## Network and protocols

Lecture 09:

Operating Systems and Networks
Behzad Bordbar

## recap

| ☐ Finished preliminaries of OS                      |
|-----------------------------------------------------|
| ☐CPU, Registers, System calls, traps and interrupts |
| ☐What happens when computer starts?                 |
| ☐ Device controllers                                |
| ☐CPU mutlitasking and Time sharing                  |
| □program, process, stack, heap                      |
| □process Control, context switching                 |
| ☐ threads                                           |
| process and thread in linux                         |
| ☐ End part one move to networking                   |

#### Contents

☐ shared object and pipe ☐standard input, output and error □ processes communicating ☐ need network to communicate ☐ Different type of network ☐ Modes of transmission protocols □OSI view

# pipe |

| ☐ How do processes communicate?                                     |
|---------------------------------------------------------------------|
| □command1  command2 (both in window and linux   dir  more)          |
| pipes allow to process to communicate                               |
| □but how?                                                           |
| ☐a temporary file is generated on disk                              |
| ☐command1 writes into it and command2 reads?                        |
| □but how?                                                           |
| ☐standard input, standard output and standard error. (next lecture) |
| ☐ordinary pipe (anonymous pipe in Windows)                          |
| ☐named pipe (mkfifo) we dont study this.                            |

□starting a shell result in creation of three files
□stdin: file that the process gets its input (e.g. from keyboard)
□stdout: file that the process puts its output (e.g. to monitor)
□stderr: file that the error goes to (e.g. to monitor)

```
make a directory and change to it
$cd a
$ mkdir mydir
☐ The following gives one stdout and stderr to terminal
$(ls -ld mydir; ls -ld mydir1)
put stdout to temp1
$(ls -ld mydir; ls -ld mydir1) > temp1
☐ see it
$ cat temp1
put second output to another file
☐ (Is -ld mydir; Is -ld mydir1) 2> temp2
see it
☐ $ cat temp2
```

```
put steout to temp3 and the second output
(stderr) to the same place as 1st output (i e
temp3)
\Box$(ls -ld mydir; ls -ld mydir1) > temp3 2>&1
see it
□cat temp3
☐what does this one do?
$(ls -ld mydir; ls -ld mydir1) 2>&1 > temp4
$cat temp4
```

what does this one do? [second output (stderr) to first output (terminal) ... well second output of the command goes to temp4] \$(ls -ld mydir; ls -ld mydir1) 2>&1 > temp4 \$cat temp4 temp is only for teaching pruposes! use bit bucket (black hole of null device) /dev/null a special file that discards all data written to it but reports that the write operation succeeded.

### you often see

```
$mycommand > /dev/null
☐ redirect channel stdout of mycommand to
 /dev/null
$ mycommand 2> /dev/null
☐ redirect channel stderr to /dev/null
$ mycommand > /dev/null 2>&1
redirect stdout to /dev/null and then bind
channel 2 (stderr) to channel 1 (stdout). Both will
go into /dev/null
```

### back to pipe

- command1 | command 2
- ☐ a temporary file is created
- ☐stdout of command1 is redirected to the temp file
- □stdin of command2 comes from the file

- □ pipe is an example of communication via shared file.
- □Any other way of processes communicating?

### processes communicate in two ways



Between machines we need a network or communication medium!

## Types of Networks

- PAN (Personal Area Network)
- LANs (Local Area Networks)
- WANs (Wide Area Networks)
- MANs (Metropolitan Area Networks)
- WPAN (Wireless PAN)
- WLAN (Wireless LAN)
- WMAN (Wireless MAN)
- WWAN (Wireless WAN)

#### LAN

- messages are carried in high speed between connected nodes by a <u>single communication</u> medium
- Suitable for home office ,... radius of 1-2 km
- High bandwidth 10-1000Mbps (total amount of data per unit of time)
- Low latency 1-10 ms (time taken for a bit to reach destination)
- Technology: predominantly Ethernet

## LAN example: the old SoCS



#### WAN

- Covers Worldwide,
- Low bandwidth 0.01-600 Mbps,
- high latency (100-500 ms)
- Satellite/wire/cable, use of routers which also introduce delays

#### MAN

Wire/cable, uses Digital Subscriber Line (DSL) and cable modem

Range of technologies (ATM, Ethernet)

#### Wireless networks

- WLANs (Wireless Local Area Networks)
  - to replace wired LANs
  - WaveLAN technology (IEEE 802.11)
- WPANs (Wireless Personal Area Networks)
  - variety of technologies
  - GSM, infra-red, BlueTooth low-power radio
  - WAP (Wireless Applications Protocol)

## Network comparison

|              | Range       | Bandwidth (Mbps) | Latency (ms) |
|--------------|-------------|------------------|--------------|
| LAN          | 1-2 kms     | 10-1000          | 1-10         |
| WAN          | worldwide   | 0.010-600        | 100-500      |
| MAN          | 2-50 kms    | 1-150            | 10           |
| Wireless LAN | 0.15-1.5 km | 2-11             | 5-20         |
| Wireless WAN | worldwide < | 0.010-2          | 100-500      |
| Internet     | worldwide   | 0.5-600          | 100-500      |

Fastest ever internet transfer is 1.4 terabits per sec (BT, 2014) Guinness world record (Cisco):

South Korea has average download 33.5 megabits per second second-place Hong Kong – 17 megabits per second

Lecture 03

## Network principles

- Mode of transmission
- Switching schemes
- Protocol suites
- Routing
- Congestion control

#### Mode of transmission

#### Packet Transmission

- messages divided into packets. Example:
   01101110
- packets queued in buffers before sent onto link
- QoS not guaranteed

#### Data streaming

- links guarantee QoS (rate of delivery)
- for multimedia traffic
- higher bandwidth

## Switching schemes

- Broadcasts (Ethernet, wireless)
  - send messages to all nodes
  - nodes listen for own messages (carrier sensing)
- Circuit switching (phone networks)
- Packet switching (TCP/IP)
  - store-and-forward
  - unpredictable delays
- Frame/cell relay (ATM)
  - bandwith & latency guaranteed (virtual path)
  - small, fixed size packets (padded if necessary)
  - avoids error checking at nodes (use reliable links)

#### **Protocol**

- well-known set of <u>rules and formats</u> to be used for communication between processes to perform a <u>given task</u>
- Two parts:
- ■specification of sequence of messagegs that must be exchanged
- ☐ specification of the format of the data in each message

# Protocols (OSI view)



Definition: set of rules and formats for exchanging data, arranged into layers called protocol suite/stack.

## Message encapsulation



Headers appended/unpacked by each layer.

# OSI protocol summary

| Layer        | Description                                                                                             | Example                            |
|--------------|---------------------------------------------------------------------------------------------------------|------------------------------------|
| Application  | Protocols for specific applications.                                                                    | HTTP, FTP,<br>SMTP                 |
| Presentation | Protocols for independent data representation and encryption if required.                               | Secure Sockets,<br>CORBA CDR       |
| Session      | Protocols for failure detection and recovery.                                                           |                                    |
| Transport    | Message-level communication between ports attached to processes. Connection-oriented or connectionless. | TCP, UDP                           |
| Network      | Packet-level transmission on a given network. Requires routing in WANs and Internet.                    | IP, ATM                            |
| Data link    | Packet-level transmission between nodes connected by a physical link.                                   | Ethernet MAC,<br>ATM cell transfer |
| Physical     | transmit sequence of binary data using Signallin various mediums ISDN                                   | ng,                                |