Description of Bot Tau

Frans Englich fenglich@fastmail.fm

August 21, 2025

Contents

1	Introduction	1
2	Trading Plan	1
3	The Dataset	2
4	Features 4.1 Multicollinearity	2 4
5	Targets	4
6	Model	4
7	Back Test 7.1 Drawdown 7.2 Returns	5 5
8	Live Performance 8.1 Performance Report	

1 Introduction

This document describes the simulated in-sample performance of Bot Tau's trading strategy. It does not describe the strategy itself, which is proprietary.

2 Trading Plan

Table 1: Specifics of the trading plan.

Assets	Currently undecided		
Overnight?	We close positions at end of each trading day, because we don't		
	want overnight exposure.		
Number of trades per day	Currently undecided		
Performance			
	• Yearly return > ?		
	• Sharp Ratio > ?		
	• Calmar Ratio > ?		
Over-fitting	How many times can the strategy be adjusted? How many back tests?		

Risk management conditions:

- If we have more than 3 losing trades per day, we stop the algorithm for the day.
- \bullet We stop the algorithm after X % loss in one month.
- We stop the algorithm if the drawdown in live trading becomes times higher than the drawdown in incubation.

3 The Dataset

The dataset stretches from $1999-11-01\ 00:00:00\ to\ 2000-03-23\ 00:00:00.$

4 Features

Some form of property, typically derived from the OLHCV. An example is volatility. The features used are as follows.

Heatmap of Pearson correlation matrix of features

Heatmap of Spearman correlation matrix of features

4.1 Multicollinearity

See:

- https://www.geeksforgeeks.org/python/detecting-multicollinearity-with-vif-python/
- https://en.wikipedia.org/wiki/Variance_inflation_factor

Interpretation:

- Values near 1 mean predictors are independent.
- Values between 1 and 5 shows moderate correlation which is sometime acceptable.
- Values above 10 signal problematic multicollinearity requiring action.

Table 2: Variance Inflation Factors (VIF).

Feature	VIF
pct_close_futur	1.08
var	7.76
parkinsons_var	7.6

5 Targets

6 Model

OLS Regression Results

Dep. Variable:	target_future_r	•	R-squared			-0.000
Model:		OLS	Adj. R-sq	•		-0.000
Method:		ast Squares	F-statist	ic:		nan
Date:	Wed,	20 Aug 2025	Prob (F-s	tatistic):		nan
Time:		20:15:38	Log-Likel	ihood:		-72.399
No. Observations:		100	AIC:			146.8
Df Residuals:		99	BIC:			149.4
Df Model:		0				
Covariance Type:		nonrobust				
	oef std err	t	P> t	[0.025	0.975]	
	200 0.050	10 500		0.420	0.620	

	coef	std err	t	P> t	[0.025	0.975]
const signal	0.5300	0.050	10.566 nan	0.000 nan	0.430	0.630
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0	.000 Jarq	in-Watson: ue-Bera (JB) (JB):):	0.562 16.668 0.000240 inf

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 0. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

7 Back Test

7.1 Drawdown

Maximum drawdown is 0.0%. We consider 20% an acceptable maximum.

7.2 Returns

This is the returns of our trading strategy.

Table 3: Statistics of returns.

Mean returns	0.0%
Standard deviation (SD)	0.0
Sharpe Ratio (SR)	nan
Calmar Ratio (CR)	nan

The cumulative returns are not compounding, while the annualized returns are. However, we close the position, meaning compounding isn't relevant.

The transaction cost, C, is calculated using the formula, where t is the trade amount:

$$C = 0.02 * t + spread/2 \tag{1}$$

8 Live Performance

The plan is to paper trade in a one month incubation period.

TODO compare return dist to back test return using Kolmogorov statistical test.

8.1 Performance Report

(Copy Discord report.)

8.2 Trading Journal

No trading have taken place, so nothing here yet.