Fonctions Usuelles Fonctions Hyperboliques MPSI 2

1 Cosinus hyperbolique et Sinus hyperbolique

Définition 1.0.1

On appelle cosinus et sinus hyperboliques les parties paires et impaires de l'exponentielle:

$$\forall x \in \mathbb{R}, ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

1.1 Parties paires et impaires d'une fonction

Propriété 1.1.1

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application definie sur \mathbb{R} et a valeurs reelles. Alors il existe un unique couple d'applications definies sur \mathbb{R} et a valeurs dans \mathbb{R} , (g,h), telles que :

$$\begin{cases} \forall x \in \mathbb{R}, f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

L'application g s'appelle la partie paire de f et h la partie impaire de f.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application fixee.

① Supposons qu'il existe deux applications definies sur \mathbb{R} a valeurs dans \mathbb{R} telles que:

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Alors pour x reel,

$$f(x) = g(x) + h(x)$$
$$f(-x) = g(x) - h(x)$$

Ainsi, q(x) et h(x) verifient :

$$\begin{cases} f(x) = g(x) + h(x) \\ f(-x) = g(x) - h(x) \end{cases}$$

Donc:
$$g(x) = \frac{f(x) + f(-x)}{2}$$

et $h(x) = \frac{f(x) - f(-x)}{2}$

Conclusion 1:

Si g et h existent, alors :

$$g \colon \mathbb{R} \longrightarrow \mathbb{R}$$
 et $h \colon \mathbb{R} \longrightarrow \mathbb{R}$
$$x \longmapsto \frac{f(x) + f(-x)}{2}$$

$$x \longmapsto \frac{f(x) - f(-x)}{2}$$

Conclusion 2:

En particulier, si g et h existent, alors ils sont uniques.

② On considere g et h les deux applications definies sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Montrer que g et h verifient :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Pour x reel :

•
$$g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

= $\frac{1}{2} (f(x) + f(x) + f(-x) - f(-x))$
= $f(x)$

$$= f(x)$$
• $g(-x) = \frac{f(-x) + f(x)}{2} = g(x)$

$$h(-x) = \frac{f(-x) - f(x)}{2} = -h(x)$$

Ceci etant valable pour tout x reel, on conclut que :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Conclusion Generale:

Il existe un unique couple d'application (g, h) tel que :

$$\begin{cases} f(x) = g(x) + h(x) \\ g \text{ est paire et } h \text{ est impaire} \end{cases}$$

Retour aux fonctions hyperboliques:

$$\forall x \in \mathbb{R}, ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

D'apres la propriete precedente, ch est paire et sh est impaire.

Propriété 1.1.2

- $\forall x \in \mathbb{R}, ch(x) \ge 0$
- ch et sh sont deux applications definies sur \mathbb{R} et : ch' = sh

$$sh' = ch$$

• ch et sh sont deux fonctions de classe \mathscr{C}^{∞} sur \mathbb{R}

Etude de sh:

x	0	$+\infty$
$ch\left(x\right)$	1	+
$sh\left(x\right)$	0	$+\infty$

Etude de ch:

x	0 +∞
$sh\left(x\right)$	0 +
$ch\left(x\right)$	$+\infty$ 1

Propriété 1.1.3

Pour tout x dans \mathbb{R} :

- $ch(x) + sh(x) = e^x$
- $\bullet \ ch(x) sh(x) = e^{-x}$
- $ch^{2}(x) sh^{2}(x) = 1$

2 Tangente hyperbolique

Définition 2.0.1

La fonction tangente hyperbolique est definie par $th = \frac{sh}{ch}$. C'est une application definie sur \mathbb{R} car ch > 0 sur \mathbb{R} .

C'est une application definie sur
$$\mathbb{R}$$
 car $ch > 0$ sur \mathbb{R} .

On a, pour tout x reel, $th(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$

$$= \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Etude de th:

x	0	$+\infty$
th'(x)	1	+
$th\left(x\right)$	0	1

3 Fonctions circulaires reciproques

3.1 arcsinus et arccosinus

sin est definie continue strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et sin $\left(\frac{\pi}{2}\right) = 1$ et sin $\left(-\frac{\pi}{2}\right) = -1$. Donc sin realise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1].

Définition 3.1.1

La fonction arcsinus est la fonction reciproque de $\sin_{|_{[-\frac{\pi}{2},\frac{\pi}{2}]}}$.

$$\arcsin: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$x \longmapsto \arcsin(x)$$

cos est definie continue strictement decroissante sur $[0,\pi]$ et $\cos(0)=1$ et $\cos(\pi)=1$ -1.

Donc cos realise une bijection de $[0, \pi]$ sur [-1, 1].

Définition 3.1.2

La fonction arccosinus est la fonction reciproque de $\cos_{|_{[0,\pi]}}$.

$$\operatorname{arccos}: [-1, 1] \longrightarrow [0, \pi]$$

$$x \longmapsto \operatorname{arccos}(x)$$

Remarques:

- $\forall x \in [-1, 1], \sin(\arcsin(x)) = x$
- $\forall \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, $\arcsin\left(\sin(\theta)\right) = \theta$ Si α appartient a $\left[\frac{\pi}{2}, \frac{3\pi}{2} \right]$, $\arcsin\left(\sin(\alpha)\right) = \pi \alpha$
- $\forall x \in [-1, 1], \cos(\arccos(x)) = x$
- $\forall \theta \in [0, \pi]$, $\arccos(\cos(\theta)) = \theta$
- Si α appartient a $[-\pi, 0]$, $\arccos(\cos(\alpha)) = -\alpha$
- Pour x dans [-1, 1], $\cos(\arcsin(x)) = \sqrt{1 x^2}$
- Pour x dans [-1, 1], $\sin(\arccos(x)) = \sqrt{1 x^2}$
- $\forall x \in [-1, 1], \arcsin(x) + \arccos(x) = \frac{\pi}{2}$
- $\forall x \in [-1, 1], \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$
- $\forall x \in [-1, 1], \arccos'(x) = \frac{1}{\sqrt{1-x^2}}$

3.2 arctangente

tan realise une bijection de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sur $\mathbb{R}.$

Définition 3.2.1

La fonction arctangente est la fonction reciproque de $\tan_{|-\frac{\pi}{4},\frac{\pi}{4}|}$.

$$\arctan: [-1, 1] \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$x \longmapsto \arctan(x)$$

Remarques:

- $\forall x \in \mathbb{R}, \tan(\arctan(x)) = x$
- $\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\arctan(\tan(\theta)) = \theta$ Pour x reel, $\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}$
- $\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{\sqrt{1+x^2}}$