Algebraic Specification Methods & Languages

http://d3s.mff.cuni.cz

Pavel Parízek

Introduction

- Purpose
 - Specification of external interfaces
 - Operations (arguments, results)
- Example
 - Abstract data types
 - You define behavior of all the operations, and not the internal data representation
- Usage: prototyping
 - Executable specifications

Algebraic method

- Using
 - Algebraic structures
 - Abstract data types

• ADT = carrier sets + operations + axioms

Basic theory

Algebra

- Carrier set D
- Functions F

- Function $f_A \in F$

 - $f_A: \rightarrow A$

Sorts

- Sort = data type
 - Examples: Nat, Int, Bool, Strings, ...

Many-sorted algebras

- Sub-sorting relation
 - Nat < Int</p>

Algebra - revisited

- Notation
 - S ... sorts
 - F ... functions (operations)
 - D ... carrier sets (data)
 - A ... algebra
- Types of functions
 - $T = S^* \times S$
 - $s_1 \times ... \times s_n \rightarrow s$
- Algebra $A = \{[D_s]_{\{s \in S\}}, [F_t]_{\{t \in T\}} >$

Example

Signature

- Signature (S, Σ)

- ∑-algebra
 - Carrier set D_s for every sort $s \in S$
 - Operation f_A for each symbol $f \in F$

Properties of operations

- Basic approach
 - Equations between function expressions

Set E of all equations (sentences, axioms)

• Executable specifications (models)

More complex signatures and equations

- Overloaded functions
 - Different subsorts
 - Number of arguments

- Predicates and relations
 - Signature: the set P of predicate symbols

Initial model

- Exactly the right number of elements in carrier sets
 - No redundancy ("garbage")
 - No ambiguity ("confusion")

Multiple isomorphic models

Algebraic specification

- Assumptions
 - Programs are modeled by many-sorted algebras
 - Correctness of the input/output behavior has precedence over all other properties
- $Q = (S, \Sigma, E)$

- Two parts
 - Declarations (signature)
 - Equations (semantics)

Example

- List of integers
 - Operations: add, remove, get, size, contains
 - insert and remove to/from any position
- Use of recursion
- Constructing bigger instances (values)
 - Lists with multiple elements

• Exceptions (errors)

Semantics of algebraic specifications

- $Q = (S, \Sigma, E)$
 - well-formed specification

- Sem[Q]
 - the class of all initial algebras (models)

Languages

- CASL: Common Algebraic Specification Language
 - https://link.springer.com/book/10.1007/b11968
 - http://www.cofi.info
 - E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Bruckner, P.D. Mosses, D. Sannella, and A. Tarlecki. CASL: The Common Algebraic Specification Language. Theoretical Computer Science, 286(2), 2002
- Other: Larch (family), OBJ3, ASL

Literature

- Ian Sommerville: Software Engineering
 - consider just recent book editions (9th or 10th)
 - https://software-engineering-book.com/