A Linear Regression model to Predict medical charges Project Report IE7280

Shruthi Machimada 001880621

Objective:

Predicting the personalized health care costs for a user, based on based on factors such as Age, gender, BMI, number of children, smoking habits.

Insurance companies can use this to give suitable premiums to customers, based on their profile.

Data:

The data can be found at: https://www.kaggle.com/mirichoi0218/insurance

Input variables:

Age

Sex

BMI

Children

Smoker

Region

Outcome variable:

Charges

Exploring the data

Viewing the data types of each column, and the number of observations.

There are 7 variables in total.

The outcome variable is charges, which is a decimal number indicating the amount of medical charges a person incurs.

The input variables are:

Age and number of children are integer values.

Distribution of data:

```
> summary(data)
                           bmi
                 sex
                                     children smoker
                                                                           charges
                                                                 region
    age
Min. :18.00 female:662 Min. :15.96 Min. :0.000 no :1064 northeast:324 Min. : 1122
1st Qu.:27.00 male :676 1st Qu.:26.30 1st Qu.:0.000 yes: 274 northwest:325 1st Qu.: 4740
Median :39.00 Median :30.40 Median :1.000
                                                           southeast:364 Median: 9382
Mean :39.21
                      Mean :30.66 Mean :1.095
                                                           southwest:325 Mean :13270
3rd Qu.:51.00
Max. :64.00
                       3rd Qu.:34.69 3rd Qu.:2.000
                                                                         3rd Qu.:16640
                        Max. :53.13 Max. :5.000
                                                                         Max. :63770
```

The customers' Gender and Region are evenly distributed. There are 5 times more smokers than non-smokers and customers' Age ranges from 18 to 64 years.

The average charge is 13270, with a minimum cost of 1122 and a maximum cost of 63770.

I then checked the quantity and percentage of zeros, NAs and infinite values, to handle the missing values.

>	df_status	s(data)							
	variable	q_zeros	p_zeros	q_na	p_na	q_inf	p_inf	type	unique
1	age	0	0.0	0	0	0	0	integer	47
2	sex	0	0.0	0	0	0	0	factor	2
3	bmi	0	0.0	0	0	0	0	numeric	548
4	children	574	42.9	0	0	0	0	integer	6
5	smoker	0	0.0	0	0	0	0	factor	2
6	region	0	0.0	0	0	0	0	factor	4
7	charges	0	0.0	0	0	0	0	numeric	1337
>									

There are no missing values or NAs, so we do not need to clean this data.

Distribution of Categorical variables

Gender

Frequency / (Percentage %)

Smoker

Region

Sex and Region are evenly distributed, but the Smoker variable is distributed in the ratio 80:2.

Distribution of the Numeric variables

Exploring relationships among variables

The charges are not affected by just the Region and Gender.

The charges for a Smoker is significantly higher than that of a non-smoker.

Correlation

Age is mildly correlated to charges with a correlation coefficient of 0.3. All the other variables have negligible correlation coefficients.

On observing the distribution of age vs charges, we see that there is no clear linear relation – there are 3 levels of charges, across the distribution of age.

Splitting the dataset

I split the data into training and test sets. 75% of the data will be in the training set, which will be used to fit the model, the remaining 25% will be used to evaluate the model's performance.

Linear Models

Model 1 – Using all 6 input variables to predict the Charges

```
charges = -11650.48 + (248)age - (194.51)sex + (342)bmi +
(483.95)children + (24212)smoker -
(539.55)RegionNW - (1137.52)RegionSE - (1095.81)RegionSW
  > linear_model6<-lm(charges~.,data=data_train)</pre>
  > summary(linear_model6)
  lm(formula = charges ~ ., data = data_train)
  Residuals:
      Min 1Q Median 3Q
                                                  Max
   -11528 -2837 -1003 1445 29751
   Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
   (Intercept) -11650.48 1169.62 -9.961 < 2e-16 ***
                        248.94 13.84 17.986 < 2e-16 ***
-194.51 386.67 -0.503 0.61505
  age
   sexmale

      sexmale
      -194.51
      386.67
      -0.503
      0.61505

      bmi
      342.89
      33.38
      10.273
      < 2e-16 ***</td>

      children
      483.95
      159.22
      3.040
      0.00243 **

      smokeryes
      24212.35
      485.21
      49.900
      < 2e-16 ***</td>

      regionnorthwest
      -539.55
      555.08
      -0.972
      0.33128

      regionsoutheast
      -1137.52
      562.58
      -2.022
      0.04345 *

      regionsouthwest
      -1095.81
      556.71
      -1.968
      0.04930 *

   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
  Residual standard error: 6094 on 994 degrees of freedom
  Multiple R-squared: 0.7504, Adjusted R-squared: 0.7484
  F-statistic: 373.6 on 8 and 994 DF, p-value: < 2.2e-16
```

Use the model to Predict values in the Test dataset:

```
pred_6var <- predict(linear_model6, data_test)
pred_6var

#Evaluate the Model
residual<-pred_6var - data_test$charges
plot(residual)
boxplot(residual)</pre>
```

Evaluating Model Performance

Residuals:

A box plot of the residuals shows that the residuals are mostly concentrated around 0.

R squared and Adjusted R squared:

Model 2

Since the p value for Sex was 0.615, which is greater than 0.05, we Fail to Reject the null. The coefficient for Sex =0, so for the next model I deleted the variable.

```
charges= -11724.09 + (249.09)age + (341.87)bmi + (482.92)children +
(24196.26)smoker -
(532.59)RegionNW - (1127.50)RegionSE - (1087.85)RegionSW
```

```
> linear_model5<-lm(charges~age+bmi+children+smoker+region,data=data_train)</pre>
> summary(linear_model5)
lm(formula = charges ~ age + bmi + children + smoker + region,
    data = data_train)
Residuals:
    Min
                   Median
                                3Q
-11627.3 -2804.3
                    -990.5
                            1470.6
                                    29659.7
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                            < 2e-16 ***
(Intercept)
                -11724.09
                            1159.99 -10.107
                   249.09
                              13.83 18.008
                                             < 2e-16 ***
age
bmi
                  341.87
                              33.30
                                     10.265
                                             0.00247 **
children
                  482.92
                             159.14
                                      3.034
                24196.26
                                            < 2e-16 ***
smokeryes
                              483.98 49.995
regionnorthwest
                -532.59
                             554.70 -0.960 0.33722
regionsoutheast -1127.50
                             562.02 -2.006 0.04511 *
                             556.27 -1.956 0.05079 .
regionsouthwest -1087.85
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 6092 on 995 degrees of freedom
Multiple R-squared: 0.7504,
                              Adjusted R-squared: 0.7486
F-statistic: 427.3 on 7 and 995 DF, p-value: < 2.2e-16
```

Model 3

Model2 did not perform better than Model1, so I decided to include the Gender variable. Since BMI there was no clear relationship between BMI and charges, I fit the next model without BMI.


```
charges = -2261.46 + (261.76)age + (44.68)sex + (484.32)children +
(24214.21) smoker -
(423.91)RegionNW + (412.94)RegionSE - (624.57)RegionSW
 > linear_modelBMI<-lm(charges~age+sex+children+smoker+region,data=data_train)</pre>
 > summary(linear_modelBMI)
 Call:
 lm(formula = charges ~ age + sex + children + smoker + region,
     data = data_train)
 Residuals:
           1Q Median
                        3Q
   Min
                              Max
 -16186 -1937 -1270 -288 28403
 Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                -2261.46 767.27 -2.947 0.00328 **
 (Intercept)
                            14.49 18.064 < 2e-16 ***
                 261.76
 age
                  44.68
 sexmale
                           405.74 0.110 0.91234
                 484.32
 children
                            167.37 2.894 0.00389 **
               24214.21
 smokeryes
                            510.07 47.473 < 2e-16 ***
 regionnorthwest -413.91
regionsoutheast 412.94
regionsouthwest -624.57
                            583.37 -0.710 0.47817
                            569.72 0.725 0.46873
                          583.23 -1.071 0.28449
 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
 Residual standard error: 6406 on 995 degrees of freedom
 Multiple R-squared: 0.7239,
                             Adjusted R-squared: 0.722
 F-statistic: 372.7 on 7 and 995 DF, p-value: < 2.2e-16
```

Model 4 - No Gender and BMI variables

```
charges= -2238.11 + (261.73)age + (484.55)children + (24217.92)smoker - (415.43)RegionNW + (411.69)RegionSE - (626.08)RegionSW
```

```
> lm_noBMIGender<-lm(charges~age+children+smoker+region,data=data_train)</pre>
> summary(lm_noBMIGender)
lm(formula = charges ~ age + children + smoker + region, data = data_train)
Residuals:
    Min
              10
                 Median
                              30
                                      Max
-16165.9 -1914.6 -1275.1
                          -303.4 28423.4
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              -2238.11 737.01 -3.037 0.00245 **
(Intercept)
                          14.48 18.074 < 2e-16 ***
aae
               261.73
children
                484.55 167.28 2.897 0.00385 **
smokeryes
              24217.92 508.70 47.607 < 2e-16 ***
regionnorthwest -415.43 582.92 -0.713 0.47621
regionsoutheast 411.69 569.32 0.723 0.46978
regionsouthwest -626.08
                        582.78 -1.074 0.28295
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 6403 on 996 degrees of freedom
Multiple R-squared: 0.7239, Adjusted R-squared: 0.7223
F-statistic: 435.3 on 6 and 996 DF, p-value: < 2.2e-16
```

Model 5 - No region

Since the **p value** for the region variables are all greater than 0.05, their coefficients are 0, and we can delete them.

```
charges = -11874.48 + (249.95)age - (162.68)sex + (325.44)bmi +
(486.14)children + (24179.12)smoker
 > lm_noRegion<-lm(charges~age+sex+bmi+children+smoker,data=data_train)</pre>
> summary(lm_noRegion)
 lm(formula = charges ~ age + sex + bmi + children + smoker, data = data_train)
 Residuals:
   Min
          10 Median
                      30
                           Max
 -12100 -2855 -1028 1437 29323
 Coefficients:
           Estimate Std. Error t value Pr(>|t|)
 249.95
                      13.85 18.047 < 2e-16 ***
 age
            -162.68 386.87 -0.421 0.67421
 sexmale
            325.44
 bmi
                      31.88 10.208 < 2e-16 ***
 children
             486.14
                      159.30 3.052 0.00234 **
 smokeryes 24179.12
                      482.10 50.153 < 2e-16 ***
 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
 Residual standard error: 6102 on 997 degrees of freedom
 Multiple R-squared: 0.7491,
                          Adjusted R-squared: 0.7478
 F-statistic: 595.2 on 5 and 997 DF, p-value: < 2.2e-16
| > |
```

Model 6 - Polynomial regression for Age

Because of the non-linear relationship between Age and Charges, I modeled a polynomial regression with degree 2, for Age.

```
charges= -6390.096 - (57.217)age + (3.873)age<sup>2</sup> + (339.121)BMI - (217.756)sex + (637.733)children + (24277.59)smoker - (610.087)regionNW - (1152.644)regionSE - (1092.289)regionSW
```

```
> summary(lm_polyAge)
 Call:
 lm(formula = charges \sim age + I(age^2) + sex + bmi + children +
    smoker + region, data = data_train)
 Residuals:
    Min
             1Q Median
                              3Q
                                      Max
 -12204.2 -2825.7 -952.4 1264.7 30511.6
 Coefficients:
               Estimate Std. Error t value Pr(>|t|)
 (Intercept) -6390.096 1974.456 -3.236 0.00125 **
               -57.217 93.844 -0.610 0.54220
 I(age^2)
                3.873
                           1.174 3.298 0.00101 **
             -217.756 384.825 -0.566 0.57162
 sexmale
               339.121 33.232 10.205 < 2e-16 ***
 bmi
               637.733 165.151 3.862 0.00012 ***
 children
smokeryes 24277.590 483.227 50.241 < 2e-16 ***
 regionnorthwest -610.087 552.756 -1.104 0.26998
 regionsoutheast -1152.664 559.825 -2.059 0.03976 *
 regionsouthwest -1092.289 553.963 -1.972 0.04891 *
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 6064 on 993 degrees of freedom
 Multiple R-squared: 0.7531, Adjusted R-squared: 0.7509
F-statistic: 336.6 on 9 and 993 DF, p-value: < 2.2e-16
```

Model 7 - Polynomial regression for Age and No Gender

Since I saw an increase in performance using Model 6, I decided to use a Polynomial regression for Age and proceed with deleting Gender since the p value for Gender was greater than 0.05.

```
charges= -6489.010 - (56.083)age + (3.861)age<sup>2</sup> + (338.001)BMI + (636.095)children + (24259.379)smoker - (602.075)regionNW - (1141.404)regionSE - (1083.394)regionSW
```

```
Call:
lm(formula = charges \sim age + I(age^2) + bmi + children + smoker +
     region, data = data_train)
Residuals:
                  1Q Median
                                       3Q
    Min
                                                 Max
-12298.6 -2801.9 -935.3 1327.2 30407.3
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                  -6489.010 1966.031 -3.301 0.000999 ***
(Intercept)
                    -56.083
                                93.790 -0.598 0.550002
age
I(age^2)
                                   1.174 3.289 0.001039 **
                      3.861
bmi 338.001 33.162 10.193 < 2e-16 ***
children 636.095 165.069 3.854 0.000124 ***
smokeryes 24259.379 481.989 50.332 < 2e-16 ***
regionnorthwest -602.075 552.386 -1.090 0.275998
regionsoutheast -1141.404 559.280 -2.041 0.041530 *
regionsouthwest -1083.394 553.550 -1.957 0.050607 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6062 on 994 degrees of freedom
Multiple R-squared: 0.7531, Adjusted R-squared: 0.7511
F-statistic: 378.9 on 8 and 994 DF, p-value: < 2.2e-16
```

Model 8 - Polynomial regression for Age and No Gender and No Region

Model 7 resulted in the best performance until now, and we see that p value is high for Region, so for Model 8 I deleted Gender and region variables.

```
charges= -6719.071 - (55.64)age + (3.868)age<sup>2</sup> + (321.124)BMI + (638.98)children + (24229.52)smoker
```

```
> lm_polyAgeNoRegionSex<-lm(charges~age+I(age^2)+bmi+children+smoker,data=data_train)</pre>
> summary(lm_polyAgeNoRegionSex)
lm(formula = charges \sim age + I(age^2) + bmi + children + smoker,
   data = data_train)
Residuals:
    Min
              1Q Median
                               3Q
                                       Max
-11762.9 -2859.1
                 -989.2 1373.0 30004.4
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -6719.071 1932.137 -3.478 0.000528 ***
            -55.641 93.801 -0.593 0.553197
                        1.174 3.295 0.001019 **
              3.868
I(age^2)
             321.124 31.684 10.135 < 2e-16 ***
bmi
            638.985
                       165.171 3.869 0.000117 ***
children
smokeryes 24229.519 478.917 50.592 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 6069 on 997 degrees of freedom
Multiple R-squared: 0.7517, Adjusted R-squared: 0.7505
F-statistic: 603.7 on 5 and 997 DF, p-value: < 2.2e-16
```

Comparing the performance of all Models

```
r_values<-data.frame(model=c("All variables","- Gender","- BMI","- Gender and BMI","- region","poly Age","polyAge - Ge
                                                                              rSquaredValue=c(r2,r2_noGender,r2_noBMI,r2_noBMIGender,r2_noRegion,r2_polyAge,r2_polyAgeNoGender,
                                                                             adjrSquared = c(adj_r2,adj_r2\_noGender,adj_r2\_noBMI,adj_r2\_noBMIGender,adj_r2\_noRegion,adj_r2\_polyAller = c(adj_r2,adj_r2\_noGender,adj_r2\_noBMI,adj_r2\_noBMIGender,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_noRegion,adj_r2\_no
r_values
                                                                                                             model rSquaredValue adjrSquared
                                                                                                                                                             0.6938541
                                                                                                                                                                                                                   0.7022644
    1
                                                                       All variables
    2
                                                                                                - Gender
                                                                                                                                                             0.6940446
                                                                                                                                                                                                                       0.7003351
    3
                                                                                                              - BMI
                                                                                                                                                             0.6512488
                                                                                                                                                                                                                       0.6571513
    4
                                                         - Gender and BMI
                                                                                                                                                             0.6512032
                                                                                                                                                                                                                      0.6551261
    5
                                                                                                 - region
                                                                                                                                                             0.6919551
                                                                                                                                                                                                                       0.6982266
    6
                                                                                                poly Age
                                                                                                                                                             0.7035139
                                                                                                                                                                                                                       0.7120414
    7
                                                         polyAge - Gender
                                                                                                                                                             0.7037308
                                                                                                                                                                                                                       0.7101090
    8 polyAge - Region - Gender
                                                                                                                                                             0.7018981
                                                                                                                                                                                                                       0.7061264
```

Conclusion

Even though there is not a lot of difference in the R^2 and Adjusted R^2 values between the models, the models with polynomial regression for Age perform better, and we get the best R squared and Adjusted R squared for a Model with the following input variables-

- Polynomial Regression for Age
- BMI
- Number of children
- Smoking habits

Final Model

```
\label{eq:charges} $$ -6719.071 - (55.64) age + (3.868) age^2 + (321.124) BMI + (638.98) children + (24229.52) smoker $$ R^2 = 0.701 \, or 70\% $$ Adjusted $R^2 = 0.706 \, or 70.6\% $$
```