Aufgabe A (25 Punkte)

Seien X_1 und X_2 zwei unabhängige und identisch verteilte Zufallsvariablen mit

$$f(x_i) = e^{-x_i} I_{(0,\infty)}(x_i), \quad i = 1, 2.$$

- al) (3 Punkte) Geben Sie die gemeinsame Wahrscheinlichkeitsdichtefunktion $f(x_1, x_2)$ an.
- a2) (6 Punkte) Geben Sie die entsprechende gemeinsame Verteilungsfunktion $F(x_1, x_2)$ an.
- a
3) (5 Punkte) Bestimmen Sie den Erwartungswert $\mathrm{E}[X_1X_2].$
- a4) (5 Punkte) Berechnen Sie $P(x_1 < \frac{1}{2}x_2, 0 < x_2 < 2)$.
- a5) (6 Punkte) Geben Sie jeweils die Verteilungen von $S = X_1 + X_2$ und $D = X_1 X_2$ an.

Aufgabe B (15 Punkte)

Sei X eine Zufallsvariable mit zugehöriger Verteilungsfunktion

$$F(x) = \exp\{-\exp(-x)\} I_{(-\infty,\infty)}(x).$$

- b
1) (7 Punkte) Ist die gegebene Dichte ein Mitglied der Exponential
familie? Begründen Sie Ihre Antwort <u>kurz</u>.
- b2) (8 Punkte) Es liege nun eine Zufallsstichprobe der Größe n=5 aus obiger Normalverteilung vor. Bestimmen Sie die Dichtefunktion der n-ten Ordnungsstatistik.

Aufgabe C (8 Punkte)

Es sei $\mathbf{X}=(X_1,X_2)'$ eine Zufallsvariable, die einer bivariaten Normalverteilung $\mathcal{N}(\mu,\Sigma)$ mit

$$\mu = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \qquad \text{ und } \qquad \Sigma = \left[\begin{array}{cc} 5 & 2 \\ 2 & 4 \end{array} \right]$$

folgt.

- c1) (4 Punkte) Bestimmen Sie die Regressionsfunktion von X_1 auf X_2 , und berechnen Sie $\mathrm{E}(X_1\mid x_2=0).$
- c2) (1 Punkt) Wie groß ist die bedingte Varianz von X_1 gegeben $x_2 = 1$?
- c3) (3 Punkte) Geben Sie die momenterzeugende Funktion $M_{\mathbf{X}}(\mathbf{t})$ an.

Aufgabe D (12 Punkte)

Es sei $\{U_1, U_2, \dots, U_n\}$ eine Folge von *iid*-verteilten Zufallsvariablen aus einer Gleichverteilung auf dem Intervall (0,1) mit

$$f(u) = I_{(0,1)}(u).$$

Ferner sei \mathbb{Z}_n das arithmetische Mittel dieser Zufallsvariablen, d.h.

$$Z_n = \frac{1}{n} \sum_{i=1}^n U_i \ .$$

- d
1) (4 Punkte) Zeigen Sie, dass für \mathbb{Z}_n Konvergenz im quadratischen Mittel gilt und geben Sie den Wahrscheinlichkeitsgrenzwert an.
- d2) (4 Punkte) Ermitteln Sie die asymptotische Verteilung von Z_n .
- d3) (4 Punkte) Wie lautet die asymptotische Verteilung von $Y_n = -\ln(Z_n)$?