(19)日本国特許庁(JP) (12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-281540

(43)公開日 平成11年(1999) 10月15日

(51) Int. Cl. ⁶	識別記 号	FI	
G 0 1 N 1/22		G 0 1 N 1/22	D
			L
B 0 1 D 53/70		1/02	D
G 0 1 N 1/02		B 0 1 J 20/30	
// B 0 1 J 20/30		B 0 1 D 53/34 1 3 4	E
		審査請求 未請求 請求項の数5 ()L(全 4 頁)
(21)出願番号	特願平11-15179	(71)出願人 000175272	
		三浦工業株式会社	
(22)出願日	平成11年(1999)1月25日	愛媛県松山市堀江町7番地	
		(72)発明者 本田 克久	
(31)優先権主張番号	特願平10-32100	愛媛県松山市堀江町7番地	三浦工業株式
(32)優先日	平10 (1998) 1月28日	会社内	
(33)優先権主張国	日本(JP)	(72)発明者 ▲浜▼田 典明	
		愛媛県松山市堀江町7番地	三浦工業株式
		会社内	
		(72)発明者 山下 正純	
		愛媛県松山市堀江町7番地	三浦工業株式
		会社内	

(54)【発明の名称】ダイオキシン類の採取装置

(57)【要約】

【課題】 採取および採取後の分析が簡単なダイオキシ ン類の採取装置を提供する。

【解決手段】 一つの容器内に粒子態とガス態とを同時 に捕捉するゼオライト捕捉体を設けたことを特徴として いる。そして、前記ゼオライト捕捉体は、原料を焼結成 形し、アルカリ水溶液と混合し、加熱して得られるもの であることを特徴としており、また前記ゼオライト捕捉 体は、原料をアルカリ水溶液と混合し、加熱し、有機質 もしくは無機質からなる結合剤によって成形して得られ るものであることを特徴としている。さらに、前記ゼオ ライト捕捉体は、人工ゼオライトによって成形して得ら れるものであることを特徴としており、また前記人工ゼ オライトが、Ca型人工ゼオライトであることを特徴と している。

【特許請求の範囲】

【請求項1】 一つの容器内に粒子態とガス態とを同時 に捕捉するゼオライト捕捉体を設けたことを特徴とする ダイオキシン類の採取装置。

【請求項2】 前記ゼオライト捕捉体は、原料を焼結成 形し、アルカリ水溶液と混合し、加熱して得られるもの であることを特徴とする請求項1に記載のダイオキシン 類の採取装置。

【請求項3】 前記ゼオライト捕捉体は、原料をアルカ なる結合剤によって成形して得られるものであることを 特徴とする請求項1に記載のダイオキシン類の採取装 置。

【請求項4】前記ゼオライト捕捉体は、人工ゼオライト によって成形して得られるものであることを特徴とする 請求項1に記載のダイオキシン類の採取装置。

【請求項5】 前記人工ゼオライトが、Ca型人工ゼオ ライトであることを特徴とする請求項4に記載のダイオ キシン類の採取装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ダイオキシン類 の採取装置に関するものである。

[0002]

【従来の技術】ダイオキシンとは、ポリ塩化ジベンゾパ ラジオキシン(PCDDs)の通称であり、塩素の置換 数と置換位置とにより、8種類の同族体と75種類の異 性体とが存在する。このうち、2.3.7.8-4塩化ジベンゾ パラジオキシン(2,3,7,8-T₄CDD)は、最強の毒性 を有している。また、同じような構造と性質とを持つ化 30 合物にポリ塩化ジベンゾフラン(PCDFs)があり、 塩素の置換数と置換位置とにより、8種類の同族体と1 3 5 種類の異性体とが存在する。一般には、ダイオキシ ンとフランとを総称してダイオキシン類と称している が、ダイオキシン類は、強い急性毒性を有している。

[0003]

【発明が解決しようとする課題】このようなダイオキシ ン類は、一般廃棄物や産業廃棄物の焼却炉から発生する ことが知られている。従来、ダイオキシン類の測定分析 に当たっては、以下のような問題点があった。すなわ ち、この測定分析に適用される排ガス試料の採取装置の 構成は、採取管部、ばいじん態を補集するフィルター補 集部、ガス態を補集する液体補集部および樹脂吸着部か らなり、複雑な装置となっていた。これらの構成のう ち、前記フィルター補集部に用いるろ紙は、試料採取前 に洗浄し、真空乾燥させる必要があった。また、前記液 体補集部は、吸収液を入れたガラス製のインピンジャー からなり、採取装置の運搬時などにおいて、破損しない よう取り扱いに注意する必要があった。また、前記液体 補集部は、試料採取中にドライアイスなどで冷却しなけ 50 オキシン類の捕捉に適用されるゼオライト捕捉体の形状

ればならなかった。さらに、前記樹脂吸着部には、XA D-2樹脂を使用するが、試料採取前に長時間のソック レー抽出による洗浄を行った後、充分に乾燥する必要が あった。以上説明したように、前記ダイオキシンの採取 装置および方法においては、装置が複雑であり、操作が 面倒であるとともに、そのため、再採取時の装置の準備 も容易ではなかった。

【0004】また、採取した試料中のダイオキシン類の 分析において、前記フィルター補集部、前記液体補集部 リ水溶液と混合し、加熱し、有機質もしくは無機質から 10 および前記吸着部の各部毎に酸処理および溶媒抽出操作 を行う必要があり、分析操作が面倒であった。

[0005]

【課題を解決するための手段】この発明は、前記課題を 解決するためになされたものであって、請求項1に記載 の発明は、一つの容器内に粒子態とガス態とを同時に捕 捉するゼオライト捕捉体を設けたことを特徴としてい

【0006】そして、請求項2に記載の発明は、前記ゼ オライト捕捉体が、原料を焼結成形し、アルカリ水溶液 20 と混合し、加熱して得られるものであることを特徴とし ている。

【0007】そして、請求項3に記載の発明は、前記ゼ オライト捕捉体が、原料をアルカリ水溶液と混合し、加 熱し、有機質もしくは無機質からなる結合剤によって成 形して得られるものであることを特徴としている。

【0008】そして、請求項4に記載の発明は、前記ゼ オライト捕捉体が、人工ゼオライトによって成形して得 られるものであることを特徴としている。

【0009】さらに、請求項5に記載の発明は、前記人 エゼオライトが、Ca型人工ゼオライトであることを特 徴としている。

[0010]

【発明の実施の形態】つぎに、この発明の実施の形態に ついて説明する。この発明は、廃棄物の焼却炉などから 発生する排ガス、環境大気および水(たとえば、工場排 水、海水、淡水)からのダイオキシン類の採取におい て、好適に実施できる。この発明におけるダイオキシン 類の採取装置にあっては、一つの容器内に粒子態とガス 態とを同時に捕捉するゼオライト捕捉体が設けられてい

【0011】排ガスの採取において、ダイオキシン類 は、ばいじん態とガス態の両方に含まれるが、両者とも に前記ゼオライト捕捉体により吸着される。前記ゼオラ イト捕捉体の形状としては、円筒形のものが好ましい。 また、環境大気および水からの採取についても、その中 に含まれるダイオキシン類を前記ゼオライト捕捉体によ り吸着することができる。この環境大気からのダイオキ シン類の捕捉に適用されるゼオライト捕捉体の形状とし ては、平板状のものが好ましい。そして、水からのダイ としては、袋状のものが好ましい。

【0012】前記ゼオライト捕捉体の原料としては、ケ イ素とアルミニウムとを含む天然化合物または合成化合 物が用いられる。

【0013】そして、前記ゼオライト捕捉体は、以下に 説明する製造方法によって得ることができる。第一の方 法は、前記原料を適宜な形状に焼結成形した後、アルカ リ水溶液と混合し、加熱して、接触反応により表面をゼ オライト化させる方法である。また、第二の方法は、前 記原料をアルカリ水溶液と混合し、加熱して、接触反応 10 によりゼオライト化させた後、有機質もしくは無機質か らなる結合剤によって適宜な形状に成形する方法であ る。前記各方法において使用するアルカリ水溶液は、N a O H, K O H, N H₄ O H 等の水溶液である。これら の水溶液のうち、NaOH水溶液を使用して製造したゼ オライト捕捉体の孔径は、ダイオキシン類の分子に対し て適当な大きさである。したがって、このゼオライト捕 捉体は、ダイオキシン類を最も効率よく捕捉するので、 NaOH水溶液を使用するのが好ましい。また、前記各 方法における加熱時に加圧すると、ゼオライト化がより 20 促進されることになり、反応時間を短くすることができ る。

【0014】前記のように、この発明の特徴は、ダイオ キシン類の捕捉体として、ゼオライトを使用する点にあ る。ゼオライトは、 $X_mY_nO_{2n}$ ・ SH_2O (X=Na, Ca, Kなどであり、Y=Si+Alであり、Sは不 定)の一般式で表される含水アルミノケイ酸塩である が、この発明では、天然ゼオライトや合成ゼオライトで はなく、人工ゼオライトを用いるのが好適である。

して合成されるゼオライトを言い、ある程度純粋な原料 (ケイ酸や水酸化アルミニウムなど) を必要とする合成 ゼオライトとは区別されるものである。この人工ゼオラ イトには、ゼオライトになりきっていない中間生成物や 活性炭のような有機物が含まれており、ゼオライト純品 の含有率と結晶度は、合成ゼオライトと天然ゼオライト の中間に位置している。しかしながら、人工ゼオライト は、合成ゼオライトより廉価である(天然ゼオライトと 同等またはそれ以下)と云う利点だけでなく、含有する 性能や表面酸性などの有用な特性を有している。また、 陽イオン交換容量は、天然ゼオライトと同等ないし3倍 程度である。

【0016】人工ゼオライトは、市販のものを用いても 良いが、飛灰から製造したものを用いるのがコスト的に 有利である。飛灰として、石炭やパルプなどの焼却灰 は、雑多なものを含まない点で好ましいが、その他、一 般廃棄物や産業廃棄物の焼却灰などを用いることもでき

【0017】人工ゼオライトを製造する場合には、まず 50 【0024】ここにおいて、前記採取管2,前記捕捉体

粒径の細かいものを選んだ飛灰とNaOH水溶液(規定 度2.5N~3.5N)とを、90℃程度で12~28 時間反応させる。その後、塩化カルシウムCaCl2を 2時間程度反応させて、NaをCaと置換する。そし て、水洗した後に粉末を乾燥させれば、Ca型人工ゼオ ライトが生成される。ここにおいて、この処理により生 じた生成物は、正しくは、ゼオライトを含んだ石炭灰の アルカリ処理産物と言うべきものである。

【0018】そして、人工ゼオライトとしては、前記の Ca型人工ゼオライトの他に、Pb型人工ゼオライト、 Ag型人工ゼオライト、Mg型人工ゼオライトなども適 するが、安全面および価格面から見て、Ca型人工ゼオ ライトが最も好適である。

[0019]

【実施例】以下、この発明の具体的実施例を図面に基づ いて詳細に説明する。この発明の実施例を示す図1につ いて説明する。図1は、この発明を実施した排ガスから のダイオキシン類の採取装置の構成を示す概略説明図で ある。

【0020】図1において、焼却炉などにおいて、排ガ スが上向きに流れる煙道1に採取管2が差し込まれてい る。この採取管2は、煙道1を流れる排ガスを等速吸引 するようになっている。そして、この採取管2には、ゼ オライト捕捉体3を収容した捕捉体用容器4が接続され ている。

【0021】ここで、このゼオライト捕捉体3の第一番 目の製造方法について説明する。まず、原料を円筒形に 焼結成形した後、2.5~3NのNaOH水溶液と混合 し、加熱下(90℃程度)で接触反応させる。この結 【0015】人工ゼオライトとは、石炭灰などを原料と 30 果、表面がゼオライト化されたゼオライト捕捉体3を得 ることができる。

> 【0022】つぎに、前記ゼオライト捕捉体3の第二番 日の製造方法について説明する。まず、粒径の小さいも のを選んだ原料と2.5~3NのNaOH水溶液とを混 合し、加熱下(90℃程度)で12~28時間反応させ る。その後、有機質もしくは無機質からなる結合剤によ って円筒形に成形すると、ゼオライト捕捉体3を得るこ とができる。

【0023】そして、前記採取管2の途中には、第一冷 不純物 (中間生成物や未燃焼炭素分) に起因して、吸着 40 却部5が設けられている。この第一冷却部5は、採取さ れる排ガスの温度が高い場合に用いられ、前記捕捉体用 容器4へ流入する排ガスの温度を120℃前後に下げる ことにより、ダイオキシン類の2次的な発生を防止す る。前記捕捉体用容器4には、第二冷却部7を備えた冷 却管6が接続されている。この冷却管6は、容器8に接 続されるとともに、この容器8は、真空吸引管9を介し て真空ポンプ10に接続されている。前記第二冷却部7 は、排ガス中に含まれる水分を凝縮させることにより、 前記真空ポンプ10へ水分が流入するのを防止する。

6

用容器 4 および前記冷却管 6 との接続について、さらに 詳細に説明する。前記採取管4は、採取現場での設置お よび採取後の分析などの点から、前記採取管2および前 記冷却管6と着脱自在に接続することが好ましい。すな わち、採取現場では、前記捕捉体用容器 4 を前記採取管 2および前記冷却管6と接続するのみで、前記煙道1に 設置することができる。また、採取後は、前記採取管2 および前記捕捉体用容器 4 を分析場所へ運ぶことができ る。

方法について詳細に説明する。図1において、真空ポン プ10を作動させることにより、煙道1を流れる排ガス の一部が等速吸引されて採取管2へ流入する。この採取 管2へ流入した排ガスは、第一冷却部5を通過する際に 120℃前後に冷却された後、捕捉体用容器4へ流入す る。ここで、排ガス中のダイオキシン類のばいじん態と ガス態とが、ゼオライト捕捉体3により、同時に捕捉さ れる。そして、前記捕捉体用容器4を通過したガスは、 第二冷却部7により冷却されながら、冷却管6を通る。 その際、通過ガス中の水分が凝縮した後、この水分が容 20 4 捕捉体用容器 器8内に貯留される。以上説明したような試料採取は、 検出限界値から想定される排ガス量に達する時間(通 常、排ガス $1\sim3$ N m³/ $3\sim4$ 時間) 行われる。この ような試料採取を行った後、前記採取管2および前記捕 捉体用容器 4 を取り外し、前記採取管 2 の内部に吸着し たダイオキシン類の溶媒抽出物と前記ゼオライト捕捉体 3に捕捉したダイオキシン類の溶媒抽出物とを合わせて

分析を行う。

[0026]

【発明の効果】以上のように、この発明によれば、粒子 態とガス態とを同時に捕捉するゼオライト捕捉体を設け たので、ダイオキシン類の採取装置を簡単な構成にする ことができるとともに、再採取時における装置の準備が 容易になる。そして、採取操作が簡単になり、採取装置 の取り扱いが容易になるとともに、短時間で採取を行う ことができる。また、採取装置の構成が簡単であるの

【0025】つぎに、排ガス中のダイオキシン類の採取 10 で、採取装置が汚染されにくくなる。さらに、試料採取 後は、採取管とゼオライト捕捉体とを分析するのみでよ く、分析を簡単に行うことができる。

【図面の簡単な説明】

【図1】この発明を実施するダイオキシン類の採取装置 の構成を示す概略説明図である。

【符号の説明】

- 1 煙道
- 2 採取管
- 3 ゼオライト捕捉体
- - 5 第一冷却部
 - 6 冷却管
 - 7 第二冷却部
 - 8 容器
 - 9 真空吸引管
 - 10 真空ポンプ

【図1】

