Introduction to Rings and Modules

Lecture 12, Monday June 5 2023 Ari Feiglin

Definition 12.0.1:

Let R be a ring, a left R-module is an abelian group (M, +) equipped with scalar multiplication

$$\cdot: R \times M \longrightarrow M$$

such that the following hold

- (1) (r+s)m = rm + sm for every $r, s \in R$ and $m \in M$.
- (2) r(m+n) = rm + rn for $r \in R$ and $m, n \in M$.
- (3) s(rm) = (sr)m for $r, s \in R$ and $m \in M$.
- (4) $1_R m = m \text{ for } m \in M.$

A right R-module is an abelian group (M, +) equipped with a right multiplication function $M \times R \to M$ which satisfies the above properties, where the multiplication's order is swapped.

Note that if R is commutative then if M is a left module, we can induce on M a right module structure by defining

$$m \cdot r = r \cdot m$$

This satisfies the first and second properties trivially, and

$$(mr)s = s(rm) = (sr)m = m(sr) = m(rs)$$

where the final equality is due to R being commutative. Thus if R is commutative, we can think of left and right modules being equivalent and just saying R-modules.

Note:

If R is a field, a left R-module is a vector space above R. Thus vector spaces are modules (the reverse is not true).

Example 12.0.2:

If R is a ring, let $M = \{0_M\}$ be the trivial group. We define $r \cdot 0_M = 0_M$, and this defines a eft R-module, the so-called trivial R-module.

Proposition 12.0.3:

$$0_R \cdot m = 0_M$$
 and $r \cdot 0_M = 0_M$.

Proof:

Note that $0_R \cdot m = (0_R + 0_R)m = 0_R \cdot m + 0_R \cdot m$, since M is a group we can subtract $0_R \cdot m$ from both sides and get $0_R \cdot m = 0_M$ as required. And $r \cdot 0_M = r \cdot (0_M + 0_M) = r \cdot 0_M + r \cdot 0_M$ and subtracting $r \cdot 0_M$ we get $r \cdot 0_M = 0_R$.

Proposition 12.0.4:

$$(-1_R)m = -m$$

Proof:

Notice that $(-1_R)m + m = (-1_R + 1_R)m$ by distributivity, which equals $0_R m = 0_M$ so $(-1_R)m = -m$ as required.

Example 12.0.5:

- (1) If R is a ring, we define the module M = (R, +) with multiplication $r \cdot m = rm \in R$. Thus R is an R-module above itself.
- (2) If S is a ring and M a module over S, and $f: R \longrightarrow S$ a ring homomorphism. We can induce on R-module structure on M by

$$r \cdot m = f(r)m$$

This satisfies the axioms since

$$(r_1 + r_2)m = f(r_1 + r_2)m = (f(r_1) + f(r_2))m = f(r_1)m + f(r_2)m = r_1m + r_2m$$

the second axiom:

$$r(m+n) = f(r)(m+n) = f(r)m + f(r)n = rm + rn$$

the third axiom:

$$(r_1r_2)m = f(r_1r_2)m = (f(r_1)f(r_2))m = f(r_1)(f(r_2)m) = f(r_1)(r_2m) = r_1(r_2m)$$

the fourth axiom:

$$1_R m = f(1_R) m = 1_S m = m$$

(3) Let L be a left module over S and $R = M_n(S)$, the ring of matrices of size $n \times n$ over S. Let $M = L^n$, which is a left R-module defined by $[s\ell]_i = \sum_{k=1}^n s_{ik}\ell_k$, where $s \in R$, $\ell \in M$ (meaning $s_{ik} \in S$ and $\ell_k \in L$, so this multiplication is well-defined).

Definition 12.0.6:

If R is a ring and M a R-module, then $\emptyset \neq N \subseteq M$ is a submodule of M if N is closed under addition, and scalar multiplication by R. Meaning that if $n_1, n_2 \in N$ then $n_1 + n_2 \in N$ and if $r \in R$ and $n \in N$ then $rn \in N$.

Notice then that if N is a submodule of M, then N is a subgroup of M. This is since $0_M = 0_R \cdot n$ for $n \in N$ so $0_M \in N$. And if $n \in N$ then $-n = (-1_R)n \in N$, so N is closed under inverses.

Proposition 12.0.7:

The submodules of a ring R, when viewed as a module over itself, are exactly its left ideals.

Proof:

If $I \subseteq R$ is a left-ideal of R then it is by definition closed under addition and left multiplication by R, so it is a submodule. And if $N \subseteq R$ then it is by definition closed under addition and left scalar multiplication, so is by definition a left ideal of R.

Proposition 12.0.8:

Let M be an R-module, and $m_1, \ldots, m_n \in M$. Then the smallest submodule containing these elements is

$$N = \{r_1 m_1 + \dots + r_n m_n \mid r_i \in R\}$$

Proof:

This set is a submodule since if $r_1m_1 + \cdots + r_nm_n$, $s_1m_1 + \cdots + s_nm_n \in N$ then

$$r_1m_1 + \dots + r_nm_n + s_1m_1 + \dots + s_nm_n = (r_1 + s_1)m_1 + \dots + (r_ns_n)m_n \in N$$

so N is closed under addition, and if $r \in R$ then

$$r(r_1m_1 + \dots + r_nm_n) = (rr_1)m_1 + \dots + (rr_n)m_n \in N$$

so N is also closed under left scalar multiplication, meaning N is a submodule.

If N' is another submodule containing m_1, \ldots, m_n then for any $r_1, \ldots, r_n \in R$, it must contain $r_i m_i$ for every i since it is closed under scalar multiplication, and since it is also closed under addition it must contain $r_1 m_1 + \cdots + r_n m_n$, meaning $N \subseteq N'$.

Definition 12.0.9:

If M is an R-module, and $m_1, \ldots, m_n \in M$ we define the submodule generated by m_1, \ldots, m_n to be

$$\langle m_1, \dots, m_n \rangle = \{r_1 m_1 + \dots + r_n m_n \mid r_i \in R\}$$

the smallest submodule containing m_1, \ldots, m_n .

And in general if $\mathscr{S} \subseteq M$, we define the submodule generated by \mathscr{S} to be

$$\langle \mathscr{S} \rangle = \{ r_1 s_1 + \dots + r_k s_k \mid k \in \mathbb{N}, r_i \in R, s_i \in \mathscr{S} \}$$

This is the smallest submodule containing \mathscr{S} .

Definition 12.0.10:

Let R be an integral domain and M an R-module. We define its torsion submodule by

$$Tor(M) = \{ m \in M \mid \exists 0_R \neq r \in R \colon rm = 0_M \}$$

This is indeed a submodule, since if $m_1, m_2 \in \text{Tor}(M)$ then there exists r_1 and r_2 such that $r_1m_1 = r_2m_2 = 0_M$. Since R is an integral domain, $r_1r_2 \neq 0_R$ and

$$(r_1r_2)(m_1+m_2) = r_1r_2m_1 + r_1r_2m_2 = r_2(r_1m_1) + r_1(r_2m_2) = 0_M$$

so $m_1 + m_2 \in \text{Tor}(M)$, and if $m \in \text{Tor}(M)$ where $rm = 0_M$, and $s \in R$ then

$$r(sm) = s(rm) = 0_M$$

so $sm \in Tor(M)$ as well.

Definition 12.0.11:

Let M be an R-module. $B \subseteq M$ is called a basis of M if every element of M can be written as a unique linear combination of elements in B. Meaning that for every $0_M \neq m \in M$, there exist distinct $b_i \in B$ and $r_i \in R$ such that

$$m = r_1 b_1 + \dots + r_n b_n$$

and if

$$m = r_1'b_1' + \dots + r_m'b_m'$$

then n = m and there exists a permutation $\sigma \in S_n$ such that $b_{\sigma(i)} = b'_i$ and $r_{\sigma(i)} = r'_i$. If M has a basis, it is called free.

From linear algebra, we know that

Theorem 12.0.12:

Let R be a field, then every R-module is free.

Example 12.0.13:

If M is an abelian group, there is a unique way to define M as a \mathbb{Z} -module. This is because for $n \geq 0$

$$n \cdot m = (1 + \dots + 1)m = m + \dots + m$$

and

$$(-n) \cdot m = (-m) + \dots + (-m)$$

This does in fact define a Z-module. Thus abelian groups and Z-modules are equivalent.

Example 12.0.14:

Let $M=\mathbb{Z}/_{6\mathbb{Z}}$, this is a \mathbb{Z} -module. Now suppose $B\subseteq M$ is a basis, then let $m\in M$ so

$$m = r_1b_1 + \dots + r_nb_n$$

but we know (r+6)b = rb + 6b and 6b = 0 so (r+6)b = rb and so

$$m = (r_1 + 6)b_1 + \dots + r_n b_n$$

is another linear combination equal to m, so these are not unique and therefore B is not a basis. So M is not free. This is true in general for $M = \mathbb{Z}/n\mathbb{Z}$. And in even more generality, this works for finite (non-trivial) abelian groups M, since $|M| \cdot m = 0_M$.