Задача 1. Расставить пределы интегрирования двумя способами в двойном

интеграле $\iint_D f(x,y) dx dy$, и вычислить данный интеграл

1.1.
$$D: x + y = 2$$
, $y = x^2$, $y = 0$, $f(x, y) = x - y$.

1.2.
$$D: y = 2x^2, y = x + 3, y = 0$$
 $f(x, y) = 2x - y$.

1.3.
$$D: y = 4 - x^2, y = -3x, f(x, y) = x + 2y$$

1.4.
$$D: yx = 1, y = 0, y = x, x = 2, f(x, y) = x + y$$
.

1.5.
$$D: y = 2 - x^2, y = 2x - 1, f(x, y) = xy$$
.

1.6.
$$D: y = \sqrt{9 - x^2}, y = \sqrt{25 - x^2}, |x| = 3, f(x, y) = y$$

1.7.
$$D: y = 6x, y = 3x^2, x = 1$$
 $f(x, y) = x - 4y$.

1.8.
$$D: x^2 - 2x + y^2 + 2y + 1 = 0, y = x - 1 (y \le x - 1), f(x, y) = 2.$$

1.9.
$$D: x^2 + y^2 = 4$$
, $y = \sqrt{3x}(y^2 \ge 3x)$, $y = 0$, $f(x, y) = y$

1.10.
$$D: x^2 + y^2 = 2x, y = x, y = 0, f(x, y) = y.$$

1.11.
$$D: y=13-x^2, y=5x-1, y=-\sqrt{x}-1 \quad f(x,y)=x-2y$$
.

1.12.
$$D: y = 2-x^2, y = 2x-1, f(x, y) = x-y$$

1.13.
$$D: xy = 8, y = x^2, y = 16, f(x, y) = x - 2y$$
.

1.14.
$$D: y = x-1, y^2 = x+1, f(x, y) = 2y$$
.

1.15.
$$D: y = x^3, y = x - 3, x = 0, x = 2, f(x, y) = 2y$$

1.16.
$$D: y = x^2 + 1, y = x, x = 0, y = 3 - x, f(x, y) = x + 2y$$
.

1.17.
$$D: y = \sqrt{x}, y = 2 - x, y = 0, f(x, y) = 3x - y$$
.

1.18.
$$D: y = 2\sqrt{x+1}, y+x=2, y=0, f(x,y) = 2x-y$$

1.19.
$$D: y = x^2 - 2x, y = 4x - x^2, f(x, y) = x$$

1.20.
$$D$$
: треугольник с вершинами A(1,2), B(3,2), C(0,1), $f(x, y) = 2x - y$.

1.21.
$$D: yx = 2, y = x, y = 2x$$
 $f(x, y) = x$

1.22.
$$D: x = y^2, y = x - 2, f(x, y) = 2x - 3y$$

1.23.
$$D: x = 4, y = x, y = 2x, f(x, y) = xy + 2x$$
.

1.24.
$$D: 2y^2 - 2x^2 = 1, y = 2x^2, f(x, y) = x - y$$

1.25.
$$D: y^2 = x, x^2 + y^2 = 2x, y = 0, (y \ge 0), f(x, y) = y$$

1.26.
$$D: yx = 9, y = x, x = 5 \quad f(x, y) = \frac{9x}{y^3}$$

1.27.
$$D: y^2 = 2x + 2, y^2 = 2 - x, \quad f(x, y) = \frac{1}{y+2}.$$

1.28.
$$D: yx = 1, y = x, x = 3$$
 $f(x, y) = \frac{y^2}{x^2}$.

1.29.
$$D: x^2 - y^2 = 2(x^2 - y^2 \ge 2), x + 4 = y^2, f(x, y) = x - y$$

1.30.
$$D: y = \sqrt{x+2}, y = x, y = 0, f(x, y) = x-5y$$

1.31.
$$D: y = x^2/2, y = 4-x, f(x, y) = y$$

Задача 2. Изменить порядок интегрирования.

2.1.
$$\int_{-\sqrt{2}}^{-1} dx \int_{0}^{\sqrt{2-x^2}} f dy + \int_{-1}^{0} dx \int_{0}^{x^2} f dy$$

2.2.
$$\int_{0}^{1/\sqrt{2}} dy \int_{0}^{\arcsin y} f \, dx + \int_{1/\sqrt{2}}^{1} dy \int_{0}^{\arccos y} f \, dx$$

2.3.
$$\int_{0}^{1} dy \int_{-y}^{0} f dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f dx$$

2.4.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \ dy + \int_{1}^{2} dx \int_{0}^{2-x} f \ dy$$

2.5.
$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f \ dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f \ dx$$

2.6.
$$\int_{-2}^{-\sqrt{3}} dx \int_{0}^{\sqrt{4-x^2}} f dy + \int_{-\sqrt{3}}^{0} dx \int_{0}^{2-\sqrt{4-x^2}} f dy$$

2.7.
$$\int_{0}^{1} dy \int_{0}^{\sqrt[3]{y}} f \ dx + \int_{1}^{2} dy \int_{0}^{2-y} f \ dx$$

2.8.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \ dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f \ dy$$

2.9.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{e} dy \int_{\ln y}^{1} f \ dx$$

2.10.
$$\int_{0}^{1} dx \int_{0}^{x} f \ dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^2}} f \ dy$$

2.11.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f \ dx$$

2.12.
$$\int_{0}^{\sqrt{3}} dx \int_{\sqrt{4-x^2}-2}^{0} f dy + \int_{\sqrt{3}}^{2} dx \int_{-\sqrt{4-x^2}}^{0} f dy$$

2.13.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{2} dy \int_{0}^{\sqrt{2-y}} f \ dx$$

2.14.
$$\int_{0}^{\pi/4} dx \int_{0}^{\sin x} f \ dy + \int_{\pi/4}^{\pi/2} dx \int_{0}^{\cos x} f \ dy$$

2.15.
$$\int_{0}^{1} dy \int_{0}^{y} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^{2}}} f \ dx$$

2.16.
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x}} f \ dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} f \ dy$$

2.17.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f \ dx + \int_{1}^{e} dy \int_{-1}^{-\ln y} f \ dx$$

2.18.
$$\int_{-2}^{-\sqrt{3}} dx \int_{-\sqrt{4-x^2}}^{0} f dy + \int_{-\sqrt{3}}^{0} dx \int_{\sqrt{4-x^2}-2}^{0} f dy$$

2.19.
$$\int_{0}^{\pi/4} dy \int_{0}^{\sin y} f \ dx + \int_{\pi/4}^{\pi/2} dy \int_{0}^{\cos y} f \ dx.$$

2.20.
$$\int_{0}^{1} dx \int_{1-x^{2}}^{1} f dy + \int_{1}^{e} dx \int_{\ln x}^{1} f dy$$

2.21.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{0} f dx$$

2.22.
$$\int_{-\sqrt{2}}^{-1} dx \int_{-\sqrt{2-x^2}}^{0} f dy + \int_{-1}^{0} dx \int_{x}^{0} f dy$$

2.23.
$$\int_{-2}^{-1} dy \int_{0}^{\sqrt{2+y}} f \ dx + \int_{-1}^{0} dy \int_{0}^{\sqrt{-y}} f \ dx$$

2.24.
$$\int_{-2}^{-1} dx \int_{-(2+x)}^{0} f dy + \int_{-1}^{0} dx \int_{\sqrt[3]{x}}^{0} f dy$$

2.25.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^2}} f \ dx$$

2.26.
$$\int_{0}^{1} dy \int_{0}^{y} f \ dx + \int_{1}^{e} dy \int_{\ln y}^{1} f \ dx$$

2.27.
$$\int_{0}^{\sqrt{3}} dx \int_{0}^{2-\sqrt{4-x^2}} f dy + \int_{\sqrt{3}}^{2} dx \int_{0}^{\sqrt{4-x^2}} f dy$$

2.28.
$$\int_{0}^{1} dy \int_{0}^{y^{3}} f \ dx + \int_{1}^{2} dy \int_{0}^{2-y} f \ dx$$

2.29.
$$\int_{-2}^{-1} dy \int_{-(2+y)}^{0} f dx + \int_{-1}^{0} dy \int_{\sqrt[3]{y}}^{0} f dx$$

2.30.
$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{0} f dy + \int_{1}^{2} dx \int_{-\sqrt{2-x}}^{0} f dy$$

2.31.
$$\int_{-\sqrt{2}}^{-1} dy \int_{-\sqrt{2-y^2}}^{0} f dx + \int_{-1}^{0} dy \int_{y}^{0} f dx.$$

Задача 3. Найти площадь фигуры, ограниченной данными линиями.

3.1.
$$x^2 + y^2 = 36$$
, $3\sqrt{2}y = x^2 \ (y \ge 0)$.

3.2.
$$y = \sqrt{12 - x^2}$$
, $y = 2\sqrt{3} - \sqrt{12 - x^2}$, $x = 0$ $(x \ge 0)$.

3.3.
$$y = \frac{3}{2}x$$
, $y = 4 - (x - 1)^2$, $x = 0$.

3.4.
$$y = \frac{3}{2}\sqrt{x}$$
, $y = \frac{3}{2x}$, $x = 4$.

3.5.
$$y = 3/x$$
, $y = 4e^x$, $y = 3$, $y = 4$.

3.6.
$$y^2 = 10x + 25$$
, $y^2 = -6x + 9$

3.7.
$$x^2 + y^2 = 12$$
, $x\sqrt{6} = y^2 \ (x \ge 0)$.

3.8.
$$y = 6 - \sqrt{36 - x^2}$$
, $y = \sqrt{36 - x^2}$, $x = 0$ ($x \ge 0$).

3.9.
$$y = 20 - x^2$$
, $y = -8x$.

3.10.
$$y = \frac{3}{x}$$
, $y = 8e^x$, $y = 3$, $y = 8$.

3.11.
$$x = \sqrt{36 - y^2}$$
, $x = 6 - \sqrt{36 - y^2}$.

3.12.
$$y = 2/x$$
, $y = 7e^x$, $y = 2$, $y = 7$.

3.13.
$$y = \sqrt{6 - x^2}$$
, $y = \sqrt{6} - \sqrt{6 - x^2}$.

3.14.
$$x^2 + y^2 = 72$$
, $6y = -x^2 \ (y \le 0)$.

3.15.
$$y = 25/4 - x^2$$
, $y = x - 5/2$.

3.16.
$$x = 8 - y^2$$
, $x = -2y$.

3.17.
$$y = 11 - x^2$$
, $y = -10x$.

3.18.
$$x^2 + y^2 = 12$$
, $-\sqrt{6}y = x^2 \ (y \le 0)$.

3.19.
$$y = \frac{\sqrt{x}}{2}$$
, $y = \frac{1}{2x}$, $x = 16$.

3.20.
$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$
, $x = 4$

3.21.
$$y = \frac{3}{2}\sqrt{x}$$
, $y = \frac{3}{2x}$, $x = 9$.

3.22.
$$x = 5 - y^2$$
, $x = -4y$.

3.23.
$$y = \frac{1}{x}$$
, $y = 6e^x$, $y = 1$, $y = 6$.

3.24.
$$y = \sqrt{24 - x^2}$$
, $2\sqrt{3}y = x^2$, $x = 0$ $(x \ge 0)$.

3.25.
$$y = \sqrt{18 - x^2}$$
, $y = 3\sqrt{2} - \sqrt{18 - x^2}$.

3.26.
$$y = 3\sqrt{x}$$
, $y = 3/x$, $x = 4$.

3.27.
$$y = 32 - x^2$$
, $y = -4x$.

3.28.
$$x = 27 - y^2$$
, $x = -6y$.

3.29.
$$x = \sqrt{72 - y^2}$$
, $6x = y^2$, $y = 0$ $(y \ge 0)$.

3.30.
$$y = 3\sqrt{x}$$
, $y = 3/x$, $x = 9$.

3.31.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $(x \le 0)$.

Задача4. Найти площадь фигуры, ограниченной данными линиями.

4.1.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = x$, $x = 0$.

4.2.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = x$, $x = 0$.

4.3.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x/\sqrt{3}$, $x = 0$.

4.4.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = x/\sqrt{3}$.

4.5.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = \sqrt{3}x$, $x = 0$.

4.6.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = \sqrt{3}x$, $x = 0$.

4.7.
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = \sqrt{3}x$.

4.8.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.9.
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.10.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = 0$, $y = x$.

4.11.
$$y^2 - 8y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.12.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x/\sqrt{3}$, $x = 0$.

4.13.
$$y^2 - 6y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x$, $x = 0$.

4.14.
$$y^2 - 6y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.15.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = 0$, $y = x/\sqrt{3}$.

4.16.
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = x/\sqrt{3}$.

4.17.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x$, $x = 0$.

4.18.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.19.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = x$.

4.20.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = \sqrt{3}x$, $x = 0$.

4.21.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 10x + y^2 = 0$, $y = 0$, $y = \sqrt{3}x$.

4.22.
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.23.
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = x$.

4.24.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = x/\sqrt{3}$, $x = 0$.

4.25.
$$x^2 - 6x + y^2 = 0$$
, $x^2 - 10x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.26.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.27.
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.28.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.29.
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

4.30.
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = \sqrt{3}x$.

4.31.
$$y^2 - 6y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x$, $x = 0$.

${f 3}$ адача ${f 5}$. Пластинка D задана ограничивающими ее кривыми, μ - поверхностная

плотность. Найти массу пластинки.

5.1.
$$D: y = x^2 - 3x, y = 5x - x^2; \mu = 3x.$$

5.2.
$$D: |y| \le 2(1-|x|); \quad \mu = x^4 + y^4.$$

5.3.
$$D: x^2 + y^2 = 1, x = 0 (x \ge 0); \mu = (x + y)^2$$

5.4.
$$D: x = 0, y = 0, x + y = 2; \quad \mu = \sqrt{1 + x + y}.$$

5.5.
$$D: x^2 + y^2 = 4$$
, $x^2 + y^2 = 16$, $x = 0$, $y = 0$ $(x \le 0, y \ge 0)$; $\mu = \frac{2y - 3x}{x^2 + y^2}$.

5.6,
$$D: x = 2, y = 0, y^2 = 2x \quad (y \ge 0); \quad \mu = 7x^2/8 + 2y.$$

5.7.
$$D: y = x^2 - 2x, y = 6x - 3x^2; \mu = 6x.$$

5.8.
$$D: y = \frac{3}{x^2}, y = 16(1 - x^2), (x \ge 0); \quad \mu = 2.$$

5.9.
$$D: y = x^2 - 6x, y = 2x - x^2; \mu = x.$$

5.10.
$$D: y = x^2, x = y^2; \mu = x^2 + y^2.$$

5.11.
$$D: y = -x^2, y = \sqrt{x}, x = 1; \mu = x.$$

5.12.
$$D: y = x^2 - 4, y = x + 2; \mu = 2y + 1.$$

5.13.
$$D: yx = 4, y + x = 5; \mu = 2xy.$$

5.14.
$$D: y = 2x^3, y = 2x (x \ge 0); \mu = 7y.$$

5.15.
$$D: x^2 + y^2 = 4x$$
, $y = x (y \ge x)$; $\mu = x^2 + y^2$.

5.16.
$$D: x^2 + y^2 = 1$$
, $x^2 + y^2 = 16$, $x = 0$, $y = 0$ $(x \ge 0, y \ge 0)$; $\mu = \frac{x + y}{x^2 + y^2}$.

5.17.
$$D: x^2 + y^2 = 2x, x^2 + y^2 = 4x, y = 0 (y \ge 0); \mu = \sqrt{x^2 + y^2}.$$

5.18.
$$D: y = x^2 - 2x, y = 2x; \mu = x.$$

5.19.
$$D: x^2 + y^2 = 2x, y = x, y = 0 \ (0 \le y \le x); \mu = y.$$

5.20.
$$D: y = \frac{1}{3}x, y = \sqrt{x}, x = 1; \mu = \frac{y^3}{x^3}.$$

5.21.
$$D: x-2y=0, 2x-y=0, xy=2; \mu=x^2+y.$$

5.22.
$$D$$
: трапеция с вершинами $A(1;1), B(5;1), C(10;2), D(2;2); $\mu = \sqrt{xy - y^2}$.$

5.23.
$$D: x + y = 2, x^2 + y^2 = 2y, (x > 0); \mu = xy.$$

5.24.
$$D: x = 1, y = 0, y^2 = 4x (y \ge 0); \mu = x + 3y^2.$$

5.25.
$$D: y = x, yx = 1, x = 2; \mu = \frac{x^2}{v^2}.$$

5.26.
$$D: x^2 + y^2 = 2x, y = x, y = 0 (0 \le y \le x); \mu = x.$$

5.27.
$$D: x^2 + y^2 = 2y, x^2 + y^2 = 3y, x = 0 \ (x \ge 0); \ \mu = \sqrt{x^2 + y^2}.$$

5.28.
$$D: x^2 + y^2 = 4x; \ \mu = \sqrt{16 - x^2 - y^2}.$$

5.29.
$$D: x = \frac{1}{2}, y = 0, y^2 = 8x \ (y \ge 0); \ \mu = 7x + 3y^2.$$

5.30.
$$D: x^2 + y^2 = 2y, y = x, (y \ge x); \mu = \sqrt{x^2 + y^2}.$$

5.31.
$$D: x = 2, y = 0, y^2 = x/2 \ (y \ge 0); \mu = 7x^2/2 + 8y.$$

Задача 6.

В вариантах 1-10 найти площадь фигуры, ограниченной данными линиями.

В вариантах 11-31 найти массу пластинки D, заданной неравенствами, если μ - поверхностная плотность.

6.1.
$$D: xy = 1, xy = 4, y = 2, y = 9$$
.

6.2.
$$D: x^2 = y, x^2 = 5y, y^2 = 7x, y^2 = 9x$$

6.3.
$$D: xy = 25, xy = 9, y = 4, y = 7$$

6.4.
$$D: xy = 3, xy = 5, y^2 = 7x, y^2 = 9x$$

6.5.
$$D: xy = 7, xy = 9, x = 3, x = 11$$

6.6.
$$D: x^2 = 11y, x^2 = 13y, y^2 = 12x, y^2 = 7x$$

6.7.
$$D: xy = 17, xy = 5, x^2 = 7y, x^2 = 13y$$

6.8.
$$D: xy = 9, xy = 17, y = 2, y = 19$$

6.9.
$$D: x^2 = 9y, x^2 = 15y, y^2 = 17x, y^2 = 8x$$

6.10.
$$D: xy = 25, xy = 5, x = 2, x = 17$$

6.11.
$$D: 1 \le x^2/9 + y^2/4 \le 4; y \ge 0, y \le x/2; \mu = 8y/x^3.$$

6.12.
$$D: 1 \le x^2/9 + y^2/4 \le 3; y \ge 0, y \le \frac{2}{3}x; \mu = y/x.$$

6.13.
$$D: x^2/4 + y^2 \le 1; \mu = 4y^4.$$

6.14.
$$D: 1 \le x^2/9 + y^2/4 \le 5; x \ge 0, y \ge 2x/3; \mu = x/y.$$

6.15.
$$D: 1 \le x^2/9 + y^2/4 \le 2; y \ge 0, y \le \frac{2}{3}x; \mu = y/x.$$

6.16.
$$D: x^2/4 + y^2/9 \le 1; x \ge 0, y \ge 0; \mu = x^3y.$$

6.17.
$$D: 1 \le x^2/16 + y^2 \le 3; x \ge 0, y \ge x/4; \mu = x/y^5.$$

6.18.
$$D: x^2/9 + y^2/25 \le 1; y \ge 0; \mu = x^2y.$$

6.19.
$$D: 1 \le x^2/16 + y^2/4 \le 4; \quad x \ge 0, \quad y \ge x/2; \quad \mu = x/y.$$

6.20.
$$D: x^2/9 + y^2 \le 1; x \ge 0; \mu = 7xy^6.$$

6.21.
$$D: 1 \le x^2 + y^2/16 \le 9; y \ge 0, y \le 4x; \mu = y/x^3.$$

6.22.
$$D: 1 \le x^2/4 + y^2 \le 25; x \ge 0, y \ge x/2; \mu = x/y^3.$$

6.23.
$$D: x^2/16 + y^2 \le 1; x \ge 0, y \ge 0; \mu = 5xy^7.$$

6.24.
$$D: 1 \le x^2/4 + y^2/9 \le 4; x \ge 0, y \ge 3x/2; \mu = x/y.$$

6.25.
$$D: x^2 + y^2/9 \le 1; y \ge 0; \mu = 35x^4y^3.$$

6.26.
$$D: x^2/4 + y^2 \le 1; x \ge 0, y \ge 0; \mu = 6x^3y^3.$$

6.27.
$$D: 1 \le x^2/4 + y^2/16 \le 5; x \ge 0, y \ge 2x; \mu = x/y.$$

6.28.
$$D: x^2/9 + y^2/4 \le 1; \mu = x^2y^2.$$

6.29.
$$D: 1 \le x^2/4 + y^2/9 \le 36; x \ge 0, y \ge \frac{3}{2}x; \mu = 9x/y^3.$$

6.30.
$$D: 1 \le x^2/9 + y^2/16 \le 2; y \ge 0, y \le \frac{4}{3}x; \mu = 27y/x^5.$$

6.31.
$$D: x^2/100 + y^2 \le 1; x \ge 0, y \ge 0; \mu = 6xy^9.$$

Задача 7. Найти объем тела, заданного ограничивающими его поверхностями.

7.1.
$$x = 4\sqrt{2y}$$
, $x = \sqrt{2y}$, $z = 0$, $z + y = 1$.

7.2.
$$x^2 + y^2 = 8$$
, $x = \sqrt{2y}$, $x = 0$, $z = 3y$, $z = 0$.

7.3.
$$x + y = 6$$
, $x = \sqrt{3y}$, $z = 4x/5$, $z = 0$.

7.4.
$$y = \sqrt{x}/3$$
, $y = x/9$, $z = 0$, $z = (3 + \sqrt{x})/9$.

7.5.
$$x + y = 6$$
, $y = \sqrt{3x}$, $z = 4y$, $z = 0$.

7.6.
$$x^2 + y^2 = 2$$
, $y = \sqrt{x}$, $y = 0$, $z = 0$, $z = 5x$.

7.7.
$$x = 7\sqrt{3y}$$
, $x = 2\sqrt{3y}$, $z = 0$, $z + y = 3$.

7.8.
$$x + y = 2$$
, $y = \sqrt{x}$, $z = 7y$, $z = 0$.

7.9.
$$y = 3\sqrt{x}$$
, $y = x$, $z = 0$, $z = 3 + \sqrt{x}$.

7.10.
$$y = \sqrt{x}$$
, $y = \frac{1}{3}x$, $z = 0$, $z = \frac{1}{6}(3 + \sqrt{x})$.

7.11.
$$x = 16\sqrt{2y}$$
, $x = \sqrt{2y}$, $z + y = 2$, $z = 0$.

7.12.
$$y = 6\sqrt{3x}$$
, $y = \sqrt{3x}$, $z = 0$, $x + z = 3$.

7.13.
$$y = 16\sqrt{2x}$$
, $y = \sqrt{2x}$, $z = 0$, $x + z = 2$.

7.14.
$$x^2 + y^2 = 50$$
, $x = \sqrt{5y}$, $x = 0$, $z = 0$, $z = 6y/11$.

7.15.
$$x = 5\sqrt{y}/2$$
, $x = 5y/6$, $z = 0$, $z = \frac{5}{6}(3 + \sqrt{y})$.

7.16.
$$x^2 + y^2 = 8$$
, $y = \sqrt{2x}$, $y = 0$, $z = 0$, $z = 5x$.

7.17.
$$x^2 + y^2 = 2$$
, $x = \sqrt{y}$, $x = 0$, $z = 6y$.

7.18.
$$x^2 + y^2 = 50$$
, $y = \sqrt{5x}$, $y = 0$, $z = 0$, $z = 7x$.

7.19.
$$x + y = 2$$
, $x = \sqrt{y}$, $z = 11x$, $z = 0$.

7.20.
$$y = 17\sqrt{2x}$$
, $y = 2\sqrt{2x}$, $z = 0$, $2x + 2z = 1$.

7.21.
$$x = 5\sqrt{y}$$
, $x = 5y$, $z = 0$, $z = 15(1 + \sqrt{y})$.

7.22.
$$x + y = 4$$
, $y = \sqrt{2x}$, $z = y$, $z = 0$.

7.23.
$$x = \sqrt{y}$$
, $x = \frac{1}{3}y$, $z = 0$, $z = \frac{1}{18}(3 + \sqrt{y})$.

7.24.
$$x + y = 8$$
, $y = \sqrt{4x}$, $z = 3y$, $z = 0$.

7.25.
$$x = 19\sqrt{2y}$$
, $x = 4\sqrt{2y}$, $z = 0$, $z + y = 2$.

7.26.
$$x + y = 4$$
, $x = \sqrt{2y}$, $z = x$, $z = 0$.

7.27.
$$x = 17\sqrt{2y}$$
, $x = 2\sqrt{2y}$, $z = 0$, $z + y = 1/2$.

7.28.
$$x^2 + y^2 = 18$$
, $y = \sqrt{3x}$, $y = 0$, $z = 0$, $z = 3x$.

7.29.
$$x = \sqrt{y}/3$$
, $x = y/9$, $z = 0$, $z = 7(3 + \sqrt{y})/9$.

7.30.
$$x^2 + y^2 = 18$$
, $x = \sqrt{3y}$, $x = 0$, $z = 0$, $z = 5y/7$.

7.31.
$$y = \sqrt{5x}$$
, $y = \sqrt{5x}$, $z = 0$, $z = 1 + \sqrt{x}$.

Задача 8. Найти объем тела, заданного ограничивающими его поверхностями.

8.1.
$$x^2 + y^2 = 7x$$
, $x^2 + y^2 = 10x$, $z = \sqrt{x^2 + y^2}$, $z = 0$, $y = 0$ ($y \le 0$)

8.2.
$$x^2 + y^2 = 4\sqrt{2}x$$
, $z = x^2 + y^2 - 16$, $z = 0$ $(z \ge 0)$.

8.3.
$$x^2 + y^2 = 4y$$
, $z = 6 - x^2$, $z = 0$.

8.4.
$$x^2 + y^2 = 3y$$
, $x^2 + y^2 = 6y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

8.5.
$$x^2 + y^2 = 8\sqrt{2}x$$
, $z = x^2 + y^2 - 64$, $z = 0$ $(z \ge 0)$.

8.6.
$$x^2 + y^2 = 4\sqrt{2}y$$
, $z = x^2 + y^2 - 16$, $z = 0$ $(z \ge 0)$.

8.7.
$$x^2 + y^2 = 2y$$
, $z = 5/4 - x^2$, $z = 0$.

8.8.
$$x^2 + y^2 = 10x$$
, $x^2 + y^2 = 13x$, $z = \sqrt{x^2 + y^2}$, $z = 0$, $y = 0$ $(y \ge 0)$

8.9.
$$x^2 + y^2 = y$$
, $x^2 + y^2 = 4y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

8.10.
$$x^2 + y^2 + 2x = 0$$
, $z = 17/4 - y^2$, $z = 0$.

8.11.
$$x^2 + y^2 = 2y$$
, $x^2 + y^2 = 5y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

8.12.
$$x^2 + y^2 + 4x = 0$$
, $z = 8 - y^2$, $z = 0$.

8.13.
$$x^2 + y^2 = 2x$$
, $z = 21/4 - y^2$, $z = 0$.

8.14.
$$x^2 + y^2 = 6x$$
, $x^2 + y^2 = 9x$, $z = \sqrt{x^2 + y^2}$, $z = 0$, $y = 0$ ($y \le 0$)

8.15.
$$x^2 + y^2 = 4y$$
, $x^2 + y^2 = 7y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

8.16.
$$x^2 + y^2 = 4x$$
, $z = 10 - y^2$, $z = 0$.

8.17.
$$x^2 + y^2 = 6\sqrt{2}y$$
, $z = x^2 + y^2 - 36$, $z = 0$ $(z \ge 0)$.

8.18.
$$x^2 + y^2 + 2\sqrt{2}y = 0$$
, $z = x^2 + y^2 - 4$, $z = 0$ $(z \ge 0)$.

8.19.
$$x^2 + y^2 = 2\sqrt{2}x$$
, $z = x^2 + y^2 - 4$, $z = 0$ $(z \ge 0)$.

8.20.
$$x^2 + y^2 = 2y$$
, $z = 9/4 - x^2$, $z = 0$.

8.21.
$$x^2 + y^2 = 2\sqrt{2}y$$
, $z = x^2 + y^2 - 4$, $z = 0$ $(z \ge 0)$.

8.22.
$$x^2 + y^2 = 8\sqrt{2}y$$
, $z = x^2 + y^2 - 64$, $z = 0$ $(z \ge 0)$.

8.23.
$$x^2 + y^2 = 5y$$
, $x^2 + y^2 = 8y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

8.24.
$$x^2 + y^2 = 2y$$
, $z = 13/4 - x^2$, $z = 0$.

8.25.
$$x^2 + y^2 + 2x = 0$$
, $z = 25/4 - y^2$, $z = 0$.

8.26.
$$x^2 + y^2 = 6\sqrt{2}x$$
, $z = x^2 + y^2 - 36$, $z = 0$ $(z \ge 0)$.

8.27.
$$x^2 + y^2 = 4x$$
, $z = 12 - y^2$, $z = 0$.

8.28.
$$x^2 + y^2 = 8x$$
, $x^2 + y^2 = 11x$, $z = \sqrt{x^2 + y^2}$, $z = 0$, $y = 0$ $(y \le 0)$

8.29.
$$x^2 + y^2 = 4y$$
, $z = 4 - x^2$, $z = 0$.

8.30.
$$x^2 + y^2 = 9x$$
, $x^2 + y^2 = 12x$, $z = \sqrt{x^2 + y^2}$, $z = 0$, $y = 0$ $(y \ge 0)$

8.31.
$$x^2 + y^2 + 2\sqrt{2}x = 0$$
, $z = x^2 + y^2 - 4$, $z = 0$ $(z \ge 0)$.

Задача 9. Вычислить интегралы.

9.1.
$$\iint_{D} \sqrt{x^2 + y^2} dx dy$$
, где D: $x^2 + y^2 \le 4x$, $y \ge -x/\sqrt{3}$, $y \le x$

9.2.
$$\iint_{D} (1 - \frac{y^2}{x^2}) dx dy$$
, где D: $x^2 + y^2 \le 9$, $y \le \frac{x}{\sqrt{3}}$, $y \ge 0$..

9.3.
$$\iint_{D} \ln(1+x^2+y^2) dx dy$$
, где D: $x^2+y^2 \ge 1$, $x^2+y^2 \le 9$, $y \ge -x$, $y \le \sqrt{3}x$.

9.4.
$$\iint_{D} \frac{\ln(x^2 + y^2)}{x^2 + y^2} dxdy$$
, где D: $1 \le x^2 + y^2 \le e^2$, $-\sqrt{3}x \le y \le 0$.

9.5.
$$\iint_D e^{x^2+y^2} dx dy$$
, где D: $1 \le x^2 + y^2 \le 4$, $x \le y \le \sqrt{3}x$

9.6.
$$\iint_{D} \sqrt{x^2 + y^2} \, dx dy$$
, где D: $x^2 + y^2 \le 2y$, $y \ge -\sqrt{3}x$, $y \ge x$

9.7.
$$\iint_{D} \cos(x^2 + y^2) dx dy$$
, где D: $x^2 + y^2 = \pi/6$, $y \ge -x$, $y \ge x$.

9.8.
$$\iint_{D} \sqrt{x^2 + y^2} dxdy$$
, где D: $x^2 + y^2 = 4y$, $x^2 + y^2 = 2y$

9.9.
$$\iint_D (x+2y) dx dy$$
, где D: $x^2 + y^2 - 2x \ge 0$, $x^2 + y^2 - 4x \le 0$, $y \ge 0$, $y \le \sqrt{3}x$

9.10.
$$\iint_D (x-y) dx dy$$
, где D: $x^2 - 2x + y^2 = 0$, $x^2 - 2y + y^2 = 0$.

9.11.
$$\iint_D (x^2 + y^2) dx dy$$
, где D: $x^2 + y^2 = 6y$, $y = x \ (y \ge x)$.

9.12.
$$\iint\limits_{D} \sqrt{16-x^2-y^2} dxdy$$
, где D: $x^2+y^2=16$, $x^2+y^2=4y$, $y=0$ $(y\geq 0, x\geq 0)$.

9.13.
$$\iint_D (x+y) dx dy$$
, где D: $x^2 - 2y + y^2 = 0$, $x^2 - 10y + y^2 = 0$, $x = 0$, $y = x$

9.14.
$$\iint_{D} \sin \sqrt{x^2 + y^2} \ dxdy$$
, где D: $x^2 + y^2 = 9$, $y \ge \sqrt{3}x$, $y \ge 0$.

9.15.
$$\iint_D x^2 y^3 dx dy$$
, где D: $x^2 + y^2 \le 25$, $y \le 2x$, $y \ge x$.

9.16.
$$\iint\limits_{D} \sqrt{\frac{9-x^2-y^2}{9+x^2+y^2}} dx dy \text{, где } D: 1 \leq x^2+y^2 \leq 9, \quad x \geq 0, \quad y \geq 0$$

9.17.
$$\iint_G \frac{x}{\sqrt{x^2 + y^2}} dx dy, \, \text{где D: } x^2 + y^2 \le 4y, \, y \ge x$$

9.18.
$$\iint_{D} \frac{dxdy}{\sqrt{9-x^2-y^2}}, \text{ где } D: x^2+y^2 \le 9, \quad y \ge x, \quad y \ge 0$$

9.19.
$$\iint_{D} \frac{dxdy}{\sqrt{4-x^2-y^2}}, \text{ где } D: \ x^2+y^2=4, \quad x^2+y^2=2x, \quad x=0 \ (y\geq 0)$$

9.20.
$$\iint_{\mathcal{D}} \sqrt{x^2 + y^2} dx dy$$
, где D: $x^2 + y^2 = 2x$, $x^2 + y^2 = 4x$, $y = x$ $(y \ge x)$.

9.21.
$$\iint_{D} \frac{\ln(x^2 + y^2)}{x^2 + y^2} dxdy$$
, где D: $e^2 \le x^2 + y^2 \le e^4$, $-x \le y \le x/\sqrt{3}$

9.22.
$$\iint\limits_{D} \ln(4+x^2+y^2) dx dy$$
, где D: $x^2+y^2 \ge 4$, $x^2+y^2 \le 25$, $y \ge x$, $y \ge -\sqrt{3}x$.

9.23.
$$\iint_D e^{4+x^2+y^2} dx dy$$
, где D: $9 \le x^2 + y^2 \le 16$, $-\sqrt{3}x \le y \le x$

9.24.
$$\iint_D (x+3y)dxdy$$
, где D: $x^2-4x+y^2=0$, $x^2-4y+y^2=0$

9.25.
$$\iint\limits_{D} \sqrt{9-x^2-y^2} \, dx dy$$
, где D: $x^2+y^2=9$, $x^2+y^2=3x$, $x=0$ $(x\geq 0,y\geq 0)$.

9.26.
$$\iint\limits_{\mathcal{D}} y \sqrt{x^2 + y^2} \, dx dy$$
, где D: $x^2 + y^2 = 3x$, $x^2 + y^2 = 6x$, $y = \sqrt{3}x$, $y = -x$.

9.27.
$$\iint_D \ln(1+x^2+y^2) dx dy$$
, где D: $4 \le x^2+y^2 \le 25$, $y \ge -\sqrt{3}x$

9.28.
$$\iint_{D} e^{-(x^2+y^2)} dx dy, \quad D: x^2+y^2=2, \quad x \le 0, \quad y \ge 0.$$

9.29.
$$\iint_{D} \frac{y^{2}}{\sqrt{x^{2} + y^{2}}} dx dy, D: y = x, x^{2} + y^{2} - 2y = 0, x^{2} + y^{2} - y = 0 (y \le x).$$

9.30.
$$\iint_{D} \sqrt{x^2 + y^2} e^{\sqrt{x^2 + y^2}} dx dy, \quad D: y = \sqrt{1 - x^2}, \quad y = 0, x = 0 (x \le 0).$$

9.31.
$$\iint_{D} \arcsin(x^2 + y^2) dx dy, \quad D: x^2 + y^2 = 1, y \le 0, x \ge 0;$$

Задача 10. Найти объем тела, заданного ограничивающими его поверхностями.

10.1.
$$z = \sqrt{81 - x^2 - y^2}$$
, $z = 5$, $x^2 + y^2 = 45$ (внутри цилиндра).

10.2.
$$z = 3\sqrt{x^2 + y^2}$$
, $z = 10 - x^2 - y^2$.

10.3.
$$z = \sqrt{64 - x^2 - y^2}$$
, $12z = x^2 + y^2$.

10.4.
$$z = 12\sqrt{x^2 + y^2}$$
, $z = 28 - x^2 - y^2$.

10.5.
$$z = \sqrt{9 - x^2 - y^2}$$
, $9z/2 = x^2 + y^2$.

10.6.
$$z = \sqrt{64 - x^2 - y^2}$$
, $z = 4$, $x^2 + y^2 = 39$ (внутри цилиндра).

10.7.
$$z = \sqrt{36 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/3}$.

10.8.
$$z = 15\sqrt{x^2 + y^2}/2$$
, $z = 17/2 - x^2 - y^2$.

10.9.
$$z = \sqrt{4/9 - x^2 - y^2}$$
, $z = x^2 + y^2$.

10.10.
$$z = \sqrt{4 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/255}$.

10.11.
$$z = \sqrt{100 - x^2 - y^2}$$
, $z = 6$, $x^2 + y^2 = 51$ (внутри цилиндра).

10.12.
$$z = 9\sqrt{x^2 + y^2}/2$$
, $z = 11/2 - x^2 - y^2$.

10.13.
$$z = \sqrt{\frac{16}{9} - x^2 - y^2}$$
, $2z = x^2 + y^2$.

10.14.
$$z = \sqrt{64 - x^2 - y^2}$$
, $z = 1$, $x^2 + y^2 = 60$ (внутри цилиндра).

10.15.
$$z = \sqrt{36 - x^2 - y^2}$$
, $9z = x^2 + y^2$.

10.16.
$$z = 21\sqrt{x^2 + y^2}/2$$
, $z = 23/2 - x^2 - y^2$.

10.17.
$$z = \sqrt{49 - x^2 - y^2}$$
, $z = 3$, $x^2 + y^2 = 33$ (внутри цилиндра).

10.18.
$$z = \sqrt{25 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/99}$.

10.19.
$$z = \sqrt{16 - x^2 - y^2}$$
, $6z = x^2 + y^2$.

10.20.
$$z = \sqrt{9 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/80}$.

10.21.
$$z = \sqrt{1 - x^2 - y^2}$$
, $3z/2 = x^2 + y^2$.

10.22.
$$z = 3\sqrt{x^2 + y^2}/2$$
, $z = 5/2 - x^2 - y^2$.

10.23.
$$z = 6\sqrt{x^2 + y^2}$$
, $z = 16 - x^2 - y^2$.

10.24.
$$z = \sqrt{9 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/35}$.

10.25.
$$z = \sqrt{25 - x^2 - y^2}$$
, $z = 1$, $x^2 + y^2 = 21$ (внутри цилиндра).

10.26.
$$z = \sqrt{9 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/8}$.

10.27.
$$z = \sqrt{36 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/63}$.

10.28.
$$z = \sqrt{144 - x^2 - y^2}$$
, $18z = x^2 + y^2$.

10.29.
$$z = 9\sqrt{x^2 + y^2}$$
, $z = 22 - x^2 - y^2$.

10.30.
$$z = \sqrt{16 - x^2 - y^2}$$
, $z = \sqrt{(x^2 + y^2)/15}$.

$$10.31 z = \sqrt{36 - x^2 - y^2}, \quad z = 2, \quad x^2 + y^2 = 27$$
 (внутри цилиндра).

Задача 11. Найти объем тела, заданного неравенствами.

11.1.
$$49 \le x^2 + y^2 + z^2 \le 169$$
, $-\sqrt{\frac{x^2 + y^2}{24}} \le z \le 0$, $y \ge 0$, $y \ge \frac{x}{\sqrt{3}}$.

11.2.
$$16 \le x^2 + y^2 + z^2 \le 100$$
, $\sqrt{\frac{x^2 + y^2}{15}} \le z \le \sqrt{\frac{x^2 + y^2}{3}}$, $\sqrt{3}x \le y \le 0$.

11.3.
$$16 \le x^2 + y^2 + z^2 \le 100$$
, $0 \le z \le \sqrt{\frac{x^2 + y^2}{24}}$, $y \le 0$, $y \le \frac{x}{\sqrt{3}}$.

11.4.
$$49 \le x^2 + y^2 + z^2 \le 144$$
, $z \le -\sqrt{\frac{x^2 + y^2}{99}}$, $y \ge \frac{x}{\sqrt{3}}$, $y \ge -\frac{x}{\sqrt{3}}$.

11.5.
$$36 \le x^2 + y^2 + z^2 \le 100$$
, $z \ge -\sqrt{\frac{x^2 + y^2}{63}}$, $\frac{x}{\sqrt{3}} \le y \le \sqrt{3}x$.

11.6.
$$1 \le x^2 + y^2 + z^2 \le 49$$
, $-\sqrt{\frac{x^2 + y^2}{35}} \le z \le \sqrt{\frac{x^2 + y^2}{3}}$, $-x \le y \le 0$.

11.7.
$$9 \le x^2 + y^2 + z^2 \le 81$$
, $0 \le z \le \sqrt{\frac{x^2 + y^2}{24}}$, $y \le 0$, $y \le \frac{x}{\sqrt{3}}$.

11.8.
$$1 \le x^2 + y^2 + z^2 \le 64$$
, $\sqrt{\frac{x^2 + y^2}{15}} \le z \le \sqrt{\frac{x^2 + y^2}{3}}$, $-\sqrt{3}x \le y \le 0$.

11.9.
$$64 \le x^2 + y^2 + z^2 \le 169$$
, $z \le -\sqrt{\frac{x^2 + y^2}{99}}$, $y \ge 0$, $y \ge -\sqrt{3}x$.

11.10.
$$36 \le x^2 + y^2 + z^2 \le 144$$
, $-\sqrt{\frac{x^2 + y^2}{24}} \le z \le 0$, $y \ge \sqrt{3}x$, $y \ge \frac{x}{\sqrt{3}}$.

11.11.
$$4 \le x^2 + y^2 + z^2 \le 36$$
, $z \ge -\sqrt{\frac{x^2 + y^2}{63}}$, $0 \le y \le -\frac{x}{\sqrt{3}}$.

11.12.
$$1 \le x^2 + y^2 + z^2 \le 49$$
, $0 \le z \le \sqrt{\frac{x^2 + y^2}{24}}$, $y \le -\frac{x}{\sqrt{3}}$, $y \le -\sqrt{3}x$.

11.13.
$$64 \le x^2 + y^2 + z^2 \le 144$$
, $z \ge -\sqrt{\frac{x^2 + y^2}{63}}$, $0 \le y \le \frac{x}{\sqrt{3}}$.

11.14.
$$4 \le x^2 + y^2 + z^2 \le 64$$
, $z \le \sqrt{\frac{x^2 + y^2}{3}}$, $-\frac{x}{\sqrt{3}} \le y \le 0$.

11.15.
$$25 \le x^2 + y^2 + z^2 \le 121, -\sqrt{\frac{x^2 + y^2}{24}} \le z \le 0, \quad y \ge -\frac{x}{\sqrt{3}}, \quad y \ge -\sqrt{3}x.$$

11.16.
$$1 \le x^2 + y^2 + z^2 \le 36$$
, $z \ge \sqrt{\frac{x^2 + y^2}{99}}$, $-\sqrt{3}x \le y \le \sqrt{3}x$.

11.17.
$$4 \le x^2 + y^2 + z^2 \le 49$$
, $z \ge \sqrt{\frac{x^2 + y^2}{99}}$, $y \le 0$, $y \le \sqrt{3}x$.

11.18.
$$25 \le x^2 + y^2 + z^2 \le 100$$
, $z \le -\sqrt{\frac{x^2 + y^2}{99}}$, $\sqrt{3}x \le y \le -\sqrt{3}x$.

11.19.
$$64 \le x^2 + y^2 + z^2 \le 196$$
, $-\sqrt{\frac{x^2 + y^2}{3}} \le z \le -\sqrt{\frac{x^2 + y^2}{15}}$, $0 \le y \le \sqrt{3}x$.

11.20.
$$4 \le x^2 + y^2 + z^2 \le 64$$
, $-\sqrt{\frac{x^2 + y^2}{35}} \le z \le \sqrt{\frac{x^2 + y^2}{3}}$, $x \le y \le 0$.

11.21.
$$16 \le x^2 + y^2 + z^2 \le 100$$
, $z \le \sqrt{\frac{x^2 + y^2}{3}}$, $-\sqrt{3}x \le y \le -\frac{x}{\sqrt{3}}$.

11.22.
$$36 \le x^2 + y^2 + z^2 \le 144$$
, $-\sqrt{\frac{x^2 + y^2}{3}} \le z \le -\sqrt{\frac{x^2 + y^2}{35}}$, $0 \le y \le -\sqrt{3}x$.

11.23.
$$16 \le x^2 + y^2 + z^2 \le 64$$
, $z \ge -\sqrt{\frac{x^2 + y^2}{63}}$, $-\frac{x}{\sqrt{3}} \le y \le -\sqrt{3}x$.

11.24.
$$4 \le x^2 + y^2 + z^2 \le 64$$
, $0 \le z \le \sqrt{\frac{x^2 + y^2}{24}}$, $y \le \sqrt{3}x$, $y \le \frac{x}{\sqrt{3}}$.

11.25.
$$36 \le x^2 + y^2 + z^2 \le 121$$
, $z \ge -\sqrt{\frac{x^2 + y^2}{99}}$, $y \ge 0$, $y \ge \sqrt{3}x$.

11.26.
$$9 \le x^2 + y^2 + z^2 \le 81$$
, $-\sqrt{\frac{x^2 + y^2}{3}} \le z \le \sqrt{\frac{x^2 + y^2}{35}}$, $0 \le y \le -x$.

11.27.
$$36 \le x^2 + y^2 + z^2 \le 144$$
, $z \le \sqrt{\frac{x^2 + y^2}{3}}$, $\sqrt{3}x \le y \le \frac{x}{\sqrt{3}}$.

11.28.
$$9 \le x^2 + y^2 + z^2 \le 64$$
, $z \ge \sqrt{\frac{x^2 + y^2}{99}}$, $y \le \frac{x}{\sqrt{3}}$, $y \le -\frac{x}{\sqrt{3}}$.

11.29.
$$16 \le x^2 + y^2 + z^2 \le 100$$
, $-\sqrt{\frac{x^2 + y^2}{3}} \le z \le \sqrt{\frac{x^2 + y^2}{35}}$, $0 \le y \le x$.

11.30.
$$64 \le x^2 + y^2 + z^2 \le 196$$
, $z \le \sqrt{\frac{x^2 + y^2}{3}}$, $\frac{x}{\sqrt{3}} \le y \le 0$.

11.31.
$$16 \le x^2 + y^2 + z^2 \le 81$$
, $z \ge \sqrt{\frac{x^2 + y^2}{99}}$, $y \le 0$, $y \le -\sqrt{3}x$.

Задача 12. Тело V задано ограничивающими его поверхностями, μ - плотность.
Найти массу тела.

12.1.
$$z^2 = 4(x^2 + y^2)$$
, $z = 6$, $y = 0$ $(y \ge 0)$, $\mu = z$.

12.2.
$$z = 2(x^2 + y^2)$$
, $z = 8$, $x = 0$ $(x \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.3.
$$z = 8 - 2(x^2 + y^2)$$
, $z = 0$, $y = 0$ $(y \ge 0)$, $\mu = z$.

12.4.
$$z = \frac{1}{2}(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $z = 0$, $x = 0$ $(x \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.5.
$$z^2 = 9(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $z = 0$, $x = 0$ $(z \ge 0, x \ge 0)$, $\mu = z$.

12.6.
$$z^2 = x^2 + y^2$$
, $z = 6 - x^2 - y^2$, $y = 0$ $(z \ge 0, y \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.7.
$$z = x^2 + y^2$$
, $x^2 + y^2 + z^2 = 20$, $x = 0$ $(x \ge 0)$, $\mu = z$.

12.8.
$$z = 2(x^2 + y^2)$$
, $z^2 = 4(x^2 + y^2)$, $y = 0$ $(y \ge 0)$, $\mu = \sqrt{x^2 + y^2}$

12.9.
$$x^2 + y^2 - z^2 = 1$$
, $x^2 + y^2 = 9$, $z = 0$ $(z \ge 0)$, $\mu = z$

12.10.
$$x^2 + y^2 - z^2 = -1$$
, $x^2 + y^2 = 4$, $z = 0$ $(z \ge 0)$, $\mu = z$

12.11.
$$x^2 + y^2 - z^2 = -1$$
, $z = 2$, $\mu = z$

12.12.
$$z = 2(x^2 + y^2)$$
, $z = 16 - 2(x^2 + y^2)$, $y = 0$ $(y \ge 0)$, $\mu = \sqrt{x^2 + y^2}$

12.13.
$$x^2 + y^2 + z^2 = 4$$
, $x = 0$, $z = 0$ $(z \ge 0, x \ge 0)$, $\mu = z$

12.14.
$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = z^2(x^2 + y^2 \le z^2)$, $z \ge 0$, $\mu = z$

12.15.
$$x^2 + y^2 + z^2 = 9$$
, $x^2 + y^2 + z^2 = 4$, $z = 0$, $y = 0$ ($z \ge 0$, $y \ge 0$), $\mu = \sqrt{x^2 + y^2 + z^2}$

12.16.
$$x^2 + y^2 + z^2 = 16$$
, $x^2 + y^2 + z^2 = 4$, $z = 0$, $x = 0$ ($z \ge 0$, $x \ge 0$), $\mu = z$

12.17.
$$x^2 + y^2 + z^2 = 2z$$
, $y = 0$ ($y \ge 0$), $\mu = \sqrt{x^2 + y^2 + z^2}$

12.18.
$$x^2 + y^2 + z^2 = 4z$$
, $x = 0$ ($x \ge 0$), $\mu = z$

12.19.
$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = 1$, $(x^2 + y^2 \le 1)$, $x = 0$ $(x \ge 0)$; $\mu = 4|z|$.

12.20.
$$z^2 = 64(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $y = 0$, $z = 0$ $(y \ge 0, z \ge 0)$, $\mu = x^2 + y^2$.

12.21.
$$x^2 + y^2 + z^2 = 16$$
, $x^2 + y^2 = 4$ $(x^2 + y^2 \le 4)$; $\mu = |z|$.

12.22.
$$z^2 = 4(x^2 + y^2)$$
, $x^2 + y^2 = 1$, $y = 0$, $z = 0(y \ge 0, z \ge 0)$, $\mu = 10(x^2 + y^2)$.

12.23.
$$x^2 + y^2 + z^2 = 1$$
, $x^2 + y^2 = 4z^2$, $x = 0$, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $\mu = 20z$.

12.24.
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 8z$, $x = 0$, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$; $\mu = 5x$.

12.25.
$$x^2 + y^2 = \frac{1}{25}z^2$$
, $x^2 + y^2 = \frac{1}{5}z$, $x = 0$, $y = 0$ $(x \ge 0, y \ge 0)$; $\mu = 14yz$.

12.26.
$$z^2 = 36(x^2 + y^2)$$
, $x^2 + y^2 = 1$, $x = 0$, $z = 0$ $(x \ge 0, z \ge 0)$, $\mu = x^2 + y^2$.

12.27.
$$x^2 + y^2 + z^2 = 16$$
, $x^2 + y^2 = 4$, $(x^2 + y^2 \le 4)$; $\mu = 2|z|$.

12.28.
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 6z$, $x = 0$, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$; $\mu = y$.

12.29.
$$x^2 + y^2 = \frac{4}{25}z^2$$
, $x^2 + y^2 = \frac{2}{5}z$, $x = 0$, $y = 0$, $(x \ge 0, y \ge 0)$; $\mu = xz$.

12.30.
$$x^2 + y^2 + z^2 = 9$$
, $x^2 + y^2 = 4$, $(x^2 + y^2 \le 4)$, $y = 0$ $(y \ge 0)$; $\mu = |z|$.

12.31

$$z^2 = 9(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $x = 0$, $y = 0$, $z = 0$ ($x \ge 0$, $y \ge 0$, $z \ge 0$), $\mu = x^2 + y^2$.

Задача 13. Найти объем тела, заданного ограничивающими его поверхностями.

13.1.
$$z = 4 + \sqrt{x^2 + y^2}$$
, $z \ge \frac{x^2 + y^2}{2}$

13.2.
$$z = x^2 + y^2$$
, $z = \frac{1}{2}(x^2 + y^2)$, $|x + y| = 1$, $|x - y| = 1$

13.3.
$$x^2 + y^2 + z^2 - 4 \le 0, x^2 + y^2 + 4z - 4 \le 0$$

13.4.
$$x^2 + y^2 + z^2 \le 25$$
, $-4 \le z \le 4$

13.5.
$$z^2 = 3(x^2 + y^2)$$
, $3z^2 = x^2 + y^2$, $x^2 + y^2 + z^2 = 2z$

13.6.
$$x^2 + y^2 + z^2 = 25$$
, $(x^2 + y^2)^2 = 25(x^2 - y^2)$, $|x| = |y|(|x| \ge |y|)$

13.7.
$$x^2 + y^2 + z^2 \le 4z$$
, $x^2 + y^2 + z^2 \ge 1$, $z \ge \sqrt{3(x^2 + y^2)}$

13.8.
$$x^2 + y^2 + (z - 2)^2 \le 4$$
, $x^2 + y^2 \ge \frac{z^2}{2}$

13.9.
$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = 4(1-z)$, $z \ge 0$

13.10.
$$z \le 6 - \sqrt{x^2 + y^2}$$
, $3z \ge x^2 + y^2$

13.11.
$$x^2 + y^2 \ge 1$$
, $x^2 + y^2 \le 16$, $y \ge x/\sqrt{3}$, $y \le \sqrt{3}x$, $z \ge 0$, $z \le \ln(x^2 + y^2 + 1)$

13.12.
$$z = x^2 + y^2$$
, $z = x^2 + 2y^2$, $y = x$, $y = 2x$, $x = 1$

13.13.
$$x^2 + y^2 + z^2 \le 9$$
, $x^2 + y^2 \ge 3|x|$

13.14.
$$x^2 + y^2 - 4z \ge 0$$
, $x^2 + y^2 + z^2 \le 14$

13.15.
$$x^2 + y^2 \le z^2 - 4z + 4$$
, $z \ge 1 - x^2 - y^2$, $0 \le z \le 1$

13.16.
$$x^2 + y^2 + z^2 \le 25$$
, $9(x^2 + y^2) \ge 16z^2$, $z \le 0$

13.17.
$$\frac{x^2}{9} + \frac{z^2}{25} = 1$$
, $\frac{x^2}{9} + \frac{y^2}{25} = 1$

13.18.
$$z \ge 2 - \sqrt{x^2 + y^2}$$
, $z \le 2 + \sqrt{x^2 + y^2}$, $z \ge x^2 + y^2$

13.19.
$$x^2 + y^2 + z^2 + 4z \le 0, z \le -\frac{\sqrt{x^2 + y^2}}{3}$$

13.20.
$$z \le 2 - \sqrt{x^2 + y^2}$$
, $z \ge x^2 + y^2$

13.21.
$$x^2 + y^2 + z^2 \le 4$$
, $x^2 + y^2 \ge 2|y|$

13.22.
$$x^2 + z^2 = 12z$$
, $x^2 + z^2 = 12y$, $y = 0$

13.23.
$$3x^2 + 3y^2 - z^2 = 0$$
, $x^2 + y^2 - z = 0$

13.24.
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{1} = 1$$
, $\frac{x^2}{4} + \frac{y^2}{9} = z$

13.25.
$$x^2 + y^2 + z^2 = 1$$
, $(x^2 + y^2)^2 = x^2 - y^2$, $|x| = |y|(|x| \ge |y|)$

13.26.
$$z \le 10 - \sqrt{x^2 + y^2}$$
, $5z \ge x^2 + y^2$

13.27.
$$x^2 + y^2 + z^2 \le 16$$
, $x^2 + y^2 \ge 4|x|$

13.28.
$$z \ge 6 - \sqrt{x^2 + y^2}$$
, $z \le 6 + \sqrt{x^2 + y^2}$, $z \ge \frac{x^2 + y^2}{3}$

13.29.
$$x^2 + y^2 + z^2 \le 4$$
, $x^2 + y^2 \le 4 - 4z$

13.30.
$$y^2 + z^2 = 12z$$
, $y^2 + z^2 = 12x$, $x = 0$

13.31.
$$\frac{x^2}{4} + \frac{z^2}{36} = 1$$
, $\frac{x^2}{4} + \frac{y^2}{36} = 1$

Задача 14. Найти поток векторного поля A через часть поверхности S, вырезаемую плоскостями P ₁и P₂или плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

14.1.
$$\vec{A} = (x+y)\vec{i} - (x-y)\vec{j} + xyz\vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 4$.

14.2.
$$\vec{A} = (x + xy)\vec{i} + (y - x^2)\vec{j} + (z - 1)\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 3$.

14.3.
$$\vec{A} = x\vec{i} + y\vec{j} + \sin z\vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 5$.

14.4.
$$\vec{A} = (xz + y)\vec{i} + (yz - x)\vec{j} + (z^2 - 2)\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 3$.

14.5.
$$\vec{A} = (x + xz^2)\vec{i} + y\vec{j} + (z - zx^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

14.6.
$$\vec{A} = x\vec{i} + (y + yz^2)\vec{j} + (z - zy^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

14.7.
$$\vec{A} = x\vec{i} + (y+z)\vec{j} + (z-y)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

14.8.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 2$.

14.9.
$$\vec{A} = xyz\vec{i} - x^2z\vec{j} + 3\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 2$.

14.10.
$$\vec{A} = x\vec{i} + y\vec{j} + z^3\vec{k}$$
, $S: x^2 + y^2 = 1$, $P_1: z = 0$, $P_2: z = 1$.

14.11.
$$\vec{A} = x\vec{i} + (y + yz)\vec{j} + (z - y^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

14.12.
$$\vec{A} = (x^3 + xy^2)\vec{i} + (y^3 + x^2y)\vec{j} + z^2\vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 3$.

14.13.
$$\vec{A} = (x + xy)\vec{i} + (y - x^2)\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

14.14.
$$\vec{A} = x\vec{i} + y\vec{j} - z\vec{k}$$
; $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 4.$

14.15.
$$\vec{A} = (x + xy^2)\vec{i} + (y - yx^2)\vec{j} + (z - 3)\vec{k}$$
, $S: x^2 + y^2 = z^2$ $(z \ge 0)$, $P: z = 1$.

14.16.
$$\vec{A} = (x+z)\vec{i} + (y+z)\vec{j} + (z-x-y)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

14.17.
$$\vec{A} = x\vec{i} + y\vec{j} + xyz\vec{k}$$
, $S: x^2 + y^2 = 1$, $P_1: z = 0$, $P_2: z = 5$.

14.18.
$$\vec{A} = xz\vec{i} + yz\vec{j} + (z^2 - 1)\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 4$.

14.19.
$$\vec{A} = x\vec{i} + y\vec{j} + 2z\vec{k}$$
, $S: x^2 + y^2 = 1$, $P_1: z = 0$, $P_2: z = 3$.

14.20.
$$\vec{A} = (x + xy^2)\vec{i} + (y - yx^2)\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

14.21.
$$\vec{A} = y\vec{i} - x\vec{j} + \vec{k}$$
, $S: x^2 + y^2 = z^2$ $(z \ge 0)$, $P: z = 4$.

14.22.
$$\vec{A} = x\vec{i} + y\vec{j} + \vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 2$.

14.23.
$$\vec{A} = x\vec{i} + y\vec{j} + (z-2)\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 1$.

14.24.
$$\vec{A} = xy\vec{i} - x^2\vec{j} + 3\vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 1$.

14.25.
$$\vec{A} = (x+y)\vec{i} + (y-x)\vec{j} + (z-2)\vec{k}$$
, $S: x^2 + y^2 = z^2$ $(z \ge 0)$, $P: z = 2$.

14.26.
$$\vec{A} = (x+y)\vec{i} + (y-x)\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

14.27.
$$\vec{A} = y^2 x \vec{i} - y x^2 \vec{j} + \vec{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 5$.

14.28.
$$\vec{A} = (x - y)\vec{i} + (x + y)\vec{j} + z^2\vec{k}$$
, $S: x^2 + y^2 = 1, P_1: z = 0, P_2: z = 2$.

14.29.
$$\vec{A} = (x + xz)\vec{i} + y\vec{j} + (z - x^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 4$ $(z \ge 0)$, $P: z = 0$.

14.30.
$$\vec{A} = (x+z)\vec{i} + y\vec{j} + (z-x)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

14.31.
$$\vec{A} = (x - y)\vec{i} + (x + y)\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

Задача 15. Найти поток векторного поля \vec{A} через часть плоскости P, расположенную в первом октанте (нормаль образует острый угол с осью Oz).

15.1.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: x + 2y + 2z = 2$.

15.2.
$$\vec{A} = -2x\vec{i} + y\vec{j} + 4z\vec{k}$$
, $P: 2x + 6y + 3z = 6$.

15.3.
$$\vec{A} = x\vec{i} - y\vec{j} + 6z\vec{k}$$
, $P: 2x + 4y + z = 2$.

15.4.
$$\vec{A} = 2x\vec{i} + 3y\vec{j} + z\vec{k}$$
, $P: 2x + 6y + 3z = 6$.

15.5.
$$\vec{A} = x\vec{i} + 4y\vec{j} + 5z\vec{k}$$
, $P: 2x + 4y + z = 2$.

15.6.
$$\vec{A} = x\vec{i} - y\vec{j} + 6z\vec{k}$$
, $P: 3x + 2y + 6z = 6$.

15.7.
$$\vec{A} = x\vec{i} + 9y\vec{j} + 8z\vec{k}$$
, $P: x + 2y + 3z = 1$.

15.8.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: 2x + 3y + z = 1$.

15.9.
$$\vec{A} = 2x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: x + y + z = 1$.

15.10.
$$\vec{A} = x\vec{i} + 2y\vec{j} + 5z\vec{k}$$
, $P: 2x + 4y + z = 2$.

15.11.
$$\vec{A} = y\vec{j} + z\vec{k}$$
, $P: x + y + z = 1$.

15.12.
$$\vec{A} = 8x\vec{i} + 11y\vec{j} + 17z\vec{k}$$
, $P: x + 2y + 3z = 1$.

15.13.
$$\vec{A} = x\vec{i} + 3y\vec{j} + 2z\vec{k}$$
, $P: x + y + z = 1$.

15.14.
$$\vec{A} = 2x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: 2x + 3y + z = 1$.

15.15.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: x + y + z = 1$.

15.16.
$$\vec{A} = 2x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: 6x + 3y + 2z = 6$.

15.17.
$$\vec{A} = 2x\vec{i} + 3y\vec{j}$$
, $P: x + y + z = 1$.

15.18.
$$\vec{A} = -x\vec{i} + y\vec{j} + 12z\vec{k}$$
, $P: 4x + y + 2z = 2$.

15.19.
$$\vec{A} = x\vec{i} + 2y\vec{j} + z\vec{k}$$
, $P: x + 2y + 2z = 2$.

15.20.
$$\vec{A} = x\vec{i} + 3y\vec{j} - z\vec{k}$$
, $P: 2x + 6y + 3z = 6$.

15.21.
$$\vec{A} = 2x\vec{i} + y\vec{j} - 2z\vec{k}$$
, $P: 4x + y + 2z = 2$.

15.22.
$$\vec{A} = y\vec{j} + 3z\vec{k}$$
, $P: x + 2y + 2z = 2$.

15.23.
$$\vec{A} = 2x\vec{i} + 3y\vec{j} + 4z\vec{k}$$
, $P: 2x + 3y + z = 1$.

15.24.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: 6x + 3y + 2z = 6$.

15.25.
$$\vec{A} = 2x\vec{i} + 5y\vec{j} + 5z\vec{k}$$
, $P: 3x + 2y + 6z = 6$.

15.26.
$$\vec{A} = 3x\vec{i} + 2z\vec{k}$$
, $P: 6x + 3y + 2z = 6$.

15.27.
$$\vec{A} = x\vec{i} + 3y\vec{j} + 8z\vec{k}$$
, $P: 2x + 4y + z = 2$.

15.28.
$$\vec{A} = x\vec{i} + y\vec{j} + z\vec{k}$$
, $P: 4x + y + 2z = 2$.

15.29.
$$\vec{A} = x\vec{i} + y\vec{j} + 2z\vec{k}$$
, $P: 4x + y + 2z = 2$.

15.30.
$$\vec{A} = -x\vec{i} + 2y\vec{j} + z\vec{k}$$
, $P: x + 2y + 3z = 1$.

15.31.
$$\vec{A} = 2x\vec{i} + 3y\vec{j} + z\vec{k}$$
, $P: 2x + 3y + z = 1$.

Задача 16. Найти поток векторного поля \vec{A} через часть плоскости P, расположенную в 1 октанте (нормаль образует острый угол с осью Oz).

16.1.
$$\vec{A} = (2x+1)\vec{i} - y\vec{j} + 3\pi z\vec{k}$$
, $P: x+3y+6z=3$.

16.2.
$$\vec{A} = 2\pi x \vec{i} + \pi y \vec{j} + (8-4z)\vec{k}$$
, $P: 12x + 4y + 3z = 12$.

16.3.
$$\vec{A} = 9\pi x \vec{i} + 2\pi y \vec{j} + 8\vec{k}$$
 $P: 6x + 24y + z = 3.$

16.4.
$$\vec{A} = \frac{7\pi}{2}x\vec{i} + 2\pi y\vec{j} + (z+1)\vec{k}$$
 $P: 4x+3y+12z=12.$

16.5.
$$\vec{A} = 9\pi y \vec{j} + (7z+1)\vec{k}$$
, $P: x+y+z=1$.

16.6.
$$\vec{A} = 3(\pi - 1)x\vec{i} + 6\pi y\vec{j} + 3(1 - \pi z)\vec{k}$$
 $P: 3x + 6y + 4z = 12.$

16.7.
$$\vec{A} = \pi x \vec{i} + \frac{1}{5} (9y+1) \vec{j} + \frac{4}{5} \pi z \vec{k}$$
, $P: 3x+2y+3z=6$.

16.8.
$$\vec{A} = 2\pi x \vec{i} + \pi y \vec{j} + \frac{10}{3} \vec{k}$$
 $P: 12x + 3y + 2z = 6.$

16.9.
$$\vec{A} = x\vec{i} + \frac{1}{7}(5\pi y + 2)\vec{j} + \frac{4}{7}\pi z\vec{k}$$
, $P: 2x + y + 8z = 2$.

16.10.
$$\vec{A} = \left(9\pi - \frac{1}{3}\right)x\vec{i} + \left(\frac{34}{3}\pi y + 1\right)\vec{j} + \frac{20}{3}\pi z\vec{k}$$
, $P: 27x + y + 9z = 9$.

16.11.
$$\vec{A} = \left(3\pi - \frac{1}{7}\right)x\vec{i} + \frac{62}{7}\pi y\vec{j} + \frac{1}{7}(1 - 2\pi z)\vec{k}$$
 $P: 48x + 3y + 2z = 6.$

16.12.
$$\vec{A} = \pi x \vec{i} + 2\pi y \vec{j} + \frac{10}{3} \vec{k}$$
 $P: 6x + 3y + z = 3.$

16.13.
$$\vec{A} = \frac{1}{7}\pi x \vec{i} + \left(y + \frac{2}{7}\right)\vec{j} + \pi z \vec{k}$$
, $P: 6x + 3y + 2z = 6$.

16.14.
$$\vec{A} = 7\pi x \vec{i} + 2\pi y \vec{j} + (7z + 2)\vec{k}$$
, $P: 2x + 2y + z = 2$.

16.15.
$$\vec{A} = \frac{5}{2}\pi x \vec{i} + \left(\frac{1}{2} - y\right)\vec{j} + 2\pi z \vec{k}$$
 $P: 3x + 24y + 2z = 6.$

16.16.
$$\vec{A} = \pi x \vec{i} + \frac{1}{9} \vec{j} - \frac{1}{3} z \vec{k}$$
, $P: x + 3y + 3z = 3$.

16.17.
$$\vec{A} = 4\vec{i} - 2y\vec{j} + 3\pi z\vec{k}$$
, $P: 4x + 12y + 3z = 12$.

16.18.
$$\vec{A} = 2\pi x \vec{i} + \frac{7}{2}\pi y \vec{j} + \left(z + \frac{1}{2}\right)\vec{k}$$
, $P: 6x + y + 6z = 3$.

16.19.
$$\vec{A} = 5x\vec{i} + 5(\pi z - 1)\vec{k}$$
, $P: 12x + 3y + 2z = 6$.

16.20.
$$\vec{A} = \frac{3}{4}\pi y \vec{i} + \left(3 - \frac{3}{2}z\right)\vec{k}$$
, $P: 24x + 4y + 3z = 12$.

16.21.
$$\vec{A} = \pi x \vec{i} + 2\pi y \vec{j} + (8-4z)\vec{k}$$
 $P: 12x + 4y + 3z = 12.$

16.22.
$$\vec{A} = \left(\pi - \frac{1}{3}\right)x\vec{i} + \left(3\pi y + \frac{1}{3}\right)\vec{j} + 2\pi z\vec{k}$$
, $P: 9x + 6y + 2z = 18$.

16.23.
$$\vec{A} = \vec{i} + 5y\vec{j} + 11\pi z\vec{k}$$
, $P: 3x + 3y + z = 3$.

16.24.
$$\vec{A} = \frac{9}{2}\pi x \vec{i} + \frac{(5y+1)}{2}\vec{j} + \pi z \vec{k}$$
, $P: 27x + 9y + z = 9$.

16.25.
$$\vec{A} = 14x\vec{i} + 18\pi y\vec{j} + 2\vec{k}$$
, $P: 3x + y + 3z = 3$.

16.26.
$$\vec{A} = (5y+3)\vec{j} + 11\pi z\vec{k}$$
, $P: 3x + y + 12z = 3$.

16.27.
$$\vec{A} = 3\pi y \vec{j} + (3-6z)\vec{k}$$
, $P: x+2y+4z=4$.

16.28.
$$\vec{A} = \frac{1}{2}\pi x \vec{i} + \vec{j} + \pi z \vec{k}$$
, $P: 3x + 2y + 6z = 6$.

16.29.
$$\vec{A} = \frac{3}{2}\pi x \vec{i} - 3y\vec{j} + \frac{3}{2}\vec{k}$$
 $P: 12x + y + 6z = 6.$

16.30.
$$\vec{A} = \frac{1}{2}\pi x \vec{i} + \pi y \vec{j} + \vec{k}$$
 $P: 6x + 3y + 4z = 12.$

16.31.
$$\vec{A} = \frac{7\pi}{4}x\vec{i} + \left(y + \frac{1}{4}\right)\vec{j} + \frac{1}{2}\pi z\vec{k}$$
 $P: x + 6y + 3z = 3.$

Задача 17. Найти поток векторного поля \vec{A} через замкнутую поверхность S (нормаль внешняя).

17.1.
$$\vec{A} = \left(y - \frac{5}{2}x\right)\vec{i} + \frac{x-1}{2}\vec{j} + \left(\sqrt{xy} + z\right)\vec{k}$$
, $S: x + y - \frac{1}{2}z = 2$, $x = 0$, $y = 0$, $z = 0$.

17.2.
$$\vec{A} = (e^{2y} + x)\vec{i} + (x - 2y)\vec{j} + (y^2 + 3z)\vec{k}$$
, $S: x - y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

17.3.
$$\vec{A} = (4e^y + 8x)\vec{i} + (4xz - 4y)\vec{j} + (e^{xy} - z)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2y + 3$.

17.4.
$$\vec{A} = \frac{\sqrt{z} + y}{3}\vec{i} + x\vec{j} + \left(z + \frac{5}{3}x\right)\vec{k}$$
, $S: z^2 = 8\left(x^2 + y^2\right)$, $z = 2$.

17.5.
$$\vec{A} = 2(x+z)\vec{i} + (xz+y)\vec{j} + (4xy-8)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 4x - 2y + 4z - 8$.

17.6.
$$\vec{A} = (4e^z + x)\vec{i} + (4\ln x + y)\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2x + 2y - 2z - 2$.

17.7.
$$\vec{A} = \frac{5x - 6y}{2}\vec{i} + \frac{11x^2 + 2y}{2}\vec{j} + \frac{x^2 - 4z}{2}\vec{k}$$
, $S: x + y + 2z = 2$, $x = 0$, $y = 0$, $z = 0$.

17.8.
$$\vec{A} = (\sin z + x)\vec{i} + (x - \frac{2}{3}y)\vec{j} + (z + y^2)\vec{k}$$
, $S: z^2 = 36(x^2 + y^2)$, $z = 6$.

17.9.
$$\vec{A} = (yz + \sqrt{z})\vec{i} + (y - \sqrt{x})\vec{j} + x^2y\vec{k}$$
, $S: z^2 = 4(x^2 + y^2)$, $z = 3$.

17.10.
$$\vec{A} = (\sin z + x)\vec{i} + \frac{7\ln x + 2y}{7}\vec{j} + \frac{e^{xy} - 2z}{7}\vec{k}, \ S: x^2 + y^2 + z^2 = 2x + 2y + 2z - 2.$$

17.11.
$$\vec{A} = (y^3z - 3x)\vec{i} + (\ln z + 6y)\vec{j} + (x^2 + 3z)\vec{k}$$
, $S: y - x + z = 1$, $x = 0$, $y = 0$, $z = 0$.

17.12.
$$\vec{A} = (e^y + 10x)\vec{i} + (\sin x - 5y)\vec{j} + (10z - xy)\vec{k}$$
, $S: x + 2y + z = 2$, $x = 0$, $y = 0$, $z = 0$.

17.13.
$$\vec{A} = (e^z + x)\vec{i} + (z - e^x)\vec{j} + (x^3 + 3e^y)\vec{k}$$
, $S: x + y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

17.14.
$$\vec{A} = (yz^3 - x)\vec{i} + (\sin x + \frac{1}{2}y)\vec{j} + (\ln x - z)\vec{k}$$
, $S: x + 2y - 3z = 6$, $x = 0$, $y = 0$, $z = 0$.

17.15.
$$\vec{A} = (y\sqrt{z} - 7x)\vec{i} + (x^2 - 7y)\vec{j} + (y^3 - 7z)\vec{k}$$
, $S: 3x - 2y + z = 6$, $x = 0$, $y = 0$, $z = 0$.

17.16.
$$\vec{A} = (x - \cos^3 y)\vec{i} - (e^{-3x} + \sqrt[3]{z})\vec{j} + (2y^3 - \frac{1}{2}z)\vec{k}$$
, $S: x^2 + y^2 = z^2$, $z = 1$, $z = 2$.

17.17.
$$\vec{A} = (ye^{-4z} - 3x)\vec{i} + (xz + 9y)\vec{j} + (3z + \ln x)\vec{k}$$
, $S : 2x + y + z = 2$, $x = 0$, $y = 0$, $z = 0$.

17.18.
$$\vec{A} = \left(yz^2 + \frac{1}{2}x\right)\vec{i} + \left(ze^x - y\right)\vec{j} + \left(z - xy^3\right)\vec{k}, \quad S: x^2 + y^2 = z^2, \ z = 1, \ z = 4.$$

17.19.
$$\vec{A} = (x - y^3)\vec{i} + (x \ln z - y)\vec{j} + (x + 3z/16)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2x + 3$.

17.20.
$$\vec{A} = (y \ln z + 9x)\vec{i} + (x^2 + 9y)\vec{j} + (x - 7y^2 + 9z)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2z$.

17.21.
$$\vec{A} = (y\cos z + x)\vec{i} + (ze^x + y)\vec{j} + (z - x^2y)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2z + 3$.

17.22.
$$\vec{A} = (\sqrt{z} + y^3 + 3x)\vec{i} + (2x + 3y)\vec{j} + (\sin x + 3z)\vec{k}$$
, $S: z^2 = x^2 + y^2$, $z = 1$.

17.23.
$$\vec{A} = (y^2 z^2 + 3x)\vec{i} + (xe^z - y)\vec{j} + (x + y - \frac{1}{2}z)\vec{k}$$
, $S: x^2 + y^2 = z^2$, $z = 1$, $z = 3$.

17.24.
$$\vec{A} = (3\sqrt{yz} - 2x)\vec{i} + (x^2 - 2y)\vec{j} + (12z - xy^3)\vec{k}$$
, $S: z^2 = 9(x^2 + y^2)$, $z = 3$.

17.25.
$$\vec{A} = (8x+1)\vec{i} + (zx-4y)\vec{j} + (e^x-z)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2y$.

17.26.
$$\vec{A} = (yz^3 + 2x)\vec{i} + (z\sin x - 3y)\vec{j} + (2\sin y + 2z)\vec{k}$$
, $S: x^2 + y^2 = z^2$, $z = 3$, $z = 6$.

17.27.
$$\vec{A} = (\sqrt[5]{y} + \ln z^2)\vec{i} + (x^2 + 7y)\vec{j} + xy\vec{k}$$
, $S: x^2 + y^2 + z^2 = 2x$.

17.28.
$$\vec{A} = (3x + 7z^2)\vec{i} + (5z^2 - 2y)\vec{j} + (\sqrt[3]{xy} + 2z)\vec{k}$$
, $S: z^2 = 4(x^2 + y^2)$, $z = 2$.

17.29.
$$\vec{A} = (8y^3z - x)\vec{i} + (x^2 - z^3)\vec{j} + (xy - 2z)\vec{k}$$
, $S: 2x + 3y - z = 6$, $x = 0$, $y = 0$, $z = 0$.

17.30.
$$\vec{A} = (x + z^5 y^2)\vec{i} + (x \ln z + y)\vec{j} + (\sqrt{x^2 + y^2} + z)\vec{k}$$
, $S: x^2 + y^2 = z^2$, $z = 2$, $z = 3$.

17.31.
$$\vec{A} = (\sqrt{y+z} - 2x)\vec{i} + (ze^x + 3y)\vec{j} + \sqrt{y^3 + x} \vec{k}$$
, $S: x^2 + y^2 = z^2$, $z = 2$, $z = 5$.

Задача 18. Найти поток векторного поля \vec{A} через замкнутую поверхность S в направлении внешней нормали двумя способами: непосредственно и по формуле Гаусса -Остроградского).

18.1.
$$\vec{A} = (x+z)\vec{i} + y\vec{k}$$
, $S: z = 8 - x^2 - y^2$, $z = x^2 + y^2$.

18.2.
$$\vec{A} = x\vec{i} + z\vec{j} - y\vec{k}$$
, $S: z = 4 - 2(x^2 + y^2), z = 2(x^2 + y^2)$.

18.3.
$$\vec{A} = 6x\vec{i} - 2y\vec{j} - z\vec{k}$$
, $S: z = 3 - 2(x^2 + y^2)$, $z = x^2 + y^2$ $(z \ge 0)$.

18.4.
$$\vec{A} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$.

18.5.
$$\vec{A} = z\vec{i} + x\vec{j} - z\vec{k}$$
, $S: 4z = x^2 + y^2$, $z = 4$.

18.6.
$$\vec{A} = z\vec{i} + yz\vec{j} - xy\vec{k}$$
, $S: x^2 + y^2 = 4, z = 0, z = 1$.

18.7.
$$\vec{A} = x^2 \vec{i} + xy \vec{j} + 3z \vec{k}$$
, $S: x^2 + y^2 = z^2, z = 4$.

18.8.
$$\vec{A} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $x^2 + y^2 = z^2$ $(z \ge 0)$.

18.9.
$$\vec{A} = xz\vec{i} + z\vec{j} + y\vec{k}$$
, $S: x^2 + y^2 = 1 - z$, $z = 0$.

18.10.
$$\vec{A} = (y + 2z)\vec{i} - y\vec{j} + 3x\vec{k}$$
, $S: 3z = 27 - 2(x^2 + y^2)$, $z^2 = x^2 + y^2$, $(z \ge 0)$.

18.11.
$$\vec{A} = (x^2 + xy)\vec{i} + (y^2 + yz)\vec{j} + (z^2 + xz)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $x^2 + y^2 = z^2$ $(z \ge 0)$.

18.12.
$$\vec{A} = 3x\vec{i} - z\vec{j}$$
, $S: z = 6 - x^2 - y^2$, $z^2 = x^2 + y^2$ ($z \ge 0$).

18.13.
$$\vec{A} = -x\vec{i} + 2y\vec{j} + yz\vec{k}$$
, $S: x^2 + y^2 = z^2, z = 4$.

18.14.
$$\vec{A} = 2xy\vec{i} + 2xy\vec{j} + z^2\vec{k}$$
, $S: x^2 + y^2 + z^2 = \sqrt{2}$, $z = 0$ $(z \ge 0)$.

18.15.
$$\vec{A} = x\vec{i} - (x + 2y)\vec{j} + y\vec{k}$$
, $S: x^2 + y^2 = 1$, $z = 0$, $x + 2y + 3z = 6$.

18.16.
$$\vec{A} = x\vec{i} - 2y\vec{j} + 3z\vec{k}$$
, $S: x^2 + y^2 = z, z = 2x$.

18.17.
$$\vec{A} = y\vec{i} + 2zy\vec{j} + 2z^2\vec{k}$$
, $S: x^2 + y^2 = 1 - z$, $z = 0$.

18.18.
$$\vec{A} = (2x + y)\vec{i} + (y + 2z)\vec{k}$$
, $S: z = 2 - 4(x^2 + y^2), z = 4(x^2 + y^2)$.

18.19.
$$\vec{A} = z\vec{i} - 4y\vec{j} + 2x\vec{k}$$
, $S: z = x^2 + y^2, z = 1$.

18.20.
$$\vec{A} = 3y^2x\vec{i} + 3x^2y\vec{j} + z^3\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1, z = 0, (z \ge 0)$.

18.21.
$$\vec{A} = (x^2 + y^2)\vec{i} + (x^2 + y^2)\vec{j} + (x^2 + y^2)\vec{k}$$
, $S: z = x^2 + y^2, z = 0, z = 1$.

18.22.
$$\vec{A} = y^2 x \vec{i} + z^2 y \vec{j} + x^2 z \vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$.

18.23.
$$\vec{A} = xy\vec{i} + yz\vec{j} + zx\vec{k}$$
, $S: x^2 + y^2 + z^2 = 16$, $x^2 + y^2 = z^2$ $(z \ge 0)$.

18.24.
$$\vec{A} = (zx + y)\vec{i} + (zy - x)\vec{j} - (x^2 + y^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $z = 0$ $(z \ge 0)$.

18.25.
$$\vec{A} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$
, $S: x^2 + y^2 + z^2 = 2, z = 0 \ (z \ge 0)$.

18.26.
$$\vec{A} = (3x - y - z)\vec{i} + 3y\vec{j} + 2z\vec{k}$$
, $S: z = x^2 + y^2$, $z = 2y$.

18.27.
$$\vec{A} = (zx + y)\vec{i} - (2y - x)\vec{j} - (x^2 + y^2)\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $z = 0$ $(z \ge 0)$.

18.28.
$$\vec{A} = x^2 \vec{i}$$
, $S: z = 1 - x - y$, $x = 0$, $y = 0$, $z = 0$.

18.29.
$$\vec{A} = x^2 \vec{i} + y \vec{j} + z \vec{k}$$
, $S: x^2 + y^2 + z^2 = 1, z = 0 \ (z \ge 0)$.

18.30.
$$\vec{A} = y\vec{i} + y^2\vec{j} + yz\vec{k}$$
, $S: z = x^2 + y^2$, $z = 1, x = 0$, $y = 0$ (1 октант).

18.31.
$$\vec{A} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $x = 0$, $y = 0$, $z = 0$ (1 октант).

Задача 19. Найти поток векторного поля \vec{A} через замкнутую поверхность S (нормаль внешняя).

19.1.
$$\vec{A} = (x + y + z)\vec{i} + (2y - x)\vec{j} + (3z + y)\vec{k}$$
, $S: z = x^2 + y^2$, $y = x$, $y = 2x$, $x = 1$, $z = 0$.

19.2.
$$\vec{A} = 17x\vec{i} + 7y\vec{j} + 11z\vec{k}$$
, $S: z = x^2 + y^2$, $z = 2(x^2 + y^2)$, $y = x^2$, $y = x$.

19.3.
$$\vec{A} = 7x\vec{i} + z\vec{j} + (x - y + 5z)\vec{k}$$
, $S: z = x^2 + y^2$, $z = x^2 + 2y^2$, $y = x$, $y = 2x$, $x = 1$.

19.4.
$$\vec{A} = (x+y)\vec{i} + (y+z)\vec{j} + (z+x)\vec{k}$$
, $S: y = 2x, y = 4x, x = 1, z = y^2, z = 0$.

19.5.
$$\vec{A} = (zx + y)\vec{i} + (xy - z)\vec{j} + (x^2 + yz)\vec{k}$$
, $S: x^2 + y^2 = 2, z = 0, z = 1$.

19.6.
$$\vec{A} = xy\vec{i} + yz\vec{j} + zx\vec{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $x = 0$, $y = 0$, $z = 0$ (1 октант).

19.7.
$$\vec{A} = -2x\vec{i} + z\vec{j} + \vec{k}(x+y)$$
, $S: x^2 + y^2 = 2y$, $z = x^2 + y^2$, $z = 0$.

19.8.
$$\vec{A} = (y + 6x)\vec{i} + 5(x + z)\vec{j} + 4y\vec{k}$$
, $S: y = x, y = 2x, y = 2, z = x^2 + y^2, z = 0$.

19.9.
$$\vec{A} = 3xz\vec{i} - 2x\vec{j} + y\vec{k}$$
, $S: x + y + z = 2$, $x = 1, x = 0$, $y = 0, z = 0$.

19.10.
$$\vec{A} = (y+z)\vec{i} + (x-2y+z)\vec{j} + x\vec{k}$$
, $S: x^2 + y^2 = 1, z = x^2 + y^2, z = 0$.

19.11.
$$\vec{A} = y\vec{i} + 5y\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 = 1, z = x, z = 0 \ (z \ge 0)$.

19.12.
$$\vec{A} = x^2 \vec{i} + x \vec{j} + xz \vec{k}$$
, $S: z = x^2 + y^2$, $z = 1$, $x = 0$, $y = 0$ (1 октант).

19.13.
$$\vec{A} = x^2 \vec{i} + y^2 \vec{j} + 2z \vec{k}$$
, $S: x^2 + y^2 = \frac{1}{4}, z = 0, z = 2$.

19.14.
$$\vec{A} = (2y - 15x)\vec{i} + (z - y)\vec{j} - (x - 3y)\vec{k}$$
, $S: z = 3x^2 + y^2 + 1$, $z = 0$, $x^2 + y^2 = \frac{1}{4}$.

19.15.
$$\vec{A} = (y^2 + z^2)\vec{i} + (xy + y^2)\vec{j} + (xz + z)\vec{k}$$
, $S: x^2 + y^2 = 1, z = 0, z = 1$.

19.16.
$$\vec{A} = (y^2 + xz)\vec{i} + (yx - z)\vec{j} + (yz + x)\vec{k}$$
, $S: x^2 + y^2 = 1$, $z = 0$, $z = \sqrt{2}$.

19.17.
$$\vec{A} = (2y - 3z)\vec{i} + (3x + 2z)\vec{j} + (x + y + z)\vec{k}$$
, $S: x^2 + y^2 = 1, z = 4 - x - y, z = 0$.

19.18.
$$\vec{A} = xy^2\vec{i} + x^2y\vec{j} + z\vec{k}$$
, $S: x^2 + y^2 = 1$, $z = 0$, $z = 1$, $x = 0$, $y = 0$ (1 октант).

19.19.
$$\vec{A} = 3x^2\vec{i} - 2x^2y\vec{j} - (1-2x)\vec{k}$$
, $S: x^2 + y^2 = 1, z = 0, z = 1$.

19.20.
$$\vec{A} = (x+z)\vec{i} + (z+y)\vec{k}$$
, $S: x^2 + y^2 = 9, z = x, z = 0 \ (z \ge 0)$.

19.21.
$$\vec{A} = (z+y)\vec{i} + (x-z)\vec{j} + z\vec{k}$$
, $S: x^2 + 4y^2 = 4,3x + 4y + z = 12, z = 1$.

19.22.
$$\vec{A} = y\vec{i} + (x+2y)\vec{j} + x\vec{k}$$
, $S: x^2 + y^2 = 2x$, $z = x^2 + y^2$, $z = 0$.

19.23.
$$\vec{A} = 4x\vec{i} - 2y\vec{j} - z\vec{k}$$
, $S: 3x + 2y = 12$, $3x + y = 6$, $y = 0$, $x + y + z = 6$, $z = 0$.

19.24.
$$\vec{A} = xy\vec{i} + yz\vec{j} + xz\vec{k}$$
, $S: x^2 + y^2 = 4$, $z = 0$, $z = 1$.

19.25.
$$\vec{A} = z\vec{i} + (3y - x)\vec{j} - z\vec{k}$$
, $S: x^2 + y^2 = 1, z = x^2 + y^2 + 2, z = 0$.

19.26.
$$\vec{A} = 3x^2\vec{i} - 2x^2y\vec{j} + (2x-1)z\vec{k}$$
, $S: x^2 + y^2 = 1, z = 0, z = 1$.

19.27.
$$\vec{A} = 8x\vec{i} - 2y\vec{j} + x\vec{k}$$
, $S: x + y = 1, x = 0, y = 0, z = x^2 + y^2, z = 0$.

19.28.
$$\vec{A} = 2x\vec{i} + z\vec{k}$$
, $S: z = 3x^2 + 2y^2 + 1$, $x^2 + y^2 = 4$, $z = 0$.

19.29.
$$\vec{A} = 2(z-y)\vec{j} + (x-z)\vec{k}$$
, $S: z = x^2 + 3y^2 + 1$, $z = 0$, $x^2 + y^2 = 1$.

19.30.
$$\vec{A} = 2x\vec{i} + 2y\vec{j} + z\vec{k}$$
, $S: y = x^2, y = 4x^2, y = 1 \ (x \ge 0), z = y, z = 0$.

19.31.
$$\vec{A} = (z + y)\vec{i} + y\vec{j} - x\vec{k}$$
, $S: x^2 + z^2 = 2y$, $y = 2$.

Задача 20. Найти работу силы \vec{F} при перемещении вдоль линии L от точки M к точке N .

20.1.
$$\vec{F} = x^2 \vec{j}$$
, $L: x^2 + y^2 = 9 \ (x \ge 0, y \ge 0), M(3,0), N(0,3)$.

20.2.
$$\vec{F} = (x+y)\vec{i} + (x-y)\vec{j}$$
, $L: y = x^2, M(-1,1), N(1,1)$.

20.3.
$$\vec{F} = (x^2 + y^2)\vec{i} + (x^2 - y^2)\vec{j}$$
, $L: y = \begin{cases} x, & 0 \le x \le 1; \\ 2 - x, & 1 \le x \le 2; \end{cases} M(2,0), N(0,0).$

20.4.
$$\vec{F} = (x + y\sqrt{x^2 + y^2})\vec{i} + (y - \sqrt{x^2 + y^2})\vec{j}$$
, $L: x^2 + y^2 = 16(x \ge 0, y \ge 0)$, $M(4,0)$, $N(0,4)$.

20.5.
$$\vec{F} = -y\vec{i} + x\vec{j}$$
, $L: y = x^3, M(0,0), N(2,8)$.

20.6.
$$\vec{F} = y\vec{i} - x\vec{j}$$
, $L: x^2 + y^2 = 1 \ (y \ge 0), M(1,0), N(-1,0)$.

20.7.
$$\vec{F} = (x^2 + y^2)\vec{i} + 2(x^2 + y^2)\vec{j}$$
, $L: x^2 + y^2 = R^2 \ (y \ge 0), M(R,0), N(-R,0)$.

20.8.
$$\vec{F} = (y^2 - y)\vec{i} + (2xy + x)\vec{j}$$
, $L: x^2 + y^2 = 9 \ (y \ge 0), M(3,0), N(-3,0)$.

20.9.
$$\vec{F} = (x^2 + 2y)\vec{i} + (y^2 + 2x)\vec{j}$$
, L: отрезок MN, M (-4,0), N(0,2).

20.10.
$$\vec{F} = x^2 y \vec{i} - y \vec{j}$$
, L: отрезок MN, M (-1,0), N (0,1).

20.11.
$$\vec{F} = y\vec{i} - x\vec{j}$$
, $L: 2x^2 + y^2 = 1 \ (y \ge 0), M\left(\frac{1}{\sqrt{2}}, 0\right), N\left(-\frac{1}{\sqrt{2}}, 0\right)$.

20.12.
$$\vec{F} = (x^2 - 2y)\vec{i} + (y^2 - 2x)\vec{j}$$
, L: отрезок MN, M (-4,0), N (0,2).

20.13.
$$\vec{F} = (x + y\sqrt{x^2 + y^2})\vec{i} + (y - x\sqrt{x^2 + y^2})\vec{j}$$
, $L: x^2 + y^2 = 1(y \ge 0)$, $M(1,0)$, $N(-1,0)$.

20.14.
$$\vec{F} = (x^2 + 2y)\vec{i} + (y^2 + 2x)\vec{j}$$
, $L: y=2-\frac{x^2}{8}, M(-4,0), N(0,2)$.

20.15.
$$\vec{F} = (x^2 - y^2)\vec{i} + (x^2 + y^2)\vec{j}$$
, $L: \frac{x^2}{9} + \frac{y^2}{4} = 1 \ (y \ge 0), M(3,0), N(-3,0)$.

20.16.
$$\vec{F} = (xy - x)\vec{i} + \frac{x^2}{2}\vec{j}$$
, $L: y = 2\sqrt{x}, M(0,0), N(1,2)$.

20.17.
$$\vec{F} = (x - y)\vec{i} + \vec{j}$$
, $L: x^2 + y^2 = 4 \ (y \ge 0), M(2,0), N(-2,0)$.

20.18.
$$\vec{F} = (x+y)\vec{i} + 2x\vec{j}$$
, $L: x^2 + y^2 = 4 \ (y \ge 0), M(2,0), N(-2,0)$.

20.19.
$$\vec{F} = x^3 \vec{i} - y^3 \vec{j}$$
, $L: x^2 + y^2 = 4 \ (x \ge 0, y \ge 0), M(2,0), N(0,2)$.

20.20.
$$\vec{F} = (2xy - y)\vec{i} + (x^2 + x)\vec{j}$$
, $L: x^2 + y^2 = 9 \ (y \ge 0), M(3,0), N(-3,0)$.

20.21.
$$\vec{F} = (x+y)\vec{i} + (x-y)\vec{j}$$
, $L: x^2 + \frac{y^2}{9} = 1 \ (x \ge 0, y \ge 0), M(1,0), N(0,3)$.

20.22.
$$\vec{F} = y\vec{i} - x\vec{j}$$
, $L: x^2 + y^2 = 2 (y \ge 0), M(\sqrt{2}, 0), N(-\sqrt{2}, 0)$.

20.23.
$$\vec{F} = xy\vec{i} + 2y\vec{j}$$
, $L: x^2 + y^2 = 1 \ (x \ge 0, y \ge 0), M(1,0), N(0,1)$.

20.24.
$$\vec{F} = x^2 y \vec{i} - x y^2 \vec{j}$$
, $L: x^2 + y^2 = 4 \ (x \ge 0, y \ge 0), M(2,0), N(0,2)$.

20.25.
$$\vec{F} = y^2 \vec{i} - x^2 \vec{j}$$
, $L: x^2 + y^2 = 9 \ (x \ge 0, y \ge 0), M(3,0), N(0,3)$.

20.26.
$$\vec{F} = (x+y)^2 \vec{i} - (x^2+y^2) \vec{j}$$
, L: отрезок MN, M (1,0), N (0,1).

20.27.
$$\vec{F} = (x^2 + y^2)\vec{i} + y^2\vec{j}$$
, L: отрезок $MN, M(2,0), N(0,2)$.

20.28.
$$\vec{F} = xy\vec{i}$$
, $L: y = \sin x, M(\pi, 0), N(0, 0)$.

20.29.
$$\vec{F} = (xy - y^2)\vec{i} + x\vec{j}$$
, $L: y = 2x^2, M(0,0), N(1,2)$.

20.30.
$$\vec{F} = x\vec{i} + y\vec{j}$$
, L: отрезок MN, M(1,0), N(0,3).

20.31.
$$\vec{F} = -x\vec{i} + y\vec{j}$$
, $L: x^2 + \frac{y^2}{9} = 1 \ (x \ge 0, y \ge 0), M(1,0), N(0,3)$.

Задача 21. Найти циркуляцию векторного поля A вдоль контура Γ (в направлении, соответствующем возрастанию параметра t).

21.1.
$$\vec{A} = 2y\vec{i} - 3x\vec{j} + x\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 2 - 2\cos t - 2\sin t\}$.

21.2.
$$\vec{A} = 2y\vec{i} - z\vec{j} + x\vec{k}$$
, $\Gamma: \{x = \cos t, y = \sin t, z = 4 - \cos t - \sin t\}$

21.3.
$$\vec{A} = x\vec{i} - 2z^2\vec{j} + y\vec{k}$$
, $\Gamma: \{x = 3\cos t, y = 4\sin t, z = 6\cos t - 4\sin t + 1\}$

21.4.
$$\vec{A} = 3y\vec{i} - 3x\vec{j} + x\vec{k}$$
, $\Gamma: \{x = 3\cos t, y = 3\sin t, z = 3 - 3\cos t - 3\sin t\}$.

21.5.
$$\vec{A} = x\vec{i} - z^2\vec{j} + y\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 3\sin t, z = 4\cos t - 3\sin t - 3\}$.

21.6.
$$\vec{A} = (y-z)\vec{i} + (z-x)\vec{j} + (x-y)\vec{k}$$
, $\Gamma: \{x = 3\cos t, y = 3\sin t, z = 2(1-\cos t)\}$.

21.7.
$$\vec{A} = x\vec{i} - 3z^2\vec{j} + y\vec{k}$$
, $\Gamma: \{x = \cos t, y = 4\sin t, z = 2\cos t - 4\sin t + 3\}$.

21.8.
$$\vec{A} = x\vec{i} + 2z^2\vec{j} + y\vec{k}$$
, $\Gamma: \{x = \cos t, y = 3\sin t, z = 2\cos t - 3\sin t - 2\}$.

21.9.
$$\vec{A} = (y-z)\vec{i} + (z-x)\vec{j} + (x-y)\vec{k}$$
, $\Gamma: \{x = 4\cos t, y = 4\sin t, z = 1-\cos t\}$.

21.10.
$$\vec{A} = -2z\vec{i} - x\vec{j} + x^2\vec{k}$$
, $\Gamma: \left\{ x = \frac{1}{3}\cos t, \ y = \frac{1}{3}\sin t, z = 8 \right\}$.

21.11.
$$\vec{A} = y\vec{i} - x\vec{j} + z^2\vec{k}$$
, $\Gamma : \left\{ x = \frac{\sqrt{2}}{2}\cos t, \ y = \frac{\sqrt{2}}{2}\cos t, \ z = \sin t \right\}$.

21.12.
$$\vec{A} = \frac{y}{3}\vec{i} - 3x\vec{j} + x\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 1 - 2\cos t - 2\sin t\}$.

21.13.
$$\vec{A} = -x^2 y^3 \vec{i} + \vec{j} + z \vec{k}$$
, $\Gamma : \{ x = \sqrt[3]{4} \cos t, \ y = \sqrt[3]{4} \sin t, z = 3 \}$.

21.14.
$$\vec{A} = x^2 \vec{i} + y \vec{j} - z \vec{k}$$
, $\Gamma : \left\{ x = \cos t, \ y = \frac{\sqrt{2}}{2} \sin t, z = \frac{\sqrt{2}}{2} \cos t \right\}$.

21.15.
$$\vec{A} = (y-z)\vec{i} + (z-x)\vec{j} + (x-y)\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 3(1-\cos t)\}$.

21.16.
$$\vec{A} = (y-z)\vec{i} + (z-x)\vec{j} + (x-y)\vec{k}$$
, $\Gamma : \{x = \cos t, y = \sin t, z = 2(1-\cos t)\}$.

21.17.
$$\vec{A} = -x^2 y^3 \vec{i} + 2 \vec{j} + xz \vec{k}$$
, $\Gamma : \{ x = \sqrt{2} \cos t, \ y = \sqrt{2} \sin t, z = 1 \}$.

21.18.
$$\vec{A} = 2z\vec{i} - x\vec{j} + y\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 1\}$.

21.19.
$$\vec{A} = x\vec{i} + z^2\vec{j} + y\vec{k}$$
, $\Gamma: \{x = \cos t, y = 2\sin t, z = 2\cos t - 2\sin t - 1\}$.

21.20.
$$\vec{A} = -x^2 y^3 \vec{i} + 4 \vec{j} + x \vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 4\}$.

21.21.
$$\vec{A} = y\vec{i} - x\vec{j} + z\vec{k}$$
, $\Gamma: \{x = \cos t, y = \sin t, z = 3\}$.

21.22.
$$\vec{A} = 6z\vec{i} - x\vec{j} + xy\vec{k}$$
, $\Gamma: \{x = 3\cos t, y = 3\sin t, z = 3\}$.

21.23.
$$\vec{A} = z\vec{i} + y^2\vec{j} - x\vec{k}$$
, $\Gamma: \{x = \sqrt{2}\cos t, y = 2\sin t, z = \sqrt{2}\cos t\}$.

21.24.
$$\vec{A} = 7z\vec{i} - x\vec{j} + yz\vec{k}$$
, $\Gamma: \{x = 6\cos t, y = 6\sin t, z = 1/3\}$.

21.25.
$$\vec{A} = 3x\vec{i} - z^2\vec{j} + 3y\vec{k}$$
, $\Gamma: \left\{ x = \frac{1}{2}\cos t, \ y = \frac{1}{3}\sin t, \ z = \cos t - \frac{1}{3}\sin t - \frac{1}{4} \right\}$.

21.26.
$$\vec{A} = -z\vec{i} - x\vec{j} + xz\vec{k}$$
, $\Gamma: \{x = 5\cos t, y = 5\sin t, z = 4\}$.

21.27.
$$\vec{A} = xz\vec{i} + x\vec{j} + z^2\vec{k}$$
, $\Gamma: \{x = \cos t, y = \sin t, z = \sin t\}$.

21.28.
$$\vec{A} = 4y\vec{i} - 3x\vec{j} + x\vec{k}$$
, $\Gamma: \{x = 4\cos t, y = 4\sin t, z = 4 - 4\cos t - 4\sin t\}$.

21.29.
$$\vec{A} = z\vec{i} + x\vec{j} + y\vec{k}$$
, $\Gamma: \{x = 2\cos t, y = 2\sin t, z = 0\}$.

21.30.
$$\vec{A} = -x^2 y^3 \vec{i} + 3 \vec{j} + y \vec{k}$$
, $\Gamma : \{ x = \cos t, \ y = \sin t, z = 5 \}$.

21.31.
$$\vec{A} = xy\vec{i} + x\vec{j} + y^2\vec{k}$$
, $\Gamma: \{x = \cos t, y = \sin t, z = \sin t\}$.

Задача 22. Найти модуль циркуляции векторного поля \vec{A} вдоль контура Γ (непосредственно и по формуле Стокса).

22.1.
$$\vec{A} = yz\vec{i} - xz\vec{j} + xy\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 9, \\ x^2 + y^2 = 9. \end{cases}$$

22.2.
$$\vec{A} = y\vec{i} - x\vec{j} + z^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ z = 4. \end{cases}$$

22.3.
$$\vec{A} = 2yz\vec{i} + xz\vec{j} - x^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 9 \ (z > 0). \end{cases}$$

22.4.
$$\vec{A} = y\vec{i} + 3x\vec{j} + z^2\vec{k}$$
, Γ :
$$\begin{cases} z = x^2 + y^2 - 1, \\ z = 3. \end{cases}$$

22.5.
$$\vec{A} = 4\vec{i} + 3x\vec{j} + 3xz\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 3. \end{cases}$$

22.6.
$$\vec{A} = 4x\vec{i} - yz\vec{j} + x\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ x + y + z = 1. \end{cases}$$

22.7.
$$\vec{A} = 2y\vec{i} + \vec{j} - 2yz\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 2. \end{cases}$$

22.8.
$$\vec{A} = (x^2 - y)\vec{i} + x\vec{j} + \vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$$

22.9.
$$\vec{A} = -y\vec{i} + 2\vec{j} + \vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 1. \end{cases}$$

22.10.
$$\vec{A} = xz\vec{i} - \vec{j} + y\vec{k}$$
, Γ :
$$\begin{cases} z = 5(x^2 + y^2) - 1, \\ z = 4. \end{cases}$$

22.11.
$$\vec{A} = y\vec{i} - 2x\vec{j} + z^2\vec{k}$$
, Γ :
$$\begin{cases} z = 4(x^2 + y^2) + 2, \\ z = 6. \end{cases}$$

22.12.
$$\vec{A} = yz\vec{i} + 2xz\vec{j} + y^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 16 \ (z > 0). \end{cases}$$

22.13.
$$\vec{A} = yz\vec{i} + 2xz\vec{j} + xy\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 9 \ (z > 0). \end{cases}$$

22.14.
$$\vec{A} = x\vec{i} + yz\vec{j} - x\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ x + y + z = 1. \end{cases}$$

22.15.
$$\vec{A} = (x - y)\vec{i} + x\vec{j} - z\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$$

22.16.
$$\vec{A} = 4x\vec{i} + 2\vec{j} - xy\vec{k}$$
, Γ :
$$\begin{cases} z = 2(x^2 + y^2) + 1, \\ z = 7. \end{cases}$$

22.17.
$$\vec{A} = -3z\vec{i} + y^2\vec{j} + 2y\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 4, \\ x - 3y - 2z = 1. \end{cases}$$

22.18.
$$\vec{A} = -y\vec{i} + x\vec{j} + 3z^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 9, \\ x^2 + y^2 = 1 \ (z > 0). \end{cases}$$

22.19.
$$\vec{A} = x^2 \vec{i} + yz \vec{j} + 2z \vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 25, \\ z = 4. \end{cases}$$

22.20.
$$\vec{A} = 3z\vec{i} - 2y\vec{j} + 2y\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 4, \\ 2x - 3y - 2z = 1. \end{cases}$$

22.21.
$$\vec{A} = y\vec{i} + (1-x)\vec{j} - z\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 4, \\ x^2 + y^2 = 1 \ (z > 0). \end{cases}$$

22.22.
$$\vec{A} = (x+y)\vec{i} - x\vec{j} + 6\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 1, \\ z = 2. \end{cases}$$

22.23.
$$\vec{A} = y\vec{i} - x\vec{j} + 2z\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 - \frac{z^2}{4} = 0, \\ z = 2. \end{cases}$$

22.24.
$$\vec{A} = y\vec{i} - x\vec{j} + z^2\vec{k}$$
, Γ :
$$\begin{cases} z = 3(x^2 + y^2) + 1, \\ z = 4. \end{cases}$$

22.25.
$$\vec{A} = (x - y)\vec{i} + x\vec{j} + \vec{k}z^2$$
, Γ :
$$\begin{cases} x^2 + y^2 - 4z^2 = 0, \\ z = \frac{1}{2}. \end{cases}$$

22.26.
$$\vec{A} = 2y\vec{i} - 3x\vec{j} + z^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = z, \\ z = 1. \end{cases}$$

22.27.
$$\vec{A} = (2 - xy)\vec{i} - yz\vec{j} - xz\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 4, \\ x + y + z = 1. \end{cases}$$

22.28.
$$\vec{A} = 2yz\vec{i} + xz\vec{j} + y^2\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 16 \ (z > 0). \end{cases}$$

22.29.
$$\vec{A} = xz\vec{i} - \vec{j} + y\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 + z^2 = 4, \\ z = 1. \end{cases}$$

22.30.
$$\vec{A} = xy\vec{i} + yz\vec{j} + xz\vec{k}$$
, Γ :
$$\begin{cases} x^2 + y^2 = 9, \\ x + y + z = 1. \end{cases}$$

22.31.
$$\vec{A} = 2y\vec{i} + 5z\vec{j} + 3x\vec{k}$$
, Γ :
$$\begin{cases} 2x^2 + 2y^2 = 1, \\ x + y + z = 3. \end{cases}$$