Deblurring Images Matrices, Spectra and Filtering

Additional Material

Per Christian Hansen James G. Nagy Dianne P. O'Leary

©September 19, 2006 Per Christian Hansen, James G. Nagy, Dianne P. O'Leary

1. Some Useful Matrix Decompositions

This short summary of orthogonal matrices, eigenvalues and singular values is restricted to square real matrices \mathbf{A} of dimension $N \times N$, as used in our book.

Orthogonal Matrices and Projections

A real, square matrix $\mathbf{U} \in \mathbb{R}^{N \times N}$ is orthogonal if its inverse equals its transpose, $\mathbf{U}^{-1} = \mathbf{U}^{T}$. Consequently we have the two relations

$$\mathbf{U}^T \mathbf{U} = \mathbf{I}$$
 and $\mathbf{U} \mathbf{U}^T = \mathbf{I}$.

The columns of **U** are orthonormal, i.e., they are orthogonal and the 2-norm of each column is one. To see this, let \mathbf{u}_i denote the *i*th column of **U** so that $\mathbf{U} = [\mathbf{u}_1 \, \mathbf{u}_2 \, \dots \, \mathbf{u}_N]$. Then the relation $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ implies that

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

An orthogonal matrix is perfectly well conditioned; its condition number (in any norm) is one. Moreover, any operation with its inverse merely involves a matrix product with its transpose.

An orthogonal transformation is accomplished by multiplication with an orthogonal matrix. Such a transformation leaves the 2-norm unchanged, because

$$\|\mathbf{U}\mathbf{x}\|_2 = ((\mathbf{U}\mathbf{x})^T(\mathbf{U}\mathbf{x}))^{1/2} = (\mathbf{x}^T\mathbf{x})^{1/2} = \|\mathbf{x}\|_2.$$

An orthogonal transformation can be considered as a change of basis between the "canonical" basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N$ in \mathbb{R}^N (where \mathbf{e}_i is the *i*th column of the identity matrix) and the basis $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N$ given by the orthonormal columns of \mathbf{U} . Specifically, for an arbitrary vector $\mathbf{x} \in \mathbb{R}^n$ we can find scalars z_1, \dots, z_n so that

$$\mathbf{x} = \left[egin{array}{c} x_1 \ dots \ x_N \end{array}
ight] = \sum_{i=1}^N x_i \, \mathbf{e}_i = \sum_{i=1}^N z_i \, \mathbf{u}_i = \mathbf{U} \, \mathbf{z}$$

and it follows immediately that the coordinates z_i in the new basis are the elements of the vector

$$\mathbf{z} = \mathbf{U}^T \mathbf{x}$$
.

Because they do not distort the size of vectors, orthogonal transformations are valuable tools in numerical computations.

For any k less than N the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ span a k-dimension subspace $\mathcal{S}_k \subset \mathbb{R}^N$. The orthogonal projection $\mathbf{x}_k \in \mathbb{R}^N$ of an arbitrary vector $\mathbf{x} \in \mathbb{R}^N$ onto this subspace is the unique vector in \mathcal{S}_k which is closest to \mathbf{x} in the 2-norm, and it is computed as

$$\mathbf{x}_k = \mathbf{U}_k \mathbf{U}_k^T \mathbf{x}, \quad \text{with} \quad \mathbf{U}_k = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k].$$

The matrix $\mathbf{U}_k \mathbf{U}_k^T$, which is $N \times N$ and has rank k, is called an orthogonal projector.

The Spectral Decomposition

A real, symmetric matrix $\mathbf{A} = \mathbf{A}^T$ always has an eigenvalue decomposition (or spectral decomposition) of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T.$$

where **U** is orthogonal, and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$ is a diagonal matrix whose diagonal elements λ_i are the eigenvalues of **A**. A real symmetric matrix always has real eigenvalues. The columns \mathbf{u}_i of **U** are the eigenvectors of **A**, and the eigenpairs $(\lambda_i, \mathbf{u}_i)$ satisfy

$$\mathbf{A}\,\mathbf{u}_i = \lambda_i\,\mathbf{u}_i, \qquad i = 1, \dots, N.$$

The matrix **A** represents a linear mapping from \mathbb{R}^N onto itself, and the geometric interpretation of the eigenvalue decomposition is that **U** represents a new, orthonormal basis in which this mapping is the diagonal matrix Λ . In particular, each basis vector \mathbf{u}_i is mapped to a vector in the same direction, namely, the vector $\mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i$.

A real square matrix is normal if it satisfies $\mathbf{A} \mathbf{A}^T = \mathbf{A}^T \mathbf{A}$. Important examples of normal matrices are symmetric, circulant and Hankel matrices. A normal matrix has a spectral decomposition of the form

$$\mathbf{A} = \widetilde{\mathbf{U}} \, \mathbf{\Lambda} \, \widetilde{\mathbf{U}}^*.$$

where the complex matrix $\widetilde{\mathbf{U}}$ is unitary, i.e.,

$$\widetilde{\mathbf{U}}^{-1} = \widetilde{\mathbf{U}}^* = \operatorname{conj}(\widetilde{\mathbf{U}})^T$$
,

and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$ is a diagonal matrix containing the (possibly complex) eigenvalues of \mathbf{A} . (Note that orthogonal matrices are included in the set of unitary matrices.) If \mathbf{A} is real and normal, then its eigenvalues are either real or appear in complex conjugate pairs. The columns $\tilde{\mathbf{u}}_i$ of $\tilde{\mathbf{U}}$ are the eigenvectors of \mathbf{A} . We note that a unitary matrix $\tilde{\mathbf{U}}$ has orthonormal columns: $\tilde{\mathbf{u}}_i^*\mathbf{u}_j = \operatorname{conj}(\mathbf{u}_i)^T\mathbf{u}_j = \delta_{ij}$. Also note that multiplication with $\tilde{\mathbf{U}}$ leaves the 2-norm unchanged: $\|\tilde{\mathbf{U}}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$.

The Singular Value Decomposition (SVD)

A real matrix which is not normal CANNOT be diagonalized by an orthogonal or unitary matrix. It takes two orthogonal matrices \mathbf{U} and \mathbf{V} to diagonalize such a matrix, by means of the singular value decomposition,

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^{N} \mathbf{u}_i \, \sigma_i \, \mathbf{v}_i^T,$$

where $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_N)$ is a real diagonal matrix whose diagonal elements σ_i are the singular values of \mathbf{A} , while the singular vectors \mathbf{u}_i and \mathbf{v}_i are the columns of the orthogonal matrices \mathbf{U} and \mathbf{V} . The singular values are nonnegative and are typically written in nonincreasing order:

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_N \ge 0.$$

We note that if A is normal, then its singular values are equal to the absolute values of its eigenvalues.

The geometric interpretation of the SVD is that it provides two sets of orthogonal basis vectors – the columns of \mathbf{U} and \mathbf{V} – such that the mapping represented by \mathbf{A} becomes a diagonal matrix when expressed in these bases. Specifically, we have

$$\mathbf{A}\,\mathbf{v}_i=\sigma_i\,\mathbf{u}_i,\qquad i=1,\ldots,N.$$

That is, σ_i is the "magnification" when mapping \mathbf{v}_i onto \mathbf{u}_i . Any vector $\mathbf{x} \in \mathbb{R}^N$ can be written as $\mathbf{x} = \sum_{i=1}^N (\mathbf{v}_i^T \mathbf{x}) \mathbf{v}_i$, and it follows that its image is given by

$$\mathbf{A} \mathbf{x} = \sum_{i=1}^{N} (\mathbf{v}_{i}^{T} \mathbf{x}) \mathbf{A} \mathbf{v}_{i} = \sum_{i=1}^{N} \sigma_{i} (\mathbf{v}_{i}^{T} \mathbf{x}) \mathbf{u}_{i}.$$

If A has an inverse, then the mapping of the inverse also defines a diagonal matrix:

$$\mathbf{A}^{-1}\mathbf{u}_i = \sigma_i^{-1}\mathbf{v}_i,$$

so that σ_i^{-1} is the "magnification" when mapping \mathbf{u}_i back onto \mathbf{v}_i . Similarly, any vector $\mathbf{b} \in \mathbb{R}^N$ can be written as $\mathbf{x} = \sum_{i=1}^N (\mathbf{u}_i^T \mathbf{b}) \mathbf{u}_i$, and it follows that the vector $\mathbf{A}^{-1} \mathbf{b}$ is given by

$$\mathbf{A}^{-1}\mathbf{b} = \sum_{i=1}^{N} (\mathbf{u}_i^T \mathbf{b}) \mathbf{A}^{-1} \mathbf{u}_i = \sum_{i=1}^{N} \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \mathbf{v}_i.$$

Similar relations can easily be derived for the spectral decompositions.

Rank, Conditioning, and Truncated SVD

The rank of a matrix is equal to the number of nonzero singular values: $r = \text{rank}(\mathbf{A})$ means that

$$\sigma_r > 0, \qquad \sigma_{r+1} = 0.$$

The matrix **A** has full rank (and, therefore, an inverse) only if all of its singular values are nonzero. If **A** is rank deficient then the system $\mathbf{A} \mathbf{x} = \mathbf{b}$ may not be compatible; in other words, there may be no vector \mathbf{x} that solves the problem. The columns of $\mathbf{U}_r = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_r]$ form an orthonormal basis for the range of **A**, and the system $\mathbf{A} \mathbf{x} = \mathbf{b}_r$ with $\mathbf{b}_r = \mathbf{U}_r \mathbf{U}_r^T \mathbf{b}$ is the closest compatible system. This compatible system has infinitely many solutions, and the solution of minimum 2-norm is

$$\mathbf{x}_r = \sum_{i=1}^r \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \mathbf{v}_i.$$

Consider now a perturbed version $\mathbf{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$ of the original system $\mathbf{A}\mathbf{x} = \mathbf{b}$, in which the perturbed right-hand side is given by $\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{e}$. If \mathbf{A} has full rank then the perturbed solution is given by $\tilde{\mathbf{x}} = \mathbf{A}^{-1}\tilde{\mathbf{b}} = \mathbf{x} + \mathbf{A}^{-1}\mathbf{e}$, and we need an upper bound for the relative perturbation $\|\mathbf{x} - \tilde{\mathbf{x}}\|_2 / \|\mathbf{x}\|_2$. The worst-case situation arises

when **b** is in the direction of the left singular vector \mathbf{u}_1 while the perturbation **e** is solely in the direction of \mathbf{u}_N , and it follows that the perturbation bound is given by

$$\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \operatorname{cond}(\mathbf{A}) \frac{\|\mathbf{e}\|_2}{\|\mathbf{b}\|_2}, \quad \text{where} \quad \operatorname{cond}(\mathbf{A}) = \frac{\sigma_1}{\sigma_N}.$$

The quantity $cond(\mathbf{A})$ is the condition number of \mathbf{A} . The larger the condition number, the more sensitive the system is to perturbations of the right-hand side.

The smallest singular value σ_N measures how "close" **A** is to a singular matrix (and $\sigma_N = 0$ when **A** is singular). A perturbation of **A** with a matrix **E**, whose elements are of the order σ_N , can make **A** rank deficient. The existence of one or more small singular values (small compared to the largest singular value σ_1) therefore indicates that **A** is "almost" singular.

In this case, it is often recommended to replace the ill-conditioned matrix \mathbf{A} with a nearby but exactly rank-deficient matrix \mathbf{A}_k whose rank k cannot be reduced by small perturbations. The typical choice of \mathbf{A}_k is the truncated SVD (TSVD) matrix

$$\mathbf{A}_k = \mathbf{U}_k \, \mathbf{U}_k^T \, \mathbf{A} = \sum_{i=1}^k \mathbf{u}_i \, \sigma_i \, \mathbf{v}_i^T.$$

The rank k of \mathbf{A}_k is chosen such that σ_k – which measures how "close" \mathbf{A}_k is to a singular matrix – is larger than the perturbations (the errors) in the original matrix \mathbf{A} . The minimum-norm solution to the corresponding compatible system $\mathbf{A}_k \mathbf{x} = \mathbf{b}_k$ with $\mathbf{b}_k = \mathbf{U}_k \mathbf{U}_k^T \mathbf{b}$ is called the TSVD solution, and it is given by

$$\mathbf{x}_k = \mathbf{U}_k \, \mathbf{U}_k^T \, \mathbf{x} = \sum_{i=1}^k \, rac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \, \mathbf{v}_i.$$

2. The DFT and Smoothing Norms

The following is a derivation of equation (7.9) in Section 7.3 for the efficient computation of the Tikhonov solution with a smoothing norm $\|\mathbf{D}\mathbf{x}\|_2$ that involves partial derivatives. We consider the case of periodic boundary conditions where the DFT matrix $\mathbf{F} = \mathbf{F}_r \otimes \mathbf{F}_c$ diagonalizes the matrix \mathbf{A} , i.e.,

$$\mathbf{A} = \mathbf{F}^* \mathbf{\Lambda}_{\mathbf{A}} \mathbf{F}.$$

in which the diagonal matrix $\Lambda_{\mathbf{A}}$ contains the eigenvalues λ_i of \mathbf{A} . These eigenvalues are computed as described in section 4.2.

For periodic boundary conditions, the one-dimensional DFT matrix \mathbf{F}_{c} diagonalizes the first and second derivative matrices $\mathbf{D}_{1,m}$ (7.7) and $\mathbf{D}_{2,m}$ (7.6), i.e.,

$$\mathbf{D}_{q,m} = \mathbf{F}_{\mathrm{c}}^* \, \mathbf{\Lambda}_{\mathbf{D}_{q,m}} \, \mathbf{F}_{\mathrm{c}}, \qquad q = 1, 2$$

where the diagonal matrix $\Lambda_{\mathbf{D}_{q,m}}$ contains the eigenvalues $\lambda_{q,k}$ of $\mathbf{D}_{q,m}$. These eigenvalues can be pre-computed by the following expressions

$$\lambda_{q,k} = \begin{cases} \exp(2k\pi \hat{1}/m) - 1, & q = 1\\ 2\cos(2k\pi/m) - 2, & q = 2 \end{cases}$$
 for $k = 1, \dots, m$

in which $\hat{i} = \sqrt{-1}$ denotes the imaginary unit. It follows that several choices of the matrix **D** have simple expressions in terms of Kronecker products; for example

$$\begin{split} \mathbf{I}_{n} \otimes \mathbf{D}_{q,m} &= (\mathbf{F}_{r}^{*} \, \mathbf{F}_{r}) \otimes (\mathbf{F}_{c}^{*} \, \boldsymbol{\Lambda}_{\mathbf{D}_{q,m}} \, \mathbf{F}_{c}) \\ &= (\mathbf{F}_{r}^{*} \otimes \mathbf{F}_{c}^{*}) \left(\mathbf{I}_{n} \otimes \boldsymbol{\Lambda}_{\mathbf{D}_{q,m}} \right) \left(\mathbf{F}_{r} \otimes \mathbf{F}_{c} \right) \\ &= \mathbf{F}^{*} (\mathbf{I}_{n} \otimes \boldsymbol{\Lambda}_{\mathbf{D}_{n,m}}) \, \mathbf{F}. \end{split}$$

Similarly, we obtain

$$\mathbf{D}_{q,n} \otimes \mathbf{I}_m = \mathbf{F}^* (\mathbf{\Lambda}_{\mathbf{D}_{q,n}} \otimes \mathbf{I}_m) \, \mathbf{F}$$
 $\mathbf{I}_n \otimes \mathbf{D}_{2,m} + \mathbf{D}_{2,n} \otimes \mathbf{I}_m = \mathbf{F}^* (\mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{q,m}} + \mathbf{\Lambda}_{\mathbf{D}_{q,n}} \otimes \mathbf{I}_m) \mathbf{F}$
 $egin{bmatrix} \mathbf{I}_n \otimes \mathbf{D}_{q,m} \ \mathbf{D}_{q,n} \otimes \mathbf{I}_m \end{bmatrix} = egin{bmatrix} \mathbf{F}^* & \mathbf{0} \ \mathbf{0} & \mathbf{F}^* \end{bmatrix} egin{bmatrix} \mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{q,m}} \ \mathbf{\Lambda}_{\mathbf{D}_{q,n}} \otimes \mathbf{I}_m \end{bmatrix} \mathbf{F}.$

We can use the above relations to derive a simple expression for the Tikhonov solution to (7.3). We need the following result:

$$\begin{aligned} \mathbf{A}^T &= \mathbf{A}^* \\ &= \mathbf{F}^* \mathrm{conj}(\mathbf{\Lambda}_{\mathbf{A}}) \, \mathbf{F} \\ &= \mathbf{F}^* \mathrm{conj}(\mathbf{\Lambda}_{\mathbf{A}}) \, \mathbf{\Lambda}_{\mathbf{A}} \, \mathbf{\Lambda}_{\mathbf{A}}^{-1} \mathbf{F} \\ &= \mathbf{F}^* |\mathbf{\Lambda}_{\mathbf{A}}|^2 \mathbf{\Lambda}_{\mathbf{A}}^{-1} \mathbf{F} \end{aligned}$$

where $|\mathbf{\Lambda}_{\mathbf{A}}|^2$ denotes a diagonal matrix whose elements are $|\lambda_i|^2$. It follows immediately that

$$\mathbf{A}^T \mathbf{A} = \mathbf{F}^* \operatorname{conj}(\mathbf{\Lambda}_{\mathbf{A}}) \mathbf{\Lambda}_{\mathbf{A}} \mathbf{F} = \mathbf{F}^* |\mathbf{\Lambda}_{\mathbf{A}}|^2 \mathbf{F}.$$

A similar result holds for the matrix \mathbf{D} , depending on its form. For example, if $\mathbf{D} = \mathbf{I}_n \otimes \mathbf{D}_{q,m} = \mathbf{F}^*(\mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{q,m}}) \mathbf{F}$ then

$$\mathbf{D}^T = \mathbf{D}^* = \mathbf{F}^* \left(\mathbf{I}_n \otimes \operatorname{conj}(\mathbf{\Lambda}_{\mathbf{D}_{q,m}}) \right) \mathbf{F}$$

and hence

$$\mathbf{D}^{T}\mathbf{D} = \mathbf{F}^{*} \left(\mathbf{I}_{n} \otimes \operatorname{conj}(\boldsymbol{\Lambda}_{\mathbf{D}_{q,m}}) \right) \left(\mathbf{I}_{n} \otimes \boldsymbol{\Lambda}_{\mathbf{D}_{q,m}} \right) \mathbf{F}$$

$$= \mathbf{F}^{*} \left(\mathbf{I}_{n} \otimes \operatorname{conj}(\boldsymbol{\Lambda}_{\mathbf{D}_{q,m}}) \boldsymbol{\Lambda}_{\mathbf{D}_{q,m}} \right) \mathbf{F}$$

$$= \mathbf{F}^{*} \left(\mathbf{I}_{n} \otimes |\boldsymbol{\Lambda}_{\mathbf{D}_{q,m}}|^{2} \right) \mathbf{F}.$$

Putting the above relations together, we arrive at the following expression for the Tikhonov solution

$$\mathbf{x}_{\alpha,\mathbf{D}} = (\mathbf{A}^T \mathbf{A} + \alpha^2 \mathbf{D}^T \mathbf{D})^{-1} \mathbf{A}^T \mathbf{b}$$
$$= \mathbf{F}^* \left(|\mathbf{\Lambda}_{\mathbf{A}}|^2 \left(|\mathbf{\Lambda}_{\mathbf{A}}|^2 + \alpha^2 \left(\mathbf{I}_n \otimes |\mathbf{\Lambda}_{\mathbf{D}_{q,m}}|^2 \right) \right)^{-1} \right) \mathbf{\Lambda}_{\mathbf{A}}^{-1} \mathbf{F} \mathbf{b}.$$

There are similar expressions for the other choices of the matrix **D**. If **D** = $\mathbf{D}_{q,n} \otimes \mathbf{I}_m = \mathbf{F}^*(\mathbf{\Lambda}_{\mathbf{D}_{q,n}} \otimes \mathbf{I}_m) \mathbf{F}$ then it follows immediately that

$$\mathbf{D}^T \mathbf{D} = \mathbf{F}^* \left(|\mathbf{\Lambda}_{\mathbf{D}_{q,n}}|^2 \otimes \mathbf{I}_m \right) \mathbf{F},$$

and if we use a sum of squared norm, represented by

$$\mathbf{D} = egin{bmatrix} \mathbf{I}_n \otimes \mathbf{D}_{q,m} \ \mathbf{D}_{q,n} \otimes \mathbf{I}_m \end{bmatrix} = egin{bmatrix} \mathbf{F}^* & \mathbf{0} \ \mathbf{0} & \mathbf{F}^* \end{bmatrix} egin{bmatrix} \mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{q,m}} \otimes \mathbf{I}_m \end{bmatrix} \mathbf{F},$$

then we obtain

$$\mathbf{D}^T\mathbf{D} = \mathbf{F}^* \left(\mathbf{I}_n \otimes |\mathbf{\Lambda}_{\mathbf{D}_{q,m}}|^2 + |\mathbf{\Lambda}_{\mathbf{D}_{q,n}}|^2 \otimes \mathbf{I}_m \right) \mathbf{F}.$$

Finally if $\mathbf{D} = \mathbf{I}_n \otimes \mathbf{D}_{2,m} + \mathbf{D}_{2,n} \otimes \mathbf{I}_m = \mathbf{F}^*(\mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{2,m}} + \mathbf{\Lambda}_{\mathbf{D}_{2,n}} \otimes \mathbf{I}_m) \mathbf{F}$ (approximating the Laplacian) then we obtain

$$\mathbf{D}^T \mathbf{D} = \mathbf{F}^* \left(\mathbf{I}_n \otimes \mathbf{\Lambda}_{\mathbf{D}_{2,m}}^2 + \mathbf{\Lambda}_{\mathbf{D}_{2,n}}^2 \otimes \mathbf{I}_m + 2 \, \mathbf{\Lambda}_{\mathbf{D}_{2,n}} \otimes \mathbf{\Lambda}_{\mathbf{D}_{2,m}} \right) \mathbf{F}.$$

The absolute value is not necessary here because the eigenvalues are real.

We can summarize these results in the expression (7.9) for the Tikhonov solution

 $\mathbf{x}_{\alpha,\mathbf{D}} = \mathbf{F}^* \Big(|\mathbf{\Lambda}_{\mathbf{A}}|^2 \left(|\mathbf{\Lambda}_{\mathbf{A}}|^2 + \alpha^2 \, \mathbf{\Delta} \right)^{-1} \Big) \, \mathbf{\Lambda}_{\mathbf{A}}^{-1} \, \mathbf{F} \, \mathbf{b},$

where the diagonal matrix Δ takes one of the four forms shown in the last column of Table 7.2. Note that the filtering matrix $|\Lambda_{\mathbf{A}}|^2 (|\Lambda_{\mathbf{A}}|^2 + \alpha^2 \Delta)^{-1}$ is diagonal.