Solução Numérica de Equações Diferenciais Ordinárias EMC410235 - Programação Científica para Engenharia e Ciência Térmicas

Prof. Rafael F. L. de Cerqueira

2025.2

Objetivos da Aula

- Revisar conceitos fundamentais de EDOs e sua aplicação em engenharia térmica
- Resolver numericamente Problemas de Valor Inicial (PVI) com:
 - Métodos de Euler, Ponto Médio e Runge-Kutta
- Explorar a biblioteca scipy.integrate e o uso de solve_ivp
- Discutir problemas rígidos (stiff) e métodos implícitos
- Resolver sistemas de EDOs acopladas
- Introduzir Problemas de Valor de Contorno (PVC)
- Aplicar o Método do Tiro a PVCs lineares e não lineares
- Preparar o terreno para diferenças finitas e EDPs na próxima aula

Equações Diferenciais Ordinárias (EDOs)

Definição

Uma equação diferencial ordinária (EDO) é uma equação que envolve derivadas de uma função incógnita em relação a uma única variável independente.

Exemplo de 1^a ordem:

$$\frac{dy}{dt} = -ky$$

Exemplo de 2^{<u>a</u>} ordem:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

EDO vs EDP

- EDO: envolve derivadas em relação a uma única variável independente (geralmente tempo)
- EDP: envolve derivadas parciais em relação a duas ou mais variáveis (ex: espaço e tempo)

Exemplo de EDO:

$$\frac{dT}{dt}=-k(T-T_{\infty})$$

Exemplo de EDP:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

EDOs em Ciências Térmicas e Engenharia

Resfriamento de corpos (Lei de Newton):

$$\frac{dT}{dt} = -hA(T - T_{\infty})/\rho c_{p}V$$

• Problema de condução unidimensional em regime permanente

$$\frac{d^2T}{dx^2}=0$$

Oscilador massa-mola-amortecedor:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$

Método de Euler

Ideia central

Dado um problema de valor inicial:

$$\frac{dy}{dt}=f(t,y), \quad y(t_0)=y_0$$

Aproximamos a solução com:

$$y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

- h é o passo de tempo
- $f(t_n, y_n)$ é a inclinação no ponto (t_n, y_n)
- A solução é construída ponto a ponto

Interpretação Gráfica do Método de Euler

- A derivada indica a inclinação da reta tangente
- O método de Euler "caminha" pela tangente
- A precisão depende de *h* e da curvatura da solução

Exemplo: Método de Euler

• Resolver numericamente a EDO:

$$\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5$$

- Intervalo: $x \in [0, 4]$
- Passo: h = 0.5
- Condição inicial: y(0) = 1
- Método: Euler

Solução exata:

$$y(x) = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + 1$$

Fontes de Erro em Métodos Numéricos

Dois tipos principais de erro ao resolver EDOs numericamente:

Erro de arredondamento

- Decorre da representação finita dos números em ponto flutuante.
- É acumulativo: cada passo da integração carrega pequenos erros.
- Costuma ser pequeno, mas pode se acumular em muitos passos ou em problemas mal condicionados.

Erro de truncamento

- Decorre da aproximação da solução exata por uma fórmula numérica.
- No método de Euler, vem da truncagem da série de Taylor após o primeiro termo.
- É o erro dominante na maioria das aplicações práticas.

Origem dos Erros no Método de Euler

Fonte principal de erro: Erro de truncamento local

• O método de Euler usa uma expansão de Taylor de primeira ordem:

$$y(x+h) \approx y(x) + h \cdot y'(x)$$

• Ao truncar a série em apenas um termo, ignora-se:

$$\frac{h^2}{2}y''(\xi), \quad \text{com } \xi \in [x, x+h]$$

• Isso introduz um erro de truncamento local de ordem:

$$\mathcal{O}(h^2)$$

• O erro de truncamento global acumulado ao longo da integração é:

$$\mathcal{O}(h)$$

Métodos de Taylor de Ordem Superior

A fórmula de Taylor de segunda ordem para resolver uma EDO é:

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{f'(x_i, y_i)}{2!}h^2$$

Com erro local de truncamento:

$$E_a = \frac{f''(x_i, y_i)}{6} h^3$$

Observação: para EDOs não triviais, é necessário aplicar a regra da cadeia ao derivar f(x, y).

Derivadas no Método de Taylor – Regra da Cadeia

Primeira derivada de f(x, y):

$$f'(x_i, y_i) = \frac{\partial f(x, y)}{\partial x} + \frac{\partial f(x, y)}{\partial y} \cdot \frac{dy}{dx}$$

Segunda derivada de f(x, y):

$$f''(x_i, y_i) = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} \right] + \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} \right] \cdot \frac{dy}{dx}$$

Conclusão: embora seja viável para funções simples (e.g. polinômios), o uso de métodos de Taylor de ordem superior se torna impraticável para funções mais gerais.

Método do Ponto Médio

Objetivo: melhorar a precisão do método de Euler ao estimar a inclinação no **meio do** intervalo.

Passos:

Calcular a inclinação provisória:

$$k_1 = f(x_n, y_n)$$

2 Estimar o ponto médio:

$$x_{n+1/2} = x_n + \frac{h}{2}, \quad y_{n+1/2} = y_n + \frac{h}{2}k_1$$

O Calcular a inclinação no ponto médio:

$$k_2 = f(x_{n+1/2}, y_{n+1/2})$$

Atualizar a solução:

$$y_{n+1} = y_n + h \cdot k_2$$

Interpretação Gráfica do Método do Ponto Médio

- Em vez de seguir a tangente no início do intervalo (como em Euler),
- O método usa a derivada no ponto médio para avançar com mais precisão.
- Isso reduz o erro de truncamento:

Erro local: $\mathcal{O}(h^3)$

Erro global: $\mathcal{O}(h^2)$

Métodos de Runge-Kutta – Motivação

- Os métodos de Taylor de ordem superior são precisos, mas exigem derivadas sucessivas complicadas.
- Métodos de Runge-Kutta fornecem maior precisão sem precisar calcular derivadas de ordem superior.
- A ideia central é avaliar a função em diferentes pontos dentro do intervalo para obter uma média ponderada das inclinações.

Exemplos:

- Método do ponto médio: Runge-Kutta de 2^a ordem
- RK4: Runge-Kutta de 4ª ordem mais usado na prática

Método de Runge-Kutta de 4ª Ordem (RK4)

Dado o PVI:

$$\frac{dy}{dt}=f(t,y), \quad y(t_0)=y_0$$

Os incrementos são calculados como:

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{1}\right)$$

$$k_{3} = f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2}\right)$$

$$k_{4} = f\left(t_{n} + h, y_{n} + hk_{3}\right)$$

Atualização da solução:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Implementação do RK4 em Python

```
def dvdx(x, v):
        return -2*x**3 + 12*x**2 - 20*x + 8.5
h = 0.5
x = np.arange(0, 4.5, h)
y_rk4 = np.zeros_like(x)
y_rk4[0] = 1
for i in range(len(x)-1):
        k1 = dydx(x[i], y_rk4[i])
        k2 = dydx(x[i] + h/2, y_rk4[i] + h/2 * k1)
        k3 = dydx(x[i] + h/2, y_rk4[i] + h/2 * k2)
        k4 = dydx(x[i] + h, y_rk4[i] + h * k3)
        v_rk4[i+1] = v_rk4[i] + h/6 * (k1 + 2*k2 + 2*k3 + k4)
```

Usando solve_ivp (SciPy)

 $solve_ivp$ é a função recomendada do scipy.integrate para resolver problemas de valor inicial (PVI).

```
solve_ivp(fun, t_span, y0, method='RK45', t_eval=None)
```

Parâmetros principais:

- fun(t, y) função que define a EDO
- t_span tupla com tempo inicial e final (ex: (0, 4))
- y0 condição inicial (ex: [1.0])
- method método numérico: 'RK45', 'RK23', 'Radau', 'BDF', 'LSODA'
- t_eval pontos em que deseja avaliar a solução

Saída: objeto com:

- sol.t valores de tempo
- sol.y solução numérica (vetor/matriz)
- sol.nfev número de chamadas da função

Sistemas de Equações Diferenciais Ordinárias

Motivação:

- Muitos problemas da engenharia e da física envolvem múltiplas variáveis acopladas ex: posição e velocidade, temperatura e fluxo de calor, concentrações químicas, etc.
- Também surgem naturalmente ao **transformar EDOs de ordem superior** em sistemas de primeira ordem.

Forma geral de um sistema:

$$\begin{cases} \frac{dy_1}{dt} = f_1(t, y_1, y_2, \dots, y_n) \\ \frac{dy_2}{dt} = f_2(t, y_1, y_2, \dots, y_n) \\ \vdots \\ \frac{dy_n}{dt} = f_n(t, y_1, y_2, \dots, y_n) \end{cases}$$

Forma vetorial:

$$\frac{d\vec{y}}{dt} = \vec{f}(t, \vec{y})$$
 com $\vec{y}(t_0) = \vec{y}_0$

Método de Euler para um Sistema de EDOs

Sistema:

$$\begin{cases} \frac{dy_1}{dx} = y_2 \\ \frac{dy_2}{dx} = -2y_2 - 5y_1 \end{cases} \quad \text{com } y_1(0) = 1, \quad y_2(0) = 0$$

Implementação com Euler:

Resolvendo com solve_ivp

```
from scipy.integrate import solve_ivp

def sistema(x, Y):
        y1, y2 = Y
        return [y2, -2*y2 - 5*y1]

x_eval = np.arange(0, 10, h)
sol = solve_ivp(sistema, [0, 10], [1, 0], t_eval=x_eval)
```

O que é Rigidez (Stiffness)?

Rigidez ocorre em sistemas de EDOs que envolvem múltiplas escalas de tempo — uma parte da solução varia rapidamente, enquanto outra muda lentamente.

Consequência: métodos explícitos (como Euler ou RK4) precisam de passos extremamente pequenos para capturar a parte rápida, mesmo que estejamos interessados apenas no comportamento lento.

Analogia física:

- Imagine uma mola muito rígida (com constante elástica muito alta) acoplada a uma estrutura mais lenta.
- Para simular o sistema com estabilidade, os métodos explícitos exigem passos pequenos demais — a simulação se torna ineficiente.

Soluções:

- Usar métodos implícitos, que são mais estáveis para problemas stiff.
- Ex: solve_ivp(method='Radau') ou 'BDF'

Exemplo Clássico de Rigidez

EDO:

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}, \quad y(0) = 0$$

Solução exata:

$$y(t) = 3 - 0.998e^{-1000t} - 2.002e^{-t}$$

Comportamento:

- e^{-1000t} : decai muito rápido (componente rápida)
- e^{-t} : decai lentamente (componente lenta)
- A solução converge suavemente para 3, mas métodos explícitos explodem se o passo for muito grande.

Mesmo que a solução pareça suave, a presença de componentes rápidas exige métodos robustos.

Exemplo Clássico de Rigidez

EDO:

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}, \quad y(0) = 0$$

Solução exata:

$$y(t) = 3 - 0.998e^{-1000t} - 2.002e^{-t}$$

Euler aplicado a um problema rígido

EDO:

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}, \quad y(0) = 0$$

Implementação com Euler:

```
import numpy as np
import matplotlib.pyplot as plt
def f(t, y):
       return -1000*y + 3000 - 2000*np.exp(-t)
h = 0.01
t = np.arange(0, 0.1 + h, h)
y = np.zeros_like(t)
v[0] = 0
for i in range(len(t) - 1):
       y[i+1] = y[i] + h * f(t[i], y[i])
```

Por que métodos explícitos falham em problemas rígidos?

Causa: instabilidade numérica.

Considere o modelo linear:

$$\frac{dy}{dt} = \lambda y, \quad \lambda < 0$$

O método de Euler para esse caso:

$$y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)y_n$$

Critério de estabilidade:

$$|1+h\lambda|<1 \quad \Rightarrow \quad h<rac{2}{|\lambda|}$$

Problema rígido: $\lambda = -1000 \Rightarrow h < 0.002$

Conclusão:

- Métodos explícitos exigem passos absurdamente pequenos.
- Mesmo uma solução suave $(y(t) \rightarrow 3)$ explode numericamente.

Implementação Implícita do Método de Euler

Ideia: A forma implícita (ou "para trás") de Euler avalia a derivada no ponto futuro:

$$y_{i+1} = y_i + h \cdot f(t_{i+1}, y_{i+1})$$

Exemplo: Para a EDO rígida

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}$$

o método implícito resulta em:

$$y_{i+1} = y_i + h(-1000y_{i+1} + 3000 - 2000e^{-t_{i+1}})$$

Como é linear em y_{i+1} , podemos isolar:

$$y_{i+1} = \frac{y_i + 3000h - 2000he^{-t_{i+1}}}{1 + 1000h}$$

Vantagem: Método estável mesmo com passos grandes (estabilidade incondicional).

Classificação dos Métodos no **solve_ivp**

Método	Tipo	Ordem	Adaptativo	Comentários
RK45	Explícito	5(4)	Sim	Dormand-Prince. Bom para problemas não-stiff. Padrão do solve_ivp.
RK23	Explícito	3(2)	Sim	Runge-Kutta de ordem me- nor. Útil quando alta preci- são não é necessária.
DOP853	Explícito	8	Sim	RK de alta ordem. Bom para problemas suaves. Mais caro.
Radau	Implícito	5	Sim	RK implícito. Muito estável. Indicado para problemas stiff.
BDF	Implícito	1–5	Sim	Fórmulas de Diferenciação Recuada (multistep). Bom para stiff.

Problemas de Valor de Contorno (PVC)

Problema de valor inicial (PVI):

$$y'(x) = f(x, y), \quad y(x_0) = y_0$$

Problema de valor de contorno (PVC):

$$y''(x) = f(x, y, y'), \quad \text{com } y(a) = \alpha, \quad y(b) = \beta$$

Exemplos clássicos:

- Barra com condução de calor estacionária
- Flexão de vigas com condições em ambas as extremidades
- Escoamento de Poiseuille entre placas planas

Abordagens numéricas:

- Método do tiro (reduz a um PVI)
- Método de diferenças finitas (discretiza o domínio)

Exemplo de PVC: Barra com Troca de Calor com o Ambiente

Problema: determinar o perfil de temperatura T(x) em uma barra submetida a:

- Condução ao longo do comprimento
- Troca de calor por convecção com o ambiente ao redor

Equação diferencial:

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0 \quad \text{com} \quad h' = \frac{hP}{kA}$$

Condições de contorno típicas:

$$T(0) = T_0, \quad T(L) = T_L$$

Interpretação:

- É um problema de valor de contorno (PVC), pois os valores são especificados em ambas as extremidades.
- Aparece em aletas de dissipação térmica, paredes com perdas por convecção, trocadores de calor.

Exemplo de PVC: Barra com Troca de Calor com o Ambiente

Problema: determinar o perfil de temperatura T(x) em uma barra submetida a:

- Condução ao longo do comprimento
- Troca de calor por convecção com o ambiente ao redor

Equação diferencial:

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0 \quad \text{com} \quad h' = \frac{hP}{kA}$$

Condições de contorno típicas:

$$T(0) = T_0, \quad T(L) = T_L$$

Interpretação:

- É um problema de valor de contorno (PVC), pois os valores são especificados em ambas as extremidades.
- Aparece em aletas de dissipação térmica, paredes com perdas por convecção, trocadores de calor.

Exemplo Numérico – Barra com Troca de Calor com o Ar

Problema físico: uma barra de $L = 10 \,\text{m}$ dissipa calor para o ar ambiente.

Equação:

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0 \quad \text{com} \quad h' = 0.01$$

Condições de contorno:

$$T(0) = 40^{\circ}\text{C}, \quad T(10) = 200^{\circ}\text{C}, \quad T_a = 20^{\circ}\text{C}$$

Solução analítica:

$$T(x) = 73,4523 e^{0,1x} - 53,4523 e^{-0,1x} + 20$$

Objetivo: Resolver numericamente esse PVC usando o método do tiro, comparando com a solução analítica.

Método do Tiro (Shooting Method)

Ideia: transformar um problema de valor de contorno (PVC) em um problema de valor inicial (PVI).

Etapas:

- Reescreva a EDO de 2^a ordem como um sistema de 1^a ordem.
- ② Substitua a condição de contorno desconhecida (ex: T'(0)) por um chute: s.
- 3 Resolva o sistema com esse chute como se fosse um PVI.
- Compare o valor calculado com a condição desejada na outra extremidade.
- **5** Ajuste s até satisfazer $T(L) = T_2$.

Método do Tiro (Shooting Method)

Ideia: transformar um problema de valor de contorno (PVC) em um problema de valor inicial (PVI).

Etapas:

- Reescreva a EDO de 2ª ordem como um sistema de 1ª ordem.
- ② Substitua a condição de contorno desconhecida (ex: T'(0)) por um chute: s.
- 3 Resolva o sistema com esse chute como se fosse um PVI.
- Ompare o valor calculado com a condição desejada na outra extremidade.
- **5** Ajuste s até satisfazer $T(L) = T_2$.

Método numérico:

- Utiliza métodos de PVI como solve_ivp.
- Ajuste de s pode ser feito com scipy.optimize.root ou fsolve.

Redução da EDO para sistema de 1ª ordem

Equação original:

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0$$

Forma reorganizada:

$$\frac{d^2T}{dx^2}=h'(T-T_a)$$

Variáveis auxiliares:

$$T_1(x) = T(x)$$

$$T_2(x) = \frac{dT}{dx}$$

Sistema equivalente:

$$\frac{dT_1}{dx} = T_2$$

$$\frac{dT_2}{dx} = h'(T_1 - T_a)$$

Condições:

- $T_1(0) = 40^{\circ} C$
- $T_2(0) = s$ (chute)
- Buscar s tal que $T_1(10) = 200^{\circ}C$

Método do Tiro com solve_ivp - chute manual

from scipy.integrate import solve_ivp

import numpy as np

```
import matplotlib.pyplot as plt
# Parâmetros do problema
h_{-} = 0.01
Ta = 20
L = 10
# Sistema de 1ª ordem
def sistema(x, Y):
        T1. T2 = Y
        dT1dx = T2
        dT2dx = h_{-} * (T1 - Ta)
        return [dT1dx, dT2dx]
# Condições iniciais: T(0) = 40, T'(0) = s (chute)
s = 5.0 # valor inicial arbitrário para o chute
                                               10000
◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 夕९♡
```

Método do Tiro para Problemas Não Lineares

Problema: barra aquecida com perdas por radiação (não linearidade simplificada)

Equação diferencial:

$$\frac{d^2T}{dx^2} + h_0(T - T_a)^4 = 0, \quad h_0 = 5 \times 10^{-8}$$

Condições de contorno:

$$T(0) = 40^{\circ} C$$
, $T(10) = 200^{\circ} C$, $T_a = 20^{\circ} C$

Redução para sistema de 1ª ordem:

$$\begin{cases} \frac{dT}{dx} = z \\ \frac{dz}{dx} = h_0 (T - T_a)^4 \end{cases}$$

Solução:

- Sistema pode ser resolvido com solve_ivp
- Aplicamos o método do tiro, ajustando o chute z(0) para satisfazer $T(10)=200^{\circ}C$
- O método continua válido mesmo com a não linearidade no termo fonte

Resolvendo PVCs com solve_bvp (SciPy)

solve_bvp é uma função da biblioteca scipy.integrate para resolver problemas de valor de contorno diretamente, sem necessidade do método do tiro.

Uso típico:

- Reescreva a EDO de ordem n como um sistema de $1^{\underline{a}}$ ordem.
- Forneça uma função com as condições de contorno em ambas as extremidades.
- Especifique um chute inicial para a malha e para a solução.

Vantagens:

- Resolve PVCs lineares ou não lineares.
- Evita o processo iterativo do método do tiro.
- Ideal para problemas bem condicionados e com malhas conhecidas.

Documentação: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html

Método das Diferenças Finitas (MDF)

Ideia: discretizar a EDO no espaço e aproximar as derivadas por diferenças finitas.

Para a EDO da barra:

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0 \quad \Rightarrow \quad \frac{d^2T}{dx^2} = h'(T - T_a)$$

Aproximação da derivada:

$$\frac{d^2T}{dx^2} \approx \frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta x^2}$$

Substituindo na equação:

$$\frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta x^2} = h'(T_i - T_a)$$

Resultado: sistema linear com n-2 equações e incógnitas $T_1,\,T_2,\ldots,\,T_{n-2}$

Próxima aula

Resumo de hoje:

- Resolvemos EDOs com condições iniciais (PVI) usando métodos como Euler, RK e solve_ivp.
- Discutimos rigidez e soluções implícitas.
- Estudamos problemas de valor de contorno (PVC), com destaque para o método do tiro.

Próxima aula:

- Retomaremos o método das diferenças finitas, agora aplicado a Equações Diferenciais Parciais (EDPs).
- Veremos como discretizar o espaço e o tempo em problemas como condução de calor transiente.