Math 624: Homework 7

1. (a) Show the following generalization of Chebyshev inequality. Let $1 \le p < \infty$ and let $f \in L^p(X, \mu)$. Then for any a > 0

$$\mu \{x \in X ; |f(x)| > a\} \le \frac{1}{a^p} \int |f|^p d\mu.$$

- (b) Let $1 \leq p < \infty$ and let $\{f_n\}$ be a convergent sequence in $L^p(X, \mu)$, i.e., there is $f \in L^p(X, \mu)$ so that $\lim_{n \to \infty} ||f_n f||_p = 0$. Show that f_n converges in measure to f.

 Hint: Use (a)
- (c) Let $1 \leq p < \infty$ and let $\{f_n\}$ be a convergent sequence in $L^p(X, \mu)$, i.e., there is $f \in L^p(X, \mu)$ so that $\lim_{n \to \infty} ||f_n f||_p = 0$. Show that there exists a subsequence $\{f_{n_k}\}$ which converges almost everywhere.

Hint: Go back look at Chapters 1 and 2!

2. Show that for $1 \leq p < \infty$ the Banach space l^p is separable but that l^{∞} is not separable.

Hint: For l^{∞} you can either argue by contradiction or prove that l^{∞} contains an uncountable sets of elements so that any pair of elements in that set are at distance at least 1.

3. Let m denote Lebesgue measure and let [a, b] be an interval with $-\infty \le a < b \le \infty$. Show that $L^p([a, b], m)$ is separable and that the continuous functions with compact support are dense in $L^p([a, b], m)$. Show $L^{\infty}([a, b], m)$ is not separable.

Hint: Show that L^{∞} contains an uncountable sets of elements so that any pair of elements in that set are at distance at least 1.

- 4. Let h be a real number and let f be a measurable function defined on \mathbf{R} . Let $T_h(f) = f(t+h)$, i.e. T_h is the action of translation on measurable functions. Show
 - (a) If $1 \le p \le \infty$, $||T_h f||_p = ||f||_p$, i.e. T_h is an isometry.
 - (b) If $1 \leq p < \infty$, $\lim_{h\to 0} ||T_h f f||_p = 0$, i.e. the translations act continuously on $L^p(\mathbf{R}, m)$.

Hint: Prove it first for continuous functions with compact support.

- (c) $||T_h f f||_{\infty}$ does not necessarily converge to 0 as h goes to 0, i.e., the translations do not act continuously on $L^{\infty}(\mathbf{R}, m)$.
- 5. Show the Banach space l^{∞} and $L^{\infty}([0,1], m)$ where m is Lebesgue measure are *not* separable.

Hint: For l^{∞} you can prove it by contradiction. For both l^{∞} and $L^{\infty}([a,b],m)$ you can prove it by constructing an uncoutable set of elements all of which are at distance 1 from all others.

6. Suppose (X, \mathcal{M}, μ) is a finite measure space and $f \in L^1(\mu) \cap L^{\infty}(\mu)$. Show that

$$\lim_{p\to\infty} ||f||_p = ||f||_{\infty}.$$

Hint: It is easy to see that $\lim_{p\to\infty} \|f\|_p \le \|f\|_{\infty}$. To show the reverse inequality, let $\epsilon > 0$, then $E = \{x : |f(x)| > \|f\|_{\infty} - \epsilon\}$ has positive measure and $(\|f\|_{\infty} - \epsilon)\chi_E \le |f|$.

7. Generalized Hölder's inequality. Let $1 \le p_j \le \infty$ for $j = 1, \dots, n$ and suppose

$$\sum_{j=1}^{n} \frac{1}{p_j} = \frac{1}{r} \le 1.$$

Show that if $f_j \in L^{p_j}$ then $\prod_{j=1}^n f_j \in L^r$ and

$$\left\| \prod_{j=1} f_{p_j} \right\|_r \le \prod_{j=1}^n \|f_j\|_{p_j}.$$

Hint: Start with n=2.

8. **Integral Operators** Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $K(\cdot, \cdot)$ be a measurable function on $X \times X$ equipped with the product σ -algebra. Suppose that there exists a constant C such that

$$\int |K(x,y)| d\mu(x) \le C \text{ for a.e } y,$$

and

$$\int |K(x,y)| d\mu(y) \le C \text{ for a.e } y.$$

Let $1 \leq p \leq \infty$ and $f \in L^p(\mu)$. Show

(a) The integral

$$Tf(x) = \int K(x, y)f(y)d\mu(y)$$

converges absolutely for a.e. x, i.e. $\int |K(x,y)f(y)|d\mu(y) < \infty$ for a.e. x.

Hint: Apply Hölder to $|K(x,y)f(y)| = |K(x,y)|^{1/q} \left(|K(x,y)|^{1/p} |f(y)| \right)$

- (b) The function Tf defined in (a) is in $L^p(\mu)$ and $||Tf||_p \leq C||f||_p$ for all $f \in L^p(\mu)$.
- (c) Suppose $1 \leq p < \infty$. Compute the adjoint operator T^* .