

- Machine Learning (ML)
 - ML approaches progressively improve the performance of a specific task with data
 - For example, neural networks learn a function from labeled data in a training data set

- ML comes in two kinds
 - Supervised Learning
 - When training, each decision can be compared to a known correct value
 - Neural networks (except autoencoders)
 - Unsupervised Learning
 - Correct value not known
 - Agent figures out the best thing to do by itself

- Reinforcement Learning (RL)
 - RL agents learn how to act in an environment in order to maximise their cumulative reward

- RL agents observe their environment and receive rewards. This is the data that helps them to improve at their task.
 - This is why they are learning agents
- We do not know what actions an agent should perform to maximise their reward so RL is unsupervised learning
 - We only know when to give them rewards

- When to use RL
 - Learning to make a **sequence of decisions** under uncertainty,
 - No or little pre-existing knowledge of environment
 - Limited knowledge, limited feedback
 - You cannot tell how good an action is immediately, but you can give a (possibly delayed) reward, e.g.
 - completing a maze
 - return on financial investments

Examples

- Learn to fly a helicopter (https://youtu.be/VCdxqn0fcnE)
- Play Atari 2600 games (https://youtu.be/Q70ulPJW3Gk)
- Trade shares
- Control a power station

Time

- Agents interact with environment over a sequence of time steps
 - t₁, t₂, t₃, t₄, ...
- For example,
 - A game of chess takes multiple turns
 - An autonomous vehicle driving to a destination takes time
 - An algorithm trades stocks every millisecond

Observations

- At each time step, the agent can observe the environment, usually in a limited way, e.g.
 - Autonomous vehicle sensors
 - X, Y position in a maze
 - Pixels on the screen
- In combination with rewards, this is the experience that an agent learns from

- Actions
 - (Usually) discrete set of actions to perform, e.g.
 - Move king's bishop to H3
 - Turn left 10 degrees
 - Actions affect the environment

- Reward
 - Reward signal at each time step
 - Quantitative, e.g.
 - Change in score in a game
 - Distance robot has walked
 - End game reward 1 = win, -1 = loss

- From these
 - Observations
 - Actions
 - Reward
- An agent learns how to act in a way to maximise their cumulative reward
 - (A way of acting is called a **policy**)

- Imagine we have a maze and our goal is to collect fruit
 - What are the:
 - Observations
 - Actions
 - Rewards

Observations

- The information about the environment we choose to give to the agent,
- What the agent can "sense", e.g.
 - Position of agent
 - Positions of walls
 - Positions of fruit

- The agent doesn't always get all the information about the environment
 - Fully observable
 - Agent sees everything
 - Partially observable
 - Agent sees only part

Actions

- The set of actions our agent can perform, e.g.
 - Move up
 - Move down
 - •

- A plan of action is called a policy, e.g.
 - Act randomly
 - Always turn left
 - Move to state with highest utility
- We want the agent to learn the optimal policy
 - There is always at least one optimal policy

Rewards

- A score we give the agent when it does something we want
- Agents often need to take several actions before they get a reward

- The agent learns by taking actions and getting rewards
 - It tries to maximise its cumulative reward
- In this example, it would (hopefully) learn to collect all the fruit with as few steps as possible

Return

- The cumulative reward over an episode (a sequence of states and actions)
- We want to learn the policy with the highest return

• Assumption:

- Every goal can be expressed as the maximisation of some reward value, e.g.
 - Maximise game score
 - Maximise financial return
 - Optimise power output while following safety regulations
 - Here we might decide on the 'exchange rate' for efficiency vs. regulations

 RL algorithms use observations and rewards to decide on a policy for selecting actions in order to maximise their return

- Agents learn from their observations
- When deciding what to do, it is inefficient to recall past observations in full
 - Instead the agent abstracts a history of observations into a state

State

- A function of a history of observations
- i.e. Abstract all the information seen so far into a useful summary that tells you 'where you are'

- A state might include just the present observations
 - In a racing game we observe our position and velocity at each time step
 - Our state might contain our position and velocity
 - (So we can slow down at the corners)

- The state might incorporate past observations
 - In this game we now only observe position
 - To calculate velocity, we need information from past observations

- Environment State
 - The state of the environment
 - Game state in chess
 - Often not accessible
 - e.g. autonomous vehicle

- Agent State
 - What state does the agent think they are in?
 - This represents (some of) the environment state
- As environment state is usually inaccessible, most of the time when we talk about state we mean agent state

- What is the environment state in the maze game?
- What information might we include in the agent state?

 RL algorithms abstract observations of the environment into a state, which tells them where they are and helps them to select actions to maximise their return

- There are three components that RL agents often have
 - Value Function
 - Model
 - Policy
- RL algorithms can be described by which of these it uses

Value Function

- A value function assigns each state a score
- It's helpful to know how good any given state is
- Value comes from our total expected future reward from that state

	41	52	64	
41	33		80	160
33			64	
64			52	
80	64	33	41	
140				

Value combines current and expected future rewards

value of state = reward + value of next state

- This is a Bellman Equation
- For example
 - I'll get 100 points now, and I expect that if I act optimally I'll get
 95 points in the future
 - So the value of the state is 195

Discount factor

- In practice, we multiply our expected future reward by a discount factor, e.g. 0.8
- This decreases the importance of future rewards

Why?

- Future rewards are uncertain because our model is imperfect
- Prevents infinite cumulative rewards which makes the maths harder

The value of a state is thus:

reward + discount factor * value of next state

- I'll get 100 points now, and I expect that if I act optimally I'll get to a state with a value of 95 in 1 time step, which is 0.8*95 = 76
 - So the value of the state is 176

Policy

- For a given state, with what probability should we select the actions available to us?
- If we have a value function, that give an implicit policy
 always take the highest valued action

Model

- Does the agent try to build a model of the environment?
 - i.e. try and work out the dynamics of the environment
- E.g. the maze agent might walk around finding all the walls to build a map of the environment

- Models allow planning
 - The maze agent could build a model and then use it to plan a route

- A Markov Process is a way of mathematically modeling stochastic sequences of events
 - It is a formal tool to help understand and build RL algorithms
 - (It's widely used outside RL as well)
 - Basically a finite state machine where the transitions are uncertain

- Markov Process are sequences of states where the probability of each state is dependent only on the last state
 - (Here we have a third meaning of "state": information state)
- A state contains all information about past states
 - i.e. knowing the history gives you no more information about what's happening next

$$P(S_t | S_{t-1}) = P(S_t | S_{1}, S_{2}, ... S_{t-1})$$

- We can work out the probabilities of taking different paths through a Markov Process
 - This path has probability $.6 \times .8 \times .6 = 0.288$

- Lets add rewards to make this a Markov Reward Process
 - Now we can work out the return of this path by adding the rewards

$$-2 + 10 = 8$$

- We can also work out the expected cumulative future reward from a state
 - Considering probability
 and return of each path

• Question: If we could change these probabilities, could we improve our expected return?

- The probabilities of taking each action are our agent's policy
- Our RL agent wants to learn the best probabilities to use
 - (Because we're making decisions, it's now called a Markov Decision Process)

- So, an RL algorithm, faces a
 Markov Decision Process and
 needs to work out the action
 probabilities to maximise their
 expected return
 - (The example here was fully observable)

- Necessary functions in an RL algorithm
 - Reward Prediction: Predicting expected reward in given state
 - Choice: Optimal action selection
- Q learning is one approach to solving this

- Approach: Learn a value function (Q function) for each stateaction pair
 - i.e. what's the value of doing action A in state S?
- Take actions with highest value
 - An implicit policy
- Challenge: representing and fitting the Q function

- Q learning uses Temporal Difference (TD) Learning
 - Derive reward predictions from delayed rewards
 - Learn by bootstrapping from estimates of value function
 - Sample the environment
 - Update based on current estimates
 - Model free

- Q Learning
 - Learn a function Q that take an action a ∈ A in a given state
 s ∈ S and returns the expected future reward
 - Q: $S \times A \rightarrow R$

- Simplest approach is to use a Q table
 - Represent every combination of inputs (state-action pairs) with their output
 - i.e. for each state and action, what is the expected future reward?

	a ₁	a_2	a ₃	a ₄
S ₁	24	57	7	98
S ₂	42	0		56
S ₃	1		76	0
S ₄	24	34	55	
S ₅	5	3	62	3

- Start with arbitrary values (e.g. 0)
- Bootstap the correct values by a series of increasingly accurate approximations
 - Start using arbitrary values and improve them when we can

	a_1	a_2	a ₃	a ₄
S ₁	0	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0
S ₅	0	0	0	0

- Imagine we have a simple maze game
 - The agent starts somewhere on the grid shown (S)
 - They can move up, down, left, or right
- If they move to a goal (G) they get a reward of 100 points

- Let's represent this as 5 states and 4 actions
 - States $s_1, s_2... \in S$
 - Actions a_{up} , a_{down} ... $\in A$

- Create a table of states/action pairs (Q table)
 - Stores the utility of each action from each state
 - Initialise with arbitrary values

	a _{up}	a _{down}	a _{left}	a right
S_1	0	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0
S ₅	0	0	0	0

- Imagine we start in state s₃
 - We pick an action to perform at random
 - For demonstration purposes, let's choose a_{right} (highlighted)
 - Taking this action takes us to the goal, so we give a reward of 100
- We've learned something about the value of that action in that state
 - It's pretty good!
 - We need to update $Q(s_3, a_{right})$

	a _{up}	a _{down}	a _{left}	a right
S ₁		0		
S ₂				0
S ₃	0	0	0	0
S ₄			0	
S ₅	0			

- We need to update Q(s₃, a_{right})
 - We had an expectation of its value
 - We now have better estimate
 - We have now visited it and know what **reward** we got
 - We can look up the expected future reward (from the best-scoring action from the new state)
 - We multiply the difference by a learning rate (e.g. 0.8)
- We use a Bellman Equation:

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

- So, to update Q(s₃, a_{right})
 - $Q^{old}(s_3, a_{right}) = 0$
 - Learning rate = 0.8
 - Reward = **100**
 - Discount factor = 0.8
 - Max(0) = 0
 - $Q^{new}(s_3, a_{right}) = 0 + 0.8 * (100 + 0.8 * 0 0) = 80$

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}}$$

	a _{up}	a _{down}	a _{left}	aright
S ₁		0		
S ₂				0
S ₃	0	0	0	0
S ₄			0	
S ₅	0			

temporal difference

$$\underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)}_{ ext{old value}}$$

new value (temporal difference target)

• We have updated the Q table

	a _{up}	a _{down}	a _{left}	aright
S ₁		0		
S ₂				0
S ₃	0	0	0	80
S ₄			0	
S ₅	0			

- Imagine we start again from state s₂
 - We pick an action to perform at random
 - Let's choose a_{right} (highlighted)
 - We don't get a reward
- We've learned something about the value of that action
 - There was no reward, but it gets us to a state from which there is a good action
 - We need to update $Q(s_2, a_{right})$

	a _{up}	a _{down}	a _{left}	aright
S ₁		0		
S ₂				0
S ₃	0	0	0	80
S ₄			0	
S ₅	0			

- We need to update Q(s₂, a_{right})
 - $Q^{old}(s_2, a_{right}) = 0$
 - Learning rate = 0.8
 - Reward = 0
 - Discount factor = 0.8
 - Max(0, 0, 0, 80) = 80
 - $Q^{new}(s_2, a_{right}) = 0 + 0.8 * (0 + 0.8 * 80 0) = 64$

$Q^{new}(s_t, a_t)$	$\leftarrow Q(s_t, a_t) +$	α
		learning rate
	old value	rearming rave

	a _{up}	a _{down}	a _{left}	aright
S ₁		0		
S ₂				0
S ₃	0	0	0	80
S ₄			0	
S ₅	0			

$$\overbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)}_{ ext{old value}}$$

temporal difference

new value (temporal difference target)

• We have updated the Q table

	a _{up}	a _{down}	a _{left}	aright
S ₁		0		
S ₂				64
S ₃	0	0	0	80
S ₄			0	
S ₅	0			

- If we keep randomly restarting and updating the table, eventually we'll converge on a table of values like those shown
- We can normalise these values by dividing by the highest (500)
 - (and multiplying by 100 to avoid decimals)

	a _{up}	a _{down}	a _{left}	aright
S ₁		400		
S ₂				400
S ₃	320	320	320	500
S ₄			400	
S ₅	400			

	a _{up}	a _{down}	a _{left}	a right
S ₁		80		
S ₂				80
S ₃	64	64	64	100
S ₄			80	
S ₅	80			

- This table gives defines the Q function that we have learned
 - Gives utility of state/action pairs
- We can use this to take the optimal move from each state by always taking the action with the highest value

- It doesn't always make sense to explore the whole state space first
- We could choose to always start from the same state
 - Then we would explore different paths to the goal
 - Then we balance
 - Exploration trying new/untried actions
 - Exploitation picking high-value actions to focus effort on promising directions

- Often the state space is too big to use a table
- Instead of learning a function Q expressed as a table (exhaustively calculating and storing every value), Q can be a function approximation
 - Neural networks learn to approximate functions
 - Deep reinforcement learning uses a deep neural network as a function approximator
 - Deep Q-Learning is used in AlphaGo

- RL agents learn from interacting with an environment and getting rewards
- They represent their history of observations in a **state**
 - Value functions assign a value to a state
 - They decide how to act using a policy
 - They might learn a model of the environment and do planning

- One approach is to learn a Q function that gives the expected future reward from each state-action pair
 - Store a value for each pair in a table
 - Update these as you explore and discover which actions are rewarded
- A neural network could be used to approximate the Q function

- Recommended Reading
 - AlphaGo Documentary
 - https://youtu.be/WXuK6gekU1Y
 - Lecture series taught by David Silver of DeepMind
 - https://youtu.be/2pWv7GOvuf0
 - RL in Unity using ML Agents
 - https://medium.com/nerd-for-tech/an-introduction-to-machine-learning-with-unity-ml-agent s-af71938ca958
 - https://github.com/Unity-Technologies/ml-agents/blob/release_18_docs/docs/Installation.m d#clone-the-ml-agents-toolkit-repository-optional
 - Q Learning worked example:
 - https://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning-Example.htm