Esercizio 3

Olivieri Daniele

Analizzare un impianto con turbina a gas di derivazione aereonautica LM6000 valutando i cicli termodinamici ideale e reale stimando i vari rendimenti.

1 Analisi etichetta

I dati utili all'analisi termodinamica sono i seguenti:

Potenza	Heat	Efficienza	Rapp.	Portata	Temp.
	rate		di comp.		all'uscita
(kW)	(kJ/kWh)	%	β	$\mathrm{kg/s}$	$^{\circ}\mathrm{C}$
43100	8620	41.7	29.5	125.0	450

Per le condizioni dell'aria in ingresso alla turbina si può facilmente supporre che la temperatura sia pari a 15°C mentre la pressione 1 atm (atmosfera standard ICAO).

2 Ciclo reale

Iniziamo l'analisi termodinamica dell'impianto a partire dagli stati del ciclo reale. Calcoliamo il volume specifico v_1 utilizzando l'equazione di stato dei gas perfetti:

$$pv = RT \tag{1}$$

Per lo stato 2 fissiamo invece il valore di pressione p_2 uguale a β Il calcolo della potenza termica da fornire in camera di combustione si esegue attraverso l'analisi dell'*Heat Rate* espresso in kJ/kWh. Tale grandezza va divisa per 3600 per renderla adimensionale, ottenendo un valore di 2.395, se la potenza elettrica generata è di 43.100 MW, la potenza termica necessaria al funzionamento dell'impianto sarà 103.200 MW. Tale valore è pari alla portata massica di combustibile per il suo potere calorifico inferiore. Utilizzando gas naturale esso è pari a 47.7 MJ/kg e la portata di combustibile è di 2.16

kg/s. Supponendo un rendimento di combustione η_b pari al 99%, la potenza termica effettivamente trasferita all'aria in camera di combustione è pari a 102.00 MW. Da questo valore possiamo ricavare il salto entalpico subito dal gas e quindi la differenza di temperatura tra lo stato 2 e 3 ipotizzando costante il C_p dell'aria a 1.005 kJ/(kg K). $T_3 - T_2$ sarà uguale a 811.9 K.

Nell'ipotesi in cui i rendimenti politropici di compressione ed espansione siano uguali, si possono dunque ricavare le temperature T_2 e T_3 impostando il seguente sistema $(\lambda = (k-1)/k; \ k=1.4)$

$$\begin{cases} T_2 = T_1 \cdot \beta^{\frac{\lambda}{\eta_p}} \\ T_3 = T_4 \cdot \beta^{\frac{\lambda}{\eta_p}} \\ T_3 - T_2 = 811.9 \end{cases}$$

Il rendimento politropico vale 0.918 e le due temperature valgono rispettivamente 551.14 °C e 1795 °C. Si può quindi completare la tabella degli stati reali.

	p(atm)	T(°C)	$v(m^3/kg)$
1	1	15	0.827
2	29.5	553	0.080
3	29.5	1800	0.201
4	1	450	2.07

3 Ciclo limite

Segue l'analisi del ciclo Joule limite considerando il compressore e la turbina isoentropici, e la combustione isobara. Per lo stato 2 fissiamo invece il valore di pressione p_2 uguale a β e calcoliamo il volume specifico raggiunto dopo la compressione isoentropica. Consideriamo inoltre lo stato 3 calcolato nella sezione 2 come punto di partenza per il calcolo delle condizioni all'uscita (stato 4).

$$v_2 = v_1/(\beta^{1/k})$$

e nuovamente T_2 mediante la (1).

	p(atm)	$T(^{\circ}C)$	$v(m^3/kg)$
1	1	15	0.827
2	29.5	484	0.0737
3	29.5	1800	0.201