IB102 – úkol 9, příklad 1 – řešení

Vypracoval(a): UČO: Skupina:

Odevzdání: 7.12.2015

- 1. [2 body] Nechť Σ je libovolná abeceda a $L_1, L_2 \subseteq \Sigma^*$ jsou jazyky nad touto abecedou. O každém z následujících tvrzení rozhodněte, zda je pravdivé, a vaše tvrzení dokažte.
- a) L_1 je deterministický bezkontextový a L_2 je regulární \implies co $-L_1 \cap L_2$ je bezkontextový
- b) L_1 je kontextový a L_2 je bezkontextový $\implies L_1 \cup L_2$ není bezkontextový
- c) L_1 je bezkontextový a L_2 je rekurzivně spočetný $\implies L_2 \setminus L_1$ je rekurzivně spočetný
- d) L_1 není bezkontextový a L_2 je regulární $\implies L_2 \setminus L_1$ není bezkontextový
- a) Tvrzení **platí**. Platnost tohoto tvrzení plyne přímo z uzávěrových vlastností. Třída DCFL je uzavřená na doplněk. Protože L_1 je DCFL, tak i co $-L_1$ je DCFL, a tedy i CFL. Jazyk L_2 je regulární a z uzavřenosti třídy CFL na průnik s regulárním jazykem vyplývá, že co $-L_1 \cap L_2$ je CFL.
- b) Tvrzení **neplatí**, vyvrátíme jej protipříkladem. Všimneme si, že pokud za jeden z jazyků zvolíme Σ^* (je jedno, za který z nich, protože Σ^* je kontextový i bezkontextový), pak $L_1 \cup L_2$ je jazyk Σ^* .
- c) Tvrzení **platí**. $L_2 \setminus L_1$ si můžeme přepsat na $L_2 \cap (\text{co}-L_1)$. Jazyk L_1 je bezkontextový, a tedy i rekurzivní. Rekurzivní jazyky jsou uzavřené na doplněk, proto i $\text{co}-L_1$ je rekurzivní, a tedy i rekurzivně spočetný. Jazyk $L_2 \cap (\text{co}-L_1)$ je také rekurzivně spočetný, protože rekurzivně spočetné jazyky jsou uzavřené na průnik.
- d) Tvrzení **neplatí**. Jako protipříklad zvolíme $L_2 = \emptyset$ a za L_1 libovolný jazyk, který není bezkontextový (například $\{a^nb^nc^n \mid n \in \mathbb{N}\}$). $L_2 \setminus L_1$ je potom rovno \emptyset a jazyk \emptyset bezkontextový je.