

Intermediate Project (Option A):

EXAMPLE 2 Predicting the energy efficiency of buildings

For this challenge, you'll work with the renowned UCI Energy Efficiency dataset - real data from 768 building simulations that explores how design choices impact heating and cooling needs. Created by researchers at the University of California, Irvine, this dataset is a machine learning classic that perfectly bridges academic learning with real-world impact.

©Goal:

Discover which building features drive energy consumption, compare different prediction models, and translate your findings into concrete business recommendations.

Data Source:

- Kaggle Dataset: https://www.kaggle.com/datasets/elikplim/eergy-efficiency-dataset
- UCI Repository: https://archive.ics.uci.edu/dataset/242/energy+efficiency

Part 1: Data Exploration & Preparation

Tasks:

- 1. **Load and explore** the UCI Energy Efficiency dataset
- 2. **Analyze relationships** between building features (surface area, glazing, orientation) and energy loads
- 3. **Prepare data** for modeling (train/test split, feature selection)

Ask yourself the following questions:

- Which building characteristics seem to most strongly affect heating/cooling energy consumption?
- Which features could be used for prediction?

Part 2: Model Training & Evaluation

Tasks:

- 1. Train at least 2 models e.g. Linear Regression and Random Forest
- 2. **Compare performance** using R² and RMSE metrics
- 3. Analyze feature importance from both models

Key Questions:

- Which model performs better and why?
- What are the 3 most important features for energy prediction?
- How accurate are your predictions in practical terms?

Part 3: Business Case Documentation

Tasks:

- Explore the <u>appliedAl Institute's Use Case Platform</u> to get inspired by best practice this
 platform represents Europe's largest openly accessible source of curated high-quality Al use
 cases
- Document your own findings in this project using the <u>appliedAl Use Case Platform</u> template.
- 3. **Take screenshots** of your completed Use Case template on the platform and add these to a dedicated folder "/use_case_documentation/" in your GitHub

Minimal Required Sections for the appliedAI Institute Use Case:

- **Brief description**: What business problem does this solve?
- Industry:
- Value gain:
- Al capabilities:
- Data sources:
- Expected business impact:

Part 4: Check your work and submit

- 1. Check your work against the success criteria:
 - \mathbb{Z} R² score > 0.8 on test data
 - Clear business recommendations with quantified impact
 - Complete use case documentation following appliedAl template
 - Professional GitHub repository with organized folder structure
- 2. Prepare your submission in a .doc or .pdf document which includes:
 - Your full name
 - The email you use for Kiron's Thrive program
 - A bulleted list of specific business recommendations e.g. "X-facing glazing should be minimized (save €X/year per 100m²)"
 - A working link to your Jupyter notebook for this project via your GitHub repository
 - Please note that the screenshots of your use case template should be included via a dedicated GitHub folder called "/use_case_documentation/"
- 3. Upload your .doc or .pdf document to the 360L platform (final step in AAI-9 course) by midnight on 21st September. (Please contact us at thrive@kiron.ngo if you require a one-or two-week extension).