Chapter 11. Training Deep Neural Nets

In Chapter 10 we introduced artificial neural networks and trained our first deep neural network. But it was a very shallow DNN, with only two hidden layers. What if you need to tackle a very complex problem, such as detecting hundreds of types of objects in high-resolution images? You may need to train a much deeper DNN, perhaps with (say) 10 layers, each containing hundreds of neurons, connected by hundreds of thousands of connections. This would not be a walk in the park:

- First, you would be <u>faced</u> with the tricky *vanishing gradients* problem (or the related *exploding gradients* problem) that affects deep neural networks and makes lower layers very hard to train.
- Second, with such a large network, training would be extremely slow.
- Third, a model with millions of parameters would severely risk overfitting the training set.

In this chapter, we will go through each of these problems in turn and present techniques to solve them. We will start by explaining the vanishing gradients problem and exploring some of the most popular solutions to this problem. Next we will look at various optimizers that can speed up training large models tremendously compared to plain Gradient Descent. Finally, we will go through a few popular regularization techniques for large neural networks.

With these tools, you will be able to train very deep nets: welcome to Deep Learning!

Vanishing/Exploding Gradients Problems

As we discussed in Chapter 10, the backpropagation algorithm works by going from the output layer to the input layer, propagating the error gradient on the way. Once the algorithm has computed the gradient of the cost function with regards to each parameter in the network, it uses these gradients to update each parameter with a Gradient Descent step.

Unfortunately, gradients often get smaller and smaller as the algorithm progresses down to the lower layers. As a result, the Gradient Descent update leaves the lower layer connection weights virtually unchanged, and training never converges to a good solution. This is called the *vanishing gradients* problem. In some cases, the opposite can happen: the gradients can grow bigger and bigger, so many layers get insanely large weight updates and the algorithm diverges. This is the *exploding gradients* problem, which is mostly encountered in recurrent neural networks (see Chapter 14). More generally, deep neural networks suffer from unstable gradients; different layers may learn at widely different speeds.

Although this unfortunate behavior has been empirically observed for quite a while (it was one of the reasons why deep neural networks were mostly abandoned for a long time), it is only around 2010 that significant progress was made in understanding it. A paper titled "Understanding the Difficulty of Training Deep Feedforward Neural Networks" by Xavier Glorot and Yoshua Bengio¹ found a few suspects, including the combination of the popular logistic sigmoid activation function and the weight initialization technique that was most popular at the time, namely random initialization using a normal distribution with a mean of 0 and a standard deviation of 1. In short, they showed that with this activation function and this initialization scheme, the variance of the outputs of each layer is much greater than the variance of its inputs. Going forward in the network, the variance keeps increasing after each layer until the activation function saturates at the top layers. This is actually made worse by the fact that the logistic function has a mean of 0.5, not 0 (the hyperbolic tangent function has a mean of 0 and behaves slightly better than the logistic function in deep networks).

Looking at the logistic activation function (see Figure 11-1), you can see that when inputs become large (negative or positive), the function saturates at 0 or 1, with a derivative extremely close to 0. Thus when backpropagation kicks in, it has virtually no gradient to propagate back through the network, and what little gradient exists keeps getting diluted as backpropagation progresses down through the top layers, so there is really nothing left for the lower layers.

Figure 11-1. Logistic activation function saturation

Xavier and He Initialization

In their paper, Glorot and Bengio propose a way to significantly alleviate this problem. We need the signal to flow properly in both directions: in the forward direction when making predictions, and in the reverse direction when backpropagating gradients. We don't want the signal to die out, nor do we want it to explode and saturate. For the signal to flow properly, the authors argue that we need the variance of the outputs of each layer to be equal to the variance of its inputs,² and we also need the gradients to have equal variance before and after flowing through a layer in the reverse direction (please check out the paper if you are interested in the mathematical details). It is actually not possible to guarantee both unless the layer has an equal number of input and output connections, but they proposed a good compromise that has proven to work very well in practice: the connection weights must be initialized randomly as described in Equation 11-1, where $n_{\rm inputs}$ and $n_{\rm outputs}$ are the number of input and output connections for the layer whose weights are being initialized (also called fan-in and fan-out). This initialization strategy is often called fan-in initialization (after the author's first name), or sometimes fan-out initialization.

Equation 11-1. Xavier initialization (when using the logistic activation function)

Normal distribution with mean 0 and standard deviation
$$\sigma = \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$$

Or a uniform distribution between -r and +r, with $r = \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$

When the number of input connections is roughly equal to the number of output connections, you get simpler equations (e.g., $\sigma=1/\sqrt{n_{\rm inputs}}$ or $r=\sqrt{3}/\sqrt{n_{\rm inputs}}$). We used this simplified strategy in Chapter 10.³

Using the Xavier initialization strategy can speed up training considerably, and it is one of the tricks that led to the current success of Deep Learning. Some recent papers⁴ have provided similar strategies for different activation functions, as shown in Table 11-1. The initialization strategy for the ReLU activation function (and its variants, including the ELU activation described shortly) is sometimes called *He initialization* (after the last name of its author).

Table 11-1. Initialization parameters for each type of activation function

Activation function	Uniform distribution [-r, r]	Normal distribution
Logistic	$r = \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
Hyperbolic tangent	$r = 4\sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = 4\sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
ReLU (and its variants)	$r = \sqrt{2} \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{2} \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$

By default, the tf.layers.dense() function (introduced in Chapter 10) uses Xavier initialization (with a uniform distribution). You can change this to He initialization by using the

variance_scaling_initializer() function like this:

NOTE

He initialization considers only the fan-in, not the average between fan-in and fan-out like in Xavier initialization. This is also the default for the variance_scaling_initializer() function, but you can change this by setting the argument mode="FAN_AVG".

Nonsaturating Activation Functions

One of the insights in the 2010 paper by Glorot and Bengio was that the <u>vanishing/exploding gradients</u> problems were in part due to a poor choice of activation function. Until then most people had assumed that if Mother Nature had chosen to use roughly sigmoid activation functions in biological neurons, they must be an excellent choice. But it turns out that other activation functions behave much better in deep neural networks, in particular the <u>ReLU activation function</u>, mostly because it does not saturate for positive values (and also because it is quite fast to compute).

Unfortunately, the ReLU activation function is not perfect. It suffers from a problem known as the *dying ReLUs*: during training, some neurons effectively die, meaning they stop outputting anything other than 0. In some cases, you may find that half of your network's neurons are dead, especially if you used a large learning rate. During training, if a neuron's weights get updated such that the weighted sum of the neuron's inputs is negative, it will start outputting 0. When this happen, the neuron is unlikely to come back to life since the gradient of the ReLU function is 0 when its input is negative.

To solve this problem, you may want to use a variant of the ReLU function, such as the *leaky ReLU*. This function is defined as LeakyReLU $_{\alpha}(z) = \max(\alpha z, z)$ (see Figure 11-2). The hyperparameter α defines how much the function "leaks": it is the slope of the function for z < 0, and is typically set to 0.01. This small slope ensures that leaky ReLUs never die; they can go into a long coma, but they have a chance to eventually wake up. A recent paper⁵ compared several variants of the ReLU activation function and one of its conclusions was that the leaky variants always outperformed the strict ReLU activation function. In fact, setting $\alpha = 0.2$ (huge leak) seemed to result in better performance than $\alpha = 0.01$ (small leak). They also evaluated the *randomized leaky ReLU* (RReLU), where α is picked randomly in a given range during training, and it is fixed to an average value during testing. It also performed fairly well and seemed to act as a regularizer (reducing the risk of overfitting the training set). Finally, they also evaluated the *parametric leaky ReLU* (PReLU), where α is authorized to be learned during training (instead of being a hyperparameter, it becomes a parameter that can be modified by backpropagation like any other parameter). This was reported to strongly outperform ReLU on large image datasets, but on smaller datasets it runs the risk of overfitting the training set.

Last but not least, a 2015 paper by Djork-Arné Clevert et al.⁶ proposed a new activation function called the *exponential linear unit* (ELU) that outperformed all the ReLU variants in their experiments: training time was reduced and the neural network performed better on the test set. It is represented in Figure 11-3, and Equation 11-2 shows its definition.

Equation 11-2. ELU activation function

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0\\ z & \text{if } z \ge 0 \end{cases}$$

It looks a lot like the ReLU function, with a few major differences:

- First it takes on negative values when z < 0, which allows the unit to have an average output closer to 0. This helps alleviate the vanishing gradients problem, as discussed earlier. The hyperparameter α defines the value that the ELU function approaches when z is a large negative number. It is usually set to 1, but you can tweak it like any other hyperparameter if you want.
- Second, it has a nonzero gradient for z < 0, which avoids the dying units issue.
- Third, the function is smooth everywhere, including around z = 0, which helps speed up Gradient Descent, since it does not bounce as much left and right of z = 0.

The main drawback of the ELU activation function is that it is slower to compute than the ReLU and its variants (due to the use of the exponential function), but during training this is compensated by the faster convergence rate. However, at test time an ELU network will be slower than a ReLU network.

TIP

So which activation function should you use for the hidden layers of your deep neural networks? Although your mileage will vary, in general ELU > leaky ReLU (and its variants) > ReLU > tanh > logistic. If you care a lot about runtime performance, then you may prefer leaky ReLUs over ELUs. If you don't want to tweak yet another hyperparameter, you may just use the default α values suggested earlier (0.01 for the leaky ReLU, and 1 for ELU). If you have spare time and computing power, you can use cross-validation to evaluate other activation functions, in particular RReLU if your network is overfitting, or PReLU if you have a huge training set.

TensorFlow offers an elu() function that you can use to build your neural network. Simply set the activation argument when calling the dense() function, like this:

```
hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.elu, name="hidden1")
```

TensorFlow does not have a predefined function for leaky ReLUs, but it is easy enough to define:

```
def leaky_relu(z, name=None):
    return tf.maximum(0.01 * z, z, name=name)
hidden1 = tf.layers.dense(X, n_hidden1, activation=leaky_relu, name="hidden1")
```