Projet P5

Segmentation clients d'un site de e-commerce

Introduction

- Consultant pour Olist -> une solution de vente sur les marketplaces en ligne
- Objectifs:
 - Segmentation des clients pour les équipes marketing de Olist pour les campagnes de communication
 - Analyser les différents types d'utilisateurs
 - Proposition du contrat de maintenance

Données

On a 8 jeux de données :

- **customers**: information sur le clients de chaques commandes
- **geolocation**: information sur localisation
- **orders**: information sur la commandes (date, etc...)
- orders_items: info des produits de chaques commandes
- order_payments: info sur le paiement
- **order_reviews**: info sur les commentaires de chaque commandes
- products: info sur les produits (taille,poids, etc...)
- **sellers**: info sur les vendeurs

Sommaire

- 1. Nettoyage des données
- 2. Feature Engineering
- 3. Analyse exploratoire
- 4. Modélisation
- 5. Maintenance
- 6. Conclusion

Nettoyage des données

Concaténation des datasets en fonction des commandes passé

Taille datasets : 117329 lignes et 36 colonnes

Une ligne represente une commande passé

Nettoyage des données

Suppression des colonnes inutiles

Taille du dataset : 117329 lignes et 24 colonnes

Feature Enginnering

- Regrouper les commandes d'un même clients
- Création de colonnes pour chaque type de paiements
- Création de nouvelles variables :
 - Difference delivery
 - Delivery time
 - Answers time
 - reviews lenght
 - Recency
 - Frequency
 - Monetary
- Regroupements de catégories en 9 supercatégories et création de colonnes pour chacune de ces supercatégories

Taille du Dataset : 91453 lignes et 34 colonnes

Analyse Exploratoire

Analyse Exploratoire

Analyse Exploratoire

Modélisation

- Normalisation des données <u>numérique</u>
- OneHotEncoder pour la variable catégorielles customer_state
- Réduction de dimension par ACP à 19 variables
- 3 algorithme de clustering utilisé :
 - Kmeans
 - DBScan
 - Clustering hiérarchique
- Comparaison des 3 algorithmes avec :
 - Silhouette
 - indice de David Bouldin
 - distortion (pour Kmeans et CH uniquement)
- Visualisation par t-SNE

Taille dataset: 91453 ligne x 53 colonnes

Modelisation avec Kmeans

Distorsion

Silhouette

Nombre de clusters choisi : 4

Indice David Bouldin

Modelisation avec Kmeans

Modelisation avec Clustering Hierachique

Distorsion

Silhouette

Nombre de clusters choisi : 6

Indice David Bouldin

Modelisation avec Clustering

Taille cluster:

0: 16087

1: 54

2: 2826

3: 1004

4: 20

5: 9

3 cluster avec moins de 100 client

Modélisation avec DBScan

Mauvais clustering

Modélisation

Choix du modèle:

DBScan: Mauvais clustering.

Clustering hiérarchique : 3 clusters ont une taille inferieur à 100

Kmeans: 3 à 4 clusters optimal avec des tailles de clusters relativement correct

On choisit Kmeans mais le nombre de cluster reste à verifier (3 ou 4)

Modelisation

Modélisation: Kmeans

Cluster 3 < 500
On choisit donc n_cluster = 3
Interessant de voir a quoi correspond ce cluster 3 ??

Modélisation : Kmeans

Cluster comparison

n_cluster: 4

Modélisation : Kmeans

n_cluster : 3

Modélisation: Kmeans

Cluster comparison

n_cluster: 3

Cluster 0
Cluster 1
Cluster 2

Cluster 1 : client mécontent (avis défavorable, délais de livraison trop long)

Cluster 2 : client réguliers (achat fréquent et dépensiers)

Cluster 0 : client occasionnelles (1 achat)

Maintenance du modèle

• On splitte le jeux de données tout les 2 mois

Dataframe 1	0.0 MOIS	248 clients
Dataframe 2	1.0 MOIS	728 clients
Dataframe 3	2.0 MOIS	4006 clients
Dataframe 4	2.0 MOIS	5545 clients
Dataframe 5	2.0 MOIS	6681 clients
Dataframe 6	2.0 MOIS	7868 clients
Dataframe 7	2.0 MOIS	11448 clients
Dataframe 8	2.0 MOIS	11591 clients
Dataframe 9	2.0 MOIS	13389 clients
Dataframe 10	_ 2.0 MOIS	12783 clients
Dataframe 11	2.0 MOIS	12149 clients
Dataframe 12	1.0 MOIS	5017 clients

- On supprime les 2er Dataframe car peu de clients
- On calcule ensuite l'ARI (Adjusted Rand score)

Maintenance du modèle

Chute de l'ARI au bout du 8eme mois Maintenance à faire tout les 8 mois

Conclusion

Conclusion:

- Meilleur algorithme: K-means avec 3 clusters
- Maintenance du modèle tous les 8 mois
- 3 profils clients:
 - client mécontent (avis défavorable, délais de livraison trop long)
 - client réguliers (achat fréquent et dépensiers)
 - client occasionnelles (1 achat)