Sequence and Series

Gunja Sachdeva

September 2, 2024

Recall

Zan if and then we have the following test 1. Integral test: Find f sit fis conti, decreasing, ave sit f(n)=an f n2N thon f(x)dx converge (or diverge) =) Ean converge n=N (ordiverge)

2. Direct composision test if Ear = Ebn and Ebn converge ther Ean if Ear = Ebn and Ear diverge then Ebn diverge

3. Limit composision test 4. Alternating series test: SCI) an if an >0 anti Lan

Sequence and Series Converges On 30 as n 300 September 2, 2024 2/49

Absolute convergence

Definition

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$ converges.

$$\sum \left(\frac{-1}{4}\right)^n$$
 converges absolutely as $\sum \left(\frac{1}{4}\right)^n$ converges.

Absolute convergence

Definition

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$ converges.

$$\sum \left(\frac{-1}{4}\right)^n$$
 converges absolutely as $\sum \left(\frac{1}{4}\right)^n$ converges.

Theorem

Absolute convergent test: If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Absolute convergence => convergence.

Ex.

3 / 49

Proof

$$\frac{[-|a_n| \le a_n \le |a_n|]}{[a_n \le |a_n| \le 2|a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n| \le 2|a_n|]}{[a_n \le |a_n| \le 2|a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n| \le 2|a_n|]}{[a_n \le |a_n| \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le |a_n| \le |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le a_n + |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le a_n + |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le a_n + |a_n|]}$$

$$\frac{[-|a_n| \le a_n + |a_n|]}{[a_n \le a_n + |a_n|]}$$

Proof

$$-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|.$$

$$\sum_{n=1}^{\infty} |a_n|$$
 converges $\Longrightarrow \sum_{n=1}^{\infty} 2|a_n|$ converges. Thus By direct comparison

test, $\sum_{n=1}^{\infty} a_n + |a_n|$ converges.

Now
$$a_n = (a_n + |a_n| - |a_n|)$$
 and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|$.

Thus $\sum a_n$ converges.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

$$\frac{1}{n^2} \quad \text{converges} \\
= \sum_{n=1}^{N+1} \frac{(-1)^{n+1}}{n^2} \quad \text{is absolutely} \\
= \sum_{n=1}^{N+1} \frac{(-1)^{n+1}}{n^2} \quad \text{convergent}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges by the absolute convergent theorem.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

$$0 \le |S(nn)| \le \frac{1}{N^2}$$

$$0 \le \frac{1}{N^2}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges by the absolute convergent theorem.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges.

What about converse?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges by the absolute convergent theorem.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges.

What about converse?

Remark

Converse not true:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges, but $\sum_{n=1}^{\infty} \frac{1}{n}$ doesn't converge, hence $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ doesn't converge absolutely.

hence
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 doesn't converge absolutely.

Definition

A series that is convergent but not absolutely convergent is called conditionally convergent.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 is conditionally convergent.(converges, but not absolutely convergent.)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^p}, 0$$

Rearranging terms in a series

We know $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ converges and say it converges to L. (hence conditional convergent, but not absolute convergent).

$$L = 2 \frac{(-1)^{n+1}}{N} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{6} + \frac{1}{7} - \frac{1}{6} + \frac{1}{7} - \frac{1}{6} + \frac{1}{7} - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} + \frac{1}{7} - \frac{1}{$$

Rearranging terms in a series

We know $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ converges and say it converges to L. (hence conditional convergent, but not absolute convergent).

$$2L = 2\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} \cdots\right)$$

$$= 2 - 1 + \frac{2}{3} - \frac{1}{2} + \frac{2}{5} - \frac{1}{3} + \frac{2}{7} - \frac{1}{4} + \frac{2}{9} - \frac{1}{5} + \frac{2}{11} \cdots$$

$$= (2 - 1) - \frac{1}{2} + \left(\frac{2}{3} - \frac{1}{3}\right) - \frac{1}{4} + \left(\frac{2}{5} - \frac{1}{5}\right) - \frac{1}{6} + \left(\frac{2}{7} - \frac{1}{7}\right) - \frac{1}{8} + \cdots$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

$$= L.$$

This shows that we cannot rearrange the terms of a conditionally convergent series and expect the new series to be the same as the original one. Can we rearrange the terms of an absolute convergent series?

Theorem

The Rearrangement Theorem for Absolutely Convergent Series: If

 $\sum_{n=1}^{\infty} a_n \text{ converges absolutely, and } b_1, b_2, \cdots, b_n, \cdots \text{ is any arrangement of }$

the sequence (a_n) , then $\sum_{n=1}^{\infty} b_n$ converges absolutely and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$.

$$\sum_{n=0}^{\infty} (-1)^{n} \left(\frac{1}{3} \right)^{n} - absolutely convergent$$

$$= 1 - \frac{1}{3} + \frac{1}{3^{2}} - \frac{1}{3^{2}} + \frac{1}{3^{4}} - \frac{1}{3^{4}} - \frac{1}{3^{4}} + \frac{1}{3^{4}} +$$

Ratio test

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. Then

- ullet (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

Ratio test

Theorem

Let $\sum_{n\to\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = r$. Then n=0

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

If we apply ratio test for $\sum_{n=0}^{\infty} \frac{1}{n}$ (diverges) and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ (converges), both cases r=1. $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n}{n} = \frac{1}{n} = \frac{1}{n}$

Investigate the convergence of the following series:

$$\sum_{n=0}^{\infty} \frac{2^{n} + 5}{3^{n}},$$

$$Q_{N} = 2^{n} + 5$$

$$||Q_{N} - || = ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$||Q_{N} - || = ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + 5|| \times \frac{3^{N}}{2^{N} + 5}||$$

$$= ||Q_{N} - || + ||Q_{N} - ||$$

$$= ||Q_{N} - ||$$

$$= ||Q_{N} - || + ||Q_{N} - ||$$

$$= ||Q_{N} - || + ||Q_{N} - ||$$

Investigate the convergence of the following series:

•
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| \to \frac{2}{3}$, so converges.

$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2},$$

$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}, \qquad \lim_{n \to \infty} \frac{(2n+1)!}{(n+1)!} = \frac{(2(n+1))!}{(n+1)!} \times \frac{n! \times n!}{(n+1)!}$$

Investigate the convergence of the following series:

•
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| \to \frac{2}{3}$, so converges.

•
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$$
, $\left|\frac{a_{n+1}}{a_n}\right| \to 4$, so diverges.

•
$$\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n!)}$$
,

$$\frac{1}{n-n} \frac{a_{n+1}}{a_n} = \frac{1}{n-n} \frac{y^{n+1}}{y^n} \frac{(n+1)!(n+1)!}{(2n+2)!}$$

$$\frac{x}{n!xn!}$$

Investigate the convergence of the following series:

- $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$, $\left| \frac{a_{n+1}}{a_n} \right| \to \frac{2}{3}$, so converges.
- $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$, $\left|\frac{a_{n+1}}{a_n}\right| \to 4$, so diverges.
- $\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n!)}$, $\left|\frac{a_{n+1}}{a_n}\right| \to 1$, so ratio test is inconclusive. Can you apply

any other test to conclude?

$$a_{n} = 4(n)^{2}$$
 $(2n)!$

=> Equinité diverges

Chach

an increasing when n increasing of and of as and Series

Sequence and Series

September 2, 2024 11/49

Root test

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

Examples. Investigate the convergence of the following series:

$$\bullet \sum_{n=0}^{\infty} \frac{n^2}{2^n},$$

Root test

$\mathsf{Theorem}$

Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then n=0

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

Examples. Investigate the convergence of the following series:
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$

$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}, \lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}, \text{ so converges.}$$
Sequence and Series

Root test

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

Examples. Investigate the convergence of the following series:

•
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}$, so converges.

•
$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}$$
, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 2$, so diverges.