ZESTAW 3 (macierze, izomorfizmy)

Zad. 1

Sprawdzić czy funkcja f:X→Y, jest bijekcją

- a) $X=\mathbb{R} \setminus \{-2/5\}$, $Y=\mathbb{R} \setminus \{1/5\}$, f(x)=x/(5 x + 2),
- b) $X=(0,+\infty)$, $Y=\mathbb{R}$, $f(x)=\ln(x)$,
- c) $X = \mathbb{R}$, $Y = \mathbb{R}$, $f(x) = 2^x + 2^{-x} + x^2 \cos(x)$.

Zad. 2

Sprawdzić czy grafy pokazane na rysunku są izomorficzne.

a)

b)

c)

d)

e)

f)

Zad. 3

Narysować wszystkie nieizomorficzne grafy proste rzędu 4.

Zad. 4

Narysować graf prosty rzędu 4 izomorficzny ze swoim dopełnieniem.

Zad. 5

Pokazać, że jeśli w grafie stopień minimalny $\delta(G) \ge 2$ to w grafie istnieje cykl.

Zad 6

Napisać macierz sąsiedztwa grafu z rysunku. Podać stopnie wierzchołków, rząd oraz rozmiar grafu.

a)

b)

c)

d)

Zad 7

Na podstawie macierzy sąsiedztwa podać rząd grafu, stopnie wierzchołków, typ grafu. Narysować graf.

a)

$$A = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

b)

$$A = \left(\begin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right)$$

c)

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 3 & 1 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{array}\right)$$

d)

$$A = \left(\begin{array}{ccccc} 1 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

Zad 8

Dla grafów G oraz G' z zadania 2 (przykład d) wyznaczyć macierz permutacji, która przekształca macierz sąsiedztwa jednego grafu w macierz sąsiedztwa drugiego grafu.

Zad 9

Dla grafów G oraz G' z zadania 2 (przykład a) wyznaczyć macierz permutacji, która przekształca macierz sąsiedztwa jednego grafu w macierz sąsiedztwa drugiego grafu.

Zad 10

Wiadomo, że macierz permutacji przekształcająca macierz sąsiedztwa grafu z rysunku

w macierz grafu izomorficznego ma postać:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Zapisać macierz sąsiedztwa grafu izomorficznego.

Zad 11

Pokazać, że jeśli grafy są izomorficzne to

- a) wyznaczniki macierzy sąsiedztwa obu grafów są sobie równe,
- b) ślady macierzy sąsiedztwa obu grafów są sobie równe.

Zad 12

Na podstawie listy sąsiedztwa narysować i opisać graf.

a)

$$v_1 \rightarrow v_2, v_3$$

$$v_2 \rightarrow v_1, v_3, v_4, v_6$$

$$v_3 \rightarrow v_1, v_2, v_5, v_6$$

$$v_4 \rightarrow v_2, v_6$$

$$v_5 \rightarrow v_3, v_6$$

$$v_6 \rightarrow v_2, v_3, v_4, v_5$$

b)

$$v_1 \rightarrow v_1, v_2, v_3$$

$$v_2 \rightarrow v_1, v_3, v_4$$

$$v_3 \rightarrow v_1, v_2, v_4$$

$$v_4 \rightarrow v_2, v_3, v_4$$

Zad. 13

Napisać macierz incydencji dla grafu z rysunku.

a)

b)

c)

d)

Zad 14

Na podstawie macierzy incydencji B narysować i opisać graf.

a)

b)

c)

d)