### Informované prohledávání stavového prostoru

#### Neinformované prohledávání:

- DFS, BFS a varianty
- nemá (téměř) žádné informace o pozici cíle slepé prohledávání
- zná pouze:
  - počáteční/cílový stav
  - přechodovou funkci

### Informované prohledávání stavového prostoru

#### Neinformované prohledávání:

- DFS, BFS a varianty
- nemá (téměř) žádné informace o pozici cíle slepé prohledávání
- zná pouze:
  - počáteční/cílový stav
  - přechodovou funkci

#### Informované prohledávání:

má navíc informaci o (odhadu) blízkosti stavu k cílovému stavu – heuristická funkce (heuristika)

# Heuristické hledání nejlepší cesty

- Best-first Search
- použití ohodnocovací funkce f(n) pro každý uzel výpočet přínosu daného uzlu
- udržujeme seznam uzlů uspořádaný (vzestupně) vzhledem k f(n)
- použití heuristické funkce h(n) pro každý uzel odhad vzdálenosti daného uzlu od cíle
- čím *menší h(n)*, tím blíže k cíli, h(Goal) = 0.
- nejjednodušší varianta hladové heuristické hledání, Greedy best-first search

$$f(n) = h(n)$$

## Příklad – schéma rumunských měst



| Arad Bukurest Craiova Dobreta Eforie Fagaras Giurgiu Hirsova Iasi Lugoj Mehadia Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni Vilcea | 366<br>0<br>160<br>242<br>161<br>178<br>77<br>151<br>226<br>244<br>241<br>234<br>380<br>98<br>193<br>253<br>329<br>80 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     | 80<br>199<br>374                                                                                                      |
|                                                                                                                                                     |                                                                                                                       |



















- expanduje vždy uzel, který se zdá nejblíže k cíli
- cesta nalezená v příkladu ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{Fagaras} \rightarrow \text{Bukurest}) = 450)$ je sice úspěšná, ale není optimální ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{RimnicuVilcea} \rightarrow \text{Pitesti} \rightarrow \text{Bukurest}) = 418)$
- úplnost
   optimálnost
   časová složitost
   prostorová složitost

- expanduje vždy uzel, který se zdá nejblíže k cíli
- cesta nalezená v příkladu ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{Fagaras} \rightarrow \text{Bukurest}) = 450)$ je sice úspěšná, ale není optimální ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{RimnicuVilcea} \rightarrow \text{Pitesti} \rightarrow \text{Bukurest}) = 418)$
- úplnost obecně není úplný (nekonečný prostor, cykly)
   optimálnost časová složitost
   prostorová složitost

- expanduje vždy uzel, který se zdá nejblíže k cíli
- cesta nalezená v příkladu ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{Fagaras} \rightarrow \text{Bukurest}) = 450)$ je sice úspěšná, ale není optimální ( $g(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{RimnicuVilcea} \rightarrow \text{Pitesti} \rightarrow \text{Bukurest}) = 418)$
- úplnost
   optimálnost
   časová složitost
   prostorová složitost

obecně není úplný (nekonečný prostor, cykly) není optimální

- expanduje vždy uzel, který se zdá nejblíže k cíli
- ullet cesta nalezená v příkladu ( $g(\operatorname{Arad} 
  ightarrow \operatorname{Sibiu} 
  ightarrow \operatorname{Fagaras} 
  ightarrow \operatorname{Bukurest}) = 450)$ je sice úspěšná, ale není optimální  $(g(Arad \rightarrow Sibiu \rightarrow RimnicuVilcea \rightarrow Pitesti \rightarrow Bukurest) = 418)$
- obecně není úplný (nekonečný prostor, cykly) úplnost optimálnost není optimální časová složitost  $O(b^m)$ , hodně záleží na h prostorová složitost

- expanduje vždy uzel, který se zdá nejblíže k cíli
- ullet cesta nalezená v příkladu ( $g(\operatorname{Arad} 
  ightarrow \operatorname{Sibiu} 
  ightarrow \operatorname{Fagaras} 
  ightarrow \operatorname{Bukurest}) = 450)$ je sice úspěšná, ale není optimální  $(g(Arad \rightarrow Sibiu \rightarrow RimnicuVilcea \rightarrow Pitesti \rightarrow Bukurest) = 418)$

```
obecně není úplný (nekonečný prostor, cykly)
úplnost
optimálnost
            není optimální
časová složitost O(b^m), hodně záleží na h
prostorová složitost O(b^m), každý uzel v paměti
```

## Hledání nejlepší cesty – algoritmus A\*

- některé zdroje označují tuto variantu jako Best-first Search
- ohodnocovací funkce kombinace g(n) a h(n):

$$f(n) = g(n) + h(n)$$

- g(n) je cena cesty do n
- h(n) je odhad ceny cesty z n do cíle
- f(n) je odhad ceny nejlevnější cesty, která vede přes n

## Hledání nejlepší cesty – algoritmus A\*

- některé zdroje označují tuto variantu jako Best-first Search
- ohodnocovací funkce kombinace g(n) a h(n):

$$f(n) = g(n) + h(n)$$

- g(n) je cena cesty do n
- h(n) je odhad ceny cesty z n do cíle
- f(n) je odhad ceny nejlevnější cesty, která vede přes n
- A\* algoritmus vyžaduje tzv. přípustnou (admissible) heuristiku:
  - $0 \le h(n) \le h^*(n)$ , kde  $h^*(n)$  je skutečná cena cesty z n do cíle

tj. odhad se volí vždycky kratší nebo roven ceně libovolné možné cesty do cíle

Např. přímá vzdálenost  $h_{\rm vzd\_Buk}$  nikdy není delší než (jakákoliv) cesta

Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd\_Buk}(n)$ 





Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd\_Buk}(n)$ 





Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd\_Buk}(n)$ 





Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd_Buk}(n)$ 





Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd_Buk}(n)$ 





Hledání cesty z města *Arad* do města *Bukurest* ohodnocovací funkce  $f(n) = g(n) + h(n) = g(n) + h_{vzd_Buk}(n)$ 





• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

úplnost optimálnost časová složitost

prostorová složitost

• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

je úplný (pokud [počet uzlů s  $f < C^*$ ]  $\neq \infty$ ) úplnost optimálnost časová složitost

prostorová složitost

• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

je úplný (pokud [počet uzlů s  $f < C^*$ ]  $\neq \infty$ ) úplnost optimálnost je optimální

prostorová složitost

časová složitost

• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

je úplný (pokud [počet uzlů s  $f < C^*$ ]  $\neq \infty$ ) úplnost optimálnost je optimální  $O((b^*)^d)$ , exponenciální v délce řešení d časová složitost b\* ... tzv. efektivní faktor větvení, viz dále

prostorová složitost

• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

je úplný (pokud [počet uzlů s  $f < C^*$ ]  $\neq \infty$ ) úplnost optimálnost je optimální  $O((b^*)^d)$ , exponenciální v délce řešení d časová složitost b\* ... tzv. efektivní faktor větvení, viz dále prostorová složitost  $O((b^*)^d)$ , každý uzel v paměti

• expanduje uzly podle f(n) = g(n) + h(n)

```
A* expanduje všechny uzly s f(n) < C^*
A* expanduje některé uzly s f(n) = C^*
A* neexpanduje žádné uzly s f(n) > C^*
```

je úplný (pokud [počet uzlů s  $f < C^*$ ]  $\neq \infty$ ) úplnost optimálnost je optimální  $O((b^*)^d)$ , exponenciální v délce řešení d časová složitost b\* ... tzv. efektivní faktor větvení, viz dále prostorová složitost  $O((b^*)^d)$ , každý uzel v paměti

Problém s prostorovou složitostí řeší algoritmy jako *IDA\**, *RBFS* 

### Důkaz optimálnosti algoritmu A\*

- předpokládejme, že byl vygenerován nějaký suboptimální cíl G<sub>2</sub> a je uložen ve frontě.
- dále nechť n je neexpandovaný uzel na nejkratší cestě k optimálnímu cíli G<sub>1</sub> (tj. chybně neexpandovaný uzel ve správném řešení)



## Důkaz optimálnosti algoritmu A\*

- předpokládejme, že byl vygenerován nějaký suboptimální cíl G<sub>2</sub> a je uložen ve frontě.
- dále nechť n je neexpandovaný uzel na nejkratší cestě k optimálnímu cíli G<sub>1</sub> (tj. chybně neexpandovaný uzel ve správném řešení)



Pak

$$f(G_2) = g(G_2)$$
 protože  $h(G_2) = 0$   
>  $g(G_1)$  protože  $G_2$  je suboptimální  
≥  $f(n)$  protože  $h$  je přípustná

#### Důkaz optimálnosti algoritmu A\*

- předpokládejme, že byl
   vygenerován nějaký suboptimální
   cíl G<sub>2</sub> a je uložen ve frontě.
- dále nechť n je neexpandovaný uzel na nejkratší cestě k optimálnímu cíli G<sub>1</sub> (tj. chybně neexpandovaný uzel ve správném řešení)



Pak

$$f(G_2) = g(G_2)$$
 protože  $h(G_2) = 0$   
>  $g(G_1)$  protože  $G_2$  je suboptimální  
≥  $f(n)$  protože  $h$  je přípustná

tedy  $f(G_2) > f(n) \Rightarrow A^*$  nikdy nevybere  $G_2$  pro expanzi dřív než expanduje  $n \rightarrow \text{spor}$  s předpokladem, že n je  $n \in \text{spor}$  je  $n \in \text{spor}$  uzel