# Санкт-Петербургский национальный исследовательский институт

информационных технологий, механики и оптики

Факультет фотоники и оптоинформатики

# **ИІТМО**

# ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

"Исследование основных параметров полупроводникового лазера"

| Группа: V3203                       | К работе допущен: |
|-------------------------------------|-------------------|
| Студент: Срывкин Н.А., Ганиева И.И. | Работа выполнена: |
| Преподаватель: Ворзобова Н.Д.       | К отчёту допущен: |
| •                                   | • •               |

## 1. Цель работы

• Изучение принципов работы полупроводникового лазера и измерение его основных параметров

#### 2. Задачи

- Ознакомиться с принципом работы и конструкционными особенностями полупроводниковых лазеров
- Измерить зависимость интенсивности излучения полупроводникового лазерного модуля от величины тока, протекающего через p-n переход
- Исследовать степень поляризации излучения лазерного модуля в зависимости от тока, протекающего через p-n переход
- Проанализировать изменение параметров излучения при работе лазерного модуля в режиме светоизлучающего диода и режиме лазерной генерации

## 3. Объект исследования

• Лазерный модуль КLM-650 на основе полупроводникового инжекционного лазера

#### 4. Метод исследования

• Анализ полученных экспериментально зависимостей интенсивности и степени поляризации лазерного излучения от величины тока, протекающего через p-n переход

## 5. Рабочие формулы и исходные данные

•  $R_1 = 51 \, \mathrm{Om}$ 

$$I_{pn} = \frac{U_{\text{пл}}}{R_{\text{1}}} \tag{1}$$

$$I_{\text{пи}} = kI_{pn} \tag{2}$$

• Из формулы (2) следует формула (3):

$$k = \frac{I_{\text{пи}}}{I_{pn}} \tag{3}$$

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}} \tag{4}$$

# 6. Экспериментальная установка:



Figure 1: Блок-схема экспериментальной установки. ПЛ – полупроводниковый лазер, ПС – поляризационный светофильтр, ПИ – приемник излучения, М1 и М2 – измерительные приборы (мультиметры)

# 7. Результаты измерений и их обработки (таблицы, примеры расчётов, графики):

• Таблица 1: Экспериментальные данные для построения зависимости интенсивности излучения лазера от тока, протекающего через p-n переход

| $U_{\scriptscriptstyle \Pi \Pi}$ , м ${ m B}$ | $I_{pn}$ , м $\Lambda$ | $I_{\scriptscriptstyle \Pi 	extsf{	iny IM}}$ , м $A$ |  |
|-----------------------------------------------|------------------------|------------------------------------------------------|--|
| 688                                           | 12.74                  | 4                                                    |  |
| 696                                           | 12.89                  | 4                                                    |  |
| 724                                           | 13.41                  | 5                                                    |  |
| 769                                           | 14.24                  | 5                                                    |  |
| 782                                           | 14.48                  | 6                                                    |  |
| 842                                           | 15.59                  | 7                                                    |  |
| 896                                           | 16.59                  | 8                                                    |  |
| 940                                           | 17.41                  | 9                                                    |  |
| 968                                           | 17.93                  | 10                                                   |  |
| 979                                           | 18.13                  | 11                                                   |  |
| 1002                                          | 18.56                  | 12                                                   |  |
| 1010                                          | 18.71                  | 13                                                   |  |
| 1024                                          | 18.96                  | 14                                                   |  |
| 1035                                          | 19.17                  | 16                                                   |  |

| $U_{ m nn}$ , м $ m B$ | $I_{pn}$ , м $\Lambda$ | $I_{\scriptscriptstyle \Pi 	extsf{	iny IM}}$ , м $A$ |  |
|------------------------|------------------------|------------------------------------------------------|--|
| 1064                   | 19.71                  | 24                                                   |  |
| 1085                   | 20.09                  | 51                                                   |  |
| 1107                   | 20.52                  | 114                                                  |  |
| 1115                   | 20.65                  | 140                                                  |  |
| 1143                   | 21.17                  | 228                                                  |  |
| 1166                   | 21.59                  | 308                                                  |  |
| 1180                   | 21.85                  | 350                                                  |  |
| 1185                   | 21.95                  | 360                                                  |  |
| 1199                   | 22.21                  | 399                                                  |  |
| 1338                   | 24.78                  | 781                                                  |  |
| 1482                   | 27.44                  | 998                                                  |  |
| 1619                   | 29.98                  | 1053                                                 |  |
| 1639                   | 30.35                  | 1054                                                 |  |
| 1651                   | 30.57                  | 1054                                                 |  |

• Проведем рассчёты для  $U_{\rm nn}$  = 688 мВ из первой таблицы для поиска значений интенсивности излучения лазера  $I_{pn}$  в режиме светоизлучающего диода:

$$I_{pn} = \frac{688}{51} = 12.74 \text{ mA} \tag{5}$$

$$k_{\rm cb} = \frac{4}{12.74} = 0.31\tag{6}$$

• Проведем рассчёты для  $U_{\scriptscriptstyle \Pi\Pi}$  = 1199 мВ из первой таблицы для поиска значений интенсивности излучения лазера  $I_{pn}$  в режиме лазерноизлучающей генерации:

$$I_{pn} = \frac{1199}{51} = 22.20 \text{ mA} \tag{7}$$

$$k_{\text{\tiny TA3}} = \frac{399}{22.20} = 17.98 \tag{8}$$

• Исходя из Рис. 2 можно сделать вывод, что величина порогового тока  $I_{\mathrm{nop}} \approx 19\,\,\mathrm{mA}$ 



Figure 2: Зависиомость интенсивности излучения лазера от тока, протекающего через рп переход.

• Таблица 2: Экспериментальные данные для получения зависимости степени линейной поляризации (Р) от тока через p-n переход:

| $U_{\scriptscriptstyle m HJ}$ , м ${ m B}$ | $I_{pn}$ , м $\Lambda$ | $I_{ m max}$ , мк $A$ | $I_{\min}$ , мк $A$ | P     |
|--------------------------------------------|------------------------|-----------------------|---------------------|-------|
| 612                                        | 11.33                  | 2                     | 1                   | 0.500 |
| 760                                        | 14.07                  | 3                     | 1                   | 0.667 |
| 820                                        | 15.19                  | 4                     | 1                   | 0.750 |
| 907                                        | 16.79                  | 5                     | 1                   | 0.800 |
| 1056                                       | 19.56                  | 13                    | 2                   | 0.856 |
| 1090                                       | 20.18                  | 35                    | 1                   | 0.971 |
| 1144                                       | 21.18                  | 160                   | 1                   | 0.994 |
| 1197                                       | 22.17                  | 284                   | 2                   | 0.993 |
| 1402                                       | 25.96                  | 774                   | 2                   | 0.997 |
| 1506                                       | 27.89                  | 885                   | 2                   | 0.998 |

• Проведем рассчёты для  $U_{\scriptscriptstyle \Pi\Pi}$  = 612 мВ из второй таблицы для поиска значений коэффициента Р и интенсивности излучения лазера  $I_{pn}$ 

$$P = \frac{2-1}{1} = 0.5\tag{9}$$

$$I_{pn} = \frac{612}{54} = 11.33 \text{ mA} \tag{10}$$



Figure 3: Зависиомость Р от интенсивности излучения лазера.

# 8. Выводы и анализ результатов работы

В ходе лабораторной работы, с помощью экспериментального анализа были построены и изучены зависимости интенсивности и степени поляризации полупроводникового лазерного модуля от величины тока, протекающего через p-n переход. Обе зависимости хорошо совпадают с теоретическими, несмотря на постоянное в ходе эксперимента значение  $I_{min}$  и довольно плавный рост тока  $I_{pn}$  в p-n переходе. Полученные несоответствия можно списать на погрешность мультиметра и малое количество измерений.