

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101)

Unit – 4 Sequence and Series (Lecture Note)

Sequence:

- > Limit of a sequence
- > Convergence & Divergence of a sequence
- > Oscillatory sequence
- ➤ Sandwich/Squeezing theorem for sequences
- > Convergence properties of sequence
- ➤ Monotonic sequence(Monotonic increasing & Monotonic decreasing)
- ➤ Alternating sequence
- ➤ Bounded & Unbounded sequence.

Series:

- ➤ Convergence, Divergence & Oscillatory series
- > Some properties of infinite series
- > Telescoping series
- ➤ Geometric series
- > p-series, Integral test
- Comparison test
 - (i)Direct
 - (ii)Limit Comparison
- ➤ D'Alembert ratio test
- > Cauchy's root test
- > Alternating series
- ➤ Leibnitz test

Sequence:

A sequence is a function whose domain is the set of positive integers.

It is generally written as $a_1, a_2, a_3, \dots, a_n, \dots$

➤ If the number of terms in a sequence is infinite, it is called infinite sequence otherwise it is said to be finite sequence

$$e. g. 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$
 ; $1, -1, 2, -2, \dots$

Limit of a sequence:

Let $\{a_n\}$ be a sequence.

A real number l is said to be the limit of the sequence $\{a_n\}$; if for every $\varepsilon >$

0, there exist an integer N such that $n \ge N \Rightarrow |a_n - l| < \varepsilon$

If such a number exists then we write

$$\lim_{n\to\infty}a_n=l.$$

Convergence, Divergence & Oscillations of a Sequence:

 \triangleright A sequence $\{a_n\}$ is said to be convergent if the sequence has finite limit.

i.e. if
$$\lim_{n\to\infty} a_n = finite$$
.

 \triangleright A sequence $\{a_n\}$ is said to be divergent if the sequence has infinite limit.

i.e.
$$if \lim_{n\to\infty} a_n = \pm \infty.$$

For example, $\lim_{n\to\infty}\frac{1}{n}=0$, $\lim_{n\to\infty}\frac{n+1}{n}=1$, $\lim_{n\to\infty}2n=\infty$,

 \triangleright A sequence $\{a_n\}$ is said to be oscillatory if the sequence is neither convergent nor divergent. For example, let

$$\{u_n\} = \left\{ (-1)^n + \frac{1}{\frac{1}{2^n}} \right\}$$

$$\lim_{n \to \infty} u_n = 2 \text{ , if } n \text{ is even}$$

$$u_n = 0 \text{ , if } n \text{ is odd}$$

Since the limit is not unique, the sequence is oscillatory.

Convergence properties of sequences:

 \triangleright Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences and k be any real number, then the following sequences will also converge.

1)
$$\{a_n + b_n\}$$
 With $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim_{n \to \infty} (b_n)$

2)
$$\{ka_n\}$$
 With $\lim_{n\to\infty} (ka_n) = k \lim_{n\to\infty} (a_n)$

3)
$$\{a_n b_n\}$$
 With $\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} (a_n)\right) \left(\lim_{n \to \infty} (b_n)\right)$

4)
$$\left\{\frac{a_n}{b_n}\right\} \qquad \text{With} \quad \lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} (a_n)}{\lim_{n \to \infty} (b_n)} \; ; \quad \left(if \lim_{n \to \infty} (b_n) \neq 0\right)$$

Some Important Formula:

$\lim_{n\to\infty}\frac{ln(n)}{n}=0$	$\lim_{n\to\infty} \sqrt[n]{n} = 1$
$\lim_{n\to\infty} x^{\frac{1}{n}} = 1(x>0)$	$\lim_{n\to\infty} x^n = 0(x < 1)$
$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x (any \ x)$	$\lim_{n\to\infty} \left(\frac{x^n}{n!}\right) = 0 \qquad (any \ x)$

Que.: Applying the definition, show that $\left\{\frac{1}{n}\right\}$ converges 0 as $n \to \infty$.

To prove: Let $\epsilon > 0$, we must show that there exists an integer N such that for all n,

$$n > N \Longrightarrow \left| \frac{1}{n} - 0 \right| < \epsilon$$

Solution: Let $\epsilon > 0$ be given.

Let N be an integer such that $N > \frac{1}{\epsilon}$.

$$n \ge N \implies n \ge N > \frac{1}{\epsilon}$$

$$\implies n > \frac{1}{\epsilon}$$

$$\implies \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon$$

$$\implies \left| \frac{1}{n} - 0 \right| < \epsilon$$

$$\therefore \lim_{n\to\infty}\frac{1}{n}=0$$

Que.: Test the Convergence of the following sequences.

$1.\left\{\frac{n^2+n}{2n^2-n}\right\}$	$2. \{2^n\}$
	Solution: Let $a_n = 2^n$
Solution: Let $a_n = \frac{n^2 + n}{2n^2 - n}$	$ \lim_{n\to\infty} a_n = \lim_{n\to\infty} 2^n $
$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + n}{2n^2 - n}$	= ∞
	As the value of limit of the sequence
$= \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2 - \frac{1}{2}} = \frac{1}{2}$	is infinite the $\{2^n\}$ is divergent.
$n \to \infty$ $2 - \frac{1}{n}$ 2	$3. \{2-(-1)^n\}$
As the value of limit is finite the	Solution: Let $a_n = 2 - (-1)^n$

$$\left\{\frac{n^2+n}{2n^2-n}\right\} \text{ is convergent.}$$

$$4.\left\{\sqrt{n+1}-\sqrt{n}\right\}$$
Solution:
$$\text{Let } a_n=\sqrt{n+1}-\sqrt{n}\times\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$$

$$n+1-n$$

$$= \frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1}+\sqrt{n}}$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$$

As the value of limit is finite the sequence is convergent.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 2 - (-1)^n$$

$$= 2 - 1 = 1 \text{ , if } n \text{ is even.}$$

$$= 2 - (-1) = 3 \text{, if } n \text{ is odd.}$$
Since limit is not unique, the $\{2 - (-1)^n\}$ is oscillatory.

Exercise: Test the convergence of the following sequences.

$$1. \left\{ \frac{n}{n^2 + 1} \right\}$$

2.
$$\{e^n\}$$

$$3.\{1+(-1)^n\}$$

Monotonic sequence:

A sequence $\{a_n\}$ is said to be <u>monotonically increasing</u> if $a_n \le a_{n+1}$ for each value of n.

$$a_n - a_{n+1} \le 0$$

- A sequence $\{a_n\}$ is said to be <u>monotonically decreasing</u> if $a_n \ge a_{n+1}$ for each value of n.
- A sequence $\{a_n\}$ is said to be <u>strictly increasing</u> if $a_n < a_{n+1}$ for each value of n.
- A sequence $\{a_n\}$ is said to be <u>strictly decreasing</u> if $a_n > a_{n+1}$ for each value of n.
- A sequence $\{a_n\}$ is said to be <u>monotonic</u> if it is either increasing or decreasing.

***** Bounded & unbounded sequence:

- A sequence $\{a_n\}$ is said to be <u>bounded above</u> if there is a real number M such that $a_n \leq M$, for all $n \in \mathbb{N}$. M is said to be an <u>upper bound</u> of the sequence.
- A sequence $\{a_n\}$ is said to be <u>bounded below</u> if there is a real number m such that

 $a_n \ge m$, for all $n \in \mathbb{N}$.m is said to be a <u>lower bound</u> of the sequence.

- \triangleright A sequence $\{a_n\}$ is said to be <u>bounded</u> if it is both bounded above and bounded below.
- \triangleright A sequence $\{a_n\}$ is said to be <u>unbounded</u> if it is not bounded.

1)
$$a_n = n$$

$$a_n = 1,2,3,4,...$$

Also $a_n \ge 1 \Rightarrow a_n$ is bounded below.

2)
$$a_n = \frac{n}{n+1}$$

$$a_n = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$

$$a_n \ge \frac{1}{2}$$
, bounded below

 $a_n < 1$, bounded above

$$\frac{1}{2} \le a_n < 1$$

 a_n is bounded.

3)
$$a_n = \frac{1}{n}$$

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

 $a_n \leq 1$, bounded above

 $a_n > 0$, bounded below

It is bounded.

4)
$$a_n = (-1)^n$$

5)
$$a_n = (-1)^n . n$$

unbounded.

❖ Note that

- \triangleright If $\{a_n\}$ is bounded above and increasing then it is convergent.
- \triangleright If $\{a_n\}$ is unbounded above and increasing then it is divergent to ∞ .
- \triangleright If $\{a_n\}$ is bounded below and decreasing then it is convergent.
- \triangleright If $\{a_n\}$ is unbounded below and decreasing then it is divergent to $-\infty$.
 - 1) The sequence n^2 is increasing sequence

Increasing sequence

2) $\frac{1}{2^n}$ is decreasing sequence

Sandwich theorem:

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be sequences of real numbers such that $(i)c_n \leq a_n \leq b_n \; ; \; \forall \; n \geq n_0, for \; some \; n_0 \; \; and$ $(ii) \lim_{n \to \infty} c_n = l = \lim_{n \to \infty} b_n$

then
$$\lim_{n\to\infty} a_n = l$$

Que. Show that the sequence $\left\{\frac{\sin n}{n}\right\}_{n=1}^{\infty}$ converges to 0.

Solution:

We know that $-1 \le sinn \le 1 \Longrightarrow -\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$

Further,
$$\lim_{n\to\infty} \left(-\frac{1}{n}\right) = 0$$
 and $\lim_{n\to\infty} \frac{1}{n} = 0$.

 \therefore By sandwich theorem, $\lim_{n\to\infty} \frac{\sin n}{n} = 0$

Example: Test the convergence of the series $a_n = \frac{n}{n^2+1}$.

Solution:

$$a_n = \frac{n}{n^2 + 1}$$

$$a_{n+1} = \frac{n+1}{(n+1)^2 + 1}$$

$$a_n - a_{n+1} = \frac{n}{n^2 + 1} - \frac{n+1}{(n+1)^2 + 1} > 0$$

$$a_n - a_{n+1} > 0$$

It is decreasing squence.

$$a_n = \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \dots$$

 $a_n \le \frac{1}{2}, \quad a_n > 0$

$$0 < a_n \le \frac{1}{2}.$$

It is bounded.

Every monotonically bounded sequence is convergent.

! Infinite Series:

The sum of an infinite sequence of numbers is called **infinite Series**

e.g.
$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

- \triangleright $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ is called nth partial sum of the series.
- ➤ The convergence of infinite series depends on the convergence of the corresponding infinite sequence of partial sums.
- > The infinite series is

Convergent	If $\lim_{n\to\infty} S_n = S$ (finite)
Divergent	If $\lim_{n\to\infty} S_n = \infty$ or $-\infty$
Oscillatory	If $\lim_{n\to\infty} S_n = niether\ finite\ nor\ \pm \infty$
Oscillating finitely	If value fluctuates within finite range
Oscillating	If value fluctuates within ∞ and $-\infty$
infinitely	

If a series $\sum_{n=1}^{\infty} a_n$ converges to S then we say that the sum of the series is S and we write $S = \sum_{n=1}^{\infty} a_n$

Convergence properties of series:

Let $\sum a_n$ and $\sum b_n$ be two convergent series and k be any real number, then the following series will also converge.

1)
$$\sum (a_n \pm b_n)$$
 with $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$

2)
$$\sum ka_n$$
 With $\sum ka_n = k \sum a_n$

Telescoping series:

A series is said to be telescoping if while writing the nth partial sum all terms except first and last vanish.

Que: Check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Solution: Here,
$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
.
$$\frac{1}{1} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Therefore the partial sum is given by,

$$s_n = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$\therefore S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

It is convergent.

For example:
$$\frac{1}{n(n+3)} = \frac{1}{3} \left(\frac{1}{n} - \frac{1}{n+3} \right)$$

Que. Find the Sum of the series $\log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \infty$ Solution:

$$S_n = \log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \log \frac{n+1}{n}$$

$$= \log \left(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n+1}{n} \right)$$

$$S_n = \log(n+1)$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \log(n+1)$$

$$= \log \infty$$

$$= \infty$$

As it is infinite therefore the series is divergent.

Que: Find the Sum of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \infty$

Solution:
$$a_n = \frac{n}{(n+1)!} = \frac{(n+1)-1}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$$

Therefore the partial sum is given by,

$$s_n = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$= \left(\frac{1}{1!} - \frac{1}{2!}\right) + \left(\frac{1}{2!} - \frac{1}{3!}\right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right)$$

$$+ \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$

$$= 1 - \frac{1}{(n+1)!}$$

$$\therefore S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)!} \right) = 1$$

$$\therefore \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots = \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1$$

***** Geometric Series:

An infinite series in the form $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ is said to be a geometric series.

It converges to $\frac{a}{1-r}$ if |r| < 1 i.e. $\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}$, |r| < 1

If $|r| \ge 1$ then the series diverges.

If r = -1 then series is oscillatory.

Que. Discuss the convergence of $\sum_{n=0}^{\infty} 2^n$

Solution:

Given series, $\sum_{n=0}^{\infty} 2^n = 2^0 + 2^1 + 2^2 + \cdots$ is a geometric series with a=1 and r=2

$$r = \frac{2}{1} = 2$$
, $r = \frac{4}{2} = 2$

Since r = 2 > 1, the series is divergent.

Que. Check the convergence of a series $\frac{1}{3^0} - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + \cdots$. Also find sum.

Solution:

$$S_n = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \cdots$$

$$r = \frac{a_2}{a_1} = -\frac{\frac{1}{3}}{1} = -\frac{1}{3}$$

$$r = \frac{a_3}{a_2} = \frac{\frac{1}{9}}{-\frac{1}{3}} = -\frac{1}{3}$$

$$r = -\frac{1}{3}$$

Here the series is geometric series with a = 1 and and $|r| = \frac{1}{3}$

Since, $|r| = \frac{1}{3} < 1$, the series is convergent.

$$Sum = \frac{a}{1-r} = \frac{1}{1-(-\frac{1}{3})} = \frac{1}{\frac{4}{3}} = \frac{3}{4}.$$

Que. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{2n}}$

Solution: Since,

$$\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{2n}} = \sum_{n=1}^{\infty} \frac{(3^2)^n}{(4^2)^n} = \sum_{n=1}^{\infty} \frac{(9)^n}{(16)^n} = \sum_{n=1}^{\infty} \left(\frac{9}{16}\right)^n$$
Page **9** of **22**

is a geometric series with $a = \frac{9}{16}$ and $r = \frac{9}{16}$.

Since $r = \frac{9}{16} < 1$, it is convergent. Further it converges to $\frac{a}{1-r} = \frac{\left(\frac{9}{16}\right)}{\left(1-\left(\frac{9}{16}\right)\right)} = \frac{9}{7}$

Que. Check the convergence of $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$

Solution:

$$\sum_{n=1}^{\infty} C_n = \sum_{n=1}^{\infty} \left[\left(\frac{4}{6} \right)^n + \left(\frac{5}{6} \right)^n \right] = \sum_{n=1}^{\infty} \left(\frac{4}{6} \right)^n + \sum_{n=1}^{\infty} \left(\frac{5}{6} \right)^n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
where $a_n = \left(\frac{4}{6} \right)^n$ and $b_n = \left(\frac{5}{6} \right)^n$

For $\sum a_n$, $r = \left(\frac{4}{6}\right) < 1$, hence $\sum a_n$ is convergent. And $\sum a_n = \frac{\left(\frac{4}{6}\right)}{\left(1 - \frac{4}{6}\right)} = \frac{4}{2} = 2$.

Similarly, for $\sum b_n$, $r = \left(\frac{5}{6}\right) < 1$ so $\sum b_n$ is also convergent.

And
$$\sum b_n = \frac{\binom{5}{6}}{\left(1 - \frac{5}{6}\right)} = 5$$

Thus, the sum of $\sum a_n + \sum b_n$ is also convergent. i. e. $\sum c_n$ is convergent.

Further, $\sum c_n = \sum a_n + \sum b_n = 2 + 5 = 7$

Exercise:

- 1) Find the sum of $\sum_{n\to 1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$
- 2) Find the sum of $\sum_{n\to 1}^{\infty} \frac{4^n+1}{6^n}$
- 3) Prove that $1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots$ converges and find its sum.
- 4) Prove that $5 \frac{10}{3} + \frac{20}{9} \frac{40}{27} + \cdots$ converges and find its sum.

* P-Series Test

The Series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Exercise: Check if the following series is convergent or divergent.

1.
$$\sum \frac{1}{x^3}$$
 2. $\sum \frac{1}{x^{-3}}$ 3. $\sum \frac{1}{x}$ 4. $\sum \frac{1}{x^{\frac{3}{4}}}$

Zero test of Divergence (Divergence test):

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ must be divergent

Note: If $\lim_{n\to\infty} a_n = 0$ then nothing can be said about convergence of the series

 $\sum_{n=1}^{\infty} a_n$.We have to apply another test for convergence

Que. Test the convergence of following series.

$$1) \sum_{n=1}^{\infty} n \sin \frac{1}{n}$$

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \sin \frac{1}{n} = \lim_{n \to \infty} \frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = 1 \neq 0$$

Hence, by zero test, the series is divergent.

$$(2)\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \cdots \infty$$

Solution:

Here,
$$a_n = \sqrt{\frac{n}{n+1}}$$

Hence, by zero test, the series is divergent.

Que. Prove that $\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1}$ is divergent.

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 - 1}{n^2 + 1} = \lim_{n \to \infty} \frac{n^2 \left(1 - \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n^2}\right)}{\left(1 + \frac{1}{n^2}\right)} = \frac{(1 - 0)}{(1 + 0)} = 1$$

$$\neq 0$$

Hence, by zero test, the series is divergent.

Direct Comparison Test

Let $\sum a_n$ be a series with no negative terms.

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all n > N, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series of nonnegative terms $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

! Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $forall \ n \ge N$ (N an integer).

- (a) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- (b) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- (c) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Note: $b_n = \frac{\textit{Highest power term in numerator}}{\textit{Highest power term in denomerator}}$

Que. for what value of p does the series $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \cdots$ is convergent? **Solution:**

Here,
$$a_n = \frac{n+1}{n^p} = \frac{n\left(1+\frac{1}{n}\right)}{n^p} = \frac{\left(1+\frac{1}{n}\right)}{n^{(p-1)}} = \frac{1}{n^{(p-1)}} \left(1+\frac{1}{n}\right).$$

Let $b_n = \frac{1}{n^{(p-1)}}$. Then $\frac{a_n}{b_n} = \left(1+\frac{1}{n}\right)$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(1+\frac{1}{n}\right) = 1+0 = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

 $\sum b_n = \sum \frac{1}{n^{(p-1)}}$ converges for p-1>1 , *i. e.* for p>2 and it diverge otherwise.

 $\therefore \sum a_n = \sum \frac{n+1}{n^p}$ converges for $p \ge 2$ and it diverge otherwise.

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{2n^2 + 2n}{5 + n^5}$$

Here,
$$a_n = \frac{2n^2 + 2n}{5 + n^5} = \frac{n^2 \left(2 + \frac{2}{n}\right)}{n^5 \left(\frac{5}{n^5} + 1\right)} = \frac{1}{n^3} \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)}.$$

Let
$$b_n = \frac{n^2}{n^5} = \frac{1}{n^3}$$
. Then $\frac{a_n}{b_n} = \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)} = \frac{(2+0)}{(0+1)} = 2 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p-series with p=3>1. Hence, it is convergent.

$$\therefore \sum a_n = \sum \frac{2n^2 + 2n}{5 + n^5}$$
 converges. [by comparison test]

Que: Test the convergence of $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$

Sol:
$$a_n = \frac{\sqrt{n}}{n^2 + 1}$$

$$b_n = \frac{\sqrt{n}}{n^2} = \frac{1}{n^{2-\frac{1}{2}}} = \frac{1}{n^{\frac{3}{2}}}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{n^2+1}}{\frac{1}{n^2}} = \lim_{n \to \infty} n^{\frac{3}{2}} \frac{\sqrt{n}}{n^2+1} = \lim_{n \to \infty} \frac{n^2}{n^2+1} = \lim_{n \to \infty} \frac{n^2}{n^2 \left(1 + \frac{1}{n^2}\right)} = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

$$b_n = \frac{1}{n^{\frac{3}{2}}}$$
, By p – series, $p = \frac{3}{2} > 1$, it is convergent.

By Limit comparision Test, $\sum a_n$ is convergent.

Que. Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^p}{\sqrt{n+1} + \sqrt{n}}$$

Solution:

Here,
$$a_n = \frac{n^p}{\sqrt{n+1} + \sqrt{n}} = \frac{n^p}{n^{\frac{1}{2}} \left(\sqrt{1 + \frac{1}{n}} + 1\right)} = \frac{1}{n^{\frac{1}{2} - p}} \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)}.$$

Let $b_n = \frac{n^p}{n^{\frac{1}{2}}} = \frac{1}{n^{\frac{1}{2} - p}}.$ Then $\frac{a_n}{b_n} = \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)} = \frac{1}{\left(1 + \sqrt{1 + 0}\right)} = \frac{1}{2} \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^{\frac{1}{2}-p}}$ is a p-series which converges for $\frac{1}{2}-p>1$, i.e. for $p<-\frac{1}{2}$ and diverges otherwise.

 $\therefore \sum a_n = \sum \frac{n^p}{\sqrt{n+1} + \sqrt{n}}$ also converges for $p < -\frac{1}{2}$ and diverges otherwise.[by comparison test]

Que. Test the convergence of the series

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$$

Solution:

Here,
$$a_n = \frac{1}{n \cdot (n+1)} = \frac{1}{n^2} \frac{1}{\left(1 + \frac{1}{n}\right)}$$
.
Let $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = \frac{1}{\left(1 + \frac{1}{n}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = \frac{1}{(1+0)} = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^2}$ is a p – series with p = 2 > 1. Hence, it is convergent.

$$\therefore \sum a_n = \sum \frac{1}{n(n+1)}$$
 converges. [by comparison test]

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$$

Solution:

$$a_{n} = \frac{1}{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}} = \frac{1}{\sum n^{2}} = \frac{1}{\frac{n(n+1)(2n+1)}{6}}$$

$$= \frac{1}{n^{3}} \frac{6}{1\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$

$$= \frac{6}{n \cdot n \cdot n\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$

$$(n^{2} + n)(2n + 1) = (2n^{3} + n^{2} + 2n^{2} + n) = 2n^{3} + 3n^{2} + n$$

$$= n^{3}(2 + \frac{3}{n} + \frac{1}{n^{2}})$$
Let $b_{n} = \frac{1}{n^{3}}$. Then $\frac{a_{n}}{b_{n}} = \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_{n}}{b_{n}} = \lim_{n \to \infty} \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)} = \frac{6}{(1 + 0)(2 + 0)} = 3 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p – series with p = 3 > 1. Hence, it is convergent.

$$\therefore \sum a_n = \sum \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$$
 converges. [by comparison test]

* Ratio Test(D' Alembert Ratio Test)

Let $\sum a_n$ be a series with positive terms and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$

Then (a) the series converges if L < 1

(b)the series diverges if L > 1,

(c) the test is fail if L = 1

Que. Test the convergence of a series $\sum \frac{1}{n!}$

Solution:

Here
$$a_n = \frac{1}{n!} \Longrightarrow a_{n+1} = \frac{1}{(n+1)!}$$
 and
$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

Hence, by ratio test, given series is convergent.

Que. Test the convergence of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$

Solution:

Here
$$a_n = \frac{n}{(n+1)!}$$

$$\Rightarrow a_{n+1} = \frac{n+1}{(n+2)!} and \frac{a_{n+1}}{a_n} = \frac{n+1}{(n+2)!} \frac{(n+1)!}{n} = \frac{(n+1)!}{(n+2)(n+1)!} \frac{n+1}{n}$$

$$= \frac{1}{n+2} \left(1 + \frac{1}{n} \right)$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+2} \left(1 + \frac{1}{n} \right) = 0(1+0) = 0 < 1$$

Hence, by ratio test, given series is convergent.

Que. Test the convergence of the series $\sum_{n=0}^{\infty} \frac{4^n - 1}{3^n}$

Here
$$a_n = \frac{4^{n-1}}{3^n}$$

$$\Rightarrow a_{n+1} = \frac{4^{n+1} - 1}{3^{n+1}}$$
and

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1} - 1}{3^{n+1}} \frac{3^n}{4^n - 1} = \frac{3^n}{3^{n+1}} \frac{4^n \left(4 - \frac{1}{4^n}\right)}{4^n \left(1 - \frac{1}{4^n}\right)} = \frac{1}{3} \left(\frac{4 - \frac{1}{4^n}}{1 - \frac{1}{4^n}}\right)$$
$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{3} \left(\frac{4 - \frac{1}{4^n}}{1 - \frac{1}{4^n}}\right) = \frac{1}{3} \left(\frac{4 - 0}{1 - 0}\right) = \frac{4}{3} > 1$$

Hence, by ratio test, given series is divergent.

Que. Example: Test the convergence of the series $\sum_{n=0}^{\infty} \frac{n3^n(n+1)!}{2^n n!}$

Solution:

$$a_{n} = \frac{n3^{n}(n+1)!}{2^{n}n!}$$

$$= n(n+1)\left(\frac{3}{2}\right)^{n}$$

$$\Rightarrow a_{n+1} = (n+1)(n+2)\left(\frac{3}{2}\right)^{n+1} \text{ and}$$

$$\frac{a_{n+1}}{a_{n}} = \frac{(n+1)(n+2)\left(\frac{3}{2}\right)^{n+1}}{n(n+1)\left(\frac{3}{2}\right)^{n}} = \frac{(n+2)}{n}\left(\frac{3}{2}\right)$$

$$= \left(1 + \frac{2}{n}\right)\left(\frac{3}{2}\right)$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n \to \infty} \left(1 + \frac{2}{n}\right)\left(\frac{3}{2}\right) = (1+0)\left(\frac{3}{2}\right) = \frac{3}{2} > 1$$

Hence, by ratio test, given series is divergent.

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$$

$$a_n = \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2} = \frac{1}{\sum n^2} = \frac{1}{\left(\frac{n(n+1)(2n+1)}{6}\right)}$$

$$= \frac{6}{n(n+1)(2n+1)}$$

$$\Rightarrow a_{n+1} = \frac{6}{(n+1)(n+2)(2(n+1)+1)} = \frac{6}{(n+1)(n+2)(2n+3)}$$
 and

$$\frac{a_{n+1}}{a_n} = \frac{6}{(n+1)(n+2)(2n+3)} \frac{n(n+1)(2n+1)}{6} = \frac{n(2n+1)}{(n+2)(2n+3)}$$

$$= \frac{\left(2 + \frac{1}{n}\right)}{\left(1 + \frac{2}{n}\right)\left(2 + \frac{3}{n}\right)}$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\left(2 + \frac{1}{n}\right)}{\left(1 + \frac{2}{n}\right)\left(2 + \frac{3}{n}\right)}$$

$$= \frac{(2+0)}{(1+0)(2+0)} = 1$$

Hence, by ratio test fails.

We need to use some other test to check the convergence of the series.

Using comparison test as follows:

$$a_n = \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2} = \frac{1}{\sum n^2} = \frac{1}{\left(\frac{n(n+1)(2n+1)}{6}\right)} = \frac{1}{n^3} \frac{6}{1\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$
Let $b_n = \frac{1}{n^3}$. Then $\frac{a_n}{b_n} = \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)} = \frac{6}{(1+0)(2+0)} = 3 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p-series with p=3>1. Hence, it is convergent.

$$\therefore \sum a_n = \sum_{1^2+2^2+3^2+\cdots+n^2}^{1} \text{ converges. [by comparison test]}$$

Que. Test the convergence of the series $2 + \frac{3}{2}x + \frac{4}{3}x^2 + \frac{5}{4}x^3 + \cdots$

Solution: Here
$$a_n = \frac{n+1}{n} x^{n-1}$$

$$\Rightarrow a_{n+1} = \frac{n+2}{n+1} x^n \text{ and } \frac{a_{n+1}}{a_n} = \frac{(n+2)x^n}{n+1} \frac{n}{(n+1)x^{n-1}} = \frac{n^2 \left(1 + \frac{2}{n}\right)}{n^2 \left(1 + \frac{1}{n}\right)^2} x$$
$$= \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{1}{n}\right)^2} x$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{1}{n}\right)^2} x$$
$$= \frac{(1+0)}{(1+0)^2} x = x$$

Hence, by ratio test, given series is (i) convergent if x < 1 (ii) divergent if x > 1

For x = 1.

$$a_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = (1+0)$$

$$= 1 \neq 0$$

 \therefore By zero test, given series diverges for x = 1.

Hence, by ratio test, given series is (i) convergent if x < 1

(ii) divergent if $x \ge 1$

❖ Root Test (Cauchy Root Test)

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$ for some N and suppose that

$$\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$$

Then

- (a) the series converges if L < 1
- (b) the series diverges if L > 1,
- (c) the test fails if L = 1

Que. Test the convergence of series $\sum_{n=1}^{\infty} \frac{3^n}{2^{n+3}}$

Solution:

$$a_{n} = \frac{3^{n}}{2^{n+3}} = \frac{1}{8} \left(\frac{3}{2}\right)^{n}$$

$$\Rightarrow |a_{n}|^{\frac{1}{n}} = \left|\frac{1}{8} \left(\frac{3}{2}\right)^{n}\right|^{\frac{1}{n}} = \frac{1}{8^{\frac{1}{n}}} \left(\frac{3}{2}\right)$$

$$\Rightarrow L = \lim_{n \to \infty} |a_{n}|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{8^{\frac{1}{n}}} \left(\frac{3}{2}\right)$$

$$= \frac{1}{8^{0}} \left(\frac{3}{2}\right) = \frac{3}{2} > 1$$

Hence, by root test, given series is divergent.

Que. Test the convergence of series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+5}\right)^n$

Solution:

$$a_n = \left(\frac{n}{2n+5}\right)^n = \left(\frac{1}{2+\frac{5}{n}}\right)^n$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left|\left(\frac{1}{2+\frac{5}{n}}\right)^n\right|^{\frac{1}{n}} = \left(\frac{1}{2+\frac{5}{n}}\right)$$

$$\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{2+\frac{5}{n}}\right) = \left(\frac{1}{2+0}\right)$$

$$= \frac{1}{2} < 1$$

Hence, by root test, given series is convergent.

Que:
$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \cdots$$

Sol:
$$a_n = \left[\left(\frac{n+1}{n} \right)^{n+1} - \frac{n+1}{n} \right]^{-n}$$

$$L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \left[\left(\frac{n+1}{n} \right)^n \left(\frac{n+1}{n} \right) - \frac{n+1}{n} \right]^{-1}$$

$$= \left[\left(\frac{1+\frac{1}{n}}{1} \right)^n \left(\frac{1+\frac{1}{n}}{1} \right) - \frac{1+\frac{1}{n}}{1} \right]^{-1}$$

$$= [e.1-1]^{-1}$$

$$=\frac{1}{e-1}<1$$

Hence, by root test, given series is convergent.

Que. Test the convergence of series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{1}{2}}}$

$$a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left|\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}\right|^{\frac{1}{n}} = \left(1 + \frac{1}{\sqrt{n}}\right)^{-\left(n^{\frac{3}{2}}\right)(n^{-1})} = \left(1 + \frac{1}{\sqrt{n}}\right)^{-\sqrt{n}} = \left(\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{-1}$$
Page **19** of **22**

$$\left(\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \quad (anyx)\right)
\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-\sqrt{n}} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{-1} = (e^1)^{-1} = \frac{1}{e} < 1$$

Hence, by root test, given series is convergent.

Que. Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+3} \right)^n x^n$

Solution:

$$a_n = \left(\frac{n+2}{n+3}\right)^n x^n$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left|\left(\frac{n+2}{n+3}\right)^n x^n\right|^{\frac{1}{n}} = \left(\frac{n+2}{n+3}\right) x$$

$$\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n+2}{n+3}\right) x = \lim_{n \to \infty} \left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right) x$$

$$= \left(\frac{1+0}{1+0}\right) x = x$$

Hence, by root test, given series is (i) convergent if x < 1 (ii) divergent if x > 1.

For x = 1.

$$a_{n} = \left(\frac{n+2}{n+3}\right)^{n} = \left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right)^{n} = \frac{\left(1+\frac{2}{n}\right)^{n}}{\left(1+\frac{3}{n}\right)^{n}}$$

$$\Rightarrow \lim_{n \to \infty} a_{n}$$

$$= \lim_{n \to \infty} \frac{\left(1+\frac{2}{n}\right)^{n}}{\left(1+\frac{3}{n}\right)^{n}} = \frac{\lim_{n \to \infty} \left(1+\frac{2}{n}\right)^{n}}{\lim_{n \to \infty} \left(1+\frac{3}{n}\right)^{n}} = \frac{(e)^{2}}{(e)^{3}} = \frac{1}{e}$$

$$\neq 0$$

 \therefore By zero test, given series diverges for x = 1.

Hence, by root test, given series is (i) convergent if x < 1

(ii) divergent if $x \ge 1$.

Alternative series

A series in which the terms are alternatively positive and negative is called an alternating Series. $e. g. 1 - 4 + 9 - 16 + \cdots$

Leibnitz Test

The infinite Series $a_1 - a_2 + a_3 - ...$ in which the terms are alternatively positive and negative is convergent if (i) $a_n \ge a_{n+1}$ i.e. series is decreasing (ii) $\lim_{n\to\infty} a_n = 0$

Note: If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ is oscillatory.

Que. Test the convergence of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

Solution:

Here
$$u_n = \frac{(-1)^{n+1}}{n}$$
 $u_{n+1} = \frac{(-1)^{n+2}}{n+1}$
 $|u_n| = \frac{1}{n}$ $|u_{n+1}| = \frac{1}{n+1}$

$$|u_n| - |u_{n+1}| = \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{n+1-n}{n(n+1)}$$

$$= \frac{1}{n(n+1)} > 0$$

$$|u_n| - |u_{n+1}| \succ 0 \Rightarrow |u_n| \succ |u_{n+1}|$$

Thus each term is less than its preceding term.

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{1}{n} = 0$$

Thus by Leibnitz's test the alternating series is convergent.

Que. Test the convergence of the series $2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \cdots$

Here
$$u_n = \frac{(-1)^{n+1}(n+1)}{n}$$
 $u_{n+1} = \frac{(-1)^{n+2}(n+2)}{n+1}$
 $|u_n| = \frac{(n+1)}{n}$ $|u_{n+1}| = \frac{n+2}{n+1}$

$$\begin{aligned} |u_n| - |u_{n+1}| &= \frac{n+1}{n} - \frac{n+2}{n+1} \\ &= \frac{(n+1)^2 - n(n+2)}{n(n+1)} \\ &= \frac{1}{n(n+1)} > 0 \end{aligned}$$

$$|u_n| - |u_{n+1}| \succ 0 \Rightarrow |u_n| \succ |u_{n+1}|$$

Thus each term is less than its preceding term.

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{n+1}{n}$$

$$= n \xrightarrow{\lim} \infty \frac{n\left(1 + \frac{1}{n}\right)}{n}$$

$$= 1 \neq 0$$

Thus by Leibnitz's test the alternating series is oscillating.

Que. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{2n-1}$

Solution:

$$u_{n} = \frac{(-1)^{n+1}x^{n+1}}{2n-1} \quad u_{n+1} = \frac{(-1)^{n+2}x^{n+2}}{2n+1}$$

$$|u_{n}| = \frac{x^{n+1}}{2n-1} \quad |u_{n+1}| = \frac{x^{n+2}}{2n+1}$$
1)
$$|u_{n}| - |u_{n+1}| = \frac{x^{n+1}}{2n-1} - \frac{x^{n+2}}{2n+1}$$

$$= \frac{(2n+1)x^{n+1} - x^{n+2}(2n-1)}{(2n-1)(2n+1)}$$

$$= \frac{x^{n+1}[(2n+1) - (2n-1)x]}{(4n^{2}-1)} > 0$$

$$|u_{n}| - |u_{n+1}| > 0 \Rightarrow |u_{n}| > |u_{n+1}|$$

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{x^{n+1}}{2n-1}$$
$$= 0 \qquad if \quad x < 1$$

Thus by Leibnitz's test the alternating series is convergent.