Correction du DS

E1 | Dioxyde de carbone en solution aqueuse

Les pluies acides

/2 | 1 |

/10 | 2 |

Équation		$\mathrm{CO}_{2(\mathrm{aq})}$ -	+ 2H ₂ O _(l)	=	HCO _{3(aq)}	+	$\mathrm{H_3O_{(aq)}^+}$	1+1
Initial	x = 0	c_0	excès		0		0	
Final	$x_f = x_{\rm eq}$	$c_0 - x_{\rm eq} \approx c_0$	excès		$x_{\rm eq}$		$x_{\rm eq}$	

Comme $K_{a_1} \ll 1$, on peut faire l'hypothèse d'une réaction faiblement avancée, soit $x_{\rm eq} \ll c_0 = 1,19 \times 10^{-5} \, {\rm mol \cdot L^{-1}}$.

On vérifie que la valeur de pH obtenue appartient bien au domaine de prédominance de CO₂, (1) d'où la validité d'une réaction faiblement avancée.

De plus, ce pH est très éloigné du domaine de prédominance de ${\rm CO_3}^{2-}$, donc cette espèce est minoritaire ①. Cette constatation est cohérente avec l'hypothèse de ne considérer que la première acidité du dioxyde de carbone.

Le dioxyde de carbone au laboratoire

3

(1) ♦ H : première ligne première colonne, 1 électron de valence.

 $(1) \diamondsuit C$: deuxième ligne et deuxième colonne du bloc p, 4 électrons de valence.

 $\bigcirc 1$ $\bigcirc 0$: deuxième ligne et seizième colonne, 6 électrons de valence.

5 On exploite la conservation de la matière

$$[CO_2(aq)]_{eq} + [HCO_3^-]_{eq} + [HCO_3^2^-]_{eq} = C_0$$
 (0)

ainsi que les relations entre le pH et les constantes d'acidité

$$pH = pK_{a_1} + \log\left(\frac{[HCO_3^-]_{eq}}{[CO_2(aq)]_{eq}}\right)$$
(1)

$$pH = pK_{a_2} + \log \left(\frac{[CO_3^{2-}]_{eq}}{[HCO_3^{-}]_{eq}} \right)$$
 (2)

Le diagramme de prédominance va nous aider à simplifier ce système de 3 équations à 3 inconnues.

① \diamond Pour pH = 2, CO₂ prédomine. On fait alors l'hypothèse que [CO₂(aq)]_{eq} $\approx C_0$ (d'après l'équation (0)). L'équation (1) donne

$$[{\rm HCO_3^-}]_{\rm eq} = [{\rm CO_2(aq)}]_{\rm eq} \times 10^{\rm pH-p} K_{a_1} \quad \ {\rm soit} \quad \ \underline{[{\rm HCO_3^-}]_{\rm eq}} = 5.0 \times 10^{-6} \, {\rm mol \cdot L^{-1}}$$

L'équation (2) donne

$$[\mathrm{CO_3^{2-}}]_{\mathrm{eq}} = [\mathrm{HCO_3^{-}}]_{\mathrm{eq}} \times 10^{\mathrm{pH-p}K_{a_2}} \quad \text{ soit } \quad [\mathrm{CO_3^{2-}}]_{\mathrm{eq}} = 2.5 \times 10^{-14}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$$

① \diamondsuit Pour pH = 6,3 = p K_{a_1} , [CO₂(aq)]_{eq} = [HCO $_3$]_{eq} = $C_0/2 = 5$,0 \times 10⁻² mol·L⁻¹ et on en déduit la concentration en ion carbonate à l'aide de l'équation (2) :

$$[\mathrm{CO_3^{2-}}]_{\mathrm{eq}} = [\mathrm{HCO_3^{-}}]_{\mathrm{eq}} \times 10^{\mathrm{pH-p}K_{a_2}} \quad \text{ soit } \quad [\mathrm{HCO_3^{-}}]_{\mathrm{eq}} = 5.0 \times 10^{-6} \, \mathrm{mol \cdot L^{-1}}$$

① \diamond Pour pH = 8, HCO $_3^-$ prédomine. On fait alors l'hypothèse que [HCO $_3^-$]_{eq} $\approx C_0$ (d'après l'équation (0)). L'équation (1) donne

$$[{\rm CO_2(aq)}]_{\rm eq} = [{\rm HCO_3^-}]_{\rm eq} \times 10^{{\rm p}K_{a_1}-{\rm pH}} \quad \mbox{ soit } \quad \underline{[{\rm CO_2(aq)}]_{\rm eq}} = 2.0 \times 10^{-3} \, {\rm mol \cdot L^{-1}}$$

L'équation (2) donne

$$[\mathrm{CO_3^{2-}}]_{\mathrm{eq}} = [\mathrm{HCO_3^{-}}]_{\mathrm{eq}} \times 10^{\mathrm{pH-p}K_{a_2}} \quad \text{ soit } \quad [\mathrm{CO_3^{2-}}]_{\mathrm{eq}} = 5.0 \times 10^{-4} \, \mathrm{mol \cdot L^{-1}}$$

① \diamondsuit Pour pH = $10,3=pK_{a_2}$, $[CO_3^{2-}]_{eq}=[HCO_3^{-}]_{eq}=C_0/2=5,0\times 10^{-2}\,\mathrm{mol\cdot L^{-1}}$ et on en déduit la concentration en ion carbonate à l'aide de l'équation (1) :

$$[\mathrm{CO_2(aq)}]_{\mathrm{eq}} = [\mathrm{HCO_3^-}]_{\mathrm{eq}} \times 10^{\mathrm{p}K_{a_1}-\mathrm{pH}} \quad \text{ soit } \quad [\mathrm{CO_2(aq)}]_{\mathrm{eq}} = 5.0 \times 10^{-6}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$$

① \diamondsuit Pour pH = 14, CO₃²⁻ prédomine. On fait alors l'hypothèse que [CO₃²⁻]_{eq} $\approx C_0$ (d'après l'équation (0)). L'équation (2) donne

$$[\mathrm{HCO_3^-}]_{\mathrm{eq}} = [\mathrm{CO_3^{2-}}]_{\mathrm{eq}} \times 10^{\mathrm{p}K_{a_2}-\mathrm{pH}} \quad \text{ soit } \quad [\mathrm{HCO_3^-}]_{\mathrm{eq}} = 2.0 \times 10^{-5} \, \mathrm{mol \cdot L^{-1}}$$

L'équation (1) donne

$$[{\rm CO_2(aq)}]_{\rm eq} = [{\rm HCO_3^-}]_{\rm eq} \times 10^{{\rm p}K_{a_1}-{\rm pH}} \quad {\rm soit} \quad [{\rm CO_2(aq)}]_{\rm eq} = 4.0 \times 10^{-13} \, {\rm mol \cdot L^{-1}}$$

рН	2	6,3	8	10,3	14
$[CO_2(aq)]_{eq}$ en mol·L ⁻ 1	1.0×10^{-1}	5.0×10^{-2}	2.0×10^{-3}	5.0×10^{-6}	4.0×10^{-13}
$[HCO_3^-]_{eq}$ en mol·L ⁻ 1	5.0×10^{-6}	5.0×10^{-2}	1.0×10^{-1}	5.0×10^{-2}	2.0×10^{-5}
$[\mathrm{CO_3^{2-}}]_{\mathrm{eq}}$ en mol·L ⁻ 1	2.5×10^{-14}	5.0×10^{-6}	5.0×10^{-4}	5.0×10^{-2}	1.0×10^{-1}

- /2 6 La solution de soude est composée des ions Na⁺ et HO⁻ ①. Le dioxyde de carbone de l'air s'est dissous dans la solution. Comme le pH initial vaut 13, le dioxyde de carbone dissous se trouve sous la forme CO_3^{2-} . Il y a bien sûr de l'eau H_2O . ①
- /10 $\boxed{7}$ On trace une échelle en p K_A . Initialement, il peut y avoir deux réactions :

$$K_1 = 10^{14}$$
 $HO_{(aq)}^- + H_3O_{(aq)}^+ \stackrel{\textcircled{1}}{=} 2 H_2O_{(l)}$ R1
 $K_2 \stackrel{\textcircled{1}}{=} 10^{10,3}$ $CO_{3(aq)}^{2-} + H_3O_{(aq)}^+ \stackrel{\textcircled{1}}{=} HCO_{3(aq)}^- + H_2O_{(l)}$ R2

Ces deux réactions sont totales ①, mais comme $K_1/K_2 \approx 10^4$, on n'est pas sûrx que les titrages soient successifs. Pour cela, on lit le pH à la première équivalence : pH(V_1) ≈ 8 ①. D'après le diagramme de distribution, [CO $_3^{2-}$] \ll [HCO $_3^{-}$] et [CO $_2$ (aq)] \ll [HCO $_3^{-}$]. Ainsi la réaction (R2) est finie au volume d'acide V_1 versé. Donc les réactions (R1) et (R2) se font simultanément ①.

Début du titrage (1)

La deuxième réaction de titrage forme HCO_3^- qui est une base faible. Elle peut donc réagir avec H_3O^+ selon la réaction

$$HCO_{3(aq)}^{-} + H_3O_{(aq)}^{+} \stackrel{\textcircled{1}}{=} CO_{2(aq)} + 2H_2O_{(l)}$$
 R3

Cette réaction est quantitative. Elle se produit après les deux autres, ① pour $V \in [V_1, V_2]$.

Fin du titrage 2

/6 8 D'après la réaction de titrage (R3), en notant [CO₂] la concentration de dioxyde de carbone dissous dans le flacon :

$$C_A(V_2-V_1) \overset{\textcircled{1}}{=} V_0 \quad \text{ soit } \quad \text{[CO_2]} \overset{\textcircled{1}}{=} 2,15 \times 10^{-2} \, \text{mol} \cdot \text{L}^{-1}$$

On en déduit la quantité dans le volume total

$$n(\text{CO}_2)_{\text{tot}} = \times V_{\text{tot}}$$
 soit $\underline{n(\text{CO}_2)_{\text{tot}}} = 21,5 \,\text{mmol}$

Pour déterminer la concentration en HO⁻, on utilise la première équivalence. Les réactions de titrage (R1) et (R2) se faisant simultanément, on dose la quantité de soude et celle de dioxyde de carbone dissous. La relation à l'équivalence s'écrit

$$C_A V_1 = (C_B + [\text{CO}_2]) V_0 \quad \text{soit} \quad \boxed{C_B \stackrel{\textcircled{1}}{=} \frac{C_A V_1}{V_0} - [\text{CO}_2]} \Rightarrow \underline{C_B \stackrel{\textcircled{1}}{=} 5,75 \times 10^{-2} \, \text{mol} \cdot \text{L}^{-1}}$$

43 E2 Autour du chrome (D'après Centrale TSI 2007)

II/A Les ions en solution aqueuse

/2 $\boxed{1}$ Un amphotère est une espèce à la fois acide et basique. Or, $Cr(OH)_3$ est la base de Cr^{3+} et l'acide de $Cr(OH)_4^-$:

$$Cr_{(aq)}^{3+} + 3 H_2 O_{(l)} \stackrel{\textcircled{1}}{=} Cr(OH)_{3(aq)} + 3 H_{(aq)}^+$$

$$Cr(OH)_{3(aq)} + H_2 O_{(l)} \stackrel{\textcircled{1}}{=} Cr(OH)_{4(aq)}^- + H_{(aq)}^+$$

/3 $\boxed{2}$ La solubilité est plus faible lorsque le solide existe $\boxed{1}$, soit pour pH \in [4,3;13]. Il s'agit d'un domaine d'existence.

- /2 3 Pour pH < 4,3 (ou pH > 13), $s = C_0$ 1. On en déduit $C_0 = 1 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$.
- /4 $\boxed{4}$ K_{s_1} est la constante d'équilibre de la réaction de dissolution :

$$Cr(OH)_{3(s)} = Cr_{(aq)}^{3+} + 3HO_{(aq)}^{-}$$
 $K_{s,1}$

À pH = 4,3, il y a début de précipitation de Cr(OH)₃ ①. Le solide est alors présent en quantité infinitésimale, donc il y a équilibre de précipitation. De plus $[Cr^{3+}] = C_0$ et $[HO^-] = 10^{-9.7}$ mol·L⁻¹.

D'après la loi d'action de masse évaluée en ce point

$$K_{s_1} = \frac{(\text{Cr}^{3+})_{\text{eq}} \cdot (\text{HO}^{-})_{\text{eq}}^{3}}{c^{\circ 4}} \Rightarrow K_{s_1} = 10^{-31,1}$$

Cette valeur est cohérente avec celle de 10^{-31} donnée dans l'énoncé.

II/B Précipitation avec les ions Ag⁺

 $\sqrt{6}$ On écrit la réaction de dissolution, et on effectue un tableau d'avancement en concentration, en notant s_2 la solubilité :

Équation		$Ag_2CrO_{4(s)} =$	= 2Ag ⁺ _(aq)	$+ \operatorname{CrO_4^{2-}_{(aq)}}$	
Initial	x = 0	excès	0	0]
Final	$x_f = x_{\rm eq}$	excès	$2s_2V$	s_2V] (1

$$\text{Loi d'action de masse} \quad K_{s_2} \stackrel{\textcircled{1}}{=} \frac{s_2(2s_2)^2}{c^{\circ 3}} \Leftrightarrow \boxed{s_2 \stackrel{\textcircled{1}}{=} c^{\circ} \left(\frac{K_{s_2}}{4}\right)^{1/3}} \\ \Rightarrow \underbrace{s_2 \stackrel{\textcircled{1}}{=} 6.3 \times 10^{-5} \, \text{mol} \cdot \text{L}^{-1}}_{}$$

6 On écrit la réaction de dissolution, et on effectue un tableau d'avancement en concentration, en notant s_3 la solubilité :

Équation		AgCl _(s) =	$=$ $Ag_{(aq)}^+$ $-$	+ Cl ⁻ _(aq)	
Initial	x = 0	excès	0	0	
Final	$x_f = x_{\rm eq}$	excès	s_3V	s_3V	

Loi d'action de masse

$$K_{s_3} = \frac{c^2}{c^{\circ 2}} \Leftrightarrow \boxed{s_3 = c^{\circ} \sqrt{K_{s_2}}} \Rightarrow \underline{s_3 = 1,0 \times 10^{-5} \, \text{mol} \cdot \text{L}^{-1}}$$

Comme $s_2 > s_3$, on en déduit que Ag₂CrO₄ est plus soluble ① que AgCl.

On utilise l'ion chromate comme **indicateur coloré** (1) de fin de réaction lors du dosage des ions chlorure par les ions argent (méthode de Mohr): on introduit quelques gouttes (1) de chromate de potassium dans le bécher contenant la solution d'ions chlorure à doser; cette solution est dosée par le nitrate d'argent (1). Il apparaît d'abord le précipité blanc de chlorure d'argent (1) AgCl_(s), puis lorsque les ions chlorure ont disparu (ou du moins qu'il en reste une quantité négligeable devant la quantité initiale), il y a alors apparition du précipité rouge de chromate d'argent $Ag_2CrO_{4(s)}$ (1).

Dosage

8

- 9 C'est un titrage pH-métrique. Il faut donc une électrode combinée constituée d'une électrode de verre (1) et d'une électrode de référence (1) au calomel saturé par exemple.
- $/2 \mid 10 \mid$ C'est le titrage d'un acide faible par une base forte :

$$\operatorname{Cr}_2 \operatorname{O}_{7(\operatorname{aq})}^{2-} + 2 \operatorname{HO}_{(\operatorname{aq})}^{-} \stackrel{\textcircled{1}}{=} 2 \operatorname{CrO}_{4(\operatorname{aq})}^{2-} + \operatorname{H}_2 \operatorname{O}_{(\operatorname{l})}$$

/3 11 On lit le volume à l'équivalence $V_{\rm eq} = 17\,{\rm mL}$ (1).

À l'équivalence
$$C_1V_1=\frac{C_2V_{\mathrm{eq}}}{2},$$
 soit $\boxed{C_1\overset{\textcircled{1}}{=}\frac{C_2V_{\mathrm{eq}}}{2V_1}}\Rightarrow \underline{C_1\overset{\textcircled{1}}{=}8,5\times 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}}.$

Demi-équivalence

Demi-équivalence
$$[\text{CrO}_4{}^{2-}] = 2[\text{Cr}_2\text{O}_7{}^{2-}] = C_1 \text{ } 1$$
 Loi d'action de masse
$$K^\circ \stackrel{\text{$\stackrel{\frown}{=}$}}{=} \frac{[\text{CrO}_4{}^{2-}]_{\text{eq}}^2[\text{H}_3\text{O}^+]_{\text{eq}}^2}{[\text{Cr}_2\text{O}_7{}^{2-}]_{\text{eq}}c^{\circ 3}} = 2C_1 10^{-2\text{pH}_A}$$

$$\Leftrightarrow \underline{K = 1,7 \times 10^{-15}}$$

La constante d'équilibre de la réaction de titrage vaut alors $K' = \frac{K \stackrel{\frown}{1}}{K_e^2} = 1,7 \times 10^{13} \gg 1$. Il s'agit bien d'une bonne réaction de titrage du point de vue de sa quantitativité. (1)

P1 | Propriétés de l'azote (D'après banque PT 2008)

Synthèse de l'ammoniac

1

$$3 H_{2(g)} + N_{2(g)} = 2 NH_{3(g)}$$
 (1)

2

$$Q_r \! \stackrel{\textcircled{\tiny 1}}{=} \! \frac{a(\mathrm{NH_3})^2}{a(\mathrm{H_2})^3 a(\mathrm{N_2})} \Leftrightarrow Q_r \! \stackrel{\textcircled{\tiny 1}}{=} \! \frac{n_{\mathrm{NH_3}}^2 n_{\mathrm{tot}}^2 (P^\circ)^2}{n_{\mathrm{H_3}}^3 n_{\mathrm{N_2}}^2 P^2}$$

On rappelle que pour le constituant gazeux X_i , l'activité s'écrit $a_i = \frac{p_i}{P^{\circ}} = \frac{n_i P}{n_{\text{tot}} P^{\circ}}$ avec p_i la pression partielle de X_i et n_i sa quantité de matière.

- 3 À l'équilibre, le quotient de réaction est égal à la constante d'équilibre K° (1). C'est la loi <u>d'action de masse</u> (1), ou de Guldberg-Waage
- 4 D'après l'expression obtenue question 2, une élévation de pression sans modifier la composition du système diminue (1) le quotient de réaction. Le système va donc évoluer dans le <u>sens direct</u> (1) (formation du produit NH₃) pour retourner à l'équilibre.
- Un catalyseur permet d'augmenter la vitesse de réaction. (1)
- 6 \diamondsuit Hydrogène : 1 électron de valence \diamondsuit Azote : 5 électrons de valence
- ♦ Oxygène : 6 électrons de valence

- $H { \longrightarrow } \overline{N} { \longrightarrow } H$
- $O = \overline{N} = \overline{O}$

/19 I/B Diagramme potentiel-pH

7 Le p K_A de l'acide nitrique est négatif, il s'agit d'un acide fort. La réaction avec l'eau est totale : (1)

$$\boxed{ \operatorname{HNO}_{3(\operatorname{aq})} + \operatorname{H}_2\operatorname{O}_{(\operatorname{l})} \overset{\textcircled{1}}{\to} \operatorname{NO_3}^-_{(\operatorname{aq})} + \operatorname{H}_3\operatorname{O}^+_{(\operatorname{aq})} }$$

L'espèce HNO₃ n'est donc pas présente en solution aqueuse, elle n'intervient pas dans le diagramme potentiel-pH.

/2 | 8 |

$$NO_{3}^{-}{}_{(aq)} + 3H_{(aq)}^{+} + 2e^{-} \stackrel{\textcircled{1}}{=} HNO_{2(aq)} + H_{2}O_{(l)}$$

 $HNO_{2(aq)} + H_{(aq)}^{+} + e^{-} \stackrel{\textcircled{1}}{=} NO_{(g)} + H_{2}O_{(l)}$

9 D'après la règle du gamma, HNO₂ réagit avec lui-même. Cette espèce est instable (1). La réaction observée est une dismutation (1).

En réutilisant les demi-équations de la question précédente, on obtient :

$$3 \text{ HNO}_{2(aq)} = 2 \text{ NO}_{(g)} + \text{NO}_{3(aq)}^{-} + \text{H}_2 \text{O}_{(l)} + \text{H}_{(aq)}^{+}$$

 $\Leftrightarrow 3 \text{ HNO}_{2(aq)} = 2 \text{ NO}_{(g)} + \text{NO}_{3(aq)}^{-} + \text{H}_3 \text{O}_{(aq)}^{+}$

MPSI3 - 2023/2024Lycée Pothier 5/10

- 1 \diamond Dans NO_3^- (aq) : n.o.(N) = +V

On en déduit le diagramme de situation (1) :

2 11 En réutilisant les résultats de la question 10, on obtient :

- \Diamond (I): Ion nitrate NO₃⁻;
- ♦ (II) : Monoxyde d'azote NO ;
- \Diamond (III): Ion nitrite NO₂⁻.

/4 12

$$\begin{aligned} \text{NO}_{3\text{(aq)}}^{-} + 2\text{H}_{\text{(aq)}}^{+} + 2e^{-\frac{1}{2}}\text{NO}_{2\text{(aq)}}^{-} + \text{H}_{2}\text{O}_{\text{(l)}} \\ \Rightarrow E \stackrel{\text{1}}{=} E^{\circ}(\text{NO}_{3}^{-}/\text{NO}_{2}^{-}) + \frac{0.06}{2}\log\left(\frac{[\text{NO}_{3}^{-}][\text{H}^{+}]^{2}}{[\text{NO}_{2}^{-}](c^{\circ})^{2}}\right) \\ [\text{NO}_{3}^{-}]_{\text{front}} = [\text{NO}_{2}^{-}]_{\text{front}} = C_{t} \qquad \Rightarrow \boxed{E_{\text{front}} \stackrel{\text{1}}{=} E^{\circ}(\text{NO}_{3}^{-}/\text{NO}_{2}^{-}) - 0.06\text{pH}} \end{aligned}$$

La frontière est une droite de pente -0,06V par unité de pH.

Sur le graphique, on lit les coordonnées d'un point par lequel passe cette droite frontière : (pH = 8.0; E = 0.34 V). On calcule alors :

$$E^{\circ}(NO_3^-/NO_2^-) = 0.82 \text{ V}$$

/23 I/C Teneur en élément azote d'un engrais

/2 13

Dissolution du nitrate d'ammonium :

$$\mathrm{NH_4NO_{3(s)}} \overset{\textcircled{1}}{\underset{\textcircled{1}}{=}} \mathrm{NH_4}^+_{(\mathrm{aq})} + \mathrm{NO_3}^-_{(\mathrm{aq})}$$

/2 14 L'ion ammonium est un acide. ① C'est l'acide conjugué de l'ammoniac NH_3 : il cède un proton. ①

/2 15

Équation de la réaction de titrage :

$$\boxed{ \mathrm{NH_4}^+_{(\mathrm{aq})}^+ + \mathrm{HO}^-_{(\mathrm{aq})} \overset{\textcircled{\scriptsize{1}}}{\underset{\textcircled{\scriptsize{1}}}{=}} \mathrm{NH_3}_{(\mathrm{aq})} + \mathrm{H_2O}_{(\mathrm{l})} }$$

/3 16 En utilisant la méthode des tangentes ①, on obtient :

$$\boxed{ V_E = 14.2 \, \text{mL} \quad ; \quad \text{pH}_E = 11.2 }$$

- /3 17 À l'équivalence, les réactifs ont été consommés ①, la solution contient des ions nitrate et des ions sodium (espèces spectatrices), de l'eau (solvant) ① et de l'ammoniac $NH_{3(aq)}$ qui est une base faible ①, ce qui explique le pH basique.
- /4 $\boxed{18}$ À l'équivalence, les réactifs ont été introduits dans les proportions stechiométriques 1 :

$$n_{\mathrm{NH_4^+,dos\acute{e}}} = n_{\mathrm{HO^-,vers\acute{e}}}$$

 $\Leftrightarrow C_1 V_1 = cV_E$

en notant C_1 la concentration de la solution préparée en dissolvant l'engrais.

La quantité de matière de nitrate d'ammonium présente dans la fiole jaugée de volume V_0 s'écrit :

$$\boxed{n_{\mathrm{NH_4^+}} = C_1 V_0 = cV_E V_0 \atop V_1} \Rightarrow \underbrace{n_{\mathrm{NH_4^+}}}_{=7,00} \times 10^{-2} \, \mathrm{mol}$$

/7 19 Chaque mole de nitrate d'ammonium $NH_4NO_{3(s)}$ contient deux moles d'élément azote. 1

$$n_{\mathrm{N,tot}} = 2n_{\mathrm{NH_4}^+}$$

$$\Leftrightarrow \boxed{m(N)^{\boxed{1}} 2n_{\mathrm{NH_4}^+} M(N)} \Rightarrow \underline{m(N)}^{\boxed{1}} = 1,96\,\mathrm{g}$$

$$p \text{ pourcentage massique} \qquad \Leftrightarrow \boxed{p = \frac{m(N)}{m_{\mathrm{engrais}}} \stackrel{\boxed{1}}{=} \frac{2n_{\mathrm{NH_4}^+} M(N)}{m_{\mathrm{engrais}}}} \Rightarrow \underline{p = 0,327}^{\boxed{1}} = 32,7\%$$

Le résultat obtenu est proche de l'indication du fabricant. \bigcirc Les incertitudes de mesure ne sont pas calculées ici, il n'est pas possible de conclure sur la compatibilité entre les deux résultats. \bigcirc

/28 I/D Pollution par les nitrates : dosage indirect des nitrates

/12 21 À partir des demi-équations précédentes, on obtient l'équation de la réaction :

$$\mathrm{NO_3}^-{}_{(\mathrm{aq})} + 3\,\mathrm{Fe}^{2+}_{(\mathrm{aq})} + 4\,\mathrm{H}^+_{(\mathrm{aq})} \stackrel{\textcircled{1}}{=} \mathrm{NO}_{(\mathrm{g})} + 3\,\mathrm{Fe}^{3+}_{(\mathrm{aq})} + 2\,\mathrm{H}_2\mathrm{O}_{(\mathrm{l})} \\ \qquad \qquad K^\circ \stackrel{\textcircled{1}}{=} \frac{[\mathrm{Fe}^{3+}]^3 P_\mathrm{NO}(c^\circ)^5}{[\mathrm{NO}_3^-][\mathrm{Fe}^{2+}]^3 [\mathrm{H}_3\mathrm{O}^+]^4 P^\circ}$$

À l'équilibre il y a égalité des potentiels des couples en présence (1), d'où

$$E(NO_{3}^{-}/NO) = E(Fe_{(aq)}^{3}/Fe_{(aq)}^{2+})$$

$$\Leftrightarrow E^{\circ}(NO_{3}^{-}/NO) + \frac{0.06}{3} \log \left(\frac{[NO_{3}^{-}][H_{3}O^{+}]^{4}P^{\circ}}{P_{NO}(c^{\circ})^{5}} \right) = E^{\circ}(Fe^{3+}/Fe^{2+}) + \frac{0.06}{1} \log \left(\frac{[Fe^{3+}]}{[Fe^{2+}]} \right)$$

$$\Leftrightarrow E^{\circ}(NO_{3}^{-}/NO) - E^{\circ}(Fe^{3+}/Fe^{2+}) = \frac{0.06}{3} \log (K^{\circ})$$

$$\Rightarrow K^{\circ} = 10^{\frac{3}{0.06}} \left(E^{\circ}(NO_{3}^{-}/NO) - E^{\circ}(Fe^{3+}/Fe^{2+}) \right)$$

$$A.N. : K^{\circ} = 10^{9.5}$$

La constante d'équilibre $K^{\circ} \gg 10^3$ donc <u>on peut considérer la réaction quasi-totale</u> ①. Cependant, elle ne nous renseigne pas sur la cinétique ① de la réaction. On réalise un titrage indirect sans doute parce que la réaction est lente ①. Autrement, le suivi potentiométrique est peut-être difficile à suivre, par exemple avec un **faible saut** de potentiel ①.

 $\sqrt{3}$ Quantité de matière de Fe²⁺ restant présente dans l'erlenmeyer :

$$n_{\rm Fe^{2+}\ restant} = n_{\rm Fe^{2+}\ initiale} - n_{\rm Fe^{2+}\ ayant\ r\'eagi\ avec\ NO_3} - \\ {\rm Avec\ la\ st\'echiom\'etrie\ (1)} \qquad \Leftrightarrow \boxed{n_{\rm Fe^{2+}\ restant} = n_{\rm Fe^{2+}\ initiale} - 3n_{\rm NO_3} - initiale}}$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

 $\begin{array}{c} /4 \boxed{24} \\ \text{D'après la question } \boxed{22} \text{, nous avons :} \\ \\ n_{\text{NO}_3^- \text{ initiale}} = \frac{1}{3} (n_{\text{Fe}^{2+} \text{ initiale}} - n_{\text{Fe}^{2+} \text{ restant}}) \end{array}$

À l'équivalence du titrage, les réactifs ont été introduits dans les proportions stechiométriques :

$$n_{\mathrm{Fe^{2+}\ titré}} = 5n_{\mathrm{MnO_4^{-}\ vers\acute{e}}}$$

$$\Leftrightarrow n_{\mathrm{Fe^{2+}\ restant}} = 5c_2V$$
 Or,
$$n_{\mathrm{Fe^{2+}\ initiale}} = c_1V_1$$

$$\Rightarrow \boxed{n_{\mathrm{NO_3^{-}\ initiale}} = \frac{1}{3}\left(c_1V_1 - 5c_2V\right)}$$
 A.N. :
$$\boxed{n_{\mathrm{NO_3^{-}\ initiale}} = 2.78 \times 10^{-5}\ \mathrm{mol}}$$

ce qui correspond à la valeur fournie par l'énoncé (1).

/3 | 25 |

Concentration massique en ions nitrate : $C_m = \frac{1}{V_0} \frac{n_{\text{NO}_3^- \text{ initiale}} M(\text{NO}_3^-)}{V_0}$

A.N. :
$$C_m = 3.45 \times 10^{-2} \,\mathrm{g \cdot L^{-1}} = 34.5 \,\mathrm{mg \cdot L^{-1}}$$

La valeur obtenue est inférieure à la teneur maximale autorisée $(50\,\mathrm{mg}\cdot\mathrm{L}^{-1})$: cette eau est potable. 1

/4 $\boxed{26}$ La masse maximale d'ions nitrate que peut consommer cæt enfant de masse m égale à 35 kg est :

$$m_{\text{nitrates max}} = x \times m \quad \text{avec} \quad x = 3,65 \,\text{mg} \cdot \text{kg}^{-1}$$

Cherchons le volume $V_{\rm eau}$ qui contient cette masse :

$$\boxed{ V_{\rm eau} = \frac{1}{m_{\rm nitrates\ max}} \\ \frac{1}{C_m} }$$
 A.N. : $V_{\rm eau} = 3.70 \, {\rm L}$

Avec une concentration massique de $50\,\mathrm{mg}\cdot\mathrm{L}^{-1}$ (limite autorisée), l'application numérique donne $2,6\,\mathrm{L}$, ce qui est sans doute supérieur (1) au volume d'eau consommé par um enfant en une journée.

$m{/54}$ P2 Exploitation du diagramme $E-\mathrm{pH}$ du chlore (D'après Centrale TSI 2018)

II/A Diagramme du chlore

/7 1

Tableau 8.1 - Calcul du nombre d'oxydation

Espèce	$\mathrm{HClO}_{\mathrm{(aq)}}$	$ClO^{(aq)}$	$Cl_{2(aq)}$	$Cl_{(aq)}^-$
n.o.(Cl)	+I ①	$+\dot{I}$	0 1	$-\mathbf{I}\hat{1}$
Domaine \bigcirc	$^{\mathrm{C}}$	D	В	A

FIGURE 8.1 – Diagramme de situation (1)+(1)

On prouve le caractère acide de HClO par une équation :

$$HClO_{(aq)} + H_2O_{(l)} \stackrel{\bigcirc}{=} ClO_{(aq)}^- + H_3O_{(aq)}^+$$
 K_A

 $\sqrt{3}$ Pour des espèces acido-basiques dissoutes, par la relation de HENDERSON on a

$$\mathrm{pH} \stackrel{\textcircled{1}}{=} \mathrm{p}K_A + \log \frac{[\mathrm{ClO}^-]}{[\mathrm{HClO}]} \Rightarrow \boxed{\mathrm{pH}_{\mathrm{front}} \stackrel{\textcircled{1}}{=} \mathrm{p}K_A} \Rightarrow \underline{\mathrm{p}K_A \stackrel{\textcircled{1}}{=} 7,5}$$

Lycée Pothier 8/10 MPSI3 – 2023/2024

/7 $\boxed{3}$ La demi équation rédox du couple B/A est $\operatorname{Cl}_{2(aq)} + 2\operatorname{e}^{-} \stackrel{\textcircled{1}}{=} 2\operatorname{Cl}_{(aq)}^{-}$, ainsi l'équation de la frontière est donnée par

$$E \overset{\textcircled{\scriptsize 1}}{=} E^{\circ} + \frac{0.06}{2} \log \frac{[\text{Cl}_2]c^{\circ}}{[\text{Cl}^-]^2}$$

On nous signale qu'il y a égalité des concentrations en éléments sur la frontière, donc $2[Cl_2] = [Cl^-]$, et comme $2[Cl_2] + [Cl^-] = c$, nous avons que $[Cl_2] = c/4$ et $[Cl^-] = c/2$. Finalement

$$E = E^{\circ} - 0.03 \log c$$

Pour déterminer E on peut utiliser les informations sur la frontière entre B et C:

$$2\,\mathrm{HClO_{(aq)}} + 2\,\mathrm{H_{(aq)}^+} + 2\,\mathrm{e^{-\frac{1}{2}}Cl_{2(aq)}} + 2\,\mathrm{H_2O_{(l)}}$$

ainsi la pente est de $0.06\,\mathrm{V/pH}$, et ainsi

$$E = 1.56 \,\mathrm{V} - 0.06 \,\mathrm{V/pH} \cdot 2.17 \,\mathrm{pH} = 1.43 \,\mathrm{V}$$

En conclusion,

$$\boxed{E^{\circ} = E + 0.03 \log c} \Rightarrow \underline{E^{\circ} = 1.40 \,\mathrm{V}}$$

/2 4

$$\mathrm{HClO}_{(\mathrm{aq})} + \mathrm{H}_{(\mathrm{aq})}^{+} + 2\,\mathrm{e}^{-\underbrace{\stackrel{\textstyle \bigcirc}{=}}_{=}}\mathrm{Cl}_{(\mathrm{aq})}^{-} + \mathrm{H}_{2}\mathrm{O}_{(\mathrm{l})}$$

/4 5 La formule de NERNST pour ce couple donne

$$E = E^{\circ} + 0.03 \log \frac{[\text{HClO}][\text{H}^{+}]}{[\text{Cl}^{-}]} \Leftrightarrow E_{\text{front}} = E^{\circ} - 0.03 \, \text{pH}$$

Avec l'égalité des concentrations à la frontière. Ainsi, la pente est de $-0.03 \,\mathrm{V/pH}$ ①. En prolongeant la frontière, on remarque qu'elle passe par les points (2,17;1,43) et (10.5;1,2), ce qui confirme une pente de $-0.03 \,\mathrm{V/pH}$ ①.

/2 6 En pH = 2,17, E = 1,43 V, ainsi $E^{\circ} = 1,43 \text{ V} + 0,03 \text{ V/pH} \cdot 2,17 \text{ pH} = 1,50 \text{ V}$

II/B Diagramme de l'eau

/8 7 On écrit les demi-équations associées puis les potentiels :

$$\lozenge O_{2(g)}/H_{2}O_{(l)} : 1$$

$$2 H_{2}O_{(l)} \stackrel{\frown}{=} O_{2(g)} + 4 H_{(aq)}^{+} + 4 e^{-}$$

$$\Rightarrow E_{1} \stackrel{\frown}{=} E_{1}^{\circ} + \frac{0.06}{4} \log \left(\frac{[H^{+}]^{4}p_{O_{2}}}{c^{\circ 4}p^{\circ}} \right)$$

$$\Leftrightarrow E_{1} = E_{1}^{\circ} - 0.06pH + 0.06 \log \left(\frac{p_{O_{2}}}{p^{\circ}} \right)$$

$$\Rightarrow E_{1} \stackrel{\frown}{=} E_{1}^{\circ} - 0.06pH + 0.06 \log \left(\frac{p_{O_{2}}}{p^{\circ}} \right)$$

$$\Rightarrow E_{1} \stackrel{\frown}{=} E_{1}^{\circ} - 0.06pH + 0.06 \log \left(\frac{p_{O_{2}}}{p^{\circ}} \right)$$

$$\Rightarrow E_{2} \stackrel{\frown}{=} E_{2}^{\circ} + \frac{0.06}{2} \log \left(\frac{[H^{+}]^{2}p^{\circ}}{c^{\circ 2}p_{H_{2}}} \right)$$

$$\Rightarrow E_{2} \stackrel{\frown}{=} E_{2}^{\circ} - 0.06pH + 0.06 \log \left(\frac{p^{\circ}}{p_{H_{2}}} \right)$$

$$\Rightarrow E_{2} \stackrel{\frown}{=} E_{2}^{\circ} - 0.06pH + 0.06 \log \left(\frac{p^{\circ}}{p_{H_{2}}} \right)$$

$$\Rightarrow E_{2} \stackrel{\frown}{=} E_{2}^{\circ} - 0.06pH$$

$$\Rightarrow E_{2} \stackrel{\frown}{=} E_{2}^{\circ} - 0.06pH$$

/4 8 Les lignes de séparation des domaines de l'eau partent à pH=0 à 0 et 1,23 V respectivement, avec une pente de $-0.06\,\mathrm{V/pH}$ 1, elles sont **intégralement en dessous** 1 de tous les autres segments du diagramme E-pH. En superposant ces deux diagrammes, nous remarquons que seul Cl⁻ peut coexister 1 dans l'eau car toutes les autres espèces ont des domaines disjoints 1 avec celui de l'eau.

II/C Étude de la cellule d'électrolyse

/4 $\boxed{9}$ À l'anode il se produit une **oxydation** $\boxed{1}$, ainsi il se produit du Cl_2 selon la réaction $2\operatorname{Cl}_{(aq)}^- \stackrel{\fbox{1}}{=} \operatorname{Cl2}_{(aq)} + 2\operatorname{e}^-$.

À la cathode, il se produit une **réduction** ①, donc la formation de H_2 selon la réaction $2H_{(aq)}^+ + 2e^{-} \stackrel{\text{\scriptsize (1)}}{=} H_{2(g)}$

/4 10

$$\begin{split} & \text{Cl2}_{(aq)} + 2\,\text{e}^{- \underbrace{1}_{=}} 2\,\text{Cl}_{(aq)}^{-} \\ & \text{Cl2}_{(aq)} + 2\,\text{H}_{2}\text{O}_{(l)} \stackrel{\textstyle 1}{=} 2\,\text{ClO}_{(aq)}^{-} + 4\,\text{H}_{(aq)}^{+} + 2\,\text{e}^{-} \\ \Rightarrow & \text{Cl2}_{(aq)} + \text{H}_{2}\text{O}_{(l)} \stackrel{\textstyle 1}{=} \text{Cl}_{(aq)}^{-} + \text{ClO}_{(aq)}^{-} + 2\,\text{H}_{(aq)}^{+} \end{split}$$

C'est une **dismutation**. (1)

/2 11

$$\underbrace{0}_{m=c_{s}} \cdot V_{0} = 5 \,\mathrm{g \cdot L^{-1}} \cdot 150 \,\mathrm{m}^{3} = 750 \,\mathrm{kg}$$

/4 12 Cherchons la quantité de dichlore formée par seconde :

$$n_{\rm Cl_2} \stackrel{\text{(1)}}{=} \frac{m_{\rm max}}{2M_{\rm Cl} \times 3600 \, {\rm s \cdot h^{-1}}}$$

Or la formation à l'anode d'une mole de Cl₂ s'accompagne de la libération de 2 moles d'électrons, ainsi $n_e = 2n_{\text{Cl}_2}$. Finalement,

$$\boxed{i = e \mathcal{N}_a \frac{n_e}{\Delta t} = \mathcal{F} \frac{m_{\text{max}}}{M_{\text{Cl}} \times 3600 \, \text{s} \cdot \text{h}^{-1}} = 20 \, \text{A}}$$

/3 13 $P = UI = 150 \,\mathrm{W}$, ce qui n'est pas excessif, sauf s'il faut la faire tourner en continu... 1