

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MATHEMATICS P2** 

**FEBRUARY/MARCH 2013** 

**MEMORANDUM** 

**MARKS: 150** 

This memorandum consists of 21 pages.

#### NOTE:

Mathematics/P2

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in **ALL** aspects of the marking memorandum.

#### **QUESTION 1**

| 1.1 |                                                                 | Scatter       | plot of ex   | change       | rate vers        | sus oil  | price      |                        |
|-----|-----------------------------------------------------------------|---------------|--------------|--------------|------------------|----------|------------|------------------------|
|     | 82                                                              |               | 7            |              |                  | J 011    | P-100      |                        |
|     | 81                                                              |               |              |              |                  |          |            |                        |
|     | 80                                                              |               |              |              |                  |          |            |                        |
|     |                                                                 |               |              |              |                  |          |            | ✓ any 4                |
|     | 79                                                              |               |              |              |                  |          |            | points                 |
|     | 78                                                              |               |              |              |                  |          |            | correctly              |
|     | 77                                                              |               |              |              |                  |          |            | plotted<br>✓ any 9     |
|     | 76                                                              | +             |              |              |                  |          |            | points                 |
|     | <b>9</b> 75 ■                                                   |               |              |              |                  |          |            | correctly              |
|     | . <u>H</u> ) 74                                                 |               |              |              |                  |          |            | plotted                |
|     | <b>25.</b> 73                                                   |               |              |              |                  |          |            | ✓ all points correctly |
|     | Oil brice (in \$)                                               |               |              |              |                  |          |            | plotted                |
|     |                                                                 |               |              |              |                  |          |            | -                      |
|     | 71                                                              |               |              |              |                  |          |            |                        |
|     | 70                                                              |               |              |              |                  | •        |            |                        |
|     | 69                                                              |               |              |              |                  |          |            |                        |
|     | 68                                                              |               |              | •            |                  |          | •          |                        |
|     | 67                                                              |               |              |              |                  |          | •          |                        |
|     | 66                                                              |               |              |              |                  |          | •          |                        |
|     | 65                                                              |               |              |              |                  |          |            |                        |
|     | 6.7                                                             | 6.8 6.9       | 7 7.1        | 7.2 7.3      | 3 7.4            | 7.5 7.   | .6 7.7 7.8 | :                      |
|     |                                                                 |               | Exch         | ange rate    | (in R/\$)        |          |            | (3)                    |
| 1.2 | As the exchar                                                   | nge rate (R/S | S) increases | s the oil pr | rice (\$) dec    | creases. |            | ✓✓ reason              |
|     |                                                                 | _             |              | OR           |                  |          |            |                        |
| 1.2 | There is a neg                                                  |               | ation betwe  | een the ex   | change rat       | e and of | il price.  | (2)                    |
| 1.3 | Mean = $\frac{852}{12}$                                         | _             |              |              |                  |          |            | ✓ 852,6                |
|     | 12<br>- 71 0                                                    |               |              |              |                  |          |            | <b>√</b> 71,05         |
|     | = 71,03                                                         | J             |              |              |                  |          |            | (2)                    |
| 1.4 | Standard dev                                                    | iation is:    |              |              |                  |          |            | <b>√</b> √ 4,09        |
|     | $\sigma = 4.09$                                                 |               |              |              |                  | (2)      |            |                        |
| 1.5 | 2 standard deviations from the mean = $71.05 + 2(4.09) = 79.23$ |               |              |              | ✓ 79,23<br>✓ Dec |          |            |                        |
|     | The public will be concerned in December 2010                   |               |              |              | 2010             |          |            |                        |
|     |                                                                 |               |              |              |                  |          |            | (2)                    |
|     |                                                                 |               |              |              |                  |          |            | [11]                   |

| 2.1 | Range of Peter's scores is $94 - 68 = 26$                             | <b>√</b> 94 – 68  |     |
|-----|-----------------------------------------------------------------------|-------------------|-----|
|     |                                                                       | ✓ 94 – 68<br>✓ 26 |     |
|     |                                                                       |                   | (2) |
| 2.2 | Vuyani's minimum score is 76                                          | <b>√</b> 76       |     |
|     |                                                                       |                   | (1) |
| 2.3 | Vuyani was more consistent during the year because the range of his   | ✓ Vuyani          |     |
|     | scores is more clustered about the median value                       | ✓ reason          |     |
|     | <b>OR</b> the range and inter-quartile range are smaller than Peters. |                   | (2) |
|     |                                                                       |                   | [5] |

#### **QUESTION 3**



| $\begin{vmatrix} 4.1 & y_2 - y_1 \end{vmatrix}$                                      |                        |
|--------------------------------------------------------------------------------------|------------------------|
| $m_{AD} =$                                                                           |                        |
| $m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$ $\checkmark$ sub                              | stitution              |
| $=\frac{7-(-3)}{1-(-4)}$                                                             |                        |
|                                                                                      |                        |
| =2                                                                                   |                        |
|                                                                                      | (2)                    |
| 4.2 AD//BC                                                                           | $_{D} = 2$             |
| $m_{AD} = m_{BC} = 2$                                                                |                        |
| $V = V_{\star} = III_{\star} \lambda = \lambda_{\star}$                              | stitute into           |
| y - (-8) = 2(x - (-2))                                                               | mula                   |
|                                                                                      | = 2x - 4               |
| y - 2x - 4                                                                           |                        |
| 4.3 At F: $y = 0$                                                                    | (3)                    |
| $\begin{vmatrix} 4.3 & At Y. & y = 0 \\ 0 = 2x - 4 &   \end{vmatrix} \checkmark y =$ | 0                      |
| $\begin{vmatrix} x - 2x - 4 \\ x = 2 \end{vmatrix}$                                  | 2                      |
| F(2;0)                                                                               | (2)                    |
| 4.4 D is translated C according to the rule:                                         |                        |
| $D(x;y) \to C(x+2;y-5)$                                                              |                        |
| A must also be translated according to this rule to B'. $\checkmark x =$             |                        |
| $\therefore A(1;7) \to B'(3;2)$                                                      |                        |
|                                                                                      | (2)                    |
| OR                                                                                   |                        |
| $  $ $  $ $  $ $  $ $  $ $  $ $ $                                                    | 3                      |
| $  x_{B'} - 2 + (1 + 4) - 3 $                                                        |                        |
| $y_{B'} = -8 + (7+3) = 5$                                                            | (2)                    |
| $4.5 	 m_{BC} = 2$                                                                   |                        |
| $\tan \theta = 2$                                                                    |                        |
| ▼ 1 ✓ 63,                                                                            | 43°                    |
| $\theta = 63,43^{\circ}$ F(2;0)                                                      | _                      |
| $m_{DC} = \frac{-8 - (-3)}{-2 - (-4)} = -\frac{5}{2}$ $D(-4; -3)$ $C(-2; -8)$        | $\beta = -\frac{5}{2}$ |
| C(-2; -8)                                                                            | 4                      |
| $\tan \beta = -\frac{5}{2}$                                                          | ,8°                    |
| $\tan \rho = \frac{1}{2}$                                                            |                        |
| $\beta = 180^{\circ} - 68,20^{\circ} = 111,80^{\circ}$                               | 270                    |
| $\alpha = 111,80^{\circ} - 63.43^{\circ} = 48,37^{\circ}$                            | (4)                    |
|                                                                                      | (4)                    |
|                                                                                      |                        |
| OR                                                                                   |                        |
|                                                                                      |                        |
|                                                                                      |                        |
|                                                                                      |                        |
|                                                                                      |                        |
|                                                                                      |                        |

|     |                                                                                                                                                                                                                                                                      | 1                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|     | DC = $\sqrt{(-4+2)^2 + (-3+8)^2}$<br>= $\sqrt{29}$<br>CF = $\sqrt{(-2-2)^2 + (-8-0)^2}$<br>= $\sqrt{80}$<br>DF = $\sqrt{(2+4)^2 + (0+3)^2}$<br>= $\sqrt{45}$<br>$\cos \alpha = \frac{29 + 80 - 45}{2(\sqrt{29})(\sqrt{80})}$<br>= 0,6643<br>$\alpha = 48,37^{\circ}$ | ✓Subst in cosformula ✓ cos α subject ✓ 0,6643 ✓ 48,37°  (4)            |
|     | OD                                                                                                                                                                                                                                                                   |                                                                        |
|     | OR $DC = \sqrt{(-4+2)^2 + (-3+8)^2}$ $= \sqrt{29}$ $DB = \sqrt{(3+4)^2 + (2+3)^2}$ $= \sqrt{74}$                                                                                                                                                                     |                                                                        |
|     | BC = $\sqrt{(3+2)^2 + (2+8)^2}$<br>= $\sqrt{125}$<br>$\cos \alpha = \frac{29 + 125 - 74}{2(\sqrt{29})(\sqrt{125})}$<br>= 0,6643<br>$\alpha = 48,37^{\circ}$                                                                                                          | ✓ Subst in cosformula ✓ cos α subject ✓ 0,6643 ✓ 48,37° (4)            |
| 4.6 | DC = $\sqrt{(-4+2)^2 + (-3+8)^2}$<br>= $\sqrt{29}$<br>CF = $\sqrt{(-2-2)^2 + (-8-0)^2}$<br>= $\sqrt{80}$<br>Area $\Delta$ DCF = $\frac{1}{2}$ .DC.CF.sin $\alpha$                                                                                                    | ✓ substitution into formula  ✓ √29  ✓ substitution into formula  ✓ √80 |
|     | $= \frac{1}{2}(\sqrt{29})(\sqrt{80})\sin 48,37^{\circ}$ =18 units <sup>2</sup>                                                                                                                                                                                       | ✓ substitution into the area rule ✓ 18                                 |





✓ establishing rectangle and area

Area  $\triangle DCF = Area of rectangle - (1) - (2) - (3)$ =48-9-5-16

areas ✓ (1) = 9  $\checkmark$ (2) = 16

✓ relationship of

(6)

$$\checkmark(3)=5$$

 $\checkmark$ 18 units<sup>2</sup>

OR



✓ drawing perpendiculars

Area CDF = Area CHF + Area CDGH - Area DGF

$$= \frac{1}{2} \times 4 \times 8 + 2 \times \frac{1}{2} (3 \times 8) - \frac{1}{2} \times 6 \times 3$$

$$= 16 + 11 - 9$$

$$= 18$$

✓ relationship of areas

✓18 units<sup>2</sup>

(6)

[19]

Mathematics/P2 DBE/Feb.-Mar. 2013

# **QUESTION 5**

| 5.1.1 | $x^2 + y^2 + 2x + 6y + 2 = 0$                   | ,                                           |
|-------|-------------------------------------------------|---------------------------------------------|
|       | $x^2 + 2x + 1 + y^2 + 6y + 9 = -2 + 10$         | $\checkmark$                                |
|       | $(x+1)^2 + (y+3)^2 = 8$                         | $(x+1)^{2} + (y+3)^{2} = 8$ $\checkmark -1$ |
|       | M(-1; -3)                                       | ✓ -3                                        |
| 5.1.0 |                                                 | (3)                                         |
| 5.1.2 | radius of circle $C_1 = \sqrt{8}$               | $\checkmark \sqrt{8}$                       |
| 5.2   | $x^{2} + (x-2)^{2} + 2x + 6(x-2) + 2 = 0$       | (1) ✓ substitution                          |
|       | $x^{2} + x^{2} - 4x + 4 + 2x + 6x - 12 + 2 = 0$ |                                             |
|       | $2x^2 + 4x - 6 = 0$                             | ✓ standard form                             |
|       | $x^2 + 2x - 3 = 0$                              |                                             |
|       | (x+3)(x-1)=0                                    | ✓ factors                                   |
|       | $x = -3 \text{ or } x \neq 1$                   | ✓ value of $x$                              |
|       | y = -3 - 2 = -5                                 | ✓ value of $y$                              |
|       | $\therefore D(-3;-5)$                           | (5)                                         |
|       | OR                                              |                                             |
|       | OK .                                            |                                             |
|       | $(x+1)^2 + (y+3)^2 = 8$                         |                                             |
|       | subst. $y = x - 2$                              | ✓ substitution                              |
|       | $(x+1)^2 + (x-2+3)^2 = 8$                       |                                             |
|       | $(x+1)^2 + (x+1)^2 = 8$                         | 1 10                                        |
|       | $x^2 + 2x - 3 = 0$                              | ✓ standard form ✓ factors                   |
|       | (x+3)(x-1)=0                                    |                                             |
|       | $x = -3 \text{ or } x \neq 1$                   | ✓ value of <i>x</i> ✓ value of <i>y</i>     |
|       | y = -3 - 2 = -5                                 | value of y                                  |
|       | OR                                              | (5)                                         |
|       | $(x+1)^2 + (y+3)^2 = 8$                         |                                             |
|       | subst. $y = x - 2$                              |                                             |
|       | $(x+1)^2 + (x-2+3)^2 = 8$                       | ✓ substitution                              |
|       | $(x+1)^2 + (x+1)^2 = 8$                         |                                             |
|       | $(x+1)^2 = 4$                                   | ✓ simplification                            |
|       | $x+1=\pm 2$                                     | ✓ square root of both sides                 |
|       | $x = -3 \text{ or } x \neq 1$                   |                                             |
|       | y = -3 - 2 = -5                                 | ✓ value of <i>x</i> ✓ value of <i>y</i>     |
|       | OR                                              | varae or y                                  |
|       | OR .                                            |                                             |

|     | PM makes $45^{\circ}$ with the x-axis.<br>$\sqrt{8} = \sqrt{2^2 + 2^2}$ Therefore:<br>$x_D = x_M - 2 = -1 - 2 = -3$ $y_D = -3 - 2 = -5$                                                              | √√√8 = √2² + 2²  ✓ value of x ✓ value of y  (5)                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 5.3 | MD $\perp$ DB (tangent $\perp$ radius)  MB <sup>2</sup> = MD <sup>2</sup> + DB <sup>2</sup> (Pythagoras)  = $(\sqrt{8})^2 + (4\sqrt{2})^2$ = 40  MB is the radius of C <sub>2</sub> MB = $\sqrt{40}$ | <ul> <li>✓ tangent ⊥         radius</li> <li>✓ substitution         into Pythagoras</li> <li>✓ √40</li> </ul> |
|     |                                                                                                                                                                                                      | (3)                                                                                                           |
| 5.4 | $(x+1)^2 + (y+3)^2 = 40$                                                                                                                                                                             | ✓ LHS<br>✓ RHS                                                                                                |
| 5.5 | Distance from $(2\sqrt{5}; 0)$ to centre $= \sqrt{(2\sqrt{5}+1)^2 + (0+3)^2}$ $= 6,24$                                                                                                               | ✓ substitution into distance formula ✓ 6,24                                                                   |
|     | $6,24 < 6,32 \left(\sqrt{40}\right)$<br>Distance from $\left(2\sqrt{5};0\right)$ to centre < radius of circle.                                                                                       | <b>√</b> 6,24 < 6,32                                                                                          |
|     | $(2\sqrt{5};0)$ lies inside the circle.                                                                                                                                                              | ✓ conclusion (4)                                                                                              |
|     |                                                                                                                                                                                                      | [18]                                                                                                          |

Mathematics/P2

#### DBE/Feb.-Mar. 2013

### **QUESTION 6**

|       | ·                                                                                              | ,                                                                                                    |
|-------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 6.1.1 | A(-5;3)                                                                                        | <b>√</b> – 1                                                                                         |
|       | A'(-5+4;3-3)=(-1;0)                                                                            | <b>√</b> 0                                                                                           |
|       | A (-3+4, 3-3) - (-1, 0)                                                                        | (2)                                                                                                  |
| 6.1.2 | A/(5, 2)                                                                                       | ✓ -5                                                                                                 |
| 0.1.2 | A'(-5;-3)                                                                                      | √-3<br>√-3                                                                                           |
|       |                                                                                                | _                                                                                                    |
|       |                                                                                                | (2)                                                                                                  |
| 6.2.1 | Scale factor of enlargement is $\frac{K^{\prime}M^{\prime}}{KM} = \frac{15}{10} = \frac{3}{2}$ | $\checkmark \frac{K'M'}{KM}$                                                                         |
|       | Scale factor of enlargement is $\frac{1}{10} = \frac{1}{2}$                                    | ✓ <u> </u>                                                                                           |
|       | KWI 10 Z                                                                                       | 2                                                                                                    |
|       |                                                                                                | $\sqrt{\frac{3}{2}}$                                                                                 |
|       |                                                                                                | 2                                                                                                    |
|       | OR                                                                                             |                                                                                                      |
|       | (3  3  )                                                                                       |                                                                                                      |
|       | $K(-4;2) \rightarrow K'(-6;3) = K'\left(\frac{3}{2} \times -4; \frac{3}{2} \times 2\right)$    | <b>✓</b>                                                                                             |
|       |                                                                                                | (2 2)                                                                                                |
|       | S-1- S-4 3                                                                                     | $\left(\frac{3}{-}\times-4;\frac{3}{-}\times2\right)$                                                |
|       | Scale factor is $\frac{3}{2}$                                                                  | (2  2)                                                                                               |
|       |                                                                                                | $\begin{pmatrix} \frac{3}{2} \times -4; \frac{3}{2} \times 2 \end{pmatrix}$ $\checkmark \frac{3}{2}$ |
|       |                                                                                                | $\sqrt{\frac{1}{2}}$                                                                                 |
|       |                                                                                                |                                                                                                      |
|       |                                                                                                | (2)                                                                                                  |
| 6.2.2 | $(x;y) \rightarrow \left(\frac{3}{2}x; \frac{3}{2}y\right)$                                    | $\begin{array}{c} \checkmark \frac{3}{2}x \\ \checkmark \frac{3}{2}y \end{array}$                    |
|       | $(x,y) \rightarrow (\frac{1}{2}x, \frac{1}{2}y)$                                               | $\sqrt{\frac{2}{2}}x$                                                                                |
|       |                                                                                                | 3                                                                                                    |
|       |                                                                                                | $\sqrt{3}$ y                                                                                         |
|       |                                                                                                | 2 "                                                                                                  |
|       |                                                                                                | (2)                                                                                                  |
| 6.2.3 | $\left(3,3,3\right)$                                                                           | , 9                                                                                                  |
|       | $P'\left(\frac{3}{2}\times 3; 2\times \frac{3}{2}\right)$                                      | $\sqrt{\frac{9}{2}}$ $\sqrt{3}$                                                                      |
|       |                                                                                                | 1 2                                                                                                  |
|       | p(9)                                                                                           |                                                                                                      |
|       | $=P'\left(\frac{9}{2};3\right)$                                                                | (2)                                                                                                  |
| ( ) 1 |                                                                                                | / / 1                                                                                                |
| 6.2.4 | a=1                                                                                            | $\checkmark \checkmark a = 1$                                                                        |
|       |                                                                                                | (2)                                                                                                  |
| 6.2.5 | K''(4;-2)                                                                                      | ✓ 4 ✓ -2                                                                                             |
|       |                                                                                                | (2)                                                                                                  |
| 6.2.6 | K'''K' = 5                                                                                     | $\checkmark K'''K' = 5$                                                                              |
|       |                                                                                                | $\checkmark K'M''' = 15$                                                                             |
|       | $\mathbf{K}^{\prime}\mathbf{M}^{\prime\prime\prime\prime}=15$                                  | $\mathbf{K} = \mathbf{K} = \mathbf{K}$                                                               |
|       |                                                                                                |                                                                                                      |
|       | K'K''' 5 1                                                                                     |                                                                                                      |
|       | $\frac{K'K'''}{K'M'''} = \frac{5}{15} = \frac{1}{3}$                                           | $\frac{1}{\sqrt{1}}$                                                                                 |
|       | K'M''' 15 3                                                                                    | $\sqrt{\frac{1}{3}}$                                                                                 |
|       |                                                                                                | (3)                                                                                                  |
|       |                                                                                                |                                                                                                      |
|       |                                                                                                | [17]                                                                                                 |

Mathematics/P2

#### DBE/Feb.-Mar. 2013

# **QUESTION 7**

| 7.1 | K'(b;-a)                                                                                          | ✓ b                                                                                |
|-----|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|     |                                                                                                   | $\checkmark -a$                                                                    |
| 7.2 |                                                                                                   | (2)                                                                                |
| 1.2 | $\mathbf{K}''(b\cos\theta - a\sin\theta; -a\cos\theta - b\sin\theta)$                             | $b\cos\theta - a\sin\theta$                                                        |
|     | OR                                                                                                | ✓                                                                                  |
|     | $K''(a\cos(90+\theta)+b\sin(90^{\circ}+\theta);b\cos(90^{\circ}+\theta)-a\sin(90^{\circ}+\theta)$ | $-a\cos\theta - b\sin\theta$                                                       |
|     | $= K''(-a\sin\theta + b\cos\theta; -b\sin\theta - a\cos\theta)$                                   | (2)                                                                                |
| 7.3 | $T''(-(-4)\sin\theta + (-2)\cos\theta; -(-2)\sin\theta - (-4)\cos\theta)$                         | ✓                                                                                  |
|     | $= T'' (4\sin\theta - 2\cos\theta; 2\sin\theta + 4\cos\theta)$                                    | $4\sin\theta - 2\cos\theta$                                                        |
|     | OR                                                                                                | $2\sin\theta + 4\cos\theta$                                                        |
|     | OK .                                                                                              | (2)                                                                                |
|     | $T''(-2\cos\theta - (-4)\sin\theta; -(-4)\cos\theta - (-2)\sin\theta)$                            |                                                                                    |
|     | $= T''(-2\cos\theta + 4\sin\theta ; 4\cos\theta + 2\sin\theta)$                                   | $4\sin\theta - 2\cos\theta$                                                        |
|     | -1 (-2coso + 4sino , 4coso + 2sino)                                                               | 4 SIII θ − 2 COS θ                                                                 |
|     |                                                                                                   | $2\sin\theta + 4\cos\theta$                                                        |
|     |                                                                                                   | (2)                                                                                |
| 7.4 | $2\sqrt{3} + 1 = 4\sin\theta - 2\cos\theta  \dots (1)$                                            | ✓ substitution to form equation                                                    |
|     | $\sqrt{3} - 2 = 2\sin\theta + 4\cos\theta \dots (2)$                                              | ✓ substitution to                                                                  |
|     | (2) × 2: $2\sqrt{3} - 4 = 4\sin\theta + 8\cos\theta$ (3)                                          | form equation                                                                      |
|     | $(1)-(3): 5=-10\cos\theta$                                                                        | $\checkmark 5 = -10\cos\theta$                                                     |
|     | $-\frac{1}{2} = \cos \theta$                                                                      |                                                                                    |
|     | <u> </u>                                                                                          | $\sqrt{-\frac{1}{2}} = \cos\theta$                                                 |
|     | $\therefore \theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$                                      | ✓ 120°                                                                             |
|     | OR                                                                                                | (5)                                                                                |
|     | $2\sqrt{3} + 1 = 4\sin\theta - 2\cos\theta$ (1)                                                   |                                                                                    |
|     | $\sqrt{3} - 2 = 2\sin\theta + 4\cos\theta  \dots (2)$                                             | ✓ substitution to                                                                  |
|     | $(1) \times 2:  4\sqrt{3} + 2 = 8\sin\theta - 4\cos\theta (3)$                                    | form equation  ✓ substitution to                                                   |
|     |                                                                                                   | form equation                                                                      |
|     | $(2) + (3): 5\sqrt{3} = 10\sin\theta$                                                             |                                                                                    |
|     | $\frac{\sqrt{3}}{2} = \sin \theta$                                                                | $\checkmark 5\sqrt{3} = 10\sin\theta$ $\checkmark \frac{\sqrt{3}}{2} = \sin\theta$ |
|     | $\theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$                                                 | $\sqrt{\frac{\sqrt{3}}{3}} = \sin \theta$                                          |
|     | 0 - 100 00 - 120                                                                                  | 2<br>✓ 120°                                                                        |
|     |                                                                                                   | (5)                                                                                |
|     |                                                                                                   |                                                                                    |
|     | OR                                                                                                |                                                                                    |
|     | 32-                                                                                               |                                                                                    |
|     |                                                                                                   |                                                                                    |

| $m_{OT} = \frac{1}{2} \Rightarrow \tan X \hat{O} T = \frac{1}{2}$ $X \hat{O} T = 206,565^{\circ}$ $m_{OT'} = \frac{\sqrt{3} - 2}{2\sqrt{3} + 1} \Rightarrow \tan X \hat{O} T'' = \frac{\sqrt{3} - 2}{2\sqrt{3} + 1} =$ $X \hat{O} T = -3,434^{\circ}$ $90^{\circ} + \theta = 209,99^{\circ} \approx 210^{\circ}$ $\theta = 120^{\circ}$ | $ ✓ tan XÔT = \frac{1}{2} $ $ ✓ 206.565^{\circ} $ $ ✓ - 0,06 $ $ ✓ - 3.434^{\circ} $                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OR                                                                                                                                                                                                                                                                                                                                      | ✓ 120° (5)                                                                                                                                                                                                          |
| $(TT')^{2} = OT^{2} + (OT')^{2} - 2(OT)(OT') \cdot \cos(\theta)$ $40 + 20\sqrt{3} = 40 - 40 \cdot \cos(90^{\circ} + \theta)$ $\cos(90^{\circ} + \theta) = -\frac{\sqrt{3}}{2}$ $90^{\circ} + \theta = 150^{\circ}$ $\theta = 60^{\circ}$                                                                                                | $90^{\circ} + \theta)$ $\checkmark (TT^{\prime})^{2}$ $= 40 + 20\sqrt{3}$ $\checkmark \text{substitution}$ in cos-rule $\checkmark \text{simplification}$ $\checkmark 150^{\circ}$ $\checkmark 60^{\circ}$ (5) [11] |

| 8.1 | $1-\sin^2\theta+3-\cos^2\theta$                            | ✓ simplification                                |     |
|-----|------------------------------------------------------------|-------------------------------------------------|-----|
|     | $=4-(\sin^2\theta+\cos^2\theta)$                           | <b>√</b> 3                                      |     |
|     | = 3                                                        | , 3                                             | (2) |
|     |                                                            |                                                 | ` ' |
|     | $\cos^2\theta + 3 - \cos^2\theta$                          | ✓ substitution                                  |     |
|     | =3                                                         | with identity                                   |     |
|     |                                                            | ✓ 3                                             |     |
| 0.2 |                                                            | / novymito voimo                                | (2) |
| 8.2 | $\sqrt{4^{\sin 150^{\circ}}.2^{3\tan 225^{\circ}}}$        | ✓ rewrite using reduction                       |     |
|     | $=\sqrt{4^{\sin 30^{\circ}}.2^{3\tan 45^{\circ}}}$         | formula                                         |     |
|     | $(-2)^{\frac{1}{2}}$                                       | ✓ substituting                                  |     |
|     | $=\sqrt{(2^2)^{\frac{1}{2}}.2^3}$                          | special angles  ✓ simplification                |     |
|     | $=\sqrt{16}$                                               | Simplification                                  |     |
|     | = 4                                                        | <b>√</b> 4                                      |     |
|     |                                                            |                                                 | (4) |
|     | OR                                                         |                                                 |     |
|     | $\sin 150^\circ = \frac{1}{2}$                             | $\checkmark \sin 150^\circ = \frac{1}{2}$       |     |
|     | _                                                          | _                                               |     |
|     | $\tan 225^\circ = 1$                                       | $\checkmark \tan 225^\circ = 1$                 |     |
|     | $\sqrt{4^{\sin 150^{\circ}} 2^{3 \tan 225^{\circ}}}$       |                                                 |     |
|     | $=\sqrt{4^{\frac{1}{2}}2^3}$                               |                                                 |     |
|     | $=\sqrt{2.2^3}$                                            | $\checkmark 4^{\frac{1}{2}} = 2$                |     |
|     | $=\sqrt{16}$                                               | $\checkmark 4^{\frac{1}{2}} = 2$ $\checkmark 4$ |     |
|     | $=\Delta$                                                  |                                                 | (4) |
| 8.3 | $LHS = \frac{\cos^2 x(\sin^2 x + \cos^2 x)}{1 + \cos^2 x}$ | ✓ factorisation                                 |     |
|     | $1-\sin x$                                                 | <b>√</b> 1                                      |     |
|     | $=\frac{\cos^2 x.(1)}{\cos^2 x.(1)}$                       | , I                                             |     |
|     | $1-\sin x$                                                 |                                                 |     |
|     | $=\frac{(1-\sin^2 x)}{1-\sin^2 x}$                         | $\checkmark 1 - \sin^2 x$                       |     |
|     | $1 - \sin x$                                               |                                                 |     |
|     | $=\frac{(1+\sin x)(1-\sin x)}{1-\sin x}$                   | ✓ factors                                       |     |
|     | $=1+\sin x$ $=1+\sin x$                                    |                                                 |     |
|     | =RHS                                                       |                                                 | (4) |
|     |                                                            | l .                                             | ` / |

| 8.4 | $\cos 3\theta$                                                         |                                                                           |
|-----|------------------------------------------------------------------------|---------------------------------------------------------------------------|
|     | $=\cos(2\theta+\theta)$                                                |                                                                           |
|     | $=\cos 2\theta.\cos \theta - \sin 2\theta.\sin \theta$                 | ✓expansion                                                                |
|     | $= (2\cos^2\theta - 1).\cos\theta - 2\sin\theta.\cos\theta.\sin\theta$ | $\checkmark 2\cos^2\theta - 1$                                            |
|     | $=2\cos^3\theta-\cos\theta-2\sin^2\theta.\cos\theta$                   | $\checkmark 2\sin\theta.\cos\theta$                                       |
|     | $=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta).\cos\theta$               | $\sqrt{1-\cos^2\theta}$                                                   |
|     | $=2\cos^3\theta-\cos\theta-2\cos\theta+2\cos^3\theta$                  | V 1-cos θ                                                                 |
|     | $=4\cos^3\theta-3\cos\theta$                                           |                                                                           |
|     |                                                                        | (4)                                                                       |
| 8.5 | $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$                           | (0.000                                                                    |
|     | $\cos 3(20^\circ) = 4\cos^3(20^\circ) - 3\cos(20^\circ)$               | $\checkmark\theta = 20^{\circ}$                                           |
|     | $\frac{1}{2} = 4x^3 - 3x$ $8x^3 - 6x - 1 = 0$                          | $\checkmark\theta = 20^{\circ}$ $\checkmark\cos 60^{\circ} = \frac{1}{2}$ |
|     | $\begin{bmatrix} 2 \\ 8r^3 - 6r - 1 - 0 \end{bmatrix}$                 | (2)                                                                       |
|     | 01 01 1 - 0                                                            |                                                                           |
|     |                                                                        | [16]                                                                      |

Mathematics/P2 14 DBE/Feb.–Mar. 2013

# **QUESTION 9**

| 9.1   | cos160°.tan 200°                                                                                          |                                                      |
|-------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|       | $\frac{2\sin(-10^{\circ})}{2\sin(-10^{\circ})}$                                                           |                                                      |
|       |                                                                                                           | ✓ - cos 20°                                          |
|       | $=\frac{(-\cos 20^{\circ})(\tan 20^{\circ})}{2(-\sin 10^{\circ})}$                                        | ✓ tan 20°                                            |
|       |                                                                                                           | ✓ - sin 10°                                          |
|       | $(-\cos 20^\circ) \left( \frac{\sin 20^\circ}{\cos 20^\circ} \right)$                                     | sin 20°                                              |
|       | $=\frac{\cos 2\theta}{-2\sin 10^{\circ}}$                                                                 | $\checkmark \frac{\sin 20^{\circ}}{\cos 20^{\circ}}$ |
|       | $-2\sin 10$ $2\sin 10^{\circ}\cos 10^{\circ}$                                                             | ✓                                                    |
|       | $=\frac{2\sin 10^{\circ} \cos 10^{\circ}}{2\sin 10^{\circ}}$                                              | 2 sin 10° cos 10°                                    |
|       | $= \cos 10^{\circ}$                                                                                       | √ aas109                                             |
|       |                                                                                                           | ✓ cos10° (6)                                         |
| 9.2.1 | $LHS = \cos(x + 45^\circ) \cdot \cos(x - 45^\circ)$                                                       | (6)                                                  |
|       | $= (\cos x \cdot \cos 45^\circ - \sin x \sin 45^\circ)(\cos x \cos 45^\circ + \sin x \sin 45^\circ)$      | ✓ expand                                             |
|       | $=\cos^2 x \cdot \cos^2 45^\circ - \sin^2 x \cdot \sin^2 45^\circ$                                        | $\cos(x+45^\circ)$                                   |
|       | $(\sqrt{2})^2$ $(\sqrt{2})^2$ $\left[ (1)^2 (1)^2 \right]$                                                | $\checkmark$ expand $\cos(x-45^\circ)$               |
|       | 1 , 1 , 2                                                                                                 | ✓ substitute                                         |
|       | $= \frac{1}{2}\cos^2 x - \frac{1}{2}\sin^2 x$                                                             | special angles                                       |
|       | $=\frac{1}{2}(\cos^2 x - \sin^2 x)$                                                                       |                                                      |
|       | $\frac{-2}{2}(\cos^2 x - \sin^2 x)$                                                                       | ✓ simplification                                     |
|       | $=\frac{1}{2}\cos 2x$                                                                                     | Simpinication                                        |
|       | 2                                                                                                         |                                                      |
|       | OR                                                                                                        | (4)                                                  |
|       | $2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$                                      | ✓✓ deriving                                          |
|       | 1                                                                                                         | identity                                             |
|       | $\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta))$                      |                                                      |
|       | Let $\alpha = x + 45^{\circ}$ and $\beta = x - 45^{\circ}$                                                |                                                      |
|       | $\therefore \cos(x+45^\circ)\cos(x-45^\circ)$                                                             |                                                      |
|       |                                                                                                           | ✓ substitution                                       |
|       | $= \frac{1}{2} \left( \cos((x+45^{\circ} + x - 45^{\circ}) + \cos(x+45^{\circ} - x + 45^{\circ}) \right)$ | ,                                                    |
|       | $=\frac{1}{2}\left(\cos 2x + \cos 90^{\circ}\right)$                                                      | ✓ simplification                                     |
|       | $=\frac{1}{2}(\cos 2x + \cos 90^\circ)$                                                                   |                                                      |
|       | $=\frac{1}{2}\cos 2x$                                                                                     | (4)                                                  |
|       | 2                                                                                                         |                                                      |
|       |                                                                                                           |                                                      |
|       |                                                                                                           |                                                      |
|       |                                                                                                           |                                                      |
|       |                                                                                                           |                                                      |

| 9.2.2 | $\cos(x+45^\circ)\cos(x-45^\circ)$ has a minimum when $\frac{1}{2}\cos 2x$ has a minimum. |                                                           |     |
|-------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|
|       | The minimum value of $\cos 2x$ is $-1$                                                    | ✓ minimum value of -1                                     |     |
|       | $\cos 2x = -1$                                                                            |                                                           |     |
|       | $2x = 180^{\circ}$                                                                        | $\sqrt{2}x = 180^{\circ}$                                 |     |
|       | $x = 90^{\circ}$                                                                          | $\checkmark 2x = 180^{\circ}$ $\checkmark x = 90^{\circ}$ |     |
|       |                                                                                           |                                                           | (3) |
|       |                                                                                           | [1                                                        | 13] |

| 10.1 | Range = $[-1; 1]$                                                                                     | <b>✓ ✓</b> [-1 ; 1]  |
|------|-------------------------------------------------------------------------------------------------------|----------------------|
|      |                                                                                                       | (2)                  |
| 10.2 | $f\left(\frac{3}{2}x\right) = \sin 2\left(\frac{3}{2}x\right)$ $= \sin 3x$                            | $\checkmark \sin 3x$ |
|      | $\therefore Period = \frac{360^{\circ}}{3} = 120^{\circ}$ <b>OR</b>                                   | ✓120° (2)            |
|      | (3) $(3)$                                                                                             |                      |
|      | $f\left(\frac{3}{2}x\right) = \sin 2\left(\frac{3}{2}x\right)$ $= \sin 3x$ $= \sin(3x + 360^{\circ})$ | $\checkmark \sin 3x$ |
|      | $= \sin 3(x + 120^{\circ})$ $\therefore Period = 120^{\circ}$                                         | ✓120° (2)            |



| 11.1 | $\frac{AB}{x} = \sin 2x$                                                        | $\checkmark \frac{AB}{} = \sin 2x$                                        |
|------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|      | $AB = r \sin 2x$                                                                | $\checkmark AB = r \sin 2x$                                               |
| 11.2 | $A\hat{K}C = 90^{\circ} + x$                                                    | $\checkmark A\hat{K}C = 90^{\circ} + x $ (2)                              |
| 11.0 | TARC = 70 T X                                                                   | $\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $            |
| 11.3 | С                                                                               |                                                                           |
|      |                                                                                 | ✓ sine rule                                                               |
|      |                                                                                 | ✓ substitution                                                            |
|      | B 90°- x 90°+ x A                                                               | ✓ making AK subject of the formula ✓ cos x                                |
|      | In ΔAKC:                                                                        |                                                                           |
|      | $\frac{\sin A\hat{K}C}{\sin A\hat{C}K} = \frac{\sin A\hat{C}K}{\sin A\hat{C}K}$ |                                                                           |
|      | AC = AK<br>$\sin(90^{\circ} + r) = \sin r$                                      |                                                                           |
|      | $\frac{\sin(90^\circ + x)}{r} = \frac{\sin x}{AK}$                              |                                                                           |
|      | $AK = \frac{r \sin x}{\sin(90^\circ + x)} = \frac{r \sin x}{\cos x}$            |                                                                           |
|      | $\sin(90^{\circ} + x) \cos x$                                                   |                                                                           |
|      | $\frac{AK}{AB} = \frac{2}{3}$                                                   |                                                                           |
|      | $AB = 3$ $(r \sin x)$                                                           |                                                                           |
|      | $\left(\frac{r \sin x}{\cos x}\right)$ 2                                        |                                                                           |
|      | $\frac{1}{r\sin 2x} = \frac{1}{3}$                                              |                                                                           |
|      | $\frac{\sin x}{\cos x}$                                                         |                                                                           |
|      | $\frac{\cos x}{2\sin x \cos x} = \frac{2}{3}$                                   | $\checkmark 2 \sin x.\cos x$                                              |
|      | $\frac{\sin x}{\cos x} \times \frac{1}{2\sin x \cos x} = \frac{2}{3}$           |                                                                           |
|      |                                                                                 | $\checkmark \frac{1}{2}$                                                  |
|      | $\frac{1}{2\cos^2 x} = \frac{2}{3}$                                             | $2\cos^2 x$                                                               |
|      | $4\cos^2 x = 3$                                                                 | $\checkmark \frac{1}{2\cos^2 x}$ $\checkmark \cos x = \frac{\sqrt{3}}{2}$ |
|      | $\cos x = \frac{\sqrt{3}}{2}$                                                   | 2                                                                         |
|      | $x = 30^{\circ}$                                                                | ✓ <i>x</i> = 30°                                                          |
|      | OR                                                                              | (8)                                                                       |



Using the sine-formula in  $\triangle CBK$  and  $\triangle CKA$ :

Using the sine-formula in 
$$\triangle CBK$$
 and  $\triangle CKA$ :
$$\frac{\sin x}{BK} = \frac{\sin(90^{\circ} - x)}{BC} \quad and \quad \frac{\sin x}{KA} = \frac{\sin(90^{\circ} + x)}{AC}$$

$$\therefore \frac{BK}{BC} = \frac{KA}{AC}$$

$$\therefore \frac{1}{BC} = \frac{2}{r}$$

$$\therefore BC = \frac{1}{2}r$$

$$\therefore \cos 2x = \frac{BC}{AC} = \frac{\frac{1}{2}r}{r} = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$



$$\triangle CBK$$
:  $KC = \frac{c}{\sin x}$ 

 $\therefore x = 30^{\circ}$ 

$$\Delta CKA: \quad \frac{\sin x}{2c} = \frac{\sin(90^\circ - 2x)}{KC} = \frac{\sin(90^\circ - 2x).\sin x}{c}$$

$$\sqrt{\frac{\sin x}{BK}} = \frac{\sin(90^{\circ} - x)}{BC}$$

$$\sqrt{\frac{\sin x}{KA}} = \frac{\sin(90^{\circ} + x)}{AC}$$

$$\sqrt{\frac{BK}{BC}} = \frac{KA}{AC}$$

$$\sqrt{\frac{1}{BC}} = \frac{2}{r}$$

$$\sqrt{BC} = \frac{1}{2}r$$

$$\sqrt{\cos 2x} = \frac{1}{2}$$

$$\sqrt{2x} = 60^{\circ}$$

$$\sqrt{x} = 30^{\circ}$$
(8)

$$\checkmark KC = \frac{c}{\sin x}$$

$$\checkmark \frac{\sin x}{2c} = \frac{\sin(90^\circ - 2x)}{KC}$$

$$\checkmark \checkmark \text{substitution}$$

$$\checkmark \checkmark \sin(90^\circ - 2x) = \frac{1}{2}$$

$$\checkmark 90^\circ - 2x = 30^\circ$$

$$\checkmark x = 30^\circ$$

Copyright reserved

Please turn over





(8)

$$\sin 2x = \frac{3c}{r} = 2\sin x.\cos x$$

$$\therefore r \sin x = \frac{3c}{2\cos x} \dots (1)$$

ΔCKA:

$$\frac{2c}{\sin x} = \frac{r}{\cos x}$$

$$\therefore r \sin x = 2c \cos x \dots (2)$$

Equate (1) and (2):

$$2c.\cos x = \frac{3c}{2\cos x}$$

$$\therefore \cos^2 x = \frac{3}{4}$$

$$\therefore \cos x = \frac{\sqrt{3}}{2}$$

$$\therefore x = 30^{\circ}$$

 $\checkmark \sin 2x = \frac{3c}{r}$  $\checkmark 2 \sin x . \cos x$ 

$$\checkmark r \sin x = \frac{3c}{2\cos x}$$

$$\checkmark \frac{2c}{\sin x} = \frac{r}{\cos x}$$

$$\checkmark r \sin x = 2c \cos x$$

✓ equating

$$\checkmark \cos x = \frac{\sqrt{3}}{2}$$

(8)

OR

$$\frac{AK}{KB} = \frac{2}{1} = 2$$

$$2 = \frac{\frac{1}{2}AK.BC}{\frac{1}{2}BK.BC}$$
$$= \frac{\text{area AKC}}{\text{area ABC}}$$
$$= \frac{\frac{1}{2}rCK\sin x}{\frac{1}{2}BC.CK\sin x}$$

$$= \frac{r}{BC}$$

$$\therefore \frac{BC}{r} = \frac{1}{2}$$

$$\therefore \cos 2x = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$

$$\therefore x = 30^{\circ}$$

✓ multiplying by  $\frac{1}{2}BC$ 

area of triangles

area formula in triangles

$$\checkmark \frac{r}{BC} = 2$$

$$\checkmark \frac{BC}{r} = \frac{1}{2}$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

$$✓ 2x = 60^{\circ}$$

$$\checkmark x = 30^{\circ}$$

(8)

OR



By the Internal Bisector Theorem:

$$\frac{CB}{CA} = \frac{BK}{KA} = \frac{1}{2}$$

$$\cos 2x = \frac{1}{2}$$

$$2x = 60^{\circ}$$

$$x = 30^{\circ}$$

For stating Internal **Bisector Theorem** 

$$\checkmark\checkmark\checkmark\frac{CB}{CA} = \frac{BK}{KA} = \frac{1}{2}$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark x = 30^{\circ}$$

(8)





Produce BC to D and draw CK parallel to DA.

$$\hat{CAD} = \hat{KCA}$$
 and  $\hat{BCK} = \hat{D}$ 

$$\therefore DC = CA = r$$

$$\therefore \Delta BKC \mid\mid\mid \Delta BAD$$

$$\therefore \frac{BK}{BA} = \frac{BC}{BD} = 3$$

$$\therefore BD = 3BC = BC + r$$

$$\therefore BC = \frac{1}{2}r$$

$$\therefore \cos 2x = \frac{\frac{1}{2}r}{r} = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$

$$\therefore x = 30^{\circ}$$

$$\checkmark DC = CA = r$$

$$\checkmark \Delta BKC \parallel \Delta BAD$$

$$\checkmark \frac{BK}{BA} = \frac{BC}{BD} = 3$$

$$\checkmark$$
BD = BC +  $r$ 

$$\checkmark BC = \frac{1}{2}r$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark 2x = 60^{\circ}$$

[11]

(8)

**TOTAL: 150**