CSC401 Assignment 3

Tutorial 1 of 4

2021-03-10

Based on the slides of previous years

Agenda

- General introduction (← this tutorial)
 - Speech technology
 - Speech signal features, MFCC
 - Acoustic phonetics
- Speaker Recognition, Fitting to data, Gaussian Mixture Models
- Dynamic programming, WER, Levenshtein distance
- Misc. Q&A for A3

Applications of Speech Technology

Speech Technology: A Use Case

Challenges in speech data

- Co-articulation and dropped phonemes
- Intra- and Inter-speaker variability
- Lack of word boundaries
- Slurring, disfluency (e.g., 'um')
- Signal noise
- •

Automatic Speech Recognition

- Speech in, text out.
- This is done by machine learning:
 - Compute ("extract") features from acoustic signals.
 - Then use e.g., deep neural networks to predict the text.
- Some useful features:

Waveforms

- Waveforms are recorded in the *time domain*.
- Signals can be conveniently analyzed in the *frequency domain*.
- Convert time-domain representation into frequency domain? Fourier transform.
 - FT computes the spectrum.

"Spectrum"

Fourier Transform Properties

- Linearity:
 - $F(ax_1(t) + bx_2(t)) = aF(x_1(t)) + bF(x_2(t))$
 - Complex functions can be analyzed in superpositions of simple ones.

Filtering a Signal

- Convolution theorem
 - Let g(t) = x(t) * y(t)
 - Let's write Fourier Transform results as e.g., $G(\omega) = F(g(t))$ then:
 - Then $G(\omega) = X(\omega) \times Y(\omega)$

$$x(t) \Longrightarrow y(t) \Longrightarrow g(t)$$

• This process is "pass the signal $\mathbf{x}(t)$ through the filter y(t) "

Frequency domain is about energy

- Parseval's theorem for Fourier Transform
 - Energy in time domain == Energy in frequency domain
 - $\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} X^2(\omega)d\omega$
 - x(t) and $X(\omega)$ are two representations of the same signal.
 - If the signal involves periodic waves, do a Fourier Transform. Computing energy is easier in the spectrum.
- Now we can start deriving the MFCCs of a short speech sample.
 - For longer speech samples: segment into ~35ms long samples.
- MFCC Step 1: Fourier transform into the *frequency domain*.

Triangular Overlapping windows

- Real-world speech constitutes a mixture of various frequencies!
- MFCC Step 2: Filter with a mixture of overlapping triangular windows.
 - These windows are the filter banks.
 - Each filtered signal is approximately at one "pitch".

The Mel Scale

- Human hearing capacity has limited range.
 - Usually at 20 Hz to 20,000 Hz
- Human ears are more sensitive to changes in pitch at low frequencies.
 - ... almost exponentially more sensitive.
 - This also explains why we take more windows at low frequency.
 - Intuition: take the log of the frequencies.
- MFCC Step 3: Convert the frequencies to Mel scale

$$M(f) = 1125\ln(1 + \frac{f}{700})$$

Spectrum -> Cepstrum

- In voiced speech signals, there are *periodic signals* in spectrums!
- MFCC Step 4: Take the <u>spec</u>trum of the spectrum.
 - People called it the cepstrum
 - We are now in the *quefrency* domain (Bogert et al, 1963)
- *Voilà*, we got the Mel-Frequency Cepstral Coefficients.

Using MFCC Features

• What I actually do:

```
from python_speech_features import mfcc
from python_speech_features import logfbank
import scipy.io.wavfile as wav

(rate,sig) = wav.read("file.wav")
mfcc_feat = mfcc(sig,rate)
```


References

- The dummy's guide to MFCC, by Pratheeksha
- MFCC tutorial by practical cryptography
- From frequency to Quefrency: a history of the Cepstrum

Acoustic Phonetics: Phonemes

- Words are formed by phonemes (aka 'phones'),
 e.g., 'pod' = /p aa d/
- Words have different pronunciations. and in practice we can never be certain of which phones were uttered, nor their start/stop points.

Phonetic Alphabets

- International Phonetic Association (IPA)
 - Can represent sounds in all languages
 - Contains non-ASCII characters
- ARPAbet
 - One of the earliest attempts at encoding English for early speech recognition.
- TIMIT/CMU
 - Very popular among modern databases for speech recognition.

Example phonetic alphabets

IPA	CMU	TIMIT	Example	IPA symbol name
[a]	AA	aa	father, hot	script a
[æ]	AE	ae	h <u>a</u> d	digraph
[ə]	AH0	ax	sof <u>a</u>	schwa (common in unstressed syllables)
[\(\)]	AH1	ah	b <u>u</u> t	turned v
[0:]	AO	ao	c <u>aug</u> ht	open o – Note, many speakers of Am. Eng. do not distinguish between [ο:] and [α]. If your "caught" and "cot" sound the same, you do not.
[ε]	EH	eh	h <u>ea</u> d	epsilon
[I]	IH	ih	h <u>i</u> d	small capital I
[i:]	IY	iy	h <u>ee</u> d	lowercase i
[ប]	UH	uh	h <u>oo</u> d, b <u>oo</u> k	upsilon
[u:]	UW	uw	b <u>oo</u> t	lowercase u
[aɪ]	AY	ay	h <u>i</u> de	
[aʊ]	AW	aw	h <u>ow</u>	
[eɪ]	EY	ey	tod <u>a</u> y	
[00]	OW	ow	h <u>oe</u> d	
[or]	OY	oy	joy, ahoy	
[&]	ER0	axr	h <u>er</u> self	schwar (schwa changed by following r)
[3,]	ER1	er	b <u>ir</u> d	reverse epsilon right hook

IPA	CMU	TIMIT	Example	IPA symbol name
[ŋ]	NG	ng	sing song	eng or angma
[[]	SH	<u>sh</u>	sheet, wish	esh or long s
[tʃ]	CH	<u>ch</u>	<u>ch</u> eese	
[j]	Y	У	<u>y</u> ellow	lowercase j
[3]	ZJ	zh	vi <u>s</u> ion	long z or yogh
[dʒ]	JH	jh	ju <u>dg</u> e	
[ð]	DH	dh	thee, this	eth

The other consonants are transcribed as you would expect i.e., p, b, m, t, d, n, k, g, s, z, f, v, w, h

Summary

- Speech technology
- Speech signal features, MFCC
- Acoustic phonetics

Any questions?

