Doctoral Dissertation

English Title

Japanese Title

Your Name

Graduate School of Science and Engineering, Saitama University

Supervisor: Professor Supervisor's Name

December 20XX

Abstract

abstract

Acknowledgments

Special thanks are due to my thesis supervisor Professor XXXX for his invaluable support and guidance through the hard moments of graduate school. I am also grateful to my dissertation committee: Professor XXXXX for their support, valuable feedback, and insightful ideas to this research.

Contents

Al	ostra	ct	i
A	cknov	wledgments	iii
Li	st of	figures	iii v vi 1
Li	st of	tables	vi
1	Intr 1.1 1.2 1.3	Background and Motivation	1 1
2	Hog	gehoge	2
3	Fug. 3.1 3.2	afuga Foofoo	3
4	Hoc 4.1 4.2	Example of tables	4
5	Con 5.1 5.2	Summary	6
Pι	ıblica	ations	7
Re	efere	nces	8
Aı	ppen	dix	8
\mathbf{A}	A.1	Section 2	_

${f B}$	B Second Appendix		
	B.1	Section 1	10
	B.2	Section 2	10

List of Figures

4.1	The relationship	among ti	the parts of E	CnCal				ŗ
-----	------------------	----------	----------------	-------	--	--	--	---

List of Tables

4.1	The number	of elements	of $F_k(CML)$	and $FS_k(CML)$	4

Introduction

- 1.1 Background and Motivation
- 1.2 Earlier research
- 1.3 Structure of this thesis

The rest of thesis organised as follows: Chapter 2 explains \dots Chapter 4 gives conclusion and future works.

Hogehoge

hahahahah.

Fugafuga

3.1 Foofoo

hehehehe

3.2 Hyohyo

fufufufufufufu.

НооНоо

4.1 Example of figures

Figure 4.1 shows \dots

4.2 Example of tables

Table 4.1 shows \dots

Table 4.1: The number of elements of $F_k(CML)$ and $FS_k(CML)$

degree	$F_k(CML)$	$FS_k(CML)$		
	(a)	(b)		
1	1.60×10^{1}	4.00×10^{0}		
2	2.26×10^3	2.60×10^{2}		
3	1.67×10^{8}	8.90×10^{6}		
4	2.92×10^{19}	5.15×10^{17}		
5	1.63×10^{45}	6.31×10^{42}		
6	4.29×10^{103}	2.13×10^{100}		
7	1.02×10^{235}	3.09×10^{230}		
8	8.15×10^{527}	5.61×10^{521}		

Figure 4.1: The relationship among the parts of EnCal

Conclusion

5.1 Summary

We have \dots

5.2 Future Works

Future works are as follows: ...

Publications

Refereed papers

• First paper.

Unrefereed papers

• First paper.

References

- [1] Yusuke Nonaka, Jingde Cheng, and Kazuo Ushijima: A Tasking Deadlock Detector for Ada 95 Programs, Ada User Journal, Vol. 20, No. 1, pp. 79-92, April 1999.
- [2] Inkyu Sa, Zongyuan Ge, Feras Dayoub, Ben Upcroft, Tristan Perez, and Chris McCool: DeepFruits: A Fruit Detection System Using Deep Neural Networks, Sensors Vol. 16 No. 8, e1222, August 2016.
- [3] Qun Jin, Jie LI, Nan Zhang, Jingde Cheng, Clement Yu, and Shoichi Noguchi: Enabling Society with Information Technology, Springer-Verlag, November 2001.
- [4] Yuichi Goto, Daisuke Takahashi, and Jingde Cheng: Parallel Forward Deduction Algorithms of General-Purpose Entailment Calculus on Shared-Memory Parallel Computers, Proceedings of the ACIS 2nd International Conference on Software Engineering, Artificial Intelligence, Networking & Parallel/Distributed Computing, pp. 168-175, Nagoya, Japan, August 2001.
- [5] Jingde Cheng: Relevance Logic and Entailment Logic, in I. Nakada and M. Hagiya (Eds.), "Software Science and Engineering," pp. 189-211, World Scientific, November 1991.
- [6] Yusuke Nonaka, Jingde Cheng, and Kazuo Ushijima: A Supporting Tool for Development of Self-measurement Ada Programs, in H. B. Keller and E. Ploedereder (Eds.), "Reliable Software Technologies Ada-Europe 2000, 5th International Conference on Reliable Software Technologies, Potsdam, Germany, June 2000, Proceedings," Lecture Notes in Computer Science, Vol. 1845, pp. 69-81, Springer-Verlag, June 2000.
- [7] Yuichi Goto: Automated Forward Deduction Based on Strong Relevant Logics and Its Applications, Doctoral Dissertation, Graduate School of Science and Engineering, Saitama University, March 2005.
- [8] Common Criteria Project: CEM v3.1, http://www.commoncriteriaportal.org/thecc.html (accessed 2007-04-05).

Appendix A

First Appendix

- A.1 Section 1
- A.2 Section 2

Appendix B

Second Appendix

- B.1 Section 1
- B.2 Section 2