Origins of the Aché", Tissue Antigens 62, pp. 512-526.

Wallace, Douglas C., Katherine Garrison y William C. Knowler

1985. "Dramatic Founder Effects in Amerindian Mitochondrial DNAs", *American Journal of Physical Anthropology* 68, pp. 149-155.

Ward, Ryk H., Barbara L. Frazier, Kerry Dew-Jager y Svante Pääbo

1991. "Extensive Mitochondrial Diversity within a Single Amerindian Tribe", *Proceedings of the National Academy of Sciences of the United States of America* 88, pp. 8720-8724.

Ward, Ryk H., Francisco M. Salzano, Sandro Bonatto, Mara H. Hutz, C. Coimbra Jr. y Ricardo Santos

1996. "Mitochondrial DNA Polymorphism in Three Brazilian Indian Tribes", *American Journal of Human Biology* 8, pp. 317-323.

Wyman, Leland C. y William C. Boyd

1937. "Blood Group Determinations of Prehistoric American Indians", *American Anthropologist* 39, pp. 583-592.

5 4