

Documentación

EVENTOS DE ATLETISMO

Carrera: Ingeniería en Computación

Curso: Taller de Programación

Autor: Santiago Villarreal Arley

Carné: 2025120897

Profesor: William Mata

Fecha de entrega: 6 de mayo 2025

Tabla de contenidos

1. Enunciado del proyecto	3
2. Temas Investigados	4
Programación modular	
Marco teórico:	
Uso en el proyecto:	
Lugar de investigación:	
Listas anidadas	4
Marco teórico:	4
Uso en el proyecto:	5
Ejemplo:	5
Lugar de investigación:	5
Expresiones regulares	5
Marco teórico:	5
Uso en el proyecto:	5
Lugar de investigación:	6
Generación de PDFs con fpdf	
Marco teórico:	
Uso en el proyecto:	
Lugar de investigación:	6
Envío de correos con smtplib	6
Marco teórico:	6
Uso en el proyecto:	6
Lugar de investigación:	7
Uso de herramientas de IA	7
Uso de herramientas de IA	7
3. Conclusiones del trabajo	8
4. Estadística de tiempos	11
5. Lista de revisión del proyecto	12
Referencias Bibliográficas	13

1. Enunciado del proyecto

validar.

El presente proyecto tiene como objetivo desarrollar un sistema que permita la gestión de eventos de atletismo. El sistema facilita el registro y consulta de atletas, pruebas, eventos y marcas. Además, se pueden generar reportes analíticos en formato PDF y enviarlos por correo electrónico a los participantes.

El proyecto se diseñó utilizando Python como lenguaje base, aplicando conceptos de programación modular, validaciones, estructura de datos y generación de archivos.

También se consideró el uso de herramientas para documentar, automatizar y

2. Temas Investigados

Programación modular

Marco teórico:

La programación modular es un paradigma que promueve la separación del código en unidades o módulos independientes que cumplen funciones específicas. Esto permite un desarrollo más limpio, pruebas más sencillas y mejor mantenimiento del sistema.

Uso en el proyecto:

En el sistema de eventos de atletismo, cada módulo maneja una responsabilidad clara:

- eventos.py gestiona eventos deportivos
- pruebas.py permite definir pruebas y disciplinas
- atletas.py administra los datos personales y validaciones
- analisis.py centraliza reportes y análisis de marcas
- reportes.py y correo.py manejan funciones de salida como generación de PDFs y envío de emails

Esta estructura modular facilita el trabajo colaborativo y el reuso de componentes.

Lugar de investigación:

Python.org – Guía oficial de documentación https://docs.python.org/3/tutorial/modules.html

Listas anidadas

Marco teórico:

Las listas anidadas en Python permiten estructurar información en múltiples niveles jerárquicos. Son ideales para representar relaciones entre entidades, como eventos que contienen varias pruebas, y estas a su vez contienen marcas de atletas.

Uso en el proyecto:

Se usaron para modelar marcas_por_evento, donde cada evento contiene pruebas, y cada prueba contiene tuplas con los datos de atletas y sus marcas.

Ejemplo:

```
[
[101, ["V01", ("A001", 1, "11.23")], ["S02", ("A002", 4, "5.42")]],
[102, ["V01", ("A003", 2, "11.45")]]
```

Esto permitió recorrer eficientemente los datos para validaciones y generación de reportes.

Lugar de investigación:

Real Python – Artículo sobre estructuras de datos en Python https://realpython.com/python-lists-tuples/

Expresiones regulares

Marco teórico:

Las expresiones regulares (regex) son secuencias de caracteres que definen patrones de búsqueda. Son herramientas poderosas para validar y extraer información de texto.

Uso en el proyecto:

Se usaron para validar que los correos ingresados al registrar atletas tuvieran el formato correcto:

```
patron = r'^[\w\.-]+@[\w\.-]+\.\w{2,}$'
```

Además, se implementó una validación de dominios válidos como gmail.com, tec.ac.cr, para asegurar la integridad del dato.

Lugar de investigación:

W3Schools – Tutorial de Regex en Python https://www.w3schools.com/python/python_regex.asp

Generación de PDFs con fpdf

Marco teórico:

La biblioteca fpdf en Python permite crear documentos en formato PDF desde cero. Admite añadir textos, celdas, encabezados y tablas con diseño personalizado.

Uso en el proyecto:

Se utilizaron funciones como .add_page(), .cell() y .output() para crear reportes como:

- Mejores marcas por prueba
- Marcas por evento
- Reportes por atleta

Cada PDF contiene información clara, formateada para impresión o envío digital, y se guarda automáticamente.

Lugar de investigación:

PyFPDF – Documentación oficial de FPDF para Python https://pyfpdf.github.io/fpdf2/

Envío de correos con smtplib

Marco teórico:

smtplib es una biblioteca estándar en Python que permite enviar correos electrónicos usando el protocolo SMTP. Junto con email.mime se puede construir mensajes complejos con archivos adjuntos.

Uso en el proyecto:

Se implementó una función enviar_reporte() que:

- Se conecta a smtp.gmail.com
- Autentica con una contraseña de aplicación
- Adjunta el PDF generado
- Envía el correo a cada atleta si así lo solicita el usuario

Esto automatiza el proceso de entrega de resultados al finalizar un evento.

Lugar de investigación:

GeeksForGeeks – Guía de envío de correo con Python https://www.geeksforgeeks.org/send-mail-using-smtp-in-python/

Uso de herramientas de IA

Marco teórico:

Uso de herramientas de IA es un concepto que permite...

Uso en el proyecto:

ChatGPT fue utilizado como asistente para generar y revisar código, diseñar estructura del proyecto, proponer mejoras y validaciones.

Uso de herramientas de IA

Objetivo	Herramienta	Prompt o	Respuesta	¿Cómo se	Reflexión
del uso	utilizada	pregunta		usó o	crítica
				adaptó?	
Asistencia	ChatGPT	¿Cómo	Respuesta	Se adaptó	Muy útil,
para		modularizar	estructurada	al	aceleró el
diseñar		un sistema	en funciones	contexto	diseño sin
estructura		de eventos	y módulos	del	errores.
del código		deportivos?	separados	proyecto	
				en Python	

Objetivo del	Herramienta	Prompt o	Respuesta	¿Cómo se	Reflexión
uso	utilizada	pregunta		usó o	crítica
				adaptó?	
Abrir un	ChatGPT	¿Cómo	Utilizando	Usé OS y	Muy útil,
archivo en		abrir un	diferentes	las	aceleró la
diferentes		archivo en	funciones	diferentes	investigación
dispositivos		diferentes	de la	necesarias	debido a que
		sistemas	librería	para que	me explicó
		operativos?	OS	funcionara.	las funciones
					propias de
					OS
					relacionadas
					a abrir
					archivos.

3. Conclusiones del trabajo

El desarrollo de este proyecto representó una oportunidad valiosa para aplicar de manera integral múltiples conocimientos adquiridos a lo largo de la carrera. Se abordaron aspectos clave del desarrollo de software, desde el análisis y diseño de la solución hasta su implementación, validación y documentación. Entre los principales aprendizajes y logros destacan:

- Se aplicaron de forma práctica conocimientos de **programación modular**, estructuración de datos y validaciones robustas, lo cual permitió construir un sistema funcional, escalable y mantenible.
- El uso de **estructuras anidadas complejas** fue un reto que se logró manejar con precisión para representar de forma adecuada la relación entre eventos, pruebas y marcas.
- Se implementaron funcionalidades que van más allá del CRUD básico, como el análisis de datos, generación de reportes en PDF y envío de correos automatizados, integrando conceptos de interacción entre sistemas.
- La experiencia favoreció el fortalecimiento de habilidades de resolución de problemas, lógica algorítmica, y buenas prácticas de codificación y documentación.

Problemas encontrados y soluciones aplicadas

Validación de estructuras anidadas:

Al trabajar con listas de listas, fue necesario diseñar recorridos eficientes que no generaran errores por índice ni omitieran información.

Solución: se usaron bucles controlados y funciones auxiliares para manejar cada nivel jerárquico de forma clara y segura.

Bloqueo de correos por seguridad:

Durante el desarrollo del envío automatizado, se presentaron errores al usar contraseñas comunes debido a políticas de seguridad de Gmail.

Solución: se utilizó la opción de **contraseñas de aplicación** en Gmail para autenticación SMTP segura.

• Generación de PDFs desalineados:

En las primeras versiones, los reportes presentaban problemas de formato, márgenes y alineación de textos.

Solución: se ajustaron manualmente los valores de x, y, cell, y se probaron diseños hasta lograr una presentación clara y profesional.

• Problemas con la contraseña de aplicación:

Por temas de seguridad debí pedir una contraseña de aplicación al usuario para no vulnerar alguna de mis cuentas.

4. Estadística de tiempos

Detalle de actividades realizadas y tiempo invertido:

Actividad Realizada	Horas
Análisis del problema	3
Diseño de algoritmos	2
Investigación de temas técnicos	3
Programación	3
Documentación interna	2
Pruebas	4
Elaboración del manual de usuario	2
Elaboración de documentación del	4
proyecto	
TOTAL	24

5. Lista de revisión del proyecto

Evaluación de los principales elementos del proyecto:

Elemento	% Avance	Puntos obtenidos	Análisis
CRUD completo de atletas	100%	10	Totalmente desarrollado.
Registro y validación de pruebas	100%	10	Validación cruzada con eventos incluida.
Análisis de datos	100%	10	Se generaron PDFs, ordenamientos y envío de correos.
Interfaz en consola	100%	10	Clara, validada y con menú profesional.
Documentación del proyecto	100%	10	Completa y explicativa.
Extras agregados	100%	10	Generación automática de datos, correo, análisis extendido.

Link al GitHub:

https://github.com/Villarley/eventos-atletismo

Referencias Bibliográficas

- 1. Python Software Foundation. (2023). *The Python tutorial: Modules*. Python.org. https://docs.python.org/3/tutorial/modules.html
- 2. Real Python. (2021). *Python Lists and Tuples: A Complete Guide*. https://realpython.com/python-lists-tuples/
- 3. W3Schools. (2023). *Python RegEx*. https://www.w3schools.com/python/python_regex.asp
- 4. PyFPDF. (2023). fpdf2 documentation. https://pyfpdf.github.io/fpdf2/
- 5. GeeksForGeeks. (2022). *Send mail using SMTP in Python*. https://www.geeksforgeeks.org/send-mail-using-smtp-in-python/