Elliptic Curve Cryptography(ECC)

unacademy unacademy

- Asymmetric / Public key cryptosystem.
- ECC provides equal security with smaller key size.
- ECC makes use of Elliptic curves.
- Elliptic curves are defined by mathematical functions Cubic functions.
- eg:- $y^2 = x^3 + ax + b$

- Let E_p (a,b) be the elliptic curve.
- Consider equation, Q = kP
 where Q, P ∈ E_p (a,b) and k < n
- · It should be easy to find Q given k and P.
- But should be extremely difficult to find k given Q and P.

- Is a one way function trap door function.
- Called the discrete logarithm problem.

ECC - Key Exchange

Global Public elements.

 $E_{o}(a,b)$: Elliptic curve with parameters a, b & q

q is a prime or integer of the form 2^m

G: Point on elliptic curve whose order is large value n.

Alice key Generation.

Select private key n_A ; $n_A < n$

Calculate public key P_A ; $P_A = n_A \times G$

Bob key Generation.

Select private key n_B ; n_B < n

Calculate public key P_B ; $P_B = n_B \times G$

Secret key calculation by Alice

$$K = n_A \times P_B$$

Secret key calculation by Bob

$$K = n_B \times P_A$$

ECC - Encryption & Decryption

- Let the message be M.
- First encode the message M into a point on the elliptic curve.
- Let this point be P_m.
- · Now this point is encrypted.
- For encrypting choose a random positive integer k.
- Then C_m= {kG, P_m + kP_B} where G is the base point.
- For decryption, multiply first point in the pair with receiver's secret key.
 i.e, kG x n_B
- Then subtract it from second point in the pair.

i.e,
$$P_m + kP_B - (k\underline{G \times n_B}) = P_m + kP_B - (kP_B) = P_m$$

References