Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант <u>35</u>

Виконав студент <u>ІП-15, Шабанов Метін Шаміль огли</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 2 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 35

Умова задачі

3 точністю $\varepsilon = 10^{-4}$ обчислити значення функції $\ln \frac{1+x}{1-x}$ за формулою $S = 2 \cdot (x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \frac{x^9}{9} + ...)$, використавши рекурентну формулу для обчислення члена ряду.

Постановка задачі

Вирахувати значення функції з точністю до однієї десятитисячної, використовуючи метод простих ітерацій.

Результатом розв'язку ϵ одне числове значення.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Аргумент функції	Дійсне	X	Вхідні дані
Нульовий елемент	Дійсне	R ₀	Проміжні дані
Лічильник у циклі	Ціле	i	Проміжні дані
Номер елемента	Ціле	n	Проміжні дані
Зведення у степінь	Оператор	pov	Звести число у степінь
п-ий елемент	Ціле	R _n	Проміжні дані
Значення функції в точці	Дійсне	S	Вихідні дані

Для вираховування значення функції з потрібною точністю застосуємо метод простих ітерацій у циклі, у якому буде використовуватися рекурентна формула $R_{n=}\frac{x^2(n-0,5)}{(n+0,5)}R_{n-1}$ а умовою буде $|x_n-x_{n-1}|<\varepsilon$, де буде процес знаходження модуля числа. Також використаємо перевірку введеного значення на належність до проміжку (-1; 1), щоб уникнути порушення області визначення функції.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

Крок 1. Визначимо основні дії;

Крок 2. Деталізуємо дію перевірки аргумента функції на належність до проміжку (-1;1).

Крок 3. Деталізуємо схему роботи циклу з методом простих ітерацій.

Крок 4. Деталізуємо знаходження значення функції в заданій точці.

Псевдокод

Крок 1

Початок

Введення х

Перевірка аргумента функції на належність до проміжку (-1;1)

Робота оператора повторення дій

Знаходження значення функції в заданій точці

Кінець

Крок 2

Початок

Введення х

якщо -1 < x та x < 1

T0

Робота оператора повторення дій

Знаходження значення функції в заданій точці

інакше

Вивід повідомлення про помилку

все якщо

Кінець

Крок 3

Початок

Введення х

T0

$$i := 0$$

n := i

$$R_{n} = \frac{x pov 2 (n-0.5)}{(n+0.5)} R_{n-1}$$

$$R_{0} = 2x$$

$$R_{1} = \frac{2x pov 3}{3}$$

$$i += i$$

повторити

$$i += i$$
 $n := i$

$$R_n = \frac{x pov 2 (n-0.5)}{(n+0.5)} R_{n-1}$$

Знаходження значення функції в заданій точці

поки
$$|R_n - R_{n-1}| < 10 \ pov \ (-4)$$

все повторити

все якщо

інакше

Вивід повідомлення про помилку

все якщо

Кінець

Крок 4

Початок

Введення х

якщо
$$-1 < x$$
 та $x < 1$

TO

$$i := 0$$

$$n := i$$

$$R_{n} = \frac{x pov 2 (n-0.5)}{(n+0.5)} R_{n-1}$$

$$R_0 = 2x$$

$$R_1 = \frac{2x pov 3}{3}$$
$$S = R_0 + R_1$$

$$i += i$$

повторити

$$i += i$$
 $n := i$
 $R_n = \frac{x pov 2 (n-0.5)}{(n+0.5)} R_{n-1}$
 $S = S + R_n$

поки
$$|R_n - R_{n-1}| < 10 \ pov \ (-4)$$

все повторити

все якщо

інакше

Вивід повідомлення про помилку

все якщо

Кінець

Блок схема

Випробування алгоритму

I

Блок	Дія
	Початок
1	x = 0.5

2	$\mathbf{R}_0 = 1; \ \mathbf{R}_1 = 0.0833(3); \ \mathbf{S} = 1.0833(3);$
	0.9166(6) > 0.0001
3	$\mathbf{R}_{\mathbf{n}(2)} = 0,00625; \ \mathbf{R}_{\mathbf{n}-1} = 0,0833(3); \ \mathbf{S} = 1,08958;$
	0,07705 > 0,0001
4	$\mathbf{R}_{\mathbf{n}(3)} = 0.00111607; \mathbf{R}_{\mathbf{n-1}} = 0.00625;$
	S = 1,090696; 0,00513393 > 0,0001
5	$\mathbf{R}_{\mathbf{n}(4)} = 0,00021701; \mathbf{R}_{\mathbf{n}-1} = 0,00111607;$
	S = 1,09091; 0,000899 > 0,0001
6	$\mathbf{R}_{\mathbf{n}(5)} = 0,00022328; \mathbf{R}_{\mathbf{n-1}} = 0,00021701;$
	S = 1,0911332; 0,0000607 < 0,0001
	Кінець

П

Блок	Дія
	Початок
1	$\mathbf{x} = 3$
2	Помилка: число не входить до області
	визначення
	Кінець

Висновки

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання програмних специфікацій. Як результат, ми отримали алгоритм знаходження значення функції з точністю до однієї десятитисячної, розділивши задачу на чотири кроки: визначення основних дій, деталізація дії перевірки аргумента функції на належність до проміжку (-1;1); деталізація схеми роботи циклу з методом простих ітерацій; деталізація знаходження значення функції в заданій точці. В процесі випробовування ми розглянули випадки, де: 1) x = 0.5 і отримали результат S = 1.0911332...; 2) x = 3 і отримали помилка.