Predicting Genres from Acoustic Features

Andric Brena Maha Attique

Why genre recognition?

Scientific Question: How well can a model using Gaussian Naive Bayes be at multi-class classification? Does incorporating information gain improve the accuracy rate?

Motivation:

- Explore the complex nature of genres
- Analyze the ways in which large collections of music can be organized

What does the data look like?

- 3 separate csv files:
 - tracks.csv
 - Info on a track's id, title, language, genre(s), etc.
 - genres.csv
 - Info on the list of genres/subgenres
 - echonest.csv
 - Info on a track's auditory features, artist location, temporal features
- Focused on tracks with a single genre at the top level and their auditory features
 - Classes = 12 different genres
 - Features = acousticness, danceability, tempo, liveness, instrumentalness, energy, speechiness, valence

Preprocessing the Data

- Stored the contents of each file as a dataframe to filter and merge them based on:
 - o Tracks with a single genre
 - The single genre is at the top level
 - The tracks contain auditory features
- Normalized the feature columns
- Split the resulting data into a train and test set

	track_id	genre_top	title	acousticness	***	liveness	speechiness	tempo	valence
0	2	Hip-Hop	Food	0.416675	***	0.177647	0.159310	165.922	0.576661
1	3	Hip-Hop	Electric Ave	0.374408	***	0.105880	0.461818	126.957	0.269240
2	5	Hip-Hop	This World	0.043567		0.373143	0.124595	100.260	0.621661
3	10	Pop	Freeway	0.951670	***	0.115474	0.032985	111.562	0.963590
4	134	Hip-Hop	Street Music	0.452217		0.096567	0.525519	114.290	0.894072
5264									
9413	42141	Experimental	Smoke In The Blues Bar	0.994404		0.316379	0.046528	80.870	0.089221
9414	42146	Experimental	Blues For Brownie	0.974165	***	0.120454	0.043112	106.959	0.851080

Methodologies

- PCA
- Gaussian Naive Bayes
- Feature selection through maximum importance (weight) in Gaussian Naive Bayes
- Feature selection through Information gain

PCA Plot containing all 12 genres

Breaking the PCA plot down

Breaking the PCA plot down

Gaussian Naive Bayes (across all acoustic features)

Radar Plots

Hip-Hop

Absolute Feature Importance based on Gaussian Naive Bayes

Each feature holds a different importance in predicting a specific genre!!!

Using a specific feature to predict a specific class

Genre: Old-Time / Historic

Most Important Feature = **liveness**

Accuracy achieved = 94.1%

Genre predictability through most important feature

This process was heavily dependent on how large the weight of the most important feature was for its class.

Large weight for the most important acoustic feature:

Small weight for the most important acoustic feature:

Genre: Hip-Hop

Most Important Feature = **speechiness**

Accuracy achieved = 91.5%

Genre: Rock

Most Important Feature = danceability

Accuracy achieved = 65.6%

Information gain across all features

Information gain across all features

Conclusions

- Gaussian Naive Bayes is a viable method for music genre recognition.
- Feature selection highlights the ability for some features to better predict a genre than others.
- The acoustic features expressed a level of subjectivity.

Looking forward....

- Address bias towards rock, hip-hop, electronic, and folk tracks:
 - Using a more balanced data set that represents all genres equally
- Expanding/changing the set of auditory features:
 - Work with raw music files and use a different set of acoustic features to classify the genre (harmony,
 timbre etc). Maybe employ sentiment analysis for the lyrics to finetune the classification.
- Classify into sub-genres like the tracks in the original data set
- Conduct a user lab study, where we compare our models classifications to actual users who classify the music based on personal opinion.