STAY 231 October 13, 2016

Roadmap

INTERVAL ESTIMATION

· LIKELIHOOD INTERVALS

· CONFIDENCE INTERVALS Using Sampling distributions

Objective: Data set: {y1>...yn} udes

G MODEL: YIN f (9.; 0)

f = dist "funchon

of 5 Y.

Objective: To eshmate θ : unknown parameter.

Instead of 10. eshmatung the "most likely" rale of θ , we want to find the "tensonable" values & can take. We want to construct an [a, b] unterval based on our data. which will contain 8 with a high deprec

How are Mourgei of application: Errors Calculated for polling data? USING THE RELATIVE METHOD I: LIKELIHOOD FUNCTION. Definition: Take p & (0,1). A 100 p%
likelihood interval is the set of all $\theta: \{\theta: \mathcal{R}(\theta) > p\}$ L(#)/L(#) $R(\theta) =$

The value of the litelihood function evaluated at θ is at least 100 p%.

He value of L evaluated at θ . $R(\theta) \mid T$

$$R(\theta)$$
 $R(\theta)$
 $R(\theta)$
 $R(\theta)$

Geometrically, the Relative Likelihood function is. easur to interpret.

Question 1

It belongs to the 20% likelihood interval; it must belong to the 10% likelihood interval.

(a) TRUF 73°

(a) TRUE 73%

(b) FALSE 27%

R(+) > 0. 20

*

Suppose we are given the bog relative likelihood function log R(+) (=)

Example: Suppose
$$Y \cap Bain(n, \theta)$$
 $\theta: prob. of success.$

Experiment

 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 = 100$
 $1 =$

Questoni For the graph R,, n=500 · 50%. A (R) TRUE

(b) FALSE.

Notes

Of R(+) is bimodal, then the

likelihood & interval might be

the unuit of two disjoint intervals

Typically, p is chosen to be between 0.1 and 0.15

CONVENTIONS

94 R(+) > 0.5, i.e & lies wi the 50% likelihood interval =) VERY PLAUSIBLE

00.50 R(v) 9f R(v) >> 0.1 but less than 0.5 PLAUSIBLE: 96 R(0) < 0.1, but > 0.01 =) IMPLAUSIBLE 94 R(0) < 0.01 =) VERY "

Downside to dikelihood Intervals

=) difficult intervalation

We want to estimate the probability
that we construct
that we construct
that we construct

METHOD OF SAMPLINGE.

DISTRIBUTIONS

All numerical measures that we construct using our data set can be thought of a ont comes of a r.v. POPULATION MERN 4 = sample mean. Y = r.v. from which

T is drawn.

Notahou

Figure = #

Which Figure an onlowne.

4

1

.