

Description

The NCEP085N10AS uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =17A $R_{DS(ON)}$ =8.0m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =10.0m Ω (typical) @ V_{GS} =4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating

SOP-8

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N080-S8	VST10N080	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	17	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	12	Α	
Pulsed Drain Current	I _{DM}	68	Α	
Maximum Power Dissipation	P _D	3.5	W	
Derating factor		0.84	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	320	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient ^(Note 2)	R _{θJA}	36	°C/W	I
--	------------------	----	------	---

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.7	2.3	V
Drain-Source On-State Resistance		V _{GS} =10V, I _D =17A	-	8.0	8.5	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =17A	-	10.0	11.5	mΩ
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =17A		60	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V, F=1.0MHz	-	4680	-	PF
Output Capacitance	Coss		-	316	-	PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	14.5	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =50V,I _D =17A	-	10	-	nS
Turn-on Rise Time	t _r		-	6	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	51	-	nS
Turn-Off Fall Time	t _f		-	9	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =17A,	-	76	-	nC
Gate-Source Charge	Q _{gs}		-	15.3		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	17.3		nC
Drain-Source Diode Characteristics			•		<u>'</u>	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =17A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	17	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 17A$	-	55	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	135	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance